Research Article

A Convenient, TiCl\textsubscript{4}/SnCl\textsubscript{4}-Mediated Synthesis of N-Phenyl or N-Aryl Benzamidines and N-Phenylpicolinamidines

Umesh D. Patil and Pramod P. Mahulikar

School of Chemical Sciences, North Maharashtra University, Jalgaon 425 001, India

Correspondence should be addressed to Pramod P. Mahulikar, mahulikarpp@rediffmail.com

Received 24 April 2012; Accepted 19 June 2012

Academic Editors: J. Mlochowski, D. Séméral, and B. Zacharie

Copyright © 2012 U. D. Patil and P. P. Mahulikar. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A new, TiCl\textsubscript{4}- or SnCl\textsubscript{4}-mediated, solvent-free method was developed for the synthesis of N-Aryl benzamidines and N-phenylpicolinamidines, in moderate-to-good yield, using suitable amines and nitriles as starting materials.

1. Introduction

The amidine nucleus is found in a wide variety of biologically active molecules [1]. N-Aryl amidine exhibits activity against \textit{Mycobacterium tuberculosis}, and N-alkylfuramidine shows antiprotozoan and antimicrobial activities [2]. Similarly various amidines derived from 4-amidino-2-(2-pyridyl)quinazoline [3] and 1-amino-3-(2-pyridyl)isooquinoline [3], guanidine [4], diguanidino [5], reversed diamidino 2,5-diaryl furan [5], benzimidazole [6], pyridine [7], exhibit antiprotozoan, antimalarial, antimicrobial, antibacterial, anti-inflammatory activities. An extensive number of monoamidines have been evaluated for their utility in blocking various stages of the thrombin cascade, and numerous highly potent molecules have been reported [8].

Amidines were used as important synthon in organic synthesis in the preparation of various heterocyclic compounds, such as pyridine [7, 9], pyrimidines [9, 10], imidazoles [11], pyrazolopyrimidine [12], iminopyrimidine [13], imidazopyridine and pyrimidinopyridine [14], purine [15], benzimidazole [16], pyrimidines [17], triazaphenalené [18], triazine [19], tetrazole [19], thia diazine [20], oxazolotriazo le [21], diazirine [22], triazolopyridine [23], azetidinone [24], and pyroline, and also used as complexing agent [25].

Several synthetic strategies have been developed for the synthesis of amidines, in which the nucleophilic addition of amine to nitrile is the most popular. Generally, nitriles were activated to the intermediate salt in the presence of EtOH/HCl [26] or NH\textsubscript{4}Cl/MeOH [27] under anhydrous condition and then reacted with amine to get amidine. While for unreactive nitriles, Lewis acid or other condensing agents were used such as anhydrous AlCl\textsubscript{3}, ZnCl\textsubscript{2} [28], CuCl [29], Ln (III) salts [30], CaCl\textsubscript{2} [31], Al(CH\textsubscript{3})\textsubscript{3} [32], SmI\textsubscript{2} [33], Ytterbium amide [34], MeSO\textsubscript{3}H [20], and anhyd. SnCl\textsubscript{4} [21]. Amides can be converted to imidoyl chloride using PCl\textsubscript{5} [35, 36], which can then react with primary or secondary amine to yield amidine. In addition, amide can be O-alkylated with triethyl oxonium fluoroborate at ambient temperature to yield the corresponding imidic ester fluoroborate, which then reacts with amine to yield the targeted amidine [3]. Iron pentacarbonyl was employed to the conversion of amidoximes into amidines via reductive cleavage of the N=O bond [37]. Sometimes, strong bases like LiHMDS, NaHMDS, LDA, BuLi, NaOMe [38], and NaH [20] were used as condensing agent. Similarly, Dains F. B. has shown that amidine was prepared from symmetrical diaryl and dialkyl urea and acid chloride [39, 40].

In 1998, Zhou and Zhang published the results on such a subject that amidines were successfully prepared from nitriles and nitrocompounds in the presence of TiCl\textsubscript{4}/Sm in THF. They also reported that under same reaction conditions amidine formation was not observed by treatment of nitriles with amines [41]. Thus, it was of interest to study the reactions of nitrile and amine using TiCl\textsubscript{4} and SnCl\textsubscript{4}.
Table 1: SnCl₄/TiCl₄ catalysed coupling of substituted anilines with benzonitrile.

Entry no.	Amines	Amidines * (isolated yield %)	M.P. °C (Lit.)
3a	Aniline	75 by TiCl₄ 71 by SnCl₄	114–116 (116)
3b	2-Cl-Aniline	65 by TiCl₄ 67 by SnCl₄	108–110
3c	4-F-Aniline	64 by TiCl₄ 63 by SnCl₄	86–88

*All products were characterised by IR, NMR, and mass spectral data and in comparison with authentic samples.

Table 2: SnCl₄/TiCl₄ catalysed coupling of 2-aminopyridine with substituted benzonitriles.

Entry no.	Amines	Nitriles	Amidines * (isolated yield %)	M.P. °C (Lit.)
3d	H	N	72 by TiCl₄ 61 by SnCl₄	96 (97-98)
3e	H	3-Cl	63 by TiCl₄ 68 by SnCl₄	114–116
3f	H	4-Cl	69 by TiCl₄ 63 by SnCl₄	162–164
3g	H	4-Br	73 by TiCl₄ 66 by SnCl₄	152–154
3h	4-Br	N	67 by TiCl₄ 63 by SnCl₄	102–104

*All products were characterised by IR, NMR, and mass spectral data and in comparison with authentic samples.

Table 3: SnCl₄/TiCl₄ catalysed coupling of substituted anilines with 2-cyanopyridine.

Entry no.	Amines	Amidines * (isolated yield %)	M.P. °C (Lit.)
3i	H	79 by TiCl₄ 68 by SnCl₄	78–80 HCl Salt
3j	2-CH₃	59 by TiCl₄ 64 by SnCl₄	68–70 (68-69)
3k	4-CH₃	64 by TiCl₄ 61 by SnCl₄	54 (52-53)
3l	4-F	78 by TiCl₄ 69 by SnCl₄	72 (75-76)
3m	4-Cl	66 by TiCl₄ 60 by SnCl₄	80–82 (80–82)
3n	4-Br	81 by TiCl₄ 65 by SnCl₄	84–86 (85-86)
3o	3,4-Cl	76 by TiCl₄ 69 by SnCl₄	112 (112-113)

*All products were characterised by IR, NMR, and mass spectral data and in comparison with authentic samples.
2. Results and Discussion

We would like to demonstrate in the present work that amidine could be prepared by coupling nitrile with amine in presence of TiCl₄ as well as SnCl₄ using neat condition in absence of samarium. At the beginning we studied the synthesis of amidine (Scheme 1, Table 1, and Entry 1) using benzonitrile and aniline as model substrates. In a typical experiment aniline (0.01 mol) and benzonitrile (0.01 mol) were heated at 100–110°C with TiCl₄ or SnCl₄ (0.012 mol) for 3–4 hr to complete the reaction. The obtained black reaction mixture was then neutralised with NaOH solution and extracted with dichloromethane. Product was isolated simply by evaporation of the solvent at reduced pressure. The crude product was recrystallized from hexane. The obtained product was characterised by IR, NMR, and mass spectroscopy data and compared with authentic sample. Furthermore, the reaction was carried out for several substituted aryl amines and nitriles (Table 1) under the same conditions. It is distinct that both TiCl₄ and SnCl₄ were found to have limitations of this process; we examined the coupling reaction of various substituted aryl amines and nitriles (Table 1) under the same conditions. More in presence of TiCl₄ as well as SnCl₄ using neat condition in absence of samarium. At the beginning we studied the synthesis of amidine (Scheme 1, Table 1, and Entry 1) using benzonitrile and aniline as model substrates. In a typical experiment aniline (0.01 mol) and benzonitrile (0.01 mol) were heated at 100–110°C with TiCl₄ or SnCl₄ (0.012 mol) for 3–4 hr to complete the reaction. The obtained black reaction mixture was then neutralised with NaOH solution and extracted with dichloromethane. Product was isolated simply by evaporation of the solvent at reduced pressure. The crude product was recrystallized from hexane. The obtained product was characterised by IR, NMR, and mass spectroscopy data and compared with authentic sample. Furthermore, the reaction was carried out for several substituted aryl amines and nitriles (Table 1) under the same conditions.

The mechanism we propose for the reaction is similar to the one reported for amidine using AlCl₃ [42] and is outlined in Scheme 2: at first the complex between nitrile and TiCl₄ was formed followed by nucleophilic addition of amine (2) on the more electrophilic carbon of nitriles to yield the amidine (3).

With these results in hand, we tested the scope and limitations of this process; we examined the coupling reaction of various substituted benzonitriles with heteroaromatic amine, that is, 2-aminopyridine, (Scheme 3 and Table 2) by performing the reaction with the well-established reaction conditions.

Similarly, to test the scope and limitations of this process; we examined the coupling reaction of various substituted anilines with heteroaromatic nitrile, that is, 2-cyanopyridine, (Scheme 4 and Table 3) by performing the reaction with the well-established reaction conditions.

3. Conclusion

In the summary, we have developed a solvent-free method of amidine formation from nitrile and amine using TiCl₄ or SnCl₄ in absence of expensive metal-like samarium. The reaction proceeded at 100–110°C and was completed within 3-4 hrs. In conclusion the reaction was extremely simple to carry out, and the obtained yield of amidine was good to moderate. On the basis of yield, we may conclude that TiCl₄ is preferable catalyst over SnCl₄.

4. Experimental

Melting points were determined by open capillary tube method and are uncorrected. Progress of the reaction was monitored by TLC (visualization was effected by exposure to UV light). Commercial reagents were used without purification for synthesis. Mass spectra were recorded on Thermo Finnigan (model- LCQ Advantage MAX) mass spectrometer. The IR spectra were recorded with KBr pellets on Perkin-Elmer Spectrum One Spectrometer. ¹H NMR spectra were recorded in CDCl₃ on a Bruker 300 DRX Avance instrument at 300 MHz.

4.1. Preparation of Amidines, 3a–o. Benzonitrile (1.03 g, 0.01 mol) was taken in a dry round bottom flask and to this was added a 2-aminopyridine (0.94 g, 0.01 mol). The flask was heated, after fitting a dry condenser along with a guard tube, in an oil bath at a temperature range of 80–90°C with stirring. After 30 min TiCl₄ (1.3 mL, 0.012 mol) or SnCl₄ (1.4 mL, 0.012 mol) was added to the flask. After addition, temperature was increased to 100–110°C, and contents of the flask were heated for 3–4 hrs. The mixture was cooled to room temperature, and the solid, thus, formed was dissolved in hot water and made alkaline with 10% NaOH. This solution was extracted with a CH₂Cl₂ (3 × 100 mL). Then organic layer was decolourized with activated charcoal and dried over anhydrous Na₂SO₄. After evaporating the solvent under reduced pressure, crude amidine was obtained. This crude product was recrystallized from hexane to get pure amidine.

N-Phenylbenzamidine (3a, C₁₁H₁₂N₂). ¹H NMR (CDCl₃, δ ppm): 4.84 (br s, 2H, NH, C=NH), 6.96–6.99 (d, J=8.1 Hz, 2H, ArH), 7.03–7.08 (t, J=7.5 Hz 1H, ArH), 7.32–7.37 (t, J=7.8 Hz, 2H, ArH), 7.42–7.49 (m, 3H, ArH), 7.85 (s, 2H, ArH); IR (KBr ν (cm⁻¹): 3340, 2853, 1618, 1574, 1459, 1377, 1153, 722; MS (ESI, 70 eV) m/z (%): 198 (13), 197 (100) [M + H]+.

N-(2-Chlorophenyl)benzamidine (3b, C₁₃H₁₁ClN₂). ¹H NMR (CDCl₃, δ ppm): 4.78 (br s, 2H, NH, C=NH), 6.97–7.02 (m, 2H, ArH), 7.19–7.22 (t, J=7.2 Hz,1H, ArH), 7.39–7.51 (m, 4H, ArH), 7.86 (br s, 2H, ArH); IR (KBr) ν (cm⁻¹): 3345, 2853, 1618, 1574, 1459, 1377, 1153, 722; MS (ESI, 70 eV) m/z (%): 233 (37), 231(100) [M + H]+.

N-(4-Fluorophenyl)benzamidine (3c, C₁₃H₁₁FN₂). ¹H NMR (CDCl₃, δ ppm): 4.86 (br s, 2H, 2NH), 6.90–6.94 (m, 2H, ArH), 7.01–7.07 (t, J=8.3 Hz, 2H, ArH), 7.41–7.46 (t, J=7.3 Hz, 3H, ArH), 7.83–7.86 (d, J=6.3 Hz, 2H, ArH); IR
N-(Pyridin-2-yl)benzamidine (3d, C₁₂H₁₁N₂). ¹H NMR (CDCl₃, δ ppm): 2.03 (bs, 2H, 2NH), 6.90–6.95 (m, 1H, ArH), 7.25–7.29 (d, J=9 Hz, 1H, ArH), 7.40–7.48 (m, 3H, ArH), 7.61–7.67 (m, 1H, ArH), 7.89–7.92 (m, 2H, ArH), 8.31–8.34 (m, 1H, ArH); IR (KBr) ν (cm⁻¹): 3351, 2854, 1625, 1590, 1459, 1377, 1152, 777, 722; MS (ESI, 70 eV) m/z (%): 216 (17), 215 (100) [M + H⁺], 198 (13).

N-(5-Bromopyridin-2-yl)benzamidine (4d, C₁₂H₁₀BrN₂). ¹H NMR (CDCl₃, δ ppm): 1.78 (bs, 2H, 2NH), 6.92–6.97 (m, 1H, ArH), 7.24–7.27 (t, J=3.9 Hz, 1H, ArH), 7.55–7.60 (m, 2H, ArH), 7.63–7.69 (m, 1H, ArH), 7.72–7.81 (m, 2H, ArH), 8.32–8.35 (m, 1H, ArH); IR (KBr) ν (cm⁻¹): 3344, 2854, 1598, 1462, 1377, 1215, 831, 782, 722, 538; MS (ESI, 70 eV) m/z (%): 231 (100) [M + H⁺]+.

3-Chloro-N-(pyridin-2-yl)benzamidine (3e, C₁₂H₁₀ClN₃). ¹H NMR (CDCl₃, δ ppm): 7.15–7.25 (m, 3H, ArH), 7.67–7.68 (m, 1H, ArH), 7.72–7.73 (d, J=1.5 Hz, 1H, ArH), 7.92–7.93 (t, J=1.8 Hz, 1H, ArH), 8.32–8.34 (m, 1H, ArH); IR (KBr) ν (cm⁻¹): 3341, 2854, 1625, 1590, 1459, 1377, 1152, 777, 722; MS (ESI, 70 eV) m/z (%): 213 (100) [M + H⁺]+.

4-Chloro-N-(pyridin-2-yl)benzamidine (3f, C₁₂H₁₀ClN₃). ¹H NMR (CDCl₃, δ ppm): 1.81 (br s, 2H, 2NH), 6.93–6.97 (m, 1H, ArH), 7.25–7.27 (t, J=8.1 Hz,1H, ArH), 7.41–7.43 (d, J=6.3 Hz, 2H, ArH), 7.63–7.69 (m, 1H, ArH), 7.85–7.89 (d, J=6.9 Hz, 2H, ArH), 8.33–8.35 (m, 1H, ArH); IR (KBr) ν (cm⁻¹): 3344, 2853, 1618, 1594, 1462, 1377, 1125, 831, 782, 722, 538; MS (ESI, 70 eV) m/z (%): 231 (100) [M + H⁺]+.

4-Bromo-N-(pyridin-2-yl)benzamidine (3g, C₁₂H₁₀BrN₃). ¹H NMR (CDCl₃, δ ppm): 1.68 (br s, 2H, 2NH, C=NH), 6.88–6.91 (d, J=8.7 Hz, 2H, ArH), 7.38–7.42 (m, 3H, ArH), 7.79–7.84 (m, 1H, ArH), 8.36–8.39 (d, J=8.1 Hz, 1H, ArH), 8.56–8.58 (m, 1H, ArH); IR (KBr) ν (cm⁻¹): 3376, 2854, 1640, 1577, 1530, 1459, 1377, 1321, 1300, 1260, 1151, 1119, 1096, 1006, 818, 769, 722, 541; MS (ESI, 70 eV) m/z (%): 278 (100), 276 (100) [M + H⁺]+.

N-(5-Bromopyridin-2-yl)benzamidine (3h, C₁₂H₁₀BrN₃). ¹H NMR (CDCl₃, δ ppm): 1.68 (br s, 2H, 2NH, C=NH), 6.88–7.19 (d, 1H, ArH), 7.19–7.49 (m, 3H, ArH), 7.71–7.75 (m, 1H, ArH), 7.88–7.91 (t, J=6 Hz, 2H, ArH), 8.37–8.38 (d, J=2.4 Hz, 1H, ArH); IR (KBr) ν (cm⁻¹): 3350, 2853, 1618, 1574, 1459, 1377, 1153, 722; MS (ESI, 70 eV) m/z (%): 278 (94), 276 (100) [M + H⁺]+, 260 (90), 259 (90).

N-Phenylpicolinamidine (3i, C₁₂H₁₀N₃). ¹H NMR (CDCl₃, δ ppm): 7.91 (br s, 2H, 2NH, C=NH), 6.88–7.26 (m, 4H, ArH), 7.31–7.37 (m, 2H, ArH), 7.78–7.81 (m, 1H, ArH), 8.41–8.45 (m, 1H, ArH), 8.52–8.59 (m, 1H, ArH); IR (KBr) ν (cm⁻¹): 3346, 2853, 1618, 1574, 1459, 1377, 1153, 722; MS (ESI, 70 eV) m/z (%): 198 (100) [M + H⁺]+, 181 (45).

N-o-tolylpicolinamidine (3j, C₁₂H₁₀N₃). ¹H NMR (CDCl₃, δ ppm): 2.18 (s, 3H, ArCH₃), 5.72 (br s, 2H, NH, C=NH), 6.89–7.02 (m, 2H, ArH), 7.16–7.24 (q, J=7.8 Hz, 1H, ArH), 7.30–7.33 (ddd, J=8.4 Hz,1H, ArH), 7.36–7.41 (m, 1H, ArH), 7.77–7.84 (m, 1H, ArH), 8.36–8.48 (m, 1H, ArH), 8.55–8.57 (m, 1H, ArH); IR (KBr) ν (cm⁻¹): 3345, 1694, 1613, 1463, 1377, 1118, 721; MS (ESI, 70 eV) m/z (%): 212 (100) [M + H⁺]+, 195 (37).

N-p-tolylpicolinamidine (3k, C₁₃H₁₃N₃). ¹H NMR (CDCl₃, δ ppm): 2.18 (s, 3H, ArCH₃), 5.58 (br s, 2H, NH, C=NH), 6.90–7.01 (m, 3H, ArH), 7.18–7.26 (m, 2H, ArH), 7.36–7.40 (m, 1H, ArH), 7.56 (m, 1H, ArH), 7.77–7.84 (m, 1H, ArH); IR (KBr) ν (cm⁻¹): 3339, 2854, 1694, 1613, 1463, 1377, 1118, 721; MS (ESI, 70 eV) m/z (%): 212 (100) [M + H⁺]+, 195 (37).

References
[1] S. Patai and Z. Rappoport, The Chemistry of Amidines and Imidates, vol. 27, John Wiley & Sons, New York, NY, USA, 1991.
[2] S. M. Rahmathullah, R. R. Tidwell, S. K. Jones, J. E. Hall, and D. W. Boykin, "Carbamate prodrugs of N-alkylfuramidines," European Journal of Medicinal Chemistry, vol. 43, no. 1, pp. 174–177, 2008.
[3] M. A. H. de Zwart, H. van der Goot, and H. Timmerman, "Synthesis and copper-dependent antimycoplasmal activity of 1-amino-3-(2-pyridyl)isoquinoline derivatives. 2. Amidines," Journal of Medicinal Chemistry, vol. 32, no. 2, pp. 487–493, 1989.
N. Agarwal, P. Srivastava, S. K. Raghuwanshi et al., “Chloropy-

J. J. Shie and J. M. Fang, “Microwave-assisted one-pot tandem reactions for direct conversion of primary alcohols and aldehydes to triazines and tetrazoles in aqueous media,” *Journal of Organic Chemistry*, vol. 72, no. 8, pp. 3141–3144, 2007.

T. Sambaiah and K. K. Reddy, “Synthesis of 2-Aryl[1,2,4] triazolo[5,1-b]benzoxazoles by oxidative cyclization of N- benzoxazol-2-yl]benzimidazoles,” *Synthesis*, no. 5, pp. 422–424, 1990.

W. H. Graham, “The halogenation of amides. I. Synthesis of 3-halo- and other negatively substituted diazirines,” *Journal of the American Chemical Society*, vol. 87, no. 19, pp. 4396–4397, 1965.

R. K. Mahajan and P. Dhawan, “Adsorptive stripping voltammetric determination of nickel(II) using N-2-pyridylbenzamide as a complexing reagent,” *Indian Journal of Chemistry, A*, vol. 41, no. 5, pp. 981–984, 2002.

E. A. Rose, P. Capdevielle, and M. Maumy, “Copper(I)- induced addition of amines to unactivated nitriles: the first general one-step synthesis of alkyl amides,” *Tetrahedron Letters*, vol. 34, no. 40, pp. 6395–6398, 1993.

J. H. Forsberg, V. T. Spaziano, T. M. Balasubramanian et al., “Use of lanthanide(III) ions as catalysts for the reactions of amines with nitriles,” *Journal of Organic Chemistry*, vol. 52, no. 6, pp. 1017–1021, 1987.

B. Asproni, A. Pau, M. Bitti et al., “Synthesis and pharmacological evaluation of 1-[(1,2-diphenyl-1H-4-imidazolyl)-methyl]-4-phenylpyrazines with clozapine-like mixed activities at dopamine D2, serotonin, and GABA receptors,” *Journal of Medicinal Chemistry*, vol. 45, no. 21, pp. 4655–4668, 2002.

M. Meder, C. H. Galka, and L. H. Gade, “Bis(2-pyridylimino)isoindole (BPI) ligands with novel linker units: synthesis and characterization of their palladium and platinum complexes,” *Monatshefte für Chemie*, vol. 136, no. 10, pp. 1693–1706, 2005.

B. Asproni, A. Pau, M. Bitti et al., “Synthesis and pharmacological evaluation of 1-[(1,2-diphenyl-1H-4-imidazolyl)-methyl]-4-phenylpyrazines with clozapine-like mixed activities at dopamine D2, serotonin, and GABA receptors,” *Journal of Medicinal Chemistry*, vol. 45, no. 21, pp. 4655–4668, 2002.
dihydroquinazolines, and dihydrobenzodiazepines,” *Journal of the Chemical Society, Perkin Transactions 1*, pp. 453–456, 1973.

[36] A. J. Hill and J. V. Johnston, “Amidines derived from ethylenediamine. I. Diamidines,” *Journal of the American Chemical Society*, vol. 76, no. 3, pp. 920–922, 1954.

[37] A. Dondoni and G. Barbaro, “Synthetic reactions using transition metal complexes. Conversion of amide oximes into amidines by pentacarbonyliron and evidence for imine intermediates in the deoximation of ketoximes,” *Journal of the Chemical Society, Chemical Communications*, no. 18, pp. 761–762, 1975.

[38] I. K. Khanna, Y. Yu, R. M. Huff et al., “Selective cyclooxygenase-2 inhibitors: heteroaryl modified 1,2-diarylimidazoles are potent, orally active antiinflammatory agents,” *Journal of Medicinal Chemistry*, vol. 43, no. 16, pp. 3168–3185, 2000.

[39] F. B. Dains, “On the action of certain acid reagents on the substituted ureas,” *Journal of the American Chemical Society*, vol. 22, no. 4, pp. 181–198, 1900.

[40] F. B. Dains, R. C. Roberts, and R. Q. Brewster, “On the action of certain acid reagents on the substituted ureas and thiazole,” *Journal of the American Chemical Society*, vol. 38, no. 1, pp. 131–140, 1916.

[41] L. Zhou and Y. Zhang, “Low-valent titanium induced reductive coupling of nitriles with nitro compounds,” *Synthetic Communications*, vol. 28, no. 17, pp. 3249–3262, 1998.

[42] P. Oxley, M. W. Partridge, and W. F. Short, “Amidines. Part VII. Preparation of amidines from cyanides, aluminium chloride, and ammonia or amines,” *Journal of the Chemical Society (Resumed)*, pp. 1110–1116, 1947.