Big Bang Nucleosynthesis: Current Status

Gary Steigman

Departments of Physics and Astronomy, The Ohio State University, 174 West 18th Avenue, Columbus, OH 43210, USA

Abstract. During its hot, dense, early evolution the Universe was a primordial nuclear reactor, synthesizing the light nuclides D, 3He, 4He and 7Li in the first thousand seconds. The presently observed abundances of these relic nuclides provide a unique window on the early Universe. The implications of current observations for cosmology (the universal density of nucleons) and for particle physics (new particles beyond the standard model) will be reviewed. The present data appear to be in rough agreement with the predictions of the standard, hot, big bang model for three species of light neutrinos, and a nucleon-to-photon ratio restricted to a narrow range of 3-4 parts in 10 billion. On closer inspection, however, a tension is revealed between the inferred primordial abundances of deuterium and helium-4. Although observations of deuterium in nearly primordial, high-redshift QSO absorbers may help to relieve this tension, current data appear to exacerbate the crisis. Resolution of this conflict may lie with the data (statistical uncertainties?), with the analysis of the data (systematic uncertainties?), or with the fundamental physics (massive, unstable, and/or degenerate neutrinos?). Independent (non-BBN) evidence from cosmological observations of large scale dynamics and structure may be useful in deciding among the current options.

1. Introduction

During the first thousand seconds in the evolution of the Universe, as it expanded and cooled from very high densities and temperatures, nuclear reactions transformed neutrons and protons into astrophysically interesting abundances of the light nuclides deuterium, helium-3, helium-4 and lithium-7. In the context of Standard, Big Bang Nucleosynthesis (SBBN; homogeneous, isotropic expansion, three flavors of non-degenerate neutrinos) these abundances depend on only one adjustable parameter, the nucleon density. Since as the Universe expands all densities decrease, it is useful to express the nucleon density in terms of a nearly constant parameter, the ratio of nucleons to photons, which has barely changed at all since the annihilation of electron-positron pairs in the early Universe.

1 E-mail : steigman@mps.ohio-state.edu.
\[\eta \equiv n_N/n_\gamma \; ; \; \eta_{10} \equiv 10^{10}\eta \]

(1)

The contribution of nucleons (baryons) to the universal mass-density may be written as the dimensionless ratio of the baryon density to the critical density (which depends on the present value of the Hubble parameter: \(H_0 = 100 \, h \, \text{kms}^{-1}\text{Mpc}^{-1} \); \(\Omega_B \equiv \rho_B/\rho_{\text{crit}} \)).

\[\Omega_B \, h^2 = \eta_{10}/273 \]

(2)

SBBN is an overdetermined theory in that the observable abundances of four nuclides are predicted on the basis of one free parameter. In Figure 1 the predictions of the primordial abundances are shown for a wide range of \(\eta \). SBBN is falsifiable in that it is possible that no value of \(\eta \) will be consistent with the primordial abundances inferred from the observational data. Furthermore, consistency requires that if an acceptable value of \(\eta \) is found, the corresponding nucleon density at present, \(\Omega_B \), is in agreement with other astronomical observations. Indeed, since there must be enough baryons to account for the visible matter in the Universe, but not too many to violate constraints on the total mass density, the interesting range of \(\eta \) in Figure 1 is restricted to \(3 \times 10^{-11} - 1 \times 10^{-8} \). Even so, note the enormous range in the predicted abundances of deuterium and lithium. Over this same range in \(\eta \) the predicted primordial mass fraction of \(^4\text{He}, Y_P\), hardly changes at all. As we shall soon see, consistency between D and \(^4\text{He}\) provides a key test of SBBN.

1.1. Status Quo Ante

SBBN has provided one of the most spectacular confirmations of the standard, hot Big Bang model of cosmology. Along with the Hubble expansion and the cosmic background radiation, SBBN is one of the pillars of the standard model. It is the only one offering a connection between particle physics and cosmology. For example, Walker et al (1991) reanalyzed the relevant observational data to make a critical confrontation between predictions and observations. Walker et al (1991) concluded that SBBN was consistent with the observational data for \(\eta_{10} = 3.4 \pm 0.3 \) (\(\Omega_B h^2 \approx 0.01 \)), making the nucleon density one of the very best determined of all cosmological parameters. Furthermore, they noted that to preserve this consistency required that the total number of “equivalent”, light neutrinos (particles which were relativistic at BBN), \(N_\nu \), should not exceed 3.4. With the three known flavors of neutrinos (provided none has a mass comparable to MeV energies), this leaves very little room for any new (light) particles “beyond the standard model”. At this point it may have been tempting to declare victory for SBBN and to move on to other problems in cosmology. However, it was still important to subject the standard model to ever more precise observational tests in order to reaffirm its consistency and to narrow even further the bounds on the nucleon density and on particle physics beyond the standard model. To our surprise, my colleagues and I found a dark cloud looming on the horizon of the standard model (Hata et al 1995).

1.2. A Crisis For SBBN?

There had, in fact, always been a “tension” between the predictions of SBBN and the inferred primordial abundances of D and \(^4\text{He}\) (Kernan & Krauss 1994, Olive & Steigman 1995) in the sense that while deuterium favored “high” values of \(\eta \) (Steigman & Tosi 1992, 1995), helium-4 pointed towards lower values (Olive & Steigman 1995). Indeed, in
Figure 1. SBBN-predicted abundances of the light nuclides versus η. The 4He mass fraction (Y_p) is shown along with the ratio by number to hydrogen of D (2H, y_2), 3He (y_3), and 7Li (y_7). This figure is from D. Thomas.
a reanalysis focusing on the 4He abundance, Olive & Steigman (1995) found for the best estimate of the number of equivalent light neutrinos, $N_\nu = 2.2$. Only a generous error estimate permitted consistency with SBBN. It was, therefore, not entirely unexpected when Hata et al (1995) identified a "crisis" for SBBN in their comparison of the best estimates of the primordial abundances derived from the observational data with those predicted by SBBN. The problem is illustrated in Figure 2 which concentrates on the key nuclides, D, 4He and 7Li. While the 4He abundance is just barely consistent with the low end of the η range identified by Walker et al (1991), the deuterium abundance is only consistent with the upper end of that range. Note that due to its "valley" shape and to the relatively larger uncertainties in its predicted and inferred abundances, lithium is consistent with either deuterium or helium. Since it thus fails to discriminate between the low η favored by helium and the higher η preferred by deuterium, lithium is ignored in the following discussion.

Three possible resolutions of the challenge to SBBN posed by the D – 4He conflict suggest themselves. Perhaps the primordial abundance of helium inferred from observations of extragalactic H II regions (see, e.g., Olive & Steigman 1995 and Olive, Skillman, & Steigman 1997) is too small (see, e.g., Izotov, Thuan, & Lipovetsky 1994 and Izotov & Thuan 1997). If the primordial helium mass fraction were closer to 0.25 than to 0.23, the challenge to SBBN evaporates. Since several dozen H II regions are observed, the statistical uncertainty in Y is small, typically ± 0.003 or smaller (Olive, Skillman, & Steigman 1997, Izotov & Thuan 1997). But systematic errors, such as those due to uncertainties in the corrections for unseen neutral helium, for collisional ionization, for temperature fluctuations and, especially, for underlying stellar absorption, may well be much larger. Alternatively, it could be that our adopted primordial deuterium abundance is too small. If the true primordial ratio (by number) of deuterium to hydrogen were a few parts in 10^4 rather than the few parts in 10^5 inferred from observations in the solar system and the local interstellar medium (ISM), lower η, consistent with Y_P, is allowed (see Fig. 2). This local estimate of the deuterium abundance requires an extrapolation from "here and now" (solar system, ISM) to "there and then" (primordial). Any errors in this extrapolation open the door to systematic errors. Finally, the possibility remains that our estimates of the primordial abundances are correct and the D – 4He tension is a hint of "new physics". For example, if the tau neutrino were massive ($\sim 5 \rightarrow 20$ MeV) and unstable (lifetime $\sim 0.1 \rightarrow 10$ sec.), the “effective” number of equivalent light neutrinos would be less than the standard model case of $N_\nu = 3$ (Kawasaki et al 1994). For $N_\nu = 2.1 \pm 0.3$, consistency among the primordial abundances may be reestablished (Hata et al 1995, Kawasaki, Kohri, & Sato 1997). Other, non-standard, particle physics solutions are conceivable; degenerate neutrinos offer one such option (Kohri, Kawasaki, & Sato 1997).

2. Three Possible Resolutions of the Challenge to SBBN

The simplest resolution of the SBBN crisis would be that we have been overly optimistic in believing the accuracy of our estimates of the primordial abundances derived from the observational data. Primordial abundances are derived, not “observed”. Each step in the process of acquiring, reducing, and analyzing the data presents opportunities for systematic as well as statistical errors to rear their ugly heads. We are fortunate in
Figure 2. SBBN predictions (solid lines) for 4He (Y), D (y_2), and 7Li (y_7) with the theoretical uncertainties (1σ) estimated by the Monte Carlo method (dashed lines). Also shown are the regions constrained by the observations at 68% and 95% C.L. (shaded regions and dotted lines, respectively). This figure is from Hata et al (1995).
that the various light element abundances are derived from very different observations (deuterium via absorption in the UV and optical parts of the spectrum from neutral interstellar gas and from counting particles in the solar wind and in lunar and meteoritic material; helium-4 from optical emission of hot, ionized gas in extragalactic H II regions which have been relatively little polluted with the debris of stellar evolution; lithium via absorption in the spectra of very old stars which, as with the extragalactic H II regions, were formed of very nearly primordial material). As a result, it is very unlikely that errors in deriving the primordial abundance of one nuclide have any connection with those associated with the inferred abundances of the others. For this reason I will review the current status of the abundance determinations, along with their associated uncertainties, separately for deuterium and for helium-4.

2.1. Deuterium: Current Status

In the best of all worlds we would prefer observations of high-redshift regions (i.e., early in the evolution of the Universe) which offer direct evidence of very little pollution by stellar evolution (low abundances of the “metals”, the heavy elements cooked in stars). In the last few years just such data have become available for deuterium as a result of the Keck telescope observations of high-redshift (hi-z), low-metallicity (lo-Z) absorbers lying between us and very distant QSOs. Unfortunately, the early data from these observations appear inconsistent and contradictory (Songaila et al 1994; Carswell et al 1994; Rugers & Hogan 1996; Tytler, Fan, & Burles 1996; Burles & Tytler 1997a). On the one hand, the earliest data argue for a very high D abundance which, while consistent with the SBBN prediction if the inferred helium abundance were correct, seems inconsistent with the ISM and solar system data (Steigman 1994; Steigman & Tosi 1995; Dearborn, Steigman, & Tosi 1996; Tosi et al 1998). The impact of these data is shown on Figure 3 (labelled “High D_{QSO}”), the analog of Figure 2 with the hi-z, lo-Z QSO absorption data supplementing the solar system and ISM estimates of primordial deuterium. As is clear from Figure 3, such a high primordial deuterium abundance relieves the tension between the predictions of SBBN and the observational data. However, if such a high primordial D abundance is correct a new challenge is posed, not to SBBN but to our understanding of the evolution of the Galaxy. How is it that the Galaxy has managed to destroy deuterium by an order of magnitude while keeping the gas fraction relatively large and the heavy element abundance relatively small? After all, if deuterium in the ISM has been destroyed by an order of magnitude then 90% of the ISM has been cycled through stars, so why is it that more mass is not tied up in long-lived, low-mass stars and/or stellar remanants, and where are the metals produced by these stars?

Hints that the early claims of high deuterium abundances may have been contaminated by interloping hydrogen (Steigman 1994) receive support from subsequent Keck observations (Tytler, Fan, & Burles 1996; Burles & Tytler 1997a,b,c,d). The implications for SBBN of these data are also shown in Figure 3 (labelled “Low D_{QSO}/D_{ISM}”). Although entirely consistent with ISM and solar system data and the evolution of the Galaxy (e.g., Tosi et al 1998), these low D abundances exacerbate the crisis with SBBN. At present, the observational situation is unclear. While some of the early claims of high-D have been withdrawn or modified (Hogan 1997), others persist and have been supplemented with new data from the Hubble Space Telescope (Webb et al 1997). At the same time, there has been some racheting up of the low D abundances reported earlier; the current best estimate from Burles & Tytler (1997d) is (D/H)$_P = 3.40 \pm 0.25 \times 10^{-5}$
Figure 3. As in Figure 2 with the high deuterium-abundance QSO measurements from Rugers & Hogan (1996) and the low deuterium-abundance QSO data from Tytler, Fan, & Burles (1996). This figure is from Hata et al (1997).
which, in SBBN, corresponds to $\eta_{10} = 5.1 \pm 0.3$. This range of η is just barely consistent with the lithium abundance (see, e.g., Pinsonneault et al. 1998) but is inconsistent with a low helium abundance (see Fig. 3). It is to be hoped that more hi-z/lo-Z data will help resolve the hi-D/lo-D paradox. Until then, it is important to consider the uncertainties in the derived primordial abundance of ^4He.

2.2. Helium-4: Current Status

Helium-4 is a key player in testing the consistency of SBBN. As the second most abundant element (after hydrogen) in the Universe, it may be observed throughout the Universe and its abundance determined to a much higher statistical accuracy than that of any other element. As the most tightly bound of the light nuclides, ^4He captures most of the neutrons which were present when primordial alchemy began so that its predicted primordial abundance is relatively insensitive to η. But since the neutron abundance at BBN depends on the competition between the weak interaction rate (interconverting neutrons and protons) and the universal expansion rate (driven by the total energy density which, at that time, is dominated by relativistic particles), the helium abundance provides a probe of the early expansion rate and, indirectly, of the particle content of the early Universe (Steigman, Schramm, & Gunn 1977). It is the relative insensitivity of Y_P to η which elevates helium to such a key role in testing SBBN. Either the derived primordial abundance of helium does, or does not, agree with the SBBN prediction based on consistency with the abundances of the other light nuclides. For example, a “high” deuterium abundance $(D/H)_P = 2.0 \times 10^{-4}$ corresponds to $\eta_{10} = 1.7$ and a predicted primordial helium mass fraction $Y_P = 0.234$, while a “low” deuterium abundance $(D/H)_P = 3.4 \times 10^{-5}$ favors $\eta_{10} = 5.1$ and $Y_P = 0.247$. If Y_P can be determined to better than ± 0.01, the SBBN crisis can be resolved or confirmed.

With data assembled from the literature, Olive & Steigman (1995) utilized the helium abundances derived from observations of low-metallicity, extragalactic H II regions in an attempt to pin down the primordial helium abundance. The restriction to low-metallicity regions is to minimize the contamination from stellar-produced helium. Nonetheless, Olive & Steigman (1995) find that even these low-metallicity data are correlated in the sense that, on average, the helium abundance increases with metallicity. From a linear fit of helium (mass fraction) to oxygen abundance, Olive & Steigman (1995) derived $Y_P = 0.232 \pm 0.003$, leading to a 2σ upper bound $Y_P \leq 0.238$. With allowance for unknown systematic uncertainties of order 0.005, this suggests a robust upper bound to primordial helium of $Y_P^{\text{MAX}} \leq 0.243$. This estimate is consistent with “high” deuterium but not with “low” deuterium (see Fig. 3). However, new H II region data (Izotov, Thuan & Lipovetsky 1994) suggests a higher primordial abundance of helium, more consistent with the “low” deuterium value. Using all the helium data which had become available, Olive, Skillman & Steigman (1997) found that the newer data were entirely consistent with previous observations and they derived for the combined data set (62 H II regions) $Y_P = 0.234 \pm 0.002$. Thus, unless there are presently unidentified, large systematic offsets, consistency between D and ^4He requires high primordial deuterium (low η), in conflict with some hi-z, lo-Z determinations (Burles & Tytler 1997a,b,c,d) and with solar system and local ISM data (Steigman & Tosi 1992, 1995; Dearborn, Steigman & Tosi 1996; Tosi et al. 1998).

More recently, Izotov & Thuan (1997) have added substantially to their independent
data set of helium abundances in low metallicity H II regions. As they have accumulated more data, the gap between their abundances and those from earlier work has grown. The Izotov & Thuan (1997) estimate of $Y_P = 0.244 \pm 0.002$ differs by some 4-5σ from the Olive & Steigman (1995) value (note that the somewhat higher estimate of Olive, Skillman & Steigman (1997) already included many of the Izotov & Thuan (1997) regions). There is apparently a systematic offset which is much larger than the identified statistical errors. Although some of the difference is traceable to differing corrections for unseen neutral helium ($\lesssim 0.002$) and some to a different approach to correcting for collisional excitation ($\lesssim 0.002$), nonetheless an unexplained offset ($\gtrsim 0.008$) remains. As is clear from Figure 3, the Izotov & Thuan (1997) results are fully consistent with “low” deuterium inferred from solar system and local ISM data as well as from some QSO absorption line systems. However, until the offset in helium abundance determinations is understood it may be premature to heave a sigh of relief and declare the “crisis” resolved. Therefore, it remains of interest to investigate the consequences of the possibility that both the deuterium and helium abundances may be “low”, and that the SBBN crisis is due to a small perturbation in the early expansion rate of the Universe traceable, perhaps, to non-standard particle physics (“beyond the standard model”).

2.3. Neutrino Counting

The expansion of the Universe is driven by the energy density of its constituents. In the early Universe, at the time of primordial alchemy, the energy density is dominated by “radiation”, the relativistic particles (and antiparticles) present in the thermal bath. In SBBN these are photons, electron-positron pairs, and three families of light (i.e., relativistic) neutrinos. If ρ_γ, $\rho_{e\pm}$, and ρ_{ν} are the energy densities for photons, electron-positron pairs, and one species of light (massless) neutrinos, the total energy density may be written as,

$$\rho_{TOT}^{BBN} = \rho_\gamma + \rho_{e\pm} + N_\nu \rho_\nu$$ \hspace{1cm} (3)

For SBBN, the “effective” number of (equivalent) light neutrinos is the standard model value $N_\nu = 3$. If, however, the energy density of the early Universe (at a fixed temperature) differs from its standard value, the Universe will expand either faster or slower, leaving less or more time for neutrons to decay to protons and for nuclear reactions to occur. This effect may be parameterized by N_ν; if $N_\nu > 3$, the Universe expands faster, leaving more neutrons which results in more helium being synthesized. As already noted, the D – 4He data suggest the oppposite, $N_\nu = 2.1 \pm 0.3$ (Hata et al 1995).

Neutrino counting in the Big Bang differs in some crucial ways from neutrino counting at LEP. For BBN, N_ν measures the contribution to the total energy density in the early Universe of any new particles (e.g., light scalars, sterile neutrinos, etc.) or of new physics (e.g., degenerate neutrinos). In contrast, experiments at particle accelerators such as LEP are sensitive to particles which possess full (or nearly full) strength weak interactions, even if they are very massive ($\lesssim M_Z/2$). For example, as Kawasaki et al (1994) have shown, if the tau-neutrino were very massive but unstable, decaying into a mu-neutrino and a light, weakly-interacting scalar, $N_\nu < 3$ during BBN is possible. Such a massive tau-neutrino would be “light” at LEP and would be counted there as one massless neutrino species. As Kawasaki, Kohri & Sato (1997) have shown (see also Kawasaki et al 1994), the D – 4He tension would be relieved if the tau-neutrino had a
mass in the range 10 – 20 MeV and a lifetime within an order of magnitude of 0.1 second. Alternatively, Kohri, Kawasaki, & Sato (1997) have shown that neutrino degeneracy (excess of neutrinos over antineutrinos, or vice-versa) may also resolve the crisis for SBBN. Although it is difficult to conceive of testing the latter proposal, current accelerator experiments do have the potential to probe tau-neutrino masses in the “interesting” range identified above.

3. Summary

The predictions of SBBN are observationally challenged. The primordial abundances of D and 4He inferred from observational data appear to be inconsistent with the predictions of SBBN. Several options present themselves with the potential to resolve this crisis. Perhaps the data are at fault. The conflicting deuterium abundances derived from observations of high-redshift, low-metallicity QSO absorbers point an incriminating finger. If these data are supplemented with solar system and ISM deuterium abundances, the lower D/H ratios are preferred. But, is the extrapolation from here and now (solar system, ISM) to there and then (primordial) under control, or might there be unidentified systematic errors lurking? The two sets of apparently inconsistent helium abundances suggest systematic errors at play in the extragalactic H II region abundance determinations. Although new data is always welcome, it is clear that a better understanding of existing data may prove even more important.

In the absence of new data and/or a better understanding of the extant data it may be worthwhile to look elsewhere for clues. My colleagues and I (Steigman, Hata, & Felten 1997; SHF) have discarded the constraint on η from SBBN and have utilized four other observational constraints (Hubble parameter, age of the Universe, cluster gas (baryon) fraction, and effective “shape” parameter Γ) to predict the three key cosmological parameters (Hubble parameter, total matter density, and the baryon density or η). Considering both open and flat CDM models and flat ΛCDM models, SHF tested goodness of fit and drew confidence regions by the $\Delta \chi^2$ method. In all of these models SHF find that large η_{10} ($\gtrsim 6$) is favored strongly over small η_{10} (~ 2), supporting reports of low deuterium abundances on some QSO lines of sight, and suggesting that observational determinations of primordial 4He may be contaminated by systematic errors.

Acknowledgments

I am indebted to my many collaborators whose joint work I have presented here. Special thanks for their advice and assistance are due J. E. Felten, N. Hata, K. A. Olive, M. Pinsonneault, D. Thomas, M. Tosi, and T. P. Walker. This research is supported at Ohio State by DOE grant DE-FG02-91ER-40690.
References

Burles S & Tytler D 1997a A. J. 114 1330
Burles S & Tytler D 1997b preprint astro-ph/9712108
Burles S & Tytler D 1997c preprint astro-ph/9712109
Burles S & Tytler D 1997d preprint astro-ph/9712263
Carswell R F, Rauch M, Weymann R J, Cooke A J, & Webb J K 1994 MNRAS 268 L1
Dearborn D S T, Steigman G, & Tosi M 1996 Ap. J. 465 887
Hata N, Scherrer R J, Steigman G, Thomas D, Walker T P, Bludman S, & Langacker P 1995 Phys. Rev. Lett. 75 3977
Hata N, Steigman G, Bludman S, & Langacker P 1997, Phys. Rev. D55, 540
Hogan C J 1997 preprint astro-ph/9712031
Izotov Y I, Thuan T X, & Lipovetsky V A 1994 Ap. J. 435 647
Izotov Y I & Thuan T X 1997 Ap. J. submitted
Kawasaki M, Kernan P, Kang H-S, Scherrer R J, Steigman G, & Walker T P 1994 Nucl. Phys. B419 105
Kawasaki M, Kohri K, & Sato K 1997 preprint astro-ph/9705148
Kernan P & Krauss L 1994 Phys. Rev. Lett. 72 3309
Kohri K, Kawasaki M, & Sato K 1997 Ap. J. 490 72
Olive K A & Steigman G 1995 Ap. J. Suppl. 97 49
Olive K A, Skillman E, & Steigman G 1997 Ap. J. 483 788
Pinsonneault M H, Walker T P, Steigman G, & Narayan V K 1998 Ap. J. submitted (OSU-TA-20/97)
Rugers M & Hogan C J 1996 Ap. J. Lett. 459 L1
Steigman G 1994 MNRAS 269 L53
Steigman, G., Hata, N., & Felten, J. E. 1997 Ap. J. submitted astro-ph/9708016
Steigman G, Schramm D N, & Gunn J E 1977 Phys. Lett. B66 202
Steigman G & Tosi M 1992 Ap. J. 401 15
Steigman G & Tosi M 1995 Ap. J. 453 173
Tosi M, Steigman G, Matteucci F, & Chiappini C 1998 Ap. J. 498 xxx
Tytler D, Fan X-M, & Burles S 1996 Nature 381 207
Walker T P, Steigman G, Schramm D N, Olive K A, & Kang H S 1991 Ap. J. 376 51
Webb J K, Carswell R F, Lanzetta K M, Ferlet R, Lemoine M, Vidal-Madjar A, & Bowen D V 1997 Nature 388 250