Quantum speed limit for thermal states

Nikolay Il’in, Oleg Lychkovskiy

Seminar on complex quantum systems
Moscow Institute of Physics and Technology Feb 19, 2021

arXiv 2005.06416
What is quantum speed limit (QSL)?

closed quantum system (in general, in a mixed state):

\[i\partial_t \rho_t = [H, \rho_t] \]

trace distance: \[D_{tr}(\rho_1, \rho_2) \equiv (1/2) \text{tr} |\rho_2 - \rho_1| \]

Mandelstam-Tamm QSL (1945):

\[D_{tr}(\rho_0, \rho_t) \leq \Delta E t \quad \text{out-of-equilibrium evolution} \]

\[\Delta E \equiv \sqrt{\langle H^2 \rangle - \langle H \rangle^2}, \quad \langle A \rangle \equiv \text{tr} \rho_0 A \quad \text{observable in the initial (often equilibrium) state} \]
A remark on good and bad distances

In the many-body setting not all distances are equally meaningful!

Good distances (faithfully measure the distinguishability of states):
- trace distance
- Bures distance
- Hellinger distance

Bad distance:
- Hilbert-Schmidt distance – can nearly vanish for orthogonal states

see more in Markham *et al*, Phys. Rev. A 77, 042111 (2008)
Zoo of quantum speed limits

Mandelstam, Tamm (MT, 1945): \[D_{tr}(\rho_0, \rho_t) \leq \Delta E t \quad \Delta E \equiv \sqrt{\langle H^2 \rangle - \langle H \rangle^2} \]

Margolus, Levitin (ML, 1998): \[D_{tr}(\rho_0, \rho_t) \leq \sqrt{2 \bar{E}} t \quad \bar{E} \equiv \langle H \rangle - E_{gs} \]

Mondal, Datta, Sazim (MDS, 2016): \[D_{tr}(\rho_0, \rho_t) \leq \delta E t \]
\[\delta E \equiv \sqrt{-\text{tr} \left[\sqrt{\rho_0} H \right]^2} \]
Thermal initial state

\[\rho_0 = e^{-\beta H_0} / Z_0, \quad Z_0 = \text{tr} e^{-\beta H_0} \]

Initial Hamiltonian

\[H = H_0 + V \]

Perturbation

\[i\partial_t \rho_t = [H_0 + V, \rho_t] \]

V is not assumed to be small
MT and ML QSLs for many-body thermal states

Mandelstam-Tamm: \[D_{tr}(\rho_0, \rho_t) \leq \Delta E \, t \quad \Delta E \equiv \sqrt{\langle (H_0 + V)^2 \rangle - \langle H_0 + V \rangle^2} \]

\[\Delta E \sim \sqrt{N} \quad \text{in the thermodynamic limit (where N is the system size)} \]

Margolus-Levitin: \[D_{tr}(\rho_0, \rho_t) \leq \sqrt{2 \, \overline{E}} \, t \quad \overline{E} \equiv \langle H_0 + V \rangle - E_{gs} \]

\[\sqrt{\overline{E}} \sim \sqrt{N} \quad \text{in the thermodynamic limit} \]
Quantum speed limit for a thermal initial state

\[\rho_0 = e^{-\beta H_0} / Z_0, \quad Z_0 = \text{tr} e^{-\beta H_0} \]

\[i \partial_t \rho_t = [H_0 + V, \rho_t] \]

Thermal QSL:

\[D_{\text{tr}}(\rho_0, \rho_t) \leq \sqrt{\beta t} \sqrt{4 - 2 \langle [H_0, V]^2 \rangle_\beta} \]

\[\langle A \rangle_\beta \equiv \text{tr} \rho_0 A \]

arXiv 2005.06416
T-QSL vs generic QSLs: infinite temperature

Finite Hilbert space with dimension d, $\beta = 0$

\[
\begin{align*}
 i\partial_t \rho_t &= [H_0 + V, \rho_t] \\
 \rho_0 &= d^{-1} \mathbb{1} \\
\end{align*}
\]

\[
\begin{align*}
 \rho_t &= \rho_0 = d^{-1} \mathbb{1} \\
 D_{\text{tr}}(\rho_0, \rho_t) &= 0
\end{align*}
\]
T-QSL vs generic QSLs: infinite temperature

\[\beta = 0 \quad \rho_t = \rho_0 = d^{-1} \mathbf{1} \quad D_{tr}(\rho_0, \rho_t) = 0 \]

\begin{align*}
\text{MT} & \quad D_{tr}(\rho_0, \rho_t) \leq \Delta E t \\
\Delta E & \equiv \sqrt{\langle H^2 \rangle - \langle H \rangle^2} \sim \sqrt{N} \quad \times
\end{align*}

\begin{align*}
\text{MDS} & \quad D_{tr}(\rho_0, \rho_t) \leq \delta E t \\
\delta E & \equiv \sqrt{-\text{tr} [\sqrt{\rho_0} V]^2} = 0 \quad \checkmark
\end{align*}

\begin{align*}
\text{ML} & \quad D_{tr}(\rho_0, \rho_t) \leq \sqrt{2 \overline{E}} t \\
\sqrt{E} & \equiv \sqrt{\langle H \rangle - E_{gs}} \sim \sqrt{N} \quad \times
\end{align*}

\begin{align*}
\text{thermal} & \quad D_{tr}(\rho_0, \rho_t) \leq \sqrt{\beta t} \sqrt[4]{-2 \langle [H_0, V]^2 \rangle_{\beta}} \quad \checkmark
\end{align*}
T-QSL vs generic QSLs: trivial perturbation

trivial perturbation: \[[V, H_0] = 0 \]

\[
i \partial_t \rho_t = \left[H_0 + V, \rho_t \right]
\]

\[
\rho_0 = e^{-\beta H_0 / Z_0}
\]

\[
\rho_t = \rho_0
\]

\[
D_{\text{tr}}(\rho_0, \rho_t) = 0
\]
T-QSL vs generic QSLs: trivial perturbation

\[[V, H_0] = 0 \quad \rho_t = \rho_0 \quad D_{\text{tr}}(\rho_0, \rho_t) = 0 \]

\text{MT} \quad D_{\text{tr}}(\rho_0, \rho_t) \leq \Delta E t

\Delta E \equiv \sqrt{\langle H^2 \rangle - \langle H \rangle^2} \sim \sqrt{N} \quad \times

\text{MDS} \quad D_{\text{tr}}(\rho_0, \rho_t) \leq \delta E t

\delta E \equiv \sqrt{-\text{tr} [\sqrt{\rho_0}, V]^2} = 0 \quad \checkmark

\text{ML} \quad D_{\text{tr}}(\rho_0, \rho_t) \leq \sqrt{2 E} t

\sqrt{E} \equiv \sqrt{\langle H \rangle - E_{\text{gs}}} \sim \sqrt{N} \quad \times

\text{thermal} \quad D_{\text{tr}}(\rho_0, \rho_t) \leq \sqrt{\beta t} \frac{4}{4} - 2 \langle [H_0, V]^2 \rangle_{\beta} \quad \checkmark
MDS QSL: computability issue

\[
\text{MDS: } D_{\text{tr}}(\rho_0, \rho_t) \leq \delta E t
\]

\[
\delta E^2 = -\text{tr} [\sqrt{\rho_0}, V]^2 = 2 \text{tr} \rho_0 V^2 - 2 \text{tr} \sqrt{\rho_0} V \sqrt{\rho_0} V \leq 2 \text{tr} \rho_0 V^2
\]

hard to compute in nontrivial cases

Modified MDS QSL: \[
D_{\text{tr}}(\rho_0, \rho_t) \leq \sqrt{2 \langle V^2 \rangle_\beta} t
\]
Local perturbation

Local perturbation: $\langle V^2 \rangle_\beta$ is finite in the thermodynamic limit.

For finite-range interactions, if $\langle V^2 \rangle_\beta$ is finite, $\langle [H_0, V]^2 \rangle_\beta$ is also finite.
T-QSL vs generic QSLs: local perturbation

\[\langle V^2 \rangle_\beta = O(1)_{N \to \infty} \]

\[D_{\text{tr}}(\rho_0, \rho_t) \leq \Delta E t \]

\[\Delta E \equiv \sqrt{\langle H^2 \rangle - \langle H \rangle^2} \sim \sqrt{N} \]

\[\times \]

MT

\[D_{\text{tr}}(\rho_0, \rho_t) \leq \sqrt{2 \langle V^2 \rangle_\beta} t = O(1)_{N \to \infty} \]

\[\checkmark \]

MDS

\[D_{\text{tr}}(\rho_0, \rho_t) \leq \sqrt{\langle H^2 \rangle - E_{gs}} \sim \sqrt{N} \]

\[\times \]

ML

\[\sqrt{E} \equiv \sqrt{\langle H \rangle - E_{gs}} \sim \sqrt{N} \]

\[\times \]

thermal

\[D_{\text{tr}}(\rho_0, \rho_t) \leq \sqrt{\beta t} \sqrt[4]{-2 \langle [H_0, V]^2 \rangle_\beta} \]

\[= O(1)_{N \to \infty} \]

\[\checkmark \]
Finitely disturbing perturbation

Finitely disturbing perturbation: $\langle [H_0, V]^2 \rangle_\beta$ is finite in the thermodynamic limit

not every finitely disturbing perturbation is local
Example 1: spin-boson model

\[H_0 = \Omega \sigma^z + \frac{1}{\sqrt{N}} \sigma^x \sum_k g_k (a_k^\dagger + a_k) + \sum_k \omega_k a_k^\dagger a_k \]

\[V = \sum_k \delta \omega \ a_k^\dagger a_k \]

non-local, but finitely disturbing

MDS QSL: \[D_{tr}(\rho_0, \rho_t) \leq \sqrt{2} \delta \omega t \bar{n}_\beta N \]

T-QSL: \[D_{tr}(\rho_0, \rho_t) \leq \sqrt{\delta \omega \tilde{g} \beta t} \sqrt{2(1 + 2 \bar{n}_\beta)} \]

\[\bar{n}_\beta \equiv \sum_k \langle a_k^\dagger a_k \rangle_\beta / N \]

\[\tilde{g}^2 \equiv \sum_k g_k^2 / N \]

\[\bar{n}_\beta \equiv \sum_k g_k^2 \langle a_k^\dagger a_k \rangle_\beta / \sum_k g_k^2 \]

finite in the thermodynamic limit
Example 2: mobile impurity model

\[H_0 = H_f + \frac{P^2}{2m} + H_{imp-f} \]

Hamiltonian of a fluid, mobile impurity particle with mass \(m \), momentum \(P \) of the impurity, linear potential felt by the impurity.

\[H_f \] describes a fluid in a 1D box of length \(L \), with particle number \(N \) and particle density \(n=n/L \).

\[V = FX \]

Linear potential felt by the impurity, coordinate \(X \) of the impurity.
Example 2: mobile impurity model

\[H_0 = H_f + P^2/(2m) + H_{\text{imp-f}} \]

\[V = FX \quad \text{non-local, but finitely disturbing} \]

MDS QSL: \[D_{\text{tr}}(\rho_0, \rho_t) \leq \sqrt{2/3} NFt/n \]

T-QSL: \[D_{\text{tr}}(\rho_0, \rho_t) \leq \sqrt{\beta t} \sqrt{(F/m) \sqrt{2\langle P^2 \rangle_{\beta}}} \]

finite in the thermodynamic limit
Performance of T-QSL vs general QSLs in the many-body setting: summary

	Mandelstam-Tamm	Margolus-Levitin	Mondal-Datta-Sazim	thermal
zero temperature	loose	loose	exact	exact
trivial perturbation	loose	loose	exact	exact
local perturbation	loose	loose	tight	tight
finitely disturbing	loose	loose	loose	tight
nonlocal perturbation				
Generalization: time-dependent perturbation

\[i\partial_t \rho_t = [H_0 + V_t, \rho_t] \]

\[\rho_0 = e^{-\beta H_0} / Z_0, \quad Z_0 = \text{tr} e^{-\beta H_0} \]

\[D_{\text{tr}}(\rho_0, \rho_t) \leq \sqrt{\beta} \int_0^t dt' \sqrt{-2 \langle [H_0, V_{t'}]^2 \rangle_{\beta}} \]
Summary

• a new quantum speed limit for initially thermal states derived

• it explicitly exploits structure of the thermal state and depends on temperature

• can be dramatically tighter than generic QSLs in the many-body setting

arXiv 2005.06416
Funding

Russian Science Foundation grant No 17-71-20158
Thank you for your attention!