Global quantitative understanding of yeast’s fate decision making in response to sexual deception

Sheng Li¹,², Qiong Liu², *, Erkang Wang¹,², Jin Wang³, *

¹College of Chemistry, Jilin University, Changchun, Jilin, 130012 P. R. China; ²State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China; ³Department of Chemistry and of Physics and astronomy, State University of New York at Stony Brook, Stony Brook, New York, 11794-3400, USA.

* For correspondence: liuqiong@ciac.ac.cn (QL); jin.wang.1@stonybrook.edu (JW).

Abstract

Cell cycle arrest and polarized cell growth are commonly used to qualitatively characterize the yeast’s fate in response to sexual deception. Biologically, the cellular decisions governing these fates can be viewed as cascading signals along response pathways. However, it is unknown how quantitatively the cell fate decision-making evolves over time during the macroscopic and microscopic overall response. Here, by observing multi-dimensional responses at the single-cell level, we find that yeast cells can take on a variety of destinies. Multiple states are revealed, along with kinetic
switching rates and pathways among them, giving rise to a quantitative landscape of mating response. The applications of landscape and flux theory to such biological systems enable us to quantify the non-equilibrium dynamics of the yeast cell’s mating responses. Furthermore, our experimental results establish the first global quantitative demonstration and understanding of the molecular mechanisms underlying the formation of these states, supporting the real-time synchronization of intracellular signaling with their physiological growth and morphological functions. To further elucidate these microscopic mechanisms, we conduct biochemical reaction simulations to demonstrate the emergence of these states. These findings provide new insights into the global signaling mechanisms underlying how the yeast “think” and do in response to sexual deception.
Introduction

Facing many different external stimuli, cells integrate information from different
sources and take appropriate stress responses, such as living or death, division or
differentiation, shape change, migration, etc. (Berg and Brown, 1972; De Oliveira et
al., 2016; Kedrin et al., 2007; Köhidai, 1999; Levine and Rappel, 2013; Macnab
and Koshland, 1972; Sourjik and Wingreen, 2012; Vladimirov and Sourjik,
2009; Xu et al., 2016; Yuan et al., 2010; Zhou et al., 2021). To better understand the
acellular response to external stimuli, we chose the pheromone pathway of
Saccharomyces cerevisiae, which was a classic model of mitogen-activated protein
kinase (MAPK) signaling pathway for this study (Chen and Thorner, 2007; Gustin
et al., 1998; Slessareva and Dohlman, 2006; Wang and Dohlman, 2004). As
known, Saccharomyces cerevisiae has two modes of reproduction, sexual mating
reproduction and asexual budding reproduction (Herskowitz, 1988; Hull et al., 2000;
Norris and Osley, 1987; Warringer et al., 2011; Zörgö et al., 2013). These two
reproductive modes can be converted either with or without the assistance of a mate’s
external pheromone stimulation (Haber, 2012). For the sexual reproduction, mating
into diploid is a natural behavior of heterosexual haploid Saccharomyces cerevisiae to
cope with unfavorable environment to improve their survival rate for generations
(Bao et al., 2004; Jenness et al., 1983; Youk and Lim, 2014a). The mating
communication between them is realized by the pheromones, a secreted sex hormone,
to inform its spouse to prepare for the start of the cell fusion (Bao et al., 2004;
Bardwell, 2005; Jenness et al., 1983; Marsh and Rose, 1997; Molk and Bloom,
2006; Rose, 1996; White and Rose, 2001; Youk and Lim, 2014b; Youk and Lim, 2014a). What will happen to the yeast cell if its spouse does not arrive and this normal stimulation continues? From the microscopic internal activities (Figure 1), the external signals are transmitted to Fus3p through a series of internal proteins such as prototype heterotrimeric GTP binding protein and the MAPK kinase cascades (Dohlman and Thorner, 2001; Errede et al., 1993; Neiman and Herskowitz, 1994). Then, the Fus3p shuttles back and forth across the nuclear membrane, directly or indirectly activating the genes for cell cycle arrest (Far1p) and polar growth (Bni1p) (Anne-Christine Butty, 1998; Blackwell et al., 2003; Elion et al., 1993; Elion et al., 1991; Herskowitz, 1995; Matheos et al., 2004; Peter et al., 1993; Roberts and Fink, 1994; van Drogen et al., 2001). Thus, current thinking about the responsive fate of the yeast cells encountering sexual deception can be qualitatively summarized as the occurrence of the cell cycle arrest and the polarized cell growth (Chang and Herskowitz, 1990; Segall, 1993; Shimada et al., 2000).

While studying qualitatively the fates of cells, researchers realized that, in the presence of many potential external stimuli, the decision-making of the cells can play a central role in the fates of the cells (Colman-Lerner et al., 2005a; Colman-Lerner et al., 2005b; Fang et al., 2018a; Fang et al., 2018b; Gordley et al., 2016; Jiang et al., 2019a; Jiang et al., 2019b; St-Pierre and Endy, 2008; Takizawa et al., 1997; Zeng et al., 2010). Biologically, the cell fate decisions can also be qualitatively described by the cascading transmission of the signals along the static causal pathway (Bar-Joseph et al., 2012; Behar et al., 2008; Doncic et al., 2015; Hasty et al., 2001;
Yosef and Regev, 2011). However, it is unknown how quantitatively the cell fate decision-making evolves over time during the overall response at both macroscopic and microscopic levels. Since the living cell itself is a complex non-equilibrium microsystem, the disturbances of the external environment undoubtedly break the original balance of the yeast cells and exacerbate the imbalance of the internal activities (Balázsi et al., 2011; Davidson and Erwin, 2006; Feng and Wang, 2011; Li and Wang, 2014; Van Kampen, 1992; Wang et al., 2010a; Wang et al., 2008a; Wang et al., 2008b; 2010b; Wang et al., 2011). As a result, quantifying these underlying cell fate decisions of how the yeast cells “think” and act in response to external stimuli remains a significant challenge.

Indeed, from a microscopic perspective, the cellular decision-making of yeast in response to the mating information is accomplished through the multiple feedback loops (Figure 2A), not only including the positive feedback regulation mediated by Fus3p, but also some negative feedback regulation that can effectively reduce the transcriptional output of this pathway (Anders et al., 2020; Dohlman et al., 1996; Laviña et al., 2010; 2013; Sugiyama et al., 2009; Zheng et al., 2010). As known, after pheromone stimulation, there are two pathways that can lead to the polar growth of the cells (Figure 1). The path1 (P_1) is “Fus3p → Far1p/Cdc24p → Cdc42p → Bni1p” (Butty et al., 1998; Nern and Arkowitz, 1999; 2000b; Shimada et al., 2000). It is realized by entering nucleus through Fus3p to activate Far1, which can escape from the nucleus to activate Bni1p indirectly. The path2 (P_2) is for Fus3p to directly activate Bni1p in the cytoplasm, namely “Fus3p → Bni1p” (Matheos et al.,
In the process of these two polar growth pathways acting alone or together, the self-activation effect ("Fus3p → Fus3p") of Fus3p caused by pheromones can promote rapid signal transmission (Kranz et al., 1994; Maeder et al., 2007; Serrano et al., 2018; Szczurek et al., 2009). Besides, the activation of the pheromone pathway also induces multiple negative feedback loops, such as "I₁" (Ste5p and Ptp2,3p) (Bhattacharyya et al., 2006; Laviña et al., 2010; 2013; Malleshaiah et al., 2010; Sugiyama et al., 2009; Winters et al., 2005), "I₂" (Sst2p, Msg5p) (Anders et al., 2020; Chen and Kurjan, 1997; Dohlman et al., 1996; Garrison et al., 1999; Laviña et al., 2010; 2013; Parnell et al., 2005; Sugiyama et al., 2009) and "I₃" (Bni1p) (Matheos et al., 2004) in the pathway. It is worth noting that only at high-dose pheromone levels, the negative feedback of the downstream Msg5p will be upregulated (Anders et al., 2020) and only at high concentrations (3μM) of Fus3p, Bni1p will reverse the expression of Fus3p (Matheos et al., 2004).

Here, by observing the multi-dimensional response at the single-cell level, we discovered the non-equilibrium steady states, which demonstrate the cell fates quantitatively, in response to different concentrations of pheromone. These steady states or cellular destinies include two gene expression levels, four growth rates, and four morphological fate states. We quantify these responsive fates of the yeast cells in real time from various dimensions, including the Fus3p gene expression in and out of the nucleus, cell morphology, cell growth rate, and stimulation concentration. Multiple states, as well as switching kinetic rates and pathways among them, are revealed, giving rise to a quantitative landscape of mating response. The applications
of landscape and flux theory to such biological systems enable us to quantify the non-equilibrium dynamics of the yeast cell’s mating responses. Our results establish a global and physical framework for understanding cell fate decision-making and mating dynamics. Furthermore, our proposed molecular mechanisms for forming these states, validated by experimental evidence, are the first to quantitatively illustrate the time-dependent evolution of the cell fate decisions. These molecular mechanisms enable the real-time synchronization of intracellular signaling with their physiological growth and morphological functions, bridging microscopic mechanism and macroscopic functions. To further elucidate these microscopic mechanisms, we conduct biochemical reaction simulations to demonstrate the emergence of these states. These findings provide new insights into the global signaling mechanisms underlying how the yeast “think” and do in response to sexual deception.
Figure 1. Schematic diagram of mating signal pathway of yeast cell pheromone pathway. The red horizontal line represents the inhibition of negative feedback; the green arrow represents the activation of positive feedback; the light green dashed arrow represents the shift of position; “I₁ – I₃” respectively represent different negative feedback adjustment pathways; “P₁” “P₂” represent the two signal pathways of the polar growth.

Results

Quantifying the cellular mating decision

Studies have shown that the yeast, whose mating decision is an all-or-none switch-like response, can automatically filter out the low-dose pheromone signals and only respond near the critical concentration or higher (Barkai et al., 1998; Doncic et al., 2011; Malleshaiah et al., 2010). In fact, the inability of these messengers to attract the attention of the heterosexual yeast is due to the insufficient accumulation of the internal signals, such as Fus3p, which cannot trigger the start of the cell mating preparation project (Elion et al., 2005; Fiedler et al., 2009; Slaughter et al., 2007).

Observing the single cell of yeast with a total internal reflection fluorescence microscope, the abundant expression of Fus3p showed that it can gradually reach an “adaptation state” (“a-b” stage) after being stimulated by the pheromone for a certain period of times (Figure 2B). This trend of the rising first and then stabilizing can be understood as the “psychological state” of the yeast cell from being “excited” to restoring the “calm”. But if the cells resumed budding (“b-c” stage), the expression of Fus3p was greatly reduced until it returns to near the “initial state” (“0-a” stage).

To gain an initial quantitative understanding of this mating decision in yeast to
treat stimuli, the flow cytometry was used to measure the fluorescence intensity of Fus3-GFP in the yeast cells incubated with various pheromone doses for 24 hours. Notably, after 24 hours of cultivation in YPD media containing varying concentrations of the pheromone, the yeast cells in the flow cytometer sample can exist in one of three possible states. The first state occurs when the sample contains only the initial cells (“0-a” stage). This is because the pheromone at low concentrations (0.01-0.4μM) was unable to arrest the cell cycle of the yeast cells from the start. The second state is one in which the solution contains two distinct populations of yeast cells (“a-b” and “b-c” stages). In this state, a moderate concentration (0.4-1.5μM) of the pheromone can arrest the yeast cells’ cell cycle from the start, but not continuously for up to 24 hours, causing some yeast cells to resume budding at a later stage. The third state is characterized primarily by the deformed cells (“a-b” stage). Because high concentrations (>1.5μM) of the pheromone can arrest the yeast cells’ cell cycle continuously for at least 24 hours. It can be seen from the fitted statistics that the expression of Fus3p at a dose of 0.01-0.4μM shows unimodal distribution of the fluorescence intensities (Figure 2C). The bimodal distribution representing the bistable states gradually begins to appear until the dose is about 0.6μM. This means that the dose of around 0.6μM can begin to attract enough attention from the yeast cells.

Using a microfluidic device to cultivate the single-celled yeast in real time under constant temperature conditions, the fluorescence signals and the living state of the yeast cells were recorded with the total internal reflection fluorescent microscope.
(Figure 2–videos 1-6 and Appendix 2–legend). During the process of culturing with different concentrations of pheromone, we found that the time duration for the yeast cells to inhibit the cell cycle was directly proportional to the concentration of the pheromone. With the prolongation of the pheromone stimulation time, the yeast cells gradually adapt to the external environment and resumed budding reproduction (Figure 2D). This time-sensitive “attitude” towards the messengers shows that there is a certain deadline for the yeast to wait for mating.

Figure 2. A non-equilibrium biological model for cellular responses. (A) Schematic diagram of the signal response dominated by Fus3p in the cell. (B) The fluorescence intensity of Fus3p varies...
with the pheromone stimulation time at 0.7μM. The x-axis represents the time of incubation with the pheromone-containing medium; the y-axis represents the fluorescence intensity of Fus3p-GFP; the three times “a”, “b” and “c” in the figure show the fluorescence intensity values of pheromone stimulation for 160 minutes, 1520 minutes and 1820 minutes respectively, and the pictures next to them are the single-cell photos of yeast taken through the microscope at that point. (C) Statistical graphs of Fus3-GFP fluorescence intensity at different pheromone concentrations. The yeast cells were cultured in YPD medium containing different concentrations of the pheromone for 24h; the black curve represents the overall fluorescence intensity statistics; the green curve represents the “initial steady state” fluorescence intensity; the red curve represents the “adapted steady state” fluorescence intensity. (D) Yeast morphology under different pheromone concentrations. The green fluorescence in the cell is the gene expression level of Fus3p; the “60” min in the x-axis represents the time when switching to the pheromone-containing medium for culture. the “610” min represents the time when the cells reach the “adaptive steady state”; the “1050 & 1440” min represent the time points when the cells resume budding reproduction under 0.6μM and 0.7μM pheromone concentrations, respectively.

The online version of this article includes the following source data and video(s) for figure 2:

Source data 1. Data from flow cytometry assays associated with Figure 2C.

Figure 2—videos 1-6. Total internal reflection microscopy images of yeast cell morphology in response to 0.6μM, 0.7μM, 0.8μM, 1.0μM, 2.0μM, and 3.0μM pheromones over time.

Two cell fate decision states reflected on gene expressions

To explore the cell fate decision-making of the yeast during the “calming period” (non-equilibrium steady states), we plotted the fluorescence intensity trajectories of
Fus3p inside and outside the nucleus over time (Figure 3A and Figure 3–figure supplement 1, 2). The trajectories show that Fus3p can reach a stable state when the yeast cells were cultured for about 600 minutes. After removing the data of the unstable process in the previous 600 min, the remaining stationary phase can be quantified by the Fus3p’s three-dimensional (in and out of nucleus fluorescence signals) statistical distribution (Figure 3B and Figure 3–figure supplement 3-5).

Obviously, there are two steady states, high state \((H_1, H_2)\) and low state \((L_1, L_2)\), of the Fus3p’s expressions for both inside and outside the nucleus at the same time. Calculating the “Pearson correlation coefficient” between the intranuclear and extranuclear fluorescence intensities reveals a correlation of approximately 0.8 at various pheromone concentrations (Appendix 1—table 1). This shows a strong linear correlation between the fluorescence intensities of these two positions.

Previous research has demonstrated that the positive feedback regulation induced by pheromones increases Fus3p expression, whereas negative feedback regulation induced by pheromones decreases it (Anders et al., 2020; Bhattacharyya et al., 2006; Chen and Kurjan, 1997; Dohlman et al., 1996; Garrison et al., 1999; Kranz et al., 1994; Laviña et al., 2010; 2013; Maeder et al., 2007; Malleshaiah et al., 2010; Parnell et al., 2005; Serrano et al., 2018; Sugiyama et al., 2009; Szczurek et al., 2009; Winters et al., 2005). However, what the logical connections exist between the pheromone regulatory proteins and these steady-state expression levels of Fus3p?

We propose that the tandem of these feedback-regulated logical relationships can serve as a molecular mechanism explaining the emergence of \((L_1, L_2)\) and \((H_1, H_2)\)
states. This molecular mechanism is dynamic in nature, involving both functional consumption and feedback loops. First, the functional consumption means that when the amount of the Fus3p in the nucleus is sufficient to inhibit the cell cycle and activate the mating protein (“Outer_P1 → Far1p & Ste12p”), the excess Fus3p will be transported out of the nucleus for the polar growth (“Outer_P1 → Inner_P1” and “Inner_P2 → Outer_P2”) (Figure 3C); Second, the feedback loop implies that Fus3p regulates its own expression by activating or inhibiting it. For example, the feedback loop “A → Fus3p ┤A” is primarily concerned with the pathway involving Gpa1p and Sst2p, while the feedback loop “Fus3p → B ┤Fus3p” is primarily concerned with the pathway involving Ste12p and Msg5p (Figures 1 and 3D).

If our dynamic molecular mechanism is correct, functional consumption and feedback loops undoubtedly cause Fus3p’s expression to alternate between high and low levels. Besides, the polar growth should mainly appear in the high state (H_1, H_2), and essentially no significant growth would occur in the low state (L_1, L_2). To validate this dynamic molecular mechanism, we fitted the single-track fluorescence intensity during the “adaptation steady state” period. Clearly, the two trajectory fates (high state & low state) inside and outside the nucleus can be switched between the corresponding two fates respectively (Figure 3E), confirming our logical interpretation of the state switching above.

Biologically, this switching of the two fates shows the yeast’s two decision-makings, looking for a mate or waiting for a mate. Immersed in the low state (L_1, L_2) does not directly restore budding but chooses to continue intermittent growth, which
means that the yeast cell doesn’t give up mating even if its spouse missed their appointment. On the other hand, the yeast is also actively saving itself, accumulating the counter-attack power through many negative feedback regulators, to escape the deception of lies. This cellular behavior that not only waits hopefully, but also actively strengthens its resistance to prevent disappointment, which seems to be paradoxical. In fact, it shows that the yeast is not “losing its mind” as a result of being deceived, but rather is making the “sane” decisions.

Figure 3. The two steady states of the gene expressions. (A) The fluorescence intensity trajectories of Fus3p inside and outside the nucleus over time at 0.7μM. The red vertical line is the
dividing line of time, and the 600 minutes is also the starting point of steady-state data; **(B)** Three-dimensional distribution graph of Fus3p fluorescence intensity inside and outside the nucleus of yeast cells in the stationary phase under the different pheromone concentrations. On the left is the 3D distribution of fluorescence or the 3D population landscape, on the middle is the 2D histograms or the 2D underlying potential landscapes \(U \) in exponential scale (defined as \(p \sim e^{-U} \)), which is also the population landscape; on the right is the 2D underlying potential landscapes \(U = -\ln P \). **(C)** Schematic diagram of the response of yeast cells to pheromone stimulation. The solid line is the path that plays a major role in the polar growth, and the dashed line has a smaller weight on the polar growth than the solid line; the “Outer_P_1” represents the indirect pathway of the Fus3p in the cytoplasm to the nucleus for inhibiting the cell cycle; the “Inner_P_1” represents the indirect pathway for the Fus3p in the nucleus for the cell polar growth; the “Outer_P_2” represents the direct pathway of the Fus3p in the cytoplasm for the cell polar growth; the “Inner_P_2” represents the direct pathway for the Fus3p in the nucleus to transfer to the cytoplasm for the cell polar growth; the “\(I_1 - I_2 \)” represent the inhibitory effects of the negative feedback regulation; the two gray dashed lines represent the cell membrane and the nuclear membrane, respectively. **(D)** A simplified schematic diagram of the molecular mechanism of Fus3p’s self-activation and self-inhibition. A and B respectively represent two genes that interact with Fus3p in the signaling pathway; the solid line represents self-activation; the dashed line represents self-inhibition. **(E)** The fluorescence intensity trajectories of Fus3p inside and outside the nucleus over time. The red line represents the fitting line of the high state and the low state.

The online version of this article includes the following source data and figure supplement(s) for figure 3:
Source data 1. Data required to create the landscape for Figure 3B.

Figure supplement 1-2. Fluorescence intensity trajectories of intranuclear and extranuclear Fus3p in response to varying concentrations of pheromone.

Figure supplement 3-5. Potential landscapes \(U \) of intranuclear and extranuclear Fus3p in response to varying concentrations of pheromone.

Figure supplement 6. The distribution graph of the fluorescence intensity of all pixels in the cell with time.

Uncovering the decision landscapes in the pheromone dimension

To further understand the nature of the bistable state, we counted the apparent characteristics of the double peaks, such as the area overlap ratio \((w) \) and the spacing between the double peaks (Figure 4A). From the calculation results, we can see that as the pheromone concentration increases, the area overlap ratio \((w) \) between the two states first increases (0.7μM-1.0μM) and then decreases (2.0μM-3.0μM), while the bimodal distance first decreases and then increases. As the peak distance decreases, the area overlap ratio of the double peaks increases, reflecting the gradual closeness of the two gene expression states.

To uncover the capability of the switching between these two decisions, the hidden Markov chain model (HMM) is used to fit the experimental data perform the bi-stable analysis on the decision-making landscape. The steady state probability can be used to quantify the population landscape \(P \) or the potential landscape \(U \) (Fang et al., 2019; Feng et al., 2014; Wang, 2015; Wang et al., 2008a), where \(U \) is defined as the negative logarithm of the steady state distribution \(P \) of the gene expressions,
\[U = -\ln P. \] As seen clearly, the population and potential landscapes (\(P \) and \(U \)) at various pheromone concentrations have two basins of attractions and they are separated by the barriers in between (Figure 3B and Figure 3–figure supplement 3-5). The barrier height can be directly obtained from the landscape, while the transition rates and the residence times of the states were all calculated quantitatively from the HMM model fitting to experimental data (Figures 4B and C).

According to the results, the trend of the barrier height versus pheromone concentration is essentially consistent with that of its residence time (Figure 4B). The greater the barrier height in the decision-making is, the greater the resistance to switching is. A slight increase in barrier height significantly increases the residence time of the “high-state” for polar growth at low doses (0.7-0.8μM). At the high doses (1.0-3.0μM), the residence time also decreases gradually as the barrier height decreases. From a biological perspective, this increase at low doses is due to the positive feedback regulation (“Pheromone → Fus3p” & “Fus3p → Fus3p”) in the gene network, whereas the decrease at high doses is owing to a stronger negative feedback regulation (such as “I3”) (Figures 1 and 3C). Meanwhile, the opposite trend of the transfer rate ratio \((k_{21}/k_{12}) \) to the barrier height ratio or the residence time ratio (High/Low) upon the pheromone concentration changes reflects the weighting of these two decisions to switch (Figure 4C). A higher weight for the “high-state” indicates fewer transitions from high to low state per unit time, and more time for the yeast to perform polar growth. To understand this relationship more clearly, the potential landscape topographies are shown under different pheromone doses (Figure...
4D). Due to the relatively greater resistance to the switching from the high-state to the low-state at the low doses, the yeast is more inclined to stay in the high state to look for mating actively, while the opposite is true at the high doses.

Figure 4. The decision landscapes in the pheromone dimension. (A) The apparent characteristics of the double peaks in the fluorescence distribution under the changes in pheromone concentration. The “w” is the area overlap ratio between the double peaks; the peak spacing is the distance between the main axes of the high state and low states of the bimodal distribution. (B) The statistical trends of the barrier height and residence time with the changes in pheromone concentration. (C) Relationships between various characteristics for the potential landscape with the changes in pheromone concentration. the “k_{12}” is the transition rate from low state to high state; the “k_{21}” is the transition rate from high state to low state; The red circles are the data points, the blue line is the fitted line of the data, the correlation coefficient of the barrier height and the residence time is 0.79 (Significantly positive correlation). (D) Simple schematic diagram of the potential landscape topography under different pheromone dosages. “L & ①” stands for the low state, “H & ②” stands for the high state; the “k_{12}&k_{21}” are the transition rates between the low state and the high state.
The online version of this article includes the following source data for figure 4:

Source data 1. Data tables related to quantifications in Figure 4A.

Source data 2. Data tables related to quantifications in Figures 4B and C.

Four spatiotemporal cell growth rate states

Using real-time microscopy observations, we discovered that the cell growth rate of yeast was not uniform across time periods. Except for the top, other parts of the cell changed slightly as the yeast stretched forward. To accurately measure the spatiotemporal change rate of the cell morphology, we used the circular filling pattern to segment yeast cells (*Figure 5A*). It is obvious that the largest circle represents the initial main part of the cell, while the smallest circle represents the newly formed portion at the cell’s top. For example, inside the yeast cell, there are two filled circles denoted by the letters R_0 and R_1. R_0 is the larger circle, while R_1 is the smaller one (*Figure 5B*). If the filled circle R_1 of the cells grows uniformly in size from small to large (Model-1: “$R_{1,1} \rightarrow R_{1,2} \rightarrow R_{1,3} \rightarrow R_{1,4}$”), then the ratios of the smallest circle to the largest circle in the cell will be uniformly distributed. If, on the other hand, the cell grows in model-2 (“$R_{1,1} \rightarrow R_{1,2} \rightarrow R_{1,3} \rightarrow R_{1,3} \rightarrow R_{1,4}$”) with the growth temporarily halted at $R_{1,3}$, the $R_{1,3}$ will be observed repeatedly, increasing the probability of the $R_{1,3}/R_0$. When the size ratio of the smallest and largest circles was used as an observable value, we noticed that the statistical result was mostly around 0.27 at 0.7μM (*Figure 5C* and *Figure 5–figure supplement 1*). This demonstrates unequivocally that when the size ratio is 0.27, cellular growth is slower, allowing for more opportunities to observe this ratio distribution. That is, the rate of growth or the
capacity for growth at various locations within the cell are not exactly identical. Therefore, rather than using the cell’s area, the total length, or the arithmetic mean of the length, we chose to describe the cell’s morphology using the reciprocal of the radius in the cell-filled circle multiplied by the number of filled circles, i.e. \(H_n = n\left(\frac{1}{R_1} + \frac{1}{R_2} + \ldots + \frac{1}{R_n}\right) \). The rate of change in the cell morphology is denoted by \(\left(\frac{H_{n+1} - H_n}{2} - \frac{H_n - H_{n-1}}{2}\right) / (t_{n+1} - t_n) \).

From the real-time trajectory of the changes in the cell morphology, measured by the \(H_n \) of the cell filled circles, we found that there were roughly four types of the cell shape changes. According to the definition of \(H_n \) describing the cell morphology, we know that the ascending phase of the curve \((t_1 - t_2) \) mainly represents the change of the cell length, while the descending phase \((t_3 - t_4) \) mainly denotes the change of cell width, and the slight change phase \((t_2 - t_3) \) & \((t_4 - t_5) \) characterizes that the cells almost stop growing or grow at a low speed (Figure 5D). The Supplementary Section discusses this justification for the cellular morphological characterization. We collected the statistics on the distribution of the cellular growth rate (Figure 5E and Figure 5–figure supplement 2). It is obvious that the cell growth rate can be divided into four states if the positive and negative values are distinguished. We divided these four growth rates into two categories: the fast growth rates and the slow growth rates. The fast growth rates included the length-first rate one (representing the longitudinal growth rate) and the width-first rate one (representing the lateral growth rate); the slow growth rates included two non-obvious rates (representing the slightly length-first & width-first growth rates).
To explore the cellular decisions behind these four growth rates, the response speed of the proteins in the signal transduction pathway is considered to determine the formation of the four behaviors (the supplementary section discussed this issue of protein response speed in greater detail). Many studies have shown that Fus3p and Far1p were both important genes for the formation of the cell growth axis determined by the bud site and the mutants. Lacking of Far1p or Fus3p would cause the mis-localization of the shmoo projections (Butty et al., 1998; Nern and Arkowitz, 1999; 2000a). Therefore, we suggest that “P1” is more directional than the “P2” (longitudinal growth). In summary, we propose that the molecular mechanism of the length-first rate is mainly described by the graph “P2”, the width-first rate is mainly illustrated by the graph “P1 + P2”, and the non-obvious rates are mainly shown by the graphs “P0” & “P1” (Figure 5F). Meanwhile, the experimental evidences of these four molecular mechanisms have been indirectly confirmed in the following self-consistent analysis.
Figure 5. The underlying molecular mechanism of the cell growth rate. (A) Simple diagram of cell shape with circle filling pattern. The left picture shows one yeast cell cultured for 1020 minutes in a medium containing 0.7μM pheromone; the red line is the boundary line of the cell shape; the right picture is the filling model of the left picture; the “$R_1 \sim R_4$” are the radii of the circle. (B) The illustration of the scheme for simulated cell growth. The R_0 is the maximum circle radius; the R_1 is the minimum circle radius; the $(R_{1,1}, \ldots, R_{1,4})$ are the radius of the R_1 in the different growth stages; the (T_1, \ldots, T_6) are the times; (C) The distribution diagram of the radius ratio between the smallest circle and the largest circle of the yeast cell shape at 0.7μM. (D) Real-time trajectory of the cell morphology (H_n) at 0.7μM. (E) The distribution statistics of the cell growth rate at 0.7μM. (F) Schematic diagram of the four molecular mechanisms of the polar...
growth of yeast cells. Figure 2C includes the same additional annotations.

The online version of this article includes the following source data and figure supplement(s) for figure 5:

Source data 1. The ratio data of the smallest filled circle to the largest filled circle in Figure 5C.

Source data 2. Cell growth rate statistics associated with Figure 5E.

Figure supplement 1. The distribution diagram of the radius ratio between the smallest circle and the largest circle of the yeast cell shape under the different pheromone doses.

Figure supplement 2. Statistical graph of the cell growth rate under the different pheromone doses.

Experimental evidence for the molecular mechanisms

To validate the above-mentioned molecular mechanism, we investigated the link between the growth rates and dual fluorescence gene expression states. By taking the absolute value of the growth rate, we directly divided into the “Fast growth rate” and the “Slow growth rate” states (Figure 6A and Figure 6–figure supplement 1). Then, we gathered the Fus3p fluorescence intensity data inside and outside the nucleus and plotted a two-dimensional statistical distribution against the growth rate data separately (Figure 6B and Figure 6–figure supplement 2, 3). In principle, the “High-state” fluorescence data should be completely included in the “Fast-state” growth rate data, and the “Low-state” fluorescence data should also be completely included in the “Slow-state” growth rate data. However, the behavior we have observed is obviously not the case. When using the different colors to represent the fluorescence states, we can clearly see that the low state (red dots), high state (blue dots),
dots), and the overlapping data (green dots) are all included in the two growth rates.

The biological meaning of these overlapping data is the fast growth of the yeast in a low-fluorescence state ("FL") and the slow growth of the yeast in a high-fluorescence state ("SH").

For the dynamical understanding of the cellular decision-making, the mate-seeking behavior of the yeast cells through the polar growth occurs primarily when the Fus3p is in the high fluorescent state. To explore the rationality of the existence of this mixing behavior, we compared the similarity of the real-time trajectories between Fus3p fluorescence intensity and cell growth rate. The similarity of these two types of trajectories indicates that the overlaps are not very big (Appendix 1—table 2). The "Fast state" is mostly contained in the "High state", and the "Slow state" is mostly contained in the "Low state" (Appendix 1—table 3). This indicates that Fus3p's regulation and the cell growth rate are not completely independent and uncorrelated events. We suggest that these mixed states ("FL & SH") emerge as a result of certain overlap between the fluorescent double states (See the appendix text for a more detailed discussion). When distinguishing the fluorescence intensity state of the overlapping area, the fluorescence intensity indicated that the large fluorescence intensity had certain probability of belonging to the "Low-state", on the contrary, the small fluorescence intensity also had certain probability of belonging to the "High-state" (Figure 6C). Therefore, the "FL" represents the state of "Fast" growth rate and "Large-intensity" in the "Low-state" fluorescence; the "SH" represents the state of "Slow" growth rate and "Small-intensity" in the "High-state" fluorescence.
To better describe the overlapping effect of the fluorescence data, we create a schematic diagram that illustrates the mixed area of fluorescence intensity (Figure 6D). Among them, the \(\gamma_{FL} \), \(\gamma_{SH} \), \(\gamma_{FH} \) and \(\gamma_{SL} \) respectively represent the proportion of the state of “FL”, “SH”, “FH” and “SL” in the growth rate data; the “\(N_f \)” and “\(N_s \)” is the number of the “Fast-state” growth rate data and the “Slow-state” growth rate data respectively. Subsequently, we calculate the overlap ratio distribution and the weights of the four states in the total fluorescence data at different concentrations of pheromone (Appendix 1—table 4). The overlap rate being equal to the ratio of the “FL” and “SH” states to the total data \((w' = (\gamma_{FL} \cdot N_f + \gamma_{SH} \cdot N_s)/(N_f + N_s)) \) is basically the same as the overlap area of the high and low fluorescence states \((w') \). This provides indirect experimental evidence to support this quantitative understanding of the molecular mechanism underlying cell fate decision-making.
Figure 6. The relationship between the growth rate and the bistable gene expressions. (A) Statistical graph of the distribution statistics of the absolute value of the cell growth rate at 0.7μM. (B) Two-dimensional statistical distribution of fluorescence data and growth data inside and outside the nucleus at 0.7μM. The red dots represent the low fluorescence state, the blue dots represent the high fluorescence state, and the green dots represent the mixed state. (C) The trajectory graph of the fluorescence intensity of Fus3p in the nucleus over time. The blue curve is the fluorescence trajectory; the red line is the curve of the state with time after the fluorescence intensity is fitted, the upper one is the “High-state”, the lower one is the “Low-state”; “a” and “b” are the two points in the “High-state” and the “Low-state” fluorescence intensity, respectively. (D) Diagram depicting the relationship between data of various dimensions. The “Γ_1:Γ_2” represents the ratio of the “Low-state” to the “High-state” of the fluorescence intensity in the “Fast-state” growth rate data; the “Γ_3:Γ_4” represents the ratio of the “Low-state” to the “High-state” of the fluorescence intensity in the “Slow-state” growth rate data; “N_f” is the number of the “Fast-state” growth rate data; the “N_s” is the number of the “Slow-state” growth rate data.

The online version of this article includes the following source data and figure supplement(s) for figure 6:

Source data 1. Statistics of the absolute growth rates of cells associated with Figure 6A.

Source data 2. The cell growth rate and fluorescence intensity data presented in Figure 6B.

Figure supplement 1. Statistical graph depicting the absolute value of the cell growth rate at various pheromone concentrations.

Figure supplement 2-3. Statistical diagram depicting the relationship between the fluorescence intensity of Fus3p inside and outside the nucleus and the cell growth rate at different pheromone concentrations.
concentrations.

Figure supplement 4. A simplified diagram of the overlap effect of the dual-state fluorescence data.

Four cell morphological fate states

When the cell morphology data were analyzed using the H_n, the cell shape revealed the presence of four distinct fates (“$F_1 - F_4$”) in response to varying pheromone stimulation doses (**Figure 7A and Figure 7–figure supplement 1**). From the photos of these fates taken by the microscope, it can be seen that their aspect ratios are obviously inconsistent (**Figure 7B**). Although we already know the four molecular mechanisms that lead to different cell growth rates, are these different molecular mechanisms the direct cause of the fates of the four cell morphologies?

Indeed, the cell morphology is a cumulative quantity distinct from the cell growth rate, the formation of which is dependent on the growth of cell in a variety of directions. Therefore, we propose that the cell morphology cannot be determined solely by the action of a single growth pathway, such as “$P_1 + P_2$”, “P_2”, “P_1”, “P_0” (**Figure 5F**), but should be the result of their combined action.

To understand the molecular mechanisms of the four cell morphological fates more intuitively, we used the growth ability represented by the growth rate of the cells in different directions to count the synergistic effect of the minor axis and major axis of the cell (**Figure 7C**). From the Figure, we can see that there are four distinct states in the cooperative distribution of the two data, which strongly suggests that the ability to grow from different directions is a key determinant forming the cell morphology.
Importantly, it is entirely due to the four combinations of these two growth abilities that make the cells to form four stable morphological fates. These two growth abilities show the comprehensive considerations of the yeast in the decision-making process.

Figure 7. The understanding of the different cell morphological fates. (A) Statistical distribution of cell morphology at 0.7μM. The red vertical lines are the dividing lines of different cell morphologies; the “F₁ – F₄” represent the four cell morphological fates respectively. (B) Photographs taken by fluorescence microscope of cells with four cell morphological fates under different pheromone concentrations. (C) The statistical distribution of the growth rate of the cells in different directions at the pheromone concentration of 0.7μM. The ordinate represents the growth rate of the minor axis of the cell, and the cell width is represented by the average radius of...
the filled circle; the abscissa represents the growth rate of the major axis of the cell, and the cell length is represented by the sum of the diameter of the filled circle. (D) Trend statistics of the nuclear to cytoplasmic fluorescence ratio (slope) and the average cell length changing with the pheromone concentration. (E) A single trajectory diagram of cell morphology over time at the pheromone concentration of 0.7μM. The abscissa is the number of frames taken by the microscope, one frame is taken every 10 minutes; the green vertical line is the dividing line of the steady-state data; the red line is the center line of the four cell shapes ($F_1 - F_4$); the light lines on both sides of the red line are the two boundary lines of the four cell shapes ($F_1 - F_4$); (F) The net flux of the conversion between the four cell morphologies at different concentrations of pheromone.

The online version of this article includes the following source data and figure supplement(s) for figure 7:

Source data 1. Cell morphology data associated with Figure 7A

Source data 2. Data tables related to quantifications in Figure 7D.

Source data 3-7. Data generated during calculations of the net flux associated with Figure 7F.

Figure supplement 1. The Statistical distribution of the cell morphological fates under the different pheromone doses.

Figure supplement 2. The slope of the Fus3 fluorescence intensity distribution under the different pheromone doses.

Biological puzzle solved by landscape and flux theory

By quantifying the average cell length and the nuclear-to-cytoplasmic ratio, it can be concluded that the high-dose pheromone concentrations (3.0μM) break the
linear monotonic trend at the low doses (0.7μM-2.0μM) (Figure 7D and Figure 7–
figure supplement 2). We suggest this biological puzzle is caused by the yeast
awakening from being deceived. On a macroscopic level, the yeast cells begin to
spend more time waiting for mating rather than actively looking for mating, which has
been proved by the residence time of the high-state and the low-state in the decision-
making landscape. On a microscopic level, this awakening at high doses is
characterized by an increased capacity for negative feedback regulation (such as “\(I_3\)”) to inhibit the second polar growth pathway (“\(P_2\)”) (Figures 1 and 3C). Three-quarters
of the cell fates (except \(F_2\)) showed a sudden reduction in morphology at high dose
(3μM), likely attributing to this impaired “\(P_2\)” function (Figure 7A and Figure 7–
figure supplement 1). This impairment undoubtedly leads to a reduced combination
of the lateral and vertical cell growth patterns, as well as a more unstable landscape
containing four morphological fates at 3μM dose than those at other lower doses.

To verify the instability in the cellular morphological landscape caused by this
awakening, we compared the single trajectory of the different cell morphologies over
time. We found that there were twelve combinations of switching between any two
different shapes (Figure 7E). The twelve combinations of the switching mean that the
four shapes (\(H_n\)) can be converted among each other, which is also possible to bring
about a net surplus transition probability. Using the hidden Markov chain model to fit
the experimental data perform statistical analysis, the transition probability between
the different cell morphologies does show three kinds of net fluxes (Figure 7F),
which provide an important indicator of the non-equilibrium steady-state (Wang,
2015; Wang et al., 2010a; Wang et al., 2008a). Interestingly, the intensities of the three net fluxes decrease first and then increase with the increase of the pheromone concentrations, showing a specific monotonous trend in the opposite direction similar to the average length of the cell. The larger the net flux is, the more unstable the cell morphology landscape becomes, which confirms that the yeast has begun to wake up from being deceived by the high dose (3μM).

Simulations for the signal transduction and the cell growth

According to the functional and quantitative regulation obtained from the database, such as KEGG, EVEX etc., we established a simplified signal transduction model from the perspective of the global gene regulatory networks (Figures 1, 8A and B). This model consists of a set of biochemical reactions simulated using the Gillespie algorithm (De Jong, 2002; Gillespie, 2000; 2001) (Appendix 1—table 5-7). Through the statistics of the chemical reaction results in the simulation, the fluorescence distribution of Fus3p inside and outside the nucleus showed a two-state behavior, confirming the rationality of the emergence of the bimodal fluorescence state in the molecular mechanism (Figure 8C).

Meanwhile, the dynamical process of the cell growth is simulated using the Bni1p generated in the reactions. Although both the growth pathways (“P₁”, “P₂”) are involved in the growth process of the cellular length and width, the weights of the pathways that grow in the two directions are significantly different. Therefore, we directly define the “Bni1_in” produced by the “P₁” that plays a major role as the growth of the major axis, and the “Bni1_out” produced by the “P₂” as the growth of
the minor axis.

In this simulation, the \(a\) denotes the radial length of the yeast cell, while the “\(b\)” denotes the transverse length of the yeast cell (Figure 8A). Each iteration increases the radial and transverse lengths of the yeast cell by “\(\delta a\)” and “\(\delta b\)”, respectively. “\(\delta a\)” is proportional to “\(PBni1p_{\text{in}}\)” and inversely proportional to “\(b\)”, meanwhile, “\(\delta b\)” is proportional to “\(PBni1p_{\text{out}}\)” and inversely proportional to “\(a\)”. That is \(\delta a = \frac{r_a(PBni1p_{\text{in}})}{b}, \delta b = \frac{r_b(PBni1p_{\text{out}})}{a}\). It is shown that the value “\(N\)” is the rounding operation of \(\frac{a}{b}\), i.e. \(\left\lfloor \frac{a}{b} \right\rfloor\), and “\(c\)” is the residual amount after rounding (Figure 8B). The \(H_n\) is \((N + 1)(N/b + 1/c)\). The distribution of the cell morphology shows four fates, which are the same as the experimental results (Figure 8D).

Figure 8. Simulations for the signal transduction and the cell growth. (A) The scheme of simulated cell growth. “\(a\)” represents the length of the cell; “\(\delta a\)” is the increased length of the cell, “\(b\)” represents the width of the cell; “\(\delta b\)” is the increased width of the cell. (B) The scheme of the “\(H_n\)” calculation. “\(c\)” means the remainder of cell length divided by “\(b\)”; “\(N\)” represents the number of “\(b\)”. (C) Distribution graph of the negative log of the number of Fus3p fluorescence intensity inside and outside the nucleus of yeast cells in the stationary phase using simulation. (D) The distribution of the cell morphology (\(H_n\)) using simulation.

The online version of this article includes the following source data for figure 8:
Source data 1. The outcomes of simulation calculations associated with Figures 8B and C.

Discussion

In this study, we used the biological and physical tools to quantitatively uncover and understand the cell fate decision-making of the yeast after encountering sexual deception. To understand the “psychological process” of its internal activities, a total internal reflection microscope and a microfluidic system were used to observe the gene expression levels of the Fus3p inside and outside the nucleus of the yeast in real time. The “attitude” towards the incoming messengers under the different doses of pheromone can be observed from the fluorescence intensity trajectories of the Fus3p. The ascending phase of the Fus3p’s curve is the “excitement period” to adapt to the external stimuli, while the steady phase of the curve shows the “calming period” of the yeast cell. Due to the “calming period” (adaptation steady period) of the yeast during the “adaptation period” under the 0.6μM pheromone being relatively short, we selected five concentrations that can capture “enough attentions” by the yeast as the external stimulus conditions.

If the yeast, like other higher organisms, becomes “angry” after encountering sexual deception, is its subsequent polar growth an irrational behavior? Some studies believe that the establishment of polarity helps organisms to survive better in nature (Dworkin, 2009; Treuner-Lange and Sogaard-Andersen, 2014). Since the chemotactic reactions used by yeast for mating cannot move as the E. coli, its polar growth can only grow towards the high concentrations of pheromone for achieving
the mutual contact and fusion finally (Bardwell, 2004; Macnab and Koshland, 1972; Sourjik and Wingreen, 2012). Considering the “attitude” of the yeast cell in the “excitement period”, it seems that the description of the polar growth as searching for a mate is a rational behavior at this time. However, how to understand the “psychological state” of the polar growth after the yeast has restored to the “calm”? We found that the cellular decision-making landscape was presented during the “calming time”. When the Fus3p is in the low state (L_1, L_2), the yeast cell will stay in place to wait for mating. In the high state (H_1, H_2), the yeast cell will actively grow in polarity to look for its mate. This switching between the waiting for mating and looking for mating indicates that the decision-making of the yeast cell is “sane” rather than impulsive behavior after being “angry”.

When the yeast is determined to switch its decision from one to another, how strong is the resistance to switch, how fast is the conversion and how long is the waiting time for each behavior? To understand these problems that the yeast needs to face, we further quantitatively explored the barrier height, switching rate and the residence time in the decision-making landscape of the yeast at different doses (Figures 4B and C). Comparing the various shapes of the landscapes, the intuition that the greater the barrier height characterizing the potential landscape topography is, the longer the residence time of the state is (Fang et al., 2019; Wang et al., 2011), can be fully confirmed by our experimental data.

In the process of the polar growth, which direction should be grown and how fast it should be growing are questions that the cell has to think about. To explore this
cellular decision-making of the yeast when looking for its mate, the growth direction is divided into the longitudinal growth and the lateral growth, and the growth rate is divided into the fast-speed growth and the low-speed growth. We suggest that the underlying molecular mechanism of these decisions is due to the different response speeds of Fus3p to the signals. Although the current technology cannot distinguish the individual work done by each Fus3p molecule in the cell, we can reveal a global understanding of the underlying rules based on the expressions of all the Fus3p. Thus, the experimental evidences of the molecular mechanism that leads to the growth rate can be confirmed from the self-consistent relationship between the fluorescence data and the growth rate data.

Considering that the spouse may be in the different positions, does the yeast have a variety of deformed plans to achieve fusion? When encountering the deformed forms in the polar growth, the yeast showed four morphological fates, which were caused by the combined action of the cellular decision-making in the two directions as we have proved. Obviously, these four decision-making results undoubtedly increase the diversity of the yeast mating fates and reduce the probability of the cell failing to look for its mate in the end.

Meanwhile, the net fluxes generated by the mutual conversions between the morphological fates also provide us with an opportunity to confirm the “psychological activity” of the yeast. According to our study, the greater the net flux leads to the greater the spiral force in the non-equilibrium steady state (Li et al., 2011; Wang, 2015), which infers the cell morphological landscape tends to be more unstable at the
high doses (3μM). The non-monotonic trend of the characteristics such as the average
cell length and the overlap rate infers that the “psychological activity” of the yeast is
awakened gradually at the high doses, which is quantitatively confirmed by this net
flux study. Considering that the higher the dose, the longer the “calming time”, it
seems that even if the polar growth was purposely reduced, the yeast still did not give
up waiting for mating.

Finally, in order to prove the rationality of Fus3p’s fluorescence double states,
we developed a simplified signal transduction gene regulatory network model. The
distributions in the two simulations, fluorescence intensity and cell morphology, were
consistent with the experimental results and supported our proposed mechanisms.
Thus far, we’ve quantified the global fate decisions made by yeast cells in response to
sexual deception, and we've established the logical links between the functions of
regulated proteins on the pheromone pathway for mating through the underlying
signal transduction process.

Materials and Methods

Yeast strains and Growth media

The yeast strain used in this experiment is Saccharomyces cerevisiae S288C
(ATCC 201388: MATα his3Δ1 leu2Δ0 met15Δ0 ura3Δ0) (Ghaemmimaghami et al.,
2003). In the yeast fluorescence library, we choose a special yeast as the research
object, whose c-terminal of Fus3 is fused with GFP as the reporter protein. The yeasts
are cultured by inoculating 5ml of YNB [Yeast Nitrogen Base Without Amino Acids
medium with a colony from a YPD agar plate [Yeast extract (10 g/L), Peptone (20 g/L), Dextrose (20 g/L), Agar (10 g/L)]. Cells are grown overnight at 30°C shaking at 250 rpm (about 14h). Before starting the experiment, we take out 20ul of overnight cultures and dilute 100-fold in 2ml YNB medium to obtain an optical density of 0.1 at 600 nm (OD600nm).

Pheromone environment

The stimulus source we chose is pheromone, an alpha factor peptide hormone, whose molecular weight is 1683.98 (GenScript). We weigh a certain amount of powdered pheromone and dissolve them in YPD and YNB liquid medium respectively to prepare 1000μM pheromone medium, and then gradually dilute it to the ideal concentration medium for microscopy experiments and other experiments.

At the beginning, in order to adapt to the microfluidic environment, the yeast cells are cultured in the YNB conventional medium for 60 minutes, and then are switched to the medium supplemented with pheromone for culture.

Flow cytometry

To determine the critical concentration of pheromone, we chose a flow cytometer for preliminary screening. We set 8 different concentrations (0.01μM, 0.05μM, 0.1μM, 0.2μM, 0.4μM, 0.6μM, 1.0μM, 1.5μM) for the pheromone medium, and culture the yeast cells in a shaker at 250 rpm and 30°C. In order to avoid contamination of the yeast cells, we have set up 5 sets of parallel culture samples for each concentration of the medium. After culturing on a shaker for specific times (3h,
6h, 9h, 12h and 24h), 105,000 cells are taken from each sample for analysis using the flow cytometer.

Microfluidic system platform

We use the 4-chamber cell culture plate, CellASIC™ ONIX Y04C-02 Microfluidic Plate, for live cell culture at 30°C. The plate is designed for use with the CellASIC™ ONIX Microfluidic System, which provides a controlled dynamical microenvironment for cells. First, the yeast cells are cultured in a microfluidic plate containing conventional YNB medium for 1 hour to adapt to the new environment, and then switch to YNB medium supplemented with pheromone and culture at a flow rate of 1 psi for 30 hours.

Microscopy Measurements

The fluorescence values of the single cells were measured using an inverted fluorescence microscopy (Ti-E, Nikon) with automated stage and focus, equipped with a high NA oil-immersion objective (1.45NA, 100×). We applied 488nm laser and set the output power at 30mW (only 10% of the laser beam into the microscope objective), the fluorescence signals were collected by a cooled EM-CCD camera (897U, Andor). All images were acquired using both bright field imaging and fluorescent field imaging. These images were acquired by Nikon software. Data analysis were accomplished through a combination of manual and automated analysis using custom Matlab code. Many trajectories were taken from a time-lapse microscopy. The fluorescent images were periodically captured and recorded every 10 minutes.
minutes. The fluorescent data of each cell at each time point were collected for the following discussion.

Real time image analysis

Bright-field images obtained by the total internal reflection microscope were segmented, aligned, and labeled using a custom Matlab routine. We segmented the cells according to bright field images to obtain the outlines of the individual cells, and assigned each cell accordingly. Then we can collect the trajectories of the generations by the assigned id when the cells grow and divide, and obtain cell lineages. All the cell boundaries of yeast were manually corrected. The cell nuclei were distinguished by contouring the fluorescence images. Fluorescence intensity is the average of all fluorescence intensity within the cell boundary.

The real-time trajectories were obtained by automatic tracking, based on the cell overlaps between the adjacent frames. All trajectories require manual correction.

Steady-state image analysis

In order to explore the underlying mechanism of the bimodality, we collected the real time fluorescence intensity trajectories (*Figure 3–figure supplement 1, 2*), which show that the yeast response is in a steady state after about 600min. This state means that the fluorescence intensity of the yeast inside and outside the nucleus does not increase or decrease significantly. The histograms of inner and outer fluorescence intensity were obtained by the steady-state fluorescence trajectories (*Figure 3–figure supplement 3-5*).
The shape characteristics of the yeast are described by the H in the yeast. The growth rate of the yeast is the numerical differentiation of the H_n. All the trajectories can be used to provide the quantitative analysis through Hidden Markov Chain Model (HMM). During the HMM fitting, the parameters of the fluorescence state were fixed. The distribution of high fluorescence state and low fluorescence state in two growth rates can be obtained by counting the state points on the trajectories.

Data Analysis of the Time-Lapse Experiments

The cell state can be distinguished from the trajectories using hidden Markov model (HMM). A maximum likelihood estimate of HMM parameters was performed globally on all the time traces separately. Multiple random initial parameters were used to start the iterative HMM analysis and ensure convergence to the global minimum. The Baum-Welch algorithm was used to re-estimate the parameters at the end of each iteration. Steady-state condition was enforced on the re-estimated parameters in each iteration. HMM can be directly applied to two-dimensional and high-dimensional data. Therefore, the inner and outer fluorescence data can be trained by the HMM, the results showed that the yeast fluorescence has bimodal distribution.

The detailed results are shown in **Figure 4—source data 2 and Appendix 1—table 3, 4**. The overlap ratio between the two states is obtained by integrating the overlapping part of the peak of the two states, which needs the results fitted by HMM. For each trajectory, the state can be determined by the HMM, and the state sequence is shown in **Figure 3E**. The total residence time and the number of state changes can be obtained by counting the state points on the trajectories, and the average residence
time is the quotient of the total residence time and the number of state changes.

Appendix 1

The distinction between nucleus and cytoplasm

To verify this dynamical understanding at the different pheromone doses, we had to distinguish the nucleus in the cell. The fluorescence intensities of all pixels in the single cells taken in each frame were plotted as a probability distribution over time (Figure 3–figure supplement 6). It can be seen from the figure that there are two fluorescence intensity peaks in each cell at different time points. After adding the pheromone, both peaks move to the right and the peak spacing is widened, indicating that the increased expression of Fus3p tends to accumulate in the nucleus. Therefore, we divided the two types of Fus3p fluorescence intensity in the cell by calculating the contour of the fluorescent image. The contour images were calculated by four levels, and the maximum level is the boundary of the nucleus and the cytoplasm. The fluorescence greater than the threshold value was located inside the nucleus, and the fluorescence smaller than the threshold value was located outside the nucleus.

Filled circle model in cell shape

After identifying the boundary of the cell shape with “Matlab”, we filled it in with circles along the cell’s long axis in turns, with the area of the circle filled in each time being guaranteed to be the largest area of the remaining unfilled part. To ensure the accuracy of the average value of the harmony at various stages, we set a minimum circle diameter (5 pixels) to avoid significantly increasing the shape’s internal gap.

Screening out the appropriate pheromone concentration

By observing the yeast cells using a flow cytometer, the fluorescence intensity of the Fus3-GFP was collected for statistical analysis. The emergence of the bimodal states in the distribution of the fluorescence intensity of Fus3-GFP indicates that there
are two types of cells. One is the original undeformed cells (the initial mother cells at the stage of “0-a” & the new daughter cells at the stage of “b-c” in the Figure 2B). The other is the deformed cells (the deformed mother cells at the stage of “a-c” in the Figure 2B).

Through the statistics of the data stimulated by different pheromone concentrations, it is found that when the pheromone concentration is near 0.6μM, the expressions of Fus3p begin to gradually show the emergence of bimodal states (Figure 2C). When the concentration is greater than 0.6μM (0.6-1.5μM), as the dose increases, the number of the cells whose cell cycle is arrested by the pheromone that resumes budding decrease accordingly. This leads to the gradual increase in the ratio of the right peak representing the number of the deformed cells. It indicates that after reaching the “adaptation steady state”, the 0.6μM pheromone is the closest minimum threshold to make the cells resume budding reproduction in the shortest time. In other words, the fluorescence intensity of Fus3p in the yeast cells can reach the “adaptation steady state” only if the concentration is greater than this concentration, so we choose 0.6μM as the critical pheromone concentration.

Reasonable molecular mechanism of fluorescence double state

Considering the molecular mechanism of Fus3p’s expression, we believe that the feedback regulation is the reason for the emergence of the \((L_1, L_2)\) & \((H_1, H_2)\) states. For example, the mode of “\(A \rightarrow \text{Fus3p} \downarrow A\)” mainly refers to the feedback adjustment of Fus3p to itself through Sst2p, and the mode of “\(\text{Fus3p} \rightarrow B \downarrow \text{Fus3p}\)” mainly refers to the feedback adjustment of Fus3p to itself through Msg5p/Bni1p (Figure 3D).

However, one may wonder why the states \((L_1, H_2)\) and \((H_1, L_2)\) do not appear in this scheme. By calculating the “Pearson correlation coefficient” between the intranuclear and extranuclear fluorescence intensity, the results show that the correlation is about 0.8 at different concentrations of pheromone (Appendix 1—table 1). This confirms that the fluorescence intensity of these two positions has a strong linear correlation. If these two sets of data points are clustered into four states, the “Pearson correlation
coefficient” of the intranuclear and extranuclear fluorescence intensity will be 0 (Lee Rodgers and Nicewander, 1988), which provides the experimental evidence that the \((L_1, H_2)\) and \((H_1, L_2)\) states do not appear.

Derivation of the transition rates

The master equation can be written as

\[
\frac{d}{dt}(\begin{pmatrix} p_1 \\ p_2 \end{pmatrix}) = \begin{pmatrix} k_{11} & k_{12} \\ k_{21} & k_{22} \end{pmatrix} \begin{pmatrix} p_1 \\ p_2 \end{pmatrix} = \begin{pmatrix} -a & b \\ a & -b \end{pmatrix} \begin{pmatrix} p_1 \\ p_2 \end{pmatrix}.
\]

Here \(P_1\) and \(P_2\) are the probabilities of the low expression state and high expression state, respectively, while \(k_{ij}\) (i, j=1, 2) is the transition rate from \(P_i\) to \(P_j\). We can write down the solution as follows with the initial conditions \(P_1(0) = 1, P_2(0) = 0\),

\[
P_1(t) = \frac{b + a e^{-(a+b)t}}{a + b}, \quad P_2(t) = -\frac{a(-1 + e^{-(a+b)t})}{a+b}.
\]

Then the transition probability between the low expression state and the low expression state is

\[P_{11} = P_1(\delta t) = \frac{b+a e^{-(a+b)\delta t}}{a+b},\]

where \(\delta t\) is the observational time window for each time, here \(\delta t = 10 \text{ min}\).

With the initial conditions \(P_1(0) = 0, P_2(0) = 1\),

\[
P_1(t) = -\frac{b(-1 + e^{-(a+b)t})}{a + b}, \quad P_2(t) = \frac{a+b e^{-(a+b)t}}{a+b}.
\]

Then the transition probability between the high expression state and the high expression state is

\[P_{22} = P_2(\delta t) = \frac{a+b e^{-(a+b)\delta t}}{a+b},\]

where \(\delta t\) is the observation time window for each time, here \(\delta t = 10 \text{ min}\).

According to the HMM analysis, when the pheromone dose is 0.7μM, the transition matrix is

\[
P = \begin{pmatrix} P_{11} & P_{12} \\ P_{21} & P_{22} \end{pmatrix} = \begin{pmatrix} 0.6900 & 0.3100 \\ 0.3711 & 0.6289 \end{pmatrix}.
\]

So we can get the transition rate as:
a = 0.052017 (1/min)
b = 0.062270 (1/min)

Justification for cellular morphological characterization

Rather than using the cell’s area, the total length, or the arithmetic mean of the length, we chose to describe the cell’s morphology using the reciprocal of the radius in the cell-filled circle multiplied by the number of filled circles, i.e. \(H_n = nR_{ij} = \frac{1}{R_1 + \frac{1}{R_2} + \cdots + \frac{1}{R_n}} \). This is because \(H_n \) bears a resemblance to the harmonic mean. It is capable of not only displaying changes in various positions more comprehensively, but also distinguishing between longitudinal or lateral growth processes. For example, we set the radius of the filled circle in the cell as \(R_1, R_2 \) and \(R_3 \) in advance. If the cell grows longitudinally (length), a new radius \(R_4 \) is added to the cell, the \(R_{ij} \) value increases, and the \(H_n \) value increases as well. By contrast, when the cell grows laterally (width), the values of \(R_{ij} \) and \(H_n \) decrease regardless of the radius that grows.

Detailed description of the four molecular mechanisms of the growth rates

As we know from its internal activities, there are two pathways that can lead to the polar growth of the cells. The path1 ("P1") is “Fus3p → Far1p/Cdc24p → Cdc42p → Bni1p” (Butty *et al.*, 1998; Nern and Arkowitz, 1999; 2000b; Shimada *et al.*, 2000). It is realized by entering nucleus through Fus3p to activate Far1, which can escape from the nucleus to activate Bni1p indirectly. The path2 ("P2") is for Fus3p to directly activate Bni1p in the cytoplasm, namely “Fus3p → Bni1p” (Matheos *et al.*, 2004). Many studies have shown that Fus3p and Far1p were both important genes for the formation of the cell growth axis determined by the bud site and the mutants. Lacking of Far1p or Fus3p would cause the mis-localization of the shmoo projections (Butty *et al.*, 1998; Nern and Arkowitz, 1999; 2000a). Therefore, we suggest that the “P1” is more directional than the “P2” (longitudinal growth) (**Figure 3C**).
When the fluorescence intensity is in the “high state”, the Fus3p can indirectly (“P1”) or directly (“P2”) stimulate growth. However, the response speed of the two pathways to the polar growth process is not the same. In the cell’s indirect growth pathway (“P1”), Far1p can transfer from the nucleus to the vicinity of the cell membrane and gives the cell more polar direction for growth together with Fus3p. When the Fus3p activates the Far1p in the nucleus, the process by which the Far1p transmits the signal to the cytoplasm and indirectly leads to the polar growth of the cells (“P1”) is naturally slower than the polar growth directly stimulated by Fus3p (“P2”). Therefore, before all the indirect pathway signals transmitted by Far1p arrive, it is mainly the extranuclear Fus3p that activates the cell’s polar growth gene Bni1p (“P1”), which will lead to the non-directional cell growth temporarily.

If all the signals of the indirect pathway arrive, the two growth pathways will co-stimulate the polar growth of the cell (“P1 + P2”). In other words, the participation of the indirect pathway “P1”, that is (“P1 + P2”), greatly increases the probability of the cell polar growth. Therefore, we believe that the lateral growth of the cell is mainly caused by the direct pathway (“P2”), while the longitudinal growth of the cells is caused by the combined action of these two pathways (“P1 + P2”). In addition, with the consumption of polarity growth and the adjustment of negative feedback, the fluorescence intensity of Fus3p will enter the “low state” waiting for mating. Correspondingly, only a relatively small amount of Fus3p is used for polar growth of the cells at this stage. In this case, the signal transmission of the indirect path (“P0” and “P1”) with the insignificant growth rates also has a certain time delay.

Relationship between the growth rate and the bistable gene expressions

The “High & Low” fluorescence states exist in both two growth rates. One of the reasons for this is that the growth rate is a characteristic of the cell behavior indirectly caused by Fus3p, the amount of Fus3p used for growth is not consistent with the total fluorescence intensity observed. Therefore, the expression of Fus3p is related to cell growth rate to a certain extent, but not necessarily in a completely linear manner,
which explains why the two are neither independent nor exactly correlated. The other most important reason for above is the overlapping effect of the dual fluorescence states. From the fitting process of the fluorescence two-state, we know that there is certain amount of mixed data in the main part of the “two hills” (Figure 3B). In the overlapping area of the “two hills”, the fluorescence intensity of the “High-state” is not necessarily higher than that of the “Low-state”, for example, the fluorescence intensity of the “b-point” in the “Low-state” is greater than the “a-point” in the “High-state” (Figure 6C).

In order to better describe the overlapping effect of the fluorescence data, we draw a schematic diagram to explain the mixed area of the fluorescence intensity (Figure 6–figure supplement 4). Meanwhile, if we want to distinguish the state of the fluorescence intensity in the overlapping area (such as the “a” intensity in the Figure 6C), we need to compare the probability that the intensity belongs to the high state or the low state, that is, \(f_0 \) or \(f_1 \) multiplied by their respective transition probabilities. As a result, the large fluorescence intensity has certain probability of belonging to the “Low-state”, on the contrary, the small fluorescence intensity also has certain probability of belonging to the “High-state”. Therefore, the “FL” represents the state of “Fast” growth rate and “Large-intensity” in the “Low-state” fluorescence; the “SH” represents the state of “Slow” growth rate and “Small-intensity” in the “High-state” fluorescence.

Decomposing of the flux in the cell morphology

The kinetics of the cell morphological can be modeled by a four-state Markov process. The transition probability \(M_{ij} \) can be calculated by counting the number of transitions in the state trajectories. Therefore, the master equation can be shown as follows:

\[
\frac{dP_i}{dt} = \sum_j M_{ij} P_i \quad \text{(Equation 1)}
\]

Where \(P_i \) represents the probability of state \(i \), and the transition probability \(M_{ij} \) represents the transition probability from state \(i \) to state \(j \). For steady state, we set the
left term of the master equation (1) to zero, then we obtain the steady state solution P^S_i, which is the long time limit. The steady state flux between state i and j can be defined as: $F_{ij} = -M_{ij}P^S_i + M_{ji}P^S_j$. If the steady state of the system is in equilibrium state, the flux between any two nodes in the system is zero, that is the detailed balance condition. For the general biological system, it does not necessarily satisfy the detailed balance condition ($F_{ij} \neq 0$), the system is in non-equilibrium steady state, there will be at least one net flux among states.

In order to study the non-equilibrium steady states, we can separate the dynamical process into two parts, one is the detailed balance part and the other is the detailed balance-breaking kinetic process. To describe the detailed balance breaking, we decompose the probability matrix. The component of the rate matrix MP can be decomposed into two parts, one being the symmetric matrix and the other cycle matrix, that is

$$MP = C + D \quad \text{(Equation 2)}$$

Where D is the symmetric matrix $D_{ij} = (M_{ij}P^S_i + M_{ji}P^S_j)/2$, C is the asymmetric matrix $C_{ij} = (M_{ij}P^S_i - M_{ji}P^S_j)/2$. Since the system contains four states, the asymmetric flux is not unique and contains three net cycle fluxes. Meanwhile, in order to ensure the consistency of decomposition for various pheromone concentration systems, the given base sets of flux decomposition were selected. Here, the base sets we selected are \{state1, state2, state3, state1\}, \{state1, state4, state3, state1\} and \{state2, state4, state3, state2\}, and the corresponding net fluxes are J_1, J_2 and J_3. The asymmetric matrix C can be rewritten as follows:

$$C = \begin{pmatrix}
0 & \frac{J_1}{2} & -\frac{J_2}{2} & \frac{J_1}{2} \\
-\frac{J_1}{2} & 0 & \frac{J_1}{2} & -\frac{J_3}{2} \\
\frac{J_1}{2} + \frac{J_2}{2} & -\frac{J_1}{2} + \frac{J_2}{2} & 0 & -\frac{J_2}{2} - \frac{J_3}{2} \\
-\frac{J_2}{2} & \frac{J_1}{2} & \frac{J_2}{2} + \frac{J_3}{2} & 0
\end{pmatrix}$$
The linear equations can be obtained by corresponding the numerical results of the above matrix C and the experimental statistics (Figure 7—source data 3-7). For example, three linearly independent parameters of $C_{1,4}$, $C_{1,3}$, $C_{2,3}$ are selected for the linear equations originated from the underlying master equations.

\[
\begin{align*}
C_{1,4} &= \frac{J_2}{2} = 0.0036 \\
C_{1,3} &= -\frac{J_2}{2} - \frac{J_4}{2} = -0.0067 \\
C_{2,3} &= \frac{J_1}{2} - \frac{J_3}{2} = 0
\end{align*}
\]

Then, solving these linear equations one can get the net flux values of the non-equilibrium system.
Appendix 1—table 1

The “Pearson Correlation Coefficient” between the intranuclear and extranuclear fluorescence intensity traces under the different pheromone doses.

Pheromone doses (μM)	0.7	0.8	1.0	2.0	3.0
Correlation (inside & outside)	0.8321	0.8647	0.8446	0.7752	0.8879

Appendix 1—table 2

The correlation between cell growth rate and dual state of fluorescence data under the different pheromone doses.

Pheromone doses (μM)	0.7	0.8	1.0	2.0	3.0
Correlation (Growth rate & Fluorescence)	0.0298	-0.0069	0.011	0.023	0.0059

Appendix 1—table 3

Proportional distribution of high fluorescence state and low fluorescence state in two growth rates.

Pheromone doses (μM)	FH%	FL%	Number (FH+FL)	SH%	SL%	Number (SH+SL)
0.7	0.9101	0.0899	11816	0.5752	0.4248	9519
0.8	0.9651	0.0349	7367	0.6278	0.3722	11041
1.0	0.9994	0.0006	9463	0.7302	0.2698	13578
2.0	0.6228	0.3772	6095	0.4749	0.5251	30791
3.0	0.2189	0.7811	1110	0.2215	0.7785	17166
Appendix 1—table 4

The weight distribution of the four combination states and the overlap ratio of Fluorescence intensity under the different pheromone doses.

Pheromone doses (μM)	Overlap ratio (w)	(Y_{FL} + Y_{SH})% (w')	Y_{FL}	Y_{FH}	Y_{SL}	Y_{SH}
0.7	0.3317	0.3064	0.0498	0.5041	0.1895	0.2566
0.8	0.3712	0.3905	0.0140	0.3862	0.2233	0.3765
1.0	0.4659	0.4305	0.0003	0.4104	0.1590	0.4303
2.0	0.4348	0.4588	0.0623	0.1029	0.4383	0.3964
3.0	0.2400	0.2555	0.0474	0.0133	0.7312	0.2080

Appendix 1—table 5

The description of the components in the biochemical reactions.

Name	Description
G *	The gene of the *
P *	The protein of the *
P_{p}	Phosphorylated protein of the *
(P_{p})'	The P_{p} remaining after the chemical reaction
P_{p}_inner	The P_{p} in the nucleus
P_{p}_outer	The P_{p} outside the nucleus
P_{p}_in	The P_{p} produced by the "P_1" pathway in the nucleus
P_{p}_out	The P_{p} produced by the "P_2" pathway outside the nucleus
P * -B	This indicates the P_{p} produced by the action of the B
G * -self	The G * produced by its self-activation
Φ	Protein degradation
Appendix 1—table 6

The list of the components in the biochemical reactions.

1	GFus3	21	GFus3-PMsg5p
2	(GFus3)'	22	(GFus3-PMsg5p)'
3	P Fus3p_outer	23	GFar1
4	pheromone	24	(GFar1)'
5	GFus3-pheromone	25	PFar1p
6	(GFus3-pheromone)'	26	GFar1p-PFus3p_inner
7	GFus3-self	27	(GFar1-PFus3p_inner)'
8	(GFus3-self)'	28	GBni1
9	P Fus3p_inner	29	(GBni1)'
10	∅	30	P Bni1p
11	GSte12	31	GFus3_outer-PBni1p
12	(GSte12)'	32	(GFus3_outer-PBni1p)'
13	PSte12p	33	GBni1_in
14	GSte12-PFus3p_inner	34	GBni1_in-PFar1p
15	(GSte12-PFus3p_inner)'	35	(GBni1_in-PFar1p)'
16	GMsg5	36	P Bni1p_in
17	(GMsg5)'	37	GBni1_out
18	PMsg5p	38	GBni1_out-PFus3p_outer
19	GMsg5-PSte12p	39	(GBni1_out-PFus3p_outer)'
20	(GMsg5-PSte12p)'	40	P Bni1p_out
Appendix 1—table 7

The list of the biochemical reactions.

Reaction	Rate Constant	Reaction Products
1. Fus3 $\overset{k_1=1}{\rightarrow}$ (GFus3) + (PFus3p_outer)		
2. Fus3 + pheromone $\overset{k_2=0.7}{\rightarrow}$ (GFus3-pheromone)		
3. (GFus3-pheromone) $\overset{k_3=0.001}{\rightarrow}$ GFus3 + pheromone		
4. (GFus3-pheromone) $\overset{k_4=1.5}{\rightarrow}$ (GFus3-pheromone) + (PFus3p_outer)		
5. GFus3 + (PFus3p_outer) $\overset{k_5=0.7}{\rightarrow}$ (GFus3-self)		
6. (GFus3-self) $\overset{k_6=0.001}{\rightarrow}$ GFus3 + (PFus3p_outer)		
7. (GFus3-self) $\overset{k_7=1.5}{\rightarrow}$ (GFus3-self) + (PFus3p_outer)		
8. (PFus3p_outer) $\overset{k_8=3.7}{\rightarrow}$ (PFus3p_inner)		
9. (PFus3p_inner) $\overset{k_9=3.7}{\rightarrow}$ (PFus3p_outer)		
10. (PFus3p_outer) $\overset{k_{10}=0.01}{\rightarrow}$ \emptyset		
11. (PFus3p_inner) $\overset{k_{11}=0.01}{\rightarrow}$ \emptyset		
12. GSte12 $\overset{k_{12}=1}{\rightarrow}$ (GSte12) + PSte12p		
13. GSte12 + (PFus3p_inner) $\overset{k_{13}=0.7}{\rightarrow}$ (GSte12-PFus3p_inner)		
14. (GSte12-PFus3p_inner) $\overset{k_{14}=0.001}{\rightarrow}$ GSte12 + (PFus3p_inner)		
15. (GSte12-PFus3p_inner) $\overset{k_{15}=1.5}{\rightarrow}$ (GSte12-PFus3p_inner) + PSte12p		
16. GMsg5 $\overset{k_{16}=1}{\rightarrow}$ (GMsg5) + PMsg5p		
17. GMsg5 + PSte12p $\overset{k_{17}=0.7}{\rightarrow}$ (GMsg5-PSte12p)		
18. (GMsg5-PSte12p) $\overset{k_{18}=0.001}{\rightarrow}$ GMsg5 + PSte12p		
19. (GMsg5-PSte12p) $\overset{k_{19}=1.2}{\rightarrow}$ (GMsg5-PSte12p) + PMsg5p		
20. GFus3 + PMsg5p $\overset{k_{20}=0.7}{\rightarrow}$ (GFus3-PMsg5p)		
21. (GFus3-PMsg5p) $\overset{k_{21}=0.001}{\rightarrow}$ GFus3 + PMsg5p		
22. (GFus3-PMsg5p) $\overset{k_{22}=0.5}{\rightarrow}$ (GFus3-PMsg5p) + (PFus3p_outer)		
23. (PSte12p) $\overset{k_{23}=0.01}{\rightarrow}$ \emptyset		
24. (PMsg5p) $\overset{k_{24}=0.01}{\rightarrow}$ \emptyset		
25. GFar1 $\overset{k_{25}=1}{\rightarrow}$ (GFar1) + PFar1p		
26. GFar1 + (PFus3p_inner) $\overset{k_{26}=0.7}{\rightarrow}$ (GFar1-PFus3p_inner)		
27. (GFar1-PFus3p_inner) $\overset{k_{27}=0.001}{\rightarrow}$ GFar1 + (PFus3p_inner)		
28. (GFar1-PFus3p_inner) $\overset{k_{28}=1.5}{\rightarrow}$ (GFar1-PFus3p_inner) + (PFar1p)		
29. (PFar1p) $\overset{k_{29}=0.01}{\rightarrow}$ \emptyset		
30. GBni1 $\overset{k_{30}=0.1}{\rightarrow}$ (GBni1) + PBni1p		
Appendix 2

Figure 2–videos 1-6 legends: Total internal reflection microscopy images of yeast cell morphology in response to 0.6μM, 0.7μM, 0.8μM, 1.0μM, 2.0μM, and 3.0μM pheromones over time. The shooting interval of the photos was 10 minutes/frame.
Yeast cells were cultured in a microfluidic device containing the normal YNB medium for 60 minutes, and then switched to the medium containing a specific concentration of pheromone for cultivation. The green fluorescence in the cell is the gene expression level of Fus3p.
Acknowledgements

This work was supported by the National Natural Science Foundation of China with Grant No.21721003.
References

Anders, A., Ghosh, B., Glatter, T., and Sourjik, V. (2020). Design of a MAPK signalling cascade balances energetic cost versus accuracy of information transmission. Nature communications 11, 1-10.

Anne-Christine Butty, P.M.P., Linda S. Huang, Ira Herskowitz, Matthias Peter* (1998). The Role of Far1p in Linking the Heterotrimeric G Protein to Polarity Establishment Proteins During Yeast Mating. SCIENCE.

Balážsi, G., van Oudenaarden, A., and Collins, J.J. (2011). Cellular decision making and biological noise: from microbes to mammals. Cell 144, 910-925.

Bao, M.Z., Schwartz, M.A., Cantin, G.T., Yates III, J.R., and Madhani, H.D. (2004). Pheromone-dependent destruction of the Tec1 transcription factor is required for MAP kinase signaling specificity in yeast. Cell 119, 991-1000.

Bar-Joseph, Z., Gitter, A., and Simon, I. (2012). Studying and modelling dynamic biological processes using time-series gene expression data. Nature Reviews Genetics 13, 552-564.

Bardwell, L. (2004). A walk-through of the yeast mating pheromone response pathway. Peptides 25, 1465-1476. 10.1016/j.peptides.2003.10.022.

Bardwell, L. (2005). A walk-through of the yeast mating pheromone response pathway (vol 25, pg 1465, 2004). Peptides 26, 337-+. 10.1016/j.peptides.2004.10.001.

Barkai, N., Rose, M.D., and Wingreen, N.S. (1998). Protease helps yeast find mating partners. Nature 396, 422-423.

Behar, M., Hao, N., Dohlman, H.G., and Elston, T.C. (2008). Dose-to-Duration Encoding and Signaling beyond Saturation in Intracellular Signaling Networks. Plos Computational Biology 4. ARTN e1000197 10.1371/journal.pcbi.1000197.

Berg, H.C., and Brown, D.A. (1972). Chemotaxis in Escherichia coli analysed by three-dimensional tracking. Nature 239, 500-504.

Bhattacharyya, R.P., Reményi, A., Good, M.C., Bashor, C.J., Falick, A.M., and Lim, W.A. (2006). The Ste5 scaffold allosterically modulates signaling output of the yeast mating pathway. Science 311, 822-826.

Blackwell, E., Halatek, I.M., Kim, H.-J.N., Ellicott, A.T., Obukhov, A.A., and Stone, D.E. (2003). Effect of the pheromone-responsive Gα and phosphatase proteins of Saccharomyces cerevisiae on the subcellular localization of the Fus3 mitogen-activated protein kinase. Molecular and cellular biology 23, 1135-1150.

Butty, A.-C., Pryciak, P.M., Huang, L.S., Herskowitz, I., and Peter, M. (1998). The role of Far1p in linking the heterotrimeric G protein to polarity establishment proteins during yeast mating. Science 282, 1511-1516.

Chang, F., and Herskowitz, I. (1990). Identification of a gene necessary for cell cycle arrest by a negative growth factor of yeast: FAR1 is an inhibitor of a G1 cyclin, CLN2. Cell 63, 999-1011.

Chen, R.E., and Thorner, J. (2007). Function and regulation in MAPK signaling pathways: Lessons learned from the yeast Saccharomyces cerevisiae. Bba-Mol Cell Res 1773, 1311-1340. 10.1016/j.bbamer.2007.05.003.
Chen, T., and Kurjan, J. (1997). Saccharomyces cerevisiae Mpt5p interacts with Sst2p and plays roles in pheromone sensitivity and recovery from pheromone arrest. Molecular and Cellular Biology 17, 3429-3439.

Colman-Lerner, A., Gordon, A., Serra, E., Chin, T., Resnekov, O., Endy, D., Gustavo Pesce, C., and Brent, R. (2005a). Regulated cell-to-cell variation in a cell-fate decision system. Nature 437, 699-706.

Colman-Lerner, A., Gordon, A., Serra, E., Chin, T., Resnekov, O., Endy, D., Pesce, C.G., and Brent, R. (2005b). Regulated cell-to-cell variation in a cell-fate decision system. Nature 437, 699-706.

Davidson, E.H., and Erwin, D.H. (2006). Gene regulatory networks and the evolution of animal body plans. Science 311, 796-800.

De Jong, H. (2002). Modeling and simulation of genetic regulatory systems: a literature review. Journal of computational biology 9, 67-103.

De Oliveira, S., Rosowski, E.E., and Huttenlocher, A. (2016). Neutrophil migration in infection and wound repair: going forward in reverse. Nature Reviews Immunology 16, 378.

Dohlman, H.G., Song, J., Ma, D., Courchesne, W.E., and Thorner, J. (1996). Sst2, a negative regulator of pheromone signaling in the yeast Saccharomyces cerevisiae: expression, localization, and genetic interaction and physical association with Gpa1 (the G-protein alpha subunit). Molecular and cellular biology 16, 5194-5209.

Dohlman, H.G., and Thorner, J.W. (2001). Regulation of G protein-initiated signal transduction in yeast: Paradigms and principles. Annu Rev Biochem 70, 703-754. DOI 10.1146/annurev.biochem.70.1.703.

Doncic, A., Atay, O., Valk, E., Grande, A., Bush, A., Vasen, G., Colman-Lerner, A., Loog, M., and Skotheim, J.M. (2011). Distinct interactions select and maintain a specific cell fate. Molecular cell 43, 528-539.

Dworkin, J. (2009). Cellular Polarity in Prokaryotic Organisms. Csh Perspect Biol 1. ARTN a003368 10.1101/cshperspect.a003368.

Elion, E., Satterberg, B., and Kranz, J. (1993). FUS3 phosphorylates multiple components of the mating signal transduction cascade: evidence for STE12 and FAR1. Molecular biology of the cell 4, 495-510.

Elion, E.A., Brill, J.A., and Fink, G.R. (1991). FUS3 represses CLN1 and CLN2 and in concert with KSS1 promotes signal transduction. Proceedings of the National Academy of Sciences 88, 9392-9396.

Elion, E.A., Qi, M., and Chen, W. (2005). Signaling specificity in yeast. Science 307, 687-688.

Errede, B., Gartner, A., Zhou, Z., Nasmyth, K., and Ammerer, G. (1993). MAP kinase-related FUS3 from S. cerevisiae is activated by STE7 in vitro. Nature 362, 261-264.

Fang, X., Kruse, K., Lu, T., and Wang, J. (2019). Nonequilibrium physics in biology.
Fang, X., Liu, Q., Bohrer, C., Hensel, Z., Han, W., Wang, J., and Xiao, J. (2018a). Cell fate potentials and switching kinetics uncovered in a classic bistable genetic switch. Nature communications 9, 1-9.

Fang, X.N., Liu, Q., Bohrer, C., Hensel, Z., Han, W., Wang, J., and Xiao, J. (2018b). Cell fate potentials and switching kinetics uncovered in a classic bistable genetic switch. Nature Communications 9. ARTN 2787 10.1038/s41467-018-05071-1.

Feng, H., and Wang, J. (2011). Potential and flux decomposition for dynamical systems and non-equilibrium thermodynamics: Curvature, gauge field, and generalized fluctuation-dissipation theorem. The Journal of chemical physics 135, 234511.

Feng, H., Zhang, K., and Wang, J. (2014). Non-equilibrium transition state rate theory. Chemical Science 5, 3761-3769.

Fiedler, D., Braberg, H., Mehta, M., Chechik, G., Cagney, G., Mukherjee, P., Silva, A.C., Shales, M., Collins, S.R., and van Wageningen, S. (2009). Functional organization of the S. cerevisiae phosphorylation network. Cell 136, 952-963.

Garrison, T.R., Zhang, Y., Pausch, M., Apanovitch, D., Aebersold, R., and Dohlman, H.G. (1999). Feedback phosphorylation of an RGS protein by MAP kinase in yeast. Journal of Biological Chemistry 274, 36387-36391.

Ghaemmaghami, S., Huh, W.-K., Bower, K., Howson, R.W., Belle, A., Dephoure, N., O'Shea, E.K., and Weissman, J.S. (2003). Global analysis of protein expression in yeast. Nature 425, 737-741.

Gillespie, D.T. (2000). The chemical Langevin equation. The Journal of Chemical Physics 113, 297-306.

Gillespie, D.T. (2001). Approximate accelerated stochastic simulation of chemically reacting systems. The Journal of chemical physics 115, 1716-1733.

Gordley, R.M., Williams, R.E., Bashor, C.J., Toettcher, J.E., Yan, S., and Lim, W.A. (2016). Engineering dynamical control of cell fate switching using synthetic phosphoregulons. P Natl Acad Sci USA 113, 13528-13533. 10.1073/pnas.1610973113.

Gustin, M.C., Albertyn, J., Alexander, M., and Davenport, K. (1998). MAP Kinase Pathways in the YeastSaccharomyces cerevisiae. Microbiology and Molecular biology reviews 62, 1264-1300.

Haber, J.E. (2012). Mating-type genes and MAT switching in Saccharomyces cerevisiae. Genetics 191, 33-64.

Hasty, J., McMillen, D., Isaacs, F., and Collins, J.J. (2001). Computational studies of gene regulatory networks: in numero molecular biology. Nature Reviews Genetics 2, 268-279.

Herskowitz, I. (1988). Life cycle of the budding yeast Saccharomyces cerevisiae. Microbiological reviews 52, 536.

Herskowitz, I. (1995). MAP kinase pathways in yeast: for mating and more. Cell 80, 187-197.

Hull, C.M., Raisner, R.M., and Johnson, A.D. (2000). Evidence for mating of the "asexual" yeast Candida albicans in a mammalian host. Science 289, 307-310.
Jenness, D.D., Burkholder, A.C., and Hartwell, L.H. (1983). Binding of α-factor pheromone to yeast a cells: chemical and genetic evidence for an α-factor receptor. Cell 35, 521-529.

Jiang, Z., Tian, L., Fang, X., Zhang, K., Liu, Q., Dong, Q., Wang, E., and Wang, J. (2019a). The emergence of the two cell fates and their associated switching for a negative auto-regulating gene. BMC biology 17, 1-14.

Jiang, Z.L., Tian, L., Fang, X.N., Zhang, K., Liu, Q., Dong, Q.Z., Wang, E.K., and Wang, J. (2019b). The emergence of the two cell fates and their associated switching for a negative auto-regulating gene. Bmc Biology 17. ARTN 49 10.1186/s12915-019-0666-0.

Kedrin, D., van Rheenen, J., Hernandez, L., Condeelis, J., and Segall, J.E. (2007). Cell motility and cytoskeletal regulation in invasion and metastasis. Journal of mammary gland biology and neoplasia 12, 143-152.

Kőhidai, L. (1999). Chemotaxis: the proper physiological response to evaluate phylogeny of signal molecules. Acta Biologica Hungarica 50, 375-394.

Kranz, J.E., Satterberg, B., and Elion, E.A. (1994). The MAP kinase Fus3 associates with and phosphorylates the upstream signaling component Ste5. Genes & Development 8, 313-327.

Laviña, W.A., Sugiyama, M., Kaneko, Y., and Harashima, S. (2010). Identification of protein kinase disruptions as suppressors of the calcium sensitivity of S. cerevisiae Δ ptp2 Δ msg5 protein phosphatase double disruptant. Archives of microbiology 192, 157-165.

Laviña, W.A., Sugiyama, M., Kaneko, Y., and Harashima, S. (2013). Functionally redundant protein phosphatase genes PTP2 and MSG5 co-regulate the calcium signaling pathway in Saccharomyces cerevisiae upon exposure to high extracellular calcium concentration. Journal of bioscience and bioengineering 115, 138-146.

Lee Rodgers, J., and Nicewander, W.A. (1988). Thirteen ways to look at the correlation coefficient. The American Statistician 42, 59-66.

Levine, H., and Rappel, W.-J. (2013). The physics of eukaryotic chemotaxis. Physics today 66.

Li, C., Wang, E., and Wang, J. (2011). Landscape, flux, correlation, resonance, coherence, stability, and key network wirings of stochastic circadian oscillation. Biophysical journal 101, 1335-1344.

Li, C., and Wang, J. (2014). Landscape and flux reveal a new global view and physical quantification of mammalian cell cycle. Proceedings of the National Academy of Sciences 111, 14130-14135. 10.1073/pnas.1408628111.

Macnab, R.M., and Koshland, D.E. (1972). The gradient-sensing mechanism in bacterial chemotaxis. Proceedings of the National Academy of Sciences 69, 2509-2512.

Maeder, C.I., Hink, M.A., Kinkhabwala, A., Mayr, R., Bastiaens, P.I., and Knop, M. (2007). Spatial regulation of Fus3 MAP kinase activity through a reaction-diffusion mechanism in yeast pheromone signalling. Nature cell biology 9, 1319-1326.

Malleshaiah, M.K., Shahrezaei, V., Swain, P.S., and Michnick, S.W. (2010). The scaffold protein Ste5 directly controls a switch-like mating decision in yeast. Nature
Marsh, L., and Rose, M. (1997). The pathway of cell and nuclear fusion during mating in S. cerevisiae. COLD SPRING HARBOR MONOGRAPH SERIES 21, 827-888.

Matheos, D., Metodiev, M., Muller, E., Stone, D., and Rose, M.D. (2004). Pheromone-induced polarization is dependent on the Fus3p MAPK acting through the formin Bni1p. The Journal of cell biology 165, 99-109.

Molk, J.N., and Bloom, K. (2006). Microtubule dynamics in the budding yeast mating pathway. Journal of cell science 119, 3485-3490.

Neiman, A.M., and Herskowitz, I. (1994). Reconstitution of a Yeast Protein-Kinase Cascade in-Vitro - Activation of the Yeast Mek Homolog Ste7 by Ste11. P Natl Acad Sci USA 91, 3398-3402. DOI 10.1073/pnas.91.8.3398.

Nern, A., and Arkowitz, R.A. (1999). A Cdc24p-Far1p-Gβγ protein complex required for yeast orientation during mating. The Journal of cell biology 144, 1187-1202.

Nern, A., and Arkowitz, R.A. (2000a). G proteins mediate changes in cell shape by stabilizing the axis of polarity. Molecular cell 5, 853-864.

Nern, A., and Arkowitz, R.A. (2000b). Nucleocytoplasmic shuttling of the Cdc42p exchange factor Cdc24p. The Journal of cell biology 148, 1115-1122.

Norris, D., and Osley, M. (1987). The two gene pairs encoding H2A and H2B play different roles in the Saccharomyces cerevisiae life cycle. Molecular and Cellular Biology 7, 3473-3481.

Parnell, S.C., Marotti, L.A., Kiang, L., Torres, M.P., Borchers, C.H., and Dohlman, H.G. (2005). Phosphorylation of the RGS protein Sst2 by the MAP kinase Fus3 and use of Sst2 as a model to analyze determinants of substrate sequence specificity. Biochemistry 44, 8159-8166.

Peter, M., Gartner, A., Horecka, J., Ammerer, G., and Herskowitz, I. (1993). FAR1 links the signal transduction pathway to the cell cycle machinery in yeast. Cell 73, 747-760.

Roberts, R.L., and Fink, G.R. (1994). Elements of a single MAP kinase cascade in Saccharomyces cerevisiae mediate two developmental programs in the same cell type: mating and invasive growth. Genes & development 8, 2974-2985.

Rose, M.D. (1996). Nuclear fusion in the yeast Saccharomyces cerevisiae. Annu Rev Cell Dev Bi 12, 663-695.

Segall, J.E. (1993). Polarization of yeast cells in spatial gradients of alpha mating factor. Proceedings of the National Academy of Sciences 90, 8332-8336.

Serrano, A., Illgen, J., Brandt, U., Thieme, N., Letz, A., Lichius, A., Read, N.D., and Fleißner, A. (2018). Spatio-temporal MAPK dynamics mediate cell behavior coordination during fungal somatic cell fusion. Journal of cell science 131.
Slessareva, J.E., and Dohlman, H.G. (2006). G protein signaling in yeast: new components, new connections, new compartments. Science 314, 1412-1413. 10.1126/science.1134041.

Sourjik, V., and Wingreen, N.S. (2012). Responding to chemical gradients: bacterial chemotaxis. Current opinion in cell biology 24, 262-268.

St-Pierre, F., and Endy, D. (2008). Determination of cell fate selection during phage lambda infection. Proceedings of the National Academy of Sciences 105, 20705-20710.

Sugiyama, M., Kaneko, Y., and Harashima, S. (2009). Yeast protein phosphatases Ptp2p and Msg5p are involved in G1–S transition, CLN2 transcription, and vacuole morphogenesis. Archives of microbiology 191, 721-733.

Szczurek, E., Gat-Viks, I., Tiuryn, J., and Vingron, M. (2009). Elucidating regulatory mechanisms downstream of a signaling pathway using informative experiments. Molecular Systems Biology 5, 287.

Takizawa, P.A., Sil, A., Swedlow, J.R., Herskowitz, I., and Vale, R.D. (1997). Actin-dependent localization of an RNA encoding a cell-fate determinant in yeast. Nature 389, 90-93.

Treuner-Lange, A., and Sogaard-Andersen, L. (2014). Regulation of cell polarity in bacteria. J Cell Biol 206, 7-17. 10.1083/jcb.201403136.

van Drogen, F., Stucke, V.M., Jorritsma, G., and Peter, M. (2001). MAP kinase dynamics in response to pheromones in budding yeast. Nature cell biology 3, 1051-1059.

Wang, J. (2015). Landscape and flux theory of non-equilibrium dynamical systems with application to biology. Advances in Physics 64, 1-137. 10.1080/00018732.2015.1037068.

Wang, J., Li, C., and Wang, E. (2010a). Potential and flux landscapes quantify the stability and robustness of budding yeast cell cycle network. Proceedings of the National Academy of Sciences 107, 8195-8200.

Wang, J., Xu, L., and Wang, E. (2008a). Potential landscape and flux framework of nonequilibrium networks: robustness, dissipation, and coherence of biochemical oscillations. Proceedings of the National Academy of Sciences 105, 12271-12276.

Wang, J., Zhang, K., and Wang, E. (2008b). Robustness and dissipation of mitogen-activated protein kinases signal transduction network: Underlying funneled landscape against stochastic fluctuations. The Journal of chemical physics 129, 10B602.

Wang, J., Zhang, K., and Wang, E. (2010b). Kinetic paths, time scale, and underlying landscapes: A path integral framework to study global natures of nonequilibrium systems and networks. The Journal of chemical physics 133, 09B613.

Wang, J., Zhang, K., Xu, L., and Wang, E. (2011). Quantifying the Waddington landscape and biological paths for development and differentiation. Proceedings of the National Academy of Sciences 108, 8257-8262.

Wang, Y.Q., and Dohlman, H.G. (2004). Pheromone signaling mechanisms in yeast: A
prototypical sex machine. Science 306, 1508-1509. DOI 10.1126/science.1104568.

Warringer, J., Zörgö, E., Cubillos, F.A., Zia, A., Gjuvsland, A., Simpson, J.T., Forsmark, A., Durbin, R., Omholt, S.W., and Louis, E.J. (2011). Trait variation in yeast is defined by population history. PLoS Genet 7, e1002111.

White, J.M., and Rose, M.D. (2001). Yeast mating: getting close to membrane merger. Current biology 11, R16-R20.

Winters, M.J., Lamson, R.E., Nakanishi, H., Neiman, A.M., and Pryciak, P.M. (2005). A membrane binding domain in the Ste5 scaffold synergizes with Gβγ binding to control localization and signaling in pheromone response. Molecular cell 20, 21-32.

Xu, F., Bierman, R., Healy, F., and Nguyen, H. (2016). A multi-scale model of Escherichia coli chemotaxis from intracellular signaling pathway to motility and nutrient uptake in nutrient gradient and isotropic fluid environments. Computers & Mathematics with Applications 71, 2466-2478.

Yosef, N., and Regev, A. (2011). Impulse Control: Temporal Dynamics in Gene Transcription. Cell 144, 886-896. 10.1016/j.cell.2011.02.015.

Youk, H., and Lim, W.A. (2014a). Secreting and sensing the same molecule allows cells to achieve versatile social behaviors. Science 343, 1242782.

Youk, H., and Lim, W.A. (2014b). Secreting and Sensing the Same Molecule Allows Cells to Achieve Versatile Social Behaviors. Science 343, 628-+. ARTN 1242782 10.1126/science.1242782.

Yuan, J., Fahrner, K.A., Turner, L., and Berg, H.C. (2010). Asymmetry in the clockwise and counterclockwise rotation of the bacterial flagellar motor. Proceedings of the National Academy of Sciences 107, 12846-12849.

Zeng, L., Skinner, S.O., Zong, C., Sippy, J., Feiss, M., and Golding, I. (2010). Decision making at a subcellular level determines the outcome of bacteriophage infection. Cell 141, 682-691.

Zheng, W., Zhao, H., Mancera, E., Steinmetz, L.M., and Snyder, M. (2010). Genetic analysis of variation in transcription factor binding in yeast. Nature 464, 1187-1191.

Zhou, P.J., Gao, X., Li, X.L., Li, L.X., Niu, C.Y., Ouyang, Q., Lou, H.Q., Li, T.J., and Li, F.T. (2021). Stochasticity Triggers Activation of the S-phase Checkpoint Pathway in Budding Yeast. Physical Review X 11. ARTN 011004 10.1103/PhysRevX.11.011004.

Zörgö, E., Chwialkowska, K., Gjuvsland, A.B., Garré, E., Sunnerhagen, P., Liti, G., Blomberg, A., Omholt, S.W., and Warringer, J. (2013). Ancient evolutionary trade-offs between yeast ploidy states. PLoS Genet 9, e1003388.
The graph shows the probability distribution over time (min) and fluorescence intensity (a.u.) after adding pheromone. The peaks at points a₀ and a₁ indicate the initial phase, while the peaks at points b₀ and b₁ show the subsequent response.

Adding pheromone
The graphs show the frequency distribution of growth rate at different concentrations:

- **0.7 μM**: A clear peak at higher growth rates, with a tail extending to lower rates.
- **0.8 μM**: A broader distribution, with multiple peaks indicating variability.
- **1.0 μM**: Similar to 0.8 μM, but slightly shifted to the right.
- **2.0 μM**: A distinct peak at lower growth rates, with a long tail.
- **3.0 μM**: A single, sharp peak at very low growth rates, indicating a very narrow range of values.
