Evaluating the Association and Predictability of Complex Medication Regimen Scores

with Clinical Outcomes Among the Critically Ill

Mohamamd Al-Mamun1*, Jacob Strock2, Yushuf Sharker3, Rebecca Schmidt4, Khaled Shawwa4, Douglas Slain1, Ankit Sakhuja4, Todd Brothers5

Author Contributions

1University of West Virginia, School of Pharmacy, Morgantown, West Virginia, United States of America
2University of Rhode Island, Graduate School of Oceanography, Kingston, Rhode Island, United States of America
3Children’s National Hospital, Washington, District of Columbia, United States of America
4University of West Virginia, School of Medicine, Morgantown, West Virginia, United States of America
5University of Rhode Island, College of Pharmacy, Kingston, Rhode Island

*Corresponding Author

Email: mohammad.almamun@hsc.wvu.edu

Authors Contribution:

Conceptualization: Mohamamd Al-Mamun, Todd Brothers
Formal analysis: Mohammad Al-Mamun, Jacob Strock
Investigation: Mohammad Al-Mamun, Todd Brothers, Jacob Strock, Khaled Shawwa
Methodology: Mohammad Al-Mamun, Todd Brothers, Yushuf Sharker
Visualization: Mohammad Al-Mamun, Jacob Strock.
Writing – original draft: Mohammad Al-Mamun, Todd Brothers
Writing – review & editing: Mohammad Al-Mamun, Todd Brothers, Rebecca Schmidt, Khaled Shawwa, Douglas Slain, Ankit Sakhuja

Word Count: 3173 (except tables and figures)

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

Introduction
Medication Regimen Complexity (MRC) refers to the combination of medication classes, dosages, and frequencies. The relationship between MRC and clinical outcomes in the intensive care unit (ICU) has not been examined. The objective of this study is to examine the association between MRC scoring tools and their utility in predicting clinical outcomes.

Methods
We conducted a retrospective cohort study that includes 322 adult patients admitted and stayed (>24 hours) to the ICU between February 1, 2020, and August 30, 2020 in a community-based, teaching hospital in Rhode Island. Medication complexity was assessed using two MRC scoring tools: MRC Index (MRCI) and the MRC in ICU (MRCICU). We used a multivariable logistic regression model to identify the association between MRC scores and clinical outcomes and to predict the clinical outcomes.

RESULTS
Among the 317 patients included in the study (55.2% men with a median age of 62 [IQR: 51-75] years). Higher MRC scores (i.e., > 63 MRCI or > 6 MRCICU) were associated with increased mortality (14% and 15%), longer ICU length of stay (LOS) (30% and 34%), and need for MV (24% and 28%). MRCICU scores at 24 hours were found to be a significant risk factor in all clinical outcomes (ICU mortality, LOS, and MV) with Odds Ratio (ORs) of 1.12 (95% CI: 1.06-1.19), 1.17 (1.1-1.24), and 1.21 (1.14-1.29), respectively. In the prediction models, both MRCI and MRCICU models performed similarly (AUC: 0.88 [0.75-0.97] and 0.88 [0.76-0.97] in predicting mortality. The Medication Model included 15 medication classes outperformed others (AUC: 0.82 [0.71-0.93] in predicting ICU LOS and the MRCICU model outperformed others (AUC: 0.87 [0.77-0.96]) in predicting the need for MV.

CONCLUSION
MRC scores are associated with poorer clinical outcomes and improves the prediction of poorer clinical outcomes which will support clinicians to prescribe safer therapies.
Introduction

Medication regimen complexity (MRC) refers to multiple features of a patient’s medication drug regimen rather than absolute number of medications consumed per day[1]. MRC incorporates features such as the number of agents, dosages, administration time intervals, and additional instructions (i.e., take on an empty stomach)[2–4]. An increase in MRC burden has been associated with poorer medication noncompliance and caregiver quality of life measures, as well as an increase in healthcare resource utilization[5,6]. Critically ill patients are at significant risk of higher MRC due to the severity of illness, management of multiple chronic conditions, and the complex pharmacotherapies prescribed. It has been estimated that the average critically ill adult may receive up to 13 medications per day and the incidence of experiencing an adverse drug event has been estimated to greater than 25% lending to substantial morbidity and mortality[7–11]. Therefore, examining only the quantity of medications administered may not accurately describe the complex and intricate nature of the critical care medication regimens.

Numerous methods have been used to quantify the complexity of medication regimens. Yet, the most commonly utilized and validated objective scoring tool is the 65-item, weighted MRC index (MRCI) which has been developed for outpatient use[12–16]. MRCI has been used to evaluate conditions such as neurological impairment in children, hypertension, diabetes, and chronic kidney disease in adults[17–21]. In the intensive care unit (ICU) population, the MRC in ICU (MRCICU) scoring tool was developed and revised (modified MRCICU) in 2019[22,23]. The modified MRCICU is the first validated quantitative weighted scoring tool intended to predict clinical outcomes (i.e., ICU mortality, length of stay (LOS), and need for mechanical ventilation (MV))[24,25]. In a previous study, we have developed a novel proof-of-concept method demonstrating improvement in the prediction of patient outcomes by incorporating the MRCICU score into the previously established Acute Physiology and Chronic Health Evaluation (APACHE II) scoring tool[26]. To date, no study has assessed the association between these two MRC scoring tools and clinical outcomes within the critical care setting.

In this study, we developed two custom MRC scoring algorithms and several statistical and prediction models using the MRCI and MRCICU tools to gain insight into how MRC impacts clinical outcomes (i.e., ICU mortality, LOS, and need for MV). We aimed to (1) examine how MRC scores correlate with clinical characteristics (2) test a hypothesis that MRC scores influence clinical outcomes (3) determine the utility of MRC scores in predicting clinical outcomes for use in practice.

Methods

Study Design

This was a single center, retrospective cohort study of 322 patients enrolled into the ICU in a 220-bed community hospital in Providence, Rhode Island, USA between February 1, 2020, and August 30, 2020. Due to the retrospective nature of the data, informed consent was not deemed necessary as all patient data was de-identified prior to use. The study was granted exemption by the Human Research Review Committee Roger Williams Medical Center Institutional Review Board (IRB: 00000058) and University of Rhode Island Institutional Review Board (IRB: 00000559). All adult patients admitted to the medical-
surgical intensive care were included if the following criteria were met: > 18 years of age and admission to the ICU > 24 hours. Demographic, vital signs, laboratories, medication classes, and MV data were collected for each patient from the electronic health records (EHR) (Table S1). Five patients were excluded due to extensive LOS (> 40 days) and omitted laboratory values. A total of 317 patients were included in the final analysis.

MRC scoring tools

In this paper, mortality and LOS refer to ICU setting. MRC can be defined by the number of drugs and their dosing frequency. Two medication scoring indexes, MRCI and the MRCICU, have been developed for outpatient and acute care use, respectively. The total MRCI score is the weighted sum of 3 sections (dosage form, dosing frequency, and additional administration information), in which a higher score reflects higher MRC. In computing the MRCI, both scheduled and “as needed” medications and supplements were considered.

Conversely, the MRCICU is a 39-item weighted critically ill scoring tool comprised of specific medications and classes (i.e., vancomycin- 3 points, continuous intravenous saline-1 point)[27]. The MRCICU scoring table and individually assigned medication weights are presented elsewhere. The score has undergone validation testing for both internal and external validity[27]. Recently, we developed a proof-of-concept model using machine learning (ML) methods to validate the MRCICU score for improving the prediction of inpatient mortality[26]. Although a MRCICU score can be determined at any time during ICU admission, historical evaluation daily at 24-hour intervals have been most commonly utilized and have been applied to the present study. These two scores were custom coded for each patient during each 24-hour interval.

Definitions

We defined cutoff values for both MRC scores based upon their distribution after 24 hours of ICU admission. A ‘high’ MRCI cohort was defined as a score of > 63 and a ‘high’ MRCICU cohort of > 6. We utilized binary variables for LOS = 0 when LOS was < 48 hours and LOS = 1 when LOS > 48 hours. The need for MV was defined using a binary variable of (MV = 0, not mechanically ventilated and MV = 1, mechanically ventilated).

Statistical analysis

Descriptive statistics were used to describe the study population where continuous values were represented using means and interquartile ranges (IQR). Categorical variables were described using frequencies and proportions. Comparisons between survivor and non-survivor and low or high MRC scoring cohorts were performed using Student’s t, Chi-square (χ²), or Fisher’s exact tests. Physiological and clinical characteristics were compared among the survivor and non-survivor cohorts. To account for severity of illness, we included the following scoring tools: Simplified Acute Physiology Score (SAPS II), APACHE II, and Charlson Comorbidity Index (CCI). MRCI and MRCICU were analyzed for mortality, need for MV, and SARS-CoV-2 (COVID-19) infection using the Wilcoxon signed rank test. Four multivariable logistic regression models were utilized to examine the association between risk factors and clinical
outcomes (i.e., mortality, LOS, and need for MV). The four models were: Model I: Demographics, APACHE II, SAPS II, CCI, and 15 drug classes, Model II: Demographics, MRCI_24hours, MRCI_48hours, CCI, and drug classes, Model III: Demographics, MRCICU_24hours, MRCICU_48hours, CCI, and drug classes, and Model IV: all variables. In the LOS models, we excluded MRCI and MRCICU values at 48 hours, as our threshold for binary values was 48 hours of ICU admission. Significant predictors ($p < 0.05$) were selected for each model using a stepwise forward selection method. The best fit models were selected using Akaike information criterion (AIC). To further assess variable selection, we used a L1 penalization technique (LASSO). LASSO allows for a more restrictive parameter selection that is minimally influenced by multicollinearity. Demographic variables included were age, sex, height, weight, body mass index (BMI), and race. Odds Ratios (OR) were calculated for each outcome of interest. All analyses were conducted using R, Version 4.0.0 (R Project for Statistical Computing), glm, glmnet, and ggplot2 R packages were used[28–30].

Prediction model development

To test the predictability of MRC scores for mortality, LOS, and need for MV, seven logistic regression prediction models were constructed without any variable selection. A ‘no imputation’ approach was used when preparing the data for the prediction model. We assessed correlated variables using the Pearson correlation coefficient. The SAPS II severity score was used in the prediction models due to a high correlation with the APACHE II classification system (S1 Fig). The prediction accuracy was evaluated using the area under the receiver operating characteristic (AUC) curve. An AUC of at least 0.7 was regarded as acceptable. We applied a ‘leave-one-out’ cross-validation method with 10,000 repetitions and AUC was selected as an overall performance measure. Additionally, sensitivity and specificity analyses were included for the three outcomes. Furthermore, all prediction models recorded variable importance rankings for each outcome.

Results

Demographic and clinical characteristics

Of the 317 patients included in the analysis, most were male (175 patients [55.2%]); and White (205 patients [65%]), with a median (interquartile range [IQR]) age of 62 (51-75) years. A total of 77% patients survived, 51% had a LOS > 48 hours, and 31% required MV. Vital signs, serum electrolytes, and blood cell values were similar among the survivors and non-survivor’s cohorts. Conversely, serum BUN, creatinine values, and eGFR’s were significantly worse in the non-survivor cohort (25.7mg/dL, 1.5mg/dL, 71.2 mL/min/1.73m2 vs 38.7mg/dL, 1.8mg/dL, 50.3 ml/min/1.73m2), respectively. Non-survivors had a significantly longer duration on MV (147.2 hours vs. 34.6 hours) and prolonged LOS (191.4 hours vs. 87.4 hours) when compared to the survivor cohort. There was a high prevalence among both cohorts with acute respiratory failure with hypoxia (125 [39.4%], COVID infection (52 [16.4%]), lactic acidosis (101 [31.9%], kidney failure (96 [30.3%]), and acute myocardial infarction (78 [24.6%]) (Table 1).

Table 1. Comparison of survivors and non-survivors cohorts. Comparing the demographics and clinical characteristics between survivors and non-survivors
Characteristics	Survivors (n=243)	Non-Survivors (n=74)	P value
Demographics			
Age, median (IQR), y	60.8 (48-73.5)	65.8 (58-76)	0.81
Sex, No. (%)			
Male	134 (55)	41 (55)	>0.99
Race, No. (%)			
White	163 (67)	42 (57)	0.14
Black	19 (8)	7 (9)	0.83
Hispanic	25 (10)	12 (16)	0.24
Asian	4 (2)	0 (0)	0.61
BMI, median (IQR)	29 (23-32)	28.5 (23-31.8)	0.44
Vital Signs			
Systolic blood pressure (mm Hg)	122.8 (108-133.7)	107.1 (96.1-118.4)	0.22
Diastolic blood pressure (mm Hg)	71.6 (62.3-80.4)	64.2 (55.4-71.6)	0.38
Mean Arterial Pressure (mm Hg)	88.7 (77.7-97.5)	78.5 (69.4-86.4)	0.22
Heart Rate (beats/min)	88.7 (78-99.1)	99.4 (86.2-113.5)	0.82
Respiratory Rate (breaths/min)	19.2 (16-21)	25.2 (21.4-28)	0.09
Temperature (C)	98.2 (97.7-98.7)	97.8 (96.8-99.2)	0.74
SaO₂ (mm Hg)	96.7 (95.1-98.7)	93.9 (92.5-97)	0.77
Serum Laboratory Values			
Sodium (mEq/L)	136.3 (134-139)	138.1 (134.6-143)	0.58
Potassium (mEq/L)	4 (3.6-4.4)	4.4 (3.9-4.9)	0.16
Chloride (mg/dL)	103.9 (101-108)	102.7 (98-108.5)	0.35
Carbon Dioxide (mEq/L)	23.6 (21-26)	20.7 (14.2-25.9)	0.96
BUN (mg/dL)	**25.7 (12-30)**	**38.7 (21.2-50)**	**0.03**
SCr (mg/dL)	**1.5 (0.7-1.4)**	**1.8 (0.9-2.5)**	**0.05**
Glucose (mg/dL)	168.5 (110.5-198)	219.5 (124-251.2)	0.30
Calcium (mg/dL)	8.2 (7.7-8.7)	8.1 (7.2-8.5)	0.21
Magnesium (mg/dL)	1.9 (1.6-2.1)	2.3 (1.9-2.5)	0.12
Phosphate (mg/dL)	3.5 (2.8-4)	6.1 (3.8-7.6)	0.26
WBC (x10³/mL)	11 (7.2-13.8)	15.6 (8.4-19.4)	0.51
Hemoglobin (g/dL)	10.2 (8.6-11.8)	9.7 (8.1-11.6)	0.31
Hematocrit (%)	31.8 (27.6-36.2)	31.4 (24.9-36)	0.35
Platelets (x10³/mL)	211.3 (143-268)	215.5 (128.5-271.8)	0.57
Lactate (U/L)	3 (1.4-3.3)	8.2 (3.1-13.5)	0.41
PT (seconds)	17.6 (11.5-16.1)	19.9 (13.3-27.8)	0.56
INR	1.7 (1.1-1.6)	2 (1.3-2.8)	0.56
Albumin (g/L)	3.1 (2.8-3.5)	2.8 (2.3-3.2)	0.71
Total bilirubin (mg/dL)	1.3 (0.5-1.2)	2.5 (0.5-1.2)	0.87
Clinical characteristics between MRC cohorts

In the MRCI cohort, lower vital sign values (SBP, DBP, and MAP) were found to be significant within the higher MRC scoring group. Serum laboratory indices including phosphate, lactate, and albumin varied significantly among the MRCI cohort. Higher MRCI scores correlated with increased patient acuity when compared to lower MRCI scoring groups. The comorbidities hypo-osmolality, acute myocardial infarction (AMI), and unspecified sepsis were significant among the MRCI and MRCICU cohorts. *(S2 and S3 Tables)*.

When compared to the non-survivor cohort, the survivor cohort had significantly lower MRCI, MRCICU, APACHE II, and SAPS II scores. In the COVID-19 infected cohort, APACHE II and SAPS II had significantly lower median values when compared to the non-COVID infected group. Further, MRCI and MRCICU scores were significantly higher in the mechanically ventilated cohort *(Fig 1)*. When analyzing age distribution by decade of life among different comorbidity severity indexes (i.e., Charlson, APACHE II, SAPS II) patients greater than sixty years of age were associated with the highest severity index scores. *(S2 Fig)*. The top 5 medication classes prescribed among the high scoring MRC cohorts (MRCI and MRCICU) were intravenous fluids (normal saline, 36% and 35%), gastrointestinal agents (pantoprazole, 29% and 32%), analgesics (acetaminophen, 26% and 26%), electrolytes (potassium chloride, 24% and 26%) and anti-infectives (piperacillin/tazobactam, 23% and vancomycin, 27%). When incorporating the

Description	Value 1 (Range)	Value 2 (Range)	p-value
Urine Output every 6 hours (mL/hr)	60.4 (7-96.5)	56.5 (10.3-58.4)	0.49
eGFR (mL/min/1.73m²)	71.2 (42-99.2)	50.3 (26.8-70.5)	0.11
Time on mechanical ventilation (hours)	34.6 (0-0)	147.2 (4-197.5)	0.08
ICU length of stay (hours)	87.4 (21-86)	191.4 (22-282.5)	0.08
Scoring Assessment on ICU admission			
APACHE II	17 (13-20)	27.1 (21-32)	0.01
SAPS II	12.5 (5-18)	27.5 (18.2-35)	0.039
MRCI	62.9 (34-84)	81.1 (43-104.5)	0.339
MRCICU	6 (3-8)	8.6 (4-12)	0.107
GCS at admission	13.1 (12-15)	7.2 (3-11)	0.351
Lactic acidosis (E87.2)	62 (26)	39 (53)	<0.001
Hypokalemia (E87.6)	83 (34)	19 (26)	0.22
Kidney Failure (N17.9)	63 (26)	33 (45)	0.004
Hypo-osmolality hyponatremia (E87.1)	63 (26)	26 (35)	0.16
Was not resuscitated (Z66)	35 (14)	51 (69)	<0.001
Acute myocardial infarction (I21.A)	52 (21)	26 (35)	0.025
Unspecified sepsis (A41.9)	53 (22)	23 (31)	0.14
severity of illness scoring tools (APACHE II and SAPS II) with MRCI and MRCICU scores patients with
higher MRC scores (i.e., > 63 MRCI and > 6 MRCICU) were associated with increased mortality (14% and
15%), longer LOS (i.e., > 48 hours; 30% and 34%), and an increased need for MV (24% and 28%),
respectively (S3 Fig).

Fig 1. **Comparisons among the severity score and MRC scores.** Comparison of severity of illness scores
Acute Physiology and Chronic Health Evaluation (APACHE II), Simplified Acute Physiology Score (SAPS) II,
Medication Regimen Complexity Index (MRCI), and Medication Regimen Complexity in Intensive Care
Unit (MRCICU) between survivor and non-survivor (top

Associations between MRC scores and clinical outcomes

At admission, SAPS II was significant for all three outcomes: mortality (OR: 1.12 (1.07-1.18), LOS (OR:
1.04 (1.0-1.11), need for MV (OR: 1.17 (1.13-1.21) (**Table 2**), respectively. When incorporating only MRCI
scores into the model, (Model II), MRCI scores at 24 hours was a significant predictor in all outcomes
with ORs of 1.01 (95% CI: 1.00-1.02), 1.01 (1.0-1.02), and 1.01 (1.01- 1.02) for mortality, LOS, and need of
MV, respectively. Further, MRCI scores at 48 hours were found to be significant risk factors for mortality
and need for MV (**Table 2**). MRCICU scores at 24 hours were significant risk factors in all outcomes in
Model III with ORs of 1.12 (95% CI: 1.06-1.19), 1.17 (1.1- 1.24), and 1.21 (1.14- 1.29) for mortality, LOS,
and need of MV, respectively. Complimentary results from the LASSO model confirmed the risk factor
selection trends (**S4 Table**). The use of vasopressors was found to be a significant risk factor for all
outcomes in the models. When evaluating morality, the use of paralytic agents was significant with an
(OR: 3.38 (1.09-11.11). The use of anti-infectives, anticoagulants, and cardiovascular agents were
significantly associated with prolonged LOS. Lastly, the use of analgesics, sedatives, psychiatric,
cardiovascular, and pulmonary agents were significant risk factors for the need of MV.

**Table 2. Identifying the risk factors for ICU mortality, length of stay (LOS) and need for mechanical
ventilation (MV).** List of selected variables using stepwise selection method for the four logistic
regression models and their associations with mortality, LOS, and need for MV.

Selected features	Mortality OR (95% CI)	p-value	Length of ICU Stay OR (95% CI)	p-value	Mechanical Ventilation OR (95% CI)	p-value									
Model I															
Age	1.02 (1.0 - 1.05)	0.12	1.02 (1.0-1.03)	0.05	-	-									
BMI	-	-	1.02 (1.0-1.05)	0.11	-	-									
White	-	-	0.59 (0.35-0.98)	-	-	-									
Hispanic	6.11 (2.84 - 13.85)	<0.001	-	-	-	-									
SAPS II at admission	1.12 (1.07-1.18)	0.001	1.04 (1- 1.11)	0	1.17 (1.13-1.21)	0									
Model II															
APACHE II at admission	1.13 (1.05-1.21)	0.002	0.92 (0.88-0.98)	0.15	-										
CCI	-		1.13 (1.0-1.32)	0.14	-										
Age	1.03 (1.02-1.05)	<0.001	1.01 (1.0-1.03)	0.09	-										
Height	-		1.14 (1.01-1.35)	0.11	1.02 (1.04-1.46)	0.03									
Weight	-		0.95 (0.89-1.01)	0.09	0.95 (0.89-1.01)	0.1									
BMI	-		1.17 (1.0-1.41)	0.06	1.18 (1.0-1.42)	0.07									
White	-		0.56 (0.33-0.93)	0.03	-										
Hispanic	5.74 (3.15-10.79)	0	-	-	1.84 (1.11-3.07)	0.02									
MRCI score at 24 hours	1.01 (1-1.02)	0.003	1.01 (1.0-1.02)	0	1.01 (1.01-1.02)	0									
MRCI score at 48 hours	1.01 (1-1.02)	0.004	-		1.01 (1.0-1.02)	0.03									
CCI	-		1.13 (1.0-1.32)	0.13	-										
Model III															
Age	1.03 (1.02-1.05)	<0.001	1.01 (1.0-1.03)	0.1	-										
White	-		0.59 (0.35-0.99)	0.04	-										
Hispanic	6.44 (3.45-12.41)	0	-	-	2.21 (1.29-3.85)	0.004									
MRC ICU at 24 Hours	1.12 (1.06-1.19)	0	1.17 (1.1-1.24)	<0.001	1.21 (1.14-1.29)	<0.001									
MRC ICU at 48 hours	1.1 (1.04-1.17)	0.002	1.05 (1.0-1.11)	0.7	1.11 (1.05-1.18)	0.001									
CCI	-		1.14 (1.0-1.34)	0.1	0.84 (0.65-1.07)	0.155									
Model IV															
Age	1.04 (1.01-1.08)	0.017	-	-	-										
Hispanic	6.23 (2.55-16.41)	0	-	-	-										
SAPS II at admission	1.09 (1.04-1.15)	0.001	1.04 (1-1.08)	0.072	1.17 (1.11-1.23)	0									
APACHE II at admission	1.14 (1.05-1.23)	0.002	0.94 (0.89-1)	0.038	-										
MRCI at 24 hours	-		0.99 (0.98-1)	0.134	0.97 (0.95-0.99)	0.001									
MRCICU at 24 hours	-		1.1 (1-1.22)	0.05	1.3 (1.13-1.51)	0									
CCI	0.79 (0.6-1.03)	0.093	-	-	0.77 (0.58-1)	0.052									
Anti-infectives	-		2.27 (1.15-4.57)	0.019	-										
The final models of logistic regression are reported using odds ratio (OR) and 95% confidence interval of risk factors for logistic regression. If the variable was not selected, the cell marked with "-". Bold ORs for logistic regression are significant. Model I: Demographics, Acute Physiology and Chronic Health Evaluation (APACHE II), Simplified Acute Physiology Score (SAPS II), Charlson comorbidity index (CCI), and drug classes, Model II: Demographics, Medication Regimen Complexity Index (MRCI_24hours), MRCI_48hours, CCI, and drug classes, Model III: Demographics, Medication Regimen Complexity in Intensive Care Unit (MRCICU_24hours), MRCICU_48 hours, CCI, and drug classes, and Model IV: all variables.

Role of MRC scores in prediction of clinical outcomes

The Admission Model was found to be the best model (AUC: 0.88 [95% CI: 0.77-0.97]) to predict mortality (Table 3). However, models MRCI & SAPS II (AUC: 0.88 [0.75-0.97]) and MRCICU & SAPS (AUC: 0.88 [0.76-0.97]) performed similarly (Fig 2). In the MRCI & SAPS II Model, MRCI scores at 24 and 48 hours were identified as the top variables of importance when predicting mortality (Fig 3). Further, vasopressors were the most important variable to predict mortality within the Medication Model.

When predicting LOS, the Medication Model (AUC: 0.82 [0.71-0.93]) outperformed all other models. Vasopressors and psychiatric agents were among the top 5 important variables to predict LOS. Further, MRC scores at 24 hours and 48 hours were selected in the top 10 variable importance list for models including MRC scores (i.e., MRCI & SAPS II and, MRCICU & SAPS II).

When predicting the need for MV, MRCICU & SAPS II (AUC: 0.87 [0.77-0.96]) outperformed all other models. SAPS II and MRCICU at 24 and 48 hours were among the top important variables to predict the need for MV. Lastly, vasopressors and pulmonary agents were among the top 5 medication classes identified when predicting the need for MV.

Fig 2. Performance of the prediction models for predicting the clinical outcomes. Receiver Operating Characteristic Curves (AUC) for (A) ICU mortality, (B) ICU length of stay, and (C) need for mechanical ventilation.
Fig 3. **Variable importance of the prediction models.** Top 10 variables of importance within the 7 prediction models: ICU mortality (*left* panel), length of ICU stay (*middle* panel), and need for mechanical ventilation (*right* panel).

Table 3. Comparison of the prediction models. Prediction evaluation for ICU mortality, LOS, and need for mechanical ventilation. (The best 3 prediction results are in noted in bold font and demographic variables are included in each of the models).

	AIC	AUC	Sensitivity	Specificity
ICU Mortality				
Admission Model	222.007 (217.45-222.15)	0.88 (0.77-0.97)	0.72 (0.60-0.82)	0.89 (0.85-0.92)
MRCI Model	313 (308-313)	0.73 (0.54-0.89)	0.73 (0.60-0.84)	0.89 (0.85-0.93)
MRCI & SAPS II Model	225 (220-225)	0.88 (0.75-0.97)	0.73 (0.63-0.83)	0.89 (0.84-0.93)
MRCICU Model	302 (297-302)	0.75 (0.57-0.89)	0.73 (0.62-0.83)	0.89 (0.85-0.92)
MRCICU & SAPS II Model	225 (221-225)	0.88 (0.76-0.97)	0.73 (0.62-0.84)	0.90 (0.85-0.94)
Medication Model	236 (232-236)	0.88 (0.78-0.96)	0.61 (0.48-0.73)	0.86 (0.82-0.90)
Full Model	226 (221-226)	0.88 (0.77-0.97)	0.73 (0.62-0.84)	0.89 (0.85-0.92)

	AIC	AUC	Sensitivity	Specificity
Length of ICU Stay				
Admission Model	422.74 (421-423)	0.68 (0.53-0.82)	0.63 (0.5-0.70)	0.62 (0.54-0.70)
MRCI Model	431 (429-431)	0.64 (0.48-0.78)	0.65 (0.58-0.71)	0.62 (0.55-0.71)
MRCI & SAPS II Model	421 (419-422)	0.69 (0.53-0.83)	0.64 (0.57-0.70)	0.62 (0.55-0.69)
MRCICU Model	404 (402-405)	0.70 (0.52-0.83)	0.64 (0.56-0.74)	0.61 (0.55-0.70)
MRCICU & SAPS II Model	401 (399-402)	0.71 (0.57-0.84)	0.63 (0.57-0.70)	0.62 (0.56-0.70)
Medication Model	323 (320-324)	0.82 (0.71-0.93)	0.75 (0.69-0.81)	0.74 (0.68-0.80)
Full Model	402 (399-403)	0.71 (0.56-0.84)	0.64 (0.58-0.71)	0.62 (0.54,0.70)

	AIC	AUC	Sensitivity	Specificity
Need for Mechanical Ventilation				
Admission Model	304.62 (300.23-305.0)	0.85 (0.72-0.95)	0.79 (0.70-0.86)	0.8 (0.75-0.85)
Abbreviations

Model	MRCI (406-409)	AUC (0.48-0.80)	APACHE II (0.69-0.86)	SAPS II (0.75-0.85)
MRCI Model	408	0.65	0.79 (0.69-0.86)	0.80 (0.75-0.85)
MRCI & SAPS II Model	308	0.84 (0.73-0.94)	0.77 (0.69-0.86)	0.80 (0.75-0.85)
MRCICU Model	365	0.75 (0.62-0.873)	0.78 (0.69-0.86)	0.80 (0.76-0.84)
MRCICU & SAPS II Model	290 (286-291)	0.87 (0.70-0.96)	0.78 (0.70-0.96)	0.80 (0.76-0.86)
Medication Model	273 (269-274)	0.86 (0.75-0.96)	0.8 (0.71-0.88)	0.81 (0.76-0.86)
Full Model	286 (281-286)	0.87 (0.77-0.96)	0.78 (0.70-0.86)	0.80 (0.76-0.85)

AUC is presented as a median value and 95% CI.

Discussion

Key findings

In this study, we found that MRC scores varied greatly and regression analysis confirmed that MRC scores are strongly associated with all outcomes: mortality, LOS, and need for MV. Secondly, higher MRC scores were associated with hemodynamic instability and higher APACHE II scores. Survivors had significantly lower MRCI, MRCICU, APACHE II, and SAPS II scores. Thirdly, incorporating MRC scores improved the prediction in all outcomes. The utility of MRC scores and impact on clinical outcomes in the critical care setting remains largely unknown. To the best of our knowledge, this is the first study to examine these relationships. Previous studies suggest inconsistent findings when investigating MRC scores with medication nonadherence and hospitalization in outpatient settings[31–35]. In the ICU, MRC has been correlated with patient acuity and mortality[18]. Consistent with previously published literature, our study revealed non-survivors had poorer renal function, increased time on MV, and extended ICU LOS[36–39]. Notably, when predicting LOS, MRC scores at 24 hours were considered to be a significant prediction variable. These findings suggest that MRC scores should be further investigated to determine their association with LOS. Importantly, our findings have several real-world implications for the identification, clinical management, and potentially prevention of poorer clinical outcomes in critically ill adults with the highest MRC scores.

Firstly, MRC scores can be calculated and incorporated into the EHR to readily identify patients at higher risk. During the COVID-19 pandemic it has become even more evident that the healthcare system and in particular, access and utilization of critical care resources have become profoundly strained[40]. Early identification of higher risk patients based upon MRC scores can aid in triaging limited ICU resources. Currently, there is no standardized MRC method for presenting safety alerts pertaining to medication use. The development and integration of MRC scores into clinical decision support tools can alert interdisciplinary care team members to review and modify the medication regimen to ensure safer,
This study corroborates the need of standardizing MRC scores within the critically ill population. Secondly, our results clearly demonstrate that MRC scores at 24 hours were associated with mortality suggesting they should be incorporated into current practice (Table 2). Moreover, our previous proof-of-concept ML model demonstrated that MRCICU scores are associated with ICU mortality[26]. Moreover, MRC has been shown to be a better predictor of mortality compared to polypharmacy alone[32]. MRC scores at 24 hours were significantly associated with ICU LOS and the incorporation of therapeutic drug classes improved the prediction for LOS and need for MV (Table 3). These findings can be confounded however by a) exclusion of the weights for important medications (i.e., vasopressors and anti-infectives) in MRC calculations, b) exclusion of patient’s severity, and c) exclusion of influential combinations of medications regimens.

Thirdly, vasopressors were a significant predictor in all clinical outcome models (Fig 3) and were found to be statistically significant in all stepwise models (Table 2). In practice, use of vasopressors is indicated in patients with poorer health conditions, such as decompensated heart failure and shock[45,46]. The frequent diagnosis of ICU-related delirium has been a known contributing factor to ICU LOS among other undesirable outcomes[47–49]. Historically, numerous medications have been used to minimize the duration of delirium, yet studies are lacking to identify a safe and effective agent. Our findings of current psychiatric medications potentially contributing to an increase in TOMV suggests the continued need to identify an agent to minimize the incidence and duration of ICU delirium leading to extended TOMV and LOS.

Lastly, the association of pulmonary and paralytic agent use with mortality and the need for MV was anticipated in our findings as these therapeutic classes are commonly associated with high acuity diseases such as acute respiratory distress syndrome (ARDS) and acute brain injury[50,51]. Therefore, our study supports the inclusion of medication class usage to predict critically ill outcomes. Most notably, the lack of medication use into existing severity of illness scoring tools (i.e., SAPS II and APACHE II) are a major shortcoming of their prediction accuracy. MRC scores provide valuable information to bedside clinicians, including critical care pharmacists (CCPs) which have been recognized as essential members of the interdisciplinary care team by major societal organizations[52–54]. Despite finding an association between MRC scores, ICU mortality, LOS, and need for MV in our regression modeling exercise, both scores are not without unique limitations[6,55]. MRCI has been established and validated for use only in the outpatient setting and is not applicable in the critical care setting as it does not incorporate vital critical care medications[16,55]. On the contrary, MRCICU does include critical care medications, yet does not incorporate the complexities of the pharmacotherapeutic regimen such as the medication combinations, dosages, or frequencies. Further, neither previously established scores consider preexisting comorbidities or severity of critical illness, which are crucial when assessing critical care outcomes. Our results support the inclusion of MRC scores into traditional severity index scoring tools (i.e., APACHE II, SAPS II) can improve the prediction of critical care outcomes. We propose adopting MRC scores, preexisting comorbidities, and severity of illness into future modeling to improve the accuracy of prediction.
Limitations

Our study must be considered in the context of several limitations. First, the retrospective nature of the study design exposes the risk of missing data that can contribute to confounding bias. Second, we were unable to measure the previous exposure of MRC prior to ICU admission due to unconfirmed and variable pre admission medication use. Third, we did not exclude the influence of commonly associated clinical conditions (i.e., ARDS, decompensated heart failure, and sepsis) as contributing factors to MRC. Therefore, the results may be subject to residual and unmeasured confounders. Lastly, both MRC scores at 24 hours and 48 hours can be indirectly related to LOS, as higher LOS may constitute higher MRC scores for the patients who remained admitted to the ICU for more than 48 hours.

Conclusions

In this retrospective cohort study, our findings suggest that the critical care MRC score should be incorporated into existing severity of illness scoring tools for use in real-time clinical practice. Moreover, incorporation of MRC scores into EHRs and clinical decision support tools will assist all members of the interdisciplinary care team to improve the quality of care through better identification and prediction of higher-risk patients for poorer clinical outcomes.

Supporting information

S1 Fig. Correlation among the severity and medication regimen scores. Pearson correlation Coefficients for severity of illness scores stratified by age groups: Charlson comorbidity index (CCI), Acute Physiology and Chronic Health Evaluation (APACHE II), Simplified Acute Physiology Score (SAPS) II, Medication Regimen Complexity Index (MRCI), and Medication Regimen Complexity in Intensive Care Unit (MRCICU).

S2 Fig. Distribution of the severity and medication regimen scores: Distribution of severity of illness scores stratified by age groups: Charlson comorbidity index (CCI), Acute Physiology and Chronic Health Evaluation (APACHE II), Simplified Acute Physiology Score (SAPS) II, Medication Regimen Complexity Index (MRCI), and Medication Regimen Complexity in Intensive Care Unit (MRCICU).

S3 Fig. Bivariate analysis of severity of Illness scoring Tools (APACHE II and SAPS II) with MRC Scores (MRCI and MRCICU). Abbreviations: Acute Physiology and Chronic Health Evaluation (APACHE II), Simplified Acute Physiology Score (SAPS) II, Medication Regimen Complexity Index (MRCI), and Medication Regimen Complexity in Intensive Care Unit (MRCICU).
S1 Table. Variables extracted from electronic health record data. Description of the variables extracted by group: demographics, vital signs, laboratories, scoring tools, medication classes, and comorbidities.

S2 Table. Comparison between patient characteristics and Medication Regimen Complexity Index (MRCI) score. Demographic and clinical characteristics between low and high MRCI scoring cohorts.

S3 Table. Comparison between patient characteristics and Medication Regimen Complexity Intensive Care Unit (MRCICU) score. Demographic and clinical characteristics between low and high MRCICU score cohorts.

S4 Table. Alternative method for variable selection. Four L1 penalization techniques (LASSO) for ICU mortality, ICU length of stay, and need for mechanical ventilation.

References

1. George J, Phun Y-T, Bailey MJ, Kong DC, Stewart K. Development and Validation of the Medication Regimen Complexity Index Pharmacoepidemiology. [cited 9 Dec 2021]. doi:10.1345/aph.1D479

2. Masnoon N, Shakib S, Kalisch-Ellett L, Caughey GE. What is polypharmacy? A systematic review of definitions. BMC Geriatrics. 2017;17: 1–10. doi:10.1186/s12877-017-0621-2/Tables/1

3. Mortazavi SS, Shati M, Keshtkar A, Malakouti SK, Bazargan M, Assari S. Defining polypharmacy in the elderly: a systematic review protocol. BMJ open. 2016;6. doi:10.1136/bmjopen-2015-010989

4. Pazan F, Wehling M. Polypharmacy in older adults: a narrative review of definitions, epidemiology and consequences. European geriatric medicine. 2021;12: 443–452. doi:10.1007/s41999-021-00479-3

5. Paquin AM, Zimmerman KM, Kostas TR, Pelletier L, Hwang A, Simone M, et al. Complexity perplexity: a systematic review to describe the measurement of medication regimen complexity. Expert opinion on drug safety. 2013;12: 829–840. doi:10.1517/14740338.2013.823944

6. Alves-Conceição V, Rocha KSS, Silva FVN, Silva ROS, Silva DT da, Lyra-Jr DP de. Medication Regimen Complexity Measured by MRCI: A Systematic Review to Identify Health Outcomes. Annals of Pharmacotherapy. 2018;52: 1117–1134. doi:10.1177/1060028018773691

7. Pichala PT, Kumar BM, Zachariah S, Thomas D, Saunchez L, Gerardo A-U. An interventional study on intensive care unit drug therapy assessment in a rural district hospital in India. Journal of Basic and Clinical Pharmacy. 2013;4: 64. doi:10.4103/0976-0105.118801

8. Leape LL, Cullen DJ, Clapp MD, Burdick E, Demonaco HJ, Erickson JJ, et al. Pharmacist participation on physician rounds and adverse drug events in the intensive care unit. Journal of the American Medical Association. 1999;282: 267–270. doi:10.1001/jama.282.3.267

9. Moyen E, Camiré E, Stelfox HT. Clinical review: Medication errors in critical care. Critical Care. 2008;12: 208. doi:10.1186/cc6813
10. Standard Medication Concentrations: An Opportunity to Reduce Medication Errors | SCCM.
[cited 9 Dec 2021]. Available: https://www.sccm.org/Communications/Critical-
Connections/Archives/2019/Standard-Medication-Concentrations-An-Opportunity

11. Rothschild JM, Landrigan CP, Cronin JW, Kaushal R, Lockley SW, Burdick E, et al. The Critical Care
Safety Study: The incidence and nature of adverse events and serious medical errors in intensive
care. Critical Care Medicine. 2005;33: 1694–1700. doi:10.1097/01.CCM.0000171609.91035.BD

12. Abou-Karam N, Bradford C, Lor KB, Barnett M, Ha M, Rizos A. Medication regimen complexity
and readmissions after hospitalization for heart failure, acute myocardial infarction, pneumonia,
and chronic obstructive pulmonary disease. SAGE open medicine. 2016;4: 205031211663242.
doi:10.1177/2050312116632426

13. Colavecchia AC, Putney DR, Johnson ML, Aparasu RR. Discharge medication complexity and 30-
day heart failure readmissions. Research in social & administrative pharmacy : RSAP. 2017;13:
857–863. doi:10.1016/J.SAPHARM.2016.10.002

14. Willson MN, Greer CL, Weeks DL. Medication regimen complexity and hospital readmission for an
adverse drug event. The Annals of pharmacotherapy. 2014;48: 26–32.
doi:10.1177/1060028013510898

15. Lee S, Jang JY, Yang S, Hahn J, Min KL, Jung E hee, et al. Development and validation of the
Korean version of the medication regimen complexity index. PLOS ONE. 2019;14: e0216805.
doi:10.1371/JOURNAL.PONE.0216805

16. Ghimire S, Castelino RL, Lioufas NM, Peterson GM, Zaidi STR. Nonadherence to Medication
Therapy in Haemodialysis Patients: A Systematic Review. PLOS ONE. 2015;10: e0144119.
doi:10.1371/JOURNAL.PONE.0144119

17. Marienne J, Laville SM, Caillard P, Batteux B, Gras-Champel V, Masmoudi K, et al. Evaluation of
Changes Over Time in the Drug Burden and Medication Regimen Complexity in ESRD Patients
Before and After Renal Transplantation. Kidney International Reports. 2021;6: 128–137.
doi:10.1016/J.EKIR.2020.10.011/ATTACHMENT/E571F2F1-B9FE-4E79-AC04-
9630AE743784/MMC1.PDF

18. Tesfaye WH, Peterson GM, Castelino RL, McKercher C, Jose MD, Wimmer BC, et al. Medication
Regimen Complexity and Hospital Readmission in Older Adults With Chronic Kidney Disease. The
Annals of pharmacotherapy. 2019;53: 28–34. doi:10.1177/1060028018793419

19. Ayele AA, Tegegn HG, Ayele TA, Ayalew MB. Medication regimen complexity and its impact on
medication adherence and glycemic control among patients with type 2 diabetes mellitus in an
Ethiopian general hospital. BMJ open diabetes research & care. 2019;7. doi:10.1136/BMJDRC-
2019-000685

20. Wakai E, Ikemura K, Kato C, Okuda M. Effect of number of medications and complexity of
regimens on medication adherence and blood pressure management in hospitalized patients
with hypertension. PLOS ONE. 2021;16: e0252944. doi:10.1371/JOURNAL.PONE.0252944
21. Smits KPJ, Sidorenkov G, Kleefstra N, Hendriks SH, Bouma M, Meulepas M, et al. Is guideline-adherent prescribing associated with quality of life in patients with type 2 diabetes? PLOS ONE. 2018;13: e0202319. doi:10.1371/JOURNAL.PONE.0202319

22. Newsome AS, Anderson D, Gwynn ME, Waller JL. Characterization of changes in medication complexity using a modified scoring tool. American Journal of Health-System Pharmacy. 2019;76: S92–S95. doi:10.1093/ajhp/zxz213

23. Gwynn ME, Poisson MO, Waller JL, Newsome AS. Development and validation of a medication regimen complexity scoring tool for critically ill patients. American journal of health-system pharmacy : AJHP : official journal of the American Society of Health-System Pharmacists. 2019;76: S34–S40. doi:10.1093/AJHP/ZXY054

24. Newsome AS, Smith SE, Jones TW, Taylor A, van Berkel MA, Rabinovich M. A survey of critical care pharmacists to patient ratios and practice characteristics in intensive care units. Journal of the American College of Clinical Pharmacy. 2020;3: 68–74. doi:10.1002/jac5.1163

25. Newsome AS, Smith SE, Olney WJ, Jones TW. Multicenter validation of a novel medication-regimen complexity scoring tool. American Journal of Health-System Pharmacy. 2020;77: 474–478. doi:10.1093/ajhp/zxz330

26. Al-Mamun MA, Brothers T, Newsome AS. Development of Machine Learning Models to Validate a Medication Regimen Complexity Scoring Tool for Critically Ill Patients. The Annals of pharmacotherapy. 2021;55: 421–429. doi:10.1177/1060028020959042

27. Newsome AS, Anderson D, Gwynn ME, Waller JL. Characterization of changes in medication complexity using a modified scoring tool. American journal of health-system pharmacy : AJHP : official journal of the American Society of Health-System Pharmacists. 2019;76: S92–S95. doi:10.1093/ajhp/zxz213

28. Ripley BD. The R Project in Statistical Computing. [cited 14 Dec 2021]. Available: http://www.ltsn.gla.ac.uk/rworkshop.asp

29. R: The R Project for Statistical Computing. [cited 25 Apr 2020]. Available: https://www.r-project.org/

30. Villanueva RAM, Chen ZJ, Wickham H. ggplot2: Elegant Graphics for Data Analysis Using the Grammar of Graphics. Springer-Verlag New York; 2016. doi:10.1080/15366367.2019.1565254

31. Schoonover H, Corbett CF, Weeks DL, Willson MN, Setter SM. Predicting potential postdischarge adverse drug events and 30-day unplanned hospital readmissions from medication regimen complexity. Journal of patient safety. 2014;10: 186–191. doi:10.1097/PTS.0000000000000067

32. Wimmer BC, Bell JS, Fastbom J, Wiese MD, Johnell K. Medication Regimen Complexity and Number of Medications as Factors Associated With Unplanned Hospitalizations in Older People: A Population-based Cohort Study. The Journals of Gerontology: Series A. 2016;71: 831–837. doi:10.1093/GERONA/GLV219
33. Gamble JM, Hall JJ, Marrie TJ, Sadowski CA, Majumdar SR, Eurich DT. Medication transitions and polypharmacy in older adults following acute care. Therapeutics and Clinical Risk Management. 2014;10:189. doi:10.2147/TCRM.S58707

34. Wimmer BC, Dent E, Bell JSS, Wiese MD, Chapman I, Johnell K, et al. Medication Regimen Complexity and Unplanned Hospital Readmissions in Older People. The Annals of pharmacotherapy. 2014;48: 1120–1128. doi:10.1177/1060028014537469

35. Vik SA, Hogan DB, Patten SB, Johnson JA, Romonko-Slack L, Maxwell CJ. Medication nonadherence and subsequent risk of hospitalisation and mortality among older adults. Drugs and Aging. 2006;23: 345–356. doi:10.2165/00002512-200623040-00007/FIGURES/1

36. Moitra VK, Guerra C, Linde-Zwirble WT, Wunsch H. Relationship Between ICU Length of Stay and Long-Term Mortality for Elderly ICU Survivors. Critical care medicine. 2016;44: 655–662. doi:10.1097/CCM.0000000000001480

37. de Corte W, Dhondt A, Vanholder R, de Waele J, Decruyenaere J, Sergoyne V, et al. Long-term outcome in ICU patients with acute kidney injury treated with renal replacement therapy: a prospective cohort study. Critical care (London, England). 2016;20. doi:10.1186/S13054-016-1409-Z

38. Lai CC, Shieh JM, Chiang SR, Chiang KH, Weng SF, Ho CH, et al. The outcomes and prognostic factors of patients requiring prolonged mechanical ventilation. Scientific Reports 2016 6:1. 2016;6: 1–6. doi:10.1038/srep28034

39. Marshall J, Finn CA, Theodore AC. Impact of a clinical pharmacist-enforced intensive care unit sedation protocol on duration of mechanical ventilation and hospital stay. Critical Care Medicine. 2008;36: 427–433. doi:10.1097/01.CCM.0000300275.63811.B3

40. Maves RC, Downar J, Dichter JR, Hick JL, Devereaux A, Geiling JA, et al. Triage of Scarce Critical Care Resources in COVID-19 An Implementation Guide for Regional Allocation: An Expert Panel Report of the Task Force for Mass Critical Care and the American College of Chest Physicians. Chest. 2020;158: 212–225. doi:10.1016/J.CHEST.2020.03.063

41. Makam AN, Nguyen OK, Auerbach AD. Diagnostic accuracy and effectiveness of automated electronic sepsis alert systems: A systematic review. Journal of Hospital Medicine. 2015;10: 396–402. doi:10.1002/JHM.2347

42. Page N, Baysari MT, Westbrook JI. A systematic review of the effectiveness of interruptive medication prescribing alerts in hospital CPOE systems to change prescriber behavior and improve patient safety. International journal of medical informatics. 2017;105: 22–30. doi:10.1016/J.IJMEDINF.2017.05.011

43. Bright TJ, Wong A, Dhurjati R, Bristow E, Bastian L, Coeytaux RR, et al. Effect of clinical decision-support systems: a systematic review. Annals of internal medicine. 2012;157: 29–43. doi:10.7326/0003-4819-157-1-201207030-00450

44. Jaspers MWM, Smeulers M, Vermeulen H, Peute LW. Effects of clinical decision-support systems on practitioner performance and patient outcomes: a synthesis of high-quality systematic review
496 findings. Journal of the American Medical Informatics Association: JAMIA. 2011;18: 327–334.
497 doi:10.1136/AMIAJNL-2011-000094
498
499 45. Evans L, Rhodes A, Alhazzani W, Antonelli M, Coopersmith CM, French C, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021. Intensive care medicine. 2021;47: 1181–1247. doi:10.1007/S00134-021-06506-Y
500
501 46. Levy B, Buzon J, Kimmoun A. Inotropes and vasopressors use in cardiogenic shock: when, which and how much? Current opinion in critical care. 2019;25: 384–390. doi:10.1097/MCC.0000000000000632
502
503 47. Li M, Chang MH, Miranda-Valdes Y, Vest K, Kish TD. Impact of early home psychotropic medication reinitiation on surrogate measures of intensive care unit delirium. The mental health clinician. 2019;9: 263–268. doi:10.9740/MHC.2019.07.263
504
505 48. Devlin JW, Skrobik Y, Gélinas C, Needham DM, Slooter AJC, Pandharipande PP, et al. Clinical Practice Guidelines for the Prevention and Management of Pain, Agitation/Sedation, Delirium, Immobility, and Sleep Disruption in Adult Patients in the ICU. Critical care medicine. 2018;46: e825–e873. doi:10.1097/CCM.0000000000003299
506
507 49. Shehabi Y, Riker RR, Bokesch PM, Wisemandle W, Shintani A, Ely EW. Delirium duration and mortality in lightly sedated, mechanically ventilated intensive care patients. Critical care medicine. 2010;38: 2311–2318. doi:10.1097/CCM.0B013E3181F85759
508
509 50. Renew JR, Ratzlaff R, Hernandez-Torres V, Brull SJ, Prielipp RC. Neuromuscular blockade management in the critically ill patient. Journal of Intensive Care 2020 8:1. 2020;8: 1–15. doi:10.1186/S40560-020-00455-2
510
511 51. Murray MJ, Deblock H, Erstad B, Gray A, Jacobi J, Jordan C, et al. Clinical Practice Guidelines for Sustained Neuromuscular Blockade in the Adult Critically Ill Patient. Critical care medicine. 2016;44: 2079–2103. doi:10.1097/CCM.0000000000002027
512
513 52. Brilli RJ, Spevetz A, Branson RD, Campbell GM, Cohen H, Dasta JF, et al. Critical care delivery in the intensive care unit: defining clinical roles and the best practice model. Critical care medicine. 2001;29: 2007–2019. doi:10.1097/00003246-200110000-000026
514
515 53. Lat I, Paciullo C, Daley MJ, Maclaren R, Bolesa S, McCann J, et al. Position Paper on Critical Care Pharmacy Services: 2020 Update. Critical care medicine. 2020;48: 813–834. doi:10.1097/CCM.0000000000004437
516
517 54. Newsome AS, Jones TW, Smith SE. Pharmacists Are Associated With Reduced Mortality in Critically Ill Patients. Critical Care Medicine. 2019;47: e1036–e1037. doi:10.1097/CCM.0000000000003934
518
519 55. Alves-Conceição V, Rocha KSS, Silva FVN, Silva R de OS, Cerqueira-Santos S, Nunes MAP, et al. Are Clinical Outcomes Associated With Medication Regimen Complexity? A Systematic Review and Meta-analysis. The Annals of pharmacotherapy. 2020;54: 301–313. doi:10.1177/106028019886846
520
521
522
523
524
525
526
527
528
529
530
531
532
533
B) Length of stay

- Admission Model [AUC: 0.68 (0.53–0.82)]
- MRCI Model [AUC: 0.64 (0.48–0.78)]
- MRCI & SAPSII Model [AUC: 0.69 (0.53–0.83)]
- MRCICU Model [AUC: 0.70 (0.52–0.83)]
- MRCICU & SAPSII Model [AUC: 0.71 (0.57–0.84)]
- Medication Model [AUC: 0.71 (0.56–0.84)]
- Full Model [AUC: 0.82 (0.71–0.93)]
The image contains multiple box plots with different variables and categories.

Mortality
- **APACHE II**
 - MRCICU: High vs. LOW
 - MRCI: High vs. LOW

LOS
- **APACHE II**
 - MRCICU: High vs. LOW
 - MRCI: High vs. LOW

MV
- **APACHE II**
 - MRCICU: High vs. LOW
 - MRCI: High vs. LOW

The plots show the distribution of data points across different categories, with red indicating 'Expired' and blue indicating 'Survived' for Mortality, and 'Needed' and 'Not needed' for MV.

The data is presented in box plots, which help visualize the spread and central tendency of the data points.