Neutron capture cross section measurements of 120Sn, 122Sn and 124Sn with the array of Ge spectrometer at the J-PARC/MLF/ANNRI

Atsushi Kimura1,4, Hideo Harada1, Shoji Nakamura1, Yosuke Toh1, Masayuki Igashira2, Tatsuya Katabuchi2, Motoharu Mizumoto2, and Jun-ichi Hori3

1 Nuclear Science and Engineering Center, Japan Atomic Energy Agency, Shirakata 2-4, Tokai-mura, Ibaraki 319-1195, Japan
2 Laboratory for Advanced Nuclear Energy, Tokyo Institute of Technology, O-okayama, Meguro, Tokyo 152-8550, Japan
3 Research Reactor Institute, Kyoto University, Kumatori, Sennan, Osaka 590-0494, Japan

Abstract. Preliminary neutron capture cross section of 120Sn, 122Sn and 124Sn were obtained in the energy range from 20 meV to 4 keV with the array of germanium detectors in ANNRI at MLF, J-PARC. The results of 120Sn, 122Sn and 124Sn were obtained by normalizing the relative cross sections to the data in JENDL-4.0 at the largest 426.7-, 107.0- and 62.05-eV resonances, respectively. The 67.32- and 150-eV resonances for 120Sn and the 579- and 950-eV resonances for 124Sn which are listed in JENDL-4.0 and/or ENDF/B VII.1 were not observed.

1. Introduction

Accurate neutron capture cross section data for long-lived fission products (LLFPs) are required in the study of transmutation of radioactive waste [1]. One of the most important LLFPs is 126Sn, which is included in spent fuels of light water reactors with relatively large yields and long half-life. However, only one experimental data set is available at the thermal energy [2]. Accurate cross section measurements of 126Sn are strongly required.

It is expected that a 126Sn sample for a cross section measurement is contaminated with a large amount of tin stable isotopes, $^{117-120,122,124}$Sn, because these stable isotopes also have fission yields and the sample is normally prepared only through a chemical process from spent fuels. These isotopes have large influence on neutron capture cross section measurements of 126Sn.

Therefore, to obtain accurate cross section data for 126Sn, the measurements of all tin stable isotopes had been started with Accurate Neutron-Nucleus Reaction measurement Instrument (ANNRI) of Materials and Life science experimental Facility (MLF) in Japan Proton Accelerator Research Complex (J-PARC). The results for 112Sn and 118Sn have been reported in ND2013 [3]. In this paper, results of the neutron capture cross section measurements of 120Sn, 122Sn and 124Sn are reported in the neutron energy region from 20 meV to 4 keV.

2. Experimental procedure

Capture cross section measurements with neutron Time-of-Flight (TOF) method were performed with the array of Ge spectrometer in ANNRI. The array of Ge detectors is installed at the flight length of 21.5 m and is composed of two cluster-type Ge detectors, eight coaxial-type Ge detectors and anti-coincidence shields around each Ge detector described in Refs. [4] and [5]. The neutron intensity at the 21.5-m sample position is described in Ref. [6]. J-PARC is normally operated with “double-bunch mode”, in which each proton pulse consists of two bunches (each with a width of 100 ns) at intervals of 600 ns [7]. The simulated resolution function at the 21.5-m sample position is described in Ref. [8].

In the measurements, two cluster-type Ge detectors were used, but the coaxial-type Ge detectors were not used because they suffered from severe electrical noise. The pulsed neutron beam was collimated to a 7 mm at the sample position. J-PARC was operated with a proton beam power of 270 kW and at a repetition rate of 25 Hz in the “double-bunch mode”.

Samples were isotopically enriched metallic tin with a diameter of 5 mm. The weight of the 120Sn, 122Sn and 124Sn samples was 68.7 mg, 99.7 mg and 88.2 mg, respectively. Isotopic distribution and chemical impurities of each sample are listed in Table 1. The samples were put in fluorinated ethylene propylene (FEP) film bag and attached to a polytetrafluoroethylene (PTFE) sample holder. The total measuring times for the 120Sn, 122Sn and 124Sn samples were about 63, 30 and 32 hours, respectively. To deduce the background, measurements for a 208Pb sample with a diameter of 5 mm, a weight of 159.7 mg, and an isotopic enrichment of 99.60 mole% and a sample holder with an empty FEP film bag (Blank) were also carried out during 16 and 22 hours. For dead-time correction, pulses from a random-timing pulse generator were fed to the pre-amplifier of every Ge crystal [9]. The data acquisition system in ANNRI has a typical dead time of 6 µs.
Table 1. Isotopic distribution and chemical impurities described on the certification sheets.

Isotope	¹²⁰Sn sample	¹²²Sn sample	¹²⁴Sn sample
¹¹⁶Sn	0.0012	<0.0001	<0.0001
¹¹⁷Sn	0.001	<0.0001	<0.0001
¹¹⁸Sn	0.003	<0.0001	<0.0001
¹¹⁹Sn	0.004	<0.0001	<0.0001
¹²⁰Sn	0.988	0.006±0.001	<0.0001
¹²²Sn	0.0015	0.993±0.001	0.001
¹²⁴Sn	0.001	0.001±0.0005	0.999
Al	0.00025	<0.000004	0.000003
Ca	0.00020	<0.00005	0.00002
Cr	0.000020	<0.000005	<0.000005
Cu	0.000040	0.000025	0.000025
Fe	0.000300	not described	<0.000030
Mg	0.000040	<0.000005	<0.000005
Mn	0.00002	not described	<0.000002
Sb	0.00006	not described	<0.000002
Si	0.00060	<0.000005	<0.000005
Zn	0.000350	<0.000005	<0.000005
In	not described	<0.000002	<0.000002
Te	not described	not described	<0.000005
Ag	<0.00001	<0.0000005	<0.0000005

3. Data analysis

The analysis procedure was almost the same manner as that described in Ref. [3].
of the neutron capture cross sections for the 120Sn, 122Sn and 124Sn samples were obtained by normalizing the relative cross sections to the data in JENDL-4.0 at the largest 426.7-eV, 107.0-eV and 62.05-eV resonances, respectively.

4. Result

The results of neutron capture cross section for 120Sn, 122Sn and 124Sn samples were obtained in the energy range from 20 meV to 4 keV. Because of “double-bunch mode”, the structure appeared on the obtained cross section in the neutron energy range above 100 eV. Figures 1, 2 and 3 show the results for 120Sn, 122Sn and 124Sn samples together with uncertainties due to statistical uncertainty and normalization uncertainty, values of JENDL-4.0 for T = 300 K (broadened with the resolution function) and that with the impurities.

In Fig. 1, the 67.32- and 150-eV resonance were not observed. These resonances were reported by G.V. Muradyan [13] and are listed in ENDF/B VII.1 [14]. This result agreed with the result by P.E. Koehler [15] and evaluation in JENDL-4.0. The 579- and 950-eV resonances for 124Sn were not observed. These resonances were reported by Yu.V. Adamchuk [16] and Fuketa [17], and are listed in both JENDL-4.0 and ENDF/B VII.1.

Pulse-height spectra gated at all resonances of the samples were obtained by subtracting off-resonance spectra from on-resonance spectra [4]. Many prompt γ-rays from 120Sn, 122Sn and 124Sn are observed. The 1114-, 1747- and 2006-keV γ-rays observed in the 122Sn (n, γ) reactions were previously unknown γ-rays. The other γ-rays were already reported by R.F. Carlton [18, 19] and/or A.I. Egorov [20]. The origin of the resonances were decided using the gated spectra. For example, a photo-peak of 273-keV γ-rays was clearly observed at the 1.457-eV resonance of the 122Sn sample. The 273-keV γ-rays

![Figure 3. Results of the neutron capture cross sections for the 124Sn sample together with uncertainties due to statistical uncertainty and normalization uncertainty, values of JENDL-4.0 for T = 300 K (broadened with the resolution function) and that with the impurities.](image-url)
Table 3. Resonance energies observed in the measurements with the 122Sn and 124Sn samples along with the evaluated values in JENDL-4.0 and ENDF/B VII.1.

Resonance Energy (eV)	Confirma	This work	JENDL	ENDF
122Sn sample				
107.0±0.1		106.8	106.8	○
260.2±0.2		259.6	259.6	○
1754±4		1751.2	1751.2	○
2076±5		2073	Not Listed	△
3180±5		3138	Not Listed	△
3456±6		3452.9	3452.9	○
3907±7		3896.7	3896.7	△
115In		1.46	1.457	○
124Sn sample				
62.05±0.06		62.0	62.0	△
Not Observed		579	579	×
Not Observed		950	950	×
2381±4		2380	2380	○
3395±6		3390	3390	△

a: Photo peaks due to the capture reactions were observed.
△: The number of the events was not enough to observe photo peaks.
×: The resonance was not observed.

The prompt γ-ray emissions were observed in the 122Sn (n, γ) reactions.

5. Summary

The preliminary neutron capture cross section of 120Sn, 122Sn and 124Sn were obtained in the energy range from 20 meV to 4 keV with the array of germanium detectors in ANNRI at MLF/J-PARC. The results were obtained by normalizing the relative cross sections to the data in JENDL-4.0 at the largest resonances, respectively. The 67.32- and 150-eV resonances for 120Sn and the 579- and 950-eV resonances for 124Sn which are listed in JENDL-4.0 and/or ENDF/B VII.1 were not observed. Three new prompt γ-ray emissions were observed in the 122Sn (n, γ) reactions.

This work is partly supported by JSPS KAKENHI (22226016). The author would like to thank the accelerator and technical staff at J-PARC for operation of the accelerator and the neutron production target and for the other experimental supports.

References

[1] H. Harada et al., J. Nucl. Sci. Tech. 43, Suppl. 2, 366 (2006)
[2] S. Zhang et al., Radiochimica Acta 94, 385 (2006)
[3] A. Kimura et al., Nuclear Data Sheets 119, 150 (2014)
[4] A. Kimura et al., J. Nucl. Sci. Tech. 49, 708 (2012)
[5] T. Kin et al., Nuclear Science Symposium Conference Record (NSS/MIC), 1194, Oct. 2009
[6] A.K. Kino et al., Nucl. Instr. Methods 628, 58 (2011)
[7] F. Maekawa et al., Nucl. Instr. Methods A 620, 159 (2010)
[8] K. Kino et al., Nucl. Instr. Methods A 736, 66 (2014)
[9] A. Kimura et al., Nuclear Science Symposium Conference Record (NSS/MIC), 25 Oct. (2009)
[10] K. Hirose et al., J. Nucl. Sci. Tech. 50, 188 (2013)
[11] MCNP-A General Monte Carlo N-Particle Transport Code, Version 4C, J.F. Briesmeister (Ed.), LA-13709-M, Los Alamos National Laboratory (2000)
[12] K. Shibata, et al., J. Nucl. Sci. Technol. 48, 1 (2011)
[13] G.V. Muradyan et al., Yaderno-Fizicheskie Issledovaniya Reports 6, 44 (1968)
[14] M.B. Chadwick et al., Nuclear Data Sheets 112, 2887 (2011)
[15] P.E. Koehler et al., Phys. Rev. C 64, 065802 (2001)
[16] V. Adamchuk et al., Euronuclear, Yu. 2, 183 (1965)
[17] T. Fuketa et al., ORNL Report, ORNL-3425, 36, January (1963)
[18] R.F. Carlton et al., Phys. Rev. C 14, 1439 (1976)
[19] R.F. Carlton et al., Phys. Rev. C 15, 883 (1977)
[20] A.I. Egorov et al., Applied Radiation and Isotopes 65, 1290 (2007)