Predictors for Uptake of Tetanus Toxoid Vaccination During Pregnancy Among Women of Reproductive Age in Tanzania; An Analysis of Data from the 2015-16 Tanzania Demographic and Health Survey and Malaria Indicators Survey

Maximillian Biyemo Tungaraza (maximiliantun773@gmail.com)
The University of Dodoma College of Health Sciences
https://orcid.org/0000-0002-6258-4297

Fabiola Vicent Moshi
The University of Dodoma College of Health Sciences

Research article

Keywords: Uptake, Tetanus Toxoid, Vaccination

DOI: https://doi.org/10.21203/rs.3.rs-122538/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: Tetanus is a vaccine preventable disease. Tanzania through its Ministry of Health, Community Development, Gender, Elderly and Children (MoHCDGEC) recommend all women should receive at least five TT doses in their reproductive life. Little is known on predictors of TT uptake during pregnancy among women of reproductive age in Tanzania.

Method: The study used data from the 2015-16 Tanzania Demographic and Health Survey and Malaria Indicators Survey (2015-16 TDHS-MIS). A total of 6924 women of active reproductive age from 15 to 49 were included in the analysis. Both univariate and multiple regression analyses were used to determine the predictors of TT uptake during pregnancy among women of reproductive age in Tanzania.

Results: More than half, 3480 (50.3%) of the study population had either no or one tetanus injection. A total of 3444 (49.7%) had two or more tetanus injection during pregnancy. After adjusted for confounders, predictors of uptake of tetanus vaccination were early antenatal booking (AOR=1.174 at 95% CI=1.033-1.335, p=0.014), age group of women [20 to 34 years (AOR=1.433 at 95% CI=1.155-1.778, p=0.001), more than 34 years (AOR=1.379 at 95% CI=1.065-1.786, p=0.015)], wealth index [rich (AOR=1.261 at 95% CI=1.083-1.468, p = 0.003), poor], parity [para 2-4 (AOR=0.401 at 95% CI=0.343-0.468, p<0.001), para 5 and above (AOR=0.217 at 95% CI=0.178-0.265, p<0.001)], level of education [primary level, (AOR=0.864 at 95% CI=0.754-0.99, p=0.035) zones [Unguja Zanzibar Island (AOR=0.434 at 95% CI=0.309-0.609, p<0.001), Pemba (Pemba Island) (AOR=0.34 at 95% CI=0.226-0.512, p<0.001)] and adequate ANC visits (AOR=0.649 at 95% CI=0.582-0.723, p<0.001).

Conclusion: Antenatal care service utilization, including both timeliness and the number of ANC visits attended were found important predictors for TT vaccine uptake. Therefore, the responsible ministry of health in the country should strengthen the strategies in place to increase maternal awareness on importance of ANC service utilization.

Methods
Study Area and period

The study was conducted in the United Republic of Tanzania from August 22, 2015, through February 14, 2016. Tanzania is among the countries found in East Africa. It is the largest country that covers 940,000 square kilometers and 60,000 square kilometers is inland water. The country lies south of the equator and shares borders with eight countries: Kenya and Uganda to the North; Rwanda, Burundi, the Democratic Republic of Congo, and Zambia to the West; and Malawi and Mozambique to the South.

Study Design

It was a national-based cross-sectional study utilizing the 2015-16 Tanzania Demographic and Health Survey and Malaria Indicator Survey (TDHS-MIS) dataset.

Study Population

All women of reproductive age (aged 15–49 years) were the study population. The study used individual file recode (TZIR7BFL) with a total of 13266 women who responded to the survey (97% response rate). The study included only women who remembered the timing for antenatal booking of their youngest child. Those who were not able to recall the timing and those who did not respond to the question were removed from the analysis. A total of 6924 women who had birth within five years preceding the survey were included in the study.

Sampling Technique

Two stages of sampling were used to obtain a sample for urban and rural areas in Tanzania Mainland and Zanzibar. In the first stage, a total of 608 clusters were selected and in the second stage, a systematic selection of households was involved. A total of 22 households were then systematically selected from each cluster, yielding a representative probability sample of 13,376 households for the 2015-16 TDHS-MIS.

Data Collection Tool

The 2015-16 TDHS-MIS used household questionnaires and individual questionnaires. These questionnaires based on the Measure DHS standard AIDS Indicator Survey and Malaria Indicator Survey questionnaires standards. They were adapted and modified to reflect the Tanzanian population. They were translated into Kiswahili, Tanzania's national language. The data presented in this study are from the individual questionnaire.

Study Variables

Dependent

TT vaccine uptake

Independent variables

Sociodemographic characteristics (Maternal age, maternal education, place of residence, Wealth Index, marital status, and parity.

Results

Socio-demographic Characteristics

Majority of study respondents 5113(73.8%) resided in the rural setting of Tanzania, aged 20 to 34 years 4557(65.8%), had primary education 4209(60.8) and were married 5650(86.1%) Table 1
Variables	Frequency	Percent (%)
Place of residence		
Urban	1811	26.2
Rural	5113	73.8
Age group		
Less than 20 years	541	7.8
20 to 34 years	4557	65.8
More than 34 years	1826	26.4
Educational level		
No education	1329	19.2
Primary education	4209	60.8
Secondary	1326	19.2
Higher	60	0.9
Parity		
Para one	1595	23
Para 2–4	3154	45.6
Para 5+	2175	31.4
Wealth index		
Poor	2734	39.5
Middle	1363	19.7
Rich	2827	40.8
Marital Status		
Never in union	441	6.4
Married	5650	86.1
Widow	119	1.7
Separated	714	10.3
Respondent currently working		
Not working	1498	21.6
Working	5426	78.4
Mainland/Zanzibar		
Mainland urban	1618	23.4
Mainland rural	4357	62.9
Unguja (Zanzibar Island)	594	8.6
Pemba (Pemba Island)	355	5.1

Uptake of Tetanus Toxoid vaccination

More than half, 3480 (50.3%) of the study population had either no or one tetanus injection and 3444 (49.7%) had two or more tetanus injection during pregnancy.

The relationship between women’s characteristics and uptake of TT vaccination

The variables which showed significant relationship with uptake of TT vaccination were place of residence ($p < 0.001$), age group ($p < 0.001$), education level ($p < 0.001$), parity ($p < 0.001$), ANC booking ($p < 0.001$), wealth index ($p < 0.001$), marital status ($p < 0.001$), zones ($p < 0.001$) and ANC use ($p < 0.001$) Table 2
Table 2
The relationship between women's characteristics and uptake of TT vaccination

Variables	Adequate TT	Inadequate TT	X2	p-value
Place of residence				
Urban	1119(61.8)	692(38.2)	142.422	< 0.001
Rural	2325(45.5)	2788(54.5)		
Age group				
15–19	325(60.1)	216(39.9)	163.314	< 0.001
20–34	2439(53.5)	2118(46.5)		
35–49	680(37.2)	1146(62.8)		
Educational level				
No education	571(43)	758(57)		
Primary education	2088(49.6)	2121(50.4)		
Secondary	740(55.8)	586(44.2)		
Higher	45(75)	15(25)	59.271	< 0.001
Parity				
Para one	1131(70.9)	464(29.1)		
Para 2–4	1598(50.7)	1556(49.3)		
Para 5+	715(32.9)	1460(67.1)	534.498	< 0.001
ANC Booking				
Late booking	2504(46.9)	2834(53.1)		
Early booking	940(59.3)	646(40.7)	74.715	< 0.001
Wealth index				
Poor	1215(44.4)	1519(55.6)		
Middle	645(47.3)	718(52.7)		
Rich	1584(56)	1243(44)	78.659	< 0.001
Marital Status				
Never in union	306(69.4)	135(30.6)		
Married	2687(47.6)	2963(52.4)		
Widow	58(48.7)	61(51.3)		
Separated	393(55)	321(45)	86.940	< 0.001
Mainland/Zanzibar				
Mainland urban	1041(64.3)	577(35.7)		
Mainland rural	2101(48.2)	2256(51.8)		
Unguja (Zanzibar Island)	214(36)	380(64)		
Pemba (Pemba Island)	88(24.8)	267(75.2)	275.044	< 0.001
ANC use				
Adequate	1996(57.3)	1490(42.7)		
Inadequate	1448(42.1)	1990(57.9)	158.710	< 0.001
Respondent currently working				
No	764(51)	734(49)		
Yes	2680(49.4)	2746(50.6)	1.216	0.27
After adjusted for confounders, predictors of uptake of tetanus vaccination were early antenatal booking (AOR = 1.174 at 95% CI = 1.033–1.335, p = 0.014), age group of women [20 to 34 years (AOR = 1.433 at 95% CI = 1.155–1.778, p = 0.001), more than 34 years (AOR = 1.379 at 95% CI = 1.065–1.786, p = 0.015)], wealth index [rich (AOR = 1.261 at 95% CI = 1.083–1.468, p = 0.003)], parity [para 2–4 (AOR = 0.401 at 95% CI = 0.343–0.468, p < 0.001), para 5 and above (AOR = 0.217 at 95% CI = 0.178–0.265, p < 0.001)], level of education [primary level, (AOR = 0.864 at 95% CI = 0.754–0.99, p = 0.035)] zones [Unguja Zanzibar Island (AOR = 0.434 at 95% CI = 0.309–0.609, p < 0.001), Pemba (Pemba Island) (AOR = 0.34 at 95% CI = 0.226–0.512, p < 0.001)] and adequate ANC visits (AOR = 0.649 at 95% CI = 0.582–0.723, p < 0.001) Table 3
Table 3
Predictors for the uptake of TT vaccination

Variable	OR	95%CI	p-value	AOR	95%CI	p-value	Lower	Upper								
ANC Booking																
Late booking	1	1														
Early booking	1.647	1.47	1.845	< 0.001	1.174	1.033	1.335	0.014								
Age groups																
Less than 20 years	1	1														
20 to 34 years	0.765	0.638	0.918	0.004	1.433	1.155	1.778	0.001								
More than 34 years	0.394	0.324	0.48	< 0.001	1.379	1.065	1.786	0.015								
Place of residence																
Urban	1	1														
Rural	0.516	0.462	0.575	< 0.001	0.729	0.514	1.033	0.075								
Wealth index																
Poor	1	1														
Middle	1.123	0.986	1.279	0.081	1.129	0.981	1.299	0.089								
Rich	1.593	1.433	1.771	< 0.001	1.261	1.083	1.468	0.003								
Educational level																
No education	1	1														
Primary education	1.307	1.154	1.48	< 0.001	0.864	0.754	0.99	0.035								
Secondary	1.676	1.438	1.954	< 0.001	0.903	0.743	1.097	0.306								
Higher	3.982	2.198	7.216	< 0.001	1.374	0.73	2.588	0.325								
Parity																
Para one	1	1														
Para 2–4	0.421	0.37	0.479	< 0.001	0.401	0.343	0.468	< 0.001								
Para 5+	0.201	0.175	0.231	< 0.001	0.217	0.178	0.265	< 0.001								
Marital Status																
Never in union	1	1														
Married	0.4	0.325	0.493	< 0.001	0.906	0.718	1.143	0.405								
Widow	0.419	0.278	0.634	< 0.001	1.059	0.679	1.651	0.801								
Separated	0.54	0.42	0.694	< 0.001	1.031	0.785	1.355	0.824								
Mainland/Zanzibar																
Mainland urban	1	1														
Mainland rural	0.516	0.459	0.581	< 0.001	1.036	0.712	1.507	0.853								
Unguja (Zanzibar Island)	0.312	0.257	0.38	< 0.001	0.434	0.309	0.609	< 0.001								
Pemba (Pemba Island)	0.183	0.141	0.237	< 0.001	0.34	0.226	0.512	< 0.001								
ANC visits																
Adequate	1	1														
Inadequate	0.543	0.494	0.598	< 0.001	0.649	0.582	0.723	< 0.001								

Discussion

The proportional of those not using either a single dose of TT during pregnancy revealed to be a half of the total study population, reflecting the general population. Likewise, the study further noted that less than fifty percent of women of reproductive age received either TT2+, despite numerous government interventions to increase the coverage.
Antenatal care service utilization have been recognized important approach to improve uptake of TT vaccine among women of reproductive age (10, 13). Our study showed that early ANC booking determines the uptake of TT vaccine. Similarly, the study showed that having inadequate ANC Visits decreased the likelihood of getting Tetanus Toxoid vaccine. Our findings were in-line with the findings by Mihret and colleagues (14) who asserted that timely initiation of ANC services increased the likelihood of TT vaccine uptake in Ethiopia. Adequate ANC service utilization provides exposure to the woman on health information regarding different ANC services including TT vaccine (28).

The analysis revealed that age of the woman increased the odds of TT vaccine uptake. This was found also in two studies done in Ethiopia which concluded the significance of age in uptake of TT vaccine (15, 16).

In this study, parity was found less likely to promote TT vaccine uptake, which is congruent to findings from Nigeria, were parity had no any statistical association with TT vaccine uptake (21). However, the findings is contrary to what was reported by Yaya and colleagues (10) in their study from Ivory Coast, were parity increased the odds of TT vaccine uptake. It is further claimed that parity of the woman promotes maternal healthcare utilization (29). The difference between the current findings and other studies could be due to sociodemographic characteristics which is claimed to alter ability of maternal healthcare service utilization (30).

Residence of the woman determines TT vaccine uptake that is supported by our study and findings from two community-based cross-sectional studies done in Ethiopia (1, 18). According to Gebremedhin et al., (2020) walking more than 30 minutes to reach health facility decreased the woman's chance to access ANC clinic for TT vaccine uptake.

Moreover, women with high income had higher odds to receive TT vaccine. The findings of several studies done in Africa indicated similar statistical association between the level of income of the woman and TT vaccine uptake (22–24). It is asserted that wealthier women are more likely to afford for access to ANC services for TT vaccine uptake (31) which can be the evidence to our research findings.

Another important findings obtained in this study was that those whose who resided from Zanzibar Islands increased the likelihood of getting TT vaccine compared to residing in Mainland Tanzania. Sociocultural differences could be the reason for the observed disparities. In Ghana, Dapaah and Nachinaab (26) in their study entitled "sociocultural determinants of the utilization of maternal health care services" revealed that religion and traditional belief system contributed to the uptake reproductive health services including TT vaccination.

Conclusion

Antenatal care service utilization, including both timeliness and the number of ANC visits attended were found important predictors for TT vaccine uptake. Therefore, the responsible ministry of health in the country should strengthen the strategies in place to increase maternal awareness on importance of ANC service utilization. The healthcare providers should plan for daily basis health education provision to increase awareness. The study, further recommend that where ANC coverage is inadequate, mass vaccination of women of childbearing age could be an alternative initiative to increase the uptake, and hence, the coverage. TT vaccine has a significant impact towards eliminating maternal and neonatal tetanus and its related mortalities.

Abbreviations

AIDS Acquired Immune-Deficiency Syndrome

ANC Antenatal care

DHS Demographic Health Survey

MoHCDGEC Ministry of Health, Community Development, Gender, Elderly and Children

TDHS-MIS Tanzania HIV Demographic and Health Survey and Malaria Indicators Survey

TT Tetanus Toxoid

WHO World Health Organization

WRA Women of Reproductive Age

Declarations

Ethics approval and consent to participate

Data collection and the survey content and protocol were approved by Tanzania's National Institute for Medical Research (NIMR), the Zanzibar Medical Ethics and Research Committee (ZAMREC), the Institutional Review Board of ICF International, and the Centers for Disease Control and Prevention in Atlanta, USA. Participants provided verbal consents and the household interviews took place privately. For participants under the age of 18, written consent was requested from their parent or guardian.

Consent for publication

Not applicable
Availability of data and material

The data that support this analysis are available from the 2015-16 Tanzania HIV and Malaria Indicators Survey (THMIS). This survey was conducted by the National Bureau of Statistics (NBS) in collaboration with the Tanzania Commission for AIDS (TACAIDS) and the Zanzibar AIDS Commission (ZAC), the Ministry of Health, Community Development, Gender, Elderly and Children (MoHCDGEC) (Tanzania) and the USAID-Funded Measure DHS project. Data is available from the authors upon reasonable request and with permission from MEASURE DHS.

Competing interests

Authors declare there is no competing interest.

Funding

The study was not funded.

Acknowledgments

The authors are grateful to MEASURE DHS for providing them with the data set.

Authors’ contributions

FVM did the conceptualization, data analysis and drafted the manuscript and led the process of critical revision of the manuscript. MBT wrote the introduction and discussion section and critical review of the manuscript. All authors read and consent for the manuscript to be submitted for peer review.

Availability of data and materials

Data set is available and can be shared on request.

References

1. Gebremedhin TS, Welay FT, Mengesha MB, Assefa NE, Werid WM. Tetanus Toxoid Vaccination Uptake and Associated Factors among Mothers Who Gave Birth in the Last 12 Months in Erer District, Somali Regional State, Eastern Ethiopia. 2020;2020.
2. WHO. | Why do so many women still die in pregnancy or childbirth?.
3. UNICEF. Newborn and maternal mortality snapshot [Internet]. Maternal and newborn health. Available from: https://www.unicef.org/health/maternal-and-newborn-health.
4. World Health Organization. Maternal and Neonatal Tetanus Elimination (MNTE). Immunization, Vaccines and Biologicals. 2020.
5. Ministry of Health Community. Development Gender Elderly and Children. Provider’s guide: Antenatal care guide for Mainland Tanzania. Dodoma: MoHCDGEC; 2018.
6. World Health Organization. WHO recommendation on tetanus toxoid vaccination for pregnant women. The WHO Reproductive Health Library. Geneva; 2016.
7. Exavery A, Kanté AM, Njoozi M, Tani K, Doctor HV, Hingora A, et al. Access to institutional delivery care and reasons for home delivery in three districts of Tanzania. Int J Equity Health. 2014;13(1):1–11.
8. Ngowi AF, Kamazima SR, Kibusi S, Gesase A, Bali T. Women's determinant factors for preferred place of delivery in Dodoma region Tanzania: A cross sectional study. Reproductive Health; 2017.
9. Singh A, Pallikadavath S, Ogollah R, Stones W. Maternal Tetanus Toxoid Vaccination and Neonatal Mortality in Rural North India. PLoS One. 2012;7(11):e48891.
10. Yaya S, Kota K, Buh A, Bishwajit G. Antenatal visits are positively associated with uptake of tetanus toxoid and intermittent preventive treatment in pregnancy in Ivory Coast. BMC Public Health. 2019;19:1467.
11. National Bureau of Statistics. Tanzania Demographic and Health Survey and Malaria Indicator Survey (TDHS-MIS) 2015-16. 2016. p. 172–3.
12. World Health Organization. Maternal immunization against tetanus: standards for maternal and neonatal care. Geneva: WHO.
13. Iqbal S, Ali I, Ekmekciogluhttps C, Kundihttps M. Increasing frequency of antenatal care visits may improve tetanus toxoid vaccination coverage in pregnant women in Pakistan Increasing Frequency of Antenatal Care Visits May Improve Tetanus Toxoid. Hum Vaccin Immunother. 2020.
14. Mihret MS, Limenh MA, Gudayu TW. The role of timely initiation of antenatal care on protective dose tetanus toxoid immunization: the case of northern Ethiopia post natal mothers. BMC Pregnancy Childbirth. 2018;18(2018):235.
15. Shafiq Y, Khowaja AR, Yousafzai MT, Ali SA, Zaidi A, Saleem AF. Knowledge, attitudes and practices related to tetanus toxoid vaccination in women of childbearing age : A cross-sectional study in peri-urban settlements of Karachi, Pakistan. J Infect Prev. 2017.
16. Mamoro MD, Hanfore LK. Tetanus Toxoid Immunization Status and Associated Factors among Mothers in Damboya Woreda, Kembata Tembaro Zone, SNNP, Ethiopia. J Nutr Metab. 2018;2018:e2839579.
17. Belihu KD, Tessio FY, Woldetsadik igist D. Dropout Rate of Tetanus Toxoid Immunization and Associated Factors among Reproductive Age Group of Women in Debrepilhan Town. Amhara Journal of Women ’ s Health Care J Women's Heal Care. 2017;6(4):4–11.
18. Anatea MD, Mekonnen TH, Dachew BA. Determinants and perceptions of the utilization of tetanus toxoid immunization among reproductive-age women in Dukem Town, Eastern Ethiopia: a community-based cross-sectional study. BMC Int Health Hum Rights. 2018;18(2018):27.

19. Sarker M, Broerse JEW, Brouwere V, De, Delamou A, Bardaji A. Exploring Maternal Health Care-Seeking Behavior of Married Adolescent Girls in Bangladesh: A Social-Ecological Approach. PLoS One. 2017;12(1):e0169109.

20. Greenaway ES, Leon J, Baker DP. Understanding the association between maternal education and use of health services in Ghana: exploring the role of health knowledge. J Biosoc Sci. 2013;44(6):733–47.

21. Bello AD, Aduroja PE. Assessment of tetanus toxoid vaccination awareness and uptake among women of reproductive age in Kwara State, Nigeria. J Complement Altern Med Res. 2017;4(2):1–10.

22. Giles ML, Mason E, Muñoz FM, Moran AC, Lambach P, Merten S, et al. Antenatal care service delivery and factors affecting effective tetanus vaccine coverage in low- and middle-income countries: Results of the Maternal Immunisation and Antenatal Care Situational Analysis (MIACSA) project. Vaccine. 2020;38(33):5278–85.

23. Nozaki I, Hachiya M, Kitamura T. Factors influencing basic vaccination coverage in Myanmar: Secondary analysis of 2015 Myanmar demographic and health survey data. BMC Public Health. 2019;19(1):242.

24. Okafor AT. Antenatal Care and Maternal Sociocultural Determinants of Childhood Immunization in Northern Nigeria. Walden Diss Dr Stud Collect. 2019.

25. Chege EN. Geographic Variations in Antenatal Care Services in Sierra Leone. Dissertation [Internet]. 2018; Available from: https://scholarworks.waldenu.edu/cgi/viewcontent.cgi?article=6341&context=dissertations.

26. Dapaah JM, Nachinaab JO. Sociocultural Determinants of the Utilization of Maternal Health Care Services in the Tallensi District in the Upper East Region of Ghana. Adv Public Heal. 2019;2019:1–11.

27. National Bureau of Statistics. Tanzania demographic and health survey 2015–2016 [Internet]. Dar Es Salaam: Ministry of Finance; 2016. Available from: http://www.tzdpg.or.tz/fileadmin/documents/dpg_internal/dpg_working_groups_clusters/cluster_2/health/Key_Sector_Documents/Monitoring__Evaluati16_final_report.pdf.

28. Islam MM, Masud MS. Determinants of frequency and contents of antenatal care visits in Bangladesh: Assessing the extent of compliance with the WHO recommendations. PLoS One. 2018;13(9):e0204752.

29. Chubike NE, Constance I. Demographic characteristics of women on the utilization of Maternal Health Services at Abakaliki Urban. Int J Nurs Midwifery. 2013;5(8):139–44.

30. Jiang K, Jiang K, Liang L, Wang H, Li J, Li Y, et al. Sociodemographic determinants of maternal health service use in rural China: A cross-sectional study. Health Qual Life Outcomes. 2020;18(2020):201.

31. Haider A, Manzoor I, Hassan HB, Samad A, Fatima A, Shahid B. Tetanus Toxoid Vaccination Coverage and reasons for non-vaccination among married women in reproductive age group of 15–49 years. J Akhtar Saeed Med Dent Coll. 2019;1(1):3–8.

Figures

![Uptake of Tetanus Toxoid vaccination](image)

Figure 1

Uptake of Tetanus Toxoid vaccination

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- TDHSMIS201516.pdf