The synchrotron foreground and CMB temperature–polarization cross correlation power spectrum from the first year WMAP data

G. Bernardi,1 E. Carretti,1 R. Fabbri,2 C. Sbarra,1 S. Cortiglioni1
1C.N.R./I.A.S.F. Bologna, Via Gobetti 101, I-40129 Bologna, Italy
2Dipartimento di Fisica, Università di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino (FI), Italy

24 October 2002

ABSTRACT

We analyse the temperature-polarization cross-correlation in the Galactic synchrotron template that we recently developed, and between the template and CMB temperature maps derived from WMAP data. Since the polarized synchrotron template itself uses WMAP data, we can estimate residual synchrotron contamination in the CMB \(C_{\ell}^{TE} \) angular spectrum. While \(C_{2}^{TE} \) appears to be contaminated by synchrotron, no evidence for contamination is found in the multipole range which is most relevant for the fit of the cosmological optical depth.

Key words: cosmic microwave background, polarization, (cosmology:) diffuse radiation, method: data analysis

1 INTRODUCTION

The WMAP experiment measuring the temperature-polarization cross-correlation power spectrum of the Cosmic Microwave Background (CMB) found an excess of power at large angular scales (\(\ell < 10 \)), which has been interpreted as evidence for an early reionization (Kogut et al. 2003). A clean measurement of the cosmological signal relies on a successful removal of the foregrounds, which on large angular scales are mainly generated by dust, free-free and synchrotron emissions from the Galaxy. In particular, the synchrotron radiation is the main polarized foreground at WMAP frequencies. According to Bennett et al. (2003) the CMB maps used to compute the angular power spectrum \(C_{\ell}^{T} \) have negligible foreground contamination, thanks to the wide frequency coverage of the WMAP experiment and a safe foreground subtraction achieved with fits of foreground templates. Also Kogut et al. (2003) claimed that the contamination in the Q, V and W bands is low when the Galactic plane is cut out and the \(C_{\ell}^{TE} \) power spectrum of the CMB is free of foreground contamination.

However, several groups have performed independent analyses of the WMAP data to address the foreground contamination on the CMB maps. Eriksen et al. (2003) obtained a CMB map* cleaner than the one of the WMAP team. Also, Naselsky et al. (2004) compared the analysis of the internal linear combination map obtained by the WMAP team’s analysis with TOH’s, and found evidence for a residual contamination in the low-multipole power spectrum region. Dineen & Coles (2004a, 2004b) used the cross-correlation between the rotation measures of extragalactic radio sources and the CMB maps to identify a possible foreground residual; they found evidence for that in both the WMAP and TOH CMB maps. However, these works cannot tell us whether the foreground residual may affect the \(C_{\ell}^{TE} \) power spectrum to a significant extent, and it looks harder to improve the cross-correlation analysis of Kogut et al. (2003) because polarization maps have not been provided yet by WMAP. The issue of possible foreground contamination on \(C_{\ell}^{TE} \) is however very important in the light of the reported anomalies in WMAP’s large-scale output, including North-South asymmetries (Eriksen et al. 2004, Hansen et al. 2004b, Land and Maguejo 2005) and multipole alignments (TOH, de Oliveira-Costa et al. 2004, Copi et al. 2003). As far as we are concerned about the robustness of the \(C_{\ell}^{TE} \) power spectrum and the inferences on cosmological reionization, the most troublesome result is due to Hansen et al. (2004a), according to which the high optical depth ascribed to the cosmological medium by WMAP’s team should originate from the Southern (Galactic or Ecliptic) emisphere.

In the light of the above results, it is necessary to investigate further the possible impact of foregrounds on the

* http://www.hep.upenn.edu/~max/
the frequencies of the WMAP QVW data set. Synchrotron 60 GHz, which can be regarded as an approximate mean of frequencies. In the present work, the same spectral index map is derived a Galactic map of the synchrotron spectral index, WMAP team (by using the polarization direction field of 23 GHz total intensity synchrotron map released by the B04 provided Q template. We are then able to compute the Galactic synchrotron template at 60 GHz, and do not account for statistical errors. Clearly, the 60-GHz synchrotron C_{l}^{T} is much smaller than the corresponding CMB spectrum in the range $\ell = 3 - 10$ where most information about cosmological reionization is encoded. The situation of course would be still better at 90 GHz. We note that the synchrotron quadrupole C_{2}^{T} has a large and negative value and this indicates a potential source of contamination for the CMB quadrupole; however, this very fact does not indicate any inadequacy in WMAP team’s technique of foreground removal. On the other hand, reasonably strong evidence for a residual contamination can be provided by a cross-correlation between the CMB temperature and the synchrotron polarization fields, both being derived from WMAP’s data.

In order to cross–correlate our Q and U templates with CMB anisotropy, we use two different CMB maps. The first one is obtained by averaging the Q, V, and W maps released by the WMAP team after foreground subtraction (we refer to this as the WMAP CMB map); the other one is the CMB map produced by TOH. The $C_{l}^{T \text{CMB}_{\text{synch}}}$ power spectra computed for both these maps are also shown in Fig. 1. Both power spectra show very similar behaviours for $\ell > 2$. We find no evidence of a CMB-synchrotron correlation in the range $\ell = 4 - 10$. The multipole $\ell = 3$ shows a cross-correlation which at 60 GHz is comparable to the CMB C_{3}^{T}. This should not be so disturbing after all, since the large reionization optical depth is essentially generated by slightly larger ℓs. The most intriguing feature is still the behaviour of the quadrupole. When the synchrotron template is correlated with the WMAP CMB map, we find a large (\sim 8 \mu K^2) negative value, whereas the use of the TOH CMB map leads to a relatively lower (\sim 5 \mu K^2) but positive value. For comparison, the CMB quadrupole is $C_{2}^{T} \sim 3 \mu K^2$, a factor 2–4 lower than the magnitude of $C_{2}^{T \text{CMB}_{\text{synch}}}$. The discrepancy between cross-correlation quadrupoles is not surprising, since TOH already noted that their temperature quadrupole C_{2}^{T} is significantly different from the one found by the WMAP team. This discrepancy, as well as the overall behaviour of the cross-correlation power spectra, is better understood by inspection of the CMB-synchrotron cross-correlation function. The latter is defined by

$$C^{TQ}(\theta) = \sum_{ij} I_{i} Q_{j},$$

where the Stokes parameter Q' is computed in the frame of the great circle connecting pixels (i, j). Figure 2 shows the cross-correlation functions derived from WMAP and TOH maps and their difference. It is interesting to note that the cross-correlation functions have the same behaviour up to $\theta \sim 20^\circ$ but they differ significantly for larger angular scales. There is a clear evidence for strongly correlated signals between the WMAP CMB map and the polarized synchrotron at angular scales $\theta > 50^\circ$. The absolute maximum of $C^{TQ}(\theta)$ is $\sim 2 \mu K^2$ for $\theta \sim 110^\circ$. The

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure1.png}
\caption{The synchrotron C_{l}^{T} power spectrum at 60 GHz (solid line) compared to the CMB C_{l}^{T} from Kogut et al. (2003) (asterisks). Also reported are the $C_{l}^{T \text{CMB}_{\text{synch}}}$ power spectra for the WMAP CMB map (dashed line) and for the TOH CMB map (dash–dotted).}
\end{figure}

2 SYNCHROTRON AND CMB C_{l}^{T} POWER SPECTRA

B04 provided Q and U template maps of the Galactic synchrotron emission at 23 GHz, which is obtained from the 23 GHz total intensity synchrotron map released by the WMAP team (by using the polarization direction field of starlight as well as a polarization horizon model). B04 also derived a Galactic map of the synchrotron spectral index, which is used to scale the polarization template to higher frequencies. In the present work, the same spectral index map is used to scale the WMAP 23-GHz total intensity synchrotron map released by the WMAP team. We choose a frequency of 60 GHz, which can be regarded as an approximate mean of the frequencies of the WMAP QVW data set. Synchrotron T, Q, and U maps (with T the antenna temperature) are generated at an angular resolution of 7° due to the limitation of the B04 template. We are then able to compute the 60-GHz synchrotron C_{l}^{T} power spectrum by integration of the two-point correlation function. This procedure (see, for the implementation, Sbarra et al. 2003) allows to properly account for the incomplete sky coverage of the B04 template, and for the kp2 Galactic-Plane mask applied to the synchrotron maps (for details, see Bennett et al. 2003). A similar procedure allows us to investigate cross-correlations between the CMB and the synchrotron template.

Figure 1 shows the synchrotron C_{l}^{T} power spectrum at 60 GHz and the CMB C_{l}^{T} power spectrum measured by WMAP. The error bars on the synchrotron spectrum only account for a variation $\Delta \alpha = \pm 0.2$ of the frequency spectral index of the synchrotron emission. Therefore they represent the uncertainty on the overall normalization of the fiducial synchrotron template at 60 GHz, and do not account for statistical errors. Clearly, the 60-GHz synchrotron C_{l}^{T} is much smaller than the corresponding CMB spectrum in the range $\ell = 3 - 10$ where most information about cosmological reionization is encoded. The situation of course would be still better at 90 GHz. We note that the synchrotron quadrupole C_{2}^{T} has a large and negative value and this indicates a potential source of contamination for the CMB quadrupole; however, this very fact does not indicate any inadequacy in WMAP team’s technique of foreground removal. On the other hand, reasonably strong evidence for a residual contamination can be provided by a cross-correlation between the CMB temperature and the synchrotron polarization fields, both being derived from WMAP’s data.

In order to cross–correlate our Q and U templates with CMB anisotropy, we use two different CMB maps. The first one is obtained by averaging the Q, V, and W maps released by the WMAP team after foreground subtraction (we refer to this as the WMAP CMB map); the other one is the CMB map produced by TOH. The $C_{l}^{T \text{CMB}_{\text{synch}}}$ power spectra computed for both these maps are also shown in Fig. 1. Both power spectra show very similar behaviours for $\ell > 2$. We find no evidence of a CMB-synchrotron correlation in the range $\ell = 4 - 10$. The multipole $\ell = 3$ shows a cross-correlation which at 60 GHz is comparable to the CMB C_{3}^{T}. This should not be so disturbing after all, since the large reionization optical depth is essentially generated by slightly larger ℓs. The most intriguing feature is still the behaviour of the quadrupole. When the synchrotron template is correlated with the WMAP CMB map, we find a large (\sim 8 \mu K^2) negative value, whereas the use of the TOH CMB map leads to a relatively lower (\sim 5 \mu K^2) but positive value. For comparison, the CMB quadrupole is $C_{2}^{T} \sim 3 \mu K^2$, a factor 2–4 lower than the magnitude of $C_{2}^{T \text{CMB}_{\text{synch}}}$. The discrepancy between cross-correlation quadrupoles is not surprising, since TOH already noted that their temperature quadrupole C_{2}^{T} is significantly different from the one found by the WMAP team. This discrepancy, as well as the overall behaviour of the cross-correlation power spectra, is better understood by inspection of the CMB-synchrotron cross-correlation function. The latter is defined by

$$C^{TQ}(\theta) = \sum_{ij} I_{i} Q_{j},$$

where the Stokes parameter Q' is computed in the frame of the great circle connecting pixels (i, j). Figure 2 shows the cross-correlation functions derived from WMAP and TOH maps and their difference. It is interesting to note that the cross-correlation functions have the same behaviour up to $\theta \sim 20^\circ$ but they differ significantly for larger angular scales. There is a clear evidence for strongly correlated signals between the WMAP CMB map and the polarized synchrotron at angular scales $\theta > 50^\circ$. The absolute maximum of $C^{TQ}(\theta)$ is $\sim 2 \mu K^2$ for $\theta \sim 110^\circ$.
The synchrotron foreground and CMB temperature–polarization cross correlation power spectrum from the first year WMAP data

Figure 2. Top panel: The correlation function between the synchrotron Q^r and the CMB temperature maps provided by WMAP’s team (solid line) and by TOH (dashed line). Bottom panel: The difference between the two correlation functions.

In spite of the above open problem, we find that the multipole region where there is no evidence for contamination includes the range which dominates the standard WMAP fitting of the reionization optical depth. This result, obtained at 60 GHz, should be adequately representative for the QVW data set. Therefore, it seems really hard to explain in this way the North-South asymmetry in the optical depth fits declared by Hansen et al. (2004a). If such an asymmetry is confirmed, it should be of extragalactic (although not necessarily cosmological) origin. This possibility is supported by Schwartz et al. (2004) in connection with other WMAP anomalies.

Acknowledgments: This work has been carried out in the framework of the SPOrt programme funded by the Italian Space Agency (ASI).

REFERENCES
Bennett, C.L., et al., 2003, ApJS, 148, 97
Bernardi, G., Carretti, E., Fabbri, R., Sbarra, C., Poppi, S., Cortiglioni, S., 2003, MNRAS, 344, 347
Bernardi, G., Carretti, E., Fabbri, R., Sbarra, C., Poppi, S., Cortiglioni, S., Jonas J.L., 2004, MNRAS, 351, 436
Copi, C.J., Huterer, D., Starkman, G.D., 2004, PRD, 70, 043515
de Oliveira-Costa A., Tegmark M., Zaldarriaga M., Hamilton A., 2004, PRD, 69, 063516
Dineen, P., Coles, P., 2004a, MNRAS, 347, 52
Dineen, P., Coles, P., 2004b, astro-ph/0410636
Eriksen, H.K. et al., 2004, ApJ, 65, 14
Hansen, F.K., Balbi, A., Bandai, A.J., Görski, K.M., 2004a, MNRAS, 354, 905
Hansen, F.K., Bandai, A.J., Görski, K.M., 2004b, MNRAS, 354, 665
Kogut, A., et al., 2003, ApJS, 148, 161
Land, K.R., Magueijo, J., 2005, astro-ph/0502237
Naselsky, P.D., Doroshkevich, A.G., Verkhodanov, O.V., 2003, ApJL, 599, 53
Naselsky, P.D., Verkhodanov, O.V., Doroshkevich, A.G., 2004, MNRAS, 349, 695
Sbarra, C., Carretti, E., Cortiglioni, S., Zannoni, M., Fabbri, R., Maccaferri, C., Tucci, M., 2003, A&A, 401, 1215
Schwartz, D.J., Starkman, G.D., Huterer, D., Copi, C.J., 2004, PRL, 93, 221301
Tegmark, M., de Oliveira-Costa A., Hamilton A.J., 2003, PRD, 68, 123523 (TOH)

This paper has been produced using the Royal Astronomical Society/Blackwell Science \TeX{} style file.