Evaluation of 22q11.2 deletion in Cleft Palate patients

L. B. Lahiru Prabodha, Dayanath Kumara Dias1, B. Ganananda Nanayakkara, Deepthi C. de Silva2, N. Vishvanath Chandrasekharan2, Isurani Ileyperuma

Molecular Genetics Laboratory, Department of Anatomy, Faculty of Medicine, University of Ruhuna, Galle, 1Regional Cleft Centre & Maxillo-Facial Department, Teaching Hospital, Karapitiya, Galle, 2Department of Physiology, University of Kelaniya, 3Biochemistry and Molecular Biology Laboratory, Department of Chemistry, University of Colombo, Sri Lanka

Address for correspondence:
Dr. L. B. Lahiru Prabodha, Molecular Genetics Laboratory, Department of Anatomy, Faculty of Medicine, PO BOX 70, Karapitiya, Galle, Sri Lanka.
E-mail: lahiruprabodha@gmail.com

ABSTRACT

Background: Cleft palate is the commonest multifactorial epigenetic disorder with a prevalence of 0.43–2.45 per 1000. The objectives of this study were to evaluate the clinical features and identify the 22q11.2 deletion in patients with cleft palate in Sri Lanka. Materials and Methods: Cleft patients attending a Teaching Hospital in Sri Lanka were recruited for this study. The relevant data were obtained from review of case notes, interviews, and examination of patients according to a standard evaluation sheet. Quantitative multiplex polymerase chain reaction (PCR) was performed to identify the 22q11.2 deletion. A gel documentation system (Bio-Doc) was used to quantify the PCR product following electrophoresis on 0.8% agarose gel. Results and Conclusion: There were 162 cleft palate patients of whom 59% were females. A total of 92 cleft palate subjects (56.2%) had other associated clinical features. Dysmorphic features (25.27%) and developmental delays (25.27%) were the commonest medical problems encountered. The cleft was limited to the soft palate in 125 patients, while in 25 patients it involved both the hard and the soft palate. There were seven subjects with bifid uvula and five subjects with submucous cleft palate. None of the patients had 22q11.2 deletion in this study population. A multicentered large population-based study is needed to confirm the results of this study and to develop guidelines on the appropriate use of 22q11.2 deletion testing, which are valid for cleft palate patients in Sri Lanka.

Keywords: 22q11 deletion syndrome, cleft palate, congenital anomalies, polymerase chain reaction, Sri Lanka

INTRODUCTION

Cleft palate is a congenital fissure in the roof of the mouth that results from incomplete fusion of the palate during embryonic development. It is the most common congenital malformations of the head and neck region. It is often associated with cleft lip and various other congenital anomalies. It contributes substantially to long-term disability in children, as well as tremendous emotional and financial stress for the affected families and individuals. The treatment is a long-term process that starts soon after the birth and continues well into the end of the second decade of life with multiple surgeries and long-term speech, orthodontics, audiological, medical, and dental care.

Development of the palate occurs between the 6th and 11th weeks of intrauterine life. Abnormalities of any of the critical events of development due to environmental, local, or genetic predisposition result in failure of the fusion of palatine shelves leading to clefts of the palate.

Prevalence of cleft lip and palate

The prevalence of the cleft palate with or without cleft lip varies according to various factors. The overall incidence of cleft palate with or without cleft lip is 1 in 1000 live births. Generally, the incidence of isolated cleft palate (without cleft lip) is 1 in 2000 live births. Submucous cleft palate is more common, with an incidence of 1 in 1200–2000 live births. The bifid uvula often occurs in isolation, without clefting of the palatal muscles.

There are variations in the prevalence rates of cleft lip and palate in different regions. Low birth prevalence of clefts (0.24 per 1000 live births) was found in Zambia. The prevalence rates of cleft...
Etiology of cleft lip and palate
The etiology of cleft lip and palate is believed to be multifactorial. Several genetic and environmental factors interact with the process of morphogenesis of the primary and secondary palates.\(^{5,15}\) Isolated cleft lip and palate unaccompanied by any other malformation is an autosomal dominant inherited disorder, and the genes were found to be located on the short arm of chromosome 6. Other pedigrees show autosomal recessive and X-linked recessive patterns.\(^{10}\)

Trisomy 13, trisomy 18, velocardiofacial (VCF) syndrome, Pierre–Robin syndrome, fetal valproate syndrome, and oto-palato-digital syndrome are few of the syndromes that are associated with cleft palate.\(^{3}\) There are over 400 syndromes which include cleft lip and/or cleft palate as a component and are listed in the London Dysmorphology Database.\(^{2}\)

22q11 deletion syndrome
The chromosome 22q11 deletion syndrome (Mendelian inheritance in man database number 188400) is a relatively common genetic disorder characterized by congenital cardiac defects, cleft palate, velopharyngeal insufficiency, distinct facial features, immunological problems, learning disabilities, and psychological disorders.\(^{5,13,14}\) This syndrome is caused by deletion of chromosomal material from the long arm of chromosome 22 (22q), which leads to a wide but variable spectrum of effects.

The term velocardiofacial syndrome was used for the milder end of this deletion syndrome. These patients usually manifest palatal anomalies, distinct facial features, and learning disabilities.\(^{15,16}\) This disorder appears to occur as a result of failure or abnormalities in the formation of the 3rd and 4th branchial arch structures from which the affected organs and structures are derived.

22q11 deletion syndrome is one of the common syndromes associated with cleft palate. The prevalence of this syndrome has been estimated to be between 1 in 3800 and 1 in 6500 live births.\(^{13,16}\) Among infants born with conotruncal heart defects, 5% have been found to have a deletion of chromosome 22q11.2.\(^{16}\) Approximately 5–8% infants with cleft palate had a 22q11.2 deletion.\(^{15}\) The prevalence of this deletion syndrome in Sri Lanka is not known.

The 22q11.2 region is a hotspot for rearrangements due to deletions, duplications, and translocations. These rearrangements result in altered gene dosage.\(^{17-21}\) The most commonly deleted region of chromosome 22q11.2 involves the loss of a 3 Mb region in around 85% of cases, but a smaller nested deletion of 1.5 Mb is also described in a further 10% of cases.\(^{14}\) The characteristic disease phenotype is caused by a haploinsufficiency of a series of 24–30 genes within the 22q11.2 region.\(^{14}\)

This deletion occurs in about 94% of cases as a de novo event without preceding family history of a similar deletion. In about 6% of cases, the deletion is inherited from a parent.\(^{14}\)

Diagnosis of 22q11 deletion syndrome is mainly based on the clinical evaluation and confirmed by laboratory investigations. Early detection of 22q11 deletion is far more important as potential complications related to this syndrome can be identified early for management of the condition prior to the cleft palate repair.\(^{22}\)

The main objective of this study was to evaluate the clinical features and identify 22q11.2 deletion among patients with cleft palate in Sri Lanka.

MATERIALS AND METHODS
Patients with isolated cleft palate (without cleft lip) were selected for the study. Patients were identified among those who were currently under the review in the Regional Cleft Centre & Maxillofacial Department, Teaching Hospital, Karapitiya, Galle, Sri Lanka. All patients with isolated cleft palate registered in the clinic from 1 January 2001 to 31 December 2009 were included in the study. A total of 162 cleft palate patients participated in this study. Before enrolling in the study, the entire procedure of the research was briefly explained to the patients and in the case of children, to the parents or guardian. Steps had been taken to maintain the confidentiality of data. Before the evaluation of the patients, a written consent was obtained from all the patients and in case of the children, from parents or guardian.

The patients who consented to participate in the study were interviewed individually in detail by the researcher and data were recorded in an internationally accepted standard structured questionnaire. Complete evaluation of the patient was carried out including relevant history and full clinical examination. All the clinical notes and diagnosis cards were reviewed. Where necessary, patients were referred to special investigation units for procedures such as ultrasound scan, echocardiogram, computed tomography (CT) scan, magnetic resonance imaging (MRI) scan, hearing and visual investigations, etc. Feeding in infants and speech in older children and adults were evaluated by designated speech pathologist.

All the consented patients with cleft palate were included in the assessment of 22q11.2 deletion. One to three milliliters of venous blood was obtained from each patient for the molecular genetic analysis.

Ethical clearance was granted for the study by the Faculty of Graduate Studies, University of Keleniya, Sri Lanka.

Quantitative multiplex PCR
DNA was extracted by using commercially available human genomic DNA extraction kit (QIAamp DNA Mini Kit; Qiagen, Germany). Two sets of 300 µl of whole blood from each patient were used to extract DNA. All the extracted DNA samples were quantified by using UV spectrophotometer [Thermo Spectronic-Genesys (TM) 10].
Ten sets of forward and reverse primers were designed [Table 1] for the multiplex polymerase chain reaction (PCR) test for 22q11.2 deletion. Eight sets of primers were designed to the established sequence-tagged sites (STS) spanning between proximal and distal break points of the typically deleted region (TDR) of the 22q11.2 region, and two other set of primers were designed at the region of cystic fibrosis gene. Primers for the cystic fibrosis gene were used as an internal control outside the deleted region. All the designed primers were analyzed using Basic Local Alignment Search Tool (BLAST) for nonspecific alignments.

In order to detect the 22q11.2 deletion in patients, dosage analysis of markers within 22q11.2 region was carried out using PCR as described by Uddin et al. in 2006.[23] Eight sets of primers representing the established STS markers spanning the 3 Mb TDR were used for this purpose. PCR was carried out in a volume of 25 μl using a thermal DNA cycler (Eppendorf, Germany). Human genomic DNA (100 ng) from patients (P) and from a normal subject (N) were amplified using specific primer sets representing established STS markers spanning the 3 Mb TDR. For each PCR, an internal control of cystic fibrosis gene (SHGC35613) was also included. The annealing temperature for each primer set and the PCR conditions were optimized as described by Rolfs et al.[24] Quantification of PCR products was carried out in the log phase (30 cycles of PCR) after electrophoresis using a gel documentation system (Bio-Doc). All dosage estimations were carried out using three independent PCR reactions. A ratio of 1N:1P indicated that there was no deletion, while a ratio of 2N:1P indicated a deletion.

RESULTS

Gender, age and geographic distribution

There were 323 patients with cleft palate without cleft lip, who attended the Regional Cleft Centre & Maxillo-Facial department, Teaching Hospital Karapitiya over the period starting from 1 January 2001 to 31 December 2009. There were 187 females (57.9%) and 136 males (42.1%). By responding to the request to attend to the routine clinic review, 162 patients attended the study (50.14%). There were 323 patients with cleft palate without cleft lip, who attended the Regional Cleft Centre & Maxillo-Facial department, Teaching Hospital Karapitiya over the period starting from 1 January 2001 to 31 December 2009. There were 187 females (57.9%) and 136 males (42.1%). By responding to the request to attend to the routine clinic review, 162 patients attended the study (50.14%).

The age range was from 2 weeks to 49 years. There were 24 patients with less than or equal to 1 year of age. Most of the patients were small children less than 5 years of age (51.23%).

Most of the subjects were from the Southern Province (90.12%) and majority of them were residing in the Galle district [Table 2].

District	Number of patients	Percentage
Galle	84	51.85
Matara	39	24.07
Hambantota	23	14.20
Kaluthara	07	04.32
Colombo	05	03.05
Rathnapura	04	02.48

Type of cleft palate

There were 125 (77.16%) subjects with cleft soft palate. Twenty-five (15.43%) had cleft palate involving hard palate. Bifid uvula was the next prevailing condition involving 7 (4.32%) subjects. Five (3.09%) subjects with submucous cleft palate were also found among these patients.

Associated clinical conditions

Prevalence of other clinical conditions of the study population was evaluated. Ninety-two (56.79%) subjects had associated other clinical abnormalities. Out of these, 58 (63.04%) were males and 34 (36.96%) were females [Table 3].

Cardiac anomalies

Out of 15 subjects with congenital heart defects, 8 (53.33%) subjects with atrial septal defects (ASDs), 3 (20%) subjects with ventricular septal defects (VSDs), and 1 (6.67%) subject with Tetralogy of Fallot (TOF) were noted. Three subjects (20%) had either mitral valve prolapse (MVP), mitral stenosis (MS), or patent ductus arteriosus (PDA), or in combination.

Table 1: List of primers used for the deletion testing

Seq. name	Given name	Sequence	Length (bp)	Tm (°C)
W13071fp	W1fp	GATAATTTCTCTACATATCTAGG	25	56
W13071rp	W1rp	ATTATTTGCTCAACTITAAGAAC	25	56
G18185fp	G1fp	TITCAACCTCCCTCTGTC	19	60
G18185rp	G1rp	CGATACGAGCTTGAGGTGCTAA	20	60
D22S609fp	D1fp	ATCCCAAGATCTTCAAGGCA	22	56
D22S609rp	D1rp	TTGGGAGCTGTGAGTTTAA	20	58
D22S444fp	D2fp	CATGATGAAGATGCTTTTCCT	21	55
D22S444rp	D2rp	ATCCCATGCTCTCCCAT	19	64
D22S311fp	D3fp	GTGACATGGGCAAGTGGTAG	21	62
D22S311rp	D3rp	CTACAGCCGCACTCTGAGC	20	62
D22S264fp	D4fp	ATTAACCCTAAAGGGGCCC	20	53
D22S264rp	D4rp	CACCACCAAGAGATTCCC	20	62
SHGC14531fp	S1fp	TCTTGGAGCTCTAGTTGGGG	23	62
SHGC14531rp	S1rp	TGATTTGGAGTGAATGAGCACA	23	62
D22S936fp	D5fp	CAATCTTGGGCAAGCAGTTAG	21	60
D22S936rp	D5rp	CAGCCTCTTCTCTGTTGCCC	19	64
D22S365fp	D6fp	AACCTTCTAGGCTCTCTTCT	20	58
D22S365rp	D6rp	CATGAGCTCCAGCGATCGAGT	20	58
SHGC35613fp	S2fp	TAAATCTCCCTGGAATCTTCCC	23	60
SHGC35613rp	S2rp	AGACAGAGCGAGGACAGAA	20	60

Table 2: Geographic distribution

District	Number of patients	Percentage
Galle	84	51.85
Matara	39	24.07
Hambantota	23	14.20
Kaluthara	07	04.32
Colombo	05	03.05
Rathnapura	04	02.48

Table 3: Gender distribution of other congenital abnormalities

Study population	Male (%)	Female (%)
Study sample	41.36	58.64
Subjects with other associated anomalies	63.34	36.96

Distribution of other congenital anomalies

Developmental delay and dysmorphic features were the commonest presentations occurring in 23 (14.2%) subjects each. The second most prevailing condition was cardiac malformation found in 15 (9.26%) subjects. Speech delay in 12 (7.07%), hearing and central nervous system abnormalities in 5 (3.09%) each, and epilepsy in 4 (2.47%) subjects were also noted. Genital, gastrointestinal, and renal anomalies were found in 2 (1.23%) subjects each. Visual abnormalities were seen in 1 (0.062%) subject [Figure 1].

Cardiac anomalies

Out of 15 subjects with congenital heart defects, 8 (53.33%) subjects with atrial septal defects (ASDs), 3 (20%) subjects with ventricular septal defects (VSDs), and 1 (6.67%) subject with Tetralogy of Fallot (TOF) were noted. Three subjects (20%) had either mitral valve prolapse (MVP), mitral stenosis (MS), or patent ductus arteriosus (PDA), or in combination.
In a study of 477 cleft palate patients, Prabodha, et al. [30] identified 22q11.2 microdeletion in patients with cleft palate. 22q11.2 deletion was found in 25 (15.43%) subjects with cleft palate. Of these, 17 (68%) were females and 8 (32%) were males. Fear to talk in the public was the commonest presentation and was seen in 17 (68%) subjects. Aggressive behavior in 4 (16%) and other minor psychological problems in 4 (16%) subjects were also identified.

Identification of 22q11.2 microdeletion in patients with cleft palate by PCR

A total of 162 patients with cleft palate were investigated by quantitative multiplex PCR for STS markers spanning the 22q11.2 region. All PCR products were analyzed after agarose gel electrophoresis by using gel documentation system (Bio-Doc). There were no cases with 22q11.2 microdeletion identified [Figure 2].

DISCUSSION

Out of 323 subjects, 162 (50.15%) attended the clinic and participated in the study. Most of the patients had completed their surgical intervention, while few of them were waiting for their surgery.

Most of the patients (90.12%) were from the Southern Province of Sri Lanka. Majority (51.51%) were from Galle district while 24.78% were from Matara and 14.2% were from Hambantota districts. Patients from other districts including Kalutara (4.32%), Colombo (3.08%), and Ratnapura (2.48%) also participated in the study [Table 2].
15.6% of cleft palate patients were associated with other clinical malformations, and in Estonia, 30.3% of patients with clefts had accompanying developmental anomalies.

Data from the Glasgow Register of Congenital Malformations were used to investigate the epidemiology of congenital facial clefts over the period 1974–1985 by Womersley and Stone in 1987. They found more than half of the infants (54%) with isolated cleft palate had other associated defects and noted that these anomalies were common in female cleft palate patients than males (61%). In Scotland, FitzPatrick et al. identified that there was no significant association between gender and associated malformations in patients with cleft palate. This is not compatible with the results of this study where associated anomalies were common in males (54%) than females.

According to the Glasgow Register of Congenital Malformations, Pierre–Robin syndrome, musculoskeletal anomalies, neural tube defects, chromosomal abnormalities, and cardiovascular defects were the commonest defects associated with cleft palate. In Denmark, congenital heart defects, Pierre–Robin syndrome, Down syndrome, mandibulofacial dysostosis, anal atresia, Turner syndrome, Hirschsprung’ disease, and chromosomal anomalies were the common clinical features associated with cleft palate.

Ruiter et al. in 2003 examined 99 patients with cleft palate and identified only one patient with 22q11 deletion among them and concluded that there is no justification for routine screening of 22q11 deletion in patients with cleft palate. According to Driscoll, the 22q11.2 deletion has not been found to be a cause of nonsyndromic cleft palate. Hence, prenatal testing is not recommended in the absence of other findings of 22q11 deletion syndrome. In this study, there were no patients found with 22q11 deletion among cleft palate subjects and it is compatible with the results of above-mentioned international studies.

CONCLUSION

Cleft soft palate is the commonest presentation of cleft palate and females are more prone to have cleft palate than males in Sri Lanka. Findings of this study further confirm the association of high incidence of congenital anomalies, developmental delays, dysmorphic features, and psychological problems in patients with cleft palate and reinforce the need of a high index of suspicion regarding the presence of such associated problems in cleft palate patients. Furthermore, it is advisable to search for syndromic diagnosis in patients with cleft palate. There is no justification for routine screening of patients with cleft palate for 22q11 deletion syndrome in Sri Lanka. It is advisable to formulate a guideline for screening of syndromic diagnosis and genetic investigation for cleft palate patients in Sri Lankan population.

ACKNOWLEDGMENT

Authors wish to thank the staff of the Regional Cleft Centre & Maxillo-Facial Department, Teaching Hospital, Karapitiya, Mr. J. G. Sumith Udugama, Department of Anatomy, Faculty of Medicine, University of Ruhuna, for their assistance and the patients who participated in the study.

Also, authors convey their sincere thanks to the National Research Council (NRC) for funding this research.

Furthermore, the first author conveys his sincere gratitude to the National Coordinating Committee on Reproductive Health Research of Sri Lanka for the financial assistance to attend the 7th Biennial World Cleft Lip and Palate Congress May 2012, Republic of Seychelles.

REFERENCES

1. Sadler TW. Langman’s Medical Embryology: 10th ed. USA: Lippincott, Williams & Wilkins; 2006.
2. Hodgkinson PD, Brown S, Duncan D, Grant C, McNaughton A, Thomas P, et al. Management of children with cleft lip and palate: A review describing the application of multidisciplinary team working in this condition based upon the experiences of a regional cleft lip and palate centre in the United Kingdom. Fetal Matern Med Rev 2005;16:11-27.
3. Sperber GH. Craniofacial Embryology. 4th ed. USA: PSG Publishing Co; 1989.
4. Scambler PJ. The 22q11 deletion syndrome. Hum Mol Genet. 2000;9:2421-6.
5. Biavati MJ, Rocha-Worley GE. Medicine from web MD. Palatoparyngeal Incompetence, Nov. 2006. Available at: <http://emedicine.medscape.com/article/994975-overview#showall> (Accessed on 28th March 2011)
6. Elliott RF, Jovic G, Beveridge M. Seasonal variation and regional distribution of cleft lip and palate in Zamb. Cleft Palate Craniofac J 2008;45:533-8.
7. Vallino-Napoli LD, Riley MM, Halliday J. An epidemiologic study of isolated cleft lip, palate, or both in Victoria, Australia from 1983 to 2000. Cleft Palate Craniofac J 2004;41:85-94.
8. Tolanova MM, Cervenka J. Prevalence of nonsyndromic oral clefts in Texas: 1995–1999. Am J Med Genet 1998;75:126-37.
9. Amaratunga AN, Chandrasekerana A. Incidence of cleft lip and palate in Sri Lanka. J Oral Maxillofac Surg 1989;47:559-61.
10. Fogh-Andersen P. Genetic and non-genetic factors in the etiology of facial clefts. Scand J Plast Reconstr Surg 1967;1:22-9.
11. Rintala A, Ponka A, Sarna S, Stegars T. Cleft lip and palate in Finland in 1948-75: Correlations to infections, seasonal and yearly variations. Scand J Plast Reconstr Surg 1983;17:197-201.
12. Stricker M, Vander J, Raphael B. Classification of Craniofacial Malformation. In: Textbook of Craniofacial Malformation. 1st ed. Edinburgh: Churchill Livingston; 1990.p. 149-287.
13. Beauchesne LM, Warnes CA, Connolly HM, Ammash NM, Grogan M, Jalal SM, et al. Prevalence and clinical manifestations of 22q11.2 microdeletion in adults with selected conotruncal anomalies. J Am Coll Cardiol 2005;45:595-8.
14. Saitta SC, Harris SE, Gaith AP, Driscoll DA, McDonald-McGinn DM, Maisenbacher MK, et al. Aberrant interchromosomal exchanges are the predominant cause of the 22q11.2 deletion. Hum Mol Genet 2004;13:417-28.
15. E-notes.com, LLC. Encyclopedia of Genetic Disorders: Deletion 22q11 Syndrome. Available at: <http://www.enotes.com/deletion-22q11-syndrome-reference/deletion-22q11-syndrome>. (Accessed on 28th March 2011)
16. Botto LD, May K, Fernhoff PM, Correa A, Coleman K, Rasmussen SA, et al. A population-based study of the 22q11.2 deletion: Phenotype, incidence, and contribution to major birth defects in the population. Pediatrics 2003;112:101-7.
17. Cheung VG, Nowak N, Jang W, Kirsch IR, Zhao S, Chen XN, et al. Integration of cytogenetic marks into the draft sequence of the human genome. Nature 2001:409:953-8.
18. Bailey JA, Gu Z, Clark RA, Reinert K, Samonte RV, Schwartz S, et al. Recent segmental duplications in the human genome. Science 2002;297:1003-7.
19. Driscoll DA, Salvin J, Sellinger B, Budarf ML, McDonald-McGinn DM, Zackai EH, et al. Prevalence of 22q11 microdeletions in DiGeorge and velocardiofacial syndromes: Implications for genetic counselling and prenatal diagnosis. J Med Genet 1993;30:813-7.
20. Kelly D, Goldberg R, Wilson D, Lindsay E, Carey A, Goodship J, et al. Confirmation that the velocardio-facial syndrome is associated with haplo-insufficiency of genes at chromosome 22q11. Am J Med Genet 1993;45:308-12.
21. Stankiewicz P, Lupski JR. Genome architecture, rearrangements and genomic disorders. Trends Genet 2002;18:74-82.
22. Tobias ES, Morrison N, Whiteford ML, Tolmie JL. Towards earlier diagnosis of 22q11 deletion. Arch Dis Child 1999;81:513-4.
23. Uddin RK, Zhang Y, Shi VM, Fan Y, O'Reilly RL, Rao J, et al. Breakpoint associated with a novel 2.3 Mb deletion in the VCFS region of 22q11 and the role of Alu (SINE) in recurring microdeletions. BMC Med Genet 2006;7:18.
24. Rolfs A, Schuller J, Finckh U, Weber-Rolfsw I. PCR: Principles and reaction components in PCR. In: Rolfs A, Schuller J, Finckh U, Weber-Rolfsw I, editors. Clinical Diagnostics and Research. Berlin: Springer-Verlag; 1992. p. 1-16.
25. Chuangsuwanich A, Aojanepong C, Muangsombut S, Tongpiew P. Epidemiology of cleft lip and palate in Thailand. Ann Plast Surg 1998;41:7-10.
26. Zhou QJ, Shi B, Shi ZD, Zheng Q, Wang Y. Survey of the patients with cleft lip and palate in China who were funded for surgery by the Smile Train Program from 2000 to 2002. Chin Med J (Engl) 2006;119:1695-700.
27. Womersley J, Stone DH. Epidemiology of facial clefts. Arch Dis Child 1987;62:717-20.
28. Al-Omari F, Al-Omari IK. Cleft Lip and Palate in Jordan: Birth Prevalence Rate. Cleft Palate Craniofac J 2004;2:121-6.
29. Jagomagi T, Soots M, Saag M. Epidemiologic factors causing cleft lip and palate and their regularities of occurrence in Estonia. Stomatologija 2010;12:105-8.
30. Rushton AR. Sex-linked inheritance of cleft palate. Hum Genet 1979;48:179-81.
31. Martelli DR, Cruz KW, Barros LM, Silveira MF, Swerts MS, Martelli Júnior H. Maternal and paternal age, birth order and interpregnancy interval evaluation for cleft lip and palate. Braz J Otorhinolaryngol 2010;76:107-12.
32. Rajabian MH, Sherkat M. An epidemiologic study of oral clefts in Iran: Analysis of 1,669 cases. Cleft Palate Craniofac J 2000;37:191-6.
33. Krumova V. Clinical and Genetic Peculiarities of Isolated Cleft Palates. J IMAB 2008;14:52-4. Available from: http://www.journal-imab-bg.org/statii-08/vol08_2_52-54str.pdf. [Last Accessed on 2011 Dec 12].
34. Boo NY, Arshad AR. A study of cleft lip and palate in neonates born in a large Malaysian maternity hospital over a 2-year period. Singapore Med J 1990;31:59-62.
35. FitzPatrick DR, Raine PA, Boorman JG. Facial clefts in the west of Scotland in the period 1980-1984: Epidemiology and genetic diagnoses. J Med Genet 1994;31:126-9.
36. Jensen BL, Kreiborg S, Dahl E, Fogh-Andersen P. Cleft lip and palate in Denmark, 1976-1981: Epidemiology, variability and early somatic development. Cleft Palate J 1988;25:258-69.
37. Ruiter EM, Bongers EM, Smeets DF, Kuipers-Jagtman AM, Hamel BC. No justification of routine screening for 22q11 deletions in patients with overt cleft palate. Clin Genet 2003;64:216-9.
38. Driscoll DA. Prenatal diagnosis of the 22q11.2 deletion syndrome. Genet Med 2001;3:14-8.