α₅β₁ integrins in hepatocytes act as receptors for bile acids with a (nor)ursodeoxycholane scaffold

Michele Bonus¹, Annika Sommerfeld², Dieter Häussinger², Holger Gohlke¹*

From 1st International Conference of Collaborative Research Center 974: Liver Damage and Regeneration
Düsseldorf, Germany. 15-16 November 2013

Ursodeoxycholic acid (UDCA) is a standard treatment in several cholestatic liver diseases (Figure 1A) [1]. In vivo, conjugation with taurine occurs rapidly and yields tauroursodeoxycholic acid (TUDC), which has been shown to promote cholestasis by triggering the insertion of ATP-dependent transport proteins (e.g., the bile salt export pump (Bsep) and the multidrug resistance protein-2 (Mrp2)) into the canalicular membrane [2]. TUDC-induced recruitment of Bsep results from activation of focal adhesion kinase (FAK), phosphatidylinositol 3-kinase (PI3 kinase), and c-Src, which leads to downstream activation of extracellular signal-regulated kinases (Erks) and p38 mitogen-activated protein kinase (p38MAPK). Upon hepatocyte swelling, either induced by exposure to a hypotonic environment or insulin, α₅β₁ integrins become activated and trigger similar signaling events towards cholestasis. α₅β₁ Integrins may also be activated upon swelling-independent way as previously shown by exposing hepatocytes to pathophysiological concentrations of urea [3]. Both TUDC-induced and swelling-dependent signaling were abolished in the presence of an antagonistic, RGD-motif containing hexapeptide (GRGDSP).

These findings led us to hypothesize that α₅β₁ integrin will act as a receptor for TUDC in hepatocytes. We tested this hypothesis in a combined experimental and computational study [4]. Immunofluorescence staining on cryosections of isolated perfused rat liver (IPRL) revealed the active conformation of β₁ integrin within 1 min after addition of TUDC at a concentration of 20 µM. Furthermore, phosphorylation of Erk-1 and -2 as well as activation of the epidermal growth factor receptor were induced by TUDC within the same time span. These effects were sensitive to inhibition by GRGDSP but insensitive to the presence of an inactive control peptide (GRADSP). As TUDC does not affect hepatocyte volume, which excludes that TUDC triggers integrin activation osmotically, these findings demonstrated that TUDC directly activates α₅β₁ integrins and triggers signaling events towards cholestasis. While swelling-induced β₁ integrin activation occurs primarily in the plasma membrane, TUDC-induced β₁ integrin activation occurs primarily in the cytosol of hepatocytes. We demonstrated that the presence of the Na⁺/taurocholate cotransporting polypeptide (Ntcp) is required for the latter. The need to uptake or concentrate TUDC inside the hepatocyte for β₁ integrin activation to occur may explain why TUDC primarily acts in the liver.

In order to provide insights at a molecular level as to how TUDC activates α₅β₁ integrin, a complex structure of a homology model of the ectodomain of α₅β₁-integrin and TUDC was generated by molecular docking and subsequently subjected to molecular dynamics (MD) simulations of 200 ns length [4]. These simulations revealed pronounced conformational changes in three regions of the βA domain of the integrin (Figure 1B): I) Helix α₁ straightens and becomes continuous; II) this leads to a tighter packing between the top of helix α₅ and the center of α₁₀, which has been characterized as “T-junction formation” in an X-ray structure of integrin α₁₀β₃ bound to a ligand as well as in computational studies of agonist-bound integrins; III) as a result, helix α₅ moves downwards and outwards, which imposes a torque on the hybrid domain. The induced rotational motion of the hybrid domain is a prerequisite for the unbending of the integrin ectodomain, which, in turn, is required for integrin activation according to current models. Neither did MD simulations of the ectodomain of α₅β₁ integrin bound to GRGDSP nor to taurocholic acid (TC) (Figure 1A) reveal such conformational changes, in line with results.
from immunofluorescence staining of IPRL that did not reveal an appearance of the active conformation of \(\beta_1\)-integrin upon addition of TC either. The bile acids glycochenodeoxycholic acid (GCDC), taurochenodeoxycholic acid (TCDC), or taurolithocholic acid 3-sulfate (TLCS) were likewise ineffective with respect to \(\beta_1\) integrin activation according to immunofluorescence staining. All these bile acids differ from TUDC with respect to the configuration and/or presence or absence of functional groups in the cholane moiety.

In contrast, the taurine conjugate (TnorUDCA) of norUDCA (Figure 1A), a \(C_{23}\) homolog of UDCA that lacks a methylene group in the sidechain, is moderately effective in exerting anticholestatic effects in experimental hepatocellular cholestatis [5]. Preliminary results from immunofluorescence staining of IPRL indicate that TnorUDCA and norUDCA can activate \(\beta_1\) integrins, with stronger effects observed with norUDCA. Another sidechain modification occurs if glycine rather than taurine is conjugated with the bile acid in the terminal synthesis step. Preliminary results from immunofluorescence staining indicate that the glyco-conjugated UDCA (GUDC; Figure 1A) does not activate \(\beta_1\) integrins although GUDC can be transported by the Ntcp [6]. In order to investigate the bile acids’ modes of action at a molecular level, we subjected norUDCA and GUDC bound to the ectodomain of \(\alpha_5\beta_1\) integrin to MD simulations, employing the same setup as for the simulations above. In addition, we also performed MD simulations of the complex of \(\alpha_5\beta_1\) integrin with the unconjugated UDCA as well as of a ligand-free structure of the \(\alpha_5\beta_1\) ectodomain for reference. Together with the above results for TUDC and TC-bound \(\alpha_5\beta_1\) integrin, these simulations reveal a significant correlation between characteristic conformational changes in the \(\beta A\) domain and the potential of the bile acid to activate \(\beta_1\) integrins as observed in immunofluorescence staining: I) the higher this potential (TUDC, norUDCA), the less is helix \(\alpha_1\) kinked and the more is helix \(\alpha_7\) tilted with respect to the ligand-free structure; II) changes in the opposite direction are observed for the non-activating bile acids (TC, GUDC); III) the MD simulations reveal that changes of helix \(\alpha_1\) towards an activated integrin state are more pronounced than those of helix \(\alpha_7\). According to these preliminary results, we predict that UDCA does not activate \(\beta_1\) integrins because the conformational characteristics of helices \(\alpha_1\) and \(\alpha_7\) observed with this bile acid do not differ much from those of the ligand-free structure. Finally, the MD simulations suggest that the cholane scaffolds of TUDC and norUDCA adopt different binding modes in the cleft between the propeller and \(\beta A\) domains of \(\alpha_5\beta_1\) integrin; yet, the

	R₁	R₂	R₃
TUDC	(S)-OH	H	CH₂CO-Tau
TC	(R)-OH	OH	CH₂CO-Tau
norUDCA	(S)-OH	H	COOH
TnorUDCA	(S)-OH	H	CO-Tau
GUDC	(S)-OH	H	CH₂CO-Gly
UDCA	(S)-OH	H	CH₂COOH

Figure 1 (A) Scaffold and R-groups of the investigated bile acid derivatives. (B) Overlay of the starting structure of MD simulations of \(\alpha_5\beta_1\)-integrin bound to TUDC (transparent) and the structure closest to the average as determined over the trajectory of 200 ns length (solid). For clarity, only the \(\beta A\) domain of \(\alpha_5\beta_1\)-integrin is shown together with three Mg²⁺ ions (red spheres); TUDC was omitted. Three regions of characteristic conformational changes in the \(\beta A\) domain are visible: I) straightening of helix \(\alpha_1\) (orange); II) T-junction formation between helices \(\alpha_1\) and \(\alpha_2\); III) tilting of helix \(\alpha_7\) (blue).
activating effects of both bile acids is funneled through helix α_1 and from there leads to allosteric changes in the βA domain that propagate towards the hybrid domain.

In summary, in a combined computational and experimental study, we showed that TUDC directly activates $\alpha_5 \beta_1$ integrins inside hepatocytes and induces conformational changes in the β_1 subunit that lead to integrin activation and swelling-independent signaling towards choleresis. A bile acid with a norursodeoxycholane scaffold (norUDCA) was shown to activate β_1 integrins even without conjugation. In contrast, bile acids modified in the cholane scaffold (TC, TCDC, TLCS) or conjugated to glycine (GCDC, GUDC) were shown to be non-activating. This suggests a unique role of the (nor)ursodeoxycholane scaffold for direct interaction with and activation of $\alpha_5 \beta_1$ integrins in connection with no or a taurine conjugation.

Acknowledgements

This study was supported by the Deutsche Forschungsgemeinschaft through the Collaborative Research Centers SFB 575 (‘Experimental Hepatology’, Düsseldorf) and SFB 974 (‘Communication and Systems Relevance during Liver Damage and Regeneration’, Düsseldorf) and the Clinical Research Group KFO 217 (‘Hepatobiliary Transport in Health and Disease’, Düsseldorf), and by the initiative ‘Fit for Excellence’ at the Heinrich-Heine-University. The authors are grateful to the ‘Zentrum für Informations- und Medientechnologie’ (ZIM) at the Heinrich-Heine-University for computational support. We are grateful to Dr. Nadine Homeyer for fruitful discussions.

Authors’ details

1Department of Mathematics and Natural Sciences, Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University, 40225 Düsseldorf, Germany. 2Clinic of Gastroenterology, Hepatology and Infectious Diseases, Heinrich Heine University, 40225 Düsseldorf, Germany.

Published: 19 June 2014

References

1. Beuers U: Drug insight: mechanisms and sites of action of ursodeoxycholic acid in cholestasis. *Nature Clin Pract Gastroenterol Hepatol* 2006, 3:318-328.
2. Kurz AK, Graf D, Schmitt M, Vom Dahl S, Häussinger D: Tauroursodesoxycholate-induced choleresis involves p38(MAPK) activation and translocation of the bile salt export pump in rats. *Gastroenterology* 2001, 121:407-419.
3. Reinehr R, Gehlke H, Sommerfeld A, Vom Dahl S, Häussinger D: Activation of integrins by urea in perfused rat liver. *J Biol Chem* 2010, 285:29348-29356.
4. Gehlke H, Schmitz B, Sommerfeld A, Reinehr R, Häussinger D: a5b1-Integrins are sensors for tauroursodeoxycholic acid in hepatocytes. *Hepatology* 2013, 57:1117-1129.
5. Fickert P, Pollheimer MJ, Silbert D, Moustafa T, Hallibasic E, Krones E, Durchschein F, Thurninger A, Zoller G, Denk H, et al: Differential effects of norUDCA and UDCA in obstructive cholestasis in mice. *J Hepatol* 2013, 58:1201-1208.
6. Maeda K, Kambara M, Tian Y, Hofmann AF, Sugiyama Y: Uptake of ursodeoxycholate and its conjugates by human hepatocytes: role of Na (+)-taurocholate cotransporting polypeptide (NTCP), organic anion transporting polypeptide (OATP1B1 (OATP-C), and oapt1B3 (OATP8). *Mol Pharm* 2006, 3:70-77.

Cite this article as: Bonus et al. $\alpha_5 \beta_1$ integrins in hepatocytes act as receptors for bile acids with a (nor)ursodeoxycholane scaffold. *European Journal of Medical Research* 2014 19(Suppl 1):S13.