Identification of ITGA2B and ITGB3 Single-Nucleotide Polymorphisms and Their Influences on the Platelet Function

Qian Xiang,1 Shun-Dong Ji,2,3 Zhuo Zhang,1 Xia Zhao,1 and Yi-Min Cui1

1Department of Pharmacy, Base for Clinical Trial, Peking University First Hospital, Beijing 100034, China
2Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
3Collaborative Innovation Center of Hematology, Soochow University, Suzhou 215006, China

Correspondence should be addressed to Yi-Min Cui; bdyyyljd@126.com

Received 3 February 2016; Accepted 18 April 2016

Academic Editor: Robert Baiocchi

The aim of the study was to investigate ITGA2B and ITGB3 genetic polymorphisms and to evaluate the variability in the platelet function in healthy Chinese subjects. The genetic sequence of the entire coding region of the ITGA2B and ITGB3 genes was investigated. Adenosine diphosphate-induced platelet aggregation, glycoprotein IIb/IIIa content, bleeding time, and coagulation indexes were detected. Thirteen variants in the ITGA2B locus and 29 variants in the ITGB3 locus were identified in the Chinese population. The rs1009312 and rs2015049 were associated with the mean platelet volume. The rs70940817 was significantly correlated with the prothrombin time. The rs70940817 and rs12188890 were related with the activated partial thromboplastin time, and ITGB3 rs4642 was correlated with the thrombin time and fibrinogen. The minor alleles of rs56197296 and rs5919 were associated with decreased ADP-induced platelet aggregation, and rs55827077 was related with decreased GPIIb/IIIa per platelet. The rs1009312, rs2015049, rs3760364, rs567581451, rs7208170, and rs17052258 were related with bleeding time. Further studies are needed to explore the clinical importance of ITGA2B and ITGB3 SNPs in the platelet function.

1. Introduction

Platelet aggregation plays a central role in the pathogenesis of acute thrombosis in coronary heart disease, stroke, and peripheral arterial disease. The cellular events leading to platelet aggregation are mediated by the binding of fibrinogen to the glycoprotein (GP)IIb/IIIa receptor of platelets as a final common pathway. GPIIb/IIIa is a platelet-specific, surface membrane receptor and also called alpha IIb beta 3 (αIIb β3) in the integrin nomenclature and thus plays a primary role in both platelet adhesion and thrombus formation at the vascular injury site [1]. A large interindividual number variability for GPIIb/IIIa receptors expressed on the platelet surface is commonly observed [2, 3]. Moreover, a defect in the GPIIb/IIIa complex or a qualitative abnormality of this complex is seen in Glanzmann’s thrombasthenia patients with impaired platelet aggregation and increased bleeding [4].

The ITGA2B gene encodes the αIIb subunit (GPIIb), whereas the ITGB3 gene encodes β3 (GPIIIa). The ITGA2B spanning 17 kb has 30 exons, whereas the ITGB3 spanning 46 kb has 15 exons; they are closely located on chromosome 17q21.32 without evidence for coordinated expression [5]. A few studies have linked single-nucleotide polymorphisms (SNPs) in ITGA2B and ITGB3 with increased or decreased platelet responses to various agonists and the risk of acute coronary syndrome and atherosclerosis [6–8].

A common polymorphism in the ITGB3, known as the human platelet antigen 1 (HPA-1b, PLA2, or rs5918), arises from a single-nucleotide change at position 1565 in Exon2 of ITGB3, resulting in a leucine (PLA1) to proline (PLA2) substitution at residue 33 [9]. The SNP has been extensively studied as an inherited risk factor for acute coronary syndrome and for its effect on the platelet function [6–8]. The HPA-3 (rs5910) polymorphism results from a thymine to guanine base change that leads to the replacement of isoleucine (HPA-3a) by serine (HPA-3b) at codon 843 of GPIIb (ITGA2B). This polymorphism may potentially influence the activity of the GPIIb/IIIa complex and associate with thrombosis [10].
According to the aforementioned studies, GPIIb/IIIa was believed to be a platelet-platelet contact receptor playing an important role in platelet aggregation, and its SNPs were associated with platelet hyperreactivity and have an effect on the pharmacodynamics of antiplatelet drugs. However, limited information was available on other genetic polymorphisms of ITGA2B and ITGB3 in Asian populations or their association with the platelet function [11, 12]. Moreover, the prevalence of the PLA2 allele (rs5918) is dependent on ethnicity, with a frequency of approximately 15/100 in Caucasian populations [13] falling to less than 1/100 in Oriental populations [12, 14].

In this study, regions of the exons of ITGA2B and ITGB3 genes were sequenced in 86 unrelated healthy Chinese. In addition, the association between genetic variants of ITGA2B and ITGB3 exons and the adenosine diphosphate- (ADP-) induced platelet aggregation, GPIIb/IIIa content, bleeding time, and coagulation indexes was investigated in 55 of the 86 subjects.

2. Materials and Methods

2.1. Study Design. The research was conducted in compliance with the Declaration of Helsinki. The study protocol was approved by the Ethical Review Board of the Peking University First Hospital. All subjects gave their written informed consent prior to participation in the study. Healthy native Chinese subjects (n = 86) between 18 and 45 years of age with a body mass index (BMI) of 19–24 kg/m² were included in the study, and their genotypes were unknown.

All the subjects were considered healthy on the basis of their medical history, physical examination, vital signs (blood pressure, pulse rate, and temperature), safety laboratory tests (blood chemistry, hematological tests, and urinalysis), and 12-lead electrocardiography.

The ADP-induced platelet aggregation (transmission, T% max), GPIIb/IIIa content (GPIIb/IIIa per platelet), bleeding time, and coagulation indexes, including the mean platelet volume (MPV), platelet count (PLT), prothrombin time (PT), activated partial thromboplastin time (aPTT), fibrinogen (FIB), and thrombin time (TT) were detected in 55 of the 86 subjects. None of the donors had taken any medication for 2 weeks before blood collection.

2.2. ADP-Induced Platelet Aggregation. Blood was collected in 3.8% sodium citrate tubes, and platelet-rich plasma (PRP) was obtained by centrifuging blood at 1000 revolutions per minute (rpm) for 10 minutes at room temperature. The PRP was collected in a fresh tube and platelet was counted by Platelet Counter PL100 (Sysmex, Kobe, Japan). Platelet-poor plasma (PPP) was obtained by centrifuging the remaining blood at 3000 rpm for 10 minutes at room temperature, and platelet numbering PRP was adjusted to 250 × 10^9/L by PPP. Detection was completed within 1 hour after sampling.

Platelet aggregation was determined by the turbidimetric method using 20 μmol/L ADP as the agonist. After zero setting with the PPP, assays were performed in platelet-rich plasma in a Chrono-Log aggregometer. Platelet aggregation was quantified as the maximum change in light transmission occurring within 5 minutes of addition of agonist.

2.3. GPIIb/IIIa Content. GPIIb/IIIa on the platelet surface was evaluated in the PRP as the maximal binding of a 125I-labeled GPIIb/IIIa integrin antiplatelet antibody F(ab)₂ [15]. The PRP was fixed with equal volume of anticoagulant-fixative solution (10 mmol/L EDTA-Na₂, 0.2% glutaraldehyde, and 0.02% sodium azide dissolved in PBS, pH 7.4). After stored at 4°C, overnight, platelet was washed by Tyrode’s solution twice and resuspended in Tyrode solution, containing 0.35% bovine serum albumin (concentration adjusted to 1 × 10¹¹ platelets/L), and sodium azide was added at final concentration of 0.02% (V/V) to preserve the platelet at 4°C for a week-long before assay. For detection, the platelet suspension (100 μL) was added to a 0.5 mL Eppendorf tube and then incubated with 100 μL of antibody (containing 20,000 cpm of labeled monoclonal antibody (McAb) and 0.8 μg of unlabeled McAb) at 37°C for 1 h, after washed with 0.35% bovine serum albumin/Tyrode’s solution for three times. The radioactivity count of the precipitate in the tube was measured. Assuming that one monoclonal antibody would only bind one GP molecule on the platelet membrane, the number of GP molecules on the platelet membrane was calculated as number of GP molecules/platelet = (binding rate × amount of antibody (g) × Avogadro’s number)/(molecular weight of antibody × platelet count).

2.4. Bleeding Time. The skin bleeding time was carried out using the Simplate-II device (General Diagnostics, NJ, USA). A sphygmomanometer cuff was inflated on the patient’s arm to 40 mmHg. The arm was supported at the level of the heart, and a muscular area on the volar aspect distal to the antecubital area was identified and swabbed with alcohol. The Simplate-II device was used to perform the incision perpendicular to the antecubital fossa. Blood was blotted with sterile filter paper every 30 seconds until blood no longer stained the paper. The time from incision to stopping of bleeding was recorded.

2.5. Genetic Analysis. Genomic DNA was extracted from peripheral whole blood samples of each subject using a DNA Purification Kit (Wizard; Promega, WI, USA). After the polymerase chain reaction (PCR) products were obtained, all samples were directly sequenced to determine the SNPs in ITGA2B and ITGB3 (Life Technologies Biotechnology Co., Ltd., China).

Primers required for PCR amplification and sequencing were designed according to the wild-type ITGA2B and ITGB3 sequences reported in the GenBank (NG_008331.1 and NG_008332.1, resp.). Tables 1 and 2 describe the primer pairs used to amplify the promoters, the 5’- and 3’-untranslated regions (UTRs), the entire coding regions and the intron-exon junctions of the ITGA2B and ITGB3 genes.

2.6. Data Analysis. The Variant Reporter v1.1 (Life Technologies Biotechnology Co., Ltd.) software suite was used for the initial analysis of the sequence, including base calling, fragment assembly, SNP, and sequence insertions/deletions detection. Polymorphisms of ITGA2B and ITGB3 genes were named according to the genomic reference sequences.
Table 1: Summary of GPIIb (ITGA2B) variations detected in this study.

Sequence number obtained in this study	dbSNP	Location	NC_000017.11	NM_000419.3	Nucleotide change	NP_000410.2 amino acid change	MA(F)	H-W P
ITGA2B-01	rs3760364*	5' upstream end	44390436	-963	ctcccaagg G/T ctcattaca	T(0.052)	0.609	
ITGA2B-02	New	5' upstream end	44390152	-679	tagaccaagg T/C ctcattaca	C(0.006)	0.957	
ITGA2B-03	New	5' upstream end	44390081	-608	caagcaggg G/A aggagtaggg	A(0.006)	0.957	
ITGA2B-04	New	Exon3	44385910	354	tggagagcc C/T gaaatgagg	ArgI08Stop	T(0.006)	0.957
ITGA2B-05	New	Exon13	44380960	134	cttccaggtc C/A tggagacctc	Leu438Met	A(0.006)	0.957
ITGA2B-06	rs201355504	Intron13	44380821	1393+58	tggagaggt C/T cagcagagtt	Arg774Trp	Arg774Trp	0.957
ITGA2B-07	New	Exon14	44380638	1401	tagctctgtat C/G ggctgatt	Ile467Met	G(0.006)	0.957
ITGA2B-08	rs850730	Intron21	44377095	2188-7C>9	ccctctctct C/G tccagagtatg	G(0.477)	0.289	
ITGA2B-09	New	Exon23	44376336	2320	gtcgccggt C/T ggccagagcg	Arg774Trp	T(0.006)	0.957
ITGA2B-10	rs17870452	Exon23	44376322	2334	gcagctcacc C/T tggctctg	Gln778=	G(0.012)	0.933
ITGA2B-11	rs5911	Exon26	44375697	2621T>G	gggctggg A/C tggagaccc	Ile874Ser	G(0.477)	0.289
ITGA2B-12	rs5910	Exon30	44372421	3063C>T	acccagggt C/T ggctttctca	Val1021=	T(0.465)	0.289
ITGA2B-13	New	3' UTR	44372213	*15C>A	gctacccccc C/A tctctgtgccc	A(0.017)	0.869	

dbSNP, single nucleotide polymorphism database; H-W P, Hardy–Weinberg equilibrium P value; MA(F), minor allele (frequency); GP, glycoprotein.

*SNPs which related with bleeding time in this study.
Table 2: Primer sequences used in this study.

DNA sequence number	Amplified or sequenced region	Forward primer (5’ to 3’)	Reverse primer (5’ to 3’)	Amplified region NC_000017.1	Length (bp)
ITGA2B-1	Exon1	TCCTCCTCTCCGCTTACCAG	TACTACCACCGTGCTAGTCC	44389728-44390630	848
ITGA2B-2	Exon1	CCAATATGGCTGTTAGG	AACTCCCTTCAGCCTAGCA	44389267-44390059	792
ITGA2B-3	Exon1	CCAATTCAGCACCTCTCTCA	GATGAGGAAATGGAACAGCA	44388253-44389368	1115
ITGA2B-4	Intron1	TATGAAACCTTCACCCCT	TGGACCTCTTCAGTCTCC	44388169-44389006	837
ITGA2B-5	Exon2, Exon3	TGCAATCTTGCTGTTGAG	CTTACGCGGCGTCCTTCTCA	44385649-44386749	830
ITGA2B-6	Exon4–Exon6	AAGGCATCTGGGAGACAGAC	AAGGCTCTGGGAGACAGAC	44384990-44385810	820
ITGA2B-7	Exon7, Exon8	TCGCTGGCGCTATTATCTGG	GCACCGAGCAATTCTTTGG	44384339-44385186	847
ITGA2B-8	Exon9–Exon11	ATTTGCGGCCCTGTGCTCCTC	AGGCAGTGGCCCTACAGA	44383538-44384605	1067
ITGA2B-9	Exon12	CCCTGCTGCTCTCCCTCCC	CATCCAGTCTCCCAACCAC	44383189-44383838	649
ITGA2B-10	Exon13, Exon14	CGTCGTTGCTGCTGCTGCTC	AGGCAGTGGCCCTACAGA	44380390-44381163	773
ITGA2B-11	Exon14–Exon17	ATTCGCCAATCTCTGACCC	CACACTCCACCTTCCTTGC	44379854-44380682	828
ITGA2B-12	Exon18	ACCACTGACCTGCTTCTATC	TGTGACCCACTCAACACCAC	44379610-44379957	347
ITGA2B-13	Exon19, Exon20	TGGACGACAGAGGAGGACAG	GGCACATGCTGACATATTCT	44378354-44378989	635
ITGA2B-14	Exon21	CATGTGACAGTCCCTTGG	AGGCTGTGACCCATCAACCT	44377551-44377933	382
ITGA2B-15	Exon22	CTGGAGGTGAGCTAAGCTTG	CAATCCTCGAGCTACCTTAC	44376833-44377179	346
ITGA2B-16	Exon23–Exon25	CCGAGTCATTCTCAGTACTG	GCTGCTGGAGAGAGATTCCTG	44375629-44375623	894
ITGA2B-17	Exon26	TCGACGCTGCTCCATACCTC	CGGGCTGCTGCTACATAGT	44375277-44375913	636
ITGA2B-18	Exon27, Exon28	ATGACCTGCTGCGATCCTCG	CACTCCGAGCTCCTGCTTCTC	44374500-44375317	817
ITGA2B-19	Exon29	GGCAGCCATTGCTGCAAGCT	CCTCGCCAGTCTGAGCTGATT	44374025-44374731	706
ITGA2B-20	Exon30	AAAGGCAATTTTCTTGTG	TGTGACCACTCCCTTCT	44371896-44372567	660
ITCB3-1	Exon1	CGGATGGAGGAGCAATTTG	GCTGACGCTCCATCACTTCA	47252637-47253474	837
ITCB3-2	Exon12	CGTCGCTGCTCCCTCAGTCC	CATCCAGTCTCCCAACTGAC	47253373-47254015	642
ITCB3-3	Intron1	TGCCGTAGGGACGATGAGTT	CGCCAGAGAGAAGCTTCAAG	47253929-47254518	589
ITCB3-4	Intron1	TGGGCTAGGGACGATGAGTT	CGCCAGAGAGAAGCTTCAAG	47253929-47255063	1134
ITCB3-5	Exon2	ATGGGAAATTTGGAAGG	CGAAGAGGAGCAGTGTGG	47247335-47247737	438
ITCB3-6	Exon3	AGGCATGCTGCTAAGTCTCT	CTCCACCTGCTGCTCT	47253166-47253612	496
ITCB3-7	Exon4	GGCTTTCTGGGTTTGCTT	CATTCTCCTCCATCCTC	47248329-47248978	649
ITCB3-8	Exon5	TGTCTGGGTTAAGCTGTGTT	CATGCTGGACTCTATGGTC	47258612-47262765	601
ITCB3-9	Exon6	TCCAAGGAGCTGGAGACAT	ATGATGGCCTGCTGCTGAC	47261919-47278433	564
ITCB3-10	Exon7, Exon8	AGGCCAGAGAGCAATGATAT	GGCAGAGACAGTAGGACAG	47289597-47290393	796
ITCB3-11	Exon9	AACATGCGGCTCCCAATAAC	TGGAGGAGTTGAAGTTAAG	47290561-47291406	845
ITCB3-12	Exon10	CAGGCCAGGAGGGAACACTT	GGATGCTGCTTCTATCCTGAAG	47292050-47292720	670
ITCB3-13	Exon11	GAGCAGATGGCCATCCATAC	TACAGAGTGCATCTCCCTA	47299010-47299890	789
ITCB3-14	Exon12	CAGAATGGCAGATGTTTGT	TCTTGCTGAGCTGTGGG	47300168-47300824	656
ITCB3-15	Exon13	TCGTGAATGCAATGATGTT	GTATGGAATGCTGACACCC	47302581-47303050	469
ITCB3-16	Exon14	CCTCAATGTAGTGGACATG	AACATGAGACACCAAGAC	47307158-47307721	563
ITCB3-17	Exon15	CTCATCTCCTCCATCTTATTT	TGACATCTCCTCCACACTAC	47309941-47310337	396

NG_008331.1 and NG_008332.1, respectively. Novel SNPs were named as ITGA2B-number or ITGB3-number in the present study.

2.7 Statistical Analysis

The association between two parameters was assessed by Pearson's two-tailed test. Statistical analyses were performed using the Statistical Package for Social Sciences software program for Windows (SPSS version 16.0). A P value of 0.05 was considered significant.

3. Results

3.1 ITGA2B and ITGB3 Variations

Within the Chinese sample, 13 and 29 variants in ITGA2B and ITGB3 were identified, respectively. Two novel ITGB3 SNPs with MA(F) > 0.02 were found, which were not reported in the National Center for Biotechnology Information (NCBI) dbSNP database (https://www.ncbi.nlm.nih.gov/snp/). The allele frequencies and Hardy–Weinberg equilibrium test results of the identified polymorphic sites are shown in Tables 3 and 4.
Sequence number obtained in this study	dbSNP	Location	NC_000007.11	NM_000212.2	Nucleotide change	NP_000410.2 amino acid change	MA(F)	H-W P
ITGB3-01	rs14736351	5' - UTR	47253042	-820	agcttccaga G/A gtttaagtc	A(0.012) 0.931		
ITGB3-02	rs3809862	5' - UTR	47253062	-800	cttggagga G/T ccaggcact	T(0.424) 0.822		
ITGB3-03	rs720870*	5' - UTR	47253393	-469	aagccttca G/A cagttggttg	A(0.419) 0.680		
ITGB3-04	New	5' - UTR	47253360	-502	tagtgaata A/T aaagctcga	A(0.023) 0.913		
ITGB3-05	rs7208055	5' - UTR	47253461	-401	gtagatgtg C/A ccaggttcc	A(0.221) 0.273		
ITGB3-06	rs55827077*	5' - UTR	47253717	-145	tagagaacc G/C gaggagagga	C(0.448) 0.494		
ITGB3-07	rs567381451*	5' - UTR	47253771	-91	accaccagcg -/TCCCC tccccccc	insTCCCC(0.058) 0.567		
ITGB3-08	rs17052258*	5' - UTR	47253855	-7	cggggaggg G/C gacagatgc	C(0.227) 0.771		
ITGB3-09	New	Exon1	47253882	21	gccggcgcc C/G ccggccgctct	Pro7= G(0.407) 0.567		
ITGB3-10	rs1871251	Intron1	47254061	79+121	tggagaaccg G/A tgtcctgctg	T(0.116) 0.864		
ITGB3-11	New	Intron1	47254082	79+152	tggagaaccg C/G gagaacccgga	G(0.012) 0.931		
ITGB3-12	rs12188890*	Intron1	47254101	79+161	tgaggaggg G/C tgtcctgccc	T(0.116) 0.864		
ITGB3-13	rs1741437*	Intron1	47254192	79+252	aagctcagcc C/G tgtcctgccc	G(0.186) 0.864		
ITGB3-14	rs1871447	Intron1	47254252	79+312	ccgctccac C/G cggggctcgc	G(0.448) 0.918		
ITGB3-15	New	Intron1	47254331	79+391	ggcagcagcc G/A ggggtgtgtc	A(0.006) 0.957		
ITGB3-16	rs1009312*	Intron1	47254774	79+834	gcggcgcctct G/A ccggccgctct	G(0.471) 0.000		
ITGB3-17	rs2015049	Intron1	47254865	79+925	gcggcgcctct G/A ccggccgctct	A(0.529) 0.000		
ITGB3-18	rs56197296*	Intron5	47287025	778-45,778-41	cagctggtaa T/TGGGTCTTGTC----ttggccctct	Pro294= delTTTTGT(0.169) 0.049		
ITGB3-19	rs5999*	Exon6	47287174	882	tgtcgcagc T/C aatgacggcc	C(0.262) 0.022		
ITGB3-20	rs14504748	Intron7	47290415	1036-40	accacagct T/C ccctcgtttaa	C(0.070) 0.334		
ITGB3-21	rs15908	Exon9	47290971	1143	cttcagact C/A/G Ttgtttgacgag	Val381= C(0.599) 0.006		
ITGB3-22	New	Exon10	47292177	1299	caggtcctc C/T caggtcaggg	Pro433= T(0.006) 0.957		
ITGB3-23	rs4642*	Exon10	47292411	1533A>G	cagcagagca A/G tggactaccc	Glu51= G(0.331) 0.214		
ITGB3-24	rs13306487	Exon10	47292422	1544	tgcagcccc C/A/G ggagggtcag	Arg515Gln A(0.02) 0.913		
ITGB3-25	rs4634*	Exon10	47292423	1545	gcagcagcc G/A gagggtcagc	Arg515= A(0.331) 0.214		
ITGB3-26	New	Exon10	47292528	1659	gcaggtggtta C/Tgactctctct	Asp550= T(0.006) 0.957		
ITGB3-27	rs149823724	Exon11	47299591	1902	cagctgctc C/T acetataagaa	Cys634= T(0.006) 0.957		
ITGB3-28	rs1870252	Intron11	47300459	1914-19	ccctacacac T/C GTGCCCTCCT	C(0.035) 0.869		
ITGB3-29	rs7094081*	Exon12	47300524	1960	ccctacacac G/A aaaaatcctg	Glh654Lys A(0.076) 0.432		

*SNPs which related with ADP induced platelets aggregation, GPIIb/IIIa content, bleeding time, or coagulation indexes in this study.

dbSNP, single nucleotide polymorphism database; H-W P, Hardy–Weinberg equilibrium P value; MA(F), minor allele (frequency).
Table 4: Association between individual ITGA2B and ITGB3 SNPs and the ADP induced platelets aggregation, GPIIb/IIIa content, bleeding time, PLT, and MPV (mean ± SD).

dbSNP	Genotypes	N	Aggregation max T%	GPIIb-IIIa per platelet	Bleeding time (s)	PLT (10^9/L)	MPV (fL)
rs3760364	AA	48	36.6 ± 15.3	45937.1 ± 15214.0	281.3 ± 97.4	277.0 ± 70.87	9.48 ± 0.84
	AT	7	27.4 ± 16.1	41060.9 ± 15560.7	364.3 ± 87.3	257.7 ± 83.7	9.51 ± 0.66
P			0.148	0.433	0.038	0.312	0.911
rs7208170	GG	18	38.5 ± 16.2	48835.0 ± 13746.0	326.7 ± 100.8	255.1 ± 62.1	9.14 ± 0.74
	GA	24	35.1 ± 14.3	45714.9 ± 15783.1	288.8 ± 86.6	290.6 ± 82.8	9.63 ± 0.80
	AA	13	31.7 ± 17.1	39709.0 ± 15451.5	249.2 ± 109.1	272.1 ± 60.4	9.68 ± 0.84
P			0.229	0.105	0.030	0.428	0.051
rs55827077	GG	18	39.9 ± 16.2	49297.7 ± 14047.7	315.0 ± 86.2	253.2 ± 62.6	9.24 ± 0.65
	GA	24	35.1 ± 13.0	47150.7 ± 15783.1	279.5 ± 102.4	257.7 ± 83.7	9.51 ± 0.66
	AA	13	31.7 ± 17.1	36518.1 ± 16661.9	249.2 ± 109.1	272.1 ± 60.4	9.68 ± 0.84
P			0.229	0.105	0.030	0.428	0.051
rs567581451	-/-	49	35.0 ± 14.4	45317.6 ± 14892.6	282.2 ± 99.1	277.3 ± 73.7	9.56 ± 0.80
	-/insTCCCC	6	38.5 ± 24.4	45306.8 ± 19136.0	370.0 ± 113.3	280.1 ± 55.2	9.66 ± 0.93
P			0.091	0.021	0.401	0.251	0.141
rs117052258	GG	29	36.7 ± 16.3	46470.7 ± 13798.6	326.8 ± 84.2	276.4 ± 95.0	9.13 ± 0.61
	GA	22	34.0 ± 14.6	48835.0 ± 14927.5	287.7 ± 101.3	272.7 ± 58.6	9.64 ± 0.88
	AA	14	32.3 ± 16.6	38145.0 ± 16040.8	250.7 ± 105.0	275.0 ± 59.1	9.71 ± 0.82
P			0.189	0.539	0.028	0.764	0.288
rs56197296	TTTGT/TTTGT	42	37.7 ± 15.9	45398.1 ± 14564.7	326.8 ± 84.2	276.4 ± 95.0	9.41 ± 0.81
	TTTGT/del	11	30.9 ± 10.2	45262.9 ± 18722.4	319.7 ± 93.6	277.1 ± 79.2	9.37 ± 0.82
	del/del	2	11.5 ± 7.8	43895.5 ± 16431.0	287.7 ± 101.3	254.7 ± 58.6	9.64 ± 0.88
P			0.189	0.160	0.027	0.944	0.029
rs5919	TT	31	38.8 ± 16.1	45342.5 ± 14029.1	299.0 ± 96.6	283.7 ± 78.8	9.34 ± 0.84
	TC	16	34.9 ± 12.5	47696.5 ± 17544.9	315.0 ± 105.0	247.7 ± 58.6	9.64 ± 0.73
	CC	8	23.3 ± 13.8	40455.6 ± 15470.6	217.5 ± 67.6	292.9 ± 60.5	9.73 ± 0.85
P			0.189	0.634	0.130	0.728	0.148

Note: Pearson’s two-tailed test was used to analyze correlation between genotype and parameter. *rs1009312 was completely linked with rs2015049.

3.2. Linkage Disequilibrium Analysis. Using the detected polymorphisms greater than 0.01 in frequency [MA(F) > 0.02], linkage disequilibrium (LD) was analyzed for [|D'| and r^2 values (Figure 1). For ITGA2B, rs5911 was completely linked with rs850730 (r^2 = 1.00), and rs5910 was strongly linked with rs850730 and rs5911 (r^2 = 0.95). For ITGB3, complete LD was observed between rs4642 and rs4634 (r^2 = 1.00). Other LD results are shown in Figure 1. A new SNP ITGB3-09 was found for which MA(F) in this study was 0.402.

The Hardy–Weinberg equilibrium P values of rs1009312 and rs2015049 were <0.001. The possible reason is that the sample in this study may have a Chinese population of other ethnic groups besides the Han population. Those two SNPs were not included in the LD analysis.

3.3. Correlation of ADP-Induced Platelet Aggregation, GPIIb/IIIa Content, Bleeding Time, and Coagulation Indexes. The GPIIb/IIIa contents, present as average numbers of GPIIb/IIIa receptor in each platelet, were associated with ADP-induced platelet aggregation (r = 0.280, P = 0.038), PLT (r = −0.522, P < 0.001), PT (r = 0.453, P = 0.001), and TT (r = 0.545, P < 0.001) (Figures 1 and 2). The relationship between GPIIb/IIIa content and APTT was not significant (r = 0.242, P = 0.075), while the association between ADP-induced platelet aggregation and APTT was moderately significant (r = 0.242, P = 0.075), while the association between ADP-induced platelet aggregation and APTT was moderately significant (r = 0.242, P = 0.075), while the association between ADP-induced platelet aggregation and APTT was moderately significant (r = 0.242, P = 0.075).
3.4. Impact of ITGA2B and ITGB3 SNPs on ADP-Induced Platelet Aggregation, GPIIb/IIIa Content, Bleeding Time, and Coagulation Indexes. For ITGA2B, only one SNP rs3760364 was related with the bleeding time \((P = 0.038) \) (Table 4). No significant correlation or trend was observed between ITGA2B SNPs and other parameters.

For ITGB3, the mean values of ADP-induced platelet aggregation of homozygous mutant genotypes in rs56197296 and rs5919 were lower than those of heterozygous mutations and wild type. Moreover, the GPIIb/IIIa per platelet was associated with rs55827077. A trend of GPIIb/IIIa per platelet was observed among rs70940817 GG (45), GA (9), and AA (1) carriers \((43807.7 \pm 14157.5, 51086.8 \pm 19368.0, 61277, \text{ resp.}, P = 0.093) \), although it did not reach a significant level. The bleeding time was significantly related with rs3760364, rs7208170, rs567581451, and rs117052258 (Table 4).

In the present study, SNPs related with PLT were not found. ITGB3 rs1009312, which is completely linked with rs2015049, was significantly associated with the MPV.
To date, two genome-wide association studies (GWAS) of APTT and PT conducted in the European ancestry have been reported. One study identified genome-wide significant associations of APTT and variants at F12 (MIM 610619), KNG1 (MIM 612358), and HRG (MIM 142640) [26]. In the other research, the GWAS for APTT and PT was conducted and replicated genome-wide significant associations at KNG1, HRG, F11, F12, and ABO for APTT and identified significant associations at the F7 and PROCR/EDEM2 regions for PT. Eight genetic loci accounted for ~29% of the variance in APTT, and two loci accounted for ~14% of the variance in PT [27]. In this study, the association of APTT, PT, FIB, and TT with ITGA2B and ITGB3 SNPs was investigated. The A allele of ITGB3 rs70940817 was found to significantly correlate with the elevated APTT and PT (P = 0.003 and P = 0.002, resp.). The T allele of ITGB3 rs112188890 was related with APTT (P = 0.029), and the G allele of ITGB3 rs4642 was associated with TT and FIB (P = 0.015 and P = 0.029, resp.).

The ADP-induced platelet aggregation test was often used to identify the platelet function and the efficacy of antiplatelet drugs. Jones et al. detected 1327 SNPs and investigated their correlation with ADP or collagen-related peptide-induced platelet aggregation in 500 healthy northern European subjects. This identified 17 novel associations with the platelet function (P < 0.005) accounting for approximately 46% of the variation in response [28]. In this study, the minor allele of rs56197296 and rs5919 was found to be associated with the decreased ADP-induced platelet aggregation (P = 0.014 and P = 0.015, resp.).

GPIIb/IIIa is the central receptor of platelet aggregation. The variations of GPIIb/IIIa amount expressed on a platelet surface might affect the platelet-aggregating activity. Many studies reported that the rs5918 correlated with the bleeding time [31]. In this study, the bleeding time was related to the polymorphism of the GPIIIa gene, which was located at the promoter region of the GPIIIa genes at position −145, was related with GPIIb/IIIa per platelet.

The bleeding time is a test that evaluates the platelet function in vivo. A prolonged bleeding time can result from platelet abnormality, Von Willebrand factor deficiency, or vascular disorders such as Ehlers–Danlos syndrome. A disruption of platelet aggregation results in a prolongation of the bleeding time [31]. In this study, the bleeding time was related with rs3760364 of ITGA2B and rs7208170, rs567581451, and rs117052258 of ITGB3 (P < 0.05). No previous study reporting on the effect of SNPs on the bleeding time was found. The mechanism of the relationship needs to be further examined. However, a negative trend between the bleeding time and MPV (r = −0.244, P = 0.073) was observed. Moreover, rs1009312 and rs2015049 were found to significantly associate between PLT and SNPs in coagulation, and risk of venous thromboembolism [24, 25].

The APTT and PT are clinical tests commonly used to indicate coagulation factor deficiencies [22, 23], activated coagulation, and risk of venous thromboembolism [24, 25].

Figure 2: Correlations of the maximal level of ADP-induced platelet aggregation and GPIIb/IIIa content in healthy volunteers. r, coefficient of correlation; P, significance of correlation (Pearson’s test here and elsewhere). (Table 4). ITGB3 rs70940817 was correlated with the PT and APTT (P = 0.002 and P = 0.003, resp.). The coagulation indexes and their P values are summarized in Table 5.

4. Discussion

In this study, 13 variants in the ITGA2B locus and 29 variants in the ITGB3 locus in the Chinese population were observed. Two of the 29 variants located in ITGB3 were novel SNPs with MA(F) > 0.02. Variants in ITGA2B and ITGB3 genes displayed significant interethnic differences in the global populations (Table 6). The C allele frequency of SNP rs5918 (T/C), located in the ITGB3 gene, was only inhomogeneously distributed at 0.7% in the Chinese population, while it is common in whites and Africans (allele frequency 13.7% versus 12.8%). The following alleles of SNPs, rs7208170A, rs55827077C, rs11871251A, rs1009312G, and rs2015049G, were found to be more common in the Han Chinese and Africans (37%–50%) than in the European ancestry (10%–20%). In the ITGA2B gene, the rs9111 was completely linked with rs850730 and strongly linked with rs5910 in the Chinese population in this study, and all the three SNPs were common in whites and Asians. However, the rs9111 was not found in Africans. According to the ethnicity difference described in the preceding text, resequencing of the ITGA2B and ITGB3 genes in the Chinese population was believed to be very important to reveal the function of SNPs.

Variation in the MPV or PLT can have a profound impact on differences in the platelet function between individuals [16, 17], and these traits have a strong genetic component [18–21]. However, limited information is available for Asians. In the present study, the A alleles of rs1009312 and rs2015049, located in ITGB3, were positively associated with the MPV (P = 0.029). The MPV had a trend in rs7208170 alleles but did not reach a significant level (P = 0.051). The difference between PLT and SNPs in ITGA2B or ITGB3 was not significant.

The APTT and PT are clinical tests commonly used to indicate coagulation factor deficiencies [22, 23], activated coagulation, and risk of venous thromboembolism [24, 25].
Table 5: Association between individual ITGA2B and ITGB3 SNPs and the coagulation indexes (mean ± SD).

Genotypes	N	PT (s)	APTT (s)	TT (s)	FIB (g/L)
rs112188890^a					
CC	42	10.9 ± 1.08	31.2 ± 2.13	15.7 ± 2.22	2.52 ± 0.45
CT	12	11.2 ± 1.35	32.2 ± 2.73	14.7 ± 1.59	2.72 ± 0.44
TT	1	12.5	36.7	16.5	2.72
P		0.126	0.029	0.299	0.173
rs4642^b					
AA	27	10.9 ± 1.20	30.9 ± 2.25	16.1 ± 2.36	2.43 ± 0.42
AG	21	11.3 ± 1.08	32.0 ± 2.34	15.2 ± 1.71	2.68 ± 0.44
GG	7	10.4 ± 1.01	32.3 ± 2.79	14.2 ± 1.39	2.76 ± 0.45
P		0.770	0.088	0.015	0.029
rs70940817					
GA	9	11.8 ± 1.02	32.8 ± 2.26	16.8 ± 2.34	2.75 ± 0.54
AA	1	12.7	37.2	15.75	3.10
P		0.002	0.003	0.078	0.069

MPV, mean platelet volume; PLT, platelet count; PT, prothrombin time; APTT, activated partial thromboplastin time; FIB, fibrinogen; TT, thrombin time.

Note: Pearson’s two-tailed test was used to analyze correlation between genotype and parameter.

^aStrong LD was observed between rs112188890 and rs117414137 (<i>r</i>² = 0.99);
^bcompletely LD was observed between rs4642 and rs4634.

Table 6: Comparison of ITGA2B and ITGB3 allele frequencies in different ethnic groups.

dbsNP Number	MA(F)^a	This study Chinese	Asian^b	European-ancestry^c	African^d
ITGA2B-01	rs3760364	T(0.052)	T(0.012)	T(0)	T(0)
ITGA2B-08	rs850730	G(0.477)	G(0.467)	G(0.297)	G(0.437)
ITGA2B-11	rs5911	G(0.477)	G(0.467)	G(0.305)	G(0)
ITGA2B-12	rs5910	T(0.465)	T(0.442)	T(0.376)	T(0.432)
ITGB3-03	rs7208170	A(0.419)	A(0.496)	A(0.194)	A(0.431)
ITGB3-05	rs7208055	A(0.221)	A(0.225)	A(0.117)	A(0.356)
ITGB3-06	rs55827077	C(0.448)	C(0.417)	C(0.158)	C(0.39)
ITGB3-08	rs17052258	C(0.227)	C(0.208)	NA	NA
ITGB3-10	rs11871251	A(0.453)	A(0.482)	A(0.199)	A(0.373)
ITGB3-12	rs12188890	T(0.116)	T(0)	T(0.023)	T(0)
ITGB3-16	rs1009312	G(0.417)	A(0.434)	A(0.125)	A(0.432)
ITGB3-17	rs2015049	G(0.471)	G(0.478)	A(0.138)	A(0.413)
NF	rs5918	C(0)	C(0.007)	C(0.137)	C(0.128)
ITGB3-18	rs56197296	delTTGT(0.169)	NA	NA	NA
ITGB3-19	rs5919	C(0.262)	C(0.232)	C(0.049)	C(0.187)
ITGB3-23	rs4642	G(0.331)	G(0.311)	G(0.283)	G(0.306)
ITGB3-25	rs4634	A(0.331)	A(0.350)	A(0.283)	A(0.331)
ITGB3-29	rs70940817	A(0.076)	NA	NA	NA

dbsNP, single nucleotide polymorphism database; MA(F), minor allele (frequency); SNP, single nucleotide polymorphisms; NF, not found; NA, not available.

^aResource of MA(F)s was from GenBank and HapMap, https://www.ncbi.nlm.nih.gov/snp/;^bHan Chinese in Beijing, China (CHB), or CHB + Japanese in Tokyo, Japan (JPT), if there is no CHB data in the SNP;^cUtah residents with Northern and Western European ancestry from the CEPH collection (CEU);^dYoruba in Ibadan, Nigeria (YRI).

with both bleeding time and MPV. Further, the minor alleles of rs7208170 and rs567581451, which were significantly related with the bleeding time, had a trend with the MPV among genotypes, although they did not reach a significant level (<i>P</i> = 0.051 and <i>P</i> = 0.054, resp.). However, no relationship was observed among SNPs, bleeding time, and MPV in rs3760364 and rs117052258.

In this study, a positive correlation of the level of ADP-induced aggregation and GPIIb/IIIa content was detected in healthy volunteers. This correlation is consistent with a previous report. Yakushkin et al. investigated the relationship between the number of GPIIb/IIIa and the level of ADP-induced aggregation in a group of 35 healthy volunteers and found positive and significant correlations between the level of platelet aggregation induced by different ADP doses (from 1.25 to 20 mmol/L) and the number of GPIIb/IIIa [32].

A strong positive correlation was observed between GPIIb/IIIa per platelet and PLT, PT, and TT (<i>P</i> < 0.01). Although the TT was strongly correlated with GPIIb/IIIa per platelet (<i>r</i> = 0.545, <i>P</i> < 0.001), the relationship of SNPs/TT
and SNPs/GP (IIb/IIIa) content is not linked. For example, ITGB3 rs4642 was significantly related with the TT (P = 0.015), while the value of GPIIb/IIIa per platelet had no trend among rs4642 genotypes (P = 0.789). The other coagulation indexes were the same. Therefore, the relationship between SNPs and GPIIb/IIIa content cannot be deduced from the correlation of coagulation indexes and SNPs.

Some of the significant correlations between SNPs and platelet function parameters in the present study were not reported previously, which may be due to the reason that SNPs with low MA(F) in the European ancestry were not selected as candidate SNPs in previous studies. For example, the GWAS-genotyping platforms lack the coverage of low frequency/rare variants [33]. Moreover, LD might be another reason, if different genetic patterns (haplotypes) are present in different populations [3].

A possible limitation of the current study is the limited number of subjects. After stratification, the number of subjects in each genotypic group was small, thereby limiting further haplotype association analysis and accession of small effects of an SNP with a small minor allele frequency.

5. Conclusion
In summary, as ethnicity difference might limit the interpretation of the function of SNPs, resequencing the ITGA2B and ITGB3 genes and investigating their functions in the Chinese population are very important. In the present study, nine SNPs were found to associate with indexes of platelet and coagulation haemostasis. Newer studies are needed, particularly, to further assess the clinical importance of the above-discussed SNPs in disease susceptibility and antiplatelet drugs pharmacodynamics. Further studies should pay more attention to the roles of ITGA2B and ITGB3 SNPs in ethnic variations.

Competing Interests
The authors declare that there is no conflict of interests regarding the publication of this paper.

Acknowledgments
This study was supported by grants from the National Natural Science Foundation of China (no. 81273592, no. 81202592, and no. 81373487).

References
[1] J. J. Calvete, “Clues for understanding the structure and function of a prototypic human integrin: the platelet glycoprotein IIb/IIIa complex,” Thrombosis and Haemostasis, vol. 72, no. 1, pp. 1–15, 1994.
[2] C. L. Wagner, M. A. Mascelli, D. S. Neblock, H. F. Weissman, B. S. Coller, and R. E. Jordan, “Analysis of GPIIb/IIIa receptor number by quantification of 7E3 binding to human platelets,” Blood, vol. 88, no. 3, pp. 907–914, 1996.
[3] A. M. O’Halloran, R. Curtin, F. O’Connor et al., “The impact of genetic variation in the region of the GPIIb/IIIa gene, on Pl expression bias and GPIIb/IIIa receptor density in platelets,” British Journal of Haematology, vol. 132, no. 4, pp. 494–502, 2006.
[4] S. Bellucci and J. Caen, “Molecular basis of Glanzmann’s Thrombasthenia and current strategies in treatment,” Blood Reviews, vol. 16, no. 3, pp. 193–202, 2002.
[5] M. Fiore, A. T. Nurden, P. Nurden, and U. Seligsohn, “Clinical utility gene card for: Glanzmann thrombasthenia,” European Journal of Human Genetics, vol. 20, no. 10, p. 1101, 2012.
[6] C. N. Floyd, B. H. Ellis, and A. Ferro, “The PlA1/A2 polymorphism of glycoprotein IIIa as a risk factor for stroke: a systematic review and meta-analysis,” PLoS ONE, vol. 9, no. 7, Article ID e100239, 2014.
[7] C. N. Floyd and A. Ferro, “The PlA1/A2 polymorphism of glycoprotein IIIa in relation to efficacy of antiplatelet drugs: a systematic review and meta-analysis,” British Journal of Clinical Pharmacology, vol. 77, no. 3, pp. 446–457, 2014.
[8] C. N. Floyd, A. Mustafa, and A. Ferro, “The PlA1/A2 polymorphism of glycoprotein IIIa as a risk factor for myocardial infarction: a meta-analysis,” PLoS ONE, vol. 9, no. 7, article e101518, 2014.
[9] P. J. Newman, R. S. Derbes, and R. H. Aster, “The human platelet alloantigens, PlA1 and PlA2, are associated with a leucine33/proline33 amino acid polymorphism in membrane glycoprotein IIIa, and are distinguishable by DNA typing,” Journal of Clinical Investigation, vol. 83, no. 5, pp. 1778–1781, 1989.
[10] J.-H. Wu, D.-W. Zhang, X.-L. Cheng, H. Shi, and Y.-P. Fan, “Platelet glycoprotein IIb HPA-3 a/b polymorphism is associated with native arteriogenous fistula thrombosis in chronic hemodialysis patients,” Renal Failure, vol. 34, no. 8, pp. 960–963, 2012.
[11] M.-P. Li, Y. Xiong, A. Xu et al., “Association of platelet ITGA2B and ITGB3 polymorphisms with ex vivo antiplatelet effect of ticagrelor in healthy Chinese male subjects,” International Journal of Hematology, vol. 99, no. 3, pp. 263–271, 2014.
[12] Y. Zhang, Y. Han, L. Dong et al., “Genetic variation of ITGB3 is associated with asthma in chinese han children,” PLoS ONE, vol. 8, no. 2, article e56914, 2013.
[13] S. Simsek, N. M. Faber, P. M. Bleeker et al., “Determination of human platelet antigen frequencies in the Dutch population by immunophenotyping and DNA (allele-specific restriction enzyme) analysis,” Blood, vol. 81, no. 3, pp. 835–840, 1993.
[14] J. Lim, S. Lal, K. C. Ng, K.-S. Ng, N. Saha, and C.-K. Heng, “Variation of the platelet glycoprotein IIIa PlA1/A2 allele frequencies in the three ethnic groups of Singapore,” International Journal of Cardiology, vol. 90, no. 2–3, pp. 269–273, 2003.
[15] Z. Yiming, J. Shundong, D. Ningzheng, H. Yang, and R. Changgeng, “Measurement of affinity constant of humanized enzyme) analysis,” Blood Coagulation and Fibrinolysis, vol. 7, no. 2, pp. 157–161, 1996.
[16] T. J. Kunicki, S. A. Williams, D. J. Nugent, and M. Yeager, “Mean platelet volume and integrin alleles correlate with levels of integrins α IIbβ3 and α 2β 1 in acute coronary syndrome patients and normal subjects,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 32, no. 1, pp. 147–152, 2012.
[17] K. Shameer, J. C. Denny, K. Ding et al., “A genome- and phenome-wide association study to identify genetic variants
influencing platelet count and volume and their pleiotropic effects," Human Genetics, vol. 133, no. 1, pp. 95–109, 2014.

[19] R. Qayyum, B. M. Snively, E. Ziv et al., "A meta-analysis and genome-wide association study of platelet count and mean platelet volume in African Americans," PLoS Genetics, vol. 8, no. 3, Article ID e1002491, 2012.

[20] N. Soranzo, A. Rendon, C. Gieger et al., "A novel variant on chromosome 7q22.3 associated with mean platelet volume, counts, and function," Blood, vol. 113, no. 16, pp. 3831–3837, 2009.

[21] C. Meisinger, H. Prokisch, C. Gieger et al., "A genome-wide association study identifies three loci associated with mean platelet volume," American Journal of Human Genetics, vol. 84, no. 1, pp. 66–71, 2009.

[22] G. C. White II, "The partial thromboplastin time: defining an era in coagulation," Journal of Thrombosis and Haemostasis, vol. 1, no. II, pp. 2267–2270, 2003.

[23] S. Kitchen, A. McCraw, and M. Echenagucia, Diagnosis of Hemophilia and Other Bleeding Disorders: A Laboratory Manual, World Federation of Hemophilia (WFH), Montreal, Canada, 2nd edition, 2010.

[24] G. Hron, S. Eichinger, W. M. Halbmaier, and P. A. Kyrlle, "Prediction of recurrent venous thromboembolism by the activated partial thromboplastin time," Journal of Thrombosis and Haemostasis, vol. 4, no. 4, pp. 752–756, 2006.

[25] N. A. Zakai, T. Ohira, R. White, A. R. Folsom, and M. Cushman, Activated partial thromboplastin time and risk of future venous thromboembolism," American Journal of Medicine, vol. 121, no. 3, pp. 231–238, 2008.

[26] L. M. Houlihan, G. Davies, A. Tenesa et al., "Common variants of large effect in F12, KNG1, and HRG are associated with activated partial thromboplastin time," The American Journal of Human Genetics, vol. 86, no. 4, pp. 626–631, 2010.

[27] W. Tang, C. Schwienbacher, L. M. Lopez et al., "Activated partial thromboplastin time and prothrombin time, their gene expression profiles, and risk of coronary artery disease," American Journal of Human Genetics, vol. 91, no. 1, pp. 152–162, 2012.

[28] C. I. Jones, S. Bray, S. F. Garner et al., "A functional genomics approach reveals novel quantitative trait loci associated with platelet signaling pathways," Blood, vol. 114, no. 7, pp. 1405–1416, 2009.

[29] J. S. Bennett, F. Catella-Lawson, A. R. Rut et al., "Effect of the P1A2 alloantigen on the function of β3-integrins in platelets," Blood, vol. 97, no. 10, pp. 3093–3099, 2001.

[30] O. V. Sirotkina, S. G. Khaspekova, A. M. Zabotina, Y. V. Shimanova, and A. V. Mazurov, "Effects of platelet glycoprotein IIb–IIIa number and glycoprotein IIa Leu33Pro polymorphism on platelet aggregation and sensitivity to glycoprotein IIb–IIIa antagonists," Platelets, vol. 18, no. 7, pp. 506–514, 2007.

[31] A. Fuentes, A. Rojas, K. B. Porter, G. Saviello, and W. F. O’Brien, "The effect of magnesium sulfate on bleeding time in pregnancy," American Journal of Obstetrics and Gynecology, vol. 173, no. 4, pp. 1246–1249, 1995.

[32] V. V. Yakushkin, I. T. Zyuryaev, S. G. Khaspekova, O. V. Sirotkina, M. Y. Ruda, and A. V. Mazurov, "Glycoprotein IIb–IIIa content and platelet aggregation in healthy volunteers and patients with acute coronary syndrome," Platelets, vol. 22, no. 4, pp. 243–251, 2011.

[33] B. J. Grady and M. D. Ritchie, "Statistical optimization of pharmacogenomics association studies: key considerations from study design to analysis," Current Pharmacogenomics and Personalized Medicine, vol. 9, no. 1, pp. 41–66, 2011.