SOLVING A POSYNOMIAL GEOMETRIC PROGRAMMING PROBLEM WITH FULLY FUZZY APPROACH

Samira KAMAEI
Department of Mathematics, Faculty of Mathematical Sciences and Computer, Shahid Chamran University of Ahvaz, Ahvaz-Iran
samira.kamaee94@gmail.com

Sareh KAMAEI
Department of Mathematics, Faculty of Mathematical Sciences and Computer, Shahid Chamran University of Ahvaz, Ahvaz-Iran
sareh.kamai67@gmail.com

Mansour SARAJ
Corresponding author
Department of Mathematics, Faculty of Mathematical Sciences and Computer, Shahid Chamran University of Ahvaz, Ahvaz-Iran
msaraj@scu.ac.ir

Received: November 2018 / Accepted: February 2019

Abstract: In this paper we have investigated a class of geometric programming problems in which all the parameters are fuzzy numbers. In fact, due to impreciseness of the cost components and exponents in geometric programming with their inherently behavior as in economics and many other areas, we have used fuzzy parametric geometric programming. Transforming the primal problem of fuzzy geometric programming into its dual and using the Zadeh’s extension principle, we convert the dual form into a pair of mathematical programs. By applying the \(\alpha \)-cut on the objective function and \(r \)-cut on the constraints in dual form of geometric programming, we obtain an acceptable \((\alpha, r)\) optimal values. Then, we further calculate the lower and upper bounds of the fuzzy objective with emphasize on modification of a method presented in [14, 32]. Finally, we illustrate the methodology of the approach with a numerical example to clarify the idea by drawing the different steps of \(LR \) representation of \(Z_{\alpha r} \).

Keywords: Fuzzy logic, Posynomial, Geometric Programming, Optimization.
1. INTRODUCTION

The formulation of engineering design problems with specific types of non-linear optimization problems with flexible variables are known as geometric programming. Duffin et al. [9] proposed an excellent idea to solve application of engineering problems by developing basic theories of geometric programs. Since last few decades, we have seen a rapid development in geometric programming used in a variety of optimization problems involving digital circuit design [4, 5, 8], resource allocation in communication network systems [27], linear multi-objective geometric programming problems via reference point approach [2], and the problem of temperature-aware floor planning in which the parameters of the problem are often undetermined [36]. Therefore, in this paper, to clarify the subject, we consider geometric programming problems where the exponents of the variables, cost coefficients, and the constraint coefficients and their right-hand sides are all fuzzy numbers.

Due to uncertainty of the parameters of the real-world, Bellman and Zadeh investigated the problem of decision-making in a fuzzy environment and management science [3]. Fuzzy logic is a very powerful tool to handle the problem of system design in optimization of the solution of non-convex optimization problems in multiple-input multiple-output systems on using fuzzy predictive filters, which was investigated by Mendoça et al. [22]. A number of methods have been so far proposed to solve the fuzzy linear programming problems [1, 10, 12, 23], and proposing a new algorithm to solve fuzzy linear programming problems using the MOLP problem is a recent work done in [11]. Different models have been so far presented to deal with decision making problems where evaluations of alternatives are uncertain or affected by a fuzzy parameters [26]. A multi-objective problem with fuzzy parameters is being investigated by larbani [13] and Sakawa [30]. Ojha and Das [24] developed a solution procedure using geometric programming technique by splitting the coefficients and exponents with the help of binary numbers. Multi-objective geometric programming problem is worked out by Ojha et al. [25], in which they have proposed ε-constraint method that has been applied to find the non-inferior solution. In view of Rajgopal et al. [28], the problem of posynomial geometric programming has been studied via generalized linear program.

A lot of research works have been done in the area of risk management, inventory management and planning [29, 33]. Mahapatra and Mandal have discussed parametric functional form of an interval number and then solved the problem by geometric programming technique [17, 21]. They got optimal solution of the objective function directly without solving the equivalent transformed problem. They have also presented production inventory model with fuzzy coefficients using parametric geometric programming approach [18]. Mahapatra and Mahapatra [15] used fuzzy parametric geometric programming with cost constraint to find optimal reliability, and they have considered reliability
series system with limited system cost as a constraint function [16]. Mahapatra et al. [20, 19] investigated and developed the problem of economic production quantity model with demand dependent unit production cost under fuzzy environment. Sen and Pal [31] solved linear multi-objective fuzzy goal programming problem with interval weights. Chen and Tsai [7] studied different methodologies to derive weights or priorities of fuzzy goal programming. An essential book about fuzzy geometric programming is written by Cao in [6]. Yang and Cao [35] presented an outline of the applications of fuzzy geometric programming. Global optimization of signomial geometric programming problems is investigated by Xu [34].

Our aim is to calculate a lower bound and an upper bound for the objective function by applying \((\alpha, r)\)-cut on both fuzzy parameters of the objective function and the constraints which is based on Zadeh’s extension principle [37]. Here, we present \((\alpha, r)\) optimum value for fully fuzzy geometric programming problems in which the exponents of the variables, cost coefficients, and the constraint coefficients and the resources are all fuzzy numbers. This paper is organized as follows. We first introduce the fuzzy geometric programming problem and next we calculate the lower and upper bounds of the objective value at different \((\alpha, r)\)-levels. We draw the graph of the membership function of fuzzy objective value, and finally, the implementation of our proposed model is illustrated by a numerical example. A brief summary is presented in the conclusion.

2. MATHEMATICAL MODELLING

The general form of posynomial geometric programming problem is as follows

\[
Z = \min_t \sum_{k=1}^{l_l} c_{0k} \prod_{j=1}^{n} t_j^{a_{0kj}}
\]

Subject to

\[
\sum_{k=1}^{l_i} c_{ik} \prod_{j=1}^{n} t_j^{a_{ikj}} \leq b_i \quad i = 1, \ldots, m
\]

\[
t_j > 0 \quad j = 1, \ldots, n
\]

By the definition of posynomial all \(b_i, i = 1, 2, \ldots, m\), are positive real numbers and the exponents \(a_{ikj}, i = 0, 1, \ldots, m, j = 1, 2, \ldots, n\) and all the coefficients \(c_{ik}, i = 0, 1, \ldots, m, k = 1, 2, \ldots, l_i\), are positive. If at least one of the parameters \(a_{0kj}, a_{ikj}, b_i, c_{0k}\) or \(c_{ik}\) is fuzzy, then the objective value will be fuzzy as well. Let \(c_{0k}, c_{ik}, b_i, a_{0kj}\) and \(a_{ikj}\) be fuzzy numbers of the corresponding posynomial geometric program given by Model (1) that can be replaced by the convex fuzzy sets \(\tilde{C}_{0k}, \tilde{C}_{ik}, \tilde{B}_i, \tilde{A}_{0kj}\) and \(\tilde{A}_{ikj}\) respectively. Therefore (1) can be
reformulated as the following fuzzy geometric programming problem.

\[\hat{Z} = \min \sum_{k=1}^{l_0} \tilde{C}_{0k} \prod_{j=1}^{n} \tilde{A}^{\hat{A}_{kj}} \]

Subject to

\[\sum_{k=1}^{l_i} \tilde{C}_{ik} \prod_{j=1}^{n} \tilde{A}^{\hat{A}_{kj}} \leq \tilde{B}_i \quad i = 1, \ldots, m \]

\[t_j > 0 \quad j = 1, \ldots, n \]

Since geometric programs are solved via their duals, so (2) can be written in the form of its dual as:

\[\hat{Z} = \max \prod_{k=1}^{l_0} \left(\frac{\tilde{C}_{0k}}{\tilde{A}^{\hat{A}_{kj}}} \right) \prod_{i=1}^{m} \left(\sum_{k=1}^{l_i} \lambda_{ik} \right) \prod_{k=1}^{l_i} \left(\frac{\tilde{B}_i}{\tilde{A}_{ik}^{\hat{A}_{kj}}} \right) \]

Subject to

\[\sum_{k=1}^{l_0} \lambda_{ik} = 1 \quad \text{(Normal Condition)} \]

\[\sum_{i=0}^{m} \sum_{k=1}^{l_i} \tilde{A}_{kj} \lambda_{ik} = 0 \quad j = 1, \ldots, n \quad \text{(Orthogonal Conditions)} \]

\[\lambda_{ik} \geq 0 \quad \forall i, k \]

Let \(\mu_{\tilde{C}_{0k}}, \mu_{\tilde{C}_{ik}}, \mu_{\tilde{B}_i}, \mu_{\tilde{A}_{ikj}} \) and \(\tilde{A}_{ikj} \) be membership functions of \(\tilde{C}_{0k}, \tilde{C}_{ik}, \tilde{B}_i, \tilde{A}_{ikj} \) and \(\tilde{A}_{ikj} \) respectively. Without loss of generality, all \(\tilde{C}_{0k}, \tilde{C}_{ik}, \tilde{B}_i, \tilde{A}_{ikj} \) and \(\tilde{A}_{ikj} \) \(\forall i, j, k \) in (3) are assumed to be convex fuzzy numbers. Therefore, the objective value \(\hat{Z} \) will be fuzzy as well. On applying the \(\alpha \)-cuts (\(\alpha \in [0, 1] \)) of \(\tilde{C}_{0k}, \tilde{C}_{ik}, \tilde{B}_i \), and \(r \)-cuts (\(r \in [0, 1] \)) of \(\tilde{A}_{ikj} \) \(\forall i, j, k \) and denoting them by \(\tilde{C}_{0k}^{\alpha}, \tilde{C}_{ik}^{\alpha}, \tilde{B}_i^{\alpha}, \tilde{A}_{ikj}^{\alpha} \) respectively and further, using Zadeh’s extension principle [37], we define the membership function \(\mu_{\hat{Z}} \) as follow

\[\mu_{\hat{Z}}(z) = \sup_{a,b,c} \min \left\{ (C_{0k}^L)_\alpha \leq c_{0k} \leq (C_{0k}^U)_\alpha, (C_{ik}^L)_\alpha \leq c_{ik} \leq (C_{ik}^U)_\alpha, (B_i^L)_\alpha \leq b_i \leq (B_i^U)_\alpha, (A_{0kj}^L)_r \leq a_{0kj} \leq (A_{0kj}^U)_r, (A_{ikj}^L)_r \leq a_{ikj} \leq (A_{ikj}^U)_r, \quad \forall i,j,k \right\} \]

Since a fuzzy number is uniquely represented by its \(\alpha \)-cut, which is a closed interval for all \(\alpha \), this enables us to define arithmetic operations on fuzzy number in term
of their \((\alpha, r)\)-cuts.

\[
Z_{\alpha r} = \max_{\lambda} \prod_{k=1}^{I_0} \left(\frac{\left((C_{0k})_{\alpha}^L, (C_{0k})_\alpha^U \right)_{\lambda_{0k}}}{\lambda_{0k}} \right) \prod_{i=1}^{I_1} \left(\sum_{k=1}^{I_1} \lambda_{ik} \right)^{\lambda_{ik}} \prod_{k=1}^{I_1} \left(\frac{\left((C_{ik})_{\alpha}^L, (C_{ik})_\alpha^U \right)_{(B_i)_\alpha^L, (B_i)_\alpha^U} \lambda_{ik}}{} \right)_{\lambda_{ik}}
\]

Subject to

\[
\sum_{k=1}^{I_0} \lambda_{0k} = 1 \quad \text{(Normal Condition)}
\]

\[
\sum_{i=0}^{M} \sum_{k=1}^{I_1} a_{ikj} \lambda_{ik} = 0 \quad j = 1, \ldots, n \quad \text{(Orthogonal Conditions)}
\]

\[
(A_{ikj})_r^L \leq a_{ikj} \leq (A_{ikj})_r^U \quad \lambda_{ik} \geq 0 \quad \forall i, k, j
\]

(5)

In fact, calculation of \(\mu_{\tilde{Z}}\) of the form (4) is difficult. To obtain the membership function of objective value, we need to find the left shape and right shape functions of \(\mu_{\tilde{Z}}\), which is equivalent to finding the upper and lower bounds of objective value \(\tilde{Z}\) at different \((\alpha, r)\) level possibility.

3. SOLUTION METHODOLOGY

For fuzzy numbers, \(\tilde{A} = [A_{\alpha}^L, A_{\alpha}^U]\) and \(\tilde{B} = [B_{\alpha}^L, B_{\alpha}^U]\) in which \(\tilde{A} \in F(R^\geq 0)\) and \(\tilde{B} \in F(R^> 0)\), we have:

\[
\begin{pmatrix}
\tilde{A} \\
\tilde{B}
\end{pmatrix}_\alpha = \begin{pmatrix}
A_{\alpha}^L & A_{\alpha}^U \\
B_{\alpha}^L & B_{\alpha}^U
\end{pmatrix} \quad \forall \alpha \in [0, 1].
\]

Therefore, to find the lower bound of the objective value, we choose \((C_{0k})_{\alpha}^L\) as the lower bound of the interval \([(C_{0k})_{\alpha}^L, (C_{0k})_{\alpha}^U]\) and in the same manner we choose \([C_{ik}]_{\alpha}^L\) as the lower bound of \([C_{ik}]_{\alpha}^L, (C_{ik})_{\alpha}^U]\), which converts (5) in the form
of (6) as below:

\[
Z_{\alpha r}^L = \max_{\lambda} \prod_{k=1}^{l_0} \left(\frac{(C_{0k})_{\alpha}}{\lambda_{0k}} \right)^{\lambda_{0k}} \prod_{i=1}^{l_i} \left(\sum_{k=1}^{l_{ik}} \lambda_{ik} \right)^{\sum_{k=1}^{l_{ik}} \lambda_{ik}} \prod_{k=1}^{l_k} \left(\frac{(C_{ik})_{\alpha}}{(B_{ik})_{\alpha}} \right)^{\lambda_{ik}}
\]

\text{Subject to}

\[
\sum_{k=1}^{l_0} \lambda_{0k} = 1
\]

\[
\sum_{i=0}^{m} \sum_{k=1}^{l_i} a_{ikj} \lambda_{ik} = 0 \quad j = 1, \ldots, n
\]

\[
(A_{ikj})_{\alpha}^L \leq a_{ikj} \leq (A_{ikj})_{\alpha}^U
\]

\[
\lambda_{ik} \geq 0 \quad \forall i, k, j
\]

(6)

Also, to obtain the upper bound of the objective value, we choose \((C_{0k})_{\alpha}^U\) as the upper bound of the interval \([((C_{0k})_{\alpha}^L, (C_{0k})_{\alpha}^U]\) and in the same manner \([((C_{ik})_{\alpha}^L, (C_{ik})_{\alpha}^U]\) through which (5) can be reformulated as (7).

\[
Z_{\alpha}^U = \max_{\lambda} \prod_{k=1}^{l_0} \left(\frac{(C_{0k})_{\alpha}}{\lambda_{0k}} \right)^{\lambda_{0k}} \prod_{i=1}^{l_i} \left(\sum_{k=1}^{l_{ik}} \lambda_{ik} \right)^{\sum_{k=1}^{l_{ik}} \lambda_{ik}} \prod_{k=1}^{l_k} \left(\frac{(C_{ik})_{\alpha}}{(B_{ik})_{\alpha}} \right)^{\lambda_{ik}}
\]

\text{Subject to}

\[
\sum_{k=1}^{l_0} \lambda_{0k} = 1
\]

\[
\sum_{i=0}^{m} \sum_{k=1}^{l_i} a_{ikj} \lambda_{ik} = 0 \quad j = 1, \ldots, n
\]

\[
(A_{ikj})_{\alpha}^L \leq a_{ikj} \leq (A_{ikj})_{\alpha}^U
\]

\[
\lambda_{ik} \geq 0 \quad \forall i, k, j
\]

(7)

From the \((\alpha, r)\) acceptable value of \(\tilde{Z}\) for different values of \(r\), we can obtain the crisp interval \([Z_{\alpha r}^L, Z_{\alpha r}^U]\) from (6) and (7) respectively.

The feasible regions defined by \(\alpha_1\) in (6) and (7) are smaller than those defined by \(\alpha_2\) with regards to \(0 \leq \alpha_2 < \alpha_1 \leq 1\) for two possibility levels \(\alpha_1\) and \(\alpha_2\) which results \(Z_{\alpha_1 r}^L \geq Z_{\alpha_2 r}^L\) and \(Z_{\alpha_1 r}^U \leq Z_{\alpha_2 r}^U\). According to nondecreasing left shape function \(L(Z) = [Z_{\alpha r}^L]^{-1}\) and nonincreasing
right shape function $R(Z) = [Z^U_{\alpha r}]^{-1}$, the membership function $\mu_{\tilde{Z}}$ for $L(Z)$ and $R(Z)$ is constructed as:

$$\mu_{\tilde{Z}} = \begin{cases}
L(Z) & \text{if } Z^L_{(\alpha=0)r} \leq z \leq Z^L_{(\alpha=1)r} \\
1 & \text{if } Z^L_{(\alpha=1)r} \leq z \leq Z^U_{(\alpha=1)r} \\
R(Z) & \text{if } Z^U_{(\alpha=1)r} \leq z \leq Z^U_{(\alpha=0)r}
\end{cases}$$

4. NUMERICAL EXAMPLE

Consider the following geometric programming problem with fuzzy exponents in the objective function and the constraints.

$$\min_t (36, 40, 42) t_1^{-1} t_2^{-1} t_3^{-1} + 20 t_1 t_2 t_4$$

Subject to

$$t_1^t (0.7, 0.75, 0.8) t_3 + (3, 4, 5) \tilde{t}_2^{0.5} t_4^{(-2.2, -2, -1.8)} \leq (2, 3, 5)$$

$$8 t_1^{-1.2, -1, -0.8} t_2^{-1} t_3 t_4 \leq 1$$

$$t_j > 0 \quad j = 1, \ldots, 4$$ \hspace{1cm} (8)

The dual form of (8) is as follows:

$$\tilde{Z} = \max_{\lambda} \left(\begin{array}{c}
(36, 40, 42) \\
\lambda_{01}
\end{array} \right) \lambda_{02} \left(\begin{array}{c}
20 \\
\lambda_{02}
\end{array} \right) \lambda_{11} \left(\begin{array}{c}
1 \\
(2, 3, 5) \lambda_{31}
\end{array} \right) \lambda_{12} \lambda_{121} \left(\begin{array}{c}
(3, 4, 5) \\
(2, 4, 5) \lambda_{31}
\end{array} \right)$$

Subject to

$$-\lambda_{01} + \lambda_{02} + 3 \lambda_{11} + (-1.2, -1, -0.8) \lambda_{21} = 0$$

$$(-0.6, -0.5, -0.4) \lambda_{01} + \lambda_{02} + (0.7, 0.75, 0.8) \lambda_{11} + 0.5 \lambda_{12} - \lambda_{21} = 0$$

$$-\lambda_{01} + \lambda_{11} + \lambda_{21} = 0$$

$$\lambda_{02} + (-2.2, -2, -1.8) \lambda_{12} + \lambda_{21} = 0$$

$$\lambda_{01} + \lambda_{02} = 1$$

$$\lambda_{ik} \geq 0 \quad \forall i, k$$
The $Z_L^{\alpha r}$ can be calculated by performing the Model (6) and $Z_U^{\alpha r}$ by the Model (7) as follows:

$$Z_L^{\alpha r} = \max_{\lambda} \left(\left(\frac{36 + 4\alpha}{\lambda_{01}} \right)^{\lambda_{01}} \left(\frac{20}{\lambda_{02}} \right)^{\lambda_{02}} \left(\frac{1}{(5 - 2\alpha)\lambda_{11}} \right)^{\lambda_{11}} \left(\frac{(3 + \alpha)}{(5 - 2\alpha)\lambda_{12}} \right)^{\lambda_{12}} \right) \lambda_{21} \left(\lambda_{11} + \lambda_{12} \right)^{(\lambda_{11} + \lambda_{12})}$$

Subject to

- $-\lambda_{01} + \lambda_{02} + 3\lambda_{11} + a_{211}\lambda_{21} = 0$
- $a_{012}\lambda_{01} + \lambda_{02} + a_{112}\lambda_{11} + 0.5\lambda_{12} - \lambda_{21} = 0$
- $-\lambda_{01} + \lambda_{11} + \lambda_{21} = 0$
- $\lambda_{02} + a_{124}\lambda_{12} + \lambda_{21} = 0$
- $\lambda_{01} + \lambda_{02} = 1$
- $(-1.2 + 0.2r) \leq a_{211} \leq (-0.8 - 0.2r)$
- $(-0.6 + 0.1r) \leq a_{012} \leq (-0.4 - 0.1r)$
- $(0.7 + 0.05r) \leq a_{112} \leq (0.8 + 0.05r)$
- $(-2.2 + 0.2r) \leq a_{124} \leq (-1.8 - 0.2r)$
- $\lambda_{ik} \geq 0 \quad \forall i, k$
| ↓ r / α → | 0.00 | 0.25 | 0.50 | 0.75 | 1.00 |
|-----------|-------|-------|-------|-------|-------|
| **state (1)** | | | | | |
| 0.00 | 105.6194 | 117.3167 | 130.9025 | 147.0518 | 166.8195 |
| 0.25 | 107.1390 | 119.2289 | 133.2972 | 150.0532 | 170.6070 |
| 0.50 | 108.6877 | 121.1890 | 135.7644 | 153.1601 | 174.5459 |
| 0.75 | 110.2633 | 123.1957 | 138.3044 | 156.3750 | 178.6415 |
| 1.00 | 111.8630 | 125.2472 | 140.9166 | 159.6996 | 182.8989 |
| **state (2)** | | | | | |
| 0.00 | 105.7386 | 119.2822 | 135.2639 | 154.5846 | 178.6717 |
| 0.25 | 107.1984 | 120.6836 | 136.5628 | 155.7162 | 179.5354 |
| 0.50 | 108.7035 | 122.1429 | 137.9365 | 156.9454 | 180.5287 |
| 0.75 | 110.2572 | 123.6631 | 139.3870 | 158.2728 | 181.6501 |
| 1.00 | 111.8630 | 125.2472 | 140.9166 | 159.6996 | 182.8989 |
| **state (3)** | | | | | |
| 0.00 | 105.9267 | 117.7360 | 131.4705 | 147.8196 | 178.8761 |
| 0.25 | 107.3523 | 119.5248 | 133.7033 | 150.6084 | 171.3686 |
| 0.50 | 108.8167 | 121.3716 | 135.2639 | 154.5846 | 178.6717 |
| 0.75 | 110.3201 | 123.2785 | 138.4225 | 156.5417 | 180.5287 |
| 1.00 | 111.8630 | 125.2472 | 140.9166 | 159.6996 | 182.8989 |
| **state (4)** | | | | | |
| 0.00 | 105.9698 | 119.5997 | 135.7014 | 155.1904 | 179.5181 |
| 0.25 | 107.3642 | 120.9166 | 136.8890 | 156.1726 | 180.1775 |
| 0.50 | 108.8090 | 122.2949 | 138.1527 | 157.2511 | 180.9616 |
| 0.75 | 110.3075 | 123.7375 | 139.9496 | 158.4264 | 181.8691 |
| 1.00 | 111.8630 | 125.2472 | 140.9166 | 159.6996 | 182.8989 |
| **state (5)** | | | | | |
| 0.00 | 114.3829 | 126.7323 | 140.9667 | 157.7490 | 178.1094 |
| 0.25 | 114.2248 | 126.8822 | 141.5279 | 158.8661 | 179.9943 |
| 0.50 | 113.7688 | 126.7052 | 141.7319 | 159.5948 | 181.4597 |
| 0.75 | 112.9915 | 126.1725 | 141.5433 | 159.8913 | 182.4510 |
| 1.00 | 111.8630 | 125.2472 | 140.9166 | 159.6996 | 182.8989 |
| **state (6)** | | | | | |
| 0.00 | 114.7284 | 129.2709 | 146.3344 | 166.8364 | 192.2328 |
| 0.25 | 114.4116 | 128.6669 | 145.3769 | 165.4336 | 190.2420 |
| 0.50 | 113.8421 | 127.8104 | 144.1726 | 163.7975 | 188.0527 |
| 0.75 | 113.0002 | 126.6791 | 142.6957 | 161.8978 | 185.6189 |
| 1.00 | 111.8630 | 125.2472 | 140.9166 | 159.6996 | 182.8989 |
| **state (7)** | | | | | |
| 0.00 | 115.2110 | 127.7051 | 142.1192 | 159.1294 | 179.7869 |
| 0.25 | 114.7814 | 127.5464 | 142.3277 | 159.8402 | 181.1987 |
| 0.50 | 114.0739 | 127.0784 | 142.1927 | 160.1700 | 182.1883 |
| 0.75 | 113.0987 | 126.3101 | 141.7211 | 160.1229 | 182.7563 |
| 1.00 | 111.8630 | 125.2472 | 140.9166 | 159.6996 | 182.8989 |
| r / α | 0.00 | 0.25 | 0.50 | 0.75 | 1.00 |
|-------------|------|------|------|------|------|
| state(8) | | | | | |
| 0.00 | 115.5574 | 130.2476 | 147.4976 | 168.2408 | 193.9493 |
| 0.25 | 114.9536 | 129.3140 | 146.1584 | 166.3907 | 191.4352 |
| 0.50 | 114.1338 | 128.1669 | 144.6135 | 164.3502 | 188.7574 |
| 0.75 | 113.1022 | 126.8101 | 142.8654 | 162.1197 | 185.9130 |
| 1.00 | 111.8630 | 125.2472 | 140.9166 | 159.6996 | 182.8989 |
| state(9) | | | | | |
| 0.00 | 104.9160 | 117.0065 | 131.1632 | 148.1343 | 169.0964 |
| 0.25 | 106.9428 | 119.3579 | 133.8905 | 151.3073 | 172.8137 |
| 0.50 | 108.7790 | 121.5175 | 136.4268 | 154.2929 | 176.3517 |
| 0.75 | 110.4205 | 123.4818 | 138.7696 | 157.0905 | 179.7126 |
| 1.00 | 111.8630 | 125.2472 | 140.9166 | 159.6996 | 182.8989 |
| state(10) | | | | | |
| 0.00 | 103.7664 | 115.8436 | 130.0133 | 147.0359 | 168.1092 |
| 0.25 | 106.6384 | 120.3176 | 136.5065 | 156.1367 | 180.6869 |
| 0.50 | 108.6298 | 122.2499 | 138.3111 | 157.7123 | 181.8758 |
| 0.75 | 110.3721 | 123.8932 | 139.7803 | 158.8977 | 182.6088 |
| 1.00 | 111.8630 | 125.2472 | 140.9166 | 159.6996 | 182.8989 |
| state(11) | | | | | |
| 0.00 | 102.9904 | 116.5854 | 132.7592 | 154.4804 | 179.2931 |
| 0.25 | 105.9644 | 119.6202 | 135.8004 | 155.4447 | 180.0453 |
| 0.50 | 108.5921 | 121.3571 | 136.3098 | 154.2431 | 176.4052 |
| 0.75 | 110.4038 | 123.4847 | 138.8011 | 157.1632 | 179.8456 |
| 1.00 | 111.8630 | 125.2472 | 140.9166 | 159.6996 | 182.8989 |
| state(12) | | | | | |
| 0.00 | 102.7248 | 116.5854 | 132.7592 | 154.4804 | 179.2931 |
| 0.25 | 105.9644 | 119.6202 | 135.8004 | 155.4447 | 180.0453 |
| 0.50 | 108.5921 | 121.3571 | 136.3098 | 154.2431 | 176.4052 |
| 0.75 | 110.4038 | 123.4847 | 138.8011 | 157.1632 | 179.8456 |
| 1.00 | 111.8630 | 125.2472 | 140.9166 | 159.6996 | 182.8989 |
| state(13) | | | | | |
| 0.00 | 118.7248 | 132.0202 | 147.4587 | 165.8024 | 188.2415 |
| 0.25 | 116.9060 | 130.2101 | 145.6895 | 164.1214 | 186.7215 |
| 0.50 | 115.1586 | 128.4802 | 144.0114 | 162.5453 | 185.3248 |
| 0.75 | 113.4788 | 126.8270 | 142.4214 | 161.0720 | 184.0508 |
| 1.00 | 111.8630 | 125.2472 | 140.9166 | 159.6996 | 182.8989 |
| state(14) | | | | | |
| 0.00 | 118.4241 | 133.7704 | 151.8835 | 173.7824 | 201.0800 |
| 0.25 | 116.7268 | 131.5398 | 148.9852 | 170.0278 | 196.1930 |
| 0.50 | 115.0668 | 129.3764 | 146.1939 | 166.4348 | 191.5437 |
| 0.75 | 113.4453 | 127.2793 | 143.5057 | 162.9947 | 187.1171 |
| 1.00 | 111.8630 | 125.2472 | 140.9166 | 159.6996 | 182.8989 |
Figure 1: Lower bounds Z^L_{ar} for the objective value

$$Z^U_{ar} = \max _\lambda \left(\frac{(42-2\alpha)}{\lambda_{10}} \right)^{\lambda_{01}} \left(\frac{20}{\lambda_{02}} \right)^{\lambda_{02}} \left(\frac{1}{(2+\alpha)\lambda_{11}} \right)^{\lambda_{11}} \left(\frac{(5-\alpha)}{(2+\alpha)\lambda_{12}} \right)^{\lambda_{12}} \lambda_{21} (\lambda_{11} + \lambda_{12})^{(\lambda_{11}+\lambda_{12})}$$

subject to

$-\lambda_{01} + \lambda_{02} + 3\lambda_{11} + a_{211} \lambda_{21} = 0$

$a_{012} \lambda_{01} + \lambda_{02} + a_{112} \lambda_{11} + 0.5 \lambda_{12} - \lambda_{21} = 0$

$-\lambda_{01} + \lambda_{11} + \lambda_{21} = 0$

$\lambda_{02} + a_{124} \lambda_{12} + \lambda_{21} = 0$

$\lambda_{01} + \lambda_{02} = 1$

$(-1.2 + 0.2r) \leq a_{211} \leq (-0.8 - 0.2r)$

$(-0.6 + 0.1r) \leq a_{012} \leq (-0.4 - 0.1r)$

$(0.7 + 0.05r) \leq a_{112} \leq (0.8 - 0.05r)$

$(-2.2 + 0.2r) \leq a_{124} \leq (-1.8 - 0.2r)$

$\lambda_{ik} \geq 0 \ \forall i, k$
↓ \(r / \alpha \) →	0.00	0.25	0.50	0.75	1.00
state(1)					
0.00	234.4367	213.6795	195.9357	180.4844	166.8195
0.25	241.2236	219.5022	200.9633	184.8432	170.6070
0.50	248.3574	225.6060	206.2196	189.3884	174.5459
0.75	255.8590	232.0064	211.7160	194.1280	178.6415
1.00	263.7508	238.7196	217.4640	199.0698	182.8989
state(2)					
0.00	264.5794	237.7494	215.1239	195.6702	178.6717
0.25	263.9667	237.6592	215.4331	196.2899	179.5354
0.50	263.6334	238.7969	215.9301	197.0652	180.5287
0.75	263.5654	238.1530	216.6086	197.9927	181.6501
1.00	263.7508	238.7196	217.4640	199.0698	182.8989
state(3)					
0.00	236.4063	215.3328	197.3399	181.6888	167.8621
0.25	242.6814	220.7212	201.9949	185.7254	171.3686
0.50	249.3105	226.3996	206.8886	189.9584	175.0364
0.75	256.3299	232.3907	212.0384	194.4016	185.8761
1.00	263.7508	238.7196	217.4640	199.0698	182.8989
state(4)					
0.00	266.2284	239.1141	216.2713	196.6489	179.5181
0.25	265.2308	238.7038	216.3094	197.0351	180.1775
0.50	264.4936	238.5068	216.5245	197.5693	180.9616
0.75	264.0040	238.5146	216.9108	198.2484	181.8691
1.00	263.7508	238.7196	217.4640	199.0698	182.8989
state(5)					
0.00	247.7874	226.5879	208.3391	192.3436	178.1094
0.25	252.6213	230.4286	211.3893	194.7536	179.9943
0.50	256.9593	233.7884	213.9771	196.7221	181.4597
0.75	260.7087	236.5864	216.0320	198.1871	182.4510
1.00	263.7508	238.7196	217.4640	199.0698	182.8989
state(6)					
0.00	283.0472	254.8707	230.9833	210.3430	192.2328
0.25	278.3573	251.0478	227.8776	207.8424	190.2420
0.50	273.6233	247.1202	224.6223	205.1588	188.0527
0.75	268.7782	243.0312	221.1689	202.2502	186.6189
1.00	263.7508	238.7196	217.4640	199.0698	182.8989
state(7)					
0.00	250.4670	228.9409	210.4255	194.2082	179.7869
0.25	254.6041	232.1547	212.9077	196.1009	181.1987
0.50	258.2074	234.8628	214.9125	197.5442	182.1883
0.75	261.2633	237.0561	216.4347	198.5361	182.7563
1.00	263.7508	238.7196	217.4640	199.0698	182.8989
r / α	0.00	0.25	0.50	0.75	1.00
------------	-------	-------	-------	-------	-------
state(8)					
0.00	285.8771	257.3336	233.1513	212.2695	193.9493
0.25	280.3570	252.7772	229.3912	209.1805	191.4352
0.50	274.8447	248.1666	225.5301	205.9549	188.7574
0.75	269.3164	243.4856	221.5755	202.5866	185.9130
1.00	263.7508	238.7196	217.4640	199.0698	182.8989
state(9)					
0.00	240.7453	218.5521	199.7133	183.4169	169.0964
0.25	246.6418	223.7829	204.3729	187.5774	172.8137
0.50	252.4309	228.8802	208.8796	191.5700	176.3517
0.75	258.1283	233.8553	213.2407	195.3992	179.7126
1.00	263.7508	238.7196	217.4640	199.0698	182.8989
state(10)					
0.00	267.4016	239.6046	216.2949	196.3590	179.0272
0.25	267.5801	240.3064	217.4246	197.7975	180.6869
0.50	266.9079	240.3716	217.9796	198.7161	181.8758
0.75	265.6431	239.8330	217.9522	199.1345	182.6088
1.00	263.7508	238.7196	217.4640	199.0698	182.8989
state(11)					
0.00	240.1346	217.7751	198.8280	182.4652	168.1092
0.25	246.7571	223.7357	204.2109	187.3349	172.5165
0.50	252.8307	229.1515	209.0559	191.6757	176.4052
0.75	258.4634	234.1180	213.4485	195.5348	179.8456
1.00	263.7508	238.7196	217.4640	199.0698	182.8989
state(12)					
0.00	265.4099	237.6435	214.3930	194.5348	177.2931
0.25	267.0008	239.7216	216.7982	197.1545	180.0453
0.50	267.9929	240.4556	217.9929	198.6805	181.8072
0.75	265.9384	240.0606	218.1621	199.2730	182.7183
1.00	263.7508	238.7196	217.4640	199.0698	182.8989
state(13)					
0.00	264.9264	241.4013	221.2802	203.7503	188.2415
0.25	264.3186	240.4605	220.0902	202.3724	186.7215
0.50	263.9157	239.6973	219.0563	201.1328	185.3248
0.75	263.7241	239.1156	218.1801	200.0316	184.0508
1.00	263.7508	238.7196	217.4640	199.0698	182.8989
state(14)					
0.00	298.3973	268.0098	242.3793	220.3392	201.0800
0.25	288.9065	260.0235	235.6173	214.5939	196.1930
0.50	280.0005	252.5039	229.2290	209.1476	191.5437
0.75	271.6300	245.4138	223.1864	203.9792	187.1171
1.00	263.7508	238.7196	217.4640	199.0698	182.8989
Kamaei, S., et al. / Solving a Posynomial Geometric Programming Problem

Figure 2: Upper bounds $Z^U_{\alpha r}$ for the objective value

	0.00	0.00	0.25	0.50	0.75	1.00
0.00	299.6849	269.0237	243.1893	220.9960	201.6211	
0.25	289.9987	260.8982	236.3279	215.1793	196.6821	
0.50	280.7968	253.1492	229.7594	209.5891	191.9162	
0.75	272.0555	245.7617	223.4748	204.2212	187.3226	
1.00	263.7508	238.7196	217.4640	199.0698	182.8989	
The upper and lower bounds of the objective value for different levels of \((\alpha, r)\)-values are obtained and illustrated in the Figure 3.

The Figures 4 and 5 represent the membership function of \(Z_{\alpha r}^L\) and \(Z_{\alpha r}^U\).
5. CONCLUSION

Due to uncertainty of design parameters and the closeness of fuzzy logic concept to such problems, which have many applications in engineering design, economics and management, we decided to study geometric programming with full fuzziness in exponents and coefficients of objective function and constraints as well. In fact, the full fuzziness in geometric programming helps us to get the result that is much closer to the real optimal solution of the problem due to uncertainty of the parameters in the real physical world.

A very clear representation of fuzzy behavior of the objective function and membership values is given for different steps of LR fuzzy types in Figures 1 to 4. We compared our results with (Liu 2007) and got much more accurate result for optimum value of the problem. The extension of this problem can be applied to interval valued geometric programming and fractional geometric programming, too.

Acknowledgment: The authors wish to thanks Shahid Chamran University of Ahvaz for supporting financially the present research work.

REFERENCES

[1] Allahviranloo, T., Lotfi, F. H., Kiasary, M.K., Kiani, N.A., and Alizadeh, L., “Solving fully fuzzy linear programming problem by the ranking function”, *Applied Mathematical Sciences*, (2) (2008) 19–32.

[2] Bazikar, F., and Saraj, M., “Solving linear multi-objective geometric programming problems via reference point approach”, *Sains Malaysiana*, (43) (8) (2014) 1271–1274.

[3] Bellman, R.E., and Zadeh, L.A., “Decision-making in a fuzzy environment”, *Management Science*, (17) (1970) 141–164.
[4] Boyd, S., Kim, S.J., Patil, D.D., and Horowitz, M.A., “Digital circuit optimization via geometric programming”, *Operation Research*, (53) (6) (2005) 899–902.

[5] Boyd, S.P., Kim, S. J., Vandenberghe, L., and Hossib, A., “A tutorial on geometric programming”, *Optimization and Engineering*, (8) (1) (2007) 67–127.

[6] Cao, B. Y., *Fuzzy geometric programming Applied optimization*, Kluwer Academic Publishers, Springer, Berlin, 2002.

[7] Chen, L.H., and Tsai, F.C., “Fuzzy goal programming with different importance and priorities”, *European Journal of Operational Research*, (133) (2001) 548–556.

[8] Chu, C., and Wong, D.F., “VLSI circuit performance optimization by geometric programming”, *Annals of Operations Research*, (105) (2001) 37–60.

[9] Duffin, R.J., Peterson, E.L., and Zener, C., *Geometric programming theory and applications*, Wiley, New York, 1967.

[10] Elhabitant, A., and Nasseri, S.H., “Using complementary slackness property to solve linear programming with fuzzy parameters”, *Fuzzy Information and Engineering*, (1) (2009) 233–245.

[11] Ezati, R., Khorram, E., and Enayati, R., “A new algorithm to solve fully fuzzy linear programming problems using the MOLP problem”, *Applied Mathematical Modelling*, (39) (2015) 3183–3193.

[12] Kumar, A., Kaur, J., and Singh, P., “A new method for solving fully fuzzy linear programming problems”, *Applied Mathematical Modelling*, (35) (2011) 817–823.

[13] Larbani, M., “Multiobjective problems with fuzzy parameters and games against nature”, *Fuzzy Sets and Systems*, (161) (2010) 2642–2660.

[14] Liu, S.T., “Geometric programming with fuzzy parameters in engineering optimization”, *International Journal of Approximate Reasoning*, (46) (2007) 484–498.

[15] Mahapatra, G.S., and Mahapatra, B.S., “Reliability and Cost Analysis of Series System Models using Fuzzy Parametric Geometric Programming”, *Fuzzy Information and Engineering*, (2) (4) (2010) 399–411.

[16] Mahapatra, G.S., Mahapatra, B.S., and Roy, P.K., “Fuzzy Decision-making on Reliability of Series System: Fuzzy Geometric Programming Approach”, *Annals of Fuzzy Mathematics and Informatics*, (1) (1) (2011) 107–118.

[17] Mahapatra, G.S., and Mandal, T.K., “Posynomial parametric geometric programming with interval valued coefficient”, *Journal Optimization Theory and Applications*, (154) (2012) 120–132.

[18] Mahapatra, G.S., Mandal, T.K., and Samanta, G.P., “A Production Inventory Model with Fuzzy Coefficients Using Parametric Geometric Programming Approach”, *International Journal of Machine Learning and Cybernetics*, (2) (2) (2011) 99–105.

[19] Mahapatra, G.S., Mandal, T.K., and Samanta, G.P., “EPQ model with fuzzy coefficient of objective and constraint via parametric geometric programming”, *International Journal of Operational Research*, (17) (4) (2013) 436–448.

[20] G.S. Mahapatra, T.K. Mandal and G.P. Samanta, “Fuzzy parametric geometric programming with application in fuzzy EPQ model under flexibility and reliability consideration”, *Journal of Information and Computing Science*, (7) (3) (2012) 223–234.

[21] Mahapatra, G.S., and Roy, T.K., “Single and Multi-container Maintenance Model: A Fuzzy Geometric Programming Approach”, *Journal of Mathematics Research*, (1) (2) (2009) 47–60.

[22] Mendoça, L.F., Sousa, J.M., and Sáda Costa, J.M.G., “Optimization problems in multi-variable fuzzy predictive control”, *International Journal of Approximate Reasoning*, (36) (2004) 199–221.

[23] Nehi, H.M., Maleki, H.R., and Mashinchi, M., “Solving fuzzy number linear programming problem by lexicographic ranking function”, *Iranian Journal of Pure and Applied Mathematics*, (15) (2004) 9–20.

[24] Ojha, A.K., and Das, A.K., “Geometric programming problem with coefficients and exponents associated with binary numbers”, *International Journal of Computer Science Issues*, (7) (2010) 49–55.

[25] Ojha, A.K., and Biswal, K.K., “Multi-objective geometric programming problem with ε-constraint method”, *Applied Mathematical Modelling*, (38) (2014) 747–758.
[26] Orlovskii, S.A., “Multiobjective programming problems with fuzzy parameters”, Control and Cybernetics, 13 (3) (1984) 175–183.

[27] Palomar, D., Cioffi, J., and Lagunas, M., “Joint TX-RX beam forming design for multi-carrier MIMO channels: a unified framework for convex optimization”, IEEE Trans Signal Process, 51 (9) (2003) 2381-2401.

[28] Rajgopal, J., and Bricker, D.L., “Solving Posynomial geometric programming problems via generalized linear programming”, Computational Optimization and Applications, 21 (2002) 95–109.

[29] Sahidul, I., “Multi-objective marketing planning inventory model. A geometric programming approach”, Applied Mathematics and Computation, 205 (2008) 238–246.

[30] Sakawa, M., Genetic Algorithms for fuzzy multiobjective optimization, Kluwer Academic Publisher, Norwell, MA, USA, 2001.

[31] Sen, Sh., and Pal, B.B., “Interval goal programming approach to multiobjective fuzzy goal programming problem with interval weights”, Procedia Technology, 10 (2013) 587–595.

[32] Veeramani, C., and Sumathi, M., “Solving Linear Fractional Programming Problem under Fuzzy Environment: Numerical Approach”, Applied Mathematical Modelling, 40 (2016) 6148-6164.

[33] Wu, Y.K., “Optimizing the geometric programming problem with single-term exponents subject to max-min fuzzy relational equation constraint”, Mathematical and Computer Modelling, 47 (2008) 352–362.

[34] Xu, G., “Global optimization of signomial geometric programming problems”, European Journal of operational Research, 233 (2014) 500–510.

[35] Yang, H., and Cao, B.Y., “Fuzzy geometric programming and its application”, Fuzzy Information and Engineering, 2 (1) (2010) 101–112.

[36] Yiming, L., and Chen, Y.C., “Temperature-aware floor planning via geometric programming”, Mathematical and Computer Modelling, 51 (2010) 927–934.

[37] Zadeh, L.A., “Fuzzy sets as a basis for a theory of possibility” Fuzzy Sets and Systems, 1 (1978) 3–28.

[38] Zimmermann, H.J., Fuzzy Set Theory and its Applications, Kluwer-Nijhoff, Boston, 1996.