New infrared spectra of CO₂ – Ne: fundamental for CO₂ –²²Ne isotopologue and symmetry breaking of the intramolecular CO₂ bend

A.J. Barclay,¹ A.R.W. McKellar,² and N. Moazzen-Ahmadi¹

¹Department of Physics and Astronomy, University of Calgary, 2500 University Drive North West, Calgary, Alberta T2N 1N4, Canada
²National Research Council of Canada, Ottawa, Ontario K1A 0R6, Canada

Abstract

The infrared spectrum of the weakly-bound CO₂-Ne complex is studied in the region of the carbon dioxide ν₃ fundamental vibration (≈2350 cm⁻¹), using a tunable OPO laser source to probe a pulsed supersonic slit jet expansion. For the fundamental CO₂ transition (ν₁, ν₂, ν₃) = (00₁0) ← (00₀0), both CO₂-²⁰Ne and CO₂-²²Ne are assigned and analyzed in combination with available microwave data to obtain the best currently available molecular parameters. For the hot band CO₂ transition, (01₁1) ← (01₁₀), detection of the weak CO₂-Ne spectrum reveals the symmetry breaking of the CO₂ ν₂ bending mode induced by the Ne atom, with the out-of-plane component determined to lie 0.057 cm⁻¹ higher in energy than the in-plane component.
1. Introduction

The simplicity of the CO$_2$-rare gas clusters makes them ideal as the probe of the angular anisotropy of the intermolecular potential and test cases for improved theoretical models with the goal of rigorous fully dimensional and fully coupled intra- and inter-molecular rovibrational calculation, which we hope is realized soon. This task becomes amenable after the development of full-dimensional potential energy surface, 5D in the case of CO$_2$-rare gases. Towards this end, we have made new infrared observations for CO$_2$-Ar,1 CO$_2$-Xe,2 and CO$_2$-Kr.3 Here we report new IR observations for CO$_2$-Ne.

The first high-resolution spectroscopic results on the weakly-bound CO$_2$-Ne complex were reported in 1988 by Randall et al.4 and by Fraser et al.5 In the former paper, the infrared spectrum of the dimer was observed in the region of the v_3 fundamental band of CO$_2$ near 2350 cm$^{-1}$. In the latter paper, pure rotational microwave spectra were observed as well as infrared spectra in the CO$_2$ $v_1 + v_3$ (3710 cm$^{-1}$) and $2v_2 + v_3$ (3610 cm$^{-1}$) regions. Subsequently, there has been a more extensive microwave study6 of CO$_2$-Ne involving a number of isotopologues, and a further infrared study7 involving the v_3 band of 12C18O$_2$ (2314 cm$^{-1}$). On the theoretical side, a couple of detailed potential energy surfaces have been reported for the CO$_2$-Ne interaction.$^8,^9$ The latter paper includes the dependence of the potential on the CO$_2$ v_3 (asymmetric stretch) vibration in order to better represent infrared spectra, and further results using this potential were reported in two follow-up papers.10,11

The minimum energy structure of CO$_2$-Ne (and the other CO$_2$-Rg dimers) is T-shaped, having the Ne atom located “beside” the linear CO$_2$ molecule with an effective C to Ne distance of about 3.29 Å. As a result, the a-inertial axis connects C and Ne, the b-axis is parallel to the O-
C-O axis, and the c-axis is perpendicular to the CO$_2$-Ne plane. Nuclear spin statistics allow only even values of K_a for the ground state of dimers containing 16O$_2$ (or 18O$_2$).

In the present paper, we reexamine the spectrum of CO$_2$-Ne in the CO$_2$ ν_3 region. Coverage of the fundamental band of CO$_2$-Ne is extended, and CO$_2$-22Ne is observed in natural abundance and analyzed. A weak spectrum of CO$_2$-Ne is also detected in the region of the CO$_2$ $(01^11) – (01^10)$ hot band near 2337 cm$^{-1}$. This provides a determination of the splitting of the degenerate CO$_2$ ν_2 bending vibration into two modes (in-plane and out-of-plane) induced by the presence of the nearby Ne atom.
Fig. 1. Observed and simulated (T = 2 K) spectra of CO$_2$-Ne in the region of the CO$_2$ v_3 band.
Gaps in the observed spectrum correspond to regions of CO$_2$ monomer or CO$_2$-He absorption, and the simulation also shows CO$_2$ dimer, which becomes significant above about 2350 cm$^{-1}$.
Table 1. Molecular parameters for the fundamental band of CO$_2$-Ne (in cm$^{-1}$)a

	CO$_2$-20Ne Ground State	CO$_2$-20Ne Excited State	CO$_2$-22Ne Ground State	CO$_2$-22Ne Excited State
ν_0		2349.2796(1)		2349.2819(1)
A	0.402339 (19)	0.399171(17)	0.402061(12)	0.398786(10)
B	0.11537499(75)	0.1151810(28)	0.10831698(41)	0.1081390(24)
C	0.08772499(76)	0.0874331(18)	0.08358319(42)	0.0833061(21)
$10^5 \times \Delta K$	-6.39(14)	[-6.39]	-7.592 (81)	[-7.592]
$10^5 \times \Delta \epsilon K$	7.36430(78)	[7.36430]	6.56697(38)	[6.56697]
$10^6 \times \Delta J$	4.5224(48)	[4.5224]	4.0004(24)	[4.0004]
$10^5 \times \delta K$	5.2279(104)	[5.2279]	4.6096(58)	[4.6096]
$10^6 \times \delta J$	1.0605(53)	[1.0605]	0.8893(29)	[0.8893]
$10^{10} \times H_J$	-10.0(17)	[-10.0]	-7.28(84)	[-7.28]

a Quantities in parentheses correspond to 1\sigma from the least-squares fit, in units of the last quoted digit. The ground and excited state centrifugal distortion parameters were constrained to be equal.
2. Results

Spectra were recorded as described previously.12-14 A pulsed supersonic slit jet expansion was probed by a rapid-scan optical parametric oscillator source. The gas expansion mixture contained about 0.04\% carbon dioxide plus 0.9\% neon in helium carrier gas with a jet backing pressure of about 13 atmospheres. Wavenumber calibration was carried out by simultaneously recording signals from a fixed etalon and a CO\textsubscript{2} reference gas cell. Simulation and fitting were carried out using PGOPHER software.15

2.1. Fundamental band, CO\textsubscript{2} (0001) \leftrightarrow (0000)

The observed spectrum in the central part of the fundamental band is shown in Fig. 1. This is a perpendicular b-type band ($\Delta K_a = \pm 1$) with only $K_a =$ even levels in the ground state and $K_a =$ odd in the excited state. In Fig. 1 we see $K_a = 1 \leftrightarrow 0$ and $1 \leftrightarrow 2$ subbands with Q-branches at about 2349.6 and 2348.4 cm-1, respectively. Further below and above the region shown in the figure, we also observed $K_a = 3 \leftrightarrow 4$ and $3 \leftrightarrow 2$ transitions. The natural abundance of 22Ne is about 9\%, and it was reasonably straightforward to assign some transitions of CO\textsubscript{2}-22Ne in addition to those of the dominant CO\textsubscript{2}-20Ne isotopologue. Ultimately we assigned 68 transitions of CO\textsubscript{2}-20Ne, and 32 of CO\textsubscript{2}-22Ne, which were analyzed to obtain the parameters listed in Table 1. The analyses also included 8 pure rotational microwave transitions for each isotopologue, taken from the paper by Xu and Jäger6 and weighted to reflect their higher precision. These microwave data essentially determined the ground state parameters except for A, to which they are not very sensitive. Excellent fits were obtained by constraining the ground and excited state centrifugal distortion parameters to be equal. The infrared root mean square errors were 0.00019 and 0.00010 cm-1, for CO\textsubscript{2}-20Ne and CO\textsubscript{2}-22Ne, respectively, and the microwave rms errors were 1.2 and 0.1 kHz. Observed and calculated line positions are given as Supplementary Information.
The parameters for CO$_2$-20Ne in Table 1 agree quite well with those of Randall et al., but they are more accurate thanks to the wider range of infrared data and the inclusion of microwave data. The parameters for CO$_2$-22Ne are new, particularly those for the excited state. We see that the band origin of CO$_2$-22Ne is slightly (0.002 cm$^{-1}$) higher than that of CO$_2$-20Ne, so that the vibrational blue shift relative to the free CO$_2$ molecule increases from 0.1363 to 0.1386 cm$^{-1}$. This change can be explained by noting that the average intermolecular distance is slightly smaller for CO$_2$-22Ne due to the anharmonicity of the van der Waals bond. This allows 22Ne to get slightly closer to CO$_2$ which induces a larger shift in the CO$_2$ vibration.

![Observed and simulated spectra of CO$_2$-Ne in the region of the CO$_2$ (01'1) \leftrightarrow (01'0) hot band. Gaps in the observed spectrum correspond to regions of CO$_2$ monomer absorption. The simulated spectrum includes both the i-p and o-p modes, which are highly mixed by the Coriolis interaction.](image)

Fig. 2. Observed and simulated spectra of CO$_2$-Ne in the region of the CO$_2$ (01'1) \leftrightarrow (01'0) hot band. Gaps in the observed spectrum correspond to regions of CO$_2$ monomer absorption. The simulated spectrum includes both the i-p and o-p modes, which are highly mixed by the Coriolis interaction.
2.2. Hot band, CO$_2$ (0111) \leftrightarrow (0110)

Part of the observed spectrum in the region of the CO$_2$ (0111) – (0110) hot band is shown in Fig. 2. Observation of this weak spectrum is possible because a small fraction of CO$_2$ molecules remain “trapped” in the (0110) vibrational state following the supersonic jet expansion. The presence of the Ne atom breaks the symmetry of the doubly degenerate CO$_2$ v$_2$ bending mode into in-plane (i-p) and out-of-plane (o-p) components. As outlined previously for CO$_2$-Ar,1 in the C$_{2v}$ point group these i-p and o-p modes have A$_1$ and B$_1$ symmetry, respectively, for the lower (0110) vibrational state, and B$_2$ and A$_2$ symmetry for the upper (0111) state. The hot band spectrum has b-type selection rules, the same as the fundamental. The i-p component is $B_2 \leftrightarrow A_1$ with $K_a =$ odd \leftrightarrow even, and the o-p component is $A_2 \leftrightarrow B_1$ with $K_a =$ even \leftrightarrow odd. There is strong b-type Coriolis mixing between the i-p and o-p modes, characterized by the matrix element

$$\langle \text{i-p, } J, k|H|\text{o-p, } J, k \pm 1 \rangle = \frac{1}{2} \zeta_b \times [J(J+1) - k(k \pm 1)]^{1/2},$$

where k is signed K_a and ζ_b is the Coriolis parameter, related to the usual dimensionless zeta parameter and the B rotational constant by $\zeta_b = 2B \zeta$. In the present case, we expect $\zeta_b \approx 1$, as was found for CO$_2$-Ar.1
Table 2. Molecular parameters for the (01\(^1\)1) ← (01\(^1\)0) hot band of CO\(_2\) – Ne (in cm\(^{-1}\)).\(^a\)

	(01\(^1\)0) i-p	(01\(^1\)0) o-p	(01\(^1\)1) i-p	(01\(^1\)1) o-p
\(\sigma_0\)	\(X^b\)	\(0.05659(42)+X\)	2336.7749(3)+X	2336.8240(5)+X
\(A\)	0.401628(100)	0.400808(106)	0.398302(77)	0.397531(104)
\(B\)	0.115030(33)	0.115500(51)	0.114550(39)	0.115332(28)
\(C\)	0.088046(38)	0.087962(26)	0.087695(34)	0.088011(40)
\(10^5 \Delta K\)	[-6.39]	[-6.39]	[-6.39]	[-6.39]
\(10^5 \Delta J_K\)	5.29(40)	7.29(62)	[5.29]	[7.29]
\(10^6 \Delta I\)	5.80(44)	4.36(41)	[5.80]	[4.36]
\(10^5 \delta K\)	[4.5224]	[4.5224]	[4.5224]	[4.5224]
\(10^6 \delta J\)	[5.2279]	[5.2279]	[5.2279]	[5.2279]
\(\xi_0\)	0.235640(60)		0.235307(55)	

\(^a\) Quantities in parentheses correspond to 1\(\sigma\) from the least-squares fit, in units of the last quoted digit. The ground and excited state centrifugal distortion parameters \(\Delta K\) and \(\Delta J\) were constrained to be equal as indicated. Other centrifugal distortion parameters were fixed at ground state values (Table 1).

\(^b\) \(X\) is equal to the free CO\(_2\) \(v_2\) frequency (667.380 cm\(^{-1}\)) plus or minus a (small) unknown vibrational shift.
The strongest feature in the hot band spectrum is a partly resolved Q-branch around 2336.78 cm$^{-1}$ (Fig. 2), which is accompanied by a weaker and more widely spaced Q-branch about 0.05 cm$^{-1}$ lower in wavenumber. The proximity of these Q-branches is a clue that the splitting between the i-p and o-p modes is quite small. Once we established the correct splitting by trial and error, it was possible to get a good simulation of the spectrum using PGOPHER. We assigned a total of 112 transitions of CO$_2$-20Ne in the band and fitted them with an rms error of 0.00048 cm$^{-1}$ to obtain the parameters listed in Table 2. It was also possible to assign 26 transitions of CO$_2$-22Ne, but these were not sufficient to obtain any really new information. Basically the CO$_2$-22Ne spectrum could be very well reproduced by simply scaling the rotational constants from 20Ne to 22Ne using the fundamental band ratios (Table 1) and by assuming the same small change in the vibrational shift as for the fundamental. Line positions for both isotopologues are given as Supplementary Information.

The i-p to o-p splitting was determined to be 0.057 cm$^{-1}$ in the lower state, (0110), and 0.049 cm$^{-1}$ in the upper state, (0111), with o-p lying above i-p. These compare to previously reported splittings of 0.877 cm$^{-1}$ for CO$_2$-Ar, 1 2.140 cm$^{-1}$ for CO$_2$-Xe, 2 and 2.307 cm$^{-1}$ for CO$_2$-N$_2$. 16 The values of ξ_b in Table 2 correspond to $\xi_b \approx 1.02$, depending slightly on what value is used for B, similar to what was observed for CO$_2$-Ar, -Xe, and -N$_2$. In the present case, the i-p to o-p splitting for CO$_2$-Ne is very small compared to the K_a rotational level spacing, so Coriolis mixing is virtually complete. Complete mixing means that the quantum labels i-p or o-p, K_a, and K_c, are not very meaningful. For example, the transitions in the strong Q-branch at 2336.78 cm$^{-1}$ are best labeled as $K_a = 0$ (o-p) \leftrightarrow 0 (i-p), even though such transitions would be forbidden in the absence of Coriolis mixing. Similarly, the weaker Q-branch is nominally $K_a = 1$ (i-p) \leftrightarrow 1 (o-p).
The CO$_2$-Ne band origins from Table 2 represent vibrational shifts of +0.142 and +0.134 cm$^{-1}$ for the i-p and o-p modes, respectively, relative to the (0111) ← (0110) hot band origin of the free CO$_2$ molecule, which is 2336.633 cm$^{-1}$. These are very similar to the blue shift of +0.136 cm$^{-1}$ as determined above for the fundamental band. Although the hot band spectrum reveals the i-p to o-p splitting, it does not yield the actual CO$_2$ v$_2$ bending frequency for CO$_2$-Ne. This frequency is represented by X in Table 2, and it will probably be quite close (< 0.5 cm$^{-1}$?) to the free CO$_2$ value of 667.38 cm$^{-1}$. Our predicted CO$_2$-Ne spectrum in the CO$_2$ v$_2$ region for a temperature of 2 K is shown in Fig. 3. Here the i-p and o-p modes, which have a- and c-type selection rules, are shown separately. But, as mentioned above, they are highly mixed so these labels are only approximate. The strongest features in the predicted spectrum are Q-branches with $K_a = 0$ (i-p) ← 0 and $K_a = 1$ (o-p) ← 0 (the former would of course be forbidden in the absence of Coriolis mixing).

The observed CO$_2$ bending mode splittings in CO$_2$-Rg complexes are compared in Fig. 4 by plotting them as a function of Rg atomic polarizability, as is commonly done for vibrational shifts. There is an almost perfect linear relationship for Ne, Ar, and Kr, while the splitting observed for CO$_2$-Xe is a bit smaller than expected on the basis of linear extrapolation. A vertical line indicates the polarizability of He, and we see that extrapolation of the Ne-Ar-Kr line suggests that for CO$_2$-He we might expect a negative splitting (that is, with the o-p mode below the i-p mode). Unfortunately, we have so far been unable to detect the CO$_2$-He spectrum in the hot band region.
Fig. 3. Predicted spectrum of CO$_2$-Ne in the region of the CO$_2$ v$_2$ fundamental band for a temperature of 2K. Here it is assumed that the unknown vibrational shift relative to the free CO$_2$ molecule is zero. So the actual spectrum, not yet observed, will be shifted up or down from this simulation (probably by less than 0.5 cm$^{-1}$).
Fig. 4. In-plane / out-of-plane mode splittings for CO₂-Rg complexes in the v₂ bending state of CO₂ as a function of atomic polarizability. Splitting values: Ne (present work), Ar¹, Kr³ (to be published), and Xe.² Note the almost perfect linear relationship for Ne-Ar-Kr. The polarizability of He is indicated by the vertical red line, and extrapolation (in red) suggests that the splitting for CO₂-He (not yet determined) might be negative (i-p above o-p).
3. Conclusions

In conclusion, the infrared spectrum of the weakly-bound complex CO$_2$-Ne has been studied in the region of the CO$_2$ v$_3$ asymmetric stretch, using a tunable optical parametric oscillator source to probe a pulsed slit jet supersonic expansion. The fundamental band has been assigned for both CO$_2$-20Ne and CO$_2$-22Ne and fitted including available microwave data. The resulting molecular parameters (Table 1) should be the best currently available. In addition, the relatively weak hot band corresponding to the CO$_2$ (0111) – (0110) transition has been detected for CO$_2$-Ne. Its analysis yields a measurement of the symmetry breaking of the degenerate CO$_2$ v$_2$ bend into in-plane and out-of-plane components, which turns out to have a magnitude of about 0.057 cm$^{-1}$ in the (0110) state, with o-p above i-p. This splitting is a sensitive probe of vibrational dynamics, and we have now published determinations for CO$_2$ with Ne, Ar and Xe.1,2 In this context, CO$_2$-He18,19 would be especially interesting: could the ordering of the i-p and o-p modes be reversed, as suggested by Fig. 4?

Supplementary Information

Supplementary Information includes tables giving observed and fitted line positions for CO$_2$-Ne.

Acknowledgements

The financial support of the Natural Sciences and Engineering Research Council of Canada is gratefully acknowledged.
References

1 T.A. Gartner, A.J. Barclay, A.R.W. McKellar, and N. Moazzen-Ahmadi, Phys. Chem. Chem. Phys. 22, 21488 (2020).

2 A.J. Barclay, A.R.W. McKellar, C. M. Western, and N. Moazzen-Ahmadi, Mol. Phys. https://doi.org/10.1080/00268976.2021.1919325.

3 To be published.

4 R.W. Randall, M.A. Walsh, and B.J. Howard, Faraday Discuss. Chem. Soc. 85, 13-21 (1988).

5 G.T. Fraser, A.S. Pine, and R.D. Suenram, J. Chem. Phys. 88, 6157-6167 (1988).

6 Y. Xu and W. Jäger, J. Mol. Spectrosc. 192, 435-440 (1998).

7 T. Konno, S. Fukuda, and Y. Ozaki, Chem. Phys. Lett. 421, 421-426 (2006).

8 F. Negri, F. Ancliotto, G. Mistura, and F. Toigo, J. Chem. Phys. 111, 6439 (1999).

9 R. Chen, E. Jiao, H. Zhu, and D. Xie, J. Chem. Phys. 133, 104302 (2010).

10 R. Chen and H. Zhu, J. Theo. Comp. Chem. 11, 1175-1182 (2012).

11 R. Chen and X. Luo, Applied Mechanics and Materials 670-671, 235-239 (2014).

12 M. Dehghany, M. Afshari, Z. Abusara, C. Van Eck, and N. Moazzen-Ahmadi, J. Mol. Spectrosc. 247, 123-127 (2008).

13 N. Moazzen-Ahmadi and A.R.W. McKellar, Int. Rev. Phys. Chem. 32, 611-650 (2013).

14 M. Rezaei, S. Sheybani-Deloui, N. Moazzen-Ahmadi, K.H. Michaelian, and A.R.W. McKellar, J. Phys. Chem. A, 117, 9612-9620 (2013).

15 C. M. Western, J. Quant. Spectrosc. Rad. Transfer 186, 221 (2017); PGOPHER version 10.1, C. M. Western, 2018, University of Bristol Research Data Repository, doi:10.5523/bris.3mqf4glgkr8a2rev7f73t300c

16 A.J. Barclay, A.R.W. McKellar, and N. Moazzen-Ahmadi, J. Chem. Phys. 153, 014303 (2020).

17 D. Bailly, R. Farrenq, G. Guelachvili, and C. Rosetti, J. Mol. Spectrosc. 90, 74-105 (1981).

18 M.J. Weida, J.M. Sperhac, D.J. Nesbitt, and J.M. Hutson, J. Chem. Phys. 101, 8351 (1994).

19 A.R.W. McKellar, J. Chem. Phys. 125, 114310 (2006).
Appendix to:

New infrared spectra of CO2-Ne:

Fundamental for CO2-22Ne isotopologue, intermolecular bend, and symmetry breaking of the intramolecular CO2 bend

Table A-1. Observed transitions of the fundamental band of CO2-20Ne (units of 1/cm)

J' Ka' Kc'	J" Ka" Kc"	Observed	Calc	Obs-Calc	Obs-Calc																															
8 3 6	9 4 5	2345.3551	2345.3549	0.0003																																
8 3 5	9 4 6	2345.3919	2345.3914	0.0004																																
7 3 5	8 4 4	2345.5514	2345.5516	-0.0002																																
7 3 4	8 4 5	2345.5684	2345.5684	0.0001																																
6 3 4	7 4 3	2345.7472	2345.7473	-0.0001																																
6 3 3	7 4 4	2345.7540	2345.7540	-0.0000																																
4 3 1	5 4 2	2346.1399	2346.1406	-0.0007																																
4 3 2	5 4 1	2346.1399	2346.1400	-0.0002																																
	Blend	2346.1403	-0.0004																																	
3 3 0	4 4 1	2346.3382	2346.3379	0.0002																																
3 3 1	4 4 0	2346.3382	2346.3379	0.0003																																
	Blend	2346.3379	0.0003																																	
6 1 6	7 2 5	2346.4741	2346.4741	-0.0000																																
5 1 5	6 2 4	2346.8384	2346.8385	-0.0001																																
7 1 6	8 2 7	2347.1294	2347.1295	-0.0000																																
---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---
4	3	1				4	4	0	2347.1454	2347.1456	-0.0002																									
4	3	2				4	4	1	2347.1454	2347.1451	0.0004																									
						Blend	2347.1453	0.0001																												
6	3	4				6	4	3	2347.1555	2347.1556	-0.0002																									
6	1	5				7	2	6	2347.2430	2347.2429	0.0001																									
5	1	4				6	2	5	2347.3657	2347.3656	0.0001																									
3	1	3				4	2	2	2347.4549	2347.4549	0.0000																									
4	1	3				5	2	4	2347.4999	2347.4998	0.0001																									
8	1	8				9	0	9	2347.6324	2347.6326	-0.0002																									
3	1	2				4	2	3	2347.6467	2347.6468	-0.0001																									
2	1	2				3	2	1	2347.7157	2347.7158	-0.0001																									
2	1	1				3	2	2	2347.8075	2347.8075	0.0000																									
7	1	7				8	0	8	2347.8316	2347.8316	0.0000																									
1	1	1				2	2	0	2347.9529	2347.9529	0.0000																									
1	1	0				2	2	1	2347.9823	2347.9823	0.0000																									
5	1	6				7	0	7	2348.0388	2348.0386	0.0002																									
6	1	6				6	2	5	2348.0736	2348.0735	0.0001																									
5	1	5				5	2	4	2348.1604	2348.1604	0.0000																									
4	1	4				4	2	3	2348.2326	2348.2324	0.0001																									
5	1	5				6	0	6	2348.2544	2348.2543	0.0001																									
3	1	3				3	2	2	2348.2895	2348.2896	-0.0001																									
2	1	2				2	2	1	2348.3319	2348.3320	-0.0002																									
2	1	1				2	2	0	2348.4126	2348.4127	-0.0001																									
3	1	2				3	2	1	2348.4451	2348.4453	-0.0002																									
---	---	---	---	---	---	---	---	---																												
4	1	4	5	0	5	2348.4784	2348.4777	0.0007																												
4	1	3	4	2	2	2348.4784	2348.4794	-0.0010																												
Blend						2348.4784	-0.0001																													
5	1	4	5	2	3	2348.5079	2348.5080	-0.0001																												
7	1	6	7	2	5	2348.5201	2348.5202	-0.0000																												
6	1	5	6	2	4	2348.5237	2348.5237	-0.0001																												
3	1	3	4	0	4	2348.7060	2348.7059	0.0001																												
3	1	3	2	2	0	2348.8947	2348.8948	-0.0001																												
2	1	2	3	0	3	2348.9347	2348.9346	0.0001																												
3	1	2	2	2	1	2349.0613	2349.0615	-0.0002																												
5	1	5	4	2	2	2349.1400	2349.1400	0.0000																												
1	1	1	2	0	2	2349.1589	2349.1589	0.0000																												
6	1	6	5	2	3	2349.2157	2349.2158	-0.0002																												
4	1	3	3	2	2	2349.3141	2349.3141	0.0000																												
1	1	0	1	0	1	2349.5907	2349.5906	0.0001																												
2	1	1	2	0	2	2349.6188	2349.6187	0.0001																												
3	1	2	3	0	3	2349.6642	2349.6641	0.0001																												
4	1	3	4	0	4	2349.7306	2349.7304	0.0002																												
1	1	1	0	0	0	2349.7662	2349.7662	-0.0000																												
5	1	4	5	0	5	2349.8217	2349.8214	0.0003																												
6	1	5	5	2	4	2349.8458	2349.8456	0.0001																												
2	1	2	1	0	1	2349.9403	2349.9403	-0.0000																												
3	1	3	2	0	2	2350.1008	2350.1007	0.0001																												
4	1	4	3	0	3	2350.2499	2350.2497	0.0002																												
5 1 5 4 0 4 2350.3910 2350.3911 -0.0001
6 1 6 5 0 5 2350.5293 2350.5293 0.0001
6 3 3 6 2 4 2350.6547 2350.6548 -0.0001
7 1 7 6 0 6 2350.6684 2350.6684 -0.0000
5 3 2 5 2 3 2350.6987 2350.6987 -0.0000
4 3 1 4 2 2 2350.7284 2350.7285 -0.0001
3 3 0 3 2 1 2350.7464 2350.7464 0.0000
8 1 8 7 0 7 2350.8114 2350.8113 0.0001
9 1 9 8 0 8 2350.9591 2350.9590 0.0001
3 3 0 2 2 1 2351.3615 2351.3626 -0.0010
3 3 1 2 2 0 2351.3615 2351.3606 0.0009

Blend 2351.3616 -0.0001
4 3 2 3 2 1 2351.5535 2351.5535 0.0000
4 3 1 3 2 2 2351.5631 2351.5632 -0.0001
5 3 3 4 2 2 2351.7378 2351.7377 0.0002
5 3 2 4 2 3 2351.7669 2351.7669 0.0001
6 3 4 5 2 3 2351.9088 2351.9088 -0.0000
6 3 3 5 2 4 2351.9766 2351.9767 -0.0001
7 3 4 6 2 5 2352.1968 2352.1967 0.0001
8 3 6 7 2 5 2352.1968 2352.1981 -0.0013

Blend 2352.1971 -0.0002
8 3 5 7 2 6 2352.4317 2352.4322 -0.0005
5 5 0 4 4 1 2352.9136 2352.9134 0.0002
5 5 1 4 4 0 2352.9136 2352.9134 0.0002
Blend 2352.9134 0.0002

6 5 1 5 4 2 2353.1009 2353.1014 -0.0004
6 5 2 5 4 1 2353.1009 2353.1014 -0.0004

Blend 2353.1014 -0.0004

6 3 4 5 0 5 2353.2226 2353.2223 0.0004
7 5 2 6 4 3 2353.2870 2353.2866 0.0005
7 5 3 6 4 2 2353.2870 2353.2865 0.0006

Blend 2353.2865 0.0005

7 3 5 6 0 6 2353.4784 2353.4788 -0.0004

**
Table A-2. Observed transitions in the microwave spectrum of CO2-20Ne

MW data from: Y. Xu and W. Jäger, J. Mol. Spectrosc. 192, 435-440 (1998).

J' Ka' Kc'	J" Ka" Kc"	Obs(MHz)	Calc(MHz)	Obs-Calc(MHz)
1 0 1	0 0 0	6088.2440	6088.2413	0.0027
2 0 2	1 0 1	12117.9430	12117.9444	-0.0014
3 0 3	2 0 2	18032.3303	18032.3309	-0.0006
4 0 4	3 0 3	23782.8865	23782.8861	0.0004
3 2 2	2 2 1	18198.6807	18198.6791	0.0016
3 2 1	2 2 0	18418.0132	18418.0146	-0.0014
4 2 3	3 2 2	24211.8532	24211.8539	-0.0007
4 2 2	3 2 1	24749.1378	24749.1372	0.0006
Table A-3. Observed transitions of the fundamental band of CO2-22Ne (units of 1/cm)

J' Ka' Kc'	J" Ka" Kc"	Observed	Calc	Obs-Calc	Obs-Calc			
4 3 1	5 4 2	2346.1594	2346.1598	-0.0003				
4 3 2	5 4 1	2346.1594	2346.1594	0.0000				
Blend		2346.1596	-0.0002					
3 3 0	4 4 1	2346.3469	2346.3466	0.0003				
3 3 1	4 4 0	2346.3469	2346.3465	0.0003				
Blend		2346.3466	0.0003					
4 1 4	5 2 3	2347.2324	2347.2325	-0.0001				
6 1 5	7 2 6	2347.2772	2347.2771	0.0001				
5 1 4	6 2 5	2347.3967	2347.3966	0.0001				
4 1 3	5 2 4	2347.5269	2347.5267	0.0002				
3 1 2	4 2 3	2347.6684	2347.6684	-0.0001				
2 1 2	3 2 1	2347.7413	2347.7414	-0.0001				
2 1 1	3 2 2	2347.8225	2347.8225	0.0000				
1 1 1	2 2 0	2347.9630	2347.9630	0.0000				
1 1 0	2 2 1	2347.9891	2347.9891	0.0000				
6 1 6	6 2 5	2348.0915	2348.0915	0.0000				
6 1 6	7 0 7	2348.1212	2348.1212	0.0000				
5 1 5	5 2 4	2348.1689	2348.1691	-0.0002				
2 1 2	2 2 1	2348.3221	2348.3223	-0.0001				
2 1 1	2 2 0	2348.3948	2348.3947	0.0001				
---	---	---	---	---	---	---	---	---
3	1	2	3	2	1	2348.4245	2348.4247	-0.0002
4	1	3	4	2	2	2348.4573	2348.4573	-0.0000
5	1	4	5	2	3	2348.4866	2348.4868	-0.0002
4	1	4	5	0	5	2348.541	2348.5441	-0.0000
3	1	3	4	0	4	2348.7617	2348.7616	0.0001
2	1	2	3	0	3	2348.9783	2348.9782	0.0000
1	1	1	2	0	2	2349.1899	2349.1899	0.0000
1	1	0	1	0	1	2349.5968	2349.5967	0.0000
4	1	3	4	0	4	2349.7195	2349.7195	0.0001
5	1	4	5	0	5	2349.7986	2349.7984	0.0001
3	1	3	2	0	2	2350.0838	2350.0835	0.0003
5	1	5	4	0	4	2350.3619	2350.3619	-0.0000
7	1	7	6	0	6	2350.6245	2350.6244	0.0001
4	3	2	4	2	3	2350.7837	2350.7835	0.0001
3	3	1	3	2	2	2350.7837	2350.7843	-0.0007
Blend	2350.7839	-0.0003						
4	3	2	3	2	1	2351.5395	2351.5398	-0.0003
5	5	0	4	4	1	2352.9090	2352.9087	0.0003
5	5	1	4	4	0	2352.9090	2352.9087	0.0003
Blend	2352.9087	0.0003						
6	5	1	5	4	2	2353.0871	2353.0872	-0.0001
6	5	2	5	4	1	2353.0871	2353.0872	-0.0001
Blend	2353.0872	-0.0001						
7	5	2	6	4	3	2353.2632	2353.2634	-0.0001
7	5	3	6	4	2	2353.2632	2353.2633	-0.0001
-----	-----	-----	-----	-----	-----	----------	----------	--------
Blend	2353.2633	-0.0001						
3	1	3	4	0	4	2348.7617	2348.7616	0.0001

**
Table A-4. Observed transitions in the microwave spectrum of CO$_2$-22Ne

MW data from: Y. Xu and W. Jäger, J. Mol. Spectrosc. 192, 435-440 (1998).

J' K'a' Kc'	J" K'a" Kc"	Obs(MHz)	Calc(MHz)	Obs-Calc(MHz)
1 0 1	0 0 0	5752.5423	5752.5425	-0.0002
2 0 2	1 0 1	11458.7128	11458.7126	0.0002
3 0 3	2 0 2	17073.2426	17073.2428	-0.0002
3 2 2	2 2 1	17198.8324	17198.8323	0.0001
3 2 1	2 2 0	17371.6715	17371.6716	-0.0001
4 0 4	3 0 3	22556.0274	22556.0273	0.0001
4 2 3	3 2 2	22888.5325	22888.5325	-0.0000
4 2 2	3 2 1	23313.7122	23313.7122	0.0000
Table A-5. Observed transitions of the combination band of CO2-20Ne (units of 1/cm)

J'	Ka'	Kc'	J"	Ka"	Kc"	Observed	Calc	Obs-Calc
6	2	4	7	2	5	2365.3207	2365.3190	0.0017
6	0	6	7	0	7	2365.3716	2365.3707	0.0009
5	0	5	6	0	6	2365.6291	2365.6290	0.0000
5	2	3	6	2	4	2365.6546	2365.6547	-0.0002
5	2	4	6	2	5	2365.7207	2365.7200	0.0007
4	0	4	5	0	5	2365.8779	2365.8770	0.0009
4	2	2	5	2	3	2365.9698	2365.9702	-0.0004
4	2	3	5	2	4	2366.0086	2366.0093	-0.0007
3	0	3	4	0	4	2366.1183	2366.1177	0.0006
3	2	1	4	2	2	2366.2622	2366.2624	-0.0002
3	2	2	4	2	3	2366.2817	2366.2820	-0.0003
2	0	2	3	0	3	2366.3517	2366.3515	0.0002
2	2	0	3	2	1	2366.5305	2366.5302	0.0003
2	2	1	3	2	2	2366.5381	2366.5379	0.0002
1	0	1	2	0	2	2366.5764	2366.5773	-0.0009
0	0	0	1	0	1	2366.7915	2366.7929	-0.0014
5	2	4	5	2	3	2366.8627	2366.8624	0.0002
5	2	3	5	2	4	2366.9764	2366.9766	-0.0002
4	2	3	4	2	2	2366.9883	2366.9889	-0.0006
4	2	2	4	2	3	2367.0381	2367.0385	-0.0004
---	---	---	---	---	---	---		
3 2 2	3 2 1	2367.0801	2367.0805	-0.0004				
3 2 1	3 2 2	2367.0969	2367.0971	-0.0001				
2 2 1	2 2 0	2367.1438	2367.1431	0.0007				
2 2 0	2 2 1	2367.1469	2367.1464	0.0005				
1 0 1	0 0 0	2367.1842	2367.1846	-0.0004				
2 0 2	1 0 1	2367.3575	2367.3573	0.0002				
3 0 3	2 0 2	2367.5134	2367.5125	0.0009				
4 0 4	3 0 3	2367.6503	2367.6491	0.0011				
3 2 2	2 2 1	2367.6971	2367.6967	0.0004				
3 2 1	2 2 0	2367.7029	2367.7023	0.0006				
5 0 5	4 0 4	2367.7669	2367.7660	0.0009				
4 2 3	3 2 2	2367.8243	2367.8236	0.0006				
4 2 2	3 2 1	2367.8374	2367.8369	0.0005				
6 0 6	5 0 5	2367.8601	2367.8616	-0.0015				
5 2 4	4 2 3	2367.9293	2367.9307	-0.0014				
7 0 7	6 0 6	2367.9318	2367.9345	-0.0027				
5 2 3	4 2 2	2367.9544	2367.9563	-0.0019				
8 0 8	7 0 7	2367.9843	2367.9830	0.0012				
6 2 5	5 2 4	2368.0190	2368.0171	0.0018				
6 2 4	5 2 3	2368.0596	2368.0608	-0.0012				

**
Table A-6. Observed transitions of the combination band of CO2-22Ne (units of 1/cm)

J' Ka' Kc'	J" Ka" Kc"	Observed	Calc	Obs-Calc				
5	0	5	6	0	5	62365.7069	2365.7079	-0.0010
5	2	4	6	2	5	2365.8065	2365.8062	0.0003
4	0	4	5	0	5	2365.9455	2365.9458	-0.0003
4	2	2	5	2	3	2366.0495	2366.0493	0.0002
4	2	3	5	2	4	2366.0805	2366.0810	-0.0005
3	0	3	4	0	4	2366.1760	2366.1760	0.0000
3	2	1	4	2	2	2366.3224	2366.3232	-0.0007
3	2	2	4	2	3	2366.3384	2366.3389	-0.0005
2	0	2	3	0	3	2366.3988	2366.3986	0.0001
1	0	1	2	0	2	2366.6124	2366.6126	-0.0003
0	0	0	1	0	1	2366.8163	2366.8164	-0.0002
4	2	3	4	2	2	2367.0111	2367.0116	-0.0005
4	2	2	4	2	3	2367.0500	2367.0502	-0.0003
3	2	1	3	2	2	2367.1078	2367.1081	-0.0002
2	2	0	2	2	1	2367.1540	2367.1550	-0.0010
2	2	1	2	2	0	2367.1540	2367.1524	0.0016
2	0	2	1	0	1	2367.3505	2367.3504	0.0002
3	0	3	2	0	2	2367.4982	2367.4979	0.0003
4	0	4	3	0	3	2367.6286	2367.6282	0.0004
3	2	2	2	2	1	2367.6762	2367.6760	0.0002
3	2	1	2	2	0	2367.6808	2367.6803	0.0005
---	---	---	---	---	---	------------	------------	--------
5	0	5	4	0	4	2367.7409	2367.7401	0.0008
4	2	3	3	2	2	2367.7973	2367.7965	0.0008

**
Table A-7. Observed transitions of the hot band of CO2-20Ne (units of 1/cm)

J' Ka' Kc'	J" Ka" Kc"	Observed	Calc	Obs-Calc	Obs-Calc
3 2 2	4 3	2334.4230	2334.4230	0.0001	
3 2 1	4 3	2334.5275	2334.5279	-0.0004	
2 2 1	3 3	0 2334.6462	2334.6457	0.0005	
2 2 0	3 3	1 2334.6697	2334.6695	0.0002	
5 1 5	6 2	4 2334.9574	2334.9576	-0.0002	
2 1 2	3 2	1 2334.9886	2334.9877	0.0009	
6 0 6	7 1	7 2335.0148	2335.0138	0.0010	
4 0 4	5 2	4 2335.0991	2335.1001	-0.0010	
5 0 5	6 1	6 2335.1749	2335.1746	0.0003	
4 2 3	4 3	2 2335.2316	2335.2319	-0.0004	
3 2 2	3 3	1 2335.2618	2335.2616	0.0002	
3 1 2	4 2	3 2335.2951	2335.2949	0.0002	
5 1 5	5 2	4 2335.3339	2335.3348	-0.0009	
4 1 3	5 1	5 2335.3537	2335.3541	-0.0004	
1 1 1	2 2	0 2335.3673	2335.3675	-0.0001	
2 1 1	3 2	2 2335.4476	2335.4470	0.0006	
4 1 4	4 2	3 2335.4604	2335.4601	0.0003	
3 1 3	4 2	2 2335.4712	2335.4714	-0.0002	
3 0 3	4 1	4 2335.5534	2335.5542	-0.0008	
1 1 0	2 2	1 2335.5581	2335.5584	-0.0003	
5 0 5	5 2	3	2335.5771	2335.5769	0.0002
3 1 3	3 2	2	2335.5916	2335.5910	0.0006
4 1 3	4 2	2	2335.6450	2335.6451	-0.0001
2 1 2	2 2	1	2335.7166	2335.7168	-0.0002
2 1 2	3 1	2	2335.7585	2335.7587	-0.0001
3 0 3	3 1	2	2335.7655	2335.7661	-0.0006
2 0 2	3 1	3	2335.7763	2335.7770	-0.0006
2 0 2	2 1	1	2335.9547	2335.9550	-0.0004
3 1 2	3 2	1	2335.9997	2335.9985	0.0012
1 0 1	2 1	2	2336.0224	2336.0229	-0.0004
2 1 1	2 2	0	2336.0448	2336.0449	-0.0001
1 1 1	2 1	1	2336.0779	2336.0783	-0.0004
5 1 5	6 0	6	2336.1874	2336.1874	-0.0001
1 0 1	1 1	0	2336.2012	2336.2012	-0.0001
0 0 0	1 1	1	2336.2789	2336.2786	0.0002
2 1 1	3 1	3	2336.5778	2336.5777	0.0000
2 0 2	1 1	1	2336.5924	2336.5923	0.0001
4 1 4	4 1	4	2336.7220	2336.7228	-0.0008
3 1 3	3 1	3	2336.7220	2336.7217	0.0003

Blend: 2336.7223 -0.0003

3 0 3	2 1	2	2336.7263	2336.7265	-0.0002
1 1 0	1 1	0	2336.7395	2336.7390	0.0004
2 1 1	2 1	1	2336.7557	2336.7558	0.0000
5 0 5	5 0	5	2336.7768	2336.7766	0.0002
3 2 2 3 1 3 2337.9240 2337.9242 -0.0002
4 1 4 3 0 3 2337.9523 2337.9519 0.0004
2 2 1 1 1 0 2337.9836 2337.9829 0.0007
4 2 2 3 1 3 2338.0287 2338.0289 -0.0002
4 2 3 4 1 4 2338.0465 2338.0472 -0.0007
3 2 2 2 1 1 2338.1022 2338.1023 0.0000
3 3 0 3 2 1 2338.1282 2338.1275 0.0007
2 2 0 1 1 1 2338.1481 2338.1474 0.0007
5 1 5 4 0 4 2338.1481 2338.1476 0.0004
 Blend 2338.1475 0.0006
5 1 4 4 2 3 2338.1549 2338.1553 -0.0004
5 2 4 5 1 5 2338.1625 2338.1632 -0.0007
4 3 2 4 2 3 2338.2550 2338.2552 -0.0002
4 2 3 3 1 2 2338.2588 2338.2590 -0.0003
5 2 3 4 1 4 2338.2970 2338.2974 -0.0004
6 1 6 5 0 5 2338.3224 2338.3220 0.0003
5 2 4 4 2 2 2338.4538 2338.4543 -0.0005
3 2 1 2 1 2 2338.5152 2338.5154 -0.0002
6 2 4 5 1 5 2338.5468 2338.5477 -0.0009
8 1 8 7 0 7 2338.6134 2338.6143 -0.0009
6 2 5 5 2 3 2338.6701 2338.6702 -0.0001
7 2 5 6 1 6 2338.7890 2338.7893 -0.0003
3 3 1 2 2 0 2338.8297 2338.8296 0.0001
3 3 0 2 2 1 2338.8563 2338.8566 -0.0003
i	j	k	l	m	n	Value	Value	Difference
7	2	6	6	2	4	2338.8919	2338.8918	0.0001
4	3	2	3	2	1	2338.9591	2338.9588	0.0004
8	2	6	7	1	7	2339.0307	2339.0298	0.0009
5	3	3	4	1	3	2339.0511	2339.0508	0.0003
4	3	1	3	2	2	2339.0736	2339.0741	-0.0005
4	1	4	5	2	3	2335.2076	2335.2080	-0.0004
5	2	3	5	1	4	2335.6343	2335.6341	0.0003
2	2	1	3	1	2	2336.8448	2336.8442	0.0006
3	1	3	2	1	1	2336.8992	2336.8998	-0.0006
4	0	4	3	2	2	2336.8992	2336.8982	0.0010
2	1	2	1	1	0	2336.8992	2336.8974	0.0018
								Blend
2336.8988		0.0004						
4	1	4	3	1	2	2336.9349	2336.9347	0.0002
6	1	6	5	2	3	2337.1227	2337.1223	0.0004
4	2	2	3	2	2	2337.8202	2337.8204	-0.0002
5	3	2	5	1	4	2337.9280	2337.9288	-0.0008
6	2	4	6	0	6	2338.0121	2338.0128	-0.0008
7	2	5	7	0	7	2338.0194	2338.0194	0.0000
4	3	1	4	1	3	2338.0229	2338.0225	0.0004
6	1	5	6	2	4	2338.1135	2338.1132	0.0003
3	3	1	3	2	2	2338.2318	2338.2317	0.0001
6	2	5	6	1	6	2338.2677	2338.2679	-0.0002
2	2	0	2	0	2	2338.3443	2338.3442	0.0001
7	2	6	7	1	7	2338.3621	2338.3610	0.0011
2 2 1 1 0 1 2338.5812 2338.5819 -0.0006
8 2 7 7 2 5 2339.1111 2339.1103 0.0008
6 3 4 5 1 4 2339.1309 2339.1313 -0.0005
