Depletion of SMC5/6 sensitzes male germ cells to DNA damage

G. Hwang, D. E. Verver, M. A. Handel, G. Hamer, and P. W. Jordan.*

*Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205; †Reproductive Biology Laboratory, Center for Reproductive Medicine, Academic Medical Center, 1105 AZ Amsterdam, the Netherlands; ‡The Jackson Laboratory, Bar Harbor, ME 04609

ABSTRACT The structural maintenance of chromosomes complex SMC5/6 is thought to be essential for DNA repair and chromosome segregation during mitosis and meiosis. To determine the requirements of the SMC5/6 complex during mouse spermatogenesis we combined a conditional knockout allele for Smc5, with four germ cell–specific Cre-recombinase transgenes, Ddx4-Cre, Stra8-Cre, Spo11-Cre, and Hspa2-Cre, to mutate Smc5 in spermatogonia, in spermatocytes before meiotic entry, during early meiotic stages, and during midmeiotic stages, respectively. Conditional mutation of Smc5 resulted in destabilization of the SMC5/6 complex. Despite this, we observed only mild defects in spermatogenesis. Mutation of Smc5 mediated by Ddx4-Cre and Stra8-Cre resulted in partial loss of preleptotene spermatocytes; however, spermatogenesis progresses and mice are fertile. Mutation of Smc5 via Spo11-Cre or Hspa2-Cre did not result in detectable defects of spermatogenesis. Upon exposure to gamma irradiation or etoposide treatment, each conditional Smc5 mutant demonstrated an increase in the number of enlarged round spermatids with multiple acrosomes and supernumerary chromosome content. We propose that the SMC5/6 complex is not acutely required for premeiotic DNA replication and meiotic progression during mouse spermatogenesis; however, when germ cells are challenged by exogenous DNA damage, the SMC5/6 complex ensures genome integrity, and thus, fertility.

INTRODUCTION Structural maintenance of chromosome complexes (SMC) are conserved multiprotein complexes expressed in mitotic and meiotic cells and are involved in ensuring genome integrity. There are three classes of SMC complexes expressed in mammals: cohesin, condensing, and the SMC5/6 complex. Each SMC complex is comprised of two SMC proteins that interact with one another at their central hinge domains, and each protein folds back on itself via large coiled-coil domains emanating from the hinge (Murray and Carr, 2008). The juxtaposed N- and C-termini of each SMC protein form ATPase domains. The ATPase domains of the SMC5 and SMC6 heterodimers are bridged by a kleisin protein, NSMCE4, together with the E3 ubiquitin ligase NSMCE1 and the MAGE domain–containing protein NSMCE3 (Doyle et al., 2010). Additionally, NSMCE2 is a SUMO E3 ligase component of the SMC5/6 complex, which interacts with the coiled-coil region of SMCS (Andrews et al., 2005; Zhao and Blobel, 2005; Potts and Yu, 2007).

The functions of cohesin and condensin during meiosis have been studied using various model organisms, including budding yeast, fission yeast, worms, and mouse. Cohesin is required to ensure repair of SPO11-induced double-strand breaks (DSBs), synaptonemal complex (SC) formation between homologues, sex body formation, and maintenance of sister chromatid cohesion (Klein et al., 1999; Watanabe and Nurse, 1999; Pasierbek et al., 2003; Banister et al., 2004; Revenkova et al., 2004; Hodges et al., 2005; Xu et al., 2005; Baudrimont et al., 2011; Herrán et al., 2011; Caburet et al., 2014; Hopkins et al., 2014; Llano et al., 2014; Severson and Meyer, 2014; Winters et al., 2014; Phadnis et al., 2015; Sakuno and Watanabe, 2015; Biswas et al., 2016; Ward et al., 2016). It has been

This website uses cookies to ensure you get the best experience on our website. By continuing to use this site you consent to the use of cookies on your device as described in our cookie policy unless you have disabled them. Click here to learn more about cookies.

<http://www.molbiocell.org/cgi/doi/10.1091/mbc.E18-07-0459>
demonstrated that condensin is required for DSB formation and repair, normal chromosome compaction, and biorientation of sister chromatids during meiosis (Mets and Meyer, 2009; Brito et al., 2010; Lee et al., 2011; Houlard et al., 2015).

Researchers have used budding yeast, fission yeast, and worms to assess the requirements of the SMCS/6 complex during meiosis (Verver et al., 2016a). The studies using yeast demonstrated that the SMCS/6 complex facilitates the resolution of joint molecules between homologous chromosomes before meiosis I (Wehrkamp-Richter et al., 2012; Copsey et al., 2013; Lilienthal et al., 2013; Xaver et al., 2013). Chromosome bridges were observed during meiosis in worm mutants of the SMCS/6 complex, which compromised chromosome segregation (Bickel et al., 2010; Hong et al., 2016). Localization of the SMCS/6 complex during mouse spermatogonial differentiation and meiosis has been reported (Gómez et al., 2013; Verver et al., 2013). Based on these studies, the SMCS/6 complex was implicated to have roles at the pericentromeric heterochromatin, the SC, and the sex body. However, using primary spermatogonia in culture, it was found that SMCS/6 subunit NSMCE2 is dispensable for spermatogonial differentiation (Zheng et al., 2017).

To further assess the roles of the SMCS/6 complex during spermatogenesis, we created a Smc5 conditional knockout (cKO) mouse model. We observed a decrease in preleptotene spermatocyte number when Smc5 is mutated in spermatogonia, suggesting a role in premeiotic DNA replication. In contrast to studies in yeast and worm, we did not observe chromosome segregation defects during meiosis. However, using two different forms of exogenous DNA damage, ionizing radiation and etoposide, we determined that Smc5 cKO germ cells exhibited increased instances of aberrant meiotic chromosome segregation after treatment. We propose that the SMCS/6 complex is essential only when meiotic DNA processing events are perturbed during mouse spermatogenesis.

RESULTS

Conditional mutation of Smc5 via germ cell–specific Cre-recombinase expression

As previously described, we produced mice with a cKO allele for Smc5 (Smc5 flox), in which the fourth exon is flanked by Cre-recombinase target loxP sites (Figure 1A; see Materials and Methods; Hwang et al., 2017). Cre-mediated deletion of the fourth exon results in a null allele of Smc5 (Smc5 del). Mice with this allele were obtained only as heterozygotes, demonstrating that Smc5 is essential for life. Mice heterozygous for the Smc5 del allele showed no visible morphological abnormalities during development and adult life. Therefore, we used Smc5 flox/del mice as controls and Smc5 flox/del mice that also harbored a germ cell–specific Cre transgene as our cKO animals (Figure 1B). As an additional control, we assessed mice with a single floxed Smc5 allele (Smc5 +/flox) and the germ cell–specific Cre transgene. Four Cre-recombinase transgenes, Ddx4-Cre, Stra8-Cre, Spo11-Cre, and Hspa2-Cre, were used in this study. Ddx4-Cre expression is first detected in spermatogonia at embryonic day 15 (Gallardo et al., 2007). Stra8-Cre is first expressed at 3 d postpartum, in spermatogonia through preleptotene stage spermatocytes (Sadate-Ngatchou et al., 2008). Spo11-Cre is expressed as early as 10 d postpartum, which corresponds to early prophase, preleptotene/leptotene stage spermatocytes (Lyndaker et al., 2013). Hspa2-Cre is expressed by 14 d postpartum, corresponding to midprophase, zygotene/pachytene-stage spermatocytes (Inselman et al., 2010). Unlike the other three Cre-recombinase transgenes, the frequency of obtaining Smc5 flox/del, Ddx4-Cre cKO mice was lower than expected (4.84% obtained, 25% expected; Supplemental Figure 1A), suggesting that a proportion of these mice die during embryonic development.

We assessed the fertility, litter size, and Cre recombination efficiency of our cKO and control male mice by mating to wild-type C57BL/6J female mice (Supplemental Table S1). Smc5 cKO mice using all four Cre-recombinase transgenes were fertile and produced litter sizes equivalent to control. Almost all pups obtained from the Smc5 cKO males harbored the Smc5 del allele, indicating efficient Cre-mediated deletion of the fourth exon.

Conditional mutation of Smc5 results in destabilization of the SMCS/6 complex

We observed a pronounced decrease in SMCS protein levels when assessing crude germ cell extracts from all four Smc5 cKO mice via Western blot (Figure 1C and Supplemental Figures S1B and S2A). Moreover, the depletion of SMCS protein was accompanied by a considerable decrease in protein levels for other SMCS components. This demonstrates that SMCS is essential for the stability of the SMCS/6 complex. Interestingly, we observed a decrease in SMCS6 and NSMCE2 levels that was equivalent to the decrease detected for SMCS5. The levels of the NSMCE1 and NSMCE4 proteins were reduced, but not to the same extent as the other SMCS/6 components. This difference could be attributed to their stabilization within the NSMCE1, 3, 4 trimer subcomplex, and there is evidence to suggest that these proteins have functions independent to the SMCS/6 complex (Palecek et al., 2006; Hudson et al., 2011; Kozakova et al., 2015). Alternatively, this observation may be due to differences in individual protein turnover rates.

The most robust depletion of SMCS/6 components occurred with excision mediated by the Stra8-Cre transgene (Figure 1C and Supplemental Figure S2A). To further confirm this observation, we isolated early prophase (leptotene/zygotene stage), mid to late prophase (pachytene/diplotene stage) spermatocytes, and round spermatids using the STA-PUT density gradient germ cell purification method (La Salle et al., 2009). The Cre recombination efficiency of the Smc5 flox allele was assessed via PCR (Figure 1D). Protein levels of each SMCS/6 component was substantially decreased in Smc5 flox/del, Stra8-Cre germ cells, complementing the results obtained from the whole germ cell extracts (Figure 1E and Supplemental Figure S2B).

Conditional mutation of Smc5 by Ddx4-Cre and Stra8-Cre results in depletion of preleptotene spermatocytes

The Smc5 flox/del, Spo11-Cre and Smc5 flox/del, Hspa2-Cre cKO mice did not show differences in testis weight compared with controls (Supplemental Figure S3, A, B, D, and E), and furthermore, tubule cross-sections from these mice showed no evidence of germ cell abnormalities (Supplemental Figure S3, C and F). In contrast, the Smc5 flox/del, Ddx4-Cre and Smc5 flox/del, Stra8-Cre cKO mice had a 20–25% reduction in testis weight compared with controls (Figure 2, A and B, and Supplemental Figure S1C). Tubule cross-sections of adult Smc5 flox/del, Ddx4-Cre and Smc5 flox/del, Stra8-Cre cKO mice showed that many tubules were deficient for one or more germ cell subtypes (Figure 2, C and D, and Supplemental Figure S1D). Close analysis of periodic acid–Schiff (PAS)-stained cross-sections revealed that the depletion of germ cells occurred at the preleptotene stage of spermatogenesis (Figure 2, E and F; and Supplemental Figure S1D). A- and B-type spermatogonia were not affected in these cKO mice. Moreover, there were clear signs of spermatogenesis recovery within the tubule sections, indicating the presence of functional spermatogonial stem cells and undifferentiated spermatogonia that were detected by LIN28 expression (Figure 2F).
To support our analysis, we assessed PCNA signal to determine the number of cells actively undergoing DNA replication per tubule (Figure 2G). We observed a significant decrease in the number of PCNA-positive cells per tubule in the Smc5 flox/del, Stra8-Cre cKO, supporting our initial observation that disappearance of germ cells occurred during the premeiotic S-phase (preleptotene; Figure 2H). In addition, TUNEL staining demonstrated an increase in apoptosis in the Smc5 flox/del, Stra8-Cre cKO mice (Figure 2I). We also assessed DAZL and SYCP3 chromosome axes signal to further distinguish spermatogonia and preleptotene spermatocytes from prophase I stages of spermatogenesis. The Smc5 flox/del, Stra8-Cre cKO displayed a decrease in the number of DAZL-positive, SYCP3-negative germ cells.
FIGURE 2: Conditional mutation of Smc5 via Stra8-Cre results in depletion of preleptotene spermatocytes. (A–I) Phenotypic and histological assessments of testis from control and Smc5 cKO (Stra8-Cre) mice ≥12 wk old. Note that Smc5 flox/flox, Stra8-cretg/0 is written as Smc5 cKO (Stra8-Cre). (A) Testis of adult control and Smc5 cKO mice. (B) Assessment of adult testis to body weight ratio (mg/mg), whereby Smc5 cKO (Stra8-Cre; n = 7, mean = 0.31) ratios are decreased compared with control (n = 11, mean = 0.36). Bars indicate mean and standard error. The P value (Mann-Whitney, two-tailed) for the indicated comparison is significant; P < 0.0001 (**). (C) Bar graph assessing average tubule diameter found in control (205.8 μm) and Smc5 cKO (179.1 μm) testes with bars indicating standard error. The P value (Mann-Whitney, two-tailed) for the indicated comparison is significant; P < 0.0001 (**). (D) Tubule cross-sections of testes from adult control and Smc5 cKO mice stained with hematoxylin and eosin. The three cross-sections displayed for Smc5 cKO demonstrate the varied tubule morphology observed. Scale bar: 50 μm. (E) Periodic acid–Schiff staining of tubule cross-sections from control and Smc5 cKO testes. Black arrows mark preleptotene spermatocytes that are missing in Smc5 cKO mice (sites indicated by stars). Scale bar: 50 μm. (F) Periodic acid–Schiff staining of tubule cross-sections from control and Smc5 cKO mice. Undifferentiated spermatogonia (brown) were detected using an antibody against LIN28. Scale bar: 50 μm. (G) Hematoxylin and eosin staining of tubule cross-sections from adult control and Smc5 cKO mice testes. All actively replicating cells, including premeiotic cells, are marked with PCNA (brown). Scale bar: 50 μm. (H) Scatter dot–plot graph showing the reduction of PCNA-positive cells per tubule cross-section in adult Smc5 cKO (n = 78, mean = 32.9) compared with control (n = 66, mean = 48) testes. Bars indicate mean and standard error. The P value (Mann-Whitney, two-tailed) for the indicated comparison is significant; P < 0.0001 (**). (I) Graph showing increased counts of TUNEL-positive (apoptotic) cells per tubule in adult Smc5 cKO testes compared with control. The P value (Mann-Whitney, two-tailed) for the indicated comparison is significant; P < 0.0001 (**). See Supplemental Figures S1, S3, and S4 for additional data.
cells and, consequently, this decrease appeared even greater in the DAZL and SYCP3-positive prophase I cells (Figure 3). To complement these data, we also assessed tubule cross-sections of juvenile mice undergoing the first wave of spermatogenesis. These analyses showed there was an increase in apoptosis (via TUNEL staining), and decreased number of PCNA-positive cells per tubule in Smc5 flox/del, Stra8-Cre cKO mice (Figure 4, A–D).

In yeast, it has been shown that absence of the SMC5/6 complex can lead to replication fork instability, inefficient replication restart, and formation of aberrant recombination intermediates (Murray and Carr, 2008). Therefore, we hypothesized that the subset of preleptotene stage spermatocytes undergoing apoptosis are affected by spontaneous errors during DNA replication. By assessing juvenile mice undergoing the first wave of spermatogenesis, we determined that depletion of SMCS/6 was correlated to increased RAD51 foci in premeiotic germ cells, suggesting that replication fork collapse and recombination intermediates occurred more predominantly in the Smc5 flox/del, Stra8-Cre cKO compared with controls (Figure 4, E and F).

Conditional mutation of Smc5 does not result in abnormal meiotic progression in mouse

Because meiotic recombination and chromosome segregation defects have been reported for SMC5/6 mutant yeast and worms (Bickel et al., 2010; Wehrkamp-Richter et al., 2012; Copsey et al., 2013; Lilienthal et al., 2013; Xaver et al., 2013; Hong et al., 2016), we assessed meiotic progression in our Smc5 cKO mutants. The distribution of meiotic prophase stages analyzed was not different between the Smc5 flox/del, Stra8-Cre cKO and control (Figure 5, A and B). SC morphology and SC disassembly, together with sex body formation in the Smc5 flox/del, Stra8-Cre cKO were equivalent to the control (Figure 5, A and B, and Supplemental Figure S4). We did not observe any defects with respect to DNA repair as assessed by yH2AX staining (Figure 5A). We analyzed RAD51/DMC1 foci at early...
pachytene stage and determined that the numbers were comparable between the control and cKO mice, including on the X-Y chromosome axes (Figure 5, C–F). Assessment of MLH1 foci indicated that there was no alteration in crossover frequency (Figures 5G and 4H). Additionally, there were no morphological differences in metaphase I chromosomes among Smc5 flox/del, Stra8-Cre cKO or control spermatocytes (Figure 5I). We also compared the meiotic prophase and metaphase stages in the Smc5 flox/del, Ddx4-Cre, Smc5 flox/del, Spo11-Cre and Smc5 flox/del, Hspa2-Cre cKO to littermate controls, and did not observe any differences (unpublished data).

Exposure of Smc5 cKO pachytene spermatocytes to exogenous DNA damage results in the formation of enlarged round spermatids with supernumerary chromosome number

Results of small interfering RNA (siRNA)-mediated knockdown and mutation studies using human cell lines reveal that depletion of the SMCS5/6 complex leads to increased genome instability when exposed to exogenous DNA damage, including irradiation and etoposide exposures (Wu et al., 2012; Payne et al., 2014; Verver et al., 2016b). Therefore, we assessed whether Smc5 cKO prophase spermatocytes had elevated abnormalities when exposed to gamma irradiation and etoposide. Ionizing radiation induces a variety of DNA lesions, with DSBs being the most harmful (Dexheimer, 2013). Etoposide binds to the topoisomerase II-DNA complex, which induces the formation of DSBs (Heisig, 2009).

Adult Smc5 flox/del, Ddx4-Cre, Smc5 flox/del, Stra8-Cre, Smc5 flox/del, Spo11-Cre and Smc5 flox/del, Hspa2-Cre cKO and littermate controls were irradiated and assessed for defects at 5, 8, and 10 d postirradiation (Supplemental Figure S5). Five days postirradiation, germ cells that were in early pachytene stage (tubule stages I–III) at the time of irradiation will have progressed to late pachytene and diplotene stages, and late pachytene-stage germ cells (tubule stages X–XII) will have developed into round spermatids (Ventelä et al., 2012; Kent, 2014). At this time point, we did not observe a difference between mutant and control mice (Figure 6A). However, at 8 and 10 d postirradiation, when germ cells that were in early pachytene stage at the time of irradiation have become round spermatids, we observed a marked difference between the Smc5 cKO mice and their littermate controls (Figure 6 and Supplemental Figure S6). Using PAS-stained tubule sections of Smc5 flox/del, Ddx4-Cre and Smc5 flox/del, Stra8-Cre cKO mice at 10 d postirradiation, we observed more than a 12- to 16-fold increase in the

FIGURE 4: Smc5 cKO juvenile mice, undergoing the first wave of spermatogenesis, show premeiotic cell defects. (A–C) Histological analysis of juvenile (13 d postpartum) control and Smc5 cKO (Stra8-Cre) testes. (A) Tubule cross-sections stained with TUNEL and DAPI (red and blue, respectively). (B) Bar graph showing increased percentage of TUNEL-positive (apoptotic) tubules in juvenile Smc5 cKO testes compared with control. (C) Tubule cross-sections stained with hematoxylin and eosin (blue) and PCNA (brown). (D) Scatter dot-plot graph showing decreased number of PCNA-positive cells per tubule in juvenile Smc5 cKO (n = 42, mean = 30.2) compared with control (n = 40, mean = 43.3) testes. (E) Tubule cross-sections stained with RAD51, SYCP3, and DAPI (red, green, and blue, respectively). (F) Scatter dot-plot graph showing increased RAD51-positive, SYCP3-negative cells per tubule in juvenile Smc5 cKO (n = 50, mean = 4.4) compared with control (n = 50, mean = 1.4) testes. Image scale bars: 50 μm. Graph bars indicate mean and standard error. The P values (Mann-Whitney, two-tailed) for the indicated comparisons are significant, P < 0.0001 (***).
number of enlarged round spermatids, commonly with two acrosome structures, a defect indicative of failure to segregate chromosomes during meiosis or cytokinesis failure (Figure 6, A–C, and Supplemental Figure S6). We also observed a two- to threefold increase in the number of enlarged spermatids in the Smc5 flox/del, Spo11-Cre and Smc5 flox/del, Hspa2-Cre compared with their littermate controls (Supplemental Figure S6). The reduced effect observed using Spo11-Cre and Hspa2-Cre is likely due to the timing of Smc5 mutation, and, in the case of the Spo11-Cre, reduced excision efficiency (Supplemental Table S1).

Smc5 expression is not required for meiosis during mammalian spermatogenesis
Previous studies using yeast and worms implicate the SMCS5/6 complex as important for mediating meiotic recombination events (Bickel et al., 2010; Wehrkamp-Richter et al., 2012; Copsey et al., 2013; Lilienthal et al., 2013; Xaver et al., 2013; Hong et al., 2016). Therefore, it was unexpected to find no evidence that the SMCS5/6 complex is required for mouse spermatogenesis and male fertility. Although one concern could be that mutation of the floxed Smc5 allele was not efficient, genotyping data indicated that Ddx4-Cre, Stra8-Cre, and Hspa2-Cre were close to 100% efficient in excision. The Spo11-Cre was less efficient, but even so, a mosaic meiotic phenotype would be expected. Furthermore, analysis of purified primary spermatocytes and round spermatids from Smc5, Stra8-Cre cKO mice confirmed the efficiency of Smc5 excision via PCR, as well as deletion of the SMCS5/6 protein and other SMCS5/6 components. Despite the efficiency of the Stra8-Cre, we did not observe defects in meiotic prophase I events that include DNA damage repair, SC formation, crossover levels, sex body formation, and chiasmata morphology. Therefore, we can conclude that Smc5 expression during spermatogenesis is not essential for meiotic progress and fertility in male mice.

SMCS5/6 is important for maintaining genome integrity of pachytenic-stage spermatocytes following exogenous DNA damage
As we did not observe a defect in the progression of meiosis in our Smc5 cKO models, we hypothesized that the SMCS5/6 complex is not required for meiosis during spermatogenesis, except when DNA processing events are perturbed. To test this hypothesis, we used gamma irradiation and etoposide to sensitize cells with DNA damage. Interestingly, spermatocytes staged at early and midpachynema at the time of treatment were affected by irradiation and etoposide exposure, causing the formation of enlarged round spermatids, which had two acrosomes and supernumerary chromosome content. In contrast, the late pachytenic-stage spermatocytes were not affected in this way by irradiation, and formed normal sized spermatids. This distinction between the earlier and later stages of pachynema could be explained by differing DNA template preference during DNA repair. At early to midpachyneme stage, there is a mechanism that biases toward interhomologue recombination over intersister recombination (Wojtasz et al., 2009; Lao and Hunter, 2010). However, this bias is lost during late pachynema, thus facilitating repair of DSBs via intersister recombination (Moens et al., 1997; Kauppi et al., 2011). Endogenous DNA damage induced during the earlier stages of pachynema could result in the formation of complex joint molecules, involving homologues and sister chromatids, which, in absence of the SMCS5/6 complex, may not be resolved before meiotic divisions. This hypothesis is supported by the chromosome segregation failure observed in the Smc5 cKO following irradiation. In the case of the late pachyneme stage, repair of the endogenous DNA damage might be facilitated primarily by intersister repair, as interhomologue recombination bias is relaxed, and these intermediates may be more easily resolved before chromosome segregation. An alternative explanation is that spermatocytes that are exposed to exogenous DNA damage during early and midpachynema are normally subject to pachyneme checkpoint-mediated arrest and apoptotic death; however, in the absence of SMCS5/6 these spermatocytes escape the checkpoint and form abnormal spermatids. This would suggest that SMCS5/6 is a component of DNA damage checkpoint responses, or that the DNA intermediates that accumulate in the absence of SMCS5/6 are not...
FIGURE 5: Conditional mutation of Smc5 does not result in abnormal meiotic prophase progression in male mice. (A–I) No differences were observed when comparing chromatin spread preparations from juvenile control and Smc5 cKO (Stra8-Cre) germ cells staged at prophase to metaphase I. Assessments were using germ cells from mice ≥8 wk.
recognized by the pachytene checkpoint. The latter is supported by studies in fission yeast, which have demonstrated that recombination DNA intermediates in a smc6 mutant background are not recognized by the G2/M checkpoint (Ampatzioudou et al., 2006).

In budding yeast, the SMC5/6 complex was demonstrated to be required to inhibit the formation of complex joint molecules, which involve recombination intermediates between sisters and homologues (Copsey et al., 2013; Xaver et al., 2013). Furthermore, the budding yeast SMC5/6 complex is required for appropriate loading of the Mus81-Mms4/Eme1 resolvase complex to chromatin, and subsequent resolution of interister and multiple chromatid joint molecules, which appears to be a conserved function in fission yeast (Wehrkamp-Richter et al., 2012; Copsey et al., 2013; Xaver et al., 2013). In the mouse, the MUS81-EME1 complex is required for the resolution of υ–10% of crossovers, which cannot be processed as noncrossovers by the BLM helicase (Holloway et al., 2008, 2011). We attempted to determine whether the localization of the MUS81-EME1 complex in our spermatocytes was affected; however, immunostaining was not successful.

Conclusion
We have determined that the depletion of the SMC5/6 complex does not lead to meiotic failure during mouse spermatogenesis. However, we do observe a partial loss of premeiotic germ cells, suggesting a role in efficient premeiotic DNA replication. We also demonstrate that the SMC5/6 complex is important for a proficient response to exogenous DNA damage in prophase spermatocytes. We propose that the SMC5/6 complex acts as a DNA damage response surveillance complex. When genomic integrity is compromised, the SMC5/6 complex ensures that DNA repair processes are controlled to avoid complex recombination intermediates that would otherwise result in germ cell apoptosis or cause errors during chromosome segregation.

MATERIALS AND METHODS
Animal use and care
Mice were bred by the investigators at The Jackson Laboratory (JAX, Bar Harbor, ME) and Johns Hopkins University (JHU, Baltimore, MD) in accordance with criteria of the National Institutes of Health (NIH) and the U.S. Department of Agriculture. All animal procedures were conducted with approval from the Institutional Animal Care and Use Committees (IACUC) of The Jackson Laboratory and JHU.

Mice and husbandry
Creation of mice with the Smc5 flox and Smc5 del alleles was previously described (Hwang et al., 2017). Heterozygous Smc5 del mice were bred to mice with germ cell-specific Cre-recombimase transgenes; Ddx4-Cre (B6.FVB-Tg[Ddx4-cre]1Dcas/KnuJ, Stock no. 018980; JAX), Stra8-Cre (B6.FVB-Tg[Stra8-cre]1Reb/LguJ, Stock no. 017490; JAX), Spo11-Cre (Lyndaker et al., 2013), and Hspa2-Cre (C57BL/6-Tg[Hspa2-cre]1Eddy/J, Stock no. 008870; JAX), which resulted in progeny heterozygous for the Smc5 del allele and hemi-zygous for the germ cell-specific transgenes. These mice were bred to homozygous Smc5 flox mice to derive cKO (Smc5 flox/del, germ cell-specific Cre) and controls (Smc5 flox/del and Smc5 +/+ flox, germ cell-specific Cre) genotypes.

For fertility testing, 8- to 12-wk-old cKO and control males were singly housed with wild-type C57BL6/J females. Pregnant females were monitored daily, and viable pups were counted on the first day of life. Subsequently, genotyping samples were taken from each pup to determine the efficiency of Cre-mediated excision of the floxed fourth exon of the Smc5 allele.

Induction of DNA damage via irradiation
Adult mice were irradiated with a single sublethal dose (5 Gy) using a 137Cs source (Hamre et al., 2003). The mice were monitored daily before being killed 5, 8, and 10 d following irradiation.

Juvenile mice at 16 d postpartum were irradiated with a single sublethal dose (1.3 Gy) using a 137Cs source (Forand et al., 2004). After irradiation, the mice were monitored daily before being killed at 23 d postpartum. Testes were extracted for spermatocyte squash preparation.

Induction of DNA damage via etoposide
For etoposide assessment, adult mice were injected intraperitoneally with a single dose of etoposide (80 mg/kg body weight; Sigma; Lee et al., 1995; Marchetti et al., 2006). After injection, the mice were monitored daily before being killed at 3, 5, or 8 d after treatment.
FIGURE 6: Conditional mutation of Smc5 results in increased sensitivity to gamma irradiation, producing enlarged round spermatids with supernumerary centromeres after irradiation. Adult mice (8–12 wk of age) were exposed to gamma irradiation and assessed. (A) Tubule cross-sections of adult control and Smc5 cKO (Str8-Cre) mice testes with periodic acid–Schiff staining extracted at 5, 8, or 10 d postirradiation with 5 Gy. Markers: (*) abnormal enlarged round spermatids, (Ser) Sertoli cell, (pL) preleptotene stage, (L) leptotene stage, (Z) zygotene stage, (P) pachytene stage, (M) metaphase stage, (R) round spermatid, and (E) elongated spermatid. Roman numerals correspond to the seminiferous tubule stage. The ∆ symbol indicates absence of marked cell type. Smc5 cKO cross-sections display increased numbers of abnormal enlarged spermatids compared with the controls at 8 and 10 d postirradiation. Scale bar: 20 μm. (B) Magnified images of tubule cross-sections for control and Smc5 cKO testes with periodic acid–Schiff staining, showing examples of normal and abnormal round spermatids. Round spermatids in Smc5 cKO testes display an array of abnormalities, such as increase in size, atypical cell shape, and multiple acrosomes. Acrosomes on round spermatids are stained in purple. Numbers indicate stage of round spermatid development. Scale bar: 5 μm. (C) Bar graph showing significantly increased percentage of spermatids with enlarged morphology in Smc5 cKO testes (n = 513) compared with the control (n = 2291) 10 d postirradiation. Bars indicate the average with SD. The P value (Mann-Whitney, two-tailed) for the indicated comparison is significant; P < 0.0001 (**). (D) Example of round spermatids from control and Smc5 cKO observed 10 d postirradiation. Spermatids were immunolabeled with an antibody for CEN (kinetochore/centromere marker, red) and stained with lectin PNA-AF488 conjugate to mark the acrosome (green) and DAPI to detect the DNA (blue). Scale bar: 5 μm. (E) Graph showing counts of CEN (kinetochore/centromere marker) in control and Smc5 cKO testes 10 d postirradiation. The P values (Mann-Whitney, two-tailed) for the indicated comparisons are significant, P < 0.0001 (***). See Supplemental Figures S6 and S7 for additional data.
Histological analysis and Tdt-mediated dUTP nick end labeling (TUNEL) assay

Testes were either fixed in Bouins fixative or cryopreserved using Tissue-Tek optimal cutting temperature compound (O.C.T.; Sakura Finetek). Fixed tissues were embedded in paraffin and serial sections of 5-μm thickness were placed onto slides and stained with hematoxylin and eosin or PAS. For the TUNEL assay, sections were deparaffinized and apoptotic cells were detected using the in situ BrdU-Red DNA fragmentation (TUNEL) assay kit (Abcam) and counterstained with 4',6-diamidino-2-phenylindole (DAPI). Cryopreserved testes were subsequently fixed (1% paraformaldehyde [PFA], 0.1% Triton X in 1x phosphate-buffered saline [PBS]), and subjected to standard

FIGURE 7: Conditional mutation of Smc5 results in abnormal spindle formation and chromosome segregation errors after irradiation. (A–C) Immunostaining on tubule squash preparations of primary spermatocytes from control and Smc5 cKO (Stra8-Cre) mice undergoing meiotic chromosome segregation following irradiation. Mice were 16 d old at the time of irradiation, and 23 d old at the time of analysis. Scale bar: 10 μm. (A, B) Triple-immunolabeling of primary spermatocytes with antibodies against CEN (green, kinetochore/centromere marker), the SC lateral element protein SYCP3 (pink), and α-tubulin (red, α-TUB) and counterstaining of chromatin with DAPI (blue) of germ cells. (A) Representative meiotic cells from control mice at metaphase I or undergoing anaphase I. (B) Representative meiotic cells from Smc5 cKO mice at metaphase I or undergoing anaphase I. Smc5 cKO spermatocytes show a range of chromosome condensation and segregation errors, including lagging chromosomes, tripolar spindles, and chromosome bridging. (C) Triple-immunolabeling of primary spermatocytes with antibodies against CEN (green, kinetochore/centromere marker), the SC lateral element protein SYCP3 (pink), and γ-tubulin (red, γ-TUB) and counterstaining of chromatin with DAPI (blue) of germ cells from control and Smc5 cKO mice. A majority of Smc5 cKO spermatocytes show normal bipolar spindles; however, there are incidences of four spindle poles (bottom panel), indicative of chromosome segregation failure.
Mouse germ cell isolation and culture

Isolation of mixed germ cells from testes was performed using techniques previously described (Bellve, 1993; La Salle et al., 2009). Leptotene/zygotene and pachytene-stage spermatocytes and round spermatids were enriched using a 2–4% bovine serum albumin gradient generated in a STA-PUT sedimentation chamber (Pro-Science), as previously described (La Salle et al., 2009).

Protein analyses

For protein level analyses, proteins were extracted from germ cells using RIPA buffer (Santa Cruz) containing 1× protease inhibitor cocktail (Roche). Protein concentration was calculated using a BCA protein assay kit (Pierce). Lanes of 4–15% gradient SDS polyacrylamide gels (Bio-Rad) were loaded with 20 μl of 1 mg/ml protein extract. For STA-PUT, 20 μl of 0.1 mg/ml protein extracts from purified leptotene/zygotene and pachytene/diplotene stage spermatocytes and round spermatids were loaded per lane on SDS polyacrylamide gels. Following protein separation via standard SDS–PAGE, proteins were transferred to polyvinylidene fluoride (PVDF) membranes using the Trans-Blot Turbo Western transfer system (Bio-Rad). Primary antibodies and dilution used are presented in Supplemental Table S2. At a 1:5000 dilution, goat anti-mouse (62-6520) and goat anti-rabbit (A10533) horseradish peroxidase–conjugated antibodies (Invitrogen) were used as secondary antibodies. The presence of antibodies on the PVDF membranes was detected via treatment with Pierce ECL Western blotting substrate (Thermo Scientific) and captured using the Syngene XRS gel documentation system. Protein levels were assessed using Image J (NIH).

Chromatin spread analyses

Germ cell chromatin spreads were prepared as previously described (Jordan et al., 2012), or with some modifications. Briefly, germ cells were placed in 50% hypotonic buffer (30 mM Tris, 50 mM sucrose, 17 mM trisodium citrate dihydrate, 5 mM EDTA, 2.5 mM dithiothreitol) for 8 min. The cells were then resuspended in a second hypotonic buffer (1:1 of PBS and 100 μM sucrose). The cell suspension was fixed using 1% PFA on a glass slide for 1 h in a humid chamber. The slides were air dried for 1 h, washed in 0.4% Photo-Flo (Kodak) in H2O overnight, and dried again for 30 min. The slides were immunolabeled immediately afterward. Primary antibodies and dilution used are presented in Supplemental Table S2. Rat–anti-SMC5 (AP6962B) and rat–anti-NSE4a (AP6962A) antibodies were prepared using peptide sequences, cys-PHMLEPNRWNLKAF and ys-PKPRSDRPQPRMIE, respectively (Neobios). Secondary antibodies against human, rabbit, rat, mouse, and guinea pig IgG and conjugated to Alexa 350, 488, 568, or 633 (Life Technologies) were used at a dilution of 1:500.

Spermatocyte squash preparation

Spermatocyte squashes were performed as previously described (Wellard et al., 2018). Briefly, minced seminiferous tubules from 23-d-old male mice were fixed in freshly prepared 2% formaldehyde in 1× PBS containing 0.1% Triton X-100. After 5 min, several seminiferous tubule fragments were placed on a slide and squashed, and the coverslip removed after freezing in liquid nitrogen. Slides were washed with 1× PBS and immunostained immediately afterward.

Microscopy

Images from chromatin spread, tubule squash, and testis cryosection preparations were captured using a Zeiss CellObserver Z1 microscope linked to an ORCA-Flash 4.0 CMOS camera (Hamamatsu). Testis sections stained with hematoxylin and eosin or PAS staining...
ACKNOWLEDGMENTS

We thank Sakshi Khurana and Stephen Wellard for technical support. We are grateful to Paula Cohen and Mitch Eddy for mice harboring the Spot1-Cre and Hspa2-Cre transgenes, respectively.

This work was supported by a UK-US Fulbright Distinguished Scholar Award to P.W.J., National Institutes of Health (NIH) K99/R00 HD-069458 to P.W.J., NIH R01 HD-33816 to M.A.H., NIH R01 GM-117155 to P.W.J., institutional NIH Cancer Center award CA34196 to The Jackson Laboratory, and training grant CA009110 fellowship to G.H.

REFERENCES

Ampatzidou E, Irmsch A, O’Connell MJ, Murray JM (2006). Smc5/6 is required for repair at collapsed replication forks. Mol Cell Biol 26, 9387–9401.

Andrews EA, Palecek J, Sergeant J, Taylor E, Lehmann AR, Watts FZ (2005). Nse2, a component of the Smc-6 complex, is a SUMO ligase required for the response to DNA damage. Mol Cell Biol 25, 185–196.

Bannister LA, Reinholt LD, Munroe RJ, Schimenti JC (2004). Positional cloning and characterization of mouse mei8, a disrupted allele of the meiotic cohesin Rec8. Genesis 40, 184–194.

Baudrimont A, Penkner A, Woglar A, Mamnun YM, Hulek M, Struck C, Schnabel R, Loidl J, Jantsch V (2011). A new thermosensitive smc-3 allele reveals involvement of cohesin in homologous recombination in C. elegans. PLoS One 6, e24799.

Belve AR (1993). Purification, culture, and fractionation of spermatogenic cells. Methods Enzymol 225, 84–113.

Bermúdez-López M, Cescia A, de Piccoli G, Colomina N, Pasero P, Aragón L, Torres-Rosell J (2010). The Smc5/6 complex is required for dissolution of DNA-mediated sister chromatid linkages. Nucleic Acids Res 38, 6502–6512.

Bickel JS, Chen L, Hayward J, Yeap SL, Alkers AE, Chan RC (2010). Structural maintenance of chromosomes (SMC) proteins promote homolog-independent recombination repair in meiosis crucial for germ cell genomic stability. PLoS Genet 6, e1001028.

Biswas U, Hempel K, Llano E, Pendás AM, Handel MA, Suja JA (2013). Smc5/6 complex proteins during mammalian meiosis and mitosis contribute to The Jackson Laboratory, and training grant CA009110 fellowship to G.H.

 progression contributes to chromosome assembly during mitosis in human cells. Mol Biol Cell 25, 302–317.

Gómez R, Jordan PW, Viera A, Alsheimer M, Fukuda T, Jessberger R, Llano E, Pendás AM, Handel MA, Suja JA (2013). Dynamic localization of SMCS6/complex proteins during mammalian meiosis and mitosis suggests functions in distinct chromosome processes. J Cell Sci 126, 1239–1252.

Hamner G, Roepers-Gajadenn HL, van Duyn-Goedhart A, Gademann IS, Kal HB, van Buul PPW, de Rooij DG (2003). DNA double-strand breaks and γH2AX signaling in the testis. Biol Reprod 68, 628–634.

Heisig P (2009). Type II topoisomerases—inhibitors, repair mechanisms and mutations. Mutagenesis 24, 465–469.

Herrán Y, Gutiérrez-Caballero C, Sánchez-Martín M, Hernández T, Viera A, Barbero JL, de Álava E, de Rooij DG, Suja JA, Llano E, Pendás AM (2011). The cohesin subunit RAD21L functions in meiotic synapsis and exhibits sex-dimorphic expression in fertility. EMBO J 30, 3091–3105.

Hodges CA, Revenkova E, Jessberger R, Hassold TJ, Hunt PA (2005). SMC1β-deficient female mice provide evidence that cohesins are a missing link in age-related nondisjunction. Nat Genet 37, 1351–1355.

Holloway JK, Booth J, Edelman W, McGowan CH, Cohen PE (2008). MUS81 generates a subset of MLH1-MLH3-independent crossovers in mammalian meiosis. PLoS Genet 4, e1000186.

Holloway JK, Mohan S, Balmus G, Sun X, Modzelewski A, Borst PL, Freire R, Weiss RS, Cohen PE (2011). Mammalian BTDB12 (SLX4) protects against genomic instability during mammalian spermatogenesis. PLoS Genet 7, e1002094.

Hong Y, Sonneville R, Agostino A, Meier B, Wang B, Blow JJ, Gartner A (2016). The SMC5/6 complex and the HIM-6 (BLM) helicase synergistically promote meiotic recombination intermediate processing and chromosome maturation during Caenorhabditis elegans meiosis. PLoS Genet 12, e1005872.

Hopkins J, Hwang G, Jacob J, Sapp N, Bedigian R, Oka K, Overbeek P, Murray SJ, Jordan PW (2014). Meiosis-specific cohesin component, Stag3 is essential for maintaining centromere chromatin cohesion, and required for DNA repair and synapsis between homologous chromosomes. PLoS Genet 10, e1004413.

Houlard M, Godwin J, Metson J, Lee J, Hirano T, Nasmyth K (2015). Condensin confers the longitudinal rigidity of chromosomes. Nat Cell Biol 17, 771–781.

Hudson JJ, Bedharová K, Kozakova L, Liao C, Guerineau M, Colnaghi R, Vidot S, Marek J, Bathula SR, Lehmann AR, Palecek J (2011). Interactions between the Nse3 and Nse4 components of the SMC5/6 complex identify evolutionarily conserved interactions between MAGE and EID families. PLoS One 6, e17270.

Hwang G, Sun F, O’Brien M, Eppig JJ, Handel MA, Jordan PW (2017). SMC5/6 is required for the formation of segregation-competent bivalent chromosomes during meiosis I in mouse oocytes. Development 144, 1648–1660.

Inselman AL, Nakamura N, Brown PR, Willis WD, Goulding EH, Eddy EM (2010). Heat shock protein 2 promoter drives Cre expression in spermatocytes of transgenic mice. Genesis 48, 114–120.

Jordan PW, Karppinen J, Handel MA (2012). Polo-like kinase is required for synaptic formation and resolution of joint molecules with chromosome morphol. J Cell Sci 125, 5061–5072.

Kao Y, Sun H, Barchi M, Baudet F, Romanienko PJ, Keeney S, Jasmin M (2011). Distinct properties of the XY pseudoautosomal region crucial for male meiosis. Science 331, 916–920.

Kent TGMD (2014). Checking the pulse of vitamin A metabolism and signaling during mammalian spermatogenesis. J Dev Biol 2, 39–49.

Klein F, Mahr P, Galova M, Buonomo SB, Michaelis C, Naiz X, Nasmyth K (1999). A central role for cohesins in sister chromatid cohesion, formation of axial elements, and recombination during yeast meiosis. Cell 98, 91–103.

Kozakova L, Vondrova L, Stejskal K, Charalabous P, Kolesar P, Lehmann AR, Uldrijan S, Sanderson CM, Zdrahal Z, Palecek JJ (2015). The melanoma-associated antigen 1 (MAGEA1) protein stimulates the E3 ubiquitin-ligase activity of TRIM31 within a TRIM31-MAGEA1-NSE4 complex. PLoS One 10, 1–20.

Lao JP, Hunter N (2010). Trying to avoid your sister. PLoS Biol 8, e1000519.

La Salle S, Sun F, Handel MA (2009). Isolation and short-term culture of mouse spermatocytes of transgenic mice. Genesis 48, 114–120.

Lee J, Ogushi S, Saitou M, Hirano T (2011). Condensins I and II are essential for construction of bivalent chromosomes in mouse oocytes. Mol Biol Cell 22, 3465–3477.
Lee JS, Takashashi T, Hagiwara A, Yoneyama C, Itoh M, Sasabe T, Muranishi S, Tashima S (1995). Safety and efficacy of intraperitoneal injection of etoposide in oil suspension in mice with peritoneal carcinomatosis. Cancer Chemother Pharmacol 36, 211–216.

Lilenthal I, Kanno T, Sogren C (2013). Inhibition of the Smc5/6 complex during meiosis perturbs joint molecule formation and resolution without significantly changing crossover or non-crossover levels. Plos Genet 9, e1003898.

Llano E, Gomez-H L, Garcia-Tuñón I, Sánchez-Martín M, Caburet S, Barbero JL, Schimenti JC, Veita RA, Pendas AM (2014). STAG3 is a strong candidate gene for male infertility. Hum Mol Genet 23, 3421–3431.

Lyndaker AM, Lim PX, Mleczko JM, Holloway JK, Holmes RJ, Lyndaker CH, 2010. Condensins regulate meiotic DNA break distribution, thus crossover frequency, by controlling chromosome structure. Cell 139, 73–86.

Mets DG, Meyer BJ (2009). Condensins regulate meiotic DNA break distribution, thus crossover frequency, by controlling chromosome structure. Cell 139, 73–86.

Marchetti F, Pearson FS, Bishop JB, Wyrobek AJ (2006). Etoposide induces some dynamics, sister chromatid cohesion and DNA recombination. Nat Struct Mol Biol 13, 581–590.

Marchetti F, Pearson FS, Bishop JB, Wyrobek AJ (2006). Etoposide induces some dynamics, sister chromatid cohesion and DNA recombination. Nat Struct Mol Biol 13, 581–590.

Marchetti F, Pearson FS, Bishop JB, Wyrobek AJ (2006). Etoposide induces some dynamics, sister chromatid cohesion and DNA recombination. Nat Struct Mol Biol 13, 581–590.

Marchetti F, Pearson FS, Bishop JB, Wyrobek AJ (2006). Etoposide induces some dynamics, sister chromatid cohesion and DNA recombination. Nat Struct Mol Biol 13, 581–590.

Murray JM, Carr AM (2008). Smc5/6: a link between DNA repair and meiotic synapsis and for proper chromosome disjunction in mitosis and meiosis. Cell Biol 6, 555–562.

Murray JM, Carr AM (2008). Smc5/6: a link between DNA repair and meiotic synapsis and for proper chromosome disjunction in mitosis and meiosis. Cell Biol 6, 555–562.

Murray JM, Carr AM (2008). Smc5/6: a link between DNA repair and meiotic synapsis and for proper chromosome disjunction in mitosis and meiosis. Cell Biol 6, 555–562.

Murray JM, Carr AM (2008). Smc5/6: a link between DNA repair and meiotic synapsis and for proper chromosome disjunction in mitosis and meiosis. Cell Biol 6, 555–562.

Murray JM, Carr AM (2008). Smc5/6: a link between DNA repair and meiotic synapsis and for proper chromosome disjunction in mitosis and meiosis. Cell Biol 6, 555–562.

Murray JM, Carr AM (2008). Smc5/6: a link between DNA repair and meiotic synapsis and for proper chromosome disjunction in mitosis and meiosis. Cell Biol 6, 555–562.

Murray JM, Carr AM (2008). Smc5/6: a link between DNA repair and meiotic synapsis and for proper chromosome disjunction in mitosis and meiosis. Cell Biol 6, 555–562.

Murray JM, Carr AM (2008). Smc5/6: a link between DNA repair and meiotic synapsis and for proper chromosome disjunction in mitosis and meiosis. Cell Biol 6, 555–562.

Murray JM, Carr AM (2008). Smc5/6: a link between DNA repair and meiotic synapsis and for proper chromosome disjunction in mitosis and meiosis. Cell Biol 6, 555–562.

Murray JM, Carr AM (2008). Smc5/6: a link between DNA repair and meiotic synapsis and for proper chromosome disjunction in mitosis and meiosis. Cell Biol 6, 555–562.

Moens PB, Chen DJ, Shen Z, Kolas N, Tarsounas M, Heng HH, Spyropoulos e1005225.

Moens PB, Chen DJ, Shen Z, Kolas N, Tarsounas M, Heng HH, Spyropoulos e1005225.

Moens PB, Chen DJ, Shen Z, Kolas N, Tarsounas M, Heng HH, Spyropoulos e1005225.

Moens PB, Chen DJ, Shen Z, Kolas N, Tarsounas M, Heng HH, Spyropoulos e1005225.

Moens PB, Chen DJ, Shen Z, Kolas N, Tarsounas M, Heng HH, Spyropoulos e1005225.

Moens PB, Chen DJ, Shen Z, Kolas N, Tarsounas M, Heng HH, Spyropoulos e1005225.

Moens PB, Chen DJ, Shen Z, Kolas N, Tarsounas M, Heng HH, Spyropoulos e1005225.

Moens PB, Chen DJ, Shen Z, Kolas N, Tarsounas M, Heng HH, Spyropoulos e1005225.

Moens PB, Chen DJ, Shen Z, Kolas N, Tarsounas M, Heng HH, Spyropoulos e1005225.

Moens PB, Chen DJ, Shen Z, Kolas N, Tarsounas M, Heng HH, Spyropoulos e1005225.

Moens PB, Chen DJ, Shen Z, Kolas N, Tarsounas M, Heng HH, Spyropoulos e1005225.

Moens PB, Chen DJ, Shen Z, Kolas N, Tarsounas M, Heng HH, Spyropoulos e1005225.

Moens PB, Chen DJ, Shen Z, Kolas N, Tarsounas M, Heng HH, Spyropoulos e1005225.

Moens PB, Chen DJ, Shen Z, Kolas N, Tarsounas M, Heng HH, Spyropoulos e1005225.

Moens PB, Chen DJ, Shen Z, Kolas N, Tarsounas M, Heng HH, Spyropoulos e1005225.

Moens PB, Chen DJ, Shen Z, Kolas N, Tarsounas M, Heng HH, Spyropoulos e1005225.

Moens PB, Chen DJ, Shen Z, Kolas N, Tarsounas M, Heng HH, Spyropoulos e1005225.

Moens PB, Chen DJ, Shen Z, Kolas N, Tarsounas M, Heng HH, Spyropoulos e1005225.

Moens PB, Chen DJ, Shen Z, Kolas N, Tarsounas M, Heng HH, Spyropoulos e1005225.