Experimental Research

Laparoscopic procedures impact on mast cell mediators, extracellular matrix and adhesion scoring system in rats

Hery Poerwosusanta, Gunadi, Ika Kustiyah Oktaviyanti, Nia Kania, Zairin Noor

Department of Surgery, Faculty of Medicine, Universitas Lambung Mangkurat, Banjarmasin, South Kalimantan, Indonesia

Media Research

Laparoscopic procedures under certain pressure have the potential to cause intra-abdominal adhesions. However, the pathomechanism of this disorder is unknown. Release of mast cell mediators due to mast cell degranulation is thought to be the cause. Materials and methods: Thirty male Sprague-Dawley rats were grouped into five groups (n = 6 per group): one control group and four intervention groups to which 60 min insufflation was performed using carbon dioxide at 5, 8, 10 and 12 mmHg. Seven days after laparoscopy, we euthanized and evaluated the levels of histamine, tryptase, and chymase in peritoneal fluid, the thickness of ECM of peritoneal tissue, and intraabdominal adhesion scoring system. Results: Histamine and tryptase levels in peritoneal fluid were significantly higher at the 10- and 12 mm Hg intervention compared to control (histamine: 0.50 ± 0.41 vs. 0.41 ± 0.04 ng/mL, respectively; and tryptase: 0.69 ± 0.05 vs. 0.48 ± 0.02 ng/mL, respectively). The ECM was significantly thicker in the intervention groups at 10- and 12 mm Hg compared to control (71.3 ± 66.7 vs. 48.4 ± 34.5 μm, respectively). Moreover, the intra-abdominal scoring was also significantly higher in the intervention groups at 10- and 12 mm Hg compared to control (4.5 ± 4 vs. 4.5 ± 4 vs. 0, respectively). Conclusions: Laparoscopic procedures increase the release of mast cell mediators in peritoneal fluid, the thickness of ECM and intraabdominal adhesion scoring in rats, implying that it might increase the possibility of intra-abdominal adhesion in humans.

1. Introduction

Carbon dioxide (CO₂) insufflation in laparoscopy procedures causes mesothelial morphological changes, structure damage, and the risk of intra-abdominal adhesion. Tissue damage triggers the inflammatory response, mast cell infiltration, and degranulation that are believed to stimulate adhesion. The study about the effect of mast cell mediators on the intra-abdominal adhesion pathomechanism is still rarely conducted.

Mast cells are specific, mature in the tissues, and form 10% of the mesothelium immune cell population. Laparoscopic procedures cause mast cell infiltration and degranulation. The release of histamine, tryptase, and chymase due to mast cell degranulation are presumed to play a role in intra-abdominal adhesion. Our objective was to determine the impact of the laparoscopic procedure on 1. mast cell mediators’ level, including histamine, tryptase, and chymase; 2. the

Keywords:
- Laparoscopy
- Mast cell mediators
- Histamine
- Protease
- Extracellular matrix thickness
- Intra-abdominal adhesion

Abbreviations:
- ATP, Adenosine triphosphate
- CRAC, Calcium release-activated channels
- CO₂, Carbon dioxide
- DAMPs, Damage Associated Molecular Patterns
- DNA, Deoxyribonucleic acid
- ELISA, Enzyme-linked-immunosorbent assay
- ECM, Extracellular matrix
- GPCR, G Protein-Coupled Receptors
- pro-MMP9, pro Matrix metallopeptidase 9
- PAR-2, protease-activated receptor 2
- ROS, Reactive Oxygen Species
- TGF-β, Transforming growth factor-beta
- TRPC, Transient receptor potential canonical
- TRPV4, Transient receptor potential vanilloid 4
- tPA, tissue plasminogen activator
- uPA, urokinase plasminogen activator
- VDAC, Voltage-dependent anion channel

* Corresponding author. Department of Surgery, Faculty of Medicine, Universitas Lambung Mangkurat, Jl. A Yani no 43, Banjarmasin, South Kalimantan, Indonesia.

E-mail addresses: herpoerwo@ulm.ac.id (H. Poerwosusanta), drgunadi@ugm.ac.id (Gunadi), ikaoktaviyanti@ymail.com (I.K. Oktaviyanti), kania9008@gmail.com (N. Kania), noorzairin@gmail.com (Z. Noor)

https://doi.org/10.1016/j.amsu.2020.08.043

Received 13 August 2020; Received in revised form 26 August 2020; Accepted 26 August 2020

Available online 2 September 2020

2049-0801/© 2020 Published by Elsevier Ltd on behalf of IJS Publishing Group Ltd. This is an open access article under the CC BY license
thickness of the extracellular matrix (ECM) of peritoneal tissue; and 3. intraabdominal adhesion scoring system.

2. Materials and methods

2.1. Animal subjects

This study was conducted according to the 3RSF principles of experimental animal studies [8,9]. Thirty males [10], 200–250 g, and 20–25 weeks old Sprague-Dawley rats (Rattus norvegicus) were randomly computerize divided into a control group and four intervention groups. The rats were kept in standard breeding-housing (maintained 20 ± 2 °C temperature, 12 h light/dark cycle), standard food, mineral water, health monitor, and 7 days of acclimation) [11]. The sick and dead rats were excluded from the study and replaced with healthy. The control group (n = 6) did not receive pneumoperitoneum. The intervention groups of 5- mmHg, P-8 mmHg, P-10 mmHg, and P-12 mmHg (all n = 6) were given 5, 8, 10, and 12 mmHg CO₂ pneumoperitoneum, respectively [6,12]. Our study strictly followed the ethical and euthanization guidelines for animal research (http://risetcenter.k.ulum.ac.id/euthanasia/). The Animal Experimentation Ethical Committee, Research Center, Faculty of Medicine, Universitas Lambung Mangkurat, Banjarmasin, Indonesia, had approved our research (No.282/KEPK-FK. UNLAM/EC/VII/2019). The experiments were conducted in the Chemical/Biochemical Laboratory, the Anatomical Pathology Laboratory, Faculty of Medicine, Universitas Lambung Mangkurat, Banjarmasin, Indonesia.

2.2. Laparoscopy procedures

According to the previous study [6], 60-min laparoscopy was performed in a sterile area after shaving and povidone-iodine application. Ten mg/kg BW intramuscular injections of ketamine hydrochloride (KTM-10; PT Guardian Pharmatama, No. Reg. DKL0408013443B1) were used for anesthesia. Pneumoperitoneum used standard CO₂ (KTM-10; PT Guardian Pharmatama, No. Reg. DKL0408013443B1) were modified intra-abdominal adhesion after laparoscopic surgery. Ten mg/kg BW intramuscular injections of ketamine hydrochloride (KTM-10; PT Guardian Pharmatama, No. Reg. DKL0408013443B1) were used for anesthesia. Pneumoperitoneum used standard CO₂ (KTM-10; PT Guardian Pharmatama, No. Reg. DKL0408013443B1) were randomly assigned to the control group and four intervention groups. The rats were kept in standard breeding-housing (maintained 20 ± 2 °C temperature, 12 h light/dark cycle), standard food, mineral water, health monitor, and 7 days of acclimation) [11]. The sick and dead rats were excluded from the study and replaced with healthy. The control group (n = 6) did not receive pneumoperitoneum. The intervention groups of 5- mmHg, P-8 mmHg, P-10 mmHg, and P-12 mmHg (all n = 6) were given 5, 8, 10, and 12 mmHg CO₂ pneumoperitoneum, respectively [6,12]. Our study strictly followed the ethical and euthanization guidelines for animal research (http://risetcenter.k.ulum.ac.id/euthanasia/). The Animal Experimentation Ethical Committee, Research Center, Faculty of Medicine, Universitas Lambung Mangkurat, Banjarmasin, Indonesia, had approved our research (No.282/KEPK-FK. UNLAM/EC/VII/2019). The experiments were conducted in the Chemical/Biochemical Laboratory, the Anatomical Pathology Laboratory, Faculty of Medicine, Universitas Lambung Mangkurat, Banjarmasin, Indonesia.

2.3. Sample collection

Decapitation was performed to euthanize the rats on the 7th-day after laparoscopy [13]. The peritoneum was stained with Masson tri-stain, based on Skytec TRM-1-IFU (SKYTEC collagen Trichrome Stain (Connec-tive Tissue Stain) [19] collagen deposition and quantified with ImageJ version 1.51b RRID: SCR_003070 [19]. Modified intra-abdominal adhesion scoring for laparoscopy [2] was used (Table 1).

2.4. Histamine, tryptase and chymase analysis

The peritoneal fluid, mast cells, histamine and protease levels were measured using a commercial kit, the enzyme-linked-immunosorbent-assay (ELISA). Histamine and protease levels used Cloud-clone Corp. ELISA Kit for Histamine (HA) for pan-species CEA927Ge [15], Tryptase (TSP) for Rat SEB070Ra [16], and Chymase-1 Mast Cell (CMA1) for Rat SEG515Ra [17].

2.5. Extracellular matrix thickness and intra-abdominal scoring evaluation

The ECM thickness was measured by using the Masson trichrome stain, based on Skytec TRM-1-IFU’s collagen Trichrome Stain (Connective Tissue Stain) [19] collagen deposition and quantified with ImageJ version 1.51b RRID: SCR_003070 [19]. Modified intra-abdominal adhesion scoring for laparoscopy [2] was used (Table 1).

2.6. Statistical analysis

Our study results were presented as numbers, percentages, mean ± standard deviation (SD), and median (range, minimum-maximum). Data were analyzed for normality (using Kolmogorov–Smirnov, and Shapiro–Wilk tests), homogeneity using Levine’s test, and underwent data transformation methods (power > 1, inverse, log 10, and square root). One-way ANOVA and the post-hoc LSD tests were used for normally and homogeneously distributed data. One-way test of Equality of Means and the post-hoc Games-Howell test were used for normally but non-homogeneously distributed data. Kruskal-Wallis and post-hoc Mann-Whitney tests were used for non-normally distributed data. With a confidence interval of 95% (α = 0.05), the analysis used IBM SPSS version 23.0 and Microsoft Excel 2010.

3. Results

3.1. Mast cell mediators’ level after laparoscopic procedures

Histamine and tryptase levels in peritoneal fluid were significantly higher in the 10 and 12 mmHg intervention groups than the control group (histamine: 0.04 ± 0.02 vs. 0.03 ± 0.02 vs. 0.04 ± 0.035 vs. 0.50 ± 0.35 vs. 0.41 ± 0.41 ng/mL for control, 5-, 8- 10-, and 12-mmHg, respectively, p < 0.05; and tryptase: 0.48 ± 0.02 vs. 0.56 ± 0.07 vs. 0.53 ± 0.17 vs. 0.69 ± 0.11 vs. 0.65 ± 0.05 ng/mL for control, 5-, 8-, 10-, and 12-mmHg, respectively, p < 0.05). Chymase levels were similar among groups (0.96 [range, 0.8–1.19] vs. 0.99 [range, 0.66–1.06] vs. 0.96 [range, 0.68–1.51] vs. 1.04 [range, 1.03–1.10] vs. 1.05 [range, 0.911–1.1] ng/mL for control, 5-, 8-, 10-, and 12-mmHg, respectively, p > 0.05). (Fig. 1a–c).

3.2. Extracellular matrix thickness following surgery

The ECM was significantly thicker in the intervention groups at 10- and 12-mmHg than in the control group (10.25 [range, 8.7–12.1] vs. 37.15 [range, 31.3–43.7] vs. 40.05 [range, 33.2–44.4] vs. 71.3 [range, 66.7–85.2] vs. 44.4 [range, 34.5–50.3] μm, for control, 5-, 8-, 10-, and 12-mmHg, respectively, p < 0.05 (Figs. 2 and 3).)

3.3. Intra-abdominal scoring system after procedure

The intra-abdominal scoring was significantly higher in the intervention groups at 10- and 12-mmHg than in the control group (0 vs. 3.5 [range, 0–4] vs. 4 [range, 0–5] vs. 4 [range, 0–4] vs. 4.5 [range, 4–5], for control, 5-, 8-, 10-, and 12-mmHg, respectively, p < 0.05 (Fig. 4).

4. Discussion

Laparoscopic pneumo-peritoneum causes hypoxia and ischemia-reperfusion injury (especially during desufflation), oxidative stress, and cell damage [20,21]. Cell damage triggers the production of Damage Associated Molecular Patterns (DAMPs) and inflammatory responses [22,23]. Mast cells and other innate immune cells will become...
active for homeostasis [20]. Mast cells have unique features compared to other inflammatory cells [24], becoming mature in tissue, with longer life, and a role in the fibrosis process [25]. These pathological conditions cause excessive mast cell infiltration and degranulation [26–28]. Our study identified an increase in histamine and tryptase levels in laparoscopic procedure pressures of 10- and 12-mm Hg. The pneumoperitoneum procedure involves non-immunological (physical stimulation) [29] and causes mast cell degranulation [17]. Hypoxia triggers anaerobic respiration, and adenosine triphosphate (ATP) deficiency, which results in interference of the ATPase dependent on mast cell membrane channel. This mechanism disrupts water, ion, and cellular homeostasis [30]. Hypoxia causes the activation of the C3a and C5a molecules and activates the G Protein-Coupled Receptors (GPCR) receptors resulting in degranulation [31]. The pressure and cold of CO2 pneumoperitoneum cause interference to the Ca^{2+} channel of mast cells [29]. Lipid, protein, and deoxyribonucleic acid (DNA) peroxidation due to Reactive Oxygen Species (ROS) also cause mast cell degranulation [32]. The mast cell is a non-excitable immunological cell that is sensitive to physical trauma [33,34]. Transient receptor potential canonical (TRPC) Ca^{2+} channel is sensitive to temperature changes. Calcium release-activated channels (CRAC) [35] and transient receptor potential vanilloid (TRPV4) [36] are mechanosensitive (MS) channels that are sensitive to pressure. The voltage-dependent anion channel (VDAC) mitochondria Ca^{2+} channel regulates cytoplasmic levels and causes mast cell degranulation if the VDAC function has interfered [29].

Mast cell degranulation releases histamine and proteases. Mast cell histamine and proteases are high in fibrosis areas [37]. Histamine causes vascular vasodilation, and increases molecular cell adhesion, and modulates the migration and proliferation of fibroblasts [25]. Mast cell tryptase and chymase increase transforming growth factor-beta (TGF-β) activity, decrease the cell tight junction affinity and become a pro-fibrotic protein [25,38]. TGF-β triggers mesothelial-transformation

Fig. 1. The mast cell mediators’ level after laparoscopic surgery. Histamine (a) and tryptase (b) levels in peritoneal fluid were a significantly higher in the 10 and 12 mmHg intervention groups than the control group (p < 0.05), while chymase (c) levels were similar in both groups (p > 0.05).

Fig. 2. Histopathological findings of extracellular matrix thickness after laparoscopic procedures. The increasing insufflation pressure increases ECM thickness of the parietal peritoneum tissue (Masson trichrome staining, 40x magnifications).

Fig. 3. The thickness of the extra-cellular matrix was strongly increased after the laparoscopic procedures compared to the control group (p < 0.05).
increases the ECM thickness [39] and leads to fibrosis [40]. Tryptase and chymase are the angiogenic factors [25] and trigger ECM thickness. Chymase results in the degradation of the enzymes’ vitronectin and fibronectin, transforming the matrix metalloproteinase 9 (pro-MMP9) into active forms and modulate the thickening of ECM [7]. Tryptase causes degradation of type 4 collagen as the main structure of the basement membrane [41]. Tryptase and chymase inhibit the fibrinolysis enzymes (tissue plasminogen activator/tPA and urokinase plasminogen activator/uPA), increasing fibrin [25]. They activate the protease-activated receptor 2 (PAR-2) receptors, causing degradation of the cell junction components, which causes mesothelial release from the basement membrane [42]. Different from research conducted by Berdun et al. [17], our study found no significant increase in chymase levels. It was suspected that the mast cell chymase population is lower than tryptase in mesothelial tissue. This finding is most likely related to the specific trauma of laparoscopy.

Our study found an increase in the ECM and intra-abdominal scoring in laparoscopy over 10 mm Hg. The ECM is a 3-dimensional structure consisting of collagen, enzymes, glycoproteins (proteoglycans), and extracellular vesicles (Deoxyribonucleic acid/DNA, Ribonucleic acid/RNA, and Matrix-bound Nano vesicles/MBVs) [43,44]. The effect of laparoscopy is multi-factorial on the 3-dimensional structure of ECM, including mast cell degranulation [45]. Laparoscopy procedures trigger proliferation, differentiation, migration, and ECM formation towards fibrosis, due to an imbalance of the coagulation and fibrinolysis process [46].

Although good and simple to apply clinically, the intraabdominal scoring system should be done in more studies, particularly in humans. Future research is needed on mast cell stabilizers to prevent intra-abdominal adhesion to further confirm our findings.

5. Conclusions

Laparoscopic procedures increase the release of mast cell mediators in peritoneal fluid, the thickness of extracellular matrix and intra-abdominal adhesion scoring in rats, implying that it might increase the possibility of intraabdominal adhesion in humans.

Conflicts of interest

All authors declare that they have no conflict of interest.
Y. Ishida, S. Hino, T. Morita, S. Ikeda, N. Nishimura, Hydrogen produced in rat colon improves in vivo redox balance due to induced regeneration of α-tocopherol, Br. J. Nutr. 123 (5) (2019) 537–544, https://doi.org/10.1017/S0007114519003118.

C. Kilkenny, W.J. Browne, I.C. Cuthill, M. Emerson, D.G. Altman, Improvingbioscience research reporting: the ARRIVE guidelines for reporting animal research, PLoS Biol. 8 (6) (2010 Jun 29), e1000412. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2471932/.

S. Leary, W. Underwood, R. Anthony, S. Cartner, T. Grandin, C. Greenacre, et al., New and emerging roles for mast cells in host defence, Curr. Opin. Immunol. 19 (1) (2007) 31–39, https://doi.org/10.1016/j.coi.2006.11.006.

W.T. Federer, Randomization and sample size in experimentation, Food Drug Adm Stat Semin 1–14 (1966).

J. Kalesnikoff, S.J. Galli, New developments in mast cell biology, Nat. Immunol. 9 (11) (2008) 1215–1223, https://doi.org/10.1038/ni.1655.

A.G. Baldwin, D. Brough, C.R. Deeken, G.R. Voeller, Characterization of host response, resolution, and strength properties, and performance in the presence of bacteria for fully bioabsorbable biomaterials for soft tissue repair, Hernia 21 (5) (2017) 771–782, https://doi.org/10.1007/s10029-017-1736-4.

C.T. Rozendaal, J. Schindelin, M.C. Hiner, R.E. DeZonia, A.E. Walter, E.T. Arena, et al., ImageJ 2: Imagej for the next generation of scientific image data, BMC Bioinf. 21 (5) (2017) 774–777, https://doi.org/10.1186/s12859-017-1934-z.

A. Ozawa, M. Sakaue, New decolorization method produces more information from tissue sections stained with hematoxylin and eosin stain and masson-trichrome stain, Ann. Anat. 227 (2020) 151431, https://doi.org/10.1016/j.janat.2019.151431.

J.J. Wu, C.M. Cao, T.T. Meng, Y. Zhang, S.L. Xu, S. Qin Feng, et al., Induction of immune responses and allergic reactions in piglets by injecting glycinein, Ital. J. Anim. Sci. 15 (1) (2016) 166–173, https://doi.org/10.1080/1828051X.2016.1144488.

Y. Zhu, W.H. Pan, X.R. Wang, Y. Liu, M. Chen, Y. Liu, et al., Tryptase and protease-activated receptor-2 stimulate scratching behavior in a murine model of ovalbumin-induced atopic-like dermatitis, Int. Immunopharmac. 28 (1) (2015) 507–512, https://doi.org/10.1016/j.intimp.2015.04.047.

S. Berdün, E. Bombay, O. Estrada, E. Mans, J. Burcher, P. Clavé, et al., Peritoneal mast cell degranulation and gastrointestinal recovery in patients undergoing colorectal surgery, Neuro Gastroenterol. Motil. 27 (6) (2015) 764–774, https://doi.org/10.1111/nmm.12555.

N.F.N. Squires, J.R. Scott, A. Badhwar, C.R. Deeken, G.R. Voeller, Characterization of host response, resolution, and strength properties, and performance in the presence of bacteria for fully bioabsorbable biomaterials for soft tissue repair, Hernia 21 (5) (2017) 771–782, https://doi.org/10.1007/s10029-017-1736-4.

C.T. Rozendaal, J. Schindelin, M.C. Hiner, R.E. DeZonia, A.E. Walter, E.T. Arena, et al., ImageJ 2: Imagej for the next generation of scientific image data, BMC Bioinf. 21 (5) (2017) 774–777, https://doi.org/10.1186/s12859-017-1934-z.

S. Patel, A. Yadav, Prevention of adhesion in laparoscopic gynaecological surgery, Int J Reprod Contracept, Obstet Gynecol. 5 (12) (2016) 4099–4105, https://doi.org/10.18203/2320-1770.ijrcog20164311.

C. Mueller, Danger-associated molecular patterns and inflammatory bowel disease: is there a connection? Dig. Dis. 30 (SUPPL. 3) (2013) 40–46, https://doi.org/10.1159/000342660.

A.G. Baldwin, D. Brough, S. Freeman, Inhibiting the inflammation: a chemical perspective, J. Med. Chem. 59 (5) (2016) 1691–1710, https://doi.org/10.1021/acs.jmedchem.5b01091.

J. Kalesnikoff, S.J. Galli, New developments in mast cell biology, Nat. Immunol. 9 (11) (2008) 1215–1223, https://doi.org/10.1038/nl.1216.

D.A. De Souza, A.C. Santana, E.Z.M. Da Silva, C. Oliver, M.C. Jamur, The role of mast cell specific chymases and tryptases in tumor angiogenesis, BioMed Res. Int. 2015 (2015) 1–10, https://doi.org/10.1155/2015/14255.

P.A. Knight, S.H. Wright, C.E. Lawrence, Y.W.W. Paterson, H.R.P. Miller, Delayed Expulsion of the nematode Trichinella spiralis in mice lacking the mucosal mast cell-specific granule chymase, mouse mast cell protease-1, J. Exp. Med. 192 (12) (2000) 1849–1856, https://doi.org/10.1084/jem.192.12.1849.

W. Davicki, J.S. Marshall, New and emerging roles for mast cells in host defence, Curr. Opin. Immunol. 19 (1) (2007) 31–38, https://doi.org/10.1016/j.coi.2006.11.006.

H. Poerwosusanta et al. https://doi.org/10.1242/jeb.147058.