Prevalence of malocclusion and occlusal traits in the early mixed dentition in Shanghai, China

Xin Yu, Hao Zhang, Liangyan Sun, Jie Pan, Yuehua Liu, and Li Chen

1 Department of Pediatric Dentistry, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
2 Oral Biomedical Engineering Laboratory, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
3 Department of Preventive Dentistry, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
4 Department of Orthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, China

Corresponding Author: Li Chen
Email address: lichen_kq@fudan.edu.cn

Background. Epidemiological data on malocclusion among Chinese children are scant. The aim of this study was to provide detailed information on the prevalence of malocclusion in early mixed dentition children in Shanghai, China.

Methods. A cross-sectional survey was conducted from September 2016 to April 2017, and 2810 children aged 7- to 9- years were selected from 10 primary schools by cluster random sampling. Several occlusal parameters, including Angle molar relationship, overjet, overbite, open bite, anterior and posterior crossbite, midline displacement, scissors bite, and teeth crowding and spacing, were clinically registered by five calibrated orthodontic dentists.

Results. We found that 79.4% children presented one or more occlusal anomalies. Angle Class I, Class II and Class III molar relationship were recorded in 42.3%, 50.9% and 5.9% of the sample, respectively. The proportion of Class III increased from 5.0% at age 7 to 7.8% at age 9. In the sagittal plane, increased overjet >3 mm was observed in 40.8% subjects, while the prevalence of severe overjet (>8 mm), anterior edge-to-edge (zero overjet) and anterior crossbite were 5.2%, 8.1% and 10.5%, respectively. Vertically, deep overbite > 2/3 overlap was found in 6.2% of the children and open bite in 4.3%. Boys exhibited a higher rate of overbite than girls. For the transversal occlusal anomalies, 36.1% of the children had a midline displacement, which was followed by posterior crossbite (2.6%) and scissors bite (1.0%). Teeth space discrepancies were also common anomalies and anterior crowding (> 2 mm) affecting 28.4% of the children, while anterior spacing (> 4 mm) affecting 9.5%. Girls showed a higher prevalence of anterior crowding and a lower frequency of teeth spacing than boys.

Conclusions. Our study demonstrated that malocclusion is prevalent among children in the early mixed dentition, and more health resources should be warranted to meet the challenge of prevention or early intervention of malocclusion.
Prevalence of malocclusion and occlusal traits in the early mixed dentition in Shanghai, China

Xin Yu†, Hao Zhang†, Liangyan Sun, Jie Pan, Yuehua Liu, Li Chen*

1. Department of Pediatric Dentistry, Shanghai Stomatological Hospital, Fudan University, Shanghai 200001, China
2. Department of Preventive Dentistry, Shanghai Stomatological Hospital, Fudan University, Shanghai 200001, China
3. Oral Biomedical Engineering Laboratory, Shanghai Stomatological Hospital, Fudan University, Shanghai 200001, China
4. Department of Orthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai 200001, China

*Corresponding author
Li Chen, Email: lichen_kq@fudan.edu.cn

† These authors contributed equally to this work.
Prevalence of malocclusion and occlusal traits in the early mixed
dentition in Shanghai, China

Abstract

Background. Epidemiological data on malocclusion among Chinese children are scant. The aim of this study was to provide detailed information on the prevalence of malocclusion in early mixed dentition children in Shanghai, China.

Methods. A cross-sectional survey was conducted from September 2016 to April 2017, and 2810 children aged 7- to 9- years were selected from 10 primary schools by cluster random sampling. Several occlusal parameters, including Angle molar relationship, overjet, overbite, open bite, anterior and posterior crossbite, midline displacement, scissors bite, and teeth crowding and spacing, were clinically registered by five calibrated orthodontic dentists.

Results. We found that 79.4% children presented one or more occlusal anomalies. Angle Class I, Class II and Class III molar relationship were recorded in 42.3%, 50.9% and 5.9% of the sample, respectively. The proportion of Class III increased from 5.0% at age 7 to 7.8% at age 9. In the sagittal plane, increased overjet >3 mm was observed in 40.8% subjects, while the prevalence of severe overjet (>8 mm), anterior edge-to-edge (zero overjet) and anterior crossbite were 5.2%, 8.1% and 10.5%, respectively. Vertically, deep overbite > 2/3 overlap was found in 6.2% of the children and open bite in 4.3%. Boys exhibited a higher rate of overbite than girls. For the transversal occlusal anomalies, 36.1% of the children had a midline displacement, which was followed by posterior crossbite (2.6%) and scissors bite (1.0%). Teeth space discrepancies were also common anomalies and anterior crowding (> 2 mm) affecting 28.4% of the children, while anterior spacing (> 4 mm) affecting 9.5%. Girls showed a higher prevalence of anterior crowding and a lower frequency of teeth spacing than boys.
Conclusions. Our study demonstrated that malocclusion is prevalent among children in the early mixed dentition, and more health resources should be warranted to meet the challenge of prevention or early intervention of malocclusion.

Keywords: Malocclusion; Prevalence; Early mixed dentition; Angle classification; Overjet; Open bite; Crossbite; Crowding, Spacing

Introduction

Malocclusion is one of the most common oral disorders among children, and it affects not only the oral masticatory function but also the craniofacial development and facial appearance. Children with certain malocclusion traits appear to have more problems related to psychology and social interactions, and even their quality of life suffers when they reach adulthood (Martins-Jr. et al. 2012; Nguyen et al. 1999; Stenvik et al. 2011). For this reason, malocclusion is regarded as an emerging public health issue.

The mixed dentition is an important developmental stage to the undisturbed occlusal relationship. The eruption of the first permanent molar plays a critical role in maintaining the interarch space and the sagittal occlusal relationship. Several longitudinal observations have revealed that a substantial number of malocclusions occur during this period (Dimberg et al. 2015; Dimberg et al. 2013; Gois et al. 2012), and the accumulated evidence has indicated that early intervention starting from the mixed dentition would benefit the youngsters with Class III malocclusion, crossbite, crowding and posterior crossbite (Gianelly 2002; Keski-Nisula et al. 2008; Lippold et al. 2013; Mitani 2002).

Epidemiological information is essential for developing strategies and plans to promote oral health. In China, national or local surveys on dental caries and periodontitis have been carried out regularly (Li & Wang 2014; Zhou et al. 2018). However, there is still insufficient information
on the prevalence of malocclusions. Recently, we made an effort to investigate the malocclusion status of Shanghai preschool children and an extraordinarily high prevalence, 83.9%, was found (Zhou et al. 2017). In the current study, another cross-sectional survey was carried out to assess the prevalence of malocclusion and the distribution of occlusal traits among school children at the stage of early mixed dentition in Shanghai.

Materials and Methods

Study sample

For the period of September 2016 to April 2017, a cluster random sampling was applied in this study. In brief, we chose five administrative districts in Shanghai city: three of them in the urban area (Hongkou, Putuo, and Jing’an districts) and two in the suburbs (Pudong and Minhang districts). Then, two primary schools in each district were randomly selected, and the students with the following characteristics were identified as candidates of this survey: (1) aged 7 to 9 years; (2) without a history of orthodontic treatment; (3) without craniofacial diseases; and (4) consensual participation of the children and their parents. In all, 2810 children, including 1479 boys and 1331 girls, were recruited.

The protocol of this study was approved by the Ethics Committee of Shanghai Stomatological Hospital, Fudan University (Approval Number: 2015-0012). Written informed consent was signed by the parents of all the children who participated in the survey.

Oral examination

The oral examination was carried out by five calibrated orthodontic dentists. The children were examined at schools, using portable lighting and disposable mouth mirrors. Sagittal molar relationships by Angle classification, degree of overjet and overbite, anterior and posterior crossbite, and teeth crowding and spacing were recorded (Table 1).

The children who presented one or more of the following indications were registered as malocclusion: Angle Class III, increased overjet (>3 mm), anterior crossbite, anterior edge-to-
edge, deep overbite (>2/3 overlap), open bite, midline displacement, posterior crossbite, posterior
edge-to-edge, scissors bite, anterior or posterior crowding (>2 mm), and anterior spacing (>4
mm).

Reliability of examinations

Twenty subjects were evaluated by the five examiners independently of each other. One of
the examiners was an orthodontist with more than fifteen years' clinic experience, and the other
four examiners compared their results to the senior orthodontist’s data respectively. Inter-
examiner reliability was determined by calculating Cohen's kappa coefficient, and the values
were >0.68.

Statistical analysis

The rates of occlusal characteristics and malocclusion were reported by age and gender. The
chi-squared test and Fisher’s exact probability method were applied to determine the statistical
associations between the independent variables and the malocclusion variable. Cohen's kappa
value was used to measure the agreement among examiners. The data were input using the
Epidata software and analyzed using SPSS Statistics 22 (IBM, Armonk NY, USA). The level of
significance was set at $p < .05$.

3. Results

The overall prevalence of malocclusion among school children aged 7 - 9 years in Shanghai was
79.4% (2231/2810), and only 20.6% of them had normal occlusion (Table 2). The boys had a
very similar rate of malocclusion to that of the girls. No significant difference was observed
between age groups ($p > .05$).

The distribution of the sagittal occlusal features among the children in Shanghai is shown in
Table 3. The relationship of the first molars was classified according to the Angle classification;
42.3% children showed a Class I relationship, 50.9% children were Class II, and 5.9% were
Class III. An increasing trend in the rate of Angle Class III with age was observed, from 5.0% at
age 7 to 7.8% at age 9. The increased overjet was prevalent (40.8%), and most of the cases were
mild or moderate, but 5.2% of the children were found to have a severe overjet. Approximately one-tenth of the children had an anterior crossbite.

Table 4 depicts the vertical and transversal occlusal anomalies. The probability of the deep overbite of the anterior teeth was 43.8% and that of severe overbite was 6.2%. Boys were more prone to deep overbite than girls ($p = .003$). The rate of open bite of anterior teeth was 4.24%; it decreased with age, from 4.9% at age 7 to 2.7% at age 9. With respect to transversal anomalies, 36.1% of the children were found to have a midline displacement, and 2.6% had posterior crossbite. The prevalence of a scissors bite was relatively low (0.9%), but it increased with age.

Teeth crowding and spacing were prevalent among the children (Table 5). The prevalence of anterior crowding of >2 mm of the maxillary or mandibular teeth was 13.3% and 22.5%, respectively. In all, 28.4% of the children presented anterior crowding. Posterior crowding was less common, and only 0.2% of the subjects were found to have maxillary posterior crowding of >2 mm, and 1.0% was mandibular posterior. The rate of anterior spacing of >4 mm of the maxillary teeth was 8.0%, and that of the mandibular teeth was 3.0%. An increasing trend with age was observed for the rate of crowding of the upper anterior teeth, and the boys’ probability of anterior crowding, either of the maxillary or of the mandibular teeth, was lower than that of the girls’ ($p < .001$).

Discussion

The prevalence of malocclusion in different populations ranges from 21% to 90% (Grippaudo et al. 2013; Perillo et al. 2010; Perinetti et al. 2008; Shalish et al. 2013; Thilander et al. 2001), and this huge variation may largely be attributed to the discrepancies in the definitions of malocclusion and the methodologies applied. We found that the prevalence of malocclusion in early mixed dentition in Shanghai was as high as 79.4%, which was considerably higher than the rate of 71.2% among children with mixed dentition in a national survey in 2000 (Fu et al. 2002). This result was similar to the rate of malocclusion in the deciduous dentition, i.e., 83.9%, in the
Shanghai area (Zhou et al. 2017). Our findings confirmed that malocclusion was one of the most common health problems in children and adolescents.

Deep overbite (> 1/3 overlap, prevalence 43.8%) and increased overjet (> 3mm, prevalence 40.8%) were the two most common types of occlusion abnormalities in Shanghai schoolchildren. The high rates of overbite and overjet were also reported in Nigeria (deep overbite: 31.7% and increased overjet: 44.6%) (daCosta et al. 2016) and in China’s western city Xi’an (deep overbite 37.6% and increased overjet 35.0%) (Zhou et al. 2016). Nevertheless, compared to the fact that 63.7% of the preschool children were found to have deep overbite in Shanghai (Zhou et al. 2017), it was less frequent in the age group considered in this study. This decline could be partly explained by the self-correction of deep overbite during dental development (Dimberg et al. 2015). The increased overjet (>3 mm) occurred more frequently in the early mixed dentition (43.8%) than in the primary stage (33.9%) (Zhou et al. 2017). However, in terms of severe increased overjet (>8 mm), the change was substantial: 0.9% for primary and 5.2% for mixed dentition. This change may increase the risk of oral trauma (Nguyen et al. 1999).

Anterior crowding and anterior crossbite were another two high-incidence malocclusions observed in this study. In contrast to deep overbite, crowding and crossbite are less likely to be self-corrected without any intervention or treatment. Anterior crowding of >2 mm was recorded in 28.4% of the subjects, considerably more frequent than the proportion in primary dentition in the city (Zhou et al. 2017). Moreover, the crowding problem might be worse in the permanent dentition stage, as the arch length decreased during the transition from the mixed to the permanent dentition (Gianelly 2002). It was noteworthy that anterior crowding was more prevalent in the mandible (22.5%) than maxilla (13.3%) in Shanghai children, which was consistent in what was found among children in the early mixed dentition in Germany (Tausche et al. 2004) and adolescents in the permanent dentition in Japan (Komazaki et al. 2012). However, in Iran and Turkey, adolescents had more crowding in the maxilla than mandible (Borzabadi-Farahani et al. 2009; Gelgor et al. 2007).
The prevalence of anterior crossbite in Shanghai children was comparable to that in Israeli (9.5%) (Shalish et al. 2013), German (7.7%) (Tausche et al. 2004), and Iranian (8.4%) (Borzabadi-Farahani et al. 2009) children. Nevertheless, only 2.6% of the children had a posterior crossbite, which was relatively less frequent comparing the rates in Canada (15%) (Karaískos et al. 2005), Brazil (13.3%) (Almeida et al. 2011) and Israel (23.3%) (Shalish et al. 2013). Several studies have pointed out that Chinese adults have a higher prevalence of Angle Class III malocclusion than the other racial groups (Lew et al. 1993; Soh et al. 2005; Woon 1988); however, we found that this rate was acceptable in Shanghai children, even though it was slightly lower than in children from some other Asian countries (Borzabadi-Farahani et al. 2009; Komazaki et al. 2012). We found about 50 percent of the children had an Angle Class II molar relationship, and the rate was much higher than those reported in German (28%) (Tausche et al. 2004), Brazil (21.4%) (Dias & Gleiser 2009), Israel (29.9%) (Shalish et al. 2013) and Sweden (28%) (Dimberg et al. 2013). A high prevalence of Angle Class II, namely 38.2%, was also reported among 12-15-year-old adolescents in Japan (Komazaki et al. 2012), and it seemed that East Asians were more prone to have Angle Class II.

Although there was no difference of overall prevalence of malocclusion between boys and girls, several sexual dimorphisms were identified in the current study. It seemed that boys were more likely to have overbite than girls, and this finding was supported by previous studies in Germany, France, Turkey and Brazil (Dias & Gleiser 2009; Gelgor et al. 2007; Lux et al. 2009; Souames et al. 2006). Nevertheless, anterior crowding was more prevalent among girls than boys, which was consistent with what was found in Japan and Colombia (Komazaki et al. 2012; Thilander et al. 2001). These dimorphisms might be explained by the differences in skeletal maturity and/or eruption of permanent teeth (Lux et al. 2009).

Despite the reported benefit of early intervention of malocclusion (Dimberg et al. 2013; Keski-Nisula et al. 2008; Proffit 2006), the high prevalence of malocclusion did not mean that most children were subjected to orthodontic treatment. Since these children were in the “ugly duckling” stage, and they probably suffered transient malocclusions, and some of them, such as
maxillary midline diastema, increased overjet, deep overbite, crowding and even Angle Class II
molar relationship, might be spontaneously corrected (Dimberg et al. 2015; Huang & Creath
1995; Kapur et al. 2018). On the other hand, treatment priorities may vary depending on the
severity of malocclusions. Therefore, many investigators have considered the orthodontic
treatment need indices such as the Index of Orthodontic Treatment Need (IOTN) in
epidemiological studies (daCosta et al. 2016; Komazaki et al. 2012; Shalish et al. 2013;
Steinmassl et al. 2017; Tausche et al. 2004; Thilander et al. 2001). Even though the assessment
of the orthodontic treatment need was not the major aim of the current survey, we attempted to
obtain a rough estimate of this need on the basis of the criteria of IOTN’s Grade 4 and Grade 5
and found that 26.2% of the children exhibited one or more of the following conditions (Table
S1): Angle Class III, increased overjet > 8 mm, anterior crossbite, open bite > 3 mm, posterior
crossbite, scissors bite, and anterior or posterior crowding > 4 mm. This rate was consistent with
that in the Germans (26.2%) (Tausche et al. 2004), the Iranians (23%) (Borzabadi-Farahani et
al. 2009), and the Austrians (30.6%) (Steinmassl et al. 2017).

A strict cluster random sampling was conducted, and a good representation was obtained in
this study. Since this survey was school-based, it was infeasible to obtain the treatment records
from the children who had a history of orthodontic intervention, and we excluded them because
we did not know their original occlusal traits which had already been changed. Although many
investigators did so in previous epidemiological studies (Komazaki et al. 2012; Lagana et al.
2013; Souames et al. 2006; Thilander et al. 2001), it should be kept in mind that this exclusion
may introduce some representativeness bias. However, to the best of our knowledge, very few
children under the age of 10 years appeal to orthodontists for malocclusion in Shanghai, the
effects of the exclusion may be limited. Actually, in the current study, no more than one per cent
of the subjects had received orthodontic treatment, which was less than the rate reported in
French children (Souames et al. 2006).

A large number of young people meet the criteria for early orthodontic treatment, and this
is a huge challenge for our health system. Besides early treatment, establishing effective policies
to prevent the occurrence of malocclusion may be another choice. Multiple factors, including
genetic, environmental, and social-behavioral factors, play a role in the development of
malocclusion. (Grippaudo et al. 2016; Laganà et al. 2013). Some feeding habits and oral habits
are believed to be important causes of malocclusion, and sucking habits are associated with
anterior open bite and posterior crossbite (Agarwal et al. 2014; Boronat-Catala et al. 2017;
Gungor et al. 2016). Therefore, attention needs to be paid to malocclusion disorders, and early
health education and behavior intervention may contribute to a reduction of the burden of
malocclusion.

Conclusions

Our cross-sectional study demonstrated that 79.4% of the children in the stage of mixed
dentition had one or more malocclusion traits. For the prevention and intervention of
malocclusion, substantial resources and efforts are warranted from orthodontists, health policy
makers, communities, and, of course, families.

Acknowledgments

The authors would like to express their sincere gratitude to all the workers of the five Preventive
Dental Clinics in the Hongkou, Putuo, Jing’an, Pudong, and Minhang districts for supporting this
study. We thank LetPub for its linguistic assistance during the preparation of this manuscript.

Reference

Agarwal SS, Nehra K, Sharma M, Jayan B, Poonia A, and Bhattal H. 2014. Association
between breastfeeding duration, non-nutritive sucking habits and dental arch
dimensions in deciduous dentition: a cross-sectional study. Prog Orthod 15:59. DOI
10.1186/s40510-014-0059-4.

Almeida MR, Pereira ALP, Almeida RR, Almeida-Pedrin RR, and Silva Filho OG. 2011.
Prevalence of malocclusion in children aged 7 to 12 years. Dental Press J Orthod
16:123-131.
Boronat-Catala M, Montiel-Company JM, Bellot-Arcis C, Almerich-Silla JM, and Catala-Pizarro M. 2017. Association between duration of breastfeeding and malocclusions in primary and mixed dentition: a systematic review and meta-analysis. Sci Rep 7:5048. DOI 10.1038/s41598-017-05393-y.

Borzabadi-Farahani A, Borzabadi-Farahani A, and Eslamipour F. 2009. Malocclusion and occlusal traits in an urban Iranian population. An epidemiological study of 11-to 14-year-old children. Eur J Orthod 31:477-484. DOI 10.1093/ejo/cjp031.

daCosta OO, Aikins EA, Isiekwe GI, and Adediran VE. 2016. Malocclusion and early orthodontic treatment requirements in the mixed dentitions of a population of Nigerian children. J Orthod Sci 5:81-86. DOI 10.4103/2278-0203.186164.

Dias PF, and Gleiser R. 2009. Orthodontic treatment need in a group of 9-12-year-old Brazilian schoolchildren. Braz Oral Res 23:182-189.

Dimberg L, Lennartsson B, Arnrup K, and Bondemark L. 2015. Prevalence and change of malocclusions from primary to early permanent dentition: a longitudinal study. Angle Orthod 85:728-734. DOI 10.2319/080414-542.1.

Dimberg L, Lennartsson B, Soderfeldt B, and Bondemark L. 2013. Malocclusions in children at 3 and 7 years of age: a longitudinal study. Eur J Orthod 35:131-137. DOI 10.1093/ejo/cjr110.

Fu M, Zhang D, and Wang B. 2002. The prevalence of malocclusion in China - an investigation of 25,392 children [in Chinese]. Chin J Stomatol 37:371–373.

Gelgor IE, Karaman Al, and Ercan E. 2007. Prevalence of malocclusion among adolescents in central anatolia. Eur J Dent 1:125-131.

Gianelly AA. 2002. Treatment of crowding in the mixed dentition. Am J Orthod Dentofacial Orthop 121:569-571. DOI 10.1067/mod.2002.124172.

Gois EG, Vale MP, Paiva SM, Abreu MH, Serra-Negra JM, and Pordeus IA. 2012. Incidence of malocclusion between primary and mixed dentitions among Brazilian children. A 5-year longitudinal study. Angle Orthod 82:495-500. DOI
Grippaudo C, Pantanali F, Paolantonio EG, Grecolini ME, Saulle R, La Torre G, and Deli R. 2013. Prevalence of malocclusion in Italian schoolchildren and orthodontic treatment need. *Eur J Paediatr Dent* 14:314-318.

Grippaudo C, Paolantonio EG, Antonini G, Saulle R, La Torre G, and Deli R. 2016. Association between oral habits, mouth breathing and malocclusion. *Acta Otorhinolaryngol Ital* 36:386-394. DOI 10.14639/0392-100X-770.

Gungor K, Taner L, and Kaygisiz E. 2016. Prevalence of Posterior Crossbite for Orthodontic Treatment Timing. *J Clin Pediatr Dent* 40:422-424. DOI 10.17796/1053-4628-40.5.422.

Huang WJ, and Creath CJ. 1995. The midline diastema: a review of its etiology and treatment. *Pediatr Dent* 1995 17:171-179.

Kapur A, Chawla HS, Utreja A, and Goyal A. 2018. Guiding the Child’s Teeth with Class III Dental Malocclusion into Correct Occlusion: A Clinician’s Parenting. *J Clin Pediatr Dent* 42:72-78. DOI 10.17796/1053-4628-42.1.13.

Karaiskos N, Wiltshire WA, Odlum O, Brothwell D, and Hassard TH. 2005. Preventive and interceptive orthodontic treatment needs of an inner-city group of 6- and 9-year-old Canadian children. *J Can Dent Assoc* 71:649.

Keski-Nisula K, Hernesniemi R, Heiskanen M, Keski-Nisula L, and Varrela J. 2008. Orthodontic intervention in the early mixed dentition: a prospective, controlled study on the effects of the eruption guidance appliance. *Am J Orthod Dentofacial Orthop* 133:254-260. DOI 10.1016/j.ajodo.2006.05.039.

Komazaki Y, Fujiwara T, Ogawa T, Sato M, Suzuki K, Yamagata Z, and Moriyama K. 2012. Prevalence and gender comparison of malocclusion among Japanese adolescents: a population-based study. *J World Fed Orthod* 1:e67-e72. DOI 10.1016/j.ejwf.2012.07.001.

Lagana G, Masucci C, Fabi F, Bollero P, and Cozza P. 2013. Prevalence of malocclusions,
oral habits and orthodontic treatment need in a 7- to 15-year-old schoolchildren population in Tirana. Prog Orthod 14:12. DOI 10.1186/2196-1042-14-12.

Lew KK, Foong WC, and Loh E. 1993. Malocclusion prevalence in an ethnic Chinese population. Aust Dent J 38:442-449.

Li C, and Wang Y. 2014. Status of oral health service needs, demands and utilization of Shanghai residents [in Chinese]. J Shanghai Jiao Tong University (Medical Science) 34:206-210.

Lippold C, Stamm T, Meyer U, Végh A, Moiseenko T, Danesh G. 2013. Early treatment of posterior crossbite--a randomised clinical trial. Trials 14:20. DOI 10.1186/1745-6215-14-20.

Lux CJ, Ducker B, Pritsch M, Komposch G, and Niekusch U. 2009. Occlusal status and prevalence of occlusal malocclusion traits among 9-year-old schoolchildren. Eur J Orthod 31:294-299. DOI 10.1093/ejo/cjn116.

Martins-Junior PA, Marques LS, and Ramos-Jorge ML. 2012. Malocclusion: social, functional and emotional influence on children. J Clin Pediatr Dent 37:103-108.

Mitani H. 2002. Early application of chincap therapy to skeletal Class III malocclusion. Am J Orthod Dentofacial Orthop 121:584-585. DOI 10.1067/mod.2002.124170.

Nguyen QV, Bezemer PD, Habets L, and Prahl-Andersen B. 1999. A systematic review of the relationship between overjet size and traumatic dental injuries. Eur J Orthod 21:503-515. DOI 10.1016/S0889-5406(00)70044-8.

Perillo L, Masucci C, Ferro F, Apicella D, and Baccetti T. 2010. Prevalence of orthodontic treatment need in southern Italian schoolchildren. Eur J Orthod 32:49-53. DOI 10.1093/ejo/cjp050.

Perinetti G, Cordella C, Pellegrini F, and Esposito P. 2008. The prevalence of malocclusal traits and their correlations in mixed dentition children: results from the Italian OHSAR Survey. Oral Health Prev Dent 6:119-129.

Proffit WR. 2006. The timing of early treatment: an overview. Am J Orthod Dentofacial
Shalish M, Gal A, Brin I, Zini A, and Ben-Bassat Y. 2013. Prevalence of dental features that indicate a need for early orthodontic treatment. *Eur J Orthod* 35:454-459. DOI 10.1093/ejo/cjs011.

Soh J, Sandham A, and Chan YH. 2005. Occlusal status in Asian male adults: prevalence and ethnic variation. *Angle Orthod* 75:814-820. DOI 10.1043/0003-3219(2005)75[814:OSIAMA]2.0.CO;2.

Souames M, Bassigny F, Zenati N, Riordan PJ, and Boy-Lefevre ML. 2006. Orthodontic treatment need in French schoolchildren: an epidemiological study using the Index of Orthodontic Treatment Need. *Eur J Orthod* 28:605-609. DOI 10.1093/ejo/cjl045.

Steinmassl O, Steinmassl PA, Schwarz A, and Crismani A. 2017. Orthodontic Treatment Need of Austrian Schoolchildren in the Mixed Dentition Stage. *Swiss Dent J* 127:122-128.

Stenvik A, Espeland L, and Berg RE. 2011. A 57-year follow-up of occlusal changes, oral health, and attitudes toward teeth. *Am J Orthod Dentofacial Orthop* 139:S102-108. DOI 10.1016/j.ajodo.2009.12.030.

Tausche E, Luck O, and Harzer W. 2004. Prevalence of malocclusions in the early mixed dentition and orthodontic treatment need. *Eur J Orthod* 26:237-244. DOI 10.1093/ejo/26.3.237.

Thilander B, Pena L, Infante C, Parada SS, and de Mayorga C. 2001. Prevalence of malocclusion and orthodontic treatment need in children and adolescents in Bogota, Colombia. An epidemiological study related to different stages of dental development. *Eur J Orthod* 23:153-167. DOI 10.1093/ejo/23.2.153.

Woon KC. 1988. Primary dentition occlusion in Chinese, Indian and Malay groups in Malaysia. *Aust Orthod J* 10:183-185.

Zhou X, Xu X, Li J, Hu D, Hu T, Yin W, Fan Y, and Zhang X. 2018. Oral health in China: from vision to action. *Int J Oral Sci* 10:1. DOI 10.1038/s41368-017-0006-6.
Zhou X, Zhang Y, Wang Y, Zhang H, Chen L, and Liu Y. 2017. Prevalence of Malocclusion in 3- to 5-Year-Old Children in Shanghai, China. *Int J Environ Res Public Health* 14. DOI 10.3390/ijerph14030328.

Zhou Z, Liu F, Shen S, Shang L, Shang L, and Wang X. 2016. Prevalence of and factors affecting malocclusion in primary dentition among children in Xi’an, China. *BMC Oral Health* 16:91. DOI 10.1186/s12903-016-0285-x.
Table 1 (on next page)

The definition of occlusal traits along with the criteria of malocclusion

Trait	Criteria
Overjet	Excessive vertical overlap of the upper teeth
Overbite	Excessive vertical overlap of the lower teeth
Crossbite	Mismatch in the horizontal alignment of teeth
Open bite	Insufficient vertical overlap of the teeth
Angle of bite	The relationship between the occlusal surfaces of the teeth
Table 1 Definition of occlusal traits along with the criteria of malocclusion

Occlusal traits	Definition	Malocclusion
1. Sagittal anomalies		
1.1 First permanent molars	Class I, the mesiobuccal cusp of the maxillary first permanent molar ocludes with the mesiobuccal groove of the mandibular first permanent molar (normal relation), or up to or equal to 1/2 cusp width post-normal or pre-normal relation; Class II (distal), more than 1/2 cusp width post-normal relation; Class III (mesial), more than 1/2 cusp width pre-normal relation.	Class III
1.2 Increased overjet	Distance of the most protruded maxillary incisor to the corresponding mandibular incisor: 0 mm, edge-to-edge (upper incisal edges touch lower edges when biting); >0 mm, ≤3 mm, normal; >3 mm, ≤5 mm, mild; >5 mm, ≤8 mm, moderate; >8 mm, severe	>3 mm
1.3 Anterior crossbite	One or more of the maxillary incisors/canine occluded lingually to the mandibular incisors/canine.	Present
2. Vertical anomalies		
2.1 Deep overbite	Coverage of the mandibular incisors by most of the maxillary incisors: >0, ≤1/3, normal; 1/3, ≤1/2, mild; 1/2, ≤2/3, moderate; >2/3, severe	≥2/3
2.2 Open bite	Negative vertically overlapping between the maxillary and the mandibular incisors: >0, ≤3 mm, mild; >3 mm, ≤5 mm, moderate; >5 mm, severe	≥0 mm
3. Transversal anomalies		
3.1 Midline displacement	Mandibular midline deviated 2 mm or more to the maxillary midline	Present
3.2 Posterior crossbite	One or more of the maxillary molars occluded lingually to the mandibular molars	Present
3.3 Scissors bite	Maxillary molars occluded to the buccal surfaces of the corresponding mandibular molars, and/or mandibular molars occluded to the lingual surfaces the corresponding maxillary molars	Present
4. Space		
discrepancies

Category	Definition
4.1 Crowding	>0 mm, ≤2 mm, mild; >2 mm, ≤4 mm, moderate; >4 mm, severe
(anterior, posterior,	
maxillary, mandibular)	
4.2 Anterior spacing	>0 mm, ≤2 mm, mild; >2 mm, ≤4 mm, moderate; >4 mm, severe
(maxillary, mandibular)	
Table 2 (on next page)

Prevalence of malocclusion in 7-9-year-old children in Shanghai
Table 2. Prevalence of malocclusion in 7-9-year-old children in Shanghai

Age (years)	Normal Occlusion	Malocclusion	P				
	n	n	%	n	n	%	
7	937	190	20.3	747		79.7	0.354 a
8	1217	241	19.8	976		80.2	
9	656	148	25.6	508		77.4	
Gender							0.624 a
Boys	1479	310	21.0	1169		79.0	
Girls	1331	269	20.2	1062		79.8	
Total	2810	579	20.6	2231		79.4	

a: chi-squared test.
Table 3 (on next page)

Composition and prevalence of sagittal occlusal characteristic in 7-9-years-old children in Shanghai
Table 3 Composition and prevalence of sagittal occlusal characteristic in 7-9-years-old children in Shanghai.

Sagittal Occlusal Characteristic	Age (years)	P	Sex	P	Total n	%		
First permanent molar								
Normal (Class I)								
Boys	404 (43.1%)		488 (40.1%)		298 (45.4%)	647 (43.7%)	543 (40.8%)	1190 (42.3)
Girls	474 (50.6%)		650 (53.4%)		306 (46.6%)	734 (49.6%)	696 (52.3%)	1430 (50.9)
Mesial (Class III)								
Mixed a	3 (0.3%)		4 (0.3%)		0 (0.0%)	2 (0.1%)	5 (0.4%)	7 (0.2)
Lost/Not erupted b	9 (1.0%)		7 (0.6%)		1 (0.2%)	10 (0.7%)	7 (0.5%)	17 (0.6)
Increased overjet								
Edge to edge								
Normal (>0 mm, ≤3 mm)								
Boys	486 (51.9%)		604 (49.6%)		345 (52.6%)	751 (50.8%)	684 (51.4%)	1435 (51.1)
Girls	238 (25.4%)		275 (22.6%)		148 (22.6%)	340 (23.0%)	321 (24.1%)	661 (23.5)
Mild (>3 mm, ≤5 mm)								
Boys	99 (10.6%)		161 (13.2%)		80 (12.2%)	190 (12.8%)	150 (11.3%)	340 (12.1)
Girls	97 (7.9%)		107 (8.6%)		52 (7.9%)	128 (8.7%)	104 (7.6%)	232 (8.1)
Severe (>5 mm, ≤8 mm)								
Boys	34 (3.6%)		80 (6.6%)		31 (4.7%)	70 (4.7%)	75 (5.6%)	145 (5.2)
Girls	47 (8.7%)		107 (8.6%)		52 (7.9%)	128 (8.7%)	104 (7.6%)	232 (8.1)
Anterior crossbite								
Absent								
Boys	836 (89.2%)		1093 (89.8%)		586 (89.3%)	1325 (89.6%)	1190 (89.4%)	2515 (89.5)
Girls	57 (10.8%)		74 (10.2%)		34 (10.1%)	79 (10.4%)	65 (10.6%)	144 (5.5)
Present								
Boys	101 (10.8%)		124 (10.2%)		70 (10.7%)	154 (10.4%)	141 (10.6%)	295 (10.5)
Girls	349 (3.6%)		474 (3.6%)		235 (3.6%)	524 (3.6%)	459 (3.6%)	983 (3.6)
a: Child with Class II first molar relation on one side and Class III on the other side.
b: One or more first molars were missing or did not fully erupt.
c: Fisher’s exact test.
d: chi-squared test.
Table 4 (on next page)

Composition and prevalence of vertical and transverse anomalies in 7-9-years-old children in Shanghai
Table 4 Composition and prevalence of vertical and transverse anomalies in 7-9-years-old children in Shanghai.

Age (years)	Boys	Girls	P	n	%		
Deep overbite							
None	94 (10.0%)	133 (10.9%)	60 (9.1%)	158 (10.7%)	129 (9.7%)	287	10.2
Normal (>0, ≤1/3)	451 (48.1%)	535 (44.0%)	307 (46.8%)	629 (42.5%)	664 (49.9%)	1293	46.0
Mild (>1/3, ≤1/2)	216 (23.1%)	294 (24.2%)	137 (20.9%)	366 (24.7%)	281 (21.1%)	647	23.0
Moderate (>1/2, ≤2/3)	117 (12.5%)	178 (14.6%)	115 (17.5%)	226 (15.3%)	184 (13.8%)	410	14.6
Severe (>2/3)	59 (6.3%)	77 (6.3%)	37 (5.6%)	100 (6.8%)	73 (5.5%)	173	6.2
Open bite							
None	890 (95.0%)	1162 (95.5%)	638 (97.3%)	1420 (96.0%)	1270 (95.4%)	2690	95.7
Mild (>0, ≤3 mm)	41 (4.4%)	52 (4.3%)	17 (2.6%)	56 (3.8%)	54 (4.1%)	110	3.9
Moderate (>3, ≤5 mm)	5 (0.5%)	3 (0.2%)	1 (0.2%)	2 (0.1%)	7 (0.5%)	9	0.3
Severe (>5 mm)	1 (0.1%)	0 (0.0%)	0 (0.0%)	1 (0.1%)	0 (0.0%)	1	0.04
Midline displacement	326 (34.8%)	469 (38.5%)	219 (33.4%)	544 (36.8%)	470 (35.3%)	1014	36.1
Posterior crossbite	22 (2.3%)	29 (2.4%)	23 (3.5%)	41 (2.8%)	33 (2.5%)	74	2.6
Scissors bite	2 (0.2%)	11 (0.9%)	12 (1.8%)	12 (0.8%)	13 (1.0%)	25	0.9

2. a: chi-squared test.
3. b: Fisher's exact test.
Table 5 (on next page)

Composition and prevalence of space discrepancies in 7-9-years-old children in Shanghai
Table 5 Composition and prevalence of space discrepancies in 7-9-years-old children in Shanghai.

	Age (years)				Sex				Total		%
	7	8	9		Boys		Girls				
	n	%									
Maxillary anterior											
crowding											
None	631 (67.3%)	727 (59.7%)	366 (55.8%)	973 (65.8%)	751 (56.4%)	1724	61.4				
>0, ≤ 2 mm	201 (21.5%)	311 (25.6%)	199 (30.3%)	341 (23.1%)	370 (27.8%)	711	25.3				
>2, ≤ 4 mm	92 (9.8%)	144 (11.8%)	68 (10.4%)	127 (8.6%)	177 (13.3%)	304	10.8				
> 4 mm	13 (1.4%)	35 (2.9%)	23 (3.5%)	38 (2.6%)	33 (2.5%)	71	2.5				
Maxillary posterior											
crowding											
None	920 (98.2%)	1193 (98.0%)	655 (99.8%)	1462 (98.9%)	1306 (98.1%)	2768	98.5				
>0, ≤ 2 mm	14 (1.5%)	21 (1.7%)	1 (0.2%)	14 (0.9%)	22 (1.7%)	36	1.3				
>2, ≤ 4 mm	2 (0.2%)	2 (0.2%)	0 (0.0%)	2 (0.1%)	2 (0.2%)	4	0.1				
> 4 mm	1 (0.1%)	1 (0.1%)	0 (0.0%)	1 (0.1%)	1 (0.1%)	2	0.1				
Mandibular anterior											
crowding											
None	373 (39.8%)	583 (47.9%)	313 (47.7%)	736 (49.8%)	533 (40.0%)	1269	45.2				
>0, ≤ 2 mm	330 (35.2%)	367 (30.2%)	212 (32.3%)	444 (30.0%)	465 (34.9%)	909	32.3				
>2, ≤ 4 mm	184 (19.6%)	204 (16.8%)	99 (15.1%)	227 (15.3%)	260 (19.5%)	487	17.3				
> 4 mm	50 (5.3%)	63 (5.2%)	32 (4.9%)	72 (4.9%)	73 (5.5%)	145	5.2				
Mandibular posterior											
crowding											
None	917 (97.9%)	1191 (97.9%)	648 (98.8%)	1450 (98.0%)	1306 (98.1%)	2756	98.1				
>0, ≤ 2 mm	11 (1.2%)	15 (1.2%)	1 (0.2%)	15 (1.0%)	12 (0.9%)	27	1.0				
Maxillary anterior spacing	None	>0, ≤ 2 mm	>2, ≤ 4 mm	> 4 mm	p-value						
---------------------------	------	------------	------------	--------	---------						
None	487 (52.0%)	760 (62.4%)	434 (66.2%)	841 (56.9%)	1681 (59.8%)						
>0, ≤ 2 mm	244 (26.0%)	277 (22.8%)	128 (19.5%)	356 (24.1%)	649 (23.1%)						
>2, ≤ 4 mm	115 (12.3%)	102 (8.4%)	39 (5.9%)	137 (9.3%)	256 (9.1%)						
> 4 mm	91 (9.7%)	78 (6.4%)	55 (8.4%)	145 (9.8%)	224 (8.0%)						

Mandibular anterior spacing	None	>0, ≤ 2 mm	>2, ≤ 4 mm	> 4 mm	p-value
None	734 (78.3%)	948 (77.9%)	523 (79.7%)	1136 (76.8%)	2205 (78.5%)
>0, ≤ 2 mm	129 (13.8%)	183 (15.0%)	82 (12.5%)	216 (14.6%)	394 (14.0%)
>2, ≤ 4 mm	51 (5.4%)	52 (4.3%)	23 (3.5%)	75 (5.1%)	126 (4.5%)
> 4 mm	23 (2.5%)	34 (2.8%)	28 (4.3%)	52 (3.5%)	85 (3.0%)

2 a: chi-squared test.

3 b: Fisher exact test.