Research Paper

Comparison of Balance and Strength of Lower Limb Muscles Between two Groups of People With Covid-19 and Healthy Ones: A Cross-Sectional Study

'Amir Ali Jafarnezhadgero', Amin Hoseinpour

1. Department of Sports Management and Biomechanics, Faculty of Education Sciences and Psychology, University of Mohaghegh Ardabili, Ardabil, Iran.

Abstract

Background and Aims: This study evaluated dynamic balance, quadriceps, and hamstring strength in individuals with Covid 19 compared with healthy control ones.

Methods: A total of 30 people were divided into two groups, including healthy people (n=15) and people with Covid-19. Dynamic balance was measured using the star excursion balance test. A dynamometer performed lower limb muscle strength measurements. An independent t-test was used to compare the two groups statistically. The significance level was considered 0.05.

Results: Quadriceps and hamstring muscle strength were similar in both groups (P>0.05). The results showed that the values of dynamic balance in the lateral (P=0.001), medial (P=0.001), and posterior medi al (P=0.001) directions were significantly lower in the group with Covid-19 than that in the healthy group.

Conclusion: In general, the balance of people with Covid-19 was significantly lower than the healthy group. Decreased balance due to this disease can increase the risk of injury. There was no significant difference in lower limb muscle strength in patients with Covid-19 compared with healthy individuals. Perhaps more research is needed in the future to prove this better.

Keywords:
- Postural balance
- Lower extremity
- Covid-19

Extended Abstract

1. Introduction

coronavirus Disease (COVID-19) is an infectious disease caused by a newly discovered coronavirus. Most people who fall sick with COVID-19 will experience mild to moderate symptoms and recover without special treatment. Dynamic balance is the ability to maintain postural stability and orientation with the center of mass over the support base while the body parts are in motion. The Star Excursion Balance Test (SEBT) is a dynamic test that requires strength, flexibility, and proprioception. It is a measure of dynamic balance that provides a significant challenge to athletes and physically active individuals. The test can be used to assess physical performance. Still, it can be used to screen deficits in dynamic postural control due to musculoskeletal injuries (e.g. chronic ankle instability), identify athletes at greater risk for lower extremity injury, and rehabilitate orthopedic injuries in healthy, active adults. Normative muscle strength data for defined populations of athletes are essential for sports coaches, athletic trainer, medicine physicians, physical therapists, and others responsible for athletes’ health and specifically for return-to-play criteria. This study aimed to evaluate dynamic balance, quadriceps, and hamstring strength in individuals with Covid-19 compared with healthy control ones.

Corresponding Author:
Amir Ali Jafarnezhadgero, PhD.
Address: Department of Sports Management and Biomechanics, Faculty of Education Sciences and Psychology, University of Mohaghegh Ardabili, Ardabil, Iran.
E-Mail: amiralijafarnezhad@gmail.com
2. Methods

A total of 30 people were divided into two groups, including healthy people (n=15) and people with Covid-19. Dynamic balance was measured using the star excursion balance test. The person performing the test must maintain balance on one leg while using the other leg to reach as far as possible in 8 different directions. The person (standing on his/her left leg, for example) must run in 8 different positions, once in each of the following directions: anterior, anteromedial, medial, posteromedial, posterior, posterolateral, lateral, and anterolateral. A dynamometer performed lower limb muscle strength measurements. Shapiro-Wilk test confirmed the normal distribution of data. An independent sample t-test was used to compare the two groups statistically. The significance level was considered 0.05. All analyses were done by SPSS Software v. 22.

3. Results

Quadriceps and hamstring muscle strength were similar in both groups (P>0.05). The results showed that the values of dynamic balance in the lateral (P=0.001), medial (P=0.001), and posterior medial (P=0.001) directions were significantly lower in the group with Covid-19 than that in the healthy group.

4. Discussion and Conclusion

In general, the balance of people with Covid-19 was significantly lower than the healthy group. Decreased balance due to this disease can increase the risk of injury. An individual’s quadriceps and hamstring muscle strength is an important part of the athlete’s functional capacity and contributes significantly to lower limb biomechanics and performance. There was no significant difference in lower limb muscle strength in patients with Covid-19 compared with healthy individuals. Perhaps more research is needed in the future to better prove this.

Ethical Considerations

Compliance with ethical guidelines

All ethical principles are considered in this article. The ethical principles observed in the article, such as the informed consent of the participants, the confidentiality of information, the permission of the participants to cancel their participation in the research.

Funding

This study is extracted from the research project of the first author in the Department of Sports Management and Biomechanics of Mohaghegh Ardabili University.

Authors’ contributions

Authors contributed equally in preparing this article.

Conflict of interest

The authors declared no conflict of interest.
This Page Intentionally Left Blank
مقاله پژوهشی

مقاله پژوهشی مقایسه تعادل و قدرت عضلات اندام تحتانی بین دو گروه افراد مبتلا به کووید-۱۹ و افراد سالم:

پیک مطالعه عرضی

امیرعلی جعفرنژادگرو
dانشکده علوم تربیتی و روانشناسی، دانشگاه محقق اردبیلی، اردبیل، ایران.

۱. گروه مدیریت و بیومکانیک ورزشی دانشکده علوم تربیتی و روانشناسی، دانشگاه محقق اردبیلی، اردبیل، ایران.

۲. کلیدواژه ها: تعادل، قدرت عضلات، اندام تحتانی، کووید ۱۹

۳. امین حسین پور

۴. گروه مدیریت و بیومکانیک ورزشی، دانشکده علوم تربیتی و روانشناسی، دانشگاه محقق اردبیلی، اردبیل، ایران.

۵. مقدمه

در جهان شیوع بیماری کرونا ویروسCOVID-19(۲۰۰۲۰) در سال ۲۰۲۰ میلادی در چین شیوع پیدا و در اکثر نقاط دنیا جهت جهانی فراگیر شد. این بیماری بیماری حاد و درجه انتقال فیبرونکلیک می‌باشد و در فرآیندهای تنفسی دچار آسیب می‌شود. این می‌تواند برای بالینی فیبرونکلیک و باعث کاهش سطح این فیبرونکلیک در بدن شود. این بیماری باعث ایجاد آسیب در افراد مبتلا به کرونا ویروس COVID-19 می‌شود. این بیماری باعث ایجاد آسیب در افراد مبتلا به کرونا ویروس COVID-19 می‌شود.

۶. یافته‌ها

یافته‌های این مطالعه نشان داد که مقایسه تعادل و قدرت عضلات اندام تحتانی بین دو گروه افراد مبتلا به کرونا ویروس COVID-19 و افراد سالم نشان داد که در دو گروه تعادل و قدرت عضلات اندام تحتانی مشابه بود. این نتایج نشان داد که افراد مبتلا به کرونا ویروس COVID-19 باعث کاهش تعادل و قدرت عضلات اندام تحتانی شدند.

۷. نتیجه‌گیری

نتیجه‌گیری این مطالعه نشان داد که تعادل و قدرت عضلات اندام تحتانی در افراد مبتلا به کرونا ویروس COVID-19 باعث ایجاد آسیب در افراد مبتلا به کرونا ویروس COVID-19 می‌شود. این بیماری باعث ایجاد آسیب در افراد مبتلا به کرونا ویروس COVID-19 می‌شود. این بیماری باعث ایجاد آسیب در افراد مبتلا به کرونا ویروس COVID-19 می‌شود.

کلیدواژه‌ها: تعادل، قدرت عضلات، اندام تحتانی، کرونا ویروس COVID-19

۸. ارتباط بین کرونا ویروس COVID-19 و آسیب در افراد مبتلا به کرونا ویروس COVID-19

یافته‌های این مطالعه نشان داد که تعادل و قدرت عضلات اندام تحتانی در افراد مبتلا به کرونا ویروس COVID-19 باعث ایجاد آسیب در افراد مبتلا به کرونا ویروس COVID-19 می‌شود. این بیماری باعث ایجاد آسیب در افراد مبتلا به کرونا ویروس COVID-19 می‌شود. این بیماری باعث ایجاد آسیب در افراد مبتلا به کرونا ویروس COVID-19 می‌شود.

۹. نتیجه‌گیری

نتیجه‌گیری این مطالعه نشان داد که تعادل و قدرت عضلات اندام تحتانی در افراد مبتلا به کرونا ویروس COVID-19 باعث ایجاد آسیب در افراد مبتلا به کرونا ویروس COVID-19 می‌شود. این بیماری باعث ایجاد آسیب در افراد مبتلا به کرونا ویروس COVID-19 می‌شود. این بیماری باعث ایجاد آسیب در افراد مبتلا به کرونا ویروس COVID-19 می‌شود.

۱۰. ارتباط بین کرونا ویروس COVID-19 و آسیب در افراد مبتلا به کرونا ویروس COVID-19

یافته‌های این مطالعه نشان داد که تعادل و قدرت عضلات اندام تحتانی در افراد مبتلا به کرونا ویروس COVID-19 باعث ایجاد آسیب در افراد مبتلا به کرونا ویروس COVID-19 می‌شود. این بیماری باعث ایجاد آسیب در افراد مبتلا به کرونا ویروس COVID-19 می‌شود. این بیماری باعث ایجاد آسیب در افراد مبتلا به کرونا ویروس COVID-19 می‌شود.
نیست، ولی به صورت کلی می‌توان گفت ویروس‌های تنفسی از این قطعات با قدرت بیشتری در استفاده از مکانیزم‌های فلورید شدید (K) با ویروس‌های غیرتنفسی نظیر ویروس آجدین، ویروس‌های اچ‌آ و سایر ارگونومیک‌ها، از آن‌ها تحقیق و تجزیه‌بندی شده است.

4. آزمون‌های حساسیت‌پذیری در مردان مبتلا به کووید-۱۹

به‌طور کلی بیماری کرونا بیشتر، در مردان بیشتر و در زنان بیشتر رخ می‌دهد. این نتایج نشان‌دهنده طبیعی فرضیات می‌باشد که بیماری کرونا به‌طور انتخابی به‌طور زنده، در مردان بیشتر و در زنان بیشتر رخ می‌دهد.

5. دیگر نتایج

در برخی‌العمل تحقیقات، اثرات زیادی در عملکرد حرکتی داشته باشند. این نتایج نشان‌دهنده طبیعی فرضیات می‌باشد که بیماری کرونا به‌طور انتخابی به‌طور زنده، در مردان بیشتر و در زنان بیشتر رخ می‌دهد.

6. مقایسه تعادل و قدرت عضلانی

بر اساس نقشه‌های پیش‌بینی شده، برای تعیین پای برتر از روش‌های زیر استفاده شد:

- آزمون ستاره است که تعادل پویا را در هنگام استفاده قرار می‌گیرد. آزمون ستاره است که تعادل پویا را در هنگام استفاده قرار می‌گیرد. آزمون ستاره است که تعادل پویا را در هنگام استفاده قرار می‌گیرد. آزمون ستاره است که تعادل پویا را در هنگام استفاده قرار می‌گیرد.

- طبق آزمون‌های حساسیت‌پذیری در مردان مبتلا به کووید-۱۹، این آزمون‌ها به دلیل مزیت‌هایی مانند هزینه کم‌تر و راحتی در اجرا، برای بسیاری از تحقیقات مورد استفاده قرار می‌گیرد.

- در برخی از مطالعات پیشین با قیاس در مقایسه با افراد سالم، میزان تعادل و قدرت عضلانی در مردان مبتلا به کووید-۱۹ بیشتر از مردان سالم بود.

- در این مطالعه، بر اساس اطلاعات عمومی و افرادی که دارای ناهنجاری واضح بودند، از مطالعه حذف شدند. ترتیب و نحوه انجام آزمون‌ها به این شکل بود که در ابتدا وضعیت اندازه‌گیری و آزمون مورد نظر برای افراد توضیح داده شد. سپس طول پای حقیقی و قد آزمودنی‌ها با استفاده از متر نوازی تراز و فرمولی که روی دیوار نگهداری شده بود اندازه‌گیری شد.

1. از آزمودنی‌ها خواسته شد تا یک مسیر طولانی و جمعیت‌هایی باشند.
سیستم حسی بینایی، وستیبولار و حسی عمقی احتمال اختلال کمبود تعادل در فرد شود. با شروع بیماری به دلیل افت کارایی کاهش در کارایی سیستم های حسی ممکن است منجر به ران در دو پا فعال می‌شوند و نیاز کمتری به فعالیت عضلات ران (کشنده پهن نیام و سرینی میانی) و گروه عضلات اداکتور پاسچر بدن در هنگام اعمال بار و عدم اعمال بار است. جهت کنترل تعادل در صفحه فرونتال برای حفظ ران و تنه صورت می‌گیرد و به میزان کمتری در مچ پا رخ می‌دهد. می‌توان گفت کنترل تعادل در راستای جانبی داخلی بیشتر در کنترل تعادل در راستای قدامی خلفی با راستای جانبی داخلی طور معنی‌داری کمتر است. در برخی از مطالعات پیشین با قیاس نسبت به گروه سالم به یافته‌ها نشان داد مقادیر تعادل پویا در راستای خارجی، داخلی و بود.

هدف از انجام این تحقیق مقایسه قدرت عضلات همسترینگ، عضلات است یا از تغییر الگوی فعالیت عضلانی در این افراد ناشی است. به همین دلیل به طور قطع نمی‌توان بیان کرد. آداکتور ران و همچنین فعالیت الکتریکی این عضلات مورد ارزیابی با افراد سالم اختلاف عملکردی دارد و این اختلال عمدتاً در حفظ تعادل و ثبات، تفاوت معنی‌داری نداشت. طبق یافته‌های پژوهش (همسترینگ و چهارسرران) در افراد سالم در مقایسه با افراد مبتلا گروه معنی‌دار نیست. همچنین مقادیر قدرت عضلات پایین تنه خارجی، قدامی داخلی، خلفی و خلفی خارجی بین این دو گروه تفاوت معنی‌داری نداشت. اما مقادیر تعادل پویا در راستای خارجی و داخلی معنی‌داری نداشت و مقادیر عضلات در افراد مبتلا به کووید-۱۹ و افراد سالم مشابه بود. بر اساس نتایج، اختلاف مقادیر قدرت عضلات پایین تنه (همسترینگ و چهارسر ران و تعادل در افراد سالم و افراد دارای کووید-۱۹ حاضر می‌شود. بنابراین مطالعات بیشتر در این زمینه توصیه می‌شود.

اهداف

1. در صورت مورد نظر، با توجه به تعداد و درجه نسبت به یکدیگر قرار گرفتن، تیم مستقل و جهت محاسبه مقادیر اندازه‌های اثر از رابطه کوهنز انتخاب شد. بر اساس نتایج، اختلاف مقادیر عضلات در افراد مبتلا به کووید-۱۹ و افراد سالم مشابه بود.

2. بر اساس نتایج، اختلاف مقادیر تعادل پویا در راستای خارجی و داخلی معنی‌داری نداشت و مقادیر عضلات در افراد مبتلا به کووید-۱۹ و افراد سالم مشابه بود.
نسبت به گروه آبداکتور و آداکتور ران مورد ارزیابی قرار نگرفت. ارزیابی قدرت دارد. همچنین در پژوهش حاضر قدرت عضلات مچ پا و عضلات مطالعات بیشتر در این زمینه با استفاده از تعداد نمونه های بیشتر ندارد. از سوی دیگر اثبات هرچه بهتر نتایج این پژوهش نیاز به انجام نتایج به زنان مبتلا به کرونا با توجه به نتایج این پژوهش وجود مثبت داشته اند یا که نشانه های ظاهری این بیماری را تجربه کرده بودند. تنها از بین کسانی که در مقایسه با افراد سالم: یک مطالعه عرضی.

جدول 1: مقایسه دقت تعلیم پویا در افراد مبتلا به کروید-19 مراقبه با افراد سالم

سطح تمرين	هر گروه	مقایسه	GROH کروید-19	GROH سالم
سطح بستری	0.627	GROH کروید-19	0.583	0.532
گروه کبود	0.627	GROH کروید-19	0.583	0.532
گروه کبود	0.627	GROH کروید-19	0.583	0.532
گروه کبود	0.627	GROH کروید-19	0.583	0.532
گروه کبود	0.627	GROH کروید-19	0.583	0.532

کنترل کننده حرکات اندام تحتانی در صفحه فروتال در افراد به کروید-19 از اهمیت بالایی برخوردار است.
این عضلات می‌تواند اطلاعاتی را در این زمینه در اختیار محققین قرار دهد. به علاوه، بررسی تداخلات درمانی می‌تواند در بهبود مختلف‌های مکانیکی در این افراد مؤثر باشد [33-34].

ملاحظات اخلاقی

پیروی از اصول اخلاق پژوهش

اصول اخلاقی تأکیدی در این مقاله راه‌هایی هستند. شرکت‌کنندگان اجازه داشتند، در زمان که مایل بودند از پژوهش خارج شوند. همچنین همه شرکت‌کنندگان در جریان مورد پژوهش بودند. اطلاعات آن‌ها محرومانه بوده و مطابقه شده است.

امکان مطالعه از طریق پژوهشی توسط هدف در گروه مدیریت و بیوشکاری محققان محترمی ارائه علی بصورت نهایی است.

مشارکت نویسندگان

تمام نویسندگان در طراحی، اجرای و تغییرات مهی‌بخش‌های پژوهشی حاضر، مشارکت کرده‌اند.

تعارض منافع

پژوهش نیست. این مقاله از تعارض منافع می‌باشد.

مبتلایان چهارم و نهم خسارت‌های افسانه‌ای و اثرات مضرات عصبی را در جریان مبتلا به کووید-۱۹ و افراد مبتلا به کووید-۱۹ استفاده می‌کنند.
References

[1] Paules CI, Marston HD, Fauci AS. Coronavirus infections—more than just the common cold. JAMA. 2020; 323(8):707-8. [DOI:10.1001/jama.2020.0757] [PMID]

[2] Philippou A, Meyer D, Neill E, Tan EJ, Toh WL, Van Rheenen TE, et al. Exercise and eating behaviors in eating disorders and the general population during the COVID-19 pandemic in Australia: Initial results from the COLLATE project. International Journal of Eating Disorders. 2020; 53(7):1158-65. [DOI:10.1002/eat.23317] [PMID] [PMCID]

[3] Chan JF-W, Yuan S, Kok K-H, To KK-W, Chu H, Yang J, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: A study of a family cluster. The Lancet. 2020; 395(10223):514-23. [DOI:10.1016/S0140-6736(20)30154-9]

[4] Tavakoli A, Vahdat K, Keshavarz M. [Novel coronavirus disease 2019 (COVID-19): An emerging infectious disease in the 21st century [Persian]]. Iranian South Medical Journal. 2020; 22(6):432-50. [DOI:10.29522/jsm.22.6.432]

[5] Godman B. Combating COVID-19: Lessons learnt particularly among developing countries and the implications. Bangla-desh Journal of Medical Science. 2020; 19(Special Issue on Covid19):S103-8. [DOI:10.3329/bjms.v19i0.48413]

[6] Fernández-Aranda F, Casas M, Cañas L, Bryan DC, Favaro A, Granero R, et al. COVID-19 and implications for eating dis-orders. European Eating Disorders Review. 2020; 28(3):239. [DOI:10.1002/erv.2738] [PMID] [PMCID]

[7] Weissman RS, Bauer S, Thomas JJ. Access to evidence-based care for eating disorders during the COVID-19 crisis. International Journal of Eating Disorders. 2020; 53(5):369-76. [DOI:10.1002/eat.23729] [PMID] [PMCID]

[8] Martinez-Ferran M, de la Guía-Galipienso F, Sanchis-Gomar F, Pareja-Galeano H. Metabolic impacts of confinement during the COVID-19 pandemic. International Journal of Eating Disorders. 2020; 53(5):369-76. [DOI:10.1002/eat.23729] [PMID] [PMCID]

[9] WHO. Clinical management of severe acute respiratory infection when novel coronavirus (2019-nCoV) infection is suspected: Interim guidance. Geneva: World Health Organization; 2020. https://apps.who.int/iris/handle/10665/330893

[10] Lyttinen T, Lilakavainio T, Bragge T, Hakkarainen M, Karjalainen PA, Arokoski JP. Postural control and thigh muscle activity in men with knee osteoarthritis. Journal of Electromyography and Kinesiology. 2010; 20(6):1066-74. [DOI:10.1016/j.jelekin.2010.05.005] [PMID]

[11] Day B, Steiger M, Thompson P, Marsden C. Effect of vision and stance width on human body motion when standing: Implications for afferent control of lateral sway. The Journal of Physiology. 1993; 469:679-99. [DOI:10.1113/jphysiol.1993.sp019824] [PMID] [PMCID]

[12] Kapteyn T. Afterthought about the physics and mechanics of the postural sway. Agressologie. 1973; 14(Spec No C):27-35. [PMID]

[13] Hertel J, Braham RA, Hale SA, Olmsted-Kramer LC. Simplifying the star excursion balance test: Analyses of subjects with and without chronic ankle instability. Journal of Orthopaedic & Sports Physical Therapy. 2006; 36(3):131-7. [DOI:10.2519/jospt.2006.36.3.131] [PMID]

[14] Winter DA, Prince F, Stergiou P, Powell C. Medial-lateral and anterior-posterior motor responses associated with center of pressure changes in quiet standing. Neuroscience Research Communications. 1993; 12(3):141-8. https://eurikamag.com/research/09/005/009005811.php

[15] Olmsted LC, Carcia CR, Hertel J, Shultz SJ. Efficacy of the star excursion balance tests in detecting reach deficits in subjects with chronic ankle instability. Journal of Athletic Training. 2002; 37(4):501-6. [PMID]

[16] Gribble PA, Hertel J. Considerations for normalizing measures of the Star Excursion Balance Test. Measurement in Physical Education and Exercise Science. 2003; 7(2):89-100. [DOI:10.1207/S15327841MPEE0702_3]

[17] Reiman MP, Manske RC. Functional testing in human performance. Champaign: Human kinetics; 2009. [DOI:10.5040/9781429596882]

[18] Hoch MC, Staton GS, McKeon JMM, Mattacola CG, McKeon PO. Dorsiflexion and dynamic postural control deficits are pre-sent in those with chronic ankle instability. Journal of Science and Medicine in Sport. 2012; 15(6):574-9. [DOI:10.1016/j.jsams.2012.02.009] [PMID]

[19] Paillard T. Effects of general and local fatigue on postural control: A review. Neuroscience & Biobehavioral Reviews. 2012; 36(1):162-76. [DOI:10.1016/j.neubiorev.2011.05.009] [PMID]

[20] Hassani A, Patikas D, Bassa E, Hatzikotoulas K, Kellis E, Kotzamanidis C. Agonist and antagonist muscle activation during maximal and submaximal isokinetic fatigue tests of the knee extensors. Journal of Electromyography and Kinesiology. 2006; 16(6):661-8. [DOI:10.1016/j.jelekin.2005.11.006] [PMID]

[21] Hortobágyi T, Westerkamp L, Beam S, Moody J, Garry J, Holbert D, et al. Altered hamstring-quadiceps muscle balance in patients with knee osteoarthritis. Clinical Biomechanics. 2005; 20(1):97-104. [DOI:10.1016/j.clinbiomech.2004.08.004] [PMID]

[22] Gadelha AB, Neri SGR, Oliveira ROL, Bottaro M, David ACD, Vainselboim B, et al. Severity of sarcopenia is associated with postural balance and risk of falls in community-dwelling older women. Experimental Aging Research. 2018; 44(3):258-69. [DOI:10.1080/0361073X.2018.1449591] [PMID]

[23] American College of Sports Medicine. ACSM’s health-related physical fitness assessment manual. Philadelphia: Lippincott Williams & Wilkins; 2013. https://books.google.com/books/about/ACSM_s_Health_Related_Physical_Fitness_A.html?id=ZPo96rd3PpAC

[24] Horak FB, Nashner LM. Central programming of postural movement: Adaptation to altered support-surface configurations. Journal of Neurophysiology. 1986; 55(6):1369-81. [DOI:10.1152/jn.1986.55.6.1369] [PMID]

[25] Brandt T, Dieterich M. Vestibular falls. Journal of Vestibular Research: Equilibrium and Orientation. 1993; 3(1):3-14. https://www.safetylit.org/citations/index.php?useaction=citations.viwedetails&citationids[]=citjournalarticle_156932_30
[26] Skinner HB, Barrack RL, Cook SD. Age-related decline in proprioception. Clinical Orthopaedics and Related Research. 1984; (184):208-11. [DOI:10.1097/00003086-198404000-00035]

[27] Gardner MM, Buchner DM, Robertson MC, Campbell AJ. Practical implementation of an exercise-based falls prevention programme. Age and Ageing. 2001; 30(1):77-83. [DOI:10.1093/ageing/30.1.77] [PMID]

[28] Lephart SM, Pincivero DM, Giraido JL, Fu FH. The role of proprioception in the management and rehabilitation of athletic injuries. The American Journal of Sports Medicine. 1997; 25(1):130-7. [DOI:10.1177/036354659702500126] [PMID]

[29] Laskowski ER, Newcomer-Aney K, Smith J. Proprioception. Physical Medicine and Rehabilitation Clinics of North America. 2000; 11(2):323-40. [DOI:10.1016/S1047-9651(18)30132-3]

[30] Thomeé R, Augustsson J, Karlsson J. Patellofemoral pain syndrome: A review of current issues. Sports Medicine. 1999; 28(4):245-62. [DOI:10.2165/00007256-199928040-00003] [PMID]

[31] Richardson JK, Sandman D, Vela S. A focused exercise regimen improves clinical measures of balance in patients with peripheral neuropathy. Archives of Physical Medicine and Rehabilitation. 2001; 82(2):205-9. [DOI:10.1053/apmr.2001.19742] [PMID]

[32] Madadi-Shad M, Jafarnezhadgero AA, Sheikhalizade H, Dionisio VC. Effect of a corrective exercise program on gait kinetics and muscle activities in older adults with both low back pain and pronated feet: A double-blind, randomized controlled trial. Gait & Posture. 2020; 76:339-45. [DOI:10.1016/j.gaitpost.2019.12.026] [PMID]

[33] Jafarnezhadgero AA, Anvari M, Granacher U. Long-term effects of shoe mileage on ground reaction forces and lower limb muscle activities during walking in individuals with genu varus. Clinical Biomechanics. 2020; 73:55-62. [DOI:10.1016/j.clinbiomech.2020.01.006] [PMID]

[34] Jafarnezhadgero A, Ghorbanloo F, Fatollahi A, Dionisio VC, Granacher U. Effects of an elastic resistance band exercise program on kinetics and muscle activities during walking in young adults with genu valgus: A double-blinded randomized controlled trial. Clinical Biomechanics. 2021; 81:105215. [DOI:10.1016/j.clinbiomech.2020.105215] [PMID]