INTRODUCTION

The rise of atmospheric O\(_2\) was one of the greatest transitions in Earth’s history, changing the surface mineralogy, overturning the biota to more oxygen-resistant species, and facilitating the diversification of eukaryotes (1, 2). However, what ultimately caused the largest increase in O\(_2\) 2.4 billion years (Ga) ago—known as the Great Oxidation Event (GOE)—remains contentious. A plethora of mechanisms have been suggested (3–6). Particularly puzzling is the lag between the appearance, based on geochemical proxies, of low levels (“whiffs”) of environmental O\(_2\) during at least two Archaean Oxidation Events and of biological O\(_2\) producers at 3.5 Ga or earlier, and the GOE at ca. 2.4 Ga (7). During this time, geological evidence suggests a generally anoxic environment, with detrital pyrite and surficial anoxic common, and bounded iron formations indicative of high concentrations of dissolved Fe(II) in the oceans (2, 8). Par:...
lower mantle material may contain Al₂O₃ and be up to 1.5% denser than oxidized mantle, resulting in—problematically—rapid early mixing. However, bridgmanite is roughly three orders of magnitude stronger than ferropericlase (25), and varying the proportion of these minerals will have a large effect on mantle viscosity. Ballmer et al. (25) used simple imposed viscosity variations to argue for long-lived bridgmanite enriched domains in the lower mantle. Here, we develop this idea by constructing a self-consistent lower mantle viscosity model, based on the constrained mineral physics of bridgmanite and ferropericlase, and integrate this with a mixing model to calculate effective viscosity.

RESULTS

Adopting the approach of Yamazaki and Karato (25), we use refined solidus curves and updated mineral physics constraints, to construct diffusion profiles for bridgmanite and ferropericlase, and use a homologous scaling assumption to calculate viscosity (see section S3 for details). We then apply laboratory-constrained mixing laws to calculate the effective viscosity of this composite with depth. Our results are shown in Fig. 2.

We implemented this viscosity model into the community convection code Aspect (27) and explored the variation in mixing rates of a bridgmanite-enriched oxidized layer under early Earth conditions (Fig. 3). Mixing rates on the early Earth have been suggested to be sensitive to convective vigor, or Rayleigh number, of the system, as well as tectonic state. To encompass these sensitivities, we developed equilibrated initial conditions at different times in Earth’s early history (4.5, 3.5, and 2.5 Ga), under a variety of tectonic scenarios (average surface velocities of 0, 1, and 10 times present plate motions). We also vary the thickness of the bridgmanite-enriched layer (0 to 500 km), its bridgmanite content (70 to 100%), the sharpness of the compositional transition to background mantle, and the mixing law exponent (which governs the smoothness of the viscosity changes with % bridgmanite; details for these models are provided in the Supplementary Materials). This approach allows us to develop controlled experiments to determine mixing rates under conditions relevant to the early Earth, with the caveats that we are not developing specific Earth history models, and mixing rates are conservative based on the mature initial conditions. The results for calculated mixing rates are shown in Fig. 4.

For each simulation, we calculate the average mixing rate of the bridgmanite layer throughout its evolution. The geological record suggests an overall fO₂ change of ~1.3 ΔFMQ (fayalite-magnetite-quartz) log units over the transition, more than enough to alter the composition of volcanic volatiles to drive the GOE (9). To assess the time taken to raise the average upper mantle oxygen fugacity by ~1.0 to 1.5 log units in each simulation, we assess the mixing of bridgmanite-enriched material as a proxy for Fe³⁺/ΣFe. To do so, we have calculated Fe³⁺/ΣFe for our mantle composition using the approach of Williams et al. (24) (see section S8) and applied the method of Kress and Carmichael (28) to calculate the difference in fO₂ from the estimated Fe³⁺/Fe²⁺. Considering that present-day bridgmanite, constituting ~79% of the lower mantle, has a Fe³⁺/ΣFe of ~0.37 (3, 24), this implies that a variation of 10% in bridgmanite relative abundance changes the log(fO₂) by ~0.8. The total range of Δlog(fO₂) over our primitive reservoirs (range of 74 to 100% bridgmanite) is ~2.034.

The mixing of a bridgmanite-enriched layer (Fig. 3) occurs in two stages: first, the catastrophic disruption of the intact layer, generally by mantle plumes, and second, the progressive mixing of this entrained material in the mantle. The concentration of the oxidized reservoir in the upper mantle in the progressive mixing phase generally follows a logarithmic relationship over time, and the mixing rates shown in Fig. 4 are an average of that over 2 Ga. Simulations performed at different times shown had different initial conditions, as did simulations with different surface velocities, part of the reason for moderate mixing rates in the fast surface velocity cases. The simulations also show a significant drop in the mixing rate with
increasing bridgmanite content of the oxidized layer, which makes the layer more viscous and resistant to mixing (Fig. 2). Variation in the mixing exponent in our model, from −0.05 to −0.2, has a significant effect; more negative numbers give a greater variation in viscosity with bridgmanite content, and thus more stability, and are more appropriate for large-viscosity contrast systems (29).

The most significant change in mixing rate is from the evolving thermal state of the mantle. Lower heat production and core temperatures in models of younger ages result in lower Rayleigh numbers and thus less vigorous mixing. From our calculations, we have developed mixing rate curves that encapsulate the range of simulated mixing responses and their decay through time and uncertainty, and we integrate these bounds to calculate the proportion of oxidized mantle and thus Fe$_3^+/\Sigma$Fe as equivalent bridgmanite concentrations in the enriched domains. The compositional distinction is tracked throughout the whole mantle but only affects the lower mantle rheologically as a modal bridgmanite contrast.

Fig. 3. Evolution of mantle composition through time for two mantle convection models. The top row (A to C) shows 300 Ma of model evolution for a simulation with a passive mantle, i.e., the bridgmanite-enriched layer has the same viscosity as the rest of the mantle. The second row (D to F) shows a model with an initial, deep, and highly viscous bridgmanite layer, which mixes more slowly and has not reached equilibration by 300 Ma. The initial thermal state is imported from a previous simulation (4.5 Ga/v = 0 case; fig. S5), which equilibrated at these conditions. Equivalent bridgmanite concentrations (F) reach 95% in the enriched layer, which grades into the background mantle (Bdg = 79%; note that the initial condition colorbar now shows model domain). The upper mantle is modeled by an olivine rheology, but we track Fe$_3^+/\Sigma$Fe as equivalent bridgmanite concentrations in the enriched domains. The compositional distinction is tracked throughout the whole mantle but only affects the lower mantle rheologically as a modal bridgmanite contrast.

Fig. 4. Evolution of simulated mixing trends through time. (A) Simulated mixing curves from two models (Fig. 3) showing initial layer overturns and long-term exponential mixing trends, with either no bridgmanite- viscosity increase (passive simulation 2) or an increase in viscosity with bridgmanite content (simulation 1). Average mixing rates are calculated using parametric curve fitting of exponential curves. (B) Calculated mixing rates for a variety of models with different thermal states and properties, surface velocity scales (V scale, the velocity multiplier on surface plate motions), bridgmanite enrichment in the oxidized layer, and mixing law exponent (see eq. S5). The light gray-shaded region encapsulates the uncertainty region of our models; the central dark dashed line is a curve through the kernel density estimate maxima at each time, ±1 SEM (dark fill). The magenta box is the inferred average mixing rate required by the GOE at 2.4 Ga. A suite of our models with high bridgmanite layer viscosity and moderate thermal conditions satisfy this mixing constraint. (C) Evolution of upper mantle $\Delta \log(f_{O2})$, calculated from the gray bounding mixing curves in (B). The timing of the GOE (red) and the inferred mantle $\Delta \log(f_{O2})$ shift from geological constraints (Fig. 1) are also plotted. Our best estimate mixing rates calculated from the modeling suite satisfy the observed $\Delta \log(f_{O2})$ constraints and the delayed onset of the GOE.
DISCUSSION

Our results suggest that the mixing of a highly viscous, oxidized, and enriched bridgmanite layer may have driven the GOE. This was accompanied by a secular change in mantle fO_2 of >1 log unit (12–15), sufficient to explain the magnitude and timing of atmospheric oxygenation (9, 16). The specific history of the transition was likely protracted (7), and other factors may have contributed. For example, plate tectonics is far more efficient at long-term mixing of geochemical reservoirs, and its inception may have promoted the destabilization of a deep mantle reservoir (3, 23). A hallmark in global volcanic activity around 2.45 to 2.2 Ga (31), accompanied by a decrease in volcanic degassing, could have resulted in the loss of a significant oxygen sink, permitting the rise of biogenic O_2 during the GOE. The huge shift from primarily subaqueous volcanism before 2.5 Ga to predominantly subaerial volcanism, which is generally more oxidizing, in the Proterozoic (32) may have further reduced the volcanic gas sink for atmospheric O_2, allowing it to rise. As discussed in (7), rapid changes in atmospheric O_2, such as the GOE, can ensue when tipping points are crossed even when the driving changes are gradual.

The GOE at 2.4 Ga appeared to have been preceded by a long rise in mantle fO_2. This trend reflects the mixing of a deep oxidized mantle reservoir, which changed the composition of volcanic degassing products from reducing to more oxidizing, allowing oxygen levels to rise. Such a layer would have been enriched in bridgmanite, relative to the ambient mantle, and our rheological and convection models demonstrate long lag times in processing this material and raising upper mantle fO_2. The scenario is potentially testable; long mixing times have been inferred previously from the persistence of anomalous signatures of short-lived radiogenic isotopes in the magmatic record that were created in the earliest Earth history (33), and the melting of enstatite-enriched upper mantle has geochemical implications. The long lag in mixing an oxidized bridgmanite-rich layer may explain the long delay between low-level environmental oxidation starting at 2.8 and possibly as far back as 3.8 Ga (7) and the eventual rise of atmospheric oxygen at 2.4 Ga.

MATERIALS AND METHODS

The datasets used in this work are published in (12–15). The mantle convection simulations presented here were developed using the open-source community code Aspect (27), which solves the convection equations for mass, momentum, and energy conservation, with the latter incorporating shear heating, adiabatic heating, and decaying radioactive heating sources. Our geometry is a two-dimensional axisymmetric plane, and we use adaptive mesh refinement of the computational mesh to resolve areas of large temperature gradients and near external boundaries (e.g., the surface), and our resolution in the thermal boundary layers is ~12 km.

Our rheology follows an Arrhenius form for olivine in the upper mantle, and we develop a homologous scaling approach for bridgmanite and magnesiowüstite in the lower mantle. For the latter, the mantle viscosity η is determined from the effective diffusion D_{eff} and by the relationship

$$\frac{1}{\eta} = A \frac{\Omega}{RT} \frac{D_{\text{eff}}}{G^2}$$

Here, A and Ω are experimentally determined, R is the gas constant, G is the grain size, and T is the temperature. The effective diffusion itself is related to the mantle melting curve via

$$D(P, T) = D_0 \exp \left(- \frac{g T_m(P)}{T} \right)$$

Here, D_0 and g are, again, experimentally determined for individual minerals, and $T_m(P)/T$ is the ratio of the mantle solidus to the actual mantle temperature, for different pressures (P). Our values for bridgmanite and magnesiowüstite in the lower mantle are provided in section S3, as are details of the solidus used.

The mixing of bridgmanite and magnesiowüstite is determined using the relationship of (29). Here, the effective viscosity is given as

$$\eta_{\text{eff}} = \left(\phi_w \eta_w^{\beta} + \phi_s \eta_s^{\beta} \right)^{1/\beta}$$

Here, subscripts w and s refer to the weak and strong phases, respectively; ϕ is the volume fraction of the phase; and η is the viscosity. J is an empirical parameter, which, for a traditional Voigt model (uniform strain between phases), would be $J = 1.0$ or $J = -1.0$ for a Reuss model (uniform stress between phases). We adopt $J = 0.15$ as default.

We have coded our approach as a module for Aspect, and the source is available from github.org. Full details of the implementation, as well as initial and boundary conditions, are available in the Supplementary Materials.

To calculate fO_2 changes due to bridgmanite composition, in a closed system constituted of only bridgmanite and ferropericlase-magnesiowüstite (Mg,FeO), we adopt the approach of Kress and Carmichael (28) to estimate relative differences in fO_2, due to varying bridgmanite contents. Kress and Carmichael (28) present the relationship

$$\ln \left(\frac{X_{FeO2}}{X_{FeO}} \right) = a . \ln(fO_2) + \frac{b}{T} + c + \sum d_i \chi_i$$

This equation assumes atmospheric pressure, and a, b, c, and d_i are experimentally calibrated. The summation is over the major oxide components (here, just FeO is considered). If we assume batch melting at constant temperatures, then we can calculate the difference in fO_2 using changes in bulk FeO3 and FeO in our initial two-mineral assemblage. In this case, we can use

$$\Delta \ln \left(\frac{X_{FeO2}}{X_{FeO}} \right) = a . \Delta \ln(fO_2) + d \Delta \chi_{FeO}$$

Kress and Carmichael (28) give $a = 0.196$ and $d_{FeO} = -1.828$. Other parameters, benchmarking, and applications are outlined in section S8.

SUPPLEMENTARY MATERIALS

Supplementary material for this article is available at https://science.org/doi/10.1126/sciadv.1b626

REFERENCES AND NOTES

1. D. C. Catling, in Treatise on Geochemistry, H. D. Holland, K. K. Turekian, Eds. (Elsevier, ed. 2, 2014), vol. 6, pp. 177–195; http://dx.doi.org/10.1016/B978-0-08-095975-7.01307-3.
2. T. W. Lyons, C. T. Reinhard, N. J. Planavsky, The rise of oxygen in Earth's early ocean and atmosphere. Nature 506, 307–315 (2014).

3. D. Andrauld, M. Muhoz, G. Pese, V. Cerantola, A. Chumakov, I. Kantor, S. Pascarelli, R. Ruffer, L. Hennet, Large oxygen excess in the primitive mantle could be the source of the Great Oxygenation Event. Geochim. Perspect. Lett. 6, 5–10 (2018).

4. M. S. Duncan, R. Dasgupta, Rise of Earth's atmospheric oxygen controlled by efficient subduction of organic carbon. Nat. Geosci. 10, 387–392 (2017).

5. T. Gu, M. Li, C. McCammon, K. K. Lee, Redox-induced lower mantle density contrast and effect on mantle structure and primitive oxygen. Nat. Geosci. 9, 723–727 (2016).

6. J. F. Kasting, D. C. Catling, K. Zahnle, Atmospheric oxygenation and volcanism. Nature 487, E1 (2012).

7. C. M. Osburn, C. A. Johnson, A. D. Anbar, Earth's first redox revolution. Annu. Rev. Earth Planet. Sci. 49, 337–366 (2021).

8. A. D. Anbar, Y. Duan, T. W. Lyons, G. L. Arnold, B. Kendall, R. A. Creaser, A. J. Kaufman, S. Aulbach, V. Stagno, Evidence for a reducing Archaean ambient mantle and its effects on the Great Oxygenation Event. Science 317, 1903–1906 (2007).

9. H. D. Holland, Volcanic gases, black smokers, and the Great Oxidation Event. Geochim. Cosmochim. Acta 66, 3811–3826 (2002).

10. D. Canil, Vanadium partitioning and the oxidation state of Archaean komatiite magmas. Nature 389, 842–845 (1997).

11. Z. Y. Li, D. D. Lee, The isostasy of upper mantle

12. R. W. Nicklas, I. S. Puchtel, R. D. Ash, Redox state of the Archean mantle: Evidence from V partitioning in 3.5–2.4 Ga komatiites. Geochim. Cosmochim. Acta 222, 446–447 (2004).

13. R. W. Nicklas, I. S. Puchtel, R. D. Ash, P. M. Piccoli, E. Hanski, E. G. Nisbet, P. Waterton, D. G. Pearson, A. D. Anbar, Secular mantle oxidation across the Archean-Proterozoic boundary: Evidence from V partitioning in komatiites and picrites. Geochim. Cosmochim. Acta 250, 49–75 (2019).

14. S. Aulbach, V. Stagno, Evidence for a reducing Archaean ambient mantle and its effects on the carbon cycle. Geology 44, 751–754 (2016).

15. S. Aulbach, A. B. Woodland, R. A. Stern, P. Vasilyev, L. M. Heaman, K. S. Viljoen, Evidence for a dominantly reducing Archaean ambient mantle from two redox proxies, and low oxygen fugacity of deeply subducted oceanic crust. Sci. Rep. 9, 1–11 (2019).

16. S. Kadoya, D. C. Catling, R. W. Nicklas, I. S. Puchtel, A. D. Anbar, Mantle data imply a decline of oxidizable volcanic gases could have triggered the Great Oxidation. Nat. Commun. 11, 2774 (2020).

17. S. Kadoya, D. C. Catling, R. W. Nicklas, I. S. Puchtel, A. D. Anbar, Mantle cooling causes more reducing volcanic gases and gradual reduction of the atmosphere. Geochim. Cosmochim. Acta 183, 99–112 (2019).

18. J. F. Kasting, Earth's early atmosphere. Science 259, 920–926 (1993).

19. K. A. Evans, The redox budget of subduction zones. Earth Sci. Rev. 113, 11–32 (2012).

20. D. J. Frost, C. A. McCammon, The redox state of Earth's mantle. Annu. Rev. Earth Planet. Sci. 36, 389–420 (2008).

21. M. Stein, A. W. Hofmann, Mantle plumes and episodic crustal growth. Nature 372, 63–68 (1994).

22. R. Caracas, K. Hirose, R. Nomura, M. D. Ballmer, Melt–crystal density crossover in a deep dry asthenospheric mantle. Earth Planet. Sci. Lett. 516, 202–211 (2019).

23. C. O'Neill, V. Debaillie, W. Griffin, Deep earth recycling in the Hadean and constraints on surface tectonics. Annu. J. Sci. 313, 912–932 (2013).

24. H. M. Williams, B. J. Wood, J. Wade, D. J. Frost, J. Tuff, Isotopic evidence for internal oxidation of the Earth’s mantle during accretion. Earth. Planet. Sci. Lett. 321, 54–63 (2012).

25. D. Yamazaki, S. I. Karato, Some mineral physics constraints on the rheology and geothermal structure of Earth’s lower mantle. Am. Mineral. 66, 385–391 (2001).

26. M. D. Ballmer, C. A. Houser, J. H. Herrington, M. W. Wentzcovitch, K. Hirose, Persistence of strong silica-enriched domains in the Earth’s lower mantle. Nat. Geosci. 10, 236–240 (2017).

27. M. Kronbichler, T. Heister, W. Bangerth, High accuracy mantle convection simulation and the effect of composition, temperature, oxygen fugacity and pressure on their redox equilibria. Geochim. Cosmochim. Acta 88, 37–66 (2004).

28. J. S. Aulbach, V. Lekić, C. Lithgow-Bertelloni, Thermodynamics of mantle minerals-II. Phase equilibria. Geophys. J. Int. 184, 1180–1213 (2011).

29. C. O'Neill, S. Marchi, W. Bottke, R. Fu, The role of impacts on Archaean tectonics. Geology 48, 174–178 (2020a).

30. C. O'Neill, H. S. O. C. Aulbach, A. M. Jellinek, On the distribution and variation of radioactive heat producing elements within meteorites, the earth, and planets. Space Sci. Rev. 216, 37 (2020).

31. M. R. Handy, The solid-state flow of polymineralic rocks. Tectonophysics 427, 95–113 (2006).

32. R. Wang, J. Zhai, T. Zhang, Exponential mixing for stochastic model of two-dimensional fluids. Nonlinear Anal. 132, 196–213 (2016).

33. S. Rossi, M. Petroelli, D. Morgavi, D. González-García, L. A. Fischer, V. Vetere, D. Perugini, Exponential decay of concentration variance during magma mixing: Robustness of a volcanic chronometer and implications for the homogenization of chemical heterogeneities in magmatic systems. Lithos 286–287, 396–407 (2017).

34. N. Coltice, J. Schmalzl, Mixing times in the mantle of the early Earth derived from 2-D and 3-D numerical simulations of convection. Geophys. Res. Lett. 33, L23304 (2006).

Acknowledgments: Critical reviews by H. Williams, A. Anbar, J. Wade, and two anonymous reviewers led to substantial improvements. Funding: C.O’N. was supported by the ARC DP120102196 and acknowledges support from colleagues of the now defunct Department of Earth and Planetary Sciences, Macquarie University. S.A. was supported by the German Research Foundation under grant DFG AU356/11. Author contributions: C.O’N. conceived the study, carried out numerical modeling, and wrote the manuscript. S.A. provided data, analysis, and input into the initial draft and final manuscript. Competing interests: The authors declare that they have no competing interests. Data and materials availability: All data needed to evaluate the conclusions in the paper are present in the paper, the Supplementary Materials, and referenced sources. Source code is available from https://doi.org/10.5281/zenodo.5520115.

Submitted 14 December 2020
Accepted 21 December 2021
Published 18 February 2022
10.1126/sciadv.abg1626