Regulation by Na\(^+\) and Ca\(^{2+}\) of Renal Epithelial Na\(^+\) Channels Reconstituted into Planar Lipid Bilayers

ISKANDER I. ISMAILOV, BAKHRAM K. BERDIEV, and DALE J. BENOS
From the Department of Physiology and Biophysics, The University of Alabama at Birmingham, Birmingham, Alabama 35294

ABSTRACT Purified bovine renal epithelial Na\(^+\) channels when reconstituted into planar lipid bilayers displayed a specific orientation when the membrane was clamped to \(-40\) mV (cis-side) during incorporation. The trans-facing portion of the channel was extracellular (i.e., amiloride-sensitive), whereas the cis-facing side was intracellular (i.e., protein kinase A-sensitive). Single channels had a main state unitary conductance of \(40\) pS and displayed two subconductive states each of \(12-13\) pS, or one of \(12-13\) pS and the second of \(24-26\) pS. Elevation of the \([\text{Na}\)^\(^+\)] gradient from the trans-side increased single-channel open probability (\(P_o\)) only when the cis-side was bathed with a solution containing low \([\text{Na}\)^\(^+\)] (<30 mM) and \(10-100\) \(\mu\)M \([\text{Ca}\)^\(^{2+}\]). Under these conditions, \(P_o\) saturated with increasing \([\text{Na}\)^\(^+\)]\(_{\text{inc}}\). Buffering of the cis compartment \([\text{Ca}\)^\(^{2+}\]) to nearly zero (<1 nM) with 10 mM EGTA increased the initial level of channel activity (\(P_o = 0.12 \pm 0.02\) vs \(0.02 \pm 0.01\) in control), but markedly reduced the influence of both cis- and trans- \([\text{Na}\)^\(^+\]) on \(P_o\). Elevating \([\text{Ca}\)^\(^{2+}\)]\(_{\text{inc}}\) at constant \([\text{Na}\)^\(^+\]) resulted in inhibition of channel activity with an apparent \(K_c\) of \(10-100\) \(\mu\)M. Protein kinase C-induced phosphorylation shifted the dependence of channel \(P_o\) on \([\text{Ca}\)^\(^{2+}\]) to \(1-3\) \(\mu\)M at stationary \([\text{Na}\)^\(^+\]). The direct modulation of single-channel \(P_o\) by Na\(^+\) and Ca\(^{2+}\) demonstrates that the gating of amiloride-sensitive Na\(^+\) channels is indeed dependent upon the specific ionic environment surrounding the channels.

INTRODUCTION
Channel-mediated apical Na\(^+\) entry in Na\(^+\)-reabsorbing epithelia such as renal collecting tubules, frog skin, and toad urinary bladder is rate limiting for net transepithelial Na\(^+\) transport. In mammalian kidney these channels are under hormonal control (aldosterone, vasopressin) and play a prominent role in regulating whole body salt and water homeostasis. Patch clamp studies of native Na\(^+\) reabsorbing epithelia have revealed a wide array of amiloride-sensitive Na\(^+\) channels displaying different conductances, open and closed times, cation selectivities, and amiloride sensitivities (Benos, Awayda, Ismailov, and Johnson, 1995; Palmer, 1992; Smith and...
Benos, 1991). Expression cloning of a rat distal colon Na\(^+\) channel yielded a channel possessing characteristics similar to those of native Na\(^+\) channels found in renal cortical collecting tubule (Canessa, Horisberger, and Rossier, 1993; Canessa, Schild, Buell, Thoreus, Gantschl, Horisberger, and Rossier, 1994; Palmer and Frindt, 1986). The kinetic properties of purified and reconstituted bovine renal papillary Na\(^+\) channels are distinctly different from those of either the cloned or native cortical collecting duct channel. However, most known regulatory pathways of epithelial Na\(^+\) channels like protein kinase A and C phosphorylation and carboxymethylation remain intact after reconstitution of this biochemically purified protein complex (Oh, Smith, Bradford, Keeton, and Benos, 1993; Ismailov, McDuffie, and Benos, 1994a; Ismailov, McDuffie, Sariban-Sohraby, Johnson, and Benos, 1994b). Therefore, even though the exact molecular relationship between the various kinetic types of epithelial Na\(^+\) channels is far from clear, the fact that biochemical regulation of purified renal Na\(^+\) channel can be preserved in a physiologically relevant manner affords the opportunity to dissect these regulatory pathways in a direct and meaningful way.

Epithelial Na\(^+\) channels are exposed to a highly variable [Na\(^+\)] (0–150 mM) on their extracellular (luminal) surface, and to 5–30 mM Na\(^+\) on their intracellular surface. Several studies have demonstrated that both extracellular and intracellular [Na\(^+\)] modulate the activity of these channels. Increasing luminal Na\(^+\) above 100–150 mM resulted in a saturation of Na\(^+\) entry in frog skin (Fuchs, Larsen, Lindemann, 1977), toad urinary bladder (Li, Palmer, Edelman, and Lindemann, 1982; Palmer, Edelman, and Lindemann, 1980), Necturus urinary bladder (Thomas, Suzuki, Thompson, and Schultz, 1983), and rabbit descending colon (Thompson and Sellin, 1986; Turnheim, Thompson, and Schultz, 1983). This saturation of macroscopic Na\(^+\) current by external [Na\(^+\)] was called “Na\(^+\) self inhibition”. However, increasing luminal [Na\(^+\)] in these experiments was inevitably associated with a rise in intracellular [Na\(^+\)]; hence, it was unclear from these findings whether external or internal [Na\(^+\)] was responsible for the reduction in Na\(^+\) transport. The experimental evidence for down regulation of apical Na\(^+\) entry by cytoplasmic [Na\(^+\)] (called feedback regulation) was provided in many other studies using frog skin (MacRobbie and Ussing, 1961; Biber, 1971; Erlij and Smith, 1973; Rick, Dorge, and Nagel, 1975; Cuthbert and Shum, 1977; Helman, Nagel, and Fisher, 1979), toad bladder (Hong and Essig, 1976), toad skin (Hviid Larsen, 1973), and rabbit urinary bladder (Lewis, Eaton, and Diamond, 1976).

This feedback regulation of apical Na\(^+\) entry by cytosolic [Na\(^+\)] is complicated by the fact that this effect requires Ca\(^{2+}\). Inhibition of basolateral Na,K-ATPase with ouabain produced a decrease of apical Na\(^+\) entry only if the serosal medium contained >0.1 mM Ca\(^{2+}\) (Chase, 1984; Garty and Lindemann, 1984; Palmer, 1985). Moreover, addition of ouabain to the solutions bathing rat renal cortical collecting tubules decreased single amiloride-sensitive Na\(^+\) channel open probability (P\(_{o}\)) concomitant with an increase in intracellular [Ca\(^{2+}\)] (Silver, Frindt, Windhager, and Palmer, 1993). This decrease in channel activity by ouabain was prevented if intracellular [Ca\(^{2+}\)] was not permitted to increase. However, in all of the aforementioned studies using intact epithelia, several parameters changed simultaneously, such as intracellular pH, Na\(^+\), and Ca\(^{2+}\), apical membrane voltage, et cetera. Thus, the de-
tailed mechanisms by which intra- or extracellular [Na\(^+\)] and/or [Ca\(^{2+}\)] ions regulate these channels remain unclear.

This report describes the findings of experiments that tested the hypothesis that [Na\(^+\)] and [Ca\(^{2+}\)] directly affect the function of renal amiloride-sensitive Na\(^+\) channels in a cell-free model system. Na\(^+\) channels were immunopurified from bovine renal papillary collecting ducts (Oh and Benos, 1993a) and reconstituted into planar lipid bilayers. These experiments were thus not confounded by uncontrolled changes in other variables such as pH, voltage, or number of functional channels. We found that (a) single-channel \(P_o\) increased with increasing [Na\(^+\)]\text{cis}, but only if the cis compartment contained 30 mM Na\(^+\) and >5 \(\mu\)M Ca\(^{2+}\); (b) \(P_o\) saturated with increasing [Na\(^+\)]\text{trans}; reducing [Na\(^+\)]\text{cis} increased \(P_o\) at any [Na\(^+\)]\text{trans}; (c) buffering of the cis [Ca\(^{2+}\)] to <1 nM with 10 mM EGTA increased the initial level of channel activity (\(P_o = 0.12 \pm 0.02 \text{ vs } 0.02 \pm 0.01\)), but markedly reduced the influence of both cis- and trans-[Na\(^+\)] on \(P_o\); and (d) protein kinase C (PKC)-induced phosphorylation shifted the dependence of channel \(P_o\) on [Ca\(^{2+}\)]\text{cis} from 10–100 \(\mu\)M to 1–3 \(\mu\)M.

MATERIALS AND METHODS

Materials

Chemicals were obtained from the following sources. QUAT (quaternary amine) and SP (sulfo-propyl) ion-exchange cartridges were purchased from FMC BioProducts (Rockland, ME). Phospholipids and dioctanoyl glycerol were purchased from Avanti Polar Lipids, Inc. (Alabaster, AL). Cholesterol was purchased from Sigma Chemical Co. (St. Louis, MO), and was oxidized by bubbling oxygen through a 4% cholesterol solution in octane at the octane boiling point of 126°C (Tien et al., 1966). Protein kinase C (mixture of \(\alpha, \beta, \text{and } \gamma\) isoforms) was purchased from Upstate Biotechnology, Inc. (Lake Placid, NY). All other chemicals were reagent grade, and all solutions were made with distilled, deionized water and filter sterilized before use (Sterivex-GS, 0.22-\(\mu\)m filter, Millipore Corp., Bedford, MA).

Methods

Immunopurification of epithelial Na\(^+\) channel protein from bovine kidney papillary collecting tubules was performed as described previously (Oh and Benos, 1993a).

Reconstitution of Channel Protein into Lipid Vesicles

Proteoliposomes were made by passing detergent solubilized, purified channel proteins through a detergent removing Extracti-Gel D column (Pierce Chemical Co., Rockford, IL) as described previously (Oh and Benos, 1993b). Briefly, 0.5 ml of Extracti-Gel D suspension was poured into a Poly-Prep chromatography column (0.8 \(\times\) 4 cm, Bio-Rad Laboratories, Hercules, CA), and the gel was equilibrated with 10 column volumes of 10 mM Na\(_2\)HPO\(_4\) buffer (pH 7.4) containing 0.5% egg phosphatidylcholine. Solubilized proteins (0.15 ml) were then applied to the equilibrated Extracti-Gel D column and eluted with 10 mM Na\(_2\)HPO\(_4\) buffer (pH 7.4) containing 0.5% egg phosphatidylcholine. Reconstituted proteoliposomes were stored at \(-70^\circ\text{C}\).

Planar Lipid Bilayers

Bilayer membranes, composed of a mixture of 2:1:2 (wt/wt/wt) diphytanoyl-phosphatidylethanolamine, diphytanoyl-phosphatidylserine, and oxidized cholesterol in \(n\)-octane (final lipid concent-
tration = 25 mg/ml), were formed with a fire polished glass capillary over a 200-μm aperture drilled in a polystyrene cup. Bilayer formation was monitored by the increase in membrane capacitance (final value: 300–400 pF). Membranes were bathed with salt solutions according to the specific experimental design (see figure legends). In all cases, however, solutions were buffered to pH 7.4 with 10 mM MOPS. Na+ gradient experiments were established by replacing NaCl with equimolar N-methyl-D-glucamine chloride (NMDG-Cl), thus maintaining identical the osmolarity in both the cis and trans chambers. Reconstituted proteoliposomes were spread over a preformed bilayer with a fire polished glass capillary from the trans side with the membrane being voltage-clamped to −40 mV (cis side with respect to trans). Channel incorporation was indicated by the appearance of quantal step increases in current with applied voltage.

Current measurements were performed with a high gain amplifier circuit (Alvarez, Benos, and Latorre, 1985). The cis chamber was connected to a pulse generator that controlled membrane potential vs ground. The trans chamber was held at virtual ground via connection to a current-to-voltage converter (OP 101, Burr-Brown) with a 1 GΩ feedback resistor. Electrical continuity was provided by a 3 M NaCl 3% agar bridge and Ag/AgCl electrode. Currents were monitored on a strip chart recorder (EasyGraf Recorder TA 240, Gould Electronics) and/or a digital storage oscilloscope, and were stored unfiltered on beta VCR tape using a Vetter model 20 digital data recorder (A. R. Vetter, Co., Inc., Rebersburg, PA). Current records were played back, low-pass filtered at the desired frequency through an 8-pole Bessel filter (902 LPF, Frequency Devices, Inc., Haverhill, MA), and sampled at 1 KHz using a Digidata 1200 interface and pCLAMP 5.6 software (Axon Instruments, Burlingame, CA).

Data Analysis and Presentation

Only records from preparations in which a single channel was incorporated into the bilayer were chosen for experimentation to simplify data analysis. This was confirmed for each recording by phosphorylating the channel at the end of each experiment to reveal the possible presence of silent channels as described previously (Ismailov et al., 1994a). If phosphorylation increased the total number of active channels in the membrane, the experiment was not included. This was an infrequent occurrence (24/253 experiments), because the channel-containing material (liposomes) was diluted and sonicated at 4°C for 30 s to produce empirically a vesicular preparation yielding primarily only single-channel incorporations. Single-channel analysis was performed on records 3–15 min in duration. The mean current (I) over the period of observation was calculated using the events list generated by pCLAMP software and the equation:

\[I = \frac{\sum_{m=0}^{M} i_m \cdot t_m}{\sum t_m} \]

where \(i_m \) is event current (all levels, including zero level); \(t_m \) is an event dwell time, and \(M \) is total number of events.

Single-channel open probability was calculated as follows:

\[P_o = \frac{I}{N \cdot i} \]

where \(N \) is total number of channels (always equal to 1 in these experiments), and \(i \) is the unitary current determined from all points current amplitude histograms produced by pCLAMP. The dashed line in each figure indicates the zero-current level. All voltages in text and in figures are given for cis compartment with respect to virtually grounded trans compartment. Each experimental condition was repeated a minimum of three times.
Kinetic treatment of steady state membrane transport data is often done utilizing the Michaelis-Menten formulation (Lakshminarayanaah, 1984). The observations that the curves describing the relationship between channel open probability and sodium concentration are rectangular hyperbolas, and that linearization of these plots (see Figs. 5 and 6 below) conform with a high degree of correlation to reciprocal rearrangements of the Michaelis-Menten equation substantiate the use of this formulation in the present study. There are other mathematical relationships (e.g., $P_o = \log [Na]$) that can adequately describe the experimental P_o vs $[Na]$ curves. However, these formulations cannot account for the saturation of these curves and, most importantly, fail to describe competition effects with other cations. The basic Michaelis-Menten equation can be written as:

$$P_o = \frac{P_o^{\max} \cdot [Na^+]}{K_s + [Na^+]}$$

where P_o^{\max} represents the maximal (saturating) level of P_o that can be achieved under a given set of conditions, and K_s is operationally defined as the concentration value of Na$^+$ required to maintain P_o at one half its saturating level.

RESULTS

Renal Amiloride-sensitive Na$^+$ Channels Display Subconductive States

A representative single-channel recording after reconstitution of an immunopurified amiloride-sensitive renal Na$^+$ channel into a planar lipid bilayer is presented in Fig. 1 A. Typically, when these channels are incorporated under symmetrical 100 mM NaCl conditions, they display a very low basal activity ($P_o \sim 0.02$). Close examination of the record reveals the existence of additional single-channel events that are smaller in amplitude and less frequent than the majority of channel openings (arrows). An all points amplitude histogram generated from such a record indicates only two peaks, one for an open and one for a closed state (Fig. 1 B, closed circles). These same two peaks were present in records of up to 20 min. However, a detailed examination of the histogram spreadsheets revealed a relatively increased number of points in bins that correspond to intermediate states. To examine this phenomenon more closely, an events analysis of a single-channel record of 15-min length was generated. Records were filtered at 200 Hz before the acquisition, and were sampled at 1,000 Hz. Event detection thresholds were set at 50% of the amplitude of the smaller events and 5 ms for each event duration. An events amplitude histogram of the single Na$^+$ channel current is presented in Fig. 1 B. In addition to the peak main state current level of -1.8 pA, there were two additional current levels of -0.65 and -1.2 pA. The event dwell time histograms for each of these conductance states are presented in Fig. 1 C. Level 0, or closed state dwell time histogram, was fitted by a single exponential with time constant of 650 ± 31 ms $(N = 4)$. Dwell time histograms for each open state were best fitted by a single exponential. Time constants for levels 1 and 2 were not different from each other $(11 \pm 4$ and 14 ± 3 ms, respectively; $N = 4$), but were substantially different from level 3 $(52 \pm 7$ ms; $N = 4$). Constructing events amplitude and dwell time histograms from the same records with higher filter cut-off frequencies yielded essentially the same results, with the exception of a lowered signal-to-noise ratio.
FIGURE 1. (A) A typical single-channel recording of immunopurified amiloride-sensitive renal sodium channel reconstituted into planar lipid bilayer. Holding potential -40 mV (referenced to the trans compartment). Bathing solution contained symmetrical 100 mM NaCl, 10 mM MOPS, pH 7.5. (Dashed line) Zero-current level; (dotted lines) channel open-state levels. This record was filtered at 200 Hz using an 8-pole Bessel filter before the acquisition and was sampled at 1,000 Hz using a Digidata 1200 interface. Arrows indicate lower conductance states. (B) All points and events amplitude histogram of a single-channel current recording. Events (bars) and all points (closed circles) amplitude histograms were generated by pCLAMP software from a record of 15-min length recorded as described in A. Event detection thresholds were 50% of maximal amplitude and 5 ms for every event duration. Numbers next to graphs correspond to current levels as indicated in A. Histograms were fitted with Gaussian functions. (C) Single-channel events dwell time histograms. Values were calculated from single-exponential fits for closed and open states, respectively. Histograms were constructed from 1,539, 286, 292, and 579 events for levels 0 through 3, respectively.

Open Probability of Renal Na⁺ Channel May Be Altered with [Na⁺]

The existence and relative proportion of these three conductance states remained constant when [Na⁺] gradients of different magnitude and direction were imposed across a channel-containing bilayer (Fig. 2). Elevating the trans-to-cis [Na⁺] gradient by lowering [Na⁺]c results in an increase in the number of channel openings, as can be seen in single-channel records. However, at each [Na⁺]c, the relative proportion of the two smaller current levels did not change (namely 17, 17, and 66% of the total, for levels 1, 2, and 3, respectively). Single-channel open–dwell time his-
Figure 2. A single bovine renal amiloride-sensitive sodium channel in a planar lipid bilayer bathed with asymmetrical sodium solutions. Records for +80 mV (top trace, voltage is referenced to the trans compartment) and −80 mV (bottom trace) are shown. (Dashed line) Zero-current level. Bathing solution in trans compartment contained 100 mM NaCl, 10 mM MOPS, pH 7.5; cis compartment contained NaCl as indicated for each pair of traces, plus 10 mM MOPS, pH 7.5. Records were filtered at 100 Hz using an 8-pole Bessel filter before the acquisition and were sampled at 1,000 Hz using a Digidata 1200 interface.

tograms derived from the record of channel activity when the bathing solutions contained 100 mM [NaCl]_{trans} and 10 mM [NaCl]_{cis} revealed that the time constants for the two putative subconductive states remained the same as those observed under symmetrical [Na⁺] conditions ($\tau_0^1 = 8 \pm 5$ ms and $\tau_0^2 = 9 \pm 3$ ms ($N = 6$) vs $\tau_0^1 = 11 \pm 4$ ms and $\tau_0^2 = 14 \pm 3$ ms ($N = 4$), respectively). Interestingly, the open dwell-time constant for level 3 (τ_0^0, main open state) increased threefold over that observed under symmetrical salt solutions [135 ± 18 ms ($N = 6$) vs 52 ± 7
ms ($N = 4$), respectively], while the closed time constant τ_c decreased from 650 ± 31 ms ($N = 4$) to 250 ± 35 ms ($N = 6$).

Mean current-voltage relationships of this renal Na\(^+\) channel at constant [Na\(^+\)]$_{\text{in}}$ (i.e., 100 mM) are plotted on the left side of Fig. 3. These curves shifted with the

![Figure 3](image)

Figure 3. Current-voltage relationships of single renal amiloride-sensitive sodium channels in planar lipid bilayers bathed with asymmetrical Na\(^+\) solutions. [Na\(^+\)]$_{\text{in}}$ was varied at constant [Na\(^+\)]$_{\text{out}}$ (A) and [Na\(^+\)]$_{\text{out}}$ was varied with [Na\(^+\)]$_{\text{in}}$ held constant (B). Left side depicts mean current-voltage relationships, right side depicts single-channel unitary current-voltage relationships. Points in the plots are Mean \pm SD for N of three to eight experiments at each concentration. Error bars for the right panels are smaller than symbol size.

Na\(^+\) gradient in a manner such that the measured reversal potentials for each gradient condition were within one standard deviation of that calculated from the Nernst equation. Unitary current-voltage relationships (right side of Fig. 3) independently confirm that this shift of reversal potential was Nernstian. The slopes of
the individual mean current-voltage curves decreased with increasing [Na\(^+\)]\textsubscript{cis} when [Na\(^+\)]\textsubscript{trans} was held constant. This slope change in the mean current-voltage plots was not as pronounced when [Na\(^+\)]\textsubscript{cis} was maintained at 100 mM and [Na\(^+\)]\textsubscript{trans} was varied (Fig. 3 B). When unitary slope conductance was plotted vs either [Na\(^+\)]\textsubscript{cis} or [Na\(^+\)]\textsubscript{trans} the resultant curves show saturation (Fig. 4). The experimental points were fit with a Michaelis-Menten equation:

\[
G_i = \frac{G_{\text{max}} \cdot [\text{Na}^+]_{i}}{K_i + [\text{Na}^+]_{i}}
\]

where \(G_i\) is unitary slope conductance, and \(G_{\text{max}}\) is maximal conductance. These curves yielded \(K_i\) values for [Na\(^+\)]\textsubscript{cis} and [Na\(^+\)]\textsubscript{trans} of 9.72 ± 0.98 mM (\(N=5\)) and 9.63 ± 0.92 mM (\(N=5\)), respectively. These \(K_i\) values are lower than the \(K_i\) values of 45–55 mM reported earlier for this same renal Na\(^+\) channel (Oh and Benos, 1993). In those earlier experiments, the [Na\(^+\)] of both the cis and trans compartments were varied simultaneously, not independently as done here. In two additional experiments in which [Na\(^+\)]\textsubscript{cis} and [Na\(^+\)]\textsubscript{trans} were changed at the same time, \(K_i\) values of 41 and 46 mM for plots vs [Na\(^+\)]\textsubscript{cis} and [Na\(^+\)]\textsubscript{trans} respectively.

![Figure 4](image-url)
served. P_o was maximal when $[\text{Na}^+]_{\text{i}}$ was 30 mM (Fig. 5, upper right panel). Double reciprocal (Lineweaver-Burk) plots of these data (Fig. 5, lower panel) suggest an uncompetitive interaction between trans and cis sodium ions. These plots also demonstrate that elevating $[\text{Na}^+]_{\text{i}}$ shifts the equilibrium constant (K_e) for $[\text{Na}^+]_{\text{trans}}$ to lower values, from $K_e = 100 \pm 12$ mM $[\text{Na}^+]_{\text{trans}}$ at 10 mM $[\text{Na}^+]_{\text{cis}}$ to $K_e = 25 \pm 4$ mM $[\text{Na}^+]_{\text{trans}}$ at 50 mM $[\text{Na}^+]_{\text{cis}}$, thus prohibiting an increase in P_o with increasing $[\text{Na}^+]_{\text{trans}}$.

![Graphs showing open probability as a function of sodium concentration and calcium concentration.](image)

Figure 5. Sodium concentration dependence of renal amiloride-sensitive sodium channel open probability in presence of calcium. Bilayers containing a reconstituted channel were bathed with asymmetrical salt solution (see legends on the plot) and were held at −80 mV. Bottom panel depicts Lineweaver-Burk double reciprocal plot of data presented in the top left. Individual plots were fitted to linear regression. Points in the plots are Mean ± SD for N of three to five experiments performed at each $[\text{Na}^+]$.

Calcium Affects the Sodium Dependence of Channel Activity

All the above experiments were performed in solutions containing 10 μM Ca²⁺ as measured by Fura-2. To test the hypothesis that intracellular $[\text{Ca}^{2+}]$ may influence the activity of these amiloride-sensitive Na⁺ channels, we reexamined the $[\text{Na}^+]$ dependencies of channel activity when $[\text{Ca}^{2+}]$ was reduced to <1 nM by buffering with 10 mM EGTA. Basal channel activity was significantly increased by this maneuver (to a P_o of ~0.1). Notably, the dependence of P_o on either cis or trans $[\text{Na}^+]$ was markedly reduced under these experimental conditions (Fig. 6).
Figure 6. Sodium concentration dependence of renal amiloride-sensitive sodium channel open probability in absence of calcium. Bilayers containing a reconstituted Na⁺ channel were bathed with 10 mM EGTA-buffered asymmetrical salt solution (see legends on the plot) and were held at −80 mV. Points in the plots are mean ± SD for an N of four experiments performed at each [Na⁺].

To further define the role of Ca²⁺ in modulating the effect of trans [Na⁺] on channel Po, experiments in which [Ca²⁺] was varied were performed. Up to this point Ca²⁺ was either present ([Ca²⁺] = 10 μM) or absent ([Ca²⁺] < 1 nM) on both sides of the bilayer. The effect of [Ca²⁺] on Po was evident only from the cis side; reduction of [Ca²⁺] trans to <1 nM had no effect whatsoever on channel properties (data not shown). Thus, experiments were performed in which [Ca²⁺] cis was varied, while maintaining the trans bathing solution at <1 nM [Ca²⁺]. Representative single-channel records of these experiments are shown in Fig. 7. Under control conditions (<1 nM [Ca²⁺]), single-channel Po averaged 0.11 ± 0.02 for all tested [Na⁺] cis and [Na⁺] trans. Closed and open dwell-time histograms for the main and two subconductive states in <1 nM-[Ca²⁺] conditions were virtually the same as was described for trans-to-cis sodium gradient experiments (see below). Inhibition of channel activity was observed when [Ca²⁺] cis was increased above 5 μM. Single-channel Po decreased to 0.09 ± 0.01 and 0.02 ± 0.01 when [Ca²⁺] cis was raised to 5 and 25 μM, respectively. Events amplitude histograms (Fig. 7 B) derived from these records revealed that the relative proportion of each conduction state remained the same at any [Ca²⁺] cis, but that new shoulders appear on the peaks, suggestive of fast flickering behavior of the channel. Fig. 7 C depicts closed and open time histograms of these channels in the presence of 25 μM [Ca²⁺] cis. These histograms indicate that channel inhibition occurred because of a decrease in both open and closed times of the channel. Interestingly, these effects of calcium were minimal when [Na⁺] cis was maintained at 10 mM. Elevating [Na⁺] cis resulted in a leftward shift of the Po vs [Ca²⁺] cis dose-response curve (Fig. 8).

Protein Kinase C Induced Phosphorylation of Renal Amiloride-sensitive Na⁺ Channels Shifts Their Sensitivity to Sodium and Calcium.

It has been reported that protein kinase C inhibits the activity of immunopurified renal Na⁺ channels subsequent to activation with protein kinase A (Oh and Benos,
FIGURE 7. (A) Effects of calcium on activity of immunopurified renal amiloride-sensitive sodium channel reconstituted into planar lipid bilayers. Records shown are for -80 mV holding potential. Bilayers containing reconstituted channels were bathed with asymmetrical salt solutions (10 mM Na\textsubscript{in} / 100 mM Na\textsubscript{trans} 10 mM MOPS, pH 7.5). Medium was buffered with 10 mM Ca-EGTA to achieve the desired free Ca$^{2+}$ concentration. (B) All points and events amplitude histogram of single amiloride-sensitive renal sodium channel current at different [Ca$^{2+}$]\textsubscript{cis}. Events list was generated by pCLAMP software from the record of 15-min length with 50% amplitude detection threshold and 5-ms duration threshold. All points amplitude histograms were fitted with Gaussian functions. (C) Events dwell time histograms of single amiloride-sensitive renal sodium channel current at 25 μM [Ca$^{2+}$]\textsubscript{cis}. Histograms were constructed from 4,825, 877, 827, and 1,505 events for levels 0 through 3, respectively. Values were calculated from single and double-exponential fits of the data for levels 1 through 3 (open state) and double-exponential fits for level 0 (closed state).
To study the mechanism of PKC action in the absence of possible interactions between these two protein kinases, we used an [Na⁺] gradient to increase the initial level of activity. Fig. 9 depicts representative current traces from these experiments. Traces for ±80 mV are presented. Under control conditions, the channel had an open probability of 0.11 ± 0.01 (N = 3). Addition of PKC while elevating [ATP] in the cis bathing solution resulted in a progressive inhibition of channel activity. Moreover, there were bursts of flickery-type channel openings upon phosphorylation, in contrast to the relatively long events seen before ATP addition. This phosphorylation reaction required the presence of diacyl glycerol (DAG) and ATP in the cis compartment. Diacyl glycerol and ATP dose-response curves are presented in Fig 10. These curves have a sigmoid shape and were used to choose the conditions for the subsequent [Ca²⁺] dose-response experiments. In separate ex-
periments (N = 10), addition of ATP or PKC alone, or in combinations with DAG to the trans bathing solution was without effect.

Current recordings of these latter experiments are shown as Fig 11. Again, Ca$^{2+}$ was effective only when was added to the cis side of the bilayer. Characteristically, much lower concentrations of Ca$^{2+}$ inhibited channel activity following PKC-mediated phosphorylation. Fig. 12 depicts the resulting [Ca$^{2+}$] dose-response curves. A leftward shift of the curves towards more physiological [Ca$^{2+}$] was observed for all of the tested concentrations of [Na$^+$]$_{trans}$ both in the absence and presence of PKC-mediated phosphorylation. However, it is also apparent from these data that [Na$^+$]$_{trans}$ has much less of an effect on channel open probability subsequent to treatment with PKC.

DISCUSSION

Immunopurified Renal Na$^+$ Channels Have Multiple Subconductive States

The presence of subconductive states in current recordings of amiloride sensitive Na$^+$ channels incorporated into planar lipid bilayers has been previously reported (Sariban-Sohraby et al., 1984; Garty and Benos, 1988). This phenomenon remained largely unexplored in these earlier studies, although it was suggested that the variability in conductance could be related to the existence of possible different stable conductive states, as it is the case for the gramicidin A channel (Busath and Szabo, 1981). On the other hand, based on the conductance vs Na$^+$ activity curves constructed for two extremes of channel openings (namely, 4 and 44 pS), Olans, Sariban-Sohraby, and Benos (1984) proposed that two populations of amiloride sensitive Na$^+$ channels could also account for the data. Two channels with different conductances and Na$^+$ sensitivity were also reported by Hamilton and Eaton.
FIGURE 9. Protein kinase C induced phosphorylation of immunopurified amiloride-sensitive sodium channel reconstituted into planar lipid bilayer. Holding potential ±80 mV. Bathing solution in trans compartment contained 100 mM NaCl, 10 mM MOPS, pH 7.5; cis compartment contained NaCl as indicated for each trace, 2.3 μM [Ca²⁺], 5.4 ng/ml PKC, 5 μM DAG, 100 μM ATP, 10 mM MOPS, pH 7.5. EGTA (mM) was present on both sides. PKC, DAG, or ATP alone DAG in combination with ATP had no effect on single-channel properties (N = 10 for each condition, data not shown). Records were filtered at 100 Hz using an 8-pole Bessel filter before the acquisition and were sampled at 1,000 Hz using Digidata 1,200 interface.

(1986a,b) in patches of A6 cells, and by Ling, Hinton, and Eaton (1991) in cell-attached patches of rabbit cortical collecting tubule primary cultures grown on collagen supports in the presence of aldosterone. However, the alternate possibility that these channels are not different biochemical entities but result from a mani-
festation of different subconductive states of the same channel, should also be considered.

The results presented in this paper support this latter hypothesis. Events amplitude histograms (Fig. 1B) constructed from single-channel recordings without and with a trans-to-cis \([\text{Na}^+]\) gradient suggest that at each \([\text{Na}^+]_a\) the relative proportion of the two smaller current levels did not change (namely, 17, 17, and 66% of the total, for levels 1, 2, and 3, respectively). The overall distribution of channel openings is not binomial as would be expected for three independent channels with the same \(P_o\) (Hille, 1992). Moreover, these three conductance states were observed during every successful incorporation. If these were independent channels, we would expect situations in which only 12, 12, and 40, 24, 24, and 40,

![Graph](image)

Figure 10. Dependence of single amiloride-sensitive sodium channel open probability on diacyl glycerol and ATP concentrations in presence of protein kinase C. Bathing solution contained 100 mM \([\text{NaCl}]_{\text{cis}}\) 10 mM \([\text{NaCl}]_{\text{trans}}\) \([\text{Ca}^{2+}]_{\text{cis}}\) 2.3 \(\mu\text{M}\) \([\text{Ca}^{2+}]_{\text{trans}}\) 10 mM EGTA and 10 mM MOPS, both sides, pH 7.5. 5.4 ng/ml PKC was added to cis compartment.

or 40 pS conductance channels were observed. Thus, it is likely that this epithelial amiloride-sensitive \(\text{Na}^+\) channel has stable subconductive states.

Scrutiny of our experimental conditions reveals another important phenomenon that is typical for these renal amiloride-sensitive \(\text{Na}^+\) channels. In 90% of all successful incorporations, the channel displayed a specific orientation upon reconstitution in the bilayer. The cis side was sensitive to protein kinase A, alkaline phosphatase, carboxymethyltransferase, and pertussis toxin but not to amiloride (Ismaiov et al., 1994a, b). The trans side, in contrast, was amiloride-sensitive but insensitive to other agents that presumably act from the cell interior. This orientation undoubtedly occurs because of the procedure that we have developed for reconstitution of the channel into the bilayer. Bilayer membranes were composed of a mixture of negatively charged diphytanoyl-phosphatidylserine with neutral di-
FIGURE 11. Effects of $[Ca^{2+}]$ on the activity of a single amiloride-sensitive sodium channel in a planar lipid bilayer phosphorylated by protein kinase C. Records for -80 mV are shown. Dashed line indicates zero-current level. Bathing solution in trans compartment contained 100 mM NaCl, 10 mM MOPS, pH 7.5; cis compartment contained 10 mM NaCl, 5.4 ng/ml PKC, 100 µM ATP, 5 µM DAG, Ca$^{2+}$ as indicated for each trace, 10 mM MOPS, pH 7.5. EGTA (10 mM) was present on both sides. Records were filtered at 100 Hz using an 8-pole Bessel filter before the acquisition and were sampled at 1,000 Hz using a Digidata 1200 interface.

Phytanoyl-phosphatidylethanolamine and oxidized cholesterol in n-octane, and were voltage clamped to -40 mV (in cis compartment) while reconstituted proteoliposomes were spread over a preformed bilayer with a fire polished glass capillary (from the trans side). In experiments where the membrane voltage was held at 0 mV ($n > 50$), the channels oriented randomly in the bilayer. Thus, this simple manipulation allowed us to know a priori that this amiloride-sensitive sodium channel orients its cytoplasmic face toward the cis compartment and its extracellular surface toward the trans compartment.
Feedback Regulation of Na\(^+\) Channels

There are three major conclusions regarding feedback regulation of Na\(^+\) channels that can be drawn from our experiments. First, channel open probability was increased simply by lowering the cis (i.e., cytoplasmic) [Na\(^+\)]. These results are consistent with the theory of feedback regulation of epithelial sodium channels. The essential feature of this mechanism is that Na\(^+\) entry channels are inhibited whenever intracellular Na\(^+\) rises. Thus, in combination with a lower driving force for Na\(^+\) entry, a decreased single-channel \(P_o\) would work to prohibit large increases in [Na\(^+\)], and cell volume.

The observation of increased channel open probability upon elevation of [Na\(^+\)]\(_{\text{trans}}\) is contradictory to the inverse relationship between macroscopic Na\(^+\) permeability and mucosal [Na\(^+\)] that was reported for frog skin (Fuchs et al., 1977, Els and Helman, 1991), toad urinary bladder (Li, Palmer, Edelman, and Lindemann, 1982; Palmer et al., 1980), Necturus urinary bladder (Thomas et al., 1983), and rabbit descending colon (Thompson and Sellin, 1986; Turnheim et al., 1983). This discrepancy between the observations made in intact epithelia and those presented here may be reconciled by considering that increasing luminal [Na\(^+\)] in these experiments inevitably elevated intracellular [Na\(^+\)]. Hence, in native tissues, it may be unclear whether external or internal [Na\(^+\)] was downregulating Na\(^+\) transport. Subsequent studies by Palmer and coauthors (Silver et al., 1993; Frindt, Silver, Windhager, and Palmer, 1993) confirmed the existence of negative feedback regulation of Na\(^+\) channels by cytoplasmic Na\(^+\) in rat cortical collecting tubules. In contrast, single cell-attached Na\(^+\) channel recordings of K\(^+\)-depolarized rat cortical collecting tubules failed to demonstrate a dependence of \(P_o\) on external (pipette)
However, in these experiments changes in external [Na\(^+\)] were not made on the same cell and there was a wide variation in channel \(P_o\), even under the same experimental conditions.

The second conclusion that can be drawn from our results is that \([\text{Na}^+]_{\text{trans}}\) affected channel \(P_o\), only when \([\text{Na}^+]_{\text{cis}}\) was below 30 mM. Under these conditions (while maintaining constant \([\text{Na}^+]_{\text{cis}}\) and elevating \([\text{Na}^+]_{\text{trans}}\)), a saturating increase of channel \(P_o\) was seen. Interaction between \textit{trans} and \textit{cis} sodium ions was uncompetitive, suggestive of multiple interaction sites for sodium on the channel complex itself. These sites may not necessarily lie within the conduction pathway, but may be located on the \textit{trans}- and \textit{cis}-facing surfaces of the protein, and thus be allosteric. These results are in agreement with the observed saturation of macroscopic Na\(^+\) currents with increasing external [Na\(^+\)] in frog skin (Van Driessche and Lindemann, 1979). However, in contrast to the conclusion of these authors that only channel density decreases with increasing mucosal [Na\(^+\)], single-channel current through these renal amiloride-sensitive channels in our experiments also demonstrated saturation behavior. This saturation behavior of single Na\(^+\) channel current agrees with earlier observations in bilayers (Olans et al., 1984; Oh and Benos, 1993b) and in patches of apical membranes from rat cortical collecting tubules (Palmer and Frindt, 1986). Moreover, elevating \([\text{Na}^+]_{\text{cis}}\) in our experiments shifts the apparent equilibrium constant \((K_e)\) for \([\text{Na}^+]_{\text{trans}}\) to lower values, thus saturating Na\(^+\) flow at much lower [Na\(^+\)].

The third conclusion of our study is that all the above effects of internal and/or external [Na\(^+\)] are dependent on \([\text{Ca}^{2+}]_{\text{cis}}\). Buffering of \([\text{Ca}^{2+}]_{\text{cis}}\) to <1 nM with 10 mM EGTA significantly increased the basal level of channel activity (from a \(P_o\) of ~0.02 to a \(P_o\) of ~0.1). Moreover, this maneuver eliminated the dependence \(P_o\) on either \textit{cis} or \textit{trans} [Na\(^+\)]. These data are consistent with the observation in intact epithelia that inhibition of basolateral Na\(^+\), K\(^+\)-ATPase with ouabain decreased the apical Na\(^+\) entry only if the serosal medium contained more than 0.1 mM Ca\(^{2+}\) (Chase, 1984; Garty and Lindemann, 1984; Palmer, 1985; Silver et al., 1993).

Our experiments, however, were unable to determine whether \([\text{Ca}^{2+}]_{\text{cis}}\) or [Na\(^+\)] plays the primary role in modulating channel \(P_o\). \([\text{Ca}^{2+}]_{\text{cis}}\) dose-response experiments revealed that both \([\text{Ca}^{2+}]_{\text{cis}}\) and [Na\(^+\)] affect channel kinetics, although their effects have different manifestations. When \([\text{Ca}^{2+}]_{\text{cis}}\) was increased <5 µM a flickering behavior of current flow became apparent. Closed and open-time histograms of channel openings in the presence of 25 µM \([\text{Ca}^{2+}]_{\text{cis}}\) indicate that inhibition occurs because of a decrease in both open and closed times of the channel. The closed time histogram is best fit by two exponentials. The fast exponent may be due to a fast flickering-type block produced by Ca\(^{2+}\), and the long one due to normal channel closures. Characteristically, inhibition of channel activity by \([\text{Ca}^{2+}]_{\text{cis}}\) was observed at concentrations far above the physiological range. Elevating [Na\(^+\)] resulted in a leftward shift of the \(P_o\) vs \([\text{Ca}^{2+}]_{\text{cis}}\) dose response curve, again suggesting that both \([\text{Ca}^{2+}]_{\text{cis}}\) and [Na\(^+\)] are involved in regulation of this channel. Further, protein kinase C induced phosphorylation of this renal amiloride-sensitive Na\(^+\) channel shifted these concentration dependence curves to values closer to the physiological range of Ca\(^{2+}\) concentrations. This observation, again, is consistent with the report that the increase in \(P_o\) upon reducing mucosal [Na\(^+\)] could be pre-
vented by the Ca\(^{2+}\) ionophore A23187 or by activators of PKC (Ling and Eaton, 1989).

In conclusion, we provide direct evidence in support of the hypothesis that the gating behavior of single renal amiloride-sensitive Na\(^{+}\) channels is regulated by Na\(^{+}\) itself. We also show that intracellular Ca\(^{2+}\) can directly affect Na\(^{+}\) channel activity, and that its availability is required for Na\(^{+}\) to affect channel gating. Moreover, the inhibitory effects of Ca\(^{2+}\) are greatly enhanced by PKC-mediated phosphorylation. Thus, the inherent feedback control of epithelial Na\(^{+}\) channels by small ions provides a hormonally independent means of modulating in a precise and instantaneous way the rate of Na\(^{+}\) entry into epithelial cells.

The authors gratefully acknowledge Drs. M. S. Awayda, J. K. Bubien, C. M. Fuller, J. A. Schafer, and C. Venglark for helpful discussions and for their constructive criticisms on the manuscript.

This work was supported by National Institutes of Health Grant DK 37206.

Original version received 11 January 1995 and accepted version received 10 April 1995.

REFERENCES

Alvarez, O., D. Benos, and R. Latorre. 1985. The study of ion channels in planar lipid bilayer membranes. *Journal of Electrophysiological Technique*. 12:159–177.

Benos, D. J., M. S. Awayda, I. I. Ismailov, and J. P. Johnson. 1995. Structure and function of amiloride-sensitive Na\(^{+}\) channels. *Journal of Membrane Biology*. 143:1–18.

Biber, T. U. L. 1971. Effect of changes in transepithelial transport on the uptake of sodium across the outer surface of the frog skin. *Journal of General Physiology*. 58:131–144.

Busath, D., and G. Szabo. 1981. Gramicidin forms multi-state rectifying channels. *Nature*. 294:371–373.

Canessa, C. M., J.-D. Horisberger, and B. C. Rossier. 1993. Epithelial sodium channel related to proteins involved in neurodegeneration. *Nature*. 361:467–470.

Canessa, C. M., L. Schild, G. Buell, B. Thoreus, I. Gantschl, J.-D. Horisberger, and B. C. Rossier. 1994. Amiloride-sensitive epithelial Na\(^{+}\) channel is made of three homologous subunits. *Nature*. 367:463–467.

Chase, H. S. Jr. 1984. Does calcium couple the apical and basolateral membrane permeabilities in epithelia? *American Journal of Physiology*. (Renal, Fluid and Electrolyte Physiology 16) 247:F869–F876.

Cuthbert, A. W., and W. K. Shum. 1977. Does intracellular sodium modify membrane permeability to sodium ions? *Nature*. 266:468–469.

Els, W. J., and S. I. Helman. 1991. Activation of epithelial Na channels by hormonal and autoregulatory mechanisms of action. *Journal of General Physiology*. 98:1197–1220.

Eriel, D., and M. W. Smith. 1973. Sodium uptake by frog skin and its modification by inhibitors of transepithelial sodium transport. *Journal of Physiology*. 228:221–239.

Fridt, G., R. B. Silver, E. E. Windhager, and L. G. Palmer. 1993. Feedback regulation of Na channels in rat CCT. II. Effects of inhibition of Na entry. *American Journal of Physiology*. (Renal, Fluid and Electrolyte Physiology 33)264:F565–F574.

Fuchs, W., E. H. Larsen, and B. Lindemann. 1977. Current-voltage curve of sodium channels and concentration dependence of sodium permeability in frog skin. *Journal of Physiology*. 267:137–166.

Garty, H., and B. Lindemann. 1984. Feedback inhibition of sodium uptake in K\(^{+}\) depolarized toad urinary bladders. *Biochimica et Biophysica Acta*. 771:89–98.

Garty, H., and D. J. Benos. 1988. Characteristics and regulatory mechanisms of the amiloride-blockable Na\(^{+}\) channel. *Physiological Reviews*. 65:309–373.
Ismailov, I. I., J. H. McDuffie, and D. J. Benos. 1994a. Protein kinase A phosphorylation and G protein regulation of purified renal Na⁺ channels in planar lipid bilayer membranes. *Journal of Biological Chemistry*. 269:10235-10241.

Ismailov, I. I., J. H. McDuffie, S. Sariban-Sohraby, J. P. Johnson, and D. J. Benos. 1994b. Carboxyl methylation activates purified renal amiloride-sensitive Na⁺ channels in planar lipid bilayers. *Journal of Biological Chemistry*. 269:22193-22197.

Lakshminarayanaiah, N. 1984. Equations of Membrane Biophysics. Academic Press, Inc., Orlando, FL. 426 pp.

Lewis, S. A., D. C. Eaton, and J. M. Diamond. 1976. The mechanism of Na⁺ transport by rabbit urinary bladder. *Journal of Membrane Biology*. 28:41-70.

Li, J. H.-Y., L. G. Palmer, I. S. Edelman, and B. Lindemann. 1982. The role of sodium-channel density in the natriferic response of the toad urinary bladder to antidiuretic hormone. *Journal of Membrane Biology*. 64:91-102.

Ling, B. N., and D. C. Eaton. 1989. Effects of luminal Na⁺ on single Na⁺ channels in A6 cells, a regulatory role for protein kinase C. *American Journal of Physiology*. (Renal, Fluid and Electrolyte Physiology 25) 256:F1094-F1103.

Ling, B. N., C. F. Hinton, and D. C. Eaton. 1991. Amiloride-sensitive sodium channels in rabbit cortical collecting tubule primary cultures. *American Journal of Physiology*. (Renal, Fluid and Electrolyte Physiology 30) 261:F933-F944.

MacRobbie, E. A. C., and H. H. Ussing. 1961. Osmotic behavior of the epithelial cells of frog skin. *Acta Physiologica Scandinavica*. 53:348-365.

Oh, Y., and D. J. Benos. 1993a. Rapid purification of an amiloride-sensitive Na⁺ channel from bovine kidney and its functional reconstitution. *Protein Expression and Purification*. 4:312-319.

Oh, Y., and D. J. Benos. 1993b. Single-channel characteristics of a purified bovine renal amiloride-sensitive Na⁺ channel in planar lipid bilayers. *American Journal of Physiology*. (Cell Physiology 33) 264:C1489-C1499.

Oh, Y., P. R. Smith, A. Bradford, D. Keeton, and D. J. Benos. 1993. Regulation by phosphorylation of purified epithelial Na⁺ channels in planar lipid bilayers. *American Journal of Physiology*. (Cell Physiology 34) 265:C85-C91.

Olans, L., S. Sariban-Sohraby, and D. Benos. 1984. Saturation behavior of single, amiloride-sensitive Na⁺ channels in planar lipid bilayers. *Biophysical Journal*. 46:831-835.

Palmer, L. G. 1985. Modulation of apical Na permeability of the toad urinary bladder by intracellular Na, Ca, and H. *Journal of Membrane Biology*. 83:57-69.

Palmer, L. G. 1992. Epithelial Na⁺ channels: function and diversity. *Annual Review of Physiology*. 54:51-66.
Palmer, L. G., I. S. Edelman, B. Lindemann. 1980. Current-voltage analysis of apical sodium transport in toad urinary bladder: effects of inhibitors of transport and metabolism. *Journal of Membrane Biology*. 57:59–71.

Palmer, L. G., and G. Frindt. 1986. Amiloride sensitive channels from the apical membrane of the rat cortical collecting tubule. *Proceedings of the National Academy of Sciences, USA*. 83:2767–2770.

Palmer, L. G., and G. Frindt. 1988. Conductance and gating of epithelial Na channels from rat cortical collecting tubule. Effects of luminal Na and Li. *Journal of General Physiology*. 92:121–138.

Rick, R. A., A. Dorge, and W. Nagel. 1975. Influx and efflux of sodium at the outer surface of frog skin. *Journal of Membrane Biology*. 22:183–196.

Sariban-Sohraby, S., R. Latorre, M. Burg, L. Olans, and D. Benos. 1984. Amiloride-sensitive epithelial Na⁺ channels reconstituted into planar lipid bilayer membranes. *Nature*. 308:80–82.

Silver, R. B., G. Frindt, E. E. Windhager, and L. G. Palmer. 1993. Feedback regulation of Na channels in rat CCT. I. Effects of inhibition of Na pump. *American Journal of Physiology*. (Renal, Fluid and Electrolyte Physiology 33) 264:F557–F564.

Smith, P. R., and D. J. Benos. 1991. Epithelial Na⁺ channels. *Annual Review of Physiology*. 53:509–530.

Thomas, S. R., Y. Suzuki, S. M. Thompson, and S. G. Schultz. 1983. Electrophysiology of Necturus urinary bladder. I. Instantaneous current-voltage relations in the presence of varying mucosal sodium concentrations. *Journal of Membrane Biology*. 73:157–175.

Thompson, S. M., and J. H. Sellin. 1986. Relationships among sodium current, permeability, and sodium activities in control and glucocorticoid stimulated rabbit descending colon. *Journal of Membrane Biology*. 92:121–134.

Tien, H. T., S. Carbone, and E. A. Dawidowicz. 1966. Formation of "black" lipid membranes by oxidation product of cholesterol. *Nature*. 215:1199–1200.

Turnheim, K., S. M. Thompson, and S. G. Schultz. 1983. Relation between intracellular sodium active transport in rabbit colon: current-voltage relations of the apical sodium entry mechanism in the presence of varying luminal sodium concentrations. *Journal of Membrane Biology*. 76:299–309.

Van Driessche, W., and B. Lindemann. 1979. Concentration dependence of currents through sodium selective pores in frog skin. *Nature*. 282:519–520.