Two-Stage Converter Standalone PV-Battery System Based on VSG Control

HASHIM HASABELRASUL, ZHENJIANG CAI, LEI SUN, XUESONG SUO, AND IMAD MATRAJI

1College of Mechanical and Electrical Engineering, Hebei Agricultural University, Baoding 071001, China
2Great Wall Motors, FTXT Energy Technology Company Ltd., Baoding 071000, China

Corresponding author: Zhenjiang Cai (czj65@163.com)

This work was supported in part by the Postdoctoral Program of Hebei Agricultural University, Science and Technology Support Program of Baoding under Grant 18ZG011; in part by the Key Research and Development Project of Hebei Province under Grant 19227401D and Grant 19227206D; in part by the Hebei Province to Introduce Overseas Students under Project C201834 and Project C201835; and in part by the Hebei University Science and Technology Research Project under Grant QN2018081. The work of Hashim Hasabelrasul was supported by the Postdoctoral Program of Hebei Agricultural University.

ABSTRACT

Standalone solar PV systems have emerged as potential alternatives to electricity problems in areas where a grid is unavailable. Obtaining full power from a photovoltaic panel, DC-DC inverter, DC-AC converter, and control system presents great difficulties when building these devices. A standalone two-stage approach is introduced in this work with a boost converter followed by an inverter and a battery with a bidirectional converter. In this paper, a novel virtual synchronous generator (VSG) controller is designed and implemented to adjust the inverter output. The VSG element and the maximum power point tracking (MPPT) used in this study serve the following purposes: to adjust the inverter output and to realize the maximum power of the PV scheme. The new control strategy design was evaluated and validated using extensive MATLAB simulations under different scenarios, including load variations. The system output was evaluated using extensive MATLAB simulations. A hands-on experiment was conducted for the VSG using console testing. Due to the lack of laboratory equipment, we could not experiment with the entire system.

INDEX TERMS

MPPT, DC-DC boost converter, PV array, virtual synchronous generator, two-stage converter, DC-AC inverter, battery.

I. INTRODUCTION

PV systems are increasingly being used as distributed generators worldwide because they are environmentally sustainable and clean. The price of PV panels has dropped significantly, and they typically have DC power, which is not always stable. Therefore, before the PV signals can be fed to the output load or linked to the grid power, they require DC-DC or DC-AC conversions. However, since PV power is unstable, standalone PV units need an energy power storage component, usually implemented by a battery bank [1]–[8].

PV supplies change over time because of the source and condition’s variable nature under the load or grid specification demand. A single and a two-stage process are two methods used to integrate the solar energy with the load or grid [9]–[11]. The first method is made up of inverters that convert DC to AC according to the load’s demand. In the second one, however, the DC voltage supplied by PV cells is first increased and then inverted into AC as needed [12], [13].

Recently, studies on two-stage grid converter structures of standalone applications have been limited. In [14], a two-stage single-phase PV system designed to operate in a standalone configuration without batteries was presented. The authors concluded that the device could adequately provide stand-alone power without the use of batteries. Thus, the system costs and maintenance can be reduced if the system is designed practically. Article [15] introduced a proportional-integral (PI) design to control a two-stage standalone system. The control goals were achieved with satisfaction and success, as per the obtained results.

However, these works do not mention how a VSG control can operate under a two-stage converter. This paper focused on a two-stage converter operating in a standalone mode with a battery based on the VSG control system application.
II. PROPOSED CIRCUIT

A. MAIN CIRCUIT

Fig. 1 depicts a schematic diagram of a two-stage converter. A DC-DC, DC-AC, and a storage unit through a bidirectional converter via the PV power source to supply the load are observed. The system also contains the control system of the two stages.

B. THE PV ARRAY

Solar PV units are linked in parallel and series combinations to provide higher power production and create solar PV arrays. This article’s PV array has six parallel and four series panels with a combined input capacity of 5 kW. The solar module parameters are shown in Table 1. Fig. 2 presents the solar panel characteristic curves.

C. DESIGN OF THE CONVERTER DC-DC

A boost converter is employed to achieve the required voltage. Fig. 3 presents the design of the frame structure of the DC-DC stage.

The design specifications are defined as follows:

\[
L = \frac{V_{in}(V_{out} - V_{in})}{f_{sw} \Delta I \times V_{out}} = 6.4 \text{ to } 12.7 \text{ mH} \tag{1}
\]

\[
C = \frac{I_{out}(V_{out} - V_{in})}{f_{sw} \Delta V \times V_{out}} = 280 \text{ to } 320 \mu F \tag{2}
\]

III. THE CONTROL SYSTEM

A. MPPT ALGORITHM CONTROL

The values of PV panel calculations based on PV current and voltage are described in the block diagram shown in Fig. 4. Through this process, converter gate pulses are obtained.

Fig. 5 presents the duty-cycle controlled flow chart MPPT algorithm used to verify the PV unit’s power on the maximum point. The voltage state of the power is determined by multiplying the PV panel current and voltage with the previous one in the duty-cycle control approach. It checks the voltage sampling value of the voltage with the last value in the same way and regulates the duty to obey the power on the maximum point based on the result of the matching power.

B. VSG METHOD

Fig. 6 shows an inverter block diagram with a control based on the VSG, which consists of the power load and control circuit. The input of this stage is the current and voltage of the load, and its output is the PWM signal used for switching the inverter.
The VSG active and reactive power loops are described in Fig. 7 and Fig. 8, respectively.

The droop equations are expressed as:

$$\omega = \omega_N - m(P - P_{ref})$$ \hspace{1cm} \text{(3)}

$$V = V_N - n(Q - Q_{ref})$$ \hspace{1cm} \text{(4)}

The swing equations are expressed as

$$J \frac{d(\omega - \omega_N)}{dt} = P_{ref} - P_e - D(\omega - \omega_N) + \frac{1}{m}(\omega_N - \omega)$$ \hspace{1cm} \text{(5)}

C. CHARGE–DISCHARGE BATTERY CONTROLLER

Fig. 9 presents the battery control for two cases: charge and discharge. The voltage source of the bidirectional converter is the output of the boost converter. The battery parameters are shown in Table 2.

Quantity	Value
Nominal voltage	220 V
Rated capacity (Ah)	100
Initial SOC %	50
Fully charged voltage	256 V

The battery parameters are shown in Table 2.

VOLUME 10, 2022
IV. RESULTS
Simulation studies validated the process model and method presented in Fig. 1. Three scenarios based on the model described in Fig. 1 were simulated to investigate the VSG controller performance. The parameters in Table 3 are used.

The selection range of Table 3 parameters used values available in the lab to conform with the experimental part of the work.

A. SCENARIO A: DIFFERENT IRRADIANCE VALUES

Fig. 10 shows the irradiation applied to the PV. The curve, as shown in the figure, contains various irradiations with a maximum value of 1000 W/m². The PV voltage and first-stage voltage followed the change in radiation, as shown in Fig. 11 (a) and Fig. 11(b), respectively. At the first stage, the PV rose to 130 V and boosted voltage to 500 V. This is caused by the nature of the MPPT method in PV, and it provided details for the control behavior.

The current results of the PV array and boost converter output are given in Fig. 12(a) and Fig. 12 (b), respectively. The PV current is approximately 50 A, while the boost converter current decreases to 10 A. This decrease depends on the design of the boost converter. Fig. 13 shows the results of the inverter voltage and current for the output load. The inverter side is connected with the load and the output power waveforms shown in Fig. 14.

B. SCENARIO B: IRRADIANCE CURVE VALUES

Fig. 15 depicts the irradiation curve. The curve also contains various values, as seen in the diagram. The voltage response to the new irradiation curve change was plotted for PV voltage and output voltage of the DC-DC stage, as shown in Fig. 16. As seen in Fig. 17, the MPPT tracks the maximum power point (MPP) with 99% efficiency from the PV panel. The control method applied in [16] has been compared with this paper in terms of efficiency. The PV power result is simulated in [16], and the MPPT algorithm tracks a 98% efficiency applied method based on model predictive control. In this paper, the VSG control method was used, as it provides a higher efficiency rate. The advantages of this control method are used for the inverter to behave as a synchronous generator, used for operating inverters in parallel, and for the stability of
FIGURE 13. The output load: (a) voltage; (b) current.

FIGURE 14. The load active and reactive power.

FIGURE 15. The irradiation curve scheme.

a weak power grid or islanding mode [17]–[20]. Fig. 18 shows the PV array and boost converter current.

C. SCENARIO C: BATTERY CHARGE AND DISCHARGE

In the two cases of charging and discharging, a battery bidirectional converter is used. The voltage source “boost converter output” enabled the battery to charge with the load supplied from the source voltage in charging mode, as shown in Fig. 19. The state-of-charge (SOC) is 50%, as shown in Fig. 19 (a). The load voltage is 220 V, and the battery

FIGURE 16. The PV and boost converter voltage.

FIGURE 17. The MPPT efficiency.

FIGURE 18. The PV and boost converter current.

FIGURE 19. Battery charge mode: (a) the state of charge; (b) load voltage; (c) reference and battery current; (d) battery voltage.
In the discharging mode, the source voltage is disabled, and the battery supplies the load. Fig. 20 shows the discharge operation. The reference current is 20 A, and the battery is discharged with 236 V and 21 A. The battery is connected in scenarios A and B. The battery status results at scenarios A and B have the same results as in scenario C.

D. SCENARIO D: THE BEHAVIOR OF THE SYSTEM IN RESPONSE TO “LOAD CHANGES”

This scenario mainly discusses the response to load changes to verify the VSG control technology that has been successfully deployed to be applied effectively for this system. If the time (S) axis in Fig. 21 (a) is observed, it is

TABLE 4. The experimental VSG parameters.

Quantity	Value
AC voltage	220 V
P_ref	1.2 kW
Q_ref	0 kvar
L_f	8 mH
C_f	10 μF
R_L	100 Ω

FIGURE 20. Battery discharge mode: (a) the state of charge; (b) load voltage; (c) reference and battery current; (d) battery voltage.

FIGURE 21. Response to output load changes: (a) active and reactive power; (b) output current.

FIGURE 22. Change in virtual inertia, J: (a) J = 0.2 kg.m²; (b) J = 0.8 kg.m²; (c) J = 1.4 kg.m².
V. EXPERIMENT OF VSG CONTROL RESULTS

This experiment was carried out via a system containing a single inverter, a load in island mode, and its VSG control circuit. The experimental parameters are given in Table 4.

A. SCENARIO A: CHANGE IN VIRTUAL INERTIA, J

This experiment was carried out for different virtual inertia \(J = 0.2, 0.8, \) and 1.4, with the load stepped from 100 \(\Omega \) to 150 \(\Omega \). The results are shown in Fig. 22. Every waveform is the VSG frequency or the active load power. As seen, any increase in the virtual inertia considerably improves the frequency dynamics.

B. SCENARIO B: CHANGE IN DROOP COEFFICIENT, m

In this experiment, VSG was subjected to a sudden increase in load by 50 \(\Omega/70 \) mH. The simulation was repeated with different values of \(m \), given \(m = 0.0014, 0.0016, 0.002 \) to make clear the effect of the droop coefficient. Fig. 23 shows the results. The system implemented is shown in Fig. 24.

VI. CONCLUSION

The paper proposes two-stage converter PV systems, including a battery unit. MPPT algorithms and VSG control used in the proposed control strategy. Additionally, a bidirectional converter control is presented. The combined control provided successful tracking under various irradiation scenarios thanks to the proposed method’s quick and responsive control capability. In addition to the combined control performance tests and the favorable effects on the whole system, it is seen from the bidirectional battery method that the control of battery modes also has superior control capacity. The MPPT control was subjected to efficiency analysis. The MPPT system has a 99% control efficiency. The experiment proved that the inertia increase greatly improves the frequency dynamics. This means that VSG can truly and very precisely model a synchronous generator. Therefore, it is considered a good controller for this system.

REFERENCES

[1] P. S. Shenoy, K. A. Kim, B. B. Johnson, and P. T. Krein, “Differential power processing for increased energy production and reliability of photovoltaic systems,” IEEE Trans. Power Electron., vol. 28, no. 6, pp. 2968–2979, Jun. 2013, doi: 10.1109/TPEL.2012.2211082.

[2] X. Lu, K. Sun, J. M. Guerrero, J. C. Vasquez, and L. Huang, “State-of-charge balance using adaptive droop control for distributed energy storage systems in DC microgrid applications,” IEEE Trans. Ind. Electron., vol. 61, no. 6, pp. 2804–2815, Jun. 2014, doi: 10.1109/TIE.2013.2279374.

[3] M. Sechilariu, B. Wang, and F. Locment, “Building integrated photovoltaic system with energy storage and smart grid communication,” IEEE Trans. Ind. Electron., vol. 60, no. 4, pp. 1607–1618, Apr. 2013, doi: 10.1109/TIE.2012.2228582.

[4] Z. Liang, R. Guo, J. Li, and A. Q. Huang, “A high-efficiency PV module-integrated DC/DC converter for PV energy harvest in FREEDM systems,” IEEE Trans. Power Electron., vol. 26, no. 3, pp. 897–909, Mar. 2011, doi: 10.1109/TPEL.2011.2107381.

[5] M. Shayestegan, “Overview of grid-connected two-stage transformerless inverter design,” I. Mod. Power Syst. Clean Energy, vol. 6, no. 4, pp. 642–655, Jan. 2018, doi: 10.1007/s40565-017-0367-z.
