Characteristics of cognitive function in patients with cerebellar infarction and its association with lesion location

Qi Liu¹, Chang Liu¹ and Yumei Zhang²,3*

¹Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China, ²China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China, ³Department of Rehabilitation, Beijing Tiantan Hospital, Capital Medical University, Beijing, China

Objective: This study aimed to explore the characteristics of cognitive function in patients with cerebellar infarction and its association with lesion location.

Methods: Forty-five patients with isolated cerebellar infarction were collected in the Department of Neurology, Beijing Tiantan Hospital. Thirty healthy controls were recruited matched by age and education. Global cognitive function was evaluated by using Addenbrooke’s Cognitive Examination version III (ACE-III). An extensive neuropsychological assessment battery was also tested to evaluate the characteristics of each cognitive domain. 3D slicer software was used to draw the lesion, and evaluate the lesions’ volume, side, and location. Group analysis was used to compare the differences in cognitive performance between patients and healthy controls, and patients with left and right cerebellar hemisphere infarction. Spearman analysis was used to explore the correlation between cognitive function and lesion volume. We also subdivided each patient’s lesions according to the cerebellar atlas to identify the specific cerebellar location related to cognitive decline.

Results: Patients with cerebellar infarction had a lower ACE-III score compared with the healthy group (87.9 ± 6.2 vs. 93.7 ± 2.9, \(p < 0.001 \)), and 22 (48.9%) patients were diagnosed with cognitive impairment. The z-transformed score of attention and executive function in the patients’ group was \(-0.9 ± 1.4\) and \(-0.8 ± 1.0\) respectively, with 19 (43.2%) and 23 (56.4%) patients impaired. Compared with healthy controls, the relative risk ratio with 95% confidence interval (CI) for impairment in attention and executive function were 3.24 (1.22–8.57) and 3.39 (1.45–7.89). However, only 10 (22.1%) patients showed impairment in more than two cognitive domains. Compared with the left lesion group, patients with right cerebellar infarction showed significantly impaired executive function (\(-1.1 ± 0.3\) vs. \(-0.5 ± 0.2\), \(p = 0.01 \)). And the cerebellar posterior lobe regions, especially lobules VI, VIII, and IX, were explored to have lower cognitive performance. Furthermore, lesion volume was identified to be associated with the ACE-III score (\(r = -0.37, p = 0.04 \)).
Conclusion: We identified that cerebellar involvement in cognition, especially in attention processing and executive function. Cerebellar right-sided lateralization of cognition and functional topography were also revealed in the current study.

KEYWORDS
cerebellar infarction, post-stroke cognitive impairment, cerebellar lobule, functional lateralization, functional topography

Introduction

The cerebellum’s role in cognition has previously been reported, in addition to its established relationship with motor control (Buckner, 2013). Cerebellar diseases can cause disturbance in executive function, damage to language processing, visuospatial dysfunctions, as well as emotional abnormalities, which have been defined as Cerebellar Cognitive Affective Syndrome (CCAS; Schmahmann and Sherman, 1998). Furthermore, functional lateralization and fine topography have been shown in the cerebellum (Paulus et al., 2004; Richter et al., 2007; Schmahmann et al., 2009; Stoodley et al., 2016). Previous neuropsychological studies found that patients with right cerebellar damage had worse cognitive performance compared with a left lesion (Shin et al., 2017; Chirino-Pérez et al., 2021). And a motor-cognitive dichotomy has been widely recognized: motor function is influenced by an anterior lobe lesion, whereas performance on cognitive tasks is more affected by lesions in the cerebellar posterior lobe regions (Paulus et al., 2004; Richter et al., 2007; Schmahmann et al., 2009; Stoodley et al., 2016).

Cerebellar stroke, in which the lesion is confined to the cerebellum and not complicated by cerebral abnormalities such as atrophy or hydrocephalus, is an appropriate clinical model for researching the cerebellum’s function in the cognitive process (Ng et al., 2007). In addition, the distribution of cerebellar infarction lesions differed by vascular territory, which was deemed appropriate for studying cerebellar cognitive topography. Focusing on patients with cerebellar infarction, our study aimed to explore the characteristics of cognitive function in focal cerebellar disorders and its association with lesion location.

Methods

Participants

A total of 45 patients with cerebellar infarction were recruited in the Department of Neurology, Beijing Tiantan Hospital from June 2020 to December 2021. The inclusion criteria included: (1) age from 18 to 80 years old; (2) with 6 and more years of education level; (3) the first onset of cerebellar infarction; (4) admitted within 14 days of stroke onset. Exclusion criteria included: (1) pre-existing neurological/psychiatric disease; (2) chronic alcohol or drug abuse; (3) metabolic disorders, nutritional deficiencies, and infectious diseases which may influence cognitive function (Supplementary Figure 1). In addition, we also included 30 age- and education-matched healthy control participants.

All participants gave written informed consent to the procedure, which had been approved by the ethics committee of Beijing Tiantan Hospital.

Demographics characteristics and neurological examination

Demographics and clinical information were collected for each participant. Demographic information included age, sex, and educational level. Clinical information included onset duration and infarction volume. We also evaluated the motor functions of patients: the International Cooperative Ataxia Rating Scale (ICARS) was used to assess the severity of ataxia and the Brunel balance assessment (BBA) was used to assess balance dysfunction (Trouillas et al., 1997; Tyson and DeSouza, 2004). Furthermore, the self-rating anxiety scale (SAS) and the self-rating depression scale (SDS) were used to assess the possible presence of anxiety and depressive states respectively (Zung, 1965, 1971).

Assessment of cognitive function

Patients performed the Chinese version of the Addenbrooke’s Cognitive Examination III (ACE-III) to evaluate global cognitive function. The ACE-III was designed to assess the five cognitive domains: attention, memory, verbal fluency, language, and visuospatial abilities, and its scores range from 0 to 100 points. Cognitive impairment was defined as an ACE-III score <87, which has been verified in the Chinese population (Li et al., 2019).
Cognitive performance in patients with cerebellar infarction

Compared with a healthy group, patients with cerebellar infarction had a lower ACE-III score (87.9 ± 6.2 vs. 93.7 ± 2.9, p < 0.05), demonstrated ataxia (5.0), and the median infarction volume was 14.4 (29.6) cm3. The poor performance of ICARS and BBA demonstrated ataxia (5.0), and the median infarction volume was 14.4 (29.6) cm3. The average onset interval day in the patients' group was 9.0 ± 2.4 days. The poor performance of ICARS and BBA demonstrated ataxia (5.0), and the median infarction volume was 14.4 (29.6) cm3. The average onset interval day in the patients' group was 9.0 ± 2.4 days.

Results

Demographic and clinical characteristics

Table 1 summarized demographic and clinical characteristics. Age, sex, and education showed no significantly different between patients' group and healthy controls. And all patients recruited in this study were right-handed. Patients had a higher SAS score when compared to healthy controls. The average onset interval day in the patients' group was 9.0 (5.0), and the median infarction volume was 14.4 (29.6) cm3. The poor performance of ICARS and BBA demonstrated ataxia and balance impairment in patients with cerebellar infarction. In addition, Supplementary Table 1 showed no significant difference in age, sex, education, and infarction volume between patients with different infarct sides.
p < 0.001). Twenty-two (48.9%) patients were diagnosed with cognitive impairment, while no individuals in the control group had cognitive impairment. Z-transformed composite scores in each cognitive domain showed that cerebellar infarction patients had significantly impaired in attention (p < 0.001) and executive function (p < 0.001; Table 2). Raw scores for each cognitive test in each group are reported in the Supplementary Table 2. The most commonly affected cognitive domains were attention, working memory and executive function, with 19 (43.2%), 23 (53.3%), and 23 (56.4%) patients affected respectively (Figure 1). However, a small proportion of healthy controls in our study also showed abnormalities in cognitive function (Supplementary Figure 2). Compared with healthy controls, the unadjusted RRs with 95% confidence interval (CI) for impairment in attention and executive function were 3.24 (1.22–8.57) and 3.39 (1.45–7.89) respectively. When education was included as a covariate, the adjusted RR with 95% CI were 4.57 (1.33–10.68) and 5.69 (1.77–8.32) for education was included as a covariate, the adjusted RR with 95% CI were 4.57 (1.33–10.68) and 5.69 (1.77–8.32) for the cognitive domain of attention and executive function (Table 3).

We also explored the number of impaired cognitive domain in each patient with cerebellar infarction and healthy control (Figure 2 and Supplementary Figure 2). In patients’ group, 39 (86.7%) were impaired in one or more cognitive domains, and 22 (48.9%) had two or more impaired cognitive domains. The RRs with 95% CI when compared with healthy controls were 1.73 (1.19–2.52) and 2.01 (1.03–4.28) respectively. In the current study, however, only 10 (22.1%) patients showed impairment in three or more cognitive domains.

Furthermore, we found that the global cognitive function correlated with the severity of motor symptoms in cerebellar infarction patients (Supplementary Figure 3).

The effect of lesion location on cognitive performance in patients with cerebellar infarction

There were no significant differences in ACE-III scores between patients with left and right cerebellar lesions (89.0 ± 5.3 vs. 86.7 ± 6.8, p = 0.39). While compared with the left lesion group, patients with right cerebellar infarction showed significantly impaired executive function (−1.1 ± 0.3 vs. −0.5 ± 0.2, p = 0.01; Table 4). Supplementary Table 3 showed right lesion group had worse performance than the left lesion group in the test of TMT, and Phonemic fluency. The lesion distributed across lobules IV to X, concentrated on lobules Crus I and Crus II, mainly on the right side (Figure 3). To evaluate the effect of lesion location on cognitive function, the lesion of each cerebellar infarction patient was divided according to a cerebellar lobule. An impaired cognitive domain was defined as one or more SD below healthy group means. According to ACE-III, patients whose lesion involved lobule VI, VIII, and IX

Cognitive domains	Healthy controls mean ± SD	Range	Cerebellar infarction patients mean ± SD	Range	P value	Effect size (Hedge’s g)	95% Confidence interval
Attention	−0.8 ± 0.8	−1.6–1.5	−0.9 ± 1.4	−3.5–1.8	<0.001	−0.94	(−1.45, −0.44)
Working Memory	−0.0 ± 0.9	−1.2–2.1	−0.6 ± 1.4	−5.7–2.1	0.07	−0.44	(−0.86, 0.00)
Visuospatial	0.0 ± 1.0	−3.6–0.7	−0.5 ± 2.8	−16.6–0.7	0.41	−0.24	(−0.48, 0.31)
Language	0.1 ± 0.9	−2.2–1.5	−0.4 ± 2.4	−13.7–2.1	0.54	0.18	(−0.22, 0.92)
Episodic Memory	−0.1 ± 0.8	−2.7–1.5	−0.2 ± 1.1	−4.9–1.3	0.67	−0.10	(−0.51, 0.37)
Executive Function	0.0 ± 0.5	−1.3–0.9	−0.8 ± 1.0	−3.5–0.9	<0.001	−1.00	(−1.37, −0.60)

Abbreviations: SD, Standard deviation.
had highest prevalence of cognitive impairment with the rate of 64.7%, 43.5%, and 40% respectively. In addition, when lobule VI was damaged, attention and working memory had the lowest z score ($z_{attention} = -1.38$; $z_{working memory} = -0.76$), and 28 (62.5%) and 29 (64.7%) patients were impaired in the cognitive domain of attention and working memory respectively. When lobule Crus I was damaged, the z score of executive function was lowest ($z = -0.98$). The damage lobule VIII and IX had the lowest z score for language (-0.93), while the damage lobule X and IX had the lowest z score for visuospatial (-0.58) and episodic memory (-0.15; Figure 4). Furthermore, the data implicated that lobule VI, VIII and IX as the prevalent areas of lesion overlap that are related to deficits in attention, working memory and executive function (Figure 5).

As shown in Figure 6, the global cognitive function showed a negative association with lesion volume, and the correlation coefficient was -0.37 ($p = 0.04$).

Discussion

In the current study, we confirmed the cognitive impairment in cerebellar infarction, which is predominant in attention and executive dysfunction. Compared with the left lesions, patients with right cerebellar hemisphere damage had worse psychological performance, suggesting cerebellar cognitive lateralization. In addition, we also found the important contributions of the cerebellar posterior lobe (especially lobules VI, VIII, and IX) to cognition.

In the current study, we applied the ACE-III scale to explore cognitive function in patients with cerebellar disorders and found that the incidence of cognitive impairment is 48.9%, which was higher than in previous studies (Kalashnikova et al., 2005; Erdal et al., 2021). The possible explanation is that the most common cognitive screening tools previously applied were the Mini-mental State Examination (MMSE) and the Montreal Cognitive Assessment scale (MoCA), which were mainly focused on detecting the dysfunction of episodic memory and were not suitable for the cerebellar disease. Because the cognitive domains that ACE-III assessed are attention, execution, language, and visuospatial ability, which cover the characteristics of CCAS, we can identify cognitive impairment in cerebellar disorders more sensitively by using this scale. A recent study also showed that the ACE III is a sensitive screening tool to detect cognitive impairments in patients with cerebellar damage (Starowicz-Filip et al., 2022). Consistent with previous studies, our study also...
found attention and executive function were severely impaired in patients with cerebellar infarction (Schmahmann and Sherman, 1998). The prefrontal cortex (PFC) plays a substantial role in the executive controlling function, and the presence of loops between the PFC and the cerebellum has been confirmed (D’Angelo et al., 2016). CCAS is considered to result mainly from the executive controlling function, and the presence of loops when the cerebellar posterior lobe (especially lobule VI, VIII, and IX) gets damaged. Previous studies have explored the functional topography by using the voxel-lesion symptoms mapping method: damage to cerebellar lobules III–VI was demonstrated that cerebral hypometabolism and hypoperfusion might contribute to cognitive dysfunction in cerebellar infarction (Baillieux et al., 2010; Saita et al., 2017; Fujii et al., 2021). However, the side of the lesion showed no significant effect on cognitive performance in other studies (Tedesco et al., 2011). The possible reason is that, as bilateral cortical activation was observed during linguistic and spatial tasks, cerebral cortex functions are not always completely lateralized (Ferrara et al., 2021).

We also found that patients had worse cognitive performance when the cerebellar posterior lobe (especially lobule VI, VIII, and IX) gets damaged. Previous studies have explored the functional topography by using the voxel-lesion symptoms mapping method: damage to cerebellar lobules III–VI was associated with severe ataxia symptoms, while posterior cerebellar damage involving lobules VII and VIII was associated with cognitive deficits, confirming the anterior-

TABLE 4 Comparison of z-transformed cognitive scores according to the lesion side after cerebellar infarction.

Cognitive domains	Healthy controls n = 30	Left lesion n = 20	Right lesion n = 22	P value		
Attention	mean ± SD	Range	mean ± SD	Range	mean ± SD	Range
	±0.6 ± 0.3	−3.2–1.4	±0.9 ± 0.3	−3.5–0.5	<0.01	
Working Memory	±0.6 ± 0.2	−2.3–1.0	±0.8 ± 0.4	−5.7–1.0	0.12	
Visuospatial	±0.2 ± 0.2	−1.7–0.7	±1.1 ± 0.9	−3.7–0.7	0.38	
Language	±0.1 ± 0.3	−2.2–1.5	±0.7 ± 0.8	−3.7–2.1	0.65	
Episodic Memory	±0.1 ± 0.2	−1.9–1.3	±0.3 ± 0.3	−4.9–1.2	0.95	
Executive Function	±0.5 ± 0.2	−1.7–0.9	±1.1 ± 0.3	−3.5–0.3	<0.001	

a: is significantly different from controls (p < 0.05); b: is significantly different from patients with left cerebellar infarction (p < 0.05). Abbreviations: SD, Standard deviation.
sensorimotor/posterior-cognitive dichotomy in cerebellum (Burcia et al., 2014; Stoodley et al., 2016; Chirino-Pérez et al., 2021). According to the hypothesis of universal cerebellar transformation (UCT), the cerebellum has a consistent internal structure, and the heterogeneity of cerebellar connections with extracerebellar structures rather than variations in cerebellar microstructure, causes the precise localization of functions in the cerebellum (Diedrichsen et al., 2019). Using diffusion tensor imaging, Wang et al. (2019) found that abnormal alterations in the right posterior cingulate gyrus, the bilateral median cingulate and paracingulate gyri, and the right precuneus may be fundamental contributors to the cognitive impairment following cerebellar infarctions. Fan et al. (2019) discovered that in individuals with acute posterior cerebellar infarction,
reduced fractional amplitude of low-frequency fluctuation in the left hippocampus and right cingulate gyrus is associated with impaired cognitive function. Those functional neuroimaging studies confirmed that the cerebellum has extensive connectivity with various cerebral areas (Liu et al., 2022).

However, patients’ global cognitive function was correlated with ataxia severity in the current study, which is inconsistent with the theory of motor-cognitive dichotomy (Schmahmann et al., 2009; Shin et al., 2017). The reason may be that larger infarcts had more impaired cerebellar lobules which caused worse performance, and patients with larger infarctions had more severe motor dysfunction which may influence cognitive assessment (Supplementary Figure 4).

This study focused on the role of the cerebellum in cognitive function. We described detailed cognitive profiles of patients with isolated cerebellar infarction by using various neuropsychological assessments and preliminarily explored the effect of cerebellar lesion location on cognitive function. However, our study has several limitations. First, the symptom of dizziness and headache occurring in acute or subacute cerebellar infarction patients may influence the cognitive assessment. Second, as emotion processing is associated with cognition, patients had more severe anxiety than healthy controls, which may lead to an overestimation of cognitive impairment incidence. Third, we only used a few scales to evaluate the cognitive domains of working memory, visuospatial, and language function, resulting in an inaccurate cognitive domain assessment. Finally, the effect of cerebellar lesion location on cognitive function was merely descriptive due to the small sample size of this research, and the motor-cognitive dichotomy pattern were not able to be validated because only four patients had infarcts in the anterior cerebellum in the current study. It should be cautious in extrapolating the data in this study, and future research with larger cohorts should be conducted.
Conclusion

This study identified that the cerebellum played a modulatory role in cognitive function, especially in attention processing and executive function. We also revealed the right-sided lateralization of cognition and functional topography in the cerebellum. Our findings enriched the understanding of cerebellar involvement in cognition. Recently, the CCAS scale has been developed as a bedside screening tool to improve the diagnosis of the CCAS in clinical contexts (Hoche et al., 2018), and more studies are needed to explore the characteristics of cognitive function in cerebellar disorders by using this scale. Furthermore, as non-invasive stimulation techniques have been applied for cognitive rehabilitation, our findings suggested that the cerebellum may be a target to improve cognitive deficits, and more research will be required in the future.

Data availability statement

The original contributions presented in the study are included in the article/Supplementary material, further inquiries can be directed to the corresponding author.

Ethics statement

The studies involving human participants were reviewed and approved by Beijing Tiantan Hospital. The patients/participants provided their written informed consent to participate in this study.

Author contributions

YZ had full access to all of the data in the study, takes responsibility for the integrity of the data, and the accuracy of the data analysis. QL contributed to the study concept, performed statistical analysis, and drafted the article. CL and YZ revised the manuscript for important intellectual content. All authors contributed to the article and approved the submitted version.

Funding

Funding for this study was provided by the National Key R&D Program of China (2018YFC2002300, 2018YFC2002302, and 2020YFC2004102) and the National Natural Science Foundation of China (81972144).

Acknowledgments

We appreciate all the members who participated in our study. We would also like to thank Yu Chen for academic guidance.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fnagi.2022.965022/full#supplementary-material.

References

Baillieux, H., De Smet, H., Dobbeleir, A., Paquier, P., De Deyn, P., and Mariën, P. (2010). Cognitive and affective disturbances following focal cerebellar damage in adults: a neuropsychological and SPECT study. Cortex 46, 869–879. doi: 10.1016/j.cortex.2009.09.002
Broich, K., Hartmann, A., Biersack, H., and Horn, R. J. N. I. (1987). Crossed cerebello-cerebral diaschisis in a patient with cerebellar infarction. Neurosci. Lett. 83, 7–12. doi: 10.1016/0304-3940(87)90207-2
Buckner, R. (2013). The cerebellum and cognitive function: 25 years of insight from anatomy and neuroimaging. Neuron 80, 807–815. doi: 10.1016/j.neuron.2013.10.044
Burciu, R., Reinold, J., Rabe, K., Wondzinski, E., Sielber, M., Müller, O., et al. (2014). Structural correlates of motor adaptation deficits in patients with acute focal lesions of the cerebellum. Neuron 232, 2847–2857. doi: 10.1016/j.neuron.2013.10.044
Chirino-Pérez, A., Marrufo-Meléndez, O., Muñoz-López, J., Hernandez-Castillo, C., Ramirez-Garcia, G., Díaz, R., et al. (2021). Mapping the cerebellar cognitive affective syndrome in patients with chronic cerebellar strokes. Cerebellum 21, 208–218. doi: 10.1007/s12311-021-01290-3
Crawford, J. R., Garthwaite, P. H., and Gault, C. B. (2007). Estimating the percentage of the population with abnormally low scores (or abnormally large score differences) on standardized neuropsychological test batteries: a generic method with applications. Neuropsychology 21, 419–430. doi: 10.1037/0894-4105.21.4.419
D'Angelo, E., Mapelli, L., Casellato, C., Garrido, J. A., Luque, N., Monaco, J., et al. (2016). Distributed circuit plasticity: new clues for the cerebellar mechanisms of learning. *Cerebellum* 15, 139–151. doi: 10.1007/s12311-015-0711-7

Diedrichsen, J., Balsters, J. H., Flavell, J., Cussans, E., and Ramnani, N. (2009). A probabilistic MR atlas of the human cerebellum. *Neuroimage* 46, 39–46. doi: 10.1016/j.neuroimage.2009.01.045

Diedrichsen, J., King, M., Hernandez-Castillo, C., Sereno, M., and Ivery, R. J. N. (2019). Universal transform or multiple functionality? Understanding the contribution of the human cerebellum across task domains. *Neuron* 102, 918–928. doi: 10.1016/j.neuron.2019.04.021

Erdal, Y., Perk, S., Keskin,T.C., C., Bayramoglu, B., Mahmutoglu, A. S., and Emre, U. (2021). The assessment of cognitive functions in patients with isolated cerebellar infarctions: a follow-up study. *Neurosci. Lett.* 765, 136252. doi: 10.1016/j.neulet.2021.136252

Fan, L., Hu, J., Ma, W., Wang, D., Yao, Q., and Shi, J. (2019). Altered baseline activity and connectivity associated with cognitive impairment following acute cerebellar infarction: a resting-state fMRI study. *Neurosci. Lett.* 692, 199–203. doi: 10.1016/j.neulet.2018.11.007

Ferrara, K., Seydell-Greenwald, A., Chambers, C. E., Newport, E. L., and Landau, B. (2021). Development of bilateral parietal activation for complex visual-spatial function: evidence from a visual-spatial construction task. *Dev. Sci.* 24.e13067. doi: 10.1111/desc.13067

Fujii, M., Tanigo, K., Yamamoto, H., Kikugawa, K., Shirakawa, M., Obgushi, M., et al. (2021). A case of dysgraphia after cerebellar infarction where functional NIRS guided the task aimed at activating the hyperperfused region. *Case Rep. Neuro. Med.* 2021, 6621541. doi: 10.1155/2021/6621541

Goff, M., and Ackerman, L. (1992). Personality-intelligence relationships: assessment of typical intellectual engagement. *J. Educ. Psychol.* 84, 537–552. doi: 10.1037/0022-0663.84.4.537

Hedges, L. V., and Olkin, I. (2016). Overlap between treatment and control distributions as an effect size measure in experiments. *Psychol. Methods* 21, 61–68. doi: 10.1037/met0000042

Hoche, F., Gaell, X., Vangel, M., Sherman, J., and Schmahmann, J. (2018). The cerebellar cognitive affective/Schmahmann syndrome scale. *Brain* 141, 248–270. doi: 10.1093/brain/awx317

Kalashnikova, L., Zueva, Y., Puga cheva, O., and Korsakova, N. (2005). Cognitive impairments in cerebellar infarcts. *Neurol. Sci.* 26, 371–379. doi: 10.1007/s10072-004-0325-1

Kaplan, E., Goodglass, H., and Weintraub, S. (2001). *Boston Naming Test*. Austin, TX: Pro-ed.

Li, X., Yang, L., Yin, J., Yu, N., and Ye, F. (2019). Validation study of the Chinese version of addenbrooke's cognitive examination III for diagnosing mild cognitive impairment and mild dementia. *J. Clin. Neurol.* 15, 313–320. doi: 10.3988/jcn.2019.15.3.313

Liu, Q., Liu, C., Chen, Y., and Zhang, Y. (2022). Cognitive dysfunction following cerebellar stroke: insights gained from neuropsychological and neuroimaging research. *Neural Plast.* 2022, 348739. doi: 10.1155/2022/348739

Ng, Y., Stein, J., Ning, M., and Black-Schaffer, R. (2007). Comparison of clinical characteristics and functional outcomes of ischemic stroke in different vascular territories. *Stroke* 38, 2309–2314. doi: 10.1161/STROKEAHA.106.475483

Paulius, K., Magnano, I., Conti, M., Galizia, P., D’Onofrio, M., Satta, W., et al. (2004). Pure post-stroke cerebellar cognitive affective syndrome: a case report. *Neuro. Sci.* 25, 220–224. doi: 10.1007/s10072-004-0325-1

Rastogi, A., Cash, R., Dunlop, K., Vesia, M., Kucyi, A., Ghabremanea, A., et al. (2017). Modulation of cognitive cerebello-cerebral functional connectivity by lateral cerebellar continuous theta burst stimulation. *Neuroimage* 158, 48–57. doi: 10.1016/j.neuroimage.2017.06.048

Rey, A. (1941). The psychological examination in cases of traumatic encephalopathy: problems [in French]. *Arch. Psychol.* 28, 215–218.

Rey, A. (1958). *The Clinical Examination in Psychology [in French]*. Paris, France: Presses Universitaires de France.