Strong Variability of the Coronal Line Region in NGC 5548

Hermine Landt
Durham University, UK

Martin J. Ward
Durham University, UK

Katrien C. Steenbrugge
Universidad Católica del Norte, Chile

Gary J. Ferland
University of Kentucky, gary@uky.edu

Follow this and additional works at: https://uknowledge.uky.edu/physastron_facpub

Part of the Astrophysics and Astronomy Commons, and the Physics Commons

Repository Citation
Landt, Hermine; Ward, Martin J.; Steenbrugge, Katrien C.; and Ferland, Gary J., "Strong Variability of the Coronal Line Region in NGC 5548" (2015). Physics and Astronomy Faculty Publications. 373.
https://uknowledge.uky.edu/physastron_facpub/373

This Article is brought to you for free and open access by the Physics and Astronomy at UKnowledge. It has been accepted for inclusion in Physics and Astronomy Faculty Publications by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.
Strong Variability of the Coronal Line Region in NGC 5548

Digital Object Identifier (DOI)
http://dx.doi.org/10.1093/mnras/stv2176

Notes/Citation Information
Published in Monthly Notices of the Royal Astronomical Society, v. 454, no. 4, p. 3688-3696.

This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society ©: 2015 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.

This article is available at UKnowledge: https://uknowledge.uky.edu/physastron_facpub/373
Strong variability of the coronal line region in NGC 5548

Hermine Landt,† Hermine Landt,1*† Martin J. Ward,1 Katrien C. Steenbrugge2 and Gary J. Ferland3,4

1Department of Physics, Durham University, South Road, Durham, DH1 3LE, UK
2Instituto de Astronomía, Universidad Católica del Norte, Avenida Angamos 0610, 1270709 Antofagasta, Chile
3School of Mathematics and Physics, Queen’s University of Belfast, Belfast BT7 1NN, Northern Ireland, UK
4Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506, USA

Accepted 2015 September 17. Received 2015 September 15; in original form 2015 July 14

ABSTRACT

We present the second extensive study of the coronal line variability in an active galaxy. Our data set for the well-studied Seyfert galaxy NGC 5548 consists of five epochs of quasi-simultaneous optical and near-infrared spectroscopy spanning a period of about five years and three epochs of X-ray spectroscopy overlapping in time with it. Whereas the broad emission lines and hot dust emission varied only moderately, the coronal lines varied strongly. However, the observed high variability is mainly due to a flux decrease. Using the optical [Fe VII] and X-ray O VII emission lines we estimate that the coronal line gas has a relatively low density of \(n_e \sim 10^3 \, \text{cm}^{-3} \) and a relatively high ionisation parameter of \(\log U \sim 1 \). The resultant distance of the coronal line gas from the ionizing source of about eight light-years places this region well beyond the hot inner face of the dusty torus. These results imply that the coronal line region is an independent entity. We find again support for the X-ray heated wind scenario of Pier & Voit; the increased ionizing radiation that heats the dusty torus also increases the cooling efficiency of the coronal line gas, most likely due to a stronger adiabatic expansion. The much stronger coronal line variability of NGC 5548 relative to that of NGC 4151 can also be explained within this picture. NGC 5548 has much stronger coronal lines relative to the low-ionization lines than NGC 4151 indicating a stronger wind, in which case a stronger adiabatic expansion of the gas and so fading of the line emission is expected.

Key words: quasars: emission lines – quasars: individual: NGC 5548 – galaxies: Seyfert – infrared: galaxies – X-rays: galaxies.

1 INTRODUCTION

In addition to the broad and narrow emission lines, the spectra of active galactic nuclei (AGN) display high-ionization emission lines, the so-called coronal lines, which require energies \(\gtrsim 100 \, \text{eV} \) to be excited. The coronal line region is believed to lie at distances from the central ionizing source intermediate between those of the broad (BELR) and narrow emission line region (NELR) and to possibly coincide with the hot inner face of the circumnuclear, obscuring dusty torus (as first suggested by Pier & Voit 1995). This assumption is based mainly on the following: (i) the coronal lines have three to four orders of magnitude higher critical densities for collisional deexcitation than the low-ionization narrow emission lines and are believed to be emitted at these densities; (ii) the coronal line profiles often but not always have full width at half maxima (FWHM) intermediate between those of the broad and narrow emission lines (FWHM \(\sim 500–1500 \, \text{km s}^{-1} \); e.g. Penston et al. 1984; Appenzeller & Oestreicher 1988; Erkens, Appenzeller & Wagner 1997; Rodríguez-Ardila et al. 2002, 2011); and (iii) the emission from this region is often extended but much less so than that from the low-ionization NELR (on scales of \(\sim 80–150 \, \text{pc} \); e.g. Prieto, Marco & Gallimore 2005; Müller Sánchez et al. 2006; Müller-Sánchez et al. 2011; Mazzalay et al. 2013). Recently, Rose, Elvis & Tadhunter (2015) found evidence in their study of seven AGN with strong coronal lines selected from the Sloan Digital Sky Survey (SDSS) that the coronal line region has higher densities than the low-ionization NELR and lies at distances from the ionizing source similar to those estimated for the hot dust sublimation radius.

In Landt et al. (2015), we have presented the first extensive study of the coronal line variability in an AGN and have started to question this picture. Our data set for the nearby, well-known source NGC 4151 included six epochs of quasi-simultaneous optical and near-IR spectroscopy spanning a period of \(\sim 8 \) yr and five epochs of X-ray spectroscopy overlapping in time with it, with the observations in each wavelength performed with the same telescope and set-up. For this source we found that the coronal lines varied only weakly, if at all, and estimated a relatively low density \((n_e \sim 10^3 \, \text{cm}^{-3}) \)

* E-mail: hermine.landt@durham.ac.uk
† Visiting Astronomer at the Infrared Telescope Facility, which is operated by the University of Hawaii under Cooperative Agreement no. NNX-08AE38A with the National Aeronautics, Space Administration, Science Mission Directorate, Planetary Astronomy Programme.

© 2015 The Authors
Published by Oxford University Press on behalf of the Royal Astronomical Society

Downloaded from http://mnras.oxfordjournals.org/ at University of Kentucky Libraries on September 23, 2016
and high ionisation parameter \(\log U \sim 1 \) for the coronal line gas. The resultant distance of the coronal line region from the ionizing continuum was \(\sim 2 \) light-years, which is well beyond the hot inner face of the obscuring torus of \(\sim 2 \) light-months; Koshida et al. (2014). Based on the high ionisation parameter, we proposed that the coronal line region is an independent entity rather than part of a continuous gas distribution connecting the BELR and low-ionization NERL, possibly an X-ray heated wind as suggested by Pier & Voit (1995).

The most stringent constraints on the properties of the coronal line emitting region could come from variability studies, in particular if the variability of several coronal lines can be compared with each other and with that of other AGN components such as the BELR, hot dust emission and X-ray luminosity, as we have done in Landt et al. (2015). However, mainly due to the weakness of these emission lines and also lack of data, very few studies of this kind have been attempted so far. Veilleux (1988) made the only systematic study of the coronal line variability. In his sample of \(\approx 20 \) AGN he found firm evidence that both the \([\text{Fe} \, \text{vii}]\) \(\lambda 6087 \) and \([\text{Fe} \, \text{x}]\) \(\lambda 6375 \) emission lines varied (during a period of a few years) for only one source, namely, NGC 5548, which is the subject of this paper, and tentative evidence for another seven sources (including NGC 4151). Then, within a general optical variability campaign on the source Mrk 110 lasting for half a year, Kollatschny et al. (2001) reported strong \([\text{Fe} \, \text{x}]\) variations. More recently, follow-up optical spectroscopy of a handful of objects with unusually prominent coronal lines selected from the SDSS showed that in half of them the coronal lines strongly faded (by factors of \(\sim 2-10 \)), making these sources candidates for stellar tidal disruption events (Komossa et al. 2009; Yang et al. 2013).

Here we present the second extensive study of the coronal line variability in an AGN. Our data set for the well-studied source NGC 5548 (\(z = 0.017 \)) consists of five epochs of quasi-simultaneous optical and near-infrared spectroscopy spanning a period of \(\approx 5 \) yr and three epochs of X-ray spectroscopy overlapping in time with it. The paper is organized as follows. In Section 2, we present the data and measurements. In Section 3, we discuss the observed variability behaviour of the near-IR, optical, and X-ray coronal lines, for which we seek an interpretation in the context of the location of and excitation mechanism for the coronal line emission region in Section 4. Finally, in Section 5, we summarize our main results and present our conclusions. Throughout this paper we have assumed cosmological parameters \(H_0 = 70 \, \text{km s}^{-1} \, \text{Mpc}^{-1}, \Omega_M = 0.3, \) and \(\Omega_\Lambda = 0.7. \)

2 THE DATA AND MEASUREMENTS

2.1 Near-IR and optical spectroscopy

We have five epochs of quasi-simultaneous (within less than two months) near-IR and optical spectroscopy for NGC 5548 (see Tables 1 and 2). All data are of relatively high signal-to-noise ratio (continuum \(S/N \gtrsim 50-100 \)). The near-IR spectroscopy was obtained with the SpeX spectrograph (Rayner et al. 2003) at the NASA...
Infrared Telescope Facility (IRTF), a 3 m telescope on Mauna Kea, Hawaii, in the short cross-dispersed mode (SXD, 0.8–2.4 μm). All data were obtained through a slit of 0.8 × 15 arcsec giving an average spectral resolution of FWHM ∼400 km s⁻¹. The four epochs spanning the years 2004–2007 are our own data and were discussed and presented in Landt et al. (2008, 2011). The near-IR spectrum from 2002 was discussed by Riffel et al. (2006). The optical spectra were obtained with the FAST spectrograph (Fabricant et al. 1998) at the Tillinghast 1.5 m telescope on Mt. Hopkins, Arizona, using the 300 l/mm grating and a 3 arcsec long-slit. This set-up resulted in a wavelength coverage of ∼3720–7515 Å and an average spectral resolution of FWHM ∼300 km s⁻¹. The slit was rotated to the parallactic angle for all observations but the 2004 May epoch. However, the latter spectrum was observed at a very low airmass (sec z ∼1.01). The optical data were discussed and presented in Landt et al. (2008, 2011), with the exception of the 2004 May spectrum, which was retrieved from the FAST archive.

We have measured the fluxes of the strongest near-IR and optical coronal lines and estimated their 1σ uncertainties as detailed in Landt et al. (2015). In the near-IR, we have measured two sulphur lines and two silicon lines, namely, [S vii] λ9911, [S ix] 1.252 μm, [Si vi] 1.965 μm, and [Si x] 1.430 μm (see Table 1). In the optical, we have measured four iron emission lines, namely, [Fe vii] λ3759, [Fe viii] λ5159, [Fe xii] λ5721, and [Fe xii] λ6087 (see Table 2). The 1σ uncertainties are ∼1–5 per cent for the strongest lines and ∼2–20 per cent for the weakest ones. Since the spectra were obtained in non-photometric sky conditions, we study in the following the temporal changes of the coronal lines in relative rather than absolute flux. In particular, we scale the coronal line emission to that of a strong, forbidden low-ionization emission line that is unblended and observed in the same spectrum. The emission region that produces the low-ionization narrow lines is believed to be located at large enough distances from the central ionizing source (e.g. Pogge 1988; Tadhunter & Tsvetanov 1989) and to have a relatively low density for its flux to remain constant on time-scales of decades. We have scaled the near-IR and optical coronal lines to the [S iii] λ9531 and [O iii] λ5007 emission lines, respectively.

In order to further constrain the significance of the observed coronal line variability, we have considered the two extreme cases of where no variability and the highest variability are expected. For both scaling lines we observe also the other emission line that is emitted from the same upper level, namely, [S iii] λ9069 and [O iii] λ4959. Their observed ratios, which should be close to the theoretical values of [S iii] λ9531/λ9069 = 2.58 and [O iii] λ5007/λ4959 = 2.92 (Kramida et al. 2013), are not expected to vary and so their observed variability sets a lower threshold for the significance of the coronal line variability. Then, we have measured the fluxes of the two prominent broad emission lines Paβ (in the near-IR) and Hα (in the optical). Since the BELR is expected to be the most variable of any AGN emission line region, the observed flux increase of these broad lines gives an estimate of the maximum value that can be reached within the current data set. These results are also listed in Tables 1 and 2.

In addition to the emission lines, we have measured in the near-IR spectra the continuum fluxes at the rest-frame wavelengths of ∼1 and ∼2 μm (see Table 3). As we have shown in Landt et al. (2011), the former is dominated by the accretion disc flux, which is believed to be the main source of ionizing radiation in AGN and so the driver of the observed variability, whereas the latter is emitted from the hot dust component of the obscuring torus. Furthermore, we have derived the hot dust temperature from blackbody fits to the near-IR spectral continuum as described in Landt et al. (2011) and list it also in Table 3. In Section 4, we will compare these values to the optical coronal line ratios [Fe viii] λ6087/λ3759 and [Fe viii] λ5159/λ6087, which are suitable indicators of the gas temperature and density (Nussbaumer, Storey & Storey 1982; Keenan & Norrington 1987), respectively (listed in Table 3).

2.2 X-ray spectroscopy

As one of the brightest Seyfert 1 galaxies at X-ray frequencies, NGC 5548 was intensively studied in the years 1999–2002, after which period the source became observable by XMM–Newton and had only limited observability with Chandra. Due to the limited observability, there are two shorter Chandra observations in 2005 and 2007, until a long observational campaign took place in the summer of 2013 and winter of 2013/2014. Between 2002 and 2007, the time period overlapping with our near-IR and optical spectroscopy, there are a total of three Chandra observations of NGC 5548 with the low-energy transmission grating spectrum (LETGS) in combination with the high-resolution camera spectrograph. The 2002 observations showed the source in an average flux state, while the 2005 and especially the 2007 spectra were obtained in low-flux states. The exposure times were 340, 141, and 162 ks in 2002, 2005, and 2007, respectively. All three X-ray observations were taken over a period of three days during two consecutive orbits. The low flux state helps in the detection of emission lines but the shorter exposure times lead to low S/N spectra.

The X-ray spectra obtained between 2002 and 2007 were analysed by Steenbrugge et al. (2005), Detmers et al. (2008), Detmers, Kaastra & McHardy (2009) and, most recently, Ebrero et al. (2015, in preparation). Both Detmers et al. (2009) and Ebrero et al. analyze all previously observed X-ray spectra using the latest atomic data. The difference between the two is that Ebrero et al. focus on detecting changes in the warm absorber with continuum flux level and so, contrary to Detmers et al. (2009), assume that the narrow emission lines are absorbed by the warm absorber. Generally, it has been assumed that the warm absorber does not affect the flux of the narrow emission lines, however, Whewell et al. (2015) have recently presented evidence that at least one and potentially up to three warm absorber components do indeed absorb at least the O vii

Table 3. Near-IR continuum fluxes and optical coronal line ratios.

Observation date	λf1μm (erg s⁻¹ cm⁻²)	λf2μm/ [S iii]	λf3μm/ [S iii]	λf4μm/ [Fe vii]	Tdust (K)	[Fe vii] λ6087/ [Fe vii] λ3759	[Fe viii] λ5159/ [Fe viii] λ6087
2002 Apr 23	(7.74 ± 0.08)e⁻12	277.4 ± 6.7	(1.38 ± 0.01)e⁻11	494.6 ± 10.9	1371	1.644 ± 0.268	0.348 ± 0.071
2004 May 23	(1.48 ± 0.07)e⁻11	328.9 ± 17.1	(1.85 ± 0.02)e⁻11	411.1 ± 11.5	1572	1.031 ± 0.129	0.645 ± 0.082
2006 Jan 9	(2.38 ± 0.09)e⁻11	616.6 ± 43.2	(2.68 ± 0.04)e⁻11	694.3 ± 41.7	1730	1.241 ± 0.128	0.489 ± 0.062
2006 Jun 12	(2.32 ± 0.06)e⁻11	357.5 ± 11.8	(3.56 ± 0.02)e⁻11	548.5 ± 13.2	1547	0.892 ± 0.105	0.547 ± 0.069
2007 Jan 24	(2.10 ± 0.04)e⁻11	391.8 ± 11.0	(2.19 ± 0.02)e⁻11	408.6 ± 8.2	1291	0.918 ± 0.166	0.627 ± 0.112

Note: The uncertainties are as detailed in Landt et al. (2015).
Table 4. X-ray emission line and continuum fluxes.

Observation date	O VII f/0.561 keV	f0.2–10 keV
	(ph s\(^{-1}\) cm\(^{-2}\))	(erg s\(^{-1}\) cm\(^{-2}\))
2002 Jan 18	(0.83 ± 0.07)e–04	(1.51 ± 0.02)e–10
2005 Apr 15	(0.42 ± 0.07)e–04	(1.90 ± 0.06)e–11
2007 Aug 14	(0.34 ± 0.07)e–04	(1.05 ± 0.06)e–11

Note. aEbrero et al. contrary to Detmers et al. assume that the narrow emission lines are absorbed by the warm absorber.

3 THE VARIABILITY BEHAVIOUR

3.1 The near-IR and optical coronal lines

Over the ∼5-yr period sampled by the near-IR and optical spectroscopy the ionizing flux of the accretion disc, which is assumed to be the main driver for the variability of the broad line, coronal line, and hot dust emission regions, stayed constant in the first two years, increased by a factor of ∼2 in the following two years and decreased again to its original flux state during the last year (see Fig. 1). We note that the flux increase of ∼19 per cent observed between the 2002 April and 2004 May epochs is consistent with zero, once the deviations from the theoretical value of the [S III] \(\lambda 9531/\lambda 9069\) ratios measured in these spectra are taken into account (∼14.8 and ∼1.1 per cent, respectively). The variability of the ionizing continuum is mirrored in that of the hot dust emission and Pa\(\beta\) broad-line region (BLR; see Figs 1 and 2, respectively); also their flux stayed constant in the first two years, increased in the following two years (by ∼70 and ∼30 per cent, respectively), and then continuously decreased to its original level for the next year. The flux of the H\(\alpha\) BLR also stayed constant in the first two years, but then decreased in the next two years (by ∼40 per cent), followed by an increase to its original level during the last year.

The variability response of the near-IR coronal lines was stronger than that of the hot dust emission and BELR and in general very different from it. Whereas the flux of the [S IX] and [Si IX] lines, the lines with the highest ionization potentials, stayed constant in the first two years, the flux of the other two near-IR coronal lines decreased by a factor of ∼2. After this initial decrease, the flux of the [S VIII] line stayed constant, whereas the flux of the [Si VI] line stayed constant in the following two years, but decreased further in the last year, resulting in a total decrease during the observing period of a factor of ∼3. The flux of the [S IX] line decreased significantly (by a factor of ∼2) only during the last year of the observing period, whereas the [Si X] line started to diminish already in 2004 May and by the end of the observing period reached a flux decrease of a factor of ∼4.

Similar to the [S VIII] and [Si VI] near-IR coronal lines, the flux of the optical coronal line [Fe VII] \(\lambda 6087\) decreased by ∼80 per cent.
in the first two years, whereas the flux of the other three \textsc{[Fe~VII]} lines stayed constant (see Fig. 3). The flux of the \textsc{[Fe~VII]} $\lambda 6087$ line further decreased in the following two years (by ~ 30 per cent), then increased and decreased again, thus reaching a flux decrease of a factor of ~ 2 by the end of the observing period. Similar to the H~\alpha broad line, the flux of the \textsc{[Fe~VII]} $\lambda 5159$ line, after staying constant for the first two years, decreased in the following two years (by ~ 80 per cent), followed by an increase to its original level during the last year. Similar to the [Si~X] near-IR coronal line, the flux of the \textsc{[Fe~VII]} $\lambda 5721$ line started to diminish in 2004 May and by the end of the observing period reached a flux decrease of a factor of ~ 2. Finally, after 2004 May, the \textsc{[Fe~VII]} $\lambda 3759$ line varied similar to the \textsc{[Fe~VII]} $\lambda 6087$ line; a flux decrease by ~ 60 per cent followed by a flux increase (by ~ 90 per cent) and then flux decrease (by ~ 50 per cent).

3.2 The X-ray coronal lines

In the ~ 5-yr period sampled by the X-ray spectroscopy the unabsorbed 0.2–10 keV continuum flux, which is assumed to be produced by the central ionizing source and so to be linked to the accretion disc flux, decreased by a factor of ~ 8 in the first three years, and then decreased further by a factor of ~ 2 in the next two years (see Fig. 1).

The variability response of the forbidden X-ray coronal line \textsc{O~VII~f} was similar to that of the near-IR and optical coronal lines (see Fig. 1). Its line flux decreased in the first three years by a factor of ~ 2 and stayed constant in the next two years. We note that this result is independent of the assumption of whether the X-ray narrow lines are affected by the warm absorber, since the ratio between the absorbed and unabsorbed line flux is similar for all three observing epochs. Detmers et al. (2008) list also the flux or non-detection limit for the \textsc{Ne~IX~f} line, which is detected only in the 2002 spectrum. The trend for this much weaker X-ray emission line is similar to that observed for the \textsc{O~VII~f} line; a decrease in flux during the observing period by a factor of ~ 3. Finally, it is worth noting that the flux of both the \textsc{O~VII~f} line and the unabsorbed X-ray continuum recovered by the summer of 2013 to a level only slightly below that observed in 2002 (Kaastra et al. 2014).

4 THE ORIGIN OF THE CORONAL LINE EMISSION REGION

The current understanding is that the coronal line region in AGN is dust-free, photoionized and located beyond the BELR at distances from the central ionizing source similar to those of the hot inner face of the obscuring dusty torus. In Landt et al. (2015) we confirmed for the source NGC 4151 that the coronal line region is photoionized but showed that it is located well beyond the hot dusty torus, at a distance from the central ionizing source of a few light-years. This explained the low variability amplitude observed for the coronal lines in this source.

The situation in the source NGC 5548 seems at first glance to be very different. Whereas the broad emission lines changed only little (by ~ 30–40 per cent) in the period covered by our data and the hot dust emission changed moderately (by ~ 70 per cent), the coronal lines varied strongly (by factors of ~ 2–4). However, the observed high variability amplitude of the coronal lines is mainly due to a flux decrease. In fact, none of the coronal lines reacted with a flux increase to the increase in ionizing flux observed between the 2004 May and 2006 January epochs as the Paβ broad line and hot dust emission did.

In the following, we show that the coronal line region in NGC 5548 is similar to that in NGC 4151, i.e. it is a separate entity, most likely an X-ray heated wind, that has a low density and a high-ionization parameter and that is located far away from the dusty torus (Section 4.1). However, this wind appears to be stronger in NGC 5548 than in NGC 4151 and so, most likely, it undergoes a more severe adiabatic expansion and cooling after being launched (Section 4.2). Finally, in Section 4.3, we discuss the source NGC 5548 in the context of stellar tidal disruption events, which have been proposed as an alternative explanation for the fact that strong coronal line emitters often show a strong fading of their coronal lines over a period of several years.

4.1 Plasma diagnostics and the similarity between NGC 5548 and NGC 4151

As in Landt et al. (2015), we estimate the density of the coronal line gas using the three optical iron lines \textsc{[Fe~VII]} $\lambda 3759$, \textsc{[Fe~VII]} $\lambda 5159$, and \textsc{[Fe~VII]} $\lambda 6087$, since, as discussed by previous studies, the line ratios \textsc{[Fe~VII]} $\lambda 6087$/\textsc{[Fe~VII]} $\lambda 3759$ and \textsc{[Fe~VII]} $\lambda 5159$/\textsc{[Fe~VII]} $\lambda 6087$ are suitable indicators of temperature and density, respectively (Nussbaumer et al. 1982; Keenan & Norrington 1987). For these emission lines, we have generated a temperature versus density grid using version 13.03 of the plasma simulation code CLOUDY (last described by Ferland et al. 2013; see Fig. 4). For the photoionization simulations we have assumed solar abundances as given by Grevesse et al. (2010) and approximated the incident radiation field with the mean AGN spectral energy distribution (SED) derived by Mathews & Ferland (1987). Recently, Mehdipour et al. (2015) observed the hard X-ray portion of the SED and found that it continues to rise, in v_f, until at least ~ 80 keV. So NGC 5548 was in a very hard state when their observations were done. Very hard X-rays actually have only modest effects on the physical conditions within a photoionized cloud due to their small photoelectric cross-section. The emission line spectrum is mainly affected by the far-ultraviolet (FUV)/extreme ultraviolet (XUV) part of the SED, which is not directly observable.

![Graphical representation](https://example.com/graph.png)
except in the very highest redshift objects (Collinson et al. 2015). The FUV/XUV part of the older SED was derived from line observations which were sensitive to that portion of the spectrum. The two SEDs are in qualitative agreement in this part of the spectrum, so our results would not have changed had we used the newest observations. We have assumed the cases of either photoionization or collisional ionization equilibrium.

The measurements for NGC 5548 (filled circles) give a similar answer to those for NGC 4151 (open circles); the coronal line gas is photoionized rather than collisionally ionized and its density appears to be relatively low. All but one observing epochs for NGC 5548 constrain it to \(n_\text{e} \sim 10^7 \text{ cm}^{-3} \) with \(\sim 3 \sigma \), whereas the 2004 May epoch reaches this value within \(\sim 4 \sigma \). We note that the estimated density is several orders of magnitude below the critical density of [Fe vii] at \(n_\text{e} \sim 3 \times 10^7 \text{ cm}^{-3} \). We find again for NGC 5548, as we did previously for NGC 4151, that all measured [Fe vii] ratios lie to the right of the theoretical grids. This indicates most likely a large ionization parameter, since in such a case the contribution from fluorescence increases significantly the [Fe vii] \(\lambda 5159/\lambda 6087 \) ratio (see fig. 7 in Landt et al. 2015).

As in Landt et al. (2015), we estimate the ionization parameter of the coronal line gas using the three X-ray lines from the helium-like ion of oxygen O vii \(f \), O vii \(i \), and O vii \(r \). Using the plasma simulation code CLOUDY, we have generated a ionization parameter versus density grid for the O vii lines (see Fig. 5). As discussed by previous studies, the X-ray line ratios O vii \(f+i/r \) (the so-called \(G \) ratio) and O vii \(f/i \) (the so-called \(R \) ratio) trace the ionization parameter, which is directly related to the kinetic gas temperature, and density, respectively, for a given column density (Porquet & Dubau 2000; Porter & Ferland 2007). We assumed again the cases of either photoionization or collisional ionization equilibrium. Neither of the studies mentioned in Section 2.2 detects all three O vii lines and, therefore, no density and/or ionization parameter can be determined from this triplet for the period 2002–2007. However, the entire O vii triplet is detected by Kastra et al. (2014) when the source was in an obscured state similar to what is generally observed for NGC 4151. Kastra et al. (2014) assumed that the narrow emission lines are not absorbed by the warm absorber (similar to the study of Detmers et al. 2009) and from their data we determine a \(G \) ratio of 4.40 ± 0.57 and an \(R \) ratio of 3.49 ± 0.35 (filled triangle in Fig. 5). Andrade-Velázquez et al. (2010) combined all Chandra spectra taken before 2007 and measure the O vii triplet in the stacked high-energy transmission grating (HETG) and LETG spectra, also assuming that the lines are not absorbed by the warm absorber. From their data, we calculate a \(G \) ratio of 8.80 \(^{+0.6}_{-0.4} \) and 4.6 \(^{+2.8}_{-1.4} \) and an \(R \) ratio of 3.3 \(^{+1.5}_{-1.4} \) and 2.8 \(^{+0.4}_{-0.2} \) for the HETG and LETG data, respectively. Given the large errors, these results are consistent with the XMM–Newton results of Kastra et al. (2014).

Therefore, we will use here the latter data given the higher quality, although the observations are not contemporaneous with our optical spectroscopy. If we assume that the O vii triplet is affected by the warm absorber, both the \(G \) and \(R \) ratios decrease, because the resonance and intercombination lines are absorbed, whereas the forbidden line is not. Mehdipour, Kastra & Raassen (2015) have recently pointed out that inner shell lines of O vii can absorb components of the O vii lines used as a diagnostic here and in observations of NGC 4151 presented in Landt et al. (2015). This hypothesis is attractive because it is hard to think of any other way to account for the unusual ratios found in our previous paper. But the problem with their explanation in the case of NGC 5548 is that the measured O vi column density \(\left(N_{\text{OVI}} = 10^{16} \text{ cm}^{-2} \right) \) (Steenbrugge et al. 2005) of the warm absorber, which potentially can be comspatial with the...
O\textsc{vii} line emitting region, is ~ 1.5 dex smaller than that needed to produce the absorption assuming their atomic data. Then, using the line strengths from Whewell et al. (2015), the G and R ratios become 3.40 ± 0.52 and 3.70 ± 0.27, respectively (filled circle in Fig. 5). The absorbed values constrain the ionization parameter of the coronal line gas in NGC 5548 to log $U \sim 1$, as found previously for NGC 4151.

Then, using the unabsorbed X-ray luminosity of $L_{2-10\text{keV}} \sim 4 \times 10^{41}$ erg s$^{-1}$ of the highest-flux epoch as a proxy for the ionizing luminosity producing O\textsc{vii} and the best-fitting X-ray spectral slope of this epoch of $\Gamma \sim 1.88$ (Steinbrugge et al. 2005) to estimate the mean ionizing photon energy, the calculated distance of the coronal line region in NGC 5548 from the central ionizing source for the above gas density is $\tau_{\text{fl}} \sim 2850$ light-days ~ 7.8 light-years. As found previously for NGC 4151, this value places this region well beyond the hot inner face of the obscuring dusty torus, which in NGC 5548 is measured by dust reverberation campaigns to be $\sim 40–60$ d (Koshida et al. 2014). Furthermore, it is consistent with the fact that a recovery of the flux of the coronal lines to the high level seen in the 2002 epoch is occurring only in 2013 (see Section 3.2) and that only a flux decrease is observed in the five-year time period spanned by our own data set.

4.2 The X-ray heated wind scenario and the difference between NGC 5548 and NGC 4151

Pier & Voit (1995) proposed that the coronal line region is a layer on the inner part of the dusty torus that becomes an efficient coronal line emitter only when evaporated in an X-ray heated wind. In this scenario, the wind will have undergone adiabatic expansion from its launch location at the inner face of the torus until the gas density and distance from the ionizing source are optimal to give the required high ionisation parameter. In the process, the coronal line gas will have cooled. In Fig. 6, we present tentative evidence that this scenario applies to NGC 5548, similar to what we found previously for NGC 4151. In the bottom panel, we compare the temperature of the coronal line gas as measured by the line ratio [Fe\textsc{vii}] $\lambda 6087$/[Fe\textsc{vii}] $\lambda 3759$ (the higher its value, the lower the gas temperature; see Fig. 4) with that of the hot dust. We find that the two temperatures behave in opposite ways; the temperature of the coronal line gas is high when the hot dust temperature is low and vice versa. Only the data from 2002 April is an exception to this trend and might indicate a reddening event. In the top panel of Fig. 6, we show the continuum flux at rest-frame wavelength of ~ 1 μm, which samples the accretion disc luminosity, versus the hot dust temperature. A clear correlation is apparent, which indicates that the change in temperature for the hot dust is due to direct heating by the central ionizing source. Therefore, the increased AGN radiation that heats the dusty torus also increases the cooling of the coronal line gas.

In the scenario of Pier & Voit (1995), the dusty clouds will be evaporated in an X-ray heated wind more efficiently for higher AGN luminosities, which will lead to both an increase in mass outflow rate and a stronger adiabatic expansion. We observe this effect individually for NGC 5548 and NGC 4151, but it seems to also apply when comparing the two sources with each other. The coronal lines in NGC 5548 are a factor of ~ 3–5 stronger than in NGC 4151 relative to the low-ionization narrow emission lines, and so are both the ~ 1 and ~ 2.1 μm luminosities (higher by a factor of ~ 3 and ~ 2, respectively). This indicates that the X-ray heated wind producing the coronal lines in NGC 5548 is stronger than in NGC 4151, in which case we also expect a stronger adiabatic expansion. The much stronger fading of the coronal lines with time observed for NGC 5548 relative to NGC 4151 is most likely a manifestation of it.

4.3 Strong coronal line emitters as stellar tidal disruption events

Such a strong variability of the coronal lines, i.e. fading of the flux, as we observe for NGC 5548 has been reported so far for only one AGN (IC 3599; Brandt, Pounds & Fink 1995; Grupe et al. 1995) and is usually associated with a new class of non-active galaxies, the so-called strong coronal line emitters. Several of these sources have recently been detected in the SDSS (Komossa et al. 2008; Gelbord, Mullaney & Ward 2009; Komossa et al. 2009; Wang et al. 2011, 2012; Yang et al. 2013; Rose et al. 2015). A stellar tidal disruption event seems to be the most plausible explanation for the strong fading of the coronal lines observed in these sources over a time period of several years. The tidal disruption of a star by a supermassive black hole produces an accretion event, a flare, that subsequently fades on time-scales of several months to a year. The accretion flare is seen as an X-ray/UV outburst, which can produce highly ionized emission lines, including emission from He\textsc{ii}. The X-ray luminosity outburst is expected to fade with time as $t^{-5/3}$ or slightly shallower than this depending on the type of the star (Rees 1988; Phinney 1989; Lodato, King & Pringle 2009) and subsequently a strong fading of the high-ionization lines is expected.

Could the strong coronal line variability that we observe for NGC 5548 have been caused by a stellar tidal disruption event? Such an event was raised as a possibility for the strong increase (by a factor of $\gtrsim 10$) of the He\textsc{ii} $\lambda 4686$ emission line flux observed for this source between 1984 January and May by Peterson & Ferland (1986) and interpreted as the addition of a new gas component unrelated to the BELR. The recently discovered strong coronal line emitters have line ratios [Fe\textsc{vii}] $\lambda 6087$/[O\textsc{iii}] $\lambda 5007 \sim 0.1$–1 and have [Fe\textsc{x}]}
emission comparable to or stronger than [FeⅦ] before the fading of the lines. In NGC 5548, we measure line ratios [FeⅦ] λ6087/[O Ⅰ] λ5007 \sim 0.03–0.07, which puts this source in the vicinity of the strong coronal line emitters. However, the [FeⅨ] λ6375 emission line is a factor of ~5 weaker than the [FeⅦ] λ6087 emission line. As expected for stellar tidal disruption events, the high state of the coronal lines in 2002 is accompanied by a high state of the X-ray flux, which subsequently fades strongly. The observed X-ray flux decrease of a factor of ~8 in three years roughly obeys the expected t^{-3/5} decay law for these events (albeit based on only two points). However, the flux of both the X-ray continuum and O Ⅶ f X-ray coronal line are observed to have recovered by 2013 to their original high state (see Section 3.2). Finally, the HeⅡ emission line did not show the continuous flux decline observed for most of the coronal lines. Its flux varied significantly during the observing period, but fluctuated between increase and decrease from epoch to epoch. Given these considerations, it is therefore unlikely that the strong coronal line variability that we observe for NGC 5548 was caused by a stellar tidal disruption event.

5 SUMMARY AND CONCLUSIONS

We have presented the second extensive study of the coronal line variability in an AGN. Our data set for the well-studied source NGC 5548 is unprecedented in that it includes five epochs of quasi-simultaneous optical and near-IR spectroscopy spanning a period of ~5 yr and three epochs of X-ray spectroscopy overlapping in time with it. Our main results are as follows.

(i) Whereas the broad emission lines changed only little (by ~30–40 per cent) and the hot dust emission lines remained constant (by ~70 per cent), the coronal lines varied strongly (by factors of ~2–4). However, the observed high variability amplitude of the coronal lines is mainly due to a flux decrease. In fact, none of the coronal lines reacted with a flux increase to the increase in ionizing flux observed between the 2004 May and 2006 January epochs as the Paβ broad line and hot dust emission did.

(ii) We have applied plasma diagnostics to the optical [FeⅦ] and X-ray O Ⅶ emission lines in order to constrain the gas number density, temperature, and ionization parameter of the coronal line region. We find that this gas has a relatively low density of n_e \sim 10^5 \text{ cm}^{-3} and requires a relatively high ionisation parameter of log U \sim 1, similar to our previous results for the source NGC 4151. We estimate the distance of the coronal line region in NGC 5548 from the central ionizing source for the above gas density to be τ_H \sim 7.8 light-years. This value puts this region well beyond the hot inner face of the obscuring dusty torus (of ~2 light-months; Koshida et al. 2014).

(iii) The relatively high ionisation parameter at large distances make it likely that the coronal line region is an independent entity. One possibility is that it is an X-ray heated wind as first proposed by Pier & Voit (1995). As in the case of NGC 4151, we find support for this scenario in the form of a temperature anticorrelation between the coronal line gas and hot dust, which indicates that the increased AGN radiation that heats the dusty torus appears to increase the cooling efficiency of the coronal line gas, most likely due to a stronger adiabatic expansion. The strong coronal line variability of NGC 5548 can also be explained within this picture; relative to the low-ionization narrow emission lines the coronal lines in NGC 5548 are a factor of ~3–5 stronger than those in NGC 4151 indicating a much stronger wind, in which case a stronger adiabatic expansion of the gas and so fading of the line emission is expected.

(iv) Since NGC 5548 can be classified as a strong coronal line emitter, we investigate if the strong coronal line variability could have been caused by a stellar tidal disruption event, as is often proposed for this kind of sources. Given that the flux of both the X-ray continuum and O Ⅶ f X-ray coronal line are observed to have recovered by 2013 to their original high state and that the HeⅡ emission line did not show the continuous flux decline observed for most of the coronal lines, we consider this scenario an unlikely explanation for the strong coronal line variability.

ACKNOWLEDGEMENTS

HL is supported by a European Union COFUND/Durham Junior Research Fellowship (under EU grant agreement no. 267209). KCS thanks the astronomy group at Durham University for its hospitality during a collaborative visit. GJF acknowledges support by NSF (1108928, 1109061, and 1412155), NASA (10-ATP10-0053, 10-ADAP10-0073, NNX12AH73G, and ATP13-0153), and STScI (HST-AR-13245, GO-12560, HST-GO-12309, GO-13310.002-A, and HST-AR-13914), and to the Leverhulme Trust for support via the award of a Visiting Professorship at Queen’s University Belfast (VP1-2012-025).

REFERENCES

Andrade-Velázquez M., Krongold Y., Elvis M., Nicastro F., Brickhouse N., Binette L., Mathur S., Jiménez-Bailón E., 2010, ApJ, 711, 888
Appenzeller I., Oestreicher R., 1988, AJ, 95, 45
Brandt W. N., Pounds K. A., Fink H., 1995, MNRAS, 273, L47
Collinson J. S., Ward M. J., Done C., Landt H., Elvis M., McDowell J. C., 2015, MNRAS, 449, 2174
Detmers R. G., Kaastra J. S., Costantini E., McHardy I. M., Verbunt F., 2008, A&A, 488, 67
Detmers R. G., Kaastra J. S., McHardy I. M., 2009, A&A, 504, 409
Erkens U., Appenzeller I., Wagner S., 1997, A&A, 323, 707
Fabricant D., Cheimets P., Caldwell N., Geary J., 1998, PASP, 110, 79
Ferland G. J. et al., 2013, Rev. Mex. Astron. Astrofis., 49, 137
Gelbord J. M., Mullaney J. R., Ward M. J., 2009, MNRAS, 397, 172
Grevesse N., Asplund M., Sauval A. J., Scott P., 2010, ApSS, 328, 179
Grupe D., Beuermann K., Mannheim K., Bade N., Thomas-H.-c., de Martino D., Schwake A., 1995, A&A, 299, L5
Kaastra J. S. et al., 2014, Science, 345, 64
Keenan F. P., Norrington P. H., 1987, A&A, 181, 370
Kollatschny W., Bischoff K., Robinson E. L., Welsh W. F., Hill G. J., 2001, A&A, 379, 125
Komossa S. et al., 2008, ApJ, 678, L13
Komossa S. et al., 2009, ApJ, 701, 105
Koshida S. et al., 2014, ApJ, 788, 159
NIST ASD TeamKramida A., Ralchenko Yu., Reader J. 2013, NIST Atomic Spectra Database (ver. 5.1), National Institute of Standards and Technology, Gaithersburg, MD. Available at http://physics.nist.gov/asd.
Landt H., Benz M. C., Ward M. J., Elvis M., Peterson B. M., Korista K. T., Karovska M., 2008, ApJ, 714, 282
Landt H., Elvis M., Ward M. J., Benz M. C., Korista K. T., Karovska M., 2011, MNRAS, 414, 218
Landt H., Ward M. J., Steenbrugge K. C., Ferland G. J., 2015, MNRAS, 449, 3795
Lodato G., King A. R., Pringle J. E., 2009, MNRAS, 392, 332
Mathews W. G., Ferland G. J., 1987, ApJ, 323, 456
Mazzalay X., Rodríguez-Ardila A., Komossa S., McGregor P. J., 2013, MNRAS, 430, 2411
Mehdipour M. et al., 2015, A&A, 575, A22
Mehdipour M., Kaastra J. S., Raassen A. J. J., 2015, A&A, 579, 87
Müller-Sánchez F., Davies R. I., Eisenhauer F., Tacconi L. J., Genzel R., Sternberg A., 2006, A&A, 454, 481

Coronal line variability in NGC 5548 3695

MNRAS 454, 3688–3696 (2015)
