On the k-error linear complexity of subsequences of d-ary Sidel’nikov sequences over prime field \mathbb{F}_d

Minghui Yanga, Jiejing Wenb

a The State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of Sciences, Beijing 100195, China

b Chern Institute of Mathematics, Nankai University, Tianjin 300071, China

Abstract: We study the k-error linear complexity of subsequences of the d-ary Sidel’nikov sequences over the prime field \mathbb{F}_d. A general lower bound for the k-error linear complexity is given. For several special periods, we show that these sequences have large k-error linear complexity.

Keywords: k-error linear complexity, subsequences, Sidel’nikov sequences

1 Introduction

The linear complexity $LC(\{s_n\})$ [4, Lemma 8.2.1] of an N-periodic sequence $\{s_n\} = s_0, s_1, \ldots$ over the field \mathbb{F} is the smallest nonnegative integer L such that there exist coefficients $c_0, c_1, \ldots, c_{L-1} \in \mathbb{F}$ such that

$$s_{n+L} + c_{L-1}s_{n+L-1} + \cdots + c_0s_n = 0 \text{ for all } n \geq 0.$$

and can be computed by

$$LC(\{s_n\}) = N - \deg(gcd(x^N - 1, S(x))),$$

where $S(x) = s_0 + s_1x + \cdots + s_{N-1}x^{N-1}$.

Linear complexity is of fundamental importance as cryptographic characteristic of sequences [13]. Motivated by security issues of stream ciphers, Stamp and Martin proposed the concept of the k-error linear complexity [15]. The k-error linear complexity $LC_k(\{s_n\})$ of a sequence $\{s_n\}$ over the field \mathbb{F} is defined as the smallest linear complexity that can be obtained by changing at most k terms of the sequence per period. The concept of the k-error linear complexity is built on the earlier concepts of weight complexity introduced in [5] and sphere complexity introduced in [6].

Let q be a power of an odd prime p, γ a primitive element of \mathbb{F}_q, and let d be a positive prime divisor of $q - 1$. Then the cyclotomic classes of order d give a partition of $\mathbb{F}_q^* = \mathbb{F}_q \setminus \{0\}$ defined by

$$D_0 = \{\gamma^{dn} : 0 \leq n \leq (q - 1)/d - 1\} \text{ and } D_j = \gamma^jD_0, 1 \leq j \leq d - 1.$$
Let \(l \) be a divisor of \(q - 1 \) and \(\alpha = \gamma^{(q-1)/l} \). In this paper, we investigate the \(l \)-periodic sequence \(\{s_n\} \) with terms in the finite field \(\mathbb{F}_d \) defined by

\[
s_n = \begin{cases} j & \text{if } \alpha^n + 1 \in D_j \\ 0 & \text{if } \alpha^n + 1 = 0. \end{cases}
\] (2)

For \(l = q - 1 \), these sequences are Sidel’nikov sequences which were independently introduced by Sidel’nikov [14] and by Lempel, Cohn and Eastman for the case \(d = 2 \) [11]. For \(l < q - 1 \), these sequences are obviously the subsequences of Sidel’nikov sequences. It is known that every Sidel’nikov sequence has good autocorrelation properties, see [10, 11]. The linear complexity and \(k \)-error linear complexity of the \(d \)-ary Sidel’nikov sequence over \(\mathbb{F}_p \) have been investigated in [1, 7, 9]. Using some facts in character theory, the linear complexity of the \(d \)-ary Sidel’nikov sequence over \(\mathbb{F}_d \) was analyzed in [2] and the \(k \)-error linear complexity of subsequences of binary Sidel’nikov sequence over \(\mathbb{F}_2 \) and \(\mathbb{F}_p \) were considered in [3].

In the next section, combining the methods of [2] and [3], we prove several results on the \(k \)-error linear complexity of subsequences of the \(d \)-ary Sidel’nikov sequences over the prime field \(\mathbb{F}_d \). We give a general lower bound. Furthermore, for several special periods, we give the exact values of the \(k \)-error linear complexity. The results show that for several special cases, these sequences are good from the viewpoint of the \(k \)-error linear complexity.

This paper is organized as follows. In section 2, we discuss the \(k \)-error linear complexity of the \(d \)-ary Sidel’nikov sequence over \(\mathbb{F}_d \). We conclude this paper in section 3.

2 The \(k \)-error linear complexity over \(\mathbb{F}_d \)

We present a general lower bound first.

To do this, the following Lemma about Weil’s bound is needed.

Lemma 1 ([12, Theorem 5.41]) Let \(\psi \) be a multiplicative character of \(\mathbb{F}_q \) of order \(m > 1 \) and let \(f \in \mathbb{F}_q[x] \) be a monic polynomial of positive degree that is not an \(m \)th power of a polynomial. Let \(e \) be the number of distinct roots of \(f \) in its splitting field over \(\mathbb{F}_q \). Then for every \(a \in \mathbb{F}_q \) we have

\[
|\sum_{c \in \mathbb{F}_q} \psi(af(c))| \leq (e - 1)q^{1/2}.
\]

Theorem 1 The \(k \)-error linear complexity of the sequence \(\{s_n\} \) defined in (2) over \(\mathbb{F}_d \) satisfies that if \(l \) is odd, then \(LC_k(\{s_n\}) > l/(q^{1/2} + 2k) - 1 \), otherwise \(LC_k(\{s_n\}) > l/(q^{1/2} + 2k + 2) - 1 \).
Proof. Let \(\{t_n\} \) be a sequence with period \(l \) over \(\mathbb{F}_d \) which is obtained by changing at most \(k \) terms of the notations defined as before, the sequence \(\{s_n\} \) per period. Let \(LC(t_n) = L, c_L = 1 \), then we have

\[
t_{n+L} + c_{L-1}t_{n+L-1} + \cdots + c_0 t_n = 0 \quad (n \geq 0).
\]

With the notations as before, let \(\chi \) denote a nontrivial multiplicative character with \(\chi(\gamma^j) = \xi_d^j \quad (0 \leq j \leq q - 2) \), where \(\xi_d = e^{2\pi \sqrt{-1}/d} \), then we have \(\xi_d^{\alpha^n} = \chi(\alpha^n + 1) \), if \(l \) is odd or \(l \) is even and \(n \neq l/2 \). In what follows, we only consider the case that \(l \) is odd. When \(l \) is even, the results can be similarly proven. If \(l \) is odd, we have \(\xi_d^{t_n} = \chi(\alpha^n + 1) \) for at least \(l - k \) terms of per period of \(\{t_n\} \). Then from (3), for at least \(l - k(L + 1) \) terms of each period of \(\{t_n\} \) we have

\[
\chi(\prod_{m=0}^{L}(\alpha^{n+m} + 1)^{c_m}) = \prod_{m=0}^{L} \xi_d^{t_{n+m}c_m} = \xi_d^{\sum_{m=0}^{L} t_{n+m}c_m} = 1.
\]

So

\[
l - 2k(L + 1) \leq \left| \sum_{n=0}^{l-1} \chi(\prod_{m=0}^{L}(\alpha^{n+m} + 1)^{c_m}) \right|
\]

\[
= \frac{l}{q-1} \left| \sum_{n=0}^{q-2} \chi(\prod_{m=0}^{L}(\gamma^{n-1}\alpha^m + 1)^{c_m}) \right|
\]

\[
\leq \frac{l}{q-1} \left[\left(\frac{q-1}{l} \right)(L + 1) - 1 \right] \sqrt{q + 1} < (L + 1) \sqrt{q},
\]

where the penultimate step is obtained from Lemma 1, then the results are proven.

Now we give lower bounds for some special periods which improve Theorem 1.

Proposition 1 Let \(r(r \neq d) \) be an odd prime divisor of \(l \). Let \(\{t_n\} \) be a sequence obtained by altering at most \(k \) elements of \(\{s_n\} \) and \(T(x) = t_0 + t_1 x + \cdots + t_{l-1} x^{l-1} \). From the fact that \(d \) is a primitive root modulo \(r \) and \(r \geq \sqrt{q} + 2k + 1 \), then for each \(r \)-th root of unity \(\beta \neq 1 \) we have \(T(\beta) \neq 0 \).

Proof. We prove it by contradiction. Assume that \(T(\beta) = 0 \). As \(\beta^r = 1 \), we have \(T(\beta) = \sum_{n=0}^{l-1} t_n \beta^n = \sum_{b=0}^{r-1} \sum_{j=0}^{l/r-1} t_{b+jr} \beta^b \). From \(d \) is a primitive root
modulo r, we know $\Psi(x) = \sum_{b=0}^{r-1} x^b$ is the minimal polynomial of β over \mathbb{F}_d.

Then $\sum_{j=0}^{l/r-1} t_{jr} = \sum_{j=0}^{l/r-1} t_{1+jr} = \ldots = \sum_{j=0}^{l/r-1} t_{r-1+jr}$.

For at least $l - k - 1$ many n of one period of the sequence, we have

$$\xi_d^{tn} = \xi_d^{sn} = \chi(\alpha^n + 1).$$ \hfill (4)

As

$$\prod_{j=0}^{l/r-1} (\alpha^{jr} x + 1) = 1 - (-1)^l x^{l/r},$$

combining with (4), for at least $r - k - 1$ or $r - k$ many b in the set $\{0, 1, \ldots, r - 1\}$ if l is even or odd, respectively, we have

$$\xi_d^{\sum_{j=0}^{l/r-1} t_{b+jr}} = \prod_{j=0}^{l/r-1} \chi(\alpha^{b+jr} + 1) = \chi(1 - (-1)^l \alpha^{bl/r}) = e,$$

where e is a constant. Then

$$\left| \sum_{b=0}^{r-1} \chi(1 - (-1)^l \alpha^{bl/r}) \right| \geq \begin{cases} r - 2k & \text{if } l \text{ is odd} \\ r - 2k - 1 & \text{if } l \text{ is even,} \end{cases}$$

according to the fact that when l is even and r is odd, $\chi(0)$ appears in the sum only once.

So

$$r - 2k - 1 \leq \left| \sum_{b=0}^{r-1} \chi(1 - (-1)^l \alpha^{bl/r}) \right|$$

$$= \frac{r}{q - 1} \left| \sum_{b=0}^{q-2} \chi(1 - (-1)^l \gamma^{b(q-1)/r}) \right| < \sqrt{q},$$

where the penultimate step is followed by Weil’s bound. This contradicts our assumption on r. \hfill \Box

Corollary 1 Let $l = d^m rv$, where r is a prime and $r \geq \sqrt{q} + 2k + 1$, r, v are coprime with d and d is a primitive root modulo r. Then we have $LC_k(\{s_n\}) \geq (r - 1)d^m$.

Proof. For each rth root of unity $\beta \neq 1$, we have $T(\beta) \neq 0$ according to Proposition 1. This implies that the polynomial $\left(\frac{x^r - 1}{x - 1}\right)^d$ is coprime with $T(x) = \sum_{i=0}^{l-1} t_n x^n$. Then from (1), we have $LC_k(\{s_n\}) \geq (r - 1)d^m$. \hfill \Box
Now we give exact values of the 1-error linear complexity of the sequence defined in (2) when \(d = 3 \) for some special cases.

If \(l = d^s r \) and \(\gcd(d, r) = 1 \), then \(x^l - 1 = (x^r - 1)^d \). The Hasse derivative \(S(x)^{(h)} \) is employed to determine the multiplicity of the roots of unity for \(S(x) \), which is defined to be

\[
S(x)^{(h)} = \sum_{n=h}^{l-1} \binom{n}{h} s_n x^{n-h}.
\]

The multiplicity of \(\theta \) as a root of \(S(x) \) is \(u \) if it satisfies \(S(\theta) = S(\theta)^{(1)} = \ldots = S(\theta)^{(u-1)} \) and \(S(\theta)^{(u)} \neq 0 \) ([12, Lemma 6.51]). The binomial coefficients appearing in \(S(x)^{(h)} \) can be evaluated by Lucas’ congruence [8]

\[
\binom{n}{h} \equiv \binom{n_0}{h_0} \cdots \binom{n_e}{h_e} \quad \text{mod} \ d
\]

where \(n_0, \ldots, n_e \) and \(h_0, \ldots, h_e \) are the digits in the \(d \)-ary representation of \(n \) and \(h \) respectively. It is easy to see that

\[
\binom{n}{h} \equiv \binom{i}{h} \mod d.
\]

for \(h < d^e \) and \(n \equiv i \mod d^e \).

With the cyclotomic classes of order \(v \) denoted by \(D_j \), the cyclotomic numbers \((i,j)_v \) (see [4]) are defined by \((i,j)_v = |(D_i + 1) \cap D_j|, 0 \leq i, j \leq v - 1 \). We can express the \(h \)th Hasse derivative corresponding to the sequence defined in (2) using (5),

\[
S(1)^{(h)} = \sum_{n=h}^{l-1} \binom{n}{h} s_n = \sum_{i=h}^{d^e-1} \binom{i}{h} \sum_{n=h \mod d^e}^{d^e-1} s_n
\]

\[
= \sum_{i=h}^{d^e-1} \binom{i}{h} \sum_{h=0}^{d^e-1} \sum_{m=1}^{d^e-1} m
\]

\[
= \sum_{i=h}^{d^e-1} \binom{i}{h} \sum_{j=0}^{d^e-1} \sum_{m=1}^{d^e-1} \frac{q - 1}{l} i, j d + m) \cdot \frac{1}{l} d, m.
\]

Let \(q = cf + 1 \), the relation between the cyclotomic numbers of order \(c \) is given in [4]

\[
(i,j)_c = (c - i, j - i)_c = \begin{cases} (j,i)_c & f \text{ even} \\ (j+c/2, i + c/2)_c & f \text{ odd.} \end{cases}
\]
We use the expressions of $S(1)^{(h)}$ to get the multiplicity of 1 as a root of $S(x)$. If the corresponding cyclotomic numbers are known, then from the multiplicity of 1 as a root of $S(x)$ we can get the exact value of $LC_1\{s_n\}$ for some special cases. We take $l = q - 1$, $d = 3$ as an example.

To get the following theorem, we need to use cyclotomic numbers of order 6 that rely on the unique decomposition $q = 6f + 1 = A^2 + 3B^2$ of q with $A \equiv 1 \mod 3$ and moreover $\gcd(A, q) = 1$ when $q = p^m$ and $p \equiv 1 \mod 6$.

The sign of B relies on the choice of the primitive element γ.

Theorem 2 Let $\{s_n\}$ be a sequence defined in (1) over the finite field \mathbb{F}_3 with period
\[
\frac{(q - 1)}{2} = \frac{3^a r}{2},
\]
where $l = 3^a r$, $r \geq \sqrt{q} + 3$. If $B \equiv 0 \mod 3$, then $LC_1\{s_n\} = LC\{s_n\}$.

Furthermore, if $B \equiv 0 \mod 3$ and $A \not\equiv 1 \mod 9$ then $LC_1\{s_n\} = l - 1$.

Proof. From (6), we have
\[
\begin{align*}
S(1)^{(0)} &= (0, 1)_6 \cdot 1 + (2, 1)_6 \cdot 1 + (4, 1)_6 \cdot 1 \\
&+ (0, 2)_6 \cdot 2 + (2, 2)_6 \cdot 2 + (4, 2)_6 \cdot 2 \\
&+ (0, 4)_6 \cdot 1 + (2, 4)_6 \cdot 1 + (4, 4)_6 \cdot 1 \\
&+ (0, 5)_6 \cdot 2 + (2, 5)_6 \cdot 2 + (4, 5)_6 \cdot 2,
\end{align*}
\]
\[
\begin{align*}
S(1)^{(1)} &= (2, 1)_6 \cdot 1 + (2, 2)_6 \cdot 2 + (2, 4)_6 \cdot 1 + (2, 5)_6 \cdot 2 \\
&+ 2 \cdot (4, 1)_6 \cdot 1 + 2 \cdot (4, 2)_6 \cdot 2 + 2 \cdot (4, 4)_6 \cdot 1 \\
&+ 2 \cdot (4, 5)_6 \cdot 2,
\end{align*}
\]
Simplifying these expressions, we get
\[
\begin{align*}
S(1) &= (0, 1)_6 + (0, 2)_6 \cdot 2 + (4, 0)_6 \cdot 2 + \\
&+ (0, 4)_6 \cdot 1 + (2, 0)_6 \cdot 1 + (2, 5)_6 \cdot 2,
\end{align*}
\]
\[
\begin{align*}
S(1)^{(1)} &= (2, 1)_6 + (1, 0)_6 \cdot 2 + (1, 2)_6 \cdot 1 + (0, 1)_6 \cdot 2 \\
&+ (0, 5)_6 \cdot 2 + (1, 2)_6 + (1, 1)_6 \cdot 2 + (2, 1)_6.
\end{align*}
\]

According to the cyclotomic number of order 6 listed below, we have

Case I a. $b \equiv 0 \mod 3$: $S(1) = -B, S(1)^{(1)} = (1 - A)/3$.

Case I b. $b \equiv 1 \mod 3$: $S(1) = -B, S(1)^{(1)} = (1 - A)/3 - B$.

Case I c. $b \equiv 2 \mod 3$: $S(1) = -B, S(1)^{(1)} = (1 - A)/3 + B$.

On the basis of the cases above, combining with Proposition 1, we prove the result. \bbox
Example 1 Let $l = 711$. Then we have $r = 237$ which satisfies the conditions of Theorem 2. From $q = 6f + 1 = A^2 + 3B^2$, we know $A = 10$ and $B \equiv 0 \mod 3$. Then according to Theorem 2, $LC_1(\{s_n\}) = LC(\{s_n\})$.

3 Conclusion

The k-error linear complexity of a sequence is an important index in cryptographic. Firstly, we give a general lower bound for the k-error linear complexity of subsequences of the d-ary Sidel’nikov sequences over the prime field \mathbb{F}_d. Secondly, we determine the k-error linear complexity of subsequences of the d-ary Sidel’nikov sequences over the prime field \mathbb{F}_d.

References

[1] H. Aly, W. Meidl, On the linear complexity and k-error linear complexity over \mathbb{F}_p of the d-ary Sidel’nikov sequence, IEEE Trans. Inform. Theory vol. 53, no. 12, pp. 4755-4761, 2007.

[2] N. Brandstätter, W. Meidl, On the linear complexity of Sidel’nikov sequences over \mathbb{F}_d, Lecture Notes in Comput. Sci., vol. 4086, Springer-Verlag, Berlin, Heidelberg, 2006, pp. 47-60.

[3] N. Brandstätter, A. Winterhof, Subsequences of Sidel’nikov sequences, Contemp. Math., vol. 461, 2008, pp. 33-46.

[4] T. W. Cusick, C. Ding, A. Renvall, Stream ciphers and number theory, North-Holland Mathematical Library, vol. 55, North-Holland Publishing Co., Amsterdam, 1998.

[5] C. Ding, Lower bounds on the weight complexity of cascaded binary sequences, in Adv. Cryptol.. New York: Springer-Verlag, 1991, vol. 453, Lecture Notes in Computer Science, pp. 39-43.

[6] C. Ding, G. Xiao, and W. Shan, The stability theory of stream ciphers, Lecture Notes in Computer Science. Berlin, Germany: Springer, 1991, vol. 561.

[7] M. Z. Garaev, F. Luca, I.E. Shparlinski, A. Winterhof, On the linear complexity over \mathbb{F}_p of Sidel’nikov sequences, IEEE Trans. Inform. Theory, vol. 52, no. 7, pp. 3299-3304, 2006.
Appendix

Cyclotomic number of order 6

Let \(q \) be a prime power and \(q = 6f + 1 = A^2 + 3B^2 \) with \(A \equiv 1 \mod 3 \) and moreover \(\gcd(A, q) = 1 \) when \(q = p^a \) and \(p \equiv 1 \mod 6 \). Let \(\gamma^b = 2 \), where \(\gamma \) is a primitive element of \(\mathbb{F}_q \).

Case Ia: \(q \equiv 7 \mod 12, b \equiv 0 \mod 3 \)

\[
\begin{align*}
(0, 1)_6 &= (0, 2)_6 = (q + 1 - 2A + 12B)/36, \\
(0, 4)_6 &= (0, 5)_6 = (q + 1 - 2A - 12B)/36, \\
(1, 0)_6 &= (q - 5 + 4A + 6B)/36, \\
(1, 1)_6 &= (q - 5 + 4A - 6B)/36, \\
(1, 2)_6 &= (2, 1)_6 = (q + 1 - 2A)/36.
\end{align*}
\]

Case Ib: \(q \equiv 7 \mod 12, b \equiv 1 \mod 3 \)

\[
\begin{align*}
(0, 1)_6 &= (1, 2)_6 = (q + 1 + 4A)/36, \\
(0, 2)_6 &= (q + 1 - 2A + 12B)/36, \\
(0, 4)_6 &= (2, 1)_6 = (q + 1 - 8A - 12B)/36, \\
(0, 5)_6 &= (q + 1 - 2A + 12B)/36, \\
(1, 0)_6 &= (q - 5 - 2A + 6B)/36.
\end{align*}
\]
Case Ic: $q \equiv 7 \mod 12$, $b \equiv 2 \mod 3$

$(0, 1)_6 = (0, 4)_6 = (q + 1 - 2A - 12B)/36$, $(0, 2)_6 = (2, 1)_6 = (q + 1 - 8A + 12B)/36$, $(0, 5)_6 = (1, 2)_6 = (q + 1 + 4A)/36$, $(1, 0)_6 = (q - 5 + 4A + 6B)/36$, $(1, 1)_6 = (q - 5 - 2A - 6B)/36$.

