Utilization of ceramic waste powder and rice husk ash as a partial replacement of cement in concrete

Bhaskara Rao Nalli¹ and Prudhviraju Vysyaraju²

¹,² Assistant Professor, Department of Civil Engineering, Sri Sivani College of Engineering, Srikakulam, Andhra Pradesh, India 532402.
¹ Email: Bhaskar.nalli40@gmail.com
² Email: vysyaraju.prudhviraju@gmail.com

Abstract. Ceramic waste powder (CWP) and rice husk ash (RHA) are one of the highly produced waste materials from tiles industry and rice processing units respectively. Using these materials in concrete as a partial replacement for cement offers several advantages like reducing the burden on landfills, reducing the construction cost by replacing costly cement and improvement in performance of concrete etc. due to their mineral composition. In the current study, an effort was made to partly replace the cement with CWP and RHA. Concrete design mix was carried out by using 0, 5, 10, 15 and 20% CWP and varied proportions of RHA were tried on the optimum CWP for cement replacement (0, 5, 10, 15, 20%). Tests were carried out on the fresh and hardened concrete specimens to study the mechanical properties of concrete. Analysis of the test results indicate that 15% CWP yielded best results and 10-15% RHA in combine proportion was found to be the optimum replacement of cement offering higher strength when assessed to the conventional concrete. Maximum compressive strength achieved at 15% CWP and 15% RHA whereas, the flexural strength and split tensile strength were attained at 15% CWP and 10% RHA dosage.

Keywords: Control mix, Ceramic waste, Cement Replacement, Mineralogy and Workability

1. Introduction

The continuous infrastructural development resulted in rapid depletion of the building material resources [1] and escalated production of the solid waste [2–4]. Among the elements of the concrete, a crucial one is the cement that imparts strength as a binding agent and is the most expensive one [5]. Various researchers around the world started studying the alternate materials that can substitute this binding agent [6–8]. The huge quantities of the solid waste generated requires disposal which otherwise adversely affects the environment [7,9]. Disposal of this huge solid waste requires a large amount of valuable land which is becoming very scarce in recent days [10]. The utilization of these waste materials in civil engineering offers a great deal of environmental sustainability besides reducing the burden on landfills. Various researchers utilized industrial byproducts like fly ash, silica fumes, GGBS, building demolition waste, recycled concrete aggregate, rice husk ash, ceramic waste, rubber products, etc. as a replacement of building materials in concrete [11–16].

Among the various solid wastes, various materials offer the replacement of cement, the binding agent, due to the pozzolanic characteristics possessed by them. Ceramic waste powder (CWP) is an
industrial by-product generated during the polishing of tiles. Unfortunately, this waste amount to about 1.9kg per polishing of 1m² area tiles [17,18]. CWP though does not offer high strength in its early stages, offers suitable pozzolanic activity after 28 days [19,20]. Partly replacing the cement by CWP not only contributes to sustainable development but also enhances the properties of cement mortar and concrete by reduction in porosity and cracks [21–25]. Sharifi et al. [26] demonstrated that the CWP can be used to improve the acid resistance of cement motors when used as a part replacement of cement. The mechanical strength and the sorptivity tests were performed on the cement mortars prepared by various proportions of CWP replacement [27]. Mechanical and microstructural studies on the cement mortars when partial cement replacement is carried out with CWP shown that the Alkali-silica reaction was reduced besides enhancing the mechanical strength [9,26,28–30]. The properties of fresh and hardened light weight foamed concrete were studied at various proportions of CWP replacement and at different water-cement ratios by Lee et al. [31,32]. Researchers studied the effect of other materials (mostly waste materials/by-products) in addition to the CWP wastes in concrete. Mazenan et al. [33] presented a review of cement replacement with pal oil fuel ash and CWP to improve the characteristics of concrete. Shanmugam et al [34] shown that the corrosion resistance and the acid resistance could be enhanced by partial replacement of cement with CWP and red brick dust. AlArab et al. [35] studied the thermal characteristics of cement mortars prepared with cement replaced with CWP and blast furnace slag. Xiong et al. [36] investigated the effect of ceramic waste and fly ash addition in the engineered cementitious composites.

Rice husk is generated abundantly during the milling process of rice. This husk is further processed by burning it, separating the impurities and grinding to produce the Rice Husk Ash (RHA). The pozzolanic activity of RHA depends completely on its processing that produces more quantity of amorphous silica, more fineness with specific surface area [37,38]. The pozzolanic reactions of RHA could continue to happen for years based on the dissolution of silica and the availability of Calcium hydrates (CH) from RHA [39–41]. The pozzolanic activity of the RHA was evaluated rapidly as demonstrated by Nair et al. [40]. Many researchers demonstrated the applicability of the RHA as a cement replacement to enhance the strength characteristics of the cement concrete and mortar [42–48]. The density of concrete raised with more fineness of RHA, while the voids decrease, up to the optimum cement replacement [49]. The microstructural characteristics of RHA blended with cement in the concrete present us with beneficial modification of concrete characteristics [38,44,50–56]. The mechanism behind the successive reactions in cement blended with RHA particles was presented by Le and Ludwig [57]. Lo et al. [58] studied the effect of partial replacement of cement on porous concrete that reduced carbon footprint to a considerable extent.

In the current study, an effort is made to analyze the fresh concrete properties and the mechanical characteristics of the concrete prepared from the cement partially replaced with various proportions of CWP and further the mix with optimum CWP content was dosed with various proportions of RHA. This study becomes an initiative to use more solid waste in an advantageous manner. This work aimed primarily at improvement in the performance of concrete material by replacing huge quantities of costly OPC with waste pozzolanic material that required addressing the disposal needs. This article lays a basis for carrying out the innovative design applications of pavement construction, design mix for other concreting works etc.

1.1 Research Significance
This research aims at the reduction of the environmental impact arises from abundant production of waste materials like CWP and the rice husk by utilizing them in concrete production. This also helps in reducing the green house gas Carbon Dioxide (CO₂) through replacement of OPC. Overall the cost of concrete production could also be reduced with this successful replacement of OPC with cementitious materials that required waste disposal.

2. Materials

2.1 Concrete
Concrete on M30 grade was used as the base concrete (control mix) in the current study.
2.1.1 Cement. Commercially available Ordinary Portland Cement of grade 53 was used in this research. The properties (physical) of the cement used were presented in table 1.

Table 1. Physical properties of cement

Test Parameter	Result
Normal Consistency	29.5%
Initial Setting Time	105 minutes
Final Setting Time	220 minutes
Specific Gravity	3.13
Fineness	4%
Soundness	1.3 mm

2.1.2 Fine Aggregate. As fine aggregate (FA), river sand that was readily available in local area was used for concrete preparation whose physical properties were as presented in the table 2 and the gradation was presented in figure 1. The sand was thoroughly cleaned for removal of any deleterious contents before the testing.

Table 2. Physical properties of fine aggregate

Test Parameter	Result
Specific Gravity	2.64
Zoning of FA	Zone-II
Fineness Modulus	2.53
Water Absorption	0.86%

Figure 1. Gradation of Fine Aggregates

2.1.3 Coarse Aggregate. 20mm and 10mm single sized crushed stone aggregates from the local quarry were used as coarse aggregates (CA) in the ratio of 65% and 35% to satisfy the gradation limits as per IS:383-2016. The physical properties of the CA were presented in table 3.

Table 3. Physical properties of coarse aggregate

Test Parameter	Result
Crushing Value	20.6%
Aggregate Impact Value	25.37%
Combined Flakiness and Elongation Index 23.85%
Specific Gravity 2.72
Water Absorption 0.86%

2.1.4 Chemical Admixture. Fosroc conplast X421IC was used as a super plasticizer in enhancing the workability of concrete.

2.2 Ceramic Waste Powder (CWP)
CWP was obtained from the nearby Ceramics company in E.G. District of Andhra Pradesh for the use in current investigation, with its specific gravity being 2.47 and fineness about 2% (98% passed through 90 microns sieve).

2.3 Rice Husk Ash (RHA)
Commercially available RHA was procured for the purpose of current research. The sp. gravity of RHA was calculated to be about 2.08 and fineness of about 1.8% (98.2% passed through 90 microns sieve). The pozzolanic activity of RHA as per the method demonstrated by Nair et al. [40] was found to be about 84% which was above the index suggested by ASTM C618 [59] for the use in concrete.

2.4 Mix Proportions
In the current study, the design mix for control mix was made as per the codal specifications of IRC:44 [60] based on the material properties. A slump of 25-50mm was chosen for the mix design which shall be common in pavement construction. The design mix proportions decided after the trail mixes were as mentioned in the table 4.

Constituent	Weight (kg/m3)
Cement	390.06
FA	610.57
CA	1286.73
Water	148.22
Super Plasticizer	3.90

3. Experimental methodology
Initially, the control mix specimens made of the proportions mentioned in table 4 were used as the base mix for comparison. Two different waste materials were chosen to be supplementary materials for cement, namely CWP and RHA as mentioned earlier. Based on the literature survey, it was understood that both CWP and RHA were used as cement replacement materials with optimum quantity varying from 15-20% depending on the pozzolanic activity of the material. Firstly, CWP was used as replacement material in various proportions as 0, 5, 10, 15 and 20% by weight of cement and optimum CWP replacement is decided based on the compressive strength (7 and 28 days) of cubes. 15% CWP was found to be the optimum cement replacement which was in line with the literature. Later, along with the optimum CWP content, RHA was also used to replace additional cement in different proportions as 0, 5, 10, 15 and 20%. The slump was measured in each mix and the variation in the workability of fresh concrete was studied. The mechanical properties of the hardened concrete were studied from the hardened concrete specimens as per IS:516 which include compressive strength of cubes, flexural strength of beams and split tensile strength of cylinder specimens. The different mixtures were designated as mentioned in table 5 for the purpose of this study.

Designation for various mixtures
Cement + CWP
Cement + CWP + RHA

Table 5. Designations for various mixtures

Designation	Constituents
Cement	CWP
Cement	CWP + RHA

4
4. Results and discussions

4.1 CWP replacement

4.1.1 Slump. The slump was measured for the control mix concrete and the partially CWP replaced mixtures as specified in table 5 immediately after the water was added and mixed together. The results of slump test for various mixtures were presented in figure 2. Observation of results from figure 2 indicates that the slump of concrete mixed with CWP increased drastically indicating that CWP is acting as a plasticizer which was in line with the observations made by Abubakr et al. [22].

![Figure 2. Slump variation with various CWP replacements for cement](image)

4.1.2 Compressive Strength of Concrete. Compressive strength of the concrete specimens made from the various mixtures specified in table 5 with CWP replacement of cement and cured properly as per the specifications was measured at 7- and 28- days curing period. The test results were presented in figure 3 which indicate that the maximum result was attained at 15% CWP replacement. This optimum value is further used for RHA mixed proportions and thus the designations shown in table 5 were chosen for RHA variations.
4.2 CWP + RHA Replacement

4.2.1 Slump. The constituents as presented in table 5 were mixed together and the slump was measured immediately for the control mix and the 15% CWP & various proportions of RHA replacing cement. The slump values were presented for various mixtures in figure 4. The test results indicate that the slump reduced upon the addition of RHA to the mixture containing 15% CWP (CCWP03) which was originally increased as compared to the control mix value. This conforms to the findings of Miller et al. [61] that indicates the workability of concrete declines with addition of RHA due to its specific surface area.
4.2.2 Compressive Strength of Concrete. Compressive strength of the concrete specimens made from the various mixtures specified in table 5 with 15% CWP & various proportions of RHA replacement of cement and cured properly as per the specifications was measured at 7- and 28- days curing period. The results were presented in figure 5 which indicate that the maximum value was attained at 15% CWP + 15% RHA (CCWPRHA03) replacement. Observation of the results indicate that the 28 days compressive strength was enhanced by about 30% and 2% when compared to the control mix and CCWP03 mix values respectively. This indicates that the combination of CWP and RHA could be used up to the optimum extent for replacing cement with improvement in strength. The 7-days curing compressive strength of the cement supplement specimens was initially less than that of control mix specimens which was due to the physical filler effect as presented by Siddika et al. [38]. Due to the increased pozzolanic activity, the compressive strength increased at the later stages suppressing the physical filler effect.

![Figure 5](image)

Figure 5. Compressive strength variation with 15% CWP and different proportions of RHA replacements for cement

4.2.3 Flexural Strength of Concrete. Flexural strength of the concrete specimens made from the various mixtures specified in table 5 with 15% CWP & various proportions of RHA replacement of cement and cured properly as per the specifications was measured at 7- and 28- days curing period. The results were presented in figure 6 which indicate that the maximum value was attained at 15% CWP + 10% RHA (CCWPRHA02) replacement. The flexural strength of the CCWPRHA03 mix was also equivalent to that of CCWPRHA02. Observation of test results indicate that the 28- days flexural strength value was enhanced by about 28% when compared to the control mix value. This indicates that the combination of CWP and RHA could be used up to the optimum extent for replacing cement with improvement in flexural strength. The 7- days flexural strength was also found to be less than the control mix values as similar to the compressive strength.
Figure 6. Flexural strength variation with 15% CWP and different proportions of RHA replacements for cement

4.2.4 Split Tensile Strength of Concrete. Split tensile strength of the concrete specimens made from the various mixtures specified in table 5 with 15% CWP & various proportions of RHA replacement of cement and cured properly as per the specifications was measured at 7- and 28- days curing period. The results were presented in figure 7 which indicates that the maximum value was attained at 15% CWP + 10% RHA (CCWPRHA02) replacement. The flexural strength of the mix CCWPRHA03 was also equivalent to that of CCWPRHA02. Observation of test results indicates that the 28 days split tensile strength was enhanced by about 15% when compared to the control mix value. This indicates that the combination of CWP and RHA could be used up to the optimum extent for replacing cement with improvement in flexural strength. The split tensile strength at 7- days curing period was also found to be less than that of the control mix values as similar to the compressive strength.

Figure 7. Split tensile strength variation with 15% CWP and different proportions of RHA replacements for cement
5. Conclusions
This study uses two industrial waste materials to be blended combinedly replacing a proportion of cement in concrete. Interestingly when CWP was used alone, the slump of the concrete mix increased rapidly acting as a plasticizer besides increasing the compressive strength up to 15% CWP replacement of cement which was considered to be the optimum CWP replacement. The compressive strength was found be increased by about 27% compared to that of control mix after 28-days curing. Further, the investigation was continued to replace the additional amount of cement with RHA at different proportions mentioned earlier. Addition of RHA caused the reduction in the slump which is above the actual slump of control mix concrete that could be offered by the presence of CWP. At 7 days curing period, the strength of concrete attained by replacing cement with CWP and RHA (compressive, flexural and split tensile strengths) was less compared to that of the control mix that was attributed to the RHA presence. The Compressive strength of cement rose up to 15% CWP and 15% RHA replacement of cement (30% enhancement) whereas the flexural and split tensile strengths increased up to 15% CWP and 10% RHA replacement of cement (28% and 15% respectively). Also, the flexural and split tensile strengths of the mix CCWPRHA03 (15% CWP and 15% RHA replacement of cement) was comparable to that of the mix CCWPRHA02 (15% CWP and 10% RHA replacement of cement). Based on the observation of the test results, it could be concluded that the cement can be replaced with 15% CWP and 15% RHA blending which results in strength improvement and waste utilization.

6. References
[1] Chidiac S E and Panesar D K 2008 Evolution of mechanical properties of concrete containing ground granulated blast furnace slag and effects on the scaling resistance test at 28days Cement and Concrete Composites 30 63–71
[2] Pal S, Singh A, Pramanik T, Kumar S and Kisku N Effects of Partial Replacement of Cement with Marble Dust Powder on Properties of Concrete 3 5
[3] Boukhelkhal A, Azzouz L, Belaïdi A S E and Benabed B 2016 Effects of marble powder as a partial replacement of cement on some engineering properties of self-compacting concrete Journal of Adhesion Science and Technology 30 2405–19
[4] Singh M, Srivastava A and Bhunia D 2017 An investigation on effect of partial replacement of cement by waste marble slurry Construction and Building Materials 134 471–88
[5] Li J, Yu Q, Wei J and Zhang T 2011 Structural characteristics and hydration kinetics of modified steel slag Cement and Concrete Research 41 324–9
[6] Duan P, Shui Z, Chen W and Shen C 2013 Efficiency of mineral admixtures in concrete: Microstructure, compressive strength and stability of hydrate phases Applied Clay Science 83–84 115–21
[7] Salvi D, Gupta T and Sharma R K 2021 A Review on Hardened Properties of Eco-Friendly Concrete Containing Ceramic Waste Powder JSRR 87–103
[8] Vaičiukynienė D, Vaitkevičius V, Rudžionis Z, Vaičiukynas V, Navickas A A and Nizevičienė D 2016 Blended Cement Systems with Zeolitized Silica Fume Materials Science 22 299–304
[9] Mohit M and Sharifi Y 2019 Ceramic Waste Powder as Alternative Mortar-Based Cementitious Materials ACI Materials Journal 116
[10] Sharma U, Gupta N and Saxena K K 2021 Comparative study on the effect of industrial by-products as a replacement of cement in concrete Materials Today: Proceedings 44 45–51
[11] Jamshidi A, Kurumisawa K, Nawa T, Jize M and White G 2017 Performance of pavements incorporating industrial byproducts: A state-of-the-art study Journal of Cleaner Production 164 367–88
[12] Orhon A V and Altin M 2020 Utilization of Alternative Building Materials for Sustainable Construction Environmentally-Benign Energy Solutions Green Energy and Technology ed I Dincer, C O Colpan and M A Ezan (Cham: Springer International Publishing) pp 727–50
[13] Etxeberria M, Pacheco C, Meneses J M and Berridi I 2010 Properties of concrete using metallurgical industrial by-products as aggregates Construction and Building Materials 24 1594–600

[14] Suluguru A K, Jayatheja M, GuhaRay A, Kar A and Anand A 2018 Characterization of building derived materials for partial replacement of pavement subgrade layer Innov. Infrastruct. Solut. 3 78

[15] Rath B Effect of natural rubber latex on the shrinkage behavior and porosity of geopolymer concrete Structural Concrete

[16] Rath B, Deo S and Ramtekkar G 2022 An Experimental Study on Strength and Durability of Glass Fiber Reinforced Concrete with Partial Replacement of Cement and Sand with Coal Ashes Available in Central Chhattisgarh Region CURRENT APPLIED SCIENCE AND TECHNOLOGY 1–28

[17] Cheng Y, Huang F, Liu R, Hou J and Li G 2016 Test research on effects of waste ceramic polishing powder on the permeability resistance of concrete Mater Struct 49 729–38

[18] El-Dieb A S, Taha M R, Kanaan D and Aly S T 2018 Ceramic waste powder: from landfill to sustainable concretes Proceedings of the Institution of Civil Engineers - Construction Materials 171 109–16

[19] Irassar E, Rahhal V, Tironi A, Trezza M, Pavlik Z, Pavliková M, Jerman M and Černý R 2014 Utilization of ceramic wastes as pozzolanic materials Technical Proceedings of the 2014 NSTI Nanotechnology Conference and Expo, NSTI-Nanotech 2014 3 230–3

[20] Umar T, Tahir A, Egbu C, Honnurvali M S, Saidani M and Al-Bayati A J 2021 Developing a Sustainable Concrete Using Ceramic Waste Powder Collaboration and Integration in Construction, Engineering, Management and Technology Advances in Science, Technology & Innovation ed S M Ahmed, P Hampton, S Azhar and A D. Saul (Cham: Springer International Publishing) pp 157–62

[21] Mohammadhosseini H, Lim N H A S, Tahir M Md, Alyousef R, Alabduljabbar H and Samadi M 2019 Enhanced performance of green mortar comprising high volume of ceramic waste in aggressive environments Construction and Building Materials 212 607–17

[22] Abubakr M, Khitab A, Anwar W, Tayyab S and Shamsher S 2019 Evaluation of Ordinary Concrete Having Ceramic Waste Powder as Partial Replacement of Cement

[23] Atkuri V K and Rao G V R 2021 Strength properties of ceramic waste concrete IOP Conf. Ser.: Mater. Sci. Eng. 1025 012017

[24] Alsaf A 2021 Utilization of ceramic waste as partially cement substitute – A review Construction and Building Materials 300 124009

[25] Hilal N, Saleh R D, Yakoob N B and Banyhussan Q S 2020 Utilization of ceramic waste powder in cement mortar exposed to elevated temperature Innov. Infrastruct. Solut. 6 35

[26] Sharifi Y, Ranjbar A and Mohit M 2020 Acid Resistance of Cement Mortars Incorporating Ceramic Waste Powder as Cement Replacement ACI Materials Journal 117

[27] Ali A H EFFECT OF SOLID CERAMIC WASTE POWDER IN PARTIAL REPLACEMENT OF CEMENT ON MECHANICAL PROPERTIES AND SORPTIVITY OF CEMENT MORTAR 12

[28] Lasseuguette E, Burns S, Simmons D, Francis E, Chai H K, Koutsos V and Huang Y 2019 Chemical, microstructural and mechanical properties of ceramic waste blended cementitious systems Journal of Cleaner Production 211 1228–38

[29] Mohit M, Ranjbar A and Sharifi Y 2021 Mechanical and microstructural properties of mortars incorporating ceramic waste powder exposed to the hydrochloric acid solution Construction and Building Materials 271 121565

[30] Hoppe Filho J, Pires C A O, Leite O D, Garcez M R and Medeiros M H F 2021 Red ceramic waste as supplementary cementitious material: Microstructure and mechanical properties Construction and Building Materials 296 123653

[31] Aly S T, El-Dieb A S and Taha M R 2019 Effect of High-Volume Ceramic Waste Powder as Partial Cement Replacement on Fresh and Compressive Strength of Self-Compacting Concrete Journal of Materials in Civil Engineering 31 04018374
[32] Lee Y L, Lim S K, Lim M H, Lee F W and Yew M K 2021 Effect of Ceramic Dust as Partial Replacement of Cement on Lightweight Foamed Concrete International Journal of Integrated Engineering 13 304–12

[33] Mazenan P N, Khalid F S, Shahidan S and Shamsuddin S 2017 Review of palm oil fuel ash and ceramic waste in the production of concrete IOP Conf. Ser.: Mater. Sci. Eng. 271 012051

[34] Shanmugam D, Chinnasamy K, kumar K N S, Elangovan S and Raj J P 2020 “Eco-Efficient” Concrete incorporating Ceramic Waste powder and Red brick dust as an effective replacement for Ordinary Portland Cement and Fine aggregate IOP Conf. Ser.: Mater. Sci. Eng. 955 012041

[35] AlArab A, Hamad B, Chehab G and Assaad J J 2020 Use of Ceramic-Waste Powder as Value-Added Pozzolanic Material with Improved Thermal Properties Journal of Materials in Civil Engineering 32 0402043

[36] Xiong Y, Xu G, Wu D, Fang S and Tang Y 2021 Investigation of using the ceramic polishing brick powder in engineered cementitious composites Journal of Building Engineering 43 102489

[37] Fapohunda C, Akinbile B and Shittu A 2017 Structure and properties of mortar and concrete with rice husk ash as partial replacement of ordinary Portland cement – A review International Journal of Sustainable Built Environment 6 675–92

[38] Siddika A, Mamun M, Alyousef R and Mohammadhosseini H 2021 State-of-the-art-review on rice husk ash: A supplementary cementitious material in concrete Journal of King Saud University 33 294–307

[39] Mosaberpanah M A and Umar S A 2020 Utilizing Rice Husk Ash as Supplement to Cementitious Materials on Performance of Ultra High Performance Concrete: – A review Materials Today Sustainability 7–8 100030

[40] Nair D G, Jagadish K S and Fraaij A 2006 Reactive pozzolanas from rice husk ash: An alternative to cement for rural housing Cement and Concrete Research 36 1062–71

[41] Habeeb G A and Mahmud H B 2010 Study on properties of rice husk ash and its use as cement replacement material Mat. Res. 13 185–90

[42] Gautam A, Batra R and Singh N 2019 A STUDY ON USE OF RICE HUSK ASH IN CONCRETE Eng. herit. j. 01–4

[43] Wang J, Xiao J, Zhang Z, Han K, Hu X and Jiang F 2021 Action mechanism of rice husk ash and the effect on main performances of cement-based materials: A review Construction and Building Materials 288 123068

[44] Selvaranjan K, Navaratnam S, Gamage J C P H, Thamboori J, Siddique R, Zhang J and Zhang G 2021 Thermal and environmental impact analysis of rice husk ash-based mortar as insulating wall plaster Construction and Building Materials 283 122744

[45] Anwar M, Miyagawa T and Gaweesh M 2000 Using rice husk ash as a cement replacement material in concrete Waste Management Series Waste Materials in Construction Wascon 2000 vol 1, ed G R Woolley, J J J M Goumans and P J Wainwright (Elsevier) pp 671–84

[46] Muthukrishnan S, Kua H W, Yu L N and Chung J K H 2020 Fresh Properties of Cementitious Materials Containing Rice Husk Ash for Construction 3D Printing Journal of Materials in Civil Engineering 32 04020195

[47] Thiedeitz M, Schmidt W, Härder M and Kränkel T 2020 Performance of Rice Husk Ash as Supplementary Cementitious Material after Production in the Field and in the Lab Materials 13 4319

[48] Nasiru S, Jiang L, Yu L, Chu H, Huang Y, Pei C, Gu Y, Jin W, Eyram Klu E and Guo M-Z 2021 Properties of cement mortar containing recycled glass and rice husk ash Construction and Building Materials 299 123900

[49] Vieira A P, Toledo Filho R D, Tavares L M and Cordeiro G C 2020 Effect of particle size, porous structure and content of rice husk ash on the hydration process and compressive strength evolution of concrete Construction and Building Materials 236 117553

[50] Alex J, Dhanalakshmi J and Ambedkar B 2016 Experimental investigation on rice husk ash as cement replacement on concrete production Construction and Building Materials 127 353–62
[51] Hu L, He Z, Shao Y, Cai X and Zhang S 2021 Microstructure and properties of sustainable cement-based materials using combustion treated rice husk ash Construction and Building Materials 294 123482

[52] Syahida Adnan Z, Ariffin N F, Syed Mohsin S M and Abdul Shukor Lim N H 2021 Review paper: Performance of rice husk ash as a material for partial cement replacement in concrete Materials Today: Proceedings

[53] Ali T, Saand A, Bangwar D K, Buller A S and Ahmed Z 2021 Mechanical and Durability Properties of Aerated Concrete Incorporating Rice Husk Ash (RHA) as Partial Replacement of Cement Crystals 11 604

[54] Hu L, He Z and Zhang S 2020 Sustainable use of rice husk ash in cement-based materials: Environmental evaluation and performance improvement Journal of Cleaner Production 264 121744

[55] Rattanachu P, Toolkasikorn P, Tangchirapat W, Chindaprasirt P and Jaturapitakkul C 2020 Performance of recycled aggregate concrete with rice husk ash as cement binder Cement and Concrete Composites 108 103533

[56] Krishna N K, Sandeep S and Mini K M 2016 Study on concrete with partial replacement of cement by rice husk ash IOP Conf. Ser.: Mater. Sci. Eng. 149 012109

[57] Le H T and Ludwig H-M 2020 Alkali silica reactivity of rice husk ash in cement paste Construction and Building Materials 243 118145

[58] Lo F-C, Lee M-G and Lo S-L 2021 Effect of coal ash and rice husk ash partial replacement in ordinary Portland cement on pervious concrete Construction and Building Materials 286 122947

[59] C09 Committee Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete (ASTM International)

[60] Indian Roads Congress 2017 IRC 044: Guidelines for Cement Concrete Mix Design for Pavements (Third Revision)

[61] Miller S A, Cunningham P R and Harvey J T 2019 Rice-based ash in concrete: A review of past work and potential environmental sustainability Resources, Conservation and Recycling 146 416–30