A systematic review of the epidemiology of hepatitis E virus in Africa

Jong-Hoon Kim¹, Kenrad E Nelson², Ursula Panzner¹, Yogita Kasture¹, Alain B Labrique² and Thomas F Wierzba¹*

Abstract

Background: Hepatitis E Virus (HEV) infection is a newly recognized serious threat to global public health and Africa is suspected to be among the most severely affected regions in the world. Understanding HEV epidemiology in Africa will expedite the implementation of evidence-based control policies aimed at preventing the spread of HEV including policies for the use of available resources such as HEV vaccines.

Methods: Here we present a comprehensive review of HEV epidemiology in Africa based on published data. We searched for articles on HEV epidemiology in Africa from online databases such as PubMed, Scopus, and ISI Web of Science and critically reviewed appropriate publications to extract consistent findings, identify knowledge gaps, and suggest future studies.

Results: Taking a particularly high toll in pregnant women and their fetuses, HEV has infected human populations in 28 of 56 African countries. Since 1979, 17 HEV outbreaks have been reported about once every other year from Africa causing a reported 35,300 cases with 650 deaths.

Conclusions: In Africa, HEV infection is not new, is widespread, and the number of reported outbreaks are likely a significant underestimate. The authors suggest that this is a continent-wide public health problem that deserves the attention of local, regional and international agencies to implement control policies that can save numerous lives, especially those of pregnant women and their fetuses.

Keywords: Hepatitis E, Africa, Review, Outbreak, Pregnancy
more than 29,000 symptomatic jaundiced persons [19-21]. Since then, many serologically confirmed outbreaks and sporadic cases [3,22] and probable outbreaks have occurred, especially in Asia and Africa [23]. Africa has usually been the place where resources for controlling infectious diseases are last deployed although it is among the regions most severely inflicted by infectious diseases [24]. Acknowledging that understanding HEV infection and distribution in Africa can expedite implementation of evidence-based control policies, our overall objective was to characterize the epidemiology of HEV in Africa by reviewing and summarizing relevant, peer-reviewed literature. The authors’ specific objectives were to explore rates of infection (i.e., seroprevalence, outbreaks, sporadic cases), severity (i.e., case-fatality rates), modes of transmission, and circulating genotypes. The authors also identified knowledge gaps in the existing literature and suggested future studies.

Methods
Searching
We searched PubMed, Scopus, and ISI Web of Science (up to March 24, 2014) using the following search terms: ("Hepatitis E" OR "Non A Non B") AND (Country_name_1 OR Country_name_2 OR ...), where ellipsis represents names of all African countries (with OR between them) as extracted from a UN list [25]. The search term includes “Non A Non B” because HEV was identified as the causative agent of the enterically transmitted NANB hepatitis [7] and thus should be responsible for at least some of NANB outbreaks. In addition, we reviewed relevant references from the articles we obtained. Articles published in English and French were included.

Selection and methods
Figure 1 is a flow chart that describes the procedure of literature selection. We identified 219, 288, and 159 articles from PubMed, Scopus, and ISI Web of Science, respectively, and also reviewed articles obtained by screening references. The number of articles was 426 after removing duplicates. Of 426 articles, we synthesized 160 original research articles that provide relevant information while excluding the other 266 articles for the following reasons:

1. Non-African populations (n = 28)
2. Topics other than HEV epidemiology, e.g., molecular biology (n = 168)
3. Insufficient information, e.g., case report (n = 34)
4. Review articles (n = 25)
5. Suboptimal methodology (n = 11)

Of 160 articles, we summarized 138 articles about serologically confirmed HEV in the main text and separately summarized NANB outbreaks in the Additional file 1 (n = 22).

HEV seroprevalence analysis included articles describing serology studies for total antibodies (i.e., both IgG and IgM) or IgG to HEV by enzyme-linked immunosorbent assay, using commercial kits or in-house methods. In outbreaks, incident cases of HEV are defined by the existence of IgM antibodies to HEV or paired serum samples with a significant increase in IgG to HEV or the existence of HEV RNA measured by reverse transcriptase polymerase chain reaction. CFR was defined as the number of deaths divided by the number of laboratory confirmed cases or cases epidemiologically linked to HEV infections times 100.

Data source
Sources of data on the epidemiology of HEV come from (i) seroprevalence studies in the general population (e.g., blood donors or healthy population) or suspected high-risk population (e.g., pig handlers or waste water treatment plant workers or pregnant women), (ii) studies of sporadic acute hepatitis patients, and (iii) investigations of hepatitis outbreaks. We also discuss studies of sporadic cases and outbreaks of NANB hepatitis viruses in the Discussion Section with tables of data in the Additional file 1. The present paper includes studies from 28 (50%) of 56 African countries: Algeria [26-28], Burkina Faso [29], Burundi [30,31],
Seroprevalence of anti-HEV antibodies

Data on seroprevalence of anti-HEV antibodies comes from 35 studies in 13 African countries. Table 1 presents a summary sorted by country name and seroprevalence. Seroprevalence varies by country from 84.3% [55] among pregnant Egyptian women aged 24 years on average to 0% among village residents aged 24 years on average in Gabon [72]. The seroprevalence seems to be higher in pregnant women than in the general population in Ghana (28.7% [78] vs. 4.6% [76]) and also in Gabon (14.2% [73] vs. 0% [72]). Two studies of Ghanaians suggest that predominant HEV genotypes in that country may be of zoonotic origin: seroprevalence among pig handlers is over 34% [75,77] whereas that among general population is about 4% [76]. Seroprevalence also differs between rural and urban areas. In Gabon, one study found a higher prevalence of HEV of about 2.0 times in urban (13.5%) compared with rural areas (6.4%) [73]. On the other hand, in South Africa, HEV seroprevalence is higher in rural compared with urban residents (15.3% vs. 6.6%) [98]. The difference in seroprevalence between rural and urban residents is also observed in Egypt with seroprevalence being higher in rural areas [53].

Sporadic hepatitis cases attributed to HEV

Data on acute hepatitis E come from studies of sporadic acute hepatitis cases and are available from 29 studies in 13 African countries. Table 2 shows a summary sorted by country followed by decreasing proportion of sporadic hepatitis cases that are attributable to HEV infection. Table 2 also provides characteristics of sporadic hepatitis cases studied and types of antibodies tested (i.e., IgG or IgM). The proportion of cases that are attributable to HEV ranges from 70% in male patients aged 25–33 years in Nigeria [89] to 2% in patients aged < 15 years in Egypt [48]. It is interesting to note that existing studies show that the proportions of cases that are attributable to HEV are lower than 27% in Egypt despite their high HEV seroprevalence: the majority of acute hepatitis patients were attributable to HAV [45,48,64,70] or HBV [71]. For example, one study of acute hepatitis among Egyptian children with a mean age of 5.4 years reported that HAV was responsible for 35 out of 36 acute hepatitis cases whereas HEV was detected in only one case [48].

Outbreaks and attack rate

The first well-characterized outbreak of laboratory-confirmed Hepatitis E occurred in Côte d’Ivoire in 1986 [39]. However, assuming that hepatitis outbreaks characterized by acute jaundice and a high CFR among pregnant women were likely due to HEV, Teo identified earlier, probable HEV outbreaks in Tunisia from 1950 to 1953, Algeria from 1952 to 1956, Congo in 1958, Morocco from 1958 to 60, and Libya from 1968 to 1970 and also in 1975 [23].

HEV outbreaks have been detected in 11 African countries (17 studies), of which some outbreaks in refugee camps [79,86,100] and Table 3 presents a summary of these outbreaks sorted by country name and decreasing clinical attack rate. The highest attack rate (25.1%) of the population was observed during outbreaks in two subcounties of Kitgum District, Uganda from October 2007 to June 2009 [119,120]. Attack rate could have been even higher because the epidemic had not ended at the time of the investigation and in particular, it had not even peaked but was increasing in one of two subcounties. The lowest attack rate (2.7%) was observed during an outbreak in the Central African Republic on July 2002 [34].

Published reports suggest clinical HEV infection risk is highest among young adults in African populations [44,79,86,94,100,119,120] although one study reports no significant difference in the risk of clinical HEV infection by age [34]. Studies show mixed results regarding whether sex predisposes people to clinical HEV infection (i.e., higher risk for males [86] or higher risk for females [119,120] or no significant difference [34,79,94,100,123].

Case fatality rate (CFR)

The CFR from outbreak investigations or sporadic cases were reported by 8 African countries (10 studies). Table 4 presents a summary sorted by CFR and pregnancy. CFR’s in the overall population range from 17.8% in Darfur, Sudan in 2004 [101] to 1.5% in Uganda during March to December, 2008 [123]. Among pregnant women, fatalities are considerably higher ranging from 42.1% among sporadic cases sampled during 1988-91 in Ethiopia [6] to 12.5% during an outbreak in Dadaab refugee camp of Kenya in 2012 [80]. Compared with the overall population, fatalities are also higher in children under 2 years of age. One study in Uganda using active case detection and verbal autopsies found that icteric children less than two years of age experienced 13% mortality, which was higher than the 6.9% experienced among pregnant woman [120]. One author claims that the inoculum size may be important in determining CFR: CFR was 8.6% among villagers supplied by wells whereas it was 2.5% and 0.8% in those relying on river and pond water, respectively [94].
Table 1 Seroprevalence of anti-HEV antibodies in Africa

Country	% sero-prevalence	Sample demographics	Sample size	Year of sampling	Diagnostic methods	Source
Burkina Faso	19.1	Blood donors	178	2010-12	IgG	[29]
	11.6	Pregnant women	189	2010-12	IgG	[29]
Burundi	14.0	Adults without chronic liver disease, 44.7 yrs old (±13.5)	129	1986	Total Ig	[30]
Cameroon	14.2	HIV-infected adults, 38.1 yrs old (±11.3)	289	2009-10	IgG	[32]
	2.0	HIV-infected children, 8.3 yrs old (±7.3)	100	2009-10	IgG	[32]
CARa	24.2	Patients attending the center for sexually transmitted diseases	157	1995±	Total Ig	[33]
Djibouti	13.0	Pregnant women, 31.2 yrs old	112	1998	Total Ig	[42]
Egypt	84.3	Pregnant women, 24 yrs old (16–48)	2,428	1997-2003	Total Ig	[55]
	80.1	Patients with chronic liver disease, 48 yrs old (23–62)	518	2000-2	IgG	[57]
	67.6	Residents of two rural villages, 24.5 and 26.5 yrs, respectively	10,156	1997	Total Ig	[54]
	58.6	Pregnant women, ~33 yrs old	116	2009	IgG	[58]
	56.4	Residents of a semi-urban village, 1–67 yrs old	140	1993	Total Ig	[51]
	51.2	Waste water treatment plant workers, 47.1 yrs old	43	2011	Total Ig	[60]
	50.6	Waste water treatment plant workers, 20–60 yrs old	233	2000±	Total Ig	[61]
	45.3	Blood donors, 18–45 yrs old	95	1998	IgG	[52]
	54.1	Four waste water treatment plant male workers, 20–60 yrs old	205	1998-9	IgG	[116]
	39.6	Haemodialysis patients, 8–20 yrs old	96	1998	IgG	[52]
	38.9	Healthy females, 21.8 yrs old (16–25)	95	1995	IgG	[50]
	17.2	Residents of a hamlet, 20.9 yrs old (<1-95)	1259	1992	IgG	[49]
	0.0	Healthy controls, 20–60 yrs old	96	1998-9	IgG	[116]
Gabon	14.2	Pregnant women, 24.6 yrs old (14–44)	840	2005, 2007	Total Ig	[73]
	0.0	Villagers, 29 yrs old (2–80)	35	1991-2	Total Ig	[72]
Ghana	45.3	Adult HIV patients (n = 402), 40 yrs old (±9.6)	402	2008-10	IgG	[32]
	38.1	Pig handlers, 36.5 yrs old (12–65)	105	2009±	Total Ig	[77]
	34.8	Pig handlers, 32.9 yrs old (15–70)	353	2008	Total Ig	[75]
	28.7	Pregnant women, 28.9 yrs old (13–42)	157	2008	Total Ig	[78]
	4.6	Blood donors	239	2012	IgG	[76]
	4.4	6-18 yr olds	803	1993	Total Ig	[74]
Madagascar	14.1	Slaughterhouse workers	427	2008-9	Total Ig	[81]
Morocco	8.5	Blood donors	200	2000-1	IgG	[85]
	2.2	232 men and 259 women, 27.7 yrs old (±5.9)	491	1995±	IgG	[84]
Nigeria	43.0	Health care workers	88	2008-9	Total Ig	[90]
	94.0	Control healthy adults	44	2008-9	Total Ig	[90]
	13.4	Healthy and sick people, 29.8 yrs old (3–72)	186	2007	Total Ig	[91]
South Africa	10.7	Urban (n = 407) and rural (n = 360) blacks, 42.4 yrs old (18–85)	767	1996	Total Ig	[98,117]
	2.6	Medical students	227	1992	Total Ig	[97]
Tanzania	6.6	Women, 32.1 yrs old (15–45)	212	1996	Total Ig	[114]
	0.2	Healthy adults, 30.3 yrs old	403	1992	Total Ig	[112]
	0.0	Women, 24.5 yrs old	180	1995	Total Ig	[113]
Tunisia	46.0	Healthy persons, > 60 yrs old	100	1991	IgG	[106]
	29.5	Children with chronic haematological diseases	34	1996	IgG	[106]
	28.9	Polytransfused patients; adults (n = 59, 34.8 yrs old (20–61)) and children (n = 48, 7.3 yrs old (1–15))	107	2008-9	IgG	[107]
Table 1 Seroprevalence of anti-HEV antibodies in Africa (Continued)

Country	Target Group	Age (years)	Year	Test	Seroprevalence
	Healthy blood donors, < 40 yrs old	100	1996	IgG	116
	Pregnant women, 30.1 yrs old (17–52)	404	2008-9	IgG	118
	Healthy controls; blood donors (n = 100, 31.3 yrs old (20–58)), and children, (n = 60, 7.9 yrs old (1–15))	160	2008-9	IgG	120
	Blood donors, 32.6 yrs old (±8.6)	687	2007-8	Total Ig	122
	Healthy persons, 20.7 yrs old (16–25)	1,505	2008²	IgG	124
	Urban adults, 18–64 yrs old	106	1999	IgG	116
	Urban children, 1–15 yrs old	194	2011	IgG	115

⁴CAR; Central African Republic.
⁵The year of the publication.
Seroprevalence varies by country and by subpopulation and studies were done under different conditions (e.g., sample size, demographics, and different diagnostic methods). Age of the sample is provided as mean (range or ± standard deviation, if available).

Genotype prevalence

Data on the genotypes of circulating HEV’s are available for 9 countries (16 studies). Table 5 presents a summary sorted by genotype and also provides characteristics of the sample, genomic regions tested. Genotype 1 seems to be most prevalent as it was found in Central African Republic [34], Sudan [35], Chad [28,35], Egypt [46,62,124], and Namibia [88] followed by genotype 2, which were observed in Central African Republic [34], Chad [35], Namibia [87], and Nigeria [6,89]. Genotype 3 is rare and was found in one Egyptian child [48], one acute hepatitis patient in Mayotte (originally from France) [82]. Genotype prevalence can differ in neighboring countries as was demonstrated by one study in Sudan and Chad where genotype 1 was more common in Sudan and genotype 2 was more common in Chad [35], Figure 2 shows a map of Africa where countries in which HEV infections were observed are differently colored according to HEV genotype.

Mode of transmission

Studies stress the importance of fecal contamination of water as a main source of infection in outbreaks across African countries [34,44,86,94,100,101,123]. However, in a laboratory-confirmed HEV outbreak of 3,218 cases in northern Uganda, the authors suggest that some patients were infected through person-to-person transmission, which is supported by three observations: (1) HEV was not detected from water or zoonotic sources, (2) the epidemic curve suggested a propagated, not point-source outbreak, and (3) there was evidence of close contact between incident cases and subsequently infected household contacts after an incubation period [120]. Non-human reservoirs have been identified in donkeys in Sudan (unknown genotype) [100] and pigs the Democratic Republic of the Congo and Uganda (both genotype 3), and cows, buffaloes, sheep and goats in Egypt [40,120]. In Ghana, the high prevalence (34.8%) of antibodies to HEV in pig farm workers was reported with the greatest risk factor being close contact with piped-water [75,77]. No data have been reported from Africa suggesting the transmission of HEV by transfusion or by sexual intercourse [125] although the transmission of HEV by transfusion has been well documented in Europe and Japan [126,127]. A single Egyptian study suggested HEV transmission from mothers to their neonates. Of nine mothers PCR positive for HEV RNA, five (55.6%) of their neonates were also PCR positive [128]. No other studies have investigated mother-to-child transmission in Africa.

Co-infection with other infectious diseases

Three infectious diseases—hepatitis viruses other than HEV, schistosomiasis, and HIV—are known to be associated with an increased risk or severity of HEV infection from published studies. First, infection with other hepatitis viruses was positively associated with infection with HEV. One study found a high prevalence of anti-HEV antibodies in Egyptian children infected with Hepatitis B (56.7%), Hepatitis C (52%) and both Hepatitis B and C (30%) compared with patients with non-A, non-B, non-C hepatitis (7.1%) [129]. Second, one study showed that patients with schistosomiasis infection had a higher prevalence of HEV infection: seroprevalence of HEV infection was 31% in patients with Schistosoma mansoni whereas it was 14% among parasite-free individuals [53]. Third, studies reported discordant findings as to whether patients with HIV infection or AIDS are at increased risk for HEV infection. One study reported that anti-HEV seroprevalence among HIV/AIDS cases in Africa was similar to HIV negatives and concluded that there is no significant increased risk for HEV infection in patients with HIV positive [30]. Another study showed the seroprevalence of anti-HEV IgG antibodies was higher among HIV-1 infected women than HTLV-I infected women (7.1% vs. 5.0%) [130]. Similarly, HEV infection was significantly more common in HIV-seropositive than HIV-seronegative Zambian adults (odds ratio = 6.2, 95% CI, 2.2-17.8) [115].

Discussion

The first documented outbreak of HEV infection likely occurred in 1950 in Tunisia [23] and since the 1980’s, when
HEV diagnostic assays became available, half of all African countries including nations in north, south, east, west, and central Africa have published articles of Hepatitis E infections. Clearly, these results suggest that HEV infection is not new to Africa and implies that this is a continent-wide public health problem and a potential threat to travelers. This is supported by a recently published study on HEV in low- and middle-income countries in Asia and Africa [131]. HEV infection deserves the attention of local, regional and international agencies.

Since nations lack routine surveillance for HEV infection, it is difficult to estimate the African disease burden. However, these publications suggest that outbreaks are frequent with about one outbreak report published every other year from Africa. As only a few outbreaks are likely identified and even fewer reported in peer-reviewed journals, it is probable that outbreaks in Africa are even more common than these reports imply. To address HEV outbreak control, routine HEV surveillance and response is necessary and could be integrated with measles or poliomyelitis surveillance, which are ongoing activities in most countries.

Among HEV outbreaks, the overall case-fatality rate is comparable to that seen with other diseases such as cholera.

Table 2 Sporadic cases caused by hepatitis E virus in Africa

Country	% sero-positivity	Case demographics	No. of cases	Year of sampling	Diagnostic methods	Source
Chad	48.8	Acute or fulminant hepatitis patients, 4–64 yrs old	41	1993	IgM	[36]
	20.0	Sporadic cases	17	1994	RT-PCR	[27]
Djibouti	58.5	Acute hepatitis patients, 21–8 yrs old (2–65)	65	1992-3	IgM	[41]
Egypt	21.7	Acute hepatitis patients, 26-6 yrs old (18–60)	143	1993-4	IgM	[71]
	24.2	Jaundiced patients, 1–73 yrs old	202	1993	IgM	[46]
	22.2	Jaundiced children, 5 yrs old (1–11)	261	1990	IgM	[70]
	20.2	Acute viral hepatitis patients, 8 yrs old	287	2006-8	IgM	[62]
	17.9	Acute hepatitis patients, 15.7 (± 14.9) yrs old	235	2007-8	IgM or > =3-fold rise in IgG	[69]
	17.2	Children with elevated level (two-fold or more) of AST and ALT	64	2006d	IgM	[47]
	15.7	Acute hepatitis patients, 15.9 yrs old (1–65)	235	2007-8	IgM	[63]
	15.1	Children with acute jaundice, 6-4 yrs old (1–13)	73	1987-8	IgM	[45]
	12.5	Patients with acute hepatitis, 20–2 yrs old (4–65)	200	2001-2	IgM	[64]
	6.0	Children with minor hepatic ailments, 6 mo –10 yrs	100	2004-5	IgM	[65]
	5.0	Patients with acute on chronic liver failure, 46.4 yrs old	100	2009-10	IgM	[66]
	2.1	Acute viral hepatitis patients, 25 yrs old (2–77)	47	2002-5	IgM	[67]
	2.0	Hepatitis patients, 5.4 yrs old (1.5-15)	50	2007	RT-PCR	[48]
Ethiopia	45.6	Acute viral hepatitis patients with NANB	79	1988-91	FABA	[43]
	31.8	Non-pregnant women with acute viral hepatitis, 30 yrs old	22	1988-91	FABA	[6]
	67.9	Pregnant women with acute viral hepatitis, 26 yrs old	28	1988-91	FABA	[6]
Mayotte	100.0	Patients with acute jaundice, 46 yrs old	1	2009	IgM	[82]
Nigeria	70.0	Male patients with acute hepatitis, 25–33 yrs old	10	1997-8	RT-PCR	[89]
Senegal	20.0	Patients with jaundice	30	1992d	IgM	[93]
	10.2	Patients with viral hepatitis	49	1993c	IgM	[92]
Somalia	61.1	Native Somalis and displaced Ethiopian patients with acute hepatitis, 7–90 yrs old	36	1992-3	IgM	[96]
Sudan	5.4	Patients with fulminant hepatic failure, 38 yrs old (19–75)	37	2003-4	IgM	[103]
	5.0	Children with acute clinical jaundice, ≤14 yrs old	39	1987-8	IgM	[118]

a20% was extrapolated from the results of RT-PCR results of 5 samples out of total 17 cases.
bReverse transcription polymerase chain reaction.
cThe year of the publication.
dFABA; fluorescent antibody blocking assay, which is claimed to detect acute infection, not but past infection.
Proportion of sporadic hepatitis cases attributable to HEV varies by country and by subpopulation and studies were done under different conditions (e.g., sample size, demographics, and different diagnostic methods). Age of the sample is provided as mean (range or ± standard deviation, if available).
Table 3 Hepatitis E outbreaks in Africa

Country	Year	No. cases (deaths)	Clinical attack rate (population size)	Variance in clinical attack rates By age	Variance in clinical attack rates By gender	Source
Algeria	1979-80	20 NA	NA	NA	NA	[27]
CARb	Jul - Oct 2002	715 2.7%	NA	No significant difference	No significant difference	[34]
	Jun 2004 - Sep 2005	411 NA	The age group 18–34 years was more frequently anti-HEV IgM positive (91.2%) than those aged 1–17 (78.0%) or over 34 (64.9%) (p < 0.001)	Risk for infection was clearly higher in males than females based on IgG seroprevalence (OR = 2.04; 95% CI 1.21-3.45; p < 0.005)	Risk for infection was clearly higher in males than females based on IgG seroprevalence (OR = 2.04; 95% CI 1.21-3.45; p < 0.005)	[121]
Chad	1983-4	34 NA	NA	NA	NA	[27]
	Jun - Aug 2004	989 (30) NA	NA	NA	NA	[37,38]
Djibouti	Dec 1992-Sep 1993	43 NA	NA	NA	NA	[41]
Eritrea	Oct 1988-Mar 1989	> 750 NA	NA	81% of the patients were between 18 and 30 years of age among aged from 15 to 56.	The outbreak among military personnel; no female patients	[44]
Kenyaa	Mar - Oct 1991	1,765 (63) 6.3% (n = 26,920)	Increased with age with a peak among those >30, while serologic attack rate is not different by age group	Clinical attack rate is 6.1% for male and 6.3% for female	Clinical attack rate is 6.1% for male and 6.3% for female	[79]
	Jul - Nov 2012	349 (10) NA	NA	184 (54.3%) were females.	184 (54.3%) were females.	[80]
Morocco	1994	> 75 NA	NA	NA	NA	[83]
Namibiad	Jul - Oct 1983	201 NA	Most common in persons aged 25–29 years old among patients aged 5–54 years old	72% of 64 patients were male.	72% of 64 patients were male.	[86]
Somalia	1988 – 9, 23 months	11,759 (346) 4.7% (n = 245,312)	Increased with age groups: 5%, 13%, and 20% for those aged 0–4, 5–15, and >15 years old, respectively	Female-to-male ratio was 1.08:1	Female-to-male ratio was 1.08:1	[94,95]
South Sudan	Jul 2012-Jan 2013	5,080 7.4%	Persons aged 18–59 years had the highest attack rates	NA	NA	[98]
Sudan	Oct 1988	≥ 55 NA	NA	NA	NA	[122]
	Jul - Dec 2004	2,621 (45) 3.3% (n = 78,800)	Being 15–45 years old was a risk factor for clinical HEV infection with odds ratio being 2.13 (95% CI, 1.02-4.46).	No significant difference	No significant difference	[100]
	Nov 2010-Mar 2011	39 * (11) NA	NA	Only pregnant women were reported.	Only pregnant women were reported.	[104]
Uganda	Oct 2007 - Jun 2009	>10,356 (160) 25.1% (n = 19,098)	< 2 year olds (6.9%) vs. pregnant women (87%)	22% males vs. 28% females (p < 0.001)	22% males vs. 28% females (p < 0.001)	[119,120,123]

*aNA; not available.
*bCAR; Central African Republic.
*cActive case finding suggested a clinical attack rate of 16%.
*dOutbreak in refugee camps.
*eFor pregnant women.
and measles signifying that these patients require equal attention. Like HEV infections among pregnant woman in Asia, the clinical prognosis is far worse for pregnant women than for men with fatalities reaching four out of 10 infected pregnant women [6]. The concerns for pregnant woman are further amplified when recognizing that HIV prevalence is high among pregnant women in sub-Saharan Africa [132] and co-infection with HIV and HEV as reported here may increase the risk of fulminant or chronic hepatitis. African men co-infected with HIV and HEV are similarly at risk of complications. While appreciating the hardship from all HEV-associated deaths, maternal deaths are the great tragedy of HEV infection likely causing serious adverse consequences for the health and well-being of surviving family members, especially children.

It has been suggested that many hepatitis outbreaks that occurred before the development of diagnostic assays for any hepatitis virus and enterically transmitted NANB hepatitis outbreaks were likely due to HEV as CFRs in pregnant women in these outbreaks were disproportionally high and attack rates were higher in young adults compared to children or adults [23]. This review supports the prior study showing that outbreaks and sporadic cases by NANB reported in Africa, many of which were not considered in the previous study, also display high CFR in pregnant women and high clinical attack rate among young adults (Tables A1-A3 in the Additional file 1).

We noted several limitations with the existing literature. First, there is no diagnostic "gold standard" for HEV infection and existing studies use different assays that vary in sensitivity and specificity adversely impacting the validity and comparability of reports. Second, studies measure the prevalence of HEV infection in dissimilar subpopulations making it difficult to compare seroprevalence. For example, it is difficult to conclude whether the overall seroprevalence

Table 4 Case-fatality rates (CFRs) of HEV infection

Country	Year	Case-fatality rate (n = no. of cases)	Source	
		Pregnant female	Overall	
CARa	2002	20% (n = 5)	1.8% (n = 222)	[34]
Chad	2004	NA b	3.0% (n = 989)	[37]
Eritrea	1988-89	NA	0% (n = 423)	[44]
Ethiopia	1988-91	42.1% (n = 19)	NA	[6]
Kenya	2012	12.5% (n = 72)	2.9% (n = 339)	[80]
Somalia	1988-9	13.8% (n = NA)	3.0% (n = 11,413)	[94]
South Sudan	2012-3	10.4% (n = 211)	NA	[99]
Sudan	2004	31.1% (n = 61)	17.8% (n = 253)	[101]
	2004	31.1% (n = 61)	1.7% (n = 2,621)	[100]
Uganda	2008	NA	1.5% (n = 9,648)	[123]

*CAR: Central African Republic.
NA: not available.

Table 5 Genotype distribution from African HEVs

Genotype	Country	Year of sampling	Sample	RNA region tested	Source
1	CARa	2002	One fecal sample from an outbreak	NA b	[34]
	Chad	1984	A patient with hepatitis E	Complete genome	[28]
		2004	Five isolates from an outbreak	ORF2 (363 nt)	[35]
	Egypt	1993	Acute hepatitis patients	ORF1 (location: 55–320)	[46]
		2006-8	Acute hepatitis patients	ORF1	[62]
		2012e	Sixteen isolates from acute hepatitis patients	ORF2 (189 nt)	[124]
	Namibia	1983	Nine isolates from an outbreak in Kavango	ORF2 (296 nt), 3 (188 nt)	[88]
	Sudan	2004	Twenty three isolates from an outbreak	ORF2 (363 nt)	[35]
	Uganda	2007	Internally displaced persons camp	NA	[123]
		2008	Twenty four isolates from an outbreak	NA	[119]
2	CAR	2002	Three fecal samples from an outbreak	NA	[34]
	Chad	2004	Four isolates from an outbreak	ORF2 (363 nt)	[35]
	Namibia	1995	Four isolates from NANB outbreak in Rundu	ORF2 (451 nt near 3’-end)	[87]
	Nigeria	2000e	Ten adult acute hepatitis patients	ORF1, 2 (3’-end)	[89]
3	Egypt	2007	One 9 year-old acute hepatitis patient	ORF1, 2, 2/3	[48]
	Mayotte	2009	One French acute hepatitis patient (46 yr old)	ORF2 (288 nt)	[82]
	Madagascar	2008-9	Slaughter house workers	ORF2,3 (1000 nt)	[81]

*CAR: Central African Republic.
NA: not available.
ORF; open reading frame.
nt; nucleotides.
*Publication year.
of HEV infection in South Africa is higher than that in Morocco when examining studies that show seroprevalence among South Africans with a mean age of 42 years is 10.7% [98] and that among younger population in Morocco is 2.2-6.8% [84,85]. Third, studies use different criteria to define acute hepatitis. In a study of Egyptian children, acute hepatitis was defined as the acute injury to the liver, manifested by two fold or more increase in the level of aspartate aminotransferase and alanine aminotransferase [47] whereas in another study, acute hepatitis was defined as the patient whose aminotransferase level was 5 times the normal value [133]. Finally, different surveillance methods may lead to different attack rates being determined. Attack rates are exceptionally difficult to determine in un-enumerated populations, which is likely to be the case in many African nations. The limitations noted above could be corrected in future studies by developing and publishing standardized study methods including case definitions and analytical plans and by development of a generic protocol for outbreak and endemic disease investigations. For diagnosis, an enzyme-linked immunosorbent assay for HEV IgG and IgM (Beijing Wantai Biological Pharmacy Enterprise CO., LTD.) shows high sensitivity and specificity compared to other assays including molecular methods [134].

There are knowledge gaps. Serology studies suggest that many Africans are infected with HEV, but except during outbreaks, symptomatic disease is only sporadic implying that case finding is incomplete or that only a few infected cases progress to clinical disease. Pathogenesis studies are needed. While there are a growing number of published reports on the impact of HEV infection, the overall burden of hepatitis E in Africa remains unclear. For example, two studies from South Asia using verbal autopsies suggest that HEV is responsible for 10% or more of pregnancy-associated deaths [135,136]. The same investigation should also be carried out in multiple sites in Africa. HEV transmission in nations with genotypes 1 and 2 likely occurs from the fecal-oral route. However, the authors in one study on the HEV epidemic in Uganda during 2007–9 claimed that person-to-person transmission played a significant role in the propagation of HEV [120,137]. Because of the implications for control measures, this report implies that HEV transmission studies should be carried out. Given the high background rates of HEV infection, the effect of co-infections (e.g., HIV, Hepatitis B) on the severity of disease especially in pregnant women are needed. Potential risk factors for HEV infection such as co-infections or pregnancy need to be clarified. Studies of vertical transmission and blood donor screening should be funded. As these results suggest that acute hepatitis E is fecal-orally transmitted in African countries, the ultimate control of this disease will require increased access to safe water and sanitation and improved personal hygiene. Until these measures are universal, an anti-HEV vaccine is needed. Hecolin™ is a safe and effective anti-HEV vaccine for healthy subjects 16 years of age and older exposed to HEV genotype 4. The vaccine is now licensed in China [14]. This vaccine shows promise for outbreak interventions and control of endemic disease but several epidemiological issues need to be addressed before the vaccine is used widely in Africa. The participants in the efficacy trial used for licensing Hecolin™ were healthy adults, and there is no safety
data on persons with chronic liver disease, the immunocompromised, and among children less than 16 years old. While the vaccine has also been found safe in a small number of pregnant women (n = 37) inadvertently vaccinated during a large clinical trial [138], there is a necessity for demonstrating safety in well-powered trials of pregnant women as this population should be included in outbreak response because of the high case fatality rate. While vaccine efficacy has been established for genotype 4, there are no studies in patients with genotype 1 or 2, the prominent strains in Africa. For outbreaks, it is unknown how quickly after the first injection protection will be afforded to those at risk early in the outbreak. There are no published reports on the length of protection. Still, these issues can and should be addressed quickly as there is a potential for this vaccine to be a major component of African HEV control program.

Conclusions
Extensive data suggest that hepatitis E is a major contributor to disease and mortality across much of the African continent, with country-level variability, as expected. Still, it is challenging to make comparisons across these populations, given differing methodologies and assays used to determine HEV etiology. Despite its substantial impact on human health, HEV has, even in hyper-endemic South Asia, been neglected in recognition as a major public health problem since its identification. Given the emerging evidence that HEV could be vaccine preventable, we hope this review will shed light on a pathogen of significance across the African continent.

Additional file

Additional file 1: Table A1. Sporadic hepatitis cases caused by NANB viruses. Table A2. NANB outbreaks in Africa. Table A3. Case-fatality rates (CFRs) by NANB.

Abbreviations
HEV: Hepatitis E virus; CFR: Case fatality rate; NANB: Non A, non B; HBV: Hepatitis B virus; CAR: Central African Republic; DRC: Democratic Republic of the Congo; ORF: Open reading frame; NT: Nucleotides; NA: Not available.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
TFW outlined the manuscript, oversaw the development, and with J-HK wrote the manuscript. JHK, UP, and YK searched and J-HK reviewed the literature. All authors reviewed the results, edited the manuscript, and approved the final manuscript.

Acknowledgements
We thank members at IVI for invaluable comments on the manuscript. This manuscript was edited by the IVI Communications & Advocacy Unit. The IVI receives funding support from the Bill and Melinda Gates Foundation, and the governments of Korea and Sweden.

Author details
1International Vaccine Institute, SNU Research Park, San 4-8, Naksan-dong, Gwanak-gu, Seoul 151-919, South Korea. 2Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe Street, Baltimore, MD 21205, USA.

Received: 15 October 2013 Accepted: 28 May 2014
Published: 5 June 2014

References
1. Viral hepatitis. [http://apps.who.int/gb/ebwha/pdf_files/WHA63/A63_15-en.pdf]
2. Purcell RH, Emerson SU: Hepatitis E: an emerging awareness of an old disease. J Hepatol 2008, 48:494–503.
3. Teshale EH, Hu DQ: Hepatitis E: epidemiology and prevention. World / Hepatol 2011, 3:285–291.
4. Kumar N, Bendall R, Legrand-Abraham F, Xia NS, Ijaz S, Iozet J, Dalton HR: Hepatitis E. Lancet 2012, 379:2477–2488.
5. Skidmore S: Overview of Hepatitis E virus. Curr Infect Dis Rep 2002, 4:118–123.
6. Tsega E, Krawczynski K, Hansson BG, Nordenfelt E: Hepatitis E virus infection in pregnancy in Ethiopia. Ethop Med J 1993, 31:173–181.
7. Balayan MS, Andjaparidze AG, Savinskaya SS, Ketiladze ES, Braginsky DM, Savinov AP, Poleschuk VF: Evidence for a virus in non-A, non-B hepatitis transmitted via the fecal-oral route. Antivirologia 1983, 20:23–31.
8. Tam AW, Smith MW, Guerra MC, Huang CC, Bradley DW, Fry KE, Reyes GR: Hepatitis E virus (HEV): molecular cloning and sequencing of the full-length viral genome. Virology 1991, 185:120–131.
9. Aggarwal R, Diagnosis of hepatitis E. Nat Rev Gastroenterol Hepatol 2012, 10:24–33.
10. Emerson SU, Purcell RH: Hepatitis E Virus. In Field’s Virology. Fifth edition. Edited by Knipe DM, Howley PM. Philadelphia: Lippincott Williams and Wilkins; 2007:3047–3058.
11. Schlauder GG, Mushahwar K: Genetic heterogeneity of hepatitis E virus. J Med Virol 2001, 65:282–292.
12. Lu L, Li C, Hagedorn CH: Phylogenetic analysis of global hepatitis E virus sequences: genetic diversity, subtypes and zoonosis. Rev Med Virol 2006, 16:35–36.
13. Purdy MA, Khudyakov YE: The molecular epidemiology of hepatitis E virus infection. Virus Res 2011, 161:31–39.
14. Zhu FC, Zhang J, Zhang XP, Zhou C, Wang ZZ, Huang SJ, Wang H, Yang QL, Jiang HM, Cai JP, Wang YJ, Ai X, Hu YM, Tang Q, Yao X, Yan Q, Xian YL, Wu T, Li YM, Miao J, Ng MH, Shih JW, Xia NS: Efficacy and safety of a recombinant hepatitis E vaccine in healthy adults: a large-scale, randomised, double-blind placebo-controlled, phase 3 trial. Lancet 2010, 376:895–902.
15. Shresta MP, Scott RM, Joshi DM, Mamman MP, Jr, Thapa GB, Thapa N, Myint KS, Fourneau M, Kuschner RA, Shrestha SK, David MP, Seriwatana J, Vaughn DW, Safety A, Endy TP, Innis BL: Safety and efficacy of a recombinant hepatitis E vaccine. N Engl J Med 2007, 356:895–903.
16. Zhang J, Liu CB, Li RC, Li YM, Zheng YJ, Li YP, Luo D, Pan BB, Nong Y, Ge SX, Xiong JH, Shih JW, Ng MH, Xia NS: Randomized-controlled phase II clinical trial of a bacterially expressed recombinant hepatitis E vaccine. Vaccine 2009, 27:1869–1874.
17. Profitt A: First HEV vaccine approved. Nat Biotechnol 2012, 30:300–303.
18. Park SB: Hepatitis E vaccinedebuts. Nature 2012, 491:21–22.
19. Viswanathan R: A review of the literature on the epidemiology of infectious hepatitis. Indian J Med Res 1957, 45:145–155.
20. Wong DC, Purcell RH, Seevinck MA, Prasad SR, Pavli RM: Epidemiologic and endemic hepatitis in India: evidence for a non-A, non-B hepatitis virus aetiology. Lancet 1980, 2:876–879.
21. Arankalle VA, Chadha MS, Tiwari SA, Emerson SU, Risbud AR, Banerjee K, Purcell RH: Seroenzymologic of water-borne hepatitis in India and evidence for a third enterically-transmitted hepatitis agent. Proc Natl Acad Sci U S A 1994, 91:3428–3432.
22. Reim RB, Stevens GA, Theaker J, Wittenborn JS, Wiersma ST: The global burden of hepatitis E virus genotypes 1 and 2 in 2005. Hepatology 2012, 55:988–997.
23. Teo CG: Fatal outbreaks of jaundice in pregnancy and the epidemic history of hepatitis E. Epidemic infect 2012, 140:767–787.
24. Cause-specific mortality, 2008: WHO region. [http://apps.who.int/gho/data/node.main.387?lang=en]
25. World Population Prospects, the 2010 Revision. [http://esa.un.org/unpd/ wpp/Excerpt-data/pop.html]

26. van Cuyck-Gandre H, Zhang HY, Taere SA, Clements NJ, Cohen SJ, Caudill JD, Buisson Y, Coursaget P, Warren RL, Longier CF, Characterization of hepatitis E virus (HEV) from Algeria and Chad by partial genome sequence. J Med Virol 1997, 53:340–347.

27. van Cuyck-Gandre H, Caudill JD, Zhang HY, Longier CF, Molinie C, Roue R, Deloince R, Coursaget P, Marmouth NN, Buisson Y: Short report: polymerase chain reaction detection of hepatitis E virus in north African feral samples. Am J Trop Med Hyg 1996, 54:134–135.

28. van Cuyck-Gandre H, Juge F, Roques P: Phylogenetic analysis of the first complete hepatitis E virus (HEV) genome from Africa. FEMS Immunol Med Microbiol 2003, 39:133–139.

29. Traore KA, Rouamba H, Nebie Y, Sanou M, Traore AS, Barro N, Roques P: Seroprevalence of fecal-oral transmitted hepatitis A and E virus antibodies in Burkina Faso. PLoS One 2012, 7:e48125.

30. Aubry P, Niel L, Niyongabo T, Kerguelen S, Larouze B: Seroprevalence of hepatitis E virus in an adult urban population from Burundi. Am J Trop Med Hyg 1997, 57:272–273.

31. Aubry P, Larouze B, Niyongabo T, Niel L: [Markers of hepatitis C and E virus in Burundi (central Africa)]. Bull Soc Pathol Exot 1997, 90:150–152.

32. Feldt T, Sario FS, Zoufaly A, Phillips RO, Burchard G, van Lunzen J, Chochem J, Chadwick D, Awasom C, Claussen L, Drosten C, Drexler F, El-Hubinger AM: Hepatitis E virus infections in HIV-infected patients in Ghana and Cameroon. J Clin Virol 2013, 58:18–21.

33. Powaltzky JM, Bele L, Gesenguet G, Deforges L, Bouvier M, Duval J, Dhouette M: High prevalence of hepatitis B, C, and D markers in young sexually active adults from the Central African Republic. J Med Virol 1995, 46:269–272.

34. Escrima JM, Nakoune E, Recio C, Masambara PM, Matsika-Claquin MD, Gomtia C, Rose AM, Nicand E, Garcia E, Lecliegean C, Koffi B: Hepatitis E, Central African Republic, Emerg Infect Dis 2008, 14:681–683.

35. Nicand E, Armstrong GL, Enouf V, Guthmann JP, Guerin JP, Caron M, Nizou JY, Coursaget P, Buisson Y, Delome R, Gesenguet G, Deforges L, Bouvier M, Duval J, 13:

36. Coursaget P, Buisson Y, Enogat N, Bercion R, Baudet JM, Delmaire P, Prigent D, Deloince R, Coursaget P, Mamouth NN, Buisson Y: Complete hepatitis E virus (HEV) genome from Africa. FEMS Immunol Med Microbiol 2006, 50:295–301.

37. Stozsek SK, Abdel-Hamid M, Saleh DA, El-Kafrawy S, Niaour O, Hawash Y, Shellal EM, Dali D, Said A, Kasemari E, Mikhail N, Engele RE, Sayed M, Sharaf S, Fix AD, Emeron SU, Purcell RH, Strickland GT: High prevalence of hepatitis E antibodies in pregnant Egyptian women. Trans R Soc Trop Med Hyg 2006, 100:95–101.

38. Stozsek SK, Engele RE, Abdel-Hamid M, Mikhail N, Abdel-Aziz F, Medhat A, Fix AD, Emeron SU, Purcell RH, Strickland GT: Hepatitis E seroconversion without disease in highly endemic Egyptian communities. Trans R Soc Trop Med Hyg 2006, 100:89–94.

39. Abe K, Li TC, Ding X, Win KM, Shrestha PK, Quang VX, Ngoc TT, Tatvav TL, Smirnov AV, Uchaikin VF, Luengrojanakul P, Gu H, El-Zayady A, Prince AM, Eldin SS, Seddik I, Daef EA, Shata MT, Raafat M, Abdel Baky L, Nafeh MA: International collaborative survey on epidemiology of hepatitis E virus in 11 countries. Southeast Asian J Trop Med Public Health 2006, 37:90–95.

40. Gad YZ, Moussa N, Shams M, Bleva A: Seroprevalence of subclinical HEV infection in asymptomatic, apparently healthy, pregnant women in Dakahlia Governorate, Egypt. Asian J Transl Sci 2011, 5:136–139.

41. El-Enawy NA, Garnel MA, EL-Walid AS: Detection of hepatitis E virus in greater Cairo, Two wastewater treatment plants and its prevalence among workers of these plants. J Egypt Public Health Assoc 1998, 73:597–619.

42. Albatnonya MA, El-Shafei MK: Work-Related Health Effects among Wastewater Treatment Workers. Int J Occup Environ Med 2011, 2:237–244.

43. El-Enawy NA, Al-Herayawi A2: Seroprevalence of certain hepatitis viruses among Egyptian workers infected with schistosomiasis. J Egypt Public Health Assoc 2000, 75:537–543.

44. Blackard JT, Rouster SD, Nady S, Galal G, Marzuuk N, Rafaa MA, Daef E, Dini SS, Purcell RH, Emerson SU, Sherman KE, Shaht MT: Genotypic characterization of symptomatic hepatitis E virus (HEV) infections in Egypt. J Clin Virol 2009, 46:140–144.

45. Eldin SS, Seddik I, Daef IA, Eltata El, Raafaat M, Abdel Baky L, Nafeh MA: Risk factors and immune response to hepatitis E viral infection among acute hepatitis patients in Assiut, Egypt. Egypt J Immunol 2010, 17:73–86.

46. Zakaria S, Fouad R, Shaker O, Zaki S, Hashem A, El-Kamary SS, Esmat G: Changing patterns of acute viral hepatitis at a major urban referral center in Egypt. Clin Infect Dis 2007, 44:80–86.

47. Aboulata AA, Ahmed MS, Shaban MM, Zayd KM, Abd El-Mokhtar AD: Prevalence of hepatitis E virus in Egyptian children presented with minor hepatic disorders. Egypt J Immunol 2006, 12:271–276.

48. El Sayed ZM, Ottman W: Role of hepatitis E infection in acute on chronic liver failure in Egyptian patients. Liver Int 2011, 31:1001–1005.

49. Melky FA, Stozsek SK, Abdel-Hamid M, Sellim S, Abdel-Wahab A, Mikhail N, El-Kafrawy S, El-Daliy M, Abdel-Aziz F, Sharaf S, Mohamed MK, Engele RE, Emerson SU, Purcell RH, Fix AD, Strickland GT. Active surveillance for acute viral hepatitis in rural villages in the Nile Delta. Clin Infect Dis 2006, 42:628–633.

50. Basily S, Doctor FN, Farid Z, Fanous A, Yassin MY, Wallace CK: Acute hepatitis non-A non-B in Cairo residents (a preliminary report). Trans R Soc Trop Med Hyg 1983, 77:382–383.

51. Shata MT, El-Dave IA, Zaki M, Abdel-Wahab SF, Marzuk NM, Sobhy M, Rafaat M, Abdelbaki L, Nafeh MA, Hashem M, El-Kamary SS, Sharf AE, Mikhail NN, Strickland GT, Sherman KE: Protective role of humoral immune responses
during an outbreak of hepatitis E in Egypt. Trans R Soc Trop Med Hyg 2012, 106(3–4):581–583.

70. El-Zimyaty DM, Hyams KC, Imam IZ, Watts DM, Basilly S, Naffea EK, Sultan Y, Emara K, Burans JP, Purdy MA, et al. Acute sporadic hepatitis E in an Egyptian pediatric population. Am J Trop Med Hyg 1993, 48:372–376.

71. Gomatos PJ, Monier MK, Arthur RR, Rodier GR, El-Zimyaty D, Hassan NF, Quandt J, El-Sabry AO, Sutan Y, Hyams KC. Sporadic acute hepatitis caused by hepatitis E virus in Egyptian adults. Clin Infect Dis 1996, 23:195–196.

72. Richard-Nonel D, Traore O, Kombila M, Roingeard P, Dubois F, Goudeau A: Hepatitis B, C, D, and E markers in rural equatorial African villages (Gaboron). Am J Trop Med Hyg 1995, 53:38–341.

73. Caron M, Kazanji M: Hepatitis E virus is highly prevalent among pregnant women in Gabon, central Africa, with different patterns between rural and urban areas. J Virol 2008, 82:4158.

74. Martinson FE, Marfo YV, Degraft J: Hepatitis E virus seroprevalence in children living in rural Ghana. West Afr J Med 1999, 18:76–79.

75. Adjei AA, Tettey Y, Aviyase JT, Adu-Gyamfi C, Mingle JA, Nartey ET: Unconfirmed elevated alanine aminotransferase, aspartate aminotransferase levels and hepatitis E virus infection among persons who work with pigs in Accra, Ghana. Virol J 2010, 7:336.

76. Meldal BH, Sarkanide F, Owusu-Ofosu S, Alain JP: Hepatitis E virus infection in Ghanaian blood donors: the importance of immunoassay selection and confirmation. Vox Sang 2012, 104:30–36.

77. Adjei AA, Aviyase JT, Tettey Y, Adu-Gyamfi C, Mingle JA, Ayeh-Kumi PF, Adiku TK: Hepatitis E virus infection among pig handlers in Accra, Ghana. J Virol Med 2009, 16(Suppl 1):S39–S43.

78. Adjei AA, Tettey Y, Aviyase JT, Adu-Gyamfi C, Obed S, Mingle JA, Ayeh-Kumi PF, Adiku TK: Hepatitis E virus infection is highly prevalent among pregnant women in Accra, Ghana. Virol J 2009, 6:108.

79. Mast EE, Polish LB, Favorov MO, Khudyakova NS, Collins C, Tukei PM, Quinti I, El-Sahly AD, Sultan Y, Hyams KC: Molecular characterization of a hepatitis E virus isolate from Namibia. J Med Virol 2010, 82:376–380.

80. Ahmed JA, Moturi E, Spiegel P, Schlippeb C, Burton W, Kasmir NH, Mohamed A, Ochien M, Ndentiu L, Navarro-Colorado C, Burke H, Cookson H, Sandzel T, Waiboci LW, Montgomery JM, Teshale E, Marano N: Hepatitis E outbreak, Dadaab refugee camp, Kenya, 2012. Emerg Infect Dis 2013, 19:1010–1012.

81. Temmam S, Bensaid L, Andriamandimby SF, Foray C, Rasamoelina-Andrianinarivo H, Hauraud JM, Cardielle D, Ellafi P, Pascali H, Porphyre V: High prevalence of hepatitis E virus in humans and pigs and genetic diversity of genotype-3 virus in swine, Madagascar. Am J Trop Med Hyg 2013, 88:329–338.

82. Eplebli Z, Fadieu D, Roussin C, Lemont T, Petteinnie ME, Tese S, Ali R, Aubry P: A sporadic case of genotype 3f acute hepatitis E in Mayotte. Med Mal Infect 2011, 41:392–394.

83. Benjelloum S, Bahboui B, Bouchot N, Cherkaoui L, Hda N, Mahjour J, Benslimane A: Seroprevalence study of an acute hepatitis E outbreak in Morocco. Rev Med Vét Res 1997, 148:279–287.

84. Bernal MC, Leyva A, Garcia F, Galan I, Piedrola G, Heyermann H, Maroto MC: Seroprevalence of seven viruses in central Tunisia: epidemiology, clinical course, and predictors of mortality. Dig Dis Sci 2007, 52:3266–3269.

85. Mudawi HM, Youssf BA: Fulminant hepatic failure in an African setting: etiology, clinical course, and predictors of mortality. Dig Dis Sci 2007, 52:3266–3269.

86. Maynard MC, Levy A, Garcia F, Galan I, Piedrola G, Heyermann H, Maroto MC: Seroprevalence of hepatitis E virus in selected individuals in South Africa. J Med Virol 2004, 74:384–388.

87. Tucker TJ, Kirsch RE, Louw SJ, Isaacs S, Kannemeyer J, Robson SC: Hepatitis E in South Africa: evidence for sporadic spread and increased seroprevalence in rural areas. J Med Virol 1996, 50:117–119.

88. Centers for Disease Control and Prevention: Investigation of hepatitis E outbreak among refugees - Upper Nile, South Sudan, 2012–2013. MMWR Morb Mortal Wkly Rep 2013, 62:581–586.

89. Guthmann JP, Klovstad H, Boccia D, Hamid N, Proges N, Nizou JY, Tatay M, Daz F, Moren A, Grais RF, Cigleneri I, Nicand E, Guerin PJ: A large outbreak of hepatitis E among a displaced population in Darfur, Sudan, 2004: the role of water treatment methods. Clin Infect Dis 2005, 41:1685–1691.

90. Boccia D, Guthmann JP, Klovstad H, Hamid N, Tatay M, Cigleneri I, Nizou JY, Nicand E, Guerin PJ: High mortality associated with an outbreak of hepatitis E among displaced persons in Darfur, Sudan. Clin Infect Dis 2006, 42:1679–1683.

91. World Health Organization: Hepatitis E, Sudan–update. Wkly Epidemiol Rec 2004, 79:341–342.

92. Crtano M, Michel P, Rodier GR, Ka M, Hugard L, Douf G: Viral markers of acute hepatitis: A, B, C, D, and E in Dakar. October 92 – October 93. Dakar Med 1993, 38:183–185.

93. Pilott J, Lazizi Y, Diallo Y, Leguenno B: Frequent sporadic hepatitis E in west Africa evidenced by characterization of a virus-associated antigen in the stool. J Hepatol 1992, 15:420–421.

94. Biek K, Isse A, Hamoudi O, Allebeck P, Nilsson L, Norder H, Mushawarik IH, Magnus LO: Contrasting roles of rivers and wells as sources of drinking water on attack and fatality rates in a hepatitis E epidemic in Somalia. Am J Trop Med Hyg 1994, 51:466–474.

95. Mushawarik IH, Dawson GJ, Bile KM, Magnus LO: Serological studies of an enterically transmitted non-A, non-B hepatitis in Somalia. J Med Virol 1993, 40:218–221.

96. Burans JP, Sharp T, Wallace M, Longer C, Thornton S, Batchelor R, Clemens S: Hepatitis E virus infection among pig handlers in the Casablanca area. Am J Trop Med Hyg 1999, 61(Suppl 3):376–380.

97. Grabow WD, Favorov MO, Khudyakova NS, Taylor MB, Fields HA: Hepatitis E virus seroprevalence in selected individuals in South Africa. J Med Virol 1994, 42:384–388.

98. Hyams KC, Hussain MA, Alarabi MA, Atallah NA, Eltigani A, McCarthy MC: Acute sporadic hepatitis in Sudanese children. J Med Virol 1991, 33:73–76.

99. Bell Halima M, Arrouji Z, Slim A, Lakhrou H, Ben Redjeb S: [Epidemiology of hepatitis E in Tunisia]. Tunis Med 1998, 76:129–131.

100. Hannachi N, Boughammoura L, Marzouk M, Tipphá M, Khalf A, Scossi S, Skouri H, Bouklada J: [Viral infection risk in polytransfused adults: seroprevalence of seven viruses in central Tunisia]. Bull Soc Pathol Exot 2011, 104:220–225.

101. Hannachi N, Hidar S, Harabbi I, Mhalla S, Marzouk M, Ghezli H, Ghannem H, Khairi H, Bouklada J: [Seroprevalence and risk factors of hepatitis E among pregnant women in central Tunisia]. Pathol Biol (Paris) 2011, 59:811–818.

102. Houcine N, Jacques R, Salma F, Anne-Gaëlle D, Amin S, Mohsen H, Hamadi B, Christophe R, Patrice A, Mahjoub A, Caroline S: Seroprevalence of hepatitis E virus infection in rural and urban populations, Tunisia. Clin Microbiol Infect 2012, 18:E119–E121.

103. Bezietsy J, Bouchot N, Cherkaoui L, Hda N, Mahjour J, Benslimane A: Seroprevalence of hepatitis E virus in Casablanca]. Pathol Biol (Paris) 2013, 61:941–942.

104. Bezietsy J, Bouchot N, Cherkaoui L, Hda N, Mahjour J, Benslimane A: Seroprevalence of hepatitis E virus in Casablanca]. Pathol Biol (Paris) 2004, 52:376–377.

105. Hyams KC: Hepatitis E virus infection in humans and non-human primates. Clin Infect Dis 2004, 39:1012–1023.

106. Hyams KC: Hepatitis E virus infection in humans and non-human primates. Clin Infect Dis 2004, 39:1012–1023.

107. Heymann H, Boukadida J: [Seroprevalence and risk factors of hepatitis E among pregnant women in central Tunisia]. Pathol Biol (Paris) 2011, 59:811–818.
and E among women in a rural area of Tanzania. J Med Virol 2000, 62:524–530.
115. Jacobs C, Chiluba C, Phiri C, Lusito MM, Chomba M, Hill PC, Iajz S, Kelly P: Seroepidemiology of Hepatitis E Virus infection in an Urban Population in Zambia: Strong Association With HIV and Environmental Enteropathy. J Infect Dis 2014, 209:652–657.
116. El-Esnawy NA: Examination for hepatitis E virus in wastewater treatment plants and workers by nested RT-PCR and ELISA. J Egypt Public Health Assoc 2000, 75:219–231.
117. Miller FD: High seroprevalence of hepatitis A, B, C, and E virus in an Egyptian village in the Nile Delta. Am J Trop Med Hyg 1997, 57:251.
118. Hyams KC, Purdy MA, Kaur M, McCarthy MC, Hussain MA, el-Tigani A, Jacobs C, Chiluba C, Phiri C, Lisulo MM, Chomba M, Hill PC, Ijaz S, Kelly P: Examination for hepatitis E virus in wastewater treatment plants and workers by nested RT-PCR and ELISA. J Egypt Public Health Assoc 2000, 75:219–231.
119. Teshale EH, Howard CM, Grytdal SP, Handzel TR, Barry V, Kamili S, Drobeniuc J, Okware S, Downing R, Tappero JW, Bakamutumaho B, Teo CG, Ward JW, Holmberg SD, Hu DJ: Hepatitis E epidemic, Uganda. Emerg Infect Dis 2010, 16:126–129.
120. Teshale EH, Grytdal SP, Howard C, Barry V, Kamili S, Drobeniuc J, Hill VR, Okware S, Hu DJ, Holmberg SD: Evidence of person-to-person transmission of hepatitis E virus during a large outbreak in Northern Uganda. Clin Infect Dis 2010, 50:1006–1010.
121. Gournia AI, Konamma X, Komas NP: Clinical and epidemiological aspects of a hepatitis E outbreak in Bangui, Central African Republic. BMC Infect Dis 2011, 11:93.
122. McCarthy MC, He J, Hyams KC, el-Tigani A, Khalid IO, Carl M: Acute hepatitis E infection during the 1988 floods in Khartoum, Sudan. Trans R Soc Trop Med Hyg 1994, 88:177.
123. Howard CM, Handzel T, Hill VR, Grytdal SP, Banton C, Kamili S, Drobeniuc J, Hu D, Teshale E: Novel risk factors associated with hepatitis E virus infection in a large outbreak in northern Uganda: results from a case–control study and environmental analysis. Am J Trop Med Hyg 2010, 83:1170–1173.
124. Delarocque-Astagneau E, Abravanel F, Moshen A, Le Fouler L, Gaud RR, El-Daly M, Ibrahim EM, B-Ady S, Lashin T, El-Hoseyny M, Izopet J, Mohamed AK, Fontanet A, Abdel Hamid M: Epidemiological and virological characteristics of symptomatic acute hepatitis E in Greater Cairo, Egypt. J Microbiol Infect 2012, 18:580–598.
125. World Health Organization: Hepatitis E. Fact Sheet No 280. 2013.
126. Boxall E, Herborn A, Kochethu G, Pratt G, Adams D, Iajz S, Teo C-G: Transfusion-transmitted hepatitis E in a “nonhyperendemic” country. Transfus Med 2006, 16:79–83.
127. Matsubayashi K, Kang J-H, Sakata H, Kazuaki Takahashi K, Shinjo M, Kato M, Sato K, Kato T, Nishimori H, Tsuji K, Maguchi H, Yoshida J-I, Maekubo H, Mishiro S, Ikeda H: A case of transfusion-transmitted hepatitis E caused by blood from a donor infected with hepatitis E virus via zoonotic food-borne route. Transfusion 2008, 48:1368–1375.
128. El-Sayed Zaki M, Abd El Aal A, Badawy A, El-Deeb DR, El-Kheir NYA: Clinicolaboratory study of mother-to-neonate transmission of hepatitis E virus in Egypt. Am J Clin Path 2013, 140:721–726.
129. Zaki M, Salama OS, Mansour FA, Hossein S: Hepatitis E virus coinfection with hepatotropic viruses in Egyptian children. J Microbiol Immunol Infect 2008, 41:254–258.
130. Caron M, Bouscailou J, Kazanjii M: Acute risk for hepatitis E virus infection among HIV-1-positive pregnant women in central Africa. Virol J 2012, 9:254.
131. Kmrush B, Wierzba T, Krain L, Nelson K, Labrique AB: Epidemiology of hepatitis E in low- and middle-income countries of Asia and Africa. Semin Liver Dis 2013, 33:15–29.
132. UNAIDS: Global report: UNAIDS report on the global AIDS epidemic 2010. In Book Global report: UNAIDS report on the global AIDS epidemic 2010. City: UNAIDS Geneva; 2010.
133. Bassily S, Hyams KC, el Ghorab NM, Ansari AA, Fanous AS: Acute sporadic hepatitis in adults living in Cairo, Egypt. Am J Trop Med Hyg 1986, 35:1040–1044.
134. Bendall R, Ellis V, Iajz S, Ali R, Dalton H: A comparison of two commercially available anti-HEV IgG kits and a re-evaluation of anti-HEV IgG seroprevalence data in developed countries. J Med Virol 2010, 82:799–805.
135. Labrique AB, Skidmore SS, Krain LJ, West KP Jr, Christian P, Rashid M, Nelson KE: Hepatitis E, a vaccine-preventable cause of maternal deaths. Emerg Infect Dis 2012, 18:1401–1404.