Potential interactions of prescription and over-the-counter medications having antioxidant capabilities with radiation and chemotherapy

Walter Lemmo

LEMMO Integrated Cancer Care Inc., Vancouver, Canada

Oncology patients undergoing radiation treatment and chemotherapy routinely use prescription and/or over-the-counter medications either as part of pre-existing comorbid conditions or in the context of conventional treatment management. A growing amount of data suggest that commonly used pharmaceuticals possess antioxidant properties, which may also partially explain some of their therapeutic efficacy. Clinical research is continuing on how such agents interact during chemotherapy and radiation when oxidative mechanisms of action are involved. Historically, such discussions centered on the category of dietary supplements, natural health products, fruits and vegetables, along with established protectant medications. Evidence confirms that some pharmaceutical agents exhibit antioxidant properties similar to dietary supplements, protectants, and may hence hinder the efficacy of chemotherapy and radiation treatment. Awareness by both healthcare providers and patients in this area is often lacking. After reviewing some of the more common and well-established pharmaceuticals, which include those prescribed during cancer treatment, caution needs to be advised especially in regards to the use of corticosteroids, as long-term randomized outcome studies ensuring safety in this area are still outstanding.

Antioxidants in the context of oncology primarily comprise dietary supplements, natural health products, and certain fruits and vegetables. For many years, the potential impeding effect of such antioxidants on treatment success and their interaction with various chemotherapeutic agents with suspected oxidative methods of action and in combination with radiation therapy have been the subject of a controversial discussion within the medical community.1-3

Well-established medications known as protectants, in particular those with reported antioxidant properties, are incorporated into conventional treatment protocols to help preserve cardiac and renal tissues; recommended guidelines are in place.4,5 For example, the updated American Society of Clinical Oncology 2008 Clinical Practice Guideline on the use of chemotherapy and radiation therapy protectants states:

“Dexrazoxane is not recommended for routine use in breast cancer in adjuvant setting, or metastatic setting with initial doxorubicin-based chemotherapy. Amifostine may be considered for prevention of cisplatin-associated nephrotoxicity, reduction of grade 3 to 4 neutropenia (alternative strategies are reasonable), and to decrease acute and late xerostomia with fractionated radiation therapy alone for head and neck cancer. It is not recommended for protection against thrombocytopenia, prevention of platinum-associated neurotoxicity or ototoxicity or paclitaxel-associated neuropathy, prevention of radiation therapy-associated mucositis in head and neck cancer, or prevention of esophagitis during concurrent chemo-radiation therapy for non-small-cell lung cancer.”

Outside the area of oncology, an increasing number of publications supports the opinion that commonly used pharmaceuticals may provide a therapeutic benefit partially based on their antioxidant properties.6-39 Accordingly, oncology patients with co-morbid conditions frequently incorporate such pharmaceuticals into their treatment. In oncology-managed care protocols certain medications are solely prescribed as a direct consequence of the oncologic diagnosis and are incorporated for symptom and therapeutic

Key words: antioxidant, chemotherapy, radiation

Abbreviations: ACE: angiotensin-converting enzyme; BAX: BCL-2-associated X protein; BCCAO: bilateral common carotid artery occlusion; BCL-2: B-cell lymphoma-2; COX-2: cyclooxygenase-2; DOX: doxorubicin; 5-FU: 5-fluorouracil; GSH: glutathione; H1 H2: histamine receptors 1,2; LPO: lipid peroxidase; MESNA: 2-mercaptoethane sulfonate Na; MPO: myeloperoxidase; NAC: N-acetylcysteine; NFκB: Nuclear factor kappa beta; NO: nitrogen oxide; NSAID: nonsteroidal anti-inflammatory drug; OH: hydroxyl; PDE-5: phosphodiesterase-5; ROS: reactive oxygen species; SNRI: serotonin and norepinephrine reuptake inhibitor; SOD: superoxide dismutase; SSRI: selective serotonin reuptake inhibitor

This is an open access article under the terms of the Creative Commons Attribution NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

DOI: 10.1002/ijc.29208

History: Received 20 May 2014; Accepted 12 Aug 2014; Online 13 Sep 2014

Correspondence to: Walter Lemmo, ND, FABNO, LEMMO Integrated Cancer Care Inc., 327 Renfrew Street, Vancouver, British Columbia, Canada V5K 5G5, Tel.: (604)–428–1991, Fax: (604)–428–1992, E-mail: walter@lemmo.com

Int. J. Cancer: 137, 2525–2533 (2015) © 2014 The Authors. Published by Wiley Periodicals, Inc. on behalf of UICC
management (i.e. nausea, insomnia, pain, allergy, etc). Evaluations on how such medications interact with chemotherapy and/or radiation, in particular from an antioxidant perspective, are fragmentary.

Reviewing the vast number of publications in this area of clinical research, there is evidence for concern as some widely used medications may actually possess similar antioxidant capabilities as conventional protectants or dietary supplements and natural health products. The following briefly highlights some prevalent examples for such medications, their mechanisms of interaction and clinical significance.

Carvedilol, a nonselective beta-adrenergic receptor antagonist, protects against cardiac and hepatic mitochondrial bioenergetic dysfunction associated with sub-chronic doxorubicin toxicity. Protective effects of carvedilol against doxorubicin-induced mitochondrial cardiotoxicity, however, are due to its inherent antioxidant activity and not to its beta-adrenergic receptor antagonism. Carvedilol also prevents mitochondrial dysfunction and renal cell death through protection against oxidative stress and redox state unbalances induced by cisplatin.

Captopril, an angiotensin-converting enzyme inhibitor and organosulfur (thiol) compound, protects SA-NH sarcoma cells when present during irradiation. This effect was comparable to amifostine’s free thiol WR-1065. When WR-1065, captopril, mesna and N-acetyl-cysteine were used 24 h prior to irradiation with 2 Gy, all four thiol-based medications were found to be protective of the cancer. Amifostine inhibits doxorubicin-induced reactive oxygen species generator and nuclear factor kappa beta transcription activation. Amifostine showed the same effects as the antioxidant N-acetylcysteine on doxorubicin-induced reactive oxygen species generation, caspase-3 activation and mitochondrial cytochrome c release and changes in Bax and Bcl-2 protein expression.

Neuroleptic drugs of the phenothiazine group (e.g. chlorpromazine, prochlorperazine, metotrimeprazine) are very powerful scavengers of hydroxyl, peroxyl and other radicals (e.g. OH, O₂⁻, ROO⁻, NO). They inhibit iron ion-dependent liposomal lipid peroxidation. The radioprotective effect of chlorpromazine is enhanced significantly in the presence of Fe³⁺. Glucocorticoids have been shown to decrease xenograft response to paclitaxel through inhibition of tumor cell apoptosis in addition to protecting cardiomyocytes from doxorubicin induced oxidative damage.

In this work we summarily review the literature on prescription and over-the-counter medications with antioxidant properties and their proposed mechanism of action. Dexrazoxane has been shown to restore the plasma antioxidant activity assessed in vitro, expressed in total oxyradical scavenging capacity, following anthracycline-containing chemotherapy. Dexrazoxane is believed to be protective by preventing oxidative damage via its iron chelation properties. Several non-steroidal anti-inflammatory drugs, bisphosphonates, histamine receptor 1,2 antagonists, and phenothiazines possess iron-chelation properties. Celebrex has been shown to both antagonize the cytotoxicity of cisplatin and also protect the kidney against cisplatin-induced nephrotoxicity independent of cyclooxygenase-2 expression.

Protectants containing organosulfur groups (i.e. mesna, amifostine) act as potent reducing agents, which easily donate electrons to oxidative elements. As previously stated, captopril, an organosulfur-containing medication with a thiol structure, behaves similarly to amifostine and mesna in response to irradiation.

The Use of Corticosteroids in Oncology

The widespread use of glucocorticoids, which have antioxidant properties, in standard oncology, and in particular in the treatment of solid mass tumors along with chemotherapy and/or radiation is concerning.

The protective effect of glucocorticoids on the tissue of solid tumors has been reported. In particular, Zhang et al. have published extensive studies on glucocorticoid-induced resistance in combination with cytotoxic drugs and radiation. They investigated the effect of dexamethasone, prednisone, hydrocortisone and betamethasone in combination with a number of chemotherapeutic agents (cisplatin, etoposide, cytarabine, gemcitabine, methotrexate, 5-fluouracil, paclitaxel) as well as gamma-radiation and found that 89% of 157 tumor samples analyzed exhibited resistance at clinically

Table 1. Protectants

Protectants	Proposed antioxidant mechanism of action	Refs.
Amifostine	ROS via Thiol (Organosulfur)	57–65
Dexrazoxane	ROS/Iron Chelation	66–69
Mesna/Mesenex/Uromitexan	ROS via Organosulfur compound	45,70,71

Mechanisms. For example, a substance can directly quench the generation of reactive oxygen species, or impede oxidative mechanisms at the cellular level. Indirectly, an agent can trigger or stimulate a cascade of events through the cellular defenses and network. For example, metformin has been shown to restore the antioxidant profile in human subjects with diabetes mellitus, which includes increasing thiol pools.

Table 1 highlights some commonly used protectants. Table 2 lists a selection of prescription and over-the-counter medications with antioxidant properties and their proposed mechanism of action.

Protectants, Medications and Mechanisms of Action

The term “antioxidant” is an over-simplification as an agent may act by direct or more complex indirect biochemical mechanisms.
Medication (prescription or over-the-counter)	Proposed antioxidant mechanism of action	Stimulus, chemotherapy, radiation	Study model/tissue type	Outcome	Refs.
ACE inhibitors: organosulfur compounds (captopril); lisinopril	Thiol (similar to protectants); LPO; increasing SOD	2-Gy Irradiation	Human SA-NH Sarcoma (in vitro); Human (hypertensive)	Cancer protective; erythropoietic; cardioprotective	40,72–74
Analgesics: opioids (morphine); acetylsalicylic acid; NSAIDs (celecoxib, diclofenac, ibuprofen, flurbiprofen, fenoprofen, fenbufen, ketoprofen, naprofen, indoprofen, nimesulide, indomethacin, aspirin)	Iron Chelation and COX inhibition, LPO, OH scavenger	Cisplatin; doxorubicin	Rats	Nephroprotective	48,75–82
Antidiabetics: (metformin); sulfonylureas (glibenclamide)	ROS scavenger, increasing SOD	Doxorubicin	Rat	Cardioprotective; Nephroprotective; Hepatoprotective pancreas—protective	83–88
Antiepileptics (levetiracetam)	NO	Lipopolysaccharide; glutamate	Mouse; rat (in vitro)	Neuroprotective	89–91
Antipsychotics (quetiapine, olanzapine)	ROS scavenger; OH scavenger	Amyloid β(25–35)	Human; mouse	Neuroprotective	35,36
Beta-blockers (carvedilol)	ROS Scavenger	Doxorubicin; cisplatin	Human	Cardioprotective; nephroprotective	6
Bisphosphonates (clodronate, pamidronate, resorionate)	Iron chelation; NO	Peroxide	Human chondrocytes (in vitro); human leukocytes (in vitro)	Reduced cartilage degeneration; antiinflammatory	20,92
Diuretics: thiazides (spironolactone, hydrochlorothiazide)	Thiol (Organosulfur)	n/a	Human (hypertensive)	Renovascular protective	7
H1 blockers (diphenhydramine)	Iron chelation and OH quenching, LPO	Peroxide	Rat liver, brain, gastric mucose (in vitro)	Hepatoprotective; neuroprotective	93
H2 blockers (cimetidine, famotidine, ranitidine)	Iron Chelation and OH quenching, LPO	Carbon tetrachloride; peroxide	Rat liver and brain (in vitro)	Hepatoprotective; gastroprotective	14,94
Neuroleptics: phenothiazines (chlorpromazine, prochlorperazine, methotrimeprazine); metoclopramide	OH scavenger; ROS scavenger; iron chelation	Peroxide; hydrochlorous acid; cytochrome c	Rat; various in vitro assays	Hepatoprotective; neuroprotective	39,49,95
Nonbenzodiazepine hypnotics (zolpidem, zopiclone)	ROS scavenger	Peroxide	Rat liver and brain (in vitro)	Neuroprotective	15,96,97
Medication (prescription or over-the-counter)	Proposed antioxidant mechanism of action	Stimulus, chemotherapy, radiation	Study model/tissue type	Outcome	Refs.
---	--	---------------------------------	------------------------	---------	-------
PDE-5 inhibitors (sildenafil, tadalafil)	Increasing GSH, decreasing MPO and LPO activation, Increasing SOD	Doxorubicin	Mouse	Cardioprotective; nephroprotective	98–100
Proton pump inhibitors (omeprazole, lansoprazole)	OH scavenger	Indomethacin	Rat	Gastroprotective	101
SNRIs (venlafaxine)	NO	BCCAO	Mouse	Protection against ischemia reperfusion induced brain damage, mitochondrial dysfunction	102–104
SSRI (fluoxetine, sertraline)	ROS Scavenger	Thioacetamide	Rat (in vitro)	Neuroprotective; hepato protective	104,105
Statins (simvastatin, atorvastatin)	ROS Scavenger	Anthracycline	Human (breast cancer)	Cardioprotective; hepato protective; renal protective	12,106–108
Tetracyclic antidepressants (trazodone, mirtazapine)	ROS Scavenger	Indomethacin	Rat; mouse (chronic fatigue syndrome)	Neuroprotective; gastroprotective	102,103, 109,110
Tricyclic antidepressants (amitryptiline, desipramine, imipramine)	Increasing SOD	Peroxides	Rat (in vitro)	Neuroprotective	33,102, 104,111
Xanthine oxidase inhibitors (allopurinol)	ROS Scavenger	Carbon tetrachloride, 5-FU	Rat; human colon carcinoma (in vitro)	Hepatoprotective; cancer protective	112,113
achievable peak plasma levels of patients under anti-emetic glucocorticoid therapy. Other studies have demonstrated complete blocking effects. Furthermore, evidence also suggests that the negative effects of dexamethasone continue up to 1 week following the last administered dose in one study and up to several weeks in another. To our knowledge, these findings have not been validated in human prospective trials for solid mass tumors which includes from an antioxidant perspective.

In humans, glucocorticoids have been correlated with increased metastasis in breast cancer treatment and worse survival using more than 4 mg of dexamethasone in glioblastoma multiforme at the end of radiation. In contrast, Münstedt et al. reported that there was no evidence that glucocorticoid treatment had a negative effect on outcome in patients with ovarian cancer. The data is preliminary and needs further exploration.

The method of action of glucocorticoids on chemotherapeutic agents and radiation appears complex. In regards to antioxidant capabilities, dexamethasone has been shown to decrease DNA fragmentation caused by oxidative mechanisms and some data indicates comparable activity to several well-known antioxidant vitamins, which include vitamins A, C, E and coenzyme Q10. Glucocorticoids may increase antioxidant enzymes such as superoxide dismutase due to enzymatic induction mechanisms, just as reported for amifostine, along with other complex immune system and receptor signaling pathways, which include nuclear factor kappa beta inhibition.

To our knowledge, the antioxidant potential of dexamethasone has largely been excluded from the discussion on glucocorticoid-induced chemotherapy and radiation resistance, although, in our opinion, some results reported in the literature could also be explained by antioxidant properties of glucocorticoids.

Adjustments in corticosteroid dosing and frequency have not been explored clinically to assess potential hindrance in patients including those in the neoadjuvant and palliative care setting, where a potential for response may be more easily quantified in the short term. Moreover, there may be a need for dose adjustments at least 1 week prior to receiving chemotherapy and radiation treatment. In vitro/animal studies focusing on the timing of incorporating such agents alongside chemotherapy have been conducted, but again human trials are lacking.

Table 3 lists some of the published literature demonstrating the protective effects of glucocorticoids used with chemotherapy and radiation in various cell and tissue models.

Discussion and Recommendations

Preliminary data suggest that some prescription medications with known antioxidant properties used in patients to treat comorbid conditions may not hinder the efficacy of chemotherapy or radiation treatment and actually augment positive response in some malignancies. For example, patients with diabetes mellitus who are known to present with abnormal or excessive oxidative biomarkers and using the antioxidant medication metformin could be a population group which may be acceptable during chemotherapy and radiation. However, clinical data remain incomplete, and an in depth investigation into the timing/dosing of such medication should be

Table 3. Protective effect of glucocorticoids on human tumor cells

Cell type or tissue	Treatment	Chemotherapy/radiation	Refs.
Cervix carcinoma	Dexamethasone, prednisone, hydrocortisone, betamethasone	Radiation, cytarabine, cisplatin, gemcitabine, 5-fluorouracil, methotrexate, paclitaxel, etoposide	117,136
Lung cancer	Prednisone, dexamethasone	Gemcitabine, cisplatin	137–139
Glioma, glioblastoma, astrocytoma, medulloblastoma	Dexamethasone	Cisplatin, gemcitabine, staurosporine, temozolomide	117,123,136, 140–142
Breast cancer, ovarian cancer	Dexamethasone	Paclitaxel, cisplatin, 5-fluorouracil, gemcitabine, epirubicin, cyclophosphamide	50,117,118, 134,143,144
Prostate cancer, urological carcinomas	Dexamethasone	Paclitaxel, gemcitabine, cisplatin, 5-fluorouracil, radiation	117,136,145
Hepatocellular carcinoma	Dexamethasone	Cisplatin	117,116
Pancreatic cancer	Dexamethasone	Cisplatin, gemcitabine	117
Melanoma	Dexamethasone	Cisplatin	117
Colorectal tumor cells	Dexamethasone	5-fluorouracil	117
Neuroblastoma	Dexamethasone	Cisplatin, 5-fluorouracil	117
Osteosarcoma	Dexamethasone	Cisplatin	117
conducted to assess any potential adverse effect on treatment. Prospective randomized trials would be ideal.

No specific standard exists in assessing antioxidant capabilities. A reliable protocol needs to be created to screen for potential antioxidant-possessing pharmaceuticals used along with reactive oxygen species induced chemotherapy and radiation. Consideration should be given to both in vitro and in vivo models to examine the broad-based mechanisms that create an antioxidant effect. One proposal suggested the use of known antioxidant-based protectant medications as a comparative standard when developing a test model. Several assays exist to explore the antioxidant capabilities of natural health products and dietary supplements via direct and indirect mechanisms.\(^{148–150}\) The same should be established for pharmaceutical agents.

All medications and over-the-counter drugs that contain organosulfur compounds in any chemical configuration should generally be viewed as possessing antioxidant capabilities under physiological conditions, especially those with a thiol structure. Iron chelators should be classified in the same category.

All glucocorticoids need to be utilized with the understanding of caution and employed conservatively along with chemotherapy and radiation whenever possible. Alternate strategies should be encouraged.\(^{151}\) For example, Zhang et al. reported that unlike glucocorticoids the anti-emetic agents aprepitant and granisetron did not hinder cytotoxic therapy with cisplatin in vitro.\(^{117}\) We are not aware of any reports on potential antioxidant effects of these compounds.

Medications that are new, missed from this review, or have not been evaluated for antioxidant capabilities should be regarded as a potential antioxidants unless proven otherwise.

Conclusion

Physicians are expected to abide by one fundamental principle of medicine—“primum non nocere” or “first, do no harm”. In oncology, global efforts are underway to find new and better medicines as well as new protocols and combination treatments with reduced risks and side-effects. It would be unfortunate if it were eventually proven that commonly used supportive medications or those used to assist in comorbid conditions impede an optimal treatment response in the oncology patient while attempting to reach improved life quality and/or enhanced overall survival.

Ultimately, unless clear evidence is available that the benefits of such medications outweigh the potential risk, prescription and over-the-counter medications with established or suspected antioxidant properties should be used with caution and especially if this area continues to be a point of contention by the oncology community. If and when possible considerations which include dose reductions, creative cyclical breaks, or even complete avoidance may be appropriate steps to explore with antioxidant medications used alongside chemotherapy and radiation.

References

1. Lawenda BD, Kelly KM, Ladas EJ, et al. Should supplemental antioxidant administration be avoided during chemotherapy and radiation therapy? J Natl Cancer Inst 2008;100: 773–83.

2. Nakayama A, Alladin KP, Igbokele O, et al. Systematic review: generating evidence-based guidelines on the concurrent use of dietary antioxidants and chemotherapy or radiotherapy. Cancer Invest 2011; 29:655–67.

3. Prasad KN, Cole WC, Kumar B, et al. Pros and cons of antioxidant use during radiation therapy. Cancer Treat Rev 2002;28:79–91.

4. Hensley ML, Hagerty KL, Kewalramani T, et al. American Society of Clinical Oncology 2008 clinical practice guideline update: use of chemotherapy and radiation therapy protectants. J Clin Oncol 2009;27:127–45.

5. Nicolatou-Galitis O, Sarri T, Bowen J, et al. Antioxidant activity and neuroprotective effects of zolpidem and several synthesis intermediates. J Clin Pharmacol 2010;50:180–7.

6. Dandona P, Ghanim H, Brooks DP. Antioxidant effects of thiazide diuretics in refractory hypertensive patients. A randomized crossover trial of chlorothalidone and trichlormethiazide. Arzneimittel-Forschung 2010; 60:612–16.

7. Chakraborty A, Chowdury S, Bhattacharyya M. Effect of metformin on oxidative stress, nitrosative stress and inflammatory biomarkers in type 2 diabetes patients. Diabetes Res Clin Pract 2011; 93:56–62.

8. Pichota-Polanczyk A, Goraca A, Demyanets S, et al. Simvastatin decreases free radicals formation in the human abdominal aortic aneurysm wall via NK-KB. Eur J Vasc Endovasc Surg 2012; 44:133–7.

9. Buyukhatipodglu H, Sezen Y, Yildir A, et al. Effects of statin use on total oxidant and antioxidant capacity and ceruloplasmin activity. Clin Invest Med 2010;33:E313–20.

10. Zovko Koncic M, Rajic Z, Petric N, et al. Antioxidant activity of NSAID hydroxyacids. Acta Pharm 2009;59:235–42.

11. Kaminsky Y, Suslikov A, Kosenk E. Specific and pronounced impacts of lisinopril and lisinopril plus simvastatin on erythrocyte antioxidant enzymes. J Clin Pharmacol 2010;50:180–7.

12. Gomes A, Costa D, Lima JFPC, et al. Antioxidant activity of beta-blockers: an effect mediated by scavenging reactive oxygen and nitrogen species? Bioorg Med Chem 2006; 14: 4568–77.

13. Ahmadi A, Ebrahimzadeh MA, Ahmad-Ashrafi S, et al. Hepatoprotective, antiinflammatory and antioxidant activities of cimetine, ranitidine and famotidine as histamine H receptor antagonists. Fundam Clin Pharmacol 2011;25: 72–9.

14. Garcia-Santos G, Herrera F, Martin V, et al. Antioxidant activity and neuroprotective effects of zopolpidem and several synthesis intermediates. Free Radic Res 2004; 38:1289–99.
23. Sadir S, Deveci S, Korkmaz A, et al. Alpha-tocopherol versus beta-carotene and melatonin administra-
tion protect cyclophosphamide-induced oxidative damage to bladder tissue. Cell Biochem Funct 2007;25:521–6.
24. Terra X, Valls J, Vitrac X, et al. Grape seed pro-
cyandins act as anti-inflammatory agents in endometrium-stimulated RAW 264.7 macrophages by inhibiting NFKB signaling pathway. J Agric Food Chem 2007;55:4357–65.
25. Khanna HD, Sinha MK, Khanna S, et al. Oxida-
tive stress in hypertension: association with anti-
hypertensive treatment. Indian J Physiol Pharmacol 2008;52:283–7.
26. Ceron CS, Castro MM, Rizzi E, et al. Spirinolac-
tone and hydrochlorothiazide exert antioxid-
ant effects and reduce vascular matrix metalloproteinase-2 activity and expression in a model of renovascular hypertension. Br J Phar-
col 2010;160:77–87.
27. Sharma M, Rai K, Sharma SS, et al. Effect of antioxid-
ants on pyrogallol-induced delay in gas-
tric emptying in rats. Pharmacology 2000;60:90–6.
28. Rice ME. Ascorbate regulation and its neuropro-
tective role in the brain. Trends Neurosci 2000; 23:209–16.
29. Türtür H, Cirikli H, Kilinc M, et al. Effects of early administration of dextroseamine, N-ac-
tetylcysteine and aprotinin on inflammatory and oxidative-antioxidant status after lung contusion in rats. Injury 2009;40:521–7.
30. Miller SL, Wallace EM, Walker DW. Antioxi-
dant therapies: a potential role in perinatal med-
cine. Neuroendocrinology 2012;96:113–23.
31. Ormaz L, Kafievskaio GI. Effects of antioxidant drugs on glaucoma surgery, an acute dehiscence and some antioxidant enzymes. Pharmacol Res 2004;50:499–504.
32. Huo X, Song J, Li XN, et al. Metformin and amifos-
tine protect cyclophosphamide-induced bladder tissue. Cell Biochem Funct 2010;28:14–19.
33. Vircheva S, Deveci S, Korkmaz A, et al. Alpha-tocopherol versus beta-carotene and melatonin adminis-
tration protect cyclophosphamide-induced oxidative damage to bladder tissue. Cell Biochem Funct 2007;25:521–6.
34. Huo X, Song J, Li XN, et al. Metformin protects mice bone marrow cells against genotoxicity induced by gamma radiation. Cell Biochem Funct 2007;25:389–94.
35. Morin J, Li WQ, Su S, et al. Induction of strom-
elysin gene expression by tumor necrosis factor-
alpha is inhibited by dexamethasone, salicylate, and N-acetylcystein in synovial fibro-
blasts. J Pharmacol Exp Therapeutics 1999:289: 1634–40.
36. Oliveira P, Bjork JA, Santos MS, et al. Carvedilol-mediated antioxidant protection against doxorubicin-induced cardiac mothion-
drial toxicity. Toxicol Appl Pharmaco 2004;200:159–68.
37. Spallazz P, Garabelli S, Alipieri P, et al. Carve-
diol prevents doxorubicin-induced free radical release and apoptosis in cardiomyocytes in vitro. J Mol Cell Cardiol 2004;37:837–46.
38. Carvalho Rodrigues MA, Rodrigues JL, Martins NM, et al. Carvedilol protects against cisplatin-
educed oxidative stress. Redox state imbalance and apoptosis in rat kidney mitochondria. Chem. Biol Interact 2011; 189:45–51.
39. Munschii NC, Loeher PJ, Williams SD, et al. Comparison of N-acetylcysteine and mesna as uroprotectors with ifosfamide combination chemotherapy in refractory germ cell tumors. Invest New Drugs 1992;10:159–63.
40. Murley JS, Kataoka Y, Cao D, et al. Delayed radioprotection by NFkB-mediated induction of Sod2 (MnSOD) in SA-N1 tumor cells after exposure to clinically used thiold-containing drugs. Radiat Res 2004;162:536–46.
41. Murley JS, Kataoka Y, Weydert CJ, et al. Delayed radioprotection by nuclear transcription factor kB factor-mediated induction of manganese superoxide dis-mutase in human microvascular endothelial cells after exposure to the free radical scavenger. WR1065. Free Radic Biol Med 2006;40:1004–16.
42. Lin X, Li Q, Wang YJ, et al. Morphine inhibits doxorubicin-induced reactive oxygen species generation and nuclear factor kB transcriptional activation in neuroblastoma SH-SY5Y cells. Biochem J 2000;351:21–5.
43. Finch RA, Yablonka-Reuveni Y, et al. Effects of desipramine on the antioxidant status in rat tissues and bone marrow cells using a new radioprotection assay. J Appl Physiol 2010;109:2125–33.
44. Thompson JS, Asmis R, Chu Y, et al. Allopurinol protects against cisplatin-induced oxidative stress and apoptosis in bone marrow engraftment in mice. Bone Marrow Transplant 2008;41:927–39.
45. Galetta F, Franzoni F, Gervetti G, et al. In vitro and in vivo study on the antioxidant activity of desuxazon. Bioclin Pharmacobio 2010;64: 259–63.
46. Hasnifof BR, Schnabl KL, Marusak RA, et al. Desuxazon (ICRF-187) protects cardiac myo-
cytes against doxorubicin by preventing damage to mitochondria. Cardiovasc Toxicol 2003;3:89–99.
47. Malina KL, Hasnifof BB. Duxazon reduces the iron(III) complex of the hydrolysis prod-
ucts of the antioxidant cardioprotective agent desuxazon (ICRF-187) and produces hydroxyl radicals. J Biochem Biophys 2003;14:97–107.
48. Schroeder PE, Wang GQ, Burczynski FJ, et al. Metalloproteinase inhibitors do not reduce tumor stromal cells in vivo: effects of amifostine on angiogenesis and in vivo cell death. BMC Med 2007;3:246.
49. Jeding I, Evans PJ, Akamnu D, et al. Characteri-
zation of the potential antioxidant and pro-
oxidative actions of some neuroleptic drugs. Bio-
chem Pharmacol 1999;58:721–30.
50. Hossenmehm SJ, Mahmoudzadeh A, Akhlagepoor S. Captopril protects mice bone marrow cells against genotoxicity induced by gamma radiation. Cell Biochem Funct 2007;25:389–94.
51. Morin J, Li WQ, Su S, et al. Induction of strom-
elysin gene expression by tumor necrosis factor-
alpha is inhibited by dexamethasone, salicylate, and N-acetyl cysteine in synovial fibro-
blasts. J Pharmacol Exp Therapeutics 1999:289: 1634–40.
52. Oliveira P, Bjork JA, Santos MS, et al. Carvedilol-mediated antioxidant protection against doxorubicin-induced cardiac mothion-
drial toxicity. Toxicol Appl Pharmaco 2004;200:159–68.
53. Spallaz P, Garabelli S, Alipieri P, et al. Carve-
diol prevents doxorubicin-induced free radical release and apoptosis in cardiomyocytes in vitro. J Mol Cell Cardiol 2004;37:837–46.
54. Carvalho Rodrigues MA, Rodrigues JL, Martins NM, et al. Carvedilol protects against cisplatin-
educed oxidative stress. Redox state imbalance and apoptosis in rat kidney mitochondria. Chem. Biol Interact 2011; 189:45–51.
55. Munschii NC, Loeher PJ, Williams SD, et al. Comparison of N-acetylcysteine and mesna as uroprotectors with ifosfamide combination chemotherapy in refractory germ cell tumors. Invest New Drugs 1992;10:159–63.
56. Murley JS, Kataoka Y, Cao D, et al. Delayed radioprotection by NFkB-mediated induction of Sod2 (MnSOD) in SA-N1 tumor cells after exposure to clinically used thiold-containing drugs. Radiat Res 2004;162:536–46.
57. Murley JS, Kataoka Y, Weydert CJ, et al. Delayed radioprotection by nuclear transcription factor kB factor-mediated induction of manganese superoxide dis-
mutase in human microvascular endothelial cells after exposure to the free radical scavenger. WR1065. Free Radic Biol Med 2006;40:1004–16.
58. Lin X, Li Q, Wang YJ, et al. Morphine inhibits doxorubicin-induced reactive oxygen species generation and nuclear factor kB transcriptional activation in neuroblastoma SH-SY5Y cells. Biochem J 2000;351:21–5.
59. Finch RA, Yablonka-Reuveni Y, et al. Effects of desipramine on the antioxidant status in rat tissues and bone marrow cells using a new radioprotection assay. J Appl Physiol 2010;109:2125–33.
induced cell death of human proximal tubule cells. J Cell Biochem 2007;22:798–803.

72. Kaminsky Y, Suslikov A, Kosenko E. Specific and pronounced impacts of lisinopril and losinopril plus simvastatin on erythrocyte antioxidant enzymes. Clin Pharmacol 2010;50:180–7.

73. Kosenko EA, Suslikov AV, Venediktova NI, et al. Erythrocyte antioxidant enzymes in hypertensive patients receiving lisinopril monotherapy or combined lisinopril plus simvastatin therapy. Biocchem (Moscow) Suppl Series B: Biomed Chem 2010;4:395–9.

74. Mandle D, Patel VB, Why HH, et al. Effects of lisinopril and amlopidine on antioxidant status in experimental hypertension. Clin Chim Acta 2000;299:1–10.

75. Bijman MNA, Hermelink CA, Van Berkel MPA, et al. Antiatherosclerotic properties of atorvastatin in the rat: a comparison with other HMG CoA reductase inhibitors. Thromb Res 2011;127:6–9.

76. Suddek GM, El-Kenawi AE, Abdel-Aziz A, et al. Antioxidant protective effect of glibenclamide and metformin in combination with heme in pancreas of streptozotocin-induced diabetic rats. Int J Mol Sci 2010;11:2056–66.

77. Stettner M, Dehmel T, Mausberg AK, et al. Lev- etiracetam inhibits protective properties on rat schwann cells in vitro. J Peripher Nerv Syst 2011;16:250–60.

78. Ayicek A, Iscan A. The effects of carbamaze- pine, valproic acid and phenobarbital on the oxidative and antioxidative balance in epileptic children. Eur Neurol 2007;57:65–9.

79. Naziroglu M, Yureldi VA. Effects of antiplatelet drugs on antioxidant and oxidant molecular pathways: focus on trace elements. Cell Mol Neurobiol 2013;33:589–99.

80. Salivonl E, Qureshi A, Ignini A, et al. The effects of disodium pamidronate on human polymorphonuclear leukocytes and platelets: an in vitro study. Cell Mol Biol Lett 2009;14:457–65.

81. Kesiova M, Alexandrova A, Yordanova N, et al. Effects of H2-receptor antagonists on lipid peroxidation and antioxidants of antioxidant enzymes in different rat tissues. Pharmacol Rep 2006;58:221–8.

82. Van Zyj (M, Krieger A, Van der Walt BJ. Anti- oxidant properties of H2-receptor antagonists. Effects on myristoylphosphatidylcholine reactions and hydrosyl radical formation in a ferrous- hydrogen peroxide system. Biochem Pharmacol 1993;45:2389–97.

83. Borger MB, Dos Santos CGD, Yokomizo CH, et al. Characterization of hydrophobic interaction and antioxidant properties of the pheno- thiophene nucleus in mitochondrial and model membranes. Free Radic Res 2010;44:1054–63.

84. Bishnoi M, Chopra K, Kulkarni SK. Possible anti-oxidant and neuroprotective mechanisms of zolpidem in attenuating temporal anti-convulsive- induced orofacial dyskinesia – a biochemical and neurochemical study. Prog Neuro- Pharmacol Biol Psych 2007;31:1130–8.

85. Kumar A, Goyal R. Possible GABAergic modu- lation in the protective effect of zolpidem in acute hypoxic stress-induced behavior alterations and oxidative damage. Neurochem Res 2008;33: 370–7.

86. Brahimif F, Shafradizi H, Asadi S, et al. Sildena- fil decreased cardiac cell apoptosis in diabetic mice: reduction of oxidative stress as a possible mechanism. Can J Physiol Pharmacol 2009;87: 556–64.

87. Cadirci E, Halici Z, Odabasoglu F, et al. Sildena- fil treatment attenuates lung and kidney injury due to overproduction of oxidative activity in rat model of sepsis: a biochemical and histopathological study. Clin Exp Immunol 2011;166:374– 84.

88. Koka S, Kukreja RC. Attenuation of doxorubicin-induced cardiotoxicity by tadalafil: a long acting phosphodiesterase-5 inhibitor. Mol Cell Pharmacol 2011;5:217–8.

89. Higuchi K, Yoda Y, Amagase K, et al. Prevention of NSAID-induced small intestinal mucosal injury: prophylactic potential of lansoprazole. J Clin Biochem Nutr 2009;45:125–36.

90. Gaur V, Kumar A. Protective effect of desipramine, venlafaxine and trazadone against experimental animal model of transient global ischemia: possible involvement of no- GMP pathway. Brain Res 2010;135:34–42.

91. Kumar P, Kalia, H, Kumar A. Nitric oxide mechanism in the protective effect of antide- pressants against 3-nitropropionic acid- induced cognitive deficit, glutathione and mitochondrial alterations in animal model of Huntington’s disease. Behav Pharmacol 2010; 21:217–30.

92. Zafir A, Ara A, Bana N. In vivo antioxidant sta- tus: a putative target of antidepressant action. Prog Neuropsychopharmacol Biol Psychiatry 2009;33:220–8.

93. Abdel Salam OME, Mohammed NA, Sleen AA, et al. The effect of antidepressant drugs on thioaceta-mide-induced oxidative stress. Eur Rev Med Pharmacol Sci 2013;17:735–44.

94. Seicean S, Seicean A, Plana JC, et al. Effect of statin therapy on the risk of non-sudden heart fail- ure in patients with breast cancer receiving anthracycline chemotherapy. J Am Coll Cardiol 2012;60:2384–90.

95. El-Moslehy MA, El-Sheikh AA. Protective mechanism of atorvastatin against doxorubicin- induced hepato-renal toxicity. Biomed Pharmacother 2014;68:101–10.

96. Li X, Yang G, Zhao G, et al. Rosuvastatin attenuates the elevation in blood pressure induced by overexpression of human C-reactive protein. Hypertens Res 2011;34:869–75.

97. Kumar A, Garg R, Kumar P. Nitric oxide modu- lation mediates the protective effect of trazodone in a mouse model of chronic fatigue syndrome. Pharmacol Rep 2008;60:664–72.

98. Bilici M, Oztarik C, Dursun H, et al. Protective effect of mitrazapine on indomethacin-induced ulcer in rats and its relationship with oxidative and antioxidant parameters. Dig Dis Sci 2009;54: 1868–75.

99. Kolla N, Wei Z, Richardson JS, et al. Amitrifiline and Buxotine protect PC12 cells from cell death induced by hydrogen peroxide. J Psychiatry Neurosci 2005;30:196–201.

100. Aldaba-Murato LR, Moreno MG, Shiayama M, et al. Protective effects of allspunolin against acute liver damage and cirrhosis induced by carbon tetrachloride: modulation of NF-kB, cytokine production and oxidative stress. Biochim Biophys Acta 2012;1820:655–75.

101. Barone RM, Calabro-Jones P, Thomas TN, et al. Surgical adjunct therapy in colon carcinoma: a human tumor spheroid model for evaluating radiation sensitizing agents. Cancer 1981;47: 2349–57.

102. Jia Z, Wang N, Aoyagi T, et al. Amelioration of cisplatin nephrotoxicity: an experimental rat model. Results Probl Cell Differ 2009;49:181–191.

103. Matten J, Büchler MW, Herr I. Cell cycle arrest by glucocorticoids may protect normal tissue and solid tumors from cancer therapy. Cancer Biol Ther 2007;6:1345–54.

104. Herr I, Büchler MW, Matten J. Glucocorticoid- mediated apoptosis resistance of solid tumors. Results Probl Cell Differ 2009;49:181–191.

105. Zhang C, Wenger T, Mattern, et al. Clinical and mechanistic aspects of glucocorticoid-induced nephrotoxicity in rats: a comparative study. J Am Coll Cardiol 2012;60:2384–90.
chemotherapy resistance in the majority of solid tumors. Cancer Biol Ther 2007;6:1–9.
118. Sui M, Chen F, Chen Z, et al. Glucocorticoids interfere with therapeutic efficacy of paclitaxel against human breast and ovarian xenograft tumors. Int J Cancer 2006;119:712–17.
119. Kemppainen RJ, Sarin JL, Peterson ME. Effects of single intravenously administered dose of dexamethasone on response to the adrenocorticotropic hormone stimulation test in dogs. Am J Vet Res 1989;50:1914–17.
120. Herr I, Buechel MW. New in vivo results support concerns about harmful effects of cortisone drugs in the treatment of breast cancer. Cancer Biol Ther 2006;5:933–40.
121. Back MF, Ang EL, Ng WH, et al. Improved median survival for glioblastoma multiforme following introduction of adjuvant temozolomide chemotherapy. Ann Acad Med Singapore 2007;36:338–42.
122. Munsfield K, Borces D, Bohllmann MK, et al. Glucocorticoid administration in antiemetic therapy. Cancer 2004;101:696–702.
123. Das A, Banik NL, Patel SJ, et al. Dexamethasone protected human glioblastoma U87MG cells from temozolomide induced apoptosis by maintaining Bax:Bcl-2 ratio and preventing proteolytic activities. Mol Cancer 2004;3:36–45.
124. Urayama S, Musch MW, Retsky J, et al. Dexamethasone protection of rat epithelial cells against oxidant injury is mediated by induction of heat shock protein 72. J Clin Invest 1998;102:1865–5.
125. Gokce M, Saydam O, Hanci V, et al. Antioxidant vitamins C, E and coenzyme Q10 vs. dexamethasone protection of rat epithelial cells by dexamethasone. Life Sci 1998;63:2059–67.
126. van der Heijden J, Silva-Gomez AR, Villar Rojas C. Induction of antioxidant enzymes by dexamethasone in the adult rat lung. Life Sci 1997;60:2059–67.
127. Huo WJ, Guan JH, Dong Q, et al. Dexamethasone inhibits the effect of paclitaxel on human ovarian carcinoma xenografts in nude mice. Eur Rev Med Pharmacol Sci 2013;17:2902–8.
128. Zhang C, Kolb A, Buechler P, et al. Corticosteroid-mediated inhibition of chemotherapy in human ovarian cancer cells. Eur J Obstet Gynecol Reprod Biol 2005;122:183–8.
129. Hua D, Ou B, Prior RL. The chemistry behind antioxidant capacity assays. J Agric Food Chem 2005;53:1841–56.
130. Prior RL, Wu X, Schaich K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J Agric Food Chem 2005;53:4290–302.
131. Miftode AM, Stefanache A, Spac A, et al. Spectrophotometric determination of total antioxidant activity in chlorpromazine radical cation — ascorbic acid system. Rev Med Chir Soc Med Nat Iasi 2013;117:806–11.
132. Rutz HP, Hofer S, Peghini PE, et al. Avoiding glucocorticoid administration in a neurosurgical case. Cancer Biol Ther 2005;4:1186–9.