Antioxidant therapy in acute, chronic and post-endoscopic retrograde cholangiopancreatography pancreatitis: An updated systematic review and meta-analysis

Maziar Gooshe, Amir Hossein Abdolghaffari, Shekoufeh Nikfar, Parvin Mahdaviani, Mohammad Abdollahi

Abstract

AIM: To investigate the efficacy and adverse effects of antioxidant therapy in acute pancreatitis (AP), chronic pancreatitis (CP) and post-endoscopic retrograde cholangiopancreatography pancreatitis (PEP).

METHODS: PubMed, Scopus, Google Scholar, Cochrane library database, and Evidence-based medicine/clinical trials published before August 2014 were searched. Clinical and laboratory outcomes of randomized trials of antioxidant therapy in patients with AP, CP and PEP were included. The methodological quality of the trials was assessed by the Jadad score based on the description of randomization, blinding, and dropouts (withdrawals). The results of the studies were pooled and meta-analyzed to provide estimates of the efficacy of antioxidant therapy.

RESULTS: Thirty four trials out of 1069 potentially relevant studies with data for 4898 patients were
Gooshe M et al. Antioxidant therapy in pancreatitis

INTRODUCTION

Pancreatitis is an inflammatory metabolic disorder, which is a major cause of physical and socioeconomic loss worldwide[1-3]. Generally, pancreatitis is categorized into two different entities of acute and chronic[4].

Acute pancreatitis (AP) is sudden painful inflammation of the pancreas, basically caused by tissue destruction as a consequence of innate immune-induced epithelial stress pathways[5]. The most common cause of gut-related hospitalization in the United States is AP[6]. Several complicated factors are associated with the development of AP; however, alcohol abuse and ductal obstruction caused by gallstones or bacterial infection are the main factors[7].

Furthermore, pancreatitis remains the most common adverse event of endoscopic retrograde cholangiopancreatography (ERCP). The incidence of post-ERCP pancreatitis (PEP) varies widely, ranging from 1% to 40% in the normal population, to as high as 67% in high-risk patients[7]. While investigations toward preventing or limiting the complications of PEP with pharmacological agents have drawn much attention, these have so far had limited success.

Chronic pancreatitis (CP) is a progressive fibro-inflammatory disorder, representing a continuum from a first inflammatory episode to parenchymal fibrosis and functional insufficiency[8]. While alcohol is the most frequent causative factor in the development of chronic pancreatitis, idiopathic, genetic, and autoimmune factors are considered less frequent causes[9]. CP can eventually give rise to several complications that should be treated accordingly. Principally, the only observable symptom in chronic pancreatitis is pain[10].

Reactive oxidative species (ROS) are inevitable epiphenomenon or the cause of vital processes, particularly aerobic metabolism. When production of ROS exceeds their catabolism in any physiologic and pathologic conditions, oxidant-derived cellular injury can occur which is known as oxidative stress[10,11].

Interestingly, there is ample evidence suggesting that oxidative stress is a common pivotal factor in the pathogenesis of AP, CP and PEP[12]. While an extensive and multilayered antioxidant defense system is present in the human body, dietary intake can play a crucial role in strengthening antioxidant capacity within the blood[13,14]. Thus, it is not surprising that the use of antioxidants have positive effects in pancreatitis.

The question of whether antioxidant supplements might protect against pancreatitis has drawn much attention in recent years, and a meta-analysis has shown some positive effects[15], although the results of randomized trials have been contradictory. The present systematic review with meta-analyses was conducted to critically update the knowledge on the beneficial or harmful effects of antioxidant supplementation in the
management of AP, CP and PEP.

MATERIALS AND METHODS

Data sources
All randomized clinical trials (RCTs) evaluating antioxidants for the treatment of pain, hospitalization, C reactive protein (CRP) and serum amylase in CP, AP and the severity and rate of PEP were included. Data were searched from PubMed, Scopus, Google Scholar, Cochrane library database, and Evidence-based medicine/clinical trials published before August 2014 were searched.

The search terms were as follows: AP, CP, PEP, pancreatic inflammation, antioxidant, vitamin, superoxide dismutase, manganese, glutamine, butylated hydroxyanisole, taurine, glutathione, curcumin, catalase, peroxidase, lutein, xanthophylls, selenium, riboflavin, zinc, carotenoid, cobalamin, retinol, alpha-tocopherol, ascorbic acid, beta-carotene, carotene and all MeSH terms of pharmacologically active antioxidants. The studies were limited to clinical trials and those written in the English language.

Assessment of trial quality
The Jadad score, which indicates the quality of the studies based on their description of randomization, blinding, and dropouts (withdrawals) was used to assess the methodological quality of trials[14]. The quality range scales from 0 to 5 points with a score of 2 or less for a low quality report and a score of at least 3 for a high quality report. The description of this score is as follows: (1) whether randomized (yes = 1 point, no = 0); (2) whether randomization was described appropriately (yes = 1 point, no = 0); (3) double-blind (yes = 1 point, no = 0); (4) was the double-blinding described appropriately (yes = 1 point, no = 0); and (5) whether withdrawals and dropouts were described (yes = 1 point, no = 0). The quality score ranges from 0 to 5 points; a low-quality report score is ≤ 2 and a high-quality report score is at least 3.

Study selection
Data synthesis was conducted by three reviewers who read the title and abstract of the search results separately to eliminate duplicates, reviews, case studies, and uncontrolled trials. The inclusion criteria were that the studies should be clinical trials on the use of an antioxidant for the treatment or prevention of pancreatitis. Outcomes of the studies were not the point of selection and all studies that analyzed the effects of an antioxidant on pancreatitis, from pain reduction to changes in plasma cytokines, were included.

Statistical analysis
Data from selected studies were extracted in the form of 2 × 2 tables by study characteristics. Included studies were weighted by effect size and pooled. Data were analyzed using Statsdirect software version 3.0.146. Relative risk (RR) and 95% confidence intervals (95%CI) were calculated using Mantel-Haenszel, Rothman-Boice (for fixed effects) and DerSimonian-Laird (for random effects) methods. Standardized effect size and 95%CI were calculated using Murow-Oxman (for fixed effects) and Der Simonian-Laird (for random effects) methods. The Cochran Q test was used to test heterogeneity and P < 0.05 was considered significant. In the case of heterogeneity or few included studies, the random effects model was used. Egger and Begg-Mazumdar tests were used to evaluate publication bias indicators in funnel plots.

RESULTS
From the 1069 studies identified through the literature search, 34 randomized controlled trials were identified as eligible (4898 patients; 551 AP, 673 CP and 3674 PEP) (Figure 1). Of these, 12 trials used antioxidant therapy in AP (Table 1)[17-28], 12 trials in CP (Table 2)[28-39] and 11 trials in PEP (Table 3)[40-50].

In these 35 papers, the Jadad score was 5 in 12 papers (34%), 4 in 9 (25%), 3 in 8 (22%), 2 in 5 (14%) and only one study scored 1 (Tables 1-3).

Furthermore, the effects of early discontinuation were minimized by the collection of updates, follow-up and investigated in the analyses.

In each study, patients used antioxidant therapy in order to treat or prevent pancreatitis, although various methods of quantifying outcomes were employed. Tables 1, 2, and 3 detail the characteristics of the trials. In these cases, only the results for length of hospital stay in AP patients, serum CRP in AP patients, pain reduction in CP patients, the incidence and severity of all types of PEP in patients undergoing ERCP, and serum amylase in patients undergoing ERCP were included in the meta-analysis.

Antioxidant therapy in AP
In the context of AP, ten of twelve studies assessed clinical presentations, as outcomes of antioxidant therapy[17,22,24,25,27,28]. One of four studies reported that the mortality rate was reduced following antioxidant therapy[19]. Four of eight studies showed a significantly shorter hospital stay in the treatment groups[17,19,24,25]. In addition, four of eight trials reported a reduction in complications and organ dysfunction[17,19,21,24]. However, one study showed that antioxidant therapy did not alleviate pain in AP[28].

On the other hand, ten of twelve studies assessed laboratory outcomes, as outcomes of antioxidant therapy[17,18,20-26,28]. Three of five studies showed a significant increase in serum free radical activity and a significant increase in serum antioxidant levels[17,24,28].
Gooshe M et al. Antioxidant therapy in pancreatitis

1069 potentially relevant articles from electronic search

93 excluded because of duplication
897 reports excluded on the basis of title and abstract

79 reports retrieved

45 reports excluded upon full text search

34 eligible controlled clinical trials included in the systematic review and meta-analyses

Figure 1 Flow diagram of study selection.

Ref.	Drug/supplements	Study design	Jadad score	Participants	Treatment (intervention)	Outcome (results)	Adverse effects/events
Bansal et al[18], 2011	Combined antioxidant (vitamin A, vitamin C, vitamin E)	Single-center, prospective randomized, open-label with blinded endpoint	4	39 patients with severe AP	19 patients; combined antioxidants: 1000 mg vitamin C in 100 mL normal saline, 200 mg vitamin E oral, and 1000 IU vitamin A intramuscularly; per day; for 14 d	Multi-organ dysfunction; Length of hospital stay	Serum GSH↑ Serum SOD↓
Sateesh et al[17], 2009	Combined antioxidant (vitamin C, N-acetyl cysteine, antoxyl forte)	Randomized; placebo-controlled	3	53 patients with AP	23 patients; combined antioxidants: 500 mg vitamin C, 200 mg 8 hourly N-acetyl cysteine and 1 capsule hourly antoxyl forte; per day; for 7 d	Length of hospital stay and complications ↓	Serum MDA↑ TBARS↓ SOD↓
Xue et al[19], 2008	Glutamine	Randomized;	1	80 patients with severe AP	38 patients; 100 mL/d of 20% AGD intravenous infusion; for 10 d; starting on the day 1 (Early treatment)	Infection rate ↓ Operation rate ↓ Mortality ↓ Hospitalization ↓ Duration of ARDS ↓ Renal failure ↓ Acute hepatitis ↓ Encephalopathy ↓ Enteroparalysis ↓	TAC ↓ Vitamin C↑

Table 1 Controlled clinical trials of antioxidants in patients with acute pancreatitis
Study	Intervention	Design	Study Population	Control Population	Outcomes	Comparison
Fuentes-Orozco et al.	Glutamine	Randomized; double blind; controlled	44 patients with AP	22 patients; 0.4 g/kg per day of L-alanyl-L-Glutamine in standard TPN; 10 d	Duration of shock ↓ 15 d APACHE II core ↓ Infectious morbidity ↓ Hospital stay day ↓ Mortality ↓ Serum IL10 ↑ Serum IL-6 ↓ CRP ↓ Ig A ↑ Protein ↑ Albumin ↑ Leucocyte ↓	
Sahin et al. 2007	Glutamine enriched total parenteral nutrition (TPN)	Randomized; double blind; placebo-controlled	40 patients with AP	20 patients; 0.3 g/kg per day glutamine; for 7-15 d	20 patients; placebo Duration of shock ↓ APACHE II core ↓ Infectious morbidity ↓ Hospital stay day ↓ Mortality ↓ Complication rates ↓ Total lymphocyte ↑ Nitrogen balance was (+) in treated group vs (−) in control group	
Siriwardena et al. 2008	Combined antioxidant (N-acetylcysteine, selenium, vitamin C)	Randomized; double blind; placebo-controlled	43 patients with severe AP	22 patients; N-acetylcysteine, selenium and vitamin C; for 7d	21 patients; placebo Organ dysfunction ↓ APACHE-II Hospitalization ↑ All case mortality ↑ CRP ↑ CAPAP ↓ Serum lipase ↓ Amylase activities↓ CRP ↓ Serum vitamin C ↓ Serum selenium ↓ GSH/GSSG ratio ↓ CRP²	
Pearce CB et al. 2006	Glutamine, arginine, tributyrin and antioxidants	Randomized; double blind; placebo-controlled	31 patients with severe AP	15 patients; glutamine, arginine, tributyrin and antioxidants; for 3 d; If patients required further feeding the study was continued up to 15 d	16 patients; placebo isocaloric isonitrogenous control feed was undertaken Organ dysfunction ↓ APACHE-II Hospitalization ↑ All case mortality ↑ CRP ↑ CAPAP ↓ Serum lipase ↓ Amylase activities↓ CRP ↓ Serum vitamin C ↓ Serum selenium ↓ GSH/GSSG ratio ↓ CRP²	
Du et al. 2003	Vitamin C	Randomized; controlled	84 patients with AP	44 patients; 1g/d; for 5 d	Hospitalization ↓ Deterioration of disease ↓ Improvement of disease ↑ Cure rate ↑ Hypernatremia ↑ Plasma vitamin C ↑ Plasma liperoxidase ↑ Plasma vitamin E ↑ Plasma β-carotene ↑ Whole blood glutathione ↑ Activity of erythrocyte superoxide dismutase ↑ Erythrocyte catalase ↑	
Ockenga et al. 2002	Glutamine	Randomized; double blind; controlled	28 patients with AP	Standard TPN which contains 0.3 g/kg per day L-alanine-L-glutamine; at least 1 wk	Hospitalization ↓ Duration of TPN ↓ Cost of TPN ↑ Cholinesterase ↑ Albumin ↑	

Gooshe M et al. Antioxidant therapy in pancreatitis
Table 2 Controlled clinical trials of antioxidants in patients with chronic pancreatitis

Ref.	Drug/supplements	Study design	Jadad score	Participants	Treatment (intervention)	Outcome (results)	Adverse effects/events
Dhingra et al[29], 2013	Combined antioxidant (organic selenium, vitamin C, \(\beta\) carotene, vitamin E, methionine)	Randomized; placebo-controlled	3	61 patients with CP	31 patients; 600 Hg of organic selenium, 0.54 g of vitamin C, 9000 IU of \(\beta\) carotene, 270 IU of vitamin E, and 2 g of methionine	30 patients; placebo	Number of painful days per month ↓; Number of analgesic tablets per month ↓
Shah et al[30], 2013	Combined antioxidant (vitamin C, vitamin E, \(\beta\) carotene, selenium, methionine)	Randomized; double-blind; placebo-controlled	5	14 patients with CP	7 patients; Antox tablet: vitamin C, vitamin E, \(\beta\) carotene, selenium, methionine (Pharma Nord, Morpeth, United Kingdom); 6 m	7 patients; placebo	Opiate usage

No significant difference between groups. ↑: Significant increase as compared with control; ↓: Significant decrease as compared with control; TBARS: Thiobarbituric acid reactive substances; FRAP: Ferric reducing antioxidant power; SOD: Superoxide dismutase; AGD: Alanyl-glutamine dipeptide; CRP: C-reaction protein; MDA: Malondialdehyde; LDH: Lactate dehydrogenase; APACHE II: Acute Physiology and Chronic Health Evaluation II; GSH: Glutathione; TPN: Total parenteral nutrition; AST: Aspartate aminotransferase; ALT: Alanine transaminase; CAPAP: Carboxypeptidase B activation peptide; BUN: Blood urea nitrogen.
Authors	Interventions	Study Design	No. of Patients (No. of Patients)	Interventions/Results	
Sirwardena et al.^[31], 2012	Combined antioxidant (selenium, d-a-tocopherol acetate, ascorbic acid, L-methionine)	Randomized; double blind; placebo-controlled	5	70 patients with CP, Antox tablet: 38.5 mg selenium Yeast, 113.4 mg d-a-tocopherol acetate, 126.3 mg ascorbic acid, 480 mg L-methionine; per d; for 6 m	Quality of life↑ Average daily pain scores↑ Opiate use↑ Number of hospital admissions↑ Outpatient visits↑ Serum vitamin C↑ Serum vitamin E↑ Serum beta carotene↑ Serum selenium↑ Increased frequency of stool, occasional diarrhea, bad taste, and heartburn with nausea
Shah et al.^[32], 2010	Combined antioxidant (vitamin C, vitamin E, β carotene, selenium, methionine)	Randomized; placebo-controlled	2	137 patients with CP, Antox tablet: vitamin C, vitamin E, β carotene, selenium, methionine (Pharma Nord, Morpeth, United Kingdom); at least 6 m	Median visual analogue pain score↑ Cognitive, emotional, social, physical and role function↑ Analgesics and opiate usage↑
Bhardwaj et al.^[33], 2009	Combined antioxidant (organic selenium, vitamin C, β-carotene, α-tocopherol and methionine)	Randomized; double blind; placebo-controlled	5	147 patients with CP, combined antioxidants: 600 μg organic selenium, 0.54 g ascorbic acid, 9000 IU β-carotene, 270 IU α-tocopherol and 2 g methionine (Betamore G, Osper Pharmacautics, India); per d; for 6 m	Number of painful days per month↑ Numbers of oral analgesic tablets and parenteral analgesic injections per month↑ Hospitalization↑ Percentage of patients become pain-free↑ Number of man-days lost per month↑ Lipid peroxidation (TBARS)↑ Serum SOD↑ Total antioxidant capacity (FRAP)↑ Serum vitamin A↑ Serum vitamin C↑ Serum vitamin E↑ Erythrocyte superoxide dismutase↑ Headache & Constipation↑
Kirk et al.^[34], 2006	Combined antioxidant (selenium, β-carotene, L-methionine, vitamins C and E)	Randomized; double blind; placebo-controlled; crossover	4	72 patients with CP, Antox tablet: 75 mg of selenium, 3 mg β-carotene, 47 mg vitamin E, 150 mg vitamin C, and 400 mg methionine; 4 times per day; for 10 wk	Quality of life↑ Pain↑ Physical and social functioning↑ Health perception↑ Emotional functioning, energy, mental health↑ Plasma selenium↑ Plasma vitamin C↑ Plasma vitamin E↑ Plasma β-carotene↑ Two patients complained of nausea and one of an unpleasant taste during treatment with Antox
Durgaprasad et al.^[35], 2005	Curcumin	Randomized; single blind; placebo-controlled	3	20 patients with tropical pancreatitis (CP), 8 patients; capsule: 500 mg curcumin (95%) with 5 mg of piperine; 3 times per day; for 6 wk	Median visual analogue pain score↑ Severity of Pain↑ Erythrocyte MDA↑ GSH level↑
Banks et al.^[36], 1997	Allopurinol	Randomized, double blind, two-period crossover clinical trial	4	26 patients with CP, Allopurinol: 4 wk 13 patients; 300 mg/d All 13 patients, placebo	Pain↑ Uric acid level↓
While, three of seven trials reported a decrease in inflammatory biomarkers[20,24,28], one trial reported an increase in inflammatory biomarkers[25]. Indeed, three of the five studies demonstrated a significant decrease in CRP levels[20,21,24,25]. In addition, one study reported a reduction in the levels of serum amylase and lipase[21]. It is noteworthy that one of twelve studies assessing the antioxidant therapies reported diarrhea, vomiting and hyponatremia in 5 patients[23].

Antioxidant therapy in CP

In the context of CP, all of the studies (twelve studies) assessed clinical presentations[28-39]. Three of four studies reported that antioxidant therapy improved the quality of life as well as cognitive, emotional, social, physical and role function[32-34]. Two of three studies showed a significantly shorter hospital stay in the treatment groups[33,39]. In addition, six of eleven trials reported a reduction of pain[29,32-34,37-39]. On the other hand, eleven of twelve studies assessed laboratory outcomes, as outcomes of antioxidant therapy[28-39]. Eight of nine studies showed a significant decrease in serum free radical activity and a significant increase in serum antioxidant levels[28-31,33,34,37,38]. Furthermore, one of two trials reported a decrease in inflammatory biomarkers[39]. In addition, one study reported a decrease in the levels of serum amylase[39]. However, three of twelve studies assessing the antioxidant therapies reported adverse effects such as GI complications (nausea, vomiting, dyspepsia, diarrhea, and constipation), unpleasant taste, allergies, heartburn, headaches, general

Study	Intervention	Study Design	Patients	Outcome	Free radical activity ↓	Effects	Notes
Bilton et al[26], 1994	S-adenosyl methionine (SAMe) + Selenium	Randomized, double-blind, crossover/placebo-controlled	5/20	Placebo attack rate and background pain	Serum SAMe ↓	GI complications	No significant difference between groups. ↓: Significant increase as compared with control; ↑: Significant decrease as compared with control; TBARS: Thiobarbituric acid reactive substances; FRAP: Ferric reducing antioxidant power; SOD: Superoxide dismutase; AGD: Alanyl-glutamine dipeptide; CRP: C-reactive protein; MDA: Malondialdehyde; LDH: Lactate dehydrogenase; APACHE II: Acute Physiology and Chronic Health Evaluation II; GSH: Glutathione; TPN: Total parenteral nutrition.
Salim et al[39], 1991	Allopurinol; dimethyl sulfoxide	Randomized, double-blind, crossover/placebo-controlled	4/78	Pain free patients	Serum amylase ↑	General malaise	
Uden et al[37,38], 1990, 1992	Combined antioxidant (selenium, β-carotene, vitamin C, vitamin E, methionine)	Randomized, double-blind, crossover/placebo-controlled	5/28	Pain (McGill) ↓	Serum SAMe ↓	Abdominal pain	
Table 3 Controlled clinical trials for antioxidant management to prevent post-endoscopic retrograde cholangiopancreatography pancreatitis

Ref.	Drug/supplements	Study design	Jadad score	n	Treatment (intervention)	Outcome (results)	Adverse effects/events	Other comments	
Abbasinazari et al.[40], 2011	Allopurinol	Randomized double blind clinical trial	3	74	29 patients; no medication	Rate of PEP³ (11.5% vs 12.5%)	-	-	
Martínez-Torres et al.[41], 2009	Allopurinol	Randomized; double-blind; placebo-controlled	5	170	85 patients; placebo	85 patients; 300 mg oral allopurinol 15 h and 3 h before ERCP	Serum amylase activity ↓ (2.3% vs 9.4%)	21.7% absolute benefit in patients with high-risk procedures favoring allopurinol, no difference in low-risk procedures	
Kapetanos et al.[42], 2009	Pentoxifylline	Randomized; 2	590	205 patients; 400 mg oral Pentoxifylline, 40 h, 32 h, 24 h, 16 h and 8 h before ERCP (total dose 2 g)	205 patients; no medication	Rate of PEP³ (7.3% vs 2.9%)	-	-	
	Octreotide								
Kapetanos et al.[42], 2009	Octreotide	Randomized;	586	205 patients; 0.5 mg subcutaneous octreotide, 64 h, 56 h, 48 h, 40 h, 32 h, 24 h, 16 h and 8 h before ERCP (total dose 4 mg)	205 patients; no medication	Rate of PEP³ (5% vs 2.9%)	TNF-α ↓, IL-6 ↑	-	
Romagnuolo et al.[43], 2008	Allopurinol	Randomized; double blind; placebo-controlled	4	586	293 patients; placebo	293 patients; 300 mg oral allopurinol 60 min before ERCP	Rate of PEP³ (5.5% vs 4.1%)	Disease-related adverse events³, Procedure-related complications³, Hospitalization³	In the non-high-risk group (n = 520), the crude PEP rates were 5.4% for allopurinol and 1.5% for placebo (P = 0.017), favoring placebo, indicating harm associated with allopurinol, whereas in the high-risk group (n = 66), the PEP rates were 6.3% for allopurinol and 23.5% for placebo (P = 0.050), favoring allopurinol
malaise, and abdominal pain[33,34,39].\footnote{No significant difference between groups. ↑: Significant increase as compared with control; ↓: Significant decrease as compared with control; PEP: Post-endoscopic pancreatitis.}

Antioxidant therapy in PEP

In the context of PEP, two of eleven studies showed a significant drop in the rate of PEP[41-46]. In addition, one of two studies reported a significant decrease in the rate of hospitalization in the treatment group[46]. On the other hand, two studies showed that antioxidant therapy did not affect disease-related complications[43,44]. One of four studies assessing laboratory outcomes, reported a significant decrease in serum amylase activity[41]. Moreover, one trial reported a non-significant alteration in urine amylase levels[43]. Also, one of two studies demonstrated a significant decrease in serum TNF[42]. Two of eleven trials reported adverse events such as nausea, diarrhea, vomiting and skin rash[43,47].

Meta-analysis

Effect of antioxidants compared with placebo on length of hospital stay (d) in acute pancreatitis patients: The summary for standardized effect size of mean differences in length of hospital stay in 303 AP patients for antioxidants therapy for six included trials compared to placebo[17,18,20-22,24] was -2.59 with 95%CI: -4.25-(-0.93) (P = 0.002, Figure 2A). The Cochrane Q test for heterogeneity indicated that the studies were not heterogeneous (P = 0.16) and could be combined, but due to publication bias the random effects for individual and summary of effect size for standardized mean was applied. For evaluation of publication bias, Egger regression of normalized effect vs precision for all included studies on length of hospital stay in AP patients treated with antioxidants vs placebo therapy was 2.17 (95%CI: 1.04-3.31, P = 0.006) and Begg-
Mazumdar Kendall’s test on standardized effect vs variance indicated tau= 0.47, \(p = 0.27 \) (Figure 2B).

Effect of antioxidants compared with placebo on serum CRP in acute pancreatitis patients after 5-7 d: The summary for standardized effect size of mean differences in serum CRP in 171 AP patients after 5-7 d for antioxidants therapy for three included trials compared to placebo\(^{20,22,24}\) was \(-9.57\) with 95%CI: -40.61-21.48 \((p = 0.55, \text{Figure 3A}) \). The Cochrane Q test for heterogeneity indicated that the studies were not heterogeneous \((P = 0.56) \) and could be combined, but due to few included trials, the random effects for individual and summary of effect size for standardized mean was applied. Publication bias for included studies for serum CRP in AP patients treated with antioxidants vs placebo therapy could not be evaluated because of too few strata.

Effect of antioxidants compared with placebo on serum CRP in acute pancreatitis patients after 10 d: The summary for standardized effect size of mean differences of serum CRP in 84 AP patients after 10 d for antioxidants therapy for two included trials compared to placebo\(^{20,21}\) was \(-45.16\) with 95%CI: -89.99-(-0.33) \((P = 0.048, \text{Figure 3B}) \). The Cochrane Q test for heterogeneity indicated that the studies were not heterogeneous \((P = 0.44) \) and could be combined, but due to few included trials, the random effects for individual and summary of effect size for standardized mean was applied. Publication bias for included studies for serum CRP in AP patients treated with antioxidants vs placebo therapy could not be evaluated because of too few strata.
Effect of antioxidants compared with placebo on pain reduction in chronic pancreatitis patients:
The summary for standardized effect size of mean differences of pain reduction in 189 CP patients for antioxidants therapy for two included trials compared to placebo\cite{31,33} was -2.13 with 95%CI: -5.87-1.6 (\(p = 0.26\), Figure 4). The Cochrane Q test for heterogeneity indicated that the studies were heterogeneous (\(p = 0.0003\)) and could not be combined, thus the random effects for individual and summary of effect size for standardized mean was applied. Publication bias for included studies of pain reduction in CP patients treated with antioxidants vs placebo therapy could not be evaluated because of too few strata.

Effect of antioxidants compared with placebo on the incidence of all types of PEP in patients undergoing ERCP:
The summary for RR of all types of PEP in patients undergoing ERCP for twelve included trials in eleven studies\cite{40-50} comparing antioxidants to placebo was 1.05 with 95%CI: 0.74-1.5 (\(p = 0.78\), Figure 5A-a). The Cochrane Q test for heterogeneity indicated that the studies were heterogeneous (\(p = 0.02\), Figure 5A-b) and could not be combined, thus the random effects for individual and summary for RR was applied. For evaluation of publication bias Egger regression of normalized effect vs precision for all included studies for “all types of PEP” in 1849 patients treated with antioxidants vs placebo therapy was -0.78 (95%CI: -3.22-1.67, \(p = 0.5\)) and Begg-Mazumdar Kendall’s test on standardized effect vs variance indicated tau= -0.06, \(p = 0.73\) (Figure 5A-c).

Effect of antioxidants compared with placebo on the incidence of severe PEP in patients undergoing ERCP: The summary for RR of severe PEP in patients undergoing ERCP for ten included trials in nine studies\cite{40,42-44,46-50} comparing antioxidants to placebo was 0.92 with 95%CI: 0.43-1.97 (\(p = 0.83\), Figure 5B-a). The Cochrane Q test for heterogeneity indicated that the studies were not heterogeneous (\(p = 0.85\), Figure 5B-b) and could be combined, thus the fixed effects for individual and summary for RR was applied. For evaluation of publication bias, Egger
Figure 4 Individual and pooled effect size for standardized mean for the outcome of “pain in chronic pancreatitis patients” in the studies considering antioxidants compared to placebo therapy in 189 patients.

A-a Relative risk meta-analysis plot (random effects)

Study	Relative Risk (95%CI)
Abbasinazari et al. 2011	0.93 (0.26, 3.25)
Martinez-Torres et al. 2009	0.25 (0.06, 1.00)
Kapetanos et al. 2009-Pentoxifylline	2.50 (1.02, 6.15)
Kapetanos et al. 2009-Octreotide	1.71 (0.65, 4.53)
Romagnuolo Het et al. 2008	1.33 (0.65, 2.73)
Kapetanos et al. 2007	1.85 (0.66, 5.16)
Milewski et al. 2006	0.62 (0.20, 1.93)
Katsinelos et al. 2005-1	0.18 (0.07, 0.48)
Katsinelos et al. 2005-2	1.26 (0.62, 2.55)
Mosler et al. 2005	1.07 (0.72, 1.58)
Lavy et al. 2004	1.05 (0.54, 2.03)
Budzynska et al. 2001	1.53 (0.67, 3.51)
Combined (random)	1.05 (0.74, 1.50)

A-b L’Abbe plot (symbol size represents sample size)

A-c Bias assessment plot
Gooshe M et al. Antioxidant therapy in pancreatitis

B-a

Relative risk meta-analysis plot (fixed effects)

Study	Relative Risk (95% CI)
Abbasinazari et al. 2011	1.53 (0.09, 26.16)
Kapetanos et al. 2009-Pentoxifylline	3.00 (0.25, 36.41)
Kapetanos et al. 2009-Octreotide	3.41 (0.28, 41.42)
Romagnuolo Het et al. 2008	1.00 (0.18, 5.64)
Kapetanos et al. 2007	2.05 (0.27, 15.57)
Katsinelos et al. 2005-1	0.19 (0.02, 2.08)
Katsinelos et al. 2005-2	1.01 (0.06, 17.38)
Mosler et al. 2005	0.97 (0.17, 5.50)
Lavy et al. 2004	0.14 (0.01, 1.46)
Budzynska et al. 2001	3.06 (0.25, 37.05)
Combined (random)	0.92 (0.43, 1.96)

B-b

L'Abbe plot (symbol size represents sample size)

C-a

Relative risk meta-analysis plot (fixed effects)

Study	Relative Risk (95% CI)
Abbasinazari et al. 2011	0.776 (0.104, 5.661)
Kapetanos et al. 2009-Pentoxifylline	1.000 (0.058, 17.271)
Kapetanos et al. 2009-Octreotide	1.138 (0.066, 19.651)
Romagnuolo et al. 2008	1.000 (0.344, 2.911)
Kapetanos et al. 2007	3.075 (0.255, 37.298)
Katsinelos et al. 2005-1	0.041 (0.004, 0.397)
Katsinelos et al. 2005-2	1.411 (0.486, 4.118)
Mosler et al. 2005	0.975 (0.501, 1.895)
Lavy et al. 2004	1.277 (0.355, 4.584)
Budzynska et al. 2001	0.680 (0.138, 3.339)
Combined (random)	0.816 (0.540, 1.232)
Figure 5 Effect of antioxidants compared with placebo therapy on incidence. Individual and pooled relative risk (A-a), heterogeneity indicators for (A-b), and publication bias indicators for (A-c) the outcome of “all types of PEP” in the studies considering antioxidants compared to placebo therapy in 1849 patients undergoing ERCP; individual and pooled relative risk (B-a); Heterogeneity indicators (B-b); and publication bias indicators (B-c) for the outcome of “severe PEP” in the studies considering antioxidants compared to placebo therapy in 1709 patients undergoing ERCP; individual and pooled relative risk (C-a); heterogeneity indicators (C-b); publication bias indicators (C-c) for the outcome of “moderate PEP” in the studies considering antioxidants compared to placebo therapy in 1709 patients undergoing ERCP; individual and pooled relative risk (D-a); heterogeneity indicators (D-b); publication bias indicators (D-c) for the outcome of “mild PEP” in the studies considering antioxidants compared to placebo therapy in 1709 patients undergoing ERCP. PEP: Post-endoscopic retrograde cholangiopancreatography pancreatitis; ERCP: Endoscopic retrograde cholangiopancreatography.
regression of normalized effect vs precision for all included studies for “severe PEP” in 1709 patients treated with antioxidants vs placebo therapy was 0.21 (95%CI: -2.12-2.54, P = 0.84) and Begg-Mazumdar Kendall’s test on standardized effect vs variance indicated tau= 0.2, P = 0.48 (Figure 5B-c).

Effect of antioxidants compared with placebo on the incidence of moderate PEP in patients undergoing ERCP: The summary for RR of moderate PEP in patients undergoing ERCP for ten included trials in nine studies[40,42-44,46-50] comparing antioxidants to placebo was 0.82 with 95%CI: 0.54-1.23 (P = 0.33, Figure 5C-a). The Cochrane Q test for heterogeneity indicated that the studies were not heterogeneous (P = 0.66, Figure 5C-b) and could be combined, thus the fixed effects for individual and summary for RR was applied. For evaluation of publication bias, Egger regression of normalized effect vs precision for all included studies for “moderate PEP” in 1709 patients treated with antioxidants vs placebo therapy was -0.37 (95%CI: -1.57-0.83, P = 0.5) and Begg-Mazumdar Kendall’s test on standardized effect vs variance indicated tau= -0.02, P = 0.86 (Figure 5C-c).

Effect of antioxidants compared with placebo on the incidence of mild PEP in patients undergoing ERCP: The summary for RR of mild PEP in patients undergoing ERCP for ten included trials in nine studies[40,42-44,46-50] comparing antioxidants to placebo was 1.33 with 95%CI: 0.99-1.78 (P = 0.06, Figure 5D-a). The Cochrane Q test for heterogeneity indicated that the studies were not heterogeneous (P = 0.76, Figure 5D-b) and could be combined, thus the fixed effects for individual and summary for RR was applied. For evaluation of publication bias, Egger regression of normalized effect vs precision for all included studies for “mild PEP” in 1709 patients treated with antioxidants vs placebo therapy was 0.25 (95%CI: -1.73-2.23, P = 0.78) and Begg-Mazumdar Kendall’s test on standardized effect vs variance indicated tau= 0.07, P = 0.86 (Figure 5D-c).

Effect of antioxidants compared with placebo on serum amylase in patients undergoing ERCP after less than 8 h sampling: The summary for standardized effect size of mean differences in serum amylase in 426 patients undergoing ERCP after less than 8 h sampling for antioxidants therapy for three included trials comparing to placebo[44,45] was -16.13 with 95%CI: -22.98-(-9.28) (P < 0.0001, Figure 6B). The Cochrane Q test for heterogeneity indicated that the studies were not heterogeneous (P = 0.34) and could be combined, but because of few included trials, the random effects for individual and summary of effect size for standardized mean was applied. Publication bias for included studies for serum amylase in patients undergoing ERCP treated with antioxidants vs placebo therapy could not be evaluated because of too few strata.

Effect of antioxidants compared with placebo on serum amylase in patients undergoing ERCP after less than 24-h sampling: The summary for standardized effect size of mean differences in serum amylase in 426 patients undergoing ERCP after less than 24-h sampling for antioxidants therapy for two included trials comparing to placebo[44,45] was -16.13 with 95%CI: -22.98-(-9.28) (P < 0.0001, Figure 6B). The Cochrane Q test for heterogeneity indicated that the studies were not heterogeneous (P = 0.34) and could be combined, but because of few included trials, the random effects for individual and summary of effect size for standardized mean was applied. Publication bias for included studies for serum amylase in patients undergoing ERCP treated with antioxidants vs placebo therapy could not be evaluated because of too few strata.

DISCUSSION

Principal findings and comparison with other studies
We established that antioxidant therapy significantly shortens hospital stay in AP patients, however, time is needed for the best effects. In addition, we found no significant decrease in serum CRP (as a marker of inflammation) following antioxidant therapy after 5-7 d, while the CRP decreased after 10 d. In addition, our results do not support an ameliorative role of antioxidant supplements in the reduction of pain in CP. Although in this meta-analysis, we aimed to include as many patients as possible, only two trials were eligible and eleven trials (456 patients) were excluded. Therefore, further trials are required to provide more solid evidence. The findings from another study[51] were not consistent with ours.

For interventions focused on PEP, the use of antioxidant supplements resulted in no major clinical evidence (rate and severity of PEP) of efficacy, although a tendency to decrease the rate and severity of PEP was observed. These findings are supported by the results of previous meta-analyses[15,52,53]. Controversially, although we found no significant effect of antioxidant therapy in decreasing serum amylase in PEP patients after less than 8 h sampling, serum amylase after less than 24 h sampling was significantly reduced.

Strengths and limitations of this study
To best of our knowledge, this is the most comprehensive systematic review with meta-analysis on the effect of antioxidant therapy in the management of acute, chronic and post-ERCP pancreatitis. In order to avoid bias, a comprehensive search and data extraction were conducted, however, we reached the conclusion that existing trials have inevitable differences in the use of antioxidants or the study design. Furthermore, excluding languages other than
Conclusion and implications for clinical practice and future research

This meta-analysis suggests that antioxidant supplements are safe and effective in the treatment of AP, while their efficacy in CP and PEP was not confirmed. Although there are several safe and efficacious compounds that can control oxidative stress, yet antioxidant therapy has shown little success in inflammatory disorders such as pancreatitis. Lack of proper understanding of the pathological processes underlying pancreatitis may be the reason behind this failure. Evolving evidence suggests that, depending on the etiology of AP, CP or PEP, different underlying pathological processes might take part in these conditions. Most of these trials targeted AP or CP regardless of their etiology. Indeed, this meta-analysis indicated that antioxidant therapy exerts alleviating effects in the management of AP, but there is limited evidence supporting the efficacy of antioxidant therapy in PEP (as a particular type of AP). Thus, in order to progress in making antioxidant therapy a realistic goal, outcomes should be differentiated, based on their etiology.

Antioxidants, as with all drugs, have adverse events. Therefore, the complications of such compounds are yet to be specified, although they seem less theoretical than supposed.

Current advances in the field of antioxidant therapy should provide the impetus for more clinical trials. However, there is still a long way before such therapies are used in routine clinical use.

Figure 6 Individual and pooled effect size for standardized mean for the outcome. A: Of “serum amylase in patients undergoing ERCP after less than 8 h sampling” in the studies considering antioxidants comparing to Placebo therapy in 500 patients; B: Of “serum amylase of patients undergoing ERCP after less than 24 h sampling” in the studies considering antioxidants comparing to Placebo therapy in 426 patients. ERCP: Endoscopic retrograde cholangiopancreatography.
ACKNOWLEDGMENTS

We gratefully and sincerely thank Dr. Alireza Aleyasin for his valuable comments. This invited paper (Number ID: 00040588) is the outcome of an in-house financially non-supported study.

COMMENTS

Background

Pancreatitis is an inflammatory, metabolic disorder, which is the major cause of physical and socioeconomic loss worldwide. Generally, pancreatitis is categorized into two different entities of acute and chronic. Antioxidant therapy has the potential to ameliorate clinical and laboratory outcomes of acute pancreatitis (AP), chronic pancreatitis (CP) and post-endoscopic retrograde cholangiopancreatography pancreatitis (PEP). Therefore, it is necessary to systematically evaluate the efficacy and adverse effects of antioxidant therapy in the management of different types of pancreatitis.

Research frontiers

This systematic review with meta-analyses seeks to critically appraise the beneficial and harmful effects of antioxidant supplements in the management of AP, CP and PEP. The study is focused on the key outcomes of pain, hospitalization, C reactive protein (CRP) and serum amylase in CP or AP, and severity and rate of PEP.

Innovations and breakthroughs

Antioxidant therapy reduces the length of hospital stay in AP patients. Although antioxidant therapy has no significant effect on serum amylase after less than 8-h sampling, it significantly reduces serum amylase after 24-h sampling. Antioxidant therapy has no significant effect on serum CRP after 5-7 d sampling, but significantly reduces serum CRP after 10-d sampling. Future studies should focus on key outcomes of the disease dependent on the type of antioxidant.

Applications

This meta-analysis confirmed the efficacy of antioxidant therapy in the management of AP.

Peer-review

This is an interesting meta-analysis on the role of antioxidant therapy in the management of AP, PEP and CP. The manuscript is well-written and the conclusions of the study are acceptable.

REFERENCES

1 Teshima CW, Bridges RJ, Fedorak RN. Canadian Digestive Health Foundation Public Impact Series 5: Pancreatitis in Canada. Incidence, prevalence, and direct and indirect economic impact. Can J Gastroenterol 2012; 26: 544-545 [PMID: 22891180]
2 Fagenholz PJ, Fernández-del Castillo C, Harris NS, Pelletier AJ, Camargo CA. Direct medical costs of acute pancreatitis hospitalizations in the United States. Pancreas 2007; 35: 302-307 [PMID: 18090234 DOI: 10.1097/MPA.0b013e3181c24b8]
3 Everhart JE, Ruhl CE. Burden of digestive diseases in the United States part I: overall and upper gastrointestinal diseases. Gastroenterology 2009; 136: 376-386 [PMID: 19124023 DOI: 10.1053/j.gastro.2008.12.015]
4 Mitchell RM, Byrne MF, Baillie J. Pancreatitis. Lancet 2003; 361: 1447-1455 [PMID: 12772412 DOI: 10.1016/S0140-6736(03)13139-X]
5 Frossard JL, Steer ML, Pastor CM. Acute pancreatitis. Lancet 2008; 371: 143-152 [PMID: 18191686 DOI: 10.1016/s0140-6736(08)60107-5]
6 Peery AF, Dellon ES, Lund J, Crockett SD, McGowan CE, Bulsiewicz WJ, Gangoitra LS, Thinny MT, Stizenberg K, Morgan DR, Ringel Y, Kim HP, Dibonaventura MD, Carroll CF, Allen JK, Cook SF, Sandler RS, Kappelman MD, Shaheen NJ. Burden of gastrointestinal disease in the United States: 2012 update. Gastroenterology 2012; 143: 1179-1187.e1-e3 [PMID: 22885331 DOI: 10.1053/j.gastro.2012.08.002]
7 Freeman ML, Gigu NI. Prevention of post-ERCP pancreatitis: a comprehensive review. Gastrointest Endosc 2004; 59: 845-864 [PMID: 15173799 DOI: 10.1016/s0016-5107(04)00353-0]
8 Braganza JM, Lee SH, McCloy RF, McMahon MJ. Chronic pancreatitis. Lancet 2011; 377: 1184-1197 [PMID: 21397320 DOI: 10.1016/s0140-6736(10)61852-1]
9 Issa Y, Bruno MJ, Bakker OJ, Besselink MG, Schepers NJ, van Santvoort HC, Gooszen HG, Boermester MA. Treatment options for chronic pancreatitis. Nat Rev Gastroenterol Hepatol 2014; 11: 556-564 [PMID: 24912390 DOI: 10.1038/nrgastro.2014.74]
10 Rezvanfar MA, Shojaei Saadi HA, Gooshe M, Abdolghaffari AH, Baerei M, Abdollahi M. Ovarian aging-like phenotype in the hyperandrogenism-induced murine model of polycystic ovary. Oxid Med Cell Longev 2014; 2014: 948951 [PMID: 24693338 DOI: 10.1155/2014/948951]
11 Nathan C, Cunningham-Bussel A. Beyond oxidative stress: an immunologist’s guide to reactive oxygen species. Nat Rev Immunol 2013; 13: 349-361 [PMID: 23618831 DOI: 10.1038/nri3423]
12 Robles L, Vaziri ND, Icishi H. Role of Oxidative Stress in the Pathogenesis of Pancreatitis: Effect of Antioxidant Therapy. Pancreat Disord Ther 2013; 3: 112 [PMID: 24808987]
13 Willett WC, Stampfer MJ, Underwood BA, Speizer FE, Rosner B, Hennekens CH. Validation of a dietary questionnaire with plasma carotenoid and alpha-tocopherol levels. Am J Clin Nutr 1983; 38: 651-659 [PMID: 6624705]
14 Garry PJ, Vanderjagt DJ, Hunt WC. Ascorbic acid intakes and plasma levels in healthy elderly. Am J Adv Acad Sci 1987; 498: 90-99 [PMID: 3476894]
15 Mohseni Salehi Monfared SS, Vahidi H, Abdulghaffari AH, Nikfar S, Abdollahi M. Antioxidant therapy in the management of acute, chronic and post-ERCP pancreatitis: a systematic review. World J Gastroenterol 2009; 15: 4481-4490 [PMID: 19777606 DOI: 10.3748/wjg.v15.i14.4841]
16 Jadad AR, Moore RA, Carroll D, Jenkinson C, Reynolds DJ, Gavaghan DJ, McQuay HJ. Assessing the quality of reports of randomized clinical trials: is blinding necessary? Control Clin Trials 1996; 17: 1-12 [PMID: 8721797 DOI: 10.1016/0197-2456(96)500134-4]
17 Satesh J, Bhardwaj P, Singh N, Saraya A. Effect of antioxidant therapy on hospital stay and complications in patients with early acute pancreatitis: a randomised controlled trial. Trop Gastroenterol 2009; 30: 201-206 [PMID: 20426279]
18 Bansal D, Bhalla A, Bhasin DK, Pandhi P, Sharma N, Rana S, Malhotra S. Safety and efficacy of vitamin-based antioxidant therapy in patients with severe acute pancreatitis: a randomized controlled trial. Saudi J Gastroenterol 2011; 17: 174-179 [PMID: 21546719 DOI: 10.4103/1319-3767.80379]
19 Xue P, Deng LH, Xia Q, Zhang ZD, Hu WM, Yang XN, Song B, Huang ZW. Impact of alanly-glutamine dipeptide on severe acute pancreatitis in early stage. World J Gastroenterol 2008; 14: 474-478 [PMID: 18200673 DOI: 10.3748/wjg.v14.i4.474]
20 Fuentes-Orozco C, Cervantes-Guevara G, Muñoz-Hernández I, López-Ortega A, Ambriz-González G, Gutiérrez-de-la-Rosa JL, Gómez-Herrera E, Hermosillo-Sandoval JM, Gómez-Ojeda A. L-alanyl-L-glutamine-supplemented parenteral nutrition decreases infectious morbidity rate in patients with severe acute pancreatitis. JPNEN J Parenter Enteral Nutr 2008; 32: 403-411 [PMID: 18596311 DOI: 10.1177/1086074007319797]
21 Sahin H, Mercanligil SM, İnanç N, Ok E. Effects of glutamine-enriched total parenteral nutrition on acute pancreatitis. Eur J Clin Nutr 2007; 61: 1429-1434 [PMID: 17311061 DOI: 10.1038/sj.ejn.1602664]
22 Siriwatdena AK, Mason JM, Balachandra S, Bagul A, Galloway S, Formela L, Hardman IG, Jamadar S. Randomised, double blind, placebo controlled trial of intravenous antioxidant (n-acylcycteine,
Antioxidant therapy for recurrent pancreatitis: placebo-controlled trial.

Banks PA, Rowlands BJ. Combined antioxidant therapy reduces pain in patients with chronic pancreatitis. Gastroenterology 1997; 113: 149-157 [DOI: 10.1016/S0016-5107(05)01574-9]

Bhakta P, Bhandari P, Bhardwaj P, Acharya SK. A randomized controlled trial of antioxidant therapy in chronic pancreatitis: the ANTICIPATE study. Antioxidant therapy does not reduce pain in patients with chronic pancreatitis. World J Gastroenterol 2010; 16: 4066-4071 [PMID: 20731021 DOI: 10.3748/wjv.v16.i32.4066]

Bhandwaj P, Garg PK, Maulik SK, Saraya A, Tandon RK, Acharya SK. A randomized controlled trial of antioxidant supplementation for pain relief in patients with chronic pancreatitis. Gastroenterology 2009; 136: 149-159.e2 [PMID: 18952082 DOI: 10.1053/j.gastro.2008.09.028]

Kirk GR, White JS, McKenzie L, Stevenson M, Young I, Clements WD, Rowlands BJ. Combined antioxidant therapy reduces pain and improves quality of life in chronic pancreatitis. J Gastrointest Surg 2006; 10: 499-503 [PMID: 16627214 DOI: 10.1016/j.gassur.2005.08.035]

Durgaprasad S, Pai CG, Vasanthkumar JF, Namitha S. A pilot study of the antioxidant effect of curcumin in tropical pancreatitis. Indian J Med Res 2005; 122: 315-318 [PMID: 16394323]

Banks PA, Hughes M, Ferrante M, Noordhoek EC, Ramagopal V, Silvka A. Does allopurinol reduce pain of chronic pancreatitis? Int J Pancreatol 1997; 22: 171-176 [PMID: 9444574 DOI: 10.1007/BF02788381]

Uden S, Bilton D, Nathan L, Hunt LP, Main C, Braganza JM. Antioxidant therapy for recurrent pancreatitis: placebo-controlled trial. Aliment Pharmacol Ther 1990; 4: 357-371 [PMID: 2103755 DOI: 10.1111/j.1365-2036.1990.tb00482.x]

Uden S, Schofield D, Miller PF, Day JP, Bittiglieri T, Braganza JM. Antioxidant therapy for recurrent pancreatitis: biochemical profiles in a placebo-controlled trial. Aliment Pharmacol Ther 1992; 6: 229-240 [PMID: 1600043 DOI: 10.1111/j.1365-2036.1992.tb00266.x]

Salim AS. Role of oxygen-derived free radical scavengers in the treatment of recurrent pain produced by chronic pancreatitis. A new approach. Arch Surg 1993; 128: 1109-1114 [PMID: 19298432 DOI: 10.1001/archsurg.1993.0161030067100]

Abbasinazari M, Mohammad Alizadeh AH, Mohshiri K, Pourho-seingholi MA, Zali MR. Does allopurinol prevent post endoscopic retrograde cholangio-pancreatography pancreatitis? A randomized double blind trial. Acta Med Iran 2011; 49: 579-583 [PMID: 22052140]

Martinez-Torres H, Rodriguez-Lomeli X, Davalos-Cobian C, Garcia-Correa J, Maldonado-Martinez JM, Medrano-Muñoz F, Fuentes-Orozco C, Gonzalez-Ojeda A. Oral allopurinol to prevent hyperamylasemia and acute pancreatitis after endoscopic retrograde cholangiopancreatography. World J Gastroenterol 2009; 15: 1600-1606 [PMID: 19340902 DOI: 10.3748/wjg.v15.i6.15000]

Kapetanos D, Christodoulou D, Chatzizisis O, Sigounas D, Vassilou K, Stavropoulou E, Katsiotis G, Kiriakos G, Kitis G, Tsianos E. Randomized study of the effect of pentoxifylline or octreotide on serum levels of TNF-alfa and IL-6 after endoscopic retrograde cholangiopancreatography. Eur J Gastroenterol Hepatol 2009; 21: 529-533 [PMID: 19379373 DOI: 10.1097/MEG.0b013e3281a39ca5]

Romanguolo J, Hilsden R, Sandha GS, Cole M, Bass S, May G, Love J, Bain VG, McKainney J, Fedorkan RN. Allopurinol to prevent pancreatitis after endoscopic retrograde cholangiopancreatography: a randomized placebo-controlled trial. Clin Gastroenterol Hepatol 2008; 6: 465-471; quiz 371 [PMID: 18304833 DOI: 10.1016/j.cgh.2007.12.032]

Kapetanos D, Kokkizidis G, Christodoulou D, Mistakidis K, Sigounas D, Dimakopoulos K, Kitis G, Tsianos EAV. A randomized controlled trial of pentoxifylline for the prevention of post-ERCP pancreatitis. Gastrointest Endosc 2007; 66: 513-518 [PMID: 17725940 DOI: 10.1016/j.gie.2007.03.1045]

Milewski J, Rydzewska G, Degowski M, Kierzkiewicz M, Rydzewska A. N-acetylcysteine does not prevent post-endoscopic retrograde cholangiopancreatography hyperamylasemia and acute pancreatitis. World J Gastroenterol 2006; 12: 3751-3755 [PMID: 16773694 DOI: 10.3748/wjg.v12.i3.3751]

Katsinelos P, Kountouras J, Chatzis J, Christodoulou K, Paroutoglou G, Mimidis K, Beltis A, Zavos C. High-dose allopurinol for prevention of post-ERCP pancreatitis: a prospective randomised double-blind controlled trial. Gastrointest Endosc 2005; 61: 407-415 [PMID: 15758912 DOI: 10.1016/S0016-5107(04)02647-1]

Katsinelos P, Kountouras J, Paroutoglou G, Beltis A, Mimidis K, Zavos C. Intravenous N-acetylcysteine does not prevent post-ERCP pancreatitis. Gastrointest Endosc 2005; 62: 105-111 [PMID: 15990827 DOI: 10.1016/S0016-5107(05)01574-9]

Mosler P, Sherman S, Marks J, Watkins JL, Geenen JE, Jamidar P, Fogel EL, Lazzell-Pannell L, Temkit M, Tarnasky P, Block KP, Frakes JT, Aziz AA, Malik P, NIchl N, Slivka A, Goff J, Lehman GA. Oral allopurinol does not prevent the frequency or the severity of post-ERCP pancreatitis. Gastrointest Endosc 2006; 64: 407-415 [PMID: 17725940 DOI: 10.1016/j.gie.2007.03.1045]

Lavy A, Karban A, Suissa S, Yassik K, Hermesh I, Ben-Amotz A. Natural beta-carotene for the prevention of post-ERCP pancreatitis. Endoscopy 2001; 33: 766-772 [PMID: 11558030 DOI: 10.1055/s-2001-16520]

Budzynska A, Marek T, Nowak A, Kaczor R, Nowakowska-Dulawa E. A prospective, randomized, placebo-controlled trial of prednisone and allopurinol in the prevention of ERCP-induced pancreatitis. Endoscopy 2001; 33: 766-772 [PMID: 11558030 DOI: 10.1055/s-2001-16520]

Ahmed Ali U, Jens S, Busch OR, Keus F, van Goor H, Goosen HG, Boermeester MA. Antioxidants for pain in chronic pancreatitis. Cochrane Database Syst Rev 2014; 8: CD008945 [PMID: 25144441 DOI: 10.1002/14651858.CD008945.pub2]

Gu WJ, Wei CY, Yin RX. Antioxidant supplementation for the prevention of post-endoscopic retrograde cholangiopancreatography...
Gooshe M et al. Antioxidant therapy in pancreatitis

Pancreatitis: a meta-analysis of randomized controlled trials. *Nutr J* 2013; 12: 23 [PMID: 23398675 DOI: 10.1186/1475-2891-12-23]

Zheng M, Chen Y, Bai J, Xin Y, Pan X, Zhao L. Meta-analysis of prophylactic allopurinol use in post-endoscopic retrograde cholangiopancreatography pancreatitis. *Pancreas* 2008; 37: 247-253 [PMID: 18815544 DOI: 10.1097/MPA.0b013e31816857e3]

P- Reviewer: Cosen-Binker L, Du YQ, Sperti C, Zhang ZM
S- Editor: Ma YJ L- Editor: Webster JR E- Editor: Liu XM
