Daknama, Rami; Panagiotou, Konstantinos; Reisser, Simon

Asymptotics for push on the complete graph. (English) Zbl 1465.05175 Stochastic Processes Appl. 137, 35-61 (2021).

Summary: We study the classical randomized rumour spreading protocol push. Initially, a node in a graph possesses some information, which is then spread in a round based manner. In each round, each informed node chooses uniformly at random one of its neighbours and passes the information to it. The central quantity of interest is the runtime, that is, the number of rounds needed until every node has received the information.

The push protocol and variations of it have been studied extensively. Here we study the case where the underlying graph is complete with \(n \) nodes. Even in this most basic setting, specifying the limiting distribution and statistics of it have remained open problems since the protocol was introduced. In our main result we describe the limiting distribution of the runtime. We show that it does not converge, and that it becomes, after the appropriate normalization, asymptotically periodic both on the \(\log_2 n \) as well as on the \(\ln n \) scale. Additionally, on suitable subsequences we determine the expected runtime and higher moments of it.

MSC:

05C85 Graph algorithms (graph-theoretic aspects)
94A15 Information theory (general)

Keywords:
randomized rumour spreading; complete graph; asymptotic

Full Text: DOI arXiv

References:

[1] Birman, K. P.; Hayden, M.; Ozkasap, O.; Xiao, Z.; Budiu, M.; Minsky, Y., Bimodal multicast, ACM Trans. Comput. Syst., 17, 2, 41-88 (1999)
[2] Boucheron, S.; Lugosi, G.; Massart, P., Concentration Inequalities: A Nonasymptotic Theory of Independence (2013), Oxford University Press - Zbl 1279.60005
[3] Chierichetti, F.; Lattanzi, S.; Panconesi, A., Almost tight bounds for rumour spreading with conductance, (Proceedings of the Forty-Second ACM Symposium on Theory of Computing (2010), ACM), 399-408 - Zbl 1293.05358
[4] Chierichetti, F.; Lattanzi, S.; Panconesi, A., Rumour spreading and graph conductance, (Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms (2010), SIAM), 1657-1663 - Zbl 1288.05266
[5] Daknama, R.; Panagiotou, K.; Reisser, S., Robustness of randomized rumour spreading, (27th Annual European Symposium on Algorithms. 27th Annual European Symposium on Algorithms, ESA 2019. 27th Annual European Symposium on Algorithms. 27th Annual European Symposium on Algorithms, ESA 2019, Leibniz International Proceedings in Informatics (LIPIcs), vol. 144 (2019), Dagstuhl: Dagstuhl Germany), 36:1-36:15, Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik
[6] Demers, A.; Greene, D.; Hauser, C.; Irish, W.; Larson, J.; Shenker, S.; Sturcis, H.; Swinehart, D.; Terry, D., Epidemic algorithms for replicated database maintenance, (Proceedings of the Sixth Annual ACM Symposium on Principles of Distributed Computing (1987), ACM), 1-12
[7] Doerr, B.; K"unnemann, M., Tight analysis of randomized rumor spreading in complete graphs, (2014 Proceedings of the Eleventh Workshop on Analytic Algorithms and Combinatorics. 2014 Proceedings of the Eleventh Workshop on Analytic Algorithms and Combinatorics, ANALCO (2014), SIAM), 82-91 - Zbl 1430.68193
[8] Erdős, P.; Rényi, A., On a classical problem of probability theory, (Magyar Tud. Akad. Mat. Kutató Int. Közl. 6 (1961)), 215-220 - Zbl 0102.35201
[9] Feige, U.; Peleg, D.; Raghavan, P.; Upfal, E., Randomized broadcast in networks, Random Struct. Algorithms, 1, 4, 447-460 (1990) - Zbl 0712.68011
[10] N. Fountoulakis, A. Huber, K. Panagiotou, Reliable broadcasting in random networks and the effect of density, in: INFOCOM 2010. 29th IEEE International Conference on Computer Communications, Joint Conference of the IEEE Computer and Communications Societies, 15-19 March, 2010, San Diego, CA, USA, 2010, pp. 2552-2560.
[11] Fountoulakis, N.; Panagiotou, K., Rumor spreading on random regular graphs and expanders, (Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (2010)), 560-573 - Zbl 1305.68136
[12] Frieze, A. M.; Grimmett, G. R., The shortest-path problem for graphs with random arc-lengths, Discrete Appl. Math., 10, 1, 57-77 (1985) · Zbl 0608.05047

[13] G. Giakkoupis, Tight bounds for rumor spreading in graphs of a given conductance, in: 28th International Symposium on Theoretical Aspects of Computer Science, STACS 2011, March 10-12, 2011, Dortmund, Germany, 2011, pp. 57-68. - Zbl 1230.68053

[14] G. Giakkoupis, Tight bounds for rumor spreading with vertex expansion, in: Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, Portland, Oregon, USA, January 5-7, 2014, 2014, pp. 801-815. - Zbl 1421.68128

[15] G. Giakkoupis, Y. Nazari, P. Woelfel, How asynchrony affects rumor spreading time, in: Proceedings of the 2016 ACM Symposium on Principles of Distributed Computing, pp. 185-194. - Zbl 1373.68047

[16] G. Giakkoupis, T. Sauerwald, Rumor spreading and vertex expansion, in: Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, Kyoto, Japan, January 17-19, 2012, 2012, pp. 1623-1641. - Zbl 1421.68129

[17] Hardy, G. H.; Wright, E. M., An Introduction to the Theory of Numbers (1979), Oxford University Press · Zbl 0423.10001

[18] S. Janson, One, two and three times log n / n for paths in a complete graph with random weights, 8 (4) 347-361. · Zbl 0934.05115

[19] Mosk-Aoyama, D.; Shah, D., Fast distributed algorithms for computing separable functions, IEEE Trans. Inform. Theory, 54, 7, 2997-3007 (2008) · Zbl 1332.68279

[20] Panagiotou, K.; Pérez-Giménez, X.; Sauerwald, T.; Sun, H., Randomized rumor spreading: The effect of the network topology, Comb. Probab. Comput., 24, 2, 457-479 (2015) · Zbl 1371.05289

[21] K. Panagiotou, L. Speidel, Asynchronous rumor spreading on random graphs, 78 (3) 968-989. · Zbl 1372.68034

[22] C. Patsonakis, M. Roussopoulos, Revisiting asynchronous rumor spreading in the blockchain era, in: 2019 IEEE 25th International Conference on Parallel and Distributed Systems, ICPADS, 2019, pp. 284-293.

[23] Pittel, B., On spreading a rumor, SIAM J. Appl. Math., 47, 1, 213-223 (1987) · Zbl 0619.60068

[24] Pólya, G., Über den zentralen Grenzwertsatz der Wahrscheinlichkeitsrechnung und das Momentenproblem, Math. Z., 8, 3, 171-181 (1920) · Zbl 47.0484.03

[25] A. Pourmiri, B. Mans, Tight analysis of asynchronous rumor spreading in dynamic networks, in: Proceedings of the 39th Symposium on Principles of Distributed Computing, pp. 263-272. · Zbl 07323198

[26] T. Sauerwald, A. Stauffer, Rumor spreading and vertex expansion on regular graphs, in: Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2011, San Francisco, California, USA, January 23-25, 2011, 2011, pp. 462-475. · Zbl 0736.06116

[27] Serfling, R., (Approximation Theorems of Mathematical Statistics. Approximation Theorems of Mathematical Statistics, Wiley Series in Probability and Statistics (2009), Wiley)