Frequency-specific meso-scale structure of spontaneous oscillatory activity in the human brain

Riccardo Iandolo1*, Marianna Semprini1, Dante Mantini2-3, Stefano Buccelli1, Diego Sona4,5, Laura Avanzino6,7#, and Michela Chiappalone1#

*Corresponding Author
#Equal Senior Author

1 Rehab Technologies, Istituto Italiano di Tecnologia, 16163 Genova, Italy;
2 Research Center for Motor Control and Neuroplasticity, KU Leuven, 3001 Leuven, Belgium;
3 Brain Imaging and Neural Dynamics Research Group, IRCCS San Camillo Hospital, 30126 Venice, Italy;
4 Pattern Analysis & Computer Vision, Istituto Italiano di Tecnologia, 16152, Genova, Italy;
5 Neuroinformatics Laboratory, Fondazione Bruno Kessler, 38123 Povo (Trento), Italy;
6 Department of Experimental Medicine, Section of Human Physiology, University of Genova, 16132 Genoa, Italy;
7 Ospedale Policlinico San Martino, IRCCS, 16132 Genova, Italy.

Corresponding Author

Dr. Riccardo Iandolo, PhD
Rehab Technologies IIT-INAIL Lab
Istituto Italiano di Tecnologia
Via Morego 30
16163 Genova Italy
e-mail: riccardo.iandolo@iit.it
Abstract

Recent studies provided novel insights into the meso-scale organization of the brain, highlighting the co-occurrence of different structures: classic assortative (modular), disassortative and core-periphery. However, the spectral properties of the brain meso-scale remain unexplored. To fill this knowledge gap, we investigated how this meso-scale structure is organized across the frequency domain. We analyzed the resting state activity of healthy participants with source-localized high-density electroencephalography signals. Then, we inferred the community structure using weighted stochastic block-modelling to capture the landscape of meso-scale structures across the frequency domain. Despite meso-scale modalities were mixed over the entire spectrum, we found a selective increase of disassortativity in the delta/theta bands, and of core-peripheriness in the low/high gamma bands. We observed, for the first time, that the brain at rest shows frequency-specific meso-scale organizations supporting spatially distributed and local information processing, shedding new light on how the brain coordinates information flow.
Introduction

Functional connectivity (FC), i.e. the statistical association among neural signals of separate brain regions (1), has received a great deal of attention during the last years (2). FC has been widely recognized as a tool to investigate spatio-temporal properties of brain networks. These networks have been characterized at different levels of topological organization (3), ranging from local (single brain area or node) to global (whole-brain network) (4), through the intermediate level referred to as meso-scale (5). The single unit of the meso-scale architecture is a “community” (or module), which is composed by a set of nodes sharing similar connectivity patterns. Modules are crucial elements of FC network organization since they are essential to identify areas belonging to the same functional domain. Moreover, modules well describe network resilience and flexibility in response to external perturbation (as in the case of occurred cerebral lesions) and also they shape the information flow (6). To date, the meso-scale structure of the human brain has been extensively investigated by community detection algorithms prone to detect “assortative” (also defined as “modular”) meso-scale structure (5, 7, 8), for a review see (9). Briefly, in the assortative structure, the within-community densities are greater than the between-community densities. In other words, this structure facilitates information processing of segregated modules while the integration capability between them is reduced (10).

Recently, non-assortative community interactions have been also described, such as the “disassortative” and the “core-periphery” (5). A disassortative structure is complementary to the assortative one. This is characterized by the connections between communities being greater than within communities, thus suggesting a strong flow of information between different modules. In the core-periphery structure, the nodes of a high-density core strongly interact with nodes of other periphery communities, which are characterized by poorly connected nodes. This structure thus allows an efficient broadcasting of information between core and peripheries (10). Importantly, it has been recently shown that these three classes (i.e. assortative, disassortative and core-periphery) may coexist in the brain, forming the so-called mixed meso-scale structure (5, 9). Therefore, it is pivotal to detect the richness and diversity of meso-scale organization, without being constrained by the assortative one (5, 10). To this purpose, algorithms have been proposed in the literature (11), such as the Weighted Stochastic Block Model (12) (WSBM) able to capture the meso-scale diversity. An important feature of WSBM is the exploitation of the stochastic equivalence principle, according to which the network nodes belonging to a given community have the same probability of being connected with all the remaining nodes of the network (12). The WSBM can detect other modalities of meso-scale modules interactions, beyond assortativity (5). Recent studies investigating human (5, 10, 13) and non-human networks (14, 15) made use of the WSBM method. In these investigations, human connectomes were derived with magnetic resonance imaging (MRI), using either functional (during both rest (5) and task (10)) or structural data (5, 13). In particular, it was observed that assortative communities dominate resting state FC with the co-existence of other non-assortative communities (10). Overall, these results indicated that brain networks are not characterized by a unique community structure.

Motivated by the above findings, we aimed at investigating whether resting state FC meso-scale structures can exhibit a more diverse and richer organization when using non-invasive electrophysiological techniques. Notably, high-density electroencephalography (hdEEG) provides a unique opportunity to capture the richness of neuronal oscillations’ spectral content (16). HdEEG was recently employed to reconstruct and unravel novel features of human brain activity during resting state in health (17-19) and disease (20-23). By coupling hdEEG recordings with appropriately built head model conductors and with source reconstruction algorithms, it is possible to achieve neural source reconstruction with relatively good spatial resolution (24) (in the order of less than 1 cm). This permitted the estimation of large-scale resting state networks that spatially overlap with those obtained with functional MRI (fMRI) (18) and
magnetoencephalography (MEG) (25). Thus, we posit that describing the time-frequency features of FC meso-scale architecture estimated from source-localized hEEG recordings will have important implications to highlight novel properties of the human brain at rest (26-28).

With this aim, we here exploited the peculiar features of hEEG-based source imaging, to identify modules of spontaneous oscillatory activity. Specifically, we tested whether the meso-scale structure is frequency-dependent. In other terms, we examined if assortative, disassortative and core-periphery modalities are tuned onto a specific frequency or they are equally distributed over the frequency domain. To address these questions, we applied the WSBM to FC adjacency matrices estimated from source-localized hEEG recordings of healthy participants (17, 18, 29). We first selected the best number of communities to perform WSBM community detection with a data-driven approach. Then, we defined the cortical and sub-cortical spatial distribution of modules in both time and frequency domains, respectively, and we finally described the assortative, disassortative and core-periphery community interactions across frequency bands. Thus, we observed that the brain at rest relies on peculiar topological meso-scale organization supporting spatially distributed and local information processing. Our results improve and extend the knowledge of resting state meso-scale organization and the way in which the brain propagates the information, leveraging the frequency-specific variability of the meso-scale structure.

Results

In this study, we reconstructed neural sources per each participant and we then mapped them onto 384 regions of interest (ROIs) of the AICHA atlas (30). This procedure defined the nodes for the subsequent meso-scale structure investigation. We then extracted the FC adjacency matrices and applied the WSBM. We investigated the organization of the meso-scale structure across time (i.e. full bandwidth) and frequencies. When presenting the results, we localized the wavelet carrier frequencies (i.e. 2, 4, 8, 16, 32 and 64 Hz) to the corresponding EEG spectral bands, as in our previous work (29), where the bands are defined as delta (δ, 1-4 Hz), theta (θ, 4-8 Hz), alpha (α, 8-13 Hz), beta (β, 13-30 Hz), and gamma (γ, 30-80 Hz).

Identification of meso-scale communities

To evaluate the clustering performance, we used the Normalized Variation of Information (NVI), which identify a good clustering performance with values near to zero (31). Searching for a good clustering, we made experiments with a variable number of cluster K, ranging from 2 to 16 and we observed (see Figure 1) that only with less than 6 clusters the clustering performance was good (0.0079 ± 0.0023, 0.011 ± 0.0036, 0.014 ± 0.012, and 0.015 ± 0.0059, mean ± SD, for K=2,...,5 respectively). We excluded K = 2 from the range of possible solutions because for this value we could only had one community interaction, preventing us from investigating the meso-scale richness. With K = 4 communities, some fits terminated in different local maxima (see light-blue lines in Figure 1a and red crosses in Figure 1b) leading to a higher degree of variability than K = 3 and K = 5. Instead, for K ≥ 6, the NVI values increased sharply, suggesting that greater K-values were not worth being considered.
Fig. 1. Parameter selection conducted by means of Normalized Variation of Information (NVI). a Pairwise comparisons of all the 200 fits from K = 2 until K = 16. Dark blue and yellow elements indicate respectively a pair of fits showing a good (low NVI) and weak (high NVI) clustering performance, as indicated by the colorbar. Self-fit comparisons are depicted in white. Note that all the matrices are symmetric. b Distributions of the NVI values obtained by averaging the matrices containing the fits’ pairwise comparisons depicted in panel a. Boxplots’ upper and lower boundary exhibited 25th and 75th percentile, respectively. Data points (black dots) are overlaid over boxplots. Green diamonds and red lines indicate mean and median value of the distributions, respectively. Red crosses indicate outliers.

Despite the fact that the optimization problem was non-convex, the WSBM converged almost always to the same solution for K-values smaller than 6, as shown by the small variability of the NVI (see boxplots in Figure 1B). For those values, the variance of the data was small when compared to the variance for the higher values of K ≥ 6 (Figure 1b). The reached local maxima were not consistent for higher K values, suggesting that the algorithm struggled to get similar results across trials. Thus, the assessment of the clustering performance suggested to partition the resting state activity with the K-values for which the NVI was closer to zero. Among these values, we selected K = 5 as K_{best} because: i) it offered a good compromise between the granularity of FC network parcellation and reliable clustering performance; ii) it was consistent with similar choices made in recent fMRI literature of WSBM applied to human connectome datasets (5, 10). To check whether the clustering performance showed a consistent behavior across K-values, we also calculated other performance parameters: the Adjusted Rand Index (ARI) and the Normalized Mutual Information (NMI) (see Methods) that both led to the same outcome (Supplementary Figure S1 and Supplementary Figure S2).

Meso-scale connectivity structure in time domain

The original full bandwidth adjacency matrix (\(ADJ^T\), where the superscript T refers to time domain, see Methods and Figure 2, panel a1) was reordered based on the WSBM community assignment (with K_{best} = 5, see Figure 2, panel a2), which was then overlaid onto the T1-weighted template (see Figure 2b) to better appreciate its spatial distribution (see Methods for details about the computation of best community assignment). The first community (purple cluster) showed a medial and lateral spatially distributed pattern.
Fig. 2. Community assignment at $K_{\text{best}} = 5$ for the group-representative matrix in the time domain. a1 Adjacency matrix prior to community detection (nodes of the AICHA atlas, $N = 384 \times 384$). First 192 and last 192 nodes indicated left and right hemisphere, respectively. The colorbar represents connection strength mapped onto the interval $[-1, +1]$, see Methods. a2 Reordered adjacency matrix according to the best community assignment after WSBM estimation. Colored rectangles on the left side of the adjacency matrix represent the 5 resulting clusters. b Spatial distribution of the best estimated communities, cluster colors as in a2.

Despite its intrinsic variability, it can be roughly associated with an executive function as it largely covers the left frontal lobe. As the first, also the second community (dark gray cluster) exhibited a complex spatial distribution. In this case, the left areas clustered predominantly in parieto-temporo-occipital (PTO) cortex while the right areas in frontal lobe. On the other hand, the remaining three clusters presented a compact spatial localization (in particular in the medial areas). We assigned them to three separate functional domains: mostly sensorimotor (bilateral motor and sensory cortices encompassing also the right temporal lobe, green cluster), limbic (medial temporal lobe and cingulate gyrus, yellow cluster) and visual (occipital lobe, red cluster). However, the latter approximately spanned other cortical areas, until the frontal and left temporal lobe and this occipital-fronto-temporal gradient resembled the ventral and dorsal streams linked to visual stimuli processing. Then, we investigated the between-community interactions across participants, calculating the percentage of assortative, disassortative and core-periphery motifs in the time domain. We found a significant effect of the meso-scale classes (Kruskal-Wallis test, $p < 0.0001$, see Figure 3a).
Fig. 3. Organization of the meso-scale structure in the time domain. a Boxplots representing distribution of the meso-scale classes across participants. Magenta: assortative; green: disassortative; gray: core-periphery. Boxplots show upper and lower bound of the distributions at 25th and 75th percentile. Whiskers indicate the 1st and 99th percentile. The black horizontal lines represent the median, while the small colored squares indicate the mean of the distributions. N.S. indicates non-statistically significant comparison as revealed by post-hoc comparison of mean ranks. b Mean community classes across participants: assortative (top), disassortative (middle) and core-periphery (bottom). The colorbar is kept fixed to the minimum and maximum values across the meso-scale modalities. See Figure S3 in the Supplementary Materials where the same plot is showed with a different colorbar for each meso-scale interaction.

Furthermore, the post-hoc test for multiple comparisons showed a significant increment of the assortative with respect to both disassortative and core-periphery structure (p < 0.0001 in both cases, see Figure 3a). Instead, there was no significant difference between the disassortative and core-periphery class (p = 0.067, see Figure 3a). This can be observed also in Figure 3b (and Figure S3 in Supplementary Materials) where we overlaid the percentages of the three modalities onto the T1-weighted template. As expected, we observed that the meso-scale spatial organization of the source-level time courses reflected the behavior depicted in Figure 3a. In fact, there was a clear whole-brain predominance of the assortative structure (see Figure 3b). Brain regions which showed the greatest assortativity level were located in bilateral medial and lateral prefrontal cortices as well as in the occipital lobe visual areas (yellow and red regions, top row Supplementary Figure S3). These were the areas with low disassortative interaction (blue-light blue regions, middle row Supplementary Figure S3). Conversely, the areas showing higher level of disassortativity are medial areas such as the posterior cingulate cortex together with the sensorimotor and temporal cortex. Furthermore, the areas exhibiting the greatest level of core-periphery structure were focally localized in the PTO cortex (yellow and orange regions, bottom row Supplementary Figure S3).

Frequency analysis of meso-scale connectivity structure

We examined the community assignments across the six carrier frequencies considered (ADJ^F (f)), where the superscript F refers to frequency domain and f are the wavelets’ carrier frequencies, see Methods). As for the delta band (see Figure 4, panel a1), we obtained an association cluster, almost entirely located in the right hemisphere (corresponding roughly to somatic areas, and association PTO cortex, purple). Another lateralized cluster was obtained in the left hemisphere, putatively associated with executive functions (frontal and temporal lobe, dark gray). Finally, we obtained a “limbic” cluster, related to phylogenetically
old regions (medial areas in both hemisphere, orbito-frontal cortex, green cluster). The remaining two clusters were spanning several areas (the primary and premotor cortices bilaterally and parietal lobe, yellow and red clusters).

Fig. 4. Organization of the meso-scale structure in the frequency domain. Each row represents the best community assignments ($K_{best} = 5$) in each of the considered carrier frequency: 2 Hz (a1), 4 Hz (a2), 8 Hz (a3), 16 Hz (a4), 32 Hz (a5), 64 Hz (a6). Each row contains the re-ordered group-representative adjacency matrix after WSBM estimation and spatial distribution of partitions across the brain. Colors on left side of each adjacency matrix match with the colors overlaid on the brain.

As for the theta oscillations (see Figure 4, panel a2), the block-modelling partitioning associated brain areas in the medial orbito-frontal cortex (purple), in the parietal lobe and posterior cingulate cortex (PCC) (“sensory association” cluster, dark gray), in the visual areas (primary and higher order visual cortices, green), in the frontal and parietal lobes (a “mixed” cluster, yellow) and in the frontal and temporal cortices (red cluster).

As for the alpha rhythm (see Figure 4, panel a3), the generated cluster were approximately the left temporal and frontal lobe (purple), the sensory multimodal regions (primary and secondary visual cortices and the associated dorsal stream, dark gray), the right and left premotor areas (green), the limbic structures (yellow)
and the right PTO cortex (red). The latter cluster, roughly recalled the association cluster of the lower delta oscillations.

As for the beta band (see Figure 4, panel a4), the clusters covered bilateral premotor and prefrontal cortices (purple and dark gray), and mixed areas, with a cluster spanning the dorsal areas in the parietal lobe (green), bilateral temporal lobes (mainly right) and left prefrontal association cortex (yellow), PTO and cingulate cortices (red).

As for the low gamma oscillations (see Figure 4, panel a5), the clustering showed two sensory partitions: one that mainly gathered the primary and secondary somatosensory areas in the parietal lobe (purple) and the posterior parietal cortex (dark gray). Other clusters correspond to the executive cluster (motor and prefrontal cortex, green), the limbic cluster (yellow) and the visual cluster (red).

Finally, as for the high gamma rhythm (see Figure 4, panel a6), a parietal and cingulate cortex cluster emerged (purple) together with a “sensori-motor” cluster (bilateral sensorimotor cortices, expanding to left temporal lobe, dark gray). A third cluster was located in the occipital lobe (green). Lastly, we found two clusters (yellow and red) predominantly encompassing limbic areas, as well as orbito-frontal and prefrontal cortex.

Overall, for brain areas close to the midline, we found more symmetric spatial distribution of clusters than in the laterally located areas. Indeed, when moving towards more lateral regions, the clusters spatial pattern became more complex than the one observed in medial areas. Furthermore, we found that higher rhythms were more likely characterized by functionally distinct clusters than lower frequencies.

Community structure in the frequency domain is diverse and non-assortative

To answer the question whether meso-scale structure is frequency-specific, we investigated possible differences among the six carrier frequencies considering all three community classes (i.e. assortative, disassortative, core-periphery). For the assortative class, we did not find any significant difference across the six bands (p = 0.083), suggesting that the assortative structure is homogeneously distributed across frequency bands (see Figure 5a). Instead, we had a statistically significant effect concerning the disassortative and core-periphery structure (for both, p < 0.0001), as revealed by non-parametric testing. Specifically, modules of spontaneous activity interacted in a more disassortative manner in the delta and low theta bands (2 Hz, 4 Hz) than the beta and gamma bands (32 Hz, 64 Hz), see Figure 5a and Supplementary Table 1. In addition, a further decrease, albeit weakly significant (p = 0.045, see Supplementary Table 1), of the low beta (16 Hz) with respect to gamma band (64 Hz) existed. On the other hand, when considering the core-periphery structure, the beta and gamma rhythms (16 Hz, 32 Hz, 64 Hz) showed an increase with respect to the delta and theta rhythms (2 Hz, 4 Hz), see Figure 5a and Supplementary Table 2. We additionally found another weakly significant increase of core-periphery community interactions between 2 Hz and 8 Hz (p = 0.042, see Supplementary Table 2).
Fig. 5. **Organization of the meso-scale structure in the time-frequency domain.** a Boxplots representing distributions across participants of the three meso-scale classes for each carrier frequency. Magenta: assortative; green: disassortative; gray: core-periphery. Boxplots show upper and lower bound of the distributions at 25th and 75th percentile. Whiskers indicate the 1st and 99th percentile. The black horizontal lines represent the median, while the small colored squares indicate the mean of the distributions. Statistical analysis for multiple comparisons across carrier frequencies of the depicted data is reported in Table 1 and Table 2 in the Supplementary Materials. b Median values of each meso-scale structure distributions (black horizontal lines in a) across frequency bands.

Overall, we observed complementary trends along the entire range of oscillatory rhythms (i.e. delta and theta vs. gamma). Specifically, for increasing frequencies we found respectively a decreasing disassortative and an increasing core-periphery trend (see Figure 5b). This phenomenon was not observed for low frequencies (i.e. alpha). Finally, we averaged across participants the total amount of meso-scale modalities and we then overlaid these values onto the T1-weighted template (see Figure 6). We observed that the core-periphery structure was predominant starting from alpha/beta bands and peaking in low and high gamma bands. The prefrontal and PTO areas showed the highest degree of core-periphery (see Figure 6 and Supplementary Figure S4) and this was true also when progressively moving towards higher-frequency oscillations. In addition, the medial areas belonging to limbic system showed a low degree of core-periphery in the higher rhythms. When considering the lowest delta/theta bands the core-periphery pattern decreased its overall amount. This decrease in core-periphery organization corresponded to an emerging role of the disassortative structure. Despite this increase, the amount of disassortative and core-periphery was still comparable. Concerning the disassortative structure, there was a spatial gradient increasing from anterior-medial to posterior areas emerging in the alpha and beta band. Instead, the opposite gradient (i.e. increasing in posterior-anterior direction) was found for the core-periphery structure, in the same bands.
Fig. 6. Mean community classes across participants in the frequency domain. Each column indicates the meso-scale class (assortative, disassortative, core-periphery) while each row indicates the carrier frequency (2 Hz, 4 Hz, 8 Hz, 16 Hz, 32 Hz, 64 Hz). The colorbar is kept fixed to the minimum and maximum values across the meso-scale modalities. See Figure S4 in the Supplementary Materials where the same plot is showed with colorbar customized between minimum and maximum values within each meso-scale modality.

Discussion

To date, the features of human brain meso-scale structure during resting state have not been fully explored. Specifically, the meso-scale spectral fingerprints are still unknown and evidences about how the diversity of meso-scale structure (i.e. assortative, disassortative and core-periphery) organizes over the frequency spectrum are missing. Thus, we aimed at filling this knowledge gap, by using WSBM to infer the richness of the latent community structure estimated from source-reconstructed hdEEG signals. We indeed described the spatial distribution of communities and their interactions across time and frequency domains. Our analysis showed that the meso-scale is characterized by a frequency-specific organization. We highlighted that community structure in the frequency domain is characterized by a high level of non-assortativity. Finally, we found that association areas exhibited the highest degree of integration, as revealed by the high incidence of core-periphery structure for those areas.

Parameter selection in the time domain

To the best of our knowledge, no previous hdEEG study has been conducted to investigate WSBM community detection. We thus shaped our analysis on an already published procedure on Blood Oxygenation Level Dependent (BOLD) signals oscillations, where the authors fitted the WSBM to group-representative adjacency matrix (5). Thus, we performed the parameter selection procedure in the time domain and we kept the chosen best K in the frequency domain to compare the community detection results in different frequency bands. One may argue that the time domain is affected by the problem of volume conduction (33). However, many approaches have been proposed to attenuate such effect for electrophysiological recordings (for a review, see (34)). Among all, we applied spatial filtering during sources reconstruction, which mitigates the negative effects of volume conduction on FC (34). Indeed, we employed spatial filtering for the analysis in the time domain, whereas, for spectral analysis, we combined...
both spatial filtering and the method of power spectra orthogonalization (27), which has been largely accepted and validated (35) even by recent studies employing both low and high density montages (17, 26, 29, 36). Moreover, time domain analysis is a valid tool to estimate the K_{best} and for the further comparisons of the meso-scale structure in the frequency domain, because the time-courses of source-reconstructed hdEEG signals contain all the neuronal oscillations of interest, that are then band-pass filtered during spectral analysis.

According to the above, we performed parameter selection in the time domain. The goal of parameter selection in a community detection problem is to find models which have to be simultaneously simple and good at describing the system (11). We thus aimed at identifying a fine grain parcellation while maintaining a steady clustering performance, as indicated by low NVI value. We therefore selected $K_{\text{best}} = 5$. Indeed, higher number of modules (i.e. $K \geq 6$) showed weak reliability of the clustering performance, which may have led to the calculation of a non-representative community assignment. Finally, the same number of communities was employed to describe meso-scale organization with other neuroimaging datasets (5).

Meso-scale structure has frequency-dependent fingerprints

By relying on the spectral richness of hdEEG recordings, we could investigate how meso-scale and the related way to route information within the FC network, is organized across frequency bands. According to our results, the meso-scale structure clearly indicates a frequency-dependent behavior. Indeed, when increasing the neuronal oscillation frequency from delta to high gamma, the core-periphery structure increased, showing greater values in the gamma band. Conversely, the disassortative structure showed an opposite trend when compared to core-periphery, as disassortative organization exhibited high values in delta and theta rhythms. In addition, the assortative structure was uniformly distributed across the spectrum and did not show any particular trend. Thus, in the low frequency bands, characterized by long-range communication (37), information is exchanged across long-distances. This behavior is, in our opinion, well-expressed by the disassortative structure which is significantly higher in delta and theta when compared to the other frequencies, thus favoring high information flow between distinct modules (10). Therefore, we can consider the disassortative structure as a meso-scale fingerprint of the long-distance and slow oscillations. However, in these low rhythms even the core-periphery structure is comparable with the disassortative one, suggesting a “hybrid” communication mechanism during resting state. Moreover, at low frequencies, the clustering in separate and functionally distinct areas is less clear than the higher frequency bands, because these oscillatory regimes are characterized by long-range interactions (37) which require communication among different areas. On the other hand, by increasing the oscillatory frequency (from delta to low and high gamma band) we encountered not only an increase of the core-periphery meso-scale structure, but also a clearer subdivision in functional clusters with respect to the low and mid-low bands (see Figure 4) that, in turn, may reflect a local processing of information. In fact, gamma oscillations might represent a rhythmic synaptic inhibition mediated by parvalbumin-expressing inhibitory interneurons and the interconnected pyramidal neurons (38-40). Gamma-oscillations might thus resemble a local processing of coactive functional areas. Indeed, these functional areas are approximately grouped in the five modules emerging at 32 and 64 Hz: sensory associative, somatomotor, executive, limbic and visual. Other studies showed that neuronal oscillations in the gamma band reflect not only a local processing, but also synchronization across long-distance areas (38, 41). From this perspective, the core-periphery structure might be a good candidate to support this “dual property” of gamma oscillations: the dense core represents the local processing, while the numerous interactions between the core and the nodes located in the peripheries may indicate the presence of the long-distance connections that are also typical of gamma oscillations (39). In summary, we provided evidence supporting the concept that non-assortative structures reflect how information is processed in the delta/theta (disassortative) and gamma (core-periphery) bands.
Furthermore, despite the considerable amount of disassortative and core-periphery structures at specific frequencies, we must recall that a certain degree (around 20% of median values) of assortative structure is still present and uniformly distributed across the frequency spectrum. According to previous fMRI studies, the brain presents a mixed meso-scale organization, but the network dominantly exhibits modular/assortative meso-scale structures, specifically during resting state \((5, 10)\) and, to a lesser extent, during cognitive tasks \((10)\). Our hdEEG analysis showed that the meso-scale assortative structure is predominant in the time domain, thus confirming previous findings (see Figure 3). Instead, in the frequency domain the amount of assortative modules was reduced, and a clear non-assortative organization emerged.

Association cortex underlie core-periphery structures

We observed a whole-brain high incidence of core-periphery structure towards the higher-frequency bands, starting from alpha oscillations. In this overall level of increased core-peripheriness, high-order association areas belonging to prefrontal and PTO cortices emerged among others. High levels of non-assortativity have been linked to association areas using fMRI \((10)\). We found that, when decreasing the carrier frequency, the meso-scale organization changed: there was still a considerable amount of core-periphery, but the disassortative structure increased, exhibiting a spatially distributed gradient in the middle bands (i.e. alpha, beta) from posterior to anterior cortices. On the other hand, the prefrontal cortices were strongly core-periphery. When the frequencies are further decreased, in delta and theta bands, we had the steepest decrease of core-periphery, favoring an increasing of the disassortative structure (particularly in the medial frontal and temporal areas) that might underlie spatially distributed information processing (see above).

Overall, the regions selectively exhibited a frequency-specific behavior, in particular when comparing low (delta/theta) and high rhythms (gamma). Association areas such as PTO showed high degree of core-peripheriness across frequency bands, corroborating the integrative role of this meso-scale modality. On the other hand, medial frontal areas exhibited both high degree of core-periphery in the higher bands while higher level of disassortativity in the lower bands. We therefore posit that the same regions might employ a specific frequency to route information, underlying a frequency-dependent meso-scale organization that is also linked to the cortical and subcortical spatial distribution.

Our analysis allowed, for the first time, to observe WSBM-estimated meso-scale organization with a different focus: by investigating FC in different frequency bands, we captured peculiar features of module interactions revealing the non-assortative nature of resting state networks, demonstrating its frequency-specificity. Furthermore, this study demonstrated that WSBM applied to sources-level neuronal oscillations is an effective tool to explore yet unknown properties of FC topological organization.

Overall, these results may be taken into consideration for future studies that will address the pathophysiological mechanisms underlying neurological/psychiatric disorders \((16, 42)\). It would indeed be crucial to examine how the presence of a neurological disease can affect the meso-scale structure and whether and how a neurorehabilitation program can impact the re-organization of brain networks and the interactions among communities. This will have a direct impact in the clinical assessment of sensory, motor and cognitive functions, being EEG acquisitions widely employed in the clinical setting. Collectively, the results of our study increase the knowledge of human brain meso-scale organization and of communication modalities between brain networks, which is still an open topic in network neuroscience \((6)\).
Materials and Methods

Participants

We recruited 32 healthy volunteers (29.6 ± 4.5 years, mean ± SD, 17 females). To be included, the participants had: a) to be right-handed according to the Edinburgh inventory (43); b) to be without neurological or psychiatric disorders; c) to have normal or corrected-to-normal vision; d) to be free of psychotropic and/or vasoactive medication. Prior to the experimental procedure, all participants provided written informed consent. The study, which was in line with the standard of the Declaration of Helsinki, was approved by the local ethical committee (CER Liguria Ref. 1293 of September 12th, 2018).

Resting state hdEEG recording and MRI acquisition

hdEEG signals were recorded using a 128-channel amplifier (ActiCHamp, Brain Products, Germany) while participants were comfortably sitting with their eyes open fixating on a white cross on a black screen for five minutes. Participants were required to relax as much as possible and to fixate on the cross, located in the middle of a screen in front of them. The experiment was performed according to the approved guidelines, in a quiet, air-conditioned laboratory with soft natural light. HdEEG signals were collected at 1000 Hz sampling frequency, using the electrode FCz (over the vertex) as physical reference electrode. The horizontal and vertical electrooculograms (EOG) were collected from the right eye for further identification and removal of ocular-related artifacts. Prior to resting state hdEEG recordings, the three-dimensional locations of the 128 electrodes on the scalp were collected with either infrared color-enhanced 3D scanner (44) or Xensor digitizer (ANT Neuro, The Netherlands). To build each participant’s high-resolution head model, the participants underwent T1-weighted MRI acquisition using either a 3 T (N = 28) or a 1.5 T (N = 4) scanner (see Suppl. Materials for details about acquisition parameters).

Pre-processing of hdEEG recordings

HdEEG preprocessing was performed according to the same steps described in previous works (17, 18). Briefly, we first attenuated the power noise in the EEG channels by using a notch filter centered at 50 Hz. Later, we identified channels with low signal to noise ratio by following an automatic procedure. We combined information from two channel-specific parameters: i) the minimum Pearson correlation between a channel against all the others in the frequency band of interest (i.e. 0.5-100 Hz); ii) the noise variance that we defined in a band where the EEG information is negligible (i.e. 200-250 Hz). We defined a channel as “bad”, whenever one of the two parameters described above were outliers as compared to the total distribution of values. We interpolated the identified bad channels with the information of the neighboring channels, using Field Trip (http://www.fieldtriptoolbox.org/). Then, hdEEG signals were band pass filtered (0.5-100 Hz) with a zero-phase distortion FIR filter and downsampled to 250 Hz. To further reduce noise in our data, we employed the fast-ICA algorithm (http://research.ics.aalto.fi/ica/fastica/) to identify independent components related to ocular and movement artifacts. To classify the ocular artifacts we used the following parameters: i) Pearson correlation between the power of the independent components and the vertical and horizontal EOG; ii) the coefficient of determination obtained by fitting the independent component (IC) spectrum with a 1/f function. We classified the IC as ocular artifacts if at least one of the two parameters was above a pre-defined thresholds (0.2 and 0.5, as in (18)). Finally, for movement-related artifacts, we used the kurtosis of the independent component (we considered a kurtosis exceeding the value
of 20 (18) indicated a noisy IC. We re-referenced the artifacts-free signals with the average reference approach (45).

Head model of volume conduction and source reconstruction

We followed the same procedure as detailed in (29). Briefly, we used T1-weighted structural images in order to generate a realistic volume conductor model. In accordance with previous studies (17, 18), we assigned conductivity values to 12 tissue classes (skin, eyes, muscle, fat, spongy bone, compact bone, gray matter, cerebellar gray matter, white matter, cerebellar white matter, cerebrospinal fluid and brainstem), based on the literature (see Liu et al. (18) for the conductivity values assigned per each tissue class). Then, given the intrinsic difficulty in segmenting all the 12 classes directly on the T1-weighted individual space, we warped the MNI (Montreal Neurological Institute) template to individual space using the normalization tool of SPM12 (http://www.fil.ion.ucl.ac.uk/spm/software/spm12), as reported in Liu et al. (18). Then, we spatially co-registered the 128 electrodes positions onto each individual T1-weighted space. We approximated the volume conduction model using a finite element method (FEM) and, to estimate the relationship between the measured scalp potentials and the dipoles corresponding to brain sources, we employed the Simbio FEM method (https://www.mrt.uni-jena.de/simbio/). Finally, by combining the individual head model conductor and the artifacts-free hdEEG signals, we reconstructed source activity using the eLORETA (46) algorithm. Sources were constrained within a 6 mm regular grid covering the cerebral gray matter. Thus, we reconstructed the sources (voxels) per each participant and we then mapped the voxels time courses into 384 regions of interest (ROIs) of the AICHA atlas (30). This procedure defines the nodes for the subsequent meso-scale structure investigation. We estimated the activity of each ROI employing the first principal component of the voxels falling within a sphere centered in the ROI center of mass and with 6 mm radius.

Spectral analysis

We implemented time-frequency analysis by convolving the ROIs signals \(X_i(t)\), with \(i = 1..N\) with Generalized Morse Wavelets (GMW), described in (47). This wavelet superfamily guarantees, under certain parametrizations, a strict analytic behavior and therefore is appropriate for accurate time-frequency analysis. The GMW is defined, in the frequency domain, as:

\[
\psi_{\beta,\gamma}(f) = a_{\beta,\gamma} f^\beta e^{-i\gamma f}
\]

Where, \(a_{\beta,\gamma} = 2(e\gamma/\beta)^{\beta/\gamma}\) is a normalizing constant, \(f\) are the carrier frequencies of the wavelet, and \(\beta\) and \(\gamma\) are the two parameters controlling the wavelet shape. As suggested in (47), a choice of \(\gamma = 3\), guarantees the most symmetric, most nearly Gaussian, and generally most frequency concentrated member of the GMW superfamily. In this work, we thus set \(\gamma = 3.00\) and \(\beta = 11.33\) to capture the essential idea of the widely used Morlet wavelet (27), while avoiding aliasing for specific parameter choices (47). We used 23 carrier frequencies, ranging from \(2^{0.5}\) to \(2^{6}\) Hz in quarter steps \((f = 2^{(0.5:0.25:6)}\) Hz), to cover a large part of the EEG spectrum with a fine detail. We employed the Matlab version of the Jlab toolbox (freely available online: http://www.jmlilly.net/jmlsoft.html).
Functional connectivity analysis in the time domain

We defined the single-subject FC matrix \(\bar{ADJ}_T^{f} \), \(384 \times 384 \), \(S = 1 \), using the Pearson’s correlation coefficient (\(r \)) between the time course of each pair of ROIs. Then, to explore FC in the time domain, we averaged single-subject’s adjacency matrices and we regressed out the effect of the Euclidean distance between the ROIs since we considered the Euclidean distance as a covariate of no interest, as performed in Betzel et al. (5) We obtained a group level representative matrix \(\bar{ADJ}_G^{f} \) whose elements (i.e. the weights) contained the strength of the connection between brain regions. We Fisher-transformed (\(\arctanh(ADJ_G^{f}) \)) the resulting correlation values of the group-representative FC matrix to improve Gaussianity. Finally, we linearly mapped \(ADJ_G^{f} \) values between the [-1, +1] range, obtaining:

\[
ADJ_T^{f} = b_1 + \left(\frac{\text{val} - a_1)(b_2 - b_1)}{(a_2-a_1)} \right)
\]

Where \(\text{val} \) is a single element of \(ADJ_G^{f} \); \(a_1, a_2 \) are the minimum and maximum edges value of \(ADJ_G^{f} \); \(b_1, b_2 \) are the limits of the new range -1 and +1. This linear transformation allows for further comparison of the meso-scale structure among different frequency content (see next section cf. ‘Functional connectivity in the frequency domain’). It is indeed necessary to normalize the weights of the adjacency matrices in the same range to compare outputs of the WSBM, according to the literature (12).

Functional connectivity analysis in the frequency domain

To measure the frequency-specific properties of FC, we employed the method of power envelope orthogonalization (27) that is necessary in order to estimate the pairwise connection strength among the ROIs. Indeed, although the brain activity estimation at the sources level is a promising tool to investigate the brain dynamics at both good spatial and high temporal resolutions, it is affected by the signal leakage problem (26, 27). Reconstructing cortical and sub-cortical sources (several thousand sources) from scalp potentials (here 128 electrodes) is an ill-posed inverse problem, introducing artefactual cross-correlations between sources. A recent validation study (35) established the power envelope orthogonalization as a valid candidate to estimate the physiological FC properties in the field of neuroimaging by electrophysiological recordings. Thus, for each wavelet carrier frequency and participant, we followed the same orthogonalization procedure, described in previous EEG studies (17, 26), leading to the estimation of \(ADJ_G^{f} (f) \) (\(f = 2^{0.5:0.25:6} \); \(S = 1 \)). The group-representative adjacency matrices \(ADJ_G^{f} (f) \) were obtained starting from the single subject adjacency matrices \(ADJ_S^{f} (f) \) and performing the same procedure described for the time domain (cf. ‘Functional connectivity analysis in the time domain’). The same regressing and mapping procedures were also implemented for the analysis of single subject adjacency matrices that were employed to calculate the percentage of each community interaction.

Community detection via Weighted Stochastic Block Models

WSBM is as an unsupervised learning algorithm for the identification of network communities that group together network nodes that have similar FC patterns (12). The WSBM can work without the need of thresholding the adjacency matrix, as this procedure might have a negative impact on the analysis of the meso-scale structure of network connectivity, as previously reported (12). The WSBM goal is to learn the hidden community structure that is estimated from both the existence and the weights of edges. Moreover, an interesting property is that the algorithm retains the principle of stochastic equivalence, that is, all the nodes in a community have the same probability of being connected with all the remaining communities of
the network. This last property is important in differentiating this community detection problem from the
modularity maximization algorithms that are extensively employed for community detection in network
networks in neuroscience and are by nature biased towards the assortative community structure. Additionally, it is
important to note that stochastic block-modelling has the unmet advantage of being a generative model, as
it tries to estimate the process underlying the observed network topology. The WSBM learns two
parameters starting from the adjacency matrix (in this section, for general explanation, we refer to any
adjacency matrix, being it either in time or frequency domain or obtained by single or group level, by using
the notation \(ADJ \)) and from a priori assumptions about the distributions of edges weights and existence of
edges. An important parameter is the vector of nodes assignment \(Z = [z_1, .., z_N] \) where \(z_j \in \{1, .., K\} \), with
\(N \) the number of nodes and \(K \) the number of communities the algorithm must learn. The other parameter is
the edge bundle matrix (or affinity matrix) \(\theta (|K \times K|) \), representing the probability of two communities
being connected. It is worth noting that the probability of connection between two nodes only depends on
their community labels assignment, \(p_{ij} = \theta_{z_i z_j} \). In its formulation, the log-likelihood of the adjacency
matrix being described by the parameters \(\theta \) and \(Z \), can be written as (5, 12):

\[
\log[p(ADJ|Z, \theta)] = \alpha \sum_{ij} T_e(ADJ_{ij})\eta_e(\theta^{(e)}_{z_i z_j}) + (1 - \alpha) \sum_{ij} T_w(ADJ_{ij})\eta_w(\theta^{(w)}_{z_i z_j})
\]

where \(\alpha \) is a tuning parameter that combines the contribution of the two summations, which respectively
model edges weights and edges existence, to infer the latent community structure. \(T_e(ADJ_{ij}), \eta_e(\theta^{(e)}_{z_i z_j}) \) and
\(T_w(ADJ_{ij}), \eta_w(\theta^{(w)}_{z_i z_j}) \) are the sufficient statistics and the natural parameters of the exponential family
describing the distributions of the edges existence \((T_e, \eta_e) \) and the edges weights \((T_w, \eta_w) \). Lastly, \(i,j \)
indicate the edges of the adjacency matrix onto which we inferred the latent community structure. Usually,
when applying the WSBM framework to structural and functional brain networks, the edges existence and
weights are drawn from Bernoulli and Normal distributions (5, 10, 13, 14), respectively. In our case, \(\alpha \) is
set to zero because the graph is fully connected (i.e. no thresholding applied) and, thus, we did not need to
model the edges existence. Hence, our likelihood maximization is simplified leading to a pure-WSBM (12)
(pWSBM) that learns from the weights information, that are assumed to be normally-distributed between
communities. The remaining issue is to find a reliable estimation of the posterior distribution, i.e.
\(p(Z, \theta|ADJ) \) that has no explicit analytic formulation (12). To this purpose, we made use of the code freely
available here (http://tuvalu.santafe.edu/~aaronc/WSBM/). The code finds an approximation of the posterior
probability using a Variational Bayes (VB) approach. VB provides a solution to approximate the unknown
posterior distribution by transforming an inference problem into an optimization problem. The algorithm
minimizes the Kullback-Lieber divergence \(D_{KL}(\theta) \) to the posterior probability (for further information
about \(D_{KL} \) applied to WSBM, see (12). The solution proposed by (12) states that minimizing the \(D_{KL} \) is
equivalent to maximize the evidence lower bound of the model marginal log-likelihood (logEvidence),
\(p(ADJ|Z, \theta) \). Thus, the best approximation of the posterior is obtained through a procedure aimed at
maximizing the logEvidence score. Thus, if the logEvidence is maximized, the \(D_{KL} \) is the closest possible
to the posterior distribution, \(p(Z, \theta|ADJ) \). After properly initializing the priors for \(\theta \) and \(z \) the VB algorithm
takes the best (i.e. the greatest) logEvidence value across multiple independent trials (or restarts) of the
algorithm. We choose a maximum of 100 independent trials to find the best logEvidence value. Within this
limit, the algorithm searches for the best logEvidence value. At each trial, the initial probability of a node
being assigned to a community is randomized. Every time a better logEvidence value (i.e. a better solution)
is obtained, the algorithm updates the solution. We selected the communities assignment in correspondence
of the highest logEvidence value. We run the WSBM model for different values of \(K \) and we performed a
parameter selection procedure to infer the best number of K communities for our dataset, as described in the next section.

Parameter selection: optimal number of communities

The main idea behind our parameter selection procedure is to look at the stability of the clustering performance, i.e. the aim was to find the best number of communities K for which the clustering performance is as stable as possible. As a first step towards this goal, we performed 200 WSBM fits, each one consisting of a maximum of 100 independent trials, on the group level adjacency matrix computed in the time domain (AD^T , full bandwidth). We calculated 200 WSBM fits for different values of K (ranging from 2 to 16). To evaluate the clustering performance, we calculated the Normalized Variation of Information (31) (NVI) across each pair of fits. We averaged across the fits selecting the best K-values corresponding to the smallest NVI values. Indeed, the lower the NVI the more stable is the clustering performance. To further validate our choice, we also checked the cluster performance by using two other metrics: the Adjusted Rand Index (32) (ARI) and the Normalized Mutual Information (31) (NMI). For these metrics, a consistent matching between couple of fits corresponds to NMI = 1 and to ARI = 1. With this parameter selection procedure, we obtained the best number of communities and we used it to investigate the meso-scale structure in both time and frequency domains (at both group and single subject level).

Community assignment in the time and frequency domain: central fit

Once we defined the best number of communities at the group level (K_{best}), we needed to choose the best nodes assignment among the 200 fits. Therefore, we used the community assignment corresponding to the central fit across the 200 fits. We defined the central fit as the fit whose distance is minimized from all the others fits using the NVI, as in a previous work (13) (we used the function `partition_distance.m` of the Brain Connectivity Toolbox (49)). We used the central fit not only to identify and to show the resulting communities at the group level, but also for all the subsequent steps of our analysis: the investigation of how the percentage of between-community interactions varies across frequencies. Indeed, in addition to fit the WSBM generative model with the group level time domain (AD^T) and frequency domain (AD^F) matrices, we also fitted the model for $K = K_{best}$ at the single-subject level (AD^T_s and AD^F_s): for each participant we thus performed 100 WSBM fits and we selected as best fit the central one, employing NVI, as for the group level. The central fit was calculated both for the time domain (AD^T_s) and six carrier frequencies ($AD^F_s(f)$, $f = 2$ Hz, 4 Hz, 8 Hz, 16 Hz, 32 Hz, 64 Hz). These carrier frequencies have been chosen as a subset of those selected in previous studies (26, 27). Note that due to high computational cost, we performed the latter frequency-domain analysis across 100 fits.

Characterizing the meso-scale structure: between-community interactions

At the single-subject level, we investigated how pairs of communities interacted with each other in order to generate assortative, disassortative and core-periphery architecture. This permitted us to investigate the between-community interactions in both time and frequency domains. For each pair of communities r and s, we estimated the within- and between- community density (10), a topological property of the detected modules (9):

$$\omega_{rr} = \frac{1}{N_r N_r} \sum_{x \in r} \sum_{y \in r} AD_{S,xy}; \quad \omega_{cc} = \frac{1}{N_c N_c} \sum_{x \in c} \sum_{y \in c} AD_{S,xy}; \quad \omega_{rc} = \frac{1}{N_r N_c} \sum_{x \in r} \sum_{y \in c} AD_{S,xy};$$
Where, N_r and N_c are the number of nodes assigned to the communities r and c at the central fit. We calculated community density for the time domain ADJ_S^T and for the different frequencies $ADJ_S^F(f)$ at the K_{best}. Then, the between-community interactions fall into one of the three categories as reported in (5, 10), according to the following criteria:

$$M_{rc} = \begin{cases}
M_{assortative} & \text{if } \min(\omega_{rr}, \omega_{cc}) > \omega_{rc} \\
M_{core-periphery} & \text{if } \omega_{rr} > \omega_{rc} > \omega_{cc} \text{ or } \omega_{cc} > \omega_{rc} > \omega_{rr} \\
M_{disassortative} & \text{if } \omega_{rc} > \max(\omega_{rr}, \omega_{cc})
\end{cases}$$

We calculated the percentage of between-community interactions for each participant with respect to the total number of possible interactions, corresponding to $1/2[K_{best} \cdot (K_{best} - 1)]$. Then, we averaged the percentage across all participants for the time domain and for the six carrier frequencies.

Statistical analysis of between-community interactions

Our working hypothesis is to understand whether the meso-scale connectivity organizes across frequency bands, i.e. the meso-scale connectivity has frequency-specific features. Prior to testing this hypothesis, we performed statistical testing to check how meso-scale arranges in the time domain. Given the non-normality of the distributions, we employed non-parametric tests. We used the Kruskal-Wallis test to examine whether the meso-scale structure shows a statistically significant effect of the between-community classes. Then, we employed a post-hoc comparison of mean ranks as implemented in Statistica 13 software package (StatSoft Inc., Tulsa) to investigate potential differences among the three interaction classes. For the frequency analysis, we also performed a set of Kruskal-Wallis tests to verify for each interaction class (i.e. assortative, disassortative and core-periphery) whether the carrier frequency has a statistically significant effect. Finally, a post-hoc comparison of mean ranks has been used to further highlight the potential differences among the six carrier frequencies within each community class.
References

1. K. J. Friston, Functional and effective connectivity: a review. *Brain Connect* 1, 13-36 (2011).
2. A. T. Reid et al., Advancing functional connectivity research from association to causation. *Nature Neuroscience* 22, 1751-1760 (2019).
3. R. F. Betzel, D. S. Bassett, Multi-scale brain networks. *Neuroimage* 160, 73-83 (2017).
4. M. N. Halquist, F. G. Hillary, Graph theory approaches to functional network organization in brain disorders: A critique for a brave new small-world. *New Neurosci* 3, 1-26 (2019).
5. R. F. Betzel, J. D. Medaglia, D. S. Bassett, Diversity of meso-scale architecture in human and non-human connectomes. *Nat Commun* 9, 346 (2018).
6. O. Sporns, Graph theory methods: applications in brain networks. *Dialogues Clin Neurosci* 20, 111-121 (2018).
7. K. Glomb et al., Using structural connectivity to augment community structure in EEG functional connectivity. *bioRxiv*, 831743 (2019).
8. M. E. J. Newman, Modularity and community structure in networks. *P Natl Acad Sci USA* 103, 8577-8582 (2006).
9. J. O. Garcia, A. Ashourvan, S. F. Muldoon, J. M. Vettel, D. S. Bassett, Applications of Community Detection Techniques to Brain Graphs: Algorithmic Considerations and Implications for Neural Function. *P IEEE* 106, 846-867 (2018).
10. R. Betzel, M. A Bertolero, D. Bassett, Non-assortative community structure in resting and task-evoked functional brain networks. (2018).
11. S. Fortunato, Community detection in graphs. *Phys Rep* 486, 75-174 (2010).
12. C. Aicher, A. Jacobs, A. Clauset, *Learning Latent Block Structure in Weighted Networks*. (2014), vol. 3.
13. J. Faskowitz, X. Yan, X. N. Zuo, O. Sporns, Weighted Stochastic Block Models of the Human Connectome across the Life Span. *Sci Rep* 8, 12997 (2018).
14. J. Faskowitz, O. Sporns, Mapping the community structure of the rat cerebral cortex with weighted stochastic block modeling. *Brain Structure and Function*, 1-14 (2019).
15. D. M. Pavlovic, P. E. Vertes, E. T. Bullmore, W. R. Schafer, T. E. Nichols, Stochastic blockmodeling of the modules and core of the Caenorhabditis elegans connectome. *PLoS One* 9, e97584 (2014).
16. M. Siegel, T. H. Donner, A. K. Engel, Spectral fingerprints of large-scale neuronal interactions. *Nat Rev Neurosci* 13, 121-134 (2012).
17. J. Samogin, Q. Liu, M. Marino, N. Wenderoth, D. Mantini, Shared and connection-specific intrinsic interactions in the default mode network. *Neuroimage* 200, 474-481 (2019).
18. Q. Y. Liu, S. Farahibozorg, C. Porcaro, N. Wenderoth, D. Mantini, Detecting Large-Scale Networks in the Human Brain Using High-Density Electroencephalography. *Hum Brain Mapp* 38, 4631-4643 (2017).
19. M. Seeber et al., Subcortical electrophysiological activity is detectable with high-density EEG source imaging. *Nature Communications* 10, (2019).
20. A. Coito et al., Altered directed functional connectivity in temporal lobe epilepsy in the absence of interictal spikes: A high density EEG study. *Epilepsia* 57, 402-411 (2016).
21. S. Waninger et al., Neurophysiological Biomarkers of Parkinson’s Disease. *Journal of Parkinson’s Disease*, 1-10 (2020).
22. R. Cassani, M. Estarellas, R. San-Martin, F. J. Fraga, T. H. Falk, Systematic Review on Resting-State EEG for Alzheimer's Disease Diagnosis and Progression Assessment. *Dis Markers* 2018, 5174815 (2018).
23. A. Damborská et al., Altered directed functional connectivity of the right amygdala in depression: high-density EEG study. *Scientific Reports* 10, 1-14 (2020).
24. B. He, A. Sohrabpour, E. Brown, Z. M. Liu, Electrophysiological Source Imaging: A Noninvasive Window to Brain Dynamics. *Annu Rev Biomed Eng* 20, 171-196 (2018).
25. N. Coquelet et al., Comparing MEG and high-density EEG for intrinsic functional connectivity mapping. *Neuroimage*, 116556 (2020).
26. M. Siems, A. A. Pape, J. F. Hipp, M. Siegel, Measuring the cortical correlation structure of spontaneous oscillatory activity with EEG and MEG. *Neuroimage* **129**, 345-355 (2016).
27. J. F. Hipp, D. J. Hawellek, M. Corbetta, M. Siegel, A. K. Engel, Large-scale cortical correlation structure of spontaneous oscillatory activity. *Nat Neurosci* **15**, 884-890 (2012).
28. F. de Pasquale, M. Corbetta, V. Betti, S. Della Penna, Cortical cores in network dynamics. *Neuroimage* **180**, 370-382 (2018).
29. R. Iandolo et al., Small-World Propensity Reveals the Frequency Specificity of Resting State Networks. *IEEE Open Journal of Engineering in Medicine and Biology*, (2020).
30. M. Joliot et al., AICHA: An atlas of intrinsic connectivity of homotopic areas. *J Neurosci Methods* **254**, 46-59 (2015).
31. M. Meila, Comparing clusterings - an information based distance. *J Multivariate Anal* **98**, 873-895 (2007).
32. L. Hubert, P. Arabie, Comparing Partitions. *J Classif* **2**, 193-218 (1985).
33. G. L. Colelough, M. J. Brookes, S. M. Smith, M. W. Woolrich, A symmetric multivariate leakage correction for MEG connectomes. *Neuroimage* **117**, 439-448 (2015).
34. M. X. Cohen, Analyzing Neural Time Series Data: Theory and Practice. *Iss Clin Cogn Neurop*, 1-578 (2014).
35. M. Siems, M. Siegel, Dissociated neuronal phase- and amplitude-coupling patterns in the human brain. *Neuroimage* **209**, 116538 (2020).
36. R. L. van den Brink et al., Task-free spectral EEG dynamics track and predict patient recovery from severe acquired brain injury. *Neuroimage Clin* **17**, 43-52 (2018).
37. A. T. Leong et al., Long-range projections coordinate distributed brain-wide neural activity with a specific spatiotemporal profile. *Proc Natl Acad Sci U S A* **113**, E8306-E8315 (2016).
38. V. S. Sohal, How close are we to understanding what (if anything) γ oscillations do in cortical circuits? *Journal of Neuroscience* **36**, 10489-10495 (2016).
39. V. S. Sohal, Insights into cortical oscillations arising from optogenetic studies. *Biological psychiatry* **71**, 1039-1045 (2012).
40. G. Buzsáki, N. Logothetis, W. Singer, Scaling brain size, keeping timing: evolutionary preservation of brain rhythms. *Neuron* **80**, 751-764 (2013).
41. G. Buzsáki, E. W. Schomburg, What does gamma coherence tell us about inter-regional neural communication? *Nature neuroscience* **18**, 484 (2015).
42. C. Babiloni et al., International Federation of Clinical Neurophysiology (IFCN)—EEG research workgroup: Recommendations on frequency and topographic analysis of resting state EEG rhythms. Part 1: Applications in clinical research studies. *Clinical Neurophysiology*. (2019).
43. R. C. Oldfield, The assessment and analysis of handedness: the Edinburgh inventory. *Neuropsychologia* **9**, 97-113 (1971).
44. G. A. Taberna, R. Guarnieri, D. Mantini, SPOT3D: Spatial positioning toolbox for head markers using 3D scans. *Scientific reports* **9**, 1-9 (2019).
45. Q. Liu et al., Estimating a neural reference for electroencephalographic recordings: the importance of using a high-density montage and a realistic head model. *Journal of neural engineering* **12**, 056012 (2015).
46. R. D. Pascual-Marqui et al., Assessing interactions in the brain with exact low-resolution electromagnetic tomography. *Philos Trans A Math Phys Eng Sci* **369**, 3768-3784 (2011).
47. J. M. Lilly, S. C. Olhede, Generalized Morse Wavelets as a Superfamily of Analytic Wavelets. *Ieee T Signal Process* **60**, 6036-6041 (2012).
48. C. W. Fox, S. J. Roberts, A tutorial on variational Bayesian inference. *Artificial intelligence review* **38**, 85-95 (2012).
49. M. Rubinov, O. Sporns, Complex network measures of brain connectivity: Uses and interpretations. *Neuroimage* **52**, 1059-1069 (2010).
Acknowledgments

The authors would like to thank the Rehab Technologies IIT-INAIL joint lab led by Dr Lorenzo De Michieli for supporting the conducted research. The authors would like to thank Gaia Bonassi, Mingqi Zhao and Federico Barban for collecting part of the experimental data used in this work. The authors are grateful to Silvia Chiappalone for assistance with the graphics and Samuel Stedman for carefully proofreading the manuscript.

Author contribution

R.I., M.C. conceived the study. R.I., M.S. collected the data. R.I., M.S., D.S., S.B. and M.C. designed the methods. R.I., M.S. performed the analysis. R.I., M.S., D.M., L.A. and M.C. interpreted and discussed the results. R.I., M.C. prepared the figures. R.I. wrote the first version of the manuscript. All the authors contributed to the revision of the manuscript.

Competing Interest

All the authors declare no financial interest.

Data Availability

All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials. Additional data related to this paper may be requested from the authors.

Funding

Part of this work was supported by the Gossweiler foundation, granted to L. Avanzino (PI), D. Mantini, and M. Chiappalone.
Supplementary Materials

Figure S1

Parameter selection conducted by means of Normalized Mutual Information (NMI). a Pairwise comparisons of all the 200 fits from K = 2 until K = 16. Yellow and dark blue elements indicate respectively a pair of fits showing a good (high NMI) and weak (low NMI) clustering performance, as indicated by the color-bar. Self-fit comparisons are depicted in white. Note that all the matrices are symmetric. b Distributions of the NMI values obtained by averaging the matrices containing the fits’ pairwise comparisons depicted in panel a. Boxplots’ upper and lower boundary exhibited 25th and 75th percentile, respectively. Data points (black dots) are overlaid over boxplots. Green diamonds and red lines indicates mean and median value of the distributions, respectively. Red crosses indicate outliers. i.e. those fits for which the WSBM algorithm found a solution that is far from almost all the remaining fits. The clustering performance is reliable until K = 5 (“good performance”, NMI values are close to one), unreliable otherwise K ≥ 6 (“bad performance”).

CC-BY-NC-ND 4.0 International license available under a was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
Parameter selection conducted by means of Adjusted Rand Index (ARI). a Pairwise comparisons of all the 200 fits from K = 2 until K = 16. Yellow and dark blue elements indicate respectively a pair of fits showing a good (high ARI) and weak (low ARI) clustering performance, as indicated by the color-bar. Self-fit comparisons are depicted in white. Note that all the matrices are symmetric. b Distributions of the ARI values obtained by averaging the matrices containing the fits’ pairwise comparisons depicted in a. Boxplots’ upper and lower boundary exhibited 25th and 75th percentile, respectively. Data points (black dots) are overlaid over boxplots. Green diamonds and red lines indicate the mean and median value of the distributions, respectively. Red crosses are outliers i.e. those fits for which the WSBM algorithm found a solution that is far from almost all the remaining fits. The clustering performance is reliable until K = 5 (‘‘good performance’’, ARI values are close to one), unreliable otherwise K ≥ 6 (‘‘bad performance’’).
Mean community interactions in the time domain across participants. The color-bar is different for each meso-scale modality to better appreciate region-specific variations. See Figure 3 in the main text where the same plot is shown with a unique color-bar for all the interactions.
Mean community interactions in the frequency domain across participants. Each column indicates the meso-scale class (assortative, disassortative, core-periphery) while each row indicates the carrier frequency (2 Hz, 4 Hz, 8 Hz, 16 Hz, 32 Hz, 64 Hz). The color-bar is customized between minimum and maximum values within each meso-scale modality. See Figure 6 in the main text where the same plot is showed with a unique color-bar for all the interactions.
Non-parametric Kruskal-Wallis test for multiple comparisons across frequencies for the disassortative class.

Carrier	2 Hz	4 Hz	8 Hz	16 Hz	32 Hz	64 Hz
2 Hz		N.S.		0.006976	0.000052	
4 Hz		N.S.		0.000109	0.000000	
8 Hz		N.S.			N.S.	N.S.
16 Hz		N.S.			N.S.	0.045109
32 Hz					N.S.	
64 Hz						

Non-parametric Kruskal-Wallis test for multiple comparisons across frequencies for the core-periphery class.

Note that assortative interactions across frequencies were non-statistically significant and thus we did not perform the multiple comparison test.
Subjects underwent T1-weighted using either a 3T or 1.5 T scanners. See Supplementary Table 3 for the T1-weighted acquisition parameters.

Table 3

Number of subject	MRI scanner	T1-weighted sequence name	Coil	Voxel Size	TR/TE	Field of View (F.O.V)
	21	3T Achieva (Philips Medical System, The Netherlands)	32-channel head coil	0.98×0.98×1.2 mm³	9.6/4.6 ms	250×250 mm²
	7	3 T MAGNETOM Prisma (Siemens AG, Healthcare Sector, Germany)	32-channel head coil	1×1×1 mm³	2.3/2.96 ms	256×256 mm²
	4	1.5 T Signa Excite (General Electric Healthcare, USA)	8-channels phased array head coil	1×1×1 mm³	11.8/5.18 ms	256×256 mm²