Burn-Induced Local and Systemic Immune Response: Systematic Review and Meta-Analysis of Animal Studies

Patrick P.G. Mulder1,2, Hans J.P.M. Koenen2, Marcel Vlig1, Irma Joosten2, Rob B.M. de Vries3 and Bouke K.H.L. Boekema1

Because burn injuries are often followed by a derailed immune response and excessive inflammation, a thorough understanding of the occurring reactions is key to preventing secondary complications. This systematic review, which includes 247 animal studies, shows the postburn response of 14 different immune cell types involved in immediate and long-term effects in both wound tissue and circulation. Peripheral blood neutrophil and monocyte numbers increased directly after burns, whereas thrombocyte numbers increased near the end of the first week. However, lymphocyte numbers were decreased for at least 2 weeks. In burn wound tissue, neutrophil and macrophage numbers accumulated during the first 3 weeks. Burns also altered cellular functions because we found an increased migratory potential of leukocytes, impaired antibacterial activity of neutrophils, and enhanced inflammatory mediator production by macrophages. Neutrophil surges were positively associated with burn size and were highest in rats. Altogether, this comprehensive overview of the temporal immune cell dynamics shows that unlike normal wound healing, burn injury induces a long-lasting inflammatory response. It provides a fundamental research basis to improve experimental set-ups, burn care, and outcomes.

Journal of Investigative Dermatology (2022) 142, 3093–3109; doi:10.1016/j.jid.2022.05.004

INTRODUCTION
Burn trauma often induces an overreaction of the immune system, known as systemic inflammatory response syndrome, which can cause damage to surrounding tissues and even distant organs (Farina et al., 2013; Pantalone et al., 2021). Hyperactive inflammation and obstruction of wound healing can lead to excessive scarring (Eming et al., 2014) and psychological distress (Fauerbach et al., 2007). Information on the specific immune cells and inflammatory factors involved in the different phases of burn wound healing in humans is however scattered and incomplete.

Human studies are limited by the absence of baseline values, heterogeneity among cases, and restrictions in the timing of blood and wound sampling. Animal experiments, executed in controlled and standardized settings (Abdullahi et al., 2014), could improve our understanding of the mechanisms underlying the burn-induced immune response in humans. Undoubtedly, various genomic and physiological processes of the human response to trauma differ from that of animals, such as signaling pathways, wound contraction, and scar formation (Dahiya, 2009; Seok et al., 2013; Zomer and Trentin, 2018). Nevertheless, animal studies contain valuable information that will improve our understanding of the cellular immune response to burn trauma. In this study, we aimed to identify the immune cells involved in the local and systemic inflammatory response to burn injury in animal models. Ultimately, we anticipate that this review leads to new perspectives in burn care and will support the improvement of treatment for patients.

RESULTS
Study selection, characteristics, and quality
Our search generated 10,733 citations, of which 1,224 were considered relevant during title and abstract screening. From this selection, 111 studies were inaccessible, 247 were included in the systematic review (Figure 1), and 182 were used in meta-analyses (Supplementary Files S1 and S2). An overview of the study characteristics (Figure 2a–g) showed that most experiments were performed on young mice or rats. Full-thickness dorsal injury using hot water was the most common burn technique. It is worth noting that under-reporting complicated the assessment of the overall study quality. Risk of bias (RoB) analysis showed that 33.5% of the included studies reported the use of randomization of animals before experimentation (Figure 2h). The majority of studies (94.0%) did not report the use of blinding, and a conflict-of-interest statement was present in 33.9% of the studies, in which four studies reported an actual conflict (Figure 2i and j). Overall, there was no significant indication...
of publication bias for the overall outcomes, but we did find a substantial risk of selection and performance bias.

Burn-induced immune response is dominated by innate immune cells

Meta-analyses were performed on outcome measures for which at least five articles were available (Supplementary Table S1). Immune cell counts in blood or wound tissue from burn-injured animals were compared with immune cell counts in blood or skin from uninjured animals (baseline or control group). Overall, there was a significant increase in leukocytes in both peripheral blood and wound tissue (Figure 3). Systemically, the numbers of neutrophils and monocytes were significantly elevated, whereas lymphocyte numbers decreased. Total leukocyte counts were higher in baseline-controlled studies than in studies with separate uninjured controls. There was no significant change in overall eosinophil or thrombocyte counts. The higher standardized mean difference of neutrophils than of total leukocytes might be caused by the decrease in lymphocyte counts. Within the lymphocyte population, only B-cell counts were significantly decreased (Figure 3b).

In burn wound tissue, the numbers of neutrophils, macrophages, and mast cells were increased (Figure 3c). Cell migratory activity, mainly tested by adherence to endothelium or in vitro migration assays, was increased in total leukocytes but not in neutrophils (Figure 3d). Migratory activity of leukocytes was lower in baseline-controlled studies than in studies with separate uninjured controls. Antibacterial function of neutrophils was decreased after burn injury, whereas there was no significant effect on ROS production or inflammatory mediator secretion by neutrophils. The secretion of inflammatory mediators by macrophages was increased.
Figure 2. Characteristics of studies in systematic review and risk of bias assessment. Numbers indicate the number of studies.

(a) Types of animal species and strains.
(b) Age of study animals.
(c) Sex of study animals.
(d) Location of burn injury.
(e) Depth of burn injury.
(f) Type of burn agent.
(g) TBSA that was burned as a percentage.
(h) Quality of reporting of all included studies.
(i) Risk of bias assessment of all baseline-controlled studies.
(j) Complete risk of bias assessment of a random sample consisting of 25 of the included studies. D, dermis; E, epidermis; H, hypodermis; NR, not reported; TBSA, total body surface area.
There were not enough studies reporting total lymphocyte counts in wound tissue to be included in the meta-analysis.

Blood innate response intensifies and is persistent

We performed longitudinal analysis on selected time intervals encompassing the four different biological phases of wound healing: hemostasis, inflammation, proliferation, and remodeling (Figure 4a–g). Meta-regression analyses were performed from postburn day (PBD) 0 until PBD 21 (Figure 4h). Blood leukocytes displayed a steady increase, with the highest counts from PBD 5 until PBD 28 (Figure 4a). Neutrophil counts were immediately increased during injury and remained elevated up to PBDs 15–21 (Figure 4b). Monocyte counts were increased from PBD 5 until PBD 14 (Figure 4c). Thrombocyte counts were decreased on PBDs 0–1 and later increased on PBDs 5–9 (Figure 4d). The decline of lymphocytes was most predominant directly after burn injury, whereas on PBDs 10–14, counts returned to control levels (Figure 4e). We detected a decrease in B-cell counts on PBDs 5–9 but found no significant differences in T-cell counts (Figure 4f and g). To further investigate the opposed dynamics of neutrophils and lymphocytes during burn injury, we calculated the neutrophil/lymphocyte ratio (NLR) for studies that reported both neutrophil and lymphocyte counts (Supplementary Figure S1). During the first 9 days, significantly higher NLRs were observed in burn-injured animals, which is an indication of systemic inflammatory response syndrome (Fuss et al., 2018). Overall, the temporal analysis revealed that whereas the increase in neutrophil counts was immediate, total leukocyte, monocyte, and thrombocyte counts increased during the first week, whereas lymphocyte numbers decreased.

Direct innate response in wound is accompanied by altered functions

Longitudinal analyses were performed on cell counts in wound tissue as well as on cell function (Figure 5) and revealed an instant increase in leukocyte migratory activity on PBDs 0–4 and an increase in wound leukocyte numbers on PBDs 0–1 and 5–9 (Figure 5a and b). Mast cell numbers showed a decrease around PBDs 2–4 and a subsequent increase from PBD 10 until PBD 21 (Figure 5c). On the other hand, neutrophil numbers increased instantly and remained elevated until at least PBD 14 (Figure 5d). Although the production of ROS by neutrophils was not significantly altered by burn injury, we did detect an increase in inflammatory mediator secretion by neutrophils on PBDs 0–1 and decreased neutrophil antibacterial activity on PBDs 5–9 (Figure 5e–g). Macrophage numbers increased immediately and remained elevated until PBD 14 (Figure 5h). Release of inflammatory mediators by macrophages was increased on PBDs 0–4 (Figure 5i). Altogether, the instant increase of innate immune cells in wound tissue persisted for at least 2 weeks, whereas certain functions were affected.

Immune response depends on animal characteristics and burn technique

To investigate the differences between experimental models, subgroup analyses were performed (Figure 6). The highest blood leukocyte counts were found in rats or in adult animals. Sensitivity analyses confirmed that the interspecies effect was still present when only young animals were compared and that the difference from aging remained when only rats were analyzed. Neutrophil counts were higher in studies using >25% total body surface area (TBSA) than in those using 5–25% TBSA and were highest in rats. Sensitivity
analysis showed that the effect of TBSA was present in mice but not in rats. Surprisingly, neutrophil wound counts in studies using 5–25% TBSA were lower than in those using ≤5% TBSA, in both mice and rats. Blood neutrophil counts were higher in males than in females. Interestingly, both wound leukocyte and neutrophil counts were lower in scalds than in metal burns. Within TBSA groups, the difference in neutrophil counts between species was still present in wound tissue but not in blood, indicating that colinearity could play a role. The difference between sexes for blood counts and the effect of metal burns on wound neutrophil counts were not influenced by TBSA or species. Because the majority of the studies used full-thickness burns, subgroup analysis on wound depth could only be performed for wound neutrophil counts. Overall, the leukocyte response was affected by type of species, animal age, and burn agent, whereas the neutrophil counts depended on species, sex, wound size, and burn agent.

DISCUSSION

An improved understanding of the burn-induced immune response is necessary to prevent secondary pathologies in patients with burns as much as possible. In this study, we synthesized available literature on the postburn immune response in animals into a comprehensive systematic overview. Even though there was great heterogeneity and variation among the studies, the meta-analyses clearly displayed the dynamics of innate and adaptive immune cells after burn injury. In peripheral blood, the numbers of neutrophils, monocytes, and thrombocytes increased shortly or within 1 week after burn injury and remained increased over the first month. In contrast, lymphocyte numbers were reduced during the first 2 weeks, indicating that the response is driven by the innate arm of the immune system and that resolution of inflammation is delayed. In wound tissue, we observed an immediate surge of neutrophils and macrophages during the first 2 weeks, whereas for mast cells, a time-dependent response was observed because numbers decreased near the end of the first week and steadily increased from PBD 10 onward. Although several studies investigated the specific subsets of lymphocytes in wound tissue, there were not enough data available on total lymphocyte counts. Furthermore, burn injury affected cell function because we showed that migration of leukocytes and inflammatory mediator production by neutrophils and macrophages were increased.
earlier on and that antibacterial activity of neutrophils was reduced on PBDs 5–9.

In general, wound healing entails four biological phases, namely hemostasis, inflammation, proliferation, and remodeling. The immediate increase in thrombocyte and neutrophil numbers during the inflammation phase is attenuated within the first week (Rodrigues et al., 2019; Velnar et al., 2009; Zomer and Trentin, 2018). Macrophage numbers, which are important for the transition from inflammation to proliferation (Kotwal and Chien, 2017), normalize later on, whereas lymphocyte numbers increase from the second week onward (Guillamat-Prats, 2021). In this study, we show that at least in animals, these processes are derailed and that high numbers of circulatory thrombocytes, neutrophils, and monocytes are persistent, whereas lymphocyte numbers are actually reduced. This suggests that the timing in typical schematic depictions of the cellular immune response during wound healing does not hold true for burn injury. Unlike in humans, B-cell counts in uninjured rodents are higher than their T-cell counts (Hensel et al., 2019), which could explain the larger effect of burn injury on B cells than on T cells that we found in animals. A relative increase in innate immune cells and a decrease in lymphocytes have also been detected in patients with burns (Laggner et al., 2022; Mulder et al., 2021). Danger-associated molecular patterns that are released by wounded tissues are suggested to cause a continuous activation of the immune system (Comish et al., 2020; Jeschke et al., 2011). In turn, a hyperactive immune system can cause damage to surrounding tissues, thereby producing additional danger-associated molecular patterns and cytokines that uphold the inflammation.

The time-dependent response of thrombocytes is similar to the early thrombocyte response in burn patients (Marck et al., 2013). The typical early trauma-induced leukopenia in patients with burn wounds that is caused by exsanguination, resuscitation, and emigration of immune cells from the blood circulation was in our meta-analysis only visible when the early time points were analyzed per day. Leukopenia is naturally restored by the bone marrow (Osuka et al., 2019; Sen et al., 2019). During acute inflammation, predominantly, neutrophils and monocytes are replenished by the bone marrow, which can lead to reduced lymphopoiesis and overrepresentation of innate immune cells in the circulation (Manz and Boettcher, 2014). Moreover, the NLR, a marker for systemic inflammatory response syndrome in humans, was in animals also highly increased during the first 9 days after burns. In patients with burns, persistent leukocytosis in combination with lymphopenia is associated with persistent inflammation, arrested wound healing, increased susceptibility to opportunistic infection, and increased mortality (Heffernan et al., 2012; Pantalone et al., 2021; Thakkar et al., 2018). Because the

![Figure 5. Longitudinal analyses of wound immune cell counts and cell function after burn injury. Longitudinal meta-analysis of (a) burn wound leukocyte counts, (b) leukocyte migration, (c) burn wound mast cell counts, (d) burn wound neutrophil counts, (e) neutrophil antibacterial activity, (f) neutrophil ROS production, (g) neutrophil inflammatory mediator production, (h) burn wound macrophage counts, and (i) macrophage inflammatory mediator production. (j) Meta-regression with the immediate effect (intercept) and linear coefficient of time after burn (PBD 0 until PBD 21). Results are shown as SMD of immune cell counts in wound tissue from burn-injured animals compared with immune cell counts in the skin from uninjured animals (baseline or control group) ± CI95%. The I² statistic, number of studies, and the total number of animals in the burn group for each interval are shown below the graphs. Bonferroni-corrected P-values of significant differences between intervals are given in the graphs. CI95%, 95% confidence interval; inflam., inflammatory; med., mediator; NS, not significant; PBD, postburn day; prod., production; SMD, standardized mean difference.](image)
thrombocyte count and NLR correspond with systemic inflammatory response syndrome and septic events, they are of prognostic and diagnostic value (Fuss et al., 2018; Hu et al., 2021).

In wound tissue of animals, increased levels of neutrophils, macrophages, and mast cells were detected until at least PBD 14. The transition of macrophages from an M1 phenotype toward an M2 phenotype is essential to facilitate proper wound healing (Italiani and Boraschi, 2014; Olingy et al., 2017). Although monocyte or macrophage subtypes could not be investigated, we found that total wound macrophage numbers were increased and that the production of inflammatory mediators by macrophages was enhanced. The activity of neutrophils is altered after severe trauma in animals (Baskaran et al., 2000; Janicova et al., 2021; Leliefeld et al., 2016; Mortaz et al., 2018), but it remains unclear whether trauma, in general, enhances or weakens neutrophil activity (Figure 5). Presumably, the emergency release of neutrophils

![Figure 6. Subgroup analysis of immune cell counts after burn injury.](image)

Figure 6. Subgroup analysis of immune cell counts after burn injury. Subgroup analysis of (a) burned TBSA, (b) species, (c) burn agent, (d) age, (e) sex, and (f) wound depth. Only subgroups for which at least five articles were available were used in the analysis. Results are shown as SMD of immune cell counts in blood or wound tissue from burn-injured animals compared with immune cell counts in blood or skin from uninjured animals (baseline or control group) ± CI95%. The I² statistic, number of studies, and the total number of animals in the burn group for each subgroup are shown below the graphs. Bonferroni-corrected P-values of significant differences between subgroups are given in the graphs. CI95%, 95% confidence interval; FT, full-thickness; PT, partial-thickness; SMD, standardized mean difference; TBSA, total body surface area.
into the circulation is responsible for reduced chemotactic activity owing to the inflexibility of the banded nucleus of immature neutrophils (Drife et al., 2013), whereas rapid activation can lead to impaired antibacterial activity (Leliefeld et al., 2016). On the other hand, the immaturity of neutrophils could amplify the granule content and increase the release of inflammatory factors (Manley et al., 2018; Yang et al., 2021). Mast cells have also been proposed to play an active role during wound healing in both animals and humans. They might enhance inflammation and vascular permeability through the secretion of histamines early after injury and stimulate re-epithelization and angiogenesis later on by the release of GFs (Ud-din et al., 2020; Weller et al., 2006). This coincides with increased numbers of mast cells on PBDs 0–1 and on PBDs 15–21.

Only a minority of studies used porcine or canine models, and therefore it was unfeasible to study the differences between species other than mice and rats. Although pigs come close to the human condition in terms of similar skin characteristics and physiology, porcine models are less attractive because of ethical concerns, higher expenses, and advanced operating requirements (Vilig et al., 2019). Subgroup analyses revealed that blood leukocyte and neutrophil counts were more abundant in rats than in mice. Because rats are larger animals, require a longer healing time, and are immunologically more similar to humans than mice (Kim et al., 2015), they might exhibit a more severe immune response than mice. In addition, murine studies generally analyzed the effects shortly after burn injury, thereby causing an over-representation of early sampling times. The severity of leukocytosis seemed to increase with animal age and may be explained by the fact that a young, underdeveloped immune system is supposedly tolerant and becomes gradually more active during maturity (Simon et al., 2015). Interestingly, neutrophil responses appeared to depend on burn size and agent. The relationships between the burn size and inflammatory response in humans have been proposed before by others (Barber et al., 2008; Jeschke et al., 2007; Yang et al., 2021). Metal burns induced a greater total leukocyte and neutrophil response in wound tissue than scalds. Water, mostly used at 100 °C, loses heat more rapidly and might therefore cause a less severe injury than metal. It was hardly possible to explore the differences related to wound depth because the majority of studies applied a full-thickness burn wound. Although most studies reported full-thickness injuries, only a limited number of studies actually investigated the wound depth. In addition, wound depth is more prone to subjectivity and depends on many factors such as skin thickness, burn temperature, and duration. Therefore, wound depth was a less useful parameter in these studies.

Numerous studies failed to adhere to the Animal Research: Reporting of In Vivo Experiments guidelines (du Sert et al., 2020) and did not provide important experimental details or information on the number of animals or SDs, which are crucial to performing meta-analyses. The inability to apply blinding might have influenced the data acquisition, and owing to the poor reporting of studies, the general RoB was largely unclear. The improper design, conduct, and reporting in many animal studies have already been described in recent reviews (de Vries et al., 2014; Hooijmans et al., 2014b; Osborne et al., 2018), and future research will surely benefit from more standardized design and reporting (Hao and Nourbakhsh, 2021). Researchers have shown that resuscitation and pain treatment can influence immune reactions after thermal injury (Gómez et al., 2020; Sun et al., 2013). Owing to large variation in the type of anesthetic, resuscitation procedure, and pain management, specific effects on the immune response could not be investigated. Likewise, subgroup analysis of the different methods used to identify cell types was not possible. The overall cell counts showed substantial heterogeneity (I2 = 68–92), which can be expected for animal studies (Hooijmans et al., 2014a). In a few subgroup analyses, a trivial reduction of the I2 statistic could be detected.

Although animal studies provide valuable insight into the postburn immune response and wound repair, appropriate translation of these findings to the human situation remains crucial to predicting and treating consequential complications effectively. There are several considerable (physiological) differences that make it difficult to convert treatment opportunities directly to patients. Rodents, unlike humans, have more lymphocytes than innate cells, and receptor binding and cytokine responses differ owing to evolution and distinct history of microbial exposure (Mestas and Hughes, 2004; Tao and Reese, 2017). In addition, there are important genomic and evolutionary differences that cause mouse models to poorly reflect certain aspects of human disease (Seok et al., 2013). Furthermore, the ultra-hygienic environment of laboratory animals makes the immune system, in general, less tolerant (Sellers et al., 2012; Tao and Reese, 2017). Still, important aspects of the burn-induced human immune response were also present in our meta-analyses, exemplified by the response of thrombocytes, neutrophils, and monocytes (Laggner et al., 2022; Mulder et al., 2021).

Altogether, this review of the burn-induced immune response in animals using meta-analyses puts in perspective the uncontrolled, hyperactive response of immune cells that persists for weeks after burn trauma. Although numerous physiological processes are distinct, many aspects of the human immune response to burns were found in our meta-analyses, including the innate and lymphocyte response and the dynamics of mast cells and thrombocytes. We anticipate that this knowledge will guide the design of future experimental models while supporting the reduction, refinement, and replacement of animal experimentation. It will lead, to our knowledge, to previously unreported insights in clinical research on burn trauma that can ultimately improve burn care and outcome.

MATERIALS AND METHODS
Study protocol and eligibility criteria
A review protocol was established beforehand and is registered at the International Prospective Register of Systematic Reviews (CRD42019136270; http://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=13627). We amended this protocol once to further specify the meta-analyses. The 10-article requirement was changed to five to enable the inclusion of additional cell types.
Search strategy
The search was performed using PubMed and Embase (Leenaars et al., 2012) (Supplementary File S1), with a final update on August 6, 2021. Briefly, we searched for articles with primary data on the immune response in animals with burn injury (search components: burn wound, immune response, and animal). No language or publication date restrictions were applied. Search results were combined, and duplicates were removed using EndNote software (X9, Clarivate Analytics, London, United Kingdom).

Study selection
Studies were selected independently by PPGM and BKHLB using Rayyan (Rayyan Systems, Cambridge, MA) (Ouzzani et al., 2016) in three phases. Discrepancies between the two reviewers were carefully checked, and in case of doubt, references were included. Inaccessible articles were noted (Supplementary File S1) and excluded from the review.

Study characteristics
Independently, PPGM and BKHLB extracted the study characteristics (animal species and strain, age, sex, weight, burn size, burn time, burn agent, burn temperature, burn depth, anatomical location, type of control, cell type, detection method), each from half of the included studies. A random sample of 10% of the extracted data was checked by the other reviewer.

Study quality and RoB assessment
Reporting of any form of randomization or blinding and the presence of a conflict-of-interest statement was scored for all included studies by PPGM and BKHLB who both assessed half of the studies and checked at least 10% of those of the other reviewer. Full RoB assessment was conducted using SYRCLE’s tool (Hooijmans et al., 2014b) on 25 randomly selected studies (random number generator; Excel, Microsoft, Redmond, WA). Because only items 7, 8, and 9 from the RoB tool apply to baseline-controlled studies, we evaluated those studies separately. The RoB was evaluated independently by PPGM and BKHLB. In the case of discrepancies, a third reviewer was consulted.

Outcome data extraction
All quantitative outcome measures related to immune cells were collected in a database, which is available on request. PPGM and BKHLB independently extracted the outcome measures (mean outcome and SD, unit of measurement, number of animals), each from half of the included studies, and checked at least 10% of those of the other reviewer.

Synthesis of results and meta-analysis
Meta-analyses were only performed on outcome measures of at least five studies. Data were analyzed using Comprehensive Meta-Analysis (version 3; Biostat, Englewood, NJ), and the effect sizes were expressed as standardized mean difference of immune cell counts in blood or wound tissue from burn-injured animals compared with counts in blood or skin from uninjured animals (baseline or uninjured control) with 95% confidence interval. A random-effects model was used in the analyses, and I^2 statistic was used as a measure for statistical heterogeneity. Cell types that were considered the same entity were pooled (Supplementary Table S1). Possible publication bias was explored using Duval and Tweedie’s trim and fill methodology (Supplementary File S2). NLRs were calculated using absolute data from studies that measured both blood neutrophil and lymphocyte counts.

Subgroup analysis and meta-regression
Predefined subgroup analyses were performed. P-values were based on the 95% confidence interval of the differences between subgroups. For both longitudinal and subgroup analyses, Bonferroni correction was applied, that is, the P-values were multiplied by the number of comparisons made within each subgroup analysis. Differences between baseline-controlled studies and studies with a separate control group were assessed. Meta-regression analyses were performed posthoc on the standardized mean difference of cell counts and cell function using time after burn injury as a continuous variable, including PBD 0 until PBD 21 (Supplementary File S2). Random effects–restricted maximum likelihood model was used, and repeated measures (same animal, multiple sampling times) of studies were included.

See Supplementary Materials and Methods for more detailed information.

Data availability statement
Datasets are available on request after signing a material transfer agreement, please contact pmulder@burns.nl or bboekema@burns.nl.

Studies included in the systematic review
The following references were included in the systematic review:
Abali et al., 2015; Abbas et al., 2018, 2017; Abd et al., 2020; Abdallah Hajj Hussein et al., 2012; Abo El-Noor et al., 2017; Adediran et al., 2010; Akgun et al., 2017; Akhzari et al., 2017; Alexander et al., 2006; Alexis et al., 2015; Alyoussef et al., 2021; Asko Seljavaara, 1974; Avsar et al., 2016; Babcock et al., 2012; Bankova et al., 2014; Baskaran et al., 2000; Bayat et al., 2008; Bayliss et al., 2014; Beckmann et al., 2021; Begieneman et al., 2012; Bird et al., 2010; Bjornson et al., 1992, Bjornson et al., 1989, Bjornson et al., 1988, 1986; Bohannon et al., 2008; Bohr et al., 2013a, 2013b; Brandenburg et al., 2019a, Brandenburg et al., 2019b; Brownstein et al., 2006; Burleson et al., 1988, Burleson et al., 1987; Burmeister et al., 2016; Cakir et al., 2005; Calum et al., 2009; Chakraborty et al., 2018; Chao et al., 2020; D’Alesandro and Gruber, 1990; Daniel et al., 2007; de David Antonizzi et al., 2018; Davis and Gallin, 1988; Deitch et al., 2006; Dinescu et al., 2019; Dokumcu et al., 2008; Dong et al., 2015, Dong et al., 1993a, Dong et al., 1993b; Duansak et al., 2003; Duque et al., 1985; Eski et al., 2001; Eurenius and Brouse, 1973; Fan et al., 2016; Fang et al., 2017; Faunce et al., 2003, Faunce et al., 1999; Fazal et al., 2012, Fazal et al., 2001, Fazal et al., 1997; Fear et al., 2016; Fiório et al., 2014; Fried et al., 1991; Fuchs et al., 2006; Fujimi et al., 2006; Gadd and Hansbrough, 1989; Gamelli et al., 1985; Gao et al., 2019; Gardner et al., 2014; Goertz et al., 2016, Goertz et al., 2012, 2011, Goertz et al., 2009; Gómez et al., 2018; Gómez et al., 2018; Goto et al., 2006; Groger et al., 2010; Gruber and D’Alesandro, 1989; Gruber and Farese, 1989; Guo et al., 2015; Guo and Gu, 1988; Hansbrough et al., 1996a, Hansbrough et al., 1996b, 1996c, 1987; Hansbrough and Gadd, 1989; He et al., 2001; Heideman, 1979; Heinrich et al., 2003; Hemmila et al., 2010; Hennekamp et al., 2012; Higashimori et al., 2006; Howell et al., 2012; Hu and Sayeed, 2005, 2004; Hummel et al., 1966; Ibrahim et al., 2014; Ikeuchi et al., 1981; Inoue et al., 2018; Ipakchi et al., 2007, 2006; Iwashita et al., 1999; Jabeen et al., 2019; Jahovic et al., 2004; Jian-Xing et al., 2021; Jiao et al., 2020; Jinn et al., 2017; Johnson et al., 2016; Jurus et al., 2018, 2007; Kabasakal et al., 2005; Katakura et al., 2004; Khalid et al., 2019; Kimura et al., 2008; Korkmaz et al., 2020, 2017; Kurihara et al., 2013; Kuroiwa...
et al., 1990; Langer et al., 2005; Lateef et al., 2019; Lavaud et al., 1988; Lederer et al., 2008; Lee et al., 2011; Li et al., 2017, 2016; Linz et al., 2017; Liu et al., 2020, 2016, 2015, 2014, 2011; Luo et al., 2013, 2005; Madibally et al., 2003; Madibally et al., 2002, 2001; Malakyan et al., 2004; Marano et al., 1988; Maung et al., 2008; McManus, 1983; Mikhail'chik et al., 2004; Miles et al., 1999; Muthu et al., 2009; Nassar et al., 2012; Newsome and Eurenius, 1973; Nishikori et al., 1998; Noel et al., 2010, 2007; Nomellini et al., 2012; Nwaruaku et al., 1996, 1995; Ny et al., 2020; O'Leary et al., 2011; Oba et al., 2020; Oka et al., 2016; Organ et al., 1989; Osikov et al., 2021; Pallau and von Heimburg, 2003; Pejnović et al., 1995; Penturf et al., 1996; Perez et al., 1987; Peter et al., 1999; Piccolo et al., 1999; Pintér et al., 1999; Preet et al., 2021; Qian et al., 2020; Rani et al., 2017, 2015, 2014; Rani and Schwacha, 2017; Rawlingson et al., 2003, 2001; Rennekampff et al., 1995; Samonte et al., 2004; Santangelo et al., 2001; Santos et al., 2000; Sartorelli et al., 1991; Schindel et al., 1997; Schmidt et al., 1983; Schwacha et al., 2019, 2012, 2010, 2005; Schwacha and Daniel, 2008; Schwacha and Somers, 1998; Sehirli et al., 2008; Semochkin et al., 2001; Sener et al., 2005; Shallo et al., 2003; Sheeran et al., 1998; Shen et al., 2012; Shiotai et al., 2010; Shipee et al., 1988; Shoup et al., 1998; Silva et al., 2013; Smith and Goldman, 1972; Souza et al., 2017; Spies et al., 2002; Sulaiman et al., 2020; Tajima et al., 2013; Takahashi et al., 2004; Thanusha et al., 2018; Tian et al., 2016; Till et al., 1983; Tissot et al., 1992; Toklu et al., 2007, 2006; Torres et al., 2016; Toth et al., 2004; Tsohöp et al., 2007; Tsuda et al., 2008; Valvis et al., 2015; Vasheghani et al., 2008; Vinaik et al., 2019; Wallner et al., 1987; Wang et al., 2014, 2011, 2006a, 2002; Waymack et al., 1989, 1987; Weaver et al., 2020; Wu et al., 2019, 2018, 2010; Xie et al., 2002; Xiao et al., 2017, 2016, 2014, 2013; Xu et al., 2017, 2016; Yamada et al., 1988; Yang et al., 2013a, 2013b; Yao et al., 1997; Yoshida et al., 1995; Yurt and Pruitt, 1985; Yurt and Shires, 1987; Zakirova et al., 2021; Zhang et al., 2020, 2017, 2015; Zhao et al., 2009; Zhuravleva et al., 2020; and Zilan et al., 2003.

SUPPLEMENTARY MATERIAL

Supplementary material is linked to the online version of the paper at www.jidonline.org, and at https://doi.org/10.1016/j.jid.2022.05.004

REFERENCES

Abali AE, Cabioğlu T, Özdemir H, Haberal M. Interactive effects of acupuncture on pain and distress in major burns: an experiment with rats. Burns 2015;41:833–42.

Abbas OL, Özatik O, Gönen ZB, Öğüt S, Entok E, Özatik FY, et al. Prevention of burn wound progression by mesenchymal stem cell transplantation: deeper insights into underlying mechanisms. Ann Plast Surg 2018;81:75–24.

Abbas OL, Özatik O, Terzi YK, Özatik FY, Nar R, Turan G. The notch signaling system is involved in the regulation of reparative angiogenesis in the zone of stasis. J Burn Care Res 2017;38:e923–33.

Abd AF, Abd AH, Aldabagh MAH. Effects of topical phenytoin, chitosan, dextrin, and chitosan-dextrin combinations in experimentally-induced thermal injury in rabbits. Int J Pharm Res 2020;12:351–61.

Abdallah Haj Hussein I, Dali Balta N, Jurjus RA, Watfa W, Gerges A, Abd AF, Abd AH, Aldabagh MAH. Effects of topical phenytoin, chitosan, dextrin, and chitosan-dextrin combinations in experimentally-induced thermal injury in rabbits. Int J Pharm Res 2020;12:351–61.

Abdulrahman A, Amini-Nik S, Jeschke MG. Animal models in burn research. Cell Mol Life Sci 2014;71:3241–55.

Abio El-Noor MM, Elgazzar FM, Alshenawy HA. Role of inducible nitric oxide synthase and interleukin-6 expression in estimation of skin burn age and vitality. J Forensic Leg Med 2017;52:148–53.

Abedirahim SG, Dauplaise DJ, Kasten KR, Tschöp J, Dattilo J, Goetze MN, et al. Early infection during burn-induced inflammatory response results in increased mortality and p38-mediated neutrophil dysfunction. Am J Physiol Regul Integr Comp Physiol 2010;299:R918–25.

Akgun SG, Aydemir S, Özkân N, Yüksel M, Sardas S. Evaluation of the wound healing potential of Aloe vera-based extract of nerium oleander. North Clin Istamb 2017;4:205–12.

Akhrari S, Rezvan H, ZolHAVARIEM SH. Pro-expression of pro-inflammatory genes in lesions, spleens and blood neutrophils after burn injuries in mice treated with silver sulfadiazine. Iran J Basic Med Sci 2017;20:769–75.

Alexander M, Daniel T, Chaudry IH, Choudhry MA, Schwacha MG. T cells of the gammadelta T-cell receptor lineage play an important role in the postburn wound healing process. J Burn Care Res 2006;27:18–25.

Alexis A, Carrer DP, Droggitis DJ, Louis K, Pistikis A, Netea MG, et al. Immune responses in relation to the type and time of thermal injury: an experimental study. Injury. 2015;46:227–32.

Alouyessi A, El-Gogary RI, Ahmed RF, Ahmed Farid OA, Bakeer RM, Nasr M. The beneficial activity of curcumin and resveratrol loaded in nanoemulgel for healing of burn-induced wounds. J Drug Deliv Sci Technol 2021;62:102360.

Asko-Seljavaara S. Granulocyte kinetics in burned mice: inhibition of granulocyte recruitment by bone marrow granulocyte colony-stimulating factor and P-selectin. Regul Integr Comp Physiol 2010;299:R918–25.

Avsar U, Halici Z, Akpinar E, Yayla M, Avsar U, Harun U, et al. The effects of argan oil in second-degree burn wound healing in rats. Ostomy Wound Manage 2016;62:26–34.

Babcock GF, Fernandez L, Yadav E, Schwemberger S, Dugan A. The burn wound inflammatory response is influenced by midazolam. Inflammation 2012;35:259–70.

Bankova LG, Lezcano C, Pejler G, Stevens RL, Murphy GF, Austen KF, et al. Mouse mast cell proteases 4 and 5 mediate epidermal injury through disruption of tight junctions. J Immunol 2014;192:2812–20.

Barber BC, Maas DL, White DJ, Horton JW. Increasing percent burn is correlated with increasing inflammation in an adult rodent model. Shock 2008;30:388–93.

Baskaran H, Yarmush ML, Berthiaume F. Dynamics of tissue repair and inflammation: increased mortality and p38-mediated neutrophil dysfunction. Am J Physiol Regul Integr Comp Physiol 2010;299:R918–25.

Bayat M, Vasheghani MM, Razavie N, Jalili MR. Effects of low-level laser therapy on mast cell number and degranulation in third-degree burns of rats. J Rehabil Res Dev 2008;45:931–8.
expression and lymphoid organ apoptosis in severely burned rats. Burns 2016;42:1494–506.

Fang Q, Guo S, Zhou H, Han K, Wu P, Han C. Astaxanthin protects against early burn-wound progression in rats by attenuating oxidative stress-induced inflammation and mitochondria-related apoptosis. Sci Rep 2017;7:41440.

Farina JA, Rosique MJ, Rosique RG. Curbing infection in burn patients. Int J Inflamm 2013;2013:715645.

Fauercbach JA, McKibben J, Bienvenu OJ, Magyar-Russell G, Smith MT, Holavanahalli r, et al. Psychological distress after major burn injury. Psychosom Med 2007;69:473–82.

Faunce DE, Garner JL, Llanas JN, Patel PJ, Gregory MS, Duffner LA, et al. Effect of acute ethanol exposure on the dermal inflammatory response after burn injury. Alcohol Clin Exp Res 2003;27:1199–206.

Faunce DE, Llanas JN, Patel PJ, Gregory MS, Duffner LA, Kovacs EL. Neutrophil chemokine production in the skin following scald injury. Burns 1999;25:403–10.

Fazal N, Al-Ghoul WM, Choudhry MA, Sayeed MM. PAF receptor antagonist modulates neutrophil responses with thermal injury in vivo. Am J Physiol Cell Physiol 2001;281:C1310–7.

Fazal N, Sabeh F, Gamelli RL, Sayeed MM. Elevated expression of p47phox and p67phox proteins in neutrophils from burned rats. Shock 1997;8:256–60.

Fazal N, Shelp A, Siddiqui E, Ali A, Azim AC, Al-Ghoul WM. Differential effector responses by circulating/blood and tissue/peritoneal neutrophils following burn combined with Enterococcus faecalis infection. FEMS Immunol Med Microbiol 2012;64:191–204.

Fear VS, Poh WP, Valvis S, Wathman JC, Foley B, Wood FA, et al. Timing of excision after a non-severe burn has a significant impact on the subsequent immune response in a murine model. Burns 2012. Burns: Elsevier Ltd and International Society of Burns Injuries. 2016;42:815–24.

Fiório FB, Albertini R, Leal-Junior EC, de Carvalho Pde T. Effect of low-level laser therapy on types I and III collagen and inflammatory cells in rats with induced third-degree burns. Lasers Med Sci 2014;29:313–9.

Fried M, Ben-Hur N, Berliner S, Medalia A, Aronson M, Kidron D, et al. The state of leucocyte adhesiveness/aggregation (LAA) in the peripheral blood of burned mice: an early and sensitive inflammatory indicator and a marker of pulmonary leukostasis. Burns 1991;17:458–61.

Fujimi S, MacComnara MP, Maung AA, Zang Y, Mannick JA, Lederer JA, et al. Platelet function in mice increases mortality after thermal injury. Blood 2006;107:4399–406.

Fuss J, Voloboyeva A, Poliovoy V. Prognostic value of using neutrophil-lymphocyte ratio in patients with burn injury for the diagnosis of sepsis and bacteremia. Pol Przegl Chir 2019;90:13–6.

Gadd MA, Hansbrough JF. The effect of thermal injury on murine neutrophil oxidative metabolism. J Burn Care Rehabil 1989;10:125–30.

Gamelli RL, Hebert JC. Foster RS Jr. Effect of burn injury on granulocyte and macrophage production. J Trauma 1985;25:615–9.

Gao F, Chen R, Xi Y, Zhao Q, Gao H. Long noncoding RNA MALAT1 regulates sepsis in patients with burns by modulating miR-214 with TLR5. Mol Med Rep 2019;19:3756–66.

Gardner JC, Noel JG, Nikolaidis NM, Karsm R, Aronow BJ, Ogle CK, et al. GC-SSF drives a posttraumatic immune program that protects the host from infection. J Immunol 2014;192:2405–17.

Goertz O, Hirsch T, Buschhaus B, Daigeler A, Vogeljoph P, Langer S, et al. Intravital pathophysiologic comparison of frostbite and burn injury in a murine model. J Surg Res 2011;116:e395–401.

Goertz O, Lauer H, Hirsch T, Ring A, Lehnhardt M, Langer S, et al. Extra-corporeal shock waves improve angiogenesis after full thickness burn. Burns 2012;38:1010–8.

Goertz O, Over H, Lohe L, Von Der, Lauer H, Ring A, Daigeler A, et al. Prednisolone but not selenium and rtPA reduces edema and improves angiogenesis after burn in mice. Burns 2016;42:375–83.

Goertz O, Vogeljoph P, Jettckan T, Daigeler A, Steinau HU, Steinaesser L, et al. Burn model for in vivo investigations of microcirculatory changes. EPLasty 2009;9:e13.

Gómez BI, Harrington BK, Chao T, Chung KK, Dubick MA, Boggs NA, et al. Impact of oral resuscitation on circulating and splenic leukocytes after burns. Burns 2020;46:567–78.

Gómez BI, McIntyre MK, Gurney JM, Chung KK, Cancio LC, Dubick MA, et al. Enteral resuscitation with oral rehydration solution to reduce acute kidney injury in burn victims: evidence from a porcine model. PLoS One 2018;13:e0195615.

Goto M, Sanomte V, Ravindranath T, Sayeed MM, Gamelli RL. Burn injury exacerbates hemodynamic and metabolic responses in rats with poly-microbial sepsis. J Burn Care Res 2006;27:50–9.

Groger A, Piatkowski A, Grieb G, Wolter TP, Fuchs PC, Pallua N. The mobilisation of mononuclear cells and endothelial progenitor cells after burn in a porcine model. Burns 2010;36:545–51.

Gruber DF, D’Alessandro MM. Alteration of rat polymorphonuclear leukocyte function after thermal injury. J Burn Care Rehabil 1989;10:394–401.

Gruber DF, Farsee AM. Bone marrow myelopoiesis in rats after 10%, 20%, or 30% thermal injury. J Burn Care Rehabil 1989;10:410–7.

Guillam-Prats R. The role of MSC in wound healing, scarring and regeneration. Cells 2021;10:729–44.

Guo CJ, Gu CF. Changes in cellular immunity and nutritional status in mice after thermal injury. Burns Incl Therm Inj 1988;14:429–34.

Guo SX, Jin YY, Fang Q, You CG, Wang XG, Hu XL, et al. Beneficial effects of hydrogen-rich saline on early burn-wound progression in rats. PLoS One 2015;10:e0124897.

Hansbrough JF, Field TO Jr, Gadd MA, Soderberg C. Immune response modulation after burn injury: T cells and antibodies. J Burn Care Rehabil 1987;8:309–12.

Hansbrough JF, Gadd MA. Temporal analysis of murine lymphocyte sub-populations by monoclonal antibodies and dual-color flow cytometry after burn and nonburn injury. Surgery 1989;106:69–80.

Hansbrough JF, Wikström T, Braide M, Tenenhaus M, Rennekampff OH, Kiessig V, et al. Neutrophil activation and tissue neutrophil sequestration in a rat model of thermal injury. J Surg Res 1996a;61:17–22.

Hansbrough J, Tenenhaus M, Wikström T, Braide M, Rennekampff OH, Kiessig V, et al. Effects of recombinant bactericidal/permeability-increasing protein (rBPI23) on neutrophil activity in burned rats. J Trauma 1996c;40:886–92; discussion 892–3.

Hansbrough JF, Wikström T, Braide M, Tenenhaus M, Rennekampff OH, Kiessig V, et al. Effects of E-selectin and P-selectin blockade on neutrophil sequestration in tissues and neutrophil oxidative burst in burned rats. Crit Care Med 1996b;24:1366–72.

Hao D, Nourbaksh M. Recent advances in experimental burn models. Biology (Basel) 2021;10:526–40.

He LK, Liu LH, Hahn E, Gamelli RL. The expression of cylooxygenase and the production of prostaglandin E2 in neutrophils after burn injury and infection. J Burn Care Rehabil 2001;22:58–64.

Heideman M, Monaghan SF, Thakker RK, Machan JT, Cioffi WG, Ayala A. Failure to normalize lymphopenia following trauma is associated with increased mortality, independent of the leukocytosis pattern. Crit Care 2012;16:R12.

Heideman M. The effect of thermal injury on hemodynamic, respiratory, and hematologic variables in relation to complement activation. J Trauma 1979;19:239–47.

Heinrich SA, Messingham KA, Gregory MS, Comalonti A, Ferreira AM, Dipietro LA, et al. Elevated monocyte chemoattractant protein-1 levels following thermal injury precede monocyte recruitment to the wound site and are controlled, in part, by tumour necrosis factor-alpha. Wound Repair Regen 2003;11:110–9.

Hemmila MR, Mattar A, Taddonnio MA, Arbabi S, Hamouda T, Ward PA, et al. Topical nanaelusion therapy reduces bacterial wound infection and inflammation after burn injury. Surgery 2016;148:499–509.

Hensel JA, Khattar V, Ashton R, Ponnazhagan S. Characterization of immune cell subtypes in three commonly used mouse strains reveals gender and strain-specific variations. Lab Invest 2019;99:103–106.

Hennekamp JF, Harenberg PS, Lehnhardt M, Germann G, Walther A, Kremer T. Microvascular effects of burn plasma transfer and therapeutic options in a rat model. Handchir Mikrochir Plast Chir 2012;44:209–19.

Higashimori H, Carlsen RC, Whetzel TP. Early excision of a full-thickness burn prevents peripheral nerve conduction deficits in mice. Plast Reconstr Surg 2006;117:152–64.
Hooijmans CR, IntHout J, Ritkses-Hoitinga M, Rovers MM. Meta-analyses of animal studies: an introduction of a valuable instrument to further improve healthcare. ILAR J 2014a;55:418–26.

Hooijmans CR, Rovers MM, De Vries RBM, Leenaars M, Ritkses-Hoitinga M, Langendam MW, SYRCLE’s risk of bias tool for animal studies. BMC Med Res Methodol 2014b;14:191.

Howell K, Poslusny J, He JK, Szilagy A, Halerz J, Gamelli RL, et al. High MaBP expression following burn augments monocyte commitment and inhibits DC differentiation in hemopoietic progenitors. J Leukoc Biol 2012;91:69–81.

Hu L, Wang B, Hong Y, Xu L, Jiang Y, Wang C, et al. Admission neutrophil-lymphocyte ratio (NLR) predicts survival in patients with extensive burns. Burns 2021;47:594–600.

Hu Z, Sayeed MM. Suppression of mitochondria-dependent neutrophil apoptosis with thermal injury. Am J Physiol Cell Physiol 2004;286:C170–8.

Hu Z, Sayeed MM. Activation of PI3-kinase/PKB contributes to delay in neutrophil apoptosis after thermal injury. Am J Physiol Cell Physiol 2005;288:C1171–8.

Hummel RP, MacMillan BG, Altemeier WA, Hill EO. Immune response of germ-free and monocontaminated burned animals. J Trauma 1966;6:368–90.

Ibrahim MM, Bond J, Bergeron A, Miller KJ, Ehanire T, Quiles C, et al. A novel immune competent murine hypertrophic scar contracture model: a tool to elucidate disease mechanism and develop new therapies. Wound Repair Regen 2014;22:755–64.

Ikuuchi S, Aikawa N, Okuda M, Ishibiki K, Abe O. Changes in cell-mediated immunity and tumour growth after thermal injury. Burns 1981;7:400–8.

Inoue Y, Liu YM, Otawara M, Chico Calero I, Stephanie Nam A, Yu YM, et al. Pharmacological modulation of wound healing in experimental burns. Burns 2007;33:892–907.

Jairus A, Atiyeh BS, Abdallah IM, Jairus RA, Hayek SN, Jaoude MA, et al. Pharmacological modulation of wound healing in experimental burns. Burns 2007;33:892–907.

Jairus A, Hourani R, Daouk H, Youssef L, Bou-Khalil F, Haidar H, et al. Effect of denervation on burn wound healing. Ann Burns Fire Disasters 2018;31:74–91.

Kabasakal L, Sener G, Cetinel S, Contuk G, Gedik N, Yesen BC. Burn-induced oxidative injury of the gut is ameliorated by the leukotriene receptor blocker montelukast. Prostaglandins Leukot Essent Fatty Acids 2005;72:431–40.

Kataoka T, Miyazaki M, Kobayashi M, Herndon DN, Suzuki F. CCL17 and IL-10 as effectors that enable alternatively activated macrophages to inhibit the generation of classically activated macrophages. J Immunol 2004;172:1407–13.

Khalid S, Khan A, Shal B, Ali H, Kim YS, Khan S. Suppression of TRPV1 and P2Y nociceptors by honokiol isolated from Magnolia officinalis in 3rd degree burn mice by inhibiting inflammatory mediators. Biomed Pharmacother 2019;114:108777.

Kim DJ, Mustoe T, Clark RA. Cutaneous wound healing in aging small mammals: a systematic review. Wound Repair Regen 2015;23:318–39.

Kimura Y, Sumiyoshi M, Samukawa K, Satake N, Sakanaoka M. Facilitating action of asiaticoside at low doses on burn wound repair and its mechanism. Eur J Pharmacol 2008;584:415–23.

Korkmaz HI, Ulrich MMW, Van Wieringen WN, Döğan H, Vilig M, Emmens RW, et al. C1 inhibitor administration reduces local inflammation and capillary leakage, without affecting long-term wound healing parameters, in a pig burn wound model. Antinflamm Antiallergy Agents Med Chem 2020;20:150–60.

Korkmaz HI, Ulrich MMWW, Van Wieringen WN, Vilig M, Emmens RW, Meyer KW, et al. The local and systemic inflammatory response in a pig burn wound model with a pivotal role for complement. J Burn Care Res 2017;38:e796–816.

Kotwal GJ, Chien S. Macrophage differentiation in normal and accelerated wound healing. Results Prob Cell Differ 2017;62:353–64.

Kurilara T, Jones CN, Yu YM, Fischman AJ, Watada S, Tompkins RG, et al. RESOLV D2 restores neutrophil directionalility and improves survival after burns. FASEB J 2013;27:2270–81.

Kuroiwa K, Trocki O, Alexander JW, Tschervenkov I, Inoue S, Nelson JL. Effect of vitamin A in enteral formulae for burned guinea-pigs. Burns 1990;16:265–72.

Lagner M, Lingitz M, Copic D, Direder M, Klás K, Bormann D, et al. Severity of thermal burn injury is associated with systemic neutrophil activation. Sci Rep 2022;12:1654.

Langer S, Goertz O, Steinstraesser L, Kuhnen C, Steinau HU, Homann HH. New model for in vivo investigation after microvascular breakdown in burns: use of intravital fluorescent microscopy. Burns 2005;31:168–74.

Lateef Z, Stuart G, Jones N, Mercer A, Fleming S, Wise L. The cutaneous inflammatory response to thermal burn injury in a murine model. Int J Mol Sci 2019;20:538.

Lavaud P, Mathieu J, Bienvenu P, Braquet M, Gerassimo P, Kergonou JF, et al. Mechanism for immune suppression and anemia of critical illness. J Leukoc Biol 2005;78:921–30.

Lee JA, Jeong HJ, Park HJ, Jeon S, Hong SU. Acupuncture accelerates wound healing in burn-injured mice. Burns 2011;37:117–25.

Leenaars M, Hooijmans CR, van Veggel N, ter Riet G, Leeflang M, Hooft L, et al. A step-by-step guide to systematically identify all relevant animal studies. Lab Anim 2012;46:24–31.

Leliefeld P, Wessels CM, Leenen LPH, Koenderman L, Pillay J. The role of neutrophils in immune dysfunction during severe inflammation. Crit Care. Crit Care 2016;20:1–9.

Li X, Liu L, Yang J, Yu Y, Chai J, Wang L, et al. Exosome derived from human umbilical cord mesenchymal stem cell mediates MiR-181c attenuating burn-induced excessive inflammation. EBiomedicine 2016;8:72–82.
Pallua N, Low JFA, Von Heimburg D. Pathogenic role of interleukin-6 in the development of sepsis. Part II: Significance of anti-interleukin-6 and anti-soluble interleukin-6 receptor-2 antibodies in a standardized murine contact burn model. Crit Care Med 2003;31:1495–501.

Pallua N, von Heimburg D. Pathogenic role of interleukin-6 in the development of sepsis. Part I: Study in a standardized contact burn murine model. Crit Care Med 2003;31:1490–4.

Pantalone D, Bergamini C, Martellucci J, Alemanno G, Brusco A, Maltinti G, et al. The role of damps in burns and hemorrhagic shock immune response: pathophysiology and clinical issues. Rev Int J Mol Sci 2021;22:7020–32.

Pejinović N, Lilić D, Zunic G, Colić M, Kataranovski M, Đujić A. Aberrant levels of cytokines within the healing wound after burn injury. Arch Surg 1995;130:999–1006.

Pentruf ME, McGlone JJ, Griswold JA. Modulation of immune response in thermal injury by essential fatty acid-deficient diet. J Burn Care Rehabil 1996;17:463–70. Discussion 464.

Perez RV, Waymac JF, Barcelli U, Alexander JW. Neutrophil dysfunction and decreased leukotriene production in burned, septic rats. Curr Surg 1987;44:24–7.

Peter FW, Schuschte DA, Barker JH, Fleischh-Peter B, Pierangeli S, Vogt PM, et al. The effect of severe burn injury on proinflammatory cytokines and leukocyte behavior: its modulation with granulocyte colony-stimulating factor. Burns 1999;25:477–86.

Piccolo MT, Wang Y, Verbrugge S, Warner RL, Sannomiya P, Piccolo NS, et al. Role of chemotactic factors in neutrophil activation after thermal injury in rats. Inflammation 1999;23:371–85.

Pinté P, Brown B, Hould JR, Brain SD. Lack of evidence for tachykinin NK1 receptor-mediated neutrophil accumulation in the rat cutaneous microvasculature by thermal injury. Eur J Pharmacol 1999;369:91–7.

Preet S, Kaur J, Raza K. Nisin loaded carbopol gel against Pseudomonas aeruginosa infected third-degree burns: A therapeutic intervention. Wound Repair Regen 2021;29:711–24.

Qian LW, Evani SJ, Chen P, Brandenburg KS, Weaver AJ, Fourcaudot AB, et al. Cerium nitrate treatment provides eschar stabilization through reduction in bio burden, DAMPs, and inflammatory cytokines in a rat scald burn model. J Burn Care Res 2020;41:576–84.

Rani M, Nicholson SE, Zhang Q, Schwagga MG. Damage-associated molecular patterns (DAMPS) released after burn are associated with inflammation and monocyte activation. Burns 2017;43:297–303.

Rani M, Schwagga MG. The composition of T-cell subsets are altered in the burn wound early after injury. PLoS One 2012;12:e017901S.

Rani M, Zhang Q, Scherier MR, Cap AP, Schwagga MG. Activated skin γδ T-cells regulate T-cell infiltration of the wound site after burn. Innate Immun 2015;21:140–50.

Rani M, Zhang Q, Schwagga MG. Gamma Delta T cells regulate wound myeloid cell activity after burn. Shock 2014;42:133–41.

Rawlingson A, Gerard NP, Brain SD. Interactive contribution of NK(1) and kinin receptors to the acute inflammatory oedema observed in response to noxious heat stimulation: studies in NK(1) receptor knockout mice. Br J Pharmacol 2001;134:1805–13.

Rawlingson A, Shendi K, Greenacre SA, England TG, Jenner AM, Poston RN, et al. Functional significance of inducible nitric oxide synthase induction and protein nitration in the thermally injured cutaneous microvasculature. Am J Pathol 2003;162:1373–80.

Rennekampf OH, Hansbrough JF, Tenenhous M, Kiessig V, Yi ES. Effects of early and delayed wound excision on pulmonary leukosequestration and neutrophil respiratory burst activity in burned mice. Surgery 1995;118:884–92.

Rodrigues M, Kosaric N, Bonham CA, Gurtner GC. Wound healing: a cellular perspective. Physiol Rev 2019;99:665–706.

Samonte VA, Goto M, Ravindranath TM, Fazal N, Holloway VM, Goyal A, et al. Exacerbation of intestinal permeability in rats after a two-hit injury: burn and Enterococcus faecalis infection. Crit Care Med 2004;32:2267–73.

Santangelo S, Gamelli RL, Shankar R. Myeloid commitment shifts toward monocytopenia after thermal injury and sepsis. Ann Surg 2001;233:97–106.

Santos FX, Arroyo C, García I, Blasco R, Obispo JM, Hamann C, et al. Role of mast cells in the pathogenesis of postburn inflammatory response: reactive oxygen species as mast cell stimulators. Burns 2000;26:145–7.

Sartorelli KH, Silver GM, Gamelli RL. The effect of granulocyte colony-stimulating factor (G-CSF) upon burn-induced defective neutrophil chemotaxis. J Trauma 1991;31:523–9. Discussion 529–30.

Schindel D, Maze M, Liu Q, Williams D, Grosold J, Interleukin-11 improves survival and reduces bacterial translocation and bone marrow suppression in burned mice. J Pediatr Surg 1997;32:312–5.

Schmidt K, Bruchelt G, Kistler D, Koslovsky L. Phagocytic activity of granulocytes and alveolar macrophages after burn injury measured by chemiluminescence. Burns Incl Therm Inj 1983;10:79–85.

Schwacha MG, Daniel T. Up-regulation of cell surface toll-like receptors on circulating gammadelta T-cells following burn injury. Cytokine 2008;44:328–34.

Schwacha MG, Holland LT, Chaudhry H, Mesińska JL. Genetic variability in the immune-inflammatory response after major burn injury. Shock 2005;23:123–8.

Schwacha MG, Scroggins SR, Montgomery RK, Nicholson SE, Cap AP. Burn injury is associated with an infiltration of the wound site with myeloid-derived suppressor cells. Cell Immunol 2019;338:21–6.

Schwacha MG, Somers SD. Thermal injury induces macrophage hyperactivity through pertussis toxin-sensitive and-insensitive pathways. Shock 1998;9:249–55.

Schwacha MG, Thobe BM, Daniel T, Hubbard WI. Impact of thermal injury on wound infiltration and the dermal inflammatory response. J Surg Res 2010;158:112–20.

Schwacha MG, Zhang Q, Rani M, Craig T, Oppeltz RF. Burn enhances toll-like receptor induced responses by circulating leukocytes. Int J Clin Exp Med 2012;5:136–44.

Sehirli O, Sener E, Sener G, Erzik C, Yegen BC. Ghrelin improves burn-induced multiple organ injury by depressing neutrophil infiltration and the release of pro-inflammatory cytokines. Peptides 2008;29:1231–40.

Sellers RS, Cliford CB, Treuting PM, Brayton C. Immunological variation between inbred laboratory mouse strains: points to consider in phenotyping genetically immunomodified mice. Vet Pathol 2012;49:32–43.

Sernochkin SV, Bekman EM, Baranov OA, Arzon YV. Regulatory effects of riboterm on functional activity of neutrophils and wound healing during experimental burn trauma. Bull Exp Biol Med 2001;131:257–9.

Sen S, Hsei L, Tran N, Romanowski K, Palmieri T, Greenhalgh D, et al. Early clinical complete blood count changes in severe burn injuries. Burns 2019;45:97–102.

Sener G, Kabasalak L, Cetinel S, Contuk G, Gedik N, Yegen BC. Leukotriene receptor blocker montelukast protects against burn-induced oxidative injury of the skin and remote organs. Burns 2005;31:587–96.

Seok J, Warren HS, Cuenca AG, Mindrinos MN, Baker HV, Xu W, et al. Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc Natl Acad Sci USA 2013;110:3507–12.

Shallo H, Plackett TP, Heinrich SA, Kovacs EJ. Monocyte chemotractant protein-1 (MCP-1) and macrophage infiltration into the skin after burn injury in aged mice. Burns 2003;29:641–7.

Sheeran PW, Maass DL, White DJ, Turbeville TD, Giroir BP, Horton JW. Aspiration pneumonia-induced sepsis increases cardiac dysfunction after burn trauma. J Surg Res 1998;76:192–9.

Shen H, Yao P, Lee E, Greenhalgh D, Soulkia AM, Imperon-gamma inhibits species post scald burn injury. Wound Repair Regen 2012;20:580–91.

Shiota N, Nishikori Y, Kakizoe E, Shimoura K, Niibayashi T, Shimbori C, et al. Functional significance of inducible nitric oxide synthase induction and protein nitration in the thermally injured cutaneous microvasculature. Am J Pathol 2003;162:1373–80.

Siota N, Nishikori Y, Kakizoe E, Shimoura K, Niibayashi T, Shimbori C, et al. Pathophysiological role of skin mast cells in wound healing after scald injury: study with mast cell-deficient W/W(v) mice. Int Arch Allergy Immunol 2010;151:80–8.

Shippere RL, Mason AD, Burleson DG. The effect of burn injury and zinc nutriture on fecal endogenous zinc, tissue zinc distribution, and T-lymphocyte subset distribution using a murine model. Proc Soc Exp Biol Med 1968;189:31–8.
Shoup M, Weisenberger JM, Wang JL, Pyle JM, Gamelli RL, Shankar R. Mechanisms of neutropenia involving myeloid maturation arrest in burn sepsis. Ann Surg 1990;220:112–22.

Silva MA, Trevisan G, Klafe JZ, Rossato MF, Walker CI, Oliveira SM, et al. Antinociceptive and anti-inflammatory effects of Aloe Saponaria Haw on thermal injury in rats. J Ethnopharmacol 2013;146:393–401.

Simon AK, Hollander GA, McMichael A. Evolution of the immune system in humans from infancy to old age. Proc Bio Sci 2015;282:20143085.

Smith CW, Goldman AS. Selective effects of thermal injury on mouse peritoneal macrophages. Infect Immun 1972;5:938–41.

Souza HR, de Azevedo LR, Possebon L, Costa SS, Iyomasa-Pilon MM, Oliani SM, et al. Heterogeneity of mast cells and expression of annexin A1 protein in a second degree burn model with silver sulfadiazine treatment. PLoS One 2017;12:e0173417.

Spies M, Dasu MR, Svranic N, Nesic O, Barrow RE, Perez-Polo JR, et al. Gene expression analysis in burn wounds of rats. Am J Physiol Regul Integr Comp Physiol 2002;283:R918–30.

Sulaiman A, Alyileli SR, Raghavankutty M, Kurup GM. Sulfated polysaccharide ascorphyllan from Padina tetrastromatica enhances healing of burn wounds by ameliorating inflammatory responses and oxidative damage. Mol Biol Rep 2020;47:8701–10.

Sun YX, Wu XS, Gao Z, Wang F, Liu S, Chen XL. Effect of 200 mEq/L Na+ hypertonic saline resuscitation on systemic inflammatory response and oxidative stress in severely burned rats. J Surg Res 2013;185:477–84.

Tajima G, Delisle AJ, Hoang K, O’Leary FM, Ikeda K, Hanschen M, et al. Immune system phenotyping of radiation and radiation combined injury in outbred rats. Radiat Res 2013;179:101–12.

Takahashi H, Tsuda Y, Kobayashi M, Herndon DN, Suzuki F. Increased norepinephrine production associated with burn injuries results in CCL2 production and type 2 T cell generation. Burns 2004;30:317–21.

Tao L, Reese TA. Making mouse models that reflect human immune responses. Trends Immunol 2017;38:181–93.

Thakkar RK, Diltz Z, Drews JD, Wheeler KK, Shi J, Devine R, et al. Abnormal lymphocyte response after pediatric thermal injury is associated with adverse outcomes. J Surg Res 2018;228:211–7.

Thanusha AV, Dinda AK, Koul V. Evaluation of Nano hydrogel composite based on gelatin/HAC/S fusing with Asiatic acid/ZnO and CuO nanoparticles for second degree burns. Mater Biol Appl 2018;89:378–86.

Italia P, Boraschi D. From monocytes to M1/M2 macrophages: phenotypical vs. functional differentiation. Front Immunol 2014;5:514.

Tian M, Qing C, Niu Y, Deng J, Cao X, Song F, et al. The relationship between inflammation and impaired wound healing in a diabetic rat burn model. J Burn Care Res 2016;37:e115.

Till GO, Beauchamp C, Menapace D, Tourtellote W Jr, Kunkel R, Johnson KJ, et al. Oxygen radical dependent lung damage following thermal injury of rat skin. J Trauma 1983;23:269–77.

Tissot M, Roch-Arveiller M, Fontagne J, Giroud JP. Effects of niflumic acid on the antidepressant action of desipramine in a rat model. J Pharm Pharmacol 1989;41:542–5.

Tskhop J, Martignoni A, Reid MD, Adediran SG, Gardner J, Noel GJ, et al. Differential immunological phenotypes are exhibited after scald and flame burns. Shock 2009;31:157–63.
Xiao Y, Lu W, Li X, Zhao P, Yao Y, Wang X, et al. An oligodeoxynucleotide with AAAG repeats significantly attenuates burn-induced systemic inflammatory responses via inhibiting interferon regulatory factor 5 pathway. Mol Med 2017;23:166–67.

Xu F, Fu X, Xiao N, Guo Y, Pei Q, Peng Y, et al. Involvements of γδT lymphocytes in acute and chronic skin wound repair. Inflammation 2017;40:1416–27.

Xu YC, Luo CQ, Li X. Systemic inflammatory response syndrome following burns is mediated by brain natriuretic peptide/natriuretic peptide A receptor-induced shock factor 1 signaling pathway. Clin Exp Pharmacol Physiol 2016;43:921–9.

Yamada Y, Jidoi J, Saito H, Tomioka H. Changes in the function of macrophages after thermal injury and effect of Lactobacillus casei on the function of macrophages. Kansenshogaku Zasshi 1988;62:557–63 [in Japanese].

Yang H, Hu C, Yao Y, Chai J, Li M, Yongqiang F, et al. Effects of ulinastatin on expression pattern of high mobility group box-1 protein and CD4+CD25+ regulatory T cells in rats with scald injury. Cent Eur J Immunol 2013b;38:1–7.

Yang X, Bai H, Cai W, Liu J, Wang Y, Xu Y, et al. Inhibition of Na+/H+ exchanger 1 by cariporide alleviates burn-induced multiple organ injury. J Surg Res 2013a;185:797–804.

Yang Y, Liu L, Guo Z, Li L, Shao Y, Song M, et al. Investigation and assessment of neutrophil dysfunction early after severe burn injury. Burns 2021;47:1851–62.

Yoshida M, Wakabayashi G, Otani Y, Oshima A, Shimazu M, Kubota T, et al. Active oxygen species generation by circulating leukocytes and gastric submucosal microcirculatory disturbances in the early period after thermal injury. J Clin Gastroenterol 1995;21(Suppl 1):S87–92.

Yao YM, Lu LR, Yu Y, Liang HP, Chen JS, Shi ZG, et al. Influence of selective decontamination of the digestive tract on cell-mediated immune function and bacteria/endotoxin translocation in thermally injured rats. J Trauma 1997;42:1073–9.

Yurt RW, Pruitt BA Jr. Decreased wound neutrophils and indiscriminate margination in the pathogenesis of wound infection. Surgery 1983;90:191–8.

Zhang D, Wang B, Sun Y, Wang C, Mukherjee S, Yang C, et al. Injectable enzyme-based hydrogel matrix with precisely oxidative stress defense for promoting dermal repair of burn wound. Macromol Biosci 2020;20:e2000036.

Zhang F, Qiu XC, Wang JJ, Hong XD, Wang GY, Xia ZF. Burn-related dysregulation of inflammation and immunity in experimental and clinical studies. J Burn Care Res 2017;38:e892–9.

Zhao Z, Li Q, Hu J, Li Z, Liu J, Liu A, et al. Lactosyl derivatives function in a rat model of severe burn shock by acting as antagonists against CD11b of integrin on leukocytes. Glycoconj J 2009;26:173–88.

Zilani S, Cetinkale O, Kiran B, Unluerci Y, Olgac G, Deniz G, et al. The role of supplementation or inhibition of nitric oxide production in burn injury to reduce ischemic damage. Ulus Travma Acil Cerrahi Derg 2003;9:169–75.

Zomer HD, Trentin AG. Skin wound healing in humans and mice: challenges in translational research. J Dermatol. Sci 2018;90:3–12.

This work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
SUPPLEMENTARY MATERIALS AND METHODS

Study selection
Studies were selected independently by PPGM and BKHLB using Rayyan software (Rayyan Systems, Cambridge, MA) (Ouzzani et al., 2016)) in three phases: title screening, abstract screening, and full-text screening. In the title screening, clearly irrelevant articles (not about burn injury) were excluded. During the abstract screening, studies involving animal skin burns that contained primary data were selected, and reviews, posters, and conference abstracts were excluded. In the full-text screening, we selected articles involving animal thermal burns with outcome measures related to immune cells and without interventional treatments that interfere with the function of the immune system, such as infection or anti-inflammatory medication. In addition, the presence of an appropriate control group (either healthy animals, baseline measures, or sham controls) was verified. Discrepancies between the two reviewers were carefully checked, and in case of doubt, references were included. Inaccessible articles were noted (Supplementary File S2) and excluded from the review.

Study quality and risk of bias assessment
The reporting of any form of randomization or blinding and the presence of a conflict-of-interest statement was scored for all included studies by PPGM and BKHLB who both assessed half of the studies and checked at least 10% of those of the other reviewer. Full risk of bias (RoB) assessment was conducted using SYRCLE's tool (Hooijmans et al., 2014) on 25 randomly selected studies (random number generator in Excel, Microsoft, Redmond, WA). We evaluated the reporting of the following baseline characteristics: animal sex, age, or weight (reporting of a range <10% was considered as low RoB). To check the completeness of outcome reporting, we evaluated the number of animals in the method and results section for each experiment and outcome. The RoB was evaluated independently by PPGM and BKHLB. In the case of discrepancies, a third reviewer was consulted. This assessment provided an indication of the RoB of all included studies. Because only items 7, 8, and 9 from the RoB tool apply to baseline controlled studies, we evaluated those studies separately.

Outcome data extraction
All quantitative outcome measures related to immune cells, such as immune cell counts and cell function, were collected in a database, which is available on request. PPGM and BKHLB independently extracted the outcome measures (mean outcome and SD, unit of measurement, number of animals), each from half of the included studies, and checked at least 10% of those of the other reviewer. The following outcome measures in either blood or wound tissue were included: immune cell counts, immune cell migration assays, antibacterial activity, production of inflammatory mediators or ROS by specific cell types, and apoptosis. Data from graphs were extracted using the digital ruler feature in ImageJ (version 1.53j, National Institutes of Health, Bethesda, MD) (Schneider et al., 2012). In case of missing data, such as the number of animals or SD, we contacted corresponding authors by email and ResearchGate (including a reminder after 2 weeks) (response rate = 17%). Data presented as SEM were transformed to SD with the following formula: SD = SEM × √number of animals.

Subgroup analysis
Predefined subgroup analyses were performed on time after burn (divided into categories 0–1, 2–4, 5–9, 10–14, 15–21, 22–28, or >29 days), burned total body surface area (<5, 5–25, or >25%), wound depth (superficial, partial thickness, deep dermal, or full-thickness), burn agent (flame, water, or metal), animal species (mouse, rat, or pig), sex, and age (young or adult). In the case of repeated measures within a time interval, the maximum effect size per time interval was chosen. When required, total body surface area was calculated using the reported area of the burn, weight (W) of the animals, and Meeh-Rubner's formula (total body surface area = \(\frac{\text{area of burn}}{\text{W}^{0.73}} \)) (Gouma et al., 2012). The following K values were used: 9 (mouse), 9.83 (rat), 12 (rabbit), 10.5 (guinea pig), 10.1 (dog), and 10 (pig). When total body surface area was missing in the articles, it was estimated on the basis of the reported age and weight information available at Animal Resources Centre (https://www.arc.wa.gov.au/), The Jackson Laboratory (https://www.jax.org/), and Roysfarm (https://www.roysfarm.com/). Using the weight of the animal, the animal's age was estimated when this was not reported. Animal age subgroups, young or adult, were based on the social maturity of the animals: adults were aged >3 months (mouse), >6 months (rat), >6 months (pig), >12 weeks (hamster), >12 months (rabbit), >6 months (Guinea pig), and >1 year (dog). For wound depth, the following categories were used: superficial (first degree), partial thickness (second degree), deep dermal (deep second degree), and full thickness (third degree, fourth degree, severe burn injury). P-values were based on the 95% confidence interval of the difference between subgroups. For both longitudinal and subgroup analyses, Bonferroni correction was applied, that is, the P-values were multiplied by the number of comparisons within each subgroup analysis. Differences between baseline controlled studies and studies that used a separate control group were assessed.

Baseline-controlled studies that were used for RoB assessment
The baseline-controlled studies used for RoB assessment include the following: Abdallah Hajj Hussein et al., 2012; Abo El-Noor et al., 2017; Begieneman et al., 2012; Bohannon et al., 2008; Bohr et al., 2013a, Bohr et al., 2013b; Chakraborty et al., 2018; Chao et al., 2020; D’Alesandro and Gruber, 1990; Fuchs et al., 2006; Goertz et al., 2016, 2012, 2011, 2009; Gómez et al., 2020, 2018; Groger et al., 2010; Heideman, 1979; Hummel et al., 1966; Inoue et al., 2018; Iwashita et al., 1999; Jabeen et al., 2019; Jurjus et al., 2011, 2009; Go´ mez et al., 2020, 2018; Groger et al., 2010; Heideman, 1979; Hummel et al., 1966; Inoue et al., 2018; Iwashita et al., 1999; Jabeen et al., 2019; Jurjus et al., 2011, 2009; Go´ mez et al., 2020, 2018; Groger et al., 2010; Heideman, 1979; Hummel et al., 1966; Inoue et al., 2018; Iwashita et al., 1999; Jabeen et al., 2019; Jurjus et al., 2007; Kimura et al., 2008; Langer et al., 2005; Lavaud et al., 1988; Mikhail'chik et al., 2004; Nassar et al., 2012; Nwariaku et al., 1995; Ny et al., 2020; Piccolo et al., 1999; Rawlingson et al., 2003, 2001; Santos et al., 2000; Schwacha et al., 2019; Tian et al., 2016; Till et al., 1983; Yao et al., 1997; and Zhuravleva et al., 2020.
Studies with uninjured controls that were used for RoB assessment

Studies with uninjured controls that were used for RoB assessment included the following: Abbas et al., 2018, 2017; Asko Seljavaara, 1974; Dong et al., 1993a; Duque et al., 1985; Eurenius and Brouse, 1973; Fazal et al., 2012, 1997; Gardner et al., 2014; Hansbrough et al., 1987; Hernekamp et al., 2012; Madihally et al., 2001; Maung et al., 2008; Miles et al., 1999; Nishikori et al., 1998; Noel et al., 2010; Pallua et al., 2003; Schindel et al., 1997; Shallo et al., 2003; Sheeran et al., 1998; Souza et al., 2017; Wang et al., 2002; Xiao et al., 2016, 2013; and Yang et al., 2013a.

SUPPLEMENTARY FILE S1: SEARCH STRATEGY, SEARCH RESULTS, AND INACCESSIBLE REFERENCES

Search strategy PubMed (Medline)

Search component 1. This includes burns[MeSH] OR burns [tiab] OR burn[tiab] OR burnt[tiab] OR burned[tiab] OR scald[tiab] OR scalds[tiab] OR thermal injur*[tiab] OR thermal wound*[tiab] OR heat injur*[tiab] OR heat wound*[tiab]

Search component 2. This includes cytokines[MeSH] OR Inflammation mediators[MeSH] OR Immunoproteins[MeSH] OR Complement System Proteins[MeSH] OR EGF Family of Proteins[MeSH] OR Angiogenic Proteins[MeSH] OR Endothelial Growth Factors[MeSH] OR Endothelins[MeSH] OR Kinins[MeSH] OR Platelet-Derived Growth Factor[MeSH] OR TGF-beta Superfamily Proteins[MeSH] OR Transforming Growth Factors[MeSH] OR germinal center*[tiab] OR immune*[tiab] OR immunological*[tiab] OR immunologic*[tiab] OR inflammatory*[tiab] OR inflammation*[tiab] OR mediators*[tiab] OR lymph*[tiab] OR lymphatic*[tiab] OR lymphoid*[tiab] OR accessory cell*[tiab] OR B cell*[tiab] OR Bcell*[tiab] OR B lymphocyte*[tiab] OR plasma cell*[tiab] OR basophil*[tiab] OR blood cell*[tiab] OR bone marrow*[tiab] OR cardiomyocyte*[tiab] OR dendritic cell*[tiab] OR eosinophil*[tiab] OR fibroblast*[tiab] OR myofibroblast*[tiab] OR granulocyte*[tiab] OR langerhans cell*[tiab] OR leukocyte*[tiab] OR lymphocyte*[tiab] OR megakaryocyte*[tiab] OR macrophag*[tiab] OR foam cell*[tiab] OR histiocyt*[tiab] OR mast cell*[tiab] OR monocyte*[tiab] OR neutrophil*[tiab] OR natural killer*[tiab] OR phagocyt*[tiab] OR cytaphagocyt*[tiab] OR plasmablast*[tiab] OR stem cell*[tiab] OR T cell*[tiab] OR Tcell*[tiab] OR T cell* OR Tcell*[tiab] OR T lymphocyte*[tiab] OR Thelp*[tiab] OR activin*[tiab] OR angiotensin*[tiab] OR anaphylatoxin*[tiab] OR arachidon*[tiab] OR autotoxin*[tiab] OR chemo*kin*[tiab] OR cluster of differentiation*[tiab] OR cytokine*[tiab] OR ectodysplasin*[tiab] OR growth factor*[tiab] OR growth differentiation*[tiab] OR TGF*[tiab] OR helper factor*[tiab] OR interferon*[tiab] OR IFN*[tiab] OR interleukin*[tiab] OR kinin*[tiab] OR lymphokine*[tiab] OR lymphokine*[tiab] OR lymphotxin*[tiab] OR lymphopoeitin*[tiab] OR lymphopoietin*[tiab] OR migration factor*[tiab] OR migratory factor*[tiab] OR monokine*[tiab] OR monokins*[tiab] OR myostatin*[tiab] OR myostatins*[tiab] OR necrosis factor*[tiab] OR necrotic factor*[tiab] OR CCR*[tiab] OR CCL*[tiab] OR CXCL*[tiab] OR CXCR*[tiab] OR CX3C*[tiab] OR lymphotoxin*[tiab] OR lymphotxin*[tiab] OR CRP*[tiab] OR c-reactive protein*[tiab] OR c reactive protein*[tiab] OR histamin*[tiab] OR prostaglandin*[tiab] OR PGE*[tiab] OR alkaline phosphatase*[tiab] OR ALP*[tiab] OR ALKP*[tiab] OR ALPase*[tiab] OR Alk Phos*[tiab] OR basic phosphatase*[tiab] OR GM-CSF*[tiab] OR M-CSF*[tiab] OR G-CSF*[tiab] OR complement*[tiab] OR membrane attack complex*[tiab] OR MAC complex*[tiab] OR lectin pathway*[tiab] OR alternative pathway*[tiab] OR classical pathway*[tiab] OR opsonin*[tiab] OR malondialdehyde*[tiab] OR HMGBl*[tiab] OR TSG6*[tiab] OR LTB4*[tiab] OR MCP*[tiab] OR MIP*[tiab] OR RANTES*[tiab] OR CTACK*[tiab] OR IP10*[tiab] OR GROα*[tiab] OR GROβ*[tiab] OR TNF-β*[tiab] OR TFNγ*[tiab] OR TNFa*[tiab] OR TNF-a*[tiab] OR TNF-b*[tiab] OR TNFβ*[tiab] OR TNFβ*[tiab] OR tumor necrosis factor*[tiab] OR IL-1*[tiab] OR IL1*[tiab] OR IL-1z*[tiab] OR IL1α*[tiab] OR IL1α*[tiab] OR IL-1β*[tiab] OR IL1β*[tiab] OR IL1β*[tiab] OR IL-1β*[tiab] OR IL-1β*[tiab] OR IL-10*[tiab] OR IL10*[tiab] OR IL-11*[tiab] OR IL-11*[tiab] OR IL-12*[tiab] OR IL12*[tiab] OR IL-13*[tiab] OR IL13*[tiab] OR IL-14*[tiab] OR IL14*[tiab] OR IL-15*[tiab] OR IL15*[tiab] OR IL-16*[tiab] OR IL16*[tiab] OR IL-17*[tiab] OR IL17*[tiab] OR IL-18*[tiab] OR IL18*[tiab] OR IL-19*[tiab] OR IL19*[tiab] OR IL-2*[tiab] OR IL2*[tiab] OR IL-3*[tiab] OR IL3*[tiab] OR IL-4*[tiab] OR IL4*[tiab] OR IL-5*[tiab] OR IL5*[tiab] OR IL-6*[tiab] OR IL6*[tiab] OR IL-7*[tiab] OR IL7*[tiab] OR IL-8*[tiab] OR IL8*[tiab] OR IL-9*[tiab] OR IL9*[tiab] OR IL-10*[tiab] OR IL10*[tiab] OR IL-12*[tiab] OR IL12*[tiab] OR IL-13*[tiab] OR IL13*[tiab] OR IL-14*[tiab] OR IL14*[tiab] OR IL-15*[tiab] OR IL15*[tiab] OR IL-16*[tiab] OR IL16*[tiab] OR IL-17*[tiab] OR IL17*[tiab] OR IL-18*[tiab] OR IL18*[tiab] OR IL-19*[tiab] OR IL19*[tiab] OR IL-2*[tiab] OR IL2*[tiab] OR IL-3*[tiab] OR IL3*[tiab] OR IL-4*[tiab] OR IL4*[tiab] OR IL-5*[tiab] OR IL5*[tiab] OR IL-6*[tiab] OR IL6*[tiab] OR IL-7*[tiab] OR IL7*[tiab] OR IL-8*[tiab] OR IL8*[tiab]

Search component 3. This includes “animal experimentation”[MeSH Terms] OR “models, animal”[MeSH Terms] OR “invertebrates”[MeSH Terms] OR “Animals”[Mesh:noexp] OR “animal population groups”[MeSH Terms] OR “chordata”[MeSH Terms:noexp] OR “chordata, nonvertebrate”[MeSH Terms] OR “vertebrates”[MeSH Terms:noexp] OR “amphibians”[MeSH Terms] OR “birds”[MeSH Terms] OR “fishes”[MeSH Terms] OR “reptiles”[MeSH Terms] OR “mammals”[MeSH Terms:noexp] OR “primates”[MeSH Terms:noexp] OR “arthiodactyla”[MeSH Terms] OR “carnivora”[MeSH Terms] OR “cetacea”[MeSH Terms] OR “chiropterana”[MeSH Terms] OR “elephants”[MeSH Terms] OR “hyraxes”[MeSH Terms] OR “insectivora”[MeSH Terms] OR “lagomorpha”[MeSH Terms] OR “marsupialia”[MeSH Terms] OR “monotremata”[MeSH Terms] OR “perissodactyla”[MeSH Terms] OR “rodentia”[MeSH Terms] OR “scandentia”[MeSH Terms] OR “sirenia”[MeSH Terms] OR “xenarthra”[MeSH Terms] OR “haporhini”[MeSH Terms:noexp] OR “strepsirhini”[MeSH Terms] OR “platyrrhini”[MeSH Terms] OR “tarsii”[MeSH Terms] OR “catahrini”[MeSH Terms] OR “cercopitheciidae”[MeSH Terms] OR “hylodidae”[MeSH Terms] OR “hominae”[MeSH Terms] OR “pangolins”[MeSH Terms] OR “pan paniscus”[MeSH Terms] OR “pan troglodytes”[MeSH Terms] OR “pongo pygmaeus”[MeSH Terms] OR “animals”[tiab] OR animal*[tiab] OR mice*[tiab] OR mus*[tiab] OR mouse*[tiab] OR murine*[tiab] OR woodmouse*[tiab] OR rats*[tiab] OR rat*[tiab] OR murinae*[tiab] OR muridae*[tiab] OR cottonrat*[tiab] OR cottonrats*[tiab] OR hamster*[tiab] OR hamsters*[tiab] OR cricetinae*[tiab] OR rodentia*[tiab] OR rodent*[tiab] OR rodents*[tiab] OR pigs*[tiab] OR pig*[tiab] OR swine*[tiab] OR swines*[tiab] OR piglets*[tiab] OR piglet*[tiab] OR boar*[tiab] OR boars*[tiab] OR “sus

www.jidonline.org 3109.e2
scrofa"[tiab] OR ferrets[tiab] OR ferret[tiab] OR polecat[tiab] OR polecats[tiab] OR "mustela putorius"[tiab] OR "guinea pigs"[tiab] OR "guinea pig"[tiab] OR cavia[tiab] OR callithrix[tiab] OR marmoset[tiab] OR marmosets[tiab] OR cebuella[tiab] OR hapale[tiab] OR octodon[tiab] OR chinchilla[tiab] OR chinchillas[tiab] OR gerbillinae[tiab] OR gerbil[tiab] OR gerbils[tiab] OR jird[tiab] OR jirds[tiab] OR meione[tiab] OR meionies[tiab] OR rabbits[tiab] OR rabbit[tiab] OR hares[tiab] OR hare[tiab] OR diptera[tiab] OR flies[tiab] OR fly[tiab] OR diptera[tiab] OR drosophila[tiab] OR drosophilidae[tiab] OR cats[tiab] OR cat[tiab] OR carus[tiab] OR felis[tiab] OR nematoda[tiab] OR nematode[tiab] OR nematodes[tiab] OR sipunculida[tiab] OR dogs[tiab] OR dog[tiab] OR canine[tiab] OR canines[tiab] OR canis[tiab] OR sheep[tiab] OR sheeps[tiab] OR moufлон[tiab] OR mouflons[tiab] OR ovis[tiab] OR goats[tiab] OR goat[tiab] OR capra[tiab] OR capræ[tiab] OR rupicapra[tiab] OR rupicapras[tiab] OR chamois[tiab] OR hirundini[tiab] OR monkey[tiab] OR monkeys[tiab] OR anthropoidea[tiab] OR anthropoids[tiab] OR saginus[tiab] OR tamarini[tiab] OR tamarins[tiab] OR leontopithecus[tiab] OR hominidae[tiab] OR ape[tiab] OR apes[tiab] OR pan paniscus[tiab] OR bonobo[tiab] OR bonobos[tiab] OR pan troglodytes[tiab] OR gibbon[tiab] OR gibbons[tiab] OR siamang[tiab] OR siamangs[tiab] OR nomascus[tiab] OR symphalangus[tiab] OR chimpanzee[tiab] OR chimpanzees[tiab] OR prosimian[tiab] OR prosimians[tiab] OR "bush baby"[tiab] OR bush babies[tiab] OR galagos[tiab] OR galago[tiab] OR pongidae[tiab] OR gorilla[tiab] OR gorillas[tiab] OR "pongo pygmaeus"[tiab] OR orangutan[tiab] OR orangutans[tiab] OR lemur[tiab] OR lemur[tiab] OR lemuridae[tiab] OR horse[tiab] OR horses[tiab] OR equus[tiab] OR cow[tiab] OR calf[tiab] OR bull[tiab] OR chicken[tiab] OR chickens[tiab] OR gallus[tiab] OR quail[tiab] OR bird[tiab] OR birds[tiab] OR quails[tiab] OR poultry[tiab] OR poultries[tiab] OR fowl[tiab] OR fowls[tiab] OR reptile[tiab] OR reptilia[tiab] OR reptiles[tiab] OR snakes[tiab] OR snake[tiab] OR lizard[tiab] OR lizards[tiab] OR alligator[tiab] OR alligators[tiab] OR crocodile[tiab] OR crocodiles[tiab] OR turtle[tiab] OR turtles[tiab] OR amphibian[tiab] OR amphibians[tiab] OR amphibia[tiab] OR frog[tiab] OR frogs[tiab] OR bombina[tiab] OR salientia[tiab] OR toad[tiab] OR toads[tiab] OR "epidalea calamita"[tiab] OR salamander[tiab] OR salamanders[tiab] OR eel[tiab] OR eels[tiab] OR fish[tiab] OR fishes[tiab] OR piscis[tiab] OR catfish[tiab] OR catfishes[tiab] OR siluriformes[tiab] OR arius[tiab] OR heterocephalus[tiab] OR sheatfish[tiab] OR perch[tiab] OR perches[tiab] OR percidæ[tiab] OR perca[tiab] OR trout[tiab] OR trouts[tiab] OR char[tiab] OR chars[tiab] OR salvelinus[tiab] OR minnow[tiab] OR cyprindæ[tiab] OR carp[tiab] OR carps[tiab] OR zebrafish[tiab] OR zebrafishes[tiab] OR goldfish[tiab] OR goldfishes[tiab] OR guppy[tiab] OR guppies[tiab] OR chub[tiab] OR chubs[tiab] OR tinca[tiab] OR barbels[tiab] OR barbus[tiab] OR pimelophææ[tiab] OR promelas[tiab] OR poecilia reticulata[tiab] OR mullet[tiab] OR mullets[tiab] OR eel[tiab] OR eels[tiab] OR seahorse[tiab] OR seahorses[tiab] OR mugil curema[tiab] OR atlantic cod[tiab] OR shark[tiab] OR sharks[tiab] OR catshark[tiab] OR anguilla[tiab] OR salmonid[tiab] OR salmonids[tiab] OR whitefish[tiab] OR whitefishes[tiab] OR salmon[tiab] OR salmonids[tiab] OR sole[tiab] OR solea[tiab] OR lamprey[tiab] OR lampreys[tiab] OR pumpkinseed[tiab] OR sunfish[tiab] OR sunfishes[tiab] OR tilapia[tiab] OR tilapias[tiab] OR turbot[tiab] OR turbots[tiab] OR flatfish[tiab] OR flatfishes[tiab] OR sciaenidae[tiab] OR squirrel[tiab] OR squirrels[tiab] OR chipmunk[tiab] OR chipmunks[tiab] OR suslik[tiab] OR susliks[tiab] OR vole[tiab] OR voles[tiab] OR lemming[tiab] OR lemmings[tiab] OR muskrat[tiab] OR muskrats[tiab] OR lemmus[tiab] OR otter[tiab] OR otters[tiab] OR marten[tiab] OR martens[tiab] OR martes[tiab] OR weasel[tiab] OR badger[tiab] OR badgers[tiab] OR ermine[tiab] OR mink[tiab] OR minks[tiab] OR sable[tiab] OR sables[tiab] OR gulo[tiab] OR gulos[tiab] OR wolverine[tiab] OR wolverines[tiab] OR mustela[tiab] OR llama[tiab] OR llamas[tiab] OR alpaca[tiab] OR alpacas[tiab] OR camelid[tiab] OR camelids[tiab] OR guanaco[tiab] OR guanacos[tiab] OR chiroterà[tiab] OR chiroteràs[tiab] OR bat[tiab] OR bats[tiab] OR fox[tiab] OR foxes[tiab] OR iguana[tiab] OR iguanas[tiab] OR xenopus laevis[tiab] OR parakeet[tiab] OR parakeets[tiab] OR parrot[tiab] OR parrots[tiab] OR donkey[tiab] OR donkeys[tiab] OR mule[tiab] OR mules[tiab] OR zebra[tiab] OR zebras[tiab] OR shrew[tiab] OR shrews[tiab] OR bison[tiab] OR bisons[tiab] OR buffalò[tiab] OR buffaloes[tiab] OR deer[tiab] OR deers[tiab] OR bear[tiab] OR bears[tiab] OR panda[tiab] OR pandas[tiab] OR "wild hog"[tiab] OR "wild boar"[tiab] OR fitchew[tiab] OR fitch[tiab] OR beaver[tiab] OR beavers[tiab] OR jerboa[tiab] OR jerboas[tiab] OR capybara[tiab] OR capybaras[tiab] NOT medline[sb].
Search component 3. This includes exp animal experiment/ or exp animal model/ or exp experimental animal/ or exp transgenic animal/ or exp male animal/ or exp female animal/ or exp juvenile animal/ or exp female animal/ or exp male animal/ or exp animal model/ or exp experimental animal/ or exp Search component 3.

egf

www.jidonline.org 3109.e4
Inaccessible references

SUPPLEMENTARY REFERENCES

Abdallah Haj Hussein I, Dali Balta N, Jurjis RA, Watfa W, Gerges A, Aliyeh B, et al. Rat model of burn wound healing: effect of Botox. J Biol Regul Homeost Agents 2012;26:389–400.

Abo El-Noor MM, Elgazzar FM, Alshenawy HA. Role of inducible nitric oxide synthase and interleukin-6 expression in estimation of skin burn age and vitality. J Forensic Leg Med 2017;52:148–53.

Adediran SG, Dauplaise DJ, Kasten KR, Tschopp J, Dattilo JI, Goetzman HS, et al. Early infection during burn-induced inflammatory response results in increased mortality and p38-mediated neutrophil dysfunction. Am J Physiol Integr Comp Physiol 2010;299:R918–25.

Akgun SG, Aydemir S, Ozkan N, Yuskel M, Sardas S. Evaluation of the wound healing potential of Aloe vera-based extract of nerium oleander. North Clin Istamb 2017;4:205–12.

Alexander M, Daniel T, Chaudry IH, Choudhry MA, Schwacha MG. T cells of the gammadelta T-cell receptor lineage play an important role in the postburn wound healing process. J Burn Care Res 2006;27:18–25.

Alexis A, Carrer DP, Droggiti DI, Louis K, Pistiki A, Netea MG, et al. Immune responses in relation to the type and time of thermal injury: an experimental study. Injury 2015;46:227–32.

Asko-Seljavaara S. Granulocyte kinetics in burned mice: inhibition of granulocyte function by dexamethasone. J Burn Care Res 2010;31:652–60.

Atiyeh B, et al. Rat model of burn wound healing: effect of Botox. J Biol Regul Homeost Agents 2012;26:389–400.

Bayat M, Vasheghani MM, Razavie N, Jalili MR. Effects of low-level laser therapy on mast cell number and degranulation in third-degree burns of rats. J Rehabil Res Dev 2008;45:931–8.

Bayliss J, Delarosa S, Wu J, Peterson JR, Eboh ON, Su GL, et al. Adenosine triphosphate hydrolysis reduces neutrophil infiltration and necrosis in partial-thickness scald burns in mice. J Burn Care Res 2014;35:54–61.

Begieneman MP, Kubat B, Ulrich MM, Hahn NE, Stumpf-Stolker Y, Roy C, et al. The effects of aspirin on neutrophil and monocyte function in burn patients. J Trauma 2017;82:299–305.

Bekkers E, Koenders MIJ, Mardones D, Buydens-Branchey L, Branchey L, van Deventer SJH, et al. Nitric oxide synthase 2 inhibits the wound-healing process by blocking the differentiation of dermal progenitor cells. J Clin Invest 2008;118:2904–16.

Ben D, Huang J, Yang Y. [Increased expression of peritoneal macrophage CD14 in severely burned mice]. Zhonghua Shao Shang Za Zhi 2000;16:96–9 [in Chinese].

Bird MD, Morgan MO, Ramirez L, Yong S, Kovacs EJ. Decreased pulmonary inflammation after ethanol exposure and burn injury in intercellular adhesion molecule-1 knockout mice. J Burn Care Res 2010;31:652–60.
Bjornson AB, Knippenberg RW, Bjornson HS. Nonsteroidal anti-inflammatory drugs correct the bactericidal defect of polymorphonuclear leukocytes in a guinea pig model of thermal injury. J Infect Dis 1988;157:959–67.

Bjornson AB, Knippenberg RW, Bjornson HS. Bactericidal defect of neutrophils in a guinea pig model of thermal injury is related to elevation of intracellular cyclic-3’,5’-adenosine monophosphate. J Immunol 1989;143: 2609–16.

Bjornson AB, Somers SD, Knippenberg RW, Bjornson HS. Circulating factors contribute to elevation of intracellular cyclic-3’,5’-adenosine monophosphate and depression of superoxide anion production in polymorphonuclear leukocytes following thermal injury. J Leukoc Biol 1992;52:407–14.

Bohannon J, Cui W, Cox W, Przkora R, Sherwood E, Toliver-Kinsky T. Prophylactic treatment with fms-like tyrosine kinase-3 ligand after burn injury enhances global immune responses to infection. J Immunol 2008;180: 3038–48.

Bohr S, Patel SJ, Shen K, Vitalo AG, Brines M, Cerami A, et al. Alternative etorphine-mediated signaling prevents secondary microvascular thrombosis and inflammation within cutaneous burns. Proc Natl Acad Sci U S A 2013;110:3513–8.

Bohr S, Patel SJ, Sarin D, Irimia D, Yarmush ML, Berthiaume F. Resolin D2 prevents secondary thrombosis and necrosis in a mouse burn wound model. Wound Repair Regen 2013;21:35–43.

Brandenburg KS, Weaver AJ, Karna SLR, You T, Chen P, Styk SV, et al. Formation of Pseudomonas aeruginosa biofilms in full-thickness scalp burn wounds in rats. Sci Rep 2019b;9:13627.

Brandenburg KS, Weaver AJ Jr, Qian L, You T, Chen P, Karna SLR, et al. Development of Pseudomonas aeruginosa biofilms in partial-thickness burn wounds using a Sprague-Dawley rat model. J Burn Care Res 2019a;40:44–57.

Brownstein BH, Logvinenko T, Lederer JA, Hubbard WJ, Chaudry IH, et al. Commonality and differences in leukocyte gene expression patterns among three models of inflammation and injury. Physiol Genomics 2006;24:298–309.

Burleson DG, Mason AD Jr, Pruitt BA Jr. Lymphoid subpopulation changes after thermal injury and thermal injury with infection in an experimental model. Ann Surg 1988;207:208–12.

Burleson DG, Vaughn GK, Mason AD, Pruitt BA. Flow cytometric measurement of rat lymphocyte subpopulations after burn injury and burn injury with infection. Arch Surg 1987;122:216–20.

Burman LM, Sakhovskaia GK. [Effect of isoserum transfusion on the morphofunctional activity of the mast cells in experimental burn disease]. Patol Fiziol Eksp Ter 1972;16:28–31 [in Russian].

Burmeister DM, McIntyre MK, Baker BA, Rizzo JA, Brown A, Natesan S, et al. Impact of isolated burns on major organs: A large animal model characterized. Shock 2016;46:137–41.

Cai C, Xia ZG, Xu QL, Li XZ. [Effects of omega-3 polyunsaturated fatty acids on damage of intestinal mucosa of rats with severe burn in early stage and its significance]. Zhonghua Yi Xue Za Zhi 2010;90:780–4 [in Chinese].

Chakraborty R, Chandra J, Cui S, Tolley L, Cooper MA, Kendall M, et al. CD8+ lineage dendritic cells determine adaptive immune responses to inflammation–some activation upon sterile skin injury. Exp Dermatol 2018;27:71–9.

Chao T, Gomez BI, Heard TC, Dubick MA, Burmeister DM. Increased oxidative phosphorylation in lymphocytes does not alone for decreased cell numbers after burn injury. Innate Immun 2020;26:403–12.

Chen XL, Xia ZF, Wei D, Ben DF, Wang GQ, Tang HT. [Mechanism of p38 mitogen-activated protein kinase in postburn acute pulmonary injury in scalded rats]. Zhonghua Shao Shang Za Zhi 2004;20:262–4 [in Chinese].

Chen YL. [Effects of collagen and glucan on the healing of burn wounds in mice]. Zhonghua Zheng Xing Shao Shang Wai Ke Za Zhi 1992;8:54–8 [in Chinese].

D’Aleandoro MM, Gruber DF. Quantitative and functional alterations of peripheral blood neutrophils after 10% and 30% thermal injury. J Burn Care Rehabil 1990;11:295–300.

D’Amico D, Macchitella E, Passi P, Varotto S, Tropea A, Zanella A. [Behavior of mast cells in experimental burns in rats]. Chir Ital 1978;30:586–91 [in Chinese].

Daniel T, Thobe BM, Chaudry IH, Choudhry MA, Hubbard WJ, Schwacha MG. Regulation of the postburn wound inflammatory response by gammadelta T-cells. Shock 2007;28:278–83.

Davis JM, Gallin JJ. Abnormal rabbit heterophil chemotaxis following thermal injury. An in vivo model of an abnormality of the chemoattractant receptor for f-met-leu-phe. Arch Surg 1988;123:752–5.

de David Antoniazzti CT, De Prá SDT, Ferro PR, Silva MA, Adamante G, de Almeida AS, et al. Topical treatment with a transient receptor potential ankyrin 1 (TRPA1) antagonist reduced nociception and inflammation in a thermal lesion model in rats. Eur J Pharm Sci 2018;125:28–38.

Deng XY, Yang QX, Tang PC. Effect of shenmai injection on myocardial injury of scalded rats and its mechanism. Chin J Clin Rehabil 2006;10:47–9.

Dinescu S, Ignat SR, Lazar AD, Marin S, Danila E, Marin MM, et al. Effectivity of multiparticulate delivery systems loaded with flufenac acid designed for burn wound healing applications. J Immunol Res 2019;2019:4513108.

Dokumcu Z, Ergun O, Celik HA, Aydemir S, Sezak M, Ozok G, et al. Clos-tridial collagenase aggravates the systemic inflammatory response in rats with partial-thickness burns. Burns 2008;34:933–41.

Dolgoshin II, Khasman EL, Romashkevskaya YL. [Immune response to SRBC and state of cells of monotypic phagocyte system at early stage after thermal injury]. Zh Mikrobiol Epidemiol Immunobiol 1979;56:23–7 [in Russian].

Dong X, Xu T, Ma S, Wen H. Expression and activity levels of chymase in mast cells of burn wound tissues increase during the healing process in a hamster model. Exp Ther Med 2015;9:2190–4.

Dong YL, Abdullah K, Yan TZ, Rutan T, Broemeling L, Robson M, et al. Effect of thermal injury and sepsis on neutrophil function. J Trauma 1993a;34: 417–21.

Dong YL, Herndon DN, Yan TZ, Waymak JP. Blockade of prostaglandin products augments macrophage and neutrophil tumor necrosis factor synthesis in burn injury. J Surg Res 1993b;54:480–5.

Dou Y, Zhang Q, Zhang X, Dong YJ, Tang JJ, Liao ZJ. [Effect of different immunomodulation on inflammatory response in burn rats with sepsis]. Zhonghua Shao Shang Za Zhi 2009;25:275–80 [in Chinese].

Duan HJ, Chai JK, Sheng ZY, Yao YM, Yin HN, Shen CA, et al. [Effect of intensive insulin therapy on apoptosis-related ligands in serum in rats with severe scald]. Zhonghua Shao Shang Za Zhi 2009;25:42–5 [in Chinese].

Duansak D, Somboonwong J, Patumraj S. Effects of Aloe vera on leukocyte adhesion and TNF-alpha and IL-6 levels in burn wound rats. Clin Hemorheol Microcirc 2003;29:239–46.

Ebert LI, Dolgoshin II. [Evaluation of the functional state of B-lymphocytes in thermal burns]. Patol Fiziol Eksp Ter 1976;2:72–4 [in Russian].

Echinard C, Vescovali C, David MF, Bernard D, Rolland PH. [Sequence and biological activity of a human leukotriene A4 receptor antagonist]. J Physiol 1999;517.1:265–72 [in French].

Eski M, Deveci M, Celiköz B, Nisanci M, Turegün M. Treatment with cerium nitrate bathing modulate systemic leukocyte activation following burn injury: an experimental study in rat cremaster muscle flap. Burns 2001;27:739–46.

Fan J, Wu J, Wu LD, Li GP, Xiong M, Chen X, et al. Effect of parenteral glutamine supplementation combined with enteral nutrition on Hsp90 expression and lymphoid organ apoptosis in severely burned rats. Burns 2016;42:1494–506.
Fang Q, Guo S, Zhou H, Han R, Wu P, Han C. Astaxanthin protects against early burn-wound progression in rats by attenuating oxidative stress-induced inflammation and mitochondria-related apoptosis. Sci Rep 2017;7:4140.

Faunce DE, Garner JL, Llanas JN, Patel PJ, Gregory MS, Duffner LA, et al. Effect of acute ethanol exposure on the dermal inflammatory response after burn injury. Alcohol Clin Exp Res 2003;27:1199–206.

Faunce DE, Llanas JN, Patel PJ, Gregory MS, Duffner LA. Kovacs ES. Neutrophil chemokine production in the skin following scald injury. Burns 1999;25:403–10.

Fazal N, Al-Ghoul WM, Choudhry MA, Sayeed MM. PAF receptor antagonist modulates neutrophil responses with thermal injury in vivo. Am J Physiol Cell Physiol 2001;281:C1310–7.

Fazal N, Sabeh F, Gamelli RL, Sayeed MM. Elevation of expression of p47phox and p67phox proteins in neutrophils from burned rats. Shock 1997;8:256–60.

Fazal N, Shelp A, Siddiqui E, Ali A, Azim AC, Al-Ghoul WM. Differential effector responses by circulating/blood and tissue/peritoneal neutrophils following burn combined with Enterococcus faecalis infection. FEMS Immunol Med Microbiol 2012;64:191–204.

Fear VS, Poh WP, Valvis S, Waithman JC, Foley B, Wood FM, et al. Timing of excision after a non-severe burn has a significant impact on the subsequent immune response in a murine model. Burns Elsevier Ltd and International Society of burns Injuries. Burns 2016;42:815–24.

Feng J, Liu Y, Wang X. The significance and the role of TNFalpha and NO in the state of leucocyte adhesiveness/aggregation (LAA) in the peripheral blood of burned mice: an early and sensitive inflammatory indicator and a marker of pulmonary leukostasis. Burns 1991;17:458–61.

Fu YJ, Yuan JL, Chen J, Xie Y. The effects and mechanisms of Forsythia suspensor of the expression of Fsp3 on splenocytes and level of Treg in peripheral blood in severely burnt rats. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi 2009;25:935–7 [in Chinese].

Fuchs PCh, Hartmann TL, Schrimpf C, Haunschild J, Litzenburger T, Pallua N. Fuchs P, Zang Y, Mannick JA, Lederer JA, et al. Platelet depletion in mice increases mortality after thermal injury. Blood 2015;126:2046–52.

Goertz BI, Harrington BK, Chao T, Chung KK, Dubick MA, Boggs NA, et al. Impact of oral resuscitation on circulating and splenic leukocytes after burns. Burns 2020;46:567–78.

Goomez BI, McIntyre MK, Gunney JM, Chung KK, Cancio LC, Dubick MA, et al. Enteral resuscitation with oral rehydration solution to reduce acute kidney injury in burn victims: evidence from a porcine model. PLoS One 2018;13:e0195615.

Goto M, Samonte V, Ravindranath T, Sayeed MM, Gamelli RL. Burn injury exacerbates hemodynamic and metabolic responses in rats with poly-microbial sepsis. J Burn Care Res 2006;27:50–9.

Gouma E, Simos Y, Verginadis I, Lykoudis E, Karkabounas S. A simple procedure for estimation of total body surface area and determination of a new value of Meeh’s constant in rats. Lab Anim 2012;46:40–5.

Grogg AR, Piatakowski A, Grieb G, Wolter TP, Fuchs PC, Pallua N. The mobilization of mononuclear cells and endothelial progenitor cells after burn injury in a porcine model. Burns 2010;36:545–51.

Gruber DF, D’Alejandro MM. Alteration of rat polymorphonuclear leukocyte function after thermal injury. J Burn Care Rehabil 1989;10:394–401.

Gruber DF, Farese AM. Bone marrow myelopoiesis in rats after 10%, 20%, or 30% thermal injury. J Burn Care Rehabil 1989;10:410–7.

Guo CJ, Gu CF. Changes in cellular immunity and nutritional status in mice after thermal injury. Burns Incl Therm Inj 1988;14:429–34.

Guo GH, Cai C, Zhang HY, Fu ZH, Xu C. Effects of different enteral nutrition formulae combined with recombinant human growth hormone on inflammatory response in rats with scald injury. Zhonghua Shao Shang Za Zhi 2008;24:410–3 [in Chinese].

Guo L, Dong ND, Xiong AB, Liu ZY, Liu CR, He XC. An experimental study on the prevention and treatment of postburn intestinal injury and bacterial translocation by Sijunzi decoction in scalded rats. Zhonghua Shao Shang Za Zhi 2003;19:89–93 [in Chinese].

Guo SX, Jin YY, Fang Q, You CG, Wang XG, Hu XL, et al. Beneficial effects of hydrogen-rich saline on early burn-wound progression in rats. PLoS One 2015;10:e0124897.

Hansbrough JF, Cudd MA. Temporal analysis of murine lymphocyte subpopulations by monoclonal antibodies and dual-color flow cytometry after burn and nonburn injury. Surgery 1989;106:69–80.

Hansbrough JF, Wikström T, Braide M, Tenenhaus M, Rennekampff OH, Kiessig V, et al. Neutrophil activation and tissue neutrophil sequestration in a rat model of thermal injury. J Surg Res 1996a;61:17–22.

Hansbrough JF, Wikström T, Braide M, Tenenhaus M, Rennekampff OH, Kiessig V, et al. Effects of E-selectin and P-selectin blockade on neutrophil sequestration in tissues and neutrophil oxidative burst in burned rats. Crit Care Med 1996b;24:1366–72.

He LK, Liu LH, Hahn E, Gamelli RL. The expression of cyclooxygenase and the production of prostaglandin E2 in neutrophils after burn injury and infection. J Burn Care Rehabil 2001;22:586–64.

Heideman M. The effect of thermal injury on hemodynamic, respiratory, and hematologic variables in relation to complement activation. J Trauma 1997;43:169–75 [in Chinese].

Hernekamp JF, Harenberg PS, Lehnhardt M, Germann G, Walther A, Kremer T. [Micr vascular effects of burn plasma transfer and therapeutic options in a rat model]. Handchir Mikrochir Plast Chir 2012;44:209–19.

Higashimori H, Carlens RC, Whetzel TP. Early excision of a full-thickness burn prevents peripheral nerve conduction deficits in mice. Plast Reconstr Surg 2006;117:512–64.

Goertz O, Ring A, Buschhaus B, Hirsch T, Daigeler A, Steinstrasser L, et al. Influence of anti-inflammatory and vasoactive drugs on microcirculation and angiogenesis after burn in mice. Burns 2011;37:656–64.

Goertz O, Vogelpohl J, Jettikan B, Daigeler A, Steinau HU, Steinstrasser L, et al. Burn model for in vivo investigations of microcirculatory changes. EPlasty 2009;9:e13.
Hooijmans CR, Rovers MM, De Vries RBM, Leenaars M, Ritskes-Hoitinga M, Langendam MW, SYRCE's risk of bias tool for animal studies. BMC Med Res Methodol 2014;14:43.

Howell K, Poslusny J, He LK, Szilagyi A, Halter J, Gamelli RL, et al. High MaBI expression following burn augments monocyte commitment and inhibits DC differentiation in hemopoietic progenitors. J Leukoc Biol 2012;91:69–81.

Hu XH, Zhang HY, Ge YL, Chen Z, Qin FJ, Jiang HY, et al. [Protective effects of ulinastatin against multiple organic damage after severe burn injury: experimental and clinical studies]. Zhonghua Yi Xue Za Zhi 2003;85:2889–94 [in Chinese].

Hu Z, Sayeed MM. Suppression of mitochondria-dependent neutrophil apoptosis with thermal injury. Am J Physiol Cell Physiol 2004;286:C170–8.

Hu Z, Sayeed MM. Activation of PI3-kinase/PKB contributes to delay in neutrophil apoptosis after thermal injury. Am J Physiol Cell Physiol 2005;288:C171–8.

Huan J, Han Y, Chen Y. [Effect of lysostaphin on phagocyte function in burn mice]. Zhonghua Zheng Xing Shao Shang Wai Ke Za Zhi 1995;11:255–7 [in Chinese].

Huang LH, Luo QZ, Chen XY, Zhou KW. Adjustment of the ability of erythrocytes linked to interleukin-8 after burns. Chin J Clin Rehabil 2000;14:1079–9.

Hussmann J, Hebebrand D, Erdmann D, Roth A, Hensel M, Hemmila MR, Su GL, Iwashita N, Muramatsu H, Toriyama K, Torii S, Muramatsu T. Expression of MafB expression following burn augments monocyte commitment and inhibits the potential function of activities of NK cells. God Vojnomed Akad 1995;1:107–11 [in Russian].

Ibrahim MM, Bond J, Bergeron A, Miller KJ, Ehanire T, Quiles C, et al. A novel mechanism for immune suppression and anemia of critical illness. J Leukoc Biol 2012;91:69–73.

Jahovic N, Guzelt E, Arbak S, Ye˘g en BC. The healing-promoting effect of saliva on skin burn is mediated by epidermal growth factor (EGF): role of the neutrophils. Burns 2004;30:531–8.

Jia X, Zhu Z, Kong Q. [The changes in TNF alpha in plasma, organs and eschar of rats after thermal injury]. Zhonghua Zheng Xing Shao Shang Wai Ke Za Zhi 1996;12:367–71 [in Chinese].

Jiang MV, Lu JH, Shi H, Du ZN. Effects of peroxiredoxin 6 on mice with deep second-degree burn wound. Chin J New Drugs 2015;24:691–6.

Jin J, He F, Luo FF, Hu XY, Xia ZF. Effect of systemic low-level light therapy on early systemic inflammatory response of severe burn rats. Acad J Second Mil Med Univ 2017;38:987–92.

Johnson NB, Pouszynza J, He LK, Szilagyi A, Gamelli RL, Shankar R, et al. Petturbud MaBI/GATA1 axis after burn trauma bars the potential mechanism for immune suppression and anemia of critical illness. J Leukoc Biol 2016;100:725–36.

Kabasakal L, Sener G, Cetinel S, Contuk G, Gedlik N, Ye˘gen BC. Burn-induced oxidative injury of the gut is ameliorated by the leukotriene receptor blocker montelukast. Prostaglandins Leukot Essent Fatty Acids 2005;72:431–40.

Kael SM, Muxykan LI, Zhuravleva MV, Reshetov IA. [Histochemical study of burn wound experimentally]. Russ Pathol Arch 1977;39:60–6 [in Russian].

Khalid S, Khan A, Shal B, Ali H, Kim YS, Khan S. Suppression of TRPVI and P2Y2 nociceptors by honokiol isolated from Magnolia officinalis in 3rd degree burn mice by inhibiting inflammatory mediators. Biomed Pharmacother 2019;114(114):108777.

Kimura Y, Sumiyoshi M, Samukawa K, Satake N, Sakanaka M. Facilitating action of atacisotacide at low doses on burn wound repair and its mechanism. Eur J Pharmacol 2008;584:415–23.

Kopeck J. [Mast cell changes following 3rd degree skin burns in white rats]. Pol Tyg Lek 1976;31:223–5 [in Polish].

Korkmaz HI, Ulrich MMM, Wieringen WN Van, Dogan H, Vlijg M, Emmens RW, et al. C1 inhibitor administration reduces local inflammation and capillary leakage, without affecting long-term wound healing parameters in a pig burn wound model. Antinflamm Antialergy Agents Med Chem 2020;20:150–60.

Korkmaz HI, Ulrich MMM, Van Wieringen WN, Vlijg M, Emmens RW, Meyer KW, et al. The local and systemic inflammatory response in a pig burn wound model with a pivotal role for complement. J Burn Care Res 2017;38:e796–806.

Kurilra T, Jones CN, Yu YM, Fiscman AJ, Watada S, Tompkins RG, et al. Resolvin D2 restores neutrophil directionality and improves survival after burns. FASEB J 2013;27:2270–81.

Kuroska K, Trocki O, Alexander JW, Tchervenkov J, Inoue S, Nelson JL. Effect of vitamin A in enteral formulae for burned guinea-pigs. Burns 1990;16:265–72.

Langer S, Goertz O, Steinstraesser L, Kuhnen C, Steinau HH. New model for in vivo investigation after microvascular breakdown in burns: use of intravital fluorescence microscopy. Burns 2005;31:168–74.

Lateef Z, Stuart G, Jones N, Mercer A, Fleming S, Wise L. The cutaneous inflammatory response to thermal burn injury in a murine model. Int J Mol Sci 2019;20:538.

Lavaud P, Mathieu J, Bienvenu P, Braquet M, Gerassimo P, Kergonou JF, et al. Modulation of leucocyte activation in the early phase of the rabbit burn injury. Burns Incl Therm Inj 1988;14:15–20.

Lee JA, Jeong HJ, Park HJ, Jeon S, Hong SU. Acupuncture accelerates wound healing in burn-injured mice. Burns 2011;37:17–25.

Li HS, Yang XK, Hao ZM, Lei J. [Interventional effects of BAY11-7082 on lung inflammatory response at the early stage and acute lung injury of rats with severe burns]. Zhonghua Shao Shang Za Zhi 2018;34:88–95 [in Chinese].

Li JW, Cui HY, Zhang DF, Xiao P, Li WG. [Inhibition of epigallocatechin-3-gallate on scald-induced macrophage inflammatory protein-2 expression in the skin of mice]. Acta Anat Sin 2013;44:330–3 [in Chinese].

Li N, Wang XM, Ji Y. [Experimental study of effects of compound resina draconis on protecting intestinal mucosa barrier in burned rats]. J Chin Clin Med 2011;6:20–4 [in Chinese].

Li WP, Zhao GY, Yang XK. [Effects of Na+/H+ exchanger 1 inhibitor on intestinal injury of rats with burn sepsis and the mechanism]. Zhonghua Shao Shang Za Zhi 2017;33:349–54 [in Chinese].

Li X, Liu L, Yang J, Yu Y, Chai J, Wang L, et al. Exosome derived from human umbilical cord mesenchymal stem cell mediates MiR-181c attenuating burn-induced excessive inflammation. EBiomedicine 2016;8:2889–95.

Li JW, Cui HY, Zhang DF, Xiao P, Li WG. [Inhibition of epigallocatechin-3-gallate on scald-induced macrophage inflammatory protein-2 expression in the skin of mice]. Acta Anat Sin 2013;44:330–3 [in Chinese].

Lin N, Wang XM, Ji Y. [Experimental study of effects of compound resina draconis on protecting intestinal mucosa barrier in burned rats]. J Chin Clin Med 2011;6:20–4 [in Chinese].

Li JW, Cui HY, Zhang DF, Xiao P, Li WG. [Inhibition of epigallocatechin-3-gallate on scald-induced macrophage inflammatory protein-2 expression in the skin of mice]. Acta Anat Sin 2013;44:330–3 [in Chinese].

www.jidonline.org 3109.e8
Linz BML, Neely C, Kortchner LB, Mendoza AE, Khoury AL, Traux A, et al. Innate immune cell recovery is positively regulated by NLRLP12 during emergency hematopoiesis. J Immunol 2017;198:2426–33.

Liu L, Li X, Yang J, Chai J, Yu Y, Duan H, et al. Comparison of systemic inflammation response and vital organ damage induced by severe burns in different area. Int J Clin Exp Pathol 2015;8:S636–76.

Liu L, Song H, Duan H, Chai J, Yang J, Li X, et al. TSG-6 secreted by human umbilical cord mesenchymal stem cells transplantation promotes cutaneous wound healing of severe burned rats. PLoS One 2014;9:e88348.

Liu QY, Hu S, Cheng AG, Qiu F, Pu JY, Li JY, et al. Influence of the escharectomy during stage on the peripheral lymphocyte apoptosis and the antigen presentation function of monocytes in peripheral blood of scalded rats. Zhonghua Shao Shang Za Zhi 2006;22:415–8 [in Chinese].

Liu QY, Yao YM, Yu Y, Dong N, Sheng ZY. Atragasul polysaccharides attenuate postburn sepsis via inhibiting negative immune regulation of CD4+ CD25(high) T cells [published correction appears in PLoS One 2011;6; PLoS One 2011;6; e19811].

Liu Z, Huang W, Liu J. Effects of Chinese herbs on impaired lymphocyte functions after thermal injury in mice. Zhonghua Wai Ke Za Zhi 1993;33:571–3 [in Chinese].

Lü GZ, Chen YL, Yang MJ. Modulation of nerve growth factor on wound healing of burn. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 2000;14:268–70 [in Chinese].

Lu SL, Jin SW, Zhang J, Shigeo I, Hideaki S, Liao ZJ, et al. [An experimental study on the effects of postburn dietary supplementation of enhanced nutrients]. Zhonghua Shao Shang Za Zhi 2003;19:197–201 [in Chinese].

Luo G, Peng D, Zheng J, Chen X, Wu J, Elster E, et al. The role of NO in macrophage dysfunction at early stage after burn injury. Burns 2005;31:138–44.

Luo HM, Hu S, Zhou GY, Bai SY, Wang HB, et al. The effects of ulinastatin on systemic inflammation, visceral vasopermeability and tissue water content in rats with scalp injury. Burns 2013;39:916–22.

Luo X, Zhao H, Zhang Y. [The experimental study on antisense TGF-beta 1 in inhibiting scar formation in III degree burn wound]. Zhonghua Zheng Xing Wai Ke Za Zhi 2002;18:899–91 [in Chinese].

Madibally SV, Solomon V, Mitchell RN, Van De Water L, Yarmush ML, Toner M. Influence of insulin therapy on burn wound healing in rats. J Surg Res 2003;109:92–100.

Madibally SV, Toner M, Yarmush ML, Mitchell RN. Peripheral blood mononuclear cells exhibit hypercatabolic activity in response to thermal injury correlating with diminished MHC I expression. J Trauma 2001;50:500–9.

Madibally SV, Toner M, Yarmush ML, Mitchell RN. Interferon gamma modulates trauma-induced muscle wasting and immune dysfunction. Ann Surg 2002;236:649–57.

Malakyan MH, Bajinjan SA, Abrahamyan AK, Petrosyan ZH, Harutyunyan NK, Badiryan VA, et al. Pharmacological and haematological results of rat skin burn injury treatment with Cu(II)2(3,5-diisopropylsalicylate)4. Inflammopharmacology 2004;12:321–51.

Mao J, Zhou YS, Wu T. [High-absorbing chitosan dressings for hemostasis and wound healing]. Chin J Tissue Eng Res 2016;20:2391–6.

Marano MA, Moldawer LL, Fong Y, Wei H, Minei J, Yurt R, et al. Cachectin/TNF production in experimental burn and pseudomonas infection. Arch Surg 1988;123:1383–8.

Maung AA, Fujimi S, MacConmara MP, Tajima G, McKenna AM, Delisle AJ, et al. Injury enhances resistance to Escherichia coli infection by boosting innate immune system function. J Immunol 2008;180:2450–8.

McManus AT. Examination of neutrophil function in a rat model of decreased host resistance following burn trauma. Rev Infect Dis 1983;5(Suppl 5):S898–907.

Meusers PJ, Lautenschläger J, Borst RH. [Effect of colling on the leukocyte count in scalded rats]. Z Gesamte Exp Med Einschl Exp Chir 1971;154:283–5 [in German].

Miles D, Hurst TS, Saxena A, Mayers I, Johnson DH. Systemic thermal injury in anesthetized rabbits causes early pulmonary vascular injury that is not ablated by lazaroids. Can J Anaesth 1999;46:142–7.

Mikaelian NP. [Interaction between insulin and its receptor in lymphocyte plasma membranes during burn trauma in rats]. Vopr Med Khim 1988;34:96–8 [in Russian].

Mikaelian NP, Il’ina ZI. [Evaluation of the functional state of the liver using the blood enzyme spectrum after hemosorption for burn toxemia]. Vopr Med Khim 1988;34:75–8 [in Russian].

Mikhalk'chik EV, Ivanova AV, Anurov MV, Titkova SM, Pen'kov LY, Kharaeva ZF, et al. Wound-healing effect of papaya-based preparation in experimental thermal trauma. Bull Exp Biol Med 2004:137:560–2.

Mikhalk'chik EV, Titkova SM, Anurov MV, Pen'kov LY, Korkina LG. [Antioxidant enzymes in skin experimental burn trauma]. Biomed Khim 2006;52:576–86 [in Russian].

Mou J, Chen J, Xing N, Zhou JJ, You XE, Shi JW, et al. Effects of fluid resuscitation programs on the levels of inflammatory mediators during burn shock stage. Zhonghua Yi Xue Za Zhi 2013;93:2377–80 [in Chinese].

Muthu K, He LK, Szilagyi A, Stevenson J, Gamelli RL, Shankar K. Propranolol restores the tumor necrosis factor-z response of circulating inflammatory monocytes and granulocytes after burn injury and sepsis. J Burn Care Res 2009;30:18–38.

Nassar MAY, Eldien HMS, Tawab HSA, Saleem TH, Omar HM, Nassar AY, et al. Time-dependent morphological and biochemical changes following cutaneous thermal burn injury and their modulation by copper nicotinate complex: an animal model. Ultrastruc Pathol 2012;36:343–55.

Newsome TW, Eurenius K. Suppression of granulocyte and platelet production by pseudomonas burn wound infection. Surg Gynecol Obstet 1973;136:375–9.

Niedworok J, Oifferska M. [Immunosuppressive activity of the serum in burns]. Z Exp Chir 1980;13:153–8 [in German].

Niedworok J, Sypchalski E. [Behavior of some lysosomal enzymes of rabbits' leukocytes in experimental disease following thermal burns]. Acta physiol Pol 1972;23:987–95 [in Polish].

Nishikori Y, Kakizoe E, Kohayashi Y, Shimoura K, Okunishi H, Dekio S. Skin mast cell promotion of matrix remodeling in burn wound healing in mice: relevance of chymase. Arch Dermatol Res 1998;290:553–60.

Noel G, Wang Q, Osterburg A, Schwemberger S, James L, Haar L, et al. A ribonucleotide reductase inhibitor reverses burn-induced inflammatory defects. Shock 2010;34:335–44.

Noel JG, Osterburg A, Wang Q, Guo X, Bryun D, Schwemberger S, et al. Thermal injury elevates the inflammatory monocyte subpopulation in multiple compartments. Shock 2007;28:684–93.

Nomellini V, Brubaker AL, Mahbub S, Palmer JL, Gomez CR, Kovacs EJ. Dysregulation of neutrophil CXCR2 and pulmonary endothelial icam-1 promotes age-related pulmonary inflammation. Aging Dis 2012;3:234–47.

Nwariaku F, Sikes PJ, Lightfoot E Jr, Mileski WJ. Inhibition of selectin- and integrin-mediated inflammatory response after burn injury. J Surg Res 1996;63:355–8.

Nwariaku FE, Mileski WJ, Lightfoot E Jr, Sikes PJ, Lipsky PE. Alterations in leukocyte adhesion molecule expression after burn injury. J Trauma 1995;38:285–98.

Ny L, Parmer RJ, Shen Y, Holmberg S, Baik N, Bäckman A, et al. The plasminogen receptor, Plg-RKT, plays a role in inflammation and fibrinolysis during cutaneous wound healing in mice. Cell Death Dis 2020;11:1034.

O'Leary FM, Tajima G, Delisle AJ, Ikeda K, Dolan SM, Hансchen M, et al. Injury-induced GR1+ macrophage expansion and activation occurs independently of CD4 T-cell influence. Shock 2011;36:162–9.

Organ BC, Antonacci AC, Chiao J, Chiao J, Kumar A, de Riehstal HF, et al. Changes in lymphocyte number and phenotype in seven lymphoid compartments after thermal injury. Ann Surg 1989;210:78–89.

Osiskov MV, Simonyov EV, Saedgalina OT. [The effect of erythropoietin in transdermal film composition on immune status indices of rats with experimental thermal injury]. Russ J Exp Clin Pharmacol 2018;81:13–8 [in Russian].

Ouzzani M, Hammad H, Fedorowicz Z, Elmagarmid A, Rayyan—a web and mobile app for systematic reviews. Rev Syst Rev 2016;5:1–10.

Pallua N, Low JFA, Von Heimburg D. Pathogenic role of interleukin-6 in the development of sepsis. Part II: Significance of anti-interleukin-6 and anti-interleukin-2.}
soluble interleukin-6 receptor-\(\alpha\) antibodies in a standardized murine contact burn model. Crit Care Med 2003;31:1495–501.

Pang SQ, Wang GQ, Wu S, Sun AJ, Diao Y, Xu RA. [Effects of polysaccharides from Bletillae rhizoma on the protection in rats during deep-second degree burn wound healing]. Zhong Yao Cai 2013;36:1819–23 [in Chinese].

Pang W, Guo ZR, Shuai XR, Lu Y, Sun D, Yang LH. [Effects of escharectomy during burn shock stage on the mRNA expression of IFN-gamma and IL-4 in spleen T lymphocytes in rats after thermal injury]. Zhonghua Wai Ke Za Zhi 2004;42:1142–5 [in Chinese].

Pang W, Shuai XR, Guo ZR, Yao YM, Sun D, Yang LH. [Escharectomy during burn shock on Th1/Th2 polarization of helper T lymphocytes in rats after thermal injury]. Zhongguo Wei Zhong Bing Ji Yi Xue 2003;15:735–8 [in Chinese].

Panasov AG, Dzhanian KO, Grigorian GKh, Mkhitarian GS, Gabrielian ES. [The level of leukotrienes B4 and C4 in the blood serum of rats subjected to thermal burns, \(\alpha\)-radiation and combined radiation-thermal injuries]. Radiobiologija 1990;30:364–8 [in Russian].

Peng DZ, Huang WH, Li A. [The roles of macrophage in immune dysfunction following severe thermal injury]. Zhonghua Wai Ke Za Zhi 1994;32:310–3 [in Chinese].

Peng X, Wang S, Tao L, Wang F, Wang P, You Z. [The relationship between postburn enterogenic hypermetabolism and decontamination of intestine]. Zhonghua Shao Shang Za Zhi 2001;17:207–9 [in Chinese].

Penturf ME, McClone J, Grisswold JA. Modulation of immune response in thermal injury by essential fatty acid-deficient diet. J Burn Care Rehabil 1996;17:465–70; discussion 464.

Perez RV, Waymack JP, Barcelli U, Alexander JW. Neutrophil dysfunction and decreased leukotriene production in burned, septic rats. Curr Surg 1987;44:55–7.

Peter FW, Schuschke DA, Barker JH, Fleishcher-Peter B, Pierangeli S, Schmidt K, Bruchelt G, Kistler D, Koslowski L. Phagocytic activity of granulocytes and alveolar macrophages after burn injury measured by chemiluminescence. Burns Incl Therm Inj 1983;10:79–85.

Peng X, Wang JH, Fang XW, Gong ZY, Li ZQ, Yi ZH. [Anti-inflammatory image analysis. Nat Methods 2012;9:671–5.]

Schwacha MG, Daniel T. Up-regulation of cell surface toll-like receptors on circulating gammadelta T-cells following burn injury. Cytokine 2008;44:328–34.

Schwacha MG, Holland LT, Chaudriy HJ, Messina JL. Genetic variability in the immune-inflammatory response after major burn injury. Shock 2005;23:123–8.

Pang W, Shuai XR, Guo ZR, Tao L, Li S, Wang J. Neutrophil dysfunction and decreased leukotriene production in burned, septic rats. Curr Surg 2005;12:442–7.

Peter FW, Schuschte DA, Barker JH, Fleischcker-Peter B, Pierangeli S, Vogt PM, et al. The effect of severe burn injury on proinflammatory cytokines and leukocyte behavior: its modulation with granulocyte colony-stimulating factor. Burns 1999;25:477–86.

Piccolo MT, Wang Y, Verbrugge S, Warner RL, Sannomiyia P, Piccolo NS, et al. Role of chemotactic factors in neutrophil activation after thermal injury in rats. Inflammation 1999;23:371–85.

Pinté E, Brown B, Houlé JRS, Brain SD. Lack of evidence for tachykinin NK1 receptor-mediated neutrophil accumulation in the rat cutaneous microvascularity by thermal injury. Eur J Pharmacol 1999;369:91–8.

Qian LW, Evani SJ, Chen P, Brandenburg KS, Weaver AJ, Fourcaudot AB, et al. [Effects of blood serum from rats with combined thermal injury and x-irradiation and combined radiation-thermal injuries]. Zhongguo Weisheng Bing Ji Jiu Yi Xue 1999;4:24 [in Chinese].

Qiu XW, Wang JH, Fang XW, Gong ZY, Li ZQ, Yi ZH. [Effects of hydrogen on the lung activity and healing-promoting effects of topical application of emu oil on wound in scalded rats]. Di Yi Jun Yi Da Xue Xue Bao 2005;25:407–10 [in Chinese].

Shiota N, Nishikori Y, Kakizoe E, Shimoura K, Niibayashi T, Shimbori C, et al. [Anti-inflammatory image analysis]. Arch Anat Gistol Embriol 1986;91:81.

Qin C, Bian YX, Feng TT, Zhang JH, Yu YH. [Effects of hydrogen on the lung damage of mice at early stage of severe burn]. Zhonghua Shao Shang Za Zhi 2017;33:682–7 [in Chinese].

Qiu XW, Wang JH, Fang XW, Gong ZY, Li ZQ, Yi ZH. [Anti-inflammatory activity and healing-promoting effects of topical application of enu oil on wound in scalded rats]. Di Yi Jun Yi Da Xue Xue Bao 2005;25:407–10 [in Chinese].

Ran XZ, Su YP, Zheng HE. [Effects of blood serum from rats with combined radiation-thermal injury on the bone marrow hematopoietic progenitor cells growth]. Zhongguo Shi Yan Xue Ye Xue Za Zhi 2005;13:121–5 [in Chinese].

Qiao SQ, Schwacha MG. The composition of T-cell subsets are altered in the burn wound early after injury. PLoS One 2017;12:e0179015.

Rani M, Schwacha MG. Gamma Delta T cells regulate T-cell infiltration of the wound site after burn. Innate Immun 2015;21:140–5.

Rani M, Zhang Q, Schwacha MG. Gamma Delta T cells regulate wound myeloid cell activity after burn. Shock 2014;42:133–41.

Rennekampf OH, Hansbrough JF, Tenenhaus M, Kiessig V, Yi ES. Effects of early and delayed wound excision on pulmonary leukosequestration and neutrophil respiratory burst activity in burned mice. Surgery 1995;118:884–92.

Samonte VA, Goto M, Ravindranath TM, Fazal N, Holloway VM, Goyal A, et al. Exacerbation of intestinal permeability in rats after a two-hit injury: burn and Enterococcus faecalis infection. Crit Care Med 2004;32:2267–73.

Samonte VA, Goto M, Ravindranath TM, Fazal N, Holloway VM, Goyal A, et al. Exacerbation of intestinal permeability in rats after a two-hit injury: burn and Enterococcus faecalis infection. Crit Care Med 2004;32:2267–73.

Santangelo S, Gamelli RL, Shankar R. Myeloid commitment shifts toward monocytopoiesis after thermal injury and sepsis. Ann Surg 2001;233:97–106.

Sartorelli KH, Silver GM, Gamelli RL. The effect of granulocyte colony-stimulating factor (G-CSF) upon burn-induced defective neutrophil chemotaxis. J Trauma 1991;31:529–32; discussion 529–30.

Schindel D, Maze R, Liu Q, Williams D, Grosfeld J. Interleukin-11 improves survival and reduces bacterial translocation and bone marrow suppression in burned mice. J Pediatr Surg 1997;32:312–5.

Schmidt K, Bruchelt G, Kistler D, Koslowski L. Phagocytic activity of granulocytes and alveolar macrophages after burn injury measured by chemiluminescence. Burns Incl Therm Inj 1983;10:79–85.

Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods 2012;9:671–5.

Schvacha MG, Daniel T. Up-regulation of cell surface toll-like receptors on circulating gammadelta T-cells following burn injury. Cytokine 2008;44:328–34.

Shallo H, Plackett TP, Heinrich SA, Kovacs EJ. Monocyte chemotactant protein-1 (MCP-1) and macrophage infiltration into the skin after burn injury in aged mice. Burns 2003;29:641–7.

Shao QB, Zhang X, Chen XL, Liu Y, Zhang Q, Liao ZJ. [Protective effect of early application of lytic cocktail on small intestine of severely scalded rats]. Zhonghua Shao Shang Za Zhi 2010;26:180–4 [in Chinese].

Sheng O, Sener E, Sener G, Cetinel S, Erzik C, Yegen BC. Chrelin improves burn-induced multiple organ injury by depressing neutrophil infiltration and the release of pro-inflammatory cytokines. Peptides 2008;29:1231–40.

Semochkin SV, Bekman EM, Baranova OA, Arion VV. Regulatory effects of Ribotim on functional activity of neutrophils and wound healing during experimental burn trauma. Bull Exp Biol Med 2001;131:257–9.

Sheeran PW, Maass DL, White DJ, Turbeville TD, Giroir BP, Horton JW. Aspiration pneumonia-induced sepsis increases cardiac dysfunction after burn trauma. J Surg Res 1998;76:192–9.

Shen H, Yao P, Lee E, Greenhalgh D, Soulika AM. Interferon-gamma inhibits healing post scald burn injury. Wound Repair Regen 2012;20:580–91.

Shi S, Xia Z. [Screening of aberrant genes of immunocytes in severely scalded rats by inhibition of subtractive hybridization]. Zhonghua Shao Shang Za Zhi 2001;17:295–7 [in Chinese].

Shihkodyrev VV, Kaz’min VI, Datsenkov AV. [Tissue basophils in thermal damage to the skin in an experiment (morphometric analysis and statistical modelling)]. Arkh Anat Gistol Embriol 1986;91:81–4 [in Russian].

Silva MA, Trevisan G, Klake JE, Nascimento MF, Barcelli U, Oliveira SM, et al. Antinociceptive and anti-inflammatory effects of Aloe Saponaria Haw on thermal injury in rats. J Ethnopharmacol 2013;146:393–401.

Sartorelli KH, Silver GM, Gamelli RL. The effect of granulocyte colony-stimulating factor (G-CSF) upon burn-induced defective neutrophil chemotaxis. J Trauma 1991;31:529–32; discussion 529–30.
Smith CW, Goldman AS. Selective effects of thermal injury on mouse peritoneal macrophages. Infect Immun 1972;5:938–41.

Souza HR, de Azevedo LR, Posselbo L, Costa SS, Iyomasa-Pilon MM, Oliani SM, et al. Heterogeneity of mast cells and expression of annexin A1 protein in a second degree burn model with silver sulfadiazine treatment. PLoS One 2017;12:e0173417.

Sulaiman M, Alviileli SR, Raghavankutty M, Kurup GM. Sulfated polysaccharide acyphyllan from Padaea tetraspermum enhances healing of burn wounds by ameliorating inflammatory responses and oxidative damage. Mol Biol Rep 2020;47:8701–10.

Sun Y, Yuan C, Chen X, Wang F, Sun C, Gao Z, et al. Effect of different concentrations of hypertonic sodium fluid resuscitation on intestine injury in rats at the early stage of severe burn. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue 2018;30:198–203.

Tan XD, Dai F, Wang JH. [Effects of early administration of imipenem on the burn-induced immune response]. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue 2002;18:350–3 [in Chinese].

Tian M, Qiu C, Niu Y, Dong J, Cao X, Song F, et al. The relationship between inflammation and impaired wound healing in a diabetic rat burn model. J Burn Care Res 2016;37:e115–24.

Till GO, Beauchamp C, Menapace D, Beauchamp CL, Kunkel R, Johnson KJ, et al. Heterogeneity of mast cells and expression of annexin A1 protein in a second degree burn model with silver sulfadiazine treatment. PLoS One 2017;12:e0173417.

Tan XD, Dai F, Wang JH. [Effects of early administration of imipenem on the burn-induced immune response]. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue 2002;18:350–3 [in Chinese].

Tajima G, Delisle AJ, Hoang K, O'Leary FM, Ikeda K, Hanschen M, et al. Immune system phenotyping of radiation and radiation combined injury in outbred mice. Radiat Res 2013;179:101–12.

Takahashi H, Tsuda Y, Kobayashi M, Herndon DN, Suzuki F. Increased norepinephrine production associated with burn injuries results in CCL2 production and type II T cell generation. Burns 2004;30:317–21.

Teng DC, Hui J, Wang H, Che JZ, Wang WS, Jia YJ, et al. [Inhibitory effects of salviae miltiorrhiza and beta-aminocarb natrium on the postburn acute lung injury in rats]. Zhonghua Shao Shang Za Zhi 2003;19:271–4 [in Chinese].

Tian M, Qiu C, Niu Y, Dong J, Cao X, Song F, et al. The relationship between inflammation and impaired wound healing in a diabetic rat burn model. J Burn Care Res 2016;37:e115–24.

Toth B, Alexander M, Daniel T, Chaudry IH, Hubbard WJ, Schwacha MG. The role of gammadelta T cells in the regulation of neutrophil-mediated tissue injury. Burns 2007;33:908–16.

Tobo H, Alexander M, Daniel T, Chaudry IH, Hubbard WJ, Schwacha MG. The role of gammadelta T cells in the regulation of neutrophil-mediated tissue injury. J Trauma 1983;23:269–77.

Tissot M, Roch-Arveiller M, Fontagne J, Giroud JP. Effects of niflumic acid on peritoneal macrophages. J Immunol Methods 1989;126:345–52.

Tolku HZ, Sener G, Jahovic N, Uslu B, Arazk S, Yegen BC. Beta-glucan protects against burn-induced oxidative organ damage in rats. Int Immunopharmacol 2006;6:156–69.

Tolku HZ, Tunali-Akbay T, Erkanli G, Yuksel M, Ercan F, Sener G. Silymarin, the antioxidant component of Silybum marianum, protects against burn-induced oxidative skin injury. Burns 2007;33:908–16.

Toth B, Alexander M, Daniel T, Chaudry IH, Hubbard WJ, Schwacha MG. The role of gammadelta T cells in the regulation of neutrophil-mediated tissue injury. J Trauma 1983;23:269–77.

Tissot M, Roch-Arveiller M, Fontagne J, Giroud JP. Effects of niflumic acid on peritoneal macrophages. J Immunol Methods 1989;126:345–52.

Tschöp J, Martignoni A, Reid MD, Aderian SG, Gardner J, Noel GJ, et al. Differential immunological phenotypes are exhibited after scald and flame burns. Shock 2009;31:157–63.

Valvis SM, Waithman J, Wood FM, Fear MW, Fear VS. The immune response to skin trauma is dependent on the etiology of injury in a mouse model of burn and excision. J Invest Dermatol 2015;135:2119–28.

Vasheghani MM, Bayat M, Rezaei F, Bayat A, Karimipour M. Effect of low-level laser therapy on mast cells in second-degree burns in rats.(Photo)tom Laser Surg 2008;26:1–5.

Vinaik R, Abdullahi A, Barayan D, Jeschke MG. NLRP3 inflammasome activity is required for wound healing after burns. Transl Res 2020;217:47–60.

Wallner SF, Vautrin R, Katz J. The haematopoietic response to burning: studies in a splenectomized animal model. Burns Incl Therm Inj 1987;13:15–21.

Wan FS, Li GH. [Protective effects of taurine on myocardial injury in severely burned rats]. Zhonghua Shao Shang Za Zhi 2005;21:173–6 [in Chinese].

Wang R, Gao C, Liu D. Effects of shenhai injection on expression of TNF-alpha mRNA in peritoneal macrophages of scald mice. Chin Med J (Engl) 2002;115:293–5.

Wang X, Wang Y, Peng D, Huang W, Zhou X, Fu G. Changes in the inositol lipid signal system and effects on the secretion of TNF-α by macrophages in severely scalded mice. Burns 2011;37:1376–85.
function of mice injured by burns]. China J Chin Mater Med 1999;15: 557–9 [in Chinese].

Xiao M, Li L, Hu Q, Ma L, Liu L, Chu W, et al. Rapamycin reduces burn wound progression by enhancing autophagy in deep second-degree burn in rats. Wound Repair Regen 2013;21:852–9.

Xiao M, Li L, Li C, Zhang P, Hu Q, Ma L, et al. Role of autophagy and apoptosis in wound healing of deep second-degree burn in rats. Acad Emerg Med 2014;21:383–91.

Xiao XG, Bu HG, Li QG, Huang P. Sivelestat sodium attenuates acute lung injury by decreasing systemic inflammation in a rat model of severe burns. Eur Rev Med Pharmacol Sci 2016;20:528–36.

Xiao Y, Lu W, Li X, Zhao P, Yao Y, Wang X, et al. An oligodeoxynucleotide with AAAG repeats significantly attenuates burn-induced systemic inflammatory responses via inhibiting interferon regulatory factor 5 pathway. Mol Med 2017;23:166–76.

Xu P, Fu X, Xiao N, Guo Y, Pei Q, Peng Y, et al. Involvements of γδT lymphocytes in acute and chronic skin wound repair. Inflammation 2017;40: 1416–27.

Xu QL, Cai C, Qi WW, Xia ZG, Tang YZ. [Influence of omega-3 polyunsaturated fatty acids on inflammation-related parameters in lung tissue of rats with severe scald]. Zhonghua Shao Shang Za Zhi 2011;27:358–62 [in Chinese].

Xue DJ, Lin JH, Chen J, Huang WX, Su GL. [Effects on wound bed of deep burn following eschar excision with different wound management in rabbits]. Zhonghua Yi Xue Za Zhi 2016;96:2427–32 [in Chinese].

Yan B, Huang Y, Yang Z. [The protective effects of prompt escharectomy on myocardial injury following burn in rats]. Zhonghua Zheng Xing Shao Shang Wai Ke Za Zhi 1999;15:112–4 [in Chinese].

Yan R, Chen Z, Qin F. [Levels of serum G-CSF and supplement of CM-CSF in rats sustaining delayed resuscitation after major burn]. Zhonghua Zheng Xing Shao Shang Wai Ke Za Zhi 1997;13:368–72 [in Chinese].

Yang CL, Wei ZR, Zhang TH, Zeng XQ, Wu BH. [Effects of lappaconitine on pain and inflammatory response of severely burned rats and the mechanism]. Zhonghua Shao Shang Za Zhi 2017a;33:374–80 [in Chinese].

Yang H, Hu C, Yao Y, Chai J, Li M, Yongqiang F, et al. Effects of ulinastatin on expression pattern of high mobility group box-1 protein and CD4+ CD25+ regulatory T cells in rats with scald injury. Cent Eur J Immunol 2013b;38:1–7.

Yang ML, Li YH, Tan Q, Li JT, Que LL. [Effect of hydrocinnamomol-L-vinyl pyrrolidine on healing quality of deep partial-thickness scald wound in mice]. Zhonghua Shao Shang Za Zhi 2016;32:658–66 [in Chinese].

Yang X, Bai H, Cai W, Liu J, Wang Y, Xu Y, et al. Inhibition of Na+/H+ exchanger 1 by cariporide alleviates burn-induced multiple organ injury. J Surg Res 2013a;185:797–804.

Yang YX, Wang JH, Liu L, Zou Q, Zhang Y, Bai Z. [Effects of seawater immersion on the inflammatory response and oxygen free radical injury of rats with superficial partial-thickness scald at early stage]. Zhonghua Shao Shang Za Zhi 2017b;33:361–7 [in Chinese].

Yao M, Xu W, Shi J. [Gene expression of growth factors and their receptors in healing of partial thickness burn wound in rats]. Zhonghua Zheng Xing Shao Shang Wai Ke Za Zhi 1999:15:85–8 [in Chinese].

Yao S, Yao Y, Li H, Yu Y, Sheng Z. [Effect of rapamycin (RPM) on interleukin-10 gene expression in rats with postburn Staphylococcus aureus sepsis]. Chin J Emerg Med 2006;15:34–7 [in Chinese].

Yao YM, Lu LR, Yu Y, Liang HP, Chen JS, Shi ZG, et al. Influence of selective decontamination of the digestive tract on cell-mediated immune function and bacteria/endotoxin translocation in thermally injured rats. J Trauma 1997;42:1073–9.

Yexiang S, Chunyu X, Xulin C. [Effect of different concentrations of hypertonic sodium fluid resuscitation on intestine injury in rats at the early stage of severe burn]. Chin J Crit Illn Emerg Med 2018;30:198–203 [in Chinese].

Yutt RW, Pruitt BA Jr. Decreased wound neutrophils and indiscriminate margination in the pathogenesis of wound infection. Surgery 1985;98:191–8.

Yutt RW, Shires GT. Increased susceptibility to infection due to infusion of exogenous chemotax. Arch Surg 1987;122:111–6.

Zaets TL, Dolgina MI, Muzikant LI, Kotkina TI, Nosova IN. [Changes in skin enzyme activity in experimental burns]. Voprosy Med Khim 1977;6:763–8 [in Russian].

Zakirova EY, Valeeva AN, Aimaletdinov AM, Syromiatnikova VY, Naumenko EA, Rizvanov AA. Development of the new method for the therapy of animal burns. BioNanoSci 2021;11:232–7.

Zhan JH, Yan J, Tao WB, You HY. [Experimental research on the effects of Chinese herb drugs on immune dysfunction in severely scalded rats]. Zhonghua Shao Shang Za Zhi 2007;23:413–6 [in Chinese].

Zhang CH, Fu TY, Cai L, Wang GY, Tang HT. [Regulation effect of liguistazine on vasopermeability of rats with delayed resuscitation due to burn shock]. Chin J Clin Rehabil 2006a;10:120–2 [in Chinese].

Zhang CH, Li HT, Xia ZF, Tang HT, Wang GY. [Regulatory effect of panax notoginseng saponins on pneumovasopermeability of rats with delayed fluid resuscitation following severe burn]. Chin J Clin Rehabil 2006b;10:98–100 [in Chinese].

Zhang CH, Tang HT, Li HT, Wang GY, Zhao F. [Regulating effect of sanchinoside on delayed resuscitation following severe burn in rats]. Chin J Clin Rehabil 2006c;10:81–3 [in Chinese].

Zhang D, Wang B, Sun Y, Wang C, Mukherjee S, Yang C, et al. Injectable enzyme-based hydrogel matrix with precisely oxidative stress defense for promoting dermal repair of burn wound. Macromol Biosci 2020;20:e2000036.

Zhang DW, Gong ZY, Peng YZ. [Replication of a rat model of burn with infection]. Zhonghua Shao Shang Za Zhi 2011;37:104–8 [in Chinese].

Zhang F, Qiu XC, Wang JJ, Hong XD, Wang GY, Xia ZF. Burn-mediated dysregulation of inflammation and immunity in experimental and clinical studies. J Burn Care Res 2017;38:e4892–9.

Zhang J, La X, Fan L, Li P, Yu Y, Huang Y, et al. Immunosuppressive effects of mesenchymal stem cell transplantation in rat burn models. Int J Exp Pathol 2015;85:S129–36.

Zhang J, Xia Z, Li X, Cai C, Xu Q. [Effects of docosahexaenoic acid on inflammation-associated cytokines in blood and pulmonary tissue of rats with severe scald injury]. Zhonghua Shao Shang Za Zhi 2015a;31:16–20 [in Chinese].

Zhang PH, Yang LR, Li LL, Zeng JZ, Huang XY. [Proteomic change in lymphocytes of scalded rabbits caused by Staphylococcus aureus invasion]. Zhonghua Shao Shang Za Zhi 2009;25:202–6 [in Chinese].

Zhang Q, Liao Z, Liu J. [The dynamic changes of serum TNFalpha level in scalded rats after the administration of rhG-CSF during the early postburn stage]. Zhonghua Shao Shang Za Zhi 2001;17:146–8 [in Chinese].

Zhang Q, Liao ZJ, Wang X, Liu J, Jin ZX, Xu LJ. [The influence of postburn administration of rhG-CSF on the host inflammatory response]. Zhonghua Shao Shang Za Zhi 2003;19:216–8 [in Chinese].

Zhang XN. [Changes in interleukin-1 and interleukin-2 in scalded rats]. Zhonghua Zheng Xing Shao Shang Wai Ke Za Zhi 1989;5:213–5 [in Chinese].

Zhang XP, Li TZ, Xu YB, Ke CN, Zhang T. [Regulation of Jiedu Shaozhong Gao on the expressions of tumor necrosis factor-alpha and epidermal growth factor in models of deep degree II scalding]. Chin J Clin Rehabil 2005;9:110–2 [in Chinese].

Zhou JP, Gao Z, Sun YX, Chen XL, Wu XS, Wang F. [Effects of hypertonic sodium saline resuscitation on the liver damage of rats at early stage of severe scald]. Zhonghua Shao Shang Za Zhi 2007;23:249–52 [in Chinese].
Supplementary Figure S1. Neutrophil/lymphocyte ratio. For studies that measured both neutrophil and lymphocyte numbers, the neutrophil/lymphocyte ratio was calculated for animals with burn (red) and for control animals (blue). Statistical differences between animals with burn and their control are indicated by black asterisks (Wilcoxon signed rank test: \(P < 0.05 \)).
Supplementary Table S1. Outcome Measures and References Used in Systematic Review and Meta-Analysis

Cell Type	Outcome Data in Meta-Analysis (Number of Studies)	References in Systematic Review	
Neutrophils (granulocytes, polymorphonuclear cells)	Blood immune cell count (50)	Adediran et al., 2010; Akgun et al., 2017; Alexander et al., 2006; Akerlind, 1974; O'Brien, 1995; Pan, 2005; Zilan et al., 2003	
	Wound immune cell count (48) Migration (10)		
	Antibacterial function (nine) ROS production (16)		
	Inflammatory mediator production (8)		
Leukocytes (white blood cells, inflammatory cells)	Blood immune cell count (45)	Abdallah Hajj Hussein et al., 2012; Bird et al., 2010; Bjornson et al., 1988; Brownstein et al., 2006; Burmeister et al., 2016; Calum et al., 2009; Chao et al., 2020; D'Alesandro and Gruber, 1989; de David Antoniazzi et al., 2018; Dinescu et al., 2019; Dong et al., 1993a, 1993b; Dong et al., 2012, 2001, 1997; Fujimi et al., 2006; Gadd and Hare, 1989; Gamelli et al., 1992; Toklu et al., 2007, 2006; Toth et al., 2004; Wallner et al., 1987; Wang et al., 2016; Yuan and Pruit, 1985; Yuan and Shires, 1987; Zakirova et al., 2021; Zhang et al., 2017; Zhao et al., 2009	
	Wound immune cell count (14) Migration (11)		
Lymphocytes	Blood immune cell count (25)	Brownstein et al., 2006; Burleson et al., 1988, 1987; Chao et al., 2020; D'Alesandro and Gruber, 1990; Dinescu et al., 2019; Fan et al., 2016; Fujimi et al., 2006; Gamelli et al., 1985; Gardiner et al., 2011; Gask et al., 1981; Jabeen et al., 2019; Khalid et al., 2019; Korkmaz et al., 2020; Marano et al., 1989; Maung et al., 2008; McManus, 1983; Miles et al., 1999; Nassar et al., 2012; Noel et al., 2007; Nwariaku et al., 1996, 1995; Pallua et al., 2003; Pejnović et al., 1995; Penturf et al., 1996; Peter et al., 1999; Santangelo et al., 2001; Sartorelli et al., 1991; Schindel et al., 1997; Schwacha et al., 2005; Semochkin et al., 2001; Sheeran et al., 1998; Shippee et al., 1988; Shoup et al., 1998; Tajima et al., 2013; Tian et al., 2016; Toth et al., 2004, 2003; Zakirova et al., 2021; Zhang et al., 2020; and Zilan et al., 2015	
Monocytes	Blood immune cell count (24)	Alexis et al., 2015; Brownstein et al., 2006; Calum et al., 2009; Chao et al., 2020; Dinescu et al., 2019; Fujimi et al., 2006; Gardiner et al., 2014; Gómez et al., 2014; Linz et al., 2016; Linz et al., 2017; Madhally et al., 2002, 2001; Marano et al., 1988; Maung et al., 2008; Muthu et al., 2009; Noel et al., 2010, 2007; Penturf et al., 1996; Santangelo et al., 2001; Schindel et al., 1997; Schwacha et al., 2005; Shippee et al., 1988; Shoup et al., 1998; Tajima et al., 2013; Tian et al., 2016; Toth et al., 2004, 2003; Zakirova et al., 2021; Zhang et al., 2020; and Zhao et al., 2009	
Macrophages (monocytes in wound tissue)	Wound immune cell count (21) Inflammatory mediator production (9)	Beginenman et al., 2012; Daniel et al., 2007; Dong et al., 1993b; Heinrich et al., 2003; Ibrahim et al., 2014; Inoue et al., 2018; Jabeen et al., 2019; Khalid et al., 2019; Kimura et al., 2008; Korkmaz et al., 2020; Lateef et al., 2019; Li et al., 2016; Liu et al., 2016; Liu et al., 2014; Luo et al., 2014; Lu et al., 2016; Maung et al., 2012; Olsikov et al., 2014; Pejnović et al., 1995; Rani et al., 2014; Schwacha and Somers, 1998; Shallo et al., 2003; Shen et al., 2012; Silva et al., 2013; Smith and Goldman, 1972; Souza et al., 2017; Vinaik et al., 2020; Wang et al., 2011; Wang et al., 2006; Wang et al., 2002; Waymack et al., 1987; and Wu et al., 2018	
Thrombocytes (platelets)	Blood immune cell count (14)	Bjornson et al., 1988; Chao et al., 2020; D’Alesandro and Gruber, 1990; Fujimi et al., 2006; Heideman, 1979; Khalid et al., 2019; Kuroiwa et al., 1990; Lavaud et al., 1988; Linz et al., 2017; Malaky et al., 2004; Newsome and Eurenius, 1973; Noel et al., 2010; Pallua et al., 2003; Schindel et al., 1997; and Wallner et al., 1987	

(continued)
Supplementary Table S1. Continued

Cell Type	Outcome Data in Meta-Analysis (Number of Studies)	References in Systematic Review
Mast cells	Wound immune cell count (9)	Bankova et al., 2014; Bayat et al., 2008; Dong et al., 2015; Ibrahim et al., 2014; Lateef et al., 2019; Nishikori et al., 1998; Shiota et al., 2010; Souza et al., 2017; and Vasheghani et al., 2008.
T cells (T lymphocytes)	Blood immune cell count (9)	Burleson et al., 1988; Burleson et al., 1987; Chao et al., 2020; Daniel et al., 2007; Fan et al., 2016; Guo and Gu, 1988; Hansbrough and Gadd, 1989; Ikeuchi et al., 1981; Liu et al., 2011; Madhally et al., 2002, 2001; Organ et al., 1989; Rani et al., 2015; Rani and Schwacha, 2017; Schwacha and Daniel, 2008; Shen et al., 2012; Shippee et al., 1988; Tajima et al., 2013; Toth et al., 2004; Wu et al., 2010; Xu et al., 2017; Yang et al., 2013b; and Yao et al., 1997
CD4^+ T cells	Blood immune cell count (7)	Burleson et al., 1988; Chao et al., 2020; Fan et al., 2016; Madhally et al., 2001; Shippee et al., 1988; Tajima et al., 2013; and Wu et al., 2010
CD8^+ T cells	Blood immune cell count (7)	Burleson et al., 1988; Chao et al., 2020; Fan et al., 2016; Madhally et al., 2001; Shippee et al., 1988; Tajima et al., 2013; and Wu et al., 2010
B cells	Blood immune cell count (5)	Burleson et al., 1988; Chao et al., 2020; Fan et al., 2016; Madhally et al., 2001; Shippee et al., 1988; Tajima et al., 2013; and Wu et al., 2010
Eosinophils	Blood immune cell count (5)	Avsar et al., 2016; Fear et al., 2016; Khalid et al., 2019; Lee et al., 2011; Marano et al., 1988; Silva et al., 2013; Valvis et al., 2015; Weaver et al., 2020; and Zakirova et al., 2021
Basophils		Weaver et al., 2020
Underdefined cells		Abo El-Noor et al., 2017; Daniel et al., 2007; Fear et al., 2016; Ibrahim et al., 2014; Iwashita et al., 1999; Mikhal’chik et al., 2004; Rani et al., 2014; and Schwacha et al., 2019
Phagocytes (neutrophils + monocytes)		Chakraborty et al., 2018; Guo and Gu, 1988; Noel et al., 2010; and Rani et al., 2014
Dendritic cells		Fear et al., 2016; Howell et al., 2012; and Lateef et al., 2019
NK cells		Fear et al., 2016 and Tajima et al., 2013
Langerhans cells		Bohannon et al., 2008; Chakraborty et al., 2018; and Lateef et al., 2019
NKT cells		Fear et al., 2016
PBMCs (monocytes + lymphocytes)		Cakir et al., 2005; Groger et al., 2010; Madhilally et al., 2003; Madhally et al., 2002, 2001; Rani et al., 2014; and Takahashi et al., 2004

A minimum of five articles was required for inclusion of a defined outcome measure in the meta-analysis. For cell function apoptosis, no cell type reached this minimum.