Influence of fruit logistics on fresh-cut pineapple (*Ananas comosus* [L.] Merr.) volatiles assessed by HS-SPME–GC–MS analysis

Christof B. Steingass\(^1,2\) · Jennifer Dickreuter\(^2\) · Sabine Kuebler\(^2,3\) · Ralf M. Schweiggert\(^1\) · Reinhold Carle\(^2,4\)

Received: 29 September 2020 / Revised: 12 March 2021 / Accepted: 14 March 2021 / Published online: 31 March 2021
© The Author(s) 2021

Abstract
Green-ripe pineapples are shipped overseas by sea freight, while those picked at full maturity need to be transported by airfreight over the same large distance. In this study, fresh-cut pineapple cubes were assessed two, five, and eight days after processing from green-ripe pineapples after mimicked sea freight (SF) and fully ripe air-freighted (AF) pineapples. The sea-freighted samples displayed elevated titratable acidity (TA), thus resulting in smaller ratios of total soluble solids and TA compared to the AF pineapples. Differences in the carotenoid levels of the two fresh-cut categories were found to be insignificantly. By contrast, hierarchical cluster analysis (HCA) and principal component analysis (PCA) calculated on the basis of the volatiles analysed by headspace solid-phase microextraction–gas chromatography–mass spectrometry (HS-SPME–GC–MS) permitted to distinguish all six individual sample types and to segregate them into two major clusters (SF and AF). The effect of storage on the volatiles was further evaluated by partial least squares (PLS) regression. Substantial chemical markers to differentiate the individual samples and to describe the effect of storage were deduced from the PCA and PLS regression, respectively. In general, fresh-cut products obtained from fully ripe AF fruit displayed higher concentrations of volatiles, in particular, increased concentrations of diverse methyl esters. With progressing storage duration, the concentrations of ethanol and diverse ethyl esters increased. Moreover, products from AF pineapples displayed lower microbial counts compared to those from SF fruit.

Keywords Volatiles · Profiling analysis · Supply chain · Fruit logistics

Abbreviations

Abbreviation	Description
AF	Fully ripe air-freighted pineapple
dap	Days after processing
\(d_f\)	Film thickness
FW	Fresh weight
GSP	Glutamate starch phenol red (agar)
HCA	Hierarchical cluster analysis
HS-SPME–GC–MS	Headspace solid-phase microextraction–gas chromatography–mass spectrometry
LRI	Linear retention index
LV	Latent variable
PCA	Principal component analysis
PC	Principal component
PLS	Partial least squares
RAE	Retinol activity equivalent
SF	Green-ripe sea-freighted pineapple
TA	Titratable acidity
TPC	Total plate count
TSS	Total soluble solids
VID	Variable identification (coefficient)
VRBD	Violet red bile dextrose (agar)

\(^{\star}\) Christof B. Steingass
Christof.Steingass@hs-gm.de

\(^1\) Department of Beverage Research, Chair Analysis and Technology of Plant-Based Foods, Geisenheim University, Von-Lade-Strasse 1, 65366 Geisenheim, Germany

\(^2\) Institute of Food Science and Biotechnology, Chair Plant Foodstuff Technology and Analysis, University of Hohenheim, Garbenstrasse 25, 70599 Stuttgart, Germany

\(^3\) Wala Heilmittel GmbH, Dorfstrasse 1, 73087 Bad Boll/Eckwälden, Germany

\(^4\) Biological Science Department, Faculty of Science, King Abdulaziz University, P. O. Box 80257, Jeddah 21589, Saudi Arabia
Introduction

Owing to their exotic flavour, consumers in Europe and North America highly appreciate tropical fruits and products derived thereof. In the pineapple market, fresh fruit and fresh-cut products represent still growing sectors. Two principal logistic chains have been established for supplying the European market with fresh-cut pineapples. The first is based on harvesting fully ripe fruit, which are processed in close proximity to their production sites and then immediately exported by rapid airfreight [1]. For instance, the German and Britain markets are majorly supplied with this premium niche product by two major companies airfreighting fresh-cut fruits from Ghana to Europe [2]. The second chain is based on harvesting early green-ripe pineapples having an extended shelf life under chilled conditions, which permits their transport for multiple weeks by cargo ships. The major proportion of these sea-freighted pineapples is sold on the fresh fruit market. With regard to fresh-cut product manufacture, processing facilities located, e.g., in Europe and North America mostly rely on such sea-freighted fruit.

Pineapple volatiles have been intensely studied during the past decades [3]. In a previous study, fully ripe air-freighted pineapples and three post-harvest stages of green-ripe, sea-freighted fruit were assessed by solid-phase microextraction and gas chromatography–mass spectrometry (HS-SPME–GC–MS), revealing clear-cut differences in their volatiles [4]. In addition, the odour, taste, and overall preference of air-freighted pineapples were significantly better rated by a consumer panel compared to sea-freighted fruit assessed at two post-harvest stages [5]. By analogy to fresh fruit, also quality of fresh-cut products obtained from fully ripe and green-ripe sea-freighted pineapples may differ.

The volatiles of fresh-cut pineapples were investigated by Spanier et al. [6] during a 10-day storage period. Lamikanra [7] reported the involvement of esterases in the development of staleness in sliced pineapples. The effects of ultraviolet (UV) light irradiation [8] and modified atmosphere packaging [9] on fresh-cut pineapple volatiles were assessed. Using an electronic nose, Torri et al. [10] successfully described changes in aroma profiles of cut pineapple flesh stored at different temperatures. However, the influence of harvest maturity and fruit logistics on the composition of volatiles of fresh-cut pineapples has been disregarded in the aforementioned reports.

In the present study, volatiles of fresh-cut pineapple obtained from fully ripe fruit (“air freight”) and pineapples harvested at an earlier green-ripe stage that were stored for 14 days prior to processing (“sea freight”) were monitored by HS-SPME–GC–MS and multivariate statistical data analysis. In addition, drip loss, pH, total soluble solids (TSS), titratable acidity (TA), carotenoid levels, and microbial quality of the two fresh-cut categories were assessed.

Materials and methods

Fresh-cut samples

Green-ripe and fully ripe pineapples (Ananas comosus [L.] Merr. cv. ‘MD2’ (syn. “Extra Sweet”)) were obtained from Jei River Farms (Opeman, Ghana). Green-ripe fruits were harvested ~137–145 days after ethylene induced flower induction (synchronisation) at a TSS of ~9.5–10 °Brix. According to Ghanaian post-harvest procedures for local market and airfreight export, fruits allowed to ripen on-plant were harvested ~147–157 days after synchronisation (~11 °Brix), i.e., 10–12 days later than those destined for dispatch by sea freight. For “de-greening”, green-ripe and fully ripe pineapples were treated with approx. 20 and 10 ppm ethylene, respectively, five days prior to harvest. Pineapples of both categories were harvested by hand and brought to the farm (15 km distance from the field) using a pick-up truck. Subsequently, the pineapples were dispatched to the processing facility (ca. 50 km) using a truck. Prior to processing, green-ripe pineapples were stored at 8 °C for 14 days, mimicking their sea freight export from West Africa or Central America to Europe. The fully ripe pineapples were processed within 24 h after harvest.

Flesh cylinders of 83 × 95 mm were obtained with a commercial processing machine. Cores were stamped out using a 26-mm bore hollow knife. The fruit flesh was sliced into rings of 1 cm thickness that were cut into eights. Bits obtained were subsequently dipped into aqueous citric acid solution (20 g/L) and allowed to drip off. Portions of 400 ± 5 g were packed into lockable plastic containers (185 × 145 × 55 mm, Safe-t-fresh, Inline Plastics, Shelton, CT, USA). Following packaging, the fresh-cut samples from green-ripe fruit processed after 14 days of storage at 8 °C and those from fully ripe pineapples were transported to Accra airport and air-freighted to Frankfurt (Germany) lasting approx. 6–7 h. Upon arrival, the samples were dispatched by a forwarding agent to their final destination in Stuttgart. Storage temperature during dispatch and subsequent storage was 8 °C.

Fresh-cut samples were analysed two, five, and eight days after processing (dap). Thus, the relevant shelf life period from the first day of the products’ availability on the European market (2 dap) to the end of the commercial shelf life (8 dap) was considered. Two packages of each fresh-cut category and storage stage were analysed in analytical duplicates (n = 4).
Reagents

Sodium chloride was pre-conditioned at 105 °C for minimum 24 h prior to use. 2-Methyl-1-pentanol, (all-E)-β-carotene, (all-E)-violaxanthin, sodium hydroxide, and potassium hydrogen phthalate were purchased from Sigma Aldrich (Taufkirchen, Germany). Purified water was prepared with an ultrapure water system type arium® 611 UV (Sartorius, Göttingen, Germany) and subsequently boiled for at least 20 min.

Physicochemical characterisation

The drip loss, i.e., the liquid drained from the pineapple chunks was determined gravimetrically. The pH and TSS were assessed with an Inolab 720 pH-meter (WTW, Weilheim, Germany) and a Rx-5000 Abbe refractometer (Atago, Tokyo, Japan), respectively. TA expressed as g citric acid per 100 g of fresh weight (FW) was determined with a Titrino 702 SM (Metrohm, Herisau, Switzerland) titration system [4]. The concentrations of (all-E)-β-carotene and total carotenoids were determined by HPLC–DAD as detailed elsewhere [11]. Retinol activity equivalents (RAEs) were calculated by converting 12 µg dietary (all-E)-β-carotene to 1 µg RAE [12].

Analyses of volatiles

Volatile compounds were identified on the basis of their mass spectra compared to Wiley 6N library (Wiley and Sons, NY, USA) and literature data [13, 14]. Linear retention indices (LRI) according to Van den Dool and Kratz [15] were calculated relative to n-alkanes. Concentrations of the individual volatiles in µg/100 g were expressed as equivalents of the internal standard 2-methyl-1-pentanol.

Microbiological analyses

A representative sample of 25 g of fresh-cut pineapple was taken from a sealed package and blended with 225 mL of sterile physiological NaCl solution in a sterile stomacher bag with lateral filter for 120 s using a Stomacher 400 Circulator (Seward, London, UK). Decimal dilutions of each homogenized sample were prepared in the same diluent and surface spread plated in duplicate on the respective agars. Total aerobic mesophilic plate counts (TPCs) and Pseudomonas spp. viable counts were determined on standard I nutrient (VWR, Darmstadt, Germany) and glutamate starch phenol red (GSP) agar (Merck, Darmstadt, Germany), respectively. Enterobacteriaceae viable counts were assessed using violet red bile dextrose agar (VRBD) (Oxoid, Basingstoke, UK) as previously reported [16]. Yeast and mould plate counts were determined using yeast extract glucose chloramphenicol (YGC) agar (Oxoid) as previously reported [16]. Plates were incubated aerobically at 30 °C for 48 h on standard I and GSP agar. Prior to evaluation, samples surface spread on VRBD and YGS agar were incubated at 37 °C for 24 and 72 h, respectively. Microbial loads were expressed as colony-forming units (CFU) in log scale per gram (log_{10} CFU/g).

Statistics

Data obtained by HS-SPME–GC–MS were evaluated by PCA, HCA, and PLS regression calculated using Solo software (release 7.3.1, Eigenvector Research, Wenatchee, WA, USA). The PLS regression biplot was drawn with OriginPro 8 (OriginLab, Northampton, MA, USA) as detailed elsewhere [4, 17].

Compounds relevant for class separation in the PCA were calculated by summarising the absolute value of the loadings multiplied with the variance explained by the corresponding principal component [18]. The most discriminative volatiles describing the effect of storage were deduced from the PLS regression using variable identification (VID) coefficients [17, 18].
Significant ($p < 0.05$) differences of means of the physicochemical traits and the microbial loads were determined by analysis of variance (ANOVA) and Tukey’s test, applying SAS version 9.4 (SAS Institute, Cary, NC, USA).

Results and discussion

Physicochemical characterisation

Physicochemical traits of fresh-cut products from fully ripe air-freighted and green-ripe pineapples after mimicked sea freight are compiled in Table 1. Irrespective of their logistic history, drip loss increased from 5.2–5.4 to 7.2–7.4% with progressing storage duration of all fresh-cut samples. Both fresh-cut categories displayed comparable TSS of 10.50–10.90 and 10.83–11.10 °Brix as determined in the products made from fully and green-ripe pineapples, respectively. By contrast, significantly elevated titratable acids amounting to 0.50–0.53 g/100 g of FW were determined in the samples from green-ripe fruit (fully ripe: 0.36–0.40 g/100 g of FW). Correspondingly, the TSS/TA, approximating the sugar-to-acid ratios of the fully ripe pineapples ranging between 27.5 and 29.9 g/g exceeded those of the sea-freighted samples of merely reaching levels between 21.2 and 22.1 g/g.

The concentrations of (all-E)-β-carotene among all samples amounted to values between 30 and 38 µg/100 g of FW. This provitamin A precursor contributed up to 6–10% of the total carotenoids that ranged between 374 and 518 µg/100 g of FW. The total carotenoids tended to decline at the end of the storage experiment (8 dap), although not reaching statistical significance ($p < 0.05$). The retinol activity equivalents (RAEs) amounted to 2.5–3.2 µg RAE/100 g of FW, thus being in the range of the 0.3 to 7.3 µg RAE/100 g of FW previously reported in the flesh of ‘Sugar Loaf’, ‘Smooth Cayenne’, ‘MD2’, and ‘Queen Victoria’ pineapples from Ghana [11]. In the present study, the impact of harvest maturity and post-processing storage on the (all-E)-β-carotene and total carotenoid levels of fresh-cut pineapples were found to be insignificant and thus, not further investigated.

Table 2 compiles the HS-SPME–GC–MS data of fresh-cut pineapple volatiles. A total of 131 peaks was detected. Among the tentatively assigned compounds, 91 esters prevailed numerically and quantitatively, comprising 39 and 35 methyl- and ethyl esters, respectively, in addition to 16 acetates as well as 3-methylbutyl hexanoate (64) and ethyl methyl propanedioate (81). Furthermore, 16 terpenes, nine alcohols, six γ- and δ-lactones, five aldehydes, four undecaene hydrocarbons, and two furanones were tentatively identified. This qualitative composition of volatiles resembled that previously reported for fresh ‘MD2’ pineapples [4, 5, 19] and juice obtained thereof [20], except for some juice-specific constituents, such as free fatty acids and diverse norterpenoids, that were not found in the fresh-cut samples assessed herein.

Noteworthy, the concentrations of the volatiles reported in literature as the key odorants of pineapple [21], i.e., ethyl 2-methylpropanoate (no. 8, described to exert a fruity odour), methyl 2-methylbutanoate (11, fruity, apple-like), ethyl 2-methylbutanoate (15, fruity), and 4-hydroxy-2,5-dimethyl-3(2H)-furanone (127, sweet, pineapple-like, caramel-like) were found in elevated concentrations in the samples from fully ripe fruit compared to those obtained from green-ripe pineapples stored for 14 days prior to processing. Applying our analytical method, another key aroma compound of pineapples 1-(3E,5Z)-3,5-undecatriene (52b,

Table 1 Physicochemical characteristics of fresh-cut pineapple

	Fully ripe (AF) 2 dap	Fully ripe (AF) 5 dap	Fully ripe (AF) 8 dap	Green-ripe (SF) 2 dap	Green-ripe (SF) 5 dap	Green-ripe (SF) 8 dap
Drip loss (% w/w)	5.4 ± 1.0ab	6.1 ± 1.0ab	7.4 ± 1.6a	5.2 ± 0.5b	6.4 ± 0.2ab	7.2 ± 0.5ab
pH (−)	3.75 ± 0.09ab	3.76 ± 0.09ab	3.85 ± 0.08a	3.57 ± 0.07b	3.63 ± 0.09ab	3.64 ± 0.09b
TSS (°Brix)	10.50 ± 0.87a	10.90 ± 0.81a	10.78 ± 0.29a	11.10 ± 1.94a	10.83 ± 1.91a	10.95 ± 1.80a
TA (g/100 g of FW)	0.39 ± 0.04b	0.40 ± 0.04b	0.36 ± 0.01b	0.53 ± 0.02a	0.50 ± 0.05a	0.52 ± 0.02a
TSS/TA (g/g)	27.9 ± 2.6ab	27.5 ± 2.8ab	29.9 ± 1.6a	21.2 ± 4.2b	22.1 ± 4.5b	21.1 ± 3.0b
(all-E)-β-Carotene (µg/100 g of FW)	37 ± 4a	33 ± 5a	38 ± 9a	34 ± 5a	30 ± 7a	34 ± 5a
Total carotenoids (µg/100 g of FW)	499 ± 72a	518 ± 72a	374 ± 96a	470 ± 63a	484 ± 24a	407 ± 39a
RAEs (µg RAE/100 g of FW)	3.1 ± 0.4a	2.7 ± 0.5a	3.2 ± 0.8a	2.9 ± 0.5a	2.5 ± 0.6a	2.8 ± 0.4a

Values represent means ± standard deviations ($n = 4$)
Different letters in one row indicate significant ($p < 0.05$) differences of means
No	Proposed identity	CAS-No	LRI DB-Wax	LRI HP-5ms	AF 2 dap	AF 5 dap	AF 8 dap	SF 2 dap	SF 5 dap	SF 8 dap	Criteria	
1	Acetaldehyde	75-07-0	703	< 500	0.29	0.31	-	0.12	0.16	MS, LRI_p		
2	Methyl acetate	79-20-9	826	530	5.67	6.17	7.09	6.55	5.93	7.65	MS, LRI_p	
3	Ethyl acetate	141-78-6	890	613	70.1	96.5	140	7.38	62.3	91.5	MS, LRI_p	
4	Methyl propanoate	554-12-1	910	627	4.70	4.77	7.14	2.63	2.90	4.15	MS, LRI_p	
5	Methyl 2-methylpropanoate	547-63-7	924	685	1.17	1.30	1.69	0.81	0.86	1.18	MS, LRI_p	
6	Ethanol	64-17-5	933	< 500	11.7	27.7	52.2	1.16	14.0	27.5	MS, LRI_p	
7	Ethyl propanoate	105-37-3	956	711	1.21	1.13	2.06	0.20	0.59	1.41	MS, LRI_p	
8	Ethyl 2-methylpropanoate	97-62-1	966	754	0.51	0.55	0.89	0.22	0.30	0.82	MS, LRI_p	
9	n-Propyl acetate	109-60-4	975	712	2.00	2.99	4.38	0.69	3.40	4.68	MS, LRI_p	
10	Methyl butanoate + ethyl 2-propenoate	623-42-7	990	719	34.2	31.1	34.1	29.4	21.9	21.2	MS, LRI_p	
11	Methyl 2-methylbutanoate	868-57-5	1013	772	59.9	62.4	78.2	55.1	49.6	57.3	MS, LRI_p	
12	Methyl 3-methylbutanoate	556-24-1	1019	–	3.21	3.39	4.14	1.59	1.74	2.30	MS, LRI_p	
13	Ethyl butanoate	105-54-4	1035	801	10.9	14.7	24.7	0.66	6.09	13.9	MS, LRI_p	
14	n. i.	–	1043	–	0.09	0.28	0.94	–	0.13	0.22	–	
15	Ethyl 12-methylbutanoate	7452-79-1	1050	846	18.2	17.2	26.3	1.29	8.11	21.6	MS, LRI_p	
16	Ethyl 13-methylbutanoate	108-64-5	1064	850	0.74	1.21	2.18	0.26	0.96	2.50	MS, LRI_p	
17	n-Butyl acetate	123-86-4	1069	814	0.32	0.48	0.60	0.17	0.34	0.36	MS, LRI_p	
18	Hexanal	66-25-1	1080	799	0.12	0.17	0.18	0.46	0.18	0.17	MS, LRI_p	
19	Methyl pentanoate	624-24-8	1085	821	4.23	3.25	2.92	4.10	2.45	2.06	MS, LRI_p	
20	2-Methylpropan-1-ol	78-83-1	1098	–	–	0.21	0.48	–	0.10	0.28	MS, LRI_p	
21	Diethyl carbonate + methyl (E)-2-butenolate	105-58-8	1105	783	0.73	1.9	5.80	0.37	0.78	1.49	MS, LRI_p	
22	2-/3-Methylbutyl acetatea	624-41-9	1118	874/881	14.9	54.7	129	1.89	32.1	124	MS, LRI_p	
23	Ethyl pentanoate	539-82-2	1132	901	3.39	4.44	7.36	0.25	1.74	2.99	MS, LRI_p	
24	β-Mycene	123-35-3	1157	990	0.48	0.38	0.44	0.15	0.11	0.11	MS, LRI_p	
25	n-Pentyl acetate	628-63-7	1170	915	0.28	0.24	0.16	0.37	0.10	0.26	MS, LRI_p	
26	Methyl hexanoate	106-70-7	1190	925	481	319	318	370	175	155	MS, LRI_p	
27	Limonene	138-86-3	1199	1026	0.69	0.42	0.54	0.14	0.17	0.22	MS, LRI_p	
28	2-/3-Methylbutanola	123-51-3	1210	730/733	0.53	1.50	4.19	0.22	0.32	1.97	MS, LRI_p	
29	Methyl 5-hexenoate + ethyl hexanoate	2396-80-7	1231	912	383	512	765	21.7	205	303	MS, LRI_p	
30	Methyl (E)-4-hexenoate	14017-81-3	1243	932	1.07	0.61	1.30	0.31	0.24	0.29	MS, LRI_p	
31	(E)-β-Ocimene	3779-61-1	1247	1047	40.2	34.0	44.3	0.51	0.54	0.48	MS, LRI_p	
32	3-Methyl-2-butenylacetate	1191-16-8	1251	921	5.31	4.55	4.50	0.58	0.47	0.64	MS, LRI_p	
No	Proposed identity	CAS-No	LRI DB-Wax	LRI HP-5ms	AF 2 dap	AF 5 dap	AF 8 dap	SF 2 dap	SF 5 dap	SF 8 dap	Criteria	
----	-------------------	--------	------------	------------	----------	----------	----------	----------	----------	----------	----------	
33	Methyl (Z)-3-hexenoate	13894-62-7	1256	936	5.76	3.00	2.32	4.22	2.35	2.25	MS, LRI_p	
34	Methyl (E)-3-hexenoate	2396-78-3	1261	938	7.03	4.15	3.50	5.22	2.48	2.19	MS, LRI_p	
35	p-Cymene	99-87-6	1266	1022	0.12	0.14	–	0.03	0.03	MS, LRI_p, LRI_p		
36	n-Hexyl acetate	142-92-7	1270	1014	0.43	0.07	–	0.33	0.09	0.12	MS, LRI_p, LRI_p	
37	Ethyl 3-hexenoate	54653-25-7	1275	–	0.95	1.27	2.36	0.05	0.30	0.53	MS, LRI_p	
38	α-Terpinolene	586-62-9	1280	–	0.22	0.18	0.25	0.02	0.02	0.05	MS, LRI_p	
39	3-Hydroxybutan-2-one (acetoin)	513-86-0	1283	–	–	–	–	0.04	–	–	0.02	MS, LRI_p
40	Methyl heptanoate	106-73-0	1287	1024	6.35	3.33	4.75	2.02	0.99	0.99	MS, LRI_p	
41	Methyl (E)-2-hexenoate	13894-63-8	1288	965	0.70	0.71	0.94	0.49	0.40	0.39	MS, LRI_p, LRI_p	
42	Ethyl (Z)-3-hexenoate	64187-83-3	1292	1006	0.17	0.21	0.63	–	0.06	0.12	MS, LRI_p, LRI_p	
43	Ethyl (E)-3-hexenoate	26553-46-8	1300	1010	3.05	3.06	3.77	0.15	2.34	3.72	MS, LRI_p, LRI_p	
44	2-Methyl-1-pentanol (IS)	3681-71-8	1315	–	5.49	1.23	0.59	0.23	0.10	0.10	MS, LRI_p	
45ab	Methyl (Z)-4-heptenoate + ethyl heptanoate	39924-30-6	1331	1020*	5.42	5.20	9.59	0.87	1.34	2.04	MS, LRI_p, LRI_p	
46	Ethyl (E)-2-hexenoate	1552-67-6	1342	1043	0.45	0.95	1.14	–	0.23	0.37	MS, LRI_p, LRI_p	
47	1-Hexanol	111-27-3	1354	865	–	–	–	–	–	0.10	MS, LRI_p, LRI_p	
48	4-Hydroxy-4-methylpentan-2-one (diacetone alcohol)	123-42-2	1361	–	0.37	0.30	0.29	0.36	0.45	0.48	MS, LRI_p	
49	Ethyl (Z)-4-heptenoate*	39924-27-1	1376	–	0.59	0.74	0.95	0.20	0.44	0.62	MS, LRI_p	
50	n. i.	–	1379	–	0.90	0.51	0.55	0.31	0.15	0.13	–	
51	n. i.	–	1381	–	0.83	0.68	0.71	0.56	0.31	0.37	–	
52abc	Methyl octanoate + 1-(3E,5E)-3,5-undecatriene + nonanal	111-11-5	1390	1125	49.6	26.7	38.0	9.73	6.64	7.03	MS, LRI_p, LRI_p	
53	Methyl 2-hydroxy-3-methylbutanoate	17417-00-4	1398	–	0.29	0.32	0.43	0.16	0.17	0.25	MS, LRI_p	
54	1-(3E,5E)-3,5-Undecatriene	19883-29-5	1400	1182	0.13	0.12	0.23	0.02	0.02	0.02	MS, LRI_p, LRI_p	
55	Methyl 2-(methylthio)acetate	16630-66-3	1402	910	0.35	0.25	0.29	0.17	0.20	0.20	MS, LRI_p, LRI_p	
56	n. i. (m/z 204)	–	1411	–	2.40	1.73	2.68	0.39	0.27	0.29	–	
57	Methyl (Z)-4-octenoate*	21063-71-8	1415	1115	0.70	0.55	0.74	0.24	0.22	0.29	MS, LRI_p, LRI_p	
58	Ethyl 2-hydroxy-3-methylbutanoate	2441-06-7	1423	–	0.13	0.56	1.20	0.13	0.22	0.48	MS, LRI_p	
59	Methyl (Z)-5-octenoate*	41654-15-3	1429	–	20.8	13.6	15.4	10.1	6.51	7.25	MS, LRI_p	
60	Ethyl octanoate	106-32-1	1433	1198	42.0	41.9	76.9	1.65	7.61	12.7	MS, LRI_p, LRI_p	
61	Ethyl 2-(methylthio)acetate	4455-13-4	1441	984	0.47	0.61	0.81	0.11	0.27	0.47	MS, LRI_p, LRI_p	
62	1,3,5,8-Undecatetraene (1)*	50277-31-1	1446	1176*/1186*	3.36	2.94	3.57	0.17	0.26	0.28	MS, LRI_p	
63	Methyl (E)-3-octenoate	35234-16-3	1453	1130*	0.77	0.41	0.54	0.37	0.33	0.41	MS, LRI_p	
64	3-Methylbutyl hexanoate	2198-61-0	1456	1250	–	–	0.28	–	–	0.17	MS, LRI_p, LRI_p	
No	Proposed identity	CAS-No	LRI DB-Wax	LRI HP-5ms	AF 2 dap	AF 5 dap	AF 8 dap	SF 2 dap	SF 5 dap	SF 8 dap	Criteria	
----	-------------------	--------	------------	------------	----------	----------	----------	----------	----------	----------	----------	
65ab	1,3,5,8-Undecatetraene (2) + ethyl (Z)-4-octenoate*	50277-31-1	1462	1176*/1186*	0.76	0.78	1.32	0.24	0.32	0.53	MS, LRIp	
65	n. i. (m/z 204)	–	1470	–	0.57	0.41	0.64	0.13	0.13	0.19	–	
67	Ethyl(1Z)-5-octenoate*	72820-74-7	1473	–	12.5	16.2	23.0	0.81	6.47	10.5	MS, LRIp	
68	Ethyl hexadienoate (unknown isomer)	2396-84-1	1479	1094*	0.11	0.10	0.20	–	0.03	0.11	MS, LRIp	
69	α-Copaene	3856-25-5	1482	1385	6.52	4.41	6.76	1.13	0.84	0.92	MS, LRIp, LRIsp	
70	erythro-Butane-2,3-diol diacetae	17998-02-6	1485	1062*	0.27	0.10	0.06	0.15	0.07	0.08	MS, LRIp	
71	Methyl nonanoate	1731-84-6	1490	1224	0.11	0.10	0.20	–	0.03	0.11	MS, LRIp, LRIsp	
72ab	Decanal+ ethyl (E)-3-octenoate	112-31-2	1492	1204	1.34	0.67	1.20	MS, LRIp				
73	Methyl (E)-2-octenoate	7367-81-9	1494	1170*	0.37	0.29	0.23	0.15	0.05	0.05	MS, LRIp	
74	Dimethyl propanedioate	108-59-8	1507	929*	7.22	6.99	6.29	8.25	6.83	6.89	MS, LRIp, LRIsp	
75	Benzaldehyde	100-52-7	1512	957	0.14	0.18	0.18	0.04	0.05	0.08	MS, LRIp, LRIsp	
76	Ethyl3-hydroxybutanoate	5405-41-4	1513	–	0.32	0.85	1.67	0.19	0.47	1.36	MS, LRIp	
77	Methyl 3-(methylthio)propanoate	13532-18-8	1518	1024	2.40	2.00	2.16	1.27	102	103	MS, LRIp, LRIsp	
78	thro-Butane-2,3-diol diacetae	79297-93-1	1524	1078*	0.66	0.64	0.92	0.24	0.29	0.60	MS, LRIp	
79	Methyl 3-acetoxy-2-methylbutanoate, DS1	139564-42-4	1525	1085*	6.85	6.15	7.99	2.34	2.28	2.92	MS, LRIp	
80	Ethyl nonanoate	123-29-5	1534	–	0.33	0.24	0.48	–	0.03	0.09	MS, LRIp	
81	Methyl 3-acetoxybutanoate*	89422-42-4	1536	1040*	2.80	2.56	2.50	1.49	1.20	1.22	MS, LRIp	
82	Ethyl methyl propanedioate	6186-89-6	1540	–	2.16	3.84	5.34	0.17	2.09	3.46	MS, LRIp	
83	2,3-Butanediol	513-85-9	1542	–	0.34	1.42	3.58	0.17	0.78	2.44	MS, LRIp	
84ab	Linalool + ethyl (E)-2-octenoate	78-70-6	1549	1099	0.67	0.75	1.86	0.17	0.14	0.23	MS, LRIp, LRIsp	
85	Methyl 3-acetoxy-2-methylbutanoate, DS2	139564-42-4	1554	1099*	1.11	0.89	1.11	0.18	0.12	0.19	MS, LRIp	
86ab	Ethyl3-(methylthio)propanoate+ ethyl 3-acetoxy-2-methylbutanoate, DS1	13327-56-5	1560	1100	111	153	301	3.52	44.2	83.6	MS, LRIp, LRIsp	
87	n. i.	–	1563	–	1.13	0.80	0.83	0.34	0.31	0.41	–	
88	n. i.	–	1570	–	0.57	0.41	0.31	0.31	0.22	0.21	–	
89ab	Methyl 2-hydroxyhexanoate+ diethyl propanedioate*	68786-64-9	1575	–	0.89	1.26	2.42	0.21	0.44	1.61	MS, LRIp, LRIsp	
90	β-Elemene	515-13-9	1578	1391	1.96	1.33	2.04	0.34	0.26	0.26	MS, LRIp, LRIsp	
91	4-methoxy-2,5-dimethyl-3(2H)-furanone	4077-47-8	1586	1059	37.9	36.5	43.6	9.72	6.95	10.4	MS, LRIp, LRIsp	
92	Ethyl3-acetoxy-2-methylbutanoate, DS2	139564-43-5	1588	1165*	–	–	–	–	–	0.36	MS, LRIp	
93	Methyl decanoate	110-42-9	1591	1324	3.20	2.07	3.20	0.51	0.37	0.45	MS, LRIp, LRIsp	
94	1-Terpine-4-ol	562-74-3	1598	1183	1.58	1.60	1.80	0.60	0.54	0.59	MS, LRIp, LRIsp	
95	n. i. (m/z 204)	–	1602	–	0.99	0.68	0.97	0.21	0.14	0.16	–	
No	Proposed identity	CAS-No	LRI DB-Wax	LRI HP-5ms	AF 2 dap	AF 5 dap	AF 8 dap	SF 2 dop	SF 5 dop	SF 8 dop	Criteria	
----	-------------------	--------	------------	------------	----------	----------	----------	----------	----------	----------	----------	
96	n. i.	–	1608	–	0.70	0.63	0.90	0.24	0.25	0.40	–	
97	Methyl benzoate	93-58-3	1611	–	0.45	0.40	0.55	0.25	0.29	0.48	MS, LRIp	
98	n. i.	–	1616	–	–	–	0.40	–	0.20	–	–	
99a	Methyl (Z)-4-decenoate + 3-(methylthio)propyl acetate	7367-83-1	1621	1308	10.5	6.25	7.54	3.10	2.57	4.29	MS, LRIp, LRIp	
			16630-55-0	–	–	–					–	
100a	Methyl 4-(methylthio)butanoate + ethyl methyl butanedioate	6186-89-6	1632	–	0.15	0.38	0.68	0.11	0.15	0.34	MS, LRIp, LRIp	
101	Ethyl decanoate	110-38-3	1636	1395	3.23	3.56	6.91	0.23	0.64	1.02	MS, LRIp, LRIp	
102	Methyl 3-hydroxyhexanoate	21188-58-9	1645	1051	0.77	0.73	1.05	0.23	0.17	0.24	MS, LRIp, LRIp	
103	n. i. (m/z 204)	–	1648	–	0.90	0.75	0.88	0.15	0.16	0.25	–	
104	Ethyl (Z)-4-decenoate	7367-84-2	1663	1379	7.63	7.68	14.5	0.66	2.80	4.67	MS, LRIp, LRIp	
105	Diethyl butanedioate	123-25-1	1674	–	–	–	1.04	–	0.09	0.42	MS, LRIp	
106	α-Amorphene	23515-88-0	1676	1476	2.10	2.13	3.32	0.79	0.67	0.98	MS, LRIp, LRIp	
107	Ethyl3-hydroxyhexanoate	2305-25-1	1679	1128	3.09	2.52	2.24	0.64	0.33	0.31	MS, LRIp	
108	Methyl 3-acetoxhexanoate	21188-60-3	1682	1207*	40.9	26.7	32.7	11.6	7.61	9.13	MS, LRIp	
109	γ-Hexalactone	695-06-7	1686	1053	1.99	2.97	3.87	2.09	1.73	2.29	MS, LRIp, LRIp	
110	α-Gurjunene	489-40-7	1694	1409	1.37	1.12	1.44	0.24	0.18	0.24	MS, LRIp, LRIp	
111	β-Selinene	17066-67-0	1703	1488	0.25	–	–	0.06	0.09	0.10	–	
112	α-Selinene	473-13-2	1708	1494	0.22	0.13	0.22	0.03	–	–	–	
113a	α-Muurolene +3-(methylthio)propanol	31983-22-9	1717	1500	2.14	1.66	2.61	0.37	0.32	0.49	MS, LRIp, LRIp	
114ab	Ethyl13-acetyhexanoate + benzyl acetate	21188-61-4	1720	1276*	103	29.4	52.0	1.21	8.65	15.5	MS, LRIp, LRIp	
115	Methyl 4-acetyhexanoate*	112059-09-3	1727	1168*	6.76	3.82	3.86	0.79	0.39	0.40	MS, LRIp	
116	δ-Cadinene	483-76-1	1744	1523	1.13	0.84	1.01	0.34	0.21	0.28	MS, LRIp, LRIp	
117	Methyl 2-phenylacetate	101-41-7	1750	1178	0.92	0.90	0.95	0.78	0.74	0.85	MS, LRIp, LRIp	
118	Ethyl 4-acetyhexanoate*	121308-81-4	1765	1301*	2.97	2.75	4.53	–	0.93	1.16	MS, LRIp	
119	Methyl 5-acetyhexanoate	35234-22-1	1769	1254*	26.1	18.2	21.4	2.98	1.71	1.73	MS, LRIp	
120	δ-Hexalactone	823-22-3	1773	1097	0.78	0.50	0.56	0.15	0.09	0.10	MS, LRIp	
121	Ethyl2-phenylacetate	101-97-3	1778	1245*	1.56	1.5	2.60	0.85	0.42	0.90	MS, LRIp	
122ab	Ethyl15-acetyhexanoate +2-phenylethyl acetate	35234-24-3	1805	1322*	3.61	2.88	6.29	0.08	0.33	0.69	MS, LRIp, LRIp	
123	p-Cymenol	1197-01-9	1846	1175	0.20	–	–	0.14	0.16	0.23	MS, LRIp, LRIp	
124	γ-Octalactone	104-50-7	1899	1258	3.21	2.58	3.78	0.75	0.58	0.88	MS, LRIp, LRIp	
125	2-Phenylethanol	60-12-8	1904	–	–	–	–	–	0.05	–	0.05	
126	δ-Octalactone	698-76-0	1949	1290	1.55	1.39	2.10	0.30	0.23	0.31	MS, LRIp, LRIp	
fresh, pineapple-like) was not baseline resolved from the abundant ester methyl octanoate and thus, could not be quantitated separately. Moreover, γ- and δ-octalactone (124 and 126, resp.) that have been proposed to exert the distinct coconut-like odour in fully ripe pineapples [22] were found in elevated concentrations in the AF samples compared to those in the SF fresh-cut produce.

Unsupervised classification by PCA and HCA

The effect of harvest maturity and post-harvest procedures on fresh-cut pineapple volatiles was assessed by PCA. The scores and correlation loadings obtained for the first two principal components (PCs) are displayed in Fig. 1a, a'. PC1 and PC2 of the model explained high 80% of variance. PC1 (60%) clearly segregated the fresh-cut samples obtained from green-ripe pineapples after mimicked sea freight (SF) from a second cluster comprising the air-freighted (AF) produce. In addition, the samples were arranged along PC2 (20%) according to the days after processing. This clustering was also observed in the HCA as illustrated by Fig. 1b and the corresponding circles in the PCA scores plot, respectively.

The most discriminative volatiles contributing to the clustering by PCA are compiled in Table 3. Hereby, volatiles with positive loadings on PC1 contribute to the differentiation of the two principal fresh-cut categories, i.e., SF and AF produce. In general, elevated concentrations of volatiles were found in the samples from fully ripe fruit compared to those from their sea-freighted counterparts as can be deduced from the arrangement of the loadings on the right part of the plot. Moreover, two sub-groups of volatiles can be distinguished. Whereas those with positive loadings on PC2, i.e., diverse methyl esters of intermediate chain fatty acids (C6–C10), such as methyl 5-acetoxyhexanoate (119), methyl heptanoate (40), methyl octanoate (52a), methyl (Z)-5-octanoate (59), and methyl decanoate (93), were correlated to the freshly processed samples, volatiles with negative loadings on PC2 contributed to the segregation of the stored produce. In particular, ethanol (6) and diverse ethyl esters of short to intermediate chain fatty acids, such as ethyl acetate (3), ethyl butanoate (13), ethyl pentanoate (23), ethyl hexanoate (29b), and ethyl (Z)-4-heptenoate (49), were found among the markers contributing to the segregation of the progressed storage stages. Furthermore, discriminative volatiles segregating the latter samples were assigned to ethyl esters, i.e., ethyl 3-hydroxybutanoate (76), ethyl methyl propanedioate (82) and the sulphurous volatile ethyl 3-(methylthio)propanoate (86a). The latter was not baseline resolved from the unique pineapple constituent ethyl 3-acetoxy-2-methylbutanoate (86b) [13] on a PEG stationary phase.
In summary, methyl esters prevailed in the fresh samples, whereas diverse ethyl esters were generated with progressing storage duration. This shift from methyl to ethyl esters has been previously observed during post-harvest storage of pineapple fruit and may be triggered by the endogenous and possibly microbial genesis of ethanol [4]. Noteworthy, the differences in the volatiles between fully ripe fruit and those harvested at a full maturity (“air freight”), SF fresh-cut produce from green-ripe fruit stored for 14 days prior to processing (“sea freight”). Loadings of tentative markers are highlighted by filled circles and labelled with the compound numbers compiled in Table 3.

![PCA scores (a) and loadings plot (a') illustrating the effect of harvest maturity and storage duration on fresh-cut pineapple volatiles. The large circles represent the clusters obtained by HCA (b). dap days after processing. AF fresh-cut samples from fruit harvested at full maturity (“air freight”), SF fresh-cut produce from green-ripe fruit stored for 14 days prior to processing (“sea freight”). Loadings of tentative markers are highlighted by filled circles and labelled with the compound numbers compiled in Table 3.](image-url)
14 days were largely retained throughout the entire storage period. To further explore the particular effect of post-processing storage, a PLS regression was calculated as discussed in the following section.

PLS regression

The scores and correlation loadings obtained for the first two latent variables (LVs) of the PLS regression model are illustrated in Fig. 2. As also observed in the PCA, the samples are arranged in two clusters comprising the air-freighted products and those obtained from green-ripe pineapples after mimicked sea freight. In addition, the model clearly fitted an effect of storage as indicated by the high 98% of cumulative variance in the y-variable explained by LV1 ($Y = 79\%$) and LV2 ($Y = 19\%$), as well as by the length of the correlation loadings vector.

Variable identification (VID) coefficients revealed distinctive volatiles (Table 4). Hereby, positive VIDs indicate the genesis of the respective compound with progressing storage duration. In most instances, such volatiles were alcohols deriving from fermentative metabolic pathways, i.e., ethanol (6), 2-methylpropanol (20), 2-/3-methylbutan-1-ol (28ab), and 2,3-butanediol (83). Moreover, the acetates n-propyl acetate (9) and 2-/3-methylbutyric acid (22ab) in addition to diverse ethyl esters, e.g., ethyl 3-methylbutanoate (16), ethyl 2-hydroxy-3-methylbutanoate (58), and diethyl butanedioate (105) were found as possible markers generated with progressing storage. Vice versa, the concentrations of the volatiles with negative VIDs, here methyl pentanoate (19), methyl (Z)-3-hexenoate (33), and n-hexyl acetate (36)

decreased during storage. This may be attributed to transesterification reactions or possibly the enzymatic cleavage of certain esters during storage of fresh-cut pineapples as previously described by Lamikanra [7]. Interestingly, 2,3-butanediol (83) that was found as a putative storage marker of fresh-cut produce represents a precursor of threo- and erythro-2,3-butanediol diacetate that have been reported to arise during post-harvest storage of green-ripe pineapples [4, 5].

No.	Identity	PC 1 (60%)	PC 2 (20%)
13	Ethyl butanoate	0.099	-0.091
52abc	Methyl octanoate + 1-(3E,5Z)-3,5-undecadiene + nonanal	0.096	0.098
6	Ethanol	0.087	-0.124
119	Methyl 5-acetoxyhexanoate	0.098	0.089
40	Methyl heptanoate	0.089	0.113
59	Methyl (Z)-5-octenoate	0.085	0.123
93	Methyl decanoate	0.105	0.064
23	Ethyl pentanoate	0.105	-0.064
82	Ethyl methyl propanedioate	0.089	-0.109
3	Ethyl acetate	0.092	-0.103
29ab	Methyl 5-hexenoate + ethyl hexanoate	0.107	-0.057
86ab	Ethyl 3-(methylthio)propanoate + ethyl 3-acetoxy-2-methylbutanoate, DS1	0.107	-0.056
49	Ethyl (Z)-4-heptenoate	0.101	-0.074

DS diasteromer

Signals with positive loadings on PC1 contribute to the discrimination of sea-freighted (SF) and air-freighted samples (see Fig. 1a, a’)

Signals with positive loadings on PC2 are correlated to the fresh samples, those with negative to the stored produce (see Fig. 1a, a’)

Fig. 2 PLS regression illustrating the effect of storage on fresh-cut pineapple volatiles. Volatiles with VID ≥ 0.80 are displayed as filled circles and labelled with the peak numbers compiled in Table 4.
Most of the aforementioned volatiles may derive from endogenous metabolic pathways, but also from microbial growth that was assessed in the second part of this study.

Microbiological analysis

To further characterise the influence of post-harvest procedures on the quality of fresh-cut pineapples, total plate counts (TPCs), pseudomonads, *Enterobacteriaceae*, and the yeast and mould counts were assessed. *Enterobacteriaceae* were not detected across all samples (not shown in Fig. 3). With progressing storage duration, the TPCs increased in both fresh-cut categories (Fig. 3a). However, the TPCs determined in the air-freighted products (AF 3.3–4.4 log$_{10}$ CFU/g) were significantly smaller than those in their counterparts obtained from pineapples after mimicked sea freight (SF 4.6–6.5 log$_{10}$ CFU/g). Compared to the TPCs, *Pseudomonas* spp. viable counts were found at lower levels of 3.2–3.5 log$_{10}$ CFU/g (AF) and 3.2–4.1 log$_{10}$ CFU/g (SF) as determined across all air- and sea-freighted samples, respectively. In both sample categories, the pseudomonads only slightly increased during storage (Fig. 3b).

Whereas the initial TPC already differed comparing the AF and SF samples, comparable yeast and mould counts were not detected among all samples assessed (data not shown). Different letters indicate significant ($p<0.05$) differences of means. The dashed line indicates the maximum acceptable plate count for fresh-cut fruit of 6.0 log$_{10}$ CFU as specified by the IFST [23].

No.	Identity	VIDa
22ab	2-/3-Methylbutyl acetate	0.94
76	Ethyl 3-hydroxybutanoate	0.94
83	2,3-Butanediol	0.93
20	2-Methylpropan-1-ol	0.91
9	n-Propyl acetate	0.91
16	Ethyl 3-methylbutanoate	0.87
6	Ethanol	0.85
64	3-Methylbutyl hexanoate	0.84
58	Ethyl 2-hydroxy-3-methylbutanoate	0.81
98	n. i.	0.81
105	Diethyl butanedioate	0.81
28ab	2-/3-Methylbutanol	0.80
19	Methyl pentanoate	–0.81
33	Methyl (Z)-3-hexenoate	–0.83
36	n-Hexyl acetate	–0.85

n. i. not identified

aPositive variable identification (VID) coefficients indicate the genesis of the volatiles. Vice versa, negative VID coefficients indicate diminishing concentrations with progressing storage duration (see also Fig. 2 and concentrations compiled in Table 2).

![Fig. 3](image-url)
life of sliced fruits stored under chilled conditions. All AF samples assessed displayed microbial loads smaller than $6.0 \log_{10} \text{CFU/g}$, whereas the TPC as well as the yeast and mould count determined in the SF pineapples exceeded this critical value already five and eight days after processing, respectively (see dashed line in Fig. 3). Noteworthy, the pineapple flesh is not sterile and contains fungi, yeasts, and bacteria [24]. Storage of the green-ripe pineapples prior to processing may result in the elevated TPCs observed in the SF samples, possibly from the growth of this genuine microflora. Concluding, processing freshly harvested pineapples at full maturity resulted in lower total plate as well as yeast and mould counts compared to samples from the green-ripe fruit that were stored for 14 days prior to processing.

Conclusion

With the exception of the drip loss, the titratable acids, and the TSS/TA ratio, post-harvest procedures had only a marginal impact on the physicochemical properties of fresh-cut pineapples. By contrast, processing fully ripe pineapples resulted in lower total plate as well as yeast and mould counts compared to samples from green-ripe fruit stored for 14 days prior to processing. Consequently, processing fully ripe pineapples immediately after harvest may be recommended for fresh-cut processors targeting the premium market rather than using sea-freighted fruit. Moreover, HS-SPME–GC–MS analysis of volatiles allowed the unambiguous distinction between fresh-cut products obtained from fruit harvested at full maturity and green-ripe pineapples stored for 14 days mimicking their sea freight export.

In most instances, elevated concentrations of volatiles were found among the products from fully ripe pineapples. With progressing storage duration, additional volatiles deriving from fermentative metabolic pathways, i.e., diverse alcohols and ethyl esters, were generated.

Concluding, in particular the factors determining the sensory properties, i.e., TSS/TA and the aroma-determining volatiles were the most distinctive traits to discriminate air-freighted fresh-cut pineapples from the produce obtained from sea-freighted fruit. Hence, air-freighted fresh-cut produce may be recommended for consumers that desire to experience the unique aroma quality of fully ripe pineapples. The differing composition of volatiles indicates distinct sensory properties of the two fresh-cut categories assessed that may be subject of ongoing research.

Acknowledgements We gratefully thank Frank Oberschilp (Peelco Ltd., Accra, Ghana) and Fritz Schumacher (Schumacher GmbH, Filderstadt-Bernhausen, Germany) for donating the samples and organisation of the export trial.

Funding Open Access funding enabled and organized by Projekt DEAL.

Declarations

Conflict of interest The authors declare no conflict of interest.

Compliance with ethics requirements This article does not contain any studies with human or animal subjects.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Rohrbach KG, Leal F, Coppens d’Eeckenbrugge G. (2003) History, distribution and world production. In: Bartholomew DP, Paull RE. Rohrbach KG (eds) The pineapple: botany, production and uses. CABI Publishing, Wallingford, pp 1–32
2. Jaeger P (2008) Ghana export horticulture cluster strategic profile study: part I—scoping review. http://www.euacpcommodities.eu/. Accessed 06 Aug 2013
3. Montero-Calderón M, Rojas-Grau MA, Martín-Belloso O (2010) Pineapple (Ananas comosus [L.] Merril) flavor. In: Hui YH (ed) Handbooke of fruit and vegetable flavors. Wiley, Hoboken, pp 391–414
4. Steingass CB, Grauwet T, Carle R (2014) Influence of harvest maturity and fruit logistics on pineapple (Ananas comosus [L.] Merr.) volatiles assessed by headspace solid phase microextraction and gas chromatography–mass spectrometry (HS-SPME–GC/MS). Food Chem 150:382–391. https://doi.org/10.1016/j.foodchem.2013.10.092
5. Steingass CB, Dell C, Lieb V et al (2016) Assignment of distinctive volatiles, descriptive sensory analysis and consumer preference of differently ripened and post-harvest handled pineapple (Ananas comosus [L.] Merr.) fruits. Eur Food Res Technol 242:33–43. https://doi.org/10.1007/s00217-015-2515-x
6. Spanier AM, Flores M, James C et al (1998) Fresh-cut pineapple (Ananas sp.) flavor. Effect of storage. In: Contis ET, Ho C-T, Mussinan CJ et al (eds) Food flavors: formation, analysis and packaging influences; proceedings of the 9th international flavor conference. The George Charalambous memorial symposium, vol 40. Elsevier, Amsterdam, pp 331–343
7. Lamikanra O (2003) The role of esterified compounds in the development of staleness in fresh-cut fruits. In: Hofmann T, Ho CT, Pickenhagen W (eds) Challenges in taste chemistry and biology, vol 867. American Chemical Society, Washington, pp 263–274
8. Lamikanra O, Richard OA (2004) Storage and ultraviolet-induced tissue stress effects on fresh-cut pineapple. J Sci Food Agric 84:1812–1816. https://doi.org/10.1002/jsfa.1891
9. Montero-Calderón M, Rojas-Graü MA, Aguiló-Aguayo I et al (2010) Influence of modified atmosphere packaging on volatile compounds and physicochemical and antioxidiant attributes of fresh-cut pineapple (Ananas comosus). J Agric Food Chem 58:5042–5049. https://doi.org/10.1021/jf904558h
10. Torri L, Sinelli N, Limbo S (2010) Shelf life evaluation of fresh-cut pineapple by using an electronic nose. Postharvest Biol Technol 56:239–245. https://doi.org/10.1016/j.postharpbio.2010.01.012
11. Steingass CB, Vollmer K, Lux PE et al (2020) HPLC-DAD-APCI-MSn analysis of the genuine carotenoid pattern of pineapple (Ananas comosus [L.] Merr.) infructescence. Food Res Int. https://doi.org/10.1016/j.foodres.2019.108709
12. U.S. Institute of Medicine (2010) Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc: a report of the Panel on Micronutrients … and the Standing Committee on the Scientific Evaluation of Dietary Reference Intakes, Food and Nutrition Board. National Academy Press, Institute of Medicine Washington, D.C
13. Umano K, Hagi Y, Nakahara K et al (1992) Volatile constituents of green and ripened pineapple (Ananas comosus [L.] Merr.). J Agric Food Chem 40:599–603. https://doi.org/10.1021/jf00016a014
14. Takeoka G, Buttery RG, Flath RA et al (1989) Volatile constituents of pineapple Ananas comosus [L.] Merr. In: Teranishi R, Buttery RG, Shahidi F (eds) Flavor chemistry: trends and developments, vol 388. American Chemical Society, Washington, pp 223–237
15. Van den Dool H, Kratz PD (1963) A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J Chromatogr A 11:463–471. https://doi.org/10.1016/S0021-9673(01)80947-X
16. Wulfkuehler S, Dietz J, Schmidt H et al (2014) Quality of fresh-cut radicchio cv. Rosso di Chioggia (Cichorium intybus L. var. foliosum Hegi) as affected by water jet cutting and different washing procedures. Eur Food Res Technol 240:159–172. https://doi.org/10.1007/s00217-014-2317-6
17. Vervoort L, Grauwet T, Kebede BT et al (2012) Headspace fingerprinting as an untargeted approach to compare novel and traditional processing technologies: a case-study on orange juice pasteurisation. Food Chem 134:2303–2312. https://doi.org/10.1016/j.foodchem.2012.03.096
18. Steingass CB, Jutzi M, Müller J et al (2015) Ripening-dependent metabolic changes in the volatiles of pineapple (Ananas comosus (L.) Merr.) fruit: II. Multivariate statistical profiling of pineapple aroma compounds based on comprehensive two-dimensional gas chromatography-mass spectrometry. Anal Bioanal Chem 407:2609–2624. https://doi.org/10.1007/s00216-015-8475-y
19. Steingass CB, Carle R, Schmarr H-G (2015) Ripening-dependent metabolic changes in the volatiles of pineapple (Ananas comosus (L.) Merr.) fruit: I. Characterization of pineapple aroma compounds by comprehensive two-dimensional gas chromatography-mass spectrometry. Anal Bioanal Chem 407:2591–2608. https://doi.org/10.1007/s00216-015-8474-z
20. Vollmer K, Czerny M, Vásquez-Caicedo AL et al (2021) Non-thermal processing of pineapple (Ananas comosus L. Merr.) juice using continuous pressure change technology (PCT): HS-SPME–GC–MS profiling, descriptive sensory analysis, and consumer acceptance. Food Chem 345:128786. https://doi.org/10.1016/j.foodchem.2020.128786
21. Tokitomo Y, Steinhaus M, Büttner A et al (2005) Odor-active constituents in fresh pineapple (Ananas comosus [L.] Merr.) by quantitative and sensory evaluation. Biosci Biotechnol Biochem 69:1323–1330. https://doi.org/10.1271/bbb.69.1323
22. Flath RA (1980) Pineapple. In: Nagy S, Shaw PE (eds) Tropi-cal and subtropical fruits: composition, properties and uses. AVI Publishing Company, Westport, pp 157–183
23. Stannard C (1997) Development and use of microbiological criteria for foods. Food Sci Technol Today 11:137–177
24. Rohrbach KG, Apt WJ (1986) Nematode and disease problems of pineapple. Plant Dis 70:81–87

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.