Synthesis, Structure and Magnetic Property of a Tricapped Trigonal Prismatic TbIII-Based 3d-4f Complex

Jia-Jia Zhuang1, Ming-Guang Chen2, Yan-Bing Sun1, Pei Hang1, Yang Sui1 and Jia-Ping Tong1*

1 Lab of Chemical Materials and Devices, Training Base of Army Logistics University of PLA, Xiangyang 441000, P.R. China
2 Baotou Research Institute of Rare Earths, Baotou 014040, P. R. China
E-mail: jiapingtong@hotmail.com

Abstract. A novel 3d-4f CoII/TbIII cluster [Co\textsubscript{6}Tb(Pic)\textsubscript{6}O\textsubscript{3}Cl\textsubscript{3}](H\textsubscript{2}O)\textsubscript{6}(1) (Pic = 2-Picolinic acid) has been synthesized and characterized via X-ray crystallographic and magnetic measurements. X-ray crystallographic and continued shape measurements analysis revealed that the central Terbium (III) is coordinated in TbO\textsubscript{9} geometry with D\textsubscript{3h} symmetry. Magnetic studies indicated the complex presents a magnetic anisotropy with ferrimagnetic interactions.

1. Introduction
Single molecule magnets (SMMs) [1-6] have been intensively studied due to their bistable behaviour and their potential applications in quantum information at the molecular scales [7-10]. Normally, these researches could be classified in to three parts: one is focus on the 3d transition metal-based SMMs [11-19], one is centred on 4f/5f lanthanide/actinide-based SMMs [20-26], and the other is the heterometallic (3d-4f/5f) SMMs [27-32]. In addition, a number of the heterometallic (3d-4f/5f) SMMs not only provide a large possibility for super-exchange interactions between the 3d and 4f/5f metal ions, but also many of them could exhibit a large magnetocaloric effect which can be used as cryogenic magnetic coolants [27, 31, 33]. Herein, we opt the Terbium(III) and cobalt(II) as the ions of the 3d/4f heterometallic clusters, by in-situ one-pot solvothermal reaction obtained a green crystal. The X-ray analysis revealed an 3d-4f complex [Co\textsubscript{6}Tb(Pic)\textsubscript{6}O\textsubscript{3}Cl\textsubscript{3}](H\textsubscript{2}O)\textsubscript{6}(1) packed as a ring second structure, and related magnetic behaviour was studied.

2. Experimental Results and Discussion

2.1. Materials and Methods
All the materials for synthesis were obtained commercially and used without further purification. The Infrared (IR) spectra were recorded with a range of 400–4000 cm-1 on a Nicolet 5DX spectrometer (KBr pellets). Magnetic data were collected using a Quantum Design MPMS XL7 SQUID magnetometer. The diamagnetic correction was performed by a rough estimation (\(\chi_d = M_r \times 10^{-6} \text{ cm}^3 \text{ mol}^{-1}\)), \(M_r\) is the molecular weight.

2.2. Synthesis
A microwave-assisted reaction of Tb(NO\textsubscript{3})\textsubscript{3}, CoCl\textsubscript{2} with the ligand dppo (1,3-di(2-pyridyl)-1,3-propanedione) in a MeOH/MeCN (V/V, 1:5) mixture solution at 130\textdegree C for about 10 min, and the green
block crystals obtained weekly. In the process, in-situ reaction converted dppo’ to new pic’ ligand and formed complex 1. IR/cm\(^{-1}\): 3368, 2993, 1720, 1634, 1598, 1565, 1062, 970, 761.

2.3. Description of the Crystal Structure

First, the single crystal X-ray analysis showed that 1 crystallized in the hexagonal \(P6_3\) space group (table 1 left). In complex 1, six Co\(^{III}\) ions form a large trigonal prism and a Tb\(^{III}\) ion is situated at the center. The six Co\(^{III}\) ions belong to three bases, in each base, the two Co\(^{III}\) ions are connected to form an \(\mu_3\)-oxygen atom, a \(\mu_2\)-chloride ion and terminal oxygen atom from water. The three bases and central Tb\(^{III}\) ion are connected by picolinic acid ligands and \(\mu_3\)-oxygen atoms formed a heptanuclear trigonal prismatic Co\(_6\)Tb clusters. The central Tb\(^{III}\) ion is bridged six oxygen atoms from six pic ligands respectively and also bridged by three oxygen atoms (figure 1), which performs the distorted trigonal prism coordination geometry, and in further, the analysis from continued shape measurements (CShM) [34, 35] (figure 1 right, table 1 right) confirmed it. The value from analysis indicates the closing degree of the coordination geometry to the ideal model (value: zero), thus, the non-zero values indicate that the Tb\(^{III}\) coordination sites can be described as distorted.

2.4. Magnetic Properties

The direct-current magnetic susceptibilities has been collected in a temperature range of 300-2 K on polycrystalline samples (figure 2). The room temperature \(\chi_mT\) (\(\chi_m\): the molar susceptibility) value (26.96 cm\(^3\) K mol\(^{-1}\)) of 1 was obtained from magnetic measurements with an applied dc magnetic field of 1000 Oe (figure 2 left). Upon cooling, the \(\chi_mT\) values of 1 keep constant in the temperature range of 300-100 K, and then decrease to the minimum gradually at 20 K due to the temperature depopulation of split crystal field sublevels from Tb\(^{III}\)/Co\(^{III}\) ions, from 20 K to 2 K, the \(\chi_mT\) values of 1 increased, which exhibits a ferrimagnetic coupling behaviour for complex 1.

The variation (2.0, 2.5, 3.0, 3.5 and 4.0 K) of the magnetization \(M\) under the applied dc field \(B\) of 1 was also investigated, the \(M\) vs. \(BT^{-1}\) data (figure 2 right) demonstrates that the isotherm curves which is not overlaying, which confirmed the presence of low-lying excited states and/or non-negligible magnetic anisotropy for complex 1, and in further, 1 would display SMMs behaviour [20].

The alternating-current susceptibility datas of 1 (figure 3) has been carried out with ac frequencies ranging from 0.1 to 1500 Hz under an oscillating-drive field of 3 Oe. Unfortunately, we cannot observe the slow magnetic relaxation from the data of the out-of-phase susceptibilities (imaginary part), probably owing to its large quantum tunnelling of the magnetization (QTM), which makes the relaxation too fast to signal in the ac susceptibility characterization, but in nature, probably due to the distorted around the central Tb\(^{III}\) ion of 1, which exhibit tricapped trigonal prism coordination geometry.

Figure 1. The molecular structure of 1. Tb (green), O (red), N (blue), Co (Pink), C (black), the H atoms and water molecules were omitted for clarity. Left and middle: the molecular structure with different view; right: the distorted coordination geometry around the central Tb\(^{III}\) ion.
Table 1. Crystallographic data structure refinement (left) and results of the continued shape measurements (right) for complex 1.

Complex	1	Label	Symmetry	CShM
formula	0.17(C36Cl3Co6N6O21Tb):2(O)	EP-9	D_{3h}	37.968
M_r	558.48	Enneagon		
cryst size / mm3	0.3 x 0.15 x 0.15	OPY-9	C_8v	22.212
cryst syst	Hexagonal	HPBY-9	D_{3h}	20.999
space group	$P6_3$	Octagonal pyramid		
a, Å	20.6782 (13)	JTC-9	Johnson triangular cupola J3	
b, Å	20.6782 (13)			
c, Å	14.453 (3)	JTC-9		
α, deg	90	JICU-9	Capped cube J8	
β, deg	90			
γ, deg	120	CCU-9	Spherical-relaxed capped cube	
cell volume, Å3	5352.0 (13)	JCSAPR-9		
Z	12	CSAPR-9	Spherical capped square antiprism	
T, K	293			
F_{000}	3168	JCSAPR-9		
μ / mm$^{-1}$	5.92			
θ range / deg	3.0 – 20.8	JTCTPR-9	Tricapped trigonal prism J51	
reflns collected	20868			
reflns unique	3626	TCTPR-9	Spherical tricapped trigonal prism	
R_{int}	0.060			
R_1	0.080			
wR_2 (all data)	0.251			
GOF	1.05			
largest diff. peak and hole (e·Å$^{-3}$)	-0.64, 1.81	MFF-9	Muffin	
Figure 2. Temperature dependent magnetic susceptibility (left) and M vs. BT^{-1} curve (right) at different temperatures for complex 1.

Figure 3. Frequency dependent ac magnetic susceptibilities of complex 1.

3. Conclusions
In summary, a TbIII-based 3d-4f complex with an anisotropy has been synthesized successfully. The TbIII achieved a TbO9 9-coordinate configuration presenting the distort D_3 symmetry from the CSHM analysis. The magnetic studies of 1 demonstrates that the SMMs behaviour is largely affected by symmetry of the central TbIII ion and the molecule, if we want to obtain the large effective energy barrier and slow relaxation of SMMs, a better control of the molecule symmetry to decrease QTM would be an effective way.

Acknowledgments
We appreciate the financial support from the NSF of Inner Mongolia (Grant 2018MS02008) and NSF of Xiamen University (Grant 2014013).

References
[1] Guo F S, Day B M, Chen Y C, Tong M L, Mansikkamäki A and Layfield R A 2018 Science 362 1400
[2] Bunting P C, Atanasov M, Damgaard-Møller E, Perfetti M, Crassee I, Orlita M, Overgaard J, van Slageren J, Neese F and Long J R 2018 Science 362 7319
[3] Goodwin C A P, Ortu F, Reta D, Chilton N F and Mills D P 2017 Nature 548 439
[4] Sessoli R, Tsai H L, Schake A R, Wang S, Vincent J B, Foltin K, Gatteschi D, Christou G and Hendrickson D N 1993 J. Am. Chem. Soc. 115 1804
[5] Sessoli R, Gatteschi D, Caneschi A and Novak A 1993 Nature 365 141
[6] Caneschi A, Gatteschi A, Sessoli R, Barra A L, Brunel L C and Guillot M 1991 J. Am. Chem. Soc. 113 5873
[7] Bogani L and Wernsdorfer L 2008 Nat. Mater. 7 179
[8] Urddampilleta M, Klyatskaya S, Cleuziou J P, Ruben M and Wernsdorfer W 2011 Nat. Mater. 10 502
[9] Vincent R, Klyatskaya S, Ruben M, Wernsdorfer M and Balestro F 2012 Nature 488 357
[10] Thiele S, Balestro F, Ballou R, Klyatskaya S, Ruben M and Wernsdorfer W 2014 Science 344 1135
[11] Shao F, Cahier B, Riviè re E, Guillot R, Guihéry N, Campbell V E and Mallah T 2017 Inorg. Chem. 56 1104
[12] Shao F, Cahier B, Guihéry N, Riviè re E, Guillot R, Barra A L, Lan Y, Wernsdorfer W, Campbell V E and Mallah T 2015 Chem. Commun. 51 16475
[13] Reckemmer Y, Breitgoff F D, van der Meer M, Atanasov M, Hakl M, Orliita M, Neugebauer P, Neese F, Sarkar B and van Slageren J 2016 Nat. Commun. 7 10467
[14] El-Khatib F, Cahier B, Shao F, López-Jordà M, Guillot R, Riviè re E, Hafez H, Saad Z, Girerd J J, Guihéry N and Mallah T 2017 Inorg. Chem. 56 4602
[15] F. Shao, B. Cahier, Y.-T. Wang, F.-L. Yang, E. Riviè re, R. Guillot, N. Guihéry, J.-P. Tong, T. Mallah 2020 Chem. Asian J. doi: 10.1002/asia.201901511
[16] Craig G A and Murrie M 2015 Chem. Soc. Rev. 44 2135
[17] Tong J P, Shao F, Tao J, Huang R B and Zheng L S 2011 Inorg. Chem. 50 2067
[18] F.-L. Yang, F. Shao, G.-Z. Zhu, Y.-H. Shi, F. Gao, X.-L. Li 2017 ChemistrySelect 2 110
[19] Yao X N, Du J Z, Zhang Y Q, Leng X B, Yang M W, Jiang S D, Wang Z X, Ouyang Z W, Deng L, Wang B W and Gao S 2017 J. Am. Chem. Soc. 139 373
[20] Jiang X F, Chen M G, Tong J P and Shao F 2019 New J. Chem. 43 8704
[21] Guo F S, Chen Y C, Tong M L, Mansikkamä ki A and Layfield R A 2019 Angew. Chem. 131 10269
[22] Tong J P, Shao F, Chen M G, Tong Y N, Zhuang J J, Xu X J, Tao J and Zheng L S 2016 Inorg. Chem. Commun. 74 93
[23] Zhu Z, Guo M, Li X L and Tang J 2019 Coord. Chem. Rev. 378 350
[24] Liu J, Chen Y C, Liu J L, Vieru V, Ungur L, Jia J H, Chibotaru L F, Lan Y, Wernsdorfer W, Gao S, Chen X M and Tong M L 2016 J. Am. Chem. Soc. 138 5441
[25] Zhang P, Zhang L and Tang J 2015 Dalton Trans. 44 3923
[26] Liddle S T and van Slageren J 2015 Chem. Soc. Rev. 44 6655
[27] Shao F, Zhuang J J, Chen M G, Wang N, Shi H Y, Tong J P, Luo G, Tao J and Zheng L S 2018 Dalton Trans. 47 16850
[28] Dhers S, Feltham H L C, Rouzières M, Clé rac R and Brooker S 2019 Inorg. Chem. 58 5543
[29] Dey A, Acharya J and Chandrasekhar V 2019 Chem. Asian J. 14 4433
[30] Pedersen K S, Ariciu A M, McAdams S, Weihe H, Bendix J, Tuna F and Piligkos S 2016 J. Am. Chem. Soc. 138 5801
[31] Feltham H L C and Brooker S 2014 Coord. Chem. Rev. 276 1
[32] Chatelain L, Walsh J P S, Pécaut J, Tuna F and Mazzanti M 2014 Angew. Chem. Int. Ed. 53 13434.
[33] Zheng Y Z, Zhou G J, Zheng Z and Wippenberg R E P 2014 Chem. Soc. Rev. 43 1462
[34] Alvarez S, Alemany P, Casanova D, Cirera J, Llunell M and Avnir D 2005 Coord. Chem. Rev. 249 1693
[35] Casanova D, Llunell M, Alemany P and Alvarez S 2005 Chem. Eur. J. 11 1479