SOLUTION OF A PROBLEM OF PELLER CONCERNING SIMILARITY

N. J. KALTON AND C. LE MERDY

Abstract. We answer a question of Peller by showing that for any $c > 1$ there exists a power-bounded operator T on a Hilbert space with the property that any operator S similar to T satisfies $\sup_n \|S^n\| > c$.

1. Introduction

In this note we answer a question due to Peller [12] which has also recently been raised by Pisier [13] p.114. Peller’s question is whether, for any $\epsilon > 0$, every power-bounded operator T is similar to an operator S with $\sup_n \|S^n\| < 1 + \epsilon$.

It was shown by Foguel [5] in 1964 that there is a power-bounded operator T on a Hilbert space \mathcal{H} which is not similar to a contraction. It was later shown by Lebow that this example is not polynomially bounded [11]; for other examples see [2] and [13], Chapter 2. Recently Pisier [14] answered a problem raised by Halmos by constructing an operator which is polynomially bounded and not similar to a contraction.

We shall construct a family of counter-examples to Peller’s question. These counter-examples have a rather simple structure. Let w be an A_2-weight on the circle \mathbb{T} and let $H^2(w)$ be the closed linear span of $\{e^{in\theta} : n \geq 0\}$ in $L^2(w)$. We consider an operator

$$T(\sum_{n=0}^{\infty} a_n e^{in\theta}) = \sum_{n=0}^{\infty} \lambda_n a_n e^{in\theta}$$

where $(\lambda_n)_{n=0}^{\infty}$ is a monotone increasing sequence of positive reals with $\lambda_n \uparrow 1$ and $\lambda_n < 1$ with

$$\lim_{n \to \infty} \frac{1 - \lambda_{n+1}}{1 - \lambda_n} = 0.$$

For such operators we can prove a rather precise result (Theorem 3.4):

$$\inf_n \{ \sup \|(A^{-1}TA)^n\| : A \text{ invertible} \} = \sec \left(\frac{\pi}{2p} \right)$$

1991 Mathematics Subject Classification. Primary: 47A65, 42A50.

The first author was supported by NSF grant DMS-9870027.
where \(p = \sup \{ a : w^a \in A_2 \} \). By taking simple choices of \(A_2 \)-weights where \(p < \infty \) we can create a family of counter-examples.

The proof of Theorem 3.4 depends heavily on estimates for the norm of the Riesz projection in Section 2 particularly Theorem 2.4. These results can be obtained by a careful reading of the classical work of Helson and Szegö \[8\] on \(A_2 \)-weights (cf. \[4\]). However, we present a self-contained argument, in which the reader will recognize many similarities with the Helson-Szegö theory.

We also show that our examples can only be polynomially bounded in the trivial situation when \(w \) is equivalent to the constant function and then \(T \) is similar to contraction. We also note that the case \(p = \infty \) in (1.1) (when Peller’s conjecture holds for \(T \)) corresponds to the case when \(\log w \) is in the closure of \(L^\infty(\mathbb{T}) \) in \(BMO(\mathbb{T}) \).

2. The norm of the Riesz projection on weighted \(L^2 \)-spaces

We start by recalling an easy lemma concerning projections on a Hilbert space.

Lemma 2.1. Let \(E \) and \(F \) be closed subspaces of a Hilbert space \(\mathcal{H} \) so that \(E + F \) is dense in \(\mathcal{H} \). Suppose \(0 \leq \varphi < \pi/2 \). In order that there is a projection \(P \) of \(\mathcal{H} \) onto \(E \) with \(F = \ker P \) with \(\|P\| \leq \sec \varphi \) it is necessary and sufficient that

\[
|\langle e, f \rangle| \leq \sin \varphi \|e\| \|f\| \quad e \in E, \quad f \in F.
\]

Remark. Note that a consequence of Lemma 2.1 is that if \(P \) is any non-trivial projection on a Hilbert space then \(\|P\| = \|I - P\| \).

Now let \(\mathbb{T} \) be the unit circle (which we identify with \((\pi, \pi)\) in the usual way) equipped with the standard Haar measure \(d\theta/2\pi \). Let \(\mu \) be any finite positive Borel measure on \(\mathbb{T} \). We denote by \(L^2(\mu) = L^2(\mathbb{T}; \mu) \) the corresponding weighted \(L^2 \)-space; if \(\mu \) is absolutely continuous with respect to Haar measure so that \(d\mu = (2\pi)^{-1} w(\theta) d\theta \) then we write \(L^2(w) \). We refer to any nonnegative \(w \in L^1(\mathbb{T}) \) so that \(w > 0 \) on a set of positive measure as a weight.

Suppose \(w \) is a weight. We recall that \(H^2(w) \) is the closed subspace of \(L^2(w) \) generated by the functions \(\{ e^{in\theta} : n \geq 0 \} \). We recall that \(w \) is an \(A_2 \)-weight if there is a bounded projection \(R \) of \(L^2(w) \) onto \(H^2(\mu) \) with \(R(e^{in\theta}) = 0 \) if \(n < 0 \). In this case we always have that \(w > 0 \) a.e., \(w^{-1} \) is an \(A_2 \)-weight and \(L^2(w) \subset L^1 \); the operator \(R \) must coincide with the Riesz projection \(Rf \sim \sum_{n \geq 0} \hat{f}(n) e^{in\theta} \). Let us denote by \(\|R\|_w \) the norm of the Riesz projection on \(L^2(w) \). Note that for an \(A_2 \)-weight \(H^2(w) = H^1 \cap L^2(w) \). In particular we can define \(f(z) = \sum_{n \geq 0} \hat{f}(n) z^n \) for \(|z| < 1 \).

The following Proposition can be derived from the classical work of Helson-Szegö \[8\] or \[4\]. However, we give a self-contained direct proof.
Proposition 2.2. Let w be a weight function on \mathbb{T}. Assume $0 \leq \varphi < \frac{\pi}{2}$. The following conditions are equivalent:
(1) w is an A_2-weight and $\|R\|_w \leq \sec \varphi$.
(2) There exists $h \in H^1$ so that $|w - h| \leq w \sin \varphi$ a.e.

Proof. First note that by Lemma 2.1 (1) is equivalent to
\begin{equation}
\left| \int_{-\pi}^{\pi} f(\theta)g(\theta)w(\theta) \frac{d\theta}{2\pi} \right| \leq \sin \varphi \left(\int_{-\pi}^{\pi} |f(\theta)|^2 w(\theta) \frac{d\theta}{2\pi} \right)^{1/2} \left(\int_{-\pi}^{\pi} |g(\theta)|^2 w(\theta) \frac{d\theta}{2\pi} \right)^{1/2},
\end{equation}
for all $f, g \in H^2(w)$ with $g(0) = 0$.

To prove (1) implies (2) we note that if w is an A_2-weight so that $\log w \in L^1$ we can find an outer function $F \in H^2$ so that $w = |F|^2$ a.e.. Then (2.1) gives
\begin{equation}
\left| \int_{-\pi}^{\pi} f g w F^{-2} \frac{d\theta}{2\pi} \right| \leq \sin \varphi \left(\int_{-\pi}^{\pi} |f|^2 \frac{d\theta}{2\pi} \right)^{1/2} \left(\int_{-\pi}^{\pi} |g|^2 \frac{d\theta}{2\pi} \right)^{1/2},
\end{equation}
for $f, g \in H^2$ with $g(0) = 0$. This in turn implies that
\begin{equation}
\left| \int_{-\pi}^{\pi} f w F^{-2} \frac{d\theta}{2\pi} \right| \leq \sin \varphi \|f\|_1
\end{equation}
for all $f \in H^1$, with $f(0) = 0$. By the Hahn-Banach Theorem this implies there exists $G \in H^\infty$ so that $\|w F^{-2} - G\|_\infty \leq \sin \varphi$ or $|w - h| \leq w \sin \varphi$ where $h = F^2 G \in H^1$.

For the reverse direction just note that if $f, g \in H^2(w)$ with $g(0) = 0$ then
\begin{equation}
\int_{-\pi}^{\pi} f g w \frac{d\theta}{2\pi} = \int_{-\pi}^{\pi} f g (w - h) \frac{d\theta}{2\pi}
\end{equation}
so that (2.1) follows from the Cauchy-Schwartz inequality.

Let us isolate a simple special case of the above proposition.

Proposition 2.3. Let $0 \neq f \in H^1$ be such that $\arg f(\theta) \leq \varphi < \frac{\pi}{2}$ almost everywhere. If f is not identally zero then $w = \Re f$ is an A_2-weight for which $\|R\|_w \leq \sec \varphi$.

Proof. In this case $w = \Re f \geq 0$ a.e. and $|\Re f| \leq \tan \varphi w$ a.e. Furthermore:
\begin{equation}
|w - \cos^2 \varphi f|^2 \leq (\sin^4 \varphi + \cos^4 \varphi \tan^2 \varphi) w^2 \leq \sin^2 \varphi w^2
\end{equation}
a.e., so that we obtain the result from Proposition 2.2.

Remark. Suppose $0 < \alpha < 1$ and $f \in H^1(\mathbb{D})$ is given by
\begin{equation}
f(z) = \frac{(z - 1)^\alpha}{(z + 1)^\alpha}
\end{equation}
(taking the usual branch of \(w \mapsto w^\alpha \).) Then
\[
w = \Re f = \cos \frac{\alpha \pi}{2} \tan \alpha \frac{\theta}{2}.
\]
It follows that
\[
\|R\|_{\tan^{\alpha}(\theta/2)} \leq \sec \frac{\alpha \pi}{2}.
\]
In fact (2.2) is well-known (see [10], for example). We are grateful to Igor
Verbitsky for bringing this reference to our attention.

We will say that two weights \(v, w \) are equivalent (\(v \sim w \)) if
\(v/w, w/v \in L^\infty \).

Theorem 2.4. Suppose \(w \) is an \(A_2 \)−weight on \(\mathbb{T} \). Then
\[
\inf \{ \|R\|_v : v \sim w \} = \sec \frac{\pi}{2p}
\]
where
\[
p = \sup \{ a > 0 : w^a \in A_2 \}.
\]
Proof. First suppose \(v \sim w \) and \(\|R\|_v = \sec \psi \) where \(0 \leq \psi < \pi/2 \). Then there
exists \(h \in H^1 \) with \(|v - h| \leq v \sin \psi \) a.e. In particular, \(|\arg h| \leq \psi \) a.e. and
so \(h \) maps \(\mathbb{D} \) into the same sector. It follows that we can define \(h^r \in H^{1/r} \)
for all \(r > 0 \). Choose \(r \) so that \(r \psi < \pi/2 \), and let \(g = h^r \). Then \(\Re g \geq 0 \) and
\(|\Re g| \leq \tan(r\psi)\Re g \) so that \(g \in H^1 \). Now by Proposition 2.3 we have that \(\Re g \)
is an \(A_2 \)−weight. However \(\Re g \sim |h|^r \sim w^r \) so that \(r \leq p \). We deduce that
\(\psi \geq \pi/(2p) \).

For the converse direction assume that \(w^r \) is an \(A_2 \)−weight. Then there
exists \(h \in H^1 \) so that \(|w^r - h| \leq w^r \sin \psi \) where \(0 \leq \psi < \pi/2 \). Arguing as
above we have \(g = h^{1/r} \in H^1 \) and \(\Re g \) is an \(A_2 \)−weight with \(\|R\|_{\Re g} \leq \sec(\psi/r) \).
Note that \(\Re g \sim w \), and this establishes the other direction.

Remark. If we now let \(w(\theta) = |\tan \frac{\theta}{2/\alpha} \) where \(0 < \alpha < 1 \) then we can apply
(2.2) to deduce that, for this particular weight the infimum is attained, i.e.
\[
\inf \{ \|R\|_v : v \sim w \} = \|R\|_{\tan^{\alpha}(\theta/2)} = \sec \frac{\alpha \pi}{2}.
\]

3. Multipliers

Suppose \((e_n)_{n=0}^\infty \) be any Schauder basis of a Hilbert space \(\mathcal{H} \); note that we
do not assume \((e_n) \) to be orthonormal or even unconditional. Let \((P_n) \) be the
associated partial sum operators \(P_n(\sum_{k=0}^\infty a_k e_k) = \sum_{k=0}^n a_k e_k \). Let \(Q_n = I - P_n \)
and note that \(\|Q_n\| = \|P_n\| \) for all \(n \geq 0 \). Since \((e_n) \) is a basis we have
that \(\sup_n \|P_n\| = b < \infty \) where \(b \) is the \textit{basis constant}. We call an operator
T: \mathcal{H} \to \mathcal{H} a monotone multiplier (with respect to the given basis) if there is an increasing sequence \((\lambda_k)_{k=0}^{\infty}\) in \(\mathbb{R}\) so that \(0 \leq \lambda_k \leq 1\) so that
\[
T(\sum_{k=0}^{\infty} a_k e_k) = \sum_{k=0}^{\infty} \lambda_k a_k e_k.
\]

Lemma 3.1. If \(T\) is defined as above then \(T\) is (well-defined and) bounded and \(\sup_n ||T^n|| \leq b\).

Proof. It is enough to show \(T\) is bounded and \(||T|| \leq b\) since \(T^n\) is also a monotone multiplier. To see this note that if \((a_k)_{k=0}^{\infty}\) is finitely nonzero and \(x = \sum_{k=0}^{\infty} a_k e_k\), then
\[
Tx = \lambda_0 x + \sum_{k=1}^{\infty} (\lambda_k - \lambda_{k-1}) Q_k x
\]
so that \(||Tx|| \leq \sup_n ||Q_n|| = b. \)

We shall say that \(T\) is a fast monotone multiplier if in addition, \(\lambda_k < 1\) for all \(k\) and
\[
(3.1) \quad \lim_{k \to \infty} \frac{1 - \lambda_k}{1 - \lambda_{k-1}} = 0.
\]

Lemma 3.2. Suppose \(T\) is a fast monotone multiplier. Then there is an increasing sequence of integers \((N_n)_{n=0}^{\infty}\) so that \(\lim_{n \to \infty} ||T^{N_n} - Q_n|| = 0\).

Proof. Note that if \(x = \sum_{k=0}^{\infty} a_k e_k\) then
\[
T^{N_n} x - Q_n x = \sum_{k=0}^{n} \lambda_k N_n a_k e_k - (1 - \lambda_{N_n}^{N_n+1}) Q_n x + \sum_{k=n+1}^{\infty} (\lambda_k^{N_n} - \lambda_{N_n}^{N_n+1}) a_k e_k
\]
whence a calculation as in Lemma [3.3] gives
\[
||T^{N_n} x - Q_n x|| \leq b \lambda^{N_n}_n ||P_n x|| + (b + 1)(1 - \lambda^{N_n}_n) ||Q_n x||.
\]

It follows that
\[
||T^{N_n} - Q_n|| \leq b(b \lambda^{N_n}_n + (b + 1)(1 - \lambda^{N_n}_n))
\]
It remains therefore only to select \(N_n\) so that \(\lim_{n \to \infty} \lambda^{N_n}_n = 0\) and \(\lim_{n \to \infty} \lambda^{N_n+1}_{N_n+1} = 1\).

For convenience we write \(\lambda_n = e^{-\nu_n}\) where \(\nu_n/\nu_{n+1} = \kappa^2_n\) and \(\kappa_n \to \infty\). For any \(n \geq 0\), pick \(N_n\) to be the greatest integer so that \(N_n \nu_n^{1/2} \nu_{n+1}^{1/2} \leq 1\). Then
\[
N_n \nu_n^{1/2} \nu_{n+1}^{1/2} \geq \frac{N_n}{N_n + 1}
\]
and \(\lim N_n = \infty.\)
Now
\[N_n \nu_n \geq \frac{N_n \kappa_n}{N_n + 1} \]
and
\[N_n \nu_{n+1} \leq \kappa_n^{-1}. \]
This yields the desired result.

We now turn to the case when \(\mathcal{H} = H^2(w) \) where \(w \) is an \(A_2 \)-weight and \(e_k(\theta) = e^{ik\theta} \) for \(k \geq 0 \).

Lemma 3.3. The basis constant of \((e_k)_{k=0}^{\infty} \) in \(H^2(w) \) is given by \(b = \|R\|_w \).

Proof. In fact \(Q_n-1 f = e_n R(e_{-n} f) \) so it is clear that \(\|Q_n-1\| \leq \|R\|_w \). For the other direction suppose \(f \) is a trigonometric polynomial in \(L^2(w) \). Then for large enough \(n \) we have \(e_n f \in H^2(w) \) and then \(Rf = e_{-n} Q_n-1(e_n f) \). This quickly yields \(\|R\|_w \leq \sigma \).

Theorem 3.4. Let \(w \) be an \(A_2 \)-weight on \(\mathbb{T} \) and let \(T : H^2(w) \to H^2(w) \) be a fast monotone multiplier corresponding to the sequence \((\lambda_n) \). Then
\[
\inf \left\{ \sup_n \|(A^{-1}TA)^n\| : A \text{ invertible} \right\} = \sec \frac{\pi}{2p}
\]
where
\[p = \sup \{ a > 0 : w^a \in A_2 \}. \]

Proof. We shall prove that if \(\sigma \geq 1 \) then the existence of an invertible \(A \) so that \(\sup_n \|(A^{-1}TA)^n\| \leq \sigma \) is equivalent to the existence of a weight \(v \) equivalent to \(w \) so that \(\|R\|_v \leq \sigma \). Once this is done, the result follows from Theorem 2.4.

In one direction this is easy. Assume \(v \) equivalent to \(w \) and \(\|R\|_v \leq \sigma \). This means that there is an equivalent inner-product norm on \(H^2(w) \) in which the basis constant of \((e_k)_{k=0}^{\infty} \) bounded by \(\sigma \). It follows from Lemma 3.1 that in this equivalent norm we have \(\sup_n \|T^n\|_v \leq \sigma \). Hence \(T \) is similar to an operator \(A^{-1}TA \) such that \(\sup \|(A^{-1}TA)^n\| \leq \sigma \).

We now consider the converse. Let \(S : H^2(w) \to H^2(w) \) be the operator \(Sf = e_1 f \). Suppose \(A \) is an invertible operator such that \(\|(A^{-1}TA)^n\| \leq \sigma \). We will define a new inner-product on \(H^2(w) \) by
\[
\langle f, g \rangle = \text{LIM} \ (AS^n f, AS^n g)
\]
where LIM denotes any Banach limit (see e.g. [4] p. 85). Since \(S \) is an isometry on \(H^2(w) \) and \(A \) is invertible this defines an equivalent inner-product \(\| \cdot \| \) norm on \(H^2(w) \). Now for any \(f \in H^2(w) \) and fixed \(m \in \mathbb{N} \) we have
\[
\lim_{n \to \infty} \|AQ_{m+n} S^n f - AT^{N_{m+n}} S^n f\| = 0
\]
where \((N_n)\) is given in Lemma \([3.2]\). Hence
\[
\limsup_{n \to \infty} \left(\|AQ_{m+n}S^n f\|^2 - \sigma^2 \|AS^n f\|^2 \right) \leq 0.
\]

Now
\[
|Q_m f|^2 = \lim \|AS^n Q_m f\|^2 = \lim \|AQ_{m+n}S^n f\|^2 \leq \sigma^2 |f|^2.
\]

Thus with respect to the new norm \(| \cdot |\) the basis constant is at most \(\sigma\).

Now let \(c_k = \langle e_0, e_k \rangle\) for \(k \geq 0\) and let \(c_k = \overline{c}_{-k}\) when \(k < 0\). Then it follows easily that \(\langle e_k, e_l \rangle = c_{l-k}\) for all \(k, l\) and that for all finitely nonzero sequences \((a_k)\) of complex numbers we have that
\[
\sum_{k,l} a_k \overline{a_l} c_{k-l} \geq 0.
\]

This implies (see \([3]\) p. 38) that there is a finite positive measure \(\mu\) on \(\mathbb{T}\) so that
\[
\int e^{-ik\theta} d\mu(\theta) = c_k.
\]

Thus
\[
\langle f, g \rangle = \int f \overline{g} d\mu.
\]

However this norm is equivalent to the original norm so that \(\mu\) is absolutely continuous with respect to Lebesgue measure and of the form \((2\pi)^{-1} v(\theta) d\theta\) where \(v \sim \omega\).

It follows that in \(H^2(v)\) the basis constant of the exponential basis is at most \(\sigma\) and so by Lemma \([3.3]\) we have \(\|R\|_v \leq \sigma\) and the proof is complete.

We can now give explicit examples by taking the weights \(w(t) = |\theta|^\alpha\) where \(0 < \alpha < 1\). It is clear that in Theorem \([3.4]\) we have \(p = \alpha^{-1}\) and so for any fast monotone multiplier we have
\[
\inf \left\{ \sup_{n} \| (A^{-1}TA)^n \| : \ A \text{ invertible} \right\} = \sec \frac{\pi \alpha}{2} > 1.
\]

Note that we are essentially using here the original example of a conditional basis for Hilbert space due to Babenko \([1]\). We can also utilize \((2.3)\) to show that for this example the infimum in \((3.2)\) is actually attained. In general the infimum in \((3.2)\) need not be attained; this will be seen easily from Theorem \([3.6]\) below.

Theorem 3.5. Let \(w\) be an \(A_2\)–weight and suppose \(T : H^2(w) \to H^2(w)\) is a fast monotone multiplier, corresponding to the sequence \((\lambda_n)\). Then the following are equivalent:

(i) \(T\) is similar to a contraction.

(ii) \(T\) is polynomially bounded.

(iii) \(w \sim 1\).
Proof. That (i) implies (ii) is a consequence of von Neumann’s inequality (see [13]). Similarly (iii) implies (i) is trivial. It therefore remains to prove that (ii) implies (iii). We shall treat the case when the \(\lambda_k \) are distinct; small modifications are necessary in the other cases. We shall also suppose the measure \(d\mu = (2\pi)^{−1}w(\theta)d\theta \) is a probability measure so that \(\|e_k\| = 1 \) for all \(k \).

First note that if \(f \in H^\infty(\mathbb{D}) \) then for any \(r < 1 \), then \(f_r(T) \) is well-defined where \(f_r(z) = f(rz) \) and if \(T \) is polynomially bounded we have an estimate

\[
\|f_r(T)\| \leq C\|f\|_{H^\infty(\mathbb{D})},
\]

or equivalently

\[
\|\sum_{k=0}^{\infty} f(r\lambda_k)a_k e_k\| \leq C\|f\|_{H^\infty(\mathbb{D})}\|\sum_{k=0}^{\infty} a_k e_k\|
\]

whenever \((a_k) \) is finitely non-zero. Letting \(r \rightarrow 1 \) we obtain

\[
\|\sum_{k=0}^{\infty} f(\lambda_k)a_k e_k\| \leq C\|f\|_{H^\infty(\mathbb{D})}\|\sum_{k=0}^{\infty} a_k e_k\|
\]

Recall that by Carleson’s theorem \([3]\) the sequence \((\lambda_n) \) is interpolating (cf. \([6]\) p. 287-288) so that there is a constant \(B \) such that for any sequence \(\epsilon_k = \pm 1 \) there exists \(f \in H^\infty(\mathbb{D}) \) with \(\|f\|_{H^\infty(\mathbb{D})} \leq B \) and \(f(\lambda_k) = \epsilon_k \) for all \(k \geq 0 \). Hence

\[
\|\sum_{k=0}^{\infty} \epsilon_k a_k e_k\| \leq BC\|\sum_{k=0}^{\infty} a_k e_k\|
\]

for all finitely non-zero sequences \((a_k) \). Hence by the parallelogram law we have

\[
(BC)^{-1}(\sum_{k=0}^{\infty} |a_k|^2)^{1/2} \leq \|\sum_{k=0}^{\infty} a_k e_k\| \leq BC(\sum_{k=0}^{\infty} |a_k|^2)^{1/2}
\]

from which it follows that \(w \sim 1 \).

We conclude by considering the cases when

\[
\inf\{\sup_n \|(A^{-1}TA)^n\| : A \text{ invertible}\} = 1.
\]

Theorem 3.6. Let \(w \) be an \(A_2 \)-weight and suppose \(T : H^2(w) \rightarrow H^2(w) \) is a fast monotone multiplier, corresponding to the sequence \((\lambda_n) \). Then the following are equivalent:

(i) For any \(\epsilon > 0 \), \(T \) is similar to an operator \(S \) with \(\sup_n \|S^n\| < 1 + \epsilon \).

(ii) \(\log w \) is in the closure of \(L^\infty \) in \(BMO \).

(iii) \(w^a \in A_2 \) for every \(a > 0 \).
Proof. The equivalence of (i) and (iii) is proved in Theorem 3.4. The equivalence of (ii) and (iii) is due to Garnett and Jones [7] or [8], Corollary 6.6 and its proof (p.258-9).

References

[1] K.I. Babenko, On conjugate functions, Dokl. Akad. Nauk. SSSR 62 (1948) 157-160 [Russian].
[2] M. Bozejko, Littlewood functions, Hankel multipliers and power-bounded operators on a Hilbert space, Colloq. Math. 51 (1987) 35-42.
[3] L. Carleson, An interpolation problem for bounded analytic functions, Amer. J. Math. 80 (1958) 921-930.
[4] J.B. Conway, A course in functional analysis, Springer Verlag, Berlin-Heidelberg-New York 1985.
[5] S. Foguel, A counter-example to a problem of Sz.-Nagy, Proc. Amer. Math. Soc. 15 (1964) 788-790.
[6] J. Garnett, Bounded analytic functions, Academic Press, Orlando, 1981.
[7] J. Garnett and P.W. Jones, The distance in BMO to L^∞, Ann. Math. 108 (1978) 373-393.
[8] H. Helson and G. Szegö, A problem in prediction theory, Ann. Mat. Pura. Appl. 51 (1960) 107-138.
[9] Y. Katzenelson, An introduction to harmonic analysis, Dover, New York 1976.
[10] N. Krupnik and I. Verbitsky, The norm of the Riesz projection, pp. 325-327 in Linear and complex analysis problem book, editors V.P. Havin, S.V. Hruscev and N.K. Nikolskii, Springer Lecture Notes 1043, Berlin-Heidelberg-New York 1984.
[11] A. Lebow, A power-bounded operator which is not polynomially bounded, Michigan Math. J. 15 (1968) 397-399.
[12] V. Peller, Estimates of functions of power-bounded operators on Hilbert spaces, J. Operator Theory 7 (1982) 341-372.
[13] G. Pisier, Similarity problems and completely bounded maps, Springer Lecture Notes 1618, Berlin-Heidelberg-New York 1996.
[14] G. Pisier, A polynomially bounded operator on Hilbert space which is not similar to a contraction. J. Amer. Math. Soc. 10 (1997) 351–369.

Department of Mathematics, University of Missouri-Columbia, Columbia, MO 65211

E-mail address, N. J. Kalton: nigel@math.missouri.edu

Equipe de Mathématiques - UMR 6623, Université de Franche-Comté, F-25030 Besançon cedex

E-mail address, C. Le Merdy: lemerdy@math.univ-fcomte.fr