Effect of dietary lipid levels on body compositions, digestive ability and antioxidant parameters of common carp

Jinhui Suna,*, Ze Fanb, Chunxiu Chenb, Jinghui Lib, Zhenyan Chenga, Yang Lic, Xiuting Qiaoa

a Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin 300384, China
b Bohai Fisheries Research Institute of Tianjin, Tianjin 300457, China
c College of Engineering Technology, Tianjin Agricultural University, Tianjin 300384, China

Email address: jhsun1008@163.com (J.H. Sun)

Abstract. This study was designed to evaluate the effect of dietary lipid level on body composition, and digestive ability of common carp with initial average weight (36.12 ± 1.18)g. Five experimental diets with increasing lipid levels of 2.1%, 4.0%, 5.8%, 7.6%, 9.4% were fed to triplicate groups of fish for 9 weeks. The results showed that lipid content of whole body and muscle increased in parallel with the increase of dietary lipid levels. Protein content of muscle decreased with the increase of dietary lipid levels, and the lowest muscle protein content was observed in fish fed 9.4% lipid diet. Lipase activity was significantly affected by dietary lipid levels in hepatopancreas and intestine (P < 0.05). Lipase activity in fish fed at 5.8% lipid level group was significantly higher than others in hepatopancreas (P < 0.05). There were no significant differences in amylase and protease activities (P > 0.05). The results suggested that the most excellent digestive ability and antioxidant parameters were obtained at 7.6% lipid level group.

1. Introduction

Over the last few decades, finding best practices on how to decrease fish meal consumption and improve the protein utilization by fish has become an environmental and economical goal for the sustainable development of aquaculture feed industry [1,2]. Therefore, many studies have been designed to determine and boost the protein-sparing feasibility of lipid and carbohydrates in fish diets [3, 16, 22]. Lipid plays an important role on maintaining the fish growth, development and normal physiological metabolism. Accordingly, whether dietary lipid level is appropriate or not have an effect on the growth of fish. Related research shows that in many fish there are a positive correlation between dietary lipid levels and lipid of fish body and muscle [5,6]. Also dietary lipid levels will have an impact on moisture, ash, protein content of fish body and muscle, and especially effects on protein content also reflect the saving function of lipid to protein from the side [13].

In addition, some studies have shown that as a substituted source, a recruitment of lipids rather than carbohydrates is generally a much more productive way to save the dietary protein because fish acquire a “glucose intolerant” predisposition, leading to poorer ability to utilize carbohydrate [14]. However, it is worth noting that studies of most fish species concentrated on the impacts of dietary
lipid levels on growth performance and body composition [4], the impacts on digestive ability has received limited attention.

Common carp (Cyprinus carpio), an omnivorous fish, are native to Asia. The present research on lipid nutrition of this species mainly focuses on the requirement of the total quantity and lipidty acids, whereas few studies have been conducted on digestive ability and antioxidant parameters to dietary lipid levels [18, 24]. Bearing this in mind, the present study was conducted to evaluate the effects of dietary lipid levels on body compositions, digestive ability of common carp.

2. Materials and methods

2.1. Experimental diet

Five experimental diets were formulated with increasing lipid levels of 2.1%, 4.0%, 5.8%, 7.6%, 9.4% (Table 1). All ingredients were provided by Tianjin Tianxiang Aquatic Co. Ltd., and were pulverized by 60 mesh sieve, thoroughly mixed, and made into 2 mm pellets using a pellet machine (MUZLMV4, Jiangsu Muyang Group Co., Ltd., Yangzhou, China). The experimental diets were stored at -20℃ until used.

Ingredients	Diet lipid levels, %				
	2.1	4.2	5.8	7.7	9.8
Fish meal	6	4.5	3	1.5	0
Soybean meal	22	22	22	22	22
Peanut meal	12	12	12	12	12
Cotton meal	10	10	10	10	10
Rapeseed meal	12	12	12	12	12
Cellulose	2	1.5	1	0.5	0
DDGS	3	3	3	3	3
Soybean oil	0	2	4	6	8
Premix¹	4	4	4	4	4
Wheat flour	9	9	9	9	9
Wheat middlings	10	10	10	10	10
Wheat bran	10	10	10	10	10
Total	100	100	100	100	100
Proximate composition¹², % of dry matter basis					
Dry matter	89.8	89.8	89.9	89.7	89.7
Crude protein²	32.2	31.1	30.2	29.2	28.3
Ash	7.6	7.5	7.3	7.0	6.8
Crude lipid	2.1	4.2	5.8	7.7	9.4
Gross energy³, MJ/kg	13.7	14.2	14.6	15.1	15.65

¹ Premix contains per kg diet: vitamin A 1,500 IU, vitamin B₁ 4.5 mg, vitamin B₂ 5 mg, vitamin B₆ 3.75 mg, vitamin B₁₂ 5 mg, vitamin D₃ 500 IU, vitamin E 25 mg, vitamin K₁ 2.5 mg, biotin 0.03 mg, folic acid 1 mg, D-pantothenic acid 5 mg, nicotinic acid 25 mg, inositol 20 mg, vitamin C 30 mg, antioxidant 1 mg, Cu (as copper sulfate) 2.25 mg, Fe (as ferrous sulfate) 22.5 mg, Mn (as manganese sulfate) 0.5 mg, Zn (as zinc sulfate) 12.5 mg, I (as potassium iodide) 0.1 mg, Se (as sodium selenite) 0.005 mg, Co (as cobalt chloride) 0.075 mg.

² By analysis.

³ By calculation. Calculated as protein: 24 kJ/g; fat: 38 kJ/g; and starch: 17 kJ/g.
2.2. Experimental fish and procedure
Common carp were obtained from Tianjin Huanxin Aquatic Breeding Farm. Firstly, fish were acclimated to the experimental conditions and fed a commercial formulated feed (32% protein) for 2 weeks in the 3 m×3 m×1.5 m cages. Before the beginning of feeding trial, fish were fasted for 24 h. 60 fish individuals each cage and 3 cages each diet. During the 9-week feeding trial, all groups were fed daily at on a 4% body weight ratio twice daily (9:00 and 15:30). Water quality parameters during the experimental period were pH 7.8 ± 0.2, temperature 27.9℃ to 30.1℃, dissolved oxygen 6.0 to 8.0 mg/L and total ammonia nitrogen<0.2 mg/L.

2.3. Sample collection
At the end of the trial, fish were fasted for 24 h before sampling. For a whole-body composition analysis, 6 fish from each cage were randomly sampled and analysed. Ten fish per cage were firstly collected for blood collection from the caudal vein. Blood samples were immediately centrifuged at 3,170 g for 15 min at 4℃, and the obtained serum was stored at -80℃ until the biochemical criterion determinations were made. The bloodless fish were immediately dissected by operating at ice plate for dorsal muscles hepatopancreas, foregut, midgut and hindgut sampling.

2.4. Analytical methods
2.4.1. Proximate composition. The contents of moisture, crude protein, crude lipid, and crude ash (wet weight) were determined in prepared samples of experimental diets, whole body and dorsal muscles which were frozen at -20℃. Moisture, crude protein, crude lipid, and crude ash were determined following standard methods.

2.4.2. Analysis of digestive enzyme activity in foregut, midgut and hindgut. For the digestive enzymes, tissue samples were homogenized in 4 volumes of ice-cold physiological saline (0.85% w/v NaCl). Homogenates were centrifuged at 3,500 g for 15 min at 4℃, and the resulting supernatants were aliquoted and stored at -80 ℃ until subsequent analysis.

Protease activity was assayed by Folin-reagent method (Khantaphant and Benjakul 2008). The activities of intestine and hepatopancreas lipase and amylase were determined using diagnostic reagent kits provided by Jiancheng Bioengineering Institute (Nanjing, China). Enzyme activities were expressed as U/g tissue.

2.5. Statistical analysis
All data were expressed as mean values ± standard error (SE) and subjected to one-way analysis of variance (ANOVA). Percentage data were arcsine transformed before analysis of variance. When there were significant differences, Duncan’s multiple range tests were conducted among group means. The significant level was set as $P < 0.05$. All statistical analyses were performed using the SPSS 17.0.

3. Results
3.1. Effects of dietary lipid levels on nutrient composition of common carp
As can be seen from Table 2, whole body crude protein and crude lipid concentrations were enhanced with an increase in dietary lipid levels in experimental group. Furthermore, fish fed the diets containing 4.2 to 9.4% lipid levels showed higher crude protein contents in comparison to fish was fed the diets containing 2.1% lipid level ($P < 0.05$). Liver lipid concentrations reached 8.14 ± 0.17% at 7.7% lipid level which was significantly higher than that at other lipid levels ($P < 0.05$). In addition, moisture ranged from 74.19% to 75.44% and ash contents ranged from 2.72% to 2.91% without marked differences between the different dietary lipid levels ($P > 0.05$).

The contents of moisture, crude ash and crude lipid in the muscles increased with increasing dietary lipid, but the contents of moisture and crude ash were similar in the muscles ($P > 0.05$). In turn, significantly higher contents of crude lipid and lower contents of crude protein were noted in the muscles of the fish fed the diets containing 7.7% lipid level in comparison with the other dietary
treatments. With increasing dietary lipid levels, the contents of crude protein tended to decrease, and there were significant differences among all the experimental groups ($P < 0.05$). Table 2 is the same.

3.2. Effects of dietary lipid levels on digestive enzyme activity of common carp

Protease activities of common carp fed diets containing increasing levels of lipid are presented in Table 3. The activities of protease were observed to decrease compared to the experimental diets in foregut, midgut and hindgut and hepatopancreas. In the whole intestine, protease activities of midgut were higher in comparison to protease activities of foregut and hindgut, while the statistical analysis computed for protease activities of foregut, midgut and hindgut under different experimental treatments did not detect any significant differences ($P > 0.05$). However, an apparent effect was present on protease activity of hepatopancreas, which decreased significantly at 7.7% and 9.4% lipid level groups ($P < 0.05$).

Lipase activity of common carp fed diets containing graded levels of lipid are summarized in Table 4. The activities of lipase in foregut, midgut and hindgut and hepatopancreas represented a trend to decline after the first rise with increasing inclusion of lipid. In the whole intestine, lipase activities of midgut were higher compared to lipase activities of foregut and hindgut. Besides, the lipase activities of foregut, midgut and hindgut of common carp at 7.7% lipid level group were significantly higher than those of the 2.1%, 4.2% and 9.4% lipid level groups ($P < 0.05$). Moreover, the fish at 5.8% lipid level group showed a significant higher lipase activity in their body compared with the other groups ($P < 0.05$).

Table 2 Effects of dietary lipid levels on nutrient compositions of the whole body and muscle(%)

Proximate composition	Lipid level, %	2.1	4.2	5.8	7.7	9.8
Whole body						
Crude protein		15.13±0.10b	16.33±0.03a	16.64±0.27a	16.23±0.44a	16.65±0.68a
Crude lipid		6.15±0.03d	6.66±0.20c	7.67±0.21b	8.14±0.17a	7.67±0.19b
Crude ash		2.74±0.12	2.91±0.02	2.89±0.06	2.72±0.11	2.72±0.05
Moisture		74.47±1.80	75.44±1.22	74.19±2.88	74.40±1.67	74.36±1.18
Muscle						
Crude protein		20.17±0.03b	20.40±0.07a	19.95±0.04c	19.18±0.09d	18.76±0.08c
Crude lipid		2.54±0.17b	2.39±0.07b	2.19±0.09c	2.61±0.69b	2.83±0.23a
Crude ash		1.17±0.06	1.34±0.04	1.32±0.13	1.28±0.27	1.15±0.08
Moisture		79.05±0.01	78.02±0.03	79.12±0.02	79.97±0.04	80.01±0.02

1 Values are means ± SE. a–e Values in the same row with different superscripts are significantly different ($P < 0.05$).

Amylase activities of common carp are summarized in Table 5. The activities of amylase in foregut, midgut and hindgut and hepatopancreas represented a downward trend after the first rise with increasing inclusion of lipid, while increasing dietary lipid levels did not cause significant difference in amylase activities under different experimental treatments ($P > 0.05$).

Table 3 Effects of dietary lipid levels on protease activity of common carp (U/mg protein)

Tissues	Lipid level, %	2.1	4.2	5.8	7.7	9.8
Hepatopancreas		82.70±1.94a	80.96±1.87a	80.23±2.00b	73.97±4.11b	74.09±3.42a
Foregut		66.34±5.44	65.31±5.51	66.84±2.86	63.54±4.49	63.56±7.00
Midgut		106.16±8.71	103.89±7.11	100.79±5.50	99.11±5.15	95.98±6.92
Hindgut		71.15±4.93	70.15±5.86	70.05±6.09	65.89±9.10	65.75±7.14

4
Table 4 Effects of dietary lipid levels on lipase activities of common carp (U/mg protein)

Tissues	Lipid level, %				
	2.1	4.2	5.8	7.7	9.8
Hepatopancreas	103.84 ± 5.64^b	108.24 ± 6.38^b	142.94 ± 10.54^a	58.93 ± 6.81^c	48.45 ± 5.12^c
Foregut	114.15 ± 8.21^b	127.29 ± 9.58^b	166.06 ± 12.95^b	149.98 ± 13.71	111.68 ± 9.46^b
Midgut	34.75 ± 3.27^a	34.58 ± 3.09^c	68.87 ± 7.77^a	73.24 ± 3.08^a	52.11 ± 5.32^b
Hindgut	116.26 ± 4.82^b	124.77 ± 4.81^b	132.65 ± 1.58^a	139.91 ± 5.49^a	69.62 ± 1.54^c

Table 5 Effects of dietary lipid levels on amylase activities of common carp (U/mg protein)

Tissues	Lipid level (%)				
	2.1	4.2	5.8	7.7	9.8
Hepatopancreas	12.24 ± 2.96	13.37 ± 3.97	11.84 ± 4.81	11.33 ± 3.35	10.43 ± 1.98
Foregut	14.43 ± 4.01	17.15 ± 4.36	20.54 ± 4.76	17.76 ± 4.33	12.12 ± 3.10
Midgut	8.13 ± 1.77	9.10 ± 2.28	10.43 ± 3.10	8.62 ± 2.57	10.26 ± 3.76
Hindgut	5.12 ± 1.13	5.86 ± 1.24	6.59 ± 1.35	6.60 ± 1.17	4.93 ± 1.09

4. Discussion and conclusions

Currently, many scholars have carried on the related and inter-depth research and reports on the relationship between dietary lipid levels and body composition. Generally speaking, the relationship between the lipid content of the whole body of fish is positively correlated, and the abdominal cavity, liver, pancreas and muscle tissue is the part of the excess lipid deposition. Thus, this will cause a lot of adverse effects, such as decline of meat quality, decline of storage stability, and then affect its economic value [19]. In this experiment, fish fed the diets containing 4.2% to 9.4% lipid levels showed higher crude lipid contents in comparison to fish fed the diets containing 2.1% lipid level (P < 0.05), which indicated that the lipid deposition of fish body will be enhanced with an increase in dietary lipid levels. The lipid content of the muscle of some fish does not vary with changes of dietary lipid levels, such as the European sea bass (*Dicentrarchus labrax*) [11]. However, in this trial, lipid content of muscle increased significantly with increasing levels of dietary lipid, indicating that part of the lipid could deposit in muscle tissue, and the above results were similar to the results of the study of Zhu et al [27] on *Siganus guttatus* and the study of Peng et al [10] on *Lutjanus erythopterus*. Relative to the carnivorous fish, lipid deposition ability of the omnivorous fish is stronger than the former, and therefore after meeting their own needs, the excess lipid is not as the energy source to consumption, but was accumulated in the guts, which is why the hepatosomatic indexes (HSI) of experimental common carp fed with five experimental diets increased gradually with increasing dietary lipid levels [23]. In addition, from the perspective of watching crude protein, crude protein content of the whole body of fish with increasing dietary lipid level increased, while decreased in the muscle, and affect significantly (P < 0.05), indicating that to increase dietary lipid levels within a certain range can reduce the consumption of the protein as energy source so that more protein are used for the growth of fish and body protein synthesis. The above result has also been reported in the study on yellow croaker *Larimichthys crocea*[17]. Wang et al.[20] found that dietary lipid levels less than 10% had no significant effect on the crude protein content of the muscles of *Carassius auratus gibelio*, not consistent with with the results of this study, which resulted from the lipid source and the lipid level of dietary and fish species. The related mechanisms will be examined in-depth in future studies. This study also found that no significant differences were noted in the quantity of moisture and crude ash in the muscles of the experimental fish of which the dietary lipid levels ranged from the 2.1% to 9.4%, consistent with previous reports for *Squaliobarbus curriculus*[26].

Digestion is the first limiting factor, which have an effect on utilizing diets for growth. Therefore, fish digestive enzyme is known as an important part of digestive physiology research. In the present
study, decline in protease activities of foregut, midgut and hindgut and hepatopancreas were found with increasing inclusion of lipid, whereas lipase activities of these represented an upward tendency after the first decline. Two explanations can be advanced to reveal this result. For one thing, this suggest that appropriate lipid can provide the well-stocked supply of raw materials for the synthesis of essential lipid acids, and satisfy the individuals energy requirements so that the amount of dietary protein used for the energy consumption can be able to minimized by a supplementation of lipids. This was also certificated by no significant different among the different experimental treatments in the present study. Similar findings were also found in Chinese sucker (Myxocyprinus asiansicus) [21] and Siganus guttatus [25]. For another thing, the present study may suggest within the optimum range (2.17% to 7.67%) of dietary lipid in the diets of common carp, A positive correlation between lipase activity intestine and hepatopancreas of and dietary lipid levels was observed, revealing that improvements in lipase activity may be attributable to the higher availability of dietary lipid as substrate in an optimum range, in line with the results obtained in Megalobrama amblycephala [9]. Different results were observed in yellow catfish (Pelteobagrus vachelli) [15], and jade perch (Scortum bacoo) [12]. That might be attributed to the difference of feeding habits, growth phase, dietary carbohydrate sources and so on. However, further studies should be needed to reveal this.

The most excellent protein content of the whole body and muscle, digestive ability and antioxidant parameters was obtained at 7.6% lipid level group.

Acknowledgments
This work was financially supported by Science and Technology Program of Tianjin (15ZXZYNCO0070), the key technologies R&D program of Tianjin (13ZCZDNC00900), Tianjin Research Program of Application Foundation and Advanced Technology (14JCNJIC0100), Tianjin Innovative Research Team (TD12-5018), and National Natural Science Foundation of China (31402313).

References
[1] Ai CX, Tao QY. The replacement of fish meal--the technical strategy of development of aquatic compound feed in the case of the high price of fish meal. Feed Industry, 2013; 34:1-7.
[2] Dong SL. High efficiency with low carbon:the only way for China aquaculture to develop.Journal of Fisheries of China 2011; 35: 1595-1600.
[3] Fan Z, Li JH, Cheng ZY., Cheng ZY, Zhang BL, Qu M, Sun JH, Bai DQ, Qiao XT. Protein sparing effect of lipid diets for common carp (Cyprinus carpio) .Advances in Engineering Research, 2015; 45: 357-368.
[4] Han GM, Wang AM, Xu P, Luo QM, Sun X. Effects of dietary lipid levels on growth, muscle composition, digest enzyme activities of juvenile GIFT strain Nile tilapia Oreochromis niloticus. Journal of Shanghai Ocean University, 2010; 19: 469-474.
[5] Huang YS, Wen XB, Li SK, Li WJ, Zhu DS. Effects of dietary lipid levels on growth, feed utilization, body composition, fatty acid profiles and antioxidant parameters of juvenile chu’s croaker Nibea coibor. Aquaculture Nutrition, 2016; 24:1229-1245.
[6] Jiang YD, Wang JT, Han T, Lin XY, Hu SX. Effect of dietary lipid level on growth performance, feed utilization and body composition by juvenile red spotted grouper (Epinephelus aakaara). Fish Science, 2015; 3:99-110.
[7] Jiang ZY, Jia ZH, Guo YS, Zhou FW, Liu HT. Effect of rare earth elements on digest enzyme and growth of intestinal in common carp(Cyprinus Carpio). Chinese Journal of Animal Nutrition, 2007; 19:86-90.
[8] Jin Y, Tian LX, Zeng SL., Xie SW, Yang HJ, Liang GY, Liu YJ. Dietary lipid requirement on non-specific immune responses in juvenile grass carp (Cenopharyngodon idella).Fish & Shellfish Immunology, 2013; 34:1202-1208
[9] Li FX, Jiang YY, Liu WB, Ge XP. Protein-sparing effect of dietary lipid in practical diets for blunt snout bream (Megalobrama amblycephala) fingerlings: effects on digestive and metabolic responses. Fish Physiol Biochem, 2012; 38:529-541.
[10] Peng ZD. Effects of dietary different protein and lipid levels on growth and body composition of juvenile crimson snapper (Lutjanus erythropterus). Chinese Dietary, 2007; 9:39-42.
[11] Peres H, Oliva-telesA. Effect of dietary lipid level on growth performance and feed utilization by European sea bass juveniles (Dicentrarchus labrax). Aquaculture, 1999; 179: 325-334.
[12] Shao QJ, Su XF, Xu ZR. Effects of dietary protein levels on growth performance and digestive enzyme activities of jade perch Scortum bacoo. Journal of Zhejiang University, 2004; 30: 553-556.
[13] Song LP, Han B, Mao SQ, Wang AY, Hu B. Effects of Dietary Lipid Levels on Growth and Lipase Activities of Sooty Grunter, Hephaestus fuliginosus. Journal of Guangdong Ocean University, 2010; 30:13-17.
[14] Stone D A J. Dietary carbohydrate utilization by fish. Rev. Fish Sci, 2003; 11(4): 337-369.
[15] Sun HC, Xu JM, Pang M. Effects of dietary protein levels on digestive enzyme activities of yellow catfish Peleobagrus vachelli. Journal of Hydroecology, 2010; 3: 84-88.
[16] Sun JH, Fan Z, Cheng ZY, Gao Y, Qu M, Qiao XT, Bai DQ. Effects of dietary corn starch supplemental level on growth performance, digestive enzyme activities and serum biochemical indices of common carp. Chinese Journal of Animal Nutrition, 2016; 28(4): 1152-1159.
[17] Sun RJ, Xu W, Mi HF, Zhou HH, Zhang YJ, Zhang WB, Mai KS. Effects of dietary lipid level and feeding frequency on growth, body composition and lipid deposition in juvenile large yellow croaker (Larimichthys crocea). Journal of Fisheries of China, 2015; 39: 401-409.
[18] Wang AM, Lv F, Yang WP, Yu YB, Han GM, Wang CW, Wu LY, Liu WB, Wang T. Effects of dietary lipid levels on growth performance, body lipid deposition, muscle composition and activities of digestive enzymes of gibel carp (Carassius auratus gibelio). Chinese Journal of Animal Nutrition, 2010; 22:625-633.
[19] Wang AM, Xu P, Li P, Li J, Huang JT, Shao R. Study on the optimal lipid content of feed for Crassiusauratus gibelio. Journal of Shanghai Fisheries University, 2008; 17:661-667.
[20] Wang CM, Luo L, Zhang GZ, Shang WM, Yan Z, Liu BX. Effect of dietary lipid level on growth performance, body composition and antioxidant capacity of juvenile Chinese sucker (Myxocyprinus asiaticus). Freshwater Fisheries, 2010; 40: 47-53.
[21] Wang XF, Xu LL, Ma JZ. Health culture of common carp fingerling. Heilongjiang Fisheries, 2010; 6:45-46.
[22] Watanabe T. Strategies for further development of aquatic feeds. Fish Sci, 2002; 68:242-252.
[23] Xu WN, Liu WB, Shen MF, Li GF, Wang Y, Zhang WW. Effects of different dietary protein and lipid levels on growth performance, body composition of juvenile red swamp crayfish (Procambarus clarkii). Aquaculture International, 2013; 21:687-697.
[24] Yu L. Growth characteristics andacultivation method of common carp. Breeding technology consultant, 2013; 2:216.
[25] Zhang LZ, Zhu w, Wang Y, Liu JY, Song C, Zhao F, Zhang T, Yang G. Effects of dietary lipid levels on activities of digestive enzymes and blood biochemical parameters of Siganus guttatus. Marine Fisheries, 2014; 36: 171-176.
[26] Zheng HF, Xia ZS, Lin G, Li XZ, Xu KW, Zhang SJ. Effects of dietary lipid level on growth and body composition of Squaliobarbus curriculus. Freshwater Fisheries, 2009; 39:42-47.
[27] Zhu W, Liu JY, Zhuang P, Zhao F, Song C, Zou X, Zhang LZ. Effects of dietary lipid level on growth and body composition of Siganus guttatus. Marine Fisheries, 2013; 35: 65-71.