Mean mid-arm circumference and blood pressure cuff sizes for US adults: National Health and Nutrition Examination Survey, 1999–2010

Yechiam Ostchegaa, Jeffery P. Hughesa, Guangyu Zhangb, Tatiana Nwankwoa and Michele M. Chiappaa

\textbf{Background} Accurately measuring blood pressure (BP) requires choosing an appropriate BP cuff size.

\textbf{Objectives} This study examined trends in mid-arm circumference (mid-AC) and distribution of BP cuff sizes using 1999–2002, 2003–2006, and 2007–2010 National Health and Nutrition Examination Survey (NHANES) data.

\textbf{Methods} NHANES uses a complex multistage probability sample design to select participants who are representative of the entire civilian, noninstitutionalized US population. The analytic sample consisted of 28,233 participants aged 20 years or older. Mid-AC and BP cuff sizes were analyzed across survey years by sex, age, race/ethnicity, hypertension, and diabetic status.

\textbf{Results} Data from NHANES 2007–2010 show that the mean mid-AC for men was 34.2 cm and for women was 31.9 cm. Men showed a significant trend in mid-AC (from 33.9 cm in 1999–2002 to 34.2 cm in 2007–2010; \(P < 0.05 \) for trend). In addition, 42.9% of men and 25.3% of women needed a large adult BP cuff and 1.9% of men and 2.8% of women needed thigh cuffs to be appropriately cuffed. Moreover, 52% of hypertensive men, 38% of hypertensive women, 59.1% of diabetic men, and 53.6% of diabetic women required the use of BP cuffs with sizes different from those of standard adult-sized BP cuffs for accurate BP measurement.

\textbf{Conclusion} There was an overall significant trend in the mean mid-AC in cm for men but not for women. On the basis of NHANES 2007–2010 data, \(\sim 45\% \) of adult men and \(\sim 28\% \) of adult women required the use of BP cuffs with sizes different from those of standard adult-sized BP cuffs for accurate BP measurement. \textit{Blood Press Monit} 18:138–143 \(\copyright \) 2013 Wolters Kluwer Health | Lippincott Williams & Wilkins.

\textbf{Keywords:} blood pressure cuff sizes, mid-arm circumference, National Health and Nutrition Examination Survey

Changes in mid-AC in adults in the USA has previously been reported with National Health and Nutrition Examination Survey (NHANES) data for the years 1988–2002. The results showed that the mean mid-AC increased significantly between NHANES III and NHANES 1999–2002 for all age groups [10].

This study updates the data presented in the previous study and examines trends in the distribution of mid-AC and the corresponding recommended BP cuff sizes by sex, age, and race/ethnicity across three 4-year survey periods (1999–2002, 2003–2006, and 2007–2010). In addition, the report will provide data on recommended BP cuff sizes for special clinical subpopulations, such as hypertensive and diabetic individuals.

\textbf{Methods}

\textbf{Survey description} NHANES uses a complex multistage probability sample design to select participants who are representative of the entire civilian, noninstitutionalized US population. Par-
icipants are interviewed at their homes and information is obtained on health history, health behaviors, and risk factors. Subsequently, they undergo physical examination at a mobile examination center. The procedures to select the sample and conduct the interview and examination have been described previously [11]. The National Center for Health Statistics Ethics Review Board approved the NHANES protocol. This report is based on an analysis of mid-AC data on US adults aged 20 years or older from NHANES 1999–2010. Informed consent was obtained from all participants.

Sample
A total of 43,426 individuals aged 20 years or older were included. Of these, 32,464 (75%) were interviewed and 30,752 (71%) were examined. Of those examined, 2,519 individuals were excluded because of the following reasons: 1,222 because of pregnancy and 1,297 because of missing data on mid-AC. These exclusions resulted in a final analytic sample of 28,233 participants aged 20 years or older.

Outcome variables
Mid-arm circumference
During the physical exam, the participant’s right arm circumference was measured by a trained examiner at the level of the upper arm mid-point mark. The examiner made this mark on the posterior surface of the arm immediately after measuring the upper arm length. The arm mid-point mark was the level at which the measurement was taken, to the nearest 0.1 cm, using a steel measuring tape. The measuring tape fit snugly against the skin for the entire circumference of the arm without indenting the skin. For more details see the Anthropometry Procedures Manual on the NHANES website [12].

Blood pressure cuff sizes
Because the cuff size recommendations can vary according to the manufacturer, we used the AHA scientific statement definitions for recommended BP cuff sizes [7]. Specifically, the mid-AC range for the small adult BP cuff size (dimensions: 12 cm bladder width by 22 cm length) was 22–26 cm, for the adult size (dimensions: 16 cm bladder width by 30 cm length) was 27–34 cm, for the large adult size (dimensions: 16 cm bladder width by 36 cm length) was 35–44 cm, and for the adult thigh size (dimensions: 16 cm bladder width by 42 cm length) was 45–52 cm. Mid-AC of less than 22 cm (corresponding to infant BP cuff sizes) represented 0.2% (78 individuals) of the cuff fit needs of all survey participants. These individuals were excluded from the cuff size analysis but were included in the mid-AC analysis.

Demographic variables
Participants were categorized on the basis of age into the following groups: 20–39, 40–59, and 60 years or older. On the basis of race/ethnicity, as per self-reported information, participants were classified as non-Hispanic white, non-Hispanic black, or Mexican-American. Participants not fitting the above self-classification were classified as ‘other.’ Data for the ‘other’ group, including individuals who reported multiple races, were included in the total sample results but are not reported separately in the data tables.

Other covariates
A participant was defined as having hypertension if at least one of the following conditions applied: a systolic BP of 140 mmHg or greater; a diastolic BP of 90 mmHg or greater; or currently under treatment with prescribed medications for high BP. An average of up to three systolic and diastolic BP readings was used in applying this definition to data [13]. Participants were defined as being ‘diabetic’ if they reported during the home interview that they had been told by a doctor that they had diabetes [13].

Statistical analyses
SUDAAN (SUDAAN Research Triangle Institute, Research Triangle Park, North Carolina, USA) was used for data analysis. All analyses used the mobile examination center sample weights, and Taylor Series linearization was used to calculate SEs and 95% confidence intervals (CIs). Trends in mid-AC across the three 4-year survey periods were tested using orthogonal linear contrast [14]. The stated null hypothesis was that there was no linear trend in the mid-AC. Rejection of this hypothesis implied the existence of a linear trend.

Satterthwaite-adjusted χ²-statistics were used to test the association of the four BP cuff sizes and the three 4-year survey periods by covariates [15]. A P-value of less than 0.05 was considered statistically significant.

In this analysis, if the relative standard error of an estimated mean or percentage was greater than 30%, it was considered to be marked and the estimate was designated as unreliable [11]. Relative standard error is defined as the ratio of the standard error of the estimate divided by the estimate multiplied by 100 [11].

Results
Table 1 presents the mean values and changes in mid-AC across the three 4-year survey periods by sex, age groups, and race/ethnicity. For men, the overall mean mid-AC increased from 33.9 cm in 1999–2002 to 34.1 cm in 2003–2006 and 34.2 cm in 2007–2010 (P < 0.05, significant for trend). For women, the overall mean mid-AC was 32.0 cm in 1999–2002, 31.9 cm in 2003–2006, and 31.9 cm in 2007–2010, with no significant trend. Among men, there were significant increases in the mean mid-AC in individuals aged 60 years and over, Mexican-American individuals, and non-Hispanic black individuals. All of the changes were less than 1 cm. Among non-Hispanic black men, the resulting increases were clinically significant. That
is to say, this increase corresponded to a change in the BP cuff size from a standard adult size in 1999–2002 (34.4 cm) to a large adult cuff size in 2007–2010 (35.2 cm) [7].

Tables 2 and 3 examine the percentage distributions of AHA-recommended BP cuff sizes across the three 4-year survey periods for men and women, respectively. During 2007–2010, among men, 2.6% needed a small adult cuff, 52.7% needed an adult cuff, 42.9% needed a large adult cuff, and 1.9% needed a thigh cuff. There was no significant difference between 1999–2002 and 2003–2006 (P > 0.05). Among race/ethnicity subgroups, there were associations between survey period and appropriate cuff size. Specifically, among Mexican-American men, the percentage of individuals who required large adult or thigh cuff sizes increased from 35.2% in 1999–2002 to 38.2% in 2007–2010. In addition, among non-Hispanic black men, the percentage of individuals who required large adult or thigh cuff sizes increased from 46.6% in 1999–2002 to 53.5% in 2007–2010.

Among women, during 2007–2010, 13.5% needed a small adult cuff, 58.4% needed an adult cuff, 25.3% needed a large adult cuff, and 2.8% needed a thigh cuff. There was no significant association between BP cuff sizes and the overall survey period, age group, or race/ethnicity.

Table 4 examines the percentage distributions of AHA-recommended BP cuff sizes for men and women by hypertension and diabetic status for survey years 2007–2010. Among hypertensive individuals, 52% of men and 38.4% of women needed a cuff size greater than the standard adult cuff size. Among diabetic individuals, 59.1% of men and 53.6% of women needed a cuff size greater than the standard adult cuff size.

Discussion

During 2007–2010, ~45% of all adult male individuals and ~27% of all adult female individuals, aged 20 years or older, required a BP cuff larger than the standard adult BP cuff size. The only significant association between recommended BP cuff sizes and the survey period was found among Mexican-American men, non-Hispanic black men, and men 60 years or older. In these subgroups there was an increase in the percentage of individuals requiring a large adult or thigh BP cuff from 1999–2002 to 2007–2010. We speculate that the reported increase in obesity among men over this time period may be associated with the increased mid-AC [10]. Specifically, in 1999–2000 27.5% of men were obese and by 2009–2010 the prevalence had increased to 35.5% [16–18]. In the same vein, it is suggested that increases in cuff sizes are also associated with the reported increase in prevalence of obesity among Mexican-American men. 28.9% of whom were obese in 1999–2000, which increased to 36.6% by 2009–2010 [18]. Similarly, 27.9% of non-Hispanic black men were obese in 1999–2000, which increased to 38.8% by 2009–2010 [18]. Among women, the overall mean of mid-AC and recommended BP cuff sizes showed no significant linear trend over the 12-year period from 1999 through to 2010. This finding may reflect the fact that there was no significant linear trend in obesity among women from 1999–2010. Specifically, 33.4% of women were obese in 1999–2000 with no significant change in 2009–2010 (35.8%) [18].

To further investigate the relationship between BMI and recommended BP cuff sizes, adjusted odds ratios (ORs) and 95% CIs were calculated using an ordered logistic regression model (Proc Multilog, SUDAAN). The model

Table 1 Trends in the mean arm circumference (in cm) of US adults by demographic characteristics: NHANES 1999–2010

	Survey period						
		1999–2002	2003–2006	2007–2010	P-value*		
	n	Mean (SE)	n	Mean (SE)	n	Mean (SE)	
Men							
Total	4295	33.9 (0.1)	4349	34.1 (0.1)	5456	34.2 (0.1)	<0.05
Age group (years)							
20–39	1408	33.9 (0.1)	1517	34.1 (0.2)	1774	34.1 (0.2)	>0.05
40–59	1362	34.4 (0.1)	1321	34.7 (0.2)	1822	34.8 (0.1)	>0.05
60 or more	1525	32.7 (0.1)	1511	32.9 (0.1)	1860	33.3 (0.1)	<0.05
Race/ethnicity							
Mexican-Americans	1025	33.2 (0.2)	880	33.3 (0.2)	967	33.7 (0.2)	<0.05
Non-Hispanic white	2131	34.0 (0.1)	2264	34.2 (0.1)	2649	34.3 (0.1)	>0.05
Non-Hispanic black	803	34.4 (0.2)	908	35.0 (0.2)	1039	35.2 (0.1)	<0.01
Women							
Total	4306	32.0 (0.1)	4195	31.9 (0.2)	5632	31.9 (0.1)	>0.05
Age group (years)							
20–39	1369	31.4 (0.2)	1337	31.2 (0.2)	1830	31.7 (0.2)	>0.05
40–59	1374	32.7 (0.2)	1358	32.8 (0.2)	1882	32.3 (0.2)	>0.05
60 or more	1563	31.8 (0.1)	1500	31.7 (0.1)	1920	31.7 (0.1)	>0.05
Race/ethnicity							
Mexican-Americans	1019	31.9 (0.2)	798	32.2 (0.2)	1011	32.2 (0.1)	>0.05
Non-Hispanic white	2060	31.7 (0.2)	2158	31.7 (0.2)	2634	31.7 (0.2)	>0.05
Non-Hispanic black	858	34.2 (0.2)	925	34.4 (0.3)	1071	34.4 (0.2)	>0.05

NHANES, National Health and Nutrition Examination Survey.

*P-value for test of linear trend.
assessed the independent relationship between the predictor variables and the response variable, BP cuff size, which was treated as an ordinal variable. The assumption is that BP cuff sizes have a natural ordering from low to high: small adult/child cuff, adult cuff, large adult cuff, and thigh cuff. The result (not shown) suggested that after adjusting for all covariates BMI was significantly associated with BP cuff sizes; with a one unit increase in BMI, the odds of needing a larger BP cuff size increased by 105% for men (OR = 2.05, 95% CI = 1.99, 2.11) and 93% for women (OR = 1.93, 95% CI = 1.87, 1.98).

Alpert [19] in a recent editorial estimated that ‘improper cuffs are used at least 30% to 50% of the time’. McKay et al. [20] showed that only 29 of 114 (25.4%) doctors surveyed had a large BP cuff available in their clinic for patients requiring such a cuff, and only 13 of 114 (11.4%) doctors surveyed had the full complement of BP cuffs in their clinic. In addition, on the basis of findings from a study on a sample of 831 healthcare providers, Wingfield et al. [21] reported that only 27% of the doctors and 32% of the nurses used the appropriate BP cuff size. Finally, as Prineas et al. [22] stated, ‘Regardless of the origins of the increase in arm size, there is a need to be aware of changing requirements of BP cuff sizes to appropriately match mid-AC and avoid overestimate of actual BP levels.

In population samples, this could result in false, secular trends of BP level estimates’ (p. 712).

The findings in this report are subject to some limitations. We chose the AHA-recommended BP cuff sizes as the basis of our presentation [7]. Although this is a widely accepted guideline in the USA, the selection of cutoff points for such guidelines, and even the design of BP cuffs themselves, may vary among professional societies and internationally. Both are subjects of continuing scientific debate. For example, whereas the AHA-recommendation suggests that an ideal bladder width cover 40% of an individual’s arm circumference for accurate BP assessment, others recommend a 46% ratio as an ideal bladder width [7,23].

Conclusion

Between 1999 and 2010, there was a significant increase in the mean mid-AC (in cm) among all men, those aged 60 years or older, and among Mexican-Americans and non-Hispanic blacks. There was no significant trend in the mean mid-AC among women. During 2007–2010, ~45% of men and 28% of women aged 20 years or older required the use of large-sized or thigh-sized BP cuffs rather than standard adult-sized BP cuffs for accurate BP measurement. The percentage of individuals requiring larger BP

Table 2 Percentage and SE of adult men by AHA-recommended blood pressure cuff sizes and demographic characteristics: NHANES 1999–2010

Percentage (SE)	n	Small adult	Adult	Large adult	Thigh	P-value
Total						>0.05
1999–2002	4293	2.4 (0.3)	55.6 (1.0)	40.5 (0.9)	1.5 (0.2)	
2003–2006	4344	2.9 (0.3)	53.7 (1.3)	41.8 (1.4)	1.6 (0.2)	
2007–2010	5452	2.6 (0.3)	52.7 (1.2)	42.9 (1.1)	1.9 (0.2)	

Age group (years)

- 20–39
 - 1999–2002: 1408 | 2.4 (0.3) | 56.2 (1.6) | 39.5 (1.4) | 1.9 (0.4) | >0.05 |
 - 2003–2006: 1517 | 2.9 (0.5) | 54.1 (1.9) | 40.9 (1.9) | 2.0 (0.3) |
 - 2007–2010: 1773 | 2.5 (0.6) | 53.0 (1.7) | 41.8 (1.5) | 2.6 (0.4) |

- 40–59
 - 1999–2002: 1361 | 1.7 (0.4) | 49.8 (1.8) | 46.1 (1.6) | 1.7 (0.4) | >0.05 |
 - 2003–2006: 1321 | 1.7 (0.3) | 48.7 (1.9) | 47.1 (1.8) | 1.4 (0.4) |
 - 2007–2010: 1822 | 1.9 (0.4) | 48.5 (1.8) | 47.1 (1.5) | 1.7 (0.3) |

- 60 or more
 - 1999–2002: 1524 | 3.8 (0.5) | 65.3 (1.6) | 30.6 (1.7) | 0.3 (0.2) | >0.05 |
 - 2003–2006: 1506 | 5.3 (0.5) | 62.3 (1.7) | 31.6 (1.6) | 0.8 (0.3) |
 - 2007–2010: 1857 | 3.9 (0.6) | 59.6 (1.9) | 35.7 (1.9) | 0.9 (0.3) |

Race/ethnicity

- Mexican-American
 - 1999–2002: 1025 | 2.3 (0.5) | 62.4 (1.8) | 34.4 (1.9) | 0.8 (0.3) | <0.05 |
 - 2003–2006: 880 | 2.3 (0.5) | 62.5 (2.3) | 35.1 (2.3) | 0.2 (0.1) |
 - 2007–2010: 967 | 1.3 (0.4) | 60.5 (2.0) | 36.6 (1.8) | 1.6 (0.5) |

- Non-Hispanic white
 - 1999–2002: 2131 | 2.3 (0.3) | 54.2 (1.1) | 42.0 (1.0) | 1.5 (0.3) | >0.05 |
 - 2003–2006: 2280 | 3.0 (0.4) | 52.7 (1.5) | 42.9 (1.6) | 1.5 (0.3) |
 - 2007–2010: 2646 | 2.0 (0.3) | 51.1 (1.5) | 44.7 (1.3) | 1.6 (0.3) |

- Non-Hispanic black
 - 1999–2002: 801 | 2.8 (0.6) | 50.7 (1.8) | 44.1 (1.9) | 2.5 (0.5) | <0.01 |
 - 2003–2006: 907 | 2.5 (0.4) | 47.5 (2.2) | 45.0 (2.0) | 5.0 (0.7) |
 - 2007–2010: 1039 | 2.6 (0.3) | 44.0 (1.4) | 48.7 (1.3) | 4.8 (0.6) |

AHA, American Heart Association; BP, blood pressure; NHANES, National Health and Nutrition Examination Survey.

*American Heart Association’s scientific statement definitions of BP cuff sizes [7].

*Estimate does not meet study standards for statistical reliability and precision. The relative standard error is greater than 30%.

*P-value from test of independence using Satterthwaite-adjusted χ^2.
cuffs varied according to age and race/ethnicity but was generally the same as that during earlier years. In addition, during 2007–2010 ~52% of hypertensive men, 38% of hypertensive women, 59% of diabetic men, and 54% of diabetic women required the use of large-sized or thigh-sized BP cuffs rather than standard adult-sized BP cuffs for accurate BP measurement.

Table 3 Percentage and SE of adult women by AHA-recommended blood pressure cuff sizes\(^a\) and demographic characteristics: NHANES 1999–2010

Percentage (SE)	1999–2002	2003–2006	2007–2010	2007–2010	P-value\(^f\)
n	4286	4178	5602		>0.05
Small adult	12.5 (0.7)	14.0 (0.7)	13.5 (0.7)		
Adult	59.3 (0.9)	57.1 (1.0)	58.4 (0.9)		
Large adult	25.4 (0.9)	26.2 (0.9)	25.3 (0.7)		
Thigh	2.8 (0.4)	2.7 (0.3)	2.8 (0.3)		
Age group (years)					>0.05
20–39					
1999–2002	1361	1333	1820		>0.05
2003–2006	18.8 (1.4)	18.6 (1.3)	16.8 (1.3)		
2007–2010					>0.05
30–59	9.5 (0.9)	58.5 (1.6)	58.6 (1.5)		
2007–2010	11.0 (1.1)	58.7 (1.4)	58.1 (1.5)		
60 or more					>0.05
1999–2002	1552	1490	1904		>0.05
2003–2006	10.9 (0.9)	12.5 (1.2)	12.6 (0.8)		
2007–2010					>0.05
40–59					
1999–2002	9.5 (1.0)	9.5 (1.5)	8.6 (1.1)		>0.05
2003–2006	10.7 (1.3)	9.5 (1.5)	9.5 (1.2)		
2007–2010					>0.05
50–69					
1999–2002	10.9 (0.8)	9.5 (1.0)	9.5 (1.2)		>0.05
2003–2006	12.6 (0.8)	12.6 (0.8)	12.5 (0.8)		
2007–2010					>0.05
60 or more					
1999–2002	10.9 (0.8)	10.9 (1.0)	12.6 (0.8)		>0.05
2003–2006	11.0 (1.1)	12.6 (0.8)	12.6 (0.8)		
2007–2010					>0.05
Race/ethnicity					
Mexican-American					>0.05
1999–2002	1014	797	1009		>0.05
2003–2006	9.5 (1.5)	9.5 (1.5)	8.6 (1.1)		
2007–2010					>0.05
Non-Hispanic white					>0.05
1999–2002	2048	2146	2616		>0.05
2003–2006	13.4 (0.9)	14.6 (0.8)	14.1 (0.9)		
2007–2010					>0.05
Non-Hispanic black					>0.05
1999–2002	655	922	1063		>0.05
2003–2006	7.7 (0.8)	8.2 (1.3)	7.4 (1.0)		
2007–2010					>0.05

\(^a\)American Heart Association’s scientific statement definitions of BP cuff sizes [7].

\(^b\)Estimate does not meet study standards for statistical reliability and precision. The relative standard error is greater than 30%.

\(^f\)P-value from test of independence using Satterthwaite-adjusted \(\chi^2\).

Acknowledgements

This paper is dedicated to the memory of Dr Lester R. (Randy) Curtin, a friend and a mentor. You are missed.

Conflicts of interest

There are no conflicts of interest.

References

1. Yoon SS, Ostchega Y, Louis T. Recent trends in the prevalence of high blood pressure and its treatment and control, 1999–2008. NCHS Data Brief, no 48. Hyattsville, MD: National Center for Health Statistics; Available at: http://www.cdc.gov/nchs/data/databriefs/db48.pdf. [Accessed 03 April 2013].

2. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL Jr, et al. Seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Hypertension 2003; 42:1206–1252.

3. Ezzati M, Hoorn SV, Lopez AD, Danaei G, Rodgers A, Mathers CD, CJL Murray. Chapter 4: Comparative quantification of mortality and burden of disease attributable to selected risk factors. In: Lopez AD, Mathers CD, Ezzati M, Jamison DT, Murray CJL, editors. Global burden of disease and risk factors. Washington, DC: World Bank; 2006.

4. Ezzati M, Oza S, Danaei G, Murray CJ. Trends and cardiovascular mortality effects of state-level blood pressure and uncontrolled hypertension in the United States. Circulation 2008; 117:905–914.

5. Lawes CM, Bennett DA, Feigin VL, Rodgers A. Blood pressure and stroke: an overview of published reviews. Stroke 2004; 35:1024.

6. Lawes CM, Bennett DA, Lewington S, Rodgers A. Blood pressure and coronary heart disease: a review of the evidence. Semin Vasc Med 2002; 2:355–368.
Mean mid-arm circumference of US adults Ostchega et al. 143

7 Pickering TG, Hall JE, Appel LJ, Falkner BE, Graves J, Hill MN, et al. Recommendations for blood pressure measurement in humans and experimental animals: part 1: blood pressure measurement in humans: a statement for professionals from the Subcommittee of Professional and Public Education of the American Heart Association Council on High Blood Pressure Research. Circulation 2005; 111:697–716.

8 O’Brien E. Review: a century of confusion; which bladder for accurate blood pressure measurement? J Hum Hypertens 1996; 10:565–572.

9 Prineas RJ. Measurement of blood pressure in the obese. Ann Epidemiol 1991; 1:321–336.

10 Ostchega Y, Dillon C, Carroll M, Prineas RJ, McDowell M. US demographic trends in mid-arm circumference and recommended blood pressure cuffs: 1988–2002. J Hum Hypertens 2005; 19:885–891.

11 Curtin LR, Mohadjer L, Dohrmann S. The National Health and Nutrition Examination Survey (NHANES) Survey: sample design, 1999–2006. Vital Health Stat 2012; 2:1–39.

12 Anthropometry Procedures Manual. Available at: http://www.cdc.gov/nchs/data/nhanes/nhanes_09_10/BodyMeasures_09.pdf [Accessed 04 June 2012].

13 National Health and Nutrition Examination Survey (NHANES). Questionnaire and Exam Protocol. Available at: http://www.cdc.gov/nchs/about/major/nhanes/questexam. [Accessed 04 June 2012].

14 Winer BJ. Statistical principles in experimental design. New York, NY: McGraw Hill Companies; 1971; p. 878.

15 Rao JNK, Scott AJ. The analysis of categorical data from complex surveys: chi-squared tests for goodness of fit and independence in two-way tables. J Am Stat Assoc 1981; 76:221–230.

16 Ogden Cynthia L, Carroll Margaret D, Kit Brian K, Flegal Katherine M. Prevalence of Obesity in the United States, 2009–2010. Data brief; No. 82: January 2012.

17 Flegal Katherine M, Carroll Margaret D, Kit Brian K, Cynthia L Ogden. Prevalence of obesity and trends in the distribution of body mass index among US adults, 1999–2010. JAMA 2012; 307:491–497.

18 Fryar CD, Carroll MD, Ogden CL. Prevalence of overweight, obesity, and extreme obesity among adults: United States, trends 1960–1962 through 2009–2010. NCHS Health E-Stat. Available at: http://www.cdc.gov/nchs/data/hestats/obesity_adult_09_10obesity_adult_09_10.htm [Accessed 04 June 2012].

19 Alpert BS. Cuff width and accuracy of measurement of blood pressure. Blood Pressure Monit 2000; 5:151–152.

20 McKay DW, Campbell NR, Parab LS, Chockalingam A, Fodor JG. Clinical assessment of blood pressure. J Hum Hypertens 1990; 4:639–645.

21 Wingfield D, Pierce M, Feher M. Blood pressure measurement in the community: do guidelines help? J Hum Hypertens 1996; 10:805–809.

22 Prineas RJ, Ostchega Y, Reed-Gillette DS. Demographic trends in mid-arm circumference in children and adults over a 35-year period. In: Preedy VR, editor. Handbook of anthropometry: physical measures of human form in health and disease. London: Springer; 2012.

23 Marks LA, Groch A. Optimizing cuff width for noninvasive measurement of blood pressure. Blood Press Monit 2000; 5:153–158.