Review Article

Review on chemical composition of gluten-free food for celiac people

Antonella Maggio, Santino Orecchio* and Salvatore Barreca
Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università di Palermo, Viale delle Scienze, I-90128 Palermo, Italy

Abstract
Gluten free food lead to possible nutrient unbalance resulting in improper nutritional quality of diet. The aim of this review is to show and discuss the composition of main components of common gluten free products in order to provide doctors and nutritionists the necessary data to compile balanced diets for users of gluten-free products and to determine their contribution to the daily intake of nutrients and micro elements. Special emphasis has been addressed to metal contents, fatty acid profiles and fibers.

Scopus Library was used to search for articles published and particular attention was focused on literature published from 2007 to 2018. A total of 68 research papers were taken into considerations. Compared to common food, GF products show deficit for nutrients and, at this regard, a GF-diet was found to be poor in essential metals such as iron, zinc, magnesium and calcium. On another hand, higher content of fatty acids, especially saturated fatty acids, were founded in several papers were taken into considerations. Compared to common food, GF products show deficit for nutrients and, at this regard, a GF-diet was found to be poor in essential metals such as iron, zinc, magnesium and calcium. On another hand, higher content of fatty acids, especially saturated fatty acids, were founded in several papers were taken into considerations.

Introduction
Celiac disease (CD) is a common chronic enteropathy disease which affects approximately 1-2% of the word population [1]. CD is intolerance for gluten in genetically predisposed individuals and is characterized by an inappropriate immune response of the T-lymphocytes of the small intestines to gluten peptides [2]. In celiac people, ingestion of gluten leads to inflammation and mucosal damage of the small intestine [3]. The typical lesion in the small intestinal epithelium is villous atrophy with crypt hyperplasia, leading to malabsorption of most nutrients such as minerals (Fe, Ca, Zn, etc.) and others essential components (folic acid, fat-soluble and vitamins) [4]. Today, the only available treatment for celiac patients will result, in the majority of cases, a normalization of symptoms and cytological and histological parameters [5]. Generally, coeliac people need assistance from a dietician that has no knowledge on mineral contents or fatty acids, proteins, sugars compositions of available gluten-free products, and, for this reason, it is necessary to know the composition of gluten free foods commonly consumed by individuals with celiac disease.

The increasing number of cases of celiac disease consequently favored the production of numerous commercial food products. In several cases, food companies, in order to improve workability of products, use raw materials at low prices, for an example palm and palmist oils [6,7]. Moreover, in the last ten years, there has been increasing interest on gluten-free bakery and breads. A large type of flours and starches (rice, corn, carob, etc.) as well as many ingredients such as gums, enzymes, soybean proteins, and have been used to mimic the viscoelastic properties of gluten and contribute to improve acceptability and shelf life of gluten-free food [8]. Unfortunately, the use of several bad raw materials long-term can cause several health damages.

On another hand, gluten free diet may lead to possible nutrient deficiencies (such as fiber, micro and macro elements, fatty acids, etc). In detail, common ingredients used in of gluten-free foods are starch and flour of corn, potato, tapioca, rice, etc) and, these raw materials can be considered poor of several micro and macro nutrients. Moreover, in several cases, gluten-free foods tend to be high in fat and calories to enhance flavor, texture and appearance [9]. Several authors [10] assert that many gluten-free cereal products, compared with the enriched wheat products contain lower amounts of thiamin, riboflavin, niacin, folate and iron products that they are intended to replace.

Generally, literature report inadequate intakes of fiber, iron, and calcium in 50% of celiac females studied [11]. To moderate this leak of nutrients, in few cases, flours are fortified with vitamins and minerals, such as B vitamins and iron [12].

Jason [13], analyzing nearly 1200 gluten free foods (Table 1), affirms that these products have a low average proteins content and are carbohydrate-rich. Considering that the used ingredients are often very low in vitamins and minerals, the Jason findings highlight the need of future researches to examine the levels of these nutrients in foods for celiac people. In addition, Jason affirms that results today do not support the contention that gluten free foods are consistently lower in fiber content or that the nutritional quality of these foods are seriously adversely influenced by the addition of saturated fat or sugar.

*Correspondence to: Santino Orecchio, Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università di Palermo, Viale delle Scienze, I-90128 Palermo, Italy, Tel: 399123897968; E-mail: santino.orecchio@unipa.it

Key words: gluten-free, food, celiac people, fatty acids, proteins, minerals

Received: December 27, 2018; Accepted: January 21, 2019; Published: January 25, 2019
The better nutritional properties of pseudo cereals are well known [19], and other staple foods. The preeminent pseudo cereals known so far are amaranth (Amaranth caudatus, Amaranth cruentus, Amaranth hypochondriacus) and quinoa (Chenopodium quinoa), which have fiber levels comparable to those of common cereals [22].

In celiac diet, two of the most important sources of essential elements is representing from rice, corn and their derivatives. Rice flour contain about 0.04% ashes, 0.21% lipids and 10.7% proteins. Corn flour contains 0.33% ashes and 7.50% proteins. In several cases, field bean semolina (Vicia faba) is used in the gluten free food production that contains 0.08% ashes, 1.08% lipids, 30.0% proteins [18].

Recently, pseudo cereals are used in the preparation of gluten free food. A pseudo cereal is defined as any plant that does not belong to the grass family but produces fruits and seeds used as flour for bread and other staple foods. The preeminent pseudo cereals known so far are grain amaranth (Amaranth caudatus, Amaranth cruentus, Amaranth hypochondriacus), quinoa (Chenopodium quinoa), and buckwheat (Fagopyrum esculentum).

The better nutritional properties of pseudo cereals are well known [19], having higher protein percentages than wheat, and constituting a good source of calcium, magnesium and iron. Consequently, in several cases, pseudo cereals constitute a valid alternative to common gluten-containing grains, add variety and improve nutritional quality of gluten free food.

Protein content in amaranth and quinoa (Table 2) [19] is generally higher than in cereals containing gluten such as wheat [20,21] and is usually highest in amaranth followed by quinoa and buckwheat.

In pseudocereals the protein bioavailability is high, and the amino acid composition is well balanced, with a high content of essential amino acids, and is higher compared to that of cereals containing gluten [19].

Amaranth, quinoa and buckwheat represent good sources of fiber; in buckwheat seeds the content is significantly higher than that of amaranth and quinoa, which have fiber levels comparable to those of common cereals [22].

Teff is a gluten free grain [23] gaining attractiveness due to its positive nutritional properties [24]. The teff flour is rich in fiber due to the incorporate of bran components. It is also a source of bioactive compounds such as polyphenols [25].

Despite the great rise in consumption of gluten free foods, there is a lack of evaluation of their composition and nutritional profile and how they compare foods containing gluten. Another important issue in environmental and food quality regard to pollution from organic or inorganic substances, because many of these substances are not degradable and can be bioaccumulate in food chain [26,27]. Food and Agriculture Organization of the United Nations (FAO) has discussed the tolerable intake for several food contaminants, including toxic metals as As, Cd and Pb (FAO, 2010). These microelements can be found in celiac food and their detectable can by scripted by two different origins. The first one depends on the use of massive use of pesticides, the second from possible release from raw materials employed during food manufacturing.

The aim of this review is to show the chemical compositions and discuss the nutritional qualities of GF products in order to provide doctors and nutritionists the necessary data to compile balanced diets for users of gluten-free products and to determine their contribution to the daily intake of nutrients and micro elements. Special emphasis

Table 1. Metal contents in raw materials used for gluten free products

Ref.	Sample	Element	P (mg/g)	Ca (mg/g)	Mg (mg/g)	K (mg/g)	Na (mg/g)	Mn (mg/g)	Fe (mg/g)	Ni (mg/g)	Cu (mg/g)	Zn (mg/g)	Cr (mg/g)	Co (mg/g)	As (mg/g)	Se (mg/g)	Cd (mg/g)	Sb (mg/g)	Hg (mg/g)	Pb (mg/g)
[13]	Flour corn		- 6.10	4.70	120	1000	- 1100	- 29	- 500	2.6	-	-	-	-	-	-	-	-	-	
[55]	Flour rice		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
[55]	Flour wheat		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
[55]	Other		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
[55]	Whole grain rice		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
[55]	White		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
[55]	Brown		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
[55]	Enriched white		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
[23]	Teff seed		4.29	1.80	1.84	4.27	0.12	- 76.3	- 36.3	-	-	-	-	-	-	-	-	-	-	
[23]	Flour		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
[19,22]	Amaranth		- 1.80	2.88	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
[19,22]	Quinoa		- 0.33	2.07	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
[19,22]	Buckwheat		- 0.61	2.03	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
[19,22]	Wheat		- 0.35	0.96	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
[29]	Quinoa		3.83	1.48	2.50	9.27	-	-	-	-	-	-	-	-	-	-	-	-	-	
[29]	Wheat		4.68	0.50	1.69	5.78	-	-	-	-	-	-	-	-	-	-	-	-	-	
[29]	Rice		1.38	0.07	0.74	1.18	-	-	-	-	-	-	-	-	-	-	-	-	-	
[29]	Barley		5.03	0.43	1.29	5.03	-	-	-	-	-	-	-	-	-	-	-	-	-	
[33]	Flour for cakes		- 0.39	9.8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
[33]	Flour		- 2.6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
[39]	Teff		- 0.79	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
[54]	Teff flour		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
has been addressed to metal contents, fatty acid profiles, fibers and vitamins.

Materials and methods

In the last 10 years, documents concerning to gluten free aspects are increasing (Figures 1A-1C). Most of studies concerning to gluten free food, were conducted by US researchers, on another hand, Italy was the second country in term of report produced. At July 2018, literature reporting gluten free as key word shows 6627 documents and only 466 documents are relative at chemistry field. In this context, was necessary to focused attention concerning to several aspect regarding food nutrients in gluten free.

The researches in literature were performed by used the key words gluten free using Scopus as search engine. From the search resulted 58 articles and only 23 are related to nutritional aspects, published from 2007 to spring 2018. The last were considered for the purpose of this review. Other relevant papers concerning to food quality and their chemical analyses were considerate.

Table 2. Macro compounds in raw materials and products

Reference	Sample	Carbohydrates	Saturated fatty acids	Unsaturated fatty acids	Sugar	Protein	Fiber
[13]	Flour corn	49000 ug/g	- 800 ug/g	-	-	110000 ug/g	
[29]	Quinoa	63000 ug/g	-	-	-	165000 ug/g	
[29]	Barley	19000 ug/g	-	-	-	108000 ug/g	
[29]	Maize	47000 ug/g	-	-	-	102000 ug/g	
[29]	Rice	22000 ug/g	-	-	-	76000 ug/g	
[29]	Wheat	23000 ug/g	-	-	-	143000 ug/g	
[29]	Oat	52000 ug/g	-	-	-	116000 ug/g	
[29]	Rye	18000 ug/g	-	-	-	134000 ug/g	
[29]	Bean	11000 ug/g	-	-	-	280000 ug/g	
[29]	Lupine	70000 ug/g	-	-	-	391000 ug/g	
[29]	Soya	189000 ug/g	-	-	-	361000 ug/g	
[23]	Teff seed	23800 ug/g	44900 ug/g	16600 ug/g	18400 ug/g	133000 ug/g	
[19,22]	Amaranth	57000 ug/g	-	-	-	165000 ug/g	
[19,22]	Quinoa	52000 ug/g	-	-	-	145000 ug/g	
[19,22]	Buckwheat	21000 ug/g	-	-	-	125000 ug/g	
[28]	Amaranth	50000 ug/g	-	-	-	110000 ug/g	
[28]	Buckwheat	25200 ug/g	-	-	-	130700 ug/g	
[28]	Quinoa	34400 ug/g	-	-	-	113200 ug/g	
[32]	Bread	110500 ug/g	-	-	-	483000 ug/g	
[32]	Bread	110500 ug/g	-	-	-	811800 ug/g	

Reference	Sample	Carbohydrates	Saturated fatty acids	Unsaturated fatty acids	Sugar	Protein	Fiber
[23]	Teff seed	23800 ug/g	44900 ug/g	16600 ug/g	18400 ug/g	133000 ug/g	
[19,22]	Amaranth	57000 ug/g	-	-	-	165000 ug/g	
[19,22]	Quinoa	52000 ug/g	-	-	-	145000 ug/g	
[19,22]	Buckwheat	21000 ug/g	-	-	-	125000 ug/g	
[28]	Amaranth	50000 ug/g	-	-	-	110000 ug/g	
[28]	Buckwheat	25200 ug/g	-	-	-	130700 ug/g	
[28]	Quinoa	34400 ug/g	-	-	-	113200 ug/g	
[32]	Bread	110500 ug/g	-	-	-	483000 ug/g	

Carbohydrates

Starch, the main biopolymeric constituents of plants (grains, tubers and seeds), is the major source of physiological energy in the human diet and accordingly it is classified in general as an available carbohydrate. Some authors [28,29] affirms that in the quinoa, carbohydrates ranges from 67-74% and the amylose content is about 11% which is lower than in cereals. Other carbohydrates are in small amounts: monosaccharides (2%), disaccharides (2.3%), crude fiber (2.5-3.9%) and pentosans (2.9-3.6%) [30,31]. María Estela Matos [8] established that gluten-free breads show a high contribution to the carbohydrate dietary reference intake (Table 2), moreover, starch is the most important component of teff grain [23] and may amount up to over 70% of the dry weight.

Macrolelements

In food, metals and other elements [32-35] can be found by naturally source or can enter as the result of human activities such as industrial and agricultural processes. The macro elements are very important in several biochemical processes and play a fundamental role in human homeostasis [36]. The content of some minerals in amaranth, quinoa, buckwheat and teff, determinate by several authors, are shown in Table 1 [37]. High calcium content in amaranth seeds were founded, and about teff grain [23], calcium and magnesium have similar concentration (1800 and 1840 mg Kg⁻¹ respectively), similarly, potassium and phosphorous content are 4270 and 4290 mg Kg⁻¹ respectively. Teff seeds contain 120 mg Kg⁻¹ of sodium. Baye et al. [38] showed that the Ca contents of whole grain teff are 788 mg Kg⁻¹. Moreover, numerous researchers have also highlighted the high minerals content of pseudocereals [19-21,38].

In a paper [39] researchers report the results for the quantification of K, Li, Sr, Na, Ca, Mg and Al in seventeen gluten-free food (Table 3). Considering all analyzed food, potassium ranged from 14 to 3747 mg kg⁻¹. The highest contents were found by us in a flour for cakes (3747 mg kg⁻¹), crouton (2479 mg kg⁻¹) and in the two local bread samples (1327 and 1082 mg kg⁻¹). The mean K concentration was 716 mg kg⁻¹ and is very lower those measured in Hispanic products that showed K concentration in the interval 4000 and 5000 mg kg⁻¹ [40-42].

The sodium content of the gluten free food samples ranged from 306 to 12315 mg kg⁻¹ with average of 3015 mg kg⁻¹ and the highest sodium levels were measured in three bread samples. The sodium concentrations in the analyzed samples are very high, for example the mean Na concentration in some Hispanic wheat cultivars varied significantly between 41.0 and 273 mg kg⁻¹ [43]. The concentration of calcium in samples ranged from 5 to 1682 mg kg⁻¹. The mean value was 413 mg kg⁻¹. The highest values were detected in the Local bread (1682 mg kg⁻¹), flour for cake (1658 mg kg⁻¹) and Biscuit (1288 mg kg⁻¹), while the lowest concentrations were found in two pasta samples. Magnesium content was in the range 30-1207 mg kg⁻¹. The mean value was 333 mg kg⁻¹. The highest values were detected in the of breadsticks (1207 mg kg⁻¹) and flour for cakes (813 mg kg⁻¹).

Considering the average concentrations of the elements analyzed, excluding lithium, authors concluded that they are inadequate if compared with the recommended daily intake by international
Matrices, the analyst often has to determine the characteristics of a large quantity of product. Theoretically, the chemist or biologist should analyze every part of the material to obtain accurate measures of the property of interest, but, considering practical and economical aspects, this is impossible. At this regard, analyst carry out the analyses on a representative sample and to extend results to all the lot of food. Homogenization is part of the sample preparation procedure and includes mixing and blending of the sample, particle size reduction, and mass reduction.

Literature reported several methods able to mineralize food samples. The most used analytical technique employs sample digestion in a microwave oven by means of HNO$_3$ (63%) and H$_2$O$_2$ (30%). Regarding to determination aspects, at present, official methods for the analysis of micro and macro elements content in food matrices can conducted by several instrumental and analytical techniques as reported in Table 4. Based on data reported in Table 4, the choice of method depends on several aspects, from metals to concentration levels in sample.

Microelements

The heavy metals of particular concern in relation to harmful effects on health are mercury, lead, cadmium, tin and arsenic. The toxicity of these metals can be expressed by acute or chronic, depending to the fact that they accumulate in biological tissues, for a process known as bioaccumulation. This process of bioaccumulation occurs in all living organisms as a result of exposure to metals in food and the environment and includes biomagnifications processes. On another hand, high levels of several metals, due to pollutant contamination, release during manufacturing process and food organisms [40], providing only from 1.5 to 20% of the RDI for the essential metals. In particular, considering that many celiac people consume small quantities of potassium which contribute to regulate blood pressure and prevent hypertension. The tolerable upper level intake is exceeded by consuming more than 200 grams of gluten free bread during a day.

Generally, analyses of food were carried out by four steps; sampling, homogenization, mineralization and analyses. Concerning the quantifications of micro and macro constituents of gluten food

Sample	K (ug/g)	Li (ug/g)	Sr (ug/g)	Na (ug/g)	Ca (ug/g)	Mg (ug/g)	Al (ug/g)
Pasta	250	3.0	6.6	1205	5	102	21
Noodles	331	19	2.5	549	133	423	0.8
Flour	208	2.8	6.2	905	57	86	16
Biscuits	635	2.8	6.1	1986	69	280	18
Pasta fusilli	386	8.0	0.2	306	106	359	0.6
Pasta linguine	611	2.9	6.3	923	5	207	19
Egg noodles	211	15	102	793	272	373	1.5
Finger biscuits	109	43	4.5	1136	340	291	1.7
Buckwheat biscuits	1238	2.7	6.0	4172	105	495	17
Croutons	14	4.5	78	808	265	256	1.3
Rice noodles	131	2.8	6.3	682	237	224	9.5
Couscous	940	2.6	5.8	838	100	247	18
Corn couscous	905	2.7	48	874	196	273	16
Flour for cakes	3747	2.8	6.2	5427	1658	813	10
Lasagna	1171	2.8	6.2	4071	1098	210	14
Corn flakes	855	2.7	6.0	5245	123	160	1.0
Dietary biscuits	73	9.1	12	909	826	231	1.0
Breadsticks	322	68	3.5	3209	374	1207	1.5
Local bread B	1327	5.8	19	10383	1682	317	12
Local bread P	1082	2.8	6.2	12315	490	308	13
Corn flakes	855	2.7	6.0	5245	123	160	17
Shortbread	72	25	3.5	792	264	279	1.0
Biscuits	33	7.7	2.0	382	1288	436	1.4
Butter cookies	42	15	56	1134	40	314	1.2
Croutons	2479	248	36	5816	637	441	13
Egg biscuits	195	40	3.9	1070	297	30	12
Industrial bread	1115	2.9	13	10520	361	456	23
packaging, can cause health damage because can be considered as interference with essential metals.

Trace amounts of some metals, manganese, copper, and zinc are essential micro nutrients and have a variety of biochemical functions in all living organisms. For example, copper, is present in enzymes and proteins that protecting the body from free radicals [44]. On another hand, these elements can be considered as toxic when taken in excess and some minerals may constitute a potential health risk if consumed above the tolerable upper in-take levels over extended periods. Examples of these are iodine, lead, arsenic, cadmium and mercury poisoning. For other minerals, the negative effects are less hazardous, producing e.g. gastrointestinal problems. For non-essential elements exposures are undesirable, but acceptable levels are determined by the World Health Organization (WHO) and other international authorities [40,45,46]. Indeed, since rice-based foods are widely consumed by celiac people, the exposure to non-essential elements such as arsenic, cadmium and lead is a global concern [47-50].

A study on whole grain teff showed that the Fe and Zn contents are 316 and 23.1 mg Kg\(^{-1}\) (dry basis), respectively [38]. The total iron content (76.3 mg Kg\(^{-1}\)) is high if compared with other microelements, is respectively 21.3-6.7 and 41-22 µg/g (dry basis), respectively [38]. The total iron content is used in the food industry as a leavening agent in baked goods and generally, in foods with gluten, contain additives. NaAl\(_2\)H\(_5\)(PO\(_4\))\(_3\) is used in the food industry as a leavening agent in baked goods and NaAl\(_2\)OH\(_5\)(PO\(_4\))\(_3\) as an emulsifying agent [57]. The concentrations of Al in convenience and fast foods analyzed by some researches [58] ranged from 0.85 to 38 mg kg\(^{-1}\), (referred to fresh weight of the edible portion) are higher than gluten free food. In food, aluminum may be: a natural contaminant of vegetal and animal ingredients; a contaminant of industrial food processing; contained in additives; released from kitchenware used for food preparation and/or serving stocking and packaging food materials.

The aluminum content quantified [39] in seventeen gluten-free food samples ranged from 0.6 to 23 mg kg\(^{-1}\) with average of 10 mg kg\(^{-1}\) and in agreement to those (0.4-13 mg kg\(^{-1}\)) determined by several authors [55,56] in cereals. In this case, the highest Al levels were measured in two pasta samples. Considering that Al additives are contained in specific processed foods, contrary to our expectations, the lower concentrations (about 1 mg kg\(^{-1}\)) were found in some that generally, in foods with gluten, contain additives. NaAl\(_2\)H\(_5\)(PO\(_4\))\(_3\) is used in the food industry as a leavening agent in baked goods and NaAl\(_2\)OH\(_5\)(PO\(_4\))\(_3\) as an emulsifying agent [57]. The concentrations of Al in convenience and fast foods analyzed by some researches [58] ranged from 0.85 to 38 mg kg\(^{-1}\), (referred to fresh weight of the edible portion) are higher than gluten free food. In food, aluminum may be: a natural contaminant of vegetal and animal ingredients; a contaminant of industrial food processing; contained in additives; released from kitchenware used for food preparation and/or serving stocking and packaging food materials.

Table 4. Analytical techniques used in metals analyses in food

Analytical techniques	Metal analyzed	Linear range µg Kg\(^{-1}\)	Reference
Flame atomic absorption	Alkaline and alkaline earth metals	1000-100000	[34]
Furnace atomic adsorption	Alkaline, alkaline earth and transition metal	1-5	[35]
Plasma atomic emission inductively coupled spectroscopy (ICP-OES)	All metals wit some exceptions	1-200	[36]
Inductively coupled plasma-time of flight-mass spectrometry	All metals	1-500	[34]
Electro-analytical techniques	All metals or substance that can be oxidized or reduced	0.1-10	[36]

Table 5. Microelement contents and total fatty acids in several gluten free food

Ref.	Samples	Metals	Total fatty acid	Salt	Mn	Fe	Ni	Cu	Zn	Cr	Co	As	Se	Cd	Sb	Hg	Pb	ug/g
------	---------	--------	-----------------	------	----	----	----	----	----	----	----	----	----	----	----	----	----	
[55]	Rice	-	-	NaAl\(_2\)H\(_5\)(PO\(_4\))\(_3\)	20.1	13.3	0.4	2	14.3	189	23.5	141	115	15.9	2.9	3.4	22	-
[55]	No rice	-	-	NaAl\(_2\)H\(_5\)(PO\(_4\))\(_3\)	13.9	26.1	0.2	3.4	20.9	111	6.7	15	340	52.4	1.7	1	7	-
[55]	Rice	-	-	NaAl\(_2\)H\(_5\)(PO\(_4\))\(_3\)	17.9	14	0.3	2.2	15	108	19.3	147	114	21.3	3.3	2.5	18	-
[55]	Other	-	-	NaAl\(_2\)H\(_5\)(PO\(_4\))\(_3\)	33.1	70.7	2.4	10.4	38.1	55	113.8	13	207	31.5	5.2	1.7	1	-
[2]	Snacks	19400	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	22470
[2]	Fast food	14600	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	11660
[2]	Nuts and oilseed	8300	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	45620
[2]	Cereal products	4300	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	11770
[2]	Sauces	19700	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	29910
[2]	Potato products	11600	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	25580
[23]	Pasta	-	-	-	6.4	6.1	-	2	9.9	41	19	94	55	14	-	-	55	-

Integr Food Nutr Metab, 2019 doi: 10.15761/IFNM.1000242

Volume 6(1): 5-11
The concentrations of seventeen microelements (As, Ba, Cd, Co, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Pb, Sb, Se, Sn, V and Zn) were quantified by Orecchio [32] in twenty-seven samples (Table 6) of gluten-free products (pasta, biscuits, flours, etc.) produced in Italy and collected in 2013 from markets and pharmacies in Palermo (Italy). Inductively coupled plasma mass spectrometry technique (ICP-MS) was used to quantify all the analytes. The highest arsenic and molybденum concentrations were measured in Rice Noodle from China (0.088 and 0.47 mg kg⁻¹ respectively). The highest concentrations of some metals (Cu, Ba, Cd, Pb, Hg, Sr and V) were found in bread and breadstick samples produced in different bakeries located at Palermo. The analytical results indicate a large variability between samples with respect to metal concentrations, which could be due to the proportion of different ingredients used in the food compositions and to different levels of contaminants in the production laboratories. In particular, foods analyzed contain levels of hazardous trace elements under the limits tolerated by the law and the contribution of the foods to the daily intake of all the elements analyzed remains under the recommended levels by international organisms. Considering the average concentrations of some microelements found in this study, authors concluded that they are inadequate if compared with the recommended daily intake by international organisms, providing from 1.1 to 53% of the RDI for the essential metals. These conclusions are in good agreement to some authors affirming that commercial gluten-free cereal foods, made of refined flours or starches, are of lower nutritional value compared to their wheat counterparts.

Fatty acids

Fatty acids play important roles in human activities. A large variety of fatty acids has been found in the diet of humans, in the bloodstream and in cells and tissues. Fatty acids, in addition to be energy sources, represent membrane constituents. Indeed, they have biological activities those explicate actions on tissue metabolism, function, and responsiveness to hormonal and other signals. Through several effects, fatty acids influence health, wellbeing, and disease risk. In this context, food characterization regarding by fatty acids, represents an important tool in order to prevent some health effect. For example, Polyunsaturated Fatty Acids (PUFA) constitute an important group of molecules that promote health, while Saturated Fat Acids (SFA) intake represent a risk for atherosclerotic cardiovascular disease in humans. Substituting polyunsaturated fat for saturated fat reduces LDL cholesterol and the total cholesterol to high-density lipoprotein cholesterol ratio. Epidemiologic studies and randomized clinical trials have provided evidence that replacing saturated fat with polyunsaturated fat is beneficial for coronary heart disease.

Generally, for food analyses, total fatty acids must be extracts from sample and subsequently analyzed directly by weighing. The most important procedures and instruments involved in fatty acid profile determinations in food after derivatization procedures are reported in Table 7.

Many studies were conducted about lipid profiles in food analyses, however, on fatty acids in gluten free foods, literature reported only few studies [7,19]. Alvarez [19] found that lipid content in amaranth and quinoa is between 2 and 3 times higher than in buckwheat and common cereals such as wheat. Amaranth, quinoa and buckwheat lipids contain fatty acids having high degree of unsaturation, which is favorable from a nutritional point of view. Linoleic acid is the most abundant fatty acid (50% of the total fatty acids in amaranth and quinoa, and approximately 35% in buckwheat) followed by oleic acid (25% in amaranth and quinoa and 35% in buckwheat) and palmitic acid [10,19,59-61]. High a-linolenic acid (C18:3 n-3) percentage is contained in quinoa seeds ranging from 3.8-8.3%

| Table 6. Microelement contents in gluten free food [33] |
|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|
| Sample | Cr | Mn | Co | Ni | Cu | Zn | As |
| | ug/g |
| Pasta | 0.0001 | 0.0091 | 0.47 | 0.0003 | 0.016 | 0.3 | 1.2 |
| Noodles | 0.088 | 0.0268 | 1.6 | 0.0026 | 0.040 | 0.6 | 4.4 |
| Biscuits | 0.044 | 0.0151 | 0.4 | 0.0008 | 0.22 | 0.9 | 4.6 |
| Pasta fusilli | 0.0039 | 0.011 | 0.08 | 0.0029 | 0.25 | 0.9 | 0.3 |
| Pasta Linguine | 0.0075 | 0.078 | 0.6 | 0.0070 | 0.53 | 0.9 | 3.8 |
| Egg noodles | 0.0021 | 0.031 | 0.9 | 0.0025 | 0.06 | 0.4 | 4.0 |
| Egg noodles | 0.0021 | 0.031 | 0.9 | 0.0025 | 0.06 | 0.4 | 4.0 |
| Finger biscuits | 0.0065 | 0.16 | 0.80 | 0.0028 | 0.10 | 0.4 | 5.6 |
| Buckwheat biscuits | 0.0093 | 0.040 | 0.5 | 0.0073 | 0.33 | 1.6 | 6.5 |
| Croutons | 0.028 | 0.21 | 0.75 | 0.0020 | 0.50 | 0.6 | 3.6 |
| Rice noodles | 0.0033 | 0.13 | 0.5 | 0.0151 | 0.14 | 1.7 | 10.7 |
| Couscous | 0.0029 | 0.040 | 1.0 | 0.0010 | 0.31 | 0.8 | 3.2 |
| Couscous | 0.0029 | 0.040 | 1.0 | 0.0010 | 0.31 | 0.8 | 3.2 |
| Corn couscous | 0.0054 | 0.063 | 0.81 | 0.024 | 0.12 | 0.37 | 2.9 |
| Lasagna | 0.071 | 14.4 | 2.5 | 0.54 | 15.0 | 1.5 | 7.2 |
| Corn flakes | 0.028 | 8.4 | 2.1 | 0.15 | 10.3 | 1.1 | 3.3 |
| Dietetic biscuits | 0.049 | 9.1 | 1.5 | 0.15 | 10.0 | 1.2 | 3.7 |
| Breadsticks | 0.035 | 8.7 | 4.4 | 0.16 | 10.5 | 1.1 | 5.0 |
| Local bread B. | 0.074 | 8.7 | 3.1 | 0.17 | 10.3 | 1.3 | 5.7 |
| Local bread P. | 0.036 | 8.7 | 4.8 | 0.16 | 10.2 | 1.8 | 8.4 |
| Corn flakes | 0.031 | 8.1 | 2.1 | 0.15 | 10.0 | 1.1 | 3.5 |
| Shortbread | 0.033 | 9.7 | 3.8 | 0.19 | 12.4 | 1.4 | 13.7 |
| Biscuits | 0.057 | 14.0 | 4.7 | 0.20 | 14.0 | 1.6 | 7.4 |
| Butter cookies | 0.054 | 14.0 | 4.6 | 0.19 | 13.8 | 1.1 | 6.0 |
| Croutons | 0.005 | 0.031 | 0.4 | 0.013 | 0.11 | 1.8 | 6.7 |
| Egg biscuits | 0.014 | 0.035 | 0.6 | 0.011 | 0.21 | 1.3 | 6.3 |
| Industrial bread | 0.052 | 0.054 | 0.2 | 0.015 | 0.17 | 0.94 | 3.7 | 0.020 | 0.014 | 1.5 | 0.28 | 0.050 | 0.031 | 0.60 | 0.0059 | 0.052 | 0.021 |

Volume 6(1): 6-11
A high percentage of \(\alpha \)-linolenic acid is advantageous because it reduces cardiovascular disease, cancer, osteoporosis, inflammatory and autoimmune diseases [62].

Several authors [23,51] affirm that the lipid content of teff (3.7 - 4.4%) is higher than that of wheat (3.6%), rice (0.9%), sorghum (3.5%), and maize (2.5%) flours, and was lower than that of oat (6.7%) and quinoa (8.6%) [23,63]. The majority of the free fatty acids are unsaturated (84%) and are similar to that of maize, sorghum, and quinoa. Linoleic (50%) and oleic (29%) are the predominant acids and are similar to those of sorghum and maize [63]. Other analyses carried out by Gebremariam [24] showed that the content of oleic acid (32%) was higher than that of linoleic acid (24%) as affirmed previously. As in other cases, the variances may be due to the different analytical methods and teff genetics (Table 8).

A recent study [7] carried out by us included 35 different products (snacks, biscuits, bakery products, pasta, flours, etc.) from several Italian manufacturers. Table 7 shows the data concerning proteins, energy, carbohydrates, and salts of the foods taken into consideration for the determination of individual fatty acids. The data in Table 9, with the exception of the total and saturated fatty acids content, were obtained from the labels of the aforementioned gluten free products. Furthermore, Table 7 shows, for comparison (\(R^2 \) values), the data concerning some containing gluten. After extraction and esterification, the fatty acid composition was determined by gas chromatography (Table 10). The mean content of total lipids was 12.6%. The highest percentages were found in a wafer biscuit (25%) and in a muffin (23%) sample, while the lowest in a flour mix for bread (1.2%). Saturated fatty acids were contained in all analyzed samples ranging from 2.8 to 72%. The highest contents were found in the wafer biscuit (72%) in an Easter cake (66%) and in the rice, corn, and red fruit flakes sample (63%), while the lowest (2.8%) percentage in a biscuit sample. Palmitic acid was the major component, and high amounts of this fatty acid were detected in all samples. Meanly, mono-unsaturated fatty acids (MUFA) were found to be the major constituents (57%), followed by saturated fatty acids (SFAs) (30%), and polyunsaturated fatty acid (13%). Only 15 of the 35 gluten-free products analyzed supply adequate energy intake, while, in 11 samples, saturated fatty acids were found to give more energy than that recommended by the European Food Safety Authority EFSA [64]. Moreover, data analyses showed that, although gluten-free commercial products are high-added-value foods, industrial products in many cases contain palm and palm kernel oils, whereas the local producers generally use the finest raw materials, such as olive oil.

Albuquerque [65] studying nuts and oilseeds, often used in the preparation of gluten free cakes, showed the highest fat content of these ingredients followed by sauces, potato and potato-products, and snacks samples. These were also the ingredient showed a higher MUFA and PUFA contents, whose percentages were significantly higher in the nuts and oilseeds.

Proteins

According to information furnished by suppliers, an evaluation on the nutritional characteristics of gluten-free breads representative of the Spanish market was carried out by Matos Segura [32]. The authors established that the protein, fat and mineral content of the gluten-free breads showed great variation, ranging from 9.0 to 155 g Kg\(^{-1}\) (20.0 to 261 g Kg\(^{-1}\)) and 11.0 to 54.3 Kg\(^{-1}\), respectively. Furthermore, gluten-free breads show very low contribution to the recommended daily protein intake, with a high contribution to the carbohydrate dietary reference intake. A research affirms that the protein contents of two variety of teff are 12.8 and 10.5%, which result higher compared to that of other cereals [63,66].

Table 7. Procedures and instruments used in fatty acid determination in food sample

Sample	Extraction/purification procedure	Derivatization procedures	Analytical instrument
Oil	SPE; Dilution	KOH in methanol	GC-FID; GC-MS;
	SPE; Dilution	CH\(_3\)NaO in methanol	GC-FID; GC-MS;
	Bligh and Dyer method	BHT in methanol	GC-FID; GC-MS;
Liquid sample			
(milk, fruit juice)	Funnel separation	KOH in methanol	GC-FID; GC-MS;
		CH\(_3\)NaO in methanol	GC-FID; GC-MS;
		BHT in methanol	GC-FID; GC-MS;
Solid samples	Soxhlet	KOH in methanol	GC-FID; GC-MS;
	Ultrasonic bath	CH\(_3\)NaO in methanol	GC-FID; GC-MS;

Table 8. Micro and macro nutrient contents in several gluten free foods

Ref.	Sample	Minerals	Na	Mg	Fe	Cu	Zn	Cr	Co	As	Se	Cd	Pb	Fatty acid	Protein	Sugar
[18]	G. F. products from Vicia faba													18000	30000	
[2]	Bakery Products	760												174600		
[2]	Cookies, biscuit and wafers	700												201600		
[23]	Cookies, cereal bars		9	13.5	2.1	8.4	43	13	53	101	11	69				
[13]	Cereal bars	-	54											50000	90	300
[13]	Cake	-	300											340000	40	440
[13]	Sweet biscuits	-	183											130000	45	310
[13]	Ice Cream	-	490											51000	33	184
[13]	Corn and potato chips	-	5960											40000	60	200
[13]	Cured meats, sausages and hot dogs	-	10560											80000	180	90
[13]	Sugar-based confectioneries	-	5100											20000	3400	380
Table 9. Nutritional characteristics of analyzed gluten free samples and reference food (R_x) [7]

N°	Sample	Energy (Kcal/100 g)	Total fats (g/100 g)	Saturated fatty acids (g/100 g)	Carbohydrates (g/100 g)	Proteins (g/100 g)	Sals (g/100 g)
Flours							
1	Rice flour	365	1.3	0.29	80.15	6.67	0.1
2	Red teff flour	380	1.4	0.27	-	-	-
3	Flour for bread	352	1.2	0.3	79.6	5	0.01
Rflour0	Flour 0 with gluten	363	1.5	0.27	73.8	11.5	-
Rflour00	Flour 00 with gluten	366	1.5	0.3	76.2	9.7	-
Rrice	Rice flour	366	1.4	0.39	80.1	5.9	-
Rfcorn	Corn flour	375	1.4	0.17	82.8	5.6	-
Bread							
4	Handcrafted bread	360	3.7	0.9	-	-	-
Rbread1	Bread with gluten	271	3.5	0.86	50	8.8	-
Rbread2	White Bread with gluten	238	2.1	0.63	43.9	10.6	-
Breadsticks							
5	Breadsticks a	425	9	1.8	75	2.4	1.9
6	Breadsticks b	416	8.5	3.2	79.9	4	2.7
7	Breadsticks c	462	17.2	2.54	73.57	0.99	1.6
8	Breadsticks d	446	14.6	2.9	75	2.4	1.9
9	Breadsticks with olive oil	431	12	3.5	79	1.3	2.12
10	Breadsticks with rosemary	460	16	5.13	76.32	2.04	2.8
11	Mini breadsticks	427	12.8	1.7	74.9	1.4	1.2
Crackers							
12	Buckwheat crackers	369	3.6	0.6	72	9.1	2
13	Crackers with rosemary	446	12	7.1	79	3.3	1.3
14	Rice Crackers	454	13.8	1.3	78.5	2.8	1.9
15	Turmeric crackers	455	17	1.8	66	7.6	2.1
Rcrackers							
16	Corn and quinoa crackers	422	9.8	0.9	79.5	1.8	1.7
Snack							
17	Apricot snack	620	7.5	0.99	71	2.5	0.23
18	Crispy sheets	436	12	1.5	78.5	2	1.86
22	Rice and corn flakes	382	2	0.4	83	6.4	0.3
Biscuits							
19	Chocolate biscuits	453	14	7.7	77	4	0.55
20	Biscuits d	422	18.4	2.3	66.3	4.6	0.3
21	Biscuits f	451	15	7.8	72	5.4	0.4
23	Lemon biscuits	435	11	1.5	78	4.6	0.9
24	Seven cereal biscuits	456	16.5	9.1	72	3.5	3
25	Biscuits o	456	13	4.6	83	2	0.57
26	Chocolate wafer	505	25	16	62.1	6.4	0.25
Rw	Wafer with gluten	433	14.2	4.2	72.4	6.6	-
29	Biscuits n	439	14	4.2	69.4	7	0.7
30	Tumeric biscuits	441	16	1.8	78	2.3	0.33
31	Chocolate biscuits	425	11.7	2.7	73.6	5.1	0.8
33	Buckwheat biscuits	444	14	8.9	72	4.2	0.85
34	Biscuits c	372	19.9	2.5	52.8	4.4	0.07
35	Crunchy cereal biscuits	472	18	8	70	5.3	0.75
Muffin and cakes							
27	Easter cake	410	18	14	-	-	-
32	Quinoa cake	407	17	2.5	55	7.3	0.5
28	Chocolate muffin	441	23	8.6	52	3.9	0.5
Rm	English muffin with gluten	223	2	0.29	44.8	8.7	-
Conclusions

Most of the nutritional data reported in literature, are based on food labels. Few data were obtained by direct chemical analysis of food. In this context, will be necessary to encourage the use of chemical analytical practices in order to provide doctors and nutritionists the necessary data to compile balanced diets for users of gluten-free products and to determine their contribution to the daily intake of nutrients and micro elements. Special emphasis has been addressed to metal contents, fatty acid profiles and fibers.

Literature analysis has highlighted that, the most gluten free food, show a deficit of nutrients in term of concentrations. At this regard, an inadequate nutritional value of the GF-diet was observed from several authors. In detail, it was found nutrient deficiencies for essential minerals such as iron, zinc magnesium and calcium, and on another hand high content of saturated lipids were detected.

Furthermore, the dietary-therapeutic approach should encourage the use of naturally gluten free products such as pseudo-cereals and fruits concerning to metal contents, and fish or seafood regarding fatty acids, especially for satured and unsatured fatty acid ratio.

Moreover, alimentary education should become part of the therapeutic pathway to understand the importance of labels, choice of food and combination of macro and micronutrients.

Acknowledgments

This study was made possible by the financial support of Palermo university that has funded the author (Grants 2018).

References

1. Fasano A (2003) European and North American populations should be screened for coeliac disease. Gut 52: 168-169. [Crossref]
2. Villalta D, Tonetti E, Prause C, Kolektos S, Uhlig HH, et al. (2010) IgG antibodies against deamidated gliadin peptides for diagnosis of celiac disease in patients with IgA deficiency. Clin Chem 56: 846-468. [Crossref]
3. Pender SLF, Lionetti P, Murch SH, Wathen N, MacDonald TT (1996) Proteolytic degradation of intactosun extracellular matrix after laminappropria T cell. Gut 39: 284-290. [Crossref]
4. Wierdema NJ, van Bakhorst-de van der Schueren M, Berkenpas M, Mulder CJ, van BORDERAGE AA (2013) Vitamin and mineral deficiencies are highly prevalent in newly diagnosed celiac disease patients. Nutrients 5: 3975-3992. [Crossref]
5. Ciacci C, Ciclitira P, Hadjivassiliou M, Kaukinen K, Ludvigsson JF, et al. (2015) Food risk assessment for coeliac disease. Food Nutr Metab 2019 doi: 10.15761/IFNM.1000242
6. De Simas KN, Vieira LDN, Podestá R, Müller CM, Vieira MA, et al. (2009) Effect of king palm (Archontophoenix alexandrae) flour incorporation on physicochemical and textural characteristics of gluten-free cookies. Int J Food Sci Technol 44: 531-538.
7. Maggio A, Orsichio S (2018) Fatty acid composition of gluten-free food (bakery products) for celiac people. Foods 7. [Crossref]
8. Segura MEM, Rosell CM (2011) Chemical composition and starch digestibility of different gluten-free breads. Plant Foods Hum Nutr 66: 224. [Crossref]

Fatty acid	Samples	C18:1 (g/100g)	C18:2 (g/100g)	C18:3 (g/100g)	C20:1 (g/100g)	C20:2 (g/100g)	C20:3 (g/100g)	C22:1 (g/100g)	C24:1 (g/100g)	C24:2 (g/100g)	C24:3 (g/100g)
C4:0	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
C6:0	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
C8:0	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
C10:0	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
C12:0	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
C14:0	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
C16:0	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
C18:0	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
C20:0	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
C22:0	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Maggio A (2019) Review on chemical composition of gluten-free food for celiac people

Integr Food Nutr Metab, 2019 doi: 10.15761/IFNM.1000242

27. Jancurovà M, Minarovicovà L, Dandar A (2009) Quinoa – A review. J Food Chem Toxicol 49: 174–180. [Crossref]

28. Thompson T, Dennis M, Higgins LA, Lee AR, Sharrett MK (2005) Gluten-free diet survey: are Americans with celiac disease consuming recommended amounts of fibre, iron, calcium and grain foods? J Hum Nutr Diet 18: 163–169. [Crossref]

29. Hopman EG, le Cessie S, von Blomberg BM, Mearin ML (2006) Nutritional management of the gluten-free diet in young people with celiac disease in The Netherlands. J Pediatr Gastroenterol Nutr 43: 101-108. [Crossref]

30. Bourkouka H, Benatallah L, Nasreddine Zidoune M, Rosell CM (2016) Developing gluten free bakery improvers by hydrothermal treatment of rice and corn flours. Food Sci Tech 73: 342-350. [Crossref]

31. Alvarez-Jubete L, Arendt EK, Gallagher E (2009) Nutritive value and chemical composition of pseudocereals as gluten-free ingredients. Int J Food Sci Nutr 60: 240-257. [Crossref]

32. Zhou F (2018) Chemical composition and food uses of teff (Eragrostis tef). Food Chem 239: 402-415. [Crossref]

33. Gebremariam MM, Zarnkow M, Becker T (2014) Teff (Eragrostis tef) as a raw material for malting, brewing and manufacturing of gluten-free foods and beverages: a review. J Food Sci Technol 51: 2881-2895. [Crossref]

34. Shumoy H, Raes K (2016) Antioxidant potentials and phenolic composition of teff varieties: An indigenous Ethiopian cereal. Cereal Chem 93: 465-470.

35. Barreca S, Orecchio S, Pace A (2013) Photophysical sample treatment for extract clean up in PCB analysis from sediments. Talanta 103: 349-354. [Crossref]

36. Barreca S, Mazzaola A, Orecchio S, Tuzzolino N (2014) Polychlorinated biphenyls in sediments from sicilian coastal area (Scoglitti) using automated soxhlet, GC-MS, and principal component analysis. Polyyclic Aromatic Compounds 34: 237-262.

37. Ahmad Mir N, Singh Riar C, Singh S (2018) Nutritional constituents of pseudo cereals and their potential use in food systems: A review. Trends Food Sci Technol 75: 170–180.

38. Jancurovà M, Minarovicovà L, Dandar A (2009) Quinoa – A review. Czech J Food Sci 27: 71–79.

39. Valencia-Chamarro SA (2003) Quinoa. In: Caballero B (Vol. Ed.), Encyclopedia of food science and nutrition. Encyclopedia of food science and nutrition, Academic press, Amsterdam, pp: 4895–4902.

40. Jan KN, Panesar PS, Rana JC, Singh S (2017) Structural, thermal and rheological properties of starches isolated from Indian quinoa varieties. J Sci Food Agric 39: 71-73. [Crossref]

41. Orecchio S, Amorello D, Raso M, Barreca S, Lino C, et al. (2014) Determination of trace elements in gluten-free food for celiac people by ICP-MS. Microchem J 116: 163–172.

42. Amorello D, Orecchio S, Pace A, Barreca S (2015) Discrimination of almonds (Prunus dulcis) geographical origin by minerals and fatty acids profiling. Short communications. Nat Prod Res 30: 2107-2110. [Crossref]

43. Ali Zourr, R Tuzen M, Yar Khuhawar M (2018) A simple and green deep eutectic solvent based assisted liquid phase microextraction for separation, preconcentration and determination of lead in water and food samples by graphite furnace atomic absorption spectrometry. J Mol Liq 259: 229-222.

44. Amorello D, Barreca S, Galli E, Orecchio S (2017) Platinum and Rhodium in wine samples by using volatomanometric techniques. Microchem J 130: 229-235.

45. Soetan KO, Olaya CO, Oyewole OE (2010) The importance of mineral elements for humans, domestic animals and plants: a review. Afr J Food Sci 4: 200–222.

46. Steadman KJ, Burgoon MS, Lewis BA, Edwardson SE, Obendorf RL (2001) Buckwheat seed milling fractions: Description, macronutrient composition and dietary fibre. J Cereal Sci 33: 271–278.

47. Baye K, Mouquet-Rivier C, Icard-Vernière C, Piciq C, Guyot JP (2014) Changes in mineral absorption inhibitors consequent to fermentation of Ethiopian injera: Implications for predicted iron bioavailability and bioaccessibility. Int J Food Sci Technol 49: 174–180.

48. Orecchio S, Amorello D, Raso M, Barreca S, Lino C, et al. (2015) Determination of macro elements in gluten-free food for celiac people by ICP-OMS. Life Saf Secur 3: 36–48.

49. Commission Regulation (EC) No 1881/2006 of 19 December 2006 (2006) Setting maximum levels for certain contaminants in foodstuffs. Off J Eur Union L364: 9005–0024, 2006.

50. González-Weller D, Rubio C, Gutiérrez AJ, González GL, Caballero Mesa JM, et al. (2013) Dietary intake of barium, bismuth, chromium, lithium, and strontium in a Spanish population (Canary Islands, Spain). Food Chem Toxicol 62: 856-868. [Crossref]

51. Rubio Armendáriz C, González-Weller D, Gutiérrez Fernandez AJ, Hardisson De La Torre A (2010) Levels of lithium in the six most taken groups of food among the Canarian population. Abstracts/Toxicol Lett 1965: S37-S351.

52. Rodrigo LG, Morales DA, Rodrigo RE, Romero CD (2011) Minerals and trace elements in a collection of wheat landraces from the Canary Islands. Food Comp Anal 24: 1081–1090.

53. Pedron T, Segura FR, da Silva FF, de Souza AL, Maltez HF, et al. (2016) Essential and non-essential elements in Brazilian infant food and other rice-based products frequently consumed by children and celiac population. J Food Comp Anal 49: 78-86.

54. Škrbić B, Živancé J, Mrmoš N (2013) Concentrations of arsenic, cadmium and lead in selected foodstuffs from Serbian market basket: estimated intake by the population from the Serbia. Food Chem Toxicol 58: 440-448. [Crossref]

55. FAO/WHO (2007) Food Balance Sheet. faostat.fao.org/site/386/default.aspx#ancor.

56. Uysdus Z, Szilárd-Richter J, Polak-Juszczak L, Komar K, Adamczyk M, et al. (2009) Fish products available in Polish market–assessment of the nutritive value and human exposure to dioxins and other contaminants. Chemosphere 74: 1420–1428. [Crossref]

57. EFSA (European Food Safety Authority), EFSA panel on contaminants in the food chain (CONTAM) (1999) Scientific opinion on arsenic in food. EFSA J 7: 1351.

58. EFSA (European Food Safety Authority), EFSA panel on contaminants in the food chain (CONTAM) (2010) Scientific opinion on lead in food. EFSA J 8: 1570.

59. Munera-Picazo S, Burlo F, Carbonell-Barrachina AA (2014) Arsenic speciation in rice-based food for adults with celiac disease. Food Addit Contam Part A Chem Control Expo Risk Assess 31: 1358-1366.

60. Forsido SF, Rupasinghe HP, Astaktie T (2013) Antioxidant capacity, total phenolics and nutritional content in selected Ethiopian staple food ingredients. Int J Food Sci Technol 58: 915–920.

61. Rayman MP, Infante HG, Sargent M (2008) Food-chain selenium and human health: Spotlight on speciation. Br J Nutr 100: 238–253.

62. Punshon T, Jackson BP (2018) Essential micronutrient and toxic trace element concentrations in gluten containing and gluten-free foods. Food Chem 252: 258-264. [Crossref]

63. Carbonell-Barrachina AA, Wu X, Ramirez-Gandolfio A, Norton GI, Burlo F, et al. (2012) Inorganic arsenic contents in rice-based infant foods from Spain, UK, China and USA. Environ Pollut 163: 77–83. [Crossref]
55. Greger JL (1985) Aluminium content of the American diet. Food Technol 39: 73-74.
56. López FE, Cabrera C, Lorenzo ML, López MC (2002) Aluminium levels in convenience and fast foods: in vitro study of the absorbable fraction. Sci Total Environ 300: 69-79. [Crossref]
57. Yokel RA, Wolter AA, Lodder RA, Selegue JP, Florence RL (2005) Al-containing acidic and basic sodium aluminum phosphate preparation and use in studies of oral aluminium bioavailability from foods utilizing 26Al as an aluminum tracer. Nucl Instr Meth Physics Res Sec B 229: 471–478.
58. Loska K, Wiechuya D (2003) Application of principle component analysis for the estimation of source of heavy metal contamination in surface sediments from the Rybnik reservoir. Chemosphere 51: 723–733.
59. Bonafaccia G, Marocchini M, Kreft I (2003) Composition and technological properties of the flour and bran from common and tartary buckwheat. Food Chem 80: 9e15.
60. Bruni R, Medici A, Guerrini A, Scalia S, Poli F, et al. (2001) Wild Amaranthus caudatus seed oil, a nutraceutical resource from Ecuadorian flora. J Agric Food Chem 49: 5455-5460.
61. Ruales J, Nair BM (1993) Content of fat, vitamins and minerals in quinoa (Chenopodium quinoa, Willd) seeds. Food Chem 48: 131-136.
62. Simopoulos AP (2001) Evolutionary aspects of diet, the omega-6/omega-3 ratio and genetic variation: nutritional implications for chronic diseases. Biomed Pharmacother 60: 502-507. [Crossref]
63. Hager AS, Wolter A, Jacob F, Zannini E, Arendt EK (2012) Nutritional properties and ultra-structure of commercial gluten free flours from different botanical sources compared to wheat flours. J Cereal Sci 56: 239–247. [Crossref]
64. European Food Safety Authority. http://www.efsa.europa.eu/it. Accessed on October 2, 2018.
65. Gonçalves Albuquerquea T, Santos J, Beatriz MASM, Oliveira PP, Costa HS (2018) An update on processed foods: Relationship between salt, saturated and trans fatty acids contents. Food Chem 267: 75–82.
66. Mancebo MC, San Miguel MA, Martínez MM, Gomez M (2015) Optimisation of rheological properties of gluten-free doughs with HPMC, psyllium and different levels of water. J Cereal Sci 61: 8-15.

Copyright: ©2019 Maggio A. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.