Toward the ergodicity of \(p \)-adic 1-Lipschitz functions represented by the van der Put series

Sangtae Jeong
Department of Mathematics, Inha University, Incheon, Korea 402-751
May 3, 2014

Abstract
Yurova [16] and Anashin et al. [3, 4] characterize the ergodicity of a 1-Lipschitz function on \(\mathbb{Z}_2 \) in terms of the van der Put expansion. Motivated by their recent work, we provide the sufficient conditions for the ergodicity of such a function defined on a more general setting \(\mathbb{Z}_p \).
In addition, we provide alternative proofs of two criteria (because of [3, 4] and [10]) for an ergodic 1-Lipschitz function on \(\mathbb{Z}_2 \), represented by both the Mahler basis and the van der Put basis.

1 Introduction
The ergodic theory of \(p \)-adic dynamical systems is an important part of non-Archimedean dynamics, and represents a rapidly developing discipline that has recently demonstrated its effectiveness in various areas such as computer science, cryptology, and numerical analysis, among others. For example, as shown in [7], it is useful to have 2-adic ergodic functions in constructing long-period pseudo-random sequences in stream ciphers. For more details on such applications, we refer the reader to [2] and the references therein.

As a substitute for the Mahler basis, the van der Put basis has recently been employed as a useful tool for building on the ergodic theory of \(p \)-adic dynamical systems. Indeed, Yurova [16] and Anashin et al. [3, 4] provide the criterion for the ergodicity of 2-adic 1-Lipschitz functions, in terms of the van der Put expansion. Their proof of this criterion relies on Anashin’s criterion for 1-Lipschitz functions on \(\mathbb{Z}_2 \) in terms of the Mahler expansion. Given the characteristic functions of \(p \)-adic balls, it is analyzed in [4] that the van der Put basis has more advantages than the Mahler basis in evaluating representations and that it is more applicable to \(T \)-functions or 1-Lipschitz functions.

On the other hand, on the function field side of non-Archimedean dynamics, Lin et al. [9] present an ergodic theory parallel to [1] and [3, 4] by using both Carlitz-Wagner basis and an analog of the van der Put basis. Along this line, Jeong [6] uses the digit derivative basis to develop a corresponding theory parallel to [9].
The purpose of the paper is to provide the sufficient conditions under which 1-Lipschitz functions on \(\mathbb{Z}_p \) represented by the van der Put series are ergodic. In addition, we provide alternative proofs of two known criteria for an ergodic 1-Lipschitz function on \(\mathbb{Z}_2 \) in terms of both the Mahler basis and the van der Put basis. We also present several equivalent conditions that may be needed to provide a complete description of the ergodicity of 1-Lipschitz functions defined on a more general setting \(\mathbb{Z}_p \). The main idea behind this paper comes from Lin et al’s work [9] on \(\mathbb{F}_2[[T]] \), and Anashin et al.’s work [4] on \(\mathbb{Z}_2 \).

Keywords: Ergodic functions, Measure-preserving, 1-Lipschitz, Van der Put basis, Mahler basis
Mathematics Subject Classification 2000: 11S80 11K41
Email: stj@inha.ac.kr
The rest of this paper is organized as follows: Section 2 recalls some prerequisites in non-Archimedean dynamics, including two known results for the ergodicity of 1-Lipschitz functions on \(\mathbb{Z}_2\) in terms of the Mahler basis and the van der Put basis. Section 3 presents the main results and alternate proofs of two criteria for an ergodic 1-Lipschitz function on \(\mathbb{Z}_2\). Section 4 employs our results or Anashin’s to re-prove then ergodicity of a polynomial over \(\mathbb{Z}_2\) in terms of its coefficients.

2 Ergodic theory of \(p\)-adic integers

We recall the existing results for the measure-preservation and ergodicity of 1-Lipschitz functions \(f : \mathbb{Z}_2 \to \mathbb{Z}_2\) in terms of both the Mahler expansion and the van der Put expansion.

2.1 Preliminaries for \(p\)-adic dynamics

We recall the elements of \(p\)-adic dynamical systems on \(\mathbb{Z}_p\). Let \(p\) be a prime and \(\mathbb{Z}_p\) be the ring of \(p\)-adic integers with the quotient field \(\mathbb{Q}_p\). Let \(|?| = |?|_p\) be the (normalized) absolute value on \(\mathbb{Q}_p\) associated with the additive valuation \(\text{ord}\) such that \(|x|_p = p^{-\text{ord}(x)}\) for \(x \neq 0\) and \(|0| = 0\) by convention.

The space \(\mathbb{Z}_p\) is equipped with the natural probability measure \(\mu_p\), which is normalized so that \(\mu_p(\mathbb{Z}_p) = 1\). Elementary \(\mu_p\)-measurable sets are \(p\)-adic balls by which we mean a set \(a + p^k\mathbb{Z}_p\) of radius \(p^{-k}\) for \(a \in \mathbb{Z}_p\). We define the volume of this ball as \(\mu_p(a + p^k\mathbb{Z}_p) = 1/p^k\).

A \(p\)-adic dynamical system on \(\mathbb{Z}_p\) is understood as a triple \((\mathbb{Z}_p, \mu_p, f)\), where \(f : \mathbb{Z}_p \to \mathbb{Z}_p\) is a measurable function. Starting with any chosen point \(x_0\) (an initial point), the trajectory of \(f\) is a sequence of elements of the form

\[x_0, x_1 = f(x_0), \ldots, x_i = f(x_{i-1}) = f^i(x_0)\ldots.\]

Here we say that \(f\) is bijective modulo \(p^n\) for a positive integer \(n\) if a sequence of \(p^n\) elements \(x_0, x_1 = f(x_0), \ldots, f^{p^n-1}(x_0)\) is distinct in the factor ring \(\mathbb{Z}_p/p^n\mathbb{Z}_p\). And \(f\) is said to be transitive modulo \(p^n\) if the above sequence forms a single cycle in \(\mathbb{Z}_p/p^n\mathbb{Z}_p\). We say that a function \(f : \mathbb{Z}_p \to \mathbb{Z}_p\) of the measurable space \(\mathbb{Z}_p\) with the Haar measure \(\mu = \mu_p\) is measure-preserving if \(\mu(f^{-1}(S)) = \mu(S)\) for each measurable subset \(S \subset \mathbb{Z}_p\). A measure-preserving function \(f : \mathbb{Z}_p \to \mathbb{Z}_p\) is said to be ergodic if it has no proper invariant subsets. That is, if \(f^{-1}(S) = S\) for a measurable subset, then \(S \subset \mathbb{Z}_p\) implies that \(\mu(S) = 1\) or \(\mu(S) = 0\). We say that \(f : \mathbb{Z}_p \to \mathbb{Z}_p\) is 1-Lipschitz (or compatible) if for all \(x, y \in \mathbb{Z}_p\),

\[|f(x) - f(y)|_p \leq |x - y|_p.\]

Note that a 1-Lipschitz function \(f\) is continuous on \(\mathbb{Z}_p\). We observe that the 1-Lipschitzness condition has several equivalent statements:

(i) \(|f(x + y) - f(x)|_p \leq |y|_p\) for all \(x, y \in \mathbb{Z}_p\);
(ii) \(|\frac{1}{p}(f(x + y) - f(x))|_p \leq 1\) for all \(x \in \mathbb{Z}_p\) and all \(y \neq 0 \in \mathbb{Z}_p\);
(iii) \(f(x + p^n\mathbb{Z}_p) \subset f(x) + p^n\mathbb{Z}_p\) for all \(x \in \mathbb{Z}_p\) and any integer \(n \geq 1\);
(iv) \(f(x) \equiv f(y) \pmod{p^n}\) whenever \(x \equiv y \pmod{p^n}\) for any integer \(n \geq 1\).

For later use, We recall the following criteria for the measure-preservation and ergodicity of a 1-Lipschitz function:

Proposition 2.1. [1] [5] Let \(f : \mathbb{Z}_p \to \mathbb{Z}_p\) be a 1-Lipschitz function.

(i) The following are equivalent:
 (1) \(f\) is measure-preserving;
 (2) \(f\) is bijective modulo \(p^n\) for all integers \(n > 0\);
 (3) \(f\) is an isometry, i.e., \(|f(x) - f(y)|_p = |x - y|_p\) for all \(x, y \in \mathbb{Z}_p\).

(ii) \(f\) is ergodic if and only if it is transitive modulo \(p^n\) for all integers \(n > 0\).

Throughout this paper, we denote the greatest integer that is less than or equal to a real number \(a\) by \([a]\).
2.2 Mahler basis and ergodic functions on \mathbb{Z}_2

It is well known [10, 11] that every continuous function $f : \mathbb{Z}_p \to \mathbb{Z}_p$ is represented by the Mahler interpolation series

$$f(x) = \sum_{m=0}^{\infty} a_m \binom{x}{m}, \quad (1)$$

where $a_m \in \mathbb{Z}_p$ for $m = 0, \cdots$ and the binomial coefficient functions are defined by

$$\binom{x}{m} = \frac{1}{m!} x(x-1) \cdots (x-m+1) \quad (m \geq 1), \quad \binom{x}{0} = 1.$$

We now state Anashin’s characterization results for the measure-preservation and ergodicity of 1-Lipschitz functions in terms of the coefficients of the Mahler expansion.

Theorem 2.2. Anashin [1, 2]

(i) The function f in Eq.(1) is 1-Lipschitz on \mathbb{Z}_p if and only if the following conditions are satisfied: For all $m \geq 0$,

$$|a_m| \leq |p|^{|\log_p m|}.$$

(ii) The function f is a measure-preserving 1-Lipschitz function on \mathbb{Z}_p whenever the following conditions are satisfied:

$$|a_1| = 1; \quad |a_m| \leq |p|^{|\log_p m|+1} \quad \text{for all } m \geq 2.$$

(iii) The function f is an ergodic 1-Lipschitz function on \mathbb{Z}_p whenever the following conditions are satisfied:

$$a_0 \not\equiv 0 \pmod{p}; \quad a_1 \equiv 1 \pmod{p}; \quad a_m \equiv 0 \pmod{|p|^{|\log_p (m+1)|+1}} \quad \text{for all } m \geq 2.$$

(iv) The function f is an ergodic 1-Lipschitz function on \mathbb{Z}_2 if and only if the following conditions are satisfied:

$$a_0 \equiv 1 \pmod{2}; \quad a_1 \equiv 1 \pmod{4}; \quad a_m \equiv 0 \pmod{2^{|\log_2 (m+1)|+1}} \quad \text{for all } m \geq 2.$$

Anashin’s proof of Theorem 2.2 (iv) relies on a criteria, namely Theorem 4.39 in [2], based on the algebraic normal form of Boolean functions which determines the measure-preservation and ergodicity of 1-Lipschitz functions. The tricky part of his proof is to use this criterion to derive a recursive formula for the coefficients of Boolean coordinates of a 1-Lipschitz function f. As an easy corollary of this theorem, Anashin [2] derives the following result, which turns out to be a useful method for constructing measure-preserving (ergodic) 1-Lipschitz functions out of an arbitrary 1-Lipschitz function. Here recall that Δ is the difference operator defined by $\Delta f(x) = f(x+1) - f(x)$.

Corollary 2.3. Every ergodic (resp. every measure-preserving) 1-Lipschitz function $f : \mathbb{Z}_2 \to \mathbb{Z}_2$ can be represented as $f(x) = 1 + x + 2\Delta g(x)$ (resp. as $f(x) = d + x + 2g(x)$) for a suitable constant $d \in \mathbb{Z}_2$ and a suitable 1-Lipschitz function $g : \mathbb{Z}_2 \to \mathbb{Z}_2$ and vice versa, and every function f of the above form is an ergodic (thus, measure-preserving) 1-Lipschitz function.
In this paper, using the van der Put basis, we re-prove this corollary and use it to provide an alternative proof of Theorem 2.2 (iv).

For later use, we recall Lemma 4.41 in [2], from which we deduce one of the main results: Theorem 3.8.

Lemma 2.4. Given a 1-Lipschitz function \(g : \mathbb{Z}_p \to \mathbb{Z}_p \) and a \(p \)-adic integer \(d \not\equiv 0 \pmod{p} \), the function \(f(x) = d + x + p\Delta g(x) \) is ergodic.

2.3 Van der Put basis and ergodic functions on \(\mathbb{Z}_2 \)

We introduce a sequence of the van der Put basis \(\chi(m, x) \) on the ring \(\mathbb{Z}_p \) of \(p \)-adic integers. For an integer \(m \geq 0 \) and \(x \in \mathbb{Z}_p \), we define

\[
\chi(m, x) = \begin{cases}
1 & \text{if } |x - m| \leq p^{-\lfloor \log_p(m) \rfloor - 1}; \\
0 & \text{otherwise}
\end{cases}
\]

and

\[
\chi(0, x) = \begin{cases}
1 & \text{if } |x| \leq p^{-1}; \\
0 & \text{otherwise}.
\end{cases}
\]

Indeed, the van der Put basis is a characteristic function of the balls \(B_{p^{-\lfloor \log_p(m) \rfloor - 1}}(m) \) (\(m \geq 1 \)) and \(B_{1/p}(0) \). By the well-known result of van der Put [14] (see also [11, 12]), we know that every continuous function \(f : \mathbb{Z}_p \to \mathbb{Z}_p \) is represented by the van der Put series:

\[
f(x) = \sum_{m=0}^{\infty} B_m \chi(m, x),
\]

where \(B_m \in \mathbb{Z}_p \) for \(m = 0, \cdots \). We write an integer \(m > 0 \) in the \(p \)-adic form as

\[
m = m_0 + m_1 p + \cdots + m_s p^s (m_s \neq 0)
\]

From the \(p \)-adic representation of \(m \), we see that

\[
s = \lfloor \log_p(m) \rfloor = (\text{the number of digits in the } p \text{-adic form of } m) - 1
\]

by assuming that \(\lfloor \log_p(0) \rfloor = 0 \). Throughout this paper, we set

\[
q(m) = m_s p^s, \quad m_\sim = m - q(m).
\]

Then we have \(m = m_\sim + q(m) \). What is important here is that the expansion coefficients \(\{B_m\}_{m \geq 0} \) can be recovered by the following formula:

\[
B_m = \begin{cases}
\frac{f(m) - f(m - q(m))}{f(m)} & \text{if } m \geq p; \\
\frac{f(m) - f(m_\sim)}{f(m)} & \text{otherwise}.
\end{cases}
\]

As a result parallel to Theorem 2.2, we state the following characterization for the ergodicity of a 1-Lipschitz function \(f \) in terms of the van der Put expansion. Indeed, Yurova [16] and Anashin et al [3, 4] deduce Theorem 2.5 from Corollary 2.3. However, in Section 3.4 we provide an alternate proof of it independently of Theorem 2.2.

Theorem 2.5. Yurova [16] and Anashin et al [3, 4]

(i) The function \(f \) in Eq. (2) is 1-Lipschitz on \(\mathbb{Z}_p \) if and only if the following conditions are satisfied: For all \(m \geq 0 \),

\[
|B_m| \leq |p|^{\lfloor \log_p(m) \rfloor}.
\]
(ii) The 1-Lipschitz function \(f \) on \(\mathbb{Z}_2 \) represented by the van der Put series

\[
f(x) = b_0 \chi(0, x) + \sum_{m=1}^{\infty} 2^{\lfloor \log_2 m \rfloor} b_m \chi(m, x) \quad (b_m \in \mathbb{Z}_2)
\]

is measure-preserving on \(\mathbb{Z}_2 \) if and only if

(1) \(b_0 + b_1 \equiv 1 \pmod{2} \);
(2) \(|b_m| = 1 \) for all \(m \geq 2 \).

(iii) The 1-Lipschitz function \(f \) represented by the van der Put series in Eq. (4) is ergodic on \(\mathbb{Z}_2 \) if and only if the following conditions are satisfied:

(1) \(b_0 \equiv 1 \pmod{2} \);
(2) \(b_0 + b_1 \equiv 3 \pmod{4} \);
(3) \(b_2 + b_3 \equiv 2 \pmod{4} \);
(4) \(|b_m| = 1 \) for all \(m \geq 2 \);
(5) \(\sum_{m=2^{n-1}}^{2^n-1} b_m \equiv 0 \pmod{4} \) for all \(n \geq 3 \).

3 Ergodic \(p \)-adic maps on \(\mathbb{Z}_p \)

In this section, which is divided into four subsections, we present the main results of this paper. We first re-prove the 1-Lipschitz property of \(p \)-adic functions represented by the van der Put series and then provide the sufficient conditions for the measure-preservation of such functions. Using the latter conditions and Corollary 2.4, we provide several conditions for coefficients under which 1-Lipschitz functions on \(\mathbb{Z}_p \) are ergodic. In addition, we present several equivalent conditions for the van Put coefficients for \(p \)-adic functions. We use these equivalent conditions for \(p = 2 \) to provide an alternate proof of Anashin et al.’s criterion in \([3, 4]\), that is, Theorem 2.5 (iii). Finally, using this fact, we provide a simple proof of Anashin’s criterion in \([1]\), that is, Theorem 2.2 (iv).

3.1 Measure-preserving 1-Lipschitz functions on \(\mathbb{Z}_p \)

We provide the necessary and sufficient conditions for \(f \) to be 1-Lipschitz in terms of the coefficients of the van der Put expansion. This result is known \([4]\), but we provide a simple proof.

Proposition 3.1. Let \(f(x) = \sum_{m=0}^{\infty} B_m \chi(m, x) : \mathbb{Z}_p \to \mathbb{Z}_p \) be a continuous function represented by the van der Put series. Then \(f \) is 1-Lipschitz if and only if \(|B_m| \leq p^{-\lfloor \log_p m \rfloor} \) for all nonnegative integers \(m \).

Proof. Assuming that \(f \) is 1-Lipschitz, by the formula for \(B_m \) in Eq. (3) we compute the following for \(m \geq p \):

\[
|B_m| = |f(m) - f(m - q(m))| \leq |q(m)| = p^{-\lfloor \log_p m \rfloor}.
\]

Then the result follows by noting that the inequality holds trivially for \(0 \leq m < p \).

Conversely, assuming that the inequality holds, we first observe that if \(x \equiv y \pmod{p^n} \), then \(\chi(m, x) = \chi(m, y) \) for all \(0 \leq m < p^n \). Then, under the assumption that \(x \equiv y \pmod{p^n} \), we compute

\[
f(x) - f(y) = \sum_{m=0}^{\infty} B_m (\chi(m, x) - \chi(m, y)) \equiv \sum_{m=0}^{p^n-1} B_m (\chi(m, x) - \chi(m, y)) \equiv 0 \pmod{p^n},
\]

where the last congruence follows from the observation. Therefore, the result follows.

We now provide the sufficient conditions for a 1-Lipschitz function \(f \) on \(\mathbb{Z}_p \) to be measure-preserving.
Theorem 3.2. The 1-Lipschitz function \(f(x) = \sum_{n=0}^{\infty} B_m \chi(m, x) : \mathbb{Z}_p \to \mathbb{Z}_p \) is measure-preserving whenever the following conditions are satisfied:

1. \(\{B_0, B_1, \cdots, B_{p-1}\} \) is distinct modulo \(p \).
2. \(B_m \equiv q(m) \pmod{p^{|\log_p m|+1}} \) for all \(m \geq p \).

Proof. By Proposition 2.1 it suffices to show that \(f \) is bijective modulo \(p^n \) for every positive integer \(n \). Because \(\mathbb{Z}_p/p^n\mathbb{Z}_p \) is a finite set, it is also equivalent to showing that \(f \) is injective modulo \(p^n \). Suppose that \(f \) is not injective modulo \(p^n \) for some integer \(n > 0 \). Then we observe \(n \geq 2 \) because \(f \) is injective modulo \(p \), by assumption (1). Here we see that there exist \(a \) and \(b \) in \(\mathbb{Z}_p/p^n\mathbb{Z}_p \) with \(a \neq b \pmod{p^n} \) such that \(f(a) \equiv f(b) \pmod{p^n} \). Write

\[
\begin{align*}
 a &= a_0 + a_1 p + \cdots + a_{n-1} p^{n-1} \quad \text{with} \quad 0 \leq a_i < p, \\
 b &= b_0 + b_1 p + \cdots + b_{n-1} p^{n-1} \quad \text{with} \quad 0 \leq b_i < p.
\end{align*}
\]

Since \(a \neq b \pmod{p^n} \), there exists a nonnegative integer \(r \) such that \(a_r \neq b_r \), for which we may assume that \(r \) is the minimal index (thus \(r \leq n-1 \)). Set

\[
\begin{align*}
 m_1 &= a_0 + a_1 p + \cdots + a_r p^r, \\
 m_2 &= b_0 + b_1 p + \cdots + b_r p^r.
\end{align*}
\]

We can assume that \(a_r \neq 0 \) and \(b_r \neq 0 \). Otherwise, the following argument can be applied in a similar fashion. Because \(f \) is 1-Lipschitz, we first deduce the following inequality:

\[
|f(m_1) - f(m_2)| = |f(m_1) - f(a) + f(a) - f(b) + f(b) - f(m_2)| \\
\leq \max\{|f(m_1) - f(a)|, |f(a) - f(b)|, |f(b) - f(m_2)|\} \\
\leq |p|^{r+1}.
\]

Then we have \(B_{m_1} = f(m_1) - f(m_1) \) and \(B_{m_2} = f(m_2) - f(m_2) \). Since \(m_1 = m_2 \), the preceding inequality yields

\[B_{m_1} - B_{m_2} = f(m_1) - f(m_2) \equiv 0 \pmod{p^{r+1}}. \]

On the other hand, by assumption (2), we have

\[B_{m_1} - B_{m_2} \equiv q(m_1) - q(m_2) = (a_r - b_r) p^r \pmod{p^{r+1}}. \]

Because \(a_r \neq b_r \), the preceding congruence gives \(B_{m_1} - B_{m_2} \equiv 0 \pmod{p^{r+1}} \). Therefore, we have a contradiction.

\[\square \]

We note that condition (1) in Theorem 3.2 is well known to be equivalent to the following congruence (see Lemma 7.3. in [18]): For any prime \(p > 2 \),

\[\sum_{m=0}^{p-1} B_m k \equiv \begin{cases} 0 \pmod{p} & \text{if } 0 \leq k \leq p - 2; \\
-1 \pmod{p} & \text{if } k = p - 1. \end{cases} \]

For the converse of Theorem 3.2, we have the following

Proposition 3.3. Let \(f(x) = \sum_{n=0}^{\infty} B_m \chi(m, x) : \mathbb{Z}_p \to \mathbb{Z}_p \) be a measure-preserving 1-Lipschitz function. Then we have the following:

1. \(\{B_0, B_1, \cdots, B_{p-1}\} \) is distinct modulo \(p \).
2. \(|B_m| = |q(m)| = |p|^{\log_p m} \) for all \(m \geq p \).
Proof. It is easy to see that part (1) follows from Proposition 2.1. To deduce part (2), write \(m \geq p \) as \(m = m_1 + q(m) \). Because \(f \) is a measure-preserving \(1 \)-Lipschitz function, by Proposition 2.1(3) and Eq. (3), we have

\[
|B_m| = |f(m) - f(m_1)| = |m - m_1| = |q(m)|,
\]

which completes the proof. \(\square \)

From Proposition 3.3, we see that the conditions in Theorem 3.2 are necessary for the case in which \(p = 2 \), and therefore we provide an alternate proof of Theorem 2.5 (ii).

Proposition 3.4. Let \(f(x) = \sum_{n=0}^{\infty} B_n \chi(m, x) : \mathbb{Z}_p \to \mathbb{Z}_p \) be a measure-preserving \(1 \)-Lipschitz function. For \(p^{n-1} \leq m \leq p^n - 1 \) \((n \geq 2)\), set

\[
B_m = p^{n-1}b_m = p^{n-1}(b_{m0} + b_{m1}p + \cdots) \quad (b_{m0} \neq 0, 0 \leq b_{mi} \leq p - 1, i = 0, 1, \ldots).
\]

Then, for all \(n \geq 2 \), we have

\[
\sum_{m=p^{n-1}}^{p^n-1} B_m = \frac{1}{2}(p - 1)p^{2n-1} + T_n p^n \pmod{p^{n+1}},
\]

where \(T_n \) is defined by \(T_n = \sum_{m=p^{n-1}}^{p^n-1} b_{m1} \).

Proof. For given \(m \), write \(m = ip^{n-1} + j \) with \(1 \leq i \leq p - 1 \), \(0 \leq j \leq p^{n-1} - 1 \) and \(n \geq 2 \). We show that for any fixed \(j \), \(\{b_{ip^{n-1}+j,0} \mid 1 \leq i \leq p - 1\} \) is distinct, that is, a permutation of \(1, \ldots, p - 1 \). For such \(j \), we consider \(B_{ip^{n-1}+j} \) for all \(i = 1, \ldots, p - 1 \). Because \(f \) is a measure-preserving \(1 \)-Lipschitz function, by Eq. (3) and Proposition 2.1(3), we have the following for \(1 \leq i, i' \leq p - 1 \):

\[
B_{ip^{n-1}+j} - B_{i'p^{n-1}+j} = f(ip^{n-1} + j) - f(i'p^{n-1} + j) \equiv (i - i')p^{n-1} \pmod{p^n}.
\]

From the definition of \(B_m \) in the statement, we also have

\[
B_{ip^{n-1}+j} - B_{i'p^{n-1}+j} \equiv (b_{ip^{n-1}+j,0} - b_{i'p^{n-1}+j,0})p^{n-1} \pmod{p^n},
\]

By equating these two congruence relations, we see that \(i \neq i' \) if and only if \(b_{ip^{n-1}+j,0} \neq b_{i'p^{n-1}+j,0} \), which implies the assertion. Here, by using the assertion to compute the congruence

\[
\sum_{m=p^{n-1}}^{p^n-1} B_m \equiv \sum_{j=0}^{p^n-1} \sum_{i=1}^{p-1} b_{ip^{n-1}+j,0} + T_n p^n \pmod{p^{n+1}},
\]

we obtain the desired result. \(\square \)

3.2 Some conditions for ergodic functions on \(\mathbb{Z}_p \)

In this subsection, we provide several conditions for \(B_m \) under which a measure-preserving \(1 \)-Lipschitz function \(f \) on \(\mathbb{Z}_p \) is ergodic. Therefore, Anashin et al.’s result [3, 4] can be extended to a general case for a prime \(p \).

To begin with, we have the connection between the van der Put expansions of a continuous function \(f \) and \(\Delta f \).

Proposition 3.5. If a \(1 \)-Lipschitz (continuous) function \(f = \sum_{m=0}^{\infty} B_m \chi(m, x) : \mathbb{Z}_p \to \mathbb{Z}_p \) is of the form \(f(x) = \Delta g(x) \) for some \(1 \)-Lipschitz function \(g = \sum_{m=0}^{\infty} \tilde{B}_m \chi(m, x) \), then we have

\[
B_m = \begin{cases}
\tilde{B}_{m+1} - \tilde{B}_m & \text{if } 0 \leq m \leq p - 2; \\
B_0 + \tilde{B}_0 - \tilde{B}_{p-1} & \text{if } m = p - 1;
\end{cases}
\]

\[
= \begin{cases}
\tilde{B}_{m+1} - \tilde{B}_m & \text{if } m \neq p^{n-1} - 1 + m_{n-1}p^{n-1}, p^{n-1} \leq m \leq p^n - 1, n \geq 2; \\
\tilde{B}_{m+1} - \tilde{B}_m - \tilde{B}_{p-1} & \text{if } m = p^{n-1} - 1 + m_{n-1}p^{n-1}, 1 \leq m_{n-1} \leq p - 1, n \geq 2.
\end{cases}
\]
Proof. For given $g(x) = \sum_{m=0}^{\infty} \tilde{B}_m \chi(m, x)$, write $g(x + 1) = \sum_{m=0}^{\infty} \tilde{B}_m \chi(m, x)$ in terms of the van der Put expansion. We first need to determine the relationship between \tilde{B}_m and \tilde{B}_m'. By Eq. (3), it is easy to see that for $0 \leq m < p - 1$, $\tilde{B}_m = g(m + 1) = \tilde{B}_{m+1}$ and that $\tilde{B}_p^{-1} = g(p) = \tilde{B}_0 + B_0$. Write m in the p-adic form as $m = m_0 + m_1 p + \cdots + m_{n-1} p^{n-1}$ with $0 \leq m_i < p$, $m_{n-1} \neq 0$, and $n \geq 2$. If $m \neq p^{n-1} - 1 + m_{n-1} p^{n-1}$, then we have $g(m + 1) = q(m)$, and therefore, by Eq. (3), we again have

$$\tilde{B}_m = g(m + 1) - g(m + 1 - q(m)) = g(m + 1) - g(m + 1 - q(m + 1)) = \tilde{B}_{m+1}.$$

If $m = p^{n-1} - 1 + m_{n-1} p^{n-1} \leq p^n - 1$ with $1 \leq m_{n-1} \leq p - 1$, then $g(m + 1) = q(m) + p^{n-1}$, and therefore we have

$$\tilde{B}_m \equiv g(m + 1) - g(m + 1 - q(m)) = g((m_{n-1} + 1)p^{n-1}) - g(p^{n-1})$$

$$= g((m_{n-1} + 1)p^{n-1}) - g(0) - (g(p^{n-1}) - g(0))$$

$$= \tilde{B}_{m+1} - \tilde{B}_{p^{n-1}}.$$

The result follows by equating the coefficients of $f(x)$ and $\Delta g(x)$.

A natural question arising from Proposition 3.5 is under what conditions for coefficients of a 1-Lipschitz function f we have f of the form $f(x) = \Delta g(x)$ for a suitable 1-Lipschitz function g. The following result answers this question:

Proposition 3.6. Let $f = \sum_{m=0}^{\infty} B_m \chi(m, x) : \mathbb{Z}_p \to \mathbb{Z}_p$ be a 1-Lipschitz function satisfying

1. $\sum_{m=0}^{p-1} B_m \equiv 0 \pmod{p}$;
2. $\sum_{m=p^{n-1}}^{p^n-1} B_m \equiv 0 \pmod{p^n}$ for all $n \geq 2$.

Then there exists a 1-Lipschitz function $g(x)$ such that $f(x) = \Delta g(x)$.

Proof. By Proposition 3.5 we need to find a 1-Lipschitz function $g(x) = \sum_{m=0}^{\infty} \tilde{B}_m \chi(m, x)$ whose coefficients \tilde{B}_m satisfy a system of linear equations in Eqs. (6)–(8). We view B_m as the variables required for solving a system of linear equations for countably many variables \tilde{B}_m. As in [4] for the case $p = 2$, we inductively construct a sequence of p-adic integers $\{\tilde{B}_m\}_{m \geq 0}$ with $\tilde{B}_m \equiv 0 \pmod{p^{|\log_p m|}}$ satisfying the above linear system. From a system of linear equations in Eqs. (6) and (8), we find p-adic integers $\tilde{B}_0, \ldots, \tilde{B}_p \in \mathbb{Z}_p$ such that

$$\tilde{B}_m = \tilde{B}_0 + \sum_{i=0}^{m-1} B_i \quad (m = 1, \ldots, p - 1);$$

$$\tilde{B}_p = \sum_{i=0}^{p-1} B_i.$$

We take $\tilde{B}_0 \in \mathbb{Z}_p$ arbitrarily and see that assumption (1) guarantees $\tilde{B}_p \equiv 0 \pmod{p}$ for the 1-Lipschitz property. Given that $\tilde{B}_{p^{n-1}} \in \mathbb{Z}_p$ with $\tilde{B}_{p^{n-1}} \equiv 0 \pmod{p^{n-1}}$ ($n \geq 2$), from a system of linear equations in Eqs. (6) and (8), we take $\{\tilde{B}_m\}_{m=p^{n-1}}^{p^n}$ with $\tilde{B}_{p^n} \equiv 0 \pmod{p^n}$ such that for all $\alpha = 1, \ldots, p^{n-1} - 1$,

$$\tilde{B}_{ip^{n-1} + \alpha} = i\tilde{B}_{p^{n-1}} + \sum_{m=p^{n-1}+1}^{ip^{n-1}+\alpha} B_m \quad (i = 1, \ldots, p - 1);$$

$$\tilde{B}_{ip^{n-1}} = i\tilde{B}_{p^{n-1}} + \sum_{m=p^{n-1}+1}^{ip^{n-1}-1} B_m \quad (i = 2, \ldots, p).$$
We see that \(\tilde{B}_{p^m} \equiv 0 \pmod{p^n} \) follows from assumption (2) and check that \(\tilde{B}_m \) \((p^{n-1} < m < p^n) \) satisfies the 1-Lipschitz property. This completes the proof.

The first part of the following result is observed through Lemma 4.41 in [2]. However, the second part provides a clue about coefficient conditions for the ergodicity of 1-Lipschitz functions in terms of the van der Put expansion.

Theorem 3.7. Let \(f(x) = \sum_{m=0}^{\infty} B_m \chi(m, x) : \mathbb{Z}_p \to \mathbb{Z}_p \) be a measure-preserving 1-Lipschitz function of the form \(f(x) = d + \varepsilon x + p \Delta g(x) \) for a suitable 1-Lipschitz function \(g(x) \), where \(\varepsilon \equiv 1 \pmod{p} \) and \(d \not\equiv 0 \pmod{p} \). Then (i) the function \(f \) is ergodic.

(ii) We have the following congruence relations:

(1) \(B_0 \equiv s \pmod{p} \) for some \(0 < s < p \);
(2) \(\sum_{m=0}^{p-1} B_m \equiv ps + \frac{1}{2}(p-1)p \pmod{p^2} \);
(3) \(\sum_{m=p}^{p^2-1} B_m \equiv \frac{1}{2}(p-1)p^3 \equiv \begin{cases} 4 \pmod{p^3} & \text{if } fp = 2; \\ 0 \pmod{p^3} & \text{if } fp > 2; \end{cases} \)

(4) \(B_m \equiv q(m) \pmod{p^{|\log_p m|+1}} \) for all \(m \geq p \);
(5) \(\sum_{m=p}^{p^n-1} B_m \equiv 0 \pmod{p^{n+1}} \) for all \(n \geq 3 \).

Proof. It is known that the first assertion follows from Lemma 4.41 [2]. For the second assertion, we first note that two simple functions, a constant \(d \in \mathbb{Z}_p \), and \(x \) have an explicit expansion in terms of the van der Put series:

\[
d = \sum_{m=0}^{p-1} d \chi(m, x); \\
x = \sum_{m=1}^{p-1} m \chi(m, x) + \sum_{m=p}^{p^2-1} q(m) \chi(m, x).
\]

If we write a 1-Lipschitz function \(g(x) = \sum_{m=0}^{\infty} \tilde{B}_m \chi(m, x) \), then we have from Proposition [5,5]

\[
B_m = \begin{cases}
 d + \varepsilon m + p(\tilde{B}_{m+1} - \tilde{B}_m) & \text{if } 0 \leq m \leq p - 2; \\
 d + \varepsilon(p-1) + p(\tilde{B}_p + B_0 - \tilde{B}_{p-1}) & \text{if } m = p - 1; \\
 \varepsilon q(m) + p(\tilde{B}_{m+1} - \tilde{B}_m) & \text{if } m \neq p^{n-1} - 1 + m_{n-1}p^{n-1}, 1 \leq m_{n-1} \leq p - 1, n \geq 2; \\
 \varepsilon q(m) + p(\tilde{B}_{m+1} - \tilde{B}_m - \tilde{B}_{p^{n-1}}) & \text{if } m = p^{n-1} - 1 + m_{n-1}p^{n-1}, 1 \leq m_{n-1} \leq p - 1, n \geq 2.
\end{cases}
\]

From these formulas for \(B_m \), it is now straightforward to deduce conditions (1)-(4) together with the assumptions about \(d \) and \(\varepsilon \). For condition (5), we have, for all \(n \geq 3 \),

\[
\sum_{m=p}^{p^n-1} B_m \equiv \sum_{m=p}^{p^n-1} B_m - \varepsilon q(m) \pmod{p^{n+1}} \\
\equiv \sum_{m=p}^{p^n-1} p(\tilde{B}_{m+1} - \tilde{B}_m) - p(p-1)\tilde{B}_{p^{n-1}} \\
= p\tilde{B}_{p^n} - p^2\tilde{B}_{p^{n-1}} \equiv 0 \pmod{p^{n+1}},
\]

because \(\tilde{B}_m \) satisfy the 1-Lipschitz property. This completes the proof. \[\square\]
We provide a partial answer for the converse of Theorem 3.7 under some additional condition that is trivially satisfied for the case in which $p = 2$ or 3. For the first main result, we provide the sufficient conditions under which a measure-preserving 1-Lipschitz function on \mathbb{Z}_p represented by the van der Put series is ergodic. The conditions in Theorem 3.7 reduce to all conditions in Theorem 2.5 (iii) for the case $p = 2$.

Theorem 3.8. Let $f(x) = \sum_{m=0}^{\infty} B_m \chi(m, x) : \mathbb{Z}_p \to \mathbb{Z}_p$ be a 1-Lipschitz function satisfying all conditions in Theorem 3.7 (ii). If f satisfies the additional condition $B_m \equiv B_0 + m \pmod{p}$ for $0 < m < p$, then f is ergodic.

Proof. By Lemma 4.41 in [2] or Lemma 2.4 in Section 2, it suffices to show that the function f is of the form $f = B_0 + x + p\Delta g(x)$ with some 1-Lipschitz function $g(x)$. By Theorem 3.7, we observe that f is measure-preserving. Indeed, this follows from condition (4) in Theorem 3.7 and the additional condition. We now use the said conditions and Eq.(9) to break $f(x)$ up as follows:

$$f(x) = \sum_{m=0}^{p-1} B_m \chi(m, x) + \sum_{m \geq p} (q(m) + pB'_m) \chi(m, x) \text{ with } B'_m \equiv 0 \pmod{p^{\lfloor \log_p m \rfloor}}$$

$$= B_0 \chi(0, x) + \sum_{m=1}^{p-1} (B_0 + m) \chi(m, x) + \sum_{m \geq p} q(m) \chi(m, x) + p \sum_{m \geq 0} B''_m \chi(m, x)$$

$$= B_0 + x + p \sum_{m \geq 0} B''_m \chi(m, x)$$

By equating the coefficients of f on both sides of the preceding equation, we have

$$B_m = \begin{cases} B_0 + m + pB''_m & \text{if } 0 \leq m \leq p - 1; \\ q(m) + pB'_m & \text{if } m \geq p. \end{cases}$$

We use this equation to see that condition (2) in Theorem 3.7 is equivalent to $\sum_{m=0}^{p-1} B''_m \equiv 0 \pmod{p}$ and that conditions (5) and (3) are equivalent to $\sum_{m=p-1}^{p^n-1} B''_m \equiv 0 \pmod{p^n}$ for all $n \geq 2$. Because B'_m for $m \geq p$ satisfy the 1-Lipschitz property, so do B''_m for $m \geq p$. Therefore, we see from Proposition 3.5 that $\sum_{m \geq 0} B''_m \chi(m, x) = \Delta g(x)$ for some 1-Lipschitz function $g(x)$, and we are done.

3.3 Equivalent Statements

We provide several equivalent conditions that may be needed for a complete description of the ergodicity of 1-Lipschitz functions on \mathbb{Z}_p. For this, we need to observe the following property for 1-Lipschitz functions.

Lemma 3.9. Let $f(x) = \sum_{m=0}^{\infty} B_m \chi(m, x) : \mathbb{Z}_p \to \mathbb{Z}_p$ be a 1-Lipschitz function represented by the van der Put series. Then, for all $n \geq 2$, we have

$$\sum_{m=p^{n-1}}^{p^n-1} B_m = \sum_{m=0}^{p^n-1} f(m) - p \sum_{m=0}^{p^{n-1}-1} f(m).$$
Proof. For \(p^{n-1} \leq m < p^n \) with \(n \geq 2 \), write \(m = ip^{n-1} + j \), where \(1 \leq i < p \) and \(0 \leq j < p^{n-1} \). We use the formula for \(B_m \) in Eq. (3) to compute \(\sum_{m=p^{n-1}}^{p^n-1} f(m) \) as follows:

\[
\sum_{m=0}^{p^n-1} f(m) - \sum_{m=0}^{p^{n-1}-1} f(m) = \sum_{m=p^{n-1}}^{p^n-1} f(m) = \sum_{m=p^{n-1}}^{p^n-1} B_m + f(m -)
\]

\[
= \sum_{i=1}^{p-1} \sum_{j=0}^{p^{n-1}-1} B_{ip^{n-1}+j} + \sum_{i=1}^{p-1} \sum_{j=0}^{p^{n-1}-1} f(j)
\]

\[
= \sum_{m=p^{n-1}}^{p^n-1} B_m + (p - 1) \sum_{m=0}^{p^{n-1}-1} f(m).
\]

Then we have the desired result. \(\square \)

Remarks 1. If the 1-Lipschitz function \(f = \sum_{m=0}^{\infty} B_m \chi(m, x) : \mathbb{Z}_p \to \mathbb{Z}_p \) satisfies the relationship \(f = \Delta g \) for a suitable 1-Lipschitz function \(g = \sum_{m=0}^{\infty} \tilde{B}_m \chi(m, x) \), then it is known from Proposition 3.5 that for \(n \geq 1 \),

\[
\sum_{m=p^{n-1}}^{p^n-1} B_m = \tilde{B}_p^n - p\tilde{B}_{p^{n-1}}.
\]

2. If the additional condition \(g(0) = 0 \) is satisfied, then by Theorem 34.1 in [12], we have

\[
\sum_{m=0}^{p^n-1} f(m) = g(p^n) = \tilde{B}_p^n
\]

for all \(n \geq 1 \).

From this point onward, we assume that \(f : \mathbb{Z}_p \to \mathbb{Z}_p \) is a measure-preserving 1-Lipschitz function. For a nonnegative integer \(m \), we write

\[
f(m) = \sum_{i=0}^{\infty} f_{mi} p^i \text{ with } 0 \leq f_{mi} \leq p - 1 \quad (i = 0, 1, \cdots)
\]

(10)

For an integer \(n \geq 1 \), we define \(S_n \) to be

\[
S_n = \sum_{m=0}^{p^{n-1}} f_{mn}.
\]

(11)

From Lemma 3.9, we immediately see that for all \(n \geq 2 \),

\[
\sum_{m=p^{n-1}}^{p^n-1} B_m \equiv 0 \pmod{p^{n+1}} \Leftrightarrow \sum_{m=0}^{p^n-1} f(m) \equiv p \sum_{m=0}^{p^{n-1}-1} f(m) \pmod{p^{n+1}}.
\]

(12)

Because \(f \) is measure-preserving, the congruence on the right-hand side of Eq. (12) is equivalent to rewriting it as

\[
\frac{1}{2}(p^n - 1)p^n + S_n p^n \equiv p \sum_{m=0}^{p^{n-1}-1} f(m) \pmod{p^{n+1}}.
\]
Canceling p out, we have
\[
\frac{1}{2}(p^n - 1)p^{n-1} + S_n p^{n-1} \equiv \sum_{m=0}^{p^n-1} f(m) \pmod{p^n}.
\]
Because f is again measure-preserving, we have
\[
\frac{1}{2}(p^n - 1)p^{n-1} + S_n p^{n-1} \equiv \frac{1}{2}(p^{n-1} - 1)p^{n-1} + S_{n-1} p^{n-1} \pmod{p^n}.
\]
Canceling p^{n-1} out gives
\[
\frac{1}{2}(p - 1)p^{n-1} + S_n \equiv S_{n-1} \pmod{p} \quad (n \geq 2).
\]
This gives the following congruence:
\[
S_n \equiv \begin{cases}
S_{n-1} \pmod{p} & (n \geq 2) \text{ if } p \neq 2; \\
S_{n-1} \pmod{2} & (n \geq 3) \text{ if } p = 2.
\end{cases}
\]
On the other hand, because f is measure-preserving, by proposition [5.4] we obtain
\[
\sum_{m=p^{n-1}}^{p^n-1} B_m \equiv \frac{1}{2}(p-1)p^{2n-1} + T_n p^n \pmod{p^{n+1}}.
\] \quad (13)
This gives the following equivalence: For the case (p, n) in which $n \geq 2$ if the prime p is odd, and $n \geq 3$ otherwise, we have either
\[
\sum_{m=p^{n-1}}^{p^n-1} B_m \equiv 0 \pmod{p^{n+1}} \iff T_n \equiv 0 \pmod{p},
\]
or
\[
\sum_{m=p^{n-1}}^{p^n-1} B_m \equiv T_n p^n \not\equiv 0 \pmod{p^{n+1}} \iff T_n \not\equiv 0 \pmod{p}.
\]
For the case $(p, n) = (2, 2)$, we have from Eq. (13) that either
\[
\sum_{m=2}^{3} B_m \equiv 0 \pmod{2^3} \iff T_2 \equiv 1 \pmod{2},
\]
or
\[
\sum_{m=2}^{3} B_m \equiv 4 \pmod{2^3} \iff T_2 \equiv 0 \pmod{2}.
\]
From Lemma [3.9] and Eq. (13) we deduce the following congruence: For all $n \geq 2$, we have
\[
T_n \equiv S_n - S_{n-1} \pmod{p}.
\]
In sum, we have the following equivalence:

Theorem 3.10. Let $f(x) = \sum_{m=0}^{\infty} B_m \chi(m, x) : \mathbb{Z}_p \to \mathbb{Z}_p$ be a measure-preserving 1-Lipschitz function represented by the van der Put series. In addition, let b_n, T_n and S_n be defined as in Proposition [3.4] and in Eq. (11). Then we have the following equivalence:
(1) \(n = 2 \):
(a) \(p = 2 \):
\[
\sum_{m=2}^{2^2-1} B_m \equiv 4 \pmod{2^3} \iff \sum_{m=2}^{2^2-1} b_m \equiv 2 \pmod{2^3}
\]
\[
\iff S_2 \equiv S_1 \pmod{2} \iff T_2 \equiv 0 \pmod{2};
\]
or
\[
\sum_{m=2}^{2^2-1} B_m \equiv 0 \pmod{2^3} \iff \sum_{m=2}^{2^2-1} b_m \equiv 0 \pmod{2^3}
\]
\[
\iff S_2 \equiv S_1 + 1 \pmod{2} \iff T_2 \equiv 1 \pmod{2}.
\]
(b) \(p > 2 \):
\[
\sum_{m=p}^{p^2-1} B_m \equiv rp^2 \pmod{p^3} \iff \sum_{m=p}^{p^2-1} b_m \equiv rp \pmod{p^2}
\]
\[
\iff S_2 \equiv S_1 + r \pmod{p} \iff T_2 \equiv r \pmod{p}.
\]
(2) \(n \geq 3 \) and any prime \(p \):
\[
\sum_{m=p^n-1}^{p^n-1} B_m \equiv rp^n \pmod{p^{n+1}} \iff \sum_{m=p^n-1}^{p^n-1} b_m \equiv rp \pmod{p^2}
\]
\[
\iff S_n \equiv S_{n-1} + r \pmod{p} \iff T_n \equiv r \pmod{p}.
\]

3.4 Alternative proofs of Anashin’s and Anashin et al.’s results

In this section, we use Theorem \[8\] to provide an alternative proof of Theorem \[2,3,10\] (iv). For this, we need the following lemma, which is an analog in \(\mathbb{Z}_2 \) of the result for the formal power series ring \(\mathbb{F}_2[[T]] \) over the field \(\mathbb{F}_2 \) of two elements (see Lemma 1 in \[9\]).

Lemma 3.11. Let \(f : \mathbb{Z}_2 \to \mathbb{Z}_2 \) be a measure-preserving 1-Lipschitz function such that \(f \) is transitive modulo \(2^n, n \geq 1 \). Then \(f \) is transitive modulo \(2^{n+1} \) if and only if \(S_n \) is odd, where \(S_n \) is defined as in Eq. (14).

Proof. (\(\Rightarrow \)): We put \(R_{<n} = \{0, 1, \ldots, 2^n - 1\} \) for a complete set of the least nonnegative representatives of \(\mathbb{Z}_2/2^n\mathbb{Z}_2 \). When we consider the trajectory of \(f(x) \) modulo \(2^k \), we view \(x \) and \(f(x) \) as elements whose representatives are in \(R_{<k} \). If \(f \) is transitive modulo \(2^{n+1} \), then there exist \(x_0, x_1 \in R_{<n} \) such that \(f(x_0) = x_1 + 2^n \). Starting with \(x_0 \) as the initial point, we list the trajectory of \(f \) modulo \(2^{n+1} \) as follows:

\[
x_0 \to f(x_0) \to f^2(x_0) \to f^3(x_0) \to \cdots \to f^{2^n-1}(x_0) \to f^{2^n}(x_0) \to f^{2^n+1}(x_0) \to \cdots \to f^{2^{n+1}-1}(x_0) \to f^{2^{n+1}}(x_0) = x_0 + 2^{n+1}u \pmod{2^{n+1}}
\]

where \(u \in 1 + 2\mathbb{Z}_2 \). Because \(f \) is both measure-preserving and transitive modulo \(2^{n+1} \), we have \(f^{2^n}(x_0) = x_0 + 2^n \). We use this relationship to iteratively derive the relationship

\[
f^{2^{n+i}}(x_0) \equiv f^i(x_0) + 2^n \pmod{2^{n+1}} \quad (0 \leq i \leq 2^n - 1).
\]
We claim that S_n is odd and thus that $S_n = \#\{0 \leq m \leq 2^n - 1 : f_{mn} = 1\}$ is odd, where f_{mn} is defined in Eq. (10). If there exists a number in $R_{<n}$ other than x_0 mapped by f to an element in $R_{<n} + 2^n$ in the first row of the diagram in Eq. (11), then there exists another element in $R_{<n} + 2^n$ that maps to an element in $R_{<n}$. By the relationship in Eq. (15), we see that there must be an element in $R_{<n}$ that is mapped by f to an element in $R_{<n} + 2^n$ in the second row. This implies that the total number of elements in $R_{<n}$ that are mapped by f to an element in $R_{<n} + 2^n$ is odd and thus that S_n is odd.

Conversely, assuming that S_n is odd, we see that there exist $x_0, x_1 \in R_{<n}$ such that $f(x_0) = x_1 + 2^n$. From the above diagram, because f is transitive modulo 2^n, we observe that the elements of the first row as well as those in the second row are distinct modulo 2^n. We now show that $f^{2^n}(x_0) = x_0 + 2^n$. Otherwise, we have $f^{2^n}(x_0) = x_0$, and therefore we see that $\#\{0 \leq m \leq 2^n - 1 : f_{mn} = 1\}$ is even, which is a contradiction. As in the "only if" part, we use $f^{2^n}(x_0) = x_0 + 2^n$ to derive the relationship in Eq. (15). Therefore, these relationships imply that the trajectory of f modulo 2^{n+1} are all distinct modulo 2^{n+1}. Hence, f is transitive modulo 2^{n+1}.

\[\square \]

Theorem 3.12. Let $f(x) = \sum_{m=0}^{\infty} B_m \chi(m, x) : Z_2 \to Z_2$ be a 1-Lipschitz function. Then f is ergodic if and only if all conditions in Theorem 2.5 (iii) are satisfied.

Proof. We see that the "if" part follows immediately from Theorem 3.8 because the additional condition there is trivially satisfied for $p = 2$. For the "only if" part, we note that $S_1 = 1$, so this direction follows from Lemma 2.14 and Theorem 3.10. \[\square \]

As a corollary, we reproduce Corollary 2.3.

Corollary 3.13. Let $f : Z_2 \to Z_2$ be a 1-Lipschitz function. Then, (1) f is measure-preserving if and only if f is of the form $f(x) = d + x + 2g(x)$ for some 2-adic integer $d \in Z_2$ and some 1-Lipschitz function $g(x)$.

(2) f is ergodic if and only if f is of the form $f(x) = 1 + x + 2\Delta g(x)$ for some 1-Lipschitz function $g(x)$.

Proof. For the first assertion, the "if" part follows from Proposition 2.1 (3). And the "only if" part comes from Theorem 3.2 because the conditions there is necessary in the case $p = 2$.

For the second assertion, the "if" part follows from Lemma 4.41 in [2] and the "only if" part follows from Theorems 3.12 and 3.8. \[\square \]

We now use Corollary 3.13 to provide an alternate proof of Theorem 2.4 (iv). For this, we first need to provide the 1-Lipschitz conditions in Theorem 2.2 (i). However, we just mention that this property can be proved in the similar way by using the well-known binomial formula in [9, 15] for Carlitz polynomials over functions fields.

Corollary 3.14. Let $f(x) = \sum_{m=0}^{\infty} a_m \left(\frac{x}{d}\right) : Z_2 \to Z_2$ be a 1-Lipschitz function. Then f is ergodic if and only if all conditions in Theorem 2.2 (iv) are satisfied.

Proof. It follows from Corollary 3.13. \[\square \]

4 **An Application**

In this final section, we use Theorem 2.5 to derive a characterization for the ergodicity of a polynomial over Z_2 in terms of its coefficients. For simplicity, we take a polynomial $f \in Z_2[x]$ with $f(0) = 1$. That is, let $f = a_dx^d + a_{d-1}x^{d-1} + \cdots + a_1x + 1$ be a polynomial of degree d over Z_2. Then we set

$$ A_0 = \sum_{i \equiv 0 \pmod{2}, i > 0} a_i, \quad A_1 = \sum_{i \equiv 1 \pmod{2}} a_i. $$
Theorem 4.1. The polynomial f is ergodic over \mathbb{Z}_2 if and only if the following conditions are simultaneously satisfied:

\[
\begin{align*}
 a_1 & \equiv 1 \pmod{2}; \\
 A_1 & \equiv 1 \pmod{2}; \\
 A_0 + A_1 & \equiv 1 \pmod{4}; \\
 a_1 + 2a_2 + A_1 & \equiv 2 \pmod{4}.
\end{align*}
\]

Proof. From Theorem 2.5 (iii) or Theorem 3.12, we derive the equivalent conditions as required. Because $B_0 + B_1 = f(0) + f(1) = 2 + A_0 + A_1$, we can easily see that $B_0 \equiv 1 \pmod{2}$ and $B_1 \equiv 1 \pmod{2}$. We have:

\[
B_0 + B_1 = f(0) + f(1) = 2 + A_0 + A_1.
\]

Because $B_2 = 2b_2 = f(2) - f(0), B_3 = 2b_3 = f(3) - f(1)$, we see that $b_2 + b_3 \equiv 2 \pmod{4}$ is equivalent to $f(2) - f(0) + f(3) - f(1) \equiv 4 \pmod{8}$. Because $f(3) = \sum_{i=0}^{d} a_i 3^i \equiv 1 + A_0 + 3A_1 \pmod{8}$, we have the following equivalence:

\[
b_2 + b_3 \equiv 2 \pmod{4} \iff a_1 + 2a_2 + A_1 \equiv 2 \pmod{4}.
\]

For all $m \geq 2$, we have:

\[
B_m = f(m) - f(m) = \sum_{i=1}^{d} a_i (m^i - m_\text{rad}) = \sum_{i=1}^{d} a_i \sum_{j=1}^{i} \binom{i}{j} m_{\text{rad}}^{i-j} q(m)^j = \sum_{j=1}^{d} \left(\sum_{i=j}^{d} \binom{i}{j} a_i m_{\text{rad}}^{i-j} \right) q(m)^j.
\]

The preceding equation implies that condition (4) is equivalent to $f'(m_{\text{rad}}) \in 1 + 2\mathbb{Z}_2$ for all $m \geq 2$, where $f'(x)$ is the derivative of f. Equivalently, $f'(0) = a_1 \in 1 + 2\mathbb{Z}_2$ and $f'(1) = A_1 \in 1 + 2\mathbb{Z}_2$. From Eq. (16), we can deduce that for all $m \geq 2$, $b_m \equiv f'(m_{\text{rad}}) \pmod{q(m)}$. From this, we obtain the following congruence: For $n \geq 3$,

\[
\sum_{m=2^n-1}^{2^n-2} b_m \equiv \sum_{m=2^n-1}^{2^n-2} f'(m_{\text{rad}}) = \sum_{j=0}^{2^n-1} f'(j) \equiv 2^{n-3}(f'(0) + f'(1) + f'(2) + f'(3)) \equiv 2^{n-2}(A_1 - a_1) \pmod{4}.
\]

This congruence implies that condition (5) is redundant. This completes the proof.

Remarks

1. We first mention that all conditions in Theorem 4.1 are easily proved to be equivalent to those in 5 or 8.

2. We point out that the result for this theorem extends to a class of analytic functions on \mathbb{Z}_p by which we mean those functions represented by the Taylor series on all \mathbb{Z}_p.

3. The characterization for the ergodicity of 1-Lipschitz functions provides a clue for a complete description of the necessary and sufficient conditions for a polynomial function on \mathbb{Z}_p in terms of its coefficients, as in Theorem 4.1.

4. Future research should use the results in this paper, particularly those for Theorems 3.8 and 3.10 to provide a complete description of an ergodic 1-Lipschitz function \mathbb{Z}_p represented by the van der Put series for all odd primes p.

References

[1] V. S. Anashin, Uniformly distributed sequences of p-adic integers, *Math. Notes* 55 (1994), no. 1-2, 109-133
[2] V. Anashin, A. Khrennikov, *Applied algebraic dynamics*, de Gruyter Expositions in Mathematics, 49. Walter de Gruyter & Co., Berlin, 2009. xxiv+533 pp.
[3] V. Anashin, A. Khrennikov and E. Yurova, Characterization of ergodicity of p-adic dynamical systems by using the van der Put basis, *Doklady Mathematics* 83 (3) (2011) 1-3
[4] V. Anashin, A. Khrennikov and E. Yurova, *T*-Functions Revisited: New Criteria for Bijectivity/Transitivity, arXiv:1111.3093v1
[5] F. Durand and F. Paccaut, Minimal polynomial dynamics on the set of 3-adic integers, *Bull. Lond. Math. Soc.* 41 (2009), no. 2, 302-314.
[6] S. Jeong, Characterization of ergodicity of T-adic maps on $\mathbb{F}_2[[T]]$ using digit derivatives basis, preprint.
[7] A. Klimov and A. Shamir, Cryptographic applications of T-functions, Selected areas in cryptography, 248-261, Lecture Notes in Comput. Sci., 3006, Springer, Berlin, 2004,
[8] M. V. Larin, Transitive polynomial transformations of residue class rings, *Discrete Math. Appl.* 12 (2002) 127-140.
[9] D. Lin, T. Shi and Z. Yang, Ergodic Theory over $\mathbb{F}_2[[T]]$, *Finite Fields and Their Applications*, 18 (2012), 473-491.
[10] K. Mahler, An interpolation series for a continuous function of a p-adic variable, *J. Reine Angew. Math.*, 199 (1958),23-34.
[11] K. Mahler, *p-adic numbers and their applications*, second edition, Cambridge University Press. (1981).
[12] W. Schikhof, *Ultrametric Calculus*, Cambridge University Press, 1984.
[13] R. Lidl and H. Niederreiter, *Finite fields*, Encyclopedia of Mathematics and its Applications 20 (Cambridge University Press, Cambridge, 1997)
[14] M. van der Put, Alg’ebres de fonctions continues p-adiques, Universiteit Utrecht, 1967. 2
[15] Z. Yang, C^n-functions over completions of $\mathbb{F}_r[T]$ at finite places of $\mathbb{F}_r(T)$, *J. Number Theory* 108 (2004), no. 2, 346-374
[16] E. Yurova, Van der Put basis and p-adic dynamics, *P-adic Numbers, Ultrametric Analysis and Applications* 2 (2) (2010), 175-178.