Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Assessing urban resilience to public health disaster using the rough analytic hierarchy process method: A regional study in China

Zezhao Liua,b,*, Rui Maa, HuiJia Wangc

aSchool of Public Administration and Sociology, Jiangsu Normal University, Xuzhou 221116, China
bSchool of Government, Nanjing University, Nanjing 210023, China
cPeople’s Procuratorate in Tongshan District, Xuzhou 221116, China

\section*{A R T I C L E I N F O}

\textbf{Keywords:}
Urban resilience
Vulnerability-capability
Public health disaster
Rough Analytic Hierarchy Process
Jiangsu Province
China

\section*{A B S T R A C T}

In the context of frequent occurrences of disasters worldwide, disaster-coping capability is imperative for risk reduction and contemporary emergency management. The global COVID-19 pandemic since 2020 has further highlighted the significance of resilience construction at different geographical scales. Overall, the conceptual cognition of resilience in disaster management covers multiple elements and has diverse yielding on regional assessment. This study assesses the local resilience to the public health disaster in the prefecture-level cities, focusing on two dimensions consisting of vulnerability and capability in the targeted provincial region of Jiangsu in China. To this end, based on the vulnerability-capability framework, the Rough Analytic Hierarchy Process (Rough AHP) method was applied to the resilience assessment. Drawing upon the criteria derived from literature, the criteria weights were determined with the RAHP method and we assessed urban resilience with census data. In addition, the hierarchical factors contributing to urban resilience were determined using robustness analysis. This research provides constructive ideas for regional disaster reduction and contributes to the government's capability to improve urban resilience.

\section*{1. Introduction}

Currently, emergency and multi-hazard disasters have destructive power and widespread range and represent a severe threat to human safety, health, and security. Particularly, some novel and emerging infectious diseases have enormous impacts on people's lives, and sequentially cause morbidity and mortality beyond borders \cite{1,2}. Thus, it is imperative to reduce the risks of all-hazard disasters on population health, which is not only a task for public health services but also a critical necessity for the administration to maintain sustainable development. China, one of the frequently disaster-torn nations, has experienced a variety of public health disasters \cite{3,4} and to a certain extent, has accelerated domestic health policy adjustment, although the effective operation of a response system is challenging. During the 2003 SARS outbreak, China reported 5327 probable cases, of whom 343 died, giving a fatality ratio of 6.4\% and spanned a large geographical extent (170 counties of 22 provinces). More serious public health disasters, such as the ravaging COVID-19 pandemic, have had unprecedented consequences on the nation’s politics, economy, trade, and people's health \cite{5,6}. All along, the public health policy and the implementation of emergency strategy have evolved with China’s domestic reform and national security objective. In general, China’s public health policy is regarded as a critical component of its disaster reduction system, and the urban-rural assessment is critical for uncovering potential loopholes in emergency management. In particular, Communist Party of China has underscored the vital significance of all-round capability construction in providing “public health safety” \cite{7,8} since the COVID-19 outbreak, whereas the reduction of vulnerability and enhancement of resilience is an essential target of national policy tactics in re-framing China’s public health system.

In previous decades, researchers have focused on the perspective of resilience in the disaster management system that can be responsive and proactive to any health disaster threat. Resilience, a core element and common concept of reducing disaster risk, is taken as the prerequisite for managing public health hazards and an essential benchmark for emergency assessment \cite{9,10}. Generally, a resilience system is defined as a flexible structure that could rapidly adapt its actions to changing circumstances and broadly mobilize networks of expertise and any material support for emergency response. Many studies have been conducted on urban and rural resilience to explore how to effectively reduce the damage caused by health-related disasters \cite{11,12}. Also, there have been various attempts to address challenges related to health risks and strengthen governmental capability in the international community.
For instance, the well-known Hyogo Framework for Action 2005-2015 (HFA), *Building the Resilience of Nations and Communities to Disasters*, was adopted by the World Conference on Disaster Reduction [13]. The far-reaching Sendai Framework for Disaster Risk Reduction (SFDRR, 2015-2030), with an emphasis on disaster resilience, was highly endorsed by the UN General Assembly and adopted by nearly 200 countries (or regions) as a 15-year voluntary agreement. The 58th World Health Assembly adopted International Health Regulations (hereinafter “IHR”), which were subsequently implemented in 2007, and all the state parties were required by the IHR to develop certain public health capacities. Besides, the Inter-American Development Bank (IADB) raised an integrated framework for safety assessment and further designed Disaster Risk Management Indicators (DRMI), which is also applicable in the public health disaster-coping context. Many countries, particularly the developed nations, adopted a capabilities-based planning approach and implemented resilience assessment as part of their disaster risk reduction endeavors [14]. For example, the Hazards United States Multi-Hazard (HAZUS-MH) system, developed by the US Federal Emergency Management Agency, is a large GIS-based system for monitoring loss estimations of disasters and implementing risk assessment on various geographical scales [15]. These strategies and frameworks highlighted the importance of national action and collaboration to improve emergency preparedness and reduce potential disaster risks. Their performance was also evaluated under the multi-hazard coupling effects of an earthquake, fire, and infectious disease. However, the scope for resilience rarely addresses the local/regional traits of heterogeneity, including the vulnerability assessment, evolutionary dynamics, and disaster response.

Moreover, comprehensive resilience assessment requires the involvement of various stakeholders’ cognition and participation to incorporate authentic ideas into regional/local assessment. However, stakeholder involvement often results in complex and even conflict preferences [16], which represents a practical challenge for the implementation of assessment. Therefore, the critical issue is how to handle the stakeholders’ perceptions of the weights of assessing factors. In this respect, multi-scale experimental and multi-criteria techniques have been taken as a promising path to determine various indicators since they have the potential to treat multi-dimensional, incommensurable effects of individual decisions. Of these, the most widely used methods include the Analytic Hierarchy Process (AHP), Outranking Theory, and Goal Programming [17-19].

As tentative research, this study constructed the vulnerability-capability analytical framework for regional public health disasters and proposed an integrated approach for resilience assessment using AHP and Rough Set Theory (RST) in the Chinese provincial context. AHP is one of the most widely adopted multi-criteria decision-making methods that is effective in structuring group decisions and manipulating the qualitative criteria. The RST is a mathematical tool capable of dealing with subjective judgments by overcoming the limitations of Fuzzy Set [19,17,20,21]. By integrating the merits of both RST and AHP, the proposed Rough AHP method measures the weights of factors enabling regional resilience to incorporate the preferences of multiple stakeholders. We believe that the constructed approach can promote resilience consensus in the vulnerability-capability framework for managing urban public health disasters. Specifically, we aimed to determine the conditions of dealing with public health disasters at a provincial level and to explore the role that the tendency, if it exists, plays in future urban resilience construction.

In light of this, this study proceeded by collecting panel and survey data in the cities of Jiangsu province. Economic development level and disaster-coping resources of northern, central, and southern areas of Jiangsu, located in Southeast China, vary considerably. It was also one of the key provinces for resilience construction in China toward the modern emergency system. Although relevant studies have been conducted on resilience assessment in the context of disasters, only a few have assessed urban resilience from the public health perspective of regional vulnerability and emergency response capacity. Hence, this research applied an integrated assessment pathway to evaluate urban resilience using the Rough AHP approach that can fully exploit the subjective-objective data. The rest of this paper is organized as follows. Section 2 presents a brief literature review. Section 3 describes the proposed method. Section 4 provides the results and discussion of the regional application using the method. Finally, Section 5 concludes the article.

2. Literature review

For decades, the high-frequency occurrence of public health disasters has been a global phenomenon. Accordingly, the concepts of capability, vulnerability, and resilience are frequently used in scientific literature. A search of the abstract and citation database of Web of Science (WOS) in Sept. 2020 with the query capability yielded over 300,000 results, whereas the keyword of “capability AND vulnerability” combined yielded nearly 11,000 results. Despite various viewpoints worldwide, capability in disaster management is defined as the power of resilience in terms of financial, technical, institutional leadership, and human resources that stakeholders ought to possess to perform emergency actions. The United Nations Office for Disaster Risk Reduction (UNISDR), for example, takes capacity enhancement as a critical target of its agenda [22]. The ability to manage uncertainties or correlated risks (capacity) affects the ability to respond (capability), and it is assumed that disaster preparedness would benefit from including the capacity explicitly in public health emergency response. Houdijk [23] argued that capability stands for possible factors that can positively influence the outcome of disasters and crises. Aven [24,25] proposed the ACU framework that relates the assessment by some definitions of events (A), consequences (C), and uncertainties (U), which we consider critical concerning the capability of public health disaster response. Capability analysis aims to determine which aspect or performance may be the most vulnerable to the hazards and to identify key factors that affect the state of vulnerability [26,22]. The results of vulnerability-capability studies can be used for risk decisions, including risk reduction strategies and disaster mitigation.

Because capability-based assessment of the public health performance is gaining ground in a risk management context, it is common to relate the concept of capability and resilience in an integrated framework and pursue solutions in the world [27-29]. The Coordination Continuity of Operations, produced by the US Federal Emergency Management Agency, included multiple indicators for evaluating vulnerability and capability in organizations [30]. It also introduced a quantitative method by a straightforward analysis of threats to safety, including the public health disaster. Rufat et al. [31] indicated that a key point in measuring vulnerability and capacity to modern hazards is identifying the influencing factors because identified demographic, socioeconomic status, and health are the leading drivers of vulnerability. Furthermore, the Disaster Risk Management Indicators [32], developed by the US National University of Colombia, extended the vulnerability-capability framework to include various categories of disasters. This assessment was applied in different geographical regions [33-35]. Under the UN Development Program of Disaster Reduction (DPDR), the capability-focused assessment and analytical tool of resilience have become a common path in detecting disasters, incorporating the application in the public health domain [36,37]. To explore the regional resilience in the public health disaster context and develop corresponding strategies for risk mitigation, this study constructed the assessment using the vulnerability-capability framework.

In China, recently, researchers have used a likewise or revised vulnerability-capability framework in emergency management [38]. In addition, the administration at different levels established various assessment indicators for China’s public health system. Among these, some notable ones include the “Health Emergency Capacity Evaluation Index” by Chinese Center for Disease Control and Prevention, the “Health Assessment Capacity Assessment Standard” by the National Health and...
Fig. 1. Schematic diagram of the urban resilience assessment in public health disasters.

Family Planning Commission, and the “Competency of Health Emergency in County-level Disease Control Institutions” by the National Health Commission. Generally, these frameworks include multiple dimensions and indicators, such as respond capability, coordination capability, drill capability, and information integration capability. Despite differences, all frameworks have in common vulnerability and capability, which are supposed to jointly affect the health emergency system. For example, Liu [39] proposed a performance-based assessment framework, in which vulnerability and capability are assumed to possess a negative correlated relationship, implying that it could yield a probability of deterioration when the capability of the regional public safety system is weak and vulnerable. Liu [40] suggested four aspects of assessment, namely the natural force, technology, social culture, and legal system in emergency settings, which were applied to specific public health disasters such as the H7N9 infectious disease. Furthermore, threshold (also called “critical value”) is taken as a pivotal target in recognizing the links for disaster management and studies have identified its significance for the evolution of the public health system [38,41]. Some other studies used the technique of simulation or the method of quantitative risk assessment [42,43] as the analytical tool to test the relations.

Although there has been progressing in the theoretical cognition of capability and vulnerability in disaster systems and public health domains over the past decades, the advancement in measuring and assessing its status toward regional resilience is still inadequate. The global COVID-19 pandemic has accelerated the necessity to explore resilience levels in response to sudden public health disasters. It revealed broad differences in the real world, both in China and abroad. Thus, this study’s objective is to describe the essential elements of a resilient public health emergency system using the capability-vulnerability framework and disclose the mutual relationship at extensive provincial levels. For this, this study refined the health emergency assessment indicators to evaluate conditions in sampled cities and provide evidence-based recommendations for resilience construction in terms of public health policy.

The schematic diagram of the design and implementation path is presented in Fig. 1.

3. Materials and method

3.1. Screening and assessment framework

Considering the urban resilience in the context of public health disasters, it is necessary to investigate how significant the urban response is after the disaster occurs, what are influencing factors, and how to assess the recovery conditions in a limited time-space. Also, the assessment of emergencies is essential to support applicable arrangements for subsequent disaster rescue and response. Therefore, to achieve the research goal, we first adopted the “integrated theory-practice” strategy to screen literature for public health indicators, incorporating accessible Chinese academic journals, government gazettes, statistical files, and documents from the sampled regions. A comprehensive search of Chinese databases—including China National Knowledge Infrastructure (CNKI), the Wanfang Data Knowledge Service Platform (WANFANG DATA), and Chinese VIP Data Platform—was implemented using a search time limit from 2003, the landmark event of SARS epidemics, until December 2020. This phase was carried out with the bibliometric software of CiteSpace V5.5 to extract frequently occurring titles to investigate the hot points on vulnerability and capability in disaster settings. Furthermore, as defined by the United Nations International Strategy for Disaster Reduction (UNISDR), the conceptual vulnerability is commonly impacted by material, social, economic, and environmental factors, which have been improved and applied in disaster assessment by a series of researchers. For example, Schoen et al. [44] presented a scorecard to assess and monitor domains of US health system performance and confirmed the significance of ‘societal texture’ for practical vulnerability assessment. Zhu and Li [38] expanded the division of economic, human, and political elements into the V-type integrated system. Jahmehr et al. [27] designed a conceptual framework and evaluated regional health care performance in the overall community. Aria et al. [45] highlighted the necessity of developing a vulnerability-centered framework based on social cohesion and integration. Drawing upon the studies presented above, we summarized that resilience in disaster context is a complex notion formed by multiple constituents and assessment angles, but it is generally considered that the level of regional public health risk (denoted herein by the “risk index”) is supposed to be affected by “vulnerability” and “disaster-coping capability” combined. Given that vulnerability and capability interact in the geographical space, the correlation between them usually reflects the status quo of the resilience level in public health disasters. On this inductive basis, accordingly, we constructed and proposed an analysis framework (Fig. 2) that aims to identify key potential determinants and assess urban resilience.

1 The V-typed analytical strategy is commonly applied to issue extraction and acquisition using literature mining and survey activities, as it is believed to be conducive to the integration of theory and practice. For the application, see Liu and Huang [46].
3.2. Criteria weight by Rough AHP method

The Rough AHP method is one of the extensively used tools in multi-index evaluation [47,48]. However, a rough number cannot effectively deal with group decisions in relation to multiple criteria. Therefore, we proposed herein the Rough AHP by combining Rough Set with conventional AHP. Rough Set is a mathematical tool particularly capable of dealing with subjective concepts. The procedures of this method are as follows:

First, field surveys were conducted to obtain a group decision matrix based on the hierarchical structure of assessment criteria. An expert team was invited to make pairwise comparisons on criteria prioritization to obtain the weights matrix. The k^{th} expert pairwise comparison matrix D_k can be expressed as Eq. (1), where r_{ij}^k is the k^{th} expert’s judgment value for the i^{th} criterion importance compared with the j^{th} criterion.

After the consistency test, the group decision matrix D can be built following the Eq. (1), where $r_{ij} = (r_{ij}^1, r_{ij}^2, ..., r_{ij}^m)$. Then, we can obtain the group decision matrix by combining the above pairwise matrix.

$$D = \begin{bmatrix}
1 & r_{12}^k & \cdots & r_{1m}^k \\
1 & 1 & \cdots & \cdots \\
\vdots & \vdots & \ddots & \vdots \\
r_{m1}^k & r_{m2}^k & \cdots & 1
\end{bmatrix}$$

Second, we transformed the element r_{ij} in group decision matrix D into rough number form to obtain rough group decision-making matrix R. Furthermore, a rough number could be obtained in the k^{th} pairwise comparison matrix, as shown in Eq. (2).

$$R N(r_{ij}) = [\min(r_{ij}^k), \max(r_{ij}^k)]$$ (2)

Furthermore, rough sequence $RN (r_{ij})$ and rough decision matrix R could be obtained as shown in Eq. (3) and Eq. (4), respectively.

$$RN(r_{ij}) = \left\{ \begin{array}{c}
[r_{ij1}^L, r_{ij1}^U]
\{r_{ij2}^L, r_{ij2}^U\} \\
\vdots
\{r_{ijm}^L, r_{ijm}^U\}
\end{array} \right\}$$ (3)

$$R = \begin{bmatrix}
[1,1] & [r_{121}^L, r_{121}^U] & \cdots & [r_{1m1}^L, r_{1m1}^U] \\
[r_{121}^L, r_{121}^U] & [1,1] & \cdots & [r_{1m2}^L, r_{1m2}^U] \\
\vdots & \vdots & \ddots & \vdots \\
[r_{1m1}^L, r_{1m1}^U] & [r_{1m2}^L, r_{1m2}^U] & \cdots & [1,1]
\end{bmatrix}$$ (4)

Third, the rough weight W_i of each criterion in different hierarchies could be calculated using Eq. (5). Each criterion’s overall weight was obtained using the Multiplication Synthesis Method (MSM) from the top level to the bottom level.

$$W_i = \prod_{i=1}^{m} r_{ij}^L m \prod_{i=1}^{m} r_{ij}^U, i = 1, 2, \cdots, m$$ (5)

However, the weights calculated above are formed with rough numbers containing the minimum and maximum values, which could cause deviations in assessment. Considering the Hurwicz principle [49], the optimistic index $a (0 \leq a \leq 1)$ was further introduced, as reflected risk propensities from expert interviewed, to transform the weights into crisp value shown in Eq. (6). Specifically, if experts are optimistic, it can set up a with a bigger value ($a > 0.5$). If they are pessimistic, a smaller value ($a < 0.5$) can be set. If they remain neutral, in other words, neither optimistic nor very pessimistic, the value of a could be set as 0.5.

$$aLim(Weight) + (1-a)Lim(Weight), \text{ where } 0 \leq a \leq 1$$ (6)

Overall, based on the evaluation hierarchical structure, established by decomposing decision objectives into factors [50], criteria weights can be determined using the Rough AHP approach. Compared with conventional AHP, the preferences of individuals can be aggregated into group series using Rough AHP. By combing the objective and subjective information, we can provide roughly accurate recognition for the assessment guidance and correlated indicators.

3.3. Data processing and calculation

By the vulnerability-capability framework, the disaster response inevitably affects local emergency function and resilience. To carry out the urban resilience assessment, the critical data is of great significance to judge and implement measuring. Based on the urban cases in Jiangsu province, we conducted the data processing and made the regional resilience score calculation as follows:

Step 1: Taking into account data availability and provincial characteristics in practice, a hierarchy structure for the vulnerability and emergency capability assessment was developed using the selected assessment factors (see Table 1).

Step 2: The criteria weights were further determined using Rough AHP as constructed above. By design, we interviewed the advisory team, including six public health professionals, five local emergency management officials, 13 community residents, and four disaster prevention experts. The criteria weights were then calculated by the Rough AHP (see details in Section 3.2).

Step 3: We calculated vulnerability scores and capability scores among selected provinces. Data were collected from both China’s national and local census from 2003 to 2020 according to the criteria determined in Step 1.

Following the data processing procedures above, each criterion was then normalized to obtain a uniform dimension. Criteria positively related to vulnerability and capability were transformed by Eq. (7),
Although the one negatively related were transformed by Eq. (8).

$$D_1 = \frac{X_i - X_{i-min}}{X_{i-max} - X_{i-min}}$$

$$D_2 = \frac{X_{i-max} - X_i}{X_{i-max} - X_{i-min}}$$

Besides, vulnerability and capability scores (SV/EC) on each sampled region can be calculated using Eq. (9), where w_j is the overall weight of criterion and M_{ij} is the standardized value of criterion j in selected province i. The regional resilience index (R_i) could be obtained with the calculated scores further by Eq. (10).

$$SV_{ij}/EC_i = \sum_{j=1}^{m} w_j M_{ij}$$

$$R_i = EC_i/ SV_i$$

Also, the sensitivity analysis is undertaken to explore the changes of SV/EC and criteria weights under different optimistic index a (see instruction in Eq. (6)), with corresponding implications proposed.

4. Results and discussion

According to the Rough AHP method and procedure for weight set up described in Section 3, we carried out a series of work on assessing urban resilience in a public health disaster context, including the establishment of assessing factors under the V-C framework, indicator weights of criteria, resilience score calculation, and robustness analysis. Here we take cities in Jiangsu province as the research target to disclose the results.

4.1. Assessment factors

Resilience is a multidimensional concept and construct which cannot be captured by a single variable. As highlighted in the literature review above, several factors contribute to regional resilience under the framework of vulnerability-capability, incorporating aspects of health resources, staff allocation, and type/density of infrastructure. In practice, there have been disputes over the assessment of resilience, such as subjective and vague judgments, making it difficult to evaluate accurately. Thus, an approach that can capture subjective judgments to reach a consensus is vital. Based on the analysis of the regional public health system and emergency response status, the vulnerability factors herein are classified into four aspects: facility resources, processing conditions, economic support, and social monitoring in line with the principles of reliability. Concerning the attributes of other indicators in public health performance, the capability herein is divided into public service, environmental regulation, financial guarantee, and risk prevention. On this basis, a semi-structured questionnaire with the Likert 5 grading was distributed to 15 professors and academic professionals majoring in disaster management and urban governance to acquire their perceived attitudes toward the chosen assessing indicators. All 15 questionnaires were eventually collected. We take the Score 3.75 (from the quartile) as the critical value between “general” and “important” and make the Standard Deviation (SD>1) as the criteria for indicator screening. Indicators that exceed this threshold value would be eliminated from the alternatives. Then we used the Cronbach’s Alpha and Split-half statistical method to make the reliability test. The final results showed that the overall Cronbach’s Alpha is 0.941 and the Split-half coefficient is 0.837, indicating that the questionnaire for the indicator screening fulfills the requirements of reliability according to the judging standard by Bland [50].

Table 1
Assessment of indicators for urban resilience in the vulnerability-capability framework.

Target layer	Main Factor	Indicators	Mean	SD
Urban Vulnerability (V$_1$)	Vulnerability of Facility Resources (V$_{11}$)	01. regional health/clinic technical staffs (V$_{111}$)	4.3126	0.8736
		02. hospital beds per 10,000 pop (V$_{112}$)	4.3425	0.7984
		03. ratio of psychological counselors/tutors per million population (V$_{113}$)	4.0759	0.9702
		04. reserve ratio of protective medical equipment per 10,000 pop (V$_{114}$)	4.0283	0.6834
		05. ICU beds per million population (V$_{115}$)	4.9311	0.7328
	Processing Condition (V$_{12}$)	01. average daily yield of clinic wastes (V$_{121}$)	4.2901	0.5366
		02. average monthly yield of medical wastes discharged (V$_{122}$)	4.3215	0.7652
		03. health-related emergency plan annually (V$_{123}$)	3.9123	0.9127
		04. disinfection and purification annually (V$_{124}$)	3.9724	0.9022
		05. proportion of labor remuneration in regional GDP, per capita (V$_{125}$)	4.5142	0.5432
	Economy Support (V$_{13}$)	02. proportion of local fiscal revenue in GDP (%) (V$_{131}$)	3.9321	0.8543
		03. disposable income per capita (V$_{132}$)	4.2073	0.6938
		04. balance of savings deposits per capita (V$_{133}$)	4.3212	0.5961
		05. electric power supply per capita (V$_{134}$)	4.0245	0.6344
	Vulnerability of Social Monitoring (V$_{14}$)	01. registered urban unemployment rate (V$_{141}$)	4.3721	0.6227
		02. urban-rural consumption ratio (V$_{142}$)	4.3559	0.6851
		03. coverage of medical social security (V$_{143}$)	4.3172	0.7336
		04. urban registered unemployment ratio (V$_{144}$)	4.2891	0.6671
		05. proportion of medical & health personnel per 1000 pop (V$_{145}$)	3.8552	0.8421
Emergency Capability (C$_1$)	Capability of Public Service (C$_{11}$)	01. nursing/medical institutions per 1,000 pop (C$_{111}$)	4.4642	0.6745
		02. volume of urban transport line (C$_{112}$)	3.9351	0.7441
		03. mileage of public transport per 1,000 pop (C$_{113}$)	4.1362	0.7602
		04. medical and health service centers (C$_{114}$)	4.0344	0.7931
		05. post & telecommunications business volume per capita (C$_{115}$)	5.3512	0.6874
	Environmental Regulation (C$_{12}$)	01. reclamation ratio of medical solid waste per 10,000 pop (C$_{121}$)	4.8341	0.5356
		02. processing ratio of medical waste discharged (C$_{122}$)	4.5852	0.5915
		03. green coverage ratio of built-up urban regions (C$_{123}$)	4.3659	0.7374
		04. harmless water processing and sewage treatment plant (C$_{124}$)	4.3412	0.6983
		05. coverage of environmental monitoring station (C$_{125}$)	4.3681	0.7785
	Capability of Financial Guarantee (C$_{13}$)	01. proportion of public health budget in regional GDP per capita (C$_{131}$)	4.3146	0.8623
		02. proportion of public health expenditure in government health expenditure (C$_{132}$)	4.0243	0.9452
		03. commercial insurance in social health expenditure per capita (C$_{133}$)	3.8722	0.8653
		04. proportion of total health expenditure in regional GDP (C$_{134}$)	4.0192	0.7731
		05. coverage ratio of town basic endowment insurance (C$_{135}$)	3.8429	0.8137
	Capability of Risk Prevention (C$_{14}$)	01. proportion of illiterate population (C$_{141}$)	4.1702	0.6673
		02. proportion of illiterate population (C$_{142}$)	4.1702	0.6673
		03. diagnosis and treatment in hospitals and Community Health Service Center/Station per 10,000 pop (C$_{143}$)	4.1436	0.8317
After completing the work above, a hierarchical assessment system for public health disaster response is established (Table 1). The corresponding data from 2015 to 2019 are acquired from statistical yearbooks of China’s eastern province of Jiangsu, governmental bulletins on regional economic and social development, and related public reports. For the missing values, we replaced them with the adjacent mean value with the rule of Least Square Criterion, as raised by Honda et al. [51]. Besides, we suggest that each factor’s weight can be determined by integrating multiple stakeholders’ preferences. Therefore, the data applied in this research include not only census data but also the subjective judgment of multiple experts who were invited to participate in the scoring process.

4.2. Criteria weights and score calculation

As stated in Section 3, an expert team majoring in disaster management and public health were invited to make pairwise comparisons on criteria prioritization to obtain the weights matrix. According to the specific survey team, we set the α value as 0.5 and obtained each response of interviewers through a comparison matrix (see details of Eq. (1)). Using Rough AHP, we integrated the preferences of all the interviewers by the set standard and eventually determined the criteria weights. The top indicators contributing to SV/EC were identified in accordance with their weights, as shown in Table 2.

As mentioned above, the method of Rough AHP herein tends to promote consensus in resilience assessment by integrating both objective and subjective merits. Values of selected indicators, as shown in Table 1, were obtained from regional census data in Jiangsu province. SV/EC and the resilience value of each sampled city can be calculated by Eq. (8) and Eq. (9) and the results are shown in Table 3.

Also, Fig. 3 displays regional public health resilience indices as a hierarchical map, revealing the discrepancy of 13 cities (prefecture level) in selected Jiangsu province. As the figure annotation shows, the urban resilience was divided into four classes (high, medium, average, and low), which was performed using the following approach: Based on the value of Mean (M) and Standard Deviation (SD), we used the SD classification method to analyze the average value of urban resilience R and made the equivalent ratio of SD 1: 1 as the criteria for spacing interval [52]. Specifically, by the judgment rules of $R < \text{M-SD}$, $\text{M-SD} \leq R < \text{M}$, $M \leq R < M + \text{SD}$ and $R \geq M + \text{SD}$, the resilience level (r) was divided from the low to the high level, namely low class (0.4736), average class (0.5791-0.6218), and high class (0.6218-0.7306).

4.3. Robustness analysis and discussion

As stated in Section 3, the weights and calculated resilience value of each city (prefecture level) are highly dependent on the value of optimistic index α, which is set subjectively by decision makers. Thus, robustness analysis here is required to test how the criteria weights and SV/EC varies if the optimistic index is changed. To achieve the goal, we changed the value of α with 10 percent increment, and observed the weights and SV/EC accordingly. Table 4 shows the testing results. The results shown in Table 4 indicate that the cities of Suzian, Huai’an, and Lianyungang (prefecture level) are relatively vulnerable to public health disasters regardless of how the coefficient α changes. These cities are also located in the relatively under-developed region in east China, which ought to receive more attention for disaster mitigation and preparedness. In contrast, the city of Suzhou and Nanjing have more advantages, demonstrated by the statistical results, in coping with public health emergencies. The reason may be that the two cities are located in the most economically and socially developed regions in mainland China, which possess more substantial public health resources and excellent anti-disaster infrastructure as well as critical facilities. Moreover, the results imply that the development of the economic level has an impact on the practical public health emergency system. More precisely, developed regions usually obtain more adequate resources and priority for disaster mitigation, which to some extent further enhance their resilience capability in coping with disasters.

Besides, as shown in Table 4, the selected top 10 criteria of indicators preserve their top positions regardless of how α changes, indicating the most important factors contributing to urban disaster resilience. The sub-factors can be divided into four categories, namely regional vulnerability (VF, V_{134}, V_{135}), vulnerability of supporting resources (V_{122}, V_{124}), supply capacity of medical facilities (C_{111}, C_{114}, C_{121}, C_{125}) and regional expenditure (C_{132}, C_{134}). It is noted that public health disaster response is linked with economic power, regional finances, and supporting resources, which closely contribute to the effective handling of hazards. The power of economic level in 13 cities of Jiangsu province (geographical distribution of north, midst, and south regions) is reflected in managing the COVID-19 pandemic. Suzhou and Nanjing, the most developed metropolitan cities in the surveyed region, are earlier to recover from the pandemic and achieve better economic growth (Xinhua News Agency, 2020). For example, Nanjing, the provincial capital of Jiangsu, was hit by COVID-19 in July 2021 due to the loopholes of the Lukou international airport. However, relying on strong urban response capacity and resilience construction resources, the city achieved the target of zero infected cases and effective control barely after 24 days, and the urban society quickly returned to normal (Shangguan Net, 2021). More precisely, the relatively developed urban region in Jiangsu handled the sudden health disaster with better performance, both in emergency response efficiency and related post-disaster recovery. As indicated in the above sections, urban resilience in public health disasters is affected by elements of vulnerability and capacity combined. Since 2019, when the COVID-19 pandemic broke out in China, cities in

Table 2

Indicator	Weight	Rank
Average monthly yield of medical waste discharged (V_{122})	0.0667	8
Balance of savings deposits per capita (V_{134})	0.0813	4
Electric power supply per capita (V_{123})	0.0769	7
Proportion of medical & health personnel per 1000 (V_{142})	0.0927	3
Nursing/medical institutions per 1,000 (C_{111})	0.0491	10
Medical & health service center (C_{114})	0.0782	5
Reclamation rate of medical solid waste per 10 000(C_{217})	0.0662	6
Coverage of environmental monitoring stations (C_{227})	0.0538	9
Proportion of public health expenditure in government health expenditure (C_{332})	0.1076	2
Proportion of total health expenditure in regional GDP (C_{334})	0.1103	1

Table 3

City (prefecture level)	Resilience	Rank
Nanjing	0.7126	1
Suzhou	0.6583	2
Wuxi	0.6427	3
Changzhou	0.6096	4
Zhenjiang	0.5933	5
Nantong	0.5825	6
Yangzhou	0.5738	7
Taizhou	0.5423	8
Xuzhou	0.5411	9
Huai’nan	0.4926	10
Suqian	0.4837	11
Yangcheng	0.4729	12
Lianyungang	0.4602	13

2 “No new cases of infection for 6 consecutive days. The city of Nanjing quickly switch to low risk!” Shangguan Net. https://ww.qq.com/partner/vivoscreen/20210819A06MSX/20210819A06MSX007sNews=1 [2021-08-19].
Jiangsu have vigorously invested in and constructed the infrastructure and facilities for disaster reduction, such as community resilience and disaster mitigation program, to increase resilience capacity significantly. In contrast, regions at the grass-roots level, are still inadequate in providing necessary public health resources and are vulnerable to hazards. That might be the reason why the vulnerability index remains high in the northern parts of Jiangsu province.

5. Conclusion

For urban resilience assessment in public health disasters, a Rough AHP method on the basis of vulnerability-capability framework was proposed in the study and applied to the 13 cities (prefecture level) in Jiangsu province, China. Due to the uncertainty and coupling effects among various urban hazards, it is not rational to assess resilience in actual disaster response without considering the individual perceptions and the completeness of indicators. Therefore, we determined the assessment criteria weights and calculated the corresponding resilience index using the Rough AHP approach. The results showed the spatial discrepancy of disaster-coping resilience in the sampled cities. Moreover, critical factors contributing to local vulnerability were derived by the robustness analysis to facilitate informed decisions on the reduction of a public health disaster, especially after the COVID-19 pandemics. What needs to be stressed is that the urban disaster management system in public health is a complex dynamic mechanism. It is inappropriate to rely on any single element to reduce the disastrous risk. Considering methodology, this resilience assessment by the vulnerability-capability framework provides relevant knowledge-based information for scholars and practitioners in handling public health disasters. The validation process contributes to future exploration for urban resilience research.

The study shows the advantages of the proposed Rough AHP method and its applicability in urban resilience assessment. However, there are also limitations due to uncertainties. First, the factors contributing to vulnerability and capability are assumed to be independent based on Rough AHP, without considering the inter-dependency of multiple influential factors. Thus, it is evident that an additionally refined model or framework is required to better understand the correlations among factors methodologically. The Analytic Network Process (ANP), a generalization of AHP with personal feedback to adjust index weights, may be a solution in the study. Second, some panel data were obtained from published statistical yearbooks (2015-2019) in Jiangsu, and might not have considered the endogenous factor in regional spatial discrepancy. Future research will be devoted to improving the data collection pathway and coverage of different administrative levels by integrating the propitiated statistical approach and system dynamic method.

Funding

This research was funded by National Social Science Fund of China (17BZZ039), China’s Postdoctoral Science Foundation (2021M691503), and the Graduate Research & Practical Innovation Project in Jiangsu Province (KYCX21-2544).

Declaration of Competing Interest

The authors declare no conflict of interest.

Acknowledgments

The authors want to thank all the constructive suggestions and comments raised by the referees and editors, which enhanced the quality of the article.

Appendix

The raw data of constructed indicators in 13 cities of Jiangsu province.
Table A1
The raw data of constructed indicators in 13 cities of Jiangsu province.

City	2015	2016	2017	2018	2019
Nanjing	122404	125255	132652	135183	133978
Wuxi	40726	42493	43838	42048	45822
Xuzhou	25950	24350	26199	26708	31805
Changzhou	25408	29537	30825	31591	36090
Suzhou	72698	74925	78279	81716	78082
Nantong	22886	28150	29277	29703	29768
Lianyungang	10719	12984	14298	12926	12228
Huai’an	15881	16107	17831	17835	22218
Yancheng	7817	10862	10953	11300	11672
Yangzhou	17878	19051	19376	18999	20563
Zhenjiang	16929	17297	17710	16411	16327
Taizhou	9258	9343	10238	9987	10669
Suqian	7632	7358	8064	8297	8486

Table A1 (continued)

City	2015	2016	2017	2018	2019
Nanjing	15	15.1	15.3	15.6	15.5
Wuxi	14.8	14.9	14.9	14.9	14.9
Xuzhou	16.2	15.3	15.7	14.7	14.3
Changzhou	13.2	13.9	14.5	14.9	12.2
Suzhou	15.2	15.1	14.7	13.9	13
Nantong	16.8	17	18.5	19	19
Lianyungang	14.2	14.4	14.7	14.1	14.4
Huai’an	13.8	13.8	14	14.6	14.2
Yancheng	12	12.4	12.8	13.7	14.2
Yangzhou	18	18.4	18.6	18.8	18
Zhenjiang	18.7	18.9	19	19.1	19.1
Taizhou	9.5	10	10.7	14.5	14.9
Suqian	13.8	15.1	15.3	15.5	15.5

Table A2
The raw data of tonnage of constructed indicators in 13 cities of Jiangsu province.

City	2015	2016	2017	2018	2019
Nanjing	11	11.2	10.6	12.1	12.1
Wuxi	15.9	39.4	39.5	24.6	24.6
Xuzhou	12.2	8.4	8.4	6.9	6.9
Changzhou	17.4	22.5	22.5	14.4	17.5
Suzhou	18.3	19.4	18.8	15.2	16.6
Nantong	16.3	20.8	20.9	20.8	20.7
Lianyungang	13.1	9.2	10.1	6.7	6.7
Huai’an	30	13.1	14.1	16	15.5
Yancheng	20.9	14.2	14.6	6.8	4.6
Yangzhou	23.9	17.2	17.4	16.2	16.2
Zhenjiang	18.2	14.2	14.5	10.1	10.4
Taizhou	23	16.6	16.4	16.4	15.2

Table A2 (continued)

City	2015	2016	2017	2018	2019
Nanjing	261	239	213	285	311
Wuxi	122	132	142	158	165
Xuzhou	75	80	92	104	119
Changzhou	62	76	84	81	111
Suzhou	214	240	246	273	248
Nantong	53	60	72	80	85
Lianyungang	24	36	40	45	65
Huai’an	38	43	55	59	68
Yancheng	32	36	41	47	45
Yangzhou	49	53	66	56	68
Zhenjiang	32	36	41	47	45
Taizhou	28	29	31	37	43
Suqian	25	27	28	29	35

(continued on next page)
Table A1 (continued)

V₁₃₂ (%)	2015	2016	2017	2018	2019
Nanjing	10.2	10.3	10.7	10.9	11.2
Wuxi	8.6	8.5	8.7	8.7	8.7
Xuzhou	6.9	6.4	6.5	6.6	6.6
Changzhou	7.7	7.7	7.8	7.9	7.9
Suzhou	10.9	10.4	10.9	11.3	11.5
Nantong	6.2	6.9	6.5	6.4	6.6
Lianyungang	7.4	7.2	7.1	6.5	7.7
Hua’ian	6.8	6.8	6.6	6.6	6.7
Yancheng	6.6	6.6	6.5	5.6	5.7
Yangzhou	5.7	5.8	5.5	5.6	5.7
Zhenjiang	7.4	7.5	7.3	7.4	7.4
Taizhou	7.3	7.1	7.2	7.2	7.3
Suzian	6.6	6.6	6.7	6.8	6.8

V₁₃₃ (%)	2015	2016	2017	2018	2019
Nanjing	62068	65139	70687	76144	84097
Wuxi	41563	44707	47549	51015	54733
Xuzhou	47007	51567	55523	57536	67412
Changzhou	28090	29616	31194	32498	34856
Suzhou	64281	68179	72166	79623	85188
Nantong	39481	41067	43570	45640	48041
Lianyungang	21896	23056	26152	27540	28847
Hua’ian	28976	30475	31324	32310	34883
Yancheng	36634	39494	42087	42822	57782
Yangzhou	23338	24236	25273	28609	27508
Zhenjiang	18373	18985	19449	20368	21080
Taizhou	22965	24215	26094	27309	29390
Suzian	25862	26179	28412	30400	31687

V₁₃₄ (%)	2015	2016	2017	2018	2019
Nanjing	4167.19	4590.17	5088.2	5604.66	5832.46
Wuxi	1500.41	1635.49	1769.14	1981.83	2056.14
Xuzhou	1315.77	1472.06	1655.21	1795.09	1898.4
Changzhou	1348.58	1715.15	1899.81	2122.39	2256.37
Suzhou	2133.71	2371.12	2558.5	2804.95	2955.9
Nantong	856.6	931.44	1029.13	1119.61	1205.6
Lianyungang	430.9	484.42	544.44	605.05	653.85
Hua’ian	514.73	576.7	739.14	814.96	857.32
Yancheng	448.71	657.31	730.23	426.34	798.16
Yangzhou	774.56	849.08	928.61	1020.48	1054.59
Zhenjiang	517.79	573.84	638.23	647.3	668.12
Taizhou	448.03	496.09	556.91	629.18	638.13
Suzian	255.27	268.86	301.98	332.34	356.56

V₁₃₅ (kWh)	2015	2016	2017	2018	2019
Nanjing	903.49	1020.03	1142.6	1271.91	1470.02
Wuxi	472.9	508.58	536.44	583.7	638.23
Xuzhou	241.06	270.88	268.56	274.75	289.01
Changzhou	353.14	410.09	421.86	457.43	494.04
Suzhou	763.62	829.55	919.82	1012.91	1132.56
Nantong	242.62	272.67	263.54	260.06	273.6
Lianyungang	153.86	172.58	144.91	151.28	166.48
Hua’ian	204.39	232.89	233.75	172.92	185.73
Yancheng	139.59	224.42	198.42	178.17	187.63
Yangzhou	203.94	233.57	253.63	212.17	224.72
Zhenjiang	146.97	161.74	154.48	147.28	157.33
Taizhou	141.88	161.31	174.41	184.71	187
Suzian	88	98.66	101.24	100.03	107.71

V₁₄₁ (%)	2015	2016	2017	2018	2019
Nanjing	1.88	1.8	1.78	1.81	1.82
Wuxi	1.9	1.9	1.8	1.8	1.8
Xuzhou	1.9	1.8	1.8	1.8	1.8
Changzhou	1.9	1.8	1.8	1.8	1.8
Suzhou	1.9	1.8	1.8	1.8	1.8
Nantong	1.9	1.8	2.0	1.78	1.78
Lianyungang	2.0	1.9	1.9	1.8	1.8
Hua’ian	2.2	2.2	1.9	1.8	1.8
Yancheng	2.0	1.8	1.8	1.8	1.8
Yangzhou	2.0	1.9	1.8	1.8	1.8
Zhenjiang	1.9	1.8	1.8	1.8	1.8
Taizhou	1.9	1.8	1.8	1.8	1.8
Suzian	2.0	1.9	1.8	1.8	1.8

(continued on next page)
Table A1 (continued)

C_{112} (mileage)	2015	2016	2017	2018	2019
Nanjing	109194	119883	129194	141103	152886
Wuxi	128756	133515	149885	160076	174270
Xuzhou	58308	62246	67701	75611	76915
Changzhou	106329	114308	124889	140435	149277
Suzhou	132311	139127	148146	162388	173765
Nantong	78777	85712	94304	105903	115320
Lianyungang	44757	48977	53626	58577	61332
Hua’ian	51213	57032	63083	67909	73204
Yancheng	53713	58993	64065	70216	75987
Zhenjiang	104352	112225	122686	125962	126906
Taizhou	79825	80779	89785	102058	109988
Suzian	40322	44275	48797	53317	55906

C_{114} (number)	2015	2016	2017	2018	2019
Nanjing	34213	40455	44009	48104	59308
Wuxi	33503	39461	42577	46453	55113
Xuzhou	17042	20425	23248	24535	27398
Changzhou	29901	35379	38435	41879	54000
Suzhou	36533	42897	46595	50603	63481
Nantong	23147	27584	30084	33011	42398
Lianyungang	16103	19418	21230	23932	35379
Hua’ian	17364	20864	22762	24934	29341
Yancheng	18676	22419	24463	26740	40060
Yangzhou	21992	26253	28633	31370	38924
Zhenjiang	26327	31263	34064	37169	48325
Taizhou	21734	25927	28259	30944	44384
Suzian	14312	17242	18957	20756	29483

C_{115} (km)	2015	2016	2017	2018	2019
Nanjing	50557	55355	58947	60197	69148
Wuxi	4341.45	4639.66	4876.43	5005.54	5111.59
Xuzhou	2377.44	2780.6	3090.21	3394.45	3604.84
Changzhou	2934.19	3193.77	3266.85	3532.34	3841.9
Suzhou	6271.73	7538.04	7913.85	8166.46	9148.5
Nantong	4602.87	5115.5	5544.89	5816.35	6287.26
Lianyungang	924.03	1048.27	1168.71	1297.49	1420.02
Hua’ian	1044.52	1183.92	1360.51	1483.1	1605.25
Yancheng	2062.39	2397.52	2682.46	2892.3	3171.33
Yangzhou	2177.09	2376.68	2560.98	2664.64	2860.65
Zhenjiang	1569.40	1969.11	1982.67	2161.07	2307.01
Taizhou	1984.8	4441.7	2474.71	2635.6	2876.63
Suzian	813.2	1819.81	1086.33	1299.5	1344.78

C_{121} (%)	2015	2016	2017	2018	2019
Nanjing	2.16	2.23	2.53	2.81	3.16
Wuxi	0.97	1.04	1.14	1.24	1.33
Xuzhou	0.87	0.94	1.05	1.08	1.33
Changzhou	0.85	1.02	1.06	1.12	1.2
Suzhou	1.27	1.33	1.39	1.61	1.78
Nantong	0.71	0.76	0.78	0.84	0.8
Lianyungang	0.5	0.51	0.61	0.62	0.66
Hua’ian	0.68	0.69	0.83	0.86	0.9
Yancheng	0.41	0.63	0.67	0.69	0.71
Yangzhou	0.58	0.61	0.64	0.68	0.69
Zhenjiang	0.39	0.4	0.41	0.41	0.41
Taizhou	0.41	0.42	0.44	0.47	0.51
Suzian	0.26	0.3	0.33	0.36	0.41

(continued on next page)
Table A1 (continued)

City	2015	2016	2017	2018	2019
Nanjing	313	374	401	428	469
Wuxi	155	178	167	194	203
Xuzhou	58	105	113	130	155
Changzhou	185	187	209	234	240
Suzhou	214	241	284	320	330
Nantong	78	43	104	105	122
Lianyungang	66	68	79	86	93
Huaian	41	29	31	40	28
Yancheng	43	70	85	94	93
Yangzhou	55	58	101	109	118
Zhenjiang	40	47	38	75	64
Taihu	43	57	67	78	77
Suqian	35	43	47	49	54

City	2015	2016	2017	2018	2019
Nanjing	5.89	5.91	5.96	5.99	6.02
Wuxi	5.8	5.82	5.84	5.88	5.97
Xuzhou	5.89	5.91	5.96	6.03	6.14
Changzhou	5.68	5.73	5.76	5.77	5.84
Suzhou	5.94	6.11	6.17	6.22	6.22
Nantong	5.68	5.76	5.82	5.84	5.89
Lianyungang	5.24	5.28	5.32	5.38	5.49
Huaian	4.71	4.79	5.04	5.11	5.23
Yancheng	4.94	5.02	5.08	5.21	5.26
Yangzhou	4.61	4.62	4.69	4.74	4.78
Zhenjiang	4.71	4.73	4.78	4.81	4.89
Taihu	4.57	4.63	4.66	4.72	4.76
Suqian	4.57	4.63	4.66	4.72	4.76

Note: Abbreviations of indicators for V_{ip} and C_{ip} are shown in Table 1 of the article.

References

[1] P. Contu, E. Breton, The application of the cosmology principle to public health interventions: a review of the literature, Eur. J. Public Health Supplement (5) (2020) 30.
[2] J.M. Strattl, D. Pauel, K.E. Setty, C.E.M.D. Rezende, E. Rehfuess, Advancing the who-integrate framework as a tool for evidence-informed, deliberative decision-making processes: exploring the views of developers and users of who guidelines, J. Health Policy Manage. (2020).
[3] S. Mei, W.U. Dan, S. Jian-Hua, et al., Policies changed related to public health emergency disposal in China: from 2003 to 2013, Chin. J. Health Policy (2014).
[4] W.Z. Yang. 2018. Infectious disease in China: the best practical cases. Beijing: People's Medical Publishing House.
[5] C. Mei, Policy style, consistency and the effectiveness of the policy mix in China's fight against covid-19, Policy Soc. 102(32) (2020) 1–17.
[6] Y. Qiu, X. Chen, W. Shi, Impacts of social and economic factors on the transmission of coronavirus disease 2019 (2019–nCov) in China, J. Popul. Econ. (2020) in Chinese.
[7] A. He, Public satisfaction with the health system and popular support for state involvement in an East Asian welfare regime: health policy legitimacy of Hong Kong, Soc. Policy Administration 52 (3) (2016).
[8] X. Jinping, “Comprehensively enhance the capability of prevention and control by law, and improve the national public health emergency management system”. China Central Government. Beijing: Feb. 29, 2020. http://www.gov.cn/xinwen/2020-02/29/content_5484903.html.
[9] A. Plough, J.E. Fielding, A. Chandra, M. Williams, D. Eisenman, K.B. Wells, et al., Building community disaster resilience: perspectives from a large urban county department of public health. Am. J. Public Health 103 (7) (2013) 1190–1197.
[10] K. Wahedi, L. Biddle, K. Bozorgmehr, Health system resilience – a conceptual and empirical review of health system literature, Eur. J. Public Health (2015).
[11] A. Cheshmezhangi, Reflection on early lessons for urban resilience and public health enhancement during the Covid-19, Health (N. Y) 12 (10) (2020) 1390–1404.
[12] M. Lichtveld, Disasters through the lens of disparities: elevate community resilience as an essential public health service, Am. J. Public Health 108 (1) (2018) 28–30.
[13] UNISDR (2015) Making Development Sustainable: The Future of Disaster Risk Management. Global Assessment Report on Disaster Risk Reduction., International Strategy for Disaster Reduction (ISDR).
[14] M. Karakinolos, A. Mareso, Conceptualizing resilience in health systems: results from 30 countries, Eur. J. Public Health (2020).
[15] M. Hazou, Multi-hazard Loss Estimation Methodology: Earthquake Model Hazus-MERB Technical Manual, Federal Emergency Management Agency, Washington, DC, USA, 2011.
[16] F. Khamsepan, M.R. Delavar, M. Moradi, et al., A GIS-based multi-criteria evaluation framework for uncertainty reduction in earthquake disaster management using granular computing, GeoDyn Carogi. 42 (2) (2016) 58-68.
[17] F. Fatemi, A. Ardalan, B. Aguirre, et al., Constructing the indicators of assessing human vulnerability to industrial chemical accidents: a consensus-based fuzzy Delphi and fuzzy AHP approach, PLoS Currents 9 (2017).
[18] M.H. Ghobadi, Milad Taberi, Kamal Taberi, Municipal solid waste land siting by using analytical hierarchy process (AHP) and a proposed vulnerability index in ravanbar county, west of Iran, Environ. Earth Sci. 76 (2) (2017) 68.
[19] L. Li, C.K. Xu, C. Han, et al., Analysis of social vulnerability of residential community to hazards in Tianjin, China. Nat. Hazards 87 (2) (2017) 1223–1243.
[20] Y. Ma, L. Li, H. Lin, Concordance measure-based feature screening and variable selection, Statistica Sinica 27 (4) (2017) 1967–1985.
[21] P.K. Singh, S. Tiwari, Topological structures in rough set theory: a survey, J. Math. Stat. 49 (4) (2020) 1270–1294.
[22] M. Hagelsteen, P. Becker, Challenging disparities in capacity development for disaster risk reduction, Int. J. Disaster Risk Reduct. (3) (2013) 4–13.
[23] R. Houdijk, in: Regional risk assessment in The Netherlands – an introduction, The Hague, 2010, p. 13.

[24] T. Aven, On some recent definitions and analysis frameworks for risk, vulnerability, and resilience, Risk Anal. 31 (2011) 515-522.

[25] T. Aven, The risk concept – historical and recent development trends, Reliab. Eng. Syst. Saf. 99 (2012) 33-44.

[26] Chapter, Annex, Climate change: impacts, adaptation and vulnerability, Cambridge 56 (5) (2009) 81–111.

[27] N. Jahanmehr, A. Rashidian, A. Khoravi, et al., A conceptual framework for evaluation of public health and primary care system performance in Iran, Glob. J. Health Sci. 7 (4) (2015) 341–357.

[28] Pan American Health Organization. Executive Committee, Coordination between the social security and the public health institutions, Policy Studies Journal 39 (1) (2011) 169-183.

[29] World Health Organization (WHO). Everybody’s business: strengthening health system to improve health outcomes: WHO’s framework for action. Geneva, 2007.

[30] Federal Emergency Management Agency (FEMA), in: FEMA/DHS Office of National Security Coordination Continuity of Operations (COOP) Assessment Questionnaire/Worksheet, FEMA, Washington DC, 2004, pp. 1–14.

[31] S. Rufat, E. Tate, C.G. Burton, A.S. Maroo, Social vulnerability to floods: review of case studies and implications for measurement, Int. J. Disaster Risk Reduct. 14 (2015) 470–486.

[32] National University of Colombia-ManizalesInter-American Development Bank, System of Indicators for Disaster Risk Management: Program for Latin America and the Caribbean Main Technical Report [EB/OL], 2005 http://idea.unalmed.edu.co–08-01.

[33] J. Birkmann, Assessment of vulnerability to natural hazards introduction vulnerability: a key determinant of risk and its importance for risk management and sustainability, Assess. Vulnerability to Natural Hazards (2014) 9–13.

[34] J. Birkmann, Risk and vulnerability indicators at different scales: applicability, usefulness and policy implications, Glob. Environ. Change Part B Environ. Hazards 7 (11) (2007) 20–31.

[35] D.O. Cardona, M.L. Carreo, Updating the indicators of disaster risk and risk management for the Americas, J. Integr. Disaster Risk Manage.1 1 (1) (2011).

[36] B. Aguirre, Review of disasters: a sociological approach by Kathleen Tierney, Nat. Hazard. Rev. 21 (1) (2020).

[37] T. Eric, Uncertainty analysis for a social vulnerability index, Ann. Assoc. Am. Geogr. 103 (3) (2013) 526–543.

[38] Z.W. Zhu, C. Li, The framework of social safety assessment on the “vulnerability-ability” perspective, China’s Public Administration (8) (2013) 101–106 In Chinese.

[39] Z.Y. Liu, Construction of performance evaluation index system of health system in China, Chin. J. Hosp. Manage. 32 (5) (2016) 339–342 In Chinese.

[40] Liu, Study on the re-assessment of vulnerability of emergencies—perspective of vulnerability, China Sci. Technol. Saf. Prod. 6 (5) (2012) In Chinese.

[41] Ahmad, Saad, A multiple threshold analysis of the Fed’s balancing act during the great moderation, in: Economic Modeling, 55, 2016, pp. 343–358.

[42] B Güneralp, G Gertner, G Mendoza, Spatial simulation and fuzzy threshold analyses for allocating restoration areas, Trans. GIS 7 (3) (2013) 325–343.

[43] G. Song, Y. Wang, K. Zhao, C. Zhou, Pattern simulation and the determination of security threshold of cultivated land use system security in northeast China, Geographical Res. 34 (3) (2015) 555–566.

[44] C. Schoen, K. Davis, S.K.H. How, S.C. Schoenbaum, U.S. Health System Performance: A National Scorecard, Health Aff. 25 (6) (2006) 457–475.

[45] P.A. Arias, J.C. Villegas, J. Machado, Serna, et al., Reducing social vulnerability to environmental change: building trust through social collaboration on environmental monitoring, Weather Climate Sociol. 8 (1) (2016) 57–76.

[46] Z.Z. Liu, J. Huang, Factors contributing to social risk management in China: evaluation in the context of SSIRA initiative, Chin. Public Administration Rev. 8 (2) (2017) 120–139.

[47] T.F. Fan, D.R. Liu, G.H. Tzeng, Rough set-based logics for multicriteria decision analysis, Eur. J. Oper. Res. 129 (1) (2001) 1–47.

[48] B.P. Arnold, P. Stabhlecker, The minimax, the minimum, and the Hurwicz adjustment principle, Theory Decision 52 (3) (2002) 253–269.

[49] J.M. Bland, D.G. Altman, Statistics notes: Cronbach’s alpha, Br. Med.J. (BMJ) 314 (7080) (1997) 572.

[50] K. Honda, N. Sugiyama, H. Ichihashi, S. Araki, H. Kutsumi, Handling missing values in fuzzy C-varieties with least square criterion, J. Jpn. Soc. Fuzzy Theory Syst. 13 (6) (2001) 680–688.

[51] G.A. Tang, X. Yang, Experimental Course of Spatial Analysis in ArcGIS Geographic Information System.Beijing, 279, Science Press, 2006 In Chinese.