On fibre space structures of a projective irreducible symplectic manifold

Daisuke Matsushita *

E-mail Address tyler@kurims.kyoto-u.ac.jp

Abstract

In this note, we investigate fibre space structures of a projective irreducible symplectic manifold. We prove that an 2n-dimensional projective irreducible symplectic manifold admits only an n-dimensional fibration over a Fano variety which has only Q-factorial log-terminal singularities and whose Picard number is one. Moreover we prove that a general fibre is an abelian variety up to finite unramified cover, especially, a general fibre is an abelian surface for 4-fold.

1 Introduction

We first define an irreducible symplectic manifold.

Definition 1 A complex manifold X is called irreducible symplectic if X satisfies the following three conditions:

1. X is compact and Kähler.
2. X is simply connected.
3. $H^0(X, \Omega^2_X)$ is spanned by an everywhere non-degenerate two-from ω.

Such a manifold can be considered as an unit of compact Kähler manifold X with $c_1(X) = 0$ due to the following Bogomolov decomposition theorem.

Theorem 1 (Bogomolov decomposition theorem [2]) A compact Kähler manifold X with $c_1(X) = 0$ admits a finite unramified covering of \tilde{X} which is isomorphic to a product $T \times X_1 \times \cdots \times X_r \times A$ where T is a complex torus, X_i are irreducible symplectic manifolds and A is a projective manifold with $h^0(A, \Omega^p) = 0$, $0 < p < \dim A$.

*1991 Mathematical Subject Classification. 14J35
In dimension 2, $K3$ surfaces are the only irreducible symplectic manifolds, and irreducible symplectic manifolds are considered as higher-dimensional analogies of $K3$ surfaces. In this note, we investigate fibre space structures of a projective irreducible symplectic manifolds.

Definition 2 For an algebraic variety X, a fibre space structure of X is a proper surjective morphism $f : X \to S$ which satisfies the following two conditions:

1. X and S are normal varieties such that $0 < \dim S < \dim X$
2. A general fibre of f is connected.

Some of $K3$ surface S has a fibre space structure $f : S \to \mathbb{P}^1$ whose general fibre is an elliptic curve. In higher dimensional analogy, we obtain the following results.

Theorem 2 Let $f : X \to B$ be a fibre space structure of a projective irreducible symplectic $2n$-fold X with projective base B. Then a general fibre F of f and B satisfy the following three conditions:

1. F is an abelian variety up to finite unramified cover and $K_F \sim O_F$.
2. B is n-dimensional and has only \mathbb{Q}-factorial log-terminal singularities
3. $-K_B$ is ample and Picard number $\rho(B)$ is one.

Especially, if X is 4-dimensional, a general fibre of f is an abelian surface.

Example. Let S be a $K3$ surface with an elliptic fibration $g : S \to \mathbb{P}^1$ and $S^{[n]}$ a n-pointed Hilbert scheme of S. It is known that $S^{[n]}$ is an irreducible symplectic $2n$-fold and there exists a birational morphism $\pi : S^{[n]} \to S^{(n)}$ where $S^{(n)}$ is the symmetric n-product of S (cf. [1]). We can consider n-dimensional abelian fibration $g^{(n)} : S^{(n)} \to \mathbb{P}^n$ for the symmetric n-product of $S^{(n)}$. Then the composition morphism $g^{(n)} \circ \pi : S^{[n]} \to \mathbb{P}^n$ gives an example of a fibre space structure of an irreducible symplectic manifold.

Remark. Markushevich obtained some result of theorem 2 in [3, Theorem 1, Proposition 1] under the assumption $\dim X = 4$ and $f : X \to B$ is the moment map. In general, a fibre space structure of an irreducible symplectic manifold is not a moment map. Markushevich constructs in [4, Remark 4.2] counterexample.

Acknowledgment. The author express his thanks to Professors Y. Miyaoka, S. Mori and N. Nakayama for their advice and encouragement. He also thanks to Prof. D. Huybrechts [4] for his nice survey articles of irreducible symplectic manifolds.
2 Proof of Theorems

First we introduce the following theorem due to Fujiki [3] and Beauville [4].

Theorem 3 (3 Theorem 4.7, Lemma 4.11, Remark 4.12 4 Théorème 5) Let X be an irreducible symplectic $2n$-fold. Then there exists a nondegenerate quadratic form q_X of signature $(3, b_2(X) − 3)$ on $H^2(X, \mathbb{Z})$ which satisfies

$$
\alpha^{2n} = a_0 q_X(\alpha, \alpha)^n \\
c_{2i}(X)\alpha^{2n-2i} = a_i q_X(\alpha, \alpha)^{n-i} \quad (i \geq 1),
$$

where $\alpha \in H^2(X, \mathbb{Z})$ and a_i’s are constants depending on X.

We shall prove theorem 2 in five steps.

1. $\dim B = n$ and B has only log-terminal singularities;
2. A general fibre F of f is an abelian variety up to unramified finite cover and $K_F \sim O_F$;
3. $\rho(B) = 1$;
4. B is \mathbb{Q}-factorial;
5. $-K_B$ is ample.

Step 1. $\dim B = n$ and B has only log-terminal singularities.

Lemma 1 Let X be an irreducible symplectic projective $2n$-fold and E be a divisor on X such that $E^{2n} = 0$. Then,

1. If $E.A^{2n-1} = 0$ for some ample divisor A, $E \equiv 0$.
2. If $E.A^{2n-1} > 0$ for an ample divisor A on X, then

\[
\begin{aligned}
E^m A^{2n-m} &= 0 \quad (m > n) \\
&> 0 \quad (m \leq n)
\end{aligned}
\]

Proof of Lemma. Let $V := \{E \in H^2(X, \mathbb{Z})|E.A^{2n-1} = 0\}$. By [3, Lemma 4.13], q_X is negative definite on W where $V = H^{2,0} \oplus H^{0,2} \oplus W$. Thus, if $E.A^{2n-1} = 0$ and $E^{2n} = 0$, $E \equiv 0$. Next we prove (2). From Theorem 3, for every integer t,

\[
(tE + A)^{2n} = a_0(q_X(tE + A, tE + A))^n.
\]
Because $E^{2n} = a_0(q_X(E, E))^n = 0$,

$$q_X(tE + A, tE + A) = 2tq_X(E, A) + q_X(A, A).$$

Thus the right hand side of the equation \([\text{II}]\) has order at most \(n\). Comparing the both hand side of the equation \([\text{II}]\), we can obtain \(E^m.A^{2n-m} = 0\) for \(m > n\). If \(E.A^{2n-1} > 0\), comparing the first order term of \(t\) of both hand of the equation \([\text{II}]\) we can obtain \(q_X(E, A) > 0\). Because coefficients of other terms of left hand side of \([\text{II}]\) can be written \(q_X(E, A)\) and \(q_X(A, A)\), we can obtain \(E^m.A^{2n-m} > 0\) for \(0 < m \leq n\). \(\square\)

Let \(H\) be a very ample divisor on \(B\). Then \(f^*H\) is a nef divisor such that \((f^*H)^{2n} = 0\), \((f^*H).A^{2n-1} > 0\) for an ample divisor \(A\) on \(X\). Thus \(\dim B = n\). From \([8, \text{Theorem 2}]\), \(B\) has only log-terminal singularities.

Step 2. A general fibre \(F\) of \(f\) is an abelian variety up to unramified finite cover and \(K_F \sim O_F\).

By adjunction, \(K_F \sim 0\). Moreover

$$c_2(F) = c_2(X)(f^*H)^{2n-2} = a_1(q_X(f^*H, f^*H))^{n-1} = 0,$$

by Theorem \([3]\). Thus \(F\) has an étale cover \(\tilde{F} \to F\) such that \(\tilde{F}\) is an Abelian variety by \([3]\).

Step 3. \(\rho(B) = 1\).

Lemma 2 Let \(E\) be a divisor of \(X\) such that \(E^{2n} = 0\) and \(E^n.(f^*H)^n = 0\). Then \(E \sim_\mathbb{Q} \lambda f^*H\) for some rational number \(\lambda\).

Proof of Lemma. Considering the following equation

$$(E - \lambda f^*H)^{2n} = a_0q_X(E - \lambda f^*H, E - \lambda f^*H)^n$$

$$= a_0(2\lambda q_X(E, f^*H))^n,$$

we can obtain \(q_X(E, f^*H) = cE^n.(f^*H)^{n} = 0\) where \(c\) is a constant. Thus \((E - \lambda f^*H)^{2n} = 0\). Because \(f^*H.A^{2n-1} > 0\) for every ample divisor \(A\) on \(X\), we can take a rational number \(\lambda\) such that \((E - \lambda f^*H).A^{2n-1} = 0\) Then \(E - \lambda f^*H \equiv 0\) by lemma \([4]\).

Let \(D\) be a Cartier divisor on \(B\). Then \((f^*D)^{2n} = 0\) and \((f^*D)^n.(f^*H)^n = 0\), thus \(E \sim_\mathbb{Q} \lambda H\) and \(\rho(B) = 1\).

Step 4. \(B\) is \(\mathbb{Q}\)-factorial.
Let D be an irreducible and reduced Weil divisor on B and D_i, $(1 \leq i \leq k)$ divisors on X whose supports are contained in $f^{-1}(D)$. We construct a divisor $\tilde{D} := \sum \lambda_i D_i$, $(\tilde{D} \neq 0)$ such that $\tilde{D}^{2n} = 0$. Let A be a very ample divisor on X, $S := A^{-1}.(f^*H)^{n-1}$ and $C := H^{n-1}$. Then there exists a surjective morphism $f' : S \to C$. If we choose H and A general, we may assume that S and C are smooth and $C \cap D$ and are contained smooth loci of B. Because D is a Cartier divisor in a neighborhood of $C \cap D$, we can define f^*D in a neighborhood U of S. We can express $f^*D = \sum \lambda_i D_i$ in U and let $\tilde{D} := \sum \lambda_i D_i$. Note that if $\lambda_i > 0$, $f(D_i) = D$ because we choose C generally. Comparing the nth order term of t of the both hand side of the following equation

$$(\tilde{D} + tf^*H)^{2n} = a_0q_X(\tilde{D} + tf^*H, \tilde{D} + tf^*H)$$

$$= a_0(q_X(\tilde{D}, \tilde{D}) + 2tq_X(\tilde{D}, f^*H))^n,$$

we can see that $\tilde{D}^n.(f^*H)^n = cq_X(\tilde{D}, f^*H)$. Since $f(\tilde{D}) = D$, $\tilde{D}^n.(f^*H)^n = 0$ and $q_X(\tilde{D}, f^*H) = 0$. Considering the following equation

$$(s\tilde{D} + tA + f^*H)^{2n} = a_0q_X(s\tilde{D} + tA + f^*H, s\tilde{D} + tA + f^*H)^n$$

$$= a_0(s^2q_X(\tilde{D}, \tilde{D}) + t^2q_X(A, A) + 2stq_X(\tilde{D}, A) + 2tq_X(A, f^*H))^n,$$

we can obtain $q_X(\tilde{D}, \tilde{D})q_X(A, f^*H) = c\tilde{D}^2.A^{n-1}.(f^*H)^{n-1}$ where c is a constant. Since $\tilde{D}.A^{n-1}.(f^*H)^{n-1}$ is a fibre of f', $\tilde{D}^2.A^{n-1}.(f^*H)^{n-1} = 0$. Thus $a_0q_X(\tilde{D}, \tilde{D}) = \tilde{D}^{2n} = 0$. Considering $\tilde{D}^n(f^*H)^n = 0$, we can obtain $\tilde{D} \sim_\mathbb{Q} \lambda f^*H$ by Lemma [5] and $D \sim_\mathbb{Q} \lambda H$ because $f(\tilde{D}) = D$. Therefore B is \mathbb{Q}-factorial.

Step 5. $-K_B$ is ample.

From Step 3,4, we can write $-K_B \sim_\mathbb{Q} tH$. It is enough to prove $t > 0$. Because $K_X \sim \mathcal{O}_X$ and a general fibre of $f : X \to B$ is a minimal model, $\kappa(B) \leq 0$ by [4, Theorem 1.1] and $t \geq 0$. Assume that $t = 0$. If $K_B \not\sim \mathcal{O}_B$, we can consider the following diagram:

$$
\begin{array}{ccc}
X & \to & B \\
\alpha & \uparrow & \beta \\
\tilde{X} & \to & \tilde{B}
\end{array}
$$

where β is an unramified finite cover and $K_{\tilde{B}} \sim \mathcal{O}_{\tilde{B}}$. Because $\pi_1(X) = \{1\}$, \tilde{X} is the direct sum of X. Thus there exists a morphism from X to \tilde{B} and we may assume that $K_B \sim \mathcal{O}_B$. Then there exists a holomorphic n-form ω' on X coming from B. However, if n is odd, it is a contradiction because there exist no holomorphic $(2k-1)$-form on X. If n is even, it is also a contradiction because ω' dose not generated by $\omega \in H^0(X, \Omega^2)$. Thus $t > 0$ and we completed the proof of Theorem 2.
References

[1] A. Beauville, *Variétés kählerennes dont la première classes de Chern est nulle*, J. Diff. Geom., 18 (1983), 755–782.

[2] F.A. Bogomolov, *On the decomposition theorem of Kähler manifolds with trivial canonical class*, Math. USSR-Sb., 22 (1974), 580–583.

[3] A. Fujiki, *On the de Rham Cohomology Group of a Compact Kähler Symplectic Manifold*, in *Algebraic geometry, Adv. Stud. Pure Math.*, vol 10, (ed. T. Oda), Kinokuniya and North-Holland (1987), 105–165.

[4] D. Huybrechts, *Compact HyperKähler Manifolds: Basic Results*, alg-geom9705025.

[5] Y. Kawamata, *Minimal models and the Kodaira dimension of algebraic fibre spaces*, J. Reine. Angew. Math., 363 (1985), 1–46.

[6] D.G. Markushevich, *Completely integrable projective symplectic 4-dimensional varieties*, Izv. Math., 59:1 (1995), 159–187.

[7] ———, *Integrable symplectic structures on compact complex manifolds*, Math. USSR-Sb., 59:2 (1988), 459–469.

[8] N. Nakayama, *The Singularity of the Canonical Model of Compact Kähler Manifolds*, Math. Ann., 280 (1988), 509–512.

[9] S.T. Yau, *Calabi’s conjecture and some new results in algebraic geometry*, Proc. Nat. Acad. Sc. U.S.A., 74 (1977), 1978–1979.

Research Institute of Mathematical Science,
Kyoto University.
KITASHIRAKAWA, OIWAKE-CHO,
KYOTO, 606-01, JAPAN.