Slope equality of non-hyperelliptic Eisenbud–Harris special fibrations of genus 4

Makoto Enokizono

Makoto Enokizono, Department of Mathematics, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki Noda, Chiba, 278-8510, Japan
E-mail: enokizono_makoto@ma.noda.tus.ac.jp

Received: 30 August 2021; Revised: 29 May 2022; Accepted: 20 September 2022; First published online: 20 January 2023

Keywords: Fibered surface, slope

2020 Mathematics Subject Classification: Primary - 14D06

Abstract
The Horikawa index and the local signature are introduced for relatively minimal fibered surfaces whose general fiber is a non-hyperelliptic curve of genus 4 with unique trigonal structure.

1. Introduction
Let S (resp. B) be a non-singular projective surface (resp. curve) defined over \mathbb{C} and $f : S \to B$ a relatively minimal fibration whose general fiber F is a non-hyperelliptic curve of genus 4. According to [2], we say that f is Eisenbud–Harris special or E-H special for short (resp. Eisenbud–Harris general) if F has a unique g_1^1 (resp. two distinct g_1^1’s), or equivalently, the canonical image of F lies on a quadric surface of rank 3 (resp. rank 4) in \mathbb{P}^3.

For E-H general fibrations of genus 4, two important local invariants, the local signature and the Horikawa index, are introduced in the appendix in [2]. The purpose of this short note is to show that an analogous result also holds for E-H special fibrations of genus 4, that is, to show the following:

Theorem 1.1. Let A be the set of fiber germs of relatively minimal E-H special fibrations of genus 4. Then, the Horikawa index $\text{Ind} : A \to \mathbb{Q}_{\geq 0}$ and the local signature $\sigma : A \to \mathbb{Q}$ are defined so that for any relatively minimal E-H special fibration $f : S \to B$ of genus 4, the slope equality

$$K_f^2 = \frac{24}{7} \chi_f + \sum_{p \in B} \text{Ind}(f^{-1}(p)),$$

and the localization of the signature

$$\text{Sign}(S) = \sum_{p \in B} \sigma(f^{-1}(p)),$$

hold.

Note that the above slope equality was established in [7] under the assumption that the multiplicative map $\text{Sym}^2 f_* \omega_f \to f_* \omega_f^{\otimes 2}$ is surjective, and that for non-hyperelliptic fibrations of genus 4, the slope inequality

$$K_f^2 \geq \frac{24}{7} \chi_f,$$

was shown independently in [3] and [6].
2. Proof of theorem

In this section, we prove Theorem 1.1. Let \(f : S \to B \) be a relatively minimal E-H special fibration of genus 4. Since the general fiber \(F \) of \(f \) is non-hyperelliptic, the multiplicative map \(\text{Sym}^2 f_*\omega_f \to f_*\omega_f^{\otimes 2} \) is generically surjective from Noether’s theorem. Thus, we have the following exact sequences of sheaves of \(\mathcal{O}_B \)-modules:

\[
0 \to \mathcal{L} \to \text{Sym}^2 f_*\omega_f \to f_*\omega_f^{\otimes 2} \to T \to 0,
\]

(2.1)

where the kernel \(\mathcal{L} \) is a line bundle on \(B \) and the cokernel \(T \) is a torsion sheaf on \(B \). Then, the first injection defines a section \(q \in H^0(B, \text{Sym}^2 f_*\omega_f \otimes \mathcal{L}^{-1}) = H^0(\mathbb{P}(f_*\omega_f), 2T - \pi^*\mathcal{L}) \), where \(\pi : \mathbb{P}(f_*\omega_f) \to B \) is the projection and \(T = \mathcal{O}_{\mathbb{P}(f_*\omega_f)}(1) \) is the tautological line bundle on \(\mathbb{P}(f_*\omega_f) \). The section \(q \) can be regarded as a relative quadratic form \(q : (f_*\omega_f)^\tau \to f_*\omega_f \otimes \mathcal{L}^{-1} \), which defines the determinant \(\det(q) : \det(f_*\omega_f)^{\tau^{-1}} \to \det(f_*\omega_f) \otimes \mathcal{L}^{-3} \). Note that for a non-hyperelliptic fibration \(f \) of genus 4, \(\det(q) = 0 \) if and only if \(f \) is E-H special. On the other hand, \(Q = (q) \in |2T - \pi^*\mathcal{L}| \) is regarded as the unique relative quadric on \(\mathbb{P}(f_*\omega_f) \) containing the image of the relative canonical map \(\Phi_f : S \dashrightarrow \mathbb{P}(f_*\omega_f) \). Since \(f \) is E-H special, the general fiber of \(\pi |_Q : Q \to B \) is a quadric of rank 3 on \(\mathbb{P}(H^0(F, K_f)) = \mathbb{P}^3 \). The closure of the set of vertexes of general fibers of \(\pi |_Q \) defines a section \(v : B \to Q \), which corresponds to some quotient line bundle \(\mathcal{F} \) of \(f_*\omega_f \). Let \(E \) be the kernel of the surjection \(f_*\omega_f \to \mathcal{F} \) and put \(P = \mathbb{P}(f_*\omega_f) \) and \(P = \mathbb{P}(E) \). Let \(\tau : \tilde{P} \to P \) be the blow-up of \(P \) along the section \(v(B) \). Then, the relative projection \(P \dashrightarrow P' \) from the section \(v(B) \) extends to the morphism \(\tau' : \tilde{P} \to P' \) with

\[
\tau'^{*}T = \tau^{*}T - E,
\]

where \(T' = \mathcal{O}_{\mathbb{P}(E)}(1) \) is the relative tautological line bundle of \(\mathbb{P}(E) \) and \(E \) is the exceptional divisor of \(\tau \). Let \(\tilde{Q} \) denote the proper transform of \(Q \) on \(\tilde{P} \). It follows that in \(\text{Pic}(\tilde{P}) \),

\[
\tilde{Q} = \tau^{*}Q - 2E = \tau'^{*}(2T' - \pi'^{*}\mathcal{L}),
\]

where \(\pi' : P' \to B \) is the projection. Let \(Q' = \tau'(\tilde{Q}) \) be the image of \(\tilde{Q} \) via \(\tau' \). It follows that \(Q' \subseteq |2T' - \pi'^{*}\mathcal{L}| \) and \(\tilde{Q} = \pi'^{*}Q' \). The general fiber of \(\pi |_{Q'} : Q' \to B \) is a conic on \(\mathbb{P}(H^0(F, E|_P)) = \mathbb{P}^2 \) of rank 3, which is isomorphic to \(\mathbb{P}^1 \). Note that the composite \(\tau' \circ \Phi_f : S \dashrightarrow Q' \subseteq P' \) of the relative canonical map \(\Phi_f : S \dashrightarrow P \) and the projection \(\tau' : P \dashrightarrow P' \) determines the unique trigonal structure of the general fiber \(F \) of \(f \). Let \(q' \in H^0(P', 2T' - \pi'^{*}\mathcal{L}) = H^0(B, \text{Sym}^2 E \otimes \mathcal{L}^{-1}) \) be a section which defines \(Q' = (q') \).

Then \(q' \) can be regarded as a relative quadratic form \(q' : E' \to E \otimes \mathcal{L}^{-1} \), which has non-zero determinant \(\det(q') : \det(E)^{-1} \to \det(E) \otimes \mathcal{L}^{-3} \) since \(Q' \) is of rank 3. Thus, \(\det(q') \in H^0(B, \det(E)^{\otimes 2} \otimes \mathcal{L}^{-3}) \) defines an effective divisor \(\Delta_{q'} = (\det(q')) \) on \(B \). The degree of \(\Delta_{q'} \) is

\[
\deg \Delta_{q'} = 2\deg E - 3\deg \mathcal{L}.
\]

(2.2)

Let \(\rho : \tilde{S} \to S \) be the minimal desingularization of the rational map \(\tau^{-1} \circ \Phi_f : S \dashrightarrow \tilde{P} \) and \(\tilde{\Phi} : \tilde{S} \to \tilde{P} \) the induced morphism. Put \(\Phi = \tau \circ \tilde{\Phi} : \tilde{S} \to P, \Phi' = \tau' \circ \tilde{\Phi} : \tilde{S} \to P', M = \Phi^*T \) and \(M' = \Phi'^*T' \). Then we can write \(\rho^*K_f = M + Z \) for some effective vertical divisor \(Z \) on \(\tilde{S} \). Since \(M' = M - \tilde{\Phi}^*E \), we can also write \(\rho^*K_f = M' + Z' \), where \(Z' = Z + \tilde{\Phi}^*E \) is also an effective vertical divisor on \(\tilde{S} \). Since \(\Phi' \) is of degree 3 onto the image \(Q' \), we have \(\Phi'_*\tilde{S} = 3Q' \) as cycles. It follows that

\[
M^2 = \Phi'^{*}T' \tilde{S} = \Phi'^{*}\Phi'_*\tilde{S} = 3T'^2Q' = 3T'^2(2T' - \pi'^{*}\mathcal{L}) = 6\deg E - 3\deg \mathcal{L},
\]

while we have

\[
M^2 = (\rho^*K_f - Z)^2 = K_f^2 - (\rho^*K_f + M')Z'.
\]

Hence, we get

\[
K_f^2 = 6\deg E - 3\deg \mathcal{L} + (\rho^*K_f + M')Z'.
\]

(2.3)
From (2.2) and (2.3), we can delete the term \(\deg \mathcal{L} \) and then we have
\[
\deg \mathcal{L} = \frac{1}{6} K_j^2 - \frac{1}{6}(\rho^* K_r + M')Z' - \frac{1}{2} \deg \Delta_f.
\] (2.4)

On the other hand, taking the degree of (2.1), we get
\[
K_j^2 = 4 \chi_f - \deg \mathcal{L} + \text{length} \mathcal{T}.
\] (2.5)

Substituting (2.4) in the equation (2.5), we get
\[
K_j^2 = \frac{24}{7} \chi_f + \frac{1}{7}(\rho^* K_r + M')Z' + \frac{3}{7} \deg \Delta_f + \frac{6}{7} \text{length} \mathcal{T}.
\]

For a fiber germ \(f^{-1}(p) \), we define \(\text{Ind}(f^{-1}(p)) \) by
\[
\text{Ind}(f^{-1}(p)) = \frac{1}{7}(\rho^* K_r + M')Z_p' + \frac{3}{7} \text{mult}_p \Delta_f + \frac{6}{7} \text{length}_p \mathcal{T},
\]
where \(Z = \sum_{p \in B} Z_p \) is the natural decomposition with \((f \circ \rho)(Z_p) = \{p\} \) for any \(p \in B \). For the definitions of \(M', Z', \) etc., we do not use the completeness of the base \(B \). Thus, we can modify the definition of \(\text{Ind} \) for any fiber germ of relatively minimal E-H special fibrations of genus 4 which is invariant under holomorphically equivalence. Thus, we can define the Horikawa index \(\text{Ind} : \mathcal{A} \rightarrow \mathbb{Q}_{\geq 0} \) such that
\[
K_j^2 = \frac{24}{7} \chi_f + \sum_{p \in B} \text{Ind}(f^{-1}(p)).
\]

The non-negativity of \(\text{Ind}(f^{-1}(p)) \) is as follows. From the nefness of \(K_r \), we have \(\rho^* K_r Z_p' \geq 0 \). For a sufficiently ample divisor \(a \) on \(B \), the linear system \(|M' + (f \circ \rho)^* a| \) is free from base points. Thus, by Bertini’s theorem, there is a smooth horizontal member \(C \in |M' + (f \circ \rho)^* a| \) and then \(M' Z_p' = (M' + (f \circ \rho)^* a)Z_p' = CZ_p' \geq 0 \).

Once the Horikawa index is introduced, we can define the local signature since \(\text{Sign}(S) = K_j^2 - 8 \chi_f \) and \(e_f = 12 \chi_f - K_j^2 \) is localized by using the topological Euler numbers of the singular fibers (cf. [1, Section 2]). Indeed, we put
\[
\sigma(f^{-1}(p)) = \frac{7}{15} \text{Ind}(f^{-1}(p)) - \frac{8}{15} e_f(f^{-1}(p)) + 6
\]
for \(p \in B \). Then we have \(\text{Sign}(S) = \sum_{p \in B} \sigma(f^{-1}(p)) \).

Remark 2.1. In [5], we define a Horikawa index \(\text{Ind}_{g,n} \) for fibered surfaces of genus \(g \) admitting a cyclic covering of degree \(n \) over a ruled surface (called primitive cyclic covering fibrations of type \((g, 0, n)\)). For \(g = 4 \) and \(n = 3 \), these fibrations are non-hyperelliptic E-H special fibrations of genus 4. One can check the Horikawa index \(\text{Ind}_{4,3}(f^{-1}(p)) \) in [5, (4.5)] and \(\text{Ind}(f^{-1}(p)) \) in Theorem 1.1 are coincide by using the technique of [4, Appendix] which we left to the reader.

Acknowledgments. I would like to express special thanks to Prof. Kazuhiro Konno for a lot of discussions and supports. I also thank Prof. Tomokuni Takahashi for useful comments and discussions. The research is supported by JSPS KAKENHI No. 16J00889.

References

[1] T. Ashikaga and K. Konno, Global and local properties of pencils of algebraic curves, in *Algebraic Geometry 2000 Azumino* (S. Usui et al., Editors), Adv. Stud. Pure Math., vol. 36 (Math. Soc. Japan, Tokyo, 2002), 1–49.

[2] T. Ashikaga and K. Yoshikawa, A divisor on the moduli space of curves associated to the signature of fibered surfaces (with an Appendix by K. Konno), Adv. St. Pure Math. **56** (2009), 1–34.
[3] Z. Chen, On the lower bound of the slope of a non-hyperelliptic fibration of genus 4, *Intern. J. Math.* 4 (1993), 367–378.

[4] H. Endo, Meyer’s signature cocycle and hyperelliptic fibrations (with an Appendix by T. Terasoma), *Math. Ann.* 316 (2000), 237–257.

[5] M. Enokizono, Slopes of fibered surfaces with a finite cyclic automorphism, *to appear in Michigan Math. J.* 66 (2017), 125–154.

[6] K. Konno, Non-hyperelliptic fibrations of small genus and certain irregular canonical surfaces, *Ann. Sc. Norm. Sup. Pisa Ser. IV* 20 (1993), 575–595.

[7] T. Takahashi, Eisenbud-Harris special non-hyperelliptic fibrations of genus 4, *Geom. Dedicata.* 158 (2012), 191–209.