Quantum-secure message authentication via blind-unforgeability

Gorjan Alagic, Christian Majenz, Alexander Russell and Fang Song

Eurocrypt 2020, in Cyberspace
Introduction
Integrity and authenticity
Integrity and authenticity

‣ “It says X on the bottom, but is this letter really from them?”
Integrity and authenticity

‣ “It says X on the bottom, but is this letter really from them?”

‣ “The letter probably took 5 days to get here, offering plenty of opportunities for somebody to change it.”
Integrity and authenticity

‣ “It says X on the bottom, but is this letter really from them?”

‣ “The letter probably took 5 days to get here, offering plenty of opportunities for somebody to change it.”

Nowadays: digital signature schemes, message authentication codes (MACs).
Message authentication
Message authentication
Message authentication

Alice

\[m \quad k \]

\[\text{Mac} \]

\[t \]

Bob

\[k \]
Message authentication

...the Internet is a scary place...
Message authentication

...the Internet is a scary place...

Alice

\[m \quad k \]

[Mac]

\[t \]

Bob

\[m' \quad k \]

[Mac]

\[m' \quad t' \]

\[\text{Il?} \]

acc/rej
Security: UF-CMA

Definition: Unforgeability under chosen message attacks (UF-CMA)

A message authentication code is secure, if no successful forger exists:

\[m^* \neq m_i \text{ for all } i = 1, \ldots, q \]

\[\text{Success:} \]

\[i) \quad m^* \neq m_i \text{ for all } i = 1, \ldots, q \]

\[ii) \quad \text{Mac}_k(m^*) = t^* \]
Quantum Access Security

Stronger security model: quantum oracle access to Mac_k:

$$|m\rangle |t\rangle \mapsto |m\rangle |t \oplus \text{Mac}_k(m)\rangle$$
Quantum Access Security

Stronger security model: quantum oracle access to \(\text{Mac}_k \):

\[
|m\rangle |t\rangle \mapsto |m\rangle |t \oplus \text{Mac}_k(m)\rangle
\]

Why?
Quantum Access Security

Stronger security model: quantum oracle access to Mac_k:

$$|m\rangle|t\rangle \mapsto |m\rangle|t \oplus \text{Mac}_k(m)\rangle$$

Why?

- As-strong-as-possible security
Quantum Access Security

Stronger security model: quantum oracle access to Mac_k:

$$|m\rangle |t\rangle \mapsto |m\rangle |t \oplus \text{Mac}_k(m)\rangle$$

Why?

- As-strong-as-possible security
- Post-quantum Composability
Quantum Access Security

Stronger security model: quantum oracle access to Mac_k:

$$|m\rangle |t\rangle \mapsto |m\rangle |t \oplus \text{Mac}_k(m)\rangle$$

Why?

- As-strong-as-possible security
- Post-quantum Composability
- Physics?
Quantum Access Security

Stronger security model: quantum oracle access to Mac_k:

$$|m\rangle|t\rangle \mapsto |m\rangle|t \oplus \text{Mac}_k(m)\rangle$$

Why?

- As-strong-as-possible security
- Post-quantum Composability
- Physics?

Let’s try **UF-“QCMA”**
Quantum Access Security

Stronger security model: quantum oracle access to Mac_k:

$$|m\rangle |t\rangle \mapsto |m\rangle |t \oplus \text{Mac}_k(m)\rangle$$

Why?
- As-strong-as-possible security
- Post-quantum Composability
- Physics?

Let’s try UF-“QCMA”

Example:

i) Query $|m_1\rangle = \sum_{m \in \{0,1\}^n} |m\rangle |0\rangle$ to obtain $\sum_{m \in \{0,1\}^n} |m\rangle |\text{Mac}_k(m)\rangle$

ii) Measure in the computational basis to obtain $(m, \text{Mac}_k(m))$ for random m

iii) Output $(m, \text{Mac}_k(m))$
Quantum Access Security

Stronger security model: quantum oracle access to Mac_k:

$$|m\rangle|t\rangle \mapsto |m\rangle|t \oplus \text{Mac}_k(m)\rangle$$

Why?

- As-strong-as-possible security
- Post-quantum Composability
- Physics?

Let’s try UF-“QCMA”

Example:

i) Query $|m_1\rangle = \sum_{m \in \{0,1\}^n} |m\rangle|0\rangle$ to obtain $\sum_{m \in \{0,1\}^n} |m\rangle|\text{Mac}_k(m)\rangle$

ii) Measure in the computational basis to obtain $(m, \text{Mac}_k(m))$ for random m

iii) Output $(m, \text{Mac}_k(m))$

UF-CMA doesn’t make sense anymore…
Quantum chosen message attacks

What does it mean for a function to be unpredictable against quantum?

What is a successful forging adversary?
Quantum chosen message attacks

What does it mean for a function to be unpredictable against quantum?

What is a successful forging adversary?

We shouldn’t be worried about:

i) Query $m_1 = \sum_{m \in \{0,1\}^n} |m\rangle |0\rangle$ to obtain $\sum_{m \in \{0,1\}^n} |m\rangle |\text{Mac}_k(m)\rangle$

ii) Measure in the computational basis to obtain $(m, \text{Mac}_k(m))$ for random m

iii) Output $(m, \text{Mac}_k(m))$
Quantum chosen message attacks

What does it mean for a function to be unpredictable against quantum?

What is a successful forging adversary?

We shouldn’t be worried about:

i) Query $m_1 = \sum_{m \in \{0,1\}^n} |m\rangle |0\rangle$ to obtain $\sum_{m \in \{0,1\}^n} |m\rangle |\text{Mac}_k(m)\rangle$

ii) Measure in the computational basis to obtain $(m, \text{Mac}_k(m))$ for random m

iii) Output $(m, \text{Mac}_k(m))$

We should be worried about:

key k specifies a random periodic function f_k with period p_k

$\text{Mac}_k(p_k) = 0$, and $\text{Mac}_k(x) = f_k(x)$ $\forall x \neq p_k$

i) run period finding (a subroutine of Shor’s algorithm) to find p_k

ii) output $(p_k, 0)$
Quantum problems

Success:

i) $m^* \neq m_i$ for all $i = 1, \ldots, q$

ii) $\text{Mac}_k(m^*) = t^*$
Quantum problems

\[m_1 \rightarrow t_1 \rightarrow m_1 \] \[m_2 \rightarrow t_2 \rightarrow m_2 \] \[\ldots \] \[m_q \rightarrow t_q \rightarrow m_q \] \[\text{Success:} \]
\[i) \ m^* \neq m_i \text{ for all } i = 1, \ldots, q \]
\[ii) \text{Mac}_k(m^*) = t^* \]

- No-cloning principle: can’t keep a transcript
- Measurement causes disturbance!
Results
Our results

- We study unforgeability under quantum chosen message attacks
- We propose a new security definition: blind unforgeability (BU)
- We exhibit a MAC that is secure under a previous definition by Boneh and Zhandry (Eurocrypt 2013) but clearly broken, and BU-insecure
- We characterize BU
 - It implies the previous definition
 - Random functions, Lamport signatures are BU secure
 - Hash-and-Mac/Hash-and-Sign preserves BU security for appropriate hash functions
Boneh and Zhandry (Eurocrypt 2013) propose:

Ask $q + 1$ forgeries for q queries!

Success:

$$\text{Mac}_k(m_i^*) = t_i^* \quad \forall i = 1, \ldots, q + 1$$
Boneh Zhandry unforgeability

Boneh and Zhandry (Eurocrypt 2013) propose:

Ask $q + 1$ forgeries for q queries!

Success:

\[\text{Mac}_k(m^*_i) = t^*_i \quad \forall i = 1, \ldots, q + 1 \]

Has some nice properties:

- Equivalent to UF-CMA for classical oracle
- A random oracle is BZ-unforgeable (BZ ’13)
The right definition?

\[
\text{Success:} \quad \text{Mac}_k(m_i^*) = t_i^* \quad \forall i = 1, \ldots, q + 1
\]
The right definition?

Success:
\[\text{Mac}_k(m^*_i) = t^*_i \quad \forall i = 1, \ldots, q+1 \]

What if…

- an adversary has to fully measure many queries to generate one forgery? (no-cloning)
The right definition?

\[\text{Mac}_k \]

\[\begin{align*}
 \uparrow t_1 & \quad \uparrow t_2 & \quad \uparrow t_q \\
 m_1 & \quad \downarrow m_2 & \quad \downarrow m_q \\
 \ldots & & \\
 \end{align*} \]

\[\rightarrow (m^*_1, t^*_1), (m^*_2, t^*_2), \ldots, (m^*_{q+1}, t^*_{q+1}) \]

Success:
\[\text{Mac}_k(m^*_i) = t^*_i \; \forall i = 1, \ldots, q+1 \]

What if…

- an adversary has to fully measure many queries to generate one forgery? (no-cloning)
- an adversary “queries here, forges there”?

all queries supported here
(msg prefix “from Alice”)

space of all messages

forgery comes from here
(msg prefix “from the White Rabbit”)
The right definition?

\[
\text{Mac}_k(m_i^*) = t_i^* \quad \forall i = 1, \ldots, q+1
\]

Success:

What if…

- an adversary has to fully measure many queries to generate one forgery? (no-cloning)
- an adversary “queries here, forges there”?

In fact, it seems like it should be easy to find examples like this!
The right definition?

Mac_k

\[Mac_k(m_i) = t_i \quad \forall i = 1, \ldots, q+1 \]

Success:

\[(m_1, t_1), (m_2, t_2), \ldots, (m_{q+1}, t_{q+1}) \]

What if…

- an adversary has to fully measure many queries to generate one forgery? (no-cloning)
- an adversary “queries here, forges there”?

all queries supported here (msg prefix “from Alice”)

space of all messages

is not

forgery comes from here (msg prefix “from the White Rabbit”)

In fact, it seems like it should be easy to find examples like this!
The right definition?

Success:
\[\text{Mac}_k(m_i^*) = t_i^* \quad \forall i = 1, \ldots, q+1 \]

What if…

- an adversary has to fully measure many queries to generate one forgery? (no-cloning)
- an adversary “queries here, forges there”?

One obstacle: “property finding” cannot be used.
The right definition?

\[
\text{Success: } \quad \text{Mac}_k(m^*_i) = t^*_i \quad \forall i = 1, \ldots, q + 1
\]

What if…

- an adversary has to fully measure many queries to generate one forgery? (no-cloning)
- an adversary “queries here, forges there”?

In fact, it seems like it should be \textbf{easy} to find examples like this!

One obstacle: “property finding” cannot be used.

One-time Mac that’s BZ secure, GYZ (Garg, Yuen&Zhandry, Crypto ’17) insecure, assuming iO (Zhandry, Eurocrypt ’19)
A MAC that unconditionally "breaks" Boneh-Zhandry:
A MAC that unconditionally “breaks” Boneh-Zhandry:

\[m = \begin{cases} b \rightarrow & f^0_b(x) \\ x \rightarrow & f^1_b(x) \end{cases} \]

\[\begin{align*} f^0_0(x) &= \hat{f}^0_0(x \mod p) \text{ for random } p, f^0_1 = \hat{f}^1_0 \\ f^0_i &= \begin{cases} 0^n & x = p \\ \hat{f}^0_i(x) & \text{else} \end{cases}, f^1_1 \equiv 0^n \\ f^i_b : \{0,1\}^n \rightarrow \{0,1\}^n \text{ random functions} \end{align*} \]
A MAC that unconditionally “breaks” Boneh-Zhandry:

A concrete example

Message space

$\{\text{Random periodic function shielded by a random function}\}$

$b = 0$

$\{\text{Random function punctured at the period}\}$

$b = 1$
A MAC that unconditionally "breaks" Boneh-Zhandry:

A concrete example

Simple one-query attack:
i) Use period finding to find p, "ignoring" f_0^1

ii) output $(1p, 0^{2n})$
A concrete example

A MAC that unconditionally "breaks" Boneh-Zhandry:

Simple one-query attack:

i) Use period finding to find \(p \), "ignoring" \(f_0^i \) \(b = 0 \)

ii) output \((1p,0^{2n})\) \(b = 1 \)
A MAC that unconditionally "breaks" Boneh-Zhandry:

Simple one-query attack:

i) Use period finding to find \(p \), "ignoring" \(f_0^1 \)

ii) output \((1p, 0^{2n}) \)

Theorem (AMRS17). There is no efficient quantum algorithm which query \(\text{Mac}_k \) once but output two distinct input-output pairs of \(\text{Mac}_k \).
Theorem (AMRS17). There is no efficient quantum algorithm which query Mac_k once but output two distinct input-output pairs of Mac_k.

A concrete example

A MAC that unconditionally "breaks" Boneh-Zhandry:

Simple one-query attack:

i) Use period finding to find p, "ignoring" f_0^1

ii) output $(1p,0^{2n})$

Key step: ignorance is necessary
New approach: Blind Unforgeability (BU)

Problem: how do we define unforgeability vs quantum?
New approach: Blind Unforgeability (BU)

Problem: how do we define unforgeability vs quantum?

A new approach: “blind unforgeability.”

Idea: to test a forger…

- give it the oracle for the MAC, but “blind” it on some inputs;
- ask the adversary to forge on a blinded spot.
New approach: Blind Unforgeability (BU)

Problem: how do we define unforgeability vs quantum?

A new approach: “blind unforgeability.”

Idea: to test a forger…

- give it the oracle for the MAC, but “blind” it on some inputs;
- ask the adversary to forge on a blinded spot.

More formally: for Mac_k

1. Select $B_\varepsilon \subset \{0,1\}^n$ by putting every $m \in B_\varepsilon$ independently with probability ε;

2. Define “blinded” oracle: $B_\varepsilon \text{Mac}_k : m \mapsto \begin{cases} \text{Mac}_k(m) & m \notin B_\varepsilon \\ \bot & m \in B_\varepsilon \end{cases}$
New approach: Blind Unforgeability (BU)

Problem: how do we define unforgeability vs quantum?

A new approach: “blind unforgeability.”

Idea: to test a forger…

- give it the oracle for the MAC, but “blind” it on some inputs;
- ask the adversary to forge on a blinded spot.

More formally: for Mac_k

1. Select $B_\varepsilon \subset \{0,1\}^n$ by putting every $m \in B_\varepsilon$ independently with probability ε;

2. Define “blinded” oracle: $B_\varepsilon Mac_k : m \mapsto \begin{cases} Mac_k(m) & m \notin B_\varepsilon \\ \bot & m \in B_\varepsilon \end{cases}$

Definition (Blind-Unforgeability):

A MAC Mac_k is blind-unforgeable if for every adversary \mathcal{A} with a quantum oracle for $B_\varepsilon Mac_k$,

$$\mathbb{P} \left[(m, Mac_k(m) \leftarrow \mathcal{A}^{B_\varepsilon Mac_k} \text{ and } m \in B_\varepsilon \right) = \text{negl}(n) \right]$$
Blind Unforgeability

Definition (Blind-Unforgeability):
A MAC Mac_k is blind-unforgeable if for every adversary \mathcal{A} with a quantum oracle for $\mathcal{B}_\varepsilon \text{Mac}_k$,

$$\Pr [(y, \text{Mac}_k(y) \leftarrow \mathcal{A}^{\mathcal{B}_\varepsilon \text{Mac}_k} \text{ and } y \in B_\varepsilon] = \text{negl}(n)$$

Does this work?

- equivalent to UF-CMA in classical setting;
Blind Unforgeability

Definition (Blind-Unforgeability):
A MAC Mac_k is blind-unforgeable if for every adversary \mathcal{A} with a quantum oracle for $B_\varepsilon \text{Mac}_k$,
\[
\Pr[(y, \text{Mac}_k(y) \leftarrow \mathcal{A}^{B_\varepsilon \text{Mac}_k} \text{ and } y \in B_\varepsilon] = \text{negl}(n)
\]

Does this work?
- equivalent to UF-CMA in classical setting;
- random functions satisfy it;
Blind Unforgeability

Definition (Blind-Unforgeability):
A MAC Mac_k is blind-unforgeable if for every adversary \mathcal{A} with a quantum oracle for $B_\epsilon \text{Mac}_k$, $\Pr [(y, \text{Mac}_k(y) \leftarrow \mathcal{A}^{B_\epsilon \text{Mac}_k} \text{ and } y \in B_\epsilon] = \text{negl}(n)$

Does this work?

- equivalent to UF-CMA in classical setting;
- random functions satisfy it;
- Implies previous definition by Boneh and Zhandry;
Blind Unforgeability

Definition (Blind-Unforgeability):
A MAC Mac_k is blind-unforgeable if for every adversary \mathcal{A} with a quantum oracle for $B_\epsilon \text{Mac}_k$,
$$\Pr [(y, \text{Mac}_k(y) \leftarrow \mathcal{A}^{B_\epsilon \text{Mac}_k} \text{ and } y \in B_\epsilon] = \text{negl}(n)$$

Does this work?

- equivalent to UF-CMA in classical setting;
- random functions satisfy it;
- Implies previous definition by Boneh and Zhandry;
- classifies the examples we have seen thus far correctly.

1. prepare: $m_1 = \sum_{m \in \{0,1\}^n} |m\rangle |0\rangle$;
2. query
3. measure
Output: $(m, B_\epsilon \text{Mac}_k(m))$ for random m.

Blind Unforgeability

Definition (Blind-Unforgeability): A MAC Mac_k is blind-unforgeable if for every adversary \mathcal{A} with a quantum oracle for $B_{\epsilon}\text{Mac}_k$,

$$\Pr[(y, \text{Mac}_k(y) \leftarrow \mathcal{A}^{B_{\epsilon}\text{Mac}_k} \text{ and } y \in B_{\epsilon})] = \text{negl}(n)$$

Does this work?

- equivalent to UF-CMA in classical setting;
- random functions satisfy it;
- Implies previous definition by Boneh and Zhandry;
- classifies the examples we have seen thus far correctly.

1. prepare: $m_1 = \sum_{m \in \{0,1\}^n} |m\rangle |0\rangle$;
2. query
3. measure
Output: $(m, B_{\epsilon}\text{Mac}_k(m))$ for random m.

Check, e.g., for random functions:

- if oracle is blinded…
- … $\text{Mac}_k(m)$ for blinded m is independent of post-query state,
- this adversary fails.
Blind Unforgeability

Definition (Blind-Unforgeability):
A MAC Mac_k is blind-unforgeable if for every adversary A with a quantum oracle for $B_\epsilon \text{Mac}_k$,
$$\mathbb{P}[(y, \text{Mac}_k(y) \leftarrow A^{B_\epsilon \text{Mac}_k} \text{ and } y \in B_\epsilon] = \text{negl}(n)$$

Does this work?
- equivalent to UF-CMA in classical setting;
- random functions satisfy it;
- Implies previous definition by Boneh and Zhandry;
- classifies the examples we have seen thus far correctly.

2.

One-query attack: Find period in orange part, forge in olive part.
Blind Unforgeability

Definition (Blind-Unforgeability):
A MAC Mac_k is blind-unforgeable if for every adversary \mathcal{A} with a quantum oracle for $B_\varepsilon \text{Mac}_k$,

$$\Pr[(y, \text{Mac}_k(y) \leftarrow \mathcal{A}^{B_\varepsilon \text{Mac}_k} \text{ and } y \in B_\varepsilon] = \text{negl}(n)$$

Does this work?

- equivalent to \textbf{UF-CMA} in classical setting;
- random functions satisfy it;
- Implies previous definition by Boneh and Zhandry;
- classifies the examples we have seen thus far correctly.

2.

One-query attack: Find period in orange part, forge in olive part.

Check, say for $\varepsilon = 0.0001$,

- oracle is blinded only on few random inputs…
- …post-query state won’t change too much;
- $(1p, 0)$ is blinded with \textit{independent} probability ε;
- so this adversary succeeds!
Definition (Blind-Unforgeability):
A MAC Mac_k is blind-unforgeable if for every adversary \mathcal{A} with a quantum oracle for $B_{\varepsilon}\text{Mac}_k$,

$$\Pr \left[(y, \text{Mac}_k(y) \leftarrow \mathcal{A}^{B_{\varepsilon}\text{Mac}_k} \text{ and } y \in B_{\varepsilon} \right] = \text{negl}(n)$$

Additional results:
Blind Unforgeability

Definition (Blind-Unforgeability):
A MAC Mac_k is blind-unforgeable if for every adversary \mathcal{A} with a quantum oracle for $B_\epsilon \text{Mac}_k$,
$$\Pr [(y, \text{Mac}_k(y) \leftarrow \mathcal{A}^{B_\epsilon \text{Mac}_k} \text{ and } y \in B_\epsilon] = \text{negl}(n)$$

Additional results:
- Bernoulli-preserving hash function: generalizes collision resistance to quantum, strengthens collapsingness
Definition (Blind-Unforgeability):
A MAC Mac_k is blind-unforgeable if for every adversary \mathcal{A} with a quantum oracle for $B_\epsilon \text{Mac}_k$,
\[\mathbb{P} \left[(y, \text{Mac}_k(y) \leftarrow \mathcal{A}^{B_\epsilon \text{Mac}_k} \text{ and } y \in B_\epsilon \right] = \text{negl}(n) \]

Additional results:
- Bernoulli-preserving hash function: generalizes collision resistance to quantum, strengthens collapsingness
- Hash-and-MAC is BU-secure when using Bernoulli-preserving hash function
Blind Unforgeability

Definition (Blind-Unforgeability):
A MAC Mac_k is blind-unforgeable if for every adversary \mathcal{A} with a quantum oracle for $B_\varepsilon \text{Mac}_k$,

$$\mathbb{P} \left[(y, \text{Mac}_k(y) \leftarrow \mathcal{A}^{B_\varepsilon \text{Mac}_k} \text{ and } y \in B_\varepsilon \right] = \text{negl}(n)$$

Additional results:
- Bernoulli-preserving hash function: generalizes collision resistance to quantum, strengthens collapsingness
- Hash-and-MAC is BU-secure when using Bernoulli-preserving hash function
- A construction of a collapsing hash function based on LWE by Unruh (ASIACRYPT 16) is actually even Bernoulli-preserving
Blind Unforgeability

Definition (Blind-Unforgeability):
A MAC Mac_k is blind-unforgeable if for every adversary \mathcal{A} with a quantum oracle for $B_{\epsilon} \text{Mac}_k$,

$$\mathbb{P} \left[(y, \text{Mac}_k(y) \leftarrow \mathcal{A}^{B_{\epsilon} \text{Mac}_k} \text{ and } y \in B_{\epsilon} \right] = \text{negl}(n)$$

Additional results:

- Bernoulli-preserving hash function: generalizes collision resistance to quantum, strengthens collapsingness
- Hash-and-MAC is BU-secure when using Bernoulli-preserving hash function
- A construction of a collapsing hash function based on LWE by Unruh (ASIACRYPT 16) is actually even Bernoulli-preserving
- Lamport signatures are 1-BU in the quantum random oracle model
Blind Unforgeability

Definition (Blind-Unforgeability):
A MAC Mac_k is blind-unforgeable if for every adversary \mathcal{A} with a quantum oracle for $B_{\varepsilon}\text{Mac}_k$,
$$\Pr \left[(y, \text{Mac}_k(y) \leftarrow \mathcal{A}^{B_{\varepsilon}\text{Mac}_k} \text{ and } y \in B_{\varepsilon} \right] = \text{negl}(n)$$

Additional results:
- Bernoulli-preserving hash function: generalizes collision resistance to quantum, strengthens collapsingness
- Hash-and-MAC is BU-secure when using Bernoulli-preserving hash function
- A construction of a collapsing hash function based on LWE by Unruh (ASIACRYPT 16) is actually even Bernoulli-preserving
- Lamport signatures are 1-BU in the quantum random oracle model

Tools:
Definition (Blind-Unforgeability):
A MAC Mac_k is blind-unforgeable if for every adversary \mathcal{A} with a quantum oracle for $B_\varepsilon \text{Mac}_k$,

$$\mathbb{P} \left[(y, \text{Mac}_k(y) \leftarrow \mathcal{A}^{B_\varepsilon \text{Mac}_k} \text{ and } y \in B_\varepsilon \right] = \text{negl}(n)$$

Additional results:
- Bernoulli-preserving hash function: generalizes collision resistance to quantum, strengthens collapsingness
- Hash-and-MAC is BU-secure when using Bernoulli-preserving hash function
- A construction of a collapsing hash function based on LWE by Unruh (ASIACRYPT 16) is actually even Bernoulli-preserving
- Lamport signatures are 1-BU in the quantum random oracle model

Tools:
- A simulation lemma that relates an adversary’s performance in the blinded and unblinded cases
Definition (Blind-Unforgeability):
A MAC Mac_k is blind-unforgeable if for every adversary \mathcal{A} with a quantum oracle for $B_e\text{Mac}_k$,
$$\Pr\left[(y, \text{Mac}_k(y) \leftarrow \mathcal{A}^{B_e\text{Mac}_k} \text{ and } y \in B_e]\right) = \text{negl}(n)$$

Additional results:
- Bernoulli-preserving hash function: generalizes collision resistance to quantum, strengthens collapsingness
- Hash-and-MAC is BU-secure when using Bernoulli-preserving hash function
- A construction of a collapsing hash function based on LWE by Unruh (ASIACRYPT 16) is actually even Bernoulli-preserving
- Lamport signatures are 1-BU in the quantum random oracle model

Tools:
- A simulation lemma that relates an adversary’s performance in the blinded and unblinded cases
- Zhandry’s superposition representation of quantum random oracles
Summary, open questions

Summary:

‣ We exhibit a MAC that is secure according to a definition by Boneh and Zhandry but allows for an intuitive forgery attack.

‣ We propose a replacement definition: Blind Unforgeability

‣ Blind unforgeability has a lot of nice properties and classifies all known examples correctly.

Open questions:

‣ The security game for blind unforgeability is not natural. Can this be fixed?

‣ Are popular schemes (MACs and DSS) blind-unforgeable? We only have NMAC, HMAC and Lamport in the QROM for now…