Carbohydrate-deficient transferrin is a sensitive marker of alcohol consumption in fatty liver disease

Maki Morinaga1 · Kazuyoshi Kon1 · Akira Uchiyama1 · Hiroo Fukada1 · Kyoko Fukuhara1 · Reiko Yaginuma1 · Eisuke Nakadera1 · Shunhei Yamashina1 · Kenichi Ikejima1

Received: 26 August 2021 / Accepted: 3 January 2022 / Published online: 20 January 2022
© Asian Pacific Association for the Study of the Liver 2022

Abstract

Background The prevalence of nonalcoholic fatty liver disease (NAFLD) and alcohol-associated/related liver disease (ALD) with metabolic syndrome is increasing globally. Metabolic syndrome and excessive alcohol consumption synergically exacerbate liver pathologies; therefore, drinking-specific serum markers unaffected by liver injury or metabolic syndrome are essential for assessing alcohol consumption. We evaluated the ratio of carbohydrate-deficient transferrin to total transferrin (%CDT) in patients with fatty liver disease, particularly focusing on its correlation with metabolic factors (UMIN000033550).

Methods A total of 120 patients with fatty liver disease, including ALD and NAFLD, were screened for alcohol misuse using the Alcohol Use Disorders Identification Test. Associations of metabolic syndrome-related factors and hepatic steatosis/liver stiffness with drinking markers, such as %CDT, gamma-glutamyl transferase (GGT), and mean corpuscular volume (MCV), were assessed using multiple linear regression analyses.

Results %CDT significantly increased with 3–4 drinks/day. The optimal cutoff value for identifying non- to light drinkers was 1.78% (sensitivity, 71.8%; specificity, 83.7%; and area under the receiver operating characteristic curve [AUROC], 0.851), which was significantly higher than that for GGT. The cutoff value for identifying heavy drinkers was 2.08% (sensitivity, 65.5%; specificity, 86.8%; and AUROC, 0.815). Multiple regression analysis revealed that this proportion was negatively correlated with body mass index, whereas GGT and MCV were influenced by multiple factors involved in liver injury and dyslipidemia.

Conclusions %CDT showed a strong correlation with alcohol consumption, independent of liver damage, steatosis/stiffness, or metabolic syndrome-related factors, indicating that it is a useful drinking marker for the accurate diagnosis of NAFLD and ALD.
Graphical abstract

Keywords Nonalcoholic fatty liver disease · Nonalcoholic steatohepatitis · Biomarkers · Metabolic syndrome · Alcoholic liver disease · Alcohol-associated liver disease · Alcohol-related liver disease · Metabolic dysfunction-associated fatty liver disease · Gamma-glutamyl transferase · Mean corpuscular volume

Introduction

From 1990 to 2017, the annual alcohol consumption increased by approximately 70% globally, from 20,999 to 35,676 million liters, with the proportion of alcohol drinkers increasing from 45 to 47% [1]. Alcohol-associated/related liver disease (ALD) is a major contributor to the worldwide burden of cirrhosis, and alcohol-associated/related cirrhosis had the highest average annual increase in cirrhosis-related mortality from 1999 to 2016 in the USA [2]. Furthermore, in Japan, the non-viral/viral hepatocellular carcinoma ratio has increased remarkably in recent years [3]. Unfortunately, there are no established pharmacological treatments for ALD other than alcohol avoidance and abstinence.

Secondary to the growing global population of patients with diabetes and metabolic syndrome (MetS), the prevalence of nonalcoholic fatty liver disease (NAFLD) is also increasing worldwide [4]. Although the pathological features of ALD and NAFLD are very similar that it can be extremely difficult to distinguish them, lifestyle-related treatment guidelines are very different for the two, with alcohol abstinence recommended for ALD and dietary exercise therapy recommended for NAFLD. It is important to note that alcohol can easily cause liver injury in obese animals and humans [5], and even light drinking within the definition of NAFLD can exacerbate liver damage in patients with fatty liver disease [6]. By contrast, type 2 diabetes, MetS, and total alcohol consumption are independent risk factors for mortality in ALD patients [7]. These findings indicate that MetS-related factors and alcohol intake can exacerbate liver damage while interacting with one another [8]. Excessive alcohol consumption is often found in MetS patients, and alcoholic hepatitis exacerbation due to MetS comorbidity is an emerging clinical problem [9]. Therefore, biomarkers for estimating alcohol consumption independent of MetS-related factors are essential for ALD and NAFLD management.

Transferrin, a protein that transports iron, contains several glycoforms that differ in the number and/or structure of up to two N-linked oligosaccharide chains (N-glycans). The major glycoform under normal conditions, tetrasialotransferrin, contains two disialylated biantennary glycans (i.e., four terminal sialic acids) [10]. Tetrasialotransferrin typically accounts for <75–80% of serum transferrin [11]. Chronic
alcohol consumption via ethanol or its metabolite, acetaldehyde, has been reported to inhibit glycosylation/sialylation in the Golgi apparatus of hepatocytes, though the specific enzymes involved in this process remain debatable. This inhibition results in a decrease in the sialylation of transferrin and an increase in the relative amounts of disialo- and asialotransferrin, called carbohydrate-deficient transferrin (CDT) isoforms, despite a normal total transferrin level [12]. Measuring the proportion of carbohydrate-deficient transferrin to total transferrin (%CDT) has been mainly performed in Europe, with only a few reports on the utility of %CDT measurement in Asia, including a pilot study evaluating the %CDT in 13 patients with nonalcoholic steatohepatitis (NASH) and 26 with alcoholic hepatitis [13]. Instead, gamma-glutamyl transpeptidase (GGT) and mean corpuscular volume (MCV) are more widely used as drinking markers in Asia [14, 15].

Therefore, this study aimed to evaluate the utility of %CDT measurement in the population with NAFLD or ALD and comorbid MetS-related factors. In addition, we identified drinking habits and/or alcohol dependence using the Alcohol Use Disorders Identification Test (AUDIT) and determined the effects of alcohol consumption on %CDT values to determine whether this variable may have more utility as an alcohol-intake marker than GGT or MCV. Finally, the associations of liver injury/steatosis/stiffness/MetS-related factors with %CDT values and other drinking markers were assessed using single and multivariate analyses.

Materials and methods

Participants

This study was approved by the Institutional Review Board of Juntendo University Hospital (no. 18–025) and was conducted in accordance with the Declaration of Helsinki and current ethical guidelines. A cross-sectional study was conducted on 120 patients aged 23–87 years who were admitted to our hospital between September 2018 and October 2020 and were diagnosed with fatty liver disease, including ALD and NAFLD. Computed tomography in ten cases, magnetic resonance imaging in ten cases, and abdominal ultrasonography in the remaining cases were used to diagnose fatty liver disease and differentiate hepatocellular carcinoma. This study was registered with the University Hospital Medical Information Network (UMIN000033550). After providing an adequate explanation, written informed consent for participation in this study was obtained from all participants before measuring %CDT. All participant information, including names, was replaced with numbers, and personal privacy was not compromised in any way. The exclusion criteria were a history of chronic liver diseases, such as chronic hepatitis B, hepatitis C, autoimmune hepatitis, primary biliary cholangitis, primary sclerosing cholangitis, hemochromatosis, Wilson’s disease, or hepatocellular carcinoma.

Serum collection and laboratory evaluations

Participants answered the AUDIT questionnaire at the time of assignment to the study, and serum for %CDT measurement was collected within 3 months after the AUDIT and stored at −80 °C until measurement. Clinical data, including age and history of treatment, as well as laboratory results, including the concentrations of serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), GGT, alkaline phosphatase (ALP), total bilirubin, MCV, platelets, low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) cholesterol, triglycerides (TG), and hemoglobin A1c (HbA1c), were collected.

Quantification of hepatic steatosis and liver stiffness

Hepatic steatosis and liver stiffness were assessed using vibration-controlled transient elastography (Echosens, Paris), which records controlled attenuation parameter (CAP) values and liver stiffness measurement (LSM).

N-Latex CDT and nephelometry system

The serum %CDT was assayed using N-Latex CDT assay. This assay is conducted using a monoclonal antibody (mAb) that specifically recognizes transferrin glycoforms that lack one or both of the complete N-glycans (i.e., disialo-, monosialo-, and asialotransferrins [CDT glycoforms]) in combination with a simultaneous assay that determines the total transferrin (N antiseraum to human transferrin; Dade Behring). Polystyrene particles coated with CDT mAb are agglutinated by CDT-coated polystyrene particles, with CDT inhibiting this reaction in a dose-dependent manner, allowing nephelometric CDT quantification [16].

Statistical analyses

Two groups of variables were compared using the Mann–Whitney U test. Multiple groups of quantitative data were compared using the Kruskal–Wallis analysis of variance (ANOVA), followed by Dunn’s post hoc test. Multiple groups of qualitative data were compared using the Chi-squared test and post hoc residual analysis. For the estimation of multivariate models, all parameters that showed significance in a simple linear regression analysis (p < 0.05) were fitted to a multiple linear regression model. The residual analysis was performed using Microsoft Excel 2019.
while all other analyses were performed using SigmaPlot 14.0 (Systat Software Inc., San Jose, CA). Values are presented as mean ± standard error of mean (SEM). Differences were considered statistically significant at \(p \) values of < 0.05.

Results

Relationships between alcohol consumption and %CDT

Participants were divided into four groups according to their alcohol consumption per week, including non-drinkers, light drinkers (< 210 g pure ethanol for males and < 140 g for females), moderate drinkers (≥ 210 g for males, ≥ 140 g for females, and < 420 g for both), or heavy drinkers (≥ 420 g). The detailed characteristics of each group are summarized in Table 1. The %CDT, GGT, and MCV values were significantly higher in the heavy-drinker group than in the non- or light-drinker groups. The percentage of males was significantly higher in the light- to heavy-drinker groups than in the non-drinker group. BMI, HbA1c, and CAP values were significantly lower and the HDL value was significantly higher in the heavy-drinker group than in the non-drinker group. Only one welfare-payment recipient was included in the light-drinker group, and there was no significant difference in the economic situation of each group.

A receiver operating characteristic curve (ROC) analysis indicated that the area under the ROC curve (AUROC) for the use of %CDT to distinguish non- or light drinkers from all others was 0.851 (95% confidence interval [CI], 0.781–0.922). For this evaluation, the cutoff value with the largest Youden’s index (sensitivity + specificity – 1) and a specificity of over 80% was 1.78% (sensitivity, 71.8%; and specificity, 83.7%). This %CDT AUROC (i.e., 0.851) was significantly higher than the AUROC of 0.711 for GGT (95% CI, 0.611–0.810) \((p = 0.025) \) and tended to be higher than the AUROC of 0.766 for MCV (95% CI, 0.678–0.855) \((p = 0.118) \) (Fig. 1a). The AUROC of %CDT for identifying heavy drinkers was 0.815 (95% CI, 0.725–0.905), with a sensitivity and specificity of 65.5% and 86.8%, respectively, which also tended to be higher than the AUROC of 0.723 for GGT (95% CI, 0.607–0.840) \((p = 0.191) \) and the AUROC of 0.764 for MCV (95% CI, 0.666–0.862) \((p = 0.353) \) (Fig. 1b).

Table 1 Characteristics of patients according to alcohol consumption

	All Patients	Non-drinkers	Light drinkers	Moderate drinkers	Heavy drinkers
%CDT	2.01 ± 0.07	1.71 ± 0.04	1.73 ± 0.04	2.39 ± 0.27*, **	2.44 ± 0.14*, **
GGT (IU/L)	166 ± 20	85 ± 18	99 ± 17	192 ± 53	329 ± 60*, **
MCV (fl)	93.1 ± 0.6	90.3 ± 1.0	90.7 ± 0.8	95.2 ± 1.6	97.9 ± 1.3*, **
Age (years)	58 ± 1	64 ± 3	56 ± 2	59 ± 3	56 ± 2
Sex (M/F)	83/37	15/14	28/14*	17/3*	23/6
BMI (kg/m²)	26.6 ± 0.5	26.9 ± 0.8	28.4 ± 0.9	24.4 ± 1.6**	24.5 ± 1.0**
Platelet (x10⁹/L)	219 ± 8	200 ± 15	228 ± 11	222 ± 19	222 ± 19
AST (IU/L)	49 ± 4	41 ± 3	44 ± 6	53 ± 12	60 ± 8
ALT (IU/L)	50 ± 3	49 ± 4	56 ± 6	55 ± 13	41 ± 4
ALP (IU/L)	267 ± 11	274 ± 18	239 ± 13	287 ± 33	289 ± 27
T-Bil (mg/dL)	0.94 ± 0.04	0.89 ± 0.06	0.84 ± 0.06	1.02 ± 0.09	1.06 ± 0.13
LDL-c (mg/dL)	111 ± 3	114 ± 6	118 ± 5	105 ± 10	102 ± 7
HDL-c (mg/dL)	55 ± 2	47 ± 2	50 ± 3	55 ± 5	60 ± 4*
TG (mg/dL)	180 ± 15	165 ± 16	163 ± 17	189 ± 30	214 ± 52
HbA1c (%)	6.0 ± 0.07	6.2 ± 0.2	6.2 ± 0.1	5.9 ± 0.2	5.5 ± 0.1*, **
HT (±)	34/86	12/17	11/31	5/15	6/23
CAP (dB/m)	284 ± 7	289 ± 13	306 ± 10	275 ± 18	252 ± 13*
LSM (kPa)	10.3 ± 1.2	9.0 ± 1.1	8.9 ± 1.1	11.3 ± 4.8	13.2 ± 3.5

Values are presented as mean ± standard error of mean (SEM)

*p < 0.05 vs. non-drinker, **p < 0.05, vs. light drinker, significant difference using a Kruskal–Wallis ANOVA on ranks followed by all pairwise multiple comparisons with Dunn’s method, except for sex and hypertension, which were determined by the Chi-squared test and a post hoc residual analysis

AST aspartate aminotransferase, ALT alanine aminotransferase, ALP alkaline phosphatase, T-Bil total bilirubin, CAP controlled attenuation parameter, LSM liver stiffness measurement, BMI body mass index, HDL-c high-density lipoprotein cholesterol, LDL-c low-density lipoprotein cholesterol, TG triglycerides, HT hypertension, HbA1c hemoglobin A1c, %CDT proportion of carbohydrate-deficient transferrin to total transferrin, GGT gamma-glutamyl transferase, MCV mean corpuscular volume
For the correlation between %CDT values and the frequency/amount of alcohol intake based on AUDIT scores (Table 2), the %CDT was significantly higher for “drinks 4 times or more per week” than for other groups with less frequent alcohol use (Q1). In addition, the %CDT was significantly lower for “more than 0–2 drinks/day” than for others with more alcohol intake (Q2). The group with a “daily or almost daily” frequency of heavy drinking of ≥6 drinks on one occasion showed a significantly higher %CDT value than for non-drinkers (Q3). By contrast, no significant %CDT increase was observed in the correlation analysis of alcohol dependence and experience of harm-related questions (Q4–8) on the AUDIT (Online Resource 1), whereas significant differences were found between alcohol-related injuries (Q9) responses of “No” or “Yes, within the year,” and others concerned about drinking (Q10) responses of “No” or “Yes, within the year” (Online Resource 2).

Effect of liver injury and MetS-related factors on drinking markers

To clarify the effects of liver injury, steatosis/stiffness, and MetS-related factors on drinking markers, two-group comparisons were performed using binary data for the presence or absence of each factor (Table 3). All drinking markers were significantly higher in the moderate- or heavy-drinker groups than in the non- or light-drinker groups. Increases in serum AST and ALT levels over the normal range were significantly correlated with elevated GGT levels; however, neither the CAP nor the LSM affected any of the drinking markers. For MetS-related factors, the %CDT was significantly lower in the high body mass index (BMI ≥ 25 kg/m²) group, and the MCV was significantly higher in the low-LDL group (LDL < 140 mg/dL). Other MetS-related factors were not correlated with drinking markers.

Moreover, simple and multiple linear regression analyses were performed to determine the quantitative effect of each factor on drinking markers (Table 4). Simple linear regression analysis showed that the drinking volume affected all drinking markers and that the %CDT was negatively correlated with alcohol consumption and negatively correlated with BMI. GGT was also positively correlated with alcohol amount consumed, strongly positively correlated with AST, and positively correlated with LSM and TG. MCV was weakly positively correlated with alcohol intake, strongly positively correlated with AST and HDL levels, and strongly negatively correlated with LDL.
Table 2 Correlation between %CDT and responses to questions related to alcohol intake

Q1. How often do you have a drink containing alcohol?

	n	%CDT
Never	29	1.71±0.04
Monthly or less	12	1.71±0.05
2–4 times per month	16	1.69±0.05
2–3 times per week	21	1.93±0.09
≥4 times per week	42	2.45±0.16

Q2. How many standard drinks containing alcohol do you have on a typical day when drinking?

	n	%CDT
0–2 drinks	54	1.70±0.03
3–4 drinks	24	2.24±0.23
5–6 drinks	14	2.19±0.18
7–9 drinks	16	2.33±0.23
≥10 drinks	12	2.25±0.12

Q3. How often do you have ≥6 drinks on one occasion?

	n	%CDT
Never	60	1.87±0.10
Monthly or less	8	1.98±0.20
Monthly	18	1.89±0.09
Weekly	10	2.11±0.14
Daily or almost daily	24	2.40±0.15

Values are presented as mean ± standard error of mean (SEM). *p < 0.05, significant difference using a Kruskal–Wallis ANOVA on ranks followed by all pairwise multiple comparisons with Dunn’s method.

%CDT proportion of carbohydrate-deficient transferrin to total transferrin
Table 3 Effects of liver injury and metabolic-related factors on drinking markers: two-group comparisons

EtOH use	n	%CDT	GGT	MCV
Non-light	71	1.72 ± 0.03	93 ± 12	90.6 ± 0.6
Moderate to heavy	49	2.42 ± 0.14	273 ± 42	96.8 ± 1.0
p value	<0.001*	<0.001*	<0.001*	
AST (IU/L)				
<25	30	1.95 ± 0.07	68 ± 13	91.8 ± 0.9
p value	<0.001*			
≥25	90	2.03 ± 0.08	199 ± 26	93.6 ± 0.7
ALT (IU/L)				
<30	37	2.11 ± 0.16	82 ± 16	93.4 ± 1.0
p value	<0.001*			
≥30	83	1.96 ± 0.06	204 ± 28	93.9 ± 0.8
BMI				
<220	14	2.54 ± 0.04	177 ± 45	95.4 ± 1.7
p value	0.043	0.265	0.161	
≥220	78	1.93 ± 0.05	140 ± 23	92.9 ± 0.7
LSM (kPa)				
<6	39	2.17 ± 0.16	117 ± 21	92.4 ± 0.9
p value	0.121	0.257	0.347	
≥6	53	1.92 ± 0.06	168 ± 32	94.0 ± 0.9
HDL-c				
<40	79	2.02 ± 0.09	170 ± 26	93.9 ± 0.7
p value	0.823	0.386	0.274	
≥40	23	1.92 ± 0.09	142 ± 45	91.4 ± 1.1
LDL-c (mg/dL)				
<140	75	2.08 ± 0.10	182 ± 27	94.1 ± 0.8
p value	0.150	0.165	0.010*	
≥140	25	1.79 ± 0.05	88 ± 21	90.3 ± 0.9
TG (mg/dL)				
<150	59	2.05 ± 0.07	155 ± 29	93.4 ± 0.9
p value	0.076	0.277	0.948	
≥150	55	1.97 ± 0.12	184 ± 31	93.2 ± 0.9
HT				
Absent	86	2.04 ± 0.09	186 ± 26	93.2 ± 0.7
p value	0.703	0.467	0.522	
Present	34	1.92 ± 0.07	117 ± 24	93.0 ± 1.3
HbA1c (%)				
<6.5	71	2.08 ± 0.10	201 ± 32	93.3 ± 0.9
p value	0.222	0.503	0.683	
≥6.5	32	1.78 ± 0.04	113 ± 23	92.4 ± 0.9

Values are presented as mean ± standard error of mean (SEM). *p < 0.05, as assessed by the Mann–Whitney test.

%CDT proportion of carbohydrate-deficient transferrin to total transferrin, BMI body mass index, CAP controlled attenuation parameter, EtOH pure ethanol consumption, HbA1c hemoglobin A1c, HDL-c high-density lipoprotein cholesterol, HT hypertension, LDL-c low-density lipoprotein cholesterol, LSM liver stiffness measurement, MCV mean corpuscular volume, TG triglycerides, GGT gamma-glutamyl transferase, AST aspartate aminotransferase, ALT alanine aminotransferase

Discussion

In this study, we evaluated the utility of %CDT measurement by N-Latex CDT in an Asian population with NAFLD or ALD and comorbid MetS-related factors. The N-latex method is superior to other methods because it is not contaminated with trisialo-transferrin, less affected by the genetic variant of transferrin, and less affected by iron saturation (because it separates iron from pre-analytical transferrin) [16]. The male-to-female ratio was approximately equal in the non-drinker group; in contrast, the majority of patients were men in the other groups. The heavy-drinker group had higher HDL and lower BMI values, which are consistent with the general characteristics of patients with ALD (Table 1). Because even a relatively small amount of alcohol can cause liver injury in patients with obesity and MetS [8], obtaining detailed quantitative information on alcohol intake is vital in the medical care of patients with fatty liver disease. Our cohort included more than half of participants with light or moderate drinking levels, in contrast to previous studies on %CDT involving patients with alcohol addiction [17–19], thereby enabling the investigation on the usefulness of %CDT in patients with light-to-moderate alcohol intake.

This study showed that %CDT had higher AUROCs than either GGT or MCV, indicating good diagnostic accuracy for distinguishing the absence of significant drinking (< 210 g/week for men, and < 140 g/week for women), which is an important diagnostic criterion for NAFLD, from the presence of heavy drinking (> 420 g/week), which is a diagnostic criterion for ALD. Particularly, the %CDT showed a significantly higher AUROC than GGT for identifying a lack of significant drinking (Fig. 1).

To our knowledge, our study, which was conducted on a cohort in which the majority of patients exhibited light-to-moderate drinking levels, was the first to show that %CDT is more useful than GGT or MCV for determining the presence or absence of drinking using the diagnostic criteria for NAFLD and ALD. A %CDT cutoff value of 1.78% was used to identify non- or light drinkers, and a cut-off value of 2.08% was used to identify heavy drinkers. These values showed high sensitivities of 71.8% and 65.5%, respectively, and excellent specificities of 83.7% and 86.8%, respectively. Indeed, in the moderate- to heavy-drinker groups, 10 of 14 patients had low GGT levels that were less than the upper limit of normal (ULN, 75 U/L). These patients were considered GGT non-responders, with excessive drinking identified by a %CDT value exceeding the ≥ 1.78% cutoff. By contrast, 20 of the 29 non- to light drinkers had GGT values more than the ULN, but a %CDT of < 1.78%. Similarly, 25 out of 33 moderate-to-heavy drinkers with MCVs less than the ULN (99.0 fl) showed a %CDT of ≥ 1.78%, whereas 1
out of 3 non- to light drinkers with MCVs higher than the ULN showed a %CDT of < 1.78% (data not shown). These findings indicate that %CDT can be used to correctly identify non-light drinkers, even in patients with misleading GGT or MCV values.

Although several studies have shown that the %CDT is an excellent alcohol marker for detecting heavy drinkers, most of these studies were conducted in extreme cohorts of heavy drinkers or those practicing abstinence. A clinical study in Germany showed that the %CDT was more specific than either GGT or MCV for distinguishing ALD due to current alcohol dependence from liver damage due to other causes (mostly viral hepatitis) [18]. A Finnish study reported that the %CDT was more sensitive than GGT or MCV for distinguishing alcohol abusers from healthy volunteers who were either abstainers or moderate drinkers [20]. In Asia, Liang et al. reported that the %CDT was a better indicator than either GGT or MCV for distinguishing an alcoholic group from healthy controls or a nonalcoholic liver disease group in China [21].

Table 4 Simple regression analysis of drinking markers and liver injury/metabolic-related factors

	%CDT	GGT	MCV			
	t	p value	t	p value	t	p value
EtOH	3.807	<0.001*	4.905	<0.001*	4.602	<0.001*
Sex	0.116	0.408	-	0.221		
AST	1.363	0.176	7.145	<0.001*	3.712	<0.001*
ALT	-1.342	0.182	1.732	0.086	-0.036	0.972
CAP	-2.304	0.024*	-1.636	0.105	-0.767	0.445
LSM	0.873	0.385	4.241	0.001*	0.893	0.374
BMI	-3.522	<0.001*	-0.771	0.443	-1.914	0.059
HDL	0.414	0.680	-0.259	0.796	2.291	0.024*
LDL	-3.256	0.002*	-2.857	0.005*	-3.906	<0.001*
TG	0.206	0.837	3.103	0.002*	0.449	0.654
HT	0.438	0.128	0.128	0.766		
HbA1c	-3.152	0.002*	-3.263	0.002*	-2.774	0.007*

Analyzed by simple linear regression

%CDT proportion of carbohydrate-deficient transferrin to total transferrin, BMI body mass index, CAP controlled attenuation parameter, EtOH pure ethanol consumption per week (g/week), HbA1c hemoglobin A1c, HDL high-density lipoprotein, HT hypertension, LDL low-density lipoprotein, LSM liver stiffness measurement, MCV mean corpuscular volume, TG triglycerides, GGT gamma-glutamyl transferase, AST aspartate aminotransferase

*p < 0.05

Table 5 Multiple regression analysis of drinking markers and liver injury/metabolic-related factors

	%CDT	GGT	MCV			
	t	p value	t	p value	t	p value
EtOH	4.070	<0.001*	2.309	0.024*	2.009	0.048*
AST	-	-	3.243	0.002*	3.704	<0.001*
CAP	1.806	0.077	-	-	-	-
LSM	-	-	2.135	0.037*	-	-
BMI	-2.149	0.036*	-	-	-	-
HDL	-	-	-	-	3.029	0.003*
LDL	0.0644	0.949	-0.908	0.368	-3.198	0.002*
TG	-	-	2.478	0.016*	-	-
HbA1c	-0.334	0.740	-1.288	0.202	-1.371	0.175

Analyzed by multiple linear regression

%CDT proportion of carbohydrate-deficient transferrin to total transferrin, BMI body mass index, CAP controlled attenuation parameter, EtOH pure ethanol consumption per week (g/week), HbA1c hemoglobin A1c, HDL high-density lipoprotein, LDL low-density lipoprotein, LSM liver stiffness measurement, MCV mean corpuscular volume, TG triglycerides, GGT gamma-glutamyl transferase, AST aspartate aminotransferase

*p < 0.05
while Suzuki T et al. showed that the %CDT was a more useful biomarker of chronic alcohol abuse than GGT during treatment of patients with alcoholism in Japan [19]. Conversely, it has been reported that %CDT has limited sensitivity as a biomarker of heavy alcohol consumption [22]. Indeed, similarly in our study, %CDT tended to show a higher AUROC in identifying non-light drinkers than in identifying heavy drinkers, and the sensitivity for detecting heavy drinkers was relatively lower (65.5%) than that for detecting non-light drinkers (71.8%). These findings demonstrated that %CDT is a useful biomarker for assessing drinking habits in patients with fatty liver disease who visit general medical outpatient clinics as well as in special facilities, such as alcohol hospitals, especially for detecting non- and light drinkers.

Serum markers that can identify insignificant alcohol intake for the diagnosis of NAFLD have not yet been established. In this study of 120 Japanese patients, the AUROC of the %CDT was greater for detecting non- or light drinkers than heavy drinkers (Fig. 1), and the %CDT value was significantly elevated with only minimal increases in daily drinking from 0–2 drinks to 3–4, indicating a sharp increase with a small ethanol increase of only 20 g/day (Table 2). Therefore, the %CDT level appears to be very helpful for identifying heavy drinkers and distinguishing non- or light drinkers from moderate drinkers. A threshold effect on manufacturer-recommended CDT value of 2.6% in healthy subjects with an alcohol intake of > 40 g per day was reported in France [23]. In contrast, the average serum sample from healthy control individuals in a European multicenter study including Belgium, Sweden, Netherlands, Germany, and France has been reported to be 1.76 ± 0.27% [16], which was almost the same as that of non-drinkers in the present study. Thus, racial differences in elevation of %CDT values to alcohol intake may need to be considered in the differentiation of insignificant drinkers. Regarding drinking frequency, the %CDT did not significantly increase until the frequency was as high as four or more times per week. Similarly, even with heavy drinking of six drinks or more at a time, the %CDT did not significantly increase unless the frequency was as high as “almost daily.” Thus, using an elevated %CDT to evaluate alcohol consumption did not require clinically significant daily doses but only frequent drinking. Frequent alcohol consumption is a crucial prognostic factor in both early and advanced stages of ALD [24], and %CDT also has potential as a prognostic marker for ALD patients.

Candidate factors that could potentially influence drinking markers, including serum AST and ALT levels, hepatic steatosis by CAP values, hepatic elasticity by LSM, BMI, and other MetS-related factors, such as HDL, LDL, TG, hypertension, and HbA1c, were evaluated in this study. To evaluate these factors, the study cohort was divided into two groups depending on whether each factor was within its respective threshold, and two-group comparisons of drinking markers were performed (Table 3). The GGT value fluctuated depending on whether the AST and ALT values were less than the ULN, suggesting that liver damage can affect GGT. The MCV was significantly lower with high LDL levels, indicating it may be affected by lipid metabolism. The %CDT was low in the high-BMI group, consistent with previous studies reporting that high-BMI groups are less likely to have an increased %CDT than low-BMI groups [25, 26]; however, the detailed mechanisms underlying this phenomenon remain unknown [25].

A simple linear regression analysis (Table 4), followed by a multiple linear regression analysis (Table 5), demonstrated that a low BMI independently affected the increase in %CDT, while many other factors did not affect it. By contrast, GGT was independently influenced by various factors, including the AST, liver stiffness, and TG. MCV increased the p value associated with alcohol intake to the limit of significance, suggesting that MCV is also influenced by many background factors. MCV was independently affected by several factors, including the AST, HDL, LDL, and HbA1c. Taken together, the %CDT value was found to be an almost-pure drinking marker, whereas GGT and MCV values reflected not only the amount of drinking but also liver damage and disorders of lipid metabolism.

There are several serum alcohol markers other than %CDT, some of which have already been reported to be affected by MetS-related factors. Serum sialic acid is affected by MetS-related conditions, including cardiovascular or hypertensive disease, diabetes, and obesity [27]. β-Hexosaminidase is also affected by the elevation of blood glucose levels; therefore, it is not suitable for the present study [28]. Although blood glucose-independent β-hexosaminidase isoenzymes B has not been widely measured as %CDT, it may also be useful in differentiating the amount of alcohol consumed by NAFLD and ALD patients with MetS.

Fagan et al. have reported that non-diagnostic %CDT was observed in women, patients with cirrhosis, and those with an elevated BMI [22]. In our study, when limited to women and BMI of ≥ 25 kg/m², the detection sensitivity of heavy drinkers was reduced to 50% and 62.5%, respectively. In contrast, when limited to patients with liver cirrhosis, the detection sensitivity of non-light drinkers decreased to 63.6%. Nevertheless, AUROCs maintained a high accuracy of ≥ 0.8 under all limited conditions (Supplementary Figs. 1–3).

In 2020, the European Association for the Study of the Liver proposed metabolic dysfunction-associated fatty liver disease (MAFLD) as a new pathological concept, indicating that fatty liver disease can be associated with metabolic disorders [29]. This major shift in the field of liver disease suggests that fatty liver disease will be regarded as a series of liver diseases centered on dyslipidemia, with drinking being...
a major factor. Therefore, it is expected that using %CDT, a drinking marker not affected by liver damage or dyslipidemia, to objectively analyze a predominant factor underlying the pathogenesis of these disorders by detecting non-light drinkers or heavy drinkers and determine a treatment policy for patients with MAFLD will become vitally important.

In conclusion, this study showed that the %CDT is a highly useful drinking marker for diagnosing NAFLD and ALD. While a low BMI could affect %CDT, the %CDT was not influenced by liver damage or lipid metabolism disorders, unlike the MCV or GGT, indicating that this parameter can be used to identify fatty liver disease associated with NAFLD and ALD comorbid with MetS, which is currently the predominant form of liver disease and is expected to account for a higher proportion of patients in the future.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s12072-022-10298-8.

Author contributions Material preparation: MM, KK, AU, HF, KF, RY, EN, and SY; data collection and analysis: MM and KK; manuscript drafting: KK; experiment supervision and paper review: KI.

Funding None.

Availability of data and material The datasets used and/or analyzed during the current study are available from the corresponding author upon reasonable request.

Code availability Not applicable.

Declarations

Conflict of interest Maki Morinaga, Kazuyoshi Kon, Akira Uchiyama, Hiroo Fukada, Kyoko Fukuhara, Reiko Yaginuma, Eisuke Nakadera, Shunhei Yamashina, and Kenichi Ikejima declare that they have no Conflict interests.

Informed consent in studies with human subjects All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2008. Informed consent was obtained from all patients for being included in the study.

Animal studies This article does not contain any studies with animal subjects.

Consent for publication Not applicable.

References

1. Manthey J, Shield KD, Rylett M, Hasan OSM, Probst C, Reh J. Global alcohol exposure between 1990 and 2017 and forecasts until 2030: a modelling study. The Lancet. 2019;393(10190):2493–2502
2. Tapper EB, Parikh ND. Mortality due to cirrhosis and liver cancer in the United States, 1999–2016: observational study. BMJ. 2018;362:k2817
3. Tateishi R, Uchino K, Fujiwara N, Takehara T, Okanoue T, Seike M, et al. A nationwide survey on non-B, non-C hepatocellular carcinoma in Japan: 2011–2015 update. J Gastroenterol. 2019;54(4):367–376
4. Estes C, Anstee QM, Arias-Loste MT, Bantel H, Bellentani S, Caballeria J, et al. Modeling NAFLD disease burden in China, France, Germany, Italy, Japan, Spain, United Kingdom, and United States for the period 2016–2030. J Hepatol. 2018;69(4):896–904
5. Suzuki M, Kon K, Ikejima K, Ariai K, Uchiyama A, Aoyama T, et al. The chemical chaperone 4-phenylbutyric acid prevents alcohol-induced liver injury in obese KK-A(y) mice. Alcohol Clin Exp Res. 2019;43(4):617–627
6. Chang Y, Cho YK, Kim Y, Sung E, Ahn J, Jung H-S, et al. Non-heavy drinking and worsening of noninvasive fibrosis markers in nonalcoholic fatty liver disease: a cohort study. Hepatology. 2019;69(1):64–75
7. Stepanova M, Rafiq N, Younossi ZM. Components of metabolic syndrome are independent predictors of mortality in patients with chronic liver disease: a population-based study. Gut. 2010;59(10):1410–1415
8. Mahli A, Hellerbrand C. Alcohol and obesity: a dangerous association for fatty liver disease. Dig Dis. 2016;34(Suppl 1):32–39
9. Ikejima K, Kon K, Yamashina S. Nonalcoholic fatty liver disease and alcohol-related liver disease: from clinical aspects to pathological insights. Clin Mol Hepatol. 2020;26(4):728–735
10. Bergstrom JP, Helander A. Clinical characteristics of carbohydrate-deficient transferrin (%disialotransferrin) measured by HPLC: sensitivity, specificity, gender effects, and relationship with other alcohol biomarkers. Alcohol Alcohol. 2008;43(4):436–441
11. Helander A, Husa A, Jeppsson JO. Improved HPLC method for carbohydrate-deficient transferrin in serum. Clin Chem. 2003;49(11):1881–1890
12. Tavakoli HR, Hull M, Michael OL. Review of current clinical biomarkers for the detection of alcohol dependence. Innov Clin Neurosci. 2011;8(3):26–33
13. Ohtsuka T, Tsutsumi M, Fukumura A, Tsuchishima M, Takase S. Use of serum carbohydrate-deficient transferrin values to exclude alcoholic hepatitis from non-alcoholic steatohepatitis: a pilot study. Alcohol Clin Exp Res. 2005;29(12 Suppl 1):235S–S239
14. Wang J, Li P, Jiang Z, Yang Q, Mi Y, Liu Y, et al. Diagnostic value of alcoholic liver disease (ALD)/nonalcoholic fatty liver disease (NAFLD) index combined with γ-glutamyl transferase in differentiating ALD and NAFLD. Korean J Intern Med. 2016;31(3):479–487
15. Sakata H, Suzuki T, Yasuda H, Ito T. Beverage-specific effects of ethanol consumption on its biological markers. Clin Chem Lab Med. 2008;46(5):699–702
16. Delanghe JR, Helander A, Wielders JP, Pekelharing JM, Roth HJ, Schellenberg F, et al. Development and multicenter evaluation of the N latex CDT direct immunonephelometric assay for serum carbohydrate-deficient transferrin. Clin Chem. 2007;53(6):1115–1121
17. Szegedi A, Muller MJ, Himmerich H, Anghelescu I, Wetzel H. Carbohydrate-deficient transferrin (CDT) and HDL cholesterol (HDL) are highly correlated in male alcohol dependent patients. Alcohol Clin Exp Res. 2000;24(4):497–500
18. Hock B, Schwarz M, Domke I, Grunert VP, Wuertemberger M, Schiemann U, et al. Validity of carbohydrate-deficient transferrin (%CDT), gamma-glutamyltransferase (gamma-GT) and mean corpuscular erythrocyte volume (MCV) as biomarkers for chronic alcohol abuse: a study in patients with alcohol dependence and
liver disorders of non-alcoholic and alcoholic origin. Addiction. 2005;100(10):1477–1486

19. Suzuki T, Eguchi A, Shigefuku R, Nagao S, Morikawa M, Sugimoto K, et al. Accuracy of carbohydrate-deficient transferrin as a biomarker of chronic alcohol abuse during treatment for alcoholism. Hepatol Res. 2021;2021:5

20. Hietala J, Koivisto H, Anttila P, Niemela O. Comparison of the combined marker GGT-CDT and the conventional laboratory markers of alcohol abuse in heavy drinkers, moderate drinkers and abstainers. Alcohol Alcohol. 2006;41(5):528–533

21. Liang SS, He Y, Huang ZG, Jia CY, Gan W. Evaluation of the diagnostic utility of carbohydrate-deficient transferrin in chronic alcoholism: Results from Southwest China. Med (Baltim). 2021;100(4):e24467

22. Fagan KJ, Irvine KM, McWhinney BC, Fletcher LM, Horsfall LU, Johnson L, et al. Diagnostic sensitivity of carbohydrate deficient transferrin in heavy drinkers. BMC Gastroenterol. 2014;14:97

23. Schellenberg F, Schwan R, Mennetrey L, Loiseaux MN, Pages JC, Reynaud M. Dose-effect relation between daily ethanol intake in the range 0–70 grams and %CDT value: validation of a cut-off value. Alcohol Alcohol. 2005;40(6):531–534

24. Lackner C, Spindelboeck W, Haybaeck J, Douschan P, Rainer F, Terracciano L, et al. Histological parameters and alcohol abstinence determine long-term prognosis in patients with alcoholic liver disease. J Hepatol. 2017;66(3):610–618

25. Whitfield JB, Dy V, Madden PA, Heath AC, Martin NG, Montgomery GW. Measuring carbohydrate-deficient transferrin by direct immunoassay: factors affecting diagnostic sensitivity for excessive alcohol intake. Clin Chem. 2008;54(7):1158–1165

26. Fagan KJ, Irvine KM, McWhinney BC, Fletcher LM, Horsfall LU, Johnson LA, et al. BMI but not stage or etiology of nonalcoholic liver disease affects the diagnostic utility of carbohydrate-deficient transferrin. Alcohol Clin Exp Res. 2013;37(10):1771–1778

27. Kalapatapu RK, Chambers R. Novel objective biomarkers of alcohol use: potential diagnostic and treatment management tools in dual diagnosis care. J Dual Diagn. 2009;5(1):57–82

28. Hultberg B, Isaksson A, Agardh E, Agardh CD. Plasma beta-hexosaminidase isoenzymes A and B exhibit different relations to blood glucose levels in a population of Type 1 diabetic patients. Scand J Clin Lab Invest. 1995;55(8):723–728

29. Eslam M, Newsome PN, Sarin SK, Anstee QM, Targher G, Romero-Gomez M, et al. A new definition for metabolic dysfunction-associated fatty liver disease: an international expert consensus statement. J Hepatol. 2020;73(1):202–209

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.