Meta Search Engine using Semantic Similarity and Correlation Coefficient

Naresh Kumar, Deepak Sharma, Nripendra Narayan Das

Abstract- This paper aims to provide an intelligent way to query and rank the results of a Meta Search Engine. A Meta Search Engine takes input from the user and produces results which are gathered from other search engines. The main advantage of a Meta Search Engine over methodical search engine is its ability to extend the search space and allows more resources for the user. The semantic intelligent queries will be fetched from different search engines and the responses will be fed into our ranking algorithm. Ranking of the search results is the other important aspect of Meta search engines. When a user searches a query, there are number of results retrieved from different search engines, but only several results are relevant to user's interest and others are not much relevant. Hence, it is important to rank results according to the relevancy with user query. The proposed paper uses intelligent query and ranking algorithms in order to provide intelligent meta search engine with semantic understanding.

Keywords: Meta Search Engine, Scraping unit, Intelligent Query System, Rankings

I. INTRODUCTION

A human can see and understand words and sentences. But to make the words and sentences understandable by machines, these have to represent them in form of vectors. A machine will be able to get similar words based on particular word by representing the words as vectors. A machine will be able to do so by using some similarity metrics that can be cosine similarity or dot similarity. There are various pre-trained models that can be used to convert word into vectors like word2vec and glove2vec.

These are the models which can convert word to vectors. But these models can’t give us the encodings for the sentences directly. Author find encoding for the sentences indirectly by finding out the vector of each word in the sentence using either of these models using word2vec or glove2vec and averaging them. This will give us the vector which will show the meaning of sentence in a vector form.

But here is one major problem and that is while finding the vector form of sentence author have not considered the word semantic order inside the sentence. This semantic word order is very important in consideration for conversion into vector form of sentences. For example there are 3 sentences:
1. How old are you?
2. What is your age?
3. How are you?

It is obvious that 1 and 2 are semantically the same even though 1 and 3 have more common words. A good sentence encoder will encode the three sentences in such a way that the vector for 1 and 2 are closer to each other than 1 and 3. So to eliminate this problem Universal Sentence Encoder by Google which is a very powerful model for encoding the sentences which will preserve it’s semantic word order.

Universal Sentence Encoder is able to embed not only words but also phrases and sentences. It takes variable length English text as input and outputs a 512-dimensional fixed vector.

II. LITERATURE SURVEY

Authors of [1] consider the architectures and features of Meta Search Engines (MSE) for extracting documents from one or more domains on the web. It analyzes two MSE i.e. general MSE and Special purpose MSE. Authors of [2] proposed a MSE on the basis of clustering and ranking to find the relevant results. It have user interface, relevancy calculator, cluster generator and webpage adjuster as a main modules. It took top 10 results Search Engine (SE) –Bing, Google, and Alta Vista and tested the proposed work on 30 different queries. Traditionally, MSE matches the query with the webpage and then provide the result which is as keyword matching. According to [3], a MSE uses interfaces of self forward query to SEs produce its results from the Internet. MSE consume input form end user and simultaneously send out this query to multiple SEs for getting results. Then it formats the received result and present it to end user. Set of keywords in a single query and Word Net ontology is used to provide the most suitable query to SE through the MSE is proposed in [4]. Some authors used optimization techniques [5], some are using query semantics and some are using, clustering techniques [6] to improve the architectures of MSEs but still they have challenges [7].

III. ISSUES AND CHALLENGES

Problem in [4] is that the author is making the query set by extracting the similar words to the given query using Word-net Ontology. Problems is that:

A. Large number of permutations with synonyms:

Taking the words from the sentence, finding the synonyms of words and making a query set using synonyms of words. The number of sentences formed by using these synonyms will be very high. Permutations of synonyms to make the sentence is very high.
B. **Semantic issues:** By taking the synonyms of words and put them in the sentence somehow is not semantically correct. Every word has its own meaning in a sentence. Proper words should be used while making sentence.

C. **Lack of sentence level work:** Working with words in not very efficient way of dealing with queries as it is hard to maintain the semantically correct order in order to make a meaningful sentence. Work should be done directly on sentences in order to maintain the word order.

D. **Result Aggregation:** The extraction of results from different Search engines is not efficient, but also involves the concept of result merging, i.e., removing the duplicate results and irrelevant results or sponsored results. Thus, an efficient algorithm is needed for merging results from a no of search engines.

IV. **OBJECTIVES**

The proposed MSE has the following objectives over existing algorithms:

(i) Author will be use Universal Sentence Encoder Model instead of Word2Vec model. This model will help us to get similar semantic sentences. We will get the similar queries for a given query using Universal Sentence Encoder model. This helps us to maintain word semantic order in the sentence.

(ii) Proposed system will rank pages according to the correlation between content of pages and the original query.

V. **PROPOSED ARCHITECTURE**

The architecture of proposed MSE is shown in Figure 1 and it is explained module or block wise.

A. **Intelligent Query System:** This block will take the input query from the user and gives corresponding similar queries so as to get more accurate and relevant results. This Intelligent Query System will contain Universal Sentence encoder model which will be used to generate the encodings of the input query and this encoding will be compared with all the encodings of the questions using correlation coefficient with the threshold value of 0.8. After comparing the threshold values we will retrieve top most 2 questions which has highest correlations with the user’s query.

B. **Scraping Unit:** Scraping Unit consists of 3 search engines (Google, Bing and Yahoo). For a given query we retrieve top 3 results from each search engine and remove duplicates of results if any and then return the corresponding results.

C. **Ranking of Results:** Here we will rank the pages with the given user input according to the relevancy. This will be achieved by finding out the relevancy using correlation coefficient between the content of pages and given input query.

D. **Results shown to user:** Here we finally show the results to the user after ranking the pages.

![Proposed Architecture](image)

**Fig. 1. Proposed Architecture**

VI. IMPLEMENTATION AND RESULT DISCUSSION

We have used python for backend where we are using tensor-flow library for universal sentence encoder model. First the user will write down the input query on the frontend. After submitting the query, the query will be send to the server. Inside server, this input query will be fed to the universal sentence encoder model. Universal Sentence Encoder model will generate encoding of input query which is a 512 dimensional vector. These encoding is compared with the encodings of questions that are already stored in the database. We are comparing the 2 encodings of 2 sentences using correlation distance factor. Here we have taken threshold value for correlation distance factor to be 0.8. After comparing all the questions inside the database with the current original query, we will take the top 2 questions to the given input query using this correlation factor. Now we have a total of 3 queries, one is input query and the other two are similar queries. Now all these queries will be fed to the Scraping unit one by one. Scraping unit is a unit consisting of 3 search engines (Google, Bing, Yahoo). Each search engine will give us top 3 results which gives a total of 9 results for 1 query. Now we will remove the duplicate pages from these 9 results. So basically, we are sending all 3 queries one by one into the scraping unit which will give us the results from each query. Now these results also may have duplicates so we have removed the duplicates from here. So after this step we get all the results which we have to show to the user, but one last thing remains is to do ranking of each page. We have send the all the result pages along with its content and the original query to the ranking unit. In ranking unit all the results are ranked according to their relevancy with the given actual query. Relevancy is calculated by taking the content of the page which is converted to the corresponding 512 dimensional vector using universal sentence encoder and finding out the correlation distance factor between original query encoding vector and the content page encoding vector.
We will do this for all the result pages and sort pages according to the correlation distance factor. After sorting results will be shown to the users.

**Dataset used & Correlation Distance Factor:** This paper used quora questions pair’s dataset for finding out the similar queries. This dataset can be taken from the kaggle website. This dataset was published on 2016. There are over 400,000 lines of potential question duplicate pairs. This makes up total of 800,000 questions. After this each question is input to our universal sentence encoder model to get the corresponding 512 dimensional encoding vector which is stored in the database. It is a correlation coefficient between 2 vectors which will tell us how much these vectors are similar to each other. This factor will give us a value in between (0-1). If this factor is approaching to 1 then that means 2 vector are very similar to each other, otherwise they are not. Usually we can have to take a threshold value for this factor which can be 0.9 or 0.8 to distinguish between similar and not similar vectors. Here, in our implementation we have taken the threshold value to be 0.8. Universal Sentence Encoder will give us the encoding of vectors which is a fixed dimensional vector of size 512 irrespective of the size of input, that means whether the word, sentence or even paragraph is fed into the encoder it will give us a fixed length vector which will explain the input (of any length) in 512 dimensional space. With the help of this we can easily find the relevancy between the queries and between the query and pages. Output of Encoder which is stored in the database.

**Results and Discussion:** We have taken 5 queries from 5 domains (Person, Music, Education, Social Media, General). Queries that we have taken are:

(i) Who is Barack Obama? (Person)
(ii) Which are the best rap songs? (Music)
(iii) What is Web Applications? (Education)

How can we use twitter for money? (Social Media) Is creativity important? (General) Results for each query are shown in the table below. Table contains 4 columns (query, similar queries, results, relevancy score for each result). Each column is described below in brief:

(i) Query: this is the query input to the MSE.
(ii) Similar Queries: Similar queries of a given Query from database.
(iii) Results: Final extracted resultant pages
(iv) Relevancy Score: Score that represents correlation between original query and contents of resultant links.

Table 1 shows the following:

(i) Shows the results for the query “Who is Barack Obama?”
(ii) Shows the results for the query “Which are the best rap songs?”
(iii) Shows the results for the query “What is Web Applications?”
(iv) Shows the results for the query “How can we use twitter for money?”
(v) Shows the results for the query “Is creativity important?”

| S. No. | Query | Similar Queries | Result | Relevancy Score |
|-------|-------|-----------------|--------|-----------------|
| 1     | Who is Barack Obama? | Who is the president of America? | [link](https://www.biography.com/people/barack-obama-12782369) | 0.4193 143 |
| 2     | Which are the best rap songs? | What are some good rap songs to dance to? | [link](https://www.thetoptens.com/rap-songs.html) | 0.697 5456 5 |
| 3     | What is Web Applications? | | | |

| Dataset used & Correlation Distance Factor: | | | | |
|---------------------------------------------|-----------------|--------|-----------------|
| This paper used quora questions pair’s dataset for finding out the similar queries. This dataset can be taken from the kaggle website. This dataset was published on 2016. There are over 400,000 lines of potential question duplicate pairs. This makes up total of 800,000 questions. After this each question is input to our universal sentence encoder model to get the corresponding 512 dimensional encoding vector which is stored in the database. It is a correlation coefficient between 2 vectors which will tell us how much these vectors are similar to each other. This factor will give us a value in between (0-1). If this factor is approaching to 1 then that means 2 vector are very similar to each other, otherwise they are not. Usually we can have to take a threshold value for this factor which can be 0.9 or 0.8 to distinguish between similar and not similar vectors. Here, in our implementation we have taken the threshold value to be 0.8. Universal Sentence Encoder will give us the encoding of vectors which is a fixed dimensional vector of size 512 irrespective of the size of input, that means whether the word, sentence or even paragraph is fed into the encoder it will give us a fixed length vector which will explain the input (of any length) in 512 dimensional space. With the help of this we can easily find the relevancy between the queries and between the query and pages. Output of Encoder which is stored in the database. | |  | |

**Results and Discussion:** We have taken 5 queries from 5 domains (Person, Music, Education, Social Media, General). Queries that we have taken are:

(i) Who is Barack Obama? (Person)
(ii) Which are the best rap songs? (Music)
(iii) What is Web Applications? (Education)

How can we use twitter for money? (Social Media) Is creativity important? (General) Results for each query are shown in the table below. Table contains 4 columns (query, similar queries, results, relevancy score for each result). Each column is described below in brief:

(i) Query: this is the query input to the MSE.
(ii) Similar Queries: Similar queries of a given Query from database.
(iii) Results: Final extracted resultant pages
(iv) Relevancy Score: Score that represents correlation between original query and contents of resultant links.

Table 1 shows the following:

(i) Shows the results for the query “Who is Barack Obama?”
(ii) Shows the results for the query “Which are the best rap songs?”
(iii) Shows the results for the query “What is Web Applications?”
(iv) Shows the results for the query “How can we use twitter for money?”
(v) Shows the results for the query “Is creativity important?”

Table 1: Results for different queries with relevancy scores

| S. No. | Query | Similar Queries | Result | Relevancy Score |
|-------|-------|-----------------|--------|-----------------|
| 1     | Who is Barack Obama? | Who is the president of America? | [link](https://www.biography.com/people/barack-obama-12782369) | 0.4193 143 |
| 2     | Which are the best rap songs? | What are some good rap songs to dance to? | [link](https://www.thetoptens.com/rap-songs.html) | 0.697 5456 5 |
| 3     | What is Web Applications? | | | |

Table 1: Results for different queries with relevancy scores

| S. No. | Query | Similar Queries | Result | Relevancy Score |
|-------|-------|-----------------|--------|-----------------|
| 1     | Who is Barack Obama? | Who is the president of America? | [link](https://www.biography.com/people/barack-obama-12782369) | 0.4193 143 |
| 2     | Which are the best rap songs? | What are some good rap songs to dance to? | [link](https://www.thetoptens.com/rap-songs.html) | 0.697 5456 5 |
| 3     | What is Web Applications? | | | |

Table 1: Results for different queries with relevancy scores

| S. No. | Query | Similar Queries | Result | Relevancy Score |
|-------|-------|-----------------|--------|-----------------|
| 1     | Who is Barack Obama? | Who is the president of America? | [link](https://www.biography.com/people/barack-obama-12782369) | 0.4193 143 |
| 2     | Which are the best rap songs? | What are some good rap songs to dance to? | [link](https://www.thetoptens.com/rap-songs.html) | 0.697 5456 5 |
| 3     | What is Web Applications? | | | |

Table 1: Results for different queries with relevancy scores

| S. No. | Query | Similar Queries | Result | Relevancy Score |
|-------|-------|-----------------|--------|-----------------|
| 1     | Who is Barack Obama? | Who is the president of America? | [link](https://www.biography.com/people/barack-obama-12782369) | 0.4193 143 |
| 2     | Which are the best rap songs? | What are some good rap songs to dance to? | [link](https://www.thetoptens.com/rap-songs.html) | 0.697 5456 5 |
| 3     | What is Web Applications? | | | |

Table 1: Results for different queries with relevancy scores

| S. No. | Query | Similar Queries | Result | Relevancy Score |
|-------|-------|-----------------|--------|-----------------|
| 1     | Who is Barack Obama? | Who is the president of America? | [link](https://www.biography.com/people/barack-obama-12782369) | 0.4193 143 |
| 2     | Which are the best rap songs? | What are some good rap songs to dance to? | [link](https://www.thetoptens.com/rap-songs.html) | 0.697 5456 5 |
| 3     | What is Web Applications? | | | |
### Meta Search Engine using Semantic Similarity and Correlation Coefficient

|   | What is Web Application? | 3 | 4 | 5 |
|---|--------------------------|---|---|---|
|   |                          | 0.425 2886 2 | 0.558 0404 | 0.506 0072 |
| 3 | What is the web application framework? | https://rubyonrails.org/ | https://en.wikipedia.org/wiki/Web_application | https://en.wikipedia.org/wiki/Web_frame work | https://searchsoftwarequality.techtarget.com/definition/Web-application-Web-app |
| 4 | How can I use Twitter for money? | https://www.dictionary.com/browse/creativity | https://tscpl.org/art/why-creativity-is-important-in-everyday-life | https://www.youtube.com/watch?v=0S1UEcvVM |
|   |                          | https://docs.microsoft.com/en-us/aspnet/whitepapers/add-mobile-pages-to-your-aspnet-web-forms-mvc-application | https://analytics.twitter.com/ | https://www.youtube.com/watch?v=x9SiUEcvVM |
|   |                          | https://en.wikipedia.org/wiki/Web_application_framework | https://analytics.twitter.com/ | https://www.youtube.com/watch?v=x9SiUEcvVM |
|   |                          | https://en.wikipedia.org/wiki/Web_frame work | https://analytics.twitter.com/ | https://www.youtube.com/watch?v=x9SiUEcvVM |
|   |                          | https://searchsoftwarequality.techtarget.com/definition/Web-application-Web-app | https://analytics.twitter.com/ | https://www.youtube.com/watch?v=x9SiUEcvVM |
|   |                          | https://www.geeksforgeeks.org/top-10-frameworks-for-web-applications/ | https://analytics.twitter.com/ | https://www.youtube.com/watch?v=x9SiUEcvVM |
|   |                          | https://searchsoftwarequality.techtarget.com/definition/Web-application-Web-app | https://analytics.twitter.com/ | https://www.youtube.com/watch?v=x9SiUEcvVM |
| 5 | Is creativity important? | https://www.elytedaily.com/money/entrepreneurship/creativity-important-quality | https://www.linkedin.com/pulse/importan ce-creativity-innovation-business-siyana sokolova | https://www.elytedaily.com/money/entrepreneurship/creativity-important-quality |

#### VII. CONCLUSION

In proposed MSE authors have minimized the issues of intelligent query system by using Universal Sentence Encoder instead of Word2Vec model. This will help us to get similar semantic sentences. This helps us to maintain word semantic order in the sentence. In this MSE extraction of similar queries to the original query using correlation factor and then get the results from 3 search engines (Google, Bing, Yahoo) for each query. After getting results, ranking is performed according to the relevancy score. Relevancy score is calculated using correlation between contents of pages and the original query.

#### REFERENCES

1. A. Madhavi and K. Harisha Chari, “Architecture Based Study of Search Engine and Meta Search Engines For Information Retrieval”, International Journal of Engineering Research & Technology (IJERT), Vol.2, Issue 5, ISSN: 2278-0181, May – 2013
2. N. Kumar and R. Nath, “A Meta Search Engine Approach for Organizing Web Search Results using Ranking and Clustering,” International Journal of Computer, vol. 10, issue. 1, pp.1-7, ISSN: 2307-4531, 2013.
3. The Wikipedia website [Online]. Available: http://en.wikipedia.org/wiki/Meta-search_engine at 4:00PM (IST) on 23/09/2018.

4. V. Sivakumar, “Semantic Meta Search Engine Using Semantic Similarity Measure”, International Journal of Information System and Engineering, Vol. 3, ISSN: 2289-7615, November, 2015

5. Mr. K. P. Raghuvashi, “An Empirical Study on the Meta-Search Engine Optimization Technique Based on Keyword: A Review”, IBMRD's Journal of Management and Research, Vol. 3, Issue-2, ISSN: 2277-7830, September 2014

6. N. Kumar, Sonali and S. Gupta, “Non Overlapping Clustering based Meta Search Engine”; International Journal on Future Revolution in Computer Science & Communication Engineering, ISSN: 2454-4248, Volume: 3 Issue: 8, 172 – 177.

7. The Bing website [Online]. Available: https://blogs.bing.com/search-quality-insights May-2018/Towards-More-Intelligent-Search-Deep-Learning-for-Query-Semantics at 4:00PM (IST) on 23/09/2018.

AUTHORS PROFILE

Naresh Kumar holds a Ph. D. from Kurukshetra University, Kurukshetra and M. Tech. (Computer Science & Engineering) degree from YMCA University of Science and Technology, Faridabad. He is currently working as an associate professor at Maharaja Surajmal Institute of Technology, New Delhi since 2011. His area of research interest includes web crawlers, search engines and meta search engines. He has published more than 44 research papers in reputed journal and conferences.

Deepak Sharma is currently working as an Assistant Professor in the Department of Information Technology, Jagannath International Management School, Vasant Kunj, New Delhi. I am pursuing his PhD(CS) from Jagannath University, Jaipur. Also obtained M.Tech(CS) and MCA degree. I am having more than 14 years of experience in academics and industry. Main interest areas include Programming, Data Structure, Data Mining and Machine Learning, Search Engines and Web Crawlers. During the tenure of my service, I hold various important positions and proved myself as valuable asset for the organization. I was awarded “Best Employee Award” by the institute & also received appreciation letter from the Education department of Kandahar province, Afghanistan.

Nripendra Narayan Das received PhD from Gautam Buddh University, UP, India. Currently He is working as an Associate Professor in Department of Information Technology, Manipal University Jaipur, India. He has published more than 30 papers in National and International Journals. He has more than 24 Years of experience in Industry as well as in teaching.