Rare SCARB1 mutations associate with high-density lipoprotein cholesterol but not with coronary artery disease

Anna Helgadottir1, Patrick Sulem1, Gudmundur Thorgeirsson1,2,3, Solveig Gretarsdottir1, Gudmar Thorleifsson1, Brynjar Ó. Jensson1, Gudny A. Arnadottir1, Isleifur Olafsson4, Gudmundur I. Eyjolfsson5, Olof Sigurdardottir6, Unnur Thorsteinsdottir1,2, Daniel F. Gudbjartsson1,7, Hilma Holm1*, and Kari Stefansson1,2*

1deCODE Genetics/Amgen, Inc., Sturlugata 8, 101 Reykjavik, Iceland; 2Faculty of Medicine, Department of Medicine, University of Iceland, Saemundargata 2, 101 Reykjavik, Iceland; 3Division of Cardiology, Department of Internal Medicine, Landspitali, National University Hospital of Iceland, Hringbraut, 101 Reykjavik, Iceland; 4Department of Clinical Biochemistry, Landspitali, National University Hospital, Hringbraut, 101 Reykjavik, Iceland; 5The Laboratory in Mjodd, RAM, 109 Reykjavik, Iceland; 6Department of Clinical Biochemistry, Akureyri Hospital, 600 Akureyri, Iceland; and 7School of Engineering and Natural Sciences, University of Iceland, 101 Reykjavik, Iceland

Received 18 July 2017; revised 7 November 2017; editorial decision 23 February 2018; accepted 14 March 2018; online publish-ahead-of-print 27 March 2018

See page 2179 for the editorial comment on this article (doi: 10.1093/eurheartj/ehy299)

Aims
Scavenger receptor Class B Type 1 (SR-BI) is a major receptor for high-density lipoprotein (HDL) that promotes hepatic uptake of cholesterol from HDL. A rare mutation p.P376L, in the gene encoding SR-BI, SCARB1, was recently reported to associate with elevated HDL cholesterol (HDL-C) and increased risk of coronary artery disease (CAD), suggesting that increased HDL-C caused by SR-BI impairment might be an independent marker of cardiovascular risk. We tested the hypothesis that alleles in or close to SCARB1 that associate with elevated levels of HDL-C also associate with increased risk of CAD in the relatively homogeneous population of Iceland.

Methods and results
Using a large resource of whole-genome sequenced Icelanders, we identified thirteen SCARB1 coding mutations that we examined for association with HDL-C (n = 136 672). Three rare SCARB1 mutations, encoding p.G319V, p.V111M, and p.V32M (combined allelic frequency = 0.2%) associate with elevated levels of HDL-C (p.G319V: β = 11.1 mg/dL, P = 8.0 × 10⁻⁷; p.V111M: β = 8.3 mg/dL, P = 1.1 × 10⁻⁶; p.V32M: β = 10.2 mg/dL, P = 8.1 × 10⁻⁴). These mutations do not associate with CAD (36 886 cases/306 268 controls) (odds ratio = 0.90, 95% confidence interval 0.67–1.22, P = 0.49), despite effects on HDL-C comparable to that reported for p.P376L, both in terms of direction and magnitude. Furthermore, HDL-C raising alleles of three common SCARB1 non-coding variants, including one previously unreported (rs61941676-C: β = 1.25 mg/dL, P = 1.7 × 10⁻¹⁸), and of one low frequency coding variant (p.V135I) that independently associate with higher HDL-C, do not confer increased risk of CAD.

Conclusion
Elevated HDL-C due to genetically compromised SR-BI function is not a marker of CAD risk.

Keywords
SR-BI • HDL cholesterol • Mutation • Coronary artery disease
Introduction

Despite marked improvements in treatment and prevention, cardiovascular diseases remain the most common cause of death in Iceland like in other European countries. Epidemiological studies consistently show an inverse relationship between levels of high-density lipoprotein cholesterol (HDL-C) and the risk of coronary artery disease (CAD). This relationship has been explained by a potential antiatherogenic properties of HDL, including its role in reverse cholesterol transport, in which cholesterol from peripheral tissues is returned to the liver for excretion in bile. However, neither Mendelian randomization studies nor interventional studies returned to the liver for excretion in bile. However, neither Mendelian randomization studies nor interventional studies have clearly demonstrated. Three rare missense mutations in leading to increased risk of CAD. This would suggest that high HDL-C function in humans causes impaired reverse cholesterol transport, and attenuated atherosclerosis.

A recent study reported that a rare missense mutation p.P376L in SCARB1 encoding the scavenger receptor Class B Type I (SR-BI), associates with impaired function of the encoded protein and elevated HDL-C levels. The mutation was also found to associate with CAD in a meta-analysis of 16 studies with an odds ratio (OR) of 1.79 and \(P = 0.018 \). The investigators concluded that reduced hepatic SR-BI function in humans causes impaired reverse cholesterol transport, leading to increased risk of CAD. This would suggest that high HDL-C might in some cases be an independent marker of increased risk of cardiovascular disease.

Hepatic overexpression of SR-BI in mice has the opposite effect; enhanced hepatocellular cholesterol uptake and increased cholesterol secretion to bile, and facilitating the secretion of cholesterol into bile. In SR-BI deficient mice biliary cholesterol is decreased, but HDL-C levels in blood are elevated, and there is acceleration of atherosclerosis. Hepatic overexpression of SR-BI in mice has the opposite effect; enhanced hepatocellular cholesterol uptake and increased cholesterol secretion to bile, and attenuated atherosclerosis. Scavenger receptor Class B Type 1 up-regulation in mouse models is also associated with biliary cholesterol hypersecretion and increased gallstone formation.

Translational perspective

The current study shows that decreased function of Scavenger receptor Class B Type 1 (SR-BI), resulting in reduced hepatic reverse cholesterol transport and increased high-density lipoprotein cholesterol levels, does not translate into increased coronary artery disease risk. Thus, increasing hepatic reverse cholesterol transport through pharmacological activation of SR-BI is not likely to improve outcome. However, the study provides evidence that modulating other functions of SR-BI might do so. The results highlight the complexities of potential therapeutic development with SR-BI modulating agents.

Methods

The study was approved by The National Bioethics Committee in Iceland (Approval no. 07-085, with amendments) and the Data Protection Authority of Iceland (Approval no. 07–085, with amendments). All participating subjects donating samples signed informed consents. Personal identities of the phenotypes and biological samples were encrypted by a third party system provided by the Icelandic Data Protection Authority. Enrolment of participants, the phenotypic definitions for CAD, information on lipid measurements, genotyping, imputation methods, and association analysis have previously been described in detail (see also Supplementary material online, Note). Briefly, lipid measurements were obtained from three of the largest clinical laboratories in Iceland. We used HDL-C measurements from 136,672 Icelanders, 93,169 were chip-typed and directly imputed, and 43,503 were first and second degree relatives of chip-typed individuals and had their genotypes inferred based on genealogy. Coronary artery disease cases \(n = 36,886 \) of which 17,591 were chip-typed were identified based on International Classification of Diseases-9 and 10 discharge codes from Landspítali—The National University Hospital of Iceland, and from death registries. The controls \(n = 306,268 \) of which 121,163 were chip-typed included population controls from the Icelandic genealogical database and individuals recruited through different genetic studies at deCODE genetics. Description of genetic risk scores is provided in Supplementary material online, Note.

Results and discussion

Using our population-based resource of 8453 whole-genome sequenced Icelanders, we identified thirteen SCARB1 coding variants...
and one splice region variant (Supplementary material online, Table S1) that we imputed into chip-genotyped Icelanders and their close relatives and tested for association with HDL-C (n = 136,672). Three very rare SCARB1 missense variants that never occur together on the same chromosome, p.G319V, p.V111M, and p.V32M (allelic frequency 0.056%, 0.111%, and 0.026%, respectively) associate with elevated levels of HDL-C (p.G319V: β = 11.1 mg/dL, P = 8.0 × 10⁻⁴; p.V111M: β = 8.3 mg/dL, P = 1.1 × 10⁻⁶; p.V32M: β = 10.2 mg/dL, P = 8.1 × 10⁻⁶) (Table 1). The associations of these variants with HDL-C have not been reported before. Overall, one in 250 Icelanders carries one of these three variants and none of them associates with other lipid fractions (Supplementary material online, Table S3). Although the missense variants p.P376L, p.P297S, and p.S112F (reported effects: 8.4–18.9 mg/dL) were not observed in Iceland, the three rare missense variants identified have effects in the same direction and of comparable magnitude (8–11 mg/dL) as the published ones. Similar to all previously described HDL-C increasing variants in SCARB1,¹¹,¹²,¹⁴,²⁵ the variants encoding p.G319V and p.V111M occur in the large extracellular loop of the SR-BI protein, within highly conserved regions and are predicted to be damaging (Supplementary material online, Table S1). The missense variant p.V32M is predicted to be benign, and is in a region less conserved between species (Supplementary material online, Table S1). In addition to the rare variants, we observed one low frequency missense variant p.V135I (frequency 1.23%) that associates with increased HDL-C, albeit with considerably less effect (β = 2.1 mg/dL, P = 6.4 × 10⁻⁶) than the rare ones (Table 1). Two of the rare coding sequence variants (p.G319V and p.V111M) are reported in the Genome Aggregation Database (gnomAD at http://gnomad.broadinstitute.org, assessed March 2018) in European populations, but at much lower frequencies than in Iceland.

We tested the missense variants encoding p.G319V, p.V111M, p.V32M, and p.V135I with association with CAD among 36,886 cases and 306,268 controls (Table 1). None of the variants associates with CAD risk (P > 0.05). To increase power to detect association we aggregated the three rare large impact variants p.G319V, p.V111M, and p.V32M (combined allelic frequency = 0.2%) and tested for association with increased risk of CAD. This aggregate test gives an OR_CAD = 0.90, 95% confidence interval (CI) 0.67–1.22; P = 0.49 (Supplementary material online, Table S2).

We further tested three common non-coding variants that independently associate with HDL-C, for association with CAD in Iceland and in the publicly available CARDIOGRAM+C4D 1000G data (Table 2). Of these common HDL-C associating variants one is novel (rs61941676) and two represent previously reported GWAS signals (rs838876 and rs838909) (Supplementary material online, Note and Table S3). In the combined results from the Icelandic and CARDIOGRAM+C4D datasets, two of the three common variants show weak evidence for association with CAD (rs61941676-C: OR = 0.97, 95% CI 0.95–1.00; P = 0.03 and rs838876-A: OR = 0.98, 95% CI 0.96–0.99; P = 0.0026) (Table 2), with the HDL-C increasing allele trending towards reduced risk of CAD.

In light of the seemingly discrepant effects of rare SCARB1 variants on the risk of CAD, it could be argued that the three Icelandic rare variants that associate with raised HDL-C could do so without inhibiting the hepatocellular trafficking of cholesterol to bile; thus explaining the lack of association with CAD. In this scenario, enhancement of cholesteryl ester transfer protein (CETP)-mediated exchange of cholesteryl esters from HDL to apoB containing lipoproteins, would counteract the genetically compromised SR-BI, resulting in minimal or no net effect on the hepatic cholesterol removal in carriers of the Icelandic variants. These effects would contrast the hindered hepatic cholesterol uptake observed in the SR-BI deficient mice (mice do not express CETP) and in hepatocytes derived from human induced pluripotent stem cells, carrying the p.P376L mutation.¹¹ To test the impact of the Icelandic SCARB1 mutations, and other HDL-C associating variants at the locus, on transhepatic cholesterol flux, we used gallstone risk as a proxy. It has been shown that gallstone formation largely results from cholesterol hypersecretion to bile,²¹,²²,²³ and in mice, overexpression of SR-BI associates with biliary cholesterol hypersecretion and increased gallstone formation. The effects of the SCARB1 variants on gallstone risk was assessed in 8281 cases and 377,474 controls. Three of the seven HDL-C

Table 1 Association of SCARB1 locus variants with high-density lipoprotein cholesterol and the corresponding effect on coronary artery disease

Comment on variant	Variant type	rs-name	A1/A2	EA freq. (%)	HDL-C (n = 136 672)	CAD (n = 36 886/306 268)				
Rare coding	Missense (p.G319V)	rs150728540	A/C	0.056	8.0 × 10⁻⁷	11.19	2.253	0.365	0.788	0.47–1.32
Rare coding	Missense (p.V111M)	rs5890	T/C	0.111	1.1 × 10⁻⁶	8.254	1.691	0.775	1.063	0.70–1.62
Rare coding	Missense (p.V32M)	rs771427110	T/C	0.026	8.1 × 10⁻⁴	10.198	3.046	0.377	0.703	0.32–1.54
Low frequency coding	Missense (p.V135I)	rs5891	T/C	1.226	6.4 × 10⁻⁴	2.063	0.457	0.584	1.031	0.92–1.15
Common novel	Intronic	rs61941676	A/C	84.8	1.7 × 10⁻¹⁸	1.245	0.140	1.2 × 10⁻³	0.945	0.92–0.98
Common GWAS	Downstream	rs838876	A/G	34.1	2.4 × 10⁻¹⁷	0.921	0.107	0.083	0.977	0.95–1.00
Common GWAS	Intronic	rs838909	G/A	53.9	1.9 × 10⁻¹⁷	0.870	0.102	0.788	1.003	0.98–1.02

The combined allele frequency for p.G319V, p.V111M, and p.V32M is ~0.2% (~0.4% carrier frequency). This corresponds to 147 carriers (of any of the three rare HDL-C raising mutations) among the 36,886 CAD cases and 1225 carriers among the 306,268 controls. Effects, β in mg/dL, and OR, are given for the A1, except for rs61941676 and rs838909 the effects are given for the A2. Variant type, with coding changes in protein sequence NP_001076428.1 given in bracket.

A1, minor allele; A2, major allele; CAD, coronary artery disease; CI, confidence interval; EA freq., effect allelic frequency; GWAS, signal previously reported in genome wide association study; HDL-C, high-density lipoprotein cholesterol; OR, odds ratio; SE, standard error.
Table 2 Meta-analyses of the association of SCARB1 locus variants with coronary artery disease in Iceland and CARDIOGRAM/C4D

CAD variant	HDL-C variant	HDL-C variant	HDL-C variant					
rs11057837	rs11057837	rs61941676	rs838909					
EA freq. = 0.5%	EA freq. = 84.8%	EA freq. = 9.5%	EA freq. = 53.9%					
P-value	OR (95% CI)							
CAD (Iceland)	1.2 × 10^{-4}	1.108 (1.06–1.15)	0.0012	0.945 (0.92–0.98)	0.137	0.981 (0.96–1.01)	0.788	1.003 (0.98–1.02)
CAD (CARDIOGRAM/C4D)	9.5 × 10^{-4}	1.058 (1.02–1.09)	0.894	0.998 (0.97–1.03)	7.8 × 10^{-5}	0.973 (0.95–0.99)	0.177	0.987 (0.97–1.01)
Combined	1.9 × 10^{-4}	1.08 (1.05–1.11)	0.03	0.97 (0.95–1.00)	2.6 × 10^{-5}	0.98 (0.96–0.99)	0.40	0.99 (0.98–1.01)

The reported CAD variant rs11057830 (R^2 = 0.71 with rs11057837) associates with CAD with OR = 1.085, P = 1.6 × 10^{-5} in Iceland. Effects are calculated based on the EA given in []. Results from the Icelandic and CARDIOGRAM/C4D case-control groups were combined using inverse variance weighted fixed effect model.

Table S2

rs11057837	rs61941676	rs838876	rs838909	
[A]	[C]	[A]	[A]	
P-value	OR (95% CI)	P-value	OR (95% CI)	
CAD (Iceland)	1.2 × 10^{-4}	1.108 (1.06–1.15)	0.0012	0.945 (0.92–0.98)
CAD (CARDIOGRAM/C4D)	9.5 × 10^{-4}	1.058 (1.02–1.09)	0.894	0.998 (0.97–1.03)
Combined	1.9 × 10^{-4}	1.08 (1.05–1.11)	0.03	0.97 (0.95–1.00)

No relationship between elevated HDL-C levels due to genetically compromised SR-BI function and increased risk of CAD

- Scavenger receptor class B, type I (SR-BI), encoded by the SCARB1 gene is a major receptor for HDL.
- Impaired SR-BI function hinders flux of cholesterol from HDL to the liver, resulting in elevated HDL-C levels.

- Three novel SCARB1 missense mutations encoding p.G319V, p.V111M, and p.V32M associate with elevated HDL-C levels.
- These HDL-C raising mutations do not affect CAD susceptibility in humans.

- Three novel SCARB1 missense mutations encoding p.G319V, p.V111M, and p.V32M associate with elevated HDL-C levels.
- These HDL-C raising mutations do not affect CAD susceptibility in humans.

Take home figure Schematic showing the role of SR-BI in reverse cholesterol transport; promoting hepatic uptake of cholesterol from HDL and cholesterol secretion to bile. Rare missense mutations that compromise this SR-BI function do not affect the risk of coronary artery disease.

- Scavenger receptor class B, type I (SR-BI), encoded by the SCARB1 gene is a major receptor for HDL.
- Impaired SR-BI function hinders flux of cholesterol from HDL to the liver, resulting in elevated HDL-C levels.

- Three novel SCARB1 missense mutations encoding p.G319V, p.V111M, and p.V32M associate with elevated HDL-C levels.
- These HDL-C raising mutations do not affect CAD susceptibility in humans.

variants showed nominally significant association with gallstones (Supplementary material online, Table S3). A genetic risk score for HDL-C, constructed on the basis of seven SCARB1 HDL-C associating variants, associates with gallstones. For each standard deviation (SD), increase in HDL-C due to the genetic risk score, the risk of gallstones decreases by 61% (OR = 0.39, 95% CI 0.24–0.63; P = 1.0 × 10^{-3}) (Supplementary material online, Table S2). This finding supports the conclusion that SCARB1 variants associating with increased HDL-C in humans impair cholesterol excretion through bile, thus playing a role in the late stages of reverse cholesterol transport, as described in the mouse and for other SCARB1 mutations.124 However, in concordance with the results for individual variants, the SCARB1 HDL-C genetic risk score does not associate with CAD risk (for one SD of genetically elevated HDL-C; OR = 0.84, 95% CI 0.58–1.22; P = 0.36, Supplementary material online, Table S2) further tilting the scale against the hypothesis that hindered flux of HDL-C to the liver due to SR-BI impairment increases CAD susceptibility in humans.

Although we have demonstrated that SCARB1 variants leading to decreased flux of HDL-C to the liver do not increase CAD risk (Take home figure), other SR-BI functions may still do so. In the Icelandic data a common SCARB1 intronic variant rs11057837-T (allele frequency = 9.5%) associates with CAD (OR = 1.11, P = 1.2 × 10^{-6}) (Table 2), but not with HDL-C or gallstones after adjusting for HDL-C variants in the region (Supplementary material online, Table S3 and Note). Rs11057837-T also associates with CAD in the public 1000G data from CARDIOGRAM/C4D (OR = 1.08 and P = 1.9 × 10^{-8} for Iceland and CARDIOGRAM/C4D combined) (Table 2). The
rs11057837 correlates ($R^2 = 0.7$) with other intrinsic variants (rs11057841, rs11057830, and rs10846744) that have previously been found to associate with Lp-PLA2 activity and mass, vitamin E levels, subclinical atherosclerosis, and with CAD. The association of variants with vitamin E levels support the notion that rs11057837 mediates its effect through SCARB1, rather than other genes in the region, since in vitro studies have demonstrated the influence of SR-BI on tissue antioxidant uptake (vitamin E and carotenoids). These effects, or other functions that have been linked to SR-BI, such as the effect on endothelial cell nitric oxide metabolism, bacterial or viral recognition and degradation, or induction of apoptosis, are mechanisms that could explain the association of rs11057837 with CAD. Further, effects on other genes in the region cannot be ruled out.

To summarize, the HDL-C increasing effects (8–11 mg/dL) of the three rare SCARB1 missense variants described in our study, encoding p.G319V, p.V111M, and p.V32M, are comparable to the HDL-C of apoptosis, are mechanisms that could explain the association of three rare CAD. Specifically, this striking difference in carrier frequency, to the association of similar degree as the one reported, is significantly different from the OR of 1.79 reported for p.P376L. Importantly the 95% CI indicates that OR above 1.22 is unlikely. Assuming a true association between the HDL-C raising variants and increased risk of CAD, we have 90% power to detect variant association with OR = 1.29 at P-value <0.05. It is conceivable that the mutation encoding p.P376L has CAD susceptibility effects that are not shared by other HDL-C raising variants. However, given that it is relatively specific to Ashkenazi Jews (carried by about 1 in 20 Ashkenazi Jews vs. about 1 in 10 000 Europeans that are not Ashkenazi Jews) it is more likely that differences in population substructure between cases and controls is the main explanation of the reported association of p. P376L with CAD. Specifically, this striking difference in carrier frequency, together with a relatively small imbalance in the number of Ashkenazi Jews between CAD cases and controls, could introduce a false association of similar degree as the one reported.

In conclusion, our results do not support a relationship between elevated HDL-C levels due to genetically compromised SR-BI function and increased risk of CAD. These findings are in keeping with recent genetic and interventional studies failing to show causal relationship between HDL-C levels and atherosclerosis and support current dyslipidaemia guidelines.

Supplementary material

Supplementary material is available at European Heart Journal online.

Acknowledgements

The authors thank all the individuals who participated in this study and whose contribution made this work possible. We also thank our valued colleagues who contributed to the data collection and phenotypic characterization of clinical samples as well as to the genotyping and analysis of the whole-genome association data.

Funding

This work was supported by deCODE genetics/Amgen.

Conflict of interest: The authors A.H., P.S., G.T., G.T., B.O.J., G.A.A., U.T., D.F.G., H.H., and K.S. are affiliated with deCODE genetics/Amgen, Inc. and are employed by the company.

References

1. Townsend N, Wilson L, Bhatnagar P, Wickramasinghe K, Rayner M, Nichols M. Cardiovascular disease in Europe: epidemiological update 2016. Eur Heart J 2016; 37:2322–3245.
2. Emerging Risk Factors Collaboration, Angelantonio ED, Sarwar N, Perry P, Kaptoge S, Ray KK, Thompson A, Wood AM, Lewington S, Sattar N, Packard CJ, Collins R, Thompson SG, Danesh J. Major lipids, apolipoproteins, and risk of vascular disease. JAMA 2009; 302:1193–2000.
3. Brunham LR, Hayden MR. Human genetics of HDL: insight into particle metabolism and function. J Lipid Res 2015; 58:14–25.
4. Voight BF, Floreon GM, Orho-Melander M, Frikke-Schmidt R, Barbalic M, Jensen MK, Hindy G, Holm H, Ding EL, Johnson T, Schnukert H, Samani NJ, Clarke R, Hopewell JC, Thompson JF, Li M, Thorsteinsdottir G, Newton-Cheh C, Musunuru K, Pirinen C, Saleheen D, Chen L, Stewart AFR, Schillert A, Thorsteinsdottir U, Thorsson G, Anand S, Engen JC, Mortensen J, Ruder J, Jorgensen M, Pertti R, Martinei N, Girelli D, McKeown PP, Patterson CC, Epstein SE, Devaney J, Burnett MS, Mosse V, Ripatti S, Surakka I, Nieminen MS, Sinisalo J, Lokki M-L, Perola M, Havelunina A, de Faire U, Gigante B, Ingelsson E, Zeller T, Wild P, de Bakker P, Klungel OH, Maitland-van de Zee A-H, Peters BJM, de Boer A, Groebee DE, Kamphuisen PW, Deener VH, Ebers CC, Orland-Moret NC, Hoffer MH, Wijmenga C, Verschuren WMJM, Boer JMA, van der Schouw YT, Rasheed A, Frossard P, Demisse S, Willer C, Do R, Ordovas JM, Abecasis GR, Boehnke M, Mohlke KL, Daly MJ, Gudecu I, Burtt NP, Surti A, Gonzalez E, Purcell S, Gabriel S, Manugroot J, Peden J, Erdmann P, Willenborg C, Koenig IR, Fischer M, Hengstenberg C, Ziegler A, Buyskhaert I, Lambrecht D, Van de Werf F, Fox KA, El Moh])*NTE, Rubin D, Schrezenmier J, Schreiber S, Schafer A, Danesh J, Blankenburg S, Roberts R, McPherson R, Atkins H, Hall AS, Overvad K, Rimm E, Boerwinkle E, Tybjaerg-Hansen A, Cupples LA, Reilly MP, Melander O, Mannucci PM, Ardissino D, Siscovich D, Elloa R, Stefanosson K, O’Donnell CJ, Salomaa V, Rader DJ, Peltonen L, Schwartz SM, Alshuler M, Kathiresan S. Plasma HDL cholesterol and risk of myocardial infarction: a Mendelian randomisation study. Lancet 2012; 380:572–580.
5. Helgadottir A, Gretarsdottir S, Thorleifsson G, Hjartarson E, Sigurdsson A, Magnusdottir A, Jonadottir A, Kristjansson H, Sulem P, Oddsson A, Sveinbjornsson G, Steinthorssdottir V, Rafnar T, Masson G, Jonadottir J, Olafsson I, Eijolfsson G, Sigurdardottir O, Daneshpour MS, Khalil A, Dizzi F, Swinkels DW, Kiemenei L, Quyyumi AA, Levey AI, Patel RS, Hayrek SS, Gudmundsdottir I, Thorgergsson G, Thorsteinsdottir U, Gudbjartsson DF, Holm H, Stefanosson K. Variants with large effects on blood lipids and the role of cholesterol and triglycerides in coronary disease. Nat Genet 2016; 48:634–637.
6. Do R, Willer CJ, Schmidt EM, Sengupta G, Saez C, Pelosi GM, Gustafsson S, Kanoni S, Ganna A, Chen J, Buchloviol ML, Mora S, Beckmann JS, Bragg-Gresham JL, Chang H-Y, Demirkan A, Den Hertog HM, Donnelly LA, Ehret GB, Esko T, Feltos MF, Ferreire T, Fischer K, Fontanillas P, Fraser RM, Freidt FG, Gurdasani D, Heiklal K, Hypponen E, Isaacs A, Jackson AU, Johannson A, Johnson T, Kaikinen M, Kettunen J, Kleber ME, Lu X, Luan J, Lyyskiainen LP, Magnusson PKE, Mangnao M, Mihailov E, Montasser ME, Muller-Nurasyid M, Nolte IM, O’Connell JR, Palmer CD, Perola M, Petersen A-K, Sanna S, Saxena R, Service SK, Shah S, Shuging D, Sidore C, Song C, Stawbridge RJ, Surakka I, Tanaka T, Teslovi TM, Thorleifsson G, Van den Henik EG, Voigt BF, Volck KA, Waite LL, Wong A, Wu Y, Zhang W, Ahser D, Aski G, Barroso I, Been LF, Bolten JL, Bostany C, Brambilla P, Burnette MS, Chesnay Doney ASF, Döring A, Elliott P, Epstein SE, Eijolfsson G, Gigante B, Goodarzi MO, Grallert H, Gravito ML, Groves CJ, Hallmans G, Hartikainen A-L, Hayward C, Hernandez D, Hicks AA, Holm H, Hung Y-J, Illig T, Jones MR, Kaleb P, Kastelan JF, Khaw K-T, Kim E, Klepp N, Kornulainen P, Kumari M, Langenberg C, Lehmann T, Lin SY, Lindstrom J, Los JRF, Mach F, McArldie WL, Mesinger C, Mitchell BD, Muller G, Nagara G, Narsu N, Nieminen TV, Ntoubu RN, Olafsson I, Qng KK, Palotie A, Papanikou T, Pompoli C, Reilly MP, Ridker PM, Rivadeneira F, Rudn I, Ruokonen A, Samani N, Scharnh H, Seeley J, Silander J, Stančakova A, Strirups K, Swift AJ, Tielt J, Utterlinden AG, van Pelt LJ, Vedantam S, Wainwright TL, Bandinelli S, Bennett F, Bovet M, Boehm BO, Boomsma DI, Borelli JB, Bornstein SR, Bovet P, Burneyer M, Campbell H, Chakravarti A, Chambers JC, Chen Y-D, Collins FS, Cooper RS, Danesh J, Doudouss G, de Faire U, Fernell AB, Ferri`eres J, Ferrucci L, Liber G, Cooop G, Dudasn V, A. Helgadottir et al.
Rare SCAR1 mutations

Gyllensten U, Hamsten A, Harris TB, Hingaran A, Hirschhorn JN, Hofman A, Hovig KH, Hsing CA, Humphries SE, Hunt SC, Hveem K, Ibarraen C, Jarvelin M-R, Jula A, Kahaninen M, Kaprio J, Kesäniemi A, Kivinivi K, Kooper M, Kooistra J, Koudaas P, Krauss RM, Kuh D, Kuusisto J, Kyrola K, Laakso M, Lakka TA, Lind L, Lindgren CM, Martin NG, Marz W, McCarthy MI, McKenzie CA, Meneton P, Metasu A, Moldaen L, Morris AD, Munroe PB, Njastad I, Pedersen NL, Power C, Pongpanich P, Pramoonchaisri P, Quan JM, Rauramaa R, Salomaa V, Sanghera DK, Sarmaz-Schweinberger K, Shu WH, Shu-Yih ADNR Siegbahn A, Spector TD, Stefansson K, Strachan DP, Tayo BO, Tremoli E, Tuomilehto J, Vuustupa M, van Duijn CM, Vollenweider P, Wallentin L, Wareham NJ, Whitleft JB, Wolfenbuttel BHR, Alshuler D, Ordovas JM, Boerwinkle E, Palmer CNA, Thorsteindurardsson U, Chasman DI, Rotter J, Franks PW, Ripatti S, Cupples LA, Sandhu MS, Rich SS, Boehlecke M, Deloukas P, Mohlke KL, Ingelsson E, Abecasis GR, Daly MJ, Neale BM, Kathiresan S. Common variants associated with plasma triglycerides and risk for coronary artery disease. Nat Genet 2013; 45:1345–1352.

7. Barter PJ, Caulfield MF, Eknissson M, Gruny RD, Kastelein JJP, Komata M, Lopez-Sendon J, Mosca L, Tartif JC, Waters DD, Shear CL, Revkin JH, Buhr KA, Fisher MR, Tall AR, Brewer B. Effects of torcetrapib in patients at high risk for coronary events. N Engl J Med 2007;357:2109–2122.

8. Schwartz GG, Olsson AG, Abt M, Ballantyne CM, Barter PJ, Brummer J, Chaitman BR, Kastelein JJP, Kastelein JJP, Zhao J, Khan NA, Loscalzo J, Mora S, Rader DJ. Rare genetic variants and high-density lipoprotein: marching to a different drum. Arterioscler Thromb Vasc Biol 2009;29(9):1968–1975.

9. Landray MJ, Haynes R, Hopewell JC, Parish S, Aung T, Tomson J, Wallendszus K, Rader DJ, Butterworth AS, Howson JMM, Peloso GM, Stitziel NO, Danesh J, Kathiresan S, Metspalu A, Moilanen L, Morris AD, Munroe PB, Njølstad I, Pedersen NL, Power C, Pongpanich P, Pramoonchaisri P, Quan JM, Rauramaa R, Salomaa V, Sanghera DK, Sarmaz-Schweinberger K, Shu WH, Shu-Yih ADNR Siegbahn A, Spector TD, Stefansson K, Strachan DP, Tayo BO, Tremoli E, Tuomilehto J, Vuustupa M, van Duijn CM, Vollenweider P, Wallentin L, Wareham NJ, Whitleft JB, Wolfenbuttel BHR, Alshuler D, Ordovas JM, Boerwinkle E, Palmer CNA, Thorsteindurardsson U, Chasman DI, Rotter J, Franks PW, Ripatti S, Cupples LA, Sandhu MS, Rich SS, Boehlecke M, Deloukas P, Mohlke KL, Ingelsson E, Abecasis GR, Daly MJ, Neale BM, Kathiresan S. Common variants associated with plasma triglycerides and risk for coronary artery disease. Nat Genet 2013; 45:1345–1352.

10. Barter PJ, Caulfield MF, Eknissson M, Gruny RD, Kastelein JJP, Komata M, Lopez-Sendon J, Mosca L, Tartif JC, Waters DD, Shear CL, Revkin JH, Buhr KA, Fisher MR, Tall AR, Brewer B. Effects of torcetrapib in patients at high risk for coronary events. N Engl J Med 2007;357:2109–2122.

11. Schwartz GG, Olsson AG, Abt M, Ballantyne CM, Barter PJ, Brummer J, Chaitman BR, Kastelein JJP, Kastelein JJP, Zhao J, Khan NA, Loscalzo J, Mora S, Rader DJ. Rare genetic variants and high-density lipoprotein: marching to a different drum. Arterioscler Thromb Vasc Biol 2009;29(9):1968–1975.

12. Couzin-Frankel J. LIPID BIOLOGY. Why high “good cholesterol” can be bad. Science 2016;351:1166–1171.

13. Couzin-Frankel J. LIPID BIOLOGY. Why high “good cholesterol” can be bad. Science 2016;351:1166–1171.
Steinbrinksdottir T, Gudmundsdottir TS, Theodors A, Jonasson JG, Sigurdsson A, Bjornsdottir G, Jonsson JI, Thorarensen O, Ludvigsson P, Gudbjartsson H, Eyjolfsson GI, Sigurdsson O, Olafsson I, Amar DO, Magnusson OT, Kong A, Masson G, Thorsteinsdottir U, Helgason A, Sulem P, Stefansson K. Large-scale whole-genome sequencing of the Icelandic population. Nat Genet 2013;45:435–444.

Lek M, Karzezki KJ, Minikel EV, Samocha KE, Banks E, Fennell T, O'Donnell-Luna AH, Ware JS, Hill AJ, Cummings BB, Tukianien T, Bimbamp DM, Koscinski JA, Duncan LE, Estrada K, Zhou Y, Zou J, Pierce-Hoffman E, Berghout J, Cooper DN, DeFeaux N, DeFrato M, Do R, Flannick J, Fromer M, Gattikkar A, Goldstein J, Gupta N, Howrigan D, Kiezun A, Kurki M, Moonshine AL, Natarajan P, Orozco L, Peluso GM, Poplin R, Rivas MA, Ruano-Rubio V, Rose SA, Rudenner DM, Saha KR, Stenson PD, Stevens C, Thomas BP, Tsao G, Tusie-Luna MT, Weiberg B, Won H-H, Yu D, Alshuter DM, Ardasino D, Boehrke M, Danesh J, Donnelly S, Eloula R, Florez JC, Gabriel SB, Getz G, Glatt SJ, Hultman CM, Kathiresan S, Laakso M, Maccarroll S, McCarthy MI, McGovern D, McPherson R, Neale BM, Palotie A, Purcell SM, Saleheen D, Scharf JM, Sklar P, Sullivan PF, Tuomilehto J, Tsang MT, Watkins HC, Wilson JG, Daly MJ, MacArthur DG, Exome Aggregation Consortium. Analysis of protein-coding genetic variation in 60,706 humans. Nature 2016;530:285–291.

von Kampen O, Buch S, Notthofer M, Azaco L, Molina H, Brosch M, Erhart W, von Schönnens W, Egberts J, Seeger M, Arkin A, Babchun T, Franke A, Lerch MM, Mayerle J, Kratzer W, Boehm BO, Huse K, Schniewind B, Tiemann K, Jiang Z-Y, Han T-Q, Mittal B, Srivastava A, Fenger M, Jørgensen T, Schirnokokan R, Tonjes A, Wittenburg H, Stumvoll M, Kalhoff H, Larmert F, Tepel J, Puschel K, Becker T, Schreiber S, Plazter M, Volke Z, Kruczek M, Miquel JF, Schaffmayer C, Hampe J. Genetic and functional identification of the likely causative variant for colorectal gallstone disease at the ABCG8/B lithogenic locus. Hepatology 2013;57:2407–2417.

Webb TR, Erdmann J, Sturins KE, Stitziel NO, Masca NGD, Jansen H, Kanoni S, Nelson CP, Ferrario PG, König IR, Eisier J, Johnson AD, Hamby SE, Bethelhotz C, Ruusalepp A, Franzen O, Schadt EE, Bjorkergen JM, Weekie PE, Auer PL, Schick UM, Doney ASF, Donnelly LA, Asselot R, Merlini PA, Duga S, Marziliano N, Denny JC, Shaffer C, El-Mokhtari NE, Franke A, Heilmann S, Hengstenberg C, Hoffmann P, Holmen OL, Hveem K, Janson JH, Jöckel KH, Kessler T, Kriebel J, Lauwitz KL, Maroulis M, Martinelli N, McPherson M, Van Zuydam NR, Meisinger C, Esko T, Mihailov E, Escher SA, Alver M, Moebus S, Morris AD, Virtamo J, Nilipan Y, Olivier G, Provost S, AlQarawi A, Robertson NR, Akonianski KG, Reilly DF, Vogt TF, Yin W, Asselbergs FW, Kooperc M, Jackson RD, Stahl E, Müller-Nurasyid M, Strauch K, Varga T, Walderberg M, Zeng L, Chowdhury R, Saloman F, Ford I, Jukema JW, Amoueyl P, Konto J, Nordgreen DS, Ferrières J, Salehine D, Sattar N, Sures V, Rigotti A, Krieger M. PDZK1 is involved in vitamin E transport across the enterocyte. J Biol Chem 2013;281:19087–19096.

Schafer G, Guler R, Murray G, Brombacher F, Brown GD. The role of scavenger receptor class B type I (SR-BI) is involved in vitamin E transport across the enterocyte. J Biol Chem 2006;281:4739–4745.

Yesilaltay A, Kocher O, Pal R, Leiva A, Quintero V, Rigotti A, Krieger M. PDZK1 is required for maintaining hepatic scavenger receptor class B type I (SR-BI) activites involving endocytosis and alternative pathway associated with scavenger receptor class B-rich lipoprotein particles. Biochem J 1998;327:57–65.

Yuhanna I, Zhu Y, Cox BE, Hahner HD, Osborne-Lawrence S, Lu P, Marcel YL, Anderson RG, Mendelsohn ME, Hobbs HH, Shaul P. High-density lipoprotein binding to scavenger receptor class B type I (SR-BI) is involved in vitamin E transport across the enterocyte. J Biol Chem 2006;281:18975–18980.

Schafer G, Guler R, Murray G, Brombacher F, Brown GD. The role of scavenger receptor B1 in infection with mycobacterium tuberculosis in a murine model. PLoS One 2009;4:e8448.

Vishnyakova TG, Kurlander et al. Bocharov AR, Baranenka IN, Chen Z, Abu-Asab MS, Tsokos M, Malide D, Basso F, Remale A, Csako G, Eggerman TL, Patterson AP, CLA-1 and its splicing variant CLA-2 mediate bacterial adhesion and cytotoxic bacterial infection in mammalian cells. Proc Natl Acad Sci USA 2006;103:16888–16893.

Lei X-A, Guo L, Dressman JL, Asmis R, Smart EJ. A novel ligand-independent apoptotic pathway induced by scavenger receptor class B type I and suppressed by endocytosis-related endocytosis and high density lipoprotein. J Biol Chem 2005;280:19087–19096.

Stevens C, Avila BE, Neale BM, Kurki M, Ganna A, Graham D, Glaser B, Karzerowski KJ, Minikel EV. Insights into the genetic epidemiology of Crohn's and rare diseases in the Ashkenazi Jewish population. BioRxiv Prepr Serv Biol 2016;9:1–37.

IBD Exomes Portal, Cambridge, MA (http://ibd.broadinstitute.org, accessed March 2018).

38. Graillet H, Dupuis J, Bo JC, Dehghan A, Barbalic M, Baumpert J, Lu C, Smith NL, Uitterlinden AG, Roberts R, Khuseyinova N, Schnabel RB, Rice KM, Rivadeneira F, Hoogeveen RC, Fontes JD, Meisinger C, Keane JF, Lemaire R, Aulchenko YS, Vaxan RS, Ellis S, Hazon SL, van Duijn CM, Nelson JF, Marz W, Schunkert H, McPherson RM, Stenvil-Farrant HA, Putsy BM, Gieger C, Siscovick DS, Hofman A, Illig T, Cushman M, Yamamoto JF, Rotter JI, Larson MG, Stewart AR, Hofer H, Witteman JCM, Tracy RP, Koenig W, Benjamin EJ, Ballantyne CM. Eight genetic loci associated with variation in lipoprotein-associated phospholipase A2 mass and activity and coronary artery disease: meta-analysis of genome-wide association studies from five community-based studies. Eur Heart J 2012;33:238–251.

39. Major JM, Yu K, Wheeler W, Zhang H, Corneil MS, Wright ME, Yeager M, Snyder K, Weinstein SJ, Mundlos A, Ellisens H, Hurdle M, Haza A, McCarty CA, Hendrickson S, Virtamo J, Hunter D, Chao Y, Kraft P, Albans D. Genome-wide association study identifies common variants associated with circulating vitamin E levels. Hum Mol Genet 2011;20:3876–3883.

40. Macnich A, Nau AC, Herrington D, Post W, Rich SS, Rodrigues A. Association of SCARB1 variants with subclinical atherosclerosis and incident cardiovascular disease: the multi-ethnic study of atherosclerosis. Arterioscler Thromb Vasc Biol 2012;32:191–1999.

41. Rebul E, Klein A, Bietrix F, Geize B, Malezet-Desmoulin C, Schneider M, Margotat A, Lagrost L, Collet X, Borel P. Scavenger receptor class B type I (SR-BI) is involved in vitamin E transport across the enterocyte. J Biol Chem 2006;281:4739–4745.

42. Schafer G, Guler R, Murray G, Brombacher F, Brown GD. The role of scavenger receptor B1 in infection with mycobacterium tuberculosis in a murine model. PLoS One 2009;4:e8448.

43. Vishnyakova TG, Kurlander R, Bocharov AR, Baranenka IN, Chen Z, Abu-Asab MS, Tsokos M, Malide D, Basso F, Remale A, Csako G, Eggerman TL, Patterson AP, CLA-1 and its splicing variant CLA-2 mediate bacterial adhesion and cytotoxic bacterial infection in mammalian cells. Proc Natl Acad Sci USA 2006;103:16888–16893.

44. Li X-A, Guo L, Dressman JL, Asmis R, Smart EJ. A novel ligand-independent apoptotic pathway induced by scavenger receptor class B type I and suppressed by endocytosis-related endocytosis and high density lipoprotein. J Biol Chem 2005;280:19087–19096.

45. Stevens C, Avila BE, Neale BM, Kurki M, Ganna A, Graham D, Glaser B, Karzerowski KJ, Minikel EV. Insights into the genetic epidemiology of Crohn's and rare diseases in the Ashkenazi Jewish population. BioRxiv Prepr Serv Biol 2016;9:1–37.

46. IBD Exomes Portal, Cambridge, MA (http://ibd.broadinstitute.org, accessed March 2018).