DEFINABILITY OF A VARIETY
GENERATED BY A COMMUTATIVE MONOID
IN THE LATTICE OF COMMUTATIVE
SEMIGROUP VARIETIES

B. M. VERNIKOV

Abstract. Let M be a commutative monoid. We construct a first-order formula that defines the variety generated by M in the lattice of all commutative semigroup varieties.

A subset A of a lattice $\langle L; \lor, \land \rangle$ is called definable in L if there exists a first-order formula $\Phi(x)$ with one free variable x in the language of lattice operations \lor and \land which defines A in L. This means that, for an element $a \in L$, the sentence $\Phi(a)$ is true if and only if $a \in A$. If A consists of a single element, we speak about definability of this element.

We denote the lattice of all commutative semigroup varieties by Com. A set of commutative semigroup varieties X (or a single commutative semigroup variety X) is said to be definable if it is definable in Com. In this situation we will say that the corresponding first-order formula defines the set X or the variety X.

Let M be a commutative monoid. In [10, Corollary 4.8], we provide an explicit first-order formula that defines the variety generated by M in the lattice of all semigroup varieties. The objective of this note is to modify the arguments from [10] in order to present an explicit formula that defines the variety generated by M in the lattice Com.

We will denote the conjunction by $\&$ rather than \land because the latter symbol stands for the meet in a lattice. Since the disjunction and the join in a lattice are denoted usually by the same symbol \lor, we use this symbol for the join and denote the disjunction by \lor. Evidently, the relations \leq, \geq, $<$ and $>$ in a lattice L can be expressed in terms of, say, meet operation \land in L. So, we will freely use these four relations in formulas. Let $\Phi(x)$ be a first-order formula. For the sake of brevity, we put

$$\min_x \{ \Phi(x) \} \equiv \Phi(x) \& (\forall y) \left(y < x \rightarrow \neg \Phi(y) \right).$$

Clearly, the formula $\min_x \{ \Phi(x) \}$ defines the set of all minimal elements of the set defined by the formula $\Phi(x)$.

2000 Mathematics Subject Classification. Primary 20M07, secondary 08B15.

Key words and phrases. Semigroup, variety, lattice of varieties, commutative variety, monoid, first-order formula.

The work was partially supported by the Russian Foundation for Basic Research (grants No. 09-01-12142, 10-01-000524) and the Federal Education Agency of the Russian Federation (project No. 2.1.1/3537).
Many important sets of semigroup varieties admit a characterization in the language of atoms of the lattice Com. The set of all atoms of a lattice L with 0 is defined by the formula

$$A(x) \equiv (\exists y) \left((\forall z) (y \leq z) \& \min_x \{x \neq y\}\right).$$

A description of all atoms of the lattice Com directly follows from the well-known description of atoms of the lattice of all semigroup varieties (see [2, 8], for instance). To list these varieties, we need some notation.

By $\text{var } \Sigma$ we denote the semigroup variety given by the identity system Σ. A pair of identities $wx = xw = w$ where the letter x does not occur in the word w is usually written as the symbolic identity $w = 0_1$. Let us fix notation for several semigroup varieties:

- $A_n = \text{var } \{x^n y = y, xy = yx\}$ — the variety of Abelian groups whose exponent divides n,
- $SL = \text{var } \{x^2 = x, xy = yx\}$ — the variety of semilattices,
- $ZM = \text{var } \{xy = 0\}$ — the variety of null semigroups.

Lemma 1. The varieties A_p (where p is a prime number), SL, ZM and only they are atoms of the lattice Com. □

Put

$$\text{Neut}(x) \equiv (\forall y, z) \left((x \vee y) \wedge (y \vee z) \wedge (z \vee x) = (x \wedge y) \vee (y \wedge z) \vee (z \wedge x)\right).$$

An element x of a lattice L such that the sentence $\text{Neut}(x)$ is true is called neutral. We denote by T the trivial semigroup variety.

Lemma 2 ([6, Theorem 1.2]). A commutative semigroup variety V is a neutral element of the lattice Com if and only if either $V = COM$ or $V = M \vee N$ where M is one of the varieties T or SL, while the variety N satisfies the identity $x^2 y = 0$. □

For convenience of references, we formulate the following immediate consequence of Lemmas 1 and 2.

Corollary 3. An atom of the lattice Com is a neutral element of this lattice if and only if it coincides with one of the varieties SL or ZM. □

A semigroup variety V is called chain if the subvariety lattice of V is a chain. Clearly, each atom of Com is a chain variety. The set of all chain varieties is definable by the formula

$$\text{Ch}(x) \equiv (\forall y, z) (y \leq x \& z \leq x \rightarrow y \leq z \lor z \leq y).$$

We adopt the usual agreement that an adjective indicating a property shared by all semigroups of a given variety is applied to the variety itself; the expressions like “group variety”, “periodic variety”, “nil-variety” etc. are understood in this sense.

1This notation is justified because a semigroup with such identities has a zero element and all values of the word w in this semigroup are equal to zero.
Put
\[N_k = \text{var} \{ x^2 = x_1 x_2 \cdots x_k = 0, x y = y x \} \] (k is a natural number),
\[N_\omega = \text{var} \{ x^2 = 0, x y = y x \}, \]
\[N_3^c = \text{var} \{ x y z = 0, x y = y x \} \]
(in particular \(N_1 = \mathcal{T} \) and \(N_2 = \mathcal{ZM} \)). The lattice of all Abelian periodic group varieties is evidently isomorphic to the lattice of natural numbers ordered by divisibility. This readily implies that non-trivial chain Abelian group varieties are varieties \(A_{p^k} \) with prime \(p \) and natural \(k \), and only they. Combining this observation with results of [9], we have the following

Lemma 4. The varieties \(A_{p^k} \) with prime \(p \) and natural \(k \), \(SL, N_k, N_\omega, N_3^c \) and only they are chain varieties of commutative semigroups.

Fig. 1 shows the relative location of chain varieties in the lattice \(\text{Com} \).

Figure 1. Chain varieties of commutative semigroups

Combining above observations, it is easy to verify the following

Proposition 5. The set of varieties \(\{ A_p \mid p \text{ is a prime number} \} \) and the varieties \(SL \) and \(ZM \) are definable.

Proof. By Lemma 1, all varieties mentioned in the proposition are atoms of \(\text{Com} \). By Corollary 3, the varieties \(SL \) and \(ZM \) are neutral elements in \(\text{Com} \), while \(A_p \) is not. Fig. 1 shows that the varieties \(ZM \) and \(A_p \) are proper subvarieties of some chain varieties, while \(SL \) is not. Therefore the formulas
\[
SL(x) \iff A(x) \& \text{Neut}(x) \& (\forall y) \left(\text{Ch}(y) \& x \leq y \rightarrow x = y \right),
\]
\[
ZM(x) \iff A(x) \& \text{Neut}(x) \& (\exists y) \left(\text{Ch}(y) \& x < y \right)
\]
define the varieties \(SL \) and \(ZM \) respectively, while the the formula
\[
\text{GrA}(x) \iff A(x) \& \neg \text{Neut}(x) \& (\exists y) \left(\text{Ch}(y) \& x < y \right)
\]
define the set \(\{ A_p \mid p \text{ is a prime number} \} \).
Note that in fact each of the group atoms A_p is individually definable (see Proposition 15 below). The definability of the varieties SL and ZM is mentioned in [4, Proposition 3.1] without any explicitly written formulas.

Recall that a semigroup variety is called *combinatorial* if all its groups are trivial.

Proposition 6. The sets of all Abelian periodic group varieties, all combinatorial commutative varieties and of all commutative nil-varieties of semigroups are definable.

Proof. It is well known that a commutative semigroup variety is an Abelian periodic group variety [a combinatorial variety, a nil-variety] if and only if it does not contain the varieties SL and ZM [respectively, the varieties A_p for all prime p, any atoms except ZM]. Therefore, the sets of all Abelian periodic group varieties, all combinatorial commutative varieties and of all commutative nil-varieties are definable by the formulas

$$\text{Gr}(x) \equiv (\forall y) (A(y) \& y \leq x \rightarrow \text{GrA}(y));$$
$$\text{Comb}(x) \equiv (\forall y) (A(y) \& y \leq x \rightarrow \neg \text{GrA}(y));$$
$$\text{Nil}(x) \equiv (\forall y) (A(y) \& y \leq x \rightarrow \text{ZM}(y))$$

respectively.

The claim that the set of all Abelian periodic group varieties is definable in Com is proved in [4] without any explicitly written formula defining this class.

Identities of the form $w = 0$ are called 0-reduced. We denote by COM the variety of all commutative semigroups. A commutative semigroup variety is called 0-reduced in Com if it is given within COM by 0-reduced identities only.

Proposition 7. The set of all 0-reduced in Com commutative semigroup varieties is definable.

Proof. Put

$$\text{LMod}(x) \equiv (\forall y, z) (x \leq y \rightarrow x \vee (y \wedge z) = y \wedge (x \vee z)).$$

An element x of a lattice L such that the sentence $\text{LMod}(x)$ is true is called lower-modular. Lower-modular elements of the lattice Com are completely determined in [7, Theorem 1.6]. This result immediately implies that a commutative nil-variety is lower-modular in Com if and only if it is 0-reduced in Com. Therefore the formula

$$0\text{-red}(x) \equiv \text{Nil}(x) \& \text{LMod}(x)$$

defines the set of all 0-reduced in Com varieties.

The following general fact will be used in what follows.

Lemma 8. If a countably infinite subset S of a lattice L is definable in L and forms a chain isomorphic to the chain of natural numbers under the order relation in L then every member of this set is definable in L.

\[\square \]
Proof. Let \(S = \{ s_n \mid n \in \mathbb{N} \} \), \(s_1 < s_2 < \cdots < s_n < \cdots \) and let \(\Phi(x) \) be the formula defining \(S \) in \(L \). We are going to prove the definability of the element \(s_n \) for each \(n \) by induction on \(n \). The induction base is evident because the element \(s_1 \) is definable by the formula \(\min_x \{ \Phi(x) \} \). Assume now that \(n > 1 \) and the element \(s_{n-1} \) is definable by some formula \(\Psi(x) \). Then the formula

\[
\min_x \{ \Phi(x) \& (\exists y) (\Psi(y) \& y < x) \}
\]

defines the element \(s_n \). □

The following lemma is a part of the semigroup folklore. It is known at least since earlier 1980’s (see [5], for instance). In any case, it immediately follows from Lemma 2 of [11] and the proof of Proposition 1 of the same article.

Lemma 9. If \(V \) is a commutative semigroup variety with \(V \neq \mathsf{COM} \) then \(V = \mathcal{K} \sqcup \mathcal{N} \) where \(\mathcal{K} \) is a variety generated by a monoid, while \(\mathcal{N} \) is a nil-variety. □

Let \(C_{m, 1} \) denote the cyclic monoid \(\langle a \mid a^m = a^{m+1} \rangle \) and let \(C_m \) be the variety generated by \(C_{m, 1} \). It is clear that

\[
C_m = \text{var} \{ x^m = x^{m+1}, xy = yx \}.
\]

In particular, \(C_{1, 1} \) is the 2-element semilattice and \(C_1 = \mathcal{S} \mathcal{L} \). For notation convenience we put also \(C_0 = T \). The following lemma can be easily extracted from the results of [3].

Lemma 10. If a periodic semigroup variety \(V \) is generated by a commutative monoid then \(V = \mathcal{G} \sqcup C_m \) for some Abelian periodic group variety \(\mathcal{G} \) and some \(m \geq 0 \). □

Lemmas 9 and 10 immediately imply

Corollary 11. If \(V \) is a commutative combinatorial semigroup variety then \(V = C_m \sqcup \mathcal{N} \) for some \(m \geq 0 \) and some nil-variety \(\mathcal{N} \). □

Let now \(V \) be a commutative semigroup variety with \(V \neq \mathsf{COM} \). Lemmas 9 and 10 imply that \(V = \mathcal{G} \sqcup C_m \sqcup \mathcal{N} \) for some Abelian periodic group variety \(\mathcal{G} \), some \(m \geq 0 \) and some commutative nil-variety \(\mathcal{N} \). Our aim now is to provide formulas defining the varieties \(\mathcal{G} \) and \(C_m \).

It is well known that each periodic semigroup variety \(\mathcal{X} \) contains its greatest nil-subvariety. We denote this subvariety by \(\text{Nil}(\mathcal{X}) \). Put

\[
\mathcal{D}_m = \text{Nil}(C_m) = \text{var} \{ x^m = 0, xy = yx \}
\]

for every natural \(m \). In particular, \(\mathcal{D}_1 = T \) and \(\mathcal{D}_2 = \mathcal{N}_\omega \).

Proposition 12. For each \(m \geq 0 \), the variety \(C_m \) is definable.

Proof. First, we are going to verify that the formula

\[
\text{All-C}_m(x) = \text{Comb}(x) \& (\forall y, z) (\text{Nil}(y) \& x = y \lor z \rightarrow x = z)
\]

defines the set of varieties \(\{ C_m \mid m \geq 0 \} \) in \(\mathsf{Com} \). Let \(V \) be a commutative semigroup variety such that the sentence \(\text{All-C}_m(V) \) is true. Then \(V \) is combinatorial. Now Corollary 11 successfully applies with the conclusion that \(M = C_m \sqcup \mathcal{N} \) for
some \(m \geq 0 \) and some commutative nil-variety \(N \). The fact that the sentence \(\text{A11-C}_m(N) \) is true shows that \(M = C_m \).

Let now \(m \geq 0 \). We aim to verify that the sentence \(\text{A11-C}_m(C_m) \) is true. It is evident that the variety \(C_m \) is combinatorial. Suppose that \(C_m = M \lor N \) where \(N \) is a nil-variety. It remains to check that \(N \subseteq M \). We may assume without any loss that \(N = \text{Nil}(C_m) = D_m \). It is clear that \(M \) is a commutative and combinatorial variety. Corollary 11 implies that \(M = C_r \lor N' \) for some \(r \geq 0 \) and some nil-variety \(N' \). Then \(N' \subseteq \text{Nil}(C_m) = N \), whence

\[
C_m = M \lor N = C_r \lor N' \lor N = C_r \lor N.
\]

It suffices to prove that \(N \subseteq C_r \) because \(N \subseteq C_r \lor N' = M \) in this case. The equality \(C_m = C_r \lor N \) implies that \(C_r \subseteq C_m \), whence \(r \leq m \). If \(r = m \) then \(N \subseteq C_r \), and we are done. Let now \(r < m \). Then the variety \(C_m = C_r \lor N \) satisfies the identity \(x^r y^m = x^{r+1} y^m \). Recall that the variety \(C_m \) is generated by a monoid. Substituting 1 for \(y \) in this identity, we obtain that \(C_m \) satisfies the identity \(x^r = x^{r+1} \). Therefore \(C_m \subseteq C_r \) contradicting the inequality \(r < m \).

Thus we have proved that the set of varieties \(\{C_m \mid m \geq 0\} \) is definable by the formula \(\text{A11-C}_m(x) \). Now Lemma 8 successfully applies with the conclusion that the variety \(C_m \) is definable for each \(m \).

Proposition 13. For every natural number \(m \), the variety \(D_m \) is definable.

Proof. Every commutative semigroup variety either coincides with \(\text{COM} \) or is periodic. Thus the formula

\[
\text{Per}(x) \iff (\exists y)(x < y)
\]

defines the set of all periodic commutative varieties. In particular, if \(X \) is a commutative variety such that the sentence \(\text{Per}(X) \) is true then the variety \(\text{Nil}(X) \) there exists. Put

\[
\text{Nil-part}(x, y) \iff \text{Per}(x) \land y \leq x \land \text{Nil}(y) \land (\forall z)(z \leq x \land \text{Nil}(z) \rightarrow z \leq y).
\]

Clearly, if \(X \) and \(Y \) are commutative semigroup varieties then the sentence \(\text{Nil-part}(X, Y) \) is true if and only if \(X \) is periodic and \(Y = \text{Nil}(X) \). Let \(C_m \) be the formula defining the variety \(C_m \). The variety \(D_m \) is defined by the formula

\[
\text{D}_m(x) \iff (\exists y)(C_m(y) \land \text{Nil-part}(y, x))
\]

because \(D_m = \text{Nil}(C_m) \).

If \(X \) is a commutative nil-variety of semigroups then we denote by \(\text{ZR}(X) \) the least 0-reduced in \(\text{Com} \) variety that contains \(X \). Clearly, the variety \(\text{ZR}(X) \) is given within \(\text{COM} \) by all 0-reduced identities that hold in \(X \). If \(u \) is a word and \(x \) is a letter then \(c(u) \) denotes the set of all letters occurring in \(u \), while \(\ell_x(u) \) stands for the number of occurrences of \(x \) in \(u \).

Lemma 14. Let \(m \) and \(n \) be natural numbers with \(m > 2 \) and \(n > 1 \). The following are equivalent:

(i) \(\text{Nil}(A_n \lor X) = \text{ZR}(X) \) for any variety \(X \subseteq D_m \);

(ii) \(n \geq m - 1 \).
Proof. (i)→(ii) Suppose that \(n < m - 1 \). Let \(\mathcal{X} \) be the subvariety of \(\mathcal{D}_m \) given within \(\mathcal{D}_m \) by the identity
\[
x^{n+1}y = xy^{n+1}.
\]
Since \(n+1 < m \), the variety \(\mathcal{X} \) is not 0-reduced in \(\textbf{Com} \). Note that \(\mathcal{X} \subseteq \text{Nil}(\mathcal{A}_n \lor \mathcal{X}) \) because \(\mathcal{X} \) is a nil-variety. The identity (1) holds in the variety \(\mathcal{A}_n \lor \mathcal{X} \), and therefore in the variety \(\text{Nil}(\mathcal{A}_n \lor \mathcal{X}) \). But the latter variety does not satisfy the identity \(x^{n+1}y = 0 \) because this identity fails in \(\mathcal{X} \). We see that the variety \(\text{Nil}(\mathcal{A}_n \lor \mathcal{X}) \) is not 0-reduced in \(\textbf{Com} \). Since the variety \(\text{ZR}(\mathcal{X}) \) is 0-reduced in \(\textbf{Com} \), we are done.

(ii)→(i) Let \(n \geq m - 1 \) and \(\mathcal{X} \subseteq \mathcal{D}_m \). One can verify that \(\mathcal{A}_n \lor \mathcal{X} = \mathcal{A}_n \lor \text{ZR}(\mathcal{X}) \). Note that this equality immediately follows from [6, Lemma 2.5] whenever \(n \geq m \). We reproduce here the corresponding arguments for the sake of completeness. It suffices to check that \(\mathcal{A}_n \lor \text{ZR}(\mathcal{X}) \subseteq \mathcal{A}_n \lor \mathcal{X} \) because the opposite inclusion is evident. Suppose that the variety \(\mathcal{A}_n \lor \mathcal{X} \) satisfies an identity \(u = v \). We need to prove that this identity holds in \(\mathcal{A}_n \lor \text{ZR}(\mathcal{X}) \). Since \(u = v \) holds in \(\mathcal{A}_n \), we have \(\ell_x(u) = \ell_x(v)(\text{mod } n) \) for any letter \(x \). If \(\ell_x(u) = \ell_x(v) \) for all letters \(x \) then \(u = v \) holds in \(\mathcal{A}_n \lor \text{ZR}(\mathcal{X}) \) because this variety is commutative. Therefore we may assume that \(\ell_x(u) \neq \ell_x(v) \) for some letter \(x \). Then either \(\ell_x(u) \geq n \) or \(\ell_x(v) \geq n \). We may assume without any loss that \(\ell_x(u) \geq n \).

Suppose that \(n \geq m \). Then the identity \(u = 0 \) holds in the variety \(\mathcal{D}_m \), whence it holds in \(\mathcal{X} \). This implies that \(v = 0 \) holds in \(\mathcal{X} \) too. Therefore the variety \(\text{ZR}(\mathcal{X}) \) satisfies the identities \(u = 0 = v \). Since the identity \(u = v \) holds in \(\mathcal{A}_n \), it holds in \(\mathcal{A}_n \lor \text{ZR}(\mathcal{X}) \), and we are done.

It remains to consider the case \(n = m - 1 \). Let \(x \) be a letter with \(x \in c(u) \cup c(v) \) and \(\ell_x(u) \neq \ell_x(v) \). If either \(\ell_x(u) \geq m \) or \(\ell_x(v) \geq m \), we go to the situation considered in the previous paragraph. Let now \(\ell_x(u), \ell_x(v) < m \). Since \(\ell_x(u) \geq n = m - 1 \), \(\ell_x(u) = \ell_x(v)(\text{mod } n) \) and \(\ell_x(u) \neq \ell_x(v) \), we have \(\ell_x(u) = n = m - 1 \) and \(\ell_x(v) = 0 \). The latter equality means that \(x \notin c(v) \). Substituting \(0 \) for \(x \) in \(u = v \), we obtain that the variety \(\mathcal{X} \) satisfies the identity \(v = 0 \). We go to the situation considered in the previous paragraph again.

We have proved that \(\mathcal{A}_n \lor \mathcal{X} = \mathcal{A}_n \lor \text{ZR}(\mathcal{X}) \). Therefore \(\text{ZR}(\mathcal{X}) \subseteq \text{Nil}(\mathcal{A}_n \lor \mathcal{X}) \). If the variety \(\mathcal{X} \) satisfies an identity \(u = 0 \) then \(u^{n+1} = u \) holds in \(\mathcal{A}_n \lor \mathcal{X} \). This readily implies that \(u = 0 \) in \(\text{Nil}(\mathcal{A}_n \lor \mathcal{X}) \). Hence \(\text{Nil}(\mathcal{A}_n \lor \mathcal{X}) \subseteq \text{ZR}(\mathcal{X}) \). Thus \(\text{Nil}(\mathcal{A}_n \lor \mathcal{X}) = \text{ZR}(\mathcal{X}) \). \(\square\)

Now we are well prepared to prove the following

Proposition 15. An arbitrary Abelian periodic group variety is definable.

Proof. Abelian periodic group varieties are exhausted by the trivial variety and the varieties \(\mathcal{A}_n \) with \(n > 1 \). The trivial variety is obviously definable. For brevity, put
\[
\text{ZR}(x, y) \equiv \text{0-red}(y) \land x \leq y \land (\forall z)(\text{0-red}(z) \land x \leq z \rightarrow y \leq z).
\]
The sentence \(\text{ZR}(\mathcal{X}, \mathcal{Y}) \) is true if and only if \(\mathcal{Y} = \text{ZR}(\mathcal{X}) \). Let \(m \) be a natural number with \(m > 2 \). In view of Lemma 14, the formula
\[
\mathcal{A}_{2^m-1}(x) \equiv \text{Gr}(x) \land (\forall y, z, t)(\text{D}_m(y) \land z \leq y \land \text{Nil-part}(x \lor z, t) \rightarrow \text{ZR}(z, t))
\]
defines the set of varieties \(\{ A_n \mid n \geq m - 1 \} \). Therefore the formula

\[
A_n(x) \iff A_{\geq n}(x) \& \neg A_{\geq n+1}(x)
\]

defines the variety \(A_n \).

It was proved in [4] that each Abelian group variety is definable in the lattice \(\text{Com} \). However this paper contain no explicit first-order formula defining any given Abelian periodic group variety.

Now we are ready to achieve the goal of this note.

Theorem 16. A semigroup variety generated by a commutative monoid is definable.

Proof. Let \(\mathcal{V} \) be a variety generated by some commutative monoid. According to Lemma 10, \(\mathcal{V} = A_n \vee C_m \) for some \(n \geq 1 \) and \(m \geq 0 \). It is easy to check that the parameters \(n \) and \(m \) in this decomposition are defined uniquely. Therefore the formula

\[
(\exists y, z) \left(A_n(y) \& C_m(z) \& x = y \lor z \right)
\]

defines the variety \(\mathcal{V} \) (we assume here that \(A_1 \) is the evident formula defining the variety \(A_1 = T \)).

Acknowledgement. The author thanks Dr. Olga Sapir for many stimulating discussions.

References

[1] A. Ya. Aizenštat, *On some sublattices of the lattice of semigroup varieties*, Modern Algebra, Leningrad: Leningrad State Pedagogical Institute, No. 1 (1974), 3–15 [Russian].

[2] T. Evans, *The lattice of semigroup varieties*, Semigroup Forum, 2 (1971), 1–43.

[3] T. J. Head, *The lattice of varieties of commutative monoids*, Nieuw Arch. Wiskunde, 16 (1968), 203–206.

[4] A. Kisielewicz, *Definability in the lattice of equational theories of commutative semigroups*, Trans. Amer. Math. Soc., 356 (2004), 3483–3504.

[5] I. O. Korjakov, *A sketch of the lattice of commutative nilpotent semigroup varieties*, Semigroup Forum, 24 (1982), 285–317.

[6] V. Yu. Shaprynskii, *Distributive and neutral elements of the lattice of commutative semigroup varieties*, Izv. VUZ, Matem., accepted [Russian].

[7] V. Yu. Shaprynskii, *Modular and lower-modular elements of lattices of semigroup varieties*, Semigroup Forum, submitted; available at http://arxiv.org/abs/1009.1929.

[8] L. N. Shevrin, B. M. Vernikov and M. V. Volkov, *Lattices of semigroup varieties*, Izv. VUZ, Matemat., No. 3 (2009), 3–36 [Russian; Engl. translation: Russian Math. Iz. VUZ, 58, No. 3 (2009), 1–28].

[9] E. V. Sukhanov, *Almost linear semigroup varieties*, Matem. Zametki, 32 (1982), 469–476 [Russian; Engl. translation: Math. Notes, 32 (1983), 714–717].

[10] B. M. Vernikov, *Proofs of definability of some varieties and sets of varieties of semigroups*, Semigroup Forum, submitted; available at http://arxiv.org/abs/1009.1239.

[11] M. V. Volkov, *Semigroup varieties with modular subvariety lattices*, Izv. VUZ. Matemat., No. 6 (1989), 51–60 [Russian; Engl. translation: Soviet Math. Iz. VUZ, 33, No. 6 (1989), 48–58].

Department of Mathematics and Mechanics, Ural State University, Lenina 51, 620083 Ekaterinburg, Russia

E-mail address: bvernikov@gmail.com
DEFINABILITY OF THE VARIETY
GENERATED BY A COMMUTATIVE MONOID
IN THE LATTICE OF COMMUTATIVE
SEMIGROUP VARIETIES

B. M. VERNIKOV

Abstract. Let M be a commutative monoid. We construct a first-order formula that defines the variety generated by M in the lattice of all commutative semigroup varieties.

A subset A of a lattice $\langle L; \lor, \land \rangle$ is called definable in L if there exists a first-order formula $\Phi(x)$ with one free variable x in the language of lattice operations \lor and \land which defines A in L. This means that, for an element $a \in L$, the sentence $\Phi(a)$ is true if and only if $a \in A$. If A consists of a single element, we speak about definability of this element.

We denote the lattice of all commutative semigroup varieties by Com. A set of commutative semigroup varieties X (or a single commutative semigroup variety \mathcal{X}) is said to be definable if it is definable in Com. In this situation we will say that the corresponding first-order formula defines the set X or the variety \mathcal{X}.

Let M be a commutative monoid. In [10, Corollary 4.8], we provide an explicit first-order formula that defines the variety generated by M in the lattice of all semigroup varieties. The objective of this note is to modify the arguments from [10] in order to present an explicit formula that defines the variety generated by M in the lattice Com.

We will denote the conjunction by $\&$ rather than \land because the latter symbol stands for the meet in a lattice. Since the disjunction and the join in a lattice are denoted usually by the same symbol \lor, we use this symbol for the join and denote the disjunction by \lor. Evidently, the relations \leq, \geq, $<$ and $>$ in a lattice L can be expressed in terms of, say, meet operation \land in L. So, we will freely use these four relations in formulas. Let $\Phi(x)$ be a first-order formula. For the sake of brevity, we put

$$\min_x \{\Phi(x)\} \equiv \Phi(x) & (\forall y)(y < x \rightarrow \neg \Phi(y)).$$

Clearly, the formula $\min_x \{\Phi(x)\}$ defines the set of all minimal elements of the set defined by the formula $\Phi(x)$.

2000 Mathematics Subject Classification. Primary 20M07, secondary 08B15.

Key words and phrases. Semigroup, variety, lattice of varieties, commutative variety, monoid, first-order formula.

The work was partially supported by the Russian Foundation for Basic Research (grants No. 09-01-12142, 10-01-000524) and the Federal Education Agency of the Russian Federation (project No. 2.1.1/3537).
Many important sets of semigroup varieties admit a characterization in the language of atoms of the lattice Com. The set of all atoms of a lattice L with 0 is defined by the formula

$$A(x) \equiv (\exists y) \left((\forall z) (y \leq z) \& \min_x \{x \neq y\} \right).$$

A description of all atoms of the lattice Com directly follows from the well-known description of atoms of the lattice of all semigroup varieties (see [2, 8], for instance). To list these varieties, we need some notation.

By $\text{var} \Sigma$ we denote the semigroup variety given by the identity system Σ. A pair of identities $wx = xw = w$ where the letter x does not occur in the word w is usually written as the symbolic identity $w = 0^1$. Let us fix notation for several semigroup varieties:

$$A_n = \text{var} \{ x^n y = y, xy = yx \}$$ — the variety of Abelian groups
whose exponent divides n,

$$SL = \text{var} \{ x^2 = x, xy = yx \}$$ — the variety of semilattices,

$$ZM = \text{var} \{ xy = 0 \}$$ — the variety of null semigroups.

Lemma 1. The varieties A_p (where p is a prime number), SL, ZM and only they are atoms of the lattice Com. \hfill \Box

Put

$$\text{Neut}(x) \equiv (\forall y, z) \left((x \lor y) \land (y \lor z) \land (z \lor x) = (x \land y) \lor (y \land z) \lor (z \land x) \right).$$

An element x of a lattice L such that the sentence $\text{Neut}(x)$ is true is called neutral. We denote by T the trivial semigroup variety.

Lemma 2 ([6, Theorem 1.2]). A commutative semigroup variety V is a neutral element of the lattice Com if and only if either $V = \text{COM}$ or $V = M \lor N$ where M is one of the varieties T or SL, while the variety N satisfies the identity $x^2 y = 0$. \hfill \Box

For convenience of references, we formulate the following immediate consequence of Lemmas 1 and 2.

Corollary 3. An atom of the lattice Com is a neutral element of this lattice if and only if it coincides with one of the varieties SL or ZM. \hfill \Box

A semigroup variety V is called chain if the subvariety lattice of V is a chain. Clearly, each atom of Com is a chain variety. The set of all chain varieties is definable by the formula

$$\text{Ch}(x) \equiv (\forall y, z) (y \leq x \& z \leq x \rightarrow y \leq z \text{ OR } z \leq y).$$

We adopt the usual agreement that an adjective indicating a property shared by all semigroups of a given variety is applied to the variety itself; the expressions like “group variety”, “periodic variety”, “nil-variety” etc. are understood in this sense.

1. This notation is justified because a semigroup with such identities has a zero element and all values of the word w in this semigroup are equal to zero.
Put
\[N^k = \text{var}\{x^2 = x_1 x_2 \cdots x_k = 0, xy = yx\} \quad (k \text{ is a natural number}), \]
\[N^\omega = \text{var}\{x^2 = 0, xy = yx\}, \]
\[N^3_3 = \text{var}\{xyz = 0, xy = yx\} \]
(in particular \(N^1 = T \) and \(N^2 = ZM \)). The lattice of all Abelian periodic group varieties is evidently isomorphic to the lattice of natural numbers ordered by divisibility. This readily implies that non-trivial chain Abelian group varieties are varieties \(A^p_k \) with prime \(p \) and natural \(k \), and only they. Combining this observation with results of [9], we have the following

Lemma 4. The varieties \(A^p_k \) with prime \(p \) and natural \(k \), \(SL \), \(N_k \), \(N^\omega \), \(N^3_3 \) and only they are chain varieties of commutative semigroups. \(\square \)

Fig. 1 shows the relative location of chain varieties in the lattice \(\text{Com} \).

![Figure 1. Chain varieties of commutative semigroups](image)

Combining above observations, it is easy to verify the following

Proposition 5. The set of varieties \(\{A_p | p \text{ is a prime number}\} \) and the varieties \(SL \) and \(ZM \) are definable.

Proof. By Lemma 1, all varieties mentioned in the proposition are atoms of \(\text{Com} \). By Corollary 3, the varieties \(SL \) and \(ZM \) are neutral elements in \(\text{Com} \), while \(A_p \) is not. Fig. 1 shows that the varieties \(ZM \) and \(A_p \) are proper subvarieties of some chain varieties, while \(SL \) is not. Therefore the formulas
\[
SL(x) = A(x) \& \text{Neut}(x) \& (\forall y) \left(\text{Ch}(y) \& x \leq y \rightarrow x = y \right),
\]
\[
ZM(x) = A(x) \& \text{Neut}(x) \& (\exists y) \left(\text{Ch}(y) \& x < y \right)
\]
define the varieties \(SL \) and \(ZM \) respectively, while the the formula
\[
\text{Gr}(x) = A(x) \& \neg \text{Neut}(x) \& (\exists y) \left(\text{Ch}(y) \& x < y \right)
\]
define the set \(\{A_p | p \text{ is a prime number}\} \). \(\square \)
Note that in fact each of the group atoms A_p is individually definable (see Proposition 15 below). The definability of the varieties SL and ZM is mentioned in [4, Proposition 3.1] without any explicitly written formulas.

Recall that a semigroup variety is called combinatorial if all its groups are trivial.

Proposition 6. The sets of all Abelian periodic group varieties, all combinatorial commutative varieties and of all commutative nil-varieties of semigroups are definable.

Proof. It is well known that a commutative semigroup variety is an Abelian periodic group variety [a combinatorial variety, a nil-variety] if and only if it does not contain the varieties SL and ZM [respectively, the varieties A_p for all prime p, any atoms except ZM]. Therefore, the sets of all Abelian periodic group varieties, all combinatorial commutative varieties and of all commutative nil-varieties are definable by the formulas

$$\text{Gr}(x) \equiv (\forall y) \left(A(y) & y \leq x \rightarrow \text{Gr}A(y) \right);$$
$$\text{Comb}(x) \equiv (\forall y) \left(A(y) & y \leq x \rightarrow -\text{Gr}A(y) \right);$$
$$\text{Nil}(x) \equiv (\forall y) \left(A(y) & y \leq x \rightarrow ZM(y) \right)$$

respectively. \hfill \Box

The claim that the set of all Abelian periodic group varieties is definable in Com is proved in [4] without any explicitly written formula defining this class.

Identities of the form $w = 0$ are called 0-reduced. We denote by COM the variety of all commutative semigroups. A commutative semigroup variety is called 0-reduced in Com if it is given within COM by 0-reduced identities only.

Proposition 7. The set of all 0-reduced in Com commutative semigroup varieties is definable.

Proof. Put

$$\text{LMod}(x) \equiv (\forall y, z) \left(x \leq y \rightarrow x \lor (y \land z) = y \land (x \lor z) \right).$$

An element x of a lattice L such that the sentence $\text{LMod}(x)$ is true is called lower-modular. Lower-modular elements of the lattice Com are completely determined in [7, Theorem 1.6]. This result immediately implies that a commutative nil-variety is lower-modular in Com if and only if it is 0-reduced in Com. Therefore the formula

$$\text{0-red}(x) \equiv \text{Nil}(x) & \text{LMod}(x)$$

defines the set of all 0-reduced in Com varieties. \hfill \Box

The following general fact will be used in what follows.

Lemma 8. If a countably infinite subset S of a lattice L is definable in L and forms a chain isomorphic to the chain of natural numbers under the order relation in L then every member of this set is definable in L.
Proof. Let \(S = \{ s_n \mid n \in \mathbb{N} \} \), \(s_1 < s_2 < \cdots < s_n < \cdots \) and let \(\Phi(x) \) be the formula defining \(S \) in \(L \). We are going to prove the definability of the element \(s_n \) for each \(n \) by induction on \(n \). The induction base is evident because the element \(s_1 \) is definable by the formula \(\min_x \{ \Phi(x) \} \). Assume now that \(n > 1 \) and the element \(s_{n-1} \) is definable by some formula \(\Psi(x) \). Then the formula
\[
\min_x \{ \Phi(x) & (\exists y) (\Psi(y) & y < x) \}
\]
defines the element \(s_n \).

The following lemma is a part of the semigroup folklore. It is known at least since earlier 1980’s (see [5], for instance). In any case, it immediately follows from Lemma 2 of [11] and the proof of Proposition 1 of the same article.

Lemma 9. If \(V \) is a commutative semigroup variety with \(V \neq \text{COM} \) then \(V = K \lor N \) where \(K \) is a variety generated by a monoid, while \(N \) is a nil-variety.

Let \(C_{m,1} \) denote the cyclic monoid \(\langle a \mid a^m = a^{m+1} \rangle \) and let \(C_m \) be the variety generated by \(C_{m,1} \). It is clear that
\[
C_m = \text{var}\{x^m = x^{m+1}, xy = yx\}.
\]
In particular, \(C_{1,1} \) is the 2-element semilattice and \(C_1 = \mathcal{S} \mathcal{L} \). For notation convenience we put also \(C_0 = \mathcal{T} \). The following lemma can be easily extracted from the results of [3].

Lemma 10. If a periodic semigroup variety \(V \) is generated by a commutative monoid then \(V = G \lor C_m \) for some Abelian periodic group variety \(G \) and some \(m \geq 0 \).

Lemmas 9 and 10 immediately imply

Corollary 11. If \(V \) is a commutative combinatorial semigroup variety then \(V = C_m \lor N \) for some \(m \geq 0 \) and some nil-variety \(N \).

Let now \(V \) be a commutative semigroup variety with \(V \neq \text{COM} \). Lemmas 9 and 10 imply that \(V = G \lor C_m \lor N \) for some Abelian periodic group variety \(G \), some \(m \geq 0 \) and some commutative nil-variety \(N \). Our aim now is to provide formulas defining the varieties \(G \) and \(C_m \).

It is well known that each periodic semigroup variety \(X \) contains its greatest nil-subvariety. We denote this subvariety by \(\text{Nil}(X) \). Put
\[
D_m = \text{Nil}(C_m) = \text{var}\{x^m = 0, xy = yx\}
\]
for every natural \(m \). In particular, \(D_1 = \mathcal{T} \) and \(D_2 = N_\omega \).

Proposition 12. For each \(m \geq 0 \), the variety \(C_m \) is definable.

Proof. First, we are going to verify that the formula
\[
\text{All-C}_m(x) \Rightarrow \text{Comb}(x) \land (\forall y, z) (\text{Nil}(y) \land x = y \lor z \rightarrow x = z)
\]
defines the set of varieties \(\{ C_m \mid m \geq 0 \} \) in \(\text{Com} \). Let \(V \) be a commutative semigroup variety such that the sentence \(\text{All-C}_m(V) \) is true. Then \(V \) is combinatorial. Now Corollary 11 successfully applies with the conclusion that \(M = C_m \lor N \) for
some \(m \geq 0\) and some commutative nil-variety \(N\). The fact that the sentence \(\text{All-}C_m(\mathcal{V})\) is true shows that \(\mathcal{M} = C_m\).

Let now \(m \geq 0\). We aim to verify that the sentence \(\text{All-}C_m(C_m)\) is true. It is evident that the variety \(C_m\) is combinatorial. Suppose that \(C_m = \mathcal{M} \vee \mathcal{N}\) where \(\mathcal{N}\) is a nil-variety. It remains to check that \(\mathcal{N} \subseteq \mathcal{M}\). We may assume without any loss that \(\mathcal{N} = \text{Nil}(C_m) = D_m\). It is clear that \(\mathcal{M}\) is a commutative and combinatorial variety. Corollary 11 implies that \(\mathcal{M} = C_r \vee N'\) for some \(r \geq 0\) and some nil-variety \(N'\). Then \(N' \subseteq \text{Nil}(C_m) = N\), whence

\[
C_m = \mathcal{M} \vee \mathcal{N} = C_r \vee N' \vee N = C_r \vee N.
\]

It suffices to prove that \(\mathcal{N} \subseteq C_r\) because \(\mathcal{N} \subseteq C_r \vee N' = \mathcal{M}\) in this case. The equality \(C_m = C_r \vee N\) implies that \(C_r \subseteq C_m\), whence \(r \leq m\). If \(r = m\) then \(\mathcal{N} \subseteq C_r\), and we are done. Let now \(r < m\). Then the variety \(C_m = C_r \vee N\) satisfies the identity \(x^r y^m = x^{r+1} y^m\). Recall that the variety \(C_m\) is generated by a monoid. Substituting 1 for \(y\) in this identity, we obtain that \(C_m\) satisfies the identity \(x^r = x^{r+1}\). Therefore \(C_m \subseteq C_r\) contradicting the inequality \(r < m\).

Thus we have proved that the set of varieties \(\{C_m \mid m \geq 0\}\) is definable by the formula \(\text{All-}C_m(x)\). Now Lemma 8 successfully applies with the conclusion that the variety \(C_m\) is definable for each \(m\).

\[\square\]

Proposition 13. For every natural number \(m\), the variety \(D_m\) is definable.

Proof. Every commutative semigroup variety either coincides with \(\text{COM}\) or is periodic. Thus the formula

\[
\text{Per}(x) \equiv (\exists y)(x < y)
\]

defines the set of all periodic commutative varieties. In particular, if \(\mathcal{X}\) is a commutative variety such that the sentence \(\text{Per}(\mathcal{X})\) is true then the variety \(\text{Nil}(\mathcal{X})\) there exists. Put

\[
\text{Nil-part}(x, y) \equiv \text{Per}(x) \& y \leq x \& \text{Nil}(y) \& (\forall z)(z \leq x \& \text{Nil}(z) \rightarrow z \leq y).
\]

Clearly, if \(\mathcal{X}\) and \(\mathcal{Y}\) are commutative semigroup varieties then the sentence \(\text{Nil-part}(\mathcal{X}, \mathcal{Y})\) is true if and only if \(\mathcal{X}\) is periodic and \(\mathcal{Y} = \text{Nil}(\mathcal{X})\). Let \(C_m\) be the formula defining the variety \(C_m\). The variety \(D_m\) is defined by the formula

\[
D_m(x) \equiv (\exists y)(C_m(y) \& \text{Nil-part}(y, x))
\]

because \(D_m = \text{Nil}(C_m)\).

\[\square\]

If \(\mathcal{X}\) is a commutative nil-variety of semigroups then we denote by \(\text{ZR}(\mathcal{X})\) the least 0-reduced in \(\text{Com}\) variety that contains \(\mathcal{X}\). Clearly, the variety \(\text{ZR}(\mathcal{X})\) is given within \(\text{COM}\) by all 0-reduced identities that hold in \(\mathcal{X}\). If \(u\) is a word and \(x\) is a letter then \(c(u)\) denotes the set of all letters occurring in \(u\), while \(\ell_x(u)\) stands for the number of occurrences of \(x\) in \(u\).

Lemma 14. Let \(m\) and \(n\) be natural numbers with \(m > 2\) and \(n > 1\). The following are equivalent:

(i) \(\text{Nil}(A_n \vee \mathcal{X}) = \text{ZR}(\mathcal{X})\) for any variety \(\mathcal{X} \subseteq D_m\),

(ii) \(n \geq m - 1\).
Proof. (i) — (ii) Suppose that $n < m − 1$. Let \mathcal{X} be the subvariety of \mathcal{D}_m given within \mathcal{D}_m by the identity
\[(1) \quad x^{n+1}y = xy^{n+1}.\]
Since $n+1 < m$, the variety \mathcal{X} is not 0-reduced in Com. Note that $\mathcal{X} \subseteq \text{Nil}(\mathcal{A}_n \lor \mathcal{X})$ because \mathcal{X} is a nil-variety. The identity (1) holds in the variety $\mathcal{A}_n \lor \mathcal{X}$, and therefore in the variety $\text{Nil}(\mathcal{A}_n \lor \mathcal{X})$. But the latter variety does not satisfy the identity $x^{n+1}y = 0$ because this identity fails in \mathcal{X}. We see that the variety $\text{Nil}(\mathcal{A}_n \lor \mathcal{X})$ is not 0-reduced in Com. Since the variety $\text{ZR}(\mathcal{X})$ is 0-reduced in Com, we are done.

(ii) — (i) Let $n \geq m − 1$ and $\mathcal{X} \subseteq \mathcal{D}_m$. One can verify that $\mathcal{A}_n \lor \mathcal{X} = \mathcal{A}_n \lor \text{ZR}(\mathcal{X})$. Note that this equality immediately follows from [6, Lemma 2.5] whenever $n \geq m$. We reproduce here the corresponding arguments for the sake of completeness. It suffices to check that $\mathcal{A}_n \lor \text{ZR}(\mathcal{X}) \subseteq \mathcal{A}_n \lor \mathcal{X}$ because the opposite inclusion is evident. Suppose that the variety $\mathcal{A}_n \lor \mathcal{X}$ satisfies an identity $u = v$. We need to prove that this identity holds in $\mathcal{A}_n \lor \text{ZR}(\mathcal{X})$. Since $u = v$ holds in \mathcal{A}_n, we have $\ell_x(u) \equiv \ell_x(v) \pmod{n}$ for any letter x. If $\ell_x(u) = \ell_x(v)$ for all letters x then $u = v$ holds in $\mathcal{A}_n \lor \text{ZR}(\mathcal{X})$ because this variety is commutative. Therefore we may assume that $\ell_x(u) \neq \ell_x(v)$ for some letter x. Then either $\ell_x(u) \geq n$ or $\ell_x(v) \geq n$. We may assume without any loss that $\ell_x(u) \geq n$.

Suppose that $n \geq m$. Then the identity $u = 0$ holds in the variety \mathcal{D}_m, whence it holds in \mathcal{X}. This implies that $v = 0$ holds in \mathcal{X} too. Therefore the variety $\text{ZR}(\mathcal{X})$ satisfies the identities $u = 0 = v$. Since the identity $u = v$ holds in \mathcal{A}_n, it holds in $\mathcal{A}_n \lor \text{ZR}(\mathcal{X})$, and we are done.

It remains to consider the case $n = m − 1$. Let x be a letter with $x \in c(u) \cup c(v)$ and $\ell_x(u) \neq \ell_x(v)$. If either $\ell_x(u) \geq m$ or $\ell_x(v) \geq m$, we go to the situation considered in the previous paragraph. Let now $\ell_x(u), \ell_x(v) < m$. Since $\ell_x(u) \geq n = m − 1$, $\ell_x(u) \equiv \ell_x(v) \pmod{n}$ and $\ell_x(u) \neq \ell_x(v)$, we have $\ell_x(u) = n = m − 1$ and $\ell_x(v) = 0$. The latter equality means that $x \not\in c(v)$. Substituting 0 for x in $u = v$, we obtain that the variety \mathcal{X} satisfies the identity $v = 0$. We go to the situation considered in the previous paragraph again.

We have proved that $\mathcal{A}_n \lor \mathcal{X} = \mathcal{A}_n \lor \text{ZR}(\mathcal{X})$. Therefore $\text{ZR}(\mathcal{X}) \subseteq \text{Nil}(\mathcal{A}_n \lor \mathcal{X})$. If the variety \mathcal{X} satisfies an identity $u = 0$ then $u^{n+1} = u$ holds in $\mathcal{A}_n \lor \mathcal{X}$. This readily implies that $u = 0$ in $\text{Nil}(\mathcal{A}_n \lor \mathcal{X})$. Hence $\text{Nil}(\mathcal{A}_n \lor \mathcal{X}) \subseteq \text{ZR}(\mathcal{X})$. Thus $\text{Nil}(\mathcal{A}_n \lor \mathcal{X}) = \text{ZR}(\mathcal{X})$.

Now we are well prepared to prove the following

Proposition 15. An arbitrary Abelian periodic group variety is definable.

Proof. Abelian periodic group varieties are exhausted by the trivial variety and the varieties \mathcal{A}_n with $n > 1$. The trivial variety is obviously definable. For brevity, put
\[
\text{ZR}(x, y) \equiv 0\text{-red}(y) \land x \leq y \land (\forall z)\left(0\text{-red}(z) \land x \leq z \rightarrow y \leq z\right).
\]
The sentence $\text{ZR}(\mathcal{X}, \mathcal{Y})$ is true if and only if $\mathcal{Y} = \text{ZR}(\mathcal{X})$. Let m be a natural number with $m > 2$. In view of Lemma 14, the formula
\[
A_{\geq m−1}(x) \equiv \text{Gr}(x) \land (\forall y, z, t)\left(\text{D}_m(y) \land z \leq y \land \text{Nil-part}(x \lor z, t) \rightarrow \text{ZR}(z, t)\right)
\]
defines the set of varieties \(\{ A_n \mid n \geq m - 1 \} \). Therefore the formula

\[
A_n(x) \iff A_{\geq n}(x) \land \neg A_{\geq n+1}(x)
\]

defines the variety \(A_n \). □

It was proved in [4] that each Abelian group variety is definable in the lattice \(\text{Com} \). However this paper contain no explicit first-order formula defining any given Abelian periodic group variety.

Now we are ready to achieve the goal of this note.

Theorem 16. A semigroup variety generated by a commutative monoid is definable.

Proof. Let \(\mathcal{V} \) be a variety generated by some commutative monoid. According to Lemma 10, \(\mathcal{V} = A_n \lor C_m \) for some \(n \geq 1 \) and \(m \geq 0 \). It is easy to check that the parameters \(n \) and \(m \) in this decomposition are defined uniquely. Therefore the formula

\[
(\exists y, z) \left(A_n(y) \land C_m(z) \land x = y \lor z \right)
\]

defines the variety \(\mathcal{V} \) (we assume here that \(A_1 \) is the evident formula defining the variety \(A_1 = T \)). □

Acknowledgement. The author thanks Dr. Olga Sapir for many stimulating discussions.

References

[1] A. Ya. Aizenštat, *On some sublattices of the lattice of semigroup varieties*, Modern Algebra, Leningrad: Leningrad State Pedagogical Institute, No. 1 (1974), 3–15 [Russian].

[2] T. Evans, *The lattice of semigroup varieties*, Semigroup Forum, 2 (1971), 1–43.

[3] T. J. Head, *The lattice of varieties of commutative monoids*, Nieuw Arch. Wiskunde, 16 (1968), 203–206.

[4] A. Kiselewiecz, *Definability in the lattice of equational theories of commutative semigroups*, Trans. Amer. Math. Soc., 356 (2004), 3483–3504.

[5] I. O. Korjakov, *A sketch of the lattice of commutative nilpotent semigroup varieties*, Semigroup Forum, 24 (1982), 285–317.

[6] V. Yu. Shaprynskii, *Distributive and neutral elements of the lattice of commutative semigroup varieties*, Izv. VUZ. Matem., accepted [Russian].

[7] V. Yu. Shaprynskii, *Modular and lower-modular elements of lattices of semigroup varieties*, Semigroup Forum, submitted; available at http://arxiv.org/abs/1009.1929.

[8] L. N. Shevrin, B. M. Vernikov and M. V. Volkov, *Lattices of semigroup varieties*, Izv. VUZ. Matem., No. 3 (2009), 3–36 [Russian; Engl. translation: Russian Math. Iz. VUZ, 58, No. 3 (2009), 1–28].

[9] E. V. Sukhanov, *Almost linear semigroup varieties*, Matem. Zametki, 32 (1982), 469–476 [Russian; Engl. translation: Math. Notes, 32 (1983), 714–717].

[10] B. M. Vernikov, *Proofs of definability of some varieties and sets of varieties of semigroups*, Semigroup Forum, submitted; available at http://arxiv.org/abs/1009.1239.

[11] M. V. Volkov, *Semigroup varieties with modular subvariety lattices*, Izv. VUZ. Matem., No. 6 (1989), 51–60 [Russian; Engl. translation: Soviet Math. Iz. VUZ, 33, No. 6 (1989), 48–58].

Department of Mathematics and Mechanics, Ural State University, Lenina 51, 620083 Ekaterinburg, Russia

E-mail address: bvernikov@gmail.com