Propofol is the most commonly used sedative-hypnotic drug for noxious procedures, yet the molecular targets underlying either its beneficial or toxic effects remain uncertain. In order to determine targets and thereby mechanisms of propofol, we have synthesized a photoactivatable analogue by substituting an alkyl diazirinyl moiety for one of the isopropyl arms but in the meta position. \textit{m}-Azipropofol retains the physical, biochemical, GABA$_A$ receptor modulatory, and in vivo activity of propofol and photo-adducts to amino acid residues in known propofol binding sites in natural proteins. Using either mass spectrometry or radiolabeling, this reagent may be used to reveal sites and targets that underlie the mechanism of both the desirable and undesirable actions of this important clinical compound.

Results

An obvious position for introduction of a photoactivatable propofol analogue into propofol would be as part of one of the existing isopropyl groups in propofol itself. However, we recognized that these positions, by virtue of being ortho to the phenolic hydroxyl group, would likely lead to \textit{inter}molecular reaction of the active position with the hydroxyl group rather than the desired \textit{intra}molecular reaction with proteins. Therefore, we designed our propofol photoaffinity probe to contain the photoactivatable group in a meta position relative to the hydroxyl group. This design would preclude any \textit{intramolecular} reaction of the reactive site with the phenolic hydroxyl group.

Synthesis of \textit{m}-Azipropofol (Azim, 1)

Synthesis of 1 is shown in Scheme 1. Cumene (2) is treated with bromine in the presence of a catalytic amount of iodine to give known bromo compound 3, which is treated with magnesium followed by N-trifluoroacetylpyrrolidinyl to give the previously reported trifluoroacetylbenezene 4. Nitration conditions provide nitro compound 5, which is reduced under catalytic hydrogenation conditions to give aniline 6. Conversion of 6

*To whom correspondence should be addressed. Address: Department of Anesthesiology and Critical Care, 311A John Morgan Building, 3620 Hamilton Walk, Philadelphia, PA 19104. Phone: 215-662-3705. Fax: 215-349-5078. E-mail: Roderic.eckenhoff@uphs.upenn.edu.

*Abbreviations: Azim, m-azipropofol; 1-AMA, 1-aminoanthracene; HSAF, horse spleen apoferritin; GABA$_A$, \gamma-amino butyric acid receptor type A; EEG, electroenencephalograph; ITC, isothermal titration calorimetry; MEM, minimal essential media.
to phenol 7 is accomplished using nitrous acid and boiling aqueous acid. Subsequent protection of the free phenol group using the tert-butylimidemethylsilyl protecting group provides 8. Introduction of the diazirine group into ketone 8 closely followed a method previously described for a similar ketone.10 Thus, conversion to oxime 9 and oxime tosylate 10 followed standard procedures. Treating 10 with ammonia produces diaziridine 11, which is oxidized with iodine and triethylamine to produce diazirine 12. Deprotection of the tert-butylimidemethylsilyl group occurs under standard fluoride conditions to give 1 in an overall yield of 18% starting with cumene.

Physicochemical Properties. The physicochemical properties for both 1 and propofol are summarized in Table 1. The octanol/water partition coefficients of 1 (log P) and propofol were calculated to be 3.93 and 3.79, respectively. Density of 1 was determined to be 1.12 g/mL. The calculated molecular dipole for 1 was found to be 1.12 D, while the dipole for propofol, calculated the same way, was 1.70 D. The UV absorption spectrum demonstrates a prominent diazirine peak at 368 nm with an extinction coefficient (Σ368) of 670/M. Because of this absorption profile, all photolysis was done with a 350 nm UV lamp. The rate of disappearance of the diazirine during irradiation in a cuvette, as measured by changes in the UV spectrum, has a t1/2 of 34 min (95% CI = 31–37 min). The maximum concentration of 1 achievable in distilled water was found to be 185 μM.

Binding Assays. Equilibrium binding of 1 to horse spleen apoferritin (HSAF) was determined by two methods, ITC and fluorescence competition, and the results are provided in Table 2 and in Figures 1 and 2. There existed good agreement across methods and across the two compounds. Propofol had a 2- to 4-fold higher affinity for HSAF than did 1. In the photo-occlusion experiments, a 40% reduction in 1-AMA fluorescence was noted when compared to control HSAF samples that were identically treated but without the addition of 1 (Figure 3). Combined, these results support the proposition that 1 binds the anesthetic pocket of HSAF rather than inner filter effects explaining the competition results.

In Vivo Anesthetic Potency. Both 1 and propofol showed anesthetic activity in X. laevis tadpoles by reversibly extinguishing both spontaneous and elicited (startle reflex) movement. The results of these assays are summarized in Table 3 and presented in Figure 4. The Hill slopes and EC50 values for the two compounds had overlapping 95% confidence intervals for all measurements, indicating similar potencies in tadpoles. The only difference noted during the trials was that propofol had more rapid kinetics; it reached its maximum effect in about half of the time that it took 1 to reach steady state. Also, it was found that neither compound had a concentration that immobilized 100% of the tadpoles (loss of startle response) reversibly. This suggested a very narrow therapeutic ratio for both compounds, which was confirmed to be less than 2. The EC50 reported here for propofol in Xenopus tadpoles agrees with previously reported values, despite subtle differences in methodology.

Electrophysiological Studies. We compared effects of propofol and 1 on α1β2γ2L GABA_A receptors expressed in HEK293 cells. At 0.3 and 3 μM, both compounds reversibly enhanced responses of receptors activated by 3 μM GABA (in fold changes, propofol 5.1 ± 3 and 9.3 ± 7.1; 1 1.8 ± 0.1 and 1.7 ± 0.4; p < 0.05 for all). In addition, propofol but not 1 directly activated receptors; i.e., current flow was produced even in the absence of GABA. At the highest concentration tested (30 μM), propofol strongly activated receptors. By contrast, 30 μM 1 did not directly activate receptors, and receptor activation in the combined presence of 30 μM 1 and GABA was reduced or eliminated. However, upon removal of 1 and GABA, there was a modest “rebound” or tail current. This pattern of responses has been suggested to arise from direct channel block by anesthetics.

Photolabeling. In order to confirm the ability of 1 ability to act as a photolabel, HSAF was incubated in buffer with and without saturated (185 μM) 1 and exposed to 350 nm illumination for 20 min. Concentration and trypsinization were followed by nano-LC/MS to identify peptides and residues.
that had been modified by 216 Da (1 without the dinitrogen). We detected peptides covering 42.9% of the apoferritin sequence. The HSAF L chain demonstrated clear evidence of two adducted peptides. MS/MS sequencing indicated that the adducts were located at leucine-81 and leucine-24, both of which are known to be lining residues in the previously identified propofol binding cavity (see Supporting Information and Figure 6).11

Discussion and Conclusions

In order to create a photolabel analogue of propofol, we initially decided to incorporate an alkyl-diazirine functional group after the success of creating the smaller azi-isoflurane.2 On the basis of previous investigations into the anesthetic potency of various alkyl-substituted phenols,13 we chose to substitute the alkyl-diazirine for one of the isopropyl groups while leaving the other isopropyl in the 2-position on the ring. This decision produced the possibility of synthesizing a series of azi-propofols, varying in which position on the ring carried the diazirine group. While the ortho-azi-propofol would demonstrate the greatest steric similarity to propofol, the concern that the compound would internally rearrange after diazirine decomposition instead of photolabeling made this a less attractive initial objective. The rearrangement of similar aromatic compounds into the corresponding ortho-quinone methanides has been described.14 With this potential for decomposition via an intramolecular pathway, we were concerned about the effectiveness as a photolabel. Therefore,
after ruling out the ortho compound and considering that previously reported13 structural analogues of the meta- and para-compounds retained anesthetic potency, we chose to synthesize the meta-compound 1 first.

Subsequent attempts to synthesize the para-azi-propofol (AziPp) using the synthetic strategy outlined in Scheme 1 failed in the final, deprotecting step. We hypothesized that this occurred because the base-catalyzed deprotection creates a phenoxy intermediate. The phenoxy is conjugated with the diazirine in such a way that the diazirine decomposes immediately; evolved N\(_2\) gas was observed during the addition of the tetrabutylammonium fluoride. Attempts to synthesize AziPp using a methoxymethyl protecting group, which is removed under acid conditions, were only marginally more successful. Any synthesized AziPp was seen to rapidly decompose when isolation was attempted. Diazirines conjugated with phenols are known to be very unstable under basic conditions,13 and with this conjugation potentially lowering the pK\(_a\) of the molecule below that of phenol, we expect there to be significant decomposition and loss of photolabeling functionality when AziPp is added to the pH 7.4 phosphate buffered saline in which the HS\(\text{AF}\) experiments are performed. Hence, 1 was synthesized as described herein.

From a comparison of 1 to propofol, the diazirine exchange for the isopropyl adds 66 Da to the molecular weight and increases the dipole considerably, from 1.70 to 2.12 D, but still makes the compound marginally more hydrophobic, with log \(P\) change from 3.79 to 3.93. Even with these changes, in vitro and in vivo binding studies indicate that 1 is a highly analogous and similarly potent anesthetic when compared to propofol. The 1/HS\(\text{AF}\) interaction was found to be of slightly lower affinity compared to propofol/HS\(\text{AF}\), but their EC\(_{50}\) values for anesthetizing tadpoles were not different. Both compounds also enhanced agonist-stimulated activity of the GABA\(_\text{A}\) receptor complex at concentrations near those that impaired movement (<3 \(\mu\)M), with 1 being less potent. This is consistent with previous work on propofol analogues where loss of bulk from the 6-position or transfer of bulk from the ortho to meta or para resulted in loss of potency.2 It is of interest that this lower potency at GABA\(_\text{A}\) receptors is also reflected in the HS\(\text{AF}\) affinity but not in the in vivo potency. Previous work has shown that the relationship between GABA\(_\text{A}\) enhancement in heterologous expression systems and tadpole immobilization only explains about half the variation,4 so it is possible that additional molecular targets of propofol and 1 are contributing to immobilization in the tadpole.

Alternatively, the ability of high concentration 1 to block the GABA\(_\text{A}\) complex (Figure 5) may indicate the recruitment of additional, low affinity sites within this ion channel because of the electrophysiological signature for channel blockade at high (lethal) concentrations. Such a functionally antagonistic site would be expected to reduce the coagonist actions of the propofol site, as was observed. Finally, it is unlikely that receptor blockade underlies lethality, since both propofol and 1 were similarly lethal in tadpoles. Nevertheless, the ability of 1 to block receptors may provide a new tool for understanding the origin of channel block at high concentrations, a feature of other anesthetics.12,16,17

The photolabeling experiment demonstrates that both 1 and propofol are recognized as similar by a protein and that 1 has the ability to act as a photoaffinity label. The competition and occlusion studies had already suggested that 1 binds in the propofol-binding cavity of HS\(\text{AF}\). The photolabeling experiment identified that the 1 binding site was within labeling distance of two residues, leucine-81 and leucine-24, which are adjacent to each other and contribute to the lining of the previously identified propofol binding site of HS\(\text{AF}\).11 This confirms that 1 binds within the same cavity that propofol (and inhaled anesthetics) binds, making this compound a promising photolabel for studies of propofol binding in other potential drug targets. We cannot rule out that adduction took place in 57% of the protein sequence for which peptides were not identified, but we consider this unlikely because only a single propofol site has been found with crystallography11 and the ITC and 1-AMA competition data for 1 are analogous to the data for propofol and give no indication of additional binding sites. The fact that affinity of the 1/HS\(\text{AF}\) interaction predicted the lowered efficacy for GABA\(_\text{A}\) enhancement is further evidence that the HS\(\text{AF}\) site bears strong architectural and physicochemical similarity to the site underlying allosteric enhancement in GABA\(_\text{A}\) receptors.

Current application of 1 requires detection using mass spectrometry. While this is useful for detecting adducted peptides within proteins, it is less useful for detecting novel targets in complex mixtures or anatomic regions of the brain or heart that might have a high density of targets. Thus, a future direction for this work involves incorporating a radioactive moiety into 1. For example, [\(^3\)H]I could be synthesized by iodination of the aromatic ring followed by catalytic

Table 3. Tadpole Studies Results

	1, endpoint	Assay	sponta\-nous movement	startle reflex
EC\(_{50}\) (\(\mu\)M)	1.1 (0.9–1.4)	3.1 (2.7–3.5)	1.1 (0.9–1.3)	2.8 (2.6–3.0)
Hill slope	2.8 (1.6–4.0)	2.9 (1.7–4.1)	2.7 (1.6–3.9)	3.0 (2.4–3.7)

\(^a\)Values in parentheses is the 95\% confidence interval.
hydrogenation to replace the iodine with tritium, using $[^3H]_2$ gas as the source.

Experimental Procedures

Physicochemical Properties. The density of 1 was calculated from the slope of the volume/mass relationship of this low-volatility compound. The UV spectrum and extinction coefficient of the diazirine absorption were first determined from a methanolic solution of 1 of known concentration, and then maximal water solubility was calculated from the extinction coefficient. The rate of photolysis was determined from a 160 μM solution in distilled water in a 1 cm path length quartz cuvette in contact with a 350 nm UV light for 30 min, taking UV spectra to monitor the disappearance of the diazirinyl peaks every 3 min.

Octanol/water partition coefficients were calculated using XLOGP3.18

Electronic structure calculations at the ab initio RHF/6-31+G(d,p) geometry optimized level demonstrate two conformations with 160 cal/mol difference as the lowest energy conformations.19 These two conformations differ in rotation of 180° about the bond between the diazirine carbon and the aromatic ring such that the plane of the ring bisects the diazirine double bond in both conformations. This indicates relatively free rotation of the diazirine group relative to the aromatic ring. The dipole moment calculated for each of these conformations was found to be 1.99 and 2.25 D. With total energies so close, we assumed that these conformations would contribute equally to the total dipole at room temperature, giving 1 a dipole of 2.12 D. The same calculations for propofol demonstrated fairly free rotation about bonds connecting each isopropyl group to the aromatic ring, creating several minima with different individual dipole moments. Consideration of a Maxwell–Boltzmann distribution for the total energy of each conformation at room temperature allowed the calculation of an average dipole of 1.70 D, as the individual dipoles ranged between 1.67 and 1.80 D.

Binding Studies. Fluorescence Competition. The affinity of 1 for HSAF was determined by adding increasing amounts of 1 to a solution of HSAF and a constant amount of 1-aminoanthracene (1-AMA).20 All solutions were prepared in pH 7.4 phosphate buffered saline. In 500 μL quartz cuvettes, 7 μM HSAF and 7 μM 1-AMA were combined with increasing concentrations of 1 (0–110 μM). The fluorescence of 1-AMA in each of these solutions was determined with 380 nm excitation while monitoring emission between 400 and 800 nm. The fluorescence curves were corrected by subtracting the baseline fluorescence curves of 1-AMA and HSAF. The fluorescence intensity vs concentration data were fitted to variable slope Hill models to obtain the IC$_{50}$ and Hill slope. The K_D was then calculated using the Cheng–Prusoff equation to correct the IC$_{50}$ for the presence of the 1-AMA competitor.20

Photocrosslinking. To ensure that the measured effect of 1 on the fluorescence of 1-AMA in HSAF was indeed caused by competition for the anesthetic-binding pocket of HSAF rather than an inner-filter effect of 1, a photo-occlusion experiment

Figure 5. Electrophysiology in GABA$_A$ receptors. Excised patches containing α1β2γ2L receptors were exposed to 3 μM GABA alone (left column) or together with propofol (middle column) or 1 (right column) for 500 ms. At 0.3 and 3 μM, both compounds enhanced responses to GABA. At a high concentration (30 μM), propofol directly activated channels, whereas 1 blocked channels.

Figure 6. Adducted HSAF residues. Shown is the HSAF anesthetic binding site with propofol bound (yellow), from PDB code 3F33. Residues photolabeled by 1 (L24 and L81 from each of two monomers) (pink) are immediately adjacent to propofol. Mass spectra are provided in the Supporting Information.
Journal of Medicinal Chemistry, 2010, Vol. 53, No. 15 Hall et al.

Urea Collection) were maintained in standard culture conditions for Expression.

HEK293 cells (CRL 1573, American Type Culture Collection) were maintained in standard culture conditions.

HSAF, and the reference cell contained water. Saturated photo-

calorimetry using a Microcal, Inc. VP ITC (Northampton, MA; linked using ConCat32 software (Microcal, Inc., Northampton, MA). In addition to these sequential titrations, control titrations were performed, including ligand into buffer, buffer into protein, and buffer into buffer, which were then used to correct the experimental titration, ligand into protein. Origin 5.0 (Microcal Software, Inc., Northampton, MA) was used to fit thermodynamic parameters to the heat profiles using a single binding site class.

Tadpole Studies. In vivo activity studies were performed in Xenopus tadpoles. Groups of 10 tadpoles were placed in 30 mL of pond water containing various concentrations of I or propofol. Tadpoles were incubated in the pond water with compound for 30 min to allow for full equilibration, regardless of the progress toward immobilization. At the end of the 30 min, the anesthetic effect was assessed using two end points. The first was loss of spontaneous motion, defined as the percentage of tadpoles that did not swim, right themselves, or twitch for 30 min to allow for full equilibration, regardless of the desired concentration (3 μM) in HEPES-buffered saline solution. Propofol and I solutions were prepared fresh daily from powder and were diluted to the desired concentration (3 μM) in HEPES-buffered saline solution. Propofol and I were prepared by diluting stock solutions containing 0.53 mM propofol and 0.18 mM azipropofol in HEPES-buffered saline solution. Data Analysis. Ionic currents were analysed using Clampfit 10 (Molecular Devices, Downingtown, PA). Peak currents were measured relative to baseline and normalized to the peak current elicited by a pulse of 3 μM GABA. Data are presented as mean ± SD.

General Synthetic Procedures. All reagents and solvents were used as received from commercial sources unless otherwise noted. 1H, 13C, and 19F NMR spectra were recorded on a Bruker DNX 360 MHz nuclear magnetic resonance spectrometer. 1H, 13C, and 19F NMR spectra are in the Supporting Information. Determination of the final purity of I used capillary GC (30 m × 0.25 mm DB-5 column, 135 °C injector, 200 °C detector, column temperature of 100 °C for 25 min, then 10 °C/ min to 200 °C) using flame ionization detection. Under these conditions, the retention time of I was 25 min and was shown to be >98% pure by integration.

2-Isopropyl-5-[3-(trifluoromethyl)-3H-diazirin-3-yl]phenol (1). To a round-bottom flask with a magnetic stir bar was added 466.8 mg (1.30 mmol) of 12 and 5 mL of dry THF. The solution was cooled in an ice bath, and 1.45 mL (1.45 mmol) of TBAF (1.0 M in THF) was added dropwise via syringe over 5 min. The reaction mixture was allowed to warm and stir for 20 min at room temperature. The mixture was poured into 20 mL of saturated NH4Cl and extracted with methylene chloride. The organic layers were combined, washed with water, and dried with Na2SO4. Solvent was removed under reduced pressure, and the residue was purified on silica gel (20:1 hexanes/ethyl acetate).
Evaporation of the solvent yielded 279.1 mg (88%) of I as a pale-yellow oil which was one spot by TLC. 1H NMR: δ 7.25 (d, J = 10.6 Hz, 1H), 6.72 (d, J = 8.1 Hz, 1H), 6.60 (bs, 1H), 4.97 (s, 1H), 3.21 (septet, J = 6.9 Hz, 1H). 13F NMR: δ −65.27 ppm. 19F NMR: δ −65.27 ppm. 13C NMR: δ 152.9, 136.5, 127.7, 121.1, 122.1 (q, J = 274 Hz), 119.1, 113.3, 28.2 (q, J = 40 Hz), 7.20, 22.2 ppm. UV spectrum: λmax = 282, 368 nm. HRMS (ESI neg): m/z calcd for C11H5F2NO3 (M − H•) 243.0745; found 243.0746.

1-Bromo-4-isopropylbenzene (3). A 500 mL round-bottom flask with a magnetic stir bar was filled with 10.0 g (39.4 mmol) of iodine crystals and 80.0 g (667 mmol) of isopropylbenzene. The solution was cooled in an ice bath, and 110.0 g (688 mmol) of bromine was added over 15 min with good stirring. A solution of iodine crystals and 80.0 g (667 mmol) of isopropylbenzene. The mixture was steam-distilled for 12 h, with periodic addition of fresh water. The organic layer of the distillate was dried over MgSO4 and then vacuum-filtered to give a clear, colorless liquid, bp 217 °C (lit. bp 216 °C). 1H NMR: δ 7.44 (2H, d, J = 8.4 Hz), 7.13 (2H, d, J = 8.3), 2.85 (1H, septet), 1.27 ppm (6H, d, J = 6.9 Hz).

2,2,2-Trifluoro-1-(4-isopropylphenyl)ethanone (4). In a three-neck round-bottom flask with a magnetic stir bar, 23.28 g (117 mmol) of 3 was dissolved in 115 mL of dry THF. To this solution was added 2.87 g (118 mmol) of magnesium metal. The reaction vessel was fitted with a condenser topped with a nitrogen line and an addition funnel containing 15.66 g (101 mmol) of 2,2,2-trifluoro-1-pyrrolidin-1-ylethanone in 24 mL of dry THF. The mixture was stirred for 1 h with periodic addition of fresh water. The solution was stirred for 20 min after the magnesium began to react to ensure complete consumption of 3. The flask was cooled in an ice/salt bath for 25 min, during which time a fine, white precipitate formed. The amide solution was added dropwise over 30 min at 0 °C and the mixture was stirred at room temperature for 1 h. The reaction was quenched with 30 mL of saturated aqueous NH4Cl solution and then vacuum-filtered to leave a clear, golden liquid. After the mixture was dried over MgSO4, the solvent was removed under reduced pressure. Distillation under aspirator pressure yielded 16.20 g (74%) of 4, bp13 95 °C (lit. bp 95 °C). 1H NMR: δ 8.03 (2H, d, J = 7.6 Hz), 7.41 (2H, d, J = 7.7 Hz), 3.05 (1H, septet), 1.31 ppm (6H, d, J = 6.9 Hz). 13F NMR: δ −71.73 ppm. 19F NMR: δ −87.15 ppm.

2,2,2-Trifluoro-1-(4-isopropyl-3-nitrophenyl)ethanone (5). In a beaker with a magnetic stir bar, an amount of 44.50 g of concentrated H2SO4 was dissolved in 16.20 g of 4, bp17 180 °C (lit. bp 180 °C). The mixture was placed in a 500 mL round-bottom flask with a magnetic stir bar and thermocouple was filled with 20.44 g (88.4 mmol) of H2SO4 and 24.0 mL of water. The mixture was cooled to 0 °C, and a solution of 9.16 g (133 mmol) of NaN3 in 23.0 mL of H2O was added dropwise over the course of 90 min, taking care to keep the temperature of the mixture below 4 °C. Once the addition was complete, this mixture was poured in several small additions over 30 min through a condenser into a round-bottom flask containing a refluxing solution of 68 mL of concentrated H2SO4 and 90 mL of H2O. Additional water was used to rinse out the beaker. Once the addition was complete, the mixture was allowed to reflux for an additional 15 min before being poured into 1 L of cold water, at which point a dark oil separated. The mixture was extracted with ether, and the ether was washed with water, dried over MgSO4, and removed at reduced pressure to give 108.9 g (82%) of a clear, colorless liquid, bp 217 °C (lit. bp 216 °C). 1H NMR: δ 7.64 (1H, d, J = 7.8 Hz), 7.38 (1H, d, J = 8.4 Hz), 3.53 (1H, sep), 3.01 ppm (6H, d). 13C NMR: δ 178.6 (q, C), 179.8 (q, C), 179.4 (q, C), 120.4, 112.8, 111.7, 37.3 (1F, s), 6.90 ppm. 19F NMR: δ −87.15 ppm. 13C NMR: δ 178.6 (q, J = 34 Hz), 153.0, 151.9, 134.0, 128.3, 122.4, 114.6 (q, J = 295 Hz), 115.9, 27.6, 22.2 ppm. HRMS (CI+): m/z calcd for C9H5F2NO3S (M + Na+) 255.0699; found, 255.0605.

1-[3-(tert-Butylidimethylsilyl)oxy]-4-isopropylphenyl-2,2,2-trifluoroethanone (8). To a round-bottom flask with a magnetic stir bar was added 10.78 g (46.4 mmol) of 7, 250 mL of dry THF, 12.2 g (94.5 mmol) of diisopropylethylamine, and 16.92 g (112.4 mmol) of tert-butylidimethylsilanol. The mixture was stirred for 24 h under nitrogen atmosphere at room temperature. The mixture was poured into 500 mL of H2O and extracted with methylene chloride. The combined organic phase was washed with water, and volatiles were removed under vacuum. Crude 8 was purified through a short column of silica, eluting with pure hexanes to give 7.62 g (47%) of 8, bp15 140 °C. 1H NMR: δ 7.50 (1H, bd), 7.50 (1H, bs), 7.38 (1H, d, J = 8 Hz), 3.40 (1H, septet), 1.25 ppm (6H, d, J = 6.9 Hz). 13C NMR: δ 178.6 (q, J = 34 Hz), 153.0, 148.3, 128.3, 126.9, 123.4, 118.9, 116.9 (q, J = 290 Hz), 27.2, 25.7, 22.2, 18.2 ppm. HRMS (CI+): m/z calcd for C11H14F2O2Si (M + H•) 347.1654; found, 347.1653.

1-[3-(tert-Butylidimethylsilyl)oxy]-4-isopropylphenyl-2,2,2-trifluoroethanone Oxime (9). To a round-bottom flask with a magnetic stir bar was adsorbed 6.87 g (19.8 mmol of 8, 1.75 g (25.2 mmol) of hydroxylamine hydrochloride, and 50 mL of pyridine. The mixture was heated in an oil bath to 60 °C and stirred for 4 h under nitrogen atmosphere. Volatiles were then removed under vacuum. The mixture was dissolved in 25 mL of CH2Cl2, and the mixture was added to a beaker with a magnetic stir bar and 1.75 g (25.2 mmol) of base (NaHCO3 until no more CO2 was generated. The ether layer was washed with water, and volatiles were removed under vacuum. The remaining crude product was partitioned between methylene chloride and water, and the organic phase was subsequently washed with water. The solution was vacuumed to leave 6.82 g (95%) of 9 as an approximately 1:1 mixture of oxime diastereomers as determined by NMR. The crude product was taken to the next step without further purification. An analytical sample was prepared by multiple sublimations under reduced pressure, mp 58–60 °C. 1H NMR: δ 7.64 (1H, d, J = 8 Hz), 7.38 (1H, d, J = 8.4 Hz), 3.53 (1H, sep), 3.01 ppm (6H, d). 13F NMR: δ −71.59 ppm. 13C NMR: δ 178.6 (q, J = 34 Hz), 153.4, 144.2, 128.4, 123.4, 116.7 (q, J = 295 Hz), 115.9, 27.6, 22.2 ppm. HRMS (CI+): m/z calcd for C9H5F2NO3Si (M + Na•) 255.0699; found, 255.0605.
C17H26F3N2OSi (M$_r$), to give 3.10 g (58%) of the product, as a thick gum.

The mixture was cooled in an ice bath, and 4.57 g (45.2 mmol) of triethylamine was added dropwise. The ice bath was removed, and tert-butyldimethylsilyl chloride (21.8 mmol) of triethylamine. The mixture was stirred for 24 h under nitrogen atmosphere at room temperature. The reaction mixture was then partitioned between water and methylene chloride, and the organic phase was subsequently washed with additional water. Volatiles were removed under vacuum to leave 7.50 g as a thick gum.

1H NMR: 8 7.95 (2H, m), 7.4 (2H, m), 7.3 (0.6H, d), 7.28 (4H, d), 7.07 (1H, m), 6.97 (0.6H, m), 6.91 (0.4H, m), 3.38 (1H, m), 2.66 (1H, m), 2.57 (1H, m), 2.25 (1H, m), 1.82 (1H, m), 1.24 (3H, m), 1.07 (3H, m), 0.94 (9H, s), 0.27 ppm (6H, s). 13C NMR: 8 146.1, 145.9, 143.8, 143.6, 131.7, 131.4, 129.1, 128.9, 128.1, 126.7, 125.6, 122.1, 121.8, 119.1, 118.5, 115.9, 31.6, 26.8, 26.5, 22.6, 22.4, 21.65, 18.3, 18.2, 14.0, 146.1, 145.9, 143.8, 143.6, 131.7, 131.4, 129.1, 128.9, 128.1, 126.7, 125.6, 122.1, 121.8, 119.1, 118.5, 115.9, 31.6, 26.8, 26.5, 22.6, 22.4, 21.65, 18.3, 18.2, 14.0, 4.3 ppm. HRMS (Cl+) m/z: calculated for C$_{17}$H$_{28}$F$_3$NO$_2$Si (M$^+$ + H$^+$), 516.1852; found 516.1835.

Supporting Information Available: HRMS spectra of compounds and mass spectra of protein. This material is available free of charge via the Internet at http://pubs.acs.org.

Acknowledgment. The authors declare no conflicts of interest. This work was supported by NIH Grants GM055876 (R.G.E.), MH84836 (R.G.E.), and NS056411 (R.P.) and the Wisconsin Institutes for Discovery Seed Grant (R.P.).

References

(1) Kotani, Y.; Shimazawa, M.; Yoshimura, S.; Iwama, T.; Hara, H. The experimental and clinical pharmacology of propofol, an aesthetic agent with neuroprotective properties. CNS Neurosci. Ther. 2008, 14, 95–106.

(2) Eckenhoff, R. G.; Xi, J.; Shimakoa, M.; Bhattacharji, A.;Coverrubias, M.; Dailey, W. P. Azisoflurane, a photolabel analog of the commonly used inhaled general anesthetic isoflurane. ACS Chem. Neurosci. 2010, 1, 139–145.

(3) Eghbali, M.; Gage, P. W.; Birnir, B. Effects of propofol on GABA(A) channel conductance in rat-cultured hippocampal neurones. Eur. J. Pharmacol. 2003, 468, 75–82.

(4) Kraskow, M. D.; Jenkins, A.; Flood, P.; Kung, A. Y.; Hopfinger, A. J.; Harrison, N. L. General anesthetic potencies of a series of propofol analogs correlate with potency for potentiation of yamino butyric acid (GABA) current at the GABA$_A$ receptor but not with lipid solubility. J. Pharmacol. Exp. Ther. 2001, 297, 338–351.

(5) Trapani, G.; Latrofa, A.; Franco, M.; Altomare, C.; Sanna, E.; Usala, M.; Biggio, G.; Liso, G. Propropofol analogues. Synthesis, relationship between structure and affinity at GABA$_A$ receptor in rat brain, and differential electrophysiological profile at recombinant human GABA$_A$ receptors. J. Med. Chem. 1998, 41, 1846–1854.

(6) Rajda, C.; Dereczky, D.; Kunkel, P. Propofol infusion syndrome. J. Trauma Nurs. 2008, 15, 118–122.

(7) Orsini, J.; Nadkarni, A.; Chen, J.; Cohen, N. Propofol infusion syndrome: case report and literature review. Am. J. Health-Syst. Pharm. 2009, 66, 908–915.

(8) Smith, M.; Smith, S. J.; Scott, C. A.; Harkness, W. F. Activation of the electrocorticogram by propofol during surgery for epilepsy. Br. J. Anaesth. 1996, 76, 499–502.

(9) Baraka, A.; Aouad, M. Is propofol anticonvulsant or proconvulsant? Can. J. Anaesth. 1997, 44, 1027–1028.

(10) Furuta, T.; Ueda, M.; Hirooka, Y.; Tanaka, K.; Kan, T. Synthesis of diazirine possessing a 2-oxime derivative as a valuable intermediate for a flavonoid photoaffinity probe. Heterocycles 2008, 76, 811–817.

(11) Vedula, L. S.; Brannigan, G.; Economou, N. J.; Xi, J.; Hall, M. A.; Liu, R.; Ross, M. J.; Daiyle, W. P.; Grasty, K. C.; Klein, M. L.; Eckenhoff, R. G.; Loll, P. J. A unitary anesthetic-binding site at high resolution. J. Biol. Chem. 2009, 284, 24176–24184.

(12) Haseneder, R.; Rarmnes, G.; Ziegglansberger, W.; Kochs, E.; Hapfelmeier, G. GABA(A) receptor activation and open-channel block by volatile anesthetics: a new principle of receptor modulation? Eur. J. Pharmacol. 2002, 451, 43–50.

(13) James, R.; Glen, J. B. Synthesis, biological evaluation, and preliminary structure–activity considerations of a series of alkylphenoxyacetonitriles as intravenous anesthetic agents. J. Med. Chem. 1980, 23, 1350–1357.

(14) Katada, T.; Eguchi, S.; Esaki, T.; Sasaki, T. Thermal cycloaddition reactions of thiocarbonyl compounds. Part 3. A novel [4 + 2] cycloaddition reaction of thiocarbonyl compounds with o-quinone methides. J. Chem. Soc., Perkin Trans. 1 1984, 2649–2653.

(15) Hatanaka, Y.; Hashimoto, M.; Nakayama, H.; Kanaoka, Y. Syntheses of nitro-substituted aryl diazirines. An entry to chromogenic carbene precursors for photoaffinity labelling. Chem. Pharm. Bull. 1994, 42, 826–831.

(16) Akk, G.; Steinbach, J. H. Activation and block of recombinant GABA(A) receptors by pentobarbitone: a single-channel study. Br. J. Pharmacol. 2000, 130, 249–258.

(17) Li, P.; Covey, D. F.; Steinbach, J. H.; Akk, G. Dual potentiating and inhibitory activity of a benzoxantrone neurosteroid analog on recombinant alpha1beta2gamma2 GABA(A) receptors. Mol. Pharmacol. 2006, 69, 2015–2026.

(18) Cheng, T.-J.; Zhao, Y.; Li, X.; Lin, F.; Xu, Y.; Zhang, X. L.; Li, Y.; Wang, R. X. Computation of orientation–water partition coefficients by guiding an additive model with knowledge. J. Chem. Inf. Model. 2007, 47, 2140–2148.

(19) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsumi, H.; Caricato, M.; Li, X.; Hratchian,
H. P.; Izymaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, revision A.02; Gaussian, Inc.: Wallingford, CT, 2009.

(20) Butts, C. A.; Xi, J.; Brannigan, G.; Saad, A. A.; Venkatachalan, S. P.; Pearce, R. A.; Klein, M. L.; Eckenhoff, R. G.; Dmochowski, I. J. Identification of a fluorescent general anesthetic, 1-amino-anthracene. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 6501–6506.

(21) Venkatachalan, S. P.; et al. Optimized expression vector for ion channel studies in Xenopus oocytes and mammalian cells using alfalfa mosaic virus. Pfluegers Arch. 2007, 454, 155–163.

(22) Simchen, G.; Schmidt, A. A simple method for the preparation of aryl trifluoromethyl ketones. Synthesis 1996, 9, 1093–1094.

(23) Harrison, C. R.; Hodge, P.; Hunt, B. J.; Khoshdel, E.; Richardson, G. Preparation of alkyl chlorides, acid chlorides, and amides using polymer-supported phosphines and carbon tetrachloride: mechanism of these reactions. J. Org. Chem. 1983, 48, 3721–3728.