Absorption, distribution, metabolism, excretion, and toxicity evaluation of Papua red fruit flavonoids through a computational study

M M Suprijono¹,², H Sujuti³, D Kurnia⁴ and S B Widjanarko⁵

¹ Department of Food Technology, Agricultural Technology Faculty, Widya Mandala Catholic University Surabaya, Indonesia.
² Doctoral Program of Agricultural Product Technology, Faculty of Agricultural Technology, Universitas Brawijaya, Malang, Indonesia
³ Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
⁴ Department of Chemistry, Faculty of Mathematics and Natural Science, Padjajaran University, Bandung, Indonesia
⁵ Department of Food Science and Technology, Faculty of Agricultural Technology, Universitas Brawijaya, Malang, Indonesia

E-mail: maria-matoetina@ukwms.ac.id, m.matoetina@gmail.com

Abstract. Red Fruit (RF) (Pandanus conoideus Lam.) was used as traditional medicine for Papuans and consumed as a daily meal. RF was proved as a source of bioactive antioxidant and anticancer, grace on their flavonoids. There was a few researches that focuses on the metabolism and toxicity of RF, but the mechanism of metabolism and toxicity of the flavonoids present in the RF is unclear. This research aims to evaluate the absorption, distribution, metabolism, excretion, and toxicity of RF flavonoids through computational study, sharpening their potency as bioactive in functional food. Flavonoids in RF extracts were identified using LCMS and or obtained from secondary data. The chemical structure of the flavonoids was redrawn to get the canonical of the molecular graph. Absorption, distribution, metabolism, and excretion were predicted using SWISS ADME, OSIRIS Property Explorer, and hERG-Pred. Those were based on the physicochemical properties, pharmacokinetic, BOILED-EGG test, whereas the toxicology based on the potency as a toxicant, P-gp substrate, hERG blocker, and CYP450 inhibitor. Quercetin, Taxifolin, and Quercetin 3-Glucoside were identified using the methanol and ethyl acetate extract. Quercetin, Taxifolin, 3,4,5-trihydroxy-7,3-dimethoxyflavone/TDF, 4',6,6',8-tetrahydroksi-3-metoksi-flavon/TMF, and Quercetin3-Methyl-Ether/QME fulfilled the RO5 parameters; they were higher in water solubility, gastrointestinal absorption, and bioavailability. All were not P-gp substrate and hERG blocker, but some of them were CYP450 inhibitors. Only TMF, QME, Taxifolin3-O-α-Arabinopiranose/TAP, and Quercetin3-O-Glucose/QOG that consistently had no risk as toxic compounds. RF flavonoid showed high potency as bioactive. Most of the flavonoid had no toxicity risk. Generally, RF flavonoids were categorised as safe.

1. Introduction
Nowadays, there is a large number of molecular structures of chemicals evaluated to select which chemicals gave the best chance to become an effective bioactive in functional food or drug in medical
needs. The molecule must show high bioactivity but also low toxicity. In point of view of availability and toxicity, the absorption, distribution, metabolism, excretion, and toxicity are the parameter that has to be measured and evaluated.

The assessment of toxicology risk usually done with animal experimentation, but time and financial consume [1,2]. In silico pharmacokinetic and pharmacological studies were performed based on absorption, distribution, metabolism, and excretion toxicity (abbreviated as ADMET) [3]. The method is a valid alternative to the experimental, especially at the initial steps of research [2]. In silico toxicology are familiar used in drug research, but rarely in functional food research. ADMET analysis must be made along with bioactive analysis.

Red Fruit (Pandanus conoideus Lam.) is an indigenous plant from Papua-Indonesia. Traditionally, the fruit was used as food and also a health supplement. Papua Red Fruits were potentially used as nutrient and pigment source, antioxidant, and anticancer [4-8]. Research done on Red Fruit has not covered bioactive compound responsible for the activity (antioxidant and anticancer). As far as our concern, there is little research done for risk toxicity of compound found in this fruit. RF Toxicity analysis was done in terms of cytotoxicity to cancer cells [4,8]. Although the LD50 of RF oil was 5 ml/200 g body weight of the rat, it considers as pseudo [9] because of no animal dead in the experiment of RF oil toxicity [9,10]. The reason for this condition is unclear.

The objective of this research was to evaluate the ADMET of flavonoids found in Papua Red Fruit (Pandanus conoideus Lam.) as an initial stage for utilisation of the fruit as a functional food.

2. Materials and Method

2.1. Plant materials and chemicals

The Red Fruit/RF (Pandanus conoideus Lam.) used as a sample was classified as the Short-Red cultivar, known in local name as Monsor. The plant was cultivated in the Garden Laboratory of Papua State University, Manokwari, West Papua, Indonesia. The fruit was harvested on the period of November 2016. Species identification of the plant was made by Molecular Genetic Laboratory, Fishery Faculty, Papua State University, Manokwari, West Papua, Indonesia. All chemicals for extraction and partition (methanol, hexane, and ethyl acetate) were analytical grade, and for LC-MS/MS analysis (methanol, acetonitrile, formic acid) were HPLC grade. Gallic acid/GA (SigmaAldrich 27645) and quercetin/Q (Sigma-Aldrich Q4951) was used as a standard for total phenolic and total flavonoid content analysis, respectively.

2.2. RF extraction

The grains (drupe) of RF were separated from the fruit (cepallum), then macerated in methanol absolute for six days at room temperature. The filtrate of macerate was evaporated at 40ºC, which called Methanol Extract/ME. A part of the ME was partitioned using hexane:water then ethyl acetic to get Ethyl Acetic Extract/EE [5,11].

2.3. Total phenolic and total flavonoid content determination

This analysis used the spectrophotometry method [5,12]. TPC was calculated and then expressed as mg Gallic Acid equivalents (GAE) per gram of extract (mg/g). The total flavonoid content then was stated as mg Quercetin equivalents (QE) per gram of extract (mg/g).

2.4. LC-MS analysis

2.4.1. Sample and standard preparation

RF methanol extract (13-40 mg) was dissolved in 1 ml of methanol. It was sonicated for 5 minutes then centrifuged at 5000 rpm for 5 minutes. The solution was passed through membrane filter 0.22μm.

2.4.2. UHPLC analysis

The system is Liquid Chromatography-High Resolution Mass Spectrometry (Thermo Scientific Dionex Ultimate 3000 RSLCnano), which completed with a nano pump with microflow meter,
vacuum degasser, and thermostatic autosampler. Separations were done on Hypersil GOLD aQ 50 x 1 mm x 1.9 μ particle size. The temperature was set at 30°C for the column. The mobile phase was 0.1% formic acid in water (v/v) (A) and 0.1% formic acid in methanol (v/v) (B). The gradient elution was performed by 60% (B) for 0 to 2.00 minutes and continued 2.00 to 15.00 minutes, at a flow rate of 40 μL/min. The injection volume was 10 μL.

2.4.3. MS analysis
The Mass Spectrophotometer used Electrospray Ionization (ESI) in negative mode, with switch the polarity. It is high-resolution MS. Scanning mode was performed by PRM with MS2 at 17,500 resolution; maximum IT at 100 ms, isolation window at 1.0 m/z, and (N)CE / stepped was set at 30, 45, 70. The analysis was run for 15 minutes. Data processing software was Compound Discoverer with mzCloud MS/MS Library.

Table 1. The inclusion mass range setting of LCMS/MS

Mass [m/z]	Formula [M]	Species	CS [z]	Polarity	Comment
353.08781	C₁₆H₁₈O₉	-H	1	Negative	Chlorogenic Acid
301.03538	C₁₅H₁₀O₇	-H	1	Negative	Quercetin
463.08820	C₂₁H₁₂O₁₂	-H	1	Negative	Quercetin 3-beta-D-Glucoside
305.06558	C₁₅H₁₂O₇	+H	1	Positive	Taxifolin
355.10236	C₁₆H₁₈O₉	+H	1	Positive	Chlorogenic acid
303.04993	C₁₅H₁₀O₇	+H	1	Positive	Quercetin
465.10275	C₂₁H₂₀O₁₂	+H	1	Positive	Quercetin 3-beta-D-Glucoside
303.05103	C₁₅H₁₂O₇	-H	1	Negative	Taxifolin

2.5. Computational analysis
2.5.1. Ligands preparation.
Ligands used in this research are The RF flavonoids identified by LCMS and six of the RF flavonoid Isolated by Research Laboratory of Chemistry Department FMIPA Padjajaran University Bandung/UNPAD, Indonesia with permission of Dr. Dikdik Kurnia, M.Sc. (Head of Laboratory). The ligands are Quercetin, Taxifolin, Quercetin 3'-Glucose (Q3G), 3,4',5-trihydroxy-7,3'-dimethoxyflavan (TDF), 4',6,6',8-tetrahydroxy-3-methoxy-flavon (TMF), Taxifolin 3-O-alpha-arabinopyranose (TAP), Quercetin 3-O-glucose (QOG), and Quercetin 3-methyl-ether (QME). Chemical structures of TDF, TMF, TAP, QOG, and QME are redrawn using PubChem Structure Drawing: Sketcher V2.4 - Mozilla Firefox, whereas the structure of Quercetin, Taxifolin, and Q3G are obtained from PubChem compound database (CID 5280343, 439533, and 5280804). The canonical of a simplified molecular-input line-entry system (SMILE) of each flavonoid is used for the computational analysis.

2.5.2. Absorption, distribution, metabolism, and excretion (ADME) prediction
ADME (physicochemical, absorption, and bioavailability) was predicted using Swiss ADME [2]. The absorption was calculated based on the formula below:

$$\%\text{ABS} = 109 - (0.345 \times \text{TPSA})$$ \(\text{(1)}\)

Gastrointestinal (GI) absorption and Blood-Brain Barrier (BBB) permeant were determined according to the position on white or yolk of BOILED-EGG [2,13].
2.5.3. Toxicity risk prediction
Toxicity risk consists of mutagenic, tumorigenic, irritant, and reproductive effects were predicted using the OSIRIS Property Explorer program, download from https://www.organic-chemistry.org/prog/peo/ [14]. The prediction of P-gp substrate and CYP450 inhibition was made using SwissADME [2]. Whereas the hERG blocker was analysed using Pred-hERG 4.1 (http://predherg.labmol.com.br) [15].

3. Results and Discussion
3.1. Total phenolic content and flavonoid identification
RF was known as a source of phenolic. The short-red cultivar RF in this research was found contained total phenolic 24.02 and 48.97 mg GAE/g or 2.4 and 4.9 % for methanol and ethyl acetate extract, whereas total flavonoid 4.51 and 14.05 mg QE/g or 0.45 and 1.41 % for methanol and ethyl acetate extract. Those are lower than the one found in other RF [5,12]. However, the same pattern that ethyl acetate extract had higher total phenolic and flavonoid than methanol extract. The difference in RF variety or cultivar and district where it grows may cause the difference in physicochemical properties and bioactive profile [6,7].

Table 2. Phenolic detected in methanol extract of Pandanus conoideus Lam. using LCMS/MS

No	RT (minute)	measured mass (m/z)	ms2 (m/z)	Identified Compounds
1	0.88	354.09	353.09	Chlorogenic Acid
2	0.94	304.06	305.06	Taxifolin
3	0.97	464.09	463.09	Quercetin-3β-D-Glucoside
4	3.79	302.04	301.04	Quercetin

Note: RT means Retention Time

Table 2 showed that quercetin, taxifolin, and quercetin-3-glucoside were flavonoid-detected in RF methanol extract. It seems these three flavonoids are dominant since they were found not only in this short-red cultivar but also in long-red cultivar RF [16]. Based on the substitution of molecular structures, they all are classified as flavonols. The three flavonoids in this RF and six others in long-red cultivar found by the UNPAD research team are 15 carbon-skeleton that possess two benzene rings (B and A-ring) joined by heterocyclic C-ring [16-18]. They have a hydroxyl group at 3’ position of C ring, but methylated for TMF and QME, or glycosylated for Q3G, TAP, and QOG. The structures confirmed that RF flavonoids were quercetin and or taxifolin derivatives. Taxifolin is a dihydroflavonol, flavonoid compound class that is a subclass of flavonols [18].

3.2. ADME evaluation
This evaluation is a vital step in the potential prediction of the particular compound as bioactive. The use of the Lipinski Rule of 5 (RO5) strategy can be used for the prediction of the bioactive compound in functional food [3]. Rule of 5 parameters is molecular weight (MW) ≤ 500 g/mol, partition coefficient (LogP) ≤ 5, H-bond acceptors (HBA) ≤ 10, H-bond donors (HBD) ≤ 5 [19]. The RO5 strategy can be used for the prediction of the bioactive compound in functional food [3]. These parameters are correlated to acceptable aqueous solubility and intestinal permeability. Those are parameters for oral bioavailability prediction [20], but Kauthale et al. (2017) added NRB <10, and H/C ratio <1 and molecular percent of absorption 100% [3].

Table 3 and 4 showed that only five from eight flavonoids that fulfilled the parameters; those are Quercetin, Taxifolin, TDF, TMF, and QME. Those are good in oral-bioavailability. It seems that the high polarity (TPSA and CLogP value) of Q3G, TAP, and QOG that make them had very low absorption, and bioavailability score then has to be out of RO5 parameters. Quercetin, Taxifolin, TDF,
TMF, and QME were located in white of Egan- or Boiled-Egg that determined the high permeability through the gastrointestinal tract [2,13], showing their high absorption.

Table 3. Physicochemical properties of toxicity red fruit flavonoids

Compound Name	Physicochemical Properties	Lipophilicity	Water Solubility						
	MW (g/mol)	Fraction Sp3	N.RB	N.HBAs	N.HBDs	MR	TPSA (Å²)	Consensus LogP_{ow}	Class
Quercetin	301.04	0	1	7	5	78.03	131.36	1.23	Soluble
Taxifolin	305.06	0.13	1	7	5	74.76	127.45	0.63	Soluble
Q3G	463.09	0.29	4	12	8	110.16	210.51	-0.25	Soluble
TDF	329.28	0.12	3	7	3	85.81	109.36	1.98	Moderately soluble
TMF	316.26	0.06	2	7	4	82.50	120.36	1.75	Soluble
TAP	436.37	0.35	3	11	7	101.17	186.37	-0.50	Soluble
QOG	464.38	0.29	4	12	8	110.16	210.51	-0.25	Soluble
QME	316.26	0.06	2	7	4	82.50	120.36	1.75	Soluble

Notes: MW: Molecular Weight, LogP_{ow}; average prediction, N.RB: Number of Rotatable Bonds, N.HBAs: Number of H-bond Acceptors, N.HBDs: Number of H-bond Donors, MR: Molar Refractivity, TPSA: Topological Polar Surface Area

Table 4. The absorption and bioavailability prediction of red fruit flavonoids.

Compound Name	Absorption	GI Absorption#	BBB Permeant#	Bioavailability Score
Quercetin	63.68	High	No	0.55
Taxifolin	65.03	High	No	0.55
Q3G	36.37	Low	No	0.17
TDF	71.27	High	No	0.55
TMF	67.48	High	No	0.55
TAP	44.70	Low	No	0.17
QOG	36.37	Low	No	0.17
QME	67.48	High	No	0.55

Notes: ABS: Absorption; GI: Gastrointestinal; BBB: Blood-Brain Barrier

3.3. Toxicity evaluation

From eight flavonoids, TMF, TAP, QOG, and QME consistently have no risk as toxic compounds (Table 4). Our concern was on taxifolin, which has a high risk of toxicity as a mutagenic, tumorigenic, irritant, and reproductive effect. The experiment using RF extract of yellow cultivar showed that there was no influence in the percentage of the living fetus, but there was lordosis and ossification disturbance in the fetus [21]. The toxicity of the compound can be determined by the structure of its toxic functional group. The present of the C3-OH group, C-6 keto group, and or catechol group in B-ring in flavonoid may contribute to its mutagenic activity, whereas C7-OH may lead to genotoxicity [22]. Based on the substitution of the flavonoid [16], the present of C3-OH, and C7-OH in quercetin and taxifolin, C3-OH in TDF, and C7-OH in Q3G may contribute to their mutagenicity.

Table 5 shows that all RF flavonoid was not a P-gp substrate. P-gp is an essential protein of membrane cell that has to pump out foreign substances from the cell then avoid the risk of toxicity [3]. P-gp is the front line of body defence [23]. Those flavonoids will be detected by the cell as safe or non-toxic compounds, then enter the cells efficiently and play their function intracellularly. RF Flavonoids did not blockade the hERG K+ channel with the level of confidence 70% that means safe for cardiac cells. It is vital for cardiac activity, which controls the conduction of impulse. The blockage of the channel will lead to cardiac shock and lethal arrhythmic attack [3,15]. All RF flavonoid tested did not inhibit the activity of the CYP2C19 enzyme, but Quercetin, TDF, TMF, and QME inhibited CYP1A2, CYP2D6, and CYP3A4 enzyme activity. These make quercetin, TDF, TMF,
and QME were metabolized in the liver. The methylation in TDF, TMF, and QME influenced the inhibition, but glycosylation in Q3G, TAP, and QOG had no favourable for the CYP450 inhibition.

Table 5. The risk of mutagenicity, tumorigenicity, irritant potency and reproductive effect of red fruit flavonoids

Compound Name	OSIRIS Prediction			
	ME	TE	IE	RE
Quercetin	+++	+++	-	-
Taxifolin	+++	+++	+++	+++
Q3G	+++	+++	-	-
TDF	+++	-	-	-
TMF	-	-	-	-
TAP	-	-	-	-
QOG	-	-	-	-
QME	-	-	-	-

Notes: ME: Mutagenic Effect, TE: Tumorigenic Effect, IE: Irritant Effect, RE: Reproductive Effect, DL: Drug Likeness, DS: Drug Score. Potential toxicants: +: Low Risk, ++: Medium Risk, +++: High Risk, -: Non-Toxic

Table 6. Risk toxicity of red fruit flavonoids

Compound Name	P-gp substrate	Pred-hERG result	CYP450 Inhibition				
			CYP1A2	CYP2C19	CYP2C9	CYP2D6	CYP3A4
Quercetin	No	NB	Yes	No	No	Yes	Yes
Taxifolin	No	NB	No	No	No	No	No
Q3G	No	NB	No	No	No	No	No
TDF	No	NB	Yes	No	Yes	No	Yes
TMF	No	NB	No	No	Yes	Yes	Yes
TAP	No	NB	No	No	No	No	No
QOG	No	NB	No	No	No	No	No
QME	No	NB	Yes	No	No	Yes	Yes

Notes: P-gp: Permeability Glycoprotein, hERG: Human ether-a-go-go related gene, NB: Non-Blocker, CYP: cytochrome

CYP450 is a family of the enzyme in the liver that catalyzed the biotransformation of most drugs, exogenous chemicals, or lipophilic xenobiotics [23,24]. CYP enzymes usually transform exogenous chemicals into less toxic and more hydrophilic compounds. Reactive intermediates as a result of CYP450 interaction with exogenous chemicals metabolizing systems may induce toxicity and carcinogenicity. If the reaction cannot be catalyzed with enzyme systems, the compound will not cause toxicity [23,25]. Inhibition of CYP enzymes may lead to toxic or another form of the unwanted effect of exogenous substances in the body, because of the minimal clearance and accumulation of the compounds or their metabolites [2]. SGPT and SGOT enzymes play as a detector for function disturbance of the liver. Water and oil fractions of RF ethanol extract at the dose range 500-1500 mg/Kg weight did not influence significantly on SGPT/SGOT rat Sprague Dawley [26]. Those mean even though Quercetin, TDF, TMF, and QME can pass the first line of defense and may do not disturb liver function, but they still have a chance to be toxic in the body because of their low hydrophilicity.

4. **Conclusions**

ADMET analysis needs to be done in the early stage of functional food research with bioactive compounds. RF was well known as a source of functional compounds thanks to the bioactive flavonoid. RF flavonoids were safe for cardiac cells. Quercetin, Taxifolin, Q3G, and TDF might cause a mutagenic effect, then had a risk as a toxic compound, whereas TMF, TAP, QOG, and QME showed
no-risk of toxic. Most of the flavonoids could be metabolized in the liver that reduces the risk of toxicity. It generally means RF flavonoids were safe for humans.

Acknowledgment

Doctorate Research Grant of Directorate General Higher Education Indonesia (No. 1014/UN10.14/KU/2013) and Widya Mandala Catholic University Surabaya/WMCUS Grant is the financial support of this research. We extend our thanks to Dikdik Kurnia and team (Research Laboratory Chemistry Department FMIPA, Padjajaran University, Bandung); Didik H Utomo (Bioinformatics’ Laboratory of Biology Department FMIPA- Universitas Brawijaya Malang), and Midia LW Handayani (Central Laboratory of Life Science, Universitas Brawijaya Malang) for technical supports during laboratory analysis.

References

[1] Raunio H 2011 In silico toxicology – non testing method Front. Pharmacol. 2 33 1-8.
[2] Daina A, Michielin O, Zoete V 2017 SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness, and medicinal chemistry friendliness of small molecules Sci. Rep. 7 42717 1-13.
[3] Kauthale S, Tekale S, Damale M, Sangshetti J, Pawar R 2017 Synthesis, antioxidant, antifungal, molecular docking, and ADMET studies of some Thiazolyl Hydrazones Bioorg. Med. Chem. Lett. 27 3891-3896.
[4] Mun’im A, Danrajati R, Susilowati H 2006 Uji Hambatan tumorigenesis sari buah merah (Pandanus conoideus Lam.) terhadap tikus putih betina yang diinduksi 7,12 Dimetilbenz(a)Antrasen (DMBA). (The tumorigenesys inhibition analysis of Red Fruit extract on the female white rat inducted with 7,12 Dimetilbenz(a)Antrasen (DMBA)) Magazin. Pharmacol. III 153-161. [In Indonesian]
[5] Rohman A, Riyanto S, Yuniarti N, Saputra W R, Utami R, Mulatsih W 2010 Antioxidant activity, total phenolic, and total flavonoid of extracts and fractions of Red Fruit (Pandanus conoideus Lam) Int. Food Res. J. 17 97-106.
[6] Murtiningrum, Sarungallo Z L, Mawikere N L 2012 The exploration and diversity of Red Fruit (Pandanus conoideus L.) from Papua based on its physical characteristics and chemical composition Biodiversitas 13 3 124-129.
[7] Sarungallo Z L, Haryadi P, Andarwulan N, Purnomo E H 2015 Characterization of chemical properties, lipid profile, total phenol, and tocopherol content of oils extracted from nine clones of Red Fruit (Pandanus conoideus) Kasetsart J. .Nat. Sci. 49 237-250.
[8] Radji M, Aldrat H, Harahap Y, Irawan C 2010 Uji toksisitas buah merah, mahkota dewa, dan temu putih terhadap sel kanker serviks (Toxicity analysis of red fruit, mahkota dewa and white temu on servical cancer cell) J. Farmasi Indonesia 5 1 41-47. [In Indonesian]
[9] Widowati L, Pudjiastuti, Mudahar H 2009 Karakterisasi dan toksisitas akut pada minyak buah merah (Pandanus conoideus Lam.) (Characterisation and acute toxicity on red fruit oil (Pandanus conoideus Lam.).) JKI 1 18-24. [In Indonesian]
[10] Wismandanu O, Maulidiya I, Indariani S, Batubara I 2016 Acute toxicity of red fruits (Pandanus conoideus Lam) oil and the hepatic enzyme level in rat J. Phytopharmacol. 5 5 176-178.
[11] Achadiyani, Septiani L, Faried A, Bolly H M B, Kurnia D 2016 Role of the Red Fruit (Pandanus conoideus Lam) ethyl acetate fraction on the induction of apoptosis vs. downregulation of survival signaling pathways in cervical cancer cells Eur. J. Med. Plants 13 2 1-9.
[12] Sandhiutami N M D, Indrayani A A W 2012 Uji aktivitas antioksidan, kandungan fenolik total, dan kandungan flavonoid total Buah Merah (Analysis of antioxidant activity, total phenolic and flavonoid content of red fruit) JIKI 10 1 13-19. [In Indonesian]
[13] Daina A, Zoete V 2016 A BOILED-Egg to predict gastrointestinal absorption and brain
penetration of small molecules *Chem. Med. Chem.* 11 1117-1121.

[14] Sander T, Freyss J, von Korff M, Reich J R, Rufener C 2009 OSIRIS, an entirely in-house developed drug discovery informatics system *J. Chem. Inf. Model.* 49 2 232-246.

[15] Braga R C, Alves V M, Silva M F B, Muratov E, Fourches D, Liao L M, Tropsha A, Andrade C H 2015 Pred-hERG: a novel web-accessible computational tool for predicting cardiac toxicity *Mol. Inf.* 34 698-701.

[16] Suprijono M M, Sujuti H, Kurnia D, Widjanarko S B 2019 Computational study of antioxidant activity and bioavailability of Papua Red Fruit (*Pandanus conoideus* Lam.) flavonoids through docking toward Human Serum Albumin *AIP Conf. Proceed.* 2108 020020

[17] Šeruga M, Tomac I 2017 Influence of chemical structure of some flavonols on their electrochemical behaviour *Int. J. Electrochem. Sci.* 12 7616-7637.

[18] Yugandhar P, Kumar K K, Neeraja P, Savithramma N 2017 Isolation, characterization, and *in silico* docking studies of synergistic estrogen receptor α anticancer polyphenols from *Syzygium alternifolium* (Wt.) Walp. *J. Intercult. Ethnopharmacol.* 6 3 296-310.

[19] Lipinski C A 2004 Lead- and drug-like compounds: the rule-of-five revolution *Drug Discov. Today Technol.* 1 4 337-341.

[20] Supandi, Yeni, Merdekawati F 2018 In silico study of pyrazolylaminoquinazoline toxicity by lazar, protox, and admet predictor *J. App. Pharma. Sci.* 8 9 119-129.

[21] Muna L, Astirin O P, Sugiyarto 2010 Teratogenic test of *Pandanus conoideus* var. yellow fruit extract to development of rat embryo (*Rattus norvegicus*) *Nusantara Biosci.* 2 3 126-134.

[22] Van der Woude, H 2006 Mechanism of toxic action of the flavonoid quercetin and its phase II metabolites *Thesi. Wageningen University the Netherlands.

[23] Ioannides C, Lewis D F V 2004 Cytochromes P450 in the bioactivation of chemicals *Curr. Top. Med. Chem.* 4 1767-1788.

[24] Zanger U M, Schwab M 2013 Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation *Pharmacol. Therapeut.* 138 103-141.

[25] Rendić S 1999 Cytochrome P450 enzymes (CYP enzymes): role in toxic effects of xenobiotics *Biochemi. Medica* 9 107-113.

[26] Sari E K 2008 Mempelajari khasiat Buah Merah (*Pandanus conoideus* Lam.) terhadap kualitas pertumbuhan dan fungsi hati secara *in vivo* (Study of the efficacy of red fruit (*Pandanus conoideus* Lam.) on the quality of the growth and function of liver (in vivo)) Undergraduate Thesi Institut Pertanian Bogor Bogor. [In Indonesian]