Calcineurin Signaling Mediates Disruption of the Axon Initial Segment Cytoskeleton after Injury

Yanan Zhao, Xuanyuan Wu, Xin Chen, ..., Cheng Xiao, Guisheng Zhong, Shuijin He
zhongsh@shanghaitech.edu.cn (G.Z.)
heshj@shanghaitech.edu.cn (S.H.)

HIGHLIGHTS
Ion channels are mostly retained at the AIS after ischemic injury
Neurofascin is required for clustering ion channels at the AIS after ischemia
Calcineurin inhibition protects AIS structural integrity and function from ischemia
Calcineurin inhibition protects cognitive function against impairment by ischemia

Zhao et al., iScience 23, 100880
February 21, 2020 © 2020 The Author(s).
https://doi.org/10.1016/j.isci.2020.100880
Calcineurin Signaling Mediates Disruption of the Axon Initial Segment Cytoskeleton after Injury

Yanan Zhao,1,6 Xuanyuan Wu,1,6 Xin Chen,1 Jianan Li,1 Cuiping Tian,2 Jiangrui Chen,1,3,4 Cheng Xiao,5 Guisheng Zhong,1,2,* and Shuijin He1,7,*

SUMMARY
The axon initial segment (AIS) cytoskeleton undergoes rapid and irreversible disruption prior to cell death after injury, and loss of AIS integrity can produce profound neurological effects on the nervous system. Here we described a previously unrecognized mechanism for ischemia-induced alterations in AIS integrity. We show that in hippocampal CA1 pyramidal neurons Nav1.6 mostly preserves at the AIS after disruption of the cytoskeleton in a mouse model of middle cerebral artery occlusion. Genetic removal of neurofascin-186 leads to rapid disruption of Nav1.6 following injury, indicating that neurofascin is required for Nav1.6 maintenance at the AIS after cytoskeleton collapse. Importantly, calcineurin inhibition with FK506 fully protects AIS integrity and sufficiently prevents impairments of spatial learning and memory from injury. This study provides evidence that calcineurin activation is primarily involved in initiating disassembly of the AIS cytoskeleton and that maintaining AIS integrity is crucial for therapeutic strategies to facilitate recovery from injury.

INTRODUCTION
The axon initial segment (AIS) is a specialized ~30-μm long proximal axon that contains ~30- to 50-fold higher density of voltage-gated sodium channels (Nav) than the soma and dendrites (Kole et al., 2008). Owing to its unique property, the AIS is pivotal for generating an action potential in response to the integration of synaptic inputs under physiological conditions. Within the AIS subdomain, the cytoskeletal proteins including Ankyrin G (AnkG) and βIV-spectrin, together with neurofascin (Nfasc) and neuronal cell adhesion molecule (NrCAM), assemble Na, and voltage-gated potassium channels (Kv) to build an exquisite hierarchical structure. AnkG serves as an AIS master organizer to recruit Nav to the AIS during development and then βIV-spectrin tethers the AnkG-Nav complex to the axonal actin. In contrast, Nfasc is not required for AIS assembly and does not directly interact with channel-forming α subunits of Na. Instead, Nfasc stabilizes the AIS by directly interacting with the extracellular matrix (Hedstrom et al., 2007; Ratcliffe et al., 2001; Zonta et al., 2011). It is interesting to know whether Nfasc is capable of stabilizing Na, at the AIS in the absence of AnkG under pathological conditions.

The AIS is very vulnerable to damage under pathophysiological conditions. For example, the AIS cytoskeleton is rapidly disrupted prior to cell death following medial cerebral artery occlusion (MCAO) in the peri-infarct and infarction core regions of the rodent brain (Hinman et al., 2013; Schafer et al., 2009). Inhibition of calpain only attenuates disruption of the AIS cytoskeleton in response to injury in vitro and in vivo, implicating that the AIS cytoskeletal proteins are proteolyzed partially through activation of the Ca²⁺-dependent calpain. However, inhibition of calcineurin with FK506 efficiently protects against cell deaths induced by ischemia in a mouse model of MCAO (Sharkey and Butcher, 1994). Moreover, blockade of calcineurin prevents activity-dependent AIS plasticity in cultured hippocampal neurons (Evans et al., 2013). These raise the question as to whether calcineurin is involved in regulating rapid AIS disruption under pathological conditions.

In the present study, we investigated the peri-infarct regions because axonal sprouting and synaptic reorganization in these regions are essential for recovery of human patients from neurological injury (Nudo, 2013; Wieloch and Nikolic, 2006). Given the critical role of the AIS in synaptic transmission, protection of the AIS in these regions after injury might be the first step to be considered for patient recovery. We thus began to compare the susceptibilities of the peri-infarct regions to ischemia using a commonly
employed animal model of stroke MCAO that represents focal brain ischemia in human patients. We found that the AIS cytoskeleton was completely disrupted after 2 h of MCAO in hippocampal CA1 pyramidal neurons but not in the somatosensory cortex or striatum. In contrast, Nfasc and Na,1.6 were yet retained at the AIS after 4–6 h of MCAO. Genetic ablation of Nfasc promoted disruption of Na,1.6 at the AIS following injury, suggesting a critical role of Nfasc in the retention of Na,1.6 under pathophysiological conditions. Importantly, administration of a calcineurin inhibitor FK506 immediately after MCAO surgery completely prevented AnkG disruption, and impairments of AP generation, AP-dependent synaptic transmission, and spatial learning and memory resulting from ischemic injury.

RESULTS

The Hippocampal AIS Cytoskeleton Is Preferentially Susceptible to Injury

To determine the vulnerability of the AIS to injury in different peri-infarct brain regions, mice were subjected to MCAO for various times by MCA thread insertion. The severity of AIS damage was examined by immunofluorescence (IF) staining of the scaffold protein AnkG in three peri-infarct regions: the somatosensory cortex, the hippocampus, and the thalamus (Figure 1A) (Popp et al., 2009). Compared with the uninjured (contralateral) side of the brain, the intensity and the length of AnkG staining were slightly reduced in the three regions of the injured side (ipsilateral) following 1 h of MCAO. As the occlusion time went longer, more than 50% of AnkG was preserved in the ipsilateral somatosensory cortex (SCC) after 6 h of MCAO, whereas AnkG was retained in the ipsilateral thalamus within 4 h of MCAO but absent at 6 h after the onset of occlusion (Figures 1B–1D). In contrast, AnkG was undetectable in the ipsilateral hippocampal CA1 region after 2 h of MCAO (Figures 1B–1D). Analogous results were observed in the hippocampal CA3 and DG regions (Figure S1). We next focused our further mechanical study on the hippocampus. Similar to AnkG, the AIS cytoskeletal protein \(\beta \)IV-spectrin was no longer observed at the AIS of ipsilateral hippocampal CA1 pyramidal cells after 2 h of MCAO (Figures S2A and S2B).

To confirm these immunostaining results, we performed immunoblot analyses of hippocampal homogenates from sham or MCAO mice with antibodies against the C-terminal or spectrin-binding domains of AnkG. Immunoblots with both antibodies revealed a significant reduction in the amount of full-length AnkG in the contralateral compared with the ipsilateral after 1 h of MCAO. The full-length AnkG was rarely detected in the ipsilateral hippocampus with antibodies either against the C-terminal domain (Figures 1E and 1F) or against the spectrin-binding domain of AnkG after 2 h of MCAO (Figures S2C and S2D). Notably, no breakdown products of AnkG were detected in ipsilateral hippocampi after injury. Disruption of AnkG was not a consequence of cell death because we only observed a few TUNEL-positive cells in the hippocampus at this time point (Figure S1), consistent with the notion that cell death and AIS disruption are two independent events (Schafer et al., 2009). Collectively, these results suggest that the hippocampal AIS cytoskeleton is preferentially susceptible to injury.

Sodium Channels at the AIS Are Resistant to Injury-Induced Disruption

AnkG is required for assembly of Na\(_{\text{v}}\) channel clustering at the AIS where action potentials are initiated (Hedstrom et al., 2007; Jenkins and Bennett, 2001; Kole et al., 2008; Zhou et al., 1998). To examine whether AnkG disruption led to disassembly of Na\(_{\text{v}}\), we performed IF staining of a Na\(_{\text{v}}\) subtype Na,1.6 that is predominantly expressed in the hippocampal AIS. Unlike AnkG, the intensity and length of Na,1.6 at the AIS were not significantly reduced following 2 h of MCAO (Figures 2A–2C), but only the intensity was decreased by \(\sim 26\% \) at the 4-h time point (Figure 2C). Analogous results were observed for another AIS voltage-gated ion channel K\(_{\text{v}}\)\(_{\text{7.2}}\) (Figures S3A and S3B). To further examine whether nanoscale organizations of the AIS cytoskeleton and anchored ion channels were altered after injury, we performed super-resolution simulated emission depleted (STED) imaging to analyze the distribution of \(\beta \)IV-spectrin and Na,1.6 at the AIS. We found that Na,1.6 and \(\beta \)IV-spectrin showed periodic arrangements in the ipsilateral AIS comparable to the contralateral after 1 h of MCAO (Figures 2D and S3C). The periodic pattern of Na,1.6 was slightly altered after 2 h of MCAO when the AIS cytoskeleton was depleted (Figure 2D).

Previous studies showed that Na\(_{\text{v}}\) was subject to proteolysis after injury (Czogalla and Sikorski, 2005; Schafer et al., 2009; White et al., 2000). To examine the possibility that Na,1.6 might be broken down into fragments after injury, we performed immunoblot analyses of hippocampal homogenates with antibodies against Na,1.6. In the ipsilateral hippocampus, we identified low-molecular-weight fragments with \(\sim 82\ \text{kDa} \) and \(\sim 90\ \text{kDa} \) from Na,1.6. These bands showed up at the 1-h time point, and their density was increased...
Figure 1. Ischemic Injury Causes Rapid Disruption of the AIS Cytoskeleton AnkG in the Hippocampus

(A) Schematic of the regions (boxes) studied in (B).

(B) Representative confocal images of AnkG immunostaining from the box areas (A) of the somatosensory cortex (top), the CA1 region (middle), and the thalamus (bottom) of mice subjected to 1 h, 2 h, 4 h, or 6 h MCAO. Insets are enlarged from the yellow box areas.

(C and D) Quantification of the length (C) and the normalized fluorescence intensity (FI) (D) of AnkG immunostaining from the somatosensory cortex (black), the CA1 region (red), and the thalamus (blue) after various MCAO times. The ipsilateral FI was normalized to the contralateral from the same mouse.

(E) Representative image of AnkG immunoblot of hippocampal tissue homogenates from mice subjected to various times of MCAO.
as the MCAO time prolonged (Figure 2E). Compared with AnkG disruption, quantitative immunoblot analyses showed ~80% retention of the full-length Nav1.6 at 2-h MCAO time point and then reduced to ~70% at 4 h (Figure 2F). Together, these results suggest that Nav1.6 is resistant to injury-induced decline.

AP Generation Is Impaired after Injury

Could preserved Nav1.6 at the AIS generate APs in response to membrane depolarization? To address this question, we performed whole-cell electrophysiological recordings of APs on the CA1 pyramidal neurons of the contralateral and ipsilateral hippocampi following MCAO (Figure 3A). In contrast to the contralateral, we found a more positive AP threshold and a significant reduction in AP amplitude in the ipsilateral CA1 pyramidal cells after 1 h of MCAO (Figures 3B–3F), suggesting that functional alterations were prior to structural changes.

Under physiological conditions, AP propagation along the axon is required for spontaneous synaptic transmission among neurons. To examine whether impairment of AP generation could affect synaptic transmission, we performed whole-cell recordings of AP-dependent spontaneous postsynaptic currents (sPSCs) and AP-independent miniature PSCs (mPSCs) in hippocampal CA1 pyramidal neurons after injury. As we expected, sPSC frequency, but not amplitude, was significantly reduced (Figures 4A–4C), whereas neither the frequency nor the amplitude of mPSCs were altered after injury (Figures 4D–4F). These results together suggest that impairment of AP generation results in diminished synaptic transmission.

Neurofascin Is Required for Clustering Sodium Channels at the AIS after Injury

Several lines of evidence showed that Nfasc plays an important role in maintenance of sodium channel clustering at the AIS by way of association with the extracellular matrix (Hedstrom et al., 2007; Zonta et al., 2011). To test whether Nav1.6 was anchored at the AIS by Nfasc after disruption of the AIS cytoskeleton, we carried out a series of experiments to demonstrate the expression of Nfasc at the AIS after injury. Nfasc remained unchanged and colocalization with Nav1.6 at the AIS after 2 h of MCAO (Figures 5A and 5B). Moreover, western blotting showed no difference between the ipsilateral and contralateral hippocampi after 4 h of MCAO (Figures 5C and 5D), suggesting that Nfasc is quite resistant to injury-induced decline. These results raise a question as to whether knockdown of Nfasc would cause rapid Nav1.6 disruption following MCAO.

To address this question, we took advantage of the Cre-dependent Cas9 knock-in mice to knockdown NF-186 that is predominantly expressed at the AIS. We first generated a mouse line with specific expression of Cas9 in the excitatory neurons by crossing the Cre-dependent Cas9 mouse to an Emx1-Cre driver. NF-186 sgRNA-3 that showed high efficacy of cleavage in cultured cells was selected to be constructed into the vector of adeno-associated virus (AAV)-U6-sgRNA- IRES-mCherry (Figure S4A). Next, the chimeric AAV1/2 viruses expressing sgRNA-3 were delivered via stereotactic injection into the hippocampal CA1 region of the Emx1-Cre/Cas9 mice. Seven weeks after injection, we found that the majority of NF-186 were ablated in infected neurons with sgRNA-3 AAVs (Figures S4B and S4C), which had no effect on AnkG expression at the AIS (Figure S4D). In contrast to scrambled AAVs and uninfected neurons in the same mice, Nav1.6 was little detectable in the infected neurons with sgRNA-3 AAVs after 2 h of MCAO (Figures S5E–S5G), suggesting that Nfasc is required for clustering of Nav1.6 at the AIS following ischemic injury.

Next we examined whether Nfasc anchored Na1.6 by association with the EMC after injury. Chondroitinase ABC (ChABC) that is capable of digesting the essential EMC component, the chondroitin sulfate glycosaminoglycans (CS-GAGs), was applied into the hippocampal CA1 72 h before MCAO surgery (Figures S5A–S5C). We found that ChABC treatment had no effect on the clustering of Nav1.6 and Nfasc at the AIS in the absence of MCAO (Figures S5D–S5F) but caused a rapid disruption of Na1.6 following 2 h of MCAO (Figure S5G), demonstrating that Nfasc together with the EMC clustered Na1.6.
Figure 2. Nav1.6 Largely Preserves at the AIS after Injury

(A) Representative confocal images of Nav1.6 immunostaining in the CA1 regions from mice subjected to 1 h, 2 h, or 4 h of MCAO.

(B and C) Quantification of the length (B) and the normalized FI (C) of Nav1.6 immunostaining from the CA1 pyramidal neurons after various times of MCAO.

(D) Super-resolution STED images of Nav1.6 immunostaining show periodic distribution at the AIS of hippocampal CA1 pyramidal neurons after 1 h or 2 h of MCAO. Boxes indicate analyzed areas showed below.
FK506 Fully Prevents Injury-Induced AIS Disruption

Calcineurin signaling was previously reported to play important roles in neuronal death induced by ischemic injury and in activity-dependent AIS plasticity (Evans et al., 2013; Sharkey and Butcher, 1994; Springer et al., 2000). To examine whether MCAO induced elevated calcineurin activation, which can cause NFAT to translocate into the nucleus, AAVs expressing fused NFAT-EGFP were injected into the hippocampus seven days prior to MCAO surgery. We found that the majority of NFAT-EGFP were located in the nucleus of the ipsilateral neurons compared with the cytosol of the contralateral neurons after 2 h of MCAO (Figures 6A and 6B). As disruption of the AIS cytoskeleton is an early response to injury independent of cell death, we asked whether inhibition of calcineurin with FK506 could prevent AIS disruption as well. To test this hypothesis, we

Figure 2. Continued

(E) Representative image of Na,1.6 immunoblot of hippocampal tissue homogenates from mice subjected to various times of MCAO. Arrow heads indicate fragments of small molecular size 110 kD and 95 kD that are proteolyzed from the full length of Na,1.6. (F) Quantification of the intensity of 250 kD Na,1.6 immunoblots after various MCAO times. The ipsilateral F.I. was normalized to the contralateral from the same mouse. p values in (C) and (F) are determined using one-way ANOVA with post hoc Bonferroni’s multiple comparisons test. N represents mouse number. Data are presented as mean ± SEM.

Figure 3. Ischemic Injury Impairs Action Potential Generation

(A) Representative DIC and confocal images of a recorded hippocampal CA1 pyramidal neuron filled with Alexa 546 and neurobiotin. Arrow head indicates the AIS of the recorded neuron.

(B) Sample traces of changes in membrane voltages in response to a series of step currents in 20 pA increments from +30 pA to +190 pA in CA1 pyramidal neurons from the contralateral (left) and ipsilateral (right) hippocampi following 1 h of MCAO. Highlights show the traces containing the first AP initiated in the recorded neurons.

(C) Sample traces of the first APs were overlapped from the ipsilateral and contralateral CA1 pyramidal neurons.

(D) Phase-plane plots of membrane voltage vs its change rate in response to current injection in (C). The dash line indicates the change rate of 10 mV/ms. Arrows indicate AP thresholds.

(E and F) Summary of AP threshold and amplitude in the recorded neurons from the ipsilateral and contralateral hippocampal CA1 pyramidal neurons following 1 h of MCAO. p values in (E) and (F) are determined between ipsilateral and contralateral sides using unpaired t-test. N represents neuron number recorded. Data are presented as mean ± SEM.
subjected mice to MCAO surgery immediately followed by intravenous injection of FK506 at two different concentrations. After 2 h of MCAO, we found little AnkG preserved at the injured AIS following treatment with 0.5 mg/kg FK506. In contrast, administration of a higher concentration of FK506 (2.5 mg/kg) completely retained AnkG at the AIS (Figures 6C and 6D). We also compared FK506 with another calcineurin inhibitor (Cyclosporin A, CsA) and a calpain inhibitor (MDL 28170) for AIS protection. Although administration of CsA (20 mg/kg) retained the majority of AnkG (Figure S6), treatment with MDL 28170 (60 mg/kg) preserved only 20% of AnkG at the injured AIS (Figure S7), consistent with a previous study showing a partial protection of calpain inhibition against AIS disruption after injury (Schafer et al., 2009). Treatment with an Hsp90 inhibitor 17-AAG (25 mg/kg) had no effect on injury-induced disruption of AnkG (Figures S8A and S8B), ruling out the possibility that FK506 and CsA acted through inhibiting the Hsp90 stress response pathway (Owens-Grillo et al., 1995). Moreover, injury-induced NFAT-EGFP nuclear translocation was blocked by FK506 and CsA (Figures 6A and 6B). These results together suggest that inhibition of calcineurin with FK506 is sufficient to fully protect the AIS cytoskeleton from ischemic injury.

Next we further examined the function of preserved AIS cytoskeleton by FK506 using whole-cell electrophysiological recordings of hippocampal CA1 pyramidal cells. We found no significant difference in AP amplitude and threshold between the ipsilateral and contralateral hippocampi of FK506-treated MCAO mice (Figures 6E–6H). Likewise, sPSC frequency was no longer changed following MCAO in FK506-treated mice (Figures 6I–6K).

To address whether protection at the cellular level led to recovery of cognitive function, we subjected the MCAO-, sham-, and FK506-treatment mice to the hidden-platform version of Morris water maze task with spatial cues (Morris et al., 1982) and new object recognition tasks for examining spatial and non-spatial memory, respectively. We chose the paradigm of 30-min transient MCAO (tMCAO) followed by re-perfusion because this mimicked 2 h of MCAO showing AnkG disruption but Na,1.6 and Nfasc preservation at the AIS (Figures 7A, S9A, and S9B). During the consecutive five-day training, the latencies for revealing the hidden platform were gradually decreased for both sham and MCAO mice, whereas the sham group achieved a significant shorter latency from the training day 2 compared with the MCAO mice.
NavChannels Are Resistant to Injury-Induced Decline at the AIS

AnkG is crucial for AIS assembly during development, and either genetic ablation or silence of AnkG expression by shRNA failed to recruit Na+ channels, NF-186, NrCAM, and βIV-spectrin into the AIS (Hedstrom et al., 2007; Huang and Rasband, 2018; Jenkins and Bennett, 2001; Zhou et al., 1998). A previous study reported that Na+1.6 and AnkG were concurrently disrupted in the infarct core area of the cortex in a focal ischemia/reperfusion (I/R, 90 min of MCAO followed by reperfusion) (Schafer et al., 2009). To examine the stability of Na+, we prolonged MCAO up to 6 h and examined an alteration in Na+1.6 density in the peri-infarct hippocampus. In contrast to complete AnkG disruption after 2 h of MCAO, we found that the majority of Na+1.6 was preserved at the AIS till 6 h of MCAO.

Na+1.6 is mainly distributed in the distal AIS and responsible for AP generation due to its activation at a low threshold (Hu et al., 2009). AP generation is impaired in the CA1 pyramidal neurons, whereas Na+1.6 density is not altered at the time point of 1 h of MCAO. Because breakdown fragments of Na+1.6 were observed at this time point, a small amount of Na+1.6 proteolysis might be enough to impair AIS function but did not influence the intensity. But we cannot rule out other possibilities that (1) the density of other Na+ channels such as Na+1.2 that is predominantly located in the proximal AIS was reduced...
after injury; and (2) Nav phosphorylation was increased after injury. In support of this, p38-mitogen-activated protein kinases (MAPKs) has been reported to be activated in the brain following ischemic injury (Alessandrini et al., 1999; Barone et al., 2001; Sugino et al., 2000), and p38 activation then phosphorylates Nav1.6 serine 553, which can result in a reduction of Nav1.6 current density (Wittmack et al., 2005).

Given that the majority of Na⁺,1.6 preserved in the hippocampal AIS after disruption of the cytoskeleton in response to injury, we examined the hippocampal-dependent spatial learning and memory and the
perirhinal cortex-involved non-spatial memory in a mouse model of I/R injury (30 min of MCAO followed by reperfusion), which have mostly mimicked the condition of 2 h of MCAO in terms of AnkG disruption and retentions of Nav1.6 and Nfasc. We found that ischemic injury caused severe impairment of spatial memory rather than non-spatial memory, implicating that the hippocampus is more likely damaged than the perirhinal cortex.

Nfasc Is Required for Na\textsubscript{+} Channel Maintenance at the AIS after Injury

Unlike AnkG, Nfasc is not required for AIS assembly but might stabilize the AIS ion channels by interacting with both AnkG and brevican-based ECM (Hedstrom et al., 2007). Consistent with this idea, our results demonstrate that Nfasc and the vast majority of Na\textsubscript{+}1.6 preserve at the AIS in the absence of AnkG following a prolonged ischemic injury. Knockout of Nfasc in Cre-dependent cas9 knock-in mice and destruction of the chondroitin sulfate proteoglycans (CSPGs) with ChABC abolish Na\textsubscript{+}1.6 clustering at the AIS after injury, suggesting that Nfasc contributes to maintenance of Na\textsubscript{+}1.6 after injury. Because the current model of the AIS architecture shows that Nfasc does not directly interact with the pore-forming \(\alpha \) subunits of Na\textsubscript{+}1.6 at the AIS domain, how Nfasc stabilizes Na\textsubscript{+}1.6 in the absence of AnkG after injury needs further investigations.
Previous studies have reported that a regulatory subunit Navβ1 directly interacts with NF-186 and NrCAM (McEwen and Isom, 2004), and Navβ4 associates with Naax via a covalent disulfide at the AIS (Buffington and Rasband, 2013). Therefore, we speculate that the β subunit may serve as a linker between Nfasc and Naax subunits although other possibilities cannot be ruled out. For instance, some unidentified anchoring molecules that directly interact with both Nfasc and Naax can cluster Naax at the AIS. Or under pathophysiological conditions Nfasc directly binds to the Naax subunits in the absence of AnkG. At least, a previous study showed that an Nfasc-binding protein brevican was upregulated in the optic nerve following ischemia (Reinhard et al., 2017). Further experiments are needed to address these questions.

Potential Mechanisms Underlying AIS Protection by FK506 after Injury

Given that the majority of Na1.6 preserved in the hippocampal AIS after disruption of the cytoskeleton in response to injury, we examined the hippocampal-dependent spatial learning and memory and the perirhinal cortex-involved non-spatial memory in a mouse model of I/R injury (30 min of MCAO followed by reperfusion), which have mostly mimicked the condition of 2 h of MCAO in terms of AnkG disruption and retentions of Na1.6 and Nfasc. We found that ischemic injury caused severe impairment of spatial memory rather than non-spatial memory, implicating that the hippocampus is more likely damaged than the perirhinal cortex. Treatment with a calcineurin inhibitor FK506 completely prevented injury-induced disruption of the AIS cytoskeleton, AIS function, and spatial memory impairments. Calpain has been previously reported to partially proteolyze the AIS cytoskeletal proteins following ischemic injury, raising the possibility that in addition to calpain other proteases are involved in the breakdown of the cytoskeleton protein. How calcineurin works in concert with calpain or other proteases remains an open question.

How does injury cause a cytosolic Ca2+ surge to activate calcineurin? Blockade of NMDA receptors is previously reported to have no effect on disruption of the AIS cytoskeleton after injury. In this study, we found that blockade of L-type voltage-gated calcium channels (VGCCs) prevents disruption of the AIS cytoskeleton after injury (Figure S8C), suggesting that Ca2+ influx through VGCCs activated calcineurin to trigger injury-dependent AIS disruption. This is consistent with previous studies demonstrating that blockade of the L-type VGCC prevents calcineurin-mediated activity-dependent AIS plasticity and activation of the caspase apoptotic cascade (Evans et al., 2013; Springer et al., 2000). However, inhibition of purinergic P2X7 receptors had no effect on AIS disruption induced by 2 h of MCAO (Figure S8C), which is inconsistent with a previous report showing that inhibition of P2X7 receptors could prevent AIS disruption in a rat model of ischemia/reperfusion (I/R, 90 min of MCAO followed by reperfusion) (Del Puerto et al., 2015). This discrepancy may be due to different animal species, ischemic time, and/or injury models as well as different treatment types. In contrast to our study that drugs were applied immediately following surgery, P2X7 receptor inhibitors were administered 3 h after injury in the previous study.

In conclusion, we have shown that calcineurin signaling regulates disruption of the AIS cytoskeletal protein after injury. Owing to protection of cell survival and AIS integrity, calcineurin inhibitors might be potential therapeutic drugs for treating ischemic patients.

Limitations of the Study

One caveat of this study is that sPSCs recorded from CA1 pyramidal cells demonstrate AIS function of the presynaptic neurons rather than postsynaptic CA1 pyramidal cells. Moreover, given that genetic knockout of calcineurin in the forebrain has been shown to impair synaptic plasticity and working memory associated with the hippocampus (Zeng et al., 2001), maintaining certain level of calcineurin activity is crucial for normal brain function. Thus future work focuses on whether partial and transient inhibition of calcineurin would be better suited to be a therapeutic treatment and for determining the optimal window for calcineurin inhibitors applied into ischemia patients.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.isci.2020.100880.
ACKNOWLEDGMENTS

We thank Dr. Matthew N. Rasband (Baylor College of Medicine, Houston, Texas, USA) for helpful discussions. We thank Dr. Tian Chi (ShanghaiTech University, Shanghai, China) and Dr. Ke Tang (Nanchang University, Nanchang, China) for kindly providing the Cas9 and Emx1-Cre knock-in mice. We thank Dr. Antos Christopher (ShanghaiTech University) for kindly providing NFAT-EGFP vectors. We also thank the facilities of Imaging Core of Life School of Science and Technology at ShanghaiTech University for technical supports. This work was supported by the National Key Research and Development Program of China (2017YFC1001300) and the National Natural Science Foundation of China (31671062 (S.H.), 31771130 (G.Z.)), the Shanghai Municipal Government and ShanghaiTech University.

AUTHOR CONTRIBUTIONS

Y. Z., X. W., Z. G., and S. H. conceived the project and designed the experiments. Y. Z. generated data for immunostaining, immunoblots, and animal behavioral tests. X. W. did electrophysiological recordings, behavioral tests, and immunostaining experiments. X. C. made AAV viruses. C. T. performed super-resolution imaging. J. C. collected a part of confocal images. C. X. performed behavioral experiments. Y. Z., X. W., G. X., and S. H. wrote the paper. All of the authors discussed the results and contributed to the preparation of the manuscript.

DECLARATION OF INTERESTS

The authors declare no competing financial interests.

REFERENCES

Albasser, M.M., Olarte-Sanchez, C.M., Amin, E., Brown, M.W., Kinnavane, L., and Aggleton, J.P. (2015). Perirhinal cortex lesions in rats: novelty detection and sensitivity to interference. Behav. Neurosci. 129, 227–243.

Alessandrinhi, A., Namura, S., Moskowitz, M.A., and Bonventre, J.V. (1999). MEK1 protein kinase inhibition protects against damage resulting from focal cerebral ischemia. Proc. Natl. Acad. Sci. U S A 96, 12866–12869.

Barker, G.R., and Warburton, E.C. (2011). When is the hippocampus involved in recognition memory? J. Neurosci. 31, 10721–10731.

Barone, F.C., Irving, E.A., Ray, A.M., Lee, J.C., Kassia, S., Kuman, S., Badger, A.M., Legos, J.J., Erhardt, J.A., Othstein, E.H., et al. (2001). Inhibition of p38 mitogen-activated protein kinase provides neuroprotection in cerebral focal ischemia. Med. Res. Rev. 21, 129–145.

Bartsch, T., Dohring, J., Reuter, S., Finke, C., Rohr, A., Brauer, H., Deuschl, G., and Jansen, O. (2015). Selective neuronal vulnerability of human hippocampal CA1 neurons: lesion evolution, temporal course, and pattern of hippocampal damage in diffusion-weighted MR imaging. J. Cereb. Blood Flow Metab. 35, 1836–1845.

Buffington, S.A., and Rasband, M.N. (2013). Na+ channel-dependent recruitment of Navbeta5 to axon initial segments and nodes of Ranvier. J. Neurosci. 33, 6191–6202.

Cohen, S.J., Munchow, A.H., Rios, L.M., Zhang, G., Asgeirsdottir, H.N., and Stackman, R.W., Jr. (2013). The rodent hippocampus is essential for nonspatial object memory. Curr. Biol. 23, 1685–1690.

Cogalla, A., and Sikorski, A.F. (2005). Spectrin and calpain: a ‘target’ and a ‘sniper’ in the pathology of neuronal cells. [Review]. Cell. Mol. Life Sci. 62, 1913–1924.

Del Puerto, A., Fronzaroli-Molineres, L., Perez-Alvarez, M.J., Graud, P., Carlier, E., Wandosell, F., Debanne, D., and Garrido, J.J. (2015). ATP-P2X7 receptor modulates axon initial segment composition and function in physiological conditions and brain injury. Cereb. Cortex 25, 2282–2294.

Evans, M.D., Sammons, R.P., Lebron, S., Dumitrescu, A.S., Watkins, T.B., Uebele, V.N., Renger, J.J., and Grubb, M.S. (2013). Calcineurin signaling mediates activity-dependent relocation of the axon initial segment. J. Neurosci. 33, 6950–6963.

Hedstrom, K.L., Xu, X., Ogawa, Y., Frischknecht, R., Seidenbecker, C.I., Shragar, P., and Rasband, M.N. (2007). Neurofascin assembles a specialized extracellular matrix at the axon initial segment. J. Cell Biol. 178, 875–886.

Himman, J.D., Rasband, M.N., and Carmichael, S.T. (2013). Remodeling of the axon initial segment after focal cortical and white matter stroke. Stroke 44, 182–189.

Hu, W., Tian, C., Li, T., Yang, M., Hou, H., and Shu, Y. (2009). Distinct contributions of Na(v)1.6 and Na(v)1.2 in action potential initiation and backpropagation. Nat. Neurosci. 12, 996–1002.

Huang, C.Y., and Rasband, M.N. (2018). Axon initial segments: structure, function, and disease, [Review]. Ann. N. Y. Acad. Sci. 1420, 46–61.

Jenkins, S.M., and Bennett, V. (2001). Ankyrin-G coordinates assembly of the spectrin-based membrane skeleton, voltage-gated sodium channels, and L1 CAMs at Purkinje neuron initial segments. J. Cell Biol. 155, 739–746.

Kole, M.H., Ilschner, S.U., Kampa, B.M., Williams, S.R., Ruben, P.C., and Stuart, G.J. (2008). Action potential generation requires a high sodium channel density in the axon initial segment. Nat. Neurosci. 11, 178–186.

McCuen, D.P., and Isom, L.L. (2004). Heterophilic interactions of sodium channel beta1 subunits with axonal and glial cell adhesion molecules. J. Biol. Chem. 279, 52744–52752.

Morris, R.G., Garrud, P., Rawlins, J.N., and O’Keefe, J. (1982). Place navigation impaired in rats with hippocampal lesions. Nature 297, 681–683.

Nudo, R.J. (2013). Recovery after brain injury: mechanisms and principles. Front. Hum. Neurosci. 7, 887.

Owens-Grillo, J.K., Hoffmann, K., Hutchison, K.A., Yem, A.W., Deibel, M.R., Jr., Handschumacher, R.E., and Pratt, W.B. (1995). The cyclosporin A-binding immunophilin CyP-40 and the FK506-binding immunophilin hsp56 bind to a common site on hsp90 and exist in independent cytosolic heterocomplexes with the untransformed glucocorticoid receptor. J. Biol. Chem. 270, 20479–20484.
Supplemental Information

Calcineurin Signaling Mediates Disruption of the Axon Initial Segment Cytoskeleton after Injury

Yanan Zhao, Xuanyuan Wu, Xin Chen, Jianan Li, Cuiping Tian, Jiangrui Chen, Cheng Xiao, Guisheng Zhong, and Shuijin He
Supplemental Figures

Contra | Ips, IS 1 hr | Ips, IS 2 hrs

CA1

TUNEL

CA3

TUNEL/AnkG/DAPI

DG

TUNEL

Supplemental Figures
Figure S1. Cell death is slightly increased in the hippocampus after 2 hrs MCAO, related to Figure 1. Representative confocal images of TUNEL (*red*) and AnkG immunostaining (*green*) in the hippocampal CA1, CA3 and DG regions of mice subjected to 1 hr or 2 hrs of MCAO. A slight increase in the number of TUNEL-positive cells is only observed in the ipsilateral hippocampus after 2 hrs of MCAO. Arrows indicate TUNEL-positive cells. Note that AnkG is completely disrupted in the CA3 and DG regions after 2 hrs MCAO.
Contra Ipsi, IS 1 hr Ipsi, IS 2 hrs Ipsi, IS 4 hrs

βIV-spectrin/DAPI

A

Contra Ipsi

Sham

Contra Ipsi

IS 1 hr

IS 2 hrs

IS 4 hrs

Contra Ipsi

IS 2 hrs

Contra Ipsi

Normalized F.I. of βIV-spectrin

P < 0.0001

C

P < 0.0001

D

AnkG

Actin

10 µm

10 µm

270 kD
Figure S2. AIS cytoskeleton is rapidly disrupted after injury, related to Figure 1. (A) βIV-spectrin is completely disrupted after 2 hrs MCAO. (B) Quantification of the normalized F.I. of βIV-spectrin immunostaining from the CA1 pyramidal neurons after various times of MCAO. (C, D) Immunofluorescent staining of CA1 regions and immunoblot of hippocampal tissue homogenates with an AnkG antibody against the spectrin binding domain show disruption of AnkG after 2 hrs MCAO. P values in (B) are determined using One-Way ANOVA with post hoc Bonferroni’s multiple comparisons test. N represents the number of mice analyzed. Data are presented as mean ± SEM.
A

Contra

Ipsi, IS 1 hr

Ipsi, IS 2 hrs

Ipsi, IS 4 hrs

B

Normalized F.I. of Kv7.2

P = 0.007

P = 0.021

C

βIV-spectrin

Contra

Ipsi, IS 1 hr

Intensity

Distance (µm)
Figure S3. Kv7.2 is resistant to injury-induced disruption, related to Figure 2. (A, B) Representative images and quantification indicate that Kv7.2 mostly preserves at the AIS after injury. The ipsilateral F.I. was normalized to the contralateral from the same mouse. (C) STED superresolution images of βIV-spectrin immunostaining show periodic distribution at the AIS of hippocampal CA1 pyramidal neurons after 1 hr MCAO. Boxes indicate analyzed areas showed below. P values in (B) are determined using One-Way ANOVA with post hoc Bonferroni’s multiple comparisons test. N represents the number of mice analyzed. Data are presented as mean ± SEM.
Pan-Nfasc Cas9/mergedNF-186 sgRNA

	1	1	2	2	3	3	4	4
Cas9	+	-	+	-	+	-	+	-
T7E1 Marker	+	+	+	+	+	+	+	+

Fcut 33 39 61 24

NF-186 sgRNA
Pan-Nfasc
Cas9/merged

AAV infected region

ANKG Cas9/MergedNF-186 sgRNA

IS 2 hrs, Ipsi
Contra

P = 0.0009
Figure S4. The efficiency of NF-186 sgRNA-directed CRISPR/Cas9 genome editing in vitro and in vivo, related to Figure 5. (A) The cleavage efficiency of four sgRNAs targeting NF-186 in the N2A cell in vitro. The sgRNA-3 is highly efficient for Cas9 to cleave NF-186. F_{cut} value is calculated as the percentage that total density of NF-186 is divided by the density of cleaved bands. Arrow heads indicate cleaved bands. (B) Representative confocal images of Nfasc immunostaining in the hippocampal CA1 region of Emx1-Cre-dependent Cas9 expressing mice 7 weeks after delivery of AAVs containing NF-186 sgRNA-3. (C) Quantification shows a significant reduction of Nfasc intensity in the CA1 region infected with AAVs compared to without AAVs 7 weeks after virus delivery in the absence of MCAO. (D) Representative images show that AnkG staining preserves 7 weeks after sgRNA AAV infection, but is completely disrupted after injury. P value in (C) is determined using unpaired t-test. N denotes the number of mice analyzed. Data are presented as mean ± SEM.
DAPI/Overlay

Ipsi, IS 2 hrs, ChABC (20 U/ml)

G

10 µm

MCAO Surgery (Immunostaining)

Veh ChABC

C

Normalized F.I. of CSPG

P < 0.0001

3

3

Veh ChABC

Normalized F.I. of Nfasc

Normalized F.I. of Na\textsubscript{v}1.6

Veh ChABC

Veh ChABC

Nav1.6

Pan-Nfasc

DAPI/Overlay

10 µm
Figure S5. Depletion of ECM promotes Na\textsubscript{v}1.6 disruption after injury, related to Figure 5. (A) Schematic of the experimental paradigm for ChABC delivery and MCAO surgery. ChABC (20 U/ml) was delivered into the hippocampal CA1 region 72 hrs before MCAO surgery. (B, C) CSPG is mostly disrupted 72 hrs after ChABC delivery in the absence of MCAO injury. (D–F) ChABC administration alone has no effect on the clustering of Nfasc and Na\textsubscript{v}1.6 in hippocampal CA1 pyramidal neurons in the absence of MCAO injury. The ipsilateral ChABC F.I. was normalized to the contralateral Veh from the same mouse. (G) Representative confocal images show a dramatic reduction of Na\textsubscript{v}1.6 immunostaining in hippocampal CA1 pyramidal neurons of 2 hrs MCAO mice treated with ChABC compared to Veh.
A

MCAO Surgery
CsA (20 mg/kg)

0 hr

2 hrs

Sacrifice
(Immunostaining)

B

AnkG

Contra

Na\textsubscript{v} 1.6

Ipsi

DAPI/Overlay

C

Normalized F.I. of AnkG

P = 0.007

Veh

CsA (20 mg/Kg)
Figure S6. Inhibition of calcineurin with CsA prevents disruption of AnkG after injury, related to Figure 6. (A) Schematic of the experimental paradigm for Cyclosporine A (CsA) delivery and MCAO surgery. CsA (20 mg/kg) was administered by an intravenous injection immediately after MCAO surgery. (B) Representative confocal images of Nav1.6 and AnkG immunostaining of the ipsilateral and contralateral hippocampal CA1 regions from a 2 hrs MCAO mouse treated with CsA. (C) Quantification shows that administration of CsA largely prevents disruption of AnkG induced by injury. The ipsilateral F.I. was normalized to the contralateral from the same mouse. P value is determined using unpaired t-test. N indicates the number of mice. Data are presented as mean ± SEM.
A

Contra
Veh

Ipsi, IS 2 hrs
Veh

Ipsi, IS 2 hrs
30 mg/kg MDL28170

Ipsi, IS 2 hrs
60 mg/kg MDL28170

AnkG/NeuN

AnkG

B

Normalized Fl. of AnkG

0

0.5

1.0

Veh

30 mg/kg MDL28170

60 mg/kg MDL28170

P = 0.0015
Figure S7. Inhibition of calpain attenuates disruption of the AIS cytoskeleton after injury, related to Figure 6. (A, B) Representative confocal images (A) and quantification (B) of AnkG (green) immunostaining in the hippocampal CA1 region of MCAO treated with vehicle, 30 mg/kg MDL 28170 or 60 mg/kg MDL 28170. MDL 28170 were administered by an intravenous injection immediately after MCAO surgery. Treatment with 60 mg/kg MDL 28170 partially preserved AnkG at the AIS of hippocampal CA1 pyramidal neurons after injury. P value is determined using One-Way ANOVA with *post hoc* Bonferroni’s multiple comparisons test. N indicates the number of mice analyzed. Data are presented as mean ± SEM.
AnkG/DAPI

A

Contra
17-AAG

17-AAG

Contra
Ipsi, IS 2 hrs

Contra

Ipsi, IS 2 hrs

50 mg/kg BBG

Ipsi, IS 2 hrs

2.5 mg/kg Nefidipine

B

Normalized F.I. of AnkG

P < 0.0001

3

3
Figure S8. Blockade of L-type voltage-gated calcium channels, but not Hsp90, prevents AIS disruption after injury, related to Figure 6 and the discussion. (A, B) Hsp90 was inhibited with 17-(Allylamo)-17-demethoxygeldanamycin (17-AAG, 25 mg/kg) by an intravenous injection. The ipsilateral F.I. was normalized to the contralateral from the same mouse. P value is determined using paired t-test. (C) Inhibition of P2X7 with brilliant blue G (BBG, 50 mg/kg) by an intravenous injection has no effect on injury-induced AIS disruption. Nefidipine (2.5 mg/kg) was used to block L-type voltage-gated calcium channels by an intravenous injection.
Day 1

Sham + Veh
tMCAO + Veh
tMCAO + FK506

Day 2 Day 3 Day 4 Day 5

Training

Day 6

Probe

A

Contra Ipsi, IS 30 mins

Contra Ipsi, IS 45 mins

Fl. of AnkG

Fl. of Nav1.6

Fl. of Nfasc

50 um

B

P < 0.0001

P < 0.0001

P = 0.044

C

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6

Sham + Veh
tMCAO + Veh
tMCAO + FK506

D

Spatial training

- Sham + Veh (n=10)
- tMCAO + Veh (n=10)
- tMCAO + FK506 (n=10)

Swimming speed (cm/sec)

Spatial Training Days

E

Swimming Speed (cm/sec)

Sham
tMCAO + Veh
tMCAO + FK506

P = 0.044

P < 0.0001

P < 0.0001
Figure S9. Transient MCAO for behavioral tests, related to Figure 7. (A) Representative confocal images of AnkG, Nav1.6 and Nfasc in the hippocampal CA1 regions of mice subjected to 30 mins or 45 mins tMCAO followed by 4 days reperfusion. (B) Quantification of the normalized F.I. of AnkG, Nav1.6 and Nfasc corresponding to (A). The ipsilateral F.I. was normalized to the contralateral from the same mouse. (C) Representative track plots of three groups of mice: sham + Veh, tMCAO (30 minutes MCAO following by reperfusion of 4 days) + Veh or tMCAO + FK506 (2.5 mg/kg) during the training days and on the probing day 6. (D, E) Quantifications of the swimming speed during the training days and probe day show no difference among three groups of mice. P values in (B) are determined using paired t-test. N indicates the number of mice analyzed. Data are presented as mean ± SEM.
Table S1. Primary antibody sheet, related to Figures 1, 2, 5 and 6, and the transparent methods.

Name	Dilution	Host	Brand	Catalog Number
Anti-Na,1.6 (SCN8A)	1:200	Rabbit	Alomone	ASC-009
Anti-NeuN antibody	1:1000	Rabbit	ABCam	Ab177487
Anti-Ankyrin G	1:200	Mouse	NeuroMab	N106/36
Ankyrin G (463)	1:200	Mouse	Santa Cruz	sc-12719
Anti-Neurofascin	1:200	Chicken	R&D Systems	AF3235
Anti- mCherry Monoclonal	1:1000	Rat	Invitrogen	M11217
Anti-GFP	1:1000	Chicken	Aves Labs	GFP-1020
Anti-GFP Polyclonal	1:1000	Rabbit	Invitrogen	A11122
Anti-K,7.2	1:200	Rabbit	Synaptic Systems	368103
Anti-βIV-spectrin	1:200	Rabbit	A gift from Matthew N. Rasband	
Transparent Methods

Animals

Adult male ICR mice, initially weighing 27-30 g (age 56 days approximately), were used for middle cerebral artery occlusion (MCAO) surgery. Cre-dependent CRISPR-Cas9 knock-in C57BL/6 mice (a kind gift from Dr. Tian Chi, The Jackson Laboratory Stock No: 024857) were crossed with Emx1-Cre knock-in C57BL/6 mice (a kind gift from Dr. Ke Tang, Mouse Genome Informatics ID: 1928281) to generate an Emx1-cre/Cas9 mouse line. All mice were maintained under standard housing conditions of 22 ± 2°C, 50 ± 10% relative humidity and a 12 hours (hrs) light/dark cycle, and food and water were available ad libitum. All experiments were conducted in accordance with animal protocols approved by the Institutional Animal Care and Use Committees of ShanghaiTech University, China.

MCAO Surgery

Animal models of focal cerebral ischemia were achieved by occlusion of the middle cerebral artery (MCA) to represent ischemic brain damage observed in human patients suffering from stroke. MCAO surgery was performed as previously described (Longa et al., 1989). Briefly, body temperature was maintained at 37 ± 0.5°C using a homoeothermic heating pad throughout the surgery. Cortical blood flow was measured with a laser Doppler flow meter (LDF) (VMS-LDF1; Moor Instruments, Axminster, UK). The right external carotid artery was transected slight on the anterior surface, and a silicone-coated nylon monofilament (0.25 mm ± 0.02 tip) was advanced through the common carotid artery into the branch point of the MCA from the internal carotid artery (LDF dropped to < 20 % of baseline). The nylon filament remained in the MCA for various times, and then animals were sacrificed for analyses at various times of post-occlusion (1 hr, 2 hrs, 4 hrs, and 6 hrs). For transient MCAO (tMCAO), nylon filament was withdrawn 30 minutes (mins) after occlusion to restore the blood flow in the MCA by >70% of baseline measured by LDF. Sham animals were subjected to the same surgical procedure without occlusion of the MCA. Animals began to perform behavior tests at 4 days after the onset of 30 mins occlusion. Intra-ischemic neurologic deficit was confirmed and scored as follows: 0, no deficit; 1, forelimb weakness and torso turning to the ipsilateral side when held by tail; 2, circling to affected side; 3, unable to bear weight on affected side; and 4, no spontaneous locomotor activity or barrel rolling. Animal performed no deficit was removed from further study. Infarction was assessed using the triphenyl-tetrazolium chloride (TTC) staining method.

Drug Administration

ChABC (20 U/ml) was delivered into the hippocampal CA1 region 72 hrs prior to MCAO surgery. For behavioral tests, mice that were subjected to tMCAO received a dose of FK506 (5 mg/kg) immediately after surgery and another 3 doses (2.5 mg/kg) in the following 3 days (1 dose/day) by an intravenous (IV) injection till behavioral tests. All other drugs (1 dose) were administered via an IV injection immediately after surgery.

Immunostaining and TUNEL staining

For tissue preparations, anesthetized mice were transcardially perfused with 0.9% saline followed by paraformaldehyde (PFA) in 0.1 M phosphate buffered saline (PBS), pH 7.4 (1%
PFA for AnkG or Na\textsubscript{v}1.6 staining and 4% PFA for Nfasc). Brains were dissected and post-fixed for 4 hrs (for AnkG or Na\textsubscript{v}1.6 staining) and overnight (for Nfasc staining) correspondingly at 4°C, and then transferred to 20% sucrose in 0.1 M PBS at 4°C for over 48 hrs. Finally, coronal cryostat sections (25 μm) were obtained using a microtome and mounted on the slides.

For immunostaining, slices were blocked in 10% normal goat serum 0.1 M PB containing 0.3% TX-100 (PBTGS), then incubated overnight at 4°C with primary antibodies (diluted in PBTGS). The primary antibodies used in this study were: mouse anti-AnkG (1:200; N106/36, NeuroMab), Rabbit anti-Na\textsubscript{v}1.6 (1:200; ASC009, Alomone), Mouse anti-AnkG (1:200, Santa Cruz), Chicken anti-Nfasc (1:400; AF3235, R&D Systems), Rabbit anti-GFP (1:1000, Aves Lab), Rat anti-mCherry (1:1000, Invitrogen), Rabbit anti-NeuN (1:1000, ABCam), Rabbit anti-K\textsubscript{v}7.2 (1:200, Synaptic Synapses), Rabbit anti-βIV-spectrin (1:200, a gift from Matthew N. Rasband). After three washes with PBTGS, sections were incubated for 2 hrs at room temperature with corresponding secondary antibodies (Life Technologies). The terminal deoxynucleotidyl transferase–mediated deoxyuridine triphosphate nick-end labeling (TUNEL) assay was performed according to the manufacturer’s instructions (Promega). Finally, slides were stained nuclei with DAPI (Sigma) and coverslipped with the anti-fade mounting medium.

Electrophysiological recordings
Adult mice subjected to MCAO or sham were anesthetized by isoflurane and transcardially perfused with ice-cold ACSF. Adult brains slices for electrophysiological recordings were prepared as previously described (Jiang et al., 2015; Yu et al., 2012). Briefly, mice were decapitated. Brains were removed, and quickly transferred to ice-cold modified ACSF containing: 93 mM NMDG, 93 mM HCl, 2.5 mM KCl, 1.2 mM NaH\textsubscript{2}PO\textsubscript{4}, 30 mM NaHCO\textsubscript{3}, 20 mM HEPES, 25 mM glucose, 5 mM sodium ascorbate, 2 mM Thiourea, 3 mM sodium pyruvate, 10 mM MgSO\textsubscript{4} and 0.5 mM CaCl\textsubscript{2} with PH 7.35. Mouse brains were sectioned 350 μm coronal slices by vibratome at a speed of 0.03 mm/s, and transferred to 37°C NMDG solution for recovery 15 mins and then incubated in 37°C ACSF solution consisting of 126 mM NaCl, 4.9 mM KCL, 1.2 mM KH\textsubscript{2}PO\textsubscript{4}, 2.4 mM MgSO\textsubscript{4}, 2.5 mM CaCl\textsubscript{2}, 26 mM NaHCO\textsubscript{3}, 20 mM Glucose for 1 hr. One brain slice was transferred in the chamber containing 30–32°C ACSF. Whole cell configuration was achieved in the hippocampal CA1 pyramidal neurons with an upright microscope (BX51WI, Olympus) equipped with a 60× objective (water-immersion, NA 1.00) and differential interference contrast (DIC). Recording pipettes (10–12 MΩ) were fabricated using a P1000 micropipette puller (Sutter Instrument, USA) and filled with an internal solution containing: 136 mM K-glucuronate, 6 mM KCl, 1 mM EGTA, 2.5 Na\textsubscript{2}ATP, 10 mM HEPES (280 mOsm, pH=7.2 with KOH). Recordings were collected with a low-pass filter at 2 kHz using Multicllamp 700B and Digidata 1322A/D converter, and sampled at 10 kHz using pCLAMP software. Recordings were discarded if series resistance was >40 MΩ or varied >15% or resting membrane potential is positive than -50 mV. Action potential properties were analyzed from the first action potential elicited using CLAMPFIT software. Action potential threshold was documented as the voltage of the first point where the dV/dt reaches 10 V/s during the rate-of-rise phase of the phase-plane plot of the membrane voltage against its change rate (Evans et al., 2015). Action potential amplitude was determined as the difference between the peak point and the threshold. Spontaneous and miniature postsynaptic currents (sPSCs and mPSCs) were analyzed using MiniAnalysis software (Synaptosoft, USA). Detection threshold was 8 pA.
Confocal imaging

To compare AIS length and fluorescence intensity between ipsilateral and contralateral, images were acquired on the confocal microscope Nikon Ti-E+A1 R Si fitted with an Axiocam digital camera and taken using 40X (1.0 NA) objective, digitized in z-stacks of 0.2–0.5 μm thick optical sections. Neurons in regions of interest were imaged with 40X lens.

The length and fluorescence intensity of AnkG and Na\textsubscript{v}1.6 immunostaining along the AIS was determined using Image J (NIH)-Fuji. For the somatosensory cortex and the thalamus, AISs that were located at 4 corners and 1 middle were chosen for analyses. Total 60 AISs from three images (20 AISs/image from 5 locations) were averaged for each mouse. For calculation of the AIS length in the hippocampus, AISs that were located in the middle and the two sides were chosen for analysis and total 45 AISs from three images (15 AISs/image from 3 locations) were averaged for each mouse.

For the fluorescence intensity of hippocampal AISs, the integrated intensity was calculated at the area encompassing all AISs of the hippocampal CA1 pyramidal cells in an image unless otherwise stated. For the integrated intensity of individual hippocampal AISs, the AIS that could be distinguished from other AISs were analyzed to determine effect of Cas9-dependent knockdown of NF-186 on injury-induced AIS disruption in vivo. Layers at the Z axis were manually selected to be merged for displaying the integrity of individual AISs.

The start and end of the AnkG or Na\textsubscript{v}1.6-positive AIS was defined as the point at which the immunoreactivity fell below 10% of the maximum fluorescence intensity along the AIS (>10 μm in length generally) (Ko et al., 2016; Schafer et al., 2009). Integrated intensity of immunofluorescence was calculated at individual AIS area surrounding the start point and the end point for the somatosensory cortex and the thalamus as described previously (Grubb and Burrone, 2010) or at the area encompassing all AISs in an image for the hippocampus.

STED

Stimulated emission depletion (STED) was used to investigate whether the molecular ultrastructure of Na\textsubscript{v}1.6 at the AIS was changed after ischemic injury. STED images were obtained by using the Leica TCS SP8 STED 3X microscope, equipped with white light pulse laser (WLL2), STED laser (592 nm, 660 nm), oil immersion 100x / NA 1.4 objective lens (HC PL APO CS2, Leica) and TCS SP8 time-gated system. The STED depletion laser was co-aligned with the excitation laser, and selectively deactivated the excited fluorophores surrounding the focal point, which allows an increased resolution of 30–40 nm obtained by shrinking point-spread function (PSF) of the microscope. Images were acquired in both confocal mode and STED mode with 1024 x 1024 formats. Acquisition settings such as laser power, image size, pixel dwell times, line average, frame accumulation and time-gating interval (1–6 ns post-pulse time window) were optimized for achieving the best imaging quality. Deconvolution of STED images was performed by Huygens software (Scientific Volume Imaging) with the Huygens classical maximum likelihood estimation (CMLE) deconvolution algorithm.

Image processing and analysis: All images were exported from LAS X (Leica Microsystems), and further processed by Fiji software (National Institutes of Health). Brightness and contrast on entire images were linearly adjusted. For quantitatively analyzing the distance
and distribution pattern of Na\textsubscript{v}1.6 in neurons, lines across the structures were drawn, the intensity profiles were measured by Fiji or LAS X. All the intensity and distance data were plotted using Graphpad prism software (Graphpad Software, Inc.), and all figures were composed using Illustrator software (Adobe Systems, Inc.).

Immunoblotting

For immunoblotting, mice were anesthetized, decapitated and brains were removed quickly. The hippocampi were dissected into ipsilateral (stroke side) and contralateral sides, and then were flash-frozen in liquid nitrogen, and transferred into -80°C to be stored till homogenization. Protein was separated by SDS-PAGE (Bis-Tris, 4-12% gradient gels) and then transferred to nitrocellulose membrane at 100 mA for 22 hrs in 4°C. Membranes were blocked for 2 hrs with 5% BSA and incubated with primary antibodies followed by incubation with the appropriate horseradish peroxidase-conjugated secondary antibodies. The primary antibodies used were: mouse anti-AnkG (1:500; N106/36, NeuroMab), Rabbit anti-Na\textsubscript{v}1.6 (1:200; ASC009, Alomone), chicken anti-Nfasc (1:500; cat no. AF3235, R&D Systems). ECL detection kit (Bio-Rad) was used for signal detection. Data were analyzed using ImageJ (NIH)-Fuji software.

AAV viruses and Intravitreal injection.

Synthetic single-guide RNAs (sgRNAs) targeting Nfasc were designed using the CRISPR tool (http://crispr.mit.edu) to minimize potential off-target effects. The target sequences are listed as follows:

- sgRNA-1, 5'-gtggcggctgagcagcggggagcagg-3';
- sgRNA-2, 5'-gtttgcatcgacctcggactcgttagggtggtgg-3';
- sgRNA-3, 5'-gaactggacgaacactcgttagggtgg-3';
- sgRNA-4, 5'-gaaccaaatggaaagacagatgg-3'.

The efficacy of sgRNA was assessed by F\textsubscript{cut} in the Neuro2A (N2A) cell lines in vitro, and the most efficient sgRNA was selected to be constructed into AAV1/2 vectors packaged into AAV1/2 viruses in 293T cells. As a control, the scrambled sgRNA sequence that was designed to target lacZ gene from Escherichia coli is listed as follows as previously described: TGCGAATACGCCCACGCGATGGG (Swiech et al., 2015). For NFAT-EGFP AAVs, NFAT-EGFP (a kind gift from Dr. Antos Christopher) was cloned into the AAV vector. For virus delivery, deeply anesthetized mice were fixed in a stereotaxic apparatus, and AAV1/2 Nfasc-sgRNA viruses were injected into the right hemisphere of the hippocampus CA1 at 0.18 cm posterior to the bregma, and 0.1 cm lateral to the midline with 0.15 cm from the surface (Paxinos et al., 2001), while AAV2-GFP viruses were delivered into the contralateral hemisphere. Seven weeks following the AAV injection, mice were subjected into 2 hrs occlusion at the ipsilateral sides of Nfasc-sgRNA AAV injection and then prepared to immunostaining.

Morris water maze (MWM)

Mice were tested in MWM to monitor their spatial learning and memory. The water maze consisted of a pool (120 cm in diameter and 50 cm in height) that was painted black and filled with water containing black nontoxic paint with the temperature at 23 ± 1°C. The pool was divided into four quadrants named as target quadrant (TA), adjacent left quadrant (AL), adjacent right quadrant (AR) and opposite quadrant (OP), respectively. The water in the tank was stirred...
in between animal trials to disrupt odor trails. The room was furnished with several extra-maze cues immobile throughout the entire experiment process. The animal’s movement was recorded and analyzed using a computerized video-tracking system (Ethovision®3, Noldus Information Technology, Wageningen, Netherlands).

In the spatial reference memory test, from the fourth day to eighth day post-MCAO treatments, a movable black circular platform (10 cm in diameter) was located in the center of TA and submerged 1 cm below the water surface. Mice were trained to find the hidden platform with the extra-maze cues to examine acquisition of spatial reference memory. Mice were trained once a day for 5 consecutive days (day 1 to day 5) and each training consisted of four trials. In each trial, mice were placed into the pool, facing the wall at each of the four quadrant edges, randomly chosen across trials. If mice found the platform within 60 seconds, they were allowed to stay in the platform for 15 seconds. Otherwise, the experimenter guided the mouse to the platform and allowed it to rest for 15 seconds. Mice were then returned to a holding cage for 60 mins before the next trial. The parameters were recorded: swimming speed; escape latency, swimming time to locate the hidden platform.

In the probe test (day 6), 24 hrs after the last trial of training, the platform was removed to assess the mouse’s memory of the platform position. Mice were tested once with a single trial of 60 s. The parameters were recorded: swimming speed; quadrant time, exploring time in each quadrant of the pool; platform crossing, the number of crossings at the place where the platform was located during training.

Novel object recognition (NOR)

The object recognition test was performed as previously described (Zhao et al., 2013). Briefly, mice were placed in a square box with an open top, painted black, 100 cm wide × 45 cm tall. The arena was dimly illuminated and surrounded by a black curtain to minimize effects of environment on behavior tests. In session 1 (S1), animals were placed in the empty open field for 5 mins. This first session served as a familiarization stage to prevent anxiety and to assess locomotor activity. Twenty four hrs after S1, in sessions 2 (S2), animals were exposed to a parallel configuration of two same objects 1 and 2 in the field S1 performed for 10 mins, then rested in cages for 2 hrs. In session 3 (S3), object 1 was replaced by a novel object, object 3, to test recognition ability of the new object for 10 mins. All objects were located at the same distance from the wall of the field, and the field and objects were cleaned with 70% (vol/vol) ethanol and dried after every session. Each session was recorded by a video camera suspended above the field and interfaced with a computerized tracking system using Ethovision®3 software (Noldus Information Technology, Wageningen, Netherlands). For S2 and S3, the duration of contacts with each object was calculated. A contact was defined as any time the mouse touched its nose or hands on the object to actively explore it, not just as a passing sniff as it passed by the object while walking around the field.

Statistics

Data were analyzed blindly to the experimental groupings by investigators. Statistical analyses and data plots were conducted by the GraphPad Prism 5.0 software (Graphpad Software, Inc.). Data were tested for significance using paired/unpaired t-test or one-way /two-
way ANOVA with post-hoc Bonferroni’s multiple comparisons test, and \(P < 0.05 \) was considered significant. All figures were composed using Illustrator software (Adobe Systems, Inc.).

Supplemental References

Evans, M.D., Dumitrescu, A.S., Kruijssen, D.L.H., Taylor, S.E., and Grubb, M.S. (2015). Rapid Modulation of Axon Initial Segment Length Influences Repetitive Spike Firing. Cell Rep 13, 1233-1245.

Grubb, M.S., and Burrone, J. (2010). Activity-dependent relocation of the axon initial segment fine-tunes neuronal excitability. Nature 465, 1070-1074.

Jiang, X., Shen, S., Cadwell, C.R., Berens, P., Sinz, F., Ecker, A.S., Patel, S., and Tolias, A.S. (2015). Principles of connectivity among morphologically defined cell types in adult neocortex. Science 350, aac9462.

Ko, K.W., Rasband, M.N., Meseguer, V., Kramer, R.H., and Golding, N.L. (2016). Serotonin modulates spike probability in the axon initial segment through HCN channels. Nat Neurosci 19, 826-834.

Longa, E.Z., Weinstein, P.R., Carlson, S., and Cummins, R. (1989). Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 20, 84-91.

Paxinos, G., Franklin, K.B.J., and Editors (2001). The mouse brain in stereotatic coordinates. San Diego: Academic Press: 2nd edition.

Schafer, D.P., Jha, S., Liu, F., Akella, T., McCullough, L.D., and Rasband, M.N. (2009). Disruption of the axon initial segment cytoskeleton is a new mechanism for neuronal injury. J Neurosci 29, 13242-13254.

Swiech, L., Heidenreich, M., Banerjee, A., Habib, N., Li, Y., Trombeta, J., Sur, M., and Zhang, F. (2015). In vivo interrogation of gene function in the mammalian brain using CRISPR-Cas9. Nat Biotechnol 33, 102-106.

Yu, Y.C., He, S., Chen, S., Fu, Y., Brown, K.N., Yao, X.H., Ma, J., Gao, K.P., Sosinsky, G.E., Huang, K., et al. (2012). Preferential electrical coupling regulates neocortical lineage-dependent microcircuit assembly. Nature 486, 113-117.

Zhao, Y.N., Wang, F., Fan, Y.X., Ping, G.F., Yang, J.Y., and Wu, C.F. (2013). Activated microglia are implicated in cognitive deficits, neuronal death, and successful recovery following intermittent ethanol exposure. Behav Brain Res 236, 270-282.