CASE REPORT

Prosthetic Rehabilitation of an Eye Globe: Case Report

Marcelo Coelho Goiato¹, Daniela Micheline dos Santos¹, Isabela Caroline de Sousa Erovlin⁰, Juliana Lujan Brunetto¹, Andre Pinheiro de Magalhaes Bertoz², Clovis Lamartine de Moraes Melo Neto¹

ABSTRACT

Introduction: The lack of an eye has an immediate and long-term impact on a patient’s life. Aim: The aim of this study is to show a case of prosthetic rehabilitation of an eyeball. Case report: Male patient, 60 years old, sought care at the Oral Oncology Center of the São Paulo State University “Júlio de Mesquita Filho”, for the rehabilitation of the orbital cavity with an acrylic eye prosthesis. This prosthesis was made with thermosterpolymerizable acrylic resin and hand painted iris with oil paint on cardboard. The prosthesis was installed after finishing and polishing and the hygiene and general care instructions were explained. Conclusion: In the present case, the patient was satisfied with the aesthetics and comfort of the prosthesis, which demonstrates the success of the treatment.

Keywords: Ocular Prosthesis. Enophthalmos. Glaucoma.

1. **INTRODUCTION**

Facial aesthetics in daily interpersonal relationships is of paramount importance to an individual (1). A patient’s self-judgment can lead to emotional instability, change in personality characteristics, and change in socialization (2). Surgical removal of an eye can result in depression, difficulties in performing any activity, such as driving a vehicle, and aesthetic problems (3).

As the aesthetic and functional demands of these patients are often compromised after surgery, the best way to rehabilitate is making a prosthesis that covers the defect and fills the region (4). Also, rehabilitation with an eye prosthesis may give professional and social acceptance (4).

2. **AIM**

The aim of this study is to show a case of prosthetic rehabilitation of an eyeball.

3. **CASE REPORT**

Male patient, 60 years old, sought the service of the Oral Oncology Center of the São Paulo State University “Júlio de Mesquita Filho” (COB/UNESP) after the ophthalmic evaluation with a doctor. The patient’s main complaint that due to glaucoma had lost his left eye three years ago and had never used an eye prosthesis (Figure 1).
The acrylic sclera has been proved and noted that its volume was insufficient. Then a layer of wax (Wilson–Polidental Ind. and Com. Ltda, Brazil) was added to the surface of the sclera to fill, and the whole set was again tested on the patient. After finding the volume recovery of the region, as well as the functionality of eyelid movements, the sclera was manufactured again.

With the sclera in the orbital cavity, a symmetrical point based on the pupil of the natural (right) eye was marked on the acrylic sclera. This point would correspond to the position of the pupil in the prosthesis (Figure 2).

For characterization, the right eye iris was measured and photos were taken to aid in the painting of the prosthesis. The new acrylic sclera was half covered with silicone (Zetalabor, Zhermack, Italy), and after material hardening, this set was included in the type III plaster (Asfer, Brazil) inside the base of the muffle. After crystallization of the plaster, the other part of the acrylic sclera was encased in silicone, the muffle was closed and the plaster was dispensed inside the muffle to complete this step.

Through the Daniel Mazzo Palaton characterization kit (Dencril, Brazil) and the self-curing monomer (Classic, Brazil) the sclera was painted. The iris was reproduced on 11 mm diameter cardboard paper with oil inks (Gato Preto, Brazil) associated with Cobalt Secant (Gato Preto, Brazil) (6) and stayed at 37°C incubator for one week.

The marked point on the sclera was drilled about 4-5 mm deep (orifice) for reference of the pupil position. With a Maxicut 1251 (Edenta, Switzerland), a plateau was made to position the paper with the iris painting. Before gluing the iris on the sclera, the orifice was sealed with indigo acrylic resin. The iris was glued with cyanoacrylate on the acrylic sclera so that the pupil of the painting was just above the indigo point of the sclera. Subsequently, the sclera was inserted into the muffle and coated with translucent thermopolymerizable acrylic resin. Posteriorly, the muffle was closed with 1 ton of load for 40 minutes.

After thermopolymerization, finishing and polishing, the ocular prosthesis was installed and patient evaluated the aesthetics and functional movements with the orbicular muscles. Additionally, the patient was instructed how to place and remove his prosthesis. It was recommended to clean the prosthesis with neutral soap (7) and to remove it to sleep (avoiding mucosal irritation and proliferation of microorganisms) (8). The patient was instructed to return for evaluations every 6 months and to change the prosthesis at most every 2 years (7).
aesthetics and comfort of the prosthesis, which demonstrates the success treatment.

- **Acknowledgments**: The authors would like to acknowledge patient who participated in this study
- **Author’s contribution**: MCG, DMS, APMB, ICSE, JLB and CLMMN wrote and critically reviewed this article. All authors gave final approval of the version to be published and agreed to be accountable for all aspects of the article.
- **Conflicts of interest**: There are no conflicts of interest.
- **Financial support and sponsorship**: Nil.

REFERENCES

1. Brown KE. Fabrication of an ocular prosthesis. The Journal of prosthetic dentistry. 1970; 24(2): 225-235. doi: 10.1016/0022-3913(70)90149-6
2. Hatamleh MM, Watson J, Srinivasan D. Closed-eye orbital prosthesis: A clinical report. The Journal of prosthetic dentistry. 2015; 113(3): 246-249. doi: 10.1016/j.prosdent.2014.07.018.
3. Kondo T, Tillman WT, Schwartz TL, Linberg JV, Odom JV. Health Related Quality of Life after Surgical Removal of an Eye. Ophthalmic Plast Reconstr Surg. 2013; 29(1): 51-56. doi: 10.1097/IOP.0b013e318275b754.
4. Chalian VA, Phillips RW. Materials in maxillofacial prosthetics. J Biomed Mater Res. 1974; 8: 349-363. doi: 10.1002/jbm.820080415
5. Goiato MC, Dos Santos DM, Moreno A, Filé Haddad M, Turcio KH. An alternate impression technique for ocular prostheses. J Prosthodont. 2013; 22(4): 338-340. doi: 10.1111/j.1532-849X.2012.00945.x.
6. Moreno A, Goiato MC, Oliveira KF, Lyda MG, Haddad MF, De Carvalho Dekon SF, dos Santos DM. Color stability of the artificial iris button in an ocular prosthesis before and after acrylic resin polymerization. Cont Lens Anterior Eye. 2015; 38(6): 414-418. doi: 10.1016/j.clae.2015.05.003.
7. Bonaque-González S, Amigó A, Rodríguez-Luna C. Recommendations for post-adaption care of an ocular prosthesis: A review. Contact Lens and Anterior Eye. 2015; 38(6): 397–401. doi: 10.1016/j.clae.2015.06.003. Epub 2015 Jul 2.
8. Goiato MC, dos Santos DM, Moreno A, Lyda MG, Rezende MC, Haddad MF. Effect of disinfection and storage on the flexural strength of ocular prosthetic acrylic resins. Gerodontology. 2012; 29(2): e838–44. doi: 10.1111/j.1741-2358.2011.00570.x.
9. Lubkin V, Sloan S. Enucleation and psychic trauma. Adv Ophthalmic Plast Reconstr Surg. 1990; 8: 259-262.
10. Goiato MC, Santos MR, Monteiro BC, Moreno A, Bannwart LC, Filho AJ, Guiotti AM, Haddad MF, Pesqueira AA, Dos Santos DM. Electrical activity of the orbicularis muscles before and after installation of ocular prostheses. Int J Oral Maxillofac Surg. 2015; 44(1): 127-131. doi: 10.1016/j.ijom.2014.09.021.