Topological Hochschild homology of $X(n)$

Jonathan Beardsley

July 7, 2015

Abstract

We show that Ravenel’s spectrum $X(2)$ is the versal E_1-S-algebra of characteristic η. This implies that every E_1-S-algebra R of characteristic η admits an E_1-ring map $X(2) \to R$, i.e. an A_∞ complex orientation of degree 2. This implies that $R^*(CP^2) \cong R_*[x]/x^3$. Additionally, if R is an E_2-ring Thom spectrum admitting a map (of homotopy ring spectra) from $X(2)$, e.g. $X(n)$, its topological Hochschild homology has a simple description.

Theorem 1. The spectrum $X(n)$, which is the Thom spectrum of the inclusion $\Omega SU(n) \to \Omega SU \simeq BU \to BGL_1(S)$, is of characteristic η in the sense of [Szy14] and [ACB14]. In particular $X(2)$ is the versal E_1-S-algebra of characteristic η (as described in Definition 4.3 of [ACB14]).

Proof. We use [ACB14] in a crucial way. Recall that $X(2)$ is the Thom spectrum of the inclusion $i : \Omega S^3 \simeq \Omega SU(2) \to BU \to BGL_1(S)$. Note that this morphism is a two fold loop map, and as such a morphism of E_2-algebras in Top. Let \hat{i} be the induced E_1-morphism. We have the following equivalences of mapping spaces:

$\text{Map}_{E_1-\text{alg}}(\Omega S^2, BGL_1(S)) \simeq \text{Map}_{T op}(S^2, BGL_1(S)) \simeq \text{Map}_{T op}(S^1, GL_1(S))$.

Since $\pi_1(GL_1(S)) \cong \pi_1(S) \cong \mathbb{Z}/2$ we have that this map is either null homotopic or non-trivial and unique up to homotopy. Since it is not null (i.e. the associated Thom spectrum is not the suspension spectrum of ΩS^3), $i_* : \pi_*(S^1) \to \pi_*(GL_1(S))$ takes $1 \in \pi_1(S^1)$ to η, the generator of $\pi_1(S) \cong \pi_1(GL_1(S))$. Indeed, the preceding sequence of equivalences implies, by Theorem 4.10 of [ACB14], that $X(2) \simeq S/\eta$, the versal E_1-algebra over S of characteristic η.

Moreover, as $X(n)$ admits a morphism of E_1-ring spectra (actually of E_2-ring spectra) $X(2) \to X(n)$ for every n, we have that the $X(n)$ must be an E_1-S-algebra of characteristic η. In particular, the composition $\Sigma S \xrightarrow{\eta} S \to X(n)$ is nullhomotopic.

Remark 1. Of course it’s not necessary to use the machinery of characteristics of structured ring spectra to notice that η is trivial in $X(n)_*$, but the identification of $X(2)$ as the versal E_1-S-algebra of characteristic η seems interesting in its own right.
Corollary 1. If R is an E_1-ring spectrum of characteristic η then $\text{Map}_{E_1}(X(2), R) \simeq \Omega^{\infty+2}R$ and $R^* (\mathbb{CP}^2) \simeq R_4[x]/x^3$.

Proof. The first statement follows immediately from Lemma 4.6 of [ACB14] and the “versality” of $X(2)$. Hence there is at least one E_1-morphism from $X(2)$ to R. From Proposition 6.5.4 of [Rav86] we obtain the second part of the corollary.

Theorem 2. The topological Hochschild homology of $X(n)$ as an E_2-ring spectrum, denoted here by $\text{THH}(X(n))$, is equivalent to $X(n) \wedge SU(n)$.

Proof. Here we use [BCS10] is a crucial way. In particular, we recall Theorem 2 of that paper which gives $\text{THH}(X(n)) = X(n) \wedge M(\eta \circ Bi)$, where $\eta \circ Bi$ here refers to the morphism $B\Omega SU(n) \simeq SU(n) \xrightarrow{Bi} B^2GL_1(\mathbb{S}) \xrightarrow{\eta} BGL_1(\mathbb{S})$.

Since $X(n)$ is of characteristic η, we have that the composition $B^2GL_1(\mathbb{S}) \xrightarrow{\eta} BGL_1(\mathbb{S}) \to BGL_1(X(n))$ is nullhomotopic, where $BGL_1(\mathbb{S}) \to BGL_1(X(n))$ is just $BGL_1(-)$ of the unit map of $X(n)$. This implies that $M(\eta \circ Bi)$ is $X(n)$-oriented, so by the associated Thom isomorphism we have $X(n) \wedge M(\eta \circ Bi) \simeq X(n) \wedge SU(n)$.

Remark 2. By a similar argument, given any Thom spectrum Mf, for $f : X \to BGL_1(\mathbb{S})$ a map of double loop spaces, such that the unit map $\mathbb{S} \to Mf$ factors (as maps of E_2-rings) $\mathbb{S} \to X(2) \to Mf$, we have that $\text{THH}(Mf) \simeq Mf \wedge \Omega X_+$.

Conjecture 1. Recall that the morphism of E_2-ring spectra $X(n) \to X(n+1)$ is a Hopf-Galois extension with associated spectral Hopf-algebra ΩS^{2n+1}, thought of as the base space of the fibration $\Omega SU(n) \to \Omega SU(n+1) \to \Omega S^{2n+1}$. Then the above results, as well as the results of [BCS10] suggest that one might have relative THH spectra:

$$\text{THH}_{X(n)}(X(n+1)) \simeq X(n+1) \wedge S^{2n+1}.$$

References

[ACB14] Omar Antolin-Camarena and Tobias Barthel, A simple universal property of Thom ring spectra, 2014, arxiv.org/abs/1411.7988.

[BCS10] Andrew J. Blumberg, Ralph L. Cohen, and Christian Schlichtkrull, Topological Hochschild homology of Thom spectra and the free loop space, Geom. Topol. 14 (2010), no. 2, 1165–1242.

[Rav86] Doug Ravenel, Complex cobordism and the homotopy groups of spheres, Academic Press, 1986.

[Szy14] Markus Szymik, Commutative \mathbb{S}-algebras of prime characteristics and applications to unoriented bordism, Algbr. Geom. Topol. 14 (2014), no. 6, 3717–3743.