Random quantum circuits, in which an array of qubits is subjected to a series of randomly-chosen unitary operations, have provided key insights into the dynamics of many-body quantum entanglement. Recent work showed that interleaving the unitary operations with single-qubit measurements can drive a transition between high- and low-entanglement phases. We study a class of symmetric random quantum circuits with two competing types of measurements in addition to unitary dynamics. We find a rich phase diagram involving robust symmetry-protected topological, trivial, and volume law entangled phases, where the transitions are hidden to expectation values of any operator and are only apparent by averaging the entanglement entropy over quantum trajectories. In the absence of unitary dynamics, we find a purely measurement-induced critical point, which maps exactly to two copies of a classical 2D percolation problem. Numerical simulations indicate this transition is a tricritical point that splits into two critical lines in the presence of arbitrarily sparse unitary dynamics with an intervening volume law entangled phase. Our results show that measurements alone are sufficient to induce criticality and logarithmic entanglement scaling, and arbitrarily sparse unitary dynamics can be sufficient to stabilize volume law entangled phases in the presence of rapid yet competing measurements.

I. INTRODUCTION

Generic unitary dynamics drive quantum many-body systems into highly entangled states characterized by volume-law scaling of subsystem entanglement entropies. When this dynamics is interrupted by rapid local measurements, individual quantum trajectories are expected to collapse into low entanglement states characterized by area-law scaling of subsystem entanglement entropies. Recently, it was discovered that, at least in a class of models, these two phases are separated by a scale-invariant “critical point” at a finite measurement rate [1–3]. Several aspects of this transition and its generalizations have been studied recently [4–19].

In the limit of infinitely rapid local measurements, the state of the system crucially depends on the choice of measurement basis. Assuming one measures only commuting single-qubit operators, the wave-function collapses into an unentangled trivial product-state. However, if one chooses to measure a set of stabilizer operators that stabilize a topological or a symmetry-protected topological (SPT) wave-function, the resulting state, despite having area-law scaling of entanglement as well, would be topologically distinct from the product state [20, 21].

In this work, we consider the competition between these two types of measurements with each other as well as with the unitary dynamics. This raises the question of whether the notion of a topological phase is well-defined in random quantum circuits that include both unitary dynamics and local measurements. To make progress in answering this question, we consider a (1+1)D quantum circuit model comprised of three elements: (a) Measurement of stabilizer operators that stabilize a $Z_2 \times Z_2$ SPT realized by the “cluster model” [22, 23]; (b) Single-qubit measurements in the computational basis; (c) Random, symmetry-allowed Clifford unitary gatesimulation possible [24]). At each step of the circuit, one element is selected at random with probability p_t, p_s, p_u respectively ($p_t + p_s + p_u = 1$) and applied at a random position in space. A typical snapshot of the circuit is shown in Fig. 1a.

Using suitably defined order parameters, we discover a rich phase diagram, shown in Fig. 1b. We find not only a stable SPT phase in an extended region of the phase diagram, but our results indicate a tricritical point, with logarithmic scaling of entanglement entropy, separating the volume law, trivial and SPT phases in the absence of unitary dynamics $p_u = 0$, i.e. when only measurements are present. The existence of this tricritical point implies that a volume-law phase can be stabilized by an infinitesimally small rate of unitary dynamics.

Moreover, we find an exact analytical mapping that maps the case without unitary dynamics $p_u = 0$ to two copies of a (non-standard) classical 2D percolation problem. Away from the $p_u = 0$ line, we extensively study the phase transitions numerically. The numerical results are consistent with the

![FIG. 1. Schematic of the circuit and its corresponding phase diagram. a. Schematic diagram of a typical quantum circuit. Yellow (light) boxes corresponds to a three qubit random Clifford unitary, blue and green boxes represent projective measurements. b. The phase diagram describing the entanglement structure of the steady state. Red squares and blue circles are obtained from numerical simulations, while the rest of the phase boundaries are extrapolated. c. Mapping the dynamics of the random circuit on the $p_u = 0$ axis to the 2D percolation on a square lattice.](arXiv:2004.07243v3 [quant-ph] 2 Nov 2021)
correlation length critical exponent ν remaining the same on the phase boundaries all the way down to the tricritical point, which has $\nu = 4/3$ based on the analytical mapping to percolation. On the other hand, we find that the coefficient of the logarithmic scaling of the entanglement entropy changes significantly, suggesting that the CFT description changes along the phase boundaries.

II. MODEL

We study a family of (1+1)D random quantum circuits that realize quantum trajectories extrapolating between wave functions in an SPT phase, a trivial product state, and a volume-law entangled phase.

We take our SPT to be the $\mathbb{Z}_2 \times \mathbb{Z}_2$ symmetry protected phase realized by the cluster model defined on an open chain of N qubits (we take N even throughout) in (1+1)D [22, 23],

$$H_0 = -\sum_{i=2}^{N-1} X_{i-1}Z_iX_{i+1}, \quad (1)$$

where X_i and Z_i denote Pauli matrices. Note that all terms commute with each other and therefore this model is exactly solvable. This model realizes a SPT phase [25–27] protected by the $\mathbb{Z}_2 \times \mathbb{Z}_2$ symmetry generated by

$$G_1 = \prod_{i \text{ is even}} Z_i; \quad G_2 = \prod_{i \text{ is odd}} Z_i. \quad (2)$$

We say an eigenstate of H_0 is a symmetry invariant eigenstate if it is an eigenstate of all terms in H_0 as well as G_1 and G_2. All symmetry invariant eigenstates within the same symmetry sector can be related to each other by a symmetry-preserving constant depth local unitary circuit.

On an open chain, a particular generalization of entanglement entropy [23, 28–30] can be used as an order parameter for this SPT phase. Consider dividing the system as shown in Fig. 2. The generalized topological entanglement entropy S_{topo} is defined as

$$S_{\text{topo}} = S_{AB} + S_{BC} - S_B - S_{ABC}. \quad (3)$$

S_{AB} stands for the von Neumann entanglement entropy of the region $A \cup B$ in the chain. Other terms are defined similarly. One can show that for all symmetry invariant eigenstates of H_0, $S_{\text{topo}} = 2$.

To realize a wave function in this SPT phase, that is, a symmetry invariant eigenstate of H_0, we can for example use a quantum circuit that starts with an arbitrary eigenstate of G_1 and G_2 and then proceed to measure all stabilizer operators $g_i \equiv X_{i-1}Z_iX_{i+1}$.

To realize wave functions in the trivial phase, we use a quantum circuit that measures all single qubit operators in the Z_i basis. The choice of the single qubit measurement basis Z_i is fixed by demanding all measurement operators commute with the symmetry generators G_1 and G_2 (see Supplementary Section 1 for the case with symmetry violating measurements). All wave functions in the trivial phase have $S_{\text{topo}} = 0$.

To realize wave functions in the volume law phase, we use random Clifford unitary gates that are allowed by the symmetry. The simplest class of gates to consider would be two qubit nearest-neighbor random unitaries. However, due to the symmetry restrictions, this set is not effective in entangling the qubits. Ergo, we work with three-qubit random unitary gates.

We are now in a position to construct our full quantum circuit model: We start with the $|0\rangle^\otimes N$ state. In each updating step we either: (a) apply a random 3-qubit Clifford unitary between qubits $i-1$, i and $i+1$ with probability p_u, for a random u drawn from $2, \ldots, N-1$, (b) measure the single qubit operator Z_i with probability p_u, for a random i drawn from $1, \ldots, N$, or (c) measure the stabilizer $g_i \equiv X_{i-1}Z_iX_{i+1}$ with probability $p_i = 1 - p_u - p_a$, for a random i drawn from $2, \ldots, N-1$. A time step is defined as N consecutive updating steps.

In the limiting case $p_u = 1$ and $p_a = 0$, the random unitary circuit drives the system into a volume law phase, whereas for the other two limiting cases, i.e. $p_u = 0, p_a = 0$ and $p_a = 0, p_u = 1$, the system is in an area law phase, one with SPT order and the other without.

We detect the presence of the different phases in several distinct ways. First, at each time step we calculate S_{topo}, averaged over quantum trajectories, and run the circuit until a steady state value is obtained. In addition to S_{topo}, to detect the phase transition from the area to volume law phase we extensively use the order parameter originally introduced in Ref. [6]. To do so, first we run the circuit for time $2N$ to reach the steady state. Then, we entangle an ancilla qubit to the two qubits in the middle of the chain by measuring the following stabilizers,

$$Z_{N/2-1}Z_a, \quad Z_{N/2+1}Z_a, \quad X_{N/2-1}X_aX_{N/2+1}, \quad (4)$$

where X_a and Z_a act on the ancilla qubit. Note that all three stabilizers commute with the symmetry generators G_1 and G_2. Next, we let the circuit run for an extra $O(N)$ time steps, and then measure the entanglement entropy of the ancilla qubit. As shown in Ref. [6], if the system is in the area law phase, the ancilla’s entanglement entropy S_a should be zero by the time we measure it while in a volume law phase, the ancilla should be still entangled with the system.

We also use a slightly modified version of the ancilla order parameter[6], which we call the scrambled ancilla order parameter denoted by \tilde{S}_a, such that instead of 1 ancilla we use 10 and instead of measuring the stabilizers listed in equation (4) the ancillas are entangled to the system via 10 time steps of a scrambling circuit, where at each updating step a random
non-symmetric) 3-qubit Clifford gate is applied to three randomly drawn qubits. As was the case for \(S_a \), we measure the entropy of the ancilla subsystem after the qubit chain evolves \(O(N) \) time steps under the symmetric random circuit. While in the trivial phase the ancilla subsystem would have been entirely disentangled from the qubit chain, giving \(\tilde{S}_a = 0 \), in the SPT phase the ancilla subsystem should have remained entangled to the two edge degrees of freedom which are protected by the symmetry, resulting in \(\tilde{S}_a = 2 \). In the volume law phase the ancilla subsystem should remain entangled to the bulk as well and hence \(\tilde{S}_a > 2 \).

It turns out that compared to \(\tilde{S}_a \) and \(S_{\text{topo}} \), \(S_a \) shows a sharper SPT to volume law phase transition when \(p_u > 0 \) (see Supplementary Section 11) — and hence it is used to extract the corresponding critical exponents— but is unable to detect the topological phase transition at \(p_u = 0 \). On the other hand, \(S_a \) can be used as an experimentally accessible probe to detect the phase transition at \(p_u = 0 \).

We note that a type of Edwards-Anderson glass order parameter can also be used to detect the topological phase (see Supplementary Section 4), although it cannot distinguish the trivial and volume law phases.

Finally, we note that the random quantum circuits studied here, viewed as a quantum channel, eventually transform the initial state of the system into the maximally mixed state allowed by the symmetry (see Supplementary Section 3 for a proof and a bound on how fast this happens). Therefore, the steady state expectation value of any operator stays the same throughout the phase diagram and thus cannot serve as an order parameter.

III. MAPPING THE CASE WITHOUT UNITARY DYNAMICS \(p_u = 0 \) TO CLASSICAL PERCOLATION

Here we show how to map the entire \(p_u = 0 \) line in the random circuit presented above to two copies of a classical 2D percolation problem on a square lattice. This percolation model is non-standard, although our numerical results indicate that it has the same critical properties as the standard classical percolation model on the square lattice. There is a distinct but closely related random quantum circuit that we define in Supplementary Section 9 which does map directly to (two copies of) standard classical percolation.

Let us divide the operators measured by the random circuit into two sets. One set, which we call the odd site operators, is comprised of single qubit operators \(Z_i \) for odd \(i \) alongside the stabilizers \(g_j \) which end on the odd sites, i.e. for even \(j \). The even site operators are defined analogously. Note that each member of one set commutes with all elements of the other set.

Let us focus on the measurements of odd site operators. Consider the \(N/2 \times M \) square lattice as shown in Fig. 1c, where \(M \) is the total number of updating steps in the circuit. We call this lattice the odd sites’ percolation lattice. The \(N/2 \) vertices on each row corresponds to the odd sites of the system and we label them accordingly. The vertical (horizontal) links ending (residing) on the \(m \)th row are related to the \(Z_i (g_j) \) measurements in the \(m \)'th step of the circuit in the following way: if \(Z_i \) is not measured at updating step \(m \), we draw a vertical link between the \((i, m - 1)\) and \((i, m)\) vertices. Also if the stabilizer \(g_j \) is measured at step \(m \), we draw a horizontal link between the \((j - 1, m)\) and \((j + 1, m)\) vertices. At the end, we assign a unique color to each connected cluster of vertices.

We construct the even sites’ percolation lattice analogously. The randomness of the quantum circuit translates into random connections in the percolation lattices; the probability distributions for the links in the percolation lattice are detailed in Supplementary Section 5.

The entanglement structure of the system at step \(M \) can be extracted from the colors of the vertices on the last row of the two aforementioned percolation lattices. As the following proposition makes precise, qubits of the same color make up their own SPT state:

Proposition 1. Group the qubits based on their color on the last row of the percolation lattice. Let \(A^j = \{q_i \}_{i=1}^n \) denote the ordered set of qubit indices corresponding to \(j \)'th color; that is, the \(q_i \) label a set of qubits all with the same color at step \(M \). Then, up to a minus sign, the operators that stabilize the state of the system at step \(M \) are of the following form,

\[
\prod_{i=1}^n Z_{q_i} \text{ and } g_{q_i, q_{i+1}} \quad \text{for } i = 1, 2, \ldots, n - 1,
\]

where \(g_{q_i, q_{i+1}} \) is defined as

\[
g_{i,j} = X_i \prod_{k=0}^{j-1} Z_{i+2k+1} X_j. \quad (6)
\]

By considering similarly defined stabilizer operators for all different colors (\(A^j \)'s with different \(j \)), we get a complete set of stabilizers that specify the state of the system. The proof of Proposition 1 is left for Supplementary Section 8.

As shown in Lemma 1 in Supplementary Section 2, the minus sign ambiguity in Proposition 1 has no bearing on the entanglement spectrum of the system’s state. Thus the percolation lattices exactly determine the (von Neumann or Rényi) entanglement entropy for any subset of qubits.

IV. NUMERICAL RESULTS

We start by briefly reviewing the quantities we numerically calculate to obtain the phase diagram and to characterize the critical phase boundaries.

A signature of criticality in (1+1)D systems is the logarithmic scaling of the entanglement entropy. Thus, we calculate the entanglement entropy at the \(t \)'th time step (which corresponds to \(tN \) updating steps), \(S(x, L; t) \) of a subsystem of length \(x \) for a system of total length \(L = N \), averaged over all of the quantum trajectories of the circuit.

In the large time limit, this averaged entanglement entropy saturates to a logarithmic form at the phase transitions as in (1+1)D CFTs [31]:

\[
S(x, L) = a_x \log \left(\frac{L}{\pi} \sin \frac{\pi x}{L} \right) + b. \quad (7)
\]
We can also characterize the entanglement growth with time. At criticality, for timescales much smaller than the saturation time we have,

\[S(x, L; t) = a_t \log(t) + b'. \]

Note that as opposed to unitary CFTs the coefficient of the logarithmic scaling \(a_x \) is not given by the central charge of any underlying CFT. In the context of the area law to volume law transition, Ref. [32] provides an appealing interpretation of \(a_x \) and \(a_t \) as universal quantities given by the scaling dimension of certain "boundary condition changing" operators. \(b \) and \(b' \) are non-universal constants.

Throughout the phase boundaries, we find \(a_x = a_t \) within the margin of error, which is consistent with a dynamical exponent \(z = 1 \), as the entanglement growth rate is similar along time and space directions.

We can use the averaged topological entanglement entropy, \(S_{\text{topo}} \) as the order parameter to distinguish the three different phases: \(S_{\text{topo}} \) would be extensive in the volume law phase, while in the thermodynamic limit it should converge to values 2 and 0 in the topological and trivial phases respectively. Let \(S_{\text{topo}}(p, L) \) denote the steady state value of \(S_{\text{topo}} \) when some tuning parameter (e.g. single qubit measurement probability) is \(p \) and system size is \(L \). On general grounds, we expect the following scaling form in the vicinity of the critical point,

\[S_{\text{topo}}(p, L) = F((p - p_c)L^{1/\nu}), \]

where \(F(x) \) is some unknown function, \(p_c \) is the critical value of tuning parameter \(p \), and \(\nu \) is the correlation length critical exponent, \(\xi \propto \left| p - p_c \right|^{-\nu} \).

As explained in the Model section, the entanglement entropy of a suitably entangled ancilla system, \(S_a \) or \(\tilde{S}_a \) can also be used as the order parameter to distinguish the volume law phase from the other two area law phases. Assuming the dynamical exponent \(z = 1 \), for the ancilla entropy \(S_a \) we have [6],

\[S_a(p, L, t) = G((p - p_c)L^{1/\nu}, t/L), \]

where \(G(x) \) is some unknown function. \(\tilde{S}_a \) has a similar scaling form.

We now present our numerical results. We study system sizes up to 512 qubits and average over \(10^5 \) random quantum trajectories. We start with the \(|0\rangle^{\otimes N} \) state and let the circuit run for \(2N \) time steps for the system to reach the steady state. We have explicitly verified that saturation is reached before \(t = 2N \). After entangling the ancilla qubit, we simulate the system for an additional \(O(N) \) time steps to calculate \(S_a \) (as explained above).

Fig. 3 shows numerical results along the \(p_u = 0 \) line. Fig. 3a and c show the steady state value of \(S_{\text{topo}} \) and \(S_a \) versus \(p_s \) for different system sizes. As is evident from both diagrams, there is a clear continuous phase transition at \(p_s = 1/2 \) in the thermodynamic limit. A simple argument based on duality shows that if there is a continuous phase transition between the trivial and topological phase, it has to be at \(p_s = 1/2 \). This duality argument is provided in Supplementary Section 6. Interestingly we find that \(S_a \) seems to be unable to capture the area-law to area-law phase transition at \(p_u = 0 \), at least for numerically accessible systems sizes. On the other hand, From collapsing the data near the critical point \(p_c = 1/2 \), we find \(\nu = 4/3 \) results in a near perfect collapse (see Fig. 3c and d).

Fig. 3e shows the steady state value of entanglement entropy \(S(x) \) of the subregion \([1, x]\) at the critical point \(p_u = 0 \) and \(p_s = 1/2 \), for \(L = 512 \). As shown, the entanglement entropy fits the CFT form of equation (7) with \(a_x = 0.20(1) \).

Fig. 3f shows the entanglement entropy of the half-chain versus time for \(p_s = p_c \). All entropies are in units of \(\log 2 \). See Supplementary Section 8 for an analytical derivation of the \(a_x \) coefficient using the percolation map.
the standard classical link percolation problem on the square lattice. Our results are thus consistent with the $p_u = 0$, $p_s = 1/2$ transition studied in Fig. 3 being governed by (two copies of) the standard classical percolation fixed point.

We now proceed to the case with unitary dynamics $p_u \neq 0$. Fig. 4 shows S_{topo}, S_a and \tilde{S}_a versus p_s for the fixed value of $p_u = 0.3$. For $p_s = 0$, the system is in the topological phase as can be seen from Fig. 4a. By increasing p_s, the entropies exhibit a continuous phase transition to the volume law phase at first and then another continuous phase transition to the trivial phase.

By using analogous plots for different values of p_u, we can determine the 2D phase diagram in the (p_s, p_u) space. The result is illustrated in Fig. 1b. Note that since the probability of measuring a stabilizer is $1/p_u$, the phase diagram is restricted to the region $p_u + p_s \leq 1$. The data points on the plot have been extracted using numerical simulations and then the schematic phase diagram is drawn based on them. For more detailed results used in obtaining the phase diagram see Supplementary Section 11.

The SPT/volume law phase boundary intersects the p_u axis at $p_u = 0.355(3)$ and the volume law/trivial phase boundary ends at $p_u = 0.663(4)$ on the $p_u + p_s = 1$ line. Our numerical simulations demonstrate that the volume law phase still exists for p_u as low as 0.1. Unfortunately, clearly detecting the SPT to volume law transition requires increasingly large system sizes as p_u is lowered (See Supplementary Section 10 for details). Therefore, we extrapolate the phase diagram for smaller values of p_u. By following the trend of the data points, it appears that the volume law phase survives all the way down to $p_u = 0$, hence suggesting that the critical point $p_s = 0.5$ and $p_u = 0$ is actually a tricritical point. This in turn means that at $p_s = 1/2$, arbitrarily sparse random Clifford gates in the quantum circuit can still drive the system into the volume law phase.

By using the scaling form in equation (9) and collapsing the data, we can extract the correlation length critical exponent ν along the phase boundaries. Taking into account the margins of error, our numerical results are consistent with $\nu = 4/3$ everywhere along the phase boundaries (see Supplementary Section 11 for the corresponding plots and numerical values). However $a_x = a_t$ changes significantly along the phase boundaries at the largest system sizes we have studied. If the $a_x = a_t$ that we extract are indeed close to their values in the thermodynamic limit, this suggests that the volume to area law critical lines may be related to two copies of the classical percolation fixed point by marginal deformations.

Entanglement phase transitions involving topological or SPT phases, also seem to be closely related to quantum error correction. In particular, the rapid stabilizer measurements are reminiscent of syndrome measurements in active error correction schemes. Moreover, random single qubit measurements can be viewed as faulty syndrome measurements or qubit decoherence, while unitary dynamics models the random noise affecting the qubits. In this context, “entanglement phase transitions” could be related to “error-thresholds” beyond which the long range entanglement structure of the code space, which is responsible for the topological protection of the encoded information, is entirely lost, hence rendering recovery of logical information impossible. Within this framework, our results might have natural applications to quantum error correcting codes. Note that this is a different analogy to quantum error correction than the one presented in Ref. [5, 8], where the volume law phase is considered to be a quantum error correcting code.

V. ACKNOWLEDGEMENTS

We thank M. Hafezi, H. Dehghani, and A. Nahum for helpful comments. We are especially grateful to M. Gullans and D. Huse for suggesting the modified ancilla order parameter and discussions regarding its saturation value in the topological phase. The authors acknowledge the University of Maryland supercomputing resources (http://hpcc.umd.edu) made available for conducting the research reported in this paper. A.L and M.B are supported by NSF CAREER (DMR-1753240), Alfred P. Sloan Research Fellowship, and JQI-PFC-UMD. Y.A is supported by National Science Foundation NSF DMR1555135 and JQI-NSF-PFC.

[1] Brian Skinner, Jonathan Ruhman, and Adam Nahum, “Measurement-induced phase transitions in the dynamics of entanglement,” Physical Review X 9, 031009 (2019).
[2] Yaodong Li, Xiao Chen, and Matthew PA Fisher, “Quantum zero effect and the many-body entanglement transition,” Physical Review B 98, 205136 (2018).
[3] Amos Chan, Rahul M. Nandkishore, Michael Pretko, and Graeme Smith, “Unitary-projective entanglement dynamics,” Phys. Rev. B 99, 224307 (2019).
[4] Yaodong Li, Xiao Chen, and Matthew PA Fisher, “Measurement-driven entanglement transition in hybrid quantum circuits,” Physical Review B 100, 134306 (2019).
[5] Michael J. Gullans and David A. Huse, “Dynamical purification phase transition induced by quantum measurements,” (2019), arXiv:1905.05195.
[6] Michael J. Gullans and David A. Huse, “Scalable probes of measurement-induced criticality,” Phys. Rev. Lett. 125, 070606 (2020).
[7] Romain Vasseur, Andrew C. Potter, Yi-Zhuang You, and Andreas W. W. Ludwig, “Entanglement transitions from holographic random tensor networks,” Phys. Rev. B 100, 134203 (2019).
[8] Soonwon Choi, Yimu Bao, Xiao-Liang Qi, and Ehud Altman, “Quantum error correction in scrambling dynamics and measurement-induced phase transition,” Phys. Rev. Lett. 125, 030505 (2020).
[9] M. Szniszewski, A. Romito, and H. Schomerus, “Entanglement transition from variable-strength weak measurements,” Phys. Rev. B 100, 064204 (2019).
[10] Qicheng Tang and W. Zhu, “Measurement-induced phase transition: A case study in the nonintegrable model by density-
matrix renormalization group calculations,” Phys. Rev. Research 2, 013022 (2020).
[11] Chao-Ming Jian, Yi-Zhuang You, Romain Vasseur, and Andreas W. W. Ludwig, “Measurement-induced criticality in random quantum circuits,” Phys. Rev. B 101, 104302 (2020).
[12] Xiangyu Cao, Antoine Tilloy, and Andrea De Luca, “Entanglement in a fermion chain under continuous monitoring,” SciPost Phys. 7, 24 (2019).
[13] Javier Lopez-Piqueres, Brayden Ware, and Romain Vasseur, “Mean-field entanglement transitions in random tree tensor networks,” Phys. Rev. B 102, 064202 (2020).
[14] Yimu Bao, Soonwon Choi, and Ehud Altman, “Theory of the phase transition in random unitary circuits with measurements,” Phys. Rev. B 101, 104301 (2020).
[15] Lorenzo Piroli, Christoph Sündertauf, and Xiao-Liang Qi, “A random unitary circuit model for black hole evaporation,” Journal of High Energy Physics 2020, 63 (2020).
[16] Aidan Zabalo, Michael J. Gullans, Justin H. Wilson, Sarang Gopalakrishnan, David A. Huse, and J. H. Pixley, “Critical properties of the measurement-induced transition in random quantum circuits,” Phys. Rev. B 101, 060301 (2020).
[17] Davide Rossini and Ettore Vicari, “Measurement-induced dynamics of many-body systems at quantum criticality,” Phys. Rev. B 102, 035119 (2020).
[18] Ruihua Fan, Sagar Vijay, Ashvin Vishwanath, and Yi-Zhuang You, “Self-organized error correction in random unitary circuits with measurements,” (2020), arXiv:2002.12385.
[19] Adam Nahum and Brian Skinner, “Entanglement and dynamics of diffusion-annihilation processes with majorana defects,” Phys. Rev. Research 2, 023288 (2020).
[20] Matthew B. Hastings, “Topological order at nonzero temperature,” Phys. Rev. Lett. 107, 210501 (2011).
[21] Xie Chen, Zheng-Cheng Gu, Zheng-Xin Liu, and Xiao-Gang Wen, “Symmetry protected topological orders and the group cohomology of their symmetry group,” Physical Review B 87, 155114 (2013).
[22] Robert Raussendorf and Hans J Briegel, “A one-way quantum computer,” Physical Review Letters 86, 5188 (2001).
[23] Bei Zeng, Xie Chen, Duan-Lu Zhou, and Xiao-Gang Wen, Quantum information meets quantum matter (Springer, 2019).
[24] Daniel Gottesman, “Stabilizer codes and quantum error correction,” Ph.D. thesis (1997), 10.7907/rzr7-dt72.
[25] Wonmin Son, Luigi Amico, Rosario Fazio, Aioscia Hamma, Saverio Pascazio, and Vlatko Vedral, “Quantum phase transition between cluster and antiferromagnetic states,” EPL (Europhysics Letters) 95, 50001 (2011).
[26] Luiz H Santos, “Rokhsar-kivelson models of bosonic symmetry-protected topological states,” Physical Review B 91, 155150 (2015).
[27] Lokman Tsui, Yen-Ta Huang, Hong-Chen Jiang, and Dung-Hai Lee, “The phase transitions between zn × zn bosonic topological phases in 1+1d, and a constraint on the central charge for the critical points between bosonic symmetry protected topological phases,” Nuclear Physics B 919, 470–503 (2017).
[28] Bei Zeng and Xiao-Gang Wen, “Gapped quantum liquids and topological order, stochastic local transformations and emergence of unitarity,” Physical Review B 91, 125121 (2015).
[29] Bei Zeng and Duan-Lu Zhou, “Topological and error-correcting properties for symmetry-protected topological order,” EPL (Europhysics Letters) 113, 56001 (2016).
[30] P. Fromholz, G. Magnifico, V. Vitale, T. Mendes-Santos, and M. Dalmonte, “Entanglement topological invariants for one-dimensional topological superconductors,” Phys. Rev. B 101, 058516 (2020).
[31] Pasquale Calabrese and John Cardy, “Entanglement entropy and conformal field theory,” Journal of Physics A: Mathematical and Theoretical 42, 054005 (2009).
[32] Yaodong Li, Xiao Chen, Andreas W. W. Ludwig, and Matthew P. A. Fisher, “Conformal invariance and quantum non-locality in hybrid quantum circuits,” (2020), arXiv:2003.12721.
[33] Daniel Gottesman, “The Heisenberg representation of quantum computers,” in 22nd International Colloquium on Group Theoretical Methods in Physics (1998) pp. 32–43, arXiv:quant-ph/9807006.
[34] Michael A Nielsen and Isaac Chuang, “Quantum computation and quantum information.” (2002).
[35] Adam Nahum, Jonathan Ruhan, Sagar Vijay, and Jeongwan Haah, “Quantum entanglement growth under random unitary dynamics,” Physical Review X 7, 031016 (2017).
[36] David Fattal, Toby S Cubitt, Yoshihisa Yamamoto, Sergey Bravyi, and Isaac L Chuang, “Entanglement in the stabilizer formalism,” arXiv preprint quant-ph/0406168 (2004).
[37] David Pérez-García, Michael M Wolf, M Sanz, Frank Verstraete, and J Ignacio Cirac, “String order and symmetries in quantum spin lattices,” Physical review letters 100, 167202 (2008).
[38] Yasaman Bahri, Ronen Vosk, Ehud Altman, and Ashvin Vishwanath, “Localization and topology protected quantum coher-

FIG. 4. The phase transitions across the $p_s = 0.3$ line. a, S_{topo} versus p_{s}. b, The ancilla entropy S_{a} measured $t = N$ time steps after it was entangled, versus p_{s}. c, The ancilla entropy S_{a} measured $t = N$ time steps after it was entangled, versus p_{s}. In all three panels, the first crossing corresponds to the phase transition from the SPT phase into the volume law phase while the second crossing corresponds to the phase transition from the volume law phase to the trivial phase. The critical points are marked on the phase diagram in Fig.1b as well.
ence at the edge of hot matter,” Nature Communications 6, 7341 (2015).

[39] Anushya Chandran, Vedika Khemani, C. R. Laumann, and S. L. Sondhi, “Many-body localization and symmetry-protected topological order,” Phys. Rev. B 89, 144201 (2014).

[40] Shengqi Sang and Timothy H Hsieh, “Measurement protected quantum phases,” arXiv preprint arXiv:2004.09509 (2020).

[41] John Cardy, “Conformal invariance and percolation,” arXiv preprint math-ph/0103018 (2001).

[42] John Cardy, “Linking numbers for self-avoiding loops and percolation: Application to the spin quantum hall transition,” Phys. Rev. Lett. 84, 3507–3510 (2000).
Supplementary Materials

1. METHODS

A. Binary Representation of the Stabilizer Circuit

We use the binary representation of the stabilizer formalism to simulate the Clifford circuits studied in this work. This representation is based on the observation that, up to some phase factor, any Pauli string operator s over N qubits can be uniquely mapped to a binary vector $w = (u, v) \in \mathbb{Z}_2^{2N}$ where $u, v \in \mathbb{Z}_2^N$ and

$$s = e^{i\theta} \prod_{i=1}^{N} X_i^{u_i} \prod_{i=1}^{N} Z_i^{v_i} \quad (S1)$$

If Pauli string operators s_1 and s_2 correspond to vectors w_1 and w_2, their multiplication s_1s_2 corresponds to $w_1 + w_2$. Moreover, $[s_1, s_2] = 0$ if and only if $w_1^T g w_2 = 0$, where g is the $2N \times 2N$ matrix defined as

$$g = \begin{pmatrix} 0_{N \times N} & I_{N \times N} \\ I_{N \times N} & 0_{N \times N} \end{pmatrix} \quad (S2)$$

It is also easy to apply Clifford unitaries in the binary representation. Let U be a unitary in the Clifford group. Since U belongs to the Clifford group, the images of X_i and Z_i under U, i.e. UX_iU^\dagger and UZ_iU^\dagger are themselves Pauli string operators and have binary representations in \mathbb{Z}_2^{2N}. Let M_U be the $2N \times 2N$ matrix whose first and second N columns correspond to the images of X_is and Z_is under U respectively, for $i = 1, \cdots, N$. It is easy to see that, if w is the binary representation of a Pauli string s, the binary representation of UsU^\dagger would be given by the matrix multiplication $M_U w$ in \mathbb{Z}_2^N.

Given a stabilizer set S, a $N \times 2N$ stabilizer matrix M_S can be formed by taking the binary representation of the elements of S as its rows. For example, the stabilizer matrix which corresponds to the state $|0\rangle^{\otimes N}$ is given as

$$M_S = (0_{N \times N} | I_{N \times N} \rangle \langle 1_{N \times N} |) \quad (S3)$$

One may keep track of the phase factors using an additional N element vector, but since we are interested in the entanglement structure which is independent of the phase factors (see Lemma.1), we ignore the phase factor in what follows.

In our numerics we use the stabilizer matrix of the system to keep track of the entanglement dynamics of the system. As was discussed above, applying a unitary U would transform M_S to $M_SM_U^T$ where M_U is the binary representation of U and T stands for transpose (note that the stabilizers are stored as the rows of M_S rather than its columns). It is straightforward to keep track of the Clifford measurements as well, due to the Gottesman-Knill theorem[33, 34]. Let s_a represent the Pauli string operator that is being measured. First we find the stabilizers in S that do not commute with s_a, which can be done efficiently by computing $M_Sg s_a$ with g as defined in equation (S2). If s_a commutes with every stabilizers in S then measuring it has no effect on the state of the system. On the other hand, if s_a doesn’t commute with some stabilizers in S, say s_1, \cdots, s_m, the stabilizer set of the system after measuring s_a can be obtained by replacing s_i with $\pm s_i$ and s_a with s_1s_a for $i = 2, \cdots, m$, where the \pm sign is chosen at random. Since we are ignoring the phase factors in the binary representation, this amounts to replacing the row corresponding to s_1 with the binary representation of s_a and adding the binary representation of s_1 to the rows corresponding to $s_2 \cdots s_m$.

To sample the three-qubit symmetric Clifford unitary set, we use the procedure outlined in Ref.[4] to generate all possible binary representations of three qubit Clifford unitaries and then choose the symmetric subset by explicitly checking whether a unitary respects the $\mathbb{Z}_2 \times \mathbb{Z}_2$ symmetry.

As the last remark in this section, we note that given the stabilizer matrix M_S, the entanglement entropy of a subset A of the qubits can obtained via[35]:

$$S_A = \text{rank}(M_S|_A) - n_A, \quad (S4)$$

where $M_S|_A$ is the submatrix of M_S obtained via keeping only the columns which correspond to the qubits in A, n_A is the number of qubits in A and the rank is computed in \mathbb{Z}_2.

B. Estimating the Errors

In this section we briefly summarize the procedure that was used to estimate the numerical values of parameters and their corresponding errors.

The critical value p_c can be found by plotting the order parameter for different system sizes and locating the scale invariant point at which all the curves for different system sizes cross. The reported value of p_c corresponds to the crossing point of the order parameter curves for $L = 512$ and $L = 256$, while the curves for smaller system sizes are used to estimate the error. We find $p_c(L)$ for $L = 512, 256$ and 128, where $p_c(L)$ is defined as the crossing point between curves of system sizes L and $L/2$. The y-intercept of the linear fit to $p_c(L)$ as a function of $1/L$ gives an estimate for $p_c(L \to \infty)$. The error in p_c is then estimated by the difference between the extrapolated value $p_c(L \to \infty)$ and its value at $L = 128$. We use S_a as the order parameter to detect the phase transition from SPT to volume law entangled phase, while we use S_{topo} for the phase transition from the volume law entangled phase to the trivial phase. The reason for using two different order parameters is that, while S_{topo} has less noise than the ancilla order parameter, one has to go to larger system sizes to properly detect the SPT to volume law phase transition using this order parameter. On the other hand, although S_a has to be averaged over higher number of realizations, it displays a sharper crossing compared to S_{topo} or \tilde{S}_a (See Supplementary Section 11).

The value of correlation length critical exponent ν is found from the data collapse. Assume a certain quantity, say S_a, has the following finite size scaling form:

$$S_a(p, L) = F((p - p_c)L^{1/\nu}) \quad (S5)$$
for some arbitrary function F. It follows that if one plots S_x as a function of $(p - p_c)L^{1/\nu}$, for the right choice ν, all the data points would collapse on the $y = F(x)$ curve. To find the best collapse, we use the objective function $\epsilon(\nu)$ defined as:

$$
\epsilon(\nu) = \frac{1}{n-2} \sum_{i=2}^{n-1} (y_i - \bar{y}_i)^2,
$$

where,

$$
\bar{y}_i = \frac{(x_{i+1} - x_i)y_{i-1} - (x_{i-1} - x_i)y_{i+1}}{x_{i+1} - x_{i-1}},
$$

with $x_i = (p_i - p_c)L_i^{1/\nu}$ and $y_i = S_a(p_i, L_i)$. Here i labels the i'th data point (including system sizes $L = 64, 128, 256$ and 512) sorted based on their x value such that $x_1 < x_2 < \cdots < x_n$, and n denotes the total number of data points. \bar{y}_i is the expected value of y_i if it was on the line passing through the two adjacent data points. For the perfect collapse and in the limit of infinitely close data points, $\epsilon(\nu)$ would vanish. To obtain the best collapse, we find the value ν^* which minimizes the objective function $\epsilon(\nu)$ for a given set of numerical data. To estimate the error, we find the ν interval for which $\epsilon(\nu) < 2 \epsilon(\nu^*)$.

The numerical values of a_t and a_x (See equation (7) and equation (8)) are obtained by fitting the numerical data for $L = 512$ to the analytical expressions via the method of least squares. Because these equations are field theory results and are valid only in length scales much larger than lattice spacing, we exclude data points corresponding to first and last 10 sites before fitting the data to equation (7). As for equation (8), we exclude data points for $t < 10$ as well as data points close to the saturation value of half chain entropy, $S_L/2(t) > 0.9 S_L/2(\infty)$. Let ε_1 denote the error that characterizes the fit quality. There is also a systematic source of error related to finite size effects, which we denote by ε_2. To estimate ε_2, we evaluate $a_x(L)$ and $a_t(L)$ for $L = 128, 256, 512$, find the y-intercept of the linear fit to $a_x(L)$ (and $a_t(L)$) as a function of $1/L$ and then estimate ε_2 as the difference between the y-intercept and the parameters evaluated at $L = 128$. The reported error is then $\max(\varepsilon_1, \varepsilon_2)$.

2. CIRCUITS WHICH DO NOT RESPECT THE SYMMETRY

To verify that the stability of the SPT phase in the circuit model of the main text depends on the circuit respecting the symmetry, we consider the same circuit model at $p_a = 0$ but with Z_i measurements replaced by X_i measurements. Fig. S1 shows the topological entanglement entropy in the steady state versus p_s for the aforementioned modified circuit. As expected, any infinitesimal p_s will destroy the topological phase in the thermodynamic limit.

3. ENTANGLEMENT ENTROPY IN STABILIZER FORMALISM

A stabilizer state $|\psi\rangle$ over N qubits is specified by a set $S = \{s_1, \ldots, s_N\}$ of N independent, mutually commuting Pauli strings operators s_i, such that

$$
|s_i \psi\rangle = |\psi\rangle.
$$

Clearly, there are many equivalent choices of S that result in the same stabilizer state $|\psi\rangle$. However, given a stabilizer set S, the elements s_i generate an abelian group $G_\psi = \langle s_1, s_2, \ldots, s_N \rangle$ under multiplication, which is determined uniquely by the stabilizer state $|\psi\rangle$.

The density matrix of the system in the stabilizer state $|\psi\rangle$ can be written as [36]

$$
\rho = |\psi\rangle\langle\psi| = \frac{1}{2^N} \sum_{g \in G_\psi} g.
$$

Given a bipartition of the qubits into two sets A and B, the reduced density matrix of ρ over A can be obtained by tracing equation (S9) over B, which yields

$$
\rho_A = \frac{1}{2^{n_A}} \sum_{g \in G_{A,\psi}} g,
$$

where n_A is the number of qubits in A and $G_{A,\psi} \subseteq G_\psi$ is the subgroup of the stabilizers which are entirely contained in A, i.e. they act as identity on the qubits outside A. The von Neumann entropy of ρ_A is given by

$$
S_A(|\psi\rangle) = n_A - \log_2 |G_{A,\psi}|,
$$

where $|G|$ stands for the number of elements in group G[36]. Moreover, $R_\alpha(\rho_A)$, the Renyi entropy of order α, is actually independent of α and is equal to von Neumann entanglement entropy.

Let $|\psi\rangle$ be a stabilizer state specified by the stabilizer set $S = \{s_1, s_2, \ldots, s_N\}$. Consider a closely related stabilizer state $|\psi'\rangle$ which is specified by the stabilizer set $S' = \{(-1)^n s_1, (-1)^n s_2, \ldots, (-1)^n s_N\}$ where each n_i is either 0 or 1. The following Lemma shows that $|\psi\rangle$ and $|\psi'\rangle$ are indistinguishable as far as the entanglement entropy is concerned.

FIG. S1. $S_{\text{ wealthiest}}$ versus p_s. The single qubit measurements are in the X_i basis rather than the Z_i basis.
Lemma 1. For $|\psi\rangle$ and $|\psi'\rangle$ defined as above and for any subset A of the qubits,

$$S_A(|\psi\rangle) = S_A(|\psi'\rangle).$$

(S12)

Proof. Let G_ψ and $G_{\psi'}$ denote the stabilizer groups associated with $|\psi\rangle$ and $|\psi'\rangle$ respectively. Consider the group homomorphism h between G_ψ and $G_{\psi'}$ defined by its action on the generators of G_ψ as

$$h: G_\psi \rightarrow G_{\psi'},$$

$$h(s_i) = (-1)^{n_i} s_i.$$

Since h maps a generator set to another, it is bijective. Moreover, it is straightforward to verify that for any subset A of qubits, h maps $G_{A,\psi}$ to $G_{A,\psi'}$. The Lemma’s claim then follows immediately from equation (S11).

Given a stabilizer state $|\psi\rangle$, one has the freedom to choose any N independent elements from G_ψ to form the stabilizer set S. We can use this gauge freedom to impose certain conditions on the elements of S.

Define the left (right) endpoint of a stabilizer s to be the first (last) site on which s acts non-trivially. Given a set of stabilizers S, let $\rho_s(i)$ denote the the number of stabilizers whose left endpoint resides on site i and define $\rho_r(i)$ similarly with regard to the right end points. As is shown in Ref. [35], one can always choose S such that

1. For all sites i, we have $\rho_r(i) + \rho_l(i) = 2$.
2. If $\rho_l(i) = 2$ (or $\rho_r(i) = 2$) for a site i, the two corresponding stabilizers have a different Pauli operator at i.

Such a stabilizer set S is said to be in the clipped gauge [4]. The utility of the clipped gauge is that the entanglement entropy has a simple form in this gauge. In particular, if the stabilizer set S is in the clipped gauge, the entanglement entropy of a contiguous region A equals to half the number of stabilizers in S which have one endpoint in A and another in its complement[4].

4. STEADY STATE DENSITY MATRIX

Let Q denote a specific realization of the quantum circuit laid out in the main text. If we fix the initial state to be $|0\rangle^\otimes N$ and run the same circuit many times, due to the randomness in the measurement outcomes, the final state of the system could be different each time. Instead of considering quantum trajectories, we can calculate the expectation value of operators over different runs by viewing the measurements in Q as quantum channels. Accordingly, the entire circuit can be described as a quantum channel E_Q, which transforms the initial pure density matrix $\rho_0 = (|0\rangle\langle 0|)^\otimes N$ to a mixed final density matrix $\rho_s = E_Q(\rho_0)$.

ρ_s can be used to compute the expectation values of measurements which are averaged over many runs of the circuit without post-selection on the measurement outcomes. In particular, if we run the circuit Q many times, measure a fixed operator O each time and average the result over a large number of runs, the value we get would be

$$\langle O \rangle = \text{tr}(\rho_s O).$$

(S13)

Here we show that with probability one, ρ_s is actually independent of the underlying circuit. In other words, if Q is any fixed quantum circuit chosen with the distribution associated with probabilities $0 < p_s, p_e < 1$ and $p_u < 1$, the final density matrix of the system is always given by

$$\rho_s = E_Q(\rho_0) = \frac{1}{2^{N-2}} \Pi_{G_1,+} \Pi_{G_2,+}.$$

(S14)

where $\Pi_{G_i,+}$ is the projection operator on the $G_i = 1$ subspace. Note that, not only does ρ_s not depend on the specific realization Q, but it is also independent of p_s and p_e, which means that as far as the expectation value of operators is concerned, the entire phase space looks the same. Moreover, we show that the time it takes for the density matrix to reach the steady state is constant for $p_u = 0$ while it is at most $O(N)$ for $p_u \neq 0$.

For a general Pauli string operator S, the quantum channel corresponding to its measurement is given by

$$E_S(\rho) = \Pi_{S,+} \rho \Pi_{S,+} + \Pi_{S,-} \rho \Pi_{S,-}.$$

(S15)

where Π_{\pm} denote the projectors onto $S = \pm 1$ subspaces, i.e.

$$\Pi_{S,\pm} = \frac{1}{2}(I \pm S).$$

(S16)

By using the explicit form of the projectors $\Pi_{S,\pm}$, equation (S15) can be written as

$$E_S(\rho) = \frac{1}{2}(\rho + S \rho S).$$

(S17)

Consider a mixed stabilizer state ρ

$$\rho(G) = \frac{1}{2^N} \sum_{g \in G} g,$$

(S18)

for a Pauli group $G = \langle e_1, \cdots, e_n \rangle$ with $n \leq N$ independent generators. According to equation (S17), under the measurement of a Pauli string S, we have

$$E_S(\rho) = \frac{1}{2^{N+1}} \sum_{g \in G} g + \sum_{g \in G} S g S \rho$$

(S19)

$$= \frac{1}{2^N} \sum_{g \in C_G(S)} g$$

(S20)

$$= \rho(C_G(S)).$$

(S21)

Here $C_G(S)$ is the centralizer of S in G. If S commutes with all elements in G, clearly $C_G(S) = G$. Otherwise, without loss of generality, we can assume S commutes with all generators of G except one of them, say e_n. Thus $C_G(S) = \langle e_1, \cdots, e_{n-1} \rangle$.
The above analysis shows that for a mixed stabilizer state, whenever a Pauli string is measured, it either leaves the density matrix untouched or takes it to another mixed stabilizer state with one less generator, depending on whether the measured Pauli string commutes with the corresponding Pauli group or not.

In our case, the initial state of the system is given by

$$\rho(G_0) = \frac{1}{2^N} \sum_{g \in G_0} g, \quad G_0 = \langle G_1, G_2, Z_2, \cdots, Z_{N-1} \rangle.$$ \hfill (S22)

Let us first consider the $p_u = 0$ case. Based on the discussion above, it is clear that Z_i measurements never change ρ and thus can be ignored for our purpose. Each time a stabilizer g_i is measured, $\rho(G)$ is transformed to $\rho(C^i_G(g_i))$. Note that in general we have

$$C_{C^i_G(S_i)}(S_2) = C^i_G(S_1, S_2).$$ \hfill (S23)

Thus after all stabilizers g_i have been measured at least once, the density matrix of the system would be given by:

$$\rho(C_{G_0}((g_2, \cdots, g_{N-1}))) = \rho(\langle G_1, G_2 \rangle) = \frac{1}{2^{N-2}} \Pi_{G_1, +} \Pi_{G_2, +} = \rho_*.$$ \hfill (S24)

Let m_j denote the updating step at which g_j is measured for the first time. It is easy to show that $E[m_j] = (N-2)/p_i$, where $E[X]$ denotes the expectation value of X. Therefore, the average time it takes for the system to reach the steady state ρ_* would be

$$\tau_* = \frac{1}{N} E[\max_j(m_j)] = \frac{1}{N} \max_j E[m_j] = O(1),$$ \hfill (S25)

where the pre-factor $1/N$ is there to convert updating steps to time steps.

Now consider the $p_u \neq 0$ case. Again, we start by the same initial density matrix given by equation (S22). Each time a measurement is performed, either Z_i or g_i, the Pauli group associated with the density matrix of the system either remains the same or shrinks to one of its subgroups with one less generator, as explained above. On the other hand, whenever a Clifford unitary U is applied, it just transform $\rho(G)$ to $\rho(U^\dagger GU)$ with the same number of generators. Now, note that any Pauli group that commutes with every element in the set $G = \{ Z_i \}_{i=1}^N \cup \{ g_i \}_{i=2}^N$ should be a subgroup of $\langle G_1, G_2 \rangle$ (or the ones which are obtained by substituting G_i with $-G_i$). Therefore, for any Pauli group G with more than two generators, there is at least one element of M that does not commute with G. Ergo, at each updating step with probability of at least $\min(p_s/N, p_i/(N-2))$, the Pauli group associated with the density matrix would shrink to a subgroup with one less generator, until only two generators G_1 and G_2 remain. Thus, on average, at most it takes $O(N)$ updating steps until a stabilizer is measured which decreases the number of generators by one. Since we start with N generators, the average time it takes to reach the steady state with only G_1 and G_2 as generators, i.e. ρ_*, would be:

$$\tau_* \leq \frac{1}{N} (N-2) O(N) = O(N).$$ \hfill (S26)

5. STRING ORDER PARAMETERS

The analysis in Supplementary Section 4 shows that the steady state density matrix is equal throughout the phase diagram and as such one could not detect the phase transition by averaging expectation values of operators over different realizations of the circuit. However, quantities like the ensemble average of the expectation value squared, which are not expressible in terms of the density matrix, could still be used as the order parameter. As an example, consider the string order parameter introduced in Ref.[37] to detect the SPT phase of the cluster model,

$$s_{i,j} = \langle \psi | X_{i-1} Y_i \prod_{k=i+1}^{j-1} Z_k Y_j X_{j+1} | \psi \rangle = \langle \psi | \prod_{k=i}^{j} g_k | \psi \rangle.$$ \hfill (S27)

Clearly, $s_{i,j} = \pm 1$ for symmetry invariant eigenstates of the cluster Hamiltonian while it is 0 for any product states in the computational basis. If one considers the ensemble average of $s_{i,j}$ which could be expressed as $\overline{s_{i,j}} = tr\left(\prod_{k=i}^{j} g_k \rho \right)$, it will zero even in the topological phase due to the cancelation between the terms with plus and minus signs. However this could be circumvented by considering the average over $s_{i,j}^2$ instead. In particular, the following order parameter, which can be viewed as the non-local analogue of the Edwards–Anderson glass-order parameter for SPT phases[38–40], can be used to detect the phase transition:

$$s = \frac{1}{N} \sum_{i<j} s_{i,j}^2.$$ \hfill (S28)

In the trivial phase, $s = 0$ while in the SPT phase s scales linearly with N. Fig S2 shows the ensemble average of s, as a function of p_s for different system sizes (all in $p_u = 0$).

In contrast to S_{topo}, this order parameter can not distinguish between the volume-law phase and the trivial phase because it would be a constant in both phases[40].

![FIG. S2. The string order parameter s versus p_s for different system sizes at $p_u = 0$.](image-url)
6. MAPPING THE RANDOM CIRCUIT MODEL TO AN UNCONVENTIONAL PERCOLATION MODEL

Here we add some additional details regarding the unconventional classical percolation model that corresponds to the random quantum circuit studied in the manuscript.

We focus on one of the two percolation lattices, say the odd sites’ percolation lattice. Consider the $N/2 \times M$ square lattice of vertices. The connections on the m'th row and the connections between the rows m and $m-1$, which are related to the measurement at step m, are determined as follows:

- With probability $\frac{1}{2}$ all vertical links between rows $m-1$ and m are connected and all horizontal links on the m'th row are broken. This corresponds to the case where at step m, one of the even site operators is measured.
- With probability $\frac{1}{2}p_s$ a random vertical link between rows $m-1$ and m is broken while all the others are connected. Also, all horizontal links on the m'th row are broken. This corresponds to the case where at step m, a single operator Z_i is measured.
- With probability $\frac{1}{2}(1-p_s)$ all vertical links between rows $m-1$ and m as well as a random horizontal link on row m are connected. All the other horizontal links on the m'th row are broken. This corresponds to the case where at step m, one of the stabilizer operators is measured.

As can be seen, the vertical links are mostly connected while the horizontal links are mostly broken. However, given that M is equal to $2N^2$ ($2N$ time steps where each time step is consisted of N updating steps), the lattice is elongated along the vertical direction.

As discussed in the main text, the entanglement entropy of the state at step M can be read off entirely from the properties of the percolation lattice.

As discussed in the main text the critical exponents ν and z of this percolation model are the same as of the standard link percolation model on square lattice, thus suggesting it to be in the same universality class. Moreover, even the critical probability p_c is the same. We also find that the coefficients of the entanglement entropy α_x and α_t computed in this model coincide with those of the circuit model defined in Supplementary Section 10, which does map exactly to standard percolation on the square lattice.

7. THE DUALITY MAP

For simplicity, consider the system with periodic boundary conditions. Let us define the Clifford unitary U_d such that for $i = 1, \cdots, N$,

$$U_d \ X_i \ U_d^\dagger = X_i$$ \hspace{1cm} (S29)

$$U_d \ Z_i \ U_d^\dagger = X_{i-1} \ Z_i \ X_{i+1}$$ \hspace{1cm} (S30)

Note that under U_d, the stabilizer g_i transforms as

$$U_d \ g_i \ U_d^\dagger = Z_i.$$ \hspace{1cm} (S31)

equation (S31) and equation (S30) together show that the ensemble of random quantum circuits at p_s (and $p_u = 0$) is mapped to the ensemble of random quantum circuit at $1 - p_s$ (and $p_u = 0$) under U_d. However, the unitary U_d is not local, i.e. it cannot be written as the tensor product of on-site unitaries and therefore does not keep the entanglement structure invariant. Nonetheless, it is clear from equation (S29) and equation (S30) that U_d maps local stabilizers to local stabilizers. Since the entanglement in stabilizer states is related to the number of independent stabilizers that traverse the boundary of a region[36], one can still say that U_d maps a state with the area-law entanglement to an area-law entangled state. Hence, if there exists a continuous phase transition which has logarithmic entanglement scaling, it has to occur at $p_s = p_c = 1/2$. In the following this argument is made rigorous.

Consider the stabilizer state $\ket{\psi}$ specified by the stabilizer set $S = \{s_1, s_2, \cdots, s_M\}$ (see Supplementary Section 3 for the notation). Let A be the subset of qubits in the segment starting from the qubit q_l and ending with the qubit q_r. Without loss of generality, we assume s_1, \cdots, s_m generate the subgroup $G_{A, \psi}$. Thus,

$$G_{A, \psi} = \{s_1, s_2, \cdots, s_m\}; \ \ \ \log_2 |G_{A, \psi}| = m.$$ \hspace{1cm} (S32)

We can also assume that at most 2 stabilizers from the set $\{s_1, s_2, \cdots, s_m\}$ have non-trivial support on q_l because if it is not the case, we can always use two of them to cancel the support of the others on q_l by considering their multiplication with the rest. The same statement holds for q_r as well.

Now consider the state $\ket{\psi'} = U_d \ket{\psi}$ which corresponds to the stabilizer set $S' = \{U_d s_1 U_d^\dagger, U_d s_2 U_d^\dagger, \cdots, U_d s_M U_d^\dagger\}$. Since U_d moves the endpoint of a stabilizer by at most one site, at least $m - 4$ out of m stabilizers in $\{U_d s_1 U_d^\dagger, U_d s_2 U_d^\dagger, \cdots, U_d s_M U_d^\dagger\}$ are still contained in A, which means $\log_2 |G_{A, \psi'}| \geq m - 4$. Therefore,

$$S_A(U_d \ket{\psi}) \leq S_A(\ket{\psi}) + 4,$$ \hspace{1cm} (S33)

which shows that if $\ket{\psi}$ has area-law entanglement, $U_d \ket{\psi}$ should have area-law entanglement as well.

8. GRAPHICAL REPRESENTATION OF THE STATE

In this section we develop a graphical description to follow the system’s state as it evolves under the random quantum circuit described in the main text for $p_u = 0$. Moreover, this graphical representation provides the basic intuition behind the percolation mapping.

The initial state of the system is given by the stabilizer set $S_0 = \{Z_1, Z_2, \cdots, Z_N\}$. At each step of the circuit, we measure either a stabilizer g_i or a single qubit operator Z_i on a qubit and update the stabilizer set accordingly. Let S_m denote the stabilizer set that corresponds to the system’s state after m updating steps.

First, we prove the following Lemma:
Lemma 2. S_m can be chosen such that each of its elements, up to a minus sign, is in one of the following forms:

$$Z_{2j+1,2k+1} = \prod_{i=j}^k Z_{2i+1},$$

$$Z_{2j,2k} = \prod_{i=j}^k Z_{2i},$$

$$g_{2j+1,2k+1} = \prod_{i=j+1}^{k-1} g_{2i} = X_{2j+1}Z_{2j+2,2k}X_{2k+1},$$

$$g_{2j,2k} = \prod_{i=j}^{k-1} g_{2i+1} = X_{2j}Z_{2j+1,2k-1}X_{2k},$$ \hspace{1cm} (S34)

for some integers j and k.

Proof. We prove the lemma by induction. The claim is clearly true for S_0. Assume it is true for S_m. First consider the case where we measure Z_{2j+1} in the next step. We follow the procedure proscribed by the Gottesman-Knill theorem [33, 34] to obtain the stabilizer set S_{m+1}. If Z_{2j+1} commutes with every stabilizer in S_m, then nothing happens by measuring Z_{2j+1}, hence $S_{m+1} = S_m$. So consider the case where some elements of S_m anti-commute with Z_{2j+1}.

Any element of S_m that does not commute with Z_{2j+1} has either the form $g_{2j+1,2k+1}$ or $g_{2k+1,2j+1}$ for some k. If there is only one of them, then one only needs to replace it with $\pm Z_{2j+1}$ (with the sign chosen arbitrarily) to obtain S_{m+1}. If there are more than one, we replace the first one with $\pm Z_{2j+1}$, again with the sign chosen arbitrarily, and multiply the others with the stabilizer that was replaced, to get S_{m+1}. In either cases, S_{m+1} will have the stated form.

The other possibilities, i.e. measuring other operators at step $m+1$, can be treated similarly. \hfill \square

Based on Lemma 2, we can use a diagrammatic notation to specify S_m; we put N dots along a line representing the qubits, as is shown in Fig. S3. Then, for every $g_{a,b}$ element in S_m, we draw a line between sites a, b from below and for every $Z_{a,b}$ element in S_m draw a line from above. Fig. S3a and Fig. S3b show the diagrams corresponding to $S = \{Z_i\}_{i=1}^N$ and $S = \{g_i\}_{i=1}^N$ respectively, with g_1 and g_N defined as $g_1 \equiv G_1$ and $g_N \equiv G_2$.

The form of the stabilizers listed in Lemma 2 suggests a decomposition of the system into odd and even sites. Note that if we measure, for example, Z_{2i+1}, the only stabilizers that could be replaced are in the form $g_{2j+1,2k+1}$ while the $g_{2j,2k}$ stabilizers whose endpoints reside on even sites remain unchanged. Also, if one measures $g_{2i-1,2i+1} = g_{2i}$ whose ends points are on odd sites, the only stabilizers that could change have the form $Z_{2j+1,2k+1}$. So, if the stabilizer we are measuring has endpoints on odd sites, we only need to know about the stabilizers in S_m which also end on odd sites to find S_{m+1}. In other words, we can keep track of the set of stabilizers that start and end on odd sites, without knowing anything about the other stabilizers which start and end on the even sites and vice versa. This allows us to consider odd sites and even sites separately. Fig. S3c shows the same state as in Fig. S3b but restricted to odd sites only. For simplicity, we will only consider odd sites in what follows, while similar statements hold for even sites as well.

Using this diagrammatic formalism, it is easy to track S_m. Fig. S4 shows a typical quantum circuit and the step by step evolution of the system’s stabilizer set using the diagrammatic notation developed above.
9. PROOF OF PROPOSITION 1

We start by noting that for the circuit shown in Fig. S4, the state of the system can always be described as a collection of isolated SPT states and decoupled qubits, as can be seen from the accompanying diagrammatic representation. For example, in the final state, qubits 1, 5, and 7 form an isolated SPT state, while qubit 3 is decoupled. This observation is indeed true in general. We start by putting forward a precise definition of an isolated SPT state and then show that there is an efficient description of S_m as a partition of $\{1, 2, \ldots, N\}$.

Definition 1. Consider a set of numbers $A = \{q_i\}_{i=1}^n$, such that

$$1 \leq q_1 < q_2 < \cdots < q_n \leq N. \quad (S35)$$

Assume that all numbers are either odd or even. Define its associated stabilizer set, denoted by $S(A)$, as

$$S(A) = \{g_q, g_{q+1}\}_{q=1}^n \cup \prod_{i=1}^m Z_{q_i}. \quad (S36)$$

We call such a stabilizer set, an isolated SPT state.

Note that the g stabilizers in $S(A)$ generate the set of all g strings between any two points in A. Also, note that the stabilizers in equation (S36) are the same as the ones appearing in Proposition 1.

Lemma 3. Let S_m denote the stabilizer set that corresponds to the system’s state after m updating steps. S_m can always be chosen such that, up to minus signs,

$$S_m = \bigcup_i S(A_i), \quad (S37)$$

where A_is correspond to a partition of the qubits into disjoint sets,

$$\cup_i A_i = \{1, 2, \ldots, N\}. \quad (S38)$$

and $S(A_i)$ denotes the isolated SPT state corresponding to subset A_i.

Proof. We prove it by induction. It is obviously true for S_0 with $A_1 = \{i\}$ for $i = 1, \ldots, N$.

Now assume it is true for S_m, so there exists a partition of qubits given by $\{1, 2, \ldots, N\} = \bigcup_i A_i$ such that $S_m = \bigcup_i S(A_i)$. First consider the case in which a single qubit operator Z_{2j+1} is measured in the next step. Suppose $2j + 1$ is in subset A_k for some k. Note that Z_{2j+1} commutes with any element in $S(A_k')$ with $k' \neq k$. If A_k is the single element set $\{2j+1\}$ (which means $S(A_k) = \{Z_{2j+1}\}$) then Z_{2j+1} is already in S_m and thus $S_{m+1} = S_m$. If A_k has more than one element, we will show that measuring Z_{2j+1} corresponds to breaking A_k to two subsets of $A_k \setminus \{2j+1\}$ and $\{2j+1\}$.

Note that Z_{2j+1} anti-commutes only with the $g_{a,b}$ elements in $S(A_k)$ where either a or b equals $2j+1$. If $2j+1$ is the smallest or largest number in A_k, there is only one such element and by measuring Z_{2j+1}, we just need to replace that element by Z_{2j+1} (with an arbitrary sign) to get the updated stabilizer set S_{m+1}. If $2j+1$ is neither the smallest nor the largest number in A_k, there are two such elements, $g_{a,2j+1}$ and $g_{2j+1,b}$ for some odd numbers a and b. Thus by measuring Z_{2j+1}, one is replaced by Z_{2j+1} (with an arbitrary sign) and the other by $g_{a,2j+1} g_{2j+1,b} = g_{a,b}$ to get the updated stabilizer set. It is easy to verify that in both cases, S_{m+1} is equivalent to the stabilizer set obtained by the union of isolated SPT states corresponding to the same partitioning as for S_m, but with A_k broken to two sets of $A_k \setminus \{2j+1\}$ and $\{2j+1\}$.

Next consider the case where an stabilizer $g_{2j-1,2j+1} = g_{2j}$ is measured in the next step. If $2j - 1$ and $2j$ belong to the same subset in the partition, nothing happens. If not, let say one belongs to A_k and the other to $A_{k'}$, then $g_{2j-1,2j+1}$ anti-commute with the two Z chains in $S(A_k)$ and $S(A_{k'})$ and commutes with everything else in S_m. Therefore, by measuring $g_{2j-1,2j+1}$, we replace one of the Z chains with $\pm g_{2j-1,2j+1}$ (with an arbitrary sign) and the other with the product of the two Z chains, which is just the Z chain over $A_k \cup A_{k'}$, to get S_{m+1}. It is straightforward to verify that S_{m+1} is equivalent to the stabilizer set obtained by union of isolated SPT states corresponding to the same partitioning as for S_m, but by merging the two subsets A_k and $A_{k'}$ into a single subset $A_k \cup A_{k'}$.

Based on Lemma 3, there is a one-to-one mapping between partitions of $\{1, 2, \ldots, N\}$ and the state of the system. Moreover, as can be seen from the Lemma’s proof, the dynamics of the system can be translated into merging and splitting of the subsets.

Let us specify a partition by assigning unique colors to the qubits in the same subset. Then, whenever a Z operator is measured, a new unique color should be assigned to the corresponding qubit to account for the new single element subset that is created in the new partitioning. On the other hand, when a g operator with end points in different subsets is measured, the two subsets merge together which translates into assigning the same color to qubits in either one. The dynamics we have just described emerges naturally in the percolation model and thus can be used to map the quantum circuit to an instance of percolation on the square lattice. We use a $N/2 \times M$ square lattice, where M is the total number of updating steps. The mth row of the lattice corresponds to the state of the system after the updating step m. We start by $N/2$ dots with distinct colors at the lowest row which corresponds to the initial product state. If Z_{2i+1} is measured at step m, we leave the vertical link between $(2i+1, m)$ vertex and its history at $(2i+1, m-1)$ broken, while connecting all the other vertical links between the rows m and $m-1$. By doing so, the $(2i+1, m)$ vertex gets a new color, while all the other vertices retain their color form the previous row, which agrees with the aforementioned splitting. On the other hand, if a stabilizer $g_{2i-1,2i+1}$ is measured at step m, we first connect all the vertical links between the rows m and $m+1$, and then connect the vertices at $(2i-1, m)$ and $(2i+1, m)$ to enforce their colors to be the same, thus accounting for the aforementioned merging. Therefore, in each step, the colors
FIG. S5. Step by step evolution of the system under the quantum circuit shown in Fig. S4 in the percolation picture for the odd sites. At each step, the sites with the same color on the last row represent an isolated SPT phase. There is an analogous diagram for the even sites. The two diagrams together fully specify the entanglement structure of the system.

of the last updated row can be used to find the partitioning of qubits mentioned in Lemma 3, which completes the proof of Proposition 1.

As an example, Fig. S5 shows the step by step development of the circuit described in Fig. S4, in the percolation picture.

It is worth noting that the stabilizer set given in Lemma 3 is already in the clipped gauge (see Supplementary Section 3 for the definition of clipped gauge). Therefore, the entanglement structure can be inferred readily from the percolation picture. In particular, the entanglement entropy $S(x)$ of the region $[1, x]$, is equal to the number of clusters with support on both inside and outside of the region $[1, x]$ on the top row of the percolation lattices. Such a quantity can be computed using the percolation CFT and the coefficient of the logarithm turns out to be:

$$a_x = \frac{\ln(2)\sqrt{3}}{2\pi} \simeq 0.191$$ (S39)

See for example equation (3) in Ref.[41] (see also [19, 42]). The $2\ln(2)$ discrepancy between equation (S39) and equation (3) of Ref.[41] is due to the fact that we have two copies of percolation and the logarithm in our definition of entanglement entropy is in base 2.

10. RANDOM MEASUREMENT CIRCUIT CORRESPONDING TO STANDARD PERCOLATION

Here we present a slightly different random circuit model than the one presented in the main text, which maps to the standard bond percolation on a square lattice. We define this circuit model using only the competing single qubit and stabilizer measurements, without including any unitary dynamics.

The random circuit model has a layered configuration of measurements, as follows. At alternating layers, we measure either only stabilizer operators or only single qubit operators, as shown in Fig. S6. Two consecutive layers of measurements correspond to a time step (here, there is no distinction between updating steps and time steps). In the layer where stabilizers are measured, for each i we measure g_i with probability p_t. In the layer where the single qubit operators are measured, for each i we measure Z_i with probability $1 - p_t$.

Fig. S6 shows a typical realization of the circuit. Note that it is possible for two stabilizer measurements in the circuit to overlap with each other, but since the corresponding operators commute with each other, they can still be measured simultaneously.

Note that the percolation mapping described in Supplementary Section 9 is based on the specific form of the measurements involved rather than their layout on the circuit. Since the exact same set of measurements are involved in the quantum circuit described here, one can use the same rules, as is explained in the main text, to map this circuit model to two percolation models on square lattices. It is easy to verify each of the corresponding percolation models is indeed the standard bond percolation on an $N \times 2N$ square lattice where each bond is connected with probability p_t. We focus on the odd
sites’ lattice, for example, and include a horizontal bond with probability p_h, corresponding to a stabilizer measurement. A vertical bond is included with probability p_v, corresponding to the absence of a single qubit measurement.

Fig. S7 is analogous to Fig. 3 in the main text, but for the random circuit model with the layered structure. The phase transition happens at $p_c = 1/2$ and the critical exponent is found to be $\nu = 4/3$, as is expected from the percolation mapping. We also find $a_x = a_t = 0.20(1)$, the same values as the ones in the original circuit model in the main text.

![Entanglement plots for the circuit with layered configuration.](image)

FIG. S7. Entanglement plots for the circuit with layered configuration. (a) Topological entanglement entropy S_{topo} versus single qubit measurement probability which shows the same phase transition at $p_c = 0.5$. (b) Scaling collapse of the data in (a) for $\nu = 4/3$ using the same scaling as in equation (9) in the main text. (c) The entanglement entropy of the $[0, x]$ segment of the chain in the steady state at $p = p_c$ and $L = 512$. (d) The entanglement entropy of the half-chain versus time for $p_a = p_c$.

11. APPROACHING THE TRICRITICAL POINT

Figures S8a and b show the ancilla entropy S_a measured $t = N$ time steps after it was entangled, versus p_a for a fixed p_a at $p_a = 0.2$ and $p_a = 0.1$ respectively (see Fig.4b in the main text for $p_a = 0.3$ as well). The crossing points, mark the critical points which are shown as well in Fig.1b on the phase boundaries. As can be seen from the figures, there is clearly two separate area law phases with a volume law phase in between.

One thing to note is that as one probes lower values of p_a, the ancilla order parameter gets smaller. This in turns means one had to average over larger numbers of realizations to get a result with decent noise. To see this, note that since the whole system is always in a stabilizer state, S_a is either 0 or 1, and hence $\overline{S_a^2} = \overline{S_a^3} = S$, where S correspond to the ensemble average of S. Hence, the relative statistical error of $\overline{S_a}$ would be,

$$\frac{\Delta \overline{S_a}}{\overline{S_a}} = \sqrt{\frac{\overline{S_a^2} - \overline{S_a^3}/N}{\overline{S_a}}} \approx \frac{1}{\sqrt{N \overline{S_a}}} \quad (S40)$$

where we used $\overline{S_a} \ll 1$ in the last step. For example, the diagram in Fig.S8b is obtained by averaging over 10^6 realizations (except $L = 512$ size which is averaged over 4×10^5 realization due to limited computational resources) while for Fig.S8a (and Fig.4 in the main text) averaging over $O(10^5)$ realizations results in a quite smooth curve.

On the other hand, evaluating the scrambled ancilla order parameter $\overline{S_a}$ is more efficient and requires averaging over smaller number of realization to obtain sufficiently smooth curves, and potentially could be used to probe the vicinity of the tricritical point. However, it seems to be more sensitive to finite size effects (see also Fig.S11), and thus one needs to go to larger system sizes to be able to clearly distinguish different phases. Fig.S8c and d show the scrambled ancilla entropy measured $t = N/2$ time steps after scrambling at $p_a = 0.1$ and $p_a = 0.05$ respectively and are obtained via averaging over 10^4 realizations. While Fig.S8c confirms the existence of the volume law phase at $p_a = 0.1$ which is evident in Fig.S8b as well, Fig.S8d suggests that it survives down to $p_a = 0.05$ as well but a more detailed study is needed to corroborate this claim.

12. AUTHOR CONTRIBUTION

All authors contributed equally to this work.
13. COMPETING INTERESTS

The authors declare no competing interests.

14. DATA AVAILABILITY

The data plotted in the figures of this Article that support the findings of this study are available at http://doi.org/10.5281/zenodo.4031884

15. CODE AVAILABILITY

The source codes used to run the simulations of the symmetric random quantum circuit studied in this Article are available at http://doi.org/10.5281/zenodo.4031884.
16. SUPPLEMENTAL FIGURES

FIG. S9. The transition from the SPT phase to the volume law entangled phase. The plots on each row corresponds to the same critical point. The ancilla order parameter S_a is measured $t = N$ time steps after being entangled to the qubit chain.

a, Plots corresponding to the critical point on the p_s axis, with $p_s = 0$ and $p_u = 0.355(3)$.

b, Plots corresponding to the critical point at $p_s = 0.102(3)$ and $p_u = 0.3$.

c, Plots corresponding to the critical point at $p_s = 0.265$ and $p_u = 0.201(4)$.

(a) $p_s=0.0$; (b) $p_s=0.3$; (c) $p_s=0.265$.

The plots show the evolution of the order parameter S_a as a function of time t and the variable x.
FIG. S10. The transition from the volume law entangled phase to the trivial phase. The plots on each row corresponds to the same critical point.

a, Plots corresponding to the critical point on the $p_u + p_s = 1$ line, with $p_s = 0.337(4)$ and $p_u = 0.663(4)$.

b, Plots corresponding to the critical point at $p_s = 0.345(4)$ and $p_u = 0.5$.

c, Plots corresponding to the critical point at $p_s = 0.351(3)$ and $p_u = 0.4$.

d, Plots corresponding to the critical point at $p_s = 0.362(6)$ and $p_u = 0.3$.

e, Plots corresponding to the critical point at $p_s = 0.381(4)$ and $p_u = 0.2$.

$p_u = 1 - p_s$
$v = 1.2(1)$
$a = 0.71(2)$
$a = 0.68(3)$

$p_u = 0.5$
$v = 1.2(1)$
$a = 0.62(2)$
$a = 0.61(4)$

$p_u = 0.4$
$v = 1.2(1)$
$a = 0.59(5)$
$a = 0.57(5)$

$p_u = 0.3$
$v = 1.3(2)$
$a = 0.52(5)$
$a = 0.51(4)$

$p_u = 0.2$
$v = 1.3(2)$
$a = 0.47(9)$
$a = 0.45(5)$
FIG. S11. Three different order parameters at the SPT to volume law phase transition on $p_u = 0.3$. a, the ancilla entropy S_a measured at $t = N$. b, the scrambled ancilla entropy \tilde{S}_a measured at $t = N/2$. c the topological entanglement entropy S_{topo}. Note that the ancilla order parameter S_a provides the sharpest prob for the phase transition.