Many-particle entanglement criterion for superradiant-like states

Mehmet Emre Tasgin1,2

1Institute of Nuclear Sciences, Hacettepe University, 06800, Ankara, Turkey
2metasgin@hacettepe.edu.tr

(Dated: November 13, 2018)

We derive a many-particle inseparability criterion for mixed states using the relation between single-mode and many-particle nonclassicalities. It works very well not only in the vicinity of the Dicke states, but also for the superposition of them: superradiant ground state of finite/infinite number of particles and time evolution of single-photon superradiance. We also obtain a criterion for ensemble-field entanglement which works fine for such kind of states. Even though the collective excitations of the many-particle system is sub-Poissonian—which results in entanglement—the wave function displays bunching.

Three kinds of nonclassicalities, (i) many-particle inseparability, (ii) two-mode entanglement and (iii) single-mode nonclassicality, are intimately connected to each other \cite{1,3}. Single-mode nonclassicality can be transformed to two-mode entanglement using a beam-splitter (BS) and vice versa \cite{2,4}. Although nonclassicality can be transformed into two-mode entanglement partially \cite{7-9}, this relation can be utilized for converting two-mode entanglement witnesses \cite{6,10} into single-mode nonclassicality criteria \cite{1}. Such a relation is also encountered between two-mode entanglement and many-particle inseparability in Ref. \cite{11}. It is shown that spin-squeezing criterion \cite{12} (many-particle inseparability) cannot be satisfied unless the two-modes describing this N-particle two-level system is entangled.

A link between the many-particle inseparability and the single-mode nonclassicality shows up after one realizes the following connection. Atomic coherent states (ACSs)—separable symmetric many-particle states \cite{13,14}—converges to coherent (classical) states of light in the $N \rightarrow \infty$ limit \cite{15,16}. Hence, a symmetric many-particle state $|\psi\rangle = \sum_{i=1}^{N} \kappa_i |\alpha^{(i)}\rangle$ converges to $|\psi_N\rangle = \sum_{i=1}^{N} \kappa_i |\alpha^{(i)}\rangle$, where $|\alpha^{(i)}\rangle$ is a coherent state $(\alpha^{(i)} = \sqrt{N} \xi^{(i)}_{ACS})$. Additionally, one can see that a many-particle state is entangled if there are more than one terms in the former expression. Similarly, a single-mode state is nonclassical if it is expressed as a superposition of more than one coherent states \cite{17}. Then, inseparability of $|\psi_N\rangle$ implies the nonclassicality of $|\psi\rangle$.

Therefore, one can adopt a many-particle inseparability criterion (for $N \rightarrow \infty$) to obtain a single-mode nonclassicality criterion. Ref. \cite{2} shows that spin squeezing criterion of Sorensen \textit{et al.} \cite{12} leads to quadrature squeezing condition \cite{18} for a single-mode field. This condition can be obtained by making Holstein-Primakoff (HP) transformation in the collective spin operators \cite{19}, e.g. $\hat{S}_+ \rightarrow \sqrt{N} \hat{b}$. A similar relation stands also for mixed states.

Due to the presence this intimate link between the three kinds of nonclassicalities, one can group the criterion into two \cite{20}. (a) In the first group we can place: the spin squeezing criterion \cite{12} for many-particle entanglement, quadrature squeezing condition for single-mode states \cite{18,21}, and Duan-Giedke-Cirac-Zoller (DGCZ) \cite{22} criterion (and its product form \cite{23}) with Simon-Peres-Horodecki (SPH) \cite{24,25} criterion for two-mode entanglement. (b) The second group contains the Hillery-Zubairy (HZ) criterion \cite{26} (which is a subset of conditions by Shchukin and Vogel \cite{27}) for two-mode states, Mandel’s Q parameter as the single-mode nonclassicality, and a many-particle criterion we still do not know yet. We note that sub-Poissonian criterion of Mandel’s Q parameter can be obtained from the HZ criterion via BS method \cite{1,3}.

Group (a) is usually used for states generated from coherent (ACS or single-mode coherent) states via nonlinear hamiltonians \cite{28,29} or squeezing transfer \cite{30}. DGCZ and SPH \cite{24} are necessary and sufficient criteria for Gaussian states \cite{31}. The second group (b) works better in witnessing the entanglement/nonclassicality of Fock-like single and two-mode states \cite{32}. Common to both groups, it is possible to obtain stronger forms of two-mode criteria by using the Schrödinger-Robertson inequality \cite{33} in place of Heisenberg uncertainty version \cite{34}.

In this paper, we aim to find the many-particle inseparability criterion missing in group (b). We try to guess its form from the single-mode nonclassicality criterion which belongs to this group: namely Mandel’s Q parameter (or sub-Poissonian distribution), i.e. $\langle (\hat{b}^{\dagger} \hat{b})^2 \rangle - <(\hat{b}^2)^2 > <(\hat{b} \hat{b}^\dagger)^2 > <(\hat{b}^\dagger \hat{b})^2 >$. We try the simplest (not unique) way, $\sqrt{N} \hat{b}^{\dagger} \rightarrow \hat{S}_+ \hat{S}_-$. The question we start up with is simple. If we examine the uncertainty of $\hat{R} = \hat{S}_+ \hat{S}_-$, i.e. $\langle (\Delta \hat{R}^2) \rangle = \langle \hat{R}^2 \rangle - \langle \hat{R} \rangle^2$, will we be able to obtain an inseparability criterion for many-particle systems?

This way, we obtain a criterion (ξ_{new}) which works better than our expectations. The strength of violation of this criterion ($\xi_{new} < 0$, or larger squeezing in $\langle (\Delta \hat{R}^2) \rangle$) accompanies the superradiant phase transition both for finite and infinite number of particles, see Fig. 3 ξ_{new} also correctly predicts the temporal behavior of the entanglement of (timed) single-photon superradiance \cite{35}.
37, see Fig. 6 for N=2000 atoms placed randomly in a sphere larger than a wavelength 36 37. It is worth emphasizing that our derivation (also the validity) for ξ_{new} is completely independent of the presence of a relation between single-mode nonclassicality and many-particle inseparability.

We also obtain a criterion for ensemble-field entanglement, $\mu_{\text{new}} < 0$. We consider the stronger form [Eq. (11) in Ref. 33] of the HZ criterion 26 for two-mode entanglement. We replace the operator $\hat{a}_1^\dagger \to \hat{S}_+$ for one of the two-modes, $\hat{a}_{1,2}$.

(This has been performed in Ref. 38 41 for the DGCZ criterion.) We observe that also μ_{new} works very well for superradiant states, see Figs. 3 and 5. Replacements $\hat{a}_1^\dagger \to \hat{S}_+$ and $\hat{a}_2^\dagger \to \hat{J}_+$ results in a criterion for ensemble-ensemble entanglement entanglement This works fine for detecting the entanglement between two ensembles after a Dicke-like phase transition 31.

Wave function $\psi(r)$ becomes bunched (super-Poissonian) above the critical atom-field coupling ($g > g_c$), see Fig. 2(a). This is in contrast with the sub-Poissonian behavior of the collective (quasi-particle) excitations of the N-particle system (Fig. 2(b)) and the scattered field (see Fig. 2(b)). We remark that in the $N \to \infty$ limit collective excitations can be described by \hat{b} operator alone. Such a behavior also occurs in the ground state of an interacting BEC (without a field). Bunching and many-particle entanglement emerge mutually when interaction (collisions) per particle exceed the excitation energy, $U_{\text{int}}/N > h\omega_{\text{exc}}$, see Fig. 5. Incidentally, in experiments with BECs 42–46 we observe that BEC cannot recoil partially unless the excitation energy exceeds U_{int}/N.

Many-particle entanglement

The derivation of μ_{new} follows arguments similar to spin-squeezing condition by Sorensen et al. 12. Nevertheless, longer expressions show up due to the calculation of higher order moments. A many-particle system is separable if N-particle density matrix (DM) can be written in the form

$$\hat{\rho} = \sum_k P_k \rho_1^{(k)} \otimes \rho_2^{(k)} \otimes \cdots \otimes \rho_N^{(k)},$$

(1)

where $\rho_i^{(k)}$ is the DM of the ith particle and P_k is the classical probability for mixed states. Uncertainty of the $\hat{R} = \hat{S}_+ \hat{S}_-$ operator becomes larger than $\langle (\Delta \hat{R})^2 \rangle = \sum_k P_k \langle (\hat{R}_k^2) \rangle$ if we use the Cauchy-Schwartz inequality $\sum_k P_k \langle \hat{R}_k \rangle^2 = (\sum_k P_k \langle \hat{R}_k \hat{R}_k \rangle)^2$. We express the collective operators in terms of the single atom spins $\hat{s}_k^{(i)}$, e.g. $\hat{R} = \hat{S}_+ \hat{S}_- = \sum_{i=1}^N \sum_{i=1}^N \hat{s}_k^{(i)} \hat{s}_k^{(-)}$. We evaluate the difference $\langle \hat{R}_k^2 \rangle_k - \langle \hat{R}_k \rangle_k^2$ using many Cauchy-Schwartz inequalities and relations among single particle operators, see the Supplementary Material 17. We show that the DM [1] satisfies the inequality $\sum_k P_k \langle \hat{R}_k^2 \rangle_k - \sum_k P_k \langle \hat{R}_k \rangle_k^2 \geq \eta_N$. We conclude that $\langle (\Delta \hat{R})^2 \rangle \geq \eta_N$ for a separable state. So, we define the parameter

$$\xi_{\text{new}} = \langle (\Delta \hat{R})^2 \rangle - \eta_N$$

(2)

whose negativity ($\xi_{\text{new}} < 0$) witnesses the inseparability of the many-particle system.

In Fig. 1 we test ξ_{new} on Dicke states for N=16 particles (or S=8). $|S,m = \pm S\rangle$ states are separable, explicitly, $|g_1, g_2, \cdots, g_N\rangle$ or $|e_1, e_2, \cdots, e_N\rangle$ where g_i/e_i means that the ith particle is in the ground/excited state 13 14. The number of terms, hence the inseparability ξ_{new} increases up to $|S,m = 0\rangle$. Linear entropy 48–50, an entanglement monotone 51, follows the expected result, such that it increases up to $|S,m = 0\rangle$ state. Our criterion (ξ_{new}) $-\langle (\Delta \hat{R})^2 \rangle$ is more squeezed for more negative values of ξ_{new}—also follows the similar trend. Duan recently introduced a new criterion 52, which not only serves for detecting the inseparability but it also reports that (if $\xi_{\text{Duan}} > n$) at least n number of particles are entangled. In Fig. 1 we scaled ξ_{Duan} with the number 17. Hence, for $m = 0$ it witnesses that at least 16 (all of the) particles are entangled. Duan’s criterion is priceless in the research connecting the gravitation and entanglement 55–55, since it quantifies the depth (so the speed) of entanglement.

In Fig. 2 we calculate ξ_{new} for the ground state of the Dicke Hamiltonian

$$\hat{H} = h\omega_g \hat{S}_z + h\omega_a \hat{a}^\dagger \hat{a} + g/\sqrt{N} (\hat{S}_+ + \hat{S}_-) (\hat{a}^\dagger + \hat{a})$$

(3)

in the thermodynamic limit ($N \to \infty$) 19 and simulate for symmetric subspace 29. Here, g is the atom-photon coupling strength where for $g > g_c = \sqrt{\omega_g \omega_a}/2$ superradiant phase is observed 56.

ξ_{new} not only successfully predicts the presence of the many-particle inseparability, but also its negativity (squeezing in $\langle (\Delta \hat{R})^2 \rangle$) accompanies the order parameters ($\langle \hat{a}^\dagger \hat{a} \rangle$ and $\langle \hat{S}_z \rangle$) of the transition. In Fig. 2(b), we
Above the critical atom-photon coupling strength, superradiant phase transition occurs. (b) Many-particle entanglement. Linear entropy \(Q \) and the new criterion \(\xi_{\text{new}} \) (squeezing in \(\langle (\Delta \hat{R})^2 \rangle \)) accompanies the order parameters of the phase transition. \(Q > 0 \) and \(\xi_{\text{spin}}, \xi_{\text{new}} < 0 \) implies entanglement.

We observe that value of the linear entropy \(Q \) (an entanglement monotone [51]) also accompanies the transition. The spin-squeezing criterion of Sorensen et al. [12] cannot witness the inseparability where \(\xi_{\text{spin}} < 0 \) implies the entanglement. The criterion of Duan [52] (not plotted in Fig. 2(b)) does not exceed 1 for the ground state, which is a superposition of more than one ACSs (coherent state). Therefore, a many-particle criterion converges to the inseparability of all 2000 states, when \(Q > 0 \), the two did not exhibit parallel behavior always.

A stronger single-mode nonclassicality criterion

Atomic coherent states (ACSs) are the many-particle states in the symmetric subset if the complete set of Dicke states [57]. In the limit \(N \to \infty \), ACSs converges to coherent states of light [13, 16]. A many-particle (single-mode) state is inseparable (classical) if it is the superposition of more than one ACSs (coherent state). Therefore, a many-particle criterion converges to a criterion for single-mode nonclassicality. Alternatively, one can perform Holstein-Promakoff transformation, e.g., \(\hat{S} = \hat{b} \sqrt{N - \hat{b}^\dagger \hat{b}} \), and let the limit \(N \to \infty \).

We now have a many-particle criterion in group (b) involving \(\hat{S}_{\pm z} \) collective operators. Therefore, we check if we obtain the same (or similar) single-mode criterion, that is Mandel’s Q parameter, in the \(N \to \infty \) limit. We obtain the criterion (see the Supplementary Material)

\[
\langle (\Delta \hat{n})^2 \rangle \geq \langle \hat{n} \rangle + \left(\text{Im} \{ \langle \hat{b}^\dagger \hat{b} \rangle - \langle \hat{b} \rangle^2 \} \right)^2,
\]

where \(\hat{n} = \hat{b}^\dagger \hat{b} \). We note that this is sub-Poissonian criterion except the last term. When one rotates the coordinates \(b_y = b e^{i \theta} \), the last term becomes \(\text{Im} \{ \langle (\hat{b}^\dagger \hat{b}) - \langle \hat{b} \rangle^2 e^{2i \theta} \} \) which is equal to zero for the proper choice of the phase \(e^{2i \theta} \). In this situation, we recover the Mandel’s Q parameter.

In general, however, criterion [1] seems to be a hybrid [both group (a) and (b)] one. From our previous experience [17] we know that the last term becomes maximum, for Gaussian states, when the \(\theta \) is chosen in the direction of maximum quadrature squeezing. Since the first two terms are independent from rotations one can make the test stronger via rotations.

Ensemble-field entanglement

Commonly used two-mode criteria can be put in a stronger form using the Schrödinger-Robertson inequality and the partial transpose of the operator [33]. For instance, the product form of the DGCZ criterion [23, 34], belonging to group (a), can be put in a stronger form by using the variances \(H_1^* = \hat{x}_1 + \hat{p}_2 \) and \(H_2^* = \hat{p}_1 - \hat{p}_2 \) in the Schrödinger-Robertson inequality [33]. Similarly, a stronger form of the HZ criterion, in group (b), can be obtained using the \(\hat{H}_1 = \hat{a}_1^\dagger \hat{a}_2 + \hat{a}_1 \hat{a}_2^\dagger \) and \(\hat{H}_2 = i(\hat{a}_1^\dagger \hat{a}_2 - \hat{a}_2^\dagger \hat{a}_1) \) in the Schrödinger-Robertson inequality, see Eq. (11) in Ref. [33].

Ref.s [35–40] show that it is possible to obtain a criterion for the ensemble-field entanglement by making the substitutions \(\hat{x}_1 \to \hat{S}_z \) and \(\hat{a}_1 \to \hat{S}_- \) in \(H_1^* \).

\[
\hat{H}_1 = \hat{S}_+ \hat{a}_2 + \hat{S}_- \hat{a}_2^\dagger \quad \text{and} \quad \hat{H}_2 = i(\hat{S}_+ \hat{a}_2 - \hat{S}_- \hat{a}_2^\dagger),
\]

and obtain the parameter \(\mu_{\text{new}}^{\text{SR}} = \langle (\Delta \hat{H}_1)^2 \rangle - 2 \langle \hat{S}_z \rangle \langle (\Delta \hat{H}_2)^2 \rangle - 2 \langle \hat{S}_z \rangle \langle (\Delta \hat{H}_1 \Delta \hat{H}_2) \rangle + \langle (\Delta \hat{H}_1 \Delta \hat{H}_2) \rangle^2, \]

where \(\mu_{\text{new}}^{\text{SR}} < 0 \) witnesses the presence of the ensemble-field entanglement.
In Fig. 3 we plot $\mu_{\text{new}}^\text{HZ}$ for finite/infinite number of particles. We observe that violation of $\mu_{\text{new}}^\text{SR}$, squeezing in the product [6], accompanies the order parameters given in Fig. 2 (a). For the purposes of comparison, we also calculate $\mu_{\text{new}}^\text{HZ}$. We perform the substitution $\hat{a}_1^\dagger \rightarrow \hat{S}_+$ in the HZ criterion [26], $(\hat{a}_1^2 \hat{a}_2^2 < \langle \hat{a}_1^2 \rangle \langle \hat{a}_2^2 \rangle)$, which is weaker than Ref. [33]. In Fig. 3 we see that $\mu_{\text{new}}^\text{HZ}$ cannot witness the ensemble-field entanglement for $g > 1.9g_c$. The spin-squeezing criterion $\mu_{\text{spin}}^\text{SR}$ cannot reveal the presence of entanglement at all.

Bunching in the wave function

Superradiant scattering from a Bose-Einstein condensate (BEC) has been studied extensively in the last two decades. In the cases of directional scattering [58, 59] or scattering into a cavity [60, 61], wave function operator can be expressed into two modes $\hat{\psi}(\mathbf{r}) = u_g(\mathbf{r})\hat{c}_g + u_e(\mathbf{r})\hat{c}_e$. Here, $u_c(\mathbf{r}) = e^{ikr} u_g(\mathbf{r})$ and $u_e(\mathbf{r}) = \cos(kx)u_g(\mathbf{r})$ for the two cases, respectively. Hence, one can calculate the bunching of the atoms in the condensate, $g^{(2)} = \langle \hat{\psi}^\dagger(\mathbf{r})\hat{\psi}(\mathbf{r})\hat{\psi}(\mathbf{r})\hat{\psi}(\mathbf{r}) \rangle$, to learn how the other atoms react to the measurement (modification) of a single one. In Fig. 4 we show that atoms display bunch behavior above the phase transition.

This behavior is opposite to the one for collective excitations ($\hat{S}_+ \rightarrow \hat{c}_1^\dagger \hat{c}_e \rightarrow \sqrt{N}\hat{a}$ in the limit $N \rightarrow \infty$) and the scattered field \hat{a}. $\xi_{\text{new}} < 0$ implies that \hat{b} (quasiparticle) field is anti-bunched in this limit. In Fig. 4(b), we observe the anti-bunching in the scattered field \hat{a}.

Experiments on BECs [42, 46] show that a condensate reacts to an excitation collectively unless the energy of the excitation $h\omega_{\text{exc}}$ exceeds the interaction energy per atoms $U_{\text{int}}/N = g_s \int d^3\mathbf{r} |\psi(\mathbf{r})|^2 / N$, where g_s is the strength of collisions. If $h\omega_{\text{exc}} > U_{\text{int}}$, we observe that atoms in the condensate can be recoiled partially. This phenomenon made us raise the question "what happens in the ground state of a stand alone (no field) interacting BEC?". The Hamiltonian

$$\hat{H} = \int d^3\mathbf{r} \hat{\psi}(\mathbf{r})^\dagger \hat{H}_0(\mathbf{r})\hat{\psi}(\mathbf{r}) + g_s \int d^3\mathbf{r} \hat{\psi}(\mathbf{r})^\dagger \hat{\psi}(\mathbf{r}) \hat{\psi}(\mathbf{r}) \hat{\psi}(\mathbf{r})$$

transforms to

$$\hat{H} = h\omega_{\text{exc}} \hat{S}_z + U_{\text{int}} \hat{S}_z^2$$

similar to Ref. [12]. Here, we assume that ω_{exc} is the excitation of the BEC to a higher energy level. For a BEC, in a harmonic trap, harmonic oscillator spacing (~ 100 Hz) is much smaller than the kinetic energy BEC gains due to recoil ($\sim 10^4$–10^5 Hz) [58]. We examine the ground state of this system and find an interesting coincidence. The GS of the BEC becomes many-particle entangled and wave-function becomes bunched after $U_{\text{int}} > h\omega_{\text{exc}}$.

Single-photon superradiance

Single-photon superradiance is one of the few (almost) exactly solvable many-body systems [36, 37] and it is gaining importance due to its technological applications [62, 63]. Temporal behavior of a timed Dicke state [35], prepared initially in the state $|\psi(0)\rangle = \sum_{j=1}^N e^{ik_0 r_j} |g_1, g_2, \ldots, c_j, \ldots, g_N\rangle$, can be given as [36, 37]

$$|\psi(t)\rangle = \sum_{j=1}^N \beta_j(t) |g_1, \ldots, c_j, \ldots, g_N\rangle |0\rangle + \sum_k \gamma_k(t) |g_1 \ldots g_N\rangle |1_k\rangle$$

The solutions of $\beta_j(t)$ and $\gamma_k(t)$ are studied in Refs. [36, 37] intensively. We test our criteria ξ_{new} and μ_{new} for
The ground state of an interacting BEC, hamiltonian \(H_{\text{int}} \), when there is no field present. When \(H_{\text{int}}/N > h\omega_{\text{exc}} \), the ground state of the BEC becomes many-particle entangled \((\xi_{\text{new}} < 0)\) as well as atoms are bunched \((g^{(2)} > 1)\). Incidentally, experiments with BECs \([42–46]\) show that BEC responds the external excitations collectively unless an \(h\omega_{\text{exc}} > H_{\text{int}}/N \) is transferred to a single atom.

In Fig. 5, we observe that the initial many-particle entanglement \((\xi_{\text{new}})\) and ensemble-field entanglement \((\mu_{\text{new}})\) for single-photon superradiance of \(N=2000\) atoms placed randomly in a sphere larger than wavelength.

In Fig. 6, we observe that the initial many-particle entanglement is lost after \(t > 1/T_N \), where collective decay rate \(T_N \sim N\gamma \) can be much larger than the single atom decay rate \(\gamma \). This is something expected from Eq. [9], since the particles decay to the separable state, where \(\beta_\gamma(t) e^{-T_N t} [36, 37] \). We also examine the entanglement of the ensemble with the central mode \((k_0)\). Initially \(\mu_{\text{new}} = 0 \) since \(\gamma_k(0) = 0 \). For \(t > 0 \), \(\mu_{\text{new}} \) witnesses the inseparability as \(\beta_\gamma(t) \) and \(\gamma_k(t) \) are mixed in \(|\psi(t)\rangle \). Finally, \(\mu_{\text{new}} \) approaches to zero again since the system ends up with the \(\gamma_k \) states eventually.

Finally, we anticipate that derivations, \((\langle\Delta R^2\rangle)^2\), leading to \(\xi_{\text{new}} \) can be utilized for calculating the entanglement depth \([32]\) of the system. This can be carried out by grouping the inseparable particles in the density matrix (see Eqs. (1) and (2) in Ref. [32]), in place of using a full-separable density matrix given in Eq. [1].

Acknowledgments

I gratefully thank M. Suhail Zubairy for his hospitality in Texas A&M University and for participating in the 1st Quantum Optics Workshop in Turkey. He did not cancel his talk even after the attack (in the same city) where more than hundred people lost their lives. Part of this research has been initiated after Moochan (Barnabas) Kim raised the question “Can we distinguish between different single-photon Dicke states according to their entanglement strength?”. I thank Anatoly A. Svidzinsky for his help on single-photon superradiance. I thank Marlan O. Scully for encouraging me to raise questions in the meetings and the talks.

References

[1] Mark Hillery and M Suhail Zubairy, “Entanglement conditions for two-mode states: Applications,” Physical Review A 74, 032333 (2006).
[2] Mehmet Emre Tasgin, “Single-mode nonclassicality criteria via holstein-primakoff transformation,” arXiv preprint arXiv:1502.00988 (2015).
[3] Mehmet Emre Tasgin, “Single-mode nonclassicality measure from simon-peres-horodecki criterion,” arXiv preprint arXiv:1502.00992 (2015).
[4] M. S. Kim, W. Son, V. Bužek, and P. L. Knight, “Entanglement by a beam splitter: Nonclassicality as a prerequisite for entanglement,” Phys. Rev. A 65, 032323 (2002).
[5] Wang Xiang-bin, “Theorem for the beam-splitter entangler,” Phys. Rev. A 66, 024303 (2002).
[6] Jánoš K. Asboth, John Calsamiglia, and Helmut Ritsch, “Computable measure of nonclassicality for light,” Phys. Rev. Lett. 94, 173602 (2005).
[7] Wenchao Ge, Mehmet Emre Tasgin, and M Suhail Zubairy, “Conservation relation of nonclassicality and entanglement for gaussian states in a beam splitter,” Physical Review A 92, 052328 (2015).
[8] Ievgen I Arkhipov, Jan Peřina Jr, Jiří Svozílk, and Adam Miranowicz, “Nonclassicality invariant of general two-mode gaussian states,” Scientific reports 6 (2016).
[9] Ievgen I Arkhipov, Jan Peřina Jr, Jan Peřina, and Adam Miranowicz, “Interplay of nonclassicality and entanglement of two-mode gaussian fields generated in optical parametric processes,” Physical Review A 94, 013807 (2016).
[10] Rabia Tahira, Manzoor Ikram, Hyunchul Nha, and M. Suhail Zubairy, “Entanglement of gaussian states using a beam splitter,” Phys. Rev. A 79, 023816 (2009).
[11] BJ Dalton, L Heaney, J Goold, BM Garraway, and Th Busch, “New spin squeezing and other entanglement tests for two mode systems of identical bosons,” New Journal of Physics 16, 013026 (2014).
[12] A Sørensen, L-M Duan, JI Cirac, and Peter Zoller, “Many-particle entanglement with bose–einstein condensates,” Nature 409, 63–66 (2001).
[13] FT Arecchi, Eric Courtois, Robert Gilmore, and Harry Thomas, “Atomic coherent states in quantum optics,” Physical Review A 6, 2211 (1972).
[14] Leonard Mandel and Emil Wolf, Optical coherence and
quantum optics (Cambridge university press, 1995).

[15] JM Radcliffe, “Some properties of coherent spin states,” Journal of Physics A: General Physics 4, 313 (1971).

[16] JR Klauder and Bo-Sture Skagerstam, “Applications in physics and mathematical physics,” World Scientific, Singapore (1985).

[17] W Vogel and J Sperling, “Unified quantification of nonclassicality and entanglement,” Physical Review A 89, 052302 (2014).

[18] Ching Tsung Lee, “Measure of the nonclassicality of nonclassical states,” Physical Review A 44, R2775 (1991).

[19] Clive Emary and Tobias Brandes, “Chaos and the quantum phase transition in the dicke model,” Physical Review E 67, 066203 (2003).

[20] Grouping does not necessarily contain all of the criteria present in the litterature for our purposes. There exist also some hybrid criteria [27].

[21] M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University Press, New York, 1997).

[22] Lu-Ming Duan, G. Giedke, J. Cirac, and P. Zoller, “Inseparability criterion for continuous variable systems,” Phys. Rev. Lett. 84, 2722–2725 (2000).

[23] Stefano Mancini, Vittorio Giovannetti, David Vitali, and Paolo Tombesi, “Entangling macroscopic oscillators exploring radiation pressure,” Physical review letters 88, 120401 (2002).

[24] R. Simon, “Peres-horodecki separability criterion for continuous variable systems,” Phys. Rev. Lett. 84, 2726–2729 (2000).

[25] Martin B Plenio, “Logarithmic negativity: A full entanglement monotone that is not convex,” Phys. Rev. Lett. 95, 090503 (2005).

[26] Mark Hillery and M. Zubairy, “Entanglement conditions for two-mode states,” Phys. Rev. Lett. 96, 050503 (2006).

[27] E Shchukin and W Vogel, “Inseparability criteria for continuous variable systems,” Physical Review letters 95, 230502 (2005).

[28] Masahiro Kitagawa and Masahito Ueda, “Squeezed spin states,” Physical Review A 47, 5138 (1993).

[29] Mehmet Emre T¸asgın and Pierre Meystre, “Spin squeezing with coherent light via entanglement swapping,” Physical Review A 83, 053848 (2011).

[30] J Hald, JL Sørensen, Christian Schori, and ES Polzik, “Spin squeezed atoms: a macroscopic entangled ensemble created by light,” Physical Review Letters 83, 1319 (1999).

[31] David Vitali, Sylvain Gigan, Anderson Ferreira, HR Böhm, Paolo Tombesi, Ariel Guerreiro, Vlatko Vedral, Anton Zeilinger, and Markus Aspelmeyer, “Optomechanical entanglement between a movable mirror and a cavity field,” Physical review letters 98, 030405 (2007).

[32] Hyunchul Nha and Jaewan Kim, “Entanglement criteria via the uncertainty relations in su (2) and su (1, 1) algebras: Detection of non-gaussian entangled states,” Physical Review A 74, 012317 (2006).

[33] Hyunchul Nha and M Suhail Zubaary, “Uncertainty inequalities as entanglement criteria for negative partial-transpose states,” Physical review letters 101, 130402 (2008).

[34] GS Agarwal and Asoka Biswas, “Inseparability inequalities for higher order moments for bipartite systems,” New Journal of Physics 7, 211 (2005).

[35] Marlan O Scully, Edward S Fry, CH Raymond Ooi, and Krzysztof Wódkiewicz, “Directed spontaneous emission from an extended ensemble of n atoms: Timing is everything,” Physical review letters 96, 010501 (2006).

[36] Anatoly Svidzinsky and Jun-Tao Chang, “Cooperative spontaneous emission as a many-body eigenvalue problem,” Physical Review A 77, 043833 (2008).

[37] Anatoly A Svidzinsky, Jun-Tao Chang, and Marlan O Scully, “Cooperative spontaneous emission of n atoms: Many-body eigenstates, the effect of virtual lamb shift processes, and analogy with radiation of n classical oscillators,” Physical Review A 81, 053821 (2010).

[38] Michael G Raymer, AC Funk, BC Sanders, and H De Guise, “Separability criterion for separate quantum systems,” Physical Review A 67, 052104 (2003).

[39] Brian Julsgaard, Alexander Kozhekin, and Eugene S Polzik, “Experimental long-lived entanglement of two macroscopic objects,” Nature 413, 400–403 (2001).

[40] Christine A Muschik, Eugene S Polzik, and J Ignacio Cirac, “Dissipatively driven entanglement of two macroscopic atomic ensembles,” Physical Review A 83, 052312 (2011).

[41] Shi-Biao Zheng, “Dicke-like quantum phase transition and vacuum entanglement with two coupled atomic ensembles,” Physical Review A 84, 033817 (2011).

[42] KC Wright, LS Leslie, and NP Bigelow, “Optical control of the internal and external angular momentum of a bose-einstein condensate,” Physical Review A (R) 77, 041601 (2008).

[43] DM Stamper-Kurn, AP Chikkatur, A Görçít, S Inouye, S Gupta, DE Pritchard, and W Ketterle, “Excitation of phonons in a bose-einstein condensate by light scattering,” Physical Review Letters 83, 2876 (1999).

[44] Robert Graham and Dan Walls, “Spectrum of light scattered from a weakly interacting bos-bose condensates gas,” Physical review letters 76, 1774 (1996).

[45] Mehmet Emre T¸asgın, ÖE Müstecaplıoğlu, and L You, “Creation of a vortex in a bose-einstein condensate by superradiant scattering,” Physical Review A 84, 063628 (2011).

[46] Priyam Das, Mehmet Emre T¸asgın, and Ozgur E Mustecaplıoğlu, “Collectively induced many-vortices topology via rotatory dicke quantum phase transition,” arXiv preprint arXiv:1601.06413 (2016).

[47] See Supplemental Material at http://link.aps.org/ supplemental/.

[48] Gavin K Brennan, “An observable measure of entanglement for pure states of multi-qubit systems,” arXiv preprint quant-ph/0305094 (2003).

[49] David A Meyer and Nolan R Wallach, “Global entanglement in multiparticle systems,” arXiv preprint quant-ph/0108104 (2001).

[50] N Lambert, C Emary, and T Brandes, “Entanglement and entropy in a spin-boson quantum phase transition,” Physical Review A 71, 053804 (2005).

[51] Clive Emary, “A bipartite class of entanglement monotonies for n-qubit pure states,” Journal of Physics A: Mathematical and General 37, 8293 (2004).

[52] L-M Duan, “Entanglement detection in the vicinity of arbitrary dicke states,” Physical review letters 107, 180502 (2011).

[53] Julian Sonner, “Holographic schwinger effect and the geometry of entanglement,” Physical review letters 111, 211603 (2013).
Kristan Jensen and Andreas Karch, “Holographic dual of an einstein-podolsky-rosen pair has a wormhole,” Physical review letters 111, 211602 (2013).

Juan Maldacena and Leonard Susskind, “Cool horizons for entangled black holes,” Fortschritte der Physik 61, 781–811 (2013).

We obtain the similar results when rotating wave approximation applied on the hamiltonian [3].

Robert H Dicke, “Coherence in spontaneous radiation processes,” Physical Review 93, 99 (1954).

S Inouye, AP Chikkatur, DM Stamper-Kurn, J Stenger, DE Pritchard, and W Ketterle, “Superradiant rayleigh scattering from a bose-einstein condensate,” Science 285, 571–574 (1999).

MG Moore and Pierre Meystre, “Theory of superradiant scattering of laser light from bose-einstein condensates,” Physical Review Letters 83, 5202 (1999).

Kristian Baumann, Christine Guerlin, Ferdinand Brennecke, and Tilman Esslinger, “Dicke quantum phase transition with a superfluid gas in an optical cavity,” Nature 464, 1301–1306 (2010).

D Nagy, G Kónya, G Szirmai, and P Domokos, “Dicke-model phase transition in the quantum motion of a bose-einstein condensate in an optical cavity,” Physical review letters 104, 130401 (2010).

Marlan O Scully, “Single photon subradiance: Quantum control of spontaneous emission and ultrafast readout,” Physical review letters 115, 243602 (2015).

Marlan O Scully and Anatoly A Svidzinsky, “The super of superradiance,” Science 325, 1510–1511 (2009).