Effect of Fock terms on nuclear symmetry energy based on Lorentz-covariant decomposition of nucleon self-energies

Tsuyoshi Miyatsu¹, Myung-Ki Cheoun², Chikako Ishizuka³, K. S. Kim⁴, Tomoyuki Maruyama⁵ and Koichi Saito¹

¹Department of Physics, Faculty of Science and Technology, Tokyo University of Science, Noda 278-8510, Japan
²Department of Physics and Origin of Matter and Evolution of the Galaxies (OMEG) Institute, Soongsil University, Seoul 156-743, Korea
³Laboratory for Advanced Nuclear Energy, Institute of Innovative Research, Tokyo Institute of Technology, Tokyo, 152-8550 Japan
⁴School of Liberal Arts and Science, Korea Aerospace University, Goyang 412-791, Korea
⁵College of Bioresource Sciences, Nihon University, Fujisawa 252-8510, Japan

E-mail: tsuyoshi.miyatsu@rs.tus.ac.jp

Abstract. Using the Lorentz-covariant decomposition of nucleon self-energies with relativistic mean-field approximation, we study the effect of Fock terms on the density dependence of nuclear symmetry energy, \(E_{\text{sym}} \). It is found that the Fock contribution suppresses the potential part of \(E_{\text{sym}} \) at higher densities, and the constraint from the heavy-ion collision data is in favor of the present result including exchange terms with the cutoff parameters given by the CD-Bonn potential. In addition, not only the isovector-vector (\(\rho \)) meson but also the isoscalar (\(\sigma, \omega \)) and \(\pi \) mesons give influence on the potential part of \(E_{\text{sym}} \) through the exchange diagram.

1. Introduction
The nuclear symmetry energy, \(E_{\text{sym}} \), is a significant physical quantity in nuclear physics and in astrophysics [1, 2]. It plays an important role not only in the properties of isospin-asymmetric nuclear matter but also in the equation of state (EoS) for a neutron star. Since the recent astrophysical measurements of massive neutron stars [3, 4] and the gravitational wave from binary neutron-star merger give stringent constraints on the EoS [5, 6], the study of \(E_{\text{sym}} \) is in particular required to understand the observations by multi-messenger astronomy. Although many theoretical calculations on \(E_{\text{sym}} \) have been currently performed, various results for its density dependence have been reported so far and it is undetermined yet [7].

The relativistic mean-field (RMF) models based on Quantum Hadrodynamics (QHD) have been often applied to study the astrophysical phenomena as well as the properties of nuclear matter [8, 9]. At present, most of the models are calculated within relativistic Hartree (RH) approximation, in which only the direct diagram is considered [10, 11]. Recently, several EoSs for neutron stars are suggested by the improved many-body calculations, for instance the relativistic Hartree-Fock (RHF) approximation [12, 13, 14] or the Dirac-Brueckner-Hartree-Fock (DBHF) approach [15, 16], in which the exchange contribution as well as the direct contribution are taken.
into account. However, it has not yet been investigated in detail how the exchange terms affect the properties of dense matter.

In the present study, using the Lorentz-covariant decomposition of nucleon self-energies based on the Hugenholtz–Van Hove (HVH) theorem [17], we investigate the effect of exchange diagrams on E_{sym} in RHF approximation.

2. Relativistic Mean-Field Lagrangian Density

For the description of uniform nuclear matter, we present the relativistic formulation based on the QHD model. The total Lagrangian density is written as

$$\mathcal{L} = \sum_{N=p,n} \bar{\psi}_N (\gamma^\mu \partial_\mu - M_N) \psi_N + \mathcal{L}_M + \mathcal{L}_{\text{int}} + \mathcal{L}_{\text{NL}},$$

(1)

where ψ_N is the nucleon ($N = p, n$) field with the mass in vacuum, $M_N = 939$ MeV, and \mathcal{L}_M is for the meson terms [12, 13, 14, 18]. For simply, we here consider the isoscalar (σ and ω) and isovector (ρ and π) mesons in the interaction Lagrangian density,

$$\mathcal{L}_{\text{int}} = \sum_{N=p,n} \bar{\psi}_N \left(g_{\sigma} \sigma - g_{\omega} \gamma_{\mu} \omega^\mu - g_{\rho} \gamma_{\mu} p^\mu \cdot \tau_N + \frac{f_\rho}{2M_N} \sigma_{\mu\nu} \rho^\mu \cdot \tau_N - \frac{f_\pi}{M_N} \gamma_{\sigma} \gamma_{\mu} \rho^\mu \pi \cdot \tau_N\right) \psi_N.$$

(2)

The σ, ω, ρ, and π coupling constants are respectively denoted by g_{σ}, g_{ω}, g_ρ, and f_π, while f_ρ is the ρ-N tensor coupling constant. In addition, the nonlinear potential for σ meson, $\mathcal{L}_{\text{NL}} = g_\sigma \sigma^3/3 + g_3 \sigma^4/4$, is considered in \mathcal{L}. It is possible to include the tensor coupling for ρ meson and the pseudo-vector coupling for π meson through the exchange term. Furthermore, the momentum dependence of the self-energies comes from the exchange terms as well.

The coupling constants, g_{σ}, g_{ω}, g_ρ, g_π, and g_3, are determined so as to fit the properties of nuclear matter at the saturation density, $\rho_0 = 0.16$ fm$^{-3}$, namely the saturation energy (-160 MeV), the effective nucleon mass ($M^*_N/M_N = 0.70$), the incompressibility $K_0 = (250$ MeV), and the currently estimated value of E_{sym} (32.5 MeV). The coupling constants, f_ρ and f_π, take the empirical values, $f_\rho/g_\rho = 6.0$ and $f_\pi^2/4\pi = 0.08$. For comparison, we present the RH result, which is calibrated so as to adjust the same values of M^*_N and K_0 in the RHF calculation.

3. Nucleon self-energy and Schrödinger-equivalent potential

In uniform matter, the nucleon self-energy can be generally written as [8, 19]

$$\Sigma_N(k) = \Sigma^s_N(k) - \gamma_0 \Sigma^0_N(k) + (\gamma \cdot \hat{k}) \Sigma^\tau_N(k),$$

(3)

with \hat{k} being the unit vector along the (three) nucleon momentum, k. It is divided into the scalar (s), time (0), and space (τ) components, which provide the effective nucleon mass, four momentum, and energy in matter:

$$M^*_N(k) = M_N + \Sigma^s_N(k),$$

(4)

$$k^\mu_N \equiv \left(k^0, k^\tau_N \right) = \left(k^0 + \Sigma^0_N(k), k + \hat{k} \Sigma^\tau_N(k)\right),$$

(5)

$$E^*_N(k) = \left(k^2 + M^2_N(k)\right)^{1/2}.$$

(6)

In order to clarify the effect of Fock terms on the matter properties, it is important to study the momentum dependence of nucleon self-energies, $\Sigma^{s,0,\tau}_N$. We consider the so-called Schrödinger-equivalent potential (SEP) based on the Dirac equation with Lorentz-covariant scalar and vector self-energies for nucleon [20],

$$U^{\text{SEP}}_N(k, \epsilon_k) = \Sigma^s_N(k) - \frac{E^*_N(k)}{M_N} \Sigma^0_N(k) + \frac{1}{2M_N} \left(\left[\Sigma^s_N(k)\right]^2 - \left[\Sigma^0_N(k)\right]^2\right),$$

(7)
Figure 1. Energy dependence of U_{N}^{SEP} in symmetric nuclear matter at ρ_0. We also show the results of the nucleon-optical-model potential extracted from analyzing nucleon-nucleus scattering data [22] and the Schrödinger-equivalent potential obtained by Dirac phenomenology for elastic proton-nucleus scattering data [23], which are respectively denoted by X.-H. Li et al. and Hama et al.

where the nucleon kinetic energy, ϵ_k, reads $\epsilon_k = E_N - M_N$ with E_N being the single-particle energy for nucleon.

The energy dependence of single-nucleon potential (or nucleon optical potential), U_{N}^{SEP}, is depicted in Fig. 1. We here show the results of the RH and RHF calculations. In the RHF1 case, we employ the cutoff parameters given by the CD-Bonn potential [21], while those in the RHF2 case are adjusted so as to cover the scattering data [22, 23]. Due to the momentum dependence of $\Sigma_{s,0,v}^{N}$, U_{N}^{SEP} depends on ϵ_k non-linearly in both RHF1 and RHF2 cases. Meanwhile, U_{N}^{SEP} is proportional to ϵ_k in the RH case because of the constant $\Sigma_{s,0,v}^{N}$. We note that U_{N}^{SEP} strongly depends on the effective nucleon mass [24].

4. Lorentz-covariant decomposition of nuclear symmetry energy

According to the HVH theorem [25, 26], the nucleon chemical potential in asymmetric nuclear matter should be equal to its Fermi energy. Thus, the single-particle energy at Fermi surface is generally given by $E_N(k_{F_N}) = d(\rho_B E_B)/d\rho_B$, where k_{F_N} is the Fermi momentum for nucleon, E_B is the nuclear binding energy per nucleon, and the total baryon density, ρ_B, reads $\rho_B = \rho_p + \rho_n$ with ρ_p (ρ_n) being the proton (neutron) density. Therefore, E_{sym} can be written as

$$E_{\text{sym}} = \frac{1}{8} \rho_B \left(\frac{\partial}{\partial \rho_p} - \frac{\partial}{\partial \rho_n} \right) \left[E_p(k_{F_p}) - E_n(k_{F_n}) \right]_{\rho_p=\rho_n}. \quad (8)$$

With the self-consistent calculations of $\Sigma_{s,0,v}^{N}$ under the conditions given in Eqs. (4)–(6), E_{sym}
Figure 2. Contents of E_{sym} at ρ_0. The black and blue bands show respectively the total and kinetic symmetry energy, E_{sym} and $E_{\text{sym}}^{\text{kin}}$. The $E_{\text{sym}}^{\text{pot}}$ is given by the Lorentz-covariant components, E_{sym}^s, E_{sym}^0, and E_{sym}^v.

is divided into the kinetic and potential terms as $E_{\text{sym}} = E_{\text{sym}}^{\text{kin}} + E_{\text{sym}}^{\text{pot}}$.

\begin{equation}
E_{\text{sym}}^{\text{kin}} = \frac{1}{6} \frac{k_F^s}{E_F^s} k_F^s,
\end{equation}

\begin{equation}
E_{\text{sym}}^{\text{pot}} = \frac{1}{8} \rho_B \left(\frac{M^s}{E_F^s} \partial \Sigma_{\text{sym}}^s - \partial \Sigma_{\text{sym}}^0 + \frac{k_F^s}{E_F^s} \partial \Sigma_{\text{sym}}^v \right),
\end{equation}

with $k_F = k_{F_p} = k_{F_n}$, $E_F^s = \sqrt{k_F^s + M_N^s}$, and $\partial \Sigma_{\text{sym}}^s[v]\equiv \left(\frac{\partial}{\partial \rho_p} - \frac{\partial}{\partial \rho_n} \right) \left(\Sigma_{\text{sym}}^s[v] - \Sigma_{\text{sym}}^0 \right)_{\rho_p=\rho_n}$.

We find that $E_{\text{sym}}^{\text{pot}}$ can be divided into the scalar (E_{sym}^s), time (E_{sym}^0), and space (E_{sym}^v) components, $E_{\text{sym}}^{\text{pot}} = E_{\text{sym}}^s + E_{\text{sym}}^0 + E_{\text{sym}}^v$, based on the Lorentz-covariant structure of Σ_{sym}^s.

In Fig. 2, we present the detail of E_{sym} at ρ_0. We cannot see any large difference in $E_{\text{sym}}^{\text{kin}}$ between the RH and RHF calculations, while $E_{\text{sym}}^{\text{pot}}$ strongly depends on the exchange contribution. Since E_{sym}^s and E_{sym}^v do not affect E_{sym} in the RH case, $E_{\text{sym}}^{\text{pot}}$ is given by only the direct term through $E_{\text{sym}}^{\text{pot}} = g_\rho^2 \rho_B/(2m_\rho^2)$ with m_ρ being the free mass of ρ meson. Meanwhile, in the RHF1 and RHF2 cases, $E_{\text{sym}}^{\text{pot}}$ is mainly composed by the Fock contribution, which is calculated by a cancellation of large positive and negative values of E_{sym}^0 and E_{sym}^s, respectively. The direct contribution in the RHF2 case is somewhat larger than that in the RHF1 case, but they are smaller than that in the RH case. It is also found that the space component, E_{sym}^v, is negligible at ρ_0 in both RHF cases.

In the left panel of Fig. 3, we present the density dependence of E_{sym}, $E_{\text{sym}}^{\text{kin}}$ and $E_{\text{sym}}^{\text{pot}}$. The present results of E_{sym} are consistent with the constraints calculated by the isospin-dependent Boltzmann-Uehling-Uhlenbeck (IBUU04) transport model ($E_{\text{sym}} = 31.6(\rho_B/\rho_0)^x$ with $x = 0.69$–1.05) [27, 28] and by the improved quantum molecular dynamics (ImQMD) transport model ($E_{\text{sym}} = 12.5(\rho_B/\rho_0)^{2/3} + 17.6(\rho_B/\rho_0)^\gamma$ with $\gamma = 0.7^{+0.35}_{-0.3}$) [29]. In the middle panel, we show...
Figure 3. Density dependence of E_{sym}, $E_{\text{kin}}^{\text{sym}}$ and $E_{\text{pot}}^{\text{sym}}$ (left panel) and meson contributions to the Lorentz-covariant components of $E_{\text{sym}}^{\text{ex}}$ in the RHF1 case (right panel).

$E_{\text{kin}}^{\text{sym}}$ in the RHF1, RHF2, and RH cases as well as the free case, in which the interactions are ignored. Owing to the relativistic many-body interactions, $E_{\text{kin}}^{\text{sym}}$ in the RHF1, RHF2, and RH cases is much larger than that in the free case. In the bottom panel, $E_{\text{pot}}^{\text{sym}}$ is presented with the constraint from the analysis of heavy-ion collision (HIC) data using the ImQMD transport model [29]. We find that the Fock contribution suppresses $E_{\text{pot}}^{\text{sym}}$ in the RHF1 case at high densities, and it is consistent with the result of the ImQMD transport model with 2σ confidence region. In contrast, as the density increases, $E_{\text{pot}}^{\text{sym}}$ in the RH and RHF2 cases becomes larger than that in the RHF1 case. As shown in Fig. 2, this is because $E_{\text{pot}}^{\text{sym}}$ in the RH and RHF2 cases is affected by the larger direct contribution.

The $E_{\text{sym}}^{\text{pot}}$ is also expressed in terms of the direct and exchange contributions, $E_{\text{sym}}^{\text{pot}} = E_{\text{sym}}^{\text{dir}} + E_{\text{sym}}^{\text{ex}}$. In the right panel of Fig. 3, we show the meson ($M = \sigma, \omega, \rho, \pi$) contributions to the Lorentz-covariant components of $E_{\text{sym}}^{\text{ex}}$ ($= E_{\text{sym}}^{\text{ex}} + E_{\text{sym}}^{\text{dir},\text{ex}} + E_{\text{sym}}^{\text{v},\text{ex}}$) in the RHF1 case. In RH approximation, only ρ meson affects $E_{\text{sym}}^{\text{pot}}$ through the direct diagram. In contrast, in the RHF calculations, not only ρ meson but also σ, ω, and π mesons give influence on $E_{\text{sym}}^{\text{pot},\text{ex}}$. It is thus of great interest that the σ and ω mesons play an important role in $E_{\text{sym}}^{\text{pot},\text{ex}}$. On the other hand, the contribution due to the ρ and π mesons is extremely small even at high densities. Although Σ_N and thus $E_{\text{sym}}^{\text{pot},\nu}$ are often ignored in relativistic calculations, it is no longer negligible at high densities [15, 16].
5. Summary

We have studied the effect of exchange terms on E_{sym} in RHF approximation. Using the HVH theorem, E_{sym} is expressed as $E_{\text{kin}}^{\text{sym}}$ and $E_{\text{pot}}^{\text{sym}}$, and $E_{\text{pot}}^{\text{sym}}$ is also composed by three components, E_0^{sym}, E_0^{sym}, and E_0^{sym}, based on the Lorentz-covariant structure of Σ_A.

It is found that the Fock terms do not give any impact on $E_{\text{kin}}^{\text{sym}}$ at ρ_0, while it strongly affects $E_{\text{pot}}^{\text{sym}}$. In particular, due to the large exchange contribution to $E_{\text{pot}}^{\text{sym}}$, the direct contribution in the RHF case is quite smaller than that in the RH case. In addition, we have found that the Fock contribution suppresses E_{sym} at higher densities, and the constraint from the HIC data is in favor of the present result in the RHF1 case. Furthermore, not only the ρ meson but also the σ, ω, and π mesons give significant influence on E_{sym} through the exchange diagram.

Acknowledgments

This work was supported by JSPS KAKENHI Grant Numbers JP16K05360, JP17K14298. The work of MKC was supported by the National Research Foundation of Korea (Grant No. NRF-2017R1E1A1A01074023). The work of KSK was supported by the National Research Foundation of Korea (MSIT No. 2018R1A5A1025563).

References

[1] Lattimer J M 2014 Nucl. Phys. A 928 276
[2] Li B A, Chen L W and Ko C M 2008 Phys. Rept. 464 113
[3] Denorest P, Pennucci T, Ransom S, Roberts M and Hessels J Nature 467 1081
[4] Antoniadis J et al. 2013 Science 340 6131
[5] Abbott B P et al. [LIGO Scientific and Virgo Collaborations] 2017 Phys. Rev. Lett. 119 161101
[6] Abbott B P et al. [LIGO Scientific and Virgo Collaborations] 2019 Phys. Rev. X 9 011001
[7] Tsang M B et al. 2012 Phys. Rev. C 86 015803
[8] Serot B D and Walecka J D 1986 Adv. Nucl. Phys. 16 1
[9] Glendenning N K 2001 Phys. Rept. 342 393
[10] Ishizuka C, Ohnishi A, Tsubakhara K, Sumiyoshi K and Yamada S 2008 J. Phys. G 35 085201
[11] Shen H, Toki H, Oyamatsu K and Sumiyoshi K 2011 Astrophys. J. Suppl. 197 20
[12] Miyatsu T, Katayama T and Saito K 2012 Phys. Lett. B 709 242
[13] Katayama T, Miyatsu T and Saito K 2012 Astrophys. J. Suppl. 203 22
[14] Miyatsu T, Cheoun M K and Saito K 2015 Astrophys. J. 813 135
[15] Katayama T and Saito K 2013 Phys. Rev. C 88 035805
[16] Katayama T and Saito K 2015 Phys. Lett. B 747 43
[17] Cai B J and Chen L W 2012 Phys. Lett. B 711 104
[18] Miyatsu T, Cheoun M K, Ishizuka C, Kim K S, Maruyama T and Saito K 2019 Fock contributions to nuclear symmetry energy and its slope parameter based on Lorentz-covariant decomposition of nucleon self-energies Preprint arXiv:1902.05769 [nucl-th]
[19] Bouyssy A, Mathiot J F, Nguyen V G and Marcos S 1987 Phys. Rev. C 36 380
[20] Jaminon M, Mahaux C and Rochus P 1981 Nucl. Phys. A 365 371
[21] Brockmann R and Machleidt R 1990 Phys. Rev. C 42 1965
[22] Li X H, Cai B J, Chen L W, Chen R and Li B A and Xu C 2013 Phys. Lett. B 721 101
[23] Hama S, Clark B C, Cooper E D, Sherif H S and Mercer R L 1990 Phys. Rev. C 41 2737
[24] Danielewicz P 2000 Nucl. Phys. A 673 375
[25] Hugenholtz N M and van Hove L 1958 Physica 24 363
[26] Czerski P, De Pace A and Molinari A 2002 Phys. Rev. C 65 044317
[27] Chen L W, Ko C M and Li B A 2005 Phys. Rev. Lett. 94 032701
[28] Li B A and Chen L W 2005 Phys. Rev. C 72 064611
[29] Tsang M B, Zhang Y, Danielewicz P, Famiano M, Li Z, Lynch W G and Steiner A W 2009 Phys. Rev. Lett. 102 122701