Nested Bethe Ansatz for RTT-Algebra of $U_q(\text{sp}(4))$ Type

Č. Burdík* and O. Navrátil**

*a Faculty of Nuclear Sciences and Physical Engineering, CTU, Prague, Czech Republic
*b Faculty of Transportation Sciences, CTU, Prague, Czech Republic
*E-mail: burdices@kmlinux.fjfi.cvut.cz
**E-mail: navraond@fd.cvut.cz

Received November 15, 2019; revised January 15, 2020; accepted February 28, 2020

Abstract—We study the highest weight representations of the RTT-algebras for the R-matrix of $U_q(\text{sp}(4))$ type by the nested algebraic Bethe ansatz. It is a generalization of our study for R-matrix of $U_q(\text{gl}(n))$.

DOI: 10.1134/S1547477120050076

1. INTRODUCTION

The formulation of the quantum inverse scattering method, or algebraic Bethe ansatz, by the Leningrad school [1] provides eigenvectors and eigenvalues of the transfer matrix. The latter is the generating function of the conserved quantities of a large family of quantum integrable models. The transfer matrix eigenvectors are constructed from the representation theory of the RTT-algebras. In order to construct these eigenvectors, one should first prepare Bethe vectors depending on a set of complex variables. The first formulation of the Bethe vectors for the q-invariant models was given by P.P. Kulish and N.Yu. Reshetikhin in [2] where the nested algebraic Bethe ansatz was introduced. These vectors are given by recursion on the rank of the algebra. Our calculation is some q-generalization of the construction which we published in our recent a work [6] for the non-deformed case of $\text{sp}(4)$. Our construction of Bethe vectors used the new RTT-algebra $\tilde{\text{sp}}(4)$ which is defined in Section 2 and is not the RTT-subalgebra of $\text{sp}(4)$.

Recently, we dealt with the Nested–Bethe ansatz for the RTT-algebra of $U_q(\text{sp}(2n))$ type [9]. In this part, we briefly summarize the results of this work in the case of the RTT-algebra of $U_q(\text{sp}(4))$ type.

The R-matrix of $U_q(\text{sp}(4))$ type has the form

$$R(x) = \frac{1}{\alpha(x)} \left(\sum_{i,k} E_i^k \otimes E_k^i + f(x) \sum_i E_i^i \otimes E_i^i \right. + f(x^{-1}) \sum_i E_i^i \otimes E_i^{-i} + g(x) \sum_{i<k} E_i^k \otimes E_k^i - g(x^{-1}) \sum_{i<k} E_k^i \otimes E_i^k \right. \right) \right)$$

where the census indices take place $i, k = \pm 1, \pm 2$, $\epsilon_i = \text{sgn}(i)$ and

$$f(x) = \frac{x q - x^{-1}}{x - x^{-1}}, \quad g(x) = \frac{x(q - q^{-1})}{x - x^{-1}}$$

$$\alpha(x) = 1 + \frac{q - q^{-1}}{x - x^{-1}}$$

This R-matrix satisfies the Yang–Baxter equation

$$R_{1,2}(x)R_{1,3}(xy)R_{2,3}(y) = R_{2,3}(y)R_{1,3}(xy)R_{1,2}(x)$$

and is invertible. Therefore, by using the RTT-equation

$$R_{1,2}(xy^{-1})T_1(x)T_2(y) = T_2(y)T_1(x)R_{1,2}(xy^{-1})$$

where $T(x) = \sum_{i,k=-n} E_i^k \otimes T_k^i(x)$.
we define the RTT-algebra of $U_q(\text{sp}(4))$ type. From the invertibility of the R-matrix we have that the operator

$$H(x) = \text{Tr}(T(x)) = \sum_{i=2}^{2} T_i(x)$$

fulfills the equations $H(x)H(y) = H(y)H(x)$ for any x and y.

We suppose that in the representation space \mathcal{W} of the RTT-algebra \mathcal{A} there exists a vacuum vector $\omega \in \mathcal{W}$, for which $\mathcal{W} = \mathcal{A}\omega$ and

$$T_i(x)\omega = 0 \quad \text{for} \quad i < k,$$

$$T_i(x)\omega = \lambda_i(x)\omega \quad \text{for} \quad i = \pm 1, \pm 2.$$

In the vector space $\mathcal{W} = \mathcal{A}\omega$, we will look for eigenvectors of $H(x)$.

In [9] we showed that if we restrict our considerations to the space $\mathcal{W}_0 = \mathcal{A}^{(+)\omega} \subset \mathcal{W} = \mathcal{A}\omega$, where RTT-subalgebras $\mathcal{A}^{(+)}$ and $\mathcal{A}^{(-)}$ are generated by $T_i(x)$ and $T_i^-(x)$, where $i, k = 1, 2$, it is possible to write commutation relations between

$$T^{(+)i}(x) = \sum_{i,k=1}^{2} E_i \otimes T_k^i$$

and

$$T^{(-)i}(x) = \sum_{i,k=1}^{2} E_i^\dagger \otimes T_k^{-i}(x)$$

in the form of RTT-equations

$$R^{(\epsilon_1, \epsilon_2)}_{12}(xy^{-1})T_{12}^{(\epsilon_1)}(x)T_{12}^{(\epsilon_2)}(y) = T_{12}^{(\epsilon_1)}(y)T_{12}^{(\epsilon_2)}(x)R^{(\epsilon_1, \epsilon_2)}_{12}(xy^{-1}),$$

where $\epsilon_1, \epsilon_2 = \pm$ and

$$R^{(+)}(x) = \frac{1}{f(x)} \left[\sum_{i,j=1 \leq i \neq j} E_i \otimes E_j + f(x) \sum_{i,j=1} E_i \otimes E_j \right. \left. + g(x)E_1^2 \otimes E_2^2 - g(x^{-1})E_1^2 \otimes E_2^2 \right],$$

$$R^{(-)}(x) = \frac{1}{f(x)} \left[\sum_{i,j=1 \leq i \neq j} E_i \otimes E_j^\dagger + f(x) \sum_{i,j=1} E_i \otimes E_j^\dagger \right. \left. + g(x)E_1^\dagger \otimes E_2^{-1} - g(x^{-1})E_1^\dagger \otimes E_2^{-1} \right],$$

$$R^{(\cdot \cdot)}(x) = \frac{1}{f(x)} \left[\sum_{i,j=1 \leq i \neq j} E_i \otimes E_j + f(x^{-1}) \sum_{i,j=1} E_i \otimes E_j \right. \left. + qg(x^{-1})E_1^\dagger \otimes E_2^{-1} - q^{-1}g(xq^{-1})E_1^\dagger \otimes E_2^{-1} \right. \left. + q^{-1}g(xq^{-1})E_2^{-1} \otimes E_1^\dagger - qg(x^{-1})E_2^{-1} \otimes E_1^\dagger \right].$$

The RTT-equation (2) can be written in the form of a single RTT-equation

$$\tilde{R}^{(+)}_{12}(xy^{-1})\tilde{T}_1(x)\tilde{T}_2(y) = \tilde{T}_2(y)\tilde{T}_1(x)\tilde{R}^{(+)}_{12}(xy^{-1}),$$

where

$$\tilde{R}(x) = R^{(+,+)}(x) + R^{(+,+)}(x) + R^{(+,-)}(x) + R^{(-,-)}(x),$$

$$\tilde{T}(x) = T^{(+)}(x) + T^{(-)}(x).$$

Since the R-matrix $\tilde{R}(x)$ satisfies the Yang–Baxter equation

$$\tilde{R}^{(+)}_{12}(x)\tilde{R}^{(+)}_{13}(y)\tilde{R}^{(+)}_{23}(z) = \tilde{R}^{(+)}_{23}(z)\tilde{R}^{(+)}_{13}(y)\tilde{R}^{(+)}_{12}(x),$$

and is invertible, we can define the RTT-algebra denoted by $\tilde{\mathcal{A}}$. If we want to point out that $T^{(+)}(x)$ is an element of the RTT–algebra $\tilde{\mathcal{A}}$, we will write

$$T^{(+)}(x) = \sum_{i,k=1}^{2} E_i \otimes T_k^i(x),$$

$$T^{(-)}(x) = \sum_{i,k=1}^{2} E_i^\dagger \otimes T_k^{-i}(x).$$

In the standard way by using (2) we obtain that in the RTT-algebra $\tilde{\mathcal{A}}$ the operators $\tilde{H}^{(+)}(x)$ and $\tilde{H}^{(-)}(y)$ commute with each other.

We look for Bethe vectors in the form

$$\mathcal{V}(u) = \langle B_{u_1 \ldots u_M}(u), \Phi \rangle,$$

where $u = (u_1, u_2, \ldots, u_M)$ are different complex numbers,

$$B_{u_1 \ldots u_M}(u) = \frac{1}{\prod_{i_1, \ldots, M} f^{i_1} \otimes \cdots \otimes f^{i_M} \otimes e_{-i_1} \otimes \cdots \otimes e_{-i_M}} \Phi \in \mathcal{W},$$

where $\Phi \in \mathcal{W}$ and e_i is the basis of space \mathcal{V}^+, e_{-i} is the basis of space \mathcal{V}^-, and f_i and f_{-i} are dual bases in spaces \mathcal{V}^+ and \mathcal{V}^-, respectively.
In [9] we introduced for any \(u \) the operators
\[
\hat{T}_{0,1,...,M}^{(+)}(x;u) = \hat{R}_{0,1,...,M}^{(+)}(xu^{-1}) \cdots \hat{R}_{0,M}^{(+)}(xu_M^{-1}),
\]
\[
\times \hat{T}_{0,1,...,M}^{(-)}(x) \hat{R}_{0,M}^{(-)}(xu_M^{-1}) \cdots \hat{R}_{0,1}^{(-)}(xu^{-1}),
\]
\[
\hat{T}_{0,1,...,M}^{(+)}(x;u) = \hat{R}_{0,1,...,M}^{(+)}(xu^{-1}) \cdots \hat{R}_{0,M}^{(+)}(xu_M^{-1}) \hat{T}_{0}^{(-)}(x)
\]
\[
\times \hat{R}_{0,M}^{(-)}(xu_M^{-1}) \cdots \hat{R}_{0,1}^{(-)}(xu^{-1}),
\]
where
\[
\hat{R}_{0,1}^{(+)}(x) = \frac{1}{f(x^{-1})} \left(\sum_{i,k=1}^{2} E_{i}^{+} \otimes F_{k}^{-} \otimes L_{-} \right.
\]
\[
+ f(x^{-1}) \sum_{i=1}^{2} E_{i}^{-} \otimes F_{i}^{+} \otimes L_{+} + g(x^{-1})E_{2}^{+} \otimes F_{1}^{-} \otimes L_{-},
\]
\[
\hat{R}_{0,1}^{(-)}(x) = \sum_{i,k=1}^{2} E_{i}^{-} \otimes F_{k}^{+} \otimes L_{-} + f(xq) \sum_{i=1}^{2} E_{i}^{-} \otimes F_{i}^{+} \otimes L_{+}
\]
\[
+ gg(xq)E_{2}^{+} \otimes F_{1}^{-} \otimes L_{-},
\]
\[
\hat{T}_{0,1,...,M}^{(+)}(x;u) = \sum_{i,k=1}^{2} E_{i}^{+} \otimes F_{k}^{-} \otimes E_{-}^{-} + f(x^{-1}) \sum_{i=1}^{2} E_{i}^{+} \otimes F_{i}^{-} \otimes E_{-}^{-}
\]
\[
+ g(x^{-1})E_{2}^{+} \otimes F_{1}^{-} \otimes E_{-}^{-},
\]
\[
\hat{T}_{0,1,...,M}^{(-)}(x;u) = \frac{1}{f(x)} \left(\sum_{i,k=1}^{2} E_{i}^{-} \otimes F_{k}^{+} \otimes E_{-}^{-}
\]
\[
+ f(x) \sum_{i=1}^{2} E_{i}^{-} \otimes F_{i}^{+} \otimes E_{-}^{-} + g(x)E_{2}^{-} \otimes F_{1}^{+} \otimes E_{-}^{-},
\]
and define the operators \(\hat{T}_{k}^{(+)}(x;u) \) and \(\hat{T}_{k}^{(-)}(x;u) \) by the relationships
\[
\hat{T}_{0,1,...,M}^{(+)}(x;u) = \sum_{i,k=1}^{2} E_{i}^{+} \otimes F_{k}^{-} \otimes L_{-},
\]
\[
\hat{T}_{0,1,...,M}^{(-)}(x;u) = \sum_{i,k=1}^{2} E_{i}^{-} \otimes F_{k}^{+} \otimes L_{-}.
\]

For organized \(M \)-tuples \(u = (u_1, ..., u_M) \) denote by \(\overline{u} \) the set \(\overline{u} = \{ u_1, ..., u_M \} \), define
\[
\overline{u}_k = \overline{u} \setminus \{ u_k \} = \{ u_1, ..., u_{k-1}, u_{k+1}, ..., u_M \},
\]
\[
F(x;\overline{u}^{-1}) = \prod_{k=1}^{M} f(x u_k^{-1}),
\]
\[
F(x^{-1},\overline{u}) = \prod_{k=1}^{M} f(x^{-1} u_k).
\]

One of the main results of [9] is

Proposition 1. Let \(\Phi \) be a common eigenvector of the operators
\[
\hat{H}_{0,1,...,M}^{(+)}(x;u) = \hat{T}_{0}^{(+)}(x;u) = \hat{T}_{0}^{(-)}(x;u) = \hat{T}_{1}^{(-)}(x;u) + \hat{T}_{2}^{(-)}(x;u),
\]
\[
\hat{H}_{0,1,...,M}^{(+)}(x;u) = \hat{T}_{0}^{(+)}(x;u) = \hat{T}_{1}^{(-)}(x;u) + \hat{T}_{2}^{(-)}(x;u)
\]
with eigenvalues \(\hat{E}_{0,1,...,M}^{(+)}(x;u) \) and \(\hat{E}_{0,1,...,M}^{(-)}(x;u) \). If the relations
\[
F(u_k^{-1},\overline{u}_k) \hat{E}_{0,1,...,M}^{(+)}(u_k;\overline{u}_k) = F(u_k,\overline{u}_k) \hat{E}_{0,1,...,M}^{(-)}(u_k;\overline{u}_k)
\]
are true for each \(u_k \in \overline{u} \), then \(\langle B_{0,1,...,M}(u), \Phi \rangle \) is the eigenvector of \(H(x) = H^{(+)}(x) + H^{(-)}(x) \) with eigenvalue
\[
\hat{E}_{0,1,...,M}(x;\overline{u}) = F(x^{-1};\overline{u}) \hat{E}_{0,1,...,M}^{(+)}(x;u)
\]
\[
+ F(x;\overline{u}) \hat{E}_{0,1,...,M}^{(-)}(x;u).
\]

So to find eigenvectors of the operator \(H(x) \), it is enough to find common eigenvectors of the operators \(\hat{H}_{0,1,...,M}^{(+)}(x;u) \) and \(\hat{H}_{0,1,...,M}^{(-)}(x;u) \).

Other important results of [9] are the RTT-equations
\[
\hat{R}_{0,1}^{(e,e^{'})}(x;u) \hat{R}_{0,1}^{(e,e^{'})}(x;u) = \hat{R}_{0,1}^{(e,e^{'})}(x;u) \hat{R}_{0,1}^{(e,e^{'})}(x;u),
\]
\[
\hat{R}_{0,1}^{(e,e^{'})}(x;u) \hat{R}_{0,1}^{(e,e^{'})}(x;u) = \hat{R}_{0,1}^{(e,e^{'})}(x;u) \hat{R}_{0,1}^{(e,e^{'})}(x;u),
\]
which hold for any \(e, e^{'} = \pm \) and for any \(u \). It means that the operators \(\hat{T}_{k}^{(+)}(x;u) \) and \(\hat{T}_{k}^{(-)}(x;u) \) generate the RTT-algebra \(\hat{A}_2 \) for any \(u \).

Finally, it is shown in [9] that for the vector
\[
\hat{\Omega} = \bigotimes_{M}^{M} t^{i} \otimes \bigotimes_{M}^{M} e_{-}^{i} \otimes \bigotimes_{M}^{M} e_{-}^{-} \otimes \omega
\]
we have
\[
\hat{T}_{k}^{(+)}(x;u) \hat{\Omega} = 0, \quad \hat{T}_{k}^{(-)}(x;u) \hat{\Omega} = \mu_{k}(x;u) \hat{\Omega}
\]
for \(k = 1, 2 \)
\[
\hat{T}_{k}^{(+)}(x;u) \hat{\Omega} = 0, \quad \hat{T}_{k}^{(-)}(x;u) \hat{\Omega} = \mu_{-k}(x;u) \hat{\Omega}
\]
for \(k = 1, 2 \),
where
\[
\mu_{1}(x;\overline{u}) = \lambda_{1}(x) F(x^{-1} q^{-1};\overline{u}),
\]
\[
\mu_{2}(x;\overline{u}) = \lambda_{2}(x) F(xq^{-1};\overline{u}),
\]
\[
\mu_{-1}(x;\overline{u}) = \lambda_{-1}(x) F(xq^{-1};\overline{u}),
\]
\[
\mu_{-2}(x;\overline{u}) = \lambda_{-2}(x) F(x^{-1} q^{-1};\overline{u}),
\]
i.e. \(\hat{\Omega} \) is a vacuum vector for the representation of the RTT-algebra \(\hat{A}_2 \).

So to find our own vectors of the operator \(H(x) \) for the RTT-algebra of \(U_q(sp(4)) \) type, just formulate the Bethe ansatz for the RTT-algebra \(\hat{A}_2 \).
3. COMMON EIGENVECTORS
OF THE OPERATORS \(\hat{H}^{(+)}(x) \) AND \(\hat{H}^{(-)}(x) \)
IN THE RTT-ALGEBRA \(\mathcal{A}_2 \)

It is possible from the commutation relations in the RTT-algebra \(\mathcal{A}_2 \) to prove that for each \(x \) and \(y \)

\[
\hat{T}_1^2(x)\hat{T}_1^2(y) = \hat{T}_1^2(y)\hat{T}_1^2(x),
\]

\[
\hat{T}_2^{-1}(x)\hat{T}_2^{-1}(y) = \hat{T}_2^{-1}(y)\hat{T}_2^{-1}(x),
\]

\[
\hat{T}_1^2(x)\hat{T}_2^{-1}(y) = \hat{T}_2^{-1}(y)\hat{T}_1^2(x),
\]

\[
\hat{T}_1^2(x)\hat{T}_1^2(y) = \hat{T}_2^{-1}(y)\hat{T}_1^2(x)
\]

hold.

Let \(\tilde{\omega} \) be a vacuum vector for the representation of the RTT-algebra \(\mathcal{A}_2 \), i.e. we have

\[
\hat{T}_1^2(x)\tilde{\omega} = \hat{T}_2^{-1}(x)\tilde{\omega} = 0,
\]

\[
\hat{T}_2^{-1}(x)\tilde{\omega} = \mu_2(x)\tilde{\omega}, \quad i = 1, 2.
\]

Common eigenvectors of the operators \(\hat{H}^{(+)}(x) \) and \(\hat{H}^{(-)}(x) \) will be searched for in the form

\[
| \varpi; \omega \rangle = \hat{T}_1^2(v_1)\hat{T}_1^2(v_2)\ldots \hat{T}_2^{-1}(v_p)\tilde{\omega} = \hat{T}_2^{-1}(w_1)\ldots \hat{T}_2^{-1}(w_q)\tilde{\omega},
\]

where \(\varpi \) and \(\omega \) are the sets \(\varpi = \{v_1, v_2, \ldots, v_p\} \) and \(\omega = \{w_1, w_2, \ldots, w_q\} \).

Proposition 2. For any \(x, \varpi \) and \(\omega \) we have

\[
\hat{T}_1^2(x)| \varpi; \omega \rangle = \mu_1(x)F(x; \varpi^{-1})F(xq^{-2}; \omega^{-1})| \varpi; \omega \rangle
\]

\[-\sum_{v_r \in \varpi} \mu_2(v_r)g(xv_r^{-1})F(v_r; \varpi_r^{-1})F(v_rq^{-2}; \omega)| x, \varpi; \omega \rangle
\]

\[\times \sum_{w_s \in \omega} \mu_2(w_s)g(xw_s^{-1}q^{-2})F(w_sq^{-2}; \varpi)| x, \varpi; \omega \rangle
\]

\[\hat{T}_2^{-1}(x)| \varpi; \omega \rangle = \mu_2(x)F(x^{-1}; \varpi)F(xq^{-2}; \omega)| \varpi; \omega \rangle
\]

\[\sum_{v_r \in \varpi} \mu_2(v_r)g(xv_r^{-1}q^{-2})F(v_r^{-1}; \varpi_r)F(v_rq^{-2}; \omega)| x, \varpi; \omega \rangle
\]

\[-\sum_{w_s \in \omega} \mu_1(w_s)g(xw_s^{-1})F(w_s^{-1}q^{-2})F(w^{-1}q^{-2}; \varpi)| \varpi; x, \omega \rangle
\]

\[\hat{T}_2^{-1}(x)| \varpi; \omega \rangle = \mu_1(x)F(x^{-1}; \varpi)F(xq^{-2}; \omega)| \varpi; \omega \rangle
\]

\[-\sum_{v_r \in \varpi} \mu_2(v_r)g(xv_r^{-1}q^{-2})F(v_r^{-1}; \varpi_r)F(v_rq^{-2}; \omega)| x, \varpi; \omega \rangle
\]

\[\hat{T}_1^2(x)| \varpi; \omega \rangle = \mu_2(x)F(x^{-1}; \varpi)F(xq^{-2}; \omega)| \varpi; \omega \rangle
\]

\[-\sum_{w_s \in \omega} \mu_2(w_s)g(xw_s^{-1}q^{-2})F(w^{-1}q^{-2}; \varpi)| x, \omega \rangle
\]

From this statement we obtain for the action of the operators \(\hat{H}^{(\pm)}(x) \)

\[
\hat{H}^{(+)}(x)| \varpi; \omega \rangle = \hat{T}_1^2(x)| \varpi; \omega \rangle + \hat{T}_2^{-1}(x)| \varpi; \omega \rangle
\]

\[= (\mu_1(x)F(x; \varpi^{-1})F(xq^{-2}; \omega^{-1})
\]

\[+ \mu_2(x)F(x^{-1}; \varpi)F(xq^{-2}; \omega^{-1})
\]

\[- \sum_{v_r \in \varpi} g(xv_r^{-1})F(v_r; \varpi_r^{-1})F(v_rq^{-2}; \omega)-\mu_2(v_r)F(v_r^{-1}; \varpi_r)F(v_rq^{-2}; \omega)| x, \varpi; \omega \rangle
\]

\[- \sum_{w_s \in \omega} g(xw_s^{-1}q^{-2})(\mu_1(w_s)F(w_s^{-1}q^{-2}; \varpi)| w_s^{-1}q^{-2}; \varpi \rangle
\]

\[\hat{H}^{(-)}(x)| \varpi; \omega \rangle = \hat{T}_2^{-1}(x)| \varpi; \omega \rangle
\]

\[= (\mu_1(x)F(x^{-1}; \varpi)F(xq^{-2}; \omega) + \mu_2(x)F(x^{-1}; \varpi)F(xq^{-2}; \omega)| \varpi; \omega \rangle
\]

\[\times F(x^{-1}; \varpi)| \varpi; \omega \rangle + \sum_{v_r \in \varpi} g(xv_r^{-1}q^{-2})(\mu_1(v_r)F(v_r^{-1}; \varpi)| x, \omega \rangle
\]

\[\times F(v_r^{-1}; \varpi)| x, \omega \rangle + \sum_{w_s \in \omega} g(xw_s^{-1}q^{-2})(\mu_1(w_s)F(w_s^{-1}q^{-2}; \varpi)| x, \omega \rangle
\]

\[\times F(w_s^{-1}q^{-2}; \varpi)| x, \omega \rangle - \mu_2(w_s)F(w_s^{-1}q^{-2}; \varpi)| \varpi; x, \omega \rangle
\]

and the following statement:

Proposition 3. If for each \(v_r \in \varpi \) and \(w_s \in \omega \) the Bethe conditions are fulfilled

\[
\mu_1(v_r)F(v_r; \varpi_r^{-1})F(v_rq^{-2}; \omega^{-1})
\]

\[= \mu_2(v_r)F(v_r^{-1}; \varpi_r)F(v_rq^{-2}; \omega),
\]

\[\mu_1(w_s)F(w_s^{-1}q^{-2}; \varpi)| w_s^{-1}q^{-2}; \varpi \rangle
\]

(4)

the vectors \(| \varpi; \omega \rangle = \hat{T}_1^2(\varpi)| \omega \rangle\hat{T}_2^{-1}(\omega)\tilde{\omega} \) are common eigenvectors of the operators \(\hat{H}^{(+)}(x) \) and \(\hat{H}^{(-)}(x) \) with eigenvalues

\[
\hat{E}^{(+)}(x; \varpi; \omega) = \mu_1(x)F(x; \varpi^{-1})F(xq^{-2}; \omega^{-1})
\]

\[+ \mu_2(x)F(x^{-1}; \varpi)F(xq^{-2}; \omega),
\]

\[
\hat{E}^{(-)}(x; \varpi; \omega) = \mu_1(x)F(x^{-1}; \varpi)F(xq^{-2}; \omega)
\]

\[+ \mu_2(x)F(xq^{-2}; \varpi)| x, \omega \rangle.
\]

4. BETHE CONDITIONS
AND BETHE EIGENVECTORS
FOR THE RTT-ALGEBRA OF \(U_q(sp(4)) \) TYPE

In Section 2, we have mentioned that the operators \(\hat{T}_1^2(x; \mu) \) and \(\hat{T}_2^{-1}(x; \mu) \) generate \(\mu \) the RTT-algebra \(\mathcal{A}_2 \) for each and the vector \(\tilde{\Omega} \) is the vacuum vector with weights
\[
\begin{align*}
\mu_i(x;\overline{u}) &= \lambda_i(x)F(x^{-1}q;\overline{u}), \\
\mu_2(x;\overline{u}) &= \lambda_2(x)F(xq^{-1};\overline{u}^{-1}), \\
\mu_{-1}(x;\overline{u}) &= \lambda_{-1}(x)F(xq;\overline{u}), \\
\mu_{-2}(x;\overline{u}) &= \lambda_{-2}(x)F(x^{-1}q^{-1};\overline{u}).
\end{align*}
\]

Proposition 4 says that if for each \(v, w \) the Bethe conditions are fulfilled

\[
\mu_i(v;\overline{v})F(v^{-1}q^{-2};\overline{v}^{-1}) = \mu_2(v;\overline{v})F(v^{-1}q^{-2};\overline{v}),
\]

then the vectors \(\Phi(u;\overline{v};\overline{w}) = \hat{T}^{(+)\,1}_{1}(u;\overline{v})\hat{T}^{(-)\,1}_{-1}(u;\overline{w})\tilde{\Omega} \) are common eigenvectors of the operators \(\hat{H}^{(+)}_{-1}(x;u) \) and \(\hat{H}^{(-)}_{1}(x;u) \) with eigenvalues

\[
\begin{align*}
\hat{E}^{(+)}_{-1}(x;u;\overline{v};\overline{w}) &= \mu_i(x;\overline{u})F(x^{-1}q;\overline{v})F(xq^{-1};\overline{w}^{-1}) \\
&+ \mu_2(x;\overline{u})F(x^{-1};\overline{v})F(x^{-1}q^{-2};\overline{v}^{-1}), \\
\hat{E}^{(-)}_{1}(x;u;\overline{v};\overline{w}) &= \mu_{-1}(x;\overline{u})F(x^{-1}q^{-2};\overline{v})F(x;\overline{v}^{-1}) \\
&+ \mu_{-2}(x;\overline{u})F(xq^{-2};\overline{v}^{-1})F(x;\overline{v}).
\end{align*}
\]

From relation (3) it follows that if for each \(u_k \in \overline{u} \) we have

\[
\begin{align*}
F(u_k^{-1};\overline{u}_k)\hat{E}^{(+)}_{-1}(u_k;u;\overline{v};\overline{w}) &= F(u_k;\overline{u}_k)\hat{E}^{(-)}_{1}(u_k;u;\overline{v};\overline{w})
\end{align*}
\]

then the vector

\[
\Psi(u;\overline{v};\overline{w}) = (B^{(-)}_{-1})(u,\Phi(u;\overline{v};\overline{w}))
\]

is the eigenvector of the operator \(H(x) \). From this we obtain the following theorem:

Theorem. Let the Bethe condition

\[
\begin{align*}
\lambda_i(u_i)F(u_i^{-1};\overline{u}_i)F(u_iq;\overline{u}_i)F(u_i;\overline{v})F(u_iq^{-2};\overline{w}^{-1}) \\
&= \lambda_{-1}(u_k)F(u_k;\overline{u}_k)F(u_k;\overline{u}_k)F(u_k^{-1}q^{-2};\overline{u}_k)F(u_k^{-1};\overline{v}), \\
\lambda_i(v_i)F(v_i^{-1}q^{-1};\overline{v})F(v_i^{-1};\overline{v}^{-1})F(v_iq^{-2};\overline{v}^{-1}) \\
&= \lambda_{-2}(v)F(vq^{-2};\overline{v})F(v^{-1};\overline{v})F(v^{-1}q^{-2};\overline{v}) \\
&= \lambda_{-1}(w_i)F(w_iq^{-1};\overline{u})F(w_iq^{-2};\overline{u}_i)F(w_i^{-1};\overline{v}) \\
&= \lambda_{-2}(w_i)F(w_i^{-1}q^{-1};\overline{u})F(w_iq^{-2};\overline{u}_i)F(w_i^{-1};\overline{v})
\end{align*}
\]

be fulfilled for any \(u_k \in \overline{u}, v_i \in \overline{v} \) and \(w_i \in \overline{w} \), then the vectors (5) are eigenvectors of \(H(x) \) with eigenvalues

\[
\begin{align*}
E(x;\overline{u};\overline{v};\overline{w}) &= \lambda_i(x)F(x^{-1};\overline{u})F(x^{-1}q;\overline{u})F(x;\overline{v}), \\
&+ F(xq^{-2};\overline{u})F(x^{-1}q^{-2};\overline{v})F(x;\overline{v}) + F(x;\overline{v})F(Fx^{-1}q^{-2};\overline{v})F(x;\overline{v}), \\
&+ \lambda_{-2}(x)F(x;\overline{u})F(x^{-1}q^{-2};\overline{v})F(xq^{-2};\overline{v})F(x;\overline{v}).
\end{align*}
\]

ACKNOWLEDGMENTS

The authors acknowledge financial support by the Ministry of Education, Youth and Sports of the Czech Republic, project no. CZ.02.1.01/0.0/0.0/16_019/0000778.

REFERENCES

1. L. D. Faddeev, E. K. Sklyanin, and L. A. Takhtajan, “Quantum inverse problem. I,” Theor. Math. Phys. 40, 688 (1979).
2. P. P. Kulish and N. Yu. Reshetikhin, “Diagonalization of GL(N) invariant transfer matrices and quantum N-hwave system (Lee model),” J. Phys. A 16, L591–L596 (1983).
3. Č. Burdík and O. Navrátil, “Nested Bethe ansatz for RTT-algebra of so(2n) type,” Phys. At. Nucl. 81, 776 (2018).
4. Č. Burdík and O. Navrátil, “Nested Bethe ansatz for RTT-algebra of sp(2n) type,” Phys. Part. Nucl. 49, 939 (2018).
5. Č. Burdík and O. Navrátil, “Nested Bethe ansatz for RTT-algebra of sp(4) type,” Theor. Math. Phys. 198, 1 (2019).
6. Č. Burdík and O. Navrátil, “Nested Bethe ansatz for RTT-algebra of sp(4) type,” arXiv: 1708.05633v1 [math-ph] (2017).
7. N. Yu. Reshetikhin, “Integrable models of Quantum one-dimensional magnets with O(n) and Sp(2k) symmetry,” Theor. Math. Phys. 63, 555 (1985).
8. M. J. Martins and P. B. Ramos, “The algebraic Bethe ansatz for rational braid-monoid lattice models,” Nucl. Phys. B 500, 579 (1997).
9. Č. Burdík and O. Navrátil, “Nested Bethe ansatz for RTT-algebra of U_q(sp(2n)) type,” arXiv: 1911.05460v1 [math-ph] (2019).