Exploration of Two Different Structures for Debriefing in Simulation: The Influence of the Structure on the Facilitator Role

Randi Tosterud, Kristin Kjølberg, Arnhild Vestnes Kongshaug, and Jon Viktor Haugom

Abstract

Background. In the use of simulation as a learning approach, a structured debriefing is important for students to achieve learning. The facilitator’s feedback style and abilities in facilitating are crucial, and have a great impact on the learning environment. The facilitators should facilitate for student active learning, and provide helpful feedback to empower students as self-regulated learners. The aim of the study was to explore the Steinwachs structure and the Critical Response Process structure when used in debriefing in medical simulation, and how each of them affected the facilitator’s role.

Method. A multi-method, comparative quasi-experimental design was used.

Results. Structuring debriefing in accordance with the Critical Response Process facilitated a facilitator role that coincided with factors highlighted in theory on how to facilitate student active learning and the development self-regulating learners. Structuring debriefing in accordance with the Steinwachs structure revealed that debriefing seemed to be based more on the facilitator’s frames and dominance than the students’ frames and involvement.

Conclusion. The results of this study showed that Critical Response Process (CRP) can be an appropriate structure to use in debriefing in medical simulation.

1Norwegian University of Science and Technology, Norway
2Norwegian Academy of Music, Norway

Corresponding Author:
Randi Tosterud, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Teknologiveien 22, 2815 Gjøvik, Norway.
Email: randi.tosterud@ntnu.no
It reduced the facilitator’s dominance and frames, coincident with what is empathized in collaborative, active and learner-centered learning.

Keywords
active learning, debriefing, simulation, simulation/gaming

Background
Simulation used as a learning approach is often seen associated with learning theories emphasizing active learning, collaborative learning and learner-centered learning (Childress et al., 2007; Dieckmann, 2009; Jeffries & Rogers, 2007; Spanager et al., 2015), which coincide with what is underscored in higher education. Formative assessment and feedback should be used in higher education to empower students as self-regulated learners (Nicol & Macfarlane-Dick, 2006).

As part of the simulation setting, the debriefing phase is considered as crucial for learning (Decker, Fey, Sideras, Caballero, Boese, et al., 2013; Dieckmann et al., 2012; Fanning & Gaba, 2007). The purpose is that the faculty and the participants reexamine what took place in the scenario in debriefing, a reflective learning process to help promote the development of clinical reasoning and judgment skills in an active learning environment. Debriefing offers the possibility to give and take feedback, to resolve feelings, as well as the opportunity to learn from either successes or failures (Dreifuerst, 2009; Fanning & Gaba, 2007; McGaghie et al., 2010). Lefroy et al. (2015) offer a definition of feedback supporting self-regulating learning as:

> Helpful feedback is a supportive conversation that clarifies the trainee’s awareness of their developing competencies, enhances their self-efficacy for making progress, challenges them to set objectives for improvement, and facilitates their development of strategies to enable that improvement to occur.

Despite the fact that it is emphasized that simulation is a learning method, students report simulation to be stressful, being put in the spotlight and assessed, and being exposed in their performance both in terms of body and mind (Nordkvelle et al., 2019). The feeling of having to defend and protect themselves might occur, which reduces the ability to make use of feedback (Lefroy et al., 2015).

In studies of medical simulation there is a lack of clarifying theoretical foundation (Rourke et al., 2010), and reveals that debriefing seems to be based more on the facilitators’ frames and dominance than the trainees’ frames (Spanager et al., 2015). The facilitator tends to be in the prominent role quite similarly to teaching in general (Zulkosky, 2012), which is not in accordance with recommendations for stimulating students as self-regulated learners (Lefroy et al., 2015; Nicol & Macfarlane-Dick, 2006). The facilitator’s feedback style and abilities in facilitating are crucial and have a great impact on the learning environment (Cantrell, 2008; Davis-Berman & Berman, 2002; Husebø et al., 2013; Keitel et al., 2011). It is recommended that the facilitators would benefit from practicing techniques for stimulating involvement and reflective practice in the participants (Husebø et al., 2013; Spanager et al., 2015).
There is still a lack of knowledge in medical simulation about the debriefing sessions in order to provide an understanding of the learning process provided therein, as well as drawing generalizable conclusions from studies to identify the best evidence of the effectiveness of debriefing (Cheng et al., 2015; Levett-Jones & Lapkin, 2014). However, a structured debriefing seemed to possess a better opportunity for reflection and an increased student activity (Decker, Fey, Sideras, Caballero, Rockstraw, et al. 2013; Neill & Wotton, 2011). Several frameworks are available to help structuring debriefing in purposeful way (INACSL Standards Committee, 2016). However, development of appropriate frameworks and ways of structuring debriefing adapted to the participants’ needs and the learning outcomes is an ongoing process. There is a need for studies that explore how to structure debriefing to maintain and enhance the quality of debriefing within simulation programs, including how the use of peer feedback can contribute to quality (Cheng et al., 2015), and how debriefing structures can help the facilitator to encourage student activity and students as self-regulated learners.

Aim of the Study

To explore two ways of structuring debriefing and examine how each structure exerted an influence on the facilitator’s role.

Methods

Design

This quasi-experimental research followed a multi-method, comparative design to describe and explore two different structures for debriefing, and how they influenced the facilitator role.

Debriefing Structures Included

Two structures for debriefing were included. The Steinwachs structure (Steinwachs, 1992), originally developed to facilitate the debriefing phase in gaming education, includes the recommended minimum phases of reaction, analysis, and summary (INACSL Standards Committee, 2016). In the first, the Description phase, the facilitator challenges the performers to describe what occurred in the scenario, with the intention to air their experiences and impressions and to exchange their perceptions with the responders/observers. In the second phase called the Analogy/Analysis phase, the performers explore, analyze and reflect on alternative solutions, relevance, success and failure. In the third phase, called the Application phase, the performers and observers express what is particularly relevant and the consequences for further learning. The facilitator gives his/her attention to the learning/reflection process, to strive for everyone to participate in the debriefing and to affirm the attendees in the discussions.

The alternative structure included was the Critical Response Process (CRP), created by Liz Lerman (Lerman & Borstel, 2003). CRP underscores the value of dialogue,
inquiry and peer feedback, in addition to the opportunity for performers to exercise a
degree of control in the criticism directed at their work based on the perception that
“When defensiveness starts, learning stops” (Lerman & Borstel, 2003, p. 21). CRP
was originally evolved as an approach to group critiques on artistic work in progress.
However, Lerman claims that its flexibility makes it suitable for different types of
learning situations possessing feedback. The roles involved are *Artist(s)* (called the
Performers in medical simulation), *Responders* (one, few or many) and *Facilitator*,
coinciding roles as in medical simulation, though *Responders* are often named
Observers in medical simulation. It includes a four-step method (Lerman & Borstel,
2003); the first phase is called *Statements of meaning*, in which all of the responders/
observers state what was meaningful, evocative, interesting, exciting and/or striking in
the work they have just witnessed. In the second phase, called the *Artist as Questioner*,
the performers ask questions about their implementation of the scenario. In answering,
responders stay on topic with the question and may express opinions in direct response
to the performers’ questions. In the third phase, *Neutral Questions from Responders*,
responders ask neutral questions about the implementation, and the performers
respond. In the last phase, called *Permissioned Opinions*, the responders state opin-
ions, given permission from the performers, though the performers have the option to
say no. To the best of our knowledge, CRP has not been previously used as a structure
for debriefing in medical simulation. The rationale for including CRP was that this
structure deviates from the recommended minimum phases (reaction, analysis, and
summary) (INACSL Standards Committee, 2016). It provided the opportunity to
explore the facilitator role using a structure that includes the recommended minimum
phases (Steinwachs) and in a structure that is not based on these phases (CRP).

Sample

The sample consisted of undergraduates in bachelor nursing in the second year of their
three-year program (N=168) at a university in Norway.

Intervention

The students involved were conducting their 9-week clinical practice, either in medical
or surgical wards. As part of their ordinary program, they had two days at the university
for simulation-based training with a set of standard scenarios, including such issues as
ischemic heart decease, chronic obstructive pulmonary disease, post-operative bleed-
ing, sepsis, anaphylactic shock and opiate overdose. To be well prepared, the students
received the scenarios some days before the simulation. In each scenario, two students
performed and the others were responders/observers. Right before starting the simula-
tion, the facilitator randomly picked a note describing which structure (Steinwachs or
CRP) to use in the current debriefing. When selecting CRP, the facilitator informed the
students to focus on what they perceived/evaluated as good observations, actions and
communications skills during the simulation. They were also told to think about ques-
tions regarding the performance. Selecting Steinwachs, the facilitator dedicated tasks
to the observers/responders to focus on observations, actions, or interactions and non-technical skills. The same facilitator conducted all the debriefings.

Data Collection

The data was collected from ultimo April to ultimo May 2017, with all debriefing sessions (15) videotaped by using a Swivl iPad. Following the debriefing, the students completed the Norwegian translated version of the *Debriefing Experience Scale* (Reed, 2012). The scale originally consisted of four subscales, but due to a previous validation process showing that the scale would benefit from a reduction of the subscales (Tosterud et al., 2015), the Norwegian version consists of three subscales. The first, *Analyzing Thoughts and Feelings* (four items), identifies experiences related to emotional, psychological, behavioral and environmental aspects. The second, *Learning and Making Connections* (eight items), measures learning in the experience of the debriefing participant. The third, *The Way the Facilitator Conducted Debriefing* (eight items), is related to the facilitator’s skills in conducting the debriefing, particularly focusing on the facilitator being able to manage the time and structure of the debriefing, as well as the importance of being a content expert. It also emphasizes the finesse of the facilitator guiding the debriefing. The student experience scale is rated with a Likert-type rating from 1 (strongly disagree) to 5 (strongly agree), which also includes the alternative, *Not Applicable* (NA); the statement does not pertain to the debriefing activity performed. Originally, a scale measuring the importance to the student scale was included, but was not used in the present study.

Moreover, the facilitator wrote notes after each debriefing.

Data Analysis

Data from the *Debriefing Experience Scale* were analyzed by using IBM SPSS Statistics, version 24. Cronbach’s alpha was used to establish internal consistency. An independent t-test was conducted to compare the means between the two groups (Field, 2009).

Two researchers, who had not been involved in the simulation setting, analyzed the videos. First, they separately recorded the time the facilitator talked in each debriefing by using a stopwatch. For cases in which there was a larger deviation in registration, the researchers separately conducted a new registration until obtaining consensus.

After a review of some random debriefing sessions to acquire an impression of what was taking place, the researchers developed a code sheet to use in the process of analyzing the videotapes:

- Which issues are highlighted in the debriefing?
- What characterizes the role of the facilitator?
- Who talks to who? Student(s) to student(s)? Student(s) to facilitator?
- Is there a clear structure in the debriefing? Tight/loose?
The researchers observed the videos separately, and after each video observation notes were exchanged and discussed. After observing all the videotapes, the code sheets were reviewed and summarized. Several random videotapes were again reviewed to validate the summary.

The facilitator received access to the videotapes, and made notes to each by observing his own role and what happened in the debriefings. The notes were transformed from categories to themes through the use of conventional content analysis (Hsieh & Shannon, 2005).

Ethical Considerations

The study was reported to the Norwegian Social Science Data Services (ref.53921), and the university gave permission to conduct the study. Furthermore, ethical guidelines for nursing research according to the Northern Nurses’ Federation (2003) were followed. The students signed a written consent statement. Voluntariness, and that if or how the student responded would not have any impact on them as students or in their study program, was emphasized in the written and oral information.

Results

Out of 168 students, 155 participated in the study, which was divided into 15 groups, with a group size between six to 13 students. The students who did not attend (a total of 13 students) were sick or had other reasons not to meet on the current day.

The results are based on video observation, the Debriefing Experience Scale questionnaire and the facilitator’s notes, all summarized in Figure 1.

Video Observation of Facilitator’s Role Dependent on the Structure Used

Regardless of the structure used, the facilitator used approximately the same amount of time for talking in the debriefing sessions (15), as shown in Table 1.

Observation of Steinwachs Structure Used in Debriefing

Highlighted issues/topic. A full attention to the learning outcome characterized the debriefing, and no questions or topics connected to personal feelings or theme beyond those emerged.

Facilitator’s role and students’ involvement. Immediately after entering the debriefing room, the facilitator asked the performers to describe the situation they had encountered (Description phase). In the Analysis phase the facilitator challenged the performers to explain, to give reasons, to reflect and to include theory to the implementation, asking follow-up questions such as: *Why was this important?* or *Can you explain what happened or What do you know about...?*. The facilitator challenged the group as a whole to answer the questions or topics. Some students took part, whereas some did
not participate verbally in the debriefing at all. The attention and glances were directed toward the facilitator, with the observers primarily listening to the dialogues between the performers and the facilitator. When referring to what took place in the scenario, the observers addressed the facilitator by saying: *He/she performed.* . . , and *They performed* . . ., etc. As the last phase, the facilitator asked the performers to express what they had learned, or how they could use the implementation in learning (the *Application* phase). The debriefing appeared as a conversation between the performers and the facilitator, with the observers as listeners.

Figure 1. Data collection procedure and results.

Table 1. Time Registration for the Facilitator Talking in Debriefing.

Debriefing structure	Debriefing total in minutes	Facilitator spoke in minutes	Facilitator spoke by percentage
Steinwachs (n = 7)	120.5	39.03	33%
CRP (n = 8)	121.5	34.17	28%
To keep the structure. The facilitator started the debriefing by asking the scenario performers to describe what they encountered in this scenario (Description phase). The performers described, and rapidly started to include the Analysis phase. In some of the debriefings, the facilitator asked the performers to complete the descriptions before moving on to analyze, but mostly these two phases flowed into each other. The facilitator ended the debriefing by clearly introducing the Application phase, asking the performers to express what they had learned/what they brought with them from the learning situation.

Observation of the Critical Response Process Structure Used in Debriefing

Highlighted issues/topic. In all phases, the questions and discussions revolved around issues related to the learning outcome. In the phase, Statements of meaning, there appeared topics about leadership, communication, actions and behavior. The performers (Artist as a questioner) were concerned with the sequence of action. Some performers focused on their own behavior and feelings, such as: Did I seem very unsure? and I find simulation artificial. The responders asked neutral questions, but also for grounds and justifications for their actions (Neutral Questions from Responders). In the Permissioned Opinions phase, the advice and options were all related to the learning outcome.

Facilitator’s role and students’ involvement. The facilitator started the debriefing by letting the responders highlight what in particular in the implementation they had observed as impressive or as good practice (Statements of meaning). All of the responders participated, including the facilitator in line with the responders. The performers listened. In the beginning, the responders addressed the facilitator by referring to the performers in the third person, saying: I was impressed by the way they… As the phase progressed, they changed over to speak directly to the performers by saying: I was impressed by the way you… In the following phases, the students’ attention and glances were naturally turned towards each other by exchanging questions, answers, experiences and opinions. Some smiles and laughter followed the Permissioned Opinions phase by the responders and facilitator, who asked if the performers wanted to accept opinions and advices, to which they replied that they did. The facilitator appeared as the group leader by being the one to introduce and define how to implement each phase. In addition, he confirmed or explained when something was unclear. Otherwise, he participated in role and assignments in line with the responders during the phases by waiting for his turn and using the current instruction for each phase. The debriefing appeared as a group conversation and all the students more or less verbally took part in the debriefing.

To keep the structure. The facilitator initiated the progress and transition to the next phase, sometimes helping to reformulate according to the current structure or resituating a discussion. Even though the facilitator allowed a flexible and relaxed structure as the phases progressed, the structure in the debriefing was clearly visible.
Facilitator notes. The facilitator expressed in his notes that when using Steinwachs he perceived to be in control in the debriefing. When CRP was used, he shared the responsibility with the observers/respondents for providing feedback, raising questions and giving answers, thereby resulting as a facilitator in a feeling of lack of control. However, in using Steinwachs, the facilitator role was perceived as a more stressful one than in using CRP, especially concerning the challenge to engage and activate the responders/observers. CRP was an easier structure to maintain than Steinwachs, with the facilitator’s notes summarized in Table 2:

Table 2. Facilitator Notes After Debriefing Dependent on Structure Used.

Debriefing structure	Feedback	Facilitator role	To keep structure
Steinwachs	Experienced to be goal oriented. Performers tend to be self-critical. A challenge to make the observers engaged.	Extensive task. Feeling of having control.	Performers tend to proceed too quickly from the Description to the Analysis phase.
Critical Response Process	Experienced as learning orientated. Phase one, Statements of meaning, made a good start. All had to orally participate.	Group leader Shared responsibility with the students. Feeling of not having control.	Easy to maintain.

Comparisons Between the Students’ Responses Dependent on Debriefing Structure Used

All the students (n=155) completed the questionnaire *Debriefing Experience Scale* (response rate 100%). An acceptable alpha value (.90) was revealed on the total scale and subscale level (.65 – .82), with the subscale *Analyzing Thoughts and Feelings* being the lowest. The results showed that regardless of the debriefing structure used, the students agreed positively to the statements concerning their experiences of *Analyzing Thoughts and Feelings, Learning and Making Connections,* and *The Way the Facilitator Conducted Debriefing.* An independent samples t-test was conducted to compare the response scores dependent on the debriefing structure (CRP or Steinwachs). The result revealed no significant differences in scores on the total scale level between the Steinwachs (M =4.38, SD = 0.34) and the CRP group (M = 4.39, SD = 0.43; t (140) = 0.23, p = 0.82 two-tailed). The magnitude of the differences in the means (mean difference = 0.01, 95% CI: - 0.14 – 0.11) was very small (eta squared = 0.000). No significant differences appeared on the item or subscale level, with the results summarized in Table 3.
Discussion

Based on the results from the time registration of the facilitator’s verbally prominent role and the students’ response to the Debriefing Experience Scale, there was no difference between using the Steinwachs or CRP structure. However, in analyzing the videos and facilitators notes, the facilitator’s role concerning control and responsibility was clearly different between the structures, which in turn affected the performer and the respondent roles. By using Steinwachs, the facilitator appeared to be in a dominant role by being responsible for feedback, raising questions, verify those questions and asking follow-up questions. The conversation mainly included the performers and the facilitator. The performers addressed questions and responses to the facilitator, with the observers as listeners. This probably coincides with the study of Spanager et al. (2015), showing that the conversation revealed more of the supervisor’s frame than the trainees’ frames. It confirms a perception of feedback as the teacher’s responsibility, with feedback understood as a transmission from the teacher to the student about what is right and wrong, which is not in accordance with recommendations for external feedback for developing self-regulated learners (Lefroy et al., 2015; Nicol & Macfarlane-Dick, 2006). In using CRP, the facilitator’s role changed to being more like a leader of the group discussion, introducing new phases, being in line with the responders and helping to reformulate questions if necessary. Each phase of the CRP structure forced a transmission of the responsibility and control in the debriefing from the facilitator to the students. The students physically turned towards each other and directly addressed responses, questions, answers and feedback to each other. As early as in the first phase of CRP (Statements of meaning), everyone had to speak up and give positive feedback, probably lowering the threshold for taking their word in the later stages and setting a standard for shared responsibility. The next phases (Artist as Questioner and Neutral Questions from Responders) provided the trainees with the opportunity to participate in reflective conversations. They asked questions and gave

Scale1 Sub-scale	Steinwachs (n = 80) Mean SD	CRP (n = 75) Mean SD	Independent t-test	Sig. two-tailed
Debriefing Experience Scale (20 items)	4.38 .34	4.39 .43	(140) .023	.82
Analyzing Thoughts and Feelings (4 items)	4.40 .44	4.40 .47	(150) .087	.93
Learning and Making Connections (8 items)	4.36 .38	4.33 .46	(144) .457	.65
The Way the Facilitator Conducted Debriefing (8 items)	4.39 .44	4.46 .51	(147) .30	.41

1Scores could range from 1 = strongly disagree to 5 = strongly agree.
their responses based on their point of view, observations and understanding. This coincides with the theory of how to stimulate students as self-regulated learners (Lefroy et al., 2015; Nicol & Macfarlane-Dick, 2006). It provided the facilitator with essential access to information on what the students actually observe, and how they interpret, understand and reflect on that, which is essential for feedback to be useful (Lefroy et al., 2015; Nicol & Macfarlane-Dick, 2006).

Being a performer in simulation means to be exposed, and therefore easily feeling overloaded and vulnerable (Roh & Jang, 2017; Tosterud et al., 2014). Defensiveness and self-protection might occur, meaning poor learning conditions, and that feedback is not timely given to support learning (Lefroy et al., 2015; Lerman & Borstel, 2003). This could be the reason why the performers in the Steinwachs Description phase very rapidly proceeded to the Analysis phase by starting to explain, or criticize themselves or defend their behavior, thus requiring help from the facilitator to also focus on what went well. When using CRP, the performers acquired more of a passive role in the first phase (Statements of meaning) by being recipients of feedback from the responders and facilitator focusing on positive, impressive and good practice in their performance. This break is probably expedient after a stressful exercise. They got time to gather and take control, which enabled them to receive further feedback. This first CRP phase seemed to create a context of trusting relationships between those who give and those who receive feedback, the reinforcement of key points done well, to help reduce emotional distress and safeguard that feedback was given in a timely manner, which all is underscored in learning and for feedback to be useful (Lefroy et al., 2015; Lerman & Borstel, 2003).

The last phase in CRP is the Permissioned Opinions phase. As reported in other studies (Symondson, 2014), this ritual seemed to be perceived as something weird. Smiles and humor followed the ritual of asking for permission to give advices, although the purpose is to give explicit control to the recipient of feedback (Lerman & Borstel, 2003), also being in accordance with good feedback practice (Lefroy et al., 2015; Nicol & Macfarlane-Dick, 2006). The advice was mostly positively charged (Keep on like you showed us today, it was impressive), but also included areas for improvement and how to proceed in learning, particularly taken care of by the facilitator. As described by Kate Symondson (2014), the facilitator possesses many roles in CRP: to relieve the performers if they are highly emotionally affected, to act as the bad guy if the respondents are too polite, though also to prevent the focus on the negative aspects that accompany free discussion. To be a facilitator can be an exhausting role if all the responsibility for preparation, briefing, facilitating the scenario, and for the learning progress in debriefing, lies on his shoulders (Fraser et al., 2018). However, the facilitator noted the feeling of relief when he used the CRP structure; it was easier to hold on to the structure, a relief through a shared responsibility for raising questions and providing feedback, and that the CRP structure forced everyone to participate.

The facilitator noted his concern about losing control when CRP was used, meaning a fear of not achieving the learning outcomes. Because of the students mainly being the ones to give feedback and raise questions, CRP seemed to safeguard a more comprehensive focus on the nursing performance, while using Steinwachs where the
facilitator is held to be primarily responsible, the feedback and questions related to the performance seemed to be broken up into details connected to the learning outcomes (ABCDE, communication, leadership). Nevertheless, in analyzing the videos, and according to the students’ responses to the questionnaire, the learning outcomes appeared in both structures to be the dominant focus.

To transfer responsibility and control from the facilitator to the students allows for learner-centered learning and facilitates for an active and collaborative learning (Lefroy et al., 2015; Nicol & Macfarlane-Dick, 2006). In addition, promoting and participating in a patient safety culture, which is urgent for patient safety, requires courage to raise one’s voice, and involves an openness to failures and success, mutual support, to receive and give feedback and a shared responsibility. Education should include learning environments with the purpose that the students develop such abilities. Simulation is a resource-intensive learning approach, and in addition to achieving learning outcomes, emphasizing and utilizing such side effects makes simulation an effective learning approach.

Limitations

The aim of the study was to explore how two different debriefing structures influenced the facilitator’s role and how it affected the students’ activities. However, with the exception of the students responding to the dimension, Learning and Making Connection, as part of the Debriefing Experience Scale questionnaire, no conclusions can be drawn regarding the structures concerning the achievement of the learning outcomes.

As always, reactivity to the study situation is a threat to validity (Polit & Beck, 2017), meaning that the students might have tended to behave in a special manner by knowing they were being videotaped, observed and part of a study. The students had previously experienced Steinwachs as the ordinary way of structuring debriefing, but CRP was new. They did not receive any introductions about the two different structures ahead of the debriefing. A more conscious awareness of the structures might have influenced the results, but by only supplying the students with the basic outlines of the process and introducing the new stages, the focus was on the learning outcomes and not on restrictive structures (Symondson, 2014).

Both of the researchers who analyzed the videos were familiar with Steinwachs as a debriefing structure, but CRP was new for one of them. The analysis results were validated against the facilitator’s notes and experiences of the debriefing, showing the observations and the facilitator’s notes to be consistent.

Conclusions

The results of this study showed that Critical Response Process (CRP) can be an appropriate structure to use in debriefing in medical simulation. It helped to reduce the facilitator's frames, responsibility and dominance in debriefing, coincident with what is empathized in collaborative, active and learner-centered learning. CRP made the
facilitator’s role to be that of a group leader, as well as sharing the responsibility for feedback and asking and answering questions with the students. The CRP phases implied activity from everybody in the room, and that the students communicated directly with each other. In using Steinwachs, the facilitator’s role included to be the one responsible; to be a group leader, to be the one to ask and answer questions, and to activate the students. Glances, attention and communication were drawn to the facilitator. However, the students were satisfied with the facilitator and the debriefing session independent of structure used. Their responses to the Debriefing Experience Scale questionnaire revealed no significant differences between the two structures.

Declaration of Conflicting Interests

The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The authors received no financial support for the research, authorship, and/or publication of this article.

References

Cantrell, M. A. (2008). The importance of debriefing in clinical simulations. *Clinical Simulation in Nursing, 4*(2), e19–e23. http://doi.org/10.1016/j.ecns.2008.06.006

Cheng, A., Grant, V., Dieckmann, P., Arora, S., Robinson, T., & Eppich, W. (2015). Faculty development for simulation programs: Five issues for the future of debriefing training. *Simulation in Healthcare, 10*(4), 217–222.

Childress, R. M., Jeffries, P. R., & Dixon, C. F. (2007). Using collaboration to enhance the effectiveness of simulated learning in nursing education. In P. R. Jeffries (Ed.), *Simulation in nursing education: From conceptualization to evaluation* (pp. 123–135). National League for Nursing.

Davis-Berman, J., & Berman, D. (2002). Risk and anxiety in adventure programming. *Journal of Experiential Education, 25*(2), 305–310. http://doi.org/10.1177/10382590202500209

Decker, S., Fey, M., Sideras, S., Caballero, S., Rockstraw, L., Boese, T., . . . Borum, J. C. (2013). Standards of best practice: Simulation standard VI: The debriefing process. *Clinical Simulation in Nursing, 9*(6, Suppl.), S26–S29. https://doi.org/10.1016/j.ecns.2013.04.008

Dieckmann, P. (Ed.). (2009). *Using simulations for education, training and research*. Pabst.

Dieckmann, P., Friis, S. M., Lippert, A., & Østergaard, D. (2012). Goals, success factors, and barriers for simulation-based learning a qualitative interview study in health care. *Simulation & Gaming, 43*(5), 627–647. http://doi.org/10.1177/1046878112439649

Dreifuerst, K. T. (2009). The essentials of debriefing in simulation learning: A concept analysis. *Nursing Education Perspectives, 30*(2), 109–114. http://doi.org/10.1043/1536-5026-030.002.0109

Fanning, R. M., & Gaba, D. M. (2007). The role of debriefing in simulation-based learning. *Simulation in Healthcare, 2*(2), 115–125. http://doi.org/10.1097/SIH.0b013e3180315539

Field, A. (2009). *Discovering statistics using SPSS*. SAGE.

Fraser, K. L., Meguerdichian, M. J., Haws, J. T., Grant, V. J., Bajaj, K., & Cheng, A. (2018). Cognitive Load Theory for debriefing simulations: Implications for faculty development. *Advances in Simulation, 3*(1): Article Number 28.
Hsieh, H.-F., & Shannon, S. E. (2005). Three approaches to qualitative content analysis. *Qualitative Health Research, 15*(9), 1277–1288. http://doi.org/10.1177/1049732305276687

Husebø, S. E., Dieckmann, P., Rystedt, H., Søreide, E., & Friberg, F. (2013). The relationship between facilitators’ questions and the level of reflection in postsimulation debriefing. *Simulation in Healthcare, 8*(3), 135–142. https://doi.org/10.1097/SIH.0b013e31827eb5c

INACSL Standards Committee. (2016). INACSL standards of best practice: SimulationSM debriefing. *Clinical Simulation in Nursing, 12*, S21–S25. https://doi.org/10.1016/j.ecns .2016.09.008

Jeffries, P. R., & Rogers, K. J. (2007). Theoretical framework for simulation design. In P. R. Jeffries (Ed.), *Simulation in nursing education: From conceptualization to evaluation* (pp. 21–33). National League for Nursing.

Keitel, A., Ringleb, M., Schwartges, I., Weik, U., Picker, O., Stockhorst, U., & Deinzer, R. (2011). Endocrine and psychological stress responses in a simulated emergency situation. *Psychoneuroendocrinology, 36*(1), 98–108. http://doi.org/10.1016/j.psyneuen.2010.06.011

Lefroy, J., Watling, C., Teunissen, P. W., & Brand, P. (2015). Guidelines: The do’s, don’ts and don’t know’s of feedback for clinical education. *Perspectives on Medical Education, 4*(6), 284–299.

Lerman, L., & Borstel, J. (2003). *Critical Response Process: A method for getting useful feedback on anything you make, from dance to dessert*. Liz Lerman Dance Exchange.

Levett-Jones, T., & Lapkin, S. (2014). A systematic review of the effectiveness of simulation debriefing in health professional education. *Nurse Education Today, 34*(6), e58–e63. http://doi.org/10.1016/j.nedt.2013.09.020

McGaghie, W. C., Issenberg, S. B., Petrusa, E. R., & Scalese, R. J. (2010). A critical review of simulation-based medical education research: 2003–2009. *Medical Education, 44*(1), 50–63. http://doi.org/10.1111/j.1365-2923.2009.03547.x

Neill, M. A., & Wotton, K. (2011). High-fidelity simulation debriefing in nursing education: A literature review. *Clinical Simulation in Nursing, 7*(5), e161–e168. http://doi.org/10.1016/j .ecns.2011.02.001

Nicol, D. J., & Macfarlane-Dick, D. (2006). Formative assessment and self-regulated learning: A model and seven principles of good feedback practice. *Studies in Higher Education, 31*(2), 199–218.

Nordkvelle, Y., Stalheim, O. R., Fossland, T., de Lange, T., Wittek, A. L., & Nerland, M. B. (2019). Simulating: Bridging the gap between practice and theory in higher professional education. In K. Trimmer, T. Newman, & F. F. Padró (Eds.), *Ensuring quality in professional education. Volume I: Human client fields pedagogy and knowledge structures* (pp. 53–72). Springer.

Northern Nurses’ Federation. (2003). *Ethical guidelines for nursing research in the Nordic countries*. http://ssn-norden.dk/wp-content/uploads/2016/01/SSNs-etiske-retningslinjer.pdf

Polit, D. F., & Beck, C. T. (2017). *Nursing research : Generating and assessing evidence for nursing practice* (10th ed.). Wolters Kluwer.

Reed, S. J. (2012). Debriefing Experience Scale: Development of a tool to evaluate the student learning experience in debriefing. *Clinical Simulation in Nursing. http://doi.org/10.1016/j .ecns.2011.11.002

Roh, Y. S., & Jang, K. I. (2017). Survey of factors influencing learner engagement with simulation debriefing among nursing students. *Nursing & Health Sciences, 19*(4), 485–491.

Rourke, L., Schmidt, M., & Garga, N. (2010). Theory-based research of high fidelity simulation use in nursing education: A review of the literature. *International Journal of Nursing Education Scholarship, 7*(1). https://doi.org/10.2202/1548-923X.1965
Spanager, L., Dieckmann, P., Beier-Holgersen, R., Rosenberg, J., & Oestergaard, D. (2015). Comprehensive feedback on trainee surgeons’ non-technical skills. *International Journal of Medical Education, 6*, 4–11. https://doi.org/10.5116/ijme.54b4.2196

Steinwachs, B. (1992). How to facilitate a debriefing. *Simulation & Gaming, 23*(2), 186–195.

Symondson, K. (2014). Report evaluating the critical response process. https://www.mahoganyoperagroup.co.uk/Media/Default/Files/PDF/Revised%20Report%20Evaluating%20the%20Critical%20Response%20Process.pdf

Tosterud, R., Hall-Lord, M. L., Petzäll, K., & Hedelin, B. (2014). Debriefing in simulation conducted in small and large groups—Nursing students’ experiences. *Journal of Nursing Education and Practice, 4*(9), 173–182. http://doi.org/10.5430/jnep.v4n9p173

Tosterud, R., Petzäll, K., Wangensteen, S., & Hall-Lord, M. L. (2015). Cross-cultural validation and psychometric testing of the questionnaire: Debriefing Experience Scale. *Clinical Simulation in Nursing, 11*(1), 27–34. https://doi.org/10.1016/j.ecns.2014.09.011

Zulkosky, K. D. (2012). Simulation use in the classroom: Impact on knowledge acquisition, satisfaction, and self-confidence. *Clinical Simulation in Nursing, 8*(1), e25–e33. http://doi.org/10.1016/j.ecns.2010.06.003

Author Biographies

Randi Tosterud is an associate professor at the Norwegian University of Science and Technology. Her research interests concern simulation as a learning approach.

Contact: Randi.tosterud@ntnu.no

Kristin Kjolberg is an associate professor at the Norwegian Academy of Music. Research interests concern vocal pedagogy and concert dramaturgy. She uses Critical Response Process as a feedback structure.

Contact: kristin.kjolberg@nmh.no

Arnhild Vestnes Kongshaug is an assistant professor at the Norwegian University of Science and Technology. She is an expert in the use of simulation as a learning approach in bachelor and advanced nursing education.

Contact: arko@ntnu.no

Jon Viktor Haugom is an assistant professor at the Norwegian University of Science and Technology. He is an expert in the use of simulation as a learning approach in bachelor and advanced nursing education.

Contact: Viktor.haugom@ntnu.no