“Debt policy of military-connected firms in Indonesia”

AUTHORS
Nurul Fitriani
Gery Lusiano Firmansah
Iman Harymawan

ARTICLE INFO
Nurul Fitriani, Gery Lusiano Firmansah and Iman Harymawan (2022). Debt policy of military-connected firms in Indonesia. *Investment Management and Financial Innovations*, 19(3), 105-118. doi:10.21511/imfi.19(3).2022.10

DOI
http://dx.doi.org/10.21511/imfi.19(3).2022.10

RELEASED ON
Monday, 08 August 2022

RECEIVED ON
Monday, 06 June 2022

ACCEPTED ON
Monday, 01 August 2022

LICENSE
This work is licensed under a Creative Commons Attribution 4.0 International License

JOURNAL
"Investment Management and Financial Innovations"

ISSN PRINT
1810-4967

ISSN ONLINE
1812-9358

PUBLISHER
LLC “Consulting Publishing Company “Business Perspectives”

FOUNDER
LLC “Consulting Publishing Company “Business Perspectives”

NUMBER OF REFERENCES
46

NUMBER OF FIGURES
0

NUMBER OF TABLES
11

© The author(s) 2022. This publication is an open access article.
Abstract

Indonesia has a thin capitalization policy since 2015. It restricts the maximum interest expense that can be deductible from corporate tax payable. This paper discusses the association between boards with military background and the debt policy of firms, taking into account the thin capitalization policy. This study used a sample of 2,330 firm-year observations from companies listed on Indonesia Stock Exchange during 2010–2019. A moderated analysis regression was employed to analyze the association of each variable. The result reveals a significant positive correlation with a t-value of 2.14 at a confidence level of 95% between military-connected firms and debt policy. The same correlation also occurred between board of commissioners with the military background and debt policy with a t-value of 2.18 at a 95% confidence level. Meanwhile, the correlation between these variables became significantly negative after the implementation of thin capitalization policy. CEM and Heckman’s two-stage method were used to validate the findings. This study is for a listed company to consider the appointment of military background in a board of commissioner position after a period of thin capitalization policy.

Keywords

- military-connected firms
- debt-to-asset ratio
- thin capitalization policy
- debt restriction
- Indonesia
- two-tier system
- governance

JEL Classification

G38, L50

INTRODUCTION

For more than 50 years, Indonesia has been led by military personnel such as Soeharto and Susilo Bambang Yudhoyono (Harymawan, 2018). The presence of retired military personnel in business and government also continues to this day. In business, board with the military background has two contrast characteristics. Benmelech and Frydman (2015) describe the characteristic of ex-military personnel who is conservative, organized, and tactical in each decision. On the other hand, Elder et al. (1991) found other possibilities of former military personnel to use power excessively, to take risks, to make aggressive decisions, and to be overconfident because of their strategic position in a firm.

Previous research has documented mutual benefits from board with the military background such as low interest rate (Harymawan, 2018), minimizing corporate tax avoidance (Mills & Law, 2015; Law & Mills, 2017), increasing good corporate governance (Lin et al., 2012; Kobayramp & Wernicke, 2018), easiness of financial resources (Agrawal & Knoeber, 2001; Goldman et al., 2013). However, previous research has not already connected between former military personnel’s characteristic and mutual benefits. The need for these connections is motivated by two contrast characteristics from ex-military personnel that supposed to lead to different mutual benefits. This might be explained by Upper Echelon Theory (Hambrick & Mason, 1984).
Furthermore, Indonesia has been implemented thin capitalization policy since 2015, as declared in the regulation of Ministry of Finance 169/PMK.010/2015. It restricts the maximum of interest expense that can be deducted from corporate tax payable. The results of this paper discover that military-connected firms use higher loans compared to non-military-connected firms. Otherwise, after the issuance of PMK No. 169/PMK.010/2015 showing that military-connected firms are more likely to use lower loans compared to non-military-connected firms. In particular, the study shows that the significant relation between the military background boards and debt policy of the firms are only applied to the position of board of commissioners.

This paper is contributed in an academic and practical way. First, it expands the literature on board with the military background and firm debt policy in a two-tier system. Second, this study is expected to be a source of evaluation from Indonesian thin capitalization policy. The firm’s debt does not show significant changes after the implementation of the Regulation of the Minister of Finance No. 169/PMK.010/2015 through the descriptive statistics results. This means that this policy has not effectively minimized debt intensity of Indonesian listed firms. However, this paper shows that the roles of commissioners with the military background can effectively thin capitalization policy to encourage lower debt. The results of this paper can inform interested parties in making decisions related to the appointment of the military background of the board of commissioners after the application of thin capitalization policy.

1. **LITERATURE REVIEW AND HYPOTHESES**

According to Upper Echelon Theory, decision making is influenced by the characteristics of a leader (Abatecola & Cristofaro, 2020; Hambrick & Mason, 1984; Hambrick, 2007; Wang et al., 2018; Wang et al., 2022). The strong leadership brings conservative decisions (Benmelech & Frydman, 2015). However, Nasih et al. (2019) found that rent seeking practice from power and networking benefits military connections in terms of easier access of funding from a financial institution (Agrawal & Knoeber, 2001; Goldman et al., 2013; Wong et al., 2003). Harymawan (2018) found that military-connected firms in Indonesia get lower interest than non-military firms. This has a possibility to use debt financing intensively because the cost of debt tends to be lower than the cost of capital and interest payments can be deducted from tax payable (Sharma, 2018).

According to Panda and Nanda (2018), a firm with high leverage has better firm performance than unleveraged firms. Instead, aggressive debt policy contains higher default risk (Al-Hadi et al., 2019; Fathi & Jean-Pierre, 2001; Nugrahanti et al., 2020; Zhang et al., 2020). This paper argues that a firm has a tendency to seek rent from a military-connected firm because of the benefits and opportunities.

The two-tier system in Indonesia separated the executive role by board of directors and monitoring roles by board of commissioners (Law No. 40 of 2007). The board of commissioners approved recommendations and supervision (Arifai et al., 2018). This is a possible threat from an aggressive debt policy. However, Siregar and Utama (2008), Jungmann (2006), and Arifai et al. (2018) stated that the board of commissioners in Indonesia is dominated by the majority shareholders. In terms of debt policy, a military background board of commissioners acts as a rent-seeker, since it does not reduce the share proportion of the majority (Murtini, 2019). According to Sharma et al. (2018), the use of debt financing is more profitable from the shareholder’s point of view rather than the issuance of new shares, since the dividends from shares are taxed twice. As a result, the board of commissioners’ military background promotes lower debt costs through rent seeking and impacts higher debt.

The business trend shifts from personal characteristic such as military background to personal skills after the end of Soeharto’s regime (Rüland et al., 2012). The lack of proportion of the military background directors is able to reduce the overuse power (Harymawan, 2018). The upper echelon theory described the professionalism and adaptation of military connected board. The military is associated with organized, tactical, and strategic leadership characteristics (Benmelech & Frydman, 2015; Harymawan et al., 2021). Therefore, a mil-
itary-connected director will more likely to be conservative in terms of debt policy. In addition, a two-tier system restricted the overuse authority of military-connected directors to carry out opportunistic actions. Thin capitalization policy minimized the loan interest expense deduction from tax payable (Clemente-Almendros & Sogorb-Mira, 2016). The military tend to be republican and patriotic because it is their responsibility to secure societies (Wong et al., 2003). According to Law and Mills (2017), military-experienced boards share common values on the government legitimacy, as a result of demonstrating excellent compliance in taxation. Benmelech and Frydman (2015) also found excellent ethics and minimum involvement in fraud of former military. Even though the easier access in debt financing, the military excellent patriotism encourages them to comply with the established regulation by the government. Therefore, the study hypothesizes the following:

H1a: Military-connected firms have a significant and positive influence on debt policy.
H1b: Board of commissioners with military connection has a significant and positive influence on debt policy.
H1c: Board of directors with military background does not have an influence on debt policy.

2. RESEARCH METHOD

This paper uses the data pooled cross-section from firms listed on Indonesia Stock Exchange in 2012–2019. The sample period starts from 2012 because the study aims to compare prior and post effect of the Regulation of the Ministry of Finance No. 169/PMK.010/2015 that has been applied in 2015. As a result of the regulation, financial, mining, and income tax rate firm sectors are excluded from the paper. Referring to Chua et al. (2022), this paper uses the debt to asset ratio (book value of debt divided by the book value of assets) as a proxy of debt policy (DP), since it is not affected by external factors such as stock price fluctuations (Chua et al., 2022). The explanatory variable is military-connected
firms as a dichotomous variable (Harymawan et al., 2021). Military-connected firms are identified when a firm has at least one board of directors or board of commissioners with the military background (Harymawan, 2018). It is categorized as military if the board has educational background and/or experience in the army, navy, air force, and police (Fisman, 2001). Based on a two-tier system, this paper divided the measurement of military-connected firms in three parts as follows: firms with military-connected commissioners (MCON_C), firms with military-connected directors (MCON_D), and firms with military-connected directors or commissioners (MCON). The interacting variable is thin capitalization policy through the regulation of the Ministry of Finance No.169/PMK.010/2015, which assessed 1 for the year after the implementation, and 0 otherwise. This paper used several control variables such as public accountant firm size (BIG4), board size (BOARD), independent commissioner size (INDCOM), firm size (FSIZE), firm age (FAGE), and return on equity (ROE) (Ataullah et al., 2018; Atmaja, 2010; Clemente-Almendros & Sogorb-Mira, 2016; Garcia & Herrero, 2021; Kurniawati et al., 2020). This paper also included year (YEAR) and industry fixed effects (INDUSTRY).

To gain the maximum possible observations, pooled panel crossed-section regression data are used. This study used moderated regression analysis. The general form of moderated regression analysis following J. Cohen and P. Cohen (1983) can be specified more compactly as:

\[Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \epsilon, \]

\[Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2 + \epsilon, \]

where \(Y \) represents a dependent variable in the model. \(X_1 \) represents an independent variable, while \(X_2 \) is a moderated variable. \(X_1 \) and \(X_2 \) represent an interaction between independent and moderated variables. \(\beta_0 \) is a constant value of the model. The empirical model takes the following form:

\[DP_i,t = \beta_0 + \beta_1 MCON_{-}Ci,t + \beta_2 TC_{Pi,t} + \beta_3 - 8 CONTROL_{Si,t} + \beta_9 YEAR_i,t + \beta_10 INDUSTRY_i,t + \epsilon, \]

\[DP_i,t = \beta_0 + \beta_1 MCON_{-}Di,t + \beta_2 TC_{Pi,t} + \beta_3 - 8 CONTROL_{Si,t} + \beta_9 YEAR_i,t + \beta_10 INDUSTRY_i,t + \epsilon, \]

\[DP_i,t = \beta_0 + \beta_1 MCON_{-}TCP_{i,t} + \beta_2 MCON_{-}Ci,t + \beta_3 TCP_{i,t} + \beta_4 - 9 CONTROL_{Si,t} + \beta_9 YEAR_i,t + \beta_11 INDUSTRY_i,t + \epsilon, \]

\[DP_i,t = \beta_0 + \beta_1 MCON_{-}TCP_{i,t} + \beta_2 MCON_{-}Ci,t + \beta_3 TCP_{i,t} + \beta_4 - 9 CONTROL_{Si,t} + \beta_9 YEAR_i,t + \beta_11 INDUSTRY_i,t + \epsilon, \]

\[DP_i,t = \beta_0 + \beta_1 MCON_{-}TCP_{i,t} + \beta_2 MCON_{-}Di,t + \beta_3 TCP_{i,t} + \beta_4 - 9 CONTROL_{Si,t} + \beta_9 YEAR_i,t + \beta_11 INDUSTRY_i,t + \epsilon. \]

3. RESULTS AND DISCUSSION

The results of descriptive statistics indicate there is no significant difference in the firms’ debt policy both before and after thin capitalization policy. The maximum debt amount of 1,498 in the sample shows there are some firms that use debt more than allowed. This means that thin capitalization is still ineffective.

3.1. Univariate analysis

By using the Pearson correlation test, it can be implied that military-connected firms use higher debt levels. Furthermore, military-connected commissioners encourage higher debt utilization, while military-connected directors are insignificantly related to the firms’ debt policy. Panel A in a two-sample t-test shows the differences in debt policies of military-connected firms. Panel B
Table 2. Descriptive statistics

Variable	Panel A. Descriptive statistics for all research years (2012–2019)	Panel B. Descriptive statistics before the implementation of thin capitalization policy (2012–2014)	Panel C. Descriptive statistics when the thin capitalization policy is initially implemented (2015–2016)	Panel D. Descriptive statistics after the implementation of thin capitalization policy (2017–2019)
DP	Mean: 0.267 Median: 0.241 Minimum: 0.000 Maximum: 1.498	Mean: 0.263 Median: 0.235 Minimum: 0.000 Maximum: 1.498	Mean: 0.279 Median: 0.255 Minimum: 0.000 Maximum: 1.498	Mean: 0.263 Median: 0.242 Minimum: 0.000 Maximum: 1.498
MCON	Mean: 0.165 Median: 0.000 Minimum: 0.000 Maximum: 1.000	Mean: 0.173 Median: 0.000 Minimum: 0.000 Maximum: 1.000	Mean: 0.173 Median: 0.000 Minimum: 0.000 Maximum: 1.000	Mean: 0.139 Median: 0.000 Minimum: 0.000 Maximum: 1.000
MCON_C	Mean: 0.158 Median: 0.000 Minimum: 0.000 Maximum: 1.000	Mean: 0.170 Median: 0.000 Minimum: 0.000 Maximum: 1.000	Mean: 0.186 Median: 0.000 Minimum: 0.000 Maximum: 1.000	Mean: 0.130 Median: 0.000 Minimum: 0.000 Maximum: 1.000
MCON_D	Mean: 0.014 Median: 0.000 Minimum: 0.000 Maximum: 1.000	Mean: 0.005 Median: 0.000 Minimum: 0.000 Maximum: 1.000	Mean: 0.020 Median: 0.000 Minimum: 0.000 Maximum: 1.000	Mean: 0.018 Median: 0.000 Minimum: 0.000 Maximum: 1.000
TCP	Mean: 0.536 Median: 1.000 Minimum: 0.000 Maximum: 1.000	Mean: 0.000 Median: 0.000 Minimum: 0.000 Maximum: 0.000	Mean: 0.000 Median: 0.000 Minimum: 0.000 Maximum: 0.000	Mean: 1.000 Median: 1.000 Minimum: 1.000 Maximum: 1.000
TCP	Mean: 0.057 Median: 0.058 Minimum: 0.000 Maximum: 1.000	Mean: 0.057 Median: 0.058 Minimum: 0.000 Maximum: 1.000	Mean: 0.057 Median: 0.058 Minimum: 0.000 Maximum: 1.000	Mean: 1.000 Median: 1.000 Minimum: 1.000 Maximum: 1.000
TCP	Mean: 0.057 Median: 0.058 Minimum: 0.000 Maximum: 1.000	Mean: 0.057 Median: 0.058 Minimum: 0.000 Maximum: 1.000	Mean: 0.057 Median: 0.058 Minimum: 0.000 Maximum: 1.000	Mean: 1.000 Median: 1.000 Minimum: 1.000 Maximum: 1.000
TCP	Mean: 0.057 Median: 0.058 Minimum: 0.000 Maximum: 1.000	Mean: 0.057 Median: 0.058 Minimum: 0.000 Maximum: 1.000	Mean: 0.057 Median: 0.058 Minimum: 0.000 Maximum: 1.000	Mean: 1.000 Median: 1.000 Minimum: 1.000 Maximum: 1.000
TCP	Mean: 0.057 Median: 0.058 Minimum: 0.000 Maximum: 1.000	Mean: 0.057 Median: 0.058 Minimum: 0.000 Maximum: 1.000	Mean: 0.057 Median: 0.058 Minimum: 0.000 Maximum: 1.000	Mean: 1.000 Median: 1.000 Minimum: 1.000 Maximum: 1.000
TCP	Mean: 0.057 Median: 0.058 Minimum: 0.000 Maximum: 1.000	Mean: 0.057 Median: 0.058 Minimum: 0.000 Maximum: 1.000	Mean: 0.057 Median: 0.058 Minimum: 0.000 Maximum: 1.000	Mean: 1.000 Median: 1.000 Minimum: 1.000 Maximum: 1.000
TCP	Mean: 0.057 Median: 0.058 Minimum: 0.000 Maximum: 1.000	Mean: 0.057 Median: 0.058 Minimum: 0.000 Maximum: 1.000	Mean: 0.057 Median: 0.058 Minimum: 0.000 Maximum: 1.000	Mean: 1.000 Median: 1.000 Minimum: 1.000 Maximum: 1.000

Table 3. Pearson correlation

Variable	[1]	[2]	[3]	[4]	[5]	[6]
DP	1.000					
MCON	0.048** (0.020)	1.000				
MCON_C	0.054*** (0.009)	0.973*** (0.000)	1.000			
MCON_D	−0.025 (0.234)	0.270*** (0.000)	0.108*** (0.000)	1.000		
TCP	−0.011 (0.588)	−0.030 (0.151)	−0.040* (0.056)	0.061*** (0.003)	1.000	
BIG4	−0.080*** (0.000)	0.075*** (0.000)	0.071*** (0.001)	0.032 (0.118)	−0.048** (0.020)	1.000
BOARD	−0.030 (0.142)	0.154*** (0.000)	0.137*** (0.001)	0.069*** (0.040)	−0.043** (0.002)	0.375***
INDCOM	0.012 (0.558)	0.152*** (0.000)	0.142*** (0.000)	0.067*** (0.754)	−0.007 (0.000)	0.259***
FSIZE	0.114*** (0.000)	0.145*** (0.000)	0.137*** (0.000)	0.030 (0.000)	0.063*** (0.000)	0.367***
FAGE	−0.049** (0.017)	0.020 (0.338)	0.024 (0.249)	−0.044** (0.035)	0.034* (0.100)	0.122***
ROE	−0.087*** (0.000)	0.035* (0.087)	0.035* (0.090)	0.003 (0.880)	−0.064*** (0.002)	0.135***
and C show the presence of military-connected commissioners tends to have a higher level of debt. Meanwhile, the presence of military-connected directors shows an insignificant coefficient.

Table 4. T-test

Variable	Panel A. Military-Connected Firms	Panel B. Military-Connected Commissioners	Panel C. Military-Connected Directors
	MEAN NON-MCON Coef t-value	MEAN NON-MCON Coef t-value	MEAN NON-MCON Coef t-value
DP	0.292 0.262 0.030*** 2.329	0.296 0.261 0.035*** 2.622	0.219 0.268 –0.049 –1.190
TCP	0.503 0.543 –0.040 –1.438	0.490 0.545 –0.054 –1.909	0.788 0.532 0.255** 2.926

3.2. Multivariate analysis

3.2.1. Base results

Table 5 shows a significant positive association between military-connected firms and debt policy. This paper also found that military-connected commissioners are positively and significantly associated with corporate debt policy. On the other hand, there is no significant association between military-connected directors and debt policy. These results indicate the first hypothesis is not rejected and confirm the assumption that military-connected firms have lower cost of debt (Harymawan, 2018) and easier access to financing (Agrawal & Knoeber, 2001; Goldman et al., 2013). Furthermore, the existence of military-connected commissioner promotes rent seeking practice. Meanwhile, the position of a director as an executive role tends to be conservative and does not have overpower in debt policy.

This paper found a significant negative association between military-connected firms and debt policy after the thin capitalization policy. This result means the existence of a thin capitalization policy weakens the association between military-connected firms and debt policy. Furthermore, thin capitalization policy reacts to the association between military-connected commissioners and debt policy but does not react to the association between military-connected directors and debt policy. Thus, the second hypothesis is not rejected. The characteristics of nationalism encourage boards with military background to comply the regulations. Harymawan (2018) stated the benefits of having a military-connected board are allowed if it is in accordance with regulations, since military personnel have a high sense of nationalism. These results indirectly support the research of Law and Mills (2017) who stated boards with military experience have a high sense of nationalism so that they have compliance in the field of taxation.

According to test results in Table 6, another interesting fact has been found that thin capitalization policy is not significantly related to debt policy. This finding indicates the application of thin capitalization policy is not effective enough to stimulate lower debt usage. Interestingly, the first column of Table 6 shows a significant negative association between military-connected firms and debt policy after the implementation of thin capitalization policy. It can be interpreted that thin capitalization policy is effective in stimulating lower debt utilization when firms have boards with military backgrounds.
3.3. Robustness test

This paper used endogeneity tests to ensure endogeneity problems were minimized in the results. It is important to carry out endogeneity tests in order to gain confidence that this paper has met the necessary condition to obtain valid results (Roberts & Whited, 2013).
3.3.1. **Heckman’s two-stage regression**

Following Harymawan (2020), this paper used Heckman’s two-stage regression to overcome the problem of the potential sample-selection bias. This paper estimated the possibility of potential sample-selection bias problems, since the firms have discretion to hire boards with military experience or not. Following Heckman’s (1979) two-stage procedure, this paper estimated the probit model to predict factors related to military connections but not having a direct association with

Table 7. CEM regression
Panel A. Military-connected firms
All
Matched
Unmatched
(1)
MCON_TCP
MCON
TCP
Controls
_cons
Year FE
Industry FE
R²
Adjusted R²
N

Panel B. Commissioners and directors with military background
All
Matched
Unmatched
(1)
MCON_CTCP
MCON_DTCP
MCON_C
MCON_D
TCP
Controls
_cons
Year FE
Industry FE
R²
Adjusted R²
N
Table 8. Heckman’s two-stage regression

Panel A. Military-Connected Firms	First Stage	Second Stage	
	(1)	(2)	(3)
AVE_MCON	4.150***		
	(3.73)		
MCON_TCP			–0.057**
			(–2.05)
MCON	0.012**	0.060***	
	(2.17)	(2.72)	
TCP	–0.288	–0.022	–0.018
	(–1.28)	(–0.63)	(–0.50)
Controls	Yes	Yes	Yes
MILLS	0.027	0.029	
	(0.64)	(0.67)	
_cons	–4.774***	–0.520***	–0.522**
	(–6.14)	(–2.32)	(–2.32)
Year FE	Yes	Yes	Yes
Industry FE	Yes	Yes	Yes
Pseudo R²	0.090		
Controls	Yes	Yes	Yes
MILLS	0.023	0.024	
	(0.51)	(0.52)	
_cons	–4.889***	–0.506**	–0.505**
	(–6.09)	(–2.07)	(–2.06)
Year FE	Yes	Yes	Yes
Industry FE	Yes	Yes	Yes
Pseudo R²	0.088		
Adjusted R²	0.107	0.109	
N	2330	2330	2330
Pseudo R²	0.088		
Adjusted R²	0.107	0.109	
N	2330	2330	2330

Panel B. Commissioners with military background	First Stage	Second Stage	
AVE_MCONC	4.154***		
	(3.30)		
MCON_CTCP	–0.053*		
	(–1.85)		
MCON_C	0.033**	0.059***	
	(2.20)	(2.63)	
TCP	–0.378	–0.021	–0.017
	(–1.54)	(–0.52)	(–0.41)
Controls	Yes	Yes	Yes
MILLS	0.023	0.024	
	(0.51)	(0.52)	
_cons	–4.889***	–0.506**	–0.505**
	(–6.09)	(–2.07)	(–2.06)
Year FE	Yes	Yes	Yes
Industry FE	Yes	Yes	Yes
Pseudo R²	0.088		
Adjusted R²	0.107	0.109	
N	2330	2330	2330

Panel C. Directors with military background	First Stage	Second Stage	
AVE_MCOND	29.350***		
	(3.94)		
MCON_DTCP	–0.046		
	(–0.59)		
MCON_D	–0.031	0.005	
	(–0.79)	(0.07)	
This paper used the AVE_{MCON} variable as an instrumental one. AVE_{MCON} measures the percentage of military-connected firms in an industry and year. Through Heckman’s two-stage analysis test, this paper included all control variables in both the first and second stages. The inverse mills ratio ($MILLS$) resulting from the first stage regression was included in the second stage regression with other variables. The results of the Heckman two-stage test are presented in Table 8. The main variables of interest were positive and significant coefficients on the instrumental variables. Models 2 and 3 show the results of the second stage of regression. These results confirm the main findings in Tables 5 and 6.

3.3.2. Group test for robustness

To confirm the validity of the results, this paper conducted a group test based on thin capitalization policy before implementation (2012–2014), initial implementation (2015–2016), and after implementation (2017–2019). The results are listed in Appendix A. According to Table A1, $MCON$ coefficient is positive and significant in the year before the implementation of thin capitalization policy. Meanwhile, in the initial implementation and after implementation of regulations, the results are not significant. Subsequently, this paper found similar results on the association between a board of commissioners with a military background and debt policy. These results confirm the main finding in Tables 5 and 6.

3.3.3. Group test for additional analysis

Furthermore, the sample of firms is divided on firms’ size. First, this paper calculated the median firm size for each group of years, then classified the sample into large or small firms. Appendices B and C show that firms with total assets below the median are rated 1, and 0 otherwise. As a result, small firms have lower debt policies than large ones. This is because small firms are more vulnerable to changes in economic conditions, having fewer assets, higher default risk, and tend to be less profitable (Utami, 2021), thereby reducing creditor confidence in providing loans (Wahyuni, 2019). Therefore, small firms have a higher cost of debt, thereby encouraging lower use of debt. However, the existence of boards with military background in small firms prior to the thin capitalization policy helped them to obtain lower interest rates (Harymawan, 2018) and easier access to finance (Agrawal & Knoeber, 2001; Goldman et al., 2013). Therefore, the presence of boards with military background in small firms before thin capitalization policy led to higher use of debt.
CONCLUSION

This study aims to examine boards with military backgrounds and the debt policy of firms listed on Indonesia Stock Exchange during 2012–2019. This paper specified the uniqueness of the contrasting characteristic of the military-connected board and its consequences for firm debt policy, taking into account the before and after thin capitalization policy. This paper shows that thin capitalization policy has not effectively minimized debt intensity of Indonesian listed firms. The results are expected to assist the government in assessing the effectiveness of thin capitalization policy. However, this paper shows the combined roles of commissioners with military background and thin capitalization policy can effectively encourage lower debt policy. The results can be taken into account by stakeholders in making decisions related to the appointment of the military background of the board of commissioners after the implementation of the thin capitalization policy.

However, the findings of this paper should be used carefully, given the limitations of the study. This paper measured the past experience of boards in military-related positions, so this can lead to the tip of the iceberg. This may be an opportunity for further research to more fully use measurements of military background boards.

AUTHOR CONTRIBUTIONS

Conceptualization: Gery Lusiano Firmansah, Iman Harymawan.
Data curation: Gery Lusiano Firmansah.
Formal analysis: Nurul Fitriani.
Investigation: Nurul Fitriani.
Methodology: Nurul Fitriani, Gery Lusiano Firmansah.
Project administration: Gery Lusiano Firmansah.
Resources: Iman Harymawan.
Software: Nurul Fitriani.
Supervision: Iman Harymawan.
Validation: Iman Harymawan.
Visualization: Nurul Fitriani.
Writing – original draft: Nurul Fitriani, Gery Lusiano Firmansah.
Writing – review & editing: Iman Harymawan.

REFERENCES

1. Abatecola, G., & Cristofaro, M. (2020). Hambrik and Mason’s “Upper Echelons Theory”: evolution and open avenues. Journal of Management History, 26(1), 116-136. https://doi.org/10.1108/JMH-02-2018-0016
2. Agrawal, A., & Knoeber, C. R. (2001). Do some outside directors play a political role? Journal of Law and Economics, 44(1), 179-198. https://doi.org/10.1086/320271
3. Al-Hadi, A., Chatterjee, B., Yaftian, A., Taylor, G., & Monzur Hasaan, M. (2019). Corporate social responsibility performance, financial distress and firm life cycle: evidence from Australia. Accounting and Finance, 59(2), 961-989. https://doi.org/10.1111/acfi.12277
4. Almendros, J. A. C., & Mira, F. S. (2016). The effect of taxes on the debt policy of Spanish listed companies. Journal of the Spanish Economic Association, 7, 359-391. https://doi.org/10.1007/s13209-016-0147-4
5. Arifai, M., Tran, A. T., Moslehpour, M., & Wong, W. K. (2018). Two-tier board system and Indonesian family owned firms performance. Management Science Letters, 8, 1-16. https://doi.org/10.5267/j.msl.2018.5.011
6. Ataullah, A., Vivian, A., & Xu, B. (2018). Optimistic disclosure tone and conservative debt policy. Abacus. https://doi.org/10.1111/abac.12140
7. Atmaja, L. S. (2010). Dividend and debt policies of family controlled firms. International Journal of Managerial Finance, 6(2), 128-142. https://doi.org/10.1108/17439131011032059
8. Benmelech, E., & Frydman, C. (2015). Military CEOs. Journal of Financial Economics, 117(1), 43-59. https://doi.org/10.1016/j.jfineco.2014.04.009
9. Chua, M., Razak, N. H. A., Nassir, A. M., & Yahya, M. H. (2022). Dynamic capital structure in Indonesia: Does the education and experience of CEOs matter? *Asia Pacific Management Review*, 27, 58-68. https://doi.org/10.1016/j.apmrv.2021.05.003

10. Clemente-Almendros, J. A., & So (2013). Politically connected board and the allocation of procurement contracts. *Review of Finance*, 17(5), 1617-1648. https://doi.org/10.1093/rof/ris039

11. Cohen, J., & Cohen, P. (1983). *Applied multiple regression/correlation analysis for the behavioral sciences* (2nd ed.). Hillsdale NJ: Erlbaum.

12. Elder Jr., G. H., Gimbel, C., & So-gorb-Mira, F. (2016). The effect of taxes on the debt policy of Spanish listed companies. *SERIES*, 7(3), 359-291. https://doi.org/10.1007/s13209-016-0147-4

13. Fathi, E., & Jean-Pierre, G. (2001). Financial distress and corporate governance: an empirical analysis. *Corporate governance: the international journal of business in society*, 1(1), 15-23. http://dx.doi.org/10.1016/14720700103389548

14. Fisman, R. (2001). Estimating the value of political connections. *American Economic Review*, 91(4), 1095-1102. https://doi.org/10.1257/aer.91.4.1095

15. Garcia, C. J., & Herrero, B. (2021). Female directors, capital structure, and financial distress. *Journal of Business Research*, 136, 592-601. https://doi.org/10.1016/j.jbusres.2021.07.061

16. Goldman, E., Rocholl, J., & So, J. (2013). Politically connected boards of directors and the allocation of procurement contracts. *Review of Finance*, 17(5), 1617-1648. https://doi.org/10.1093/rof/ris039

17. Government of The Republic of Indonesia. (2007). *Law No. 40 of 2007 on Limited Liability Companies*.

18. Hambrick, D. C. (2007). Upper Echelons Theory: An Update The Academy of Management Review UPER ECHELONS THEORY: AN UPDATE. *The Academy of Management Review*, 32(2), 334-343.

19. Hambrick, D. C., & Mason, P. A. (1984). Upper Echelons: The Organization as a Reflection of Its Top Managers. *Academy of Management Review*, 9(2), 193-206. https://doi.org/10.5465/amr.1984.277628

20. Harymawan, I. (2018). Why do firms appoint former military personnel as directors? Evidence of loan interest rate in militarily connected firms in Indonesia. *Asian Review of Accounting*, 26(1), 2-18. https://doi.org/10.1108/ARA-07-2016-0086

21. Harymawan, I. (2020). Military reform, militarization, and auditor choice. *Managerial Auditing Journal*, 35(6), 705-729. https://doi.org/10.1108/MAJ-04-2019-2258

22. Harymawan, I., Putra, F. K. G., Risiki, A., & Nasih, M. (2021). Innovation intensity of military-connected firms. *International Journal of Managerial Finance*, 17(4), 913-922. https://doi.org/10.1108/IJMF-12-2020-0616

23. Heckman, J. J. (1979). Sample selection bias as specification error. *Econometrica: Journal of the Economics Society*, 47, 153-161.

24. IFC. (2018). *Indonesia corporate governance manual (second)*. https://doi.org/10.1596/30122

25. Jungmann, C. (2006). The effectiveness of corporate governance in one-tier and two-tier boardrooms-evidence from the UK and Germany. *European Company and Financial Law Review*, 3(4). https://doi.org/10.1515/ecfr.2006.019

26. Koch-Bayram, I. F., & Wernicke, G. (2018). Drilled to obey? Ex-military CEOs and financial misconduct. *Strategic Management Journal*, 39(11), 2943-2964. https://doi.org/10.1002/smj.2946

27. Kurniawati, H., Cauwenberge, P. V., & Bauwheide, H. V. (2020). Affiliation of local audit firms with Big4 auditors and capital structure: evidence from Indonesia. *Managerial Auditing Journal*, 35(6), 731-757. https://doi.org/10.1108/MAJ-05-2019-2291

28. Law, K. K. F., & Mills, L. F. (2017). Military experience and corporate tax avoidance. *Review of Accounting Studies*, 22(1), 141-184. https://doi.org/10.1007/s11142-016-9373-z

29. Lin, C., Ma, Y., Officer, M. S., & Zou, H. (2012). CEOs’ Military Experience and Acquisition Decisions. *SSRN Electronic Journal*. https://doi.org/10.2139/ssrn.1932623

30. Mietzner, M., & Misol, L. (2012). Military Business in Post-Suharto Indonesia: Decline, Reform, and Persistence. *The Politics of Military Reform*, 101-120. http://dx.doi.org/10.973-3-642-29624-6

31. Mills, L. F., & Law, K. K. F. (2015). Managerial Characteristics and Corporate Taxes. *Colloquium on Tax Policy and Public Finance*, 1-55.

32. Minister of Finance of the Republic of Indonesia. (2015). *Regulation of the Minister of Finance Number 169/PMK.010/2015 concerning Determination of the Comparison Between Debtand Company Capital for Calculation of Income Tax*. Retrieved from https://jdh.kemenkeu.go.id/fullText/2015/169~PMK.010~2015Per.pdf

33. Murtini, U. (2018). The effect of managerial ownership, institutional, and profitability on debtpolicy. *Journal Riset Akuntansi dan Keuangan Bisnis*, 14(2), 141-153. https://dx.doi.org/10.21460/jrak.2018.142.330

34. Nasih, M., Harymawan, I., Putra, F. K. G., & Qotrunnada, R. (2019). Military experienced board and corporate social responsibility disclosure: An empirical evidence from Indonesia. *Entrepreneurship and Sustainability Issues*, 7(1), 553-573. https://doi.org/10.9770/jesi.2019.7.1(39)

35. Nugrahanti, Y. W., Sutrisno, T., Rahman, A. E., & Mardati, E. (2020). Do firm characteristics, political connection and corporate governance mechanism affect financial distress? Evidence from
APPENDIX A

Table A1. Based on the divided sample

	Before Implementation (2012–2014)	Initial Implementation (2015–2016)	After Implementation (2017–2019)						
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
	DP								
MCON	0.071***	0.027	−0.004						
	(2.58)	(1.02)	(–0.18)						
MCON_C	0.071**	0.024	0.001						
	(2.55)	(0.90)	(0.03)						
MCON_D	0.026	−0.045	−0.025						
	(0.39)	(–0.86)	(–0.39)						
Controls	Yes								
	Yes								
_cons	−0.189	−0.190	−0.272	−0.324	−0.322	−0.322	−0.550***	−0.549***	−0.546***
	(–0.83)	(–0.83)	(–1.24)	(–0.93)	(–0.92)	(–0.92)	(–2.46)	(–2.46)	(–2.43)
Year FE	Yes								
Industry FE	Yes								
R²	0.123	0.123	0.110	0.129	0.129	0.128	0.116	0.116	0.116
Adjusted R²	0.106	0.106	0.093	0.108	0.108	0.107	0.102	0.102	0.102
N	790	790	790	587	587	587	953	953	953

Indonesia. *International Journal of Trade and Global Markets*, 13(2), 220–250. https://doi.org/10.1504/IJTGM.2020.106753

Panda, A., & Nanda, S. (2018). Working Capital Financing and Corporate Profitability of Indian Manufacturing Firms. *Management Decision*, 56(2), 441–457. https://doi.org/10.1108/MD-07-2017-0698

Roberts, M. R., & Whited, T. M. (2013). Chapter 7 – Endogeneity in empirical corporate finance. In G. M. Constantinides, M. Harris, & R. Stulz (Eds.), *Handbook of the Economic of Finance*, 2 (pp. 493-572). https://doi.org/10.1016/B978-0-44-453594-8.00007-0

Rüland, J., Manea, M. G., & Born, H. (2012). The politics of military reform: Experience from Indonesia and Nigeria. *Global Power Shift*, 1-239. https://doi.org/10.1007/978-3-642-29624-6

Sharma, B., Adhikari, B. K., Agrawal, A., Arthur, B.R., & Rabarison, M. K. (2018). Unintended consequences of the Dodd-Frank Act on Credit Rating Risk and Corporate Finance. *Journal of Financial and Quantitative Analysis*, Forthcoming. https://dx.doi.org/10.2139/ssrn.3276309

Siregar, S. V., & Utama, S. (2008). Type of earnings management and the effect of ownershipstructure, firm size, and corporate-governance practices: Evidence from Indonesia. *The International Journal of Accounting*, 43(1), 1-27. https://doi.org/10.1016/j.in-tacc.2008.01.001

Utami, S. W. (2021). The effect of profitability and leverage on cost of debt with firm size as moderating variables. *SEAJBE*, 24(4), 43-51. Retrieved from https://seaibcom/wp-content/uploads/2021/06/SEAJBE24_715.pdf

Wahyuni, P. D. (2019). Good corporate governance and firm size on cost of debt: evidence from Indonesia listed companies. *IIARAFMS*, 9(2), 257-265. http://dx.doi.org/10.6007/IIARAFMS/v9-12/6173

Wang, W. K., Lu, W. M., Kweh, Q. L., & Lee, J. (2018). Management characteristics and corporate performance of Chinese chemical companies: the moderating effect of managerial ability. *International Transactions in Operational Research*, 1-20. https://doi.org/10.1111/itor.12575

Wang, Y., Chang, X., Wang, T., & Wang, S. (2022). Female directors and environmental innovation: is stakeholder orientation a missing link? *Gender in Management: An International Journal*, 37(5), 587-602. https://doi.org/10.1108/GM-05-2021-0127

Wong, L., Bliese, P., & McGurk, D. (2003). Military leadership: A context specific review. *Leadership Quarterly*, 14(6). https://doi.org/10.1016/j.leaqua.2003.08.001

Zhang, X., Ouyang, R., Liu, D., & Xu. L. (2020). Determinants of corporate default risk in China: The role of financial constraints. *Economic Modelling*, 92, 87-98. https://doi.org/10.1016/j.econmod.2020.07.005
APPENDIX B

Table B1. Relationship between military-connected firms and debt policy

	Before Implementation (2012–2014)	Initial Implementation (2015–2016)	After Implementation (2017–2019)						
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
DP	DP	DP	DP	DP	DP	DP	DP	DP	DP
MCON	0.070***			0.032			−0.001		
	(2.62)			(1.22)			(−0.05)		
MCON_C	0.070***			0.031			0.004		
	(2.59)			(1.13)			(0.18)		
MCON_D		0.008		−0.041			−0.036		−0.036
		(0.12)		(−0.76)			(−0.55)		
SMALL	−0.093***	−0.093***	−0.098***	−0.087***	−0.087***	−0.085***	−0.069***	−0.069***	−0.069***
	(−5.25)	(−5.26)	(−5.72)	(−3.82)	(−3.82)	(−3.72)	(−3.85)	(−3.85)	(−3.82)
Controls	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
_cons	0.430***	0.430***	0.423***	0.500***	0.498***	0.407***	0.406***	0.406***	0.406***
	(7.34)	(7.34)	(7.21)	(6.75)	(6.71)	(7.19)	(7.19)	(7.18)	
Year FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
R²	0.138	0.138	0.125	0.131	0.131	0.129	0.098	0.098	0.099
Adjusted R²	0.121	0.121	0.108	0.110	0.109	0.108	0.084	0.084	0.084
N	790	790	790	587	587	587	953	953	953

APPENDIX C

Table C1. Interacting role of firm size in the relationship between military-connected firms and debt policy

	Before Implementation (2012–2014)	Initial Implementation (2015–2016)	After Implementation (2017–2019)						
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
DP	DP	DP	DP	DP	DP	DP	DP	DP	DP
MCON_SMALL	0.141***			0.065			0.036		
	(2.19)			(1.20)			(0.81)		
MCON_CSMALL	0.143***			0.078			0.035		
	(2.20)			(1.40)			(0.77)		
MCON_DSMALL	0.000			0.027			0.043		
	(.)			(0.24)			(0.37)		
MCON	0.020			−0.004		−0.015	−0.010		−0.010
	(0.84)			(−0.14)		(−0.60)	(−0.37)		
MCON_C	0.019			−0.004		−0.015	−0.010		−0.010
	(0.78)			(−0.14)		(−0.60)	(−0.37)		
MCON_D	0.008			−0.055		−0.051	−0.051		−0.051
	(0.12)			(−0.54)		(−0.57)	(−0.57)		
SMALL	−0.116***	−0.116***	−0.098***	−0.101***	−0.103***	−0.085***	−0.074***	−0.074***	−0.069***
	(−6.34)	(−6.36)	(−5.72)	(−3.95)	(−4.04)	(−3.72)	(−3.99)	(−3.98)	(−3.85)
Controls	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
_cons	0.437***	0.437***	0.423***	0.506***	0.507***	0.498***	0.411***	0.410***	0.406***
	(7.43)	(7.43)	(7.21)	(6.72)	(6.73)	(6.70)	(7.30)	(7.31)	(7.18)
Year FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
R²	0.149	0.149	0.125	0.134	0.135	0.129	0.099	0.099	0.099
Adjusted R²	0.132	0.132	0.108	0.111	0.112	0.106	0.084	0.084	0.083
N	790	790	790	587	587	587	953	953	953