SODIUM UPTAKE AND MEMBRANE EXCITATION IN
PARAMECIUM

HELEN G. HANSMA

From the Department of Biological Sciences, University of California, Santa Barbara, California 93106

ABSTRACT

Although the phenotypes of many membrane-excitation mutants of \textit{Paramecium} are best expressed in Na+-containing solutions, little is known about the role of Na+ in membrane excitation in \textit{Paramecium}. By measuring 22Na fluxes, we have shown that: (a) The total cellular Na+ content is equivalent to a cytoplasmic concentration of 3--4 mM, if the Na+ concentration is uniform throughout the cell. (b) The kinetics of Na+ uptake can be divided into a saturable Na+ uptake with an apparent \(K_m = 0.15\) mM and a nonsaturable Na+ uptake seen at higher Na+ concentrations up to 20 mM. (c) The rate of Na+ uptake in high Na+ solutions is correlated with the duration of backward swimming and membrane excitation in wild type \textit{Paramecium} and the mutants fast-2 and paranoiac. (d) Na+ uptake is inhibited at 4\textdegree C. From these results, we postulate that Na+ uptake is faster when the membrane is depolarized than when it is at the resting potential level.

KEY WORDS \textit{Paramecium} · excitable membranes · chemotaxis · sodium fluxes · behavioral genetics of microorganisms

\textit{Paramecium tetraurelia} is a good system in which to investigate the biochemical mechanism of membrane excitation, because it is a well-studied unicellular organism that can be readily cultured and genetically manipulated. Furthermore, membrane excitation can be easily observed in \textit{Paramecium} by its effect on the swimming behavior of the cell. It is known that a Ca2+ action potential causes the cilia to beat backward, which in turn causes the paramecium to swim backward (6). To understand this process on a molecular level, Kung and co-workers have been carrying out a “genetic dissection” of behavior and membrane excitation in \textit{Paramecium}. They have isolated mutants at over 18 gene loci that show abnormal behavior and membrane electrophysiology in response to chemical stimulation with various cations (15). The most successful early methods for isolating mutants relied on abnormal responses to Na+-containing solutions, and many of the mutants show clear-cut behavioral abnormalities only in Na+ (13, 14, 27). This is surprising, since the electrophysiology of \textit{Paramecium} is based upon inward Ca2+ and outward K+ currents, and Na+ has not been shown to play a major role in membrane excitation in \textit{Paramecium}. On the other hand, it is reasonable that Na+ would be important to \textit{Paramecium}, which lives in fresh and brackish water where Na+ is a major cation.

Another way of investigating the membrane physiology of Na+ in \textit{Paramecium} is by measuring 22Na fluxes. In this paper, we describe the kinetics...
Supplies of 2ZNa uptake and provide evidence that membrane depolarization causes an increased uptake of Na⁺.

MATERIALS AND METHODS

Supplies

Cerophyl (powdered, dehydrated rye leaves) was obtained from Cerophyl Laboratories, Inc., Kansas City, Mo. Tris, N-2-hydroxyethylpiperazine-N'-2-ethane sulfonic acid (HEPES), and murexide (ammonium purpurate) were obtained from Sigma Chemical Co., St. Louis, Mo. Sodium-22 was obtained from ICN K & K Laboratories lnc., Plainview, N. Y., and New England Nuclear Boston, Mass.

Cell Stocks

All strains were Paramecium tetraurelia (previously named Paramecium aurelia syngen 4). The wild type Paramecium was stock 51s (non-kappa bearing). The two paranoiac mutants were: "PaC," strain d4-150, genotype PaC PaC, and "fna," strain d4-149, genotype fna fna. The fast-2 mutant was strain d4-91, genotype fna fna. All mutants were derived from 51s. The two paranoiac mutations are unlinked. The fast-2 and paranoiac mutations fna and fna map at the same genetic locus (30). The mutants were supplied by Professor Ching Kung (University of Wisconsin, Madison).

Culturing and Harvesting Cells

Cells were grown in flasks of autoclaved Cerophyl medium bacterized with Enterobacter aerogenes (10, 29). "Improved culture medium" (10) was used for the early experiments (Figs. 1-3). This medium has 10 mM Na⁺ and 6 mM K⁺, as measured by flame photometry. A culture medium of lower Na⁺ content (0.5 mM Na⁺ and 6 mM K⁺) was developed for later experiments to minimize Na⁺ contamination of the cells. This medium contained the extract of 5 g of Cerophyl per liter, with 1 mM citric acid, 1 mM Tris-HCl, 4 mM Tris, 0.5 mM CaCl₂, 0.5 mM NaCl.

Cell cultures were filtered through gauze and centrifuged for 2 min at 330 g in 100-ml pear-shaped bottles. The cell pellets were removed and washed by recentrifugation in either buffer A (0.1 mM CaCl₂, 0.02 mM EDTA, 0.7 mM Tris, 2 mM HEPES, pH 7) or buffer B (0.33 mM calcium citrate, 0.33 mM citric acid, 1 mM Tris, 1 mM HEPES, pH 7.2) (see figure captions). Buffer B has ~0.3 mM free Ca⁺⁺, as measured by murexide dye-binding (3, 24). Buffer A was developed during the course of the experiments to have a more precise free Ca⁺⁺ concentration (0.08 mM).

Measuring 2ZNa Uptake

Aliquots of cells in buffer were pipetted into plastic vials. 22NaCl and 22NaCl were added, either simultaneously or sequentially, to the desired final concentrations. To measure 22Na uptake, duplicate 0.5-ml samples of the cell suspension were layered over 1 ml of wash solution in centrifuge tubes made by melting the tips of 6-inch Pasteur pipettes (10, 11). The tubes were centrifuged for 20 or 30 s at 600 g in an International Centrifuge, Model K (International Equipment Co., Damon/IEC Div., Needham Heights, Mass.) After centrifugation, the tips of the centrifuge tubes, containing the cell pellets, were cut off. The radioactivity of the cell pellets was measured in a Nuclear Chicago well-type gamma counter (Nuclear-Chicago, Des Plaines, Ill.). Protein determinations (17) and/or cell counts were made on aliquots of the cell suspension.

The wash solution through which cells were centrifuged was buffer with 1% sucrose and 10 mM NaCl added. This washing procedure removed at least 97% of the extracellular 22Na, as determined from the radioactivity of the wash solution directly above the cell pellet.

Measuring Total Cellular Na⁺

Wild type paramecia were concentrated 10- to 20-fold and incubated overnight in culture medium containing 0.5 mM 22NaCl and 22NaCl to allow equilibration of 22Na with the cells. Overnight incubation was sufficient for total equilibration of 22Na, since the 22Na content of cells incubated for 7 h was 70-99% of the 22Na content at 20 h, and the 22Na content did not increase between 20 and 30 h. The total cellular 22Na was measured as described above by centrifuging aliquots of cells.

The mean cell volume was ~0.2 μl/10³ cells, as determined both by calculating the volume of a cylindrical cell, 40 μm x 140 μm, and by directly measuring the volume of packed cells in the tip of a calibrated Pasteur-pipet centrifuge tube.

Measuring Swimming Behavior

Cells in culture fluid were suspended in several volumes of buffer for at least 15 min before beginning behavioral observations. Single cells were then transferred into one of the Na⁺-containing solutions under a dissecting microscope, and the swimming behavior was timed immediately with a stopwatch. The swimming behavior of the paranoiac mutants was best quantified as the duration of the initial period of backward swimming. The swimming behavior of the fast-2 mutant was quantified as the number of swimming reversals or "backward jerks" in the first 30 s after transfer. The swimming behavior of wild type was measured in one or the other of these two ways, depending on the mutant to which it was being compared. In each experiment, swimming behavior was measured on groups of five cells in each Na⁺ solution. The data are presented as means for at least 20 cells.

It should be noted that the cells used for 22Na uptake studies were harvested by centrifugation, while the cells used for swimming behavior were not. The effect of this
variable has not been quantified; but the swimming behavior of cells in 22Na uptake studies was qualitatively the same as the measured behavior, and the differences in behavior between mutants and wild type were obvious. The interpretation of data is based on the changes in swimming behavior and 22Na uptake and not the absolute amounts of behavior and uptake.

Statistical Analyses

Na-uptake data are presented as means ± standard deviations. Student's t test (5) was used to determine the statistical significance of differences between means.

The distribution of data on swimming behavior is not Gaussian, since most groups contained some cells that did not swim backward at all. Therefore only the means are given, and the Mann-Whitney U test (5) was used to determine the significance, at the 5% confidence limit, of differences between groups.

RESULTS

Total Cellular Na

The total cellular Na content of wild type paramecia in culture medium containing 0.5 mM Na+ was 46 ± 7 nmol Na/mg protein (n = 6), or ~0.7 nmol Na/10^6 cells. The cells were somewhat starved after being incubated overnight in a concentrated suspension but were otherwise healthy; there was no cell death in these suspensions for at least 2 d. The Na content per cell decreased significantly as the cells starved, however, and the variability in Na content was large.

If Na+ is distributed uniformly throughout the cell, the Na content corresponds to a cytoplasmic concentration of 3-4 mM. This assumption is reasonable, since we have found previously that the total cellular K+ concentration of ~20 mM (10, 11) is comparable to the cytoplasmic concentration estimated from electrophysiological data. 1

Na Uptake

The time-course of 22Na uptake can be described in three stages (Figs. 1 and 2A): (a) A rapid Na uptake before the first data point can be taken, followed by (b) a linear increase in 22Na from 15 s to 2 or 3 min, followed by (c) a slower increase in 22Na at later times. When cells were chilled at 4°C for 20 min or more in solutions of 0.1-20 mM Na+, the linear portion (b) of Na uptake decreased to 50% or less of the rate at room temperature. The intercept at zero time was approximately the same for 4°C and room-temperature incubations, however (Fig. 1). This suggests that the early Na uptake (a) is a fast process, perhaps surface binding of Na, that can be separated from the linear increase in Na (b) during the next 2-3 min.

Naitoh and Yasumasu (22) also have evidence that Na+ and other cations bind rapidly to the surface of Paramecium. This is reasonable, since

1 Y. Naitoh, University of Tsukuba, Ibaraki, Japan, personal communication.
the anionic surface charges on a membrane are partially neutralized by either binding or loose association of the cations in the bulk solution (18). Goodford (8) has also suggested that Na$^+$ and Ca$^{++}$ might bind rapidly to smooth muscle cells, on the basis of tracer flux data.

The linear rates of Na uptake (b) were plotted as a function of the extracellular Na concentration (Fig. 3). The rate of Na uptake increases with increasing concentrations of extracellular Na up to 20 mM. There is a rapid increase in the rate of Na uptake between 0 and 1 mM extracellular Na ("low-Na solutions"), followed by a slower increase between 1 and 20 mM extracellular Na ("high-Na solutions"). The Lineweaver-Burke plot of Na uptake in low-Na solutions is linear (Fig. 4), suggesting that there may be a saturable component for the uptake of Na at low concentrations. The kinetics of this system depend on the extracellular Ca$^{++}$ concentration. In a solution of 0.1 mM Ca$^{++}$ (Fig. 4), the apparent K_m is \sim0.15 mM and the apparent V_{max} is \sim4 nmol Na/mg protein per min.

Na uptake in high-Na solutions is probably the sum of several processes. Wild type paramecia show an increasing rate of swimming reversals and action potentials as the Na concentration rises, and our evidence suggests that the uptake of Na is higher when the membrane is excited. Thus, in high-Na solutions, the Na uptake is probably the sum of the saturable (low-Na) component plus diffusion across the resting membrane plus diffusion across the excited membrane.

A Correlation between Membrane Excitation and Na Uptake

When cells are incubated in high-Na solutions, there is a strong correlation between membrane excitation and Na uptake. This correlation is shown below in several kinds of experiments, in which membrane excitation is measured as backward swimming or swimming reversals.

Wild type *Paramecium* and three mutants were used in these studies. Two paranoiac mutants, PaC and fna, "over-react" to high-Na solutions by swimming backward for as much as a minute or more, which corresponds to a long plateau of membrane depolarization (15). Wild type, in contrast, reacts to Na$^+$ by jerking back and forth repeatedly; the backward jerks and the corresponding membrane depolarizations usually last less than a second. The fast-2 mutant "under-reacts" to Na$^+$ by swimming fast forward initially, and its membrane hyperpolarizes (13, 15, 28). Different scales were used to quantify these different behaviors (see Materials and Methods).

The first correlation between Na uptake and
membrane excitation is that the paranoiac mutant PaC has a much faster Na uptake than wild type in solutions of 3-20 mM Na. Since the earliest time points for PaC are not linear (Fig. 2B), the data in Fig. 3 are not true rates; nonetheless, there is a clear difference between PaC and wild type. We have previously shown (11) that PaC swims backward in 8 mM Na for approximately the first 35 s and in 20 mM Na for ~1 min. Wild type, in contrast, swims backward for <5 s after transfer to high-Na§ solutions ([11] and Table I).

The second correlation is that there is a decrease in both 22Na uptake and backward swimming when paranoiac mutants are preincubated in nonradioactive NaCl before the addition of 22Na (Fig. 5). The two paranoiacs, fna§ and PaC, have different, unlinked mutations but similar phenotypes (1, 15, 30). The cause of this “adaptation” to Na§ is not known. Wild type shows a similar, but not significant, effect. The third correlation is that both Na§ uptake and the frequency of swimming reversals of wild type are significantly greater than those of the fast-2 mutant in 10 mM Na solution (Fig. 6).

Effect of Cations on Na§ Uptake and Swimming Behavior

K§, Li§, and Ca++ were tested for their effect on Na uptake and swimming behavior in 10 mM Na solutions (Table I). Na uptake was stimulated by cation addition in only one situation: Wild type cells transferred to Na solution containing 20 mM KCl showed prolonged backward swimming and approximately a two-fold increase in the rate of Na uptake (Table I). This is another example of a correlation between Na uptake and membrane excitation. High K§ has previously been shown to cause backward swimming in wild type Paramecium (13, 19). In the two paranoiac mutants, KCl

![Graph](image-url)
TABLE I

Cell type (phenotype)	Addition to 10 mM Na solution	Na\(^+\) uptake*	Backward swimming†
Wild type§	None (control)	12.3 ± 3.7	3
	Ca\(^{++}\) 1 mM	6.3 ± 2.3	1
	10 mM	5.2 ± 1.8	2
	K\(^+\) 5 mM	13.3 ± 7.6	15
	20 mM	21.8 ± 7.8	100
	Li\(^+\) 5 mM	4.2 ± 1.9	3
	20 mM	4.4 ± 2.1	9
PaC (paranoiac)¶	None (control)	34.7 ± 9.7	85
	Ca\(^{++}\) 1 mM	17.5 ± 7.1	60
	10 mM	7.6 ± 3.0	7
	K\(^+\) 5 mM	25.0 ± 8.1	69
	20 mM	20.0 ± 4.9	77
	Li\(^+\) 5 mM	25.0 ± 3.5	92
	20 mM	17.4 ± 3.4	120
fna' (paranoiac)¶‡	None (control)	26.8 ± 3.9	60
	Ca\(^{++}\) 1 mM	15.8 ± 1.6	62
	10 mM	9.7 ± 2.3	37
	K\(^+\) 5 mM	18.8 ± 2.8	66
	20 mM	14.4 ± 3.0	61
	Li\(^+\) 5 mM	19.8 ± 4.8	62
	20 mM	15.7 ± 2.8	110

* \(^{22}\)Na uptake was measured as in Fig. 2 after adding 10 mM NaCl and the specified concentrations of CaCl\(_2\), KCl, or LiCl to cells in buffer A.
† Backward swimming was measured on cells transferred from buffer A to buffer A containing 10 mM NaCl and the specified concentrations of CaCl\(_2\), KCl, or LiCl.
‡ Significant differences in Na uptake were found between control and the following: 1 Ca \((P < 0.02)\), 10 Ca, 20 K, 5 Li, 20 Li (all \(P < 0.01\)). \(n = 4-7\). Significant differences in backward swimming were found between control and 20 K, between 5 K and 20 K.
¶ Significant differences in Na uptake were found between control and the following: 1 Ca, 10 Ca, 20 K, 20 Li (all \(P < 0.01\)); between 5 Li and 20 Li (\(P < 0.01\)); between 1 Ca and 10 Ca (\(P < 0.05\)). \(n = 5-10\). Significant differences in backward swimming were found between control and the following: 1 Ca, 10 Ca, 20 Li; and between 1 Ca and 10 Ca.
§ Significant differences in Na uptake were found between control and 5 Li (\(P < 0.02\)), between control and all other solutions (\(P < 0.01\)); between 1 Ca and 10 Ca (\(P < 0.02\)). \(n = 3-7\). Significant differences in backward swimming were found between control and 10 Ca, control and 20 Li, 1 Ca and 10 Ca, 5 Li and 20 Li.

inhibited Na uptake and did not change the duration of backward swimming significantly.

10 mM CaCl\(_2\) inhibited both Na uptake and backward swimming in the two paranoiac mutants (Table I). This again shows a correlation between membrane excitation and Na uptake. Ca\(^{++}\) also inhibited Na uptake in wild type; the number of swimming reversals was not measured. Naitoh (19, 20) has shown that Ca\(^{++}\) inhibits backward swimming of wild type Paramecium in solutions containing Ca\(^{++}\) and either K\(^+\), Na\(^+\), Li\(^+\), or Rb\(^+\).

20 mM LiCl inhibited Na uptake but stimulated backward swimming in all three cell types. Since Li\(^+\) is an analogue of Na\(^+\), it might be competing with Na\(^+\) for the same binding or uptake sites. Therefore, it is possible that Li\(^+\) uptake as well as Na\(^+\) uptake is greater during membrane excitation and backward swimming.

DISCUSSION

The main conclusion of this work is that Na uptake in Paramecium is faster when the cells are swimming backward than when they are swimming forward. Since swimming direction is correlated with membrane potential, it follows that Na uptake is faster when the membrane is in an
The fast-2 mmant has fewer swimming reversals than wild type after 30-min incubations in high K § to the Na solution. (e) Both Na uptake and backward swimming are increased in wild type by adding 20 mM K § to the Na solution. (c) Both Na uptake and backward swimming are decreased in paranoiacs by adding 10 mM Ca ++ to the Na solution.

These new results on the initial ZZNa uptake by paranoiacs support and extend our earlier discovery that paranoiacs have a higher ZZNa content than wild type after 30-min incubations in high concentrations of ZZNaCl and a much lower total cellular K content (11, 26). Satow et al. (26) have shown that the depolarized membrane for the paranoiac mutant PaA in Na solutions (PaA is a third paranoiac mutant whose mutation is in a gene linked to the PaC gene but not the fnaP gene). This high conductance is probably due to higher conductances to Ca ++, Na §, and K § in the excited membrane. If the cytoplasmic concentration of Na § is ~3–4 mM as our data indicate, then the electrochemical gradient for Na § for Paramecium in 10 mM Na solutions would favor Na § influx at membrane potentials more negative than +23 mV.

Are the electrophysiological data for wild type Paramecium consistent with our conclusion that Na § uptake is faster during membrane excitation? When action potentials are evoked in Paramecium caudatum either electrically or by mechanically stimulating the anterior of the cell, the spike overshoot is independent of the extracellular Na § concentration (1, 7, 21). This indicates that there is no increase in Na § current at the peak of the action potential that can be measured by electrophysiological techniques. The peak inward current in Paramecium tetraurelia under voltage clamp is 5 nA/cell, and the minimum detectable current is ~0.5 nA (23). In contrast, a minute-long Na § current of 0.5 nA/cell corresponds to an Na § flux of 20 nmol Na §/mg protein per min. By comparing this value with the data in Table I, one can see that the Na § uptake during prolonged backward swimming is well within the noise level of electrophysiological measurements. Therefore, a voltage-dependent Na § influx in Paramecium is not inconsistent with the electrophysiological data.

This calculation shows that the use of tracer fluxes can be a sensitive way to measure small ionic currents in Paramecium. Browning and Nelson (3) and Browning et al. (4) have also measured Ca § currents during membrane excitation in wild type Paramecium and many behavioral mutants using 4Ca § at 0°C. This paper presents the first evidence that there is an Na § current across the excited membrane in wild type Paramecium.

If there is a voltage-dependent Na § current in Paramecium, then the simplest explanation is that Na § enters through one of the two voltage-dependent channels that have been found in Paramecium: the Ca § channel or the K § channel. It seems more likely that Na § would enter through the Ca § channel, for the following reasons: First, the K § channel in nerve is 100 times less permeable to Na § than K § (12). Second, the Na § channel in the squid giant axon appears to be permeable also to Ca ++ (9). Third, the Ca § channel of Paramecium is affected by Na §, since Na § slows the inactivation of the inward Ca § current during voltage clamp.

It is intriguing to speculate that one or more of the paranoiac mutations might affect the Ca § channel such that Na § further slows its inactivation, since the paranoiac mutants show very long depolarizations only in Na § or Li § solutions. Brehm and Eckert (2) have shown recently that the Ca § channel in Paramecium caudatum is inactivated by Ca ++ entry into the cell. They also showed that Ba ++ and Sr ++ both slow the inactivation of the Ca § channel, apparently by reducing the Ca ++ entry into the cell. In the paranoiac mutants of Paramecium tetraurelia, the duration of backward swimming increases with increasing Na § concentrations (11). This is all consistent with the model that a paranoiac mutation might alter the relative specificity of the Ca § channel for Na § and Ca ++. The pawn mutants have previously been identified as Ca ++-channel mutants, since they have no action potentials (15, 16, 25). Pawn mutations seem to prevent the Ca ++ channel from opening normally; the paranoiac mutations might prevent the Ca ++ channel from clo-
More research is needed to test this exciting hypothesis.

I thank Dr. Paul Brehm for his many helpful discussions and careful reading of this manuscript, and Dr. Ching Kung for his support during much of this work. This work was supported in part by National Science Foundation grant PCM77-02672.

Received for publication 25 August 1978, and in revised form 28 December 1978.

REFERENCES

1. Brehm, P., K. Dunlap, and R. Eckert. 1978. Calcium-dependent depolarization in Paramecium. J. Physiol. (Lond.). 274:639-654.
2. Brehm, P., and R. Eckert. 1978. Calcium entry leads to inactivation of calcium channel in Paramecium. Science (Wash. D. C.). 202: 1203-1206.
3. Brownlow, J., and D. L. Nelson. 1976. Biochemical studies of the excitable membrane of Paramecium aurelia. I. Ca⁺⁺ fluxes across resting and excited membrane. Biochim. Biophys. Acta. 448: 338-351.
4. Brownlow, J., D. L. Nelson, and H. G. Hansma. 1976. Ca⁺⁺ influx across the excitale membrane of behavioral mutants of Paramecium. Nature (Lond.). 259:491-494.
5. Campbell, R. C. 1974. Statistics for Biologists. Cambridge University Press, London.
6. Eckert, R. 1972. Bioelectric control of cilia. Science (Wash. D. C.). 176:473-481.
7. Eckert, R. Y., Natour, and K. Friedman. 1972. Sensory mechanisms in Paramecium. I. Two components of the electrical response to mechanical stimulation of the anterior surface. J. Exp. Biol. 86: 685-694.
8. Goodford, P. J. 1970. Ion movements in smooth muscle. In Membranes and Ion Transport. E. E. Bittar, editor. John Wiley & Sons, Inc., New York. 233-274.
9. Hagiwara, S. 1975. Ca-Dependent Action Potential. In Membranes. G. Eisenman, editor. Marcel Dekker, Inc., New York. 3: 359-381.
10. Hansma, H. 1974. Biochemical studies on the behavioral mutants of Paramecium aurelia: ion fluxes and ciliary membrane proteins. Ph.D. dissertation, University of California, Santa Barbara, Calif.
11. Hansma, H. G., and C. Kung. 1976. Defective ion regulation in a class of membrane-excitation mutants in Paramecium. Biochim. Biophys. Acta. 436:128-139.
12. Hill, B. 1975. Ionic selectivity of Na and K channels of nerve membranes. In Membranes. G. Eisenman, editor. Marcel Dekker, Inc., New York. 255-323.
13. Kung, C. 1971. Genetic mutants with altered system of excitation in Paramecium aurelia. I. Phenotypes of the behavioral mutants. Z. Vgl. Physiol. 71:142-164.
14. Kung, C. 1971. Genetic mutants with altered system of excitation of Paramecium aurelia. II. Mutagenesis, screening and genetic analysis of the mutants. Genetics. 70:29-45.
15. Kung, C., S.-Y. Chang, Y. Satow, J. Van Houten, and H. Hansma. 1975. Genetic dissection of behavior in Paramecium. Science (Wash. D. C.). 188:996-998.
16. Kung, C., and R. Eckert. 1972. Genetic modification of excitation properties in an excitable membrane. Proc. Natl. Acad. Sci. U.S.A. 69:93-97.
17. Lowry, O. H., N. J. Roberthoug, A. L. Farr, and R. J. Randall. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265-275.
18. McLaurin, S. 1977. Electromotive potentials at membrane-solution interfaces. Cur. Top. Membranes and Transp. F. Bronner and A. Kleinzeller, editors. Academic Press, Inc., New York. 971-144.
19. Natour, Y. 1968. Ionic control of the reversal response of cilia in Paramecium caudatum. A calcium hypothesis. J. Gen. Physiol. 51: 85-103.
20. Natour, Y., and R. Eckert. 1968. Electrical properties of Paramecium caudatum: modification by bound and free cations. Z. Vgl. Physiol. 61:427-452.
21. Natour, Y., R. Eckert, and K. Friedman. 1972. A regenerative calcium response in Paramecium. J. Exp. Biol. 56:667-681.
22. Natour, Y., and I. Yanumari. 1967. Binding of Ca ions by Paramecium caudatum. J. Gen. Physiol. 56:1303-1310.
23. Oertel, D., S. J. Schon, and C. Kung. 1977. Separation of membrane currents using a Paramecium mutant. Nature (Lond.). 208:120-124.
24. Osunogu, S., and T. Ermos. 1963. Spectrophotometric measurement of instantaneous calcium binding of the relaxing factor of muscle. J. Biochem. (Tokyo). 64:506-511.
25. Satow, Y., S.-Y. Chang, and C. Kung. 1972. Membrane excitability: Made temperature dependent by mutations. Proc. Natl. Acad. Sci. U.S.A. 58:2703-2706.
26. Satow, Y., H. G. Hansma, and C. Kung. 1976. The effect of sodium on "paranoiac"—A membrane mutant of Paramecium. Comp. Biochem. Physiol. 54A:323-329.
27. Satow, Y., and C. Kung. 1974. Membrane excitability: Made temperature dependent by mutations. Proc. Natl. Acad. Sci. U.S.A. 58:2703-2706.
28. Satow, Y., and C. Kung. 1976. A mutant of Paramecium with increased relative resting potassium permeability. J. Neurobiol. 7: 325-338.
29. Sehnnernon, T. M. 1950. Methods in the general biology and genetics of Paramecium aurelia. J. Exp. Zool. 113:57-145.
30. Van Houten, J., S.-Y. Chang, and C. Kung. 1977. Genetic analyses of "paranoiac" mutants of Paramecium tetraurelia. Genetics. 86:113-120.

H. G. Hansma Na Uptake and Membrane Excitation in Paramecium