Secret sharing is a procedure for splitting a message into several parts so that no subset of parts is sufficient to read the message, but the entire set is. We show how this procedure can be implemented using GHZ states. In the quantum case the presence of an eavesdropper will introduce errors so that his presence can be detected. We also show how GHZ states can be used to split quantum information into two parts so that both parts are necessary to reconstruct the original qubit.

PACS numbers: 03.65.Bz, 89.70.+c

I. INTRODUCTION

Suppose Alice, who is in New York, wants to have an action taken on her behalf in Prague. There she has two agents, Bob and Charlie, who can carry it out for her, but she knows that one of them, and only one, is dishonest, and she does not know which is the honest one. She cannot simply send a message to both, because the dishonest one will try to sabotage the action, but she knows that if the two of them carry out it together, the honest one will keep the dishonest one from doing any damage. What can she do?

Classical cryptography provides an answer which is known as secret sharing [1]. It can be used, for example, to guarantee that no single person can open a vault, has access to an industrial secret, or can launch a missile with a nuclear warhead, but two together can. This means that for security to be breached, two people must act in concert, thereby making it more difficult for any single person who wants to gain illegal access to the secret information: he must convince the other party to go along, and he risks discovery in the process.

How can Alice implement this procedure? From her original message, she creates two coded messages one of which is sent to Bob and the other to Charlie. Each of the encrypted messages contains no information about her original message, but together they contain the complete message. Therefore, neither Bob nor Charlie alone can find out what Alice wants to do, but the two of them acting together can. This can be accomplished by taking the original message, which we can think of as a binary bit string, and adding to it a random bit string of the same length. The addition is done modulo 2 and bitwise. Alice then takes this string and a copy of the random string and sends one to Bob and the other to Charlie. At this point neither is in a position to learn Alice’s message. However, if they get together and add their two strings together, bitwise and modulo 2, Alice’s message emerges. There are also classical protocols which allow Alice to split her message into more than two parts.

So far we have not mentioned the problem of eavesdropping, but this is something Alice must consider. If either a fourth party or the dishonest member of the Bob-Charlie pair gains access to both of Alice’s transmissions, then they can learn the contents of her message. Eavesdroppers can, however, be defeated by using quantum cryptographic protocols. Quantum cryptography provides for the secure transmission of information by enabling one to determine whether an eavesdropper has attempted to gain information about the key which is being used to encode the message [2–4]. If not, the key can be used and the information sent by using it will be secure, and if an eavesdropper has been detected, then one has to establish a new key.

We would like to show that it is possible to combine quantum cryptography with secret sharing in a way that will allow one to determine whether an eavesdropper has been active during the secret sharing protocol. The most obvious way of doing this is simply for Alice to use quantum cryptographic protocols to send each of the bit strings which result from the classical secret sharing procedure, and this method will work. It is, however, awkward. One first must establish mutual keys among different pairs of parties, in this case one for Alice and Bob, and another for Alice and Charlie, and then implement the classical procedure. The classical procedure, it should be pointed out, becomes more and more complicated the larger the number of pieces into which one wants to split the message. We would like to explore an alternative which uses quantum mechanics to do both the information splitting and the eavesdropper protection simultaneously. By using multiparticle entanglement, it eliminates the need to perform the classical secret-splitting procedure altogether.

The method for splitting a message into two parts, which we present here uses maximally entangled three-particle states, or GHZ states, and it can be easily extended in two different ways. First, it can be modified to allow Alice to send a string of qubits to Bob and Charlie in such a way that only by working together can they determine what the string is. In this case it is quantum information which has been split into two pieces, neither of which separately contains the original information, but whose combination does. Second, the procedure can also be generalized to more than three parties, and we show explicitly how it works with four.
GHZ states have already found a number of uses. They form the basis of a very stringent test of local realistic theories \cite{4}. Recently it was also proposed that they can be used for cryptographic conferencing or for multiparticle generalizations of superdense coding \cite{3}. In addition, related states can be used to reduce communication complexity \cite{8}. Quantum secret sharing represents yet another application.

II. GHZ STATES AND SECRET SHARING

Let us suppose that Alice, Bob, and Charlie each have one particle from a GHZ triplet which is in the state

$$|\psi\rangle = \frac{1}{\sqrt{2}}(|000\rangle + |111\rangle).$$

They each choose at random whether to measure their particle in the \(x\) or \(y\) direction. They then announce publicly in which direction they have made a measurement, but not the results of their measurements. Half the time, Bob and Charlie, by combining the results of their measurements, can determine what the result of Alice’s measurement was. This allows Alice to establish a joint key with Bob and Charlie, which she can then use to send her message.

Let us see how this works in more detail. Define the \(x\) and \(y\) eigenstates

$$|+x\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle), \quad |+y\rangle = \frac{1}{\sqrt{2}}(|0\rangle + i|1\rangle);$$
$$|-x\rangle = \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle), \quad |-y\rangle = \frac{1}{\sqrt{2}}(|0\rangle - i|1\rangle).$$

(2)

We can see the effects of measurements by Alice and Bob on the state of Charlie’s particle, if we express the GHZ state in different ways. Noting that

$$|0\rangle = \frac{1}{\sqrt{2}}(|+x\rangle + |-x\rangle), \quad |1\rangle = \frac{1}{\sqrt{2}}(|+x\rangle - |-x\rangle).$$

(3)

we can write

$$|\psi\rangle = \frac{1}{2\sqrt{2}}[|+x\rangle_a|+x\rangle_b + |-x\rangle_a|--x\rangle_b(|0\rangle_c + |1\rangle_c) + (|+x\rangle_a|--x\rangle_b + |-x\rangle_a|+x\rangle_b(|0\rangle_c - |1\rangle_c).$$

(4)

This decomposition of \(|\psi\rangle\) tells us what happens if both Alice and Bob make measurements in the \(x\) direction. If they both get the same result, then Charlie will have the state \((|0\rangle_c + |1\rangle_c)/\sqrt{2}\), and if they get different results he will have the state \((|0\rangle_c - |1\rangle_c)/\sqrt{2}\). He can determine which of these states he has by performing a measurement along the \(x\) direction. The following table summarizes the effects of Alice’s and Bob’s measurements on Charlie’s state:

Bob	Alice
+x	0/1
-x	0/1
+y	0/1
-y	0/1

Alice’s measurements are given in the columns and Bob’s are given in the rows. Charlie’s state, up to normalization, appears in the boxes. From the table it is clear that if Charlie knows what measurements Alice and Bob made (that is, \(x\) or \(y\)), he can determine whether their results are the same or opposite, and also that he will gain no knowledge of what their results actually are. Similarly, Bob will not be able to determine what Alice’s result is without Charlie’s assistance, because he does not know if his result is the same as Alice’s, or the opposite of hers.

With each party choosing to make \(x\) or \(y\) measurements at random, only half of the GHZ triplets will give useful results. For example, if Alice and Bob both measure their particles in the \(x\) direction, Charlie must also measure his in the \(x\) direction in order to determine whether the results of Alice’s and Bob’s measurements are correlated or anticorrelated; if he measures in the \(y\) direction he gains no information. Because Charlie is choosing his measurement direction at random, he will only choose correctly half the time. This is why all three parties must announce the directions of their measurements, so that they can decide whether to keep or to discard the results from a given triplet. This announcement should be done in the following way: Bob and Charlie both send to Alice the direction of their measurements which then sends all three measurement directions to Bob and Charlie.

Before presenting a more general discussion of eavesdropping, we shall consider a specific situation in order to show that it can be detected. Suppose that Bob is dishonest and that he has managed to get a hold of Charlie’s particle as well as his own. He then measures the two particles and sends one of them on to Charlie. His object is to discover what Alice’s bit is, without any assistance from Charlie, and to do so in a way that cannot be detected. Alice has measured her particle in either the \(x\) or \(y\) direction, but Bob does not know which. He would like to measure the quantum state of his two-particle system, but because he does not know what measurement Alice made, he does not know whether to make his in the \((|0\rangle + |1\rangle)/\sqrt{2}\) basis or in the \((|0\rangle + i|1\rangle)/\sqrt{2}\) basis. Choosing at random he has a probability of 1/2 of making a mistake. If he chooses correctly, he will know, for valid combinations of measurement axes, what the result of Charlie’s measurement is from the result of his own, and this means he will then know what Alice’s bit is. For example, if Alice measured in the \(x\) direction and found \(|+x\rangle\), then the state Bob receives is \(|0\rangle + |11\rangle)/\sqrt{2}\). If Bob now measures in the \((|0\rangle + |11\rangle)/\sqrt{2}\) basis, he knows what the two-particle state is, and because

$$\frac{1}{\sqrt{2}}(|0\rangle + |11\rangle) = \frac{1}{\sqrt{2}}(|+x\rangle + x) + |-x\rangle - x).$$

(5)
Bob knows that Charlie’s measurement will produce a result identical to his.

What happens if he is wrong? Suppose that Alice has measured her particle in the y direction and that Bob measures his particles in the $\{00\} + \{11\}\!/\sqrt{2}$ basis. He has a probability of $1/2$ of getting either basis vector. He now sends one of his particles to Charlie, and both Bob and Charlie measure their particles. Because Alice measured y, in order for this round of measurements to produce a valid key bit, Bob and Charlie must make different measurements, i.e. one must measure x and the other y. We note that in the $\{00\} + \{11\}\!/\sqrt{2}$ basis there is no correlation between x and y measurements, for example

$$\frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) = \frac{1}{2} \left[e^{-i\pi/4}(|+x\rangle + |+y\rangle + |-x\rangle - |-y\rangle) + e^{i\pi/4}(|+x\rangle - |+y\rangle + |-x\rangle + |-y\rangle) \right].$$

(6)

Therefore, in half the situations the results of the measurements will be wrong. If, for example, Alice found $|+y\rangle$ and Bob found $|+x\rangle$, then Charlie should measure $|-y\rangle$ if he measures his particle in the y direction, but because of Bob’s measurement, he has a probability of $1/2$ of finding $|+y\rangle$. The overall probability of an error in this cheating scheme is $1/4$, one half of picking the wrong basis and then one half of getting the wrong result.

There are two additional points to notice here. First, if Bob were able to learn the direction of Alice’s and Charlie’s measurements before having to reveal his, he could cheat more successfully. In the cases in which he made the wrong measurement, Bob could simply tell Alice a measurement direction which would cause the results from that triplet to be thrown out. Alice and Charlie would, however, notice a higher than usual failure rate, 75% as opposed to 50%, which would tell them that something unusual was happening. Insisting that Bob send a measurement direction to Alice before learning what kind of measurement Alice and Charlie makes this kind of cheating more difficult. Second, there is also the possibility that Bob could lie at certain points in the procedure; he could lie about his measurement direction or about the result of his measurement. In the cheating scheme considered above he gains, however, nothing by doing so.

Now let us look at a more general situation. We assume that there is an eavesdropper, Eve (who could also be either Bob or Charlie). Her problem, as in the example which we just discussed, is that she does not know what bases have been or will be used to measure the particles. If she measures them herself, and chooses the wrong bases, she will introduce errors which Alice, Bob, and Charlie will be able to detect by publicly comparing a subset of their measurements.

In order to show this for a large class of measurements, let us assume that Eve has been able to entangle an ancilla with the three particle state which Alice, Bob, and Charlie are using. At some later time she can measure the ancilla to gain information about the measurement results of Alice, Bob and Charlie. The state describing the state of the three particles and the ancilla is

$$|\Psi\rangle = \sum_{j,k,n=0}^{1} |jkn\rangle_{3} |R_{jkn}\rangle_{\xi},$$

(7)

where $|jkn\rangle_{3}$ is a state of the three particles, and $|R_{jkn}\rangle_{\xi}$ is an unnormalized ancilla state. What we wish to show is that if this entanglement introduces no errors into the secret sharing ancilla state. We find that the overall probability of an error in this cheating scheme is $1/2$, $1/2$ of picking the wrong basis and then one half of getting the wrong result.

Therefore, in half the situations the results of the measurements will be wrong. If, for example, Alice found $|+y\rangle$ and Bob found $|+x\rangle$, then Charlie should measure $|-y\rangle$ if he measures his particle in the y direction, but because of Bob’s measurement, he has a probability of $1/2$ of finding $|+y\rangle$. The overall probability of an error in this cheating scheme is $1/4$, one half of picking the wrong basis and then one half of getting the wrong result.

There are two additional points to notice here. First, if Bob were able to learn the direction of Alice’s and Charlie’s measurements before having to reveal his, he could cheat more successfully. In the cases in which he made the wrong measurement, Bob could simply tell Alice a measurement direction which would cause the results from that triplet to be thrown out. Alice and Charlie would, however, notice a higher than usual failure rate, 75% as opposed to 50%, which would tell them that something unusual was happening. Insisting that Bob send a measurement direction to Alice before learning what kind of measurement Alice and Charlie makes this kind of cheating more difficult. Second, there is also the possibility that Bob could lie at certain points in the procedure; he could lie about his measurement direction or about the result of his measurement. In the cheating scheme considered above he gains, however, nothing by doing so.

Now let us look at a more general situation. We assume that there is an eavesdropper, Eve (who could also be either Bob or Charlie). Her problem, as in the example which we just discussed, is that she does not know what bases have been or will be used to measure the particles. If she measures them herself, and chooses the wrong bases, she will introduce errors which Alice, Bob, and Charlie will be able to detect by publicly comparing a subset of their measurements.

In order to show this for a large class of measurements, let us assume that Eve has been able to entangle an ancilla with the three particle state which Alice, Bob, and Charlie are using. At some later time she can measure the ancilla to gain information about the measurement results of Alice, Bob and Charlie. The state describing the state of the three particles and the ancilla is

$$|\Psi\rangle = \sum_{j,k,n=0}^{1} |jkn\rangle_{3} |R_{jkn}\rangle_{\xi},$$

(7)

where $|jkn\rangle_{3}$ is a state of the three particles, and $|R_{jkn}\rangle_{\xi}$ is an unnormalized ancilla state. What we wish to show is that if this entanglement introduces no errors into the secret sharing ancilla state. We find that the overall probability of an error in this cheating scheme is $1/2$, $1/2$ of picking the wrong basis and then one half of getting the wrong result.

First, suppose that Alice, Bob, and Charlie all measure their particles in the x basis. If no errors are to occur we must have that

$$p(C = +x|A = \pm x, B = \pm x) = 1;$$

$$p(C = -x|A = \pm x, B = \mp x) = 1,$$

(8)

where $p(C = +x|A = +x, B = +x)$ is the probability that Charlie measures $+x$ given that both Alice and Bob measure $+x$, and the other quantities are similarly defined. These equations imply that

$$P(+x, +x, -x)|\Psi\rangle = 0; \quad P(-x, -x, -x)|\Psi\rangle = 0;$$

$$P(+x, -x, +x)|\Psi\rangle = 0; \quad P(-x, +x, +x)|\Psi\rangle = 0,$$

(9)

where $P(+x, +x, -x)$ is the projection onto the subspace of the three particle-ancilla Hilbert space in which Alice’s particle is in the $+x$ direction, Bob’s is in the $+x$ direction, and Charlie’s is in the $-x$ direction. The other projection operators are defined in a similar manner. Expressing the conditions in Eq. (8) in the z basis (the $|0\rangle, |1\rangle$ basis), we find that if projection operators corresponding to any of the vectors

$$\frac{1}{\sqrt{2}}(|000\rangle_{3} - |111\rangle_{3}); \quad \frac{1}{\sqrt{2}}(|100\rangle_{3} - |011\rangle_{3});$$

$$\frac{1}{\sqrt{2}}(|010\rangle_{3} - |101\rangle_{3}); \quad \frac{1}{\sqrt{2}}(|110\rangle_{3} - |001\rangle_{3}),$$

(10)

act on $|\Psi\rangle$, the result is zero.

Now suppose that Alice measures her particle in the x basis, and Bob and Charlie measure theirs in the y basis. In order for their to be no errors we must have that

$$p(C = -y|A = \pm x, B = \pm y) = 1;$$

$$p(C = +y|A = \pm x, B = \mp y) = 1,$$

(11)

which imply that

$$P(+x, +y, +y)|\Psi\rangle = 0; \quad P(-x, -y, +y)|\Psi\rangle = 0;$$

$$P(+x, -y, -y)|\Psi\rangle = 0; \quad P(-x, +y, -y)|\Psi\rangle = 0.$$
Again expressing these conditions in the z basis we find that projection operators corresponding to the vectors

$$
\frac{1}{\sqrt{2}}(|000⟩_3 - |111⟩_3); \quad \frac{1}{\sqrt{2}}(|100⟩_3 - |011⟩_3); \\
\frac{1}{\sqrt{2}}(|011⟩_3 + |101⟩_3); \quad \frac{1}{\sqrt{2}}(|110⟩_3 + |001⟩_3),
$$

(13)

annihilate $|Ψ⟩$.

So far we have six vectors to which the three-particle part of $|Ψ⟩$ must be orthogonal. A seventh, $(|000⟩_3 + |011⟩_3)/√2$, emerges when we demand that no errors occur when Alice measures her particle in the y direction, Bob measures his in the x direction, and Charlie measures his in the y direction. These conditions imply that $|Ψ⟩$ must be of the form

$$
|Ψ⟩ = \frac{1}{\sqrt{2}}(|000⟩_3 + |111⟩_3)|R⟩_z,
$$

(14)
i. e. a product of the GHZ state and an ancilla state, which is what we wished to show.

Finally, let us conclude this section with a discussion of the resources necessary to implement quantum secret sharing protocols. In order to send a shared key containing N bits it is necessary to use, on average $2N$ GHZ triplets. If we instead use standard quantum cryptography and the classical secret sharing protocol, then either $4N$ entangled pairs, using the Ekert procedure [3], or $4N$ particles, using the BB84 procedure [2], are required. In all cases, the number of particles sent from Alice to Bob and Charlie is $4N$. In the GHZ scheme, once the key has been established, Alice needs to send N classical bits in order to transmit the message. These bits can be sent to either Bob or Charlie using a public channel. In the hybrid quantum-classical scheme Alice must send $2N$ classical bits once keys with Bob and Charlie have been established - N bits to send the random string to Charlie and another N bits to send to Bob the string resulting from the bitwise XOR of the message and the random string. In general, the more parts into which the secret is split, the greater the difference between the number of classical bits which must be sent in the hybrid scheme and in the entangled-state scheme (MN versus N for a secret split into M parts). We see that entanglement is able to act as a substitute for transmitted random bits.

III. Splitting of Quantum Information

Now suppose that Alice has a string of qubits she would like to send to Bob and Charlie in such a way that they must cooperate in order to extract the quantum information. She can use shared GHZ triplets, $|000⟩_{abc} + |111⟩_{abc}$, and a procedure very similar to quantum teleportation to do this [3]. The no-cloning theorem implies that only one copy of Alice’s qubit can be received, so that either Bob or Charlie, but not both, will possess the final qubit [3]. The procedure we shall present is symmetric in that either party can end up with the final qubit, but information from the other party is required before this can happen. Security could be enforced by requiring that Bob and Charlie meet in person to exchange the final information and put the qubit to its final use. Let us now look in detail at the procedure for sending one qubit. We shall first describe the protocol, and then discuss the reasons for some of the steps.

Alice begins by taking her qubit, which is in the state $α|0⟩_A + β|1⟩_A$, combining it with her GHZ particle, and measuring the pair in the Bell basis

$$
|Ψ_±⟩_{AA} = \frac{1}{\sqrt{2}}(|00⟩_{AA} ± |11⟩_{AA});
|Φ_±⟩_{AA} = \frac{1}{\sqrt{2}}(|01⟩_{AA} ± |10⟩_{AA}).
$$

(15)

We can determine the effect of this measurement on the particles which Bob and Charlie possess by expressing the entire four-particle state as

$$
|Ψ⟩_4 = \frac{1}{2}[|Ψ_+⟩_{AA}(α|00⟩_{bc} + β|11⟩_{bc}) + |Ψ−⟩_{AA}(α|00⟩_{bc} − β|11⟩_{bc}) \\
+ |Φ_+⟩_{AA}(β|00⟩_{bc} + α|11⟩_{bc}) + |Φ−⟩_{AA}(−β|00⟩_{bc} + α|11⟩_{bc})].
$$

(16)

At this point Alice does not tell either Bob or Charlie what the result of her measurement is. This implies that the single-particle density matrices of both Bob’s and Charlie’s particles are $(1/2)I$, where I is the 2×2 identity matrix, so that at this stage of the procedure neither Bob nor Charlie has any information about Alice’s qubit. Alice now tells either Bob or Charlie (she makes the choice at random) to measure his particle. It is the person who has not been chosen whose particle will contain the final qubit. The party which has been chosen to make the measurement, whom we shall assume to be Bob for this particular qubit, now measures his particle in the x direction, obtaining either $|+⟩_b$ or $|−⟩_b$. This still leaves Charlie’s single-particle density matrix as $(1/2)I$, i. e. he still has no information about Alice’s qubit.

In order to reconstruct Alice’s qubit Charlie needs two bits of classical information from Alice (which of the four Bell states she found) and one from Bob. Alice first verifies that both parties have received a particle, which we assume can be done over a public channel, and then sends Charlie the result of her measurement. If Alice’s result was either $|Ψ_+⟩_{AA}$ or $|Ψ−⟩_{AA}$, then Charlie’s single-
particle density matrix is
\[\rho_c = |\alpha|^2 |0\rangle_c \langle 0| + |\beta|^2 |1\rangle_c \langle 1|, \]
and if the result was either \(|\Phi_+\rangle_{Aa}\) or \(|\Phi_-\rangle_{Aa}\), then it is
\[\rho_c = |\beta|^2 |0\rangle_c \langle 0| + |\alpha|^2 |1\rangle_c \langle 1|. \]

Charlie now has amplitude information about Alice’s qubit, but knows nothing about its phase. Bob’s one bit information and allow him to reconstruct Alice’s qubit. In particular, the transformation which Charlie should perform in order to obtain Alice’s qubit, up to an overall phase of Alice’s measurement he has her qubit, and the result if she chooses Bob, then Charlie has a problem. At the time he sent the particle to Bob, Charlie did not know the result of Alice’s measurement, and therefore the particle he sent to Bob is not in the proper quantum state. Alice and Bob can detect this by comparing a subset of the states Bob received to the ones Alice sent, which would reveal Charlie’s cheating.

This procedure also guarantees that if an eavesdropper or a cheater has entangled an ancilla with the three-particle state, then errors will be introduced. If the GHZ state in the above protocol is replaced by the state in Eq. (10), then one can show, using an argument similar to the one in the previous section, that if no errors are introduced by the addition of the ancilla, then the state \(\Psi\) is just a product of the GHZ state and an ancilla state. This again implies that measurements on the ancilla will reveal an eavesdropper nothing about the state of the three particles held by Alice, Bob, and Charlie.

IV. FOUR-PARTICLE GHZ STATE

It is possible to generalize this procedure to split information among more than two people. Let us look specifically at the case of three. Alice starts with a four-particle GHZ state,
\[|\psi\rangle_4 = \frac{1}{\sqrt{2}} (|0000\rangle + |1111\rangle), \]
keeps one particle for herself and gives one particle each to Bob, Charlie, and Diana. Her object is to generate a shared key bit which can only be figured out by Bob, Charlie, and Diana if they cooperate.

A method of accomplishing this can be found by expressing the state \(|\psi\rangle_4\) in different combinations of \(x\) and \(y\) bases. If the state is expressed completely in the \(x\) basis,
\[|\psi\rangle_4 = \frac{1}{4 \sqrt{2}} \left[\prod_j (|+x\rangle_j + |-x\rangle_j) + \prod_j (|+x\rangle_j - |-x\rangle_j) \right], \]
where \(j\) runs over the set \{Alice, Bob, Charlie, Diana\}, we see that the right-hand side is an an equal superposition of all four-particle basis states, where each single particle state is in the \(x\) basis, with an even number of \(-x\) states. This means that if all four people have each measured their particles in the \(x\) direction, then Bob, Charlie and Diana can, by combining their results, determine what the result of Alice’s measurement was. They simply count the number of \(-x\) measurements, and if it is even, then Alice must have found \(+x\), and if it is odd, then Alice must have measured \(-x\). It is necessary for all three of them to combine their information in order to determine Alice’s result, no subset will do. Therefore, Alice has succeeded in splitting her message into three parts.
In order to foil eavesdroppers and cheaters, the four parties do not want to use only a single basis, so we must examine what happens if different combinations of x and y bases are used. Expressing $|\psi\rangle_4$ in the y basis we find that it is an equal superposition of all four-particle basis states, where each single particle state is in the y basis, with an even number of $|—\rangle$ states. For example, if the first two particles are expressed in the x basis and two in the y basis (with the same two in the x basis and the same two in the y basis in each of the four-particle basis vectors) which have an odd number of minus states. For example, if the first two particles are expressed in the x basis and the second two in the y basis, the states $|—x\rangle + x\rangle + y\rangle + y\rangle$ and $|—x\rangle + y\rangle — y\rangle — y\rangle$ would appear in the expansion of $|\psi\rangle_4$. Again, Bob, Charlie, and Diana can determine Alice’s state by counting the number of minus states which appeared as results of their measurements.

If three particles are expressed in one basis and the remaining one in the other, then $|\psi\rangle_4$ is a superposition of all 16 basis vectors. This means that there are no correlations among the measurements which will allow Bob, Charlie, and Diana to infer the result of Alice’s measurement. If all four parties are choosing their bases at random, this means that in half the cases, they will not be able to use the results.

Summarizing, each of the four parties performs a measurement on their particle in either the x or y basis. They then communicate their choice of basis to Alice (classically) who decides if the overall basis choice is a usable one, and she then communicates all four basis choices to each of the other three parties. Using this information and the results of their measurements, they can, if they act in concert, determine the result of Alice’s measurement. This means that Alice, on the one hand, and Bob, Charlie, and Diana on the other, will have, on repeating this process, a shared key. A calculation similar to the one presented in Section 2 shows that if an eavesdropper tries to entangle an ancilla with the four-particle GHZ state, then she will invariably introduce errors, and her presence can be detected.

V. CONCLUSION

We have shown that GHZ states can be used to split information in such a way that if one is in possession of all of the parts, the information can be recovered, but if one has only some of the parts, it cannot. This applies to both classical and quantum information. In the case of classical information a shared key can be established between one party and several others all of whom must work in concert. An eavesdropper or a cheater will introduce errors and can thereby be detected. In the case of quantum information the information in a qubit is split into two parts so that if the parts are recombined, the qubit can be recovered.

This represents a different kind of information splitting than occurs in quantum copiers [11]. There the object is to split the information in one qubit into two parts so that each part contains as much information about the original qubit as possible. However, in that case one cannot reconstruct the original qubit by combining the two copies.

The key point in all of this is that multipartite entangled states can be used to split information into parts. This can be useful in maintaining security, as has been shown here, but there may be applications in the processing of quantum information as well.

ACKNOWLEDGMENTS

We thank Richard Cleve for helpful and stimulating comments.

[1] Bruce Schneier, Applied Cryptography (Wiley, New York, 1996) p. 70; see also J. Gruska, Foundations of Computing (Thomson Computer Press, London, 1997) p. 504.
[2] C. Bennett and G. Brassard in Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing (Bangalore, India 1984) p. 175.
[3] A. K. Ekert, Phys. Rev. Lett. 67, 661 (1991)
[4] C. H. Bennett, G. Brassard, and N. Mermin, Phys. Rev. Lett. 68, 557 (1992).
[5] C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, Phys. Rev. Lett. 70, 1895 (1993). For experimental realization of quantum teleportation see D. Bouwmeester, J.W. Pan, K. Mattle, M. Eisl, H. Weinfurter, and A. Zeilinger, Nature 360, No. 6660, 575 (1997) as well as D. Boschi, S. Branca, F. De Martini, L. Hardy, and S. Popescu, Phys. Rev. Lett. 80, 1121 (1998).
[6] D. Greenberger, M. Horne, and A. Zeilinger in Bell’s Theorem, Quantum Theory, and Conceptions of the Universe, edited by M. Kaftos (Kluwer Academic, Dordrecht, 1989).
[7] S. Bose, V. Verdal, and P. L. Knight, Phys. Rev. A 57, 822 (1998).
[8] R. Cleve and H. Buhrman, Phys. Rev. A 56, 1201 (1997).
[9] W. Wootters and W. Zurek, Nature 299, 802 (1982).
[10] Richard Cleve, private communication. The idea of using teleportation to split quantum information is due to Louis Salvail.
[11] V. Buzek and M. Hillery, Phys. Rev. A 54, 1844 (1996).