A \sqrt{n} ESTIMATE FOR MEASURES OF HYPERPLANE SECTIONS OF CONVEX BODIES

ALEXANDER KOLDOBSKY

ABSTRACT. The hyperplane (or slicing) problem asks whether there exists an absolute constant C so that for any origin-symmetric convex body K in \mathbb{R}^n

$$|K|^{\frac{n-1}{n}} \leq C \max_{\xi \in S^{n-1}} |K \cap \xi^\perp|,$$

where ξ^\perp is the central hyperplane in \mathbb{R}^n perpendicular to ξ, and $|K|$ stands for volume of proper dimension. The problem is still open, with the best-to-date estimate $C \sim n^{1/4}$ established by Klartag, who slightly improved the previous estimate of Bourgain. It is much easier to get a weaker estimate with $C = \sqrt{n}$.

In this note we show that the \sqrt{n} estimate holds for arbitrary measure in place of volume. Namely, if L is an origin-symmetric convex body in \mathbb{R}^n and μ is a measure with non-negative even continuous density on L, then

$$\mu(L) \leq \sqrt{n} \frac{n}{n-1} c_n \max_{\xi \in S^{n-1}} \mu(L \cap \xi^\perp) |L|^{1/n},$$

where $c_n = |B_2^n|^{\frac{n-1}{n}} / |B_2^{n-1}| < 1$, and B_2^n is the unit Euclidean ball in \mathbb{R}^n. We deduce this inequality from a stability result for intersection bodies.

1. INTRODUCTION

The hyperplane (or slicing) problem [Bo1, Bo2, Ba, MP] asks whether there exists an absolute constant C so that for any origin-symmetric convex body K in \mathbb{R}^n

$$|K|^{\frac{n-1}{n}} \leq C \max_{\xi \in S^{n-1}} |K \cap \xi^\perp|,$$ \hspace{1cm} (1)

where ξ^\perp is the central hyperplane in \mathbb{R}^n perpendicular to ξ, and $|K|$ stands for volume of proper dimension. The problem is still open, with the best-to-date estimate $C \sim n^{1/4}$ established by Klartag [Kl], who slightly improved the previous estimate of Bourgain [Bo3]. We refer the reader to [BGVV] for the history and current state of the problem.

In the case where K is an intersection body (see definition and properties below), the inequality (1) can be proved with the best possible
constant (\cite[p. 374]{G2}):
\[|K|^\frac{n-1}{n} \leq \frac{|B_2^n|}{|B_2^{n-1}|} \max_{\xi \in S^{n-1}} |K \cap \xi^\perp|, \]
with equality when \(K = B_2^n \) is the unit Euclidean ball. Here \(|B_2^n| = \pi^{n/2}/\Gamma(1+n/2) \) is the volume of \(B_2^n \). Throughout the paper, we denote the constant in (2) by
\[c_n = \frac{|B_2^n|^{\frac{n-1}{n}}}{|B_2^{n-1}|}. \]
Note that \(c_n < 1 \) for every \(n \in \mathbb{N} \); this is an easy consequence of the log-convexity of the \(\Gamma \)-function.

It was proved in \cite{K3} that inequality (1) holds for intersection bodies with arbitrary measure in place of volume. Let \(f \) be an even continuous non-negative function on \(\mathbb{R}^n \), and denote by \(\mu \) the measure on \(\mathbb{R}^n \) with density \(f \). For every closed bounded set \(B \subset \mathbb{R}^n \) define
\[\mu(B) = \int_B f(x) \, dx. \]
Suppose that \(K \) is an intersection body in \(\mathbb{R}^n \). Then, as proved in \cite[Theorem 1]{K3} (see also a remark at the end of the paper \cite{K3}),
\[\mu(K) \leq \frac{n}{n-1} c_n \max_{\xi \in S^{n-1}} \mu(K \cap \xi^\perp) |K|^{1/n}. \]
The constant in the latter inequality is the best possible.

This note was motivated by a question of whether one can remove the assumption that \(K \) is an intersection body and prove the inequality (3) for all origin-symmetric convex bodies, perhaps at the expense of a greater constant in the right-hand side. One would like this extra constant to be independent of the body or measure. In this note we prove the following inequality.

Theorem 1. Let \(L \) be an origin-symmetric convex body in \(\mathbb{R}^n \), and let \(\mu \) be a measure with even continuous non-negative density on \(L \). Then
\[\mu(L) \leq \sqrt{n} \frac{n}{n-1} c_n \max_{\xi \in S^{n-1}} \mu(L \cap \xi^\perp) |L|^{1/n}. \]
In the case of volume, the estimate (1) with \(C = \sqrt{n} \) can be proved relatively easy (see \cite[p. 96]{MP} or \cite[Theorem 8.2.13]{G2}), and it is not optimal, as mentioned above. The author does not know whether the estimate (4) is optimal for arbitrary measures.
2. Proof of Theorem 1

We need several definitions and facts. A closed bounded set K in \mathbb{R}^n is called a *star body* if every straight line passing through the origin crosses the boundary of K at exactly two points different from the origin, the origin is an interior point of K, and the *Minkowski functional* of K defined by

$$\|x\|_K = \min\{a \geq 0 : x \in aK\}$$

is a continuous function on \mathbb{R}^n.

The *radial function* of a star body K is defined by

$$\rho_K(x) = \|x\|^{-1}_K, \quad x \in \mathbb{R}^n.$$

If $x \in S^{n-1}$ then $\rho_K(x)$ is the radius of K in the direction of x.

If μ is a measure on K with even continuous density f, then

$$\mu(K) = \int_K f(x) \, dx = \int_{S^{n-1}} \left(\int_0^{\|\theta\|_K^{-1}} r^{n-2} f(r\theta) \, dr \right) d\theta. \quad (5)$$

Putting $f = 1$, one gets

$$|K| = \frac{1}{n} \int_{S^{n-1}} \rho_K^n(\theta) \, d\theta = \frac{1}{n} \int_{S^{n-1}} \|\theta\|^n_K \, d\theta. \quad (6)$$

The *spherical Radon transform* $R : C(S^{n-1}) \mapsto C(S^{n-1})$ is a linear operator defined by

$$Rf(\xi) = \int_{S^{n-1} \cap \xi^\perp} f(x) \, dx, \quad \xi \in S^{n-1}$$

for every function $f \in C(S^{n-1})$.

The polar formulas (5) and (6), applied to a hyperplane section of K, express volume of such a section in terms of the spherical Radon transform:

$$\mu(K \cap \xi^\perp) = \int_{K \cap \xi^\perp} f = \int_{S^{n-1} \cap \xi^\perp} \left(\int_0^{\|\theta\|_K^{-1}} r^{n-2} f(r\theta) \, dr \right) d\theta$$

$$= R \left(\int_0^{\|\theta\|_K^{-1}} r^{n-2} f(r \cdot) \, dr \right) (\xi). \quad (7)$$

and

$$|K \cap \xi^\perp| = \frac{1}{n-1} \int_{S^{n-1} \cap \xi^\perp} \|\theta\|_K^{-n+1} d\theta = \frac{1}{n-1} R(\| \cdot \|_K^{-n+1})(\xi). \quad (8)$$
The spherical Radon transform is self-dual (see [Gr, Lemma 1.3.3]), namely, for any functions \(f, g \in C(S^{n-1}) \)
\[
\int_{S^{n-1}} R_f(\xi) \, g(\xi) \, d\xi = \int_{S^{n-1}} f(\xi) \, R_g(\xi) \, d\xi.
\] (9)

Using self-duality, one can extend the spherical Radon transform to measures. Let \(\mu \) be a finite Borel measure on \(S^{n-1} \). We define the spherical Radon transform of \(\mu \) as a functional \(R\mu \) on the space \(C(S^{n-1}) \) acting by
\[
(R\mu, f) = (\mu, Rf) = \int_{S^{n-1}} Rf(x) \, d\mu(x).
\]

By Riesz’s characterization of continuous linear functionals on the space \(C(S^{n-1}) \), \(R\mu \) is also a finite Borel measure on \(S^{n-1} \). If \(\mu \) has continuous density \(g \), then by (9) the Radon transform of \(\mu \) has density \(Rg \).

The class of intersection bodies was introduced by Lutwak [L]. Let \(K, L \) be origin-symmetric star bodies in \(\mathbb{R}^n \). We say that \(K \) is the intersection body of \(L \) if the radius of \(K \) in every direction is equal to the \((n-1)\)-dimensional volume of the section of \(L \) by the central hyperplane orthogonal to this direction, i.e. for every \(\xi \in S^{n-1} \),
\[
\rho_K(\xi) = \|\xi\|_{K}^{-1} = |L \cap \xi^\perp|.
\] (10)

All bodies \(K \) that appear as intersection bodies of different star bodies form the class of intersection bodies of star bodies.

Note that the right-hand side of (10) can be written in terms of the spherical Radon transform using (8):
\[
\|\xi\|_{K}^{-1} = \frac{1}{n-1} \int_{S^{n-1} \cap \xi^\perp} \|\theta\|_{L}^{-n+1} d\theta = \frac{1}{n-1} R(\|\cdot\|_{L}^{-n+1})(\xi).
\]

It means that a star body \(K \) is the intersection body of a star body if and only if the function \(\|\cdot\|_{K}^{-1} \) is the spherical Radon transform of a continuous positive function on \(S^{n-1} \). This allows to introduce a more general class of bodies. A star body \(K \) in \(\mathbb{R}^n \) is called an intersection body if there exists a finite Borel measure \(\mu \) on the sphere \(S^{n-1} \) so that \(\|\cdot\|_{K}^{-1} = R\mu \) as functionals on \(C(S^{n-1}) \), i.e. for every continuous function \(f \) on \(S^{n-1} \),
\[
\int_{S^{n-1}} \|x\|_{K}^{-1} f(x) \, dx = \int_{S^{n-1}} Rf(x) \, d\mu(x).
\] (11)

We refer the reader to the books [G2, K2] for more information about intersection bodies and their applications. Let us just say that intersection bodies played a crucial role in the solution of the Busemann-Petty problem. The class of intersection bodies is rather rich. For
example, every origin-symmetric convex body in \mathbb{R}^3 and \mathbb{R}^4 is an intersection body [G1, Z]. The unit ball of any finite dimensional subspace of L_p, $0 < p \leq 2$ is an intersection body, in particular every polar projection body is an intersection body [K1].

We deduce Theorem 1 from the following stability result for intersection bodies.

Theorem 2. Let K be an intersection body in \mathbb{R}^n, let f be an even continuous function on K, $f \geq 1$ everywhere on K, and let $\varepsilon > 0$.

Suppose that

$$\int_{K \cap \xi^\perp} f \leq |K \cap \xi^\perp| + \varepsilon, \quad \forall \xi \in S^{n-1}, \quad (12)$$

then

$$\int_K f \leq |K| + \frac{n}{n-1} c_n |K|^{1/n} \varepsilon. \quad (13)$$

Proof: First, we use the polar formulas (7) and (8) to write the condition (12) in terms of the spherical Radon transform:

$$R\left(\int_0^{\|\cdot\|_K} r^{n-2} f(r \cdot) \, dr \right)(\xi) \leq \frac{1}{n-1} R(\|\cdot\|_K^{n+1})(\xi) + \varepsilon.$$

Let μ be the measure on S^{n-1} corresponding to K by the definition of an intersection body (11). Integrating both sides of the latter inequality over S^{n-1} with the measure μ and using (11), we get

$$\int_{S^{n-1}} \|\theta\|^{-1}_K \left(\int_0^{\|\theta\|^{-1}_K} r^{n-2} f(r \theta) \, dr \right) d\theta$$

$$\leq \frac{1}{n-1} \int_{S^{n-1}} \|\theta\|^{-n}_K \, d\theta + \varepsilon \int_{S^{n-1}} d\mu(\xi). \quad (14)$$

Recall (5), (6) and the assumption that $f \geq 1$. We write the integral in the left-hand side of (14) as

$$\int_{S^{n-1}} \|\theta\|^{-1}_K \left(\int_0^{\|\theta\|^{-1}_K} r^{n-2} f(r \theta) \, dr \right) d\theta$$

$$= \int_{S^{n-1}} \left(\int_0^{\|\theta\|^{-1}_K} r^{n-1} f(r \theta) \, dr \right) d\theta$$

$$+ \int_{S^{n-1}} \left(\int_0^{\|\theta\|^{-1}_K} (\|\theta\|^{-1}_K - r) r^{n-2} f(r \theta) \, dr \right) d\theta$$
\[\geq \int_K f + \int_{S^{n-1}} \left(\int_0^{\|\theta\|_{K}} (\|\theta\|_{K}^{-1} - r) r^{n-2} \, dr \right) d\theta \]

\[= \int_K f + \frac{1}{(n-1)n} \int_{S^{n-1}} \|\theta\|_{K}^{-n} \, d\theta = \int_K f + \frac{1}{n-1} |K|. \] (15)

Let us estimate the second term in the right-hand side of (14) by adding the Radon transform of the unit constant function under the integral \((R1(\xi) = |S^{n-2}| \text{ for every } \xi \in S^{n-1})\), using again the fact that \(\| \cdot \|_{K}^{-1} = R\mu\) and then applying Hölder’s inequality:

\[\epsilon \int_{S^{n-1}} R\mu(\xi) = \epsilon |S^{n-2}| \int_{S^{n-1}} R1(\xi) \, d\mu(\xi) \]

\[= \epsilon |S^{n-2}| \int_{S^{n-1}} \|\theta\|_{K}^{-1} \, d\theta \]

\[\leq \epsilon \frac{|S^{n-2}|}{|S^{n-2}|} |S^{n-1}|^{\frac{n}{n-1}} \left(\int_{S^{n-1}} \|\theta\|_{K}^{-n} \, d\theta \right)^{\frac{1}{n}} \]

\[= \epsilon \frac{|S^{n-2}|}{|S^{n-2}|} |S^{n-1}|^{\frac{n}{n-1}} n^{1/n} |K|^{1/n} = \frac{n}{n-1} c_n |K|^{1/n} \epsilon. \] (16)

In the last step we used \(|S^{n-1}| = n|B_2^n|, |S^{n-2}| = (n-1)|B_2^{n-1}|.\) Combining (14), (15), (16) we get

\[\int_K f + \frac{1}{n-1} |K| \leq \frac{n}{n-1} |K| + \frac{n}{n-1} c_n |K|^{1/n} \epsilon. \] \(\Box\)

Now we prove our main result.

Proof of Theorem 1: Let \(g\) be the density of the measure \(\mu\), so \(g\) is an even non-negative continuous function on \(L\). By John’s theorem [J], there exists an origin-symmetric ellipsoid \(K\) such that

\[\frac{1}{\sqrt{n}} K \subset L \subset K. \]

The ellipsoid \(K\) is an intersection body (see for example [G2, Corollary 8.1.7]). Let \(f = \chi_K + g\chi_L\), where \(\chi_K, \chi_L\) are the indicator functions of \(K\) and \(L\). Clearly, \(f \geq 1\) everywhere on \(K\). Put

\[\epsilon = \max_{\xi \in S^{n-1}} \left(\int_{K \cap \xi \perp} f - |K \cap \xi \perp| \right) = \max_{\xi \in S^{n-1}} \int_{L \cap \xi \perp} g \]
and apply Theorem 2 to f, K, ε (the function f is not necessarily continuous on K, but the result holds by a simple approximation argument). We get

$$\mu(L) = \int_L g = \int_K f - |K|$$

$$\leq \frac{n}{n-1} c_n |K|^{1/n} \max_{\xi \in S^{n-1}} \int_{L \cap \xi^\perp} g$$

$$\leq \sqrt{n} \frac{n}{n-1} c_n |L|^{1/n} \max_{\xi \in S^{n-1}} \mu(L \cap \xi^\perp),$$

because $|K|^{1/n} \leq \sqrt{n} |L|^{1/n}$.

\[\square\]

Acknowledgement. I wish to thank the US National Science Foundation for support through grant DMS-1265155.

References

[Ba] K. Ball, *Logarithmically concave functions and sections of convex sets in \mathbb{R}^n*, Studia Math. **88** (1988), 69–84.

[Bo1] J. Bourgain, *On high-dimensional maximal functions associated to convex bodies*, Amer. J. Math. **108** (1986), 1467–1476.

[Bo2] J. Bourgain, *Geometry of Banach spaces and harmonic analysis*, Proceedings of the International Congress of Mathematicians (Berkeley, Calif., 1986), Amer. Math. Soc., Providence, RI, 1987, 871–878.

[Bo3] J. Bourgain, *On the distribution of polynomials on high-dimensional convex sets*, Geometric aspects of functional analysis, Israel seminar (1989-90), Lecture Notes in Math. **1469** Springer, Berlin, 1991, 127–137.

[BGVV] S. Brazitikos, A. Giannopoulos, P. Valettas and B. Vritsiou, Notes on isotropic convex bodies, preprint.

[G1] R. J. Gardner, *A positive answer to the Busemann-Petty problem in three dimensions*, Ann. of Math. (2) **140** (1994), 435–447.

[G2] R. J. Gardner, *Geometric tomography*, Second edition, Cambridge University Press, Cambridge, 2006.

[Gr] H. Groemer, *Geometric applications of Fourier series and spherical harmonics*, Cambridge University Press, New York, 1996.

[J] F. John, *Extremum problems with inequalities as subsidiary conditions*, Courant Anniversary Volume, Interscience, New York (1948), 187-204.

[Kl] B. Klartag, *On convex perturbations with a bounded isotropic constant*, Geom. Funct. Anal. **16** (2006), 1274–1290.

[K1] A. Koldobsky, *Intersection bodies, positive definite distributions and the Busemann-Petty problem*, Amer. J. Math. **120** (1998), 827–840.

[K2] A. Koldobsky, *Fourier analysis in convex geometry*, Amer. Math. Soc., Providence RI, 2005.

[K3] A. Koldobsky, *A hyperplane inequality for measures of convex bodies in \mathbb{R}^n, $n \leq 4$*, Discrete Comput. Geom. **47** (2012), 538–547.

[L] E. Lutwak, *Intersection bodies and dual mixed volumes*, Adv. Math. **71** (1988), 232–261.
[MP] V. Milman and A. Pajor, *Isotropic position and inertia ellipsoids and zonoids of the unit ball of a normed n-dimensional space*, in: Geometric Aspects of Functional Analysis, ed. by J. Lindenstrauss and V. Milman, Lecture Notes in Mathematics 1376, Springer, Heidelberg, 1989, pp. 64–104.

[Z] Gaoyong Zhang, *A positive answer to the Busemann-Petty problem in four dimensions*, Ann. of Math. (2) 149 (1999), 535–543.

Department of Mathematics, University of Missouri, Columbia, MO 65211

E-mail address: koldobskiya@missouri.edu