Unlocking the strength of plant growth promoting *Pseudomonas* in improving crop productivity in normal and challenging environments: a review

Pratiksha Singh, Rajesh Kumar Singh, Yan Zhou, Jing Wang, Yu Jiang, Naikun Shen, Yibing Wang, Lifang Yang, and Mingguo Jiang

Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi University for Nationalities, Nanning, People’s Republic of China; Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning, People’s Republic of China; Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, People’s Republic of China

ABSTRACT

The widespread use of biofertilizers, rather than chemical fertilizers, is significantly more likely to accomplish sustainable agriculture production globally. Plant growth-promoting rhizobacteria (PGPR) are chemical-free alternatives to conventional crop protection in agriculture. *Pseudomonas* spp. are unique among the PGPR genera in terms of root colonization, nitrogen fixation, production of exopolysaccharides, siderophores, hydrogen cyanide (HCN), and phytohormones, solubilization of phosphorus, potassium, and zinc, biofilm formation, antioxidant activities, stress adaptation abilities, and positive interactions with other microbial communities. They also aid plant development by promoting biotic and abiotic stress tolerance, as well as supporting host plant nutrition. *Pseudomonas* is regarded as an environmentally acceptable alternative to harmful chemical fertilizers because of its active growth-promoting actions. However, to achieve this goal, workers must first get a complete understanding of the numerous processes used by *Pseudomonas*, allowing them to fully exploit the bacteria potential in the future. Therefore, the present review has been undertaken to discuss the fundamental processes used by *Pseudomonas* spp. to promote plant development and reduce environmental stresses. In addition, we described some reported *Pseudomonas*-based biofertilizers worldwide and the presence of potential genes in the genome of different *Pseudomonas* strains to understand the mechanism of *Pseudomonas* mediated plant growth promotion at the molecular level.

Introduction

Agriculture is important for human and animal food security on the globe (Alawiye and Babalola 2019). By 2050, the world’s population is predicted to exceed 8 billion people, posing a huge challenge for agricultural systems to produce enough food to feed this growing global population (Prosek and Ivanova 2018). As a result, the farming sector has grown reliant on technology and chemical inputs to feed the rising population and meet the ever-increasing demand for grains and organic food (Mueller et al. 2012). For decades, agrochemicals (mainly chemical fertilizers and pesticides) are applied indiscriminately in agriculture have resulted in a loss of soil and plant health to improve productivity and reduce the continual risk of plant-pathogen infections. On the other hand, chemical fertilizers are costly, harm the soil, impair its water-holding capacity and fertility, induce nutritional imbalances, and produce excessive amounts of water contamination (Sprent and Sprent 1990).

Hence, there is a great need for solutions that allow for food production without the use of excessive agrochemicals (Cedeño et al. 2021). Rhizosphere management is the practice of increasing nutrient efficiency in the soil to boost plant growth and productivity (Zia et al. 2020). The rhizosphere is the soil’s surface area immediately surrounding a root that is directly impacted by plant root exudates (Hartmann et al. 2008). Root exudates include a range of organic acids, amino acids, sugars, and other little compounds that operate as significant chemo-attractants for soil bacteria. Thus, depending on the plant species or even variety, the roots might produce significant variances in the chemical content of the exudates, attracting a specific microbial diversity (Olanrewaju et al. 2019). Plant growth-promoting rhizobacteria (PGPR), invade and multiply in the rhizosphere environment within the plant microbiome (Compant et al. 2019), gaining momentum in agricultural practices, as conventional chemical fertilizers. In sustainable agriculture, PGPR play an important role, improving crop yield, soil fertility, increasing biodiversity and association with other helpful microorganisms, and limiting pathogen growth and infection (Vázquez et al. 2020). Many strains of beneficial soil microorganisms have been isolated for their potential in rhizosphere management to boost plant yield and are now being exploited in biotechnology to improve food security and agricultural sustainability (Reed and Glick 2013). In China, the top 5 most used strains in Chinese biofertilizer products are *Bacillus subtilis, Paenibacillus mucilaginosus, B. amyoliquefaciens, B. licheniformis, and B. megaterium* (Ma 2019). Whereas, in other counties, *Pseudomonas*-based biofertilizers are *Pseudomonas fluorescens* and *P. putida* in Vietnam, *P. fluorescens* in Cuba, *P. striata* in India, *P. azotoformans* and *P. chlororaphis* in Sweden, and *P. fluorescens* in Sri Lanka, etc. (Table 1). In some situations,
combining two or more compatible microbes of different species (or strains) can provide advantageous additive or synergistic consequences, because the lack of activities in one introduced microbe can be compensated by the action of the other (Louca et al. 2018).

Pseudomonas is a genus with over a hundred different species that houses the most diverse group of bacteria on the earth (Hesse et al. 2018a). The _Pseudomonas_ genus belongs to the proteobacteria subclass gamma. This proteobacteria's acceptance can be measured by its ability to thrive in a variety of environments, including freshwater, terrestrial, and marine ecosystems. They also have a close association with higher life forms, and it is one of the most researched bacterial species (Selvakumar et al. 2015). _Pseudomonas_ which shows their abundant presence in the rhizosphere (Muleta et al. 2009) and their outstanding growth-promoting characteristics, such as better root colonization, enzyme and metabolite production, nutrient solubilization, indole acetic acid (IAA), and siderophore production, acting as a biocontrol agent, and inducing systemic resistance against diseases, have attracted a lot of attention (Podile and Kishore 2006). Many _Pseudomonas_ species, such as _P. aeruginosa_, _P. chlororaphis_, _P. fluorescens_, _P. putida_, and _P. syringae_ are well-known for their ability to promote plant development and reduce a range of plant diseases (Raaijmakers and Mazzola 2012; Singh et al. 2021). There is a need for a complete discussion and clarification of the role of _Pseudomonas_ spp. to make better use of these naturally occurring microbes for improving plant growth and decreasing environmental stresses.

Therefore, this review mainly focuses on exploring deeper into the various characteristics of plant growth promoting (PGP) _Pseudomonas_ strains that can boost agricultural output in both normal and stressful situations. The knowledge gathered from this review will aid us in understanding the value of _Pseudomonas_-based biofertilizers in agriculture and overcoming the issues related to chemical fertilizer use.

Pseudomonas in combination with other _Pseudomonas_ strains, PGPR species, or plant mutualists

Several plants may form mutualistic connections that result in enhanced nutrition, hormone levels, and resistance to abiotic and biotic stresses. These benefits can be provided by bacteria or fungus; relying on the mutualist species, the connection can occur on the leaf or root area, or within the plant (endophytes). Numerous researches have investigated the impact of applying many mutual beneficial organisms to soils at the same time on plant defense (Senthilaraja et al. 2010). The impact of introducing a large number of mutualistic organisms to soils at the same time on plant defense has been studied extensively (Whipps 2001). Several _Pseudomonas_ isolates (Seevinas et al. 2012) to many other mutualistic bacteria (Domenec et al. 2006) or mutualistic fungus were among the species that contributed (Jaderlund et al. 2008). When a large number of agents are utilized, the probability of at least one of them will be highly adapted to the specific environment in which the organisms are delivered increases. Disease control by the plant can be improved when imported mutualists have distinct impacts on induced defense responses (Domenec et al. 2006).

The most commonly investigated combination of _P. fluorescens_ and other PGPR is _Bacillus_ spp., but _Rhizobium_ spp., _Burkholderia_ spp., and _Serratia_ spp. are also explored regularly. The rhizosphere is colonized by many _Bacillus_ strains drawn by root exudates (Feng et al. 2018). It secretes compounds that promote the quantity of native plant beneficial species after establishing biofilm on plant roots (such as _Pseudomonas_ spp.). They share extracellular matrix and vital metabolites by establishing a densely linked biofilm, which improves their rhizosphere fitness (Sun et al. 2021). A combination of _P. fluorescens_ and _Bacillus_ has been associated with increased control of _Fusarium_ disease by inducing the defense-related enzymes peroxidase (POD) and polyphenol oxidase (PPO) (Sundaramoorthy et al. 2012). The number of studies that have examined the effects of mixing _Pseudomonas_ and other PGPR introductions has shown that they enhance biological control (Combes-Meynet et al. 2011). In addition, studies have shown that inoculating with _P. fluorescens_ only is more efficient than mixing _Pseudomonas_ with the other PGPR strains. (Stockwell et al. 2011). Many _Pseudomonas_ species link with plants as plant endophytes (Ryan et al. 2008) and rhizosphere colonizers, promoting plant health by antagonizing plant-pathogenic bacteria (biocontrol) and the development of plant disease tolerance (Haas and Defago 2005).

Pseudomonas as a biofertilizer

Microbial biofertilizers are helpful microorganisms that interact with the rhizosphere or endosphere of plants to improve soil fertility and stimulate nutrient absorption to boost yield (Okur 2018). Biofertilizers are gaining importance as an ecologically responsible and cost-effective way to enhance crop yield and soil fertility (Glick 2020). When applied to the seed, plant surface, and soil, these microbial inoculants inhibit the rhizosphere and the interior of the plant, encouraging plant development (Raghuvanshi 2012).

Table 1. List of some _Pseudomonas_-based biofertilizer products.

Type of biofertilizer	Biofertilizer name	_Pseudomonas_ strain(s)	Manufacturer's country	Reference(s)
Nitrogen fixer	BioGro	_P. fluorescens_	Vietnam	Uribe et al. (2010)
Phosphate solubilizer	Fofofina	_P. fluorescens_	Cuba	Uribe et al. (2010)
Phytostimulator	Amase	_P. azotoformans_	Sweden	Mehnaz (2016); Macik et al. (2020)
Phytostimulator	Bio Gold	_P. fluorescens_	Sri Lanka	Mehnaz (2016); Macik et al. (2020)
Biocontrol	Cedemon	_P. chlororaphis_	Mustafa et al. (2019)	
Biocontrol	Cedrex	_P. chlororaphis_	Mustafa et al. (2019)	
Biocontrol	Ceral	_P. chlororaphis_	Mustafa et al. (2019)	
Liquid PSA	Laboratorios BioAgro S.A.	_P. aurantiaca_	Argentina	Celador-Lera et al. (2018)
AbiTEP GmbH	FSB 24 fl, BactoflA 10	_P. fluorescens_	Germany	Odoh et al. (2019)
Greenmax AgroTech	Biomax	_P. fluorescens_	India	Odoh et al. (2019)
Amka Products (Pty) Ltd	Organicos	_Pseudomonas spp._	South Africa	Adeleke et al. (2019)
Cleveland biotech	Ammmite A100	_Pseudomonas spp._	United Kingdom	Odoh et al. (2019)
They not only contribute nutrients to the soil, which improves soil fertility and agricultural yield, but they also defend the plants against pests and diseases. They have been proven to improve root system development, lengthen root system life, destroy hazardous compounds, boost seedling survival, and shorten the flowering time (Youssef and Eissa 2014). Another advantage is that after 3–4 years of continuous usage of biofertilizers, they are no longer required because parental inocula are adequate for growth and multiplication (Bumandalai and Tserennadmid 2019). Some of the commonly used *Pseudomonas*-based biofertilizer products in different countries are represented in Table 1.

Colonization in plants

Colonizing the plant root and rhizosphere efficiently is the first and most crucial stage in utilizing biocontrol agents (BCAs) to protect plants from soil-borne illnesses (Figure 1). Insufficient rhizosphere colonization can limit or diminish the beneficial effects of biocontrol microbes, leading to disease control inadequacy. The viability of *Pseudomonas* species populations that inhibit bacterial wilt disease in tomatoes improved as diversity increased (Hu et al. 2016). Additionally, the total viable bacterial population on bean root tips was enhanced when two different biocontrol *Pseudomonas* species consortia for anthracnose was applied (Bar-das et al. 2009). Positive control of numerous colonization-related biological processes, including biofilm production, growth, and migration, by connections between microbes within the consortium, could elucidate these favorable microbial colonization effects. Efficient colonization of bacterial strains such as *P. koreensis*, *P. aeruginosa* Z5, and *P. aeruginosa* B18 plays a significant role in eliminating plant diseases and increasing crop improvement in diverse crops, according to previous studies (Yasmin et al. 2014; Li et al. 2017; Singh et al. 2021). Singh et al. (2021) also reported the presence of colonization gene i.e. minCDE, lysC, and yjbB in genome of *P. aeruginosa* B18, assists its part in antifungal activity against *Sporisorium scitamineum* and growth improvement in sugarcane (Table 2).

Differential gene expression in Pseudomonas inoculated crops

Several previous researches revealed differential expression of defense-related genes in crops infected with *Pseudomonas* strains. For example, inoculation of the rhizospheric strain *P. koreensis* MU2 elevated the salt-resistant genes GmST1, GmSALT3, and GmAKT2, resulting in a considerable reduction in the abscisic acid (ABA) and jasmonic acid (JA) whereas increasing the salicylic acid content in soybean. Furthermore, the inoculation of *P. koreensis* MU2 boosted root and shoot length, plant biomass, and total chlorophyll in soybean plants (Adhikari et al. 2020). Singh et al. (2021) observed higher expression of *SuGLU*, *SuSOD*, *SuCHI*, and *SuCAT* genes (associated with biocontrol and stress response) in leaf tissues of smut susceptible sugarcane variety after inoculation with antagonistic strain *P. aeruginosa* B18 compared to control. Pathogen-related protein 1a (PR1a) was shown to be upregulated in *Solanum lycopersicum* treated with *P. aeruginosa* D4 when compared to the control (Durairaj et al. 2017). Shang et al. (2021) investigated the relative levels of expression of defense signaling marker genes (PR1 a/c, PR2, EFE26, H1N1, and ACC oxidase) in root and soil samples to increase an understanding of tobacco plants in response to pathogenic *Ralstonia solanacearum* after infecting *Pseudomonas* strains and results demonstrated that *Pseudomonas* strains aided tobacco plants in resisting *R. solanacearum* invasion by inducing systemic resistance (Shang et al. 2021).

Pseudomonas exerts both direct and indirect plant-beneficial actions

The growth-promoting mechanisms of *Pseudomonas* spp. are well-known. Production of growth regulators (phytohormones), mineral solubilization, siderophores production, phosphate solubilization, and protection of the plant from biotic and abiotic stresses by enzymes like 1-aminoacyclopropane-1-carboxylate (ACC) deaminase, chitinase, and production of osmolytes and exopolysaccharides are just a few of the important growth-promoting mechanism (Glick et al. 2007; Hayat et al. 2010; Przemieniecki et al. 2015) (Figure 2). All of the above-mentioned growth-promoting features may be uncommon among strains belonging to a single genus. Whereas, most *Pseudomonas* spp. were found to be positive for these primary growth-promoting characteristics (Indiragandhi et al. 2008). In contrast to many agrochemicals, antagonistic secondary metabolites generated by *Pseudomonas* strains against phytopathogens are biodegradable compounds (Bhattacharyya and Jha 2012).

(A)#Direct mechanisms

Phytohormone production

Bacteria, both free-living and symbiotic, promote plant growth by producing chemicals that are functionally identical to phytohormones generated by the plant. Some of the substances implicated in the control of biological processes essential for plant growth and development include auxins, cytokinins, gibberellins, ABA, and ethylene (Shah and Daverey 2020).

(l)#Auxins

Auxins are powerful compounds produced naturally by plants that participate in nearly all aspects of plant physiology, particularly cell division, expansion, differentiation, and stress relief (Paque and Weijers 2016). Whereas auxins are crucial plant growth regulators, IAA and the genes that govern its production are found in fungi and bacteria (Mat-suda et al. 2018). The indole-3-pyruvate (IPyA) pathway is preferred by beneficial rhizobacteria, but the indole-3-acetamide (IAM) pathway is preferred by pathogenic plant-linked bacteria (Ma et al. 2011). At low concentrations, bacterial auxins support the extension of primary plant roots, while at higher concentrations, auxins promote the production of lateral and adventitious roots that can increase mineral absorption and enhance the development of root exudates, which support bacterial growth (Verbon and Liberman 2016). Patten and Glick (2002) found enhanced root development in *Brassica napus* with *P. putida* strain GR12-2 when compared to plants injected with an IAA-deficient *P. putida* mutant. Auxins produced by bacteria may also defend against the detrimental effects of a range of environmental circumstances, including, salt, drought, and soil pollution (Kudoyarova et al. 2019). When compared to control
plants under Cd stress, switchgrass infected with *P. grimontii* Bc09, *P. veronii* E03, and *P. fluorescens* Oj24 yielded higher biomass and IAA while accumulating less Cd (Table 3) (Begum et al. 2019). Sugarcane plants inoculated with IAA-producing *P. aeruginosa* B18 grew better under smut pathogen stress (Table 4) and comprehensive genomic study also revealed the presence of trpABCDEG genes linked to IAA production in its genome (Singh et al. 2021) (Table 2).

(ii)#Cytokinin

Cytokinins are involved in many aspects of plant growth and development, such as embryogenesis, root and shoot apical activity control, vascular growth, root elongation, branching root, and nodule development, and apical dominance in response to environmental changes (Osugi and Sakakibara 2015). Under salt stress, cytokinin-producing bacteria like *Pseudomonas* spp. boosted root and shoot growth along with proline content in *Glycine max* tissues, according to Naz et al. (2009) (Table 3). Plant growth-promoting cytokinins are produced by rhizobacteria linked with *Coleus forskohlii*, including *P. putida* MTP40 and *P. putida* MTP50 (Patel and Saraf 2017). As biocontrol agents in Arabidopsis, cytokinins regulated the *P. fluorescens* strain G20-18 against *P. syringae* infection (Table 4) (Grobkinsky et al. 2016). The mechanisms of cytokinin production in bacteria are largely unknown. MiaA is likely to encode a tRNA (2)-isopentenyl pyrophosphate transferase, similar to tRNAIPTs, that are involved in the synthesis of cytokinins (Stringlis et al. 2018).

(iii)#Gibberellins

Seed dormancy, germination, quiescence, flowering, fruit ripening, root growth stimulation, and root hair abundance are all regulated by this set of compounds (Binenbaum et al. 2018). GAs, similar to auxins and cytokinins, are generated by bacteria and fungi as well as plants. To date, 136 chemical structures have been identified as naturally occurring gibberellins, the most prevalent of which is GA3 (gibberellic acid). In various investigations, bacteria-produced gibberellins have been demonstrated to boost plant growth and yield (Oleńska et al. 2020). Bacteria gibberellin production was affected by higher levels of glutamic acid, threonine, glycine phenylalanine, arginine, and proline, all of which could have a huge impact on inoculated crop growth (Kang et al. 2017). Gibberellin-like substances were found in the cell-free media of *P. fluorescens* (Lenin and Jayanthi 2012), *P. aeruginosa* (Katzenelson and Cole 1965), *P. monteilii* (Pandya and Desai 2014; Sandhya et al. 2010), and *P. koreensis* MU2 (Kang, Khan et al. 2019). *P. koreensis* MU2 inoculation improved shoot length (27%), shoot fresh (29%) and dry (33%) weight of GA deficient mutant waito-c (Kang, Adhikari et al. 2019).

(iv)#Abscisic acid

Abscisic acid (ABA) is a hormone that primarily inhibits growth and metabolic actions in crops, such as seed growth and maturation, initiation of seed and bud dormancy, senescence, protein, and suitable osmolyte synthesis, and regulation of the plant’s ability to stay alive in harsh and challenging situations (Shu et al. 2018). The ABA-synthesizing *P. putida* MTCC5279 coupled with *Cicer arietinum* gave salt and drought tolerance to their host plants by changing morpho-physiological and biochemical properties and regulating the activity of stress-responsive genes (Tiwari et al. 2016) (Table 3).

Figure 1. Effective colonization of antagonistic *Pseudomonas* strain in plants (A) Fungal pathogen, (B–C) Dual culture plate and agar well diffusion assay showing inhibition of fungal pathogen by antagonistic *Pseudomonas* strain, (D) Confocal laser scanning microscopy (CLSM) showing green fluorescent protein (GFP)-tagged *Pseudomonas* strain, and (E–F) Colonization of GFP-tagged *Pseudomonas* strain in root and leaf tissues of plants.
ACC deaminase, which lowers plant ethylene and ACC levels in plants, resulting in increased bacterial colonization/competitiveness (Conforte et al. 2010), bacterial nodulation ability (Nascimento et al. 2016), plant growth enhancement (Glick et al. 2007), and plant endurance to stresses (Nascimento et al. 2013).

Phosphorus solubilization

Phosphorus (P) is an essential macronutrient for crop biological development and growth (Soetan et al. 2010). It could be found in soil in amounts of 400–1200 mg/kg. Despite a high concentration level, it has a very low soluble concentration, making it unavailable to plants. Phosphate solubilizing microorganisms (PSM) are well-known for their ability to transfer phosphorus from an insoluble to a soluble state, hence encouraging plant growth. Acidification, chelation, and exchange reactions are all common mechanisms for this conversion. P-solubilizing characteristics were found in *Pseudomonas* species obtained from soil and rhizospheres of diverse crops (Mishra et al. 2014; Li et al. 2017; De Boer et al. 2019). Ma et al. (2011) observed an increment in biomass yield and phosphorus intake in *Triticum aestivum* that had been treated with *Pseudomonas* spp. and Srivastava and Srivastava (2020) revealed that *Arabidopsis thaliana* infected with the phosphorus solubilizing bacteria *P. putida* MTCC 5279 thrived effectively in salt stress and P deficiency conditions with higher acidic and alkaline phosphatases activity, as well as significantly higher biomass. In *P. putida*, phosphate specific transport (pst) is employed for free inorganic phosphate transport, and it is made up of *pstABC* genes with a two-component phosphate uptake signal transduction system that comprises *phoP/phoR* (Table 2) (Gupta et al. 2014). Singh et al. (2021) reported presence of *pstABC* and *phoBDHRU* genes in *P. aeruginosa* B18 genome (Table 2).

Potassium solubilization

Potassium (K) is a necessary nutrient for plant development. If there is inadequate potassium, the plants’ roots will be underdeveloped, they will grow more slowly, the seeds formed will be few, and the productivity will be decreased (Mcafee 2008), and the plants will become more susceptible to diseases and pests (Troufflard et al. 2010). Many microbes in the rhizosphere are critical for the release of potassium from different insoluble potassium components present in soil and surrounding systems. Several studies have found

Table 2. Plant growth-promoting and stress-related genes in *Pseudomonas* strains’ genomes.

PGP- traits	*Pseudomonas* strains	Gene	References	
Phosphorus	**metabolism**	**P. psychrotolerans** CS1	**phoBHRU**	Kang et al. (2020)
		P. putida	**pstABC**	Gupta et al. (2014)
		P. aeruginosa	**psxABC**	Singh et al. (2021)
	Nitrogen	**P. psychrotolerans** CS1	**nprB**	Kang et al. (2020)
		P. aeruginosa	**ntrB**	Singh et al. (2021)
	Plant hormones	**P. chlororaphis subsp.**	**nirQ**	Zhang et al. (2020)
		P. aeruginosa	**nibB**	Singh et al. (2021)
	Siderophore	**P. psychrotolerans** CS1	**Fes**	Kang et al. (2020)
		P. putida	**Pvd**	Gupta et al. (2014)
		P. aeruginosa	**Fes**	Lamont et al. (2006)
		P. aeruginosa	**Ftva**	Duan et al. (2013)
		P. psychrotolerans CS1	**PvdYII**	Nelkner et al. (2019)
		P. putida	**acdS**	Singh et al. (2021)
		P. aeruginosa	**acdS**	Singh et al. (2021)
		P. aeruginosa	**acdS**	Singh et al. (2021)
		P. psychrotolerans CS1	**acdS**	Singh et al. (2021)
		P. putida	**acdS**	Singh et al. (2021)
		P. aeruginosa	**acdS**	Singh et al. (2021)
	Biofilm formation	**P. aeruginosa**	**Efp**	Singh et al. (2021)
		P. aeruginosa	**Efp**	Singh et al. (2021)
		P. psychrotolerans CS1	**Efp**	Singh et al. (2021)
		P. putida	**Efp**	Singh et al. (2021)
		P. aeruginosa	**Efp**	Singh et al. (2021)
	Root colonization	**P. aeruginosa**	**minCDE**	Singh et al. (2021)
		P. chlororaphis subsp.	**yijB**	Singh et al. (2021)
		P. psychrotolerans CS1	**xerC**	Zhang et al. (2020)
		P. aeruginosa	**xerD**	Singh et al. (2021)
		P. putida	**xerD**	Singh et al. (2021)
		P. aeruginosa	**xerD**	Singh et al. (2021)
		P. psychrotolerans CS1	**xerD**	Singh et al. (2021)
		P. putida	**xerD**	Singh et al. (2021)
	Phenazine	**P. aeruginosa**	**phzA, B**	Gupta et al. (2014)
		P. putida	**phzF**	Gupta et al. (2014)
	Superoxide dismutase	**P. aeruginosa**	**SODA**	Singh et al. (2021)
		P. putida	**sodBC**	Gupta et al. (2014)
	Peroxidase	**P. putida**	**oxrR**	Gupta et al. (2014)
		P. psychrotolerans CS1	**CopABCD**	Kang et al. (2020); Cooksey (1993)
Pseudomonas to be potassium-solubilizing bacteria (Yadav et al. 2017).

Zinc solubilization

In plants, zinc is directly implicated in carbohydrate metabolism, cytochrome production, and superoxide radical removal; it also functions as a cofactor in a variety of enzyme activities, ribosomal fraction stabilization, growth-promoting hormone production, cell membrane integrity, floral tissue formation, and pollen tube growth, etc. (Kamran et al. 2017). Reduced plant growth, wilting of floral parts, reduced leaf size, and poor seed quality, pollen development, and root growth are all symptoms of zinc deficiency (Cakmak 2000). Zinc deficiency can be alleviated by using zinc solubilizing rhizobacteria (ZSR), which are effective at mobilizing zinc complexes in the soil and so resolving plant zinc deficiency (Khan et al. 2019). Applying specific *Bacillus, Pseudomonas,* and *Serratia* species resulted in greater zinc mobilization in wheat (7–12%) and soybeans, according to numerous research (Lefevre et al. 2014). In pot experiments, Goteti et al. (2013) observed that bacterizing maize seedlings with a Zn-solubilizing *Pseudomonas* strain boosted Zn uptake and concentration substantially. Sunithakumari et al. (2016) reported that *Stenotrophomonas, Mycobacterium, Enterobacter, Pseudomonas,* and *Xanthomonas,* among other rhizobacteria isolated from banana, chili, bean, groundnuts, maize, sorghum, and tomato plants, have substantial *in vitro* Zn solubilization capacities. Zinc solubilizing properties and improved Zn absorption were reported after *Pseudomonas* strains were inoculated into rice plants (Joshi et al. 2013).

Siderophore production

Bacteria produce siderophores which are small organic molecules that improve iron absorption in iron-deficient conditions. Like PGPR, *Pseudomonas* sp. confronts its ion requirement by consuming siderophores formed by several other rhizosphere microorganisms. To boost the quantity of iron available in its native habitat, *P. putida* employs heterologous siderophores produced by other microorganisms (Rathore 2015). In host plants, bacterial siderophores influence iron homeostasis, immune function, and growth (Hesse et al. 2018b). For example, the siderophore pyoverdine analog (apo-pyoverdine) of *P. fluorescens* strain C7R12 impacts the expression of roughly 2000 genes in *A. thaliana* (Trapet et al. 2016). Many genes involved in the production of iron-mobilizing phenolic compounds were discovered to be positively activated in *A. thaliana* colonized by *P. fluorescens* WCS417. Bacterial strains that can produce a large number of siderophores were less inhibited by elevated copper concentrations, and the fraction of siderophore-synthesizing strains grew in lockstep with the ion gradient (Hesse et al. 2018b). Similarly, *P. aeruginosa* ZGKD3, Cd (II), and Zn (II) boosted overall siderophore production, such as pyoverdine (Shi et al. 2017). Gupta et al. (2014) found acrAB, _flu, fpvA, mbtH,* and _pvd* genes in *P. putida* genome. Kang et al. (2020) found entFS, _fepBCDG,* and _fes* genes in *P. psychrotolerans* CS51 genome, participating in siderophore synthesis.

Biological nitrogen fixation

Biological nitrogen fixation (BNF) is the mechanism through which nitrogen-fixing bacteria use a complex enzyme system called nitrogenase to convert atmospheric elemental nitrogen into plant usable forms (Masson-Boivin and Sachs 2018). Nonsymbiotic nitrogen fixation, which involves members of the *Arthrobacter, Acetobacter, Clostridium, Azotobacter, Bacillus,* and *Pseudomonas* genera (Dinnage et al. 2019), and symbiotic nitrogen fixation, which involves members of the Rhizobiaceae family with leguminous plants (Martins et al. 1999). Li et al. (2017) reported *P. koreensis* and *P. entomaphila* strains as a nitrogen-fixing strain in sugarcane. The fixation of elemental nitrogen by beneficial soil microbes like PGPR accounts for a large portion of the elemental nitrogen that enters the soil under natural settings (Ji et al. 2019). Thus, plant-microbe interactions via BNF play a significant role in the formation of organic fertilizers (Kuypers et al. 2018). The gene _nifU_ is required for nitrogen fixation and is involved in the construction of the Fe-S

Figure 2. Plant growth-promoting mechanisms of *Pseudomonas* strains.
Table 3. List of Pseudomonas strains in abiotic stress management in various crops.

Abiotic stress	Concentration	Pseudomonas strains	Bacterial traits	Crops	Conditions	Plant responses to inoculants	References
Drought	–	*P. chlororaphis*	Secretion of volatile compounds 2R, 3R butanediol	Arabidopsis	Pots	Increased plant growth	Cho et al. (2008)
	–	*P. putida*	Production of EPS	Sunflower	Pots	Improved plant life, biomass, and the ratio of root adherent soil/root tissue	Sandhya et al. (2009)
	–	*P. aeruginosa*	Production of EPS	Okra	Pots	Increment of water and moisture content in the soil	Yadav et al. (2018)
	–	*P. aeruginosa*	Production of EPS and catalase	Maize	Pots	Increment of water and moisture content in the soil	Naseem and Bano (2014)
	–	*P. aeruginosa*	Production of EPS and P-solubilization	Maize	Pots	Increased soil aggregates constancy	Putrie et al. (2013)
	–	*P. syringae, P. putida, P. stutzeri, and P. monteilli*	Production of IAA, gibberellic acid, siderophore, HCN, and ammonia, and P-solubilization	Maize	Pots	Increased normal weight diameter of root-adhering soil and soil aggregates firmness	Sandhya et al. (2018)
	–	*P. fluorescens*	EPS production and P-solubilization	Wheat	Pots	Improved plant growth and biomass, relative water content, and nutrient uptake	Khan et al. (2017)
	–	*P. libanensis*	P-solubilization, ACC deaminase activity, and production of IAA, siderophore, and ammonia	Wheat	Laboratory and pots	Increased plant growth and physiological parameters	Kour et al. (2019)
	–	*Pseudomonas sp.*	Auxin production	Wheat	Pots	Enhanced vegetative growth and yield	Raheem et al. (2018)
	–	*P. putida*	Gibberellic's production	Wheat	Pots	Antioxidant activity	Kang et al. (2014)
Salt	100 mM NaCl	*P. simiae*	Biofilm	Soybean	Pots	Increased shoot and root length, leaf area, and trifoliate leaf count	Vaishnav et al. (2016)
	200 mM NaCl	*Pseudomonas sp.*	–	Soybean	Laboratory	Enhanced root and shoot growth and biomass with a higher number of lateral roots	Kasotia et al. (2016)
	120 mM NaCl	*P. putida*	Production of gibberellins, ABA, JA, and salicylic acid	Soybean	Pots	Increased shoot length, fresh weight, and chlorophyll content	Kang et al. (2014)
	200 mM NaCl	*P. putida*	IAA production and P-solubilization	Soybean	Pots	Phosphorus and nitrogen acquirement, nodule formation, and root system physiology	Egamberdieva et al. (2017)
	100 mM NaCl	*P. simiae*	IAA and siderophore production, and phosphate solubilization	Soybean	Pots	Improved soybean seed germination and growth	Vaishnav et al. (2016)
	100 mM NaCl	*P. simiae*	–	Soybean	Laboratory	Increment in chlorophyll and proline content and decrease in accumulation of root Na+	Vaishnav et al. (2015)
	600 mM NaCl	*Pseudomonas sp.*	Production of β-1-3 glucanase, chitinase, siderophore, HCN, pyocyanin, and IAA, and phosphate solubilization	Sunflower	Pots and field	Increased plant growth	Tewari and Arora (2016)
	100 mM NaCl	*P. fluorescens*	Production of siderophore and IAA K+/Na+ ratio	Sunflower	Pots	Decreased accumulated Na+ and increased biomass and K+ content	Shilev et al. (2012)
	150 mM NaCl	*P. anguilliseptica*	Biofilm formation and EPS production	Faba bean	Pots		Mohammed (2018)

(Continued)
Table 3. Continued.

Abiotic stress	Concentration	Pseudomonas strains	Bacterial traits	Crops	Conditions	Plant responses to inoculants	References
100 mM NaCl	P. extremorientalis and P. aeruginosa	IAA production	Wheat	Laboratory	Protection of root by improving biofilm constancy	Egamberdieva (2009)	
171 mM NaCl	P. aeruginosa and P. aurantiaca	Phosphate solubilization, production of IAA, HCN, ammonia, phenol, and free amino acids	Groundnut	Pots	Increased leaf area	Ghori et al. (2015)	
100 mM NaCl	Pseudomonas sp.	ACC deaminase activity, phosphate solubilization, and IAA production	Groundnut	Pots	Preserved ion homeostasis and increased seedling growth	Sharma et al. (2016)	
100 mM NaCl	P. Chlororaphis and P. putida	IAA production	Cotton seed	Pots	Improved seed germination and seedling growth	Egamberdieva et al. (2015)	
–	P. putida	IAA production	Cotton seed	Pots and field	Increased germination rate and biomass	Yao et al. (2010)	
171 mM NaCl	P. fluorescens and P. putida	Production of IAA and HCN and ACC deaminase activity	Rape seed	Laboratory	Increased seedling growth	Jalili et al. (2009)	
250 mmol NaCl	P. putida	ACC deaminase activity	Rape seed	Laboratory	Increased antioxidant enzymes activity and pathogenesis-related responses	Cheng et al. (2012)	
90 mmol NaCl	P. putida	ACC deaminase activity	Tomato	Pots	Improved Toc-GTPase expression and shoot growth	Yan et al. (2014)	
300 mM NaCl	Pseudomonas sp.	Potassium solubilization	Wheat	Pots	Increased K uptake	Pirhadi et al. (2016)	
300 mM NaCl	Pseudomonas sp.	Production of siderophore and phytohormones and cellulolytic activity	Beet	Pots	Improved root length and biomass (dry)	Piernik et al. (2017)	
Heat	–	P. putida	Antioxidant activity	Wheat	Pots	Enhanced root and shoot length, dry biomass, tiller, spikelet, and grain formation	Ali et al. (2011)
Metal	400 mg kg\(^{-1}\) Zinc (Zn)	P. brassicacearum	Metal-chelating molecules	Brown mustard	Pots	Improved root accumulation and resistance to Zn	Adediran et al. (2016)
	1500 mg kg\(^{-1}\) Zn	P. aeruginosa	Production of IAA and siderophore and P- solubilization	Wheat	Pots	Enhanced P and N uptake, total soluble protein, and biomass	Islam et al. (2014)
	500 mg kg\(^{-1}\) Copper (Cu)	P. brassicacearum	Production of IAA and siderophore and ACC deaminase activity	Black medick	Pots	Increased growth, total dry biomass, root weight, and root nodules number	Kang et al. (2017)
	8.6 mg L\(^{-1}\) Arsenic (As), 4.2 mg L\(^{-1}\) Cadmium (Cd), 3.7 mg L\(^{-1}\) Cu, 14 mg L\(^{-1}\) Lead (Pb), and 18 mg L\(^{-1}\) Zn	P. koreensis	ACC deaminase activity, P- solubilization, and nitrogen fixation	Chinese silver grass	Pots	Improved biomass, height, number of culms, chlorophyll, and protein content	Babu et al. (2015)

cluster (Smith et al. 2005). Kang et al. (2020) identified the norB gene in P. psychrotolerans CS51’s genome (Table 2).

Exopolysaccharide production

Exopolysaccharides (EPS) are biodegradable polymers with a large molecular mass that are formed by a wide range of bacteria, algae, and plants from monosaccharide residue and derivative (Sanlibaba and Cakmak 2016). EPSs are directly responsible for plant growth and crop production by preserving water content, accumulating soil particles, maintaining necessary interaction between plant roots and rhizobacteria, and supporting the host under stress situations (Panwar et al. 2016). Bacteria release EPS, which are responsible for bacterial adhesion to soil particles and root surfaces, typically in collaboration with other bacteria. EPS links soil particles to combined, improving water retention and cation exchange capacity while also stabilizing soil structures (Upadhyay et al. 2011). Environmental fluctuations, water, and nutrient absorption, and epiphytic colonization are all protected by the contained matrix of microcolonies that EPS creates (Balsanelli et al. 2014). In the legume-rhizobia symbiosis, they are also essential for complete biofilm generation and the development of functional nodules (Skorupska et al. 2006). Inoculating EPS-producing P. mendocina onto Lactuca sativa including an arbuscular mycorrhizal fungus,
Table 4. List of antagonistic *Pseudomonas* strains against different plant pathogens.

Crops	*Pseudomonas* strains	Pathogens	Bacterial traits	Conditions	Plant responses to inoculants	References
Tomato	*P. fluorescens*	*Ralstonia solanacearum*	Antibiosis	Pots and field	Improved plant growth	Mohandas et al. (2010)
	P. fluorescens	*Fusarium oxysporum* f. sp. lycopersici	Siderophore production	Pots	Increased plant height and weight	Kannan and Surendar (2009)
	P. fluorescens	*Fusarium oxysporum* f. sp. lycopersici	IAA production and induced systemic resistance	Pots	Increased shoot length and protein content	Srivastava et al. (2010)
	Pseudomonas sp.	*Fusarium oxysporum* f. sp. lycopersici	Siderophore and rhizomorph production and P-solubilization	Pots and field	Enhanced shoot length, and fresh and dry shoot weight	
	Pseudomonas sp.	*Ralstonia solanacearum*	–	Pots	Pathogen growth suppression and competition for resources	Hu et al. (2016)
Banana	*P. fluorescens*	*Fusarium oxysporum* f. sp. cubense	–	Pots and field	Plant growth promotion	Mohandas et al. (2010)
	P. fluorescens	*Fusarium oxysporum* f. sp. cubense	Production of defense-related enzymes and induced systemic resistance	Pots and field	Plant growth promotion	Kavino and Manoranjitham (2017)
	P. aeruginosa	*Fusarium oxysporum* f. sp. cubense	Chitinase and 2,4-diacyltlyphloroglucinol production	Pots	–	Wong et al. (2019)
	Pseudomonas sp.	*Fusarium oxysporum* f. sp. cubense	Production of stress-related enzymes, and pathogenesis-related proteins	Pots	Increased total leaf count, plantlets height, pseudostem diameter, and chlorophyl content	Mohd Fishal et al. (2010)
Rice	*Pseudomonas sp.*	*Xanthomonas oryzae*	Production of siderophore and IAA, P-solubilization, peroxidase, phenylalanine-ammonia lysis, and polyphenol-oxidase activity	Pots	Decreased diseased leaf area, increased root and shoot length, and plant dry weight	
	P. baetica	*Fusarium oxysporum*, *Alternaria sp.*, and *Curvularia sp.*	Production of pectinase and P-solubilization	Laboratory	Increased growth of seedlings and root hairs formation	Verma et al. (2018)
Maize	*P. putida*	*Fusarium verticillioides*	–	Laboratory	Inhibition of fungal growth and colonization	Niu et al. (2017)
Potato	*P. fluorescens*	*Ralstonia solanacearum*	Antibiosis	Laboratory – Pots	Enhanced growth of plantlets height, and seedlings and root hairs formation	
	P. chlororaphis	*Phytophthora infestans*	Competition (siderophores) and antibiotic (phenazines and HCN)	–	–	
	P. aeruginosa	*Rhizoctonia solani*	Unknown mechanisms	–	Increased potato yield	Mohabat et al. (2015)
Peanut	*P. fluorescens*	*Sclerotium rolfsi*	Antimicrobial compounds production	–	–	Lohitha et al. (2016)
Soybean	*P. aeruginosa*	*Macrophomina phaseolina* and *Sclerotinia sclerotiorum*	Chitinase β-1,3 glucanase, cellulase, ammonia, and siderophore production	Pots	Enhanced seed germination, seedling vigor index, and chlorophyl content	Thakkar and Saraf (2014)
Sugarcane	*P. aeruginosa*	*Sporisorium scitamineum*	Produced antimicrobial compounds, enzymes i.e. β-1,3-glucanase, chitinase, protease, and cellulase, ammonia, IAA, HCN, and siderophore, and ACC deaminase activity	Pots	Increased sugarcane growth	Singh et al. (2021)
	P. putida	*Colletotrichum falcatum*	IAA and HCN production and phosphate solubilization	Pots	Increased sugarcane growth	Kishore et al. (2017)
	P. monteilii	*Sporisorium scitamineum* and *Ceratocystis paradoxa*	Nitrogen fixation, IAA and siderophore production, ACC deaminase activity, and P-solubilization	–	–	Li et al. (2017)
	P. putida	*Sporisorium scitamineum* and *Ceratocystis paradoxa*	Nitrogen fixation, IAA, siderophore, ammonia, and HCN production, ACC deaminase activity, and P-solubilization	–	–	Li et al. (2017)
	P. koreensis	*Sporisorium scitamineum* and *Ceratocystis paradoxa*	Nitrogen fixation, IAA, siderophore, ammonia, and HCN production, ACC deaminase activity, and P-solubilization	–	–	Li et al. (2017)
	Pseudomonas sp.	*Sporisorium scitamineum* and *Ceratocystis paradoxa*	Nitrogen fixation, IAA, siderophore, ammonia, and HCN production, ACC deaminase activity, and P-solubilization	–	–	Li et al. (2017)
	P. plecoglossicida	*Ceratocystis paradoxa*	Nitrogen fixation, IAA, siderophore, and ammonia production, ACC deaminase activity, and P-solubilization	–	–	Li et al. (2017)
	P. taiwanensis	*Ceratocystis paradoxa*	Nitrogen fixation, IAA, siderophore, and HCN production, ACC	–	–	Li et al. (2017)

(Continued)
Reactive oxygen species (ROS; comprising superoxide O_2^\cdot, hydroxyl radical OH·, hydrogen peroxide H_2O_2, and others) are produced as a metabolic byproduct in plants and serve mainly as signaling molecules. Plants growing under stress produce more ROS, which causes DNA damage, redox state changes, abnormal protein formation, denaturation of membranous proteins, lipid peroxidation, membrane fluidity reduction, interference with enzymatic activity, and overall cell homeostasis, leading to cell damage and in extreme cases plant cell death (Halo et al. 2015). Enzymatic antioxidants i.e. ascorbate peroxidase (APX), catalase (CAT), superoxide dismutase (SOD), etc., and non-enzymatic antioxidants (ascorbic acid, glutathione, GSH, tocopherols, etc.) both contribute to mitigating ROS and hence defend plant cells from oxidative stress. In this context, PGPRs use their antioxidant enzyme system to protect plants from oxidative stress. Inoculating rice with *P. fluorescens* increases the activities of POD, APX, SOD, and CAT, which helps to alleviate salt stress (Singh et al. 2020). Singh et al. (2021) discovered multiple oxidoreductase genes i.e. KatE, osmC, and SODA in the genome of *P. aeruginosa* B18, indicating that this bacterium can boost plant development in the presence of smut pathogen (Table 2). Also, genes for SOD (sodBC), POD (osmC and oxyR), and CAT synthesis were discovered in the *P. putida* genome (Table 2) (Gupta et al. 2014).

Production of cell-wall-degrading enzymes

The synthesis of hydrolytic enzymes i.e. chitinases, cellulases, proteases, glucanases, and others capable of hydrolyzing polymeric materials such as cellulose, hemicellulose, chitin, cell wall proteins, and so on, was discovered to be capable of preventing a range of plant diseases. (Mabood et al. 2014). PGPR generates and excretes a variety of hydrolytic enzymes and these enzymes' defense-related actions have been demonstrated against a variety of phytopathogens. Chitin is a structurally important component of the fungal cell wall. PGPR attacks fungal cell walls by secreting chitinolytic enzymes, which cause chitin breakdown. In this way, chitinolytic bacteria *P. aeruginosa* B18 inhibits fungal pathogens like *S. scitamineum* sugarcane pathogen (Singh et al. 2021) and improves plant growth indirectly. Rhizobacteria that produce cellulase rapidly hydrolyze cellulose to glucose by the synergistic effects of enzymes such as glucanases, hydrolases, and glucosidas (Siqueira et al. 2020). By degrading cellulose wastes, cellulolic bacteria can provide a source of carbon in the soil rhizosphere, which enhances soil quality and preserves nitrogen balance (Behera et al. 2017). These bacteria that produce cellulose are also used in the biological biomass conversion to biofuels (Siqueira et al. 2020). Cellulase-mediated conversion techniques are deemed greener and more environmentally benign than chemical conversions. *P. fluorescens* LPK2 and *Sinorhizobium fredii* KCC5 generate beta-glucanases and chitinases to inhibit *Fusarium*
oxysporum and F. udum, causing Fusarium wilt disease (Ramadan et al. 2016). Numerous hydrolase genes such as bgIBX, floE2, gdhA, malQ, and ribA were recognized in the genome of P. aeruginosa B18 (Table 2) (Singh et al. 2021). Similarly, chitinase genes were found in the P. putida genome (Table 2) (Gupta et al. 2014).

Volatile organic compounds (VOCs)

VOCs formed by bio-control strains enhance plant growth, suppress bacterial, fungal, and nematode diseases, and establish systemic resistance in plants to plant pathogens (Raza et al. 2016). Volatile organic compounds (VOCs) produced by PGPR have been shown to boost plant development, ensuing in improved shoot biomass and changed stress reactions. More research is needed to understand how plants perceive volatile and the mechanisms that result from this perception (Bailey and Weiskopf 2012). Plants and other rhizosphere microorganisms interact with each other in the rhizosphere, PGPR produces VOCs with varying roles and functions (Bitas et al. 2013). VOCs have a dual direct and indirect influence during plant growth-promoting activities, as per a deep investigation (Santoyo et al. 2019), suggesting that rhizosphere VOCs can either directly or indirectly boost plant development by reducing the growth of plant pathogens. A putative VOCs produced by P. simiae AU improved soybean salt resistance by reducing root Na⁺ (100 mM NaCl) buildup and boosting proline and chlorophyll levels (Vaishnav et al. 2015). Hence, these VOCs cause increased phosphate accessibility in the rhizosphere, which benefits the plants that are affected (Kumari et al. 2018).

Hydrogen cyanide

HCN producing traits have a significant impact on plant establishment by suppressing fungal infections (Aarab et al. 2019). HCN produced by PGPR works as a biocontrol agent but also contributes to geochemical processes in the substrate, like metal chelation. Many biocontrol PGPR are capable of producing hydrogen cyanide (HCN) (Santoyo 2012). Many strains of Pseudomonas species, including P. aeruginosa, P. koreensis, and P. entomophila, showed good HCN production as well as biocontrol effectiveness against various sugarcane diseases (Singh et al. 2021; Li et al. 2017). HCN produced by PGPR appears to work in combination with other biocontrol techniques employed by the same bacteria. The capacity of HCN to inhibit cytochrome c oxidase and other key metalloenzymes contributes to its toxicity (Nandi et al. 2017). Strain P. fluorescens CHA0 generates HCN, which adds significantly its biocontrol potential. Anaerobic regulator (ANR) and global activator (GacA) are necessary for the maximum expression of hcnABC genes involved in HCN biosynthesis in P. fluorescens (Blumer and Haas 2000). Nelkner et al. (2019) detected gene clusters (hcnABC) encoding HCN in P. brassicacearum 3Re2-7 genome (Table 2).

Antibiosis

Strains of Pseudomonas genera play an important role in suppressing harmful microbes by generating antibiotics. Over the last two decades, the synthesis of antibiotics by PGPR has been one of the most successful and well-studied bio-control techniques for a variety of plant diseases (Islam et al. 2016). Many Pseudomonas species synthesize a broad range of antimicrobial compounds i.e. phenazines, pyrrolnitrin, phenazine-1-carboxamide, phenazine-1-carboxylic acid (PCA), 2,4 diacetylphloroglucinol (DAPG), rhamnolipids, pyoluteorin, oomycin A, ecomycins, viscosinamide, cepaciamide A, pyocyanin, butyrolactones, N-butylnenzene sulphonamide, phenamonic acid, azomycin, cepafungins, FR901463, and Karalicine (Ramadan et al. 2016).

2,4-Diacetylphloroglucinol (DAPG), which is mostly generated by Pseudomonads, is one of the most extensively studied and effective antibiotics. DAPG causes membrane damage and inhibits the generation of zoospores in Pythium sp., as well as controlling bacterial canker disease in tomato plants (Lanteigne et al. 2012). Pseudomonads also synthesize phena/ne antibiotics with redox activity that can control phytopathogens such as Gaeumannomyces graminis and F. oxysporum. Overuse of antibiotic-producing PGPR for harmful microorganism growth enhancement and biocontrol has led to the establishment of the induced systemic resistance (ISR) mechanism in many plant pathogens, subsequently tolerance to particular antibiotics because of these strains’ increased dependence. Phenazines derived from Pseudomonas strains via functional group substitution on the core phenazine’s ring structure, i.e. PCA. For PCA synthesis, the phenazine biosynthetic operon (phzXY-FABC) is essential (Mavrodi et al. 2010). The phzO gene encoding monooxygenase in P. chlororaphis 30–84 converts few PCA to 2OHPCA (Pierson and Pierson 2010). The genome of P. aeruginosa PA01 contains numerous phenazine modifying genes that convert PCA into four additional phe/nazine derivatives: phenazine-1-carboxamide (PCN), 5-methyl-phenazine-1-carboxylic acid (SMPCA), and 1-hydroxy-phenazine (1OHPZ) via phzH, phzM, and phzS activities, respectively (Mavrodi et al. 2006). Gupta et al. (2014) discovered the phzE gene (responsible for phenazine synthesis) in the genome of P. putida (Table 2). Moreover, the PltB gene (responsible for pyoluteorin synthesis) from P. putida strain NH-50 was amplified and sequenced (Hassan et al. 2011).

Induced systemic resistance

Induced resistance is a physiological condition of enhanced defensive ability produced by specific environmental stimuli, which leads to the strengthening and stimulation of the plant’s innate defense mechanism against subsequent pathogenic attacks. Plants that have been bio-primed with PGPR develop systemic resistance to a variety of plant diseases (Nazzin et al. 2013). PGPR plays a role in activating ISR in a plant’s rhizosphere (Pieterse et al. 2014). Ethylene and jasmonate signaling are implicated in ISR; both of these hormones play an important role in strengthening plant defense responses against a wide range of phytopathogens (Bukhat et al. 2020). Several bacterial components, including homoserine lactones, DAPG, 2, 3-butanediol, LPS, acetoin, siderophores, cyclic lipopeptides, and flagella, are participating in ISR (Torres-Cortés et al. 2018). Rhizobacteria-mediated ISR initiation in crops stimulates the production of antimicrobial substances including benzoxazinoids and coumarin, further increasing the activation of ISR-triggering strains (Hu et al. 2018; Stringlis et al. 2018). Hence, over
thousands of generations, plant immune systems can be modified to recruit microbes for plant resistance. ISR has been researched in several rhizobacteria-inoculated plants and, as first established by Van Peer and Schippers (1992), protected plants against the fungal disease *Fusarium oxysporum* f. sp. *dianthi* by utilizing *P. fluorescens* strain WCS417r. Plant defense systems can be induced by pre-treatment with a suitable PGPR, allowing the plant to respond faster and more powerfully to a future pathogen attack. ISR does not specifically target pathogens but rather primes the plant against a variety of diseases, and it is not just produced at the site of induction.

Biofilm production

Biofilms are extracellular matrices that are made up of exopolysaccharides, proteins, nucleic acids, lipids, and microbes embedded in them (Zboralski, Filion 2020; Danhorn and Fuqua 2007). *Pseudomonas* is a well-studied biofilm-producing bacterium genus. Dekkers et al. (1998) have shown that lipopolysaccharides (LPS), particularly the O-antigen, can play essential roles in root tip colonization in *Pseudomonas* sp. Some of these organisms have clinical applications, but this ability also permits rhizospheric bacteria to cling to plant root surfaces (Danhorn and Fuqua 2007). Once linked to the plant roots, PGPR may more easily exert their helpful mechanisms towards the plant; PGPR with good biofilm formation boost their plant growth-promoting activities, even in the presence of environmental stress (Meena et al. 2017).

The creation of a biofilm matrix takes place in stages. Microorganisms initially stick to a surface in what is known as primary adhesion; these microorganisms contain distinct cellular features such as pili or flagella and enzymes known as adhesins that aid this adherence. Motility can assist bacteria to resist the hydrophobic forces that repel them off surfaces. In the second stage, the bacteria that successfully adhere begin to divide, spread around the initial spot, and establish microcolonies. The following stage involves the secretion of various exopolysaccharides by microbes such as alginites, celluloses, N-acetylglucosamines, and galactose. Finally, the microcolonies embedded in the exopolymer matrix begin to liberate themselves from the matrix, and the process may be repeated at a different location (Zboralski, Filion 2020). A biofilm frequently provides enhanced capacity to the microorganisms that are incorporated. Because its constituents may coordinate operate as osmoprotectants, biofilms formed by PGPR protect plants subjected to stress conditions such as drought and high salinity (Rojas-Solis et al. 2020). *P. aeruginosa* B18 genome contained genes that take part in biofilm development such as *efp*, *flgBCDEFGHl*, *hfg*, and *motA* (Table 2) (Singh et al. 2021). Biofilm-related genes were also reported in the genomes of *P. chlororaphis* subsp. *aurantiaca* JD37, *P. aeruginosa* PAO1, and *P. polymyxa* (Table 2) (Zhang et al. 2020).

Pseudomonas sp. in the alleviation of biotic and abiotic stresses

Several experiments conducted and analyzed by different scientists showed that *Pseudomonas* spp. inoculation can promote plant development in both normal (Zahir et al. 2004; Cummings 2009; Hayat et al. 2010) and stressful environments (Glick et al. 2007; Nadeem et al. 2016). This tremendous performance of *Pseudomonas* spp. was due to their particular characteristics and environmentally friendly traits which enable them to survive under stress conditions and exhibit their potential regarding agricultural and environmental issues (Figure 3).

P. aureofaciens, *P. aeruginasa*, *P. brassicacearum*, *P. chlororaphis*, *P. fluorescens*, and *P. putida* are the most commonly reported *Pseudomonas* species that include plant beneficial rhizospheric strains (Nadeem et al. 2016). Some research suggests that rhizobacterial colonization causes changes in ROS and secondary product metabolism, which may help the plant guard against or mitigate the impact of pathogen infections (Rashid and Chung 2017). *Pseudomonas* strains implicated in phytopathogen inhibition generate antimicrobial compounds i.e. HCN, PCA, and pyrurolnitin, reducing iron accessibility, along with cell-wall degrading enzymes that help in the breakdown of pathogen cell walls, preventing harmful pathogens growth and disease suppression (Bhattacharyya and Jha 2012; Mabood et al. 2014; Li et al. 2017; Singh et al. 2021). One of the most varied bacterial complexes in the genus *Pseudomonas* is the *P. fluorescens* complex, including more than 50 species that are adequately recognized and a considerable number of unidentified isolates (Garrido-Sanz et al. 2017). This complex’s strains have been isolated from a variety of plant-related habitats, and many species can be considered beneficial since they are defined as PGPR or reduce phytopathogen consequences (Raaijmakers et al. 2009).

Abiotic stress

Abiotic stress harms plant morphological, physiological, and biochemical functioning, which is harmful to plant health. Drought, salt, and heavy metal stress are the most common abiotic stressors that crops endure across the world. Plant growth and development are influenced by soil quality, nutrition, and physicochemical qualities. Similarly, the availability of macro and micronutrients in easily palatable forms is an important factor that influences plant growth at all stages. Different growth-promoting *Pseudomonas* strains have been shown to have favorable impacts on dry biomass, germination, growth performance, yield, and nutrient absorption under salt, drought, and heavy metal stress tolerance in diverse crops in previous studies *via* various mechanisms (Table 3). For example, *P. aeruginosa* MCCB0035, *Pseudomonas* sp., and *P. libanensis* improved the growth of okra (Yadav et al. 2018), maize (Sandhya et al. 2010), and wheat (Kour et al. 2019) plants under drought stress, *Pseudomonas* sp., *P. anguilliseptica* SAW24, and *P. extremorientalis* enhanced sunflower (Tewari and Arora 2016), faba bean (Mohammed 2018), and wheat (Egamberdieva 2009) growth under salt stress, whereas *P. aeruginosa* and *P. brassicacearum* improved growth of wheat and black medick under Zn and Cu stress (Islam et al. 2014; Kong et al. 2017) (Table 3).

Biotic stress

Similarly, a variety of harmful diseases produced by fungi, bacteria, viruses, and nematodes are severe biotic limitations that result in reduced crop development and yield outputs. PGPR can be effectively managed in the agro-farming system
to control most of the listed biotic stresses, boost yields, and decrease the use of chemical fertilizers (Glick 2020). This is referred to as biocontrol, and it is achieved through competition, antibiosis, and ISR. *Pseudomonas* strains such as *P. aeruginosa* B18, *P. fluorescens*, *Pseudomonas sp.*., *P. putida* AA7, and *P. baetica* have been reported to be more efficient in providing pathogen protection and improving growth in different crops (Yasmin et al. 2016; Niu et al. 2017; Verma et al. 2018; Djaya et al. 2019; Singh et al. 2021) (Table 4).

Conclusions and future perspectives

This review is abundant with useful information demonstrating the ability of *Pseudomonas* strains to support the plant growth and development in a wide range of crops, as well as increasing the ability of crops to manage biotic and abiotic challenges. This tolerance is owing to the existence of certain characteristics in these strains, and understanding the probable action mechanisms of *Pseudomonas* and its positive interactions with plants is critical for increasing plant growth and output. In the future, plant growth-promoting *Pseudomonas* strains might be an efficient alternative to chemical fertilizers and pesticides for increasing agricultural production in an environmentally friendly and several promising ways. However, a variety of conditions exist, including, commercial formulation, host specificity, durability and survival, and variation in an extensive range of environmental circumstances, necessitating extensive research in this field to completely use them as sustainable agricultural approaches and meet future food demands sustainably.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This work was supported by Guangxi Natural Science Foundation under Grant No. AA18242026 and AD18281066.

Notes on contributors

Pratiksha Singh is a Lecturer in the School of Marine Sciences and Biotechnology, Guangxi University for Nationalities, Nanning China.

Rajesh Kumar Singh is a Research Scientist at Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China.

Yan Zhou is a Lecturer in the School of Marine Sciences and Biotechnology, Guangxi University for Nationalities, Nanning, Guangxi, China.

Jing Wang is a MSc. student in the School of Marine Sciences and Biotechnology, Guangxi University for Nationalities, Nanning, Guangxi, China.

Yu Jiang is a Lecturer in the School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning, Guangxi, China.

Naikun Shen is a Professor in the School of Marine Sciences and Biotechnology, Guangxi University for Nationalities, Nanning, Guangxi, China.

Jibing Wang is a Deputy Dean in the School of Marine Sciences and Biotechnology, Guangxi University for Nationalities, Nanning, Guangxi, China.

Lifang Yang is a Professor in the School of Marine Sciences and Biotechnology, Guangxi University for Nationalities, Nanning, Guangxi, China.

Mingguo Jiang is a Dean/Deputy Secretary in the School of Marine Sciences and Biotechnology, Guangxi University for Nationalities, Nanning China.

ORCID

Pratiksha Singh http://orcid.org/0000-0003-1527-1500

Rajesh Kumar Singh http://orcid.org/0000-0003-0937-1847

References

Aarab S, Ollero J, Megías M, Laglaoui A, Bakkali M, Arakrak A. 2019. Some characteristics of phosphate solubilizing rhizobacteria as an ecological strategy for sustainable agriculture. Mater Today: Proceedings. 13:1224–1228.

Adediran G.A, Ngwenya B.T, Mosselmans J,F,W, Heal KV. 2016. Bacteria–zinc co-localization implicates enhanced synthesis of cysteine-rich peptides in zinc detoxification when *Brassica juncea* is inoculated with *Rhizobium leguminosarum*. New Phytol. 209:280–293.

Adeleke RA, Raimi AR, Roopnarain A, Mokubedi SM. 2019. Status and prospects of bacterial inoculants for sustainable management of agroecosystems. In: Giri B, Prasad R, Wu QS, Varma A., editors. Biofertilizers for sustainable agriculture and environment. Cham: Springer International; p. 137–172.
Adhikari A, Khan MA, Lee KE, Kang SM, Dhungana SK, Bhusal N, Lee JJ. 2020. The halotolerant Rhizobacterium-Pseudomonas koreensis MU2 enhances inorganic silicon and phosphorus use efficiency and augments salt stress tolerance in soybean (Glycine max L.). Microorganisms. 19(8):1256.

Alawiye TT, Babalola OO. 2019. Bacterial diversity and community structure in typical plant rhizosphere. Diversity (Basel). 11:179.

Ali SZ, Sandhaya V, Grover M, Linga VR, Bandi V. 2011. Effect of inoculation with a thermotolerant plant growth promoting *Pseudomonas putida* strain OMP on growth of wheat *Triticum* spp. under heat stress. J Plant Interact. 6:239–246.

Babu AG, Shea PJ, Sudhakar D, Jung IB, Oh BT. 2015. Potential use of *Pseudomonas koreensis* AGB1 in association with *Miscanthus sinensis* to remediate heavy metal loid-contaminated mining site soil. J Environ Manage. 151:160–166.

Bailly A, Weisskopf L. 2012. The modulating effect of bacterial volatiles on plant growth: current knowledge and future challenges. Plant Signal Behav. 7:79–85.

Balsanelli E, de Baura VA, Pedrosa F, de Souza EM, Monteiro RA. 2014. The modulating effect of bacterial volatiles on plant growth: current knowledge and future challenges. Plant Signal Behav. 7:79–85.

Begum N, Hu Z, Cai Q, Lou L. 2019. Influence of *PGP* inoculation on HSP70 and HMA3 gene expression in switchgrass under cadmium stress. Plants. 8:504.

Behera BC, Sethi BK, Mishra RR, Dutta SK, Thatoi HN. 2017. Microbial cell cultures – diversity & biotechnology with reference to mangrove environment: a review. J Genet Eng Biotechnol. 15:197–210.

Bhattacharyya PN, Jha DK. 2012. Plant growth-promoting rhizobacteria PGPR: emergence in agriculture. World J Microbiol Biotechnol. 28:1327–1330.

Binenbaum J, Weinrauch R, Shani E. 2018. Giberellin localization and transport in plants. Trends Plant Sci. 23:410–421.

Bitas V, Kim HS, Bennett JW, Kang S. 2013. Sniffing on microbes: diverse roles of microbial volatile organic compounds in plant health. Mol Plant Microbe Interact. 26:835–843.

Blaha D, Prigent-Combaret C, Mirza MS, Moenne-Loctx Y. 2006. Phylology of the 1-amoacyclopropane-1-carboxylic acid deaminase encoding gene *acdS* in phytobeneficial and pathogenic proteobacteria and relation with strain biogeography. FEMS Microbiol Ecol. 56:455–470.

Blumer C, Haas D. 2000. Iron regulation of the plant *Brassica napus* L against fungal pathogens. Int J Mol Sci. 21:8740.

Chen Z, Woody OZ, Mcconkey BJ, Glick BR. 2012. Combined effects of the plant growth-promoting bacterium *Pseudomonas putida* UW4 and salinity stress on the *Brassica napus* proteome. Appl Soil Ecol. 61:253–263.

Chilbek D, Pinski A, Zar J, Michalska J, Hupert-Kocurek K. 2020. Genome mining and evaluation of the biocontrol potential of *Pseudomonas fluorescens* BRZ63 a new endophyte of oilseed rape *Brassica napus* L against fungal pathogens. Int J Mol Sci. 21:8740.

Cho SM, Kang BR, Han SH, Anderson AJ, Park JY, Lee YH, Cho BH, Yang KY, Ryu CM, Kim YC. 2008. *2R3R*-butanediol a bacterial volatile produced by *Pseudomonas chlororaphis* O6 is involved in induction of systemic tolerance to drought in *Arabidopsis thaliana*. Mol Plant Microbe Interact. 21:1067–1073.

Choue K, Dubey RC, Maheswar DK. 2012. Development of plant growth promoting microbial consortium based on interaction studies to reduce yield loss incidence in *Gajusus cajan* L var. Manak. Middle East J Sci Res. 12:1459–1470.

Combes-Meynet E, Pothier JF, Moenche-Loccoz Y, Prigent-Combaret C. 2011. The *Pseudomonas* secondary metabolite 24-diacyltetroloroglucinol is a signal inducing rhizoplane expression of *Azospirillum* genes involved in plant-growth promotion. Mol Plant Microbe Interact. 24:271–284.

Comantar S, Samad A, Faist H, Sessitsch A. 2019. A review on the plant microbiome: ecology functions and emerging trends in microbial application. J Adv Res. 19:29–37.

Confore PV, Echeverria M, Sánchez C, Ugalde AR, Menéndez BA, Lepek CV. 2010. Engineered ACC deaminase-expressing free-living cells of *Mesorhizobium loti* show increased nodulation efficiency and competitiveness on Lotus spp. J Gen Appl Microbiol. 56:331–338.

Coxeys DA. 1993. Copper uptake and resistance in bacteria. Mol Microbiol. 7:1–5.

Cummins SP. 2009. The application of plant growth promoting rhizobacteria PGPR in low input and organic cultivation of grain crops potential and problems. Environ Biotechnol. 5:43–50.

Danhorn T, Fuqua C. 2007. Biofilm formation by plant-associated bacteria. Annu Rev Microbiol. 61:401–422.

De Boer MA, Wolzaik L, Slootweg JC. 2019. *Phosphorus*: reserves production and applications. In: Ohtake H, Tsuneda S, editors. *Phosphorus*. Springer: Berlin, pp. 75–100.

Dekkers LC, Van Der Bij AJ, Mulders IMH, Phoelich CC, Wentwood RAR, Glandorf DCM, Wijfelmans CA, Lugtenberg BJJ. 1998. Role of the O-antigen of lipopolysaccharide and possible roles of growth rate and of NADH:ubiquinone oxidoreductase *nuo* in competition tomato root-tip colonization by *Pseudomonas fluorescens* WCS365. Mol Plant Microbe Interact. 11:763–771.

Dinnage R, Simonsen AK, Barrett LG, Cardillo M, Raisbeck-Brown N, Thrall PH, Prober SM. 2019. Larger plants promote a greater diversity of symbiotic nitrogen fixing soil bacteria associated with an Australian endemic legume. J Ecol. 107:977–991.

Djaja L, Istifadah N, Hartati S, Joni IM. 2019. In vitro study of plant growth promoting rhizobacteria PGPR and endophytic bacteria antagonistic to *Ralstonia solanacearum* formulated with graphite and silica nano particles as a biocontrol delivery system BDS. Biocat Agric Biotechnol. 19:101–153.

Domenec J, Reddy MS, Klopever JW, Ramos B, Gutierrez-Mañero J. 2006. Combined application of the biological product *LS213 with Bacillus, Pseudomonas* or *Chrysochromobacterium* for growth promotion and biological control of soil-borne diseases in pepper and tomato. Biocontrol. 51:245–258.

Duan J, Jiang W, Cheng Z, Heikilla J, Glick BR. 2013. The complete genome sequence of the plant growth-promoting bacterium *Pseudomonas sp.* UW4. *PLoS* ONE. 8(3):e58640.

Durairaj K, Velmurugan P, Park JH, Chang WS, Park YJ, Senthilkumar P, Choi KM, Lee JH, Oh BT. 2017. Potential for plant biocontrol activity of isolated *Pseudomonas aeruginosa* and *Bacillus* stratospheric strains against bacterial pathogens acting through both induced plant resistance and direct antagonism. FEMS Microbiol Lett. 364(23). doi:10.1093/femsle/fnx225.

Egamberdieva D, Jabborova D, Hashem A. 2015. *Pseudomonas* induces salt tolerance in cotton *Gossypium hirsutum* and resistance to *Fusarium* root rot through the modulation of indole-3-acetic acid. Saudi J Biol Sci. 22:773–779.

Egamberdieva D, Wirth S, Jabborova D, Ras sentenced LA, Liao H. 2017. Coordination between *Bradyrhizobium* and *Pseudomonas* alleviates salt stress in soybean through altering root system architecture. J Plant Interact. 6:239–246.
by some plant-growing-promoting rhizobacteria. Ann Agric Sci. 57:91–97.

Feng H, Zhang N, Du W, Zhang H, Liu Y, Fu R, Shao J, Zhang G, Shen Q, Zhang R. 2018. Identification of chemotaxis compounds in root exudates and their sensing chemoreceptors in plant-growth-promoting rhizobacteria Bacillus amyloyloliquefaciens SQ9R. Mol Plant Microbe Interact. 31:995–1005.

Garrido-Sanz D, Arrebola E, Garcia-Mendez S, Muriel C, Blanco-Romero E, Martin M, Rivilla R, Redondo-Nieto M. 2017. Classification of isolates from the Pseudomonas fluorescens complex into phylogenic groups based in group-specific markers. Front Microbiol. 8:413.

Ghori S, Pal KK, Dey R. 2015. Alleviation of salinity stress in groundnut by application of PGPB. Int Res J Eng Technol. 2:742–750.

Glick BR. 2020. Introduction to plant growth-promoting bacteria. In: Gupta A, Gopal M, Thomas GV, Manikandan V, Gajewski J, Thomas G, Goteti PK, Emmanuel LAE, Desai S, Shaik MHA. 2013. Prospective zinc solubilising bacteria for enhanced nutrient uptake and growth promotion in maize Zea mays L. Int J Microbiol. 869697.

Grobkinsky DK, Tafner R, Moreno MV, Stenglein SA, de Salamone Valencia-Cantero E, Santoyo G. 2015. Characterization of the antibiotic-solubilizing fluorescent pseudomonads from the rhizosphere of plantation crops coconut, cocoa and areca nut. PLoS One. 9(10):e104239.

Gujer A, De Vriese M, Bönisch D, Gloor R, Musa T, Bodenhäuser N, Bailly A, Weiskopf L. 2015. The anti-Phytophthora effect of selected potato-associated Pseudomonas strains: from the laboratory to the field. Front Microbiol. 6:1309.

Haas D, Defago G. 2005. Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol. 3:307–317.

Halo BA, Khan AL, Waqas M, Al-Harrasi A, Hussain J, Ali L, Adnan M, Lee JI. 2015. Endophytic bacteria Sphingomonas sp. LK11 and gibberellin can improve Solanum lycopersicum growth and oxidative stress under salinity. J Plant Interact. 10:117–125.

Han Y, Wang R, Yang Z, Zhan Y, Ma Y, Ping S, Zhang L, Lin M, Yan Y. 2015. Aminocyclopropane-1-carboxylate deaminase from Pseudomonas stutzeri A1501 facilitates the growth of rice in the presence of salt or heavy metals. J Microbiol Biotechnol. 25:1119–1128.

Hartmann A, Rothbächer M, Schmid M, Lorenz H. 2008. A pioneer in rhizosphere microbial ecology and soil bacteriology research. Plant Soil. 312:1–14.

Hassan I, Afridi S, Hafeez FY. 2011. Biological control of red rot in sugarcane by native pyoluteorin-producing Pseudomonas putida strain NH-50 under field conditions and its potential modes of action. Pest Manag. Sci. 67:1147–1154.

Hayat R, Ali S, Amara U, Khalid R, Ahmed I. 2010. Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol. 60:579–598.

Hernández-León R, Rojas-Solís D, Conteras-Pérez M, del Carmen Orozco-Muñoz M, Macías-Rodríguez jr. Ia, Cruz H R-d, Valencia-Cantero E, Santoyo G. 2015. Characterization of the anti-fungal and plant growth-promoting effects of diffusible and volatile organic compounds produced by Pseudomonas fluorescens strains. Biol Cont. 81:83–92.

Hesse C, Schulz F, Bull CT, Shaffer BT, Yan Q, Shapiro N, Hassan KA, Varghese N, Elbourne LDH, Paulsen IT, et al. 2018a. Genome-based evolutionary history of Pseudomonas spp. Environ Microbiol. 20:3026–3040.

Hesse E, O’Brien S, Thomas N, Bayer F, Luj AM, van Veen EM, Hodgson DJ, Buckling A. 2018b. Ecological selection of siderophore-producing microbial taxa in response to heavy metal contamination. Ecol Lett. 21:117–127.

Hu J, Wei Z, Friman VP, Gu SH, Wang XF, Eisenhauer N, Yang TJ, Ma J, Shen QR, Xu YC, et al. 2016. Probiotic diversity enhances rhizosphere microbiome function and plant disease suppression. mBio. 7:e01790–16.

Hu L, Robert C A, Cadot S, Zhang X, Ye M, Li B, Manzo D, Chervet N, Steinger T, Heijden MGA, et al. 2018. Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota. Nat Commun. 9:1–13.

Indiragandhi P, Anandham R, Kim K, Yim W, Madhaiyan M, Sa T. 2008. Induction of defense responses in tomato against Pseudomonas syringae pv, tomato by regulating the stress ethylene level with methylbacterium oryzae CBMB20 containing 1-aminocyclopropane-1-carboxylate deaminase. World J Microbiol Biotechnol. 41037:10463.

Islam F, Yasmeen T, Ali Q, Ali S, Arif M S, Hussain S, Rizvi H. 2014. Influence of Pseudomonas aeruginosa as PGPB on oxidative stress tolerance in wheat under Zn stress. Ecotoxicol Environ Saf. 104:285–293.

Islam S, Akanda AM, Prova A, Islam MT, Hossain MM. 2016. Isolation and identification of plant growth promoting rhizobacteria from cucumber rhizosphere and their effect on plant growth promotion and disease suppression. Front Microbiol. 6:1360.

Jaderlund L, Arthurson V, Granhall U, Jansson JF. 2008. Specific interactions between arbuscular mycorrhizal fungi and plant growth-promoting bacteria: as revealed by different combinations. FEMS Microbiol Lett. 287:174–180.

Jain A, Singh A, Singh S, Singh HB. 2015. Biological management of Sclerotinia sclerotiorum in pea using plant growth promoting microbial consortium. J Basic Microbiol. 55:961–972.

Jalili F, Khavazi K, Paziar E, Nejati A, Rahmani HA, Sadaghihan HR, Miransari M. 2009. Isolation and characterization of ACC deaminase- producing fluorescent Pseudomonads to alleviate salinity stress on canola Brassica napus L. growth. J Plant Physiol. 166:667–674.

Ji SH, Kim JS, Lee CH, Seo HS, Chun SC, Oh J, Park G. 2019. Enhancement of vitality and activity of a plant growth-promoting bacteria PGPB by atmospheric pressure non-thermal plasma. Sci Rep. 9(1):1–16.

Joshi D, Negi G, Vaid S, Sharma A. 2013. Enhancement of wheat growth and Zn content in grains by zinc solubilizing bacteria. Int J Agric Environ Biotechnol. 6:363–370.

Kamran S, Shahid I, Baig DN, Rizwan M, Malik KA, Mehnaz S. 2017. Contribution of zinc solubilizing bacteria in growth promotion and zinc content of wheat. Front Microbiol. 8:2593.

Kang SM, Asaf S, Khan AL, Lubna KA, Mun BG, Khan MA, Gul H, Lee JI. 2020. Complete genome sequence of Pseudomonas psychrotolerans CSS1, a plant growth-promoting bacterium, under heavy metal stress conditions. Microorganisms. 8:382.

Kang SM, Khan AL, Waqas M, Asaf S, Lee KE, Park YG, Kim AY, Khan MA, You YH, Lee JI. 2019. Integrated phytohormone production by the plant-growth-promoting rhizobacterium Bacillus tequilensis SB807 induced thermotolerance in soybean. J Plant Int. 14:416–423.

Kang SM, Radhakrishnan R, Khan AL, Kim MJ, Park JM, Kim BR, Shin DH, Lee JI. 2014. Gibberellin secreting rhizobacterium Pseudomonas putida H-2-3 modulates the hormonal and stress physiology of soybean to improve the plant growth under saline and drought conditions. Plant Physiol Biochem. 84:115–124.

Kang SM, Adhikari A, Lee KE, Park YG, Shahzad R, Lee JI. 2019. Gibberellin producing rhizobacteria Pseudomonas koreensis MU2 enhance growth of Lettuce (Lactuca sativa) and Chinese cabbage (Brassica rapa, chinensis). J Microbiol Biotech Food Sci. 9:166–170.

Kang SM, Waqas M, Hamayun M, Asaf S, Khan AL, Kim AY, Park YG, Lee JI. 2017. Gibberellins and indole-3-acetic acid producing rhizobacterium Pseudomonas putida SE134 mitigates the adverse effects of copper-mediated stress on tomato. J Plant Int. 12:373–380.

Kannan V, Surendar R. 2009. Synergistic effect of beneficial rhizosphere microflora in biocontrol and plant growth promotion. J Basic Microbiol. 49:158–164.

Kasotia A, Varma A, Tuteja N, Choudhary DK. 2016. Amelioration of soybean plant from saline-induced condition by exopolysaccharide producing Pseudomonas-mediated expression of high affinity K+-transporter HKT1 gene. Crop Sci. 52:1961–1967.

Katzenelson H, Cole SE. 1965. Production of gibberellin-like substances by bacteria and actinomycetes. Can J Microbiol. 11:733–741.

Kavino M, Manoranjitham SK. 2017. In vitro bacterization of banana Musa spp, with native endophytic and rhizospheric bacterial isolates: novel ways to combat Fusarium wilt. Eur J Plant Pathol. 151:371–387.

Khan N, Bano A, Babar MA. 2017. The root growth of wheat plants the water conservation and fertility status of sandy soils influenced by plant growth promoting rhizobacteria. Symbiosis. 72:195–205.
Khan ZS, Rizwan M, Hafeez M, Ali S, Javed MR, Adrees M. 2019. The accumulation of cadmium in wheat (Triticum aestivum) as influenced by zinc oxide nanoparticles and soil moisture conditions. Environ Sci Pollut Res Int. 26:19859–19870.

Kishore VP, Kumar KVK, Suresh M, Raja KN, Sekhar VC. 2018. Potentiality of native Pseudomonas spp. in promoting sugarcane seedling growth and red rot Colletotrichum falcum went management. Int J Curr Microbiol Appl Sci. 7:285:2863.

Kohler J, Caravaca F, Carrasco L, Roldan A. 2006. Contribution of Pseudomonas pseudonitrosonium and Glomus intraradices to aggregate stabilization and promotion of biological fertility in rhizosphere soil of lettuce plants under field conditions. Soil Use Manage. 22:298–304.

Kong Z, Deng Z, Glick BR, Wei G, Chou M. 2017. A nodule endophytic plant growth-promoting Pseudomonas and its effects on growth nodulation and metal uptake in Medicago lupulina under copper stress. Ann Microbiol. 67:49–58.

Kour D, Rana KL, Sheikh I, Kumar V, Yadav AN, Dhaliwal H, Saxena A. 2019. Alleviation of drought stress and plant growth promotion by Pseudomonas libanensis EU-LWNA-33 a drought-adaptive phosphorus solubilizing bacterium. Proc Natl Acad Sci India Sect B Biol Sci. 90:785–795.

Kudoyarova G, Arkhipova T, Korshunova T, Bakaeva M, Loginov O, Verdine synthesis in Pseudomonas aeruginosa – a drought-adaptive phos- phatase. J Bacteriol. 2006; 188:3149–3152.

Kumari P, Meena M, Gupta P, Dubey MK, Nath G, Upadhyay RS. 2018. Plant growth promoting rhizobacteria and their biopriming for growth promotion in mung bean Vigna radiata L. R. Wilczek. Biocatal Agr Biotechnol. 16:163–171.

Kuyppers MMM, Marchant HK, Kartal B. 2018. The microbial nitrogen-cycling network. Nat Rev Microbiol. 16:263–276.

Lamont IL, Martin LW, Sims T, Scott A, Wallace M. 2006. Characterization of a gene encoding an acylacyl required for pyro- vertebrate synthesis in Pseudomonas aeruginosa. J Bacteriol. 188:3149–3152.

Lanteigne C, Gadkar VJ, Wallon T, Novinscak A, Filion M. 2012. Production of DAPG and HCN by Pseudomonas sp. LBUM300 contributes to the biological control of bacterial canker of tomato. Phytopathol. 102:967–973.

Lefevre I, Vogel-Mikus K, Jeromel L, Vavpetic P, Planchon S, Arcon I, Muleta DF, Assefa K, Hjort S, Roos GU. 2009. Characterization of rhi- zobacteria in sustainable agriculture: from theoretical to prag- matic approach. Symbiosis. 78:115–123.

Lohitha SR, Bhaskara RBV, Sivaprasad Y, Prathyusha M, Sujitha A, Murali Krishna T, Raj Reddy K. 2016. Molecular characterization and antagonistic potential of phanenum-1-carboxylic acid producing Pseudomonas fluorescens isolates from economically important crops in South India. Int J Clin Biol Sci. 1:30–40.

Louca S, Polz MF,azel A, Albright MBN, Huber JA, O’Connor MI, Ackermann M, Hahn AS, Srivastava DS, Crowe SA, et al. 2018. Functional and functional redundancy in microbial systems. Nat Ecol Evol. 2:936–943.

Ma MC, et al. 2019. Risk analysis and management measure on micro- organism in microbial organic fertilizers. Quality and Safety of Agro- Products. 06:57–61. [in Chinese].

Ma Y, Prasad MNV, Rajkumar M, Freitas H. 2011. Plant growth pro- moting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol Adv. 29:248–258.

MacLeod D, Golden RL. 2014. Microbial signaling and plant growth promotion. Can J Plant Sci. 94:1051–1063.

Macik M, Gryta A, Frac M. 2020. Biofertilizers in agriculture: an overview on concepts strategies and effects on soil microorganisms. In: Sparks DL, editor. Advances in agronomy. Cambridge (MA): Academic Press Inc; 162p. 31–87.

Martins AO, Omena-Garcia RP, Oliveira FS, Silva WA, Hajirezaei MR, Vallarino JG, Araujo WT. 2019. Differential root and shoot responses in the metabolism of tomato plants exhibiting reduced levels of gib- berellins. Environ Exp Bot. 157:331–343.

Masson-Boivin C, Sachs JL. 2018. Symbiotic nitrogen fixation by rhizo- bia-the roots of a success story. Curr Opin Plant Biol. 44:7–15.

Matsuda R, Handayani ML, Sasaki H, Takeki T, Takano H, Takio S. 2018. Production of indoleacetic acid by strains of the epiphytic bacter- ia Neptunomonas spp isolated from the red alga Pyropia yezoensis and the seagrass Zostera marina. Archiv Microbiol. 200:255–265.

Mavrodi DV, Blankenfeldt W, Thomashow LS. 2006. Phosphazene com- pounds in fluorescent Pseudomonas spp. biosynthesis and regu- lation. Annu Rev Phytopathol. 44:447–445.

Mavrodi DV, Peeter TL, Mavrodi OV, Parejko JA, Raajmakers JM, Lemanuceau P, Mazurier S, Heide L, Blankenfeldt W, Weller DM. 2010. Diversity and evolution of the phenazine biosynthesis pathway. Appl Environ Microbiol. 76:866–879.

McAfee J. 2008. Potassium a key nutrient for plant growth. Department of Soil and Crop Sciences. [accessed 2021 November 1]. http://jimmcafe.tamu.edu/files/potassium.

Meena KK, Sorty AM, Bhatia UM, Choudhary K, Gupta P, Pareek A, Singh DP, Prabha R, Sahu PK, Gupta VK, et al. 2017. Abiotic stress responses and microbe-mediated mitigation in plants: the omics strategies. Front Plant Sci. 8:172.

Mohandas S, Manjula R, Rawal RD, LakshmiKantha HC, Chakraborty S, Ramachandra YL. 2010. Evaluation of arbuscular mycorrhiza and other biocontrol agents in managing Fusarium oxysporum f. sp. cebura infection in banana cv, Neypoovan. Biocontrol Sci Technol. 20:165–181.

Mohd Fisal EM, Meena K, Meena M, Gupta P, Dubey MK, Nath G, Upadhyay RS. 2018. Plant growth promoting rhizobacteria and their biopriming for growth promotion in mung bean Vigna radiata L. R. Wilczek. Biocatal Agr Biotechnol. 16:163–171.

Mohammed AF. 2017. Effects of exopolysaccharides and biofilm forming plant growth promoting rhizobacteria on salinity tolerance of faba bean Vicia faba L. Afr J Microbiol Res. 12:399–404.

Mohandas S, Manjula R, Rawal RD, LakshmiKantha HC, Chakraborty S, Ramachandra YL. 2010. Evaluation of arbuscular mycorrhiza and other biocontrol agents in managing Fusarium oxysporum f. sp. cebura infection in banana cv, Neypoovan. Biocontrol Sci Technol. 20:165–181.

Mold Fisal EM, Meena K, Meena M, Gupta P, Dubey MK, Nath G, Upadhyay RS. 2018. Plant growth promoting rhizobacteria and their biopriming for growth promotion in mung bean Vigna radiata L. R. Wilczek. Biocatal Agr Biotechnol. 16:163–171.

Mold Fisal EM, Meena K, Meena M, Gupta P, Dubey MK, Nath G, Upadhyay RS. 2018. Plant growth promoting rhizobacteria and their biopriming for growth promotion in mung bean Vigna radiata L. R. Wilczek. Biocatal Agr Biotechnol. 16:163–171.

Nadeem SM, Naveed M, Ayyub M, Khan MY, Ahmad M, Zahir ZA. 2016. Potential limitations and future prospects of Pseudomonas spp. for sustainable agriculture and environment: a review. Soil Environ. 35:106–114.

Nair MM, Selin C, Brawerman G, Fernando WGD, de Kievit T. 2017. Hydrogen cyanide which contributes to pathogenicity by Pseudomonas aeruginosa strain RZ9 enhances yield and reduced black scurf. Phytopathol Mediterr. 54:257–263.

Naseem H, Bano A. 2014. Role of plant growth-promoting rhizobac- teria and their exopolysaccharide in drought tolerance of maize. J Plant Interact. 9:689–701.

Nazeer B, Adrees M, Freitas H. 2011. Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol Adv. 29:248–258.

Nascimento FX, Vicente CSL, Barbosa P, Espada M, Glick BR, Mota M, Brígido C, Glick BR, Rossi MJ. 2016. The role of rhizo- bacteria in sustainable agriculture: from theoretical to prag- matic approach. Symbiosis. 78:115–123.

Nascimento FX, Vicente CSL, Barbosa P, Espada M, Glick BR, Mota M, Brígido C, Glick BR, Rossi MJ. 2016. The role of rhizo- bacteria in sustainable agriculture: from theoretical to prag- matic approach. Symbiosis. 78:115–123.

Nascimento FX, Vicente CSL, Barbosa P, Espada M, Glick BR, Mota M, Brígido C, Glick BR, Rossi MJ. 2016. The role of rhizo- bacteria in sustainable agriculture: from theoretical to prag- matic approach. Symbiosis. 78:115–123.
Khwara salt range Pakistan and their implication in providing salt tolerance to Glycine max L. Har J Biotechnol. 85:762–7566.

Nazzin HA, Kimura M, Miyazawa M, Hyakumachi M. 2013. Analysis of volatile organic compounds emitted by plant growth-promoting fungus Phoma sp. GS-3 for growth promotion effects on tobacco. Microbes Environ. 28:42–49.

Nelker J, Tejerizo GT, Hassa J, Lin TW, Witte J, Verwaaijen B, Winkler A, Bunk B, Spröer C, Overmann J, et al. 2019. Genetic potential of the biocontrol agent Pseudomonas brassicae (formerly P. trivialis) 3R2-7 unrolled by genome-sequencing and mining, comparative genomics and transcriptomics. Genes (Basel). 10:601.

Niu B, Paulson J N, Zheng X, Kolter R. 2017. Simplifying the growth requirements of plant growth-promoting and plant growth-promoting bacteria. Arch Microbiol. 108:1450–1459.

Odoh CK, Eze CN, Akpi UK, Unah VU. 2019. Plant growth promoting rhizobacteria (PGPR): A novel agent for sustainable food production. Am J Agric Biol Sci. 14:35–54.

Okur N. 2018. A review- biofertilizers- power of beneficial microorganisms in soils. Biomed J Sci Tech Res. 4:4028–4029.

Olanrewaju OS, Ayangbemno AS, Glick BR, Babalola OO. 2019. Plant health: feedback effect of root exudates-rhizohormone interactions. Appl Microb Biotechno. 103:1155–1166.

Olińska E, Malek W, Wójcik M, Świececka I, Thijs S, Vangronsveld J. 2020. Beneficial features of plant growth-promoting rhizobacteria for improving plant growth and health in challenging conditions: A methodical review. Sci Total Environ. 743:140682.

Osugi A, Sakakibara H. 2015. How do plants respond to cytokinins and what is their importance? BMC Biol. 13:102.

Panten CL, Glick BR. 2002. Role of plant growth-promoting rhizobacteria and their in vitro plant growth-promoting efficacy. J Plant Int. 12:480–487.

Patterson CL, Glick BR. 2002. Role of Pseudomonas putida indole-acetic acid in the development of the host plant root system. Appl Environ Microbiol. 68:3795–3801.

Piernik A, Hryniwecz K, Wojciechowska A, Szymańska S, Lis MI, Muscolo A. 2017. Effect of halotolerant endophytic bacteria isolated from Salicornia europaea L. on the growth of fodder beet Beta vulgaris L. under salt stress. Arch Agron Soil Sci. 6310:1404–1418.

Pierrot CL, Ralston EA. 2010. Metabolism and function of phenazines in bacteria: impacts on the behavior of bacteria in the environment and biotechnological processes. Appl Microbiol. Biotechnol. 86:1659–1670.

Petersen CM, Sato T, Saara M. 2017. Biosynthesis of phytotoxins from novel rhizobacterial isolates and their in vitro plant growth-promoting efficacy. J Plant Int. 12:480–487.

Patten CL, Glick BR. 2002. Role of Pseudomonas putida indole-acetic acid in the development of the host plant root system. Appl Environ Microbiol. 68:3795–3801.

Piechowicz K, Wojciechowska A, Szymańska S, Lis MI, Muscolo A. 2017. Effect of halotolerant endophytic bacteria isolated from Salicornia europaea L. on the growth of fodder beet Beta vulgaris L. under salt stress. Arch Agron Soil Sci. 63:1040–1418.

Pierrot CL, Ralston EA. 2010. Metabolism and function of phenazines in bacteria: impacts on the behavior of bacteria in the environment and biotechnological processes. Appl Microbiol. Biotechnol. 86:1659–1670.

Podile AR, Kishore GK. 2006. Plant growth-promoting rhizobacteria. In: Gnanamaniakam SS, editor. Plant- associated bacteria. Netherlands: Springer; p. 195–230.

Prepelitsa AV, Tonev SA. 2013. Food security: The challenge of the present. Geoforum. 91:73–77.

Przemieniecki SW, Kurowski TP, Karwowska A. 2015. Plant growth promoting potential of Pseudomonas sp. SP0113 isolated from potatoable water from closed water well. Arch Biol Sci. 67:663–673.

Putrige RFW, Wahyudi AT, Nawangsih AA, Husen E. 2013. Screening of rhizobacteria for plant growth promotion and their tolerance to drought stress. Microbiol Indones. 7:2.
Srivastava R, Kulkarni J, Jha B. 2016. Halotolerant rhizobacteria promote growth and enhance salinity tolerance in pepper. Front Microbiol. 7:1600.

Shi P, Zing Z, Zhang U, Chai T. 2017. Effect of heavy-metal on synthesis of siderophores by Pseudomonas aeruginosa ZGKD3. Earth Environ Sci. 52:012103.

Shilev S, Sancho ED, Beniloch-Gonzalez M. 2012. Rhizospheric bacteria alleviate salt-produced stress in sunflower. J Environ Manage. 95: 537–541.

Shu K, Zhou W, Chen F, Luo X, Yang W. 2018. Abscisic acid and gibberellins antagonistically mediate plant development and abiotic stress responses. Front Plant Sci. 9:4146.

Singh DP, Singh V, Gupta VK, Shukla R, Prabha R, Sarma BK. 2020. Functional microbial features driving comminutive assembly during seed germination and emergence. Front Plant Sci. 9:902.

Trapej A, Cauter G, Baunoue S, Bouchez O, Genthion C, Briand M, Jacques MA, Barret M. 2018. Functional microbial features driving comminutive assembly during seed germination and emergence. Front Plant Sci. 9:4146.

Trapej A, Cauter G, Baunoue S, Bouchez O, Genthion C, Briand M, Jacques MA, Barret M. 2018. Functional microbial features driving comminutive assembly during seed germination and emergence. Front Plant Sci. 9:902.

Urbe D, Sánchez-Nieves J, Vanegas J. 2010. Role of microbial biofertilizers in the development of a sustainable agriculture in the Tropics. In: Dion P., editor. Soil biology and agriculture in the tropics. Berlin/Heidelberg: Springer; p. 235–250.

Vacheron J, Combes-Meynet E, Walker V, Gouesnard B, Muller D, Menen-Locoz Y, Prigent-Combaret C. 2016. Expression on roots and contribution to maize phytostimulation of 1-amino cyclopropane-1-carboxylate deaminase gene acd1 in Pseudomonas fluorescens F113. Plant Soil. 407:187–202.

Verma SK, Kingsley K, Bergen M, English C, Elsemore M, Kharwar RN, White JF. 2018. Bacterial endophytes from rice cut grass (Leersia oryzae L.) increase growth, promote root gravitropic response, stimulate root hair formation, and protect rice seedlings from disease. J Environ Manage. 215:113–118.

Vázquez IT, Cruz RS, Domínguez MA, Ruan VL, Reyes AS, MdRS C, Tani J, Whipps JM. 2001. Microbial interactions and biocontrol in the rhizosphere. Curr Microbiol. 43:108–117.

Whipp JM. 2001. Microbial interactions and biocontrol in the rhizosphere. J Exp Bot. 52:487–511.

Wong CKF, Saidi NR, Vadamtala G, Teh CY, Zulperi D. 2019. Effect of bioformulations on the biocontrol efficiency of Pseudomonas putida WCS417r. J Appl Microbiol. 127:594–605.

Yadav AN, Kumar R, Kumar S, Kumar V, Sugitha T, Singh B, Chauhan VS, Dhaliwal HS, Saxena AK. 2017. Beneficial microorganisms: biodiveristy and potential biotechnological applications for sustainable agriculture and human health. J Appl Biol Technol. 5:1–13.

Yadav SN, Singh AK, Peter JK, Masih H, Benjamin JC, Singh DK, Yadav AN, Kaur S, Bhattar AI, Singh B, Chauhan VS, Dhalvi HS, Saxena AK. 2017. Beneficial microorganisms: biodiveristy and potential biotechnological applications for sustainable agriculture and human health. J Appl Biol Technol. 5:1–13.

Yadav SN, Singh AK, Peter JK, Masih H, Benjamin JC, Singh DK, Chauhan VS, Ramteke PW, Ojha SK. 2017. Study of exopolysaccharides from Pseudomonas aeruginosa strain PF-1 as a biocontrol agent against bacterial leaf blight disease of tomato. J Appl Microbiol. 123:959–969.

Yadav SN, Singh AK, Peter JK, Masih H, Benjamin JC, Singh DK, Yadav AN, Kumar R, Kumar S, Kumar V, Sugitha T, Singh B, Chauhan VS, Dhalvi HS, Saxena AK. 2017. Beneficial microorganisms: biodiveristy and potential biotechnological applications for sustainable agriculture and human health. J Appl Biol Technol. 5:1–13.

Yadav SN, Singh AK, Peter JK, Masih H, Benjamin JC, Singh DK, Chauhan VS, Ramteke PW, Ojha SK. 2018. Study of exopolysaccharides from Pseudomonas aeruginosa strain PF-1 as a biocontrol agent against bacterial leaf blight disease of tomato. J Appl Microbiol. 123:959–969.

Yadav SN, Singh AK, Peter JK, Masih H, Benjamin JC, Singh DK, Yadav AN, Kumar R, Kumar S, Kumar V, Sugitha T, Singh B, Chauhan VS, Dhalvi HS, Saxena AK. 2017. Beneficial microorganisms: biodiveristy and potential biotechnological applications for sustainable agriculture and human health. J Appl Biol Technol. 5:1–13.
Yao L, Wu Z, Zheng Y, Kaleem I, Li C. 2010. Growth promotion and protection against salt stress by *Pseudomonas putida* Rs-198 on cotton. Eur J Soil Biol. 46:49–54.

Yasmin S, Hafeez FY, Rasul G. 2014. Evaluation of *Pseudomonas aeruginosa* Z5 for biocontrol of cotton seedling disease caused by *Fusarium oxysporum*. Bio Sci Technol. 24:1227–1242.

Yasmin S, Zaka A, Imran A, Zahid MA, Yousaf S, Rasul G, Arif M, Mirza MS. 2016. Plant growth promotion and suppression of bacterial leaf blight in rice by inoculated bacteria. PLoS ONE. 11:e0160688.

Youssef M, Eissa M. 2014. Biofertilizers and their role in management of plant parasitic nematodes. A review. J Biotechnol Pharm Res. 5:1–6.

Zahir ZA, Arshad M, Frankenberger Jr. WT. 2004. Plant growth promoting rhizobacteria: application and perspectives in agriculture. Adv Agron. 81:96–168.

Zboralski A, Filion M. 2020. Genetic factors involved in rhizosphere colonization by phytobeneficial *Pseudomonas* spp. Comput. Struct Biotechnol J. 18:3539–3554.

Zhang L, Chen W, Jiang Q, Fei Z, Xiao M. 2020. Genome analysis of plant growth-promoting rhizobacterium *Pseudomonas chlororaphis* subsp. *aurantiaca* JD37 and insights from comparison of genomics with three *Pseudomonas* strains. Microbiol Res. 237:126483.

Zia R, Nawaz MS, Siddique MJ, Hakim S, Imran A. 2020. Plant survival under drought stress: implications, adaptive responses, and integrated rhizosphere management strategy for stress mitigation. Microbiol Res. 242:126626.