Non-prostate cancer tumours: incidence on 18F-DCFPyL PSMA PET/CT and uptake characteristics in 1445 patients

Elisa Perry1,2,3 · Arpit Talwar2 · Sanjana Sharma2 · Daisy O’Connor1 · Lih-Ming Wong4,5 · Kim Taubman2 · Tom R. Sutherland2,3

Received: 6 September 2021 / Accepted: 7 February 2022 / Published online: 7 March 2022
© Crown 2022

Abstract

Purpose With increasing use of PSMA PET/CT in the staging and restaging of prostate cancer (PCa), the identification of non-prostate cancer tumours (NPCaT) has become an increasing clinical dilemma. Atypical presentations of PSMA expression in prostate cancer and expression in NPCaT are not well established. Understanding the normal and abnormal distribution of PSMA expression is essential in preparing clinically relevant reports and in guiding multidisciplinary discussion and decisions.

Methods Retrospective review of 1445 consecutive 18F-DCFPyL PSMA PET/CT studies by experienced radiologists and nuclear medicine physicians. Lesions indeterminate for PCa were identified. Correlation was made with patient records, biopsy results, and dedicated imaging. Lesions were then categorized into four groups: 1. Confirmed prostate cancer, metastases, 2. NPCaT 3. Benign, and 4. Indeterminate lesions.

Results 68/1445 patients had lesions atypical for prostate cancer metastases. These comprised 8/68 (11.8%) atypical prostate cancer metastases, 17/68 (25.0%) NPCaT, 29/68 (42.6%) indeterminate, and 14/68 (20.6%) benign. In the context of the entire cohort, these are adjusted to 8/1445 (0.6%), 17/1445 (1.2%), 29/1445 (2.0%), and 14/1445 (1.0%) respectively. With the exception of Renal Cell Carcinoma (RCC), NPCaT demonstrated no or low PSMA expression. A similar trend was also observed for indeterminate and benign lesions. Conversely, most atypical PCa metastases demonstrated intermediate or high PSMA expression.

Conclusion 18F-DCFPyL PSMA PET/CT detection of NPCaT is low. Lesions demonstrating intermediate to high PSMA expression were exclusively prostate cancer metastases, aside from RCC, and lesions detected in organs with high background expression.

Keywords 18F-DCFPyL · PET/CT · PSMA · Prostate cancer · Biochemical recurrence

Introduction

Prostate cancer (PCa) is the second most commonly diagnosed cancer in men and is the sixth leading cause of cancer death [1]. Imaging of prostate cancer both at initial staging and at recurrence has been revolutionized by the advent of positron emission tomography (PET) tracers targeted to prostate specific membrane antigen (PSMA) which have shown superiority in comparison with conventional imaging comprising CT and bone scintigraphy [2–4].

PSMA is a transmembrane glycoprotein with high expression in most prostate cancer cells although can be expressed in endothelial cells in non-prostate cancer tumours (NPCaT), particularly in the context of neovascularization [5]. There are several PSMA PET probes available, of which Gallium
68 probes are most widely used. Newer Fluorine 18 probes confer some advantages with longer half-life, opportunity for large scale batch production, and higher target to background resolution. ¹⁸F-DCFPyL is a commercially available PSMA PET probe used at our institutions.

This wide adoption of PSMA PET/CT with increasing availability of tracers has seen a substantial increase in its use which, along with expanding applications of PSMA in the realms of initial diagnosis, biochemical recurrence, and treatment follow-up, the identification of NPCaT is likely to increase accordingly. The physiological expression of PSMA, expression in benign pathology, and typical patterns of expression in prostate cancer are well documented [6]; however, atypical presentations of PSMA expression in benign pathology, and typical patterns of expression in prostate cancer are less established. Understanding the normal and abnormal distribution of PSMA expression is essential in preparing clinically relevant reports and in guiding multidisciplinary discussion and decisions.

Our multicenter international retrospective study is designed to detect the incidence and types of NPCaT detected on ¹⁸F-DCFPyL PSMA PET/CT in patients with PCa and describe their imaging characteristics. The primary outcome was the incidence of newly diagnosed NPCaT detected in this cohort. We also aimed to evaluate characteristics of atypical prostate cancer metastases and indeterminate lesions. Benign lesions outside the realms of abdominal incidentalomas and incidental lung nodules determined suitable for follow-up protocols were also examined.

Materials and methods

Study population

Retrospective multicenter international study using combined data from Pacific Radiology Canterbury, New Zealand (PRC) and St Vincent’s Hospital, Melbourne, Australia (STV). Institutional ethics approval has been granted for the maintenance of a prostate cancer database, from which the study data was derived. Our database includes consecutive patients who have had ¹⁸F-DCFPyL PET/CT between January 2016 and December 2020. Repeat studies for the same patient were excluded. For patients with multiple studies, only the first showing a suspected NPCaT was included. The patient cohort consisted of patients having a ¹⁸F-DCFPyL PET/CT for initial staging (35.6%), re-staging (5.1%), and biochemical failure post treatment (59.3%).

Case selection and imaging analysis

All imaging reports were reviewed to identify patients with suspected incidental NPCaT. Typical prostate cancer-related lesions were defined as PSMA expression greater than background in the expected distribution for prostate cancer within prostate/prostate bed, nodes, bone and visceral locations [6]. Typical sites of nodal involvement include obturator, iliac stations, and retroperitoneum. Although mesorectal nodes have been described as rare or atypical, these were included in the expected distribution as they are increasingly recognised. Distant nodal, liver, and thoracic metastases were also considered typical distributions. Although visceral metastases are described in the absence of nodal or bone involvement, extra-prostatic disease limited to these sites required clarification [6]. These studies were reviewed by either an experienced genitourinary radiologist with subspecialist PET/CT practice or an experienced genitourinary radiologist in consultation with an experienced nuclear medicine physician. Imaging features of the incidental lesions and standardized uptake values (SUVmax) were recorded and categorised according to PROMISE miPSMA expression score. Terminology used in this paper reflecting these guidelines were no expression (below blood pool, score 0), low expression (equal to or above blood pool and lower than liver, score 1), intermediate expression (equal to or above liver and lower than parotid gland, score 2) or high expression (equal to or above parotid gland, score 3) [7]. Histology reports were obtained from medical records and pathologic databases, follow-up imaging from the institutional PACS database, and clinical management from the patient’s medical records.

Non-avid incidental lung lesions were assessed by a chest radiologist with > 10 years’ experience. Those less than 10 mm with no PSMA expression and without features suggesting atypical adenomatous hyperplasia/adenocarcinoma spectrum which fitted adopted follow-up guidelines were excluded [8, 9]. Known lesions which had already been identified and investigated on prior imaging were also excluded. Abdominal ‘incidentalomas’ with no PSMA expression, including adrenal adenomas, liver and renal cysts, were assessed by a subspecialist abdominal radiologist with > 10 years’ experience and those fitting criteria for follow-up under ACR white paper for follow-up of incidentalomas were recorded but excluded from end point analysis [10–13].

Patient records were retrieved and subsequent biopsy results, dedicated imaging, multidisciplinary team meeting notes, follow-up clinic letters, and specialist consults were noted. Based on this information in combination with imaging characteristics, lesions were categorized broadly into four groups: 1. confirmed prostate cancer metastases: lesions either in an atypical distribution for PCa and/or considered possible NPCaT, subsequently determined as PCa lesion by histological or clinical confirmation; 2. NPCaT: lesions either in an atypical distribution for PCa and/or considered possible NPCaT, subsequently determined as NPCaT by
European Journal of Nuclear Medicine and Molecular Imaging (2022) 49:3277–3288

Two hundred forty-three of these studies were excluded as

A total of 1445 studies were performed using 18F-DCFPyL

Results

Statistical analysis

PSMA and pathological findings were assessed using binomial
categorical data from unmatched groups compared with

Non-prostate cancer tumours

17/68 (25.0%) patients within our cohort had NPCaT. 2/17

(11.8%) lesions demonstrated intermediate to high hetero-
geneous PSMA expression and characteristic CT features of
renal cell carcinoma (RCC). The remaining 15/17 (88.2%)

lesions had no or low PSMA expression. Twelve of these

were classified as tumours with high malignant potential and
the remaining 3 as low malignant potential.

PSMA and pathological findings of NPCaT in our cohort
have been summarized in Table 2. 8/17 (47.1%) of these
patients were non-biopsy diagnoses. This was either based
on PSMA findings or subsequent imaging displaying char-
acteristic findings of non-prostate cancer; however, in some
patients, this diagnosis was made by multidisciplinary con-
sensus as further imaging or biopsy was not felt clinically
appropriate due to advanced patient age, performance status
or widespread metastatic malignancy.

9/17 (52.9%) patients had biopsy confirmation. Three
of these patients had lung lesions, all of which were

Imaging protocols and reconstruction

18F-DCFPyL for both centres was sourced from Cyclotek
(Melbourne, Australia and Wellington, New Zealand) pro-
duced by the same method described previously [14].

PRC: Patients were required to drink 1–2L of water prior
to their appointment and void immediately prior to scan-
ning. No diuretics were administered. Patients were imaged
on a GE Discovery 690 (General Electric Medical Systems,
Milwaukee WI, USA). Low-dose attenuation correction
CT images were acquired and reconstructed to 3.75 mm
slice thickness with an increment of 3.27 mm using itera-
tive reconstruction (50% ASiR). All patients at both centres
were administered 250 MBq (± 50 MBq) of 18F-DCFPyL
intravenously in accordance with reference standards out-
lined by the Australian Radiation Protection and Nuclear
Safety Agency (ARPANSA) [15]. Imaging was performed
at 120 min (± 10 min) after injection. PET images were
acquired at 3.5 min/bed through the pelvis and 3.0 min/bed
to the lung apices. Images were reconstructed from time of
flight emission data using VUE Point FX and Q-Clear™
“GE Healthcare” iterative technique with a β value of 400.
Sharp IR function was applied with no Z-axis filter. PET
images were reconstructed on a 256 matrix.

STV: Patients were imaged on a GE Discovery 710
PET/CT (General Electric Medical Systems, Milwaukee
WI, USA). Otherwise the scanning protocol matched that
described above.

Confirmed prostate cancer metastases

5/8 (62.5%) of lesions subsequently confirmed as prostate
cancer metastases demonstrated intermediate to high PSMA
expression, 4 of which were lung metastases, with biopsy
confirmation, and one biopsy confirmed nodal metastasis.
The remaining 3/8 (37.5%) lesions were of low or no expres-
sion comprising two lung and one bone metastasis demon-
strating a range of PSMA expression from SUVmax of < 1
to 5.3 (Table 1).

Non-prostate cancer tumours

17/68 (25.0%) patients within our cohort had NPCaT. 2/17

(11.8%) lesions demonstrated intermediate to high hetero-
geneous PSMA expression and characteristic CT features of
renal cell carcinoma (RCC). The remaining 15/17 (88.2%)

lesions had no or low PSMA expression. Twelve of these

were classified as tumours with high malignant potential and
the remaining 3 as low malignant potential.

PSMA and pathological findings of NPCaT in our cohort
have been summarized in Table 2. 8/17 (47.1%) of these
patients were non-biopsy diagnoses. This was either based
on PSMA findings or subsequent imaging displaying char-
acteristic findings of non-prostate cancer; however, in some
patients, this diagnosis was made by multidisciplinary con-
sensus as further imaging or biopsy was not felt clinically
appropriate due to advanced patient age, performance status
or widespread metastatic malignancy.

9/17 (52.9%) patients had biopsy confirmation. Three
of these patients had lung lesions, all of which were

they had lesions typical for prostate cancer or no detect-
able lesion. Two hundred two studies remained for further
analysis. Of these studies, 85 related to lung nodules and 49
to incidentalomas, fulfilling the exclusion criteria. Out of 49
 incidentalomas, 23/49 (46.9%) were hepatic cysts or heman-
giomas, 10/49 (20.4%) were adrenal adenomas, and 9/49
(18.4%) were renal cysts. The remaining 7/49 (14.3%) were
made up of pancreatic cysts, subcutaneous nodule, bone
island and incidental gastric mucosal thickening. A total of
68 studies were therefore included in our study (Fig. 1).

The remaining 68 lesions comprised 8/68 (11.8%) con-

firmed prostate cancer metastases, 17/68 (25.0%) NPCaT,
29/68 (42.6%) indeterminate, and 14/68 (20.6%) benign.
In the context of the entire cohort, these proportions are
adjusted to 8/1445 (0.6%), 17/1445 (1.2%), 29/1445 (2.0%)
and 14/1445 (1.0%) respectively.

Within our cohort, the number of false positives included
24/68 (35.3%) patients, who had avid lesions that were
proven to be benign either clinically or through biopsy. In
the context of the entire cohort, this adjusted to 24/1445
(1.7%) patients.

PSMA and pathological findings were assessed using bino-
mial categorical data from unmatched groups compared with
a chi-square test. Statistical analyses were conducted with
Jamovi software, version 1.2.22.0.

A total of 1445 studies were performed using 18F-DCFPyL
(PRC = 865 studies, STV = 580 studies). One thousand
two hundred forty-three of these studies were excluded as

Histological or clinical confirmation; 3. benign: lesions not
excluded by lung nodule or incidentaloma criteria either in
an atypical distribution for PCa and/or considered possible
NPCaT, subsequently determined as benign by histologi-
cal or clinical confirmation; and 4. indeterminate lesions:
lesions not excluded by lung nodule or incidentaloma criteria
either in an atypical distribution for PCa and/or considered
possible NPCaT, without definitive histological or clinical
confirmation. The lesions classified as indeterminate were
sub-classified as a. likely benign and b. likely malignant.
biopsy-proven primary lung cancer. Two patients had focal low PSMA expression within the colon, both of which had biopsy-proven colonic adenocarcinoma, one of which had additional biopsies confirming synchronous neuroendocrine tumor within the terminal ileum, occult on PET/CT.

Histopathological assessment of a breast lesion with low PSMA expression (SUVmax 2.8) was proven to be a recurrent ER positive grade 2 breast invasive carcinoma. The remaining three had histopathology consistent with clear cell RCC with no PSMA expression (SUVmax < 1), poorly differentiated pancreatic adenocarcinoma with low PSMA expression (SUVmax 4.8), and follicular lymphoma with low PSMA expression (SUVmax 3.5).

Indeterminate lesions

25/29 indeterminate lesions demonstrated no or low PSMA expression. 3/29 demonstrated intermediate to high expression but were located in organs with high background expression (liver and spleen) or were secondary to significant inflammation (sinusitis). 1/29 cases demonstrated intermediate expression within the scrotum with repeat imaging demonstrating no interval change over a period of four years. 3/29 (10.3%) were considered most likely prostate cancer metastases without PSMA expression, 7/29 (24.1%) suspicious for NPCaT, and 19/29 (65.5%) were determined most likely benign (Table 3).

Benign lesions

Most benign lesions were within the thyroid (6/14) and skin (4/14). 10/14 cases were biopsy proven and 4/14 cases were clinically proven benign lesions. All lesions except a scrotal lesion demonstrated no or low PSMA expression (Table 4).

Discussion

This study represents the largest cohort to date assessing incidence of NPCaT detected by PSMA imaging and is the only study exclusively examining this incidence with 18F-DCFPyL PET/CT. PSMA imaging is considered highly...
No	Age	Indication	PSA	Site	Primary	SUV	mPSMA Expression Score	Findings	Clinical Rationale	Outcome
1	74	Biochemical persistence post RP	3.9	Lung	N/A	7.6	2	Solitary LLL nodule 13 mm. No evidence of PCa recurrence elsewhere. Multiple pleural plaques	Morphological appearances suggestive of lung adenocarcinoma lung in increased risk patient without PCa recurrence elsewhere	Biopsy
2	66	BF post RP	0.53	Lung	N/A	11.6	2	Solitary 8 mm RUL lesion, no evidence of PCa recurrence elsewhere	In context of no other sites of recurrence, primary lung cancer should be excluded	Wedge Resection
3	70	BF post RP	0.3	Lung	N/A	22.0	3	High PSMA expression 10 mm LUL nodule. No prostate bed recurrence, equivocal expression in 4 mm left mesorectal node	Equivocal disease elsewhere. Primary lung cancer should be excluded	Resolution of lesion on CT follow up on hormonal therapy
4	71	Initial Staging	11.6	Lung	8.5	11.5	2	21×12 mm RUL lobulated solititary nodule in a patient with pulmonary emphysema	No evidence of recurrence elsewhere and significant smoking related lung disease. Primary lung cancer should be excluded	Resection
5	77	Initial Staging	2.6	Lung	Bone	4.0	0	Multiple pulmonary nodules with no PSMA expression, but primary low expression. Low expression enlarged pelvic nodes and sclerotic bone lesions	DDx given as dedifferentiated neuro-endocrine tumour of prostate or metastases from bladder TCC	Lung nodules reduced with Docetaxel and Goserelin
6	60	BF post RP	3.9	Lung	N/A	1.0	0	Multiple new and enlarged pulmonary nodules with low expression, largest 12×14 mm RLL apical segment	DDx metastatic PCa versus other malignancy	VATS wedge resection
7	66	BF post XRT	24	Node	N/A	14.1	3	High PSMA expression within left para-aortic and left pelvic nodes. *	Recent diagnosis of DLBCL confined to mediastinum. Considered most likely PCa but DLBCL should be excluded	Left para-aortic node excision
8	66	Metastatic PCa on Zoladex, new right pelvic pain	0.4	Bone	45.6	5.3	1	Known multiple PCa bone metastases. New 73 mm expansile lytic right iliac lesion with predominant soft tissue mass, low PSMA expression	Dissimilar appearance to other bony metastases and previous pelvic RT for seminoma, exclude NPCaT	Bone biopsy

PSA prostate specific antigen, SUV standardized uptake value, RP radical prostatectomy, PCa prostate cancer, BCR biochemical recurrence, RT radiotherapy, RUL right upper lobe, PSMA prostate specific membrane antigen, LUL left upper lobe, CT computed tomography, DDx differential diagnosis, BPH benign prostatic hypertrophy, TCC transitional cell carcinoma, RLL right lower lobe, VATS video-assisted thoracoscopic surgery, DLBCL diffuse large B cell lymphoma

*Although this distribution of nodal involvement is typical for prostate cancer, the recent diagnosis of DLBCL led the MDM to consider a NPCaT, and therefore has been included in this group
Age	Indication	Site	SUVmax	SUVmax \(\text{miPSMA} \)	SUVmax Expression Score	Findings	Outcome	Primary Pathology	Findings	Malig-nant Potential
1	77 BF	Lung	3.8	1	1	29 mm LLL nodule	Biopsy	Primary lung adenocarcinoma	Biopsy in seminal vesicle and inguinal node	High
2	79 BF	Lung	4.8	1	1	54 mm right lower lobe	Biopsy	Non-small cell lung cancer	Biopsy in pelvis and pelvic nodes	High
3	73 BF	Kidney	2.8	1	1	78 mm left renal lesion	Biopsy	Renal cell carcinoma	Biopsy in pre-sacral node	High
4	95 Initial Staging	Breast	1.9	1	1	10 mm left upper outer lesion	Clinical	Invasive carcinoma of no special type	Biopsy in prostate gland	High
5	71 BF	Lung	1.8	1	1	Left lower lobe mass	Biopsy	Non-small cell lung cancer	Biopsy in pelvic nodes and bone	High
6	72 Initial Staging	Kidney	5.2	1	1	Right renal lesion	Clinical	Renal cell carcinoma	Biopsy in prostate gland	High
7	66 BF	Colon	1.8	1	1	Distal transverse colon	Biopsy	Colonic adenocarcinoma	Biopsy in presacral node	High
8	81 Initial Staging	Colon	5.6	1	1	Ascending colon lesion	Clinical	Colonic adenocarcinoma and terminal ileum neuroendocrine tumour	Biopsy in prostate gland	High
9	63 BF	Colon	3.9	1	1	High Uptake in seminal node	Biopsy	Colonic adenocarcinoma	Biopsy in seminal and inguinal nodes	High
10	64 BF	Brain	0.0	0	0	5 cm tubular structure in right temporal lobe	Clinical	Primary nerve sheath tumor	Biopsy in prostate gland	High
11	64 Initial Staging	Pancreas	4.8	1	1	23 mm RLL nodule	Biopsy	Poorly differentiated neuroendocrine tumour	Biopsy in pelvic nodes and bone	High
12	59 Initial Staging	Brain	2.5	1	1	24 x 15 mm circumscribed soft tissue lesion posterior to D3	Biopsy	Follicular Lymphoma (cervical node)	Biopsy in pelvic nodes and bone	High
13	77 Initial Staging	Lung	1.8	1	1	24 x 15 mm circumscribed soft tissue lesion posterior to D3	Biopsy	Primary lung adenocarcinoma	Biopsy in pelvic nodes and bone	High
14	73 Initial Staging	Kidney	4.4	1	1	15 mm left upper lobe nodule	Biopsy	Likely renal cell	Biopsy in pelvic nodes and bone	High
15	79 Initial Staging	Lymph Node, LUNG	3.5	1	1	Not amenable to biopsy, likely renal cell	Clinical	Likely renal cell	Biopsy in pelvic nodes and bone	High
16	70 BF	Lung	0.0	0	0	15 mm left upper lobe nodule	Biopsy	Likely renal cell	Biopsy in pelvic nodes and bone	High
17	70 BF	Kidney	1.8	1	1	24 x 15 mm circumscribed soft tissue lesion posterior to D3	Biopsy	Likely renal cell	Biopsy in pelvic nodes and bone	High

Note: SUV = standardized uptake value, LLL = left lower lobe, RLL = right lower lobe, MRI = magnetic resonance imaging, D3 = duodenum (3rd segment), BF = biochemical failure.
Table 3 PSMA and pathological findings of patients with indeterminate lesions

No	Age	Indication	Site	Primary SUV	SUV miPSMA Expression Score	Findings	Clinical Rationale		
1	80	Re-Staging	Node	29.2	1.9	Low PSMA expression in left pelvic node. Uptake in left pelvic node.	Known metastatic PCa with bony metastases but no other nodal disease and expression much lower than bone metastases. Further investigation not pursued due to lesions elsewhere and treated as PCa nodal metastasis		
2	69	Initial Staging	Node	19.2	2.4	Uptake in prostate and multiple bilateral prominent iliac nodes up to 12mm, much lower expression than primary.	No confirmation. Committed on ADT.		
3	76	BCR post RP	Lung	N/A	1.7	11mm ground glass nodule within LUL.	Likely synchronous primary lung Ca. Follow up CT in 3 months advised. No follow up at STV.		
4	95	Initial Staging	Lung	N/A	2.1	Uptake in prostate gland and 19mm spiculated lung nodule in RUL.	Likely synchronous primary lung Ca. No follow up given age and comorbidities.		
5	72	BFpost RP	Lung	49.8	4.2	Irregular 14mm pulmonary lesion RUL. Uptake in pelvic nodes.	Likely primary lung adenocarcinoma. No follow up.		
6	83	Re-Staging	Lung	21.4	1.3	Uptake in prostate gland and 10mm RLL ground glass pulmonary nodule.	Uncertain significance, possible lung primary. Stable on follow up CT (4 months). Ongoing follow up.		
7	65	Initial Staging	Skin	N/A	2.1	10mm right thigh lesion.	No evidence of primary or metastatic prostate cancer. No follow up as widespread metastases from separate neuroendocrine tumour		
8	75	Re-Staging	Bladder	42.9	N/A*	Widespread uptake involving prostate, nodes and right VUJ lesion.	Primary bladder tumour. No follow up, patient resident abroad and left New Zealand		
9	81	Initial Staging	Lung	26.1	2.7	Uptake in prostate, pelvic nodes and low PSMA expression in 11mm nodule within RUL	Likely primary lung adenocarcinoma. No follow up given comorbidities and age.		
10	73	Initial Staging	Node	26.1	2.1	Uptake in prostate, pelvic nodes and low PSMA expression in 14mm mesenteric node	High expression in prostate and pelvic node considered typical for prostate cancer. Mesenteric node indeterminate. Commenced on ADT with pelvic Radiotherapy. Awaiting further follow up.		
No	Age	Indication	Site	Primary SUV	SUV	SUV miPSMA Expression Score	Findings	Clinical Rationale	Outcome
----	------	------------------	---------	-------------	------	----------------------------	--	--	--
1	79	BF post RP	Lung	12.1	2.6	1 Uptake in prostate gland and low PSMA expression in LUL ground glass change	Likely inflammatory.	No follow up.	
2	72	Initial Staging	Lung	17	4.9	1 Uptake in prostate gland and low PSMA expression in LUL ground glass change	Likely inflammatory.	No follow up.	
3	84	BF post RP	Liver	N/A	13.4	1 High PSMA expression within segment 4 of the liver.	Image noise versus liver metastasis, not solid organ disease elsewhere	Not present on follow up PSMA with rising PSA. Most likely benign or artefact.	
4	77	BF post RP	Lung	N/A	2.2	1 Low PSMA expression in 12mm LUL lung nodule[1]	Two sigmoid lesions FDG avid ?metastasis from bowel/ prostate or benign lesion	Follow up CT 2 years later showed no significant change in lesion.	
5	69	BF post RP	Lung	N/A	1.6	1 Minimal PSMA expression in 9mm irregular pulmonary nodule	Solitary pelvic node recurrence. Indeterminate lung nodule	No change on surveillance imaging for over 2 years.	
6	76	BF post RP	Kidney	N/A	<1	0 30mm heterogeneous right retroperitoneal lesion abutting inferior pole of right kidney	Likely benign cyst or lymphatic lesion, exclude sarcoma.	Non-enhancing on dedicated triple phase CT and unchanged over 13 months.	
7	79	BF post RP	Bone	N/A	<1	0 Low PSMA expression in sclerotic left temporal bone lesion.	Likely benign lesion.	No further imaging. Remaining asymptomatic.	
8	69	BF post RP	Sinus	N/A	7.5	2 Intermediate PSMA expression in left maxillary sinus mass.	Likely inflammatory, exclude tumour.	Follow up with ENT – CT/MRI demonstrating no suspicious lesion. Changes resolved on imaging 3 years later	
9	70	Initial Staging	Bone	N/A	<1	0 Sclerotic right saccal alar lesion with no PSMA expression.	Indeterminate lesion, possibly benign.	FDG PET/CT 2 weeks later demonstrated no activity. Changes resolved on imaging 3 months no change	
10	56	BF post RP	Colon	N/A	<1	0 No PSMA expression within sigmoid colon.	Clinical and radiological evidence of diverticulitis.	Follow up over 18 months no change.	
11	83	BF post RP	Lung	N/A	<1	0 No PSMA expression within the lung.	Likely rounded atelectasis.	Resolved. Subsequent PSMA PET/CT no uptake.	
12	74	BF post RP	Larynx	N/A	<1	0 Uptake in seminal vesicle and solid nodule within right false vocal cord	Likely right laryngeal.	Resolved on subsequent CT.	
13	67	BF post RP	Spleen	N/A	13	3 Pelvic nodal recurrence with low PSMA expression.	Indeterminate splenic lesion.	No progression with clinical surveillance.	
14	61	BF post RP	Retroperitoneal	N/A	<1	0 Thin walled cystic retro-peritoneal lesion.	Most likely benign.	Patient underwent salvage radiotherapy. No specific follow up of retroperitoneal lesion.	
15	63	Initial Staging	Lung	10.8	4.2	1 Uptake in prostate gland and 18mm pleural based nodule	Likely benign.	Resolved on follow up CT 3 months later.	
16	50	Initial Staging	Skin	N/A	3.2	1 Uptake in prostate gland and left paraspinal subcutaneous nodule with low PSMA expression.	Likely benign.	No change on follow up PSMA. Specific comment on follow up regarding skin lesion.	
17	75	BF post RP	Lung	N/A	<1	0 No PSMA expression in a patchy opacity in LUL.	Likely inflammatory changes.	Follow up CT in 6 weeks advised. No follow up at STV.	
18	73	BF post RP	Thyroid	N/A	1.7	1 Indeterminate heterogeneous 24mm left thyroid nodule	Likely benign nodule.	No follow up.	
19	62	Initial Staging	Scrotum	15.1	5.2	2 Bilateral scrotal extra-testicular nodules ? Epididymal metastases but no extra-prostatic disease elsewhere	Nodules not investigated. Patient proceeded to RP. BF 4 years later with repeat PSMA. No interval changes in scrotal nodules, considered benign	Patient undergone salvage radiotherapy. No specific follow up of scrotal lesion.	
No	Age	Indication	Site	Primary SUV	SUV Expression Score	Findings	Clinical Rationale	Outcome	
----	-----	--------------	----------	-------------	----------------------	--	--	---	
1	65	Initial Staging	Lung	8.9	1.6	1 Uptake in prostate gland and 22 mm lesions within LUL	Suspected bronchogenic malignancy	Biopsy proven granuloma. Reduced in size on follow up imaging	
2	72	BF post RP	Lung	25.2	1.3	0 Uptake in pelvic nodes and several pulmonary nodules (most significant 16 mm in RLL)	Suspected benign lesions given low PSMA expression	Wedge resection of RLL lesion confirming Hamartoma	
3	77	BF post RP	Skin	6.5	4.5	1 Uptake in abdominal nodes and low PSMA expression in subcutaneous nodules (3 mm and 8 mm)	Direct visualization suggested	Biopsy proven angiolipoma	
4	72	BF post RP	Skin	N/A	3.1	1 Low PSMA expression in skin lesion lower right lateral abdomen	Direct visualization suggested	Biopsy performed with non-specific findings, no malignancy	
5	65	BF post RP	Skin	N/A	3.0	1 18 mm subcutaneous right paraspinal lesion	Biopsy suggested	Biopsy proven hemangioma	
6	68	Initial Staging	Breast	58.3	2.8	1 Low PSMA expression in left breast	Suspected gynaecomastia	Mammogram and biopsy performed confirming gynaecomastia	
7	65	BCR post RP	Skin	N/A	1.7	1 Uptake in pelvic nodes and 28 mm rounded lesion deep to skin in right lower back	Probable cyst	Direct visualisation of lesions confirmed sebaceous cyst	
8	61	BF post RP	Thyroid	N/A	2.7	1 Multinodular thyroid enlargement causing tracheal narrowing	Probable benign multinodular goitre	Ultrasound confirmation of benign features	
9	66	BF post RT	Thyroid	5.8	3.2	1 Indeterminate heterogeneous left thyroid nodule with calcifications	Ultrasound ± FNA suggested	Biopsy proven benign thyroid nodule	
10	57	BF post RP	Thyroid	N/A	2.6	1 38×28 mm ovoid homogeneous mass in lower pole of left thyroid lobe	Ultrasound ± FNA suggested	Biopsy proven benign thyroid nodule	
11	69	BF post RP	Thyroid	5.5	3/1	No PSMA expression in a 40 mm nodule within the thyroid isthmus	Ultrasound suggested	Ultrasound confirmation of benign features	
12	66	BF post RT	Thyroid	3.5	4.6	1 Indeterminate heterogeneous left thyroid nodule with calcifications	Ultrasound ± FNA suggested	Biopsy proven benign thyroid nodule	
13	70	BF post RP	Thyroid	N/A	2.3	1 25 mm heterogeneous density nodule in right thyroid with calcifications	Ultrasound suggested	Ultrasound confirmation of benign features	
14	58	BF post RP	Scrotum	N/A	7.8	2 Unilateral right scrotal extra-testicular nodule with PSMA expression	? Epididymal metastases but no recurrence elsewhere	Orchidectomy pre-salvage, histology showed granulomatous epididymitis	

SUV standardized uptake value, LUL left upper lobe, BF biochemical failure, RP radical prostatectomy, RLL right lower lobe, PSMA prostate specific membrane antigen
specific for prostate cancer although this specificity is only realized in combination with a comprehensive knowledge of the physiological and abnormal expression of PSMA. Physiological expression and distribution of typical prostate cancer related abnormal expression is well documented. [6]

Atypical PCa metastases are seen in less than 5% of cases but can affect most organs. Atypical metastases are rare in isolation and are often observed in the context of a typical pattern of disseminated metastatic PSMA expressing PCa. In addition, PCa metastases are described as focal with high PSMA expression whereas NPCaT expression is more likely to be low and non-focal [6, 16]. All lesions in our cohort categorized as PCa metastases were in expected sites for metastatic disease but NPCaT required exclusion due to their structural features or clinical presentation (Table 1). The majority of lesions confirmed to be PCa metastases demonstrated intermediate to high PSMA expression, with two cases of multiple lung lesions demonstrating no expression. This echoes the study by Damjanovic et al. which concluded that 27.5% of prostate cancer metastases demonstrated no PSMA expression. (Damjanovic 2018) Our study demonstrated that lesions with intermediate to high PSMA expression were more likely to be PCa metastases rather than NPCaT regardless of their CT morphology. All of the NPCaT in our group (except for two RCC cases) demonstrated no or low PSMA expression (SUV < 5). These findings correlate with literature describing PSMA expression in RCC [17, 18]. Although some cases in our cohort were not followed up due to factors including patient age, comorbidity, and extensive tumour burden, many lesions were subject to MDM discussion, clinical and radiological follow-up, and/or biopsy. This approach is valid and necessary in the clinical workup of these patients particularly in the context of advancing treatment options for patients with oligometastatic disease.

Numerous benign lesions are also known to express PSMA; however, from our cohort, the indeterminate and benign lesions largely demonstrated no or low PSMA expression (SUVmax < 5) [16, 19]. Pulmonary nodules in this patient cohort were common and the majority were assigned to follow-up based upon established guidelines [8, 9]. Lung nodules comprised the majority of the incidental potentially malignant group although these were larger (11–40 mm) with more complex imaging features and some demonstrated low PSMA expression. We found that lung nodules with intermediate or high PSMA expression were exclusively PCa metastases in our cohort whereas no biopsy-proven lung cancer demonstrated intermediate or high PSMA expression, despite PSMA expression in lung cancer described in the literature [20]. Our study has demonstrated that PCa metastases are substantially more frequent than NPCaT in the context of thoracic lesions with intermediate to high PSMA expression. These findings are further substantiated when considered in the context of existing structured reporting systems. For example, the European Association of Nuclear Medicine, including authors of both PROMISE data and PSMA-RADS, has recently provided guidelines for standardised reporting using E-PSMA five-point scale. The majority of the indeterminate and NPCaT lesions in our cohort comply with category 3 E-PSMA (indeterminate) lesions and the majority of benign lesions correspond to category 2 E-PSMA (likely benign). Furthermore, many lesions later confirmed to be PCa metastases arguably fell under E-PSMA 5, which would correctly allocate them to PCa metastases, but additional findings beyond this definition prompted clinical uncertainty, such as morphology, solitary site of disease, and other malignancy and predisposing factors for second primary [7, 21, 22].

The ability to differentiate PCa metastases from NPCaT is vital as further investigation can lead to morbidity, delays in therapy and incurs additional medical costs. In our cohort, 8% of patients with benign incidental findings underwent a biopsy as part of further investigation while of 19 patients with lung nodules over 10 mm, 13 (68%) were biopsied. Recognizing these patterns in context of established standardised reporting criteria can give PET/CT specialists the ability to make a confident diagnosis, thus avoiding escalating investigation, cost and therapeutic delays [7]. Importantly we would emphasise that guidelines and structured reporting systems allow for reduced variation of interpretation and clear communication however overall interpretation critically relies upon multiple factors and a multidisciplinary approach to diagnosis and management is paramount [7, 22].

The incidence of NPCaT in our PSMA cohort (1.7%) is substantially less than the incidence of significant incidental non-FDG avid findings on FDG PET/CT (22.6%) [23]. There are a number of potential reasons for this, including differing demographics, definitions of ‘major’ clinical significance, stricter evidence-based criteria used in our study, the use of subspecialist radiologists to exclude benign pathologies along with our exclusion of pre-existing known pathologies.

PSMA expression in NPCaT is more commonly associated with tumours which undergo neovascularization such as RCC, breast, glial tumours, gastrointestinal, pancreatic and lung tumours, all of which were represented in our cohort [24–29]. Further tumours reported to express PSMA not represented in our study include oral SCC, salivary ductal carcinoma, medullary thyroid carcinoma, small cell lung cancer, osteosarcoma, gynaecological malignancies, and adenoid cystic tumours [30, 31]. Such expression is variable but has significant clinical implications. PSMA imaging may provide an investigative tool for such tumours, with particular recent interest in clear cell RCC and in detection and characterisation of metastatic diseases [18, 32–35]. The potential for PSMA targeted radiopharmaceuticals in non-prostate tumours is vast and the degree of PSMA expression may prospectively
select treatment candidates and monitor response. Treatment monitoring, in particular drugs targeting neovascularization, e.g. bevacizumab and tyrosine kinase inhibitors, is a further potential application. PSMA expression in NPCaT may aid prognostication, for example, PSMA expression in non-metastatic triple negative breast cancer confers worse prognosis with higher relapse and reduced response to androgen receptor inhibition [25, 30]. In contrast, PSMA expression in non-small cell lung cancer (NSCLC) is associated with earlier stage tumours. It is noteworthy that these concepts remain in the realm of research and the full clinical impact of these applications is yet to be determined [24, 36].

This study benefited from a large number of consecutive patients in a multicenter international setting. A limitation of this study was its retrospective design. The largest impact of this was that many patients did not have histological confirmation and/or did not have conclusive follow up, leading to indeterminate findings in a cohort of patients. Selection of patients based on initial reports can introduce subjectivity and bias; however, the initial reports were generated by subspecialty trained experienced radiologists and nuclear medicine physicians. The imaging centers used different scanners albeit two consecutive generations of the same product, however this may have affected SUVmax measurements. Low numbers of individual non-prostate cancer tumours limit the ability to provide specific recommendations. There is always a degree of subjectivity when categorizing the significance of incidental findings and no perfect system exists although we have attempted to mitigate this by using experienced subspecialist radiologists and by considering the opinion of multidisciplinary meetings.

Conclusion

Our work is the largest study to date examining incidence of NPCaT detected by PSMA PET/CT and is the only study exclusively examining incidence in 18F-DCFPyL PET/CT. PSMA imaging of PCa is highly specific with the detection of PSMA expressing NPCaT exceedingly rare. NPCaT in our cohort generally demonstrated low or no PSMA expression. Although PSMA expression was noted in RCC, this was lower and less focal than typical PCa metastatic disease. We found that significant PSMA expressions at sites typical for prostate cancer metastases were exclusively PCa metastases rather than NPCaT.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s00259-022-05721-z.

Funding Open Access funding enabled and organized by CAUL and its Member Institutions.

Data availability At request.

Code availability Not applicable.

Declarations

Ethics approval Formal ethics review was waived under the New Zealand Health and Disability Ethics Committee exemption for minimal risk retrospective observational studies. Australian data was collected with an ethics approved prostate cancer database.

Consent to participate Not applicable.

Consent for publication Not applicable.

Conflict of interest The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Culp MB, Soerjomataram I, Efstathiou JA, Bray F, Jemal A. Recent global patterns in prostate cancer incidence and mortality rates. Eur Urol. 2020;77:38–52.
2. Morris MJ, Rowe SP, Gorin MA, Saperstein L, Pouliot F, Josephson D, et al. Diagnostic Performance of 18F-DCFPyL-PET/CT in Men with Biochemically Recurrent Prostate Cancer: Results from the CONDOR Phase III, Multicenter Study. Clinical Cancer Research. 2021.
3. Pienta KJ, Gorin MA, Rowe SP, Carroll PR, Pouliot F, Probst S, et al. A Phase 2/3 Prospective Multicenter Study of the Diagnostic Accuracy of Prostate Specific Membrane Antigen PET/CT with 18F-DCFPyL in Prostate Cancer Patients (OSPREY). J Urol. 2021;10:1097.
4. Tanaka T, Yang M, Froemming AT, Bryce AH, Inai R, Kanazawa S, et al. Current Imaging Techniques for and Imaging Spectrum of Prostate Cancer Recurrence and Metastasis: A Pictorial Review. RadioGraphics. 2020;190121.
5. Conway RE, Rojas C, Alt J, Nováková Z, Richardson SM, Rodrick TC, et al. Prostate-specific membrane antigen (PSMA)-mediated laminin proteolysis generates a pro-angiogenic peptide. Angiogenesis. 2016;19:487–500.
6. Barbosa FG, Queiroz MA, Nunes RF, Viana PC, Marin JFG, Cerri GG, et al. Revisiting prostate cancer recurrence with PSMA PET: atlas of typical and atypical patterns of spread. Radiographics. 2019;39:186–212.
7. Eiber M, Herrmann K, Calais J, Hadaschik B, Giesel FL, Hartenbach M, et al. Prostate cancer molecular imaging standardized evaluation (PROMISE): proposed miTNM classification for the interpretation of PSMA-ligand PET/CT. J Nucl Med. 2018;59:469–78.
8. Baldwin DR, Callister ME. The British Thoracic Society guidelines on the investigation and management of pulmonary nodules. Thorax. 2015;70:794–8.

9. MacMahon H, Naishid DP, Goo JM, Lee KS, Leung AN, Mayo JR, et al. Guidelines for management of incidental pulmonary nodules detected on CT images: from the Fleischner Society 2017. Radiology. 2017;284:228–43.

10. Berland LL, Silverman SG, Gore RM, Mayo-Smith WM, Meginbow AJ, Yee J, et al. Managing incidental findings on abdominal CT: white paper of the ACR incidental findings committee. J Am Coll Radiol. 2010;7:754–73.

11. Gore RM, Pickhardt PJ, Morteke KJ, Fishman EK, Horowitz JM, Fimmel CJ, et al. Management of incidental liver lesions on CT: a white paper of the ACR Incidental Findings Committee. J Am Coll Radiol. 2017;14:1429–37.

12. Herts BR, Silverman SG, Hindman NM, Uzzo RG, Hartman RP, Israel GM, et al. Management of the incidental renal mass on CT: a white paper of the ACR Incidental Findings Committee. J Am Coll Radiol. 2018;15:264–73.

13. Mayo-Smith WM, Song JH, Boland GL, Francis IR, Israel GM, Mazzaglia PJ, et al. Management of incidental adrenal masses: a white paper of the ACR Incidental Findings Committee. J Am Coll Radiol. 2017;14:1038–44.

14. Perry E, Talwar A, Taubman K, Ng M, Wong L-M, Booth R, et al. [18 F] DCFPyPL PET/CT in detection and localization of recurrent prostate cancer following prostatectomy including low PSA< 0.5 ng/mL. European Journal of Nuclear Medicine and Molecular Imaging. 2021;48:2038–46.

15. ARPANSA. Nuclear Medicine Diagnostic Reference Levels (DRLs). Nuclear Medicine Diagnostic Reference Levels (DRLs). Australian Government. 1999. https://www.arpansa.gov.au/sites/default/files/nuclear-medicine-diagnostic-reference-levels.pdf. Accessed: 7 December 2021.

16. Hofman MS, Hicks RJ, Maurer T, Eiber M. Prostate-specific membrane antigen PET: clinical utility in prostate cancer, normal patterns, pearls, and pitfalls. Radiographics. 2018;38:200–17.

17. Pozzessere C, Bassanelli M, Ceribelli A, Rasul S, Li S, Prior JO, et al. Renal cell carcinoma: the oncologist asks, can PSMA PET/CT answer? Curr Urol Rep. 2019;20:1–10.

18. Rowe SP, Gorin MA, Hammers HJ, Javadi MS, Hawashi H, Szabo Z, et al. Imaging of metastatic clear cell renal cell carcinoma with PSMA-targeted 18 F-DCFPyPL PET/CT. Ann Nucl Med. 2015;29:877–82.

19. Kirchner J, Schaar schmidt BM, Sawicki LM, Heusch P, Hautzel H, Er mert J, et al. Evaluation of practical interpretation hurdles in 68Ga-PSMA PET/CT in 55 patients: physiological tracer distribution and incidental tracer uptake. Clin Nucl Med. 2017;42:e322–7.

20. Schmidt LH, Heitkötter B, Schulze AB, Schliemann C, Steinsetel K, Trautmann M, et al. Prostate specific membrane antigen (PSMA) expression in non-small cell lung cancer. PLoS One. 2017;12:e0186280.

21. Ceci F, Oprea-Lager DE, Emmett L, Adam JA, Bomanji J, Czernin J, et al. E-PSMA: the EANM standardized reporting guidelines v1.0 for PSMA-PET. Eur J Nucl Med Mol Imaging. 2021;48:1626–38.

22. Rowe SP, Pienta KJ, Pomper MG, Gorin MA. PSMA-RADS version 1.0: a step towards standardizing the interpretation and reporting of PSMA-targeted PET imaging studies. Eur Urol. 2018;73:485.

23. Sheldon JA, Yap KK, Taubman KL, Schlucht SM. Prevalence of non 18F-fluorodeoxyglucose-avid incidental findings of clinical significance on whole body positron emission tomography/computed tomography: A review of 500 consecutive cases. J Med Imaging Radiat Oncol. 2018;62:194–202.

24. Farag M, Bolton D, Lawrentschuk N. Prostate-specific membrane antigen for the surgical oncologist: interpreting expression beyond the prostate. ANZ J Surg. 2020;90:715–8.

25. Kasimir-Bauer S, Keup C, Hoffmann O, Hauch S, Kimmig R, Bittner A-K. Circulating tumor cells expressing the prostate specific membrane antigen (PSMA) indicate worse outcome in primary, non-metastatic triple-negative breast cancer. Front Oncol. 2020;10:1658.

26. Malik D, Kumar R, Mittal BR, Singh H, Bhattacharya A, Singh SK. 68Ga-labeled PSMA uptake in nonprostatic malignancies: has the time come to remove “PS” from PSMA? Clin Nucl Med. 2018;43:529–32.

27. Patel DN, Karsh L, Daskivich T. Next-generation imaging in localized high-risk prostate cancer. Nature Publishing Group; 2021.

28. Shetty D, Patel D, Le K, Bui C, Mansberg R. Pitfalls in gallium-68 PSMA PET/CT interpretation—a pictorial review. Tomography. 2018;4:182–93.

29. Stoykow C, Huber-Schumacher S, Almas naresh N, Jilc G, Ruf J. Strong PSMA Radioligand Uptake by Rectal Carcinoma: Who Put the “S” in PSMA? Clin Nucl Med. 2017;42:225–6.

30. Fragomeni RAS, Amir T, Sheikhbabaee S, Harvey SC, Javadi MS, Solnes LB, et al. Imaging of nonprostate cancers using PSMA-targeted radiotracers: rationale, current state of the field, and a call to arms. J Nucl Med. 2018;59:871–7.

31. Sharma P. 68Ga-PSMA-avid small cell lung cancer on PET/CT – Incidental second malignancy in treated prostate cancer. Clin Nucl Med. 2020;45:1016–7.

32. Chang SS, Reuter VE, Heston W, Gaudin PB. Metastatic renal cell carcinoma neovascularature expresses prostate-specific membrane antigen. Urology. 2001;57:801–5.

33. Fragomeni RAS, Menke JR, Holdhoff M, Ferrigno C, Laterra JJ, Solnes LB, et al. Prostate-specific membrane antigen–targeted imaging with [18F] DCFPyL in high-grade gliomas. Clin Nucl Med. 2017;42:e433.

34. Rhee H, Blazak J, Tham CM, Ng KL, Shepherd B, Lawson M, et al. Pilot study: use of gallium-68 PSMA PET for detection of metastatic lesions in patients with renal tumour. EJNMMI Res. 2016;6:1–6.

35. Yin Y, Campbell SP, Markowski MC, Pierorazio PM, Pomper MG, Allaf ME, et al. Inconsistent detection of sites of metastatic non-clear cell renal cell carcinoma with PSMA-targeted [18 F] DCFPyL PET/CT. Mol Imag Biol. 2019;21:567–73.

36. Backhaus P, Noto B, Avramovic N, Grubert LS, Huss S, Boegemann M, et al. Targeting PSMA by radioligands in non-prostate disease—current status and future perspectives. Eur J Nucl Med Mol Imaging. 2018;45:860–77.