Ultra-disperse modifying zeolite-based additive for gypsum concretes

A D Egorova, K E Filippova
Institute of Engineering and Technology, North Eastern Federal university of M.K. Ammosov, 58, Belinsky str., Yakutsk 677000, Russia
E-mail: eg_anastasy2004@mail.ru

Abstract. Under modern construction conditions it is important to find the ways of cost reduction without deteriorating physical and mechanical properties of construction materials and their environmental properties. That is why the construction materials on the basis of the gypsum binder remain competitive and the increase of their operation properties is one of the relevant today tasks. In this paper the authors presented a way of increasing water resistance and strength of gypsum concrete by adding ultra-disperse modifying zeolite-based additive from available raw materials. The authors find out zeolite grindability and its chemical composition. The ultra-disperse modifying zeolite-based additive is a paste dispersed in water and added into a concrete mix as water solution. When 14% of the additive is included in gypsum paste the softening factor grows from 0.31 to 0.84 while the grade strength increases by 30%, the ultimate compression strength of dry samples - by 2.5 times and amounts to 30 MPa. Studying physical and mechanical properties and the micro-structure of gypsum and concrete samples proves the efficiency of using the developed ultra-disperse modifying zeolite-based additive.

1. Introduction
Modern construction is hardly possible without the use of environmentally friendly gypsum materials. The analysis of global references demonstrates that the share of materials based on gypsum binders reaches 20...27% in technically advanced countries of the total volume of products on mineral binders. A high potential of growth is mainly observed in the sector of gypsum sheet materials [1-5]. However, it is also known that high humidity causes the solvability of calcium sulphate CaSO₄·2H₂O characterized by a high permeability of the crystalline structure. The disjoining action of water molecules at the penetration into intercrystalline void spaces weakens the bonds and washes off gypsum. All these factors result in significant reduction of strength and eroding plaster casts because of water action.

By today multiple methods of increasing the water resistance of gypsum binders have been developed by scientists from various countries. The increase in gypsum stone water resistance due to the reduction of gypsum solvability, selecting the method for gypsum substance packing, treatment of the set stone with the substances preventing moisture penetration into the product. The most cost-effective and effective way is incorporating additives for decreasing gypsum solvability into the mix composition as these additives induce the formation of slightly soluble substances.
2. Relevance
In recent years the scientific community of the Republic of Sakha (Yakutia) frequently uses the zeolite-containing mine rock from the deposit Khonguru of the Suntarsky district in their research in various scientific areas. This can be explained not only by the unique absorbing ion-exchanging and other zeolite properties but also by extensive deposits of these raw materials developed and extracted by a simple open and cost-efficient method [6]. The development of zeolite-containing rocks of Yakutia is a priority task as zeolite-bearing districts have estimated reserves of approximately 3.5 billion tons [7].

Zeolite belongs to volcanic tuffs and is quite a wide-spread and well-studied rock [8,9]. At the same time zeolite can be synthesized from the evils and pepl of different materials [10-12], it is applied in the concrete of portland cement and of silicate [13,14].

Hongurin’s zeolite consists of the minerals from the clinoptilolite&heulandite group (70-90%), quartz, feldspars, silica rocks fragments, calcite, volcanic glass and clay matters. Their chemical composition is provided in Table 1.

| Table 1. Chemical composition of Hongurin’s zeolite |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| SiO₂ | Al₂O₃ | Fe₂O₃ | CaO | MgO | K₂O+Na₂O | TiO₂ |
| 65.11 | 12.16 | 1.08 | 2.62 | 1.88 | 3.30 | 0.13 |
| H₂O | | | | | | 8.89 |
| | | | | | | 4.26 |

The previously conducted research [6] demonstrated the efficiency of applying Hongurin’s zeolite in concretes based upon portland cement. The relevant task is studying the impact of the developed modifying additive on the gypsum stone structure formation and properties.

3. Experimental studies
The ultra-disperse modifying additive contains Hongurin’s zeolite and quite a wide-spread liquid organic plasticizer - dibutylphthalate. The latter substance is added for reducing energy losses at grinding and providing for longer storage time of fine-dispersed powder without its activity loss.

Many researches [15-18] proved efficiency of mehano&chemical activation of mineral additives. The conducted research on defining the properties of Hongurin’s zeolite breaking demonstrated that, at the activation in the laboratory planetary ball mill RETSCH PM 400, the dimensions of zeolite particles reach 1.3 um on average. Up to 11 % of a total of the particles amount have the dimensions of 3-30 newton-meters, i.e., in the first approximation this additive can be considered as a nano-modifier which is confirmed by the sample research at a laser particle-size analyzer HORIBA [19].

The chemical and mineralogical research of the samples of Hongurin’s zeolite powders conducted at the transmission electron microscope JEM-2100 demonstrate the direct dependence of the particle size on the grinding time. In Figure 1(a) at 500 times magnification the size of the Hongurin’s zeolite particles at coarse grinding varies from 200 to 400 um, the content of silicon oxide SiO₂ is equal to 51.56 % of the total mass of the substance quantity, i.e., 92.8 % of the atomic weight. After 5 minute activation the average size of particles is equal to 80 um. This confirms the softness of Hongurin’s zeolite minerals taking the position 2 at the Mohs' scale.

The chemical analysis shows a high content of silicon oxide SiO₂ - 89.09 %. This element is structure-forming and provides for the stone high strength and water resistance. Its presence in the rock composition allows estimating the possibility of its use as an active mineral additive allowing one to increase operation properties of concretes and providing hydraulic binder propeties due to the formation of waterproof compounds in a formed structure in the course of time. Due to this the stone durability and resistance to external impacts are improved. At this, the organic additive component, plasticizer, also positively influence concrete water resistance.

For determination properties of physic-mechanical of gypsum concrete with the developed additive standard samples – prisms with sizes of edges of 4x4x16 cm of 12 samples on each structure were formed. Indicators of average density, strength at compression in 2 hours of solidification were
defined and at the age of 7 days in an air-dry status and also softening factor. The softening factor was defined as an arithmetic average value from 6 results of the relations of compression strength of the dry samples to the strength of the samples kept in water within 2 hours. Average results of the main properties of gypsum concrete are given in table 2. Water requirement of samples with use of additive decreases in comparison with structure without additive at the expense of the plasticizing component. Therefore density of the samples which are dried up to the constant weight differs on 150 – 200 kg/m³.

Composition	Density of samples, kg/m³	Compression strength of samples, MPa	Softening factor	
		in 2 hours of solidification	dried up up to the constant weight	
a) 0 % of additive	1140	4,6	12,3	0,31
b) 14 % of additive	1340	5,9	28,9	0,84
c) 22 % of additive	1290	5,2	22,7	0,47

The research of the developed additive impact on the gypsum stone structure confirm theoretical assumptions while the micro-photos (Fig. 2) of the gypsum stone structure with and without the additive, obtained at the scanning nano microscope “NtegraPrima” NTMDT, prove the possibility of the efficient application of ultra-disperse modifying zeolite-based additive in gypsum concretes for the premises with a high relative air humidity. This additive also improves the setting time.

The samples of the composition (a) in Fig. 2 have low water resistance due to a high solvability of calcium sulfate dihydrate, high permeability of the crystalline structure and disjoining action of water molecules at penetration into intercrystalline void spaces. Sulfate dihydrate is characterized by rather high volume of interplanar spaces accessible for water weakening the intercrystalline bonds. All these factors result in the significant reduction of strength and eroding plaster casts because of water action, these samples have the arithmetic mean value of the softening factor 0.31, water resistance class - hydrolabile which is the lowest index of all conducted research. One can observe a large amount of micro-pores the average size of which is equal to 80-90 um. The average strength of standard samples after 2 hours of mixing concrete ingredients with water is equal to 4.6 MPa, the one of the oven-dried - 12.3 MPa.

The composition (b) in Fig. 2 at introducing 14 % of the additive is characterized by the formation of the fewer amount of micro-pores comparing with other compositions. The average size of micro-pores is 30-40 um. One can also observe visual changes: calcium dihydrate crystals are almost fully covered by a thin film of a plastifying additive component decreasing the permeability of the crystalline structure and, consequently, improving water resistance. The formed crystalline structure of the composition (b) is similar to the structure of tobermorite-like compounds which can explain the obtained increased stone characteristics. The factor of softening the samples with such composition is equal to 0.84, water resistance class - hydrostable. The average ultimate compressive strength of standard samples in 2 hours reaches 5.9 MPa which improves the strength of gypsum plaster by 30 %. The ultimate compression strength of the oven-dry samples reaches 30 MPa which is 2.5 times higher comparing to additive-free gypsum. Therefore, the additive produces the maximum effect at late setting stages as the processes occurring in the substance, such as absorption, diffusion, changing structural bonds, are quite complicated and require some time.

The micro-photos of the samples of the composition (c) in Fig. 2 demonstrated a center-directed crystal intergrowth of calcium dihydrate. One can assume that such center orientation is connected with a large amount of the incorporated additive – 22 % by mass which is a center of crystal intergrowth. This micro-structure only slightly increases the water resistance of samples. The softening factor 0.47 - medium water resistance. The strength of samples with such composition is also lower comparing with the second composition samples. The size of micro-pores reaches 60 um and they are observed virtually in each center of crystal intergrowth.
Figure 1. General view of particles at 500 times increase and zeolite chemical composition:

- a) coarse grinding
- b) after 5 minute grinding
- c) after 15 minute grinding
- d) after 25 min grinding

Element	Weight, %	Atomic, %
O_2 in the composition of SiO_2	35.99	74.45
Sodium feldspar	1.54	2.22
MgO	0.39	0.53
Al$_2$O$_3$	2.99	3.67
Si in the composition of SiO_2	15.57	18.35
Biotite	0.25	0.21
Calcium silicate	0.46	0.38
Fe	0.31	0.19

Element	Weight, %	Atomic, %
$CaCO_3$	0.03	3.43
O_2 in the composition of SiO_2	0.80	65.33
Sodium feldspar	0.03	1.58
MgO	0.01	0.65
Al$_2$O$_3$	0.09	4.21
Si in the composition of SiO_2	0.51	23.76
Biotite	0.01	0.43
Calcium silicate	0.02	0.61

Element	Weight, %	Atomic, %
O_2 in the composition of SiO_2	31.70	74.49
Sodium feldspar	1.42	2.32
MgO	0.35	0.53
Al$_2$O$_3$	2.72	3.78
Si in the composition of SiO_2	13.46	18.01
Biotite	0.28	0.26
Calcium silicate	0.50	0.47
Fe	0.18	0.12

Element	Weight, %	Atomic, %
O_2 in the composition of SiO_2	32.29	74.52
Sodium feldspar	1.25	2.02
MgO	0.44	0.66
Al$_2$O$_3$	2.81	3.84
Si in the composition of SiO_2	13.75	18.08
Biotite	0.19	0.18
Calcium silicate	0.51	0.47
Fe	0.35	0.23
Figure 2. Micro-photos of the gypsum stone structure with an ultra-disperse modifying zeolite-based additive at the increase of content by 10,000 times, %: a) 0; b) 14; c) 22.

4. Conclusions
Therefore, the research confirm the alignment theory on water resistance and material strength [20].

The optimal structure characterizing virtually even distribution of discrete particles and continuity of the binder spatial mesh at minimum thicknesses of its film distribution can be observed at the addition consumption up to 15%. When increasing the additive consumption its structure violates the order of particle location and causes the reduction in water resistance and strength.

The analysis of the research on the impact of ultra-disperse modifying zeolite-based additive on gypsum concrete properties makes it reasonable to apply this substance for increasing strength by 2.5 times and improving water resistance to the hydrostable class. The obtained physical&mechanical results of the research of the micro-structure of gypsum stone samples with/without the additive prove the drawn conclusions.

References
[1] Trofimov B Ja Chernyh T N and Shuldjakov K V 2014 Modification technology of gypsum fibre sheets (Chelyabinsk: VII a scientific and practical conference "Innovations of KNAUF in construction) pp 9–21
[2] Rumjancev B M and Fedulov A A 2006 Perspective of use gypsum materials at high-rise construction Stroitel'nye materialy 1 22–25
[3] Hummel' H-U 2005 Multi-functional plaster plates for dry Interior finish of multi-storey buildings (Moscow: Modern high-rise construction. Effective technologies and materials. The collection of reports of the II International symposium on construction materials of KNAUF for the CIS) pp 57–59
[4] Fedulov A A 2008 Knauf complete systems: definition and characteristics of materials Zhilishknoe stroitel'stvo 1 3–7
[5] Petropavlovskaya V and Buryanov A and Novichenkova T and Petropavlovskii K 2018 Gypsum composites reinforcement IOP Conf. Ser.: Mater. Sci. Eng. 365 032060
[6] Kolodeznikov K E 2003 Tseolitnosnye of the province of the East of the Siberian platform (Yakutsk: YaF of Siberian Branch of the Russian Academy of Science Publishing house) p 224
[7] 1993 Application perspectives tseolitynykh of breeds of the Honguruu field (Yakutsk: Collection of scientific works)
[8] Dementiev S N 1989 New approaches to studying of physical and chemical properties of zeolite (Novosibirsk: IGIG) p 135
[9] Jeffrey D Rimer, Manjesh Kumar, Rui Li, Alexandra I Lupulescu and Matthew D Oleksiak 2014 Tailoring the physicochemical properties of zeolite catalysts (Electronic Supplementary Material (ESI) for Catalysis Science & Technology) pp 51–57

[10] García R A, Serrano D P, Vicente G, Otero D and Linares M 2008 Catalytic activity of the beta zeolite with enhanced textural properties in the friedel-crafts acylation of aromatic compounds zeolites and related (Materials: Trends, Targets and Challenges Proceedings of 4th International FEZA Conference) pp 1–5

[11] Nik Ahmad Nizam Nik Malek and Alias Mohd Yusof 2007 Removal of Cr(III) from aqueous solutions using zeolite NaY prepared from rice husk ash Malaysian Journal of Analytical Sciences 11(1) 76–83

[12] Leiva C, Arenas C, Vilches L F, Arroyo F, Luna-Galiano Y, Villegas R and Fernández-Pereira C 2018 Use of zeolitized coal fly ash as main component in panels with high fire resistance Materials Journal pp 393–399

[13] Morozova N N and Kays Hamza Abdulmalek 2016 About a role of natural zeolite on durability of fine-grained concrete Bulletin of the technological university (Kazan) 19(10) 64–68

[14] Obuzdina M In and Rush E A 2014 Ways of utilization of the fulfilled sorbents on the basis of zeolites in construction materials Modern technologies. Systems analysis. Modeling (Irkutsk) 3(43) 158–165

[15] Cheng Y, Huang F, Li W, Liu R, Li G and Wei J 2016 Test research on the effects of mechanochemically activated iron tailings on the compressive strength of concrete Construction and Building Materials 118 164–170

[16] Ez-Zaki H a, Diouri A a, Maher M b, Aidi A b and Guedira T b 2018 Effect of mechanical activation of fly ash added to Moroccan Portland cement Morocco: MATEC Web of Conferences 149 010742 134556

[17] Fediuk R, Mochalov A and Timokhin R 2018 Review of methods for activation of binder and concrete mixes AIMS Materials Science 5 916–931

[18] Tole I, Habermehl-Cwirzen K, Rajczakowska M and Cwirzen A 2018 Activation of a raw clay by mechanochemical process-effects of various parameters on the process efficiency and cementitious properties (Materials vol 11 (10) No 1860)

[19] Egorova A D and Filippova K E 2015 Impact of zeolite-based nanomodified additive on the structure and strength of the cement stone TSUAB2014 IOP Publishing IOP Conf. Series: Materials Science and Engineering (Tomsk) 012027

[20] Rybyev I A 2004 Construction materials science: Manual for construction specialties of higher education institutions (Moscow: The Higher School) p 701