Both hyperglycemia and tumor necrosis factor α (TNFα) were found to induce insulin resistance at the level of the insulin receptor (IR). How this effect is mediated is, however, not understood. We investigated whether oxidative stress and production of hydrogen peroxide could be a common mediator of the inhibitory effect. We report here that micromolar concentrations of H2O2 dramatically inhibit insulin-induced IR tyrosine phosphorylation (pretreatment with 500 μM H2O2 for 5 min inhibits insulin-induced IR tyrosine phosphorylation by 97%), insulin receptor substrate 1 phosphorylation, as well as insulin downstream signaling such as activation of phosphatidylinositol 3-kinase (inhibited to 57%), glucose transport (inhibited to 36%), and mitogen-activated protein kinase activation (inhibited to 7.2%). Both sodium orthovanadate, a selective inhibitor of tyrosine-specific phosphatases, as well as the protein kinase C inhibitor Gö6976 reduced the inhibitory effect of hydrogen peroxide on IR tyrosine phosphorylation. To investigate whether H2O2 is involved in hyperglycemia- and/or TNFα-induced insulin resistance, we preincubated the cells with the H2O2 scavenger catalase prior to incubation with 25 mM glucose, 25 mM 2-deoxyglucose, 5.7 nM TNFα, or 500 μM H2O2, respectively, and subsequent insulin stimulation. Whereas catalase treatment completely abolished the inhibitory effect of H2O2 and TNFα on insulin receptor autophosphorylation, it did not reverse the inhibitory effect of hyperglycemia. In conclusion, these results demonstrate that hydrogen peroxide at low concentrations is a potent inhibitor of insulin signaling and may be involved in the development of insulin resistance in response to TNFα.

Oxidatively modified proteins accumulate during aging, oxidative stress, and in some pathological conditions (1, 2). In particular it has been shown that oxidative stress is increased in vivo in the diabetic state (3, 4). Noninsulin-dependent diabetes mellitus (NIDDM)1 is associated with accelerated production of oxygen-free radicals as well as a decreased scavenging of these proteins (2). A possible role of the accumulation of reactive oxidant species in the development of the late complications in diabetes has been discussed (5–7). Recently the question of a relationship between oxidative stress and insulin action (8) was raised, and it was suggested that changes in the physicochemical state of the plasma membrane and increases in intracellular calcium concentrations might be involved.

Clinically overt NIDDM is characterized by defects in insulin secretion and insulin resistance of all major target tissues (9). Both genes and the environment contribute to the development of the disease (10). Increasing knowledge of the signaling molecules involved in insulin action has led to the proposal of several possible candidates that could contribute to insulin resistance (11). Insulin mediates its action through phosphorylation of a transmembrane-spanning tyrosine kinase receptor, the insulin receptor. Binding of insulin to the insulin receptor leads to activation of the intrinsic tyrosine kinase activity and subsequently to tyrosine phosphorylation of a number of substrates that mediate the metabolic and mitogenic effects of insulin (12).

Conflicting data on the effect of hydrogen peroxide on insulin signaling have been reported. Whereas several reports claimed that H2O2 had insulinominetic effects (13–15), a recent report found reduced insulin responsiveness in response to oxidative stress (16). The latter effect, an inhibition of glucose transport, was explained through changes of the level of GLUT1 and GLUT4 (17) transcription.

Various factors including hyperinsulinemia, hypoinsulinemia, phorbol esters, adenosines, and catecholamines have been shown to regulate insulin receptor function (11). We and others have found previously that hyperglycemia induces insulin resistance at the level of the insulin receptor (IR) in various cell systems as well as in animals (18–22). Similar inhibitory effects on the IR kinase are observed when cells are treated with tumor necrosis factor α (TNFα) (23, 24). It has been suggested that analogous mechanisms may be responsible for the reduced insulin receptor kinase activity in NIDDM patients. However, how glucose or TNFα can mediate this effect is not understood. Because hyperglycemia leads to the production of hydrogen peroxide within the cell (8), we investigated whether H2O2 affects insulin receptor kinase activity and the activation of insulin-induced signal transduction pathways. Furthermore we addressed the possibility that the production of H2O2 may mediate TNFα-induced insulin resistance.

EXPERIMENTAL PROCEDURES

Materials

Recombinant human insulin was obtained from Novo-Nordisk, Bagsvaerd, Denmark. Anti-p85 and anti-insulin receptor substrate 1 (IRS-1) antisera were produced by immunization of rabbits with synthetic peptides spanning amino acids 710–723 from mouse p85 and amino acids 1220–1233 from rat IRS-1, respectively. Polyclonal rabbit anti-
H$_2$O$_2$ Inhibits Insulin Signaling

25079

serum against the insulin receptor was produced by immunization with synthetic peptides covering the last 15 C-terminal amino acids of the β-subunit. Anti-phosphotyrosine antibodies (PY20) were obtained from Transduction Laboratories. Anti-active mitogen-activated protein kinase antibodies were purchased from Promega. Protein assay reagent and the expression plasmid GST-ELK1 has been described before (27) and was grown and expressed according to the GST Gene Fusion System manual, Amersham Pharmacia Biotech.

The cDNA for the type A insulin receptor (25) and IRS-1 (26) were cloned into a cytomegalovirus promoter enhancer-driven expression vector. The expression plasmid GST-ELK1 has been described before (27) and was grown and expressed according to the GST Gene Fusion System manual, Amersham Pharmacia Biotech.

Methods

Cell Incubations—Human embryonic kidney fibroblasts (HEK293, ATCC CRL 1573) and NIH3T3 fibroblasts overexpressing the human insulin receptor (NIH-B cells, kindly provided by R. Schumacher and A. Ullrich) were cultured in Dulbecco’s modified Eagle’s medium supplemented with 10% (v/v) fetal bovine serum (Life Technologies), 10 mM sodium pyruvate (Life Technologies), 30 mM Hepes, pH 7.4, 30 mM MgCl$_2$, 0.2 mM adenosine, 40 mM β-mercaptoethanol. Insoluble material was removed by centrifugation. The samples were washed and incubated for 3 h in preheated serum starvation medium (DMEM containing 5 mM glucose and 0.2% bovine serum albumin). The cells were then washed three times in preheated Krebs-Ringer-Hepes (KRH) buffer, pH 7.5 (136 mM NaCl, 4.7 mM KCl, 1.25 mM MgSO$_4$, 1.25 mM CaCl$_2$, and 20 mM HEPES, pH 7.5) containing 0.2% bovine serum albumin. 1 ml KRH buffer/0.2% bovine serum albumin was added to the cells, and they were left untreated or stimulated with insulin, H$_2$O$_2$, a combination of the two, cytochalasin B, or cytochalasin B plus insulin at 37 °C. For the last 5 min the 2DG uptake was determined by adding 50 μCi of [2,6-3H]2-deoxyglucose. The results are presented as the mean ± S.D. Group comparisons were made by unpaired Student’s t test. p values less than 0.05 were considered significant.

RESULTS

H$_2$O$_2$ Inhibits Insulin-induced Tyrosine Phosphorylation of the IR β-Subunit—To investigate whether hydrogen peroxide has a direct effect on IR autophosphorylation, we pretreated NIH-B cells for 5 min with increasing concentrations of H$_2$O$_2$ (0.1–5 mM) prior to insulin stimulation (10 μM for 5 min). As shown by Western blot analysis using total cell lysates probed with anti-phosphotyrosine-specific antibody, an inhibitory effect of H$_2$O$_2$ on tyrosine phosphorylation of the insulin receptor β-subunit is seen with 100 μM H$_2$O$_2$ (Fig. 1A). The effect becomes more pronounced with higher concentrations of H$_2$O$_2$. Fig. 1B shows a time course of the inhibitory effect, when pretreated with 500 μM H$_2$O$_2$ prior to insulin stimulation the inhibition can be observed after 2 min of preincubation with H$_2$O$_2$. and is further enhanced after 10 min. Interestingly, after 20 min the tyrosine phosphorylation is only slightly affected, but longer incubation with H$_2$O$_2$ is once again inhibitory. This suggests that the inhibitory effect of H$_2$O$_2$ on insulin receptor activity is oscillating. As a control the lower panels in Fig. 1, A and B, show a Western blot of the same samples probed with an antibody against the IR β-subunit.

Insulin-induced Tyrosine Phosphorylation of IRS-1 Is Inhibited by H$_2$O$_2$—Next we investigated whether proximal events in insulin signaling were also affected by pretreatment with H$_2$O$_2$. Because the endogenous IRS-1 was difficult to detect in NIH-B cells, we used 293 cells transiently transfected with the insulin receptor and IRS-1. As a control, cells were also transfected with IR alone (IR + Vec) or vehicle only (Vec). As shown on the anti-phosphotyrosine blot in the upper panel of Fig. 2, 500 μM of H$_2$O$_2$ inhibited tyrosine phosphorylation of the IR β-subunit in these cells in a time-dependent manner. In parallel with the inhibitory effect on the IR β-subunit (and the IR precursor) we saw a reduced tyrosine phosphorylation of IRS-1.
after 30 min of H$_2$O$_2$ pretreatment. Compared with the result in the NIH-B cells (Fig. 1B), the inhibitory effect was not as strong and occurred after longer times of pretreatment. Whereas we reproducibly saw oscillations of the effect in NIH-B cells, we could not detect such a phenomenon in the 293 cells under the above conditions. The two lower panels in Fig. 2 show the expression of IRS-1 and the IR in these samples as a control.

Insulin-induced PI-3 Kinase Activity, Glucose Transport, and MAPK Activity Are Inhibited by Hydrogen Peroxide—To further investigate whether reduced IR autophosphorylation and insulin-induced tyrosine phosphorylation of IRS-1 affects both mitogenic and metabolic signaling pathways, we studied insulin-induced MAPK activation and glucose transport, respectively. A key event in the stimulation of insulin-induced glucose transport is the activation of PI-3 kinase. We therefore initially determined the insulin-induced PI-3 kinase activity in NIH-B cells in the presence and absence of H$_2$O$_2$ pretreatment (500 µM, 5 min). A representative diagram is shown in Fig. 3. Insulin-induced PI-3 kinase activity in combined immunoprecipitates (anti-PY + anti-IRS-1 + anti-p85) was reduced to about 57% in the presence of H$_2$O$_2$. H$_2$O$_2$ alone showed a slightly insulinomimetic effect. The diagram shows mean and S.D. of two representative experiments done in triplicate. Significance was determined using the Student’s t test.

Because NIH-B cells are not suited to study insulin-induced glucose transport (they lack the insulin-sensitive glucose transporter GLUT-4), we turned to 3T3-L1 cells to measure glucose uptake. The cells were differentiated into adipocytes as described under “Methods.” Glucose transport was measured as [3H]2DG uptake, corrected for the protein content in the sample, and expressed as percent of maximal insulin-stimulated transport. Insulin induced about a 5-fold increase in 2DG uptake, and both the basal and insulin-induced glucose transport were completely blocked in the presence of cytochalasin B (data not shown). When the cells were pretreated with 500 µM H$_2$O$_2$ for 20 min prior to insulin stimulation (10^{-7} M), 2DG uptake was clearly inhibited. In these experiments H$_2$O$_2$ had a slightly positive effect on basal 2DG uptake. The diagram shows mean and S.D. of a representative example of 5 experiments per-
formed in triplicate. Significance was determined using the Student’s t test (Fig. 4).

To investigate whether H₂O₂ also regulates the mitogenic signaling of insulin, we studied MAPK activation in NIH-B cells. As shown in the lower panel of Fig. 5A, using an antibody recognizing the activated extracellular signal-regulated kinase 1/2 proteins (anti-MAPK active), insulin induced a rapid induction of MAPK activity, which peaked around 7.5 min and thereafter declined but remained elevated throughout the experiment (120 min). H₂O₂ treatment alone (500 μM) also resulted in MAPK activation; however, activated extracellular signal-regulated kinase 1/2 was observed after 20 min and peaked around 60 min. When the cells were pretreated with H₂O₂ (500 μM 10 min) prior to insulin stimulation, the initial peak observed at 7.5 min of insulin stimulation was completely inhibited. However, MAPK activity at later time points was slightly increased as compared with the maximum in the samples treated with insulin alone and seemed to follow the curve observed with H₂O₂ treatment alone. To monitor insulin receptor phosphorylation, the samples were probed with an anti-phosphotyrosine-specific antibody as shown in the upper panel of Fig. 5A. Both the inhibitory effect of H₂O₂ on insulin-induced tyrosine phosphorylation of the IR as well as the oscillations of this effect can be seen, leading to delayed activation of the receptor. In the case of the insulin-treated samples there is a good correlation between tyrosine phosphorylation and MAPK activity. This is also the case in the samples that are pretreated with hydrogen peroxide prior to insulin stimulation. In contrast, the samples treated with H₂O₂ alone show MAPK activation in the absence of IR tyrosine phosphorylation, indicating that a different mechanism is involved. The middle panel shows the expression level of the insulin receptor as a control. A quantitation of the MAPK data using ImageQuant software (Molecular Dynamics) is shown in Fig. 5B. The data are representative of 4 experiments.

Catalase Prevents H₂O₂- and TNFα-induced but Not Hyperglycemia-induced Inhibition of Insulin-induced IR Tyrosine Phosphorylation—Because TNFα and hyperglycemia mediated similar inhibitory effects on IR autophosphorylation and because both agents create cellular stress, we investigated the possibility that H₂O₂ could be a common mediator for their inhibitory effect. To eliminate endogenously produced H₂O₂ in the cell we incubated 293 cells overexpressing the IR and IRS-1 in the absence or presence of 11,700 units of the H₂O₂ scavenger catalase overnight. As shown in the upper panel of Fig. 6A (anti-phosphotyrosine blot) pretreatment with 25 mM d-glucose or 25 mM 2-deoxyglucose results in a reduction of insulin-induced tyrosine phosphorylation of the IR-β-subunit, similar to the pretreatment with H₂O₂, which was used as a control (lanes 3–5). As expected, pretreatment with catalase prevented the inhibitory action of H₂O₂ (lane 10). However, it did not change the hyperglycemia-induced inhibition (lanes 8 and 9, the inhibitory effect of 2-deoxyglucose was even enhanced, as determined in several independent experiments). The upper panel of Fig. 6B presents an anti-phosphotyrosine blot of samples pretreated with 5.7 mM TNFα (10 min) or H₂O₂ (10 min) prior to insulin stimulation. Comparable inhibition of insulin-induced IR tyrosine phosphorylation is observed for the two preincubation conditions (lanes 3 and 4). Interestingly, treatment of the cells with catalase completely prevents the inhibitory effect of TNFα (lanes 7), suggesting that production of hydrogen peroxide is involved in the mechanism. Control blots showing the IR expression level are represented in the lower panels of Fig. 6, A and B, respectively.

Vanadate and PKC Inhibitors Can Prevent the Inhibitory Effect of H₂O₂—Tyrosine-specific phosphatases as well as the action of serine/threonine kinases, in particular protein kinase C, have been discussed as potential mediators of insulin receptor kinase inhibition (32). To further investigate the mechanism of the H₂O₂-induced inhibition of insulin signaling, we therefore used specific inhibitors of these proteins. Pretreatment of NIH-B cells with the specific tyrosine phosphatase inhibitor sodium orthovanadate (250 μM, 30 min) abolished the inhibitory effect of hydrogen peroxide on insulin receptor tyrosine phosphorylation, as shown on an anti-phosphotyrosine blot in the upper panel of Fig. 7A. A control the samples were also probed with an antibody against the IR β-subunit (Fig. 7A, lower panel). The specific protein kinase C inhibitor Go6976, which mainly inhibits the Ca²⁺-dependent classical PKC isoforms, partially reversed the inhibitory effect of H₂O₂ in a concentration-dependent manner (Fig. 7B, upper panel). H₂O₂ + insulin, 58% of insulin, pretreatment with 10 μM Go6976.
The lower panel of Fig. 7B shows the level of insulin receptor expression as a control.

DISCUSSION

In this study, we demonstrate that micromolar concentrations of H$_2$O$_2$ have a strong inhibitory effect on insulin responsiveness in two different fibroblast cell lines and 3T3-L1 adipocytes. We present evidence for inhibition of the insulin receptor kinase as well as downstream signaling processes such as IRS-1 phosphorylation and PI-3 kinase activation. In addition, the metabolic (glucose transport) and mitogenic (MAPK) responses to insulin were reduced after pretreatment with low doses of H$_2$O$_2$. The finding of reduced insulin responsiveness is in agreement with recent reports by Rudich et al. (16), which described an inhibitory effect of oxidative stress on insulin-induced glucose uptake, lipogenesis, and glycogen synthase a activity in 3T3-L1 cells. These defects could not be attributed to early events of the insulin signaling cascade (33). The effects on glucose transport were explained by elevated GLUT1 and a decreased GLUT4 expression level as well as a defect in insulin-induced GLUT4 translocation (16, 17). This discrepancy with the present study could possibly be explained by the different mechanisms of stress induction in the two studies. Whereas we treated cells directly with H$_2$O$_2$ for short periods of time, Rudich et al. (16, 17) exposed them to prolonged low grade oxidant stress through exposure to glucose oxidase for 18 h.

Previous studies have shown insulinomimetic effects of H$_2$O$_2$ on insulin receptor and IRS-1 tyrosine phosphorylation and activation of PI-3 kinase, MAPK, and glucose uptake (13, 34–37). Similarly, other tyrosine kinases such as the epidermal growth factor receptor (38), Src family tyrosine kinases (39), Ha-Ras, and Raf-1 kinase (40) have been reported to be activated by H$_2$O$_2$-generated oxygen radicals, UV irradiation, and xanthine production. Although we clearly detected the insulinomimetic effects of H$_2$O$_2$ on MAPK activity, we could only detect minor effects on PI-3 kinase activity or glucose transport. Although insulin treatment resulted in the activation of PI-3 kinase, glucose transport, and MAPK, the addition of H$_2$O$_2$ resulted in impaired insulin-induced activation of these pathways (Figs. 3–5). This clearly shows that H$_2$O$_2$ in the concentrations and for the times used in this study is slightly insulinomimetic on its own; however, it is strongly inhibitory.
H$_2$O$_2$ Inhibits Insulin Signaling

Several regulatory mechanisms seem to be involved in the effect of H$_2$O$_2$ on insulin signaling. Pre-incubation of the cells with orthovanadate prevents the inhibitory effect of H$_2$O$_2$ on insulin signaling suggesting an involvement of tyrosine phosphatases. However, H$_2$O$_2$ has in general an inhibitory effect on insulin signaling suggesting an involvement of tyrosine phosphatases. However, H$_2$O$_2$ by the protein kinase C inhibitor Go6976 (B) for 1 h. Thereafter 500 μM H$_2$O$_2$ was added for the times indicated prior to stimulation with 10$^{-7}$ M insulin for 5 min (where indicated). Cell lysates were subject to SDS-PAGE, transferred to nitrocellulose, and incubated with anti-PY (upper panel) or anti-insulin receptor-specific (anti-IR, lower panel) antibodies. Immunoreactive proteins were visualized with horseradish peroxidase-coupled secondary antibodies and the ECL$^+$ detection method.

![Image](https://example.com/image.png)

Fig. 7. Vanadate and PKC inhibitors can prevent or reduce the inhibitory effect of H$_2$O$_2$ on IR tyrosine phosphorylation. HEK293 cells were transfected with a human insulin receptor expression plasmid and starved overnight in medium containing 0.5% FBS. The cells were left untreated or pre-treated with 250 μM sodium orthovanadate for 1 h (A) or 1 or 10 μM PKC inhibitor Go6976 (B) for 1 h. Thereafter 500 μM H$_2$O$_2$ was added for the times indicated prior to stimulation with 10$^{-7}$ M insulin for 5 min (where indicated). Cell lysates were subject to SDS-PAGE, transferred to nitrocellulose, and incubated with anti-PY (upper panel) or anti-insulin receptor-specific (anti-IR, lower panel) antibodies. Immunoreactive proteins were visualized with horseradish peroxidase-coupled secondary antibodies and the ECL$^+$ detection method.

On the other hand, TNFα has been proposed to play a role in obesity-linked insulin resistance (23, 54, 55). Because both hyperglycemia and TNFα create cellular stress, we evaluated the possibility that the modulation of IR kinase activity might occur through the generation of oxidative stress and H$_2$O$_2$ production. Both MnCl$_2$ (data not shown), which mimics a function of the intracellular scavenger, superoxide dismutase (56), and catalase, an enzyme that specifically catalyzes the dismutation of H$_2$O$_2$ to O$_2$ and H$_2$O, prevented the H$_2$O$_2$-induced attenuation of insulin signaling. Interestingly, catalase prevented the inhibitory effect of TNFα completely, whereas it had no effect on hyperglycemia-induced inhibition of insulin receptor tyrosine phosphorylation. This suggests that production of H$_2$O$_2$ in response to TNFα could be an important step in the molecular mechanism involved in causing insulin resistance. Different pathways for hyperglycemia- and TNFα-mediated insulin resistance at the level of the insulin receptor have been proposed before (53).

Elevated levels of hydrogen peroxide have been linked to noninsulin-dependent as well as insulin-dependent diabetes and seem to increase with the duration of the disease (2–4, 57). Oxidative stress is believed to play a major role in the development of diabetic complications (5–7). Because we have studied only short term effects of hyperglycemia, we cannot rule out that high blood glucose over sustained periods of time leads to the generation of H$_2$O$_2$ within the organism and thereby induces insulin resistance. However, other metabolic changes of the diabetic milieu such as hyperinsulinemia could also be responsible for the increase in hydrogen peroxide. H$_2$O$_2$ is produced in response to insulin (58–60), and we could therefore speculate that this effect of insulin could be part of a feedback mechanism involved in signal termination. This would suggest that hyperinsulinemia, through production of H$_2$O$_2$, could cause premature termination of insulin signaling.

The present study suggests that cellular events leading to increased H$_2$O$_2$ production might not only be connected to late complications of diabetes but possibly play a role in the induction of insulin resistance in early phases of the disease. Additional work is required to understand the detailed mechanism of this decreased insulin responsiveness and to study its physiological relevance in models of insulin resistance and patients with NIDDM.
H$_2$O$_2$ Inhibits Insulin Signaling

Acknowledgments—We thank Klaus Seedorff and Jonathan Whittaker for critical reading of the manuscript and K. Seedorff and R. Schumacher for providing materials.

REFERENCES

1. Berlett, B. S. & Stadtman, E. R. (1997) J. Biol. Chem. 272, 20313–20316
2. Cross, C. E., Halliwell, B., Borish, E. T., Pryor, W. A., Ames, B. N., Saul, R. L., McCord, J. M. & Harman, D. (1987) Ann. Intern. Med. 107, 526–545
3. Wolf, S. P., Jiang, Z. Y. & Hunt, J. V. (1991) Free Radical Biol. Med. 10, 339–352
4. Neurozzadeh, J., Tajaddinisarmadi, J., Mecartery, S., Betteridge, D. J. & Wolf, S. P. (1995) Diabetes 44, 1054–1058
5. Baynes, J. W. (1991) Diabetes 40, 405–412
6. Ceriello, A. (1993) Diabetologia 36, 1119–1125
7. Wierusz-Wysocka, B., Wysocki, H., Ryka, H., Zozulinska, D., Wysocki, A. & Kasimirczak, M. (1995) Diabetes Res. Clin. Pract. 27, 183–197
8. Paolisso, G. & Giugliano, D. (1996) Diabetologia 39, 357–363
9. DeFronzo, R. A., Bonadonna, R. C. & Ferrannini, E. (1992) Diabetes Care 15, 318–368
10. Kahn, C. R. (1994) Diabetes 43, 1066–1084
11. Haring, H. U. & Mehnert, H. (1993) Diabetes Metabolism 16, 24–32
12. Seedorff, K. (1995) Metabolism 44, 24–32
13. Heffetz, D., Buskin, I., Dör, R. & Zick, Y. (1990) J. Biol. Chem. 265, 2896–2902
14. Hayes, G. R. & Lockwood, D. H. (1987) Proc. Natl. Acad. Sci. U. S. A. 84, 8115–8119
15. Wilden, P. A. & Broadway, D. (1995) J. Cell. Biochem. 675, 6758–6762
16. Rudich, A., Kozlovsky, N., Potashnik, R. & Bashan, N. (1997) J. Clin. Invest. 10135–10143
17. Ceriello, A. (1993) Diabetes 42, 26055–26058
18. Guyton, K. Z., Liu, Y., Gerspe, M., Xu, Q. & Holbrook, N. J. (1995) J. Biol. Chem. 271, 4138–4142
19. Zozulinska, D. A., Wierusz-Wysocka, B., Wysocka, H., Majchrzak, A. E. & Wykretowicz, A. (1996) Diabetes Res. Clin. Pract. 33, 139–144
20. Krieger-Brauer, H. I., Medda, P. K. & Kather, H. (1996) J. Biol. Chem. 271, 18107–18113
21. Hotamisligil, G. S., Shargill, N. S. & Spiegelman, B. (1993) Science 259, 862–865
22. Krieger-Brauer, H. I. & Kather, H. (1996) J. Clin. Invest. 97, 1471–1477
23. Hotamisligil, G. S., Budavari, A., Murray, D. L. & Spiegelman, B. (1994) J. Clin. Invest. 94, 1543–1549
24. Feinstein, A., Kaney, H., Papa, M. Z., Llurenfeld, B. & Karasik, A. (1993) J. Biol. Chem. 268, 26055–26058
25. Ebin, Y., Ellis, L., Jaragin, K., Edery, M., Graf, L., Clauer, E., Ou, J. H., Masur, F., Kan, Y. W., Goldfine, I. D., Roth, R. & Rutter, W. (1985) Cell 44, 747–757
26. Sun, X. J., Rothenberg, P., Kahn, C. R., Backer, J. M., Araki, E., Wierusz-Wysocka, B., Hoffman, J., Villa, M. & Cooper, D. (1995) Cell. Signalling 4, 133–143
27. Takeyama, S., White, M. F., Laurie, V. & Kahn, R. (1984) Proc. Natl. Acad. Sci. U. S. A. 81, 7797–7801
28. Krieger-Brauer, H. I., Medda, P. K. & Kather, H. (1992) J. Biol. Chem. 267, 1006–1013
29. Roth, R. A., Liu, F. & Chin, J. E. (1994) Horm. Res. (Basel) 41, 51–55
30. Krieger-Brauer, H. I., Medda, P. K. & Kather, H. (1996) J. Biol. Chem. 271, 18107–18113
31. Bell, G. I., Kayano, T., Buse, J. B., Burant, C. F., Takeda, J., Lin, D., Fukimoto, H. & Seino, S. (1998) Diabetes Care 13, 198–208
32. Rother, C. A., Tirosh, A., Rother, K., Krieger-Brauer, H. I. & Kather, H. (1996) J. Biol. Chem. 271, 217–221
33. Houslay, M. D. (1991) Eur. J. Biochem. 195, 9–27
34. Nouroozzadeh, J., Tajaddinisarmadi, J., Mccarthy, S., Betteridge, D. J. & McCord, J. M. & Harman, D. (1987) Ann. Intern. Med. 107, 526–545
35. Nouroozzadeh, J., Tajaddinisarmadi, J., Mccarthy, S., Betteridge, D. J. & McCord, J. M. & Harman, D. (1987) Ann. Intern. Med. 107, 526–545
36. Weiss, R. H., Flickinger, A. G., Rivers, W. J., Hardy, M. M., Aston, K. W., Ryan, U. S. & Riley, D. P. (1993) J. Biol. Chem. 268, 23049–23054