The climate change mitigation effects of active travel

Christian Brand (christian.brand@ouce.ox.ac.uk)
University of Oxford https://orcid.org/0000-0002-1535-5328

Evi Dons
Centre for Environmental Sciences, Hasselt University, Diepenbeek https://orcid.org/0000-0002-6745-7246

Esther Anaya-Boig
Centre for Environmental Policy, Imperial College London, London https://orcid.org/0000-0002-9204-534X

Ione Avila-Palencia
Urban Health Collaborative, Dornsife School of Public Health, Drexel University, Philadelphia, PA

Anna Clark
Trivector Trac, Stockholm

Audrey de Nazelle
Centre for Environmental Policy, Imperial College London, London

Mireia Gascon
ISGlobal, Barcelona

Mailin Gaupp-Berghausen
Austrian Institute for Regional Studies, Vienna

Regine Gerike
Dresden University of Technology, Chair of Integrated Transport Planning and Traffic Engineering, Dresden

Thomas Gotschi
University of Oregon, School of Planning, Public Policy and Management, Eugene, Oregon

Francesco Iacorossi
Agenzia Roma Servizi per la Mobilita' Srl, Rome

Sonja Kahlmeier
Fernfachhochschule Schweiz, Brig

Michelle Laeremans
Flemish Institute for Technological Research (VITO), Mol

Mark Nieuwenhuijsen
ISGlobal, Barcelona

Juan Orjuela Mendoza
Transport Studies Unit, University of Oxford, Oxford
Francesca Racioppi
World Health Organization Regional Office for Europe, European Centre for Environment and Health, Bonn
https://orcid.org/0000-0002-7287-9603

Elisabeth Raser
University of Natural Resources and Life Sciences Vienna, Institute for Transport Studies, Vienna

David Rojas Rueda
Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado
https://orcid.org/0000-0001-5854-2484

Arnout Standaert
Flemish Institute for Technological Research (VITO), Mol
https://orcid.org/0000-0001-7711-7141

Erik Stigell
Trivector Traffic, Stockholm

Simona Sulikova
Transport Studies Unit, University of Oxford, Oxford
https://orcid.org/0000-0003-0613-1864

Sandra Wegener
University of Natural Resources and Life Sciences Vienna, Institute for Transport Studies, Vienna

Luc Int Panis
Transportation Research Institute (IMOB), Hasselt University, Diepenbeek
https://orcid.org/0000-0002-2558-4351

Article

Keywords: climate change mitigation, sustainable transport, lifecycle CO2 emissions, active travel, walking, cycling

DOI: https://doi.org/10.21203/rs.3.rs-39219/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Active travel (walking or cycling for transport) is considered the most sustainable form of getting from A to B. Yet the net effects of active travel on mobility-related CO2 emissions are complex and under-researched. Here we collected travel activity data in seven European cities and derived lifecycle CO2 emissions from daily travel activity. Daily mobility-related lifecycle CO2 emissions were 3.2 kgCO2 per person, with car travel contributing 70% and cycling 1%. Cyclists had 84% lower lifecycle CO2 emissions from all daily travel than non-cyclists. Lifecycle CO2 emissions decreased by -14% (95%CI -12% to -16%) per additional cycling trip and decreased by -62% (95%CI -61% to -63%) for each avoided car trip. An average person who ‘shifted travel modes’ from car to bike decreased lifecycle CO2 emissions by 3.2 (95%CI 2.0 to 5.2) kgCO2/day, and using a bike as the ‘main method of travel’ gave 7.1 (95%CI 4.8 to 10.4) kgCO2/day lower lifecycle CO2 emissions than mainly using a car or van. Investing in and promoting active travel should be a cornerstone of strategies to meet net zero carbon targets, particularly in urban areas, while also improving public health and quality of urban life.

Main

Transport has been one of the most challenging sectors for reducing its significant impacts of fossil energy use and associated greenhouse gas (GHG) emissions since the 1990s. In Europe, GHG emissions decreased in the majority of sectors between 1990 and 2017, with the exception of transport. Modal shifts away from carbon-intensive to low-carbon modes of travel hold considerable potential to mitigate GHG emissions. Given the urgency of moving to a ‘net zero’ carbon emissions economy, there is growing consensus that technological substitution via electrification will not be sufficient or fast enough to transform the transport system. Beyond a net reduction in travel demand, one of the more promising ways to reduce transport carbon dioxide (CO2) emissions is to promote and invest in active modes of transport (e.g. walking, cycling, e-biking) while ‘demoting’ motorized modes that rely on fossil energy sources. Surface transport accounts for nearly half the decrease in daily global CO2 emissions during the COVID-19 forced confinement. This shows that CO2 emissions from road transport could be reduced more quickly than through technological measures alone, particularly in urban areas. This may become even more relevant considering the vast economic effects of the COVID-19 pandemic, which may result in reduced capacities of individuals and organizations to renew the rolling stock of vehicles in the short and medium period, and of governments to provide incentives to fleet renewal.

So, how much carbon can be saved – overall – by travelling actively? The complex relationships between carbon emissions and transport have been investigated for many years. Previous research has shown that travel carbon emissions are determined by transport mode choice and usage, which in turn are influenced by journey purpose (e.g. commuting, visiting friends and family, shopping), individual and household characteristics (e.g. location, socio-economic status, car ownership, type of car, bike access, perceptions related to the safety, convenience and social status associated with active travel), land use
and built environment factors (which impact journey lengths and trip rates), accessibility to public transport, jobs and services, and meteorological conditions. Yet active travel studies are often based on analyses of the potential for emissions mitigation, the generation of scenarios or smaller scale studies focusing on a single city, region or country. To better understand the carbon-reduction impacts of active travel, it is important to assess the key determinants of travel carbon emissions across a wide range of contexts and include a detailed, comparative analysis of the distribution and composition of emissions by transport mode (e.g. bike, car, van, public transport, e-bike) and emissions source (e.g. vehicle use, energy supply, vehicle manufacturing). To answer the above question, it is also important to understand why, where, when and how far people travel – many studies do not dig that deep and across different contexts. While cycling cannot be considered a ‘zero-carbon emissions’ mode of transport, lifecycle emissions from cycling can be more than ten times lower per passenger-km travelled than those from passenger cars. For most journey purposes active travel covers short to medium trips – typically 2 km for walking, 5 km for cycling and 10 km for e-biking. Typically, the majority of trips in this range is made by car, with short trips contributing disproportionately to emissions because of ‘cold starts’, especially in colder climates. On the other hand, these short trips, which represent the majority of trips undertaken by car within cities, would be amenable to at least a partial modal shift towards active travel. To investigate these issues, we included seven European cities with different travel activity patterns, transport mode shares, infrastructure provisions, climates, mobility cultures and socio-economic makeups. To the best of our knowledge no international multicenter study on the associations of daily active and motorized travel and carbon emissions has been reported.

In this paper, we aim to investigate to what extent active travel is associated with lower carbon emissions from daily travel activity. To achieve this aim more than 10,000 adults were recruited in seven European cities (Antwerp, Barcelona, London, Orebro, Rome, Vienna, Zurich) to complete a series of questionnaires on daily travel behavior, mode choice, as well as personal and geospatial characteristics. Operational, fuel and vehicle lifecycle CO₂ emissions were derived based on travel diary data and context-specific emissions factors (see Methods and Supplementary Methods). Log-linear fixed- and mixed-effects modelling of longitudinal data (n = 9858 person-days) was performed to assess the associations between lifecycle CO₂ emissions and transport mode use (primary ‘exposure’), the main mode of travel (by max. distance travelled), and cycling frequency (secondary ‘exposures’). Sensitivity analyses by key personal characteristics, city, and journey purpose were performed to examine robustness of the main findings. By doing so, the paper provides a detailed and nuanced assessment of the benefits of active travel in reducing total lifecycle carbon emissions in cities.

Results

The study sample included 3,836 participants across the seven cities who had completed 9,858 one-day travel diaries reporting 34,203 trips (Table 1). The sample was well balanced between male and female, and between the seven cities. Participants were highly educated with 79% of the participants having at
least a secondary or higher education degree. Aged between 16 and 91, the majority of participants were employed full-time (66%), with 72% on middle to high household incomes (i.e. >€25 k) and 34% reported to have children living at home. The share of participants without access to a car was 21%. While cycling and public transport were the most frequent transport modes among our participants, people travelled furthest by public transport and car. Transport mode usage was similar between sexes, with a slightly higher prevalence of male cyclists and drivers vs. female walkers and public transport users. Participants reported an average of 3.47 (SD 1.83) trips per day ranging from 3.10 (SD 1.63) trips per day in Rome to 3.75 (SD 2.0) trips per day in Antwerp (Table 1). The observed cycling trip share for our sample was between 17% in Barcelona and 54% in Antwerp (Supplementary Table S5), i.e. somewhat higher than cycling shares reported for the cities and a direct result of purposively oversampling cyclists (see Methods). Reported trip durations and distances were highly variable between subjects and cities, with respondents travelling on average 36.1 (SD 63.5) km a day and for 87.8 (SD 70.4) min a day. Average trip lengths across the cities were 1.1 (SD 1.6) km for walking, 5.0 (SD 5.3) km for cycling, 20.5 (SD 45.9) km for driving and 16.7 (SD 33.6) km for public transport.

We found that lifecycle CO₂ emissions from all travel activity were 3.18 (SD 7.68) kilograms of CO₂ (kgCO₂) per person per day, with the majority from car travel at 2.23 (SD 7.25) kgCO₂/day – i.e. 70% of the daily total (see Table 1). In contrast, lifecycle emissions from cycling (which included a 4.5% share of e-biking across the sample) amounted for only 0.03 (SD 0.05) kgCO₂/day. Direct (operational) emissions from all travel activity made up the majority (70%) of total lifecycle emissions. While travel to work or place of education produced the largest share of CO₂ emissions (37%), there were also considerable contributions from social and recreational trips (34%), business trips (11%) and travel for shopping or personal business (17%). Figure 1 shows a highly unequal distribution of emissions. It also shows that the top decile of emitters were responsible for 59% (all purposes), 47% (work or education), 78% (business), 67% (social or recreational) and 58% (shopping, personal business, escort or other) of the respective lifecycle CO₂ emissions. By comparing deciles with chi-square tests of independence we found that those in the top decile were more likely to be male, have higher household incomes, holding a driving license and always have access to a car, be in full-time employment, have a higher body mass index (BMI), poor bus or train accessibility and live in Orebro, Antwerp or Rome. In contrast, those in the bottom decile of emitters were more likely to be female, economically inactive or a student, living in a household without kids, be on lower household incomes, not to hold a driving license, without access to a car, own a bike, have lower BMI, live nearer to train stations, and live in Barcelona or London. To explain this it is worth highlighting that while Antwerp and Orebro had significantly higher cycling trip shares amongst the case study cities, they also had higher car shares (together with Rome) and low walking shares (also together with Rome). On the contrary, Barcelona and London had lower car trip shares (like Vienna and Zurich) and higher walking shares (Table S5).

In our sample, respondents in Orebro and Rome produced significantly higher-than-average CO₂ emissions (mean 4.56 kgCO₂/day and 3.93 kgCO₂/day, respectively) due to the higher car mode shares, while those in Barcelona and Vienna produced lower emissions (mean 2.47 kgCO₂/day and 2.65
kgCO₂/day, respectively) due to higher share of walking (Barcelona) and a combination of lower car and higher public transport shares (Vienna) (Table 1 and Supplementary Table S5). Those in Antwerp had the highest active travel share, but also higher (than sample average) car and lower public transport shares, resulting in higher than average CO₂ emissions overall (mean 3.49 kgCO₂/day). These figures are generally in line with regional per capita CO₂ emissions estimates. Differences between cities can partially be explained by differences in sample demographics, socio-economics, mode-specific CO₂ emissions rates (Supplementary Table S4) and observed mode shares (Supplementary Table S5).
Table 1
Summary statistics of outcomes, exposures and other covariates

Total study sample (n = 9858) and mean (SD) values
CO\(_2\) emissions
(kg per day)
Al modes, direct only
All modes, indirect only
Transport mode usage
All modes
Average distance travelled
All modes
Average travel time (min/day)
Age (years)
BMI (kg/m\(^2\))

Sub samples/groups and mean(SD) values of main outcome measure

Exposures	Lifecycle CO\(_2\) (mean (SD)), in kg/day	n (%)	
Main mode	Car	9.139 (12.532)	2307 (23%)
	Total study sample (n = 9858) and mean (SD) values		
---	---	---	
(based on distance)	Public transport	2.746 (5.292)	3546 (36%)
	Bike	0.169 (0.468)	3012 (31%)
	Walk	0.031 (0.159)	993 (10%)
Cycling category	Non-cyclist (none)	4.438 (8.892)	6031 (61%)
(based on trips per day)	Occasional cyclist (once or twice)	1.517 (5.552)	2329 (24%)
	Frequent cyclist (thrice or more)	0.708 (2.343)	1498 (15%)
Cycling (yes/no)	Not cycling on the day	4.438 (8.892)	6031 (61%)
	Cycling on the day	1.201 (4.589)	3827 (39%)
City	Antwerp	3.487 (7.763)	1713 (17%)
	Barcelona	2.468 (5.792)	1806 (18%)
	London	3.209 (7.788)	1027 (10%)
	Oerebro	4.559 (9.451)	607 (6%)
	Rome	3.929 (10.012)	1061 (11%)
	Vienna	2.651 (6.153)	1752 (18%)
	Zurich	3.199 (8.16)	1892 (19%)
Sex	Male	3.305 (8.043)	5061 (51%)
	Female	3.051 (7.282)	4797 (49%)
Age (for sensitivity analysis)	Age < 35 years	2.903 (6.398)	4199 (43%)
	Age >= 35 years	3.387 (8.507)	5659 (57%)
	Age > 55 years	3.807 (9.551)	981 (10%)
Variable	Category Description	Mean (SD)	n
--	---	-----------	----
Self-rated health	Excellent	3.197 (7.857)	1036 (10%)
	Very good	3.074 (7.854)	4221 (43%)
	Good	3.331 (7.575)	3839 (39%)
	Fair or poor	3.001 (6.998)	762 (8%)
BMI (for sensitivity analysis)	Healthy BMI (18.5 ≤ BMI < 25)	3.019 (7.307)	6927 (70.3%)
	Overweight (BMI ≥ 25)	3.599 (8.649)	2599 (26.4%)
Household income	Low income (Less than €25 k)	2.884 (7.436)	2713 (28%)
	Middle income (€25 k to €75 k)	3.176 (7.449)	5535 (56%)
	High income (€75 k or more)	3.699 (8.503)	1610 (16%)
Employment status	Working (full-time or part-time)	3.241 (7.761)	8404 (85%)
	Not working (retired/student/etc.)	2.838 (7.208)	1454 (15%)
Education level	Higher education or degree	3.124 (7.261)	7814 (79%)
	No higher education or degree	3.401 (9.118)	2044 (21%)
Household composition	HH two or more adults, no kids	3.156 (7.462)	4788 (49%)
	Single HH, no kids	2.778 (6.133)	1750 (18%)
	HH with kids	3.431 (8.662)	3320 (34%)
Car accessibility	Always or sometimes	3.561 (8.093)	7755 (79%)
	Never	1.781 (5.719)	2103 (21%)

^ Direct: tailpipe emissions. ^ Indirect: well-to-tank (fuel/energy production) plus vehicle manufacture. BMI: body mass index.
More Active Travel Decreased Lifecyle CO₂ Emissions From Transport

We found statistically significant associations between lifecycle CO₂ emissions and transport mode usage across all modes of travel (Table 2a): more driving or public transport use increased CO₂ while more cycling or walking decreased daily CO₂ emissions. In the fully-adjusted model, log-transformed lifecycle carbon emissions decreased by a factor of 0.15 (95%CI 0.13 to 0.17) for each additional cycling trip. They also decreased by a factor of 0.96 (95%CI 0.94 to 0.98) for one less car trip. Or in other words, for each avoided car trip daily lifecycle CO₂ emissions from transport decreased by 62% (95%CI 61–63%) while for each additional bike trip lifecycle CO₂ emission decreased by 14% (95%CI 12–16%). Those who made one less car trip and one more bike trip a day (a proxy for mode shift from car to bike) decreased lifecycle CO₂ emissions from transport by 67% (95%CI 66–68%). Adjusting for demographic, socio-economic and other individual variables only slightly changed the estimates in the partly and the fully adjusted models (model 1 and model 2) compared to the unadjusted model (model 0). The addition of car availability and bus station accessibility in the fully adjusted model (model 2) slightly lowered the estimate for car but increased the estimate for public transport use compared to the unadjusted (0) and partly adjusted models (1).
Table 2
Results from the linear fixed-effects and mixed-effects models for the four exposures (n = 9858). Full models are presented in the Supplementary Information.

	Model 0: unadjusted (fixed effects)	Model 1: partly adjusted (mixed effects) ¹	Model 2: fully adjusted (mixed effects) #			
	Coefficient (95% CI)	p-value	Coefficient (95% CI)	p-value	Coefficient (95% CI)	p-value
(a) Association between log-transformed lifecycle CO₂ emissions and transport mode usage (trips/day) (full model in Table S6)						
Bike	-0.154 (-0.172 to -0.137)	< 0.0001	-0.16 (-0.179 to -0.142)	< 0.0001	-0.151 (-0.17 to -0.132)	< 0.0001
Car	0.997 (0.976 to 1.017)	< 0.0001	0.974 (0.953 to 0.996)	< 0.0001	0.962 (0.94 to 0.983)	< 0.0001
Public transport	0.741 (0.719 to 0.763)	< 0.0001	0.737 (0.714 to 0.76)	< 0.0001	0.748 (0.724 to 0.771)	< 0.0001
Walk	-0.287 (-0.305 to -0.269)	< 0.0001	-0.278 (-0.297 to -0.259)	< 0.0001	-0.273 (-0.292 to -0.254)	< 0.0001
(b) Association between log-transformed lifecycle CO₂ emissions and main transport mode categories (full model in Table S8)						
Bike	0	--	0	--	0	--
Car	3.89 (3.84 to 3.939)	< 0.0001	3.881 (3.829 to 3.932)	< 0.0001	3.866 (3.813 to 3.919)	< 0.0001
Public transport	2.599 (2.554 to 2.643)	< 0.0001	2.624 (2.575 to 2.673)	< 0.0001	2.635 (2.586 to 2.684)	< 0.0001
Walk	-1.071 (-1.137 to -1.005)	< 0.0001	-0.956 (-1.023 to -0.888)	< 0.0001	-0.931 (-0.999 to -0.862)	< 0.0001
(c) Association between log-transformed lifecycle CO₂ emissions and cycling frequency categories (full model in Table S9)						
None	0	--	0	--	0	--
Once or twice a day	-1.697 (-1.781 to -1.612)	< 0.0001	-1.768 (-1.855 to -1.681)	< 0.0001	-1.747 (-1.835 to -1.659)	< 0.0001
Three or more times a day	-2.016 (-2.116 to -1.916)	< 0.0001	-2.071 (-2.177 to -1.966)	< 0.0001	-2.038 (-2.145 to -1.932)	< 0.0001
(d) Association between log-transformed lifecycle CO₂ emissions and cycling (yes/no) (full model in Table S10)						
Not cycling	0	--	0	--	0	--
The effects of transport mode use on transformed carbon emissions was partially mediated via total distance travelled (see Figure S1): the indirect effects of total distance travelled were + 0.13 for car use (13% mediated), -0.02 for cycling (14% mediated), + 0.10 for public transport use (13% mediated), and -0.05 for walking (18% mediated). Neither BMI nor health status mediated this association. A series of sensitivity analyses largely confirmed our results (Fig. 2a): excluding participants older than 35 or on lower incomes did not change our conclusions; and differences between those ‘working’ and ‘not working’ and those being ‘overweight’ (above 25 kg/m²) and ‘healthy weight’ were small. For people who did not have access to a car the effects were larger for motorized travel and smaller for active travel, suggesting that active travel for non-car owning households may substitute for public transport and other active travel.

Further sensitivity analyses of the fully adjusted models stratified by city showed that the effect estimates for cycling were generally the lowest in Barcelona and highest in Orebro and Rome (Fig. 3). By comparison, CO₂ effects for car travel were highest in Barcelona (and Vienna to some extent) and lowest in London and Rome.

The associations between lifecycle CO₂ emissions for the four trip purposes (secondary outcomes) and transport mode usage were also largely significant (Fig. 4 and Supplementary Table S11). Cycling frequency had larger effects on emissions from commuting to work or place of education than on emissions from all purposes. Motorized transport mode use showed larger effects on lifecycle CO₂ emissions from social, shopping and recreational travel than for work/business travel. The ‘economically inactive’ (retired, on home duties, unemployed, on leave) showed significantly higher emissions for social, recreational, shopping and personal business purposes and, as expected, lower emissions from work or educational trips. Those with children living at home had significantly lower business, social and recreational emissions, while emissions from shopping, personal business and escort trips were higher.

Poor bus accessibility and better car access meant higher emissions from work or educational trips.

Cycling as the ‘main mode of travel’ decreased lifecycle CO₂ emissions
We also found statistically significant associations between lifecycle CO\textsubscript{2} emissions and the main modes of travel according to daily distance travelled (Table 2b): when compared to using a bike as the main mode, using the car or public transport increased CO\textsubscript{2} while walking decreased CO\textsubscript{2}. In the fully adjusted model (model 2) CO\textsubscript{2} emissions were 98 (95%CI 98 to 98) percent higher for using a car or van as the main mode than for using a bike. An average person using a car or van as the main mode had 7.1 kgCO\textsubscript{2}/day higher lifecycle CO\textsubscript{2} emissions than someone using a bike as their main mode of transport. A comparison with the results of the non-transformed model suggested that using a car or van increased emissions by 8.9 kgCO\textsubscript{2}/day when compared to cycling as the main mode (Supplementary Table S7 and Figure S2) – suggesting the linear model slightly overestimated differences in emissions by main mode when compared to the (statistically superior) log-linear model. Those using public transport as the main mode had 71 (95%CI 71 to 71) percent lower emissions than those mainly using a car, van or motorcycle; for an average person this difference equated to 5.1 kgCO\textsubscript{2}/day.

Again, the sensitivity analysis (Fig. 2b) largely confirmed our results. Total distance travelled partially (12%) mediated the effects of main mode (by daily distance) on transformed lifecycle CO\textsubscript{2} emissions. The associations for log-transformed CO\textsubscript{2} emissions by journey purpose were also all significant (Fig. 4 and Supplementary Table S12), with the strongest effects for mainly using public transport for work or education and car for social and shopping trips. Women, those with a degree or no access to a car had significantly lower work or education emissions. As expected, the economically inactive had significantly higher social, recreational and shopping/personal business emissions, yet lower work/education emissions.

Cyclists Had Lower Lifecycle CO\textsubscript{2} Emissions Than Non-cyclists

We also found that associations between mobility-related lifecycle CO\textsubscript{2} emissions and cycling frequency were all highly significant. Table 2c shows that in the fully adjusted model (model 2) lifecycle CO\textsubscript{2} emissions were 83 (95%CI 81 to 84) percent lower for ‘occasional cyclists’ (i.e. those cycling ‘once or twice a day’) than for those who did not cycle; and they were even lower for ‘frequent cyclists’ (those cycling ‘three or more times a day’) with 87 (95%CI 86 to 88) percent lower daily lifecycle CO\textsubscript{2}. The sensitivity analysis (Fig. 2c) generally confirmed our results, with slightly higher effects for high earners and lower effects if you were younger or without access to a car. Regular cycling was also associated with reduced lifecycle CO\textsubscript{2} emissions for all the four trip purposes, with the strongest effect observed for commuting and social trips (Supplementary Table S13): cycling three or more times a day decreased lifecycle CO\textsubscript{2} emissions for work or education by 78 (95%CI 75 to 80) percent, for social or recreational trips by 53 (95%CI 46 to 59) percent, for shopping and personal business by 29 (95%CI 19 to 38) percent, and for business travel by 20 (95%CI 10 to 28) percent.
As expected, the binary cyclist/non-cyclist analysis showed similar effect sizes and correlations to the analysis of cycling frequency for both primary and secondary outcome measures. ‘Cyclists’ had 84 (95%CI 83 to 85) percent lower lifecycle CO₂ emissions than ‘non-cyclists’ (Table 2d and Supplementary Table S14); this translated into 0.97 (95%CI 0.54 to 1.74) kgCO₂/day lower lifecycle CO₂ emissions for an average person who cycled. The sensitivity analysis showed that the effects were lower for the younger respondents and those without access to a car, and higher for those on higher incomes (Fig. 2d).

Discussion

This paper started on the premise that we still do not know very much about how much carbon from passenger transport is saved – overall – by travelling actively. The analysis of a sample of thousands of participants and nearly 10,000 person-days of daily travel across the seven sites found highly significant associations between transport mode choice and total lifecycle CO₂ emissions and showed that cyclists had significantly lower total CO₂ emissions than non-cyclists. More cycling or walking decreased mobility-related lifecycle CO₂ emissions – suggesting that active travel indeed substitutes for motorized travel (i.e. this was not just additional travel over and above motorized travel). This means that even if not all car trips could be substituted by bicycle trips the potential for decreasing emissions is high. A number of sensitivity analyses confirmed our main results and provided new insights into differences of emission levels and exposures by city and journey purpose. The differences in mean emissions and effect sizes in the seven cities may be explained by contextual factors such as differences in modal shares, mode trip lengths, and the provision (or not) of good public transport services and active travel infrastructure – it may also be due to differences in sampling ⁴⁸. The analysis of emissions for each trip purpose highlighted the relative importance of emissions from non-work/business trips, particularly trips for social and shopping purposes.

Mean total CO₂ emissions of 3.18 kgCO₂/day were much higher than the median (0.81 kgCO₂/day) and near the upper end of the derived interquartile range (0.07–3.27 kgCO₂ per day), confirming a positively skewed distribution of emissions. In other words, a relatively small share of individuals was responsible for the vast majority of carbon emissions, a finding that is very much in line with the evidence on unequal carbon emissions distributions ³⁰,³¹,⁴⁹−⁵¹. Our findings that the likelihood of being in top or bottom emissions decile depended on demographic, socio-economic, car availability, health, public transport accessibility and contextual factors further support the growing evidence on travel emissions inequalities ³⁰,⁵²−⁵⁴.

The analysis of transport mode use as the main exposure showed that each additional cycling trip reduced lifecycle CO₂ emissions from all travel activity by about 14% when compared to baseline emissions. On average, those who did one less trip by car and one more by bike or public transport decreased emissions by 67% and 19% respectively. To further aid interpretation of the factorial results we need to apply the percentage changes to baseline (or mean) levels of our measured outcomes. For example, an average person ‘shifting modes’ from car (from 3 to 2 trips a day) to bike (from 0 to 1 trip a
day) decreased emissions by 3.2 (95% CI 2.0 to 5.2) kgCO₂/day. Similarly, a person ‘shifting modes’ from car (from 3 to 2 trips a day) to public transport (from 0 to 1 trip a day) decreased emissions by 0.9 (95% CI 0.6 to 1.5) kgCO₂/day. If 10% of the population were changing travel behavior this way, emissions would be expected to decrease by about 10% (car◊bike) and 3% (car◊public transport). The size and direction of emissions changes are in line with some of the few empirical and scenario/modelling studies in this area.

The differences in emissions between people using different modes for the majority (defined by max. distance travelled) of their daily travel were also highly significant, although the effects were partially (12%) mediated by total daily distance travelled. Our finding that, on average, using a bike as the main mode decreased lifecycle CO₂ emissions by about 7.1 kgCO₂/day when compared to using a car or van suggests that making more sustainable travel choices has significant carbon benefits. Similarly, our finding that doing at least one trip a day by bike significantly decreased mobility-related lifecycle CO₂ emissions provides further evidence of mode substitution away from motorized travel.

Much of the research in this area has focused on travel activity and associated carbon emissions from work and business travel. In our study, commuting, education and business travel emissions represented ‘only’ about half (49%) of total emissions, ranging from 39% in Antwerp to 59% in London and Rome. The findings that lifecycle CO₂ emissions from social, shopping, personal business and recreational journeys were more strongly associated to car and, to some extent, public transport use suggest for research and policy to go beyond commuting and business travel and consider the whole range of journey purposes when investigating mode shift away from motorized to active travel. This seems to be particularly important with the growing shares of the elderly in the population. Shopping and personal business trips were found to be significantly shorter, therefore increasing the potential for mode shift to active travel.

The mediation analysis by distance travelled indicated that lower carbon emissions for cyclists was unlikely to be entirely caused by increased bike usage. The remaining emissions difference might be explained by distance-related factors that influence mode choice such as urban form and location of housing, services and jobs. While focusing on cycling above we also found that using public transport was more beneficial than private motorized transport across all exposure measures, thus confirming findings from the large body of literature that already exists in this area see e.g. 21, 23, 62, 63.

In interpreting these findings we need to bear in mind the study’s limitations. First, the recruitment and sampling strategy means that our sample cannot be assumed to be representative of the general population, especially for education level and age. Orebro was the lone city that made a concerted effort for random sampling, whereas in other cities an opportunistic recruitment strategy was followed. However, by oversampling some of the less frequent transport modes, we had a sufficiently large sample of cyclists in all cities to find statistically significant associations. Second, recall bias and participant burden of a substantive survey instrument may have impacted the travel diary reporting, which may have
reduced the number of reported trips. However, the observed trip frequencies (e.g. 3.47 trips per person per day on average) and mode shares (e.g. significantly higher cycling shares in Antwerp, lower cycling shares in Barcelona, higher public transport shares in London, Vienna and Zurich) were in line with figures reported for the cities. While trip distances were derived from Google API data, trip durations were self-reported. Trip durations from self-completion travel diaries are known to be over-reported, so mean speeds may have been lower than actual speeds leading to increased emissions rates in urban areas. However, further investigation of mean speeds by mode of transport showed that the derived mean speeds of 4.8 kph for walking, 15.6 kph for cycling/e-biking, 39.9 kph for driving a car or van, and 17.9 kph for urban public transport were in line with figures reported elsewhere. Note these are daily averages not just peak-time speeds (as often reported). Third, outcome and exposure variables were reported at different time points and days of the week – this was taken into account in the mixed effect models by including ‘day of the week’ and person ID as random (intercept) variables. Other periodic effects cannot be excluded and we tried to cover for that as much as possible by including relevant time-varying covariates (such as participant age) and factors influencing outcomes such as ambient temperature (for ‘cold start’ emissions). Fourth, our analysis is cross-sectional, meaning that the direction of causality (if any) behind many of the observed associations is unclear. A longitudinal analysis of change in emissions by change in exposures is underway and will be reported in due course. Fifth, while we accounted for several influencing factors that were often not available in previous studies, such as trip data by mode and purpose, accessibility and health status, our regression models did not account for more than 78% of the variation in the population (see Supplementary results). This suggests that travel choices and associated CO$_2$ emissions are also influenced by other factors such as other built environment factors or lifestyle and socio-cultural factors. We initially explored and added more ‘objective’, GIS based data at both home and work locations to the analysis, including street density, building density, richness of facilities, home-work distance, and public transport availability (timetables, frequency). However, none of these factors improved the models significantly, and the main findings were unchanged. Sixth, we excluded carbon emissions from dietary intake as the evidence is not strong on whether day-to-day active travel (as opposed to performance/sport activity) significantly increases overall dietary intake when compared to motorized travel. Finally, the interdisciplinary breadth of the PASTA study meant that we measured daily travel behavior, individual and spatial-environmental characteristics using briefer survey tools than might have been feasible in a single-discipline study. This may have introduced some measurement error that could have attenuated our effect sizes. However, the multi-city approach in different countries with different travel patterns, built environments, public transport accessibility levels, transport policies and active mobility use adds value to the analysis, which clearly showed additional insights compared to smaller, single-location studies.

Active travel has attributes of social distancing that are likely to be desirable for some time. It could help to cut back CO$_2$ emissions and air pollution while improving population health as confinement is eased. Therefore, locking in, investing in and promoting active travel should be a cornerstone of
sustainability strategies, policies and planning72–74 to meet our very challenging development goals that are unlikely to be met without significant mode shift to sustainable transport6.

Methods

Study design and population

This study used longitudinal data from the ‘Physical Activity through Sustainable Transport Approaches’ (PASTA) project64,75. The analytical framework of PASTA distinguished hierarchical levels for various factors (i.e. city, individual, and trips), and four main domains that influence mobility behavior, namely factors relating to transport mode choice and use, socio-demographic factors, socio-geographical factors, and socio-psychological factors64,76. Seven European cities (Antwerp, Barcelona, London, Orebro, Rome, Vienna, and Zurich) were selected to provide a good representativeness of urban environments in terms of size, built environment, transport provision, modal split and ambition to increase levels of active travel48. To ensure sufficiently large sample sizes for different transport modes, users of less common transport modes such as cycling were oversampled48. Participants were recruited opportunistically on a rolling basis following a standardized guidance for all cities and also some city-specific approaches. A comprehensive user engagement strategy was applied to minimize attrition over the two-year timeframe. Further details on the recruitment strategy are given elsewhere77.

A total of 10,722 participants entered the study on a rolling basis between November 2014 and November 2016 by completing a baseline questionnaire (BLQ). Participants provided detailed information on general travel behavior, daily travel activity, geolocations (home, work, education), vehicle ownership (private motorized, bicycle, etc.), public transport accessibility and socio-demographic characteristics. Follow-up questionnaires were distributed every two weeks: every third of these follow-up questionnaires also included a one-day travel diary, henceforth labelled a ‘long follow-up’ (long FUQ)64. All valid travel diaries were included in the analyses, implying that some participants provided multiple diary data at different time points. Using longitudinal data aimed to improve measurement of ‘typical’ travel behavior78. Participants had to be 18 years of age (16 years in Zurich) or older, and had to give informed consent at registration. Data handling and ethical considerations regarding confidentiality and privacy of the information collected were reported in the study protocol64. Table S2 in the Supplementary Information provides an excerpt of the PASTA BLQ, including travel diary data.

Exposure: transport mode choice and use

The primary exposure variables were daily trip frequencies obtained from the travel diaries, for each of the main modes: walking; cycling; e-biking; motorcycle or moped; public transport; and car or van. The most common metric used by local and national administrations across the world is mode share (or split) by trip frequency, not by distance40,47; hence the results of the primary exposure analysis may be used to estimate lifecycle CO\textsubscript{2} emissions directly from trip mode share data. Due to low counts of e-biking and motorcycle trips, e-biking was merged with cycling, with indirect emissions derived from observed bike/e-
bike shares (see also footnote of Table 1). Also, motorcycle was merged with car as reported CO₂ emission rates for motorcycles are comparable to cars on a per passenger-km basis. Participants provided information on each trip made on the previous day, including start time, location of origin, transport mode, trip purpose, location of destination, end time and duration (Table S2). The diary was based on the established KONTIV-Design, with some adaptations for online use. 5623 participants provided a valid travel diary in either the BLQ or the long FUQ; out of those 3836 participants completed valid baseline surveys and travel diaries. In the travel diary, trip purpose, duration and location were self-reported. Total trip duration was also derived as the difference between start and end time, while trip distance was obtained retrospectively feeding origin and destination coordinates to the Google Maps Application Programming Interfaces (API), which returned the fastest route per mode between origin and destination.

Three secondary exposure variables were developed to explore differences between groups of individuals. First, participants were categorized as using a ‘main mode’ of travel based on furthest daily distance (levels: walking, cycling, car, public transport). Further categorizations based on cycling frequency included a dichotomous variable of ‘cycling’ on the diary day (yes/no) as well as a trichotomous variable characterizing participants as ‘frequent cyclist’ (three or more times a day), ‘occasional cyclist’ (once or twice a day), or ‘non-cyclist’ (none). Table 1 shows sample sizes and mean (SD) values of the primary outcome variable for each group.

Outcome variables: carbon dioxide emissions

The primary outcome of interest was daily lifecycle CO₂ emissions (mass of carbon dioxide in gram or kilogram per day) attributable to passenger travel. Lifecycle CO₂ emissions categories considered were operational emissions, energy supply emissions and vehicle production emissions. First, operational emissions were derived for each trip based on trip distance (computed from travel diary data), ‘hot’ carbon emissions factors, emissions from ‘cold starts’ (for cars only) and vehicle occupancy rates (passengers/vehicle) that varied by trip purpose. The method for cars and vans considered mean trip speeds (derived from the travel diaries), location-specific vehicle fleet compositions (taking into account the types of vehicle operating in the vehicle fleets during the study period) and the effect of ‘real world driving’ (adding 22% to carbon emissions derived from ‘real world’ test data based on BEIS and ICCT) to calculate the so called ‘hot’ emission of CO₂ emitted per car-km. For motorcycle, bus and rail, fuel type shares and occupancy rates were based on BEIS. Buses were mainly powered by diesel powertrains; motorcycles were 100% gasoline; and urban rail was assumed to be all electric. For cars, ‘cold start’ excess emissions were added to ‘hot’ emissions based on the vehicle fleet composition, ambient temperatures (see Table S13 in the Supplementary Information) and trip distances observed in each city: across the seven cities, cold start emissions averaged 126 (SD 42) gCO₂ per car trip, with the trip share of a car operating with a ‘cold’ engine averaging 13 (SD 8) percent. Cold start emissions were higher-than-average in Orebro and Zurich, and lower in Barcelona. Second, carbon emissions from energy supply considered upstream emissions from the extraction, production, generation and distribution of
energy supply, with values taken from international databases for fossil fuel emissions83–85 and emissions from electricity generation and supply86. Third, vehicle lifecycle emissions considered emissions from the manufacture of vehicles, with aggregate carbon values per vehicle type (cars, motorcycles, bikes and public transport vehicles) derived assuming typical lifetime mileages, mass body weights, material composition and material-specific emissions and energy use factors. The main functional relationships and data are provided in the Supplementary Information. The derived emissions rates are shown in the Supplementary Information for each city, disaggregated by emissions category and transport mode. Total daily emissions were calculated as the sum of emissions for each trip, mode and purpose (e.g. the sum of 4 trips on a given day = trip 1: home to work by car, trip 2: work to shop by bike, trip 3: shop to work by bike; and trip 4: work to home by car). Secondary outcomes of interest were total lifecycle CO\textsubscript{2} emissions for four aggregated journey purposes: (1) work or education/school trips; (2) business trips; (3) social or recreational trips; and (4) shopping, personal business, escort or ‘other’ trips.

Covariates

A number of covariates were hypothesized to confound the association between carbon emissions and transport mode choice and use e.g.37,49,55. Demographic and socio-economic covariates considered in the analyses were age, sex, employment status, household income, educational level, and household composition (e.g. single occupancy, or having children or not). Vehicle ownership covariates considered were car accessibility, having a valid driving license, and bicycle accessibility. Health covariates considered were self-rated health status and Body Mass Index (BMI), which have been shown to influence motorized travel and transport CO\textsubscript{2} emissions11. The perceived walking times to the nearest bus stop, tram stop or railway station were included as public transport accessibility measures. All of the covariates were self-reported. BMI was derived from self-reported weight and height as $\text{weight(kg)}/\text{height(m)}^2$287.

Statistical analysis

In a first step, bivariate analyses were performed to assess the association between transport-related CO\textsubscript{2} emissions, the exposure variables, and the potential covariates. Only covariates with p-value < 0.1 were included in the linear mixed-effects models. In a second step, differences in CO\textsubscript{2} emissions between the different transport mode users were identified by using mixed-effects linear regression models with city as a random effect (to take account of correlation among responses from the same city). The analysis used multiple data points for each individual, obtained on different weekdays; therefore, respondents and weekdays were also included as random effects. Because CO\textsubscript{2} emissions were heavily skewed towards the right (see also Fig. 1), we applied the transformation $\ln(\left[x/\text{mean(x)}\right] + 0.01)$ (adding 0.01 to avoid turning zeros into missing values) in the comparative analysis. This improved our regression diagnostics, with residuals closer to a normal distribution and their variance less heteroscedastic. Note a log transformation changes the focus from absolute to relative or percentage change; therefore, any regression coefficient β is a mean difference of the log outcome comparing adjacent units of a predictor.
This is practically useless, so we exponentiate the parameter e^β and interpret this value as a geometric mean difference. Three regression models were fitted: (0) unadjusted (exposure only); (1) adjusted by socio-demographic covariates: sex, age, education level, employment status, household income, household composition; and (2) adjusted by all covariates from model 1 and additionally other covariates of interest (those found to be statistically significant in previous literature described earlier): holding a valid driving license, access to a car or van, bicycle ownership, self-rated health, BMI, walking-time accessibility to the nearest bus stop, and walking-time accessibility to the nearest train station. Age was included as a continuous variable as a proxy for time. The same set of models were fitted for each of the four journey purposes.

Potential interaction by sex, employment status, income, car access, BMI and city were investigated with Type II Wald chi-square tests in the fully-adjusted models. We observed significant interactions for some transport modes (e.g. use of all modes and car access; public transport use and gender; car use and income); therefore, all models’ sensitivity to different levels of the above factors were tested. We also tested the models’ sensitivity to a number of other factors: age (<35 years), working status (‘working’), car access (‘not having access to a car’), body weight (‘being overweight’), household income (‘high income’) and city (Table 2). Participants were also ranked according to their CO$_2$ emissions (all travel and by trip purpose) then split into ten emissions deciles. Chi-square tests were performed on selected covariates to profile the ‘bottom’ and ‘top’ deciles. Possible mediation of the effect of transport mode use on CO$_2$ emissions was assessed for three potential mediators: total daily distance travelled, BMI and self-rated health. Only observations without missing data were included. R statistical software v3.6.1 was used for all analyses.

Declarations

Acknowledgements

This work was supported by the European project Physical Activity through Sustainable Transportation Approaches (PASTA). PASTA (http://www.pastaproject.eu/) was a four-year project funded by the European Union’s Seventh Framework Program (EU FP7) under European Commission - Grant Agreement No. 602624. CB is also supported by UK Research and Innovation (UKRI) under the Centre for Research on Energy Demand Solutions (CREDs, Grant agreement number EP/R035288/1). ED is also supported by a postdoctoral scholarship from FWO – Research Foundation Flanders. ML held a joint PASTA/VITO PhD scholarship. SS is supported by the Martin Filko Scholarship from the Ministry of Education in Slovakia.

Author contributions

CB, ED, EAB, IAP, AC, AdN, MG, MGB, RG, TG, FI, SK, ML, MJN, JPO, FR, ER, DRR, AS, ES, SS, SW, ILP

C.B. developed the original idea of the analyses presented in the manuscript. C.B., A.C., A.d.N., R.G., T.G., S.K., M.J.N., F.R., E.S. and I.L.P. conceived and designed the project. T.G., C.B., E.D., A.d.N., R.G., S.K.,
M.J.N., A.S. and I.L.P. led the international survey. T.G., C.B., E.D., E.A.B., A.C., A.d.N., M.G., M.G.B., R.G., F.I., S.K., M.L., M.J.N., J.P.O., E.R., D.R.R., A.S., E.S., S.W. and I.L.P cleaned and preprocessed the data. C.B. produced the analysis for this paper. The manuscript was written by C.B. with contributions from all the co-authors.

References

1. Sims, R. et al. in Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds O. Edenhofer et al.) (Cambridge University Press, 2014).

2. EEA. Total greenhouse gas emission trends and projections in Europe, accessed at https://www.eea.europa.eu/data-and-maps/indicators/greenhouse-gas-emission-trends-6/assessment-3 on 30/03/2020. (European Environment Agency, Copenhagen, 2019).

3. Cuenot, F., Fulton, L. & Staub, J. The prospect for modal shifts in passenger transport worldwide and impacts on energy use and CO2. Energy Policy 41, 98–106, doi:http://dx.doi.org/10.1016/j.enpol.2010.07.017 (2012).

4. Liang, X. et al. Air quality and health benefits from fleet electrification in China. Nature Sustainability 2, 962–971, doi:10.1038/s41893-019-0398-8 (2019).

5. IPCC. Global Warming of 1.5 °C, Special Report. Last accessed in October 2018 at: http://www.ipcc.ch/report/sr15/. (Intergovernmental Panel on Climate Change, 2018).

6. Creutzig, F. et al. Towards demand-side solutions for mitigating climate change. Nature Climate Change 8, 268–271, doi:10.1038/s41558-018-0121-1 (2018).

7. Asensio, O. I. et al. Real-time data from mobile platforms to evaluate sustainable transportation infrastructure. Nature Sustainability, doi:10.1038/s41893-020-0533-6 (2020).

8. Scheepers, C. E. et al. Shifting from car to active transport: A systematic review of the effectiveness of interventions. Transp. Res.: Part A: Pol. Practice 70, 264–280, doi:http://dx.doi.org/10.1016/j.tra.2014.10.015 (2014).

9. ECF. Cycle more Often 2 cool down the planet! - Quantifying CO2 savings of Cycling. (European Cyclists' Federation (ECF), Brussels, 2011).

10. de Nazelle, A., Morton, B. J., Jerrett, M. & Crawford-Brown, D. Short trips: An opportunity for reducing mobile-source emissions? Transp. Res.: Part D: Transport Environ. 15, 451–457, doi:10.1016/j.trd.2010.04.012 (2010).

11. Goodman, A., Brand, C. & Ogilvie, D. Associations of health, physical activity and weight status with motorised travel and transport carbon dioxide emissions: a cross-sectional, observational study. Environ. Health 11, 52 (2012).

12. Sælensminde, K. Cost–benefit analyses of walking and cycling track networks taking into account insecurity, health effects and external costs of motorized traffic. Transp. Res.: Part A: Pol. Practice 38, 593–606, doi:10.1016/j.tra.2004.04.003 (2004).
13. Quarmby, S., Santos, G. & Mathias, M. Air Quality Strategies and Technologies: A Rapid Review of the International Evidence. *Sustainability* **11**, doi:10.3390/su11102757 (2019).

14. Keall, M. D., Shaw, C., Chapman, R. & Howden-Chapman, P. Reductions in carbon dioxide emissions from an intervention to promote cycling and walking: A case study from New Zealand. *Transp. Res.: Part D: Transport Environ.* **65**, 687–696, doi:https://doi.org/10.1016/j.trd.2018.10.004 (2018).

15. Bearman, N. & Singleton, A. D. Modelling the potential impact on CO2 emissions of an increased uptake of active travel for the home to school commute using individual level data. *Journal of Transport & Health* **1**, 295–304, doi:http://dx.doi.org/10.1016/j.jth.2014.09.009 (2014).

16. Neves, A. & Brand, C. Assessing the potential for carbon emissions savings from replacing short car trips with walking and cycling using a mixed GPS-travel diary approach. *Transp. Res.: Part A: Pol. Practice* **123**, 130–146, doi:https://doi.org/10.1016/j.tra.2018.08.022 (2019).

17. Tainio, M., Monsivais, P., Jones, N. R., Brand, C. & Woodcock, J. Mortality, greenhouse gas emissions and consumer cost impacts of combined diet and physical activity scenarios: a health impact assessment study. *BMJ Open* **7**, doi:10.1136/bmjopen-2016-014199 (2017).

18. Woodcock, J. *et al.* Development of the Impacts of Cycling Tool (ICT): A modelling study and web tool for evaluating health and environmental impacts of cycling uptake. *PLoS Med.* **15**, e1002622, doi:10.1371/journal.pmed.1002622 (2018).

19. Frank, L. D., Greenwald, M. J., Winkelman, S., Chapman, J. & Kavage, S. Carbonless footprints: promoting health and climate stabilization through active transportation. *Prev. Med.* **50 Suppl 1**, S99-105, doi:10.1016/j.ypmed.2009.09.025 (2010).

20. Castro, A. *et al.* Physical activity of electric bicycle users compared to conventional bicycle users and non-cyclists: Insights based on health and transport data from an online survey in seven European cities. *Transportation Research Interdisciplinary Perspectives*, 100017, doi:https://doi.org/10.1016/j.trip.2019.100017 (2019).

21. Nieuwenhuijsen, M. J. Urban and transport planning pathways to carbon neutral, liveable and healthy cities; A review of the current evidence. *Environ. Int.*, 105661, doi:https://doi.org/10.1016/j.envint.2020.105661 (2020).

22. Le Quéré, C. *et al.* Temporary reduction in daily global CO2 emissions during the COVID-19 forced confinement. *Nature Climate Change*, doi:10.1038/s41558-020-0797-x (2020).

23. Graham-Rowe, E., Skippon, S., Gardner, B. & Abraham, C. Can we reduce car use and, if so, how? A review of available evidence. *Transp. Res.: Part A: Pol. Practice* **45**, 401–418, doi:10.1016/j.tra.2011.02.001 (2011).

24. Beckx, C., Broekx, S., Degraeuwe, B., Beusen, B. & Int Panis, L. Limits to active transport substitution of short car trips. *Transp. Res.: Part D: Transport Environ.* **22**, 10–13, doi:10.1016/j.trd.2013.03.001 (2013).

25. Carlsson-Kanyama, A. & Linden, A.-L. Travel patterns and environmental effects now and in the future:: implications of differences in energy consumption among socio-economic groups. *Ecological Economics* **30**, 405–417 (1999).
26. Stead, D. Relationships between Transport Emissions and Travel Patterns in Britain. *Transport Policy* **6**, 247–258 (1999).

27. Timmermans, H. *et al.* Spatial context and the complexity of daily travel patterns: an international comparison. *Journal of Transport Geography* **11**, 37–46 (2003).

28. Cameron, I., Kenworthy, J. R. & Lyons, T. J. Understanding and predicting private motorised urban mobility. *Transp. Res.: Part D: Transport Environ.* **8**, 267–283 (2003).

29. Brand, C. & Preston, J. M. '60 – 20 emission'—The unequal distribution of greenhouse gas emissions from personal, non-business travel in the UK. *Transport Policy* **17**, 9–19 (2010).

30. Ko, J., Park, D., Lim, H. & Hwang, I. C. Who produces the most CO2 emissions for trips in the Seoul metropolis area? *Transp. Res.: Part D: Transport Environ.* **16**, 358–364, doi:10.1016/j.trd.2011.02.001 (2011).

31. 10.1016/j.enpol.2007.08.016
Brand, C. & Boardman, B. Taming of the few - The unequal distribution of greenhouse gas emissions from personal travel in the UK. *Energy Policy* **36**, 224–238, doi:Vol 36/1 pp 224–238 DOI information: 10.1016/j.enpol.2007.08.016 (2008).

32. Nicolas, J.-P. & David, D. Passenger transport and CO2 emissions: What does the French transport survey tell us? *Atmos. Environ.* **43**, 1015–1020, doi:10.1016/j.atmosenv.2008.10.030 (2009).

33. Adams, J. Prevalence and socio-demographic correlates of “active transport” in the UK: Analysis of the UK time use survey 2005. *Prev. Med.* **50**, 199–203, doi:http://dx.doi.org/10.1016/j.ypmed.2010.01.006 (2010).

34. Alvanides, S. Active transport: Why and where do people (not) walk or cycle? *Journal of Transport & Health* **1**, 211–213, doi:http://dx.doi.org/10.1016/j.jth.2014.11.002 (2014).

35. Anable, J. & Brand, C. in *Transport Matters* (eds I. Docherty & J. Shaw) 452 (Policy Press, 2019).

36. Yang, Y., Wang, C. & Liu, W. Urban daily travel carbon emissions accounting and mitigation potential analysis using surveyed individual data. *Journal of Cleaner Production* **192**, 821–834, doi:https://doi.org/10.1016/j.jclepro.2018.05.025 (2018).

37. Goodman, A. *et al.* Scenarios of cycling to school in England, and associated health and carbon impacts: Application of the 'Propensity to Cycle Tool'. *Journal of Transport & Health* **12**, 263–278, doi:https://doi.org/10.1016/j.jth.2019.01.008 (2019).

38. Lovelace, R., Beck, S. B. M., Watson, M. & Wild, A. Assessing the energy implications of replacing car trips with bicycle trips in Sheffield, UK. *Energy Policy* **39**, 2075–2087, doi:10.1016/j.enpol.2011.01.051 (2011).

39. Brand, C., Goodman, A. & Ogilvie, D. Evaluating the impacts of new walking and cycling infrastructure on carbon dioxide emissions from motorized travel: A controlled longitudinal study. *Appl. Energy* **128**, 284–295, doi:http://dx.doi.org/10.1016/j.apenergy.2014.04.072 (2014).

40. U.S. Department of Transportation. National Household Travel Survey: Vehicle Trips, accessed at https://nhts.ornl.gov/vehicle-trips on 20/03/2020. (U.S. Department of Transportation, Federal Highway Administration, Washington, DC, 2017).
41. JRC. *Analysis of National Travel Statistics in Europe.* (European Commission, Joint Research Centre. ISBN: 978-92-79-32358-4, 2013).

42. Beckx, C., Panis, L. I., Janssens, D. & Wets, G. Applying activity-travel data for the assessment of vehicle exhaust emissions: Application of a GPS-enhanced data collection tool. *Transp. Res.: Part D: Transport Environ.* 15, 117–122, doi:https://doi.org/10.1016/j.trd.2009.10.004 (2010).

43. Carse, A., Goodman, A., Mackett, R. L., Panter, J. & Ogilvie, D. The factors influencing car use in a cycle-friendly city: the case of Cambridge. *Journal of Transport Geography* 28, 67–74, doi:http://dx.doi.org/10.1016/j.jtrangeo.2012.10.013 (2013).

44. Goodman, A., Sahlqvist, S. & Ogilvie, D. New Walking and Cycling Routes and Increased Physical Activity: One- and 2-Year Findings From the UK iConnect Study. *Am. J. Public Health*, e1-e9, doi:10.2105/ajph.2014.302059 (2014).

45. Vagane, L. in *Proceedings of the European Transport Conference (ETC) 2007 held 17–19 October 2007*.

46. Dons, E. *et al.* Physical Activity through Sustainable Transport Approaches (PASTA): protocol for a multi-centre, longitudinal study. *BMC Public Health* 15, 1126, doi:10.1186/s12889-015-2453-3 (2015).

47. EPOMM. (European Platform on Mobility Management (EPOMM), Leuven, BE, 2020).

48. Raser, E. *et al.* European cyclists’ travel behavior: Differences and similarities between seven European (PASTA) cities. *Journal of Transport & Health* 9, 244–252, doi:https://doi.org/10.1016/j.jth.2018.02.006 (2018).

49. Büchs, M. & Schnepf, S. V. Who emits most? Associations between socio-economic factors and UK households’ home energy, transport, indirect and total CO2 emissions. *Ecological Economics* 90, 114–123, doi:https://doi.org/10.1016/j.ecolecon.2013.03.007 (2013).

50. Preston, I., White, V., Thumim, J., Bridgeman, T. & Brand, C. Distribution of carbon emissions in the UK: implications for domestic energy policy. (Joseph Rowntree Foundation, London, 2013).

51. Susilo, Y. O. & Stead, D. Individual carbon dioxide emissions and potential for reduction in the Netherlands and the United Kingdom. *Transp Res Record* 2139, 142–152 (2009).

52. Brand, C. *Personal Travel and Climate Change - Exploring Climate Change Emissions from Personal Travel Activity of Individuals and Households.* 1st edn, (Verlag Dr. Müller (VDM), 2008).

53. Bel, G. & Rosell, J. The impact of socioeconomic characteristics on CO2 emissions associated with urban mobility: Inequality across individuals. *Energy Econ.* 64, 251–261, doi:https://doi.org/10.1016/j.eneco.2017.04.002 (2017).

54. Banister, D. *Inequality in Transport, https://*. (Alexandrine Press, 2018).

55. Brand, C., Goodman, A., Rutter, H., Song, Y. & Ogilvie, D. Associations of individual, household and environmental characteristics with carbon dioxide emissions from motorised passenger travel. *Appl. Energy* 104, 158–169, doi:http://dx.doi.org/10.1016/j.apenergy.2012.11.001 (2013).
56. Rabl, A. & de Nazelle, A. Benefits of shift from car to active transport. *Transport Policy* **19**, 121–131, doi:10.1016/j.tranpol.2011.09.008 (2012).

57. Clark, B., Chatterjee, K. & Melia, S. Changes to commute mode: The role of life events, spatial context and environmental attitude. *Transp. Res.: Part A: Pol. Practice* **89**, 89–105, doi:https://doi.org/10.1016/j.tra.2016.05.005 (2016).

58. Banister, D., Watson, S. & Wood, C. Sustainable cities, transport, energy and urban form. *Environment and Planning B: Planning and Design* **24**, 125–143 (1997).

59. Beenackers, M. A. *et al.* Taking up cycling after residential relocation: built environment factors. *Am. J. Prev. Med.* **42**, 610–615, doi:10.1016/j.amepre.2012.02.021 (2012).

60. Curtis, C. Can strategic planning contribute to a reduction in car-based travel? *Transport Policy* **3**, 55–65 (1996).

61. Welch, T. F. Equity in transport: The distribution of transit access and connectivity among affordable housing units. *Transport Policy* **30**, 283–293, doi:http://dx.doi.org/10.1016/j.tranpol.2013.09.020 (2013).

62. Banister, D. The sustainable mobility paradigm. *Transport Policy* **15**, 73–80 (2008).

63. Woodcock, J. *et al.* Public health benefits of strategies to reduce greenhouse-gas emissions: urban land transport. *Lancet* **374**, doi:10.1016/s0140-6736(09)61714-1 (2009).

64. Dons, E. *et al.* Physical Activity through Sustainable Transport Approaches (PASTA): protocol for a multi-centre, longitudinal study. *BMC Public Health* **15**, 1126, doi:10.1186/s12889-015-2453-3 (2015).

65. Kelly, P., Krenn, P., Titze, S., Stopher, P. & Foster, C. Quantifying the Difference Between Self-Reported and Global Positioning Systems-Measured Journey Durations: A Systematic Review. *Transport Reviews* **33**, 443–459, doi:10.1080/01441647.2013.815288 (2013).

66. Weber, C. & Perrels, A. Modelling lifestyle effects on energy demand and related emissions. *Energy Policy* **28**, 549–566, doi:10.1016/s0301-4215(00)00040-9 (2000).

67. Panter, J., Corder, K., Griffin, S., Jones, A. & van Sluijs, E. Individual, socio-cultural and environmental predictors of uptake and maintenance of active commuting in children: longitudinal results from the SPEEDY study. *Int. J. Behav. Nutr. Phys. Act.* **10**, 83 (2013).

68. Brand, C., Anable, J. & Morton, C. Lifestyle, efficiency and limits: modelling transport energy and emissions using a socio-technical approach. *Energy Efficiency* **12**, 187–207, doi:10.1007/s12053-018-9678-9 (2019).

69. Gascon, M. *et al.* Correlates of Walking for Travel in Seven European Cities: The PASTA Project. *Environ. Health Perspect.* **127**, 097003, doi:10.1289/EHP4603 (2019).

70. Kissler, S. M., Tedijanto, C., Goldstein, E., Grad, Y. H. & Lipsitch, M. Projecting the transmission dynamics of SARS-CoV-2 through the postpandemic period. *Science* **368**, 860, doi:10.1126/science.abb5793 (2020).
71. Shaw, C., Hales, S., Howden-Chapman, P. & Edwards, R. Health co-benefits of climate change mitigation policies in the transport sector. *Nature Clim. Change* **4**, 427–433, doi:10.1038/nclimate2247 (2014).

72. Creutzig, F. *et al.* Adjust urban and rural road pricing for fair mobility. *Nature Climate Change*, doi:10.1038/s41558-020-0793-1 (2020).

73. Creutzig, F. *et al.* Urban infrastructure choices structure climate solutions. *Nature Climate Change* **6**, 1054–1056, doi:10.1038/nclimate3169 (2016).

74. Andor, M. A., Gerster, A., Gillingham, K. T. & Horvath, M. Running a car costs much more than people think — stalling the uptake of green travel. *Nature* **580**, 453–455, doi:10.1038/d41586-020-01118-w (2020).

75. Gerike, R. *et al.* Physical Activity through Sustainable Transport Approaches (PASTA): a study protocol for a multicentre project. *BMJ Open* **6**, e009924, doi:10.1136/bmjopen-2015-009924 (2016).

76. Götschi, T., de Nazelle, A., Brand, C. & Gerike, R. Towards a Comprehensive Conceptual Framework of Active Travel Behavior: a Review and Synthesis of Published Frameworks. *Current Environmental Health Reports* **4**, 286–295, doi:10.1007/s40572-017-0149-9 (2017).

77. Gaupp-Berghausen, M. *et al.* Evaluation of Different Recruitment Methods: Longitudinal, Web-Based, Pan-European Physical Activity Through Sustainable Transport Approaches (PASTA) Project. *J. Med. Internet Res.* **21**, e11492, doi:10.2196/11492 (2019).

78. Branion-Calles, M. *et al.* Impacts of study design on sample size, participation bias, and outcome measurement: A case study from bicycling research. *Journal of Transport & Health* **15**, 100651, doi:https://doi.org/10.1016/j.jth.2019.100651 (2019).

79. BEIS. (Department for Business, Energy & Industrial Strategy, London, 2019).

80. Brög, W., Erl, E., Ker, I., Ryle, J. & Wall, R. Evaluation of voluntary travel behaviour change: Experiences from three continents. *Transport Policy* **16**, 281–292 (2009).

81. Socialdata. The New KONTIV-Design (NKD), accessed at http://www.socialdata.de/info/KONTIV_engl.pdf on 8 September 2019 (Socialdata GmbH, Munich, 2009).

82. ICCT. Road tested: Comparative overview of real-world versus type-approval NOX and CO2 emissions from diesel cars in Europe, ICCT White Paper. Last accessed at https://www.theicct.org/sites/default/files/publications/ICCT_RoadTested_201709.pdf on 18/04/2018. (International Council on Clean Transportation, Berlin, 2017).

83. JEC. *JEC Well-To-Wheels Analysis, Report EUR 26237 EN – 2014*. Last accessed at http://iet.jrc.ec.europa.eu/about-jec/sites/iet.jrc.ec.europa.eu/about-jec/files/documents/report_2014/wtt_report_v4a.pdf on 10/03/2017. (JEC - Joint Research Centre-EUCAR-CONCAWE collaboration, 2014).

84. DEFRA/DECC. (Department for the Environment, Food and Rural Affairs and Department for Energy and Climate Change, London, 2016).
85. Odeh, N., Hill, N. & Forster, D. Current and Future Lifecycle Emissions of Key „Low Carbon‖ Technologies and Alternatives, Final Report. (Ricardo AEA for the Committee on Climate Change, 2013).

86. Ecometrica. Electricity-specific emission factors for grid electricity. (Ecometrica, 2011).

87. Dons, E. et al. Transport mode choice and body mass index: Cross-sectional and longitudinal evidence from a European-wide study. Environ. Int. 119, 109–116, doi:https://doi.org/10.1016/j.envint.2018.06.023 (2018).

88. Vittinghoff, E., Glidden, D. V., Shiboski, S. C. & McCulloch, C. E. Regression Methods in Biostatistics: Linear, Logistic, Survival, and Repeated Measures Models (2nd edition). (Springer, 2012).

89. VanderWeele, T. J. Mediation Analysis: A Practitioner’s Guide. Annu. Rev. Public Health 37, 17–32, doi:10.1146/annurev-publhealth-032315-021402 (2016).

90. Wanner, M., Götschi, T., Martin-Diener, E., Kahlmeier, S. & Martin, B. W. Active Transport, Physical Activity, and Body Weight in Adults. Am. J. Prev. Med. 42, 493–502, doi:http://dx.doi.org/10.1016/j.amepre.2012.01.030 (2012).

Figures

Figure 1

Distributions of mean lifecycle CO2 emissions by travel emissions decile, subdivided by journey type (log-normal plot, error bars are 95% CIs).
Figure 2

Sensitivity analyses. Exposure variables are: transport mode usage in panel (a), main mode of travel (by distance) in panel (b), cycling frequency in panel (c), and cycling (no/yes) in panel (d). The dots are the beta coefficients and indicate differences in log-transformed CO2 emissions (error bars are 95% CIs).
Figure 3

Effect sizes from the fully adjusted model and sensitivity analyses (city stratification). Exposure variables: transport mode usage in panel a; main mode of transport (by distance) in panel b; cycling frequency in panel c; and cycling/not cycling in panel d. The dots indicate differences in CO2 emissions and the error bars indicate 95% CIs.
Figure 4

Effect sizes from the fully adjusted models for CO2 emissions by trip purpose. Exposure variables: transport mode usage in panel a; main mode of transport (by distance) in panel b; cycling frequency in panel c; and cycling/not cycling in panel d. The dots indicate differences in log-transformed CO2 emissions and the error bars indicate 95% CIs.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- BrandEtAlNCommsR0SI.docx