High degree of BMI misclassification of malnutrition among Swedish elderly population: Age-adjusted height estimation using knee height and demispan.

Gavriilidou, N N; Pihlsgård, Mats; Elmståhl, Sölve

Published in:
European Journal of Clinical Nutrition

DOI:
10.1038/ejcn.2014.183

2015

Link to publication

Citation for published version (APA):
Gavriilidou, N. N., Pihlsgård, M., & Elmståhl, S. (2015). High degree of BMI misclassification of malnutrition among Swedish elderly population: Age-adjusted height estimation using knee height and demispan. European Journal of Clinical Nutrition, 69(5), 565-571. https://doi.org/10.1038/ejcn.2014.183

Total number of authors:
3

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.
• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
ORIGINAL ARTICLE

High degree of BMI misclassification of malnutrition among Swedish elderly population: Age-adjusted height estimation using knee height and demispan

NN Gavriilidou, M Pihlgård and S Elmståhl

BACKGROUND/OBJECTIVES: The degree of misclassification of obesity and undernutrition among elders owing to inaccurate height measurements is investigated using height predicted by knee height (KH) and demispan equations.

SUBJECTS/METHODS: Cross-sectional investigation was done among a random heterogeneous sample from five municipalities in Southern Sweden from a general population study ‘Good Aging in Skåne’ (GÅS). The sample comprised two groups: group 1 (KH) including 2839 GÅS baseline participants aged 60–93 years with a valid KH measurement and group 2 (demispan) including 2871 GÅS follow-up examination participants (1573 baseline; 1298 new), aged 60–99 years, with a valid demispan measurement. Participation rate was 80%. Height, weight, KH and demispan were measured. KH and demispan equations were formulated using linear regression analysis among participants aged 60–64 years as reference. Body mass index (BMI) was calculated in kg/m².

RESULTS: Undernutrition prevalences in men and women were 3.9 and 8.6% by KH, compared with 2.4 and 5.4% by standard BMI, and more pronounced for all women aged 85+ years (21% vs 11.3%). The corresponding value in women aged 85+ years by demispan was 16.5% vs 10% by standard BMI. Obesity prevalences in men and women were 17.5 and 14.6% by KH, compared with 19.0 and 20.03% by standard BMI. Values among women aged 85+ years were 3.7% vs 10.4% by KH and 6.5% vs 12.7% by demispan compared with the standard.

CONCLUSIONS: There is an age-related misclassification of undernutrition and obesity attributed to inaccurate height estimation among the elderly. This could affect the management of patients at true risk. We therefore propose using KH- and demispan-based formulae to address this issue.

European Journal of Clinical Nutrition advance online publication, 10 September 2014; doi:10.1038/ejcn.2014.183
Bassey's demispan equations, which are derived from a sample of 125 European adults of ~ 30 years of age, and Chumlea's KH equations, which are formulated from a large nationally representative sample of 4750 elderly aged 65+ years, specific for the different races (Hispanic and non-Hispanic whites and blacks) in the United States. However, the applicability of Bassey's demispan equations has been debatable owing to the age of the population and the small sample size. Chumlea's equation could be comparatively considered strong based on the large sample size, yet the international applicability of the ethnicity-specific equations remains questionable.

Hence, sex-specific, age-adjusted population-specific equations from a large nationally representative samples are needed. Based on our literature search, in Sweden, there have been no KH/ demispan-based equations to estimate height and true BMI classification among the elderly. The aim of this paper is to investigate the degree of BMI misclassification using a large national cohort of Swedish elderly and age-adjusted, sex-specific KH and demispan equations.

MATERIALS AND METHODS

Study population

A cross-sectional study was conducted among participants aged ≥ 60 years in a longitudinal, randomized, general population-based study called 'Good Aging in Skåne' (GÅS), part of the Swedish National Study on Aging and Care (SNAC). This study involves a heterogeneous sample of men and women from five municipalities of Scania. The National Population Registry was used to randomly invite the participants by letter. Predefined target populations were invited for the age cohorts 60–64, 65–69, 70–74, 75–79, 80–84, 85–89, and 90–93 years, with an oversampling of the youngest and the oldest cohorts.

The sample comprised two groups. The first group (group 1) consisted of 2839 elderly participants (aged 60–93 years), 58% of the randomly invited general population residents who accepted to participate in the baseline investigation of GÅS in 2001–2004 and had valid KH measurement.

The second group (group 2) included 2871 participants aged 60–99 years, 1573 from baseline and 1298 new participants who took part in the follow-up examination of GÅS conducted in 2007–2010 (participation rate: 80%) and had a valid demispan measurement. A total of 92 participants were excluded from group 1 and 490 from group 2 because they had missing KH and demispan values, respectively.

Data collection

All participants were examined at a research center, except if they were frail (home visits), after informed consent was obtained. Survey, medical examination and physical functioning tests were conducted by qualified physicians and nurses. An informed consent was obtained. The close-ended questionnaire investigated sociodemographics, physical, mental health and social factors. The descriptive variables included age, sex, place of birth, marital status, education, alcohol consumption, smoking habits and physical activity. These data were obtained from the survey. The marital status denoted whether the participants were single, married, divorced or living with a partner. Education was stratified as primary, secondary, higher secondary or university level. Smoking status indicated whether the participants were regular or irregular smokers or had quit smoking. Alcohol frequency included responses as ‘have never drunk’, ‘a few times in the last year but not since last month’ and ‘have had alcohol a few times in the last month’. The degree of physical activity was investigated in terms of the degree or intensity of training and categorized into barely physically active (‘nothing at all’, ‘very light activity/modestly sedentary’), mild (‘around 2–4 h a week’), moderate (‘1–2 h a week’), heavy (‘at least 3 h a week’) and very heavy (‘regularly or several times a week’).

Anthropometric measurements

Height, weight, KH and demispan were measured based on validated protocols. The height was measured using a measuring tape with the individual standing erect with shoulder blades, buttocks and heels against a wall and straight fixed gaze. Arms were along the sides, shoulders relaxed, legs straight, knees touching each other, feet flat and heels together. Readings were made in cm with one decimal value. Bedridden patients and those using a wheel chair were excluded from our study.

Weight (in kg) was measured with a precision balance in the morning with light clothes and no shoes after voiding bowels and bladder.

KH (in cm) was measured using a caliper consisting of a vertical scale with two horizontal blades at each end. The subject was in a recumbent position, with neck and back relaxed, left leg lifted and knee bent at 90°. One of the caliper blades was positioned under the heel of the left foot and the other was placed on the anterior surface of the left thigh just above the condyles of the femur and just proximal to the patella. The shaft of the caliper was held parallel to the shaft of the tibia, and gentle pressure was applied to the blades of the caliper. The measurement was repeated twice and the average was noted. If seated, the leg was supported so that the knee and ankle were at a 90° angle.

Demispan (in cm) was measured with the subject standing upright with back straight, arms extended sideward at 90° to the torso, fingers stretched and the arm rested against a wall to avoid forward or backward bending. The distance between the tip of the middle finger (not nail tip) and midpoint on the sternal notch was noted using a flat, stiff tape that avoids flexion errors.

Measurements were made on the left side unless there was previous amputation, paralysis or contracture.

Statistical analyses

Mean differences between measured and estimated height (Height\

| Mean height, weight, KH, demispan, Height\textsubscript{KH} and Height\textsubscript{DEM} across 5-year age groups were examined using analysis of variance test. Test for normality was performed for each variable, and the analysis of the residual error term raised no concern. Simple linear regression analysis was performed by including men and women aged 60–64 years as a reference population, because minimal age-related height change is expected. KH- and DS-based equations specific for men and women were formulated with measured height as the dependent variable (Y) and DS (X1) or KH (X2) as the independent variable, respectively. The equations obtained were based on the following formula: \(Y = Constant + B1 \times X1 + Error \text{ term, } i = 1, 2 \). The constants, as well as the slopes \(B1 \) and \(B2 \) were estimated. The equations were then applied to other age groups to calculate the predicted height based on KH (Height\textsubscript{KH}) and DS (Height\textsubscript{DEM}) at different ages. IBM SPSS Statistics for Windows, Version 22.0 (IBM Corp 2013, Armonk, NY, USA) was used. A \(P \)-value of <0.05 was considered statistically significant.

RESULTS

There were 2839 participants in group 1 and 2871 participants in group 2, with a mean age of 71 ± 10.4 years (sex difference not significant).

Group 1 comprised 44.2% men, 55.8% women, 53.6% married, 13.3% smokers, 24.4% who consumed alcohol at least until last month, 8.3% who were barely physically active, 24.9% who reported moderate activity (1–2 h/week) and 3.2% with less than primary education.

Group 2 included 44.4% men, 55.6% women, 62.4% married, 39.5% smokers, 33.2% who consumed alcohol at least until last month, 6.9% who were barely physically active, 26.4% with moderate activity and 1.7% with less than primary education. A sociodemographic comparison between the participants and dropouts showed no significant difference (results not shown).

Mean height, weight, KH, demispan, Height\textsubscript{KH} and Height\textsubscript{DEM} are shown in Table 1. Mean measured height decreases by ~ 6.2 cm among men and 7.8 cm among women from 60–64 to 85+ years of age. This is calculated by the average difference between the mean heights of age groups from 60–64 years to 85+ years in groups 1 and 2 for men and women, respectively. Demispan decreases after 70–74 years by 2.7 cm in men and 1.5 cm in women. The ratio between KH and Height and the ratio between demispan and Height increase with age among women, however only demispan: Height ratio increases with age among men.

Figures 1a and b demonstrates the sex-specific regression equations to estimate the predicted body height based on KH and DS, respectively.
difference between BMI and BMIKH is 0.45 kg/m² among men and lower than BMI among each age group in both sexes. The 80 group category. Undernutrition prevalence is twice as high in men (mean: 3.9%) and women (mean: 8.6%) and among every age prevalence of undernutrition than BMI using measured height in increasing with age. The difference between BMI and BMIKH is ⩾ 0.98 kg/m² among women.

© 2014 Macmillan Publishers Limited European Journal of Clinical Nutrition (2014) 1 – 7

Women aged 85+ years have undernutrition prevalence of 21.3% by BMIKH compared with 11.3% by BMI.

BMIKH estimated overall obesity prevalence is 17.5% in men and 14.6% in women and is lower than BMI. Sex difference between BMI and BMIKH can be noted at different age groups. Among men, it is notable at 80–84 years of age and among women it is notable as early as 70–74 years of age (26.2% by BMI and 17.1% by BMIKH).

BMIKH estimates among men aged 80–84 years (7.4%) are almost half of that estimated by BMI (16.5%). At 85+ years, the BMIKH obesity prevalence is further lower (4.9%); that is, when BMI calculates 1 in 10 men as obese, it is 1 in 20 according to BMIKH. In addition, when 2 in 10 women aged 80–84 years are obese by BMI, only 1 in 10 is according to BMIKH.

For comparison, we tried to apply the Chumlea’s KH equation to calculate BMIChumlea. Undernutrition among women aged 85+ years was 7.3% compared with 21.3% using the BMIKH and 11.3% using BMI (results not shown).

BMIKH undernutrition prevalence is estimated to be higher than that by BMI. Among men, there is little or no difference in prevalence rates between the two methods at each group, except at the age of 65–69 years, where BMIKH gives higher value (2.1%) than BMI (1.5%). However, among women aged 85+ years, there is 16.5% undernutrition by BMIKH compared with 10% by BMI. Overall obesity prevalence estimated by BMIKH is lower than that by BMI in both sexes.

For example, the values are as follows: 16.7% by BMI vs 10.9% by BMIKH among men aged 80–84 years. Among women aged 75–79 years, it is 24.6% by BMI vs 18.2% by BMIKH.
BMI-estimated obesity prevalence is almost twice that estimated by BMI_{demispan} among the participants aged 85+ years, with small or no difference in younger groups.

DISCUSSION

We investigated the degree of misclassification of obesity and undernutrition owing to inaccurate height estimates used in BMI calculations among the elderly in Southern Sweden. We addressed this problem by developing KH- and demispan-based age-adjusted and sex-specific equations derived from a large nationally representative general population sample. Studies have shown that direct method underestimates body height measurement among geriatric populations, and KH and demispan are used as surrogate measures.

The study of Hirani and Mindel showed that in men aged 70+ years, BMI calculated using measured height was significantly higher than BMI using height predicted on the basis of demispan, which was the case among women aged 65+ years. The prevalence of underweight (BMI <20 kg/m²) was significantly lower by 9.4% when using measured height to calculate BMI in those aged 80+ years. Overestimation of obesity prevalence by direct height BMI among those aged 80+ years was 9.8% and among those aged 70–74 years old it was 7.2%.

Hence, race-specific equations from large and representative population samples are needed to accurately estimate BMI among the elderly. The clinical significance of BMI misclassification calls for attention to the use of not only age-, sex- and country-specific but also ethnicity-specific population data for such equations.

In this study, we used 60–64 years of age as reference to formulate the equations. We found that the direct method underestimated the height compared with those predicted by KH and demispan. Height decreased with age, especially among women, and the difference between the direct and predicted height widens with age. Concordant results were found in other population studies using KH and/or demispan to estimate height. This could be attributed to conditions like kyphoscoliosis that cause underestimation of measured height and higher likelihood of osteoporosis among women accounting for the difference in height loss between sexes. The widening difference between measured height and predicted height can be owing to the fact that vertebral degeneration increases with age, leading to stature underestimation among the oldest olds. This is, however, addressed by age-adjusted estimation of predicted height for the age categories (60–64, 65–69, 70–74, 75–79, 80–84 and 85+ years). The difference could even be a cohort effect where there is increasing height among younger cohorts.

The agreement analysis of Weinbrenner et al. to test the correlation between measured height and demispan-estimated height showed no significant difference between the methods (−0.03 cm in men and −0.02 cm in women). These results are
Table 2. Age- and sex-stratified means (± s.d.) of measured height, height predicted using equations based on knee height (HeightKH) and demispian (HeightDemispian), BMI using measured height and BMI using predicted height (BMIKH and BMI Demispian) for group 1 and 2 populations

Group 1	Age	Height	HeightKH	BMI	BMIKH
Men	60–64	176.7 ± 6.7	176.6 ± 3.2	27.76 ± 4.4	27.82 ± 4.8
	65–69	175.8 ± 6.4	176.5 ± 2.3	27.39 ± 3.8	27.16 ± 4.1
	70–74	175.3 ± 6.6	176.6 ± 2.1	27.55 ± 4.1	27.23 ± 4.5
	75–79	173.1 ± 6.3	175.9 ± 3.5	26.81 ± 3.5	25.91 ± 3.5
	80–84	172.9 ± 7.1	176.1 ± 2.5	26.42 ± 3.5	25.42 ± 3.4
	≥ 85	170.9 ± 6.6	175.5 ± 2.6	25.32 ± 4.8	24.01 ± 4.2
	All	174.8 ± 6.9	176.3 ± 2.7	27.06 ± 4.1	26.61 ± 4.4
Women	60–64	164.3 ± 6.0	164.4 ± 4.1	26.48 ± 4.7	26.40 ± 4.7
	65–69	163.1 ± 5.6	164.3 ± 3.9	27.19 ± 4.7	26.79 ± 4.6
	70–74	161.0 ± 5.7	164.1 ± 4.1	27.50 ± 5.0	26.50 ± 4.2
	75–79	159.9 ± 6.1	163.7 ± 3.8	26.90 ± 4.8	25.71 ± 4.5
	80–84	158.6 ± 6.0	163.4 ± 3.7	26.73 ± 4.4	25.10 ± 4.0
	≥ 85	156.2 ± 6.7	162.9 ± 3.9	24.82 ± 4.2	22.83 ± 4.0
	All	160.7 ± 6.7	163.8 ± 3.9	26.52 ± 4.7	25.54 ± 4.6

Group 2	Age	Height	HeightDemispian	BMI	BMIDemispian
Men	60–64	177.4 ± 6.7	177.5 ± 5.5*	27.53 ± 4.0*	27.54 ± 4.0
	65–69	175.8 ± 9.3	176.4 ± 5.5	28.44 ± 9.9	28.71 ± 4.3
	70–74	175.1 ± 6.3	176.5 ± 10.3	27.48 ± 3.9	27.14 ± 3.9
	75–79	174.1 ± 7.1	175.7 ± 5.8	27.46 ± 3.2	26.98 ± 3.3
	80–84	172.9 ± 6.5	175.5 ± 5.6	26.72 ± 3.5	26.10 ± 3.3
	≥ 85	170.9 ± 7.1	172.7 ± 14.1	27.51 ± 2.5	26.80 ± 3.7
	All	175.3 ± 7.6	176.3 ± 7.7	27.46 ± 5.8	27.31 ± 8.0
Women	60–64	163.5 ± 6.0	163.3 ± 3.9*	27.29 ± 5.3*	27.26 ± 5.5
	65–69	163.5 ± 6.0	163.7 ± 4.2	27.32 ± 5.2	27.27 ± 5.0
	70–74	162.3 ± 5.8	163.5 ± 2.8	26.94 ± 4.9	26.58 ± 4.8
	75–79	159.5 ± 5.6	162.8 ± 2.8	29.66 ± 16.9	28.40 ± 15.2
	80–84	158.7 ± 5.9	163.1 ± 5.8	27.81 ± 13.6	26.54 ± 15.2
	≥ 85	155.8 ± 6.6	162.1 ± 6.0	25.32 ± 4.6	23.73 ± 4.5
	All	161.3 ± 6.7	163.2 ± 4.4	27.20 ± 8.1	26.69 ± 8.3

Abbreviation: BMI, body mass index. Units used were as follows: Height, HeightDemispian, and HeightKH, in cm; BMI, BMIDemispian and BМИKH, in kg/m². *p < 0.05, statistically significant difference of mean values across age groups (analysis of variance (ANOVA) test).

Table 3. Distribution of BMI in the percentage for undernutrition (BMI ≤ 20 kg/m²) and obesity (BMI ≥ 30 kg/m²) per standard method, knee height and demispian method among men and women in groups 1 and 2

Sex	Age	Group 1	Group 2	Group 1	Group 2				
		BMI	BMIKH	BMI	BMIKH				
		≤ 20	≥ 30	≤ 20	≥ 30				
Men	60–64	1.9	24.2	2.5	26.1	1.2	20.4	1.0	18.4
	65–69	1.6	20.6	1.8	20.6	1.5	22.0	2.1	24.7
	70–74	1.5	20.6	1.6	21.1	0.8	20.2	0.8	19.8
	75–79	1.7	15.8	2.5	12.5	0	13.6	0	13.6
	80–84	2.7	16.5	5.9	7.4	1.0	16.7	1.0	10.9
	≥ 85	5.6	8.0	11.7	4.9	3.0	12.7	3.7	9.0
	All	2.4	19.0	3.9	17.5	1.3	19.1	1.4	17.1
Women	60–64	4.9	21.1	4.9	19.7	2.9	21.7	3.0	21.2
	65–69	2.6	23.3	2.3	21.9	3.3	19.6	2.5	19.6
	70–74	3.7	26.2	3.7	17.1	3.3	22.9	4.8	20.3
	75–79	6.9	24.3	8.3	16.7	1.7	24.6	2.5	18.2
	80–84	2.9	19.9	9.0	10.3	4.6	18.5	5.4	12.7
	≥ 85	11.3	10.4	21.3	3.7	10.0	12.7	16.5	6.5
	All	5.4	20.0	8.6	14.6	4.2	19.9	5.4	17.3

Abbreviations: BMI, body mass index; KH, knee height. Values are entered in percentage.
earlier osteoporosis, bone loss fat redistribution, functional dependence and undernutrition.

The average prevalence of undernutrition among those hospitalized and in special accommodations in Sweden after 1990 is 31.8% and elderly undernutrition prevalence rises globally owing to complex somatic, psychic and social determinants. The morbidity and mortality risks of low BMI are well established among Swedish women and other elderly populations.

Obesity (BMI ≥ 30 kg/m²) is overestimated by standard measurements. We found that BMI-calculated obesity prevalence is twice as high as KH- and demispan-based among men aged 80+ years and women aged 70+ years, and it doubles with every decade thereafter. As discussed above, this is attributed to the loss of height owing to degenerative conditions.

Our demispan observations were concordant with those from the study by Hirani and Aresu among noninstitutionalized elderly and with those from the study by Frid et al. among hospitalized elderly. However, statistical testing for agreement was done in these and other similar studies that compared the use of demispan or KH instead of measured height. BMI_{demispan} did not show as a wide variation from BMI as BMI_{KH}. This could be explained by survival bias and possible birth cohort differences. The sample used for demispan analysis was partly from non-institutionalized elderly and with those from the study by Frid et al.

CONFLICT OF INTEREST
The authors declare no conflict of interest.

ACKNOWLEDGEMENTS
The project Good Aging in Skåne (GÅS), part of the Swedish National study on Aging and Care (SNAC), was supported by the Swedish Ministry of Social Affairs, the county Region Skåne, the Medical faculty at Lund University and the Vårdal Institute.

AUTHOR CONTRIBUTIONS
NNG contributed to study design, analysis and interpretation of data and preparation of manuscript; MP contributed to study design and preparation of the manuscript; SE contributed to study concept and design, acquisition and maintenance of study cohort, analysis and interpretation of data and preparation of the manuscript.

REFERENCES
1 Pirlich M, Lochs H. Nutrition in the elderly. Best Pract Res Clin Gastroenterol 2001; 15: 869–884.
2 Kuczmarski RJ. Need for body composition information in elderly subjects. Am J Clin Nutr 1989; 50: 1150–1157.
