Maternal polyunsaturated fatty acids and allergic disease development in the offspring

To the Editor,

The increasing global prevalence of allergic diseases makes it imperative to identify modifiable risk factors for allergic disease development. Maternal antenatal plasma fatty acid composition has been proposed as a risk factor of infant allergic disease. Polyunsaturated fatty acids (PUFAs) are key components of cell membranes and influence immune cell function by regulating membrane fluidity, intracellular signaling, and gene expression. They can be classified into n-3 and n-6 PUFAs, which are linked to production of anti-inflammatory and pro-inflammatory molecules, respectively. The fetoplacental unit lacks the desaturase enzymes required to synthesize long chain PUFAs so that, during pregnancy, the fetus is dependent on transplantal supply of PUFAs from the mother.

Only three studies conducted in European countries have examined the association of the ratio of PUFA precursors to products in the maternal bloodstream (e.g., in plasma phospholipids) with offspring allergic disease development and these have reported conflicting results. Dietary n-3 PUFA alpha-linolenic acid (ALA) undergoes desaturation to form longer chain n-3 PUFAs, mainly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Similarly, dietary n-6 PUFA linolenic acid (LA) competes for the same enzymes to form arachidonic acid (AA). These metabolites are further converted into immunomodulatory oxylipin mediators such as eicosanoids. Through their effects on the cell membrane, cell signaling, gene expression, and oxylipin production, PUFAs can influence production of cytokines involved in allergic disease. The ratios of ALA and LA to their respective unsaturated products indicate metabolism efficiency of the precursors. The balance of n-3 to n-6 PUFAs as well as PUFA precursors to their products may influence the risk of allergic disease development.

In this study, we investigated long-term associations between maternal PUFAs in plasma phospholipids during pregnancy and the risk of offspring rhinitis, wheeze, eczema, and allergic sensitization up to age 8 years in the Growing Up in Singapore Towards Healthy Outcomes (GUSTO) cohort. We hypothesized that higher n-3 metabolites is protective against inflammation and allergy and that higher total n-3:total n-6 PUFAs, higher (DHA + EPA):AA and LA:AA ratios and lower ALA:(EPA + DHA) during pregnancy are associated with decreased pro-inflammatory cord blood cytokines at birth and consequently decreased risk of offspring allergic diseases in the first 8 years of life.

Demographic data were gathered by interviewer-administered questionnaires. Offspring allergic outcomes were evaluated using modified International Study of Asthma and Allergies in Childhood (ISAAC) questionnaires (Appendix S1). Offspring allergic sensitization was determined by skin prick testing at ages 18, 36 months, 5 and 8 years for common allergens in Singapore (Appendix S2). Maternal plasma phospholipids at gestational week 26 were measured using gas chromatography–mass spectrometry (Appendix S3) and infant cord blood cytokines were assayed using modified Luminex assay via DropArray multiplex assay (Appendix S4). Ethics approval was obtained from the Domain Specific Review Board of Singapore National Healthcare Group (D/2009/021) and the Centralized Institutional Review Board of SingHealth (2018/2767).

Analyses were performed using the Statistical Package for the Social Sciences, Version 27 (IBM Cooperation, New York) (Appendix S5).

After removing subjects with missing data on maternal plasma PUFAs concentrations and offspring allergic outcomes, 920 mother-offspring pairs were included in the study (Table 1). There were no differences between included and excluded participants except there was a higher proportion of nulliparous women among the excluded participants (Table S1).

In multivariate Poisson analysis with adjustment for maternal age, history of allergy, parity, smoke exposure during pregnancy, educational attainment, mode of delivery, offspring’s sex, breastfeeding practices, and offspring fish oil intake (DHA + EPA):AA (adjRR = 2.2, 95% CI = 1.1–4.3) and total n-3:total n-6 PUFAs (adjRR = 2.3, 95% CI = 1.1–4.9) increased the risk of wheeze by 18 months (Table 2). In stratified analyses by exposure to allergic sensitization by 18 months, these associations were only demonstrated in non-atopic children [(DHA + EPA):AA (adjRR = 2.9, 95% CI = 1.3–6.7) and n-3:n-6 PUFA ratios (adjRR = 3.3, 95% CI = 1.3–8.2)]. No associations were observed between maternal ALA:(DHA + EPA), LA:AA, ALA:LA, total

Ruyu Li and Hui Xing Lau are co-first authors.
Evelyn Xiu Ling Loo is senior author.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

© 2022 The Authors. Pediatric Allergy and Immunology published by European Academy of Allergy and Clinical Immunology and John Wiley & Sons Ltd.
TABLE 1 Demographics of study population

	n	Median (IQR) or n (%)
Ethnicity	920	
Chinese	501	(54.5%)
Indian	171	(18.6%)
Malay	247	(26.8%)
Maternal allergy history	920	
Yes	352	(38.3%)
No	543	(60.7%)
Mother’s educational attainment	920	
Post-secondary and higher	635	(69.9%)
Secondary school education or less	273	(30.1%)
Maternal exposure to smoke during pregnancy week 26	920	
Yes	337	(38.3%)
No	543	(61.7%)
Parity	920	
Parous	533	(57.9%)
Nulliparous	387	(42.1%)
Mode of delivery	920	
Vaginal delivery	647	(70.3%)
Caesarean section	273	(29.7%)
Mother’s age at delivery (years)	920	31.0 (27.5–34.8)
Sex of offspring	920	
Female	439	(47.7%)
Male	481	(52.3%)
Feeding practices	877	
Mainly formula	383	(43.7%)
Mainly breastfeeding	110	(12.5%)
Mixed	384	(43.8%)
Maternal plasma PUFA ratios during pregnancy	920	
ALA:(DHA+ EPA)	0.03	(0.02–0.05)
LA:AA	2.80	(2.29–3.37)
ALA:LA	0.01	(0.01)
(DHA + EPA):AA	0.67	(0.54–0.84)
Total n-3 PUFAs (mcg/ml)	140.15	(101.82–199.08)
Total n-6 PUFAs (mcg/ml)	794.04	(621.39–1006.95)
Total n-3:n-6 PUFA ratio	0.18	(0.14–0.22)
Total PUFAs (mcg/ml)	941.96	(733.07–1192.02)
Cord blood cytokines at birth (pg/ml)		
IL-10	646	0.88 (0.61–1.32)
IL-6	634	2.91 (1.70–6.23)
TNF-α	647	3.64 (3.14–4.21)
Eotaxin	693	57.36 (39.29–89.43)
IL-1RA	670	373.81 (239.53–668.35)
IP-10	693	68.04 (49.13–97.91)
MCP-1	690	99.76 (69.90–146.96)
MIG	642	12.66 (8.37–18.55)
MIP-1alpha	689	6.40 (4.75–8.46)

Rhinitis by 18 months | 750 | |
| Yes | 396 | (52.8%) |
| No | 354 | (47.2%) |

Rhinitis by 36 months | 748 | |
| Yes | 472 | (63.1%) |
| No | 276 | (36.9%) |

Rhinitis by 5 years | 724 | |
| Yes | 491 | (67.8%) |
| No | 233 | (32.2%) |

Rhinitis by 8 years | 798 | |
| Yes | 515 | (64.5%) |
| No | 283 | (35.5%) |

Wheeze by 18 months | 672 | |
| Yes | 97 | (14.4%) |
| No | 575 | (85.6%) |

Wheeze by 36 months | 651 | |
| Yes | 169 | (26.0%) |
| No | 482 | (74.0%) |

Wheeze by 5 years | 601 | |
| Yes | 211 | (35.1%) |
| No | 390 | (64.9%) |

Wheeze by 8 years | 703 | |
| Yes | 226 | (32.1%) |
| No | 477 | (67.9%) |

Eczema by 18 months | 705 | |
| Yes | 156 | (22.1%) |
| No | 549 | (77.9%) |

Eczema by 36 months | 666 | |
| Yes | 193 | (29.0%) |
| No | 473 | (71.0%) |

Eczema by 5 years | 611 | |
| Yes | 207 | (33.9%) |
| No | 404 | (66.1%) |

Eczema by 8 years | 715 | |
| Yes | 233 | (32.6%) |
| No | 482 | (67.4%) |

Sensitization by 18 months | 759 | |
| Yes | 106 | (14.0%) |
| No | 653 | (86.0%) |

Sensitization by 36 months | 700 | |
| Yes | 211 | (30.1%) |
| No | 489 | (69.9%) |

Sensitization by 5 years | 661 | |
| Yes | 324 | (49.0%) |
| No | 337 | (51.0%) |

Sensitization by 8 years | 668 | |
| Yes | 472 | (70.7%) |
| No | 196 | (29.3%) |
	Month 18		Month 36		Year 5		Year 8		
	n	RR (95% CI)	p-value	n	RR (95% CI)	p-value	n	RR (95% CI)	p-value
Allergic rhinitis									
Ln(ALA(DHA + EPA))	686	0.92 (0.79–1.08)	.318	643	0.94 (0.81–1.09)	.408	537	0.92 (0.78–1.08)	.300
Ln(LA:AA)	686	1.1 (0.8–1.6)	.550	643	1.1 (0.8–1.5)	.627	537	1.1 (0.7–1.6)	.653
Ln(ALA:LA)	686	0.94 (0.81–1.10)	.463	643	0.95 (0.82–1.11)	.534	537	0.92 (0.78–1.08)	.319
Ln(DHA + EPA):AA	686	1.2 (0.9–1.6)	.284	643	1.1 (0.8–1.5)	.399	537	1.1 (0.8–1.5)	.611
Ln(Total n-3:n-6 PUFAs)	686	1.1 (0.8–1.5)	.618	643	1.1 (0.8–1.5)	.697	537	1.0 (0.7–1.4)	.943
Ln(Total n-3 PUFAs)	686	1.0 (0.8–1.3)	.922	643	1.0 (0.8–1.2)	.960	537	0.96 (0.77–1.21)	.757
Ln(Total n-6 PUFAs)	686	0.95 (0.69–1.30)	.745	643	0.96 (0.71–1.29)	.766	537	0.92 (0.67–1.27)	.618
Ln(Total PUFAs)	686	0.96 (0.71–1.30)	.788	643	0.96 (0.72–1.29)	.806	537	0.92 (0.67–1.27)	.627
Wheeze with nebulizers									
Ln(ALA(DHA + EPA))	620	0.87 (0.62–1.22)	.433	586	0.93 (0.71–1.22)	.616	479	0.97 (0.74–1.26)	.795
Ln(LA:AA)	620	1.1 (0.5–2.4)	.754	586	1.1 (0.6–2.0)	.767	479	1.0 (0.5–1.8)	.988
Ln(ALA:LA)	620	1.0 (0.7–1.5)	.779	586	0.97 (0.74–1.26)	.793	479	1.0 (0.8–1.3)	.917
Ln(DHA + EPA):AA	620	2.2 (1.1–4.3)	.019	586	1.2 (0.7–2.0)	.482	479	1.2 (0.7–2.0)	.494
Ln(Total n-3:n-6 PUFAs)	620	2.3 (1.1–4.9)	.023	586	1.1 (0.6–2.0)	.661	479	1.2 (0.7–2.1)	.469
Ln(Total n-3 PUFAs)	620	1.4 (0.9–2.3)	.151	586	0.92 (0.64–1.33)	.671	479	0.97 (0.68–1.39)	.883
Ln(Total n-6 PUFAs)	620	0.97 (0.50–1.87)	.930	586	0.77 (0.46–1.28)	.319	479	0.81 (0.49–1.32)	.391
Ln(Total PUFAs)	620	1.1 (0.6–2.1)	.791	586	0.79 (0.48–1.31)	.362	479	0.83 (0.51–1.35)	.464
Eczema									
Ln(ALA(DHA + EPA))	645	1.1 (0.8–1.3)	.687	601	0.97 (0.77–1.23)	.805	491	1.0 (0.8–1.3)	.856
Ln(LA:AA)	645	1.6 (0.9–2.8)	.119	601	1.3 (0.8–2.3)	.308	491	1.3 (0.7–2.4)	.362
Ln(ALA:LA)	645	1.0 (0.8–1.3)	.833	601	0.98 (0.78–1.24)	.886	491	1.0 (0.8–1.3)	.842
Ln(DHA + EPA):AA	645	1.3 (0.8–2.1)	.348	601	1.3 (0.8–2.0)	.298	491	1.2 (0.7–2.0)	.430
Ln(Total n-3:n-6 PUFAs)	645	1.1 (0.6–1.8)	.842	601	1.1 (0.7–1.8)	.616	491	1.1 (0.6–1.8)	.773
Ln(Total n-3 PUFAs)	645	1.0 (0.7–1.4)	.894	601	1.1 (0.8–1.5)	.601	491	1.1 (0.8–1.6)	.572
Ln(Total n-6 PUFAs)	645	1.0 (0.6–1.6)	.998	601	1.1 (0.7–1.7)	.790	491	1.1 (0.7–1.8)	.600
Ln(Total PUFAs)	645	1.0 (0.6–1.6)	.969	601	1.1 (0.7–1.7)	.747	491	1.1 (0.7–1.8)	.588

(Continues)
TABLE 2 (Continued)

Month 18	Year 8	
n	RR (95% CI)	p-value
902	1.0 (0.8–1.2)	.903
848	1.0 (0.8–1.2)	.867
829	1.0 (0.8–1.2)	.829
889	0.97 (0.84–1.13)	.598
928	0.97 (0.84–1.13)	.506
947	0.97 (0.84–1.13)	.416
998	0.97 (0.84–1.13)	.326
998	0.97 (0.84–1.13)	.236
998	0.97 (0.84–1.13)	.146

Note: Benjamini-Hochberg correction with false discovery rate at 0.40 and n = 32 was applied to each outcome. Significant p-values are in bold.

a Adjusted for maternal age at delivery, history of allergy, parity, educational attainment, smoke exposure during pregnancy, mode of delivery, breastfeeding practices, offspring’s sex, and year 3 fish oil intake.

b Adjusted for maternal age at delivery, history of allergy, parity, educational attainment, smoke exposure during pregnancy, mode of delivery, breastfeeding practices, offspring’s sex, and year 5 fish oil intake.

We next determined if maternal plasma (DHA + EPA):AA and total n-3:n-6 PUFAs were related to cord blood cytokines; only higher total n-3:n-6 PUFAs ratio was negatively associated with eotaxin (adjβ = −0.25, 95% CI = −0.44 to −0.08) and weakly associated with interleukin-12 subunit p40 (IL-12p40) (adjβ = −0.12, 95% CI = −0.24 to 0, Table 3). There was no mediation effect by any cord blood cytokine in the associations between (DHA + EPA):AA or total n-3:n-6 PUFAs ratios and offspring allergic disease in mediation analysis (Table S2).

In this study, we observed that maternal plasma ALA:(DHA + EPA) and LA:AA were not associated with the development of offspring allergic diseases by the 8-year follow-up. The results are supported by the Generation R study and Avon Longitudinal Study of Parents and Children studies. Conversely, the Southampton Women's Survey found that ratios of ALA and LA to their products in maternal plasma phosphatidylcholine associated with the risks of wheeze and skin sensitization at 6 years of age, respectively.

It is possible that downstream metabolites of DHA, EPA, and AA may be key to controlling allergy development as their inflammatory activities may differ from one another. The above studies included all unsaturated metabolic products of ALA and LA in the computation of precursor: metabolite ratios while we only included the major metabolites DHA and EPA and AA, respectively. For example, LA is metabolized to form AA, which in turn produces pro-inflammatory prostaglandins promoting allergic sensitization and to anti-inflammatory lipoxins promoting the resolution of allergy.

Thus, the overall effect of an individual PUFA or of groups or ratios of PUFAs is difficult to predict. The effect of maternal PUFAs might also be outweighed by other environmental factors which are more relevant to allergy development in our cohort, such as smoking exposure and childcare center attendance during infancy.

We observed that higher maternal total n-3:n-6 PUFAs and (DHA + EPA):AA ratios were associated with a higher risk of early life wheeze by 18 months, especially in non-atopic children. This finding is supported by the Southampton Women's Survey which reported that AA was inversely associated with non-atopic persistent/late wheeze. We postulate that lower maternal n-6 PUFAs levels may increase susceptibility to infections, especially since wheeze in early life is largely caused by viruses or bacteria rather than allergy development. In particular, AA has the strongest antibacterial and antiviral effect in the lungs, as compared to other PUFAs, possibly by disrupting the microbial cell membrane integrity. Early exposure to n-6 PUFAs and AA in utero may promote robust immune system development, which protects against infections later in infancy. Further research is needed to elucidate the underlying mechanisms, with our study suggesting the association between n-3:n-6 PUFA and (DHA + EPA):AA ratios and offspring wheeze by 18 months is not mediated by cord blood cytokine concentrations.

Strengths of this study include the long-term follow-up of participants and the collection of data on allergic diseases, as well as skin
plasma (n-3 to n-6 PUFA) is protective, nor that n-6 PUFA increases the risk of offspring allergy development. However, our results suggest that higher n-3 to n-6 PUFA ratios may be linked to increased risk of early life wheezing illness.

We found no convincing evidence to suggest that maternal plasma n-3 PUFA is protective, nor that n-6 PUFA increases the risk of offspring allergy development. However, our results suggest that higher n-3 to n-6 PUFA ratios may be linked to increased risk of early life wheezing illness.

Table 3

Cytokines (pg/ml)	n	B (95% CI)	p-value	n	B (95% CI)*	p-value*
Ln(DHA + EPA):AA						
ln(LL-10)	645	0 (-0.15 to 0.14)	.965	566	-0.03 (-0.19 to 0.13)	.680
ln(LL-6)	634	0 (-0.23 to 0.22)	.966	556	0 (-0.24 to 0.24)	.983
ln(TNF-α)	647	-0.04 (-0.09 to 0.01)	.128	568	-0.03 (-0.08 to 0.03)	.341
ln(Eotaxin)	693	-0.17 (-0.31 to -0.02)	.024	614	-0.17 (-0.33 to -0.01)	.033
ln(IL-1RA)	670	-0.03 (-0.24 to 0.17)	.753	592	-0.09 (-0.32 to 0.14)	.456
ln(IP-10)	693	0.05 (-0.08 to 0.18)	.458	614	0.06 (-0.09 to 0.20)	.441
ln(MCP-1)	690	-0.06 (-0.21 to 0.09)	.432	611	-0.09 (-0.25 to 0.08)	.288
ln(MIG)	642	-0.03 (-0.20 to 0.15)	.772	569	-0.01 (-0.2 to 0.18)	.911
ln(MIP-1alpha)	689	-0.02 (-0.13 to 0.09)	.687	610	-0.03 (-0.15 to 0.09)	.590
ln(MIP-1beta)	643	-0.01 (-0.16 to 0.14)	.877	568	-0.02 (-0.18 to 0.15)	.834
ln(VEGF-A)	693	-0.12 (-0.29 to 0.06)	.203	614	-0.13 (-0.33 to 0.06)	.185
ln(IL-12p40)	693	-0.04 (-0.14 to 0.06)	.459	614	-0.09 (-0.20 to 0.02)	.112
ln(PAI-1)	693	-0.06 (-0.17 to 0.05)	.293	614	-0.08 (-0.21 to 0.04)	.207
ln(CRP)	691	-0.01 (-0.19 to 0.17)	.887	612	-0.08 (-0.28 to 0.11)	.407

Ln(total n-3:total n-6 PUFA)						
ln(LL-10)	645	-0.06 (-0.21 to 0.10)	.466	566	-0.10 (-0.28 to 0.07)	.255
ln(LL-6)	634	-0.18 (-0.43 to 0.06)	.135	556	-0.12 (-0.38 to 0.14)	.381
ln(TNF-α)	647	-0.04 (-0.10 to 0.01)	.134	568	-0.04 (-0.11 to 0.02)	.159
ln(Eotaxin)	693	-0.2 (-0.36 to -0.05)	.010	614	-0.25 (-0.42 to -0.08)	**.004**
ln(IL-1RA)	670	-0.08 (-0.30 to 0.14)	.459	592	-0.15 (-0.40 to 0.10)	.229
ln(IP-10)	693	0.03 (-0.10 to 0.17)	.640	614	0.02 (-0.14 to 0.17)	.823
ln(MCP-1)	690	-0.07 (-0.23 to 0.09)	.381	611	-0.12 (-0.30 to 0.06)	.177
ln(MIG)	642	-0.07 (-0.26 to 0.11)	.436	569	-0.08 (-0.29 to 0.13)	.449
ln(MIP-1alpha)	689	-0.01 (-0.13 to 0.10)	.816	610	-0.06 (-0.19 to 0.07)	.397
ln(MIP-1beta)	643	-0.06 (-0.22 to 0.11)	.500	568	-0.12 (-0.3 to 0.06)	.182
ln(VEGF-A)	693	-0.07 (-0.26 to 0.12)	.467	614	-0.10 (-0.32 to 0.11)	.332
ln(IL-12p40)	693	-0.05 (-0.16 to 0.06)	.352	614	-0.12 (-0.24 to 0.0)	**.047**
ln(PAI-1)	693	-0.09 (-0.21 to 0.03)	.138	614	-0.12 (-0.26 to 0.01)	.073
ln(CRP)	691	-0.06 (-0.26 to 0.13)	.531	612	-0.10 (-0.31 to 0.12)	.368

*Note: Benjamini-Hochberg correction with false discovery rate at 0.40 and n = 14 was applied to adjusted models of each outcomes and significant p-value in bold.

*Adjusted for maternal age at delivery, history of allergy, parity, educational attainment, smoke exposure during pregnancy, mode of delivery, breastfeeding practices, and offspring’s sex.

Author Contributions

Ruyu Li: Conceptualization (Supporting), Writing-original draft (equal), Writing-review and editing (equal). Hui Xing Lau: Writing-original draft (equal), Writing-review and editing (equal). Qai Ven Yap: Formal analysis (equal), Writing-original draft (equal), Writing-review and editing (equal). Yiong Huak Chan: Formal analysis (equal), Writing-review and editing (equal). Mary Foong-Fong Chong: Conceptualization (Supporting), Writing-original draft (equal), Writing-review and editing (equal). Elizabeth Huiven Tham: Methodology (Equal), Project administration (Equal), Writing-review and editing (equal). Anne Eng Neo Goh: Methodology (Equal), Project administration (Equal), Writing-review and editing (equal).
ACKNOWLEDGMENTS
We thank Marjorelee Colega Joren and Toh Jia Ying for their help with child fish oil supplementation data. We thank the GUSTO study group and all clinical and home-visit staff involved. The voluntary participation of all subjects is greatly appreciated. We thank Dr Anis Larbi and Dr Karen Tan Mei Ling for their help with cytokines analyses. The GUSTO study group includes Allan Sheppard, Amutha Chinnadurai, Anne Eng Neo Goh, Anne Rifkin-Graboii, Anqi Qiu, Arijit Biswas, Bee Wah Lee, Birit Froukje Philipp Broekman, Boon Long Quah, Chai Kiat Chng, Cheryi Shufen Ngo, Choon Looi Bong, Christiani Jeyakumar Henry, Daniel Yam Thiam Goh, Doris Ngjuk Lan Loh, Fabian Kok Peng Yap, George Seow Heong Yeo, Helen Yu Chen, Hugo P. S. van Bever, Illana Magiati, Inez Bik Yun Wong, Ivy Yee-Man Lau, Jeevesh Kapur, Jenny L. Richmond, Jerry Kok Yen Chan, Joanna Dawn Holbrook, Joshua J. Gooley, Keith M. Godfrey, Kenneth Yung Chiang Kwek, Kok Hian Tan, Krishnamoorthy Naiduvaie, Leher Singh, Lin Lin Su, Lourdes Mary Daniel, Lynette Pei-chi Shek, Marielle V. Fortier, Mark Hanson, Mary Foong-Fong Chong, Mary Rauff, Mei Chien Chua, Michael J. Meaney, Mya Thway Tint, Neerja Karnani, Ngee Lek, Oon Hoe Teoh, P. C. Wong, Peter David Gluckman, Pratibha Keshav Agarwal, Rob Martinus van Dam, Salome A. Rebello, Seang Mei Saw, Shang Chee Chong, Shirong Cai, Shu-E Soh, Sok Bee Lim, Stephen Chin-Ying Hsu, Victor Samuel Rajadurai, Walter Stunkel, Wee Meng Han, Wei Wei Pang, Yap Seng Chong, Yin Bun Cheung, Yiong Huak Chan, and Yung Seng Lee.

FUNDING INFORMATION
This research is supported by the Singapore National Research Foundation under its Translational and Clinical Research (TCR) Flagship Programme and administered by the Singapore Ministry of Health’s National Medical Research Council (NMRC), Singapore—NMRC/TCR/004-NUS/2008; NMRC/TCR/012-NUHS/2014. Additional funding is provided by the Singapore Institute for Clinical Sciences, Agency for Science Technology and Research (A*STAR), Singapore. EH Tham is supported by the National Medical Research Council (NOMC) Transition Award grant (MOH-TA18nov-003) from NMRC, Singapore. KM Godfrey is supported by the UK Medical Research Council (MC_UU_12011/4), the National Institute for Health Research (NIHR Senior Investigator [NF-SI-0515-10042] and NIHR Southampton Biomedical Research Centre [IS-BRC-1215-20004]), the European Union (Erasmus+ Programme ImpENSA S98488-EPP-1-2018-1-DE-EPPKA2-CBHE-JP) and the British Heart Foundation (RG/15/17/3174).

KEYWORDS
allergic sensitization, eczema, polyunsaturated fatty acids, rhinitis, wheeze

FUNDING INFORMATION
Agency for Science, Technology and Research; British Heart Foundation, Grant/Award Number: RG/15/17/3174; European Union, Grant/Award Number: 598488-EPP-1-2018-1-DE-EPPKA2-CBHE-JP; National Institute for Health Research, Grant/Award Number: NF-SI-0515-100421-S-BRC-1215-20004; National Medical Research Council, Grant/Award Number: NMRC/TCR/004-NUS/2008NMRC/TCR/012-NUHS/2014MOH-TA18nov-003; National Research Foundation Singapore; UK Medical Research Council, Grant/Award Number: MC_UU_12011/4

CONFLICT OF INTEREST
Godfrey KM has received reimbursement for speaking at conferences sponsored by Nestlé. Godfrey KM, Chan SY, and Chong YS are part of an academic consortium that has received research funding from Abbot Nutrition, Nestlé, and Danone. All other authors declare no conflict of interest.

PEER REVIEW
The peer review history for this article is available at https://publons.com/publon/10.1111/pai.13876.
LETTER TO THE EDITOR

Philip C. Calder1,4,15
Keith M. Godfrey14,15,16
Mary Foong-Fong Chong1,17
Evelyn Xiu Ling Loo1,3,5

1 Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore
2 Department of Biostatistics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
3 Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
4 Khoo Teck Puat-National University Children's Medical Institute, National University Hospital, National University Health System, Singapore, Singapore
5 Human Potential Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
6 Allergy Service, Department of Paediatrics, KK Women's and Children's Hospital, Singapore, Singapore
7 Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
8 Folkhälso Research Center, Helsinki, Finland
9 Department of General Practice and Primary Health Care, University of Helsinki, Helsinki, Finland
10 Department of Maternal Fetal Medicine, KK Women's and Children's Hospital (KKH), Singapore, Singapore
11 Duke-NUS Medical School, Singapore, Singapore
12 Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
13 Endocrinology Service, Department of Paediatrics, KK Women's and Children's Hospital, Singapore, Singapore
14 School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
15 NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
16 MRC Lifecourse Epidemiology Unit, Faculty of Medicine, University of Southampton, Southampton, UK
17 Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore

Correspondence
Evelyn Xiu Ling Loo, Singapore Institute for Clinical Sciences, Brenner Centre for Molecular Medicine, 30 Medical Drive, Singapore 117609, Singapore.
Email: evelyn_loo@sics.a-star.edu.sg

Editor: Rachel Peters

REFERENCES
1. Pike KC, Calder PC, Inskip HM, et al. Maternal plasma phosphatidylcholine fatty acids and atopy and wheeze in the offspring at age of 6 years. Clin Dev Immunol. 2012;2012:474613. doi:10.1155/2012/474613
2. Rucci E, den Dekker HT, de Jongste JC, et al. Maternal fatty acid levels during pregnancy, childhood lung function and atopic diseases. The generation R study. Clin Exp Allergy. 2016;46(3):461-471. doi:10.1111/cea.12613
3. Miles EA, Childs CE, Calder PC. Long-chain polyunsaturated fatty acids (LCPUFAs) and the developing immune system: a narrative review. Nutrients. 2021;13(1):247. doi:10.3390/nu13010247
4. Hanebutt FL, Demmelmair H, Schiessl B, Larqué E, Koletzko B. Long-chain polyunsaturated fatty acid (LC-PUFA) transfer across the placenta. Clin Nutr. 2008;27(5):685-693. doi:10.1016/j.clnu.2008.05.010
5. Newson RB, Shaheen SO, Henderson AJ, Emmett PM, Sherriff A, Calder PC. Umbilical cord and maternal blood red cell fatty acids and early childhood wheezing and eczema. J Allergy Clin Immunol. 2004;114(3):531-537. doi:10.1016/j.jaci.2004.05.010
6. Loo EXL, Liew TM, Yap GC, et al. Trajectories of early-onset rhinitis in the Singapore GUSTO mother-offspring cohort. Clin Exp Allergy. 2021;51(3):419-429. doi:10.1111/cea.13803
7. Bisschaard HW, Hermansen MN, Banneylykke K, et al. Association of bacteria and viruses with wheezy episodes in young children: prospective birth cohort study. BMJ. 2010;341:c4978. doi:10.1136/bmj.c4978
8. Das UN. Arachidonic acid and other unsaturated fatty acids and some of their metabolites function as endogenous antimicrobial molecules: a review. J Adv Res. 2018;11:57-66. doi:10.1016/j.jare.2018.01.001
9. Das UN. Can bioactive lipids inactivate coronavirus (COVID-19)? Arch Med Res. 2020;51(3):282-286. doi:10.1016/j.arcmed.2020.03.004

SUPPORTING INFORMATION
Additional supporting information can be found online in the Supporting Information section at the end of this article.