M33’S VARIABLE A: A HYPERGIANT STAR MORE THAN 35 YEARS IN ERUPTION

ROBERTA M. HUMPHREYS, TERRY J. JONES, ELISHA POLOMSKI, MICHAEL KOPPELMAN, ANDREW HELTON, KRISTEN McQUINN, ROBERT D. GEHRZ, AND C. E. WOODWARD

School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455; roberta@aps.umn.edu

R. MARK WAGNER, KARL GORDON, AND JOANNAH HINZ
Steward Observatory, University of Arizona, Tucson, AZ 85721

AND

S. P. WILLNER
Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138

Received 2005 November 27; accepted 2005 December 29

ABSTRACT

Variable A in M33 is a member of a rare class of highly luminous, evolved stars near the upper luminosity boundary that show sudden and dramatic shifts in apparent temperature due to the formation of optically thick winds in high mass loss episodes. Recent optical and infrared spectroscopy and imaging reveal that its “eruption,” begun in ≈1950, has ended, having lasted ≈45 yr. Our current observations show major changes in its wind from a cool, dense envelope to a much warmer state surrounded by low-density gas with rare emission lines of Ca ii, [Ca ii], and K i. Its spectral energy distribution has unexpectedly changed, especially at the long wavelengths, with a significant decrease in its apparent flux, while the star remains optically obscured. We conclude that much of its radiation is now escaping out of our line of sight. We attribute this to the changing structure and distribution of its circumstellar ejecta, corresponding to the altered state of its wind as the star recovers from a high mass loss event.

Key words: stars: individual (M33 Var A) — stars: winds, outflows — supergiants

1. INTRODUCTION

Variable A in M33 is one of the highly luminous and unstable stars that define the upper luminosity limit in the Hertzsprung-Russell (H-R) diagram for evolved cool stars (see Humphreys & Davidson 1994). It was one of the original Hubble-Sandage variables (Hubble & Sandage 1953) and at its maximum light in 1950 was one of the visually brightest stars in M33. Its historical light curve shows a rapid decline from maximum by more than 3 mag in less than a year followed by a brief recovery and a second decline. It had an intermediate F-type spectrum at maximum, consistent with its observed colors. After its second decline to fainter than 18 mag (see the light curves in Hubble & Sandage 1953; Rosino & Bianchini 1973), no further observations were obtained until our optical and near-infrared photometry began in 1977. In 1985–1986 Var A had the spectrum of an M-type supergiant (Humphreys et al. 1987, hereafter HJG87), and its large infrared excess at 10 μm and spectral energy distribution showed that it was still as luminous (5 × 10^5 L_⊙) as it was at its maximum light in the visible. Thus, its large photometric and spectral variations had occurred at nearly constant bolometric luminosity. We concluded that its cool M-type spectrum was produced in a pseudophotosphere or optically thick wind formed during a high mass loss episode.

A recent spectrum, 20 yr later, reveals another dramatic change. Its spectrum is now that of a much warmer star, consistent with the warmer photosphere and colors of 50 yr ago. In this paper we discuss its remarkable spectral changes, reminiscent of the variability of ρ Cas (Lobel et al. 2003) but on much longer timescales. Var A was an obvious target for spectroscopy and imaging with the Spitzer Space Telescope. Its resulting spectral energy distribution (0.4–24 μm) also shows unexpected changes, especially at the long wavelengths, most likely corresponding to the changes in its wind and its impact on its circumstellar medium. In this paper we combine all of the available spectroscopy, multiwavelength photometry, and imaging to reconstruct the changes in its wind and circumstellar material over the past 20 yr. In § 2 we present our multiwavelength observations. The current spectrum and its light curve and spectral energy distribution are described in §§ 3 and 4. In § 5 we discuss Var A’ “eruption,” its duration, and the changing structure of its wind and circumstellar nebula, and in § 6 we review its relationship to other cool supergiants and the possible origins of their instability.

2. OBSERVATIONS AND DATA REDUCTION

Our new observations include blue–red ground-based spectra, polarimetry, and space-based near- and mid-infrared photometry and spectroscopy.

2.1. Spectroscopy with the MMT

Spectra of Var A were obtained in 2003 and 2004 with the refurbished MMT, now with a single 6.5 m mirror. The same dual-channel spectrograph was used as in 1985 but with a long slit 1′0 wide. Spectra were observed in both the blue and red channels with different gratings, resulting in a range of wavelength coverage and spectral resolution. The journal of observations is in Table 1. The spectra were all reduced in the standard way in IRAF1 and were flat-fielded, sky-subtracted, and flux- and wavelength-calibrated. The signal-to-noise ratio of the final spectra is wavelength-dependent but is typically ~30 in the continuum and 80–90 for the strong Hα and Hβ emission lines.

1 IRAF is written and supported by the IRAF programming group at the National Optical Astronomy Observatory (NOAO) in Tucson, Arizona. NOAO is operated by the Association of Universities for Research in Astronomy, Inc., under cooperative agreement with the National Science Foundation.
Polarimetry

Polarimetry at visual wavelengths was performed on 2004 September 27 using OptiPol at the Mount Lemmon Observing Facility 1.5 m telescope. OptiPol is a CCD imaging polarimeter using a Wollaston prism in combination with a rotatable achromatic half-wave plate. Images in perpendicular polarizations are split by the Wollaston prism and placed on opposite halves of the CCD. Two polarization standards, HD 204827 (polarized) and HD 212322 (unpolarized) (Schmidt et al. 1992), were observed. Due to the faintness of Var A in the visual, we were only able to obtain an upper limit of $P \leq 15\%$ ($3\sigma$) in the $R$ and $I$ filters (combined). Interstellar polarization could be present but would very likely be much less than our upper limit.

Photometry was extracted from the polarization data by combining the signal at all wave plate positions for each filter. The resulting photometry was placed on the Cousins-Kron system by observing Landolt standards (Landolt 1983) in the same manner as the polarization standards. The $VRI$ magnitudes are included in Table 2.

2.3. Spitzer Observations

Observations of Var A were made using all four bands of the Infrared Array Camera (IRAC) on 2004 January 9 and were repeated on 2004 July 22, 2004 August 16, and 2005 January 1, yielding four epochs of data as part of GTO Program ID 5 to map M33 (PI: R. D. Gehrz). The IRAC instrument (Fazio et al. 2004) uses four detectors at 3.6, 4.5, 5.8, and 8.0 $\mu$m. All four detector arrays are 256 $\times$ 256 pixels in size, with mean pixel scales of 1$''$221, 1$''$213, 1$''$222, and 1$''$220 pixel$^{-1}$. The M33 observations used a three-point cycling and an $\sim$11 pixel dither for each position, and the integration time was 10.4 s per frame.

The raw data were processed and flux-calibrated with version 11.4 of the Spitzer Science Center (SSC) pipeline. Details of the calibration and raw data processing are specified in the IRAC Pipeline Description Document, version 1.0. Post–basic calibrated data (post-BCD) processing was carried out using the 2005 May 9 Linux version of the SSC MOPEX software (Makovoz et al. 2005). Five steps of MOPEX were implemented: cosmetic fix, final flat fielding, background matching, outlier detection, and mosaicking. The photometry was measured using a modified version of the IDL photometry package ATV. The field is relatively empty, and therefore, a source and sky annulus were chosen that correspond to the apertures used in the pipeline calibration procedures, so no aperture correction was necessary. A median sky annulus was used and uncertainties were calculated using the prescription inReach et al. (2005). The resulting median magnitudes from the four observations are in Table 2.

Observations with the Infrared Spectrograph (IRS) were made using the short-wavelength (5–15 $\mu$m) and long-wavelength (14–28 $\mu$m) low-resolution modules on 2004 August 31. We used 80-s ramp modules with slit widths of 3$''$7 and 10$''$7, respectively. The observations consisted of 3 cycles of 60 s ramps (effective exposure time) and 3 cycles of 120 s ramps in the short- and long-wavelength modules, respectively. The raw data were processed and flux-calibrated with version 12.0 of the SSC pipeline. Details of the calibration and raw data processing are specified in the IRS S11 Pipeline Handbook, version 1.0. Spectra were extracted from the BCD frames using the Spitzer IRS Custom Extractor (SPICE) version 1.1B16. Individual spectra were then corrected for bad pixels scaled to the mean, averaged together, and saved in a SPICE-like format. Uncertainties were estimated from the standard deviation (sample variance).

2 See http://ssc.spitzer.caltech.edu/irac/dh/PDD.pdf.
3 Mosaicking and Point Source Extraction.
4 See http://ssc.spitzer.caltech.edu/irs/dh/irsPDDmar30.pdf.

### Table 1: Journal of New Observations

| Date (UT)    | Grating/Filter | $\lambda_0$ (Å) | Spectral Resolution (Å) | Total Integration |
|--------------|----------------|------------------|-------------------------|-------------------|
| **MMT Double Spectrograph** |
| 2003 Nov 18 | 600 (red)       | 6400             | 4.7                     | 40 minutes        |
| 2003 Nov 18 | 2700 (red)      | 7000             | 10.8                    | 60 minutes        |
| 2003 Nov 19 | 3001 (blue)     | 6000             | 6.2                     | 45 minutes        |
| 2004 Sep 23 | 3001 (blue)     | 6000             | 6.2                     | 80 minutes        |
| **Polarimetry** |
| 2004 Sep 27 | $VRI$          | ...              | ...                     | 100, 80, and 80 minutes |
| **Spitzer IRAC** |
| 2004 Jan 9  | 3.6, 4.5, 5.8, and 8.0 $\mu$m | ... | ... | 31.2 s each |
| 2004 Jul 22 | 3.6, 4.5, 5.8, and 8.0 $\mu$m | ... | ... | 31.2 s each |
| 2004 Aug 16 | 3.6, 4.5, 5.8, and 8.0 $\mu$m | ... | ... | 31.2 s each |
| 2005 Jan 1  | 3.6, 4.5, 5.8, and 8.0 $\mu$m | ... | ... | 31.2 s each |
| **Spitzer IRS** |
| 2004 Aug 31 | 5–15 $\mu$m     | ...              | ...                     | 366 s             |
| 2005 Feb 3  | 14–28 $\mu$m    | ...              | ...                     | 731 s             |
| **Spitzer MIPS** |
| 2005 Sep 5  | 24, 70, and 160 $\mu$m | ... | ... | 238, 43, and 1 9 s |
| 2005 Sep 5  | 24, 70, and 160 $\mu$m | ... | ... | 238, 43, and 1 9 s |
Images of M33 at 24, 70, and 160 μm were obtained with the Multiband Imaging Photometer for Spitzer (MIPS) on 2003 December 29, 2005 February 3, and 2005 September 5. A region approximately 1.5° × 1° centered on M33 was covered with four scan maps. Each map consisted of medium-rate scan legs with cross-scan offsets of 148″ between each leg. The length of the scan legs varied from 0″75 to 1″0. The raw data were processed and flux-calibrated with version 3.02 of the University of Arizona MIPS instrument team’s Data Analysis Tool (Gordon et al. 2005). Extra processing steps on each image were applied before mosaicking using programs written specifically to improve the reductions in large, well-resolved galaxies. The first-epoch 70 μm observations (2003 December 29) were taken before the operating parameters of this array were finalized and therefore suffer from significantly larger detector transients than the second-epoch data. All three epochs were used for the final mosaics at 24 and 70 μm, but only the second- and third-epoch data were used for the final 160 μm mosaic. The mean magnitude at 24 μm is included in Table 2; however, Var A was not detected at either 70 or 160 μm, so only upper limits are given for those wavelengths.

3. THE SPECTRUM

The spectrum of Var A observed in 1985 and 1986 (HJG87) was that of an M-type star with strong TiO bands and a weak Hα emission line. This spectrum was somewhat of a surprise at that time, because the other Hubble-Sandage variables in M31 and M33 were hot stars (Humphreys 1975, 1978) and belonged to the group of unstable massive stars we now call luminous blue variables (LBVs; see Humphreys & Davidson [1994] for a review). Assuming that Var A’s normal state was that of an F-type supergiant, we attributed this M-type spectrum to the formation of a cool, optically thick wind, corresponding to its rapid decline in apparent brightness and color shift 30 yr earlier.

Our recent spectra from 2003 and 2004 reveal another dramatic shift (see Fig. 1). The TiO bands are gone. The spectrum has returned to a much warmer apparent temperature with strong hydrogen emission, absorption lines appropriate for an early F- to early G-type star depending on which lines are used, plus unusual emission lines including K i λλ7665, 7699, the near-infrared Ca ii triplet λλ8498, 8542, and [Ca i] at λλ7292 and 7324. Thus, the star has returned to its previous warmer state, although at this time it is not possible to know whether the absorption lines are representative of the star’s true photosphere after the dissipation of its cool, dense circumstellar envelope or are formed in a warm wind, which is consistent with the range of identified lines. Var A’s recent optical colors (Table 2) are consistent with its much warmer spectrum; however, although it is no longer red, Var A has remained faint.

The strong emission lines and representative absorption lines are listed in Table 3 with their heliocentric velocities and equivalent widths. Because of the low resolution, many of the absorption lines are blended. The expected heliocentric velocity of Var A at its distance from the center of M33 would be about −130 km s⁻¹ from the H i radial velocity map (Plate 6) in Newton (1980). With respect to this expected velocity, most of the emission and absorption lines are blueshifted, which could be due to expansion of the ejecta or to the star’s systemic motion, while the K i emission is redshifted. There are also several unidentified emission and absorption lines, and some of the stronger ones are listed in Table 4.

Var A still has an extensive but low-density circumstellar envelope responsible for its strong hydrogen and peculiar emission. Both the Hα and Hβ emission lines show prominent wings

| Bandpass | 1986 (HJG87) | 1992 | 1997a | 2000–2001b | 2004–2005 |
|----------|-------------|------|-------|------------|-----------|
| U        |             |      |       | 20.2, 20.1 ± 0.02 | ...       |
| B        | 20.4 ± 0.15 | ...  | ...   | 19.9, 19.8 ± 0.01 | 19.9c     |
| V        | 18.8 ± 0.10 | ...  | ...   | 18.8, 18.8 ± 0.01 | 19.1, 19.1 ± 0.17d |
| R        | 17.7 ± 0.08 | ...  | ...   | 18.2, 18.3 ± 0.01 | 18.5, 18.6 ± 0.06d |
| I (0.8 μm)| ...         | ...  | ...   | 17.7, 17.8 ± 0.01 | 18.1 ± 0.04d |
| J (0.9 μm)| 17.2 ± 0.10 | ...  | ...   | ...         | ...       |
| J        | 16.4 ± 0.10 | 16.4 ± 0.13 | 16.9 ± 0.14 | ...         | ...       |
| H        | 15.5 ± 0.10 | 15.3 ± 0.11 | 15.9 ± 0.16 | ...         | ...       |
| K        | 14.4 ± 0.05 | 14.5 ± 0.10 | 14.7 ± 0.09 | ...         | ...       |
| L        | ...         | ...  | ...   | 12.9 ± 0.05c | ...       |
| 4.5 μm   |             | ...  | ...   | 12.1 ± 0.05c | ...       |
| 5.7 μm   |             | ...  | ...   | 11.4 ± 0.10e | ...       |
| 8.0 μm   |             | ...  | ...   | 10.1 ± 0.05e | ...       |
| 10.2 μm  | 7.1 ± 0.20  | ...  | ...   | 8.3         | ...       |
| 24 μm    |             | ...  | ...   | 7.5 ± 0.10  | ...       |
| 70 μm    |             | ...  | ...   | 4.3         | ...       |
| 160 μm   |             | ...  | ...   | −2.5        | ...       |

a 2MASS, 1997 December.
b CCD photometry from P. Massey (2005, private communication) obtained 2000 October 2 and 4 and 2001 September 18, respectively.
c From the flux-calibrated MMT spectrum.
d From the polarimetry frames.
e Spitzer IRAC. Here we give the mean of the four observations. The calibration uncertainties dominate the photometric errors of the individual observations; therefore, the errors of the separate observations are the same. When the dispersion in the mean magnitude is less than the calibration error we quote the latter. In only one case, Ch 3 (5.7 μm), was the error of the mean greater, 0.10 mag.
f From integration of the IRS spectrum over the N-band filter.
g The upper limit in magnitudes corresponding to 13.98 mJy and 1.5 Jy at 70 and 160 μm, respectively. The fluxes were converted to magnitudes using the Vega spectral model (Cohen et al. 1996) and integrating over the bandpass.

5 The Na i D lines may also be in emission, although measurements in that spectral region are complicated by subtraction of the strong night-sky lines.
extending to \( \pm 800-900 \) km s\(^{-1} \) (see Fig. 2), presumably due to Thomson scattering. There is no obvious associated P Cygni absorption, although at this resolution it may be difficult to tell. Emission lines of K\( \text{I} \), the Ca\( \text{II} \) infrared triplet, and [Ca\( \text{II} \)] are rare in astronomical spectra but are observed in some of the other "cool hypergiants" with extensive circumstellar material, such as IRC +10420 (Ca\( \text{II} \), [Ca\( \text{II} \)], and K\( \text{I} \); Jones et al. 1993; Humphreys et al. 2002) and VY CMa (K\( \text{I} \); Wallerstein [1958] and numerous subsequent papers). K\( \text{I} \) emission is only weakly present in the ejecta of IRC +10420 and in \( \rho \) Cas (Lobel 1997). However, in VY CMa it is not only the strongest emission line but is also stronger there than in any other known late-type star, with peak fluxes of several times the continuum. In Var A, the K\( \text{I} \) lines are second only to H\( \alpha \) and H\( \beta \) in relative strength, with peak fluxes about 1.5 times the continuum level. Their doublet ratio also indicates that the lines are optically thick, as in VY CMa, and also

---

**TABLE 3**

| Line          | Heliocentric Velocity (km s\(^{-1}\)) | \( \lambda_{\text{E}} \) \( \pm \lambda_{\text{R}} \) |
|---------------|--------------------------------------|----------------------------------|
| Emission      |                                      |                                  |
| H\( \alpha \) | \(-150.2^a\)                        | \(51.1^a \pm 52.1^a\)            |
| H\( \beta \)  | \(-155.8^a\)                        | \(9.4^a \pm 10.9^a\)             |
| H\( \gamma \) | \(-147.6\)                          | \(4.4\)                          |
| Ca\( \text{II} \) \( \lambda 4959 \) | \(-130.7\) | \(6.0\) |
| Ca\( \text{II} \) \( \lambda 7291 \) | \(-149.9\) | \(1.9\) |
| Ca\( \text{II} \) \( \lambda 7324 \) | \(-170.5\) | \(2.5\) |
| K\( \text{I} \) \( \lambda 7665 \) | \(-96.0\) | \(1.9\) |
| K\( \text{I} \) \( \lambda 7699 \) | \(-116.5\) | \(3.4\) |

**Absorption**

| Line          | Heliocentric Velocity (km s\(^{-1}\)) | \( \lambda_{\text{E}} \) \( \pm \lambda_{\text{R}} \) |
|---------------|--------------------------------------|----------------------------------|
| Ca\( \text{II} \) \( \lambda 4226 \) | \(-218.7\) | \(1.0\) |
| Fe\( \text{I} \) \( \lambda 4250 \) | \(-195.0\) | \(0.7\) |
| Fe\( \text{I} \) \( \lambda 4271 \) | \(-145.7\) | \(1.1\) |
| Fe\( \text{I} \) \( \lambda 4325 \) | \(-140.3\) | \(0.8\) |
| Fe\( \text{I} \) \( \lambda 4383 \) | \(-167.2\) | \(0.9\) |
| Mg\( \text{I} \) \( \lambda 5167 \) | \(-161.2\) | \( \ldots \) |
| Na\( \text{I} \) \( \lambda 5890 \) | \(-191.1\) | \(1.1\) |

---

**TABLE 4**

| Measured \( \lambda \) (Å) | Predicted \( \lambda \) (Å) | Comment |
|-----------------------------|-----------------------------|---------|
| Emission                    |                             |         |
| 4359.5                      | 4361.7                      |         |
| 4921.3                      | 4923.8                      |         |
| 5004.5                      | 5007.0                      |         |
| 5017.1                      | 5019.6                      |         |
| 5038.6                      | 5041.1                      |         |
| 5079.4                      | 5081.9                      |         |
| 5510.5                      | 5513.3                      |         |
| 6397.3                      | 6400.5                      |         |
| 6495.4                      | 6498.6                      |         |
| 7247.5                      | 7251.1                      |         |

**Absorption**

| Measured \( \lambda \) (Å) | Predicted \( \lambda \) (Å) |
|-----------------------------|-----------------------------|
| 3823.2                      | 3825.5                      |
| 3855.7                      | 3858.0                      |
| 5057.1                      | 5060.1                      |
| 7236.1                      | 7240.4                      |
| 7273.0                      | 7277.4                      |
| 7337.2                      | 7341.6                      |

---

\( ^a \) Thomson scattering wings at \(-975 \) and \(+882 \) km s\(^{-1}\).
\( ^b \) Without wings.
\( ^c \) With wings.
\( ^d \) Thomson scattering wings at \(-770 \) and \(+794 \) km s\(^{-1}\).

---

Fig. 1.—Optical spectrum from \( \sim 3600 \) to 8000 Å. The strongest emission lines are marked. The lower boundary represents zero flux, and a level of \( 10^{-16} \) erg cm\(^{-2} \) s\(^{-1} \) Å\(^{-1} \) is marked near the left side.
like VY CMa the λ7699 line is the stronger. Figure 3 shows the region around the K i lines.

K i emission is normally attributed to resonance scattering. However, averaging over directions in a simple model, resonance scattering neither augments nor diminishes the net emergent flux; apparent “emission” must be balanced by an equal amount of “absorption,” possibly redshifted or blueshifted or visible along a different line of sight. In a recent paper on VY CMa, Humphreys et al. (2005; see their Appendix and Fig. 14) suggested a model in which the K i “emission” component dominates in the emergent spectrum from multiple scatterings from large, dusty condensations in a roughly spherical inhomogeneous shell. In that model, lines of sight for which resonance scattering would produce net “absorption” are preferentially hidden because they occur in denser localities, while lines of sight with net “emission” are more favorable for photon escape. (For a more complete description, see Humphreys et al. 2005) The K i emission lines in Var A are not as extreme as in VY CMa, but their ratios indicate that they are produced in similar conditions. The redshift of these lines relative to other features (Table 3) may be difficult to explain in this model, but this depends on geometrical details. Alternatively, the gas and dust around Var A may be nonspherical and we may view it from a direction that favors the “emission” component of resonance scattering. As we see in § 5, a nonspherical geometry is likely. The probable presence of large, dusty condensations is relevant to our discussions in §§ 4 and 5.

Like K I, [Ca ii] is rarely observed in emission because the atoms are normally collisionally de-excited back to the ground state that produces the Ca ii H and K lines. The transition that produces the Ca ii infrared triplet emission leaves the atoms in the upper level for the forbidden lines, some of which must be radiatively de-excited to produce the forbidden emission. Strong emission from the Ca ii infrared triplet and [Ca ii] emission are also seen in the spectrum of IRC +10420. Therefore, in two of our previous papers on IRC +10420 (Jones et al. 1993; Humphreys et al. 2002) we estimated the relative number of de-excited photons from the ratios of their combined equivalent widths ([Ca ii] to Ca ii)\(^6\) to their corresponding continuum fluxes. Following this same procedure for Var A, we find that \(\approx 27\%\) of the photons produce the [Ca ii], and \(n_e\) is only 2.7 times the critical density for radiative de-excitation. This is very similar to our results for IRC +10420 and shows that both stars possess extended regions of very low density gas beyond their dense winds or photospheres.

The IRS spectra from 5 to 15 \(\mu m\) and 14 to 28 \(\mu m\) show that Var A also has prominent silicate emission at 9.7 and 18 \(\mu m\). The 9.7 \(\mu m\) feature is quite strong in emission, at least as strong as the 9.7 \(\mu m\) emission feature in the Galactic hypergiant IRC +10420 (Jones et al. 1993); see Figures 5 and 6. The ratio of the 9.7–18 \(\mu m\) emission features is typical for optically thin dust shells in Galactic red giants and supergiants (e.g., Little-Marenin & Little 1990).

4. THE LIGHT CURVE AND SPECTRAL ENERGY DISTRIBUTION

Figure 4 shows Var A’s light curve from 1950 to the present based on the work by Hubble & Sandage (1953) and Rosino & Bianchini (1973) together with the photoelectric and CCD blue and visual photometry between 1977 and 1986 from HJG87, photographic B photometry from 1982 to 1990 (Kurtev et al. 1999), and CCD photometry from 2000 to 2001 (P. Massey 2005, private communication). The older photographic color index has been converted to an approximate \(B - V\) color (Allen 1963). The most recent data for 2004 are derived from the integration of our flux-calibrated spectra over the standard bandpasses for \(B, V,\) and \(R\) magnitudes and from the \(VRI\) frames used for the polarimetry observations. These two independent methods give consistent results. Hubble & Sandage (1953) originally suggested that the decline of \(\sim 3–3.5\) mag in the photographic blue was consistent with a shift in bolometric correction and the corresponding change in color index. The 1985–1986 spectrum confirmed that the star’s apparent energy distribution had indeed shifted to a much cooler temperature. However, between 1954 and 1986 the star faded an additional 2 mag in the blue, which we attribute to extinction by circumstellar dust.

In Table 2 we summarize the multiwavelength photometry for Var A from HJG87, an unpublished \(JHK\) measurement by R. D. Gehrz & C. Woodward (1992, unpublished), optical photometry
from P. Massey (2005, private communication), more recent photometry from the calibrated optical spectrum and polarimetry, JHK photometry from the Two Micron All Sky Survey (2MASS) Point Source Catalog, and the mean 3.6–8.5 \( \mu \)m IRAC measurements from Spitzer. The current 24 \( \mu \)m point is from the Spitzer MIPS observation. Figure 5 shows Var A’s present broadband spectral energy distribution together with the IRS spectrum compared with its energy distribution from 1986. This comparison reveals several very significant changes.

The most outstanding difference is the large drop in flux by a factor of 3 at 10 \( \mu \)m and by \( \sim 5 \) times at 18 \( \mu \)m. Note that in 1986 our measured 10 \( \mu \)m flux showed that the star’s total energy output had remained constant and that it was still as luminous as at its maximum light in 1950. The recent decline in the long-wavelength flux has important implications for the possible dissipation and/or destruction of the reradiating dust and for any model for the star’s changing wind and the distribution of the circumstellar material. Consequently, we have carefully checked the earlier mid-infrared photometry and the IRAS data used by HJG87 and are confident in the earlier, higher fluxes for the following reasons.

There is clearly a source in the IRAS 12 \( \mu \)m co-added maps at the position of Var A. A subsequent analysis of IRAS observations of M33 by Rice et al. (1990) reached a similar conclusion. Rice et al. derived a 12 \( \mu \)m flux (0.10 Jy) and an upper limit for the 25 \( \mu \)m flux (0.09 Jy) consistent with the values we reported in HJG87. There is also no evidence in the current Spitzer observations of another source, such as a bright H\alpha region, that could have contributed more than 25% to the IRAS fluxes.

The ground-based 10 \( \mu \)m magnitude used in HJG87 (see Table 2) was derived from data from four separate observing runs. These observing runs on the Infrared Telescope Facility and Wyoming Infrared Observatory telescopes resulted in one 4 \( \sigma \) detection and three 3 \( \sigma \) upper limits. Combining these observations, HJG87 computed a 4 \( \sigma \) value for the 10 \( \mu \)m flux of Var A, which is completely independent of, but entirely consistent with, the IRAS 12 \( \mu \)m flux.

Finally, we note that the luminosity of Var A in the mid-infrared reported in HJG87 was very close to the preoutburst optical luminosity of the star. Observations of yellow and red hypergiants, as well as the LBVs, show that these stars maintain an essentially constant luminosity as they undergo variations in their apparent temperature (see Humphreys & Davidson 1994). If dust formed in the material shed by Var A and completely covered the star, then it would absorb all of the stellar luminosity and reradiate it in the infrared, as observed by HJG87. The present decrease in the 10 and 18 \( \mu \)m flux compared with Var A’s luminosity at maximum light means that a significant fraction of the star’s light must be escaping elsewhere. The lack of measurable flux at even longer wavelengths (70 and 160 \( \mu \)m) rules out the presence of cooler dust that could be reradiating the missing flux. Furthermore, there has not been sufficient time for the circumstellar material to have expanded to those much larger distances from the star.

The fading of its near-IR flux (from 2MASS) very likely corresponds to a combination of the shift in the energy distribution and the possible dissipation of warm dust nearer the star due to changes in the wind as its density decreased and radiation from warmer layers escaped. The optical colors between 2000 and 2004 show the object getting slightly bluer, which may be due to a continued decrease in wind density. The recent photometry also shows that the return to a warmer apparent photosphere was not accompanied by a visual brightening. The most
likely explanation is that its present faintness in the optical is due to obscuration by circumstellar dust, although it is not red, suggesting that the circumstellar extinction is relatively neutral due to grains larger than is typical for interstellar and circumstellar dust but still consistent with the silicate emission. Compared with its visual maximum, when Var A apparently had a comparable temperature, this implies that it now has approximately 4 mag of circumstellar extinction in the visual. Var A’s eruption and the changes in its wind and circumstellar material are discussed in § 5.

5. DISCUSSION: THE WIND AND CIRCUMSTELLAR MATERIAL IN TRANSITION

Our current observations reveal some remarkable changes in the spectrum and energy distribution of Var A. Although we do not have a complete spectroscopic and photometric record over the past 20 yr, our observations do allow us to put together a picture of a very luminous, unstable star experiencing major changes in the structure of its wind and circumstellar material at the end of a high mass loss event.

Var A still had its cool, dense wind and was in a high mass loss phase 35 yr after its rapid decline in 1951. Thus, it was in “erection” for at least that long. The photometric record also shows that Var A faded 2 mag between 1954 and 1986, presumably due to the formation of dust, and may have created an additional 2 mag of circumstellar extinction since then. Our recent spectrum 20 yr later shows that the star’s F-type photosphere has returned. When did this transition occur? The star has remained faint even though the spectrum has presumably recovered. The variation in its near-infrared photometry may correspond to changes in the wind accompanying the subsidence of its cool, dense wind phase. The 2MASS observations obtained in 1997 December show that Var A had faded significantly in the near-infrared. However, the $JHK$ photometry from 1992 does not show any change from the earlier data in 1986. Assuming that the near-infrared variation is due to the wind in transition, then Var A’s eruption or dense wind stage may have lasted between 41 and 46 yr.

How long the transition back to a warmer temperature may have taken is uncertain, but we note that the initial formation of the dense wind took approximately 1 yr based on its 1950s light curve or at most 2 yr if we include the brief recovery and second decline. Using the record of $\rho$ Cas, which shows similar outbursts or shell episodes, as an example, the onset and recovery timescales are comparable, and in $\rho$ Cas they occur very rapidly, in only a couple of months. Thus, many of the changes we discuss below may have occurred over only 1–2 yr at most for the spectroscopic changes and perhaps up to 5 yr (1992–1997) or so for the onset of the changes in the distribution and structure of the circumstellar material. The transition in the wind from an M-type false photosphere to a warmer F-type star could reasonably have occurred on even shorter timescales. Although we do not have a direct measurement of Var A’s wind speed, the expansion velocities for the winds and ejecta in IRC +10420 and VY CMa are 40–60 and 35 km s$^{-1}$ for the envelope expansion during $\rho$ Cas’s recent episode. Assuming 50 km s$^{-1}$ for the wind speed, Var A’s envelope could have made these transitions in as short as three-quarters of a year, consistent with its variations during the early 1950s.

To explain Var A’s observed energy distribution in 1986, HJG87 proposed a simple model of a cool, dense false photosphere with an obscuring torus and reflection nebulae at the poles. This model combined extinction by circumstellar dust with the blueing effect of scattering by dust grains and assumed that most of the flux was radiated in the mid-infrared. Most of the visible light was scattered and not viewed through the intervening material. In this model the visible light would very probably have been more highly polarized than the upper limit of 15% reported here. There was no optical polarimetry in 1986, so we cannot check this model or verify that there has been a change.

Despite its warmer apparent temperature and the corresponding change in the blue–visual energy distribution, Var A has not brightened in the visual, and comparison with its maximum light implies $\approx$4 mag of circumstellar extinction currently in the line of sight. HJG87 showed that the visual interstellar extinction for Var A was about 0.6–0.8 mag, which is typical for stars in M33. With its current $B - V$ color of 0.8–0.9 this suggests that its current true color is 0.6–0.4, appropriate for a late F-type star; in comparison with its colors at maximum light (~0.4), this implies virtually no circumstellar reddening in the visual. As we mentioned previously, the dust grains must be large enough to provide the neutral extinction in the visual, which is also consistent with the scattering requirements for the $K_1$ emission. Our polarimetry upper limit of 15% suggests that the optical light at present is not due mostly to scattered light. If we adopt 30% for the polarization of a star completely blocked by circumstellar dust and visible only in reflected light (Johnson & Jones 1991), then at most half the visible light from Var A is from scattered photospheric radiation. The polarimetry also rules out any current asymmetries such as bipolar lobes, although reflection nebosity in a more spherical distribution could still be present.

The most dramatic change in Var A’s energy distribution is the apparent decrease in its total flux. Since it is highly unlikely that the total luminosity of the star would have declined by more than 1 mag, the energy must now be escaping in some direction other than along our line of sight. Several massive stars are now known to have asymmetrical winds or bipolar outflows. The most notable is $\eta$ Car, with a latitude-dependent wind (Smith et al. 2003) that is both faster and denser at the poles, although $\eta$ Car is a very different kind of star. However, given the evidence from other evolved, massive stars including cool hypergiants like IRC +10420 and VY CMa for irregularities and density variations in their circumstellar ejecta, it is likely that Var A’s dusty shroud is not uniform or completely opaque in all directions. In the remaining discussion of Var A’s wind and circumstellar material we assume that the missing radiation is escaping through large, low-density regions, even holes, in the obscuring material, and based on the timescales discussed above for the duration of the eruption and the recovery we assume that Var A has been in this warmer state for approximately 10 yr.

HJG87 fitted Var A’s 1986 mid-infrared flux with a 370 K blackbody, which implies a dusty zone or shell with a radius of ~400 AU from the star. The energy distribution had a significant near-infrared flux due to warmer dust closer to the star, so the dusty zone probably extended from 100 to 400 AU or so. Figure 4 shows that Var A slowly faded over 30 yr due to increased circumstellar obscuration, presumably as the amount and density of the obscuring material increased. HJG87 had estimated a mass-loss rate of $2 \times 10^{-4} M_\odot$ yr$^{-1}$ from Elitzur’s (1981) formulation assuming radiation coupling to the grains. But when Var A’s optically thick wind ceased and quickly subsided back to a warmer state, then its mass-loss rate would very likely have decreased as well. For example, the mass-loss rates of the LBVs during their eruptions are typically 10–100 times that during their quiescent stage, and the normal mass-loss rates of $\rho$ Cas and HR 8752, two hypergiants of comparable luminosity and temperature, are $\sim 10^{-5} M_\odot$ yr$^{-1}$. In addition to a less dense
wind and a lower mass-loss rate, Var A may also have a higher wind speed now. Wind speeds of 100–200 km s\(^{-1}\) are typical of normal A- to F-type supergiants. Following HJG87’s procedure, using Var A’s apparent luminosity inferred from its current 10 \(\mu\)m flux and assuming that the optical depth is near one in our line of sight, we find a current mass-loss rate of \(\sim 6.7 \times 10^{-5} M_\odot\) yr\(^{-1}\) for a 50 km s\(^{-1}\) wind. But if the wind speed is higher, the mass-loss rate will be \(\sim (2-3) \times 10^{-5} M_\odot\) yr\(^{-1}\).

In the approximately 10 yr since its transition, Var A’s lower density and possibly faster wind would have reached 100–300 AU, the region of the dusty zone. Consequently, the dusty material may not be replenished as efficiently as in the previous dense wind, higher mass loss stage. So as the dusty zone has continued to expand during this same period, the lower density regions or gaps will also have enlarged, allowing more radiation to escape. If the dusty distribution is flattened, as HJG87 suggested, this is most likely to occur at the poles.

Therefore, we propose that large dusty condensations in a flattened distribution, possibly a torus, currently obscure our direct view of Var A. The \(K\) emission lines are produced by resonance scattering in this dusty zone. In addition, a very low density gas or wind responsible for the hydrogen, Ca \(ii\), and peculiar [Ca \(ii\)] emission fills the region between the star’s photosphere and the dusty zone. More than half of the radiation is escaping from our line of sight, presumably from low-density regions, all or most of which must be out of our line of sight. Furthermore, the polarimetry measurements rule out a strongly bipolar structure with asymmetrically scattered light. This then suggests a unique geometry even if the gaps are restricted to the polar regions. The dusty zone must either be nearly aligned with our line of sight in such a way as to also block most of the escaping radiation from being reflected back into our line of sight or else there is very little reflecting nebulosity.

6. DISCUSSION: VARIABLE A AND THE COOL HYPERGIANTS

HJG87 derived a total luminosity for Var A of \(5 \times 10^5 L_\odot\) based on both its luminosity at its visual maximum \((M_V = -9.4\) to -9.6 mag\) and its mid-infrared flux in 1986. As we have already emphasized, the two agreed. Its position on the H-R diagram in its two states, cool dense wind and warm photosphere or wind, can be seen in Figure 4 in HJG87 and also in Figure 14 in Humphreys et al. (2002), together with other very luminous evolved cool hypergiants, some of which have already been mentioned in this paper. Var A is one of several luminous stars, in our Galaxy and others, that define the upper luminosity boundary for evolved cool stars (Humphreys & Davidson 1979, 1994).

Var A shows spectral and photometric characteristics in common with several of these stars, especially IRC +10420 and \(\rho\) Cas. Spectroscopically, it is most like the post-red supergiant IRC +10420 with its strong hydrogen emission and the Ca \(ii\) and [Ca \(ii\)] emission lines. IRC +10420 has a large infrared excess, is a powerful OH maser, and has an extended and complex reflection nebula (Humphreys et al. 1997), but it does not have significant circumstellar reddening. Figure 6 shows a comparison of their spectral energy distributions. Var A and IRC +10420 have comparable luminosities with strong 9.7 \(\mu\)m silicate emission features and gently rising continua from 1 to 8 \(\mu\)m. IRC +10420 has high interstellar extinction in the visual that causes the rapid drop in flux at wavelengths shorter than 1 \(\mu\)m. Emission from warm dust near the star contributes to its excess radiation longward of 2 \(\mu\)m. This is observed in other evolved stars with extensive circumstellar ejecta and may also be the case for Var A (see HJG87). The 18 \(\mu\)m silicate feature is unusually strong in IRC +10420 compared to the more “normal” feature in Var A. Based on laboratory investigations, Nuth & Hecht (1990) suggest that a relatively stronger 18 \(\mu\)m feature indicates grains that are more highly processed, implying that the dust associated with Var A formed relatively recently and is not the remnant of an old mass-loss phase in the star’s evolution. We do not have any record of a prior cool, dense wind state in IRC +10420, although Humphreys et al. (2002) concluded that with its very high mass loss rate \([(3-6) \times 10^{-4} M_\odot\) yr\(^{-1}\)], IRC +10420’s current warm wind \((\approx 8000–9000 K)\) is optically thick. Interestingly, the light curves of both Var A and IRC +10420 show a long period during which they slowly increased in apparent brightness (see Hubble & Sandage 1953; Gottlieb & Liller 1978). In Var A this slow rise in brightness culminated in its 1950s ejection episode, while in IRC +10420 the star has been at an essentially constant visual brightness since 1970. It is interesting to speculate that both of these stars were recovering from a previous eruption during which they had suffered significant circumstellar extinction, which had slowly dissipated in the preceding decades.

The other example, \(\rho\) Cas, is best known for its historical and recent high mass loss episodes, during which it produces a cool dense wind with the corresponding spectral changes from a warm F-type photosphere to an M-type with TiO bands. However, the durations of its episodes are quite short. The most recent in 2000 lasted only 200 days (Lobel et al. 2003), while the previously recorded 1945–1946 event lasted 1–2 yr (Beardsley 1961; Bidelman & McKellar 1957). However, \(\rho\) Cas and a similar star, HR 8752, have very little if any circumstellar dust, and neither has any associated visible nebulosity in Hubble Space Telescope WFPC2 images (Schuster et al. 2006). The much longer duration of Var A’s optically thick wind and high mass loss stage may account for its obscuring circumstellar material, although this brings up issues concerning the sustainability of the ejection and the origin of the underlying instability.

De Jager (1998) has suggested that the intermediate-temperature hypergiants are post–red supergiants that in their evolution to warmer temperatures enter a temperature range \((6000–9000 K)\) with increased dynamical instability, where high mass loss episodes occur. Due to increased mass loss in the red supergiant
stage the most massive, most luminous of these stars, near the upper luminosity boundary, may lose enough mass to bring them close to the classical Eddington limit \[\frac{(L/M)_{\text{Edd}}}{cG} = 4\pi c G \alpha \]. Then, in their post-red supergiant evolution, as the apparent temperature increases above 6500 K, the ionization and opacity increase rapidly, and the “modified Eddington limit” becomes important (see Humphreys & Davidson 1994; Humphreys et al. 2002). When combined with other atmospheric effects such as the ionization of hydrogen and pulsation, this leads to high mass loss episodes and very strong winds. Indeed, proximity to the modified Eddington limit may amplify other instabilities, making their effects more extreme. IRC +10420, ρ Cas, and HR 8752 are most often cited as examples of evolved stars in this stage, and Var A undoubtedly belongs to this group.

The recent high mass loss episode of ρ Cas was preceded by a period of pulsational instability, and Lobel et al. (2003) demonstrated that the outburst was initiated by the release of ionization energy due the recombination of hydrogen as the atmosphere cooled during the expansion. This mechanism explains the short episodes in ρ Cas, but is it adequate to maintain the long-term optically thick wind observed in Var A? Perhaps a deeper instability, triggered by an atmospheric phenomenon, is responsible for maintaining the “eruption” for more than 35 yr.

It is a pleasure to thank Kris Davidson for useful discussions about winds and instabilities in evolved massive stars. We are especially grateful to Phil Massey for providing the UBVRI photometry of Var A in advance of publication from the Local Group Galaxies Survey (Massey et al. 2002). This work was supported in part by the University of Minnesota. It is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory (JPL), California Institute of Technology (Caltech), under NASA contract 1407. Support for some of the authors was provided by NASA through contracts 1256406 and 1215746 issued by JPL Caltech.

REFERENCES

Allen, C. W. 1963, Astrophysical Quantities (2nd ed.; London: Athlone)
Beardal, W. A. 1961, ApJS, 5, 381
Bidelman, W. P., & McKellar, A. 1957, PASP, 69, 31
Cohen, M., Witteborn, F. C., Carbon, D. F., Davies, J. K., Wooden, D. H., & Bregman, J. D. 1996, AJ, 112, 2274
de Jager, C. 1998, A&A Rev., 8, 145
Elitzur, M. 1981, in Physical Processes in Red Giants, ed. I. Iben & A. Renzini (Dordrecht: Reidel), 363
Fazio, G. G., et al. 2004, ApJS, 154, 10
Gordon, K., et al. 2005, PASP, 117, 503
Gottlieb, E. W., & Liller, W. 1978, ApJ, 225, 488
Hubble, E., & Sandage, A. 1953, ApJ, 118, 353
Humphreys, R. M. 1975, ApJ, 200, 426
———. 1978, ApJ, 219, 445
Humphreys, R. M., & Davidson, K. 1979, ApJ, 232, 409
———. 1994, PASP, 106, 1025
Humphreys, R. M., Davidson, K., Ruch, G., & Wallerstein, G. 2005, AJ, 129, 492
Humphreys, R. M., Davidson, K., & Smith, N. 2002, AJ, 124, 1026
Humphreys, R. M., Jones, T. J., & Gehrz, R. D. 1987, AJ, 94, 315 (HJG87)
Humphreys, R. M., et al. 1997, AJ, 114, 2778
Johnson, J. J., & Jones, T. J. 1991, AJ, 101, 1735
Jones, T. J., et al. 1993, ApJ, 411, 323
Kurten, R. G., Corral, L. G., & Georgiev, L. 1999, A&A, 349, 796
Landolt, A. U. 1983, AJ, 88, 439
Little-Marenin, I. R., & Little, S. J. 1990, AJ, 99, 1173
Lobel, A. 1997, Ph.D. thesis, Vrije Univ.
Lobel, A., et al. 2003, ApJ, 583, 923
Makarov, D., Khan, I., & Moshir, M. 2005, PASP, 117, 274
Massey, P., Hodge, P. W., Holmes, S., Jacoby, J., King, N. L., Olsen, K., Smith, C., & Saha, A. 2002, BAAS, 34, 1272
Molster, F. J., Waters, L. B. F. M., Tielens, A. G. G. M., & Barlow, M. J. 2002, A&A, 382, 184
Newton, K. 1980, MNRAS, 190, 689
North, J. A., & Hecht, J. H. 1990, Ap&SS, 163, 79
Reach, W. T., et al. 2005, PASP, 117, 978
Rice, W., Boulanger, F., Viallefond, F., Soifer, B. T., & Freedman, W. L. 1990, ApJ, 358, 418
Rossino, L., & Bianchini, A. 1973, A&A, 22, 453
Schmidt, G. D., Elston, R., & Lupie, O. L. 1992, AJ, 104, 1563
Schuster, M., Humphreys, R. M., & Marengo, M. 2006, AJ, 131, 603
Smith, N., Davidson, K., Gall, T. R., Ishibashi, K., & Hillier, D. J. 2003, ApJ, 586, 432
Wallerstein, G. 1958, PASP, 70, 479

Var A’s high mass loss stage has apparently ended. If in 1950 we had our current ground- and space-based optical and infrared instruments, we could have observed the changing characteristics of its ejecta, the formation and dissipation of dust, over a 50 yr period. Nevertheless, despite its present apparent faintness, continued observation of Var A in the optical and near-infrared is important to monitor further changes. It is the first object of this type for which we have found significant changes in its energy distribution corresponding to a recent high mass loss event. Var A thus presents us with the opportunity to continue to observe the changing structure of its circumstellar ejecta as it recovers from a long-term “eruption.”