Brownian Motion Effects on the Stabilization of Stochastic Solutions to Fractional Diffusion Equations with Polynomials

Wael W. Mohammed, Mohammed Alshammari, Clemente Cesarano and Sultan Albadrani

Abstract: A class of stochastic fractional diffusion equations with polynomials is considered in this article. This equation is used in numerous applications, such as ecology, bioengineering, biology, and mechanical and chemical engineering. As a result, it is critical to obtain exact solutions to this equation. To obtain these solutions, the tanh-coth method is utilized. Furthermore, we clarify the impact of noise on solution stabilization by simulating our solutions.

Keywords: fractional Laplacian; multiplicative noise; exact solutions; tanh-coth method

MSC: 35R60; 60H15; 60H10

1. Introduction

Fractional derivatives have recently received much attention, owing to their potential applications in a variety of fields, such as chemistry, biochemistry [1], finance [2,3], biology [4], physics [5,6], and hydrology [7,8]. Because fractional-order derivatives allow the memory and hereditary properties of different substances to be recognized, these fractional-order equations are more suitable than integer-order equations [9].

On the other hand, in geophysics, climatic dynamics, chemistry, biology, physics, and other fields, the importance of including random effects in modeling, forecasting, simulating, and analyzing complex processes has recently been widely recognized. Equations that take into account random fluctuations relying on time are known as stochastic differential equations.

Here, we are interested in the stochastic reaction fractional-diffusion equation (SRFDE) perturbed by multiplicative noise in the following type:

$$du = \left[D^\alpha_x u + au - bu^{n+1}\right]dt + \sigma u d\beta,$$

where $a$, $b$ are positive real numbers, $n$ is a positive integer, $\sigma$ is the noise intensity, and $\beta(t)$ is the standard Brownian motion.

We note that if $a = n = 1, \sigma = 0$ and $b = a$, then Equation (1) becomes the well-known Fisher equation [10], which is used as the temporal and spatial propagation model in an infinite medium of a virile gene. Moreover, it is utilized in chemical kinetics [11], logistics population growth [12], nuclear reactor theory [13], autocatalytic chemical reaction [14], flame propagation [15], and neurophysiology [16].
When \( n = q - 1, \alpha = 1 \) and \( \sigma = 0 \), then it gives the Newell-Whitehead equation (NWE), which describes the appearance of the stripe pattern in two-dimensional systems. The NWE equation has numerous applications in ecology, bioengineering, biology, and mechanical and chemical engineering. For more information, see Nagumo, Arimoto, and Yoshizawa [17], Kastenberg and Chamb´ere [18], FitzHugh [19], and the references therein.

Moreover, if \( a = b = 1 \) and \( n = 2 \), then Equation (1) reduces to Allen-Cahn equation, which represents a natural physical phenomenon [20]. It has been widely applied to the study of a variety of physical problems, such as the motion by mean curvature flows [21], image segmentation [22], antifreeze proteins [23], structure formation [24], and crystal growth [25].

Recently, Equation (1), with \( \alpha = 1 \) and \( \sigma = 0 \) (i.e., with the integer order and without noise) was studied analytically by [26–31]. While in the stochastic case, this equation with \( \alpha = 1 \) was investigated by [32–36].

Our main objective here was to obtain the analytical fractional stochastic solutions to Equation (1) via the tanh-coth method. This method is used to find the solutions for many equations, such as the stochastic (2+1)-dimensional breaking soliton equation [37], stochastic fractional-space Allen-Cahn equation [38], stochastic Ginzburg-Landau equation [39], etc. The achieved solutions would be extremely useful in explaining definite interesting physical phenomena to physicists. Furthermore, we studied the influence of multiplicative noise on the obtained solutions of Equation (1) by bringing some graphical representations via the MATLAB package.

The article is organized as follows. In Section 2, we define and declare the features of CD. In Section 3, the wave equation for the SRFDE (1) is presented. In Section 4, we utilize the tanh-coth method to obtain the exact stochastic fractional solutions of the SRFDE (1). In Section 5, we present graphs that display the effects of multiplicative noise on the solutions of SRFDE (1). Finally, we present our conclusions.

2. Conformable Derivative

Here, we state the definition, theorem, and properties of conformable derivative (CD) [40].

**Definition 1.** Let \( \phi : (0, \infty) \to \mathbb{R} \), then the CD of \( \phi \) of order \( \alpha \in (0, 1] \) is defined as

\[
D_\alpha^z \phi(z) = \lim_{h \to 0} \frac{\phi(z + h z^{1-\alpha}) - \phi(z)}{h},
\]

**Theorem 1.** Let \( \phi, g : (0, \infty) \to \mathbb{R} \) be differentiable, and also \( \alpha \) differentiable functions, then the next rule holds:

\[
D_\alpha^z (\phi \circ g)(z) = z^{1-\alpha} g'(z) \phi'(g(z)).
\]

Let us state some properties of the CD:

1. \( D_\alpha^z [c_1 \phi(z) + c_2 g(z)] = c_1 D_\alpha^z \phi(z) + c_2 D_\alpha^z g(z) \), for \( c_1, c_2 \in \mathbb{R} \),
2. \( D_\alpha^z [C] = 0 \), \( C \) is a constant,
3. \( D_\alpha^z [z^k] = kz^{k-\alpha} \), \( k \in \mathbb{R} \),
4. \( D_\alpha^z [g(z)] = z^{1-\alpha} \frac{dg}{dz} \),

3. Traveling Wave Equation

To acquire the wave equation of Equation (1), we employ the wave transformation shown below:

\[
u(x, t) = Q(\mu)e^{i\nu_0(t) - \frac{1}{2}\nu_0^2 t}], \quad \mu = c \left( \frac{1}{\alpha} x^\alpha - \lambda t \right),
\]

(2)
where $Q$ is a real deterministic function, $\sigma$ is the noise intensity, and $c$, $\lambda$ are unknown constants. The following changes are employed:

$$
\begin{align*}
\frac{du}{dt} &= \left[ (-c\lambda Q' + \frac{\sigma^2}{2} (1 - n) Q) dt + \sigma Q d\beta \right] e^{\sigma \beta (t) - \frac{1}{2} \sigma^2 t}, \\
D^2_{x} u &= c^2 Q e^{\sigma \beta (t) - \frac{1}{2} \sigma^2 t}, \\
and D^3_{x} u &= c^2 Q' e^{\sigma \beta (t) - \frac{1}{2} \sigma^2 t}, 
\end{align*}
$$

(3)

where $Q' = \frac{dQ}{d\mu}$. Equation (1) can be converted into the following ODE using (2) and (3):

$$
c^2 Q'' + c\lambda Q' - b Q^{n+1} e^{\sigma \beta (t) - \frac{1}{2} \sigma^2 t} + \left[ a + \frac{\sigma^2}{2} (1 - n) \right] Q = 0.
$$

(4)

We have, by taking expectation $E(\cdot)$:

$$
c^2 Q'' + c\lambda Q' - b Q^{n+1} e^{\sigma \beta (t) - \frac{1}{2} \sigma^2 t} E e^{\sigma \beta (t) - \frac{1}{2} \sigma^2 t} + \left[ a + \frac{\sigma^2}{2} (1 - n) \right] Q = 0.
$$

(5)

Since $E(e^{\delta Z}) = e^{\frac{\delta^2}{2} t}$ for every standard Gaussian process $Z$, then identity $E e^{\sigma \beta (t) - \frac{1}{2} \sigma^2 t}$ is based on the following reality, $\sigma \beta (t)$ is distributed, such as $\sigma n \sqrt{t} Z$. Equation (5) now becomes

$$
c^2 Q'' + c\lambda Q' - b Q^{n+1} + \rho Q = 0,
$$

(6)

where

$$
\rho = a + \frac{\sigma^2}{2} (1 - n).
$$

If one defines the degree of $Q(\mu)$ as $D[Q(\mu)] = M$, then

$$
D[Q''] = M + 2,
$$

and

$$
D[Q^{n+1}] = (n + 1) M
$$

By balancing $Q^{n+1}$ with $Q''$ in Equation (6), we have

$$(n + 1) M = M + 2,$$

hence,

$$
M = 2/n.
$$

(7)

In order to obtain a closed form solution, $M$ should be an integer. So that, we suppose

$$
Q = \psi^{2/n}.
$$

(8)

Substituting (8) into Equation (6), we have

$$
2c^2 (2 - n) \psi'^2 + 2c^2 n \psi \psi'' + 2c \lambda n \psi \psi' - b n^2 \psi^4 + \rho n^2 \psi^2 = 0.
$$

(9)

Now, by balancing $\psi \psi''$ and $\psi^4$, we have

$$
M = 1.
$$

(10)

### 3.1. Tanh-Coth Method

The tanh-coth method was defined by Malfliet [41]. Defining the solution $\psi$ of Equation (9), using Equation (10), as follows:

$$
\psi(\mu) = \sum_{k=0}^{M} \ell_k \chi^k = \sum_{k=0}^{M} \ell_k \chi^k = \ell_0 + \ell_1 \chi,
$$

(11)
where \( \chi = \tanh \mu \) or \( \chi = \coth \mu \). Plugging Equation (11) into Equation (9), we attain
\[
-2\ell_1 c^2 (1 - \chi^2) \chi + c \lambda \ell_1 (1 - \chi^2) - (\ell_0 + \ell_1 \chi + \ell_2 \chi^2) = 0.
\]
Hence,
\[
[2\ell_1^2 c^2 (2 + n) - bn^2 \ell_1^3] \chi^4 + [4c^2 n \ell_0 \ell_1 - 2c \lambda n \ell_1^2 - 4bn^2 \ell_1^2 \ell_0] \chi^3 + 8c^2 \ell_1^3 + \rho \ell_1^2 n^2 - 6b \lambda n \ell_1 \ell_0] \chi^2 +
\]
\[
+ [(4c^2 n - 2 \lambda n^2) \ell_1 \ell_0 + 2c \lambda n \ell_1^2 - 4bn^2 \ell_1 \ell_0] \chi +
\]
\[
+ 2c^2 (2 - n) \ell_1^3 + 2c \lambda n \ell_1 - bn^2 \ell_1^0 + \rho n^2 \ell_0^2 = 0.
\]
Putting each coefficient of \( \chi^k (k = 0, 1, 2, 3, 4) \) equal to zero, we obtain
\[
2c^2 (2 - n) \ell_1^3 + 2c \lambda n \ell_1 - bn^2 \ell_1^0 + \rho n^2 \ell_0^2 = 0,
\]
\[
[-4c^2 n + 2 \lambda n^2] \ell_1 \ell_0 + 2c \lambda n \ell_1^2 - 4bn^2 \ell_1 \ell_0 = 0,
\]
\[
-8c^2 \ell_1^3 + \rho \ell_1^2 n^2 - 6b \lambda n \ell_1 \ell_0 = 0,
\]
\[
4c^2 n \ell_0 \ell_1 - 2c \lambda n \ell_1^2 - 4bn^2 \ell_1 \ell_0 = 0,
\]
and
\[
2\ell_1^2 c^2 (2 + n) - bn^2 \ell_1^3 = 0.
\]
We solve this system, obtaining
\[
\ell_0 = \pm \frac{1}{2} \sqrt{\frac{\rho}{b}}, \quad \ell_1 = \pm \frac{1}{2} \sqrt{\frac{\rho}{b}}, \quad c = n \sqrt{\frac{\rho}{8(n + 2)}}, \quad \lambda = -(n + 4) \sqrt{\frac{\rho}{2(n + 2)}},
\]
and
\[
\ell_0 = \pm \frac{1}{2} \sqrt{\frac{\rho}{b}}, \quad \ell_1 = \pm \frac{1}{2} \sqrt{\frac{\rho}{b}}, \quad c = n \sqrt{\frac{\rho}{8(n + 2)}}, \quad \lambda = (n + 4) \sqrt{\frac{\rho}{2(n + 2)}}.
\]
For the first set: substituting into (11), we have
\[
\psi(\mu) = \pm \frac{1}{2} \sqrt{\frac{\rho}{b}} \pm \frac{1}{2} \sqrt{\frac{\rho}{b}} \tanh \mu \text{ or } \psi(\mu) = \pm \frac{1}{2} \sqrt{\frac{\rho}{b}} \pm \frac{1}{2} \sqrt{\frac{\rho}{b}} \coth \mu.
\]
Substituting again into (2) with \( Q = \psi^{2/n} \), we have the solutions of the SRFDE (1) as
\[
u(x, t) = e^{i\chi(t) - \frac{1}{2} n \rho I} \left\{ \pm \frac{1}{2} \sqrt{\frac{\rho}{b}} \pm \frac{1}{2} \sqrt{\frac{\rho}{b}} \tanh \left[ \sqrt{\frac{n^2 \rho}{8(n + 2)}} \left( \frac{x}{\alpha} + \sqrt{\frac{\rho(n + 4)^2}{2(n + 2)}} t \right) \right] \right\}^{\frac{2}{n}},
\]
and
\[
u(x, t) = e^{i\chi(t) - \frac{1}{2} n \rho I} \left\{ \pm \frac{1}{2} \sqrt{\frac{\rho}{b}} \pm \frac{1}{2} \sqrt{\frac{\rho}{b}} \coth \left[ \sqrt{\frac{n^2 \rho}{8(n + 2)}} \left( \frac{x}{\alpha} + \sqrt{\frac{\rho(n + 4)^2}{2(n + 2)}} t \right) \right] \right\}^{\frac{2}{n}},
\]
where \( \rho = a + \frac{c^2}{2}(1 - n) \).
\[\psi(\mu) = \pm \frac{1}{2} \sqrt{\frac{\rho}{b}} \pm \frac{1}{2} \sqrt{\frac{\rho}{b}} \tanh \mu \text{ or } \psi(\mu) = \pm \frac{1}{2} \sqrt{\frac{\rho}{b}} \pm \frac{1}{2} \sqrt{\frac{\rho}{b}} \coth \mu.
\]
Substituting again into (2) with \( Q = \psi^{2/n} \), then we have the solutions of the SRFDE (1) as
\begin{equation}
  u(x, t) = e^{\left[\sigma \beta(t) - \frac{1}{2} \sigma^2 t\right]} \left\{ \pm \frac{1}{2} \sqrt{\frac{\rho}{b}} + \frac{1}{2} \sqrt{\frac{\rho}{b}} \tanh \left[ \sqrt{\frac{n^2 \rho}{8(n+2)}} \left( \frac{x^2}{\alpha} - \frac{\rho(n+4)^2}{2(n+2)} t \right) \right] \right\}^{2/n},
\end{equation}

and

\begin{equation}
  u(x, t) = e^{\left[\sigma \beta(t) - \frac{1}{2} \sigma^2 t\right]} \left\{ \pm \frac{1}{2} \sqrt{\frac{\rho}{b}} + \frac{1}{2} \sqrt{\frac{\rho}{b}} \coth \left[ \sqrt{\frac{n^2 \rho}{8(n+2)}} \left( \frac{x^2}{\alpha} - \frac{\rho(n+4)^2}{2(n+2)} t \right) \right] \right\}^{2/n},
\end{equation}

where \( \rho = a + \frac{\sigma^2}{2} (1 - n) \).

### 3.2. Special Cases

Here, we present special cases for different values of \( a, b, \) and \( n \).

#### 3.2.1. Nonlinear Heat Equation

When we put \( a = b = 1 \) and \( n = 2 \) in Equation (1), then we have the space fractional stochastic nonlinear heat equation

\begin{equation}
  du = \left[ D^{\alpha}_{xx} u + u - u^3 \right] dt + \sigma u d\beta.
\end{equation}

We discuss many cases:

**Case 1:** If we put \( \sigma = 0 \) (i.e., there is no noise) and \( \alpha = 1 \) (i.e., integral order), then we obtain the identical results as in [29], which are as follows:

\[
  u(x, t) = \pm \frac{1}{2} \pm \frac{1}{2} \tanh \left( \frac{x}{\sqrt{2}} \pm \frac{3}{4} t \right),
\]

and

\[
  u(x, t) = \mp \frac{1}{2} \pm \frac{1}{2} \tanh \left( \frac{x}{\sqrt{2}} \mp \frac{3}{4} t \right).
\]

**Case 2:** If we put \( \alpha = 1 \), then we have the same solutions of (16) reported in [39], as follows:

\[
  u(x, t) = \pm \frac{1}{2} \sqrt{\frac{2 - \sigma^2}{2}} \left\{ 1 + \tanh \left[ \frac{2a - \sigma^2}{16} \left( x + \frac{3}{2} \sqrt{\frac{2 - \sigma^2}{2}} t \right) \right] \right\} e^{\left[\sigma \beta(t) - \sigma^2 t\right]},
\]

and

\[
  u(x, t) = \pm \frac{1}{2} \sqrt{\frac{2 - \sigma^2}{2}} \left\{ 1 - \tanh \left[ \frac{2a - \sigma^2}{16} \left( x - \frac{3}{2} \sqrt{\frac{2 - \sigma^2}{2}} t \right) \right] \right\} e^{\left[\sigma \beta(t) - \sigma^2 t\right]}.
\]

#### 3.2.2. Fisher’s Equation

When we put \( a = b = 1 \) in Equation (1), then we have the space fractional stochastic Fisher equation

\begin{equation}
  du = \left[ D^{\alpha}_{xx} u + b(u - u^2) \right] dt + \sigma u d\beta.
\end{equation}

If we put \( \sigma = 0 \) and \( a = b = 1 \) in Equations (14) and (15), then we achieve the same solutions, as reported in [30,31], as follows:

\[
  u(x, t) = \frac{1}{4} \left[ 1 - \tanh \left( \frac{x}{2\sqrt{6}} - \frac{5}{12} t \right) \right]^2,
\]
and
\[ u(x, t) = \frac{1}{4} \left[ 1 - \coth \left( \frac{x}{2\sqrt{6}} - \frac{5}{12}t \right) \right]^2. \]

3.3. Newell-Whitehead Equation

If we put \( \sigma = 0, \alpha = 1 \) and \( n = q - 1 \) in Equations (14) and (15), then we attain the following same solutions as announced in [30]:

\[ u(x, t) = \left\{ \pm \frac{1}{2} \sqrt{\frac{a}{b}} \mp \frac{1}{2} \sqrt{\frac{a}{b}} \tanh \left[ \sqrt{\frac{(q - 1)^2a}{8(q + 1)}} \left( x - \sqrt{\frac{\rho(q + 3)^2}{2(q + 1)}} t \right) \right] \right\}^{2/(q - 1)}, \quad (18) \]

and

\[ u(x, t) = \left\{ \pm \frac{1}{2} \sqrt{\frac{a}{b}} \mp \frac{1}{2} \sqrt{\frac{a}{b}} \coth \left[ \sqrt{\frac{(q - 1)^2a}{8(q + 1)}} \left( x - \sqrt{\frac{\rho(q + 3)^2}{2(q + 1)}} t \right) \right] \right\}^{2/(q - 1)}. \quad (19) \]

4. The Influence of Noise

In this article, we explore the effect of the noise term on the solutions of the SRFDE (1). We utilize MATLAB tools to present several graphs for different values of the noise strength in order to analyze the effects of multiplicative noise on these solutions. Below is a simulation of the solution (14) for \( x \in [0, 5] \) and \( t \in [0, 5] \):

From Figure 1: we can find that the surface is not flat and that there are some irregularities. Moreover, we note that the surface expands as the fractional order \( \alpha \) increases.

![Figure 1](image1.png)

\( \alpha = 0.5, \sigma = 0 \) \quad \( \alpha = 1, \sigma = 0 \)

Figure 1. 3D shapes of the solution (14) for \( \sigma = 0 \) and \( \alpha = 0.5, 1 \).

From Figure 2: we observe that after embedding noise and increasing its strength by \( \sigma = 1, 2 \), the surface becomes significantly flatter after minor transit patterns.
Figure 2. 3D shapes of the solution (14) for $\sigma = 1, 2$ and $\alpha = 0.5, 1$.

We can deduce from Figures 1 to 3, the multiplicative noise stabilizes the solutions of SRFDE (1) around zero.

Figure 3. 2D shapes of the solutions (14) with $\alpha = 1$.

5. Conclusions

The exact solutions to a class of stochastic reaction fractional diffusion equations with the multiplicative Brownian motion were reported in this paper. To obtain these solutions,
we used the tanh–coth method. Since the SRFDE (1) is widely used in numerous applications, such as ecology, bioengineering, biology, mechanical, and chemical engineering, these solutions can be applied to a wide range of fascinating and complex physical phenomena. Furthermore, we proved how multiplicative noise influences the solution behavior and concluded that multiplicative noise stabilizes the SRFDE (1) solutions around zero.

**Author Contributions:** Conceptualization, C.C.; Data curation, W.W.M., S.A. and M.E.-M.; Formal analysis, M.A. and W.W.M.; Methodology, W.W.M., S.A., M.A. and C.C.; Software, W.W.M. and M.E.-M.; Supervision, C.C.; Writing—original draft, S.A., M.A., C.C. and M.E.-M.; Writing—review & editing, W.W.M. All authors read and approved the final manuscript.

**Funding:** This research received no external funding.

**Institutional Review Board Statement:** Not applicable.

**Data Availability Statement:** Not applicable.

**Conflicts of Interest:** The authors declare no conflict of interest.

**References**

1. Yuste, S.B.; Acedo, L.; Lindenberg, K. Reaction front in an $A + B \rightarrow C$ reaction–subdiffusion process. *Phys. Rev. E.* **2004**, *69*, 036126. [CrossRef] [PubMed]
2. Raberto, M.; Scalas, E.; Mainardi, F. Waiting-times and returns in high-frequency financial data: an empirical study. *Phys. A Stat. Mech. Appl.* **2002**, *314*, 749–755. [CrossRef]
3. Wyss, W. The fractional Black–Scholes equation. *Fract. Calc. Appl. Anal.* **2000**, *3*, 51–61.
4. Yuste, S.B.; Lindenberg, K. Subdiffusion-limited $A + A$ reactions. *Phys. Rev. Lett.* **2001**, *87*, 118301. [CrossRef]
5. Barkai, E.; Metzler, R.; Klafter, J. From continuous time random walks to the fractional Fokker–Planck equation. *Phys. Rev. E* **2000**, *61*, 132–138. [CrossRef]
6. Saichev, A.I.; Zaslavsky, G.M. Fractional kinetic equations: solutions and applications. *Chaos* **1997**, *7*, 753–764. [CrossRef]
7. Benson, D.A.; Wheatcraft, S.W.; Meerschaert, M.M. The fractional-order governing equation of Lévy motion. *Water Resour. Res.* **2000**, *36*, 1413–1423. [CrossRef]
8. Liu, F.; Anh, V.; Turner, I. Numerical solution of the space fractional Fokker—Planck equation. *J. Comput. Appl. Math.* **2004**, *166*, 209–219. [CrossRef]
9. Podlubny, I. *Fractional Differential Equations*; Academic Press: New York, NY, USA, 1999.
10. Fisher, R.A. The wave of advance of advantageous genes. *Ann. Eugen.* **1936**, *7*, 355–369. [CrossRef]
11. Malešič, W. Solitary wave solutions of nonlinear wave equations. *Am. J. Phys.* **1992**, *60*, 650–654. [CrossRef]
12. Britton, N.F. *Reaction–diffusion Equations and their Applications to Biology*; Academic Press: London, UK, 1986.
13. Canosa, J. Diffusion in nonlinear multiplicative media. *J Math Phys.* **1969**, *186*, 2–9.
14. Aronson, D.J.; Weinberg, H.F. *Nonlinear Diffusion in Population Genetics Combustion and Never Pulse Propagation*; Springer: New York, NY, USA, 1988.
15. Frank, D.A. *Diffusion and Heat Exchange in Chemical Kinetics*; Princeton University Press: Princeton, NJ, USA, 1955.
16. Tuckwell, H.C. *Introduction to Theoretical Neurobiology*; Cambridge University Press: Cambridge, UK, 1988.
17. Nagumo, J.; Arimoto, S.; Yoshizawa, S. An active pulse transmission line simulating nerve axon. *Proc. IRE* **1962**, *50*, 2061–2070. [CrossRef]
18. Gastenberg, W.E.; Chambré, P.L. On the stability of nonlinear space-dependent reactor kinetics. *Nucl. Sci. Eng.* **1968**, *31*, 67–79. [CrossRef]
19. FitzHugh, R. Mathematical models of threshold phenomena in the nerve membrane. *Bull. Math. Biol.* **1955**, *17*, 257–278. [CrossRef]
20. Allen, S.; Cahn, J.W. A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. *Acta Metall.* **1979**, *27*, 1085–1095. [CrossRef]
21. Shah, A.; Sabir, M.; Qasim, M.; Bastian, P. Efficient numerical scheme for solving the Allen-Cahn equation. *Numer. Methods Partial. Differ. Equ.* **2018**, *34*, 1820–1833. [CrossRef]
22. Benes, M.; Chalupecky, V.; Mikula, K. Geometrical image segmentation by the Allen–Cahn equation. *Appl. Numer. Math.* **2004**, *51*, 187–205. [CrossRef]
23. Zammit, M.C.; Fursa, D.V.; Bray, I. Electron scattering from the molecular hydrogen ion and its isotopologues. *Phys. Rev. A* **2014**, *90*, 022711. [CrossRef]
24. Zeitz, M.; Wolff, K.; Stark, H. Active Brownian particles moving in a random Lorentz gas. *Eur. Phys. J. E* **2017**, *40*, 23. [CrossRef]
25. Shah, A.; Sabir, M.; Peter, B. An efficient time-stepping scheme for numerical simulation of dendritic crystal growth. *Eur. J. Comput. Mech.* **2017**, *25*, 475–488. [CrossRef]
26. Bulut, H.; Atas, S.S.; Baskonus, H.M. Some novel exponential function structures to the Cahn-Allen equation. *Comput. Math. Eng. Sci.* **2016**, *3*, 1240886. [CrossRef]

27. Ahmad, H.; Seadawy, A.R.; Khan, T.A.; Thounthong, P. Analytic approximate solutions for some nonlinear Parabolic dynamical wave equations. *J. Taibah Univ. Sci.* **2020**, *14*, 346–358. [CrossRef]

28. Jeong, D.; Kim, J. An explicit hybrid finite difference scheme for the Allen—Cahn equation. *J. Comput. Appl. Math.* **2018**, *340*, 247–255. [CrossRef]

29. Wazwaz, A.-M. The tanh method for traveling wave solutions of nonlinear equations. *Appl. Math. Comput.* **2004**, *154*, 713–723. [CrossRef]

30. Wazwaz, A.-M. The extended tanh method for abundant solitary wave solutions of nonlinear wave equations. *Appl. Math. Comput.* **2007**, *187*, 1131–1142. [CrossRef]

31. Wang, X.Y. Exact and explicit solitary wave solutions for the generalized Fisher equation. *Phys. Lett. A* **1988**, *131*, 277–279. [CrossRef]

32. Mohammed, W.W. Amplitude equation for the stochastic reaction-diffusion equations with random Neumann boundary conditions. *Math. Methods Appl. Sci.* **2015**, *38*, 4867–4878. [CrossRef]

33. Blömker, D.; Mohammed, W.W. Amplitude equations for SPDEs with quadratic nonlinearities. *Electron. J. Probab.* **2009**, *14*, 2527–2550. [CrossRef]

34. Blömker, D.; Mohammed, W.W. Amplitude equations for SPDEs with cubic nonlinearities. *Stoch. Int. J. Probab. Stoch. Process.* **2013**, *85*, 181–215. [CrossRef]

35. Mohammed, W.W.; Blömker, D. Fast-diffusion limit with large noise for systems of stochastic reaction-diffusion equations. *J. Stoch. Anal. Appl.* **2016**, *34*, 961–978. [CrossRef]

36. Mohammed, W.W.; Blömker, D.; Klepel, K. Multi-Scale analysis of SPDEs with degenerate additive noise. *J. Evol. Equ.* **2014**, *14*, 273–298. [CrossRef]

37. Al-Askar, F.M.; Mohammed, W.W.; Albalihi, A.M.; El-Morshedy, M. The Impact of the Wiener process on the analytical solutions of the stochastic (2+1)-dimensional breaking soliton equation by using tanh-Coth method. *Mathematics* **2022**, *10*, 817. [CrossRef]

38. Albosaily, S.; Mohammed, W.W.; EHamza, A.; El-Morshedy, M.; Ahmad, H. The exact solutions of the stochastic fractional-space Allen—Cahn equation. *Open Phys.* **2022**, *20*, 23–29. [CrossRef]

39. Mohammed, W.W.; Ahmad, H.; Hamza, A.E.; ALy, E.S.; El-Morshedy, M.; Elabbasy, E.M. The exact solutions of the stochastic Ginzburg—Landau equation. *Results Phys.* **2021**, *23*, 103988. [CrossRef]

40. Khalil, R.; Al Horani, M.; Yousef, A.; Sababheh, M. A new definition of fractional derivative. *J. Comput. Appl. Math.* **2014**, *264*, 65–70. [CrossRef]

41. Malfliet, W.; Hereman, W. The tanh method. I. Exact solutions of nonlinear evolution and wave equations. *Phys. Scr.* **1996**, *54*, 563–568. [CrossRef]