PREGNANCY: REVIEW

The Association Between Season and Hypertensive Disorders in Pregnancy: a Systematic Review and Meta-analysis

Lingyun Liao1 · Xiaohong Wei1 · Min Liu1 · Yijie Gao1 · Yangxue Yin1 · Rong Zhou1

Received: 21 March 2022 / Accepted: 10 June 2022 / Published online: 28 June 2022
© Society for Reproductive Investigation 2022

Abstract
We assessed the association between season and hypertensive disorders in pregnancy (HDPs). The review protocol was registered in PROSPERO (CRD42021285539). Four databases, the Cochrane Library, PubMed, EMBASE, and Web of Science, were searched until September 29th, 2021. Two authors extracted data independently and used the Newcastle–Ottawa quality assessment scale (NOS) to evaluate study quality. A random effects model and the Mantel–Haenszel method were used to calculate pooled Odds ratios (ORs) and 95% confidence intervals (95% CIs). Subgroup analyses and sensitivity analyses were performed to find the source of heterogeneity and Beggs’s funnel plot and Egger’s test were used to check for the risk of publication bias. Finally, twenty articles were included in the systematic review, and 11 articles were included in the meta-analysis. The qualitative analysis of the association between delivery season and HDPs showed that the odds of HDPs was higher in women who delivered in winter than in those who delivered in summer (OR = 1.18, 95% CI 1.02–1.38, \(P<0.001\)) and all other seasons (OR = 1.17, 95% CI 1.03–1.34, \(P<0.001\)). In the qualitative analysis of the association between conception season and HDPs, four of seven studies suggested that women who conceived in summer had a higher risk of HDPs than those who conceived in other seasons. Based on the evidence to date, we found weakly positive relationships between HDPs and summer conception and winter delivery.

Keywords Season · Hypertensive disorders of pregnancy · Meta-analysis · Odds ratios

Background
Hypertensive disorders in pregnancy (HDPs) are a common obstetric disease, occurring in 5–10% of all pregnancies and accounting for 10–16% of total pregnancy-related deaths [1, 2]. HDPs not only have short-term impacts during pregnancy but also long-term impacts on the health of mothers and their offspring, potentially causing maternal coronary heart disease, stroke, and hypertension in offspring [3–5]. At present, the possible etiology of HDPs is still unclear but some risk factors were demonstrated, such as older age, low maternal educational status, and multiple pregnancies [6, 7]. There are more possible factors that lead to HDPs waiting for us to explore.

Seasonal changes affect the occurrence and development of many diseases, such as cardiovascular diseases, multiple sclerosis, and atopic dermatitis [7–9]. Similarly, seasonal changes also increased the risk of maternal and neonatal mortality and the incidence of delivery complications [10]. Some studies have reported that HDPs were associated with season, but their results were inconsistent. Some researchers reported that the prevalence rates of gestational hypertension and preeclampsia were higher in women who delivered in winter and conceived in summer [7, 11]. However, some studies found no association with season [6] or found an opposite result [12].

Therefore, it is important to synthesize such findings to determine which season or month of delivery or conception is related to HDPs and facilitate HDP management and interventions targeting high-risk groups.

* Rong Zhou
zhourong_hx@scu.edu.cn

1 Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) of Ministry of Education, Chengdu, Sichuan, China
Methods

The Meta-Analysis of Observational Studies in Epidemiology (MOOSE) [13] and Preferred Reporting Items for Systematic review and Meta-Analyses (PRISMA) [14] guidelines were followed for this systematic review and meta-analysis. This study did not require ethical approval or patient consent. This meta-analysis was registered in PROSPERO (CRD42021285539).

Search Strategy

Four databases, the Cochrane Library, PubMed, EMBASE, and Web of Science, were searched until September 29th, 2021, by two independent authors (LL and XW). Medical Subject Headings (MeSH) terms combined with free text were used to identify studies on associations between seasons and HDPs. The detailed search terms of PubMed can be found in Table 1 and appropriate adjustments were made in other databases. Furthermore, we manually searched the citations of the included articles to prevent omission. After retrieval, we used the Endnote X9 library (Clarivate Analytics, Philadelphia, PA, USA) to check for duplicates and manage references.

Selection Criteria

Inclusion Criteria

1. The exposure of interest was season or month of delivery or conception.
2. The investigation outcome was HDPs including gestational hypertension, preeclampsia or eclampsia, chronic hypertension, and superimposed preeclampsia. The classification refers to the American College of Obstetricians and Gynecologists (ACOG) guidelines [15].
3. The study design was a case-control, cohort, or cross-sectional design.
4. ORs and 95% CIs or relevant data that could be computed were provided.

Exclusion Criteria

1. Studies for which the full text was not available.
2. Studies that were not published in English.

Data Extraction and Quality Assessment

We (Lingyun Liao, Yangxue Yin, and Rong Zhou) designed a data extraction table during the full-text review stage. Two authors (Min Liu and Yijie Gao) extracted the data independently. The information recorded included first author, published year, study region, research type, sample size, study period, exposure definition, and outcome definition. We also recorded adjusted ORs and 95% CIs or crude ORs and 95% CIs from the original data if provided. If necessary, authors were contacted for additional details or figure data.

Based on the UK’s official weather service definition (https://www.metoffice.gov.uk/weather/learn-about/weather/seasons/spring/when-does-spring-start), March is regarded as the beginning of spring, and spring, summer, autumn, and winter are defined in three-month increments. When the study country or region was in the Southern Hemisphere, we adjusted the seasons accordingly. We used Google maps (https://www.maps.google.com) to estimate the average latitudes of countries and regions.

If a disagreement arose, we consulted a third author (Xiaohong Wei) or discussed until consensus was reached. Only studies that had sufficient data for calculation were included in the meta-analysis.

Table 1	Search strategy for PubMed
Outcome: hypertensive disorders of pregnancy	
#1	MeSH terms “hypertension, pregnancy induced”[MeSH Terms] OR “pre eclampsia”[MeSH Terms] OR “Eclampsia”[MeSH Terms]
#2	Title/abstract “hypertension pregnancy induced” OR “pregnancy induced hypertension” OR “gestational hypertension” OR “hypertension gestational” OR “transient hypertension pregnancy” OR “pregnancy transient hypertension” OR “pregnancy hypertension” OR “hypertension in pregnancy” OR “pre eclampsia” OR “Preeclampsia” OR “pregnancy toxemias” OR “pregnancy toxemia” OR “edema proteinuria hypertension gestosis”
#3	#1 OR #2
Exposure: season	
#4	MeSH terms “seasons”[MeSH Terms] OR “climate”[MeSH Terms] OR “meteorology”[MeSH Terms] OR “weather”[MeSH Terms] OR “temperature”[MeSH Terms]
#5	Title/abstract “season*” OR “summer” OR “spring” OR “autumn” OR “winter” OR “climate*” OR “meteorology*” OR “weather*” OR “temperature*” OR “Cold” OR “frigidity” OR “Hot” OR “Heat”
#6	#4 OR #5
#7	#3 AND #6
Study quality was evaluated by two authors (Lingyun Liao and Xiaohong Wei) with the NOS for case–control and cohort studies, and adapted NOS for cross-sectional studies [16, 17], which includes three categories and eight items, with a total score of nine. A NOS score of seven or higher indicated high quality.

Statistical Analysis

Stata/SE 15.1 (StataCorp, College Station, TX, USA) was used for the quantitative analysis. In studying the relationship between season of delivery and preeclampsia, summer was chosen as the reference month because most previous studies suggested that the prevalence associated with summer delivery was low [7, 18–21]. Similarly, winter was chosen as the reference season in the analysis of conception season [22–26].

A random effects model and the Mantel–Haenszel method were used to calculate pooled ORs and 95% CIs. ORs were displayed using a forest plot. Heterogeneity was estimated by the Cochrane Q statistic ($P < 0.1$ indicates the existence of heterogeneity) and inconsistency index (I^2) (low: 25–50%; moderate: 50–75%; high: 75–100%). To explore the source of heterogeneity, subgroup analyses and sensitivity analyses were performed. Subgroup analyses were performed according to the year the study was conducted, the latitude of the study area, sample size, and the exclusion of risk factors in different study designs. In addition, we used a stepwise elimination method to perform the sensitivity analysis and verify the robustness of the results. Begg’s funnel plot and Egger’s test were used to check for the risk of publication bias.

Results

Study Selection

Figure 1 shows the literature selection process in detail. A total of 2759 studies were retrieved for further screening based on the established selection criteria. After removing duplicates, the titles and abstracts of 2140 studies were screened, and 2007 unqualified studies were excluded. Finally, we screened the full texts of the remaining and

![Fig. 1 PRISMA flow diagram of study process](image)
excluded 113 unqualified studies. Consequently, twenty studies were included in the systematic review [6, 7, 11, 12, 18–33], and eleven studies with sufficient quantitative data were included in the meta-analysis [6, 7, 18–21, 27–31].

Study Characteristics and Quality Assessment

Table 2 and supplementary Tables 1, 2, 3 and 4 show the detailed descriptions and quality assessments of all the studies included in the review. Studies were carried out in 7 countries, all from the Northern Hemisphere, with different latitudes. All disease-related data was extracted from medical records. Fourteen studies reported the relationship between delivery season or month and HDPs [6, 7, 11, 18–21, 26–32], while seven studies reported the relationship between conception season or month and HDPs [12, 22–26, 33]. The outcome definition was not completely uniform. Some studies focused on comprehensive HDPs, while other studies focused on only preeclampsia. Using the quality assessment guidelines [16], seventeen studies were considered to be high quality (score of 7 or more). Three articles scored six points because they lacked ample control of confounding factors, such as singleton pregnancy or maternal-related disease history.

Season of Delivery and HDPs

Fourteen articles assessed the relationship between delivery season and HDPs [6, 7, 11, 18–21, 26–32], and 11 articles with sufficient data were included in the meta-analysis [6, 7, 18–21, 27–31]. Because the heterogeneity between studies was high ($I^2 > 25\%$), we used a random effects model to pool the ORs and 95% CIs.

With summer delivery as the reference, a significant association between HDPs and winter delivery (Fig. 2, OR = 1.18, 95% CI = 1.02–1.38) was found, but there was no association with spring delivery (Fig. 2, OR = 1.09, 95% CI = 0.97–1.22) or fall delivery (Fig. 2, OR = 1.01, 95% CI = 0.92–1.11).

Subgroup analyses were carried out according to latitude, sample size, whether multiple pregnancies were excluded, and the year the study was conducted in the studies. The results of the associations of HDPs with winter delivery and summer delivery were as follows. After the subgroup analysis included only studies conducted after 2002 (Fig. 3a), the heterogeneity decreased significantly, and a stronger association was observed (OR = 1.34, 95% CI = 1.06–1.71). In the latitude subgroup analysis (Fig. 3b), the heterogeneity decreased slightly, and a stronger association was observed in high-latitude countries (OR = 1.62, 95% CI = 1.20–2.20) and middle-latitude countries (OR = 1.24, 95% CI = 1.00–1.55). However, at low latitudes, the result was nonsignificant (OR = 0.90, 95% CI = 0.76–1.05). In two studies that excluded risk factors for multiple pregnancies, the studies by Li (OR = 1.56, 95% CI = 0.91–2.69) and Rylander (OR = 1.99, 95% CI = 1.33–2.98) showed the same significant associations between HDPs and winter delivery (Fig. 3c). When stratified by excluding studies with a sample size < 10,000, the heterogeneity did not change considerably, and the correlation between HDPs and winter delivery remained positive (Fig. 3d) [7, 21]. The results of the subgroup analyses for spring and fall delivery versus summer delivery were nonsignificant (Supplementary Fig. 1).

The sensitivity analysis suggested that no single study altered the association (Fig. 4a–c). In the publication bias test, three Begg’s funnel plots were symmetric (Fig. 5a–c), and Egger’s test was nonpositive (Supplementary Fig. 2).

Based on the above results, we further compared winter delivery with delivery in other seasons. The result yielded a statistically significant result (OR = 1.17, 95% CI = 1.03–1.34, $P^2 = 75.4\%$) (Fig. 6a). In the subgroup analysis included only studies conducted after 2002 (Fig. 7a), the heterogeneity among included studies also decreased significantly, and a stronger association still existed (OR = 1.33, 95% CI = 1.05–1.68). The remaining three subgroup analyses did not significantly reduce the interstudy heterogeneity (Fig. 7b–d). The results of the sensitivity analysis were stable (Fig. 6b). Symmetrical Begg’s funnel plots (Fig. 6c) and Egger’s test showed that there was no publication bias (Supplementary Fig. 2).

Two of the remaining three studies that were not included in the quantitative analysis revealed that the risk of HDPs was highest when women delivered in the winter months [11, 32], which was consistent with our quantitative analysis. Morikawa reported that the relative risks of pregnancy-induced hypertension were 1.12 (95% CI = 1.06–1.19) for delivery in January–February and 1.16 (95% CI = 1.09–1.22) for delivery in March–April compared with delivery in July–August [11]. Magnus reported that delivery in August was associated with the lowest risk of preeclampsia, while the risk was highest in the winter months (for December, adjusted OR = 1.26, 95% CI = 1.20–1.31) [32]. However, Phillips found that there were no significant differences in the rates of preeclampsia in women with winter and spring deliveries, but women with summer deliveries (OR = 0.63, 95% CI = 0.39–0.99 vs. spring) and fall deliveries (OR = 0.60, 95% CI = 0.37–0.98 vs. spring) had reduced odds of developing preeclampsia [26].

Season of Conception and HDPs

Seven studies assessed the relationship between conception season or month and HDPs. Unfortunately, we were not able to pool the ORs because the control seasons or months were different for each study and the raw data were not available.
Author	Publication year	Study region	Study design	Period	Total/case (n)	Exposure definition	Outcome definition	Latitude	Income group	NOS
Rohr Thomsen et al	2020	Denmark	Cohort	1989–2010	50,665/4285	Month of conception	HDPs	Middle	High	8
Farzaneh et al	2019	Sistan and Baluchestan, Iran	Nested case–control	2017	540/270	Season of delivery	Preeclampsia	Low	Middle	7
Shayan et al	2019	Hamadan, Iran	Case–control	2005–2015	1458/729	Season of conception	Preeclampsia	Middle	Middle	6
Weinberg et al	2017	Norway	Cohort	1999–2009	356,662/13959	Month of conception	Preeclampsia and eclampsia	High	High	8
Li et al	2016	Hunan, China	Cohort	2010–2011	6223/449	Season of delivery	Preeclampsia	Middle	Middle	7
Ali et al	2015	Sudan	Case–control	2008–2010	306/153	Month of delivery	HDPs	Low	Low	7
Tran et al	2015	Paris, France	Cohort	2008–2011	63,633/526	Season of conception	Preeclampsia with severe features	Middle	High	8
Morikawa et al	2014	Japan	Cohort	2005–2009	301,501/13848	Season of delivery	HDPs	Middle	High	8
Luo et al	2013	Sichuan, China	Case–control	2007–2010	1300/60	Season of delivery	Preeclampsia	Middle	Middle	7
Wellington et al	2012	TX, USA	Cohort	2001	31,207/12481	Season of delivery	Preeclampsia and eclampsia	Middle	High	7
Rylander et al	2011	Sweden	Cohort	1990–1994	482,659/182	Season of delivery	Eclampsia	High	High	8
Bullock et al	2011	OK, USA	Cohort	2005–2007	3050/176	Month of delivery	Preeclampsia	Middle	High	6
Tam et al	2008	Hong Kong, China	Cohort	1995–2002	15,402/245	Season of conception	Preeclampsia	Low	Middle	8
Sonoori et al	2007	Gilan, Iran	Cross-sectional	1999–2001	12,142/397	Season of delivery	Preeclampsia	Middle	Middle	7
Rudra et al	2005	WA, USA	Cross-sectional	1987–2001	83,228/6680	Month of conception	Preeclampsia	Middle	High	7
Phillips et al	2004	VT, USA	Case–control	1995–2003	7904/142	Season of conception and delivery	Preeclampsia	Middle	High	7
Magnus et al	2001	Norway	Cohort	1967–1998	1,869,388/51801	Month of delivery	Preeclampsia	High	High	7
Makhseed et al	1999	Kuwait	Case–control	1992–1994	26,805/692	Month of delivery	Preeclampsia	Low	High	6
Ros et al	1998	Sweden	Cohort	1987–1993	10,193/557	Season of delivery	Eclampsia	High	High	8
Jamelle et al	1998	Pakistan	Case–control	1996	18,878/395	Month of delivery	Eclampsia	Low	Middle	6

HDPs, hypertensive disorders in pregnancy; NOS, Newcastle–Ottawa quality assessment scale
Fig. 2 a–c The forest plots show the association between HDPs and a certain season delivery compared with summer delivery. **a** Winter delivery; **b** spring delivery; **c** autumn delivery

Winter vs summer

Study	OR (95% CI)	Weight
Farzaneh et al. (2019)	1.00 (0.63, 1.60)	6.43
Li et al. (2018)	1.56 (0.91, 2.69)	5.28
Ali et al. (2015)	1.03 (0.43, 2.49)	2.50
Luo et al. (2013)	1.75 (1.27, 2.40)	9.63
Wellington et al. (2012)	1.04 (0.99, 1.09)	16.53
Rylander et al. (2011)	1.99 (1.33, 2.98)	7.61
Bullock et al. (2011)	1.15 (0.75, 1.77)	7.07
Soroosi et al. (2007)	1.11 (0.83, 1.49)	10.28
Mahdaseh et al. (1999)	0.90 (0.72, 1.12)	12.23
Ros et al. (1998)	1.44 (1.13, 1.85)	11.62
Jamelle et al. (1998)	0.85 (0.65, 1.12)	10.83
Overall (I-squared = 68.9%, p = 0.000)	1.18 (1.02, 1.38)	100.00

NOTE: Weights are from random effects analysis

Spring vs summer

Study	OR (95% CI)	Weight
Farzaneh et al. (2019)	1.00 (0.61, 1.65)	4.30
Li et al. (2018)	1.10 (0.61, 2.00)	3.19
Ali et al. (2015)	0.36 (0.14, 0.94)	1.37
Luo et al. (2013)	1.60 (1.16, 2.16)	8.50
Wellington et al. (2012)	1.00 (0.95, 1.06)	26.36
Rylander et al. (2011)	1.10 (0.71, 1.72)	5.29
Bullock et al. (2011)	1.17 (0.75, 1.72)	5.30
Soroosi et al. (2007)	1.21 (0.89, 1.64)	9.23
Mahdaseh et al. (1999)	1.14 (0.92, 1.40)	14.20
Ros et al. (1998)	1.16 (0.91, 1.50)	11.74
Jamelle et al. (1998)	0.87 (0.66, 1.15)	10.51
Overall (I-squared = 42.5%, p = 0.065)	1.09 (0.97, 1.22)	100.00

NOTE: Weights are from random effects analysis

Fall vs summer

Study	OR (95% CI)	Weight
Farzaneh et al. (2019)	1.00 (0.62, 1.62)	3.55
Li et al. (2018)	1.15 (0.65, 2.04)	2.61
Ali et al. (2015)	0.94 (0.33, 2.64)	0.83
Luo et al. (2013)	0.81 (0.58, 1.12)	6.96
Wellington et al. (2012)	0.98 (0.94, 1.04)	36.02
Rylander et al. (2011)	1.13 (0.71, 1.79)	3.85
Bullock et al. (2011)	1.21 (0.79, 1.85)	4.45
Soroosi et al. (2007)	1.10 (0.83, 1.47)	8.62
Mahdaseh et al. (1999)	1.08 (0.88, 1.34)	13.64
Ros et al. (1998)	1.29 (1.00, 1.66)	10.45
Jamelle et al. (1998)	0.71 (0.54, 0.94)	9.02
Overall (I-squared = 26.8%, p = 0.189)	1.01 (0.82, 1.11)	100.00

NOTE: Weights are from random effects analysis
Four studies supported that conception in summer increased the risk of developing HDPs [22, 24–26]. Rohr Thomsen showed that women who conceived in August (OR = 1.35, 95% CI = 1.11–1.64) had the highest risk of gestational hypertension, and those who conceived in June (OR = 1.17, 95% CI = 0.94–1.45) had the highest risk of preeclampsia, which occurred in both the summer months [22]. Tran found that conception in summer was associated with the highest risk of severe preeclampsia (OR = 1.53, 95% CI = 1.27–1.85, vs. winter) [24]. Tam (OR = 1.7, 95% CI = 1.2–2.5, vs. autumn) and Phillips (OR = 1.7, 95% CI = 1.1–2.8 vs. spring) revealed that conception in summer was associated with an increased risk of preeclampsia [25, 26].

However, the results of 3 studies were not consistent with the above conclusion. Rudra reported that conception in February (OR = 1.17, 95% CI = 1.03–1.33 vs. January) and April (OR = 1.18, 95% CI = 1.03–1.34 vs. January) through August (OR = 1.14, 95% CI = 1.01–1.30 vs. January) was associated with significantly higher risks of preeclampsia [33]. However, Shayan found that conception in autumn increased the odds of preeclampsia (OR = 1.13, 95% CI = 0.73–1.76, vs. winter) and that conception in summer was associated with the lowest odds of preeclampsia (OR = 0.26, 95% CI = 0.17–0.38, vs. winter) [12]. Weinberg revealed that women who conceived in spring had a higher risk of HDPs, while those that conceived in autumn had a lower risk [23].
Fig. 4 a–c Sensitivity analysis of HDPs and a certain season delivery compared with summer delivery; a winter delivery; b spring delivery; c autumn delivery
Fig. 5 a–c Begg’s funnel plots of HDPs and a certain season delivery compared with summer delivery;
 a Winter delivery;
 b Spring delivery; c Autumn delivery
Fig. 6 a The forest plots show the association between HDPs and winter delivery compared with other seasons; the subgroup analysis of sample size; b Sensitivity analysis of HDPs and winter delivery compared with other seasons; c Begg’s funnel plots of HDPs and winter delivery compared with other seasons
Discussion

HDPs are one of the main causes of maternal and offspring morbidity and mortality and have a huge impact on pregnant women and their offspring [34, 35]. At present, some studies have shown the risk factors of HDPs, such as older age, low maternal educational status, and multiple pregnancies [6, 7]. And there were also studies showing that the incidence of HDPs was related to the season. However, the results of these studies are not consistent, possibly due to different latitudes, incomes, study designs, etc. Therefore, the best way to resolve this disagreement is to perform a meta-analysis to combine and discuss these results. After our screening, 20 studies were finally included in the systematic review and 11 studies were included in meta-analysis. First, we performed a meta-analysis between delivery season and HDPs. The results showed increased odds of HDPs in women who delivered in winter compared with those who delivered in summer and other seasons. Furthermore, two of the three studies that were not included in the meta supported this finding [11, 32]. Next, although we were unsuccessful in pooling the ORs between HDPs and seasons or months of conception, we found that there were 4 of 7 studies that consistently found women who conceived in summer had a higher risk of HDPs.

Based on our analysis, it was not possible to explain how season factors could affect the onset of HDPs. According to basic research and epidemiological investigations, several possible mechanisms influenced by factors, such as nutrient consumption, vasospasm may explain the correlation between HDPs and winter delivery. Firstly, among the different seasons, there is wide variation in the nutrients consumed by people, resulting in different risks of pregnancy-related diseases. Previous studies reported that vitamin D levels above 30 ng/mL and calcium supplementation were associated with a lower risk of preeclampsia [36, 37], and

Fig. 7 a-d The subgroup analysis between HDPs and winter delivery compared with other seasons; a whether the study was conducted after 2002; b the latitude subgroup analysis; c the subgroup analysis of sample size; d the subgroup analysis of whether multiple pregnancies were excluded
young adults had a three times higher risk of vitamin D deficiency in the winter than in the summer [38]. Secondly, exposure to cold temperatures could lead to vasospasms and subsequent ischemia [39]. These factors may help to understand the reasons for the increased risk of HDPs during winter delivery.

Next, during conception in summer, it may affect the implantation of embryos, reduced plasma volume, infection rates, and blood pressure (BP) rhythms thus affecting the occurrence of HDPs. Here, we discuss some relevant factors. Firstly, Xiong reported that in the early stages of pregnancy, cold temperatures reduced the risks of preeclampsia, eclampsia, and gestational hypertension, whereas hot temperatures increased those risks [40]. As a possible explanation, Krininger reported that heat shock was found to compromise embryo implantation in an animal model [41]. However, impaired embryo implantation is an important pathogenesis of HDPs [42]. Secondly, the incidence of preeclampsia was significantly higher during the dry season than during the rainy season [43, 44]. Water loss resulting in reduced plasma volume in warm months may increase the risk of elevated blood pressure [45]. Thirdly, seasonal fluctuations in infection rates may result in variability in the seasonal occurrence of preeclampsia. For example, the risk of preeclampsia was increased in pregnant women with urinary tract infection, and warmer weather increases the risk of urinary tract infections among women [46, 47]. Fourthly, compared with winter, the frequencies of riser and non-dipper patterns of BP rhythms in the summer season were higher, which is a common finding in HDPs [48, 49]. BP rhythm might be regulated by the peripheral clocks of circadian rhythms and the molecular circadian clock, and the expression of clock gene was increased in placenta of preeclampsia [50, 51]. The central clock of circadian rhythms receives light input directly from the retina for entrainment of time-of-day, while changes in daylength in different seasons may have an impact on circadian rhythms [50, 52]. The above may help explain the increased risk of HDPs in summer conception.

Although we studied the conception season and delivery season respectively, we could relate through the gestation period. For example, in the studies on delivery and conception months, women who conceived in hot months generally delivered in cold months in the following year [11, 18, 22, 27, 32]. Women who conceived in June and delivered in March had the highest risk of preeclampsia [22]. The differences in these studies were possibly associated with preterm birth in women with HDPs. For example, many studies have reported that common reasons for indicated preterm births include pre-eclampsia or eclampsia [53–55]. Superimposed preeclampsia increased the risk for preterm birth, especially preterm birth < 32 weeks [56]. Therefore, this could help explain the high incidence of HDPs in women who conceived in summer and delivered in winter.

In this meta-analysis of studies on delivery season, the heterogeneity was high, possibly due to confounding factors such as the year the study was conducted, the latitude of the study area, sample size, and the exclusion of risk factors in different study designs. To solve this problem, we performed subgroup analyses to find the source of the heterogeneity. Heterogeneity decreased considerably when only studies conducted after 2002 were included, and slightly decreased when analyzed by latitude subgroups analysis, which suggested that heterogeneity may stem from the year and latitude in which the study was conducted. In the studies we included in the meta-analysis, the study was conducted from 1987 to 2017. And global average temperature has risen by 0.32 °F (0.18 °C) per decade since 1981, which may have an impact on winter or summer temperatures [57]. The above may help explain why heterogeneity declined after only studies from the last two decades were included.

Most of our studies showed that seasons were related to HDPs, but four studies found the opposite [6, 27, 29, 31]. Three of the four studies were conducted in low latitudes, and one study was in mid-latitudes nearer to low latitudes, where seasonal changes are not obvious. In our subgroup analyses of latitude, heterogeneity slightly decreased and HDPs was not related to delivery season in low latitude. However, two other studies at lower latitudes showed that conceptions during summer had a higher risk of preeclampsia by Phillips and a significant association between HDPs and delivery in winter by Ali. Therefore, latitude may be one of the reasons for this difference. In the future, we need to include more well-designed and high-quality studies. In addition, our sensitivity analysis indicated that our results were valid. Begg’s funnel plots were symmetric, and Egger’s test was nonpositive, which increased the stability of our results.

In our systematic review and meta-analysis, we reported the weakly positive relationships between HDPs and season of delivery and conception. In addition, this is the first quantitative analysis of this topic. However, this study has some limitations. We found heterogeneity in our meta-analysis, and many factors beyond our control, such as the year the study was conducted, the latitude of the study area, sample size, and the exclusion of risk factors in different study designs. Although our sensitivity analysis indicated that our results were valid, additional high-quality studies are needed to reduce heterogeneity in the future. Besides, in the study of the relationship between conception season and HDPs, the reference season or month differed, and original data were not reported, which caused difficulty in performing a meta-analysis.
Conclusion

Based on the evidence to date, we found weakly positive relationships between HDPs and summer conception and winter delivery, which may help us better understand the risk factors of HDPs. Furthermore, the identification of risk factors for the onset of HDPs is important because it could greatly improve pregnancy and fetal outcomes. Therefore, more large-scale multicenter studies and mechanism studies at the molecular biology level are needed in the future to explore the pathogenesis and prevention methods of HDPs.

Abbreviations

HDP: Hypertensive disorders of pregnancy; MOOSE: The Meta-Analysis of Observational Studies in Epidemiology; PRISMA: Preferred Reporting Items for Systematic review and Meta-Analyses; MeSH: Medical Subject Headings; ORs: Odds ratios; 95% CIs: 95% Confidence intervals; NOS: The Newcastle–Ottawa quality assessment scale; BP: Blood pressure

Supplementary Information

The online version contains supplementary material available at https://doi.org/10.1007/s43032-022-01010-0.

Author Contribution

Lingyun Liao, Yangxue Yin, and Rong Zhou designed the study. Min Liu and Yijie Gao contributed to literature search, data extraction, and statistics. Lingyun Liao and Xiaohong Wei prepared the manuscript. All authors read and approved the final manuscript.

Funding

This work was supported by the National Natural Science Foundation of China (No. 81571465 and 81871175) and the Key Projects of Sichuan Science and Technology Department (No. 2021YFS0208).

Data Availability

Data will be available from the corresponding author upon reasonable request.

Declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

References

1. Umesawa M, Kobashi G. Epidemiology of hypertensive disorders in pregnancy: prevalence, risk factors, predictors and prognosis. Hypertension Res : Official J Japanese Soc Hypertension. 2017;40(3):213–20. https://doi.org/10.1038/hr.2016.126.
2. Hypertension in pregnancy. Report of the American College of Obstetricians and Gynecologists’ task force on hypertension in pregnancy. Obstet Gynecol. 2013;122(5):1122–31. https://doi.org/10.1097/AOG.0b013e3283539688.
3. Malek AM, Wilson DA, Turan TN, Mateus J, Lackland DT, Hunt KJ. Maternal coronary heart disease, stroke, and mortality within 1, 3, and 5 years of delivery among women with hypertensive disorders of pregnancy and pre-pregnancy hypertension. Journal of the American Heart Association. 2021:e018155. https://doi.org/10.1161/jaha.120.018155.
4. Cournouris ME, Villanueva FS, Berlacher KL, Cavalcante JL, Parks WT, Catov JM. Association of hypertensive disorders of pregnancy with left ventricular remodeling later in life. J Am Coll Cardiol. 2021;77(8):1057–68. https://doi.org/10.1016/j.jacc.2020.12.051.
5. Kurbasic A, Fraser A, Mogren I, Hallmans G, Franks PW, Rich-Edwards JW, et al. Maternal hypertensive disorders of pregnancy and offspring risk of hypertension: a population-based cohort and sibling study. Am J Hypertens. 2019;32(4):331–4. https://doi.org/10.1093/ajh/hpy176.
6. Farzaneh F, Tavakoliania Z, Soleimanzadehmousavi SH. Assessment of occurrence of pre eclampsia and some clinical and demographic risk factors in Zahedan city in 2017. Clin Experimental hypertension (New York, NY). 1993;41(6):583–8. https://doi.org/10.1080/10641963.2018.1523919.
7. Li X, Tan H, Huang X, Zhou S, Hu S, Wang X, et al. Similarities and differences between the risk factors for gestational hypertension and preeclampsia: a population based cohort study in south China. Pregnancy hypertension. 2016;6(1):66–71. https://doi.org/10.1016/j. preghy.2015.11.004.
8. Calov M, Alinaghi F, Hamann CR, Silverberg J, Egberg A, Thysen JP. The association between season of birth and atopic dermatitis in the northern hemisphere: a systematic review and meta-analysis. J Allergy Clin Immunol Pract. 2020;8(2):674–80.e5. https://doi.org/10.1016/j.jaip.2019.10.007.
9. Pantavou KG, Bagos PG. Season of birth and multiple sclerosis: a systematic review and multivariate meta-analysis. J Neurol. 2020;267(10):2815–22. https://doi.org/10.1007/s00415-019-09346-5.
10. Rylander C, Odlund J, Sandanger TM. Climate change and the potential effects on maternal and pregnancy outcomes: an assessment of the most vulnerable—the mother, fetus, and newborn child. Glob Health Action. 2013;6:19538. https://doi.org/10.3402/gha.v6i0.19538.
11. Morikawa M, Yamada T, Yamada T, Cho K, Sato S, Minakami H. Seasonal variation in the prevalence of pregnancy-induced hypertension in Japanese women. J Obstet Gynaecol Res. 2014;40(4):926–31. https://doi.org/10.1111/jog.12304.
12. Shayan A, Sourniadj H, Refaei M, Masoumi SZ, Tapak L, Soltani F. Predictors of preeclampsia based on a 10-year case-control study. J Fam Reprod Health. 2019;13(1):14–20.
13. Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, et al. Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. Jama. 2000;283(15):2008–12. https://doi.org/10.1001/jama.283.15.2008.
14. Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev. 2015;4(1):1. https://doi.org/10.1186/2046-4053-4-1.
15. ACOG practice bulletin no. 202: gestational hypertension and preeclampsia. Obstet Gynecol. 2019;133(1):1. https://doi.org/10.1097/aog.00000000000003018.
16. Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol. 2010;25(9):603–5. https://doi.org/10.1007/s10654-010-9491-z.
17. Moskaliewicz A, Oremus M. No clear choice between Newcastle-Ottawa Scale and Appraisal Tool for Cross-Sectional Studies to assess methodological quality in cross-sectional studies of health-related quality of life and breast cancer. J Clin Epidemiol. 2020;120:94–103. https://doi.org/10.1016/j.jclinepi.2019.12.013.
26. Phillips JK, Bernstein IM, Mongeon JA, Badger GJ. Seasonal variation in the hypertensive disorders of pregnancy in Denmark. Acta Obstet Gynecol Scand. 2000;79(5):623–30. https://doi.org/10.1034/j.1600-0412.2010.01010.x.

27. Bullock N, Breese McCoy SJ, Payton ME. Role of season in the regularity of deliveries with pre eclampsia. Med Hypotheses. 2001;77(4):674–6. https://doi.org/10.1016/S0308-593X(01)00273-x.

28. Tam WH, Sahota DS, Lau TK, Li CY, Fung TY. Seasonal variation in pre eclampsia and its association with the ambient temperature and humidity in early pregnancy. Gynecol Obstet Invest. 2008;66(1):22–6. https://doi.org/10.1002/goi.14252.

29. Phillips JK, Bernstein IM, Mongeon JA, Badger GJ. Seasonal variation in pre eclampsia based on timing of conception. Obstet Gynecol. 2004;104(5 Pt 1):1015–20. https://doi.org/10.1097/01.AOG.0000143306.88438.cf.

30. Bullock N, Breeze McCoy SJ, Payton ME. Role of race in the onset of pre eclampsia and the hypertensive disorders of pregnancy in Denmark. Acta Obstet Gynecol Scand. 1998;77(7):712–6. https://doi.org/10.1034/j.1600-0412.1998.770709.x.

31. Jamelle RN. Eclampsia: is there a seasonal variation in incidence? J Obstet Gynecol Res. 1998;24(2):121–8. https://doi.org/10.1007/bf0260062x.

32. Magnus P, Eskild A. Seasonal variation in the occurrence of pre-eclampsia. BJOG : Int J obstetrics gynaecology. 2001;108(11):1116–9. https://doi.org/10.1111/j.1470-0528.2003.00273.x.

33. Radua CB, Williams MA. Monthly variation in pre eclampsia prevalence: Washington State, 1987–2001. J maternal-fetal neonatal med : Official J European Assoc Perinatal Med, Federation Asia Oceania Perinatal Soci, Int Soc Perinatal Obstet. 2005;18(5):319–24. https://doi.org/10.1080/147670505000275838.

34. Bokslag A, van Weissenbruch M, Mol BW, de Groot CJ. Pre-eclampsia: short and long-term consequences for mother and neonate. Early Hum Dev. 2016;102:47–50. https://doi.org/10.1016/j.earlhumdev.2016.09.007.

35. Mol BWJ, Roberts CT, Thangaratnam S, Magee LA, de Groot CJM, Hofmeyr GJ. Pre-eclampsia. Lancet (London, England). 2016;387(10022):999–1011. https://doi.org/10.1016/s0140-6736(15)00070-7.

36. Mirzakhani H, Litonjua AA, McElrath TF, O’Connor G, Lee-Parritz A, Iversen R, et al. Early pregnancy vitamin D status and risk of pre eclampsia. J Clin Investig. 2016;126(12):4702–15. https://doi.org/10.1172/JCI89031.

37. Lowensohn RI, Sladler DD, Naze C. Current concepts of maternal nutrition. Obstet Gynecol Surv. 2016;71(7):413–26. https://doi.org/10.1097/OGS.0000000000000329.

38. Horton-French K, Dunlop E, Lucas RM, Pereira G, Black LJ. Prevalence and predictors of vitamin D deficiency in a nationally representative sample of Australian adolescents and young adults. European journal of clinical nutrition. 2021;1:1–10. https://doi.org/10.1038/s41430-021-00880-y.

39. Alba BK, Castellani JW, Charkoundi N. Cold-induced cutaneous vasoconstriction in humans: function, dysfunction and the distinctly counterproductive. Exp Physiol. 2019;104(8):1202–14. https://doi.org/10.1113/epjpi007178.

40. Xiong T, Chen P, Mu Y, Li X, Di B, Li J, et al. Association between ambient temperature and hypertensive disorders in pregnancy in China. Nat Commun. 2020;11(1):2925. https://doi.org/10.1038/s41467-020-16775-8.

41. Krininger CE 3rd, Stephens SH, Hansen PJ. Developmental changes in inhibitory effects of arsenic and heat shock on growth of pre-implantation bovine embryos. Mol Reprod Dev. 2002;63(3):335–40. https://doi.org/10.1002/mrd.90017.

42. Phipps EA, Thadhani R, Benzing T, Karumanchi SA. Pre-eclampsia: pathogenesis, novel diagnostics and therapies. Nat Rev Nephrol. 2019;15(5):275–89. https://doi.org/10.1038/s41581-019-0119-6.

43. Elongji JP, Tandu B, Spitz B, Verdonck F. Influence of the seasonal variation on the prevalence of pre-eclampsia in Kinshasa. Gynecologie, obstetrique fertile. 2011;39(3):132–5. https://doi.org/10.1016/j.gyobfe.2010.12.010.

44. Wacker J, Schulz M, Fröhaufl J, Chwora FM, Solomayer E, Basert G. Seasonal change in the incidence of pre eclampsia in Zimbabw. Acta Obstet Gynecol Scand. 1998;77(7):712–6.

45. Aardenburg R, Spaanderman ME, Ekhart TH, van Eijndhoven HW, van der Heijden OW, Peeters LL. Low plasma volume following pregnancy complicated by pre-eclampsia predisposes for hypertensive disease in a next pregnancy. BJOG : Int J Obstetrics gynaecology. 2003;110(11):1001–6.

46. Simmering JE, Polgreen LA, Cavanaugh JE, Erickson BA, Suneja M. Polgreen PM. Warmer weather and the risk of urinary tract infections in women. J Urol. 2021;205(2):500–6. https://doi.org/10.1097/juu.00000000000021383.

47. Conde-Agudelo A, Villar J, Lindheimer M. Maternal infection and risk of pre eclampsia: systematic review and metaanalysis. Am J Obstet Gynecol. 2008;198(1):7–22. https://doi.org/10.1016/j.ajog.2007.07.040.

48. Tabara Y, Matsumoto T, Murase K, Nagashima S, Hirai T, Kositg S, et al. Seasonal variation in nocturnal home blood pressure fall: the Nagahama study. Hypertension Res : Official J Japanese Soc Hypertension. 2018;41(3):198–208. https://doi.org/10.1038/s41440-017-0003-3.

49. Bouchlariotou S, Liakopoulos V, Giannopoulou M, Arampatzis S, Eleftheriadis T, Eleftheriadis T, et al. Melatonin secretion is impaired distinctly counterproductive. Exp Physiol. 2019;104(8):1202–14. https://doi.org/10.1113/epjpi007178.

50. Costello HM, Gumz ML. Circadian rhythm, clock genes, and hypertension: recent advances in hypertension. Hypertension. 2018;71:158–66. https://doi.org/10.1161/HYPERTENSIONAHA.121.14519.
51. Li Y, Li J, Hou Y, Huang L, Bian Y, Song G, et al. Circadian clock gene clock is involved in the pathogenesis of preeclampsia through hypoxia. Life Sci. 2020;247:117441. https://doi.org/10.1016/j.lfs.2020.117441.

52. Wirz-Justice A, Skene DJ, Münch M. The relevance of daylight for humans. Biochem Pharmacol. 2021;191:114304. https://doi.org/10.1016/j.bcp.2020.114304.

53. Goldenberg RL, Culhane JF, Iams JD, Romero R. Epidemiology and causes of preterm birth. Lancet (London, England). 2008;371(9606):75–84. https://doi.org/10.1016/s0140-6736(08)60074-4.

54. Hoffman MK, Goudar SS, Kodkany BS, Metgud M, Somannavar M, Okitawutshu J, et al. Low-dose aspirin for the prevention of preterm delivery in nulliparous women with a singleton pregnancy (ASPIRIN): a randomised, double-blind, placebo-controlled trial. Lancet (London, England). 2020;395(10220):285–93. https://doi.org/10.1016/s0140-6736(19)32973-3.

55. Shulman JP, Weng C, Wilkes J, Greene T, Hartnett ME. Association of maternal preeclampsia with infant risk of premature birth and retinopathy of prematurity. JAMA ophthalmology. 2017;135(9):947–53. https://doi.org/10.1001/jamaophthalmol.2017.2697.

56. Premkumar A, Baer RJ, Jelliffe-Pawlowski LL, Norton ME. Hypertensive disorders of pregnancy and preterm birth rates among black women. Am J Perinatol. 2019;36(2):148–54. https://doi.org/10.1055/s-0038-1660461.

57. Lindsey R, Dahlman L. Climate change: global temperature. Climate.gov. 2020;16.