Rotational excitation of \(\text{H}_3\text{O}^+ \) cations by \(\text{para-H}_2 \): improved collisional data at low temperatures

Sándor Demes\(^1\), * François Lique\(^1\), Alexandre Faure\(^2\), Floris F. S. van der Tak\(^3\), Claire Rist\(^2\) and Pierre Hily-Blant\(^2\)

\(^1\) Univ Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, F-35000 Rennes, France
\(^2\) IPAG, Université Grenoble Alpes & CNRS, CS 40700, F-38058 Grenoble, France
\(^3\) SRON Netherlands Institute for Space Research & Kapteyn Astronomical Institute, University of Groningen, 9747 AD Groningen, The Netherlands

Accepted XXX. Received YYY; in original form ZZZ.

ABSTRACT

The hydronium cation plays a crucial role in interstellar oxygen and water chemistry. While its spectroscopy was extensively investigated earlier, the collisional excitation of \(\text{H}_3\text{O}^+ \) is not well studied yet.

In this work we present state-to-state collisional data for rotational de-excitation of both \text{ortho-} and \text{para-} \(\text{H}_3\text{O}^+ \) due to \text{para-} \(\text{H}_2 \) impact. The cross sections are calculated within the close-coupling formalism using our recent, highly accurate rigid-rotor potential energy surface for this collision system. The corresponding thermal rate coefficients are calculated up to 100 K. For \text{para-} \(\text{H}_3\text{O}^+ \) the lowest 20 rotation-inversion states were considered in the calculations, while for \text{ortho-} \(\text{H}_3\text{O}^+ \) the lowest 11 states are involved (up to \(j \leq 5 \)), so all levels with rotational energy below 420 K (292 cm\(^{-1}\)) are studied.

In order to analyse the impact of the new collisional rates on the excitation of \(\text{H}_3\text{O}^+ \) in astrophysical environments radiative transfer calculations are also provided. The most relevant emission lines from an astrophysical point of view are studied, taking into account the transitions at 307, 365, 389 and 396 GHz. We show that our new collisional data have a non-negligible impact (from a few percents up to about a factor of 3) on the brightness and excitation temperatures of \(\text{H}_3\text{O}^+ \), justifying the revision of the physical conditions in the appropriate astrophysical observations. The calculated rate coefficients allow one to recalculate the column density of hydronium in interstellar clouds, which can lead to a better understanding of interstellar water and oxygen chemistry.

Key words: molecular processes – scattering – methods: laboratory: molecular – astrochemistry – ISM: molecules – radiative transfer

1 INTRODUCTION

It was shown earlier by Herbst & Klemperer (1973); Phillips et al. (1992); Sternberg & Dalgarno (1995); van der Tak et al. (2008) that hydronium cation \(\text{H}_3\text{O}^+ \) is a very important chemical species in interstellar ion-molecule reactions schemes. It is present both in dense and diffuse interstellar medium (ISM) playing a very important role in oxygen and water chemistry (Sternberg & Dalgarno 1995; González-Alfonso et al. 2013; Goicoechea & Cernicharo 2001; Gerin et al. 2010; van Dishoeck et al. 2013). According to Hollenbach et al. (2012) the formation of \(\text{H}_3\text{O}^+ \) proceeds via two different ways in low-temperature diffuse and dense molecular clouds (see also van Dishoeck et al. (2013)). In diffuse clouds as well as near the surfaces of molecular clouds the following reactions take place:

\[\text{(a)} \quad \text{OH}^+ + \text{H}_2 \rightarrow \text{H}_3\text{O}^+ + \text{H}, \quad \text{(b)} \quad \text{H}_2\text{O}^+ + \text{H}_2 \rightarrow \text{H}_3\text{O}^+ + \text{H}. \]

Here the \(\text{OH}^+ \) cations are formed by an "atomic" route via the interaction of \(\text{O}^+ \) ions with \(\text{H}_2 \), where the oxygen ions are produced in \(\text{H}^+ + \text{O} \) reaction.

Deeper in the opaque interiors of molecular clouds the formation of \(\text{H}_3\text{O}^+ \) can take place also via reactions (\(\text{a} \)) and (\(\text{b} \)) defined in Eq. (1). In this region however both \(\text{OH}^+ \) and \(\text{H}_2\text{O}^+ \) cations can be produced directly from \(\text{H}_2^+ \) through interaction with oxygen atoms, so reaction (\(\text{a} \)) could be skipped. \(\text{H}^+ \) and \(\text{H}_2^+ \) ions needed for \(\text{H}_3\text{O}^+ \) formation are provided by cosmic-ray ionization of \(\text{H}_2 \). In our Galaxy, this process proceeds at a rate of \(10^{-17} - 10^{-15} \text{ s}^{-1} \), depending on cloud density and Galactocentric radius (van der Tak & Van Dishoeck 2000; Indriolo et al. 2015). The relative abundances of \(\text{H}_2\text{O} \) and \(\text{H}_3\text{O}^+ \) have been used to constrain the ionization rates of molecular clouds in external galaxies (van der Tak et al. 2016).

The dissociative recombination of \(\text{H}_3\text{O}^+ \) leads to the formation of neutral \(\text{OH} \) and \(\text{H}_2\text{O} \) products, where the hydroxyl radical can react with oxygen atoms afterward in order to form \(\text{O}_2 \) molecules (Vejby-Christensen et al. 1997; Jensen et al. 2000; Zhaunerchyk et al. 2009; Yu et al. 2009). \(\text{H}_3\text{O}^+ \) is not only the backbone of interstellar oxygen chemistry, but it is also one of the most important cations in all branches of chemistry in general (Yu & Bowman 2016; Mann et al. 2013), which is intensively studied in many aspects. As we mentioned in our recent work (Demes et al. 2020), referred as Paper I hereafter, finding the abundance of \(\text{H}_3\text{O}^+ \) cations can be used as an indirect way of determining the abundance of interstellar water (Phillips et al. 1992). In order to understand the role of hydronium cations...

* E-mail: sandor.demes@univ-rennes1.fr

© 2021 The Authors
in astrophysical media however the features of both its radiative and collisional excitation should be studied. Numerous high-resolution spectroscopy measurements were carried out for H$_2$O$^+$, which were collected by Yu et al. (2009), while Yurchenko et al. (2020) theoretically studied its ro-vibrational levels recently. The electron-impact excitation of H$_2$O$^+$ was studied by Faure & Tennyson (2003), who combined the R-matrix theory with the adiabatic-nuclei-rotation approximation. Unfortunately there are only limited works devoted to its collisions with interstellar atoms and molecules. For example, for rotational excitation of H$_2$O$^+$ by molecular hydrogen (which is the most abundant molecule in the ISM) only approximated, scaled data are available in the literature (Offer & van Hemert 1992), which are only accurate to order of magnitude (see the review by van der Tak et al. (2020) for a discussion of the accuracy of scaled collision data). So reliable and precise rate coefficients are obviously needed for describing the collisional excitation of H$_2$O$^+$ in order to interpret the astrophysical observations in the ISM.

In the first rotational excitation study by Offer & van Hemert (1992) the H$_2$O$^+$–H$_2$ collision was modeled with a scaled interaction potential of the isoelectronic NH$_3$ molecule (in collision with H$_2$), taking into account its electronic and geometrical properties along with the large “umbrella” inversion splitting constant. Both the para(\textit{p})- and ortho(\textit{o})-H$_2$O$^+$ nuclear spin isomers were studied in collision with ground-state para- and ortho-H$_2$. In order to improve the model potential energy surface (PES) based on NH$_2$-H$_2$ interaction, the authors added a long-range correction calculated by second-order perturbation theory, fitted by analytical functions. However, even with this correction included the model cannot correctly describe the ionic nature of H$_2$O$^+$, so the cross section data obtained by Offer & van Hemert (1992) should be improved and recalculated using a more accurate PES. It is also worth noting that the authors provide converged state-to-state data only for the p-H$_2$O$^+$– p-H$_2$ collision for a single collision energy (101 cm$^{-1}$), while for the o-H$_2$O$^+$–p-H$_2$ and p-H$_2$O$^+$–o-H$_2$ interactions they only performed benchmark calculations with a very limited number of partial waves $J = 0$ – 2 (where J is the total angular momentum).

The collisional excitation of H$_2$O$^+$ by He atoms (as a template for H$_2$) was recently studied by El Hanini et al. (2019). It is worth to mention however that He is a factor of 5 less abundant than H$_2$. Rotational excitation cross sections were computed by means of the close coupling or coupled channel (CC) method by the authors up to 300 cm$^{-1}$ collision energies in case of o-H$_2$O$^+$, and up to 300 cm$^{-1}$ in case of para-H$_2$O$^+$, while the thermal rate coefficients were calculated up to 50 K. They used a 3-dimensional PES with fixed intramolecular distances for both colliding partners, calculated by the coupled-cluster theory at the level of single, double, and perturbative corrections for triple excitations [CCSD(T)] and with a non-standard valence quadruple-zeta (AVQZ) basis set. The inversion splitting effects were neglected in the work, which is questionable in case of the H$_2$O$^+$ cation because of its rather large (~ 55 cm$^{-1}$) inversion splitting constant (Yu et al. 2009). The global well depth of the H$_2$O$^+$ – He system, as it was calculated by the authors, taking into account the basis set superposition error (BSSE) corrections, is about 354.53 cm$^{-1}$. It is worth to mention that, as it was shown by Roueff & Lique (2013), significant differences could be observed between the rate coefficients for collisions with He and H$_2$. According to this, new, reliable rate coefficients are obviously needed for the collision of H$_2$O$^+$ with H$_2$ in order to more precisely estimate its abundance from emission spectral lines observed in the ISM. Without such rates the molecular abundances could be only approximated, assuming local thermodynamic equilibrium (LTE), which is usually not a good approximation for typical interstellar conditions (Roueff & Lique 2013).

In this paper, we provide new collisional cross section and thermal rate coefficient data for the interaction of H$_2$O$^+$ with H$_2$ under ISM conditions, based on our new, accurate 5-dimensional PES (Demes et al. 2020). The rotational (non-spherical) structure of p-H$_2$ was taken into consideration. A detailed comparison with the available data for H$_2$O$^+$ – He (El Hanini et al. 2019) and NH$_3$ – H$_2$ (Bouhafs et al. 2017) collisions is presented. As a first astrophysical application, in order to illustrate the influence of our new rate coefficients on astrophysical modelling, we also perform radiative transfer calculations to analyze the collisional excitation of H$_2$O$^+$ in interstellar molecular clouds.

The paper is organized as follows: in Section 2 the details of the PES and the scattering calculations are presented. We report state-to-state cross sections and rate coefficients for the rotational de-excitation of H$_2$O$^+$ by H$_2$ in Section 3, where in subsection 3.3 we also present the results of radiative transfer calculation. Our concluding remarks are drawn in Section 4.

2 MODEL AND METHOD

2.1 Potential energy surface

We have used our recent 5D rigid-rotor potential energy surface (Demes et al. 2020) to model the collisional dynamics of the H$_2$O$^+$–H$_2$ system. The PES was calculated using the explicitly correlated coupled-cluster theory at the level of singles and doubles with perturbative corrections for triple excitations [CCSD(T)-F12] with the moderate-size augmented correlation-consistent valence triple (aug-cc-pVTZ) basis set and applying the counterpoise procedure of Boys & Bernardi (1970) in order to eliminate the effects of basis set superposition error (see Demes et al. 2020 for full details).

We used a Jacobi coordinate system to define the geometry of the H$_2$O$^+$ – H$_2$ system. The center of the coordinate system is chosen to be in the center of mass (c.o.m.) of the H$_2$O$^+$ cation (i.e. molecular frame representation). A single radial parameter R defines the intermolecular distance between the c.o.m. of H$_2$O$^+$ and H$_2$, θ and ϕ spherical angles characterize the angular position of H$_2$ relative to the center of the coordinate system, while two additional angles define the orientation of the H$_2$ molecule. We used the rigid rotor approximation in order to reduce the dimensionality. It should be noted that the inversion frequency of H$_2$O$^+$ is much larger than that of NH$_3$, however, as Offer & van Hemert (1992) have shown the explicit inclusion of the inversion motion has only a small impact on the rotational cross sections, so that the rigid-rotor approximation is valid and reasonable for our case. For the H$_2$ molecule we applied a bond length of $r_{1-H} = 1.44874$ bohr, calculated by Rubin & Adamowicz (2003), while for the H$_2$O$^+$ cation the experimental structural data of Tang & Oka (1999) was used: $r_{o-H} = 1.8406$ bohr for the bond lengths and $\sigma_{H-O-H} = 113.6^\circ$ for the bond angles. At each intermolecular distance R, the interaction energy was fitted using a least square standard linear method. All significant analytical terms were selected iteratively, using a Monte-Carlo error estimator described by Rist & Faure (2012), resulting in a final set of 208 expansion functions with anisotropies up to $l_1 = 16$ and $l_2 = 4$ (the l_1 and l_2 indices refer to the tensor ranks of the angular dependence of the H$_2$O$^+$ and H$_2$ orientations, respectively). The root mean square (rms) residual was found to be lower than 1 cm$^{-1}$ in the long-range region of the PES and also in the potential well region. The rms error on the expansion coefficients was also found to be smaller than 1
cm\(^{-1}\) in these regions of the interaction potential. The interpolation of the analytical coefficients was finally performed using a cubic spline radial interpolation scheme over the whole intermolecular distance range (\(R = 4 - 30\) bohr), and it was smoothly connected to standard extrapolations using the switch function applied earlier by Valiron et al. (2008).

Until otherwise noted, we used the following units throughout this paper: atomic units (a.u.) for distances (1 a.u. = 1 bohr = 5.29177 × 10\(^{-10}\) cm), and wavenumbers (cm\(^{-1}\)) for energies (1 cm\(^{-1}\) = 1.4388 K).

2.2 Scattering calculations

We have calculated the state-to-state rotational de-excitation cross sections (\(\sigma\)) and thermal rate coefficients (\(k(T)\)) for the collision of both ortho- and para-H\(_3\)O\(^+\) with para-H\(_2\). We determined the \(\sigma\) up to 800 cm\(^{-1}\) total energies by the close-coupling approach using the HEBRIDON scattering code (Manolopoulos 1986; Alexander & Manolopoulos 1987). Similar calculations were performed for the isoelectronic NH\(_3\)–H\(_2\) collision system (which is also a “symmetric top molecule – diatomic” collision system) in a broad kinetic energy range by Bouhafs et al. (2017). The rotational states involved in our calculations are denoted by \(j_f^\ell\), where \(j\) is the total angular momentum of the H\(_3\)O\(^+\) cation, \(k\) is its projection on the \(C_3\) rotational axis, and \(\ell = \pm\) is an inversion symmetry index (for more details, see Rist et al. (1993)). It is worth noting that the ortho-H\(_3\)O\(^+\) is characterised with \(k = 3n\) quantum numbers (where \(n = 0, 1, 2, \ldots\)), while all other \(k\) quantum numbers (e.g. \(k = 1, 2, 4, 5, \ldots\)) define the H\(_2\)O\(^+\) with para nuclear spin symmetry.

In case of the hydronium cation, we used the most recent experimental rotational constants from Yu et al. (2009): \(B = 11.15458\) cm\(^{-1}\) and \(C = 6.19102\) cm\(^{-1}\). The ground-state inversion splitting constant of H\(_2\)O\(^+\) measured by Yu et al. (2009) is 55.34997 cm\(^{-1}\), which is nearly two orders of magnitude larger than that of NH\(_3\) (0.7903 cm\(^{-1}\)). In case of the H\(_2\) molecule we considered the \(B_{H_2} = 59.3801\) cm\(^{-1}\) rotational constant, in accordance with Bouhafs et al. (2017). The reduced mass of the H\(_2\)O\(^+\)–H\(_2\) system is found to be 1.82273 amu. Just as in Paper I we only used a reduced 55-term expansion of our analytical PES in current scattering calculations, including anisotropies up to \(l_1 \leq 6\) and \(l_2 \leq 2\). The implementation of the full, 208-terminal angular basis into the scattering code would be technically difficult and would make the close-coupling calculations unnecessarily heavy and computationally too expensive. However, in order to study the effect of the size of the analytical potential on the cross sections we performed benchmark calculations also with a 39-term angular basis, in which all terms with \(l_1 = 6\) were removed. The results show that the 55-term angular basis we used in the calculations is enough to ensure a convergence always better than 10 – 20% for any particular energy and transition considered, and generally keep the accuracy on the level of a few percents.

We calculated the inelastic cross sections for transitions between rotational levels with internal energy \(\lesssim 420\) K (292 cm\(^{-1}\)). The complete set of these rotational levels for both ortho- and para-H\(_3\)O\(^+\) are shown in Table 1. The basis set size (\(j_{\text{max}}\)) along with the maximum total angular momentum (\(J_{\text{tot}}\)) were selected depending on the collision energy. Their particular values were found following preliminary convergence test calculations with a convergence threshold criteria of 1% and 0.01% mean deviation, respectively. In order to adequately describe the resonances in the cross sections, a very small energy step size (\(E_{\text{step}}\)) was chosen at low collision energies (0.1 cm\(^{-1}\)), which was then gradually increased (until 5 cm\(^{-1}\)at high energies). The values of \(j_{\text{max}}, J_{\text{tot}}\) and \(E_{\text{step}}\) parameters used in the calculations for the particular collision energy intervals (from \(E_{\text{in}}\) to \(E_{\text{fin}}\)) are listed in Table 2. It is worth to mention, that the \(j_{\text{max}}\) parameter refers only to the rotational basis used for the H\(_3\)O\(^+\) cation. For para-H\(_2\) the two lowest even rotational states were taken into account in the scattering calculations, i.e. \(J_{\text{tot}} = 0, 2\).

The calculated cross sections allow to determine the rate coefficients up to 100 K kinetic temperatures by integrating over a Maxwell-Boltzmann distribution of relative velocities (Le Picard et al. 2019):

\[
k_{i\rightarrow f}(T) = \left(\frac{8}{\pi \mu k_B T^3}\right)^{1/2} \int_0^{\infty} \sigma_{i\rightarrow f} E_c e^{-k_B T E_c} dE_c,
\]

where \(E_c\) is the collision energy, \(\sigma_{i\rightarrow f}\) is the cross section for transition from the initial state \(i\) to the final state \(f\), \(\mu\) is the reduced mass of the system and \(k_B\) is the Boltzmann constant.

2.3 Radiative transfer calculations

Using the new set of collisional rate coefficients, radiative transfer calculations were performed in order to determine the \(T_B\) radiance and \(T_{\text{ex}}\) excitation temperatures as well as the \(\tau\) opacity (optical depth) parameters for radiative transitions of ortho- and para-H\(_3\)O\(^+\) under specific interstellar physical conditions. The calculations were performed using the latest version of the RADEX non-LTE radiative transfer computer program (van der Tak et al. 2007). In order to solve the radiative transfer equation, the uniform sphere escape probability method has been applied. In the calculations the physical conditions were either systematically varied or constrained. For example, the para-H\(_2\) molecular densities were considered in the interval of \(n(H_2) = 10^3 - 10^{12}\) cm\(^{-3}\); the molecular column density \(N\) was varied from \(1 \times 10^{12}\) up to \(1 \times 10^{15}\) cm\(^{-2}\), while the calculated rate coefficients allowed one to explore a kinetic energy range up to \(T_{\text{kin}} = 100\) K. The background radiation temperature and the FWHM line width parameters were kept fixed in all calculations at \(T_{bg} = 2.7\) K and \(\Delta V = 10.0\) km/s, respectively.

Two sets of radiative transfer calculations were provided. First, we used the available rate coefficients from the LAMDA database (Schöier et al. 2005). This database contains scaled ortho- and para-NH\(_3\) rate coefficients in collision with H\(_2\) at 100 K kinetic temperature to estimate the H\(_3\)O\(^+\)–H\(_2\) collisional rates. The LAMDA database provides such rates for 36 de-excitation transitions in case of ortho- and 91 transitions in case of para-H\(_3\)O\(^+\).

In the second set of radiative transfer calculations we used the new rate coefficients, which were calculated according to the method discussed in subsection 2.2. We have explicitly taken into account the rate coefficients between 10 and 100 K kinetic temperatures for 55 transitions in case of ortho- and 180 transitions in case of para-H\(_3\)O\(^+\). For both sets of calculations the rotational energies along with the radiative transition frequencies and Einstein \(A\) coefficients were used as it is proposed in JPL database (Pickett et al. 2010, Species Tag: 19004). In total 11 rotational states (up to the \(J = 1\) state as the highest, see Table 1 for more details).
Table 1. List of the rotational energy levels for ortho- and para-H$_3$O$^+$, which were considered in collisional studies of the present work. The corresponding energies are taken from JPL database (Pickett et al. 2010, Species Tag: 19004).

State label	j^e	j^i	Rotation energy [cm$^{-1}$]	State label	j^e	j^i	Rotation energy [cm$^{-1}$]
(1)	1^+	0.000	1.000	(1)	1^+	0.000	5.101
(2)	2^+	29.697	29.697	(2)	0^+	37.947	37.947
(3)	2^+	55.233	55.233	(3)	3^+	71.681	71.681
(4)	1^+	84.977	84.977	(4)	2^+	104.239	104.239
(5)	3^+	97.145	97.145	(5)	3^+	117.457	117.457
(6)	2^+	117.681	117.681	(6)	3^+	127.172	127.172
(7)	1^+	125.939	125.939	(7)	4^+	161.573	161.573
(8)	3^+	155.233	155.233	(8)	3^+	215.486	215.486
(9)	3^+	151.241	151.241	(9)	4^+	258.636	258.636
(10)	2^+	155.233	155.233	(10)	2^+	271.201	271.201
(11)	3^+	184.927	184.927	(11)	3^+	273.697	273.697
(12)	1^+	181.807	181.807	(12)	1^+	286.146	286.146
(13)	2^+	186.926	186.926	(13)	2^+	292.146	292.146
(14)	3^+	192.453	192.453	(14)	3^+	300.483	300.483
(15)	4^+	202.099	202.099	(15)	4^+	312.807	312.807
(16)	2^+	238.256	238.256	(16)	2^+	325.523	325.523
(17)	4^+	239.453	239.453	(17)	4^+	338.146	338.146
(18)	3^+	248.863	248.863	(18)	3^+	347.571	347.571
(19)	4^+	253.850	253.850	(19)	4^+	357.078	357.078
(20)	3^+	292.146	292.146	(20)	3^+	366.571	366.571

Table 2. A full list of the basis set size (j_{max}) and maximum total angular momentum (J_{tot}) parameters, which were found by systematic convergence tests for the particular total energy intervals. The step size for the energies (E_{step}) used in the computations are also listed.

ortho-H$_3$O$^+$ – para-H$_2$ collision	para-H$_2$O$^+$ – para-H$_3$ collision								
E_{init} [cm$^{-1}$]	E_{fin} [cm$^{-1}$]	E_{step} [cm$^{-1}$]	J_{max}	J_{tot}	E_{init} [cm$^{-1}$]	E_{fin} [cm$^{-1}$]	E_{step} [cm$^{-1}$]	J_{max}	J_{tot}
55.4	99.9	0.1	9	23	47.1	74.9	0.1	17	18
100	149.9	0.1	9	30	75	99.9	0.1	17	22
150	174.5	0.5	9	34	100	124.9	0.1	17	26
175	199.5	0.5	9	35	125	149.9	0.1	17	30
200	224.3	0.5	10	42	150	174.5	0.5	17	34
225	249.5	0.5	10	43	175	199.5	0.5	17	38
250	264.3	0.5	10	50	200	224.3	1	17	39
280	284.3	0.5	10	56	275	299.3	1	17	47
320	324.3	0.5	12	57	300	324.3	1	17	49
475	499.5	0.5	12	60	375	399.5	1	17	51
500	508	2	12	73	400	424.5	1	17	53
510	522.5	2.5	12	73	425	449.5	1	17	54
550	570	5	12	74	475	499.5	1	17	56
575	620	5	12	79	500	518.75	1.25	17	58
625	645	5	12	81	520	547.5	2.5	17	58
650	670	5	12	82	550	570	5	17	59
675	695	5	12	83	575	620	5	17	60
700	720	5	13	84	625	695	5	16	62
725	745	5	13	85	700	745	5	16	63
750	770	5	13	87	750	800	5	16	65
775	800	5	13	93	800	850	5	16	67
3 RESULTS AND DISCUSSION

3.1 Rotational de-excitation cross sections

Figs. 1 and 2 show the collisional energy dependence of some selected de-excitation cross sections for \(\sigma-\text{H}_3\text{O}^+ \) and \(\pi-\text{H}_3\text{O}^+ \) collision with \(p-\text{H}_2 \), respectively. We compare our data with the corresponding cross sections for \(\text{H}_2\text{O}^+ - \text{He} \) (El Hanini et al. 2019) and \(\text{NH}_3 - \text{H}_2 \) (Bouhafs et al. 2017) collisions. The reason why we perform a comparative analysis also with ammonia data is because \(\text{NH}_3 \) was assumed to be a template for the collisions with \(\text{H}_3\text{O}^+ \) (see for example Offer & van Hemert 1992, for details). It is worth to mention however, that the labeling of the rotational levels in both of the referred works is somewhat different from those we calculated for the hydronium cation (see Table. 1). The source of such differences is obvious in comparison with \(\text{NH}_3 \), however the incorrect structure of rotational levels for \(\text{H}_3\text{O}^+ \) is because the large inversion splitting constant of the cation is neglected in the calculations of El Hanini et al. (2019).

It is worth to mention that Offer & van Hemert (1992) only calculated excitation cross sections and only for one single energy both for \(\text{para- and ortho-} \text{H}_3\text{O}^+ \) collision with \(\text{H}_2 \). These cross sections were calculated in the low-energy region (at 101 and 145 cm\(^{-1}\), respectively), where the resonances are very dominant, and their structure and amplitude strongly depend on the quality of the potential used for the calculations. We compared the state-to-state cross sections with the corresponding data of Offer & van Hemert (1992), and we found that our results usually highly overestimates them (up to 1 or even 2 orders of magnitude). It is important to mention also that in order to make a comparison of the de-excitation cross sections directly in Figs. 1 and 2 an analytical conversion is needed. This conversion involves the \(k^2 \) (wavevector) parameter, which linearly depends on the difference between the total collision energy and the rotational energy of the particular states involved in the transition. Since the quality of the conversion is sensitive to the rotational level energy (especially in case of higher states), which are not listed precisely in the work of Offer & van Hemert (1992) (see Fig. 3 therein), it is not possible to guarantee a good accuracy for the conversion. Because of the mentioned reasons we decided not to include the results of Offer & van Hemert (1992) in our global analysis.

In the case of \(\sigma-\text{H}_3\text{O}^+ \) collision with \(p-\text{H}_2 \) we selected some transitions with \(\Delta j = 1-3 \) and \(\Delta k = 3 \). As one can see there is a significant difference between our results and the cross sections of both El Hanini et al. (2019) and Bouhafs et al. (2017) in the whole kinetic energy interval. Typically our cross sections are about an order of magnitude larger than the corresponding data from the literature. The relative difference is the smallest in case of the \(3_2^+ \rightarrow 1_0^+ \) transition, and somewhat decreases with increasing energy. For other transitions the difference is relatively constant and does not depend strongly on energy, except in the case of the \(2_0^+ \rightarrow 3_1^+ \) transition in comparison with the \(\text{NH}_3 \) data. Significantly there is no constant linear scaling between our data and those of El Hanini et al. (2019) or Bouhafs et al. (2017), which confirms the relevance of the new calculations. As one can see also in Fig. 1, another important difference is that the new cross sections are characterized by a dense resonance structure, which is also contrary to the previously published data. This is certainly due to the very large differences between the well depths of the interaction potential. While for the \(\text{H}_3\text{O}^+ - \text{He} \) system it is about 354.53 cm\(^{-1}\) (El Hanini et al. 2019) and for the \(\text{NH}_3 - \text{H}_2 \) complex it is 267 cm\(^{-1}\) (Bouhafs et al. 2017), the well depth of the PES in our calculation is 5-7 times larger, about 1887.2 cm\(^{-1}\).

In order to analyse the cross sections for \(p-\text{H}_3\text{O}^+ - p-\text{H}_2 \) collision (see Fig. 2) we selected only two transition (both with \(\Delta j = 0 \)). The solid black line shows our cross sections for the \(1_1^+ \rightarrow 1_1^+ \) inversion transition, while the solid blue line refers to \(2_1^+ \rightarrow 2_1^+ \). The results are compared with the corresponding data for \(p-\text{H}_3\text{O}^+ - \text{He} \) (El Hanini et al. 2019) and \(p-\text{NH}_3 - p-\text{H}_2 \) (Bouhafs et al. 2017) collisions. The observed relative differences are significantly smaller for the transition within \(j = 1 \), but still very large for the \(j = 2 \) transition. The strong resonance structures in the cross sections are significant for this type of collisions as well. The differences are mainly due to these resonances in the case of \(1_1^+ \rightarrow 1_1^+ \) transition, while for the \(2_1^+ \rightarrow 2_1^+ \) process a larger relative difference is observed, from a factor of 2 up to more than an order of magnitude.

In Fig. 3 we compare the cross sections for all the possible low-
frequency transitions ($\nu_1 \rightarrow \nu < 1000 \text{ GHz}$) up to 500 cm$^{-1}$ collision energies. Transition both for $\alpha\text{H}_3\text{O}^+$ and $\pi\text{H}_2\text{O}^+$ nuclear spin isomers were considered, for which we also present radiative transfer calculations later (see subsection 3.3). The σ do not deviate strongly, the maximal difference between them is within a factor of 3. It is not surprising that the largest cross sections are calculated for the case of $0^+_{\alpha} \rightarrow 1^+_0$ transition into the ground state. As one can see, all σ are characterized with a very strong resonance behaviour, which indicates a a very dense sampling of collision energy (with a step size $E_{\text{step}} \sim 0.1 \text{ cm}^{-1}$) is required to adequately compute the corresponding rate coefficients (especially below 300-400 cm$^{-1}$, where the resonances are the strongest).

3.2 Rate coefficients

Once the state-to-state cross sections were calculated we computed the corresponding rate coefficients for the H_2O^+ – H_2 collision (see subsection 2.2 for details). In Fig. 4 the rate coefficients for the $\alpha\text{H}_3\text{O}^+ – \pi\text{H}_2$ collision are compared with the available data from the literature for the same transitions presented in Fig. 1. The large difference between our results and the collisional rates of both El Hanini et al. (2019) and Bouhafs et al. (2017) is even more visible in this plot in the whole temperature range (i.e. up to $T_{\text{kin}} = 100$ K). The smaller deviation is observed for the $3^+_3 \rightarrow 1^+_0$ transition (one order of magnitude compared to two orders of magnitude for the other transition). In general the relative difference between the corresponding $k(T)$ is smaller for higher absolute rate values. It is worth noting also that there is no direct scaling (i.e. linear dependence) observed between the rate coefficients compared in Fig. 4 with respect to kinetic temperature change.

As it is expected, the relative difference between the calculated $k(T)$ for $\pi\text{H}_2\text{O}^+ – \text{p-H}_2$ collision and the corresponding data from the literature (Bouhafs et al. 2017; El Hanini et al. 2019) is similar to those for the $\alpha\text{H}_3\text{O}^+ – \pi\text{H}_2$ process. Fig. 5 shows the temperature dependence of the $p-\text{H}_3\text{O}^+ – p-\text{H}_2$ thermal rate coefficients for some selected transitions, compared with the previously published data. It is worth to mention however that we selected different states from those shown in Fig. 2, because of the lack of collisional rate coefficients in the literature for those transitions. The magnitude of deviation does not depend clearly on the absolute values of the rates, however it is rather small (from about 20% up to about factor of 2) in the case of the $3^+_2 \rightarrow 2^+_1$ transition, which is the lowest by the amplitude in our calculations. While our results show a rather strong resemblance for the $3^+_2 \rightarrow 2^+_1$ and $2^+_1 \rightarrow 1^+_0$ transitions, this is not the case with corresponding data of El Hanini et al. (2019). The rate coefficients for these transitions in the work of Bouhafs et al. (2017) also show a strong correlation, but our results are significantly larger (by about a factor of 2). The largest differences (up to an order of magnitude) are found for the $3^+_3 \rightarrow 2^+_1$ de-excitation process, while compared with the results of Bouhafs et al. (2017) for NH$_3$.

Fig. 6 compares the de-excitation rates for the same low-frequency transitions studied in Fig. 3. Both the $\alpha\text{H}_3\text{O}^+$ and $\pi\text{H}_2\text{O}^+$ nuclear spin isomers were considered again. One can see that the absolute
difference between the rates varies from some percents up to a factor of 3. It is worth to mention again that the dependence of the rate coefficients on the temperature is not uniform, which is especially significant at lower T_{kin}. Above 60 K the rate coefficients decrease rather monotonically, and a constant scaling factor between them could be easily derived for this temperature region.

After analyzing all the state-to-state rate coefficients some important conclusion could be drawn. In the 10 to 100 K interval the temperature dependence is not strong, which is in accordance with the Langevin capture model. Above 40-50 K all the rate coefficients are important for adequate modelling of hydronium in astrophysical media.

In order to demonstrate the importance of new rate coefficients in the potential astrophysical applications we compare our results with the most recent $k(T)$ listed in the LAMDA database (Schöier et al. 2005). Currently these rate coefficients are used for the radiative transfer modelling, which involves hydronium. The state-to-state ratios of the collisional rates both for σ-H_3O^+ and π-H_3O^+ are shown in Fig. 7 at 100 K kinetic temperature. As one can see the $k(T)$ do not correlate well, i.e. no linear scaling from the data of LAMDA database to our new rates can be found. In general the ratio varies between factors of 0.5 and 2 (except for some σ-H_3O^+-transitions) and no significant difference can be found for ortho and para nuclear symmetries. For most of the transition the following tendency is valid: as the magnitude of the $k(T)$ is increasing their relative ratio is decreasing. In comparison with the data from the literature our rates are higher for the low-magnitude transitions (up to about 2×10^{-10} cm3/s), while for higher rates they are lower. We would like to emphasise again that due to this non-linearity the new collisional rate coefficients are important for adequate modelling of hydronium in astrophysical media.

The corresponding ratios for the low-frequency transitions (highlighted with alternative colours) are indicated at 50 K as well. While the the LAMDA database currently contains only collisional data at 100 K, it is important to provide temperature-dependent rates as well, since the rates can vary (decrease) with increasing T_{kin}.

3.3 Excitation of H_3O^+ in low-temperature interstellar regions

In order to estimate the impact of our new collisional data on the astrophysical observables, we have computed the excitation of both ortho- and para-H_3O^+ using the large velocity gradient RADEX non-LTE radiative transfer computer program (see subsection 2.3 for details). We have used the rate coefficients computed for collision with p-H_2, presented in the previous section. For comparison, we provided the same radiative transfer calculations using the corresponding $k(T)$ data from the LAMDA database (Schöier et al. 2005). The radiance (brightness) temperatures for the $\Gamma_1 \rightarrow \Gamma_5^+$, $\Gamma_3^+ \rightarrow \Gamma_2^+$ and $\Gamma_0 \rightarrow \Gamma_0^+$ transitions are compared with results of Phillips et al. (1992) (see Fig. 8). The latter de-excitation processes are characterized with 307.2, 364.8 and 396.3 GHz transition frequencies, respectively (see Fig. 3 for the corresponding cross sections and Fig. 6 for the $k(T)$).

First we analysed the optical depth (τ) for these transitions at $N \approx 10^{15}$ cm$^{-2}$ column density. We found that all the 4 transitions are optically "thin", since we found very low τ values for them under strict LTE-conditions (above 10^9 cm$^{-3}$ hydrogen densities):

- $\tau \approx 0.2 - 0.22$ for the $\Gamma_5^+ \rightarrow \Gamma_2^+$ transition (396.3 GHz),
- $\tau \approx 0.15 - 0.17$ for the $\Gamma_1 \rightarrow \Gamma_2^+$ transition (307.2 GHz),
- $\tau \approx 0.08 - 0.1$ for the $\Gamma_2^+ \rightarrow \Gamma_2^+$ transition (364.8 GHz),

where the two τ-values refer to results obtained using our new $k(T)$ data and those of from the LAMDA database (Schöier et al. 2005), respectively. At lower H_2 densities (below 10^6 cm$^{-3}$) the calculated optical depth values are lower (< 0.1), except of the $\Gamma_1 \rightarrow \Gamma_2^+$ (307.2 GHz) transition, for which $\tau \approx 1$ between $10^7 - 10^4$ cm$^{-3}$ H_2 densities.

Fig. 8 shows the dependence of T_R radiance temperature on $n(H_2)$ gas density for the above mentioned transitions. We analysed this dependence for different column densities N ranging from 1 x 10^{12} up to 1 x 10^{15} cm$^{-2}$ at 50 and 100 K gas temperatures. As one can see there is a good qualitative agreement between the calculated radiance temperatures using our new rate coefficients and those listed by Phillips et al. (1992) for the whole molecular density range. However, while analysing the results obtained using the LAMDA rate coefficients
Figure 8. Radiance temperatures T_R for the H$_3$O$^+$ cation’s 307, 365 and 396 GHz lines as a function of molecular density n(H$_2$), computed using the rate coefficients from the LAMDA database (Schöier et al. 2005, dash-dot lines) and those from this paper (solid lines). The 3 panels on the left side represent the results at 50 K kinetic temperature for the 3 transitions studied, while on the right side panels the results at 100 K are shown. The different colours of the subplots denote different column densities, ranging from $N = 10^{12}$ up to $N = 10^{15}$ cm$^{-2}$.

we observe some deviations. These deviations with respect to the results obtained with our $k(T)$ data are ranging from some percents up to a factor of 2 (compare the solid and dash-dot curves on Fig. 8). As one can expect, the deviations are more significant under non-LTE conditions, i.e. below 106 cm$^{-3}$ hydrogen densities, where they strongly depend both on T_{kin} as well as on the type of the transition. It is worth to mention however that at 100 K slight differences (up to about 10 \%) are observed also at high H$_2$ densities, where the collisional rates do not contribute in the modelling. These differences can be explained by the different number of rotational levels and transitions involved in the two set of radiative transfer calculations. Thus, in the modelling with our rate coefficients the collisional data for the lowest 20 and 11 rotational states are included for the para- and ortho-H$_3$O$^+$, respectively. At the same time, in the modelling with the LAMDA rate coefficients the corresponding data are available only for the lowest 14 and 9 rotational levels, respectively. As one can see, at lower temperatures (i.e. at 50 K) these differences do not lead to large discrepancies between the two calculations, however at 100 K the additional rotational states have significant impact on the results. We found that the disagreement between the two calculated set of T_R is the largest in the case of $3^+_0 \rightarrow 2^+_0$ para-H$_3$O$^+$ – p-H$_2$ transition and is stronger at higher kinetic temperature. It does not depend however on the column density. The observed threshold (i.e. the critical density) to reach LTE conditions is about 108 cm$^{-3}$ H$_2$ density for all considered de-excitation processes.

To further studying the effect of the new rate coefficients on the radiative transfer models we provide also a comparative analysis for the T_{exc} excitation temperatures. In Fig. 9 one can see the dependence of T_{exc} on H$_2$ molecular density in case of some low-frequency transitions, for which population inversion effects were observed. In particular the $3^+_0 \rightarrow 2^+_0$, $3^+_1 \rightarrow 2^+_1$ and $3^+_2 \rightarrow 2^+_2$ de-excitation processes were considered with 396.3, 388.5 and 364.8 GHz transi-
Rotational excitation of H_3O^+ cations by para-H_2

$T_{\text{kin}} = 50$ K

$T_{\text{kin}} = 100$ K

$3^+_0 \rightarrow 2^-_0$

$3^+_1 \rightarrow 2^-_1$

$3^+_2 \rightarrow 2^-_2$

@ 396.3 GHz

@ 388.5 GHz

@ 364.8 GHz

Figure 9. Logarithm of the excitation temperatures $\log(T_{\text{exc}})$ for the H_3O^+ cation’s 365, 389 and 396 GHz emission lines as a function of molecular density $n(H_2)$, computed using the rate coefficients from the LAMDA database (Schöier et al. 2005) (dash-dot lines) and those from this paper (solid lines). The values at the ordinate are multiplied by a factor $\epsilon = \pm 1$, the sign of which corresponds to the sign of T_{exc}. The green horizontal area defines the interval of temperatures ranging from $T_{bg} = 2.7$ K up to T_{kin}. The definition and parameters used in the individual panels are identical to those of in Fig. 8.

In the subplots of Fig. 9 we compared again two set of results, which are obtained using our new $k(T)$ and those from the LAMDA database. Analogously to the previous case, we have analysed the results for column densities between 1×10^{12} and 1×10^{15} cm$^{-2}$ at 50 and 100 K kinetic temperatures. Unfortunately, for these quantities we could not find any available data in the literature. For better visualization the plots show the logarithm of the excitation temperatures multiplied by by ϵ, where $\epsilon = 1$ for positive and $\epsilon = -1$ for negative T_{exc} values, respectively. As one can see for all 3 transitions under consideration a population inversion is observed in a very broad gas density range, starting from low $n(H_2)$ densities (below 10^4 cm$^{-3}$). The width of this region strongly depends both on the column density and the kinetic temperature. Between $10^8 – 10^9$ cm$^{-3}$ however, i.e. around the threshold to reach strict LTE-conditions, the population inversion is quenched, and at high densities there are almost no differences between the two sets of data. On the other hand, while we compare the results for the particular transitions under the same physical conditions, which were obtained with the two set of rates (see the solid and dash-dot curves in Fig. 9), we find significant differences. First, there is a rather large shift in the critical density region, where T_{exc} change sign from “$-$” to “$+$”. This shift is varying between some percents and about a factor of 2. Slight deviations are also observed in the amplitudes of excitation temperatures between the two set of data near these turning points. These deviations are usually higher in case of larger column densities and lower kinetic temperatures, for which we observed differences as high as an order of magnitude (see for example the $3^+_1 \rightarrow 2^-_1$ and $3^+_2 \rightarrow 2^-_2$ transitions at 50 K). It is also important to note that the minimal and maximal amplitudes in the critical density region are very close for all of the studied transitions and does not depend strongly on the particular physical conditions. Aalto and coworkers showed earlier (Aalto et al. 2011) that the results of radiative transfer
calculations are also sensitive to the adopted background temperature. So for a reliable interpretation of observations the T_{bg} value should be chosen carefully.

4 CONCLUSIONS

We have presented state-to-state rotational de-excitation cross sections and kinetic rate coefficients for collisions of ortho-H$_2$O$^+$ and para-H$_2$O$^+$ with p–H$_2$, which is one of the most abundant colliders in interstellar clouds. The theoretical calculations are performed within an accurate close-coupling formalism. Our recent, explicitly correlated five-dimensional rigid-rotor potential energy surface (Demes et al. 2020) was used for collisional dynamics studies. A broad kinetic energy range was considered (< 800 cm$^{-1}$), which allowed one to calculate the corresponding state-to-state rate coefficients up to 100 K temperature. Since accurate data for the studied collisional system is missing in the literature, we compare our results with the corresponding data for the isoelectronic H$_2$O$^+$ – He (El Hanini et al. 2019) and NH$_3$ – H$_2$ (Bouhafs et al. 2017) collisions. In most cases significant differences are observed (as high as an order of magnitude) both for the cross sections and rate coefficients, where our new data are notably larger than the corresponding data from the literature in case of the analysed de-excitation processes. We also compared the rate coefficients for the individual rotational transitions with the most recent data provided in the LAMDA database (Schöier et al. 2005). The deviations are rather large, mainly within a factor of 4. It is also worth to mention that no general, linear scaling rule could be established to find a correspondence between the literature data and those of our recent work. Based on these findings we can conclude that the new collisional rates are obviously important and allows one a more adequate modelling of hydronium observations in astrophysical media.

In order to investigate the effect of the new rate coefficients on the excitation of ortho-H$_2$O$^+$ and para-H$_2$O$^+$, we have computed the excitation of these species using a non-LTE radiative transfer code under various physical conditions that are typical of molecular clouds. As the comparison with the results obtained from LAMDA rate coefficients has shown, our new collisional data have a significant, non-negligible impact on the astrophysical observables in such models. This effect on the excitation of hydronium is more remarkable at lower hydrogen densities, where the LTE-conditions are not fulfilled. It is worth to mention however that some discrepancies for the radiance temperatures were found also under strict LTE-conditions. These discrepancies are due to the fact that our new collisional data involve more rotational levels compared to the LAMDA database, which can significantly contribute to the radiative transfer models at higher temperatures. The column densities of H$_2$O$^+$ in interstellar clouds thus should be revisited based on the new collisional data. This can be used then as an indirect way for more precise estimates of the gas-phase formation of H$_2$O$^+$ at higher temperatures, considering rotational cross sections up to 1500–1600 cm$^{-1}$ collision energies. In addition, since it is crucial in the high-temperature regions of the ISM, we will extend our calculations also for collisional processes involving ortho-H$_2$.

ACKNOWLEDGEMENTS

We acknowledge financial support from the European Research Council (Consolidator Grant COLLEXISM, Grant Agreement No. 811363) and the Programme National “Physique et Chimie du Milieu Interstellaire” (PCMI) of CNRS/INSU with INC/INP cofunded by CEA and CNES. We wish to acknowledge the support from the CINES/GENCI for awarding us access to the OCCIGEN supercomputer within the A0070411036 project as well as the GRICAD infrastructure (https://gricad.univ-grenoble-alpes.fr), which is supported by Grenoble research communities. F.L. acknowledges the Institut Universitaire de France.

SUPPLEMENTARY MATERIAL

The RADEX-compatible molecular data files, which are used in the radiative transfer calculations, and which include the particular state-to-state rate coefficient data for ortho– and para–H$_2$O$^+$ collisions with para–H$_2$ up to 100 K are provided as supplementary material.

DATA AVAILABILITY STATEMENT

The data underlying this article will be shared on reasonable request to the corresponding author.

REFERENCES

Aalto S., Costagliola F., van der Tak F., Meijerink R., 2011, A&A, 527, A69
Alexander M. H., Manolopoulos D. E., 1987, The Journal of Chemical Physics, 86, 2044
Bouhafs N., Rist C., Daniel F., Dumouchel F., Lique F., Wiesenfeld L., Faure A., 2017, Monthly Notices of the Royal Astronomical Society, 470, 2204
Boys S. F., Bernardi F., 1970, Molecular Physics, 19, 553
Bubin S., Adamowicz L., 2003, The Journal of Chemical Physics, 118, 3079
Demes S., Lique F., Faure A., Rist C., 2020, The Journal of Chemical Physics, 153, 094301
El Hanini H., Najar F., Naouai M., Jaidane N. E., 2019, Physical Chemistry Chemical Physics, 21, 11705
Faure A., Tennyson J., 2003, Monthly Notices of the Royal Astronomical Society, 340, 468
Gerin M., et al., 2010, Astronomy and Astrophysics, 518, 1
Goicoechea J. R., Cernicharo J., 2001, The Astrophysical Journal, 554, L213
González-Alfonso E., et al., 2013, Astronomy & Astrophysics, 550, A25
Herbst E., Klemperer W., 1973, The Astrophysical Journal, 185, 505
Hollenbach D., Kaufman M. J., Neufeld D., Wolfire M., Goicoechea J. R., 2012, Astrophysical Journal, 754
Indriolo N., et al., 2015, Astrophys. J., 800
Jensen M. J., Bilodeau R. C., Salvan C. P., Seiersen K., Andersen L. H., Pedersen H. B., Heber O., 2000, The Astrophysical Journal, 543, 764
Le Picard S., Biennier L., Monnerville M., Guo H., 2019, in 2514-3433, Gas-Phase Chemistry in Space. IOP Publishing, pp 3–1 to 3–48, doi:10.1088/2514-3433/aaeb5c3, http://dx.doi.org/10.1088/2514-3433/aaeb5c3
Mann J. E., Xie Z., Savei J. D., Bowman J. M., Contintetti R. E., 2013, Journal of Physical Chemistry A, 117, 7256
Manolopoulos D. E., 1986, The Journal of Chemical Physics, 85, 6425
Offer A. R., van Hemert M. C., 1992, Chemical Physics, 163, 83
Phillips T. G., van Dishoeck E. F., Keene J., 1992, The Astrophysical Journal, 399, 533
This paper has been typeset from a \LaTeX file prepared by the author.