Data Article

Estimation of missing data of monthly rainfall in southwestern Colombia using artificial neural networks

Teresita Canchala-Nastar,*, Yesid Carvajal-Escobar, Wilfredo Alfonso-Morales, Wilmar Loaiza Cerón, Eduardo Caicedo

* Grupo de Investigación en Ingeniería de Recursos Hídricos y Suelos (IREHISA), Escuela de Recursos Naturales y del Ambiente (EIDENAR), Facultad de Ingeniería, Universidad del Valle, Calle 13 # 100-00, Cali, Colombia

B Grupo de Percepción y Sistemas Inteligentes (PSI), Escuela de Ingeniería Eléctrica y Electrónica, Facultad de Ingeniería, Universidad del Valle, Calle 13 # 100-00, Cali, Colombia

C Departamento de Geografía, Facultad de Humanidades, Universidad del Valle, Calle 13 # 100-00, Cali, Colombia

Article info

Article history:
Received 15 July 2019
Received in revised form 22 August 2019
Accepted 6 September 2019
Available online 14 September 2019

Keywords:
Missing data
Monthly Rainfall Data
Artificial neural networks
NLPCA

Abstract

The success of many projects linked to the management and planning of water resources depends mainly on the quality of the climatic and hydrological data that is provided. Nevertheless, the missing data are frequently found in hydroclimatic variables due to measuring instrument failures, observation recording errors, meteorological extremes, and the challenges associated with accessing measurement areas. Hence, it is necessary to apply an appropriate fill of missing data before any analysis. This paper is intended to present the filling of missing data of monthly rainfall of 45 gauge stations located in southwestern Colombia. The series analyzed covers 34 years of observations between 1983 and 2016, available from the Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM). The estimation of missing data was done using Non-linear Principal Component Analysis (NLPCA); a non-linear generalization of the standard Principal Component Analysis (PCA); approach. The best result was obtained using a network with a [45–44–45] architecture. The estimated mean squared error in the imputation of
missing data was approximately 9.8 mm. month\(^{-1}\), showing that the NLPCA approach constitutes a powerful methodology in the imputation of missing rainfall data. The estimated rainfall dataset helps reduce uncertainty for further studies related to homogeneity analyses, conglomerates, trends, multivariate statistics and meteorological forecasts in regions with information deficits such as southwestern Colombia.

© 2019 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Data

The figures and tables of monthly rainfall were analyzed based on the data obtained from 45 stations located in different zones in the Department of Nariño (Colombia). Fig. 1 is the location map of rainfall stations. Descriptive statistical analysis of the monthly rainfall data (1983–2016) is presented in Table 1. Fig. 2 shows the schematic diagram of the inverse Non-Linear Principal Components Analysis (NLPCA) model. Fig. 3 shows Artificial Neural Network (ANN) modelling data for ten trainings per architecture. The best estimates from the different architectures with the inverse NLPCA model are shown in Table 2. The time series of rainfall stations with the percentage of missing data higher than 1% in the original data and the estimation of missing data are divided and presented in three graphs in descending order in Fig. 4, Fig. 5, and Fig. 6, so that they are easier to observe. With this in mind: Fig. 4 shows the time series for REM, MAT, CHA, OBO, and BAR (see ID and Missing Data Percent in Table 1); Fig. 5 shows the time series for MON, VER, MAG, MOS, and SAL; and lastly, Fig. 6 presents the time series for JOS, COC, GYA, MIR, and BUE.
2. Experimental design, materials and methods

2.1. Study area description

The Department of Nariño, located in southwestern Colombia, covers an area of 33,268 km² with a geo-strategic position between the Colombian-Ecuadorian border, the tropical Pacific Ocean and the Andes mountain range of South America. 8% of its territory belongs to the Amazon basin, one of the largest biodiversity reserves in the world; 52% corresponds to the Chocó biogeographic plains that

Fig. 1. Location of rainfall gauge stations in Nariño (southwestern Colombia).
harbor a mega-diversity of species; and the remaining 40% covers the Andean region, where paramos and volcanoes dominate [1]. These are aspects that make Nariño one of the most diverse regions of Colombia, and the rest of the world (Fig. 1).

2.2. Material and methods

The imputation of missing rainfall data was performed through the inverse model of the NLPCA technique defined by Scholz et al. [2,3] and applied to the estimation of missing data of rainfall by Miró et al. [4], who concluded that the NLPCA technique presented the best results among the ten methods implemented for data estimation. Consequently, while classical ANN forward approach is driven by two steps: i) Extraction function $\Phi_{\text{extr}} : X \rightarrow Z$ and ii) Reconstruction function $\Phi_{\text{gen}} : Z \rightarrow \hat{X}$, the inverse

Station ID	Rainfall mean (mm.year$^{-1}$)	Rainfall Std div (mm.year$^{-1}$)	Rainfall CV	Missing Data %
Barbacoas	BAR 562.8	256.4	0.46	4.41
Berruecos	BER 145.4	110.8	0.76	0.74
Bombona	ROM 86.3	61.1	0.71	0.25
Botana	ROT 76.3	40.2	0.53	0.74
Buesaco	BUE 104.6	92.1	0.88	1.23
Chiles	CHI 91.4	61.6	0.67	0.98
Cumbal	CUM 75.2	47.8	0.64	0.00
Paraiso	PAR 82.4	52.4	0.64	0.49
Peñol	PEN 90.4	65.4	0.72	0.00
Mira	MIR 250.0	159.5	0.64	2.21
Guachavey	GCH 138.1	91.7	0.66	0.74
Gualmatán	GMT 77.5	53.7	0.69	0.74
Hidromayo	HID 110.3	88.3	0.80	0.49
Imues	IMU 83.5	60.3	0.72	0.25
Junin	JUN 726.6	270.7	0.37	0.49
Charco	CHA 301.6	148.2	0.49	6.86
Guasca	GCA 49.0	46.5	0.95	0.00
La Unión	UNI 164.6	115.4	0.70	0.49
Mamaconde	MAM 107.5	93.8	0.87	0.98
Mataje	MAT 289.7	197.1	0.68	9.07
Mosquera	MOS 304.4	198.4	0.65	3.19
Nariño	NAR 165.5	126.0	0.76	0.00
Obonuco	OBO 68.7	52.4	0.76	6.62
Pisanda	PIS 105.6	79.7	0.75	0.00
Puertas	PUE 84.9	49.1	0.58	0.00
Remolino	REM 228.6	163.4	0.72	10.78
Rio Bobo	RBB 91.7	53.4	0.58	0.98
Rosal Monte	RMO 111.9	90.1	0.81	0.98
Salahonda	SAL 396.5	238.2	0.60	3.19
Samaniego	SAM 122.1	98.4	0.81	0.00
San Bernardo	SBO 167.0	116.7	0.70	0.49
Jose Tapaje	JOS 399.8	222.4	0.56	2.70
Sandoná	SAN 95.2	78.4	0.82	0.98
Taminango	TAM 140.9	95.8	0.68	0.98
Tanama	TAN 112.9	80.3	0.71	0.98
Tangua	TGA 83.8	60.8	0.73	0.49
La cruz	CRU 112.0	91.5	0.82	0.98
Monopamba	MON 267.8	125.6	0.47	4.41
A. San Luis	ASL 72.5	43.4	0.60	0.00
A. Antonio Nariño	AAN 98.1	71.5	0.73	0.00
Aponte	APO 128.6	116.1	0.90	0.00
Vergel	VER 214.8	145.1	0.68	3.68
Magui	MAG 404.4	236.5	0.58	3.43
Guayacana	GYA 500.2	223.6	0.45	2.21
Coco	COC 215.5	180.2	0.84	2.45
NLPCA is only driven by the second part \[^2\]. Inverse NLPCA (Fig. 2) is led by the mapping function Φ_{gen}, which is performed by a feed-forward network. Eq. (1) shows the output \hat{X} is dependent upon the input Z and the ANN weights w_3, W_4.

Fig. 2. A schematic diagram of the inverse NLPCA model. Network with a [a-b-c] architecture.

Fig. 3. Architectures used for the selection of the best ANN.

NLPCA is only driven by the second part \[^2\]. Inverse NLPCA (Fig. 2) is led by the mapping function Φ_{gen}, which is performed by a feed-forward network. Eq. (1) shows the output \hat{X} is dependent upon the input Z and the ANN weights w_3, W_4.
\[\hat{X} = \Phi_{\text{gen}}(w, Z) = W_4 g(W_3 Z) \] (1)

The goal is to achieve a function \(\Phi_{\text{gen}} \) capable of generating data \(\hat{X} \) that approximates the target data \(X \) by minimizing the squared error \(\hat{X} - X \). Biases are not explicitly considered; however, they can be included by introducing an extra unit, or input, with activation fixed at one. The architecture of inverse NLPCA model is \([a-b-c] \), where \(a \) are the extracted non-linear components, \(b \) are the non-linear hidden units used to perform the non-linear transformation and \(c \) are the approximated features. A further explanation and details about this process are available in Scholz et al. [2,3].
The inverse NLPCA is not limited to one component; it can be extended to \(m \) components with an additional hierarchically error function [5]. The non-linear components 1, ..., \(m \) can be extracted in a hierarchical order, which is a natural non-linear extension to the hierarchical ordered components of the standard linear PCA. For the application of NLPCA, the Nonlinear PCA toolbox (available in http://www.nlpca.org/matlab.html) was used. Here, the hierarchical NLPCA was used to get the hierarchically ordered features by training sequentially, where the remaining variance/error allows to calculate the explained variance, despite of it cannot be considered regardless of the nonlinear mapping [5].

Regarding the application of the inverse NLPCA, different architectures were tested (Table 2), and an increase in the explained variance and a decrease in the Root Mean Square Error (RMSE) was observed when the number of non-linear principal components was increased. The best estimates were obtained using a network with a \([45-44-45]\) architecture (Fig. 3). This means we have extracted 45 non-linear components; 44 non-linear hidden units were used to perform the non-linear transformation, and 45 rainfall gauge stations were approximated. The parameters setting that presented a better result was: weight decay coefficient set at 0.01 and the maximum number of iterations set at 5,000. The components were extracted in a hierarchical order. All other parameters were set by default (type inverse, no circular PCA). The final imputation results can be different for each model obtained by the inherent characteristics of ANN. Hence, for each execution, the NLPCA was trained ten times, choosing as a priori the one with the best performance in terms of RMSE.

![Image of rainfall time series](image_url)

Fig. 5. Time series observed rainfall vs estimated rainfall of MON, VER, MAG, MOS, and SAL rainfall stations.
Acknowledgements

The authors thank the Universidad del Valle for financing the research project CI 21010, and express their gratitude to the Fortalecimiento de capacidades regionales en investigación, desarrollo tecnológico e innovación de Nariño program for financing the doctoral scholarship of the first author. The fourth author thanks the Coordenaç~ão de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) (Finance Code 001), and the Universidad del Valle (Cali-Colombia) for financing the doctoral scholarship. Furthermore, the authors thank the IREHISA and PSI research groups for the support received during the development of this research paper. Finally, the authors express their thanks to IDEAM for providing the database containing the monthly rainfall in the Department of Nariño.

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.dib.2019.104517.
References

[1] Gobernación de Nariño, Plan participativo de desarrollo departamental 2016-2019. http://nariño.gov.co/inicio/index.php/gobernacion/plan-de-desarrollo-departamental-narino-corazon-del-mundo-2016-2019 (accessed 21 August 2019).

[2] M. Scholz, F. Kaplan, C.L. Guy, J. Kopka, J. Selbig, Non-linear PCA: a missing data approach, Bioinformatics 21 (2005) 3887–3895. https://doi.org/10.1093/bioinformatics/bti634.

[3] M. Scholz, M. Fraunholz, J. Selbig, Nonlinear principal component analysis: neural network models and applications, in: Principal Manifolds for Data Visualization and Dimension Reduction, Springer, 2008, pp. 44–67. https://doi.org/10.1007/978-3-54073750-6_2.

[4] J.J. Miró, V. Caselles, M.J. Estrela, Multiple imputation of rainfall missing data in the Iberian Mediterranean context, Atmos. Res. 197 (2017) 313–330. https://doi.org/10.1016/j.atmosres.2017.07.016.

[5] M. Scholz, R. Vigario, Nonlinear PCA: a new hierarchical approach, in: ESANN, 2002, pp. 439–444.