Highly charged heavy ions have been given considerable attention as a way to investigate relativistic and quantum electrodynamic (QED) effects, as the strong Coulomb field, due to the heavy nucleus and low electron screening, enhances their contributions to the atomic energy levels. The Modified Binary-Encounter-Bethe (MRBEB) model, which rely only on two atomic parameters for EICS evaluation, the binding energy, B, and effective nuclear charge, Z_{eff}, has been used before to estimate the cross sections for ionization of highly charged Ar, Fe and Kr [1]. However, the influence of the autoionizing channels prevented us from assessing the reliability of the model as it only provides direct cross section values. Very recently, the same model, featuring a correction term called ionic factor (IF), to better describe the Z and incident electron’s kinetic energy dependence on the cross section, was used for calculating cross sections for the ionization of $191^+ \text{ to } U^{88+}$ with very good results [2]. Nevertheless, the question about the reliability of the model for such targets remains, as the number of studied targets is scarce. In this work we have calculated EICS for hydrogenlike Mo, Dy, Au and Bi using the MRBEB-IF model, and the results are presented in Fig. 1.

References

[1] M. Guerra at al 2013 *Int. J. Mass Spectrom.* 348 1-8
[2] M. Guerra at al 2015 *J. Phys. B In Press*
[3] M. Guerra at al 2012 *Int. J. Mass Spectrom.* 313 1-7
[4] M. Guerra at al 2009 *J. Phys. Conf. Ser.* 194 04204
[5] R. E. Marrs at al 1997 *Phys. Rev. A* 56 1338
[6] H. Watanabe at al 2002 *J. Phys. B* 35 5095

Figure 1. EICS for Mo$^{41+}$, Dy$^{65+}$, Au$^{78+}$ and Br$^{82+}$. Experimental results are from Marrs et al. [5] and Watanabe et al. [6].