Direct oral anticoagulants for treatment of deep vein thrombosis: overview of systematic reviews

Anticoagulantes orais diretos para o tratamento da trombose venosa profunda: revisão de revisões sistemáticas

Gustavo Muçouçah Sampaio Brandão¹, Raissa Carolina Fonseca Cândido², Hamilton de Almeida Rollo³, Marcone Lima Sobreira³, Daniela R. Junqueira⁴

Abstract
A number of limitations of standard therapy with warfarin for deep vein thrombosis (DVT) have been established. This overview of systematic reviews presents the baseline results for efficacy and safety of the new direct oral anticoagulants (DOACs) thrombin inhibitors, and activated factor X (Xa) inhibitors in patients with DVT. Searches were run on PubMed and the Cochrane Database of Systematic Reviews. Twenty-three studies were retrieved, and one systematic review was judged eligible. This review scored maximum according to AMSTAR criteria and included 7,596 patients for analysis of thrombin inhibitors and 16,356 patients for analysis of factor Xa inhibitors. The results of the meta-analysis indicate that DOACs are similar for DVT treatment when compared to standard treatment with warfarin. The incidence of major bleeding is somewhat lower in patients treated with factor Xa inhibitors and similar to standard therapy when treated with direct thrombin inhibitors.

Keywords: direct oral anticoagulants; deep venous thrombosis; systematic review.

Resumo
A terapia padrão com varfarina para a trombose venosa profunda (TVP) tem uma série de limitações já estabelecidas. Essa revisão de revisões sistemáticas elenca os principais resultados de eficácia e segurança dos anticoagulantes orais diretos (DOACs), inibidores da trombina e do fator X ativado (Xa), em pacientes com TVP. A pesquisa foi realizada nas bases PubMed e Cochrane Database of Systematic Reviews. Foram recuperados 23 estudos, e uma revisão sistemática foi considerada elegível. Essa revisão atingiu escore máximo no AMSTAR e incluiu 7,596 pacientes para análise dos inibidores da trombina e 16,356 pacientes para a análise dos inibidores do fator Xa. Os resultados da metanálise indicam que os DOACs apresentam eficácia similar à terapia padrão no tratamento da TVP. A incidência de sangramento maior é um pouco menor nos pacientes tratados com os inibidores do fator Xa e similar à terapia padrão no tratamento com inibidores diretos da trombina.

Palavras-chave: anticoagulantes orais diretos; trombose venosa profunda; revisão sistemática.

¹ Universidade Federal de São Carlos – UFSCar, Departamento de Medicina, Saúde do Adulto e Idoso – Cirurgia, São Carlos, SP, Brasil.
² Universidade Federal de Minas Gerais – UFMG, Centro de Estudos do Medicamento, Departamento de Farmácia Social, Faculdade de Farmácia, Belo Horizonte, MG, Brasil.
³ Universidade Estadual Paulista “Júlio de Mesquita Filho” – UNESP, Faculdade de Medicina de Botucatu, Departamento de Cirurgia e Ortopedia, Botucatu, SP, Brasil.
⁴ University of Alberta, Edmonton, Canada.

Financial support: None.
Conflicts of interest: No conflicts of interest declared concerning the publication of this article.
Submitted: May 16, 2018. Accepted: August 14, 2018.

The study was carried out at Universidade Estadual Paulista (UNESP), Botucatu, SP, and Universidade Federal de São Carlos (UFSCar), São Carlos, SP, Brazil.
INTRODUCTION

Deep venous thrombosis (DVT) in the lower limbs is a serious and potentially fatal disease. Incidence in the general population is five cases per 10,000 inhabitants annually.1 Approximately 46% of proximal DVT cases (i.e., DVT involving the ilio-femoral, femoral, and popliteal regions) can progress to pulmonary embolism (PE), an event which, if not treated, is fatal in 4% of cases.2 Furthermore, important complications, such as postthrombotic syndrome, can occur in up to 50% of patients who suffer DVT.3 Thus, after confirmation of a DVT diagnosis, it is imperative to start anticoagulant treatment. The objective of treatment is to relieve symptoms, reduce the extent of the thrombus and the likelihood of a PE, prevent recurrence, and attenuate postthrombotic syndrome.

Standard treatment is initially based on parenteral administration of unfractionated heparin or low molecular weight heparin for 5 to 7 days, followed by long-term treatment with oral vitamin K antagonists (VKAs).4,5 Like warfarin, VKAs have traditionally been used as oral anticoagulants for treatment and prophylaxis of venous thromboembolism (VTE) since the 1950s.6,7 Despite its efficacy, use of warfarin is limited by factors such as drug interactions, food interactions, slow onset of action, risk of hemorrhage, alopecia, skin necrosis, and a need for rigorous monitoring to maintain the international normalized ratio (RNI) within the therapeutic range. These limitations have driven research into new anticoagulants which, ideally, should offer a reduced risk of bleeding and reduced rate of side effects, be free from interactions with other medications and foods and easy to administer, enable home treatment, not require laboratory tests for control, be inexpensive, and have an antidote to reverse anticoagulation in case of extensive and clinically relevant bleeding.8

Direct oral anticoagulants

According to the American College of Chest Physicians (ACCP) guidelines,9 two forms of oral anticoagulants are indicated for treatment of DVT: direct thrombin inhibitors and factor Xa inhibitors. Direct thrombin inhibitors, such as dabigatran, bond directly to thrombin with no need for a cofactor, such as antithrombin. Unlike VKAs and heparins, direct thrombin inhibitors can inhibit both soluble thrombin and thrombin bound to fibrin.10 Since they do not bind to other proteins, direct thrombin inhibitors have few pharmacokinetic and pharmacodynamic restrictions, which makes the anticoagulant response more predictable. Additionally, direct thrombin inhibitors do not have an antiplatelet effect and do not induce the thrombocytopenia induced by heparin.11

Factor Xa inhibitors bond directly to the active site of factor Xa, blocking this coagulation factor’s activity. In contrast to the pentasaccharides (indirect factor Xa inhibitors), these medications inactivate free factor Xa and factor Xa that is has been incorporated into complex prothrombinase, and do not interact with antithrombin inhibitor.12 The factor Xa inhibitors that are indicated for treatment of DVT are: rivaroxaban, apixaban, and edoxaban.

Safe and effective clinical use of direct oral anticoagulants (DOACs) demands monitoring of evidence of their clinical efficacy. Studies of their adverse effects, primarily bleeding, are also an essential part of understanding the balance between benefits and harmful effects in comparison with the anticoagulants currently used in clinical practice. Our objective was therefore to review the scientific evidence on the benefits and adverse effects of new anticoagulants for treatment of DVT compared with standard treatment (low molecular weight heparin or unfractionated heparin followed by VKAs).

METHODS

This is an overview of systematic reviews of the efficacy and adverse effects of treating patients with DVT using DOACs, selecting studies that systematically review controlled and randomized clinical trials comparing the standard treatment with DOACs in patients diagnosed with DVT. No publication date or language restrictions were imposed. Narrative reviews, guidelines, and specialist opinions were not included.

Searches were run on PubMed and the Cochrane Database of Systematic Reviews. The search run on the PubMed database employed a high-sensitivity search filter to return systematic reviews.13 The search strategy used for both databases employed a combination of the terms with their respective truncation symbols: novel oral anticoagulant* and deep vein thrombosis.

The studies retrieved were selected independently by two authors. Initial screening consisted of reading all titles and abstracts and then the full texts of articles considered potentially eligible in the first stage were analyzed. Disagreements during the selection process were resolved by participation of a third author.

Two outcomes were considered essential for assessment of efficacy and adverse effects of DOACs in relation to VKAs: (i) recurrence of DVT or VTE; and (ii) bleeding. Data on these outcomes and a general description of studies were extracted by one author and reviewed by a second author. Data were extracted using a data collection form, describing studies according to the update date of the systematic
search, the patient population studied, the type of oral anticoagulant studied, and the number of clinical trials included.

The internal validity (methodological quality) of systematic reviews was assessed using the AMSTAR tool. AMSTAR is a validated tool comprising 11 items with direct responses (Yes, No, Can’t answer, and Not applicable) which evaluates, among other elements, existence of a priori planning of the systematic review, whether selection and extraction of data was conducted in duplicate, and whether status of publication was used as an inclusion criterion. The quality of a review can be analyzed on the basis of the final score (a maximum of 11 points).

The systematic reviews included were described in terms of their general characteristics (for example, patient populations, medications studied), results of outcomes of interest, and methodological quality. Statistical analysis (meta-analysis) was not possible because of the limited number of studies included.

RESULTS

A total of 23 articles were retrieved by the searches. After exclusion of duplicates, 21 articles were assessed against the inclusion criteria. Of these, 19 articles were excluded after reading titles and abstracts, and the full texts of two articles that were considered potentially eligible were analyzed. At the end of the selection process, one systematic review was considered eligible and included in our review (Figure 1).

A systematic review conducted by Robertson et al. compared treatment with direct inhibitors of thrombin and factor Xa with standard treatment. All thrombin inhibitors and all factor Xa inhibitors were compared as a single group, and individual comparisons for each medication in the two classes were not conducted. The comparison of thrombin inhibitors included one study using the medication ximelagatran, which was withdrawn from the market in 2006 because of reports of severe liver damage with continuous use (more than 11 days).
This review scored maximum points on AMSTAR (Table 1) and covered 7,596 patients for analysis of direct thrombin inhibitors and 16,356 patients for analysis of direct factor Xa inhibitors (Table 2). The results of a meta-analysis conducted in this systematic review indicated that efficacy for prevention of venous thromboembolism and incidence of major bleeding (severe hemorrhage meeting the International Society of Thrombosis and Hemostasis [ISTH] definition\(^1\)) was similar for standard treatment and oral anticoagulants in the direct thrombin inhibitor class. Factor Xa inhibitor DOACs also exhibited similar efficacy to standard treatment, while the incidence of major bleeding was a little lower for patients given factor Xa inhibitor DOACs.

DISCUSSION

The accumulated evidence indicates that DOACs, both direct thrombin inhibitors and direct factor Xa inhibitors, offer a balance between efficacy and adverse effects similar to standard treatment. This means that these medications do not offer a different balance between risk and benefit than the combination of heparins and VKAs for treatment of DVT.

The evidence found is limited to a single systematic review. The systematic review available for this evaluation was considered of high methodological quality. However, the likelihood of its results being modified by future research depends on the methodological quality of the clinical trials included and analyzed by the systematic review. Unfortunately, the systematic review in question did not conduct an assessment of evidence quality using the Grading of Recommendations, Assessment, Development, and Evaluations (GRADE) methodology,\(^19-21\) which would have made it possible to infer with greater confidence the degree of quality of this evidence and the clinical recommendations in force. The number of patients included in the quantitative analysis of the outcomes recurrence of DVT or PE and major bleeding was considerable. However, the quality of the randomized clinical trials included in the systematic review appears to suffer from risk of bias, primarily in relation to generation of the sequence of random allocation to treatment. Thus, while the conclusions appear consistent, additional evidence would increase the reliability of the data for making definitive clinical decisions.

Table 1. Description of the systematic review comparing standard treatment for deep venous thrombosis with new oral anticoagulants.

Author, Year	Search date	Population	Oral anticoagulants	Clinical trials included (n)	AMSTAR score
Robertson, 2015	January 2017	Patients with diagnosis of deep venous thrombosis confirmed by standard imaging technique (venography, plethysmographic impedance, distal compression ultrasonography, proximal compression ultrasonography)	Direct thrombin inhibitors and direct factor Xa inhibitors	3 clinical trials comparing direct thrombin inhibitors with standard treatment; 8 clinical trials comparing direct factor Xa inhibitors with standard treatment	11/11

Table 2. Recurrence of venous thromboembolism and incidence of major bleeding in patients with deep venous thrombosis treated with new oral anticoagulants and comparison with standard treatment.

Comparison	Patients	Recurrence of deep venous thrombosis or venous embolism (OR, 95%CI)	Major bleeding	Quality of studies contributing to meta-analysis
Direct thrombin inhibitors (ximelagatran, dabigatran)	7,596 patients, mean age (min 54.7, max. 57.1)	≤ 3 months: OR 1.09 (95%CI 0.62-1.91); > 3 months: OR 0.69 (95%CI 0.48-0.99); 6 months: 0.89 (95%CI 0.73-1.07)	≤ 3 months: (OR 0.54; 95%CI 0.28-1.03); > 3 months: (OR 0.76; 95%CI 0.49-1.18); 6 months: OR 0.68 (95%CI 0.47-0.98)	Authors’ judgment: “We deemed all included studies to be of high methodological quality and generally low risk of bias.”
Direct factor Xa inhibitors (apixaban, rivaroxaban, edoxaban)	16,356 patients mean age (min. 53.1, max. 60)	≤ 3 months: OR 0.69 (95%CI 0.48-0.99); > 3 months: OR 0.97 (95%CI 0.78-1.22); 6 months: 0.89 (95%CI 0.73-1.07)	≤ 3 months: OR 0.83 (95%CI 0.47-1.45); > 3 months: OR 0.50 (95%CI 0.36-0.71); 6 months: OR 0.57 (95%CI 0.43-0.76)	Authors’ judgment: “We deemed all included studies to be of high methodological quality and generally low risk of bias.”

OR: odds ratio; CI: confidence interval.
One limitation of these results is the fact that analysis of efficacy and adverse effects was only conducted taking medications in each of the two DOAC categories, direct thrombin inhibitors and direct factor Xa inhibitors, together as a group. While it is probable that individual medications that share the same mechanism of action will exhibit similar effects, it is useful to confirm the clinical effects of each medication empirically.

The DOACs offer simpler management of anticoagulant treatment; they are administered in fixed doses with no need for adjustment by body weight. These medications have rapid onset of action, do not need to be controlled using laboratory test results, and have a short half-life (facilitating patient management when there is a need to suspend medications to conduct a diagnostic or surgical procedure). The drug-drug, drug-alcohol, and drug-food interactions described to date are few and permit use in ambulatory level treatment.

One practical problem with use of DOACs, however, is related to these medications’ different treatments, doses and, primarily, posologies. This is because, while some are used in monotherapy (for example, rivaroxaban and apixaban), others (for example, dabigatran and edoxaban) are used as an adjuvant therapy with low molecular weight heparin. Additionally, even medications used as monotherapy have different doses and posologies, which may vary during the initial phase and maintenance phase of anticoagulation (for example, rivaroxaban). The standard treatment, which is established clinical practice for more than 50 years, offers a therapeutic regimen that is more effective, safe, and compatible with care at the ambulatory level, despite the need for dosage adjustments. Another relevant practical problem is access to these new medications, especially in countries with low levels of socioeconomic development, since they are expensive.

One determinant factor for routine clinical use of DOACs is availability of a reversal agent for the entire class of medications. The anticoagulant effect of VKAs can be reversed by administration of vitamin K, fresh frozen plasma, or prothrombin complex. Idarucizumab, a reversal agent specifically for dabigatran, has already been approved for clinical use in the United States. It is a fragment of monoclonal antibody which has a greater affinity for dabigatran than thrombin and therefore reinstates the coagulatory effect. Andexanet alfa, a recombinant factor Xa molecule, which can bind both to direct factor Xa inhibitors (such as rivaroxaban, apixaban, and edoxaban) and to factor Xa inhibitors that require antithrombin activity (such as low molecular weight heparin and fondaparinux), was also approved recently. In Brazil, only idarucizumab has already been authorized for use and sale.

Below, we present a summarized review of the status of available phase III studies of the different DOACs.

Dabigatran

Dabigatran etexilate (Pradaxa®) is a pro-drug that is rapidly metabolized by the liver, transforming it into an active compound that binds competitively and reversibly to the thrombin site of activity, blocking its procoagulatory activity. Dabigatran is absorbed by the gastrointestinal tract, has a half-life of 12 to 17 hours, and renal and fecal excretion. The RE-COVER study compared treatment with warfarin to dabigatran, after initial treatment with a parenteral anticoagulant, in 2,539 patients diagnosed with acute VTE over a 6-month period. The results showed that treatment with 150 mg dabigatran, twice a day, is not inferior to treatment with warfarin for prevention of recurrent VTE or VTE-related death. A total of 1,274 patients were randomized to receive dabigatran, 30 of whom developed recurrent VTE (2.4%), compared with 27 of 1,265 patients randomized to receive warfarin (2.1%). There was one VTE-related death in the group of patients treated with dabigatran (0.1%) and three deaths in the group of patients treated with warfarin (0.2%). Additionally, rates of major bleeding were similar in the two groups: 20 patients in the dabigatran group (1.6%) and 24 patients in the warfarin group (1.9%). In general, the frequency of bleeding was lower in the group given dabigatran than in the group treated with warfarin: 205 patients (16.1%) and 277 patients (21.7%) respectively.

Rivaroxaban

Rivaroxaban (Xarelto®) is an oral factor Xa inhibitor that binds reversibly to the site of activity of factor Xa. This medication has hepatic metabolism, an estimated half-life of 8 to 10 hours, and renal and fecal excretion. The EINSTEIN-DVT study compared standard treatment (enoxaparin followed by VKAs, warfarin, or acenocoumarol) of 1,718 patients with treatment of 1,731 patients with rivaroxaban (a total of 3,449 patients diagnosed with acute proximal DVT without symptomatic PE) over a 15-week period. The results demonstrated that administration of 15 mg of rivaroxaban, twice a day, for a period of 3 weeks, followed by administration of 20 mg for 12 weeks is not inferior to standard treatment for reduction of recurrent VTE. The incidence of recurrent VTE was 2.1% in the group treated with rivaroxaban compared with an incidence of 3.0% in the group given standard
treatment. The principal outcome related to adverse effects—major and clinically relevant bleeding—was no more frequent, occurring in 139 patients (8.1%) in the group treated with rivaroxaban and 138 patients (8.1%) in the group treated with standard treatment.29

Apixaban

Apixaban (Eliquis®) is an oral factor Xa inhibitor that impedes activity of factor Xa when free or bound to platelets, in a selective and reversible manner, and blocks activity of the prothrombinase complex. This medication has hepatic metabolism, plasma half-life from 8 to 15 hours, and renal and fecal excretion. The AMPLIFY study compared treatment of 2,704 patients with enoxaparin followed by warfarin with 2,691 patients treated with apixaban (a total of 5,395 patients) with symptomatic proximal DVT or PE (with or without DVT) for a 6-month period. The results demonstrate that treatment with 10 mg apixaban, twice a day, for 7 days, followed by 6 months of 5 mg apixaban, twice a day, is not inferior to treatment with enoxaparin followed by warfarin in terms of frequency of recurrent VTE and VTE-related mortality. However, the frequency of major bleeding was significantly lower in the group given apixaban (0.6%) than in the standard treatment group (1.8%).30

Edoxaban

Edoxaban (Lixiana®) is an oral factor Xa inhibitor that bonds reversibly to the activity site of factor Xa. It has hepatic metabolism, plasma half-life of 9 to 11 hours, and 1/3 of excretion is renal and the remainder fecal. The phase III trial Hokusai-VTE compared treatment of 2,453 patients with heparin followed by VKAs (standard treatment) with treatment of 2,468 patients using edoxaban (a total of 4,921 patients) over a 12-month period. The patients eligible for this study had symptomatic acute DVT or PE (with or without DVT) for a 6-month follow-up period. The results showed that administration of 60 mg of edoxaban, once a day (or 30 mg of edoxaban for patients with creatinine clearance of 30-50 mL/min, body weight less than 60 kg, or receiving glycoprotein-P inhibitor) is not inferior to standard treatment in terms of recurrent VTE. The frequency of recurrent VTE was 3.2% (130 patients) in the group treated with edoxaban and 3.5% in the group treated with warfarin (146 patients). However, frequencies of major bleeding and clinically significant non-major bleeding were considerably lower in the group given edoxaban than in the group given warfarin: 8.5% (345 patients) and 10.3% (423 patients) respectively.31 According to the laboratory that produces edoxaban, the medication is already being sold in South Korea, the United States, Japan, and some European countries. It was first approved in September 2014 in Japan, then in January 2015 in the United States, and in June 2015 in the European Union, and has also been approved in Hong Kong and Taiwan. In Brazil, the medication was approved in March 2018.32

CONCLUSIONS

The available evidence suggests that treatment of DVT with DOACs, irrespective of the class, appears not to be inferior to standard treatment in terms of efficacy and safety. However, these medications are subject to certain restrictions, since the profile of adverse effects in children and patients with renal failure is unknown, and they are not yet indicated for treatment of cancer patients.9 However, ongoing studies with 6-month follow-up, such as the Hokusai VTE Cancer,33 Select-d,34 and CARAVAGGIO studies35 have demonstrated positive results for edoxaban, rivaroxaban, and apixaban, respectively, for treatment of patients with VTE and cancer. Furthermore, development of reversal agents has improved the safety profile of DOACs. Idarucizumab is available in Brazil under the commercial name Praxbind®, and andexanet alfa has also been approved for sale by the Food and Drug Administration (FDA), and it is believed that it will soon be approved by the National Agency for Sanitary Vigilance (Agência Nacional de Vigilância Sanitária - ANVISA). Ciraparantag is expected for the start of the next decade36 and is intended to be a “universal” reversal agent for all anticoagulants other than warfarin.

It is undeniable that DOACs offer greater comfort for management of patients with VTE, both for physicians and their patients. This review reaffirms the robust evidence of the imminent capacity of DOACs to substitute medications used in conventional treatment. This enables us to reflect that we are close to a paradigm shift in anticoagulant treatment. Nevertheless, there is still a need for long-term studies that confirm that these new medications have safety profile that are not inferior to medications used in a standard treatment. There is still a long way to go before DOACs are consolidated as the definitive treatment for VTE. Currently, it is therefore necessary to take care when tailoring medical prescriptions to the peculiarities of the thromboembolic disease of each patient.

REFERENCES

1. Fowkes FJ, Price JF, Fowkes FG. Incidence of diagnosed deep vein thrombosis in the general population: systematic review. Eur J Vasc Endovasc Surg. 2003;25(1):1-5. http://dx.doi.org/10.1053/ejvs.2002.1778. PMid:12525804.
17. AstraZeneca. AstraZeneca withdraws its application for Ximelagatran.

18. Schulman S, Kearon C. Subcommittee on Control of Anticoagulation of the Scientific and Standardization Committee of the International Society on Thrombosis and Haemostasis. Definition of major bleeding in clinical investigations of antithrombotic medicinal products in non-surgical patients.) Thromb Haemost. 2005;3(4):692-4. http://dx.doi.org/10.1111/j.1538-7836.2005.01204.x. PMID:15842354.

19. Atkins D, Best D, Briss PA, et al. Grading quality of evidence and strength of recommendations. BMJ. 2004;328(7454):1490-4. http://dx.doi.org/10.1136/bmj.328.7454.1490. PMID:15205295.

20. Guyatt GH, Oxand AD, Vist GE, Falck-Ytter Y, Schünemann HJ. What is ‘quality of evidence’ and why is it important to clinicians? BMJ. 2008;336(7651):995-8. http://dx.doi.org/10.1136/bmj.39490.551019.BE.

21. Guyatt GH, Oxand AD, Vist GE, et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ. 2008;336(7650):924-6. http://dx.doi.org/10.1136/bmj.39489.470347.AD. PMID:18436948.

22. Brunton LL, Chabner BA, Knollmann BC. Coagulação sanguínea e fármacos anticoagulantes, fibrinolíticos e antiplaquetários. In: Weitz JI. As bases farmacológicas da terapêutica de Goodman & Gilman. 12. ed. Porto Alegre: Artmed; 2012. p. 849-76.

23. Food and Drug Administration. Approval letter – praxbind [Internet]. Silver Spring: FDA; 2018 [2018 jun 18]. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2015/761025Orig1s000Approv.pdf.

24. Lu G, DeGuzman FR, Hellenbach SJ, et al. A specific antidote for reversal of anticoagulation by direct and indirect inhibitors of coagulation factor Xa. Nat Med. 2013;19(4):446-51. http://dx.doi.org/10.1038/nm.3102. PMID:23455714.

25. Food and Drug Administration. Approval letter – andexxa [Internet]. Silver Spring: FDA; 2018 [2018 jun 18]. https://www.fda.gov/downloads/BiologicsBloodVaccines/CellularGeneTherapyProducts/ApprovedProducts/UCM606693.pdf.

26. Brasil. Agência Nacional de Vigilância Sanitária. Consulta a produtos registrados – consulta a medicamentos e hemoderivados - lixiana [Internet]. Brasília: Anvisa; 2018 [2018 jun 18]. https://consultas.anvisa.registrados.com.br/medicamentos/hemoderivados/lixiana.nejmoa1306638

27. Magalhães LP, Figueiredo MJO, Cintra FD, et al. Diretrizes Brasileiras de Fibração Atrial. Arq Bras Cardiol. 2016;106(4, Supl.2):1-22. http://dx.doi.org/10.1590/jac.20160055.

28. Schulman S, Kearon C, Kakkar AK, et al. Dabigatran versus warfarin in the treatment of acute venous thromboembolism. N Engl J Med. 2009;361(24):2342-52. http://dx.doi.org/10.1056/NEJMoa0906598. PMID:19966341.

29. Bausersachs R, Berkwotiz SD, Brenner B, et al. Oral rivaroxaban for symptomatic venous thromboembolism. N Engl J Med. 2010;363(26):2499-510. http://dx.doi.org/10.1056/NEJMa0907659. PMID:21128814.

30. Agnelli G, Buller HR, Cohen A, et al. Oral apixaban for the treatment of acute venous thromboembolism. N Engl J Med. 2013;369(9):799-808. http://dx.doi.org/10.1056/NEJMoa1302507. PMID:23808982.

31. Buller HR, Décousus H, Crosse MA, et al. Edoxaban versus warfarin for the treatment of symptomatic venous thromboembolism. N Engl J Med. 2013;369(15):1406-15. http://dx.doi.org/10.1056/NEJMoA1306638. PMID:23991658.

32. Brasil. Agência Nacional de Vigilância Sanitária. Consulta a produtos registrados – consulta a medicamentos e hemoderivados - praxbind [Internet]. Brasília: Anvisa; 2018 [2018 jun 18]. https://consultas.anvisa.registrados.com.br/medicamentos/hemoderivados/praxbind.nejmoa0906598

33. Raskob GE, van Es N, Verhamme P, et al. Edoxaban for the treatment of cancer-associated venous thromboembolism. N Engl J Med. 2018;378(7):615-24. http://dx.doi.org/10.1056/NEJMa1711948. PMID:29231094.

34. Young AM, Marshall A, Thirlwall J, et al. Comparison of an oral factor xa inhibitor with low molecular weight heparin in patients with cancer and venous thromboembolism: results of a randomized
35. ClinicalTrials. Apixaban for the treatment of venous thromboembolism in patients with cancer (CARAVAGGIO - ClinicalTrials.gov Identifier: NCT03045406). Italy; Fadoi Foundation; 2018. https://clinicaltrials.gov/ct2/show/NCT03045406

36. Hu TY, Vaidya VR, Asirvatham SJ. Reversing anticoagulant effects of novel oral anticoagulants: role of ciraparantag, andexanet alfa, and idarucizumab. Vasc Health Risk Manag. 2016;12:35-44. PMid:26937198.

Correspondence
Gustavo Muçouçah Sampaio Brandão
Universidade Federal de São Carlos – UFSCar, Departamento de Medicina – Dmed
Rodovia Washington Luis, Km 235 - Campus de São Carlos CEP 13565-905 - São Carlos (SP), Brasil
Tel.: +55 (16) 3351-8340
E-mail: gubrandao@terra.com.br

Author information
GMSB - Assistant Professor, Adult and Elderly Health - Surgery, Department of Medicine, Universidade Federal de São Carlos (UFSCar).
RCFC - MSc Candidate, Postgraduate Program in Medicines and Pharmaceutical Assistance, Universidade Federal de Minas Gerais (UFMG).
HAR - Adjunct Professor, Discipline of Vascular and Endovascular Surgery, Department of Surgery and Orthopedics, Faculty of Medicine of Botucatu, Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP).
MLS - Assistant Professor, Discipline of Vascular and Endovascular Surgery, Department of Surgery and Orthopedics, Faculty of Medicine of Botucatu, Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP).
DRJ - Editor-in-chief, Evidências em Saúde (Brasil); Associate Researcher, The University of Sydney (Australia).

Author contributions
Conception and design: GMSB, DRJ, HAR, MLS
Analysis and interpretation: GMSB, DRJ
Data collection: DRJ, RCFC
Writing the article: GMSB, DRJ, RCFC
Critical revision of the article: GMSB, RCFC
Final approval of the article*: GMSB, RCFC, HAR, MLS, DRJ
Statistical analysis: N/A
Overall responsibility: GMSB, DRJ, RCFC

*All authors have read and approved of the final version of the article submitted to J Vasc Bras.
Anticoagulantes orais diretos para o tratamento da trombose venosa profunda: revisão de revisões sistemáticas

Direct oral anticoagulants for treatment of deep vein thrombosis: overview of systematic reviews

Gustavo Muçouçah Sampaio Brandão¹, Raissa Carolina Fonseca Cândido², Hamilton de Almeida Rollo³, Marcone Lima Sobreira³, Daniela R. Junqueira⁴

Abstract

A number of limitations of standard therapy with warfarin for deep vein thrombosis (DVT) have been established. This overview of systematic reviews presents the baseline results for efficacy and safety of the new direct oral anticoagulants (DOACs) thrombin inhibitors, and activated factor X (Xa) inhibitors in patients with DVT. Searches were run on PubMed and the Cochrane Database of Systematic Reviews. Twenty-three studies were retrieved, and one systematic review was judged eligible. This review scored maximum according to AMSTAR criteria and included 7,596 patients for analysis of thrombin inhibitors and 16,356 patients for analysis of factor Xa inhibitors. The results of the meta-analysis indicate that DOACs are similar for DVT treatment when compared to standard treatment with warfarin. The incidence of major bleeding is somewhat lower in patients treated with factor Xa inhibitors and similar to standard therapy when treated with direct thrombin inhibitors.

Keywords: direct oral anticoagulants; deep venous thrombosis; systematic review.

Resumo

A terapia padrão com varfarina para a trombose venosa profunda (TVP) tem uma série de limitações já estabelecidas. Essa revisão de revisões sistemáticas elenca os principais resultados de eficácia e segurança dos anticoagulantes orais diretos (DOACs), inibidores da trombina e do fator X ativado (Xa), em pacientes com TVP. A pesquisa foi realizada nas bases PubMed e Cochrane Database of Systematic Reviews. Foram recuperados 23 estudos, e uma revisão sistemática foi considerada elegível. Essa revisão atingiu escoré máximo no AMSTAR e incluiu 7.596 pacientes para análise dos inibidores da trombina e 16.356 pacientes para a análise dos inibidores do fator Xa. Os resultados da metanálise indicam que os DOACs apresentam eficácia similar à terapia padrão no tratamento da TVP. A incidência de sangramento maior é um pouco menor nos pacientes tratados com os inibidores do fator Xa e similar à terapia padrão no tratamento com inibidores diretos da trombina.

Palavras-chave: anticoagulantes orais diretos; trombose venosa profunda; revisão sistemática.
INTRODUÇÃO

A trombose venosa profunda (TVP) dos membros inferiores é uma doença grave e potencialmente fatal. Sua incidência na população geral é de cinco casos por 10.000 habitantes por ano1. Aproximadamente, 46% dos casos de TVP proximal (TVP que atinge as regiões ílio-femoral, femoral e poplitea) podem evoluir para uma embolia pulmonar (EP), evento que, se não tratado, é fatal em 4% dos casos2. Além disso, complicações importantes, como a síndrome pós-trombótica, podem ocorrer em até 50% dos pacientes que sofrem uma TVP3. Assim, após a confirmação do diagnóstico de TVP, torna-se imperativo iniciar a terapia anticoagulante. O objetivo do tratamento é aliviar os sintomas, diminuir a extensão do trombo, a possibilidade de uma EP, impedir sua recorrência e atenuar a síndrome pós-trombótica.

O tratamento padrão se baseia, inicialmente, na administração parenteral de heparina não fracionada ou heparinas de baixo peso molecular durante 5 a 7 dias, seguida de terapia em longo prazo com antagonistas orais de vitamina K (AVKs)4,5. Os AVKs, como a varfarina, são tradicionalmente utilizados como anticoagulantes orais para tratamento e profilaxia do tromboembolismo venoso (TEV) desde a década de 19506,7. Apesar de sua eficácia, a varfarina é limitada por fatores como interações medicamentosas, interações alimentares, início de ação lento, risco de hemorrágia, alopecia, necrose de pele e necessidade de monitoramento rigoroso para manter a relação normalizada internacional (RNI) dentro do índice terapêutico. Essas limitações impulsionaram o desenvolvimento de pesquisas com grupos de estudo e regulação para manter a relação normalizada internacional (RNI) dentro do índice terapêutico. Essas limitações impulsionaram o desenvolvimento de pesquisas com grupos de estudo e regulação para manter a relação normalizada internacional (RNI) dentro do índice terapêutico. Essas limitações impulsionaram o desenvolvimento de pesquisas com grupos de estudo e regulação para manter a relação normalizada internacional (RNI) dentro do índice terapêutico. Essas limitações impulsionaram o desenvolvimento de pesquisas com grupos de estudo e regulação para manter a relação normalizada internacional (RNI) dentro do índice terapêutico. Essas limitações impulsionaram o desenvolvimento de pesquisas com grupos de estudo e regulação para manter a relação normalizada internacional (RNI) dentro do índice terapêutico. Essas limitações impulsionaram o desenvolvimento de pesquisas com grupos de estudo e regulação para manter a relação normalizada internacional (RNI) dentro do índice terapêutico. Essas limitações impulsionaram o desenvolvimento de pesquisas com grupos de estudo e regulação para manter a relação normalizada internacional (RNI) dentro do índice terapêutico. Essas limitações impulsionaram o desenvolvimento de pesquisas com grupos de estudo e regulação para manter a relação normalizada internacional (RNI) dentro do índice terapêutico. Essas limitações impulsionaram o desenvolvimento de pesquisas com grupos de estudo e regulação para manter a relação normalizada internacional (RNI) dentro do índice terapêutico.

Anticoagulantes orais diretos

De acordo com as diretrizes do American College of Chest Physician8 (ACCP), duas formas de anticoagulantes orais são indicadas para o tratamento da TVP: os inibidores diretos da trombina e os inibidores do fator Xa.

Os inibidores diretos da trombina, como a dabigatrana, ligam-se diretamente à trombina sem a necessidade de um cofator, como a antitrombina. Diferentemente dos AVKs e das heparinas, os inibidores diretos da trombina podem inibir tanto a trombina solúvel quanto a trombina ligada à fibrina9. Por não se ligarem a outras proteínas, os inibidores diretos da trombina apresentam poucas limitações farmacocinêti bicas e farmacodinâmicas; o que torna a resposta anticoagulante mais previsível. Além disso, os inibidores diretos da trombina não apresentam efeito antiplaquetário e não induzem trombocitopenia induzida pela heparina10. Os inibidores do fator Xa se ligam diretamente ao sítio ativo do fator Xa, bloqueando a atividade desse fator de coagulação. Diferentemente dos pentassacarídeos (inibidores indiretos do fator Xa), esses medicamentos inativam o fator Xa livre e o fator Xa incorporado ao complexo protrombinase, além de não interagirem com o inibidor antitrombínico11. Os inibidores do fator Xa indicados para o tratamento da TVP são: rivaroxabana, apixabana e edoxabana.

A utilização clínica efetiva e segura dos anticoagulantes orais diretos (DOACs) requer o acompanhamento das evidências sobre a eficácia clínica desses medicamentos. O estudo dos efeitos adversos, principalmente sangramento, também é essencial para compreender o balanço de benefícios e efeitos nocivos em comparação aos anticoagulantes atualmente utilizados na prática clínica. Portanto, nosso objetivo foi revisar as evidências científicas sobre os benefícios e efeitos adversos dos novos anticoagulantes no tratamento da TVP em comparação com a terapia padrão (heparina de baixo peso molecular ou heparina não fracionada seguida por AVKs).

MÉTODOS

Revisão de revisões sistemáticas (overview of systematic reviews) sobre a eficácia e os efeitos adversos do tratamento de pacientes com TVP com os DOACs, de modo que foram incluídos estudos de revisão sistemática de ensaios clínicos controlados e randomizados comparando a terapia padrão com DOACs em pacientes diagnosticados com TVP. Não foram aplicados limites de ano nem de idioma da publicação. Revisões narrativas, guidelines e opiniões de especialistas não foram consideradas.

A busca foi realizada nas bases de dados PubMed e Cochrane Database of Systematic Reviews. Na base de dados PubMed, foi utilizado um filtro de busca altamente sensível para a recuperação de revisões sistemáticas12. A estratégia de busca nas duas bases de dados utilizou uma combinação dos termos com o respectivo símbolo de truncagem: novel oral anticoagulant* and deep vein thrombosis.

A triagem dos estudos recuperados foi conduzida de forma independente por dois autores. A triagem inicial consistiu da leitura de todos os títulos e resumos dos estudos recuperados, e os artigos completo dos estudos considerados potencialmente elegíveis nessa
etapa foram analisados posteriormente. Os conflitos do processo de seleção foram resolvidos com a participação de um terceiro autor.

Dois desfechos foram considerados essenciais para avaliar a eficácia e os efeitos adversos dos DOACs em relação aos AVKs: (i) recorrência de TVP ou TEV; e (ii) sangramento. Dados sobre esses desfechos e de descrição geral dos estudos foram extraídos por um autor e revisados por um segundo autor. Os dados foram extraídos de acordo com um formulário de extração de dados, descrevendo os estudos de acordo com a data da atualização da busca sistemática, população de pacientes estudada, o tipo de anticoagulante oral estudado e a quantidade de ensaios clínicos incluídos.

A validade interna (qualidade metodológica) das revisões sistemáticas foi avaliada com o uso da ferramenta AMSTAR14,15. AMSTAR é uma ferramenta validada composta por 11 itens de respostas diretas (sim; não; não posso responder; não aplicável) que avalia, entre outras coisas, a existência de planejamento a priori da revisão sistemática, se a seleção e extração de dados foram realizadas em duplicata e se o status da publicação foi utilizado como critério de inclusão. A qualidade da revisão pode ser analisada de acordo com a pontuação final atingida (máximo 11).

As revisões sistemáticas incluídas foram descritas em termos de suas características gerais (por exemplo, população de pacientes, medicamentos estudados), resultados sobre os desfechos de interesse e sua qualidade metodológica. Uma análise estatística (metanálise) não pôde ser realizada devido ao limitado número de estudos incluídos.

RESULTADOS

No total, 23 artigos foram recuperados. Após a exclusão de duplicados, 21 artigos foram avaliados de acordo com os critérios de inclusão. Desses, 19 artigos foram excluídos com base na leitura do título e resumo, e dois artigos que foram considerados potencialmente elegíveis tiveram o artigo completamente analisado. Ao final do processo de seleção, uma revisão sistemática foi considerada elegível e incluída em nossa revisão (Figura 1).

A revisão sistemática conduzida por Robertson e colaboradores16 comparou o tratamento com inibidores diretos de trombina e do fator Xa com

![Figura 1. Diagrama de identificação e seleção dos artigos para revisão sistemática comparando terapia padrão da trombose venosa profunda com novos anticoagulantes orais.](image-url)
terapia padrão. Todos os inibidores de trombina e do fator Xa foram comparados com um grupo, e não foi realizada comparação individualizada para cada medicamento. A comparação relativa aos inibidores de trombina incluiu um estudo do medicamento ximelagran, retirado do mercado em 2006 devido ao relato de dano hepático grave durante tratamento continuado (mais de 11 dias)\(^7\). A revisão atingiu escore máximo no AMSTAR (Tabela 1), e incluiu 7.596 pacientes no grupo de pacientes para análise dos inibidores diretos de trombina e 16.356 pacientes para a análise dos inibidores diretos do fator Xa (Tabela 2). Os resultados da metanálise realizada na revisão sistemática indicaram similaridade de eficácia na prevenção do tromboembolismo venoso e de incidência de sangramento maior (hemorragia grave, conforme definição da Sociedade Internacional de Trombose e Hemostasia – ISTH\(^8\)) entre a terapia padrão e os anticoagulantes orais da classe de inibidores diretos da trombina. Os DOACs inibidores do fator Xa também apresentaram eficácia semelhante à terapia padrão. A incidência de sangramento maior foi um pouco menor nos pacientes que estavam recebendo os novos anticoagulantes orais inibidores do fator Xa.

DISCUSSÃO

As evidências acumuladas indicam que os DOACs, tanto inibidores diretos de trombina quanto do fator Xa, apresentam um balanço de eficácia e efeitos adversos semelhantes ao da terapia padrão. Isso significa que esses medicamentos não apresentam balanço entre risco e benefício diferente do apresentado pela combinação de heparinas com AVKs no tratamento da TVP.

As evidências encontradas são limitadas a uma revisão sistemática. A revisão sistemática disponível para essa avaliação foi considerada de alta qualidade metodológica. No entanto, a probabilidade de seus resultados serem alterados por novas pesquisas depende da qualidade metodológica dos ensaios clínicos incluídos e analisados na revisão sistemática. Infelizmente, a revisão sistemática em questão não realizou uma avaliação da qualidade das evidências segundo a metodologia GRADE (Grading of Recommendations, Assessment, Development and Evaluations)\(^9-21\), o que permitiria inferir com mais segurança o grau de qualidade dessas evidências com as recomendações clínicas praticadas. O número de pacientes incluídos na análise quantitativa dos desfechos recorrência de TVP ou EP e sangramento maior incluíram um número

Tabela 1. Descrição da revisão sistemática comparando terapia padrão da trombose venosa profunda com novos anticoagulantes orais.

Autor, Ano	Atualização da busca	População	Anticoagulante oral	Ensaios clínicos incluídos (n)	AMSTAR
Robertson, 2015	Janeiro 2017	Pacientes com diagnóstico de trombose venosa profunda confirmado por técnica padrão de imagem (venografia, impedância pletismográfica, ultrassonografia de compressão distal, ultrassonografia de compressão proximal)	Inibidores diretos da trombina e Inibidores diretos do fator Xa	3 ensaios clínicos comparando inibidores diretos da trombina com terapia padrão; 8 ensaios clínicos comparando inibidores diretos do fator Xa com terapia padrão	11/11

Tabela 2. Recorrência de tromboembolismo venoso e incidência de sangramento maior em pacientes com trombose venosa profunda recebendo tratamento com novos anticoagulantes orais e comparação com terapia padrão.

Comparação	Pacientes	Recorrência de trombose venosa profunda ou embolismo venoso	Sangramento maior	Qualidade dos estudos contribuindo para a metanálise
Inibidores diretos da trombina (ximelagran, dabigatran)	7.596 pacientes, idade média (min 54,7, máx. 57,1)	≤ 3 meses: OR 1,09 (IC95% 0,62-1,91); > 3 meses: OR 1,09 (IC95% 0,76-1,58); 6 meses: 1,09 (IC95% 0,80-1,49)	≤ 3 meses: (OR 0,54; IC95% 0,28-1,03); > 3 meses: (OR 0,76; IC95% 0,49-1,18); 6 meses: OR 0,68 (IC95% 0,47-0,98)	Julgamento dos autores: “We deemed all included studies to be of high methodological quality and generally low risk of bias.”
Inibidores diretos do fator Xa (apixaban, rivaroxaban, edoxaban)	16.356 pacientes idade média (min. 53,1, máx. 60)	≤ 3 meses: OR 0,69 (IC95% 0,48-0,99); > 3 meses: OR 0,97 (IC95% 0,78-1,22); 6 meses: 0,89 (IC95% 0,73-1,07)	≤ 3 meses: OR 0,83 (IC95% 0,47-1,45); > 3 meses: OR 0,50 (IC95% 0,36-0,71); 6 meses: OR 0,57 (IC95% 0,43-0,76)	Julgamento dos autores: “We deemed all included studies to be of high methodological quality and generally low risk of bias.”
relevante de pacientes. No entanto, os ensaios clínicos randomizados incluídos nessa revisão sistemática parecem ter sua qualidade reduzida devido a risco de viés, principalmente em relação à geração da sequência de alocação randômica do tratamento. Assim, apesar das conclusões parecerem consistentes, evidências adicionais aumentarão a confiabilidade dos dados para informar decisões clínicas definitivas.

Uma limitação desses resultados é o fato de a análise de eficácia e de efeitos adversos ter sido realizada somente para o grupo de medicamentos das duas categorias de DOACs, inibidores diretos da trombina e do fator Xa. Apesar de ser provável que medicamentos individuais que compartilham do mesmo mecanismo de ação apresentem efeitos semelhantes, é útil a comprovação empírica do efeito clínico de cada medicamento.

Os DOACs apresentam maior facilidade no gerenciamento da terapia anticoagulante, são administrados em doses fixas e sem necessidade de ajuste pelo peso corporal. Esses medicamentos apresentam um início de ação rápido, não necessitam de controle laboratorial e apresentam meia-vida curta (o que facilita o manejo dos pacientes quando há necessidade de suspensão dos medicamentos para realização de um procedimento diagnóstico ou cirúrgico). As interações fármaco-fármaco, fármaco-álcool e fármaco-alimentos descritas até o momento são poucas e permitem o tratamento ambulatorial.

Um problema prático da utilização dos DOACs, no entanto, está relacionado às diferentes terapias, doses e, principalmente, posologias desses medicamentos.

Isso porque, enquanto alguns são utilizados como monoterapia (por exemplo, rivaroxabana, apixabana), outros (por exemplo, dabigatrana, edoxabana) são utilizados como terapia adjuvante a heparina de baixo peso molecular. Além disso, mesmo os medicamentos utilizados como monoterapia apresentam diferentes doses e posologias, as quais podem variar durante a fase inicial e a fase de manutenção da anticoagulação (por exemplo, rivaroxabana). A terapia padrão, estabelecida como prática clínica há mais de 50 anos, apresenta um esquema terapêutico mais eficaz, seguro e compatível com o atendimento em nível ambulatorial, apesar dos ajustes de doses necessários. Outro problema prático relevante é o acesso a esses novos medicamentos, especialmente em países com baixo nível de desenvolvimento socioeconômico, uma vez que apresentam custo elevado.

Um fator determinante para a utilização clínica rotineira dos DOACs é a disponibilidade de um agente reversor disponível para toda essa nova classe de medicamentos. O efeito anticoagulante dos AVKs pode ser revertido pela administração de vitamina K, plasma fresco congelado ou complexo protrombínico. Nos Estados Unidos, o idarucizumab, agente reversor específico para a dabigatrana, já foi aprovado para uso clínico. Trata-se de um fragmento de anticorpo monoclonal que possui maior afinidade à dabigatrana quando comparado à trombina e, portanto, reverte seu efeito coagulante. E, recentemente, também foi aprovado o andexanet alfa, uma molécula de fator Xa recombinante que pode se ligar tanto aos inibidores direto do fator Xa (como rivaroxabana, apixabana e edoxabana), quanto aos inibidores do fator Xa que necessitam da ação da antitrombina (como às heparinas de baixo peso molecular e fondaparinux). No Brasil, apenas o idarucizumab já possui autorização para uso e comercialização.

A seguir, apresentamos uma revisão sumarizada do status dos estudos de fase III disponíveis sobre os diferentes DOACs.

Dabigatrana

O etexilato de dabigatrana (Pradaxa®) é um pró-fármaco rapidamente metabolizado pelo fígado, transformando-se em um composto ativo que se liga de forma competitiva e reversível ao sítio de atividade da trombina, bloqueando sua atividade pró-coagulante. A dabigatrana é absorvida pelo trato gastrointestinal, apresenta uma meia-vida de 12 a 17 horas, e excreção renal e fecal. O estudo RE-COVER comparou o tratamento da varfarina com a dabigratrana, após o tratamento inicial com um anticoagulante parenteral, em 2.539 pacientes diagnosticados com TEV agudo pelo período de 6 meses. Os resultados mostraram que o tratamento com dabigatrana 150 mg, duas vezes ao dia, não é inferior ao tratamento com varfarina na prevenção do TEV recorrente ou morte relacionada ao TEV. Entre os 1.274 pacientes randomizados para receber dabigatrana, um total de 30 desenvolveram TEV recorrente (2,4%), comparados com 27 de 1.265 pacientes randomizados para receber varfarina (2,1%). Houve uma morte relacionada a TEV no grupo de pacientes tratados com a dabigatrana (0,1%) e três mortes no grupo de pacientes tratados com a varfarina (0,2%). Além disso, as taxas de sangramento maior foram semelhantes nos dois grupos: 20 pacientes no grupo da dabigatrana (1,6%) e 24 pacientes no grupo da varfarina (1,9%). No geral, a frequência de sangramento foi menor no grupo que recebeu dabigatrana em relação ao grupo tratado com varfarina: 205 pacientes (16,1%) e 277 pacientes (21,7%) respectivamente.

Rivaroxabana

A rivaroxabana (Xarelto®) é um inibidor oral do fator Xa que se liga de forma reversível ao sítio de atividade do fator Xa. O medicamento apresenta
metabolização hepática, meia-vida estimada entre 8 e 10 horas e excreção renal e fecal. O estudo EINSTEIN-DVT comparou o tratamento padrão (enoxaparina seguida por AVKs, varfarina ou acenocoumarol) realizado em 1.718 pacientes com o tratamento realizado em 1.731 pacientes com rivaroxabana (total de 3.449 pacientes diagnosticados com TVP aguda proximal sem EP sintomática) pelo período de 15 semanas. Os resultados demonstraram que a administração de 15 mg de rivaroxabana, duas vezes ao dia, pelo período de 3 semanas, seguida da administração de 20 mg por 12 semanas não é inferior à terapia padrão para a redução de TEV recorrente. A incidência de TEV recorrente foi de 2,1% no grupo tratado com rivaroxabana em comparação a uma incidência de 3,0% do grupo que recebeu a terapia padrão. O principal desfecho relacionado aos efeitos adversos — sangramento maior e clinicamente relevante não maior — ocorreu em 139 pacientes (8,1%) do grupo tratado com rivaroxabana e 138 pacientes (8,1%) do grupo tratado com terapia padrão99.

Apixabana

A apixabana (Eliquis®) é um inibidor oral do fator Xa que impede a atividade do fator Xa livre ou ligado à plaqueta, de forma seletiva e reversível, e bloqueia a atividade do complexo protrombinase. O medicamento apresenta metabolização hepática, meia-vida plasmática de 8 a 15 horas e excreção renal e fecal. O estudo AMPLIFY comparou o tratamento de 2.704 pacientes usando enoxaparina seguida por varfarina com 2.691 pacientes usando apixabana (total de 5.395 pacientes) com TVP sintomática proximal ou EP (com ou sem TVP) pelo período de 6 meses. Os resultados demonstraram que o tratamento com apixabana 10 mg, duas vezes ao dia, por 7 dias, seguido de 6 meses de apixabana 5 mg, duas vezes ao dia, não é inferior ao tratamento com enoxaparina seguido pela varfarina em relação à frequência de TEV recorrente e de mortalidade relacionada ao TEV. No entanto, a frequência de sangramento maior foi significativamente menor no grupo que recebeu apixabana (0,6%) em comparação ao grupo tratado com a terapia padrão (1,8%)99.

Edoxabana

A edoxabana (Lixiana®) é um inibidor oral do fator Xa que se liga de forma reversível ao sítio de atividade do fator Xa. Apresenta metabolização hepática, meia-vida plasmática de 9 a 11 horas, 1/3 de excreção renal e o restante fecal. O estudo de fase III Hokusai-VTE comparou o tratamento de 2.453 pacientes usando heparina seguida por AVKs (tratamento padrão) com o tratamento de 2.468 pacientes usando edoxabana (total de 4.921 pacientes) pelo período de 12 meses. Os pacientes elegíveis para esse estudo apresentavam TVP aguda sintomática envolvendo as veias ilíaca, femoral e poplítea ou EP aguda sintomática (com ou sem TVP). Os resultados mostraram que a administração de 60 mg de edoxabana, uma vez ao dia (ou 30 mg de edoxabana em pacientes com clearance de creatinina entre 30-50 mL/min, peso corporal menor que 60 kg ou recebendo inibidor da glicoproteína-P) não é inferior ao tratamento padrão em relação ao TEV recorrente. A frequência de TEV recorrente foi igual a 3,2% (130 pacientes) no grupo tratado com edoxabana e igual a 3,5% no grupo tratado com varfarina (146 pacientes). No entanto, as frequências de sangramento maior e sangramento clinicamente significante não maior foram expressivamente menores no grupo que recebeu edoxabana em relação ao grupo que recebeu varfarina: 8,5% (345 pacientes) e 10,3% (423 pacientes) respectivamente99. Segundo o laboratório que produz a edoxabana, o medicamento já está sendo comercializado na Coreia do Sul, Estados Unidos, Japão e em alguns países da Europa. Sua primeira aprovação ocorreu em setembro de 2014 no Japão, seguida pela aprovação em janeiro de 2015 nos Estados Unidos e em junho de 2015 na Comissão Europeia, tendo sido aprovado também em Hong Kong e Taiwan. No Brasil, o medicamento foi aprovado em março de 201899.

CONCLUSÃO

As evidências disponíveis sugerem que o tratamento da TVP com os DOACs, independentemente da classe, parece ser não inferior à terapia padrão em termos de eficácia e segurança. No entanto, esses medicamentos apresentam algumas importantes restrições, pois não se conhece o perfil de efeitos adversos em crianças e em pacientes com insuficiência renal, além de ainda não serem indicados para o tratamento de pacientes oncológicos99. Porém, estudos em andamento com seguimento de 6 meses, como os estudos Hokusai VTE Cancer31, Select-d14 e CARAVAGGIO15, têm demonstrado resultados positivos para edoxabana, rivaroxabana e apixabana, respectivamente, quanto ao tratamento de pacientes com TEV associado ao câncer. Além disso, o desenvolvimento dos agentes reversores tem aumentado o perfil de segurança dos DOACs. O idarucizumab se encontra disponível no Brasil com o nome comercial Praxbind99, e o andexanet alfa também foi aprovado para comercialização pela Food and Drug Administration (FDA), acreditando-se que em breve possa estar liberado pela Agência Nacional de Vigilância Sanitária (ANVISA). Espera-se, para o começo da próxima década, o ciraparantag36.
com a proposta de ser um reversor “universal” dos anticoagulantes, exceto varfarina.

É inegável que os DOACs trouxeram conforto no manejo dos pacientes com TEV, tanto para os médicos quanto para os pacientes. Esta revisão reforça as robustas evidências da iminente capacidade dos DOACs em substituir os medicamentos usados no tratamento convencional. Isso permite refletir que estamos próximos a uma mudança de paradigma na terapia anticoagulante. Contudo, ainda são necessários estudos de longo prazo que confirmem a não inferioridade do perfil de segurança desses novos medicamentos em relação aos medicamentos usados na terapia padrão. Há, portanto, um longo caminho a ser percorrido antes dos DOACs se firmarem como terapia definitiva do TEV. Assim, nesse momento, é necessário haver cautela e individualizar a prescrição médica conforme as peculiaridades da doença tromboembólica de cada paciente.

REFERÊNCIAS

1. Fowkes FJ, Price JF, Fowkes FG. Incidence of diagnosed deep vein thrombosis in the general population: systematic review. Eur J Vasc Endovasc Surg. 2003;25(1):1-5. http://dx.doi.org/10.1053/ejvs.2002.1778. PMid:12552804.

2. Moser KM, LeMoine JR. Is embolic risk conditioned by location of deep venous thrombosis? Ann Intern Med. 1981;94(4 pt 1):439-44. http://dx.doi.org/10.7326/0003-4819-94-4-439. PMid:7212500.

3. Kahn SR. The post-thrombotic syndrome: the forgotten morbidity of deep-vein thrombosis. J Thromb Thrombolysis. 2006;21(1):41-8. http://dx.doi.org/10.1007/s11239-006-5574-9. PMid:16475040.

4. Kearon C, Akl EA, Comerota AJ, et al. Antithrombotic therapy for VTE disease: antithrombotic therapy and prevention of thrombosis. Chest. 2012;141(2, Suppl):e419S-94. http://dx.doi.org/10.1378/chest.11-2301. PMid:22315268.

5. Erkins PM, Prins MH. Fixed dose subcutaneous low molecular weight heparins versus adjusted dose unfractionated heparin for venous thromboembolism. Cochrane Database Syst Rev. 2010;(9):CD001100. PMid:20824828.

6. García D. Novel anticoagulants and the future of anticoagulation. Thromb Res. 2009;123(Suppl 4):S50-S. http://dx.doi.org/10.1016/ S0049-3848(09)70144-6. PMid:1930505.

7. Marques MA. Os novos anticoagulantes orais no Brasil. J Vasc Bras. 2013;12(3):185-6. http://dx.doi.org/10.1590/jvb.2013.046.

8. Haas S. New anticoagulants - towards the development of an “ideal” anticoagulant. VASA Zeitschrift fur Gefasskrankheiten. 2010;(9):CD001100. PMid:1930505.

9. Kearon C, Akl EA, Omelas J, et al. Antithrombotic Therapy for VTE Disease: CHEST Guideline and Expert Panel Report. Chest. 2016;149(2):315-52. http://dx.doi.org/10.1016/j.chest.2015.11.026. PMid:26687632.

10. Kam PC, Kaur N, Thong CL. Direct thrombin inhibitors: pharmacology and clinical relevance. Anaesthesia. 2005;60(6):565-74. http://dx.doi.org/10.1111/j.1365-2044.2005.04192.x. PMid:15918828.

11. Lee CJ, Ansell JF. Direct thrombin inhibitors. Br J Clin Pharmacol. 2011;72(4):581-92. http://dx.doi.org/10.1111/j.1365-2125.2011.03916.x. PMid:21241354.

12. Eriksson BI, Quinlan DJ, Weitz JI. Comparative pharmacodynamics and pharmacokinetics of oral direct thrombin and factor Xa inhibitors in development. Clin Pharmacokinet. 2009;48(1):1-22. http://dx.doi.org/10.2165/0000388-200948010-00001. PMid:19071881.

13. Shojaian KG, Bero LA. Taking advantage of the explosion of systematic reviews: an efficient MEDLINE search strategy. Eff Clin Pract. 2001;4(6):157-62. PMid:11525102.

14. Shea BJ, Boutron LM, Peterson J, et al. External validation of a measurement tool to assess systematic reviews (AMSTAR). PLoS One. 2007;2(12):e1350. http://dx.doi.org/10.1371/journal. pone.0001350. PMid:18159233.

15. Chou R, Gafni A, Fervers B, et al. Development of AMSTAR: a measurement tool to assess the methodological quality of systematic reviews. BMC Med Res Methodol. 2007;7(1):10. http://dx.doi.org/10.1186/1471-2288-7-10. PMid:17302989.

16. Robertson L, Kesteven P, McCallin JE. Oral direct thrombin inhibitors or oral factor Xa inhibitors for the treatment of deep vein thrombosis. Cochrane Database Syst Rev. 2015;(6):CD010956. http://dx.doi.org/10.1002/14651858.CD010956.pub2. PMid:26123214.

17. AstraZeneca. AstraZeneca withdraws its application for Ximelagatran 36-mg film-coated tablets [Internet]. London: European Medicines Agency; 2006 [27 March 2016]. http://www.eema.europa.eu/docs/en_GB/document_library/Press_release/2010/02/WC500074073.pdf

18. Schulman S, Kearon C, Subcommittee on Control of Anticoagulation of the Scientific and Standardization Committee of the International Society on Thrombosis and Haemostasis. Definition of major bleeding in clinical investigations of antithrombotic medicinal products in non-surgical patients. J Thromb Haemost. 2005;3(4):692-4. http://dx.doi.org/10.1111/j.1538-7836.2005.01204.x. PMid:15842354.

19. Atkins D, Best D, Briss PA, et al. Grading quality of evidence and strength of recommendations. BMJ. 2008;336(7650):924-6. http://dx.doi.org/10.1136/bmj.39070.551019.BE

20. Guyatt GH, Oxman AD, Vist GE, et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ. 2008;336(7651):995-8. http://dx.doi.org/10.1136/bmj.39490.551019.BE

21. Guyatt GH, Oxman AD, Vist GE, et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ. 2008;336(7650):924-6. http://dx.doi.org/10.1136/bmj.39489.470347.AD. PMid:18436948.

22. Brunton LL, Chabner BA, Knollmann BC. Coagulação sanguínea e fármacos anticoagulantes, fibrinolíticos e antiplaquetários. In: Weitz JI. As bases farmacológicas da terapêutica de Goodman & Gilman. 12. ed. Porto Alegre: Artmed; 2012. p. 849-76.

23. Food and Drug Administration. Approval letter – praxbind [Internet]. Silver Spring: FDA; 2018 [2018 jun 18]. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2015/761025Orig1s000Approv.pdf

24. Lu G, DeGuzman FR, Hollenbach SJ, et al. A specific antidote for reversal of anticoagulation by direct and indirect inhibitors of coagulation factor Xa. Nat Med. 2013;19(4):446-51. http://dx.doi.org/10.1038/nm.3102. PMid:23455714.

25. Food and Drug Administration. Approval letter – anexada [Internet]. Silver Spring: FDA; 2018 [2018 jun 18]. https://www.fda.gov/downloads/BiologicsBloodVaccines/CellularGeneTherapyProducts/ApprovedProducts/UCM606693.pdf

26. Brasil. Agência Nacional de Vigilância Sanitária. Consulta a produtos registrados – consulta a medicamentos e hemoderivados - praxbind®. Brasília: Anvisa; 2018 [2018 jun 18]. https://consultas.anvisa.gov.br/#/medicamentos/25351679654201513/?substancia=2599
27. Magalhães LP, Figueiredo MJO, Cintra FD, et al. II Diretrizes Brasileiras de Fibrilação Atrial. Arq Bras Cardiol. 2016;106(4, Supl.2):1-22. http://dx.doi.org/10.5935/abc.20160055. PMid:27487201.

28. Schulman S, Kearon C, Kakkar AK, et al. Dabigatran versus warfarin in the treatment of acute venous thromboembolism. N Engl J Med. 2009;361(24):2342-52. http://dx.doi.org/10.1056/NEJMoa0906598. PMid:19966341.

29. Bauersachs R, Berkowitz SD, Brenner B, et al. Oral rivaroxaban for symptomatic venous thromboembolism. N Engl J Med. 2010;363(26):2499-510. http://dx.doi.org/10.1056/NEJMoa1007903. PMid:21128814.

30. Agnelli G, Buller HR, Cohen A, et al. Oral apixaban for the treatment of acute venous thromboembolism. N Engl J Med. 2013;369(9):799-808. http://dx.doi.org/10.1056/NEJMoa1302507. PMid:23808982.

31. Bülfer HR, Décousus H, Grosso MA, et al. Edoxaban versus warfarin for the treatment of symptomatic venous thromboembolism. N Engl J Med. 2013;369(15):1406-15. http://dx.doi.org/10.1056/NEJMoa1306638. PMid:23991658.

32. Brasil. Agência Nacional de Vigilância Sanitária. Consulta a produtos registrados – consulta a medicamentos e hemoderivados - Lixiana® [Internet]. Brasília: Anvisa; 2018 [2018 jun 18]. https://consultas.anvisa.gov.br/#/medicamentos/25351344356201415/?nomeProduto=Lixiana

33. Raskob GE, van Es N, Verhamme P, et al. Edoxaban for the treatment of cancer-associated venous thromboembolism. N Engl J Med. 2018;378(7):615-24. http://dx.doi.org/10.1056/NEJMoa1711948. PMid:29231094.

34. Young AM, Marshall A, Thirlwall J, et al. Comparison of an oral factor xa inhibitor with low molecular weight heparin in patients with cancer with venous thromboembolism: results of a randomized trial (SELECT-D). J Clin Oncol. 2018;36(20):2017-23. http://dx.doi.org/10.1200/JCO.2018.78.8034. PMid:29746227.

35. ClinicalTrials. Apixaban for the treatment of venous thromboembolism in patients with cancer (CARAVAGGIO - ClinicalTrials.gov Identifier: NCT03045406). Italy: Fadoi Foundation; 2018. https://clinicaltrials.gov/ct2/show/NCT03045406

36. Hu TY, Vaidya VR, Asirvatham SJ. Reversing anticoagulant effects of novel oral anticoagulants: role of ciraparantag, andexanet alfa, and idarucizumab. Vasc Health Risk Manag. 2016;12:35-44. PMid:26937198.

Correspondência
Gustavo Muçouçah Sampaio Brandão
Universidade Federal de São Carlos – UFSCar, Departamento de Medicina – Dmed
Rodovia Washington Luis, Km 235 - Campus de São Carlos CEP 13565-905 - São Carlos (SP), Brasil
Tel.: (16) 3351-8340
E-mail: gubrandao@terra.com.br

Informações sobre os autores
GMSB - Professor Assistente, Saúde do Adulto e Idoso – Cirurgia, Departamento de Medicina, Universidade Federal de São Carlos (UFSCar).
RCFC - Mestranda, Programa de Pós-Graduação em Medicamentos e Assistência Farmacêutica, Universidade Federal de Minas Gerais (UFMG).
HAR - Professor Adjunto, Disciplina de Cirurgia Vascular e Endovascular, Departamento de Cirurgia e Ortopedia, Faculdade de Medicina de Botucatu (UNESP).
MLS - Professor Assistente, Disciplina de Cirurgia Vascular e Endovascular, Departamento de Cirurgia e Ortopedia, Faculdade de Medicina de Botucatu (UNESP).
DRJ - Editora-chefe, Evidências em Saúde (Brasil); Pesquisadora Associada, The University of Sydney.

Contribution dos autores
Concepção e desenho do estudo: GMSB, DRJ, HAR, MLS
Análise e interpretação dos dados: GMSB, DRJ
Coleta de dados: DRJ, RCFC
Redação do artigo: GMSB, DRJ, RCFC
Revisão crítica do texto: GMSB, RCFC
Aprovação final do artigo*: GMSB, RCFC, HAR, MLS, DRJ
Análise estatística: N/A
Responsabilidade geral pelo estudo: GMSB, DRJ, RCFC

*Todos os autores leram e aprovaram a versão final submetida ao J Vasc Bras.