Early Re-Do Surgery for Glioblastoma Is a Feasible and Safe Strategy to Achieve Complete Resection of Enhancing Tumor

Philippe Schucht\(^1\)*, Michael Murek\(^1\), Astrid Jilch\(^1\), Kathleen Seidel\(^1\), Ekkehard Hewer\(^3\), Roland Wiest\(^2\), Andreas Raabe\(^1\), Jürgen Beck\(^1\)

\(^1\) Department of Neurosurgery, University Hospital Bern, Bern, Switzerland, \(^2\) Institute for Diagnostic and Interventional Neuroradiology, University Hospital Bern, Bern, Switzerland, \(^3\) Department of Neuropathology, University Hospital Bern, Bern, Switzerland

Abstract

Background: Complete resection of enhancing tumor as assessed by early (<72 hours) postoperative MRI is regarded as the optimal result in glioblastoma surgery. As yet, there is no consensus on standard procedure if post-operative imaging reveals unintended tumor remnants.

Objective: The current study evaluated the feasibility and safety of an early re-do surgery aimed at completing resections with the aid of 5-ALA fluorescence and neuronavigation after detection of enhancing tumor remnants on post-operative MRI.

Methods: From October 2008 to October 2012 a single center institutional protocol offered a second surgery within one week to patients with unintentional incomplete glioblastoma resection. We report on the feasibility of the use 5-ALA fluorescence guidance, the extent of resection (EOR) rates and complications of early re-do surgery.

Results: Nine of 151 patients (6%) with glioblastoma resections had an unintentional tumor remnant with a volume >0.175 cm\(^3\). 5-ALA guided re-do surgery completed the resection (CRET) in all patients without causing neurological deficits, infections or other complications. Patients who underwent a re-do surgery remained hospitalized between surgeries, resulting in a mean length of hospital stay of 11 days (range 7-15), compared to 9 days for single surgery (range 3-23; \(p=0.147\)).

Conclusion: Our early re-do protocol led to complete resection of all enhancing tumor in all cases without any new neurological deficits and thus provides a similar oncological result as intraoperative MRI (iMRI). The repeated use of 5-ALA induced fluorescence, used for identification of small remnants, remains highly sensitive and specific in the setting of re-do surgery. Early re-do surgery is a feasible and safe strategy to complete unintended subtotal resections.

Citation: Schucht P, Murek M, Jilch A, Seidel K, Hewer E, et al. (2013) Early Re-Do Surgery for Glioblastoma Is a Feasible and Safe Strategy to Achieve Complete Resection of Enhancing Tumor. PLoS ONE 8(11): e79846. doi:10.1371/journal.pone.0079846

Editor: James Bradley Elder, The Ohio State University Medical Center, United States of America

Received June 4, 2013; Accepted September 25, 2013; Published November 13, 2013

Copyright: © 2013 Schucht et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The authors have no support or funding to report.

Competing interests: The authors have declared that no competing interests exist.

* E-mail: philippe.schucht@insel.ch

Introduction

The resection of enhancing tumor (gross total resection, GTR) is known to prolong progression free and overall survival [1,2]. The introduction of 5-amino levulinic acid (5-ALA) as an intra-operative tumor detection agent significantly increases the likelihood of achieving a GTR, which previously was only achieved in a minority of patients [3-6]. Furthermore, intra-operative electrophysiological function surveillance technologies for mapping and monitoring of motor, speech, and visual functions have helped to increase resection of glioblastoma adjacent to areas of presumed eloquence [7-10].

An early post-operative MRI (within 72 hours) is commonly used to verify whether a complete resection of enhancing tumor has been achieved [3]. Using MRI during surgery (intraoperative MRI, iMRI) allows assessment of the extent of resection prior to the end of anesthesia, and thus provides the possibility to restart tumor surgery and resect any detected tumor remnants [11-15]. A recent randomized controlled trial showed an increased rate of achieved GTR using iMRI compared to surgeries without iMRI (96% achieved GTR with
Postoperative imaging and early re-do surgery

Postoperative MRI was scrutinized for contrast enhancing tumor remnants. Volumetric analysis through manual segmentation of the contrast enhancing tumor remnant was performed across all slices (VectorVision; Brainlab, Heimstetten, Germany) [9]. Patients with resectable tumor remnant >0.175 cm³ were informed of the potential benefit of a complete resection of enhancing tumor (CRET) and were offered a second intervention within a few days (re-do surgery).

Peri-operative antibiotic prophylaxis was extended from single shot Cefuroxim 1.5g iv for initial surgery to Cefuroxim 1.5g iv every 8 hours for re-do surgery.

Re-do surgery was performed using the same protocol as the first surgery. Neuronavigation was used to guide the surgical approach towards the small tumor remnant. Tumor remnant was identified through 5-ALA-induced fluorescence under blue light, resected and sent for histological confirmation (Figure 1). The postoperative MRI after second surgery was analyzed with consideration of the elapsed time after initial surgery; only the site of tumor remnant was investigated for remnant in order not to confuse remnants with postoperative inflammation [3]. Volumetric analysis of tumor remnant after re-do surgery was identical to the analysis after initial surgery. A re-do resection was judged CRET if the enhancing tumor remnant after initial surgery had vanished on post-operative MRI.

Follow up examination

All patients were assessed using the NIHSS prior to discharge after the second surgery and again at a 3-month follow-up consultation. New postoperative neurological deficits were regarded as permanent if they persisted at 3 months. Hospital records were scrutinized for perioperative complications. In addition, patients were interviewed at follow-up regarding the occurrence of peri-operative complications.

Results

Initial Surgery

A total of 208 glioblastomas were operated upon from October 2008 to October 2012. Enhancing tumor tissue remnant with a volume of >0.175 cm³ that was left unintentionally was detected in the postoperative MRI of 9 patients (Table 1). Histological analysis was obtained in 7 patients. Solid or infiltrating tumor tissue was confirmed in 2 cases (patients 2 and 4) and 5 cases (#1, 3, 5, 8 and 9), respectively. Of these, 3 patients were female and the mean age was 63 years (range 38 - 78 years; Table 1).

Neuronavigation had been used in all cases, 5-ALA in all but 1 case, and intra-operative mapping (IOM) had been used in 5 of...
the 9 patients. All tumors affected only one lobe: the frontal lobe in 4, the parietal lobe in 3 and the temporal lobe in 2 patients. The tumor was located on the right side in 7 patients. In 5 of the 9 patients the contrast enhancing tumor was within 10 mm of a presumed eloquent structure according to preoperative MRI (CST in 4 patients and arcuate fascicle in 1 patient). One patient with a tumor near a presumed speech area was operated upon while awake to allow speech mapping.

At the end of the surgery in all cases, the surgeon was certain that a complete resection had been achieved. Post-operative MRI was performed on the first day after surgery in all patients. A comparison to the initial pre-operative MRI revealed that the tumor remnants were not new lesions but in fact part of the initial tumor. Mean tumor volumes before and after first surgery were 24.3 cc (range 1.6 - 48.7 cc) and 1.0 cc (range 0.2-4.9 cc), respectively. The mean EOR of the first surgery ranged from 39% to 99% (median 98%).

One patient had a left-sided neglect after the first surgery, which persisted at the 3-month follow-up consultation. In all remaining patients, we observed no new neurological deficits after initial surgery and re-do procedure, nor at the 3-months post-operative control. No patients had a record of post-operative pneumonia, deep vein thrombosis, pulmonary embolism, hepatic failure, wound infections, skin healing issues or other medical problems.

Re-do Surgery

Our offer to re-do surgery to optimize the surgical result was accepted by all 9 patients. Re-do surgery was scheduled and performed within 7 days after the first surgery (mean elapsed time: 4 days, range 2-7 days). Neuronavigation and 5-ALA were used in all re-do surgeries (Table 2). According to the surgeon neuronavigation was useful in all cases for guidance of surgery towards the tumor remnant. 5-ALA-induced red fluorescence revealed the tumor remnant in 7 cases; in one case 5-ALA fluorescence was weak and not useful according to the surgeon, and in one case fluorescence was not reported. A new, patchy pink fluorescence was observed in 2 patients (patients 5 and 7).

The second surgery was significantly shorter than the first surgery (mean 244 minutes for initial surgery [SD 115] versus 111 minutes [SD 39] for redo surgery, p ≤0.005, Student’s t-test).

Re-do surgeries were generally performed by the same surgeon that performed the first surgery. In 4 cases the tumor remnant was found behind a 5-ALA negative parenchyma.
bridge during re-do surgery (Table 2). In the patient who had initially been operated upon without 5-ALA (patient 2), unsuspicous parenchyma separated the tumor remnant from the cavity. No specific reason for missing the 5-ALA positive tissue was determined in the remaining 4 cases.

Patients remained hospitalized between surgeries. The mean durations of hospital stays among the 9 patients undergoing re-do surgery and the 142 patients undergoing a single resection were 11 days (range 7-15) and 9 days (range 3-23; \(p=0.147 \)) respectively. We observed no elevated liver enzymes after the first or second administration of 5-ALA. No

Patient no.	Value of Neuronavigation	Value of 5-ALA	Histology	Reason for incomplete 1st resection
1	Guided surgery	Identified remnant	Infiltrating tumor	Not specified
2	Guided surgery	Not specified	Solid tumor	Remnant hidden by unsuspicious parenchyma
3	Guided surgery and identified tumor	Minimal; fluorescence was not specific	Infiltrating tumor	Not specified
4	Guided surgery	Identified remnant	Solid tumor	Remnant hidden by 5-ALA negative parenchyma
5	Guided surgery	Identified remnant and new unspecific fluorescence in resection cavity	Infiltrating tumor	Not specified
6	Guided surgery	Identified remnant	No histology obtained	Remnant hidden by 5-ALA negative parenchyma
7	Guided surgery	Identified remnant and new unspecific fluorescence in resection cavity	No histology obtained	Remnant hidden by 5-ALA negative parenchyma
8	Guided surgery	Identified remnant	Infiltrating tumor	Remnant hidden by 5-ALA negative parenchyma
9	Guided surgery	Identified remnant	Infiltrating tumor	Not specified

doi: 10.1371/journal.pone.0079848.t002

Table 1. Demographics and specifications of initial and re-do surgeries.

Demographics	1st Surgery	Re-do Surgery											
Patient no.	Age (years)	Sex	Localization	Initial volume (cm\(^3\))	Duration of surgery operative monitoring (min)	Residual volume (cm\(^3\))	EOR (%)	Days between surgeries	Duration of surgery (min)	Intraoperative monitoring	EOR (%)	Duration of stay (days)	
1	76	f	Temporal Right	10.69	282	none	0.22	98	4	190	none	100%	14
2	61	m	Parietal Right	19.12	150	none	4.92	74	5	60	none	100%	15
3	73	m	Temporal Right	39.42	342	none	0.28	99	3	135	none	100%	8
4	58	f	Frontal Right	1.58	78	none	0.97	39	2	120	none	100%	9
5	65	m	Frontal Left	19.16	453	none	0.53	97	6	78	MEP, SSEP	100%	10
6	38	m	Frontal Right	12.91	211	MEPE, SSEP, motor mapping	0.30	98	7	100	MEP, SSEP	100%	15
7	78	m	Parietal Right	48.66	177	MEPE, SSEP	0.28	99	6	126	MEP, SSEP	100%	11
8	50	f	Frontal Right	44.13	315	MEPE, motor mapping	0.89	98	2	81	MEP, SSEP	100%	7
9	67	m	Parietal Left	22.68	186	none	0.62	89	2	107	none	100%	14
Mean	63			24.26	244	1.00	98 (median)	4	111	100%	11		
Range	38-78			1.58-48.66	78-453	0.22-4.92	38.8-99.4	2-7	78-190	100%	7-15		

Mean: EOR, extent of resection; f, female; m, male; MEP, Maximum evoked potential; SSEP, Somatosensory evoked potential

doi: 10.1371/journal.pone.0079846.t001

Table 2. Value of neuronavigation and 5-ALA in identifying tumor remnants.

Patient no.	Value of Neuronavigation	Value of 5-ALA	Histology	Reason for incomplete 1st resection
1	Guided surgery	Identified remnant	Infiltrating tumor	Not specified
2	Guided surgery	Not specified	Solid tumor	Remnant hidden by unsuspicious parenchyma
3	Guided surgery and identified tumor	Minimal; fluorescence was not specific	Infiltrating tumor	Not specified
4	Guided surgery	Identified remnant	Solid tumor	Remnant hidden by 5-ALA negative parenchyma
5	Guided surgery	Identified remnant and new unspecific fluorescence in resection cavity	Infiltrating tumor	Not specified
6	Guided surgery	Identified remnant	No histology obtained	Remnant hidden by 5-ALA negative parenchyma
7	Guided surgery	Identified remnant and new unspecific fluorescence in resection cavity	No histology obtained	Remnant hidden by 5-ALA negative parenchyma
8	Guided surgery	Identified remnant	Infiltrating tumor	Remnant hidden by 5-ALA negative parenchyma
9	Guided surgery	Identified remnant	Infiltrating tumor	Not specified

doi: 10.1371/journal.pone.0079848.t002

Patients remained hospitalized between surgeries. The mean durations of hospital stays among the 9 patients undergoing re-do surgery and the 142 patients undergoing a single resection were 11 days (range 7-15) and 9 days (range 3-23; \(p=0.147 \)) respectively. We observed no elevated liver enzymes after the first or second administration of 5-ALA. No
new neurologic deficits were observed in the 9 patients at discharge and at the 3-month follow-up consultation, except for one patient (patient 7) who experienced a persisting left-sided neglect after the first surgery.

Complications

One patient had a left-sided neglect after the first surgery, which persisted at the 3-month follow-up consultation. In all remaining patients, we observed no new neurological deficits after initial surgery and re-do procedure, nor at the 3-months post-operative control. No patients had any record of post-operative pneumonia, deep vein thrombosis, pulmonary embolism, hepatic failure, wound infection, skin healing issues or other medical problems.

Discussion

Landmark publications in recent years provided convincing evidence that the complete removal of enhancing tumor produces the optimal surgical result for patients suffering from glioblastoma [1,2,16,17]. The scientific focus has thus shifted from the importance of complete resection towards the value of technologies and surgical strategies that aid achievement of complete resections. A recent randomized controlled trial on intraoperative MRI (iMRI) for glioblastoma surgery showed not only an increased rate of achieved gross total resections, but also indicated that patients who underwent a complete tumor resection might have a longer progression-free survival than patients with residual tumor [16]. Our protocol with early re-do surgery for unintended tumor remnants resembles the mentioned iMRI protocol in its ambition to provide complete resection; its main difference is the timing of imaging and remnant surgery.

Combined use of 5-ALA and neuronavigation for early re-do surgery

Detection of tumor remnants during re-do surgery may be a challenge given the small size of the remnants (mean 1 cc) and the fact that the remnants were overlooked during the first surgery. A combination of neuronavigation and 5-ALA-fluorescence was therefore applied in our series to reliably detect and resect tumor remnants. There are no reports on using 5-ALA for early re-do surgery to our knowledge, and 5-ALA should thus be used with caution. 5-ALA has a plasma half-life of less than 1 hour and cannot be detected after >6 hours in healthy brain tissue. However, the pharmacokinetics of 5-ALA in glioblastoma infiltrated tissue are not yet entirely understood, and prolonged leakage of 5-ALA from residual tumor cells may decrease 5-ALA’s specificity [18,19]. Furthermore, despite its high specificity for glioma tissue [20] there have been sporadic reports of non-specific, false positive fluorescence probably caused by inflammation [21-23]. This is of particular concern in the early post-operative setting as reparative processes lead to local edema and inflammation. Non-specific inflammatory processes at the resection border may also lead to a partial breakdown of the blood brain barrier as visualized by non-specific contrast enhancement on post-operative MRI performed >72 hours after surgery [3]. In two of our patients (#5 and #7, both re-operated after 6 days) a new pink fluorescence was detected in the resection cavity in addition to the bright red fluorescence of the tumor remnant under blue light. We believe that the interval between surgeries (6 days) was too short for actual tumor recurrence, and thus suspect that this new fluorescence is non-specific. Hence, we believe that 5-ALA must be used with caution in early re-do surgery and the possibility of unspecified fluorescence should always be considered. Combining 5-ALA with neuronavigation helped to verify suspected tumor remnants in our series and to rule out false positive fluorescence; histological analysis revealed solid or infiltrating tumor in all included cases (Table 2, Figure 2). Therefore, despite a decreased specificity, 5-ALA retained its value for intraoperative tumor identification even in those cases where new unspecified fluorescence was observed.

Infections and Complications

Infections are a major concern after re-operations. Performing a second surgery within a few days entails reopening the skin prior to proper healing, which may facilitate infections. While there are no reports on infections after early re-do surgery for glioma, there are data on infections for resection of recurrent glioma. The Glioma Outcome Project reported an increased rate of general infections after surgery for recurrent glioblastoma (4.4%, compared to 0% after first surgery, p<0.0001) [24], according to the authors possibly due to prolonged use of corticosteroids. The reported rates of local infections, however, were similar after craniotomy for initial and recurrent tumor [24]. The absence of infections in our series is thus in line with the existing literature.

Similarly, our concern that the physical stress of a second surgery within a short time period might lead to a higher rate of medical complications turned out to be unfounded for this series, as we observed no medical complications and no wound healing problems in the peri-operative period up to 3 months after surgery.

The small sample size of our study does not allow an extrapolated analysis of infections and complications. Larger studies are warranted to assess the true rate of infections and complications for two consecutive surgeries within a short time interval as described in this study.

Burden of re-do surgery compared to iMRI

Our protocol with early re-do surgery requires a second anesthesia and may increase patients’ physical and psychological stress. However, this additional stress was only necessary in a minority of our patients (9 out of 208 patients, 4.3%). This contrasts with the use of iMRI; in a recent randomized controlled trial iMRI led to further resection in one-third of all patients [16]. Thus, anesthesia was prolonged without apparent benefit to two-thirds of all patients (429 min for iMRI vs 362 min in conventional group, p=0.007) [16]. Of note, 5-ALA was not used in the mentioned computed tomography on iMRI but is administered per protocol to all patients with presumed glioblastoma at our institution. 5-ALA’s ability to increase the likelihood of complete resection may explain the higher rate of incomplete resection before control MRI in the computed tomography on iMRI as compared to our
series. The ‘number to scan’ to achieve surgical improvement through iMRI in a single patient may well be higher when using 5-ALA. A protocol of early re-do surgery thus leads to a greater burden for a small percentage of patients, while routine iMRI imposes a small additional burden on all patients.

Conclusion

Re-thinking the efforts to achieve a complete resection of enhancing tumor is warranted in the wake of the 5-ALA study group’s assessment of the effect of GTR on survival. Providing glioblastoma patients with a MRI-controlled optimal surgical result should not be a privilege of centers with intra-operative MRI. In the absence of iMRI, our institutional protocol calls for early re-do surgeries (within a week) for unintentional incomplete resection as detected by early postoperative MRI. Re-do surgery achieved a complete resection (CRET) in all patients without leading to additional neurological deficits. A combination of neuronavigation for surgical guidance and 5-ALA for tumor identification enabled reliable detection and removal of tumor remnants in all cases. For neurosurgical centers that cannot provide iMRI, early re-do surgery may thus be a feasible strategy to increase the rate of complete resections in glioblastoma patients.

Author Contributions

Conceived and designed the experiments: PS AR JB. Performed the experiments: PS MM AJ KS RW. Analyzed the data: PS KS JB EH. Contributed reagents/materials/analysis tools: RW EH. Wrote the manuscript: PS. Critical revision of the manuscript: PS JB AR. Final approval of the manuscript: PS MM AJ KS RW AR JB EH.

References

1. Stummer W, Pichlmeier U, Meinel T, Wiestler OD, Zanella F et al. (2006) Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol 7: 392-401. doi:10.1016/S1470-2045(06)70665-9. PubMed: 16648043.
2. Stummer W, Reulen HJ, Meinel T, Pichlmeier U, Schumacher W et al. (2008) Extent of resection and survival in glioblastoma multiforme: identification of and adjustment for bias. Neurosurgery 62: 564-576. doi:10.1227/01.neu.0000317304.31579.17. PubMed: 18425006.
3. Albert FK, Forsting M, Bartsch K, Adams HP, Kunze S (1994) Early postoperative magnetic resonance imaging after resection of malignant glioma: objective evaluation of residual tumor and its influence on regrowth and prognosis. Neurosurgery 34: 45-60. doi:10.1227/00006123-199401000-00008. PubMed: 8121569.
4. Vecht CJ, Avezaat CJ, van Putten WL, Eikenboom WM, Stegmayr B (1994) The influence of the extent of surgery on the neurological function and survival in malignant glioma. A retrospective analysis in 243 patients. J Neurol Neurosurg Psychiatry 53: 466-471. doi:10.1136/jnpp.53.6.466. PubMed: 2168137.
5. Kowalczyk A, Mancosud RL, Amidei C, Dohrmann G 3rd, Erickson RK et al. (1997) Quantitative imaging study of extent of surgical resection and prognosis of malignant astrocytomas. Neurosurgery 41: 1028-1036. doi:10.1097/00006123-199710000-00004. PubMed: 9361056.
6. Willems PW, Taphoorn MJ, Burger H, Berkelbach van der Sprengel JW, Tulleken CA (2006) Effectiveness of neuronavigation in resecting solitary intracerebral contrast-enhancing tumors: a randomized controlled trial. J Neurosurg 104: 360-368. doi:10.3171/jns.2006.104.3.360. PubMed: 16572647.
7. Duffau H, Lopes M, Arthuis F, Bittar A, Sicchez JP et al. (2005) Contribution of intraoperative electrical stimulations in surgery of low grade gliomas: a comparative study between two series without (1985-96) and with (1996-2003) functional mapping in the same institution. J Neurol Neurosurg Psychiatry 76: 845-851. doi:10.1136/jnnp.2004.048520. PubMed: 15897509.
8. Seidel K, Beck J, Stieglitz L, Schucht P, Raabe A (2012) Low-threshold monopolar motor mapping for resection of primary motor cortex tumors. Neurosurgery 71: 104-114. PubMed: 22270233.
9. Schucht P, Beck J, Abu-Isa J, Andereggen L, Murek M et al. (2012) Gross total resection rates in contemporary glioblastoma surgery: results of an institutional protocol combining 5-aminolevulinic Acid intraoperative fluorescence imaging and brain mapping. Neurosurgery 71: 927-936. doi:10.1227/NEU.0b013e31826d1e6b. PubMed: 22895402.

10. Gras-Combe G, Moritz-Gasser S, Herbet G, Duffau H (2012) Intraoperative subcortical electrical mapping of optic radiations in awake surgery for glioma involving visual pathways. J Neurosurg 117: 466-473. doi:10.3171/2012.6.JNS111981. PubMed: 22794319.

11. Black PM, Alexander E 3rd, Martin C, Moriarty T, Nabavi A et al. (1999) Craniotomy for tumor treatment in an intraoperative magnetic resonance imaging unit. Neurosurgery 45: 423-431. doi:10.1097/00006123-199909000-00001. PubMed: 10493363.

12. Hall WA, Liu H, Martin AJ, Pozza CH, Maxwell RE et al. (2000) Safety, efficacy, and functionality of high-field strength interventional magnetic resonance imaging for neurosurgery. Neurosurgery 46: 632-641. doi:10.1097/00006123-200003000-00022. PubMed: 10719860.

13. Schulder M, Carmel PW (2003) Intraoperative magnetic resonance imaging: impact on brain tumor surgery. Cancer Contr 10: 115-124. PubMed: 12712006.

14. Nimsky C, Fujita A, Ganslandt O, Von Keller B, Fahrbusch R (2004) Volumetric assessment of glioma removal by intraoperative high-field magnetic resonance imaging. Neurosurgery 55: 358-370. doi:10.1227/01. NEU.0000129694.64671.91. PubMed: 15271242.

15. Eyüpoglu IY, Hore N, Savaskan NE, Grummich P, Roessler K et al. (2012) Improving the extent of malignant glioma resection by dual intraoperative visualization approach. PLOS ONE 7: e44885. doi:10.1371/journal.pone.0044885. PubMed: 23049761.

16. Senft C, Bink A, Franz K, Vatter H, Gasser T et al. (2011) Intraoperative MRTI guidance and extent of resection in glioma surgery: a randomised, controlled trial. Lancet Oncol 12: 997-1003. doi:10.1016/S1470-2045(11)70196-6. PubMed: 21868284.

17. Lacroix M, Abi-Said D, Fourney DR, Gokaslan ZL, Shi W et al. (2001) A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. J Neurosurg 95: 190-198. doi:10.3171/jns.2001.95.2.0190. PubMed: 11780887.

18. Stroka R, Beyer W, Gossner L, Saddy T, Stocker S et al. (1996) Pharmacokinetics of 5-aminolevulinic acid-induced porphyrins in tumour-bearing mice. J Photochem Photobiol B Biol. 34: 13-19. doi: 10.1016/1011-1344(95)07265-9.

19. den Boogert J, van Hillegersberg R, de Ruij F, Edixhoven-Bosdijk A et al. (1998) 5-Aminolaevulinic acid-induced protoporphyrin IX accumulation in tissues: pharmacokinetics after oral or intravenous administration. J Photochem Photobiol B Biol. 44: 29-38. doi:10.1016/S1011-1344(98)00102-X.

20. Stummer W, Novotny A, Stepp H, Goetz C, Bise K et al. (2000) Fluorescence-guided resection of glioblastoma multiforme by using 5-aminolevulinic acid-induced porphyrins: a prospective study in 52 consecutive patients. J Neurosurg 93: 1003-1013. doi:10.3171/jns.2000.93.6.1003. PubMed: 11117842.

21. Utsuki S, Oka H, Sato S, Shimizu S, Suzuki S et al. (2007) Histological examination of false positive tissue resection using 5-aminolevulinic acid-induced fluorescence guidance. Neurol Med Chir (Tokyo) 47: 210-213. doi:10.2176/nmc.47.210. PubMed: 17527047.

22. Panciani PP, Fontanella M, Garbossa D, Agnoletti A, Ducati A et al. (2012) 5-aminolevulinic acid and neuronavigation in high-grade glioma surgery: results of a combined approach. Neurochirurgia. Astur. pp. 23-28.

23. Schucht P, Beck J, Vajtai I, Raabe A (2011) Paradoxical fluorescence after administration of 5-aminolevulinic acid for resection of a cerebral melanoma metastasis. Acta Neurochir (Wien) 153: 1497-1499. doi:10.1007/s00701-011-0991-8. PubMed: 21604207.

24. Chang SM, Parney IF, McDermott M, Barker FG 2nd, Schmidt MH et al. (2003) Perioperative complications and neurological outcomes of first and second craniotomies among patients enrolled in the Glioma Outcome Project. J Neurosurg 98: 1175-1181. doi:10.3171/jns.2003.98.6.1175. PubMed: 12816260.