Histone H3 lysine 4 methyltransferases and demethylases in self-renewal and differentiation of stem cells

Bingnan Gu and Min Gyu Lee*

Abstract

Epigenetic mechanisms are fundamental to understanding the regulatory networks of gene expression that govern stem cell maintenance and differentiation. Methylated histone H3 lysine 4 (H3K4) has emerged as a key epigenetic signal for gene transcription; it is dynamically modulated by several specific H3K4 methyltransferases and demethylases. Recent studies have described new epigenetic mechanisms by which H3K4 methylation modifiers control self-renewal and lineage commitments of stem cells. Such advances in stem cell biology would have a high impact on the research fields of cancer stem cell and regenerative medicine. In this review, we discuss the recent progress in understanding the roles of H3K4 methylation modifiers in regulating embryonic and adult stem cells’ fates.

Keywords: Histone methylation, H3K4, Methyltransferase, Demethylase, Stem cell, Self-renewal, Differentiation

Introduction

Stem cells have long-term self-renewing activity and can commit to multiple cell types upon differentiation signals. Since Yamanaka and colleagues demonstrated that the four DNA-binding transcription factors Oct4, Sox2, c-Myc, and Klf4 transform fibroblasts into a type of pluripotent cells known as induced pluripotent stem cells, the importance of transcription factors in cellular reprogramming has been more recognized [1]. However, because the reprogramming efficiency of these four factors is low, it is evident that additional layers of co-regulatory mechanisms exist besides transcription factor-driven regulation [2]. In fact, a recent study demonstrated that the histone modification and DNA methylation profiles differ in one-third of the genome between human embryonic stem (ES) cells and primary fibroblasts [3], indicating that such remarkable epigenetic difference may serve as a major molecular mechanism in determining cellular characteristics of these two cell types. Notably, the functions of epigenetic modifiers in stem cell fate decision have been intensively studied.

Histone lysine methylation has been widely accepted as a key epigenetic modification. Unlike acetylation, the methylation does not change the charge of lysine residues and thus has a minimal direct effect on DNA-histone association. Rather, the different methylation status of specific histone lysines can serve as a unique platform for recruiting methylation “reader” proteins that activate or repress genes’ transcriptional activity. In general, histone H3 lysine 4 (H3K4), H3K36, and H3K79 methylation are gene activation marks, whereas H3K9, H3K27, and H4K20 methylation are gene-repressive modifications [4].

Histone lysine methylation is generated by a battery of histone methyltransferases (HMTs) that transfer the methyl group from S-adenosylmethionine to specific lysine residues. For example, H3K4 methylation is mediated by several SET [Su(var)3-9, Enhancer of zeste, Trithorax] domain-containing methyltransferases, including mixed lineage leukemia 1–5 (MLL1−5), SET1A/B, SET7/9, SET and MYND domain-containing protein 1–3 (SMYD1–3), Absent, Small, or Homeotic 1-like (ASH1L), SET domain and Mariner transposase fusion gene (SETMAR), and PR domain zinc finger protein 9 (PRDM9) [5-24]. Methylated lysines exist in three forms: mono-, di- and tri-methylation (me1, me2, and me3).
Similar to other histone modifications, histone methylation can be reversed by histone demethylases (HDMs). The first identified lysine-specific demethylase 1 [LSD1; also known as FAD-binding protein BRAF35-HDAC complex, 110 kDa subunit (BHC110) and Lysine-specific demethylase 1A (KDM1A)], together with LSD2, belongs to the polyamine oxidase family. LSD1 and LSD2 remove methyl groups from di- and monomethylated H3K4 but are unable to demethylate trimethylated H3K4 [25-28]. LSD1 was reported to also have H3K9 demethylation activity [29]. Subsequently, many Jumonji (JmjC) domain-containing histone demethylases have been discovered. In particular, the JARID1 family of histone demethylases (JARID1A–D) can erase H3K4me3 and H3K4me2 [30-35].

In this review, we summarize the recent progress in understanding the functions of H3K4 methyltransferases and demethylases in modulating stem cells’ fates.

H3K4 methylation
H3K4me3 occupies as many as 75% of all human gene promoters in several cell types (e.g., ES cells), indicating that it plays a critical role in mammalian gene expression [36,37]. In fact, H3K4me3 is required to induce critical developmental genes in animals, including Drosophila and several mammals, and is important for animal embryonic development [38]. H3K4me3 levels are positively correlated with gene expression levels [39,40] (Figure 1A).

Although H3K4me3 is clearly associated with actively transcribed genes, however, studies have demonstrated that H3K4me3 is localized around the transcription initiation sites of numerous unexpressed genes in human ES cells, primary hepatocytes, and several other cell types [36,37,41]. In particular, it frequently co-resides with the repressive mark H3K27me3 in the promoters of critical differentiation-specific genes [e.g., Homeobox (HOX) gene clusters] that are transcriptionally inactive in ES cells [36,37,42,43] (Figure 1B). It has been proposed that the “bivalent” domains, composed of H3K4me3 and H3K27me3, may maintain differentiation-specific gene promoters in a repressive status in self-renewing stem cells but be poised for prompt gene activation upon differentiation stimuli [42]. Consistent with this, many bivalent genes have increased H3K4me3 levels and decreased H3K27me3 levels while being transcriptionally activated during differentiation. Interestingly, recent studies demonstrated that most bivalent domains are occupied by LSD1 [44,45], indicating that it plays a role in maintaining low levels of dimethylated H3K4 (H3K4me2) that are often co-localized with H3K4me3. For these reasons, H3K4me3 is classified as a chromatin landmark for transcriptionally active or poised genes in ES cells [41].

Compared with mouse thymocytes, mouse ES cells contain higher levels of total genomic H3K4me3 and H3K4me2, indicating that their target genes may not be redundant. In particular, loss of dSet1, but not Trx or Trr, leads to a global reduction of H3K4me2/3, suggesting that Trx and Trr have more specialized functions [38].
SET1A, SET1B, and MLL1–4 are yeast Set1 homologs and are related to dSet1 (the counterpart of SET1A and SET1B), Trx (the counterpart of MLL1 and MLL2), and Trr (the counterpart of MLL3 and MLL4) in Drosophila. Other SET domain-containing histone methyltransferases that methylate H3K4 but are not closely related to yeast Set1/COMPASS have also been identified and include MLL5, SET7 (also called SET9), SMYD1-3, SETMAR, and PRDM9 [6,15,24].

SET1A/1B and MLL1–4 are present in multi-protein complexes and share common core subunits, such as WDR5, Retinoblastoma-binding protein 5 (RBBP5), ASH2L, and Dumpy-30 (DPY-30), which are also highly conserved in yeast and flies [38] (Table 1). Several studies have demonstrated that these core subunits are indispensable for the enzyme activity of methyltransferases and biological functions [53-55]. In addition to common core subunits, there are unique subunits in the individual H3K4 methyltransferase complexes: WDR82 and CXXC finger protein 1 (CFP1) in the SET1 complex; Multiple endocrine neoplasia type 1 (MENIN) and PC4 and SFRS1-interacting protein 1 (PSIP1) in MLL1 and 2 complex; Host cell factor 1/2 (HCF1/2) in SET1, MLL1, and MLL2 complexes; and PAX transcription activation domain interacting protein 1 (PTIP), PTIP-associated protein 1 (PA1), Nuclear receptor coactivator 6 (NCOA6), and...
Ubiquitously transcribed X chromosome tetratactipeptide repeat protein (UTX) in the MLL3 and MLL4 complexes [12,16,19,22,56-63] (Table 1). These subunits may play important roles in recruiting H3K4 methyltransferases to specific genes and integrating additional histone-modifying capacities (see below).

MLL1 and MLL2
MLL1 (also known as MLL and KMT2A) was initially cloned from acute myeloid and lymphoid leukemia that contain frequent MLL1 chromosomal fusions and translocations [64-66]. The MLL1 gene encodes a protein of 3,972 amino acids; this protein contains several highly conserved functional domains, including the N-terminal AT-hook DNA binding domains, Plant homeo domains, and two histone-related domains, Plant homeo domains, and the catalytic SET domain [67,68]. Homozygous deletion of MLL1 is embryonic lethal; Mll1+/− mice display retarded growth and hematopoietic defects [69,70]. Specifically, expression of the key developmental genes, including Hoxa7 and Hoxc9, were shifted from the anterior boundaries toward the posterior regions in Mll1+/− embryos and were lost in Mll1−/− mice [69]. In addition, recent studies using a tissue-specific knockout mouse model revealed that Mll1 is essential for sustaining adult hematopoiesis [71,72]. Mll1 is not required for survival, proliferation, and differentiation of subventricular zone neural stem cells but plays an essential role in neurogenesis in the postnatal mouse brain [73]. Mechanistically, Mll1 directly occupies the promoter of Distal-less homeobox 2 (Dlx2), a critical regulator of neurogenesis, and is required to resolve the poised bivalent state to the actively transcribed status with predominant H3K4me3 during neurogenesis of neural stem cells [73]. Mll2 (also called MLL4 and KMT2B) has a similar protein domain structure to that of MLL1 and was found to be the MLL1 paralog [74]. Like Mll1, Mll2 is widely expressed during development and in adult tissues. Mll2-null mice die before embryonic day E11.5, with drastically reduced expression of Hoxb2 and Hoxb5 [75]. However, Mll2 may be only required briefly for development, because it appears to be dispensable for mouse development after E11.5 [76]. Mll2−/− ES cells maintain pluripotency, have increased apoptotic activity, and undergo skewed cellular differentiation along three germ layers [77]. Therefore, Mll1 and Mll2 are unlikely redundant for gene regulation during early embryonic development. In support with this notion, the phenotypes of Mll1 and Mll2 knockout mice are different in adult tissues. For example, hematopoietic-specific loss of Mll1 showed defects in hematopoiesis [71,72], whereas Mll2 loss did not show any aberrant blood profiles and notable pathology [76].

MLL3 and MLL4
MLL3 (also called HALR/KMT2C) and MLL4 (alias ALR/KMT2D) are mammalian counterparts of Drosophila Trr and were co-purified as transcriptional coactivator complexes [14,78-80]. MLL3 and MLL4 associate with nuclear hormone receptors in both Drosophila and mammals. For example, the MLL3/MLL4 complex is recruited to HOXC6 gene and activates its transcription in an estrogen receptor-dependent manner [79]. Frequent somatic loss-of-function mutations have been identified in MLL3 and MLL4 genes in human cancers, including colorectal cancer, non-Hodgkin B-cell lymphoma, and medulloblastoma [81-85]. Consistently, a recent study reported that trr gene product suppresses cell growth in Drosophila eye imaginal discs. Of interest, trr mutation markedly reduced H3K4 mono- and trimethylation levels without significantly changing H3K4 di- and trimethylation levels [86], in agreement

Table 1 Subunit composition of H3K4 methyltransferase complexes in yeast and human

Yeast SET1	Human SET1A	Human SET1B	Human MLL1	Human MLL2	Human MLL3	Human MLL4	Human MLL5*
Cps60/Bre2	ASH2L	ASH2L	MLL1	MLL2	MLL3	MLL4	MLL5
Cps50/Swd1	RBBP5	RBBP5	RBBP5	RBBP5	RBBP5	RBBP5	STK38
Cps30/Swd3	WDR5	WDR5	WDR5	WDR5	WDR5	WDR5	STK38
Cpd25/Sdc1	Dpy-30	Dpy-30	Dpy-30	Dpy-30	Dpy-30	Dpy-30	PPP1CA
Cps40/Spp1	Cbf1	Cbf1	Cbf1	Hcf1	Hcf1	Hcf1	CBF1
Cps35/Swd2	WDR82	WDR82	WDR82	HCF1	HCF1	HCF1	PPP1CC
Cps15/Shg1	Bod1/Bod1L	Bod1/Bod1L	Bod1/Bod1L	Hcf1/2	Hcf1/2	Hcf1/2	ACTB
Cps60/Bre2	ASH2L	ASH2L	Menin	Ncoa6	Ncoa6	Ncoa6	
Cps60/Bre2	ASH2L	ASH2L	Menin	Utx	Utx		
Cps60/Bre2	ASH2L	ASH2L	Menin	Utx	Utx		
Cps60/Bre2	ASH2L	ASH2L	Menin	Utx	Utx		
Cps60/Bre2	ASH2L	ASH2L	Menin	Utx	Utx		
Cps60/Bre2	ASH2L	ASH2L	Menin	Utx	Utx		
Cps60/Bre2	ASH2L	ASH2L	Menin	Utx	Utx		
Cps60/Bre2	ASH2L	ASH2L	Menin	Utx	Utx		

* The subunits of MLL5 are not related to those of SET1, SET1A, and MLL1–4.
with earlier findings that Trr is a major H3K4 mono-
methyltransferase for Drosophila enhancers [87]. Mll3
homozygous mutant mice, which have an in-frame dele-
tion of a 61-aa catalytic core of the SET domain, exhibited
reduced white adipose tissue, stunted growth, and slow
cellular doubling rate [88,89]. During epidermal differen-
tiation, the MLL4 complex is recruited to differentiation-
related genes via the transcription factor GRHL3/GET1
and collaboratively activates the epidermal progenitor dif-
ferentiation program [90].

Recently, we found that MLL4 is essential for the
neuronal differentiation of human NT2/D1 stem cells
[91]. Mechanistically, the neuron-specific gene NESTIN
and key developmental genes HOXA1–3 are activated by
MLL4 during RA-induced differentiation. Intriguingly,
the tandem PHD4-6 of seven PHD motifs in MLL4
(Figure 2) specifically recognized unmethylated or asym-
metrically dimethylated histone H4 Arg 3 (H4R3me0 or
H4R3me2a) and is required for MLL4’s nucleosomal
methyltransferase activity and MLL4-mediated differen-
tiation. H4R3 symmetric dimethylation (H4R3me2s), a
gene-repressive mark, blocks the binding activity of
MLL4’s PHD3-6. Consistent with this, knockdown of the
protein arginine methyltransferase 7, which is involved in
generation of H4R3me2s, increases MLL4 occupancy and
H3K4me3 levels at the MLL4 target gene promoters and
enhances the MLL4-dependent neural differentiation pro-
gram. Therefore, these results revealed that the trans-tail
regulation of MLL4-catalyzed H3K4me3 by protein argin-
ine methyltransferase 7-controlled H4R3me2s serves as a
novel epigenetic mechanism underlying neuronal differen-
tiation of human stem cells.

MLL5
Independent studies have demonstrated that MLL5 is re-
quired for hematopoiesis [92-94]. Moreover, MLL5 pro-
motes myogenic differentiation by controlling expression
of cell cycle genes (e.g., Cyclin A2) and myogenic regu-
lator genes (e.g., Myogenin) [95]. Mll5 knockout male
mice are sterile, at least in part because of deregulated
expression of genes that are required for terminal differen-
tiation during spermatogenesis [96]. Of interest, although

Protein Name	Other Names	Protein Domain Structure	Product	Function in Stem Cells
MLL1	KMT2A MLL ALL1	NP_001184033.1 3972 a.a.	H3K4me 1/2/3	Required for hematopoiesis and neurogenesis
MLL2	KMT2B WBP7 MLL4	NP_055542.1 2715 a.a.	H3K4me 1/2/3	Required for proper ESC differentiation
MLL3	KMT2C H4L R	NP_733751.2 4911 a.a.	H3K4me 1/2/3	Required for adipogenesis
MLL4	KMT2D ALR MLL2	NP_003473.3 5537 a.a.	H3K4me 1/2/3	Regulates epidermal differentiation; required for neuronal differentiation
MLL5	KMT2E	NP_891847.1 1858 a.a.	H3K4me 1/2	Required for hematopoiesis, myogenesis, and spermatogenesis
SETD1A	KMT2F SET1A	NP_055527.1 1707 a.a.	H3K4me 1/2/3	Not determined
SETD1B	KMT2G SET1B	NP_055863.1 1923 a.a.	H3K4me 1/2/3	Not determined

Figure 2 Protein domain architectures and stem cell function of MLL/SET1 H3K4 methyltransferases. AT: AT-hook DNA binding domain; PHD: Plant Homeo Domain; BRD: Bromodomain; FYR: FY-rich domain; SET: Su(var)3-9, Enhancer of zeste, Trithorax domain; HMG: High Mobility Group domain; RRM: RNA Recognition Motif.
MLL5 was reported to be inactive [92,95], GlcNAcylation of MLL5 greatly increased MLL5’s enzymatic activity towards H3K4me1/2 and facilitated RA-induced granulopoiesis in human HL60 promyelocytes [24].

SET1A and SET1B

Human SET1A and SET1B have an N-terminal RNA recognition motif and a C-terminal enzymatic SET domain (Figure 2). The SET1A complex was purified as a multi-protein complex that associates with CFP1 [19]. CFP1 is required for stem cell differentiation and interacts with unmethylated CpGs via its zinc finger domain CXXC [97]. Interestingly, Cfp1−/− ES cells displayed aberrant H3K4me3 peaks at numerous ectopic sites (i.e., distinct regions outside annotated CpG islands), suggesting that CFP1 recruits the SET1 complex to CpG island-containing promoters and consequently prevents it from generating H3K4me3 to inappropriate chromatin locations [19,98,99].

A protein sequence analysis revealed that SET1A shares 39% identity with a SET domain protein named SET1B [22]. Although both proteins associate with a similar set of non-catalytic subunits, a confocal microscopy analysis revealed that SET1A and SET1B exhibit distinct subnuclear localizations in euchromatin regions; thus, this suggests that each protein regulates a unique group of target genes [22].

ASH1L

ASH1L (also called Ash1) is the human homolog of Ash1, a *Drosophila* Trithorax group protein that is essential for expression of several HOX genes. Some reports have indicated that ASH1L primarily acts as a H3K4 methyltransferase [13,100,101], whereas others have reported that human ASH1L specifically mono- and dimethylates H3K36 [102-104]. ASH1L cooperates with MLL1 in HOX gene activation and is required for the myelomonocytic lineage differentiation of hematopoietic stem cells [105]. Of interest, a mutation of the SET domain of ASH1L did not decrease HOX gene expression, suggesting that ASH1L’s catalytic activity is dispensable for hematopoietic stem cell differentiation [105].

SET7/9

SET7 (or called SET9) is an H3K4 mono- and dimethyltransferase [6,106-108]. SET7 expression is upregulated during myoblast differentiation [109]. Specifically, SET7 interacts with Myoblast determination protein 1 (Myod), a central transcriptional factor for myogenic gene expression, and is indispensable for Myod-mediated muscle differentiation. Knockdown of SET7 impaired the association of Myod with the promoter and enhancer regions of the myogenic genes (e.g., Myogenin) and reduced gene expression by decreasing H3K4me1 levels at its target genes. Intriguingly, SET7 antagonizes Suv39h1-mediated H3-K9 methylation at the myogenic differentiation gene promoters [109].

SMYD1–3

Smyd1 (also called Bop) is essential for mouse cardiac differentiation [110]. Consistently, knockdown of Smyd1 in zebrafish embryos results in defective skeletal and cardiac muscle differentiation; this cannot be rescued by the Smyd1 catalytic mutant, which lacks H3K4 methyltransferase activity [21]. SMYD2 methylates H3K4 and H3K36, as well as tumor-suppressor proteins such as p53 and Retinoblastoma protein (pRB) [23,111-113]. Specifically, SMYD2-mediated monomethylation of p53 K370 attenuates the interaction of p53 with p53 target promoters and consequently antagonizes p53-dependent transcriptional regulation [112]. Unlike Smyd1, cardiac-specific knockout of Smyd2 has no phenotype during mouse heart development [114]. SMYD3 is a methyltransferase for both H3K4 and H4K5 [15,115]. It is overexpressed in colorectal and hepatocellular cancers and promotes cell proliferation [15]. During zebrafish embryogenesis, SMYD3 appears to be important for cardiac and skeletal muscle development [116].

SETMAR

SETMAR (also called METNASE) encodes a chimeric protein that contains an N-terminal SET domain and a C-terminal mariner transposase domain [117] (Figure 3). The function of SETMAR in stem cells remains unknown. However, SETMAR-catalyzed methylation of H3K4 and H3K36 may lead to an open chromatin structure, which may facilitate its transposase-dependent processes, such as foreign DNA integration and DNA double-strand break repair [20].

PRDM9

PRDM9 (also called MEISETZ) is a PR/SET domain-dependent histone methyltransferase that is required for meiotic prophase progression [18]. Deletion of the Prdm9 gene attenuates H3K4me3 levels, resulting in defective chromosome pairing, impaired sex body formation, damaged meiotic progression, and sterility in both sexes of mice [18]. Mechanistically, Prdm9 binds to 13-base pair DNA elements via its C2H2 zinc fingers. During early meiosis, this binding event may link Prdm9-catalyzed H3K4me3 to mammalian meiotic recombination hotspots that contain the 13-nucleotide DNA elements [118-120].

Subunits of H3K4 methyltransferases

WDR5, a core subunit of the SET1 and MLL1–4 complexes, plays an important role in ES cell self-renewal and somatic cell reprogramming [47]. WDR5 is highly
expressed in ES cells and downregulated upon differentiation. Knockdown of WDR5 resulted in loss of ES cell self-renewal and decreased the generation of induced pluripotent stem cells [47]. WDR5 interacts with OCT4 and activates transcription of the self-renewal factors, such as OCT4 and NANOG, in ES cells. Moreover, WDR5, together with OCT4, NANOG and SOX2, regulates the self-renewal-regulatory network [47]. Similarly, ASH2L knockdown resulted in elevated expression of mesodermal lineage differentiation genes [121].

DPY-30 and RBBP5 are other core components of the SET1/MLL methyltransferases. In contrast to ASH2L and WDR5, DPY-30 and RBBP5 were not required for ES cell self-renewal [53]. DPY-30 or RBBP5 knockdown reduces global and neuronal gene-specific H3K4me3 levels, resulting in inefficient RA-induced neural differentiation of mouse ES cells.
Differing biological outcomes for ASH2L and WDR5 from DPY-30 and RBPF5 are surprising because these four proteins are core components of the same SET1/MLL1–4 methyltransferases. These unexpected findings might be explained by the following possibilities. Besides the known SET1/MLL1–4 complexes, some of these subunits may be present in other complexes in the same cells so that they may exert different biological functions from SET1/MLL1–4 complexes. In fact, gel filtration analysis of ES cell nuclear extracts showed that elution profiles of WDR5/OCT4 did not overlap with those of WDR5/ASH2L/RBPF5, suggesting that WDR5 also belongs to another new complex containing OCT4 [47].

Another possible scenario is that cellular levels of some core subunits and H3K4 methyltransferases may be dynamically changed between ES cells and differentiated cells. Such changes might allow certain H3K4 methyltransferase complexes to be dominant over the others or lead to formation of new functional complexes, subsequently affecting expression of stemness genes and differentiation-specific genes. In support with this, during ES cell differentiation, ASH2L and WDR5 levels are down-regulated whereas MLL1 and MLL3 are up-regulated [47,121]. In addition, some H3K4 methyltransferase complexes may have non-redundant cellular function by regulating their unique target genes in a cell type-specific manner, as mentioned earlier. Future studies are required to further understand the distinct roles of the SET1/MLL complexes.

H3K4 demethylases

The reversibility of histone methylation was not clear until the discovery of the first histone demethylase LSD1 in 2004 [25]. Subsequently, a new class of JmjC-domain-containing proteins was identified that can demethylate methylated lysine residues in histones. The F-box and leucine-rich repeat protein (FBXL11, also known as KDM2A) is the first identified JmjC-domain-containing demethylase that removes methyl groups from H3K36me2/1 [122]. The catalytic JmjC domain requires iron and α-ketoglutarate as cofactors to hydroxylate methyl groups [123]. Among this class of demethylases, JARID1A–D (or KDM5A–D) proteins specifically remove the methyl group from H3K4me2/3. NO66, a bifunctional lysine-specific demethylase and histidyl-hydroxylase, can demethylate H3K4me/ H3K36me and hydroxylate a histidyl group of the non-histone protein Rpl8 [124,125]. Not surprisingly, the LSD family (LSD1 and LSD2) and JARID1 family of H3K4 demethylases play important roles in gene transcription in stem cell homeostasis.

LSD1 and LSD2

LSD1 protein contains an N-terminal SWIRM domain and a long C-terminal FAD-dependent amine oxidase domain (AOD). The AOD is divided by an insertion known as the tower domain (Figure 4). LSD1 alone demethylates H3K4me2/1 on histones but not nucleosomes, while the association of Co-REST with LSD1 allows LSD1 to demethylate nucleosomal H3K4 [26,27,126].

Numerous studies in ES cells and neural stem cells strongly suggest that LSD1 is a key histone methylation modifier in transcriptional regulation for stem cell fate determination. Lsd1-null mice are embryonic lethal around E6.5, and Lsd1-deficient mouse ES cells demonstrate increased cell death and impaired differentiation, such as embryoid body formation defects [127–129]. Similar to mouse ES cells, LSD1 is required for neural stem cell proliferation; it is recruited by the nuclear receptor TLX to repress negative cell cycle regulators, including p21, in neural stem cells [130]. Interestingly, LSD1 is indispensable for differentiation of several cell types, including skeletal muscles and adipocytes [131,132]. In mouse ES cells, LSD1 demethylates and stabilizes DNA methyltransferase 1 (DNMT1), and Lsd1 deletion results in progressive loss of DNA methylation [128]. Moreover, LSD1 and its associated nucleosome remodelling and histone deacetylase (NuRD) complex are recruited to Oct4-occupied enhancers at active stemness genes in ES cells, but the repression activities of LSD1-NuRD may be antagonized by histone acetyltransferases (e.g., p300). During mouse ES cell differentiation, Oct4 and acetyltransferase levels are down-regulated, and LSD1-NuRD decommissions active enhancers by removing H3K4me1 while promoting cellular differentiation [45]. In contrast to the above stem cell studies, seemingly conflicting results regarding the role of LSD1 in ES cells have been reported. Knockdown of LSD1 induces differentiation in human ES cells, which is correlated with de-repression of developmental genes with elevated H3K4me2/3 levels [44]. In addition, Lsd1−/− ES cells had a strong potential to generate extraembryonic tissues from the embryoid body [133].

LSD2 (AOF1 or KDM1B) was recently identified as a homolog of LSD1; it demethylates H3K4me2/1 like LSD1 [28,134–136]. Interestingly, unlike LSD1, LSD2 has no tower domain in the AOD region, but contains unique N-terminal zinc fingers, including C4H5C2 and CW-type zinc fingers, which are required for demethylase activity [136,137] (Figure 4). A genomewide mapping analysis revealed that LSD2 primarily resides in the intragenic regions of actively expressed genes [28]. LSD2 may activate its target genes, possibly via its association with transcriptional elongation factors [28]. Lsd2 is not essential for mouse development. However, the DNA methylation of several imprinted genes is lost in oocytes from lsd2-deleted females [135]. Consequently, the embryos derived from these oocytes exhibited biallelic expression or silencing (i.e., loss of
monoallelic expression) of the affected imprinted genes and died before mid-gestation [135]. The molecular mechanism underlying the functional link between H3K4 demethylation and DNA methylation for expression of imprinted genes remains to be investigated.

JARID1A

JARID1A (RBP2 or KDM5A) was identified as a binding partner of pRB protein in early 1990 [138]. RBP2 contains a highly conserved JmjC domain and was found as a specific H3K4me3/2 demethylase [30,139] (Figure 4). Rbp2−/− mice are viable and display mild phenotypic defects in expansion of hematopoietic stem cells and myeloid progenitors. The weak phenotype of Rbp2−/− mice suggests that other JARID1 family proteins may compensate the loss of Rbp2 [139].

During ES cell differentiation, RBP2 is dissociated from HOX genes, resulting in increased H3K4me3 levels and gene activation [30]. Consistently, Pasini et al. reported that RBP2 associates with the important Polycomb repressive complex 2 (PRC2), which enzymatically generates the repressive mark H3K27me3 for silencing of many differentiation-specific genes in ES cells [140]. A genome-wide chromatin immunoprecipitation (ChIP)-on-chip analysis revealed that RBP2 colocalizes on a subset of PRC2 target gene promoters in mouse ES cells. However, the interaction of RBP2 with PRC2 may not be strong, because the mass spectrometric analysis revealed that affinity eluates of the PRC2 component EED, which were purified from ES cell extracts, did not contain RBP2 [141]. Beshiri et al. recently demonstrated that RBP2 augments the repressive effects of the pRB-related protein p130 and E2F4 on cell cycle genes during stem cell differentiation via H3K4me3 demethylation [142]. Interestingly, RBP2 inhibits osteogenic differentiation of human adipose-derived stroma cells [143]. RBP2 interacts with Runt-related transcription factor 2 (RUNX2), a transcriptional factor that is required for osteogenic differentiation. Subsequently, RBP2 represses RUNX2 target genes, including *Alkaline phosphatase, Osteocalcin, and Osterix* [143].

Table 1 Protein domain architectures and stem cell function of H3K4 demethylases.

Protein Name	Other Names	Protein Domain Structure Accession Number	Protein Size	Substrate	Function in Stem Cells
LSD1	KDM1A	AOF1	O00010.9999.1	H3K4me2/1	Regulates ESC self-renewal; required for myogenesis, adipogenesis, ESC differentiation, neural stem cell proliferation
LSD2	KDM1B	AOF1	O00010.9999.1	H3K4me2/1	Required for gene imprinting in oocyte
JARID1A	KDM5A	RBP2	O00010.9999.1	H3K4me3/2	Regulates ESC differentiation; inhibits osteogenic differentiation
JARID1B	KDM5B	PLU1	O00010.9999.1	H3K4me3/2	Regulates ESC self-renewal; required for neural differentiation
JARID1C	KDM5C	SMICX	O00010.9999.1	H3K4me3/2	Required for neuronal survival and dendritic morphogenesis
JARID1D	KDM6D	SMICY	O00010.9999.1	H3K4me3/2	Not determined
NO66	ROX	MAPJID	O00010.9999.1	H3K4me3/2	Regulates ESC differentiation; inhibits osteoclasts differentiation

Figure 4 Protein domain architectures and stem cell function of H3K4 demethylases. SWIRM: SWI3, RSC8 and MOIRA domain; AOD-N: Amine Oxidase Domain-N terminal; TOWER: LSD1 tower domain; AOD-C: Amine Oxidase Domain-C terminal; C4H2C2: C4H2C2-type zinc finger; ZF_CW: CW-type zinc finger; AOD: Amine Oxidase Domain; JmjN: Jumonji N domain; ARID: AT-rich interactive domain; PHD: Plant Homeo Domain; JmjC: Jumonji C domain; C4H2: C4H2-type zinc finger.
JARID1B

JARID1B (PLU1 or KDM5B) was shown to be overexpressed in breast cancer cell lines [144]. As a member of the JARID1 family, PLU1 catalyzes the demethylation of H3K4me2/3. Its full activity requires JmjN, ARID, PHD1, and C6HC2 zinc finger in addition to the catalytic domain JmjC [30,34] (Figure 4). Consistent with the result of earlier studies, knockdown of PLU1 reduced MCF7 breast cancer cell proliferation and concomitantly upregulated expression of the Breast cancer1, early onset (BRCA1), Caveolin 1 (CAV1), and HOXAS genes as a result of increased H3K4me3 levels on their promoters [34]. However, PLU1’s role in ES cell self-renewal and differentiation is controversial. Xie et al. reported that PLU1 is a downstream target of the pluripotent factor Nanog and is required for ES cell self-renewal [145]. PLU1 interacts with the chromodomain protein MRG15 and is recruited to H3K36me3-containing sites within gene bodies of self-renewal-associated genes via MRG15. Knockdown of PLU1 or MRG15 increased intragenic H3K4me3 that produces cryptic intragenic transcription and inhibited the transcriptional elongation [145]. Another study showed that constitutive overexpression of PLU1 blocked neural terminal differentiation [146]. On the contrary, Schmitz et al. has provided evidence that PLU1 is required for the neural differentiation of ES cells but is dispensable for self-renewal [147]. Using a genome-wide ChIP-sequencing analysis, they found that PLU1 predominantly localizes on the transcription start sites of target genes, over 50% of which are also occupied by Polycomb group proteins. PLU1-depleted ES cells fail to differentiate into the neural lineage, which correlates with the inappropriate depression of stem and germ cell genes [147]. These findings are further supported by their recent research in Plu1 knockout mice, which have the phenotype of neonatal lethality and neural defects [148]. The discrepancies in these studies regarding the role of PLU1 in ES cell homeostasis are not entirely clear. However, Schmitz et al. indicated that their PLU1 localization data were obtained using a better PLU1 antibody and that the unimportance of PLU1 in ES cell self-renewal was confirmed by both a lentiviral shRNA knockdown method and a genetic deletion approach.

JARID1C and JARID1D

Compared with RBP2 and PLU1, much less is known about the biological function of JARID1C (SMCX or KDM5C) and JARID1D (SMCY or KDM5D). Both demethylases have similar domain structures and contain a conserved and functional JmjC domain that is responsible for demethylating H3K4me2/3 [30-32]. SM CX is an X-chromosome gene that escapes from X inactivation [149] and is often mutated in renal tumors and X-linked mental retardation (XLMR), suggesting that it has important functions in the human kidneys and brain [150,151]. Indeed, SM CX is highly expressed in brain during zebrafish development and is required for neuron survival [31]. Moreover, SM CX knockdown reduces dendritic length of rat primary neurons, which cannot be rescued by its XLMR-patient mutants with reduced demethylase activity [31]. Therefore, SM CX may play an important role in neuronal development. In addition, Ouchkouro et al. reported that SM CX may interact with the transcriptional factors c-MYC and ELK1 to regulate gene expression in mouse ES cells [152].

JARID1D requires multiple domains, including ARID, JmjC, and C6HC2 zinc finger, for its full demethylase activity towards H3K4me3/2 [32] (Figure 4). JARID1D interacts with RING6A/MBLR, a polycomb-like protein with homology to Mel18 and Bmi1 proteins [153]. This interaction stimulates JARID1D’s enzyme activity in vitro; the protein complex mediates H3K4me3 demethylation at the Engrailed 2 gene promoter and is required for Engrailed 2 gene repression [32]. However, JARID1D’s biological role in stem cells is largely unknown. Given its localization on the Y-chromosome, it will be interesting to determine whether JARID1D plays a role in male-specific gene expression in vivo.

NO66

NO66 has been reported to demethylate H3K4me3/2/1 and H3K36me3/2 [124] and to catalyze histidyl hydroxylation of the 60S ribosomal protein Rpl8 [125]. This enzyme inhibits osteoblast differentiation [124]. Specifically, it directly interacts with Osterix, an osteoblast-specific transcription factor, and represses Osterix target gene expression [124]. In addition, NO66 plays a role in mouse ES cell differentiation [154]. During this process, it is recruited to stemness genes (e.g., Oct4 and Nanog) via the PHD finger protein 19 (PHF19), which interacts with the H3K27 methyltransferase complex PRC2; NO66-PHF19-PRC2 represses gene expression by reducing H3K36me3 and increasing H3K27me3 [154].

Conclusions

Stem cells are indistinguishable from somatic cells at the genomic level. In contrast, there are remarkable differences in epigenomes that may be represented by covalent and noncovalent modifications of histones and DNA. As reviewed herein, specific epigenetic modifiers, such as H3K4 methylation modifiers, may play fundamental roles in orchestrating cellular epigenomes whose genomic sequences are identical. Consistent with this, many H3K4 methylation modifiers and their components are required for ES cell self-renewal or differentiation. In addition, some of them cooperate with transcription factors for efficient somatic cell reprogramming. For
example, WDR5 is required for the efficient generation of pluripotent stem cells that were induced by Oct4, Sox2, c-Myc, and Klf4 [47]. Therefore, the epigenetic modifiers, with the transcription factor network, may establish epigenomes in a coordinate manner.

Recently, small molecule inhibitors against specific histone methyltransferases, including LSD1 inhibitors, have been developed by several pharmaceutical companies, although their specificities and efficacies require improvement [155]. Certain inhibitors, alone or combined, may increase somatic reprogramming efficiency or drive somatic reprogramming, perhaps providing new avenues for personalized therapeutic interventions using stem cells. With regard to the roles of histone modifiers in stem cell maintenance and differentiation, many more new exciting findings are expected. We predict that our current and future knowledge about stem cell self-renewal and lineage commitment will be highly relevant to cancer stem cell studies, because stem cells and cancer stem cells share several characteristics, such as high degrees of self-renewal and differentiation [156]. We believe that a new era of stem cell epigenetics has begun.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
BG prepared the initial draft of the paper. MGL initiated and modified the manuscript. Both authors read and approved the final manuscript.

Acknowledgements
We sincerely apologize for not citing and reviewing many relevant articles due to space limitation. We are grateful to our laboratory members for their helpful suggestions and comments and Ms. Ann Sutton for the manuscript editing. This work was supported by grants from the NIH (R01 GM095659, R01 CA157919, and CCSG 5 P30 CA016667 35), Cancer Prevention and Control Branch, National Cancer Institute, Department of Health and Human Services.

Received: 17 June 2013 Accepted: 27 July 2013 Published: 9 October 2013

References
1. Takahashi K, Yamanaka S: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006, 126:635–676.
2. Meissner A: Epigenetic modifications in pluripotent and differentiated cells. Nat Biotechnol 2010, 28:1079–1088.
3. Hawkins RD, Hon GC, Lee LK, Ngo Q, Lister R, Pelizzola M, Edall LE, Kuan S, Muzny DM, Sabo PJ, Jhangiani SN, Walker JR, Handsaker RE, Rigsby K, Wang R, Doolittle JR, Heil CA, et al: Distinct epigenomic landscapes of pluripotent and lineage-committed human cells. Cell Stem Cell 2010, 6:479–491.
4. Sims RJ 3rd, Nishihara K, Reinerberg D: Histone lysine methylation: a signature for chromatin function. Trends Genet 2003, 19:629–639.
5. Miller T, Krogan NJ, Dover J, Erdjument-Bromage H, Tempst P, Johnston M, Gu and Lee Cell & Bioscience 2013, 3:39 Page 11 of 14

http://www.cellandbioscience.com/content/3/1/39

9. Rogovea A, Schaff D, Shevchenko A, Pijnappel WW, Wilm M, Aasland R, Stewart AF: The Saccharomyces cerevisiae Set1 complex includes an Ash2 homologue and histones histone 3 lysine 4. EMBO J 2001, 20:7137–7148.
10. Krogan NJ, Dover J, Khornem M, Greenblatt JF, Schneider J, Johnston M, Shilatifard A: COMPASS, a histone H3 (lysine 4) methyltransferase required for telomeric silencing of gene expression. J Biol Chem 2002, 277:10753–10755.
11. Nakamura T, Mori T, Tada S, Krajewski W, Rozovskaia T, Wassell R, Dubois G, Maze A, Crace JM, Canani E: ALL-1 is a histone methyltransferase that assembles a supercomplex of proteins involved in transcriptional regulation. Mol Cell 2002, 10:1119–1128.
12. Wysocka J, Myers MP, Laherty CD, Eisenman RN, Herr W: Human Sin3 deacetylase and trithorax-related Set1/Ash2 histone H3-K4 methyltransferase are tethered together selectively by the cell-proliferation factor HCF-1. Genes Dev 2003, 17:986–911.
13. Byrd KN, Shearn A: ASH1, a Drosophila trithorax group protein, is required for methylation of lysine 4 residues on histone H3. Proc Natl Acad Sci USA 2003, 100:11535–11540.
14. Goo YH, Sohn YC, Kim DH, Kim SW, Kang MJ, Jung DJ, Kwak E, Barlev NA, Berger SL, Chow VT, et al: Activating signal cointegrator 2 belongs to a novel steady-state complex that contains a subset of trithorax group proteins. Mol Cell Biol 2003, 23:140–149.
15. Hamamoto R, Furukawa Y, Motto M, Irimia Y, Silva FP, Li M, Yagi Y, Nakamura Y: SMYD3 encodes a histone methyltransferase involved in the proliferation of cancer cells. Nat Cell Biol 2004, 6:731–740.
16. Yokoyama A, Wang Z, Wysocka J, Sanayal M, Auffiero DJ, Kitabayashi I, Herr W, Cleary ML: Leukemia proto-oncoprotein MLL forms a SET1-like histone methyltransferase complex with menin to regulate Hox gene expression. Mol Cell Biol 2004, 24:5639–5649.
17. Dou Y, Milne TA, Tackett AJ, Smith ER, Fukuda A, Wysocka J, Allis CD, Chait BT, Hess JL, Roeder RG: Physical association and coordinate function of the H3-K4 methyltransferase MLL1 and the H4 K16 acetyltransferase MOF. Mol Cell 2005, 121:873–885.
18. Hayashi K, Yoshioka K, Matsui Y: A histone H3 methyltransferase controls epigenetic events required for meiotic prophase. Nature 2005, 438:374–378.
19. Lee JH, Skalnik DG: Cpg-binding protein (CXXC finger protein 1) is a component of the mammalian Set1 histone H3-Lys4 methyltransferase complex, the analogue of the yeast Set1/COMPASS complex. J Biol Chem 2005, 280:41725–41731.
20. Lee SH, Oshige M, Durand ST, Rasia KK, Williamson EA, Ramsey H, Kwan L, Nickleoff JA, Hrozenski P, et al: The SET domain protein Metnase mediates foreign DNA integration and links integration to nonhomologous end-joining repair. Proc Natl Acad Sci USA 2005, 102:18075–18080.
21. Tann RT, Rotland J, Li H, De Deyne P, Du Smy D, Smy D, a histone methyltransferase, is required for myoblast differentiation and muscle contraction in zebrafish embryos. Proc Natl Acad Sci USA 2006, 103:2713–2718.
22. Lee JH, Tate CW, You JS, Skalnik DG: Identification and characterization of the human Set1b histone H3-Lys4 methyltransferase complex. J Biol Chem 2007, 282:13419–13428.
23. Abu-Farha M, Lambert JP, Al-Madhoun AS, Elisma F, Sherkant IS, Figeys D: The tale of two domains: proteomics and genomics analysis of SMYD2, a new histone methyltransferase. Mol Cell Proteomics 2008, 7:5630–5672.
24. Fujiki R, Chikant T, Hashiba W, Ito H, Takada I, Roeder RG, Kitagawa H, Kato S: GlcNAcylation of a histone methyltransferase in retinoic-acid-induced joining repair. Proc Natl Acad Sci USA 2005, 102:18075–18080.
25. Tan X, Rotland J, Li H, De Deyne P, Du Smy D, Smy D, a histone methyltransferase, may provide novel insights into the evolution of the mammalian set1 histone lysine 4 methyltransferase complex. Mol Cell 2006, 23:459–469.
promote androgen-receptor-dependent transcription. Nature 2005, 437:463–469.

30. Christensen J, Agger K, Claas PA, Casini D, Rose S, Sennels L, Rappillev J, Hansen KH, Salen AE, Helin K: RP92 belongs to a family of demethylases, specific for tri-and dimethylated lysine 4 on histone 3. Cell 2007, 128:1093–1076.

31. Iwas S, Fan C, Baylis P, De la Torre-Ulibarri L, Huarte M, Qi HH, Whetstone JR, Bonini A, Roberts TM, Shi Y: The X-linked mental retardation gene demethylase SMX/CARD16 defines a family of histone H3 lysine 4 demethylases. Cell 2007, 128:1077–1088.

32. Lee MG, Norman J, Shilatifard A, Shiekhattar R: Physical and functional association of a trimethyl histone H3 lysine 4 demethylase and Ring6a/MBLR, a polycomb-like protein. Cell 2007, 128:877–887.

33. Tahlilani M, Mei P, Fang R, Leonor T, Rutenberg M, Shimizu F, Li J, Rao A, Shi Y: The histone H3K4 demethylase SMX links REST target genes to X-linked mental retardation. Nature 2007, 447:601–605.

34. Yamane K, Tateishi K, Klose RJ, Fang J, Fabrizio LA, Erdjument-Bromage H, Tempst P, Zhang Y: PLU-1 is an H3K4 demethylase involved in transcriptional repression and breast cancer cell proliferation. Mol Cell 2007, 25:801–812.

35. Secombe J, Li L, Carlos L, Eisenman RN: Histone modification by histone lysine methyltransferase or demethylase activity of the Trithorax protein group Lid is a trimethyl histone H3K4 demethylase required for Dmyc-induced cell growth. Genes Dev 2007, 21:537–551.

36. Pan G, Tian S, Nie J, Yang C, Ruotti V, Wei H, Jonsdottir GA, Stewart R, Thomson JA: Whole-genome analysis of histone H3 lysine 4 and lysine 27 methylation in human embryonic stem cells. Cell Stem Cell 2007, 1:299–312.

37. Zhao XD, Han X, Chew JL, Liu J, Liu J, Ye Z, Lee LK, Stuart RR, Ching CW, et al: Histone modifications at human enhancers reflect global cell-type-specific gene expression. Nature 2009, 459:108–112.

38. Jiang H, Shulka A, Wang X, Chen WY, Bernstein BE, Roeder RG: Role for Dpy-30 in ES cell fate specification by regulation of H3K4 methylation within vernal body cell domains. Cell 2011, 145:513–525.

39. Steward MW, Lee JS, O’Donovan A, Wyatt M, Bernstein BE, Shilatifard A: Molecular regulation of H3K4 trimethylation by ASH2L, a shared subunit of MLL complexes. Nat Struct Mol Biol 2006, 13:582–584.

40. Dou Y, Milne TA, Ruthenburg AJ, Lee S, Lee JW, Verdel GL, Allis CD, Roeder RG: Regulation of MLL4 H3K4 methyltransferase activity by its core components. Nat Struct Mol Biol 2006, 13:713–719.

41. Cho YW, Hong T, Hong S, Guo H, Yu H, Kim D, Guszczynski T, Dressler GR, Copeland ND, Kulkarni M, Ge K: PTIP associates with MLL3- and MLL4-containing histone H3 lysine 4 methyltransferase complex. J Biol Chem 2007, 282:20995–20906.

42. Hughes CM, Rozenthal-Rosen O, Milne TA, Copeland ND, Levine SS, Lee JC, Hayes DN, Shambagam KS, Bhattacharjee A, Biondi CA, et al: Menin associates with a trithorax family histone methyltransferase complex and with the hoxc8 locus. Mol Cell 2004, 13:587–597.

43. Issaeva I, Zonis Y, Rozovskaya T, Orlovsky K, Croce CM, Nakamura T, Mazo A, Eisenbach L, Canaani E: Knockdown of ALR (MLL2) reveals ALR target genes and leads to alterations in cell adhesion and growth. Mol Cell 2007, 27:1889–1903.

44. Lee JH, Skalnik DG: Wdr82 is a C-terminal domain-binding protein that recruits the Setd1A Histone H3-Lys4 methyltransferase complex to transcription start sites of transcribed human genes. Mol Cell Biol 2008, 28:609–618.

45. Lee MG, Villa R, Triger P, Norman J, Yan KP, Reinberg D, Di Croce L, Shilatifard A: Demethylation of H3K27 regulates polycomb recruitment and H2A ubiquitination. Science 2007, 318:447–450.

46. Mohan M, Herz HM, Smith ER, Zhang Y, Jackson J, Washburn MP, Florens L, Eisenberg JC, Shilatifard A: The COMPASS family of H3K4 methylases in Drosophila. Mol Cell 2011, 31:430–4318.

47. Patel SR, Kim D, Levitan I, Dressler GR: The BRCt-domain containing protein PTIP links PAX2 to a histone H3, lysine 4 methyltransferase complex. Dev Cell 2007, 13:580–592.

48. Van Nuland R, Smits AH, Papliki P, Jansen PW, Vermeulen M, Timmers HT: Quantitative Dissection and Stoichiometry Determination of the Human SET1/MLL Histone Methyltransferase Complexes. Mol Cell Biol 2013, 33:2077–2077.

49. Thakur DC, Kohler S, Cleary ML: Involvement of a homolog of Drosophila trithorax by 11q23 chromosomal translocations in acute leukemias. Cell 2001, 107:691–700.

50. Gu Y, Nakamura T, Alder H, Prasad R, Canaani O, Cimino G, Croce CM, Mabon M, David AJ, Zon LI, Korsmeyer SJ: The Trithorax group protein Lid is a chromatin landmark and transcription initiation at most promoters in human cells. Cell 2007, 130:277–88.

51. Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J, Fry B, Meissner A, Wernig M, Plath K, et al: A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 2006, 125:1165–1170.

52. Mikkelsen TS, Hanna J, Zhang X, Wu M, Wernig M, Shordomper P, Bernstein BE, Jaenisch R, Lander ES, Meissner A: Dissecting direct reprogramming through integrative genomic analysis. Nature 2008, 454:49–55.

53. Adorno A, Sepe B, Boue S, Castano J, Paramonov I, Barreto MJ, Ipiuza Belmonte JC. LSD1 regulates the balance between self-renewal and differentiation in human embryonic stem cells. Nat Cell Biol 2013, 15:652–659.

54. Whyte WA, Bilodeau S, Orlando DA, Hole HA, Frampton GM, Foster CT, Cowley SM, Young RA: Enhancer decommissioning by LSD1 during embryonic stem cell differentiation. Nature 2012, 482:221–225.

55. Kimura H, Tada M, Nakatsuji N, Tada T: Histone code modifications on pluripotential nuclei of reprogrammed somatic cells. Mol Cell 2004, 24:5710–5720.

56. Ang YS, Tsai SY, Lee DF, Monk J, Su J, Ratnakumar K, Ding J, Ge Y, Harr D, Chang B, et al: Wdr6 mediates self-renewal and reprogramming via the embryonic stem cell transcriptional network. Cell 2011, 145:183–197.

57. Jenuwein T, Allis CD: Translating the histone code. Science 2001, 293:1074–1080.

58. Bernstein BE, Kamal M, Lindblad-Toh K, Kibrick S, Bailey DK, Huebert DJ, McMahon S, Karlsson EK, Kulbokas 3rd JG, Ginsinger TR, et al: Genomic maps and comparative analysis of histone modifications in human and mouse. Cell 2005, 120:169–181.

59. Weber M, Hellmann I, Stadler MB, Ramos L, Paabo S, Rehan M, Schubeler D, Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nat Genet 2007, 39:457–466.

60. Vseil A, Blow MJ, Li Z, Zhang T, Akeyama JA, Holt A, Plajzer-Frick I, Shoukry M, Wright C, Chen F, et al: CHIP-seq accurately predicts tissue-specific activity of enhancers. Nature 2009, 457:854–858.

61. Heintzman ND, Hon GC, Hawkins RD, Kheradpour P, Stark A, Harp LF, Ye Z, Lee LK, Stuart RR, Ching CW, et al: Histone modifications at human enhancers reflect global cell-type-specific gene expression. Nature 2009, 459:108–112.

62. McMahon KA, Hiew SY, Hadjur S, Veiga-Fernandes H, Menzel U, Price AJ, Rioussi D, Williams O, Brady HI: MLL has a critical role in fetal and adult hematopoietic stem cell self-renewal. Cell Stem Cell 2007, 1:338–345.
73. Lim DA, Huang YC, Swigut T, Minick AL, Garcia-Verdugo JM, Wysocka J, Empt P, Alvarez-Buylla A: Chromatin remodelling factor MLL1 is essential for neurogenesis from postnatal neural stem cells. Nature 2009, 458:529-533.

74. FitzGerald KT, Diaz MO: MLL2: A new mammalian member of the trx/MLL family of genes. Genomics 1999, 59:187–192.

75. Glaser S, Schaff J, Lubitz S, Vintersten K, Van der Hoeven F, Tufteland KR, Aasland R, Anastassiadis K, Ang SL, Stewart AF: A genome-wide epigenetic maintenance factors implicated by the loss of MLL2 in mouse development. Development 2006, 133:1423–1432.

76. Glaser S, Lubitz S, Loveland KL, Ohiko B, Robb L, Schwenk F, Seibler J, Roellig D, Kranz A, Anastassiadis K, Stewart AF: The histone 3 lysine 4 methyltransferase, M2, is only required briefly in development and spermatogenesis. Epigenetics Chromatin 2009, 2:26.

77. Lubitz S, Glaser S, Schaff J, Stewart AF, Anastassiadis K: Increased apoptosis and skewed differentiation in mouse embryonic stem cells lacking the histone methyltransferase MLL2. Mol Biol Cell 2007, 18:2356–2366.

78. Sedkov Y, Cho E, Petrus S, Cherbas L, Smith ST, Jones RS, Cherbas P, Canaani E, Lee S, Kim DH, Goo YH, Lee YC, Lee SK, Lee JW, Ansari KI, Hussain I, Shrestha B, Kasiri S, Mandal SS: Epigenetics Chromatin 2007, 4:2476–2488.

79. Morin RD, Mendez-Lago M, Mungall AJ, Goya R, Mungall KL, Corbett RD, Lee S, Kim DH, Goo YH, Lee YC, Lee SK, Lee JW, Ansari KI, Hussain I, Shrestha B, Kasiri S, Mandal SS: Epigenetics Chromatin 2007, 4:2476–2488.

80. Jaynes JB, Maca M: Methylation at lysine 4 of histone H3 in eddyson-dependent development of Drosophila. Nature 2003, 426:78–83.

81. Aasian K, Hussain I, Shrestha B, Kasiri S, Mandal SS: Epigenetics Chromatin 2007, 4:2476–2488.

82. Glaser S, Schaft J, Lubitz S, Vintersten K, Tufteland KR, Aasland R, Anastassiadis K, Ang SL, Stewart AF: A genome-wide epigenetic maintenance factors implicated by the loss of MLL2 in mouse development. Development 2006, 133:1423–1432.

83. Parsons DW, Li M, Zhang X, Jones S, Leary RJ, Lin JC, Boca SM, Carter H, Dhar SS, Lee SH, Kan PY, Voigt P, Ma L, Shi X, Reinberg D, Lee MG: Reduced genomic cytosome and defective cellular differentiation in embryonic stem cells lacking Cpg binding protein. Mol Cell Biol 2005, 25:4881–4891.

84. Lee J, Lee JW, Skalnik DG: CXXC finger protein 1 restricts the Setd1A histone H3K4 methyltransferase complex to euchromatin. FEBS J 2010, 277:120–123.

85. Wilperts E, Webb S, Skeene P, Illingworth R, Kerr A, Andrews R, Lee JH, Skalnik DG, Bird A: CpG1 integrates both CpG content and gene activity for accurate H3K4Me3 deposition in embryonic stem cells. Genes Dev 2012, 26:1714–1728.

86. Beisel C, Imhof A, Greene J, Kremmer E, Sauer F: Histone methylation by the Drosophila epigenetical transcriptional regulator Ash1. Nature 2002, 420:485–490.

87. Gregory GD, Vakoc CR, Rozovskaya T, Zheng X, Patel S, Nakamura T, Canaani E, Blobel GA: Mammalian ASH1 is a histone methyltransferase that occupies the transcribed region of active genes. Mol Cell Biol 2007, 27:8466–8479.

88. Tanaka Y, Katsagiri Z, Kawahashi K, Kiousis D, Rittieja S: Trithorax-group protein ASH1 methylates histone H3 lysine 36. Gene 2007, 391:161–168.

89. An S, Yeo KL, Jeon YH, Song JJ: Crystal structure of the human histone methyltransferase ASH1 catalytic domain and its implications for the regulatory mechanism. J Mol Biol 2011, 286:8369–8374.

90. Yuan W, Xu M, Huang C, Liu N, Chen S, Zhu H: H3K36 methyltransferase antagonizes PRC2-mediated H3K27 methylation. J Mol Biol 2011, 286:7985–7989.

91. Tanaka Y, Katsagiri Z, Kawahashi K, Kiousis D, Rittieja S: Trithorax-group protein ASH1 methylates histone H3 lysine 36. Gene 2007, 391:161–168.

92. Reedy GB, Vayak CR, Rozovskaya T, Zheng X, Patel S, Nakamura T, Canaani E, Blobel GA: Reduced ASH1 methyltransferase activity in embryonic stem cells lacking Cpg binding protein. Mol Cell Biol 2005, 25:4881–4891.

93. Tait CM, Lee JH, Skalnik DG: CXXC finger protein 1 restricts the Setd1A histone H3K4 methyltransferase complex to euchromatin. FEBS J 2010, 277:120–123.

94. Lee J, Lee JW, Skalnik DG: Reduced genomic cytosome and defective cellular differentiation in embryonic stem cells lacking Cpg binding protein. Mol Cell Biol 2005, 25:4881–4891.

95. Beisel C, Imhof A, Greene J, Kremmer E, Sauer F: Histone methylation by the Drosophila epigenetical transcriptional regulator Ash1. Nature 2002, 420:485–490.

96. Gregory GD, Vakoc CR, Rozovskaya T, Zheng X, Patel S, Nakamura T, Canaani E, Blobel GA: Mammalian ASH1 is a histone methyltransferase that occupies the transcribed region of active genes. Mol Cell Biol 2007, 27:8466–8479.

97. Carlone DL, Lee JH, Young SR, Dobrota E, Butler JS, Ruiz J, Skalnik DG: The ortholog of MLL3 and MLL4, trithorax related, functions as a negative transcriptional regulator (TRX). Mol Endocrinol 2009, 23:610–619.

98. Skalnik D, Bird A: CpG1 integrates both CpG content and gene activity for accurate H3K4Me3 deposition in embryonic stem cells. Genes Dev 2012, 26:1714–1728.

99. Skalnik D, Bird A: CpG1 integrates both CpG content and gene activity for accurate H3K4Me3 deposition in embryonic stem cells. Genes Dev 2012, 26:1714–1728.

100. Skalnik D, Bird A: CpG1 integrates both CpG content and gene activity for accurate H3K4Me3 deposition in embryonic stem cells. Genes Dev 2012, 26:1714–1728.

101. Beisel C, Imhof A, Greene J, Kremmer E, Sauer F: Histone methylation by the Drosophila epigenetical transcriptional regulator Ash1. Nature 2002, 420:485–490.

102. Reedy GB, Vayak CR, Rozovskaya T, Zheng X, Patel S, Nakamura T, Canaani E, Blobel GA: Reduced ASH1 methyltransferase activity in embryonic stem cells lacking Cpg binding protein. Mol Cell Biol 2005, 25:4881–4891.

103. Tait CM, Lee JH, Skalnik DG: CXXC finger protein 1 restricts the Setd1A histone H3K4 methyltransferase complex to euchromatin. FEBS J 2010, 277:120–123.

104. Wilperts E, Webb S, Skeene P, Illingworth R, Kerr A, Andrews R, Lee JH, Skalnik DG, Bird A: CpG1 integrates both CpG content and gene activity for accurate H3K4Me3 deposition in embryonic stem cells. Genes Dev 2012, 26:1714–1728.

105. Beisel C, Imhof A, Greene J, Kremmer E, Sauer F: Histone methylation by the Drosophila epigenetical transcriptional regulator Ash1. Nature 2002, 420:485–490.
115. Van Aller GS, Reynold N, Barbash O, Huddleston M, Liu S, Zmoos AF, McDevitt P, Sinnamor R, Le B, Mas G, et al. Smyd3 regulates cancer cell phenotypes and catalyzes histone H4 lysine 5 methylation. Epigenetics 2012, 7:940–343.

116. Fuji T, Tsunemis N, Yamaguchi K, Watanabe S, Furukawa Y: Smyd3 is required for the development of cardiac and skeletal muscle in zebrafish. PLoS One 2011, 6:e23491.

117. Cordoux R, Udit S, Batzer MA, Feschotte C. Birth of a chimeric primate gene by capture of the transposase gene from a mobile element. Proc Natl Acad Sci USA 2006, 103:8101–8106.

118. Baudat F, Jaoud G, Cledel-Alon A, Ober C, Przeworski M, Coop G, De Massy B. PRDM9 is a major determinant of meiotic recombination hotspots in humans and mice. Science 2010, 327:836–840.

119. Myers S, Bowden R, Turnam A, Bontrop RE, Freeman C, Macie FTS, McVean G, Donnelly P. Drive against hotspot motifs in primates implicate the PRDM9 gene in meiotic recombination. Science 2010, 327:876–879.

120. Parvanov ED, Petkov PM, Paigen K. PRDM9 controls activation of mammalian recombination hotspots. Science 2010, 327:835.

121. Wan M, Jiang J, Xiong Y, Shi F, Zhang Y, Lu W, He Q, Yang O, Chen R, Liu D, et al. The trithorax group protein Ash2l is essential for pluripotency and maintaining open chromatin in embryonic stem cells. J Biol Chem 2013, 288:5039–5048.

122. Tsukada Y, Fang J, Erdjument-Bromage H, Warren ME, Borchers CH, Tempst P, Kontos A, Ohgi KA, Stewart DM, Qi S, Yamane K, Li J, Zhang Y, Wong J. The trithorax group protein Ash2l is essential for pluripotency and maintaining open chromatin in embryonic stem cells. J Biol Chem 2013, 288:5039–5048.

123. Gu and Lee

124. Wang J, Scully K, Zhu X, Cai L, Zhang J, Prefontaine GG, Krones A, Ohgi KA, Choi J, Jang H, Kim H, Kim ST, Cho EJ, Youn HD.

125. Peng JC, Valouev A, Swigut T, Zhang J, Zhao Y, Sidow A, Wysocka J. JARID2/Jumonji coordinates control of PRC2 enzyme activity and target gene occupancy in pluripotent cells. Cell 2009, 139:1290–1302.

126. Benini ML, Holmes KB, Richter WF, Hess S, Islam AB, Yan Q, Plante L, Litovchick L, Gevry N, Lopez-Bigas N, et al. Coordinated repression of cell cycle genes by KDM5A and EZF4 during differentiation. Proc Natl Acad Sci USA 2012, 109:18499–18504.

127. Ge W, Shi L, Zhou Y, Liu Y, Ma G, Jiang Y, Xu Y, Zhang X, Feng H. Inhibition of osteogenic differentiation of human adipose-derived stromal cells by retinoblastoma binding protein 2 repression of RUNX2-activated transcription. Stem Cells 2011, 29:1112–1125.

128. Lu PJ, Sundquist K, Baekstrom D, Poulson R, Hanby A, Meier-Ewert S, Jones T, Mitchell M, Pitha-Rowe P, Freemont P, Taylor-Papadimitriou J. A novel gene (PLU-1) containing highly conserved putative DNA/chromatin binding motifs is specifically up-regulated in breast cancer. J Biol Chem 1999, 274:15633–15640.

129. Xie L, Pelz C, Wang W, Barth A, Varlamova O, Shadle S, Impy E. KDM5B regulates embryonic stem cell self-renewal and represses cryptic intragenic transcription. EMBO J 2011, 30:1473–1484.

130. Dey BK, Stalker L, Schneec A, Bhatia M, Taylor-Papidimitriou J, Wynder C. The histone demethylase KDM5B/JARID1b plays a role in cell fate decisions by blocking terminal differentiation. Mol Cell 2008, 28:5312–5327.

131. Schmitz SU, Albert M, Malatesta M, Morey L, Johansen JV, Bak M, Tommerup N, Abarategui I, Helin K. JARID1b targets genes regulating development and is involved in neural differentiation. EMBO J 2011, 30:4586–4600.

132. Albert M, Schmitz SU, Koosstra SM, Malatesta M, Morales Torres C, Rilling JC, Johansen JV, Abarategui I, Helin K. The histone demethylase Jarid1b Ensures Faithful Mouse Development by Protecting Developmental Genes from Abrupt KDM4mep. PLoS Genet 2013, 9:e1003641.

133. Wu J, Elison J, Salido E, Yen P, Mohandas T, Shapiro LI. Isolation and characterization of XE169, a novel human gene that escapes X-inactivation. Hum Mol Genet 1994, 3:1533–160.

134. Jensen JA, Amende M, Gurok U, Mose B, Gimmel V, Tschaich A, Janecke AR, Tarverdian G, Chelly J, Frys IP, et al. Mutations in the JARID1C gene, which is involved in transcriptional regulation and chromatin remodeling, cause X-linked mental retardation. Am J Hum Genet 2005, 76:227–236.

135. Dalgliesh GL, Forge K, Greenman C, Chen L, Bignell G, Butler A, Davies H, Litovchick L, Gevry N, Lopez-Bigas N, et al. Coordinated repression of cell cycle genes by KDM5A and E2F4 during differentiation. Proc Natl Acad Sci USA 2012, 109:18499–18504.

136. Gu and Lee

137. Zhang Q, Qi S, Xu M, Yu L, Tao Y, Deng Z, Wu W, Li J, Chen Z, Wong J. Structure-function analysis reveals a novel mechanism for regulation of histone demethylase LSD2/AOF1/KDM1b. Cell Res 2013, 23:225–241.