Complex bend of multilayered concrete rods

Yuri Nemirovskii1,* and Sergey Tikhonov2

1Khristianovich Institute of Theoretical and Applied Mechanics Siberian Branch of the Russian Academy of Sciences, Physics of Fast Processes Laboratory, 630090 Institutskaya str., 4/1, Novosibirsk, Russia

2I. Ulianov Chuvash State University, Faculty of Information and Computer Systems, 428015 Moskovskiy pr., 14, Cheboksary, Russia

\textbf{Abstract.} The problem of complex bend of multilayered rods based on concrete is considered. It is assumed that the rod of constant cross-section is of arbitrary shape and different brands of concrete are used in the cross-section of the rod layer by layer. The solution is sought by the small parameter method. The case of a complex bend of the rod pinched at both ends is considered as an example of this solution method. The distribution of bending moments and longitudinal forces in the zero and first approximations is determined.

1 Introduction

Rectilinear rods of various cross-section are widely used in different branches of mechanical engineering, aircraft and shipbuilding, in civil and industrial construction projects. During operation, they are affected by thermal, chemical and kinematic forces, and due to the production of the same type of serial elements, they are subject to increased requirements for reliable operation in short-term and long-term modes. In modern economic conditions, these requirements cannot be implemented with the use of traditional structural materials and therefore in recent decades, technologies have actively been developed to make heterogeneous and multilayered structures in which materials with different properties can work together to achieve a common goal: long-term and reliable operation at a reasonable cost of its maintenance. The paper deals with structures that belong to the category of layered rods with significantly different properties in the layers, which should be determined by special experiments and taken into account in the developed calculation method. Such method should be sufficiently reliable, relatively simple and flexible to take into account a wide range of possible variations of conditions of fastening, loading and structural forms of sections. The corresponding solutions for structures operating under flat bend conditions are obtained in the works \cite{1}, \cite{2}, \cite{3}, \cite{4}. For complex bend conditions, the corresponding solutions are absent. We will consider concretes as the material of each layer. In calculations, we will take into account that concrete behaves almost as linearly elastic under tension, while under compression the diagrams show significant nonlinearity even at low loading levels.

*e-mail: nemirov@itam.nsc.ru

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).
2 Methods

As a solution method of the problem, we use the method of a small parameter which showed high efficiency in solving a wide class of problems [5], [6], [7], [8], [9].

![Figure 1. A cross-section of the rod when the number of layers $n = 3$](image)

We take the law of deformation for all materials as
\[
\sigma_i = A_i \varepsilon + B_i \varepsilon^2, \tag{1}
\]
where A_i, B_i – are coefficients determined from experiments.

![Figure 2. A tension-compression diagram of concrete](image)

The deformation ε for each layer should not exceed the limit values at tension ε^{+}_{si} and compression ε^{-}_{si} (figure 2), i.e. dependencies (1) should be determined on the segment
\[-\varepsilon^{-}_{si} \leq \varepsilon \leq \varepsilon^{+}_{si}.\]

The ratios [10] obtained from the analysis of the diagram (figure 2) can be used to determine the coefficients A_i, B_i.

We differentiate the ratios (1), then obtain
\[
\frac{d\sigma_i}{d\varepsilon} = A_i + 2B_i \varepsilon. \tag{2}
\]

From (2) we obtain passing to the limit
\[
\frac{d\sigma_i}{de} \bigg|_{e \to 0} = A_i,
\]

where we get

\[A_i = E_i,\]

where \(E_i\) is an elasticity modulus of concrete of \(i\)-th layer.

Considering that the point \((-\varepsilon_{\ast i}, -\sigma_{\ast i})\) in the diagram (figure 2) is the extremum point, we obtain from the ratios (1), (2), (4)

\[\varepsilon_{\ast i} = \frac{2\sigma_{\ast i}}{E}, \quad B_i = \frac{1}{4} \frac{E^2_i}{\sigma_{\ast i}}.\]

Taking into account that the tensile strength \(\sigma^+_{\ast i}\) is much less than compression strength \(\sigma^-_{\ast i}\), we consider the following ratios to be valid

\[\varepsilon^+_{\ast i} = \frac{\sigma^+_{\ast i}}{E}.\]

Thus, when using approximations (1) it is enough to have three traditional characteristics \(\sigma^+_{\ast i}, \sigma^-_{\ast i}, E\).

If there are diagrams of concrete deformation of each layer of the rod under tension and compression, the coefficients \(A_i, B_i\) in equations (1) can also be obtained by the method of least squares.

Table 2 shows the values of the coefficients of equations (1), obtained by the formulas (4), (5), (6) and the method of least squares for concrete grades B10, B30, B50 on the basis of deformation diagrams obtained in experiments [11].

Table 1. The coefficients of approximating curves \(A_i, B_i\)

Concrete	Method of least squares	By formulas (4), (5), (6)				
	\(A_i\), MPa	\(B_i\), MPa	\(R^2\)	\(A_i\), MPa	\(B_i\), MPa	\(R^2\)
B10	12488	5078524	0.96	17800	10589572	0.90
B30	32351	11660358	0.94	32200	11890367	0.94
B50	56490	21305730	0.92	38600	10375766	0.84

Figure 3. A compression diagram of concrete grade B10
Comparisons of deformation diagrams constructed by approximating formulas (1), the coefficients of which are determined by the method of least squares and by the ratios (4), (5), (6), with experimental diagrams are shown in figures 3, 4. It is visible from the figures that experimental diagrams approach the solution well enough at deformations close to the limit.

We rewrite the deformation condition for i-th layer in the form

$$
\sigma_i = A_i \left(\frac{\varepsilon}{\varepsilon_{si}} \right) \left(\varepsilon_{si} + \frac{B_i}{A_i} (\varepsilon_{si})^2 \left(\frac{\varepsilon}{\varepsilon_{si}} \right) \right),
$$

(7)

where

$$
\varepsilon_{si} = \min\{\varepsilon_{s+1}, \varepsilon_{s-1}\}.
$$

To solve this problem, we introduce a small dimensionless parameter δ, which is determined according to the ratio (7) as

$$
\delta = \frac{B_i}{A_i} (\varepsilon_{si})^2.
$$

(8)

If we determine the parameter δ at $i = 1$ and assume that the first layer of the rod is made of concrete grade B10, then from 2 we obtain the value of the parameter $\delta \approx 0.0038$.

We rewrite the ratios (7) in the form

$$
\sigma_i = a_i \varepsilon + c_i \delta \varepsilon^2,
$$

(9)

where $a_i = A_i$, $c_i = \frac{A_i B_i}{A_i B_i \varepsilon_{si}}$.

Using the classical kinematic hypotheses of Kirchhoff-Lyav, for deformations we have expressions [12]

$$
\varepsilon(x, y, z) = \varepsilon_0(x) - y\kappa_z(x) + z\kappa_y(x),
$$

(10)

where

$$
\varepsilon_0(x) = \frac{d u_0}{d x}, \quad \kappa_y = \frac{d^2 w_0}{d x^2}, \quad \kappa_z = \frac{d^2 v_0}{d x^2}.
$$

(11)
We consider that the values \(\sigma(x, y, z) \), \(u_0(x) \), \(v_0(x) \), \(w_0(x) \) depend on the specified parameter \(\delta \). We expand them into series of degrees of the specified parameter

\[
\sigma(x, y, z) = \sum_{k=0}^{\infty} \delta^k \sigma^{(k)}(x, y, z), \quad u_0(x) = \sum_{k=0}^{\infty} \delta^k u_0^{(k)}(x),
\]

(12)

where the components at tension and movements get the index \((n)\), corresponding to the degree of parameter \(\delta \).

From ratios (10), (11), (12), we obtain the expression for deformations

\[
\varepsilon(x, y, z) = \sum_{n=0}^{\infty} \delta^n \varepsilon^{(n)}(x, y, z), \quad \varepsilon^{(n)}(x, y, z) = \frac{d u_0^{(n)}}{dx} + \frac{d^2 w_0^{(n)}}{dx^2} - \frac{d^2 v_0^{(n)}}{dx^2}.
\]

(13)

Substituting (12), (13) in the expression (9) and equating the ratios at identical degrees of \(\delta \), we obtain for the zero and first approximations

\[
\sigma^{(0)}(i) = a_i \varepsilon^{(0)},
\]

(14)

\[
\sigma^{(1)}(i) = a_i \varepsilon^{(1)} + c_i \left(\varepsilon^{(0)} \right)^2.
\]

(15)

Longitudinal forces and bending moments can be determined from the ratios

\[
N = \sum_{i=1}^{n} \int_{S_i} \sigma_i dS, \quad M_y = \sum_{i=1}^{n} \int_{S_i} \sigma_i y dS, \quad M_z = - \sum_{i=1}^{n} \int_{S_i} \sigma_i z dS.
\]

(16)

Equilibrium equations have the form [12]

\[
\frac{d^2 M_z}{dx^2} = q_y - \frac{dm_z}{dx}, \quad \frac{d^2 M_y}{dx^2} = q_z - \frac{dm_y}{dx}, \quad \frac{dN}{dx} = -q_x,
\]

(17)

where \(N \) is projections of the vector of distributed loading of the rod attached to the axis, \(M_z, M_y \) are projections of the vector of distributed moments on \(z \) and \(y \) axes.

Substituting the expansion for stresses (16) in (12) we obtain

\[
N = \sum_{n=0}^{\infty} \delta^n N^{(n)}, \quad M_y = \sum_{n=0}^{\infty} \delta^n M_y^{(n)}, \quad M_z = \sum_{n=0}^{\infty} \delta^n M_z^{(n)},
\]

(18)

where

\[
N^{(i)} = \sum_{j=1}^{n} \int_{S_j} \sigma_j^{(i)} dS, \quad M_y^{(i)} = \sum_{j=1}^{n} \int_{S_j} \sigma_j^{(i)} y dS, \quad M_z^{(i)} = - \sum_{j=1}^{n} \int_{S_j} \sigma_j^{(i)} z dS.
\]

(19)

From equilibrium equations (17) and ratios (18), we obtain for the zero approximation

\[
\frac{d^2 M_z^{(0)}}{dx^2} = q_y - \frac{dm_z}{dx}, \quad \frac{d^2 M_y^{(0)}}{dx^2} = q_z - \frac{dm_y}{dx}, \quad \frac{dN^{(0)}}{dx} = -q_x.
\]

(20)
From (13), (14), (19) we determine the longitudinal force and bending moments

\[
N^{(0)} = 2 \sum_{i=1}^{n} \int_{S} \sigma_i^{(0)} dS = 2 \sum_{i=1}^{n} \int_{h_{i-1}}^{h_i} \int_{0}^{h_i} \sigma_i^{(0)} dy = 2 \sum_{i=1}^{n} a_i \int_{h_{i-1}}^{h_i} \int_{0}^{h_i} e^{(0)} dy = \]

\[
= 2 \sum_{i=1}^{n} a_i \int_{h_{i-1}}^{h_i} \int_{0}^{h_i} \left(\frac{du_0^{(0)}}{dx} - y \frac{d^2v_0^{(0)}}{dx^2} + z \frac{d^2w_0^{(0)}}{dx^2} \right) dy = f_1 \frac{du_0^{(0)}}{dx} + f_2 \frac{d^2v_0^{(0)}}{dx^2} + f_3 \frac{d^2w_0^{(0)}}{dx^2},
\]

where

\[
f_1 = 2 \sum_{i=1}^{n} a_i \int_{h_{i-1}}^{h_i} b_i(z) dz, \quad f_2 = - \sum_{i=1}^{n} a_i \int_{h_{i-1}}^{h_i} b_i^2(z) dz, \quad f_3 = 2 \sum_{i=1}^{n} a_i \int_{h_{i-1}}^{h_i} zb_i(z) dz,
\]

\[
M_y^{(0)} = 2 \sum_{i=1}^{n} \int_{S} z\sigma_i^{(0)} dS = 2 \sum_{i=1}^{n} a_i \int_{h_{i-1}}^{h_i} \int_{0}^{h_i} z\sigma_i^{(0)} dy = \]

\[
= 2 \sum_{i=1}^{n} a_i \int_{h_{i-1}}^{h_i} \int_{0}^{h_i} \left(z \frac{du_0^{(0)}}{dx} - yz \frac{d^2v_0^{(0)}}{dx^2} + z^2 \frac{d^2w_0^{(0)}}{dx^2} \right) dy = f_4 \frac{du_0^{(0)}}{dx} + f_5 \frac{d^2v_0^{(0)}}{dx^2} + f_6 \frac{d^2w_0^{(0)}}{dx^2},
\]

where

\[
f_4 = - \sum_{i=1}^{n} a_i \int_{h_{i-1}}^{h_i} zb_i^2(z) dz, \quad f_5 = 2 \sum_{i=1}^{n} a_i \int_{h_{i-1}}^{h_i} z^2b_i(z) dz,
\]

\[
M_z^{(0)} = -2 \sum_{i=1}^{n} \int_{S} y\sigma_i^{(0)} dS = -2 \sum_{i=1}^{n} a_i \int_{h_{i-1}}^{h_i} \int_{0}^{h_i} y\sigma_i^{(0)} dy = \]

\[
= -2 \sum_{i=1}^{n} a_i \int_{h_{i-1}}^{h_i} \int_{0}^{h_i} \left(y \frac{du_0^{(0)}}{dx} + yz \frac{d^2v_0^{(0)}}{dx^2} + y^2 \frac{d^2w_0^{(0)}}{dx^2} \right) dy = f_2 \frac{du_0^{(0)}}{dx} + f_6 \frac{d^2v_0^{(0)}}{dx^2} + f_4 \frac{d^2w_0^{(0)}}{dx^2},
\]

where

\[
f_6 = \frac{2}{3} \sum_{i=1}^{n} a_i \int_{h_{i-1}}^{h_i} b_i^3(z) dz.
\]

From (17), (21) we obtain a system of linear differential equations to determine the movements in the zero approximation

\[
\begin{align*}
&f_4 \frac{d^4w_0^{(0)}}{dx^4} + f_6 \frac{d^4v_0^{(0)}}{dx^4} + f_2 \frac{d^3u_0^{(0)}}{dx^3} = q_y - \frac{dm_z}{dx}, \\
f_5 \frac{d^4w_0^{(0)}}{dx^4} + f_4 \frac{d^4v_0^{(0)}}{dx^4} + f_3 \frac{d^3u_0^{(0)}}{dx^3} = q_z - \frac{dm_y}{dx}, \\
f_3 \frac{d^3w_0^{(0)}}{dx^3} + f_2 \frac{d^3v_0^{(0)}}{dx^3} + f_1 \frac{d^2u_0^{(0)}}{dx^2} = -q_x,
\end{align*}
\]
From the last equation of the system (22), we express $\frac{d^2u_0^{(0)}}{dx^2}$ and substitute in the first two.

We obtain a system of two equations and two unknown functions

$$
g_1 \frac{d^4u_0^{(0)}}{dx^4} + g_2 \frac{d^4v_0^{(0)}}{dx^4} = f_2 \frac{dq_x}{dx} - f_1 \frac{dm_z}{dx} + f_1 q_y,
$$

$$
g_3 \frac{d^4u_0^{(0)}}{dx^4} + g_1 \frac{d^4v_0^{(0)}}{dx^4} = f_3 \frac{dq_x}{dx} - f_1 \frac{dm_y}{dx} + f_1 q_z,
$$

where

$$g_1 = f_4 f_1 - f_3 f_2, \quad g_2 = f_6 f_1 + f_2^2, \quad g_3 = f_5 f_1 - f_3^2.$$

From (23) we obtain

$$
\frac{d^4u_0^{(0)}}{dx^4} = g_4 \frac{dq_x}{dx} + g_5 \frac{dm_z}{dx} + g_6 \frac{dm_y}{dx} - g_5 q_x - g_6 q_z, \tag{24}
$$

$$
\frac{d^4v_0^{(0)}}{dx^4} = g_7 \frac{dq_x}{dx} + g_8 \frac{dm_z}{dx} + g_9 \frac{dm_y}{dx} - g_8 q_x - g_9 q_z, \tag{25}
$$

where

$$g_4 = \frac{f_2 g_1 - f_3 g_2}{g_1^2 - 2 g_2 g_3}, \quad g_5 = -\frac{f_1 g_1}{g_1^2 - 2 g_2 g_3}, \quad g_6 = \frac{f_1 g_2}{g_1^2 - 2 g_2 g_3},$$

$$g_7 = \frac{f_2 g_3 - f_3 g_1}{g_2 g_3 - g_1^2}, \quad g_8 = -\frac{f_1 g_3}{g_2 g_3 - g_1^2}, \quad g_9 = \frac{f_1 g_1}{g_2 g_3 - g_1^2}.$$

Where we get from (24), (25)

$$w_0^{(0)} = \int_0^x dx \int_0^x dx \int_0^x dx \int_0^x \left(g_4 \frac{dq_x}{dx} + g_5 \frac{dm_z}{dx} + g_6 \frac{dm_y}{dx} - g_5 q_x - g_6 q_z \right) dx + C_1 x^3 + C_2 x^2 + C_3 x + C_4,$$

$$v_0^{(0)} = \int_0^x dx \int_0^x dx \int_0^x dx \int_0^x \left(g_7 \frac{dq_x}{dx} + g_8 \frac{dm_z}{dx} + g_9 \frac{dm_y}{dx} - g_8 q_x - g_9 q_z \right) dx + C_5 x^3 + C_6 x^2 + C_7 x + C_8,$$

where the values of constants $C_1, C_2, C_3, C_4, C_5, C_6, C_7, C_8$ can be determined from fastening conditions of the rod.

From the last equation of the system (22), we obtain

$$
\frac{d^2u_0^{(0)}}{dx^2} = -\frac{q_x}{f_1} - \frac{f_3}{f_1} \frac{d^3u_0^{(0)}}{dx^3} - \frac{f_2}{f_1} \frac{d^3v_0^{(0)}}{dx^3}. \tag{26}
$$

We substitute the found values $v_0^{(0)}, u_0^{(0)}$ into expression (26), and from the fastening conditions we get the expression for $u_0^{(0)}$. Then we can obtain an expression for deformations in the zero approximation

$$\varepsilon^{(0)}(x, y, z) = \frac{du_0^{(0)}}{dx} + z \frac{d^2u_0^{(0)}}{dx^2} - y \frac{d^2v_0^{(0)}}{dx^2}. \tag{27}$$
We substitute the obtained value (27) in (15) and have
\[
\sigma_{(i)}^{(1)} = a_i \left(\frac{du_0^{(1)}}{dx} + \frac{d^2v_0^{(1)}}{dx^2} + \frac{d^2w_0^{(1)}}{dx^2} \right) + c_i \left(\frac{du_0^{(0)}}{dx} + \frac{d^2v_0^{(0)}}{dx^2} + \frac{d^2w_0^{(0)}}{dx^2} \right) + y^2 \left(\frac{dv_0^{(0)}}{dx} \right)^2 + \frac{2}{3} \frac{du_0^{(0)}}{dx} + \frac{2}{3} \frac{d^2v_0^{(0)}}{dx^2} + \frac{d^2w_0^{(0)}}{dx^2} \right)
\]
\[
(28)
\]
We define the longitudinal force and bending moments in the first approximation
\[
N^{(1)} = 2 \sum_{i=1}^{n} \sum_{h_{i-1}}^{h_i} \int dz \int_{0}^{b(z)} \sigma_{(i)}^{(1)} dy = f_1 \frac{du_0^{(1)}}{dx} + f_2 \frac{d^2v_0^{(1)}}{dx^2} + f_3 \frac{d^2w_0^{(1)}}{dx^2} + j_1(x),
\]
\[
(29)
\]
where
\[
r_1 = 2 \sum_{i=1}^{n} c_i \int_{h_{i-1}}^{h_i} b_i(z) dz,
\]
\[
r_2 = 2 \sum_{i=1}^{n} c_i \int_{h_{i-1}}^{h_i} b_i(z) dz,
\]
\[
r_3 = 2 \sum_{i=1}^{n} c_i \int_{h_{i-1}}^{h_i} b_i(z) dz,
\]
\[
r_4 = 2 \sum_{i=1}^{n} c_i \int_{h_{i-1}}^{h_i} b_i(z) dz,
\]
\[
r_5 = 2 \sum_{i=1}^{n} c_i \int_{h_{i-1}}^{h_i} b_i(z) dz,
\]
\[
r_6 = 2 \sum_{i=1}^{n} c_i \int_{h_{i-1}}^{h_i} b_i(z) dz.
\]
\[
M_{y}^{(1)} = 2 \sum_{i=1}^{n} \sum_{h_{i-1}}^{h_i} \int dz \int_{0}^{b(z)} \sigma_{(i)}^{(1)} dy = f_3 \frac{du_0^{(1)}}{dx} + f_4 \frac{d^2v_0^{(1)}}{dx^2} + f_5 \frac{d^2w_0^{(1)}}{dx^2} + j_2(x),
\]
\[
(30)
\]
where
\[
r_7 = 2 \sum_{i=1}^{n} c_i \int_{h_{i-1}}^{h_i} z b_i(z) dz,
\]
\[
r_8 = 2 \sum_{i=1}^{n} c_i \int_{h_{i-1}}^{h_i} z b_i(z) dz,
\]
\[
r_9 = 2 \sum_{i=1}^{n} c_i \int_{h_{i-1}}^{h_i} z b_i(z) dz.
\]
\[
M_{z}^{(1)} = -2 \sum_{i=1}^{n} \sum_{h_{i-1}}^{h_i} \int dz \int_{0}^{b(z)} \sigma_{(i)}^{(1)} dy = f_2 \frac{du_0^{(1)}}{dx} + f_3 \frac{d^2v_0^{(1)}}{dx^2} + f_6 \frac{d^2w_0^{(1)}}{dx^2} + j_3(x),
\]
\[
(31)
\]
where
\[
j_3 = r_2 \left(\frac{du_0^{(0)}}{dx} \right)^2 + r_8 \left(\frac{d^2v_0^{(0)}}{dx^2} \right)^2 + 1/2 r_9 \left(\frac{d^2w_0^{(0)}}{dx^2} \right)^2 + 2 r_4 \frac{du_0^{(0)}}{dx} \frac{d^2v_0^{(0)}}{dx^2} +
\]
\]

We rewrite the system (32) as

\[
\frac{d^2 M^{(1)}}{dx^2} = 0, \quad \frac{d^2 M_y^{(1)}}{dx^2} = 0, \quad \frac{d^N(1)}{dx} = 0,
\]

and receive a system of three differential equations to determine the movements

\[
\begin{align*}
f_1 \frac{d^2 u_0^{(1)}}{dx^2} + f_2 \frac{d^3 v_0^{(1)}}{dx^3} + f_3 \frac{d^3 u_0^{(1)}}{dx^3} + \frac{d j_1(x)}{dx} = 0,
\end{align*}
\]

\[
\begin{align*}
f_2 \frac{d^3 u_0^{(1)}}{dx^3} + f_4 \frac{d^4 v_0^{(1)}}{dx^4} + f_5 \frac{d^4 u_0^{(1)}}{dx^4} + \frac{d^2 j_2(x)}{dx^2} = 0, \\
f_3 \frac{d^3 u_0^{(1)}}{dx^3} + f_6 \frac{d^4 v_0^{(1)}}{dx^4} + f_5 \frac{d^4 u_0^{(1)}}{dx^4} + \frac{d^2 j_3(x)}{dx^2} = 0.
\end{align*}
\]

We rewrite the system (32) as

\[
\frac{d^2 u_0^{(1)}}{dx^2} = -\frac{f_2}{f_1} \frac{d^3 v_0^{(1)}}{dx^3} - \frac{f_3}{f_1} \frac{d^3 u_0^{(1)}}{dx^3} - \frac{1}{f_1} \frac{d j_1(x)}{dx},
\]

\[
\begin{align*}
&\left(f_4 - \frac{f_2 f_3}{f_1} \right) \frac{d^4 v_0^{(1)}}{dx^4} + \left(f_5 - \frac{f_3^2}{f_1} \right) \frac{d^4 u_0^{(1)}}{dx^4} + \frac{d^2 j_2(x)}{dx^2} - \frac{f_3}{f_1} \frac{d^2 j_1(x)}{dx^2} = 0, \\
&\left(f_5 - \frac{f_2^2}{f_1} \right) \frac{d^4 v_0^{(1)}}{dx^4} + \left(f_6 - \frac{f_3 f_2}{f_1} \right) \frac{d^4 u_0^{(1)}}{dx^4} + \frac{d^2 j_3(x)}{dx^2} - \frac{f_2}{f_1} \frac{d^2 j_1(x)}{dx^2} = 0,
\end{align*}
\]

where we get the expressions to determine the movements in the first approximation

\[
\frac{d^4 v_0^{(1)}}{dx^4} = r_{12} \frac{d^2 j_1(x)}{dx^2} + r_{13} \frac{d^2 j_2(x)}{dx^2} + r_{14} \frac{d^2 j_3(x)}{dx^2} = 0,
\]

\[
\frac{d^4 u_0^{(1)}}{dx^4} = r_{15} \frac{d^2 j_1(x)}{dx^2} + r_{16} \frac{d^2 j_2(x)}{dx^2} + r_{17} \frac{d^2 j_3(x)}{dx^2} = 0,
\]

\[
\frac{d^2 u_0^{(1)}}{dx^2} = \left(\frac{f_2 r_{12} + f_3 r_{15}}{f_1} \right) \frac{d^2 j_1(x)}{dx^2} - \left(\frac{f_2 r_{13} + f_3 r_{16}}{f_1} \right) \frac{d^2 j_2(x)}{dx^2} - \left(\frac{f_2 r_{14} + f_3 r_{17}}{f_1} \right) \frac{d^2 j_3(x)}{dx^2} - \frac{1}{f_1} \frac{d j_1(x)}{dx},
\]

where

\[
\begin{align*}
& r_{11} = \left(f_1 f_5 - f_2^2 \right) \left(f_1 f_5 - f_2^2 \right) - \left(f_4 f_1 - f_2 f_3 \right) \left(f_1 f_6 - f_2 f_3 \right), \\
& r_{12} = \frac{f_1 f_5 f_3 - f_1 f_2 f_6}{r_{11}}, \quad r_{13} = \frac{f_1 f_6 - f_2 f_3}{r_{11}}, \quad r_{14} = \frac{f_2^2 - f_1 f_3}{r_{11}}, \\
& r_{15} = \frac{f_3 f_1 f_6 - f_3 f_2 f_4}{r_{11}}, \quad r_{16} = \frac{f_1 f_3^2 - f_3 f_1^2}{r_{11}}, \quad r_{17} = \frac{f_4 f_1^2 - f_1 f_2 f_3}{r_{11}}.
\end{align*}
\]
Having integrated the equations (34), (35), (36) and defined the integration constants from fastening conditions of the rod, we can determine the movements in the first approximation.

From equations (29), (30), (31), we can find the expressions for longitudinal force and bending moments in the first approximation.

![Figure 5. A rod pinched at both ends](image)

3 Results

As an example, we consider the problem of complex bend of a rod pinched at both ends (figure 5) by distributed forces and moments

\[
\begin{align*}
q_x(x) &= q_{0x} x/l, \\
q_y(x) &= q_{0y}(\alpha_1 + \alpha_2 x), \\
q_z(x) &= q_{0z}(\beta_1 + \beta_2 x), \\
m_y(x) &= m_{0y} x/l, \\
m_z(x) &= m_{0z} x/l,
\end{align*}
\]

(37)

where \(q_{0x}, q_{0z}, m_0, \alpha_1, \alpha_2\) are constants.

We assume that the cross-section of the rod has the form figure 6.

![Figure 6. A cross-section of the rod](image)

Coordinates of the points, according to figure 4 have the form \(A(b_{01}, 0), B(b_{01}, h_{01}), C(b_{02}, h_1), D(b_{02}, h_2), E(b_{03}, h_{03}), F(b_{03}, h_3)\).

Then the equations of the direct line \(BC\) have the form

\[
y = \frac{b_{02} - b_{01}}{h_1 - h_{01}} z + \frac{b_{01} h_1 - b_{02} h_{01}}{h_1 - h_{01}},
\]

(38)

for the direct line \(DE\)

\[
y = \frac{b_{03} - b_{02}}{h_{03} - h_2} z + \frac{b_{02} h_{03} - b_{03} h_2}{h_{03} - h_2}.
\]

(39)
Then we get

\[f_1 = ((h_1 - h_{01}) b_{02} + (h_{01} + h_1) b_{01}) a_1 + (-2h_1 + 2h_2) b_{02}a_2 + ((h_{03} - h_2) b_{02} - b_{03} (h_{03} + h_2 - 2h_3)) a_3, \]

\[f_2 = \left(-\frac{1}{3} (h_{01} + h_1) b_{02}^2 + \frac{1}{3} b_{01} (h_{01} - h_1) b_{02} - \frac{2}{3} b_{01}^2 (h_{01} + \frac{1}{2} h_1) \right) a_1 + \\
+ (h_1 - h_2) b_{02} a_2 - \frac{1}{3} ((h_{03} - h_2) b_{02}^2 + \frac{1}{3} b_{03} (h_{03} - h_2) b_{02} + \\
+ \frac{2}{3} \left(h_{03} + \frac{1}{2} h_2 - \frac{3}{2} h_3 \right) b_{03}^2) a_3, \]

\[f_3 = \left(-\frac{1}{3} (h_{01} + 2h_1)(h_{01} - h_1) b_{02} + \frac{1}{3} b_{01} (h_{01}^2 + h_{01}^2 + h_1^2) \right) a_1 + \\
+ \frac{1}{3} (-3h_1^2 + 3h_2^2) b_{02} a_2 + \frac{1}{3} ((h_{03} + 2h_2)(h_{03} - h_2) b_{02} - \\
- b_{03} (h_{03}^2 + h_{03} h_2 + h_2^2 - 3h_3^2)) a_3, \]

\[f_4 = \left(\frac{1}{12} b_{02}^2 (h_{01} + 3h_1) (h_{01} - h_1) - \frac{1}{6} b_{02} b_{01} (h_{01}^2 + h_1^2) - \\
- \frac{1}{4} b_{01}^2 \left(h_{01}^2 + \frac{2}{3} h_{01} h_1 + \frac{1}{3} h_1^2 \right) \right) a_1 + \frac{1}{2} (h_1^2 - h_2^2) b_{02} a_2 - \left(\frac{1}{12} (h_{03} + h_2) (h_{03} - h_2) b_{02}^2 + \\
+ \frac{1}{12} (2h_{03}^2 - 2h_2^2) b_{03} b_{02} - \frac{1}{4} b_{03}^2 \left(h_{03}^2 + \frac{2}{3} h_{03} h_2 + \frac{1}{3} h_2^2 - 2h_3^2 \right) \right) a_3, \]

\[f_5 = \frac{1}{6} \left(b_{02} \left(-h_{01}^2 - h_1 h_{01} - h_1 h_{01}^2 + 3h_1^2 \right) + b_{01} (h_{01} + h_1) \left(h_{01}^2 + h_1^2 \right) \right) a_1 + \\
+ \frac{2}{3} b_{02} \left(h_1^2 + h_2^2 \right) a_2 + \frac{1}{6} \left((h_{03} - h_2) (h_{03}^2 + 2h_{03} h_2 + 3h_2^2) b_{02} - \\
- (h_{03}^2 + h_{03} h_2 + h_2^2 + h_3^2) b_{03} \right) a_3, \]

\[f_6 = \left(\frac{1}{6} (h_1 - h_{01}) b_{02}^2 - \frac{1}{6} b_{01} (h_{01} - h_1) b_{02}^2 - \frac{1}{6} b_{01} b_{01} (h_{01} - h_1) b_{02} + \frac{1}{2} (h_{01} + \frac{1}{3} h_1) b_{01}^3 \right) a_1 + \\
+ \frac{2}{3} (h_2 - h_1) b_{02} a_2 + \left(\frac{1}{6} (h_{03} - h_2) b_{02}^2 + \frac{1}{6} b_{03} (h_{03} - h_2) b_{02}^2 + \\
+ \frac{1}{6} b_{03} (h_{03} - h_2) b_{02} - \frac{1}{6} (3h_{03} + h_2 - 4h_3) b_{03}^3 \right) a_3, \]

\[r_1 = ((h_1 - h_{01}) b_{02} + (h_{01} + h_1) b_{01}) c_1 + (-2h_1 + 2h_2) b_{02} a_2 + \\
+ ((h_{03} - h_2) b_{02} - b_{03} (h_{03} + h_2 - 2h_3)) c_3, \]

\[r_2 = \left(\frac{1}{3} (-h_{01} + h_1) b_{02}^2 - \frac{1}{3} b_{01} (h_{01} - h_1) b_{02} + \frac{2}{3} b_{01}^2 (h_{01} + \frac{1}{2} h_1) \right) c_1 + \\
+ (-h_1 + h_2) b_{02} a_2 + \frac{1}{3} (h_{03} - h_2) b_{02}^2 - \frac{1}{3} b_{03} (h_{03} - h_2) b_{02} - \\
- \frac{2}{3} \left(h_{03} + \frac{1}{2} h_2 - \frac{3}{2} h_3 \right) b_{03}^2 \right) c_3, \]

\[r_3 = \left(\frac{1}{3} (h_{01} + 2h_1)(h_{01} - h_1) b_{02} - \frac{1}{3} b_{01} (h_{01}^2 + h_{01} h_1 + h_1^2) \right) c_1 -
\]
\[
- \frac{1}{3}(-3h_1^2 + 3h_2^2)b_{02}c_2 - \frac{1}{3}((h_{03} + 2h_2)(h_{03} - h_2)b_{02} + b_{03}(h_{03}^2 + h_0h_2 + h_2^2 - 3h_3^2))c_3,
\]
\[
r_4 = \left(\frac{1}{6}(h_1 - h_{01})b_{02}^3 - \frac{1}{6}b_{01}(h_1 - h_{01})b_{02} - \frac{1}{6}b_{01}(h_1 - h_{01})b_{02} + \frac{1}{2}(h_{01} + \frac{1}{3}h_1)b_{02}^3\right)c_1 + \frac{2}{3}(h_2 - h_{01})b_{02}^3 c_2 + \left(\frac{1}{6}(h_{03} - h_2)b_{02}^3 + \frac{1}{6}b_{03}(h_{03} - h_2)b_{02}^3\right)
\]
\[
+ \frac{1}{6}b_{03}(h_{03} - h_2)b_{02} - \frac{1}{6}(h_{03} + h_2 - 4h_3)b_{03}^3)c_3,
\]
\[
r_5 = \left(\frac{1}{12}b_{02}^2(h_{01} + 3h_1)(h_{01} - h_1) - \frac{1}{6}b_{02}b_{01}\left(-h_0^2 + h_1^2\right)\right) - \frac{1}{4}b_{01}^2\left(h_{01}^2 + \frac{2}{3}h_0h_1 + \frac{1}{3}h_1^2\right)\cdot c_1 - \frac{1}{2}\left(-h_0^2 + h_1^2\right)b_{02}c_2 - \left(\frac{1}{12}(h_{03} + 3h_2)(h_{03} - h_2)b_{02} + \frac{1}{12}(2h_{03}^2 - 2h_2^2)b_{03}b_{02} - \frac{1}{4}b_{03}^2\left(h_{03}^2 + \frac{2}{3}h_0h_2 + \frac{1}{3}h_2^2 - 2h_3^2\right)\right)c_3,
\]
\[
r_6 = \frac{1}{6}(b_{02}\left(-h_0^2 - h_1^2h_2 - h_0h_1^2 + 3h_3^2\right) + b_{01}(h_{01} + h_1)\left(h_{01}^2 + h_1^2\right))c_1 + \frac{2}{3}b_{02}\left(-h_0^2 + h_1^2\right)c_2 + \frac{1}{6}(h_{03} - h_2)\left(h_{03}^2 + 2h_0h_2 + 3h_2^2\right)b_{02} - (h_{03} + h_0^2h_2 + h_0^2h_2 + h_2^3 - 4h_3^2)b_{03}\cdot c_3,
\]
\[
r_7 = \left(-\frac{1}{30}(h_{01} + 4h_1)(h_{01} - h_1)b_{02} + \frac{1}{15}\left(h_{01} + 3h_1\right)(h_{01} - h_1)b_{01}b_{02} - \frac{1}{10}(h_{01} - h_1)b_{02}^2\left(h_{01} + \frac{2}{3}h_1\right)b_{02} + \frac{1}{5}b_{01}^2\left(h_{01}^2 + \frac{2}{3}h_0h_1 + \frac{1}{3}h_1^2\right)\right)c_1 + \frac{1}{3}(h_2^2 - h_1^2)b_{02}c_2 + \left(\frac{1}{30}(h_{03} + 4h_2)(h_{03} - h_2)b_{02}^3 + \frac{1}{15}\left(h_{03} + \frac{3}{2}h_2\right)(h_{03} - h_2)b_{02}b_{03}\right)
\]
\[
+ \frac{1}{10}b_{03}^2b_{02}(h_{03} - h_2)\left(h_{03} + \frac{2}{3}h_2\right) - \frac{1}{5}\left(h_{03}^2 + \frac{2}{3}h_0h_2 + \frac{1}{3}h_2^2 - \frac{5}{3}h_3^2\right)b_{03}^3)c_3,
\]
\[
r_8 = \frac{1}{10}\left((-h_0^2 - 3h_1h_2 - h_0h_1^2 + 4h_3^2)b_{02} + (h_1^2 + h_0^2h_1 + h_0h_1^2 + h_0h_1^2 + h_1^2)b_{02}\right)c_1 + \frac{1}{2}(h_2^2 - h_1^2)b_{02}c_2 + \left(\frac{1}{10}(h_{03} - h_2)\left(h_{03} + 2h_0^2h_2 + 3h_0h_2^2 + 4h_3^2\right)b_{02} - \frac{1}{10}b_{03}\left(h_{03}^3 + h_0^3h_2 + h_0^3h_2 + h_0^3h_2 + h_2^3 - 5h_3^2\right)\right)c_3,
\]
\[
r_9 = \left(-\frac{1}{15}\left(-h_0^2 - 2h_0h_1 - 3h_0h_1^2 + 6h_1^2\right)b_{02} + \frac{1}{5}b_{01}\left(h_{01}^2 + \frac{4}{3}h_0h_1 + \frac{1}{3}h_1^2\right)\right)(h_{01} - h_1)b_{02} - \frac{4}{15}b_{01}^2\left(h_{01}^3 + \frac{3}{4}h_0h_1^2 + \frac{1}{3}h_0h_1^2 + \frac{1}{5}h_1^3\right)c_1 - \frac{2}{3}(h_2^3 - h_1^3)b_{02}c_2 - \left(\frac{1}{15}(h_{03} - h_2)\left(h_{03}^3 + 3h_0h_2 + 2h_0h_2 + 2h_2^2\right)b_{02}b_{03} - \frac{4}{15}b_{03}^2\left(h_{03}^3 + \frac{3}{4}h_0h_2 + \frac{1}{2}h_0h_2^2 + \frac{1}{5}h_2^3 - \frac{5}{2}h_3^2\right)\right)c_3,
\]
From fastening conditions of the rod, we have
\[w^{(0)}_0(0) = w^{(0)}_0(l) = v^{(0)}_0(0) = v^{(0)}_0(l) = u^{(0)}_0(0) = u^{(0)}_0(l) = 0, \]
\[\frac{dv^{(0)}_0}{dx} \bigg|_{x=0} = \frac{dv^{(0)}_0}{dx} \bigg|_{x=l} = \frac{dw^{(0)}_0}{dx} \bigg|_{x=0} = \frac{dw^{(0)}_0}{dx} \bigg|_{x=l} = 0. \]

Then the ratios (24), (25) have the form
\[\frac{d^4w^{(0)}_0}{dx^4} = \alpha_3 + \alpha_4 x, \quad \frac{d^4v^{(0)}_0}{dx^4} = \alpha_5 + \alpha_6 x, \]
where
\[\alpha_3 = \frac{1}{l} \left(g_4 q_{0x} + g_5 m_{0x} + g_6 m_{0y} \right) - g_5 q_{0y} \alpha_1 - g_6 q_{0x} \beta_1, \quad \alpha_4 = -g_5 \alpha_2 q_{0y} - g_6 \beta_2 q_{0x}, \]
\[\alpha_5 = \frac{1}{l} \left(g_7 q_{0x} + g_8 m_{0x} + g_9 m_{0y} \right) - g_8 q_{0y} \alpha_1 - g_9 \alpha_2 q_{0x}, \quad \alpha_6 = -g_8 \alpha_2 q_{0y} - g_9 \beta_2 q_{0x}. \]

Integrating the ratios (42), we obtain
\[w^{(0)}_0 = \alpha_4 \frac{x^5}{120} + \alpha_3 \frac{x^4}{24} + C_1 x^3 + C_2 x^2 + C_3 x + C_4, \]
\[v^{(0)}_0 = \alpha_6 \frac{x^5}{120} + \alpha_5 \frac{x^4}{24} + C_5 x^3 + C_6 x^2 + C_7 x + C_8. \]

From the ratios (26), (43), (44) we obtain
\[u^{(0)}_0 = \alpha_7 \frac{x^4}{12} + \alpha_8 \frac{x^3}{6} - \left(\frac{f_3}{f_1} C_1 + \frac{f_2}{f_1} C_5 \right) \frac{x^2}{2} + C_9 x + C_{10}, \]
where
\[\alpha_7 = -\frac{f_3}{f_1} \frac{\alpha_4}{2} - \frac{f_2}{f_1} \frac{\alpha_6}{2}, \quad \alpha_8 = -\frac{g_0}{f f_1} - \frac{f_3}{f_1} \alpha_3 - \frac{f_2}{f_1} \alpha_5. \]

From (43), (44), (45) and expression (21) we obtain
\[N^{(0)} = \left(\frac{f_0 \alpha_4}{3} + \frac{f_0 \alpha_6}{6} + \frac{f_0 \alpha_8}{6} \right) x^3 + \left(\frac{f_2 \alpha_3}{2} + \frac{f_2 \alpha_5}{2} + \frac{f_2 \alpha_7}{2} \right) x^2 + C_9 f_1 + C_6 f_2 + C_2 f_3, \]
\[M^{(0)} = \left(\frac{f_0 \alpha_4}{3} + \frac{f_0 \alpha_6}{6} + \frac{f_0 \alpha_8}{6} \right) x^3 + \left(\frac{f_2 \alpha_3}{2} + \frac{f_2 \alpha_5}{2} + \frac{f_2 \alpha_7}{2} \right) x^2 + \left(C_1 \left(f_5 - \frac{f_3^2}{f_1} \right) + C_5 \left(f_4 - \frac{f_5}{f_1} \right) \right) x + C_9 f_3 + C_6 f_4 + C_2 f_5, \]
\[M_0^{(0)} = \left(\frac{\alpha_7}{3} + \frac{\alpha_9}{6} + \frac{\alpha_{10}}{2} \right) x^3 + \left(\frac{\alpha_8}{3} + \frac{\alpha_7}{2} + \frac{\alpha_{11}}{2} \right) x^2 + \left(C_1 \left(f_0 - \frac{f_2}{l} \right) + C_5 \left(f_5 - \frac{f_2}{l} \right) \right) x + C_9 f_2 + C_6 f_3 + C_2 f_6, \]

From fastening conditions (40) we have

\[C_3 = C_4 = C_7 = C_8 = C_{10} = 0, \]

\[C_1 = \frac{\alpha_8}{l^2} - 2 \frac{\alpha_7}{l^3}, \quad C_2 = 3 \frac{\alpha_8}{l^2} - \frac{\alpha_8}{l}, \quad C_5 = \frac{\alpha_{10}}{l^2} - 2 \frac{\alpha_9}{l^3}, \quad C_6 = 3 \frac{\alpha_9}{l^2} - \frac{\alpha_{10}}{l}, \]

\[C_9 = -\alpha_7 \frac{p^3}{12} - \alpha_8 \frac{p^2}{6} + \left(\frac{f_3}{f_1} C_1 + \frac{f_2}{f_1} C_5 \right) \frac{l}{2}, \]

where

\[\alpha_7 = -\alpha_4 \frac{p^3}{120} - \alpha_3 \frac{p^4}{24}, \quad \alpha_8 = -\alpha_4 \frac{p^4}{24} - \alpha_3 \frac{p^3}{6}, \quad \alpha_9 = -\alpha_6 \frac{p^5}{120} - \alpha_5 \frac{p^4}{24}, \quad \alpha_{10} = -\alpha_6 \frac{p^4}{24} - \alpha_5 \frac{p^3}{6}. \]

Thus, the movements in the zero approximation are completely determined.

\[u_0^{(0)} = \alpha_7 \frac{x^4}{12} + \alpha_8 \frac{x^3}{6} - \left(\frac{f_3}{f_1} C_1 + \frac{f_2}{f_1} C_5 \right) \frac{x^2}{2} + C_9 x, \]

\[v_0^{(0)} = \alpha_6 \frac{x^5}{120} + \alpha_5 \frac{x^4}{24} + C_5 x^3 + C_6 x^2, \]

\[w_0^{(0)} = \alpha_4 \frac{x^5}{120} + \alpha_3 \frac{x^4}{24} + C_1 x^3 + C_2 x^2. \]

From (29), (30), (31), (46), (47), (48) we obtain

\[j_1(x) = \alpha_{11} x^6 + \alpha_{12} x^5 + \alpha_{13} x^4 + \alpha_{14} x^3 + \alpha_{15} x^2 + \alpha_{16} x + \alpha_{17}, \]

where

\[\alpha_{11} = \frac{1}{36} \alpha_2^2 r_6 + \frac{1}{18} (\alpha_6 r_5 + 2 \alpha_7 r_3) \alpha_4 + \frac{1}{9} \alpha_2^2 r_1 + \frac{1}{9} \alpha_6 \alpha_7 r_2 + \frac{1}{36} \alpha_2^2 r_4, \]

\[\alpha_{12} = \frac{1}{6} (\alpha_4 r_6 + \alpha_6 r_5 + 2 \alpha_7 r_3) \alpha_3 + \frac{1}{6} (\alpha_5 r_5 + \alpha_8 r_3) \alpha_4 + \frac{1}{6} (\alpha_6 r_4 + 2 \alpha_7 r_2) \alpha_5 + \frac{1}{3} r_1 \alpha_7 \alpha_8 + \frac{1}{6} \alpha_8 r_2 \alpha_6, \]

\[\alpha_{13} = \frac{1}{12} \left((24 \alpha_4 r_6 + 24 \alpha_6 r_5 + 48 \alpha_7 r_3) C_1 + (24 \alpha_4 r_5 + 24 \alpha_6 r_4 + 48 \alpha_7 r_2) C_5 + 6 r_5 \alpha_5 \alpha_3 + 3 r_6 \alpha_3^2 + 6 \alpha_3 \alpha_8 r_3 + 3 \alpha_3^2 r_4 + 6 \alpha_5 \alpha_8 r_2 + 3 \alpha_3^2 r_1 \right) f_1 - 4 (\alpha_4 r_3 + \alpha_6 r_2 + 2 \alpha_7 r_1) (C_1 f_3 + C_5 f_2), \]

\[\alpha_{14} = \frac{1}{3} \left((18 \alpha_3 r_6 + 18 \alpha_5 r_5 + 18 \alpha_8 r_3) C_1 + (18 \alpha_3 r_5 + 18 \alpha_5 r_4 + 18 \alpha_8 r_2) C_5 + (\alpha_6 C_9 + 4 \alpha_7 C_3) r_2 + (\alpha_4 C_9 + 4 \alpha_7 C_2) r_3 + (2 \alpha_4 C_6 + 2 \alpha_6 C_2) r_5 + 2 r_6 \alpha_6 C_2 + 2 \alpha_7 C_2) f_1 - 3 (\alpha_3 r_3 + \alpha_5 r_2 + \alpha_8 r_1) (C_1 f_3 + C_5 f_2), \]

\[\alpha_{15} = \frac{1}{f_1} \left((36 \alpha_2^2 r_6 + 72 \alpha_5 C_5 C_1 + 36 \alpha_4 C_2^2 + \alpha_8 C_9 r_1 + (\alpha_5 C_9 + 2 \alpha_8 C_6) r_2 + (\alpha_3 C_9 + 2 \alpha_8 C_2) r_3 + (2 \alpha_2 r_6 + 2 \alpha_6 r_5) \alpha_3 + \alpha_5 (C_2 r_5 + C_6 r_4) \right) f_1^2 - 12 (C_1 f_3 + C_5 f_2) (C_1 r_3 + C_5 r_2) f_1 + r_1 (C_1 f_3 + C_5 f_2)^2, \]
\[\alpha_{16} = \frac{1}{f_1} \left((24C_2r_6 + 24C_6r_5 + 12C_9r_3)C_1 + 12C_5(2C_2r_5 + 2C_6r_4 + C_9r_2) \right) f_1 - \\
\quad - (C_{f_3} + C_{f_2}) (4r_2C_6 + 4r_3C_2 + 2r_1C_9), \]

\[\alpha_{17} = C_9^2r_1 + (4C_2r_3 + 4C_6r_2)C_9 + 4C_2^2r_5 + 8C_2C_6r_5 + 4C_6^2r_4, \]

\[j_2(x) = \alpha_{18}x^6 + \alpha_{19}x^5 + \alpha_{20}x^4 + \alpha_{21}x^3 + \alpha_{22}x^2 + \alpha_{23}x + \alpha_{24}, \]

(50)

where

\[\alpha_{18} = \frac{1}{36} \alpha_2^2r_8 + \frac{1}{18} (\alpha_6r_9 + 2\alpha_7r_5) \alpha_4 + \frac{1}{9} \alpha_7^2r_2 + \frac{1}{9} \alpha_6\alpha_7r_4 + \frac{1}{36} \alpha_6^2r_7, \]

\[\alpha_{19} = \frac{1}{6} (\alpha_4r_8 + \alpha_6r_9 + 2\alpha_7r_5) \alpha_3 + \frac{1}{6} (\alpha_5r_9 + \alpha_8r_5) \alpha_4 + \frac{1}{6} (\alpha_6r_7 + 2\alpha_7r_4) \alpha_5 + \\
\quad + \frac{1}{3} \alpha_2^3r_7 \alpha_8 + \frac{1}{6} \alpha_6\alpha_8r_4, \]

\[\alpha_{20} = \frac{1}{12f_1} \left((24a_4r_8 + 24a_6r_9 + 48a_7r_5)C_1 + (24a_4r_9 + 24a_6r_7 + 48a_7r_4)C_5 + \\
\quad + 3r_8a_5^2 + 6r_9a_5a_3 + 6a_3a_8r_5 + 3r_7a_5^2 + 6a_5a_8r_4 + 3r_2a_8^2 \right) f_1 - \\
\quad - 4(a_5r_3 + a_6r_4 + 2a_7r_2)(C_{f_3} + C_{f_2}), \]

\[\alpha_{21} = \frac{1}{3f_1} \left(((18a_3r_8 + 18a_5r_9 + 18a_8r_5)C_1 + (18a_3r_9 + 18a_5r_7 + 18a_8r_4)C_5 + \\
\quad + (a_6C_9 + 4a_7C_2)r_4 + (a_5C_9 + 4a_7C_2)r_5 + (2a_4C_6 + 2a_6C_2)r_9 + 2r_7C_6a_6 + \\
\quad + 2r_6C_2a_4 + 2r_2a_7C_9) f_1 - 3(a_3r_5 + a_5r_4 + a_8r_2)(C_{f_3} + C_{f_2})) \right), \]

\[\alpha_{22} = \frac{1}{f_1} \left((36r_2C_2^2 + 72r_2C_5C_1 + 36r_7C_5^2 + r_2a_8C_9 + (a_5C_9 + 2a_8C_6)r_4 + \\
\quad + (a_3C_9 + 2a_8C_2)r_5 + ((2C_2r_8 + 2C_6r_9)a_3 + 2a_5(C_2r_9 + C_6r_7)) f_1 - \\
\quad - 12(C_{f_3} + C_{f_2})(C_1r_5 + C_5r_4) f_1 + 2(C_{f_3} + C_{f_2})^2 \right), \]

\[\alpha_{23} = \frac{1}{f_1} \left(((864C_2r_8 + 864C_6r_9 + 432C_9r_5)C_1 + 432C_5(2C_2r_9 + 2C_6r_7 + C_9r_4)) f_1^3 - \\
\quad - (C_{f_3} + C_{f_2})(4C_2r_9 + C_6r_4 + 2C_9r_2)) \right), \]

\[\alpha_{24} = 4C_2^2r_8 + 8C_2C_6r_9 + 4C_2C_9r_5 + 4C_6^2r_7 + 4C_6C_9r_4 + C_9^2r_2, \]

\[j_3(x) = a_{25}x^6 + a_{26}x^5 + a_{27}x^4 + a_{28}x^3 + a_{29}x^2 + a_{30}x + a_{31}, \]

(51)

where

\[\alpha_{25} = \frac{1}{36} \alpha_2^2r_10 + \frac{1}{72} (4a_6r_8 + 8a_7r_6) \alpha_4 + \frac{1}{9} \alpha_7^2r_3 + \frac{1}{9} \alpha_6\alpha_7r_5 + \frac{1}{72} \alpha_6^2r_9, \]

\[\alpha_{26} = \frac{1}{6} (a_4r_10 + a_6r_8 + 2a_7r_6) \alpha_3 + \frac{1}{6} (a_5r_8 + a_8r_6) \alpha_4 + \frac{1}{12} (a_6r_9 + 4a_7r_3) \alpha_5 + \\
\quad + \frac{1}{3} r_3a_7a_8 + \frac{1}{6} \alpha_6\alpha_8r_5, \]

\[\alpha_{27} = \frac{1}{24f_1} \left((48a_4r_10 + 48a_6r_8 + 96a_7r_6)C_1 + (48a_4r_9 + 24a_6r_9 + 96a_7r_5)C_5 + 3r_9a_5^2 + \\
\quad + 6r_10a_5^2 + 12r_9a_5a_3 + 12r_6a_3a_8 + 12r_5a_5a_8 + 6r_3a_8^2 \right) f_1 - \\
\quad - (a_4r_6 + a_6r_5 + 2a_7r_3)(C_{f_3} + C_{f_2}), \]
\[\alpha_{28} = \frac{1}{3f_1} (((18\alpha_3 r_1 + 18\alpha_5 r_8 + 18\alpha_8 r_6) C_1 + (18\alpha_3 r_8 + 9\alpha_5 r_9 + 18\alpha_8 r_5) C_5 +
+ (\alpha_6 C_9 + 4\alpha_7 C_6) r_5 + (\alpha_4 C_9 + 4\alpha_7 C_2) r_6 + (2\alpha_4 C_6 + 2\alpha_6 C_2) r_3 + r_9 C_6 a_6 + 2r_10 C_2 a_4 +
+ 2r_3\alpha_7 C_9) f_1 - 3(\alpha_3 r_6 + \alpha_5 r_5 + \alpha_8 r_3) (C_1 f_3 + C_5 f_2),
\]
\[\alpha_{29} = \frac{1}{f_1^2} (((36r_1 r_2 + 72r_5 C_1 + 18r_9 C_2^2 + r_3 a_8 C_9 + (\alpha_5 C_9 + 2\alpha_8 C_6) r_5 +
+ (\alpha_3 C_9 + 2\alpha_8 C_2) r_6 + (2C_2 r_10 + 2C_6 r_8) a_3 + a_5 (2C_2 r_8 + C_6 r_9)) f_1^2 -
- 12(C_1 f_3 + C_5 f_2) (C_1 r_5 + C_5 r_3) f_1 + r_3 (C_1 f_3 + C_5 f_2)^2),
\]
\[\alpha_{30} = \frac{1}{f_1} (((24C_2 r_10 + 24C_6 r_8 + 12C_9 r_6) C_1 + 12C_5 (2C_2 r_8 + C_6 r_9 + C_9 r_5)) f_1 -
- (C_1 f_3 + C_5 f_2) (4C_6 r_5 + 4C_2 r_6 + 2C_9 r_3)),
\]
\[\alpha_{31} = C_6^2 r_3 + (4C_2 r_6 + 4C_6 r_5) C_9 + 4C_2^2 r_10 + 8C_2 C_5 r_6 + 2C_6^2 r_9.
\]

Substituting the ratios (49), (50), (51) in expressions (34), (35), (36), we get the differential equations to determine the movements in the first approximation

\[\frac{d^4 u_0^{(1)}}{dx^4} = \alpha_{32} x^4 + \alpha_{33} x^3 + \alpha_{34} x^2 + \alpha_{35} x + \alpha_{36}, \quad (52) \]
\[\frac{d^4 u_0^{(1)}}{dx^4} = \alpha_{37} x^4 + \alpha_{38} x^3 + \alpha_{39} x^2 + \alpha_{40} x + \alpha_{41}, \quad (53) \]
\[\frac{d^2 u_0^{(1)}}{dx^2} = \alpha_{42} x^5 + \alpha_{43} x^4 + \alpha_{44} x^3 + \alpha_{45} x^2 + \alpha_{46} x + \alpha_{47}, \quad (54) \]

where

\[\alpha_{32} = 30(\alpha_1 r_2 + \alpha_8 r_3 + \alpha_2 r_4), \quad \alpha_{33} = 20(\alpha_2 r_3 + \alpha_1 r_3 + \alpha_2 r_4), \]
\[\alpha_{34} = 2(\alpha_3 r_2 + \alpha_8 r_3 + \alpha_7 r_4), \quad \alpha_{35} = 6(\alpha_4 r_2 + \alpha_2 r_3 + \alpha_8 r_4), \]
\[\alpha_{36} = 2(\alpha_5 r_2 + \alpha_2 r_3 + \alpha_9 r_4), \quad \alpha_{37} = 30(\alpha_3 r_1 + \alpha_8 r_4 + \alpha_2 r_7), \]
\[\alpha_{38} = 20(\alpha_2 r_1 + \alpha_9 r_4 + \alpha_2 r_7), \quad \alpha_{39} = 12(\alpha_1 r_1 + \alpha_9 r_4 + \alpha_2 r_7), \]
\[\alpha_{40} = 6(\alpha_1 r_1 + \alpha_9 r_4 + \alpha_2 r_7), \quad \alpha_{41} = 2(\alpha_1 r_1 + \alpha_9 r_4 + \alpha_2 r_7). \]

Integrating the equations (52), (53), (54), taking into account the initial conditions for the first approximation

\[w_0^{(1)}(0) = u_0^{(1)}(l) = v_0^{(1)}(0) = u_0^{(1)}(l) = u_0^{(1)}(0) = u_0^{(1)}(l) = 0, \quad (55) \]
\[\left. \frac{dv_0^{(1)}}{dx} \right|_{x=0} = \left. \frac{dv_0^{(1)}}{dx} \right|_{x=l} = \left. \frac{dw_0^{(1)}}{dx} \right|_{x=0} = \left. \frac{dw_0^{(1)}}{dx} \right|_{x=l} = 0, \quad (56) \]
we get
\[v_0^{(1)} = \alpha_{32} \frac{x^8}{1680} + \alpha_{33} \frac{x^7}{840} + \alpha_{34} \frac{x^6}{360} + \alpha_{35} \frac{x^5}{120} + \alpha_{36} \frac{x^4}{24} + C_{11}x^3 + C_{12}x^2, \]
\[w_0^{(1)} = \alpha_{37} \frac{x^8}{1680} + \alpha_{38} \frac{x^7}{840} + \alpha_{39} \frac{x^6}{360} + \alpha_{40} \frac{x^5}{120} + \alpha_{41} \frac{x^4}{24} + C_{13}x^3 + C_{14}x^2, \]
\[u_0^{(1)} = \alpha_{42} \frac{x^7}{42} + \alpha_{43} \frac{x^6}{30} + \alpha_{44} \frac{x^5}{20} + \alpha_{45} \frac{x^4}{12} + \alpha_{46} \frac{x^3}{6} + \alpha_{47} \frac{x^2}{2} + C_{15}x, \]
where
\[C_{11} = \frac{1}{l^2} \alpha_{48} - \frac{2}{l^3} \alpha_{49}, \quad C_{12} = \frac{3}{l^2} \alpha_{49} - \frac{1}{l} \alpha_{48}, \quad C_{13} = \frac{1}{l^2} \alpha_{50} - \frac{2}{l^3} \alpha_{51}, \quad C_{14} = \frac{3}{l^2} \alpha_{51} - \frac{1}{l} \alpha_{50}, \]
\[C_{15} = -\frac{1}{l^2} \alpha_{42} \frac{l^6}{42} - \frac{1}{l^3} \alpha_{43} \frac{l^5}{30} - \frac{1}{l^4} \alpha_{44} \frac{l^4}{20} - \frac{1}{l^5} \alpha_{45} \frac{l^3}{12} - \frac{1}{l^6} \alpha_{46} \frac{l^2}{6} - \frac{1}{l^7} \alpha_{47} \frac{l}{2}, \]
\[\alpha_{48} = -\frac{1}{l^2} \alpha_{32} \frac{l^6}{210} - \frac{1}{l^3} \alpha_{33} \frac{l^5}{140} - \frac{1}{l^4} \alpha_{34} \frac{l^4}{60} - \frac{1}{l^5} \alpha_{35} \frac{l^3}{24} - \frac{1}{l^6} \alpha_{36} \frac{l^2}{6}, \]
\[\alpha_{49} = -\frac{1}{l^2} \alpha_{32} \frac{l^6}{1680} - \frac{1}{l^3} \alpha_{33} \frac{l^5}{840} - \frac{1}{l^4} \alpha_{34} \frac{l^4}{360} - \frac{1}{l^5} \alpha_{35} \frac{l^3}{120} - \frac{1}{l^6} \alpha_{36} \frac{l^2}{24}, \]
\[\alpha_{50} = -\frac{1}{l^2} \alpha_{37} \frac{l^6}{210} - \frac{1}{l^3} \alpha_{38} \frac{l^5}{140} - \frac{1}{l^4} \alpha_{39} \frac{l^4}{60} - \frac{1}{l^5} \alpha_{40} \frac{l^3}{24} - \frac{1}{l^6} \alpha_{41} \frac{l^2}{6}, \]
\[\alpha_{51} = -\frac{1}{l^2} \alpha_{37} \frac{l^6}{1680} - \frac{1}{l^3} \alpha_{38} \frac{l^5}{840} - \frac{1}{l^4} \alpha_{39} \frac{l^4}{360} - \frac{1}{l^5} \alpha_{40} \frac{l^3}{120} - \frac{1}{l^6} \alpha_{41} \frac{l^2}{24}. \]

The expression for longitudinal force and bending moments in the first approximation can be obtained from (29), (30), (31), (49), (50), (51), (57), (58), (59).

4 Discussion

Thus, the problem of complex bend of the rod is solved by the method of small parameter in the zero and first approximations. This method can be used to solve the problem in the second and subsequent approximations.

This work is carried out with the partial financial support of RFBR grant (project number 19-01-00038).

References

[1] A.V. Mishenko, Y.V. Nemirovskii, Izvestiya vuzov. Stroitelstvo pp. 5–12 (2013)
[2] Y.V. Nemirovskii, A.V. Mishenko, R.F. Terletskii, Journal of Mathematical Sciences 223, 87 (2017)
[3] N.V. Minaeva, A.A. Sizikova, Vestnik Chuvashskogo Gosudarstvennogo Pedagogicheskogo Universiteta im. I. Ya. Yakovleva. Seriya: Mekhanika Predelnogo Sostoyaniya pp. 125–132 (2017)
[4] Y.V. Nemirovskii, S.V. Tikhonov, MATEC Web of Conferences 196, 01038 (2018)
[5] V.P. Pikulin, S.I. Pohozaev, Equations in Mathematical Physics: A practical course (MCNMO, Moscow, 2004)
[6] D.D. Ivlev, L.V. Ershov, *Perturbation Method in the Theory of Elastoplastic Bodies* (Nauka, Moscow, 1978)

[7] A.A. Ilyushin, in *Engineering Digest* (1954), Vol. 19

[8] O.D. Gorbenko, N.V. Minaeva, in *Improving Ground Support for Aviation* (Voronezh, 2000), Vol. 1

[9] N.V. Minaeva, Izvestiya RAN. Mekhanika Tverdogo Tela pp. 37–39 (2008)

[10] Y.V. Nemirovskii, Vestnik Chuvashskogo Gosudarstvennogo Pedagogicheskogo Universiteta im. I. Ya. Yakovleva. Seriya: Mekhanika Predelnogo Sostoyaniya pp. 26–37 (2018)

[11] L.R. Mailyan, E.I. Ivashchenko, *Calculation of Reinforced Concrete Elements Based on Actual Material Strain Diagrams* (Rostov State University of Civil Engineering, Rostov-on-Don, 2006)

[12] A.G. Gorshkov, V.N. Troshin, V.I. Shalashilin, *Strength of Materials* (Fizmatlit, Moscow, 2005)