Research Article

T-Cell Cytokine Gene Polymorphisms and Vitamin D Pathway Gene Polymorphisms in End-Stage Renal Disease due to Type 2 Diabetes Mellitus Nephropathy: Comparisons with Health Status and Other Main Causes of End-Stage Renal Disease

Alicja E. Grzegorzewska,1 Grzegorz Ostromiecki,2 Paulina Zielińska,3 Adrianna Mostowska,4 and Paweł P. Jagodziński4

1Department of Nephrology, Transplantology and Internal Diseases, Poznań University of Medical Sciences (PUMS), 49 Przybyszewskiego Boulevard, 60-355 Poznań, Poland
2DaVita Clinic Piła Dialysis Center, Wojska Polskiego 43, 64-420 Piła, Poland
3Student Nephrology Research Group, Department of Nephrology, Transplantology and Internal Diseases, PUMS, Przybyszewskiego 49, 60-355 Poznań, Poland
4Department of Biochemistry and Molecular Biology, PUMS, Święcickiego 6, 60-781 Poznań, Poland

Correspondence should be addressed to Alicja E. Grzegorzewska; alicja_grzegorzewska@yahoo.com

Received 17 July 2014; Revised 22 September 2014; Accepted 22 September 2014; Published 22 December 2014

Academic Editor: Salwa Ibrahim

Copyright © 2014 Alicja E. Grzegorzewska et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Background. T-cell cytokine gene polymorphisms and vitamin D pathway gene polymorphisms were evaluated as possibly associated with end-stage renal disease (ESRD) resulting from type 2 diabetes mellitus (DM) nephropathy. Methods. Studies were conducted among hemodialysis (HD) patients with ESRD due to type 2 DM nephropathy, chronic glomerulonephritis, chronic infective tubulo-interstitial nephritis, and hypertensive nephropathy as well as in healthy subjects. A frequency distribution of T-cell-related interleukin (IL) genes (IL18 rs360719, IL12A rs568408, IL12B rs3212227, IL4R rs1805015, IL13 rs20541, IL28B rs8099917, IL28B, and rs12979860) and vitamin D pathway genes (GC genes: rs2298849, rs7041, and rs1155563; VDR genes: rs2228570, rs1544410; and RXRA genes: rs110776909, rs10881578, and rs749759) was compared between groups. Results. No significant differences in a frequency distribution of tested polymorphisms were shown between type 2 DM nephropathy patients and controls. A difference was found in IL18 rs360719 polymorphic distribution between the former group and chronic infective tubulo-interstitial nephritic patients (P_trend = 0.033), which also differed in this polymorphism from controls (P_trend = 0.005). Conclusion. T-cell cytokine and vitamin D pathway gene polymorphisms are not associated with ESRD due to type 2 DM nephropathy in Polish HD patients. IL18 rs360719 is probably associated with the pathogenesis of chronic infective tubulo-interstitial nephritis.

1. Introduction

Diabetes mellitus (DM) is the most common cause of end-stage renal disease (ESRD) in many hemodialysis (HD) centers. In Australia and New Zealand, the incident ESRD population (1991–2005) who began renal replacement therapy (RRT) included 30.0% type 2 DM and 4.5% type 1 DM subjects [1]. In the HEMODIALYSIS (HEMO) study, the group of HD patients comprised approximately 45% of DM subjects [2]. Diabetic ESRD patients compared to nondiabetic ESRD subjects show higher both mortality rate [3] and prevalence of coronary artery disease (CAD) [4], are more prone to severe infections [5] and worse response to hepatitis B vaccination [6], and more often suffer from adynamic bone disease associated with low serum parathyroid hormone (PTH) levels [7]. In this paper we will focus on ESRD due to type 2 DM nephropathy. Together with altered glucose metabolism and insulin resistance, deficiency of vitamin D [8] and aberrant T-cell cytokine balance [9] were found to be associated with...
Table 1: HRM and RFLP conditions for the identification of polymorphisms genotyped in the vitamin D pathway related genes.

Gene symbol	rs number	Alleles	Primers for PCR amplification (5'-3')	Annealing temp. (°C)	PCR product length (bp)	HRM analysis Melting temp. range (°C)	Restriction enzyme	Restriction fragment length (bp)
GC	rs7041	G/T	F:GGAGGTGAGTTATGGAAACAGC R:GCATTAGCTCAGTGATGAGTC	66.3	493		HaeIII	T = 493
	rs1155563	C/T	F:GGTTATCTAACGACTGCTCTTGCA R:ATGTGATCTCAGCTGACTCC	63.0	116	71–78	RFLP analysis	T = 493
	rs2298849	C/T	F:TCCACTGGCAAAACACATTAC R:GGGACATCGATATTATTCG	60.6	118		Restriction enzyme	T = 493
							Restriction fragment length (bp)	G = 414 + 79
RXRA	rs1081578	A/G	F:TCTTGAGCAATGCGAGCAAG R:CCACAGTCACACATCAATC	60.6	75	80–90	BstXI	A = 382 G = 243 + 139
	rs10776909	C/T	F:CCGCTTGGCTGCTGCTCA R:ACCTCAGCGGCGCTTGGAG	60.6	95	82–92		
	rs749759	A/G	F:ATAGGGCTTGGCTGCTTAGA R:CTCCAGCAGCGGCAAGTGA	62.6	382			
VDR	rs1544410	A/G	F:GGAGACACAGATAAGGAAATAC R:CCGCAAGAAACCTCAGAATAAC	60.6	248		FspI	A (B) = 248 G (b) = 175 + 73
	rs2228570	C/T	F:GCACCTGCCTGCTGCTGAC R:ACCTCCTGTCTGCTGTCGCT	72.5	341		FokI	C (F) = 341 T (f) = 282 + 59

*aHRM analysis: high resolution melt analysis.

bRFLP analysis: restriction fragment length polymorphism analysis.
Table 2: Characteristics of hemodialysis patients (n = 893).

Parameter	Type 2 DM nephropathy	Other causes of ESRD	P value
Demographic data			
Male sex, n (% of all)	201 (54.9)	307 (58.3)	0.337b
Age at RRT beginning, years	62.9 ± 14.1	57.2 ± 17.2	<0.0001c
RRT duration, years	3.29 (0.06–28.0)	4.42 (0.12–28.2)	<0.0001c
Death rate, cases per 100 patient-years	0.48	0.42	
Death rate, cases per 100 RRT-years	7.97	4.63	
Clinical data			
Coronary artery disease, n (% of all)	174 (52.4)	168 (31.9)	<0.0001c
Myocardial infarction, n (% of all)	98 (29.5)	101 (19.2)	0.009b
Parathyroidectomy, n (% of all)	2 (0.60)	21 (3.98)	0.0009b
Treatment with cinacalcet hydrochloride	24 (7.2)	98 (18.6)	<0.0001b
Laboratory data			
Anti-HBc positive, n (% of all)	95 (26.0)	126 (23.9)	0.528b
HBsAg positive, n (% of all anti-HBc positive)	7 (7.4)	11 (8.7)	0.807b
Anti-HCV positive, n (% of all)	26 (7.1)	57 (10.8)	0.062b
HCV RNA positive, n (% of all anti-HCV positive)	14 (53.8)	39 (68.4)	0.225b
Responders to hepatitis B vaccine, n (% of all)	202 (55.2)	315 (59.8)	0.191b
25(OH)D (ng/mL)a	13.3 ± 3.9	14.5 ± 5.6	0.182a,d
Total calcium (mg/dL)	8.83 ± 0.67	8.91 ± 0.82	0.264d
Phosphates (mg/dL)	5.03 ± 1.44	5.25 ± 1.49	0.054d
PTH (pg/mL)	296 (12.9–3,757)	463 (12.7–3,741)	<0.0001c
Total alkaline phosphatase (U/L)	98.2 (25.8–1,353)	97.1 (40.5–1,684)	0.528c

25(OH)D: 25-hydroxycholecalciferol, anti-HBc: antibodies to core antigen of hepatitis B virus, anti-HCV: antibodies to hepatitis C virus, HBsAg: surface antigen of hepatitis B virus, DM: diabetes mellitus, ESRD: end-stage renal disease, HCV RNA: ribonucleic acid of hepatitis C virus, PTH: parathyroid hormone, and RRT: renal replacement therapy.

A significant difference is indicated using bold font.

a n = 66 for type 2 DM nephropathy; n = 96 for other renal diseases.

b Fisher’s exact test.

c Mann-Whitney test.

d Unpaired t-test, Welch corrected.

this severe complication of type 2 DM. There is a link between vitamin D and T-cell functional balance: active form of vitamin D [1,25(OH)2D] has the inhibitory effect on the T helper (Th)17 and Th1 response [10]. Abnormalities in T-cell cytokine equilibrium [11–13] and plasma vitamin D concentrations [14–16] are related to cardiovascular events [13, 16] and immunononcompetence during infections [11, 14] and vaccinations [12, 15]. Serum PTH levels are dependent on serum vitamin D concentrations [17], and T cells are implicated in the mechanism of PTH action in bone [18].

Vitamin D activity may be adequately expressed if vitamin D pathway components (vitamin D binding protein, also referred to as group-specific component (GC), vitamin D receptor (VDR), and retinoid X receptors (RXRs)) are properly structured and regulated. The recent study by Zhang et al. [19] has shown that VDR BsmI polymorphism correlates with type 2 DM nephropathy and may be susceptible for early onset of this nephropathy. Among T-cell-related cytokine gene polymorphisms, promoter polymorphic variants of IL10 [20, 21] and IL6 [22] were already associated with the risk of type 2 DM nephropathy. Monocyte chemoattractant protein 1 (MCP-1) has been reported to participate in the pathogenesis of early type 2 DM nephropathy [23], but MCPI polymorphism in the promoter region was not differentially distributed between ESRD patients with type 2 DM nephropathy and healthy controls [24, 25].

To our knowledge, there are scarce data, if any, on ESRD due to type 2 DM nephropathy showing a frequency distribution of single nucleotide polymorphisms (SNPs) of T-cell-related IL genes: IL18 rs360719, IL12A rs568408, IL12B rs3212227, IL4R rs1805015, IL13 rs20541, IL28B rs8099917, and IL28B rs12979860 as well as vitamin D pathway genes: GC genes (GC rs2298849, rs7041, and rs1155563), VDR genes (VDR rs2228570, rs1544410), and RXRα genes (RXRA rs10776909, rs10881578, and rs749759). The aim of our study was to determine the potential association between aforementioned polymorphisms of T-cell-related cytokine genes and vitamin D pathway genes and ESRD due to type 2 DM nephropathy. For comparisons, aforementioned genotype frequencies of healthy controls as well as ESRD patients with other main causes of ESRD were used. Polymorphism related associations, if exist, could contribute to explanation of susceptibility to ESRD due to type 2 DM nephropathy and phenotype differences between ESRD patients with type 2 DM nephropathy and other causes of ESRD.
Table 3: Characteristics of hemodialysis patients grouped by a cause of ESRD.

Parameter	Type 2 DM nephropathy (1)	Chronic glomerulonephritis (2)	Chronic tubulointerstitial nephritis (3)	Hypertensive nephropathy (4)	P value
Demographic data					
Male sex, n (% of all)	201 (54.9)	110 (61.8)	63 (53.4)	134 (58.0)	0.386^b
Age at RRT beginning, years	62.9 ± 14.1	47.4 ± 17.6	59.9 ± 16.6	63.3 ± 13.6	
RRT duration, years	3.29 (0.06–28.0)	5.73 (0.16–28.2)	4.82 (0.33–26.5)	3.82 (0.12–20.4)	
Death rate, cases per 100 patient-years	0.48	0.41	0.44	0.42	
Death rate, cases per 100 dialysis-years	7.97	2.87	5.28	6.70	
	n = 366	n = 178	n = 118	n = 231	
Clinical data					
Coronary artery disease, n (% of all)	174 (52.4)	43 (24.2)	29 (24.6)	96 (41.5)	<0.0001^b
Myocardial infarction, n (% of all)	98 (29.5)	25 (14.0)	17 (14.4)	59 (25.5)	<0.0001^b
PTX, n (% of all)	2 (0.60)	14 (7.9)	5 (4.2)	2 (0.87)	<0.0001^b
Treatment with cinacalcet hydrochloride	24 (7.2)	48 (27.0)	21 (17.8)	29 (12.6)	<0.0001^b
	n = 366	n = 178	n = 118	n = 231	
Laboratory data					
Anti-HBc positive, n (% of all)	95 (26.0)	53 (29.8)	25 (21.2)	48 (20.8)	0.233^b
HBsAg positive, n (% of all anti-HBc positive)	7 (7.4)	10 (18.9)	0 (0.0)	1 (2.08)	0.0006^b
Anti-HCV positive, n (% of all)	26 (7.1)	33 (18.5)	11 (9.3)	13 (5.6)	<0.0001^b
HCV RNA positive, n (% of all anti-HCV positive)	14 (53.8)	27 (81.8)	4 (36.4)	8 (61.5)	<0.0001^b
Table 3: Continued.

Parameter	Type 2 DM nephropathy (1)	Chronic glomerulonephritis (2)	Chronic tubulointerstitial nephritis (3)	Hypertensive nephropathy (4)	P value
Responders to hepatitis B vaccine, n (% of all)	202 (55.2)	107 (60.1)	70 (59.3)	138 (59.7)	0.598
25(OH)D (ng/mL)	13.3 ± 3.9	14.2 ± 7.3	15.7 ± 4.3	14.1 ± 3.9	0.453
Total calcium (mg/dL)	8.83 ± 0.67	8.85 ± 0.85	9.04 ± 0.61	8.88 ± 0.87	0.239
Phosphates (mg/dL)	5.03 ± 1.44	5.63 ± 1.59	4.92 ± 1.29	5.15 ± 1.47	
PTH (pg/mL)	296 (12.9–3,757)	632 (12.7–3,118)	426 (45.8–3,741)	364 (19.5–2,351)	
Total ALP (U/L)	98.2 (25.8–1,353)	113 (44.5–860)	89.0 (40.5–1,684)	90.9 (41.0–1,110)	

25(OH)D: 25-hydroxycholecalciferol, anti-HBC: antibodies to core antigen of hepatitis B virus, anti-HCV: antibodies to hepatitis C virus, HBsAg: surface antigen of hepatitis B virus, DM: diabetes mellitus, ESRD: end-stage renal disease, HCV RNA: ribonucleic acid of hepatitis C virus, PTH: parathyroid hormone, and RRT: renal replacement therapy.

a n = 66 for type 2 DM nephropathy, n = 40 for chronic glomerulonephritis, n = 13 for chronic interstitial nephritis, and n = 43 for hypertensive nephropathy.
b Chi squared test.
c Kruskal-Wallis test.
d ANOVA test.
e Fisher’s exact test.

2. Material and Methods

2.1. Patients and Controls. Blood samples for genotype analyses are collected since 2009 from ESRD patients (estimated glomerular filtration rate (eGFR) category G5 in accordance with KDIGO recommendations [26]). All subjects were treated with HD on enrolment. Controls were recruited from blood donors and healthy volunteers unrelated to patients. All enrolled individuals live/lived in the Greater Poland region of Poland.

Genotyping of IL18 rs360719, IL12A rs568408, IL12B rs3212227, IL4R rs1805015, and IL13 rs20541 polymorphisms was performed in 2009–2012 using currently available material. Results had been analyzed in our previous studies in the context of responsiveness to the surface antigen of hepatitis B virus (HBsAg) using data of all (not segregated) patients [27–30]. For this study, we used results of controls and patients with type 2 DM nephropathy, chronic glomerulonephritis, chronic infective tubulointerstitial nephritis, and hypertensive nephropathy.

IL28B rs8099917, IL28B rs12979860, GC rs2298849, GC rs7041, GC rs1155563, VDR rs2228570, VDR rs1544410, RXRA rs10776909, RXRA rs10881578, and RXRA rs749759 polymorphisms were analyzed in winter 2013/2014 among HD patients with ESRD (n = 893) due to type 2 DM nephropathy (n = 366), chronic glomerulonephritis (n = 178), chronic infective tubulointerstitial nephritis (n = 118), and hypertensive nephropathy (n = 231) as well as healthy controls (n = 378). DM was not diagnosed in patients having renal diseases other than type 2 DM nephropathy.

Healthy individuals and HD patients with other renal diseases as cause of ESRD served as reference groups for a frequency distribution of tested polymorphic variants. All examined subjects were of Caucasian race.

Basic clinical and laboratory data were collected on enrolment and they are updated every year.

2.2. Genotyping. Genomic DNA for genotype analysis was isolated from peripheral blood lymphocytes by salt-out extraction procedure.

Genotyping of IL18 rs360719, IL12A rs568408, IL12B rs3212227, IL4R rs1805015, and IL13 rs20541 polymorphisms was performed as previously described [27–30].

IL28B rs8099917 and IL28B rs12979860 polymorphisms were genotyped using high-resolution melting curve analysis (HRM) on the LightCycler 480 system (Roche Diagnostics, Mannheim, Germany) with the use of 5x HOT FIREPol EvaGreen HRM Mix (Solis BioDyne, Tartu, Estonia). The PCR program consisted of an initial step at 95°C for 15 min to activate HOT FIREPol DNA polymerase, followed by 50 amplification cycles of denaturation at 95°C for 10 s, annealing at 61°C for 10 s, and elongation at 72°C for 15 s. Amplified DNA fragments were then subjected to HRM with 0.1°C increments in temperatures ranging from 76 to 96°C. Primers used for PCR with subsequent HRM analysis were as follows: rs8099917F 5’TTTGTCACI GTTCCCTCCTTGTG3’, rs8099917R 5’AAAGACATAA AAGCCAGCTACCA3’.
Table 4: Comparison of the distribution of polymorphic variants of tested genes between ESRD patients treated with hemodialysis due to type 2 DM nephropathy and healthy subjects.

Parameter	Type 2 DM nephropathy (frequency)	Healthy subjects (frequency)	Odds ratio (95% CI)	Two-tailed P	P_trend
IL18 rs360719					
TT	133 (0.54)	121 (0.50)	Referent	0.233	
CT	102 (0.41)	98 (0.41)	0.947 (0.654–1.372)	0.777	
CC	13 (0.05)	21 (0.09)	0.563 (0.270–1.174)	0.145	
CT + CC	115 (0.46)	119 (0.50)	0.879 (0.616–1.254)	0.526	
MAF	128 (0.26)	140 (0.29)	0.845 (0.638–1.119)	0.268	
IL12A rs568408					
G	173 (0.74)	171 (0.71)	Referent	0.782	
A	52 (0.22)	63 (0.26)	0.816 (0.534–1.246)	0.389	
A + G	61 (0.26)	69 (0.29)	0.874 (0.583–1.309)	0.338	
MAF	70 (0.15)	75 (0.16)	0.976 (0.684–1.393)	0.965	
IL12B rs3212227					
A	156 (0.63)	151 (0.63)	Referent	0.639	
C	84 (0.34)	77 (0.32)	1.056 (0.721–1.547)	0.846	
C + A	91 (0.37)	89 (0.37)	0.990 (0.685–1.430)	1.000	
MAF	98 (0.20)	101 (0.21)	0.927 (0.680–1.268)	0.699	
IL4 rs1805015					
T	205 (0.68)	162 (0.72)	Referent	0.304	
C	82 (0.27)	53 (0.24)	1.223 (0.818–1.828)	0.360	
C + T	16 (0.05)	10 (0.04)	1.264 (0.559–2.861)	0.684	
MAF	114 (0.19)	73 (0.16)	1.197 (0.866–1.653)	0.313	
IL13 rs20541					
C	168 (0.55)	124 (0.54)	Referent	0.457	
T	114 (0.38)	84 (0.36)	1.002 (0.695–1.443)	1.000	
T + C	21 (0.07)	22 (0.10)	0.705 (0.371–1.338)	0.324	
MAF	156 (0.26)	128 (0.28)	0.899 (0.684–1.182)	0.489	
IL28B rs8099917					
C	141 (0.42)	164 (0.44)	Referent	0.504	
T	219 (0.65)	245 (0.65)	Referent	0.504	
G	107 (0.31)	123 (0.33)	0.973 (0.709–1.336)	0.872	
G + T	13 (0.04)	7 (0.02)	2.078 (0.814–5.302)	0.169	
MAF	133 (0.20)	137 (0.18)	1.092 (0.837–1.423)	0.560	
IL28B rs12979860					
C	141 (0.42)	164 (0.44)	Referent	0.669	
T	157 (0.47)	166 (0.45)	1.100 (0.804–1.505)	0.576	
T + C	38 (0.11)	42 (0.11)	1.052 (0.643–1.723)	0.900	
MAF	116 (0.29)	250 (0.34)	1.049 (0.842–1.307)	0.713	
GC rs2298849					
T	226 (0.62)	237 (0.63)	Referent	0.250	
C	110 (0.30)	124 (0.33)	0.930 (0.679–1.274)	0.688	
C + T	28 (0.08)	14 (0.04)	2.097 (1.077–4.086)	0.035	
MAF	166 (0.23)	152 (0.20)	1.162 (0.907–1.490)	0.262	
Table 4: Continued.

Parameter	Type 2 DM nephropathy (frequency)	Healthy subjects (frequency)	Odds ratio (95% CI)	Two-tailed P	P_{trend}
GC rs7041	n = 343	n = 361	Referent		
GG	112 (0.33)	116 (0.32)			0.572
GT	163 (0.47)	186 (0.52)	0.908 (0.650–1.268)	0.609	
TT	68 (0.20)	59 (0.16)	1.194 (0.773–1.844)	0.440	
GT + TT	231 (0.67)	245 (0.68)	0.977 (0.712–1.339)	0.936	
MAF	299 (0.44)	304 (0.42)	1.062 (0.860–1.312)	0.612	
GC rs115563	n = 362	n = 377	Referent		
TT	180 (0.50)	189 (0.50)			0.541
CT	141 (0.39)	155 (0.41)	0.955 (0.703–1.297)	0.815	
CC	41 (0.11)	33 (0.09)	1.305 (0.789–2.155)	0.311	
CT + CC	182 (0.50)	188 (0.50)	1.017 (0.762–1.356)	0.941	
MAF	223 (0.31)	221 (0.29)	1.074 (0.859–1.341)	0.567	
VDR rs2228570	n = 345	n = 371	Referent		
CC	101 (0.29)	103 (0.28)			0.401
CT	175 (0.51)	183 (0.49)	0.975 (0.691–1.376)	0.930	
TT	69 (0.20)	85 (0.23)	0.828 (0.544–1.260)	0.394	
CT + TT	244 (0.71)	268 (0.72)	0.929 (0.671–1.285)	0.679	
MAF	313 (0.45)	353 (0.48)	0.915 (0.743–1.126)	0.432	
VDR rs1544410	n = 359	n = 372	Referent		0.753
GG	137 (0.38)	148 (0.40)			
AG	165 (0.46)	165 (0.44)	1.080 (0.787–1.483)	0.686	
AA	57 (0.16)	59 (0.16)	1.044 (0.678–1.607)	0.912	
AG + AA	222 (0.62)	224 (0.60)	1.071 (0.795–1.442)	0.705	
MAF	279 (0.39)	283 (0.38)	1.035 (0.839–1.278)	0.788	
RXRA rs10776909	n = 364	n = 378	Referent	0.426	
CC	233 (0.64)	250 (0.66)			
CT	111 (0.30)	112 (0.30)	1.063 (0.774–1.461)	0.746	
TT	20 (0.05)	16 (0.04)	1.341 (0.679–2.651)	0.490	
CT + TT	131 (0.36)	128 (0.34)	1.098 (0.812–1.485)	0.590	
MAF	151 (0.21)	144 (0.19)	1.112 (0.862–1.435)	0.452	
RXRA rs10881578	n = 365	n = 377	Referent	0.168	
AA	197 (0.54)	183 (0.48)			
AG	134 (0.37)	154 (0.41)	0.808 (0.775–1.046)	0.185	
GG	34 (0.09)	40 (0.11)	0.790 (0.479–1.301)	0.376	
AG + GG	168 (0.46)	194 (0.51)	0.804 (0.603–1.073)	0.143	
MAF	202 (0.28)	234 (0.31)	0.850 (0.680–1.063)	0.172	
RXRA rs749759	n = 355	n = 370	Referent		0.850
GG	207 (0.58)	221 (0.60)			
AG	125 (0.35)	123 (0.33)	1.085 (0.794–1.216)	0.632	
AA	23 (0.06)	26 (0.07)	0.944 (0.522–1.708)	0.881	
AG + AA	148 (0.42)	149 (0.40)	1.061 (0.789–1.426)	0.706	
MAF	171 (0.24)	175 (0.24)	1.024 (0.804–1.304)	0.894	

ESRD: end-stage renal disease, DM: diabetes mellitus, and MAF: minor allele frequency.

*Not consistent with Hardy-Weinberg equilibrium.

rs12979860F 5’CGTGCCTGTCGTACTGAA3’, and rs12979860R 5’AGGCTCAGGTTCAATCAG3’.

Genotyping of the GC rs115563, GC rs2298849, RXRA rs10881578, and RXRA rs10776909 polymorphisms was carried out by HRM on the Bio-Rad CFX96 Real Time PCR system (Bio-Rad, Hercules, CA). DNA fragments amplified with the use of specific primers were subjected to HRM with 0.1°C increments in temperatures ranging from 71 to 92°C. Genotyping of the GC rs7041, RXRA rs749759, VDR rs1544410, and VDR rs2228570 was performed using the polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP) method according to the
Table 5: Comparison of the distribution of polymorphic variants of tested genes between ESRD patients treated with hemodialysis due to type 2 DM nephropathy and the most common causes of ESRD other than type 2 DM nephropathy (chronic glomerulonephritis, chronic tubulointerstitial nephritis, and hypertensive nephritis).

Genotype	Type 2 DM nephropathy (frequency)	Other causes of ESRD (frequency)	Odds ratio (95% CI)	Two-tailed P	P_trend
IL18 rs360719					
TT	133 (0.54)	186 (0.53)	Referent	—	0.362
CT	102 (0.41)	135 (0.38)	1.057 (0.752–1.485)	0.795	
CC	13 (0.05)	32 (0.09)	0.568 (0.287–1.124)	0.107	
CT + CC	115 (0.46)	167 (0.47)	0.963 (0.696–1.334)	0.868	
MAF	128 (0.26)	199 (0.28)	0.886 (0.684–1.149)	0.370	
IL12A rs568408					
GG	173 (0.74)	234 (0.69)	Referent	—	0.303
AG	52 (0.22)	89 (0.26)	0.790 (0.533–1.060)	0.275	
AA	9 (0.04)	14 (0.04)	0.870 (0.368–2.055)	0.831	
AG + AA	61 (0.26)	103 (0.31)	0.801 (0.552–1.163)	0.260	
MAF	70 (0.15)	117 (0.17)	0.837 (0.606–1.157)	0.319	
IL12B rs3212227					
AA	156 (0.63)	205 (0.58)	Referent	—	0.176
AC	84 (0.34)	132 (0.38)	0.836 (0.593–1.068)	0.337	
CC	7 (0.03)	15 (0.04)	0.613 (0.244–1.540)	0.376	
AC + CC	91 (0.37)	147 (0.42)	0.814 (0.582–1.136)	0.236	
MAF	98 (0.20)	162 (0.23)	0.828 (0.624–1.098)	0.215	
IL4R rs1805015					
TT	205 (0.68)	295 (0.68)	Referent	—	0.871
CT	82 (0.27)	121 (0.28)	0.975 (0.700–2.360)	0.933	
CC	16 (0.05)	20 (0.05)	1.151 (0.583–2.275)	0.728	
CT + CC	98 (0.32)	141 (0.32)	1.000 (0.731–1.368)	1.000	
MAF	114 (0.19)	161 (0.18)	1.023 (0.784–1.335)	0.919	
IL13 rs20541					
CC	168 (0.55)	242 (0.56)	Referent	—	0.902
CT	114 (0.38)	166 (0.38)	0.989 (0.726–1.348)	1.000	
TT	21 (0.07)	28 (0.06)	1.080 (0.594–1.967)	0.878	
CT + TT	135 (0.45)	194 (0.44)	1.002 (0.746–1.346)	1.000	
MAF	156 (0.26)	222 (0.25)	1.015 (0.800–1.287)	0.950	
IL28B rs8099917					
TT	219 (0.65)	317 (0.64)	Referent	—	0.858
GT	107 (0.31)	162 (0.33)	0.956 (0.709–1.289)	0.820	
GG	13 (0.04)	14 (0.03)	1.344 (0.620–2.916)	0.549	
GT + GG	120 (0.35)	176 (0.36)	0.987 (0.739–1.318)	0.941	
MAF	133 (0.20)	190 (0.19)	1.022 (0.799–1.309)	0.910	
IL28B rs12979860					
TT	226 (0.62)	339 (0.65)	Referent	—	0.952
CT	110 (0.30)	165 (0.31)	1.000 (0.745–1.342)	1.000	
CC	28 (0.08)	20 (0.04)	2.100 (1.155–3.819)	0.014	
CT + CC	138 (0.38)	185 (0.35)	1.119 (0.848–1.477)	0.436	
MAF	166 (0.23)	205 (0.20)	1.215 (0.964–1.530)	0.111	
IL28B rs2298849					
TT	226 (0.62)	339 (0.65)	Referent	—	0.109
CT	110 (0.30)	165 (0.31)	1.000 (0.745–1.342)	1.000	
CC	28 (0.08)	20 (0.04)	2.100 (1.155–3.819)	0.014	
CT + CC	138 (0.38)	185 (0.35)	1.119 (0.848–1.477)	0.436	
MAF	166 (0.23)	205 (0.20)	1.215 (0.964–1.530)	0.111	
Table 5: Continued.

Genotype	Type 2 DM nephropathy (frequency)	Other causes of ESRD (frequency)	Odds ratio (95% CI)	Two-tailed P	P_{trend}
GC rs7041	$n = 343$	$n = 506$	Referent		0.247
GG	112 (0.33)	182 (0.36)	—		
GT	163 (0.47)	236 (0.47)	1.122 (0.824–1.528)	0.480	
TT	68 (0.20)	88 (0.17)	1.256 (0.846–1.863)	0.267	
GT + TT	231 (0.67)	324 (0.64)	1.159 (0.867–1.548)	0.340	
MAF	299 (0.44)	412 (0.41)	1.125 (0.923–1.369)	0.259	
GC rs155563	$n = 362$	$n = 527$	Referent		0.614
TT	180 (0.50)	252 (0.48)	—		
CT	141 (0.39)	213 (0.40)	0.927 (0.696–1.234)	0.610	
CC	41 (0.11)	62 (0.12)	0.926 (0.597–1.435)	0.740	
CT + CC	182 (0.50)	275 (0.52)	0.927 (0.709–1.211)	0.585	
MAF	223 (0.31)	337 (0.32)	0.947 (0.772–1.161)	0.638	
VDR rs2228570	$n = 345$	$n = 503$	Referent		0.541
CC	101 (0.29)	130 (0.26)	—		
CT	175 (0.51)	275 (0.55)	0.819 (0.594–1.130)	0.249	
TT	69 (0.20)	98 (0.19)	0.906 (0.606–1.356)	0.682	
CT + TT	244 (0.71)	373 (0.74)	0.842 (0.620–1.143)	0.273	
MAF	313 (0.45)	471 (0.47)	0.943 (0.776–1.145)	0.588	
VDR rs1544410	$n = 359$	$n = 512$	Referent		0.598
GG	137 (0.38)	189 (0.37)	—		
AG	165 (0.46)	235 (0.46)	0.969 (0.720–1.303)	0.880	
AA	57 (0.16)	88 (0.17)	0.894 (0.599–1.332)	0.613	
AG + AA	222 (0.62)	323 (0.63)	0.948 (0.718–1.253)	0.722	
MAF	279 (0.39)	411 (0.40)	0.948 (0.778–1.152)	0.626	
RXRA rs10776909	$n = 364$	$n = 526$	Referent		0.298
CC	233 (0.64)	308 (0.59)	—		
CT	111 (0.30)	196 (0.37)	0.749 (0.561–0.999)	0.050	
TT	20 (0.05)	22 (0.04)	1.202 (0.641–2.254)	0.629	
CT + TT	131 (0.36)	218 (0.41)	0.794 (0.603–1.046)	0.108	
MAF	151 (0.21)	240 (0.23)	0.883 (0.702–1.112)	0.317	
RXRA rs10881578	$n = 365$	$n = 525$	Referent		0.134
AA	197 (0.54)	252 (0.48)	—		
AG	134 (0.37)	220 (0.42)	0.779 (0.586–1.035)	0.096	
GG	34 (0.09)	53 (0.10)	0.821 (0.513–1.312)	0.478	
AG + GG	168 (0.46)	273 (0.52)	0.787 (0.602–1.029)	0.088	
MAF	202 (0.28)	326 (0.31)	0.850 (0.690–1.046)	0.139	
RXRA rs749759	$n = 355$	$n = 514$	Referent		0.082
GG	207 (0.58)	265 (0.52)	—		
AG	125 (0.35)	212 (0.41)	0.755 (0.567–1.005)	0.059	
AA	23 (0.06)	37 (0.07)	0.796 (0.459–1.381)	0.490	
AG + AA	148 (0.42)	249 (0.48)	0.761 (0.579–1.000)	0.053	
MAF	171 (0.24)	286 (0.28)	0.823 (0.661–1.025)	0.092	

ESRD: end-stage renal disease, DM: diabetes mellitus, and MAF: minor allele frequency.

*Not consistent with Hardy-Weinberg equilibrium.

manufacturer’s instructions (Fermentas, Vilnius, Lithuania). Primer sequences and conditions for HRM and PCR-RFLP analyses are presented in Table 1.

For quality control, the genotyping analysis was blinded to the subject’s case-control status. In addition, approximately 10% of the randomly chosen samples were regenotyped. Samples that failed the genotyping were excluded from further statistical analyses.

2.3. 25(OH)D Testing. Plasma 25(OH)D was determined in blindly selected 162 HD patients in the winter season of the year to avoid differences in sunlight exposure between patients who used to sunbathe and those who did not. Plasma 25(OH)D concentration was measured in HD patients who had not been treated with vitamin D or had stopped such a treatment for at least 3 weeks to obtain the so-called basic vitamin D concentrations. Under these conditions, there were
Table 6: Selected comparisons of the polymorphic variants distribution of tested genes between type 2 DM nephropathy patients, chronic infective tubulointerstitial nephritic patients, and healthy subjects.

Genotype	Genotype frequencies	Odds ratio (95% CI)	Two-tailed P	P_{trend}
Type 2 DM nephropathy versus chronic infective tubulointerstitial nephritis				
IL18 rs360719				
$n=248$	$n=77$	Referent		0.033
TT	133 (0.54)	54 (0.70)	2.180 (1.217–3.905)	0.009*
CT	102 (0.41)	19 (0.25)	1.320 (0.412–4.228)	0.783
CC	13 (0.05)	4 (0.05)	2.030 (1.173–3.512)	0.012*
CT + CC	115 (0.46)	23 (0.30)	1.636 (1.031–2.596)	0.046
MAF	128 (0.26)	27 (0.18)	1.636 (1.031–2.596)	0.046
Chronic infective tubulointerstitial nephritis versus healthy controls				
IL18 rs360719				
$n=77$	$n=240$	Referent		0.005
TT	54 (0.70)	121 (0.50)	0.434 (0.242–0.781)	0.006*
CT	19 (0.25)	98 (0.41)	0.427 (0.140–1.303)	0.160
CC	4 (0.05)	21 (0.09)	0.433 (0.250–0.750)	0.004*
CT + CC	23 (0.30)	119 (0.50)	0.516 (0.326–0.818)	0.006

DM: diabetes mellitus; MAF: minor allele frequency.
Significant differences are indicated using bold font.
*Significant after the Bonferroni correction ($P < 0.017$).

no patients showing optimal plasma 25(OH)D levels (35–80 ng/mL for adults). To examine plasma 25(OH)D levels, a chemiluminescent microparticle immunoassay (CMIA) was used according to the manufacturer's instructions (Abbott Diagnostics ARCHITECT 25-OH VITAMIN D CMIA).

2.4. Statistical Methods. Results are presented as percentage for categorical variables, as mean with one standard deviation for normally distributed continuous variables or as median with range for not normally distributed continuous variables as tested by the Shapiro-Wilk test. Statistical tests used for comparison of data obtained in selected groups are indicated at P values.

Hardy-Weinberg equilibrium (HWE) was tested to compare the observed genotype frequencies to the expected ones using Chi-square test. Distributions of tested polymorphisms were consistent with HWE with three exceptions which are indicated in tables showing analysis of genotype and allele distributions. The Fisher exact probability test or Chi-square test was used to evaluate deviations in genotype and allele prevalence between the examined groups. Homozygotes for the major allele were the reference group. The odds ratio (OR) with P value and 95% confidence intervals (95% CI) value were calculated. All probabilities were two-tailed. Polymorphisms were tested for association using the Chi-square test for trend (P_{trend}). Power analysis was performed by Fisher's exact test.

Values of $P < 0.05$ were judged to be significant. However, associations were reported only if the following conditions were fulfilled.

1. A genotype distribution was consistent with HWE in a tested group and a referent group.
2. P_{trend} was below 0.05.
3. Odds ratio remained significant after the Bonferroni correction applied for multiple testing, if appropriate.

Aforementioned statistical calculations were performed using GraphPad InStat 3.10, 32 bit for Windows, created on July 9, 2009 (GraphPad Software, Inc., La Jolla, USA), CytelStudio version 10.0, created on January 16, 2013 (CytelStudio Software Corporation, Cambridge, USA), and Statistica version 10, 2011 (StatSoft, Inc., Tulsa, USA).

3. Results

Characteristics of the examined HD patients are presented in Tables 2 and 3. ESRD patients due to type 2 DM nephropathy compared to non-DM ESRD patients showed older age at RRT onset, shorter treatment with RRT, higher death rate on RRT, higher prevalence of CAD and myocardial infarction, lower serum PTH level, and lower frequency of parathyroidectomy and treatment with cinacalcet.

In respect of the examined parameters, type 2 DM nephropathy patients differed the most significantly from chronic glomerulonephritic subjects, the least significantly from hypertensive nephropathy patients. There were no differences in frequency distributions of tested genotypes between type 2 DM nephropathy patients and healthy subjects (Table 4) as well as other ESRD patients analyzed together (Table 5) which could be judged as significant associations.

Comparisons of genotype and allele frequencies between type 2 DM nephropathy patients and other ESRD groups revealed associations only with chronic infective tubulointerstitial nephritic patients in respect of IL18 rs360719 (Table 6, no significant results are shown). Frequency of IL18 rs360719 allele C carriers was higher in type 2 DM nephropathy patients than in those with chronic infective tubulointerstitial...
Table 7: Comparison of the distribution of polymorphic variants of tested genes between ESRD patients treated with hemodialysis due to type 2 DM nephropathy grouped by diagnosis of CAD.

Parameter	Type 2 DM nephropathy with CAD (frequency)	Type 2 DM nephropathy without CAD (frequency)	Odds ratio (95% CI)	Two-tailed P	P_trend
IL18 rs360719	n = 124	n = 109	Referent	0.269	
TT	68 (0.55)	53 (0.49)	Referent	0.269	
CT	51 (0.41)	49 (0.45)	1.128 (0.725–1.754)	0.653	
CC	5 (0.04)	7 (0.06)	0.628 (0.194–2.036)	0.557	
CT + CC	56 (0.45)	56 (0.51)	0.879 (0.560–1.380)	0.645	
MAF	61 (0.25)	63 (0.29)	0.803 (0.532–1.211)	0.345	
IL2A rs568408	n = 117	n = 102	Referent	0.361	
GG	83 (0.71)	77 (0.63)	Referent	0.361	
AG	28 (0.24)	22 (0.22)	1.181 (0.623–2.236)	0.630	
AA	6 (0.05)	3 (0.03)	1.855 (0.448–7.678)	0.502	
AG + AA	34 (0.29)	25 (0.25)	1.262 (0.691–2.304)	0.542	
MAF	40 (0.17)	28 (0.14)	1.311 (0.776–2.114)	0.378	
IL2B rs3122227	n = 124	n = 109	Referent	0.906	
AA	78 (0.63)	69 (0.63)	Referent	0.906	
AC	43 (0.35)	36 (0.33)	1.057 (0.611–1.829)	0.889	
CC	3 (0.02)	4 (0.04)	0.664 (0.143–3.069)	0.708	
AC + CC	46 (0.37)	40 (0.37)	1.017 (0.597–1.734)	1.000	
MAF	49 (0.20)	44 (0.20)	0.974 (0.618–1.535)	0.909	
IL13 rs20541	n = 144	n = 127	Referent	0.867	
CC	80 (0.56)	71 (0.56)	Referent	0.867	
CT	55 (0.38)	46 (0.36)	1.061 (0.640–1.759)	0.898	
TT	9 (0.06)	10 (0.08)	0.799 (0.307–2.077)	0.808	
CT + TT	64 (0.44)	56 (0.44)	1.014 (0.627–1.640)	1.000	
MAF	56 (0.19)	50 (0.20)	0.985 (0.644–1.504)	0.944	
IL28B rs8099917	n = 163	n = 145	Referent	0.752	
TT	105 (0.66)	97 (0.67)	Referent	0.752	
GT	52 (0.32)	42 (0.29)	1.144 (0.700–1.870)	0.618	
GG	6 (0.04)	6 (0.04)	0.924 (0.288–2.961)	1.000	
GT + GG	58 (0.36)	48 (0.33)	1.116 (0.697–1.819)	0.719	
MAF	64 (0.20)	54 (0.20)	0.967 (0.657–1.423)	0.944	
IL28B rs12979860	n = 163	n = 142	Referent	0.352	
CC	69 (0.42)	66 (0.46)	Referent	0.352	
CT	73 (0.45)	62 (0.44)	1.126 (0.698–1.816)	0.715	
TT	21 (0.13)	14 (0.10)	1.435 (0.674–3.055)	0.448	
CT + TT	94 (0.58)	76 (0.54)	1.183 (0.752–1.861)	0.490	
MAF	115 (0.35)	90 (0.32)	1.175 (0.838–1.647)	0.396	
GC rs2298849	n = 172	n = 158a	Referent	0.173	
TT	99 (0.58)	106 (0.67)	Referent	0.173	
CT	60 (0.33)	40 (0.25)	1.606 (0.989–2.608)	0.067	
CC	13 (0.07)	12 (0.08)	1.160 (0.505–2.663)	0.833	
CT + CC	73 (0.42)	52 (0.33)	1.503 (0.959–2.355)	0.088	
MAF	166 (0.25)	64 (0.20)	1.313 (0.909–1.895)	0.174	
Table 7: Continued.

Parameter	Type 2 DM nephropathy with CAD (frequency)	Type 2 DM nephropathy without CAD (frequency)	Odds ratio (95% CI)	Two-tailed P	P_{trend}
GC rs7041	GG 57 (0.35) n = 161	GT 69 (0.43) n = 151	1.327 (0.825–2.134)	0.277	0.844
	TT 35 (0.22)	GT + TT 104 (0.65)	1.061 (0.721–1.559)	0.769	
	MAF 139 (0.43)		1.025 (0.746–1.409)	0.943	
GC rs115563	TT 82 (0.48) n = 172	GT 70 (0.41) n = 157	1.106 (0.697–1.755)	0.724	0.645
	CC 20 (0.12)	CT + CC 90 (0.52)	1.112 (0.721–1.714)	0.660	
	MAF 110 (0.32)		1.084 (0.779–1.508)	0.695	
VDR rs2228570	TT 43 (0.27) n = 162	CT 93 (0.57) n = 152	1.400 (0.829–2.363)	0.230	0.316
	CC 26 (0.16)	CT + TT 119 (0.73)	1.128 (0.688–1.849)	0.705	
	MAF 145 (0.45)		0.854 (0.624–1.169)	0.365	
VDR rs1544410	GG 65 (0.38) n = 170	AG 79 (0.46) n = 152	1.030 (0.641–1.653)	0.905	0.772
	AA 26 (0.15)	CT + TT 108 (0.71)	1.109 (0.569–2.160)	0.865	
	MAF 131 (0.39)		1.048 (0.763–1.440)	0.833	
RXRA rs10776909	CC 112 (0.65) n = 172	CT 48 (0.28) n = 152	0.948 (0.585–1.537)	0.902	0.621
	TT 12 (0.07)	CT + TT 54 (0.34)	1.032 (0.655–1.625)	0.908	
	MAF 72 (0.21)		1.107 (0.756–1.621)	0.672	
RXRA rs10881578	AA 89 (0.51) n = 173	AG 65 (0.38) n = 152	1.268 (0.796–2.019)	0.345	0.192
	GG 19 (0.11)	AG + GG 84 (0.49)	1.316 (0.852–2.032)	0.226	
	MAF 103 (0.30)		1.272 (0.902–1.793)	0.199	
RXRA rs749759	GG 100 (0.59) n = 169	AG 59 (0.35) n = 152	0.972 (0.610–1.551)	1.000	0.812
	AA 10 (0.06)	AG + AA 69 (0.41)	0.960 (0.615–1.496)	0.910	
	MAF 79 (0.23)		0.956 (0.665–1.375)	0.882	

CAD: coronary artery disease, ESRD: end-stage renal disease, DM: diabetes mellitus, and MAF: minor allele frequency.

*Not consistent with Hardy-Weinberg equilibrium.

nephritis. The latter group showed lower frequency of $IL18$ rs360719 allele C carriers compared to healthy controls (Table 6).

Type 2 DM nephropathy patients with diagnosed CAD differed in tested genotype frequencies neither from type 2 DM nephropathy subjects without CAD (Table 7) nor from healthy controls (Table 8).

4. Discussion

Genetic studies involving DM nephropathy and related complications are not consistent in many aspects [31–34]. Some polymorphisms tested in this study were reported as being associated with type 1 DM ($IL12B$ rs3212227 [35], $IL4R$ [36, 37], $IL13$ [37], VDR rs1544410 [38, 39], and VDR
Table 8: Comparison of the distribution of polymorphic variants of tested genes between type 2 DM nephropathy patients with diagnosis of CAD and healthy controls.

Parameter	Type 2 DM nephropathy with CAD (frequency)	Healthy controls (frequency)	Odds ratio (95% CI)	Two-tailed P	P trend
IL18 rs360719					
TT	68 (0.55)	121 (0.50)	Referent	0.186	
CT	51 (0.41)	98 (0.41)	0.926 (0.590–1.543)	0.819	
CC	5 (0.04)	21 (0.09)	0.424 (0.153–1.174)	0.122	
CT + CC	56 (0.45)	119 (0.50)	0.837 (0.542–1.294)	0.440	
MAF	61 (0.25)	140 (0.29)	0.792 (0.558–1.124)	0.223	
IL12A rs568408					
GG	83 (0.71)	171 (0.71)	Referent	0.626	
AG	28 (0.24)	63 (0.26)	0.916 (0.546–1.535)	0.794	
AA	6 (0.05)	6 (0.03)	2.060 (0.645–6.583)	0.348	
AG + AA	34 (0.29)	69 (0.29)	1.015 (0.624–1.653)	1.000	
MAF	40 (0.17)	75 (0.16)	1.113 (0.731–1.695)	0.695	
IL12B rs3212227					
AA	78 (0.63)	151 (0.63)	Referent	0.475	
AC	43 (0.35)	77 (0.32)	1.081 (0.681–1.717)	0.813	
CC	3 (0.02)	12 (0.05)	0.484 (0.133–1.766)	0.397	
AC + CC	46 (0.37)	89 (0.37)	1.001 (0.639–1.567)	1.000	
MAF	49 (0.20)	101 (0.21)	0.924 (0.631–1.354)	0.757	
IL4R rs1805015					
TT	95 (0.66)	162 (0.72)	Referent	0.285	
CT	42 (0.29)	53 (0.24)	1.351 (0.838–2.179)	0.221	
CC	7 (0.05)	10 (0.04)	1.194 (0.440–3.240)	0.798	
CT + CC	49 (0.34)	63 (0.28)	1.326 (0.845–2.083)	0.246	
MAF	56 (0.19)	73 (0.16)	1.247 (0.848–1.832)	0.305	
IL13 rs20541					
CC	80 (0.56)	124 (0.54)	Referent	0.469	
CT	55 (0.38)	84 (0.36)	1.015 (0.653–1.578)	1.000	
TT	9 (0.06)	22 (0.10)	0.634 (0.278–1.447)	0.324	
CT + TT	64 (0.44)	106 (0.46)	0.936 (0.616–1.422)	0.831	
MAF	73 (0.19)	73 (0.16)	0.881 (0.630–1.231)	0.510	
IL28B rs8099917					
TT	105 (0.64)	245 (0.65)	Referent	0.584	
GT	52 (0.32)	123 (0.33)	0.986 (0.663–1.467)	1.000	
GG	6 (0.04)	7 (0.02)	2.000 (0.656–6.094)	0.229	
GT + GG	58 (0.36)	130 (0.35)	1.041 (0.709–1.530)	0.845	
MAF	64 (0.20)	137 (0.18)	1.093 (0.786–1.521)	0.658	
IL28B rs12979860					
CC	69 (0.42)	164 (0.44)	Referent	0.281	
CT	73 (0.45)	166 (0.45)	1.045 (0.705–1.549)	0.841	
TT	21 (0.13)	42 (0.11)	1.188 (0.656–2.154)	0.644	
CT + TT	94 (0.58)	208 (0.56)	1.074 (0.740–1.558)	0.776	
MAF	115 (0.35)	250 (0.34)	1.077 (0.819–1.416)	0.644	
GC rs2298849					
TT	99 (0.58)	237 (0.63)	Referent	0.080	
CT	60 (0.35)	124 (0.33)	1.158 (0.786–1.706)	0.486	
CC	13 (0.07)	14 (0.04)	2.223 (1.008–4.901)	0.052	
CT + CC	73 (0.42)	138 (0.37)	1.266 (0.876–1.830)	0.220	
MAF	166 (0.25)	152 (0.20)	1.311 (0.969–1.774)	0.092	
Parameter	Type 2 DM nephropathy with CAD (frequency)	Healthy controls (frequency)	Odds ratio (95% CI)	Two-tailed P	P_{trend}
-------------------	---	------------------------------	---------------------	--------------	-----------
GC rs7041					
GG	57 (0.35) (n = 161)	116 (0.32) (n = 361)	Referent		0.748
GT	69 (0.43)	186 (0.52)	0.755 (0.496–1.150)	0.196	
TT	35 (0.22)	59 (0.16)	1.207 (0.714–2.040)	0.502	
GT + TT	104 (0.65)	245 (0.68)	0.864 (0.584–1.278)	0.482	
MAF	139 (0.43)	304 (0.42)	1.044 (0.801–1.362)	0.800	
GT + TT	104 (0.65)	245 (0.68)	0.864 (0.584–1.278)	0.482	
GC rs115563					0.378
TT	82 (0.48)	189 (0.50)	Referent		
CT	70 (0.41)	155 (0.41)	1.041 (0.710–1.527)	0.845	
CC	20 (0.12)	33 (0.09)	1.397 (0.757–2.578)	0.332	
CT + CC	90 (0.52)	188 (0.50)	1.103 (0.769–1.583)	0.646	
MAF	110 (0.32)	221 (0.29)	1.134 (0.861–1.494)	0.411	
VDR rs2228570					
CC	43 (0.27)	103 (0.28)	Referent		0.386
CT	93 (0.57)	183 (0.49)	1.217 (0.788–1.880)	0.384	
TT	26 (0.16)	85 (0.23)	0.733 (0.416–1.290)	0.321	
CT + TT	119 (0.73)	268 (0.72)	1.064 (0.702–1.613)	0.833	
MAF	145 (0.45)	353 (0.48)	0.893 (0.687–1.160)	0.434	
VDR rs1544410					
GG	65 (0.38)	148 (0.40)	Referent		0.880
AG	79 (0.46)	165 (0.44)	1.090 (0.734–1.620)	0.687	
AA	26 (0.15)	59 (0.16)	1.003 (0.581–1.732)	1.000	
AG + AA	105 (0.62)	224 (0.60)	1.067 (0.735–1.549)	0.776	
MAF	131 (0.39)	283 (0.38)	1.021 (0.784–1.329)	0.931	
RXRA rs10776909					0.483
CC	112 (0.65)	250 (0.66)	Referent		
CT	48 (0.28)	112 (0.30)	0.957 (0.638–1.434)	0.838	
TT	12 (0.07)	16 (0.04)	1.674 (0.767–3.656)	0.209	
CT + TT	60 (0.35)	128 (0.34)	1.046 (0.716–1.529)	0.846	
MAF	72 (0.21)	144 (0.19)	1.125 (0.819–1.545)	0.518	
RXRA rs10881578					
AA	89 (0.51)	183 (0.48)	Referent		0.682
AG	65 (0.38)	154 (0.41)	0.868 (0.591–1.275)	0.494	
GG	19 (0.11)	40 (0.11)	0.977 (0.535–1.783)	1.000	
AG + GG	84 (0.49)	194 (0.51)	0.890 (0.621–1.276)	0.582	
MAF	103 (0.30)	234 (0.31)	0.942 (0.714–1.243)	0.725	
RXRA rs749759					
GG	100 (0.59)	221 (0.60)	Referent		0.924
AG	59 (0.35)	123 (0.33)	1.060 (0.718–1.566)	0.842	
AA	10 (0.06)	26 (0.07)	0.850 (0.395–1.830)	0.710	
AG + AA	69 (0.41)	149 (0.40)	1.023 (0.707–1.482)	0.925	
MAF	79 (0.23)	175 (0.24)	0.985 (0.727–1.334)	0.983	

CAD: coronary artery disease, DM: diabetes mellitus, and MAF: minor allele frequency.
rs2228570 [38]), type 2 DM susceptibility (VDR rs2228570
[40], VDR rs1544410 [41]), and phenotype of type 2 DM (VDR
rs2228570 [42], VDR rs1544410 [41, 43]). VDR rs2228570
and IL4 polymorphisms were also related to the risk of
chronic kidney disease [44, 45]. On the other hand, there are
also data indicating no major effect of IL12B on type 1 DM
susceptibility in the entire study group [46], no association of
IL4R with type 1 DM [47], no evident causal relationship
between vitamin D pathway genes and type 2 DM, myocardial
infarction or mortality [48], similar distribution of genotypes,
allele and haplotypes of VDR rs2228570 and VDR rs731236
between type 2 DM patients and controls [49], no contribu-
tion of VDR rs1544410 to type 1 DM susceptibility [50], and
no association of VDR rs1544410 with chronic kidney disease
susceptibility [51].

In this study we were not able to show significant
differences in the frequency distribution of tested polymor-
phic variants of T-cell-related cytokine genes or vitamin D
pathway genes between HD patients with ESRD due to type
2 DM nephropathy and controls as well as HD patients
with other causes of ESRD analyzed together. This lack of
association was present although the examined type 2 DM
nephropathy patients showed clinical complications more
frequently than HD patients with other renal diseases: higher
dialysis related mortality rate [3], higher prevalence of CAD
including myocardial infarction [4], lower serum PTH, and
lower frequency of parathyroidectomy and treatment with
cinacalcet, all of them predictive for higher tendency to
adynamic bone disease [7]. Type 2 DM nephropathy patients
with or without diagnosis of CAD also did not differ in tested
genotype distributions.

Development of ESRD substantially ameliorates interpa-

tient clinical variability related to underlying renal impair-
ment and exposes uremia-related signs and symptoms. Com-
parisons of type 2 DM nephropathy patients in respect of
tested genotype frequencies with subjects showing other
common causes of ESRD revealed that the former group has
a higher IL18 rs360719 minor allele frequency than chronic
infective tubulointerstitial nephritic group. In this case, lower
IL18 rs360719 minor allele frequency in tubulointerstitial
nephritic patients was observed also when their results were
compared to those of healthy subjects. Sánchez et al. [52] have
found a significant increase in the relative expression of IL-
18 mRNA in individuals carrying the rs360719 minor allele.
IL-18 is IFN-γ inducing factor. Infective tubulointerstitial
nephritic patients are known to have diminished ability of
blood leukocytes to produce IFN-γ [53]. Our study indicates
that this may be related to lower frequency of IL18 rs360719
minor allele in this group compared to controls and type 2
DM nephropathy patients. In type 2 DM patients with overt
nephropathy, positive correlations between plasma IFN-γ,
proteinuria, and eGFR were found [54].

Due to limited financial support, we did not perform any
functional studies regarding T-cell-related interleukin and
vitamin D pathway genes, especially that multiple influences
independent or dependent on genetic profile need to be taken
into account in such studies conducted in the uremic milieu.
Although the examined patients showing ESRD due to type
2 DM nephropathy were well-defined group, they obviously
were not consistent in HLA DRB1 alleles. The latter could be
important in modulating susceptibility to advanced type 2
DM nephropathy and related complications, like it was shown
for type 1 DM [55] or type 2 DM [41], regardless of their
complications.

5. Summary

Distributions of tested T-cell cytokine gene polymorphisms
or vitamin D pathway gene polymorphisms are not signifi-
cantly different among patients with ESRD due to type 2 DM
nephropathy and healthy individuals. Subjects with ESRD
due to type 2 DM nephropathy differ in clinical manifesta-
tion from patients with other nephropathies leading to dialysis
dependency, but differences in tested genotype distributions
were found only in IL18 rs360719 compared with chronic
tubulointerstitial nephritic patients. This difference probably
arose from the fact that pathology of chronic infective
tubulointerstitial nephritis might have been associated with
this specific polymorphism.

6. Conclusions

In Polish HD patients, T-cell cytokine gene polymorphisms
and vitamin D pathway gene polymorphisms are not associ-
ated with ESRD due to type 2 DM nephropathy. IL18
polymorphism is worthy to be further investigated in chronic
infective tubulointerstitial nephritic patients as being possibly
associated with this disease.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

References

[1] E. Villar, H. C. Sean, and S. P. McDonald, “Incidence, treat-
ments, outcomes, and sex effect on survival in patients with
end-stage renal disease by diabetes status in Australia and New
Zealand (1991–2005),” Diabetes Care, vol. 30, no. 12, pp. 3070–
3076, 2007.

[2] A. Sattar, C. Argyropoulos, L. Weissfeld et al., “All-cause and
case-specific mortality associated with diabetes in prevalent
hemodialysis patients,” BMC Nephrology, vol. 13, article 130,
2012.

[3] F. Chantrel, I. Enache, M. Bouiller et al., “Abysmal prognosis
of patients with type 2 diabetes entering dialysis,” Nephrology
Dialysis Transplantation, vol. 14, no. 1, pp. 129–136, 1999.

[4] H. Al-Thani, A. Shabana, A. Hussein et al., “Cardiovas-
cular complications in diabetic patients undergoing regular
hemodialysis: a 5-year observational study,” Angiology, 2014.

[5] M. J. Sarnak and B. L. Jaber, “Mortality caused by sepsis in
patients with end-stage renal disease compared with the general
population,” Kidney International, vol. 58, no. 4, pp. 1758–1764,
2000.

[6] S.-M. Alavian and S. V. Tabatabaei, “The effect of diabetes
mellitus on immunological response to hepatitis B virus vaccine
in individuals with chronic kidney disease: a meta-analysis of
current literature,” Vaccine, vol. 28, no. 22, pp. 3773–3777, 2010.
[7] D. Zayour, M. Daouk, W. Medawar, M. Salamoun, and G. El-Hajj Fuleihan, “Predictors of bone mineral density in patients on hemodialysis,” *Transplantation Proceedings*, vol. 36, no. 5, pp. 1297–1301, 2004.

[8] D. M. Li, Y. Zhang, B. Ding et al., “The association between vitamin D deficiency and diabetic nephropathy in type 2 diabetic patients,” *Zhonghua Nei Ke Za Zhi*, vol. 52, no. 11, pp. 970–974, 2013 (Chinese).

[9] C.-C. Wu, H.-K. Sytwu, K.-C. Lu, and Y.-F. Lin, “Role of T cells in type 2 diabetic nephropathy,” *Experimental Diabetes Research*, vol. 2011, Article ID 514738, 9 pages, 2011.

[10] Y. Tian, C. Wang, Z. Ye, X. Xiao, A. Kijlstra, and P. Yang, “Effect of 1,25-Dihydroxyvitamin D3 on Th17 and Th1 response in patients with Behcet’s disease,” *Investigative Ophthalmology and Visual Science*, vol. 53, no. 10, pp. 6434–6441, 2012.

[11] J. Stachowski, “Hepatitis C virus infection in renal diseases: state of knowledge, therapeutic problems and perspectives,” *Polski Merkuriusz Lekarski*, vol. 8, no. 46, pp. 303–306, 2000 (Polish).

[12] B. D. Livingston, J. Alexander, C. Crimi et al., “Altered helper T lymphocyte function associated with chronic hepatitis B virus infection and its role in response to therapeutic vaccination in humans,” *Journal of Immunology*, vol. 162, no. 5, pp. 3088–3095, 1999.

[13] J. Zhang, G. Hua, X. Zhang, R. Tong, X. Du, and Z. Li, “Regulatory T cells/T-helper cell 1 functional imbalance in uremic patients on maintenance haemodialysis: a pivotal link between microinflammation and adverse cardiovascular events,” *Nephrology*, vol. 15, no. 1, pp. 33–41, 2010.

[14] E. Borella, G. Nesher, E. Israeli, and Y. Shoenfeld, “Vitamin D: a new anti-infective agent?” *Annals of the New York Academy of Sciences*, vol. 1317, no. 1, pp. 76–83, 2014.

[15] E. Zitt, H. Sprenger-Mahr, F. Knoll, U. Neyer, and K. Lhotta, “Vitamin D deficiency is associated with poor response to active hepatitis B immunisation in patients with chronic kidney disease,” *Vacccine*, vol. 30, no. 5, pp. 931–935, 2012.

[16] T. Shoji and Y. Nishizawa, “Vitamin D and survival of hemodialysis patients,” *Clinical calcium*, vol. 14, no. 9, pp. 64–68, 2004 (Japanese).

[17] L. Steingrimsdottir, O. Gunnarsson, O. S. Indridason, L. Franzson, and G. Sigurdsson, “Relationship between serum parathyroid hormone levels, vitamin D sufficiency, and calcium intake,” *The Journal of the American Medical Association*, vol. 294, no. 18, pp. 2336–2341, 2005.

[18] R. Pacifici, “Role of T cells in the modulation of PTH action: physiological and clinical significance,” *Endocrine*, vol. 44, no. 3, pp. 576–582, 2012.

[19] H. Zhang, J. Wang, B. Yi et al., “BsmI polymorphisms in vitamin D receptor gene are associated with diabetic nephropathy in type 2 diabetes in the Han Chinese population,” *Gene*, vol. 495, no. 2, pp. 183–188, 2012.

[20] N. Mitraoui, I. Ezzidi, M. Kacem et al., “Predictive value of interleukin-10 promoter genotypes and haplotypes in determining the susceptibility to nephropathy in type 2 diabetes patients,” *Diabetes/Metabolism Research and Reviews*, vol. 25, no. 1, pp. 57–63, 2009.

[21] I. Ezzidi, N. Mitraoui, M. Kacem et al., “Interleukin-10-592C/A,-819C/T and -1082A/G promoter variants affect the susceptibility to nephropathy in Tunisian type 2 diabetes (T2DM) patients,” *Clinical Endocrinology*, vol. 70, no. 3, pp. 401–407, 2009.

[22] M. Karadeniz, M. Erdogan, A. Berdeli, and C. Yilmaz, “Association of interleukin-6 -174 G>C promoter polymorphism with increased risk of type 2 diabetes mellitus patients with diabetic nephropathy in Turkey,” *Genetic Testing and Molecular Biomarkers*, vol. 18, no. 1, pp. 62–65, 2014.

[23] M. Murea, T. C. Register, J. Divers et al., “Relationships between serum MCP-1 and subclinical kidney disease: African American-Diabetes Heart Study,” *BMC Nephrology*, vol. 13, no. 1, article 148, 2012.

[24] A. E. Grzegorzewska, D. Pajzderski, A. Sowińska, and P. P. Jagodziński, “Polyorphism of monocyte chemoattractant protein 1 (MCP1-2518 A/G) and responsiveness to hepatitis B vaccination in hemodialysis patients,” *Polskie Archiwum Medycyny Wewnętrznej*, vol. 124, no. 1-2, pp. 10–18, 2014.

[25] A. E. Grzegorzewska, D. Pajzderski, A. Sowińska, and P. P. Jagodziński, “Monocyte chemoattractant protein-1 gene (MCP1-1-2518 A/G) polymorphism and serological markers of hepatitis B virus infection in hemodialysis patients,” *Medical Science Monitor*, vol. 20, pp. 1101–1116, 2014.

[26] Group KDIGOKCW, “KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease,” *Kidney International Supplements*, vol. 3, pp. 1–150, 2013.

[27] A. E. Grzegorzewska, P. Wobszal, and P. P. Jagodziński, “Interleukin-18 promoter polymorphism and development of antibodies to surface antigen of hepatitis B virus in hemodialysis patients,” *Kidney and Blood Pressure Research*, vol. 35, no. 1, pp. 1–8, 2012.

[28] A. E. Grzegorzewska, P. M. Wobszal, A. Sowińska, A. Mostowska, and P. P. Jagodziński, “Association of the interleukin-12 polymorphic variants with the development of antibodies to surface antigen of hepatitis B virus in hemodialysis patients,” *BMC Nephrology*, vol. 13, no. 1, article 75, 2012.

[29] A. E. Grzegorzewska, D. Pajzderski, A. Sowińska, A. Mostowska, and P. P. Jagodziński, “IL4R and IL13 polymorphic variants and development of antibodies to surface antigen of hepatitis B virus in hemodialysis patients in response to HBV vaccination or infection,” *Vaccine*, vol. 31, no. 14, pp. 1766–1770, 2013.

[30] S. S. Rich, “Genetics of diabetes and its complications,” *Journal of the American Society of Nephrology*, vol. 17, no. 2, pp. 353–360, 2006.

[31] N. D. Palmer and B. I. Freedman, “Insights into the genetic architecture of diabetic nephropathy,” *Current Diabetes Reports*, vol. 12, no. 4, pp. 423–431, 2012.

[32] N. Franceschini, N. M. Shara, H. Wang et al., “The association of genetic variants of type 2 diabetes with kidney function,” *Kidney International*, vol. 82, no. 2, pp. 220–225, 2012.

[33] N. D. Palmer, C. W. McDonough, P. J. Hicks et al., “A genome-wide association search for type 2 diabetes genes in African americans,” *PLoS ONE*, vol. 7, no. 1, Article ID e29202, 2012.

[34] A. Davoodi-Semiromi, J. J. Yang, and J.-X. She, “IL-12p40 is associated with type 1 diabetes in Caucasian-American families,” *Diabetes*, vol. 51, no. 7, pp. 2334–2336, 2002.

[35] D. B. Mirel, A. M. Valdes, L. C. Lazzeroni, R. L. Reynolds, H. A. Erlich, and J. A. Noble, “Association of IL4R haplotypes with type 1 diabetes,” *Diabetes*, vol. 51, no. 11, pp. 3336–3341, 2002.

[36] T. L. Bugawan, D. B. Mirel, A. M. Valdes, A. Paneo, P. Pozzilli, and H. A. Erlich, “Association and interaction of the IL4R,
IL4, and IL13 loci with type 1 diabetes among Filipinos,” *The American Journal of Human Genetics*, vol. 72, no. 6, pp. 1505–1514, 2003.

[38] B. Frederiksen, E. Liu, J. Romanos et al., “Investigation of the vitamin D receptor gene (VDR) and its interaction with protein tyrosine phosphatase, non-receptor type 2 gene (PTPN2) on risk of islet autoimmunity and type 1 diabetes: the Diabetes Autoimmunity Study in the Young (DAISY),” *The Journal of Steroid Biochemistry and Molecular Biology*, vol. 133, no. 1, pp. 51–57, 2013.

[39] C. Panierakis, G. Goulielmos, D. Mamoulakis, E. Petraki, E. Papavasiliou, and E. Galanakis, “Vitamin D receptor gene (VDR) and its interaction with protein tyrosine phosphatase, non-receptor type 2 gene (PTPN2) on risk of islet autoimmunity and type 1 diabetes: the Diabetes Autoimmunity Study in the Young (DAISY),” *The Journal of Steroid Biochemistry and Molecular Biology*, vol. 133, no. 1, pp. 51–57, 2013.

[40] Q. Wang, B. Xi, K. H. Reilly, M. Liu, and M. Fu, “Quantitative assessment of the associations between four polymorphisms (FokI, ApaI, BsmI, TaqI) of vitamin D receptor gene and risk of diabetes mellitus,” *Molecular Biology Reports*, vol. 39, no. 10, pp. 9405–9414, 2012.

[41] N. M. Al-Daghri, O. Al-Attas, M. S. Alokail et al., “Vitamin D receptor gene polymorphisms and HLA DRB1*04 cosegregation in Saudi type 2 diabetes patients,” *Journal of Immunology*, vol. 188, no. 3, pp. 1325–1332, 2012.

[42] F.-L. Velayoudom-Céphise, L. Larifla, J.-P. Donnet et al., “Vitamin D deficiency, vitamin D receptor gene polymorphisms and cardiovascular risk factors in Caribbean patients with type 2 diabetes,” *Diabetes & Metabolism*, vol. 37, no. 6, pp. 540–545, 2011.

[43] D. A. F. Ferrarezi, N. Bellili-Muñoz, D. Dubois-Laforgue et al., “Allelic variations of the vitamin D receptor (VDR) gene are associated with increased risk of coronary artery disease in type 2 diabetics: the DIABHYCAR prospective study,” *Diabetes and Metabolism*, vol. 39, no. 3, pp. 263–270, 2013.

[44] T. B. Zhou, Z. P. Jiang, M. F. Huang, and N. Su, “Association of vitamin D receptor BsmI (rs1544410) gene polymorphism with the chronic kidney disease susceptibility,” *Journal of Receptors and Signal Transduction Research*, 2014.

[45] E. Sánchez, R. J. Palomino-Morales, N. Ortego-Centeno et al., “Identification of a new putative functional IL18 gene variant through an association study in systemic lupus erythematosus,” *Human Molecular Genetics*, vol. 18, no. 19, pp. 3739–3748, 2009.

[46] I. P. Kudriashova, T. P. Ospel’nikova, and F. I. Ershov, “Cycloferon administration in chronic pyelonephritis: changes in interferon status,” *Terapevticheskii Arkhiv*, vol. 83, no. 6, pp. 33–35, 2011 (Russian).

[47] C.-C. Wu, J.-S. Chen, K.-C. Lu et al., “Aberrant cytokines/chemokines production correlate with proteinuria in patients with overt diabetic nephropathy,” *Clinica Chimica Acta*, vol. 411, no. 9-10, pp. 700–704, 2010.

[48] N. Israni, R. Goswami, A. Kumar, and R. Rani, “Interaction of Vitamin D receptor with HLA DRB1*0301 in Type 1 diabetes patients from North India,” *PLoS ONE*, vol. 4, no. 12, Article ID e8023, 2009.