COHOMOLOGIES OF REGULAR LATTICES
OVER THE KLEINIAN 4-GROUP

YURIY DROZD AND ANDRIANA PLAKOSH

Abstract. We calculate explicitly cohomologies of the lattices over the
Kleinian 4-group belonging to the regular components of the Auslander–
Reiten quiver as well as of their dual modules. We also give a canonical
form of cohomology classes under the action of automorphisms.
The result is applied to the classification of some crystallographic and
Chernikov groups.

Contents
1. Lattices over the Kleinian 4-group. 2
2. Regular lattices 5
3. Cohomologies 9
4. Action of automorphisms 12
4.1. Lattices 12
4.2. Colattices 14
5. Applications 15
5.1. Crystallographic groups 15
5.2. Chernikov groups 17
References 17

The aim of this paper is to apply the results on cohomologies of the
Kleinian 4-group [9] to the classification of crystallographic and Chernikov
groups. For this purpose it is important to have an explicit presentation of
2-cocycles. We find such presentation for a special class of lattices, called
regular, and for their dual modules. Moreover, we describe the orbits of
the action of automorphisms of modules on cohomologies. From this results
we obtain a complete description of crystallographic and Chernikov groups
with the Kleinian top and regular base.

Key words and phrases. Kleinian 4-group, regular lattices, cohomology, action of au-
tomorphisms, crystallographic groups, Chernikov groups.

This work was supported within the framework of the project “Innovative methods in
the theory of differential equations, computational mathematics and mathematical mod-
eling”, No. 7/1/241 (Program of support of priority for the state scientific researches and
scientific and technical (experimental) developments of the Department of Mathematics
NAS of Ukraine for 2022-2023).
1. Lattices over the Kleinian 4-group.

In what follows K denotes the Kleinian 4-group, $K = \langle a, b \mid a^2 = b^2 = 1, ab = ba \rangle$. We study cohomologies of this group with the values in K-lattices, i.e. K-modules M such that the additive group of M is free abelian of finite rank, and in their duals, i.e. the modules $\text{Hom}_Z(M, \mathbb{Q}/\mathbb{Z})$. Let $R = \mathbb{Z}K$. We embed it into $R^2 = \mathbb{Z}^4$ identifying a with the quadruple $(1,1,-1,-1)$ and b with $(1,-1,1,-1)$. Note that R^2 is the integral closure of R in $\mathbb{Q} \otimes \mathbb{Z}R$. Let \mathbb{Z}_p be the ring of p-adic integers, $M_p = M \otimes \mathbb{Z}_p$ for every abelian group M. Then $R_p = \mathbb{Z}_p^4$ for $p \neq 2$ and $R_2 \supseteq 4\mathbb{Z}_2^4$. It follows from [8, Th. 3.7] that two K-lattices M, N are isomorphic if and only if they are in the same genus, i.e. $M_p \simeq N_p$ for all p. Moreover, if $p \neq 2$, the R_p-lattice M_p is uniquely defined by the rational envelope $\mathbb{Q} \otimes \mathbb{Z}M$. Therefore, a K-lattice M is uniquely determined by its 2-adic completion, which we denote by \hat{M}. We denote by R-lat the category of R-lattices and by \hat{R}-lat the category of \hat{R}-lattices, i.e. \hat{R}-modules which are finitely generated and torsion free (hence free) as \mathbb{Z}_2-modules. The functor $M \mapsto \hat{M}$ is a representation equivalence between the categories R-lat and \hat{R}-lat, i.e. it maps non-isomorphic modules to non-isomorphic, indecomposable to indecomposable and every \hat{R}-lattice is isomorphic to \hat{M} for a uniquely defined R-lattice M.

Since $4\hat{H}^n(K, M) = 0$ for any K-module M [11 Prop. XII.2.5], $\hat{H}^n(K, M) \simeq \check{H}^n(K, \hat{M})$. Let $\mathbb{D} = \mathbb{Q}_2/\mathbb{Z}_2$, where \mathbb{Q}_2 is the field of p-adic numbers. It is the group of type $2\mathbb{N}$, i.e. the direct limit $\varprojlim_n \mathbb{Z}/2^n\mathbb{Z}$ of finite cyclic 2-groups with respect to the natural embeddings $\mathbb{Z}/2^n\mathbb{Z} \twoheadrightarrow \mathbb{Z}/2^{n+1}\mathbb{Z}$. We call K-modules of the form $\text{Hom}_\mathbb{Z}(M, \mathbb{D}) \simeq \text{Hom}_\mathbb{Z}(\hat{M}, \mathbb{D})$, where M is a K-lattice, K-colattices.

The ring R is Gorenstein, i.e. $\text{inj.dim}_R R = 1$. Since R_p is a maximal order for $p \neq 2$ and R_2 is local, [13 Lem. 2.9] implies that R has a unique minimal proper overring Λ and every indecomposable R-lattice, except R itself, is an Λ-lattice. Actually, Λ coincides with the subring of $R^2 = \mathbb{Z}^4$ consisting of all quadruples (z_1, z_2, z_3, z_4) such that $z_1 \equiv z_2 \equiv z_3 \equiv z_4 \equiv 0 \pmod{2}$. Let \mathfrak{m} be the ideal of Λ consisting of all quadruples (z_1, z_2, z_3, z_4) such that $z_1 \equiv z_2 \equiv z_3 \equiv z_4 \equiv 0 \pmod{2}$. Then $\mathfrak{m} = \text{rad } \Lambda = \text{rad } \hat{R}^2$. So Λ is a Backström order in the sense of [11]. Therefore, according to [11], $\hat{\Lambda}$-lattices, hence also Λ-lattices, are classified by the representations of the quiver

\[\Lambda = \bullet \]

\[\begin{array}{c}
\uparrow \\
+ \\
\downarrow \\
- \\
\end{array} \]

Recall the corresponding construction (on the level of Λ-lattices). For any K-module M let $M_{\alpha\beta}$, where $\alpha, \beta \in \{+, -\}$, be the submodule $\{ u \in M \mid$
au = αu, bu = βu}. If M is an A-lattice, set \(M^\sharp = R^\sharp M \) (the product of lattices inside \(\mathbb{Q} \otimes \mathbb{Z} M \), which coincides with the image of the natural map \(R^\sharp \otimes_A M \to \mathbb{Q} \otimes \mathbb{Z} M \)). It is the smallest \(R^\sharp \)-module containing M. Then \(M^\sharp = \bigoplus_{\alpha\beta} M^\sharp_{\alpha\beta} \). Let \(V_\alpha = M/\mathfrak{m}M \) and \(V_{\alpha\beta} = M^\sharp_{\alpha\beta}/2M^\sharp_{\alpha\beta} \). Taking for \(f_{\alpha\beta} \) the natural maps \(V_\alpha \to V_{\alpha\beta} \), we obtain a representation of the quiver \(\Lambda \), which we denote by \(\Phi(V) \). Thus we define a functor \(\Phi \) from the category \(A\)-lat of \(A \)-lattices to the category rep \(\Lambda \) of representations of the quiver \(\Lambda \) over the field \(\mathbb{k} = \mathbb{Z}/2\mathbb{Z} \). We have the following result analogous to that of [11].

Theorem 1.1. Let \(\mathcal{R} \) be the category of representations

\[
\begin{array}{c}
\text{V} \\
\begin{array}{c}
\text{V}_+ \quad \text{V}_- \\
\text{f}_+ \quad \text{f}_- \\
\text{V}_+ \quad \text{V}_- \\
\end{array}
\end{array}
\]

of the quiver \(\Lambda \) over \(\mathbb{k} \) such that all maps \(f_{\alpha\beta} \) are surjective and the induced map \(f_{\oplus} : V_\bullet \to V_{\oplus} = \bigoplus_{\alpha\beta} V_{\alpha\beta} \) is injective. The functor \(\Phi \) is a representation equivalence \(A\)-lat \(\to \mathcal{R} \) such that all induced maps \(\Phi_{M,N} : \text{Hom}_A(M,N) \to \text{Hom}_A(\Phi(M),\Phi(N)) \) are surjective and

\[
\text{Ker} \Phi_{M,N} = \text{Hom}_A(M,\mathfrak{m}N) = 2\text{Hom}_{R^\sharp}(M^\sharp,N^\sharp).
\]

Proof. Obviously, always \(\Phi(M) \in \mathcal{R} \). Let \(V \in \mathcal{R} \), \(d_{\alpha\beta} = \text{dim} V_{\alpha\beta} \) and \(d_\bullet = \text{dim} V_\bullet \). Denote by \(\mathbb{Z}_{\alpha\beta} \) the \(K \)-module \(\mathbb{Z} \), where \(a \) acts as \(\alpha 1 \) and \(b \) acts as \(\beta 1 \). Thus \(R^\sharp = \bigoplus_{\alpha\beta} \mathbb{Z}_{\alpha\beta} \). Set \(M^\sharp = \bigoplus_{\alpha\beta} \mathbb{Z}_{\alpha\beta}^d \) and define \(M(V) \) as the preimage of \(\text{Im} f_{\oplus} \) in \(M^\sharp \) under the epimorphism \(M^\sharp \to M^\sharp/2M^\sharp \simeq V_{\oplus} \). Then \(M(V) \) is an \(A \)-lattice such that \(\Phi(M(V)) \simeq V \) and \(M(V)^\sharp = M^\sharp \). It is also evident that \(M(\Phi(M)) \simeq M \). Hence \(\Phi \) is a representation equivalence.

A morphism \(\phi : V \to V' \), where

\[
\begin{array}{c}
\text{V}' \\
\begin{array}{c}
\text{V}'_+ \quad \text{V}'_- \\
\text{f}'_+ \quad \text{f}'_- \\
\text{V}'_+ \quad \text{V}'_- \\
\end{array}
\end{array}
\]
is given by a quintuple of homomorphisms \(\{ \phi_\alpha f_\ast \} \) for all \(\alpha, \beta \). If \(V = \Phi(M) \) and \(V' = \Phi(N) \), these homomorphisms give a homomorphism \(\tilde{\phi} : M^2/2M^2 \to N^2/2N^2 \) such that \(\tilde{\phi} f_{\alpha} = f'_{\alpha} \tilde{\phi} \). If we lift \(\tilde{\phi} \) to a homomorphism \(\psi^2 : M^2 \to N^2 \), it implies that \(\psi^2(M) \subseteq N \), so we obtain a homomorphism \(\psi : M \to N \) such that \(\Phi(\psi) = \phi \). Obviously, \(\Phi(\psi) = 0 \) if and only if \(\text{Im} \psi \subseteq \mathfrak{m}N = 2N^2 \). \(\square \)

We call the quintuple \((d_\ast, d_{\alpha\beta})\) (\(\alpha, \beta \in \{+, -\} \)) the \textit{dimension} of the representation \(V \) or of the corresponding lattice \(M = M(V) \), denote it by \(\dim V \) or \(\dim M \) and usually present it in the form

\[
\begin{array}{c|c|c|c|c}
 & d_{++} & d_{+-} & d_{-+} & d_{--} \\
\hline
d_\ast & & & & \\
\end{array}
\]

We also denote, if necessary, \(d_\ast = d_\ast(M) \), \(d_{\alpha\beta} = d_{\alpha\beta}(M) \) and \(d_{\ominus} = d_{\ominus}(M) = \sum_{\alpha, \beta} d_{\alpha\beta}(M) \). Note that the rank of \(M \) as of \(\mathbb{Z} \)-module equals \(d_{\ominus}(M) \), while \(d_\ast = \dim _\mathbb{Z}_M/\mathfrak{m}M \).

We also need analogues of some results from \([12]\). For this purpose we establish a lemma. For any \(\mathbb{Z} \)-lattice or \(\mathbb{R}^2 \)-lattice \(M \) we set \(\tilde{M} = M/2M \) and if \(\alpha : M \to N \) is a homomorphism of lattices, we denote by \(\tilde{\alpha} \) the induced map \(\tilde{M} \to \tilde{N} \).

Lemma 1.2. Any exact sequence \(0 \to \tilde{M} \xrightarrow{\tilde{\alpha}} \tilde{N} \xrightarrow{\tilde{\beta}} \tilde{L} \to 0 \) of \(\mathbb{Z} \)-lattices or of \(\mathbb{R}^2 \)-lattices can be lifted to an exact sequence \(0 \to M \xrightarrow{\alpha} N \xrightarrow{\beta} L \to 0 \).

Proof. As \(\mathbb{R}^2 = \mathbb{Z}^4 \), we only have to consider the case of \(\mathbb{Z} \)-lattices. We choose bases in \(M, N, L \) and the corresponding bases in \(\tilde{M}, \tilde{N}, \tilde{L} \) and identify \(\tilde{\alpha} \) and \(\tilde{\beta} \) with their matrices with respect to these bases. There are invertible matrices \(S, T \) of appropriate sizes over the field \(\mathbb{k} \) such that \(S^{-1} \tilde{\alpha} T = \left(\begin{array}{c} I \end{array} \right) \), where \(I \) is the unit matrix. Then \(\tilde{\beta} S = \left(\begin{array}{c} 0 & C \end{array} \right) \) for some invertible matrix \(C \). Since the maps \(\text{GL}(n, \mathbb{Z}) \to \text{GL}(n, \mathbb{k}) \) are surjective, we can lift \(\tilde{S}, \tilde{T}, \tilde{C} \) to invertible matrices \(S, T, C \) over \(\mathbb{Z} \). Then the homomorphisms \(M \to N \) and \(N \to L \) respectively given by the matrices \(\alpha = S \left(\begin{array}{c} I \end{array} \right) T^{-1} \) and \(\beta = \left(\begin{array}{c} 0 & C \end{array} \right) S^{-1} \) are the necessary liftings of \(\tilde{\alpha} \) and \(\tilde{\beta} \). \(\square \)

Corollary 1.3. Let \(0 \to V' \xrightarrow{\alpha} V \xrightarrow{\beta} V'' \to 0 \) be an exact sequence of representations from \(\mathcal{R} \). It can be lifted to an exact sequence of \(A \)-lattices \(0 \to M(V') \xrightarrow{\alpha} M(V) \xrightarrow{\beta} M(V'') \to 0 \).

\[1\]This result does not follow directly from \([12\text{, Lem.} 4]\), where the case of algebras over complete discrete valuation rings is considered. Moreover, it highly depends on Lemma 1.2 and hence on the “smallness” of the residue field \(\mathbb{k} \).
Proof. We denote \(\tilde{V} = \bigoplus_{\alpha \beta} V_{\alpha \beta} \). Then we have a commutative diagram

\[
\begin{array}{ccccccccc}
0 & \longrightarrow & V' & \xrightarrow{\tilde{\alpha}} & \tilde{V} & \xrightarrow{\tilde{\beta}} & V'' & \longrightarrow & 0 \\
\downarrow f_{\nu}' & & \downarrow f_{\nu} & & \downarrow f_{\nu}'' & & \downarrow f_{\nu}'' & & \downarrow 0 \\
0 & \longrightarrow & \tilde{V}' & \xrightarrow{\tilde{\alpha}} & \tilde{V} & \xrightarrow{\tilde{\beta}} & \tilde{V}'' & \longrightarrow & 0
\end{array}
\]

By Lemma 1.2, the second row can be lifted to an exact sequence

\[
0 \rightarrow M(V')^\sharp \xrightarrow{\alpha^\sharp} M(V)^\sharp \xrightarrow{\beta^\sharp} M(V'')^\sharp \rightarrow 0.
\]

Recall that \(M(V) \supseteq 2M(V)^\sharp \) and \(M(V)/2M(V)^\sharp \simeq V \). Since the diagram (1.3) is commutative, it implies that \(\alpha^\sharp(M(V')) \subseteq M(V) \) and \(\beta^\sharp(M(V)) \subseteq M(V'') \). So we obtain the necessary lifting

\[
0 \rightarrow M(V') \xrightarrow{\alpha} M(V) \xrightarrow{\beta} M(V'') \rightarrow 0.
\]

It is exact by the 3 \times 3 lemma, \(\square \).

We say that a monomorphism of lattices \(\phi : M \rightarrow N \) is pure if \(\text{Coker } \phi \) is torsion free (hence, also a lattice).

Corollary 1.4. Every epimorphism (monomorphism, isomorphism) \(V \rightarrow V' \) of representations from \(\mathcal{R} \) can be lifted to an epimorphism (respectively, pure monomorphism, isomorphism) of \(A \)-lattices \(\Phi(V) \rightarrow \Phi(V') \).

Corollary 1.5. Given a chain of subrepresentations

\[
V = V_0 \supset V_1 \supset V_2 \supset \ldots \supset V_{m-1} \supset V_m = 0,
\]

there is a chain of sublattices in \(M = M(V) \)

\[
M = M_0 \supset M_1 \supset M_2 \supset \ldots \supset M_{m-1} \supset M_m = 0
\]

such that \(M_k \simeq M(V_k) \) and \(M_k/M_{k+l} \simeq M(V_k/V_{k+l}) \) for all possible values of \(k,l \).

2. Regular lattices

Recall the structure of the Auslander–Reiten quiver \(\mathcal{Q} \) of the category \(\hat{\mathcal{A}} \)-lat [10]. According to [12], it is obtained from the Auslander–Reiten quiver of the category rep \(\Lambda \) by gluing the preprojective and the preinjective components into one component. The resulting preprojective-preinjective component is shown at Figure 1. Here all lattices are uniquely determined by their dimensions. The Auslander–Reiten transpose \(\tau \) of the category \(\hat{\mathcal{A}} \)-lat acts on this component as the shift to the left. Note that, for every \(A \)-lattice \(M \), \(\tau \hat{M} \simeq \Omega \hat{M} \), the syzygy of \(\hat{M} \) as of \(\hat{R} \)-module [9, Prop.1.1]. Hence, \(\Omega M \simeq N \) if \(\tau \hat{M} = \hat{N} \).

The other components, called regular, are tubes. They are parametrized by the closed points of the projective line \(\mathbb{P}^1_k \) (considered as a scheme), which consist of monic irreducible polynomials from \(k[t] \) and the symbol \(\infty \). We denote the tube corresponding to the polynomial \(f(t) \) by \(T^f \) and the
tube corresponding to \(\infty \) by \(T^\infty \). We also write \(T^0 \) instead of \(T^t \) and \(T^1 \) instead of \(T^{t-1} \). When describing tubes, we substitute \(A \)-lattices for their completions and say that \(T \) belongs to a tube \(T^f \) if \(\tilde{T} \) belongs to this tube. Then we call \(T \) a regular \(K \)-lattice. We call a \(K \)-lattice \(M \) regular if all its indecomposable direct summands are regular.

All tubes except \(T^\lambda \) (\(\lambda \in \{0, 1, \infty\} \)) are homogeneous, i.e. \(\tau M \simeq M \) for all \(M \) from this tube. They are of the form

\[
T_1^f \quad T_2^f \quad T_3^f \quad \cdots
\]

(2.1)

\[
\dim T_m^f = \begin{bmatrix} d_m & 0 \\ d_m & d_m \\ 0 & d_m \\ I \end{bmatrix},
\]

where \(d = \deg f(t) \). Actually, \(T_m^f = M(T_m^f) \), where \(T_m^f \)
is the following representation of the quiver \(\Lambda \):

\[
\begin{array}{c}
\xrightarrow{(1 0)}
\xrightarrow{(0 1)}
\xrightarrow{(I 1)}
\xrightarrow{(I F)}
\end{array}
\]

Here \(I \) is the \(dm \times dm \) unit matrix and \(F \) is the Frobenius matrix with the characteristic polynomial \(f(t)^m \).

The tube \(T^\lambda \) for \(\lambda \in \{0, 1, \infty\} \) is of the form

\[
T_1^{\lambda_1} \quad T_2^{\lambda_1} \quad T_3^{\lambda_1} \quad T_4^{\lambda_1} \quad \cdots
\]

(2.3)

Here \(\tau T_n^{\lambda_1} \simeq T_n^{\lambda_2} \) and \(\tau T_n^{\lambda_2} \simeq T_n^{\lambda_1} \). For \(\lambda = 1 \) we have

\[
\dim T_{2m}^{1j} = \begin{bmatrix} m & m \\ m & m \\ 2m-1 & 2m-1 \\ m-1 & m-1 \\ m & m \end{bmatrix},
\]

for both \(j = 1 \) and \(j = 2 \),

\[
\dim T_{2m-1}^{11} = \begin{bmatrix} m & m \\ m & m \\ 2m-1 & 2m-1 \\ m-1 & m-1 \\ m & m \end{bmatrix},
\]

Actually, \(T_{2m}^{11} = M(T_{2m}^{11}) \), where \(T_{2m}^{11} \) is of the form (2.2) with \(d = 1 \) and \(F = J_1 \) being the Jordan \(m \times m \) matrix with eigenvalue 1. \(T_{2m-1}^{11} = M(T_{2m-1}^{11}) \),
where T_{2m-1}^{11} is of the form

\[
\begin{align*}
\mathbb{K}^{2m-1} & \xrightarrow{f_1} \mathbb{K}^m \\
\mathbb{K}^m & \xrightarrow{f_2} \mathbb{K}^{2m-1} \\
\mathbb{K}^{2m-1} & \xrightarrow{f_3} \mathbb{K}^{m-1} \\
\mathbb{K}^{m-1} & \xrightarrow{f_4} \mathbb{K}^m
\end{align*}
\]

Here

\[
\begin{align*}
f_1 &= \begin{pmatrix} I & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \\
f_2 &= \begin{pmatrix} 0 & I & 0 \\ 0 & 0 & 1 \end{pmatrix}, \\
f_3 &= \begin{pmatrix} I & I & 0 \end{pmatrix}, \\
f_4 &= \begin{pmatrix} I & J_1 & e \end{pmatrix}, \text{ with } e = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{pmatrix},
\end{align*}
\]

where the matrices I and J_1 are of size $(m - 1) \times (m - 1)$.

The lattices T_{n}^{12} are obtained from T_{n}^{11} by the permutations, respectively, of f_1 with f_3 and of f_2 with f_4.

The tube $T^0 (T^\infty)$ is obtained from the tube T^1 by the permutation of f_2 with f_4 (respectively, of f_2 with f_3).

Note that an indecomposable lattice M belongs to a tube if and only if

\[2d_\bullet(M) = \sum_{\alpha \beta} d_{\alpha \beta}(M). \tag{2.4}\]

In this case

\[d_\bullet(\Omega M) = d_\bullet(M) \text{ and } d_{\alpha \beta}(\Omega M) = d_\bullet(M) - d_{\alpha \beta}(M). \tag{2.5}\]

The structure of the representations of quivers belonging to tubes is described in [3, 4] (see also [5, Thm. 31 and 36]). Together with Corollary 1.5 it gives the following result for lattices. From now on, writing T_m^f, we always suppose that $f \notin \{t, t - 1\}$, and writing $T_m^{\lambda j}$, we always suppose that $\lambda \in \{0, 1, \infty\}$ and $\lambda \in \{1, 2\}$.

Theorem 2.1. Every module T_m^f or $T_m^{\lambda j}$ has a chain of submodules

\[M = M_0 \supset M_1 \supset M_2 \supset \ldots \supset M_{m-1} \supset M_m = \{0\} \tag{2.6}\]

such that

\[M_k / M_{k+1} \simeq \begin{cases}
T_m^f & \text{if } M = T_m^f, \\
T_m^{\lambda j} & \text{if } M = T_m^{\lambda j} \text{ and } k \text{ is even}, \\
T_m^{\lambda i} & \text{where } i \neq j, \text{ if } M = T_m^{\lambda j} \text{ and } k \text{ is odd}.
\end{cases}\]
(2) The maps \(T^f_m \to T^f_{m+1} \) and \(T^{λ_i}_m \to T^{λ_j}_{m+1} \) in the diagrams, respectively, and \((2.1) \) and \((2.2) \) can be chosen injective, with the quotients, respectively, \(T^f_1 \) and \(T^{λ_j}_1 \).

(3) The maps \(T^f_{m+1} \to T^f_m \) and \(T^{λ_i}_{m+1} \to T^{λ_j}_m \) \((i \neq j)\) in the diagrams, respectively, \((2.1) \) and \((2.3) \) can be chosen surjective, with the kernels, respectively, \(T^f_1 \) and \(T^{λ_i}_1 \).

(4) If \(M \) and \(M' \) belong to different tubes, then \(\text{Im} \varphi \subseteq 2N \) for every homomorphism \(\varphi : M \to N \).

One can also get a description of endomorphisms of indecomposable lattices belonging to tubes.

For any commutative ring \(K \) and any monic polynomial \(f(t) \) of degree \(d \) there is a natural embedding \(ε_m : K[t]/(f(t)^m) \to \text{Mat}(dm,K) \) arising from the regular representation of this quotient algebra over \(K \). We denote by \(K^f_m \) the image of the embedding \(K[t]/(f(t)^m) \to \text{Mat}(dm,K)^4 \) such that all its components are \(ε_m \). We also denote by \(K^f_m \) the image of the embedding \(K[t]/(t^{m}) \to \text{Mat}(m,K)^2 \times \text{Mat}(m-1,K)^2 \) such that the first two components are \(ε_m \) and the other two components are the compositions \(ε_{m-1} \pi_m \), where \(π_m \) is the surjection \(K[t]/(t^{m}) \to K[t]/(t^{m-1}) \). Certainly, if \(m = 1 \), it is just the diagonal embedding \(K \to K \times K \).

If \(M \) is an \(A \)-lattice and \(\text{dim} M = \begin{pmatrix} d_+ & d_- \\ d_+ & d_- \end{pmatrix} \), the endomorphism ring \(\text{End}_A M \) naturally embeds into \(\text{End}_R M^2 = \prod_{αβ} \text{Mat}(d_{αβ},\mathbb{Z}) \) and we identify it with the image of this embedding.

Theorem 2.2. For an irreducible monic polynomial \(f(t) \in \mathbb{k}[t] \) choose a monic polynomial \(\tilde{f}(t) \in \mathbb{Z}[t] \) such that \(f(t) = \tilde{f}(t) \) (mod 2).

1. \(\text{End}_A T^f_m = \mathbb{Z}^f_m + 2 \text{Mat}(dm,\mathbb{Z})^4 \), where \(d = \deg f(t) \).
2. \(\text{End}_A T^{λ_i}_m = \mathbb{Z}^{λ_i}_m + 2 \text{Mat}(m,\mathbb{Z})^4 \) and
\[\text{End}_A T^{λ_j}_{2m-1} = \mathbb{Z}^{λ_j}_{2m-1} + 2 \left(\text{Mat}(m,K)^2 \times \text{Mat}(m-1,K)^2 \right) \).

Obviously, it does not depend on the choice of \(\tilde{f}(t) \).

Proof. It is well known (and can be verified by straightforward calculations) that \(\text{End}_A T^f_m = k^f_m \), while then \(\text{End}_A T^{λ_j}_m = k^{λ_j}_m \) and \(\text{End}_A T^{λ_j}_{2m-1} = k^{λ_j}_{2m-1} \).

It remains to apply Theorem \([\square] \).

3. Cohomologies

We will give an explicit description of the cohomologies \(H^n(K,M) \) and \(H^n(K,DM) \) for \(n > 0 \) and regular \(K \)-lattices \(M \). Obviously, we only have to calculate them for indecomposable lattices.

It follows from \([8] \) that a free resolution \(P \) for the trivial \(K \)-module \(\mathbb{Z} \) can be chosen as follows: \(P_n \) is the set of homogeneous polynomials of degree \(n \),
from $R[x,y]$ and

$$d(x^ky^l) = (a + (-1)^k)x^{k-1}y^l + (-1)^k(b + (-1)^l)x^ky^{l-1}.$$

So an n-cocycle γ is given by the values $\gamma(x^my^{n-m})$ ($0 \leq m \leq n$).

Let M be an indecomposable regular lattice. Set

$$M(n) = \begin{cases} M_{++} & \text{if } n \text{ is even}, \\ M_{--} & \text{if } n \text{ is odd and } \not\in T^{\infty}, \\ M_{+-} & \text{if } n \text{ is odd and } M \in T^{\infty}, \end{cases}$$

We define a homomorphism $\xi : M(n) \rightarrow H^n(K,M)$ ($n > 0$). It sends an element $v \in M(n)$ to the class of the cocycle ξ_v which is defined as follows.

- If n is even, $M \not\in T^{\infty}$ and $v \in M_{++},$
 $$\xi_v(x^m y^{n-m}) = \begin{cases} v & \text{if } m = n, \\ 0 & \text{otherwise}. \end{cases}$$

- If n is even, $M \in T^{\infty}$ and $v \in M_{++},$
 $$\xi_v(x^m y^{n-m}) = \begin{cases} v & \text{if } m = 0, \\ 0 & \text{otherwise}. \end{cases}$$

- If n is odd, $M \not\in T^{\infty}$ and $v \in M_{--},$
 $$\xi_v(x^m y^{n-m}) = \begin{cases} v & \text{if } m = n, \\ 0 & \text{otherwise}. \end{cases}$$

- If n is odd, $M \in T^{\infty}$ and $v \in M_{+-},$
 $$\xi_v(x^m y^{n-m}) = \begin{cases} v & \text{if } m = 0, \\ 0 & \text{otherwise}. \end{cases}$$

One easily verifies that ξ_v is indeed a cocycle.

Theorem 3.1. For every indecomposable regular K-lattice M and every $n > 0$ the map ξ induces an isomorphism $\bar{\xi} : M(n)/2M(n) \cong H^n(K,M)$.

For the proof we use the following results.

Lemma 3.2. If $0 \rightarrow M' \rightarrow M \rightarrow M'' \rightarrow 0$ is an exact sequence of regular K-lattices, then the induced sequences

$$0 \rightarrow \Omega M' \rightarrow \Omega M \rightarrow \Omega M'' \rightarrow 0,$$

$$0 \rightarrow \Omega^{-1} M' \rightarrow \Omega^{-1} M \rightarrow \Omega^{-1} M'' \rightarrow 0$$

are also exact.

Proof. From the properties of syzygies it follows that there is an exact sequence

$$0 \rightarrow \Omega M' \rightarrow \Omega M \oplus P \rightarrow \Omega M'' \rightarrow 0$$
for some projective R-module P. But, as $\Omega M = \tau M$, the formulae (2.4) and (2.5) show that $d_{\alpha\beta}(\Omega M) = d_{\alpha\beta}(\Omega M') + d_{\alpha\beta}(\Omega M'')$. Therefore, $P = 0$ and we get the exact sequence (6.1). Then (5.2) follows by duality. \hfill \Box

Corollary 3.3. If $0 \to M' \to M \to M'' \to 0$ is an exact sequence of regular K-lattices, the induced sequence of cohomologies

$$0 \to \hat{H}^n(K, M') \to \hat{H}^n(K, M) \to \hat{H}^n(K, M'') \to 0$$

is also exact for every $n \in \mathbb{Z}$.

Proof. It is known [9, Lem. 2.2] that if M contains no direct summands isomorphic to \mathbb{Z}_{++}, then $\hat{H}^0(K, M) \simeq \mathbb{k}^{d_{++}(M)}$. It implies the claim for $n = 0$. The general case follows from Lemma 3.2 and the known fact that $\hat{H}^n(K, M) \simeq \hat{H}^{n+1}(K, \Omega M) \simeq \hat{H}^{n-1}(K, \Omega^{-1} M)$. \hfill \Box

Proof of Theorem 3.1. Note that [9, Th. 2.3] shows that $M(n)/2M(n) \simeq H^n(K, M)$. Hence we only have to check that ξ is injective. First, we check the claim for the lattices T^j_1 and $T^{\lambda j}_1$. As the calculations are quite similar, we only consider the case of $M = T^1_{j1}$ and n even (it seems the most complicated). Then M is the submodule of $\mathbb{Z}_{++} \oplus \mathbb{Z}_{--}$ consisting of the pairs (z, z') such that $z \equiv z' \pmod{2}$. Thus the basic element of $M(n)$ is $v = (2, 0)$. We have to check that $\xi_v \neq \partial \gamma$ for any map $\gamma : \mathbb{P}_{n-1} \to M$. Suppose that $\xi_v = \partial \gamma$. Note that if $\gamma(x^{n-1}) = (z, z')$, then $\partial \gamma(x^n) = (2z, 0)$, whence $z = 1$. Let $\gamma(x^{n-k-1}y^k) = (z_k, z'_{k+1})$ (0 < k < n). Then

$$\partial \gamma(x^{n-1}y) = (a-1)(z_1, z'_1) - (b-1)(z, z') = (0, -2z' + 2z'_1) = (0, 0),$$

hence $z'_1 = z' \equiv 1 \pmod{2}$;

$$\partial \gamma(x^{n-2}y^2) = (a+1)(z_2, z'_2) + (b+1)(z_1, z'_1) = (2z_2 + 2z_1, 0) = (0, 0),$$

hence $z_2 = -z_1 \equiv 1 \pmod{2}$. Repeating this process, we obtain that all $z_k \equiv 1 \pmod{2}$, so $z_k \neq 0$. Then $\partial \gamma(y^n) = (2z_{n-1}, 0) \neq 0 = \xi_v(y^n)$ and we get a contradiction.

For the lattice $M = T^j_m$ or $T^{\lambda j}_m$ ($m > 1$) we have an exact sequence $0 \to M' \to M \to M'' \to 0$, where $M' \simeq T^j_1$ or $T^{\lambda j}_1$ and $M'' \simeq T^j_{m-1}$ or $T^{\lambda j}_{m-1}$. It gives a commutative diagram with exact rows

$$\begin{array}{cccccc}
0 & \rightarrow & M'(n) & \rightarrow & M(n) & \rightarrow & M''(n) & \rightarrow & 0 \\
& & \uparrow \xi & & \uparrow \xi & & \uparrow \xi & \\
0 & \rightarrow & H^n(K, M') & \rightarrow & H^n(K, M) & \rightarrow & H^n(K, M'') & \rightarrow & 0
\end{array}$$

Using induction, we can suppose that the first and the third vertical maps satisfy the assertion of the theorem. Then the same is true for the second vertical map. \hfill \Box
Analogous considerations give an explicit description of the cohomologies for regular colattices, i.e. the dual modules of regular lattices. For an indecomposable regular colattice \(N = DM \) set \(\bar{N} = \{ u \in N \mid 2u = 0 \} \) and

\[
N(n) = \begin{cases}
\bar{N}^+ & \text{if } n \text{ is odd} \\
\bar{N}^- & \text{if } n \text{ is even and } M \notin T^\infty, \\
\bar{N}^+ & \text{if } n \text{ is even and } M \in T^\infty.
\end{cases}
\]

We define a homomorphism \(\eta : N(n) \to H^n(K, N) \) \((n > 0)\). It sends an element \(u \in N(n) \) to the class of the cocycle \(\eta u \) which is defined as follows.

- If \(n \) is even, \(M \notin T^\infty \) and \(u \in \bar{N}^- \),

 \[
 \eta_u(x^m y^{n-m}) = \begin{cases}
u & \text{if } m = n, \\
 0 & \text{otherwise.}
 \end{cases}
 \]

- If \(n \) is even, \(M \in T^\infty \) and \(u \in \bar{N}^+ \),

 \[
 \eta_u(x^m y^{n-m}) = \begin{cases}
u & \text{if } m = 0, \\
 0 & \text{otherwise.}
 \end{cases}
 \]

- If \(n \) is odd, \(u \in \bar{N}^+ \),

 \[
 \eta_u(x^m y^{n-m}) = \begin{cases}
u & \text{if } m = n, \\
 0 & \text{otherwise.}
 \end{cases}
 \]

One easily verifies that \(\eta_u \) is indeed a cocycle.

Theorem 3.4. For every indecomposable regular colattice \(N \) and every \(n > 0 \) the map \(\eta \) induces an isomorphism \(N(n) \to H^n(K, N) \).

We omit the proof since it is quite analogous to that of Theorem 3.1 (and even easier).

4. Action of Automorphisms

4.1. Lattices

We also need to know how automorphisms of lattices and of the group act on cohomologies. Let \(M = T^f_m \) or \(M = T^\lambda_j m \). Consider the chain of submodules \(M_k \subset M \) from Theorem 2.1. We denote by \(E^f_{k,m,n} \) or, respectively, by \(E^\lambda_{k,m,n} \), where \(0 \leq k < m \), the set \(M_k(n) \setminus \{2M_k(n) + M_{k+1}(n)\} \). Note that \(E^\lambda_{k,m,n} \neq \emptyset \) if and only if \(k < m \) and

\[
k \equiv \begin{cases}
j & \text{if } n \text{ is even} \\
 j + 1 & \text{if } n \text{ is odd (mod 2)}
\end{cases}
\]

Theorems 2.1 and 2.2 easily imply the following result.

Theorem 4.1. Let \(e \in E^f_{k,m,n} \) or \(e \in E^\lambda_{k,m,n} \), and \(e' \in E^f_{k',m',n} \) or, respectively, \(e' \in E^\lambda_{k',m',n} \). There is a homomorphism \(\theta : T^f_m \to T^f_{m'} \) or, respectively, \(\theta : T^\lambda_m \to T^\lambda_{m'} \) such that \(\theta(e) = e' \) if and only if either \(m \geq m' \) and
\(k \leq k'\) or \(m \leq m'\) and \(k \leq k' - m' + m\). If \(m = m'\) and \(k = k'\), \(\theta\) can be chosen as an isomorphism.

Definition 4.2.

1. We fix for every quadruple \((f, m, k, n)\), where \(k < m\), an element \(e^f_{m,k,n} \in E^f_{m,k,n}\) and for every quintuple \((\lambda, j, m, k, n)\), where \(k < m\) and \(k, j\) satisfy the condition \([\lambda]\), an element \(e^\lambda_j_{m,k,n} \in E^\lambda_{m,k,n}\).

2. For a homogeneous tube \(T^f\) we call a standard sequence a sequence \(\sigma = (m_i, k_i) (1 \leq i \leq s)\), where \(m_1 > m_2 > \cdots > m_s\), \(1 \leq k_i < m_i\) and \(k_i < k_i - m_i + m_{i'}\) for \(i < i'\). We set \(M_\sigma^f = \bigoplus_{i=1}^s T^f_{m_i}\) and \(e^\lambda_{\sigma,n} = \sum_{i=1}^s e^\lambda_j_{m_i,k_i,n}\).

3. For a special tube \(T^\lambda\) we call a standard sequence a sequence \(\sigma = (j_i, m_i, k_i) (1 \leq i \leq s)\), where \(j_i \in \{1, 2\}\), \(m_1 > m_2 > \cdots > m_s\), \(1 \leq k_i < m_i\) and \(k_i < k_i + m_i - m_{i'}\) for \(i < i'\). We set \(M_\sigma^\lambda = \bigoplus_{i=1}^s T^\lambda_{j_i}\). We call such sequence
 - even if \(k_i \equiv j_i (\text{mod } 2)\) for all \(i\),
 - odd if \(k_i \equiv j_i + 1 (\text{mod } 2)\) for all \(i\).

 For an even (odd) standard sequence and even (respectively, odd) \(n\) we set \(e^\lambda_{\sigma,n} = \sum_{i=1}^s e^\lambda_j_{m_i,k_i,n}\).

4. We define standard data as a pair \(\Delta = (\Sigma, S)\), where \(\Sigma = \{T^f_q\} 1 \leq q \leq r\) is a set of different tubes and \(S = \{\sigma_q\} (1 \leq q \leq r)\) is a set of standard sequences \(\sigma_q\) for each tube \(T^f_q\). We call such data special if at least one of the tubes \(T^f_q\) is special. Special standard data are said to be even or odd if all standard sequences \(\sigma_q\) for special tubes \(T^f_q\) are so. We set \(M_\Delta = \bigoplus_{q=1}^r M_{\sigma_q}^f\) and \(e_{\Delta,n} = \sum_{q=1}^r e_{\sigma_q,n}^f\). In the latter definition we suppose that, if \(\Delta\) is special, it is even if \(n\) is even and it is odd if \(n\) is odd (otherwise the element \(e_{\Delta,n}\) is not defined).

 If the tube \(T^\infty\) occurs in \(\Sigma\), say \(f_k = \infty\), we denote by \(e^\infty_{\Delta,n} = e^\infty_{\sigma_k,n}\) and by \(e^0_{\Delta,n}\) the rest of the sum defining \(e_{\Delta,n}\). Of course, it is possible that \(e^\infty_{\Delta,n} = 0\) or \(e^0_{\Delta,n} = 0\).

Theorem [4.1] implies the following result.

Theorem 4.3. Let \(M\) be a regular \(R\)-lattice and \(\varepsilon \in H^n(K, M) (n > 0)\). There are standard data \(\Delta\) and a decomposition \(\theta : M \rightarrow M_0 \oplus M_\Delta\) such that the projection of \(\theta(\varepsilon)\) onto \(H^n(K, M_0)\) is zero and the projection of \(\theta(\varepsilon)\) onto \(H^n(K, M_\Delta)\) equals \(\xi(e_{\Delta,n})\) (see page [11] for the definition of \(\xi\)).

If \(\varepsilon = 0\), \(M_\Delta = 0\).

In particular, we obtain a description of orbits of automorphisms of indecomposable regular lattices on cohomologies.
Corollary 4.4. Let M be an indecomposable regular lattice. Consider the chain (2.6) of its submodules and denote by $H^n_k(K, M)$ the image in $H^n(K, M)$ of $H^n(K, M_k)$. Then the orbits of $\text{Aut}_K M$ on $H^n(K, M)$ ($n > 0$) are $H^n_k(K, M) \setminus H^n_{k+1}(K, M)$ ($0 \leq k < m$) and $\{0\}$.

The group of automorphisms of the group K is the symmetric group S_3; it just permutes the elements a, b and $c = ab$. Its generators are the transpositions $\tau_2 : a \leftrightarrow b$ and $\tau_3 : a \leftrightarrow c$. They permute the $-+$ component of the diagram (1.1), respectively, with the $--$ component and with the $-+$ component. Thus τ_2 permutes \mathcal{T}^1 and \mathcal{T}^0, while τ_3 permutes \mathcal{T}^1 and \mathcal{T}^∞.

Rather simple matrix calculations show that τ_2 permutes \mathcal{T}^f with $\mathcal{T}^{f(2)}$, while τ_3 permutes \mathcal{T}^f with $\mathcal{T}^{f(3)}$, where

$$f^{(2)}(t) = f(1)^{-1}(t - 1)^d f \left(\frac{t}{t - 1} \right),$$

$$f^{(3)}(t) = (-1)^d f(1 - t),$$

where $d = \text{deg } f$. It induces the action of S_3 on the set of standard data. Note that, if $\psi \in \text{Aut } K$, there is an automorphism $\varphi \in \text{Aut } M_{\Delta}$ such that $\psi \xi(e_{\Delta, n}) = \varphi \xi(e_{\Delta, n})$.

4.2. Colattices. Let now $N = DT$, where M is a K-lattice. If M is regular, we call N regular too. If $N = DT$, where $M = T_m^f$ or $M = T_m^{\lambda_j}$, there is a chain of submodules, dual to the chain (2.6) from Theorem 2.1:

$$0 = N_0 \subset N_1 \subset N_2 \subset \ldots \subset N_{m - 1} \subset N_m = N,$$

where $N_k = M^\perp_k$ and

$$N_{k+1}/N_k \simeq \begin{cases} DT_m^f, & \text{if } N = DT_m^f, \\ DT_m^{\lambda_j}, & \text{if } N = DT_m^{\lambda_j} \text{ and } k \text{ is even}, \\ DT_m^{\lambda_i}, & \text{where } i \neq j, \text{if } N = DT_m^{\lambda_j} \text{ and } k \text{ is odd}. \end{cases}$$

We denote by $Z_{k, m, n}^f$ or, respectively, by $Z_{k, m, n}^{\lambda_j}$ the set $N_k \setminus N_k$. Again, $Z_{k, m, n}^{\lambda_j} \neq \emptyset$ if and only if $k < m$ and the condition (4.1) holds.

The duality gives analogues of Theorems (4.1) and (4.3).

Theorem 4.5. Let $z \in Z_{k, m, n}^f$ or $z \in Z_{k, m, n}^{\lambda_j}$ and $z' \in Z_{k', m', n}^f$ or, respectively, $z' \in Z_{k', m', n}^{\lambda_j'}$ and $z' \in Z_{k', m', n}^{\lambda_j'}$. There is a homomorphism $\theta : DT_m^f \to DT_{m'}^f$, respectively, $\theta : DT_m^{\lambda_j} \to DT_{m'}^{\lambda_j}$ such that $\theta(z) = z'$ if and only if either $m \leq m'$ and $k \geq k'$ or $m \geq m'$ and $k \geq k' - m + m$. If $m = m'$ and $k = k'$, θ can be chosen as an isomorphism.

Definition 4.6. (1) We fix for every quadruple (f, m, k, n), where $k < m$, an element $z_{m, k}^f \in Z_{m, k}^f$ and for every quintuple (λ, j, m, k, n), where $k < m$ and k, j satisfy the condition (4.1), an element $z_{m, k}^{\lambda_j} \in Z_{m, k}^{\lambda_j}$.
(2) For a homogeneous tube T^f we call a costandard sequence a sequence $\sigma = (m_i, k_i) \ (1 \leq i \leq s)$, where $m_1 < m_2 < \cdots < m_s$, $1 \leq k_i < m_i$ and $k_{i'} > k_i > k_{i'} + m_i - m_{i'}$ for $i < i'$. We set $N^f_\sigma = \bigoplus_{i=1}^s T^f_{m_i}$ and $z^f_{\sigma,n} = \sum_{i=1}^s e^f_{m_i,k_i,n}$.

(3) For a special tube T^λ we call a costandard sequence a sequence $\sigma = (j_i, m_i, k_i) \ (1 \leq i \leq s)$, where $j_i \in \{1, 2\}$, $m_1 < m_2 < \cdots < m_s$, $1 \leq k_i < m_i$, $1 \leq k_i < m_i$ and $k_i < k_{i'} < k_i + m_i - m_{i'}$ for $i' < i$. We set $N^\lambda_\sigma = \bigoplus_{i=1}^s T^\lambda_{m_i,j_i}$. We call such sequence

- even if $k_i \equiv j_i \pmod{2}$ for all i,
- odd if $k_i \equiv j_i + 1 \pmod{2}$ for all i.

For an even (odd) costandard sequence and even (respectively, odd) n we set $z^\lambda_{\sigma,n} = \sum_{i=1}^s z^\lambda_{m_i,k_i,n}$.

(4) We define costandard data as a pair $\Delta = (\Sigma, S)$, where $\Sigma = \{T^f_q\ (1 \leq q \leq r)\}$ is a set of different tubes and $S = \{\sigma_q\} \ (1 \leq q \leq r)$ is a set of costandard sequences σ_q for each tube T^f_q. We call such data special if at least one of the tubes T^f_q is special. Special costandard data are said to be even or odd if all costandard sequences σ_q for special tubes T^f_q are so. We set $N^\Delta = \bigoplus_{q=1}^r M^f_q$ and $z^\Delta_{n} = \sum_{q=1}^s z^f_{\sigma_q,n}$. In the latter definition we suppose that, if Δ is special, it is even if n is even and it is odd if n is odd (otherwise the elements $z^f_{\sigma_q,n}$ and hence z^Δ_n are not defined).

If the tube T^∞ occurs in Σ, say, $f_k = \infty$, we denote by $z^\infty_{\sigma,n} = z^\infty_{\sigma_k,n}$ and by $z^0_{\Delta,n}$, the rest of the sum defining z^Δ_n. Of course, it is possible that $z^\infty_{\sigma,n} = 0$ or $z^0_{\Delta,n} = 0$.

Theorem 4.7. Let $N = DM$, where M is a regular R-lattice, $\varepsilon \in H^n(K, N)$ ($n > 0$). There are costandard data Δ and a decomposition $\theta : N \rightarrow N_0 \oplus N_\Delta$ such that the projection of $\theta(\varepsilon)$ onto $H^n(K, N_0)$ is zero and the projection of $\theta(\varepsilon)$ onto $H^n(K, N_\Delta)$ equals $\eta(z_{\Delta,n})$ (see page 12 for the definition of η).

If $\varepsilon = 0$, $M_\Delta = 0$.

Corollary 4.8. Let N be an indecomposable regular colattice. Consider the chain of its submodules and denote by $H^p_k(K, N)$ the image in $H^n(K, N)$ of $H^n(K, N_k)$. Then the orbits of $\text{Aut}_K N$ on $H^n(K, N)$ ($n > 0$) are $H^p_k(K, N) \setminus H^p_{k-1}(K, N)$ ($0 < k \leq m$) and $\{0\}$.

5. Applications

5.1. Crystallographic groups. Recall that a crystallographic group G is a discontinuous group of isometries of an Euclidean space having a compact fundamental domain [13]. Equivalently, G contains a maximal commutative subgroup M of finite index, which is normal and is a free abelian group of finite rank. Then the group $\Gamma = \Gamma/M$ acts on M by the rule $gv = \bar{g}vg^{-1}$,
where \bar{g} is a preimage of g in G, and G is given by a class $\varepsilon \in H^2(\Gamma, M)$. One easily sees that actually M is a unique maximal abelian subgroup of G of finite index. We call the group Γ the top and the Γ-module M the base of the crystallographic group G. If $\varphi : G \rightarrow G'$, where G' is another crystallographic group, then $M' = \varphi(M)$ is the maximal commutative subgroup of G', i.e. the base of G'. Hence $\Gamma' = G'/M'$ is the top of G' and we have a commutative diagram

$$
\begin{array}{ccccccc}
1 & \longrightarrow & M & \longrightarrow & G & \longrightarrow & \Gamma & \longrightarrow & 1 \\
\theta & & \varphi & & \psi & & \phi & & \psi \\
1 & \longrightarrow & M' & \longrightarrow & G' & \longrightarrow & \Gamma' & \longrightarrow & 1
\end{array}
$$

where θ and ψ are isomorphisms. Let $\psi M'$ be the group M' considered as G-module by the rule $g u = \psi(g) u$ for $g \in G$, $u \in M'$. Then θ is an isomorphism $M \cong \psi M'$ and the cohomology class defining the group G' is $\theta \varepsilon \psi^{-1}$. Therefore, isomorphism classes of crystallographic groups with the top Γ and the base M are in one-to-one correspondence with the orbits of the action of the group $\text{Aut}_G \times \text{Aut}_M$ on $H^2(G, M)$. Therefore, Theorem 4.3 implies a classification result for crystallographic groups with the Kleinian top and regular base.

Definition 5.1. Let Δ be standard data, even if they are special. We call the group $\text{Cr}(\Delta)$ that is the extension of K with the kernel M corresponding to the cohomology class $\varepsilon = \xi(e^{\Delta})$ a standard crystallographic group.

Note that $\text{Cr}(\Delta)$ is generated by the group M and two elements \bar{a} and \bar{b} subject to the relations

$$
\bar{a} w = (a) w \bar{a} \text{ for every } w \in M,
\bar{b} w = (b) w \bar{b} \text{ for every } w \in M,
\bar{a} \bar{b} = \bar{b} \bar{a},
\bar{a}^2 = e^0_{\Delta_2},
\bar{b}^2 = e^\infty_\Delta.
$$

Theorem 5.2. Let G be a crystallographic group with the Kleinian top K such that its base M is a regular K-lattice.

1. There are standard data Δ, a direct decomposition $M \simeq M_0 \oplus M_\Delta$ and a semidirect decomposition $G \simeq M_0 \times \text{Cr}(\Delta)$, where $\text{Cr}(\Delta)$ acts on M_0 as its quotient $\text{Cr}(\Delta)/M_\Delta \simeq K$.

2. If $G \simeq M'_0 \times \text{Cr}(\Delta')$ is another such decomposition, there is an automorphism ψ of the group K such that $M'_0 \simeq \psi M_0$ and $\Delta' = \psi \Delta$.

Remark 5.3. G is crystallographic if and only if $M_{\alpha\beta} \neq 0$ for at least two of the pairs $(+-), (-+), (--).$ For a regular K-lattice M it means that it is not a multiple of some lattice T^λ_1 ($\lambda \in \{0,1,\infty\}$).
5.2. Chernikov groups. Recall that a Chernikov group is a locally finite group with minimality condition on subgroups [2]. Such a group G has a maximal divisible subgroup N which is a finite direct sum of quasicyclic groups and N is normal in G with the finite quotient $\Gamma = G/N$. We consider the case when G is a 2-group. Then N is a direct sum of groups \mathbb{D} of type 2^∞ and Γ is a finite 2-group. It is known that $\text{End} \mathbb{D} \simeq \mathbb{Z}_2$. Therefore, if $N = \mathbb{D}^d$, then $\text{Aut}_\mathbb{Z} N \simeq \text{GL}(d, \mathbb{Z}_2)$. Hence $N \simeq DM$ for some Γ-lattice M. The group Γ and the G-module N are defined up to an isomorphism. We call Γ the top and N the base of the Chernikov group G. Again, the isomorphism classes of Chernikov groups with the top Γ and the base N are in one-to-one correspondence with the orbits of the group $\text{Aut} \Gamma \times \text{Aut}_{\Gamma} N$ on the cohomology group $H^2(\Gamma, N)$.

Theorem 4.7 implies the following description of Chernikov groups with the Kleinian top and regular bottom.

Definition 5.4. Let Δ be costandard data, even if they are special. We call the group $\text{Ch}(\Delta)$ that is the extension of K with the kernel N corresponding to the cohomology class $\varepsilon = \eta(z_{\Delta,2})$ a standard Chernikov group.

Note that $\text{Ch}(\Delta)$ is generated by the group N and two elements \bar{a} and \bar{b} subject to the relations

$$
\bar{a}w = (^aw)\bar{a} \text{ for every } w \in N,
$$
$$
\bar{b}w = (^bw)\bar{b} \text{ for every } w \in N,
$$
$$
\bar{a}\bar{b} = \bar{b}\bar{a},
$$
$$
\bar{a}^2 = z_{\Delta,2}^0
$$
$$
\bar{b}^2 = z_{\Delta,2}^\infty.
$$

Theorem 5.5. Let G be a Chernikov group with the Kleinian top K such that its base N is a regular K-colattice.

1. There are costandard data Δ, a direct decomposition $N = N_0 \oplus N_\Delta$ and a semidirect decomposition $G \simeq N_0 \rtimes \text{Ch}(\Delta)$, where $\text{Ch}(\Delta)$ acts on N_0 as its quotient $\text{Ch}(\Delta)/N_\Delta \simeq K$.
2. If $G \simeq N'_0 \rtimes \text{Ch}(\Delta')$ is another such decomposition, there is an automorphism ψ of the group K such that $N'_0 \simeq \psi N_0$ and $\Delta' = \psi \Delta$.

Note that there is an amazing parallelism between chrystallographic and Chernikov groups. Perhaps, it is of general nature, and is worth to study.

Aknowledgement

The authors are greatful to the referee of the paper for useful notices that were used to essentially improve the exposition.

References

[1] Cartan, H., and Eilenberg, S. *Homological Algebra*. Princeton University Press, 1956.
[2] Chernikov, S. N. Groups with Given Properties of a System of Subgroups. Nauka, 1980. Russian.

[3] Dlab, V., and Ringel, C. M. Indecomposable representations of graphs and algebras. Mem. Am. Math. Soc. 173 (1976), 1–57.

[4] Donovan, P., and Freislich, M. R. The representation theory of finite graphs and associated algebras. Carleton Mathematical Lecture Notes No. 5. Ottawa, Ont., Canada: Carleton University., 1973.

[5] Drozd, Y. Representations of Quivers. https://www.imath.kiev.ua/~drozd/Quiv- art.pdf, 2020.

[6] Drozd, Y. A. Adèles and integral representations. Izv. Akad. Nauk SSSR, Ser. Mat. 33 (1969), 1080–1088.

[7] Drozd, Y. A., and Kirichenko, V. V. On quasi-Bass orders. Izv. Akad. Nauk SSSR, Ser. Mat. 36 (1972), 328–370.

[8] Drozd, Y. A., and Plakosh, A. I. Cohomologies of finite abelian groups. Algebra Discrete Math. 24, 1 (2017), 144–157.

[9] Drozd, Y. A., and Plakosh, A. I. Cohomologies of the Kleinian 4-group. Arch. Math. 115, 2 (2020), 139–145.

[10] Plakosh, A. I. On weak equivalence of representations of Kleinian 4-group. Algebra Discrete Math. 25, 1 (2018), 130–136.

[11] Ringel, C. M., and Roggenkamp, K. W. Diagrammatic methods in the representation theory of orders. J. Algebra 66 (1979), 11–42.

[12] Roggenkamp, K. W. Auslander-Reiten species of Bäckström orders. J. Algebra 85 (1983), 449–476.

[13] Szczepański, A. Geometry of Crystallographic Groups. World Scientific, 2012.