Abstract—Unscented Kalman Filters (UKFs) have become popular in the research community. Most UKFs work only with Euclidean systems, but in many scenarios it is advantageous to consider systems with state-variables taking values on Riemannian manifolds. However, we can still find some gaps in the literature’s theory of UKFs for Riemannian systems: for instance, the literature has not yet i) developed Riemannian extensions of some fundamental concepts of the UKF theory (e.g., extensions of σ-representation, Unscented Transformation, Additive UKF, Augmented UKF, additive-noise system), ii) proofs of some steps in their UKFs for Riemannian systems (e.g., proof of sigma points parameterization by vectors, state correction equations, noise statistics inclusion), and iii) relations between their UKFs for Riemannian systems. In this work, we attempt to develop a theory capable of filling these gaps. Among other results, we propose Riemannian extensions of the main concepts in the UKF theory (including closed forms), justify all steps of the proposed UKFs, and provide a framework able to relate UKFs for particular manifolds among themselves and with UKFs for Euclidean spaces. Compared with UKFs for Riemannian manifolds of the literature, the proposed filters are more consistent, formally-principled, and general. An example of satellite attitude tracking illustrates the proposed theory.

I. INTRODUCTION

When we want to know the value of some variables of a given system—e.g., the position and velocity of a car, the position and attitude of a satellite, the temperature of a boil, etc.—we can acquire data from the system and develop a mathematical model of it. But measurements are noisy, and models are always imperfect. Hence, to estimate the desired variables, we often must use filters, such as Unscented Kalman Filters (UKFs). Researchers have been applying UKFs in applications of diverse fields: for example, in power electronic [1], aerospace [2], and automotive [3] systems. These filters’ success is partially explained by their good trade-off between estimation quality and computational complexity compared with similar techniques such as the Extended Kalman Filter (EKF) [4].

Most UKFs work only with Euclidean models (the so-called state-space systems; cf. Section IV), but sometimes modeling with Riemannian manifolds is better. These manifolds can i) model more systems (cf. Section I-A), ii) provide better mathematical properties than Euclidean subspaces (e.g., better metrics), and iii) be the set where measurements take value from (cf. [5]–[7] and Section I-A).

Although some works have introduced UKFs for Riemannian systems (e.g., [5], [8]–[10]; cf. Section I-A), we can still find some gaps in the literature’s theory for these UKFs. First, fundamental UKF concepts still miss for Riemannian manifolds, such as σ-representation (σR), Unscented Transformation (UT), Additive UKF, Augmented UKF, additive-noise system, among others (cf. [11]). Second, some steps in UKFs for Riemannian manifolds are not formally justified, such as when a UKF parameterize sigma points by vectors, or correct the predicted state estimate, or consider noise statistics (cf. [5], [12], [13]; see Sections VI-A and VII-D). Third, we do not know how the literature’s consistent UKFs for Riemannian manifolds relates among themselves—do they follow from a same general Riemannian UKF?—or with UKFs for Euclidean Spaces—are these particular cases of those?

In this work, by continuing the research of [5], we aim to develop a formalized and systematized theory for UKFs on Riemannian manifolds. Among other results, this theory introduces Riemannian extensions of the main concepts in the UKF theory (including closed forms), justifies all steps of the proposed UKFs, and provides a framework able to relate UKFs for particular manifolds among themselves and with UKFs for Euclidean spaces.

A. Kalman filtering in Riemannian manifolds

Riemannian manifolds can model many applications; far more than Euclidean spaces. For instance, we find i) special orthogonal groups, special Euclidean groups, unit spheres (including the set of unit quaternions), and the study quadric (the set of unit dual-quaternions) applied to many robotics applications [14]–[18], aerospace systems [12], [17]–[20], bio-engineering [8], [21], among others; ii) positive symmetric matrices applied to applications in image recognition, image registration, image tracking, and surgery [21]; iii) Grassmann and Stiefel manifolds applied to information theory [22], machine learning [23], visual recognition [23], [24], communication systems [25], and geology [26]; and iv) other Riemannian manifolds applied to quantum systems [27], and special and general relativity [28].

Some works in the literature have proposed KFs for particular Riemannian systems: the works [9], [29]–[31] and [12] (among others) introduced EKFs and UKFs for unit quaternions; and [10], [32] and [33] EKFs for special orthogonal groups. Other works have proposed KFs for classes of Riemannian systems: the works [34], [35] and [36] introduced EKFs for Lie groups; and [5] a UKF for geodesically-complete Riemannian manifolds.geodesically-complete
Developing UKFs for Riemannian manifolds is difficult because, in general, Riemannian manifolds lack some mathematical tools used in most UKFs, such as multiplication and addition (cf. UKFs in [11], [37], [38]). An alternative is to use properties of an embedding Euclidean space and afterwards perform operations to return to the working manifold. For instance, an application on S^3 can use derivatives, sums, multiplications, metrics of \mathbb{R}^n and afterwards perform a normalization. Many works take this embedding approach ([3], [39], [40]).

However, this approach may i) lose the physical identification (e.g., an addition of unit quaternions yields a non unit quaternion, which does not represent a rotation anymore), or ii) disregard the global properties of the manifold leading to instability. To retain the estimates on the working manifolds, literature UKFs use intrinsic manifold properties (cf. [34]–[36])—meaning we do not use properties of embedding Euclidean spaces.

In this work, we take this intrinsic approach; we combine the UKF theory we developed in [11] with the statistics to some subsets such that \exp_a is a diffeomorphism. The maximal of these subsets is called the maximal definition domain $\Omega(a) \subset T_a\mathcal{N}$; this set is bounded by $C(a)$. The inverse mapping of \exp_a is the (Riemannian) logarithm mapping (Definition [17]) and we denote it by either $\log_a b$ or $\ln a b$.

III. INTRINSIC STATISTICS ON RIEMANNIAN MANIFOLDS

UKFs are based on information of moments of random vectors and of sample moments of weighted sets. To define UKFs on Riemannian manifolds, we need extensions of these concepts.

A. Statistics of random points

Riemannian extensions of random vectors are called (Riemannian) random points [7]: the set of all random points taking values on a Riemannian manifold \mathcal{N} is denoted by $\Phi_\mathcal{N}$. Given a random point $X \in \Phi_\mathcal{N}$, its probability density function (pdf) is denoted by p_X, and for a real-valued function $F : \mathcal{N} \to \mathbb{R}$ the expected value of F relative to X is defined by

$$ E_X \{ F(X) \} := \int_{\mathcal{N}} F(b)p_X(b)dN(b). \tag{1} $$

For functions taking values on manifolds, we cannot define the expected value as in [1]; thus, we define mean points following the Karcher expectation: they are the local minima of variances [7].

Given a point $c \in \mathcal{N}$, the variance $\sigma^2_X(c)$ is defined by $\sigma^2_X(c) := E_X \{ \text{dist}^2(c, X) \}$. If $\sigma^2_X(c)$ is finite for every point $c \in \mathcal{N}$, then a point $\bar{X} \in \mathcal{N}$ is an expected point or mean of X if

$$ \bar{X} = \arg \min_{c \in \mathcal{N}} \sigma^2_X(c). \tag{2} $$
The set of all means of X is denoted by $\mathbb{E}(X)$. A random point can have more than one mean \bar{x}.

Let $X \in \Phi_{\mathcal{N}}$ be a random point with a mean $\bar{X} \in \mathbb{E}(X)$, and consider a point $a \in \mathcal{N}$. If $X \in \Omega(a)$, then the jth (central) moment of X with respect to \bar{X} at a is defined by:

$$M_{X,\bar{X}}^{a,j} := \mathbb{E}_X \left\{ \left((a\bar{X} - \bar{X}) (o) \right)^T a \right\};$$

for odd j,

$$M_{X,\bar{X}}^{a,j} := \mathbb{E}_X \left\{ \left((a\bar{X} - \bar{X}) (o) \right)^T a \right\} \otimes \left((a\bar{X} - \bar{X}) (o) \right) \otimes \left((a\bar{X} - \bar{X}) (o) \right).$$

We define joint pdf [denoted by $p_{XY}(x, y)$], joint expected moment ($\mathbb{E}_{XY} \{ f(x, y) \}$) and cross-covariance ($P_{XY} \{ f(x, y) \}$) of two random points X and Y similarly (cf. [38]). The notation $X \sim (X, M_{X,\bar{X}}^{a,2}, \ldots, M_{X,\bar{X}}^{a,j}) \in \mathcal{N}$ stands for a Riemannian random point $X \in \Phi_{\mathcal{N}}$ with mean $\bar{X} \in \mathbb{E}(X)$ and moments $M_{X,\bar{X}}^{a,2}, \ldots, M_{X,\bar{X}}^{a,j}$. The second moment ($j = 2$) is called covariance and denoted by $P_{XX} = M_{X,\bar{X}}^{a,2}$. If $\mathbb{E}(X) = \{X\}$, we can write $M_{X,\bar{X}}^{a,j} := M_{X,\bar{X}}^{a,j}$ and $P_{XX} := P_{X,XX,X,X}$, or even $M_{X} := M_{X,\bar{X}}^{a,j}$ and $P_{XX} := P_{X,XX}$.

We represent statistics of Euclidean manifolds without bold notation. For $X \in \Phi_{\mathbb{R}^n}$, X is symmetric if $p_X(X + x) = p_X(X - x)$ for every $x \in \mathbb{R}^n$. If X has a mean, then

$$\bar{X} = \arg \min_{c \in \mathbb{R}^n} \sigma_X^2(c) = \mathbb{E}_X \{X\};$$

and, for each j,

$$M_{X}^{a,j} := \mathbb{E}_X \left\{ ((X - \bar{X}) (o) \right)^T a \right\} \otimes \left((X - \bar{X}) (o) \right) \otimes \left((X - \bar{X}) (o) \right);$$

(similarly for j odd and for sample cross-covariances).

B. Statistics of weighted sets

For a Riemannian manifold \mathcal{N} and the natural numbers $l \geq 2$ and $N \geq 1$, consider the weighted set

$$\mathcal{X} := \left\{ X_i, w_i^{m}, w_i^{e,j}, w_i^{c,j} : X_i \in \mathcal{N}; \right\}^{N}_{i=1},$$

$$j = 1, \ldots, l; \ w_i^{m}, w_i^{e,j}, w_i^{c,j} \in \mathbb{R}.$$ The weights w_i^{m} are associated (below) with the definition of sample mean, $w_i^{e,j}$ with the jth sample moment, and $w_i^{c,j}$ with the jth sample cross-moment of X.

The sample variance of X with respect to a point $c \in \mathcal{N}$ is defined by $s_X^2(c) := \sum_{i=1}^{N} w_i^{m} \text{dist}^2(c, X_i)$. If the variance $s_X^2(c)$ is finite for every point $c \in \mathcal{N}$, then a sample expected point or sample mean of X is defined by

$$\mu_X := \arg \min_{c \in \mathcal{N}} s_X^2(c).$$

The set of all sample means of X is denoted by δ_X.

For a point $a \in \mathcal{N}$, if $\mu_X, \chi_1, \chi_2, \ldots, \chi_N \in \mathcal{N} - \mathcal{C}(a)$, then the jth sample moment of χ with respect to \bar{X} at a is defined by, for j even,

$$M_{\chi,\bar{X}}^{a,j} := \sum_{i=1}^{N} w_i^{e,j} \left((\bar{X}_i - \bar{X})(o) \right)^T \otimes \left((\bar{X}_i - \bar{X})(o) \right);$$

and for odd j,

$$M_{\chi,\bar{X}}^{a,j} := \sum_{i=1}^{N} w_i^{e,j} \otimes \left((\bar{X}_i - \bar{X})(o) \right)^T \otimes \left((\bar{X}_i - \bar{X})(o) \right).$$

The sample moment ($j = 2$) is called sample covariance and denoted by $\Sigma_{WW} = M_{\bar{X},\bar{X}}^{a,2}$. If $\delta(\chi) = \{\mu_X\}$, we can write $M_{\chi,\bar{X}}^{a,j} := M_{\chi,\bar{X}}^{a,j}$ and $\Sigma_{XX} := \Sigma_{XX}^{a}$; or even,

$$M_{\chi,\bar{X}}^{a,j} := M_{\chi,\bar{X}}^{a,j}$$

and the point $b \in \mathbb{R}$. If $\mu_X, \chi_1, \chi_2, \ldots, \chi_N \in \mathcal{R} - \mathcal{C}(b)$, then the jth cross-moment of χ and γ with respect to μ_X, μ_{γ} at (a, b) is defined by, for j even,

$$M_{\chi,\gamma,\mu_X,\mu_{\gamma}}^{a,b} := \sum_{i=1}^{N} w_i^{e,j} \left((\bar{X}_i - \bar{X})(o) \right)^T \otimes \left((\bar{X}_i - \bar{X})(o) \right);$$

and for odd j,

$$M_{\chi,\gamma,\mu_X,\mu_{\gamma}}^{a,b} := \sum_{i=1}^{N} w_i^{e,j} \otimes \left((\bar{X}_i - \bar{X})(o) \right)^T \otimes \left((\bar{X}_i - \bar{X})(o) \right).$$

The second sample cross-moment ($j = 2$) is called sample cross-covariance and denoted by $\Sigma_{\chi,\gamma,\mu_X,\mu_{\gamma}}^{a,b} := M_{\chi,\gamma,\mu_X,\mu_{\gamma}}^{a,b}$. If $\delta(\chi) = \{\mu_X\}$ and $\delta(\gamma) = \{\mu_{\gamma}\}$, we can write $M_{\chi,\gamma,\mu_X,\mu_{\gamma}}^{a,b} := M_{\chi,\gamma,\mu_X,\mu_{\gamma}}^{a,b}$ and $\Sigma_{\chi,\gamma}^{a,b} := \Sigma_{\chi,\gamma}^{a,b}$; or even, if $\mu_X^{a,b} := \mu_X^{a,b}$ and $\mu_{\gamma} := \mu_{\gamma}$.

We represent Euclidean sets sample statistics without bold notation. For a set χ with points $X_i \in \mathbb{R}^n$, we have

$$\mu_X := \arg \min_{c \in \mathbb{R}^n} s_X^2(c) = \sum_{i=1}^{N} w_i^{m} \chi_i;$$

and, for j even,$$
\mu_X := \sum_{i=1}^{N} w_i^{e,j} \chi_i.$$ Similar for j odd and for sample cross-moments.

IV. Unscented Kalman Filters

There are two main concepts required to define UKFs, namely: σRs and UTs [11]. Broadly, i) a σR is a set of weighted points (the sigma points) approximating a random vector, and ii) a UT is a function mapping two functionally related random vectors to two sets that approximate their joint pdf.

For the natural numbers $l \geq 2$ and $N \geq 1$, consider i) a function $f : \mathbb{R}^n \to \mathbb{R}^{n}$; ii) the random vectors X and Y.
\(\chi := \{ \chi_i, w_i^m, w_i^{c,j}, w_i^{cc,j} : \chi_i \in \mathbb{R}^n; \\
 j = 1, \ldots, l; w_i^m, w_i^{c,j}, w_i^{cc,j} \in \mathbb{R} \}^N_{i=1} \); and
\[
\gamma := \{ \gamma_i, w_i^m, w_i^{c,j}, w_i^{cc,j} : \gamma_i = f(\chi_i); \ j = 1, \ldots, l \}^N_{i=1}.
\]

Definition 1 (eR. Definition 1 of [11]). The set \(\chi \) is an \(\text{th} \) order \(N \) points \(\sigma \text{R}(\text{th} \ N \sigma \text{R}) \) of \(X \) if, for every \(j = 1, \ldots, l \):
\[
w_i^m \neq 0, w_i^{c,j} \neq 0, w_i^{cc,j} \neq 0, \ i = 1, \ldots, N; \tag{6}
\]
\[
\mu_\chi = \bar{X}; \tag{7}
\]
\[
\mathcal{M}_\chi = \bar{M}_X. \tag{8}
\]

Definition 2 (UT. Definition 2 of [11]). If \(\mu_\chi = \bar{X} \) and \(\mathcal{M}_\chi = M_{\bar{X}} \) for every \(j = 2, \ldots, l \); then the \(\text{th} \) order UT (UT) is defined by
\[
\text{UT} : (f, \bar{X}, M_{\bar{X}}, \ldots, M_{\bar{X}}) \rightarrow \left(\mu_{\gamma}, M_{\gamma}^{2}, \ldots, M_{\gamma}^{l}, M_{\gamma}^{2}, \ldots, M_{\gamma}^{l} \right).
\]

\(\chi \) is called the independent set of an UT, and \(\gamma \) its dependent set.

Every \(\text{th} \ N \sigma \text{R} \) is an independent set of an UT. When calling an \(\text{th} \ N \sigma \text{R} \) of \(X \) or an UT, the reference to the \(\text{th} \) order can be omitted if \(l = 2 \). Also, the reference to \(N \) point and/or to \(X \) can be omitted in case they are obvious from the context or irrelevant to a discussion.

We can apply UTs in KF prediction–correction frameworks to form UKFs. UKFs estimate the state of systems described either in the additive form
\[
x_k = f_k(x_{k-1}) + \omega_k, y_k = h_k(x_k) + \vartheta_k; \tag{9}
\]
or, more generally, in the form
\[
x_k = f_k(x_{k-1}, \omega_k), y_k = h_k(x_k, \vartheta_k), \tag{10}
\]
where \(k \) is the time step; \(x_k \in \Phi^{n_x} \) is the internal state; \(y_k \in \Phi^{n_y} \) is the measured output; and \(\omega_k \in \Phi^{n_\omega} \) and \(\vartheta_k \in \Phi^{n_\vartheta} \) are the process and measurement noises respectively; the noise terms \(\omega_k \) and \(\vartheta_k \) are assumed to be uncorrelated.

In [11], we developed consistent UKFs for these systems: the the Additive UKF (AddUKF, Algorithm 6 of [38]; see also [11]) for (9); and the Augmented UKF (AugUKF, Algorithm 7 of [38], see also [11]) for (10). But how could we develop similar UKFs when \(x_k, y_k, \omega_k \) and \(\vartheta_k \) are Riemannian random points? In the next section, we begin a theory towards this goal.

\[\text{V. RIEZANNIAN } \sigma \text{-REPRESENTATIONS}\]

In this section, first, we define Riemannian \(\sigma \)-representations (Ri\(\sigma \)R). They extend \(\sigma \)Rs to Riemannian manifolds: \(\sigma \)Rs approximate random vectors, and Riemannian random points. Then, we show a way of extending closed forms of \(\sigma \)Rs to Riemannian random points. Afterwards, we introduce results relative to the minimum number of sigma points of an Riemannian manifold. At last, we introduce some particular forms of Ri\(\sigma \)Rs.

For now on, we make the following assumptions—we explain their implications in Section VII-C:
\begin{enumerate}
\item all Riemannian manifolds are geodesically-complete;
\item all Riemannian exponential mappings are defined with their domain allowing them to realize diffeomorphisms;
\item every set of weighted points belonging to a Riemannian manifold admits one, and only one, Riemannian sample mean.
\end{enumerate}

For the point \(a \in \mathbb{N} \) and the natural numbers \(l \geq 2 \) and \(N \geq 1 \), consider i) a random point \(X \sim (X, M_{X,\bar{X}}, \ldots, M_{X,\bar{X}})^{a,l}_{X,\bar{X}} \) and ii) a weighted set \(\chi := \{ \chi_i, w_i^m, w_i^{c,j}, w_i^{cc,j} | \chi_i \in \mathbb{N} \}_{i=1}^N \) with sample mean \(\mu_\chi \) and sample moments \(\mathcal{M}_\chi, j = 2, \ldots, l \).

Definition 3 (Ri\(\sigma \)R. Definition 9.1 of [38]). The set \(\chi \) is a Riemannian \(\text{th} \) order \(N \) points \(\sigma \)-representation (Ri\(\text{th} \ N \sigma \)R) of \(X \) if, for every \(j = 1, \ldots, l \):
\[
w_i^m \neq 0, w_i^{c,j} \neq 0, w_i^{cc,j} \neq 0, \ i = 1, \ldots, N; \tag{11}
\]
\[
\mu_\chi = \bar{X}; \tag{12}
\]
\[
\mathcal{M}_\chi = M_{\bar{X}}, \ j = 2, 3, \ldots, l; \tag{13}
\]
Moreover, assume \(\chi \) is an Ri\(\text{th} \ N \sigma \)R of \(X \), then:
\begin{itemize}
\item \(\chi \) is normalized if, for every \(j = 1, 2, \ldots, l \):
\[
\sum_{i=1}^N w_i^m = \sum_{i=1}^N w_i^{c,j} = \sum_{i=1}^N w_i^{cc,j} = 1.
\]
\item \(\chi \) is homogeneous if, for every \(j = 1, 2, \ldots, l \), the following equations are satisfied: for \(N \) odd and every \(i = 1, \ldots, N-1 \):
\[
w_i^m = w_i^m, w_i^{c,j} = w_i^{c,j}, w_i^{cc,j} = w_i^{cc,j};
\]
or, for \(N \) even and every \(i = 1, \ldots, N \):
\[
w_i^m = w_i^m, w_i^{c,j} = w_i^{c,j}, w_i^{cc,j} = w_i^{cc,j}.
\]
\item \(\chi \) is symmetric (with respect to \(\chi_N \), without loss of generality) if
\[
\mu_\chi \bar{X} = \mu_\chi \bar{X} = \mu_\chi \bar{X} = \left(\mu_\chi \bar{X} + \mu_\chi \bar{X} \right) - \left(\mu_\chi \bar{X} + \mu_\chi \bar{X} \right),
\]
\[
w_i^m = w_i^m + w_i^{c,j} = w_i^{c,j} = w_i^{cc,j};
\]
for every \(j = 1, 2, \ldots, l \) and \(i = 1, \ldots, \text{int}(N/2) \), where \(\text{int}(N/2) \) stands for greatest integer less than or equal to \(N/2 \).
\end{itemize}

When calling an Ri\(\text{th} \ N \sigma \)R of \(X \), the reference to the \(\text{th} \) order can be omitted if \(l = 2 \). Also, the reference to \(N \) points...
or to X can be omitted if they are obvious from the context or irrelevant to a discussion.

RithNσRs are generalizations of $lthNσRs$; every $lthNσR$ with an $RithNσR$, and every $RithNσR$ with Euclidean points is an $lthNσR$. This follows directly from the last paragraph of Sections III-A and of III-B.

Finding closed forms for RiorRs may be troublesome, but the next theorem provides a way of obtaining them from closed forms of $σRs$—the reader will find several closed forms of $σRs$ in [11], [37], [38].

Theorem 1 (Theorem 9.1 of [38]). Suppose that, for every $i = 1, \ldots, N$,
1) $w_i^m > 0$,
2) $Ω(\bar{X})$ is convex, and
3) $χ_i \in B(\bar{X}, r) \cap C(\bar{X})$

where $0 < r \leq \frac{1}{2} \min\{\text{inj}(N), \pi/\sqrt{r}\}$ and $κ$ is an upper bound of the sectional curvatures of N. Then $χ$ is a normal-$ithNσR$ of X if, and only if,

$$χ := (\log_{\bar{X}}(X_1, w_i^m, w_i^{c,j}, w_i^{cc,j})^N_{i=1}$$

is a normalized $ithNσR$ of the random vector $X \sim ([0]_{n \times 1}, M_{X}^{2, \ldots, M_{X}^{T}})_{T R N}$. Moreover, the following statements are true:

1) $χ$ is homogeneous if, and only if, $χ$ is homogeneous;
2) $χ$ is symmetric if, and only if, $χ$ is symmetric.

The proof of Theorem 1 is given in Appendix B for conditions to assure the convexity of $Ω(\bar{X})$, see [43] and references therein.

With this theorem, we can extend some results from $lthNσRs$ to $RithNσRs$, such as the minimum number of sigma points of an $RithNσR$.

Corollary 1 (Corollary 9.1 of [38]). Let $i)$ $χ$ be a normalized $RithNσR$ of X with $w_i^m > 0$ for every $i = 1, \ldots, N$; and $ii)$ the rank of the covariance $P_{X X}$ be $r \leq n$. Then the following statements are true:

1) $N \geq r + 1$. If $N = r + 1$, then $χ$ is called a minimum $RithNσR$ of X.
2) $χ$ is symmetric, then $N \geq 2r$. If $χ$ is symmetric and $N = 2r$, then $χ$ is called a minimum symmetric $RithNσR$ of X.

Moreover, consider the set $χ := \{\overrightarrow{X X}_1, w_i^m, w_i^{c,j}, w_i^{cc,j})^N_{i=1}$ and the random vector $X \sim ([0]_{n \times 1}, P_{X X})_{T R N}$. Then the following statements are true:

- If $χ$ is a (normalized) homogeneous minimum symmetric $σR$ of X (Hom$MσSyR$, Corollary 3 of [17]), then $χ$ is also minimum and symmetric and is called a Riemannian (normalized) homogeneous minimum symmetric $σ$-representation of X.
- If $χ$ is a Rho Minimum $σR$ of X (“it is described in the 6th row of Table I of [17] and refereed there as the “Minimum set of [12]”), then $χ$ is also minimum, and is called a Riemannian Rho Minimum $σ$-representation (Ri$MσR$) of X.

If $χ$ is a Minimum $σR$ of X (Theorem 3 of [17]), then $χ$ is also minimum, and is called a Riemannian Minimum $σ$-representation (Ri$MσR$) of X.

The proof of Corollary 1 is given in Appendix C. With Theorem 1 and Corollary 1, we can find an $RiσR$ ($w_i^m > 0$ for every $i = 1, \ldots, N$) by first finding a normalized $σR$ in the tangent space of the considered manifold; each normalized $σRs$ (cf. [11] and [38]) have their associated RiorRs (cf. Corollary 1). For instance, suppose we want to calculate the normalized Ri$MσR$ of $X \in Φ^N$ (Corollary 1); that is, we want

$$χ = \{χ_i, w_i\}_{i=1}^{n_{σR} + 1} = RiMσR\left(\hat{x}_{k-1|k-1}, \hat{F}_{k-1|k-1}\right).$$

We can compute the Mi$σR$ (Theorem 3 of [11])

$$χ = \{χ_i, w_i\}_{i=1}^{n_{σR} + 1} := MiσR\left([0]_{n_x \times 1}, P_{k-1|k-1}\right),$$

and then, from Theorem 1 we would have

$$χ = \{\exp_{\tilde{x}_{k-1|k-1}}(χ_i, w_i)\}_{i=1}^{n_{σR} + 1}.$$

The work [3] introduced this technique [cf. (11) to (17)] therein, and here, with Theorem 1 and Corollary 1, we provide its formal justification and required assumptions.

VI. RIEMANNIAN UNSCENTED TRANSFORMATIONS

Essentially, a UT is an approximation of the joint pdf of two functionally-related random vectors by two weighted sets. For a Riemannian extension of the UT, we develop likewise.

For the natural numbers $l \geq 2$ and $N \geq 1$, consider $i)$ a function $f : N' \rightarrow R$, $ii)$ the random points $X \sim (X_1, M_{X}^{2, \ldots, M_{X}^{T}})_{N'}$ and $Y := f(X) \sim (Y, M_{Y}^{2, \ldots, M_{Y}^{T}})_{N'}$, and $iii)$ the sets

$$χ := \{χ_i, w_i^m, w_i^{c,j}, w_i^{cc,j}) : χ_i \in N';$$

$$j = 1, \ldots, l; w_i^m, w_i^{c,j}, w_i^{cc,j} \neq 0\}^{N}_{i=1}$$

and

$$γ := \{γ_i, w_i^m, w_i^{c,j}, w_i^{cc,j} : γ_i = f(χ_i); j = 1, \ldots, l\}^{N}_{i=1}.$$

Definition 4 (RiUT; Definition of 9.2 [38]). If $μ_χ = \bar{X}$ and $M_χ = M_{X}^{l}$ for every $j = 2, \ldots, l$, then the lth order Riemannian Unscented Transformation (RiUT) is defined by

$$RiUT : (f, \bar{X}, M_{X}^{2, \ldots, M_{X}^{T}}) \rightarrow (μ_γ, M_γ^{2, \ldots, M_γ^{T}}).$$

$χ$ is called the independent set of RiUT, and its dependent set.

Every $RithNσR$ is an independent set of an RiUT. If $l = 2$ or l is irrelevant for a given discussion, we can omit the reference to l and write $RiUT := Ri2UT$.

RiUTs are generalizations of UTs; every UT is an RiUT, and every RiUT with Euclidean points is an UT. This follows directly from the last paragraph of Sections III-A and of III-B.

3For a set $ξ := \{ξ_i, w_i^m, w_i^{c,j}, w_i^{cc,j}\}$, if $w_i^{m,j} = w_i^{c,j} = w_i^{cc,j}$ for every $j = 1, \ldots, l$, then we write $w_i := w_i^{m,j}$ and $ξ_i, w_i$.
An RiUT can be viewed as a mapping from 2 random points \(X \in \Phi_N \) and \(Y := f(X) \) to two Riemannian sets \(\chi \) and \(\gamma \) acting as a discrete approximation of the joint pdf of \((X, Y)\). For instance, an Ri2UT can be viewed as the following approximation (this interpretation is inspired on \cite{[14]}):

\[
\left(\begin{array}{c}
X \\
Y
\end{array} \right) \approx \left(\begin{array}{c}
\tilde{X} \\
\tilde{Y}
\end{array} \right) \sim \left(\begin{array}{c}
\left(\sum_{\chi} \chi \right), \\
\left(\sum_{\gamma} \gamma
\end{array} \right)
\right).
\]

VII. RIEMANNIAN UNSCENTED KALMAN FILTERS

At this point, we still need to develop i) Riemannian systems; and ii) state correction equations. First, UKFs estimate systems with random vectors [cf. \cite{[9]} and \cite{[10]}]; thus, for Riemannian UKFs (RiUKFs), we define systems with Riemannian random points (Section VII-A). Second, three steps compose UKFs: 1) state prediction, 2) measurement prediction, and 3) state correction (cf. \cite{[11]} and \cite{[38]}). The Riemannian extensions of steps 1 and 2) are trivial: since UTs compose steps 1 and 2, we extend them with RiUTs. But we still must extend step 3 (Section VII-B). In possession of these two results, we define RiUKFs and provide a list of some particular forms (Section VII-C).

A. Riemannian Dynamics Systems

Up to this point, we have focused on results regarding points on manifolds. In this section, we focus on results for dynamic state-space systems on Riemannian manifolds.

The Riemannian (stochastic discrete-time dynamic) system in its general form is given by the following pair of equations:

\[
x_k = f_k(x_{k-1}, \varpi_k), \quad y_k = h_k(x_k, \theta_k)
\]

(17)

where \(k \) is the time step; \(x_k \in \Phi_{N^x} \) is the internal state; \(y_k \in \Phi_{N^y} \) is the measured output; \(\varpi_k \in \Phi_{N^\varpi} \) is the process noise; and \(\theta_k \in \Phi_{N^\theta} \) is the measurement noise. The noises \(\varpi_k \) and \(\theta_k \) are uncorrelated, \(\varpi_k \) has mean \(\tilde{\varpi}_k \) and covariance \(Q_k \), and \(\theta_k \) has mean \(\tilde{\theta}_k \) and covariance \(R_k \).

We also want to consider an additive variant of [17] because filters for this class of systems are computationally cheaper. This additive variant of [17] would have i) \(\varpi_k \) acting on \(f_k(x_{k-1}) \) by “adding” its mean to the mean of \(f_k(x_{k-1}) \) and its covariance to the covariance of \(f_k(x_{k-1}) \), and ii) \(\theta_k \) acting similarly on \(h_k(x_k) \). We can work with sums in tangent spaces using the following proposition.

Proposition 1 (Proposition 8.2 of \cite{[38]}). Consider a Riemannian point \(X \sim (\tilde{X}, P_{XX}) \) and a random vector \(p \sim (\tilde{p}, P_{PP})_{T_{\tilde{X}}N^x} \). If \(\Omega(\tilde{X}) \) is convex, and \(\tilde{p} \in \mathbb{B}(\tilde{X}, r) \cap C(\tilde{X}) \)

where \(0 < r \leq \frac{1}{2} \min(\mathsf{inj}(N), \pi/\sqrt{k}) \) and \(\kappa \) is an upper bound of the sectional curvatures of \(N^x \); then

\[
\exp_{\tilde{X}} \left[p \right] \sim \exp_{\tilde{X}} \tilde{p}, P_{XX} + P_{PP}_{T_{\tilde{X}}N^x}.
\]

(18)

The proof of Proposition \[1\] is in Appendix \[D\].

Consider this proposition twice: one for the process function with \(a = f_k(x_{k-1}) \) and \(p = \varpi_k \), and the other for the measurement function with \(a = h_k(x_k) \) and \(p = \theta_k \). Using this reasoning, we define the additive Riemannian (stochastic discrete-time dynamic) system as follows (equation (9.20) of \cite{[38]}):

\[
x_k = \exp_{f_k(x_{k-1})} \left[\log_{f_k(x_{k-1})} f_k(x_{k-1}) + \varpi_k \right],
\]

\[
y_k = \exp_{h_k(x_k)} \left[\log_{h_k(x_k)} h_k(x_k) + \theta_k \right],
\]

(19)

where \(x_k \in \Phi_{N^x} \), \(y_k \in \Phi_{N^y} \), \(\varpi_k \subset T_{f_k(x_{k-1})} \Phi_{N^\varpi} \times \Phi_{N^\varpi} \), and \(\theta_k \subset T_{h_k(x_k)} \Phi_{N^\theta} \times \Phi_{N^\theta} \). The noise \(\varpi_k \) has mean \(\tilde{\varpi}_k \subset T_{f_k(x_{k-1})} \Phi_{N^\varpi} \times \Phi_{N^\varpi} \); and covariance \(Q_k \subset T_{f_k(x_{k-1})} \Phi_{N^\varpi} \times \Phi_{N^\varpi} \) and \(\theta_k \) mean \(\tilde{\theta}_k \subset T_{h_k(x_k)} \Phi_{N^\theta} \times \Phi_{N^\theta} \); and covariance \(R_k \subset T_{h_k(x_k)} \Phi_{N^\theta} \times \Phi_{N^\theta} \).

Note that \(\varpi_k \) is defined in the tangent space \(T_{f_k(x_{k-1})} \Phi_{N^\varpi} \times \Phi_{N^\varpi} \) and \(\theta_k \) in \(T_{h_k(x_k)} \Phi_{N^\theta} \times \Phi_{N^\theta} \). In Remark 1, we discuss an alternative definition in which these noises belong to Riemannian manifolds. An example with the unit sphere manifold of dimension 3, \(S^3 \), is provided in Section VII-B.

To the best of our knowledge, \cite{[19]} is the first consistent additive-noise Riemannian system. Although the literature has introduced additive-noise discrete-time UKFs for some Riemannian manifolds, we could not find any additive-noise system retaining the random point in the working manifold; even for simple manifolds such as \(S^3 \) (cf. \cite{[12], [39], [45]}).

If \(N^x \subset \mathbb{R}^n \) and \(N^y \subset \mathbb{R}^m \) then \cite{[19]} is the additive system \cite{[9]}. This is a direct consequence of the following results: for \(a, b \in \mathbb{R}^n \log b = b - a \) and \(\exp b = b + a \).

Sometimes, only one of the two equations in \cite{[17]} can be written with additive-noise as in \cite{[19]}.

In this case, we define the following two partially-additive Riemannian systems:

\[
x_k = f_k(x_{k-1}, \varpi_k),
\]

\[
y_k = \exp_{h_k(x_k)} \left[\log_{h_k(x_k)} h_k(x_k) + \theta_k \right],
\]

(20)

and

\[
x_k = \exp_{f_k(x_{k-1})} \left[\log_{f_k(x_{k-1})} f_k(x_{k-1}) + \varpi_k \right],
\]

\[
y_k = h_k(x_k, \theta_k).
\]

(21)

Remark 1. System \cite{[19]} is defined with tangent space process and measurement noises. An alternative definition in which these noises belong to Riemannian manifolds is the following:

\[
x_k = \exp_{f_k(x_{k-1})} \left[\log_{f_k(x_{k-1})} f_k(x_{k-1}) + \log_{f_k(x_{k-1})} \varpi_k \right],
\]

\[
y_k = h_k(x_k) + \log_{h_k(x_k)} \theta_k.
\]

(21)

where \(x_k \in \Phi_{N^x} \), \(y_k \in \Phi_{N^y} \), \(\varpi_k \in \Phi_{N^\varpi} \), and \(\theta_k \in \Phi_{N^\theta} \). In this case, it would be interesting to assume one of the following two cases:

1. That are known i) the means of \(\varpi_k \) and \(\theta_k \)---e.g., \(\varpi_k \in \Phi_{N^\varpi} \) and \(\theta_k \in \Phi_{N^\theta} \); and ii) the covariance of \(\varpi_k \) with respect to \(\varpi_k \) at \(f_k(x_{k-1}) \), and iii) the covariance of \(\varpi_k \) with respect to \(\theta_k \) at \(h_k(x_k) \).

2. That the means and covariances of \(\log f_k(x_{k-1}) \varpi_k \) and \(\log_{h_k(x_k)} \theta_k \) are known---e.g., the means \(\varpi_k \in T_{f_k(x_{k-1})} \Phi_{N^\varpi} \times \Phi_{N^\varpi} \); and \(\tilde{r}_k \subset T_{h_k(x_k)} \Phi_{N^\theta} \times \Phi_{N^\theta} \); and the covariances \(Q_k \subset T_{f_k(x_{k-1})} \Phi_{N^\varpi} \times \Phi_{N^\varpi} \) and \(R_k \subset T_{h_k(x_k)} \Phi_{N^\theta} \times \Phi_{N^\theta} \).
B. Correction equations

In this section, we introduce Riemannian extensions of the UKFs correction equations. Finding these extensions is not trivial because their Euclidean versions include vector operations (cf. [46]), which are not defined for all Riemannian manifolds. Thus, we proceed by first considering the simpler case $\Phi_{N_x} = \Phi_y$.

1) State and measurement in the same manifold: Suppose that $N_x = N_y$ and the measurements $\hat{y}_1, \ldots, \hat{y}_k$ have been acquired. Define the following random pointa:

$$x_{k|k-1} := x_k|\hat{y}_{1:k-1},$$

$$x_{k|k} := x_k|y_{1:k},$$

$$y_{k|k-1} := y_k|\hat{y}_{1:k-1},$$

and the following projections on the tangent space of $x_{k|k-1}$

$$x_{TM}^{k|k-1} := \log_{x_{k|k-1}} x_{k|k-1}$$

$$x_{TM}^{k|k} := \log_{x_{k|k-1}} x_{k|k}$$

$$\bar{y}_{k|k-1} := \bar{y}_{k|\hat{y}_{1:k-1}},$$

$$\bar{y}_{TM} := \log_{x_{k|k-1}} \bar{y}_{k},$$

Let i) $x_{k|k-1}$ and $y_{k|k-1}$ be characterized by their projection on the tangent space of $x_{k|k-1}$ according to the following equation:

$$N \left(\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \right) \cdot \begin{bmatrix} P_{x|x}^{k|k-1} & P_{x|y}^{k|k-1} \\ P_{x|y}^{k|k-1} & P_{y|y}^{k|k-1} \end{bmatrix} = \begin{bmatrix} P_{x|x}^{k|k-1} & P_{x|y}^{k|k-1} \\ P_{x|y}^{k|k-1} & P_{y|y}^{k|k-1} \end{bmatrix},$$

and ii) the projection $\bar{x}_{TM}^{k|k}$ be given by the following linear correction of $x_{TM}^{k|k-1}$

$$\bar{x}_{TM}^{k|k} := x_{TM}^{k|k-1} + G_k \left(\bar{y}_{TM} - y_{TM}^{k|k-1} \right),$$

where $G_k \in \mathbb{R}^{n_x \times n_x}$ is a gain matrix. From known results of the Kalman filtering theory (cf. [46]), we have

$$G_k := P_{x|y}^{k|k-1} \cdot \left(P_{x|y}^{k|k-1} \right)^{-1},$$

and $x_{TM}^{k|k} \sim N(\bar{x}_{TM}^{k|k}, P_{x|y}^{k|k-1})$ where

$$P_{x|y}^{k|k} := P_{x|y}^{k|k-1} - (G_k) \cdot P_{y|y}^{k|k-1} \cdot (G_k)^T.$$

From (22), we have

$$\bar{x}_{k|k} := \exp_{x_{k|k-1}} \bar{x}_{TM}^{k|k}.$$

The matrix $P_{x|x}^{k|k-1,\bar{x}_{k|k-1}}$ is the covariance of $x_{k|k}$ relative to $\bar{x}_{k|k}$ at $\bar{x}_{k|k-1}$. We want the covariance $P_{x|x}^{k|k} := P_{x|x}^{k|k,\bar{x}_{k|k}}$ of $x_{k|k}$ at $\bar{x}_{k|k}$, and the following theorem from [5] provides the mechanism to obtain $P_{x|x}^{k|k,\bar{x}_{k|k}}$ from $P_{x|x}^{k|k-1,\bar{x}_{k|k-1}}$.

Theorem 2 (Parallel Transport of a Bilinear Mapping [5]). Let P be a symmetric bilinear mapping on the tangent space $T_{a}N$ of the Riemannian manifold N at $a \in N$, and $a : [0, 1] \rightarrow N$ a differentiable curve on N with $a(0) = a$. Since P is symmetric, it can be written as

$$P = \sum_{i=1}^{n} \lambda_i v_i v_i^T,$$

where (v_1, \ldots, v_n) is an orthonormal basis of $T_a N$, and each λ_i is the eigenvalue of P associated with the eigenvector v_i. Let $v_i(t)$ be the parallel transport of v_i along $a(t)$ (Definition 75). With this,

$$P_t := \sum_{i=1}^{n} \lambda_i v_i(t) v_i(t)^T,$$

is the parallel transport of P along $a(t)$.

When we do not know the closed form of a tangent vector parallel transport, we can use a numerical approach such as the Schild’s Ladder (cf. [5]; see [47] for other implementations and algorithms of parallel transports).

We obtain $P_{x|x}^{k|k}$ by performing the parallel transport of $P_{x|x}^{k|k,\bar{x}_{k|k}}$ from $\bar{x}_{k|k-1}$ to $\bar{x}_{k|k}$ as follows:

$$P_{x|x}^{k|k} := PT \left(P_{x|x}^{k|k,\bar{x}_{k|k}}, \bar{x}_{k|k-1}, \bar{x}_{k|k} \right),$$

where

$$PT : \ Sym(T_a N) \times N \times N \rightarrow Sym(T_b N)$$

is the function mapping $Sym(T_a N) \times N \times N$ to $Sym(T_b N)$ according to [51], and $Sym(T_a N)$ denotes the space of symmetric matrices of $T_a N$.

With this, we can define a UKF for Riemannian systems when $N_x = N_y$. Let us now consider the original more general case.

2) State and measurement in different manifolds: If x_k belongs to a manifold Φ_{N_x} and y_k to another manifold Φ_{N_y}, then we can not define $y_{TM}^{k|k-1}$ as in (23) and \bar{y}_{TM} as in (24); consequently, neither $x_{TM}^{k|k}$ as in (26).

Since we know the correction equations when $N_x = N_y$, we can look for a manifold of which both N_x and N_y are submanifolds. The simplest of such a class is $N_x \times N_y$—the Cartesian product of two Riemannian manifolds is a Riemannian manifold [42].

Suppose $x_{k|k-1}$ and $y_{TM}^{k|k-1}$ are jointly Gaussian random vectors according to (35). Define i) the Riemannian Manifold $N_{x,y} := N_x \times N_y$; ii) the points $c := (c_x, c_y) \in N_{x,y}$, $b_x \in N_x$, and $b_y \in N_y$ (these points are chosen); and the following random vector belonging to $T_{c}N_{x,y}$:

$$x_{TM}^{c|k} := \log_{c} \left[x_{k|k-1}, b_y \right]^T + G_{k,++} \left[\log_{c} [b_x, \bar{y}_k] - \log_{c} [b_x, y_{k|k-1}] \right]^T$$

where $G_{k,++} \in \mathbb{R}^{(n_x+n_y) \times (n_x+n_y)}$ is a gain matrix. The tangent vector $x_{TM}^{c|k}$ is clearly related with $x_{TM}^{k|k}$ by

$$x_{TM}^{c|k} := x_{TM}^{k|k}|_{1, n_x+1}.$$
By finding the mean and covariance of $x_{Te,N_{x,y}}$, we find the mean and covariance of $x_{T_{M}}^k$.

Since $x_{T_{M}}^k$ and $y_{T_{M}}^k$ are jointly Gaussian random vectors, it follows that—we use the same reasoning used to obtain (27), (28), (29), (30), and (32)—

$$P_{xx,*}^{k-1} := \mathcal{E} \left\{ \log \left[\frac{c}{b} \right] \mathcal{E} \left\{ \log \left[\frac{c}{b} \right] \mathcal{E} \right\} \right\} \left(\sigma \right)^T$$

$$P_{yy,*}^{k-1} := \mathcal{E} \left\{ \log \left[\frac{c}{b} \right] \mathcal{E} \left\{ \log \left[\frac{c}{b} \right] \mathcal{E} \right\} \right\} \left(\sigma \right)^T$$

$$P_{xy,*}^{k-1} := \mathcal{E} \left\{ \log \left[\frac{c}{b} \right] \mathcal{E} \left\{ \log \left[\frac{c}{b} \right] \mathcal{E} \right\} \right\} \left(\sigma \right)^T$$

resulting in a system in which the measurement belongs to different manifolds. Therefore, we can calculate the estimates \hat{x}_{k-1}, $\hat{P}_{xx,k-1}$, and $\hat{P}_{xy,k-1}$.

Definition 3 and **Proposition 1** the estimates \hat{x}_{k-1}, $\hat{P}_{xx,k-1}$ can be calculated by

$$\left(\hat{y}_{k-1}, \hat{P}_{yy,*}, \hat{P}_{xy} \right) :=$$

$$\text{RIUT}_2 \left(h_k, \hat{x}_{k-1}, \hat{P}_{xx,k-1} \right)$$

By similar formulas, we can obtain \hat{x}_{k-1}, $\hat{P}_{xx,k-1}$, \hat{y}_{k-1}, $\hat{P}_{yy,*}$, and \hat{P}_{xy} for both 17 and 19.

Below, we introduce the Riemannian UKFs (RIUKFs): UKFs for the Riemannian systems 17 and 19. For the filter of 17, define the augmented functions

$$f_{k,aug}^a \left(\left[x_{k-1}, \bar{\varphi} \right] \right) := f_{k} \left(x_{k-1}, \bar{\varphi} \right) \quad (39)$$

$$I_{k,aug}^a \left(\left[\bar{\psi}, \varphi \right] \right) := I_{k} \left(\bar{\psi}, \varphi \right) \quad (40)$$

Consider system 17 and suppose that (i) the initial state is $x_0 \sim (\bar{x}_0, P_{xx,0})$, and (ii) the measurements $\hat{y}_1, \hat{y}_2, ..., \hat{y}_k$ are given. Then the Riemannian Augmented Unscented Kalman Filter (RIaUKF) is given by the following algorithm:

Algorithm 1 (RIaUKF; Algorithm 19 of [38]). Set the initial estimates $\hat{x}_{0} := \bar{x}_{0}$ and $P_{0} := P_{0}$. For $k = 1, ..., N$, perform the following steps:

1. **State prediction.**

$$x_{k-1}^{aug} := \left(\hat{x}_{k-1}^{*,*}, \bar{\varphi} \right)$$

$$P_{x_{k-1}}^{k-1} := \text{diag} \left(P_{x_{k-1}}^{k-1}, Q_{k} \right)$$

$$\left(\hat{x}_{k-1}, \hat{P}_{xx,k-1} \right) :=$$

$$\text{RIUT}_1 \left(f_{k,aug}^a, \hat{x}_{k-1}^{*,*}, \hat{P}_{xx,aug,k-1}^{k-1} \right) \quad (40)$$

2. **Measurement prediction.**

$$x_{k}^{aug} := \left(\hat{x}_{k}^{*,*}, \bar{\varphi} \right)$$

$$P_{x_{k,aug}}^{k} := \text{diag} \left(P_{x_{k,aug}}^{k-1}, R_{k} \right)$$

$$\left(\hat{y}_{k}, \hat{P}_{yy}^{k-1}, \hat{P}_{xy}^{k-1} \right) :=$$

$$\text{RIUT}_2 \left(f_{k,aug}^a, \hat{x}_{k}^{aug}, \hat{P}_{xy,aug}^{k-1} \right) \quad (41)$$

3. **State correction.**

$$G_{k} := \hat{P}_{xy,k-1}^{k-1} \hat{P}_{yy}^{k-1}$$

$$\hat{x}_{k}^{*,*} := G_{k} \hat{y}_{k}$$

$$\hat{P}_{xx,k-1}^{k-1} := \hat{P}_{xx,k-1}^{k-1} - G_{k} \hat{P}_{yy}^{k-1}$$

C. New Riemannian Unscented Kalman Filters

At this point, we are endowed with the necessary results to provide Riemannian extensions of UKFs. At every step time, the final estimates \hat{x}_{k} and $\hat{P}_{xx,k}$ can be calculated by (32) and Theorem 3. From (27), (28), (29), and (30), and (32) these final estimates require $\hat{x}_{k-1}, P_{xx,k}, y_{k-1}, P_{yy,k}$, and $\hat{P}_{xy,k}$. These last estimates can be calculated by realizing RiUTs in systems 17 and 19. For instance, from (19),
Consider the system \(\chi \) and suppose that i) the initial state \(\chi_0 \approx (\hat{x}_0, P_{xx}^{0|0}) \), and ii) the measurements \(\hat{y}_1, \hat{y}_2, \ldots, \hat{y}_k \) are given. Then the Riemannian Additive Unscented Kalman Filter (RiAdUKF) is given by the following algorithm:

Algorithm 2 (RiAdUKF; Algorithm 21 of [38]). Set the initial estimates \(\hat{x}_{0|0} := \hat{x}_0 \) and \(P_{0|0}^{xx} := P_{xx}^0 \). For \(k = 1, \ldots, k_f \), perform the following steps:

1) **State prediction.**

\[
\hat{x}_{k|k-1} := \text{RiUT}_1 \left(f_k, \hat{x}_{k-1|k-1}, \hat{P}_{xx}^{k-1|k-1} \right)
\]

\[
\hat{P}_{xx}^{k|k-1} := \hat{P}_{xx}^{k|k-1} + Q_k.
\]

2) **Measurement prediction.**

\[
\hat{y}_{k|k-1} := \exp_{\chi^*} (\hat{x}_{k|k-1}, \tilde{\chi}_k)
\]

\[
\hat{P}_{yy}^{k|k-1} := \hat{P}_{yy}^{k|k-1} + R_k.
\]

3) **State correction.**

\[
G_k := \hat{x}_{xy}^{k|k-1} \left(\hat{P}_{yy}^{k|k-1} \right)^{-1}
\]

\[
\hat{x}_{k|k} := \hat{x}_{k|k-1} + G_k (\hat{y}_k - \hat{x}_{ky}^{k|k-1} \hat{x}_{k|k-1})
\]

\[
\hat{P}_{xx}^{k|k} := \hat{P}_{xx}^{k|k-1} - G_k \hat{P}_{xy}^{k|k-1} G_k^T
\]

\[
\hat{P}_{xx}^{k} := \text{PT} \left(\hat{P}_{xx}^{k|k-1}, \hat{x}_{k|k-1}, \hat{x}_k \right)
\]

All steps of the RiUKFs are justified by and coherent with the other results of this work. Among these, the most important are RiR, RiUT and Riemannian systems.

The notations RiUT1 and RiUT2 [in (40), (41), (43), and (45)] indicate these RiUTs have different forms. The output of RiUT1 has only two terms—which is different from the number of mapped variables in Definition 4—meaning that only the first two variables of the output of Definition 4 are needed.

We can consider not regenerating the independent set of RiUT2 when RiUT1 = RiUT2. Let \(\chi^{k|k-1} \) be the dependent set of RiUT1, and \(\chi^{k|k-1} \) the dependent set of RiUT2. Because, from (41) and (45), \(\chi^{k|k-1} \) are different objects, we say \(\chi^{k|k-1} \) is regenerated. Nonetheless, we could set \(\chi^{k|k-1} = \chi^{k|k-1} \); consequently, the computational effort of the filter would decrease—calculating a new \(\chi^{k|k-1} \) can be computationally because it includes calculating a square-root matrix of \(\hat{P}_{xxx}^{k|k-1} \) or \(\hat{P}_{xx}^{k|k-1} \). But in this case, i) the estimation quality of the RiAdUKF would possibly deteriorate—it has been shown for the Euclidean case (cf. Section 5.1 of [38]) and ii) the reasoning behind the RiUKFs explained in the second paragraph of this section would not be true anymore.

After choosing the manifolds’ atlases, all expressions for the Riemannian exponential, logarithm, etc., must be coherent with the chosen parameterizations. These transformations, as well as other elements in these filters such as covariances, have different expressions depending on the parameterizations defining the manifolds.

We can find Ri\sigma Rs (with \(w^m > 0 \) for every \(i = 1, \ldots, N \)) by first finding \(\sigma R \)s in tangent spaces (see the last paragraph of Section V). The independent sets of RiUT1 and RiUT2 can be difficult to find. Fortunately, closed forms of Ri\sigma Rs (which can be independent sets of RiUTs) can be found from closed forms of normalized \(\sigma R \)s by using Theorem 1.

The method for obtaining the sample means of RiUT1 and RiUT2 affects the computation efforts of the RiUKFs because, following [7], we define these sample means as optimization problems (Section I-B). Sometimes there exist closed forms, but more often it requires optimization algorithms. The reader will find efficient options in [6], [7], [48], [49] and in the MATLAB and Python toolbox ManOpt [50].

Computational efforts of the RiUKFs also varies with the underlying manifolds and their atlases because the expressions for exponentials, logarithms and parallel transports change with them. The reader can also refer to the ManOpt toolbox for many efficient implementations of these operations.

Apart from these three factors, computational efforts majorly depends on the square-rooting involved in the Ri\sigma Rs calculations and the \(\hat{P}_{yy}^{k|k-1} \) inversion in the Kalman gain calculations. Since we can find Ri\sigma Rs by finding \(\sigma R \)s in tangent spaces and, to the best of our knowledge, all known \(\sigma R \)s require square-rooting a covariance matrix (cf. [11]), the computational complexity of these operations in (40) is \(\mathcal{O}(n x + n x z^3) \), in (41) \(\mathcal{O}(n y + n a)^3 \), in (43) \(\mathcal{O}(n^3) \), and in (46) \(\mathcal{O}(n^3) \). The computational complexity of the \(\hat{P}_{yy}^{k|k-1} \) inversion is \(\mathcal{O}(n_y^3) \) in both (42) and (49).

RiUKFs are generalizations of UKFs. Every UKF is a RiUKF, and every RiUKF for Euclidean state-variables is a UKF. It is easy to see that, if \(\mathcal{N}_x \) is Euclidean spaces, then RiAuUKF is equivalent to AuUKF (Algorithm 7 of [38]), and RiAdUKF to AdUKF (Algorithm 6 of [38]).

Since Cartesian products of Riemannian manifolds are also Riemannian manifolds (e.g., \(S^3 \times \mathbb{R}^4 \)), the proposed RiUKF also estimates systems with state variables belonging to Cartesian products of Riemannian manifolds.

The Kalman gain \(G_k \) in (42) and (49) could be defined in a more general way, as done in [34]. However, it would imply more computational effort—the dimension of the sigma points and matrices would be higher—at the exchange of no advantage, at least at present; perhaps benefits can be obtained from [34] in future works.

The three assumptions cited at the beginning of Section V impose some limitations on the RiUKFs. Assumption 1 limits the RiUKFs to the case of geodesically-complete Riemannian manifolds: still there are many of these manifolds useful for practical applications, such as unit spheres, special orthogonal
groups, special Euclidean groups, real projective spaces, special unitary groups, Grassmann manifolds, among others (cf. [6] and Section 4.3). Assumption 2 imposes careful choice of \mathbf{P}_{xx}^0, \mathbf{Q}_k, \mathbf{R}_k (or \mathbf{Q}_k and \mathbf{F}_k for the RiAdUKF): their values should be consistent with the logarithms in their definitions [or in (19) in the case of the RiAdUKF]: since these covariances are tuning parameters and are often set based on intuition, an user could chose inconsistent (too great) values; this would probably result on either inconsistent sigma points—because the tangent sigma points would be outside the tangent cut locus—or on some divergence in the algorithm, such as non-positive state covariance matrix. Assumption 3 will not, in most cases, impose other limitations if the user model the system equations and parameters consistently.

We find particular cases of RiUKFs by choosing particular forms of σRs; Table I shows some cases for RiUT(σ). All filters in Table I are new.

Table I

σ^R	AuUKF	AdUKF
RiMnR	RiMnAuUKF	RiMnAdUKF
RiRhoMnR	RiRhoMnAuUKF	RiRhoMnAdUKF
RiMnSyR	RiMnSyAuUKF	RiMnSyAdUKF
RiHoMnSyR	RiHoMnSyAuUKF	RiHoMnSyAdUKF

1 Ad for Additive, Au for Augmented, Ho for Homogeneous, Mi for Minimum, Sy for Symmetric, UKF for Unscented Kalman Filter. Rho stand for Rho itself; see also the acronyms list in Appendix E.

Suppose that i) the initial state \mathbf{x}_0 is characterized by $\mathbf{x}_0 \sim (\bar{\mathbf{x}}_0, \mathbf{P}_{xx}^0)_{\mathcal{N}_e}$, and ii) the measurements $\bar{y}_1, \bar{y}_2, \ldots, \bar{y}_{k_f}$ are given. Let $\text{HoMiSySr} : \{\bar{X}, P_{XX}\} \mapsto \{\chi_i, w_i\}_{i=1}^N$ be a function mapping the mean \bar{X} and covariance P_{XX} of a given random vector \bar{X} to a HoMiSySr (Corollary 3 of [1]).

Then the UKFRM of [5] is given by the following algorithm:

Algorithm 3 (UKFRM of [5]). Set $N := 2n_x + 1$ and the initial estimates $\bar{x}_{0|0} := \bar{x}_0$ and $P_{xx}^{0|0} := P_{xx}^0$. For $k = 1, \ldots, k_f$, perform the following steps:

1) State prediction.

$$
\{ \chi_{i|k-1}, w_i \}_{i=1}^N := \text{HoMiSySr}\left(0|n_x, \bar{P}_{xx}^{k|k-1}\right)
$$

2) Measurement prediction.

$$
\chi_{i|k-1} := \text{exp}_\chi(x_{i|k-1}) \left(\chi_{i|k-1}\right), \quad i = 1, \ldots, N
$$

3) State correction.

$$
G_k := \bar{P}_{xy}^{k|k-1} \left(\bar{P}_{yy}^{k|k-1}\right)^{-1} \\
\hat{x}_{k|k} := \bar{x}_{k|k-1} + G_k \log_\chi(y_k) \\
\bar{x}_{k|k} := \text{exp}_\chi(\hat{x}_{k|k}) \\
P_{xx}^{k|k} := \bar{P}_{xx}^{k|k-1} - G_k \bar{P}_{yy}^{k|k-1} G_k^T
$$

D. Relation with the literature

To the best of our knowledge, the UKF for Riemannian manifolds (UKFRM) of [5] is the only UKF for any geodesically-complete Riemannian manifold in the literature. Consider system (17) and define the following functions—cf. (1) and (2) of [5]—

$$
f_k^*(x_{k-1}) := f_k(x_{k-1}, \varphi_{k-1}), \quad h_k^*(x_k) := h_k(x_k, \varphi_k).
$$

(53)
1) The noises are incorporated into the RiUKFs, but in the UKFRM they are not. In the RiAuUKF, the noises are incorporated by realizing the augmented sigma points in the process and measurement functions [equations (40) and (41)]; and in the RiAdUKF, by “adding” (in the tangent space) their means and covariances [equations (44), (45), (47), (48)]. However, the UKFRM exclude the noises. Even though the UKFRM of [5] considers a system with process and measurement noises [cf. (53)], they do not influence any estimate within the UKFRM; these noises’ statistics do not appear at any step of the UKFRM—commonly, filters consider these statistics when calculating the predicted covariances, but this is also not the case for the UKFRM [cf. (56) and (59)].

We can point out at least two consequences of this absence of the noise elements:

a) the Euclidean case of the UKFRM is not equivalent to any (Euclidean) UKF. This can be seen by considering Euclidean manifolds in Algorithm 3 (cf. the last paragraph of Sections IV-A and of IV-B). Besides, to the best of our knowledge, there is no UKF without process and measurement noises covariance [cf. (11), (38)].

b) the UKFRM might diverge in situations in which the RiUKFs do not. This behavior can be seen in the following simple example: consider [19] and [53] with $N_{x} = N_{x} = N_{a} = N_{a} = \mathbb{R}$. Suppose that i) the initial state is $x_0 \sim (1, 1)^T$, ii) the noise covariances are $Q_k = R_k = 1$, iii) the system functions are $f_k(x_k-1) = f_k(x_{k-1}) = x_{k-1}$ and $h_k(x_k) = h_k(x_k) = 1 - x_k$, and iv) the measurements are $y_1 = \cdots = y_k = 1$. For this example, we ran the (linear) KF (cf. [51]), the RiAdUKF, and the UKFRM. Both the KF and the RiAdUKF provided the same estimates, but the UKFRM did not provide consistent results; the simulation was halted because the corrected covariance ($P_{xx}^{2/3}$) lost its positiveness. Similar results occurred in the simulations of Section VII-B.

2) We introduced a consistent definition [equation (19)] for the system associated with the RiAdUKF. To the best of our knowledge, [19] is the first consistent additive-noise Riemannian stochastic discrete-time dynamic system.

3) To the best of our knowledge, the RiUKFs are the first UKFs for Riemannian state-space systems considering noises with non-zero means. Even for simple manifolds such as the unit sphere, we could not find a UKF considering this case.

4) All the equations of our RiUKFs are formally justified. These justifications are the following ones:

a) The equations of steps 1 and 2 of the RiUKFs are justified by Definition 3 and Corollary VI.1 and Corollary VI.1.

b) Equations (42) and (49) (the Kalman Gains) are justified in Section VII-B2. This form of the Kalman gain G_k in (42) and (49) follows as a particular case of the Kalman gain of a more general system ($G_{k,x,\omega}$) where the state and the measurement belong to the product $N_x \times N_y$. The equations of step 3 of the RiUKFs are justified in Section VII-B.

Section VII-B. We showed that they follow from considering i) x_{k-1}^M and y_{k-1}^M normally-joint distributed [equation (25)], and ii) x_k^M given by a linear correction of x_{k-1}^M by $(y_k^M - y_{k-1}^M)$ [equation (26)].

5) (Euclidean) UKFs are particular cases of the RiUKFs (cf. Section VII-C).

Altogether, we can say the RiUKFs have novelties compared with the UKF for Riemannian state-space systems of the literature.

VIII. EXAMPLE: SATELLITE ATTITUDE TRACKING

In this section, we apply the developed theory to estimate the attitude of a satellite in a realistic scenario (cf. [52]). The set of possible attitudes of a rotating body is not a Euclidean space, but a three dimensional smooth manifold known as $SO(3)$. This manifold has many different topological properties from a Euclidean space: for instance, it is compact whilst Euclidean spaces are not. Due to this difference, Euclidean UKFs designed over Euclidean spaces may not work properly: its estimates may not stay within the state-space manifold, resulting in poor performance and poor accuracy [12].

Although we could apply an RiUKFs for $SO(3)$ in this example, we prefer to apply an RiUKF for the set of unit quaternions S^3 because they represent, without singularities [53], attitudes using the minimal set of parameters. Let $q_i = [\eta_i \; \epsilon_i]^T \in \mathbb{R}^4$, where $\eta_i \in \mathbb{R}$ and $\epsilon_i \in \mathbb{R}^3$. It is possible to prove that the three dimensional sphere

$$S^3 = \{(q_1, q_2, q_3, q_4) \in \mathbb{R}^4 : q_1^2 + q_2^2 + q_3^2 + q_4^2 = 1\}$$

is a Riemannian manifold and the product

$$q_1 \otimes q_2 = \begin{bmatrix} \eta_1 \eta_2 - \epsilon_1 \epsilon_2 \\ \eta_1 \epsilon_2 + \eta_2 \epsilon_1 + \epsilon_1 \times \epsilon_2 \end{bmatrix},$$

is closed. For a rotation of an angle θ around an unit vector n, there are two associated unit quaternions q and q' such that

$$q = \cos \left(\frac{\theta}{2}\right) + n_m \sin \left(\frac{\theta}{2}\right), \quad q' = -q.$$

Let $q(t) \in S^3$ be the attitude of the satellite at the time instant t, and $\omega(t) \in \mathbb{R}^3$ its the angular velocity. The evolution of $q(t)$ over time can be described by the following differential equation [54]:

$$\dot{q}(t) = \frac{1}{2} \omega(t) \otimes q(t),$$

where $\omega \in \mathbb{R}^3$ is given by $\omega = [0 \; \omega]^T$.

We generate synthetic data by a fourth order Runge-Kutta integration of (62) over the interval $[0s, 20s]$ with angular velocity

$$\omega(t) = \begin{bmatrix} 0.03 \sin \left(\frac{\pi t}{600}\right) \\ 0.03 \sin \left(\frac{\pi t}{600} - 300^\circ\right) \\ 0.03 \sin \left(\frac{\pi t}{600} - 600^\circ\right) \end{bmatrix},$$

and initial state $q(0) = 0.96 + n_m [0.13, 0.19, \sqrt{1 - 0.96^2 - 0.13^2 - 0.19^2}]^T$.

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.
problematic behavior (cf. Section VII-D).

Nonexistence of noise terms in the UKFRM might explain this we introduce the following results

In this work, we extend the systematization of the Unscented Kalman Filtering theory we developed in [11] towards estimating the state of Riemannian systems. In this systematization, theoretically justified:

1) A Riemannian extension of the \(\sigma \)-representation (\(\sigma_R \)): the Riemannian \(\sigma \)-representation (Ri\(\sigma \)R, Section VII-A).

2) A technique to obtain closed forms of the Ri\(\sigma \)R by closed forms of the \(\sigma \)R (Theorem 1). Using this result, we discover (Corollary 1)

 a) the minimum number of sigma points of an Ri\(\sigma \)R,
 b) the minimum number of sigma points of a symmetric Ri\(\sigma \)R,
 c) closed forms for the minimum Ri\(\sigma \)R, and
 d) closed forms for the minimum symmetric Ri\(\sigma \)R.

3) An additive-noise Riemannian system definition (Section VII-A). We require this definition to introduce additive-noise Riemannian UKFs.

 These results were first presented in Menegaz’s PhD thesis [38].

4) Kalman correction equations on Riemannian manifolds (Section VII-B).

5) New discrete-time Riemannian UKFs (RiUKFs), namely the Riemannian Additive UKF and the Riemannian Augmented UKF (Section VII-C). Besides, we

 a) provide a list of particular variants of these filters (Table I); all these variants are new. Compared with the literature’s UKF for Riemannian manifolds (in [5]), our RiUKFs are more consistent, formally-principled, and general.

 b) numerically compare all these particular variants with the literature’s UKF on Riemannian manifolds in a satellite attitude tracking scenario. For all 1,000 simulations, the new variants provided good estimates, but the literature’s filter diverged; in every simulation, the state covariance estimate lost its positiveness.

With this work, we hope to have expanded the literature’s knowledge on Kalman filtering and provided a tool for the research community to improve the performance and stability of many UKFs.

Following this study, we recommend the research community searching for computationally-implementable variants of RiUKFs. Since concepts of the Riemannian manifold theory can be very abstract, depending on the underlying manifold, developing RiUKFs variants is not trivial.

This task is even harder without a generalizing base theory: that is one of the reasons why, in this work, we develop a general consistent systematized theory of Unscented Kalman Filters for Riemannian State-Space Systems.

IX. Conclusions

In this work, we extend the systematization of the Unscented Kalman Filtering theory we developed in [11] towards estimating the state of Riemannian systems. In this systematization, we introduce the following results (all results are mathematically justified):

 1) A Riemannian extension of the \(\sigma \)-representation (\(\sigma_R \)): the Riemannian \(\sigma \)-representation (Ri\(\sigma \)R, Section VII-A).

 2) A technique to obtain closed forms of the Ri\(\sigma \)R by closed forms of the \(\sigma \)R (Theorem 1). Using this result, we discover (Corollary 1)

 a) the minimum number of sigma points of an Ri\(\sigma \)R,
 b) the minimum number of sigma points of a symmetric Ri\(\sigma \)R,
 c) closed forms for the minimum Ri\(\sigma \)R, and
 d) closed forms for the minimum symmetric Ri\(\sigma \)R.

 3) An additive-noise Riemannian system definition (Section VII-A). We require this definition to introduce additive-noise Riemannian UKFs.

| Root Mean Square Error (\(\times 10^{-6} \)) of Each RiUKF in Table II Considering 1,000 Simulations of a Satellite Attitude Tracking Example. |
|--|--|--|--|--|
| RiMiAdUKF | RiRhoMiAdUKF | RiMiSyAdUKF | RiHoMiSyAdUKF |
| 2.612 | 2.614 | 2.614 | 2.614 |
| RiMiAdUKF | RiRhoMiAdUKF | RiMiSyAdUKF | RiHoMiSyAdUKF |
| 2.612 | 2.613 | 2.613 | 2.613 |

For filtering, we consider

\[
\theta(t) := \frac{||\omega(t)||}{\sqrt{2}}
\]

\[
f_k(x_{k-1}) = \left[\cos \theta(t) \frac{\omega(t)}{||\omega(t)||} \sin \theta(t) \right]^T \otimes x_{k-1}
\]

\[
\bar{x}_k = \tilde{x}_k = \begin{bmatrix} 0 \end{bmatrix} \times 1,
Q_k = (0.31236 \times 10^{-6}) I_3,
R_k = (0.5\pi/180 \times 10^{-6})^2 I_3.
\]

These values for \(Q_k \) and \(R_k \) were chosen according to [12].

We performed 1,000 simulations with the RiUKFs of Table I and the UKFRM of [5]. To calculate Riemannian means, we used the gradient descent method of [19] with a threshold of \(10^{-6} \); and for Riemannian exponentials, Riemannian logarithms, and parallel transport, we used the MATLAB toolbox ManOpt [50].

For all simulations, the RiUKFs of Table I provided good estimates, with a Root Mean Square Error in the order of \(10^{-6} \) (Table II). The RiMiAdUKF or the RiRhoMiAdUKF are the best alternatives for this example because i) it demands less computational effort than the other filters—it is additive and is composed of the least number of sigma points (cf. Corollary 1) and ii) all RiUKFs performed almost equally.

The UKFRM failed in all the 1,000 simulations; in every simulation, the state covariance estimate lost its positiveness. Nonexistence of noise terms in the UKFRM might explain this problematic behavior (cf. Section VII-D).

REFERENCES

[1] J. Meng, G. Luo, and F. Gao, “Lithium Polymer Battery State-of-Charge Estimation Based on Adaptive Unscented Kalman Filter and Support Vector Machine,” IEEE Transactions on Power Electronics, vol. 31, no. 3, pp. 2226–2238, 2016.

[2] A. Rahimi, K. D. Kumar, and H. Alighanbari, “Enhanced adaptive unscented Kalman filter for reaction wheels,” IEEE Trans. Aerosp. Electron. Syst., vol. 51, no. 2, pp. 1568–1575, 2015.

[3] A. N. Vargas, H. M. T. Menegaz, J. Y. Ishihara, and L. Acho, “Unscented Kalman Filters for Estimating the Position of an Automotive Electronic Throttle Valve,” IEEE Trans. Veh. Technol., vol. 65, no. 6, pp. 4627–4632, June 2016.

[4] S. I. Julier and J. K. Uhlmann, “Unscented Filtering and Nonlinear Estimation,” Proc. IEEE, vol. 92, no. 3, pp. 401–422, 2004.

[5] S. Hauberg, F. Lauze, and K. S. Pedersen, “Unscented Kalman Filtering on Riemannian Manifolds,” J. Math. Imaging Vision, vol. 46, no. 1, pp. 103–120, Jan 2013.

[6] P.-A. Absil, R. Mahony, and R. Sepulchre, Optimization Algorithms on Matrix Manifolds, Princeton University Press, 2008.

[7] X. Pennec, “Intrinsic Statistics on Riemannian Manifolds: Basic Tools for Geometric Measurements,” J. Math. Imaging Vision, vol. 25, no. 1, pp. 127–154, Jul 2006.

[8] N. Enayati, E. D. Momi, and F. Ferrigno, “A Quaternion-Based Unscented Kalman Filter for Robust Optical/Inertial Motion Tracking in Computer-Assisted Surgery,” IEEE Trans. Instrum. Meas., vol. 64, no. 8, pp. 2291–2301, Jan 2015.

[9] I. Giliatschenki, G. Kurz, S. J. Julier, and U. D. Hanebeck, “Unscented Orientation Estimation Based on the Bingham Distribution,” IEEE Trans. Autom. Control, vol. 61, no. 1, pp. 172–177, Jan 2016.

[10] T. Lee, “Global unscented attitude estimation via the matrix Fisher distributions on SO(3),” in 2016 Amer. Control Conf., Boston, MA, Jul 2016, pp. 4942–4947.

[11] H. M. T. Menegaz, J. Y. Ishihara, G. A. Borges, and A. N. Vargas, “A Systematization of the Unscented Kalman Filter Theory,” IEEE Trans. Autom. Control, vol. 60, no. 10, pp. 2583–2598, Oct 2015.
Definition 5 (Differentiable manifold [42]). A differentiable manifold of dimension n is a pair $(\mathcal{N},\mathcal{A})$ where \mathcal{N} is a set, and $\mathcal{A} = \{(U_{\alpha},\varphi_{\alpha})\}$, called atlas, a family of injective mappings (charts) $\varphi_{\alpha} : U_{\alpha} \subset \mathbb{R}^{n} \to \mathcal{N}$ of open sets U_{α} of \mathbb{R}^{n} into \mathcal{N} such that:

1. $\phi_{\alpha}|_{U_{\alpha} \cap U_{\beta}}$ are diffeomorphisms.

2. For any pair a, b, with $\varphi_{\alpha}(U_{\alpha}) \cap \varphi_{\beta}(U_{\beta}) = \emptyset$, the sets $\varphi_{\alpha}^{-1}(W)$ and $\varphi_{\beta}^{-1}(W)$ are open sets in \mathbb{R}^{n}, and the mappings $\varphi_{\alpha}^{-1} \circ \varphi_{\beta}$ and $\varphi_{\beta}^{-1} \circ \varphi_{\alpha}$ are differentiable.

APPENDIX

A. Results relative to Riemannian manifolds

In this appendix, we provide some results relative to the theory of Riemannian manifolds. These definitions are mainly based on [42].

S. B. N. and E. T. R. (2016). "A New Framework for Riemannian Manifolds in Computer Vision." IEEE Trans. Pattern Anal. Mach. Intell., vol. 38, no. 11, pp. 2143–2156.

S. B. N. and E. T. R. (2017). "Optimal Control on Riemannian Manifolds." Springer, 2017.

S. B. N. and E. T. R. (2018). "Geometric Control Theory on Product Geometric Spaces." Springer, 2018.

S. B. N. and E. T. R. (2019). "Differential Geometry of Riemannian Manifolds." Springer, 2019.

S. B. N. and E. T. R. (2020). "Dynamical Systems on Riemannian Manifolds." Springer, 2020.

S. B. N. and E. T. R. (2021). "Differential Geometry and Riemannian Manifolds." Springer, 2021.

S. B. N. and E. T. R. (2022). "Geometric Control Theory on Riemannian Manifolds." Springer, 2022.

S. B. N. and E. T. R. (2023). "Differential Geometry and Riemannian Manifolds." Springer, 2023.

S. B. N. and E. T. R. (2024). "Dynamical Systems on Riemannian Manifolds." Springer, 2024.

S. B. N. and E. T. R. (2025). "Differential Geometry of Riemannian Manifolds." Springer, 2025.

S. B. N. and E. T. R. (2026). "Geometric Control Theory on Product Geometric Spaces." Springer, 2026.

S. B. N. and E. T. R. (2027). "Dynamical Systems on Riemannian Manifolds." Springer, 2027.

S. B. N. and E. T. R. (2028). "Differential Geometry and Riemannian Manifolds." Springer, 2028.

S. B. N. and E. T. R. (2029). "Dynamical Systems on Riemannian Manifolds." Springer, 2029.

S. B. N. and E. T. R. (2030). "Differential Geometry and Riemannian Manifolds." Springer, 2030.

S. B. N. and E. T. R. (2031). "Dynamical Systems on Riemannian Manifolds." Springer, 2031.

S. B. N. and E. T. R. (2032). "Differential Geometry and Riemannian Manifolds." Springer, 2032.
3) The family $A = \{(U_a, \varphi_a)\}$ is maximal relative to the conditions [1] and [2].

A pair (U_a, φ_a) (or the mapping φ_a) with $a \in \varphi_a(U_a)$ is called a parameterization of N at a. For simplicity, we can denote a differentiable manifold (N, A) of dimension n by N or N^n.

Definition 6 (Differentiable function [42]). Let N_1^n and N_2^n be differentiable manifolds. A mapping $f : N_1 \rightarrow N_2$ is differentiable at $a \in N_1$ if, given a parameterization $\varphi_2 : V \subset \mathbb{R}^m \rightarrow N_2$ at $f(a)$, there exists a parameterization $\varphi_1 : U \subset \mathbb{R}^n \rightarrow N_1$ at a such that $f(\varphi_1(U)) \subset \varphi_2(V)$ and the mapping

$$\tilde{f} := \varphi_2^{-1} \circ f \circ \varphi_1 : U \subset \mathbb{R}^n \rightarrow \mathbb{R}^m$$

is differentiable at $\varphi_1^{-1}(a)$. We say f is differentiable on an open set of N_1 if it is differentiable at all of the points of this open set.

In this work, we suppose that all functions are differentiable unless otherwise stated.

Definition 7 (Tangent space [42]). Let N be a differentiable manifold. A differentiable function $\alpha : I \rightarrow N$ is called a (differentiable) curve in N. Suppose $\alpha(0) = a \in N$, and let $\mathcal{D}_a(N)$ be the set of all functions $f : N \rightarrow \mathbb{R}$ that are differentiable at a. The tangent vector to the curve α at $t = 0$ is a function $\alpha'(0) : \mathcal{D}_a(N) \rightarrow \mathbb{R}$ given by

$$\alpha'(0) f = d(f \circ \alpha)/dt|_{t=0}, \quad f \in \mathcal{D}_a(N).$$

Note that $\alpha'(0)$ is an operator taking $f \in \mathcal{D}_a(N)$ to a scalar $d(f \circ \alpha)/dt|_{t=0}$. A tangent vector at a is a tangent vector of some curve $\alpha : I \rightarrow N$ with $\alpha(0) = a$ at $t = 0$. The set of all tangent vectors to N at a will be indicated by T_aN.

The set T_aN forms a vector space of dimension n and is called the tangent space of N at a.

Definition 8 (Arc length [7]). Given an open interval $I \subset \mathbb{R}$, a differentiable function $\alpha : I \rightarrow N$ is called a (differentiable) curve in N. Given a curve α on N, the arc length of α in the interval $[a, b] \subset I$ is defined by

$$L^b_a(\alpha) := \int_a^b \|\alpha'(t)\|_{\alpha(t)} dt.$$

Definition 9 (Differential of a function). Let N_1 and N_2 be differentiable manifolds and $f : N_1 \rightarrow N_2$ a differentiable mapping. For every $a \in N_1$ and for each $v \in T_aN_1$, choose a differentiable curve $\alpha : I \rightarrow N_1$ with $\alpha(0) = a$, $\alpha'(0) = v$. Take $\beta = f \circ \alpha$. Then it can be shown that the operator $df_a(v)$ defined by

$$df_a(v) := \beta'(0)$$

is a tangent vector of $T_{f(a)}N_2$. Moreover the mapping the

$$df_a : T_aN_1 \rightarrow T_{f(a)}N_2 : v \mapsto \beta'(0)$$

is linear and does not depend on the choice of α [42]. This linear mapping df_a is called the differential of f at a.

Definition 10 (Vector field [6], [42]). A vector field \mathcal{X} on a differentiable manifold N is a correspondence that associates to each point $a \in N$ a vector $\mathcal{X}(a) \in T_aN$. Given a vector field \mathcal{X} on N and a differentiable real-valued function $f : N \rightarrow \mathbb{R}$, we let $\mathcal{X}f$ denote the real-valued function on N defined by

$$\mathcal{X}f : N \rightarrow \mathbb{R} \quad \mathcal{X}f(a) = df_a \circ \mathcal{X}(a), \quad a \in T_aN.$$

The set of all vector fields of N is denoted by $\mathcal{X}(N)$.

The multiplication of a vector field \mathcal{Y} by a function $f : N \rightarrow \mathbb{R}$ is defined by $f\mathcal{Y} : N \rightarrow T_aN : a \mapsto f(a)\mathcal{Y}(a)$. The Lie bracket of vector fields is defined as the unique vector field $[\mathcal{X}, \mathcal{Y}]$ satisfying $([\mathcal{X}, \mathcal{Y}]f) = (\mathcal{X}(\mathcal{Y}(f))) - (\mathcal{Y}(\mathcal{X}(f)))$ for all real valued smooth functions f defined on N. A vector field \mathcal{X} along a curve $\alpha : I \rightarrow N$ is a differentiable mapping that associates to every $t \in I$ a tangent vector $\mathcal{X}(t) \in T_{\alpha(t)}N$.

Definition 11 (Riemannian manifold). A Riemannian metric \langle , \rangle or g on a differentiable manifold N is a correspondence which associates to each point a of N an inner product $g_a := \langle , \rangle_a$ on a tangent space T_aN, with \langle , \rangle_a varying differentially in the following sense: if $\varphi : U \subset \mathbb{R}^n \rightarrow N$ is a system of coordinates (or chart) around a, with $\varphi(u_1, u_2, \ldots, u_n) = a \in \varphi(U)$ and $\partial/\partial u_1 = df_{\varphi_1}(0, 0, 1, 0, \ldots, 0)$, then

$$g_{i,j}(u_1, u_2, \ldots, u_n) = \left(\frac{\partial}{\partial u_i}(a), \frac{\partial}{\partial u_j}(a) \right)_a$$

is a differentiable function on U [42]. We delete the index a in the functions g_a and \langle , \rangle_a whenever there is no possibility of confusion.

The pair (N, g) is called a Riemannian manifold [6]. For simplicity, we can also denote the Riemannian manifold (N, g) by the set N.

Definition 12 (Riemannian gradient). Let N be a Riemannian manifold. Given a smooth function $f : N \rightarrow \mathbb{R}$, the Riemannian gradient of f at x, denoted by $\nabla f(x)$ is defined as the unique element of T_xN that satisfies

$$\langle \nabla f(x), v \rangle = df_x(v), \quad \forall v \in T_xN.$$

Definition 13 (Critical point [55]). Let N and \mathcal{R} be smooth manifolds. If $f : N \rightarrow \mathcal{R}$ is a smooth map, then a point $x \in N$ is a critical point of f if $df_x : T_xN \rightarrow T_{f(x)}\mathcal{R}$ is not surjective. In the particular case that $\mathcal{R} = \mathbb{R}$, then the critical points of f are exactly the points x for which $df_x = 0$. Moreover, if N is a Riemannian manifold, the critical points are the points $x \in N$ such that $\nabla f(x) = 0$.

Definition 14 (Affine connection [42]). An affine connection ∇ on a differentiable manifold N is a mapping $\nabla : \mathcal{X}(N) \times \mathcal{X}(N) \rightarrow \mathcal{X}(N)$ which is denoted by $(\mathcal{X}, \mathcal{Y}) \mapsto \nabla_{\mathcal{X}}\mathcal{Y}$ and which satisfies the following properties, for $\mathcal{X}, \mathcal{Y}, \mathcal{Z} \in \mathcal{X}(N)$ and $f, g \in \mathcal{D}_N$:

1. $\nabla_{f\mathcal{X} + g\mathcal{Y}}\mathcal{Z} = f\nabla_{\mathcal{X}}\mathcal{Z} + g\nabla_{\mathcal{Y}}\mathcal{Z}$.
2. $\nabla_{\mathcal{X}}(g\mathcal{Y}) = \nabla_{g\mathcal{X}}\mathcal{Y} + g\nabla_{\mathcal{X}}\mathcal{Y}$.
3. $\nabla_{\mathcal{X}}(f\mathcal{Y}) = f\nabla_{\mathcal{X}}\mathcal{Y} + (\mathcal{X}f)\mathcal{Y}$.

If ∇ satisfies the following additional properties:

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.
1) $\mathcal{X}(\mathcal{Y}, \mathcal{Z}) = \langle \nabla_{\mathcal{Y}} \mathcal{Z}, \mathcal{Z} \rangle + \langle \mathcal{Y}, \nabla_{\mathcal{Z}} \mathcal{Z} \rangle$, for all $\mathcal{X}, \mathcal{Y}, \mathcal{Z} \in \mathcal{X}(\mathcal{N})$.

2) $\nabla_{\mathcal{X}} \mathcal{Y} - \nabla_{\mathcal{Y}} \mathcal{X} = [\mathcal{X}, \mathcal{Y}]$, for all $\mathcal{X}, \mathcal{Y} \in \mathcal{X}(\mathcal{N})$.

then ∇ is known as the Riemannian connection of \mathcal{N}. The Levi-Civita theorem [42] says that any Riemannian manifold has a Riemannian connection and it is unique.

Theorem 4 (Covariant derivative [42]). Let \mathcal{N} be a differentiable manifold with an affine connection ∇. There exists a unique correspondence which associates to a vector field \mathcal{X} along the differentiable curve $\alpha : I \to \mathcal{N}$ another vector field $D\mathcal{X}/dt$ along α, called the covariant derivative of \mathcal{N}, such that:

1) $\frac{D}{dt} (\mathcal{X} + \mathcal{Y}) = \frac{D\mathcal{X}}{dt} + \frac{D\mathcal{Y}}{dt}$;

2) $\frac{D}{dt} (\lambda \mathcal{X}) = \lambda \frac{D\mathcal{X}}{dt}$, where λ is a scalar function on I;

3) if \mathcal{X} is induced by a vector field $Z \in \mathcal{X}(\mathcal{N})$, i.e., $\mathcal{X}(t) = Z(\alpha(t))$, then $D\mathcal{X}/dt = \nabla_{\alpha(t)} Z$.

Definition 15 (Parallel Transport [42]). Let \mathcal{N} be a differentiable manifold with an affine connection ∇. A vector field \mathcal{X} along a curve $\alpha : I \to \mathcal{N}$ is called parallel when

$$\frac{D\mathcal{X}}{dt}(t) = 0,$$

for all $t \in I$.

Moreover, let α be differentiable and v_0 a vector tangent to \mathcal{N} at $\alpha(t_0)$, $t_0 \in I$. Then there exists a unique parallel vector field \mathcal{X} along α, such that $\mathcal{X}(t_0) = v_0$; $V(t)$ is called the parallel transport of $\mathcal{X}(t_0)$ along α.

Definition 16 (Geodesic [42]). A parameterized curve $\alpha : I \to \mathcal{N}$ is a geodesic at $t_0 \in I$ if

$$\frac{D}{dt}(\alpha'(t)) = 0$$

at the point t_0; if α is a geodesic at t, for all $t \in I$, we say that α is a geodesic [42]. If the definition domain of all geodesics of \mathcal{N} can be extended to \mathbb{R}, then α is said to be geodesically-complete.

Definition 17 (Exponential and logarithm mappings [7]). Consider a point $a \in \mathcal{N}$ and let $V \subset T_a \mathcal{N}$ be an open set of $T_a \mathcal{N}$. For a given vector $v \in V$ and $t \in I$, consider the geodesic $\alpha : I \to \mathcal{N}$ passing through α with initial velocity $\alpha'(0) = v$. Then the mapping $\exp_a : V \to \mathcal{N}$ defined by $v \mapsto \alpha(1)$ is well-defined [42] and is called the (Riemannian) exponential mapping on V.

The mapping \exp_a is differentiable, and there is a neighborhood U of a such that the exponential map at a is a diffeomorphism from the tangent space to the manifold. For U being this neighborhood and $a, b \in U$, $b = \exp_a(v)$, then the inverse mapping $\log_a : U \to T_a \mathcal{N}$ defined by $b \mapsto v$ is called the (Riemannian) logarithm mapping. For brevity, we can also write $\hat{a}b$ in the place of $\log_a(b)$.

Definition 18 (Riemannian curvature tensor and sectional curvatures [42]). Let $\mathcal{X}(\mathcal{N})$ be the set of mappings from $\mathcal{X}(\mathcal{N})$ to $\mathcal{X}(\mathcal{N})$. The Riemannian curvature tensor R of a differentiable manifold \mathcal{N} is the correspondence $R : \mathcal{X}(\mathcal{N}) \times \mathcal{X}(\mathcal{N}) \to \mathcal{X}(\mathcal{N})$ that associates to each pair of vector fields $\mathcal{X}, \mathcal{Y} \in \mathcal{X}(\mathcal{N})$ the application $R(\mathcal{X}, \mathcal{Y}) : \mathcal{X}(\mathcal{N}) \to \mathcal{X}(\mathcal{N})$ given by

$$R(\mathcal{X}, \mathcal{Y}) := \nabla_{\mathcal{Y}} \nabla_{\mathcal{X}} \mathcal{Z} - \nabla_{\nabla_{\mathcal{X}} \mathcal{Y}} \mathcal{Z} + \nabla_{[\mathcal{X}, \mathcal{Y}]} \mathcal{Z},$$

where ∇ is the Riemannian connection of \mathcal{N}. A notion closely related to the Riemannian curvature tensor is the sectional curvatures of \mathcal{N}. Given two linearly independent tangent vectors u and v at the same point, the expression

$$K(u, v) := \langle R(u, v)u, v \rangle / \langle u, v \rangle^2$$

does not depend on the choice of u, v, but only on the subspace σ spanned by them [42]. Given a point $p \in \mathcal{N}$ and a bidimensional subspace σ of $T_p \mathcal{N}$, the real number $K(u, v) = K(\sigma)$ where $\{u, v\}$ is any basis of σ is the sectional curvature of σ in p.

B. Proof of Theorem 7

Suppose χ is a Rith.$\mathcal{N}\sigma R$ of X. Then, from [11], [6] is satisfied. Because χ is a Rith.$\mathcal{N}\sigma R$ of X, from [12], \hat{X} is a Riemannian sample mean of χ and, therefore, from [4], \hat{X} minimizes the function

$$g(x) := \sum_{i=1}^{N} w_i^m \text{dist}^2(x, \exp_{X} \chi_i).$$

The function $g \circ \exp_X : \Omega(\chi) \subset T_X \mathcal{N} \to [0, \infty)$ is a real valued function defined in a subset of the vector space $T_X \mathcal{N}$. Since $\Omega(\chi)$ is convex by hypothesis and its second derivative is positive, then $g \circ \exp_X$ is a strictly convex function. Because it is also a differentiable function, $g \circ \exp_a$ has an unique minimum $x^* \in \Omega(a)$ and it is a critical point of $g \circ \exp_a$.

Thus

$$[0]_{n \times 1} = \frac{d(g \circ \exp_X)(x)}{dx} \bigg|_{x = x^*} \Leftrightarrow x^* = \sum_{i=1}^{N} w_i^m \chi_i. \quad (64)$$

By Theorem 7.9 of [50], \hat{X} is the unique minimum and critical point of g. Thus $\log_{\hat{X}} X$ is a critical point of $g \circ \exp_a$, and

$$[0]_{n \times 1} = \log_{\hat{X}} X = x^* = \sum_{i=1}^{N} w_i^m \chi_i : = \mu_X. \quad (65)$$

Hence, (7) is satisfied.

Now let us prove the converse for the mean. Suppose all points χ_i belong to the domain of \exp_X, and that χ is an lth.$\mathcal{N}\sigma R$ of $X := \hat{X}$ \hat{X}. Define the set

$$\chi := \{\exp_{\hat{X}} \chi_i, w_i^m, w_i^c, w_i^{cc} | \chi_i \in \mathcal{N}; w_i^c, w_i^{cc}, w_i^{ccc} > 0 \}_{i=1}^{N}. \quad (66)$$

Then, from [6] and [66], (11) is satisfied. From (64) and (65), we have that $\exp_{\hat{X}}(\mu_X) = \exp_{\hat{X}}(\hat{X}, \hat{X}) = \hat{X}$ minimizes g and (12) is satisfied.

For even j, we have, from (7) and (5),

$$M^j_{\chi} \hat{X} = \sum_{i=1}^{N} w_i^{cc} (\chi_i - \mu_X) (\cdot)^T \otimes e_i = M^j_{\chi};$$

and from [8], it follows $M^j_{\chi} = M^j_{\chi} = M^j_{\chi}$ for odd j, the reasoning is similar. The remaining is straightforward.
Consider the following optimization problem
\[
\begin{aligned}
\text{minimize} & \quad \bar{g}(\bar{c}) := g \circ \exp_a \left(\frac{\bar{c}}{\bar{a}} \right) = \sigma_{\bar{a} \bar{a} + \bar{p}}^2(\bar{c}) \\
\text{subject to} & \quad c \in N;
\end{aligned}
\]
From a reasoning similar to the proof of Theorem 1 (Appendix D. Proof of Proposition 1), the remaining of the proof is a direct consequence of Theorem 1.

D. Proof of Proposition 7
A Riemannian mean \bar{X} of X is such that it solves (2). Consider the following optimization problem
\[
\begin{aligned}
\text{minimize} & \quad \bar{g}(\bar{c}) := g \circ \exp_a \left(\frac{\bar{c}}{\bar{a}} \right) = \sigma_{\bar{a} \bar{a} + \bar{p}}^2(\bar{c}) \\
\text{subject to} & \quad c \in N;
\end{aligned}
\]
From a reasoning similar to the proof of Theorem 1, if \bar{c} solves (67), then $\log_{\bar{a}} \bar{c} = \exp_a \bar{c}$ solves (3), and $X = \exp_a \bar{c}$. Since $\sigma_{\bar{a} \bar{a} + \bar{p}}^2(\bar{c})$ is the variance of $\bar{a} + \bar{p}$ it follows that $\bar{c} = \bar{a} + \bar{p}$ minimizes $\bar{g}(c)$; thus $\bar{X} := \exp_a \bar{p}$. For the covariance part, we have
\[
P_{XX} := \int_{N \sim \mathbb{C}(X)} X \rightarrow X^T \cdot P_{XX} \cdot dN(x) = P_{aa} + P_{pp}.
\]

E. Proof of Theorem 7
First, by considering $c_x = \bar{b}_x = \bar{x}_k|k-1$ and $c_y = \bar{y}_k|k-1$ in the definitions of $P_{k|k-1}$, $P_{k|k}$, and (34) yields
\[
G_{k,\ast \ast} = \begin{bmatrix}
0_{n_x \times n_x} & 0_{n_y \times n_x} \\
0_{n_y \times n_x} & 0_{n_y \times n_y}
\end{bmatrix},
\]
and substituting $c_x = \bar{b}_x = \bar{x}_k|k-1$, $c_y = \bar{y}_k|k-1$, and (68) into (35) gives $\bar{x}_k|T_{N_{w \times y}} = [G_{k \log} y_k|k-1, 0_{n_y \times 1}]^T$; consequently, from (33),
\[
x_{TM} := [x_k|k-1, 0_{n_y \times 1}] = G_{k \log} y_k|k-1.\]
Second, considering (68) into (36) yields
\[
P_{k|k-1} = \text{diag} \left(\begin{bmatrix} P_{k|k-1}^{xx} & G_{k} \left(P_{k|k-1}^{yy} \right)^{-1} & G_{k}^{T} \right),
\]
and, from (33), it follows that
\[
P_{k|k-1}^{xx} = P_{k|k-1}^{xx}.
\]

F. Notation and Acronyms
Throughout this paper, we use the following notations:
- for a matrix A, $(A) \otimes A^{T}$ stands for $(A) (A)^{T}$, and \sqrt{A} for a square-root matrix of A such that $A = \sqrt{A} \sqrt{A}^{T}$.
- \otimes stands for the Kronecker product operator, and $A^{\otimes n} := A \otimes \cdots \otimes A$.
- $[A]_{p \times q}$ stands for a block matrix consisting of the matrix A being repeated p times in the rows and q times in the columns.
- $[A]_{i_1 \times i_2, j_1 \times j_2}$ stands for a sub-matrix of the matrix A formed by the rows i_1 to i_2 and the columns j_1 to j_2 of A.
- I stands for an open interval in \mathbb{R}.

Below, we provide a list of acronyms and parts of acronyms—these parts end with an ‘-’ and are followed by examples—along with their meaning. There are other acronyms in the text that can be composed by i) concatenating some items below (e.g., MiσR [Mi- with σR] standing for Minimum σRepresention), and ii) adding Ri- (standing for Riemannian; e.g., RiMiσR [Ri- with MiσR] standing for RiMiσR):
- AdUKF: Additive Unscented Kalman Filter.
- AuUKF: Augmented Unscented Kalman Filter.
- EKF: Extended Kalman Filter.
- HoMiSy-: Homogeneous Minimum Symmetric- (e.g., HoMiSyσR, RiHoMiSyσR, RiHoMiSyAdUKF, RiHoMiSyAuUKF).
- KF: Kalman Filter.
- lthNσR: lth order N points σ-representation.
- /UT: lth order UT.
- Mi-: Minimum- (e.g., RiMiσR, RiMiAdUKF, RiMiAuUKF).
- MiSy-: Minimum Symmetric- (e.g., RiMiSyσR, RiMiSyAdUKF, RiMiSyAuUKF).
- RhoMi-: Rho Minimum- (e.g., RiRhoMiσR, RiRhoMiAdUKF, RiRhoMiAuUKF).
- σR: σ-Representation.
- UKF: Unscented Kalman Filter.
- UT: Unscented Transformation.

Henrique M. T. Menegaz received the B.S. degree in Electrical Engineering from the Universidade de Brasília (UnB), Brazil, in 2007. He received the M.S. and Ph.D. degrees in Engineering of Electronic Systems and Automation from the UnB in 2011 and 2016 respectively. He is currently an Assistant Professor with Faculdade Gama, UnB. His major field of study is filtering of nonlinear dynamic systems and their applications.

João Y. Ishihara received the Ph.D. degree in Electrical Engineering from the University of São Paulo, Brazil, in 1998. He is currently an Associate Professor at the University of Brasília, Brazil. His research interests include robust filtering and control theory, singular systems, and robotics.

Hugo T. M. Kussaba received the B.S. degree in control engineering and the M.S. degree in engineering of electronic systems and automation from the University of Brasilia (UnB), Brazil, in 2012 and 2014 respectively. Currently, he is a Ph.D. student at the same university. His research interests include control and estimation on Lie groups, robust control and linear matrix inequalities, and hybrid dynamical systems.

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.