Activation of killer cells with soluble gastric cancer antigen combined with anti-CD₃ McAb

CHEN Qiang, YE Yun-Bin and CHEN Zeng

Subject headings stomach neoplasms; antigens, neoplasm; killer cells; interleukin-2; CD3 McAb

INTRODUCTION
There have been many reports on cancer therapy with lymphokine-activated killer (LAK) cells and interleukin-2 (IL-2), but the proliferative response and anti-cancer effect of LAK cells are dependent on IL-2 dose. Other methods to improve the anti-tumor activity of cytotoxic T cells by activation with anti-CD3 McAb in conjunction with IL-2 are being investigated in recent years. In this study, we attempted to explore the physiologic and biologic effects of T-killer cells (TAK) co-stimulated with soluble gastric cancer antigen, anti-CD3 McAb and IL-2.

MATERIALS AND METHODS
Materials
Interlukin-2 was produced by Shanghai Bio-Chemical Institute and anti-CD3 monoclonal antibody was prepared from Tumor Institute, Chinese Academy of Medical Sciences. Medium 1640 was produced by Gibco Company of America.

Target cell: K562 and SGC-7901 were prepared by Radio biology Research Laboratory of our hospital, hepatocarcinoma cell line (SMC) was prepared by Tumor Research Laboratory of Fujian Medical University. All tumor cells were maintained in medium 1640 with 100 ml/L calf serum.

Methods
Tumor soluble antigen was extracted from SGC cells by salting-out method previo usly described by Chen YX et al[1] and stored at -20°C. The mononuclear cells (MNC) were isolated from 50 mL venous blood of normal don or by centrifugation over a Ficol-IHypaque gradient and a final concentration of 1×10⁹/L was obtained in each culture bottle. Three kinds of cytotoxic T cells by activation was maintained in medium 1640 with 100 ml/L calf serum.

RESULTS
The killer cells cultured with various stimulators
There was a similar growth tendency among the three kinds of killer cells. In LAK cells group, the maximum cell number of expansion was found about 10 days of culture, the cell number decreased rapidly on the 15th day and was fewer than the initial number on the 20th day. However, in TAK group and CD3AK group, the peaks of the cell expansion were found on the 13th day and the cell number was more than that in LAK group. The activity of cell expansion was TAK>CD3AK>LAK (Figure 1).

Comparison of the anti-tumor activity among the three kinds of killer cells during culture
Table 1 shows that the killing activity of all the killer cells to K562 was low in the early stage of culture, but it increased as the rapid expansion occurred. On the 20th day, TAK and CD3AK cells maintained killing activity from the 15th day. On the
other hand, the killing activity of TAK, CD3AK and LAK to SGC-7901 was 98.5%, 82.1%, and 62.1%, and was 74.9%, 51.3% and 52.4% to SMC respectively.

Analysis of surface markers in the killer cells

By flow cytometry, it showed that TAK cells were dominated by CD8+ T cells (Table 2).

Effect of anti CD3 monoclonal antibody on TAK

Anti-CD3 monoclonal antibody and IL-2 could co-stimulate the expansion of lymphocytes, and make the cells become higher in anti-tumor activity (Table 3).

Table 1 Comparison of anti-tumor activity among the three kinds of killer cells during culture

Group	Incubation day						
	3	7	10	12	15	17	20
TAK	30.3	42.8	58.7	54.0	49.9	47.0	36.9
CD3AK	25.4	39.7	47.5	50.2	38.9	38.4	27.0
LAK	23.5	34.7	38.5	30.8	30.8	14.5	10.4

Table 2 Analysis of surface markers on the killer cells (n = 6)

Incubation	CD3	CD4	CD8	CD4/CD8	NK	CD19
0d	52.80	49.40	26.40	1.87	23.30	7.20
10d	49.88	44.36	62.80	0.76	4.53	0.20

Table 3 Influence on the killer cells with various stimulation

Group	Stimulated by	Duplication of proliferation	Killing activity
1	IL-2 alone	2.1	38.5%
2	IL-2 alone after costimulation with anti-CD3 McAb for 48 h	3.8	40.1%
3	Coexistence of anti-CD3 McAb and IL-2 during incubation	5.3	58.7%

Morphological observation of the killer cells

Under the inverted microscope, the killer cells were found to be round and bright large lymphocytes. They were aggregated into lumps with TAK lumps bigger than LAK lumps, and CD3AK lumps smaller. As the cell culture was continued, the killing activity of TAK in vitro required lower IL-2 concentration than CD3AK did. It was encouraging that we have laid a foundation to solve the LAK activity which is dependent on IL-2.

As immune cells for treatment, the ratio between subtypes and its relative stability was of great importance. The results in flow cytometry showed that in the course of TAK culture, CD8+ cell number increased obviously, CD4+ decreased slightly and CD3+ had no change. It is suggested that TAK cells were dominated with CD8+ cells. We knew CD8+ T cells could be subdivided into Tc cells and Ts cells. If the number of Tc cells increased in the culture, the anti-tumor activity would be greatly enhanced. This may explain why CD8+ dominant TAK had strong anti-tumor activity. Further identification of Tc and Ts cells in the culture will be our next focus of research. Our results also showed that on the 10th day of culture, CD19+, CD8+ and CD56+ cells were rare, suggesting that anti-tumor effect of TAK cells was chiefly dependent on CD8+ T cells.

Tao et al. reported that stimulation of PBMC with anti-CD3 McAb and IL-2 for 48 hours and then with IL-2 alone achieved a better anti-tumor activity. Our results showed that coexistence of anti-CD3 McAb and IL-2 during cell culture is of benefit to cell proliferation and cytotoxicity.

Our conclusion is that the immune effect cells generated from the PBMC stimulated with anti-CD3 McAb, IL-2 and TSA may be characterized by rapid proliferation in vitro, high cytotoxicity and low IL-2 dependence. Clinically, it is worth being considered.

REFERENCES

1. Chen YX, Shi W, Yan YX, Chen JD, Li YF, Zhai H. Soluble tumor antigens and anti-CD3 McAb costimulated tumor killer cells-TAK cells. Chin J Microbiol Immunol, 1995;15:293-296
2. Zerrari M, Chiara M, Isetta O. MIT colorimetric assay for testing macrophage cytotoxic activity in vitro. J Immunol Methods, 1990;131:165-168
3. Rosenberg SA, Lotze MT, Muni LMA. A progress report on the treatment of 157 patients with advanced cancer using lymphokine-activated Killer cells and interleukin-2 or high dose interleukin-2 alone. N Eng J Med, 1987;316:889-893
4. Tao JX, Zhang YK. Adoptive immunotherapy on cancer. Chin J Cell Biol, 1994;16:1-7