The caseinolytic protease complex component CLPC1 in Arabidopsis maintains proteome and RNA homeostasis in chloroplasts

Item Type	Article
Authors	Zhang, ShouDong; Zhang, Huoming; Xia, Yiji; Xiong, Liming
Citation	Zhang S, Zhang H, Xia Y, Xiong L (2018) The caseinolytic protease complex component CLPC1 in Arabidopsis maintains proteome and RNA homeostasis in chloroplasts. BMC Plant Biology 18. Available: http://dx.doi.org/10.1186/s12870-018-1396-0.
Eprint version	Publisher’s Version/PDF
DOI	10.1186/s12870-018-1396-0
Publisher	Springer Nature
Journal	BMC Plant Biology
Rights	This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Download date	2024-01-09 02:45:37
Item License	http://creativecommons.org/licenses/by/4.0/
The caseinolytic protease complex component CLPC1 in Arabidopsis maintains proteome and RNA homeostasis in chloroplasts

ShouDong Zhang1,2,*, Huoming Zhang2, Yiji Xia1,3,*, Liming Xiong2,*

1 Department of Biology, Hong Kong Baptist University, Hong Kong; 2 Division of Biological and Environmental Sciences and Technology, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; 3 Partner State Key Laboratory of Agrobiotechnology, Chinese University of Hong Kong, Hong Kong

\textbf{Supplementary data}

Table S1. Proteases accumulation in seedlings of different genotypes

proteases	1st batch	2nd batch (2 biological replicates)	Nishimura et al (2013)					
	symbol	accession	4-week-old (LD)	2-week-old (LD)	6-week-old (BD)			
		cpc1/WS	ΔN/WS	CP/WS	cpc1/WS	ΔN/WS	CP/WS	cpc1/1-wt
CLPP1	ATCG06870.1	4.7±0.3	3.2±0.1	1.0±0.2	1.5±0.0	1.2±0.2	1.0±0.0	1.2
ClpR3	AT1G09130.1	4.0±0.1	2.5±0.6	0.7±0.1	1.8±0.0	1.4±0.1	0.7±0.2	1.4
ClpT1	AT4G25370.1	4.4±0.3	2.6±0.2	0.9±0.1	1.9±0.7	1.2±0.4	1.0±0.0	2.1
CLPR1	AT1G48970.1	4.1±1.5	2.3±0.5	0.9±0.1	2.3±0.9	1.5±0.4	0.7±0.0	1.9
CLPC2	AT3G48870.2	4.0±1.1	3.1±0.5	1.4±0.1	1.5±0.1	1.7±0.0	0.8±0.0	2.5
CLPR2	AT1G12410.1	3.8±0.3	2.7±0.1	0.8±0.1	2.4±0.7	1.5±0.4	0.8±0.1	2.1
CLPP4	AT5G45390.1	3.8±0.2	2.6±0.2	0.7±0.1	2.0±0.3	1.6±0.3	0.7±0.1	1.3
CLPP6	AT1G17560.1	3.4±0.3	2.9±0.3	0.9±0.1	1.7±0.5	1.7±0.3	0.7±0.1	3.6
CLPP3	AT1G66670.1	3.3±0.3	2.6±0.2	0.9±0.2	1.5±0.2	1.3±0.1	0.7±0.3	1.0
CLPR4	AT4G17040.1	3.1±1.0	2.0±0.4	0.9±0.1	2.0±0.2	1.6±0.1	0.7±0.2	1.5
ClpT2	AT4G12060.1	3.0±0.2	2.1±0.1	0.9±0.1	1.9±0.2	1.5±0.1	1.1±0.1	1.4
CLPB3	AT5G15450.1	2.3±0.9	1.6±0.2	1.1±0.1	2.3±0.3	1.5±0.1	0.7±0.0	3.4
PREP1	AT3G19170.1	4.0±0.5	2.5±0.2	0.9±0.0	1.7±0.1	1.7±0.1	0.6±0.0	1.8
DegP2	AT2G47940.1	3.6±1.1	2.7±0.5	1.2±0.2	1.3±0.2	1.4±0.2	1.0±0.3	2.5
LON	AT1G75460.1	2.5±0.0	2.7±0.1	1.1±0.0	3.0±0.1	2.3±0.1	1.3±0.1	n.a
FTSH12	AT1G79560.1	2.0±0.1	2.0±0.2	0.9±0.0	1.5±0.1	1.9±0.0	1.1±0.0	1.2
AraSP	AT2G32480.1	1.4±0.4	1.2±0.2	1.0±0.0	2.0±0.1	1.6±0.2	1.1±0.1	1.4
DegP1	AT3G27925.1	0.7±0.1	0.9±0.0	1.0±0.0	0.8±0.0	0.8±0.0	1.2±0.1	n.a

Notes:

1. WS: wild type; \textit{cpc1}: the \textit{cpc1} mutant; ΔN, N-terminal (1-93 amino acid) deleted CLPC1 complementary line; CP, full-length CLPC1 complementary line, LD, long-day; SD, short-day.
2. The first batch dataset was from 4-week-old seedlings with three technical replicates. The second batch was from 2-week-old seedlings with two biological replicates and each biological replicate included 3 technical replicates.
3. Data are means and standard errors of protein abundance relative to the wild type (WS).
4. Data from Nishimura et al (2013) in [27].
Table S2. Primers used in the study.

Primer	Sequence
CLPC1-F	CAATCGACTCCACCGGTCTTT
CLPC1-R	TCCCATAAACCCTTGACATTCT
CLPC2-F	GAGGGTGTTGTAGAAGATGAG
CLPC1-R	TGTCAAGAGGAGGCCTTGTAA
pClpP-F	CGACCCGACGTCACAGACAAA
pClpP-R	TAGCGTGAAGGGAATGCTATAC
ACT2-F	TGCTTATGTCGCTTGTACACT
ACT2-R	CTCCTCAAGCTTCGATGTTATG
rbcL-F	GTGTTGGGATTCAGAAGCTG
rbcL-R	CATCGGATCCACACAGTTC
accD-F	TGTTGAATCCTAATGGCACAAT
accD-R	TTTTGCAGAGTAATACG
atpA-F	CGGAATTCTTCCTCGAGCA
atpA-R	ATGTTGACGGTTTTAGAT
atpH-F	ATCCACTGTTTCTGCTG
atpH-R	TTCCCTCTGCCCTAGGTTG
atpI-F	ATTGGCAATAGGGGTTT
atpI-R	GCCGTAGTTGAATTTT
ccsA-F	CACACTAAGCTGCCAACAGT
ccsA-R	ACAAGAGGCCTGACTAAC
cemA-F	TTTGCCCTGGTTGATCTTC
cemA-R	TGAGCTGTTTCTTGTG
ndhB-F	CCAGAAAGATGCGCATCA
ndhB-R	TCATCAATGGACCTCGAGC
ndhF-F	TTTGCGCTGGTTGAGG
ndhF-R	ATGGTAAACGACCCAAAG
petA-F	CAGAGGACGACATCATA
petA-R	GCCAAAACAACCGATCTAA
petB-F	ATGGGCAGTCAAAATTG
petB-R	AGACGGGGCTGAAAGAGG
psaA-F	GCGAAAGAAATCTGATG
psaA-R	CATCTGCAACAGCCAAT
psbC-F	GACGATGCTCCCATAGCAG
psbC-R	CAGGCGATTACATCTCTT
psbL-F	CAATCAGATCCGAGAAC
psbL-R	GAAATAATTGGAAAATAAACAGCAA
rpl14-F	AGCGGGGCTAGAAGATGGAT
rpl14-R	ACTCGGCGATTGTCATCATA
rpl20-F	TCGAGGCGTAAGACAAAC
rpl20-R	CAGTGACCGGAACTAAAGC
rpoA-F	CGAGATGCGAAGAGCTTTACT
rpoA-R	CCAGACCTTGAGACAATAA
rpoB-F	AAAAGACGGGATACGGGATG
rpoB-R	CTGTGGAATGCACCGATA
rpoC1-F	TCGGATCGAAAGATATAAAT
rpoC1-R	TTAGTTATGGGCTAGCAAAGA
rpoC2-F
rpoC2-R
rpS18-F
rpS18-R
ycf2-F
ycf2-R
ycf3-F
ycf3-R
ycf5-F
ycf5-R
23s rRNA-F
23s rRNA-R
16s rRNA-F
16s rRNA-R
atpB-F
atpB-R
atpE-F
atpE-R
atpF-F
atpF-R
matK-F
matK-R
ndhA-F
ndhA-R
ndhD-F
ndhD-R
ndhK-F
ndhK-R
petD-F
petD-R
psaB-F
psaB-R
psbA-F
psbA-R
psbB-F
psbB-R
psbC-F
psbC-R
psbD-F
psbD-R
rpl16-F
rpl16-R
rpl22-F
rpl22-R
rpl32-F
rpl32-R
rpS2-F

ATGGAGCCGCTAAAGGAGTT
CGTCTGCTAAPACAGCAAC
CAAGCGATCTTTTCTGAGGC
AAAGCTCACTTATTCACCGCTCT
TAGCCCTCGTCATTTGAGTG
GGATCCACTTTTCTGGGGAAT
TCCATATCTCAGCGGCTTG
TTCGGGCAATTAAAGCAAC
GCAGCAAGCGAGCATTTA
GGGCGACTGGTTTACAAAAA
TTACCCGCAAAAGGATTTCC
CGTATCTGGGGAATAAGCA
GATTGACGCGGGACTTAAA
CGTTTCTGTAACAGCAGGAT
CGGGGTCAGTCAAATCTCT
TCCACAAGAAGCTCAGCAA
GTGCAGAGCTCGTCTGAG
GCTCCTTCAGCGAGTTTCTC
TACGGGTCATCTGGCCCATC
ATCTTTTGGTCCAGAATGC
TTTTTCTACGCAAGCGGTCT
TGAGGCGCACAATATCCAT
TTAGGTGCTGCTCGAGCTG
TGGAGAATGGGAATAGAGTCGAC
TCCCGAGAAAGAATGATCCATA
GCAGTCCGCAATTGGAAGAT
CGTGGGAGCATCTGGGACTT
TCCCTTTGCAACTCTTGG
CCGCTGTAAGAAACATTATT
GGACCCCCACTGCTCGTGA
ATGCTTAATGGCCCCAATT
GACGAGCAATGAAGTCGATA
CTATGGGCTGCTCTCTGA
CGTGCGACTTTAATGTGA
TAGCACCAGTCCAAATGTT
ACTCCCACTAATGACCCTT
AGCCCAAATCTGCAAGAA
CACAATCTTTTGGGTTGCT
CCATCAAGCAGAATACCT
TGTCAGCAGTTGGGAAA
GCATTTTGGATCCGGCTATT
AAAGCTGAGTGAACCAAGG
TGTCATAGGGCTCCACTA
CTCGAAAAAGCGTATCGAAAA
TGAAAAGCTTTTACAGATGTC
GGGCTCGGTGTCATTATGGT
Table S3. Peptides identified of CLPC1 in SVR7-GFP CO-IP experiment

accession No.	Protein name	probability	percentage of total spectra	unique spectra	total spectra	Peptide sequence	Mascot ion score	Modifications identified by spectrum
AT5G50920.1	ATHSP93-V	100.00%	0.16%	4	7	HIEKOPALER	18.5	
AT5G50920.1	ATHSP93-V	100.00%	0.16%	4	7	HIEKOPALER	26.6	
AT5G50920.1	ATHSP93-V	100.00%	0.16%	4	7	RIIGQDEAVK	37.4	
AT5G50920.1	ATHSP93-V	100.00%	0.16%	4	7	RIIGQDEAVK	37.5	
AT5G50920.1	ATHSP93-V	100.00%	0.16%	4	7	VIMLAQEEAR	50.2	Oxidation (+16)
AT5G50920.1	ATHSP93-V	100.00%	0.16%	4	7	VLENLADPSNIR	30.4	
AT5G50920.1	ATHSP93-V	100.00%	0.16%	4	7	VLENLADPSNIR	48.5	
Figure S1. Relative expression levels of sense transcripts in the clpc1 mutant and its complementation lines. Shown are means and SD from 3 replicates. qRT-PCR was conducted using gene-specific primers (Table S2) normalized against the expression of the ACTIN2 gene. WS, the wild type; clpc1, the clpc1 mutant; ΔN-CP, clpc1 expressing N-terminus-truncated CLPC1; CP, clpc1 expressing the full-length wild-type CLPC1.

PEP (plastid encoded DNA-dependent RNA polymerase) genes relative transcript level

- **rpoA relative expression**
 - WS: 2.0
 - clpc1: 3.0
 - ΔN-CP: 2.0
 - CP: 1.5

- **rpoB relative expression**
 - WS: 2.5
 - clpc1: 3.0
 - ΔN-CP: 1.0
 - CP: 1.5

- **rpoC1 relative expression**
 - WS: 1.0
 - clpc1: 3.0
 - ΔN-CP: 1.5
 - CP: 1.0

- **rpoC2 relative expression**
 - WS: 1.0
 - clpc1: 3.0
 - ΔN-CP: 2.0
 - CP: 1.5

Chloroplast encoded photosystem gene relative transcript level

- **psaA relative expression**
 - WS: 2.0
 - clpc1: 3.0
 - ΔN-CP: 2.0
 - CP: 1.5

- **psaB relative expression**
 - WS: 2.0
 - clpc1: 3.0
 - ΔN-CP: 1.0
 - CP: 1.5

- **psaC relative expression**
 - WS: 2.0
 - clpc1: 3.0
 - ΔN-CP: 1.0
 - CP: 1.5

- **psbB relative expression**
 - WS: 2.0
 - clpc1: 3.0
 - ΔN-CP: 1.0
 - CP: 1.5
Figure S2. Over-expressing CLPC2 in clpc1 mutant partially or fully restored the chloroplast RNA level.
Figure S3. Schematic diagram to show the plant materials we used.

- **WT** (WS background)
- **clpc1** mutant (WS background)
- **ΔN** (N-terminal deleted CLPC1 overexpressed in clpc1 mutant)
- **CP** (CLPC1 overexpressed in clpc1 mutant)

1st batch

- 4-week old plants (1 biological replicate, 3 technical replicates)

2nd batch

- 2-week old plants (2 biological replicates, 3 technical replicates)

Note: Plant materials (all the plant materials used for proteomics are from Dr. Hsou-min Li (Chu & Li, 2012), and were grown at 21 degree with 16h light and 8h dark)

Supplementary dataset 1. **Spectral examples of 4 proteins from our iTRAQ-based proteomics analysis**

Four proteins with each having two peptides and each peptide having two spectra (HCD and CID spectra) were shown below. The protein quantitation value was obtained by the weighted ratios of iTRAQ reporters from all identified peptides that belonged to the protein (enlarged iTRAQ reporter region was shown in the first spectral).

1. AT3G53700.1 [| Symbols: MEE40 | Pentatricopeptide repeat (PPR) superfamily protein |
 a) Matched peptides: ENQVEEATELAR
HCD-spectral matched to TAIR10 database with iTRAQ reporter region (zoom in)

CID-spectral matched to TAIR10 database

b) Matched peptides: SQPDDSAALR
HCD-spectral matched to TAIR10 database

CID-spectral matched to TAIR10 database
2. AT4G16390.1 [† Symbols: SVR7 | pentatricopeptide (PPR) repeat-containing protein
 a) Matched peptides: **EVILYNVTMK**

HCD-spectral matched to TAIR10 database

CID-spectral matched to TAIR10 database
b) Matched peptides: **YGDDALAIYR**

HCD-spectral matched to TAIR10 database

![HCD-spectral matched to TAIR10 database](image1)

CID-spectral matched to TAIR10 database

![CID-spectral matched to TAIR10 database](image2)
3. ATCG01060.1 | Symbols: PSAC | iron-sulfur cluster binding; electron carriers; 4 iron, 4 sulfur cluster binding

a) Matched peptide: IYDTCIGCTQCVR

HCD-spectral matched to TAIR10 database

CID-spectral matched to TAIR10 database
b) Matched peptide: ACPTDVLEMIPWDGCK

CID-spectral matched to TAIR10 database (HCD spectral is poor so no match to database)

c) Matched peptide: CESACPTDFLSVR

HCD-spectral matched to TAIR10 database

CID-spectral matched to TAIR10 database
4. ATCG00020.1 [| Symbols: PSBA | photosystem II reaction center protein A

a) Matched peptide: **ETTENESANEGYR**

HCD-spectral matched to TAIR10 database

![HCD-spectral matched to TAIR10 database diagram]

CID-spectral matched to TAIR10 database

![CID-spectral matched to TAIR10 database diagram]
b) Matched peptide: **LIFQYASFNNSR**

HCD-spectral matched to TAIR10 database

CID-spectral matched to TAIR10 database