Whole-Genome Sequences of Two *Campylobacter coli* Isolates from the Antimicrobial Resistance Monitoring Program in Colombia

Johan F. Bernaletal., Pilar Donado-Godoy, María Fernanda Valencia, Maribel León, Yolanda Gómez, Fernando Rodríguez, Richa Agarwala, David Landsman, Leonardo Mariño-Ramírez

Corporación Colombiana de Investigación Agropecuaria (CORPOICA), Centro de Investigación Tibaíta, Cundinamarca, Colombia; Instituto Colombiano Agropecuario (ICA), Laboratorio Nacional de Diagnostico Veterinario, Bogotá, Colombia; National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA

Campylobacter coli, along with *Campylobacter jejuni,* is a major agent of gastroenteritis and acute enterocolitis in humans. We report the whole-genome sequences of two multidrug-resistance *C. coli* strains, isolated from the Colombian poultry chain. The isolates contain a variety of antimicrobial resistance genes for aminoglycosides, lincosamides, fluoroquinolones, and tetracycline.

TABLE 1 *Campylobacter coli* genome annotation statistics

Strain	NCBI BioSample	No. of genes	No. of CDSes	No. of pseudogenes	No. of CRISPR arrays	No. of rRNAs	No. of tRNAs	No. of ncRNAs	GenBank accession no.
M1483	SAMN04353893	1,782	1,739	55	0	3	37	3	LQXL00000000
M1486	SAMN04353891	1,916	1,873	58	1	3	37	3	LQXK00000000

a CDSs, coding sequences.

b ncRNAs, noncoding RNAs.
quences, pseudogenes, CRISPR arrays, rRNAs, tRNAs, and non-coding RNAs are summarized in Table 1.

A search for resistance-associated genes present in the isolates was performed using ResFinder version 2.1 (15) and enriched using RAST version 2.0 (16), both with default parameters. We found antimicrobial resistance genes for aminoglycosides (Aph 3′-III), lincosamides (InuC), fluoroquinolones (gyrA and gyrB), and tetracyclines (EF-G and TetO). Additionally, we found efflux pump genes (CmeA, CmeB, TolC, MATE, MFS, MacA, MacB, RND, AcrB, and OM) and CmeABC operon genes, both associated with increased multidrug resistance.

Nucleotide sequence accession numbers. This whole-genome shotgun project has been deposited in DDBJ/EMBL/GenBank under the accession numbers listed in Table 1. The versions described in this paper are the second versions.

ACKNOWLEDGMENTS

We are grateful to the Direction of the Laboratories of CORPOICA, Angela Pichimata (CORPOICA), and Ivan Lesende (AGILENT) for performing the genome sequencing. The results of this research are a product of the Colombian Integrated Program for Antimicrobial Resistance Surveillance (COIPARS).

This research was supported by Corporación Colombiana de Investigación Agropecuaria (CORPOICA) and the Intramural Research Program of the NIH, NLM, NCBI.

FUNDING INFORMATION

This work, including the efforts of Leonardo Marín-Ramírez, was funded by HHS | National Institutes of Health (NIH) (ZIA LM082713 and Z99 LM99999).

REFERENCES

1. Allos BM. 2001. Campylobacter jejuni infections: update on emerging issues and trends. Clin Infect Dis 32:1201–1206. http://dx.doi.org/10.1086/319760.

2. Wieczorek K, Osek J. 2013. Antimicrobial resistance mechanisms among Campylobacter. BioMed Res Int 2013:340605. http://dx.doi.org/10.1155/2013/340605.

3. Mavri A, Smole Možina S. 2013. Effects of efflux-pump inducers and genetic variation of the multidrug transporter cmeB in biocide resistance of Campylobacter jejuni and Campylobacter coli. J Med Microbiol 62:400–411. http://dx.doi.org/10.1099/jmm.0.052316-0.

4. Read DS, Woodcock DJ, Strachan NJ, Forbes KJ, Colles FM, Maiden MC, Clifton-Hadley F, Ridley A, Vidal A, Rodgers J, Whiteley AS, Sheppard SK. 2013. Evidence for phenotypic plasticity among multihost Campylobacter jejuni and C. coli lineages, obtained using ribosomal multilocus sequence typing and Raman spectroscopy. Appl Environ Microbiol 79:965–973. http://dx.doi.org/10.1128/AEM.02521-12.

5. Ma L, Wang Y, Shen J, Zhang Q, Wu C. 2014. Tracking Campylobacter contamination along a broiler chicken production chain from the farm level to retail in China. Int J Food Microbiol 181:77–84. http://dx.doi.org/10.1016/j.ijfoodmicro.2014.04.023.

6. Marotta F, Garofolo G, Di Donato G, Aprea G, Platone I, Cianciavichchia S, Alessiani A, Di Giannatale E. 2015. Population diversity of Campylobacter jejuni in poultry and its dynamic of contamination in chicken meat. BioMed Res Int 2015:859845. http://dx.doi.org/10.1155/2015/859845.

7. Sheppard SK, Didecot L, Jolley KA, Darling AE, Pascoe B, Mercier G, Kelly DJ, Cody A, Colles FM, Strachan NJ, Ogden ID, Forbes K, French NP, Carter P, Miller WG, McCarthy ND, Owen R, Litrup E, Egholm M, Affourtit JP, Bentley SD, Parkhill J, Maiden MC, Falush D. 2013. Progressive genome-wide introgression in agricultural Campylobacter coli. Mol Ecol 22:1051–1064. http://dx.doi.org/10.1111/mec.12162.

8. Skarp CPA, Hänninen ML, Rautelin HI. 2015. Campylobacteriosis: the role of poultry meat. Clin Microbiol Infect [Epub ahead of print]. http://dx.doi.org/10.1016/j.clim.2015.11.019.

9. Zautner AE, Goldschmidt AM, Thümmer A, Schuldes J, Bader O, Lugert R, Groß U, Stingl K, Salinas G, Lingner T. 2015. SMRT sequencing of the Campylobacter coli BRI-CA-9557 genome sequence reveals unique methylation motifs. BMC Genomics 16:1088. http://dx.doi.org/10.1186/s12864-015-2317-3.

10. Richards VP, Lefèbvre T, Pavinski Bitar PD, Stanhope MJ. 2013. Comparative characterization of the virulence gene clusters (lipooligosaccharide [LOS] and capsular polysaccharide [CPS]) for Campylobacter coli, Campylobacter jejuni subsp. jejuni and related Campylobacter species. Infect Genet Evol 14:200–213. http://dx.doi.org/10.1016/j.meegid.2012.12.010.

11. Bakhshi B, Naseri A, Alebouyeh M. 2016. Comparison of antimicrobial susceptibility of Campylobacter jejuni strains isolated from food samples and patients with diarrhea. Iran Biomed J 20:91–96.

12. Donado-Godoy P, Bernal JF, Rodríguez F, Gomez Y, Agarwala R, Lamsdon D, Marín-Ramírez L. 2015. Genome sequences of multidrug-resistant Salmonella enterica serovar paratyphi B (dt+) and Heidelberg Strains from the Colombian poultry chain. Genome Announc 3(5):e01265-15. http://dx.doi.org/10.1128/genomeA.01265-15.

13. Donado-Godoy P, Castellanos R, León M, Arevalo A, Clavijo V, Bernal J, León D, Tafur MA, Byrne BA, Smith WA, Perez-Gutierrez E. 2015. The Establishment of the Colombian Integrated Program for Antimicrobial Resistance Surveillance (COIPARS): A Pilot Project on Poultry Farms, Slaughterhouses and Retail market. Zoonoses Public Health 62(suppl 1):58–69. http://dx.doi.org/10.1111/zph.12192.

14. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov Z, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Pyshkin ER, Groß U, Stingl K, Salinas G, Lingner T. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477. http://dx.doi.org/10.1089/cmb.2012.0021.

15. Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S, Lund O, Aarestrup FM, Larsen MV. 2012. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother 67:2640–2644. http://dx.doi.org/10.1093/jac/dks261.

16. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsmma K, Gerdes S, Glass EM, Kulbach M, Meyer F, Olsen GJ, Olson RJ, Osterman AL, Overbeek RA, Paarmann D, Paczian T, Parrello B, Pusch GD, Reich C, Stevens R, Vassieva O, vonstein V, Wilke A, Zagnitko O. 2008. The RAST server: Rapid Annotations using Subsystems Technology. BMC Genomics 9:75. http://dx.doi.org/10.1186/1471-2164-9-75.