SOME IDENTITIES OF EULERIAN POLYNOMIALS ARISING
FROM NONLINEAR DIFFERENTIAL EQUATIONS

TAEKYUN KIM AND DAE SAN KIM

ABSTRACT. In this paper, we study nonlinear differential equations arising from Eulerian polynomials and their applications. From our study of nonlinear differential equations, we derive some new and explicit identities involving Eulerian and higher-order Eulerian polynomials.

1. INTRODUCTION

The Eulerian polynomials were introduced by L. Euler in his Remarques sur un beau rapport entre les sérises des puissances tant directes que réciproques in 1749 (first printed in 1765) where he describes a method of computing values of the zeta function at negative integers by a precursor of Abel’s theorem applied to a divergent series (see [3–5, 19, 22]).

As is well known, the Eulerian polynomials, $A_n(t)$, $(n \geq 0)$, are defined by the generating function

$\frac{1 - t}{e^{x(t-1)} - t} = e^{A(t)x} = \sum_{n=0}^{\infty} A_n(t) \frac{x^n}{n!},$ (see [11]),

with the usual convention about replacing $A^n(t)$ by $A_n(t)$.

From (1.1), we can derive the following recurrence relation for the Eulerian polynomials:

$(A(t) + (t-1))^n - tA_n(t) = (1 - t) \delta_{0,n}, \quad (n \geq 0), \quad (see \ [11]).$

By (1.2), we easily get

$A_0(t) = 1, \quad A_n(t) = \frac{1}{t - 1} \sum_{l=0}^{n-1} \binom{n}{l} A_l(t) (t-1)^{n-l}, \quad (n \geq 1).$

Furthermore,

$A_n(t)\frac{(1-t)^{n+1}}{(1-t)^n} = \sum_{j=0}^{\infty} t^j (j+1)^n, \quad (n \geq 0), \quad (see \ [2–6])$

The first few Eulerian polynomials are

$1 + t + t^2 + t^3 + \cdots = \frac{1}{1-t} = A_0(t)\frac{1}{1-t},$

$1 + 2t + 3t^2 + 4t^3 + \cdots = \frac{1}{(1-t)^2} = A_1(t)\frac{1}{(1-t)^2}.$

2010 Mathematics Subject Classification. 05A19, 11B83, 34A34.

Key words and phrases. Eulerian polynomials, higher-order Eulerian polynomials, non-linear differential equation.
$$1 + 2^2t + 3^2t^2 + 4^2t^3 + \cdots = \frac{1 + t}{(1 - t)^3} = \frac{A_2(t)}{(1 - t)^3}.$$

Recently, several authors has studied some interesting extensions and modifications of Eulerian polynomials along with related combinatorial, probabilistic and statistical applications (see [1–22]).

In [15], Kim has studied nonlinear differential equations arising from Frobenius-Euler numbers and polynomials.

In this paper, we give some new and explicit identities on Eulerian and higher-order Eulerian polynomials which are derived from solutions of nonlinear differential equations.

2. Nonlinear differential equations arising from Eulerian polynomials

Let us put

$$F = F(t, x) = \frac{1}{e^{x(t-1)} - t}, \quad (t \neq 1).$$

Now, we consider the differentiation of F with respect to x while t is being fixed.

$$F^{(1)} = \frac{d}{dx} F(t, x)$$

$$= \frac{(-1)^2 e^{x(t-1)}}{(e^{x(t-1)} - t)^2} (t - 1)$$

$$= (1 - t) \frac{1}{(e^{x(t-1)} - t)^2} \left(e^{x(t-1)} - t + t \right)$$

$$= (1 - t) \left(F + tF^2 \right).$$

Thus, by (2.2), we easily get

$$F^{(2)} = \frac{d}{dx} F^{(1)}$$

$$= (1 - t) \left(F^{(1)} + 2tF F^{(1)} \right)$$

$$= (1 - t) \left(1 + 2tF \right) F^{(1)}$$

$$= (1 - t)^2 \left(F + tF^2 \right)$$

$$= (1 - t)^2 \left(F + 3tF^2 + 2t^2 F^3 \right),$$

and

$$F^{(3)} = \frac{d}{dx} F^{(2)}$$

$$= (1 - t)^2 \left(F^{(1)} + 6tF F^{(1)} + 6t^2 F^2 F^{(1)} \right)$$

$$= (1 - t)^2 \left(1 + 6tF + 6t^2 F^2 \right) F^{(1)}$$

$$= (1 - t)^3 \left(F + 6tF^2 \right)$$

$$= (1 - t)^3 \left(F + 7tF^2 + 12t^2 F^3 + 6t^3 F^4 \right).$$
Continuing this process, we set

\[
F^{(N)} = \left(\frac{d}{dx} \right)^N F(t, x)
\]

\[
= \left(\frac{d}{dx} \right)^N \left(\frac{1}{e^{x(t-1)} - t} \right)
\]

\[
= (1 - t)^N \sum_{i=1}^{N+1} a_{i-1} (N, t) F^i, \quad (N \in \mathbb{N} \cup \{0\}).
\]

From (2.5), we can derive the following equation (2.6):

\[
F^{(N+1)} = \frac{d}{dx} F^{(N)}
\]

\[
= (1 - t)^N \sum_{i=1}^{N+1} a_{i-1} (N, t) i F^{i-1} (F + t F^2)
\]

\[
= (1 - t)^{N+1} \sum_{i=1}^{N+1} a_{i-1} (N, t) i F^{i-1} \left(F + t F^2\right)
\]

\[
= (1 - t)^{N+1} \left\{ \sum_{i=1}^{N+1} a_{i-1} (N, t) i F^i + \sum_{i=1}^{N+1} a_{i-1} (N, t) i^2 F^{i+1} \right\}
\]

\[
= (1 - t)^{N+1} \left\{ \sum_{i=1}^{N+1} a_{i-1} (N, t) i F^i + \sum_{i=2}^{N+2} a_{i-2} (N, t) (i - 1) t F^i \right\}
\]

\[
= (1 - t)^{N+1} \left\{ a_0 (N, t) F + (N + 1) t a_N (N, t) F^{N+2} + \sum_{i=2}^{N+1} \left(i a_{i-1} (N, t) + (i - 1) t a_{i-2} (N, t) \right) F^i \right\}.
\]

By replacing \(N \) by \(N + 1 \) in (2.5), we get

\[
F^{(N+1)} = (1 - t)^{N+1} \sum_{i=1}^{N+2} a_{i-1} (N + 1, t) F^i.
\]

From (2.6) and (2.7), we can derive the following recurrence relation for the coefficients \(a_i (N, t) \):

\[
a_0 (N + 1, t) = a_0 (N, t),
\]

\[
a_{N+1} (N + 1, t) = (N + 1) t a_N (N, t),
\]

and

\[
a_{i-1} (N + 1, t) = (i - 1) t a_{i-2} (N, t) + i a_{i-1} (N, t),
\]

where \(2 \leq i \leq N + 1 \).

It is not difficult to show that

\[
F = F^{(0)} = a_0 (0, t) F.
\]

Thus, by (2.11), we have

\[
a_0 (0, t) = 1.
\]
From (2.3) and (2.5), we note that
\[
(1 - t) \left(F + tF^2 \right) = F^{(1)}
\]
\[
= (1 - t) \sum_{i=1}^{2} a_{i-1} (1, t) F^i
\]
\[
= (1 - t) \left\{ a_0 (1, t) F + a_1 (1, t) F^2 \right\}. \tag{2.13}
\]

By comparing the coefficients on both sides of (2.13), we have
\[
a_0 (1, t) = 1, \quad a_1 (1, t) = t. \tag{2.14}
\]

From (2.14), we note that
\[
a_{N+1} (N + 1, t) = a_{N+1} (N, t) = \cdots = a_0 (1, t) = a_0 (0, t) = 1,
\]
and
\[
a_{N+1} (N + 1, t) = (N + 1) t a_N (N, t)
\]
\[
= (N + 1) t N t a_{N-1} (N - 1, t)
\]
\[
= t^2 (N + 1) N a_{N-1} (N - 1, t)
\]
\[
\vdots
\]
\[
= t^N (N + 1) N \cdots 2 a_1 (1, t)
\]
\[
= t^{N+1} (N + 1)!. \tag{2.15}
\]

So, we have the matrix \((a_i (j, t))_{0 \leq i, j \leq N}\) as follows:
\[
\begin{bmatrix}
0 & 1 & 2 & 3 & N \\
0 & 1 & 1 & 1 & \cdots & 1 \\
1 & & 1! t & & \\
2 & & 2! t^2 & & \\
3 & & 3! t^3 & & \\
& & & & \ddots & \\
N & & & & & N! t^N
\end{bmatrix}
\]

From (2.10), we have
\[
a_1 (N + 1, t) = t a_0 (N, t) + 2 a_1 (N, t)
\]
\[
= t a_0 (N, t) + 2 \{ t a_0 (N - 1, t) + 2 a_1 (N - 1, t) \}
\]
\[
= t \{ a_0 (N, t) + 2 a_0 (N - 1, t) \} + 2^2 \{ t a_0 (N - 2, t) + 2 a_1 (N - 2, t) \}
\]
\[
= t \{ a_0 (N, t) + 2 a_0 (N - 1, t) + 2^2 a_0 (N - 2, t) \} + 2^3 a_1 (N - 2, t)
\]
\[
\vdots
\]
\[
= t \sum_{i=0}^{N-1} 2^i a_0 (N - i, t) + 2^N a_1 (1, t) \tag{2.17}
\]
\[= t \sum_{i=0}^{N} 2^i a_0(N - i, t),\]

(2.18)

\[a_2(N + 1, t) = 2ta_1(N, t) + 3a_2(N, t)\]
\[= 2ta_1(N, t) + 3 \{ 2ta_1(N - 1, t) + 3a_2(N - 1, t) \} = 2t \{ a_1(N, t) + 3a_1(N - 1, t) \} + 3^2 \{ 2ta_1(N - 2, t) + 3a_2(N - 2, t) \} = 2t \{ a_1(N, t) + 3a_1(N - 1, t) \} + 3^2a_2(N - 2, t)\]
\[\vdots\]
\[= 2t \sum_{i=0}^{N-2} 3^i a_1(N - i, t) + 3^{N-1} a_2(2, t)\]
\[= 2t \sum_{i=0}^{N-1} 3^i a_1(N - i, t),\]

and

(2.19)

\[a_3(N + 1, t) = 3ta_2(N, t) + 4a_3(N, t)\]
\[= 3ta_2(N, t) + 4 \{ 3ta_2(N - 1, t) + 4a_3(N - 1, t) \} = 3t \{ a_2(N, t) + 4a_2(N - 1, t) \} + 4^2 \{ 3ta_2(N - 2, t) + 4a_3(N - 2, t) \} = 3t \{ a_2(N, t) + 4a_2(N - 1, t) \} + 4^2a_3(N - 2, t)\]
\[\vdots\]
\[= 3t \sum_{i=0}^{N-3} 4^i a_2(N - i, t) + 4^{N-2} a_3(3, t)\]
\[= 3t \sum_{i=0}^{N-2} 4^i a_2(N - i, t).\]

Continuing this process, we get

(2.20) \[a_j(N + 1, t) = jt \sum_{i=0}^{N-j+1} (j + 1)^i a_{j-1}(N - i, t), \quad (1 \leq j \leq N + 1).\]

Therefore, by (2.20), we obtain the following theorem.

Theorem 1. For each fixed \(t \neq 1\) and \(N \in \mathbb{N} \cup \{0\}\), \(F = F(t, x) = \frac{1}{e^{(x-1) - t}}\) satisfies the nonlinear differential equation

(2.21) \(\left(\frac{d}{dx} \right)^{N} F = (1 - t)^{N} \sum_{i=1}^{N+1} a_{i-1}(N, t) F^{i},\)
where \(a_0(N, t) = a_0(N-1, t) = \cdots = a_0(1, t) = a_0(0, t) = 1,\)
\[a_i(N, t) = it \sum_{j=0}^{N-i} (i+1)^j a_{i-1} (N-j-1, t) \quad (1 \leq j \leq N).\]

Taking the \(N\)-th derivative with respect to \(x\) on both sides of (1.1), we obtain
\[
(\frac{d}{dx})^N \left(\frac{1 - t}{e^{x(t-1)} - t} \right) = \sum_{n=N}^{\infty} A_n(t) (n)_N \frac{x^{n-N}}{n!} \]
\[= \sum_{n=0}^{\infty} A_{n+N}(t) (n + N)_N \frac{x^n}{(n + N)!} \]
\[= \sum_{n=0}^{\infty} A_{n+N}(t) \frac{x^n}{n!}.
\]

On the other hand, from (2.21), we have
\[
(\frac{d}{dx})^N \left(\frac{1 - t}{e^{x(t-1)} - t} \right) = (1 - t)^{N+1} \sum_{i=1}^{N+1} a_{i-1} (N, t) (1-t)^{-i} \left(\frac{1 - t}{e^{x(t-1)} - t} \right)^i \]
\[= \sum_{n=0}^{\infty} (\sum_{i=1}^{N+1} a_{i-1} (N, t) (1-t)^{N+1-i} \sum_{n=0}^{\infty} A_n(t) \frac{x^n}{n!}) \frac{x^n}{n!},
\]
where \(A_n^{(i)}(t)\) are called the higher-order Eulerian polynomials and defined by the generating function
\[
(\frac{1 - t}{e^{x(t-1)} - t})^m = \sum_{n=0}^{\infty} A_n^{(m)}(t) \frac{x^n}{n!}.
\]

Therefore, by (2.22) and (2.23), we obtain the following theorem.

Theorem 2. For all \(t, \) and \(n, N \in \mathbb{N} \cup \{0\},\) we have
\[A_{n+N}(t) = \sum_{i=1}^{N+1} a_{i-1} (N, t) (1-t)^{N+1-i} A_n^{(i)}(t).
\]

Note here that, as both sides are polynomials and it holds for all \(t \neq 1),\) it is true as polynomials. Explicit expressions for \(a_i(N, t),\) \((1 \leq i \leq N),\) are given by
\[
a_1(N, t) = t \sum_{j=0}^{N-1} 2^j a_0(N-j-1, t) \]
\[= t \sum_{j=0}^{N-1} 2^j \]
\[= t (2^N - 1),
\]
Recall that

Continuing this process, we have

Thus, by \((2.30) \), we get

and

Continuing this process, we have

Recall that

Thus, by \((2.30) \), we get

\[
\sum_{j=0}^{\infty} t^j (j + 1)^{n+N} = \frac{A_{n+N}(t)}{(1-t)^{n+N+1}} = \sum_{i=1}^{N+1} a_{i-1}(N,t) (1-t)^{-n-i} A_n^{(i)}(t)
\]
\[
(1 - t)^{-n} \sum_{i=1}^{N+1} a_{i-1} (N, t) (1 - t)^{-i} A_n^{(i)} (t).
\]

Therefore, by (2.31), we obtain the following theorem.

Theorem 3. For \(n, N \in \mathbb{N} \cup \{0\} \), we have

\[
\sum_{j=0}^{\infty} t^j (j + 1)^{n+N} = (1 - t)^{-n} \sum_{i=1}^{N+1} a_{i-1} (N, t) (1 - t)^{-i} A_n^{(i)} (t).
\]

REFERENCES

1. P. Barry, Eulerian polynomials as moments, via exponential Riordan arrays, J. Integer Seq. 14 (2011), no. 9, Article 11.9.5, 14. MR 2859989
2. L. Carlitz, The Product of Two Eulerian Polynomials, Math. Mag. 36 (1963), no. 1, 37–41. MR 1571266
3. G. Ferraro, Euler’s treatises on infinitesimal analysis: Introductio in analysin infinititorum, institutiones calculi differentialis, institutionum calculi integralis, Euler reconsidered, Kendrick Press, Heber City, UT, 2007, pp. 39–101. MR 2384378
4. D. Foata, Eulerian polynomials: from Euler’s time to the present, The legacy of Alladi Ramakrishnan in the mathematical sciences, Springer, New York, 2010, pp. 253–273. MR 2744266 (2012f:01013)
5. , Les polynômes euleriens, d’Euler à Carlitz, Leonhard Euler, Sci. Musique Sér. Etudes, CNRS Éd., Paris, 2015, pp. 413–432. MR 3379324
6. B. Harris and C. J. Park, A generalization of the Eulerian numbers with a probabilistic application, Statist. Probab. Lett. 20 (1994), no. 1, 37–47. MR 1294802 (95k:11020)
7. L. C. Hsu and P. J.-S. Shiue, On certain summation problems and generalizations of Eulerian polynomials and numbers, Discrete Math. 204 (1999), no. 1-3, 237–247. MR 1691872 (2000d:11026)
8. J. H. Jin, T. Mansour, E.-J. Moon, and J.-W. Park, On the \((r, q)\)-Bernoulli and \((r, q)\)-Euler numbers and polynomials, J. Comput. Anal. Appl. 19 (2015), no. 2, 250–259. MR 3309956
9. D. S. Kim and T. Kim, A note on nonlinear changhee differential equations, Russian J. Math. Phys. (communicated).
10. , A note on \(q\)-Eulerian polynomials, Proc. Jangjeon Math. Soc. 16 (2013), no. 4, 445–450. MR 3136923
11. D. S. Kim, T. Kim, W. J. Kim, and D. V. Dolgy, A note on Eulerian polynomials, Abstr. Appl. Anal. (2012), Art. ID 269640, 10. MR 2947765
12. D. S. Kim, T. Kim, Y.-H. Kim, and D. V. Dolgy, A note on Eulerian polynomials associated with Bernoulli and Euler numbers and polynomials, Adv. Stud. Contemp. Math. (Kyungshang) 22 (2012), no. 3, 379–389. MR 2976596
13. D. S. Kim, T. Kim, and H. Y. Lee, \(p\)-adic \(q\)-integral on \(\mathbb{Z}_p\) associated with Frobenius-type Eulerian polynomials and umbral calculus, Adv. Stud. Contemp. Math. (Kyungshang) 23 (2013), no. 2, 243–251. MR 3088755
14. D. S. Kim, T. Kim, and S.-H. Rim, Frobenius-type Eulerian polynomials and umbral calculus, Proc. Jangjeon Math. Soc. 16 (2013), no. 2, 285–292. MR 3097742
15. T. Kim, Identities involving Frobenius-Euler polynomials arising from non-linear differential equations, J. Number Theory 132 (2012), no. 12, 2854–2865. MR 2965196
16. Degenerate Euler zeta function, Russ. J. Math. Phys. 22 (2015), no. 4, 469–472. MR 3431170
17. T. Kim, D. S. Kim, S.-H. Rim, and D. V. Dolgy, Some identities of Frobenius-type Eulerian polynomials arising from umbral calculus, Int. J. Math. Anal. (Ruse) 7 (2013), no. 53-56, 2637–2644. MR 3152977
18. T. Kim and T. Mansour, Umbral calculus associated with Frobenius-type Eulerian polynomials, Russ. J. Math. Phys. 21 (2014), no. 4, 484–493. MR 3284958
19. M. V. Koutras, Eulerian numbers associated with sequences of polynomials, Fibonacci Quart. 32 (1994), no. 1, 44–57. MR 1259181 (94k:11024)
20. J. Riordan, An introduction to combinatorial analysis, Wiley Publications in Mathematical Statistics, John Wiley & Sons, Inc., New York; Chapman & Hall, Ltd., London, 1958. MR 0096594 (20 #3077)
21. C. S. Ryoo, H. I. Kwon, J. Yoon, and Y. S. Jang, Representation of higher-order Euler numbers using the solution of Bernoulli equation, J. Comput. Anal. Appl. 19 (2015), no. 3, 570–577. MR 3307420
22. T. Xiong, H.-P. Tsao, and J. I. Hall, General Eulerian numbers and Eulerian polynomials, J. Math. (2013), Art. ID 629132, 9. MR 3097204

Department of Mathematics, Kwangwoon University, Seoul 139-701, Republic of Korea
E-mail address: t kkim@kw.ac.kr

Department of Mathematics, Sogang University, Seoul 121-742, Republic of Korea
E-mail address: dskim@sogang.ac.kr