TWO CURIOUS INEQUALITIES INVOLVING DIFFERENT MEANS OF TWO ARGUMENTS

ROMEOMEŠTROVIĆ AND MIOMIR ANDJIĆ

ABSTRACT. For two positive real numbers x and y let H, G, A and Q be the harmonic mean, the geometric mean, the arithmetic mean and the quadratic mean of x and y, respectively. In this note, we prove that

$$A \cdot G \geq Q \cdot H,$$

and that for each integer n

$$A^n + G^n \leq Q^n + H^n.$$

We also discuss and compare the first and the second above inequality for $n = 1$ with some known inequalities involving the mentioned classical means, the Seiffert mean P, the logarithmic mean L and the identric mean I of two positive real numbers x and y.

1. THE MAIN RESULT

For two positive real numbers x and y, let $H(x, y) = H$, $G(x, y) = G$, $A(x, y) = A$ and $Q(x, y) = Q$ be the harmonic mean, the geometric mean, the arithmetic mean and the quadratic mean (sometimes called the root mean square) of x and y, respectively, i.e.,

$$H = \frac{2xy}{x+y}, \quad G = \sqrt{xy}, \quad A = \frac{x+y}{2}, \quad \text{and} \quad Q = \sqrt{\frac{x^2 + y^2}{2}}.$$

Then by the particular case of the well known harmonic mean-geometric mean-arithmetic mean-quadratic mean inequality ($H - G - A - Q$ inequality),

$$H \leq G \leq A \leq Q,$$

with equality if and only if $x = y$.

Many sources have discussed one or more of the inequalities involving harmonic mean, geometric mean, arithmetic mean, and quadratic mean (see e.g., [2], [3] and [4]). In this note, under the above notations, we will prove the following result.

Theorem 1.1. Let x and y be arbitrary positive real numbers, and let n be any integer. Then

(1) $$A \cdot G \geq Q \cdot H,$$

and

(2) $$A^n + G^n \leq Q^n + H^n.$$
The equality in (1) and (2) holds if and only if \(x = y \).

Remark 1.2. In particular, the inequality (2) implies that

\[A + G \leq Q + H. \]

Notice that in [7, (3.2) of Theorem 1] (also see [6]) J. Sándor proved that for all \(x > 0 \) and \(y > 0 \)

\[A + G \leq 2P, \]

where \(P = P(x, y) \) is the Seiffert mean of two positive real numbers \(x \) and \(y \) defined by

\[P = P(x, y) = \frac{x - y}{2 \arcsin \frac{x - y}{x + y}} \text{ if } x \neq y, \text{ and } P(x, x) = x. \]

The equality in (4) holds if and only if \(x = y \). In view of the inequalities (3) and (4), it can be of interest to compare the expressions \(Q + H \) and \(2P \). Our computational results suggest that the inequality (3) is stronger than the inequality (4), i.e., that it is true the following conjecture.

Conjecture 1.3. Let \(x \) and \(y \) be arbitrary positive real numbers. Then

\[Q + H \leq 2P, \]

where equality holds if and only if \(x = y \).

Remark 1.4. The logarithmic mean \(L = L(x, y) \) and the identric mean \(I = I(x, y) \) of two positive real numbers \(x \) and \(y \) are defined by

\[L = L(x, y) = \frac{x - y}{\ln x - \ln y} \text{ if } x \neq y, \text{ and } L(x, x) = x; \]

\[I = I(x, y) = \frac{y^x}{x^y} \text{ if } x \neq y, \text{ and } I(x, x) = x. \]

In [1] H. Alzer proved that for all \(x > 0 \) and \(y > 0 \) we have

\[\sqrt{A \cdot G} \leq \sqrt{L \cdot I} \leq \frac{L + I}{2} \leq \frac{G + A}{2}, \]

where the equality in each of these inequalities holds if and only if \(x = y \). Notice that in view of inequalities (1), (2) and (3), the chain of inequalities given by (9) may be extended as

\[\sqrt{Q \cdot H} \leq \sqrt{A \cdot G} \leq \sqrt{L \cdot I} \leq \frac{L + I}{2} \leq \frac{G + A}{2} \leq \frac{Q + H}{2}. \]

Moreover, under Conjecture [1,3] and the known fact that \(P \leq I \) (see [5]), the chain of inequalities (10) may be extended on the right hand side as

\[\frac{Q + H}{2} \leq P \leq I. \]
Remark 1.5. Since the inequality (2) is satisfied for each integer \(n \), it may be of interest to answer the following question: For which real numbers \(n \) the inequality (2) holds? Our computational and related graphical results lead to the following conjecture.

Conjecture 1.6. The inequality (2) holds for all negative real numbers \(n \) and for all positive real numbers \(n \) greater or equal than \(1/2 \). Moreover, none of the inequality (2) or its converse inequality holds true for each real number \(n \) in the interval \((0, 1/2)\).

2. Proof of Theorem 1.1

For the proof of the inequality (2) of Theorem 1.1 we will need the following lemma.

Lemma 2.1. Let \(a, b, c \) and \(d \) be positive real numbers such that \(a + b \leq c + d \) and \(ab \geq cd \). Then for each integer \(n \)

\[(11) \quad a^n + b^n \leq c^n + d^n.\]

Proof. First we will prove the inequality (11) for nonnegative integers \(n \). We proceed by induction on \(n \geq 0 \). Obviously, the inequality (11) is satisfied for \(n = 0 \). Suppose that the inequality (11) holds for all nonnegative integers \(\leq n \). Then using this hypothesis and the assumption \(ab \geq cd \), we obtain.

\[
a^{n+1} + b^{n+1} = (a^n + b^n)(a + b) - ab(a^{n-1} + b^{n-1}) \\
\leq (c^n + d^n)(c + d) - cd(c^{n-1} + d^{n-1}) \\
= c^{n+1} + d^{n+1}.
\]

Hence, \(a^{n+1} + b^{n+1} \leq c^{n+1} + d^{n+1} \), which completes the induction proof.

Now suppose that \(n \) is a negative integer. Then applying the inequality (11) with \(-n > 0 \) instead of \(n \) and the assumption that \(ab \geq cd \), we find that

\[
a^n + b^n = a^{-n} + b^{-n} \leq \frac{c^{-n} + d^{-n}}{(cd)^{-n}} = c^{-n} + d^{-n}.
\]

Hence, the inequality (11) holds for each integer \(n \). \(\Box \)

Proof of Theorem 1.1 In order to prove the inequality (1), notice that by the identity \((x - y)^4 = (x + y)^4 - 8xy(x^2 + y^2)\) we obtain

\[(12) \quad (x + y)^2 \geq 2\sqrt{2xy(x^2 + y^2)}.\]

By using the inequality (12), we get

\[
\frac{A \cdot G}{Q \cdot H} = \frac{(x + y)^2}{2\sqrt{2xy(x^2 + y^2)}} \geq 1,
\]

which implies the inequality (2).

It remains to prove the inequality (2). Notice that by Lemma 2.1 (with \(a = A \), \(b = G \), \(c = Q \) and \(d = H \)) and the inequality (11), it suffices to prove the inequality (2) for \(n = 1 \).

First observe that

\[(13) \quad A - H = \frac{x + y}{2} - \frac{2xy}{x + y} = \frac{(x - y)^2}{2(x + y)}.\]
By using $A - Q$ inequality, we have

\begin{equation}
\sqrt{\frac{2(x^2 + y^2)}{2} + \sqrt{4xy}} \leq \sqrt{\frac{2(x^2 + y^2) + 4xy}{2}} = x + y.
\end{equation}

Then applying the inequality (14) and the identity (13), we obtain

\begin{align*}
Q - G &= \frac{x^2 + y^2}{2} - \sqrt{xy} = \frac{x^2 + y^2}{\sqrt{\frac{x^2 + y^2}{2} + \sqrt{xy}}} \\
&= \frac{(x - y)^2}{\sqrt{2(x^2 + y^2) + 4xy}} \geq \frac{(x - y)^2}{2(x + y)} \\
&= A - H,
\end{align*}

which implies the inequality (2) for $n = 1$.

From the above proofs it follows that the equality in (1) and (2) holds if and only if $x = y$. This completes proof of Theorem 1.1. \hfill \Box

REFERENCES

[1] H. Alzer, Ungleichungen für Mittelwerte, Arch. Math. (Basel) 47, no. 5 (1986), 422–426.
[2] H. Alzer, A proof of the arithmetic mean-geometric mean inequality, Amer. Math. Monthly 103 (1996), 585.
[3] P.S. Bullen, D.S. Mitrinović and P.M. Vasić, Means and their inequalities, Dordrecht, Holland: D. Reidel Publishing Company, 1988.
[4] G.H. Hardy, J.E. Littlewood and G. Pólya, Inequalities (2nd ed.), Cambridge University Press, Cambridge, 1952.
[5] H.J. Seiffert, Problem 887, Nieuw Arch. Wisk. (Ser. 4) 11, no. 2 (1993), 176.
[6] J. Sándor, On certain inequalities for means, III, RGMIA Research Report Collection 2, No. 3, 1999, 421–428.
[7] J. Sándor, On certain inequalities for means III, Arch. Math. (Basel) 76, no. 1 (2001), 34–40.

MARITIME FACULTY KOTOR, UNIVERSITY OF MONTENEGRO, DOBROTA 36, 85330 KOTOR, MONTENEGRO

E-mail address: romeo@ac.me

FACULTY FOR INFORMATION TECHNOLOGY, UNIVERSITY “MEDITERRANEAN”, VAKA DJUNOVICUR BB, PODGORICA, MONTENEGRO

E-mail address: miomir.andjic@unimediteran.net