Abstract

Carlitz and Scoville in 1973 considered a four variable polynomial that enumerates permutations in S_n with respect to the parity of its descents and ascents. In recent work, Pan and Zeng proved a q-analogue of Carlitz-Scoville’s generating function by enumerating permutations with the above four statistics along with the inversion number. Further, they also proved a type B analogue by enumerating signed permutations with respect to the parity of descents and ascents. In this work we prove a q-analogue of the type B result of Pan and Zeng by enumerating permutations in B_n with the above four statistics and the type B inversion number. We also obtain a q-analogue of the generating function for the type B bivariate alternating descent polynomials. We consider a similar five-variable polynomial in the type D Coxeter groups as well and give their egf. Alternating descents for the type D groups were previously also defined by Remmel, but our definition is slightly different. As a by-product of our proofs, we get bivariate q-analogues of Hyatt’s recurrences for the type B and type D Eulerian polynomials. Further corollaries of our results are some symmetry relations for these polynomials and q-analogues of generating functions for snakes of types B and D.

1 Introduction

For a positive integer n, let $[n] = \{1, 2, \ldots, n\}$ and let \mathfrak{S}_n be the set of permutations of $[n]$. For a permutation $\pi = \pi_1, \pi_2, \ldots, \pi_n \in \mathfrak{S}_n$, an index $i \in [n-1]$ is said to be a descent of π if $\pi_i > \pi_{i+1}$. Define $\text{DES}(\pi) = \{i \in [n-1] : \pi_i > \pi_{i+1}\}$ to be the set of descents of π and let $\text{des}(\pi) = |\text{DES}(\pi)|$. The classical Eulerian polynomial is defined as the generating function of the descent statistic over \mathfrak{S}_n, that is,

$$A_n(t) = \sum_{\pi \in \mathfrak{S}_n} t^{\text{des}(\pi)}.$$

These polynomials are very well-studied. The books by Foata and Schutzenberger [4] and by Petersen [9] contain many interesting results on these polynomials. An index $i \in [n]$ is called an ascent
of \(\pi \in S_n \) if \(\pi_i < \pi_{i+1} \). Taking parity of the position of the descents, one can define odd ascents, odd descents, even ascents and even descents. Formally, let \(\text{EvenDES}(\pi) = \{ i \in [n-1] : \pi_i > \pi_{i+1}, i \text{ is even} \} \), \(\text{EvenASC}(\pi) = \{ i \in [n-1] : \pi_i < \pi_{i+1}, i \text{ is even} \} \), \(\text{OddDES}(\pi) = \{ i \in [n-1] : \pi_i > \pi_{i+1}, i \text{ is odd} \} \) and \(\text{OddASC}(\pi) = \{ i \in [n-1] : \pi_i < \pi_{i+1}, i \text{ is odd} \} \). Carlitz and Scoville in \([2]\) considered the polynomial

\[
A_n(s_0, s_1, t_0, t_1) = \sum_{\pi \in S_n} s_0^{\text{even} (\pi)} s_1^{\text{odd} (\pi)} t_0^{\text{oddes} (\pi)} t_1^{\text{edes} (\pi)}. \tag{1}
\]

They gave the exponential generating function (egf henceforth) for the above polynomial (see Theorem \([2, \text{Theorem 3.1}]\)). Pan and Zeng considered a \(q \)-analogue of the above polynomial by adding the inversion number as well. For \(\pi \in S_n \) define \(\text{inv}(\pi) = |\{ 1 \leq i < j \leq n : \pi_i > \pi_j \}| \). They considered

\[
A_n(s_0, s_1, t_0, t_1, q) = \sum_{\pi \in S_n} s_0^{\text{odd} (\pi)} s_1^{\text{even} (\pi)} t_0^{\text{edes} (\pi)} t_1^{\text{oddes} (\pi)} q^{\text{inv}(\pi)}. \tag{2}
\]

Pan and Zeng gave the following egf for \(A_n(s_0, s_1, t_0, t_1, q) \). For integers \(i \geq 0 \), define \([i]_q = (1 + q + \cdots + q^{i-1}) \) and define \(n!_q = \prod_{i=1}^n [i]_q \). Recall that \(e_q(u) = \sum_{n \geq 0} \frac{u^n}{[n]_q!} \). Separating the odd and even terms, let

\[
\cosh_q(u) = \frac{e_q(u) + e_q(-u)}{2} \quad \text{and} \quad \sinh_q(u) = \frac{e_q(u) - e_q(-u)}{2}.
\]

Pan and Zeng in \([7, \text{Theorem 1.2}]\) showed the following (they use the variables \(x, y \) for what we denote \(t, s \) respectively.)

Theorem 1 (Pan and Zeng). Let \(\alpha = \sqrt{(t_0 - s_0)(t_1 - s_1)} \). Then,

\[
\sum_{n \geq 1} A_n(s_0, s_1, t_0, t_1, q) u^n / n!_q = \frac{(s_1 + t_1) \cosh_q(\alpha u) + \alpha \sinh_q(\alpha u) - t_1 (\cosh_q^2(\alpha u) - \sinh_q^2(\alpha u)) - s_1}{s_0 s_1 - (s_0 t_1 + s_1 t_0) \cosh_q(\alpha u) + t_0 t_1 (\cosh_q^2(\alpha u) - \sinh_q^2(\alpha u))}. \tag{3}
\]

Using the same notation, Theorem \([1]\) gives rise to an identity for the bivariate Eulerian polynomial and the bivariate alternating Eulerian polynomial. It is easy to see (and noted by Pan and Zeng \([7]\)) among the four statistics that involve descents and ascents in Theorem \([1]\) there are choices of two of which determine the other two statistics. Indeed, using our result, we get type B and type D counterparts of Theorem \([1]\) These are presented as Theorem \([23]\) and Theorem \([33]\) respectively.

Pan and Zeng in \([7]\) also gave a type B counterpart of these identities without the variable \(q \) (that is, without taking type \(B \) inversions into account). For a positive integer \(n \), let \([n] = \{ \pm 1, \pm 2, \ldots, \pm n \} \). \(\mathcal{B}_n \) is the set of permutations \(\pi \) of \([n] \) that satisfy \(\pi(-i) = -\pi(i) \). Let \(\pi_0 = 0 \) for all \(\pi \in \mathcal{B}_n \) and let \([n]_0 = \{ 0, 1, 2, \ldots, n \} \). Define \(\text{EvenDES}_B(\pi) = \{ i \in [n-1]_0 : \pi_i > \pi_{i+1}, i \text{ is even} \} \), \(\text{EvenASC}_B(\pi) = \{ i \in [n-1]_0 : \pi_i < \pi_{i+1}, i \text{ is even} \} \), \(\text{OddDES}_B(\pi) = \{ i \in [n-1]_0 : \pi_i > \pi_{i+1}, i \text{ is odd} \} \) and \(\text{OddASC}_B(\pi) = \{ i \in [n-1]_0 : \pi_i < \pi_{i+1}, i \text{ is odd} \} \). Define \(\text{odes}_B(\pi) = |\text{OddDES}_B(\pi)| \), \(\text{edes}_B(\pi) = |\text{EvenDES}_B(\pi)| \), \(\text{oasc}_B(\pi) = |\text{OddASC}_B(\pi)| \) and lastly \(\text{easc}_B(\pi) = |\text{EvenASC}_B(\pi)| \). Further, define

\[
B_n(s, t) = \sum_{\pi \in \mathcal{B}_n} s_{\text{odes}_B(\pi)} t_{\text{edes}_B(\pi)} \quad \text{and} \quad \hat{B}_n(s, t) = \sum_{\pi \in \mathcal{B}_n} s_{\text{easc}_B(\pi)} t_{\text{odes}_B(\pi)}. \tag{4}
\]

Setting \(s = t \) in the polynomial \(\hat{B}_n(s, t) \) gives \(\hat{B}_n(t) \), the type B alternating Eulerian polynomial which has been studied for example by Ma, Fang, Mansour and Yeh \([3]\).
Theorem 2 (Pan and Zeng). Let $\alpha = (1-s)(1-t)$. Then, we have
\[
\sum_{n \geq 1} B_{2n}(s, t) \frac{u^{2n}}{(2n)!} = \frac{(s + t) \sum_{n \geq 0} \frac{\alpha^n (2u)^{2n}}{(2n)!} + \sum_{n \geq 0} \frac{\alpha^{n+1} u^{2n}}{(2n)!}}{(1 + st) - (s + t) \sum_{n \geq 0} \frac{\alpha^n (2u)^{2n}}{(2n)!}} - (1 + st),
\]
(5)
\[
\sum_{n \geq 0} B_{2n+1}(s, t) \frac{u^{2n+1}}{(2n+1)!} = \frac{(s^2 - 1)(t - 1) \sum_{n \geq 0} \frac{\alpha^n u^{2n+1}}{(2n+1)!}}{(1 + st) - (s + t) \sum_{n \geq 0} \frac{\alpha^n (2u)^{2n}}{(2n)!}}.
\]
(6)
They also gave similar results about the type B alternating descent polynomials. Their result is as follows.

Theorem 3 (Pan and Zeng). Let $\alpha = (1-s)(1-t)$. Then, we have
\[
\sum_{n \geq 1} \hat{B}_{2n}(s, t) \frac{u^{2n}}{(2n)!} = \frac{(1 + st) \sum_{n \geq 0} \frac{(-\alpha)^n (2u)^{2n}}{(2n)!} + \sum_{n \geq 0} \frac{(-\alpha)^{n+1} u^{2n}}{(2n)!}}{(s + t) - (1 + st) \sum_{n \geq 0} \frac{(-\alpha)^n (2u)^{2n}}{(2n)!}} - (s + t),
\]
(7)
\[
\sum_{n \geq 0} \hat{B}_{2n+1}(s, t) \frac{u^{2n+1}}{(2n+1)!} = \frac{(1 + s) \sum_{n \geq 0} \frac{(-\alpha)^n u^{2n+1}}{(2n+1)!}}{(s + t) - (1 + st) \sum_{n \geq 0} \frac{\alpha^n (2u)^{2n}}{(2n)!}}.
\]
(8)
Let $H_0(s, t, u) = \sum_{n \geq 0} B_{2n}(s, t) \frac{u^{2n}}{(2n)!}$ and $H_1(s, t, u) = \sum_{n \geq 0} B_{2n+1}(s, t) \frac{u^{2n+1}}{(2n+1)!}$.

Recall that $\cosh(x) = \frac{1}{2}(\exp(x) + \exp(-x))$ and $\sinh(x) = \frac{1}{2}(\exp(x) - \exp(-x))$.

Define $M^2 = \alpha$.

It is easy to see that the following alternate form can be used to state Theorem 2.

Theorem 4 (Pan and Zeng). With the above notation,
\[
H_0(s, t, u) = \frac{M^2 \cosh(uM)}{M^2 \cosh^2(uM) - (s + 1)(t + 1) \sinh^2(uM)},
\]
(10)
\[
H_1(s, t, u) = \frac{M(s + 1) \sinh(uM)}{M^2 \cosh^2(uM) - (s + 1)(t + 1) \sinh^2(uM)}.
\]
(11)
Recall that length in Type B Coxeter groups is defined as follows (see [9] Page 294). For $\pi \in \mathfrak{B}_n$,
\[
\text{inv}_B(\pi) = |\{1 \leq i < j \leq n : \pi_i > \pi_j\}| + |\{1 \leq i < j \leq n : -\pi_i > \pi_j\}| + |\text{Negs}(\pi)|,
\]
(12)
where $\text{Negs}(\pi) = \{\pi_i : i > 0, \pi_i < 0\}$. Further, recall the definition of $\text{odes}_B(\pi)$ and $\text{edes}_B(\pi)$ from earlier. Define
\[
B_n(t, q) = \sum_{\pi \in \mathfrak{B}_n} t^{\text{odes}_B(\pi)} q^{\text{inv}_B(\pi)} \text{ and } B_n(s, t, q) = \sum_{\pi \in \mathfrak{B}_n} s^{\text{odes}_B(\pi)} \alpha^{\text{edes}_B(\pi)} q^{\text{inv}_B(\pi)},
\]
(13)
\[
H_0(s, t, q, u) = \sum_{k \geq 0} B_{2n}(s, t, q) \frac{u^{2n}}{B_{2n}(1, q)} \text{ and } H_1(s, t, q, u) = \sum_{k \geq 0} B_{2n+1}(s, t, q) \frac{u^{2n+1}}{B_{2n+1}(1, q)}.
\]
(14)
Let $\exp_B(u; q) = \sum_{n \geq 0} \frac{u^n}{B_n(1, q)}$. As before, we separate terms with odd and even exponents and define
\[
\cosh_B(u; q) = \frac{\exp_B(u; q) + \exp_B(-u; q)}{2} \text{ and } \sinh_B(u; q) = \frac{\exp_B(u; q) - \exp_B(-u; q)}{2}.
\]
With this notation, our first main result is the following q-analogue of Theorem 4.
Theorem 5. We have

\[H_0(s, t, q, u) = \frac{(1 - s)(1 - t \cosh_q(Mu)) \cosh_B(Mu; q) + t \sinh_q(Mu) \sinh_B(Mu; q)}{1 - (s + t) \cosh_q(Mu) + ste_q(Mu)e_q(-Mu)} \]

(15)

\[H_1(s, t, q, u) = \frac{M \left((1 - s \cosh_q(Mu)) \sinh_B(Mu; q) + s \sinh_q(Mu) \cosh_B(Mu; q) \right)}{1 - (s + t) \cosh_q(Mu) + ste_q(Mu)e_q(-Mu)} \]

(16)

Theorem 5 is proved in Subsection 2.1. Recalling (4), define

\[\hat{H}_0(s, t, u) = \sum_{n \geq 0} \hat{B}_{2n}(s, t) \frac{u^{2n}}{(2n)!} \quad \text{and} \quad \hat{H}_1(s, t, u) = \sum_{n \geq 0} \hat{B}_{2n+1}(s, t) \frac{u^{2n+1}}{(2n+1)!}. \]

We have rewritten Theorem 2 as Theorem 4 and stated our generalization as Theorem 5. Similarly, it is easy to see that Theorem 3 can be rewritten as follows.

Theorem 6 (Pan and Zeng). With the above notation,

\[\hat{H}_0(s, t, u) = \frac{-(s - 1)(t - 1) \cos(Mu)}{s + t - (ts + 1) \cos(2Mu)}; \]

(17)

\[\hat{H}_1(s, t, u) = \frac{-M(s + 1) \sin(Mu)}{s + t - (ts + 1) \cos(2Mu)}. \]

(18)

Define \(\hat{B}_n(s, t, q) = \sum_{\pi \in \mathcal{B}_n} \hat{\text{odes}}_{\pi} s^{\text{asc}}_{\pi} q^{\text{inv}}_{\pi} \) and let

\[\hat{H}_1(s, t, q, u) = \sum_{n \geq 0} \hat{B}_{2n+1}(s, t, q) \frac{u^{2n+1}}{B_{2n+1}(1, q)}; \quad \text{and} \quad \hat{H}_0(s, t, q, u) = \sum_{n \geq 0} \hat{B}_{2n}(s, t, q) \frac{u^{2n}}{B_{2n}(1, q)}. \]

Moreover, let

\[\cos_B(u; q) = \frac{\exp_B(iu; q) + \exp_B(-iu; q)}{2} \quad \text{and} \quad \sin_B(u; q) = \frac{\exp_B(iu; q) - \exp_B(-iu; q)}{2}. \]

Another of our main results is the following \(q \)-analogue of Theorem 6.

Theorem 7. We have

\[\hat{H}_0(s, t, q, u) = \frac{(s - 1) \left((1 - t \cos_q(Mu)) \cos_B(Mu; q) - t \sin_q(Mu) \sin_B(Mu; q) \right)}{s + te_q(iMu)e_q(-iMu) - (ts + 1) \cos_q(Mu)}, \]

(19)

\[\hat{H}_1(s, t, q, u) = \frac{-M \left((s - \cos_q(Mu)) \sin_B(Mu; q) + \sin_q(Mu) \cos_B(Mu; q) \right)}{s + te_q(iMu)e_q(-iMu) - (ts + 1) \cos_q(Mu)}. \]

(20)

The proof of Theorem 7 is also given in Subsection 2.1. We move to our counterpart of this result to type D Coxeter groups \(\mathcal{D}_n \). Recall that \(\mathcal{D}_n \) is the subgroup of \(\mathcal{B}_n \) consisting of the signed permutations which have an even number of negative signs. We denote \(-1 \) as \(\overline{T} \) and for \(\pi = \pi_1, \pi_2, \ldots, \pi_n \in \mathcal{D}_n \), define \(\pi_{\overline{T}} = -\pi_1 \) and let \(\text{DES}_D(\pi) = \{ i \in \{-1, 1, \ldots, n - 1 \} : \pi_i > \pi_{i+1} \} \) be its set of descents. Let \(\text{des}_D(\pi) = |\text{DES}_D(\pi)| \). Moreover, let \(\text{OddDES}_D(\pi) = \{ i \in [-1, n - 1] \setminus \{0\} : \pi_i > \pi_{i+1} \text{ and } i \text{ is odd} \} \) be the set of odd indices where descents occur in \(\pi \) and similarly let \(\text{EvenDES}_D(\pi) = \{ i \in [-1, n - 1] \setminus \{0\} : \pi_i > \pi_{i+1} \text{ and } i \text{ is even} \} \). Let \(\text{odes}_D(\pi) = |\text{OddDES}_D(\pi)| \)
Theorem 8. We have the egfs

\[\text{inv}_D(\pi) = |\{1 \leq i < j \leq n : \pi_i > \pi_j\}| + |\{1 \leq i < j \leq n : -\pi_i > \pi_j\}|. \]

(21)

Remmel in [12] has given a definition of alternating descent for type D Coxeter groups based on a total order on the elements of \([\pm n]\). The polynomial that Remmel gets is different from the one we have. Remmel’s main result is a joint distribution of alternating descents and alternating major index in type B and D Coxeter groups. Below, we consider a slightly different polynomial enumerating alternating descents and type D inversion number in \(D_n\). Our definition uses the parity of the position of descents as before. Formally, define

\[
D_n(t, q) = \sum_{\pi \in D_n} e^\text{des}_D(\pi) t^{\text{inv}_D(\pi)} \quad \text{and} \quad D_n(s, t, q) = \sum_{\pi \in D_n} s^{\text{des}_D(\pi)} t^{\text{odes}_D(\pi)} q^{\text{inv}_D(\pi)}.
\]

Define

\[
\hat{D}_0(s, t, q, u) = \sum_{k \geq 0} D_{2k}(s, t, q) \frac{u^{2k}}{D_{2k}(1, q)}, \quad \hat{D}_1(s, t, q, u) = \sum_{k \geq 0} D_{2k+1}(s, t, q) \frac{u^{2k+1}}{D_{2k+1}(1, q)}.
\]

Moreover, let

\[
\exp_D(u; q) = \frac{u}{2} \quad \text{and} \quad \sinh_D(u; q) = \frac{\exp_D(u; q) - \exp_D(-u; q)}{2}.
\]

Recalling \(M\) from [9], let

\[
\text{OD} = ut^2(\cosh_q(Mu) - 1) + \frac{(1 - t)M}{(1 - s)}(\sinh_q(Mu; q) - Mu) + \frac{2t(1 - t)}{M}(\sinh_q(Mu) - Mu),
\]

\[
\text{ED} = 2t(\cosh_q(Mu) - 1) + (1 - t)(\cosh_q(Mu; q) - 1) + \frac{ut^2(1 - s)}{M} \sinh_q(Mu).
\]

For type D Coxeter groups, our main results are the following.

Theorem 8. We have the egfs

\[
\hat{D}_0(s, t, q, u) = \frac{\text{ED}(1 - t \cosh_q(Mu)) + \text{OD}(\frac{(1 - s)}{M} \sinh_q(Mu))}{1 - (s + t) \cosh_q(Mu) + \text{se}_q(Mu) e_q(-Mu)}, \tag{23}
\]

\[
\hat{D}_1(s, t, q, u) = \frac{\text{OD}(1 - s \cosh_q(Mu)) + \text{ED}(\frac{(1 - t)}{M} \sinh_q(Mu))}{1 - (s + t) \cosh_q(Mu) + \text{se}_q(Mu) e_q(-Mu)}. \tag{24}
\]

Theorem 9. We have the egfs

\[
\hat{D}_0(s, t, q, u) = \frac{T'(\text{ED})(1 - t \cosh_q(Mu)) - T'(\text{OD})(\frac{(1 - s)}{M} \sinh_q(Mu))}{s - (st + 1) \cosh_q(Mu) + \text{te}_q(iMu) e_q(-iMu)}; \tag{25}
\]

\[
\hat{D}_1(s, t, q, u) = \frac{T'(\text{OD})(s - \cos_q(Mu)) - T'(\text{ED})(\frac{(1 - t)}{M} \sinh_q(Mu))}{s - (st + 1) \cos_q(Mu) + \text{te}_q(iMu) e_q(-iMu)}. \tag{26}
\]
where

\[
\begin{align*}
T'(\text{OD}) &= \sqrt{su^2} \cos_q(Mu) - 1 - \frac{(1 - t)^M}{M} (\sin_D(Mu; q) - Mu) \\
&\quad + \frac{2t(1 - t)\sqrt{s}}{M} (\sin_q(Mu) - Mu), \\
T'(\text{ED}) &= 2t(\cos_q(Mu) - 1) + \frac{u^2(s - 1)\sqrt{s}}{sM} \sin_q(Mu) + \frac{(1 - t)}{t} (\cosh_D(Mu; q) - 1).
\end{align*}
\]

The proof of Theorem 8 and Theorem 9 appear in Subsection 3.1. It can be checked that Theorem 8 refines a result of Reiner [10, Corollary 4.5] for type D Euler-Mahonian polynomials. Our proofs in both the type B and type D cases use an inclusion-exclusion based argument.

1.1 Refining Hyatts recurrences for the Type B and Type D Eulerian polynomial

As an outcome of our proofs, we get a refinement of Hyatt’s recurrence for the type B and type D Eulerian polynomials. Hyatt in [5] gave the following recurrences for Eulerian polynomials of types B. We partition \(B_n \) based on the sign of the last element. Define \(B_n^+ = \{ \pi \in B_n : \pi_n > 0 \} \) contain the elements of \(B_n \) with last element being positive and let \(B_n^- = B_n - B_n^+ \). Define \(B_n^+(t) = \sum_{\pi \in B_n^+} t^\text{des}_B(\pi) \).

\[B_n^+(t) = \sum_{k=0}^{n-1} \binom{n}{k} B_k(t)(t-1)^{n-k-1}. \]

Our extension of Theorem 10 involves the following polynomial. Define

\[B_n^+(s, t, q) = \sum_{\pi \in B_n^+} s^\text{des}_B(\pi) t^\text{des}_B(\pi) q^{\text{inv}_B(\pi)}. \] (27)

Our type B generalization is the following.

Theorem 11. For even positive integers \(n \), we have

\[
B_n^+(s, t, q) = \sum_{r=0}^{\frac{n-1}{2}} q^{(2r+1)} \binom{n}{2r+1} q^{(s-1)^r}(t-1)^r B_{n-2r-1}(s, t, q)
+ \sum_{r=1}^{\left\lfloor \frac{n}{2} \right\rfloor} q^{(2r)} \binom{n}{2r} q B_{n-2r}(s, t, q)(s-1)^{r-1}(t-1)^r. \] (28)

For odd positive integers \(n \), we have

\[
B_n^+(s, t, q) = \sum_{r=0}^{\frac{n-1}{2}} q^{(2r+1)} \binom{n}{2r+1} q^{(s-1)^r}(t-1)^r B_{n-2r-1}(s, t, q)
+ \sum_{r=1}^{\left\lfloor \frac{n}{2} \right\rfloor} q^{(2r)} \binom{n}{2r} q B_{n-2r}(s, t, q)(s-1)^{r-1}(t-1)^{r-1}. \] (29)

It is clear that setting \(q = 1 \) and \(s = t \) in Theorem 11 gives us Theorem 10. The proof of Theorem 11 appears in Subsection 2.2. For Type D Coxeter groups, our analogous result is Theorem 34.
1.2 More consequences

Another outcome of our results are some symmetry relations. For the type B case, our results are Theorem 25 and Lemma 26. For the type D case, our symmetry results are Theorem 36 and Corollary 37.

From the q-analogue of our generating function, we naturally get a q-analogue of the enumeration of type B and D snakes. These results are presented in Section 4. Enumeration of type B and D snakes with respect to some statistics and thus q-analogues have been obtained, see for example, Verges [13]. However, to the best of our knowledge, we have not seen q-analogues involving the appropriate length function in these groups.

2 Type B results

Recall that \mathfrak{B}_n is the set of permutations of $[\pm n] = \{\pm 1, \pm 2, \ldots, \pm n\}$ satisfying $\pi(-i) = -\pi(i)$. We think of π as a word $\pi = \pi_0, \pi_1, \pi_2, \ldots, \pi_n$, where $\pi_i = \pi(i)$ and $\pi_0 = 0$.

For positive integers n and an integer i with $0 \leq i \leq n$, let $[n]^i = \{A \subseteq [n] : |A| = i\}$ be the set of subsets of $[n]$ with cardinality i. We define a signed subset (A, ϵ) to be a subset $A \subseteq [n]$ and ϵ is a string of signs \pm of length $|A|$. Here, each element $a_i \in A$ has either a positive or a negative sign, encoded by ϵ_i, attached to it. When $a \in A$, we denote a positive signed a just by a and a negative signed a by \overline{a}. The set of all signed subsets of size i of $[n]$ will be denoted as $\text{sgn}[n]^i$. Clearly, $|\text{sgn}[n]^i| = 2^i \cdot n!$.

Let $G_{n,i}$ be the set of signed permutations $\pi \in \mathfrak{B}_n$ such that the last $n - i$ elements of π are increasing, that is we have $\pi_i < \pi_{i+1} < \pi_{i+2} < \cdots < \pi_{n-1} < \pi_n$. It is easy to see that $|G_{n,i}| = 2^n \binom{n}{i}!$.

Define $G_{n,-1}$ to be the signed permutation $\pi = 0, 1, 2, \cdots, n$, the signed permutation whose $n + 1$ elements are increasing.

Let $\sigma = 0, \sigma_1, \cdots, \sigma_{n-i} \in \mathfrak{B}_n$ and $(A, \epsilon) \in \text{sgn}[n]^i$ be a signed subset. Moreover, let $|n| - A = \{c_1, c_2, \ldots, c_{n-i}\}$ be written in ascending order, that is with $c_1 < c_2 < \cdots < c_{n-i}$. We define a map $h : \mathfrak{B}_{n-i} \rightarrow \mathfrak{B}_{\{c_1, c_2, \ldots, c_{n-i}\}}$ which for $1 \leq k \leq n-i$, maps k to c_k and preserves the sign. Formally,

$$h(\sigma) = 0, \pi_1, \pi_2, \ldots, \pi_{n-i},$$

where for $1 \leq i \leq n-i$, if $|\sigma_i| = k$ then $|\pi_i| = c_k$ and π_i has the same sign as σ_i. This map h is clearly a bijection and is hence invertible.

By inverting the map h on the elements of $[0,n] - A$ and appending the elements of (A, ϵ) in ascending order, we get a signed permutation in $G_{n,i}$. This map is also invertible, and thus we have a bijection $f : \mathfrak{B}_{n-i} \times \text{sgn}[n]^i \rightarrow G_{n,i}$ defined below. Let $\sigma \in \mathfrak{B}_{n-i}$ and $(A, \epsilon) \in \text{sgn}[n]^i$. For a set S (resp. a signed set (S, ϵ)), by $[S]$ (respectively by $[(S, \epsilon)]$), we denote the string obtained by writing the elements of S (respectively (S, ϵ)) in ascending order in the usual linear order of \mathbb{Z}. Define $f(\sigma, (A, \epsilon)) = h(\sigma)[(A, \epsilon)]$ where $h(\sigma)[(A, \epsilon)]$ denotes the juxtaposition of $h(\sigma)$ and $[(A, \epsilon)]$.

Example 12. Let $n = 7, i = 4, \sigma = 0, 2, 1, 3 \in \mathfrak{B}_3$ and $(A, \epsilon) = \{1, 4, 5, 6\}$ be a signed subset of $\text{sgn}[\binom{n}{4}]$. Then, $[0,n] - A = \{0, 2, 3, 7\}$ and thus $h(\sigma) = 0, 2, 3, 7$. Moreover, we have $[(0,n] - A] = 0, 2, 3, 7$ and $[(A, \epsilon)] = 6, 4, 1, 5$. Therefore, $f(\sigma, (A, \epsilon)) = 0, 3, 2, 7, 5, 4, 1, 5$. We also have $f([0,7] - A), (A, \epsilon)) = 0, 2, 3, 7, 6, 4, 1, 5$.

Lemma 13. For positive integers n, we have

$$\sum_{(A,\epsilon)\in \text{sgn}[\binom{n}{r}]} q^{\text{inv}(f([0,n]-A),(A,\epsilon))} = \binom{n}{r}_q \frac{(1+q^n)(1+q^{n-1}) \cdots (1+q^{n-r+1})}{q!}.$$
Proof. We proceed by induction on \(n \). The base case when \(n = 1 \) is easy to verify. We assume the result is true for \(n \) and want to show it holds for \(n + 1 \). Thus, we want to show that

\[
\sum_{(A, \epsilon) \in \text{sgn}(\binom{n+1}{r+1})} q^{\text{inv}_B(f([0, n+1] - A], (A, \epsilon)))} = \binom{n+1}{r+1} q^{(1 + q^{n+1})(1 + q^n) \cdots (1 + q^{n-r+1})}. \tag{32}
\]

Let \(\eta(n, r) = (1 + q^n) \cdots (1 + q^{n-r+1}) \). We partition \(\text{sgn}(\binom{n+1}{r+1}) \) into the disjoint union of the following three subsets and determine the contribution of each of these three sets.

1. \(A_1 = \{(A, \epsilon) \in \text{sgn}(\binom{n+1}{r+1}) ; n + 1 \in (A, \epsilon)\} \),

2. \(A_2 = \{(A, \epsilon) \in \text{sgn}(\binom{n+1}{r+1}) ; n + 1 \in (A, \epsilon)\} \),

3. \(A_3 = \{(A, \epsilon) \in \text{sgn}(\binom{n+1}{r+1}) ; n + 1 \notin (A, \epsilon)\} \).

If \(n + 1 \in (A, \epsilon) \), as \([(A, \epsilon)] \) is in ascending order, it will be the rightmost element of \(f([0, n+1] - A], [(A, \epsilon)] \) and thus it will contribute no extra inversions. Thus

\[
\sum_{(A, \epsilon) \in A_1} q^{\text{inv}_B(f([0, n+1] - A], (A, \epsilon)))} = \eta(n, r) \binom{n}{r}_q. \tag{33}
\]

If \(n + 1 \in (A, \epsilon) \), then \(n + 1 \) has to be in the \('n - r + 1'\)th position in \(f([0, n+1] - A], (A, \epsilon)) \). Every element of \([0, n + 1] - A\) will be to its left and will thus contribute 2 inversions. Further, every element to its right will contribute 1 inversion. Thus, we get \(2n - r + 1 \) new inversions. Therefore,

\[
\sum_{(A, \epsilon) \in A_2} q^{\text{inv}_B(f([0, n+1] - A], (A, \epsilon)))} = \eta(n, r)q^{2n-r+1} \binom{n}{r}_q. \tag{34}
\]

Lastly, when \(n + 1 \in [0, n + 1] - A \), then it has to be the rightmost element in \([0, n + 1] - A\). Every element of \((A, \epsilon)\) will contribute one inversion and thus we get \('r + 1'\) extra inversions. Hence,

\[
\sum_{(A, \epsilon) \in A_3} q^{\text{inv}_B(f([0, n+1] - A], (A, \epsilon)))} = q^{r+1} \eta(n, r + 1) \binom{n}{r+1}_q = q^{r+1}(1 + q^{n-r}) \eta(n, r) \binom{n}{r+1}_q. \tag{35}
\]

Summing up (33), (34) and (35), we get

\[
\sum_{(A, \epsilon) \in \text{sgn}(\binom{n+1}{r+1})} q^{\text{inv}_B(f([0, n+1] - A], (A, \epsilon)))} = \eta(n, r) \binom{n}{r}_q + q^{2n-r+1} \binom{n}{r}_q + q^{r+1}(1 + q^{n-r}) \binom{n}{r+1}_q
\]

The last equation follows from the \(q \)-Pascal recurrence for the Gaussian binomial coefficients (see [9, Chapter 6]). The proof of (32) and hence of Lemma [13] is complete.

Corollary 14. Let \(\sigma \in \mathfrak{S}_{n-r} \) be a signed permutation and \((A, \epsilon) \in \text{sgn}(\binom{n}{r}) \) be a signed subset. Then

\[
\sum_{(A, \epsilon) \in \text{sgn}(\binom{n}{r})} q^{\text{inv}_B(f(\sigma(A, \epsilon)))} = q^{\text{inv}_B(\sigma)} \binom{n}{r}_q (1 + q^n)(1 + q^{n-1}) \cdots (1 + q^{n-r+1}). \tag{36}
\]
Theorem 16. For positive integers \(i \), we have

\[
\text{inv}_B(f((A, \epsilon))) = \text{inv}_B(h(\sigma), [(A, \epsilon)][0, n] - A, (A, \epsilon))) = \text{inv}_B(f([0, n] - A, (A, \epsilon))) + \text{inv}_B(\sigma).
\]

The proof follows as it takes exactly \(\text{inv}_B(\sigma) \) inversions to get \(h(\sigma) \) from the identity permutation in \(\mathfrak{S}_{n-r} \) (recall \(h(\sigma) \) is defined in (30)).

Adding (30) over all \(\pi \in \mathfrak{S}_{n-r} \) gives us the following.

Corollary 15. For positive integers \(n \), we have

\[
\sum_{\sigma \in \mathfrak{S}_{n-r}} \sum_{(A, \epsilon) \in \text{sgn}(\binom{n}{r})} 1^{\text{odes}_B(\sigma)} s^{\text{odes}_B(\sigma)} q^{\text{inv}_B(f((A, \epsilon)))} = B_{n-r}(s, t, q) \binom{n}{r} (1 + q^n) \cdots (1 + q^{n-r+1}).
\]

Reiner in [11] gave the following egf for the polynomial enumerating descents and length in \(\mathfrak{S}_n \).

Theorem 16 (Reiner). We have the following.

\[
\sum_{n \geq 0} B_n(t, q) \frac{u^n}{B_n(1, q)} = \frac{(1 - t) \exp_B(u(1 - t); q)}{1 - t \exp(u(1 - t); q)}
\]

It can be seen that Theorem 16 is equivalent to the following.

Theorem 17 (Reiner). For positive integers \(n \), the polynomials \(B_n(q, t) \) satisfy the following.

\[
\frac{B_n(t, q)}{B_n(1, q)} = t \sum_{k=0}^{n} \frac{B_{n-k}(t, q)(1 - t)^k}{B_{n-k}(1, q)[k]_q!} + \frac{(1 - t)^{n+1}}{B_n(1, q)}.
\]

We are now interested in proving a trivariate analogue of Theorem 17. Towards that, we start with the following lemma.

Lemma 18. Let \(n \) be a positive integer and let \(0 \leq i \leq n \). When \(i \) is odd, we have

\[
\sum_{\pi' \in G_{n,i}} 1^{\text{odes}_B(\pi')} s^{\text{odes}_B(\pi')} q^{\text{inv}_B(\pi')} = \frac{B_i(s, t, q) B_n(1, q)}{B_i(1, q)[n - i]_q!} + (1 - t) \left\{ \sum_{\pi' \in G_{n,i+1}} 1^{\text{odes}_B(\pi')} s^{\text{odes}_B(\pi')} q^{\text{inv}_B(\pi')} \right\}.
\]

When \(i \) is even, we have

\[
\sum_{\pi' \in G_{n,i}} 1^{\text{odes}_B(\pi')} s^{\text{odes}_B(\pi')} q^{\text{inv}_B(\pi')} = \frac{s B_i(s, t, q) B_n(1, q)}{B_i(1, q)[n - i]_q!} + (1 - s) \left\{ \sum_{\pi' \in G_{n,i+1}} 1^{\text{odes}_B(\pi')} s^{\text{odes}_B(\pi')} q^{\text{inv}_B(\pi')} \right\}.
\]
Proof. We prove (39) first and therefore take \(i \) to be odd. Let \(F_{n,i} = G_{n,i} - G_{n,i-1} \). We have

\[
\sum_{(\pi,(A,\epsilon)) \in \mathfrak{B}_i \times \text{sgn} \left(\binom{n}{i} \right)} \nu_{\text{odes}}(\pi) s_{\text{odes}}(\pi) q_{\text{inv}} B(\pi, (A,\epsilon))
\]

\[
= \sum_{(\pi,(A,\epsilon)) \in f^{-1}(G_{n,i})} \nu_{\text{odes}}(\pi) s_{\text{odes}}(\pi) q_{\text{inv}} B(\pi, (A,\epsilon))
\]

\[
= \sum_{(\pi,(A,\epsilon)) \in f^{-1}(G_{n,i-1})} \nu_{\text{odes}}(\pi) s_{\text{odes}}(\pi) q_{\text{inv}} B(\pi, (A,\epsilon))
\]

\[
+ \sum_{(\pi,(A,\epsilon)) \in f^{-1}(F_{n,i})} \nu_{\text{odes}}(\pi) s_{\text{odes}}(\pi) q_{\text{inv}} B(\pi, (A,\epsilon))
\]

\[
= \sum_{(\pi,(A,\epsilon)) \in G_{n,i-1}} \nu_{\text{odes}}(\pi) s_{\text{odes}}(\pi) q_{\text{inv}} B(\pi)
\]

\[
+ \frac{1}{t} \left\{ \sum_{(\pi,(A,\epsilon)) \in F_{n,i}} \nu_{\text{odes}}(\pi) s_{\text{odes}}(\pi) q_{\text{inv}} B(\pi, (A,\epsilon)) \right\}
\]

\[
= \sum_{\pi' \in G_{n,i-1}} \nu_{\text{odes}}(\pi') s_{\text{odes}}(\pi') q_{\text{inv}} B(\pi')
\]

\[
+ \frac{1}{t} \left\{ \sum_{\pi' \in G_{n,i}} \nu_{\text{odes}}(\pi') s_{\text{odes}}(\pi') q_{\text{inv}} B(\pi') - \sum_{\pi' \in G_{n,i-1}} \nu_{\text{odes}}(\pi') s_{\text{odes}}(\pi') q_{\text{inv}} B(\pi') \right\}.
\]

The second equality follows because \(f \) is a bijection between \(\mathfrak{B}_i \times \text{sgn} \left(\binom{n}{i} \right) \) and \(G_{n,i} \). For the fourth equality, we have used that \(i \) is odd. In the fifth equality, we are again using that \(f \) is a bijection and \(F_{n,i} = G_{n,i} - G_{n,i-1} \).

From Corollary [15] with \(i = n - r \), we have

\[
B_i(s, t, q) \left(\begin{array}{c} n \\ n - i \end{array} \right) q (1 + q^n) \cdots (1 + q^{i+1})
\]

\[
= (t - 1) \sum_{\pi' \in G_{n,i-1}} \nu_{\text{odes}}(\pi') s_{\text{odes}}(\pi') q_{\text{inv}} B(\pi') + \sum_{\pi' \in G_{n,i}} \nu_{\text{odes}}(\pi') s_{\text{odes}}(\pi') q_{\text{inv}} B(\pi').
\]

(41)

The following result is easy to see

\[
\left(\begin{array}{c} n \\ n - i \end{array} \right) q (1 + q^n) \cdots (1 + q^{i+1}) = \frac{B_n(1, q)}{B_i(1, q) [n - i]_q}.
\]

(42)

Combining (41) and (42) completes the proof of (39). The proof when \(i \) is even is similar and hence is omitted.

We are now in a position to give a refinement of Theorem [17].

Theorem 19. Let \(B_0(s, t, q) = 1 \). When \(n \geq 1 \), the polynomials \(B_n(s, t, q) \) satisfy the following
This completes the proof of (43). We now consider the case when n is even. Let n be even. By repeatedly applying (40) and (39) we have

\[
\begin{align*}
B_n(s, t, q) & = \sum_{\pi \in G_{n-1}} \text{odes}_B(\pi) s^{\text{des}_B(\pi)} q^{\text{inv}_B(\pi)} \\
& = \frac{B_{n-1}(s, t, q) B_n(1, q)}{B_{n-1}(1, q) [1]_q!} + (1-t) \sum_{\pi \in G_{n-2}} \text{odes}_B(\pi) s^{\text{des}_B(\pi)} q^{\text{inv}_B(\pi)} \\
& = \frac{B_{n-1}(s, t, q) B_n(1, q)}{B_{n-1}(1, q) [1]_q!} + (1-t) s \frac{B_{n-2}(s, t, q) B_n(1, q)}{B_{n-2}(1, q) [2]_q!} \\
& \quad + (1-t)(1-s) \sum_{\pi \in G_{n-3}} \text{odes}_B(\pi) s^{\text{des}_B(\pi)} q^{\text{inv}_B(\pi)} \\
& = (1-t)^k (1-s)^{k+1} + \sum_{r=0}^{k-1} t(1-t)^r (1-s)^{r+1} \frac{B_{n-2r-1}(s, t, q) B_n(1, q)}{B_{n-2r-1}(1, q) [2r+1]_q!} \\
& \quad + \sum_{r=0}^{k} s(1-t)^r (1-s)^{r+1} \frac{B_{n-2r}(s, t, q) B_n(1, q)}{B_{n-2r}(1, q) [2r]_q!}.
\end{align*}
\]

This completes the proof of (43). We now consider the case when n is odd. Here, we will get

\[
\begin{align*}
B_n(s, t, q) & = \sum_{\pi \in G_{n-1}} \text{odes}_B(\pi) s^{\text{des}_B(\pi)} q^{\text{inv}_B(\pi)} \\
& = s \frac{B_{n-1}(s, t, q) B_n(1, q)}{B_{n-1}(1, q) [1]_q!} + (1-s) \sum_{\pi \in G_{n-2}} \text{odes}_B(\pi) s^{\text{des}_B(\pi)} q^{\text{inv}_B(\pi)} \\
& = s \frac{B_{n-1}(s, t, q) B_n(1, q)}{B_{n-1}(1, q) [1]_q!} + (1-s) t \frac{B_{n-2}(s, t, q) B_n(1, q)}{B_{n-2}(1, q) [2]_q!} \\
& \quad + (1-s)(1-t) \sum_{\pi \in G_{n-3}} \text{odes}_B(\pi) s^{\text{des}_B(\pi)} q^{\text{inv}_B(\pi)}.
\end{align*}
\]

Continuing as in the case when n was even, completes the proof of (44) and hence completes the proof of Theorem [19].

2.1 Type B Generating Functions

We recast Theorem [19] in the language of egfs to prove Theorem [5]. Recall our definitions from (14).
Proof of Theorem 5. For positive integers $n = 2k$, we have

$$\frac{B_n(s, t, q)u^{2k}}{B_n(1, q)} = \frac{(1-t)^k(1-s)^{k+1}u^{2k}}{B_n(1, q)} + \sum_{r=0}^{k} \left(\frac{(1-t)^r(1-s)^{r+1}u^{2r+1}}{[2r]_q!} \right) \left(\frac{tB_{n-2r}(s, t, q)u^{n-2r}}{B_{n-2r}(1, q)} \right) + \sum_{r=0}^{k-1} \left(\frac{(1-t)^r(1-s)^{r+1}u^{2r+1}}{[2r+1]_q!} \right) \left(\frac{sB_{n-2r-1}(s, t, q)u^{n-2r-1}}{B_{n-2r-1}(1, q)} \right).$$

(45)

When $n = 2k + 1$, we have

$$\frac{B_n(s, t, q)u^{2k+1}}{B_n(1, q)} = \frac{(1-t)^{k+1}(1-s)^{k+1}u^{2k+1}}{B_n(1, q)} + \sum_{r=0}^{k} \left(\frac{(1-t)^r(1-s)^{r+1}u^{2r+1}}{[2r]_q!} \right) \left(\frac{tB_{n-2r}(s, t, q)u^{n-2r}}{B_{n-2r}(1, q)} \right) + \sum_{r=0}^{k} \left(\frac{(1-t)^r(1-s)^{r+1}u^{2r+1}}{[2r+1]_q!} \right) \left(\frac{sB_{n-2r-1}(s, t, q)u^{n-2r-1}}{B_{n-2r-1}(1, q)} \right).$$

(46)

Summing (45), (46) over $k \geq 0$ yields

$$(1-s)\cosh_B(Mu; q) + M\sinh_B(Mu; q) = B_0 \left(1 - s \cosh_q(Mu) - \frac{s \sinh_q(Mu)}{L} \right) + B_1(1 - t \cosh_q(Mu) - L \sinh_q(Mu)).$$

(47)

where $L = \sqrt{(1-s)/(1-t)}$, $B_0 = H_0(s, t, q, u)$ and $B_1 = H_1(s, t, q, u)$. Changing u to $-u$ gives us

$$(1-s)\cosh_B(Mu; q) - M\sinh_B(Mu; q) = B_0 \left(1 - s \cosh_q(Mu) + \frac{s \sinh_q(Mu)}{L} \right) - B_1(1 - t \cosh_q(Mu) + tL \sinh_q(Mu)).$$

(48)

Solving (47) and (48), completes the proof. \hfill \Box

Remark 20. We show that setting $q = 1$ in Theorem 5 gives Theorem 7. We claim that $H_0(s, t, 1, u) = H_0(s, t, \frac{u}{2})$ and likewise $H_1(s, t, 1, u) = H_1(s, t, \frac{u}{2})$. As $B_n(1, 1) = 2^n n!$, $\cosh_B(u; 1) = \cosh(u)$, $\sinh_B(u; 1) = \sinh(u)$, and $e_q(u) = e_q(-u)|_{q=1} = 1$, setting $q = 1$ on the right hand side of (15) gives the right hand side of (16). Similarly, setting $q = 1$ on the right hand side of (16), we get the right hand side of (11).

We are now in a position to prove Theorem 7.

Proof of Theorem 7. If $B_{2k}(s, t, q)$ is the polynomial defined in (13), it is easy to see that $\hat{B}_{2k}(s, t, q) = s^k B_{2k}(1/s, t, q)$. Therefore,

$$\hat{H}_0(s, t, q, u) = \hat{H}_0 \left(\frac{1}{s}, t, q, \sqrt{s}u \right) = \frac{(s-1) \left((1-t \cos_q(Mu)) \cos_B(Mu; q) - t \sin_q(Mu) \sin_B(Mu; q) \right)}{s + te_q(iMu) e_q(-iMu) - (ts + 1) \cos_q(Mu)}. $$

(49)
As the proof is complete, we move on to the case when \(n = 2k + 1 \) is odd. Clearly, in this case, we have
\[
\hat{B}_{2k+1}(s, t, q) = s^{k+1} B_{2k+1}\left(\frac{4}{s}, t, q\right).
\]
Therefore,
\[
\hat{H}_1(s, t, q, v) = \sqrt{s} H_1\left(\frac{1}{s}, t, q, \sqrt{s} u\right)
= -M\left(\frac{(s - \cos_q(Mu) \sin_B(Mu; q) + \sin_q(Mu) \cos_B(Mu; q))}{s + t e_q(iMu) e_q(-iMu) - (ts + 1) \cos_q(Mu)}\right).
\]
(50)
This completes the proof. \(\square\)

Corollary 21. We have the following egf for the type \(B \) bivariate alternating descent polynomials:
\[
\sum_{n \geq 0} \hat{B}_n(s, t) \frac{u^n}{n!} = \frac{-(s - 1)(t - 1) \cos(Mu) - M(s + 1) \sin(Mu)}{s + t - (ts + 1) \cos(2Mu)}.
\]
(51)

Corollary 22. We get an alternate proof of the following egf for the type \(B \) alternating descent polynomials (see also [6] and [8]):
\[
\sum_{n \geq 0} \hat{B}_n(t) \frac{u^n}{n!} = \frac{-(t - 1)^2 \cos(1 - t) u + (t^2 - 1) \sin(1 - t) u}{2s - (t^2 + 1) \cos(2(1 - t) u)}.
\]
(52)

As mentioned in Section [1], though we consider a two variable enumerator, we can get a four variable version and hence a type \(B \) counterpart of Theorem [11]. Define variables \(s_0, t_0, s_1 \) and \(t_1 \) to keep track of even ascents, even descents, odd ascents and odd descents respectively. Let \(m = \sqrt{(s_0 - t_0)(s_1 - t_1)} \).

Define the five variable distribution
\[
B_n(s_0, s_1, t_0, t_1, q) = \sum_{w \in \mathbb{B}_n} e_{asc_B(w)} t_{s_0} e_{asc_B(w)} t_{s_1} e_{des_B(w)} t_{t_0} e_{des_B(w)} t_{t_1} q^{inv_B(w)}.
\]

Further, define the generating functions
\[
H_0(s_0, s_1, t_0, t_1, q, u) = \sum_{k \geq 0} B_{2k}(s_0, s_1, t_0, t_1, q) \frac{u^{2k}}{B_{2k}(1, q)},
\]
(53)
\[
H_1(s_0, s_1, t_0, t_1, q, u) = \sum_{k \geq 0} B_{2k+1}(s_0, s_1, t_0, t_1, q) \frac{u^{2k+1}}{B_{2k+1}(1, q)}.
\]
(54)

Theorem 23. We have the egfs
\[
H_0(s_0, s_1, t_0, t_1, q, u) = \frac{\left(s_1 - t_1 \cosh_q(Mu) \cosh_B(Mu; q) + t_1 \sinh_q(Mu) \sinh_B(Mu; q)\right)}{s_0 s_1 - (t_0 s_1 + s_0 t_1) \cosh_q(Mu) + t_0 t_1 e_q(Mu) e_q(-mu)},
\]
\[
H_1(s_0, s_1, t_0, t_1, q, u) = \frac{m \left(s_0 - t_0 \cosh_q(Mu) \sinh_B(Mu; q) + t_0 \sinh_q(Mu) \cosh_B(Mu; q)\right)}{s_0 s_1 - (s_1 t_0 + t_1 s_0) \cosh_q(Mu) + t_0 t_1 e_q(Mu) e_q(-mu)}.
\]

Proof. Recalling [14], it is easy to see that
\[
H_0(s_0, s_1, t_0, t_1, q, u) = H_0\left(\frac{t_0}{s_0}, \frac{t_1}{s_1}, q, \sqrt{s_0 s_1 u}\right),
\]
\[
H_1(s_0, s_1, t_0, t_1, q, u) = \sqrt{s_0 \sqrt{s_1}} H_1\left(\frac{t_0}{s_0}, \frac{t_1}{s_1}, q, \sqrt{s_0 s_1 u}\right).
\]
The proof is complete. \(\square\)
2.2 q-analogaues of Hyatt’s recurrences and symmetries

Hyatt gives a proof of Theorem 10 for the polynomials $B_n^+(t)$ by considering a statistic maxdrop_B. We give an inclusion exclusion argument.

Proof of Theorem 11. We prove the two recurrences separately. Let \hat{A}_k be the set of signed permutations in \mathfrak{B}_n such that the last $k+1$ elements are positive and are arranged in descending order. Thus, the set $\hat{A}_{k-1} - \hat{A}_k$ is the set of signed permutations with no descent in the $(n-k)$-th position and with their last k elements being positive and descending. Define

$$A_k(s,t,q) = \sum_{w \in \hat{A}_k} t^{\text{odes}_B(w)} s^{\text{odes}_B(w)} q^{\text{inv}_B(w)}.$$

We abbreviate $A_k(s,t,q)$ as A_k for the rest of this proof for better readability. When n is even, we claim that

$$q^2 \binom{n}{2r}_q B_{n-2r}(s,t,q) s^r t^r = sA_{2r-1} - (s-1)A_{2r}, \quad (55)$$

$$q^{2r+1} \binom{n}{2r+1}_q B_{n-2r-1}(s,t,q) s^{r+1} t^{r+1} = tA_{2r} - (t-1)A_{2r+1}. \quad (56)$$

When n is odd, we claim that

$$q^2 \binom{n}{2r}_q B_{n-2r}(s,t,q) s^r t^r = tA_{2r-1} - (t-1)A_{2r}, \quad (57)$$

$$q^{2r+1} \binom{n}{2r+1}_q B_{n-2r-1}(s,t,q) s^{r+1} t^{r+1} = sA_{2r} - (s-1)A_{2r+1}. \quad (58)$$

We only prove (55). The proofs of (56), (57) and (58) follow from a very similar argument. Recall that $\binom{n}{n-i}$ is the set of all $(n-i)$-sized subsets of $[n]$. Given $A \in \binom{n}{n-i}$, we arrange its elements in descending order and list them as $a_1, a_2, \cdots, a_{n-i}$ with $a_1 > a_2 > \cdots > a_{n-i} > 0$. Define a new juxtaposition map $f' : \mathfrak{B}_i \times \binom{n}{n-i} \to \hat{A}_{n-i-1}$ that takes (ψ, A) to the signed permutation $\psi_{[n]-A, a_1, a_2, \cdots, a_{n-i}}$, i.e.

$$f'(\psi, A) = \psi_{[n]-A, a_1, a_2, \cdots, a_{n-i}}.$$

It is easy to see that f' is a bijection from $\mathfrak{B}_i \times \binom{n}{n-i}$ to \hat{A}_{n-i-1}. We define $\text{inv}_B([X],[Y])$ to be the number of inversions that occur between the X and Y. The LHS of (55) is clearly obtained as follows

$$\sum_{(\psi, A) \in \mathfrak{B}_{n-2r} \times \binom{n-i}{2r}} t^{\text{odes}_B(\psi)+\text{odes}_B(A)} s^{\text{odes}_B(\psi)+\text{odes}_B(A)} q^{\text{inv}_B(\psi)+\text{inv}_B(A)+\text{inv}_B([\psi],[A])}$$

$$= q^2 \binom{n}{2r}_q s^r t^r \sum_{(\psi, A) \in \mathfrak{B}_{n-2r} \times \binom{n-i}{2r}} t^{\text{odes}_B(\psi)} s^{\text{odes}_B(\psi)} q^{\text{inv}_B(\psi)+\text{inv}_B([\psi],[A])}$$

$$= q^2 \binom{n}{2r}_q s^r t^r \sum_{\psi \in \mathfrak{B}_{n-2r}} \sum_{A \in \binom{n-i}{2r}} t^{\text{odes}_B(\psi)} s^{\text{odes}_B(\psi)} q^{\text{inv}_B(\psi)+\text{inv}_B([\psi],[A])}$$

$$= q^2 \binom{n}{2r}_q s^r t^r \binom{n}{2r}_q B_{n-2r}(s,t,q).$$

The expression above does not account for the descent occurring at the $(n-2r)$-th position. Thus, it is off by a factor of $\frac{1}{s}$ on the set A_{2r}. Further, it counts correctly on the set $A_{2r-1} - A_{2r}$. This gives us

$$q^2 \binom{n}{2r}_q s^r t^r \binom{n}{2r}_q B_{n-2r}(s,t,q) = A_{2r-1} - A_{2r} + \frac{1}{s}A_{2r},$$

$$= A_{2r-1} - A_{2r},$$
Lemma 24. Let \(f : \mathcal{B}_n \to \mathcal{B}_n \) be the involution that sends \(w = w_1, \ldots, w_n \) to \(\overline{w} = \overline{w_1}, \ldots, \overline{w_n} \). Then, we have the following.

1. When \(n = 2k+1 \), we have \(\text{odes}_B(w) + \text{odes}_B(f(w)) = k \) and when \(n = 2k \), we have \(\text{odes}_B(w) + \text{odes}_B(f(w)) = k \).

2. When \(n = 2k+1 \), we have \(\text{odes}_B(w) + \text{odes}_B(f(w)) = k + 1 \) and when \(n = 2k \), we have \(\text{odes}_B(w) + \text{odes}_B(f(w)) = k \).

3. The sum \(\text{inv}_B(w) + \text{inv}_B(f(w)) = n^2 \).

Proof. The proof of the first two assertions are straightforward and hence omitted. For the third part, we recall that \(\text{inv}_B(w) = \text{inv}(w) + \text{NegSum}(w) \) where \(\text{inv}(w) = |\{(i, j) : 1 \leq i < j \leq n : w_i > w_j\}| \) and \(\text{NegSum}(w) = \sum_{i \in \text{Neg}(w)} i \). Thus, we have

\[
\text{inv}_B(w) + \text{inv}_B(f(w)) = \text{inv}(w) + \text{NegSum}(w) + \text{inv}(\overline{w}) + \text{NegSum}(\overline{w})
\]

\[
= \text{inv}(w) + \text{inv}(\overline{w}) + \text{NegSum}(w) + \text{NegSum}(\overline{w})
\]

\[
= \left(\frac{n+1}{2} \right) + \left(\frac{n}{2} \right) = n^2.
\]

The proof is complete.

which is equivalent to \([55]\). Similarly for \(2r + 1\), we get \([56]\)

\[
q^{(2r+1)} \frac{n}{2r+1} \binom{n}{2r+1} B_{n-2r-1}(s, t, q) = t A_{2r} - (t - 1) A_{2r+1}.
\]

Equations \([55]\) and \([56]\) gives

\[
q^{(2r+1)} \frac{n}{2r+1} B_{n-2r-1}(s, t, q)(s-1)^{r-1}(t-1)^r
\]

\[
= \left(\frac{s-1}{s} \right)^{r-1} \left(\frac{t-1}{t} \right)^r A_{2r} - \left(\frac{s-1}{s} \right)^r \left(\frac{t-1}{t} \right)^r A_{2r}, \quad (59)
\]

\[
q^{(2r+1)} \frac{n}{2r+1} B_{n-2r}(s, t, q)(s-1)^r(t-1)^r
\]

\[
= \left(\frac{s-1}{s} \right)^{(r)} \left(\frac{t-1}{t} \right)^r A_{2r} - \left(\frac{s-1}{s} \right)^r \left(\frac{t-1}{t} \right)^r A_{2r+1}. \quad (60)
\]

Summing \([59]\), over the indices \(1 \leq r \leq \frac{n}{2} \) and \([60]\) over the indices \(0 \leq r \leq \frac{n-2}{2} \), we get

\[
A_0 = \sum_{r=0}^{\frac{n-2}{2}} q^{(2r+1)} \frac{n}{2r+1} B_{n-2r-1}(s, t, q)(s-1)^{r-1}(t-1)^r
\]

\[
+ \sum_{r=1}^{\frac{n}{2}} q^{(2r)} \frac{n}{2r} B_{n-2r}(s, t, q)(s-1)^r(t-1)^r.
\]

As \(\hat{A}_0\) is the set of signed permutations with elements having positive last element (ie \(\mathcal{B}_n^+\)), this completes our proof. \(\square\)

We recall the polynomials \(B^+_n(s, t, q)\) and \(B^-_n(s, t, q)\) from \([27]\). We consider the map that flips the sign of all elements below and give a few properties.

Lemma 24. Let \(f : \mathcal{B}_n \to \mathcal{B}_n \) be the involution that sends \(w = w_1, \ldots, w_n \) to \(\overline{w} = \overline{w_1}, \ldots, \overline{w_n} \). Then, we have the following.

1. When \(n = 2k+1 \), we have \(\text{odes}_B(w) + \text{odes}_B(f(w)) = k \) and when \(n = 2k \), we have \(\text{odes}_B(w) + \text{odes}_B(f(w)) = k \).

2. When \(n = 2k+1 \), we have \(\text{odes}_B(w) + \text{odes}_B(f(w)) = k + 1 \) and when \(n = 2k \), we have \(\text{odes}_B(w) + \text{odes}_B(f(w)) = k \).

3. The sum \(\text{inv}_B(w) + \text{inv}_B(f(w)) = n^2 \).

Proof. The proof of the first two assertions are straightforward and hence omitted. For the third part, we recall that \(\text{inv}_B(w) = \text{inv}(w) + \text{NegSum}(w) \) where \(\text{inv}(w) = |\{(i, j) : 1 \leq i < j \leq n : w_i > w_j\}| \) and \(\text{NegSum}(w) = \sum_{i \in \text{Neg}(w)} i \). Thus, we have

\[
\text{inv}_B(w) + \text{inv}_B(f(w)) = \text{inv}(w) + \text{NegSum}(w) + \text{inv}(\overline{w}) + \text{NegSum}(\overline{w})
\]

\[
= \text{inv}(w) + \text{inv}(\overline{w}) + \text{NegSum}(w) + \text{NegSum}(\overline{w})
\]

\[
= \left(\frac{n+1}{2} \right) + \left(\frac{n}{2} \right) = n^2.
\]

The proof is complete. \(\square\)
2.3 Symmetry results

Theorem 25. For positive integers \(n \), we have
\[
B_n^-(s, t, q) = q^{n^2} s^{k+1} t^k B_n^+(s^{-1}, t^{-1}, q^{-1}) \quad \text{when } n = 2k + 1,
\]
\[
B_n^-(s, t, q) = q^{n^2} s^k t^k B_n^+(s^{-1}, t^{-1}, q^{-1}) \quad \text{when } n = 2k.
\]

Therefore, we have
\[
B_n(s, t, q) = B_n^+(s, t, q) + q^{n^2} s^{k+1} t^k B_n^+(s^{-1}, t^{-1}, q^{-1}) \quad \text{when } n = 2k + 1,
\]
\[
B_n(s, t, q) = B_n^+(s, t, q) + q^{n^2} s^k t^k B_n^+(s^{-1}, t^{-1}, q^{-1}) \quad \text{when } n = 2k.
\]

Proof. Let \(f : \mathfrak{B}_n^+ \to \mathfrak{B}_n^- \) be the map that sends \(w = w_1, \ldots, w_n \) to \(\overline{w} = \overline{w_1}, \ldots, \overline{w_n} \). By Lemma 24 when \(n = 2k \), we have
\[
\sum_{w \in \mathfrak{B}_n^-} t^{odes_B(w)} s^{edes_B(w)} q^{inv_B(w)} = \sum_{w \in \mathfrak{B}_n^+} t^{odes_B(f(w))} s^{edes_B(f(w))} q^{inv_B(f(w))} = \sum_{w \in \mathfrak{B}_n^+} t^{k-odes_B(w)} s^{k-edes_B(w)} q^{n^2- inv_B(w)} = q^{n^2} s^k t^k \sum_{w \in \mathfrak{B}_n^+} t^{-odes_B(w)} s^{-edes_B(w)} q^{- inv_B(w)}.
\]

When \(n = 2k + 1 \), we have
\[
\sum_{w \in \mathfrak{B}_n^-} t^{odes_B(w)} s^{edes_B(w)} q^{inv_B(w)} = \sum_{w \in \mathfrak{B}_n^+} t^{odes_B(f(w))} s^{edes_B(f(w))} q^{inv_B(f(w))} = \sum_{w \in \mathfrak{B}_n^+} t^{k+1-odes_B(w)} s^{k+1-edes_B(w)} q^{n^2- inv_B(w)} = q^{n^2} s^{k+1} t^k \sum_{w \in \mathfrak{B}_n^+} t^{-odes_B(w)} s^{-edes_B(w)} q^{- inv_B(w)}.
\]

completing the proof. \(\Box \)

In a similar manner, the following result also follows.

Lemma 26. We have
\[
B_{2k}(s, t, q) = q^{n^2} s^k t^k B_{2k}(\frac{1}{s}, \frac{1}{t}, \frac{1}{q}) \quad \text{when } n = 2k,
\]
\[
B_{2k+1}(s, t, q) = q^{n^2} s^{k+1} t^k B_{2k+1}(\frac{1}{s}, \frac{1}{t}, \frac{1}{q}) \quad \text{when } n = 2k + 1.
\]

3 Type D analogues

Let \(H_{n,i} \) be the set of signed permutations \(\pi \in \mathfrak{D}_n \) such that the last \(n - i \) elements of \(\pi \) are increasing, that is we have \(\pi_{i+1} < \pi_{i+2} < \cdots < \pi_{n-1} < \pi_n \). Clearly, \(|H_{n,i}| = 2^{n-1} \binom{n}{i} i! \).

Let \(\sigma = \sigma_1, \ldots, \sigma_{n-1} \in \mathfrak{D}_{n-i} \) and \((A, \epsilon) \in \text{sgn} \left(\binom{n}{i} \right) \) be a signed subset. Moreover, let \(\text{sgn} \left(\binom{n}{i} \right) \) be written in ascending order. Thus, \(c_1 < c_2 < \cdots < c_{n-i} \). We define two maps \(h : \mathfrak{D}_{n-i} \to \mathfrak{D}_{\{c_1, c_2, \ldots, c_{n-i}\}} \) and \(h_D : \mathfrak{D}_{n-i} \to \mathfrak{B}_{c_1, c_2, \ldots, c_{n-i}} - \mathfrak{D}_{\{c_1, c_2, \ldots, c_{n-i}\}} \) as follows:
\[
h(\sigma) = \pi_1, \pi_2, \ldots, \pi_{n-i} \quad \text{and} \quad h_D(\sigma) = \overline{\pi_1}, \overline{\pi_2}, \ldots, \overline{\pi_{n-i}},
\]
where for $1 \leq i \leq n-i$, if $|\sigma_i| = k$ then $|\pi_i| = c_k$ and π_i has the same sign as σ_i. Both maps h, h_D are clearly bijections and hence invertible.

If (A, ϵ) has an even number of negative elements, then by inverting the map h on the elements of $[0, n] - A$ and appending the elements of (A, ϵ) in ascending order, we get a signed permutation in $H_{n,n-i}$. Similarly, if (A, ϵ) has odd number of negative elements, then by inverting the map h_D on the elements of $[0, n] - A$ and appending the elements of (A, ϵ) in ascending order, we get a signed permutation in $H_{n,n-i}$.

These maps are also invertible, so we have a bijection $f_D : D_{n-i} \times \text{sgn}([n]) \mapsto H_{n,n-i}$ defined as follows. Let $\sigma \in D_{n-i}$ and $(A, \epsilon) \in \text{sgn}([n])$.

Define

$$f_D(\sigma, (A, \epsilon)) = \begin{cases} h(\sigma)[(A, \epsilon)] & \text{if } (A, \epsilon) \text{ has even no. of negatives} \\ h_D(\sigma)[(A, \epsilon)] & \text{if } (A, \epsilon) \text{ has odd no. of negatives} \end{cases}$$

where (A, ϵ) is juxtaposed at the end of the $h(\sigma)$ or $h_D(\sigma)$.

We start with the following type D counterpart of Lemma 13.

Lemma 27. Let $(A, \epsilon) \in \text{sgn}([n])$ be a signed subset of $[n]$. Then,

$$\sum_{(A, \epsilon) \in \text{sgn}([n])} q^{\text{inv}_D(f_D([n] - A], [(A, \epsilon)])) = \binom{n}{r} q \left(1 + q^{n-1}\right) \left(1 + q^{n-2}\right) \cdots \left(1 + q^{n-r}\right). \quad \text{(61)}$$

Proof. We proceed by induction on n. The base case when $n = 1$ is easy. We assume that our Lemma is true for n and show that it holds for $n + 1$. Thus, we need to show the following:

$$\sum_{(A, \epsilon) \in \text{sgn}([n+1])} q^{\text{inv}_D(f_D([n+1] - A], [(A, \epsilon)])) = \binom{n+1}{r+1} q \left(1 + q^{n}\right) \left(1 + q^{n-1}\right) \cdots \left(1 + q^{n-r}\right). \quad \text{(62)}$$

Let $\eta(n, r) = \left(1 + q^{n-1}\right) \cdots \left(1 + q^{n-r}\right)$. We partition $\text{sgn}([n+1])$ into the disjoint union of the following three subsets.

1. $A_1 = \{(A, \epsilon) \in \text{sgn}([n+1]) : n + 1 \in (A, \epsilon)\}$,
2. $A_2 = \{(A, \epsilon) \in \text{sgn}([n+1]) : \overline{n+1} \in (A, \epsilon)\}$,
3. $A_3 = \{(A, \epsilon) \in \text{sgn}([n+1]) : n + 1 \notin (A, \epsilon)\}$.

We next determine the contribution to $\sum_{(A, \epsilon) \in \text{sgn}([n+1])} q^{\text{inv}_D(f_D([n+1] - A], [(A, \epsilon)]))$ from each of the above sets. If $n + 1 \in (A, \epsilon)$, as $[(A, \epsilon)]$ is in ascending order, it will be the rightmost element of $f([n+1] - A], [(A, \epsilon)]$ and thus it will contribute no extra inversions. Thus

$$\sum_{(A, \epsilon) \in A_1} q^{\text{inv}_D(f_D([n+1] - A], [(A, \epsilon)])) = \eta(n, r) \binom{n}{r}. \quad \text{(63)}$$

If $\overline{n+1} \in (A, \epsilon)$, then $\overline{n+1}$ has to be in the $(n - r + 1)$-th position in $f([n+1] - A], (A, \epsilon))$. Every element of $[n+1] - A]$ will be to its left and will thus contribute 2 inversions. Further, every element to its right will contribute 1 inversion. Thus, we get $2n - r$ new inversions. Therefore,

$$\sum_{(A, \epsilon) \in A_2} q^{\text{inv}_D(f_D([n+1] - A], [(A, \epsilon)])) = \eta(n, r)q^{2n-r} \binom{n}{r}. \quad \text{(64)}$$

17
Lastly, when \(n + 1 \in [n + 1] - A \), then it has to be the rightmost element in \([n + 1] - A\). Every element of \((A, \epsilon)\) will contribute one inversion and thus we get ‘\(r + 1\)’ extra inversions. Hence,

\[
\sum_{(A,\epsilon)\in A_3} q^{\text{inv}_D(f_D([[n+1]-A],[A,\epsilon]))} = q^{r+1} \eta(n, r+1) \binom{n}{r+1}_q = q^{r+1}(1 + q^{n-r-1}) \eta(n, r+1) \binom{n}{r+1}_q.
\]

(65)

Summing up (63), (64) and (65), we get

\[
\sum_{(A,\epsilon)\in \text{sgn}(\binom{n+1}{r+1})} q^{\text{inv}_D(f_D([[n+1]-A],[A,\epsilon]))} = \eta(n, r+1) \binom{n}{r+1}_q + q^{2n-r} \binom{n}{r}_q + q^{r+1}(1 + q^{n-r-1}) \binom{n}{r+1}_q = \eta(n+1, r+1) \binom{n+1}{r+1}_q.
\]

The last equation follows from the \(q\)-Pascal recurrence for the Gaussian binomial coefficients. This completes the proof.

\[\square\]

Corollary 28. Let \(\sigma \in \mathcal{D}_{n-r} \) be a signed permutation, \((A, \epsilon) \in \text{sgn}(\binom{n}{r})\) be a signed subset.

\[
\sum_{(A,\epsilon)\in \text{sgn}(\binom{n}{r})} q^{\text{inv}_D(f_D(\sigma,[A,\epsilon])))} = q^{\text{inv}_D(\sigma)} \binom{n}{r}_q (1 + q^{n-1})(1 + q^{n-2}) \cdots (1 + q^{n-r}).
\]

(66)

Proof. The proof follows exactly as the proof of Corollary[14]. The result follows by noting that changing the sign of the first element does not affect the type D inversion statistic.

\[\square\]

Corollary 29. We have

\[
\sum_{\sigma \in \mathcal{D}_{n-r}} \sum_{(A,\epsilon)\in \text{sgn}(\binom{n}{r})} \text{odes}_D(\sigma) \text{odes}_D(\sigma) q^{\text{inv}_D(f_D(\sigma,[A,\epsilon])))} = D_{n-r}(s, t, q) \binom{n}{r}_q (1 + q^{n-1})(1 + q^{n-2}) \cdots (1 + q^{n-r}).
\]

Proof. For a particular \(\sigma \in \mathcal{D}_{n-r} \), we have

\[
\text{odes}_D(\sigma) = \sum_{(A,\epsilon)\in \text{sgn}(\binom{n}{r})} q^{\text{inv}_D(f_D(\sigma,[A,\epsilon])))}
\]

\[
\binom{n}{r}_q (1 + q^{n-1})(1 + q^{n-2}) \cdots (1 + q^{n-r})
\]

Summing over all possible \(\sigma \in \mathcal{D}_{n-r} \) finishes the proof.

\[\square\]

Lemma 30. Let \(X_{\{1,\bar{1}\}} \) be the set of signed permutations in \(\mathcal{D}_n \) such that the descent set is a subset of \(\{1, \bar{1}\} \). Then,

\[
\sum_{w \in X_{\{1,\bar{1}\}}} \text{odes}_D(w) \text{odes}_D(w) q^{\text{inv}_D(w)} = t^2 \frac{D_n(1, q)}{[n-1]_q^t} + t(1-t) \left(\frac{2D_n(1, q)}{[n]_q^t} - 1 \right) + (1-t).
\]

(67)
Proof. Let $Y_1 = X_{(1,\pi)}$ be the set of signed permutations of D_n with the last $n-1$ elements in ascending order and Y_0 be the set of signed permutations of D_n such that the descent set is a subset of \{1\} or \{T\}. Then, by inclusion-exclusion, we can say that

$$
\sum_{w \in X_{(1,\pi)}} t^{odes_D(w)} s^{edes_D(w)} q^{inv_D(w)} = t^2 \left(\sum_{w \in Y_1} q^{inv_D(w)} \right) + t(1-t) \left(\sum_{w \in Y_0} q^{inv_D(w)} \right) + (1-t).
$$

(68)

The equation

$$
\sum_{w \in Y_1} q^{inv_D(w)} = \frac{D_n(1,q)}{[n-1]q!}
$$

(69)

comes from (27).

We just need to show that

$$
\sum_{w \in Y_0} q^{inv_D(w)} = \frac{2D_n(1,q)}{[n]q!} - 1
$$

(70)

If we want a descent at \{1\} but not at \{T\} or vice versa, then we need $|\pi(1)| > |\pi(2)|$. This can be done in the following way. We assign signs to the elements of $[n]$ and arrange them in ascending order. Then, choose the sign of the first element accordingly to make it an element of D_n (i.e. to make the total number of negative signs even). An element i will either contribute 1 if it is positive or q^{i-1} if it is negative, giving the term $(1 + q^{i-1})$. Therefore, the total contribution would be $(1 + q^0)(1 + q) \cdots (1 + q^{n-1})$. However, this procedure also produces $1, 2, \ldots, n$ and $\overline{1}, \overline{2}, \ldots, \overline{n}$, out of which we only need the former. The latter has a length of 1 which we subtract to complete the proof. \qed

Lemma 31. With the above notations, when i is odd, we have

$$
\sum_{\pi' \in H_{n,i}} t^{odes_D(\pi')} s^{edes_D(\pi')} q^{inv_D(\pi')} = \frac{D_i(s,t,q)D_n(1,q)}{D_i(1,q)[n-i]q!} + (1-t) \left\{ \sum_{\pi' \in H_{n,i-1}} t^{odes_D(\pi')} s^{edes_D(\pi')} q^{inv_D(\pi')} \right\}
$$

(71)

When i is even, we have

$$
\sum_{\pi' \in H_{n,i}} t^{odes_D(\pi')} s^{edes_D(\pi')} q^{inv_D(\pi')} = \frac{sD_i(s,t,q)D_n(1,q)}{D_i(1,q)[n-i]q!} + (1-s) \left\{ \sum_{\pi' \in H_{n,i-1}} t^{odes_D(\pi')} s^{edes_D(\pi')} q^{inv_D(\pi')} \right\}.
$$

(72)

Proof. We at first prove (71) and therefore take i to be odd. We evaluate
Define Theorem 32. This completes the proof of (71). The proof when \(i\) is odd, we have used that \(f\) is a bijection between \(\mathcal{D}_i \times \text{sgn}(\frac{n}{n-i})\) to \(H_{n,i}\). For the fourth equality, we have again used that \(f\) is a bijection and \(H'_{n,i} = H_{n,i} - H_{n,i-1}\). We determine the contribution of each of these three sets. From (29) and (73), we have

\[
\sum_{(\pi, (A, e)) \in \mathcal{D}_i \times \text{sgn}(\frac{n}{n-i})} \text{odes}_D(\pi) s \text{odes}_D(\pi) q^{\text{inv}_D(f_D(\pi, (A, e)))} = (t - 1) \left\{ \sum_{\pi' \in H_{n,i-1}} \text{odes}_D(\pi') s \text{odes}_D(\pi') q^{\text{inv}_D(\pi')} \right\} + \sum_{\pi' \in H_{n,i}} \text{odes}_D(\pi') s \text{odes}_D(\pi') q^{\text{inv}_D(\pi')}.
\]

This completes the proof of (71). The proof when \(i\) is even is similar and hence is omitted.

Our next result is a type D counterpart of the recurrence given in Theorem 19.

Theorem 32. Define \(D_2(s, t, q) = (1 + tq)^2\). When \(n \geq 3\), the polynomials \(D_n(s, t, q)\) satisfy the
repeatedly applying (71) and (72), we have

\[
D_n(s, t, q) \over D_n(1, q) = \left(1 - t\right)^{k+1}(1 - s)^k \over D_n(1, q) + 2t(1 - t)^{k+1}(1 - s)^k \over [n]_q! + \frac{t^2(1 - t)^{k-1}(1 - s)^k}{[n - 1]_q!} + \sum_{r=0}^{k-1} t(1 - t)^r(1 - s)^{r+1} \frac{D_{n-2r-1}(s, t, q)}{D_{n-2r-1}(1, q)[2r + 1]_q!} + \sum_{r=0}^{k-1} s(1 - t)^r(1 - s)^r \frac{D_{n-2r}(s, t, q)}{D_{n-2r}(1, q)[2r]_q!} \quad \text{if } n = 2k \text{ is even,}
\]

\[
D_n(s, t, q) \over D_n(1, q) = \left(1 - t\right)^{k+2}(1 - s)^k \over D_n(1, q) + 2t(1 - t)^{k+1}(1 - s)^k \over [n]_q! + \frac{t^2(1 - t)^{k-1}(1 - s)^k}{[n - 1]_q!} + \sum_{r=0}^{k-1} t(1 - t)^r(1 - s)^{r+1} \frac{D_{n-2r-1}(s, t, q)}{D_{n-2r-1}(1, q)[2r + 1]_q!} + \sum_{r=0}^{k-1} s(1 - t)^r(1 - s)^r \frac{D_{n-2r}(s, t, q)}{D_{n-2r}(1, q)[2r]_q!} \quad \text{if } n = 2k + 1 \text{ is odd.}
\]

Proof. As \(H_{n,i}\) is the set of signed permutations in \(\mathcal{D}_n\) whose rightmost \((n-i)\) entries form an increasing run, we see that \(H_{n,n-1}\) must be the whole of \(\mathcal{D}_n\). We first consider the case when \(n\) is even. By repeatedly applying (71) and (72), we have

\[
D_n(s, t, q) = \sum_{\pi \in H_{n,n-1}} t^{odesD(\pi)} s^{edesD(\pi)} q^{invD(\pi)} = t \frac{D_{n-1}(s, t, q)D_n(1, q)}{D_{n-1}(1, q)[1]_q!} + \left(1 - t\right) \left(\sum_{\pi \in H_{n,n-2}} t^{odesD(\pi)} s^{edesD(\pi)} q^{invD(\pi)} \right) + \frac{D_{n-1}(s, t, q)D_n(1, q)}{D_{n-1}(1, q)[1]_q!} + (1 - s)(1 - t) \sum_{\pi \in H_{n,n-3}} t^{odesD(\pi)} s^{edesD(\pi)} q^{invD(\pi)} + \frac{D_{n-1}(s, t, q)D_n(1, q)}{D_{n-1}(1, q)[1]_q!} + \frac{D_{n-2}(s, t, q)D_n(1, q)}{D_{n-2}(1, q)[2]_q!} + \frac{D_{n-3}(s, t, q)D_n(1, q)}{D_{n-3}(1, q)[3]_q!} + \cdots + (1 - s)\left(1 - t\right)^2 \frac{D_2(s, t, q)D_n(1, q)}{D_2(1, q)[n - 2]_q!} + \frac{D_{n-1}(s, t, q)D_n(1, q)}{D_{n-1}(1, q)[1]_q!} = \sum_{\pi \in H_{n,n-1}} t^{odesD(\pi)} s^{edesD(\pi)} q^{invD(\pi)}.
\]

This completes the proof of (74). We now consider the case when \(n\) is odd. Here, we have
\(D_n(s, t, q) = \sum_{\pi \in H_{n-1}} t^{\operatorname{des}_D(\pi)} s^{\operatorname{des}_D(\pi)} q^{\operatorname{inv}_D(\pi)} \)

\[
= s \frac{D_{n-1}(s, t, q)D_n(1, q)}{D_{n-1}(1, q)[1]_q!} + (1 - s) \left(\sum_{\pi \in H_{n-2}} t^{\operatorname{des}_D(\pi)} s^{\operatorname{des}_D(\pi)} q^{\operatorname{inv}_D(\pi)} \right)
\]

\[
= s \frac{D_{n-1}(s, t, q)D_n(1, q)}{D_{n-1}(1, q)[1]_q!} + (1 - s) \left(\sum_{\pi \in H_{n-3}} t^{\operatorname{des}_D(\pi)} s^{\operatorname{des}_D(\pi)} q^{\operatorname{inv}_D(\pi)} \right)
\]

and we can continue as in the case for \(n \) being even, to complete the proof of (75). This completes the proof.

3.1 Type D generating functions

We again cast the recurrences in egf language to get generating functions. We begin with our proof of Theorem 8.

\textbf{Proof of Theorem 8} Recurrences (74) and (75) give rise to this following.

\[
D_0 \left(1 - s \cosh_q(Mu) - \frac{s(1 - t) \sinh_q(Mu)}{M} \right) + D_1 \left(1 - t \cosh_q(Mu) - \frac{t(1 - s) \sinh_q(Mu)}{M} \right) = OD + ED.
\]

Changing \(u \) to \(-u \) gives us

\[
D_0 \left(1 - s \cosh_q(Mu) + \frac{s(1 - t) \sinh_q(Mu)}{M} \right) - D_1 \left(1 - t \cosh_q(Mu) + \frac{t(1 - s) \sinh_q(Mu)}{M} \right) = -OD + ED.
\]

Solving the above two equations for \(D_0 \) and \(D_1 \) completes the proof.

We can now prove Theorem 9.

\textbf{Proof.} (Of Theorem 9) As done in the proof of Theorem 7, one can check when \(n = 2k \) is even, that \(\hat{D}_{2k}(s, t, q) = s^k D_{2k}(1/s, t, q) \) and when \(n = 2k + 1 \) is odd, that \(\hat{D}_{2k+1}(s, t, q) = s^{k+1} D_{2k+1} \left(\frac{1}{s}, t, q \right) \).

The other details follow as in the proof of Theorem 7, completing the proof.

Using Theorem 8 we get a type D counterpart of Theorem 1 Define

\[
D_n(s_0, s_1, t_0, t_1, q) = \sum_{w \in \mathcal{D}_n} s_0^{\scriptscriptstyle\operatorname{asc}_D(w)} s_1^{\scriptscriptstyle\operatorname{asc}_D(w)} t_0^{\scriptscriptstyle\operatorname{des}_D(w)} t_1^{\scriptscriptstyle\operatorname{des}_D(w)} q^{\scriptscriptstyle\operatorname{inv}_D(w)}.
\]

Further, define the generating functions

\[
D_0(s_0, s_1, t_0, t_1, q, u) = \sum_{k \geq 1} D_{2k}(s_0, s_1, t_0, t_1, q) \frac{u^{2k}}{D_{2k}(1, q)},
\]

\[
D_1(s_0, s_1, t_0, t_1, q, u) = \sum_{k \geq 1} D_{2k+1}(s_0, s_1, t_0, t_1, q) \frac{u^{2k+1}}{D_{2k+1}(1, q)}.
\]

We move to our type D counterpart of Theorem 1. Recall \(D_0(s, t, q, u) \) and \(D_1(s, t, q, u) \) from (22).
Theorem 33. We have the egf

\[
\mathcal{D}_0(s_0, s_1, t_0, t_1, q, u) = \frac{1}{s_0}[T(ED)(s_1 - t_1 \cosh_q (mu))] + T(OD)\left(\frac{(t_1(s_0-t_0))}{m} \sqrt{s_0 s_1} \sinh_q (mu)\right), \quad (80)
\]

\[
\mathcal{D}_1(s_0, s_1, t_0, t_1, q, u) = \frac{1}{s_0} T(ED)\left(\frac{t_1(s_0-t_0)}{m} \sqrt{s_0 s_1} \sinh_q (mu)\right) - T(OD)\left(\frac{t_1(s_0-t_0)}{m} \sqrt{s_0 s_1} \sinh_q (mu)\right).
\]

where

\[
T(OD) = \frac{\sqrt{s_0 s_1} u t_1^2}{s_1^2} (\cosh_q (mu) - 1) + \frac{(s_1 - t_1) m}{(s_0 - t_0) \sqrt{s_0 s_1}} (\sinh_D (mu; q) - mu) + \frac{2 t_1 (s_1 - t_1) \sqrt{s_0 s_1}}{s_1^2 m} (\sinh_q (mu) - mu),
\]

\[
T(ED) = \frac{2 t_1}{s_1} (\cosh_q (mu) - 1) + \frac{u t_1^2 (s_0 - t_0) \sqrt{s_0 s_1}}{s_1^2 s_0 m} \sinh_q (mu) + \frac{(s_1 - t_1)}{t_1} (\cosh_D (mu; q) - 1).
\]

Proof. We proceed as we did in the proof of Theorem 23. It is easy to see that

\[
\mathcal{D}_0(s_0, s_1, t_0, t_1, q, u) = \frac{s_1}{s_0} \mathcal{D}_0(t_0, t_1, q, \sqrt{s_0 s_1} u),
\]

\[
\mathcal{D}_1(s_0, s_1, t_0, t_1, q, u) = \frac{\sqrt{s_1}}{s_0} \mathcal{D}_1(t_0, t_1, q, \sqrt{s_0 s_1} u).
\]

We denote by \(T \) the transformation that sends \(s \) to \(t_0 \), \(t \) to \(t_1 \) and \(u \) to \(\sqrt{s_0 s_1} u \). It is easy to see that \(T(OD) \) and \(T(ED) \) are as given above, completing the proof.

3.2 Type D \(q \)-analogue of Hyatt’s recurrences

We give our \(q \)-analogue of Hyatt-type recurrences in this subsection.

Theorem 34. For even \(n \),

\[
\sum_{w \in \mathcal{D}_+^n} t^{\text{des}_D(w)} s^{\text{des}_D(w)} q^{\text{inv}_D(w)} = \sum_{r=0}^{\frac{n}{2}-1} q^{\binom{2r+1}{2}} n \binom{n}{2r+1} q D_{n-2r-1}(s, t, q)(s-1)^r (t-1)^r + \sum_{r=1}^{\frac{n}{2}} q^{\binom{2r}{2}} n \binom{n}{2r} q D_{n-2r}(s, t, q)(s-1)^{r-1} (t-1)^r.
\]

For odd \(n \),

\[
\sum_{w \in \mathcal{D}_+^n} t^{\text{des}_D(w)} s^{\text{des}_D(w)} q^{\text{inv}_D(w)} = \sum_{r=0}^{\frac{n}{2}} q^{\binom{2r+1}{2}} n \binom{n}{2r+1} q D_{n-2r-1}(s, t, q)(s-1)^r (t-1)^r + \sum_{r=1}^{\frac{n}{2}} q^{\binom{2r}{2}} n \binom{n}{2r} q D_{n-2r}(s, t, q)(s-1)^{r-1} (t-1)^r.
\]

Proof. Define \(\mathcal{D}_k \) to be the signed permutations in \(\mathcal{D}_n^+ \) that have their rightmost \(k + 1 \) elements being positive and arranged in descending order. Thus, the first \(n - k - 1 \) elements must have an even number
of negative signs. With this observation note that the map $f'' : D_k \times \binom{[n]}{n-k} \rightarrow \hat{D}_{n-k-1}$ that carries (ψ, A) to the signed permutation $\psi_{[n]-A} a_1 a_2 \cdots a_{n-k} (a_1 > a_2 > \cdots a_{n-k} > 0)$, that is,

$$f''(\psi, A) = \psi_{[n]-A}, a_1, a_2, \cdots, a_{n-k}.$$

is a bijection from $D_k \times \binom{[n]}{n-k}$ onto \hat{D}_{n-k-1}.

Write $\hat{D}_k(s, t, q) = \sum_{w \in \hat{D}_k} \epsilon^\text{odes}_D(w) s^\text{odes}_D(w) q^{\text{inv}_D(w)}$. We will abbreviate the LHS as \hat{D}_k for brevity. The following recurrences are then easy to prove. For even n, we have

$$q \binom{n}{2r} q \frac{n}{2r} \frac{D_{n-2r}(s, t, q) s^r t^r}{q} = s_{\hat{D}} A_{2r-1} - (s-1)_{\hat{D}} A_{2r}. \tag{82}$$

$$q \binom{n}{2r+1} q \frac{n}{2r+1} \frac{D_{n-2r-1}(s, t) s^r t^{r+1}}{q} = t_{\hat{D}} A_{2r} - (t-1)_{\hat{D}} A_{2r+1}. \tag{83}$$

For odd n, we have

$$q \binom{n}{2r} q \frac{n}{2r} \frac{D_{n-2r}(s, t) s^r t^r}{q} = t_{\hat{D}} A_{2r-1} - (t-1)_{\hat{D}} A_{2r}. \tag{84}$$

$$q \binom{n}{2r+1} q \frac{n}{2r+1} \frac{D_{n-2r-1}(s, t) s^r t^{r+1}}{q} = s_{\hat{D}} A_{2r} - (s-1)_{\hat{D}} A_{2r+1}. \tag{85}$$

The proofs of these recurrences are along the same lines as the proofs of (55), (56), (57) and (58). The only ambiguity might be when $r = \left\lfloor \frac{n}{2} \right\rfloor - 1$, but this is easily resolved as in \hat{D}_{2r}, the rightmost $n-1$ elements are positive and descending for even n or \hat{D}_{2r+1} when n is odd, the first element has to be positive due to the constraint that there are an even number of negative signs. Therefore, there is no possibility of $w_1 + w_2$ being less than 0.

To preserve elements being in D_n, we consider the map that flips the sign of all elements when n is even and the map that flips the sign of all elements except the first when n is odd.

Lemma 35. Let $f_D : D_n \rightarrow D_n$ be the involution that sends $w = w_1, \cdots, w_n$ to $\overline{w} = \overline{w_1}, \cdots, \overline{w_n}$ if n is even and $w = w_1, \cdots, w_n$ to $\overline{w} = \overline{w_1}, \overline{w_2}, \cdots, \overline{w_n}$ if n is odd. Then, we have the following:

1. When $n = 2k + 1$, we have $\text{odes}_D(w) + \text{odes}_D(f_D(w)) = k + 1$ and when $n = 2k$, we have $\text{odes}_D(w) + \text{odes}_D(f_D(w)) = k + 1$.

2. When $n = 2k + 1$, we have $\text{odes}_D(w) + \text{odes}_D(f_D(w)) = k$ and when $n = 2k$, we have $\text{odes}_D(w) + \text{odes}_D(f_D(w)) = k - 1$.

3. $\text{inv}_D(w) + \text{inv}_D(f_D(w)) = n(n-1)$.

Proof. The proof of the first two assertions are straightforward and hence omitted. For the third part, recall that $\text{inv}_D(w) = \text{inv}_B(w) - |\text{Negs}(w)|$. Thus, we have, for even n,

$$\text{inv}_D(w) + \text{inv}_D(\overline{w}) = \text{inv}_B(w) + \text{inv}_B(\overline{w}) - |\text{Negs}(w)| - |\text{Negs}(\overline{w})| = n^2 - n = n(n-1).$$

When n is odd, it is easy to see that $\text{inv}_D(w_1, \overline{w_2}, \cdots, \overline{w_n}) = \text{inv}_D(\overline{w_1}, \cdots, \overline{w_n})$. The rest follows from the previous argument. The proof is complete. \qed
3.3 Symmetry results

In this Subsection, we give our type D counterparts of our symmetry results.

Theorem 36. We have

\[
D_n^{-}(s,t,q) = \begin{cases}
q^n(n-1)s^k t^{k+1} D_n^{-}(s^{-1}, t^{-1}, q^{-1}) & \text{when } n = 2k + 1, \\
q^n(n-1)s^{k-1} t^{k+1} D_n^{-}(s^{-1}, t^{-1}, q^{-1}) & \text{when } n = 2k.
\end{cases}
\]

Therefore, we have

\[
D_n(s,t,q) = \begin{cases}
D_n^{+}(s,t,q) + q^n(n-1)s^k t^{k+1} D_n^{+}(s^{-1}, t^{-1}, q^{-1}) & \text{when } n = 2k + 1, \\
D_n^{+}(s,t,q) + q^n(n-1)s^{k-1} t^{k+1} D_n^{+}(s^{-1}, t^{-1}, q^{-1}) & \text{when } n = 2k.
\end{cases}
\]

Proof. Let \(f_D : \mathcal{D}_n^+ \rightarrow \mathcal{D}_n^- \) be the map described earlier. By Lemma \[5\] when \(n = 2k \), we have

\[
\sum_{w \in \mathcal{D}_n^-} t^{odes_D(w)} s^{edes_D(w)} q^{inv_D(w)} = \sum_{w \in \mathcal{D}_n^+} t^{odes_D(f_D(w))} s^{edes_D(f_D(w))} q^{inv_D(f_D(w))}
\]

\[
= \sum_{w \in \mathcal{D}_n^+} t^{k+1-odes_D(w)} s^{k-1-edes_D(w)} q^{n(n-1)-inv_D(w)}
\]

\[
= q^n(n-1)s^{k-1} t^{k+1} \sum_{w \in \mathcal{D}_n^+} t^{-odes_D(w)} s^{-edes_D(w)} q^{-inv_D(w)}.
\]

When \(n = 2k + 1 \), we have

\[
\sum_{w \in \mathcal{D}_n^-} t^{odes_D(w)} s^{edes_D(w)} q^{inv_D(w)} = \sum_{w \in \mathcal{D}_n^+} t^{odes_D(f_D(w))} s^{edes_D(f_D(w))} q^{inv_D(f_D(w))}
\]

\[
= \sum_{w \in \mathcal{D}_n^+} t^{k+1-odes_D(w)} s^{k-1-edes_D(w)} q^{n(n-1)-inv_D(w)}
\]

\[
= q^n(n-1)s^k t^{k+1} \sum_{w \in \mathcal{D}_n^+} t^{-odes_D(w)} s^{-edes_D(w)} q^{-inv_D(w)}.
\]

completing the proof. \(\square \)

Since the following corollary is straightforward, we only state it and omit its proof.

Corollary 37 (Type-D Symmetry). We have

\[
D_n(s,t,q) = \begin{cases}
q^n(n-1)s^k t^{k+1} D_n(s^{-1}, t^{-1}, q^{-1}) & \text{when } n = 2k + 1, \\
q^n(n-1)s^{k-1} t^{k+1} D_n(s^{-1}, t^{-1}, q^{-1}) & \text{when } n = 2k.
\end{cases}
\]

4 Snakes

A snake in \(\mathfrak{S}_n \) is a signed permutation \(w \in \mathfrak{S}_n \) satisfying \(0 < w_1 > w_2 < \cdots \). Let \(\text{Snake}^B_n \) be the set of snakes in \(\mathfrak{S}_n \) and denote \(|\text{Snake}^B_n| \) by \(S^B_n \). The paper by Arnol’d \[11\] is a good reference for this topic. Let \(S^B_n(q) = \sum_{w \in \text{Snake}^B_n} q^{inv_B(w)} \). Springer in \[13\] showed the following.

Theorem 38 (Springer). The following is the egf for the numbers \(S^B_n \):

\[
\sum_{n\geq 0} S^B_n \frac{u^n}{n!} = \frac{1}{\cos(u) - \sin(u)}.
\]
The following corollary of Theorem 23 is now easy.

Corollary 39. We have the following egf of the $S_n^B(q)$ polynomials:

$$
\sum_{n \geq 0} S_n^B(q) \frac{u^n}{B_n(1, q)} = \frac{\cos_q(u) \cos(u; q) + (\sin_q(u) - 1) \sin_B(u; q)}{\cos_q(u)}
$$

Proof. Setting $s_1 = t_0 = 0$ and $t_1 = s_0 = 1$ in both $H_0(s_0, s_1, t_0, t_1, q, u)$ and $H_1(s_0, s_1, t_0, t_1, q, u)$ from Theorem 23 and adding completes the proof. \qed

It is easy to see that setting $q = 1$ in Corollary 39 gives us Theorem 38.

4.1 D-snakes

A d-snake in S_n is a signed permutation w in S_n that satisfies $-w_2 > w_1 > w_2 < w_3 > \ldots w_n$. Let $\text{Snake}_D^D(n)$ be the set of all d-snakes in S_n. Denote $|\text{Snake}_D^D(n)|$ by $S_D(n)$. Let $S_D(q) = \sum_{w \in \text{Snake}_D^D(q)} q^{\text{inv}(w)}$.

Define $S_D(0, q, u) = \sum_{n \geq 1} S_{2n}^D(q) \frac{u^{2n}}{D_{2n}(1, q)}$ and $S_D(1, q, u) = \sum_{n \geq 1} S_{2n+1}^D(q) \frac{u^{2n+1}}{D_{2n+1}(1, q)}$.

Corollary 40. We have the following egf of the $S_n^D(q)$ polynomials:

$$
S_D(0, q, u) = \frac{-2 \cos_q^2(u) + \cos_q(u)(\cos_D(u; q) - 1) - 2 \sin_q^2(u) + \sin_q(u) \sin_D(u; q)}{-\cos_q(u)}, \quad (86)
$$

$$
S_D(1, q, u) = \frac{-2 \sin_q(u) + u \cos_q(u) + \sin_D(u; q)}{-\cos_q(u)}. \quad (87)
$$

Proof. Set $t = 1/t$, $u = u\sqrt{t}$, multiply by t and setting $s = t = 0$ in Theorem 8 gives us (86). Set $t = 1/t$, $u = u\sqrt{t}$, multiply by \sqrt{t} and setting $s = t = 0$ in Theorem 8 gives us (87). \qed

Setting $q = 1$ in Corollary 40 gives us the following egf which is given by Springer.

Corollary 41 (Springer). The egf for the S_n^D is:

$$
\sum_{n \geq 1} S_{2n}^D \frac{u^{2n}}{(2n)!} = \frac{\cos(u) - \cos(2u) - 1}{-\cos(2u)},
$$

$$
\sum_{n \geq 1} S_{2n+1}^D \frac{u^{2n+1}}{(2n+1)!} = \frac{-\sin(2u) + u \cos(2u) + \sin(u)}{-\cos(2u)}.
$$

Acknowledgement

The first author acknowledges SERB-National Post Doctoral Fellowship (File No. PDF/2021/001899) during the preparation of this work and profusely thanks Science and Engineering Research Board, Govt. of India for this funding. The first author also acknowledges excellent working conditions in the Department of Mathematics, Indian Institute of Science. The second author thanks National Board of Higher Mathematics for funding. The second author also thanks Indian Institute of Technology, Bombay for its excellent working conditions.
References

[1] **Arnold, V.** The calculus of snakes and the combinatorics of Bernoulli, Euler and Springer numbers of Coxeter groups. *Russian Mathematical Surveys* 47, 1 (1992), 1–51.

[2] **Carlitz, L., and Scoville, R.** Enumeration of rises and falls by position. *Discrete Math* 5 (1973), 45–59.

[3] **Fang, Q., Ma, S.-M., Mansour, T., and Yeh, Y.-N.** Alternating eulerian polynomials and left peak polynomials. *Discrete Mathematics* 345, 3 (2022), 112714.

[4] **Foata, D., and Schützenberger, M.-P.** *Théorie géométrique des polynômes Eulériens*, available at http://www.mat.univie.ac.at/~slc/books/ ed. Lecture Notes in Mathematics, 138, Berlin, Springer-Verlag, 1970.

[5] **Hyatt, M.** Recurrences for Eulerian Polynomials of Type B and Type D. *Annals of Combinatorics* 20, 4 (2016), 869–881.

[6] **Ma, S.-M., Fang, Q., Mansour, T., and Yeh, Y.-N.** Alternating eulerian polynomials and left peak polynomials. *Discrete Math* 345 (2022), Paper 112714, 12 pp.

[7] **Pan, Q., and Zeng, J.** Enumeration of permutations by the parity of descent position. *See https://arxiv.org/abs/2209.15302* (2022).

[8] **Pan, Q. Q.** A new combinatorial formula for alternating descent polynomials. *arXiv preprint arXiv:2207.06212 [math.CO]* (2022).

[9] **Petersen, T. K.** *Eulerian Numbers*, 1st ed. Birkhäuser, 2015.

[10] **Reiner, V.** Descents and one-dimensional characters for classical Weyl groups. *Discrete Mathematics* 140 (1995), 129–140.

[11] **Reiner, V.** The distribution of descents and length in a Coxeter Group. *The Electronic Journal of Combinatorics* 2 (1995), R25.

[12] **Remmel, J. B.** Generating Functions for Alternating Descents and Alternating Major Index. *Annals of Combinatorics* 16 (2012), 625–650.

[13] **Springer, T. A.** Remarks on a combinatorial problem. *Nieuw Arch. Wisk.* 19 (1971), 30–36.

[14] **Vergès, M. J.** Enumeration of snakes and cycle-alternating permutations. *Australasian Journal of Combinatorics* 60(3) (2014), 279–305.