THE p-RANK STRATA OF THE MODULI SPACE OF HYPERELLIPTIC CURVES

JEFFREY D. ACHTER AND RACHEL PRIES

ABSTRACT. We prove results about the intersection of the p-rank strata and the boundary of the moduli space of hyperelliptic curves in characteristic $p \geq 3$. This yields a strong technique that allows us to analyze the stratum H^f_g of hyperelliptic curves of genus g and p-rank f. Using this, we prove that the endomorphism ring of the Jacobian of a generic hyperelliptic curve of genus g and p-rank f is isomorphic to \mathbb{Z} if $g \geq 4$. Furthermore, we prove that the \mathbb{Z}/ℓ-monodromy of every irreducible component of H^f_g is the symplectic group $\text{Sp}_{2g}(\mathbb{Z}/\ell)$ if $g \geq 4$ or $f \geq 1$, and $\ell \neq p$ is an odd prime (with mild hypotheses on ℓ when $f = 0$). These results yield numerous applications about the generic behavior of hyperelliptic curves of given genus and p-rank over finite fields, including applications about Newton polygons, absolutely simple Jacobians, class groups and zeta functions.

1. INTRODUCTION

Suppose C is a smooth connected projective hyperelliptic curve of genus $g \geq 1$ over an algebraically closed field k of characteristic $p \geq 3$. The Jacobian $\text{Pic}^0(C)$ is a principally polarized abelian variety of dimension g. The number of physical p-torsion points of $\text{Pic}^0(C)$ is p^f for some integer f, called the p-rank of C, with $0 \leq f \leq g$.

Let H_g be the moduli space over k of smooth connected projective hyperelliptic curves of genus g; it is a smooth Deligne-Mumford stack over k. The p-rank induces a stratification $H_g = \bigsqcup H^f_g$ by locally closed reduced substacks H^f_g, whose geometric points correspond to hyperelliptic curves of genus g and p-rank f.

In this paper, we prove three cumulative results about H^f_g. The first is about the boundary of H^f_g; specifically, when $g \geq 2$, we prove that the boundary of every irreducible component of H^f_g contains the moduli point of some singular curve which is a tree of elliptic curves and which has p-rank f. The second is that the Jacobian of a generic curve of genus g and p-rank f has endomorphism ring \mathbb{Z} if $g \geq 4$. The third is that, for an odd prime number ℓ distinct from p, the \mathbb{Z}/ℓ-monodromy group of every irreducible component of H^f_g is the symplectic group $\text{Sp}_{2g}(\mathbb{Z}/\ell)$ if $g \geq 4$ or $f \geq 1$ (with mild hypotheses on ℓ when $f = 0$). Heuristically, this means that p-rank constraints alone do not force the existence of extra automorphisms (or other algebraic cycles) on a family of hyperelliptic curves.

We now state the results of this paper more precisely.

Theorem 3.11(c). Suppose p is an odd prime, $g \geq 2$, and $0 \leq f \leq g$. Let S be an irreducible component of H^f_g, the p-rank f stratum in H^f_g. Then the closure \overline{S} of S in H^f_g contains the moduli point of some tree of g elliptic curves, of which f are ordinary and $g - f$ are supersingular.

Our proof does not yield much information on the structure of the tree in Theorem 3.11; however, once the tree’s structure is fixed, we prove that any choice of labeling of f components as ordinary and $g - f$ components as supersingular will occur for some moduli point in \overline{S}.

The first author was partially supported by NSA grant H98230-08-1-0051. The second author was partially supported by NSF grant DMS-07-01303.
Theorem 3.11 yields a powerful technique to analyze H^f_g. Using it, we prove the following two results.

Theorem 4.6 Suppose p is an odd prime, $g \geq 4$, and $0 \leq f \leq g$. Suppose C is a generic hyperelliptic curve of genus g and p-rank f with Jacobian $X = \text{Pic}^0(C)$. Then $\text{End}(X) \cong \mathbb{Z}$ and thus X is simple.

The third theorem requires some notation. Let S be a connected stack over k, and let s be a geometric point of S. Let $C \to S$ be a relative smooth proper curve of genus g over S. Then $\text{Pic}^0(C)[\ell]$ is an étale cover of S with geometric fibers isomorphic to $(\mathbb{Z}/\ell)^{2g}$. The fundamental group $\pi_1(S,s)$ acts linearly on the fiber $\text{Pic}^0(C)[\ell]_s$, and the monodromy group $M_\ell(C \to S,s)$ is the image of $\pi_1(S,s)$ in $\text{Aut}(\text{Pic}^0(C)[\ell]_s)$. For the third main result, we determine $M_\ell(S) = M_\ell(C \to S,s)$, where S is an irreducible component of H^f_g and $C \to S$ is the universal curve.

Theorem 5.2/5.7 Suppose p is an odd prime, $g \geq 1$, and $0 \leq f \leq g$. Let S be an irreducible component of H^f_g.

(i) If $1 \leq f \leq g$ and ℓ is an odd prime distinct from p, then $M_\ell(S) \cong \text{Sp}_{2g}((\mathbb{Z}/\ell))$.

(ii) If $f = 0$ and if $g \geq 4$, then $M_\ell(S) \cong \text{Sp}_{2g}((\mathbb{Z}/\ell))$ for all primes ℓ outside a finite set which depends only on p.

We also prove that the ℓ-adic monodromy group is $\text{Sp}_{2g}((\mathbb{Z}/\ell))$ in the situation of Theorem 5.2/5.7 (Note that the case of ordinary hyperelliptic curves, i.e., when $f = g$, follows directly from previous work, see J.K.Yu [unpublished], [AP07] Thm. 3.4, or [Hal06] Thm. 5.1). In addition, we determine the p-adic monodromy group of components of H^f_g when $g \geq 1$ (Proposition 5.4).

This paper is a natural generalization of our paper [AP08], which is about M^f_g, the p-rank strata of the moduli space of curves. The two papers share essential similarities, but there are several new phenomena for hyperelliptic p-rank strata which increase the difficulty of the proofs and influence the final results in this paper. First, the boundary component Δ_0 is more complicated for H^f_g than for M^f_g. Second, for a singular hyperelliptic curve which is formed as a chain of two hyperelliptic curves of smaller genera, the set of possibilities for the location of the ordinary double point is discrete. These two facts play a key role in the degeneration arguments found in the proof of Theorem 5.11. The third issue, which arises in a base case when $f = 0$, is that the stratum H^0_g is not nearly as well understood as M^0_g.

The second and third main results of the paper rely on Theorem 3.11 because the proofs use degeneration in order to proceed by induction on the genus. For the inductive step, Theorem 3.11 implies that the closure of every component S of H^f_g in H^g intersects the stratum $\Delta_{1,1}$ of the boundary of H^g (Corollary 3.14). This is used in the proof of Theorem 4.6 to show that the endomorphism ring of $\text{Pic}^0(C)$ acts diagonally on the Tate module. It is also used in the proof of Theorem 5.2/5.7 to show that the monodromy group of S contains two non-identical copies of $\text{Sp}_{2g-2}((\mathbb{Z}/\ell))$.

There are two base cases needed in this paper. The first, when $g = 2$ and $f \geq 1$, uses facts about H^f_2 from a special case of [Cha05] Prop. 4.4. The second, when $g = 3$ and $f = 0$, we found somewhat intractable. For this reason, we employ a novel analysis of endomorphism algebras of generic Jacobians of small genus with p-rank zero. Applying Theorem 3.11 and [Oor91] Thm. 1.12] lets us constrain the possibilities (Lemma 4.1) for the endomorphism algebra of the Jacobian of a generic hyperelliptic curve of genus 3 with p-rank 0. This, combined with an understanding of abelian varieties of Mumford type, yields sufficient leverage to understand the case when $g = 4$ and $f = 0$. In particular, this allows us to determine the endomorphism ring of the Jacobian of a generic hyperelliptic curve of genus 4 and p-rank 0 and to compute the monodromy group of components of H^f_4.

This paper also contains multiple applications about hyperelliptic curves of given genus and p-rank. For example, results on Newton polygons of (hyperelliptic) curves for arbitrary g and p are notoriously elusive. As a consequence of Theorem 3.11 we give an application about Newton polygons of hyperelliptic curves. The application relies on and generalizes [Oor91, Thm. 1.12], which is the case $g = 3$.

Corollary 3.16 Suppose p is an odd prime and $g \geq 3$. Let S be an irreducible component of \mathcal{H}_g^0, the p-rank 0 stratum in \mathcal{H}_g. Then S contains the moduli point of a curve whose Jacobian is not supersingular.

We also give applications about class groups and zeta functions of hyperelliptic curves of given genus and p-rank over finite fields. These build upon [KS99, Thm. 9.7.13] and [Kow06, Thm. 6.1].

Applications: Let F be a finite field of characteristic p. Under the hypotheses of Theorem 5.2/5.7:

(i) there is a hyperelliptic F-curve C of genus g and p-rank f whose Jacobian is absolutely simple (Application 5.9);

(ii) if $|F| \equiv 1 \mod \ell$, about $\ell/(\ell^2 - 1)$ of the hyperelliptic F-curves of genus g and p-rank f have a point of order ℓ on their Jacobian (Application 5.11);

(iii) for most hyperelliptic F-curves C of genus g and p-rank f, the splitting field of the numerator of the zeta function of C has degree $2^g g!$ over \mathbb{Q} (Application 5.13).

Here is an outline of the paper. Notation and background are found in Section 2. Section 3 contains the results about the boundary of the p-rank f stratum \mathcal{H}_g^f and the application to Newton polygons. This section ends with some open questions about the geometry of \mathcal{H}_g^f. For example, the number of irreducible components of \mathcal{H}_g^f is known only in special cases. The results about endomorphism rings are in Section 4 while the results about monodromy and the applications to absolutely simple Jacobians, class groups and zeta functions are in Section 5.

We thank the referee of [AP08] for suggestions which we used in this paper and thank F. Oort for helpful comments.

2. Background

Let k be an algebraically closed field of characteristic $p \geq 3$. With the exception of Section 5.4 where we work over a finite field, all objects are defined on the category of k-schemes. Let ℓ be an odd prime distinct from p. We fix an isomorphism $\mu_\ell \cong \mathbb{Z}/\ell$.

2.1. Moduli spaces. For a natural number g consider the following well-known categories, each of which is fibered in groupoids over the category of k-schemes in the étale topology:

- A_g principally polarized abelian schemes of dimension g;
- M_g smooth connected proper relative curves of genus g;
- H_g smooth connected proper relative hyperelliptic curves of genus g;
- \overline{M}_g stable curves of genus g.

Each of these is a smooth Deligne-Mumford stack, and \overline{M}_g is proper [DM69, Thm. 5.2]. There is a natural inclusion $H_g \to M_g$, let \overline{H}_g be the closure of H_g in \overline{M}_g. Thus there are the following categories:

- \overline{H}_g stable hyperelliptic curves of genus g;
- \overline{H}_g stable hyperelliptic curves of genus g, along with a labeling of the smooth ramification locus (see [AP07] Section 2.2).

Again, these are smooth proper Deligne-Mumford stacks [Eke95, Thm. 3.2], see e.g. [AP07, Lemma 2.2] for \overline{H}_g. The forgetful map $\omega_g : H_g \to \overline{H}_g$ is étale and Galois, with Galois group $\text{Sym}(2g + 2)$. If $S \subset \overline{H}_g$, let \overline{S} be the closure of S in \overline{H}_g. Let \mathcal{C}_g be the universal curve over \overline{H}_g, i.e., the pullback to \overline{H}_g of the universal curve over \overline{M}_g (cf. [DM69, Thm. 5.2]).
For a natural number \(r \), let \(\overline{\mathcal{M}}_{g,r} \) be the Deligne-Mumford stack of stable curves of genus \(g \) with \(r \) marked points. Let \(\overline{\mathcal{H}}_{g,r} = \overline{\mathcal{H}}_g \times \overline{\mathcal{M}}_{g,r} \) and let \(\mathcal{H}_{g,r} = \mathcal{H}_g \times \mathcal{M}_{g,r} \). The forgetful map \(\phi_{g,r} : \overline{\mathcal{H}}_{g,r} \rightarrow \overline{\mathcal{H}}_g \) is proper, flat and surjective with connected fibers, and thus is a fibration. Let \(\mathcal{H}_{g,r} = \overline{\mathcal{H}}_{g,r} \times \mathcal{H}_g \).

2.2. Stratifications. Let \(X \) be a principally polarized abelian variety of dimension \(g \) defined over \(k \). There is an integer \(f(X) \) between 0 and \(g \), called the \(p \)-rank of \(X \), such that \(X[p](k) \cong (\mathbb{Z}/p)^{f(X)} \).

More generally, if \(X/k \) is a semiabelian variety, then its \(p \)-rank is \(\dim_k \text{Hom}(\mathbb{G}_m, X) \). The \(p \)-rank of a curve is that of its Jacobian. If \(X \rightarrow S \) is a semiabelian scheme over a Deligne-Mumford stack, then there is a stratification \(S = \bigcup S^f \) by locally closed substacks such that \(s \in S^f(k) \) if and only if \(f(X_s) = f \) (this follows from [Kat79] Thm. 2.3.1), see, e.g., [AP08] Lemma 2.1). Thus, \(\mathcal{H}^f_g \) is the locus in \(\mathcal{H}_g \) parametrizing hyperelliptic curves of \(p \)-rank \(f \). Every component of \(\mathcal{H}^f_g \) has dimension \(g - 1 + f \) [GP05] Thm. 1.1).

Here is the definition of the Newton polygon of an abelian variety; see [Dem72] Chap. IV for details. The isogeny class of a \(p \)-divisible group \(G/k \) is determined by \(\nu(G) \), a lower-convex polygon in \(\mathbb{R}^2 \) connecting \((0,0)\) to \((\text{height}(G), \dim(G))\) with slopes \(\lambda \in \mathbb{Q} \cap [0,1] \) and integral breakpoints. If \(X/k \) is an abelian variety, its Newton polygon is that of its \(p \)-divisible group \(X[p^\infty] \).

The Newton polygon is a finer invariant than the \(p \)-rank; indeed, the \(p \)-rank of \(X \) is exactly the length of the slope 0 part of the Newton polygon. For example, \(X \) is ordinary exactly when its Newton polygon only has slopes 0 and 1. By definition, \(X \) is supersingular if its Newton polygon only has slope 1/2.

2.3. The boundary of the moduli space of hyperelliptic curves. The boundary of \(\overline{\mathcal{H}}_g \) is \(\partial \overline{\mathcal{H}}_g = \overline{\mathcal{H}}_g - \mathcal{H}_g \). The description here of \(\partial \overline{\mathcal{H}}_g \) follows [CH88] Sec. 4(b)] closely. In fact, while [CH88] is written for the base field \(\mathbb{C} \), the description of \(\mathcal{H}_g \) and \(\overline{\mathcal{H}}_g \) is valid in any characteristic [Yam04]. Briefly, the irreducible components of \(\partial \overline{\mathcal{H}}_g \) come from restriction of the components of the boundary of \(\overline{\mathcal{M}}_g \), except that \(\Delta_0 \) breaks into several components. The informal discussion in this section is supplemented with precise definitions in Section 2.4.

If \(g \geq 2 \), the boundary \(\partial \overline{\mathcal{H}}_g \) is the union of components \(\Delta_i = \Delta_i[\overline{\mathcal{H}}_g] \) for \(1 \leq i \leq g - 1 \) and \(\Xi_i = \Xi_i[\overline{\mathcal{H}}_g] \) for \(0 \leq i \leq g - 2 \) by [Yam04] p.410]. Here \(\Delta_i \) and \(\Delta_{g-i} \) are the same substack of \(\overline{\mathcal{H}}_g \) and \(\Xi_i \) and \(\Xi_{g-i} \) are the same substack of \(\overline{\mathcal{H}}_g \). Each \(\Delta_i \) and \(\Xi_i \) is an irreducible divisor in \(\overline{\mathcal{H}}_g \).

For \(1 \leq i \leq g - 1 \), if \(\eta \) is the generic point of \(\Delta_i \), then the curve \(C_{g,\eta} \) is a chain of two smooth irreducible hyperelliptic curves \(Y_1 \) and \(Y_2 \), of genera \(i \) and \(g - i \), intersecting in one ordinary double point \(P \). The hyperelliptic involution \(\iota \) stabilizes each of \(Y_1 \) and \(Y_2 \). The point \(P \) is a ramification point for the restriction of \(\iota \) to each of \(Y_1 \) and \(Y_2 \) but is not part of the smooth ramification locus.

If \(\eta \) is the generic point of \(\Xi_0 \) then the curve \(C_{g,\eta} \) is an irreducible hyperelliptic curve self-intersecting in an ordinary double point \(P \). The normalization of \(C_{g,\eta} \) is a smooth hyperelliptic curve \(Y_1 \) of genus \(g - 1 \) and the inverse image of \(P \) in the normalization consists of an orbit under the hyperelliptic involution.

For \(1 \leq i \leq g - 2 \), if \(\eta \) is the generic point of \(\Xi_i \), then the curve \(C_{g,\eta} \) has two components \(Y_1 \) and \(Y_2 \), which are smooth irreducible hyperelliptic curves, of genera \(i \) and \(g - 1 - i \), intersecting in two ordinary double points \(P \) and \(Q \). The hyperelliptic involution \(\iota \) stabilizes each of \(Y_1 \) and \(Y_2 \). The points \(P \) and \(Q \) form an orbit of the restriction of \(\iota \) to each of \(Y_1 \) and \(Y_2 \).

One can associate to a stable curve \(C \) its dual graph, in which the vertices are in bijection with the irreducible components of \(C \) and in which there is an edge between two vertices exactly when the corresponding components intersect. A component of \(C \) is called terminal if the corresponding vertex is a leaf of the dual graph. A curve is called a tree if its dual graph is a tree. A curve is called a tree of elliptic curves if it is a tree and if each of its irreducible components is an elliptic curve.
A stable curve is a tree if and only if its Picard variety is represented by an abelian scheme; such a curve is also said to be of compact type. Let \(\Delta_0 = \Delta_0[\mathcal{H}_g] \) be the union of \(\Xi_i \) for \(0 \leq i \leq [(g - 1)/2] \). The moduli points of stable hyperelliptic curves which are not of compact type are exactly the points of \(\Delta_0[\mathcal{H}_g] \).

2.4. Clutching maps. Recall from [Knu83] that there are three types of clutching maps for positive integers \(g_1 \) and \(g_2 \):

\[
\kappa_{g_1, g_2} : \mathcal{H}_{g_1} \times \mathcal{H}_{g_2} \to \mathcal{H}_{g_1+g_2} \xrightarrow{\omega_{g_1+g_2}} \mathcal{F}_{g_1+g_2};
\]

\[
\kappa_{g_1} : \mathcal{F}_{g_1+1} \to \mathcal{F}_{g_1+1};
\]

\[
\lambda_{g_1, g_2} : \mathcal{F}_{g_1+1} \times \mathcal{F}_{g_2+1} \to \mathcal{F}_{g_1+g_2+1}.
\]

Each of these clutching maps is the restriction of a finite, unramified morphism between moduli spaces of labeled curves [Knu83, Cor. 3.9]. One defines:

\[
\Delta_{g_1}[\mathcal{F}_{g_1+g_2}] = \operatorname{Im}(\kappa_{g_1, g_2}); \quad \Xi_{g_1}[\mathcal{F}_{g_1+1}] = \operatorname{Im}(\kappa_{g_1}); \quad \text{and} \quad \Xi_{g_1}[\mathcal{F}_{g_1+g_2+1}] = \operatorname{Im}(\lambda_{g_1, g_2}).
\]

If \(S \) is a stack equipped with a map \(S \to \mathcal{H}_g \), let \(\Delta_i[S] \) denote \(S \times \mathcal{F}_g \Delta_i[\mathcal{H}_g] \). In particular, \(\Delta_i[\mathcal{H}_g] = \mathcal{H}_g \times \mathcal{F}_g \Delta_i \). Also define \(\Delta_i[\mathcal{F}_g]^f := (\Delta_i[\mathcal{F}_g])^f \). Similar conventions are employed for \(\Xi_i \).

These clutching maps can be described in terms of their images on \(T \)-points for an arbitrary \(k \)-scheme \(T \).

2.4.1. Information about \(\kappa_{g_1, g_2} \). For \(i = 1, 2 \), suppose \(s_i \in \mathcal{H}_g(T) \) is the moduli point of a hyperelliptic curve \(Y_i \) with labeled smooth ramification locus. Then \(\kappa_{g_1, g_2}(s_1, s_2) \) is the moduli point of the labeled \(T \)-curve \(Y \) where \(Y \) has components \(Y_1 \) and \(Y_2 \), and where the last ramification point of \(Y_1 \) and the first ramification point of \(Y_2 \) are identified in an ordinary double point. This nodal section is dropped from the labeling of the ramification points; the remaining smooth ramification sections of \(Y_1 \) maintain labels \(\{1, \ldots, 2g_1 + 1\} \) and the remaining ramification sections of \(Y_2 \) are relabeled \(\{2g_1 + 2, \ldots, 2(g_1 + g_2 + 2)\} \). There is a unique hyperelliptic involution on \(Y \) which restricts to the hyperelliptic involution on \(Y_1 \) and on \(Y_2 \). Moreover, \(\kappa_{g_1, g_2}(s_1, s_2) \) is the moduli point of the (unlabeled) hyperelliptic curve \(Y \).

By [BLR90, Ex. 9.2.8],

\[
\operatorname{Pic}^0(Y) \cong \operatorname{Pic}^0(Y_1) \times \operatorname{Pic}^0(Y_2).
\]

Then the \(p \)-rank of \(Y \) is

\[
f(Y) = f(Y_1) + f(Y_2).
\]

2.4.2. Information about \(\kappa_{g_1} \). Suppose \(s_1 \in \mathcal{F}_{g_1+1}(T) \) is the moduli point of \((Y_1; P) \), a hyperelliptic curve with a marked section. Then \(\kappa_{g_1}(s_1) \) is the moduli point of the \(T \)-curve \(Y \), where \(Y \) is the stable model of the curve obtained by identifying the sections \(P \) and \(t(P) \) in an ordinary double point \(P^1 \). The hyperelliptic involution on \(Y_1 \) descends to a unique hyperelliptic involution on \(Y \).

By [BLR90, Ex. 9.2.8], \(\operatorname{Pic}^0(Y) \) is an extension

\[
0 \to Z \to \operatorname{Pic}^0(Y) \to \operatorname{Pic}^0(Y_1) \to 0,
\]
where Z is a one-dimensional torus. In particular, the toric rank of $\text{Pic}^0(Y)$ is one greater than that of $\text{Pic}^0(Y_1)$, and their maximal projective quotients are isomorphic, so that
\begin{equation}
(2.4.4) \quad f(Y) = f(Y_1) + 1.
\end{equation}

2.4.3. Information about λ_{g_1, g_2}. For $i = 1, 2$, suppose $s_i \in \overline{H}_{g_i, 1}(T)$ is the moduli point of $(Y_i; P_i)$, a hyperelliptic curve with a marked section. Then $\lambda_{g_1, g_2}(s_1, s_2)$ is the moduli point of the stable model Y of the T-curve obtained by identifying P_1 and P_2 in an ordinary double point P and by identifying $\iota(P_1)$ and $\iota(P_2)$ in an ordinary double point Q. There is a unique hyperelliptic involution on Y that restricts to the hyperelliptic involution on Y_1 and on Y_2.

By [BLR90] Ex. 9.2.8, $\text{Pic}^0(Y)$ is an extension
\begin{equation}
(2.4.5) \quad 0 \longrightarrow Z \longrightarrow \text{Pic}^0(Y) \longrightarrow \text{Pic}^0(Y_1) \times \text{Pic}^0(Y_2) \longrightarrow 0,
\end{equation}
where Z is a one-dimensional torus. In particular,
\begin{equation}
(2.4.6) \quad f(D) = f(Y_1) + f(Y_2) + 1.
\end{equation}

For later use, here is a description of the stable model Y when P_1 is a ramification point of Y_1, but P_2 is not a ramification point of Y_2. Then Y consists of three components, namely the strict transforms of Y_1 and Y_2 and an exceptional component W which is a projective line. Also Y_1 intersects W in an ordinary double point and Y_2 intersects W in two other points, which are also ordinary double points.

2.4.4. Clutching along trees. The definition of κ_{g_1, g_2} above relies on an arbitrary, although convenient, choice of sections along which to glue, and a labeling of the smooth ramification locus of the resulting curve. By considering morphisms of the form $\gamma_{g_1 + g_2} \circ \kappa_{g_1, g_2} \circ (\gamma_{g_1} \times \gamma_{g_2})$, where $\gamma_{g_1 + g_2} \in \text{Sym}(2(g_1 + g_2) + 2)$ and $\gamma_{g_1} \in \text{Sym}(2g_1 + 2)$ and $\gamma_{g_2} \in \text{Sym}(2g_2 + 2)$, it is possible to clutch along arbitrary sections, with complete control over the subsequent labeling.

This can be used to describe configurations of curves of compact type, as follows. A clutching tree is a finite tree Λ along with a choice of natural number g_v for each vertex $v \in \Lambda$ such that $\text{deg}(v) \leq 2g_v + 2$. Such a tree is called a clutching tree of elliptic curves if $g_v = 1$ for all $v \in \Lambda$. Let $|\Lambda|$ be the number of vertices in Λ, and let $g(\Lambda) = \sum_{v \in \Lambda} g_v$.

Using a product of the clutching maps defined above, one can define a morphism
\[
\kappa_{\Lambda} : \times_{v \in V} \overline{H}_{g_v} \longrightarrow \overline{H}_{g(\Lambda)} \longrightarrow \overline{H}_{g(\Lambda)}. \]

Let Δ_{Λ} be the image of κ_{Λ}. If η is the generic point of Δ_{Λ}, then $C_{g, \eta}$ is a hyperelliptic curve of compact type with dual graph isomorphic to Λ, such that the irreducible component of $C_{g, \eta}$ corresponding to the vertex v has genus g_v.

Suppose v_1 and v_2 are adjacent vertices in a clutching tree Λ. Consider the tree Λ' obtained by identifying v_1 and v_2 in a new vertex v, which is adjacent to all neighbors of v_1 or v_2 in Λ, with label $g_v = g_{v_1} + g_{v_2}$. Then κ_{Λ} factors through $\kappa_{\Lambda'}$ and $\Delta_{\Lambda} \subset \Delta_{\Lambda'}$. A tree Λ refines a tree Λ' if Λ' can be obtained from Λ through iterations of this construction.

2.4.5. One more clutching map. In the special case where Λ is a tree on three vertices, where the leaves v_1 and v_3 have $g_{v_1} = g_{v_3} = 1$, and where $g_{v_2} = g - 2$, one obtains the following diagram:
\begin{equation}
(2.4.7) \quad \overline{H}_1 \times \overline{H}_{g-2} \times \overline{H}_1 \longrightarrow \overline{H}_{g-1} \times \overline{H}_1 \longrightarrow \overline{H}_{g}.
\end{equation}
Let $\Delta_{1,1}[\overline{H}_g]$ be the image of $\kappa_{1,g-2,1} = \omega_g \circ \kappa_{1,g-2,1}$; it is an irreducible component of the self-intersection locus of $\Delta_1[\overline{H}_g]$. If η is the generic point of $\Delta_{1,1}[\overline{H}_g]$, then the curve $C_{g,\eta}$ is a chain of three smooth irreducible hyperelliptic curves Y_1, Y_2, Y_3 with $g_{Y_1} = g_{Y_3} = 1$ and $g_{Y_2} = g - 2$. For $i \in \{1, 3\}$, the curves Y_i and Y_2 intersect in a point P_i which is an ordinary double point.

3. Boundary of the hyperelliptic p-rank strata

3.1. Preliminary intersection results.

Suppose $p \geq 3$, and $g \geq 1$ and $0 \leq f \leq g$. The p-rank strata of the boundary of \overline{H}_g are easy to describe using the clutching maps. First, if $1 \leq i \leq g - 1$, then (2.4.2) implies that $\Delta_i[\overline{H}_g]^f$ is the union of the images of $\tilde{H}_i^f \times \tilde{H}_{g-i}^f$ under $\kappa_{i,g-i}$ as (f_1, f_2) ranges over all pairs such that

\[(3.1.1) \quad 0 \leq f_1 \leq i, \ 0 \leq f_2 \leq g - i \quad \text{and} \quad f_1 + f_2 = f.
\]

Second, if $f \geq 1$, then $\Xi_0[\overline{H}_g]^f$ is the image of \overline{H}_{g-1}^{f-1} under κ_{g-1} by (2.4.4). Third, if $f \geq 1$ and $1 \leq i \leq g - 2$, then (2.4.6) implies that $\Xi_i[\overline{H}_g]^f$ is the image of $\overline{H}_{i+1}^f \times \overline{H}_{g-i-1}^f$ under $\lambda_{i,g-1-i}$ as (f_1, f_2) ranges over all pairs such that

\[(3.1.2) \quad 0 \leq f_1 \leq i, \ 0 \leq f_2 \leq g - 1 - i \quad \text{and} \quad f_1 + f_2 = f - 1.
\]

Lemma 3.1. Suppose $g \geq 2$ and $0 \leq f \leq g$.

(a) If $1 \leq i \leq g - 1$, then every component of $\Delta_i[\overline{H}_g]^f$ and of $\Delta_i[\overline{H}_g]^f$ has dimension $g - 2 + f$.

(b) If $f \geq 1$ and $0 \leq i \leq g - 2$, then every component of $\Xi_i[\overline{H}_g]^f$ and of $\Xi_i[\overline{H}_g]^f$ has dimension $g - 2 + f$.

Proof. For parts (a) and (b), the claims for \overline{H}_g and for \overline{H}_g are equivalent, since ω_g is a finite map which preserves the p-rank stratification. Recall that \overline{H}_g and \overline{H}_g are pure of dimension $g - 1 + f$ [GP05 Thm. 1].

For part (a), suppose $0 \leq f \leq g$, and $1 \leq i \leq g - 1$, and that (f_1, f_2) is a pair which satisfies (3.1.1). Then $\tilde{H}_i^f \times \tilde{H}_{g-i}^f$ is pure of dimension $\dim(\tilde{H}_i^f) + \dim(\tilde{H}_{g-i}^f) = g - 2 + f$. Since $\kappa_{i,g-i}$ is finite, $\Delta_i[\overline{H}_g]^f$ is pure of dimension $g - 2 + f$ as well.

For part (b), first suppose $i = 0$. Then \overline{H}_{g-1}^{f-1} is pure of dimension $\dim(\overline{H}_{g-1}^{f-1}) + 1 = g - 2 + f$. Since κ_{g-1} is finite, $\Xi_0[\overline{H}_g]^f$ is pure of dimension $g - 2 + f$ as well.

To finish part (b), suppose $1 \leq i \leq g - 2$, and that (f_1, f_2) is a pair which satisfies (3.1.2). Then $\tilde{H}_{i+1}^f \times \tilde{H}_{g-i-1}^f$ is pure of dimension $\dim(\tilde{H}_{i+1}^f) + \dim(\tilde{H}_{g-i-1}^f) + 2 = g - 2 + f$. Since $\lambda_{i,g-1-i}$ is finite, $\Xi_i[\overline{H}_g]^f$ is pure of dimension $g - 2 + f$ as well. \square

The next lemma shows that if η is a generic point of \overline{H}_g, then the curve $C_{g,\eta}$ is smooth. Thus no component of \overline{H}_g is contained in the boundary $\partial \overline{H}_g$.

Lemma 3.2. Suppose $g \geq 1$ and $0 \leq f \leq g$.

(a) Then \overline{H}_g^f is open and dense in \overline{H}_g^f and $\overline{H}_g^f \times \pi_g \overline{H}_g$ is open and dense in \overline{H}_g^f.

(b) If $r \geq 1$, then $\overline{H}_{g,r}^f$ is open and dense in $\overline{H}_{g,r}^f$ and $\overline{H}_{g,r}^f \times \pi_g \overline{H}_g$ is open and dense in $\overline{H}_{g,r}^f$.

Proof. Part (a) is well-known for $g = 1$. For $g \geq 2$, part (a) follows from Lemma 3.1 since \overline{H}_g^f and \overline{H}_g^f are pure of dimension $g - 1 + f$ [GP05 Thm. 1]. Part (b) follows from part (a) since the p-rank of a labeled curve depends only on the underlying curve, so that $\overline{H}_{g,r}^f = \overline{H}_{g,r}^f \times \pi_g \overline{H}_g$. \square
Suppose S is an irreducible component of \mathcal{H}^f_g and let \overline{S} be its closure in $\overline{\mathcal{H}}_g$. Note that \overline{S} can contain the moduli points of curves with lower p-rank. (In fact, this always happens when $f \geq 1$, see Corollary 3.15)

Lemma 3.3. (a) Let S be an irreducible component of \mathcal{H}^f_g. If \overline{S} intersects a component Γ of $\Delta_i[\overline{\mathcal{H}}_g]^f$ then \overline{S} contains Γ.

(b) Let \overline{S} be an irreducible component of $\overline{\mathcal{H}}_g$, with closure S^*. If S^* intersects a component Γ of $\Delta_i[\overline{\mathcal{H}}_g]^f$, then S^* contains Γ.

Proof. Part (a) is proved here; part (b) is proved in an entirely analogous fashion. A smooth proper stack has the same intersection-theoretic properties as a smooth proper scheme [Vis89, p. 614]. In particular, if two closed substacks of $\overline{\mathcal{H}}_g$ intersect then the codimension of their intersection is at most the sum of their codimensions. Now \overline{S} and $\Delta_i[\overline{\mathcal{H}}_g]$ are closed substacks of $\overline{\mathcal{H}}_g$. By Lemma 3.2(a), $\overline{S} \not\subset \Delta_i[\overline{\mathcal{H}}_g]$. Thus the intersection of \overline{S} with the divisor $\Delta_i[\overline{\mathcal{H}}_g]$ has pure dimension $\dim \overline{S} - 1$, which equals $\dim(\Delta_i[\overline{\mathcal{H}}_g]^f)$ by Lemma 3.1. Thus if \overline{S} intersects a component Γ of $\Delta_i[\overline{\mathcal{H}}_g]^f$ then it must contain the full component Γ. □

Lemma 3.4. Suppose $g \geq 2$ and $0 \leq f \leq g$. Let S be an irreducible component of \mathcal{H}^f_g.

(a) Then \overline{S} intersects $\Delta_0[\overline{\mathcal{H}}_g]$ if and only if $f \geq 1$.

(b) If $f \geq 1$, then each irreducible component of $\Delta_0[\overline{S}]$ contains either (i) the image of a component of $\mathcal{H}^{f-1}_{g-1,1}$ under κ_{g-1} or (ii) the image of a component of $\mathcal{H}^{f_1}_{g-1,1} \times \mathcal{H}^{f_2}_{g-1,1}$ under $\lambda_{i,g-1-i}$ for some $1 \leq i \leq g-2$ and some pair (f_1, f_2) which satisfies (3.1.2).

(c) If $f = 0$, then \overline{S} contains the image of a component of $\mathcal{H}^0_{g-1} \times \mathcal{H}^0_{g-1}$ under $\kappa_{i,g-i}$ for some $1 \leq i \leq g-1$.

Proof. If $f = 0$, then (2.4.4) and (2.4.5) imply that \overline{S} does not intersect $\Delta_0[\overline{\mathcal{H}}_g]$. If $f \geq 1$, then \overline{S} is a complete substack of dimension greater than $g - 1$. By [FvdG04 Lemma 2.6], a complete substack of $\overline{\mathcal{H}}_g - \Delta_0[\overline{\mathcal{H}}_g]$ has dimension at most $g - 1$. Therefore, \overline{S} intersects $\Delta_0[\overline{\mathcal{H}}_g]$. This completes part (a).

For part (b), each irreducible component of $\Delta_0[\overline{S}]$ intersects either $\kappa_{g-1}(\mathcal{H}^{f-1}_{g-1,1}) \subset \Xi_0[\overline{\mathcal{H}}_g]$ or $\lambda_{i,g-1-i}(\mathcal{H}^{f_1}_{g-1,1} \times \mathcal{H}^{f_2}_{g-1,1}) \subset \Xi_i[\overline{\mathcal{H}}_g]$ for some $1 \leq i \leq g - 2$ and some pair (f_1, f_2) which satisfies (3.1.2). The result then follows from Lemma 3.3(a).

For part (c), recall that \mathcal{H}_g contains no complete substacks of positive dimension (e.g., [Yam04 Cor. 1.9]). Thus \overline{S} intersects Δ_i for some $0 \leq i < g - 1$. By part (a), $i \neq 0$. The result follows from Lemma 3.3(a). □

3.2. Complements on trees

Many of the results for Δ_i for positive i have analogues for Δ_Λ. For a clutching tree Λ and a nonnegative integer f, define an index set by

$$
(3.2.1) \quad \mathcal{F}(\Lambda,f) = \left\{ f_v : v \in \Lambda \right\} : 0 \leq f_v \leq g_v, \sum_v f_v = f \right\}.
$$

Lemma 3.5. Let Λ be a clutching tree with $g(\Lambda) = g$.

(a) The p-rank strata of $\Delta_\Lambda[\overline{\mathcal{H}}_g]$ are given by

$$
(3.2.2) \quad \Delta_\Lambda[\overline{\mathcal{H}}_g]^f = \bigcup_{(f_v) \in \mathcal{F}(\Lambda,f)} \kappa_\Lambda(\times_{v \in \Lambda} \mathcal{H}^{f_v}_{g}).
$$

(b) Every component of $\Delta_\Lambda[\overline{\mathcal{H}}_g]^f$ has dimension $g + f - |\Lambda|$.

Proof. Part (a) follows from (3.1.1) and induction on $|\Lambda|$. Part (b) follows from this and the calculation that, for $\{f_v\} \in F(\Lambda, f)$,

$$\dim(\times_{v \in \Lambda} \tilde{H}_{g_v}^{f_v}) = \sum_{v \in \Lambda} (g_v + f_v - 1) = g + f - |\Lambda|.$$

\square

Lemma 3.6. Let S be an irreducible component of $\mathcal{H}_{g, r}^f$. Let Λ be a clutting tree with $g(\Lambda) = g$. If \bar{S} intersects a component Γ of $\Delta_{\Lambda}[\mathcal{H}_{g, r}^f]$, then \bar{S} contains Γ.

Proof. The proof is similar to that of Lemma 3.3(a). Note that $\dim \Gamma \geq \dim \bar{S} + \dim \Delta_{\Lambda} - \dim \mathcal{H}_{g, r}$. By Lemma 3.5(b), this equals $g + f - |\Lambda| = \dim(\Delta_{\Lambda}[\mathcal{H}_{g, r}^f])$. \square

3.3 Adjusting marked points and trees. The next lemma shows that one can adjust the marked points of an r-marked hyperelliptic curve of genus g and p-rank f without leaving the irreducible component of $\mathcal{H}_{g, r}^f$ to which its moduli point belongs.

Lemma 3.7. Let S be an irreducible component of $\mathcal{H}_{g, r}^f$, and let \bar{S} be the closure of S in $\mathcal{H}_{g, r}^f$. Then $\bar{S} = \phi_{g, r}^{-1}(\phi_{g, r}(S))$. Equivalently, if T is a k-scheme, if $(C; P_1, \ldots, P_r) \in \bar{S}(T)$, and if (Q_1, \ldots, Q_r) is any other marking of C, then $(C; Q_1, \ldots, Q_r) \in \mathcal{H}_{g, r}^f(T)$.

Proof. It suffices to show that $\phi_{g, r}^{-1}(\phi_{g, r}(S)) \subseteq \bar{S}$. Note that \bar{S} is the largest irreducible substack of $\mathcal{H}_{g, r}^f$ which contains S. The fibers of $\phi_{g, r}|_S$ are irreducible, so $\phi_{g, r}^{-1}(\phi_{g, r}(S))$ is also an irreducible substack of $\mathcal{H}_{g, r}^f$ which contains S. Thus $\phi_{g, r}^{-1}(\phi_{g, r}(S)) \subseteq \bar{S}$. This shows that $\phi_{g, r}^{-1}(\phi_{g, r}(S)) = S$.

To finish the proof, it suffices to show that the T-points of \bar{S} and $\phi_{g, r}^{-1}(\phi_{g, r}(S))$ coincide for an arbitrary k-scheme T. To this end, let $\alpha = (C; P_1, \ldots, P_r) \in \bar{S}(T)$, and let $\beta = (C; Q_1, \ldots, Q_r) \in \mathcal{H}_{g, r}^f(T)$. Note that $\phi_{g, r}(\beta) = \phi_{g, r}(\alpha)$, and $\phi_{g, r}(\alpha)$ is supported in the closure of $\phi_{g, r}(S)$ in $\mathcal{H}_{g, r}^f$. By Lemma 3.2(b), $\mathcal{H}_{g, r}$ is dense in $\mathcal{H}_{g, r}^f$. It follows that β is supported in the closure of $\phi_{g, r}^{-1}(\phi_{g, r}(S))$ in $\mathcal{H}_{g, r}^f$, which is \bar{S}. \square

It is not clear whether one can change the labeling of the smooth ramification locus of a hyperelliptic curve without changing the irreducible component of $\mathcal{H}_{g, r}^f$ to which its moduli point belongs. To circumvent this issue, the following lemma about hyperelliptic curves of genus 2 and p-rank 1 will be useful.

Lemma 3.8. (a) First, $\mathcal{H}_{2, 1}^2$ is irreducible and intersects $\kappa_{1, 1}(\tilde{H}_{1, 1}^2 \times \tilde{H}_{0, 1}^0)$.

(b) Second, let \bar{S} be an irreducible component of $\mathcal{H}_{2, 1}^2$. If \bar{S} intersects $\kappa_{1, 1}(\tilde{H}_{1, 1}^2 \times \tilde{H}_{0, 1}^0)$, then \bar{S} also intersects $\kappa_{1, 1}(\tilde{H}_{0, 1}^0 \times \tilde{H}_{1, 1}^0)$.

Proof. For part (a), recall that the Torelli morphism $\mathcal{H}_2 \to \mathcal{A}_2$ is an inclusion [OS80] Lemma 1.11]. Now $\dim(\mathcal{H}_{2, 1}) = \dim(\mathcal{A}_{1, 1}^2)$ and \mathcal{A}_2^1 is irreducible (e.g., [EvdG09] Ex. 11.6]). It follows that $\mathcal{H}_{2, 1}$ is irreducible and thus $\mathcal{H}_{2, 1}$ is irreducible by Lemma 3.2(a). Consider a chain Y of two elliptic curves, one ordinary and one supersingular, intersecting in an ordinary double point, which is a fixed point of the hyperelliptic involution on each elliptic curve. The moduli point of Y is in the intersection of $\kappa_{1, 1}(\tilde{H}_{1, 1}^2 \times \tilde{H}_{0, 1}^0)$ and $\mathcal{H}_{2, 1}$.

For part (b), let S^* be the closure of \bar{S} in $\mathcal{H}_{2, 1}$. By hypothesis and Lemma 3.3(b), \bar{S} contains a component of $\kappa_{1, 1}(\tilde{H}_{1, 1}^2 \times \tilde{H}_{0, 1}^0)$. Every component of $\tilde{H}_{1, 1}^2$ contains a component of $\tilde{H}_{0, 1}^0$ in its closure since any nonisotrivial proper family of curves of genus one has supersingular fibers. It follows that S^* contains a component of $\kappa_{1, 1}(\tilde{H}_{0, 1}^0 \times \tilde{H}_{1, 1}^0)$, and thus intersects the closure of a component of
\(\tilde{\kappa}_{1,1}(\tilde{\mathcal{H}}_1^0 \times \tilde{\mathcal{H}}_1^1) \). By Lemma 3.3(b), \(S^* \) contains a component of \(\tilde{\kappa}_{1,1}(\tilde{\mathcal{H}}_1^0 \times \tilde{\mathcal{H}}_1^1) \), which then implies the same for \(\tilde{S} \).

Remark 3.9. Note that a genus two curve has six ramification points and thus there are potentially up to \(6! = |\text{Sym}(6)| \) irreducible components of \(\mathcal{H}_2^f \). In particular, the fact from Lemma 3.8(a) that \(\tilde{\mathcal{H}}_2^f \) intersects \(\tilde{\kappa}_{1,1}(\tilde{\mathcal{H}}_1^1 \times \mathcal{H}_1^0) \) does not imply the hypothesis in part (b) that \(\tilde{S} \) intersects \(\tilde{\kappa}_{1,1}(\tilde{\mathcal{H}}_1^1 \times \mathcal{H}_1^0) \).

Lemma 3.10. Let \(S \) be an irreducible component of \(\mathcal{H}_2^f \). Suppose \(\Lambda \) is a clutching tree of elliptic curves with \(g(\Lambda) = g \). If \(\tilde{S} \) intersects \(\Delta_{\lambda}[\tilde{\mathcal{H}}_2^f] \), then for any choice of \(\{f_v\} \in \mathcal{F}(\Lambda, f) \), \(\tilde{S} \) contains an irreducible component of \(\kappa_{\lambda}(\times_{v \in \Delta_{\lambda}} H_{g_v}^{f_v}) \).

Proof. By Lemma 3.5(a), for some choice of data \(\{f_v^*\} \in \mathcal{F}(\Lambda, f) \), the intersection of \(\tilde{S} \) and \(\Delta_{\lambda}[\tilde{\mathcal{H}}_2^f] \) contains a point of \(\kappa_{\lambda}(\times_{v \in \Delta_{\lambda}} H_{g_v}^{f_v}) \). By Lemma 3.6, there are components \(\tilde{T}_v \subset \tilde{\mathcal{H}}_{g_v}^{f_v} \) such that \(\tilde{S} \) contains \(\kappa_{\lambda}(\times_{v \in \Delta_{\lambda}} \tilde{T}_v) \). One immediately reduces to the case in which \(v_1 \) and \(v_2 \) are adjacent vertices in \(\Lambda \) with \(f_{v_1} = 1 \) and \(f_{v_2} = 0 \), and \(\{f_v\} \in \mathcal{F}(\Lambda, f) \) is given by

\[
 f_v = \begin{cases}
 f_v^* & v \not\in \{v_1, v_2\} \\
 1 - f_v^* & v \in \{v_1, v_2\}.
\end{cases}
\]

Let \(\Lambda' \) be the tree obtained by identifying \(v_1 \) and \(v_2 \) in a new vertex \(v_{12} \) with \(g_{v_{12}} = 2 \). By Lemma 3.6, there is a component \(\tilde{T}_{v_{12}} \subset \tilde{\mathcal{H}}_2^f \) such that \(\tilde{S} \) contains

\[
\kappa_{\lambda'}(\tilde{T}_{v_{12}} \times (\times_{v \in \Delta_{\lambda'}, v \neq v_{12}} \tilde{T}_v)).
\]

Now, \(\tilde{T}_{v_{12}} \) contains a component of \(\tilde{\kappa}_{1,1}(\tilde{\mathcal{H}}_1^1 \times \mathcal{H}_1^0) \). By Lemma 3.8(b), \(\tilde{T}_{v_{12}} \) contains a component of \(\tilde{\kappa}_{1,1}(\mathcal{H}_1^0 \times \mathcal{H}_1^1) \) as well. Then \(\tilde{S} \) contains a component of \(\kappa_{\lambda}(\times_{v \in \Delta_{\lambda}} \tilde{\mathcal{H}}_{g_v}^{f_v}) \). \(\square \)

3.4. Main intersection result. In this section, we prove that the closure of each irreducible component \(S \) of \(\mathcal{H}_2^f \) contains the moduli point of a singular curve which is a tree of elliptic curves and has \(p \)-rank \(f \).

Theorem 3.11. Suppose \(g \geq 2 \) and \(0 \leq f \leq g \). Let \(S \) be an irreducible component of \(\mathcal{H}_2^f \).

(a) There exists a clutching tree of elliptic curves \(\Lambda \) with \(g(\Lambda) = g \) such that \(\tilde{S} \) contains an irreducible component of \(\Delta_{\lambda}[\tilde{\mathcal{H}}_2^f] \).

(b) For any choice of \(\{f_v\} \in \mathcal{F}(\Lambda, f) \), \(\tilde{S} \) contains an irreducible component of \(\kappa_{\lambda}(\times_{v \in \Delta_{\lambda}} \tilde{\mathcal{H}}_{g_v}^{f_v}) \).

(c) In particular, \(\tilde{S} \) contains the moduli point of some tree of elliptic curves, of which \(f \) are ordinary and \(g - f \) are supersingular.

Proof. It suffices to prove part (c) since parts (a) and (c) are equivalent by Lemma 3.6 and since parts (a) and (b) are equivalent by Lemma 3.10.

First suppose \(g = 2 \). If \(f = 2 \), then \(\mathcal{H}_2^2 \) is irreducible and affine and \(\tilde{\mathcal{H}}_2^2 \) contains the moduli point of a tree of 2 ordinary elliptic curves. If \(f = 1 \) (resp. \(f = 0 \)), the result is true by Lemma 3.8(a) (resp. Lemma 3.4(c)). Now suppose \(g \geq 3 \) and \(0 \leq f \leq g \) and suppose as an inductive hypothesis that the result is true when \(2 \leq g' < g \). Let \(S \) be an irreducible component of \(\mathcal{H}_2^f \).

Claim 3.12. To complete the proof, it suffices to show that \(\tilde{S} \) intersects \(\Delta_i[\tilde{\mathcal{H}}_2^f] \) for some \(1 \leq i \leq g - 1 \).

Proof of claim. Suppose \(\tilde{S} \) intersects \(\Delta_i[\tilde{\mathcal{H}}_2^f] \) for some \(1 \leq i \leq g - 1 \). Let \(g_1 = i \) and \(g_2 = g - i \). By Lemma 3.3(a), \(\tilde{S} \) contains a component of \(\Delta_{g_1}[\tilde{\mathcal{H}}_2^f] \). In other words, there exist a pair \((f_1, f_2)\)
satisfying (3.1.1) and, for \(j = 1, 2 \), components \(\tilde{V}_j \) of \(\overline{H}_{g_i}^{f_j} \) such that \(\mathcal{S} \) contains \(\kappa_{s_1, s_2}(\tilde{V}_1 \times \tilde{V}_2) \). Then \(\nabla_j = \omega_{\delta_j}(\tilde{V}_j) \) is a component of \(\overline{H}_{g_i}^{f_j} \).

By the inductive hypothesis, \(\nabla_j \) contains the moduli point \(s_j \) of a tree \(Y_j \) of \(g_j \) elliptic curves, of which \(f_j \) are ordinary and \(g_j - f_j \) are supersingular. Let \(\Lambda_j \) be the dual graph of \(Y_j \). Let \(s_j \in V_j \) be such that \(\omega_{\delta_j}(\tilde{s}_j) = s_j \). In other words, \(\tilde{s}_j \) is the moduli point of \(Y_j \) along with the data of a choice of labeling of the smooth ramification locus. Then \(\kappa_{s_1, s_2}(\tilde{s}_1, \tilde{s}_2) \) is the moduli point of a curve \(C \) whose dual graph is obtained by connecting a vertex of \(\Lambda_1 \) with a vertex of \(\Lambda_2 \). Since \(C \) is a tree, \(\kappa_{s_1, s_2}(\tilde{s}_1, \tilde{s}_2) \) is the moduli point of a tree of \(g \) elliptic curves, of which \(f = f_1 + f_2 \) are ordinary and \(g - f \) are supersingular. This completes the proof of the claim since \(\kappa_{s_1, s_2}(\tilde{s}_1, \tilde{s}_2) \) is in \(\mathcal{S} \).

Continuing the proof of Theorem 3.11, first suppose \(f = 0 \). By Lemma 3.4(c), \(\mathcal{S} \) intersects \(\Delta_i[\overline{H}_g]^f \) for some \(1 \leq i \leq g - 1 \). By Claim 3.12, this completes the proof when \(f = 0 \).

Now suppose \(f > 0 \). By Lemma 3.4(a), \(\mathcal{S} \) intersects \(\Delta_0[\overline{H}_g]^f \).

Case (i): \(\mathcal{S} \) intersects \(\Xi_0 \).

By Lemma 3.4(b), \(\mathcal{S} \) contains the image of a component \(\nabla' \) of \(\overline{H}_{g-1,1}^{f-1} \) under \(\kappa_{g-1} \). Consider \(\nabla = \phi_{g-1,1}(\nabla') \) which is a component of \(\overline{H}_{g-1,1}^{f-1} \). By the inductive hypothesis, \(\nabla \) contains the moduli point of a curve \(Y_1 \) which is a tree of \(g - 1 \) elliptic curves, of which \(f - 1 \) are ordinary and \(g - f \) are supersingular. Let \(E \) be a terminal component of \(Y_1 \) and let \(Y'_1 \) be the closure of \(Y_1 - E \) in \(Y_1 \). Let \(R \) be the point of intersection of \(E \) and \(Y'_1 \). Since the quotient of \(Y_1 \) by the hyperelliptic involution \(\iota \) has genus \(0 \), the elliptic curve \(E \) is stabilized by \(\iota \). Let \(P \neq R \) be a point of \(E \) which is not a ramification point of \(\iota \). By Lemma 3.7, the moduli point \(t \) of \((Y_1; P) \) is in \(\nabla' \).

Let \(Z \) be the singular irreducible hyperelliptic curve of genus two with exactly one ordinary double point \(P' \) such that the normalization of \(Z \) is the elliptic curve \(E \) and the pre-image of \(P' \) consists of the points \(P \) and \(\iota(P) \). In other words, the moduli point of \(Z \) is the image of the moduli point of \((E; P) \) under \(\kappa_1 \).

Consider the point \(s = \kappa_{g-1}(t) \) of \(\mathcal{S} \). The curve \(C_{g,s} \) has components \(Z \) and \(Y'_1 \) which intersect in exactly one ordinary double point, \(R \). The \(p \)-rank of \(C_{g,s} \) is \(f(E) + f(Y'_1) + 1 = f \). Since \(g \geq 3 \), there is a terminal component of \(Y'_1 \) not containing \(R \) which is an elliptic curve. Thus \(s \in \Delta_1[\overline{H}_g]^f \). (In fact, \(s \) is also in \(\Delta_2[\overline{H}_g]^f \) because of the component \(Z \).) By Claim 3.12, this completes Case (i).

Case (ii): \(\mathcal{S} \) intersects \(\Xi_i \) for some \(1 \leq i \leq g - 2 \).

Let \(g_1 = i \) and \(g_2 = g - 1 - i \). By Lemma 3.4(b), \(\mathcal{S} \) contains a component of \(\Xi_i[\overline{H}_g]^f \). In other words, there exists a pair \((f_1, f_2) \) satisfying (3.1.2) and, for \(j = 1, 2 \), there exist components \(\nabla_j \) of \(\overline{H}_{g_j}^{f_j} \) such that \(\mathcal{S} \) contains \(\lambda_{s_1, s_2}(\nabla_1 \times \nabla_2) \). Then \(\nabla_j = \phi_{g_j;1}(\nabla_j') \) is a component of \(\overline{H}_{g_j}^{f_j} \).

By the inductive hypothesis, \(\nabla_j \) contains the moduli point \(s_j \) of a tree \(Y_j \) of \(g_j \) elliptic curves, of which \(f_j \) are ordinary and \(g_j - f_j \) are supersingular. Let \(E_j \) be a terminal component of \(Y_j \) and let \(Y'_j \) be the closure of \(Y_j - E_j \) in \(Y_j \). Let \(R_j \) be the point of intersection of \(E_j \) and \(Y'_j \). Since the quotient of \(Y_j \) by the hyperelliptic involution \(\iota \) has genus \(0 \), the elliptic curve \(E_j \) is stabilized by \(\iota \). Let \(P_1 \neq R_1 \) be a point of \(E_1 \) which is a ramification point of \(\iota_1 \). Let \(P_2 \neq R_2 \) be a point of \(E_2 \) which is not a ramification point of \(\iota_2 \).

By Lemma 3.7, the moduli point \(s'_j \) of \((Y_j; P_j) \) is in \(\nabla_j' \). Consider \(s = \lambda_{g_1, g_2}(s'_1, s'_2) \) which is a point of \(\mathcal{S} \). By Section 2.4.3, the components of the stable model \(C_{g,s} \) are the strict transforms of \(Y_1 \) and \(Y_2 \) and an exceptional component \(W \) which is a projective line. Moreover, \(Y_1 \) intersects \(W \) in an ordinary double point and \(Y_2 \) intersects \(W \) in two other points, which are also ordinary double points. The \(p \)-rank of \(C_{g,s} \) is \(f(Y_1) + f(Y_2) + 1 = f \).
The curve $C_{{g, s}}$ has a terminal component E'_1 of genus 1. To see this, when $i = 1$ let $E'_1 = E_1$, and when $i > 1$ let $E'_1 \neq E_1$ be another terminal component of Y_1. It follows that s is in $\Delta_1 [\mathcal{H}_{g}^f]$ (Also s is in $\Delta_1 [\mathcal{H}_{g}^f]$ because of the component Y_1.) By Claim 3.12 this completes Case (ii). □

3.5. Three corollaries. Here are several consequences of Theorem 3.11 which will be used later in the paper.

In the setting of Theorem 3.11 one can deduce that \mathfrak{S} intersects Λ nontrivially only when Λ has an edge whose removal yields two trees of size i and $g - i$. This is only guaranteed when $i = 1$. Luckily, the following information on degeneration to Λ is sufficient for the later applications in the paper.

Corollary 3.13. Suppose $g \geq 2$ and $0 \leq f \leq g$. Let S be an irreducible component of \mathcal{H}_{g}^f. Then \mathfrak{S} intersects $\Delta_1 [\mathcal{H}_{g}^f]$. Furthermore:

(a) if $f \leq g - 1$, then \mathfrak{S} contains an irreducible component of $\kappa_{1, g - 1} (\mathcal{H}^{0}_{1} \times \mathcal{H}^{f}_{g - 1})$; and

(b) if $f \geq 1$, then \mathfrak{S} contains an irreducible component of $\kappa_{1, g - 1} (\mathcal{H}^{f - 1}_{1} \times \mathcal{H}^{f}_{g - 1})$.

Proof. By Theorem 3.11(c), \mathfrak{S} contains the moduli point of a tree of elliptic curves, of which f are ordinary and $g - f$ are supersingular. Every tree has a leaf; by Theorem 3.11(b), that leaf can be chosen to be ordinary or supersingular if the obvious necessary constraint is satisfied. The result follows by Lemma 3.6. □

The ℓ-adic and p-adic monodromy proofs in Section 5 rely on degeneration to $\Lambda_{1, 1}$. One can label the four possibilities for (f_1, f_2, f_3) such that $f_1 + f_2 + f_3 = f$ and $0 \leq f_1, f_3 \leq 1$ as follows: (A) $(1, f - 2, 1)$; (B) $(0, f - 1, 1)$; (B') $(1, f - 1, 0)$; and (C) $(0, f, 0)$.

Corollary 3.14. Suppose $g \geq 3$ and $0 \leq f \leq g$. Let S be an irreducible component of \mathcal{H}_{g}^f.

(a) Then \mathfrak{S} intersects $\Delta_{1, 1} [\mathcal{H}_{g}^f]$.

(b) There is an irreducible component \mathfrak{S} of $\mathfrak{S} \times \mathcal{H}_{g}$, and a choice of (f_1, f_2, f_3) from cases (A)-(C); and there are irreducible components S_1 of $\mathcal{H}_1^{f_1}$ and S_2 of $\mathcal{H}_{g - 2}^{f_2}$ and S_3 of $\mathcal{H}_{1}^{f_3}$; and there are irreducible components S_R of $\mathcal{H}_{g - 1}^{f_2 + f_3}$ and S_L of $\mathcal{H}_{g - 1}^{f_1 + f_2}$, such that the restriction of the clutching maps of (2.4.7) yields a commutative diagram

\[
\begin{array}{ccc}
S_1 \times S_2 \times S_3 & \longrightarrow & S_1 \times S_R \\
\downarrow & & \downarrow \\
S_L \times S_3 & \longrightarrow & \mathfrak{S} \cap \Delta_{1, 1} [\mathcal{H}_{g}].
\end{array}
\]

(c) Furthermore, case (A) occurs as long as $f \geq 2$, cases (B) and (B') occur as long as $1 \leq f \leq g - 1$, and case (C) occurs as long as $f \leq g - 2$.

Proof. By Theorem 3.11(a), there is a clutching tree of elliptic curves Λ such that \mathfrak{S} contains a component of $\Delta_{1} [\mathcal{H}_{g}^f]$. Let v_1 and v_2 be two leaves of Λ; using Theorem 3.11(b), one can assume that $f_{v_1} = f_1$ and $f_{v_2} = f_2$. Since Λ refines Λ', then \mathfrak{S} intersects $\Delta_{1} [\mathcal{H}_{g}^f]$, which completes part (a). Moreover, there is an irreducible component \mathfrak{S} of $\mathfrak{S} \times \mathcal{H}_{g}$ such that \mathfrak{S} identifies $\Delta_{1, 1} [\mathcal{H}_{g}^f]$. Part (b) follows from the definition of $\Delta_{1, 1} [\mathcal{H}_{g}^f]$ and Lemma 3.6. □

Corollary 3.15. Let S be an irreducible component of \mathcal{H}_{g}^f. For each $0 \leq f' < f$, there exists an irreducible component T of $\mathcal{H}_{g}^{f'}$ such that \mathfrak{S} contains T.
Proof. It suffices to prove the result for $f' = f - 1$. Let S^* be the closure of S in $\mathcal{H}_g - \Delta_0[\mathcal{H}_g]$. A purity result [Oor74, Lemma 1.6] shows that $S^* - (S^*)^f$, if nonempty, is pure of dimension $\dim S^* - 1$. In particular, let $Z = (S^*)^{f-1}$; then Z, if nonempty, is pure of dimension $g - 2 + f$.

By Corollary 3.13(b), S^* contains an irreducible component of $\kappa_{1,1}(\mathcal{H}_1^0 \times \mathcal{H}_g^{f-1})$. Since \mathcal{H}_1^0 is dense in \mathcal{H}_1, its closure contains the moduli points of supersingular elliptic curves (with labeled smooth ramification locus). Therefore, S^* contains an irreducible component of $\kappa_{1,1}(\mathcal{H}_1^0 \times \mathcal{H}_g^{f-1})$, and Z is nonempty. Then $\dim Z = g - 2 + f = \dim \mathcal{H}_g^{f-1}$, and so Z contains a component T of \mathcal{H}_g^{f-1}. By Lemma 3.2(a) S contains a component T of \mathcal{H}_g^{f-1}. \qed

3.6. Application to Newton polygons. Recall that a stable curve C of compact type is supersingular if all the slopes of the Newton polygon of its Jacobian equal 1/2. This is equivalent to the condition that the Jacobian of C is isogenous to a product of supersingular elliptic curves. Note that a supersingular curve necessarily has p-rank zero. An abelian variety of p-rank zero is necessarily supersingular only when the dimension satisfies $g \leq 2$.

In this section, we prove that the Newton polygon of a generic hyperelliptic curve of p-rank 0 is not supersingular when $g \geq 3$. The result generalizes [Oor91, Thm. 1.12] which is the case $g = 3$.

Newton polygons have the following semicontinuity property: let $S = \Spec(R)$ be the spectrum of a local ring, with generic point η and geometric closed point s; if G is a p-divisible group over S, then $\nu(G_s)$ either equals or lies below $\nu(G_\eta)$. (The latter condition means that $\nu(G_\eta)$ and $\nu(G_s)$ have the same endpoints and all points of $\nu(G_s)$ lie below $\nu(G_\eta)$.)

Corollary 3.16. Suppose p is an odd prime and $g \geq 3$. Let η be a generic point of \mathcal{H}_g^0. Then $C_{g,\eta}$ is not supersingular. In particular, there exists a smooth hyperelliptic curve of genus g and p-rank 0 which is not supersingular.

Proof. When $g = 3$, this follows from [Oor91, Thm. 1.12]. For $g \geq 4$, the proof proceeds by induction. Let S be the closure of η in \mathcal{H}_g^0. By Corollary 3.13(a) S contains a component of $\Delta_1[\mathcal{H}_g^{f}]$. Thus there are components V_1 of \mathcal{H}_1^0 and V_2 of \mathcal{H}_g^{f-1} such that S contains $\kappa_{1,g-1}(V_1 \times V_2)$. By the inductive hypothesis, the Newton polygon of the generic point of V_2 is not supersingular; in particular, it has a slope λ such that $0 < \lambda < 1/2$. The same is then true of the generic point of $\kappa_{1,g-1}(V_1 \times V_2)$. By semicontinuity [Kat79, Thm. 2.3.1], the generic Newton polygon of S (and thus of S) either equals or lies below that of $\kappa_{1,g-1}(V_1 \times V_2)$. In particular, it has a slope $\lambda' < 1/2$. Thus $C_{g,\eta}$ is not supersingular. \qed

Remark 3.17. When $p = 2$ (a case not considered in this paper), there are some results about the slopes of Newton polygons of hyperelliptic curves of p-rank 0, see e.g. [SZ02].

3.7. Open questions about the geometry of the hyperelliptic p-rank strata.

Question 3.18. Does the closure of each component of \mathcal{H}_g^f contain the moduli point of a chain of elliptic curves with p-rank f?

If the answer to Question 3.18 is affirmative then Lemma 3.10 implies that every ordering of f ordinary and $g - f$ supersingular elliptic curves occurs for such a chain. In [AP08, Cor. 3.6], the authors show the analogous question has a positive answer for every component of \mathcal{M}_g^f. The difference for \mathcal{M}_g^f is that the clutching morphism identifies two curves at an arbitrary point of each, rather than a ramification point of each. The location of these points can then be changed using an analogue of Lemma 3.7.

Question 3.19. For $2 \leq i \leq g - 2$, does the closure of each component of \mathcal{H}_g^f intersect $\Delta_i[\mathcal{H}_g^f]$?
In [AP08] Prop. 3.4, the authors show that the analogous question has a positive answer for every component of \mathcal{M}_g^f, also with control over the arrangement of p-ranks. An affirmative answer to Question 3.18 would imply an affirmative answer to Question 3.19.

Question 3.20. How many irreducible components does \mathcal{H}_g^f have?

One knows that \mathcal{H}_g^f is irreducible for all p when $f = g$ or when $g = 2$ and $f = 1$. If $g \geq 3$, then \mathcal{A}_g^f is irreducible by [Cha05, Remark 4.7]. If \mathcal{H}_g^f is irreducible, then there is a very short proof that Questions 3.18 and 3.19 have affirmative answers.

4. Endomorphism rings

In this section, we use degeneration results from Section 3 to constrain the endomorphism ring of a generic curve of given genus and p-rank.

Let $X_g = \text{Pic}^0_{C_g/\overline{\mathcal{H}}_g}$ be the neutral component of the relative Picard functor of C_g over $\overline{\mathcal{H}}_g$; then $X_g \to \overline{\mathcal{H}}_g$ is a semiabelian scheme. To ease notation, if X is an abelian variety, let $E(X) = \text{End}(X) \otimes \mathbb{Q}$, and let $E_r(X) = E(X) \otimes \mathbb{Q}_r$; then $E_r(X)$ acts the rational Tate module $V_r(X) := T_r(X) \otimes_{\mathbb{Z}_r} \mathbb{Q}_r$. If X is simple, then the center of $E(X)$ is either a totally real or totally imaginary number field.

Lemma 4.1. Let ξ be a geometric generic point of \mathcal{H}_3^f. Then $X_{3,\xi}$ is simple and either $E(X_{3,\xi}) \cong \mathbb{Q}$ or $E(X_{3,\xi})$ is isomorphic to a totally real cubic field L such that $L \otimes \mathbb{Q}_p$ is a field.

Proof. Suppose there is an isogeny $X_{3,\xi} \sim A_1 \oplus A_2$ for abelian varieties A_1 and A_2 of dimensions 1 and 2. Then A_1 and A_2 each have p-rank 0 and are thus supersingular. Then $X_{3,\xi}$ is supersingular, which contradicts the fact that the Newton polygon of $X_{3,\xi}$ has slopes $1/3$ and $2/3$ [Oor91, Thm. 1.12]. Thus $X_{3,\xi}$ is simple.

By the classification of endomorphism algebras of simple abelian varieties of prime dimension (e.g., [Oor88, 7.2]), to complete the proof it suffices to show that neither a complex multiplication field of degree six nor a quadratic imaginary field acts on $X_{3,\xi}$. Let S be the closure of ξ in \mathcal{H}_3^f. Since dim $S = 2 > 0$ but abelian varieties with complex multiplication are rigid, $E(X_{3,\xi})$ is not a complex multiplication field of degree 6.

To address the possibility of an action by a quadratic imaginary field K, suppose to the contrary that there is a subring of $\text{End}(X_{3,\xi})$ isomorphic to an order \mathcal{O}_K in K. Then $\mathcal{O}_K \otimes \mathbb{Z}_p$ acts on the p-divisible group $X_{3,\xi}[p^{\infty}]$. There is an inclusion $K \otimes \mathbb{Q}_p \hookrightarrow \text{End}(X_{3,\xi}[p^{\infty}]) \otimes \mathbb{Q}_p \cong D_{1/3} \oplus D_{2/3}$. (Here, D_λ denotes the central simple \mathbb{Q}_p-algebra with Brauer invariant λ.) Every maximal subfield of $D_{1/3}$ or $D_{2/3}$ is a cubic extension of \mathbb{Q}_p, but $K \otimes \mathbb{Q}_p$ is a \mathbb{Q}_p-algebra of degree two, so $K \otimes \mathbb{Q}_p$ cannot be a field. In particular, $X_{3,\xi}$ does not admit an action by a quadratic imaginary field inert or ramified at p.

Finally, suppose $X_{3,\xi}$ admits an action by a quadratic imaginary field K which splits at p. Let (r, s) be the signature of the action of \mathcal{O}_K on $\text{Lie}(X_{3,\xi})$; the dimensions r and s are nonnegative and $r + s = 3$. Consider the moduli space $Sh_{\mathcal{O}_K,(r,s)}$ of abelian threefolds with an action by \mathcal{O}_K of signature (r,s). The Torelli morphism τ restricts to a finite morphism from S to a component of $Sh_{\mathcal{O}_K,(r,s)}$. Since dim $S = 2$ and dim $Sh_{\mathcal{O}_K,(r,s)} = r \cdot s$, then (r,s) is either $(1,2)$ or $(2,1)$. Thus $\tau(S)$ is dense in $Sh_{\mathcal{O}_K,(r,s)}$. This gives a contradiction since $X_{3,\xi}$ has p-rank zero but the generic member of $Sh_{\mathcal{O}_K,(r,s)}$ is ordinary [Wed99, Thm. 1.6.2].

Therefore, $E(X_{3,\xi})$ is either \mathbb{Q} or a totally real cubic field, L. In the latter case, the p-rank zero locus in a Hilbert modular threefold attached to L has dimension (at least, and thus equal to) two, which forces $L \otimes \mathbb{Q}_p$ to be a field.

Remark 4.2. In the situation of Lemma 4.1 it is not known which outcomes occur.
Lemma 4.3. Let \(Y \) be a simple abelian variety whose dimension \(g \) is relatively prime to 3. If there exists a geometric generic point \(\xi_3 \) of \(\mathcal{H}_3^0 \) for which there is a nontrivial homomorphism \(\text{End}(Y) \to E(X_{3,\xi_3}) \), then \(\text{End}(Y) \cong \mathbb{Z} \).

Proof. If \(Z \) is a simple abelian variety, let \(E_0(Z) \) be the subfield of \(E(Z) \) fixed by the Rosati involution, and let \(e_0(Z) = [E_0(Z) : \mathbb{Q}] \). Then \(e_0(Z) \mid \dim(Z) \).

By Lemma 4.1, \(E(X_{3,\xi_3}) \) is a totally real field of dimension 1 or 3 over \(\mathbb{Q} \). On one hand, the existence of a nontrivial homomorphism \(\text{End}(Y) \to E(X_{3,\xi_3}) \) forces \(e_0(Y) \) to divide \(e_0(X_{3,\xi_3}) \), and thus \(e_0(Y) \mid 3 \). On the other hand, \(e_0(Y) \mid g \). Therefore, \(e_0(Y) = 1 \) and \(E_0(Y) \cong \mathbb{Q} \). Neither a noncommutative algebra nor a totally imaginary field admits a nontrivial homomorphism to \(E(X_{3,\xi_3}) \), and thus \(E(Y) = E_0(Y) \) and \(\text{End}(Y) \cong \mathbb{Z} \). \(\Box \)

Lemma 4.4. Let \(X \to S \) be a polarized abelian scheme over a reduced irreducible Noetherian stack. Let \(\eta \) be the generic point of \(S \), and let \(s \in S \) be any point. Then there exists an inclusion \(\text{End}(X_{\eta, s}) \hookrightarrow \text{End}(X_s) \).

Proof. By introducing a rigidifying structure on \(X \to S \), such as coordinates on the space of sections of the third power of the ample line bundle given by the polarization, one can assume \(S \) is a reduced irreducible Noetherian scheme. Since the absolute endomorphism ring of an abelian variety is defined over a finite extension of the base field, it suffices to show the existence of an inclusion \(\text{End}(X_{\eta, s}) \hookrightarrow \text{End}(X_s) \). If \(S \) is normal, then \(\text{End}(X_{\eta, s}) \) extends uniquely to \(\text{End}(X_s) \), and in particular to \(\text{End}(X) \) \([\text{[C90]} \text{I.2.7]}) \). In general, let \(\nu : S' \to S \) be the normalization map; let \(\eta' \) be the generic point of \(S' \), and let \(s' \) be a point of \(S' \) over \(s \). The desired result follows from the canonical map \(\text{End}((\nu^*X)_{\eta'}) \hookrightarrow \text{End}((\nu^*X)_{s'}) \) and the isomorphisms of abelian varieties \((\nu^*X)_{\eta'} \cong X_{\eta} \times \eta' \) and \((\nu^*X)_{s'} \cong X_{s} \times s' \).

Proposition 4.5. If \(\xi_4 \) is a geometric generic point of \(\mathcal{H}_4^0 \), then \(X_{4,\xi_4} \) is simple and \(\text{End}(X_{4,\xi_4}) \cong \mathbb{Z} \).

Proof. Let \(S_4 \) be the closure of \(\xi_4 \) in \(\mathcal{H}_4^0 \). Suppose there is an isogeny \(X_{4,\xi_4} \sim A_1 \oplus A_2 \) for two abelian varieties \(A_1 \) and \(A_2 \). If \(A_1 \) and \(A_2 \) each have dimension 2, then they are supersingular since they have \(p \)-rank 0. Then \(X_{4,\xi_4} \) is supersingular, which contradicts Corollary 3.10. If \(A_1 \) has dimension 1 and \(A_2 \) has dimension 3, then there is a curve \(W \) of genus 3 such that \(\text{Jac}(W) \cong A_2 \). The inclusion of \(A_2 \) into \(X_{4,\xi_4} \) yields a cover \(\psi : X_{4,\xi_4} \to W \). By the Riemann-Hurwitz formula \(6 \geq 4\text{deg}(\psi) \) which is impossible since \(\text{deg}(\psi) \geq 2 \). Thus \(X_{4,\xi_4} \) is simple.

By Corollary 3.13(a) there exist components \(\tilde{V}_1 \subset \mathcal{H}_4^0 \) and \(\tilde{V}_2 \subset \mathcal{H}_4^0 \) such that \(\tilde{S}_4 \) contains \(\kappa_{1,3}(\tilde{V}_1 \times \tilde{V}_2) \). Let \(\xi_1 \) and \(\xi_3 \) be geometric generic points of \(\tilde{V}_1 \) and \(\tilde{V}_2 \), respectively, and let \(\eta = \kappa_{1,3}(\xi_1, \xi_3) \). Since \(X_{3,\xi_3} \) is simple by Lemma 4.1, there are no nontrivial homomorphisms between \(X_{3,\xi_3} \) and \(X_{1,\xi_1} \). This yields an isomorphism

\[
E(X_{4,\eta}) \cong E(X_{1,\xi_1}) \oplus E(X_{3,\xi_3}).
\]

By Lemma 4.4, there is an inclusion \(E(X_{4,\xi_4}) \hookrightarrow E(X_{4,\eta}) \) and thus an inclusion \(E(X_{4,\xi_4}) \hookrightarrow E(X_{3,\xi_3}) \). Since \(X_{4,\xi_4} \) is simple, Lemma 4.3 implies that \(\text{End}(X_{4,\xi_4}) \cong \mathbb{Z} \). \(\Box \)

Theorem 4.6. Suppose \(g \geq 4 \) and \(0 \leq f \leq g \). If \(\xi \) is a geometric generic point of \(\mathcal{H}_g^0 \), then \(\text{End}(X_{g,\xi}) \cong \mathbb{Z} \) and thus \(X_{g,\xi} \) is simple.

Proof. By Corollary 3.15 and Lemma 4.4 it suffices to prove the result when \(f = 0 \). For \(f = 0 \), the proof is by induction on \(g \) with the base case \(g = 4 \) supplied by Proposition 4.5. Suppose \(g \geq 5 \) and let \(S \) be the closure of \(\xi \) in \(\mathcal{H}_g^0 \). By Corollary 3.14, \(S \) intersects \(\Delta_{1,1}[\mathcal{H}_g^0] \) and there is an irreducible component \(\tilde{S} \) of \(S \times \mathcal{H}_g^0 \), and there are irreducible components \(S_1 \) of \(\mathcal{H}_1^0 \) and \(S_2 \) of \(\mathcal{H}_{g-2}^0 \) and \(S_3 \) of \(\mathcal{H}_1^0 \); and there are irreducible components \(S_R \) of \(\mathcal{H}_{g-1}^0 \) and \(S_L \) of \(\mathcal{H}_{g-1}^0 \); such that
the restriction of the clutching maps yields a commutative diagram

\[
\begin{array}{ccc}
S_1 \times S_2 \times S_3 & \longrightarrow & S_1 \times S_R \\
\downarrow & & \downarrow \\
S_L \times S_3 & \longrightarrow & S \cap \Delta_{1,1}[\mathcal{H}_g].
\end{array}
\]

Let \(\eta_i \) be the generic point of \(S_i \) for \(1 \leq i \leq 3 \); similarly, let \(\eta_L \) be the generic point of \(S_L \), and \(\eta_R \) that of \(S_R \). Let \(s = \kappa_{1,g-2,1}(\eta_1, \eta_2, \eta_3) \). By Lemma 4.4 there are inclusions

\[
\begin{array}{ccc}
\text{End}(\mathcal{X}_{g,s}) & \longrightarrow & \text{End}(\mathcal{X}_{g,\kappa_{1,g-1}(\eta_1 \times \eta_2)}) \\
\downarrow & & \downarrow \\
\text{End}(\mathcal{X}_{g,\kappa_{1,g-1}(\eta_2 \times \eta_3)}) & \longleftarrow & \text{End}(\mathcal{X}_{g,\kappa}).
\end{array}
\]

There is a canonical isomorphism of rational Tate modules

\[
V_\ell(\mathcal{X}_{g,s}) \cong V_\ell(\mathcal{X}_{1,\eta_1}) \times V_\ell(\mathcal{X}_{g-2,\eta_2}) \times V_\ell(\mathcal{X}_{1,\eta_3}).
\]

Choose coordinates on \(V_\ell(\mathcal{X}_{g,s}) \) compatible with this decomposition. On one hand, by the inductive hypothesis, \(E_\ell(\mathcal{X}_{1,\eta_1}) \cong \mathbb{Q}_\ell \). On the other hand, since \(\mathcal{X}_{1,\eta_3} \) is a supersingular elliptic curve, \(E(\mathcal{X}_{1,\eta_3}) \) is the quaternion algebra ramified only at \(p \) and \(\infty \), and thus \(E(\mathcal{X}_{1,\eta_3}) \cong \text{Mat}_2(\mathbb{Q}_\ell) \). Therefore \(E(\mathcal{X}_{g,\kappa_{1,3,1}(\eta_1 \times \eta_2)}) \cong E(\mathcal{X}_{g-1,\eta_1}) \oplus E(\mathcal{X}_{1,\eta_2}) \), and \(E_\ell(\mathcal{X}_{g,\kappa_{1,3,1}(\eta_1 \times \eta_2)}) \) acts on \(V_\ell(\mathcal{X}_{g,s}) \) as \(\text{diag}_{2g-2}(\mathbb{Q}_\ell) \oplus \text{Mat}_2(\mathbb{Q}_\ell) \). Similarly, \(E_\ell(\mathcal{X}_{g,\kappa_{1,3,1}(\eta_2 \times \eta_3)}) \) acts as \(\text{Mat}_2(\mathbb{Q}_\ell) \oplus \text{diag}_{2g-2}(\mathbb{Q}_\ell) \). Then

\[
E_\ell(\mathcal{X}_{g,\kappa}) \subseteq E_\ell(\mathcal{X}_{g,\kappa_{1,3,1}(\eta_1 \times \eta_2)}) \cap E_\ell(\mathcal{X}_{g,\kappa_{1,3,1}(\eta_2 \times \eta_3)}),
\]

so \(E_\ell(\mathcal{X}_{g,\kappa}) \) acts on \(V_\ell(\mathcal{X}_{g,s}) \) as \(\text{diag}_{2g}(\mathbb{Q}_\ell) \). Thus, \(E_\ell(\mathcal{X}_{g,\kappa}) \cong \mathbb{Q}_\ell \) and \(\text{End}(\mathcal{X}_{g,\kappa}) \cong \mathbb{Z} \).

Remark 4.7. For \(g \leq 3 \) and \(1 \leq f \leq g \), it is also true that \(\text{End}(\mathcal{X}_{3,\kappa}) \cong \mathbb{Z} \) and \(\mathcal{X}_{3,\kappa} \) is simple for \(\kappa \) a geometric generic point of \(\mathcal{H}_g \). More generally, for \(g \geq 1 \) and \(f \geq 1 \), the statement of Theorem 4.6 can be proved as an application of Theorem 5.2 as in [AP08 Application 5.7].

5. Monodromy

In this section, we determine the \(\ell \)-adic monodromy of components of \(\mathcal{H}_g^\ell \) for odd primes \(\ell \). The proof uses an inductive process which depends on the degeneration results from Section 3. For \(f \geq 1 \), the base case \(g = 2 \) relies on a special case of [Cha05 Prop. 4.4]. When \(f = 0 \), the base case \(g = 4 \) relies on the results on endomorphism rings from Section 4.

5.1. Integral monodromy. We summarize the discussion in [AP07 Sec. 3.1] about \(\mathbb{Z}/\ell \)- and \(\mathbb{Z}_\ell \)-monodromy. Let \(S \) be a connected \(\ell \)-scheme on which the prime \(\ell \) is invertible. Let \(\pi : C \to S \) be a relative curve of compact type whose fibres have genus \(g \). Then \(R^1\pi_* (\mathbb{Z}/\ell) \), or equivalently \(\text{Pic}^0(C)[\ell] \), is an étale sheaf of \(\mathbb{Z}/\ell \)-modules. If \(s \) is a geometric point of \(S \), then \(R^1\pi_* (\mathbb{Z}/\ell) \) is equivalent to a linear representation

\[
\rho_{C \to S, \mathbb{Z}/\ell} : \pi_1(S, s) \to \text{Aut}((R^1\pi_* (\mathbb{Z}/\ell))[s]) \cong \text{GL}_{2g}(\mathbb{Z}/\ell).
\]

Let \(M_\ell(C \to S, s) \) be the image of \(\rho_{C \to S, \mathbb{Z}/\ell} \) and let \(M_\ell(C \to S) \) be the isomorphism class of this image as an abstract group. If the family \(C \to S \) is clear from context, these will be denoted \(M_\ell(S, s) \) and \(M_\ell(S) \), respectively. There is a canonical polarization on \(\text{Pic}^0(C) \), and thus (after a choice of \(\ell \)-th root of unity on \(S \)) there is a symplectic pairing on \(\text{Pic}^0(C)[\ell] \). Therefore, there is an inclusion of groups \(M_\ell(S) \subseteq \text{Sp}_{2g}(\mathbb{Z}/\ell) \). Similarly, for each natural number \(n \) there is a representation

\[
\rho_{C \to S, \mathbb{Z}/\ell^n} : \pi_1(S, s) \to \text{Aut}((R^1\pi_* (\mathbb{Z}/\ell^n))[s]).
\]
Let $M_{2g}(C \to S, s) = \lim_n \rho_{C \to S, 2g/n}(\pi_1(S, s))$, and let $M_{Q_2}(C \to S, s)$ be the Zariski closure of $M_{2g}(C \to S, s)$ in $\text{Aut}(\lim_n (R^1 \pi_* (\mu_{2^n})_s) \otimes Q_2) \cong \text{GL}_{2g} Q_2$.

If $C \to S$ is a stable curve such that C has compact type over an open dense subscheme $U \subset S$, then for each coefficient ring $\Gamma \in \{\mathbb{Z}/\ell, \mathbb{Z}_\ell, Q_\ell\}$ one can define $M_{\Gamma}(C \to S, s) = M_{\Lambda}(C|_U \to U, s)$.

One can employ an analogous formalism to define the monodromy group of a relative curve over a stack $[\text{Noo04}]$.

5.2. Monodromy of the hyperelliptic p-rank strata

In this section, let p and ℓ be distinct odd primes. We find the integral monodromy of the p-rank strata H^f_s when $1 \leq f \leq g$. The integral monodromy of H^s_g, which is the same as the case $f = g$, already appears in $[\text{AP07} \text{ Thm. 3.4}]$ (see also unpublished work of J.-K. Yu, and $[\text{Hal06} \text{ Thm. 5.1}]$).

The following argument shows that to determine the monodromy of families of hyperelliptic curves, one may work with either \overline{H}_g or H^s_g.

Lemma 5.1. Let p and ℓ be distinct odd primes and suppose $g \geq 2$. Let $S \subset H^s_g$ be irreducible and let \widetilde{S} be an irreducible component of $\overline{S} \times_{\overline{H}_g} \overline{H}_g$. Then $M_f(\widetilde{S}) \cong \text{Sp}_{2g}(\mathbb{Z}/\ell)$ if and only if $M_f(S) \cong \text{Sp}_{2g}(\mathbb{Z}/\ell)$.

Proof. Since $\widetilde{S} \to S$ is finite, $M_f(\widetilde{S})$ is a subgroup of $M_f(S)$. If $M_f(\widetilde{S}) \cong \text{Sp}_{2g}(\mathbb{Z}/\ell)$ then $M_f(\widetilde{S})$ is maximal, and thus so are $M_f(S)$ and $M_f(S)$.

Conversely, suppose $M_f(S) \cong \text{Sp}_{2g}(\mathbb{Z}/\ell)$. Since $\omega_g : \overline{H}_g \to \overline{H}_g$ is étale with Galois group $\text{Sym}(2g + 2)$, the cover $\widetilde{S} \to S$ is Galois with Galois group $G \subseteq \text{Sym}(2g + 2)$. To show $M_f(\widetilde{S}) \cong \text{Sp}_{2g}(\mathbb{Z}/\ell)$, it suffices by the argument of $[\text{AP07} \text{ Lemma 3.3}]$ to show that G and $\text{Sp}_{2g}(\mathbb{Z}/\ell)$ have no common nontrivial quotient. This holds since the smallest integer N for which there exists an embedding of the finite simple group $\text{PSp}_{2g}(\mathbb{Z}/\ell)$ into $\text{Sym}(N)$ is $N = (\ell^g - 1)/(\ell - 1) > 2g + 2$ $[\text{Gre03} \text{ Thm. 3}]$.

Theorem 5.2. Let p and ℓ be distinct odd primes. Suppose $g \geq 1$ and $1 \leq f \leq g$. Let S be an irreducible component of H^f_s, the p-rank f stratum in H^s_g. Then $M_f(S) \cong \text{Sp}_{2g}(\mathbb{Z}/\ell)$ and $M_{2f}(S) \cong \text{Sp}_{2g}(\mathbb{Z}/\ell)$.

Proof. The proof is by induction on g. The base cases involve the monodromy of H^1_2 and H^1_3, which follow from $[\text{Cha05} \text{ Prop. 4.4}]$; see $[\text{AP08} \text{ Thm. 4.5}]$.

Now suppose $g \geq 3$ and $1 \leq f \leq g$. As an inductive hypothesis assume, for all pairs (g', f') where $1 \leq f' \leq g' < g$, that $M_{f'}(S') \cong \text{Sp}_{2g'}(\mathbb{Z}/\ell)$ for every irreducible component S' of $H^{f'}_{g'}$.

Let S be an irreducible component of H^f_s. Recall the degeneration types identified immediately before Corollary 3.14. If $f = g$, let $(f_1, f_2, f_3) = (1, g - 2, 1)$ as in case (A); if $f = g - 1$, let $(f_1, f_2, f_3) = (0, g - 2, 1)$ as in case (B); and if $1 \leq f \leq g - 2$, let $(f_1, f_2, f_3) = (0, f, 0)$ as in case (C). By Corollary 3.14, there are irreducible components \widetilde{S} of $\overline{S} \times \overline{H}_g \overline{H}_g$, \widetilde{S}_1 of \overline{H}^f_1, \widetilde{S}_2 of \overline{H}^f_{g-2} and \widetilde{S}_3 of \overline{H}^f_3, and there are irreducible components \widetilde{S}_R of $\overline{H}^{f_1 + f_3}_{g-1}$ and \widetilde{S}_L of $\overline{H}^{f_1 + f_2}_{g-1}$; such that the restriction of the clutching maps yields a commutative diagram

\[\begin{array}{c}
\widetilde{S}_1 \times \widetilde{S}_2 \times \widetilde{S}_3 \\
\downarrow \quad \quad \quad \quad \quad \downarrow \quad \quad \quad \quad \quad \downarrow \\
\widetilde{S}_L \times \widetilde{S}_3 \\
\quad \downarrow \quad \quad \quad \quad \quad \downarrow \\
\Delta_{1, 1}[\widetilde{S}]
\end{array} \]

In all cases $f_1 + f_2$ and $f_2 + f_3$ are positive, and so \widetilde{S}_L and \widetilde{S}_R have monodromy $\text{Sp}_{2(g-1)}(\mathbb{Z}/\ell)$, by induction and Lemma 5.1.
The rest of the proof is identical to that of [AP07, Thm. 3.4]. Briefly, one calculates the monodromy group of \tilde{S} at a point s in the image of $\tilde{S}_1 \times \tilde{S}_2 \times \tilde{S}_3$ under $\kappa_{1,g-2,1}$. On one hand, there is an a priori inclusion $M_\ell(\tilde{S}, s) \subseteq \Sp_{2g}(\mathbb{Z}/\ell)$. On the other hand, the previous paragraph shows that $M_\ell(\tilde{S}, s)$ contains two distinct subgroups isomorphic to $\Sp_{2(g-1)}(\mathbb{Z}/\ell)$. A group-theoretic result shows that $M_\ell(\tilde{S}, s) \cong \Sp_{2g}(\mathbb{Z}/\ell)$. The result then follows from Lemma 5.1.

The proof that $M_{Z_1}(S) \cong \Sp_{2g}(\mathbb{Z}_\ell)$ is identical. □

5.2.1. A p-adic complement. In this section we determine the p-adic monodromy of components of the p-rank strata H^f_g when $f \geq 1$.

Let S be a connected scheme of characteristic p with geometric point s, and let $X \to S$ be an abelian scheme with constant p-rank f. The group scheme $X[p]$ and p-divisible group $X[p^\infty]$ admit largest étale quotients, $X[p]^{\text{et}}$ and $X[p^{\infty}]^{\text{et}}$. These are respectively classified by homomorphisms $\pi_1(S, s) \to \text{Aut}(X[p]^{\text{et}})_s \cong \GL_f(\mathbb{Z}/p)$ and $\pi_1(S, s) \to \text{Aut}(X[p^{\infty}]^{\text{et}})_s \cong \GL_f(\mathbb{Z}_p)$, whose images are denoted $M_p(X \to S)$ and $M_{Z_1}(X \to S)$, or simply $M_p(S)$ and $M_{Z_1}(S)$.

Lemma 5.3. Suppose $g \geq 1$ and $1 \leq f \leq g$. Let S be an irreducible component of H^f_g, and let \tilde{S} be an irreducible component of $S \times_{\tilde{H}_g} \tilde{H}_g$. Then $M_p(S) \cong \GL_f(\mathbb{Z}/p)$ if and only if $M_p(\tilde{S}) \cong \GL_f(\mathbb{Z}/p)$.

Proof. Since $\tilde{S} \to \overline{S}$ is finite, $M_p(\tilde{S})$ is a subgroup of $M_p(\overline{S})$. If $M_p(\tilde{S}) \cong \GL_f(\mathbb{Z}/p)$ then $M_p(\tilde{S})$ is maximal, and thus so are $M_p(\overline{S})$ and $M_p(S)$.

Conversely, suppose $M_p(S) \cong \GL_f(\mathbb{Z}/p)$. Let S^* be the closure of S in $\tilde{H}_g - \Delta_0[\tilde{H}_g]$, and let \tilde{S}^* be the closure of \tilde{S} in $\tilde{H}_g - \Delta_0[\tilde{H}_g]$. Let $T = S^* - (S^*)^f$ be the locus with p-rank smaller than f. Then T is nonempty by Corollary 3.15. On one hand, $S^* \to S^*$ is étale since p is odd and the cover $\tilde{S}^* \to S^*$ is tantamount to a partial level-two structure. On the other hand, the $\GL_f(\mathbb{Z}/p)$-cover $H_f := \text{Hom}_S((\mathbb{Z}/p), \text{Jac}(C_{g,s}[p])^{\text{et}}) \to S$ is ramified along T. Therefore, the covers $H_f \to S$ and $\tilde{S} \to S$ are disjoint, and $M_p(S) = M_p(\tilde{S}) \cong \GL_f(\mathbb{Z}/p)$. □

Proposition 5.4. Suppose $g \geq 2$ and $1 \leq f \leq g$. Let S be an irreducible component of H^f_g. Then $M_p(S) \cong \GL_f(\mathbb{Z}/p)$ and $M_{Z_1}(S) \cong \GL_f(\mathbb{Z}/p)$.

Proof. First suppose $f = g$. When $g = 2$, the result for H^f_2, or equivalently M^f_2, is a special case of [Eke91, Thm. 2.1]. For $g \geq 3$, suppose as an inductive hypothesis that $M_p(H^g_{g-1}) \cong \GL_{g-1}(\mathbb{Z}/p)$. By Lemma 5.3, $M_p(\tilde{H}^g_{g-1}) \cong \GL_{g-1}(\mathbb{Z}/p)$.

Recall the diagram (2.4.7), and consider a geometric point $s \in \tilde{H}^g_2$ in the image of $\tilde{H}_1^1 \times \tilde{H}^{g-2}_{g-2} \times \tilde{H}_1^1$ under $\kappa_{1,g-2,1}$. By the inductive hypothesis and Lemma 5.3, $M_p(\tilde{H}^g_{g-1}, s)$ contains two distinct copies of $\GL_{g-1}(\mathbb{Z}/p)$ and thus equals $\GL_g(\mathbb{Z}/p)$ by the argument of [AP07, Lemma 3.2].

Now suppose $1 \leq f \leq g - 1$. By Corollary 3.13(a), there are irreducible components $\tilde{V}_1 \subset \tilde{H}_1^f$ and $\tilde{V}_2 \subset \tilde{H}_1^f$ such that \tilde{S} contains $\tilde{V}_1 \times \tilde{V}_2$. By the inductive hypothesis and Lemma 5.3, $M_p(\tilde{V}_2) \cong \GL_f(\mathbb{Z}/p)$, and thus $M_p(S) \cong \GL_f(\mathbb{Z}/p)$ as well.

The proof that $M_{Z_1}(S) \cong \GL_f(\mathbb{Z}/p)$ is identical. □

5.3. p-rank zero: monodromy. In this section, we determine the integral monodromy of components of H^0_g under a few mild hypotheses. The monodromy group of H^0_2 is small, since supersingular families of abelian varieties have finite ℓ-adic monodromy groups; and the methods of [Cha05] do not apply to H^0_g for $g \geq 3$, because the hyperelliptic Torelli locus is not a Hecke-stable subset of A_g. Thus our proof requires another base case when $f = 0$. For lack of a strategy to
calculate the ℓ-adic monodromy of \mathcal{H}_0^3, we analyze the case when $g = 4$ and $f = 0$ using results on endomorphism rings from Section [4]. We thus determine the mod-ℓ monodromy group of components of \mathcal{H}_0^g when $g \geq 4$, for all but finitely many ℓ. Note that in Theorem [5.7] the set of exceptional primes depends on the characteristic p of the base field, but not on g, so that our results are valid for $\ell \gg_p 0$.

Lemma 5.5. Let S be an irreducible component of \mathcal{H}_0^3.

(a) Either $M_{Q_3}(S) \cong \text{Sp}_{8\times Q_3}$ for all $\ell \neq p$, or there exists a totally real field L such that $M_{Q_3}(S) \cong (R_{L/\mathbb{Q}} \cdot \text{SL}_2) \times \mathbb{Q}_\ell$ for all $\ell \neq p$.

(b) Let $s \in S$ be a geometric point. For ℓ in a set of positive density, there exists a torus $T_{\ell} \subset M_{Q_3}(S, s)$ which acts irreducibly on $V_{s}(\mathcal{X}_s^3)$.

Proof. Let η be the generic point of S, and consider the dichotomy of Lemma [5.1]. If $\text{End}(\mathcal{X}_3, \eta) \cong \mathbb{Z}$, then one knows (e.g., [Ser00, Thm. 3]) that $M_{Q_3}(S) \cong \text{Sp}_{2\times Q_3}$ for all $\ell \neq p$.

Otherwise, if $\mathcal{E}(\mathcal{X}_3, \eta) \cong L$, a totally real cubic field, then S coincides with (a component of) the ℓ-rank zero locus of a Hilbert modular threefold attached to L. Therefore, $M_{Q_3}(S) \cong R_{L/\mathbb{Q}} \cdot \text{SL}_2 \times \mathbb{Q}_\ell$ for all $\ell \neq p$ [Yu99, Lemma 6.5]. This proves (a).

For (b), if $M_{Q_3}(S)$ is the symplectic group, for each prime ℓ choose a CM field $K(\ell)$ of degree 6 which is inert at ℓ.

If instead $\mathcal{E}(\mathcal{X}_3, \eta)$ is isomorphic to a totally real cubic field L, then for ℓ in a set of positive density, ℓ remains inert in L. (If L is Galois over \mathbb{Q}, this is clear from the Chebotarev theorem. Otherwise, the Galois closure \bar{L} of L has Gal(\bar{L}/\mathbb{Q}) $\cong \text{Sym}(3)$; for ℓ in a set of positive density, ℓ splits into two primes in \bar{L}, and thus ℓ is inert in \bar{L}.) For each such ℓ, let $a_\ell \in \mathbb{Q}$ be a positive number such that $-a_\ell$ is not a square mod ℓ; then $K(\ell) := L[\sqrt{-a_\ell}]$ is a totally imaginary field which is inert at ℓ.

Then the norm one torus $T_\ell := (R_{K(\ell)/\mathbb{Q}} \cdot \mathbb{G}_m)^{(1)} \times \mathbb{Q}_\ell$ is a suitable torus. □

Proposition 5.6. Let S be an irreducible component of \mathcal{H}_0^3. For each $\ell \neq p$, $M_{Q_3}(S) \cong \text{Sp}_{8\times Q_3}$.

Proof. Fix a geometric point $s \in S$. By [LP95, Thm. 3.3], there exists a connected reductive group G/\mathbb{Q} and an 8-dimensional representation V of G such that for $\ell \gg 0$, the representation $M_{Q_3}(S, s) \to \text{Aut}(V(\mathcal{X}_3, s))$ is isomorphic to the representation $G \times \mathbb{Q}_\ell \to \text{Aut}(V \otimes \mathbb{Q}_\ell)$. From Zarhin’s theorem and the classification of semisimple Lie algebras (see, e.g., [Noo00, Lemma 1.3]), either $G = \text{Sp}_{8\times}$, or the representation is of Mumford type [Mum69]; and in each case, $M_{Q_3}(S)$ is in fact isomorphic to $G \times \mathbb{Q}_\ell$ for all $\ell \neq p$. If the representation is of Mumford type, then G is isogenous to a twist of $R_{K/\mathbb{Q}} \cdot \text{SL}_2$ for some totally real cubic field K, and in particular has dimension nine. Therefore, to prove the claim, it suffices to show that $\dim_{Q_3} M_{Q_3}(S, s) \geq 10$.

By Corollary [3.14], \mathcal{F} intersects $\Lambda_{1,1}(\mathcal{H}_{1,1})$. As in the proof of Theorem [5.2], one can compute $M_{Q_3}(S, s)$ at a point s in $\Lambda_{1,1}(\mathcal{F})$. Then there are components \tilde{S}_L and \tilde{S}_R of \mathcal{H}_0^3, and components \tilde{S}_1 and \tilde{S}_3 of \mathcal{H}_0^0, such that $M_{Q_3}(S, s)$ contains distinct subgroups $M_{Q_3}(\tilde{S}_1) \times M_{Q_3}(\tilde{S}_3)$ and $M_{Q_3}(\tilde{S}_1) \times M_{Q_3}(\tilde{S}_R)$. Moreover, by Lemma [5.5](a), each of $M_{Q_3}(\tilde{S}_L)$ and $M_{Q_3}(\tilde{S}_R)$ has dimension either 21 or 9. Therefore, $\dim_{Q_3} M_{Q_3}(S, s) \geq 10$, and $M_{Q_3}(S, s) \cong \text{Sp}_{8\times Q_3}$ for all $\ell \neq p$. □

Theorem 5.7. If $\ell \gg_p 0$, if $g \geq 4$ and if S is an irreducible component of \mathcal{H}_0^3, then $M_{\ell}(S) \cong \text{Sp}_{2\times \ell}(\mathbb{Z}/\ell)$ and $M_{Z_{\ell}}(S) \cong \text{Sp}_{2\times \ell}(\mathbb{Z}_\ell)$.

Proof. If $g = 4$ and S is an irreducible component of \mathcal{H}_0^0, then Proposition [5.6] provides the hypothesis needed to prove $M_{Z_{\ell}}(S) \cong \text{Sp}_{2\times \ell}(\mathbb{Z}_\ell)$ for all but finitely many ℓ, e.g., [Ser00, 8.2]. This yields the result for $g = 4$ since \mathcal{H}_0^0 has only finitely many irreducible components. For $g > 4$, the proof is identical to that of Theorem [5.2] with Corollary [3.14] being used to degenerate to a component of $\mathcal{F}_{l,8-2,1}(\mathcal{H}_1 \times \mathcal{H}_8^0 \times \mathcal{H}_1^0)$.

□
Remark 5.8. The assertion of Theorem 5.7 is false for $\mathcal{H}^0_{1,2}$ if $\ell \geq 5$. Indeed, a hyperelliptic curve of genus $g \leq 2$ and p-rank 0 is supersingular. Since a supersingular p-divisible group over a scheme S becomes trivial after a finite pullback $\tilde{S} \to S$, the monodromy group $M_{Z_{\ell}}(\mathcal{H}^0_g)$ is finite for $g \leq 2$. The ambiguity in Lemma 4.1 propagates to Lemma 5.5 and we do not know whether the assertion of Theorem 5.7 is true for $\mathcal{H}_{1,2}^0$.

5.4. Arithmetic applications. The results of the previous section about the monodromy of components of \mathcal{H}_g have arithmetic applications involving hyperelliptic curves over finite fields. For example, they imply that there exist hyperelliptic curves of given genus and p-rank with absolutely simple Jacobian (Application 5.9). Moreover, they give estimates for the proportion of hyperelliptic curves with a given genus and p-rank which have a rational point of order ℓ on the Jacobian (Application 5.11) or for which the numerator of the zeta function has large splitting field (Application 5.13).

Throughout this section, F denotes a finite extension of \mathbb{F}_p.

5.4.1. Technical context. We do not include proofs in this section, since they are very similar to those found in [AP08, Section 5]. Here is a brief description of the main ideas involved. One first defines \mathcal{H}_g over the category of \mathbb{F}_p-schemes and defines the arithmetic monodromy group of a substack of \mathcal{H}_g. For a relative curve $\pi : C \to S$ of genus $g \geq 2$ defined over a finite field, one shows that if $M_{\ell,\text{geom}}(S) \cong \text{Sp}_{2g}(\mathbb{Z}/\ell)$, then $M_{\ell,\text{geom}}(S) \cong \text{Sp}_{2g}(\mathbb{Z}_\ell)$; and $M_{\ell,\text{arith}}(S)$ has finite index in $\text{GSp}_{2g}(\mathbb{Z}_\ell)$; and $M_{\ell,\text{geom}}(S) \cong \text{Sp}_{2g,\mathbb{Q}}$. [AP08, Lemma 5.1].

Secondly, in order to use Chebotarev arguments for curves over finite fields, it is necessary to add rigidifying data, such as the data of a tricanonical structure, so that the corresponding moduli problems are representable by schemes. Recall that $\Omega^{\otimes 3}_{C/S}$ is very ample, that $\pi_*(\Omega^{\otimes 3}_{C/S})$ is a locally free O_S-module of rank $5g - 5$, and that sections of this bundle define a closed embedding $C \hookrightarrow \mathbb{P}^{5g-5}_S$. A tricanonical (3K) structure on $\pi : C \to S$ is a choice of isomorphism $\Omega^{\otimes 3}_{C/S} \cong \pi_*(\Omega^{\otimes 3}_{C/S})$, and the only automorphisms of a hyperelliptic curve with 3K-structure are the identity and the hyperelliptic involution. The moduli space $\mathcal{H}_{g,3K}$ of smooth hyperelliptic curves of genus g equipped with a 3K-structure is representable by a scheme [KS99, 10.6.5], [MFK94, Prop. 5.1].

Third, since \mathcal{H}_g may be constructed as the quotient of $\mathcal{H}_{g,3K}$ by GL_{2g-5}, the forgetful functor $\psi : \mathcal{H}_{g,3K} \to \mathcal{H}_g$ is open [MFK94, p. 6] and a fibration with connected fibers [Noo04, Thm. A.12]. Thus, if $S \subseteq \mathcal{H}_g$ is a connected substack and $S_{3K} = S \times_{\mathcal{H}_g} \mathcal{H}_{g,3K}$, then $M_i(S_{3K}) \cong M_i(S)$ [AP08, Lemma 5.2].

Since the data of a tricanonical structure exists Zariski-locally on the base, one can relate point counts on $\mathcal{H}_{g,3K}(\mathbb{F})$ to those on $\mathcal{H}_g(\mathbb{F})$. Specifically, if $s \in \mathcal{H}_{g,3K}(\mathbb{F})$ is such that $\text{Aut}(C_{g,s}) \cong \{\pm 1\}$, then the fiber of $\mathcal{H}_{g,3K}(\mathbb{F})$ over s consists of $|\text{GL}_{2g}(\mathbb{F})|/2$ points [KS99, 10.6.8].

5.4.2. Application to simple Jacobians. Using the Q_{ℓ}-monodromy of \mathcal{H}_g^f, we deduce that there exist hyperelliptic curves of genus g and p-rank f with absolutely simple Jacobian.

Application 5.9. Suppose $g \geq 1$ and $0 \leq f \leq g$ with $f \neq 0$ if $g \leq 2$. Let S be an irreducible component of \mathcal{H}_g^f. Then there exists $s \in S(\overline{\mathbb{F}})$ such that the Jacobian of $C_{g,s}$ is absolutely simple.

Proof. If $f \geq 1$ or $g \geq 4$, then this follows from Theorems 5.2 and 5.7 using [CO01, Prop. 4]. If $f = 0$ and $g = 3$, then this follows from Lemma 5.5 using [CO01, Rem. 5(i)].

Remark 5.10. For arbitrary g, it is unknown how to deduce Application 5.9 from Theorem 4.6. On an unrelated note, under the hypotheses of Application 5.9 one can deduce that $\text{Aut}(C_{g,n}) = \{\pm 1\}$, which yields a new proof of [AGP08, Thm. 3.7].
5.4.3. Application to class groups. Recall that if $s \in \mathcal{H}_g(F)$, then $\text{Pic}^0(C_{g,s})(F)$ is isomorphic to the class group of the function field $\mathbb{F}(C_{g,s})$. The size of the class group is divisible by ℓ exactly when there is a point of order ℓ on the Jacobian. Roughly speaking, Application 5.11 shows that among all curves over \mathbb{F} of specified genus and p-rank, slightly more than $1/\ell$ of them have an \mathbb{F}-rational point of order ℓ on their Jacobian.

Application 5.11. Suppose ℓ and p are distinct odd primes, $g \geq 1$ and $1 \leq f \leq g$. Suppose S is an irreducible component of \mathcal{H}_g^f such that $S(F) \neq \emptyset$. Let m be the image of $|F|$ in $(\mathbb{Z}/\ell)^\times$. There exists a rational function $\alpha_{g,m}(T) \in \mathbb{Q}(T)$ and a constant $B = B(p,g,\ell)$ such that

$$
\left\lvert \frac{\#\{s \in S(F) : \ell | \# \text{Pic}^0(C_{g,s})(F)\}}{\#S(F)} - \alpha_{g,m}(\ell) \right\rvert < \frac{B}{\sqrt{q}}.
$$

If $f = 0$ and $g \geq 4$, the same result is true for all $\ell \gg p > 0$.

Proof. The proof is very similar to that of [AP08, Application 5.9] and uses Theorems 5.2/5.7 and [KSW99, Thm. 9.7.13].

Remark 5.12. For ℓ odd, one knows that $\alpha_{g,1}(\ell) = \frac{\ell f}{1-\ell} + O(1/\ell^3)$, while $\alpha_{g,m}(\ell) = \frac{\ell f}{1-\ell} + O(1/\ell^3)$ if $m \neq 1$. A formula for $\alpha_{g,1}(\ell)$ is given in [Ach06].

5.4.4. Application to zeta functions. If C/\mathbb{F} is a smooth projective curve of genus g, its zeta function has the form $L_{C/\mathbb{F}}(T)/(1-T)(1-qT)$, where $L_{C/\mathbb{F}}(T) \in \mathbb{Z}[T]$ is a polynomial of degree $2g$. The principal polarization on the Jacobian of C forces a symmetry among the roots of $L_{C/\mathbb{F}}(T)$; the largest possible Galois group for the splitting field over \mathbb{Q} of $L_{C/\mathbb{F}}(T)$ is the Weyl group of Sp_{2g} which is a group of size $g!2^g$.

Application 5.13. Suppose $g \geq 1$ and $1 \leq f \leq g$, or that $g \geq 4$ and $f = 0$. Suppose $p > 2g+1$ and that S is an irreducible component of \mathcal{H}_g^f such that $S(F) \neq \emptyset$. There exists a constant $\gamma = \gamma(g) > 0$ and a constant $E = E(p,g)$ such that

$$
\frac{\#\{s \in S(F) : L_{C_{g,s}/\mathbb{F}}(T) \text{ is reducible, or has splitting field with degree } < 2^g s!\}}{\#S(F)} < E q^{-\gamma}.
$$

Proof. The proof is very similar to that of [AP08, Application 5.11] and uses Theorems 5.2/5.7 and [Kow06, Thm. 6.1 and Remark 3.2.(4)].

REFERENCES

[Ach06] Jeffrey D. Achter, *The distribution of class groups of function fields*, J. Pure Appl. Algebra 204 (2006), no. 2, 316–333. MR MR2184814 (2006h:11132)

[AGP08] Jeffrey D. Achter, Darren Glass, and Rachel Pries, *Curves of given p-rank with trivial automorphism group*, Mich. Math. J. 56 (2008), no. 3, 583–592.

[AP07] Jeffrey D. Achter and Rachel Pries, *The integral monodromy of hyperelliptic and trielliptic curves*, Math. Ann. 338 (2007), no. 1, 187–206.

[AP08] , *Monodromy of the p-rank strata of the moduli space of curves*, Int. Math. Res. Not. IMRN (2008), no. 15, Art. ID rnn053, 25. MR MR2438069 (2009j:14030)

[BLR90] Siegfried Bosch, Werner Lüttkebohmert, and Michel Raynaud, *Néron models*, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 21, Springer-Verlag, Berlin, 1990. MR MR1045822 (91i:14004)

[CH88] Maurizio Cornalba and Joe Harris, *Divisor classes associated to families of stable varieties, with applications to the moduli space of curves*, Ann. Sci. École Norm. Sup. (4) 21 (1988), no. 3, 455–475. MR MR974412 (89j:14019)

[Cha05] Ching-Li Chai, *Monodromy of Hecke-invariant subvarieties*, Pure Appl. Math. Q. 1 (2005), no. 2, 291–303. MR MR2194726 (2006m:14032)

[CO01] Ching-Li Chai and Frans Oort, *A note on the existence of absolutely simple Jacobians*, J. Pure Appl. Algebra 155 (2001), no. 2-3, 115–120. MR MR1801409 (2002a:14020)
E-mail address: j.achter@colostate.edu

DEPARTMENT OF MATHEMATICS, COLORADO STATE UNIVERSITY, FORT COLLINS, CO 80523

E-mail address: pries@math.colostate.edu

DEPARTMENT OF MATHEMATICS, COLORADO STATE UNIVERSITY, FORT COLLINS, CO 80523