Phosphatidylinositol 4,5-bisphosphate drives Ca\(^{2+}\)-independent membrane penetration by the tandem C2 domain proteins synaptotagmin-1 and Doc2β

Received for publication, February 6, 2019, and in revised form, May 28, 2019 Published, Papers in Press, May 30, 2019, DOI 10.1074/jbc.RA119.007929

© 2019 Bradberry et al. Published under exclusive license by The American Society for Biochemistry and Molecular Biology, Inc.

Mazdak M. Bradberry, Huan Bao, and Edwin R. Chapman

From the ‡Howard Hughes Medical Institute and the Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53706 and §Medical Scientist Training Program, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53705

Edited by Ursula Jakob

Exocytosis mediates the release of neurotransmitters and hormones from neurons and neuroendocrine cells. Tandem C2 domain proteins in the synaptotagmin (syt) and double C2 (Doc2) families regulate exocytotic membrane fusion via direct interactions with Ca\(^{2+}\) and phospholipid bilayers. Syt1 is a fast-acting, low-affinity Ca\(^{2+}\) sensor that penetrates membranes upon binding Ca\(^{2+}\) to trigger synchronous vesicle fusion. The closely related Doc2β is a slow-acting, high-affinity Ca\(^{2+}\) sensor that triggers spontaneous and asynchronous vesicle fusion, but whether it also penetrates membranes is unknown. Both syt1 and Doc2β bind the dynamically regulated plasma membrane lipid phosphatidylinositol 4,5-bisphosphate (PIP\(_2\)), but it is unclear whether PIP\(_2\) serves only as a membrane contact or enables specialized membrane-binding modes by these Ca\(^{2+}\) sensors. Furthermore, it has been shown that PIP\(_2\) uncaging can trigger rapid, syt1-dependent exocytosis in the absence of Ca\(^{2+}\) influx, suggesting that current models for the action of these Ca\(^{2+}\) sensors are incomplete. Here, using a series of steady-state and time-resolved fluorescence measurements, we show that Doc2β, like syt1, penetrates membranes in a Ca\(^{2+}\)-dependent manner. Unexpectedly, we observed that PIP\(_2\) can drive membrane penetration by both syt1 and Doc2β in the absence of Ca\(^{2+}\), providing a plausible mechanism for Ca\(^{2+}\)-independent, PIP\(_2\)-dependent exocytosis. Quantitative measurements of penetration depth revealed that, in the presence of Ca\(^{2+}\), PIP\(_2\) drives Doc2β, but not syt1, substantially deeper into the membrane, defining a biophysical regulatory mechanism specific to this high-affinity Ca\(^{2+}\) sensor. Our results provide evidence of a novel role for PIP\(_2\) in regulating, and under some circumstances triggering, exocytosis.

Exocytosis, a fundamental physiologic process, relies on the fusion of cellular membranes. In many cases, membrane fusion is mediated by soluble N-ethylmaleimide–sensitive factor attachment protein receptors (SNAREs) along with accessory proteins that integrate signals near the fusion site (1, 2). At neuronal synapses, a critical signal for exocytosis is Ca\(^{2+}\) (3), which acts upon tandem C2 domain proteins in the synaptotagmin (syt) (4–8) and Doc2 (9, 10) families to trigger SNARE-catalyzed fusion of vesicular and plasma membranes (10, 11). Syt1 is a primary Ca\(^{2+}\) sensor for fast, synchronous neurotransmitter release (7, 8). It is activated by relatively large increases (≥1 μM) in cytoplasmic Ca\(^{2+}\) ([Ca\(^{2+}\)]\(_i\)) that trigger the rapid insertion of side chains from each C2 domain into lipid bilayers containing anionic phospholipids (12, 13). It has been rigorously established that penetration of lipid bilayers by syt1 accelerates SNARE-catalyzed fusion in vitro and in cultured neurons (14–16). Doc2β, a closely related protein that lacks a transmembrane domain but contains a munc13-interacting domain at its N terminus (17), regulates asynchronous (18) and spontaneous (10, 19) neurotransmitter release from neurons, synaptic augmentation (20), vesicle priming in chromaffin cells (21, 22), and insulin secretion from β cells (23). Compared with syt1, however, Doc2β–membrane interactions occur with slower kinetics and a much higher sensitivity for [Ca\(^{2+}\)]\(_i\) (10–100 nm) (10, 19, 24). Thus, although both syt1 and Doc2β are Ca\(^{2+}\) sensors for exocytosis, their divergent functional paradigms invite a closer comparison to establish common mechanistic principles for Ca\(^{2+}\)-sensitive tandem C2 domain proteins. For example, although syt1 must penetrate membranes to stimulate membrane fusion, it has not been established whether—and if so, how—Doc2β penetrates membranes.

Alongside proteins and Ca\(^{2+}\), phospholipid headgroups play key biophysical roles in Ca\(^{2+}\)-triggered exocytosis. Of particu-

This work was supported by National Institute of Mental Health Grants R01 MH061876, R35 NS097362 (to E. R. C.), and F30 MH16580 (to M. M. B.) and a Howard Hughes Medical Institute investigator grant (to E. R. C.). The authors declare that they have no conflicts of interest with the contents of this article. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

This article contains Figs. S1–S7.

‡ To whom correspondence should be addressed: Dept. of Neuroscience and Howard Hughes Medical Institute, University of Wisconsin, 1111 Highland Ave., Madison, WI 53705. E-mail: chapman@wisc.edu.

is mediated by soluble N-ethylmaleimide–sensitive factor attachment protein receptors (SNAREs) along with accessory proteins that integrate signals near the fusion site (1, 2). At neuronal synapses, a critical signal for exocytosis is Ca\(^{2+}\) (3), which acts upon tandem C2 domain proteins in the synaptotagmin (syt) (4–8) and Doc2 (9, 10) families to trigger SNARE-catalyzed fusion of vesicular and plasma membranes (10, 11). Syt1 is a primary Ca\(^{2+}\) sensor for fast, synchronous neurotransmitter release (7, 8). It is activated by relatively large increases (≥1 μM) in cytoplasmic Ca\(^{2+}\) ([Ca\(^{2+}\)]\(_i\)) that trigger the rapid insertion of side chains from each C2 domain into lipid bilayers containing anionic phospholipids (12, 13). It has been rigorously established that penetration of lipid bilayers by syt1 accelerates SNARE-catalyzed fusion in vitro and in cultured neurons (14–16). Doc2β, a closely related protein that lacks a transmembrane domain but contains a munc13-interacting domain at its N terminus (17), regulates asynchronous (18) and spontaneous (10, 19) neurotransmitter release from neurons, synaptic augmentation (20), vesicle priming in chromaffin cells (21, 22), and insulin secretion from β cells (23). Compared with syt1, however, Doc2β–membrane interactions occur with slower kinetics and a much higher sensitivity for [Ca\(^{2+}\)]\(_i\) (10–100 nm) (10, 19, 24). Thus, although both syt1 and Doc2β are Ca\(^{2+}\) sensors for exocytosis, their divergent functional paradigms invite a closer comparison to establish common mechanistic principles for Ca\(^{2+}\)-sensitive tandem C2 domain proteins. For example, although syt1 must penetrate membranes to stimulate membrane fusion, it has not been established whether—and if so, how—Doc2β penetrates membranes.

Alongside proteins and Ca\(^{2+}\), phospholipid headgroups play key biophysical roles in Ca\(^{2+}\)-triggered exocytosis. Of particu-

The abbreviations used are: SNARE, soluble N-ethylmaleimide–sensitive factor attachment protein receptor; PIP\(_2\), phosphatidylinositol 4,5-bisphosphate; PS, phosphatidylserine; syt, synaptotagmin-1; [Ca\(^{2+}\)], cytoplasmic Ca\(^{2+}\); NBD, N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)ethylenediamine; Doc2, double C2 domain; HG, headgroup; ND, nanodisc; TEMPO-PC, 1,2-dipalmitoyl-sn-glycero-3-phospho(ethyl)choline; v-SNARE, vesicle SNARE; t-SNARE, target SNARE; syb2, synaptobrevin-2; GST, glutathione S-transferase; NTA, nitrotriacetic acid; SUMO, small ubiquitin-like modifier; POPC, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine; POPE, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine; dansyl, 5-dimethylaminonaphthalene-1-sulfonylethyl; doxyl, N-oxy-4′, 4′-dimethylloxazolidine; PE, phosphatidylethanolamine; PC, phosphatidylcholine; PDB, Protein Data Bank.

10942 J. Biol. Chem. (2019) 294(28) 10942–10953

© 2019 Bradberry et al. Published under exclusive license by The American Society for Biochemistry and Molecular Biology, Inc.
Ca2+-independent membrane penetration by syt1 and Doc2\textbeta

![Diagram of tandem C2 domain proteins](image)

Figure 1. Doc2\textbeta penetrates membranes in response to Ca2+. A, schematic diagrams of syt1 and Doc2\textbeta. MID, munc13-interacting domain; TMD, transmembrane domain. B, model illustrating the putative membrane penetration activity of Doc2 where the distal tip of Ca2+-binding loop 1 was mutated to cysteine and labeled with the fluorescent dye NBD, shown at right. The shaded stripe in the bilayer leaflet depicts the approximate distribution of the quenching nitroxide on 12-doxyl-PC. Ribbon diagrams show C2A (PDB code 4LCV) and C2B (PDB code 4LDC) of Doc2\textbeta from Giladi et al. (52). C, NBD emission spectra from each of the four Ca2+-binding loops of Doc2\textbeta C2AB. Graph titles indicate the C2 domain and loop labeled (e.g. C2A*(1)-C2B corresponds to loop 1 of C2A, and C2A*(3)-C2B corresponds to loop 3 of C2A). Labeled C2AB was combined with liposomes (15% PS, 30% PC, 20% PE, and 35% cholesterol) in 500 \(\mu\)M EGTA after which Ca2+ was added. Each point represents the mean fluorescence at each labeled site. Spectra are representative of data from at least four independent trials.

In the present study, we first demonstrate that, like syt1, Doc2\textbeta penetrates lipid bilayers upon binding Ca2+. We report the unexpected finding that, in membranes containing PS, PIP\textsubscript{2} drives Ca2+-independent membrane penetration by both syt1 and Doc2\textbeta. This interaction stimulates Ca2+-independent fusion mediated by syt1 in vitro. Moreover, in the presence of Ca2+, PIP\textsubscript{2} significantly increases the membrane penetration depth of Doc2\textbeta but not syt1, thus providing a mechanism by which PIP\textsubscript{2} may selectively drive spontaneous release. Our results define key biophysical differences between syt1 and Doc2\textbeta and provide a potential molecular mechanism by which PIP\textsubscript{2} can directly trigger exocytosis in the absence of increases in [Ca2+].

Results

Doc2\textbeta penetrates and aggregates membranes in a manner analogous to syt1

We first sought to determine whether the tandem C2 domains of Doc2\textbeta share key biochemical properties with syt1 (Fig. 1A). We thus purified the tandem C2 domains ("C2AB") of both proteins and used a series of assays to define their Ca2+-dependent and -independent interactions with lipid bilayers. To assess whether the Ca2+-binding loops of Doc2\textbeta C2AB penetrate membranes in a manner analogous to syt1, residues at the tips of loops 1 and 3 in each C2 domain of Doc2\textbeta (His-158 and Phe-222 in C2A and Ala-298 and Gly-361 in C2B) were individually mutated to cysteine and labeled with the environmentally sensitive probe N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)ethylenediamine (NBD) (Fig. 1B). Membrane insertion was...
monitored via fluorescence emission changes after adding liposomes and Ca\(^{2+}\) to NBD-labeled protein. Emission spectra from NBD probes at all four Ca\(^{2+}\)-binding loops underwent hypsochromic shifts and substantial intensity increases when both Ca\(^{2+}\) and PS-containing liposomes were present. Ca\(^{2+}\) triggered these fluorescence changes only in the presence of membranes, suggesting that each probe inserts into the bilayer in response to Ca\(^{2+}\) (Fig. 1C and Fig. S1). To confirm a direct interaction between these probes and the acyl chains in the bilayer, we used liposomes containing a membrane-embedded nitroxide (doxyl) spin label on an acyl chain of PC; this moiety quenches fluorescence largely by direct collision with excited-state fluorophores (37). NBD fluorescence, in each loop, was efficiently quenched by a spin label at the 12-position of the acyl chain (12-doxyl-PC, 15 mol %) (Fig. 1C), directly demonstrating that all four Ca\(^{2+}\)-binding loops of Doc2\(\beta\) insert into the hydrophobic region of the bilayer.

Aggregation of PS-containing liposomes is also a characteristic property of syt1 C2AB in vitro (38). This activity has not been described for Doc2\(\beta\), a soluble protein whose function may also rely on its ability to juxtapose membranes. To assay for aggregation activity, Doc2\(\beta\) C2AB was mixed with liposomes and Ca\(^{2+}\), and the turbidity of the mixture was monitored by absorbance at 400 nm. As with syt1 C2AB, Doc2\(\beta\) C2AB rapidly and reversibly aggregated liposomes that harbored PS (Fig. S2A). Moreover, this aggregation activity was strongly enhanced when copies of Doc2\(\beta\) C2AB were bound to separate liposomes and thus available to interact in trans (Fig. S2, B and C). This behavior, which was also observed for syt1 (38) (Fig. S2), suggests a common mechanism of aggregation in which C2AB molecules, bound to liposomes via their Ca\(^{2+}\)-binding loops, subsequently interact with other liposome-bound C2AB molecules.

PIP\(_2\) triggers Ca\(^{2+}\)-independent membrane penetration by Doc2\(\beta\) and syt1

We next focused on the role of PIP\(_2\) in driving specific modes of membrane binding by syt1 and Doc2\(\beta\). Because previous studies of membrane penetration by syt1 were performed using nonphysiologic mixtures of phospholipids (13, 15, 39), we assayed the membrane penetration activity of syt1 and Doc2\(\beta\) in the presence of model plasma membranes that included 15 mol % PS and 1 mol % PIP\(_2\), a composition that reflects the PIP\(_2\) content of neuronal and neuroendocrine cell plasma membranes (29, 40). Indo-1 was used to verify that [Ca\(^{2+}\)]\(_{free}\) remained very low, i.e. \(<10 \text{ nM}\), upon addition of PS:PIP\(_2\) lipids (Fig. S3). Surprisingly, under these conditions, we observed not only Ca\(^{2+}\)-independent binding but also Ca\(^{2+}\)-independent penetration of the bilayer by both proteins (Fig. 2, A and C). In each case, this activity, at 1 mol % PIP\(_2\), was limited to the Ca\(^{2+}\)-binding loops of the C2B domain. Inclusion of 12-doxyl-PC in the liposomes resulted in quenching of NBD fluorescence, confirming a direct interaction of C2B loop 3 with the interior of the membrane in the case of each protein (Fig. 2, A and C). Syt1 and Doc2\(\beta\) C2AB diverged in terms of the behavior of C2B loop 1, which failed to penetrate in the case of syt1 but engaged in shallow penetration in the case of Doc2\(\beta\) (Fig. 2, A and C). PS and PIP\(_2\) were both required for Ca\(^{2+}\)-independent penetration of membranes by both syt1 and Doc2\(\beta\) (Fig. 2, B and D). Previous studies of membrane penetration by syt1 included liposomes containing either PS or PIP\(_2\), but not both, thus explaining why this novel interaction was not observed previously (13, 15, 39).

These data suggest that syt1 and Doc2\(\beta\) contain at least partially distinct binding sites for PS and PIP\(_2\), that, when occupied simultaneously, drive Ca\(^{2+}\)-independent insertion of C2B into the bilayer. To confirm that these findings hold true for full-length syt1, we formulated nanodiscs containing the full-length, labeled protein (ND-syt1) (Fig. 3A). As in the case for C2AB, ND-syt1 underwent Ca\(^{2+}\)-independent penetration of membranes containing PS and PIP\(_2\), but not PS alone (Fig. 3B) This result is of particular significance because, in chromaffin cells, optical uncaging of PIP\(_2\) drives a small, syt1-dependent exocytotic burst even in the absence of measurable changes in Ca\(^{2+}\) levels (36) (see “Discussion”).

PIP\(_2\) exhibits differential effects on Doc2\(\beta\) and syt1

Our penetration experiments (Fig. 2) also revealed striking, lipid-dependent differences between syt1 and Doc2\(\beta\) in the presence of Ca\(^{2+}\). In particular, Doc2\(\beta\) C2A loop 3 demonstrated a unique increase in fluorescence only when both PS and PIP\(_2\) were present (Fig. 2B). In contrast, we observed no such changes in the analogous position in syt1, which displayed equivalent Ca\(^{2+}\)-dependent NBD fluorescence increases upon binding PS-bearing liposomes whether or not PIP\(_2\) was included (Fig. 2D). We explored this issue further by examining the impact of PS and PIP\(_2\) on the disassembly kinetics of Ca\(^{2+}\)-sensor–lipid complexes. In this assay, preassembled C2B–Ca\(^{2+}\)-liposome complexes were rapidly mixed with EGTA to remove free [Ca\(^{2+}\)] while FRET was monitored between protein and liposomes using a stopped-flow rapid-mixing instrument (Fig. 4). The inclusion of 1 mol % PIP\(_2\) in PS-bearing liposomes had no effect on the disassembly kinetics of syt1 complexes (mean \(\pm\) S.E.: PS, 73.7 \(\pm\) 10.0 s\(^{-1}\); PS:PIP\(_2\), 79.1 \(\pm\) 7.8 s\(^{-1}\); \(p > 0.5\), Welch’s t test) (Fig. 4B). In striking contrast, PIP\(_2\) slowed the disassembly of Doc2\(\beta\) complexes nearly 10-fold (PS, 4.90 \(\pm\) 0.21 s\(^{-1}\); PS:PIP\(_2\), 0.49 \(\pm\) 0.03 s\(^{-1}\); \(p = 0.0002\), Welch’s t test) (Fig. 4C). In combination with data from NBD-labeled penetration assays (Fig. 2), these findings further support a specific role for PIP\(_2\) in stabilizing the Ca\(^{2+}\)-dependent activated state of Doc2\(\beta\).

Quantitative analysis of membrane penetration activity

Our initial NBD fluorescence results (Figs. 1 and 2) motivated a more quantitative comparison of membrane penetration by syt1 and Doc2\(\beta\). We thus used the parallax method of London and co-workers (37, 41) to determine the insertion depth of NBD on each loop of syt1 and Doc2\(\beta\) in the presence and absence of Ca\(^{2+}\) and PIP\(_2\). We used doxyl-PC labeled at either the 5- or 12-positions of the acyl chain as well as on the choline headgroup (HG-doxyl; Fig. 5A; also known as TEMPO-PC). Quenching efficiencies in the presence of Ca\(^{2+}\) are shown in Fig. 5, C and D, whereas quenching efficiencies in the absence of Ca\(^{2+}\) are shown in Fig. 5E. Increased quenching by deeper doxyls and decreased quenching by shallower doxyls indicate deeper insertion of the NBD probe. By comparing the quenching efficiencies of spin labels at various points on the alkyl
chains, we quantitatively estimated the depth to which the NBD labels penetrate the membrane. For this analysis, we improved on previous implementations of the parallax analysis by using published molecular dynamics simulations of doxyl-PC quenchers (42) to determine the uncertainty in the measured penetration depth for each probe (see “Experimental procedures”). Calculated depth parameters are shown in Table 1 and represented visually in Fig. 7.

In the presence of Ca\(^{2+}\), PIP\(_2\) exerted strikingly different effects on membrane penetration by Doc2\(\beta\) versus syt1 (Figs. 5 A, emission spectra of NBD-labeled Doc2\(\beta\) C2AB before and after the addition of liposomes containing 15 mol % PS and 1 mol % PIP\(_2\) in 500 \(\mu\)M EGTA (<10 nM [Ca\(_{\text{free}}\)]. Under these conditions, loops 1 and 3 of C2B demonstrate robust increases in emission intensity. Emission from loop 3 is efficiently quenched by 12-doxyl-PC, indicating Ca\(^{2+}\)-independent insertion into the bilayer. Spectra are representative of data from at least four independent trials. B, NBD-labeled Doc2\(\beta\) C2AB was combined with the indicated liposomes, and the NBD emission intensity was measured before and after the addition of Ca\(^{2+}\). For each replicate, emission intensity was normalized to the signal from NBD-labeled protein prior to liposome addition. For Doc2\(\beta\), PS and PIP\(_2\) each support Ca\(^{2+}\)-dependent penetration activity. However, when combined, PS and PIP\(_2\) drove a marked Ca\(^{2+}\)-dependent increase in the emission from C2A loop 3. Both PS and PIP\(_2\) were required for Ca\(^{2+}\)-independent penetration by loops 1 and 3 of C2B (arrows). C and D, same as above but using syt1 C2AB. In contrast to Doc2\(\beta\), PS drives penetration of syt1 C2A more efficiently than PIP\(_2\) in the presence of Ca\(^{2+}\). The combination of PIP\(_2\) and PS did not drive any additional NBD signal increases in C2A but marginally increased NBD signals in C2B. As with Doc2\(\beta\), both PIP\(_2\) and PS were required for robust Ca\(^{2+}\)-independent penetration by Syt1 C2B loop 3 (arrow). Error bars, S.E. of four independent trials; *, p < 0.05; **, p < 0.005; ns, p > 0.5; all by Welch’s t test.
and 7). Although PIP₂ drove all four loops of both syt1 and Doc2β deeper into the bilayer, this effect was far more pronounced for Doc2β. In particular, loop 3 of Doc2β C2A penetrated, on average, 3.7 Å deeper into the bilayer than the presence of PIP₂. In contrast, PIP₂ increased the average penetration depth of the loops of syt1 by, at most, 1 Å. Remarkably, Doc2β C2A penetrates only shallowly into PS-bearing membranes lacking PIP₂ but penetrates approximately as deeply as syt1 if PIP₂ is present (Figs. 5C and 7). Syt1, by contrast, penetrates PS-bearing membranes to nearly its full extent even in the absence of PIP₂ (Figs. 5D and 7). These results provide direct evidence that PIP₂ substantially deepens Ca²⁺-dependent membrane penetration by Doc2 but has relatively subtle effects on syt1. Our findings define a mechanistic divergence between syt1 and Doc2β and a biophysical mechanism by which Doc2β acts specifically as a PIP₂-dependent Ca²⁺ sensor.

Elevation of PIP₂ drives additional membrane penetration to stimulate membrane fusion

Physiologic [PIP₂] in the plasma membrane is ~1 mol % but can reach >5 mol % at sites of vesicle docking and fusion (29, 40). Even at 1% PIP₂, we noted some doxyl quenching of NBD probes on the C2A domains of syt1 and Doc2β, suggesting that further increases in PIP₂ might drive additional membrane penetration by these sensors (Fig. S7). To assess how elevating [PIP₂] might drive alternative membrane-penetration modes by syt1 and Doc2β, we measured emission from NBD-labeled syt1 and Doc2β C2AB in the presence of liposomes containing increasing mol % PIP₂ (Fig. 6, A and B). We observed significant, dose-dependent increases in NBD emission intensity for labels on C2A in both Doc2β and syt1 as PIP₂ was increased from 1 to 5 mol %. In the case of Doc2β, elevation of [PIP₂] drove penetration by all four loops, with this effect approaching saturation at 5% PIP₂ (Fig. 5A). In the case of syt1, increasing [PIP₂] drove penetration by C2A loop 3, demonstrating that elevation of [PIP₂] can trigger activation of both C2 domains of this protein (Fig. 6B). These results support a specific role for PIP₂ in activating both Doc2β and syt1 at physiologically relevant concentrations (illustrated in Fig. 7). Moreover, these findings suggest a mechanism by which syt1, under certain circumstances, may be partially activated by PIP₂ to trigger Ca²⁺-independent vesicle fusion (36).

Because PIP₂-dependent, Ca²⁺-independent penetration by syt1 was less extensive than that of Doc2β, we sought to determine whether this novel penetration activity can enhance vesicle fusion in the absence of Ca²⁺. We thus performed in vitro fusion assays using v-SNARE vesicles containing syb2 and full-length syt1 with t-SNARE vesicles containing syntaxin-1A: SNAP-25B heterodimer and increasing amounts of PIP₂ (Fig. 6, C–F). In both lipid and content-mixing assays, elevation of [PIP₂] enhanced fusion of v- and t-SNARE vesicles prior to the addition of Ca²⁺, consistent with the capacity of PIP₂ to drive Ca²⁺-independent activation of syt1 (36). Increasing PIP₂ likewise enhanced membrane fusion after the addition of Ca²⁺, consistent with published findings using in vitro fusion assays (43) and PIP₂ uncaging in chromaffin cells (36).

Discussion

Taken together, our results demonstrate key similarities and unanticipated differences between syt1 and Doc2, tandem C2 domain Ca²⁺ sensors specialized for distinct physiologic functions. Our results reveal that, like syt1, Doc2β aggregates and penetrates membranes containing anionic phospholipids in response to Ca²⁺ (Figs. 1 and S2). This activity, which likely results in a Ca²⁺-dependent deformation of the membrane due to the space occupied by the tips of the Ca²⁺-binding loops (44, 45), thus appears to be a core feature of tandem C2 domain Ca²⁺ sensors. Given that Doc2β is not anchored to vesicles by a
showing that PIP2 directly stimulates penetration of the target membrane complex disassembly rates (inclusion of 1 mol % PIP2). To our knowledge, this is the first evidence that a C2 domain protein can penetrate (and thus presumably deform) a membrane without an elevation in \([\text{Ca}^{2+}]_i\). Thus, a rapid increase in [PIP2], e.g. via optical uncaging of caged PIP2 as performed by Walter et al. (36), might trigger syt1-dependent release via two nonexclusive mechanisms: recruitment of additional \(\text{Ca}^{2+}\) sensors that penetrate the plasma membrane or driving deeper penetration by \(\text{Ca}^{2+}\) sensors that are already present at release sites (Figs. 6 and 7). Furthermore, because [PIP2] can reach >5 mol % at release sites (29) and the plasma membrane contains ∼10−15 mol % PS (46), it is likely that the docked and/or primed configurations of syt1 and Doc2β involve some degree of insertion into the plasma membrane. However, although the PIP2 uncaging technique of Walter et al. (36) provides useful mechanistic insights, we note that we are not aware of studies showing such rapid up-regulation of PIP2 at exocytic sites in endogenous systems.

Strikingly, the \(\text{Ca}^{2+}\)-independent penetration activity of Doc2β reached near-saturation at 5 mol % PIP2, a dose-response that is well-tuned to the physiologic range of PIP2 levels at sites of fusion. We also note that, although \(\text{Ca}^{2+}\) plays key roles in physiologic exocytosis, multiple studies have demonstrated varying degrees of residual exocytosis after dramatically reducing \([\text{Ca}^{2+}]_i\). (47, 48). Because \([\text{Ca}^{2+}]_i\) increases lead to activation of phospholipase C and the cleavage of plasma membrane PIP2, the Doc2β–PIP2 interactions defined here may serve to maintain baseline spontaneous fusion rates during quiescent periods. Additionally, cAMP- and GTP-dependent signaling pathways have been shown to potentiate exocytosis in an apparently \(\text{Ca}^{2+}\)-independent fashion (49). Further studies, in which cellular ATP, PIP2, and \(\text{Ca}^{2+}\) are all carefully controlled, may more quantitatively define the role of PIP2 in driving \(\text{Ca}^{2+}\)-independent exocytosis in live cells.

This work lends key support to the physiologic relevance of PIP2 as a crucial biophysical regulatory factor for Doc2β (Figs. 4–7). Syt1, by contrast, appears to rely on PIP2 for preadsorption onto the plasma membrane (13) rather than full membrane penetration per se. Our results correspond well to those reported by Pérez-Lara et al. (35), who found that PIP2 did not substantially enhance the penetration depth of syt1 in the presence of PS. The divergence between syt1 and Doc2β is readily reconciled with the specialized functions of these proteins. Doc2β operates at near resting \([\text{Ca}^{2+}]_i\) on slow timescales and is thus well-poised to respond to the dynamic (but relatively slow) regulation of PIP2 levels at release sites. Syt1, in contrast, must respond in microseconds to transient \(\text{Ca}^{2+}\) elevations. Additional lipid requirements for full penetration by syt1 might come at a kinetic cost that would impair its capacity for triggering rapid membrane fusion. Our stopped-flow data (Fig. 4) support this interpretation, demonstrating that PIP2 robustly stabilizes the active state of Doc2β but not syt1. The findings reported here provide an example of how two highly homologous protein sequences (the tandem C2 domains of syt1 and Doc2β) can retain core mechanistic principles while evolving highly specialized, lipid-dependent regulatory mechanisms. Other tandem C2 domain \(\text{Ca}^{2+}\) sensors may be tuned to respond to other lipid headgroups, acyl chain compositions, regulatory proteins, or even small molecules. These regulatory functions, and how they influence the corresponding physiologic processes, remain the focus of ongoing and future studies.
Experimental procedures

Protein purification

Constructs encoding syt1 C2A (amino acids 140–421) and Doc2β C2AB (amino acids 126–412) were expressed as N-terminal GST fusion proteins (pGEX4T-1 vector, GE Healthcare) in Escherichia coli, purified via GSH-Sepharose affinity chromatography, and cleaved with thrombin in reconstitution buffer (100 mM KCl, 25 mM HEPES-NaOH, pH 7.4) plus 5% glycerol. Full-length synaptobrevin-2 was likewise expressed as a GST fusion protein, purified, and cleaved in a similar buffer containing 400 mM KCl and 1% N-octyl β-D-glucopyranoside. Quenching efficiencies of doxyl-PC liposomes with and without PIP2 were quantified. Inclusion of PIP2 drives both loops of C2A deeper into the bilayer as evidenced by reduced shallow quenching and increased deep quenching. This effect is also apparent for Doc2β C2B. D, same as in C but using PIP2-labeled syt1. In contrast to Doc2β, syt1 C2A penetrates deeply in the absence of PIP2, as shown by relatively efficient quenching by 12-doxyl liposomes. In contrast to the case of Doc2β, PIP2 exhibits only a weak tendency to drive additional penetration by syt1. Error bars, S.E. of four independent trials; *, p < 0.05; **, p < 0.005; ns or unmarked, p > 0.5; all by Welch’s t test.

Figure 5. PIP2 markedly deepens membrane penetration by Doc2β but not syt1. A, illustration depicting membrane-bound C2AB and the approximate distributions of nitroxide quenchers. The yellow star represents NBD label, and green spheres represent Ca2+ ions. B, representative emission spectra for nonquenching liposomes along with liposomes containing the indicated doxyl quencher. Relative quenching efficiencies at different probe locations correspond to the average location of the NBD label in the bilayer. Deeper insertion results in stronger quenching by 12-doxyl versus 5-doxyl and HG-doxyl liposomes, whereas shallower insertion results in stronger quenching by HG-doxyl and 5-doxyl liposomes. C, NBD-labeled Doc2β C2AB was combined with liposomes and Ca2+ (250 μM), and quenching efficiencies of doxyl-PC liposomes with and without PIP2 were quantified. Inclusion of PIP2 drives both loops of C2A deeper into the bilayer as evidenced by reduced shallow quenching and increased deep quenching. This effect is also apparent for Doc2β C2B. D, same as in C but using NBD-labeled syt1. In contrast to Doc2β, syt1 C2A penetrates deeply in the absence of PIP2, as shown by relatively efficient quenching by 12-doxyl liposomes. In contrast to the case of Doc2β, PIP2 exhibits only a weak tendency to drive additional penetration by syt1. Error bars, S.E. of four independent trials; *, p < 0.05; **, p < 0.005; ns or unmarked, p > 0.5; all by Welch’s t test.

Experimental procedures

Protein purification

Constructs encoding syt1 C2AB (amino acids 140–421) and Doc2β C2AB (amino acids 126–412) were expressed as N-terminal GST fusion proteins (pGEX4T-1 vector, GE Healthcare) in Escherichia coli, purified via GSH-Sepharose affinity chromatography, and cleaved with thrombin in reconstitution buffer (100 mM KCl, 25 mM HEPES-NaOH, pH 7.4) plus 5% glycerol. Full-length synaptobrevin-2 was likewise expressed as a GST fusion protein, purified, and cleaved in a similar buffer containing 400 mM KCl and 1% N-octyl β-D-glucopyranoside. Quenching efficiencies of doxyl-PC liposomes with and without PIP2 were quantified. Inclusion of PIP2 drives both loops of C2A deeper into the bilayer as evidenced by reduced shallow quenching and increased deep quenching. This effect is also apparent for Doc2β C2B. D, same as in C but using NBD-labeled syt1. In contrast to Doc2β, syt1 C2A penetrates deeply in the absence of PIP2, as shown by relatively efficient quenching by 12-doxyl liposomes. In contrast to the case of Doc2β, PIP2 exhibits only a weak tendency to drive additional penetration by syt1. Error bars, S.E. of four independent trials; *, p < 0.05; **, p < 0.005; ns or unmarked, p > 0.5; all by Welch’s t test.
Protein mutagenesis and labeling

Native cysteines (Cys-277 in Syt1 and Cys-145, Cys-217, Cys-249, Cys-290, Cys-337, and Cys-387 in Doc2β/H9252) were removed and replaced with alanines, and exogenous cysteines were introduced at the indicated positions using site-directed mutagenesis. All mutagenesis was confirmed by Sanger sequencing. For labeling, protein was diluted to 10 μM in 600 μl of reconstitution buffer plus 5% glycerol containing 100 μM tris(2-carboxyethyl)phosphine. Iodoacetamidyl-NBD-amide (Thermo Fisher; 2 mM in DMSO) was added dropwise to this solution for a final dye:protein ratio of 10:1 (mol:mol), and the labeling reaction was allowed to proceed for 2 h at room temperature. The reaction was then quenched with DTT, and the free dye was removed by desalting on a column (PD MidiTrap, GE Healthcare) equilibrated in reconstitution buffer plus 5% glycerol. Protein concentrations and labeling stoichiometry were determined by UV-visible absorption spectroscopy using an empirically determined extinction coefficient for NBD. Labeling efficiency ranged from 0.8 to 1.2 dye molecules per protein. Full-length syt1 was labeled during purification by incubating protein-bearing Ni²⁺-NTA-Sepharose resin in 1 ml containing 10% DMSO and 0.5 mg of iodoacetamidyl-NBD amide overnight at 4 °C with rotation. Beads were washed extensively prior to elution.

Liposome preparation

Liposomes were prepared from POPC, POPS, POPE, brain PIP₂, and cholesterol (all from Avanti Polar Lipids) stored individually as chloroform stocks except for brain PIP₂ stored in 20:9:1 CHCl₃:MeOH:H₂O). Unless noted otherwise, liposomes contained 30% POPC, 15% POPS, 20% POPE, and 35% cholesterol (all % mol/mol). For membrane-embedded quenching studies, 15% 5-doxyl-, 12-doxyl-, or headgroup-doxyl-PC replaced POPC in equimolar quantity. In liposomes lacking PS, this lipid was replaced with the same mole fraction of POPC. For stopped-flow rapid-mixing experiments, 5% dansyl-PE replaced an equimolar amount of POPE. For lipidosome formulation, lipids were combined, and two to three drops of methanol were added. The solvent was evaporated under a stream of nitrogen, and the films were dried under vacuum for at least 2 h. Films were rehydrated in reconstitution buffer at a final concentration of 5 or 10 mM [lipid] and extruded 29 times through a single 100-nm polycarbonate filter (Whatman).

Proteoliposome reconstitution for aggregation assays

Proteoliposomes were formed using 15% PS, 30% PE, and 55% PC, all mol %. Lipids in chloroform stocks were combined, dried under vacuum, rehydrated in reconstitution buffer, and subjected to five freeze–thaw cycles. Protein-free unilamellar vesicles were prepared from this mixture by extrusion through a 50-nm polycarbonate filter (Whatman). Syntaxin-1A:SNAP-25B heterodimer (for t-SNARE–bearing liposomes) or synaptobrevin-2 (for v-SNARE–bearing liposomes) were mixed with protein-free vesicles at a protein:lipid molar ratio of 1:200 with 0.8 weight % octyl glucoside in the buffer at 4 °C for 15 min. The mixture was diluted two times with reconstitution buffer, and this diluted mixture was then dialyzed against 2 liters of reconstitution buffer with 5 g of Bio-beads SM2 (Bio-Rad) at 4 °C overnight. For aggregation studies, protein-free liposomes were prepared in the same fashion but with the protein omitted.

Nanodisc reconstitution

POPC (100 nmol), MSP1E3D1 (10 nmol), and full-length labeled syt1 (2 nmol) were combined in reconstitution buffer
Ca\(^{2+}\)-independent membrane penetration by syt1 and Doc2β

Aggregation assays

C2AB (1 μM) and liposomes (113 μM lipid) were combined in 100 μl of reconstitution buffer containing 200 μM EGTA, and absorbance at 400 nm was monitored in a spectrophotometer containing 5% glycerol and 0.05% n-β-dodecyl maltoside. Bio-beads SM2 were added (80 μl of a ~95% slurry in reconstitution buffer), and the mixture was incubated overnight with rotation to remove n-β-dodecyl maltoside and permit nanodisc self-assembly.

Penetration assays

NBD-C2AB (0.25 μM) or ND-syt1 (0.15 μM syt1), liposomes (117 μM total lipid), and Ca\(^{2+}\) (250 μM [Ca\(_{\text{free}}\)] in the absence of Ca\(^{2+}\), and Ca\(^{2+}\) emission intensity was quantified. Increasing [PIP\(_2\)] drove substantial intensity increases from NBD labels on all four loops of Doc2β. This effect appeared to reach near-saturation at 5 mol % PIP\(_2\), as in A but for syt1 C2AB. In addition to robust penetration by C2B loop 3, increasing [PIP\(_2\)] drove partial penetration by C2A loop 3.

Stopped-flow rapid mixing

C2AB (4 μM), liposomes (1 mm lipid), and CaCl\(_2\) (250 μM for syt1 and 40 μM for Doc2β) were combined in reconstitution buffer. This mixture was loaded into one syringe of an SX-18.MV stopped-flow spectrometer (Applied Photophysics) at room temperature (23 °C) and rapidly mixed with an equal volume of 2 mM EGTA in the same buffer. Samples were allowed to equilibrate in the spectrometer for 5 min prior to mixing. Excitation at 285 nm was provided via a xenon arc lamp and monochromator (Applied Photophysics), and emission was monitored via photomultiplier tube through a 470-nm long-pass filter (KV470, Schott). Single-exponential decays were fitted using Applied Photophysics Pro-Data SX software prior to normalization, with the first 2 ms of each trace omitted from analysis to account for instrument dead time. Independent experiments were defined as replicates performed with a unique combination of separately prepared batches of protein and lipid.

Depth calculations

Measurements of bilayer penetration depths were performed according to the parallax method of London and co-workers (37, 41) with slight modifications used to estimate distribution widths for each probe location. This method relies on 1) a hard-sphere approximation of quenching by nitroxide radicals and 2) the relative quenching efficiencies of two quenchers at known depths in the bilayer to estimate the position of a fluorescent probe. The final equation used to derive penetration depths is as follows,
$Z_{cf} = L_{c1} + \left(\frac{1}{\pi C} \ln \frac{F_1}{F_2} - L_{21}^2 \right) / (2L_{21})$ \hspace{1cm} (Eq. 1)

where Z_{cf} is the distance of probe from the bilayer center, L_{c1} is the distance from the bilayer center to the shallow quencher, L_{21} is the difference in depth between the two quenchers, F_1 is the relative fluorescence intensity of the shallow quencher, F_2 is the relative fluorescence intensity of the deeper quencher, and C is the concentration of quencher in molecules per Å2, assuming 20 mol % quencher and an area of 70 Å2 per lipid molecule. Both F_1 and F_2 are expressed as a fraction of the NBD-C2AB emission intensity obtained in the absence of doxyl-PC quencher. For values corresponding to the positions of quenchers in the bilayer, we used the results of the recent molecular dynamics simulations (42) as these data matched previous experimental results well and also provided estimated distribution widths for the location of doxyl-PC quenchers in the bilayer. The half-widths of these distributions were propagated as errors across all mathematical operations in Equation 1 to estimate half-widths for the location of each probe. Errors in F_1 and F_2 were also propagated, although the errors in these measurements were small compared with the errors corresponding to the quencher distribution widths. Distances from bilayer center were calculated using two pairs of doxyls (5- and 12-doxyl and headgroup- and 12-doxyl). We note that the deviation in measured depth between the two pairs of doxyls used tended to increase with more deeply located NBD probes. These deviations were <2 Å in almost all cases, however, and we speculate that they occurred due to depth-dependent

Figure 7. Model of Ca$^{2+}$-dependent and -independent membrane penetration by Doc2β and syt1 in the presence and absence of PIP$_2$. Calculated membrane penetration depths are illustrated, to scale, for Doc2β and syt1. Models of syt1 and Doc2 were created by rendering the molecular surfaces of the corresponding X-ray or NMR structures (Doc2, as above; syt1, PDB codes 1RSY (C2A) and 1K5W (C2B) from Sutton et al. (53) and Fernandez et al. (54), respectively). The polybasic patch of C2B is rendered cyan in each model. Shaded areas in the bilayer represent the calculated half-widths of the penetration depth measurements for each probe. A, scale drawing of membrane penetration by Doc2β. Prior to binding Ca$^{2+}$, C2B shallowly penetrates bilayers in the presence of 1% PIP$_2$. After binding Ca$^{2+}$, all four loops penetrate the bilayer. However, both loops in C2A are relegated to a shallow position unless PIP$_2$ is also present, which enables C2A loop 3 to penetrate 3.7 Å deeper on average into the membrane. In the absence of Ca$^{2+}$, increases in mol % PIP$_2$ in the target membrane can drive partial penetration of the bilayer by all four loops of Doc2β. B, scale drawing of membrane penetration by syt1. As with Doc2β, 1% PIP$_2$ enables Ca$^{2+}$-independent penetration by C2B loop 3, and increasing [PIP$_2$] drives penetration by C2A loop 3. Upon binding Ca$^{2+}$, however, all four loops of syt1 penetrate deeply into the membrane even in the absence of PIP$_2$.

![Image of Ca$^{2+}$-independent membrane penetration by Doc2β and syt1](image-url)
changes in the mobility of the NBD fluorophore and/or deviation from the hard-sphere approximation for quenching by nitroxide radicals. The average calculated depth of each NBD-labeled probe using this method was shallow enough (minimum 8.6 Å from bilayer center) that quenching by 12-doxyl-PC from the opposite leaflet of the bilayer was ignored in our calculations.

Lipid-mixing assays

For preparation of v-SNARE liposomes, full-length syt1 and full-length synaptobrevin-2 were diluted in elution buffer, added to dried lipid films (15% PS, 7% PE, 20% cholesterol, 55% PC, 1.5% NBD-PE, and 1.5% rhodamine-PE, all % mol/mol) at 1:2000 protein:lipid ratio, incubated for 40 min on ice, and dia-lyzed extensively against reconstitution buffer containing 1 g/liter Bio-beads SM2. The dialyzed lipid suspension was then purified by buffer exchange into reconstitution buffer using a PD-10 column (GE Healthcare). t-SNARE liposomes were prepared similarly by adding t-SNARE heterodimer in elution buffer to lipid films of the same composition (1:2000 protein:lipid ratio) but without NBD-PE or rhodamine-PE and with 0, 1, 3, or 5% PIP2 substituted for an equimolar amount of PC. For lipid-mixing assays, v-SNARE liposomes (0.5 μm) were mixed with t-SNARE liposomes (5 μm) in 100 μl of reconstitution buffer. Fluorescence (460-nm excitation/520-nm emission) was monitored in a plate reader (BioTek) while incubating the reaction at 37 °C with Ca2⁺ (500 μm) added at the indicated time point. Independent experiments were defined as replicates performed with a unique combination of separately prepared batches of protein and lipid.

Content-mixing assays

v-SNARE liposomes for content-mixing assays were prepared as for lipid-mixing assays but without NBD-PE or rhodamine-PE. t-SNARE liposomes containing PIP2 and sulfophorhamine B were prepared as above but with 10 mm sulfophorhamine B (Acros Organics) in the elution buffer containing t-SNAREs. For content-mixing assays, v-SNARE liposomes (5 μm) were mixed with t-SNARE liposomes (1 μm) in 100 μl of reconstitution buffer. Fluorescence (530-nm excitation/590-nm emission) was monitored in a plate reader (BioTek) while incubating the reaction at 37 °C with Ca2⁺ (500 μm) added at the indicated time point. Ca2⁺ was added earlier in these experiments than in lipid-mixing experiments because longer incubations yielded content mixing that was almost entirely Ca2⁺-independent in the presence of PIP2. Incubation of dye-containing t-SNARE vesicles in the absence of v-SNARE vesicles did not result in dequenching (data not shown), indicating that this phenomenon was not due to leakage of dye from these vesicles. Independent experiments were defined as replicates performed with a unique combination of separately prepared batches of protein and lipid.

Indo-1 measurements

Indo-1 (0.33 μm) was added to 600 μl of reconstitution buffer containing 500 μm EGTA followed by PS:PIP2 liposomes (0.117 μm) and Ca2⁺ (250 μm) with spectra taken (λem = 332 nm) after each addition. [Ca2⁺]free was estimated by comparison with reference spectra (51).

Author contributions—M. M. B. and E. R. C. conceptualization; M. M. B. data curation; M. M. B. formal analysis; M. M. B. and E. R. C. funding acquisition; M. M. B., H. B., and X. L. investigation; M. M. B. visualization; M. M. B. and H. B. methodology; M. M. B. and E. R. C. writing-original draft; M. M. B., H. B., and E. R. C. writing-review and editing; E. R. C. resources; E. R. C. project administration.

Acknowledgment—We thank members of the Chapman laboratory for comments and support.

References

1. Südhof, T. C., and Rothman, J. E. (2009) Membrane fusion: grappling with SNARE and SM proteins. *Science* 323, 474–477 CrossRef Medline

2. Chapman, E. R. (2008) How does synaptotagmin trigger neurotransmitter release? *Annu. Rev. Biochem.* 77, 615–641 CrossRef Medline

3. Katz, B., and Miledi, R. (1967) The timing of calcium action during neuromuscular transmission. *J. Physiol.* 189, 535–544 CrossRef Medline

4. Brose, N., Petrenko, A. G., Südhof, T. C., and Jahn, R. (1992) Synaptotagmin: a calcium sensor on the synaptic vesicle surface. *Science* 256, 1021–1025 CrossRef Medline

5. Bhalla, A., Chicka, M. C., and Chapman, E. R. (2008) Analysis of the synaptotagmin family during reconstituted membrane fusion: uncovering a class of inhibitory isoforms. *J. Biol. Chem.* 283, 21799–21807 CrossRef Medline

6. Hui, E., Bai, J., Wang, P., Sugimori, M., Llinas, R. R., and Chapman, E. R. (2005) Three distinct kinetic groupings of the synaptotagmin family candidate sensors for rapid and delayed exocytosis. *Proc. Natl. Acad. Sci. U.S.A.* 102, 5210–5214 CrossRef Medline

7. Littleton, J. T., Stern, M., Schulze, K., Perin, M., and Bellen, H. I. (1993) Mutational analysis of *Drosophila* synaptotagmin demonstrates its essential role in Ca2⁺-activated neurotransmitter release. *Cell*, 74, 1125–1134 CrossRef Medline

8. Geppert, M., Goda, Y., Hammer, R. E., Li, C., Rosahl, T. W., Stevens, C. F., and Südhof, T. C. (1994) Synaptotagmin I: a major Ca2⁺ sensor for transmitter release at a central synapse. *Cell* 79, 717–727 CrossRef Medline

9. Orita, S., Sasaki, T., Naito, A., Habets, R. L., Maeda, M., Suzuki, H., Igarashi, H., and Takai, Y. (1995) Doc2: a novel brain protein having two repeated C2-like domains. *Biochem. Biophys. Res. Commun.* 206, 439–448 CrossRef Medline

10. Groffen, A. J., Martens, S., Diez Arazola, R., Cornelisse, L. N., Lozovaya, N., de Jong, A. P., Giouroukova, N. A., Habets, R. L., Takai, Y., Bellen, H. J., Igarashi, H., and Takai, Y. (1995) Doc2: a novel brain protein having two repeated C2-like domains. *Biochem. Biophys. Res. Commun.* 206, 1614–1618 CrossRef Medline

11. Tucker, W. C., Weber, T., and Chapman, E. R. (2004) Reconstitution of Ca2⁺-regulated membrane fusion by synaptotagmin and SNAREs. *Science* 304, 435–438 CrossRef Medline

12. Chapman, E. R., and Davis, A. F. (1998) Direct interaction of a Ca2⁺-binding loop of synaptotagmin with lipid bilayers. *J. Biol. Chem.* 273, 13995–14001 CrossRef Medline

13. Bai, H., Xue, R., Bao, H., Zhang, L., Yethiraj, A., Cui, Q., and Chapman, E. R. (2016) Different states of synaptotagmin regulate evoked versus spontaneous release. *Nat. Commun.* 7, 10971 CrossRef Medline

14. Wang, P., Chicka, M. C., Bhalla, A., Richards, D. A., and Chapman, E. R. (2005) Synaptotagmin VII is targeted to secretory organelles in PC12 cells, where it functions as a high-affinity calcium sensor. *Mol. Cell. Biol.* 25, 8693–8702 CrossRef Medline

15. Evans, C. S., Ruhl, D. A., and Chapman, E. R. (2015) An engineered metal sensor tunes the kinetics of synaptic transmission. *J. Neurosci.* 35, 11769–11779 CrossRef Medline
34. Michaeli, L., Gottfried, I., Bykhovskaia, M., and Ashery, U. (2017) Phos-

32. van den Bogaart, G., Meyenberg, K., Diederichsen, U., and Jahn, R. (2012)

31. Grishanin, R. N., Kowalchyk, J. A., Klenchin, V. A., Ann, K., Earles, C. A.,

29. James, D. J., Khodthong, C., Kowalchyk, J. A., and Martin, T. F. (2008)

28. Di Paolo, G., Moskowitz, H. S., Gipson, K., Wenk, M. R., Voronov, S.,

26. Eberhard, D. A., Cooper, C. L., Low, M. G., and Holz, R. W. (1990) Evi-

24. Groffen, A. J., Friedrich, R., Brian, E. C., Ashery, U., and Verhage, M.

21. Pinheiro, P. S., de Wit, H., Walter, A. M., Groffen, A. J., Verhage, M., and

19. Courtney, N. A., Briguglio, J. S., Bradberry, M. M., Greer, C., and Chap-

18. Yao, J., Gaffaney, J. D., Kwon, S. E., and Chapman, E. R. (2011) Doc2 is a

17. Orita, S., Naito, A., Sakaguchi, G., Maeda, M., Igarashi, H., Sasaki, T.,

16. Srivastava, K., Liu, X., Santhakumar, T., Kowalchyk, J., Cereghino, J.,

15. Srihari, N. A., Cai, J., Yin, J., Schubert, A., Varadan, S., Neufeld, J. A.,

14. Heide, S. E., Endres, A. J., Spragg, J. D., Callahan, J. J., Takai, Y.,

13. eds, H., Kishida, K., Schrader, C., Lesage, G., and Edelmann, W. (2012)

12. Sorschke, I., Kowalchyk, J. A., Groffen, A. J., Verhage, M., and James, D. E.

11. O’Connor, L. M., Casini, D., Casini, A. K., and Chapman, E. R. (2009) Doc2

10. Groffen, A. J., and Verhage, M. (2001) Assembly and subcellular locali-

9. Spahn, D. L., and Südhof, T. C. (2006) Calcium-dependent synaptic vesicle

8. Kirsch, L., and Südhof, T. C. (2000) Synaptic vesicle calcium sensors as

7. Epand, R. F., and Epand, R. M. (2003) Calcium-dependent synaptic vesicle

6. Oikawa, S., and Südhof, T. C. (2000) Synaptic vesicle calcium sensors:

5. Spahn, D. L., and Südhof, T. C. (2001) Synaptic vesicle calcium sensors:

4. Prinz, C., and Südhof, T. C. (2001) Synaptic vesicle calcium sensors:

3. Groffen, A. J., and Verhage, M. (2001) Synaptic vesicle calcium sensors.

2. Kanzaki, N., Endo, S., and Dohmae, N. (2006) Syt7 regulates the

1. Maxfield, F. R., and McGraw, T. (2002) Membrane trafficking: a synap-

Ca2+-independent membrane penetration by synt1 and Doc2β

PtdSer cooperate to trap synaptotagmin-1 to the plasma membrane in the presence of calcium. Elife 5, e15886 CrossRef Medline

Walter, A. M., Müller, R., Tawfik, B., Wiera, K. D., Pinheiro, P. S., Nadler, A., McCarthy, A. W., Ziomkiewicz, I., Kruse, M., Reither, G., Rettig, I., Lehmann, M., Haucke, V., Hille, B., Schultz, C., et al. (2017) Pip2 optical uncaging potentiates exocytosis. Elife 6, e30203 CrossRef Medline

Chatotpaphiyay, A., and London, E. (1987) Parallax method for direct measurement of membrane penetration depth utilizing fluorescence quenching by spin-labeled phospholipids. Biochemistry 26, 39–45 CrossRef Medline

Hui, E., Gaffaney, J. D., Wang, Z., Johnson, C. P., Evans, C. S., and Chapman, E. R. (2011) Mechanism and function of synaptotagmin-mediated membrane apposition. Nat. Struct. Mol. Biol. 18, 813–821 CrossRef Medline

Hui, E., Bai, J., and Chapman, E. R. (2006) Ca2+-triggered simultaneous membrane penetration of the tandem C2-domains of synaptotagmin I. Biophys J. 91, 1767–1777 CrossRef Medline

Wenk, M. R., Lucast, L., Di Paolo, G., Romanelli, A. J., Suchy, S. F., Nussbaum, R. L., Cline, G. W., Shulman, G. I., McMurray, W., and De Camilli, P. (2003) Phosphoinositide profiling in complex lipid mixtures using electrospray ionization mass spectrometry. Nat. Biotechnol. 21, 813–817 CrossRef Medline

Abrams, F. S., and London, E. (1993) Extension of the parallax analysis of membrane penetration depth to the polar region of model membranes: use of fluorescence quenching by a spin-label attached to the phospholipid polar headgroup. Biochemistry 32, 10826–10831 CrossRef Medline

Krychneenko, A., and Ladokhin, A. S. (2013) Molecular dynamics simulations of depth distribution of spin-labeled phospholipids within lipid bilayer. J. Phys. Chem. B 117, 5875–5885 CrossRef Medline

Wang, Z., Liu, H., Gu, Y., and Chapman, E. R. (2011) Reconstituted synaptotagmin 1 mediates vesicle docking, priming, and fusion. J. Cell Biol. 195, 1159–1170 CrossRef Medline

Hui, E., Johnson, C. P., Yao, J., Dunning, F. M., and Chapman, E. R. (2009) Synaptotagmin-mediated bending of the target membrane is a critical step in Ca2+-regulated fusion. Cell 138, 709–721 CrossRef Medline

Martens, S., Kozlov, M. M., and McMahon, H. T. (2007) How synaptotagmin promotes membrane fusion. Science 316, 1205–1208 CrossRef Medline

Catman, C., Blank, M. L., Moehl, A., and Snyder, F. (1969) Lipid composition of synaptic plasma membranes isolated from rat brain by zonal centrifugation. Biochemistry 8, 4606–4612 CrossRef Medline

Kochubey, O., and Schneeggenburger, R. (2011) Synaptotagmin increases the dynamic range of synapses by driving Ca2+-evoked release and by clamping a near-linear remaining Ca2+ sensor. Neuron 69, 736–748 CrossRef Medline

Vyleta, N. P., and Smith, S. M. (2011) Spontaneous glutamate release is independent of calcium influx and tonically activated by the calcium-sensing receptor. J. Neurosci. 31, 4593–4606 CrossRef Medline

Hille, B., Billiard, J., Babcock, D. F., Nguyen, T., and Koh, D. S. (1999) Stimulation of exocytosis without a calcium signal. J. Physiol. 520, 23–31 CrossRef Medline

Denisov, I. G., Grinkova, Y. V., Lazareidis, A. A., and Sligar, S. G. (2004) Directed self-assembly of monodisperse phospholipid bilayer nanodiscs with controlled size. J. Am. Chem. Soc. 126, 3477–3487 CrossRef Medline

Grynkiewicz, G., Poenie, M., and Tsien, R. Y. (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem. 260, 3440–3450 Medline

Giladi, M., Michaeli, L., Almagor, L., Bar-On, D., Buki, T., Ashery, U., Khananshvili, D., and Hirsch, J. A. (2013) The C2B domain is the primary Ca2+ sensor in DOC2B: a structural and functional analysis. J. Mol. Biol. 425, 4629–4641 CrossRef Medline

Sutton, R. B., Davletov, B. A., Berghuis, A. M., Sudhof, T. C., and Sprang, S. R. (1995) Structure of the first C2 domain of synaptotagmin I: a novel Ca2+ /phospholipid-binding fold. Cell 80, 929–938 CrossRef Medline

Fernandez, I., Araç, D., Ubach, J., Gerber, S. H., Shin, O., Gao, Y., Anderson, R. G., Sudhof, T. C., and Rizo, J. (2001) Three-dimensional structure of the synaptotagmin 1 C2B-domain: synaptotagmin 1 as a phospholipid binding machine. Neuron 32, 1057–1069 CrossRef Medline