Standard Model expectations on $\sin 2\beta(\phi_1)$ from $b \to s$ penguins

Chun-Khiang Chua
Institute of Physics, Academia Sinica, Taipei, Taiwan 115, Republic of China

Recent results of the standard model expectations on $\sin 2\beta_{\text{eff}}$ from penguin-dominated $b \to s$ decays are briefly reviewed.

I. INTRODUCTION

Although the Standard Model is very successful, New Physics is called for in various places, such as neutrino-oscillation, dark matter (energy) and baryon-asymmetry. Possible New Physics beyond the Standard Model is being intensively searched via the measurements of time-dependent CP asymmetries in neutral B meson decays into final CP eigenstates defined by

$$\Gamma'(B(t) \to f) - \Gamma(B(t) \to \bar{f}) = S_f \sin(\Delta m t) + A_f \cos(\Delta m t),$$

where Δm is the mass difference of the two neutral B eigenstates, S_f monitors mixing-induced CP asymmetry and A_f measures direct CP violation. The CP-violating parameters A_f and S_f can be expressed as

$$A_f = -\frac{1 - |\lambda_f|^2}{1 + |\lambda_f|^2}, \quad S_f = \frac{2 \text{Im}\lambda_f}{1 + |\lambda_f|^2},$$

where

$$\lambda_f = \frac{q_B}{p_B} \frac{A(B^0 \to f)}{A(B^0 \to \bar{f})}. \quad (3)$$

In the standard model $\lambda_f \approx \eta_f e^{-2i\beta}$ for $b \to s$ penguin-dominated or pure penguin modes with $\eta_f = 1 (-1)$ for final CP-even (odd) states. Therefore, it is expected in the Standard Model that $-\eta_f S_f \approx \sin 2\beta$ and $A_f \approx 0$ with β being one of the angles of the unitarity triangle.

The mixing-induced CP violation in B decays has been already observed in the golden mode $B^0 \to J/\psi K_S$ for several years. The current world average the mixing-induced asymmetry from tree $b \to c\bar{s}s$ transition is

$$\sin 2\beta = 0.687 \pm 0.032.$$ \quad (4)

However, the time-dependent CP-asymmetries in the $b \to sq\bar{q}$ induced two-body decays such as $B^0 \to (\phi, \omega, \pi^0, \eta', f_0)K_S$ are found to show some indications of deviations from the expectation of the Standard Model (SM) \cite{1} (see Fig. 1). In the SM, CP asymmetry in all above-mentioned modes should be equal to $S_{f_{J/\psi K}}$ with a small deviation at most $O(0.1)$ \cite{2}. As discussed in \cite{2}, this may originate from the $O(\lambda^2)$ truncation and from the subdominant (color-suppressed) tree contribution to these processes. Since the penguin loop contributions are sensitive to high virtuality, New Physics beyond the SM may contribute to S_f through the heavy particles in the loops. In order to detect the signal of New Physics unambiguously in the penguin $b \to s$ modes, it is of great importance to examine how much of the deviation of S_f from $S_{f_{J/\psi K}}$,

$$\Delta S_f \equiv -\eta_f S_f - S_{f_{J/\psi K}},$$

is allowed in the SM \cite{2} \cite{3} \cite{4} \cite{5} \cite{6} \cite{7} \cite{8} \cite{9} \cite{10} \cite{11} \cite{12}.

The decay amplitude for the pure penguin or penguin-dominated charmless B decay in general has the form

$$M(B^0 \to f) = V_{ub} V_{us}^{*} F^{u} + V_{cb} V_{cs}^{*} F^{c} + V_{tb} V_{ts}^{*} F^{t}.$$ \quad (6)

![FIG. 1: Experimental results for $\sin 2\beta_{\text{eff}}$ from $b \to s$ penguin decays \cite{2}.](attachment:image.png)
Unitarity of the CKM matrix elements leads to

\[M(B^0 \to f) = V_{ub} V_{us}^* A_f^u + V_{cb} V_{cd}^* A_f^c \]

\[\approx \lambda A_0^f R_0 e^{-i \gamma} A_f^u + \lambda A_0^f A_f^c, \]

(7)

where \(A_f^u = F_u^0 - F_u^t, A_f^c = F_c^0 - F_c^t, R_0 \equiv |V_{ub} V_{us}^* / (V_{cb} V_{cd}^*)| = \sqrt{\rho^2 + \eta^2}. \) The first term is suppressed by a factor of \(\lambda^2 \) relative to the second term. For a pure penguin decay such as \(B^0 \to \phi K^0 \), it is naively expected that \(A_f^u \) is in general comparable to \(A_f^c \) in magnitude. Therefore, to a good approximation \(-\eta_f S_f \approx \sin 2\beta \approx S_f / \omega K_f \). For penguin-dominated modes such as \(\omega K_f, \rho^0 K_f, \pi^0 K_f \), \(A_f^u \) also receives tree contributions from the \(b \to u + \bar{u}s \) tree operators. Since the Wilson coefficient for the penguin operator is smaller than the one for the tree operator, \(A_f^u \) could be significantly larger than \(A_f^c \). As the first term carries a weak phase \(\gamma \), it is possible that \(S_f \) is subject to a significant “tree pollution”. To quantify the deviation, it is known that to the first order in \(r_f \equiv (\lambda \omega A_f^u) / (\lambda \omega A_f^c) \),

\[\Delta S_f = 2|r_f| \cos \beta \sin \gamma \sin \delta_f, \]

\[A_f = 2|r_f| \sin \gamma \sin \delta_f, \]

with \(\delta_f = \arg(A_f^u / A_f^c) \). Hence, the magnitude of the CP asymmetry difference \(\Delta S_f \) and direct CP violation are both governed by the size of \(A_f^u / A_f^c \). However, for the aforementioned penguin-dominated modes, the tree contribution is color suppressed and hence in practice the deviation of \(S_f \) is expected to be small [2]. It is useful to note that \(\Delta S_f \) is proportional to the real part of \(A_f^u / A_f^c \) as shown in the above equation.

Below I will review the results of the SM expectations on \(\Delta S_f \) from short-distance and long-distance calculations. Recent reviews of results obtained from the SU(3) approach can be found in [17].

II. \(\Delta S_f \) FROM SHORT-DISTANCE CALCULATIONS

There are several QCD-based approaches in calculating hadronic \(B \) decays [12, 19, 24]. \(\Delta S_f \) from calculations of QCDF [9, 10], pQCD [11], SCET [12] are shown in Table 1. The QCDF calculations on \(PP \) and \(VP \) modes are from [9, 25], while those in \(SP \) modes are from [10]. It is interesting to note that (i) \(\Delta S_f \) are small and positive in most cases, while experimental central values for \(\Delta S_f \) are all negative, except the one from \(J_0 K_S \); (ii) QCDF and pQCD results agree with each other, since the main difference of these two approaches is the (penguin) annihilation contribution, which hardly affects \(S_f \); (iii) The SCET results involve some non-perturbative contributions fitted from data. These contributions affect \(\Delta S_f \) and give results in the \(\eta' K_S \) mode different from the QCDF ones.

It is instructive to understand the size and sign of \(\Delta S_f \) in the QCDF approach [9], for example. Recall that \(\Delta S_f \) is proportional to the real part of \(A_f^u / A_f^c \). We follow [9] to denote a complex number \(x \) by \(|x| \) if \(\text{Re}(x) > 0 \). In QCDF the dominant contributions to \(A_f^u / A_f^c \) are basically given by [9, 21].

\[A_{\phi K_S}^u \sim \left(-a_4^u + r_x a_6^u\right) \sim \left[-P^u\right], \]

\[A_{\phi K_S}^c \sim \left(-a_4^c + r_x a_6^c\right) \sim \left[-P^c\right], \]

\[A_{\rho^0 K_S}^u \sim \left(-a_4^u + r_x a_6^u\right) \sim \left[-P^u\right], \]

\[A_{\rho^0 K_S}^c \sim \left(-a_4^c + r_x a_6^c\right) \sim \left[-P^c\right], \]

\[A_{\pi^0 K_S}^u \sim \left(-a_4^u + r_x a_6^u\right) \sim \left[-P^u\right], \]

\[A_{\pi^0 K_S}^c \sim \left(-a_4^c + r_x a_6^c\right) \sim \left[-P^c\right], \]

\[A_{\eta' K_S}^u \sim \left(-a_4^u + r_x a_6^u\right) \sim \left[-P^u\right], \]

\[A_{\eta' K_S}^c \sim \left(-a_4^c + r_x a_6^c\right) \sim \left[-P^c\right], \]

where \(a_x^u \) are effective Wilson coefficients [24], \(r_x = O(1) \) are the chiral factors and \(R^{(uu)} \) are (real and positive) ratios of form factors and decay constants.

From Eq. (8), it is clear that \(\Delta S_f > 0 \) for \(\phi K_S, \omega K_S, \pi^0 K_S \), since their \(\text{Re}(A_f^u / A_f^c) \) can only be positive. Furthermore, due to the cancellation between \(a_4 \) and \(r_x a_6 \) in the \(\omega K_S \) amplitude, the corresponding penguin contribution is suppressed. This leads to a large and positive \(\Delta S_{\omega K_S} \) as shown in Table 1. For the cases of \(\rho^0 K_S \) and \(\eta' K_S \), there are chances for \(\Delta S_f \) to be positive or negative. The different signs in front of \([P] \) in \(\rho^0 K_S \) and \(\eta' K_S \), are originated from the second term of the wave functions \((u \bar{u} + d \bar{d})/\sqrt{2} \) of \(\omega \) and \(\rho^0 \) in the \(B^0 \to \omega \) and \(B^0 \to \rho^0 \) transitions, respectively. The \([P] \) in \(\rho^0 K_S \) is also suppressed as the one in \(\omega K_S \), resulting a negative \(\Delta S_{\rho^0 K_S} \). On the other hand, \([\bar{P}] \) in \(\eta' K_S \) is not only unsuppressed (no cancellation in the \(a_6 \) and \(a_6 \) terms), but, in fact, is further enhanced due to the constructive interference.
TABLE II: Direct CP asymmetry parameter \mathcal{A}_f and the mixing-induced CP parameter ΔS_f^{SD+LD} for various modes. The first and second theoretical errors correspond to the SD and LD ones, respectively.

Final State	ΔS_f^{SD+LD}	Expt	$\mathcal{A}_f(\%)$	SD	SD+LD	Expt
ϕK_S	0.09$^{+0.01}_{-0.02}$	0.04$^{+0.01+0.01}_{-0.02-0.02}$	-0.22$^{+0.19}_{-0.20}$	0.8$^{+0.5}_{-0.2}$	2.3$^{+0.5+0.2}_{-1.0-1.5}$	9$^{+1.4}_{-1.0}$
ωK_S	0.13$^{+0.06}_{-0.05}$	0.09$^{+0.01+0.01}_{-0.04-0.04}$	-0.06$^{+0.30}_{-0.40}$	-6.8$^{+2.4}_{-4.0}$	-13.5$^{+5.3+5.3}_{-5.7-5.7}$	44$^{+22}_{-23}$
$\rho^0 K_S$	-0.08$^{+0.03}_{-0.10}$	-0.04$^{+0.01+0.01}_{-0.12-0.12}$	-0.52$^{+0.58}_{-0.60}$	7.5$^{+4.5}_{-2.0}$	89.4$^{+15.8+5.8}_{-13.7-12.5}$	-64$^{+48}_{-52}$
$\eta' K_S$	0.04$^{+0.01}_{-0.02}$	0.06$^{+0.01+0.00}_{-0.02-0.02}$	-0.19$^{+0.09}_{-0.20}$	1.4$^{+0.4}_{-0.2}$	2.1$^{+0.4}_{-0.2}$	1.0$^{+0.4}_{-0.2}$
ηK_S	0.04$^{+0.03}_{-0.03}$	0.07$^{+0.01+0.01}_{-0.03-0.03}$	-0.03	-5.7$^{+2.0}_{-3.9}$	1.8$^{+2.5}_{-1.8}$	-0.5$^{+1.0}_{-0.5}$
$\pi^0 K_S$	-0.12$^{+0.03}_{-0.3}$	-0.14$^{+0.01+0.01}_{-0.2-0.2}$	-0.38$^{+0.26}_{-0.44}$	3.2$^{+1.1}_{-2.3}$	3.7$^{+1.9+1.7}_{-1.8-1.7}$	2$^{+1.3}_{-1.3}$

III. FSI CONTRIBUTIONS TO ΔS_f

Evidence of direct CP violation in the decay $B^0 \to K^- \pi^+$ is now established, while the combined BaBar and Belle measurements of $B^- \to \rho^+ \pi^-$ imply a sizable direct CP asymmetry in the $\rho^+ \pi^-$ mode. In fact, direct CP asymmetries in these channels are much bigger than expectations (of many people) and may be indicative of appreciable LD rescattering effects, in general, in B decays. The possibility of final-state interactions in bringing in the possible tree pollution sources to S_f are considered. Both A_f^T and A_f^f will receive long-distance tree and penguin contributions from rescattering of some intermediate states. In particular there may be some dynamical enhancement of light u-quark loop. If tree contributions to A_f^f are sizable, then final-state rescattering will have the potential of pushing S_f away from the naive expectation. Take the penguin-dominated decay $\bar{B}^0 \to \omega K^0$ as an illustration. It can proceed through the weak decay $\bar{B}^0 \to K^* \pi^+$ followed by the rescattering $K^* \pi^+ \to \omega K^0$. The tree contribution to $\bar{B}^0 \to K^* \pi^+$, which is color allowed, turns out to be comparable to the penguin one because of the absence of the chiral enhancement characterized by the a_6 penguin term. Consequently, even within the framework of the SM, final-state rescattering may provide a mechanism of tree pollution to S_f. By the same token, we note that although $\bar{B}^0 \to \phi K^0$ is a pure penguin process at short distances, it does receive tree contributions via long-distance rescattering. Note that in addition to these charmless final states contributions, there are also contributions from charmful $D_s^{(*)} D^{(*)}$ final states, see Fig. 2. These final-state rescatterings provide the long-distance u- and c-penguin contributions.

An updated version of results in are shown in Table II. Several comments are in order. (i) ϕK_S and $\eta' K_S$ are the theoretical and experimental cleanest modes for measuring $\sin 2\beta_{\text{eff}}$ in these penguin modes. The constructive interference behavior of penguins in the $\eta' K_S$ mode is still hold in the LD case, resulting a tiny $\Delta S_f^{\eta' K_S}$. (ii) Tree pollutions in ωK_S and $\rho^0 K_S$ are diluted due to the LD c-penguin contributions.

It is found that LD tree contributions are in general not large enough in producing sizable ΔS_f, since their contributions are overwhelmed by LD c-penguin contributions from $D_s^{(*)} D^{(*)}$ rescatterings. On the other hand, while it may be possible to have a large ΔS_f from rescattering models that enhance the contributions from charmless states, a sizable direct CP violation will also be generated. Since direct CP violations are sensitive to strong phases generated from FSI, these approaches will also give a sizable direct CP violation at the same time when a large ΔS_f is produced. The present data on the ϕK_S and $\eta' K_S$ modes do not support large direct CP violations in these modes. Consequently, it is unlikely that FSI will enlarge their ΔS_f. In order to constrain or to
refine these calculations, it will be very useful to have more and better data on direct CP violations.

IV. ΔS_f IN KKK MODES

$B^0 \to K^+K^0$ and $B^0 \to K^0K^-K^+$ are penguin-dominated and pure penguin decays, respectively. They are also used to extract sin$2\beta_{\text{eff}}$ with results shown in Fig. 1. Three-body modes are in general more complicated than two-body modes. For example, while the $K_SK_SK_S$ mode remains as a CP-even mode, the K^+K^-0 mode is not a CP-eigen state \cite{27}. Furthermore, the mass spectra of these modes are in general complicated and non-trivial.

A factorization approach is used to study these KKK modes \cite{14}. In the factorization approach, the $B^0 \to K^+K^-K_S^+$ amplitude, for example, basically consists of two factorized terms: $(B^0 \to K^0_S\times (0 \to K^+K^-)$ and $(B^0 \to K^+K^-\times (0 \to K^-)$, where $A(B)$ denotes a $A \to B$ transition matrix element. The dominant contribution is from the $(B^0 \to K^0_S\times (0 \to K^+$ term, which is a penguin induced term, while the sub-leading $(B^0 \to K^+K^-\times (0 \to K^-)$ term contains both tree and penguin contributions. In fact, $B^0 \to K^+K^0$ transition is a $b \to u$ transition, which has a color allowed tree contribution.

Results of CP asymmetries for these modes are given in Table III. The first uncertainty is from hadronic parameter in $B^0 \to K^+K^-K_S^+$ transition in K^+K^-0 mode (and a similar term in $K_SK_SK_S$ mode), the second uncertainty is from other hadronic parameters, while the last uncertainty is from the uncertainty in γ.

To study ΔS_f and A_f, it is crucial to know the size of the $b \to u$ transition term (A_f^s). For the pure-penguin $K_SK_SK_S$ mode, the smallness of ΔS_f and A_f can be easily understood. For the K^+K^-0 mode, there is a $b \to u$ transition in the $(B^0 \to K^-K_S^+)\otimes (0 \to K^+)$ term. It has the potential of giving large tree pollution in ΔS_f. It requires more efforts to study the size and the impact of this term.

It is important to note that the $b \to u$ transition term in the K^+K^-0 mode is not a CP self-conjugated term, since under a CP conjugation, this term will be turned into a $(B^0 \to K^-K_S^+)\times (0 \to K^+)$ term, which is, however, missing in the original amplitude. Hence, this term contributes to both CP-even and CP-odd configurations with similar strength. Therefore, information in the CP-odd part can be used to constrain its size and its impact on ΔS_f and A_f. Indeed, it is found recently \cite{24} that the CP-odd part is highly dominated by ϕK_S, where other contributions $(m_{K^+K^-} \neq m_\phi)$ are highly suppressed. Since the $(B^0 \to K^+K^-)\times (0 \to K^+)$ term favors a large $m_{K^+K^-}$ region, which is clearly separated from the ϕ-resonance region, the result of the CP-odd configuration strongly constrains the contribution from this $b \to u$ transition term. Consequently, the tree pollution is constrained and the ΔS_f should not be large. Note that results shown in Table III were obtained without fully incorporating these information. The first uncertainty in Table III will be reduced, if the CP-odd result is taken into account. To further refine the results it will be very useful to perform a detail Dalitz-plot analysis.

TABLE III: Mixing-induced and direct CP asymmetries ΔS_f (top) and A_f (in $\%$, bottom), respectively, in $B^0 \to K^+K^-0$ and $K_SK_SK_S$ decays. Results for $(K^+K^-L)_{CP \pm}$ are identical to those for $(K^+K^-K)_{CP \pm}$.

Final State	ΔS_f		A_f(%)	Expt.	
$(K^+K^-K)_S$	$0.03 \pm 0.08 \pm 0.02 \pm 0.00$	$-0.12 \pm 0.08 \pm 0.17$	$-0.12 \pm 0.08 \pm 0.17$		
$(K^+K^-K)_S$	$0.05 \pm 0.01 \pm 0.04 \pm 0.00$	$0.03 \pm 0.01 \pm 0.02 \pm 0.00$	$0.03 \pm 0.01 \pm 0.02 \pm 0.00$		
$(K^+K^-K)_L$	$0.03 \pm 0.01 \pm 0.02 \pm 0.00$	-0.60 ± 0.34	-0.60 ± 0.34		
$(K^+K^-L)_S$	$0.02 \pm 0.00 \pm 0.00 \pm 0.00$	0.19 ± 0.23	0.19 ± 0.23		
$(K^+K^-K)_L$	$0.02 \pm 0.00 \pm 0.00 \pm 0.00$	-0.19 ± 0.17	-0.19 ± 0.17		
$(K^+K^-L)_S$	$0.2 \pm 0.1 \pm 0.1 \pm 0.0$	$-0.1 \pm 0.1 \pm 0.1 \pm 0.0$	$-0.1 \pm 0.1 \pm 0.1 \pm 0.0$	-8 ± 10	
$(K^+K^-L)_S$	$-0.1 \pm 0.1 \pm 0.1 \pm 0.0$	$0.1 \pm 0.1 \pm 0.1 \pm 0.0$	$0.1 \pm 0.1 \pm 0.1 \pm 0.0$	$0.1 \pm 0.1 \pm 0.1 \pm 0.0$	31 ± 17

Acknowledgments

I am grateful to the organizers of FPCP2006 for inviting me to the exciting conference and to Hai-Yang Cheng and Amarjit Soni for very fruitful collaboration.
[1] E. Barberio et al., [Heavy Flavor Averaging Group (HFAG)], arXiv:hep-ex/0603003 [http://www.slac.stanford.edu/xorg/hfag].
[2] D. London and A. Soni, Phys. Lett. B 407, 61 (1997).
[3] Y. Grossman and M.P. Warah, Phys. Lett. B 395, 241 (1997).
[4] Y. Grossman, G. Isidori, and M.P. Warah, Phys. Rev. D 58, 057504 (1998).
[5] Y. Grossman, Z. Ligeti, Y. Nir, and H. Quinn, Phys. Rev. D 68, 015004 (2003).
[6] M. Gronau, Y. Grossman, and J.L. Rosner, Phys. Lett. B 579, 331 (2004).
[7] M. Gronau, J.L. Rosner, and J. Zupan, Phys. Lett. B 596, 107 (2004).
[8] M. Gronau and J. L. Rosner, Phys. Rev. D 71, 074019 (2005).
[9] M. Beneke, Phys. Lett. B 620, 143 (2005).
[10] H. Y. Cheng, C. K. Chua and K. C. Yang, Phys. Rev. D 73, 014017 (2006).
[11] H. n. Li, S. Mishima and A. I. Sanda, Phys. Rev. D 72, 114005 (2005); S. Mishima, talk presented at 6th Workshop on Higher Luminosity of B Factory, Nov. 16-18, 2004, KEK, Japan [http://belle.kek.jp/superb/workshop/2004/HL6].
[12] A. R. Williamson and J. Zupan, arXiv:hep-ph/0601214.
[13] H. Y. Cheng, C. K. Chua and A. Soni, Phys. Rev. D 72, 014006 (2005).
[14] H. Y. Cheng, C. K. Chua and A. Soni, Phys. Rev. D 72, 094003 (2005).
[15] G. Engelhard and G. Raz, Phys. Rev. D 72, 114017 (2005); G. Engelhard, Y. Nir and G. Raz, Phys. Rev. D 72, 075013 (2005).
[16] M. Gronau, Phys. Rev. Lett. 63, 1451 (1989); Y. Grossman, A.L. Kagan, and Z. Ligeti, Phys. Lett. B 538, 327 (2002).
[17] M. Gronau, Nucl. Phys. Proc. Suppl. 156, 69 (2006); Z. Ligeti, talk presented at CKM2005: Workshop on the Unitarity Triangle, 15-18 March 2005, San Diego, California.
[18] M. Beneke, G. Buchalla, M. Neubert, and C.T. Sachrajda, Phys. Rev. Lett. 83, 1914 (1999); Nucl. Phys. B 591, 313 (2000); ibid. B 606, 245 (2001).
[19] Y. Y. Keum, H. N. Li and A. I. Sanda, Phys. Rev. D 63, 054008 (2001).
[20] C. W. Bauer, S. Fleming, D. Pirjol and I. W. Stewart, Phys. Rev. D 63, 114020 (2001).
[21] M. Beneke and M. Neubert, Nucl. Phys. B 675, 333 (2003).
[22] M. Beneke and M. Neubert, Nucl. Phys. B 651, 225 (2003).
[23] H. Y. Cheng, C. K. Chua and A. Soni, Phys. Rev. D 71, 014030 (2005).
[24] B. Aubert et al. [BABAR Collaboration], arXiv:hep-ex/0507094.
[25] Results obtained agree with those in [13].
[26] In general, we have $\text{Re}(a_2) > 0$, $\text{Re}(a_6) < \text{Re}(a_4) < 0$.
[27] However, it is found that $K^+ K^- K^0$ is dominated by the CP-even part and hence it is still useful in extracting $\sin 2\beta_{ct}$.