Bibliographic revision of *Mesacanthion* Filipjev, 1927 (Nematoda: Thoracostomopsidae) with description of a new species from Jeju Island, South Korea

Raehyuk Jeong 1, Alexei V Tchesunov Corresp., 2, Wonchoel Lee Corresp. 1

1 Department of Life Science, Hanyang University, Seoul, South Korea
2 Department of Invertebrate Zoology, Faculty of Biology, Moscow State University, Moscow, Russia

Corresponding Authors: Alexei V Tchesunov, Wonchoel Lee
Email address: avtchesunov@yandex.ru, wlee@hanyang.ac.kr

A new species of the genus *Mesacanthion* Filipjev, 1927 was discovered during a survey of natural beaches of Jeju Island in South Korea. The new species *Mesacanthion jejuensis* sp. nov., shares general morphology of the genus such as the outer labial and cephalic setae being situated at the middle of cephalic capsule, well-developed mandibles with two columns united by a curved bar, and three equally sized and shaped teeth shorter than the mandibles. The new species belongs to a group of *Mesacanthion* species which spicules which are shorter than 2 anal body diameter. The new species is most closely related to *M. pannosum*, first discovered in Puget Sound, Washington, in terms of having enlarged cervical setae flap at the end of cephalic capsule, spicules which are shorter than 2 anal body diameter, both supplementary organ and gubernaculum. It can be distinguished from *M. pannosum* by its stronger inner labial setae, longer outer labial setae, and difference in the index value of b and c’. Along with the description of *Mesacanthion jejuensis* sp. nov., the genus *Mesacanthion* Filipjev, 1927 is bibliographically reviewed and revised. Including the new species, a total of 48 species are described within the genus; 39 which are valid; eight which are considered to be species inquirenda due to misplacement of genus and poor description; one which is considered nomen nudum. An updated diagnosis of the genus is provided along with a compiled tabular key comparing different diagnostic morphological characters of all valid species, as well as a pictorial key consisting of 21 species with spicules shorter than 2 anal body diameters.
Bibliographic revision of *Mesacanthion* Filipjev, 1927 (Nematoda: Thoracostomopsidae) with description of a new species from Jeju Island, South Korea

Raehyuk Jeong¹, Alexei V. Tchesunov², Wonchoel Lee¹

¹ Department of Life Science, Hanyang University, Seoul, 04763, South Korea
² Department of Invertebrate Zoology, Faculty of Biology, Moscow State University, Moscow, 119991, Russia

Corresponding Authors:
Alexei Tchesunov²
Department of Invertebrate Zoology, Faculty of Biology, Moscow State University, Moscow, 119991, Russia
Email address: avtchesunov@yandex.ru

Wonchoel Lee¹
Department of Life Science, Hanyang University, Seoul, 04763, South Korea
Email address: wlee@hanyang.ac.kr
Abstract
A new species of the genus Mesacanthion Filipjev, 1927 was discovered during a survey of natural beaches of Jeju Island in South Korea. The new species Mesacanthion jejuensis sp. nov., shares general morphology of the genus such as the outer labial and cephalic setae being situated at the middle of cephalic capsule, well-developed mandibles with two columns united by a curved bar, and three equally sized and shaped teeth shorter than the mandibles. The new species belongs to a group of Mesacanthion species which spicules which are shorter than 2 anal body diameter. The new species is most closely related to M. pannosum, first discovered in Puget Sound, Washington, in terms of having enlarged cervical setae flap at the end of cephalic capsule, spicules which are shorter than 2 anal body diameter, both supplementary organ and gubernaculum. It can be distinguished from M. pannosum by its stronger inner labial setae, longer outer labial setae, and difference in the index value of b and c’. Along with the description of Mesacanthion jejuensis sp. nov., the genus Mesacanthion Filipjev, 1927 is bibliographically reviewed and revised. Including the new species, a total of 48 species are described within the genus; 39 which are valid; eight which are considered to be species inquirenda due to misplacement of genus and poor description; one which is considered nomen nudum. An updated diagnosis of the genus is provided along with a compiled tabular key comparing different diagnostic morphological characters of all valid species, as well as a pictorial key consisting of 21 species with spicules shorter than 2 anal body diameters.

Introduction
Over 50 species of free-living marine nematodes have been reported in South Korea, including those reported on domestic journals (Rho & Min, 2011; Barnes et al., 2012; Hong & Lee, 2014; Kim et al., 2015; Hong et al., 2016; Jeong et al., 2019). Majority of the species found in South Korea belong to the family Draconematidae Filipjev, 1918 and other families reported so far includes Comesomatidae Filipjev, 1918, Desmoscolecidiae Shipley, 1896, Enchelidiidae Filipjev, 1918 Cyatholaimidae Filipjev, 1918 and Ironidae de Man, 1876. This is the first record of the genus Mesacanthion, let alone the family Thoracostomopsidae Filipjev, 1927 to be recorded in South Korea.

Family Thoracostomopsidae was first erected by Filipjev (1927) and it is composed of three subfamilies: Thoracostomopsinae Filipjev, 1927 (2 genera), Trileptiinae Gerlach & Riemann, 1974 (1 genus), and Enoplolaiminae De Coninck, 1965 (19 genera). The three subfamilies can be differentiated by the presence or absence of mandibles (Enoplolaiminae or Trileptiinae respectively), with Thoracostomopsinae uniquely bearing a long and eversible spear (Smol & Coomans, 2006). Now total of 238 species belonging to 22 genera make up the family to date (Bezerra et al., 2019). The genus Mesacanthion Filipjev, 1927 was first erected as a subgenus of Enoplolaimus de Man, 1893 with type species Mesacanthion lucifer (Filipjev, 1927) Gerlach & Riemann, 1974 discovered from Barents Sea. Filipjev (1927) specified the characters of the genus Mesacanthion to be three short equal (seldom slightly different) onchia, cephalic setae placed in the middle or anterior to the cephalic capsule with tapered tail with a short
dactyli/claviform terminal part. Many of the species currently belonging to the genus *Mesacanthion* were those transferred from the genus *Enoplolaimus* when *Mesacanthion* had been newly erected as a subgenus by Filipjev (1927). Most species (98%) belonging to this genus are recorded from marine environments with exception to one species (*Mesacanthion alexandrinus* Nicholas, 1993), which was recorded in freshwater environment. Of the valid species, 40% (16) were described from Europe; 20% (8) from America (4 from North and South); 17.5% (7) from Asia (mainly from western Asia), 15% (6) from Africa, and 7.5% (3) from Australia. The genus *Mesacanthion* is the second most diverse genus in the family next to *Enoplolaimus* de Man, 1893, with 40 valid species recorded to date.

The aim of this study was to review the genus by compiling information such as species distribution, tabular and pictorial key of the genus while determining the validity of existing species. In addition to the revision, *Mesacanthion jejuensis* sp. nov. is described from Jeju Island, South Korea. An updated diagnosis of the genus is provided with a compiled tabular key consisting of all valid species as well as a pictorial key consisting of 21 species with spicules shorter than 2 anal body diameters.

Materials and Methods

1) Sampling and morphological study

A series of sampling took place in June 2018, during a survey of natural beaches of Jeju Island, South Korea (Fig. 1). Two sub-samples of the sediments from the intertidal zone were obtained using a 10cm\(^2\) acryl sampling tube. Sediments were fixed in 5% neutralized formalin solution and brought back to the laboratory. Meiofauna were extracted using the Ludox method (Burgess, 2001), and post-fixed with 70% ethanol dyed with Rose bengal. Nematodes were counted and individual specimens of interest were picked to a Petri dish filled with 10% glycerin. The dish was placed in a drying oven set at 40°C for a day or two to be completely dehydrated as conferred in the glycerin-ethanol method (Seinhorst, 1959). A single or as many as 5 specimens (depending on their size) were mounted in a single drop of anhydrous glycerin on a glass slide using the wax-ring method (Hooper, 1986). Mounted specimens were identified under Olympus BX51, Leica DM5000B and DM2500 microscopes. All morphometric measurements were done manually using IC measure v.2.0.0.161 software. For scanning electron microscopy, specimens were placed in a drop of glycerin and gradually mixed with drops of distilled water to be washed from any remnant of glycerin. Hydrated specimen were treated to ethanol series for dehydration (20%, 40%, 50%, 70%, 80%, 90%, 95%, 100%, for 10 min each) and then placed in hexamethyldisilazane (HMDS). Specimens bathed in HMDS were placed in a drying oven to be dried. Once dried, specimens were mounted on a stub to be splutter coated, and observed with COXEM EM-30 microscope.

2) Revision of the genus

The Bremerhaven Checklist of Aquatic Nematodes by Gerlach & Riemann (1974) was used as primary referral when collecting original descriptions/references and additional information on their distribution. Any updates and changes made to the genus subsequent to 1974 were checked...
using NeMys, World Database of Nematodes. Once all references had been collected; 1) tabular key consisting of diagnostic characters of all valid species were compiled, 2) distribution of species were determined, 3) validity of each species were determined via comparison and examination, 4) diagnosis of the genus was updated. To construct a pictorial key, original depictions were collected from respective papers and their heads, tails and spicules (if available) were resized and oriented using Adobe Photoshop CS6 for optimum comparison between species. The original drawings were retraced using Wacom Intuous Pro Pen Tablet and Adobe Photoshop CS6.

3) Nomenclatural Acts

The electronic version of this article in Portable Document Format (PDF) will represent a published work according to the International Commission on Zoological Nomenclature (ICZN), and hence the new names contained in the electronic version are effectively published under that Code from the electronic edition alone. This published work and the nomenclatural acts it contains have been registered in ZooBank, the online registration system for the ICZN. The ZooBank LSIDs (Life Science Identifiers) can be resolved and the associated information viewed through any standard web browser by appending the LSID to the prefix http://zoobank.org/. The LSID for this publication is: urn:lsid:zoobank.org:pub: 989DF431-166A-4534-9A37-9AC408194DE7. The online version of this work is archived and available from the following digital repositories: PeerJ, PubMed Central and CLOCKSS.

Abbreviations

a: body length / maximum body diameter
abd: anal body diameter
b: body length / pharynx length
c: body length / tail length
calc: calculated or measured from published measurements and/or figures
c’: tail length / anal body diameter

Systematics

Order Enoplida Filipjev, 1929
Family Thoracostomopsidae Filipjev, 1927
Subfamily Enoplolaiminae de Coninck, 1965
Genus Mesacanthion Filipjev, 1927

Generic diagnosis: (Updated from Wieser, 1953; Platt and Warwick, 1983; Smol et al., 2014) Enoplolaiminae. Outer labial and cephalic setae situated at middle or anterior end of cephalic capsule. Mandible well-developed, provided with claws, arch-shaped, consisting of two rod-like columns anteriorly united by a curved bar. Teeth shorter than mandibles. Spicule mostly short,
unipartite and symmetrical, sometimes long, bipartite (divided by a seam: *M. ditlevseni*) and asymmetrical (anisomorphic and anisometric: *M. diplechma*). If long, usually gubernaculum present with caudal apophysis. Marine and freshwater.

Type species: *Mesacanthion lucifer* (Filipjev, 1927) Gerlach & Riemann, 1974.

Notes on generic diagnosis: *Mesacanthion*, *Enoplolaimus* de Man, 1893, *Paramesacanthion* Wieser, 1953, and *Oxyonchus* Filipjev, 1927 bear mandibles which are arch-shaped, consisting of two rod-like columns while mandibles of *Enoploides* are solid, two lateral bars fused to form a single rod. *Oxyonchus* can be distinguished from other genera which bear similar mandibles by its two uniquely large ventrosublateral teeth which extend to anterior end of the mandibles with small dorsal tooth. *Mesacanthion*, *Paramesacanthion*, *Enoplolaimus*, all have teeth shorter than the mandibles, but the latter can be distinguished by the placement of their outer labial and cephalic setae at posterior end of cephalic capsule. *Mesacanthion* species have their outer labial and cephalic setae at the middle or anterior end of the cephalic capsule, similar to *Paramesacanthion* species except outer labial and cephalic setae are only in front of anterior end of cephalic capsule. *Mesacanthion* and *Paramesacanthion* share the most characters, making them the closest related genera within the family. The two genera can be differentiated from each other however by the following three characteristics: 1. Outer labial and cephalic setae are located at the anterior end of cephalic capsule for *Paramesacanthion* while outer labial and cephalic setae are located at the middle or anterior end of cephalic capsule for *Mesacanthion*. *Paramesacanthion* species have extra ring(s) of subcephalic setae located at the middle of cephalic capsule where outer labial and cephalic setae would be located for *Mesacanthion* species. This means when compared to *Mesacanthion* species, *Paramesacanthion* species may appear to have extra ring(s) of setae at the anterior end of cephalic capsule, in between inner labial setae and cephalic setae/outer labial setae. This seemingly additional ring of setae are the true cephalic setae, while ring of setae at the middle of cephalic capsule are actually the sub-cephalic setae for *Paramesacanthion* species; 2. Sexual dimorphism is apparent in the pilosity of the head for *Paramesacanthion* species, while it is not apparent in *Mesacanthion* species; 3. All *Paramesacanthion* species have spicules consisting of two portions, distal and proximal, articulating from one another, while only some *Mesacanthion* species (*M. audax*, *M. ditlevseni*, *M. infantile* and *M. jejuensis* sp. nov.) have bipartite spicules divided by a transversal seam, but without the obvious articulation or constriction.

List of valid species

1. *Mesacanthion africanthiforme* Warwick, 1970 (Warwick, 1970: 142–145, fig. 2A–E; three males and three females, Exe estuary, England).
2. *Mesacanthion africanum* Gerlach, 1957 (Gerlach, 1957b: 4, fig. 3A–C; description based on one male, Atlantic at Congo mouth, plankton net from above muddy ground).

3. *Mesacanthion agubernatus* Vitiello, 1971 (Vitiello, 1971: 860, fig. 1 A–E; description based on one male, Mediterranean, terrigenous coastal muds, 60 m deep).

4. *Mesacanthion alexandrinus* Nicholas, 1993 (Nicholas, 1993: 163, 165, figs. 1A–E, 2A–D; four males and three females, sand at water edge of fresh-water Lake Alexandrina, South Australia).

5. *Mesacanthion arabium* Warwick, 1973 (Warwick, 1973: 114–116, fig. 14A-G; three males and three females, Arabian Sea, fine sand, 49 m deep).

6. *Mesacanthion arcuatile* Wieser, 1959 (Wieser, 1959: 16–17, Pl. 11 fig. 11A–B; description based on one female, Alki Beach, Washington, US, 6.5 feet, lapsus *arcuatilis*).

7. *Mesacanthion armatum* Timm, 1961 (Timm, 1961: 32, fig. 5A–C; more than one male and one female, Bay of Bengal, on *Siphonoclados*, lapsus *armatus*).

8. *Mesacanthion audax* (Ditlevsen, 1918) Filipjev, 1927 [Ditlevsen, 1918: 208–209, pl. 14 figs. 4, 7, pl. 15 fig. 5 (=*Enoplolaimus audax*); description based on one male, Øresund, off Aalsgaardere. Filipjev, 1927: 143; transfer *Enoplolaimus audax* to subgenus *Mesacanthion*. Gerlach, 1958b: 73; (as *Mesacanthion audax*), Kiel Bay, Sand and silt, 6 m deep. Riemann, 1966: 186; three males, North Sea, sand].

9. *Mesacanthion banale* (Filipjev, 1927) Gerlach & Riemann, 1974 [Filipjev, 1927: 147, Pl. 7 fig. 40A, B; (=*Enoplaimus* (*Mesacanthion*) *banalis*), description based on three females, Barents Sea, muddy sand, 25 m deep. Gerlach & Riemann, 1947: 531; transfer *Enoplolaimus banale* to genus *Mesacanthion*].

10. *Mesacanthion breviseta* (Filipjev, 1927) Gerlach & Riemann, 1974 [Filipjev, 1927: 150–151, pl. 7 fig 43A–C; (=*Enoplaimus* (*Mesacanthion*) *breviseta*) description based on one male and a juvenile male, Barents Sea, sand with shells and stones, 83 m deep. Gerlach & Riemann, 1974: 531; transfer *Enoplolaimus* (*Mesacanthion*) *breviseta* to genus *Mesacanthion*].

11. *Mesacanthion cavei* Inglis, 1964 [Inglis, 1964: 313–314, figs. 76–78; description based on two males (one in poor condition) and one damaged juvenile, South Africa, coarse sand and broken shells, 26–27 m deep].

12. *Mesacanthion ceeum* Inglis, 1964 (Inglis, 1964: 313, figs. 74–75; description based on one male and one juvenile, South Africa, coarse sand and broken shells, 26 m deep, lapsus *ceeus*).

13. *Mesacanthion conicum* (Filipjev, 1918) Filipjev, 1927 [Filipjev, 1918: 105–107, Table 3, fig. 16A–B; (=*Enoplolaimus conicus*), description based on one female, Black Sea. Filipjev, 1927: 143; transfer *Enoplolaimus conicus* to subgenus *Mesacanthion*].

14. *Mesacanthion cricetoides* Wieser, 1959 (Wieser, 1959: 17–18, fig. 13A–B; description based on one female, Richmond Beach, Washington, 2.5 feet deep).

15. *Mesacanthion diplechma* (Southern, 1914) Filipjev, 1927 [Southern, 1914: 55–56, fig. 25A–J; (=*Enoplus diplechma*), two males and two females, Clew Bay, sandy bottom, 25–31
m deep. Filipjev, 1927: 143; transfer *Enoplus diplechma* to subgenus *Mesacanthion*.

Gerlach, 1958: 72; as *Mesacanthion diplechma*, Kiel Bay, silt, 8 m deep. Riemann, 1966: 186; North Sea, sand. Boucher, 1977: 741–743, figs. 4A–E; as *Mesacanthion diplechma* (Southern, 1914), one male, three females and six juveniles, Pierre Noire (Western Channel), infralittoral sands.

16. *Mesacanthion ditlevseni* (Filipjev, 1927) Gerlach & Riemann, 1974 [Filipjev, 1927: 148, pl. 5 fig. 41A–D; (=*Enoplolaimus (Mesacanthion) ditlevseni*), three males and one female, Barents Sea, silt with stones, 36–280 m deep. Ditlevsen, 1928: 210–213, figs. 8–13; (=*Enoplolaimus angustignathus*), one male and one female, Greenland, mud, clay, 100–200 m deep, De Coninck and Stekhoven, 1933: 38. Allgén, 1954: 22; (as *Enoplolaimus (Mesacanthion) angustignathus*), five males and nineteen females, Jan Mayen, Greenland, black sand, 23 m deep. Gerlach & Riemann, 1974: 532; transfer *Enoplolaimus ditlevseni* to genus *Mesacanthion*].

17. *Mesacanthion fricum* Inglis, 1966 (Inglis, 1966: 87, Figs. 10–12; description based on one male, South Africa, sand, lapsus frica).

18. *Mesacanthion heterospiculum* Sergeeva, 1974 (Sergeeva, 1974: 123, fig. 4A–B; description based on 14 males, Black Sea, various depths and sediments).

19. *Mesacanthion hirsutum* Gerlach, 1953 (Gerlach, 1953: 536–537, fig. 9A–E; description based on one male and one female, Mediterranean. Gerlach, 1967: 26, fig. 10A–E; two males, two juveniles and one male, Sarso Island, Red Sea, Saudi Arabia).

20. *Mesacanthion infantile* (Ditlevsen, 1930) De Coninck & Schuurmans Stekhoven, 1933 [Ditlevsen, 1930: 205–208, figs. 8–10; (=*Enoplolaimus infantilis*), one male and one female, Stewart Island, Halfmoon Bay, sand, 5–7 fms. Allgén, 1951: 322–323, fig. 33A–B; (=*Enoplolaimus mortensenii*), description based on one female, Australia; see Mawson, 1956: 65–66 (re-examination of type specimen= *Mesacanthion infantilis*), op Wieser, 1953: 75. Allgén, 1951: 323–324, fig. 34A–B; (=*Enoplolaimus philippinensis*), description based on one juvenile, Australia, op Mawson, 1956: 65–66 (re-examination of type specimen= *Mesacanthion infantilis*). De Coninck & Schuurmans Stekhoven, 1933: 38; (as *Mesacanthion infantile*). Wieser, 1953: 76, fig. 39A–B; two females, Chile. Mawson, 1956: 65–66, fig. 29A–C; two juveniles, Antarctica].

21. *Mesacanthion karense* (Filipjev, 1927) Gerlach & Riemann, 1974 [Filipjev, 1927: 152, pl. 7 fig. 45A–C; (=*Enoplolaimus (Mesacanthion) karensis*), one juvenile male and three females, Kara Sea, sand, 15 m deep. Gerlach & Riemann, 1974: 533; transfer *Enoplolaimus (Mesacanthion) karensis* to genus *Mesacanthion*].

22. *Mesacanthion kerguelense* Mawson, 1958 (Mawson, 1958: 338–339, fig. 22A–D; five males, two females and three juveniles, Kerguelen Island, Heard Island, Macquarie Island).

23. *Mesacanthion longispiculum* Gerlach, 1954 (Gerlach, 1954: 228–229, fig. 1A–B; one male and one female, Mediterranean. Gerlach, 1957a: 421; Brazil. Gerlach, 1958a: 352–353, fig. 4A–C; (as cf. *longispiculum*), one male, Mananjary, Madagascar, muddy sand).
24. *Mesacanthion longissimesetosum* Wieser, 1953 (Wieser, 1953: 78–79, fig. 42A–E; two males, one female and thirteen juveniles, Chile, littoral exposed and sheltered sand, sublittoral secondary substratum and soft bottom, lapsus *longissimesetosum*).

25. *Mesacanthion lucifer* (Filipjev, 1927) Gerlach & Riemann, 1974 [Filipjev, 1927: 149–150, pl. 7 fig. 42A–C; (=*Enoplolaimus (Mesacanthion) lucifer*), one male and two females, Barents Sea, Kara Sea, sand and sandy silt, 18–83 m deep. Gerlach & Riemann, 1974: 533; transfer *Enoplolaimus (Mesacanthion) lucifer* to genus *Mesacanthion*.]

26. *Mesacanthion majus* (Filipjev, 1927) Gerlach & Riemann, 1974 [Filipjev, 1927: 151–152, pl. 7 fig. 44A–C; (=*Enoplolaimus (Mesacanthion) major*), three females, Kara Sea, Barents Sea, sand and gravel, 15–36 m deep. Wieser, 1953: 78, fig. 41A–D; (as *Mesacanthion major* Filipjev 1925b), four males, two females and 15 juveniles, Arctic Sea, Chile, sublittoral, secondary substratum and coarse bottom, lapsus *major*. Gerlach & Riemann, 1974: 533; (as *Mesacanthion majus* Filipjev 1927)].

27. *Mesacanthion marisalbi* Galtsova, 1976 (Galtsova, 1976: 261–263, fig. 7; two males, one female and one juvenile, White Sea, littoral zone in slightly silted sand).

28. *Mesacanthion monhystera* Gerlach, 1967 (Gerlach, 1967: 27–28, fig. 11A–F; one male and one juvenile female, Sandy beach and littoral subsoil water).

29. *Mesacanthion obscurum* Gagarin & Klerman, 2006 (Gagarin & Klerman, 2006: 533–535, fig. 1A–E; twelve males and eight females, Mediterranean Sea off the Israeli coast near Hadera, sandy sediment, 30–35 m deep).

30. *Mesacanthion pali* Wieser, 1959 (Wieser, 1959: 16, fig. 10A–B; description based on one male, Puget Sound, subterranean water, medium fine to coarse sand).

31. *Mesacanthion pannosum* Wieser, 1959 (Wieser, 1959: 17, fig. 12A–D; one female and one female, Puget Sound, medium fine to coarse sand, 2.5 feet deep).

32. *Mesacanthion propinquum* Gagarin & Klerman, 2006 (Gagarin & Klerman, 2006: 536–538, fig. 2A–E; twelve males and eleven females, Mediterranean Sea off the Israeli coast near Hadera, sandy sediment, 30–35 m deep).

33. *Mesacanthion proximum* Gerlach, 1957 (Gerlach, 1957a: 427–429, fig. 5G–M; one male and one juvenile, Santos, Brazil, fine sand).

34. *Mesacanthion rigens* Gerlach, 1957 (Gerlach, 1957a: 427, fig. 5C–F; one male and one female, Bertioga, Brazil. Gerlach, 1956: 204; Brazil, nomen nudum).

35. *Mesacanthion southerni* Warwick, 1973 (Warwick, 1973: 111–114, figs. 12A–C, 13A–C; six males, three females and two juveniles, Arabian Sea, fine sand and fine muddy sand, 48–49 m deep).

36. *Mesacanthion studiosum* Inglis, 1964 (Inglis, 1964: 315–316, figs. 79–90; two males, two females and two juveniles, South Africa, coarse white sand, 27 m deep, lapsus *studiosa*).

37. *Mesacanthion tenuicaudatum* (Ssaweljev, 1912) De Coninck & Schuurmans Stekhoven, 1933 [Ssaweljev, 1912: 111–112; (=*Enoplolaimus tenuicaudatus*), both sex but number of specimen not specified, White Sea, lapsus *tenuicaudatus*. De Coninck & Schuurmans...
Stekhoven, 1933: 39; transfer and correct name from *Enoplolaimus tenuicaudatus* to *Mesacanthion tenuicaudatum*.

38. **Mesacanthion virile** (Ditlevsen, 1930) De Coninck & Schuurmans Stekhoven, 1933
[Ditlevsen, 1930: 208–211, fig. 11–14; (=*Enoplolaimus virilis*), description based on one male, Stewart Island; Halfmoon Bay, New Zealand, Sand, 9.1–12.8 m (converted from fathom). De Coninck & Schuurmans Stekhoven, 1933: 39; transfer and correct name *Enoplolaimus virilis* to *Mesacanthion virile*. Allgén, 1959: 48–50; 8 females and twelve juveniles, Falkland Islands, South Georgia, Graham Land.]

Species Inquirenda

1. **Mesacanthion brachycolle** Allgén, 1959 [Allgén, 1959: 50, fig. 32A, B; two females and two juveniles, Falkland Islands, sandy bottom with algae, 40 m deep, Graham Island, mud, 125 m deep. Allgén, 1960: 479, fig 3; (as *Enoplolaimus* (*Mesacanthion*) *brachycollis*), lapsus *brachycollis*, one female and one juvenile, Falkland Islands].

Species Inquirenda. This species is placed as species inquirenda due to the following reasons: 1) substandard quality of the original text and figures making it impossible to understand, to which genus this species should be referred as; 2) ambiguity of the material, where females and juveniles are indicated as the only materials yet a male tail is given on fig. 32B.

2. **Mesacanthion donsitarvae** (Allgén, 1935) Wieser, 1953 (species inquirenda) [Allgén, 1935: 47; (=*Enoplolaimus donsitarvae*) Norway, lapsus (*donsi*)-tarvae. Wieser, 1953: 76; transfer *Enoplolaimus donsitarvae* to genus *Mesacanthion* and opinionates the fact that Allgén provided no figures and description was based on erroneous data of Ditlevsen on wrong number of cephalic setae].

3. **Mesacanthion gracilisetosum** (Allgén, 1930) Wieser, 1953 (species inquirenda) [Allgén, 1930: 189–191, figs. 1–3; (=*Enoplolaimus gracilisetosus*), one male, two females and one juvenile, Macquarie Island. Wieser, 1953: 76; transfer *Enoplolaimus gracilisetosus* to genus *Mesacanthion*, lapsus *gracilisetosus*].

4. **Mesacanthion hawaiiense** (Allgén, 1951) Wieser, 1953 (species inquirenda) [Allgén, 1951: 274–275, fig. 5A–B; (=*Enoplolaimus hawaiiensis*), description based on one female, Honolulu, Hawaii. Wieser, 1953: 75; transfer *Enoplolaimus hawaiiensis* to genus *Mesacanthion* and opinionates description is insufficient, lapsus *hawaiiensis*].

5. **Mesacanthion pacificum** (Allgén, 1947) Wieser, 1953 (species inquirenda) [Allgén, 1947: 212, fig. 76A–B; (=*Enoplolaimus pacificus*), description based on one female and one juvenile, Bay of Panama, Perlas Island. Allgén, 1951: 275, 277, fig. 6A–D; one male, one female and three juveniles, Coast of Honolulu. Wieser, 1953: 66, 76; transfer *Enoplolaimus pacificus* to genus *Mesacanthion* and opinionates it resembles *Oxyonchus* more. Allgén, 1959: 48; (as *Mesacanthion pacificum*), two juveniles, Falkland Islands, sand and small stones with algae, 40 m deep, lapsus *pacificus*].
6. *Mesacanthion paradentatum* (Allgén, 1932) Wieser, 1953 (species inquirenda) [Allgén, 1932: 111–112, fig. 8A–B; (=*Enoplolaimus paradentatus*), description based on one juvenile, Campbell Island. Wieser, 1953: 76; transfer *Enoplolaimus paradentatus* to genus *Mesacanthion*, lapsus *paradentatus*].

7. *Mesacanthion primitivum* (Allgén, 1929) Wieser, 1953 (species inquirenda) [Allgén, 1929: 441, fig 6A–B; (=*Enoplolaimus primitivus*), Skagerrak. Wieser, 1953: 76; transfer *Enoplolaimus primitivus* to genus *Mesacanthion*, lapsus *primitivus*].

8. *Mesacanthion ungulatum* Wieser, 1953 (Wieser, 1953: 78, fig. 40A–B; description based on two juveniles, Seno Reloncavi proper, Chile, exposed littoral algae, lapsus *ungulatus*).

Species inquirenda. Further discussed in the discussion.

Nomen nudum

1. *Mesacanthion microsetosus* Allgén, 1932 (nomen nudum – Bezerra et al., 2019) [Allgén, 1932: 110–111, fig. 7A–B; (=*Enoplolaimus microsetosus*) description based on one juvenile, Campbell Island 40 m deep. Allgén, 1959: 48; (transfer *Enoplolaimus microsetosus* to genus *Mesacanthion*) nine females and five juveniles, South Georgia, Antarctica, clay with sparse stones, 125 m deep, lapsus *microsetosus*, nomen nudum]. Only female or juvenile used for description and according to Wieser, 1953, Allgén stating four labial and four cephalic setae makes his description doubtful, Wieser, 1953: 82; moved to *Paramesacanthion*

Mesacanthion jejuensis sp. nov.

Figs. 2, 3, Table 1

urn:lsid:zoobank.org:act:EE4EB2FC-59DA-48D3-9C10-C9E5646AF0D9

Type locality: Intertidal zone at coast of Jeju Island, South Korea (33°26′05″N 126°55′15″E), in sandy beach

Type material: All specimen deposited in National Institute of Biological Resources (South Korea). Holotype 1♂ (NIBRIV00008488276) on one slide, Allotype 1♀ (NIBRIV00008488277) on one slide, Paratypes 2♂♂, 1♀ on two different slides (NIBRIV00008488278–NIBRIV00008488279), 1♂ and 1♀ dried, mounted on two separate stubs and coated with gold for SEM (NIBRIV00008488280–NIBRIV00008488281) from coast of Jeju Island, South Korea (33°26′05″N 126°55′15″E) collected on 17 June 2018.

Measurements: See table 1 for detailed measurements and morphometric ratios.

Description: Male (Fig. 2). Cuticle smooth above cephalic capsule, finely striated posterior to cephalic capsule until tail tip. Three lips well developed; edges of lips narrowed and distally...
pointy curving outwards, each lips carrying two inner labial setae. Six inner labial setae, stout
and conical 12 μm long. Six longer outer labial setae and 4 shorter cephalic setae sharing one
crown, situated at midlevel of cephalic capsule. Cephalic capsule vaguely set off at mid-level,
anterior part narrow, and posterior part gradually thicker. Buccal cavity funnel shaped, wide at
anterior end, gradually narrowing to the base. Coffee-bean shaped epidermal glands distributed
along dorsal plane from anterior end of body until posterior end. Buccal cavity armed with three
mandibles and three teeth. Mandible consisting of two rods distancing from one another
anteriorly joined by anterior rod. Lateral edges of each rod with teeth or denticle pointing to the
lumen (Fig. 3E). ~5–6 short cervical setae in singles at level of posterior end of cephalic capsule.
Modified cervical setae, a flap, inverse triangular, just posterior to a single lateral outer labial
setae at posterior end of cephalic capsule, observable in all four males on both lateral body sides
(Fig. 4B). Amphid ambiguously present below the cervical flap, pouch-shaped. Two pores
observed diagonally below cervical flap and amphid (Fig. 4B). Cervical somatic setae in 8
groups of 2–3 around pharyngeal region a, roughly two cephalic capsule lengths below level of
cephalic capsule end (Fig. 4A, B). Some cervical setae partly possessing irregular lateral and
terminal processes, resembling penicillus or plumule (Figs. 4A, B). Somatic setae scarcely
distributed along the body in singles until tail region. Pharynx fairly long and annulated with
plasmatic lens-like interlayers and sinuous external contours, cardia triangular and going into the
middle of intestine. Metanemes not visible. Testes paired opposed, both ends situated to the right
of the intestine. Thick supplement, 18 μm long, 165 μm above from cloacal opening. Spicules
paired, bipartite, symmetrical, curved slightly and thick. Each spicule with distinct transverse,
oblique seam, dividing it distal and proximal portions (Figs. 5A, B). Distal portion shorter than
proximal portion. Distal portion slightly curved towards cloacal opening, anterior end with one
denticle just above and/away from its round pointy end. Proximal portion rather straight,
posterior end with a knob/neck-like constriction. Gubernaculum embracing spicules, shaped like
irregular triangle, lateral end which lies lateral to the spicule, almost perpendicular to axis of the
anus, even extending beyond distal end of spicule, and the other end arching off at an angle
towards the tail. Tail elongated and papilliform. 5 somatic setae in tail region. Caudal gland
protruded anterior to the anus, their nucleus-containing bodies located along the posterior
midgut. Spinneret well developed. 1 short caudal (terminal) setae (with porous) just above distal
end of tail.

Female (Fig. 3). Female generally longer and larger in size. Three lips higher in female,
edges of lips noticeably stronger in female, distal end aggressively curved, each lips carrying two
inner labial setae. No subtle sexual dimorphism found in setae in the head region, other than
shorter length outer labial and cephalic setae compared to male. Short knobs on each anterior end
of mandible. Female lacking cervical setae flap on cephalic capsule end. Amphid not observed.
Groups of cervical setae found in esophageal region in males are in singles as opposed to
doubles/trios (Fig. 5D). Vulva located at 55% of total body length with protruding lips.
Reproductive system didelphic amphidelphic, both ends flexed inwards. Both ovaries positioned
left of the intestine, antidromously reflexed. Tail conico-cylindrical, 3 somatic setae in tail region with no apparent caudal setae.

Diagnosis: *Mesacanthion*. Body length 2700–4630 μm. Cuticle finely striated along the body, smooth only in cephalic capsule region, head set off with cephalic capsule. Metanemes not visible. Six inner labial setae 8–15 μm. Six longer outer labial setae 36–59 μm, four shorter cephalic setae 18–34 μm long sharing one crown. Buccal cavity armed with mandible and three teeth. Mandible consisting of two rods distancing from one another anteriorly joined by anterior rod. Lateral edges of each rod with teeth or denticle pointing to the lumen. Buccal cavity 37–61 μm long. 8–9 groups of cervical setae in groups of two to three at stoma region. Cervical setae in single groups in females. Males with testis paired and opposed. Spicule paired, symmetrical, slightly curved, divided into two portions by a seam. Distal portion shorter than proximal. Proximal portion with knob/neck-like end. Gubernaculum paired, shaped like an irregular triangle with caudal apophysis, distal end extending beyond spicules and ventrally towards cloacal opening. Precloacal supplementary organ present. Three to four somatic setae distributed along the tale. Tail conico-cylindrical, c’ 4–5.7, cylindrical portion of the tail constituting about 30% of the entire tail length.

Differential diagnosis: Total of 23 species of *Mesacanthion* with spicules shorter than 2 abd were examined. Species such as *M. arcuatile*, *M. conicum* and *M. cricetoides* were omitted from examination due to the fact that only female was ever described. Also, species with asymmetrical spicules (anisomorphic and anisometric) were omitted even if the shorter spicule is shorter than 2 abd, since Gagarin & Klerman (2006) already provided a key for those group of species. *M. tenuicaudatum* which most likely does have spicules shorter than 2 abd, is also omitted from examination and pictorial key as there are no depiction of the specimen available. Description also lacks information regarding gubernaculum, measurements of anal body diameter and length of all setae, making it not feasible for comparison. Lastly, *M. virile* is included for analysis, despite its lack of information on abd. Although it cannot be confirmed that it possesses spicules which are shorter than 2 abd, given the length of spicule and other relative body measurements, it is likely that this species belongs to this group.

The new species is most similar to *M. pannosum* as they both share striking resemblance in overall morphology. They both have spicules shorter than 2 abd with presence of both supplementary organ and gubernaculum. Index value of both species (a and c) are within range to each other as well. Most interesting character shared by the two species is the presence of modified/transformed cervical setae seen as a flap. This flap-like appendage is seen as inverse triangle just below a single outer labial seta (lateral seta), at the end of cephalic capsule. It was first observed by Wieser (1959) in males of *M. pannosum* and it has been a character unique to the species until it now. Like *M. Pannosum*, the flap is also observed only in males of the new species, and the morphology is in line with those previously seen in *M. pannosum*. The only
difference concerning the flap between the two species is that *M. pannosum* had two flaps next to each other, but only a single flap is seen in the new species (Fig. 4B).

The new species differs from *P. pannosum* by having stronger (stout) inner labial setae; longer outer labial setae (43–59 µm vs. 24–25 µm, respectively); difference in the index value of b and c’ (4.5–5 vs. 6.3 and 4.0–5.7 vs. 3, respectively); type of spicules (unipartite vs. bipartite with seam, respective).

The validity of diagnostic value in presence or absence of a seam (bipart spicule), can be questionable considering it is an ambiguous character and could be mistaken from a diffraction caused by a large gubernaculum. Due to this reason, the seam was not given a significant importance in the diagnosis of species within the genus, but the character and species which bear it are still discussed for reference.

Total of four species within the genus *Mesacanthion* have paired bipartite spicules: *M. audax*, *M. ditlevseni*, *M. infantile*, and *M. jejuensis* sp. nov. They all have spicules which are shorter than 2 abd, but *M. audax* is most easily distinguished from the other three species by its lack of supplementary organ. While the three species have supplementary organ, the new species resembles *M. ditlevseni* the most. They both have stout inner labial setae with presence of both supplementary organ and triangular gubernaculum. Their index value (a, b, and c’) are also within range from one another. The new species can be distinguished by its proportionally longer cephalic setae (in which is double the length of cephalic setae observed in *M. ditlevseni*); presence of cervical flap in new species; dense distribution of cervical setae in groups of doubles/trios below at stoma region in male; differing details to its spicules and gubernaculum.

The spicule of the new species is different from *M. ditlevseni* in that distal portion of the spicule is shorter than proximal portion where vice versa is true for *M. ditlevseni*. This is peculiar characteristic unique to the new species, as all bipartite spicules found in *Mesacanthion* species have longer distal portion over proximal portion. We believe that diagnostic value of modified cervical setae flap is greater than bipartite spicule (spicule with seam) in terms of ambiguity. Therefore, the species most similar to the new species is considered to be *M. pannosum*.

Etymology: The species name *jejuensis* is given as the species was discovered from coast Jeju Island, South Korea.

Pictorial key to species with spicules shorter than 2 anal body diameter within the genus *Mesacanthion* and morphometric values for valid species of *Mesacanthion*

Key to species with spicules shorter than 2 anal body diameters within the genus *Mesacanthion*

1. Supplementary organ present in males … 5
- Supplementary organ absent in males … 2
2. Stout post-cloacal setae present … *M. africanthiforme*
3. Tail conico-cylindrical … *M. karense*
4. Tail long (c =14–19) with typical stoma … *M. audax*
5. Gubernaculum present in males … 11
6. Body length over 3000 µm … 7
7. Several cervical setae at cephalic capsule with spicules arrow shape with sharp distal end …
8. *M. agubernatus*
9. No cervical setae at cephalic capsule with simple spicules slightly curved with blunt distal end … *M. studiosum*
10. Mandible decorated by longitudinal marks … *M. rigens*
11. Somatic setae absent … *M. proximum*
12. Dorsal tooth missing … *M. monhystera*
13. Gubernaculum triangular … 15
14. Subventral setae absent … 14
15. Subventral setae present … 18
16. Subventral setae present … 15
17. Gubernaculum simple with dorsal appendage … *M. marisalbi*
18. Gubernaculum with two parts; membranous part and rod-like part which supports it caudally with barbed tip … *M. virile*
19. Gubernaculum with just one part … 16
20. Spicule bipartite … *M. ditlevseni*
21. Spicule unipartite … 17
22. Subcephalic setae absent, supplementary organ 2.2 abd away from anus … *M. breviseta*
23. Four subcephalic setae very thin near end of cephalic capsule, supplementary organ 3 abd away from anus … *M. lucifer*
24. Proximal end of spicule with massive process … *M. fricum*
25. Proximal end of spicule without massive process … 19
26. Distal end of spicule with backwardly pointing spines … *M. audax*
Discussion

The genus *Mesacanthion* currently consist of 39 valid species. Of these valid species, *Mesacanthion ungulatum* Wieser, 1953 is most ambiguous in terms of validity. The species was erected from a description based on only two juvenile specimens, with reasoning that the species in question bears extremely long labial setae and high lips. While there is no problem with the validity according to the International Code of Zoological Nomenclature, since a new species can be described at any life stage, it is ambiguous nonetheless in its current state as its distinguishing characters for the species is no longer unique to the species. Labial setae in *M. ungulatum* is noted to be extremely long, measuring to be 15 µm might have been lengthy for the genus at the time of original description, but currently compared to other species within the genus, it is quite average in length. *Mesacanthion arabium* Warwick, 1973 bears labial setae measuring from 23–25 µm, albeit its overall longer body length. Even when comparing proportionally to body length, *Mesacanthion fricum* Inglis, 1966 (body length 1650 µm/length of inner labial setae 13 µm) and *Mesacanthion hirsutum* Gerlach, 1953 (1155–1982 µm/8–14 µm) have longer proportioned inner labial setae than *M. ungulatum* (2250–2430 µm/15 µm). The only characteristic discerning this species from the rest is then by its high lips, but even that is questionable, considering later described species such as *Mesacanthion alexandrinus* Nicholas, 1993, while it does not mention in the description, depict just as high lips as shown in *M. ungulatum*. It would be appropriate to consider this a synonymization case, and find a species described after *M. ungulatum* which is most similar to follow the Principle of Priority.

Unfortunately, remaining characteristics of *M. ungulatum* is very generic to the genus and the fact that there is no male to compare its spicules, gubernaculum and supplementary organ which can be unique to each species, no further action can be taken other than to place it as species in inquirendum. There is however 18S ribosomal RNA gene, partial sequence of *M. ungulatum* available on GenBank. It seems that the sample specimen was obtained from Chile, the type locality, so there is high probability that more information can be gathered regarding adult stage of this species. Hopefully someone can review the species with a sound adult specimen to clear this species of its current status.

Diagnosis of the genus *Mesacanthion* provided by Smol et al. 2014, was updated in this study based on our review and findings. The original diagnosis specifically states that spicules...
are generally short, but if long, gubernaculum with caudal apophysis is to be present. This is true in most cases, but with exceptions in species such as *M. brevista*, which has one of the longest spicules in the genus (165 µm) with no gubernaculum at all, and *M. arabium*, which has a pair of short spicules (24 µm) bearing a triangular gubernaculum which resembles a caudal apophysis.

In addition, accounts for different types of spicules were added (symmetric/asymmetric, bipartite, etc), so that later encounters of new species with bipartite spicules is not simple mindedly mistaken as *Paramesacanthion* as opposed to *Mesacanthion*, as was the case with us.

The morphology of the spicule is especially diverse in the genus *Mesacanthion*. Spicules which come in a pair can be either short or long/symmetrical or asymmetrical/straight, L-shaped or arcuate in shape. Spicules, if long can be anisomorphic and/or anisometric and can be bipartite or in whole. The part of it being bipartite can be perplexing when it comes to species identification, as it can lead to wrongful placement of the species to the related genus *Paramesacanthion*. Diagnosis of *Paramesacanthion* provided by Smol et al. 2014 specifically mentions its distinguishing characteristic is “spicules consisting of two portions, distal and proximal, articulating with each other”, while diverse nature of spicules in *Mesacanthion* is missing in its diagnosis. Even while knowing some spicules in *Mesacanthion* can be bipartite, it is imperative to put emphasis into the word “articulating” in diagnosis of *Paramesacanthion* species’ two portioned spicules. Most spicules of the genus *Paramesacanthion* clearly depict the two portions and its articulation from one another (i.e. Knee joint). While some species like *P. marei*, does not clearly show the articulation much like bipartite spicules found in *Mesacanthion*, they too can be distinguished as a *Paramesacanthion* species by its: 1. Outer labial and cephalic setae in front of anterior end of cephalic capsule and 2. Subcephalic setae at middle of cephalic capsule. *Paramesacanthion* species bear an extra ring of subcephalic setae which can be confused with the true cephalic setae of *Mesacanthion* species. Wieser (1953) specifically mentioned this when erecting the genus, not to confuse “the subcephalic setae of the male with the true cephalic setae since the former occupy that level of the head on which in *Mesacanthion* the insertion of the cephalic setae takes place” (p.80). As such, the new species has a paired spicule which are symmetric from one another. They are bipartite with distal portion slightly shorter than proximal part. Distal and proximal is divided by a seam which seems to thicken or “arm” around the distal portion of the spicule. Proximal end arcuate and distal end set with pointing spine or a “barb”.

Metanemes are one character which was surprisingly not observed within the new species. While no species belonging to *Mesacanthion* have yet been described to date with description or depiction of metanemes, orthometaneme of dorsolateral kind was expected to be present within the new species prior to inspection. Diagnosis of the family Thoracostomopsidae Filipjev, 1927 (according to Smol et al. 2014) specifically states “only dorsolateral orthometanemes with a robust scapulus but no caudal filament”. Species belonging to *Mesacanthion*’s most closely related genus, *Paramesacanthion abyssorum* Bussau 1995, was also recorded with presence of dorsolateral orthometanemes. Not only that, “coffee bean shaped epidermal glands” which were sighted alongside dorsolateral orthometanemes in *P. abyssorum*
are very much present within the new species as well (Figs. 2A, 3A). Given that orthometanemes are subtler in their appearance compared to loxometanemes, it is quite possible that even other species of *Mesacanthion* already described, could have had them present. Despite it being more difficult to spot in older types due to their conditions, it’ll be important for future descriptions of any species belonging to the family Thoracostomopsidae to identify their metanemes.

After discovering the new species, the type locality was visited twice more in August and November of 2018, to obtain alcohol samples of the specimen for molecular analysis. While the efforts were unfortunately fruitless until now, we are hopeful that we will get the required specimen for additional molecular analysis in the future. It’ll be interesting to compare the relationship between close related species by the means of molecular phylogenetic data.

Conclusion

The discovery of *Mesacanthion jejuensis* sp. nov., has led to number of findings: (1) the new species closely related to *M. pannosum*, in terms of general morphology (bearing precloacal supplementary organ and gubernaculum) and having modified cervical setae flap. (2) the new species, like three other species within the genus (*M. audax*, *M. ditlevseni*, *M. infantile*), has a pair of bipartite spicule. (3) the diagnosis of the genus *Mesacanthion* has been updated to account for diverse nature of spicules. (4) the genus *Mesacanthion* has been reviewed and revised, transferring two species, *M. brachycolle* and *M. ungulatum* to species inquirenda, updating the total number of valid species to 39 species. While we were unable to obtain genetic data for the new species, further efforts will be made in order to investigate the phylogenetic relationship and placement of species within the genus *Mesacanthion*.

Acknowledgements

We thank Vadim Mokievsky (P.P. Shirshov Institute of Oceanology) and Jungho Hong for helping with the field work to collect samples on June 2018. We also Ana Carolina Vilas-Boas and one anonymous reviewer for their careful reading of our manuscript which greatly improved this manuscript.

References

Allgén, C.A. (1929) Neue freilebende marine Nematoden von der Westküste Schwedens. *Zoologische Jahrbucher (Systematik)*, 57 (5), 431–496.

Allgén, C.A. (1930) Über eine neue Art des Genus *Enoplolaimus* de Man, *Enoplolaimus gracilisetosus* von der Macquarieinsel. *Zoologischer Anzeiger*, 92, 189–191.

Allgén, C.A. (1932) Weitere Beiträge zur Kenntnis der marinen Nematodenfauna der Campbellinsel. *Nyt Magasin for Naturvidenskaberne*, 70, 97–198.

Allgén, C.A. (1935) Zur Kenntnis norwegischer Nematoden. V. Weitere neue oder wenig bekannte freilebende marine Nematoden aus der Strandzone bei Tarva. *Det Kongelige Norske Videnskabers Selskab Forhandlinger*, 8 (15), 47–50.
Allgén, C.A. (1947) West American Marine Nematodes. (Papers from Dr. Th. Mortensen’s
Pacific Expedition 1914-16. 75). Videnskabelige Meddelelser Dansk Naturhistorisk
Forening i Kjøbenhavn, 110, 65–219.

Allgén, C.A. (1951) Pacific Freeliving Marine Nematodes. (Papers from Dr. Th. Mortensen’s
Pacific Expedition 1914-16. LXXVI). Videnskabelige Meddelelser Dansk Naturhistorisk
Forening i Kjøbenhavn, 113: 263–411.

Allgén, C.A. (1954) Freeliving marine nematodes from East Greenland and Jan Mayen (The
Swedish Greenland Expedition 1899). Meddelelser om Grønland, 107 (6), 1–44.

Allgén, C.A. (1959) Freeliving marine nematodes. Further zoological results of the Swedish
Antarctic expedition 1901–1903, 5 (2), 1–293.

Allgén, C.A. (1960) Antarktische meistens neue freilebende marine Nematoden aus dem
Graham-Land. Zoologischer Anzeiger, 164, 474–499.

Barnes, N., Kim, H. & Lee, W. (2012) New species of free-living marine Sabatieriinae
(Nematoda: Monhysterida: Comesomatidae) from around South Korea. Zootaxa, 3368,
263-290. https://doi.org/10.11646/zootaxa.3368.1.14

Bezerra, T.N., Decraemer, W., Eisendle-Flöckner, U., Hodda, M., Holovachov, O., Leduc, D.,
Miljutin, D., Mokievsky, V., Peña Santiago, R., Sharma, J., Smol, N., Tchesunov, A.,
Vencky, V., Zhao, Z. & Vanreusel, A. (2019) Nemys: World Database of Nematodes.
Accessed from: http://nemys.ugent.be (accessed 26 May 2019)
https://doi.org/10.14284/366

Boucher, G. (1977) Nématodes des sables fins infralittoraux de la Pierre Noue (Manche
occidentale). IV. Enoplida. Bulletin du Muséum National d’histoire naturelle, Zoologie,
325, 733–752.

Burgess, R. (2001) An improved protocol for separating meiofauna from sediments using
colloidal silica sols. Marine Ecology Progress Series, 214, 161–165.
https://doi.org/10.3354/meps214161

De Coninck, L.A. & Schuurmans Stekhoven, J.H. (1933) The freeliving marine nemas of the
Belgian Coast. II With general remarks on the structure and the system of nemas.
 Mémoires du Musée royal d'histoire naturelle de Belgique, 58, 3–163.

de Man, J.G. (1876) Onderzoekingen over vrij in de aarde levende Nematoden. Tijdschrift
Nederlandsche Dierkundig Vereening, 2, 78–196.

de Man, J.G. (1893). Cinquième Note sur les Nématodes libres de la mer du Nord et de la
Manche. Mémoires de la Société zoologique de France, 6, 81–125.

Ditlevsen, H. (1918) Marine freeliving nematodes from Danish waters. Videnskabelige
Meddelelser fra Dansk Naturhistorisk Forening i Kjøbenhavn, 70, 147–214.

Ditlevsen, H. (1928) Free-living marine Nematodes from Greenland Waters. Meddelelser om
Grønland Supplement, 27, 199–250.

Ditlevsen, H. (1930) Marine free-living nematodes from New Zealand. Videnskabelige
Meddelelser fra Dansk Naturhistorisk Forening i Kjøbenhavn, 87, 201–242.
Filipjev, I.N. (1918) Free-Living Marine Nematodes of the Sevastopol Area. Transactions of the Zoological Laboratory and the Sevastopol Biological Station of the Russian Academy of Sciences. Series II, N4, (Issue I & II). (Translated from Russian).

Filipjev, I.N. (1927) Les Nematodes libres des mers septentrionales appartenant a la famille des Enoplidae. Archiv für Naturgeschichte, 91A (6), 1–216.

Gagarin, V.G. & Klerman, A.K. (2006) Two new species of Mesacanthion Filipjev, 1927 (Nematoda: Enoplida) from the Mediterranean Sea. Nematology, 8 (4), 533–538.

https://doi.org/10.1163/156854106778614001

Galtsova, V.V. (1976) Free-living marine nematodes as a component of the meiobenthos of Chupa Inlet of the White Sea. Issledovanija fauni morjei (Nematody i ikh Rol’ v Meiobentose), 17 (25), 165–272 (in Russian).

Gerlach, S.A. (1953) Die Nematodenbesiedlung des Sandstrandes und des Küstengrundwassers an der italienischen Küste I. Systematischer Teil. Archivio Zoologico Italiano, 37, 517–640.

Gerlach, S.A. (1954) Nématodes marins libres des eaux souterraines littorals de Tunisie et d’Algérie. Vie Milieu, 4 (2), 221–237.

Gerlach, S.A. (1956) Die Nematodenbesiedlung des tropischen Brandungsstrandes von Pernambuco. Brasilianische Meeres-Nematoden II. Kieler Meeresforsch, 12, 202–218.

Gerlach, S.A. (1957a) Die Nematodenfauna des Sandstrandes an der Küste von Mittelbrasilien (Brasilianische Meerse-Nematoden IV). Mitteilungen aus dem Zoologischen Museum in Berlin, 33 (2), 411–459.

Gerlach, S.A. (1957b) Marine Nematoden von der Kongo-Mündung. Bulletin del’Institut Royal des Sciences Naturelles de Belgique, 33 (28), 1–16.

Gerlach, S.A. (1958a) Deuxième contribution à la faune des Nématodes des eaux interstitielles littorales de Madagascar. Mém. Inst. scient. Madagascar, (F) 2, 343–365.

Gerlach, S.A. (1958b) Die Nematodenfauna der sublitoralen Region in der Kieler Bucht. Kieler Meeresforsch, 14, 64–90.

Gerlach, S.A. (1967) Freilebende Meeres-Nematoden von dan Sarso-Inseln (Rotes Meer) 3. Beitrag der Arbeitsgruppe Litoralforschung. “Meteor” Forschungsergebnisse, Series D (2), 19–43.

Gerlach, S.A. & Riemann, F. (1974) The Bremerhaven checklist of aquatic nematodes. A catalogue of Nematoda Adenophorea excluding the Dorylaimida. Part 2. Veröffentlichungen des Instituts für Meeresforschung in Bremerhaven, Supplement 4, 405–736.

Hodda, M. (2007) Phylum Nematoda. Zootaxa, 1668, 265–293.

https://doi.org/10.11646/zootaxa.1668.1.14

Hong, J.H. & Lee, W. (2014) Two new species of free-living marine nematodes (Nematoda: Oncholaimida: Enchelidiidae) from Maemul Island, Korea. Zootaxa, 3785 (3), 419–437.

https://doi.org/10.11646/zootaxa.3785.3.5
Hong, J.H., Tchesunov, A.V. & Lee, W. (2016) Revision of Cervonema Wieser, 1954 and Laimella Cobb, 1920 (Nematoda: Comesomatidae) with descriptions of two species from East Sea, Korea. Zootaxa, 4098 (2), 333–357. https://doi.org/10.11646/zootaxa.4098.2.7

Hooper, D. (1986) Handling, fixing, staining and mounting nematodes. In: Laboratory Methods for Work with Plant and Soil Nematodes. Ministry of Agriculture, Fisheries and Food, Her Majesty’s Stationery Office, London, pp. 59–80.

Inglis, W.G. (1964) The marine Enoplida (Nematoda): a comparative study of the head. Bulletin of the British Museum (Natural History) Zoology, 11, 265–376.

Inglis, W.G. (1966) Marine nematodes from Durban, South Africa. Bulletin of the British Museum (Natural History) Zoology, 14, 81–106.

Jeong, R., Tchesunov, A.V. & Lee, W. (2019) A new species of the genus Thalassironus (Nematoda: Enoplida: Ironidae) from the coasts of South Korea. Zootaxa, 4563 (3), 516–530. https://doi.org/10.11646/zootaxa.4563.3.6

Kim, H., Tchesunov, A.V. & Lee, W. (2015) A new species of the genus Marylynnia (Nematoda: Chromadorida: Cyatholaimidae) from Gwangyang Bay, Korea. Proceedings of the Biological Society of Washington, 128 (4), 227–238. https://doi.org/10.2988/0006-324X-128.4.227

Mawson, P.M. (1956) Free-living nematodes. Section I: Enoploidea from Antarctic stations. B.A.N.Z. Antarctic Research Expedition Reports, Series B, 6 (3), 37–74.

Mawson, P.M. (1958) Free-living nematodes. Section 3: Enoploidea from subantarctic stations. B.A.N.Z. Antarctic Research Expedition Reports, Series B, 6 (14), 307–358.

Nicholas, W.L. (1993) Two new species of nematode (Nematoda: Enoplida: Thoracostomopsidae) from Lake Alexandrina, South Australia. Transactions of the Royal Society of South Australia, 117 (4), 163–170.

Platonova, T.A. & Galtsova, V.V. (1976) Nematodes and their role in the meiobenthos. Akad. Nauk (Zool. Inst.), Moscow, pp. 1–366., available online at https://archive.org/details/nematodestheirro00plat

Platt, H. & Warwick, R.M. (1983) Free-living Marine Nematodes. Part I. British Enoplids. In: Kermack, D.M. & Barnes, R.S.K. (Eds.), Synopses of British Fauna (New Series) n. 28, Cambridge University Press, Cambridge, pp. 307.

Riemann, F. (1966) Die interstitielle Fauna im Elbe-Aestuar. Verbreitung und Systematik, Archiv für Hydrobiologie, 31 (Supplement), 1–279.

Rho, H. & Min, W. (2011) Nematoda: Chromadorea: Desmodorida: Draconematidae. Marine dragon nematodes. Invertebrate Fauna of Korea, 13, 1–100.

Ssaweljev, S. (1912) Zur Kenntnis der freilebenden Nematoden des Kolafjords und des Relictensee Mogilnoje. Travaux de la Société (Impériales) des Naturalistes de Saint-Petersbourg, 43, 108–126.

Seinhorst, J. (1959) A rapid method for the transfer of nematodes from fixative to anhydrous glycerin. Nematologica, 4, 67–69. https://doi.org/10.1163/187529259X00381
Sergeeva, N.G. (1974) New Free-living Nematodes (Enoplida) from the Black Sea, Report 2
Novye Vidy Svobodnozhivushchikh Nematod Otriada (Enoplida) iz Chernogo Moria, Soobshchenie 2. Zoologicheskii Zhurnal, 53 (1), 120–125.

Shipley, A.E. (1896) Nemathelmintes. In: Harmer, S.F. & Shipley, A.E. (Eds) The Cambridge Natural History. Weldon & Wesley, Cambridge, pp. 123–185.

Smol, N. & Coomans, A. (2006) Order Enoplida. In: Eyalem, A., Traunspurger, W., Andrássy, A. (Eds), Freshwater Nematodes, Ecology and Taxonomy. CABI Publishing, Wallingford, Oxfordshire, pp. 225–292.

Smol, N., Muthumbi, A. & Sharma, J. (2014) 7.3 Order Enoplida. In: Schmidt-Rhaesa, A. (Ed.), Handbook of zoology. Gastrotricha, Cycloneuralia, Gnathifera. Vol. 2. Nematoda. De Gruyter, Berlin, pp. 193–249.

Southern, R. (1914) Nemathelminth, Kinorhyncha and Cheatognatha (Clare Island survey, part 54). Proceedings of the Royal Irish Academy, 31, 1–80.

Timm, R.W. (1961) The marine nematodes of the Bay of Bengal. Proceedings of the Pakistan Academy of Sciences, 1 (1), 25–88.

Vitiello, P. (1971) Nématodes nouveaux des vases terrigènes côtiers des côtes provençales. Téthys, 2, 859–876.

Warwick, R.M. (1970) Fourteen new species of marine nematodes from the Exe estuary. Bulletin of the British Museum (Natural History) Zoology, 19, 137–177.

Warwick, R.M. (1973) Free-living marine nematodes from the Indian Ocean. Bulletin of the British Museum (Natural History) Zoology, 25 (3), 85–117.

Wieser, W. (1953) Reports of the Lund University Chile expedition 1948–49: 10. Free-living marine nematodes I. Enoploidea. Lunds Universitets Årskrift 49 (6), 155 pp.

Wieser, W. (1959) Free-living nematodes and other small invertebrates of Puget Sound beaches. In: University of Washington Publications in Biology. Vol. 19. University of Washington Press, Seattle, pp. 1–179.
Tables

Table 1. Measurement of diagnostic morphological characters of *Mesacanthion jejuensis* sp. nov. Measurements are in μm where applicable, and morphometric values rounded.

Table 2. Comparison of diagnostic morphological characters of all *Mesacanthion* species. Species with spicules shorter than 2 anal body diameters marked with asterisk. Males only, morphometric values rounded.

Figures

Figure 1. Map of sampling locality. This map is made with QGIS software v.2.18.14, a free and open source geographic information system.

Figure 2. *Mesacanthion jejuensis* sp. nov. male. A. head, lateral view; B. tail, with spicule and gubernaculum; C. total view; D. bipartite spicules with triangular gubernaculum. Scale bars: 20 μm (A, B, and D) and 200 μm (C). Figure credit: Raehyuk Jeong.

Figure 3. *Mesacanthion jejuensis* sp. nov. female. A. head, lateral view; B. reproductive system with vulva protruding; C. total view; D. tail region with caudal glands; E. ventrosublateral mandible. Scale bars: 20 μm (A and D), 100 μm (B and C) and 10 μm (E). Figure credit: Raehyuk Jeong.

Figure 4. Scanning electron micrograph of *Mesacanthion jejuensis* sp. nov. A. male, head region, lateral view, groups of cervical setae in doubles/trios with irregular lateral and terminal processes; B. male, head region showing contour of cephalic capsule end and triangular cervical setae flap just posterior to lateral outer labial seta; C. male, cloacal opening with distal end of gubernaculum peeking out; D. female, head region, lateral view, single cervical seta.

Figure 5. *Mesacanthion jejuensis* sp. nov. (A and B, paratype). A. lateral view of male cloacal region, showing a seam separating spicules in distal and proximal portions; B. lateral view of male cloacal region, showing distal end of spicule and triangular gubernaculum embracing the spicule. Scale bars: 30 μm (A and B).

Figure 6. Pictorial key to species with spicules shorter than 2 anal body diameters within the genus *Mesacanthion*. A–D. species without supplementary organ with gubernaculum; E–J. species with supplementary organ without gubernaculum. Species with bipartite spicules marked with asterisk. Figure source: A. Warwick, 1970; B. Timm, 1961; C. Ditlevsen, 1930; D. Filipjev, 1927; E. Vitiello, 1971; F. Gerlach, 1967; G. Gerlach, 1967; H. Gerlach, 1957a; I. Gerlach, 1957a; J. Inglis, 1964.

Figure 7. Pictorial key to species with spicules shorter than 2 anal body diameters within the genus *Mesacanthion*. A–K. species with supplementary organ and gubernaculum. Species with bipartite spicules marked with asterisk. Figure source: A. Ditlevsen, 1918; B. Filipjev, 1927; C. Filipjev, 1927; D. Inglis, 1966; E. Mawson, 1958; F. Wieser, 1953; G.
Filipjev, 1927; H. Wieser, 1953; I. Platonova & Galtsova, 1976; J. Wieser, 1959; K. Ditlevsen, 1930.

Figure 8. Pictorial key to species with spicules shorter than 2 anal body diameters within the genus *Mesacanthion*. A–B. species with supplementary organ and gubernaculum along with triangular cervical setae flaps. Species with bipartite spicules marked with asterisk. Figure source: A. Wieser, 1959. Figure credit: B. Raehyuk Jeong.
Figure 1

Map of sampling locality.

This map is made with QGIS software v.2.18.14, a free and open source geographic information system.
Figure 2

Mesacanthion jejuensis sp. nov. male.

(A) Head, lateral view. (B) Tail, with spicule and gubernaculum. (C) Total view. (D) Bipartite spicules with triangular gubernaculum. Scale bars: 20 μm (A, B, and D) and 200 μm (C).

Figure credit: Raehyuk Jeong.
Figure 3

Mesacanthion jejuensis sp. nov. female.

(A) Head, lateral view. (B) Reproductive system with vulva protruding. (C) Total view. (D) Tail region with caudal glands. (E) Ventrosublateral mandible. Scale bars: 20 μm (A and D), 100 μm (B and C) and 10 μm (E). Figure credit: Raehyuk Jeong.
Figure 4

Scanning electron micrograph of *Mesacanthion jejuensis* sp. nov.

(A) Male, head region, lateral view, groups of cervical setae in doubles/trios with irregular lateral and terminal processes. (B) Male, head region showing contour of cephalic capsule end and triangular cervical setae flap just posterior to lateral outer labial seta. (C) Male, cloacal opening with distal end of gubernaculum peeking out. (D) Female, head region, lateral view, single cervical seta.
Figure 5

Mesacanthion jejuensis sp. nov. (A and B, paratype).

A Lateral view of male cloacal region, showing a seam separating spicules in distal and proximal portions. **B** Lateral view of male cloacal region, showing distal end of spicule and triangular gubernaculum. Scale bars: 30 μm (A and B).
Figure 6

Pictorial key to species with spicules shorter than 2 anal body diameters within the genus *Mesacanthion*.

A–D. species without supplementary organ with gubernaculum; E–J. species with supplementary organ without gubernaculum. Species with bipartite spicules marked with asterisk. Figure source: (A) Warwick, 1970. (B) Timm, 1961. (C) Ditlevsen, 1930. (D) Filipjev, 1927. (E) Vitiello, 1971. (F) Gerlach, 1967. (G) Gerlach, 1967. (H) Gerlach, 1957a. (I) Gerlach, 1957a. (J) Inglis, 1964.
Figure 7

Pictorial key to species with spicules shorter than 2 anal body diameters within the genus *Mesacanthion*.

A–K. species with supplementary organ and gubernaculum. Species with bipartite spicules marked with asterisk. Figure source: (A) Ditlevsen, 1918. (B) Filipjev, 1927. (C) Filipjev, 1927. (D) Inglis, 1966. (E) Mawson, 1958. (F) Wieser, 1953. (G) Filipjev, 1927. (H) Wieser, 1953. (I) Platonova & Galtsova, 1976. (J) Wieser, 1959. (K) Ditlevsen, 1930.
Figure 8

Pictorial key to species with spicules shorter than 2 anal body diameters within the genus *Mesacanthion*.

A–B. species with supplementary organ and gubernaculum along with triangular cervical setae flaps. Species with bipartite spicules marked with asterisk. Figure source: *(A)* Wieser, 1959. Figure credit: *(B)* Raehyuk Jeong.

M. pannosum
M. jejuensis sp. nov.*
Table 1 (on next page)

Measurement of diagnostic morphological characters of *Mesacanthion jejuensis* sp. nov.

Measurements are in μm where applicable, and morphometric values rounded.
Characters	♂ holotype	♂ (n=4) mean ± sd (range)	♂ (n=3) mean ± sd (range)
body length	3682	3401±476 (2703–3723)	3719±808 (3080–4627)
maximum body diameter	79	79±3 (76–82)	108±31 (80–141)
diameter at the level of cephalic setae	39	36±3 (32–39)	38±7 (34–46)
length of inner labial setae	12	13±2 (11–15)	12±1 (11–13)
length of outer labial setae	43	51±7 (43–59)	41±5 (38–47)
length of cephalic setae	28	28±7 (18–34)	25±1 (24–26)
distance from anterior to cephalic setae	19	15±4 (11–19)	16±4 (13–21)
width at cephalic capsule end	42	43±2 (41–45)	45±7 (40–53)
length of cephalic capsule	29	28±2 (25–30)	30±5 (26–36)
buccal cavity length	50	44±5 (37–50)	44±6 (38–49)
distance from nerve ring from anterior end	212	202±28 (161–220)	204±9 (194–209)
pharynx (oesophagus) length	731	706±74 (598–764)	706±16 (687–715)
corresponding body diameter at pharynx	76	76±2 (74–78)	97±23 (76–122)
cardia length	21	23±2 (21–25)	23±4 (18–26)
tail length	287	275±44 (209–304)	286±8 (257–342)
anal body diameter	50	54±4 (50–60)	58±12 (48–71)
c’	5.7	5.1±0.8 (4.5–5.7)	4.9±0.4 (4.6–5.4)
length of conical tail	223.0	209±35 (157–229)	227±40 (203–273)
length of cylindrical tail	64	66±11 (52–78)	59±9 (52–69)
cylindrical tail length portion as percentage of tail length	0	0.3±0 (0.3–0.3)	0.3±0 (0.3–0.3)
spicule length as arc	76	79±6 (72–85)	n/a
spicule length as arc / anal body diameter	1.5	1.5±0.1 (1.4–1.6)	n/a
length of gubernaculum	50	45±5 (39–50)	n/a
supplementary organ length	18	15±3 (10–18)	n/a
distance from cloacal opening to supplementary organ	165	160±16 (136–171)	n/a
distance from anterior end to vulva	n/a	n/a	2027±459 (1685–2549)
corresponding body diameter at vulva	n/a	n/a	108±31 (80–141)
distance from anterior end to vulva as percentage of total body length	n/a	n/a	54±1 (54–55)
a	46.6	43.1±5.1 (35.6–46.6)	34.9±3.1 (32.8–38.5)
b	5	4.8±0.2 (4.5–5)	4.6±0.2 (4.5–4.8)
c	12.8	12.4±0.6 (11.7–12.9)	12.9±0.8 (12–13.5)

Table 1. Measurement of major morphological characters of *Mesacanthion jejuensis* sp. nov.

Measurements are in μm where applicable, and morphometric values rounded.
Table 2 (on next page)

Comparison of diagnostic morphological characters of all *Mesacanthion* species.

Species with spicules shorter than 2 anal body diameters marked with asterisk. Males only, morphometric values rounded.
Species	Body length [µm]	Length of Setae	Spicule length [µm] (spicule length as arc/abd) left/right if applicable	Spicule type	Gubernaculum (length [µm])	Supplementary organ/papilla distance from cloacal opening [µm] (supplementary organ distance from cloacal opening/abd)																								
Mesacanthion africanathiforme	2370–4490	a 65.8–81.8	20–33 (0.6–0.7 calc)	symmetrical/unipartite	present (10–13)	absent																								
(Warwick, 1970*)		b 4.1–5.4																												
		c 16–19.6																												
		c' 4.5–4.9 calc																												
		Inner labial																												
		Setae																												
Mesacanthion africanum	3345	33	85/180 (1.2/2.5 calc)	asymmetrical/bipartite/ striated	present (53/44)	present (88)																								
(Gerlach, 1957)		6.1																												
		12.6																												
		3.7																												
		6.5																												
		15																												
Mesacanthion agubernatus	3120	34.6	41 (0.9)	symmetrical/unipartite	absent	present (155)																								
Vitiello, 1971*		3.7																												
		21.5																												
		3.2																												
		8																												
		14–19																												
Mesacanthion alexandrinus	1450–2460	33–43	79–86 (2.5–3.6)	asymmetrical/unipartite	present (not measured)	present (64–70)																								
Nicholas, 1993		3.1–3.6																												
		14–22																												
		3.4–4.5																												
		12–13																												
		27–29/12–16																												
Mesacanthion arabium	5780–6250	30.4–37.0	570–610 (6.2–6.8 calc)	unclear/unipartite/ striated	present (120–127)	present (220–230)																								
Warwick, 1973		4.8–5.2																												
		16.1–18.4																												
		3.7–3.9 calc																												
		23–25																												
		56–65/27–32																												
Mesacanthion arcuatile	no male described or measured																													
Wieser, 1959																														
Mesacanthion armatum	1630–1940	23–51.1	141 (1.4 calc)	symmetrical/unipartite	present (not measured)	absent																								
Timm, 1961*		4.5–5.7																												
		43.2–51																												
		1.5–2																												
		5																												
		14/9																												
Mesacanthion audax	3700	57	143 calc (1.8)	symmetrical/bipartite	present (not measured)	present (178)																								
(Ditlevsen, 1918) Filipjev,		4.8																												
1927*		14.5																												
		3.2																												
		not measured																												
		not measured																												
		143 calc (1.8)																												
Species	Filippov (Year)	Gerlach & Riemann (Year)	Description	Metric Details	Symmetry	Bipa	Striation	Remarks																						
----------------------------	----------------	--------------------------	-------------	----------------	----------	------	-----------	---------																						
Mesacanthion banale	1927	Gerlach & Riemann, 1974	no male described or measured																											
Mesacanthion brachycolle	1959		no male described or measured																											
Mesacanthion breviseta	1927	Gerlach & Riemann, 1974	3960 23 4 12 3 calc 10 20/15 165 (1.5) symmetrical/unipar tite present (60) absent																											
Mesacanthion cavei	Inglis, 1964		4200 38.2 4.2 17.5 3.75 calc 13 59/35 510 (8.0 calc) symmetrical/unipar tite present (38) present (161)																											
Mesacanthion ceenom	Inglis, 1964		3900 41.7 4.9 13.5 5.8 calc 59 not measured/mention ed 430 (9.0 calc) symmetrical/unipar tite present (31) present (121)																											
Mesacanthion conicum	Filipjev, 1927		no male described or measured																											
Mesacanthion cricetoides	Wieser, 1959		no male described or measured																											
Mesacanthion diplechma	Filipjev, 1927	Gerlach & Riemann, 1974	3330–3980 39.8–43.8 5.4–5.9 12.6–14.8 4.0–4.6 calc 11 45–35– 95 (1.2 calc)500–598 (7.8 calc) asymmetrical/bipar tite/striped present (not measured) present (80)																											
Mesacanthion ditlevensi	Filipjev, 1927	Gerlach & Riemann, 1974	3580–6250 31.2–38 4.3–5.7 14–17.9 3.4–4.8 calc 12–16 21–26/not measured 87–100 (1.4–1.8) symmetrical/bipar tite present (43–47) present (155–172 calc)																											
Mesacanthion fricum	Inglis, 1966*		1650 42.3 3.75 9.07 calc 5.05 13 96/51 40 (1.1 calc) symmetrical/unipar tite small/"uncertain" small/"uncertain" present (78)																											
Species	Length Range	Diameter Range	Height Range	Comments	Specimens	Description	Presence	Notes																						
------------------------------------	--------------	----------------	--------------	----------	-----------	-------------	----------	-------																						
Mesacanthion heterospiculum	2394–2598	23.7–23.9	4.4–4.6	not measured	6.2	not measured	109/54 (2/1)	asymmetrical/striated	present (19)	present (35)																				
Mesacanthion hirsutum	1155–1532	40–49	3.4–3.9	9–12	4.3–6.1	calcite	8–14	22–24/14	21–33 (1.3)	symmetrical/unipartite	absent	present (45–100)																		
Mesacanthion infantile	3230–5400	23.7–24.8	4–4.7	14.0–19	2.5–3	10–15	36–54 calc/~20–35	112 calc (abd not given or depicted)	symmetrical/bipartite	present (not measured)	absent																			
Mesacanthion karense	1750	35–39	4.5–4.9	12–16	4.1–6	10	33–36/24–26	24 (1)	symmetrical/unipartite	present (14)	not described, not depicted																			
Mesacanthion kerguelense	3500–9000	20.5–40	3.5–5.7	25–26	1.3–1.5	8	40–50/25–30	150–200 (1.9 calc)	symmetrical/unipartite	present (not measured)	present (proximal end of spicule)																			
Mesacanthion longispiculum	2228–2575	49–55	3–3.3	18–25.8	2.7–3.8	11–17	33–38/13–16	75–143 (3.0–4.0 calc)	symmetrical/unipartite	not described, not depicted	present (87–90)																			
Mesacanthion longissimesetosum	3260–4270	29.2–31.7	5.1–5.3	11.1–13.2	4.2–4.5	12	65–70/40	83 (1.1)	symmetrical/unipartite	present (39)	present (166)																			
Mesacanthion lucifer	4390	26–30	4.3–4.6	10.7	4.1 (calc)	10	22–23	155 (1.5)	symmetrical/unipartite	present (55)	present (~300)																			
Mesacanthion majus	2840–3170	26.0–33.9	4.2–4.9	11.7–12.8	4–4.3	11.5–12	40/26	80 (1.35)	symmetrical/unipartite	present (27)	present (134)																			
Mesacanthion marisalbi	2992–4037	45.4–52.4	4.3–5.5	16–20.1	4.4–4.6	(calc)	56.7 (1.4 calc)	symmetrical/unipartite	present (21.6)	present (126.9)																				
Species	Log10	Mid Log	Width	Length	Width	Log10	Length	calc	symmetrical/uniparite	rtite	absent	present	Symmetry	Asymmetry	Calc	Bipartite	Striated	Present	Calc	Bipartite	Striation	Present	Calc	Bipartite	Striation	Present	Calc	Bipartite	Striation	Present
-------------------------------	-------	---------	-------	--------	-------	-------	--------	------	------------------------	-------	--------	---------	------------	------------	------	-----------	----------	---------	------	-----------	----------	---------	------	-----------	----------	---------				
Mesacanthion monhystera	1833	48	3	9.6	6.3	12–13	23–25/9–10	25 (0.8 calc)	symmetrical/uniparite	rtite	absent	present (85)																		
Mesacanthion obscurum	2163–3148	19–32	3.5–5.2	12.4–18.1	3.0–4.2	7–10	37–43/23–27	70–81/269–310 (1.4/5.2 calc)	asymmetrical/biparite/striped	present (28–35)	present (36–59)																			
Mesacanthion pali	2160	54	3	15.4	2.8	24	84/8	62 (1.3 calc)	symmetrical/uniparite	present (26)	present (78)																			
Mesacanthion pannosum	4100	41	6.3	13.7	3	11–12	24–25/22	135 (1.5 calc)	symmetrical/uniparite	present (66)	present (180)																			
Mesacanthion propinquum	2076–2674	19–30	4.0–5.1	10.8–15.8	2.7–4.5	4.0–4.5	11–15/7.0–8.5	70–77/239–308 (1.2/4.2 calc)	asymmetrical/biparite/striped	present (26–30)	present (28–31)																			
Mesacanthion proximum	1340	54	3	9.6	7–8	11	20/7–10	20 (1.1)	symmetrical/uniparite	absent	present (46)																			
Mesacanthion rigens	1680	52	3	14.6	4	8	25/8	25 (0.9)	symmetrical/uniparite	absent	present (70)																			
Mesacanthion southerni	3280–3900	32.1–33.9	5.6–5.8	14.4–14.9	4.2–4.5	12	57/39–48	67–80/290–320 (1.2–1.5/5.3–5.6 calc)	asymmetrical/biparite/striped	present (40–51)	present (82–100)																			
Mesacanthion studiosum	5500–5900	48.3–53.7	4.1–4.3	16.0–18.7	4.1–4.8	19–20	48–50/18–20	68–81 (0.9–1.0 calc)	symmetrical/uniparite	absent	present (129–159)																			
Mesacanthion tenuicaudatum	6000	45–50	5	22	not measured	not measured	not measured	45 (adn not given or depicted)	no depiction ("chitinized")	"unclear"	present (~22.5)																			
Table 2. Comparison of diagnostic morphological characters of all *Mesacanthion* species. Species with spicules shorter than 2 anal body diameters marked with asterisk. Males only, morphometric values rounded.

Species	Length (mm)	Width (mm)	Height (mm)	Spicules	Symmetry	Spicules Depicted	Remarks			
Mesacanthion virile	4400	25	5	17	not measur ed	16 calc	50–61 calc	symmetrical/unipartite	present (not measured)	present (232 calc)
Mesacanthion jejuensis	2703–3723	35.6–46.6	4.5–5	11.7	4.0–5.7	11–15	43–59/18–34	symmetrical/bipartite	present (39–50)	present (136–171)