Autophagic effects of *Chaihu* (dried roots of *Bupleurum Chinense DC* or *Bupleurum scorzoneraefolium WILD*)

Betty Yuen-Kwan Law¹, Jing-Fang Mo² and Vincent Kam-Wai Wong¹*

Abstract

Chaihu, prepared from the dried roots of *Bupleurum Chinense DC* (also known as *bei Chaihu* in Chinese) or *Bupleurum scorzoneraefolium WILD* (also known as *nan Chaihu* in Chinese), is a herbal medicine for harmonizing and soothing *gan* (*liver*) *qi* stagnation. Substantial pharmacological studies have been conducted on *Chaihu* and its active components (saikosaponins). One of the active components of *Chaihu*, saikosaponin-d, exhibited anticancer effects *via* autophagy induction. This article reviews the pharmacological findings for the roles of autophagy in the pharmacological actions of *Chaihu* and saikosaponins.

Keywords: Autophagy, *Chaihu*, saikosaponin, Chinese Medicine,* qi.

Introduction

Chaihu, prepared from the dried roots of *Bupleurum Chinense DC* (also known as *bei Chaihu* in Chinese) or *Bupleurum scorzoneraefolium WILD* (also known as *nan Chaihu* in Chinese), is often prescribed as decoctions such as “*xiao yao powder*”, “*da Chaihu decoction*”, or “*xiao Chaihu decoction*” for treating chills and fevers [1-3]. *Chaihu* facilitates *sheng* (*ascending*) and *jiang* (*dispersing*) *qi* to alleviate stagnation of *gan* (*liver*) *qi* [4]. The contemporary clinical indications for *Chaihu* include common cold, malaria, cholecystitis, globus pharyngitis, gynecological diseases, depression, hepatitis, liver cirrhosis, pancreatitis, and hyperlipidemia [5,6]. Recent research has revealed the pharmacological actions of *Chaihu*. Specifically, *Chaihu* and its active components (saikosaponins) exhibited immunomodulatory [7,8], antiviral [9], antipyretic [10,11], hepatoprotective [12,13], anticancer [14], sedative, and analgesic [15] effects. Our recent study further revealed that saikosaponin-a (Ssa) and saikosaponin-d (Ssd), which are related to *gan qi* regulation [4,13] can induce autophagy [16]. This article reviews the recent findings for the roles of autophagy in the pharmacological actions of *Chaihu* and saikosaponins (Figure 1).

Chaihu regulates qi stagnation in Chinese Medicine (CM) theory

The CM approach to relieving symptoms (*e.g.*, physical discomfort and emotional instability) is to soothe stagnation of *gan qi* [17]. *Gan qi* stagnation can lead to (1) distension and pain in the chest and flank, and menstrual dysregulation, (2) impaired digestive functions such as loss of appetite, dyspepsia, flatulence, and regurgitation, and (3) emotional instabilities such as depression, anxiety, and insomnia [18]. *Chaihu* is often prescribed to relieve the symptoms of *qi* stagnation in CM [5].

Modern pharmacological studies on *Chaihu* and its active components

Chaihu alleviates a wide spectrum of disorders in a multi-target manner through its immunomodulatory [7], antipyretic [10], hepatoprotective [13], choleretic [15], autophagy-inducing [16], sedative and analgesic [15], anti-hyperlipidemic [15], antiviral [9], and anticancer [14] effects.

The pharmacological effects of *Chaihu* are attributed to its active components, Ssa, saikosaponin-c (Ssc), and Ssd [19,20]. Ssa exhibits antiproliferative, anti-inflammatory, anticancer, antioxidative, and hepatoprotective effects.
Ssc induces umbilical vein endothelial cell proliferation, migration, and capillary vascularization [27], and possesses anti-hepatitis effects [28]. Ssd also exhibits immunomodulatory, antiproliferative, and anticancer effects [29-32]. In particular, Ssd induces autophagy and autophagic cell death in apoptosis-defective cells via direct inhibition of sarcoplasmic/endoplasmic reticulum Ca\(^{2+}\) ATPase pump (SERCA) and mammalian target of rapamycin (mTOR), with disruption of calcium homeostasis and induction of endoplasmic reticulum (ER) stress [16].

Autophagy in health and diseases

Autophagy has been highlighted for its protective roles in various physiological and pathological conditions including (1) cellular homeostasis and genome stability maintenance, (2) immunomodulation, (3) hepatoprotection and aggregate removal, (4) cancers, and (5) emotional
instability conditions [33-35]. Autophagic regulation is mainly responsible for maintenance of normal cellular and hormonal homeostasis, defense against pathogen invasion, and protection against toxic protein aggregate accumulation, and beneficial improvements in all of these at the cellular level are related to improved qi stagnation (Table 1).

Newborn mice under starvation showed immediate increases of autophagy in various tissues, which returned to the basal levels after nutrient supply restoration [36-38]. Mice deficient in autophagy-related gene (Atg) 5 showed a substantial increase in nutrition deprivation-induced death, suggesting an essential role of autophagy in energy maintenance [39]. Autophagy is a protective mechanism that eliminates abnormal proteins and defective organelles such as mitochondria, peroxisomes, or ER membranes. For example, hepatocytes from Atg7-knockout mice exhibited accumulation of abnormal mitochondria and ER structures [40], and associated cellular degeneration [39]. A recent study further revealed essential roles of autophagy in limiting DNA damage and chromosome instability, and failure of the autophagy process can result in carcinogenesis or cell death [41].

Chaihu-mediated autophagy induction

Maintenance of normal homeostasis by defense against pathogen infections is critical. Fever is an immune response initiated by inflammatory mediators such as interleukin (IL)-1, IL-6, tumor necrosis factor (TNF)-α, macrophage inflammatory protein 1, and interferon (IFN) for heat production, and depends on antipyretics and fever regulatory centers in the hypothalamus and promoted the release of antipyretic substances [46]. Furthermore, total salkosaponins exerted potent anti-endotoxin effects with a simultaneous reduction in body temperature elevation in vivo [47]. All of these beneficial effects can be attributed to the maintenance of cellular homeostasis, a key process regulated by autophagy.

In liver ischemia-reperfusion injury, autophagy induction attenuated the organ damage, and delayed inflammatory or oxidative damage [48]. Furthermore, autophagy suppression was found to be a response to excessive alcohol intake, which might be a reason for the abnormal protein aggregation observed in liver diseases [40]. Autophagy was also found to regulate the immunological responses to invading microorganisms [50]. Another study showed that plasmacytoid dendritic cells recognized viruses via Toll-like receptors (TLRs) with a requirement for autophagy [51]. In addition, defective autophagy was involved in inflammatory diseases such as systemic lupus erythematosus and Crohn’s disease [52,53]. Emerging evidence has suggested roles for autophagy in immunological responses including antimicrobial activity, antigen presentation, cytokine production, and regulation of lymphocytes [50,54]. For example, disruption of the virulence factor from the HSV-1 virus, which inhibited the host autophagy proteins, could prevent fatal encephalitis [55]. In addition, autophagy exhibited protective functions in the spleen, bone marrow, or liver through activation of immune responses such as detoxification and degradation of toxins and inflammatory proteins [56-58].

CM applications	Pharmacological effects	Autophagic effects
Improvement of alternating chills and fever	Antipypres, Antibacteria, antivirus, and anti-endotoxin	Immunomodulation, Anti-pathogens, Modulation of cytokine secretion, Removal of toxic mutant proteins and aggregates
Modulation of inflammatory symptoms and diseases	Immunomodulation, Antibacteria and antivirus, Modulation of cytokine secretion	Immunomodulation by pathogen and cytokine control, Removal of abnormal protein aggregates, Detoxification and degradation of toxins and inflammatory proteins
Reduction of distention and pain in the chest and flank and improvement of digestive functions: Loss of appetite, dyspepsia, and flatulence	Hepatoprotection, Anti-inflammation, Anti-fibrosis, Promotion of pancreatic digestive enzyme secretion	Cellular catabolism for removal of waste materials, Immunomodulation Anti-pathogens, Removal of toxic mutant proteins and aggregates, Regulation of lipid metabolism
Improvement of circulation or stasis of blood and body fluid, and accumulation of phlegm	Promotion of cancer cell death, Reduction in cancer cell proliferation, Immunomodulation, apoptosis, and anti-angiogenesis	Maintenance of genomic stability, Promotion of autophagic cell death, Elimination of damaged proteins and cytotoxic substances
Improvement of emotional instability	Reduction in plasma lipid levels, Hormonal regulation, Glucose metabolism	Regulation of lipid metabolism, Removal of toxic mutant proteins and aggregates
Chaihu regulated the immune responses against invading pathogens by stimulating the secretion of glucocorticoids and inhibiting inflammation and anaphylaxis [59,60], and was involved in inflammatory processes such as infiltration, capillary permeability, and release of cytokines [46]. Chaihu or its component saikosaponins eliminated exogenous pyrogens through their antibacterial properties [61], and possessed antiviral activities toward hepatitis B [62], human coronavirus 229E [9], interstitial properties [61], and possessed antiviral activities eliminated exogenous pyrogens through their antibacterial properties [61], and possessed antiviral activities toward hepatitis B [62], human coronavirus 229E [9], interstitial properties [61], and possessed antiviral activities.

Saikosaponins alleviated hepatocytes from oxidative and inflammatory stresses, and inhibited liver fibrosis [66]. Further studies demonstrated the protective effects of saikosaponins in reducing lipid peroxidation in hepatocytes [67], regulating intracellular calcium levels to prevent hepatocyte injury [68], suppressing activation of hepaticstellate cells as the major matrix-producing cells in liver fibrosis [69,70], and reducing collagen I deposition in the rat liver [71]. Saikosaponins exhibited regulatory effects on cytokines such as ILs, TNF, and IFN [64,65], inhibitory effects on infiltration of macrophages and T lymphocytes [72], and bidirectional modulation of splenic T lymphocyte proliferation [64]. These findings suggest that the hepatoprotective effects of Chaihu and saikosaponins are related to improvement of gan qi stagnation. In addition to liver diseases, Chaihu is commonly used for chronic pancreatitis [73]. Saikosaponins exhibited potent stimulatory effects on pancreatic enzyme secretion in rats [74]. Chai-hu-shu-gan powder inhibited the expression of nuclear factor-κB (NF-κB) and TNF-α mRNA in the pancreas to achieve anti-inflammatory and antifibrotic effects [75]. Moreover, the same prescription reduced the abnormally high plasma level of cholecystokinin in chronic pancreatitis, improved the gastric movement, and avoided nausea and flatulence [76,77].

In liver ischemia-reperfusion injury, autophagy induction attenuated the ischemic and reperfusion damage to the organ, probably because a decrease in autophagy would lead to accumulation of dysfunctional mitochondria, resulting in cellular damage and failure in energy production, and eventually cell death [48]. In liver disease, suppression of autophagy caused abnormal protein aggregation [40]. In liver fibrosis, autophagy activation might be beneficial to the recovery of the liver function [78]. All of these findings indicate that Chaihu-induced autophagy might relieve liver disease-related symptoms through anti-inflammatory, organ-protective, and aggregate removal functions, which are related to alleviation of gan qi stagnation.

Chaihu-mediated autophagy intervenes in carcinogenesis

In CM theory, tumor formation is the result of stasis of qi, and thus alleviates dis- tention and pain in the chest and flank, menstrual dysregulation, impaired digestive functions such as loss of appetite, dyspepsia, flatulence, and regurgitation, and emotional instabilities such as depression, anxiety, and insomnia [18]. Chaihu is used to treat diseases related to the digestive system, e.g., hepatitis, liver cirrhosis, cholecystitis, pancreatitis, gynecological diseases, and hyperlipidemia [5].

Saikosaponins alleviated hepatocytes from oxidative and inflammatory stresses, and inhibited liver fibrosis [66]. Further studies demonstrated the protective effects of saikosaponins in reducing lipid peroxidation in hepatocytes [67], regulating intracellular calcium levels to prevent hepatocyte injury [68], suppressing activation of hepatic stellate cells as the major matrix-producing cells in liver fibrosis [69,70], and reducing collagen I deposition in the rat liver [71]. Saikosaponins exhibited regulatory effects on cytokines such as ILs, TNF, and IFN [64,65], inhibitory effects on infiltration of macrophages and T lymphocytes [72], and bidirectional modulation of splenic T lymphocyte proliferation [64]. These findings suggest that the hepatoprotective effects of Chaihu and saikosaponins are related to improvement of gan qi stagnation.

Table 2 Chaihu-containing formulated decoctions prescribed for modulation of cancers in CM [80]

Cancer	Chaihu-containing prescriptions
Hepatocellular cancer	Xiao Chaihu Decoction
	Supplemented Da Chaihu Decoction
	Si ni Powder combined with Liu jun zhi Decoction
	Supplemented Xiao yao Powder
	No. 1 anticancer formula
	Chaihu zhe chong Decoction
Pancreatic cancer	Xiao Chaihu Decoction
	Experienced prescription
Gall bladder cancer	Shu gan li dan Decoction
Breast cancer	Yi qi shu gan Decoction
	Xiao ru Decoction
	Supplemented Xiao yao powder combined with Si jun zhi Decoction
	Experienced prescription
Cervical cancer	Jia wei xiao yao Powder
	Chaihu gui zhi Decoation
Thyroid carcinoma	Jia xian ping Decoation
Esophageal carcinoma	Jin fa yin
Gastric cancer	Er chen xuan fu Decoation
	Chaihu shu gan Decoation combined with Xi shu jian
induction and autophagic cell death [16]. In addition, Chaihu is a commonly prescribed herb in contemporary formulations (Table 2) with preventive or therapeutic effects on cancer [80]. Patients treated with "xiaochaihu" decoction exhibited a significantly lower incidence of hepatocellular carcinoma [81], reductions in cancer pain and tumor size [82,83], and prevention of liver cancer relapses [84]. The decoction had multiple functions in immunomodulation, apoptosis, and anti-angiogenesis [85-87].

The signaling pathway of autophagy is associated with the key regulatory proteins of carcinogenesis, such as tumor suppressor gene p53, phosphatase and tensin homolog (PTEN), death-associated protein kinase, and proto-oncoprotein B-cell CLL/Lymphoma 2 (Bcl-2) [39,88]. Autophagy was responsible for massive cancer cell death in vitro and in vivo [89-91]. Autophagic inducers also promoted autophagic cell death in tumors or augmented the efficacy of chemotherapeutic agents when used in combination during cancer therapy [92,93]. By eliminating genomic mutations, damaged proteins, and cytotoxic substances, autophagy protected cells against cancers [94]. However, the roles of autophagy in cancers remain controversial, because autophagy might promote tumor growth by providing energy to poorly-vascularized tumor cells [95].

Despite its adaptive and pro-survival roles, autophagy can lead to type II programmed cell death [96]. Autophagy promoted autophagic cell death in cells [97], and killed apoptosis-resistant cancer cells under chemotherapy [98]. Moreover, autophagy was associated with massive cancer cell death in cancerous tissues derived from different organs [99,100]. Ssd was able to induce autophagic cell death in a panel of apoptosis-resistant cells via direct inhibition of SERCA [16]. The anticancer effects of Chaihu can be attributed to its autophagy-inducing ability.

Chaihu-mediated autophagy modulates stress hormone-regulated metabolism Chaihu could mediate its protective effects on gan qi stagnation-induced emotional instability through lipid metabolism and hormonal regulation [101]. In fact, analyses of plasma metabolites in a rat model of gan qi stagnation stimulated by chronic immobilization stress revealed elevated levels of lactic acid, saturated fatty acid, and blood sugar, and reduced levels of unsaturated fatty acid and high density lipoprotein [102]. Another study applied stress to a macaque model with premenstrual syndrome, and demonstrated increased plasma levels of serotonin (5-HT), noradrenalin, and prolactin [103].

As a regulator of lipid and glucose metabolism [104], loss of autophagy caused abnormal accumulation of lipids in mouse hepatocytes and a significant increase in plasma triglycerides, with reductions in fatty acid beta-oxidation [105] and pancreatic β-cell mass [106]. Similarly, saikosaponins increased hepatic uptake of cholesterol and decreased plasma levels of cholesterol and triglycerides [107]. Furthermore, a study on depressive patients revealed correlations between the plasma levels of cholesterol, triglycerides, and serum neurotransmitters, and depression [108]. As saikosaponins were able to reduce the plasma levels of cholesterol, triglycerides, and phospholipids [107], Chaihu might attenuate depressive symptoms by regulating metabolite, hormone, and neurotransmitter levels via autophagy-mediated lipid metabolism in the human body.

Conclusions
The function of Chaihu in harmonizing the exterior and interior of the body is related to its pathogen control and immunomodulation properties. Furthermore, Chaihu's function in resolving gan qi stagnation might arise through its supportive roles in protecting organs, preventing damage to cells and organs, and restoring visceral and cellular metabolic conditions. All of these protective pharmacological effects of Chaihu might be attributed to its autophagy induction.

Abbreviations
Ssa: Saikosaponin-a; Ssc: Saikosaponin-c; Ssd: Saikosaponin-d; ER: Endoplasmic reticulum; PTEN: Phosphatase and tensin homolog; TLRs: Toll-like receptors; Bcl-2: B-cell CLL/Lymphoma 2; IL: Interleukin; TNF: Tumor necrosis factor; IFN: Interferon; c-AMP: Cyclic adenosine monophosphate; SERCA: Sarcoplasmic/endoplasmic reticulum calcium ATPase pump; NF-kB: Nuclear factor-kB; CM: Chinese medicine; Atg: Autophagy-related gene; mTOR: Mammalian target of rapamycin; 5-HT: 5-hydroxytryptamine.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
VKWW conceived and planned the review. BYKL and JFO carried out the review plan and wrote the manuscript. All authors read and approved the final manuscript.

Acknowledgment
This work was supported by grants from the Science and Technology Development Fund (FDCT) of Macao (Project codes: 013/2012/A1 and 076/2011/A3).

Author details
1State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China. 2School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.

Received: 4 March 2014 Accepted: 8 September 2014 Published: 11 September 2014

References
1. Huang Z: The overview of xiao yao powder in clinical practice. J Guangxi Tradit Chin Med Univ 2009, 12:76–78.
2. Wei DY, Wang GY: The clinical application of da chaihu decoction. Mod J Integr Tradit Chin Wes Med 2013, 22:1476–1478.
3. Liu CL: Treated chronic cholecystitis alternating chills and fevers syndrome with xiao chai hu decoction in 59 cases. Guangming J Chin Med 2012, 27:63.
4. Xuan X, Rong ZB, Liu C, Li YH, Duan LH, Li LJ, Wu ZZ: Effects of CHSGS on behavior and hippocampal monoamine neurotransmitter in Alzheimer's disease rats with liver-q. Shenzhen J Integ Tradit Chin Wes Med 2013, 23:129–134.
5. Zhao ZZ, Xiao PG: Encyclopaedia of Medicinal Plants. Shanghai: Shanghai World Publishing Corporation; 2000.
6. Li TL, Du WW: The comparison of the pharmacological effect of nan Chanhu and bei Chanhu: the pilot study of anti-tryptic and hepatoprotective effect. Acta Chin Med Pharmacol 1992, 3:34–37.
7. Benito PB, Martinez MJ, Sen AMS, Matellano LF, Contreras SS, Lanza AMD: In vivo and in vitro antiinflammatory activity of saikosaponins. Life Sci 1996, 63:1147–1156.
8. Yen MH, Lin CC, Yen CM: The immunomodulatory effect of saikosaponin derivatives and the root extract of Bupleurum koiri in mice. Phytoter Res 1995, 9:351–358.
9. Cheng PW, Ng LT, Chiang LC, Lin CC: Antiviral effects of saikosaponins on human coronavirus 229E in vitro. Clin Exp Pharmacol Physiol 2006, 33:612–616.
10. Usman MSI, Africa LJ, Akuodor GC, Ugwu TC, Osunkwo UA: Effects of chaihu on antipyretic and antivirus. Biopharm Phar Bull 2007, 31:98–103.
11. Zhang HW, Zhou Y, Sun R: Research development on hepatoprotective effect and hepatotoxicity based on bupleurum saikosaponin components. Chin J Pharmacog 2011, 8:38–40.
12. Shimaoka A, Seo S, Minato H: In vivo and in vitro antiinflammatory activity of saikosaponin and its mechanism. J Medic Plants Res 2008, 2:1573–1582.
13. Lam KY, Chan PL, Liu L: Protective effects on saikosaponin d in human hepatoma cell lines. Cancer Lett 2004, 213:213–221.
14. Tsuji M, Kamidono S, Sasaoka S, Shiono T: Antioxidant action of saikosaponins on human hepatocytes. J Pharmacol Sci 2005, 98:1933–1943.
15. Leung NW, Liou CP, Lu CY: Antioxidant effects of saikosaponins from root of Bupleurum chinensis. J Ethnopharmacol 2006, 106:1–7.
16. Jingu CC, Lee NY, Kim YJ, Jeong EK, Chung WY: Effect of Bupleuri Radix extracts on the toxicity of 5-fluorouracil in HepG2 hepatoma cells and normal human lymphocytes. Basic Clin Pharmacol Toxicol 2008, 103:305–313.
17. Wang YS: Pharmacology and Application of Chinese Materia Medica. Beijing: People's Health Publisher; 1983.
18. Wang LC, Li YQ, Guo SP: In vitro antioxidant activity of saikosaponin in Caco-2 cells. J Med Food 2004, 7:124–129.
19. Wang Y, Cheng J, Wang S, Guo Z: Identification and determination of the saikosaponins in Radix bupleuri by accelerated solvent extraction combined with rapid-resolution LC-MS. J Sep Sci 2013, 36:285–293.
20. Zhang HW, Zhou ZM: The clinical application and modern research progress of GHSGS. Lishizhen medicine and materia medica Res 2007, 18:1234–1236.
21. Liu ZW, Liu L: Essentials of Chinese Medicine. London: Foundations of Chineses Medicine. Springer; 2009.
22. Wang YL, He SX, Luo JY: Progress in research on antitumor activity of saikosaponin and its mechanism. Zhong Xi Yi Jie He Xue Bao 2006, 4:98–101.
23. Yang YY, Tang YZ, Fan CL, Luo HT, Guo PR, Chen JX: Identification and determination of the saikosaponins in Radix bupleuri by accelerated solvent extraction combined with rapid-resolution LC-MS. J Sep Sci 2010, 33:1933–1945.
24. Shu Zh, Shimokawa S, Tanaka H, Shoyama Y: Development of an assay system for saikosaponin a using an anti-saikosaponin a monoclonal antibodies. Biol Pharm Bull 2004, 27:56–71.
25. Chen JC, Chang NW, Chung JG, Chen KC: Saikosaponin-a induces apoptotic mechanism in human breast MDA-MB-231 and MCF-7 cancer cells. Am J Chin Med 2003, 31:363–377.
26. Kim BM, Hong SH: Sequential caspase-2 and caspase-8 activation is essential for saikosaponin-a induced apoptosis of human colon carcinoma cell lines. Apoptosis 2011, 16:184–197.
27. Sun Y, Cai TT, Zhou XB, Xu Q: Saikosaponin a inhibits the proliferation and activation of T cells through cell cycle arrest and induction of apoptosis. Int Immunopharmacol 2009, 9:978–983.
28. Wu WS, Hsu HY: Involvement of p-15INK4b and p-16INK4a genes expression in saikosaponin and TPA-induced growth inhibition of HepG2 cells. Biochem Biophys Res Commun 2001, 285:183–187.
29. Wu SJ, Lin YH, Chu CC, Tsai YH, Chao IC: Curcumin or saikosaponin a improves hepatic antioxidant capacity and protects against CCl4-induced liver injury in rats. J Med Food 2008, 11:224–229.
30. Shyu KG, Tsai SC, Wang BW, Liu YC, Lee CC: Saikosaponin C induces endothelial cells growth, migration and capillary tube formation. Life Sci 2004, 76:613–626.
31. Shi H, Wu T: Activation of NF-κB and COX-2 expression by saikosaponin and its mechanism. J Am Chin Med 2000, 20:471–476.
32. Lee HK, Lund JM, Ramanathan B, Mizushima N, Iwaski A: Autophagy-dependent viral recognition by pharmacoid dendritic cells. Science 2007, 315:1398–1401.
33. Grossmayer GE, Munoz LE, Gaipf US, Franz S, Sheriff A, Voll RE, Kalden JR, Herrmann M: Removal of dying cells and systemic lupus erythematosus. Mod Rheumatol 2005, 15:383–390.
99. Mujumdar N, Saluja AK: Autophagy in pancreatic cancer: an emerging mechanism of cell death. Autophagy 2010, 6:997–998.

100. Opipari AW Jr, Tan L, Boitano AE, Sorenson DR, Aurora A, Liu JR: Resveratrol-induced autophagocytosis in ovarian cancer cells. Cancer Res 2004, 64:696–703.

101. Li D, Jiang T, Fan HQ, Liang WN, Xiong KC, Tang CP: Influence of chaishushugan powder on lipid metabolism and liver function in nonalcoholic fatty liver rats. Zhong Yao Yao Li Yu Lin Chuang 2013, 29:8–12.

102. Luo HG: Studies of prescriptions corresponding to syndromes of xiaoyaosan decoction based on metabonomics. In PhD thesis. Beijing: Beijing University of Traditional Chinese Medicine, Chinese Medicine Department; 2007.

103. Shi ZF: The new evidence of the hypothesis of liver governs normal flow of qi relates to monoamine neurotransmitter and sex hormone and their regulative hormone. In Master thesis. Shan Dong: Shan Dong University of Traditional Chinese Medicine, Traditional Chinese Medicine Department; 2002.

104. Kotoulas OB, Kalamidas SA, Kondomerkos DJ: Glycogen autophagy in glucose homeostasis. Pathol Res Pract 2006, 202:631–638.

105. Singh R, Kaushik S, Wang Y, Xiang Y, Novak I, Komatsu M, Tanaka K, Cuervo AM, Czaja MJ: Autophagy regulates lipid metabolism. Nature 2009, 458:1131–1135.

106. Jung HS, Chung KW, Won Kim J, Kim J, Komatsu M, Tanaka K, Nguyen YH, Kang TM, Yoon KH, Kim JW, Jeong YT, Han MS, Lee MK, Kim KW, Shin J, Lee MS: Loss of autophagy diminishes pancreatic beta cell mass and function with resultant hyperglycemia. Cell Metab 2008, 8:318–324.

107. Yamamoto M, Kumagai A, Yamamura Y: Structure and action of saikosaponins isolated from Bupleurum falcatum L. II. Metabolic actions of saikosaponins, especially a plasma cholesterol-lowering action. Arzneimittelorsch 1975, 25:1240–1245.

108. Yuan YG, Zhang XB, Wu AQ, Zhang SN, Chen YQ: The relationship between plasma monoamine neurotransmitters and serum lipid concentrations in depressive patients. J Clin Psychological Med 2003, 13:67–68.

doi:10.1186/1749-8546-9-21
Cite this article as: Law et al.: Autophagic effects of Chaihu (dried roots of Bupleurum Chinense DC or Bupleurum scorzoneaeformum WILD). Chinese Medicine 2014 9:21.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit