A note on large bounding and non-bounding finite group-actions on surfaces of small genus

Bruno P. Zimmermann

Università degli Studi di Trieste
Dipartimento di Matematica e Geoscienze
34127 Trieste, Italy

Abstract. The classification of finite group-actions on closed surfaces of small genus is well-known. In the present paper we are interested in the question of which of these group-actions are bounding (extend to a compact 3-manifold with the surface as its unique boundary component, e.g. to a handlebody) or geometrically bounding (extend to a hyperbolic 3-manifold with totally geodesic boundary) concentrating, as a typical case, on large group-actions on surfaces of genus 3.

1. Introduction

All finite group-actions in the present paper will be orientation-preserving and faithful, all manifolds will be orientable. We are interested in large group-actions of a finite group G on a closed hyperbolic surface Σ of genus $g \geq 2$. By choosing a hyperbolic structure on a quotient-orbifold Σ/G and lifting the structure to Σ, we can assume that G acts by isometries, for some hyperbolic structure on Σ; then the group of all lifts of elements of G to the universal covering \mathbb{H}^2 of Σ is a Fuchsian group F, and we have an exact sequence

$$1 \to K \hookrightarrow F \to G \to 1$$

where $K \cong \pi_1(\Sigma)$ denotes the universal covering group. We denote a Fuchsian group by its signature (which is also the signature of the quotient-orbifold Σ/G); for example, by (p, q, r) we denote the triangle group (of genus 0 which we omit) of orientation-preserving elements in the group generated by the reflections in the sides of a hyperbolic triangle with angles $2\pi/p$, $2\pi/q$ and $2\pi/r$, and a quadrangle group (p, q, r, s) is defined analogously.

We say that a finite G-action on a surface Σ bounds if the G-action on Σ extends to a G-action on a compact 3-manifold M with $\partial M = \Sigma$ (e.g., to a handlebody); it bounds geometrically if M can be chosen as a compact hyperbolic 3-manifold M with totally geodesic boundary. In this second case, by an application of Mostow rigidity one can assume that G acts by isometries also on M (and then also $\Sigma = \partial M$ achieves a hyperbolic structure on which G acts by isometries).
In [WZ] the authors determine which finite group-actions on a surface of genus two extend to a 3-manifold (i.e., bound), and in particular also to the 3-sphere, for some embedding of the surface into S^3 (in order to give explicit geometric descriptions or “visualizations of these actions in the familiar 3-space). In the present paper we consider the case $g = 3$ but concentrate on possible extensions to handlebodies and hyperbolic 3-manifolds with totally geodesic boundary instead of S^3.

We refer to Broughton [B] for the classification of the finite group-actions on surfaces of genus 3. We will represent finite group-actions on surfaces by surjections $F \to G$, always assumed to have torsionfree kernel, of a Fuchsian group F onto a finite group G; the kernel of such a surjection is a torsionfree Fuchsian group K (a surface group), and $G \cong F/K$ acts (by isometries) on the hyperbolic surface \mathbb{H}^2/K. In the following theorem, we list the largest group-actions on a surface of genus 3 in decreasing order and determine which of these actions bound, bound a handlebody or bound geometrically, representing the actions by a surjection $F \to G$ of a Fuchsian group F to a finite group G. We denote by \mathbb{D}_n the dihedral group of order $2n$, by A_4 and S_4 the alternating and symmetric groups of orders 12 and 24; for the groups $D_{2,8,5}$ and $D_{2,12,5}$ we refer to [B].

Theorem. The bounding and non-bounding finite group-actions on a surface of genus 3, of order ≥ 24, are the following.

i) The two largest group-actions, of orders 168 and 96 are represented by surjections

$$(2, 3, 7) \to \text{PSL}_2(7) \quad \text{and} \quad (2, 3, 8) \to \mathbb{D}_3 \ltimes (\mathbb{Z}_4 \times \mathbb{Z}_4)$$

and do not bound.

ii) Two actions of order 48 associated to surjections

$$(3, 3, 4) \to \mathbb{Z}_3 \ltimes (\mathbb{Z}_4 \times \mathbb{Z}_4) \quad \text{and} \quad (2, 4, 6) \to \mathbb{Z}_2 \times S_4;$$

the first one is a subgroup of index 2 of the group of order 96 in i) and does not bound, the second one is the largest bounding group-action on a surface of genus 3; it bounds geometrically but does not extend to a handlebody.

iii) Two non-bounding actions of order 32 associated to surjections

$$(2, 4, 8) \to \mathbb{Z}_2 \ltimes (\mathbb{Z}_2 \times \mathbb{Z}_8) \quad \text{and} \quad (2, 4, 8) \to \mathbb{Z}_2 \times D_{2,8,5}.$$

iv) Two non-bounding actions of order 24 associated to surjections

$$(3, 3, 6) \to \text{SL}_2(3) \quad \text{and} \quad (2, 4, 12) \to D_{2,12,5}.$$
v) Three bounding actions of order 24 associated to surjections

\[(2, 6, 6) \rightarrow \mathbb{Z}_2 \times A_4, \quad (3, 4, 4) \rightarrow S_4 \quad \text{and} \quad (2, 2, 2, 3) \rightarrow S_4; \]

these three actions are subgroups of index 2 of the geometrically bounding action of order 48 in ii). The last one is also the largest action on a surface of genus 3 which extends to a handlebody (in fact S_4 is the unique maximal handlebody group of genus 3, of maximal possible order $12(g - 1)$).

Finally, for each of the non-bounding actions in i) - iv) there is already a cyclic subgroup which does not bound.

Corollary. The largest bounding finite group-action on a surface of genus 3 is an action of $\mathbb{Z}_2 \times S_4$ of order 48 which bounds geometrically but does not extend to a handlebody. The largest finite group-action in genus 3 which extends to a handlebody is the action of the subgroup S_4 which bounds also geometrically.

The largest finite group-action on a surface of genus 4 is an action of the symmetric group S_5 associated to a surjection $(2, 4, 5) \rightarrow S_5$ (cf. [C] and its references); using similar methods, the following holds.

Proposition. The largest group-action on a surface of genus 4, of type $(2, 4, 5) \rightarrow S_5$, bounds geometrically. The largest action in genus 4 which extends to a handlebody is of type $(2, 2, 2, 3) \rightarrow D_3 \times D_3$.

See also [Z4] for a discussion of various aspects of finite group-actions on surfaces.

2. **Proof of the Theorem**

i) The Hurwitz-action of $\text{PSL}_2(7)$ on Klein’s quartic Σ_3 of genus 3 does not bound, i.e. does not extend to any compact 3-manifold M with exactly one boundary component $\partial M = \Sigma_3$: the quotient orbifold $\Sigma_3/\text{PSL}_2(7)$ is the 2-sphere with three branch points of orders 2, 3 and 7 which does not occur as the unique boundary component of a compact 3-orbifold since a singular axis starting in the boundary point of order 7 can end only in a dihedral point of dihedral type D_7 but $\text{PSL}_2(7)$ has no dihedral subgroup D_7. A cyclic subgroup which does not bound is of type $(7, 7, 7) \rightarrow \mathbb{Z}_7$.

Similarly, the group $D_3 \rtimes (\mathbb{Z}_4 \rtimes \mathbb{Z}_4)$ acting on Fermat’s quadric of genus 3 has no subgroup D_8 and hence does not bound, a cyclic non-bounding subgroup is of type $(4, 8, 8) \rightarrow \mathbb{Z}_8$.

ii) Concerning the first case, an axis of order 4 starting in a singular point of order 4 in the quotient 2-orbifold of type $(3,3,4)$ can only end in a singular point of type D_4 or S_4 but $\mathbb{Z}_3 \rtimes (\mathbb{Z}_4 \rtimes \mathbb{Z}_4)$ has no such subgroups; a cyclic non-bounding subgroup is of type $(4, 4, 4, 4) \rightarrow \mathbb{Z}_4$.
We show that the action of $\mathbb{Z}_2 \times S_4$ bounds geometrically. We consider a hyperbolic tetrahedron T, truncated by an orthogonal hyperplane at a vertex of type (2,4,6) where three edges of orders 2, 4 and 6 meet (with dihedral angles $\pi/2$, $\pi/4$ and $\pi/6$); the edge opposite to the edge of singular order 6 has order 3, all other edges have singular order 2. Let T denote the associated tetrahedral group (the orientation-preserving subgroup of index 2 in the Coxeter group generated by the reflections in the four faces of the tetrahedron), with a triangle subgroup of type (2,4,6) generated by the rotations at the truncated vertex. Then it is easy to see that a surjection \((2, 4, 6) \to \mathbb{Z}_2 \times S_4\) defining the action on the surface of genus 3 extends to a surjection \(T \to \mathbb{Z}_2 \times S_4\). The covering of the 3-orbifold T associated to the kernel of this surjection is a hyperbolic 3-manifold with totally geodesic boundary (a surface of genus 3), with an isometric action of $\mathbb{Z}_2 \times S_4$; this restricts to an isometric action of $\mathbb{Z}_2 \times S_4$ on the boundary which realizes the action in part ii) of the Theorem.

More explicitly, the rotational generators of the tetrahedral group T, suitably oriented, can be mapped to the following elements of $\mathbb{Z}_2 \times S_4$ where c denotes the generator of \mathbb{Z}_2: the order 4 rotation is mapped to $c(1234)$, the order 6 rotation to $c(143)$ and the order 3 rotation to (142), and this determines also the images of the order 2 rotations (see [GZ] or [Z2] for similar constructions).

The action of $\mathbb{Z}_2 \times S_4$ does not extend to a handlebody. More generally, any action \((p, q, r) \to G\) associated to a triangle group \((p, q, r)\) does not extend to a handlebody, see [Z1].

iii) and iv) are similar to i). The cyclic non-bounding subgroups in iii) are both of type \((4, 8, 8) \to \mathbb{Z}_8\), in iv) of types \((2, 3, 3, 6) \to \mathbb{Z}_6\) and \((2, 12, 12) \to \mathbb{Z}_{12}\). Concerning v), it is well-known that S_4 is the unique maximal handlebody group of genus 3 (of order $12(g - 1) = 24$), see [Z3].

The Proof of the Proposition is similar to the geometrically bounding case of part ii) of the Theorem, with the following choices. We consider a hyperbolic tetrahedron, truncated by an orthogonal hyperplane at a vertex of type (2,4,5) where three edges of orders 2, 4 and 5 meet; an edge of order 3 connects the edges of orders 4 and 5, all other edges have order 2. The order 4 rotation is mapped to (2345), the order 5 rotation to (12345) (oriented such that (12345) (12) = (2345)), the order 3 rotation to (135) (such that (12)(34) (135) = (12345)). With these choices, the proof is the same as that of part ii) of the Theorem.

Finally, $\mathbb{D}_3 \times \mathbb{D}_3$ is the unique maximal handlebody group of genus 4, of maximal possible order $12(g - 1)$ (see [Z3]).
References

[B] S.A. Broughton, *Classifying finite group actions on surfaces of low genus*. J. Pure Appl. Alg. 69 (1990), 233-270

[C] M.D.E. Conder, *Large group actions on surfaces*. Contemp. Math. 629 (2014), 77-98

[GZ] M. Gradolato, B. Zimmermann, *Extending finite group actions on surfaces to hyperbolic 3-manifolds*. Math. Proc. Cambridge Phil. Soc. 117 (1995), 137-151

[WZ] C. Wang, S. Wang, Y. Zhang, B. Zimmermann, *Finite group actions on the genus-2 surface, geometric generators and extendability*. Rend. Istit. Mat. Univ. Trieste 52 (2020), 513-524 (electronic version under http://rendiconti.dmi.units.it)

[Z1] B. Zimmermann, *Über Abbildungsklassen von Henkelkörpern*. Arch. Math. 33 (1979), 379-382

[Z2] B. Zimmermann, *Hurwitz groups and finite group actions on hyperbolic 3-manifolds*. J. London Math. Soc. 52 (1995), 199-208

[Z3] B. Zimmermann, *Genus actions of finite groups on 3-manifolds*. Michigan Math. J. 43 (1996), 593-610

[Z4] B. Zimmermann, *Hurwitz groups, maximal reducible groups and maximal handlebody groups*. arXiv:2110.11050