Mental health of healthcare workers during the COVID-19 outbreak: A rapid scoping review to inform provincial guidelines in South Africa

L J Robertson,1,2 MB ChB, FC Psych, MMed (Psychiatry); I Maposa,2 BSc, MSc (Statistics), PhD (Statistics); H Somaroo,3,4 MB ChB, MsEpi, FCSPH (SA), MMed (Public Health Medicine); O Johnson,4,5 BSc, MBBS

1 Department of Psychiatry, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
2 Community Psychiatrist, SediBeng District Health Services, Gauteng, South Africa
3 Division of Epidemiology and Biostatistics, School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
4 Department of Community Health, School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
5 Charlotte Maxeke Johannesburg Academic Hospital, Gauteng Department of Health, South Africa
6 Centre for Implementation Science, Health Services and Population Research Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
7 Centre for Health Policy, School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa

Corresponding author: L J Robertson (lesley.robertson@wits.ac.za)

COVID-19 is prevalent in sub-Saharan Africa. The healthcare response to the pandemic depends upon a mentally and physically healthy workforce. Infectious disease outbreaks cause high psychosocial stress among healthcare workers, which may impact negatively on workplace functioning. To understand which mental health conditions may occur and which interventions could be considered, we conducted a rapid scoping review. Using a 2018 systematic review as the starting point, PubMed, Cochrane, Web of Science and MEDLINE databases were searched for any type of evidence published in English between 2014 and 2020 on mental health of healthcare workers exposed to infectious disease outbreaks; 19 primary studies and 13 opinion pieces were included. Depression, anxiety, post-traumatic stress, and other mental health conditions were noted among healthcare workers exposed to COVID-19 and other outbreaks. Although no effectiveness studies were identified, certain proposed interventions may be implemented by healthcare leaders. Further research is recommended.

S Afr Med J 2020;110(10):1010-1019. https://doi.org/10.7196/SAMJ.2020.v110i10.15022

COVID-19, caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is highly transmissible, with a high mortality in vulnerable individuals and no known disease-specific treatment or vaccine.1-3 As anticipated, it continued to spread and is now prevalent in South Africa (SA) and other African countries,4 putting healthcare systems under severe pressure.

Healthcare workers (HCWs) are the most important resource in both the COVID-19 response and in maintaining essential services.5 HCW motivation and empathy are critical to effective and compassionate healthcare. Mental health conditions may compromise work performance and increase risk of burnout, absenteeism and resignations.5,6 Fatigue, emotional exhaustion or poor concentration are likely to increase clinical error, including breaches in infection control, impacting on patient care and staff infections. Protecting the mental health and wellbeing of HCWs is therefore of paramount importance during an infectious disease outbreak.

Such outbreaks cause high levels of psychosocial stress,7 related to uncertainty regarding risk of infection and prognosis, loss of loved ones, and the social impact of measures instituted to contain the spread of disease. Being at the frontline in disease detection and management, HCWs are vulnerable, exposed to infection, high workloads and difficult working conditions. Resource constraints, including shortages of personal protective equipment (PPE), limit individual capacity to provide appropriate patient care and heighten the mental health risk. Being quarantined appears to convey particular stress.7

The Gauteng Province Department of Health’s research and evaluation workstream therefore requested evidence-based recommendations regarding the potential impact of the COVID-19 pandemic on the mental health of HCWs and their protection. This article describes the process behind, and builds upon, a presentation made to the senior leadership of the Gauteng Department of Health’s COVID-19 response team in April 2020, for which we sought to answer two questions: (i) what may be expected regarding the psychological impact of the COVID-19 outbreak on HCWs; and (ii) what interventions could be considered in order to protect and support the mental health and wellbeing of HCWs during the crisis.

Methods
We conducted a rapid scoping review of published literature on mental health of HCWs exposed to infectious disease outbreaks.

Literature search and study selection
To gain an understanding of the topic, we conducted a preliminary search and screen of the PubMed and Cochrane databases on 7 and 8 April 2020, respectively, using terms (healthcare workers OR medical doctors OR nurses OR community health workers) AND
In terms of quality, they conducted a comprehensive literature search, selected studies in duplicate according to clearly defined inclusion criteria, and provided a detailed list of included studies with appropriate quality appraisal. Based on our initial reading of the literature, we developed a set of inclusion and exclusion criteria for our review, as set out in Table 1. We also developed an iterative search strategy for articles published between 2014 and 2020. The date limits were chosen to overlap with the search by Brooks et al., which was conducted in 2015. Using the search string developed by Brooks et al. with the addition of terms COVID*, coronavirus and SARS-CoV-2 (Appendix 1, http://samj.org.za/public/sup/15022-1.pdf), author OJ searched the Web of Science and MEDLINE databases on 17 April 2020. The records retrieved were downloaded to Excel, version 2007 (Microsoft, USA), where duplicates were removed. Author LJ evaluated the titles, abstracts and full text for inclusion, discussing uncertainty with the other three authors.

Data extraction and synthesis
Data were extracted by LJ onto prepared tables in Microsoft Word, version 2007 (Microsoft, USA). For primary studies, the year of publication, disease outbreak, country, study design, participant information, outcomes, tools used and key findings were extracted. For opinion pieces, the year of publication, disease outbreak, country and key content were documented.

To synthesise the data, we conducted a descriptive analysis using categories based on our review questions. We developed four categories: the types and prevalence of mental health conditions identified; related workplace consequences; risk and protective factors; and possible interventions. Contingent with scoping review guidelines, we did not conduct a quality appraisal of included articles.

Results
Of the 31 articles identified for inclusion in addition to Brooks et al., 18 reported on primary studies and 13 were opinion pieces. The selection process is presented in Fig. 1, and the included articles and extracted data are tabulated in Appendix 2 (primary studies, http://samj.org.za/public/sup/15022-2.pdf) and Appendix 3 (opinion pieces, http://samj.org.za/public/sup/15022-3.pdf). Infectious disease outbreaks covered were COVID-19 (12 studies and 10 opinion pieces), the Middle Eastern respiratory syndrome coronavirus (MERS-CoV) outbreak of 2012 (4 studies), the 2014 Ebola outbreak (2 studies and

Table 1. Inclusion and exclusion criteria

Study characteristic	Inclusion criteria	Exclusion criteria
Population	Healthcare workers employed within the healthcare system (e.g. nurses, medical doctors, allied health professionals, community health workers, healthcare support staff)	Health professional students (e.g. medical or nursing students)
	Any mental health condition, including medically diagnosable mental disorders and non-diagnosable conditions such as stress, moral injury, emotions	Workers outside the healthcare system (e.g. municipal workers, social service workers)
	Factors related to mental health conditions, e.g. types, prevalence, and severity; risk and protective factors; interventions	Patients
	Exposure to an infectious disease outbreak, whether frontline or non-frontline, at any healthcare service level	Family or lay caregivers
Context	Published in an academic journal	General public
	English	Non-mental health conditions, e.g. social or physical health conditions
Publication	Any, including primary studies and opinion pieces	Disasters or emergencies that are not infectious disease outbreaks
	For primary studies, we included any exploratory study, even brief interviews or rapid needs assessments, as long as the methods were described	Normal working conditions
	For opinion pieces, we included any published opinion article, such as guidelines, narrative reviews, editorials, commentaries or personal views, and correspondence	Non-journal publications, e.g. website publications, guidelines or recommendations issued by an organisation, flyers, and blogs
Types of evidence		Grey literature
		Publications in languages other than English
		Not applicable
3 opinion pieces), and SARS-CoV-1 (the systematic review of 22 studies by Brooks et al.\(^8\)). While the opinion pieces referring to COVID-19 drew on literature from previous outbreaks as well as experience of the current pandemic, those referring to the Ebola outbreak drew only on experience of that epidemic.

All primary studies were cross-sectional in design; 13 used self-report questionnaires, 4 were interview based, and 1 used mixed methods. Response rates were reported in 11 studies and ranged from 19.9% to 100%. Sample sizes varied from 30 to 2,299 participants for questionnaire-based surveys, and from 10 to 69 participants for exploratory interviews. Female respondents predominated, accounting for >75% of participants in 11 studies. Opinion pieces comprised 6 commentaries or personal views, 4 letters, an editorial, a narrative review, and a description of a pilot project in West Africa. All the included articles related to hospital-based HCWs; none referred to primary healthcare or community-based services.

Types and prevalence of mental health conditions

Table 2 summarises the prevalence rates available from questionnaire-based studies for depression, anxiety, post-traumatic stress (PTS), insomnia, mental disturbance (depression, anxiety, PTS and insomnia grouped together), somatisation, obsessive-compulsive symptoms, burnout, stress and fear. Medical HCWs comprise nurses, doctors and clinical assistants, while non-medical HCWs are a non-specific group of allied health professionals and support staff. All studies assessed symptomatology rather than diagnosis, using a variety of screening tools, and some included conditions that are not medically diagnosable, notably burnout, stress and fear. The severity but not the prevalence of another non-diagnosable condition, vicarious traumatisation, was evaluated in one study in Hubei province during COVID-19.\(^8\) Vicarious traumatisation refers to psychological distress arising from sympathy with trauma victims. Using a questionnaire developed previously in China after a natural disaster, Li et al. (2020)\(^9\) found greater severity among non-frontline nurses and among the general public compared with frontline nurses.

Moral injury (a reflection of dissonance between clinical practice and personal values) was not assessed in any primary studies. However, it was discussed by Greenberg et al. (2020)\(^26\) and Walton et al. (2020)\(^21\) with regard to COVID-19 exposure, and by Ulrich (2014)\(^22\) regarding distress among West African HCWs exposed to the 2014 Ebola epidemic.

Similarly, anger was not evaluated in any of the primary studies, although angry or aggressive emotional reactions were noted in several opinion pieces.\(^8,20,21,22,25\) In addition, Brooks et al. (2020)\(^8\) found that being quarantined and poor organisational support each predicted high levels of anger among HCWs.

We found no assessment of substance use, psychotic illness or suicidal behaviour. However, Brooks et al.\(^8\) found excessive alcohol intake to be associated with working in a high-risk environment and with being quarantined. They also mentioned psychoticism in relation to the SARS-CoV-1 outbreak, and Ho et al. (2020)\(^15\) warn of it as a possible occurrence during COVID-19. Likewise, Ho et al. warn of suicidality, which they suggest may be related to self-blame.

Long-term mental health effects were also not evaluated, except by one study included in the review by Brooks et al.\(^8\) In a 3-year follow-up of HCWs exposed to SARS-CoV-1 in China, Wu et al. (2009)\(^29\) found that 10% had persistent PTS symptoms, and that altruistic acceptance during the outbreak was a protective factor.

Work-related consequences

Only one study evaluated a work-related outcome associated with mental health. Among nurses exposed to the MERS-CoV outbreak in South Korea, Jung et al. (2019)\(^15\) found a greater intention to resign to be associated with increased severity of PTS.

However, a range of work-related outcomes were commented on by Brooks et al.\(^8\) and other authors.\(^9,10,12,13,17,20,21,22,25,27,32\) Fatigue, irritability, and interpersonal conflict with colleagues.
Mental health condition	Author, study site and type, number of respondents	Prevalence rates (%)	Notes
Depression	Cao et al. (2020), China; COVID-19	n/a	Tool: PHQ-9
Score cut-off: ≥10 positive for depression			
	Lai et al. (2020), China; COVID-19	50.4 18.9	Tool: PHQ-9
Score cut-off: 5 - 9 mild, 10 - 14 moderate, 15 - 21 severe depression			
	Lu et al. (2020), China; COVID-19	11.7 11.4 0.3	Tool: Hamilton Depression Scale
Score cut-off: ≥24 severe depression			
	Tan et al. (2020), Singapore; COVID-19	8.9 n/a	Tool: DASS-21
Score cut-off: >9 positive for depression			
	Zhang et al. (2020), China; COVID-19	10.4 n/a	Tool: PHQ-2
Increased prevalence among medical v. non-medical HCWs (12.2% v. 9.5%; \(p < 0.01 \))			
Anxiety	Lai et al. (2020), China; COVID-19	44.6 32.3 7.0 5.3	Tool: GAD-7
Score cut-off: 5 - 9 mild, 10 - 14 moderate, 15 - 21 severe anxiety			
	Zhang et al. (2020), China; COVID-19	14.5 n/a	Tool: DASS-21
Score cut-off: >7 positive for anxiety			
Increased prevalence (20.7% v. 10.8%; adjusted prevalence ratio 1.85 (95% CI 1.15 - 2.99)) among non-medical v. medical HCWs			
	Lee et al. (2018), South Korea; MERS-CoV	10.4 n/a	Tool: GAD-2
Increased prevalence among medical v. non-medical HCWs (13.0% v. 8.5%; \(p < 0.01 \))			
	Jung et al. (2019), South Korea; MERS-CoV	57.1 32.0 25.1	Tool: IES-R
Score cut-off: 18 - 24 some PTS (mild), ≥25 full PTS disorder (moderate to severe)			
	Lai et al. (2020), China; COVID-19	71.5 36.5 24.5 10.5	Tool: IES-R
Score cut-off: 9 - 25 mild, 26 - 43 moderate, 44 - 88 severe distress			
	Lee et al. (2018), South Korea; MERS-CoV	64.1 12.6 51.5	Tool: IES-R
Score cut-off: 18 - 24 some PTS (mild), ≥25 full PTS disorder (moderate to severe)			
	Tan et al. (2020), Singapore; COVID-19	n/a 7.7	Tool: IES-R
Score cut-off: ≥25 PTS as a clinical concern (moderate to severe)
No difference between non-medical v. medical HCWs
Authors note prevalence to be three times lower than that recorded previously during the SARS-CoV-1 outbreak |

Continued...
Mental health condition	Author, study site and type, number of respondents	Prevalence rates (%)	Notes
Insomnia	Cao et al. (2020),[10] China; COVID-19	29.7 (n/a)	Tool: open-ended interview question on ‘sleeping problems’
	Lai et al. (2020),[11] China; COVID-19	34 (26.2)	Tool: ISI
	Zhang et al. (2020),[14] China; COVID-19	33.8 (24.3)	Score cut-off: 8 - 14 mild, 15 - 21 moderate, 22 - 28 severe insomnia
			Tool: ISI
			Score cut-off: 8 - 14 mild, 15 - 21 moderate, 22 - 28 severe insomnia
			Tool: ISI
			Increased prevalence among medical v. non-medical HCWs (38.3% v. 30.5%; p<0.01)
'Mental disturbance'	Kang et al. (2020),[17] China; COVID-19	63 (34.4)	Tools: PHQ-9, GAD-7, IES-R, ISI
	Survey at hospitals in Wuhan (N=994, all medical HCWs, 31.1% frontline)	34.4 (22.4)	Cut-off scores same as those used by Lai et al. (2020)[11]
	Performed a cluster analysis, grouping depression, anxiety, distress, and insomnia according to severity	6.2 (n/a)	
Somatisation	Cao et al. (2020),[10] China; COVID-19	45.9 (n/a)	Tool: open-ended interview question on ‘bodily discomfort’
	Kang et al. (2020),[17] China; COVID-19	30.8 (26.1)	Various physical symptoms reported, considered by the authors likely to be psychosomatic in origin
	Zhang et al. (2020),[14] China; COVID-19	0.9 (n/a)	Tool: question on self-perceived physical health status currently v. before the outbreak
			Answer options: getting better, almost unchanged, worse (mild to moderate), much worse (severe)
Obsessive-compulsive symptoms	Zhang et al. (2020),[14] China; COVID-19	3.5 (n/a)	Tool: Symptom Check List-90 – revised
			Increased prevalence among medical v. non-medical HCWs (1.6 v. 0.4%; p<0.01)
Burnout	Cao et al. (2020),[10] China; COVID-19	EE 3.1	Tool: Maslach Burnout Inventory
	(N=32 medical HCWs)	DP 12.5	Score cut-offs: EE ≥27, DP ≥10, PA ≤33
		PA 25.0	
Stress	Mo et al. (2020),[16] China; COVID-19	22.2 (n/a)	Tool: Chinese version of Stress Overload Scale
	Survey of nurses deployed from Guangxi to support Wuhan (N=180, all frontline)	22.2 (n/a)	Score cut-off: >50 out of a possible score range of 22 - 110
	Tan et al. (2020),[13] Singapore; COVID-19	6.6 (n/a)	Tool: DASS-21
			Score cut-off: >12 positive for stress
			No difference in prevalence between non-medical v. medical HCWs

Continued...
were described in association with stress.\[^{14,16,21,31}\] Caution was expressed regarding presencism related to burnout and poor mental health.\[^{28}\] Medical error was warned of by authors from Iran,\[^{30}\] and reluctance to work was noted in three articles.\[^{32,34,35}\] Finally, the possibility of legal implications arising from lapses in ‘duty of care’ was raised by Greenberg et al. (2015),\[^{27}\] writing from their experience of supporting HCWs during the Ebola virus outbreak.

Risk and protective factors

Workplace, social and individual HCW risk and protective factors identified by Brooks et al.\[^{33}\] and by questionnaire-based\[^{13,15,29,34}\] and interview-based\[^{29,31}\] studies are summarised in Table 3, with more detail per study provided in Appendix 2. While being a frontline worker was identified as a prominent risk factor, being non-frontline or a non-medical HCW were also associated with high risk of mental disturbance.\[^{13,14,15}\] Tan et al.\[^{23}\] speculated that poorer access to psychological support, less skills training, and less medical knowledge regarding the outbreak may have caused greater mental health risk to non-medical compared with medical HCWs. They attributed the lower rate of PTS found during COVID-19 than during SARS-CoV-1 to improved psychological preparedness and more stringent infection control in the current pandemic.

Inadequate resources to manage the caseload were a notable source of stress in several studies,\[^{12,29,31,35}\] and working at a secondary- rather than a tertiary-level hospital was found to be predictive of depression, anxiety and insomnia by Lai et al. (2020)\[^{31}\] A qualitative study among HCWs in Sierra Leone\[^{29}\] during the Ebola outbreak documented high stress levels related to poor health system infrastructure, undermining psychological preparedness and necessitating strong individual coping strategies.

Four studies explored relationships between various risk and protective factors. In Wuhan, Kang et al. (2020)\[^{35}\] found that increased COVID-19 exposure predicted worse physical health perception through its negative effect on mental health disturbance. Accessing mental healthcare services moderated this relationship through improved mental health. Xiao et al. (2020)\[^{31}\] found that social support indirectly improved sleep quality by reducing anxiety and stress and strengthening self-efficacy. Jung et al.\[^{35}\] found that stronger supervisor support appeared to buffer the effect of PTS on nurses’ intention to resign. Park et al. (2018)\[^{34}\] found that the mental health effects of stigma and of innate resilience were partially mediated by stress.

Possible interventions

No effectiveness studies were identified in our literature search. Rather, interventions were recommended according to identified needs, coping strategies, risk and protective factors, as well as from personal experience. While some articles\[^{13,16,21,27}\] prioritised early recognition and individual psychological support, others\[^{8,10,15,18,20,21,23-25,27,31,33,35-38}\] placed emphasis on organisational interventions to support HCWs. Four studies focusing exclusively on nurses\[^{15,34,35}\] made recommendations to mitigate work stress, enhance innate resilience and provide team leader support. To promote institutional resilience, Wu et al. (2020)\[^{28}\] suggested that staff support be included as a priority logistical process, alongside infection control and supply chain management.

Two articles categorised interventions according to whether they were implemented before, during or after the peak of an outbreak.\[^{34,37}\] A narrative review\[^{34}\] sorted interventions according to role-players, with differing responsibilities for health institutions, team leaders and individual HCWs, and one article considered them in terms of primary, secondary and tertiary disease prevention strategies.\[^{27}\] We have grouped interventions according to management phases, using the WHO occupational health and safety nomenclature.\[^{11}\]

Pre-deployment

For the preparatory phase, Greenberg et al.\[^{28}\] advised that anticipated duties and potential traumatic situations be explained clearly and accurately to HCWs, and that a cohesive team spirit be fostered to facilitate positive coping mechanisms. Chen et al. (2020)\[^{32}\] highlighted the need for pre-job skills training in the management of distressed and unco-operative patients, as well as infection control measures and PPE. Describing a project used during the Ebola outbreak, Schreiber et al. (2019)\[^{37}\] recommended that HCWs be trained in self-monitoring for symptoms of distress or mental illness, internal coping skills, and how to access external psychological resources. Several articles\[^{20,23,33,27}\] recommended that organisations establish peer support networks and psychological support systems. Psychological preparation of managers and team leaders, empowering them to provide the quality of leadership required during the outbreak, was emphasised by Wu et al.\[^{28}\]

During deployment

As the outbreak peaks and work demands escalate, visible, decisive leadership, responsive to the concerns of HCWs, with clear, open communication, is recommended.\[^{30,24,34}\] Four articles\[^{16,31,35,36}\] demonstrated responsive leadership, as they reported on rapid needs assessments and the corresponding actions taken by healthcare institutions. While

Table 2. (continued) Types and prevalence of mental health conditions

Mental health condition	Author, study site and type, number of respondents	Notes	Prevalence rates (%)
Fear	et al. (2020), n/a		26.0
Anxiety			
Depression			
Anxiety			
Depression			
Stress			
Insomnia			
PTSD			

Legend:

-atoon: 10-point numerical scale
- Tool: cut-offs: 0 for no fear, 1 - 3 for mild fear, 4 - 6 for moderate fear, 7 - 9 for severe fear, 10 for extreme fear and psychological symptoms.

Table 2. (continued) Types and prevalence of mental health conditions

Mental health condition	Author, study site and type, number of respondents	Notes	Prevalence rates (%)
Fear	et al. (2020), n/a		26.0
Anxiety			
Depression			
Anxiety			
Depression			
Stress			
Insomnia			
PTSD			

Legend:

-atoon: 10-point numerical scale
- Tool: cut-offs: 0 for no fear, 1 - 3 for mild fear, 4 - 6 for moderate fear, 7 - 9 for severe fear, 10 for extreme fear and psychological symptoms.
appropriate PPE and infection control measures were critical, addressing basic needs, including sleep, regular meals, rest periods and human connection, was also vital. In China, one institution adjusted working hours, with short 4 - 6-hour shifts and regular time off,[20] whereas another provided a quiet rest area, food, systems to improve communication with families, continued skills training, and daily opportunities to discuss difficulties experienced at work.[21] In the USA, regular updates on the outbreak were provided, as well as childcare facilities and transport to facilitate HCWs getting to work, accommodation if quarantine was warranted, and support regarding home stressors.[22,34] The needs identified through these assessments were consistent with findings from in-depth individual interviews among nurses in Wuhan,[24] in that personal health, safety, social relatedness, and reliable, scientific information predominated.

Other recommendations included strong supervisory and peer support, shared clinical decision-making, sharing of emotions, early recognition of distress, provision of psychological first aid, and encouragement of appropriate help-seeking.[21,24,27,28,30,34] While single-session psychological debriefing is considered potentially harmful, regular sessions in which difficult clinical decisions and situations are discussed with supervisors are recommended.[28,31,33,37] Three articles recommended active monitoring for mental health symptoms, with timely access to psychological interventions.[28,30,33] In Wuhan, Kang et al.[27] found that HCWs who accessed psychological support expressed benefit from doing so. Those with mild to moderate mental disturbance were more likely to use self-help or online psychological materials, whereas those with more severe symptoms sought counselling or psychotherapy.

Discussion

In this review, we found evidence from cross-sectional exploratory studies of mental health conditions among hospital-based frontline and non-frontline HCWs during infectious disease outbreaks, as well as of risk and protective factors. We found published opinion pieces that recommended various protective interventions. However, we found no information specific to primary care or community-based healthcare services.

Mental health conditions

Several factors regarding the survey findings make it difficult to anticipate the prevalence or severity of mental health conditions among HCWs during the COVID-19 response in SA. Firstly, a wide range in prevalence of various symptoms was found. Rates of any depression, anxiety and PTS ranged from 8.9% to 50.4%, 10.4% to 44.6% and 32% to 71.5%, respectively. Differences in study population (e.g. proportions of frontline, medical or non-medical HCWs), study sites and screening tools may account for some of the variation in prevalence. However, as there was no comparison with...
mental health of HCWs during normal working conditions, it is not possible to gauge whether prevalence or severity were worse than usual for the individual study sites.

While there is a paucity of data on mental health of HCWs in Africa,[31] understanding the global findings during infectious disease outbreaks against the background of those in Africa during normal conditions should help inform local planning. In SA during 2010, among 132 primary care doctors in Western Cape Province,[18] 27% reported moderate depression and 3% severe depression. Among 67 doctors in North-West Province,[11] 51% were found to be stressed and 27% highly stressed. More data are available regarding burnout,[12] a result of ‘chronic workplace stress that has not been successfully managed’; according to the International Classification of Diseases.[13] In their systematic review of burnout among HCWs in sub-Saharan Africa, Dubale et al. (2019)[14] found rates of 62% in Malawi, 91% in Ethiopia and 95% in Kenya. In SA, they found rates of 46% among nurses at national referral hospitals, 78% among junior doctors, and 81% in a small sample of rural doctors. They also noted high rates of depression and anxiety among HCWs in some of the studies included in their review.

Secondly, whether the rates reflect incident morbidity in an individual, precipitated by stressful circumstances, or total morbidity, inclusive of pre-existing conditions, was not elucidated in any study. However, a recently conducted large Danish registry study demonstrated that having any mental disorder significantly predisposes to the development of a subsequent disorder, at least for disorders warranting psychiatric care.[46] Although this may have contributed to the low rates of severe depression and anxiety found by Lu et al. (2020),[12] who excluded staff members with a previous mental disorder, their use of detailed rating scales may also be a factor.

Thirdly, comorbidity between mental disorders was inadequately addressed to permit accurate interpretation of the prevalence rates. In SA, a 2004 nationally representative mental health survey using a diagnostic interview[45] identified a depressive, anxious, PTS and/or substance use disorder in 16.5% of respondents. Of these, 30% met criteria for two or more disorders, with greater disorder severity associated with higher levels of comorbidity. In addition, conditions such as insomnia and somatisation may also occur as symptoms of other mental disorders. The cluster analysis by Kang et al.[32] may therefore be the most meaningful of the studies included in our review for planning of HCW support. Interestingly, the prevalence of severe mental disturbance (6.2%) found by Kang et al. is similar to the rates of severe depression (6.2%) and severe anxiety (5.3%) found by Lai et al.[31] where the same individual HCWs may be represented in each condition.

Lastly, no study evaluated the impact of mental health conditions on HCW functioning in the workplace. However, executive or cognitive dysfunction, with social or occupational impairment, are core features of almost all mental disorders.[47] Furthermore, although burnout, stress, moral injury and fear are not disorders but normal reactions to taxing circumstances, they impact negatively on workplace function, and they may predispose to or be comorbid with mental disorders.

Risk factors
Although infectious disease exposure and workplace stressors are prominent risk factors for mental health conditions, working at a tertiary hospital may be protective.[11,13] Health system influence is also evident in studies reporting on stress related to resource constraints.[12,20,31,35] A possibility is that tertiary hospitals are better equipped in respect of infection control, clinical infrastructure and skilled staff than secondary-level facilities, which may be pressured to provide services beyond their capacity during an outbreak. Poor infrastructure may cause over-exposure of HCWs to high caseloads and negative patient outcomes, with feelings of incompetence, moral injury and emotional exhaustion. The effect of resource constraints has important implications for HCWs in sub-Saharan Africa, where weak health infrastructure and poor healthcare outcomes are well documented under normal healthcare service conditions.[14] Nurses were noted to be at high risk of work-related stress and mental health conditions, whether frontline or not.[9,10,12,14,35] While this may be related to a preponderance of nurses in study samples, it may reflect a convergence of multiple risk factors, including poor control over working conditions, poor management support, being female, and having family responsibilities. Similar organisational dynamics, including the influence of gender, are discussed in a recent scoping review highlighting severe nursing shortages in low- and middle-income countries.[40] While such shortages contribute to increased work demands and stress, only one study in our review examined the impact of an outbreak on turnover intention among nurses,[31] and none evaluated nursing workplace planning.

The mental health risk to doctors and to men may be under-recognised, affected by sampling strategies, response rates and the conditions investigated. As well as not evaluating non-responders, surveys measuring specific conditions may miss other manifestations of distress possibly more common among men or doctors. Of note, burnout, examined in only one small sample of HCWs,[30] was greater among doctors compared with nurses. Additionally, Dubale et al.[42] found burnout to be highly prevalent among doctors, nurses and other HCWs in sub-Saharan Africa. With no mention of gender, they list heavy workloads, poor working conditions and staff shortages as risk factors for burnout, while management support was found to be protective.

Finally, it is evident that high rates of mental health conditions, burnout and stress among frontline and non-frontline HCWs may be anticipated during the COVID-19 response in Africa. While nurses, women, and those with poor social support are at particular risk, other HCWs are also affected. The lack of primary care practitioner representation in studies implies that this cadre of HCW is at risk of neglect.

Interventions
The interventions we identified were all proposed in opinion pieces or in discussion of study results, suggesting that they are open to interpretation and selective application according to local conditions. However, two main principles emerge: (i) the institution and management are the key role players; and (ii) accessible, appropriate psychological support is needed.

These principles are consistent with WHO guidelines for HCWs in public health emergencies[40] and for ensuring mental health in the workplace.[41] Fundamental institutional responsibilities include provision of adequate health infrastructure, infection prevention and control, workforce staffing appropriate for the caseload, and flexible working hours. However, these may not be readily implementable in sub-Saharan Africa. As noted by Kruck et al. (2018),[42] health system quality deficits are deeply entrenched, requiring intensive reform involving governments and civil society. Furthermore, the severe nursing shortages[40] and already high levels of burnout[42] may preclude selective HCW deployment.

Nevertheless, certain strategies identified in this review may be implementable in resource-constrained settings, some of which are listed in Table 4. Our suggestions are consistent with findings by Gray et al. (2019)[31] on organisation-level interventions to promote mental health among HCWs, drawn mainly from studies in high-
income countries. While educational leaflets are possibly the simplest to implement, skilled leadership and effective communication are pivotal. Psychological support and training of managers is therefore prioritised, with individual care reserved for HCWs with severe symptoms. Use of non-governmental and volunteer organisations could help overcome shortages of mental health professionals.

Study limitations

Several limitations of this article should be noted. Firstly, the rapid nature of the review in response to a local request precluded an a priori protocol as well as duplicate study selection and data extraction. Secondly, using the systematic review by Brooks et al.\(^8\) as a starting point may have excluded other relevant studies. Thirdly, the inclusion of small, informal studies such as rapid needs assessments as research may overrate their findings.

Conclusions

This review found that HCWs experience high levels of mental health disturbance during infectious disease outbreaks. Further research on mental health of HCWs in Africa, particularly those in the primary care setting and with workplace-related outcomes, is urgently needed. While no intervention effectiveness studies were identified, several strategies that leadership may undertake were noted, and implementation should not be delayed.

Dedication. This publication is dedicated to the late Associate Professor Bernard Janse van Rensburg, who, at the time of his death in April 2020, was working with a number of mental health professional societies towards providing psychological support to healthcare workers across South Africa during the COVID-19 outbreak.

Declaration. None.

Acknowledgements. The authors would like to acknowledge Ms Tsholofelo Adelekan and Dr Bridget Ikalafeng of the Policy, Planning, Research and Health Information Evaluation and Monitoring Directorate and Dr Sipho Senabe of the Occupational Health and Safety Department in the Gauteng Department of Health for providing strategic direction and support for this research.

Author contributions. LJR conceptualised and designed the work, conducted the data extraction, analysis and interpretation, and drafted the manuscript. OJ, IM and HS assisted with the preliminary screening of the

Table 4. Suggested interventions

Management initiatives	Psychological support
• Be psychologically prepared	• Training and support of managers, supervisors and team leaders
• Access training and support	• Leadership skills
• Keep informed with scientific updates	• Self-help skills, mindfulness-based training
• Conduct a rapid needs assessment	• Mental health literacy
• Found beneficial in four articles\(^{10-12,38-39}\) may allow HCWs to feel heard,	• Psychological first-aid techniques
foster team spirit, and enable managers to set priorities	• Ensure ongoing support
• Communicate clearly and regularly	• Training of peer supporters
• Facts about the outbreak	• Self-help skills, mindfulness-based training
• Risks to HCWs, PPE availability	• Psychological first-aid techniques
• Daily tasks, clinical guidelines, adaptations to resource constraints	• Support via support of supervisors
• Expectations of HCWs’ self-care, including their mental healthcare	• Locally relevant educational flyers and/or mobile app messages
• Incorporate support in daily routine	• Information on mental health
• Ask coping of team members in handover rounds and meetings	• Information on substance use
• Discuss difficult clinical situations, providing containment of any distress	• Self-awareness strategies
• Engage with local community	• Self-help tips
• Educate community leaders on the outbreak, risks, and treatment; destigmatise HCWs	• Destigmatise the act of seeking help
• Identify supportive resources, e.g. child carers, lay counsellors, faith-based	• Available resources and how to access them
organisations	• Locally appropriate online, mobile app, and hard-copy psychological materials
• Establish peer support networks	• Telephonic or online counselling
• Identify peer supporters and facilitate training in mental health	• Telephonic or online lay counselling
literacy and psychological first aid	• Telephonic, online or face-to-face psychotherapy for those with severe symptoms
• Allocate HCWs to supporters	• Psychotropic medication if needed
• Encourage sharing of emotions and experiences	
• Receive feedback from supporters, and provide ongoing direction	
• Establish referral pathways and human resource mechanisms	
• Recognise mental disturbance in HCWs or self and refer accordingly	

HCWs = healthcare workers; PPE = personal protective equipment.
Conflicts of interest. None.