Non-existence of Solutions of Diophantine Equations of the Form $p^x + q^y = z^{2n}$

Renz Jimwel S. Mina*, Jerico B. Bacani

Department of Mathematics and Computer Science, College of Science, University of the Philippines Baguio, Philippines

Copyright©2019 by authors, all rights reserved. Authors agree that this article remains permanently open access under the terms of the Creative Commons Attribution License 4.0 International License

DOI: 10.13189/ms.2019.070304

Mathematics and Statistics 7(3): 78-81, 2019 http://www.hrpub.org

Abstract Numerous researches have been devoted in finding the solutions (x, y, z), in the set of non-negative integers, of Diophantine equations of type $p^x + q^y = z^2$ (1), where the values p and q are fixed. In this paper, we also deal with a more generalized form, that is, equations of type $p^x + q^y = z^{2n}$ (2), where n is a positive integer. We will present results that will guarantee the non-existence of solutions of such Diophantine equations in the set of positive integers. We will use the concepts of the Legendre symbol and Jacobi symbol, which were also used in the study of other types of Diophantine equations. Here, we assume that one of the exponents is odd. With these results, the problem of solving Diophantine equations of this type will become relatively easier as compared to the previous works of several authors. Moreover, we can extend the results by considering the Diophantine equations $p^x + q_1^{y_1}q_2^{y_2} \ldots q_k^{y_k} = z^{2n}$ (3) in the set of positive integers.

Keywords Exponential Diophantine Equations, Jacobi Symbol, Legendre Symbol

1. Introduction

For the past decade, Diophantine equations of type $p^x + q^y = z^2$ have been widely studied for various values of p and q. Commencing in 2007, Acu [1] showed that in the set \mathbb{N}_0 of nonnegative integers, the Diophantine equation $2^x + 5^y = z^2$ has only solutions $(x, y, z) = (3, 0, 3)$ and $(x, y, z) = (2, 1, 3)$. In 2011, Suvarnami, et. al. [2] showed that the Diophantine equation $4^x + 7^y = z^2$ and $4^x + 11^y = z^2$ have no solutions in the \mathbb{N}_0. In 2012, Sroysang [3] showed that the Diophantine equation $8^x + 19^y = z^2$ has the only solution $(x, y, z) = (1, 0, 3)$ in \mathbb{N}_0. Sroysang [4] also showed that the Diophantine equation $3^x + 5^y = z^2$ has the only solution $(x, y, z) = (1, 0, 2)$ in \mathbb{N}_0. Then, recently, Rabago [5-6] determined all the solutions of the Diophantine equations $2^x + 31^y = z^2$, $17^x + 19^y = z^2$ and $71^x + 73^y = z^2$. Other works related Diophantine equations of type $p^x + q^y = z^2$ can be seen in the references, such as [7-8].

The goal of this paper is to present an easier way of showing that certain Diophantine equations of type $p^x + q^y = z^{2n}$, where p and q are fixed positive integers, may fail to have solutions in the set \mathbb{N} of positive integers. This is done by using the concepts of Legendre symbol and the Jacobi symbol.

2. Preliminaries

The following definitions and well known results in Number Theory are essential in our study.

Definition 2.1. Let p be an odd prime and a be an integer such that $\text{gcd}(a, p) = 1$. If the congruence $z^2 \equiv a \pmod{p}$ has a solution in \mathbb{Z}, then a is said to be a quadratic residue of p. Otherwise, a is called a quadratic nonresidue of p.

Definition 2.2. (Legendre Symbol) Let p be an odd prime and a be an integer with $\text{gcd}(a, p) = 1$. Then the Legendre symbol \(\left(\frac{a}{p} \right) \) is defined to be

\[
\left(\frac{a}{p} \right) = \begin{cases}
1, & \text{if } a \text{ is a quadratic residue of } p \\
-1, & \text{if } a \text{ is a quadratic nonresidue of } p.
\end{cases}
\] (4)

Definition 2.3. (Jacobi Symbol) Let $\text{gcd}(a, b) = 1$, where $b > 1$ is odd. If $b = p_1 p_2 \ldots p_k$ is the prime factorization of b, where the p_i’s are not necessarily distinct, then the Jacobi symbol \(\left(\frac{a}{b} \right) \) is defined to be

\[
\left(\frac{a}{b} \right) = \prod_{i=1}^{k} \left(\frac{a}{p_i} \right),
\] (5)

where the symbols \(\left(\frac{a}{p} \right) \) are Legendre symbols.

Lemma 2.4. Let $\text{gcd}(a, b) = 1$, where a is an integer and $b > 1$ is odd. If the congruence $z^2 \equiv a \pmod{b}$ has a solution in \mathbb{Z}, then the Jacobi symbol \(\left(\frac{a}{b} \right) = 1 \).

Lemma 2.5. Consider any integer a, and an integer $n > 1$ with $\text{gcd}(a, n) = 1$. Suppose the prime factorization of n is $n = 2^{e_1} p_1^{k_1} \ldots p_r^{k_r}$. Then $z^2 \equiv a \pmod{n}$ has a solution z if and only if a is a quadratic nonresidue of n. This is done by using the concepts of Legendre symbol and the Jacobi symbol.
gcd(z^2n)

Jacobi symbols including the Legendre symbol. The same thing goes with the other

3. Main Results

We now present the results of the study. Examples are given to illustrate the results.

Theorem 3. 1. Let $p, q > 1$ be odd integers with gcd(p, q) = 1. Then the Diophantine equation $p^x + q^y = z^2$ has a solution $(x, y, z) \in \mathbb{N}^3$ with x being odd. Then taking the equation modulo q, we get that $z^2 \equiv p^x \pmod{q}$ has a solution. This implies that $(\frac{p^x}{q}) = 1$ by Lemma 2.4. We then have

$$1 = (\frac{p^x}{q}) = (\frac{p}{q})^x = (\frac{p}{q}) = (\frac{5}{q}) = (\frac{-1}{q}) = -1,$$

which is a contradiction. Hence $p^x + q^y = z^2$ has no solution if x is odd. Using similar arguments, one can show that the Diophantine equation $p^x + q^y = z^2$, for any $n \in \mathbb{N}$, has no solutions in \mathbb{N}. The proof is also similar for the case where $(\frac{a}{b}) = -1$ and y is odd.

Example 3. 2. In [4], Srivastava showed that the Diophantine equation $3^x + 5^y = z^2$ has a unique solution $(x, y, z) = (1, 0, 2)$ in \mathbb{N}_0 and has no solution in \mathbb{N}. We can verify this result when x is odd:

$$(\frac{3}{5}) = -1 \text{ and } (\frac{5}{3}) = -1.$$
\[p^x + q^y = z^2 \] has no solution, and consequently \(p^x + q^y = z^2 \) has no solution also. Now suppose condition \((b)\) is satisfied. Since \(y \) is odd, we have \(q^y \equiv 1 \pmod{4} \) if \(4 \mid p \) but \(4 \nmid p \) and \(q^y \not\equiv 1 \pmod{8} \) if \(8 \mid p \). Using Lemma 2.5, we see that the congruence \(z^2 \equiv q^y \pmod{p} \) has no solution, which further indicates that \(p^x + q^y = z^2 \) has no solution also when \(y \) is odd. The proof is similar when \(p \) and \(y \) are replaced by \(q \) and \(x \), respectively. Hence, it is omitted.

Example 3.5. Consider the Diophantine equation \(23^x + 81^y = z^2 \). If \(x \) is odd and we use Lemma 2.5, we get

\[
\left(\frac{23}{81} \right) = \left(\frac{23}{3} \right)^4 = (-1)^4 = 1.
\]

Hence, no conclusion can be drawn about the non-existence of solutions. However, if we use Theorem 3.4, since \(3 \) is a factor of 81, we get that

\[
\left(\frac{23}{3} \right) = -1.
\]

This means that the equation has no solution when \(x \) is odd.

Example 3.6. In [3], Sroysang showed that the Diophantine equations \(8^x + 19^y = z^2 \) has no positive integer solution. We can verify the result if \(x \) is odd, since

\[
\left(\frac{8}{19} \right) = \left(\frac{2}{19} \right)^3 = (-1)^3 = -1.
\]

Also, if \(y \) is odd, it has no solution since \(8 \mid p \) but \(q = 19 \equiv 1 \pmod{8} \).

So far, we have been dealing with the case where \(p \) and \(q \) are relatively prime. Here is the extension for the case where \(\gcd(p, q) > 1 \).

Theorem 3.7. Let \(\gcd(p, q) = d > 1 \). If

\[
p/d = 2^{k_0} \cdot \prod_{i=1}^r p_i^{k_i} \quad d = 2^{l_0} \cdot \prod_{i=1}^r q_i^{k_i}
\]

are the prime factorizations of \(p/d \) and \(q/d \) respectively, then the Diophantine equation \(p^x + q^y = z^{2n} \) has no solution if

a. \(x \) is odd and \(\left(\frac{p}{q^y} \right) = -1 \) for some \(i \) such that
\[
\gcd(q_i, d) = 1
\]

b. \(x \) is odd and \(\left(\frac{q}{p^y} \right) = -1 \) for some \(i \) such that
\[
\gcd(p_i, d) = 1.
\]

Proof. First, assume that condition \((a)\) is true. Suppose in contrary, that the Diophantine equation \(p^x + q^y = z^2 \) has a solution when \(x \) is odd. By taking modulo \(q_i \) on the equation, we see that \(z^2 \equiv p^x \pmod{q_i} \) has a solution. Note that \(\gcd(p^x, q_i) = 1 \). Hence the Legendre symbol \(\left(\frac{p^x}{q_i} \right) = 1 \). This implies that \(\left(\frac{p}{q^y} \right) \). This contradicts the assumption. Hence, the Diophantine equation \(p^x + q^y = z^2 \) has no solutions if \(x \) is odd. We get the same result if we consider \(p^x + q^y = z^{2n} \), where \(n > 1 \). The proof is similar for case \((b)\).

Example 3.8. Consider the Diophantine equation \(1155^x + 2691^y = z^2 \). Here, note that \(\gcd(1155, 2691) = 3 \) and that \(1155/3 = 385 = 5 \cdot 7 \cdot 11 \) and \(2691/3 = 897 = 3 \cdot 13 \cdot 23 \). Computing the value of \(\left(\frac{1155}{13} \right) \), we get

\[
\left(\frac{1155}{13} \right) = \left(\frac{3}{13} \right) \left(\frac{5}{13} \right) \left(\frac{11}{13} \right) = (1)(-1)(\frac{13}{7})(\frac{13}{11}) = (-1)(\frac{6}{17})(-1)(\frac{2}{7}) = \left(\frac{2}{7} \right) = (1)(-1) = -1.
\]

Thus, the equation has no solution in \(\mathbb{N} \) if \(x \) is odd. Moreover,

\[
\left(\frac{2691}{7} \right) = \left(\frac{2}{7} \right) = 1
\]

So, the equation has still no solution in \(\mathbb{N} \) if \(y \) is odd.

We end this section by providing a result for a more general form of the Diophantine equation \(p^x + q^y = z^2 \). The proof is similar to the preceding theorems, hence we omit it.

Theorem 3.9. The Diophantine equation \(p^x + q^y = z^2 \) has no solutions in \(\mathbb{N} \) if \(x, y, p, q \) are odd, \(p > q \) and \(p, q \geq 3 \). Furthermore, there exists a prime \(r \) such that \(\gcd(p, r) = 1 \) and \(r \mid q_i \) for some \(i \).

As a consequence of the Legendre symbols (or the Jacobi symbols) \(\left(\frac{2}{p} \right) \) and \(\left(\frac{3}{p} \right) \), we have the following conclusions: If \(q \) is prime and \(y \) is odd, then

a. the Diophantine equation \(2^x + q^y = z^{2n} \) has no solutions in \(\mathbb{N} \) if \(q \equiv 3 \pmod{8} \) or \(q \equiv 5 \pmod{8} \).

b. the Diophantine equation \(3^x + q^y = z^{2n} \) has no solutions in \(\mathbb{N} \) if \(q \equiv 5 \pmod{12} \) or \(q \equiv 7 \pmod{12} \).

c. the Diophantine equation \(5^x + q^y = z^{2n} \) has no solutions in \(\mathbb{N} \) if \(q \equiv 3, 7, 13, 17 \pmod{20} \).

4. **Summary**

In this paper, we present criteria that guarantee non-existence of solutions of Diophantine equations (2) and other related equations. Theorems 3.1, 3.4 and 3.7 are written in a way that it can be used in a straightforward manner to show non-existence of solutions. Theorem 3.9 is an extension of the study to other related equations. We remark that these theorems only discuss the non-existence of solutions of Diophantine equations of type (2) and do not give a method of finding for solutions. Interestingly, these results reduce the cases need to be considered when finding for solutions of such equations.

Acknowledgements

The authors would like to thank University of the Philippines for the support given in presenting the results in
this conference and for publication of the full paper.

REFERENCES

[1] Acu D (2007) on a Diophantine equation \(2^x + 5^y = z^2\). Gen Math 15:145-148

[2] Suvarnamani A, Singta A, Chotchaisthit S (2011) on two Diophantine equations \(4^x + 7^y = z^2\) and \(4^x + 11^y = z^2\). Sci Technol RMUTT 1:25-28

[3] Sroysang B (2012) More on Diophantine equation \(8^x + 19^y = z^2\), Int J Pure Appl Math 81:601-604

[4] Sroysang B (2012) On the Diophantine equation \(3^x + 5^y = z^2\), Int J Pure Appl Math 81:605-608

[5] Rabago JFT (2013) on an open problem by B. Sroysang. Konuralp J Math 1:30-32

[6] Rabago JFT (2013) A note on two Diophantine equations \(17^x + 19^y = z^2\) and \(71^x + 73^y = z^2\). Math J Interdisciplinary Sci 2:19-24

[7] Rabago JFT (2013) On two Diophantine equations \(3^x + 19^y = z^2\) and \(3^x + 91^y = z^2\). Int J Math Sci Comp 3:28-29

[8] Bacani JB, Rabago JFT (2013) The complete set of solutions of the Diophantine equation \(p^x + q^y = z^2\) for twin primes \(p\) and \(q\). Int J Pure Appl Math 104:517-521

[9] Burton DM (1980) Elementary Number Theory. Massachusetts: Allyn and Bacon Inc