Obrazowanie naczyń pozagałkowych w retinopatii cukrzycowej metodą ultrasonografii dopplerowskiej w kolorze

Color Doppler imaging of the retrobulbar vessels in diabetic retinopathy

Magdalena Pauk-Domańska, Dorota Walasik-Szemplińska

Oddział Okulistyczny, Mazowiecki Szpital Bródnowski, Warszawa, Polska
Correspondence: Lek. med. Magdalena Pauk-Domańska, ul. Cicha 7, 05-420 Józefów, e-mail: magdapauk@onet.pl, tel.: +48 601 514 507

Streszczenie

Cukrzyca jest chorobą metaboliczną, charakteryzującą się podwyższonym poziomem glukozy we krwi na skutek nieprawidłowego wydzielenia lub działania insuliny. Przewlekła hiperlipidemia prowadzi do zaburzeń w funkcjonowaniu wielu narządów oraz do ich uszkodzenia. Zmiany w naczyniach należą do najczęściej spotykanych późnych powikłań cukrzycy. Uszkodzenia typu mikroangiopatii występują w gapie ocznej, nerwach i układzie nerwowym. Makroangiopatia dotyczy naczyń wieńcowych oraz obwodowych. Retinopatia cukrzycowa jest najczęściej powiklaniem z grupy mikroangiopatii, charakteryzującym się zamknięciem drobnych naczyń siatkówki wraz z ich przeciekiem. Mimo intensywnych badań patomechanizm prowadzący do rozwoju i progresji retinopatii cukrzycowej nie został do końca poznany. Techniki badania używane w ocenie retinopatii cukrzycowej zazwyczaj obrazują naczyńka galki ocznej oraz siatkówkę. W tym celu wykorzystywane są angiografia fluoresceinowa, optyczna koherentna tomografia siatkówki, badanie ultrasonograficzne w prezentacji B, perymetrya, cyfrowa fotografia siatkówki. Istnieje wiele prac analizujących zależności pomiędzy zmianami w krążeniu pozagałkowym a progresją retinopatii cukrzycowej, oceniane za pomocą ultrasonografii dopplerowskiej. Obrazowanie techniką kolorowego doplera jest nieinwazyjną metodą, pozwalającą na pomiary prędkości przepływów w małych naczyniach oczodołu. Najczęściej oceniane są: tętnica oczna, będąca pierwszym odgałęzieniem tętnicy szyjnej wewnętrznej, tętnica i żyła środkowa siatkówki, tętnice zębkowate tylne. Analiza zaburzeń hemodynamicznych w naczyniach pozagałkowych może dostarczyć wiedzy na temat krążenia w cukrzycy oraz pomóc odpowiedzieć na pytanie, czy istnieje związek między progresją retinopatii cukrzycowej a zmianami w przepływach w naczyniach oczodołowych. Niniejsza praca zawiera przegląd piśmiennictwa dotyczącego badań nad przepływami w naczyniach oczodołowych u pacjentów z retinopatią cukrzycową.
Key words
diabetes complications, diabetic retinopathy, color Doppler ultrasonography, pulsed Doppler ultrasonography, ophthalmic artery

Abstract
Diabetes is a metabolic disease characterized by elevated blood glucose level due to impaired insulin secretion and activity. Chronic hyperglycemia leads to functional disorders of numerous organs and to their damage. Vascular lesions belong to the most common late complications of diabetes. Microangiopathic lesions can be found in the eyeball, kidneys and nervous system. Macroangiopathy is associated with coronary and peripheral vessels. Diabetic retinopathy is the most common microangiopathic complication characterized by closure of slight retinal blood vessels and their permeability. Despite intensive research, the pathomechanism that leads to the development and progression of diabetic retinopathy is not fully understood. The examinations used in assessing diabetic retinopathy usually involve imaging of the vessels in the eyeball and the retina. Therefore, the examinations include: fluorescein angiography, optical coherence tomography of the retina, B-mode ultrasound imaging, perimetry and digital retinal photography. There are many papers that discuss the correlations between retrobulbar circulation alterations and progression of diabetic retinopathy based on Doppler sonography. Color Doppler imaging is a non-invasive method enabling measurements of blood flow velocities in small vessels of the eyeball. The most frequently assessed vessels include: the ophthalmic artery, which is the first branch of the internal carotid artery, as well as the central retinal vein and artery, and the posterior ciliary arteries. The analysis of hemodynamic alterations in the retrobulbar vessels may deliver important information concerning circulation in diabetes and help to answer the question whether there is a relation between the progression of diabetic retinopathy and the changes observed in blood flow in the vessels of the eyeball. This paper presents the overview of literature regarding studies on blood flow in the vessels of the eyeball in patients with diabetic retinopathy.

Introduction
Diabetes is a metabolic disease characterized by chronic hyperglycemia and disorders in the carbohydrate, lipid and protein metabolism due to impaired insulin secretion and/or activity. The disease is caused by multiple factors, including genetic and environmental ones as well as those related to lifestyle. The basic classification distinguishes between type I diabetes – insulin-dependent disease which is a consequence of immunological damage to the pancreatic cells and occurs mainly in young patients, and type II diabetes – insulin-resistant disease which occurs in the majority of other patients and is associated with impaired insulin activity and secretion. Other types of diabetes are rarely encountered(1). Epidemiological studies unequivocally indicate a constant increase in the incidence of diabetes, which is associated with ageing population, longer life expectancy of diabetic patients as well as demographic and economic development(2). According to WHO analyses, in the period from 2000 to 2030, the number of patients will have doubled (from 170 million to approximately 366 million). The data concerning the population in Poland also confirm a constant increase in the incidence of both type I and type II diabetes. Type II diabetes develops in over 5% of the population. It is predicted that by the year 2025, there will be a four-fold increase in the incidence of type I diabetes among the pediatric population(3-5).

The complications related to diabetes include acute, life-threatening metabolic disturbances and chronic complications which predominantly involve slight and large blood vessels and the nervous system. The risk of vascular complications increases with the duration of the disease. Diabetic retinopathy is the most common microangiopathic complication, specific for type I and II diabetes.

Wstęp
Cu...
cukrzycy typu I i II. Po 20 latach choroby u prawie wszystkich osób z cukrzycą typu I i u ponad 60% z cukrzycą typu II występują cechy retinopatii, która jest główną przyczyną ślepoty u chorych w wieku 20–74 lat. W rozwoju tego powikłania biorą udział czynniki genetyczne oraz zaburzenia metaboliczne. Wzrost poziomu glukozy we krwi i nie- possibilité uzyskania fizjologicznego metabolizmu siatkówki prowadzą do mikroangiopatii, która rozwija się w naczy- niach włosowatych, tętniczkach oraz żyłach siatkówki. Mechanizmy doprowadzające do zmian naczyniowych nie zostały do końca wyjaśnione. Procesy biochemiczne zachodzące w komórkach są związane m.in. ze stresem oksydacyjnym, aktywacją enzymy kinazy C oraz produkcją czynników stymulujących wzrost naczyń krwionośnych, tzw. czynników angiogenicznych. W naczyniach dochodzi do pogrubienia błony podstawnej i uszkodzenia komórzek śródbłonka, czego wynikiem jest zamknięcie drobnych naczyń wraz ze wzrostem ich przepuszczalności. Zmieniny w ścia- nach naczyń oraz czynniki reologiczne krwi doprowadzają do powstawania na dnie oka mikrożółwików, wybroczyn, wyśięków, obrzęków, wylewów, patologicznych naczyń i proliferacji włóknistych. Upowszechnienie widzenia jest konsekwencją tych zmian, klinicznie rozpoznawana jako obrzęk płamki, wylew krwi do ciała szklistego i/lub siat- kówki, trakcyjne odwarstwienie siatkówki, jaska wtórna. Do oceny retinopatii cukrzycowej służą: badanie oftalmo- skopowe dna oka, badanie w lampie szczelinowej przy zastosowaniu soczewek, fotografia siatkówki oraz badania uzupełniające, m.in. angiografia fluoresceinowa, optyczna koherentna tomografia siatkówki, badanie ultrasonogra- ficzne w prezentacji B(6,7).

Ultrasoneon dopplerowska w retinopatii cukrzycowej – przegląd literatury

Do badania przepływu krwi w naczyniach ocznych i pozagłębnych wykorzystywana jest technika badania dopple- rowskiego. W sposób jakościowy i ilościowy pozwala na nie- inwazyjną ocenę tętnicyocznej (ophthalmic artery, OA) wraz z jej odgałęzieniami. Badaniom najczęściej poddawane są: OA, tętnica i żyła środkowa siatkówki (central retinal vein, CRA; central retinal artery, CRV) oraz tętnice rządżkowe tylne (posterior ciliary arteries, PCAs). Ocenia się morfologię naczyń oraz parametry przepływu krwi, takie jak: prędkość maksymalna skurczowa (peak systolic velocity, PSV), prędkość końcowo-rozkurczowa (end-diastolic velocity, EDV), prędkość średnia (mean velocity, MV), wskaźnik oporu (resi- stance index, RI), wskaźnik pulsatyzji (pulsatility index, PI). Pomiarów dokonuje się przy użyciu sondy liniowej lub sektorowej o częstotliwości powyżej 7 MHz, na zamknię- tej powiecie, w pozycji leżącej pacjenta, unikając uciśku na gałąź oczn. Zalecane jest zachowanie jednolitych warun- ków badania, m.in. oświetlenia pomieszczenia, wielkości bramki, stałego miejsca pomiaru w kolejnych badaniach(8–12).

W literaturze opisywane są zmiany hemodynamiczne obser- wowane w naczyniach oczodołowych u chorych na cukrzycę. Część autorów jednak podaje rozbieżne wyniki. Może to być efektem oceny zmian naczyniowych w odniesieniu do różnych etapów rozwoju cukrzycy, a także niejednolitych

Doppler sonography in diabetic retinopathy – literature overview

In order to evaluate blood flow velocity in ocular and ret- robulbar vessels, Doppler imaging techniques are applied. They enable qualitative and quantitative assessment of the ophthalmic artery (OA) and its branches. The most fre- quently assessed vessels include: the OA, the central reti- nal vein and artery (CRV, CRA), and the posterior ciliary arteries (PCAs). During examinations, vascular morphol- ogy is assessed and blood flow parameters are evaluated, such as: peak systolic velocity (PSV), end-diastolic velocity (EDV), mean velocity (MV), resistance index (RI) and pulsatility index (PI). The measurements are taken with the use of a linear or sector probe with the frequency of over 7 MHz by applying it to the closed eyelid of a patient in the supine position. Pressure to the eyeball should be avoided. It is recommended to maintain uniform condi- tions of examinations, such as: lighting in the room, size of the gate and a constant site for measurements in subsequent examinations(8–12).

The literature mentions the presence of hemodynamic alterations in the vessels of the eyeball observed in dia- betic patients. Some authors, however, report different results. This may be a consequence of assessing vascular changes in various stages of diabetes and non-uniform criteria of patient selection. This diversity concerns the
kryteriów doboru pacjentów. Różnorodność dotyczy typów cukrzycy, czasu jej trwania, stadium retinopatii cukrzycowej, chorób współistniejących, towarzyszących zmian ocznych oraz badanych parametrów. Istotnym założeniem tych obserwacji jest ocena parametrów przepływu oraz ich przydatność w przewidywaniu progresji i monitorowaniu choroby.

Wielu autorów powołuje się na prace Goebela i wsp.(13), którzy jako jedni z pierwszych wykazali wysoką czułość metody w monitorowaniu przebiegu zmian hemodynamicznych w retinopatii cukrzycowej. Stwierdzili oni znaczące zmniejszenie PSV i EDV w CRA w porównaniu z osobami zdrowymi. W badanej grupie porównano pacjentów z retinopatią prostą, przedproliferacyjną i proliferacyjną. We wszystkich grupach odnotowano zmniejszenie prędkości przepływu krwi w naczyniach pozagałkowych, które korelowało z progresją retinopatii cukrzycowej. Jedynie u chorych z retinopatią prostą nie można było ustalić jednoznacznych wniosków. Autorzy nie stwierdzili istotnej różnicy w przepływach OA i PCAs. Nie obliczono wskaźnika oporu (RI).

Do podobnych wniosków doszli Güven i wsp.(14) Autorzy odnotowali zmniejszenie PSV w CRA u pacjentów z nieproliferacyjną oraz proliferacyjną retinopatią, a także u osób po panfotokoagulacji laserowej siatkówki. W tym przypadku również nie obliczono wskaźnika RI, jak również nie zauważono istotnych różnic w przepływach w OA i PCAs.

Kawagishi i wsp.(15) potwierdzili zmniejszenie PSV i EDV w CRA, a zmiany w CRA zaobserwowali już przed pojawieniem się klinicznych cech retinopatii. Obliczony wskaźnik RI był podwyższony i korelował z podwyższonym stężeniem glukozy w krwi.

Mendivil i wsp.(16) potwierdzili znaczący spadek prędkości PSV i EDV w CRA oraz w OA u pacjentów z retinopatią proliferacyjną w porównaniu z osobami zdrowymi. W badaniach nie stwierdzono zaburzeń prędkości w PCAs. Ten sam autor(17) badał wpływ panfotokoagulacji laserowej na prędkość przepływu krwi i wykazał, że fotokoagulacja siatkówki spowodowała istotne zmniejszenie prędkości w OA oraz w CRA i CRV; wartości te nie zmieniły się znacząco w ciągu rocznej obserwacji.

Evans i wsp.(18) wykonał badania w warunkach hiperokzie u osób zdrowych oraz chorych na cukrzycę ze zmiannami minimalnymi na dnie oczu lub ich brakiem. Obie grupy badano w warunkach normalnego oddychania, następnie poddano nasyceniu tlenem. W warunkach hiperokzie prędkość końcowo-rozkurczowa i indeks oporu RI znacząco zmieniły się u osób zdrowych – zmalała EDV i wzrosł wskaźnik RI. Odwrotnie u pacjentów chorych na cukrzycę – podczas hiperokzie wzrosła EDV w CRA i zmalał współczynnik RI w porównaniu z grupą kontrolną. U osób zdrowych nie obnotowano istotnych statystycznie zmian w OA.

Arai i wsp.(19) podkreślili znaczenie wskaźnika RI w OA i CRA, który dla prognozowania nasilenia retinopatii cukrzycowej jest według autorów bardziej czułym types of diabetes, its duration, the stadium of diabetic retinopathy, concomitant diseases, coexistent ocular lesions and tested parameters. The essential assumption in these observations is the assessment of flow parameters and their relevance in the prognosis of the disease progression and its monitoring.

Many authors refer to the studies of Goebel et al.(13) who were ones of the first to demonstrate a high sensitivity of this method in monitoring hemodynamic changes in diabetic retinopathy. They observed a significant decrease in PSV and EDV in the CRA as compared to healthy individuals. The study group compared patients with simple, preproliferative and proliferative types of retinopathy. A decrease in blood flow velocity in the retrobulbar vessels was observed in all groups, which correlated with the progression of diabetic retinopathy. Unambiguous conclusions were not drawn only in patients with simple retinopathy. The authors did not notice any significant difference in flow parameters in the OA and PCAs. The resistance index (RI) was not calculated.

Güven et al.(14) reached the same conclusions. The authors noted a decrease in PSV in the CRA in patients with non-proliferative and proliferative retinopathy as well as in patients after retinal laser panphotocoagulation. In this case, the RI index was not calculated either and no significant differences in the OA and PCAs flows were noted.

Kawagishi et al.(15) confirmed the decrease in PSV and EDV in the CRA. Moreover, changes in the CRA were observed before clinical features of retinopathy appeared. The RI was elevated and correlated with increased blood glucose level.

Mendivil et al.(16) confirmed a significant decrease in PSV and EDV in the CRA and OA in patients with proliferative retinopathy compared to healthy individuals. No velocity disturbances were observed in the PCAs. The same author(17) also studied the influence of laser panphotocoagulation on blood flow velocity and demonstrated that retinal photocoagulation caused a significant decrease in the velocity in the OA, CRA and CRV. These values did not change in a significant way within a year of follow-up.

Evans et al.(18) conducted their studies in hyperoxic conditions in healthy individuals and in diabetic patients without or with minimal changes in the ocular fundus. Both groups were examined during regular breathing and subsequently, after oxygen saturation. In hyperoxic conditions, the end-diastolic velocity and resistance index (RI) changed in a significant way in healthy individuals – EDV decreased and RI increased. By contrast, the diabetic patients examined under hyperoxic conditions demonstrated increased EDV in the CRA and decreased RI compared to the control group. The healthy subjects showed no statistically significant changes in the OA.

Arai et al.(19) emphasized the role of the RI index in the OA and CRA. According to the authors, it is a more sensitive parameter for predicting the intensity of diabetic
MacKinnon i wsp. (20) badali prędkości w OA i CRA oraz wskaźnik RI w trzech grupach chorych: bez zmian cukrzycowych na dnie oka lub z retinopatią prostą, ze zmianami przedproliferacyjnymi i proliferacyjnymi oraz w grupie kontrolnej zdrowych osób. W porównaniu z grupą kontrolną wskaźnik RI był znacząco wyższy w OA i niższy w CRA. W grupie chorych z retinopatią przedproliferacyjną i proliferacyjną PSV i EDV w CRA były istotnie niższe w porównaniu z pacjentami bez zmian i z retinopatią prostą. Natomiast w OA pomiędzy grupami chorych nie odnotowano istotnej różnicy w ocenianych prędkościach.

Dimitrova i wsp. (22) porównywali wyniki przepływów w pacjentach z retinopatią prostą średnio po 21 miesiącach od pierwszego badania, oceniając wpływ progresji choroby na zmiany hemodynamiczne. Po upływie tego czasu nie stwierdzili zmian w parametrach przepływu w CRA i tętnicach ocznych. Autorzy sugerują, że wraz z progresją retinopatii cukrzycowej początkowe zmiany powiązane są z CRV.

Krepler i wsp. (23) badali wpływ zabiegu witrektomii u pacjentów z retinopatią cukrzycową na perfuzję oczną. Po operacjiśrednia prędkość przepływu krwi w CRA i PCAs znacznie się zmniejszyła, natomiast wskaźnik RI wzrósł w CRA i nie zmienił się w PCAs. Wyniki sugerują, że zabieg witrektomii może wpływać na zmniejszenie ocznego przepływu.

Podobne badania przeprowadzili Sullu i wsp. (24), oceniając hemodynamikę naczyń oczodołowych w pierwszym miesiącu i 6 miesięcy po witrektomii. Po zabiegu stwierdzono istotny spadek wskaźnika RI CRA.

Gracner (25) ocenił parametry w OA, CRA oraz PCAs na różnych etapach zmian cukrzycowych i wykazał istotny wzrost prędkości PSV w OA z zauważanymi zmianami retinopatii than flow velocity measurements in these vessels. Greater vascular resistance may occur prior to retinopathy. The authors claim that measurements in the CRA are more relevant for hemodynamic alteration assessment in diabetes than measurements in the OA. The PSV and EDV values in the CRA were considerably lower both when diabetic lesions were found in the fundus and when there were no such lesions. The differences observed depended on the intensiveness of these lesions. Perhaps the CRA is more sensitive to autoregulation disorders which may develop even before any changes are observed in the fundus. No differences in PSV in the OA were noted between the examined groups.

Ino-ue et al. (21) analyzed changes in blood flow in the OA in persons with ocular ischemic syndrome and with simple as well as proliferative retinopathy. The patients with diabetic lesions presented lower EDV values and higher PI values as compared with the control group, and patients with ocular ischemic syndrome and diabetes presented significantly lower systolic and diastolic velocities and higher pulsatility indices. No significant differences between the groups were observed and no relation was found between the vascular flow velocity and progression of diabetic retinopathy.

Dimitrova et al. (22) compared the results of flow measurements in patients with simple retinopathy following 21 months from the primary examination and assessed the influence of the disease progression on hemodynamic changes. After this period of time, no changes in the flow parameters were observed in the CRA and ciliary arteries. The authors suggest that together with the progression of diabetic retinopathy, initial lesions develop in the CRV.

Krepler et al. (23) assessed the influence of vitrectomy conducted in patients with diabetic retinopathy on the ocular perfusion. After the surgery, the mean flow velocity in the CRA and PCAs decreased in a considerable way, and the RI value increased in the CRA and remained the same in the PCAs. The results indicate that the vitrectomy procedure may cause a decrease in the ocular blood flow.

Sullu et al. (24) conducted similar studies and assessed hemodynamics of the vessels in the eyeball in the first and sixth months after the procedure. A considerable decrease of the RI index in the CRA was observed after the procedure.

Gracner (25) assessed the parameters in the OA, CRA and PCAs on various stages of diabetic lesion development and demonstrated a significant increase in PSV in the OA with...
przeciwproliferacyjnymi i proliferacyjnymi, a zmniejszenie prędkości PSV i EDV w CRA w porównaniu z grupą kontrolną. Odnotował także zmniejszenie prędkości EDV w PCAs. Wskaźnik RI w OA oraz CRA nie zmienił się istotnie, a wzrósł w PCAs. Autor sugeruje, że wyniki mogą być przydatne w prognozowaniu progresji choroby.

Kraśniki i wsp.[26] oceniali przepływy w naczyniach oczodołowych u pacjentów z cukrzycą typu II w grupie bez zmian na dnie oka oraz ze zmianami niefarktywnymi. W OA u wszystkich chorych odnotowali znacznie niższe prędkości PSV i EDV w porównaniu z osobami zdrowymi. Współczynnik oporu RI nie zmienił się istotnie statystycznie. W CRA PSV i EDV były znacznie niższe tylko w grupie z bardziej nasilonymi zmianami cukrzycowymi. Współczynnik oporu RI przyjmował wartości znamieniowe w każdym ziotach u pacjentów z bardziej zaawansowanymi zmianami naczyniowymi. W PCAs istotnie była zmieniona jedynie prędkość PSV w grupie retinopatii niefarktrywnej. Autorzy podkreślili znaczenie badania dopplerowskiego oraz wpływ obniżenia parametrów przepływu w CRA i naczyniach oczodołowych na rozwój retinopatii.

Badając naczynia oczodołowe w grupie dzieci i młodzież chorych na cukrzycę typu I, w których jeszcze nie wystąpiły cechy retinopatii na dnie oczu, Yilmaz Ovali i wsp.[27] stwierdzili występowanie zmian w przepływach OA oraz CRA w porównaniu ze zdrowymi równieśnikami. Prędkość EDV w OA była znacznie wyższa, a wskaźnik RI małego u pacjentów z cukrzycą trwającą dłużej niż 5 lat. Wskaźnik RI w CRA wzrastał u pacjentów, którzy mieli wyższe poziomy mikroalbuminurii. Ponadto w badaniu podkreślono wczesne zmiany w OA, które nie były tak istotne u innych badaczy.[15,19,20]

W grupie młodych osób z cukrzycą typu I Modrzejewska i wsp.[28] oceniali parametry hemodynamiczne naczyń oczodołowych oraz ich zależność od stężenia poziomu lipidów we krwi. Badaniom poddano grupę chorych z początkowymi zmianami naczyniowymi obserwowanymi na dnie oka. Analiza wykazała obniżenie wartości wskaźników w parametrach przepływu krwi, które pojawiły się już w początkowych zmianach naczyniowych na dnie oka. Zmniejszeniu uległy PSV, MV, RI w CRA oraz PSV, MV, PI w tętnicach oczodołowych skorowanych tylnych (temporal posterior ciliary arteries, TPCA). Wahał poziomu całkowitego cholesterolu (HDL), frakcji LDL oraz apolipoproteiny (ApoB) były związane ze zmianami oporności naczyniowej, przede wszystkim w OA. Wyniki mogą wskazywać na istotną rolę wpływu zaburzeń lipidowych na ryzyko niedokrwienia siatkówki u młodych chorych z cukrzycą typu I.

Dimitrova i wsp.[29] analizowali związek retinopatii cukrzycowej z nadciśnieniem tętniczym na podstawie badań przepływów w CRA i CRV w czterech grupach pacjentów. Prędkości PSV i EDV były najwyższe w grupie osób bez cech retinopatii i bez nadciśnienia tętniczego oraz u chorych bez retinopatii i z nadciśnieniem tętniczym. Wskaźnik Pourcelota w CRV był znacząco niższy w obu tych grupach. U pacjentów stwierdzono istotną zależność pomiędzy występowaniem nadciśnienia tętniczego, stadium retinopatii cukrzycowej a prędkością PSV w CRA.藩

Kraśniki et al.[26] assessed flow velocities in the vessels of the eyeball in patients with type I diabetes in a group without lesions in the ocular fundus and in a group with the presence of non-proliferative lesions. The authors observed considerably lower PSV and EDV values in the OA in all patients compared to healthy controls. The RI index did not change in a statistically significant way. In the CRA, PSV and EDV were considerably lower only in the group with more intensive diabetic lesions. The RI index was significantly higher in patients with more advanced lesions. In the PCAs, the significant difference was observed only in the PSV in the group of patients with non-proliferative retinopathy. The authors emphasized the role of Doppler sonography and the influence of decreased flow parameters in the CRA and ciliary arteries on the development of retinopathy.

When assessing the vessels of the eyeball in pediatric patients with type I diabetes but without retinopathy in the fundus, Yilmaz Ovali et al.[27] detected alterations in the blood flow in the OA and CRA as compared with healthy peers. EDV in the OA was significantly higher and the RI index was lower in patients with diabetes lasting for more than 5 years. The RI index in the CRA increased in patients who presented higher levels of microalbuminuria. Moreover, the examination revealed early lesions in the OA that were not as significant as reported by other researchers[15,19,20].

In the group of young patients with type I diabetes, Modrzejewska et al.[28] assessed hemodynamic parameters of the vessels in the eyeball and their relation to the lipid level in blood. The subjects had initial vascular lesions in the ocular fundus. The analysis revealed a decrease in blood flow parameters which occurred when the vascular lesions in the ocular fundus were at their initial stage. The following values were decreased: PSV, MV and RI in the CRA as well as PSV, MV and PI in the temporal posterior ciliary arteries (TPCAs). The variations in total cholesterol level (HDL), LDL cholesterol and apolipoproteins (ApoB) were associated with vascular resistance alterations, mainly in the OA. The results suggest that the influence of lipid disorder on the risk of retinal ischemia in young patients with type I diabetes may be significant.

Dimitrova et al.[29] analyzed the relation between diabetic retinopathy and arterial hypertension on the basis of flow analyses in the central retinal vein and artery in four groups of patients. PSV and EDV velocities were the highest in the group of patients without retinopathy and hypertension, and in patients without retinopathy but with arterial hypertension. The Pourcelot index in the CRV was considerably lower in both groups. A significant relation was observed between arterial hypertension, stadium of diabetic retinopathy and PSV in the CRA.
Grupa Lockhart i wsp.\(^{(30)}\) wykorzystała nowoczesne techniki analizy widmowej do ilościowej oceny zmian w morfologii przepływu w naczyniach oczodołowych i tętnicach szyjnych badanych za pomocą kolorowego dopplera. Celem pracy była próba odpowiedzi na pytanie, czy można wykryć subkliniczne zaburzenia krążenia u pacjentów z niepowszechną cukrzycą typu I. Przy zastosowaniu tych metod do chorych zidentyfikowano mierzalne różnice w prędkościach przepływu przed rozwijaniem jawnego retinopatii.

Pemp i wsp.\(^{(31)}\) analizowali zależność między przepływem krwi w CRA mierzonej za pomocą kolorowego dopplera a przepływem w CRA ocenianym przy użyciu laserowego przepływomierza dopplerskiego w odniesieniu do średnicy naczyń. Badano grupę pacjentów z cukrzycą typu I z łagodnymi cechami retinopatii lub bez niej w stosunku do osób zdrowych. Stwierdzono zwiększoną średnicę w CRA u chorych, jednak nie zaobserwowano istotnych różnic w przepływie krwi w tym naczyniu. Autorzy zalecają ostrożność w interpretowaniu badań, ponieważ ocenianie naczyń oczodołowych za pomocą kolorowego dopplera nie daje informacji na temat średnicy naczyń.

Wnioski

Cukrzyca wciąż stawia wyzwania diagnostyczne i terapeutyczne na wielu płaszczyznach. Ultrasonografia dopplerska jest metodą nieinwazyjną, mogące stanąć wartościowe uzupełnienie oceny hemodynamiki zmian w naczyniach pozągąłkowych w retinopatii cukrzycowej. Istnieją jednak rozbieżności w wynikach badań analizujących parametry przepływu w naczyniach oczodołowych. Obecnie trudno jest jednoznacznie ocenić zależność pomiędzy przepływami w tętnicach oddechowych, środkowej siatkówki i ręczowych tyl-nych w zależności od stopnia zaawansowania cukrzy-cowych na dzień oku. Brak spójności może wynikać z obserwacji zmian patologicznych w niejednolitych grupach badanych – pod względem typu cukrzycy, czasu jej trwania, stadium retinopatii, czynników miejscowych. Należy zaznaczyć, że część autorów w początkowym okresie choroby stwierdzała zwiększenie parametrów prędkości przepływu w naczyniach oczodołowych, zwłaszcza w tętnicy środkowej siatkówki, a inna grupa wykazała zwiększenie prędkości przepływu i oporu nacyniowego, aby po dłuższym czasie trwania cukrzycy zaobserwować zmniejszenie prędkości, co mogłoby mieć związek z ciężkością retinopatii. W związku z licznymi pracami na temat krążenia pozągąłkowego u pacjentów z cukrzycą i w wielu przypadkach odmiennymi wynikami istnieje konieczność dalszych badań oraz ich weryfikacji. Wnioski z nich płynące mogłyby stwarzać lepszą perspektywę w przewidywaniu progressji cukrzycy, wyznaczaniu kierunków leczenia i być może zapobiegać powikłaniom naczyńowym tej powszechnej choroby.

Konflikt interesów

Autorzy nie zgłaszają żadnych finansowych ani osobistych powiązań z innymi osobami lub organizacjami, które mogłyby negatywnie wpływać na treść publikacji oraz rościć sobie prawo do tej pracy.

Lockhart \textit{et al.}\(^{(30)}\) used novel techniques of spectral analysis for a quantitative assessment of blood flow changes in the vessels of the eyeball and carotid arteries which were evaluated with the use of color Doppler techniques. The aim of the study was to answer the question whether it is possible to detect subclinical circulation disorders in patients with uncomplicated type I diabetes. Having applied these methods, the authors identified measurable differences in flow velocities prior to the development of explicit retinopathy.

Finally, Pemp \textit{et al.}\(^{(31)}\) analyzed the relation between blood flow in the CRA measured in a color Doppler examination and blood flow in the CRA assessed with the use of a laser Doppler flowmeter with respect to the caliber of the vessel. The subjects included patients with type I diabetes with mild retinopathy and without it, and were compared with healthy individuals. The patients with diabetes presented greater diameter of the CRA, but no significant differences in blood flow were observed. The authors recommend caution in interpreting results since assessing the vessels of the eyeball with the use of color Doppler sonography does not provide information on their diameters.

Conclusions

Diabetes is still a diagnostic and therapeutic challenge in various aspects. Doppler sonography is a non-invasive method which may be a valuable supplementation in assessing hemodynamic alterations in the retrobulbar vessels in diabetic retinopathy. However, the results of analyses concerning flow parameters in these vessels vary. At present, it is difficult to unambiguously assess the relation between blood flow in the ophthalmic, central retinal and posterior ciliary arteries with respect to the stadium of the progression of diabetic lesions in the ocular fundus. This inconsistency may result from assessing pathological lesions in non-uniform study groups – in terms of the type of diabetes, its duration, stadium of retinopathy and local factors. It needs to be emphasized that some authors found decreased velocities in the vessels of the eyeball, particularly in the central retinal artery, in the initial stage of the disease, whereas another group of authors demonstrated increased flow velocities and resistance indices, but observed a decrease in these values when diabetes lasted for a longer period of time. This might be associated with the severity of retinopathy. Since numerous publications on retrobulbar circulation in patients with diabetes report discrepant results, it is necessary to conduct further studies and verify them. The conclusions might create a better perspective in predicting the progression of diabetes, in indicating directions of treatment and perhaps in preventing vascular complications that occur in the course of this common disease.
Color Doppler imaging of the retrobulbar vessels in diabetic retinopathy

Piśmiennictwo/References

1. World Health Organization: Definition, Diagnosis and Classification of Diabetes Mellitus and its Complications. Report of a WHO Consultation. Part 1: Diagnosis and Classification of Diabetes Mellitus. World Health Organization, Geneva 1999.
2. Czyżyk A: Patofizjologia i klinika cukrzycy. PWN, Warszawa 1997.
3. Nowakowski A: Epidemiologia cukrzycy. Diabetol Prakt 2002; 4: 181–185.
4. Jarosz-Chobot P, Otto-Buczkowska E: Epidemiologia cukrzycy typu 1. Przegl Pediatrium 2009; 39: 229–234.
5. Szybiński Z: Polskie Wieloszrodkowe Badania nad Epidemiologią Cukrzycy (PWBEC) – 1998–2000. Pol Arch Med Wewn 2001; 106: 751–758.
6. Lilis CG, Cohen SM, Merton DA, Shields JA, Mitchell DG, Goldner MB: Color Doppler imaging of the eye and orbit. Technique and normal vascular anatomy. Arch Ophthalmol 1991; 109: 527–531.
7. Ustymowicz A: Ultrasonografia dopplerowska z obrazowaniem przepływu krwi w kolorze (USG-kolor Doppler) w diagnostyce okulistycznej – doświadczenia własne i przegląd literatury. Klin Oczna 2008; 110: 108–111.
8. Williamson TH, Harris A: Color Doppler ultrasound imaging of the eye and orbit. Surv Ophthalmol 1996; 40: 255–267.
9. Modrzejewska M: Zastosowanie kolorowej ultrasonografii dopplerowskiej w okulistyce. W: K. Modrzejewska-Michalik M (ed.): Metody obrazowania w okulistyce. Alcon, Warszawa 2001: 1–100.
10. Freeman WR, Pfeifer MA: Ocular Doppler ultrasonography imaging of hemodynamic alteration of retrobulbar circulation in type 1 diabetic children and adolescents without retinopathy. Diabetes Res Clin Pract 2008; 79: 243–248.
11. Kraśnicki P, Mariak Z, Ustymowicz A, Proniewska-Skrzek E: Assessment of blood flow in the ocular circulation in type 2 diabetes patients with Color Doppler imaging. Klin Oczna 2006; 108: 294–298.
12. Yilmaz Ovali G, Ersoy B, Tuncyurek O, Utk V, Ozkol M, Ozhan B et al.: Doppler ultrasonography imaging of hemodynamic alteration of retrobulbar circulation in type 1 diabetic children and adolescents without retinopathy. Diabetes Res Clin Pract 2008; 79: 243–248.
13. Czyżyk A: Patofizjologia i klinika cukrzycy. PWN, Warszawa 1997.
14. Czyżyk A: Patofizjologia i klinika cukrzycy. PWN, Warszawa 1997.