ZETA FUNCTIONS OF INFINITE GRAPH BUNDLES

SAMUEL COOPER∗ AND STRATOS PRASSIDIS**

Abstract. We compute the equivariant zeta function for bundles over infinite graphs and for infinite covers. In particular, we give a “transfer formula” for the zeta function of infinite graph covers. Also, when the infinite cover is given as a limit of finite covers, we give a formula for the limit of the zeta functions.

1. Introduction

The Ihara zeta function of a finite graph reflects combinatorial and spectral properties of that graph ([13], [2], [18]). Originally, Ihara defined the zeta function on finite graphs imitating the classical definition of the zeta function:

\[\zeta_X(z) = \prod [C] (1 - z^{\ell(C)})^{-1}, \]

where the product is over all equivalence classes of primitive closed loops \(C \) in \(X \) and \(\ell(C) \) denotes the length of \(C \). In [2], it was shown that, for a finite graph \(X \):

\[\zeta_X(z)^{-1} = (1 - z^2)^{\epsilon - \nu} \text{det}(I - zA + z^2Q), \]

where \(\epsilon \) is the number of edges, \(\nu \) is the number of vertices, \(A \) is the adjacency matrix of \(X \), and \(Q \) is the diagonal matrix with entries \(\deg(v) - 1 \), for each \(v \in V(X) \). In [8], the definition of Ihara zeta function was extended to infinite graphs that are limits of sequences of finite graphs. In particular, it was shown in [8], using the results in [17], that the sequence of the zeta functions of the finite graphs converges. In [3], [4], [10], [11], [12], the expression of the zeta function as a rational function was extended to infinite graphs that admit an action of a discrete group \(\Gamma \) with finite quotient. The determinant in the finite case is replaced by the determinant in a von Neumann algebra \(\mathcal{N}_0(X, \Gamma) \) of all the bounded operators on \(L^2(V(X)) \). In [6] the zeta function of finite graph bundles over finite was computed generalizing the results on graph coverings that appear [18], [19], [20]. Their results can be described as transfer results for the Ihara zeta function.

We combine the results on infinite graphs and bundles to derive a transfer formula for infinite bundles and coverings. Let \(\phi \) be an \(\text{Aut}(F) \)-assignment on \(X \). Let \((\Gamma, \Delta) \) be a pair of groups that act on \(X \) and \(F \) in such a way that the actions are \(\phi \)-compatible and by finite co-volume.

∗Partially supported by an NSF REU grant.
**Partially supported by Canisius College Summer Grant and an NSF REU grant.
Theorem (Main Theorem 1). With the above assumptions, the equivariant zeta function is given by:

\[
\zeta_{X \times F, \Gamma \times \Delta}(z)^{-1} = (1 - z^2)^{-\chi^{(2)}(X \times F)} \det_{\Gamma \times \Delta} \left(I - \sum_{\gamma \in \text{Aut}(F)} (A_{X,\gamma}^{-1} \otimes P_\gamma + I_X \otimes A_F)z + Qz^2 \right),
\]

where \(A_{X,\gamma}^{-1}\) is the adjacency matrix of the directed graph spanned by the edges in \(\psi^{-1}(\gamma)\), \(P_\gamma\) is the permutation matrix induced by the action of \(\gamma\) on \(V(F)\), \(\chi^{(2)}\) is the Euler characteristic of the quotient \(X_1 \times \phi^1 F\), \(\det_{\Gamma \times \Delta}\) is the determinant defined on the von Neumann algebra of \(\Gamma \times \Delta\), and \(Q\) is the diagonal operator such that \(Q(y,i) = \deg(y) + \deg(i) - 1\).

Using similar methods, we prove a decomposition formula of the Ihara zeta function for infinite covers. Let \(p : Y \to X\) be a cover with \(X\) finite. Let \(\Gamma = \text{Cov}(p)\).

Theorem (Main Theorem 2). With the above notation,

\[
\zeta_{Y, \Gamma}(z)^{-1} = (1 - z^2)^{-\chi^{(2)}(Y)} \det_{\Gamma} \left(I - \sum_{\gamma \in \Gamma} A_{Y,\gamma}^{-1} \otimes P_\gamma \right) z + Qz^2\right),
\]

where \(Q\) is the diagonal operator with \((x, \gamma)\)-entry \(\deg(x) - 1\).

We apply the above calculations to sequences of strongly convergent graphs. In particular, a sequence \(\{(X_n, w_n)\}_{n \in \mathbb{N}}\) is strongly convergent to \((X, w)\) if it is a covering sequence of regular graphs converging to \(X\) in such a way that \(X\) covers compatibly each element of the sequence. Such sequences appear when we consider the Cayley graphs of finite quotients of a groups converging to the Cayley graph of the group.

2. Preliminaries

We now define a number of terms that we will use later on.

Definition 2.1. Let \(G\) be any locally finite graph. Then we define the adjacency operator \(A_G\) as follows: for any \(u, v \in V(G)\),

\[
A_G(u, v) = \begin{cases}
1, & \text{if } u \sim v \\
0, & \text{otherwise}.
\end{cases}
\]

The definition makes sense even if the graph is directed. If \(G\) is undirected, the \(A_G\) is symmetric.

Definition 2.2. Let \(\bar{G}\) and \(G\) be locally finite graphs. We say that

\(p : \bar{G} \to G\)

is a graph covering if the following two conditions hold:

1. If \(x \sim_{\bar{G}} y\), then \(p(x) \sim_G p(y)\).
(2) For any \(x \in \tilde{G}, \ p : N(x) \to N(p(x)) \) is a bijection.

The first condition in the definition means that \(p \) is a graph map. The second condition is a local triviality condition.

Graph bundles are defined in [15]. They generalize the graph coverings in the sense that the “fiber graph” is allowed to have a non-empty set of edges. We will concentrate on bundles with finite fibers. For a graph \(X \), we denote by \(E(X) \) the set of ordered edges—i.e., each edge of \(X \) appears twice, each with opposite orientation.

Definition 2.3. Let \(G \) be any locally finite graph (possibly infinite), let \(F \) be a finite graph. We define an Aut\((F)\)-voltage assignment on \(G \) by

\[
\phi : E(\tilde{G}) \to \text{Aut}(F), \quad \phi(uv) = \phi(vu)^{-1}.
\]

Definition 2.4. Let \(G \) be a locally finite graph, \(F \) a finite graph, and \(\phi \) an Aut\((F)\)-voltage assignment on \(G \). We define a graph bundle \(G \times_\phi F \) to be the graph with vertex set \(V(G) \times V(F) \), with two vertices \((u,i),(v,j)\) in \(G \times_\phi F \) adjacent if either one of the following two conditions hold:

1. \(u \sim v \) and \(j = i\phi(uv) \)
2. \(u = v \) and \(i \sim j \).

Let \(\phi \) be a Aut\((F)\)-voltage assignment on \(G \). Let \(\gamma \in \text{Aut}(F) \).

1. Let \(\tilde{G}_{(\phi,\gamma)} \) denote the spanning subgraph of the digraph \(\tilde{G} \) whose directed edge set is \(\phi^{-1}(\gamma) \).
2. We define the permutation operator \(P_\gamma \) by the following formula: for any two vertices \(i,j \) in \(V(F) \),

\[
P_\gamma(i,j) = \begin{cases}
1, & \text{if } j = i^\gamma \\
0, & \text{otherwise}.
\end{cases}
\]

Remark 2.5. When the graphs are infinite, the matrices defined above are operators on the Hilbert space with basis the vertex set of the graph. More precisely, if \(G \) is any locally finite graph, set \(L^2(G) \) to be the Hilbert space:

\[
L^2(G) = \left\{ f : V(G) \to \mathbb{C} : \sum_{u \in V(G)} |f(u)|^2 < \infty \right\}.
\]

Then the adjacency operator is given by

\[
A(f)(u) = \sum_{u \sim v} f(v).
\]

With the above notation,

\[
P_\gamma(f)(i) = f(\gamma(i)).
\]

The following combines covering maps and bundles.
Theorem 2.6. Let F and X be locally finite graphs. Let X be equipped with an $\text{Aut}(F)$-voltage assignment ϕ. Let $p : Y \to X$ be a covering map and ψ the $\text{Aut}(F)$-voltage assignment

\[\psi : E(Y) \to \text{Aut}(F), \quad \psi(xy) = \phi(p(x)p(y)). \]

Define a graph map

\[\tilde{p} : Y \times \psi F \to X \times \phi F, \quad \tilde{p}(x,i) = (p(x), i). \]

Then \tilde{p} is a covering map.

Proof. First we will show prove that \tilde{p} is a graph map i.e., that is preserves adjacency. Let $(x, i) \sim (y, j)$ in $Y \times \psi F$. There are two cases to consider:

1. Suppose $x \sim y$ in Y. Then $p(x) \sim p(y)$, and $j = \psi(xy) = \psi(p(x)p(y))$. Thus, by definition,
 \[\tilde{p}(x, i) = (p(x), i) \sim (p(y), j) = \tilde{p}(y, j), \quad \text{in } X \times \phi F. \]

2. Suppose $x = y$. Then $i \sim j$ in F, and clearly $p(x) = p(y)$. Thus, by definition, $\tilde{p}(x, i) \sim \tilde{p}(y, j)$.

Thus \tilde{p} preserves adjacency.

Now we must show that $\tilde{p}|_{N(x,i)}$ is a bijection.

$\tilde{p}|_{N(x,i)}$ is an injection. Let $(y_1, j_1), (y_2, j_2) \in N(x, i)$ with $\tilde{p}(y_1, j_1) = \tilde{p}(y_2, j_2)$. Then we know that $p(y_1) = p(y_2)$ and $j_1 = j_2$. Now there are two cases to consider:

1. Suppose $y_1 = x$ and $i \sim j_1$. Then $i \sim j_2$, and since $(x, i) \sim (y_2, j_2)$, we must have $x = y_2$.

 Thus $y_1 = y_2$, so $(y_1, j_1) = (y_2, j_2)$. The same argument works if $y_2 = x$.

2. Suppose $y_1 \sim x$, and $i = j_1 \psi(y_1x) = j_1 \phi(p(y_1)p(x))$. Since $p(y_1) = p(y_2)$, we see that $i = j_2 \phi(p(y_2)p(x))$. Thus, since $(y_2, j_2) \sim (x, i)$, we must have $y_2 \sim x$. Now, since p is a graph covering map, $p|_{N(x)}$ is a bijection. But $y_1, y_2 \in N(x)$ and $p(y_1) = p(y_2)$; thus, $y_2 = y_1$, so $(y_1, j_1) = (y_2, j_2)$.

$\tilde{p}|_{N(x,i)}$ is a surjection. Let $(u, k) \in N((p(x), i))$. Again there are two cases to consider:

1. Suppose $u = p(x)$ and $i \sim k$. Then $\tilde{p}(x, k) = (u, k)$, and by definition, $(x, k) \in N(x, i)$.

2. Suppose $u \sim p(x)$ and $i = k \phi(up(x))$. Since $p|_{N(x)}$ is a surjection, there exists some $y \in N(x)$ such that $p(y) = u$. Then $y \sim x$ and $i = k \phi(p(y)p(x)) = k \psi(yx)$. Thus, $(y, k) \in N(x, i)$ and $\tilde{p}(y, k) = (u, k)$.

Therefore, $\tilde{p}|_{N(x,i)}$ is a bijection. This completes the proof. \qed

The vertex set of a bundle over G is $V(G) \times V(F)$. Then

\[L^2(G \times \phi F) = L^2(G) \otimes L^2(F) \]
where the tensor product takes place in the category of Hilbert spaces. More precisely, it is the completion of the algebraic tensor product. The following theorem (proved in [15] for the finite case) provides a decomposition for the adjacency operator of any graph bundle.

Theorem 2.7. Let \(\phi \) be an \(\text{Aut}(F) \)-voltage assignment on a locally finite graph \(G \), with \(F \) locally finite. Then

\[
A_{G \times \phi F} = \bigoplus_{\gamma \in \text{Aut}(F)} A_{\overline{G}(\phi, \gamma)} \otimes P_{\gamma} + I_{G} \otimes A_{F}.
\]

Proof. It is enough to prove the result for functions of the form \(f \otimes g \), where \(f \in L^2(G) \) and \(g \in L^2(F) \). Let \((u, i) \in V(G \times \phi F)\). Then

\[
A_{G \times \phi F}(f \otimes g)(u, i) = \sum_{(u, i) \sim (v, j)} f(v)g(j).
\]

The right hand side is given by:

\[
\bigoplus_{\gamma \in \text{Aut}(F)} A_{\overline{G}(\phi, \gamma)} P_{\gamma}(f \otimes g)(u, j) + I_{G} \otimes A_{F}(f \otimes g)(u, j) = \bigoplus_{\gamma \in \text{Aut}(F), u \in \overline{G}(\phi, \gamma)} A_{\overline{G}(\phi, \gamma)}(f\mid)(u)P_{\gamma}(g)(i) + f(u)A_{F}(g)(i)
\]

There are two possibilities for \((u, i) \sim (v, j)\):

1. \(u \sim v \) and \(i = j^{\phi(uv)} \). Then the right hand side becomes:

\[
A_{\overline{G}(\phi, \phi(uv))}(f\mid)(u)P_{\gamma}(g)(i) = f(v)g(j).
\]

2. \(u = v \) and \(i \sim j \). In the right hand side, only the last summand is non-zero and it is equal to \(f(u)g(j) \).

Finally, it is clear that if neither \(u \sim v \) nor \(u = v \), then the sum on the right hand side is zero. This completes the proof. \(\square \)

By a **marked graph**, we mean a pair \((X, w)\) with \(X \) a graph and \(w \) a distinguished vertex.

Definition 2.8. On the space of marked graphs there is a metric \(\text{dist} \) defined as follow:

\[
\text{dist}\left((X_1, w_1), (X_2, w_2)\right) = \inf \left\{ \frac{1}{n+1}; B_{X_1}(w_1, n) \text{ is isometric to } B_{X_2}(w_2, n) \right\},
\]

where \(B_X(w, n) \) is the combinatorial ball of radius \(n \) in \(X \) centered on \(v \).

For a sequence of marked graphs \(\{(X_n, w_n)\}_{n \in \mathbb{N}} \), we say that \((X, w)\) is the limit graph if

\[
\lim_{n \to \infty} \text{dist}((X, w), (X_n, w_n)) = 0.
\]

For a finite graph \(X \), let \(c_r(X) \) denote the number of closed paths in \(X \) of length \(r \). Let

\[
(X, w) = \lim_{n \to \infty} (X_n, w_n),
\]
where \(\{(X_n, w_n)\}_{n \in \mathbb{N}} \) is a covering sequence of \(k \)-regular marked graph. In [8], the definition of the number \(c_r \) is extended for the graph \(X \) as follows:

\[
\tilde{c}_r = \lim_{n \to \infty} \frac{c_r(X_n)}{|X_n|}.
\]

In [8], it was shown that the limit exists. The zeta function \(\zeta(X, w) \) of the marked graph \(X \), with respect to the sequence \(\{(X_n, w_n)\}_{n \in \mathbb{N}} \), is defined by

\[
\ln \zeta_{X, w}(z) = \lim_{n \to \infty} \frac{1}{|X_n|} \ln \zeta_{X_n}(z) = \sum_{r=1}^{\infty} \frac{\tilde{c}_rz^r}{r}, \quad |z| < \frac{1}{k-1}.
\]

The proof that the series has a non-trivial radius of convergence is given in [8] and depends on results from [17].

Let \(X \) be a graph such that the degrees of vertices is bounded. Let \(\Gamma \) be a group of graph automorphisms of the graph \(X \) that acts on \(X \) without inversions and satisfying the following properties:

1. For each \(v \in V(X) \), the stabilizer \(\Gamma_v = \{ \gamma \in \Gamma : \gamma v = v \} \) is finite.
2. If \(\mathcal{F}_0 \subset V(X) \) is a complete set of orbit representatives of the action of \(\Gamma \) on \(V(X) \), then

\[
\text{vol}(X/\Gamma) = \sum_{v \in \mathcal{F}_0} \frac{1}{|\Gamma_v|} < \infty.
\]

In particular, if the action of \(\Gamma \) on \(V(X) \) is free, the second condition is equivalent to the condition that the orbit space \(V(X)/\Gamma \) is finite. In this case, the Ihara zeta function is defined as

\[
\zeta_{X, \Gamma}(z) = \prod_{C \in \mathcal{P}/\Gamma} \left(1 - z^{\ell(C)} \right)^{|\Gamma_C|}.
\]

where:

- \(\mathcal{P} \) are equivalence classes of closed, primitive, tail-less edge-paths without backtracking. Two such circuits are equivalent if they differ only by a shift. \(\mathcal{P}/\Gamma \) denotes the orbit space of \(\mathcal{P} \) under the \(\Gamma \) action.
- For each class \(C \in \mathcal{P}/\Gamma \), \(\ell(C) \) denotes the length of \(C \) i.e., the number of edges in \(C \).
- \(\Gamma_C \) denotes the isotropy group of \(C \).

This formula generalizes the classical zeta function on finite graphs.

We will describe the analogue of Bass’ formula for \(\zeta_{X, \Gamma}(z) \) Let \(L^2(X) \) be the Hilbert space of functions on \(V(X) \). A unitary representation is given by:

\[
\lambda_0 : \Gamma \to U(L^2(X)), \quad (\lambda_0(\gamma)f)(v) = f(\gamma^{-1}v), \quad \gamma \in \Gamma, \ f \in L^2(X), \ v \in V(X).
\]

Then the von Neumann algebra of all bounded operators on \(L^2(X) \) that commute with the \(\Gamma \) action is defined as:

\[
\mathcal{N}_0(X, \Gamma) = \{ \lambda_0(\gamma) : \gamma \in \Gamma \}'.
\]
The algebra $\mathcal{N}_0(X, \Gamma)$ inherits a trace given by:

$$\text{Tr}_\Gamma(A) = \sum_{v \in \mathcal{F}_0} \frac{1}{|\Gamma_v|} A(v, v), \quad A \in \mathcal{N}_0(X, \Gamma).$$

With this setting, the Bass formula for the Ihara zeta function has the form ([3], [4], [10], [11], [12]):

$$\zeta_{X,\Gamma}^{-1}(z) = (1 - z^2)^{-\chi(2)(x)} \det_\Gamma(\Delta_{X,z}),$$

where

- $\det_\Gamma = \exp \circ \text{Tr}_\Gamma \circ \ln$ is the determinant in the von Neumann algebra $\mathcal{N}_0(X, \Gamma)$.
- $\Delta_{X,z} = I - Az + Qz^2$, with A the adjacency operator on X, and Q is the operator on $L^2(X)$ given by:

$$Q(f)(v) = (\deg(v) - 1)f(v), \quad \text{for each } v \in V(X).$$

Remark 2.9.

1. In [3], [4], [10], [11], [12], it was shown that the function $\zeta_{X,\Gamma}$ is defined for sufficiently small $|u|$. More precisely, if k is the maximum degree of X, $\zeta_{X,\Gamma}(u)$ is a holomorphic function for all $|u| < \frac{1}{d - 1}$.
2. $\chi(2)(X)$ is the Euler characteristic defined in [3]. In most applications, it is equal to $\chi(X/\Gamma)$, the Euler characteristic of the orbit space.
3. Let X be a k-regular graph and $q = k - 1$. Using the determinant formula, the zeta function can be extended to a holomorphic function in the open set ([3], [10]):

$$\Omega_q = \mathbb{R}^2 \setminus \left\{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = \frac{1}{q}\right\} \cup \left\{(x, 0) \in \mathbb{R}^2 : \frac{1}{q} \leq |x| \leq 1\right\}.$$

4. In the above references there is an interpretation of the Bass formula over the determinant on $\mathcal{N}_1(X, \Gamma)$, the von Neumann algebra on the set of edges of X.

Notation. There are three types of zeta functions used in this paper.

1. We write $\zeta_X(z)$ for the classical zeta function defined for a finite graph X.
2. We write $\zeta_{X,\Gamma}(z)$ for the equivariant zeta function defined on an infinite graph X equipped with an action of a group Γ with finite co-volume.
3. We write $\zeta_{(X,w)}(u)$ for the zeta function that it is the limit of $\zeta_{X_n}(z)^{1/|V(X_n)|}$, where $\{(X_n, w_n)\}_{n \in \mathbb{N}}$ is a covering sequence of finite regular graphs converging to (X, w).

Definition 2.10. The sequence $\{X_n, w_n\}_{n \in \mathbb{N}}$ strongly converges to (X, w) if:
(1) \(\{X_n, w_n\}_{n \in \mathbb{N}} \) is a covering sequence of marked \(k \)-regular graphs with
\[
p_{m-1} : X_m \to X_{m-1}
\]
the covering map.
(2) \(X \) is \(k \)-regular.
(3) There are covering maps
\[
\rho_n : X \to X_n
\]
such that:
(a) \(\rho_1(u) = p_1 p_2 \ldots p_{n-1}(\rho_n(u)) \), for all \(n \).
(b) For each \(n \), the isometry between \(B_X(w, s_n) \) and \(B_{X_n}(w_n, s_n) \) is given by the restriction of \(\rho_n \).

Remark 2.11. Cayley graphs of groups give sequences of graphs that strongly converge. Let \(\Gamma \) be a group, \(S \) a symmetric set of generators and \(\{K_n\}_{n \in \mathbb{N}} \) a sequence of normal subgroups of finite index such that:
\[
K_1 \supset K_2 \supset K_3 \ldots, \quad \text{and} \quad \bigcap_{n \in \mathbb{N}} K_n = \{K\}.
\]
Then the sequence of the marked Schreier graphs \(\{(S(\Gamma, K_n, S), 1)\}_{n \in \mathbb{N}} \) strongly converges to \((S(\Gamma, K, S), 1) \).

Let \(\{X_n, w_n\}_{n \in \mathbb{N}} \) strongly converge to \((X, w) \) and \(\Gamma_n = \text{Cov}(X, X_n) \). The next results gives a connection between the different types of zeta functions.

Theorem 2.12. Assume that all the graphs in the sequence are \(k \)-regular finite graphs converging to a \(k \)-regular graph \((X, w) \). Then
\[
\lim_{n \to \infty} \zeta_{X_n}(z)^{|V(X_n)|} = \zeta_{X, \Gamma_1}(z) = \zeta_{(X, w)}(z)^{|V(X_1)|}.
\]

Proof. By [4], Theorem 2.1,
\[
\lim_{n \to \infty} \zeta_{X_n}(z)^{|N_n|} = \zeta_{X, \Gamma_1}(z)
\]
where \(N_n = [\Gamma_n, \Gamma_1] = |V(X_n)|/|V(X_1)| \). The result follows from the definition of \(\zeta_{(X, w)}(z) \). \(\square \)

The following is the main part of the proof of Theorem 2.1 in [4].

Corollary 2.13. With the above notation,
\[
\det_{\Gamma_1}(\Delta_{X, z}) = \lim_{n \to \infty} (\Delta_{X_n, z})^{\frac{|V(X_1)|}{|V(X_n)|}}
\]

Let \(F \) be a locally finite graph and \(\phi_1 \) an \(\text{Aut}(F) \)-voltage assignment on \(X_1 \). Inductively, define an \(\text{Aut}(F) \)-voltage assignment on \(X_n \) by:
\[
\phi_n(uv) = \phi_{n-1}(p_{n-1}(u)p_{n-1}(v)).
\]
Also, define an $\text{Aut}(F)$-voltage assignment on X by:

$$\phi(uv) = \phi_1(\rho_1(u)\rho_1(v)).$$

The details are presented in the following diagram.

Now, by Theorem 2.6, we know that, for any finite, d-regular graph F, the sequence \{\(X_n \times^{\phi_n} F\)\}_{n \in \mathbb{N}} is a kd-regular covering sequence; thus, by [8], it converges. We will show that in fact it converges to the graph $X \times^{\phi} F$. To do this will need the following:

Lemma 2.14. Assume that \{(\(X_n, w_n\))\}_{n \in \mathbb{N}} strongly converges to \((X, w)\). Then

$$\tilde{\rho}_n : B_{X \times^{\phi} F}((w, i), s_n) \rightarrow B_{X_n \times^{\phi_n} F}((w_n, i), s_n), \quad \tilde{\rho}_n(u, i) = ((\rho_n(u), i),$$

is an isometry, for any $i \in V(F)$ and for all $n \in \mathbb{N}$.
Proof. Since ρ_n is a bijection, it is clear that $\tilde{\rho}_n$ is a bijection; thus, we must show that $\tilde{\rho}_n$ preserves adjacency. To this end, assume $(u, i) \sim (v, j)$, for $(u, i), (v, j) \in B_{X \times \phi F}(w, i)$. Then there are two cases:

1. $u \sim v$ and $j = i^{\phi(uv)}$
2. $u = v$ and $i \sim j$.

In the case where $u = v$, since clearly $\rho_n(u) = \rho_n(v)$, we must have $\tilde{\rho}_n(u, i) \sim \tilde{\rho}_n(v, j)$. In the case where $u \sim v$, we must have $\rho_n(u) \sim \rho_n(v)$. Thus we must show that

$$j = i^{\phi_n(\rho_n(u)\rho_n(v))}.$$

Now, by the definition of ϕ,

$$\phi(uv) = \phi_1(\rho_1(u)\rho_1(v)),$$

and by assumption,

$$\phi_1(\rho_1(u)\rho_1(v)) = \phi_1(p_{n-1}...p_1(\rho_n(u)), p_{n-1}...p_1(\rho_n(v))).$$

But by the definition of ϕ_n,

$$\phi_n(\rho_n(u)\rho_n(v)) = \phi_1(p_{n-1}...p_1(\rho_n(u)), p_{n-1}...p_1(\rho_n(v))).$$

This shows that

$$\phi_n(\rho_n(u)\rho_n(v)) = \phi(uv),$$

and thus

$$j = i^{\phi(uv)} \implies j = i^{\phi_n(\rho_n(u)\rho_n(v))}.$$

This shows that $\tilde{\rho}_n$ preserves adjacency, and thus is an isometry. This completes the proof. \hfill \Box

As a corollary, we have the following theorem.

Theorem 2.15. For each $i \in F$, the covering sequence $\{(X_n \times^{\phi_n} F, (w_n, i))\}_{n \in \mathbb{N}}$ strongly converges to $(X \times^{\phi} F, (w, i))$.

Proof. Theorem 2.6 implies that the covering conditions of the strong convergence are satisfied. The rest of the proof follows from Lemma 2.14 and [8]. \hfill \Box

3. Zeta Functions for Bundles and Coverings

In this section we will use our previous result and [3, 4, 10, 11, 12], to generalize the results of [6] to infinite graph bundles.

Definition 3.1. Let X be a graph equipped with an $\text{Aut}(F)$-voltage assignment ϕ.

1. An action of a group Γ on X without edge inversions is called (F, ϕ)-compatible if

$$\phi(\gamma(u)\gamma(v)) = \phi(uv), \text{ for all } u, v \in V(X), \gamma \in \Gamma.$$
(2) An action of a group Δ without inversions on F is called (X, ϕ)-compatible if $\text{Im}(\phi) \subset C_{\text{Aut}(F)}(\Delta)$ i.e., the image of ϕ centralizes Δ.

(3) The pair of groups (Γ, Δ) as before is called ϕ-compatible if Γ is (F, ϕ)-compatible and Δ is (X, ϕ)-compatible.

Lemma 3.2. With the above notation, if the pair (Γ, Δ) is ϕ-compatible, then the product action:

$$(\gamma, \delta)(x, i) = (\gamma x, \delta i), \quad (\gamma, \delta) \in \Gamma \times \Delta, \quad (x, i) \in V(X \times F),$$

is an action by graph automorphisms on $X \times F$. Furthermore, if the action of Γ and Δ are of finite co-volume, so is the action of $\Gamma \times \Delta$ on $X \times F$.

Proof. The proof follows from the definitions. □

Theorem 3.3. Assume that (Γ, Δ) is a pair of ϕ-compatible actions. Also, assume that the actions are of finite co-volume. Then

$$\zeta_{X \times F, \Gamma \times \Delta}(z)^{-1} = (1 - z^2)^{-\chi^{(2)}(X \times F)} \det_{\Gamma \times \Delta} \left(I - \sum_{\gamma \in \text{Aut}(F)} (A^{X, (\phi, \gamma)}_\Delta \otimes P_\gamma + I_X \otimes A_F) z + Qz^2 \right),$$

$\chi^{(2)}$ is the Euler characteristic and Q is the diagonal operator with (x, i)-entry $\text{deg}(x) + \text{deg}(i) - 1$. Furthermore, the zeta function is holomorphic for $|z| < \frac{1}{k+d-1}$. If X is k regular and F d-regular, then $\zeta_{X \times F, \Gamma}(z)$ can be extended to a holomorphic function on Ω_{k+d-1}.

Proof. From [10], [11], we have

$$\zeta_{X \times F, \Gamma \times \Delta}(z)^{-1} = (1 - z^2)^{-\chi^{(2)}(X \times F)} \det_{\Gamma \times \Delta} \left(I - zA_{X \times F} + z^2Q_{X \times F} \right).$$

The theorem now follows immediately from Theorem 2.7. □

We will now use Theorem 3.3 to provide a decomposition for the zeta function of any infinite cover. Let $p : Y \to X$ be a cover with X finite and Y locally finite. Let $\text{Cov}(p) = \Gamma$. Now we define the function

$$\phi : E(X) \to \Gamma.$$

For this we write $X = \{x_1, \ldots, x_n\}$. For each i, choose $v_i \in Y$ such that $p(v_i) = x_i$. Now, since $p : N(v_i) \to N(x_i)$ is a bijection, for each $x_j \in N(x_i)$ there exists a unique $u_j \in N(v_i)$ such that $p(u_j) = x_j$. So, since $p(v_j) = x_j = p(u_j)$, there exists some $\gamma \in \Gamma$ such that $\gamma v_j = u_j$. Thus, define

$$\phi : E(X) \to \Gamma, \quad \phi(x_i x_j) = \gamma.$$

We then have the following:

Lemma 3.4. Let ϕ be defined as above. Then

1. The Γ action on Y is of finite co-volume and it is ϕ-compatible.
The map
\[\alpha : Y \to X \times \phi \Gamma, \quad \alpha(u) = (p(u), \beta) \]
is an isomorphism, where \(\beta u = v_i, \ p(u) = x_i = p(v_i) \).

Proof. The proof is folklore. \(\square \)

Now, in order to prove an analogue of 2.7 for \(Y \simeq X \times \phi \Gamma_1 \), we need to define the following operator: for \(\gamma_1, \gamma_2, \gamma \in \Gamma_1 \),

\[P_\gamma(\gamma_1, \gamma_2) = \begin{cases} 1, & \text{if } \gamma_2 = \gamma_1 \gamma \\ 0, & \text{otherwise} \end{cases} \]

Lemma 3.5. Let \(\phi \) be defined as above. Then
\[A_{X \times \phi \Gamma} = \sum_{\gamma \in \Gamma} A_{X_{(\phi, \gamma)}} \otimes P_\gamma, \]

Proof. The proof is analogous to that of 2.7. \(\square \)

The following theorem provides a decomposition for the zeta function of any infinite cover.

Theorem 3.6. With the above notation,
\[\zeta_{Y, \Gamma}(z)^{-1} = (1 - z^2)^{-\chi(X)} \det_\Gamma \left(I - \sum_{\gamma \in \Gamma} A_{X_{(\phi, \gamma)}} \otimes P_\gamma \right) z + Qz^2 \]
where \(Q \) is the diagonal operator with \((x, \gamma) \)-entry \(\deg(x) - 1 \). The function is holomorphic for \(|z| < \frac{1}{k-1} \). If \(Y \) is \(k \)-regular then \(\zeta_{Y, \Gamma}(z) \) is holomorphic on \(\Omega_{k-1} \).

Proof. This follows immediately from 3.3 and 3.4. \(\square \)

Let \(\{(X_n, w_n)_{n \in \mathbb{N}} \) be a sequence of finite \(k \)-regular marked graphs that strongly converges to the \(k \)-regular marked graph \((X, w) \). Let \(F \) be a finite \(d \)-regular graph. With the notation as in Theorem 2.15 we know that

We write \(a_n = |V(X_n)| \) and \(f = |F| \).

Corollary 3.7. With the above notation, for \(|z| < \frac{1}{k+d-1} \),
\[\zeta_{(X \times \phi \Gamma, (w, i))}(z)^{-1} = \]

\[= \lim_{n \to \infty} \left[(1 - z^2)^{-\chi(X_n \times \phi \Gamma, F)} \det \left(I - \sum_{\gamma \in \text{Aut}(F)} (A_{X_n_{(\phi, \gamma)}} \otimes P_\gamma + I_X \otimes A_F)z + Q_nz^2 \right) \right]^{\frac{1}{f_{\text{aut}}}} \]
\[= \left[(1 - z^2)^{-\chi(X \times \phi \Gamma, F)} \det_\Gamma \left(I - \sum_{\gamma \in \text{Aut}(F)} (A_{X_{(\phi, \gamma)}} \otimes P_\gamma + I_X \otimes A_F)z + Qz^2 \right) \right]^{\frac{1}{f_{\text{aut}}}} \]
\section*{4. APPLICATION}

Let \(p : Y \to X \) be a cover with \(\text{Cov}(p) = \Gamma \) and \(X \) a finite graph. Let \(F \) be a finite \(d \)-regular graph with \(n \) such that \(\text{Aut}(F) \) contains a the dihedral group \(D_{2n} \) of order \(2n \). Let \(\phi \) be an \(\text{Aut}(F) \)-voltage assignment on \(X \) whose image is contained into \(D_{2n} \) and \(\psi \) the induced \(\text{Aut}(F) \)-voltage assignment on \(Y \) (Theorem 2.6). By Theorem 2.6, the induced map

\[
\bar{p} : Y \times \psi F \to X \times \phi F, \quad \bar{p}(x, i) = (p(x), i)
\]

is a covering map. Also, \(\text{Cov}(\bar{p}) = \Gamma \).

The following is the setup (for the finite case this is the same as in [14] and [6]): set \(V(F) = \{1, 2, \ldots, n\} \) and \(S_n \) the symmetric group on \(V(F) \). Let \(a = (1\ 2\ \ldots\ n-1\ n) \) be an \(n \)-cycle and let

\[
b = \begin{cases}
(1\ n)(2\ n-1)\ldots\left(\frac{n-1}{2} \frac{n+3}{2}\right)\left(\frac{n+1}{2}\right) & \text{if } n \text{ is odd}, \\
(1\ n)(2\ n-1)\ldots\left(\frac{n}{2} \frac{n+2}{2}\right) & \text{if } n \text{ is even}
\end{cases}
\]

be a permutation in \(S_n \). The permutations \(a \) and \(b \) generate the dihedral subgroup \(D_n \) of \(S_n \):

\[
D_n = \langle a, b \mid a^n = b^2 = 1,\ bab = a^{-1} \rangle.
\]

Let \(\mu = \exp(2\pi i/n) \) and \(x_k = (1, \mu^k, \mu^{2k}, \ldots, \mu^{(n-1)k})^T \) be the column vector in \(\mathbb{C}^n \). Then 1, \(\mu \), \(\ldots \), \(\mu^{n-1} \) are the distinct eigenvalues of the permutation matrix \(P(a) \) and \(x_k \) is the eigenvector corresponding to the eigenvalue \(\mu^k \). Let \(P(b) \) be the permutation matrix of \(b \) and

\[
M = \begin{cases}
[x_0 \ P(b)x_1 \ x_2 \ P(b)x_2 \ldots \ x_{(n-1)/2} \ P(b)x_{(n-1)/2}] & \text{if } n \text{ is odd} \\
[x_0 \ P(b)x_1 \ x_2 \ P(b)x_2 \ldots \ x_{(n-2)/2} \ P(b)x_{(n-2)/2} \ x_{n/2}] & \text{if } n \text{ is even}
\end{cases}
\]

In [14], (also [6]) it was shown that \(P(b)x_k \) is an eigenvector of \(P(a) \) associated with the eigenvalue \(\mu^{n-k} \). Thus \(M \) is invertible. Also, \(P(a) \) and \(A_F \) commute and thus they are simultaneously diagonalizable. Also, \(x_k \) and \(P(b)x_k \) (\(1 \leq k \leq (n-1)/2 \) when \(n \) is odd and \(1 \leq k \leq (n-2)/2 \) when \(n \) is even) are eigenvectors of \(A_F \) with the same eigenvalue of \(P(b) \), denoted \(\lambda_{(F,k)} \). Also, \(x_0 \) is
the eigenvector of A_F corresponding to the eigenvalue d and, for n even, $\lambda_{(F,n/2)}$ is the eigenvalue associated to the eigenvector x_2. Then as in [14], using Theorem 2.7, we get that

$$(I_Y \otimes M)^{-1} A_{Y^\psi} (I_Y \otimes M) =$$

$$= \begin{cases} (A_Y + dI_Y) \oplus \left(\bigoplus_{i=1}^{(n-1)/2} (A_t + \lambda_{(F,t)} (I_Y \oplus I_Y)) \right) & \text{if } n \text{ is odd} \\ (A_Y + dI_Y) \oplus \left(\bigoplus_{i=1}^{(n-2)/2} (A_t + \lambda_{(F,t)} (I_Y \oplus I_Y)) \oplus (B + \lambda_{(F,n/2)} I_Y) \right) & \text{if } n \text{ is even} \end{cases}$$

where

$$B = \sum_{k=0}^{n-1} \left((-1)^k A(Y_{(\psi,a^k)}) + (-1)^{k+1} A(Y_{(\psi,a^k,b)}) \right),$$

and

$$A_t = \sum_{k=0}^{n-1} \begin{pmatrix} \mu^t A(Y_{(\psi,a^k)}) & \mu^t A(Y_{(\psi,a^k,b)}) \\ \mu^{(n-t)k} A(Y_{(\psi,a^k)}) & \mu^{(n-t)k} A(Y_{(\psi,a^k)}) \end{pmatrix}$$

Also, let $L_Y = (Q_Y + dI_Y) \otimes I_2$. Then the calculation in section 4 in [6] can be carried through in our setting and we get the following:

Theorem 4.1. Let $p : Y \to X$ be as above. Then

$$\zeta_{Y^\psi,X,F,\Gamma}(z)^{-1} = (1 - z^2)^{-\chi^{(2)(Y^\psi,F)}} f_{Y,F}(z) \prod_{i=1}^{(n-1)/2} g_{Y,F,i}(z)$$

when n is odd, and

$$\zeta_{Y^\psi,X,F,\Gamma}(z)^{-1} = (1 - z^2)^{-\chi^{(2)(Y^\psi,F)}} f_{X,F}(z) h_{Y,F}(z) \prod_{i=1}^{(n-2)/2} g_{Y,F,i}(z)$$

when n is even, where

1. $g_{Y,F,i}(z) = \det \left(Y \oplus I_Y - (A_t + \lambda_{(F,t)} (I_Y \oplus I_Y)) z + L_Y z^2 \right)$
2. $h_{Y,F}(z) = \det \left(Y - (B + \lambda_{(F,n/2)} I_Y) z + (Q_Y + dI_Y) z^2 \right)$
3. $f_{X,F}(z) = \det \left(Y - (A_Y + dI_Y) z + (Q_Y + dI_Y) z^2 \right)$

Proof. This follows by simple calculation from [6] with $\Delta = \{1\}$, and Theorem 9 of [4].

Let $\{(X_m, w_m)\}_{m \in \mathbb{N}}$ be a sequence of finite regular graphs that strongly converges to (X, w). Let F be a finite d-regular with n vertices such that $\mathrm{Aut}(F)$ contains D_{2n}. Let ϕ be an $\mathrm{Aut}(F)$-voltage assignment on X_1 whose image is contained in D_{2n}. Let ϕ_n be the induced $\mathrm{Aut}(F)$-voltage on X_m and ψ be the induced $\mathrm{Aut}(F)$-voltage assignment on X. Set

$$\Gamma = \mathrm{Cov}(X \to X_1), \quad \Delta_m = \mathrm{Cov}(X_m \to X_1), \quad m \in \mathbb{N}.$$

Corollary 4.2. Let $a_m = |V(X_m)|$. With the above notation,
(1) If n is odd:

$$
\zeta_{X \times \psi F, \Gamma}(z)^{-1} = \zeta_{(X \times \psi F, (w,i))}(z)^{-a_1} = \lim_{m \to \infty} \left((1 - z^2)^{-\chi(X_m \times \psi F)} f_{X_m, F}(z) \prod_{t=1}^{(n-1)/2} g_{X_m, F, t}(z) \right) \frac{a_1}{a_m}.
$$

(2) If n is even

$$
\zeta_{X \times \psi F, \Gamma}(z)^{-1} = \zeta_{(X \times \psi F, (w,i))}(z)^{-a_1} = \lim_{m \to \infty} \left((1 - z^2)^{-\chi(X_m \times \psi F)} f_{X_m, F}(z) h_{X_m, F}(z) \prod_{t=1}^{(n-1)/2} g_{X_m, F, t}(z) \right) \frac{a_1}{a_m}.
$$

Proof. It follows from Theorem 2.12, Theorem 2.15 and Theorem 4.1. □

In some cases, we can get a better description of the functions appearing in the expression for the zeta function of the limit. Assume that all the graphs $X_m, m \in \mathbb{N}$, and X are p-regular. Following [8], for each $m \in \mathbb{N}$ set:

$$
\sigma_m = \sum \frac{\delta_{\lambda_i(X_m)}}{a_m}
$$

where $\lambda_i(X_m)$ are the eigenvalues of the Markov operator $(1/k)A_{X_m}$ on X_m and δ_x is the Dirac function. The sequence $\{\sigma_m\}_{m \in \mathbb{N}}$ weakly converges to the spectral measure σ associated to the Markov operator $(1/k)A_X$. Using the calculation of Section 5 in [8] and Corollary 2.13, we get:

$$
\ln f_{X,F}(z) = \ln \det (I_Y - (A_Y + dI_Y) z + (Q_Y + dI_Y) z^2)
$$

$$
= \lim_{m \to \infty} \frac{1}{a_m} \ln \det (I_{X_m} - (A_{X_m} + dI_{X_m}) z + (Q_{X_m} + dI_{X_m}) z^2)
$$

$$
= \lim_{m \to \infty} \int_{-1}^{1} \ln (1 - (p\lambda + d)z + (p - 1 + d)z^2) \, d\sigma_m(\lambda)
$$

$$
= \int_{-1}^{1} \ln (1 - (p\lambda + d)z + (p - 1 + d)z^2) \, d\sigma(\lambda)
$$

where σ is the spectral measure associated to $(1/p)A_X$.

Summarizing:

Corollary 4.3. With the above notation,

$$
\ln f_{X,F}(z) = \int_{-1}^{1} \ln (1 - (p\lambda + d)z + (p - 1 + d)z^2) \, d\sigma(\lambda), \text{ for } |z| < \frac{1}{p + d - 1},
$$

where σ is the spectral measure associated to the regular random walk on X.

We give a specific example. The same method works for any group for which the spectral measure is known. Let Γ be the Grigorchuk group ([1], [5], [7], [8]). Then Γ can be represented as a subgroup of automorphisms of the rooted binary tree. Let $P = \text{St}(1^\infty)$ be the stabilizer of the
infinite sequence of 1’s. Let P_m be the stabilizer of all the elements that start with m 1’s and it has finite index in Γ. Then

$$P = \bigcup_{m=1}^{\infty} P_m.$$

If $S = \{a, b, c, d\}$ be the standard set of generators of Γ, then the Schreier graphs $\{S_m = S(\Gamma, P_m, S)\}_{m \in \mathbb{N}}$ converge to $S = S(\Gamma, P, S)$. All the graphs have as the base point the identity coset. Then in S, Corollary 9.2, we have that

$$\ln \zeta_{S,P}(z) = -3 \ln(1 - z^2) - \int_{-1/2}^{1/2} \frac{(1 - 8xz + 7z^2) |1 - 4x|}{2\pi \sqrt{x(2x - 1)(2x + 1)(1 - x)}} dx$$

Let F be a d-regular graph as in the beginning of the section and ϕ an Aut(F)-voltage assignment whose image lies into D_{2n}. Combining Theorem 4.1 and Corollary 4.3 we get.

Theorem 4.4. With the above notation, let ψ be the Aut(F)-voltage assignment on S and $R = P_1/P$. Then

$$\ln \zeta_{S \times \psi F, (P, i)}(z) = \frac{1}{da_1} \left[-\chi(2)(S \times \phi) \ln(1 - z^2) + \text{Indet}_R \left(I - \sum_{\gamma \in \text{Aut}(F)} (A(S(\psi, \gamma)) \otimes P + I_S \otimes A_F) z + Qz^2 \right) \right]$$

Furthermore,

$$\zeta_{S \times \psi F, (P, i)}(z) = (1 - z^2)^{-\chi(2)(S \times \psi F)} f_{S, F}(z) \prod_{t=1}^{(n-1)/2} g_{S, F, t}(z)$$

when n is odd, and

$$\zeta_{S \times \psi F, (P, i)}(z) = (1 - z^2)^{-\chi(2)(S \times \psi F)} f_{X, F}(z) h_{S, F}(z) \prod_{t=1}^{(n-2)/2} g_{S, F, t}(z)$$

when n is even, where g and h are as in Theorem 4.1 and

$$\ln f_{S, F}(z) = \int_{-1/2}^{0} \frac{\ln(1 - (8x + d)z + (7 + d)z^2) |1 - 4x|}{2\pi \sqrt{x(2x - 1)(2x + 1)(1 - x)}} dx + \int_{1/2}^{1} \frac{\ln(1 - (8x + d)z + (7 + d)z^2) |1 - 4x|}{2\pi \sqrt{x(2x - 1)(2x + 1)(1 - x)}} dx$$

REFERENCES

[1] L. Bartholdi, R. I. Grigorchuk, *On the spectrum of Hecke type operators related to some fractal groups*, Proc. Steklov Inst. Math., 231 (2000), 1–41.

[2] H. Bass, *The Ihara–Selberg zeta function of a tree lattice*, Internat. J. Math. 3 (1992), 717–797.

[3] B. Clair, S. Mokhtari-Sharghi, *Zeta functions of discrete groups acting on trees*, J. Algebra 237 (2001), 591–430.

[4] B. Clair, S. Mokhtari-Sharghi, *Convergence of zeta functions of graphs*, Proc. Amer. Math. Soc. 130 (2002), 1881–1886.
[5] P. de la Harpe, *Topics in geometric group theory*, Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL, 2000.

[6] R. Feng, J. Kwak, K. Kim, *Zeta functions of graph bundles*, preprint.

[7] R. I. Grigorchuk, V. V. Nekrashevich, V. I. Sushchanskiĭ, *Automata, dynamical systems, and groups*, Proc. Steklov Inst. Math., 231 (2000), 128–203.

[8] R. Grigorchuk, A. Žuk, *The Ihara zeta function of infinite graphs, the KNS spectral measure and integrable maps*, in: “Random Walks and Geometry”, Proc. Workshop (Vienna 2001), V. A. Kaimanovich et al., eds., de Gruyter, Berlin 2004, 141–180.

[9] R. Grigorchuk, A. Žuk, *On the asymptotic spectrum of random walks on infinite families of graphs*, Random walks and discrete potential theory (Cortona, 1997), 188–204, Sympos. Math., XXXIX, Cambridge Univ. Press, Cambridge, 1999.

[10] D. Guido, T. Isola, M. L. Lapidus, *Ihara zeta functions for periodic simple graphs*, arXiv:math.OA/0605753 May 2006.

[11] D. Guido, T. Isola, M. L. Lapidus, *Ihara zeta functions for periodic simple graphs and its approximation in the amenable case*, arXiv:math.OA/0608229 August 2006.

[12] D. Guido, T. Isola, M. L. Lapidus, *A trace on fractal graphs and the Ihara zeta function*, arXiv:math.OA/0608060 August 2006.

[13] Y. Ihara, *On discrete subgroups of the two by two projective linear group over p-adic fields*, J. Math. Soc. Japan 18 (1966), 219–235.

[14] J. H. Kwak, Y. S. Kwon, *Characteristic polynomials of graph bundles having voltages in a dihedral group*, Linear Algebra Appl. 336 (2001), 99–118.

[15] J. H. Kwak, J. Lee, *Characteristic polynomials of some graph bundles II*, Linear and Multilinear Algebra 32 (1992), 61–73.

[16] A. Lubotzky, *Discrete Groups, Expander Graphs and Invariant Measures*

[17] J.-P. Serre, *Répartitions asymptotique des valeurs propres de l’opérateur de Hecke T_p*, J. Amer. Math. Soc. 10 (1997), 75–102.

[18] H. M. Stark, A. A. Terras, *Zeta functions of finite graphs and coverings*, Adv. Math. 121 (1996), 126–165.

[19] H. M. Stark, A. A. Terras, *Zeta functions of finite graphs and coverings II*, Adv. Math. 154 (2000), 132–195.

[20] H. M. Stark, A. A. Terras, *Zeta functions of finite graphs and coverings III*, Adv. Math.

Department of Mathematics, Vanderbilt University, Nashville, TN 37240

E-mail address: samuel.d.cooper@vanderbilt.edu

Department of Mathematics Canisius College, Buffalo, NY 14208

E-mail address: prasside@canisius.edu