Evidence that a cluster of UHECRs was produced by a burst or flare

GLENNYs R. FARRAR¹,²
¹Center for Cosmology and Particle Physics, New York University

gf25@nyu.edu

Abstract: A cluster of 5 Ultrahigh Energy Cosmic Rays (UHECRs) in the combined published AGASA-HiRes data has a probability of \(\sim 2 \times 10^{-3} \) of occurring by chance. The observed energies of the events in this cluster favor a bursting rather than continuously emitting source. Assuming the UHECRs experience many incoherent small magnetic deflections enroute from source to Earth, the arrival direction distribution allows estimation that \(\langle B^2 \lambda \rangle D \approx 7.7 \text{nG}^2 \text{Mpc}^4 \). If the spectrum at the source \(\sim E^{-2} \) and the events are emitted on a time scale short compared with 300 \(D_{\text{Mpc}} \) years, the total isotropic equivalent energy emitted in CRs in the range \(10^{19} - 3\times10^{20} \text{eV} \) is \(1.3 \times 10^{43} D_{\text{Mpc}}^3 \text{ergs} \).

Introduction

If UHECRs are charged particles and are produced by bursting sources, the events from a single burst should be clustered in energy as well as angle. This is because high energy CRs experience lower deflection on average and therefore arrive to the observer more quickly on average than do lower energy events. At any given place and time, the spectrum has about a factor of 3 spread in energies. As time goes on, the average energy observed at any location decreases. Here, I examine a cluster of 5 events in the combined published AGASA-HiRes data, whose spread in arrival directions is so small it could be consistent with instrumental resolution and is thus highly unlikely to be a chance clustering. First, I compare the likelihood of fits assuming a continuous versus bursting source, then I assume the source is bursting and extract properties of the burst and intervening magnetic fields.

The complete published data from AGASA and the stereo HiRes consists of 57 AGASA events with nominal energy \(\geq 40 \text{ EeV} \) and 271 HiRes events with nominal energy \(\geq 10 \text{ EeV} \). Both arrival directions and energies of the former are published[5]; only arrival directions have been published for the latter[1]. With the HiRes collaboration, we searched for clusters of events in the combined high energy sample, 57 AGASA events above 40 EeV and 40 HiRes events above 30 EeV, using a Maximum Likelihood technique[2]. One HiRes event at 38 EeV was found to be clustered with the known AGASA triplet, with an angular dispersion consistent with measurement resolution. The probability of promoting the likelihood value of the triplet in the 57 event AGASA dataset, to that of the quadruplet in the combined 97 event dataset by chance, is \(2 \times 10^{-3} \)[4]. This “promotion probability” is a useful indicator of the significance since it is not skewed by the existence of the original triplet, in case that had been a chance occurrence. Other measures of the likelihood of the quadruplet being a chance association give a similar significance[4].

A search of the remaining 231 HiRes events with energies in the range 10-30 EeV turns up a 5th event whose arrival direction is consistent with its coming from the same source with negligible magnetic deflection or dispersion. Its association with the same source is less secure than for the original quadruplet, since there is a 1 in 6 chance of getting as high or higher likelihood value as observed in the data when adding 231 events at random to the 97 original events. For the rest of the paper we proceed on the assumption that the 4 high energy events come from a single source, and will consider both cases that the 5th lower energy event is or is not from the same source.
Energies favor a Bursting Source

If UHECRs are produced by continuous sources, then the observed distribution of energies for a typical source would be the same as the distribution of all observed energies. This allows a simple assessment of the probability that the cluster source is continuous, independent of knowledge of the exposure or the reliability of the energy measurements, since those affect the full dataset and the cluster equally on average. Namely, the probability of selecting at random 4 events above 30 EeV and one or two events below, from a dataset with 97 events above 30 EeV and 231 events below. If the cluster is taken to include only the 4 high energy events, the probability that their energies are drawn at random from the full data is \(2 \times 10^{-4}\), while if all 5 events come from a single source the probability of finding the observed distribution of energies is \(10^{-3}\).

In order to proceed in our analysis of the bursting source hypothesis, for which the spectrum from an individual source does not reflect the overall spectrum, we need to know the total exposure to the cluster. The stereo HiRes exposure is energy dependent and has not been published, although the stereo exposure has been shown in conference talks and the mono exposures have been published. The energy dependence of the stereo exposure should be very similar to that of a mono detector, so guided by figures shown at conferences, I normalize the integrated HiRes exposure, including weather cuts, to be equal at 70 EeV to the integrated AGASA exposure, \(\mathcal{E}_{\text{AG}} = 1500 \text{ km}^2 \text{ yr}\), and I take the shape of the HiRes stereo exposure from the mono exposure using the functional form due to G. Hughes and D. Bergman (private communication), with the result

\[
\mathcal{E}_{HR}(E) = 7.5 \times 10^{-4} \exp\left[c(1-e^{(-a(x-b))})\right] \text{ km}^2 \text{ yr},
\]

where \(x = \log_{10}(E/10^{16}\text{eV})\). Above \(E = 10^{17.8}\text{eV}\) the parameters are \(a = 1.175, b = 0.732\), and \(c = 14.893\). While this is only an estimate of the HiRes stereo exposure, it is adequate for the purposes here. The total exposure is \(\mathcal{E} = \mathcal{E}_{HR}(E) + \mathcal{E}_{\text{AG}} \theta(E - 40\text{EeV})\). The relative exposure as a function of position, \(\eta\), is normalized such that \(\int \eta \, d\Omega = 4\pi\). In the direction of the cluster it is about the same for both AGASA and HiRes: \(\eta_c = 0.2 \text{ sr}^{-1}\).

In a beautiful paper in 1978, Alcock and Hatchett obtained the distribution in arrival time and direction of X-rays from an instantaneous point source and showed that it has a universal shape which depends on the source distance and parameters of the medium but not on details of the scattering process such as the form of the differential cross section[3]. Waxman and Miralda-Escude[6] (WM-E) adapted the Alcock-Hatchett analysis to cosmic rays from a bursting source undergoing multiple small magnetic deflections. WM-E derive the flux of UHECRs with energies in the range \(\{E, E + dE\}\) received from a burst which produced \(N(E)dE\) cosmic rays in the same energy range, by an observer at a distance \(D\) and time delay \(\Delta t\) (relative to photons):

\[
F(E; D, E_0) = \frac{3\pi E^2 N(E)}{8\pi q^2 \langle B^2 \lambda \rangle D^4} G_{AH}((E/E_0)^2),
\]

where \(q\) is the charge, \(\lambda\) is the characteristic length scale of the turbulent magnetic fields and \(\langle B^2 \lambda \rangle\) is defined precisely in [6]. An expression for \(G_{AH}\), the normalized probability distribution function, and also the joint distribution in energy and angle, are given in [3]. Present statistics of this cluster are insufficient for the joint energy-angle distribution to be useful.

With an \(E^{-2}\) spectrum at the source, the shape of the observed spectrum (2) is shown in Fig. 1 as

\[\text{Figure 1: Observed spectrum for an } E^{-2} \text{ spectrum at the source and an energy-independent exposure (solid) or the actual exposure (dashed).}\]
a function of E/E_0. The parameter E_0 is determined by the distance and time delay of the observation, and the magnetic structure of the intervening medium:

$$E_0 \equiv D \left(\frac{2q^2 (B^2 \lambda)}{3c \Delta t} \right)^{1/2}.$$ \hspace{1cm} (3)

The peak of the spectrum is at $E_{\text{peak}} = 0.214 E_0$ and the average energy is $\bar{E} = 0.276 E_0$.

The characteristic spread in arrival directions averaged over all events of energy E is

$$\theta_s(E) = \frac{\sqrt{2Dq^2 (B^2 \lambda)}}{3E},$$ \hspace{1cm} (4)

as for the case of a non-bursting source. Keeping in mind that the time delay $\Delta t \sim D/c (1 - \cos(\theta_s)) \sim D\theta_s^2/(2c)$, the form of the expression (2) for the flux in each energy range can be easily understood:

$$F_{\text{obs}} \sim \frac{\langle \text{Number of events produced at the source} \rangle}{4\pi D^2 \langle \text{spread in arrival times} \rangle} \sim \frac{N(E)}{4\pi D^2 \Delta \theta_s^2/(2c)} \sim \frac{9cq^2 N(E)E^2}{4\pi D^2 \Delta \theta_s^2 (B^2 \lambda)},$$

and the apparent difference in normalization compensates the peak magnitude of G_{AH}.

Note that when observing an instantaneous source at a fixed time delay – as opposed to fixed energy – the distribution of deflection angles with respect to the direction of the source is flatter than a gaussian for small angles and drops faster at large angles. Waxman and Miralda-Escude[6] obtained an approximate expression for the integral over energy of the joint AH distribution, at fixed time delay:

$$P(\delta \theta^2) \sim \exp(-0.58 [\delta \theta^2 / \theta_s(E)]^2),$$ \hspace{1cm} (5)

where $\delta \theta$ is the angle between the arrival direction and the line of sight to the source. We will use equation (5) to fit for $\theta_s(E)$.

Given the exposure to the source and a spectrum at the source, say E^{-p}, we can find the value of E_0 which gives the best fit to the data as follows. Divide the energy range into N bins. For each bin the mean number of expected events is

$$\mu_i(E_0) \equiv N_i(E_0) E^{2-p} G_{\text{AH}}((E/E_0)^2) \mathcal{E}(E),$$ \hspace{1cm} (6)

where the normalization factor $N_i(E_0)$ is chosen so that $\sum_{i=1}^N \mu_i(E_0) \equiv N_e$ is the number of events in the cluster. The most probable value of E_0 is the one which maximizes the likelihood measure

$$LM = \Pi_{i=1}^N \mathcal{P}(\mu_i(E_0), n_i),$$ \hspace{1cm} (7)

where $\mathcal{P}(\mu_i, n_i)$ is the Poisson probability of finding the observed number n_i of events in the ith bin when μ_i are expected. We adopt henceforth $p = 2$ for definiteness. This choice simplifies formulae and is likely to be close to reality, and the inferred E_0 differs only slightly with other choices, e.g., $p = 2.7$.

The energy of the 5th, low energy event has not been published, but HiRes has kindly released the event’s ranking in energy (150th), constraining its energy to be within a few EeV of 15 EeV; this is plenty accurate for our needs. Using just the four highest energy events, the best fit value is $E_0^{(4)} = 190$ EeV, while with all five events $E_0^{(5)} = 150$ EeV.

The actual value of the likelihood measure defined above has no particular significance – for instance, it depends on the number of bins – but it can be used to assess the relative quality of different fits to the spectrum of the cluster by taking the ratio of the LM values. The crude estimate above, using the numbers of cluster events in low and high energy samples compared to the total number of events in each sample, can be improved by using (7), computing the μ_i from the full spectrum. Furthermore, we can avoid the assumption that each source spectrum is the same as the observed full spectrum, which is modified due to propagation through magnetic fields. In this case the μ_i reflect the model spectrum at the source, e.g., E^{-2}. The latter scenario is more favorable to the continuous source hypothesis because it implies fewer low energy events. The result is that a bursting source is about 150 times more probable than a continuous one, if only the 4 highest energy events come from the source, or (only) 5 times more probable if all 5 events come from the source. Put differently, if the source is indeed bursting, the 5th, low energy event is likely to be either random or continuum background. Thus the most trustworthy estimation of parameters of the burst is obtained using just the 4 higher energy events; as will be seen below there is little difference in the conclusions in either case.
Angular Distribution and Flux

Henceforth we assume the events in the cluster are all protons. The best fit to the observed arrival directions under the bursting source hypothesis is obtained by maximizing the product of the angular probability densities for the N_c events of the cluster, with respect to the direction of the source θ_0 and the energy-dependent magnetic smearing parameter $\theta_s(E)$ introduced in (9). For each event, the 2-d probability density is proportional to

$$\exp \left[-0.58 \left(\frac{(\bar{\theta}_i - \theta_0)^2}{\theta_s(E)^2} \right)^2 \right] \exp \left[- \frac{(\bar{\theta}_i - \theta_0)^2}{\sigma_i^2} \right].$$

This results in a source direction $\{\text{RA}, \text{dec}\} = \{169.67^\circ, 56.70^\circ\}$ and

$$\theta_s(E) = 1.14^\circ. \tag{9}$$

From these values one finds

$$(B^2\lambda)D_0 = 7.0\text{ EeV}^2 = 7.7\text{ nG}^2\text{ Mpc}^2, \tag{10}$$

where D_0 is the distance to the source which produced the quad.

The normalization of the spectrum at the source can be estimated in units of $(B^2\lambda)D^4$ either by equating the total number of events, N_c, or energy received from the source, $\sum_{i=1}^{N_c} E_i$, to $\int E^2 F(E) \mathcal{E}(E) dE$, respectively. This gives

$$\frac{N(E)E^2c}{8\pi (B^2\lambda)D^4} = 2.4 (...) 10^{-5} \tag{11}$$

respectively. Using the value of $(B^2\lambda)D_0$ from the angular distribution gives

$$E^2 N(E) = 4.0 \times 10^{42} D_{\text{Mpc}}^3 \left(\frac{\theta_s}{1.14^\circ} \right)^2 \text{ erg}. \tag{12}$$

Integrating this over energy yields the isotropic equivalent energy the source emitted in ultrahigh energy cosmic rays with energies in the range 10-300 EeV:

$$E_{10-300} = 1.31 \times 10^{43} \left(\frac{\theta_s}{1.14^\circ} \right)^2 D_{\text{Mpc}}^3 \text{ erg}. \tag{13}$$

If the UHECRs from the source are beamed toward us in a cone of solid angle $\Delta\Omega$, the total energy in UHECRs should be reduced by the factor $\frac{\Delta\Omega}{4\pi}$.

The result (13) is relatively insensitive to energy losses which have been neglected here, as long as the source is closer than about 250 Mpc. That is the distance beyond which the highest energy event observed from this source ($E_{\text{obs}} = 77\text{ EeV}$) would have had an energy above the pion production threshold and hence been subject to stochastic GZK energy loss. This is a concrete specification of the GZK distance. If the source is at greater distances, the analysis is more complex. Simulations for these more complicated cases will be presented elsewhere.

Minimum Flare Duration

From eqns 3 and 9 and the fit to θ_s we have that the arrival time delay is

$$\Delta t = \frac{2}{9} \frac{\theta_s^2 D_0}{c} \approx 300 D_{\text{Mpc}} \text{ yr}. \tag{14}$$

The source can be flaring rather than bursting and lead to the observed spectrum, as long as the source’s luminosity is much greater than during its quiescent level, for a timescale short compared to Δt.

The numerical values quoted here should be treated as approximate; definitive values will be presented at ICRC07.

References

[1] R. Abbasi et al. *Astrophys. J.*, 610:L73, 2004.
[2] R. U. Abbasi et al. Search for point sources of ultra-high energy cosmic rays above 40-eev using a maximum likelihood ratio test. *Astrophys. J.*, 623:164–170, 2005.
[3] C. Alcock and S. Hatchett. The effects of magnetic fields. *Astrophys. J.*, 222:456, 1978.
[4] Glennys R. Farrar. *astro-ph/0501388*, 2005.
[5] N. Hayashida et al. Updated agasa event list above 4×10^{19} ev. *astro-ph/0008102*, 2000.
[6] Eli Waxman and Jordi Miralda-Escude. *Astrophys. J.*, 472:L89–L92, 1996. Images of bursting sources of high-energy cosmic rays: Effects of magnetic fields.