Probiotics for Preventing Late-Onset Sepsis in Preterm Neonates

A PRISMA-Compliant Systematic Review and Meta-Analysis of Randomized Controlled Trials

Guo-Qiang Zhang, MSc, Hua-Jian Hu, MD, Chuan-Yang Liu, MSc, Shristi Shakya, MD, and Zhong-Yue Li, MD

Abstract: The effect of probiotics on late-onset sepsis (LOS) in preterm neonates remains controversial. The authors systematically reviewed the literature to investigate whether enteral probiotic supplementation reduced the risk of LOS in preterm neonates in neonatal intensive care units.

PubMed, Embase, and Cochrane Central Register of Controlled Trials were systematically searched for randomized controlled trials (RCTs) regarding the effect of probiotics in preterm neonates. The primary outcome was culture-proven bacterial and/or fungal sepsis. The Mantel–Haenszel method with random-effects model was used to calculate pooled relative risks (RRs) and 95% confidence intervals (CIs).

Twenty-seven trials were included in our review, and 25 trials involving 6104 preterm neonates were statistically analyzed. Pooled analysis indicated that enteral probiotic supplementation significantly reduced the risk of any sepsis (25 RCTs; RR 0.83, 95% CI 0.73–0.94; I² = 26%), bacterial sepsis (11 RCTs; RR 0.82, 95% CI 0.71–0.95; I² = 0%), and fungal sepsis (6 RCTs; RR 0.57, 95% CI 0.41–0.78; I² = 0%). This beneficial effect remains in very low birth weight infants (<1500 g) (19 RCTs; RR 0.86, 95% CI 0.75–0.97; I² = 18%), but not in extremely low birth weight infants (<1000 g) (3 RCTs; RR 0.73, 95% CI 0.45–1.19; I² = 53%). All the included trials reported no systemic infection caused by the supplemental probiotic organisms.

Current evidence indicates that probiotic supplementation is safe, and effective in reducing the risk of LOS in preterm neonates in neonatal intensive care units. Further studies are needed to address the optimal probiotic organism, dosing, timing, and duration. High-quality and adequately powered RCTs regarding the efficacy and safety of the use of probiotics in extremely low birth weight infants are still warranted. (Medicine 95(8):e2581)

Abbreviations: CI = confidence interval, ELBW = extremely low birth weight, Ig = immunoglobulin, LOS = late-onset sepsis, NEC = necrotizing enterocolitis, NICU = neonatal intensive care unit, RCT = randomized controlled trial, RR = relative risk.

INTRODUCTION

In neonatal intensive care units (NICUs), late-onset sepsis (LOS) arising >72 hours after birth is a frequent complication of prematurity, and is associated with increased medical costs, prolonged hospitalization, and significant mortality and morbidity.1–3 Despite the improvements in the quality of neonatal assistance, the reported incidences of LOS are still dramatically high.1,4 Preterm neonates are indeed highly prone to develop bacterial and fungal sepsis because of their immature skin/mucosal barrier and immune response, use of invasive procedures and devices, use of broad-spectrum antimicrobial drugs, and exposure to the hospital milieu, which gives rise to gastrointestinal colonization with pathogens.5–9 Probiotics, defined as live microorganisms, confer health benefits to the host when administered at adequate doses,10 and have been suggested to modify the enteric microflora, suppress the overgrowth and translocation of pathogens in the gut, and therefore prevent life-threatening infections.11–14 Although there is no controversy about probiotics reducing the risk of stage II to III necrotizing enterocolitis (NEC) in preterm neonates,15–17 the effect of probiotics on LOS remains a highly live issue. So far, studies reporting the effect of probiotics on LOS conveyed conflicting results. Furthermore, because of small sample sizes, these studies were not adequately powered to detect the effect of probiotics on LOS in preterm neonates.

Thus, to provide the latest and most convincing evidence, we systematically reviewed the current available literature to investigate whether enteric probiotic supplementation reduced the risk of LOS in preterm neonates in NICUs.

METHODS

This systematic review and meta-analysis was conducted and reported in adherence to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement,18 and the guidelines of the Cochrane Handbook for Systematic Reviews of Interventions.19 Because our study was a review of previous published studies, ethical approval or patient consent was not required.
Literature Search and Selection Criteria

PubMed, Embase, and Cochrane Central Register of Controlled Trials were searched for records that compared enteral probiotics to placebo or no intervention in preterm neonates in NICUs. The language was restricted to English. The search strategy is shown in Table 1. The last search was conducted on August 11, 2015. The cited references of retrieved articles and previous reviews were also manually checked to identify any additional eligible trials. All citations were imported into a bibliographic database (EndNote X7; Thomson Reuters), and 2 of the authors (G-QZ and H-JH) independently screened the candidate articles to check their eligibility for inclusion.

We developed a PICOS (Patient, Intervention, Comparators, Outcome, and Study design) approach as the eligibility criteria: 1) Population: preterm infants <37 weeks or birth weight <2500 g, or both; 2) Intervention: any species/strains/doses regimen of live probiotics administered for >7 days; 3) Comparators: placebo or no probiotics; 4) Outcome: the primary outcome was any sepsis occurring >72 hours after birth, defined as positive blood/urine/cerebrospinal fluid cultures. The secondary outcome was systemic infection caused by supplemented probiotic organisms; 5) Study design: only randomized controlled trials (RCTs) were eligible. We excluded interventions other than live probiotics, administration of probiotics with prebiotics or other agents, and

TABLE 1. Search Strategy

Search terms
1. Probiotic, or probiotics, or yogurt, or yoghurt, or lactic acid bacteria, or *acidophilus*, or *Lactobacillus*, or *Lactococcus*, or *Saccharomyces*, or *Streptococcus*, or *Bifidobacterium*, or *Enterococcus*, or *Escherichia coli*
2. Very low birth weight, or VLBW, or low birth weight, or LBW, or extremely low birth weight, or ELBW, or preterm, or premature
3. Clinical trial
4. English
5. 1, 2, 3, and 4

FIGURE 1. Selection process for the studies included in the meta-analysis.
TABLE 2. Characteristics of Randomized Controlled Trials Included in Our Meta-Analysis

Source	N	Participants	Strains, Doses, and Duration	Type of Milk	Outcomes of Interest
Al-Hosni\(^\text{27}\)	101	BW 501–1000 g	A mixture of *L. rhamnosus* GG and *B. infantis*, 1 × 10\(^8\) CFU/d, from first enteral feed to corrected age	FM	Bacterial and/or fungal sepsis (blood culture proven)
Bin-Nun\(^\text{28}\)	145	BW ≤ 1500 g	A mixture of *B. bifidus*, *B. infantis*, and *Streptococcus thermophilus*, 1.05 × 10\(^7\) CFU/d, from first feed to 36 wk corrected age	HM or FM	Any sepsis (blood culture proven)
Braga\(^\text{29}\)	243	BW 750–1499 g	A mixture of *L. casei* and *B. breve*, 3.5 × 10\(^7\) to 3.5 × 10\(^9\) CFU/d, from second day to 30 d of life or discharge	HM	Any sepsis (NG)
Costalos\(^\text{30}\)	87	GA 28–32 wk	*S. boulardii*, 2 × 10\(^9\) CFU/d, from first week for 30 d	FM	Any sepsis (blood culture proven)
Dani\(^\text{31}\)	585	GA < 33 wk or BW < 1500 g	*L. rhamnosus* GG, 6 × 10\(^9\) CFU/d, from first feed to discharge	HM or FM	Bacterial sepsis (blood/urine culture proven)
Demirel\(^\text{32}\)	278	GA ≤ 32 wk and BW ≤ 1500 g	*S. boulardii*, 5 × 10\(^9\) CFU/d, from first feed to discharge	HM or FM	Bacterial sepsis (blood/CSF/urine culture proven)
Dilli\(^\text{33}\)	200	GA < 32 wk and BW < 1500 g	*B. lactis*, 5 × 10\(^9\) CFU/d, for a maximum of 8 wk or to discharge	HM or FM	Bacterial sepsis (culture proven)
Fernandez-Carrocer\(^\text{a}\)	150	BW < 1500 g	A mixture of *L. acidophilus*, *L. rhamnosus*, *L. casei*, *L. plantarum*, *B. infantis*, and *Streptococcus thermophilus*, 2.6 × 10\(^9\) CFU/d, from first feed to discharge	HM or FM	Bacterial sepsis (blood culture proven)
Jacobs\(^\text{35}\)	1099	GA < 32 wk and BW < 1500 g	A mixture of *B. infantis*, *B. lactis*, and *Streptococcus thermophilus*, 1 × 10\(^9\) CFU/d, to discharge or term corrected age	HM or FM	Any sepsis (blood/urine/CSF/organ tissue culture proven)
Kitajima\(^\text{36}\)	97	BW < 1500 g	*B. breve*, 0.5 × 10\(^9\) CFU/d, from first 24 h for 28 d	HM or FM	Any sepsis (blood culture proven)
Lin\(^\text{37}\)	367	BW < 1500 g	A mixture of *L. acidophilus* and *B. infantis*, 2 × 10\(^9\) CFU/d, from first enteral feed to discharge	HM	Any sepsis (blood culture proven)
Lin\(^\text{38,9}\)	434	GA < 34 wk and BW < 1500 g	A mixture of *L. acidophilus* and *B. bifidum*, 2 × 10\(^9\) CFU/d, for 6 wk or to discharge	HM or FM	Bacterial sepsis (blood culture proven)
Manzoni\(^\text{39}\)	80	BW < 1500 g	*L. rhamnosus* GG, 6 × 10\(^9\) CFU/d, from third day for 6 wk or to discharge	HM	Bacterial sepsis and/or IFI (blood culture proven)
Mihatsch\(^\text{40}\)	183	GA < 30 wk and BW < 1500 g	*B. lactis*, 2 × 10\(^10\) CFU/d, from first milk feed for first 6 wk of life	HM or FM	Bacterial sepsis (blood culture proven)
Millar\(^\text{41}\)	20	GA ≤ 33 wk	*L. rhamnosus* GG, 2 × 10\(^9\) CFU/d, from initiation of milk feeds for 14 d	HM or FM	Any sepsis (blood culture proven)
Oncel\(^\text{42}\)	424	GA ≤ 32 wk and BW ≤ 1500 g	*L. reuteri*, 1 × 10\(^9\) CFU/d, from first feed to discharge	HM or FM	Bacterial and/or fungal sepsis (blood culture proven)
Patole\(^\text{43}\)	159	GA < 33 wk and BW < 1500 g	*B. breve*, 3 × 10\(^9\) CFU/d, from first enteral feed to corrected age 37 wk	HM or FM	Any sepsis (blood culture proven)
Rojas\(^\text{44}\)	750	BW ≤ 2000 g	*L. reuteri*, 1 × 10\(^9\) CFU/d, from first 48 hours of life to discharge	HM or FM	Any sepsis (blood/CSF/urine culture proven)
Romeo\(^\text{45}\)	249	GA < 37 wk and BW < 2500 g	*L. reuteri*, 1 × 10\(^9\) CFU/d, or *L. rhamnosus*, 6 × 10\(^9\) CFU/d, from first 48 h for 6 wk or to discharge	HM or FM	Bacterial and/or fungal sepsis (blood/urine/CSF culture proven)
Rouge\(^\text{46}\)	94	GA < 32 wk and BW < 1500 g	A mixture of *L. rhamnosus* GG and *R. longum*, 8 × 10\(^9\) CFU/d, from first enteral feed to discharge	HM or FM	Any sepsis (blood culture proven)

(Continued on next page)
TABLE 2. Continued

Source	N	Participants	Strains, Doses, and Duration	Type of Milk	Outcomes of Interest
Roy	112	GA < 37 wk and BW < 2500 g	A mixture of B. longum, B. lactis, B. bifidum, and L. acidophilus, 1.5–3 × 10⁹ CFU/d, from first 72 h for 6 wk or to discharge	HM	Bacterial and/or fungal sepsis (blood/urine/CSF culture proven)
Saengtawesin	60	GA < 34 wk and BW < 1500 g	A mixture of L. acidophilus and B. bifidum, 2 × 10⁹ CFU/d, from first feed for 6 wk or to discharge	HM or FM	Any sepsis (NG)
Samanta	186	GA < 32 wk and BW < 1500 g	A mixture of B. infantis, B. bifidum, B. longum, and L. acidophilus, 2.5 × 10⁹ CFU/d, from first enteral feed till discharge	HM	Any sepsis (blood/CSF culture proven)
Sart	242	GA < 33 wk or BW < 1500 g	L. sporogenes, 3.5 × 10⁹ CFU/d, from first feed to discharge	HM or FM	Bacterial and/or fungal sepsis (blood culture proven)
Serce	208	GA < 32 wk and BW < 1500 g	S. boullardii, 2 × 10⁹ CFU/d, from first feed to discharge	HM or FM	Bacterial sepsis (blood culture proven)
Stratiki	77	GA 27–37 wk	B. lactis, 2 × 10⁹ CFU/d, from first 48 h to 30 d	FM	Any sepsis (blood culture proven)
Umezaki	208	BW < 1500 g	B. breve, 1 × 10⁹ CFU/d, from first several hours after birth to discharge	HM or FM	Any sepsis and/or fungal sepsis (blood culture proven)

R = Bifidobacterium, BW = birth weight, CSF = cerebrospinal fluid, FM = formula milk, GA = gestational age, HM = human milk (mother’s milk and/or donor milk), IFI = invasive fungal infection, L = Lactobacillus, NG = not given, S = Saccharomyces.

* This study had methodological misstep that caused uneven distribution of the time of umbilical venous catheter between groups, 7 days in probiotic group and 3 days in control group.

RESULTS

The selection process is detailed in Figure 1. A total of 601 potentially relevant records were identified by our search strategy. Seventy-four records were excluded for duplicates and an additional 497 records were excluded based on the titles and abstracts. The remaining 30 full-text articles were assessed for eligibility, 3 of which were further excluded because incidences of LOS were not reported. Finally, 27 trials were eligible for this review. Two trials were not included in meta-analysis because of the uneven distribution of birth to discharge.
weight38 and duration of umbilical venous catheter49 between study and control groups. Hence, 25 trials were statistically analyzed27–37,39–48,50–53. Characteristics of the 27 trials are summarized in Table 2 and the outcome data of each included study are presented in Table 3. The quality of the trials assessed by the Cochrane Risk-of-Bias Tool is summarized in Table 4.

Figure 2 shows the results from each trial and overall, using a random-effects model, for probiotics in the prevention of LOS in preterm neonates. Of the 25 estimates, 20 were <1.0. The summary of RR of LOS was 0.83 (95% CI 0.73–0.94). Results of the studies were homogeneous ($I^2 = 26\%$). Furthermore, including the 2 trials with uneven distribution of sepsis-related risk factors between intervention and control groups, the RR was consistent with the main analysis (RR 0.86, 95% CI 0.76–0.98, $I^2 = 37\%$). There was no evidence of significant publication bias by inspection of the funnel plot and formal statistical tests (Egger’s test, $P = 0.269$; Begg’s test, $P = 0.264$; Figure 3). None of the included trials reported any systemic infection caused by the supplemented probiotic organisms.

DISCUSSION

The results of our meta-analysis indicated that administration of prophylactic probiotics could significantly reduce the incidence of LOS in preterm neonates in NICUs. Low heterogeneity, influence analysis, lack of publication bias, and the consistency of results in most subgroups added robustness to our main findings. Our study also provided robust safety data of probiotics utilization in preterm neonates.

Comparison with Previous Studies

Differences between the current meta-analysis and 2 recent meta-analyses should be noted. A meta-analysis by Bernardo...
et al16 in 2013 evaluated the effect of probiotics on sepsis in preterm neonates (gestational age <34 weeks or birth weight <1500 g). The authors included 12 RCTs involving 2907 subjects and concluded that enteral administration of probiotics reduced the incidence of sepsis in preterm neonates, although with no significant difference between groups (RD = -0.03, 95\% CI = -0.05 to -0.00, $I^2 = 47\%$). In another meta-analysis in 201417 focusing on preterm neonates (gestational age <37 weeks or birth weight <2500 g), AlFaleh et al included 19 RCTs involving 5338 subjects and concluded that there was no evidence of probiotic supplementation reducing the risk of nosocomial sepsis (RR 0.91, 95\% CI 0.80–1.03, $I^2 = 37\%$). Several limitations, however, should be noted in the 2 meta-analyses. First, not all trials that met their specific eligibility criteria were included, for example, 6 trials27,30,36,45,51,52 for Bernardo et al and 3 trials28,45,52 for AlFaleh et al, which could potentially lead to publication bias. Second, 1 RCT34 should not be included because of ineligible intervention (probiotics administered with bovine lactoferrin). Third, these pooled results were based on an improper model of fixed effects model because of significant clinical/statistical heterogeneity. Overall, both previous meta-analyses had obvious flaws that might threaten the authenticity of their findings. After the 2 meta-analyses, several studies investigating the effect of probiotics in preterm neonates were published. Our updated meta-analysis included 25 RCTs with a total of 6104 subjects. In contrast with the previous meta-analyses, the current 1 suggested that enteral probiotic supplementation significantly reduced the incidence of LOS in preterm neonates in NICUs. Moreover, low heterogeneity, influence analysis, lack of publication bias, and the consistency of results in most subgroups added robustness to our main findings.

Potential underlying mechanisms by which probiotics might prevent sepsis include competitively colonizing the gut, competitive exclusion of potentially pathogenic luminal bacteria and fungi,55 enhanced mucosal immunoglobulin (Ig) A responses,56 modulation of the gut barrier function and permeability,57 production of antimicrobial peptides,58 and upregulation of immune responses.59 We, however, saw a lack of effect of probiotics in extremely low birth weight infants (ELBW; <1000 g). One probable reason was that our study was not adequately powered to detect its beneficial effect, because only 3 studies involving 771 neonates were included in this subgroup analysis. But, we still cannot exclude the possibility that probiotics may have a lesser effect in ELBW infants, compared with neonates with a birth weight of <1500 g, because of even greater increase in the overall risk of infection.39 In summary, probiotics appear promising as a prevention strategy for LOS, but there are still insufficient data about the efficacy and safety of the use of probiotics in ELBW infants. Hence, high-quality and adequately powered RCTs in ELBW infants are warranted.

TABLE 4. Risk-of-Bias Assessment of the Included Randomized Controlled Trials

Study	Adequate Sequence Generation?	Allocation Concealment?	Blinding of Participants and Personnel	Blinding of Outcome Assessment	Incomplete Outcome Data?	Selective Reporting?	Other Bias?	Overall Risk of Bias
Al-Hosni27	Unclear	Unclear	Yes	Yes	No	No	No	Unclear
Bin-Nun28	Unclear	Unclear	Yes	Yes	Unclear	No	No	Unclear
Braga29	Yes	Yes	Yes	Yes	Yes	No	No	Low
Costalos30	Yes	Yes	Yes	Yes	No	No	No	Low
Dani31,39	Unclear	Unclear	Yes	Yes	Yes	No	No	Unclear
Demirel32	Yes	Yes	Yes	Yes	Yes	No	No	Low
Dilli33	Yes	Yes	Yes	Yes	No	No	No	Unclear
Fernandez-Carroccera34	Yes	Yes	Yes	Yes	No	No	No	Low
Jacobs35	Yes	Yes	Yes	Yes	Yes	No	No	Low
Kitajima36	Unclear	Unclear	Unclear	Yes	Yes	No	No	High
Lin37	Yes	Yes	Yes	Yes	Yes	No	No	Low
Lin38	Yes	Yes	Yes	Yes	Yes	No	No	Low
Manzoni39	Yes	Unclear	Unclear	Unclear	No	No	No	Unclear
Mihatsch40	Yes	Yes	Yes	Yes	No	No	No	Low
Millar41	Unclear	Unclear	Yes	Unclear	No	Yes	Yes	High
Oncel42	Yes	Yes	Yes	Yes	Yes	No	No	Low
Patole43	Yes	Yes	Yes	Yes	No	No	No	Low
Rojas44	Yes	Yes	Yes	Yes	Yes	No	No	Low
Romeo45	Yes	Unclear	Unclear	Unclear	No	No	No	Unclear
Rouge46	Yes	Unclear	Yes	Yes	No	No	No	Low
Roy47	Yes	Unclear	Yes	Unclear	No	No	No	Unclear
Saengtawesin53	Unclear	Unclear	Yes	Unclear	No	Yes	No	High
Samanta48	Unclear	Unclear	Unclear	Unclear	No	Yes	Yes	High
Sar49	Yes	Unclear	Unclear	Unclear	Yes	No	No	Unclear
Sere50	Yes	Unclear	Unclear	Unclear	No	Yes	Yes	High
Stratik51	Unclear	Unclear	Yes	Yes	No	Yes	Yes	High
Umezaki52	Unclear	Unclear	Yes	Unclear	No	No	No	Unclear

Risk of bias was assessed with use of the Cochrane risk-of-bias tool.
FIGURE 2. Effect of probiotics on late-onset sepsis in preterm neonates.

Study or Subgroup	Events	Probiotics Events	Control Events	Risk Ratio	Risk Ratio
	Total	Total	Total	M-H	Random
				95% CI	95% CI
1.1.1 Any sepsis					
Al-Hosni 2012	13	50	16	3.3%	0.83 [0.45, 1.54]
Bin-Nun 2005	31	72	24	5.9%	0.82 [0.86, 2.00]
Braga 2011	40	119	42	7.6%	0.90 [0.63, 1.27]
Costalos 2003	3	51	3	0.6%	0.71 [0.15, 3.30]
Dani 2002	24	295	27	4.3%	0.87 [0.52, 1.48]
Demiril 2013	20	135	21	3.9%	0.96 [0.55, 1.69]
Dilli 2015	8	100	13	2.0%	0.62 [0.27, 1.42]
Fernández-Carrocer 2013	42	75	44	9.7%	0.95 [0.72, 1.26]
Jacobs 2013	72	546	89	9.3%	0.81 [0.61, 1.08]
Ktajima 1997	1	45	0	0.2%	3.07 [0.13, 73.32]
Lin 2005	22	180	36	4.6%	0.63 [0.39, 1.04]
Manzoni 2006	19	39	22	5.8%	0.91 [0.59, 1.40]
Mihatsch 2010	28	91	29	5.8%	0.94 [0.61, 1.45]
Millar 1993	0	10	0	Not estimable	
Oncel 2013	13	200	25	3.2%	0.52 [0.27, 0.99]
Pailole 2012	17	77	12	12.9%	1.40 [0.72, 2.73]
Roes 2012	34	372	40	5.7%	0.86 [0.56, 1.33]
Romeo 2011	3	166	9	0.9%	0.17 [0.05, 0.60]
Rouge 2009	15	45	13	3.3%	1.26 [0.67, 2.34]
Roy 2014	31	56	42	9.6%	0.74 [0.56, 0.98]
Saengtawesin 2004	2	31	1	29%	1.87 [0.18, 19.55]
Samanta 2008	13	91	28	9.5%	0.48 [0.27, 0.88]
Serce 2013	19	104	25	4.3%	0.76 [0.46, 1.29]
Strilzi 2007	0	41	3	0.2%	0.13 [0.01, 1.36]
Umezaki 2010	10	108	22	2.7%	0.42 [0.21, 0.84]
Subtotal (95% CI)	3101	3003	100.0%	0.83 [0.73, 0.94]	

Total events: 480
Heterogeneity: Tau² = 0.02; Chi² = 30.92, df = 23 (P = 0.12); I² = 26%
Test for overall effect: Z = 2.99 (P = 0.003)

1.1.2 Any bacterial sepsis

Study or Subgroup	Events	Probiotics Events	Control Events	Risk Ratio	Risk Ratio
	Total	Total	Total	M-H	Random
				95% CI	95% CI
Al-Hosni 2012	11	50	16	5.1%	0.70 [0.36, 1.36]
Dani 2002	24	295	27	8.1%	0.87 [0.52, 1.48]
Demiril 2013	20	135	21	7.0%	0.96 [0.55, 1.69]
Dilli 2015	8	100	13	0.2%	0.62 [0.27, 1.42]
Fernández-Carrocer 2013	42	75	44	29.4%	0.95 [0.72, 1.26]
Manzoni 2006	15	39	17	4.1%	0.93 [0.54, 1.59]
Mihatsch 2010	28	91	29	12.2%	1.94 [0.61, 1.45]
Oncel 2013	12	200	22	4.9%	0.55 [0.28, 1.07]
Romeo 2011	1	166	5	0.5%	0.10 [0.01, 0.84]
Roy 2014	21	56	33	13.8%	0.64 [0.43, 0.95]
Serce 2013	19	104	25	8.0%	0.76 [0.45, 1.29]
Subtotal (95% CI)	1311	1225	100.0%	0.82 [0.71, 0.95]	

Total events: 201
Heterogeneity: Tau² = 0.00; Chi² = 9.75, df = 10 (P = 0.46); I² = 0%
Test for overall effect: Z = 2.61 (P = 0.009)

1.1.3 Any fungal sepsis

Study or Subgroup	Events	Probiotics Events	Control Events	Risk Ratio	Risk Ratio
	Total	Total	Total	M-H	Random
				95% CI	95% CI
Al-Hosni 2012	2	50	0	1.1%	5.10 [0.25, 103.60]
Manzoni 2006	4	39	5	6.7%	0.84 [0.24, 2.90]
Oncel 2013	1	200	3	2.0%	0.33 [0.03, 3.18]
Romeo 2011	2	166	4	3.7%	0.25 [0.05, 1.34]
Roy 2014	23	56	42	85.4%	0.55 [0.39, 0.78]
Umezaki 2010	1	108	0	1.0%	2.78 [0.11, 67.46]
Subtotal (95% CI)	619	531	100.0%	0.57 [0.41, 0.78]	

Total events: 33
Heterogeneity: Tau² = 0.00; Chi² = 4.64, df = 5 (P = 0.46); I² = 0%
Test for overall effect: Z = 3.47 (P = 0.0005)

Copyright © 2016 Wolters Kluwer Health, Inc. All rights reserved.
The reason why there was a lack of effect of probiotics on NEC in the 2 trials, which were excluded from our meta-analysis, should be discussed. Of note, there was uneven distribution of infection-related risk factors between study and control groups. This uneven baseline characteristics between groups could probably lead to overturn of the real effects. On the other hand, the pathogens causing NEC were most often related to cathereter-related infections in the 2 trials. It is tempting to speculate that probiotics alone are not capable of preventing the invasive procedures inducing infections, because the effects of orally administered probiotics are primarily in the gastrointestinal tract.

Because different probiotic organisms probably have distinct regulatory effects on the host, caution is needed in interpreting our results. Our study indicated that Lactobacillus species or a mixture of 2 or 3 species of probiotics may be more effective in reducing the risk of LOS. A meta-analysis conducted in 2015 also found that effective in reducing the risk of LOS. A meta-analysis conducted in 2015 also found that

Subgroup	Number of Studies	RR (95% CI)	I^2 (%)
Any sepsis	25	0.83 (0.73, 0.94)	26
Any bacterial sepsis	11	0.82 (0.71, 0.95)	0
Any fungal sepsis	6	0.57 (0.41, 0.78)	0
Birth weight, g			
<2500	25	0.83 (0.73, 0.94)	26
<1500	19	0.86 (0.75, 0.97)	18
<1000	3	0.73 (0.45, 1.19)	53
Probiotic organism			
Lactobacillus species	6	0.72 (0.50, 1.03)	51
Bifidobacterium species	6	0.78 (0.48, 1.25)	46
Saccharomyces boulardii	3	0.84 (0.58, 1.22)	29
Mixture	10	0.85 (0.73, 1.00)	29
Probiotic dose*			
$\leq 1 \times 10^8$	10	0.73 (0.55, 0.98)	38
$>1 \times 10^8$	15	0.85 (0.73, 0.99)	20
Time of initiation			
≤ 72 h of age	8	0.73 (0.56, 0.95)	44
At the time of first feed	14	0.89 (0.75, 1.05)	25
When feeds were tolerated	3	0.79 (0.60, 1.03)	0
Duration of intervention			
<6 wk	5	0.88 (0.63, 1.22)	0
≥ 6 wk or to discharge	17	0.79 (0.69, 0.90)	23
Type of milk			
HM	5	0.76 (0.63, 0.91)	9
FM	3	0.76 (0.43, 1.33)	0
HM or FM	17	0.87 (0.73, 1.03)	35
Caesarean delivery rate			
$<\text{median (69%)}$	11	0.80 (0.69, 0.94)	0
$\geq \text{median}$	10	0.85 (0.69, 1.06)	45
Not reported	4	0.73 (0.34, 1.57)	65
Risk of bias			
Low	10	0.86 (0.75, 0.98)	0
Unclear or high	15	0.78 (0.62, 0.98)	43

TABLE 5. Subgroup Analyses for Probiotic Supplementation in the Prevention of Late-Onset Sepsis

All RRs were calculated using random-effects models. CI = confidence interval, FM = formula milk, HM = human milk (mother’s milk and/or donor milk).

One trial (Romeo et al) compared Lactobacillus reuteri (1 $\times 10^9$ CFU/d) with Lactobacillus rhamnosus (6 $\times 10^9$ CFU/d) in separate groups, and 1 trial (Braga et al) did not report definite probiotic doses. Duration of intervention ranged from <6 wk to >6 wk in 3 trials (Bin-Nun et al, Dilli et al, and Patole et al).

Several potential limitations should be taken into consideration when interpreting the results. First, although no statistical heterogeneity was found for the primary outcome, population characteristics, probiotic regimens (various organisms, daily doses, time of initiation, and length of intervention), and type of milk differed across the included studies. We adopted random-effects model to try to account infections caused by supplemental probiotics have been reported. Jenke et al also reported Bifidobacterium septicaemia in an ELBW infant under probiotic therapy. Owing to concerns about the safety issues, studies regarding the efficacy and safety of probiotics in ELBW infants are scant. So, more studies are needed to establish the safety of probiotics in preterm neonates, especially in ELBW neonates.
for this variability. Second, to examine the influence of these clinical factors on the overall pooled estimate and to verify the robustness of our findings, subgroup analyses were conducted and the results were consistent in most selected subgroups. We, however, can only analyze covariates that are available to us from the original articles. Moreover, subgroup analyses were susceptible to type II errors because of relatively small sample sizes. Third, our search language was restricted to only English, which could potentially lead to publication bias. We, however, used a very thorough and comprehensive search strategy yielding 27 RCTs, which made our study the largest review to date, and the funnel plot and formal statistical tests also did not show any publication bias. Finally, our results should be viewed with caution because 15 of 25 trials included in our meta-analysis were of low methodological quality, that is, unclear or high risk of bias. We tried to verify the robustness of our findings by subgroup analyses (Table 5). When stratified by risk of bias, the beneficial effects of probiotics remained in the 2 strata, especially with no statistical heterogeneity among the 10 studies with low risk of bias ($I^2 = 0\%$).

CONCLUSIONS

Current evidence indicates that probiotic supplementation is safe, and effective in reducing the risk of LOS in preterm neonates in NICUs. Further studies are needed to address the optimal probiotic organism, dosing, timing, and duration. High-quality and adequately powered RCTs regarding the efficacy and safety of the use of probiotics in ELBW infants are still warranted.

ACKNOWLEDGMENTS

The authors thank Jin-Liang Chen for his technical assistance and full-text articles acquisition.

REFERENCES

1. Stoll BJ, Hansen N, Fanaroff AA, et al. Late-onset sepsis in very low birth weight neonates: the experience of the NICHD Neonatal Research Network. Pediatrics. 2002;110:285–291.

2. Hornik CP, Fort P, Clark RH, et al. Early and late onset sepsis in very-low-birth-weight infants from a large group of neonatal intensive care units. Early Hum Dev. 2012;88:869–874.

3. Payne NR, Carpenter JH, Badger GJ, et al. Marginal increase in cost and excess length of stay associated with nosocomial bloodstream infections in surviving very low birth weight infants. Pediatrics. 2004;114:348–355.

4. Manzoni P, Rizzollo S, Decembrino L, et al. Recent advances in prevention of sepsis in the premature neonates in NICU. Early Hum Dev. 2011;87:S31–S33.

5. Magne F, Suau A, Pochart P, et al. Fecal microbial community in preterm infants. J Pediatr Gastroenterol Nutr. 2005;41:386–392.

6. Schwartz A, Gruhl B, Lobutz M, et al. Development of the intestinal bacterial composition in hospitalized preterm infants in comparison with breast-fed, full-term infants. Pediatr Res. 2003;54:393–399.

7. Goldmann DA, Leclair J, Macone A. Bacterial colonization of neonates admitted to an intensive care environment. J Pediatr. 1978;93:288–293.

8. Polin RA, Denson S, Brady MT. Strategies for prevention of health care-associated infections in the NICU. Pediatrics. 2012;129:e1085–e1093.

9. Cotten CM, Taylor S, Stoll B, et al. Prolonged duration of initial empirical antibiotic treatment is associated with increased rates of necrotizing enterocolitis and death for extremely low birth weight infants. Pediatrics. 2009;123:55–66.

10. Joint FAO/WHO Working Group Report on Drafting Guidelines for the Evaluation of Probiotics in Food. Guidelines for the Evaluation of Probiotics in Food. London, Canada: Joint FAO/WHO Working Group Report; 2002. Available from: ftp://ftp.fao.org/es/en/food/wgreport2.pdf.

11. Mack DR, Michail S, Wei S, et al. Probiotics inhibit enteropathogenic *E. coli* adherence in vitro by inducing intestinal mucin gene expression. Am J Physiol. 1999;276:G941–G950.

12. Griffiths EA, Duffy LC, Schanbacher BL, et al. In vivo effects of bifidobacteria and lactoferrin on gut endotoxin concentration and mucosal immunity in Balb/c mice. Dig Dis Sci. 2004;49:579–589.

13. Urao M, Fujimoto T, Lane GI, et al. Does probiotics administration decrease serum endotoxin levels in infants? J Pediatr Surg. 1999;34:273–276.

14. Mohan R, Koebnick C, Schildt J, et al. Effects of *Bifidobacterium lactis* Bb12 supplementation on intestinal microbiota of preterm infants: a double-blind, placebo-controlled, randomized study. J Clin Microbiol. 2006;44:4025–4031.

15. Alfaleh K, Anabrees J. Probiotics for prevention of necrotizing enterocolitis in preterm infants. Cochrane Database Syst Rev. 2014;4:CD005496.

16. Bernardo WM, Aires FT, Carneiro RM, et al. Effectiveness of probiotics in the prophylaxis of necrotizing enterocolitis in preterm neonates: a systematic review and meta-analysis. J Pediatr. 2013;89:18–24.

17. Deshpande G, Rao S, Patole S, et al. Updated meta-analysis of probiotics for preventing necrotizing enterocolitis in preterm neonates. Pediatrics. 2010;125:921–930.

18. Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. Ann Intern Med. 2009;151:W65–W94.

19. Higgins JPT, Green S. Cochrane Handbook for Systematic Reviews of Interventions. Version 5.1.0 (updated March 2011). The Cochrane Collaboration, 2011. Available from: www.cochrane-handbook.org.

20. Higgins JP, Altman DG, Gotzsche PC, et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. Br Med J. 2011;343:d5928.

21. Manzoni P, De Luca D, Stronati M, et al. Prevention of nosocomial infections in neonatal intensive care units. Am J Perinatol. 2013;30:81–88.

22. Higgins JP, Thompson SG, Deeks JJ, et al. Measuring inconsistency in meta-analyses. Br Med J. 2003;327:557–560.

23. Egger CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biomometrics. 1994;50:1088–1101.

24. Egger M, Davey Smith G, Schneider M, et al. Bias in meta-analysis detected by a simple, graphical test. Br Med J. 1997;315:629–634.

25. Reuman PD, Duckworth DH, Smith KL, et al. Lack of effect of *Lactobacillus* on gastrointestinal bacterial colonization in premature infants. Pediatr Infect Dis. 1986;5:663–668.

26. Agarwal R, Sharma N, Chaudhry R, et al. Effects of oral *Lactobacillus GG* on enteric microflora in low-birth-weight neonates. J Pediatr Gastroenterol Nutr. 2003;36:397–402.

27. Al-Hosni M, Duenas M, Hawk M, et al. Probiotics-supplemented feeding in extremely low-birth-weight infants. J Perinatol. 2012;32:253–259.
28. Bin-Nun A, Bromiker R, Wilschanski M, et al. Oral probiotics prevent necrotizing enterocolitis in very low birth weight neonates. *J Pediatr*. 2005;147:192–196.

29. Braga TD, da Silva GA, de Lira PI, et al. Efficacy of *Bifidobacterium breve* and *Lactobacillus casei* oral supplementation on necrotizing enterocolitis in very-low-birth-weight preterm infants: a double-blind, randomized, controlled trial. *Am J Clin Nutr*. 2011;93:81–86.

30. Costalos C, Skouteri V, Gounaris A, et al. Enteral feeding of premature infants with *Saccharomyces boulardii*. *Early Hum Dev*. 2003;74:89–96.

31. Dani C, Biadaioli R, Bertini G, et al. Probiotics feeding in prevention of urinary tract infection, bacterial sepsis and necrotizing enterocolitis in preterm infants. A prospective double-blind study. *Biol Neonate*. 2002;82:103–108.

32. Demirel G, Erdove O, Celik IH, et al. *Saccharomyces boulardii* for prevention of necrotizing enterocolitis in preterm infants: a randomized, controlled study. *Acta Paediatr*. 2013;102:e560–565.

33. Dilli D, Aydin B, Fettah ND, et al. The propre-save study: effects of probiotics and prebiotics alone or combined on necrotizing enterocolitis in very low birth weight infants. *J Pediatr*. 2015;166:545–551.

34. Fernandez-Carrocoera LA, Solis-Herrera A, Cabanillas-Ayon M, et al. Double-blind, randomised clinical assay to evaluate the efficacy of probiotics in preterm newborns weighing less than 1500 g in the prevention of necrotising enterocolitis. *Arch Dis Child Fetal Neonatal Ed*. 2013;98:F5–F9.

35. Jacobs SE, Toubin JM, Opie GF, et al. Probiotic effects on late-onset sepsis in very preterm infants: a randomized controlled trial. *Pediatrics*. 2013;132:1055–1062.

36. Kitajima H, Sumida Y, Tanaka R, et al. Early administration of *Bifidobacterium breve* to preterm infants: randomised controlled trial. *Arch Dis Child Fetal Neonatal Ed*. 1997;72:F101–F107.

37. Lin HC, Su BH, Chen AC, et al. Oral probiotics reduce the incidence and severity of necrotizing enterocolitis in very low birth weight infants. *Pediatrics*. 2005;115:1–4.

38. Lin HC, Hsu CH, Chen HL, et al. Oral probiotics prevent necrotizing enterocolitis in very low birth weight preterm infants: a multicenter, randomized, controlled trial. *Pediatrics*. 2008;122:693–700.

39. Manzoni P, Mostert M, Leonessa ML, et al. Oral supplementation with *Lactobacillus casei* subspecies rhamnosus prevents enteric colonization by Candida species in preterm neonates: a randomized study. *Clin Infect Dis*. 2006;42:1735–1742.

40. Mihatsch WA, Vossebak S, Eikmanns B, et al. Effect of *Bifidobacterium lactis* on the incidence of nosocomial infections in very-low-birth-weight infants: a randomized controlled trial. *Neonatology*. 2010;98:156–163.

41. Millar MR, Bacon C, Smith SL, et al. Enteral feeding of premature infants with Lactobacillus GG. *Arch Dis Child Fetal Neonatal*. 1993:69:483–487.

42. Oncel MY, Sari FN, Arayici S, et al. *Lactobacillus reuteri* for the prevention of necrotising enterocolitis in very low birthweight infants: a randomised controlled trial. *Arch Dis Child Fetal Neonatal Ed*. 2014;99:F110–F115.

43. Patole S, Keil AD, Chang A, et al. Effect of *Bifidobacterium breve* M-16 V supplementation on fecal bifidobacteria in preterm neonates: a randomised double blind placebo controlled trial. *PLoS One*. 2014;9:e89511.

44. Rojas MA, Lozano JM, Rojas MX, et al. Prophylactic probiotics to prevent death and nosocomial infection in preterm infants. *Pediatrics*. 2012;130:e1113–e1120.

45. Romeo MG, Romeo DM, Trovato L, et al. Role of probiotics in the prevention of the enteric colonization by *Candida* in preterm newborns: incidence of late-onset sepsis and neurological outcome. *J Perinatol*. 2011;31:63–69.

46. Rouge C, Piloquet H, Butel MJ, et al. Oral supplementation with probiotics in very-low-birth-weight preterm infants: a randomized, double-blind, placebo-controlled trial. *Am J Clin Nutr*. 2009;89:1828–1835.

47. Roy A, Chaudhuri J, Sarkar D, et al. Role of enteric supplementation of probiotics on late-onset sepsis by *Candida* species in preterm low birth weight neonates: a randomized, double blind, placebo-controlled trial. *Am J Med Sci*. 2014;6:50–57.

48. Samanta M, Sarkar M, Ghosh P, et al. Prophylactic probiotics for prevention of necrotizing enterocolitis in very low birth weight newborns. *J Trop Pediatr*. 2009;55:128–131.

49. Sari FN, Dizdar EA, Oguz S, et al. Oral probiotics: *Lactobacillus sporogenes* for prevention of necrotizing enterocolitis in very low birth weight infants: a randomized, controlled trial. *Eur J Clin Nutr*. 2011;65:434–439.

50. Seree O, Benzer D, Gursoy T, et al. Efficacy of *Saccharomyces boulardii* on necrotizing enterocolitis or sepsis in very low birth weight infants: a randomized controlled trial. *Early Hum Dev*. 2013;89:1033–1036.

51. Strastiti Z, Costalos C, Sevastiadou S, et al. The effect of a bifidobacterium supplemented bovine milk on intestinal permeability of preterm infants. *Early Hum Dev*. 2007;83:575–579.

52. Hikaru U, Yayoi S, Hiromichi S, et al. Bifidobacteria prevents preterm infants from developing infection and sepsis. *Int J Probiotics Prebiotics*. 2010;5:33–36.

53. Saengtawesin V, Tangpolkaiwalsak R, Kanjanappatankul W. Effect of oral probiotics supplementation in the prevention of necrotizing enterocolitis among very low birth weight preterm infants. *J Med Assoc Thai*. 2014;97:S20–S25.

54. Manzoni P, Rinaldi M, Cattani S, et al. Bovine lactoferrin supplementation for prevention of late-onset sepsis in very low-birth-weight neonates: a randomized trial. *J Am Med Assoc*. 2009;302:1421–1428.

55. Jacobsen CN, Rosenfeldt Nielsen V, Hayford AE, et al. Screening of probiotic activities of forty-seven strains of *Lactobacillus* spp. by in vitro techniques and evaluation of the colonization ability of five selected strains in humans. *Appl Environ Microbiol*. 1999;65:4949–4956.

56. Gronlund MM, Arvillommi H, Kero P, et al. Importance of intestinal colonisation on the maturation of humoral immunity in early infancy: a prospective follow up study of healthy infants aged 0–6 months. *Arch Dis Child Fetal Neonatal Ed*. 2000;83:F186–F192.

57. Ahnre S, Hagslatt ML. Effect of lactobacilli on paracellular permeability in the gut. *Nutrients*. 2011;3:104–117.

58. De Weirh R, Crabbe A, Roos S, et al. Glyceral supplementation enhances *L. reuteri*‘s protective effect against *S. typhimurium* colonization in a 3-D model of colonic epithelium. *PLoS One*. 2012;7:e37116.

59. Kukkonen K, Nieminen T, Poussa T, et al. Effect of probiotics on vaccine antibody responses in infancy; a randomized placebo-controlled double-blind trial. *Pediatr Allergy Immunol*. 2006;17:416–421.

60. Shanahan F. Molecular mechanisms of probiotic action: it’s all in the strains! *Gut*. 2011;60:1026–1027.

61. Athalya-Jape G, Rao S, Patole S. *Lactobacillus reuteri* DSM 17938 as a probiotic for preterm neonates: a strain-specific systematic review. *J Parenteral Enteral Nutr*. 2015.

62. Panumi M, Abrams SA. Oral lactoferrin for the prevention of sepsis and necrotizing enterocolitis in preterm infants. *Cochrane Database Syst Rev*. 2015;2:CD007137.

63. Shulman RJ, Schanler RJ, Lau C, et al. Early feeding, antenatal glucocorticoids, and human milk decrease intestinal permeability in preterm infants. *Pediatr Res*. 1998;44:519–523.
64. Bergmann H, Rodriguez JM, Salminen S, et al. Probiotics in human milk and probiotic supplementation in infant nutrition: a workshop report. *Br J Nutr.* 2014;112:1119–1128.

65. Repa A, Thanhaeuser M, Endress D, et al. Probiotics (*Lactobacillus acidophilus* and *Bifidobacterium bifidum*) prevent NEC in VLBW infants fed breast milk but not formula. *Pediatr Res.* 2015;77:381–388.

66. Ohishi A, Takahashi S, Ito Y, et al. *Bifidobacterium* septicemia associated with postoperative probiotic therapy in a neonate with omphalocele. *J Pediatr.* 2010;156:679–681.

67. Land MH, Rouster-Stevens K, Woods CR, et al. *Lactobacillus* sepsis associated with probiotic therapy. *Pediatrics.* 2005;115:178–181.

68. Kunz AN, Noel JM, Fairchok MP. Two cases of *Lactobacillus* bacteremia during probiotic treatment of short gut syndrome. *J Pediatr Gastroenterol Nutr.* 2004;38:457–458.

69. Bertelli C, Pillonel T, Torregrossa A, et al. *Bifidobacterium longum* bacteremia in preterm infants receiving probiotics. *Clin Infect Dis.* 2015;60:924–927.

70. Jenke A, Ruf EM, Hoppe T, et al. *Bifidobacterium* septicaemia in an extremely low-birthweight infant under probiotic therapy. *Arch Dis Child Fetal Neonatal Ed.* 2012;97:F217–F218.

71. Abrahamsson TR, Rautava S, Moore AM, et al. The time for a confirmative necrotizing enterocolitis probiotics prevention trial in the extremely low birth weight infant in North America is now! *J Pediatr.* 2014;165:389–394.