Crystal structure and Hirshfeld surface analysis of 5-acetyl-3-amino-6-methyl-N-phenyl-4-[(E)-2-phenylethenyl]thieno[2,3-b]pyridine-2-carboxamide

Shaaban K. Mohamed,a,b,* Etify A. Bakhite,c Sevim Türktekin Çelikesir,d Hajjaj H. M. Abdu-Allah,e Mehmet Akkurt,d Omaima F. Ibrahim,c Joel T. Mague,f and Safiyyah A. H. Al-Waleedyg,*

a Chemistry and Environmental Division, Manchester Metropolitan University, Manchester, M1 5GD, England, b Chemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, c Chemistry Department, Faculty of Science, Assiut University, 71516 Assiut, Egypt, d Department of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, e Pharmaceutical Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, Egypt, f Department of Chemistry, Tulane University, New Orleans, LA 70118, USA, and g Department of Chemistry, Faculty of Science, Taiz University, Taiz, Yemen. *Correspondence e-mail: shaabankamel@yahoo.com, elhamaltaliff@gmail.com

The asymmetric unit of the title compound, C_{25}H_{21}N_{3}O_{2}S, comprises four molecules. Their conformations differ primarily in the orientations of the styryl and the N-phenylcarboxamido groups. In the crystal, intermolecular N—H⋯N, C—H⋯O and C—H⋯S hydrogen-bonding contacts as well as C—H⋯π(ring) interactions lead to the formation of a layer structure parallel to (010). Hirshfeld surface analysis revealed that H⋯H interactions represent the main contributions to the crystal packing.

1. Chemical context

Thienopyridine derivatives are well known to possess various functional and medicinal properties with general applications as synthetic building blocks or as pharmaceuticals (Litvinov et al., 2005; Dotsenko et al., 2020; Bakhite, 2003; Al-Waleedy et al., 2020; Abuelhassan et al., 2021). Many thienopyridines are reported to show anticancer (Zeng et al., 2010), antiparasitic (Bernardino et al., 2006), insecticidal (El-Dean et al., 2019), antimicrobial (Abdel-Rahman et al., 2003; Eldin, 1999) and antidiabetic (Bahekar et al., 2007) activities. Encouraged by the above facts, we report in this communication the synthesis and crystal structure determination of the title compound, C_{25}H_{21}N_{3}O_{2}S (I).

2. Structural commentary

The asymmetric unit of (I) contains four molecules (Fig. 1) of which one (molecule I) is represented in an ORTEP-style plot.
in Fig. 2. The conformational differences between molecules I, II, III and IV are highlighted in the overlay diagram shown in Fig. 3. The maximum r.m.s. deviation of the overlay between molecules I, II, III and IV is 0.498 Å. The conformations of the four molecules differ primarily in the varying orientations of the styryl and the N-phenylcarboxamido groups, as indicated by the torsion and dihedral angles collated in Tables 1 and 2. The orientations of the latter substituents are partially deter-

Table 1
Selected torsion angles (°).

Molecule I	Molecule III
C4—C3—C9—C10	126.8 (2)
C9—C10—C11—C12	162.2 (2)
C19—N3—C20—C21	−9.9 (3)
C29—C34—C35	−51.8 (3)
C34—C35—C36—C41	178.4 (2)
C44—N6—C45—C50	−23.3 (3)

Table 2
Dihedral angles (°).

Planes	Angle
Molecule I	
N1/C1—C5 vs C4/C5/S1/C17/C18	2.18 (8)
N1/C1—C5 vs C10—C16	70.47 (5)
N1/C1—C5 vs C20—C25	12.78 (8)
Molecule II	
N4/C26—C30 vs C29/C30/S2/C43/C42	4.0 (1)
N4/C26—C30 vs C36—C41	47.01 (5)
N4/C26—C30 vs C45—C50	27.4 (1)
Molecule III	
N7/C51—C55 vs C54/C55/S3/C68/C67	3.20 (8)
N7/C51—C55 vs C61—C66	48.96 (6)
N7/C51—C55 vs C70—C75	35.64 (8)
Molecule IV	
N10/C76—C80 vs C80/S4/C93/C92	2.4 (1)
N10/C76—C80 vs C95—C100	32.11 (8)
N10/C76—C80 vs C96—C91	77.15 (6)

in the crystal, various hydrogen-bonding interactions are found (Table 3). The strongest stem from interactions between the amide NH group and the pyridine N atom of a neigh-

Figure 1
The four molecules (I, II, III and IV) in the asymmetric unit of (I).

Figure 2
Molecule I with displacement ellipsoids for the non-hydrogen atoms drawn at the 30% probability level. The intramolecular N—H···O hydrogen bond is depicted by a dashed line.

Figure 3
Overlay image of the four molecules (I, II, III and IV) in the asymmetric unit of the title compound.

3. Supramolecular features

In the crystal, various hydrogen-bonding interactions are found (Table 3). The strongest stem from interactions between the amide NH group and the pyridine N atom of a neigh-

Figure 1
The four molecules (I, II, III and IV) in the asymmetric unit of (I).

Figure 2
Molecule I with displacement ellipsoids for the non-hydrogen atoms drawn at the 30% probability level. The intramolecular N—H···O hydrogen bond is depicted by a dashed line.
the packing. Together with three sets of C—H⋯π(ring) interactions, supramolecular layers parallel to the ac plane with a width corresponding to b/2 are formed (Figs. 4 and 5).

4. Hirshfeld surface analysis

For the four molecules I, II, III and IV, intermolecular interactions (Table 4) were quantified using Hirshfeld surface analysis and the associated two-dimensional fingerprint plots generated. The calculations and visualization were carried out using Crystal Explorer 17.5 (Turner et al., 2017). Fig. 6 shows the Hirshfeld surface of the four molecules in (I) mapped over \(d_{\text{norm}}\) in a fixed colour scale of −0.3297 (red) to +1.5167 (blue) a.u. for molecule I, −0.3246 (red) to +1.4683 (blue) a.u. for molecule II, −0.3890 (red) to +2.0338 (blue) a.u. for molecule III, and −0.3870 (red) to +1.8555 (blue) a.u. for molecule IV. The red spots on the Hirshfeld surface are indicative of contacts shorter than van der Waals separations and represent N—H⋯N, N—H⋯O, C—H⋯O and C—H⋯S contacts. Fig. 7 displays the full two-dimensional fingerprint plot and those delineated into the major contacts of H⋯H interactions (46.5\% contribution for I; 47.0\% for II; 44.7\% for III; 45.5\% for IV) are the major factor in the crystal packing with C—H⋯H—C (22.7\% for I; 27.9\% for II; 28.1\% for III; 20.2\% for IV) and O⋯H⋯O (9.7\% for I; 8.9\% for II; 11.3\% for III; 12.6\% for IV) interactions representing the next highest

Contact	Distance	Symmetry operation
H3A···N4	2.31	\(x, y - \frac{1}{2}, z + \frac{1}{2}\)
O1···H40	2.64	\(x, y + \frac{1}{2}, z + \frac{1}{2}\)
H13···H8C	2.38	\(-x, 1 - y, 1 - z\)
H21···H97	2.33	\(-x, y, \frac{1}{2} - z\)
N1···H12A	2.30	\(-x, -y, -z\)
H2B···O7	2.62	\(x, y + \frac{1}{2}, z + \frac{1}{2}\)
H2A···H60	2.55	\(x, y, z\)
C5···H22	3.03	\(-x, 1 - y, 1 - z\)
C8···H47	3.09	\(-x, -y, -z\)
H15···O3	2.71	\(x, y, z\)
H24···H83B	2.58	\(-x, \frac{1}{2} + y, \frac{1}{2} - z\)
H6C···H87	2.42	\(-x, \frac{1}{2} + y, \frac{1}{2} - z\)
H13···C48	3.06	\(x, y, z\)
H24···C50	3.07	\(-x, \frac{1}{2} + y, \frac{1}{2} - z\)
H6D···N7	2.38	\(-x, \frac{1}{2} + y, \frac{1}{2} - z\)
O3···H8E	2.55	\((-x, -y, -z)\)
H33C···O8	2.47	\((-x, -y, -z)\)
H5A···H56C	2.40	\((-x, -y, -z)\)
H49···C28	3.06	\((-x, -y, -z)\)
H31A···H89	2.33	\((-x, -y, -z)\)
H33C···H74	2.42	\((-x, -y, -z)\)
H38···H81A	2.44	\((-x, -y, -z)\)
H47···C71	2.95	\((-x, -y, -z)\)
H9A···N10	2.22	\((-x, -y, -z)\)
O5···H90	2.69	\((-x, -y, -z)\)
O5···H97	2.75	\((-x, -y, -z)\)
H64···O5	2.72	\((-x, -y, -z)\)
C53···H72	3.03	\((-x, -y, -z)\)
H62···O7	2.64	\((-x, -y, -z)\)
H65···C98	2.89	\((-x, -y, -z)\)
H99···C76	2.90	\((-x, -y, -z)\)
contributions. The percentage contributions of other weak interactions are listed in Table 5.

The fact that the same interactions result in different contributions to the Hirshfeld surface for molecules I, II, III and IV can be attributed to the different environments of each molecule in the crystalline state.

Table 5

Contact	Molecule I	Molecule II	Molecule III	Molecule IV
H···H	46.5	47.0	44.7	45.5
C···H/H···C	22.7	27.9	28.1	20.2
O···H/H···O	9.7	8.9	11.3	12.6
N···H/H···N	5.1	5.5	5.0	6.5
S···H/H···S	3.2	2.9	3.3	3.4
O···C/C···O	2.5	1.4	1.2	0.4
S···N/N···S	1.5	1.5	1.1	1.1
S···C/C···S	1.3	0.7	1.1	1.6
S···S	1.3	1.2	1.2	1.0
N···C/C···N	1.1	0.8	1.0	1.6
O···O/H/H·O	0.2	0.0	0.1	0.0
S···N/N···S	1.5	1.5	1.1	1.1
S···C/C···S	1.3	0.7	1.1	1.6
N···C/C···N	1.1	0.8	1.0	1.6
N···N	1.1	0.8	1.0	1.6
S···S	1.3	0.7	1.1	1.6
N···C/C···N	1.1	0.8	1.0	1.6
N···N	1.1	0.8	1.0	1.6

5. Database survey

A search of the Cambridge Structural Database (CSD Version 5.41, update of November 2019; Groom et al., 2016) for the thieno[2,3-b]pyridine moiety yielded ten structures closely related to the title compound: ethyl 3-amino-2-carbamoyl-4-(4-methoxyphenyl)-6-methylthieno-[2,3-b]pyridine-5-carboxylate dimethyl sulfoxide solvate (AWETIH; Bakhite et al., 2016a), ethyl 3-amino-4-(4-chlorophenyl)-2-[[4-methoxyphenyl]carbamoyl]-6-phenylthieno-

thieno[2,3-b]pyridine-2,5-dicarboxylate (MUZXOW; Mague et al., 2016b), 4-[[3-fluorophenyl]amino]thieno[2,3-b]pyridine-5-carboxylic acid (XEBPIF; Pinheiro et al., 2012), ethyl 3-amino-2-carbamoyl-4-(4-methoxyphenyl)-6-methylthieno-[2,3-b]pyridine-5-carboxylate dimethyl sulfoxide solvate (AWETIH; Bakhite et al., 2016a), ethyl 3-amino-4-(4-chlorophenyl)-2-[[4-methoxyphenyl]carbamoyl]-6-phenylthieno-

Figure 6

A view of the three-dimensional Hirshfeld surface for the four molecules (I, II, III and IV) in the asymmetric unit of the title compound, plotted over (a) \(d_{	ext{norm}} \) and (b) shape-index.

Figure 7

A view of the two-dimensional fingerprint plots for the four molecules (I, II, III and IV) in the asymmetric unit of the title compound, showing (a) all interactions, and delineated into (b) H···H, (c) C···H/H···C and (d) O···H/H···O interactions. The \(d_e \) and \(d_i \) values are the closest internal and external distances (in Å) from given points on the Hirshfeld surface.
[2,3-b]pyridine-5-carboxylate (ULAROQ; Bakhite et al., 2016b), ethyl 3-(4-methylbenzenesulfonylamido)thieno[2,3-b]pyridine-2-carboxylate (GOLDUH; Zhang et al., 2009), ethyl 3-aminothieno[2,3-b]pyridine-2-carboxylate (QOLPEN; Zheng et al., 2009), 4-(4-bromophenyl)-2,5-bis(ethoxycarbonyl)-6-methylthieno[2,3-b]pyridine (WUVZES; Novoa de Armas et al., 2003), 5-acetyl-3-amino-4-(4-methoxyphenyl)-6-methylthieno[2,3-b]pyridine-2-carbonitrile (NEQUSA; Mohamed et al., 2017) and 2-amino-6-benzyl-3-(ethoxycarbonyl)-4,5,6,7-tetrahydrothieno[2,3-c]pyridin-6-ium (hydrogen bis(4-methoxyphenyl)diphosphonate) (RUTRUV; Mague et al., 2015).

In the crystal of TACXED, mutual N–H⋯O hydrogen bonds form dimers, which are then associated into chains parallel to the c axis through O⋯H⋯N hydrogen bonds involving the solvent water molecule. In the crystal of MUZXOW, the bicyclic core of the compound is slightly folded [1.9 (1)°], while pairwise intermolecular N–H⋯O hydrogen bonding forms dimers across centres of symmetry. In the crystal of XEBPIF, an intramolecular N–H⋯O(carbonyl) hydrogen bond closes an S(6) ring. Supramolecular chains along [010] mediated by O⋯H⋯N(pyridine) hydrogen bonds form in the crystal. A three-dimensional network is completed by π⋯π interactions occurring between the benzenoid ring and the two rings of the thieno[2,3-b]pyridine unit. In the crystal of AWETIH, molecules are linked by pairs of N–H⋯O hydrogen bonds, forming inversion dimers with an R21(8) ring motif. Within the dimers, which stack along the a-axis direction, there is a weak π⋯π interaction involving inversion-related thiophene rings. In the crystal of ULAROQ, the conformation of the title molecule is partially determined by an intramolecular N–H⋯O hydrogen bond, forming an S(6) loop, and an N⋯H⋯O π interaction involving the centroid of the 4-chlorophenyl ring. In the crystal, molecules are linked by pairs of N–H⋯O hydrogen bonds, forming inversion dimers with an R21(20) ring motif. In the crystal of GOLDUH, the amino and carbonyl groups are nearly coplanar with the heterocyclic ring system. There are two N–H⋯O hydrogen-bonding interactions involving the same N–H donor set and two different acceptors, one in an intramolecular bond helping to fix the molecular conformation and the other defining a dimeric structure around the symmetry centre at (0, 1/2, 1/2).

The crystal structure is stabilized by intramolecular and intramolecular C–H⋯O hydrogen bonds. The asymmetric unit of NEQUSA likewise comprises two molecules, which differ primarily in the orientations of the acetyl and p-anisyl substituents. In the crystal, N⋯H⋯O hydrogen bonds form chains extending parallel to (110). The asymmetric unit of the molecular salt RUTRUV comprises two cations and two anions. Each cation features an intramolecular N–H⋯O hydrogen bond, which closes an S(6) ring; in each case the hydropyridine ring adopts a half-chair conformation. In the crystal, O⋯H⋯O and N⋯H⋯O hydrogen bonds link the components into [100] chains.

Table 6

Experimental details.

Crystal data	Chemical formula	C25H21N3O2S
Cell type	M_r	427.51
System, space	Monoclinic, P2₁/n	
Temperature (K)	150	
a, b, c (Å)	182782 (5), 191455 (6), 246978 (7)	
β (°)	96.323 (1)	
V (Å³)	8903.3 (4)	
Z	16	
Radiation type	Cu Kα	
μ (mm⁻¹)	1.56	
Crystal size (mm)	0.43 x 0.35 x 0.13	

Data collection

- **Diffractometer**: Bruker D8 VENTURE PHOTON 100 CMOS
- **Absorption correction**: Multi-scan (SADABS; Krause et al., 2015)
- **Max. T_{max}**: 0.73, 0.82
- **No. of measured, independent and observed [I > 2σ(I)] reflections**: 65284, 17176, 14297
- **R_{int}**: 0.038
- **(sin θ/λ)_{max} (Å⁻¹)**: 0.626
- **Refinement**: R[F² > 2σ(F²)], wR(F²), S 0.043, 0.114, 1.04
- **No. of reflections**: 17176
- **No. of parameters**: 1126
- **H-atom treatment**: H-atom parameters constrained
- **Δρ_{max}, Δρ_{min} (e Å⁻³)**: 0.68, −0.39

Computer programs

- APEX3 and SAINT (Bruker, 2016), SHELXT (Sheeldrick, 2015a), SHELXL (Sheldrick, 2015b), DIAMOND (Brandenburg & Putz, 2012), OLEX2 (Dolomanov et al., 2009) and pubCIF (Westrip, 2010).

Numerous C–H⋯O interactions cross-link the chains into a three-dimensional network.

6. Synthesis and crystallization

To a suspension of 5-acetyl-3-cyano-1,2-dihydro-6-methyl-4-styryl-2-thioxopyridine (2.94 g, 10 mmol), N-phenyl-2-chloroacetamide (1.70 g, 10 mmol) in an ethanol solution (60 ml) was added, together with sodium ethoxide (22 mmol, 0.51 g sodium dissolved in 30 ml absolute ethanol). The resulting mixture was refluxed for 10 minutes. The solid that precipitated after cooling was collected and recrystallized from ethanol to give the title compound in the form of yellow crystals, yield 92%; m.p. 481–483 K. IR (cm⁻¹): 3452, 3292, 3220 (NH₂, NH), 3027 (C–H, aromatic), 1701 (C==O, acetyl) and 1633 (C==O, anilide).¹H NMR: δ 9.59 (s, 1H, NH), 7.85–7.88 (d, J = 15 Hz, 1H, CH=CH), 7.07–7.69 (m, 10H, Ar–H), 6.79 (s, 2H, NH2), 6.71–6.74 (d, J = 15 Hz, 1H, C==CH), 2.52 (s, 3H, COCH₃), δ 14.2 (s, 3H, CH₃ attached to pyridine ring).¹³C NMR: δ 205.61, 164.34, 158.93, 154.69, 148.61, 140.86, 139.61 (CH of CH==CH), 139.18, 136.00, 133.67, 129.59 (CH), 129.30 (CH), 128.89 (CH), 127.85 (CH), 124.12 (CH), 122.21 (CH of CH==CH), 122.02 (CH), 121.84 (CH), 121.85, 121.25, 98.87, 32.87 (CH₃ of acetyl group), 23.27 (CH₃ attached to pyridine ring). MS: m/z 427.14 (M⁺ 100%). Analysis calculated for C₂₅H₂₁N₃O₂S (427.13): C 70.24, H 4.95, N 9.84%. Found: C 70.51, H 4.85, N 9.90%.

Mohamed et al. • C₂₅H₂₁N₃O₂S 229
7. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 6. H atoms attached to carbon were placed in calculated positions (C–H = 0.95–0.98 Å) while those attached to nitrogen were derived from a difference-Fourier map and their parameters adjusted to give N–H = 0.91 Å. All H atoms were included as riding contributions with isotropic displacement parameters 1.2–1.5 times those of the attached atoms.

Acknowledgements

Author contributions are as follows. Conceptualization, SKM, EAB and MA; methodology, ISM and JTM; investigation, HHMA-A, OFI and AM; writing (review and editing), HHMA-A, SKM; visualization, SKM, OFI and AM; funding acquisition, SKM and JTM; writing (original draft), JTM, MA and SKM; resources EAB, ISM and SAHA; supervision, AM, SKM; visualization, SKM, OFI and AM; funding acquisition, SKM; writing (review and editing), HHMA-A, AM and SKM; investigation, HHMA-A, Kaur, M., Mohamed, S. K., Akkurt, M., Jasinski, J. P. & Albayati, M. R. (2016b). IUCrData, 1, x160270.

Mague, J. T., Mohamed, S. K., Akkurt, M., Bakhite, E. A. & Al-Taifi, M. R. (2016a). IUCrData, 1, x171700.

Mohamed, S. K., Mague, J. T., Akkurt, M., Bakhite, E. A. & Al-Taifi, E. A. (2017). IUCrData, 2, x171700.

Novoa de Armas, H., Peeters, O. M., Blaton, N. M., De Ranter, C. J., Dotsenko, V. V., Buryi, D. S., Lukina, D. Yu. & Krivokolysko, S. G. (2005). Acta Cryst. E65, o997–o998.

Mague, J. T., Mohamed, S. K., Akkurt, M., Younes, S. H. H., Ahmed, E. K. & Albayati, M. R. (2015). Acta Cryst. E71, o997–o998.

Mague, J. T., Mohamed, S. K., Akkurt, M., Bakhite, E. A. & Albayati, M. R. (2016b). IUCrData, 1, x160270.

Mohamed, S. K., Mague, J. T., Akkurt, M., Bakhite, E. A. & Al-Taifi, E. A. (2017). IUCrData, 2, x171700.

Novoa de Armas, H., Peeters, O. M., Blaton, N. M., De Ranter, C. J., Suárez Navarro, M., Salifán Solano, E., Verdecia Reyes, Y. & Ochoa Rodríguez, E. (2003). Acta Cryst. E59, o384–o386.

Pinheiro, L. C. S., Bernardino, A. M. R., Wardell, S. M. S. V., Wardell, J. L. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o2217–o2218.

Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.

Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.

Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, M. A., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer17, University of Western Australia.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Zeng, X. X., Zheng, R.-L., Zhou, T., He, H.-Y., Liu, J.-Y., Zheng, Y., Tong, A.-P., Xiang, M.-L., Song, X.-R., Yang, S.-Y., Yu, L.-T., Wei, Y.-Q., Zhao, Y.-L. & Yang, L. (2010). Bioorg. Med. Chem. Lett. 20, 6282–6285.

Zhang, W., Zheng, R., Song, H., Yang, S.-Y. & Yu, L.-T. (2009). Acta Cryst. E65, o257.

Zheng, R., Zhang, W., Yu, L.-T., Yang, S.-Y. & Yang, L. (2009). Acta Cryst. E65, o9.
Crystal structure and Hirshfeld surface analysis of 5-acetyl-3-amino-6-methyl-N-phenyl-4-[(E)-2-phenylethenyl]thieno[2,3-b]pyridine-2-carboxamide

Shaaban K. Mohamed, Etiſý A. Bakhite, Sevim Türktekin Çelikesir, Hajjaj H. M. Abdu-Allah, Mehmet Akkurt, Omaima F. Ibrahim, Joel T. Mague and Safiyyah A. H. Al-Waleedy

Computing details

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012), OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

5-Acetyl-3-amino-6-methyl-N-phenyl-4-[(E)-2-phenylethenyl]thieno[2,3-b]pyridine-2-carboxamide

Crystal data

C₂₅H₂₁N₃O₂S
Mr = 427.51
Monoclinic, P2₁/n
a = 18.2782 (5) Å
b = 19.1455 (6) Å
c = 24.6978 (7) Å
β = 96.323 (1)°
V = 8590.3 (4) Å³
Z = 16

Cu Kα radiation, λ = 1.54178 Å
Cell parameters from 9118 reflections
θ = 4.3–74.6°
µ = 1.56 mm⁻¹
T = 150 K
Block, yellow
0.43 × 0.35 × 0.13 mm

Data collection

Bruker D8 VENTURE PHOTON 100 CMOS diffractometer
Radiation source: INCOATEC μS micro-focus source
Mirror monochromator
Detector resolution: 10.4167 pixels mm⁻¹
ω scans
(SADABS; Krause et al., 2015)

65284 measured reflections
17176 independent reflections
14297 reflections with I > 2σ(I)
R(int) = 0.038
θ(max) = 74.7°, θ(min) = 2.9°
h = −22→22
k = −23→22
l = −29→30

Refinement

Refinement on F²
Least-squares matrix: full
R[F²] = 0.043
wR(F²) = 0.114
S = 1.04
17176 reflections
1126 parameters
0 restraints

Primary atom site location: dual
Secondary atom site location: difference Fourier map
Hydrogen site location: mixed
H-atom parameters constrained

w = 1/[σ(Fo)² + (0.0485P)² + 4.7725P]
where P = (Fo² + 2Fc²)/3
(Δ/σ)max = 0.001

Acta Cryst. (2022). E78, 225-230
$\Delta \rho_{\text{max}} = 0.68 \text{ e Å}^{-3}$

$\Delta \rho_{\text{min}} = -0.39 \text{ e Å}^{-3}$

Extinction correction: $SHELXL$ (Sheldrick, 2015b), $F^2 = kF^2[1 + 0.001xF^2]^3 \sin(2\theta)^{-1}$

Extinction coefficient: 0.00063 (3)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2, conventional R-factors R are based on F, with F set to zero for negative F^2. The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.98 Å) while those attached to nitrogen were placed in locations derived from a difference map and their parameters adjusted to give N—H = 0.91 Å. All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^2)

Atom	x	y	z	Uiso*/U_{eq}		
S1	0.62520 (3)	0.30624 (2)	0.17394 (2)	0.03185 (10)		
O1	0.55039 (8)	0.58307 (7)	0.31695 (6)	0.0421 (3)		
O2	0.64768 (8)	0.14490 (7)	0.27516 (5)	0.0406 (3)		
N1	0.58071 (8)	0.43773 (8)	0.18463 (6)	0.0300 (3)		
N2	0.59334 (9)	0.25628 (8)	0.32483 (6)	0.0324 (3)		
H2A	0.615181	0.213520	0.327535	0.039*		
H2B	0.600892	0.286081	0.353598	0.039*		
N3	0.67707 (8)	0.15460 (8)	0.18797 (6)	0.0320 (3)		
H3A	0.675877	0.183762	0.158792	0.038*		
C1	0.55522 (10)	0.48828 (9)	0.21497 (7)	0.0308 (4)		
C2	0.53820 (10)	0.47654 (9)	0.26873 (7)	0.0300 (4)		
C3	0.54733 (9)	0.41048 (9)	0.29249 (7)	0.0281 (3)		
C4	0.57713 (9)	0.35781 (9)	0.26157 (7)	0.0264 (3)		
C5	0.59141 (9)	0.37510 (9)	0.20844 (7)	0.0279 (3)		
C6	0.54387 (12)	0.55831 (10)	0.18774 (8)	0.0416 (4)		
H6A	0.492551	0.572890	0.188234	0.062*		
H6B	0.555166	0.554896	0.149948	0.062*		
H6C	0.576490	0.592769	0.207279	0.062*		
C7	0.50914 (11)	0.53688 (10)	0.29932 (7)	0.0330 (4)		
C8	0.42847 (11)	0.53794 (11)	0.30383 (9)	0.0414 (4)		
H8A	0.412776	0.491869	0.315429	0.062*		
H8B	0.401883	0.549543	0.268329	0.062*		
H8C	0.417730	0.573094	0.330690	0.062*		
C9	0.52653 (10)	0.39531 (10)	0.34737 (7)	0.0304 (4)		
H9	0.494318	0.357032	0.350899	0.037*		
C10	0.54946 (10)	0.43121 (10)	0.39249 (7)	0.0314 (4)		
H10	0.580706	0.470164	0.388737	0.038*		
C11	0.53033 (10)	0.41539 (10)	0.44731 (7)	0.0324 (4)		
C12	0.57324 (12)	0.44375 (11)	0.49233 (8)	0.0388 (4)		
Atom	x	y	z	U(eq)		
------	--------	----------	----------	-----------		
C12	0.613478	0.473367	0.486868	0.047*		
C13	0.55781 (14)	0.42920 (12)	0.54475 (8)	0.0476 (5)		
H13	0.587936	0.448134	0.575009	0.057*		
C14	0.49904 (15)	0.38746 (12)	0.55313 (8)	0.0509 (6)		
H14	0.488555	0.377599	0.589171	0.061*		
C15	0.45492 (14)	0.35963 (12)	0.50907 (9)	0.0490 (5)		
H15	0.413865	0.331271	0.514885	0.059*		
C16	0.47095 (12)	0.37335 (11)	0.45647 (8)	0.0391 (4)		
H16	0.440982	0.353784	0.426397	0.047*		
C17	0.59831 (9)	0.28651 (9)	0.27486 (7)	0.0269 (3)		
C18	0.62344 (9)	0.25232 (9)	0.23108 (7)	0.0292 (4)		
C19	0.64993 (9)	0.18031 (10)	0.23342 (7)	0.0307 (4)		
C20	0.70776 (10)	0.08771 (10)	0.18143 (7)	0.0314 (4)		
C21	0.72491 (11)	0.04053 (11)	0.22391 (8)	0.0399 (4)		
H21	0.715616	0.052318	0.259885	0.048*		
C22	0.75559 (12)	-0.02373 (11)	0.21350 (9)	0.0426 (5)		
H22	0.767168	-0.055687	0.242608	0.051*		
C23	0.76955 (12)	-0.04196 (11)	0.16166 (9)	0.0442 (5)		
H23	0.790212	-0.086241	0.154953	0.053*		
C24	0.75326 (14)	0.00458 (13)	0.11987 (9)	0.0527 (6)		
C25	0.762728	-0.007587	0.084008	0.063*		
H25	0.72304 (13)	0.06933 (12)	0.12953 (8)	0.0457 (5)		
C26	0.712741	0.101362	0.100306	0.055*		
S2	0.03954 (3)	0.33246 (3)	0.57578 (2)	0.04351 (13)		
O3	0.32420 (9)	0.25977 (11)	0.43995 (7)	0.0637 (5)		
O4	-0.09694 (9)	0.43274 (9)	0.46759 (6)	0.0517 (4)		
N4	0.16909 (9)	0.27160 (10)	0.57169 (6)	0.0387 (4)		
N5	0.01371 (10)	0.37310 (11)	0.41885 (6)	0.0463 (4)		
H5A	-0.020564	0.407740	0.416974	0.056*		
H5B	0.047379	0.373820	0.394320	0.056*		
N6	-0.09656 (9)	0.42275 (9)	0.55974 (6)	0.0385 (4)		
H6D	-0.073302	0.401715	0.589899	0.046*		
C26	0.22238 (10)	0.24755 (11)	0.54371 (7)	0.0369 (4)		
C27	0.21831 (10)	0.25553 (10)	0.48685 (7)	0.0331 (4)		
C28	0.15804 (10)	0.28521 (11)	0.45707 (7)	0.0346 (4)		
C29	0.10163 (10)	0.31114 (10)	0.48631 (7)	0.0298 (4)		
C30	0.11108 (10)	0.30046 (10)	0.54284 (7)	0.0331 (4)		
C31	0.28697 (13)	0.21482 (16)	0.57694 (9)	0.0592 (7)		
H31A	0.288331	0.230208	0.614884	0.089*		
H31B	0.332503	0.228994	0.562430	0.089*		
H31C	0.282312	0.163852	0.575239	0.089*		
C32	0.27920 (11)	0.22264 (13)	0.45800 (7)	0.0431 (5)		
C33	0.28079 (16)	0.14500 (16)	0.45355 (13)	0.0716 (8)		
C34	0.15891 (12)	0.28910 (13)	0.39694 (8)	0.0449 (5)		
H34	0.201552	0.308062	0.383690	0.054*		
Atom	U1	U2	U3	U12		
------	-----	-----	-----	------		
C35	0.10510 (12)	0.26828 (12)	0.36074 (8)	0.0422 (5)		
H35	0.059907	0.256078	0.373944	0.051*		
C36	0.10852 (12)	0.26214 (11)	0.30152 (8)	0.0396 (4)		
C37	0.17197 (12)	0.27616 (12)	0.27676 (8)	0.0449 (5)		
H37	0.214360	0.294217	0.297862	0.054*		
C38	0.17354 (12)	0.26388 (14)	0.22140 (8)	0.0514 (6)		
H38	0.216954	0.273184	0.204739	0.062*		
C39	0.11155 (12)	0.23804 (12)	0.19073 (8)	0.0425 (5)		
H39	0.112564	0.228469	0.153073	0.051*		
C40	0.04855 (12)	0.22627 (11)	0.21489 (8)	0.0417 (5)		
H40	0.005492	0.210072	0.193532	0.050*		
C41	0.04721 (12)	0.23769 (11)	0.26968 (9)	0.0423 (5)		
H41	0.003374	0.228602	0.285860	0.051*		
C42	0.03557 (10)	0.35116 (10)	0.47085 (7)	0.0333 (4)		
C43	−0.00274 (10)	0.36595 (10)	0.51460 (7)	0.0338 (4)		
C44	−0.06858 (11)	0.40936 (11)	0.51163 (8)	0.0369 (4)		
C45	−0.15844 (11)	0.46469 (11)	0.56711 (8)	0.0406 (4)		
C46	−0.19320 (13)	0.45263 (16)	0.61369 (9)	0.0573 (6)		
H46	−0.176193	0.416450	0.638244	0.069*		
C47	−0.25276 (14)	0.49358 (18)	0.62416 (11)	0.0707 (8)		
H47	−0.275922	0.485663	0.656211	0.085*		
C48	−0.27856 (14)	0.54561 (16)	0.58849 (12)	0.0647 (7)		
H48	−0.319212	0.573612	0.595885	0.078*		
C49	−0.24488 (13)	0.55661 (13)	0.54207 (12)	0.0570 (6)		
H49	−0.263306	0.591860	0.517132	0.068*		
C50	−0.18451 (12)	0.51725 (11)	0.53093 (10)	0.0473 (5)		
H50	−0.161260	0.526015	0.499054	0.057*		
S3	0.41314 (3)	0.24335 (2)	0.18027 (2)	0.03262 (10)		
O5	0.55494 (9)	−0.03140 (9)	0.31956 (7)	0.0561 (4)		
O6	0.34405 (8)	0.37124 (7)	0.28995 (5)	0.0366 (3)		
N7	0.46504 (9)	0.11366 (8)	0.18421 (6)	0.0331 (3)		
N8	0.38422 (9)	0.24697 (9)	0.33573 (6)	0.0358 (4)		
H8D	0.363500	0.289773	0.338965	0.043*		
H8E	0.390783	0.218293	0.360412	0.043*		
N9	0.33751 (8)	0.38233 (8)	0.19765 (6)	0.0318 (3)		
H9A	0.344208	0.362128	0.165217	0.038*		
C51	0.48351 (10)	0.05531 (10)	0.21191 (7)	0.0337 (4)		
C52	0.47698 (10)	0.04870 (10)	0.26806 (7)	0.0322 (4)		
C53	0.45350 (10)	0.10456 (9)	0.29802 (7)	0.0300 (4)		
C54	0.43342 (9)	0.16649 (9)	0.26909 (7)	0.0270 (3)		
C55	0.44097 (9)	0.16667 (9)	0.21287 (7)	0.0285 (3)		
C56	0.51391 (14)	−0.00244 (12)	0.17965 (9)	0.0495 (5)		
H56A	0.494565	−0.047394	0.190622	0.074*		
H56B	0.567744	−0.002688	0.186584	0.074*		
H56C	0.499232	0.005148	0.140725	0.074*		
C57	0.49572 (11)	−0.02065 (10)	0.29534 (8)	0.0375 (4)		
C58	0.43791 (16)	−0.07515 (13)	0.28970 (14)	0.0694 (8)		
H58A	0.402642	−0.066499	0.316094	0.104*		
Atom	x	y	z	Ueq		
-------	--------	--------	--------	-------		
H58B	0.460575	-0.121146	0.296565	0.104*		
H58C	0.412261	-0.073868	0.252722	0.104*		
C59	0.44971 (11)	0.09547 (10)	0.35740 (7)	0.0351 (4)		
H59	0.420414	0.058376	0.368735	0.042*		
C60	0.48473 (10)	0.13597 (10)	0.39578 (7)	0.0348 (4)		
H60	0.514138	0.172461	0.383629	0.042*		
C61	0.48267 (10)	0.13014 (11)	0.45512 (7)	0.0351 (4)		
C62	0.51007 (11)	0.18508 (13)	0.48754 (8)	0.0441 (5)		
H62	0.532423	0.223576	0.471510	0.053*		
C63	0.50531 (14)	0.18468 (14)	0.54312 (9)	0.0538 (6)		
H63	0.524141	0.229777	0.564808	0.065*		
C64	0.47365 (14)	0.12944 (14)	0.56708 (8)	0.0526 (6)		
H64	0.469875	0.129730	0.605133	0.063*		
C65	0.44757 (17)	0.07403 (15)	0.53596 (10)	0.0637 (7)		
H65	0.426479	0.035234	0.552525	0.076*		
C66	0.45179 (16)	0.07417 (13)	0.47981 (9)	0.0562 (6)		
H66	0.433295	0.035497	0.458403	0.067*		
C67	0.40131 (9)	0.23191 (9)	0.28491 (7)	0.0275 (3)		
C68	0.38802 (9)	0.27729 (9)	0.24124 (7)	0.0285 (3)		
C69	0.35528 (9)	0.34646 (9)	0.24508 (7)	0.0295 (4)		
C70	0.31164 (10)	0.45239 (10)	0.19555 (7)	0.0326 (4)		
C71	0.25865 (11)	0.47501 (11)	0.22759 (8)	0.0394 (4)		
H71	0.237517	0.443184	0.250946	0.047*		
C72	0.23663 (12)	0.54441 (12)	0.22536 (9)	0.0483 (5)		
H72	0.200382	0.559884	0.247398	0.058*		
C73	0.26680 (14)	0.59137 (12)	0.19145 (10)	0.0528 (6)		
H73	0.251683	0.638872	0.190318	0.063*		
C74	0.31914 (14)	0.56837 (12)	0.15928 (10)	0.0535 (6)		
H74	0.340186	0.600310	0.135956	0.064*		
C75	0.34120 (12)	0.49912 (11)	0.16073 (8)	0.0421 (5)		
H75	0.376527	0.483546	0.137950	0.051*		
S4	0.96809 (2)	0.10829 (3)	0.58282 (2)	0.03352 (11)		
O7	0.66763 (8)	0.24504 (8)	0.44738 (6)	0.0469 (4)		
O8	1.10998 (8)	0.08556 (9)	0.47378 (6)	0.0525 (4)		
N10	0.83433 (8)	0.16708 (9)	0.57761 (6)	0.0320 (3)		
N11	0.99537 (9)	0.16551 (9)	0.43311 (6)	0.0394 (4)		
H11A	1.035436	0.139938	0.426578	0.047*		
H11B	0.958515	0.174776	0.406215	0.047*		
N12	1.11828 (8)	0.04831 (9)	0.56184 (7)	0.0361 (3)		
H12A	1.100106	0.051922	0.594580	0.043*		
C76	0.77995 (10)	0.20337 (11)	0.55000 (7)	0.0338 (4)		
C77	0.78529 (10)	0.22969 (10)	0.49697 (7)	0.0305 (4)		
C78	0.84814 (9)	0.21799 (9)	0.47142 (7)	0.0283 (3)		
C79	0.90435 (9)	0.17761 (9)	0.49958 (7)	0.0280 (3)		
C80	0.89395 (9)	0.15499 (9)	0.55204 (7)	0.0289 (3)		
C81	0.71284 (12)	0.21607 (14)	0.57828 (8)	0.0506 (6)		
H81A	0.714743	0.186665	0.610886	0.076*		
H81B	0.668763	0.204530	0.553632	0.076*		
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
-----------	--------------	--------------	--------------	-------------	-------------	--------------
S1	0.0399 (2)	0.0355 (2)	0.02096 (19)	0.00223 (18)	0.00724 (17)	0.00067 (17)
O1	0.0468 (8)	0.0355 (7)	0.0432 (8)	0.0021 (6)	0.0021 (6)	0.00060 (6)
O2	0.0534 (8)	0.0395 (7)	0.0312 (7)	0.0106 (6)	0.0155 (6)	0.0081 (6)
N1	0.0308 (7)	0.0337 (8)	0.0252 (7)	0.0029 (6)	0.0023 (6)	0.0020 (6)
N2	0.0406 (8)	0.0357 (8)	0.0217 (7)	0.0038 (6)	0.0074 (6)	0.0029 (6)
N3	0.0376 (8)	0.0352 (8)	0.0234 (7)	0.0021 (6)	0.0046 (6)	0.0009 (6)
C1	0.0312 (8)	0.0328 (9)	0.0280 (9)	0.0028 (7)	0.0016 (7)	0.0000 (7)
C2	0.0303 (8)	0.0323 (9)	0.0271 (8)	0.0012 (7)	0.0022 (7)	0.0018 (7)
C3	0.0273 (8)	0.0331 (9)	0.0237 (8)	0.0025 (7)	0.0015 (6)	0.0016 (7)

Acta Cryst. (2022). E78, 225-230 sup-6
	x	y	z	U11	U22	U33	U12	U13	U23
C4	0.0253	0.0319	0.0219	-0.0028	0.0019	-0.0002			
C5	0.0286	0.0336	0.0212	-0.0032	0.0022	-0.0002			
C6	0.0510	0.0356	0.0385	0.0007	0.0067	0.0068			
C7	0.0407	0.0325	0.0258	0.0034	0.0034	0.0020			
C8	0.0413	0.0442	0.0393	0.0052	0.0072	-0.0041			
C9	0.0317	0.0331	0.0271	0.0010	0.0063	-0.0005			
C10	0.0326	0.0346	0.0274	0.0023	0.0047	-0.0010			
C11	0.0381	0.0340	0.0260	0.0078	0.0073	-0.0037			
C12	0.0438	0.0431	0.0294	0.0019	0.0029	-0.0063			
C13	0.0639	0.0508	0.0280	0.0042	0.0044	-0.0082			
C14	0.0785	0.0492	0.0273	0.0048	0.0155	-0.0026			
C15	0.0649	0.0475	0.0383	-0.0066	0.0225	-0.0030			
C16	0.0481	0.0415	0.0290	-0.0015	0.0101	-0.0060			
C17	0.0253	0.0337	0.0219	-0.0019	0.0035	0.0011			
C18	0.0297	0.0352	0.0230	0.0002	0.0038	0.0005			
C19	0.0290	0.0376	0.0260	0.0006	0.0049	-0.0014			
C20	0.0285	0.0354	0.0306	-0.0012	0.0040	-0.0051			
C21	0.0466	0.0403	0.0328	0.0062	0.0043	-0.0021			
C22	0.0450	0.0412	0.0407	0.0068	0.0014	-0.0020			
C23	0.0408	0.0424	0.0486	0.0077	0.0008	-0.0101			
C24	0.0654	0.0561	0.0375	0.0179	0.0094	-0.0092			
C25	0.0564	0.0488	0.0326	0.0129	0.0080	-0.0023			
S2	0.0389	0.0704	0.0227	0.0162	0.00994	0.0093			
O3	0.0500	0.0958	0.0501	0.0059	0.0272	0.0143			
O4	0.0491	0.0733	0.0321	0.0219	0.0018	0.0049			
N4	0.0362	0.0592	0.0210	0.0114	0.0053	0.0049			
N5	0.0486	0.0675	0.0227	0.0173	0.0042	0.0064			
N6	0.0338	0.0524	0.0292	0.0076	0.0037	0.0003			
C26	0.0341	0.0543	0.0226	0.0038	0.0048	0.0006			
C27	0.0306	0.0475	0.0218	-0.0023	0.0052	-0.0029			
C28	0.0353	0.0476	0.0214	-0.0012	0.0053	-0.0007			
C29	0.0309	0.0378	0.0204	-0.0043	0.0017	0.0012			
C30	0.0343	0.0443	0.0213	-0.0001	0.0061	0.0045			
C31	0.0503	0.0982	0.0289	0.0291	0.0016	-0.0006			
C32	0.0328	0.0751	0.0214	0.0036	0.0027	-0.0046			
C33	0.0606	0.0814	0.0758	0.0055	0.0199	-0.0332			
C34	0.0426	0.0654	0.0269	0.0016	0.0056	0.0013			
C35	0.0399	0.0528	0.0351	-0.0063	0.0087	0.0004			
C36	0.0518	0.0409	0.0271	0.0030	0.0084	0.0017			
C37	0.0471	0.0560	0.0292	-0.0133	0.0063	-0.0006			
C38	0.0434	0.0829	0.0284	-0.0175	0.0064	0.0038			
C39	0.0470	0.0585	0.0229	-0.0094	0.0072	-0.0087			
C40	0.0455	0.0439	0.0360	-0.0078	0.0055	-0.0056			
C41	0.0439	0.0450	0.0394	-0.0031	0.0111	0.0007			
C42	0.0352	0.0413	0.0229	-0.0020	0.0014	0.0022			
C43	0.0335	0.0441	0.0239	0.0007	0.0035	0.0033			
C44	0.0355	0.0466	0.0284	0.0022	0.0025	0.0009			
C45	0.0335	0.0486	0.0392	0.0012	0.0010	-0.0112			
Atom	U1	U2	U3	U4	U5	U6			
------	-----	-----	-----	-----	-----	-----			
C46	0.0418 (11)	0.0942 (19)	0.0361 (11)	0.0164 (12)	0.0057 (9)	−0.0009 (12)			
C47	0.0483 (13)	0.114 (2)	0.0505 (14)	0.0213 (15)	0.0103 (11)	−0.0146 (15)			
C48	0.0429 (12)	0.0757 (18)	0.0747 (18)	0.0148 (12)	0.0025 (12)	−0.0252 (15)			
C49	0.0482 (13)	0.0444 (12)	0.0765 (17)	0.0051 (10)	−0.0014 (12)	−0.0089 (12)			
C50	0.0426 (11)	0.0405 (11)	0.0587 (14)	0.0005 (9)	0.0050 (10)	−0.0040 (10)			
S3	0.0428 (2)	0.0355 (2)	0.0206 (2)	0.00549 (18)	0.00827 (17)	0.0122 (17)			
O5	0.0571 (10)	0.0566 (10)	0.0516 (9)	0.0090 (8)	−0.0073 (8)	0.0142 (8)			
O6	0.0463 (7)	0.0397 (7)	0.0243 (6)	0.0089 (6)	0.0062 (5)	−0.0027 (5)			
N7	0.0393 (8)	0.0370 (8)	0.0232 (7)	0.0047 (7)	0.0047 (6)	−0.0041 (6)			
N8	0.0488 (9)	0.0388 (8)	0.0212 (7)	0.0105 (7)	0.0103 (6)	0.0022 (6)			
N9	0.0373 (8)	0.0353 (8)	0.0232 (7)	0.0046 (6)	0.0054 (6)	−0.0004 (6)			
C51	0.0339 (9)	0.0340 (9)	0.0283 (9)	0.0007 (7)	0.0011 (7)	−0.0012 (7)			
C52	0.0310 (8)	0.0338 (9)	0.0251 (8)	−0.0005 (7)	0.0034 (7)	−0.0013 (7)			
C54	0.0377 (9)	0.0351 (9)	0.0279 (9)	0.0033 (8)	0.0026 (7)	−0.0048 (7)			
C55	0.0333 (9)	0.0340 (9)	0.0283 (9)	0.0007 (7)	0.0011 (7)	−0.0012 (7)			
C56	0.0339 (9)	0.0340 (9)	0.0283 (9)	0.0007 (7)	0.0011 (7)	−0.0012 (7)			
C57	0.0310 (8)	0.0338 (9)	0.0251 (8)	−0.0005 (7)	0.0034 (7)	−0.0013 (7)			
C58	0.0377 (9)	0.0351 (9)	0.0279 (9)	0.0033 (8)	0.0026 (7)	−0.0048 (7)			
C59	0.0333 (9)	0.0340 (9)	0.0283 (9)	0.0007 (7)	0.0011 (7)	−0.0012 (7)			
C60	0.0339 (9)	0.0340 (9)	0.0283 (9)	0.0007 (7)	0.0011 (7)	−0.0012 (7)			
C61	0.0310 (8)	0.0338 (9)	0.0251 (8)	−0.0005 (7)	0.0034 (7)	−0.0013 (7)			
C62	0.0377 (9)	0.0351 (9)	0.0279 (9)	0.0033 (8)	0.0026 (7)	−0.0048 (7)			
C63	0.0333 (9)	0.0340 (9)	0.0283 (9)	0.0007 (7)	0.0011 (7)	−0.0012 (7)			
C64	0.0339 (9)	0.0340 (9)	0.0283 (9)	0.0007 (7)	0.0011 (7)	−0.0012 (7)			
C65	0.0310 (8)	0.0338 (9)	0.0251 (8)	−0.0005 (7)	0.0034 (7)	−0.0013 (7)			
C66	0.0377 (9)	0.0351 (9)	0.0279 (9)	0.0033 (8)	0.0026 (7)	−0.0048 (7)			
C67	0.0333 (9)	0.0340 (9)	0.0283 (9)	0.0007 (7)	0.0011 (7)	−0.0012 (7)			
C68	0.0310 (8)	0.0338 (9)	0.0251 (8)	−0.0005 (7)	0.0034 (7)	−0.0013 (7)			
C69	0.0377 (9)	0.0351 (9)	0.0279 (9)	0.0033 (8)	0.0026 (7)	−0.0048 (7)			
C70	0.0333 (9)	0.0340 (9)	0.0283 (9)	0.0007 (7)	0.0011 (7)	−0.0012 (7)			
C71	0.0310 (8)	0.0338 (9)	0.0251 (8)	−0.0005 (7)	0.0034 (7)	−0.0013 (7)			
C72	0.0377 (9)	0.0351 (9)	0.0279 (9)	0.0033 (8)	0.0026 (7)	−0.0048 (7)			
Geometric parameters (Å, °)

C82	0.0312 (9)	0.0463 (11)	0.0257 (9)	0.0056 (8)	0.0078 (7)	0.0023 (8)
C83	0.0448 (11)	0.0453 (12)	0.0649 (15)	0.0094 (10)	0.0015 (11)	0.0081 (11)
C84	0.0319 (9)	0.0377 (9)	0.0258 (9)	−0.0001 (7)	0.0048 (7)	0.0062 (7)
C85	0.0316 (9)	0.0386 (10)	0.0272 (9)	0.0016 (7)	0.0057 (7)	0.0054 (7)
C86	0.0258 (8)	0.0427 (10)	0.0242 (8)	0.0019 (7)	0.0012 (6)	0.0043 (7)
C87	0.0340 (9)	0.0468 (11)	0.0284 (9)	−0.0029 (8)	−0.0005 (7)	0.0000 (8)
C88	0.0405 (10)	0.0652 (14)	0.0246 (9)	−0.0039 (10)	−0.0011 (8)	−0.0046 (9)
C89	0.0394 (10)	0.0723 (15)	0.0234 (9)	−0.0108 (10)	0.0003 (8)	0.0090 (9)
C90	0.0438 (11)	0.0530 (12)	0.0321 (10)	−0.0087 (9)	−0.0006 (8)	0.0107 (9)
C91	0.0428 (10)	0.0439 (11)	0.0272 (9)	−0.0020 (8)	0.0019 (8)	0.0029 (8)
C92	0.0300 (8)	0.0356 (9)	0.0244 (8)	−0.0009 (7)	0.0069 (7)	0.0009 (7)
C93	0.0317 (9)	0.0397 (10)	0.0257 (8)	0.0019 (7)	0.0047 (7)	0.0020 (7)
C94	0.0315 (9)	0.0443 (10)	0.0317 (9)	0.0050 (8)	0.0069 (7)	0.0038 (8)
C95	0.0281 (8)	0.0350 (9)	0.0426 (10)	0.0014 (7)	0.0047 (8)	0.0042 (8)
C96	0.0380 (10)	0.0656 (14)	0.0412 (11)	0.0116 (10)	0.0088 (9)	0.0110 (10)
C97	0.0381 (11)	0.0764 (17)	0.0576 (14)	0.0141 (11)	0.0067 (10)	0.0240 (13)
C98	0.0378 (11)	0.0516 (13)	0.0795 (17)	0.0144 (10)	0.0162 (11)	0.0150 (12)
C99	0.0470 (12)	0.0421 (12)	0.0714 (16)	0.0090 (10)	0.0162 (11)	−0.0098 (11)
C100	0.0397 (10)	0.0430 (11)	0.0501 (12)	0.0045 (9)	0.0019 (9)	−0.0110 (9)

S1—C5 1.7209 (18) **S3—C55** 1.7241 (18)
S1—C18 1.7516 (18) **S3—C68** 1.7471 (17)
O1—C7 1.212 (2) **O5—C57** 1.195 (3)
O2—C19 1.238 (2) **O6—C69** 1.243 (2)
N1—C1 1.339 (2) **N7—C51** 1.334 (2)
N1—C5 1.340 (2) **N7—C55** 1.339 (2)
N2—C17 1.375 (2) **N8—C67** 1.357 (2)
N2—H2A 0.9100 **N8—H8D** 0.9100
N2—H2B 0.9099 **N8—H8E** 0.8193
N3—C19 1.368 (2) **N9—C69** 1.366 (2)
N3—C20 1.415 (2) **N9—C70** 1.421 (2)
N3—H3A 0.9100 **N9—H9A** 0.9100
C1—C2 1.414 (2) **C51—C52** 1.411 (3)
C1—C6 1.504 (3) **C51—C56** 1.505 (3)
C2—C3 1.397 (2) **C52—C53** 1.395 (3)
C2—C7 1.509 (2) **C52—C57** 1.511 (3)
C3—C4 1.410 (2) **C53—C54** 1.412 (2)
C3—C9 1.476 (2) **C53—C59** 1.486 (2)
C4—C5 1.405 (2) **C54—C55** 1.410 (2)
C4—C17 1.447 (2) **C54—C67** 1.455 (2)
C6—H6A 0.9800 **C56—H56A** 0.9800
C6—H6B 0.9800 **C56—H56B** 0.9800
C6—H6C 0.9800 **C56—H56C** 0.9800
C7—C8 1.491 (3) **C57—C58** 1.480 (3)
C8—H8A 0.9800 **C58—H58A** 0.9800
C8—H8B 0.9800 **C58—H58B** 0.9800
Bond	Distance	Bond	Distance
C8—H8C	0.9800	C58—H58C	0.9800
C9—C10	1.337 (3)	C59—C60	1.333 (3)
C9—H9	0.9500	C59—H59	0.9500
C10—C11	1.467 (2)	C60—C61	1.474 (2)
C10—H10	0.9500	C60—H60	0.9500
C11—C16	1.390 (3)	C61—C62	1.382 (3)
C11—C12	1.398 (3)	C61—C66	1.384 (3)
C12—C13	1.383 (3)	C62—C63	1.385 (3)
C12—H12	0.9500	C62—H62	0.9500
C13—C14	1.373 (3)	C63—C64	1.371 (4)
C13—H13	0.9500	C63—H63	0.9500
C14—C15	1.387 (3)	C64—C65	1.365 (4)
C14—H14	0.9500	C64—H64	0.9500
C15—C16	1.388 (3)	C65—C66	1.397 (3)
C15—H15	0.9500	C65—H65	0.9500
C16—H16	0.9500	C66—H66	0.9500
C17—C18	1.385 (2)	C67—C68	1.385 (2)
C18—C19	1.460 (3)	C68—C69	1.461 (2)
C20—C25	1.387 (3)	C70—C71	1.386 (3)
C20—C21	1.394 (3)	C70—C75	1.391 (3)
C21—C22	1.388 (3)	C71—C72	1.388 (3)
C21—H21	0.9500	C71—H71	0.9500
C22—C23	1.378 (3)	C72—C73	1.384 (3)
C22—H22	0.9500	C72—H72	0.9500
C23—C24	1.371 (3)	C73—C74	1.381 (3)
C23—H23	0.9500	C73—H73	0.9500
C24—C25	1.389 (3)	C74—C75	1.385 (3)
C24—H24	0.9500	C74—H74	0.9500
C25—H25	0.9500	C75—H75	0.9500
S2—C30	1.7267 (19)	S4—C80	1.7282 (18)
S2—C43	1.7420 (18)	S4—C93	1.7548 (18)
O3—C32	1.209 (3)	O7—C82	1.208 (2)
O4—C44	1.236 (2)	O8—C94	1.237 (2)
N4—C30	1.331 (2)	N10—C76	1.337 (2)
N4—C26	1.337 (2)	N10—C80	1.339 (2)
N5—C42	1.368 (2)	N11—C92	1.368 (2)
N5—H5A	0.9100	N11—H11A	0.9100
N5—H5B	0.9100	N11—H11B	0.9099
N6—C44	1.369 (2)	N12—C94	1.360 (2)
N6—C45	1.415 (3)	N12—C95	1.422 (2)
N6—H6D	0.9099	N12—H12A	0.9099
C26—C27	1.403 (2)	C76—C77	1.417 (2)
C26—C31	1.499 (3)	C76—C81	1.497 (3)
C27—C28	1.394 (3)	C77—C78	1.388 (2)
C27—C32	1.507 (3)	C77—C82	1.511 (2)
C28—C29	1.412 (3)	C78—C79	1.407 (2)
C28—C34	1.489 (3)	C78—C84	1.485 (2)
C29—C30	1.403 (2)	C79—C80	1.399 (2)
C29—C42 1.445 (3) C79—C92 1.444 (2)
C31—H31A 0.9800 C81—H81A 0.9800
C31—H31B 0.9800 C81—H81B 0.9800
C31—H31C 0.9800 C81—H81C 0.9800
C32—C33 1.491 (4) C82—C83 1.489 (3)
C33—H33A 0.9800 C83—H83A 0.9800
C33—H33B 0.9800 C83—H83B 0.9800
C33—H33C 0.9800 C83—H83C 0.9800
C34—C35 1.316 (3) C84—C85 1.333 (3)
C34—H34 0.9500 C84—H84 0.9500
C35—C36 1.475 (3) C85—C86 1.475 (2)
C35—H35 0.9500 C85—H85 0.9500
C36—C41 1.378 (3) C86—C87 1.392 (3)
C36—C37 1.395 (3) C86—C91 1.393 (3)
C37—C38 1.391 (3) C87—C88 1.387 (3)
C37—H37 0.9500 C87—H87 0.9500
C38—C39 1.383 (3) C88—C89 1.381 (3)
C38—H38 0.9500 C88—H88 0.9500
C39—C40 1.373 (3) C89—C90 1.380 (3)
C39—H39 0.9500 C89—H90 0.9500
C40—C41 1.374 (3) C90—C91 1.386 (3)
C40—H40 0.9500 C90—H90 0.9500
C41—H41 0.9500 C91—H91 0.9500
C42—C43 1.380 (3) C92—C93 1.372 (3)
C43—C44 1.458 (3) C93—C94 1.464 (3)
C45—C46 1.393 (3) C95—C96 1.385 (3)
C45—C50 1.394 (3) C95—C100 1.389 (3)
C46—C47 1.389 (3) C96—C97 1.388 (3)
C46—H46 0.9500 C96—H96 0.9500
C47—C48 1.378 (4) C97—C98 1.374 (4)
C47—H47 0.9500 C97—H97 0.9500
C48—C49 1.376 (4) C98—C99 1.371 (4)
C48—H48 0.9500 C98—H98 0.9500
C49—C50 1.389 (3) C99—C100 1.392 (3)
C49—H49 0.9500 C99—H99 0.9500
C50—H50 0.9500 C100—H100 0.9500

C5—S1—C18 90.75 (8) C55—S3—C68 90.36 (8)
C1—N1—C5 116.36 (15) C51—N7—C55 116.29 (16)
C17—N2—H2A 111.9 C67—N8—H8D 114.4
C17—N2—H2B 114.7 C67—N8—H8E 121.1
H2A—N2—H2B 118.6 H8D—N8—H8E 124.5
C19—N3—C20 127.14 (16) C69—N9—C70 123.54 (15)
C19—N3—H3A 116.7 C69—N9—H9A 119.9
C20—N3—H3A 116.1 C70—N9—H9A 116.5
N1—C1—C2 122.45 (16) N7—C51—C52 122.36 (16)
N1—C1—C6 115.68 (16) N7—C51—C56 115.55 (16)
C2—C1—C6 121.85 (17) C52—C51—C56 122.07 (17)
C3—C2—C1 120.65 (16) C53—C52—C51 121.14 (17)
C3—C2—C7 121.03 (16) C53—C52—C57 120.33 (16)
C1—C2—C7 118.32 (16) C51—C52—C57 118.53 (16)
C2—C3—C4 117.10 (15) C52—C53—C54 116.96 (16)
C2—C3—C9 122.21 (16) C52—C53—C59 118.97 (16)
C4—C3—C9 120.69 (16) C54—C53—C59 124.06 (16)
C5—C4—C3 117.37 (16) C55—C54—C53 116.87 (16)
C5—C4—C17 111.20 (15) C55—C54—C67 110.39 (15)
C3—C4—C17 131.42 (15) C53—C54—C67 132.63 (15)
N1—C5—C4 125.97 (16) N7—C55—C54 126.31 (16)
N1—C5—S1 120.74 (13) N7—C55—S3 119.71 (13)
C4—C5—S1 113.96 (13) C54—C55—S3 113.95 (13)
C1—C6—H6A 109.5 C51—C56—H56A 109.5
C1—C6—H6B 109.5 C51—C56—H56B 109.5
H6A—C6—H6B 109.5 H56A—C56—H56B 109.5
H6A—C6—H6C 109.5 H56A—C56—H56C 109.5
H6B—C6—H6C 109.5 H56B—C56—H56C 109.5
O1—C7—C8 123.00 (18) O5—C57—C58 121.6 (2)
O1—C7—C2 119.96 (17) O5—C57—C52 121.51 (19)
C8—C7—C2 116.97 (16) C58—C57—C52 116.92 (18)
C7—C8—H8A 109.5 C57—C58—H58A 109.5
C7—C8—H8B 109.5 C57—C58—H58B 109.5
H8A—C8—H8B 109.5 H58A—C58—H58B 109.5
C7—C8—H8C 109.5 C57—C58—H58C 109.5
H8A—C8—H8C 109.5 H58A—C58—H58C 109.5
H8B—C8—H8C 109.5 H58B—C58—H58C 109.5
C10—C9—C3 125.12 (17) C60—C59—C53 124.26 (18)
C10—C9—H9 117.4 C60—C59—H59 117.9
C3—C9—H9 117.4 C53—C59—H59 117.9
C9—C10—C11 125.34 (18) C59—C60—C61 126.87 (18)
C9—C10—H10 117.3 C59—C60—H60 116.6
C11—C10—H10 117.3 C61—C60—H60 116.6
C16—C11—C12 118.37 (17) C62—C61—C66 118.26 (18)
C16—C11—C10 122.68 (17) C62—C61—C60 118.09 (18)
C12—C11—C10 118.96 (18) C66—C61—C60 123.58 (19)
C13—C12—C11 120.8 (2) C61—C62—C63 120.8 (2)
C13—C12—H12 119.6 C61—C62—H62 119.6
C11—C12—H12 119.6 C63—C62—H62 119.6
C14—C13—C12 120.1 (2) C64—C63—C62 120.5 (2)
C14—C13—H13 119.9 C64—C63—H63 119.7
C12—C13—H13 119.9 C62—C63—H63 119.7
C13—C14—C15 120.1 (2) C65—C64—C63 119.6 (2)
C13—C14—H14 119.9 C65—C64—H64 120.2
C15—C14—H14 119.9 C63—C64—H64 120.2
C14—C15—C16 119.8 (2) C64—C65—C66 120.2 (2)
C14—C15—H15 120.1 C64—C65—H65 119.9
C16—C15—H15 120.1 C66—C65—H65 119.9

Acta Cryst. (2022). E78, 225-230
Bond	Angle (deg)	Bond	Angle (deg)	Bond	Angle (deg)
C15—C16—C11	120.75 (19)	C61—C66—C65	120.6 (2)		
C15—C16—H16	119.6	C61—C66—H66	119.7		
C11—C16—H16	119.6	C65—C66—H66	119.7		
N2—C17—C18	124.20 (16)	N8—C67—C68	123.25 (16)		
N2—C17—C4	123.94 (15)	N8—C67—C54	124.88 (16)		
C18—C17—C4	111.85 (15)	C68—C67—C54	111.85 (15)		
C17—C18—C19	123.53 (16)	C67—C68—C69	123.77 (15)		
C17—C18—S1	112.81 (13)	C67—C68—S3	113.42 (13)		
C19—C18—S1	123.56 (13)	C69—C68—S3	122.80 (13)		
O2—C19—N3	122.30 (17)	O6—C69—N9	121.72 (16)		
O2—C19—C18	120.57 (16)	O6—C69—C68	120.86 (16)		
N3—C19—C18	117.13 (16)	N9—C69—C68	117.42 (15)		
C25—C20—C21	118.67 (18)	C71—C70—C75	119.70 (18)		
C25—C20—N3	117.25 (17)	C71—C70—N9	121.65 (17)		
C21—C20—N3	124.06 (16)	C75—C70—N9	118.64 (17)		
C22—C21—H21	119.81 (19)	C70—C71—C72	119.6 (2)		
C22—C21—H21	120.1	C70—C71—H71	120.2		
C20—C21—H21	120.1	C72—C71—H71	120.2		
C23—C22—C21	121.1 (2)	C73—C72—C71	120.9 (2)		
C23—C22—H22	119.4	C73—C72—H72	119.6		
C21—C22—H22	119.4	C71—C72—H72	119.6		
C24—C23—C22	119.2 (2)	C74—C73—C72	119.2 (2)		
C24—C23—H23	120.4	C74—C73—H73	120.4		
C22—C23—H23	120.4	C72—C73—H73	120.4		
C23—C24—C25	120.6 (2)	C73—C74—C75	120.6 (2)		
C23—C24—H24	119.7	C73—C74—H74	119.7		
C25—C24—H24	119.7	C75—C74—H74	119.7		
C20—C25—C24	120.6 (2)	C74—C75—C70	120.0 (2)		
C20—C25—H25	119.7	C74—C75—H75	120.0		
C24—C25—H25	119.7	C70—C75—H75	120.0		
C30—S2—C43	90.49 (9)	C80—S4—C93	90.64 (8)		
C30—N4—C26	116.71 (15)	C76—N10—C80	116.58 (15)		
C42—N5—H5A	113.6	C92—N11—H11A	112.9		
C42—N5—H5B	118.7	C92—N11—H11B	115.3		
H5A—N5—H5B	117.9	H11A—N11—H11B	121.4		
C44—N6—C45	126.74 (17)	C94—N12—C95	125.78 (16)		
C44—N6—H6D	116.3	C94—N12—H12A	119.5		
C45—N6—H6D	117.0	C95—N12—H12A	114.6		
N4—C26—C27	121.87 (17)	N10—C76—C77	122.25 (16)		
N4—C26—C31	115.84 (16)	N10—C76—C81	116.61 (16)		
C27—C26—C31	122.28 (17)	C77—C76—C81	121.14 (17)		
C28—C27—C26	121.02 (17)	C78—C77—C76	120.50 (16)		
C28—C27—C32	120.20 (16)	C78—C77—C82	119.46 (15)		
C26—C27—C32	118.74 (17)	C76—C77—C82	120.02 (15)		
C27—C28—C29	117.52 (16)	C77—C78—C79	117.36 (15)		
C27—C28—C34	116.96 (17)	C77—C78—C84	121.77 (16)		
C29—C28—C34	125.52 (17)	C79—C78—C84	120.87 (15)		
C30—C29—C28	116.16 (16)	C80—C79—C78	117.50 (15)		
C30—C29—C42 110.35 (16) C80—C79—C92 111.56 (15)
C28—C29—C42 133.38 (16) C78—C79—C92 130.93 (16)
N4—C30—C29 126.64 (17) N10—C80—C79 125.75 (16)
N4—C30—S2 119.69 (13) N10—C80—S4 121.44 (13)
C29—C30—S2 113.61 (14) C79—C80—S4 112.81 (16)
C26—C31—H31A 109.5 C76—C81—H81A 109.5
C26—C31—H31B 109.5 C76—C81—H81B 109.5
H31A—C31—H31B 109.5 C76—C81—H81C 109.5
H31A—C31—H31C 109.5 H81A—C81—H81C 109.5
H31B—C31—H31C 109.5 H81B—C81—H81C 109.5
O3—C32—C33 122.7 (2) O7—C82—C83 122.19 (18)
O3—C32—C27 120.8 (2) O7—C82—C77 121.10 (18)
C33—C32—C27 116.6 (2) C83—C82—C77 116.70 (17)
C32—C33—H33A 109.5 C82—C83—C78 124.27 (17)
C32—C33—H33B 109.5 C82—C83—C84 117.9
H33A—C33—H33B 109.5 C82—C83—H83A 117.9
C32—C33—H33C 109.5 C82—C83—H83B 117.9
H33A—C33—H33C 109.5 C82—C83—H83C 117.9
H33B—C33—H33C 109.5 C83—C84—C85 122.96 (17)
C35—C34—C28 125.0 (2) C85—C84—C86 118.5
C35—C34—H34 117.5 C85—C84—H84 118.5
C28—C34—H34 117.5 C84—C85—H85 118.5
C34—C35—C36 126.0 (2) C84—C85—C86 118.5
C34—C35—H35 117.0 C84—C85—H85 118.5
C36—C35—H35 117.0 C85—C86—H85 118.5
C41—C36—C37 118.56 (18) C37—C36—C35 118.59 (17)
C41—C36—C35 118.17 (19) C37—C36—C35 118.59 (17)
C36—C35—C37 123.17 (19) C37—C36—C35 123.17 (19)
C36—C35—H35 120.43 (19) C37—C36—C35 120.43 (19)
C38—C37—C36 119.8 C38—C37—H37 119.6
C38—C37—H37 119.8 C38—C37—H37 119.8
C39—C38—C37 119.6 (2) C39—C38—H38 119.6
C39—C38—H38 120.2 C39—C38—H38 120.2
C38—C39—C38 120.2 C38—C39—H38 120.2
C40—C39—C38 119.76 (18) C40—C39—H39 119.87 (18)
C40—C39—H39 120.1 C40—C39—H39 120.1
C38—C39—H39 120.1 C38—C39—H39 120.1
C39—C40—C41 120.6 (2) C39—C40—C41 120.6 (2)
C39—C40—H40 119.7 C39—C40—H40 119.7
C40—C40—H40 119.7 C40—C40—H40 119.7
C40—C41—C36 120.97 (19) C40—C41—C36 120.97 (19)
C40—C41—H41 119.5 C40—C41—H41 119.5
C36—C41—H41 119.5 C36—C41—H41 119.5
N5—C42—C43 123.42 (18) N5—C42—C43 123.42 (18)
N5—C42—C29 124.04 (17) N5—C42—C29 124.04 (17)
C43—C42—C29 112.53 (16) C43—C42—C29 112.53 (16)
C42—C43—C44 124.40 (17) C42—C43—C44 124.40 (17)
C42—C43—S2: 112.87 (14) C92—C93—S4: 112.75 (13)
C44—C43—S2: 122.58 (14) C94—C93—S4: 123.41 (14)
O4—C44—N6: 122.39 (18) O8—C94—N12: 122.57 (17)
O4—C44—C43: 120.97 (17) O8—C94—C93: 119.92 (17)
N6—C44—C43: 116.64 (16) N12—C94—C93: 117.51 (16)
C46—C45—C50: 119.6 (2) C96—C95—C100: 117.80 (18)
C46—C45—N6: 117.1 (2) C96—C95—N12: 119.36 (18)
C50—C45—N6: 123.28 (19) C100—C95—N12: 122.81 (18)
C47—C46—C45: 119.9 (3) C95—C96—C97: 120.5 (2)
C47—C46—H46: 120.1 C95—C96—H96: 119.7
C45—C46—H46: 120.1 C97—C96—H96: 119.7
C48—C47—C46: 120.6 (3) C98—C97—C96: 120.1 (2)
C48—C47—H47: 119.7 C98—C97—H97: 119.9
C46—C47—H47: 119.7 C96—C97—H97: 119.9
C49—C48—C47: 119.4 (2) C99—C98—C97: 119.6 (2)
C49—C48—H48: 120.3 C99—C98—H98: 120.2
C47—C48—H48: 120.3 C97—C98—H98: 120.2
C48—C49—C50: 121.3 (3) C98—C99—C100: 121.2 (2)
C48—C49—H49: 119.3 C98—C99—H99: 119.4
C50—C49—H49: 119.3 C100—C99—H99: 119.4
C49—C50—C55—N7: 179.11 (13) C51—N7—C55—C54: 1.2 (3)
C5—N1—C1—C2: −1.8 (2) C55—N7—C51—C52: −177.12 (18)
C5—N1—C1—C6: 179.72 (16) C55—N7—C51—C56: −2.7 (3)
N1—C1—C2—C3: −0.2 (3) N7—C51—C52—C53: 175.46 (19)
C6—C1—C2—C3: 178.19 (17) C56—C51—C52—C53: 177.02 (18)
N1—C1—C2—C7: −179.46 (16) C56—C51—C52—C57: −4.8 (3)
C6—C1—C2—C7: −1.1 (3) C51—C52—C53—C54: 2.9 (3)
C1—C2—C3—C4: 2.8 (2) C57—C52—C53—C54: −176.84 (16)
C7—C2—C3—C4: −177.93 (15) C51—C52—C53—C59: −178.19 (17)
C1—C2—C3—C9: −176.73 (16) C57—C52—C53—C59: 2.1 (3)
C7—C2—C3—C9: 2.5 (3) C57—C52—C53—C59: −1.7 (2)
C2—C3—C4—C5: −3.4 (2) C59—C53—C54—C55: 179.43 (17)
C9—C3—C4—C5: 176.23 (15) C59—C53—C54—C67: 174.11 (17)
C2—C3—C4—C17: 175.09 (17) C52—C53—C54—C67: −4.7 (3)
C9—C3—C4—C17: −5.3 (3) C59—C53—C54—C67: 0.0 (3)
C1—N1—C5—C4: 1.2 (3) C51—N7—C55—C54: −178.04 (14)
C1—N1—C5—S1: −179.11 (13) C51—N7—C55—S3: 0.3 (3)
C3—C4—C5—N1: 1.5 (3) C53—C54—C55—N7: 176.41 (17)
C17—C4—C5—N1: −177.28 (16) C67—C54—C55—N7: 178.45 (13)
C3—C4—C5—S1: −178.28 (12) C53—C54—C55—S3: 1.72 (19)
C17—C4—C5—S1: 2.97 (18) C67—C54—C55—S3: −1.41 (14)
C18—S1—C5—N1: 178.74 (15) C68—S3—C55—O5: −83.5 (3)
C18—S1—C5—C4: −1.50 (14) C68—S3—C55—O5: 96.7 (2)
C3—C2—C7—O1: 106.6 (2) C53—C52—C57—O5: −74.2 (2)
C1—C2—C7—O1: −74.2 (2) C51—C52—C57—O5: 112.75 (13)

Acta Cryst. (2022). E78, 225-230
Bond/Ring	Angle (°)	Bond/Ring	Angle (°)	
C3—C2—C7—C8	−76.4 (2)	C53—C52—C57—C58	97.7 (2)	
C1—C2—C7—C8	102.8 (2)	C51—C52—C57—C58	−82.0 (3)	
C2—C3—C9—C10	−53.7 (3)	C52—C53—C59—C60	123.5 (2)	
C4—C3—C9—C10	126.8 (2)	C54—C53—C59—C60	−57.7 (3)	
C3—C9—C10—C11	−178.51 (17)	C53—C59—C60—C61	179.37 (18)	
C9—C10—C11—C16	−18.0 (3)	C59—C60—C61—C62	−166.9 (2)	
C9—C10—C11—C12	162.22 (19)	C59—C60—C61—C66	10.0 (3)	
C16—C11—C12—C13	1.2 (3)	C66—C61—C62—C63	−1.3 (3)	
C10—C11—C12—C13	−178.94 (19)	C60—C61—C62—C63	175.8 (2)	
C11—C12—C13—C14	−1.1 (3)	C61—C62—C63—C64	0.4 (3)	
C12—C13—C14—C15	0.1 (4)	C62—C63—C64—C65	0.9 (4)	
C13—C14—C15—C16	0.9 (4)	C63—C64—C65—C66	−1.3 (4)	
C14—C15—C16—C11	−0.7 (3)	C62—C61—C66—C65	1.0 (4)	
C12—C11—C16—C15	−0.3 (3)	C60—C61—C66—C65	−176.0 (2)	
C10—C11—C16—C15	179.87 (19)	C64—C65—C66—C61	0.3 (4)	
C5—C4—C17—N2	177.33 (16)	C55—C54—C67—N8	177.21 (17)	
C3—C4—C17—N2	−1.2 (3)	C53—C54—C67—N8	1.2 (3)	
C5—C4—C17—C18	−3.3 (2)	C55—C54—C67—C68	−1.1 (2)	
C3—C4—C17—C18	178.22 (17)	C53—C54—C67—C68	−177.19 (18)	
N2—C17—C18—C19	−2.0 (3)	C55—S3—C68—C67	0.9 (3)	
C4—C17—C18—C19	178.62 (16)	C54—C67—C68—C69	179.30 (15)	
N2—C17—C18—S1	−178.41 (14)	N8—C67—C68—S3	−178.27 (14)	
C4—C17—C18—S1	2.18 (19)	C54—C67—C68—S3	0.13 (19)	
C5—S1—C18—C17	−0.43 (14)	C55—S3—C68—C67	0.71 (14)	
C5—S1—C18—C19	−176.87 (15)	C55—S3—C68—C69	−178.47 (15)	
C20—N3—C19—O2	−2.0 (3)	C70—N9—C69—O6	6.1 (3)	
C20—N3—C19—C18	177.75 (16)	C70—N9—C69—S3	−174.07 (16)	
C17—C18—C19—O2	3.5 (3)	C67—C68—C69—O6	7.2 (3)	
S1—C18—C19—O2	179.52 (14)	S3—C68—C69—O6	−173.69 (14)	
C17—C18—C19—N3	−176.32 (16)	C67—C68—C69—N9	−172.62 (16)	
S1—C18—C19—N3	−0.3 (2)	S3—C68—C69—N9	6.5 (2)	
C19—N3—C20—C25	171.75 (19)	C69—N9—C70—C71	−44.3 (3)	
C19—N3—C20—C21	−9.9 (3)	C69—N9—C70—C75	134.98 (19)	
C25—C20—C21—C22	−1.0 (3)	C75—C70—C71—C72	−1.2 (3)	
N3—C20—C21—C22	−179.36 (18)	N9—C70—C71—C72	178.09 (18)	
C20—C21—C22—C23	0.0 (3)	C70—C71—C72—C73	0.1 (3)	
C21—C22—C23—C24	0.5 (3)	C71—C72—C73—C74	0.4 (4)	
C22—C23—C24—C25	0.0 (4)	C72—C73—C74—C75	0.1 (4)	
C21—C20—C25—C24	1.5 (3)	C73—C74—C75—C70	−1.2 (4)	
N3—C20—C25—C24	180.0 (2)	C71—C70—C75—C74	1.8 (3)	
C23—C24—C25—C20	−1.0 (4)	N9—C70—C75—C74	−177.6 (2)	
C30—N4—C26—C27	1.2 (3)	C80—N10—C76—C81	179.18 (19)	
C30—N4—C26—C31	−179.6 (2)	C80—N10—C76—C81	195.18 (19)	
N4—C26—C27—C28	0.2 (3)	N10—C76—C77—C78	0.4 (3)	
C31—C26—C27—C28	−179.0 (2)	C81—C76—C77—C78	179.5 (2)	
N4—C26—C27—C32	−177.7 (2)	N10—C76—C77—C82	−178.89 (18)	
C31—C26—C27—C32	3.2 (3)	C81—C76—C77—C82	1.1 (3)	
C26—C27—C28—C29	0.2 (3)	C76—C77—C78—C79	1.9 (3)	
Bond angles (deg)		Bond angles (deg)		Bond angles (deg)
------------------	------------------	------------------		
C32—C27—C28—C29	177.97 (18)	C82—C77—C78—C79	-179.79 (16)	
C26—C27—C28—C34	179.91 (19)	C76—C77—C78—C84	-177.65 (17)	
C32—C27—C28—C34	-2.3 (3)	C82—C77—C78—C84	0.7 (3)	
C27—C28—C29—C30	-1.8 (3)	C77—C78—C79—C80	-2.7 (2)	
C34—C28—C29—C30	178.53 (19)	C84—C78—C79—C80	176.80 (16)	
C27—C28—C29—C42	174.1 (2)	C77—C78—C79—C92	175.63 (18)	
C34—C28—C29—C42	-5.6 (4)	C84—C78—C79—C92	-4.8 (3)	
C26—N4—C30—C29	-3.1 (3)	C76—N10—C80—C79	0.8 (3)	
C26—N4—C30—S2	3.5 (3)	C76—C77—C80—N10	1.5 (3)	
C28—C27—C32—O3	179.68 (16)	C92—C79—C80—N10	-177.16 (17)	
C26—C27—C32—O3	-106.0 (2)	C78—C79—C80—S4	-178.14 (13)	
C28—C27—C32—C33	-104.3 (2)	C28—C27—C32—C33	73.6 (3)	
C26—C27—C32—C33	128.5 (2)	C28—C27—C32—C33	179.68 (16)	
C29—C28—C34—C35	-51.8 (3)	C29—C28—C34—C35	179.68 (16)	
C28—C34—C35—C36	170.7 (2)	C28—C34—C35—C36	170.7 (2)	
C34—C35—C36—C41	178.4 (2)	C34—C35—C36—C41	178.4 (2)	
C34—C35—C36—C37	2.1 (4)	C34—C35—C36—C37	2.1 (4)	
C41—C36—C37—C38	-1.7 (3)	C41—C36—C37—C38	-1.7 (3)	
C35—C36—C37—C38	174.6 (2)	C35—C36—C37—C38	174.6 (2)	
C36—C37—C38—C39	0.4 (4)	C36—C37—C38—C39	0.4 (4)	
C37—C38—C39—C40	1.5 (4)	C37—C38—C39—C40	1.5 (4)	
C38—C39—C40—C41	-2.2 (4)	C38—C39—C40—C41	-2.2 (4)	
C39—C40—C41—C36	1.0 (3)	C39—C40—C41—C36	1.0 (3)	
C37—C36—C41—C40	1.0 (3)	C37—C36—C41—C40	1.0 (3)	
C35—C36—C41—C40	-175.5 (2)	C35—C36—C41—C40	-175.5 (2)	
C30—C29—C42—N5	176.37 (19)	C30—C29—C42—N5	176.37 (19)	
C28—C29—C42—N5	0.3 (3)	C28—C29—C42—N5	0.3 (3)	
C30—C29—C42—C43	-2.6 (2)	C30—C29—C42—C43	-2.6 (2)	
C28—C29—C42—C43	-178.7 (2)	C28—C29—C42—C43	-178.7 (2)	
N5—C42—C43—C44	-3.3 (3)	N5—C42—C43—C44	-3.3 (3)	
C29—C42—C43—C44	175.74 (18)	C29—C42—C43—C44	175.74 (18)	
N5—C42—C43—S2	-178.83 (16)	N5—C42—C43—S2	-178.83 (16)	
C29—C42—C43—N6	0.2 (2)	C29—C42—C43—N6	0.2 (2)	
C30—S2—C43—C42	1.76 (16)	C30—S2—C43—C42	1.76 (16)	
C30—S2—C43—C44	-173.88 (18)	C30—S2—C43—C44	-173.88 (18)	
C45—N6—C44—O4	-1.5 (3)	C45—N6—C44—O4	-1.5 (3)	
C45—N6—C44—C43	178.27 (19)	C45—N6—C44—C43	178.27 (19)	
C42—C43—C44—O4	4.3 (3)	C42—C43—C44—O4	4.3 (3)	
S2—C43—C44—O4	179.46 (17)	S2—C43—C44—O4	179.46 (17)	
C42—C43—C44—N6	-175.42 (19)	C42—C43—C44—N6	-175.42 (19)	
S2—C43—C44—N6	-0.3 (3)	S2—C43—C44—N6	-0.3 (3)	
C44—N6—C45—C46 158.0 (2) C94—N12—C95—C96 157.0 (2)
C44—N6—C45—C50 −23.3 (3) C94—N12—C95—C100 −25.0 (3)
C50—C45—C46—C47 −0.9 (4) C100—C95—C96—C97 0.0 (3)
N6—C45—C46—C47 177.9 (2) N12—C95—C96—C97 178.1 (2)
C45—C46—C47—C48 0.9 (4) C95—C96—C97—C98 0.3 (4)
C46—C47—C48—C49 0.2 (4) C96—C97—C98—C99 0.2 (4)
C47—C48—C49—C50 −1.3 (4) C97—C98—C99—C100 −0.9 (4)
C48—C49—C50—C45 1.2 (4) C96—C95—C100—C99 −0.8 (3)
C46—C45—C50—C49 −0.1 (3) N12—C95—C100—C99 −178.7 (2)
N6—C45—C50—C49 −178.8 (2) C98—C99—C100—C95 1.2 (4)

Hydrogen-bond geometry (Å, °)

Cg8, Cg14 and Cg18 are the centroids of the C36–C41, C70–C75 and C86–C91 benzene rings, respectively.

D—H···A	D—H	H···A	D···A	D—H···A
N2—H2A···O2	0.91	1.98	2.703 (2)	135
N3—H3A···N4i	0.91	2.31	3.190 (2)	164
C8—H8B···Cg14	0.98	2.67	3.537 (2)	148
C21—H21···O2	0.95	2.22	2.825 (2)	121
N5—H5A···O4	0.91	2.03	2.717 (2)	131
N6—H6D···N7ii	0.91	2.38	3.231 (2)	157
C33—H33C···O8iii	0.98	2.47	3.411 (3)	162
C41—H41···Cg18iii	0.95	2.94	3.673 (2)	135
C58—H58B···Cg8iv	0.98	2.91	3.534 (3)	122
C75—H75···S4v	0.95	2.87	3.781 (2)	160
N8—H8D···O6	0.91	1.98	2.701 (2)	135
N9—H9A···N10ii	0.91	2.22	3.106 (2)	164
N11—H11A···O8	0.91	1.99	2.697 (2)	134
N12—H12A···N1vi	0.91	2.30	3.193 (2)	168

Symmetry codes: (i) x+1/2, −y+1/2, z−1/2; (ii) x−1/2, −y+1/2, z+1/2; (iii) x−1, y, z; (iv) −x+1/2, y−1/2, −z+1/2; (v) x−1/2, −y+1/2, z−1/2; (vi) x+1/2, −y+1/2, z+1/2.