Cannabis Arteritis: Review of the Literature

Olivier Cottencin, MD, PhD, Laurent Karila, MD, Marc Lambert, MD, PhD, Catherine Arveiller, MD, Amine Benyamina, MD, Alain Boissonas, MD, PhD, Michel Goudemand, MD, PhD, and Michel Reynaud, MD, PhD

Abstract: Consumption of cannabis in young adults has continued to increase in recent years. Cannabis arteritis was first described in the 1960s, but the number of cases has continued to increase. We reviewed current knowledge of the different types of cannabis arteritis in young adults and found 70 cases of cannabis arteritis in the literature. We discuss physiopathological arguments in favor of cannabis vascular toxicity per se, although we did not find sufficient evidence to identify cannabis arteritis as a specific diagnostic entity. Many factors suggest a link between cannabis consumption and arteritis in young adults, but it is difficult to say whether this type of arteritis is similar to thromboangiitis obliterans. We were unable to demonstrate a formal association between cannabis smoking and the development of thromboangiitis obliterans, because most case reports showed associated tobacco smoking (97%) and the number of years cannabis had been smoked by the participants was mostly unknown. Cannabis consumption would however seem to be an aggravating factor, together with tobacco, in arteritis, which occurs in young adults.

Key Words: juvenile arteritis, cannabis, tobacco, drug abuse, Buerger disease, thromboangiitis obliterans, vascular ischemia

(J Addict Med 2010;4: 191–196)

Cannabis is the most common illegal substance consumed in France. In 2007, the French Monitoring Centre for Drugs and Drug Addiction estimated that 31% of adults aged between 16 and 64 years had tried it (including 9% who had tried it during the year and 1.4% who were regular users) (OFDT, 2007). Cannabis is most often consumed by inhalation and is strongly linked to tobacco and alcohol consumption (Costes et al., 2005; Cottencin et al., 2008).

Abstract: Consumption of cannabis in young adults has continued to increase in recent years. Cannabis arteritis was first described in the 1960s, but the number of cases has continued to increase. We reviewed current knowledge of the different types of cannabis arteritis in young adults and found 70 cases of cannabis arteritis in the literature. We discuss physiopathological arguments in favor of cannabis vascular toxicity per se, although we did not find sufficient evidence to identify cannabis arteritis as a specific diagnostic entity. Many factors suggest a link between cannabis consumption and arteritis in young adults, but it is difficult to say whether this type of arteritis is similar to thromboangiitis obliterans. We were unable to demonstrate a formal association between cannabis smoking and the development of thromboangiitis obliterans, because most case reports showed associated tobacco smoking (97%) and the number of years cannabis had been smoked by the participants was mostly unknown. Cannabis consumption would however seem to be an aggravating factor, together with tobacco, in arteritis, which occurs in young adults.

Key Words: juvenile arteritis, cannabis, tobacco, drug abuse, Buerger disease, thromboangiitis obliterans, vascular ischemia

(J Addict Med 2010;4: 191–196)

Canna

Abstract: Consumption of cannabis in young adults has continued to increase in recent years. Cannabis arteritis was first described in the 1960s, but the number of cases has continued to increase. We reviewed current knowledge of the different types of cannabis arteritis in young adults and found 70 cases of cannabis arteritis in the literature. We discuss physiopathological arguments in favor of cannabis vascular toxicity per se, although we did not find sufficient evidence to identify cannabis arteritis as a specific diagnostic entity. Many factors suggest a link between cannabis consumption and arteritis in young adults, but it is difficult to say whether this type of arteritis is similar to thromboangiitis obliterans. We were unable to demonstrate a formal association between cannabis smoking and the development of thromboangiitis obliterans, because most case reports showed associated tobacco smoking (97%) and the number of years cannabis had been smoked by the participants was mostly unknown. Cannabis consumption would however seem to be an aggravating factor, together with tobacco, in arteritis, which occurs in young adults.

Key Words: juvenile arteritis, cannabis, tobacco, drug abuse, Buerger disease, thromboangiitis obliterans, vascular ischemia

(J Addict Med 2010;4: 191–196)

Cannabis is the most common illegal substance consumed in France. In 2007, the French Monitoring Centre for Drugs and Drug Addiction estimated that 31% of adults aged between 16 and 64 years had tried it (including 9% who had tried it during the year and 1.4% who were regular users) (OFDT, 2007). Cannabis is most often consumed by inhalation and is strongly linked to tobacco and alcohol consumption (Costes et al., 2005; Cottencin et al., 2008).

Abstract: Consumption of cannabis in young adults has continued to increase in recent years. Cannabis arteritis was first described in the 1960s, but the number of cases has continued to increase. We reviewed current knowledge of the different types of cannabis arteritis in young adults and found 70 cases of cannabis arteritis in the literature. We discuss physiopathological arguments in favor of cannabis vascular toxicity per se, although we did not find sufficient evidence to identify cannabis arteritis as a specific diagnostic entity. Many factors suggest a link between cannabis consumption and arteritis in young adults, but it is difficult to say whether this type of arteritis is similar to thromboangiitis obliterans. We were unable to demonstrate a formal association between cannabis smoking and the development of thromboangiitis obliterans, because most case reports showed associated tobacco smoking (97%) and the number of years cannabis had been smoked by the participants was mostly unknown. Cannabis consumption would however seem to be an aggravating factor, together with tobacco, in arteritis, which occurs in young adults.

Key Words: juvenile arteritis, cannabis, tobacco, drug abuse, Buerger disease, thromboangiitis obliterans, vascular ischemia

(J Addict Med 2010;4: 191–196)

Cannabis is the most common illegal substance consumed in France. In 2007, the French Monitoring Centre for Drugs and Drug Addiction estimated that 31% of adults aged between 16 and 64 years had tried it (including 9% who had tried it during the year and 1.4% who were regular users) (OFDT, 2007). Cannabis is most often consumed by inhalation and is strongly linked to tobacco and alcohol consumption (Costes et al., 2005; Cottencin et al., 2008).

Abstract: Consumption of cannabis in young adults has continued to increase in recent years. Cannabis arteritis was first described in the 1960s, but the number of cases has continued to increase. We reviewed current knowledge of the different types of cannabis arteritis in young adults and found 70 cases of cannabis arteritis in the literature. We discuss physiopathological arguments in favor of cannabis vascular toxicity per se, although we did not find sufficient evidence to identify cannabis arteritis as a specific diagnostic entity. Many factors suggest a link between cannabis consumption and arteritis in young adults, but it is difficult to say whether this type of arteritis is similar to thromboangiitis obliterans. We were unable to demonstrate a formal association between cannabis smoking and the development of thromboangiitis obliterans, because most case reports showed associated tobacco smoking (97%) and the number of years cannabis had been smoked by the participants was mostly unknown. Cannabis consumption would however seem to be an aggravating factor, together with tobacco, in arteritis, which occurs in young adults.

Key Words: juvenile arteritis, cannabis, tobacco, drug abuse, Buerger disease, thromboangiitis obliterans, vascular ischemia

(J Addict Med 2010;4: 191–196)

Cannabis is the most common illegal substance consumed in France. In 2007, the French Monitoring Centre for Drugs and Drug Addiction estimated that 31% of adults aged between 16 and 64 years had tried it (including 9% who had tried it during the year and 1.4% who were regular users) (OFDT, 2007). Cannabis is most often consumed by inhalation and is strongly linked to tobacco and alcohol consumption (Costes et al., 2005; Cottencin et al., 2008).

Abstract: Consumption of cannabis in young adults has continued to increase in recent years. Cannabis arteritis was first described in the 1960s, but the number of cases has continued to increase. We reviewed current knowledge of the different types of cannabis arteritis in young adults and found 70 cases of cannabis arteritis in the literature. We discuss physiopathological arguments in favor of cannabis vascular toxicity per se, although we did not find sufficient evidence to identify cannabis arteritis as a specific diagnostic entity. Many factors suggest a link between cannabis consumption and arteritis in young adults, but it is difficult to say whether this type of arteritis is similar to thromboangiitis obliterans. We were unable to demonstrate a formal association between cannabis smoking and the development of thromboangiitis obliterans, because most case reports showed associated tobacco smoking (97%) and the number of years cannabis had been smoked by the participants was mostly unknown. Cannabis consumption would however seem to be an aggravating factor, together with tobacco, in arteritis, which occurs in young adults.

Key Words: juvenile arteritis, cannabis, tobacco, drug abuse, Buerger disease, thromboangiitis obliterans, vascular ischemia

(J Addict Med 2010;4: 191–196)
started (atheroma 57% stage II vs TAO 86% stage IV) (Rutherford classification’s grade II and III = Leriche & Fontaine classification’s stage III and IV). They also diagnosed TAO more frequently in cannabis consumers (43%) than nonconsumers (19%) (Sauvanier et al., 2002), suggesting a link between cannabis use and TAO.

Thus, although the main etiology of arteritis in young adults is atherosclerosis, cannabis consumers account for 10% of those patients, who smoke less tobacco, who have more distal disease, and whose upper limbs are more often affected. Venous thrombosis of a superficial vein is occasionally seen (Noel et al., 2008). This clinical picture is quite similar to TAO, suggesting that cannabis arteritis may be a specific form of TAO.

The TAO is a nonatheromatous form of distal arteritis, which is a segmental multifocal inflammatory disease of the small- and medium-sized arteries and of the superficial veins. The reported incidence of TAO is 8 to 12.6/100,000 population in North America (Mills, 2003). The TAO classically affects young male adults (younger than 40 years), and there is a very strong link with tobacco consumption (Dehaine-Bamberger et al., 1993). Although TAO existence was questioned in the 1960s, many publications have since confirmed TAO as a distinct clinical entity (Olin and Shih, 2006; Puechal and Fiessinger, 2007). No biochemical markers help in making a positive diagnosis of TAO (Dehaine-Bamberger et al., 1993). Many pathogenic hypotheses exist, although the etiology is still unknown, but tobacco, an autoimmune origin (hypersensitivity to tobacco antigens, increased reactivity of white blood cells) and a genetic predisposition (Adar et al., 2000) have been incriminated.

In view of the widespread consumption of cannabis in Europe (EMCDDA, 2007), its cardiovascular complications (Lindsay et al., 2005), and the increasing number of cases of cannabis-induced arteritis being reported, we decided to review the cases of cannabis-induced arteritis described in the literature, with the aim of looking for specific criteria that may show a possible link with TAO.

METHODS

We reviewed the literature using several databases: Medline, Embase, Google Scholar, and the Catalogue of Theses from the French Interuniversity Library of Medicine.

We found 70 cases of cannabis arteritis in the literature (Table 1). We classified them according to age, sex, quantity and duration of cannabis consumption, consumption of tobacco and other drugs, how the disease was discovered, its clinical presentation, imaging, treatment, and outcomes.

Because the case reports mostly fitted Olin’s criteria for TAO or Buerger disease (Leger et al., 2001), we decided to compare our collected data (Table 1) with the results of 2 large series of patients suffering from TAO: the first with 112 patients (Olin et al., 1990) and the other with 110 patients (Ohta et al., 2004) (Table 2).

RESULTS

The mean age of the patients was estimated as 28.5 years (SD 8.25, min 18, max 48), which is comparable to patients with TAO whose mean age was 35 years (Ohta et al., 2004). As in TAO, there was a large male predominance (92.8%). The mean cannabis consumption was estimated at 3.8 joints per person per day, with duration between 1 and 20 years. Because cannabis is always consumed mixed with tobacco, we were unable to isolate the effects of cannabis by itself. However, we noted that whenever it was looked for, coaddiction with tobacco was (apart from 2 cases) always reported. The quantity of tobacco was not always specified, and the methods used to quantify it varied considerably from one study to the other (pack-years, cigarettes per day, or length of tobacco consumption).

Other coaddictions were uncommon. Only 9 patients consumed other drugs, either alone or in association (amphetamine, heroin, lysergic acid diethylamide (LSD), or high-dose Buprenorphine), some of which also have cardiovascular toxicity (amphetamine) (Leithauser et al., 2005).

From a clinical point of view, although risk factors were not systematically specified, we found that 11 patients had a previous cardiovascular history. Raynaud’s syndrome was noted in 7 of the 70 cases (10%), which is much lower than rates found in TAO (44% in the study by Olin et al. [1990]) but this data were available in only 18 cases, estimating the rate at 38.8% (7/18 cases). Venous thrombosis was found in 2 of the 70 cases (2.85%). It was superficial, single, in a lower limb, and without any hemostatic abnormalities, the latter being frequent in TAO (38%) (Olin et al., 1990). Finally, arterial lesions affected the lower limbs twice as often as the upper limbs, the lesions were distal in all of the cases, and an associated proximal lesion was present in 18.8% of the cases (figures that are quite close to those from the study by Olin et al.).

When imaging was performed, (angiography and/or Doppler ultrasound), comparable lesions (thin arteries, many obliterations, segmental occlusive lesions, and the presence of collateral circulation) were seen, which were suggestive (as in TAO) of inflammatory nonatheromatous arteritis.

Histology from amputation specimens or cutaneous biopsies was rarely performed. Only Sterne and Ducastaing (1960) found fatty deposits without any inflammatory infiltrate, suggestive of atherosclerosis, whereas Disdier et al. (2001) described a patient with endarteritis and an inflammatory infiltrate composed of neutrophils and macrophages, which had invaded the media and had fragmented the internal elastic lamina, with in situ thrombosis. Other authors believe that these 2 types of lesion are identical at different stages of the disease process (Combe male et al., 2005).

Biochemical tests, performed to look for thrombotic cardiovascular risk factors, only found 6 cases of moderate hyperhomocysteinaemia, 1 case of S-protein deficiency, 2 cases of hypercholesterolaemia, 3 cases of hypertriglyceridaemia, 10 cases with an inflammatory syndrome, and no cases of diabetes.

Treatments given varied greatly from one team to another and was mostly symptomatic. The only consensus seems to be that cannabis should be stopped. In fact, stopping cannabis proved an essential element in the favorable outcome in 18 patients treated by cannabis withdrawal, in de-
TABLE 1. Description of the Population

Author Names, Years	Age	Gender	Cannabis Quantity	Duration (yr)	Concomitant Smoking	Other Toxic	Other Cardiovascular Risk Factor	Other Procoagulation Systemic Diseases	Clinical Discovery	Imagery
Sterne and Ducastaing (1960)	25–35	Male (29)	15 pipes/d	Unknown	Unknown	Unknown	No	No	Claudication, toe and heel necrosis	Stenosis, collateral circulation
Swiader et al. (1998)	18	Male (1)	1 cig/d	1	Yes (<1 PY)	Unknown	Unknown	Unknown	Necrosis of 2 fingers	Occlusion
Swiader et al. (1998)	20	Male (1)	5–10 cig/wk	3	Yes (6 PY)	Unknown	Unknown	Unknown	Ischemia of 2 fingers	Occlusion
Constans et al. (1999)	30	Male (1)	4–5 cig/wk	15	Yes (12 PY)	Ecstasy	Unknown	Unknown	Ischemia	Occlusion
Constans et al. (1999)	29	Male (1)	Unknown	Unknown	Yes (10 PY)	Ecstasy	Unknown	Unknown	Distal necrosis	Occlusion and stenosis
Constans et al. (1999)	40	Male (1)	Unknown	20	Unknown	No	Unknown	Unknown	Ischemia Occlusion and stenosis	
Constans et al. (1999)	38	Male (1)	Unknown	18	Yes (20 PY)	Heroin, Buprenorphine	Unknown	Unknown	Distal necrosis	Stenosis
Schneider et al. (1999)	38	Male (1)	1 cig/d	Unknown	Yes (stop smoking since 10 yr)	No	No	No	Distal necrosis	Occlusion, collateral circulation
Le Berre et al. (1999)	20	Male (1)	Unknown	Unknown	Yes (5 PY)	Unknown	Unknown	Unknown	Lower limb ischemia	Occlusion and stenosis
Michon-Pasturel et al. (1999)	21	Male (1)	Unknown	Unknown	Yes (<4 PY)	No	Unknown	Unknown	Lower limb ischemia	Unknown
Michon-Pasturel et al. (1999)	22	Male (1)	Unknown	Unknown	Yes (<4 PY)	No	Unknown	Unknown	Lower limb ischemia	Unknown
Michon-Pasturel et al. (1999)	26	Male (1)	Unknown	Unknown	Yes (<4 PY)	No	Unknown	Unknown	Lower limb ischemia	Unknown
Michon-Pasturel et al. (1999)	30	Female (1)	1 cig/d	Unknown	Yes (16 yr)	No	Hypertriglyceridemia	No	Claudication	Stenosis
Disdier et al. (2001)	18–40	Male (10)	1–5 cig/d	1–20	Yes (<20 cig/d) (1 to 20 yr)	Amphetamin, Heroin, Buprenorphine, LSD	Diabetes (1)	Homocysteine level slightly elevated (3)	Nocrosis, ischemia	Stenosis, collateral circulation
Cazalets et al. (2003)	22	Male (1)	1 cig/wk	5	Yes (5 PY)	No	No	No	Claudication, toe necrosis	Occlusion
Cazalets et al. (2003)	20	Male (1)	4 cig/d	4	Yes (4 PY)	No	No	No	Raynaud, Heterozygote mutation of factor II	Claudication, toe necrosis
Cazalets et al. (2003)	35	Male (1)	1 cig/d	10	Yes (10 PY)	No	No	No	Raynaud	Claudication, toe necrosis
Cazalets et al. (2003)	30	Male (1)	5 cig/d	12	Yes (15 PY)	No	No	No	Raynaud	Claudication, toe necrosis
Sauvanier et al. (2002)	28 (25–31)	Male (6); female (1)	Unknown	Unknown	Yes (18 PY)	No	Hypercholesterolemia (1)	No	Ischemia	Unknown
Gröger et al. (2003)	24	Female (1)	1–2 cig/d	6	Yes (5 cig/d)	No	No	No	Raynaud	Digital necrosis

(Continued)
terminating the clinical course of 13 other patients, which depended on whether they stopped or restarted cannabis consumption, and in the clinical worsening in 3 cases, who continued their consumption.

It is, however, noteworthy that 1 case improved despite not stopping cannabis and that 2 cases improved after cannabis withdrawal despite continuing tobacco smoking.

The amputation rate was lower than that in the study by Olin et al. (14.5% vs 27%), but because the data were incomplete, it is difficult to compare them.

In the 70 case reports, cannabis arteritis mostly affected young men (18 to 40 years), whose cannabis consumption varied from abuse to addiction, with almost systematic tobacco coaddiction (in addition to the tobacco-cannabis mixture used for making joints). No other cardiovascular risk factors were noted, and other coaddictions were not thought to be linked to the arteritis. The lesions were severe, and their histology atheromatous and their imaging were compatible with descriptions of TAO. The prognosis was directly linked to cannabis consumption (sometimes leading to amputation, if cannabis was not stopped).

DISCUSSION

The objective of this study was to collect cases of arteriopathy linked to cannabis and to try to separate out the particular features offered in the initial description from 1960 (Sterne and Ducastaing, 1960). So far, we have found 70 cases in the literature. This figure is probably an underestimate because of associated tobacco consumption, which is the main factor for confusion between the various cardiovascular risk factors. Peyrot et al. (2007) actually found only 55 cases using different data collection methods than our own methods.

An initial remark is that most of the authors are French speakers. Apart from the fact that consumption has considerably increased during the past 10 years in France, possible sources of bias may be from a greater genetic susceptibility in our population or from French-speaking vascular doctors being more aware of this phenomenon than in other countries. Finally, since the initial description, more than half of the cases were reported during the past 5 years. Apart from the
Cannabis Arteritis

fact that access to publication in medical journals has increased, we consider that this increase also reflects changes in addictive behavior with respect to cannabis, because 50% of 17-year-old adolescents have already tried it (Costes et al., 2005).

A second point is that our results are from case reports collected from the literature and are not from a population-based study. In those cases, many factors are in favor of a link between cannabis consumption and arteritis in young adults, but it is important to note that most cannabis users also belong to that age group. It is difficult to say if this type of arteritis is similar to atheromatous disease, to TAO, or is a new pathologic entity. In addition, consumption was very difficult to estimate, in view of the different methods of consumption and the different methods of data collection used.

From these cases, we observed characteristics in favor of both atheroma and TAO—the main aetiologies of arteriopathy in young adults. In fact, all sizes of artery were affected in the cases seen, with segmental or diffuse lesions, although the histology was similar to that of atheroma, and in certain cases, blood tests showed an inflammatory syndrome to be present. In addition, the almost systematic association of cannabis and tobacco consumption (a major risk factor for arteritis) makes it impossible to state categorically that cannabis was the only substance causing blood vessel damage. Sixty-eight subjects (97%) also smoked tobacco in our review. Because most cases of TAO reported in the literature included associated tobacco smoking, and because the length of time cannabis had been smoked is unknown, it is not possible for us to make a formal link between cannabis smoking and the development of TAO. However, we suspect that the vasoconstrictive effect of cannabis may act as an aggravating factor, when it is associated with tobacco, which would seem to have been confirmed by the cases in which the symptoms varied according to the patients’ cannabis consumption.

Finally, other factors make it difficult to prove that cannabis is involved in causing arteriopathy:

- the composition of the inhaled smoke (carbon monoxide, free radicals), which may cause endothelial lesions by itself,
- consumption of other drugs, apart from cocaine, which is suspected as having a direct vascular toxic effect, although this still has to be confirmed,
- the existence of other biochemical risk factors for thrombosis.

Analysis of data from the literature poses a certain number of problems: the lack of data and the variability of diagnostic methods. Other means, such as a prospective case-control study, are required before wider conclusions can be drawn.

We can only conclude that there is link between cannabis consumption and certain cases of arteritis in young adults, but we are currently unable to identify cannabis-induced arteritis as a separate pathologic entity. The TAO is itself a clinical diagnosis by exclusion, without any clear laboratory or histologic parameters to prove it. Apart from cannabis, comparable clinical pictures of vascular pathology have been described for amphetamines, cocaine, and arsenic (Marder and Mellinghoff, 2000; Noel, 2001a; Leithauser et al., 2005; Tseng, 2005). It is generally accepted that cannabis, like other drugs such as amphetamines or cocaine, may have an aggravating or synergistic effect with tobacco.

According to Noel et al. (2008), cannabis arteritis and TAO have almost the same clinical and arteriographical presentation. Chronic arsenic exposure causes dysfunction of endogenous nitric oxide, which may lead to vascular occlusion (Lee et al., 2003). Epidemiological studies have found that consumption of home-made cigarettes is associated with an increased risk of TAO (Hill et al., 1973; Rahman et al., 2000). High arsenic content can be found in cannabis and home-made cigarettes, exposing consumers to chronic intoxication and vascular complications (Noel, 2001b).

In conclusion, cannabis seems to be a promoting factor for the arteritis disease process, perhaps in synergy with tobacco, although apparently not the only triggering factor.

REFERENCES

Adams MD, Eamhardt JT, Dewey WL, et al. Vasoconstrictor actions of delta8- and delta9-tetrahydrocannabinol in the rat. J Pharmacol Exp Ther 1976;196:649–656.

Adar R, Papa MZ, Schneiderman J. Thromboangiitis obliterans: An old disease in need of a new look. Int J Cardiol 2000;75 (Suppl 1):S167–S170; discussion S171–S163.

Aldington S, Harwood M, Cox B, et al. Cannabis use and risk of lung cancer: A case-control study. Eur Respir J 2008;31:280–286.

Cazalets C, Laurat E, Cador B, et al. [Cannabis arteritis: Four new cases]. Rev Med Interne 2003;24:127–130.

Combeau P, Consort T, Denis-Thelis L, et al. Cannabis arteritis. Br J Dermatol 2005;152:166–169.

Constans J, Dubiez P, Baste JC, et al. [Cannabis arteriopathy]. Presse Med 1999;28:2154.

Costes JM, Beck F, Legleye S, et al. [Epidemiology of cannabis use]. Rev Prat 2005;55:17–22.

Cottencin O, Spinosi L, Fourny F, et al. [Cannabis use in alcohol dependent patients]. Presse Med 2009;38:502–505.

Dehaine-Bamberger N, Amar R, Touboul C, et al. [Buerger disease, clinical and prognostic aspects. 83 cases]. Presse Med 1993;22:945–948.

Disdier P, Granel B, Serratrice J, et al. Cannabis arteritis revisited—Ten new case reports. Angiology 2001;52:1–5.

Ducasse E, Chevalier J, Danvoy D, et al. Popliteal artery entrapment associated with cannabis arteritis. Eur J Vasc Endovasc Surg 2004;27:327–332.

EMCDDA. EMCDDA Annual Report 2007. The State of the Drugs Problem in Europe. Lisbon, Portugal: EMCDDA; 2007. Available at http://www.emcdda.europa.eu/publications/searchresults?action=list&type=PUBLICATIONS&SERIES_PUB=w36.

Ghafour S, Benchikh H, Lakhdar H. [Cannabis and tobacco: Associated morbidity in juvenile obstructive arterial disease]. Ann Dermatol Venereol 2007;134:177–178.

Gröger A, Aslani A, Wolter T, et al. [A rare case of cannabis arteritis]. Vasa 2003;32:95–97.

Grotenhermen F. The toxicology of cannabis and cannabis prohibition. Chem Biodivers 2007;4:1744–1769.

Guzman M, Galve-Roperh I, Sanchez C. Ceramide: A new second messenger of cannabinoid action. Trends Pharmacol Sci 2001;22:19–22.

Hill GL, Moeliono J, Tumewu F, et al. “Asian cigarette” is an adverse prognostic factor in peripheral arterial disease. Nature 1973;246:492–493.

Jones RT. Cardiovascular system effects of marijuana. J Clin Pharmacol 2002;42:585–63S.

Karila L, Daniel T, Coscas S, et al. [Progressive cannabis-induced arteritis: A
clinical thromboangiitis obliterans sub-group?]. Presse Med 2004;33:21–23.
Le Berre R, Lhomme E, Queyrel V, et al. Les artériites juvéniles: Le cannabis, un nouveau facteur de risque. Rev Med Interne 1999; 20 (Suppl 1):136S.
Le Vu S, Aquatias S, Bonnet N, et al. [Chemical content of street cannabis]. Presse Med 2006;35:755–758.
Lee MY, Jung BI, Chung SM, et al. Arsenic-induced dysfunction in relaxation of blood vessels. Environ Health Perspect 2003;111:513–517.
Lee Vu S, Aquatias S, Bonnet N, et al. [Chemical content of street cannabis]. Presse Med 2006;35:755–758.
Lee MY, Jung BI, Chung SM, et al. Arsenic-induced dysfunction in relaxation of blood vessels. Environ Health Perspect 2003;111:513–517.
Leger P, Pathak A, Haji L, et al. [Buerger’s disease or thromboangiitis obliterans]. Ann Cardiol Angeiol (Paris) 2001;50:82–89.
Leithauser B, Langheinrich AC, Rau WS, et al. A 22-year-old woman with lower limb arteriopathy. Buerger’s disease, or methamphetamine- or cannabis-induced arteritis? Heart Vessels 2005;20:39–43.
Lindsay AC, Foale RA, Warren O, et al. Cannabis as a precipitant of recurrent stroke associated with cannabis use. Br Med J 2000;320:161–162.
Lindsay AC, Foale RA, Warren O, et al. Cannabis as a precipitant of recurrent stroke associated with cannabis use. Br Med J 2000;320:161–162.
Lindsay AC, Foale RA, Warren O, et al. Cannabis as a precipitant of recurrent stroke associated with cannabis use. Br Med J 2000;320:161–162.
Lindsay AC, Foale RA, Warren O, et al. Cannabis as a precipitant of recurrent stroke associated with cannabis use. Br Med J 2000;320:161–162.
Lindsay AC, Foale RA, Warren O, et al. Cannabis as a precipitant of recurrent stroke associated with cannabis use. Br Med J 2000;320:161–162.
Lindsay AC, Foale RA, Warren O, et al. Cannabis as a precipitant of recurrent stroke associated with cannabis use. Br Med J 2000;320:161–162.
Lindsay AC, Foale RA, Warren O, et al. Cannabis as a precipitant of recurrent stroke associated with cannabis use. Br Med J 2000;320:161–162.
Lindsay AC, Foale RA, Warren O, et al. Cannabis as a precipitant of recurrent stroke associated with cannabis use. Br Med J 2000;320:161–162.
Lindsay AC, Foale RA, Warren O, et al. Cannabis as a precipitant of recurrent stroke associated with cannabis use. Br Med J 2000;320:161–162.
Lindsay AC, Foale RA, Warren O, et al. Cannabis as a precipitant of recurrent stroke associated with cannabis use. Br Med J 2000;320:161–162.
Lindsay AC, Foale RA, Warren O, et al. Cannabis as a precipitant of recurrent stroke associated with cannabis use. Br Med J 2000;320:161–162.
Lindsay AC, Foale RA, Warren O, et al. Cannabis as a precipitant of recurrent stroke associated with cannabis use. Br Med J 2000;320:161–162.
Lindsay AC, Foale RA, Warren O, et al. Cannabis as a precipitant of recurrent stroke associated with cannabis use. Br Med J 2000;320:161–162.
Lindsay AC, Foale RA, Warren O, et al. Cannabis as a precipitant of recurrent stroke associated with cannabis use. Br Med J 2000;320:161–162.
Lindsay AC, Foale RA, Warren O, et al. Cannabis as a precipitant of recurrent stroke associated with cannabis use. Br Med J 2000;320:161–162.
Lindsay AC, Foale RA, Warren O, et al. Cannabis as a precipitant of recurrent stroke associated with cannabis use. Br Med J 2000;320:161–162.
Lindsay AC, Foale RA, Warren O, et al. Cannabis as a precipitant of recurrent stroke associated with cannabis use. Br Med J 2000;320:161–162.
Lindsay AC, Foale RA, Warren O, et al. Cannabis as a precipitant of recurrent stroke associated with cannabis use. Br Med J 2000;320:161–162.
Lindsay AC, Foale RA, Warren O, et al. Cannabis as a precipitant of recurrent stroke associated with cannabis use. Br Med J 2000;320:161–162.
Lindsay AC, Foale RA, Warren O, et al. Cannabis as a precipitant of recurrent stroke associated with cannabis use. Br Med J 2000;320:161–162.
Lindsay AC, Foale RA, Warren O, et al. Cannabis as a precipitant of recurrent stroke associated with cannabis use. Br Med J 2000;320:161–162.
Lindsay AC, Foale RA, Warren O, et al. Cannabis as a precipitant of recurrent stroke associated with cannabis use. Br Med J 2000;320:161–162.
Lindsay AC, Foale RA, Warren O, et al. Cannabis as a precipitant of recurrent stroke associated with cannabis use. Br Med J 2000;320:161–162.
Lindsay AC, Foale RA, Warren O, et al. Cannabis as a precipitant of recurrent stroke associated with cannabis use. Br Med J 2000;320:161–162.
Lindsay AC, Foale RA, Warren O, et al. Cannabis as a precipitant of recurrent stroke associated with cannabis use. Br Med J 2000;320:161–162.
Lindsay AC, Foale RA, Warren O, et al. Cannabis as a precipitant of recurrent stroke associated with cannabis use. Br Med J 2000;320:161–162.
Lindsay AC, Foale RA, Warren O, et al. Cannabis as a precipitant of recurrent stroke associated with cannabis use. Br Med J 2000;320:161–162.
Lindsay AC, Foale RA, Warren O, et al. Cannabis as a precipitant of recurrent stroke associated with cannabis use. Br Med J 2000;320:161–162.
Lindsay AC, Foale RA, Warren O, et al. Cannabis as a precipitant of recurrent stroke associated with cannabis use. Br Med J 2000;320:161–162.
Lindsay AC, Foale RA, Warren O, et al. Cannabis as a precipitant of recurrent stroke associated with cannabis use. Br Med J 2000;320:161–162.
Lindsay AC, Foale RA, Warren O, et al. Cannabis as a precipitant of recurrent stroke associated with cannabis use. Br Med J 2000;320:161–162.
Lindsay AC, Foale RA, Warren O, et al. Cannabis as a precipitant of recurrent stroke associated with cannabis use. Br Med J 2000;320:161–162.
Lindsay AC, Foale RA, Warren O, et al. Cannabis as a precipitant of recurrent stroke associated with cannabis use. Br Med J 2000;320:161–162.
Lindsay AC, Foale RA, Warren O, et al. Cannabis as a precipitant of recurrent stroke associated with cannabis use. Br Med J 2000;320:161–162.
Lindsay AC, Foale RA, Warren O, et al. Cannabis as a precipitant of recurrent stroke associated with cannabis use. Br Med J 2000;320:161–162.
Lindsay AC, Foale RA, Warren O, et al. Cannabis as a precipitant of recurrent stroke associated with cannabis use. Br Med J 2000;320:161–162.