Confirming Pathogenicity of the F386L PSEN1 Variant in a South Asian Family With Early-Onset Alzheimer Disease

Sarah J. Eger, BA,* Yann Le Guen, PhD,* Raiyan R. Khan, BS, Jacob N. Hall, MD, Gabriel Kennedy, BS, Greg Zaharchuk, MD, PhD, Julien Couthouis, PhD, William S. Brooks, MBBS, Dennis Velakoulis, MBBS, FRANZCP, Valerio Napolioni, PhD, Michaël E. Belloy, PhD, Clifton L. Dalgaard, PhD, Elizabeth C. Mormino, PhD, Aaron D. Gitler, PhD, and Michael D. Greicius, MD, MPH

Neurol Genet 2022;8:e647. doi:10.1212/NXG.0000000000000647

Abstract

Objectives
The F386L PSEN1 variant has been reported in 1 Japanese family with limited clinical information. We aimed to prove that F386L is pathogenic by demonstrating that it segregates with early-onset Alzheimer disease (AD).

Methods
Eight individuals in a South Asian family provided DNA for genetic testing and underwent a neurologic examination.

Results
The female proband was diagnosed with AD at age 45 years and died at age 49 years. She had a CSF biomarker profile consistent with AD, and her florbetaben PET scan was amyloid positive with high uptake in the striatum. Her MRI showed no prominent white matter disease. Her affected relatives had an age at onset range of 38–57 years and had imaging and biomarker profiles similar to hers.

Discussion
The results presented here, in conjunction with the prior report, confirm the pathogenicity of F386L. Furthermore, our study highlights the importance of studying families from underrepresented populations to identify or confirm the pathogenicity of rare variants that may be specific to certain genetic ancestries.

*These authors contributed equally to this work

From the Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA (S.J.E., Y.L.G., G.K., M.E.B., E.C.M., M.D.G.); Department of Computer Science, Columbia University, New York, NY (R.R.K.) the Neurology Center of Southern California, Temecula, CA (J.N.H.); Department of Radiology, Stanford University School of Medicine, Stanford, CA (G.Z.); Department of Genetics, Stanford University School of Medicine, Stanford, CA (J.C., A.D.G.); Neuroscience Research Australia, Randwick NSW 2031, Australia (W.S.B); the University of New South Wales, Sydney NSW 2052, Australia (W.S.B.); Neuropsychiatry Unit, Royal Melbourne Hospital, Parkville VIC 3050, Australia (D.V.); School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy (V.N.); Department of Anatomy, Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD (C.L.D.); the American Genome Center, Uniformed Services University of the Health Sciences, Bethesda, MD (C.L.D.).

The Article Processing Charge was funded by the authors

Go to Neurology.org/NG for full disclosures. Funding information is provided at the end of the article.

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND), which permits downloading and sharing the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.
Alzheimer disease (AD) primarily affects individuals older than 65 years, but autosomal dominant variants in presenilin-1 (PSEN1) have been found to cause early-onset AD (EOAD). The missense PSEN1 variant c.1158C>A, which substitutes a leucine for a phenylalanine at codon 386 (p.F386L), has been reported in 2 Japanese siblings with EOAD. We provide definitive pathogenic evidence for F386L in a large family originally from the southeastern coastal state Andhra Pradesh in India.

Methods and Results

The proband (III-24, Figure 1) was a woman whose memory began declining at age 44 years. Her early symptoms included repeating questions and leaving the stove on and the refrigerator door open, followed by word-finding difficulty and visuospatial issues requiring her to stop driving. At age 45 years, she was diagnosed with AD. On examination, she demonstrated phonemic paraphasic errors, difficulty following complex commands, slight symmetric cogwheeling at the wrists, mildly increased lower extremity tone, brisk patellar reflexes, slightly unstable gait, decreased left arm swing, and postural instability with ataxia. She scored 13/30 on the Mini-Mental State Examination (MMSE). Florbetaben PET/MRI scan revealed prominent posterior parietal and medial temporal atrophy, no substantial white matter hyperintensities, and high tracer uptake in the striatum (Figure 2A). Her PET scan was amyloid positive. Her CSF biomarker profile, performed by Athena Diagnostics, was consistent with AD (Aβ42 = 296 pg/mL, t-tau = 617 pg/mL, p-tau = 96 pg/mL, and amyloid tau index = 0.31); Athena only provides cutoffs for p-tau (abnormal above 68 pg/mL) and the amyloid tau index (abnormal below 0.8). She died at age 49 years. Clinical genetic testing confirmed that she carried F386L.

Her mother and uncle (II-6, II-7; Figure 1) were diagnosed with dementia in their forties and died in their fifties but did not undergo genetic testing. Three additional family members carried F386L. The younger sister (III-25, Figure 1) was diagnosed with AD at age 43 years after presenting with progressive memory impairment for 1–2 years followed by trouble with executive function. She scored 10/30 on the Montreal Cognitive Assessment. Her neurologic examination was otherwise normal. The female cousin (III-26, Figure 1) began misplacing items, became dependent on writing things down, and was leaving the stove on at age 38 years. She became disoriented in her own neighborhood, was missing appointments, and was asked to resign from her job at age 41 years. She scored 24/30 on the MMSE. CSF showed reduced Aβ42, elevated total tau, and elevated phospho-tau. MRI showed mild, symmetric frontoparietal atrophy, and SPECT showed frontal and mediotemporal hypoperfusion. At age 43 years, she scored 14/30 on the MMSE, developed left-sided parkinsonism with increased tone, reduced reflexes, intermittent upper extremity myoclonic jerks, and polyminimyoclonus. She died at age 45 years. The male cousin (III-39, Figure 1) was cognitively unimpaired at age 36 years and had a normal neurologic examination. His florbetaben PET scan was amyloid positive and showed pronounced striatal uptake (Figure 2B, see also eFigure 1, links.lww.com/NXG/A504). On neurological examination, the proband’s 54-year-old older sister, 76-year-old aunt, 66-year-old female cousin, and 46-year-old female cousin (III-22, II-12, III-19, and III-27, respectively; Figure 1) were cognitively normal, and none carried F386L.

Standard Protocol Approvals, Registrations, and Patient Consents

The Stanford Institutional Review Board (IRB00004593) and the Melbourne Health Human Research Ethics Committee (2013.295) approved the study. We obtained informed consent and consent to disclose from participants (or their caregivers).
Data Availability
Anonymized data not published here will be made available by request from any qualified investigator.

Discussion
In addition to F386S and F386I (see eAppendix 1, links. lww.com/NXG/A504), we have shown that F386L is also pathogenic. We report initial symptoms and an age at onset range of 38–57 years, comparable to the Japanese siblings. In this family, we note a fairly wide variability of disease duration (ranging from 4 to 19+ years). The proband (III-24) and male cousin (III-39) showed high striatal amyloid deposition, typical of some PSEN1 variant carriers. Their lack of prominent early motor symptoms supports the growing consensus that regional amyloid plaque has little to no bearing on...

Figure 2 Simultaneous MRI and Amyloid PET in (A) the Proband at Age 45 Years and (B) the Male Cousin at Age 36 Years

(A) The proband’s FLAIR images (first row) demonstrate only trace periventricular white matter changes. The florbetaben PET images (second row) are positive for cortical amyloid and show prominent amyloid deposition in the striatum. The brainstem was used as the reference region for the standardized uptake value ratios (SUVRs). (B) The unaffected male cousin’s FLAIR images (third row) are normal. His florbetaben PET images (fourth row) are positive and display similar striatal deposition to (A) that is not seen in older unrelated noncarriers (see eAppendix 4, links. lww.com/NXG/A504).
regional dysfunction.4,5 None of the carriers with MRI scans (III-24, III-26, and III-39) had significant white matter involvement, which is inconsistent with the hypothesis that PSEN1 variants beyond codon 200 increase predisposition to leukencephalopathy.6 We were unable to sequence DNA from any second-generation cases. We have shown that F386L segregates with disease (and/or amyloid positivity) in 8 individuals (3 affected, 1 unaffected but amyloid positive, and 4 unaffected) in a pedigree with autosomal dominant EOAD. In searching for other reported amyloid positive, and 4 una

October 20, 2021.

positivity) in 8 individuals (3 a

variants detected in Indian ancestry families, we found 1 additional study,7 emphasizing the need to expand the ancestral diversity of genetic research.

Study Funding
This study was provided by the National Institutes of Health (AG060747 and AG047366) and the Iqbal Farrukh and Asad Jamal Fund.

Disclosure
The authors report no disclosures relevant to the manuscript. Go to Neurology.org/NN for full disclosures.

Publication History
Received by Neurology: Genetics August 12, 2021. Accepted in final form October 20, 2021.

Appendix Authors

Name	Location	Contribution
Sarah J. Eger, BA	Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA	Drafting/revision of the manuscript for content, including medical writing for content; major role in the acquisition of data; and analysis or interpretation of data
Yann Le Guen, PhD	Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA	Drafting/revision of the manuscript for content, including medical writing for content; major role in the acquisition of data; and analysis or interpretation of data
Raiyan R. Khan, BS	Department of Computer Science, Columbia University, New York, NY	Drafting/revision of the manuscript for content, including medical writing for content; major role in the acquisition of data; and analysis or interpretation of data
Jacob N. Hall, MD	The Neurology Center of Southern California, Temecula, CA	Drafting/revision of the manuscript for content, including medical writing for content; major role in the acquisition of data
Gabriel Kennedy, BS	Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA	Drafting/revision of the manuscript for content, including medical writing for content; and analysis or interpretation of data

Appendix (continued)

Name	Location	Contribution
Greg Zaharchuk, MD, PhD	Department of Radiology, Stanford University School of Medicine, Stanford, CA	Drafting/revision of the manuscript for content, including medical writing for content, and analysis or interpretation of data
Julien Couthouis, PhD	Department of Genetics, Stanford University School of Medicine, Stanford, CA	Drafting/revision of the manuscript for content, including medical writing for content, and analysis or interpretation of data
William S. Brooks, MBBS	Neuroscience Research Australia, Randwick NSW 2031, The University of New South Wales, Sydney NSW 2052, Australia	Drafting/revision of the manuscript for content, including medical writing for content; major role in the acquisition of data; and analysis or interpretation of data
Dennis Velakouli, MBBS, FRANZCP	Neuropsychiatry Unit, Royal Melbourne Hospital, Parkville VIC 3050, Australia	Drafting/revision of the manuscript for content, including medical writing for content; major role in the acquisition of data; and analysis or interpretation of data
Valerio Napolioli, PhD	School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy	Drafting/revision of the manuscript for content, including medical writing for content
Michael E. Belloy, PhD	Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA	Drafting/revision of the manuscript for content, including medical writing for content
Clifton L. Dalgard, PhD	Department of Anatomy, Physiology & Genetics, Uniformed Services University of the Health Sciences, The American Genome Center, Uniformed Services University of the Health Sciences, Bethesda, MD	Drafting/revision of the manuscript for content, including medical writing for content; major role in the acquisition of data; and analysis or interpretation of data
Elizabeth C. Mormino, PhD	Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA	Drafting/revision of the manuscript for content, including medical writing for content; major role in the acquisition of data; and analysis or interpretation of data
Aaron D. Gitter, PhD	Department of Genetics, Stanford University School of Medicine, Stanford, CA	Drafting/revision of the manuscript for content, including medical writing for content, and analysis or interpretation of data
Michael D. Greiclus, MD, MPH	Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA	Drafting/revision of the manuscript for content, including medical writing for content; major role in the acquisition of data; study concept or design; and analysis or interpretation of data

References
1. Sherrington R, Rogaev EJ, Liang Y, et al. Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature. 1995;375(6534):764-766.
2. Yagi R, Miyamoto R, Morino H, et al. Detecting gene mutations in Japanese Alzheimer’s patients by semiconductor sequencing. *Neurobiol Aging*. 2014;35(5):1780e1-1780e5.

3. Klunk WE, Price JC, Mathis CA, et al. Amyloid deposition begins in the striatum of presenilin-1 mutation carriers from two unrelated pedigrees. *J Neurosci*. 2007;27(23):6174-6184.

4. Altmann A, Ng B, Kanduk SM, Jagust WJ, Greicius MD. Regional brain hypometabolism is unrelated to regional amyloid plaque burden. *Brain*. 2015;138(12):3734-3746.

5. Ossenkoppele R, Schonhaut DR, Schill M, et al. Tau PET patterns mirror clinical and neuroanatomical variability in Alzheimer’s disease. *Brain*. 2016;139(5):1551-1567.

6. Ryan NS, Biessels GJ, Kim L, et al. Genetic determinants of white matter hyperintensities and amyloid angiopathy in familial Alzheimer’s disease. *Neurobiol Aging*. 2015;36(12):3140-3151.

7. Syama A, Sen S, Kota LN, et al. Mutation burden profile in familial Alzheimer’s disease cases from India. *Neurobiol Aging*. 2018;64:158e7-158e13.