Immunotherapy for osteosarcoma: Where do we go from here?

Mary F. Wedekind1,2 | Lars M. Wagner3 | Timothy P. Cripe1,2

1Division of Hematology, Oncology, and Blood and Marrow Transplant, Department of Pediatrics, Nationwide Children's Hospital, Columbus, Ohio
2Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
3Division of Hematology-Oncology, Department of Pediatrics, Kentucky Children's Hospital, Lexington, Kentucky

Correspondence
Mary F. Wedekind, Division of Hematology, Oncology, and Blood and Marrow Transplant, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205.
Email: mary.wedekind@nationwidechildrens.org

Abstract
Osteosarcoma is the most common bone tumor in children and young adults, with few advances in survival and treatment, especially for metastatic disease, in the last 30 years. Recently, immunotherapy has begun to show promise in various adult cancers, but the utility of this approach for osteosarcoma remains relatively unexplored. In this review, we outline the mechanisms and status of immunotherapies currently in clinical trials as well as future therapies on the horizon, and discuss their potential application for osteosarcoma.

KEYWORDS
immunotherapy, osteosarcoma, sarcoma

1 | INTRODUCTION

Osteosarcoma is the most common cancer originating in the bone, and typically affects adolescents and young adults. Although the primary tumor is often surgically resected, patients remain at high risk for eventually developing pulmonary metastases unless adjuvant chemotherapy is administered. Even then, only two-thirds of patients with initially localized disease are expected to be cured, with long-term survival occurring in <30% of patients with metastatic or recurrent tumors.1 The inability to effectively optimize existing treatments or identify new active agents has prevented any improvement in outcome for over three decades. Given these limitations, novel treatment approaches are needed.

Several lines of evidence suggest that osteosarcoma may be susceptible to immune-based therapies. Osteosarcoma tumors have a higher percentage of CD8+ infiltrating lymphocytes than other sarcoma subtypes,2 and the degree of infiltration correlates positively with survival.3 Osteosarcomas have a high level of genomic instability, with some tumors expressing the programmed cell death protein-1 ligand (PD-L1),4 suggesting potential sensitivity to inhibitors of the programmed cell death protein-1 (PD-1)/PD-L1 axis.5–7 In addition, there are multiple cell surface proteins that are potentially targetable with antibodies. But perhaps the most compelling data come from past experience with mifamurtide, which is an analog of bacterial cell walls that can trigger the activation of monocytes and macrophages and improve tumor control. Mifamurtide is currently approved in Europe for the treatment of osteosarcoma, based in part on a randomized phase III study showing improved overall survival in patients with osteosarcoma receiving mifamurtide plus conventional chemotherapy.8

In this review, we outline the mechanisms and current status of immunotherapies that are now in clinical trials, as well as those on the horizon for the treatment of osteosarcoma (Figure 1).

1.1 | Cancer immunotherapy

The immune system is a highly sophisticated organization of cells that work together to provide protection against foreign threats (e.g. infection, tumor) while maintaining tolerance against self. The interplay between the patient's immune system and cancer is complex and includes immune surveillance, immune cell infiltration, and tumor cytolyis by the host, which are counteracted by tumor defenses that dampen the immune response through the release of inhibitory cytokines and downregulation of surface markers.9 A popular model that captures this interplay is termed cancer “immunoediting,” which consists of the following three different phases: elimination,
experience in osteosarcoma and future directions

Mechanism

Antibody targeting of cell surface proteins

Tumor vaccines and dendritic cells

Experience in osteosarcoma and future directions

Tumor vaccines and dendritic cells

Experience in osteosarcoma and future directions

1.2 | Antibody targeting of cell surface proteins

1.2.1 | Mechanism

The use of antibodies to target cancer cell surface proteins is attractive given the multiple antigens that are potentially targetable in osteosarcoma, the safety and ready availability of these "off-the-shelf" treatments, and the past success seen in pediatric cancers such as neuroblastoma and acute lymphoblastic leukemia. Monoclonal antibodies (mAb) attach to specific tumor surface antigens and activate natural killer (NK) cells and macrophages to release cytotoxic granules to kill tumor cells in a process known as antibody-dependent cellular cytotoxicity. In contrast, bispecific T-cell engagers (BiTE) are antibodies which contain two single-chain variable fragments connected by a flexible linker that brings in close proximity the CD3 receptor of the T cell with the tumor antigen, resulting in T-cell activation and subsequent cancer cell cytolysis. A third approach involves the coupling of an antibody with a cytotoxic agent such as vedotin to selectively deliver chemotherapy to cancer cells.

1.2.2 | Experience in osteosarcoma and future directions

Several mAb have already been tested in clinical trials for patients with osteosarcoma, including the use of trastuzumab to target HER2, cixutumumab to target insulin-like growth factor 1, and glembatumumab vedotin to target the glycoprotein nonmetastatic B (NCT02487979). Although solid rationale existed for each trial, these strategies have not showed sufficient antitumor activity to warrant further testing. Specific reasons for these disappointing findings are unknown, but may include the incomplete or low expression of tumor antigens, or compromised cellular toxicity due to inhibitory stimuli within the tumor microenvironment.

Despite these early disappointments, further studies are ongoing with antibodies against other cell surface proteins such as disialoganglioside (GD2), which is widely expressed in both primary and recurrent osteosarcoma tumors. As shown in Table 1, a variety of antibody-based studies are now ongoing that incorporate anti-GD2 mAb with other immunoadjuvants such as sargramostim or interleukin-2, or utilize BiTE antibodies against GD2. In addition, targeting of the RANK ligand with denosumab is being explored in an ongoing clinical trial for patients with recurrent osteosarcoma (NCT02470091), based on the role of the RANK ligand in regulating bone turnover, activating downstream signaling, and modulating gene expression.

1.3 | Tumor vaccines and dendritic cells

1.3.1 | Mechanism

Tumor vaccines were one of the original modalities tested as cancer immunotherapy, and are designed to induce an antitumor response through the exposure of tumor antigens. Vaccines have included whole cells, lysates, proteins, DNA, RNA, and peptides. Dendritic cells (DC) are antigen presenting cells (APCs) that have the ability to activate T cells and cause the proliferation of cytotoxic T lymphocytes (CTLs). Matured autologous DC can be loaded with the particle(s) of choice, treated with immunoadjuvants ex vivo, and then re-injected into the patient.

1.3.2 | Experience in osteosarcoma and future directions

DC vaccines have produced delays in disease progression and even the regression of established osteosarcomas in animal models. However, only limited activity was seen in the two clinical trials using DC vaccines pulsed with autologous tumor cell lysate in patients with recurrent osteosarcoma. These studies did, however, show that this strategy is safe and can activate the immune system to some extent. It is unknown whether vaccines would be more effective for osteosarcoma in a setting of minimal residual disease, or whether combination with other immunotherapies would improve tumor control. In an effort
to increase efficacy, investigators are adding decitabine to upregulate cancer antigen expression (NCT01241162), or gemcitabine to increase the tumor cell cytotoxicity and decrease myeloid-derived suppressor cells (NCT01803152).

1.4 Oncolytic viruses

1.4.1 Mechanism

Oncolytic viruses are attenuated viruses genetically engineered to only replicate in malignant cells. This strategy is appealing for solid tumor therapy because these viruses are not dependent on the expression of specific tumor cell antigens. In addition to direct cytotoxicity, the administration of oncolytic virus creates a pro-inflammatory tumor microenvironment leading to antigen presentation and APC maturation with subsequent epitope spreading.28

1.4.2 Experience in osteosarcoma and future directions

Preclinical studies using various different oncolytic virotherapies have demonstrated activity against some adult cancers. In the clinic, talimogene laherparepvec (T-VEC) was found to produce responses in patients with melanoma even in noninjected metastatic tumors, and the success of this strategy has led to T-VEC being the first FDA-approved oncolytic virus.29 A trial combining T-VEC with the anti-PD-1 antibody pembrolizumab is now being tested in patients with osteosarcoma due to lack of efficacy.30 Other oncolytic virotherapies that are in preclinical development.30–32

1.5 Adoptive cell therapy

1.5.1 Mechanism

Adoptive cell therapy provides a patient with cytolytic cells to cause an antitumor response.23 These therapies are designed to counteract the various ways tumor cells evade the host immune system. For example, malignant cells may downregulate their expression of HLA and tumor antigens, thus making them unable to be recognized by T cells. To overcome this issue, T cells can be engineered to respond with high affinity to specific antigens without the need for peptide recognition in the context of HLA presentation. These engineered T cells are termed chimeric antigen receptor T cells (CAR-Ts), and are composed of an extracellular domain derived from a monoclonal antibody specific for a tumor surface antigen, a spacer domain, a transmembrane domain, and an intracellular signal-transducing chain of the T cell receptor.33,34 In sarcoma trials, the process includes harvesting autologous peripheral blood mononuclear cells using apheresis, activation with CD3 and CD28 antibodies together with recombinant interleukin-2, and then transduction with retroviral particles encoding the target antigen, such as HER2.35 T-cell lines are then further expanded with interleukin-2, tested to confirm immunospecificity, and then reinfused to the patient.15 The use of CAR-Ts has recently been approved by the US Food and Drug Administration for the treatment of relapsed pediatric acute lymphoblastic leukemia, and applications for sarcomas are now being explored.

Other adoptive cell therapy options include NK cells and tumor-infiltrating lymphocytes (TILs). NK cells are lymphocytes in the innate immune system with both cytotoxic and regulatory functions. Unlike T- and B cells, NK cells recognize targets without prior exposure. TILs are another form of adoptive cell therapy in which highly specific T cells migrate into tumors, and upon exposure to tumor antigens, directly kill tumor cells and release cytokines which further mediate the antitumor response.36,37

1.5.2 Experience in osteosarcoma and future directions

CAR-Ts generated against IGF-1R and tyrosine kinase-like orphan receptor 1 prolong survival in murine models of osteosarcoma.38 A phase I/II trial of HER-2 CAR-T therapy included 16 patients with relapsed osteosarcoma and demonstrated no dose-limiting toxicities, with the persistence of HER2-CAR T-cells for at least 6 weeks in the majority of evaluable patients, some of whom experienced prolonged

TABLE 1 Clinical trials for antibody therapy targeting cell surface proteins

Trial identifier	Eligible disease(s)	Treatments	Estimated enrollment	Clinical phase	Result or primary outcome	Status
NCT01419834	High-risk neuroblastoma GD2 positive tumors	Humanized 3F8 anti-GD2 monoclonal antibody	74	I	Ongoing	Ongoing, recruiting
NCT02484443	Recurrent osteosarcoma	Dinutuximab + GMCSF	44	II	Ongoing	Ongoing, recruiting
NCT02502786	Recurrent osteosarcoma	Humanized 3F8 anti-GD2 antibody + GMCSF	39	II	Ongoing	Ongoing, recruiting
NCT00831844	Relapsed or refractory solid tumors	Anti-IGF-1R monoclonal antibody	116	II	Ongoing	Completed
NCT02487979	Recurrent or refractory osteosarcoma	Glembatumumab vedotin	38	II	Ongoing	Ongoing, not recruiting
NCT02173093	Neuroblastoma, osteosarcoma	Anti-GD2 BiTE therapy	40	I/II	Ongoing	Ongoing, recruiting
NCT01662804	Neuroblastoma GD-2 positive solid tumors	Humanized 3F8 mAb + IL-2	14	I	Ongoing	Ongoing, not recruiting

GMCSF, granulocyte-macrophage colony-stimulating factor.
stable disease.35 There are currently two ongoing trials with GD2-targeted CAR-T cells (NCT 01953900 and NCT02107963).

There are also encouraging preclinical data showing the benefit of NK cells in animal models of osteosarcoma,44–46 and several NK trials are ongoing (Table 2). Although the adoptive transfer of TILs can result in the reduction of bulky metastatic melanoma,47 the extraction and expansion of these cells has been problematic. However, improvements in methodology53 may make this treatment more feasible in the future for patients with osteosarcoma.

Other future adoptive cell therapies include the use of unmodified CD8 lymphocytes, T cells with engineered high-affinity receptors, and gδ T cells. As CTLs are the leading cells in immune surveillance, it is ideal to use these CD8 lymphocytes for treatment. Targeting the cancer antigens NY-ESO-1 and MAGE-A3 with specific lymphocytes has shown initial success against soft tissue sarcoma and non-small cell lung cancer (NSCLC).39–41 Culturing unmodified CD8 lymphocytes with decitabine to induce MAGE-A and NY-ESO-1 led to substantial tumor regressions in mouse models of osteosarcoma.42 Another potential adoptive therapy option is the use of T cells with genetically modified receptors for targeting cancer antigens such as MART-1, gp-100, and NY-ESO-1, with favorable outcomes in melanoma and synovial sarcoma.43,44 Although these strategies are exciting, they have not yet been tested in clinical trials for patients with osteosarcoma.

Finally, investigators have explored the use of gδ T cells, which may bridge the innate and adaptive responses, and which have an affinity to recognize and lyse osteosarcoma cells.45 Preclinical studies demonstrated that gδ T-cell treatment of mouse models of osteosarcoma had dramatic tumor regression.46 Further in vitro and in vivo studies demonstrated significant enhancement of tumor killing when zoledronic acid was combined with the gδ T cells against osteosarcoma tumors, leading to a potential combination therapy for patients with osteosarcoma,45,47 although not yet clinically validated.

1.6 | Checkpoint inhibitors

1.6.1 | Mechanism

Without ex vivo expansion, endogenous TILs often fail to control tumors because malignant cells escape immune surveillance by dampening the immune response via checkpoint ligands.48 Checkpoint inhibitors reverse this process by reinvigorating the T-cell-mediated antitumor responses against tumor antigens through the major histocompatibility complex,16 with the greatest response directed at neoantigens that are distinct from those on host tissues.49 The complex genome and chromosomal instability seen in osteosarcoma tumors has not been proven to lead a high mutational burden; however, high levels of genetic instability have the potential to generate neo-epitopes that are the substrate for immune-mediated killing, thus making this tumor attractive for therapy with checkpoint inhibitors, including those targeting CTLA-4, PD-1, and PD-L1.5,7,50

CTLA-4 is a transmembrane glycoprotein receptor expressed on Tregs and memory T cells, and after binding to CD80/86 on DC results in functional inhibition.51 CLTA-4 expression is increased in patients with osteosarcoma compared to healthy subjects, leading to the proposed use of CTLA-4 inhibitors in patients with osteosarcoma.52,53 PD-1 is another transmembrane immunoglobulin family member expressed on T cells, with the highest expression seen in chronically activated T cells.54 PD-1 serves as a "brake" of the immune system by suppressing CTLs and activating Treg cells,55 and its ligand PD-L1 is expressed on a subset of osteosarcoma tumor cells as well as immune cells contained within osteosarcoma tumor samples.56 The success of checkpoint inhibitors for several different adult cancers has driven

TABLE 2 Clinical trials for adoptive cell therapy, dendritic cell therapy, and vaccines

Trial identifier	Eligible disease(s)	Treatments	Estimated enrollment	Clinical phase	Result or primary outcome	Status
NCT02107963	GD2 positive solid tumors	Anti-GD2 CAR-T-cell therapy	15	I	Awaiting results	Completed
NCT01953900	Refractory or metastatic GD2 positive sarcoma	Anti-GD2 CAR-T cells in VZV	26	I	Ongoing study	Ongoing, not recruiting
NCT02409576	Metastatic EWS, metastatic OS intermediate, and high-risk RMS	Haploidentical NK cell infusions	20	I	Ongoing study	Ongoing, recruiting
NCT01803152	Bone sarcoma, soft tissue sarcoma	DC vaccination, DC vaccination + gemcitabine pretreatment	56	I	Ongoing study	Suspended pending amendment
NCT01241162	Neuroblastoma, EWS, OS, RMS, SS	Decitabine + cancer antigen vaccine	19	I	Awaiting results	Completed
NCT02819843	Melanoma, Merkel cell carcinoma, other solid tumors	T-VEC, T-VEC + radiotherapy	34	II	Ongoing study	Ongoing, recruiting
NCT00931931	Non-CNS solid tumors	Oncolytic herpes virus (HSV1716)	18	I	Awaiting results	Completed

CNS, central nervous system; OS, osteosarcoma; RMS, rhabdomyosarcoma; SS, synovial sarcoma; VZV, varicella zoster virus.
considerable interest in their potential application for osteosarcoma treatment.

1.6.2 Experience in osteosarcoma and future directions

Merchant et al. reported a pediatric phase I study of the CTLA-4 inhibitor ipilimumab in children with relapsed solid tumors, including eight with osteosarcoma. They showed similar toxicity and pharmacokinetics as adults, with an increase in activated and cycling CTLs without an increase in Tregs. Unfortunately, no objective antitumor responses were observed. The Sarcoma Alliance for Research through Collaboration consortium recently tested pembrolizumab for the treatment of sarcomas, and reported partial response in one (4%) of the 22 patients with recurrent osteosarcoma. Numerous studies are now testing various combinations of CTLA-4, PD-1, and PD-L1 inhibition, as discussed below and listed in Table 3.

1.7 Combination therapies

The complexity of the immune system coupled with the disappointing activity seen with the single-therapy approaches studied to date suggest that combination strategies will be necessary to optimize immunotherapy for osteosarcoma. A wide variety of pathways in the tumor microenvironment may contribute to resistance to checkpoint inhibitors, such as T-cell cytotoxicity interruptions, downregulation of MHC, altered DC migration, upregulation of CD80 and CD86, downregulation of PD-L1, and expression of proteins such as indoleamine 2,3-dioxygenase (IDO), LAG3, and TIM3. It will likely be crucial to determine these pathways in individual patients to optimize these treatments.

Rational combination therapies can be designed by capitalizing on specific mechanisms of particular immunotherapeutics. For example, CTLA-4 and PD-1 affect different components of the immune response. CTLA-4 has a primary role in activation of the CD4 effector compartment, specifically inducing expansion of the ICOS+ Th1-like CD4 effector subset, while PD-1 predominately modulates CTL proliferation. Studies combining PD-1 and CTLA-4 blockade for metastatic melanoma have shown clinical benefit (30% of patients exhibiting >80% tumor reduction), leading to the FDA approval of nivolumab and ipilimumab for metastatic melanoma without BRAF mutation. In osteosarcoma, preclinical murine metastatic models have shown clinical benefit (30% of patients exhibiting >80% tumor reduction), leading to the FDA approval of nivolumab and ipilimumab for metastatic melanoma without BRAF mutation. In osteosarcoma, preclinical murine metastatic models have shown clinical benefit (30% of patients exhibiting >80% tumor reduction), leading to the FDA approval of nivolumab and ipilimumab for metastatic melanoma without BRAF mutation. In osteosarcoma, preclinical murine metastatic models have shown clinical benefit (30% of patients exhibiting >80% tumor reduction), leading to the FDA approval of nivolumab and ipilimumab for metastatic melanoma without BRAF mutation. In osteosarcoma, preclinical murine metastatic models have shown clinical benefit (30% of patients exhibiting >80% tumor reduction), leading to the FDA approval of nivolumab and ipilimumab for metastatic melanoma without BRAF mutation. In osteosarcoma, preclinical murine metastatic models have shown clinical benefit (30% of patients exhibiting >80% tumor reduction), leading to the FDA approval of nivolumab and ipilimumab for metastatic melanoma without BRAF mutation.

Checkpoint inhibitors may also increase the activity of CAR-T cells and BiTE antibodies, which may be limited by increased Tregs, immunosuppressive cytokines, genomic instability, loss of target antigen expression, anti-antibody formations leading to T-cell exhaustion, and upregulation of PD-1. Finally, checkpoint inhibitors are also being combined with gene modified T-cell therapy and cancer vaccines in phase I trials (NCT02070406 and NCT02775292), based on encouraging preclinical data.

2 BIOMARKERS

A major challenge for immunotherapy is the identification of biomarkers that predict response, so that treatments can be tailored for the greatest benefit. For checkpoint inhibitors, various proposed predictors of response include the tumor immune phenotype (expression of PD-1 and PD-L1, as well as the presence of TILs), the somatic genomic features such as mutational burden and microsatellite instability, the gut microbiome, and the HLA class I genotype.

Unfortunately, PD-L1 expression has not been consistently predictive of response in either melanoma or NSCLC. Adding further complexity, PD-L1 expression is heterogeneous in both primary and metastatic lesions. Whether higher levels of TILs are predictive of response to PD-1-targeted therapy is being assessed but is as yet unknown. Tumor mutational burden is another potential biomarker for PD-1 therapies, given the greater number of neoantigens. Specifically, tumors with mismatch repair deficiency (MMRD) have a striking response rate to pembrolizumab. However, this biomarker is subject to other influences such as chemotherapy and radiation, and outside of MMRD does not always suffice as a stand-alone predictor. In the end, it is most likely to be a composite of biomarkers that will be utilized together to be predictive.

For treatments based on a specific antigenic target, that target must be widely expressed on tumor cells but not on host cells for optimum benefit. However, even widespread target expression does not guarantee activity. Reliable predictive factors for other immunotherapies remain elusive at present.

2.1 Targeting immunosuppression in the microenvironment

There are numerous factors causing immunosuppression within the tumor microenvironment, and some of these can potentially be targeted for therapy. Transforming growth factor-beta (TGF-β) is a growth factor present in the tumor microenvironment of osteosarcoma that stimulates tumor growth. The expression of TGF-β is higher in patients with osteosarcoma than that in healthy individuals, higher in metastatic disease versus localized disease, and correlates with a
Table 3: Clinical Trials of Checkpoint Inhibitor Therapy

Trial identifier	Eligible disease(s)	Treatments	Estimated enrollment	Clinical phase	Result or primary outcome	Status
NCT02301039	Recurrent, unresectable, and/or metastatic sarcoma (SARCO28)	Anti-PD-1 antibody	146	II	Ongoing	Ongoing, recruiting
NCT02263508	Melanoma	T-VEC + anti-PD-1 antibody	660	III	Ongoing	Ongoing, recruiting
NCT02304458	Recurrent or refractory solid tumors or sarcomas	Nivolumab, nivolumab + ipilimumab	352	I/II	Ongoing	Ongoing, recruiting
NCT02332668	Melanoma, PD-L1 positive solid tumors, relapsed, refractory Hodgkin lymphoma	Anti-PD-L1 antibody	310	I/II	Ongoing	Ongoing, recruiting
NCT02813135	Recurrent solid tumors, any recurrent/ refractory malignancy	Anti-PD-1 antibody, other therapeutics based on molecular profiling	285	I/II	Ongoing	Ongoing, recruiting
NCT02541604	Recurrent solid tumors	Anti-PD-L1 antibody	100	I/II	Ongoing	Ongoing, recruiting
NCT03006848	Recurrent osteosarcoma	Anti-PD-L1 antibody	40	II	Ongoing	Ongoing, recruiting
NCT01445379	Melanoma, PD-L1 positive solid tumors, relapsed, refractory Hodgkin lymphoma	Anti-PD-L1 antibody	310	I/II	Ongoing	Ongoing, recruiting
NCT01968109	Solid tumors	Anti-LAG-3 antibody	1,000	I/II	Ongoing	Ongoing, recruiting
NCT01738139	Advanced cancers	Anti-CTLA-4, anti-CTLA-4 + tyrosine kinase inhibitor	96	I	Ongoing	Ongoing, recruiting
NCT02070406	Advanced local or metastatic solid tumor	Anti-CTLA-4 antibody + gene modified T cell + dendritic cell vaccine	12	I	Ongoing	Ongoing, recruiting
NCT02992964	bMMRD positive tumors	Anti-PD-1 antibody	20	I/II	Ongoing	Ongoing, recruiting
NCT02901145	Recurrent solid tumors	Anti-PD-1 antibody + cyclophosphamide	30	I/II	Not yet open	Not yet open
NCT02775292	Stage IV or locally advanced tumors expressing NY-ESO-1	Anti-PD-1 antibody + gene modified T cells + NY-ESO-1 vaccine	12	I	Ongoing	Ongoing, recruiting
NCT02301039	Advanced bone sarcoma and soft tissue sarcoma	Anti-PD-L1	146	II	Ongoing	Ongoing, recruiting
NCT027723955	Advanced solid tumors	Anti-PD-L1 antibody + GSK3359609	304	I/II	Ongoing	Ongoing, recruiting
NCT02793466	Relapsed or refractory solid tumors	IgG1 monoclonal antibody (blocks interaction of PD-L1 with PD-1)	36	I	Ongoing	Ongoing, recruiting

bMMRD, bialleic mismatch repair deficiency.

lack of response to chemotherapy. Preclinical osteosarcoma murine models showed antitumor effects when TGF-β blockade was combined with DC, due to immune response reconstitution. A second approach uses the tyrosine kinase inhibitor axitinib, a vascular endothelial growth factor inhibitor and platelet-derived growth factor receptor inhibitor, to facilitate T-cell trafficking into the tumor microenvironment, and a trial of this agent combined with pembrolizumab is currently underway (NCT02636725). Other strategies explored in adults include combining PD-1 agents with specific inhibitors of IDO, given the known immunosuppressive properties of IDO including the arrest of T-cell proliferation and induction of Tregs. This combination strategy may be attractive for osteosarcoma, given the ubiquitous expression of IDO reported in primary osteosarcoma tumors.
3 | CONCLUSION

Progress toward improving outcomes in patients with osteosarcoma has been limited in the last three decades by the failure to identify either new active agents or ways to optimize the use of existing drugs, not unlike many adult solid tumors before the advent of immunotherapies. Several biological features of osteosarcoma suggest that modulation of the immune response could lead to benefits, and the wide variety of therapeutic approaches now available make this an exciting time for immunotherapy. However, the sheer complexity of the immune system and the nuances of the tumor-specific microenvironment underscore how daunting this task is. As seen with conventional chemotherapy drugs, tumors utilize multiple pathways to resist immunotherapy, suggesting that combination approaches will be needed to achieve meaningful and durable responses. Success will likely require further elucidation of the mechanisms of resistance to existing immunotherapies, the development and testing of rational combination treatments to overcome this resistance, and the identification of predictive biomarkers to help guide appropriate use of these treatments. Although much work remains to be done, the hope is that immunotherapy can lead to breakthroughs that will revolutionize osteosarcoma therapy in the same way that adult cancer therapy has been transformed.

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

ORCID

Mary F. Wedekind http://orcid.org/0000-0001-9707-7175
Lars M. Wagner http://orcid.org/0000-0003-4717-9960
Timothy P. Cripe http://orcid.org/0000-0002-8595-3577

REFERENCES

1. Luettek A, Meyers PA, Lewis I, Juergens H. Osteosarcoma treatment—where do we stand? A state of the art review. Cancer Treat Rev. 2014;40:523–532.
2. van Erp AEM, Versleijen-Jonkers YMH, Hillebrandt-Roeffen MHS, et al. Expression and clinical association of programmed cell death-1 programmed death-ligand-1 and CD8(+) lymphocytes in primary sarcomas is subtype dependent. Oncotarget. 2017;8:71371–71384.
3. Gomez-Brouchtet A, Illac C, Gihodes J, et al. CD163-positive tumor-associated macrophages and CD8-positive cytotoxic lymphocytes are powerful diagnostic markers for the therapeutic stratification of osteosarcoma patients: an immunohistochemical analysis of the biopsies from the French OS2006 phase 3 trial. Oncoimmunology. 2017;6:e1331193.
4. Koirala P, Roth ME, Gill J, et al. Immune infiltration and PD-L1 expression in the tumor microenvironment are prognostic in osteosarcoma. Sci Rep. 2016;6:30093.
5. Kansara M, Teng MW, Smyth MJ, Thomas DM. Translational biology of osteosarcoma. Nat Rev Cancer. 2014;14:722–735.
6. Mouw KW, Goldberg MS, Konstantinopoulos PA, D’Andrea AD. DNA damage and repair biomarkers of immunotherapy response. Cancer Discov. 2017;7:675–693.
7. Hacohen N, Fritsch EF, Carter TA, Lander ES, Wu CJ. Getting personal with neoantigen-based therapeutic cancer vaccines. Cancer Immunol Res. 2013;1:11–15.
8. Meyers PA, Schwartz CL, Kralio MD, et al. Osteosarcoma: the addition of muramyl tripeptide to chemotherapy improves overall survival—a report from the Children’s Oncology Group. J Clin Oncol. 2008;26:633–638.
9. Zitvogel L, Apetoh L, Ghiringhelli F, André F, Tesniere A, Kroemer G. The anticancer immune response: indispensable for therapeutic success. J Clin Invest. 2008;118:1991–2001.
10. Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science. 2011;331:1565–1570.
11. Peggs KS, Quezada SA, Allison JP. Cell intrinsic mechanisms of T-cell inhibition and application to cancer therapy. Immunol Rev. 2008;224:141–165.
12. Najjar YG, Rayman P, Jia X, et al. Myeloid-derived suppressor cell subset accumulation in renal cell carcinoma parenchyma is associated with intratumoral expression of IL1beta, IL8, CXCL5, and Mip-1alpha. Clin Cancer Res. 2017;23:2346–2355.
13. Laou D, Van Overmeire E, De Baetselier P, et al. Functional relationship between tumor-associated macrophages and macrophage colony-stimulating factor as contributors to cancer progression. Front Immunol. 2014;5:489.
14. Nishikawa H, Sakaguchi S. Regulatory T cells in cancer immunotherapy. Curr Opin Immunol. 2014;27:1–7.
15. Lettieri CK, Appel N, Labban N, Lussier DM, Blattman JN, Hingorani P. Progress and opportunities for immune therapeutics in osteosarcoma. Immunotherapy. 2016;8:1233–1244.
16. Majzner RG, Heitzeneder S, Mackall CL. Harnessing the immunotherapy revolution for the treatment of childhood cancers. Cancer Cell. 2017;31:476–485.
17. Roth M, Barris DM, Piperdi S, et al. Targeting glycoprotein NMB with antibody–drug conjugate, glembatumumab vedotin, for the treatment of osteosarcoma. Pediatr Blood Cancer. 2016;63:32–38.
18. Ebb D, Meyers P, Grier H, et al. Phase II trial of trastuzumab in combination with cytotoxic chemotherapy for treatment of metastatic osteosarcoma with human epidermal growth factor receptor 2 overexpression: a report from the Children’s Oncology Group. J Clin Oncol. 2012;30:2545–2551.
19. Weigel B, Malempati S, Reid JM, et al. Phase 2 trial of cixutumumab in children, adolescents, and young adults with refractory solid tumors: a report from the Children’s Oncology Group. Pediatr Blood Cancer. 2014;61:452–456.
20. Malempati S, Weigel B, Ingle AM, et al. Phase I/II trial and pharmacokinetic study of cixutumumab in pediatric patients with refractory solid tumors and Ewing sarcoma: a report from the Children’s Oncology Group. J Clin Oncol. 2012;30:256–262.
21. Poon VI, Roth M, Piperdi S, et al. Ganglioside GD2 expression is maintained upon recurrence in patients with osteosarcoma. Clin Sarcoma Res. 2015;5:4.
22. de Groot AF, Appelman-Dijkstra NM, van der Burg SH, Kroep JR. The anti-tumor effect of RANKL inhibition in malignant solid tumors—A systematic review. Cancer Treat Rev. 2018;62:18–28.
23. Roberts SS, Chou AJ, Cheung NK. Immunotherapy of childhood sarcomas. Front Oncol. 2015;5:181.
24. Nestle FO, Aljagic S, Gilliet M, et al. Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nat Med. 1998:4:328–332.
25. Chaunin C, Philippeau JM, Hémont C, et al. Killer dendritic cells link innate and adaptive immunity against established osteosarcoma in rats. Cancer Res. 2008;68:9433–9440.

26. Himoudi N, Wallace R, Parsley KL, et al. Lack of T-cell responses following autologous tumour lysate pulsed dendritic cell vaccination, in patients with relapsed osteosarcoma. Clin Transl Oncol. 2012;14:271–279.

27. Miwa S, Nishida H, Tanzawa Y, et al. Phase 1/2 study of immunotherapy with dendritic cells pulsed with autologous tumor lysate in patients with refractory bone and soft tissue sarcoma. Cancer. 2017;123:1576–1584.

28. Jenkins MK, Schwartz RH. Antigen presentation by chemically modified splenocytes induces antigen-specific T cell unresponsiveness in vitro and in vivo. J Exp Med. 1987;165:302–319.

29. Andtbacka RHI, Kaufman HL, Collichio F, et al. Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J Clin Oncol. 2015;33:2780–2788.

30. Geiss C, Kis Z, Leuchs B, et al. Preclinical testing of an oncolytic parvovirus: standard protoparvovirus H-1PV efficiently induces osteosarcoma cell lysis in vitro. Viruses. 2017;9:301.

31. Martinez-Velez N, Xipell E, Jauregui P, et al. The oncolytic adenovirus Delta24-RGD in combination with cisplatin exerts a potent anti-osteosarcoma activity. J Bone Miner Res. 2014;29:2287–2296.

32. Hingorani P, Sampson V, Lettieri C, Kolb EA. Oncolytic viruses for potential osteosarcoma therapy. Adv Exp Med Biol. 2014;804:259–283.

33. Wolf M, Jungbluth AA, Garrido F, et al. Expression of MHC class I, MHC class II, and cancer germline antigens in neuroblastoma. Cancer Immunol Immunother. 2005;54:400–406.

34. García-Lora A, Algarra I, Garrido F. MHC class I antigens, immune recognition, and antitumor immune responses. J Cell Physiol. 2003;195:346–355.

35. Ahmed N, Achkova DY, Davies DM, et al. Human epidermal growth factor receptor 2 (HER2)-specific chimeric antigen receptor-modified T cells for the immunotherapy of HER2-positive sarcoma. J Clin Oncol. 2015;33:168–169.

36. Peng W, Ye Y, Rabinovich BA, et al. Transduction of tumor-specific T cells with CXCR2 chemokine receptor improves migration to tumor and antitumor immune responses. Clin Cancer Res. 2010;16:5458–5468.

37. Rosenberg SA, Packard BS, Aebersold PM, et al. Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. A preliminary report. N Engl J Med. 1988;319:1676–1680.

38. Huang X, Park H, Greene J, et al. IFGR1- and ROR1-specific CAR T cells as a potential therapy for high risk sarcomas. PLoS One. 2015;10:e0133152.

39. Vansteeneste J, Zielinski M, Linder A, et al. Adjuvant MAGE-A3 immunotherapy in resected non-small-cell lung cancer: phase II randomized study results. J Clin Oncol. 2013;31:2396–2403.

40. Kruit WH, Suciu S, Dreno B, et al. Selection of immunostimulant AS15 for active immunization with MAGE-A3 protein: results of a randomized phase II study of the European Organisation for Research and Treatment of Cancer Melanoma Group in metastatic melanoma. J Clin Oncol. 2013;31:2419–2420.

41. Robbins PF, Morgan RA, Feldman SA, et al. Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J Clin Oncol. 2011;29:917–924.

42. Li B, Zhu X, Sun L, et al. Induction of a specific CD8+ T-cell response to cancer/testis antigens by demethylating pre-treatment against osteosarcoma. Oncotarget. 2014;5:10791–10802.

43. Morgan RA, Dudley ME, Wunderlich JR, et al. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science. 2006;314:126–129.

44. Johnson LA, Morgan RA, Dudley ME, et al. Gene therapy with human and mouse T-cell receptors mediates cancer regression and targets normal tissues expressing cognate antigen. Blood. 2009;114:535–546.

45. Kato Y, Tanaka Y, Miyagawa F, Yamashita S, Minato N. Targeting of tumor cells for human gammadelta T cells by nonpeptide antigens. J Immunol. 2001;167:5092–5098.

46. Jiang H, Xu Q, Yang C, Cao ZG, Li ZX, Ye ZM. [gammadelta T cells stimulated by zolodronate kill osteosarcoma cells]. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 2010;26:1195–1197.

47. Li Z, Tang J, Sun L, Ye Z. [Effect of zolodronate on the cytotoxicity of gammadelta T cells from PBMCs of osteosarcoma patients against osteosarcoma]. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 2013;29:6–9.

48. Wagner LM, Adams VR. Targeting the PD-1 pathway in pediatric solid tumors and brain tumors. Onco Targets Ther. 2017;10:2097–2106.

49. Schumacher TN, Schreiber RD. Neoantigens in cancer immunotherapy. Science. 2015;348:69–74.

50. Champiat S, Ferté C, Lebel-Binay S, Eggermont A, Soria JC. Exomics and immunogenics: bridging mutational load and immune checkpoints efficacy. Oncoimmunology. 2014;3:e27817.

51. Callahan MK, Postow MA, Wolchok JD. CTLA-4 and PD-1 pathway blockade: combinations in the clinic. Front Oncol. 2014;4:385.

52. Hingorani P, Maas ML, Gustafson MP, et al. Increased CTLA-4(+) T cells and an increased ratio of monocyties with loss of class II (CD14(+) HLA-DR(low)/neg)) found in aggressive pediatric sarcoma patients. J Immunother Cancer. 2015;3:35.

53. Contardi E, Palmisano GL, Tazzari PL, et al. CTLA-4 is constitutively expressed on tumor cells and can trigger apoptosis upon ligand interaction. Int J Cancer. 2005;117:538–550.

54. Pauken KE, Wherry EJ. Overcoming T-cell exhaustion in infection and cancer. Trends Immunol. 2015;36:265–276.

55. Nowicki TS, Anderson JL, Federman N. Prospective immunotherapies in childhood sarcomas: PD1/PDL1 blockade in combination with tumor vaccines. Pediatr Res. 2016;79:371–377.

56. Palmerini E, Agostinelli C, Picci P, et al. Tumoral immune-infiltrates (IF), PD-L1 expression and role of CD8/TIA-1 lymphocytes in localized osteosarcoma patients treated within protocol ISG-OS1. Oncotarget. 2017;8:111836–111846.

57. Merchant MS, Wright M, Baird K, et al. Phase I clinical trial of ipilimumab in pediatric patients with advanced solid tumors. Clin Cancer Res. 2016;22:1364–1370.

58. Tawbi HA, Burgess M, Bolejack V, et al. Pembrolizumab in advanced melanoma. J Immunother Cancer. 2016;22:1364–1370.

59. Lussier DM, O’Neill L, Nieves LM, et al. Enhanced T-cell immunity to osteosarcoma through antibody blockade of PD-1/PD-L1 interactions. J Immunother. 2015;38:96–106.

60. Korkolopoulou P, Kaklamanis L, Pezzella F, Harris AL, Gatter KC. Loss of antigen-presenting molecules (MHC class I and TAP-1) in lung cancer. Br J Cancer. 1996;73:148–153.

61. Spranger S, Gajewski TF. A new paradigm for tumor immune escape: beta-catenin-driven immune exclusion. J Immunother Cancer. 2015;3:43.

62. Holmgard RB, Zamarin D, Munn DH, Wolchok JD, Allison JP. Indoleamine 2,3-dioxygenase is a critical resistance mechanism in antitumor T cell immunotherapy targeting CTLA-4. J Exp Med. 2013;210:1389–1402.
63. Lussier DM, Zamarin D, Munn DH, Wolchok JD, Allison JP. Combination immunotherapy with alpha-CTLA-4 and alpha-PD-L1 antibody blockade prevents immune escape and leads to complete control of metastatic osteosarcoma. *J Immunother Cancer*. 2015;3:21.

64. Wei SC, Levine JH, Cogdill AP, et al. Distinct cellular mechanisms underlie anti-CTLA-4 and anti-PD-1 checkpoint blockade. *Cell*. 2017;170:1120.e17–1133.e17.

65. Wolchok JD, Kluger H, Callahan MK, et al. Nivolumab plus ipilimumab in advanced melanoma. *N Engl J Med*. 2013;369:122–133.

66. Larkin J, Hodi FS, Wolchok JD. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. *N Engl J Med*. 2015;373:23–34.

67. Tang H, Wang Y, Chlewicki LK, et al. Facilitating T cell infiltration in tumor microenvironment overcomes resistance to PD-L1 blockade. *Cancer Cell*. 2016;29:285–296.

68. Sundara YT, Kostine M, Cleven AHG, Bovée JVMG, Schilham MW, Cleton-Jansen A-M. Increased PD-L1 and T-cell infiltration in the presence of HLA class I expression in metastatic high-grade osteosarcoma: a rationale for T-cell-based immunotherapy. *Cancer Immunol Immunother*. 2017;66:119–128.

69. Majzner RG, Simon JS, Grosso JF, et al. Assessment of programmed death-ligand 1 expression and tumor-associated immune cells in pediatric cancer tissues. *Cancer*. 2017;123:3807–3815.

70. Moynihan KD, Opel CF, Szeto GL, et al. Eradication of large established tumors in mice by combination immunotherapy that engages innate and adaptive immune responses. *Nat Med*. 2016;22:1402–1410.

71. Swart M, Verbrugge I, Beltman JB. Combination approaches with immune-checkpoint blockade in cancer therapy. *Front Oncol*. 2016;6:233.

72. Emadi A, Jones RJ, Brodsky RA. Cyclophosphamide and cancer: golden anniversary. *Nat Rev Clin Oncol*. 2009;6:638–647.

73. Sun C, Dotti G, Savoldo B. Utilizing cell-based therapeutics to overcome immune evasion in hematologic malignancies. *Blood*. 2016;127:3350–3359.

74. Krupka C, Kufer P, Kischel R, et al. Blockade of the PD-1/PD-L1 axis augments lysis of AML cells by the CD33/CD3 BiTE antibody construct AMG 330: reversing a T-cell-induced immune escape mechanism. *Leukemia*. 2016;30:484–491.

75. Fu J, Malm IJ, Kadayakkara DK, Levitsky H, Pardoll D, Kim YJ. Preclinical evidence that PD1 blockade cooperates with cancer vaccine TEGVAX to elicit regression of established tumors. *Cancer Res*. 2014;74:4042–4052.

76. Sierrro SR, Donda A, Perret R, et al. Combination of lentivector immunization and low-dose chemotherapy or PD-1/PD-L1 blocking primes self-reactive T cells and induces anti-tumor immunity. *Eur J Immunol*. 2011;41:2217–2228.

77. Gopalakrishnan V, Spencer CN, Nezi L, et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. *Science*. 2018;359:97–103.

78. Chowell D, Morris LGT, Grigg CM, et al. Patient HLA class I genotype influences cancer response to checkpoint blockade immunotherapy. *Science*. 2018;359:582–587.

79. Gibney GT, Weiner LM, Atkins MB. Predictive biomarkers for checkpoint inhibitor-based immunotherapy. *Lancet Oncol*. 2016;17:e542–e551.

80. Festino L, Botti G, Lorigan P, et al. Cancer treatment with anti-PD-1/PD-L1 agents: is PD-L1 expression a biomarker for patient selection? *Drugs*. 2016;76:925–945.

81. Callea M, Albiges L, Gupta M, et al. Differential expression of PD-L1 between primary and metastatic sites in clear-cell renal cell carcinoma. *Cancer Immunol Res*. 2015;3:1158–1164.

82. Le DT, Uram JN, Wang H, et al. PD-1 blockade in tumors with mismatch-repair deficiency. *N Engl J Med*. 2015;372:2509–2520.

83. Cheever MA, Allison JP, Ferris AS, et al., The prioritization of cancer antigens: A National Cancer Institute pilot project for the acceleration of translational research. *Clin Cancer Res*. 2009;15(17):5323–5337.

84. Wittrant Y, Théoleyre S, Chipoy C, et al. RANKL/RANK/OPG: new therapeutic targets in bone tumours and associated osteolysis. *Biochim Biophys Acta*. 2004;1704:49–57.

85. Lamora A, Talbot J, Mullard M, Brounais-Le Royer B, Redini F, Verrecchia F. TGF-beta signaling in bone remodeling and osteosarcoma progression. *J Clin Med*. 2016;5:96.

86. Kawano M, Itonaga I, Iwasaki T, Hiroyuki T, Tsumura H. Anti-TGF-beta antibody combined with dendritic cells produce antitumor effects in osteosarcoma. *Clin Orthop Relat Res*. 2012;470:2288–2294.

87. Hamid O, Gajewski TF, Frankel AE, et al., Abstract #1214O: Epacadostat plus pembrolizumab in patients with advanced melanoma: Phase 1 and 2 efficacy and safety results from ECHO-202/KEYNOTE-0337. *ESMO 2017 Congress, Madrid, Spain. 2017.*

88. Munn DH, Mellor AL.IDO in the tumor microenvironment: inflammation, counter-regulation, and tolerance. *Trends Immunol*. 2016;37:193–207.

89. Urakawa H, Nishida Y, Nakashima H, Shimoyama Y, Nakamura S, Ishiguro N. Prognostic value of indoleamine 2,3-dioxygenase expression in high grade osteosarcoma. *Clin Exp Metastasis*. 2009;26:1005–1012.

How to cite this article: Wedekind MF, Wagner LM, Cripe TP. Immunotherapy for osteosarcoma: Where do we go from here? *Pediatr Blood Cancer*. 2018;65:e27227. https://doi.org/10.1002/pbc.27227