Genome sequence analysis of predicted polyprenol reductase gene from mangrove plant *Kandelia obovata*

M Basyuni*, H Sagami², S Baba³, and H Oku⁴

¹Department of Forestry, Faculty of Forestry, University of Sumatera Utara, Jl. Tri Dharma Ujung No. 1, Medan, North Sumatera 20155, Indonesia
²Institute of Multidisciplinary Research for Advanced Material, Tohoku University, Sendai, 980-8577, Japan
³International Society for Mangrove Ecosystems, Faculty of Agriculture, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan
⁴Molecular Biotechnology Group, Tropical Biosphere Research Center, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan

*Email: m.basyuni@usu.ac.id

Abstract. It has been previously reported that dolichols but not polyprenols were predominated in mangrove leaves and roots. Therefore, the occurrence of larger amounts of dolichol in leaves of mangrove plants implies that polyprenol reductase is responsible for the conversion of polyprenol to dolichol may be active in mangrove leaves. Here we report the early assessment of probably polyprenol reductase gene from genome sequence of mangrove plant *Kandelia obovata*. The functional assignment of the gene was based on a homology search of the sequences against the non-redundant (nr) peptide database of NCBI using Blastx. The degree of sequence identity between DNA sequence and known polyprenol reductase was confirmed using the Blastx probability E-value, total score, and identity. The genome sequence data resulted in three partial sequences, termed c23157 (700 bp), c23901 (960 bp), and c24171 (531 bp). The c23157 gene showed the highest similarity (61%) to predicted polyprenol reductase 2-like from *Gossypium raimondii* with E-value $2e^{-100}$. The second gene was c23901 to exhibit high similarity (78%) to the steroid 5-alpha-reductase Det2 from *J. curcas* with E-value $2e^{-140}$. Furthermore, the c24171 gene depicted highest similarity (79%) to the polyprenol reductase 2 isoform X1 from *Jatropha curcas* with E-value $7e^{-21}$. The present study suggested that the c23157, c23901, and c24171 genes may encode predicted polyprenol reductase. The c23157, c23901, c24171 are therefore the new type of predicted polyprenol reductase from *K. obovata*.

Keywords: Biosynthetic pathway, dolichol, enzyme, leaf, polyisoprenoid.

1. Introduction
Mangrove forests have long been a rich source of phytochemical compounds producing polyisoprenoid alcohols [1,2] and other secondary metabolites [3,4]. Polyisoprenoid alcohols are classified to polyprenol and dolichol according to stereochemistry. A number of studies have been reported that the major polyisoprenoid in plant leaves were polyprenols rather than dolichols [5,6]. By contrast, in the animal world (especially in livers), dolichols were predominant, and few polyprenols occurred [7,8].
However, very recently, we are the first group to report that primary polyisoprenoid alcohols of Okinawan and Indonesian mangrove plants were not polyprenols but dolichols [1,2]. Therefore, the occurrence of larger amounts of dolichols even in the leaves of mangrove plants imply that polyprenol reductase is responsible for the polyprenol conversion to dolichol, may be active in mangrove plant leaves. In spite of the ever-present distribution of polyisoprenoid in the plant kingdom, their function plants world remain unclear, especially in mangrove plants. Two polyprenol reductase genes from Arabidopsis thaliana have been characterized [9]. However, information on the polyprenol reductase from mangrove species is limited. It, therefore, became necessary to understand the DNA sequence of polyprenol reductase in mangrove plants to obtain more insight into the physiological significance and biosynthetic pathway of these compounds. Here we report the early assessment of probably polyprenol reductase gene from the genome sequence of mangrove plant Kandelia obovata.

2. Materials and Methods
2.1. Sample collection
Fresh leaves of K. obovata were collected at Okukubi River, Okinawa, Japan. Total RNA was extracted from K. obovata leaves using cetyl trimethyl ammonium bromide (CTAB) procedure with minor modification to increase yields as previously described [10]. The total RNA was used for genome sequence.

2.2. Genome sequence analysis of probably polyprenol reductase
Genome sequence of K. obovata used shotgun sequencing for sequencing as previously reported [11]. The principle of genome sequencing consists of three steps, short fragment DNA from K. obovata were sequenced to a given length of coverage, then continue with genome assembly, and the last step was annotation [11]. Genome sequence of K. obovata using a BLAST search led to 3 nucleotide sequences that showed the highest similarity to polyprenol reductase.

2.3. Sequence and data analysis
Three nucleotide fragments named as c23157, c23901, and c24717 then were used for prediction of polyprenol reductase. The functional assignment of three DNA sequences was based on a homology search of the sequences against the non-redundant (nr) peptide database of NCBI (https://blast.ncbi.nlm.nih.gov/Blast.cgi) using BLASTX [12]. The degree of sequence identity producing significant alignments between DNA sequences and a known protein database was confirmed by the BLASTX probability score more than 50 bit or an E-value < 10^{-10} was considered to have significant similarity [13].

3. Results and Discussion
The three partial sequences of predicted polyprenol reductase from K. obovata termed c23157 (700 bp, coding for 228 amino acids), c23901 (960 bp, coding for 306 amino acids), and c24171 (531 bp, coding for 166 amino acids). As shown in Figures 1-3. The amino acid sequence of c23157 showed significant homology to known, predicted polyprenol reductase (Table 1). Among them, the highest homology of E-value (2e^{-100}), 61%, and 301 bits was depicted with predicted polyprenol reductase 2-like from Gossypium raimondii. Similarly, c23901 also showed significant to known, predicted polyprenol reductase as displayed in Table 2. The highest similarity of E-value (2e^{-140}), 82% identity and 403 bits was shown with Steroid 5-alpha-reductase DET2 from Jatropha curcas.

Furthermore, C24171 has the shortest DNA sequence; producing significant alignment to known, predicted polyprenol reductase from various plants (Table 3). Among them, the highest similarity of E-value (7e^{-21}), 79% identity, and 93.6 bits score was indicated to polyprenol reductase 2 isoform X1 from J. curcas. These results suggested that c23517, c23901, and c24171 encoded probably polyprenol reductase. The c23157, c23901, and c24171 are therefore the new type of predicted polyprenol reductases from K. obovata.
It has been reported that a common rule of two sequences are homologous if they are more than 30% matching over their whole lengths, the 30% condition misses many easily identified homologs [13]. In this context, three partial sequences showed more than 61% similarities to known polyprenol reductase in the plant kingdom. These results support previous results that primary polyisoprenoid alcohol in mangroves are dolichol, but not polyprenols where dolichols were found in examined mangrove samples [1-2]. Besides, the composition of polyisoprenoid may be an expression of the distribution of tissues in these mangrove plants [2].

Figure 1. DNA sequence of *K. obovata* predicted polyprenol (c23157) and its translation to amino acid sequence

Table 1. Distribution of the top 5 Blastx hits on c23157 sequence

Accession	Description	Identity (%)	Total score	E-value
XP_012457241.1	Predicted polyprenol reductase 2-like	61	301	2e-100
GP_016724522.1	*Gossypium raimondii*			
XP_016724521.1	Predicted polyprenol reductase 2-like	62	301	3e-100
GP_016724516.1	*G. hirsutum*	62	301	5e-100
XP_002531516.1	Predicted polyprenol reductase 2-like	62	301	6e-100
GP_016724516.1	*Ricinus communis*	62	298	2e-99
K. obovata green and yellow leaves have been shown to contain polyprenols C\textsubscript{75-100}, C\textsubscript{45-95}, respectively, while dolichol was C\textsubscript{70-100}, C\textsubscript{75-100}, respectively. In contrast, in the roots, no polyprenols detected, with 100% dolichols were C\textsubscript{80-105} \cite{1}. This study indicated dolichol is more dominant than polyprenols in green leaves in the ratio of 76.3:23.7 and in the yellow leaves in proportions 42.9:57.1 \cite{1}. In this context, the predominance of dolichol over polyprenol in K. candel and the majority of mangrove species suggested that existence of polyprenol reductases in mangrove leaves, which catalyze the conversion of polyprenol to dolichol corresponding to the SRD5A3 protein in animals \cite{14}, differ from those of other mangrove plants in reduction activity.

Figure 2. c23901 predicted polyprenol reductase sequence and its amino acid sequence from K. obovata
Table 2. Distribution of the top 5 Blastx hits on c23901 sequence

Accession	Description	Identity (%)	Total score	E-value
XP_012087922.1	Steroid 5-alpha-reductase DET2 Jatropha curcas	78	403	2e-140
OAY43658.1	Hypothetical protein MANES_08G087200 Manihot esculenta	78	402	3e-140
XP_008370052.1	Predicted steroid 5-alpha-reductase DET2 Malus domestica	76	385	1e-133
XP_002323554.1	3-oxo-5-alpha-steroid 4-dehydrogenases family protein Populus trichocarpa	79	385	6e-100
XP_008355710.1	Predicted steroid 5-alpha-reductase DET2-like M. domestica	62	298	2e-99

Figure 3. Nucleotide and amino acid sequence of predicted polyprenol reductase (c24171) from K. obovata
Table 3. Distribution of the top 5 Blastx hits on c24171 sequence

Accession	Description	Identity (%)	Total score	E-value
XP_012065467.1	Polyprenol reductase 2 isoform X1 J. curcas	79	93.6	7e-21
XP_002531516.1	Predicted polyprenol reductase 2 isoform X1 R. communis	81	92.0	3e-20
XP_009400472.1	Predicted polyprenol reductase 1 isoform X2 Musa acuminata subsp. malaccensis	75	89.4	3e-19
XP_009400470.1	Predicted polyprenol reductase 1 isoform X1 M. acuminata subsp. malaccensis	75	89.0	2e-19
KVH95971.1	3-oxo-5-alpha-steroid 4-dehydrogenase C-terminal Cynara cardunculus var. scolyms	75	87.8	7e-19

4. Conclusion
The current study suggested that the c23157, c23901, and c24171 genes may encode predicted polyprenol reductase from K. obovata. A detailed molecular cloning of the c23157, c23901, and c24171 genes are required further investigation to provide product confirmation of these genes and biosynthetic pathway of polyisoprenoid in mangrove plants.

Acknowledgment
A part of this study was supported by an International Research Collaboration and Scientific Publication Grant 2017 (No. 003/SP2H/LT/DRPM/IV/2017 to MB) from the Directorate for Research and Community Service, Ministry of Research, Technology and Higher Education, Republic of Indonesia.

References
[1] Basyuni M, Sagami H, Baba S, Iwasaki H, Oku H (2016) Diversity of polyisoprenoids in ten Okinawan mangroves Dendrobiology 75 167–175.
[2] Basyuni M, Sagami H, Baba S, Oku H (2017) Distribution, occurrence, and cluster analysis of new polyprenyl acetones and other polyisoprenoids from North Sumatran mangroves Dendrobiology 78 18–31.
[3] Bandaranayake WM (2002) Bioactivities, bioactive compounds and chemical constituents of mangrove plants Wetl. Ecol. Manag. 10 421–452.
[4] Basyuni M, Oku H, Baba S, Takara K, Iwasaki H (2007) Isoprenoids of Okinawan mangroves as lipid input into estuarine ecosystem J. Oceanography 63: 601–608.
[5] Swiezewska E, Sasaki W, Mankowski T, Jankowski W, Vogtman T, Krajewska I, Hertel J, Skoczylas E, Chojnacki T (1994) The search for plant polyprenols Acta Biochim. Pol. 41:221–260.
[6] Swiezewska E, Danikiewicz W (2005) Polyisoprenoids: Structure, biosynthesis, and function. Prog. Lipid Res. 44: 235–258.
[7] Chojnacki T, Dallner G (1988) The biological role of dolichol. Biochem. J. 251: 1–7.
[8] Sagami H, Kurisaki O, Oguro K, Chojnacki T (1992) Separation of dolichol from dehydrodolichol by a simple two-plate thin layer chromatography. J. Lipid Res. 33: 1857–1862.
[9] Jozwiak A, Gutkowska M, Gawarecka K, Surnacz L, Buckzkowska A, Lichocka M, Nowakowska J, Swiezewska E (2015) Polyprenol reductase2 deficiency is lethal in Arabidopsis due to male sterility Plant Cell 27: 3336–3353.
[10] Basyuni M, Baba S, Oku H (2017) Cloning and phylogenetic analysis of actin genes from mangrove family Rhizophoraceae *IOP Conf. Ser. Mater. Sci. Eng.* **180**: 012247.

[11] Ekblom R, Wolf JBW (2014) A field guide to whole-genome sequencing, assembly and annotation *Evol. Appl.* **7**: 1026–1042.

[12] Altschul SF, Madden TL, Zhang JH, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search program. *Nucleic Acid Res.* **25**: 3389–3402.

[13] Pearson WR (2013) An introduction to sequence similarity (“homology”) searching *Curr. Protoc. Bioinform.* **42**: 3.1.1–3.1.8.

[14] Contagrel V, Lefeber DJ, Ng BG, Guan Z, Silhavy JL, Bielas SL, Lehle L, Hombauer H, Adamowicz M, Swiezewska E, De Brouwer AP, Blümel P, Sykut-Cegielska J, Houliston S, Swistun D, Ali BR, Dobyns WB, Babovic-Vuksanovic D, van Bokhoven H, Wevers RA, Raetz CR, Freeze HH, Morava E, Al-Gazali L, Gleeson JG (2010) SRD5A3 is required for converting polyisoprenol to dolichol and is mutated in a congenital glycosylation disorder. *Cell* **142**: 203–217.