Algebraic computation of some intersection D-modules

F. J. Calderón Moreno and L. Narváez Macarro∗

March, 2006

Abstract

Let X be a complex analytic manifold, $D \subset X$ a locally quasi-homogeneous free divisor, \mathcal{E} an integrable logarithmic connection with respect to D and \mathcal{L} the local system of the horizontal sections of \mathcal{E} on $X - D$. In this paper we give an algebraic description in terms of \mathcal{E} of the regular holonomic D_X-module whose de Rham complex is the intersection complex associated with \mathcal{L}. As an application, we perform some effective computations in the case of quasi-homogeneous plane curves.

Introduction

On a complex analytic manifold, intersection complexes associated with irreducible local systems on a dense open regular subset of a closed analytic subspace are the simple pieces which form any perverse sheaf. The Riemann-Hilbert correspondence allows us to consider the regular holonomic D-modules which correspond to these intersection complexes, that we call “intersection D-modules”. They are the simple pieces which form any regular holonomic D-module. Whereas intersection complexes are topological objects, intersection D-modules are algebraic: they are given by a system of partial linear differential equations with holomorphic coefficients.

Intersection complexes can be constructed by an important operation: the intermediate direct image. Its description in terms of Verdier duality and usual derived direct images can be algebraically interpreted in the category of holonomic regular D-modules by using the deep properties of the de Rham functor. We need to compute localizations and D-duals.

This can be effectively done, in principle, by using the general available algorithms in [25, 27, 26], but in the case of integrable logarithmic connections along a locally quasi-homogeneous free divisor, we exploit the logarithmic point of view [2, 11, 12, 30, 31] to previously obtain a general algebraic description of their associated intersection D-modules, from which we can easily derive effective computations.

The main ingredients we use are the duality theorem proved in [5] and the logarithmic comparison theorem for arbitrary integrable logarithmic connections proved in [3], both with respect to locally quasi-homogeneous free divisors.

∗The authors are partially supported by MTM2004-07203-C02-01 and FEDER.
The algorithmic treatment of the computations in this paper will be developed elsewhere.

Let us now comment on the content of this paper.

In section 1 we remind the reader of the basic notions and notations and we review our previous results on logarithmic \(\mathcal{D} \)-modules with respect to free divisors. We recall the logarithmic comparison theorem for arbitrary integrable logarithmic connections from [6], and we give the theorem describing the intersection \(\mathcal{D} \)-module associated with an integrable logarithmic connection along a locally quasi-homogeneous free divisor.

In section 2, given a locally quasi-homogeneous free divisor \(D \) with a reduced local equation \(f = 0 \) and a cyclic integrable logarithmic connection \(\mathcal{E} \) with respect to \(D \), we explicitly describe a presentation of \(\mathcal{D} \)[s]·(\(\mathcal{E}f^* \)) over \(\mathcal{D}[s] \) in terms of a presentation of \(\mathcal{E} \) over the ring of logarithmic differential operators. This description will be useful in order to compute the Bernstein-Sato polynomials associated with \(\mathcal{E} \).

In section 3 the general results of the previous section are explicitly written down in the case of a family of integrable logarithmic connections with respect to a quasi-homogeneous plane curves.

In section 4 we perform some explicit computations with respect to a cusp.

We wish to thank Hélène Esnault who, because of a question about our paper [5], drew our attention to computing intersection \(\mathcal{D} \)-modules. We also thank Tristan Torrelli for helpful information about the Bernstein-Sato functional equations and for some comments on a previous version of this paper.

1 Logarithmic connections with respect to a free divisor: theoretical set-up

Let \(X \) be a \(n \)-dimensional complex analytic manifold and \(D \subset X \) a hypersurface, and let us denote by \(j : U = X - D \to X \) the corresponding open inclusion.

We say that \(D \) is a free divisor \([28]\) if the \(\mathcal{O}_X \)-module \(\text{Der}(\log D) \) of logarithmic vector fields with respect to \(D \) is locally free (of rank \(n \)), or equivalently if the \(\mathcal{O}_X \)-module \(\Omega_X^1(\log D) \) of logarithmic 1-forms with respect to \(D \) is locally free (of rank \(n \)).

Normal crossing divisors, plane curves, free hyperplane arrangements (e.g. the union of reflecting hyperplanes of a complex reflection group), discriminant of stable mappings or bifurcation sets are examples of free divisors.

We say that \(D \) is quasi-homogeneous at \(p \in D \) if there is a system of local coordinates \(\mathfrak{p} \) centered at \(p \) such that the germ \((D,p)\) has a reduced weighted homogeneous defining equation (with strictly positive weights) with respect to \(\mathfrak{p} \). We say that \(D \) is locally quasi-homogeneous if it is so at each point \(p \in D \).

Let us denote by \(\mathcal{D}_X(\log D) \) the 0-term of the Malgrange-Kashiwara filtration with respect to \(D \) on the sheaf \(\mathcal{D}_X \) of linear differential operators on \(X \). When \(D \) is a free divisor, the first author has proved in [2] that \(\mathcal{D}_X(\log D) \) is the universal enveloping algebra of the Lie algebroid \(\text{Der}(\log D) \), and then it is coherent and has noetherian stalks of finite global homological dimension. Locally, if \(\{\delta_1, \ldots, \delta_n\} \) is a local basis of the logarithmic vector fields on an open set \(V \), any differential operator in \(\Gamma(V, \mathcal{D}_X(\log D)) \) can be written in a unique
way as a finite sum
\[\sum_{\alpha \in \mathbb{N}^n, |\alpha| \leq d} a_\alpha \delta_1^{\alpha_1} \cdots \delta_n^{\alpha_n}, \]
where the \(a_\alpha \) are holomorphic functions on \(V \).

From now on, let us assume that \(D \) is a free divisor.

We say that \(D \) is a Koszul free divisor \([2]\) at a point \(p \in D \) if the symbols of any (some) local basis \(\{ \delta_1, \ldots, \delta_n \} \) of \(\text{Der}(\log D)_p \) form a regular sequence in \(\text{Gr}^n \mathcal{D}_X,p \). We say that \(D \) is a Koszul free divisor if it is so at any point \(p \in D \). Actually, as M. Schulze pointed out, Koszul freeness is equivalent to holonomicity in the sense of \([28]\).

Plane curves and locally quasi-homogeneous free divisors (e.g. free hyperplane arrangements or discriminant of stable mappings in Mather’s “nice dimensions”) are example of Koszul free divisors \([3]\).

A logarithmic connection with respect to \(D \) is a locally free \(\mathcal{O}_X \)-module \(\mathcal{E} \) endowed with:

1. a \(\mathbb{C} \)-linear morphism (connection) \(\nabla' : \mathcal{E} \to \mathcal{E} \otimes_{\mathcal{O}_X} \Omega^1_X(\log D) \), satisfying \(\nabla'(ae) = a\nabla'(e) + e \otimes da \), for any section \(a \) of \(\mathcal{O}_X \) and any section \(e \) of \(\mathcal{E} \), or equivalently, with

2. a left \(\mathcal{O}_X \)-linear morphism \(\nabla : \text{Der}(\log D) \to \text{End}_{\mathcal{O}_X}(\mathcal{E}) \) satisfying the Leibniz rule \(\nabla(\delta)(ae) = a\nabla(\delta)(e) + \delta(a)e \), for any logarithmic vector field \(\delta \), any section \(a \) of \(\mathcal{O}_X \) and any section \(e \) of \(\mathcal{E} \).

The integrability of \(\nabla' \) is equivalent to the fact that \(\nabla \) preserve Lie brackets. Then, we know from \([2]\) that giving an integrable logarithmic connection on a locally free \(\mathcal{O}_X \)-module \(\mathcal{E} \) is equivalent to extending its original \(\mathcal{O}_X \)-module structure to a left \(\mathcal{D}_X(\log D) \)-module structure, and so integrable logarithmic connections are the same as left \(\mathcal{D}_X(\log D) \)-modules which are locally free of finite rank over \(\mathcal{O}_X \).

Let us denote by \(\mathcal{O}_X(D) \) the sheaf of meromorphic functions with poles along \(D \). It is a holonomic left \(\mathcal{D}_X \)-module.

The first examples of integrable logarithmic connections (ILC for short) are the invertible \(\mathcal{O}_X \)-modules \(\mathcal{O}_X(mD) \subset \mathcal{O}_X(D) \), \(m \in \mathbb{Z} \), formed by the meromorphic functions \(h \) such that \(\text{div}(h) + mD \geq 0 \).

If \(f = 0 \) is a reduced local equation of \(D \) at \(p \in D \) and \(\delta_1, \ldots, \delta_n \) is a local basis of \(\text{Der}(\log D)_p \) with \(\delta_i(f) = \alpha_i f \), then \(f^{-m} \) is a local basis of \(\mathcal{O}_X(p(mD)) \) over \(\mathcal{O}_{X,p} \) and we have the following local presentation over \(\mathcal{D}_{X,p}(\log D) \) \((2, \text{th. } 2.1.4)\)

\[
\mathcal{O}_{X,p}(mD) \simeq \mathcal{D}_{X,p}(\log D) / \mathcal{D}_{X,p}(\log D)(\delta_1 + m\alpha_1, \ldots, \delta_n + m\alpha_n). \tag{1.1}
\]

For any ILC \(\mathcal{E} \) and any integer \(m \), the locally free \(\mathcal{O}_X \)-modules \(\mathcal{E}(mD) := \mathcal{E} \otimes_{\mathcal{O}_X} \mathcal{O}_X(mD) \) and \(\mathcal{E}^* := \text{Hom}_{\mathcal{O}_X}(\mathcal{E}, \mathcal{O}_X) \) are endowed with a natural structure of left \(\mathcal{D}_X(\log D) \)-module, where the action of logarithmic vector fields is given by

\[
(\delta h)(e) = -h(\delta e) + \delta(h(e)), \quad \delta(e \otimes a) = (\delta e) \otimes a + e \otimes \delta(a) \tag{2}
\]
for any logarithmic vector field \(\delta \), any local section \(h \) of \(\text{Hom}_{\mathcal{O}_X}(\mathcal{E}, \mathcal{O}_X) \), any local section \(e \) of \(\mathcal{E} \) and any local section \(a \) of \(\mathcal{O}_X(mD) \) (cf. \([5], \S 2\)). Then \(\mathcal{E}(mD) \) and \(\mathcal{E}^* \) are ILC again, and the usual isomorphisms

\[
\mathcal{E}(mD)(m'D) \simeq \mathcal{E}((m + m')D), \quad \mathcal{E}(mD)^* \simeq \mathcal{E}^*(-mD)
\]
are $\mathcal{D}_X(\log D)$-linear.

(1.2) If D is Koszul free and \mathcal{E} is an ILC, then the complex $\mathcal{D}_X \otimes_{\mathcal{D}_X(\log D)} L \mathcal{E}$ is concentrated in degree 0 and its 0-cohomology $\mathcal{D}_X \otimes_{\mathcal{D}_X(\log D)} \mathcal{E}$ is a holonomic \mathcal{D}_X-module (see [3], prop. 1.2.3).

If \mathcal{E} is an ILC, then $\mathcal{E}(\ast D)$ is a meromorphic connection (locally free of finite rank over $\mathcal{O}_X(\ast D)$) and then it is a holonomic \mathcal{D}_X-module (cf. [20], th. 4.1.3). Actually, $\mathcal{E}(\ast D)$ has regular singularities on the smooth part of D (it has logarithmic poles! [10]) and then it is regular everywhere [19], cor. 4.3-14, which means that if \mathcal{L} is the local system of horizontal sections of \mathcal{E} on $U = X - D$, the canonical morphism

$$\Omega^\bullet_X(\mathcal{E}(\ast D)) \to Rj_* \mathcal{L}$$

is an isomorphism in the derived category.

For any ILC \mathcal{E}, or even for any left $\mathcal{D}_X(\log D)$-module (without any finiteness property over \mathcal{O}_X), one can define its logarithmic de Rham complex $\Omega^\bullet_X(\log D)(\mathcal{E})$ in the classical way (cf. [10, def. I.2.15]), which is a subcomplex of $\Omega^\bullet_X(\mathcal{E}(\ast D))$.

It is clear that both complexes coincide on U.

For any ILC \mathcal{E} and any integer m, $\mathcal{E}(mD)$ is a sub-$\mathcal{D}_X(\log D)$-module of the regular holonomic \mathcal{D}_X-module $\mathcal{E}(\ast D)$, and then we have a canonical morphism

$$\rho_{\mathcal{E},m} : \mathcal{D}_X \otimes_{\mathcal{D}_X(\log D)} \mathcal{E}(mD) \to \mathcal{E}(\ast D),$$

given by $\rho_{\mathcal{E},m}(P \otimes e') = Pe'$.

Since $\mathcal{E}(m'D)(mD) = \mathcal{E}((m + m')D)$ and $\mathcal{E}(m'D)(\ast D) = \mathcal{E}(\ast D)$, we can identify morphisms $\rho_{\mathcal{E},m'D,m}$ and $\rho_{\mathcal{E},m,m'}$.

For any bounded complex \mathcal{K} of sheaves of \mathbb{C}-vector spaces on X, let us denote by $\mathcal{K}^\vee = R\text{Hom}_{\mathcal{O}_X}(\mathcal{K}, \mathcal{C}_X)$ its Verdier dual.

The dual local system \mathcal{L}^\vee appears as the local system of the horizontal sections of the dual ILC \mathcal{E}^\ast. We have the following theorem (see [3], th. 4.1 and [4] th. (2.1.1)):

(1.3) **Theorem.** Let \mathcal{E} be an ILC (with respect to the divisor D) and let \mathcal{L} be the local system of its horizontal sections on $U = X - D$. The following properties are equivalent:

1) The canonical morphism $\Omega^\bullet_X(\log D)(\mathcal{E}) \to Rj_* \mathcal{L}$ is an isomorphism in the derived category of complexes of sheaves of complex vector spaces.

2) The inclusion $\Omega^\bullet_X(\log D)(\mathcal{E}) \hookrightarrow \Omega^\bullet_X(\mathcal{E}(\ast D))$ is a quasi-isomorphism.

3) The morphism $\rho_{\mathcal{E},1} : \mathcal{D}_X \otimes_{\mathcal{D}_X(\log D)} L \mathcal{E}(D) \to \mathcal{E}(\ast D)$ is an isomorphism in the derived category of left \mathcal{D}_X-modules.

4) The complex $\mathcal{D}_X \otimes_{\mathcal{D}_X(\log D)} L \mathcal{E}(D)$ is concentrated in degree 0 and the \mathcal{D}_X-module $\mathcal{D}_X \otimes_{\mathcal{D}_X(\log D)} \mathcal{E}(D)$ is holonomic and isomorphic to its localization along D.

Moreover, if D is a Koszul free divisor, the preceding properties are also equivalent to:
5) The canonical morphism \(j^! \mathcal{L} \to \Omega^*_X(\log D)(\mathcal{E}(-D)) \) is an isomorphism in the derived category of complexes of sheaves of complex vector spaces.

For \(D \) a locally quasi-homogeneous free divisor and \(\mathcal{E} = \mathcal{O}_X \), the equivalent properties in theorem \((1.3)\) hold: this is the so called “logarithmic comparison theorem” \([1]\) (see also \([4\text{ th. 4.4]} \) and \([5, \text{ cor. (2.1.3)}]\) for other proofs based on D-module theory).

\((1.4)\) Let \(\mathcal{E} \) be an ILC (with respect to \(D \)) and \(p \) a point in \(D \). Let \(f \in \mathcal{O} = \mathcal{O}_{X,p} \) be a reduced local equation of \(D \) and let us write \(D = D_{X,p}, V_0 = D_X(\log D)_p \) and \(E = \mathcal{E}_p \). We know from \([5, \text{ lemma (3.2.1)}]\) that the ideal of polynomials \(b(s) \in \mathbb{C}[s] \) such that \(b(s)Ef^* \subset D[s] \cdot (Ef^{s+1}) \subset E[f^{-1}, s]f^s \) is generated by a non constant polynomial \(b_{\mathcal{E},p}(s) \). By the coherence of the involved objects we deduce that \(b_{\mathcal{E},q}(s) \mid b_{\mathcal{E},p}(s) \) for \(q \in D \) close to \(p \).

If \(b_{\mathcal{E},p}(s) \) has some integer root, let us call \(\kappa(\mathcal{E}, p) \) the minimum of those roots. If not, let us write \(\kappa(\mathcal{E}, p) = +\infty \).

Let us call \(\kappa(\mathcal{E}) = \inf \{ \kappa(\mathcal{E}, p) \mid p \in D \} \in \mathbb{Z} \cup \{ \pm \infty \} \).

From now on let us suppose that \(D \) is a locally quasi-homogeneous free divisor.

\((1.5)\) \textbf{Theorem.} \(\text{Under the above hypothesis, if } \kappa(\mathcal{E}) > -\infty, \text{ then the morphism} \)

\[\rho_{\mathcal{E}, k} : D_X \otimes_{D_X(\log D)} \mathcal{E}(kD) \to \mathcal{E}(\ast D) \] \[(3) \]

is an isomorphism in the derived category of left \(D_X \)-modules, for all \(k \geq -\kappa(\mathcal{E}) \).

\textbf{Proof.} \(\text{It is a straightforward consequence of } \([3, \text{ th. 5.6]\) and theorem (3.2.6) of } \([3]\) \text{ and its proof.} \)

\(\text{Q.E.D.} \)

Let us note that the hypothesis \(\kappa(\mathcal{E}) > -\infty \) in theorem \((1.5)\) holds locally on \(X \).

In the situation of theorem \((1.5)\) if \(\mathcal{L} \) is the local system of the horizontal sections of \(\mathcal{E} \) on \(U = X - D \), then the derived direct image \(Rj_* \mathcal{L} \) is canonically isomorphic (in the derived category) to the de Rham complex of the holonomic \(D_X \)-module \(D_X \otimes_{D_X(\log D)} \mathcal{E}(kD) \):

\[\text{DR} \left(D_X \otimes_{D_X(\log D)} \mathcal{E}(kD) \right) = \text{DR} \left(D_X \otimes_{D_X(\log D)} \mathcal{E}(\ast D) \right) \simeq \]

\[\text{DR} \mathcal{E}(\ast D) \simeq \Omega^*_X(\mathcal{E}(\ast D)) \simeq Rj_* \mathcal{L}. \]

Proceeding as above for the dual ILC \(\mathcal{E}^* \), we find that if \(\kappa(\mathcal{E}^*) > -\infty \), then we have that the canonical morphism

\[\text{DR} \left(D_X \otimes_{D_X(\log D)} \mathcal{E}^*(k'D) \right) \to Rj_* \mathcal{L}^\vee \]

is an isomorphism in the derived category for \(k' \geq -\kappa(\mathcal{E}^*) \).
Let us denote by
\[g_{\xi,k,k'} : D_X \otimes_{D_X(\text{log }D)} E((1-k')D) \to D_X \otimes_{D_X(\text{log }D)} E(kD), \]
the \(D_X \)-linear morphism induced by the inclusion \(E((1-k')D) \subset E(kD) \), \(1-k' \leq k \), and by \(IC_X(L) \) the intersection complex of Deligne-Goresky-MacPherson associated with \(L \), which is described as the intermediate direct image \(j_*L \), i.e. the image of \(j_*L \to Rj_*L \) in the category of perverse sheaves (cf. \[11 \], def. 1.4.22).

The following theorem describes the “intersection \(D_X \)-module” corresponding to \(IC_X(L) \) by the Riemann-Hilbert correspondence of Mebkhout-Kashiwara \[13 \, 16 \, 17 \].

1.6 THEOREM. Under the above hypothesis, we have a canonical isomorphism in the category of perverse sheaves on \(X \),
\[IC_X(L) \simeq DR(\text{Im } g_{\xi,k,k'}), \]
for \(k \geq -\kappa(\xi) \), \(k' \geq -\kappa(\xi^*) \), and \(1-k' \leq k \),

PROOF. Using our duality results in \[3 \, 8 \] the Local Duality Theorem for holonomic \(D_X \)-modules (\[8 \], ch. I, th. (4.3.1); see also \[22 \]) and theorem (1.5), we obtain
\[DR(D_X \otimes_{D_X(\text{log }D)} E((1-k')D)) \simeq DR(D_X \otimes_{D_X(\text{log }D)} E^*(k'D)^*(D)) \simeq \]
\[DR(D\ e(D_X \otimes_{D_X(\text{log }D)} E^*(k'D))) \simeq \left[DR(D_X \otimes_{D_X(\text{log }D)} E^*(k'D)) \right]^\vee \simeq \]
\[[Rj_*L]^\vee \simeq j_*L. \]

On the other hand, the canonical morphism \(j_*L \to Rj_*L \) corresponds, through the de Rham functor, to the \(D_X \)-linear morphism \(g_{\xi,k,k'} \), and the theorem is a consequence of the Riemann-Hilbert correspondence which says that the de Rham functor establishes an equivalence of abelian categories between the category of regular holonomic \(D_X \)-modules and the category of perverse sheaves on \(X \).

Q.E.D.

1.7 REMARK. For \(E = \mathcal{O}_X \), one has \(E^* = \mathcal{O}_X \) and there are examples where morphisms \(\rho_{\alpha,k} \) in \[3 \] are never isomorphisms (\[3 \], ex. 5.3). Nevertheless, for \(k = k' = 1 \) the image of the morphism
\[g_{\mathcal{O}_X,1,1} : D_X \otimes_{D_X(\text{log }D)} \mathcal{O}_X \to D_X \otimes_{D_X(\text{log }D)} \mathcal{O}_X (D) \]
is always (canonically isomorphic to) \(\mathcal{O}_X \), which is the regular holonomic \(D_X \)-module corresponding by the Riemann-Hilbert correspondence to \(IC_X(\mathcal{O}_U) = \mathbb{C}_X \), where \(\mathbb{C}_U \) is the local system of horizontal sections of \(\mathcal{O}_X \) on \(U \). To see this, let us work locally as in \[11 \]. Then, morphism \(g_{\mathcal{O}_X,1,1} \) is given at point \(p \) by
\[\mathcal{P} \in D_{X,p}/D_{X,p}(\delta_1, \ldots, \delta_n) \mapsto \mathcal{P}j \in D_{X,p}/D_{X,p}(\delta_1 + \alpha_1, \ldots, \delta_n + \alpha_n) \]
and the stalk at \(p \) of \(\text{Im } g_{\mathcal{O}_X,1,1} \) is given by \(D_{X,p}/J \) where \(J \) is the left ideal
\[J = \{ P \in D_{X,p} \mid Pf \in D_{X,p}(\delta_1 + \alpha_1, \ldots, \delta_n + \alpha_n) \}. \]
By Saito’s criterion [28] we can suppose
\[
\begin{pmatrix}
\delta_1 \\
\vdots \\
\delta_n
\end{pmatrix} = A \begin{pmatrix}
\frac{\partial}{\partial x_1} \\
\vdots \\
\frac{\partial}{\partial x_n}
\end{pmatrix}
\]
where \(A\) is a \(n \times n\) matrix with entries in \(\mathcal{O}_{X,p}\) and \(\det A = f\). Writing \(B = \text{adj}(A)^t\) we obtain
\[
B \left(\begin{pmatrix}
\delta_1 \\
\vdots \\
\delta_n
\end{pmatrix} \right) = f \left(\begin{pmatrix}
\frac{\partial}{\partial x_1} \\
\vdots \\
\frac{\partial}{\partial x_n}
\end{pmatrix} \right) \text{ eval. on } f \rightarrow \begin{pmatrix}
\alpha_1 \\
\vdots \\
\alpha_n
\end{pmatrix} = \begin{pmatrix}
\frac{\partial f}{\partial x_1} \\
\vdots \\
\frac{\partial f}{\partial x_n}
\end{pmatrix}.
\]

Then
\[
\begin{pmatrix}
\frac{\partial}{\partial x_1} \\
\vdots \\
\frac{\partial}{\partial x_n}
\end{pmatrix} f = f \left(\begin{pmatrix}
\frac{\partial}{\partial x_1} \\
\vdots \\
\frac{\partial}{\partial x_n}
\end{pmatrix} \right) + \begin{pmatrix}
\frac{\partial f}{\partial x_1} \\
\vdots \\
\frac{\partial f}{\partial x_n}
\end{pmatrix} = \cdots = B \left(\begin{pmatrix}
\delta_1 + \alpha_1 \\
\vdots \\
\delta_n + \alpha_n
\end{pmatrix} \right)
\]
and \(\frac{\partial}{\partial x_i} \in J\) for \(i = 1, \ldots, n\). Since \(J\) is is not the total ideal, we deduce by maximality that \(J\) is the ideal generated by the \(\frac{\partial}{\partial x_i}\) and \(\mathcal{D}_{X,p}/J \simeq \mathcal{O}_{X,p}\). To conclude, one easily sees, from the fact that morphism \(\rho_{\mathcal{O}_{X,1,1}}\) factors through
\[
a \in \mathcal{O}_X \mapsto 1 \otimes a \in \mathcal{D}_X \otimes_{\mathcal{D}_X(log D)} \mathcal{O}_X(D)
\]
[it is \(\mathcal{D}_X\)-linear since, for any derivation \(\delta\) and any holomorphic function \(a\), \(\delta(1 \otimes a) = \delta \otimes a = \delta \otimes (f f^{-1} a) = (\delta f) \otimes (f^{-1} a) = 1 \otimes (\delta f)(f^{-1} a) = 1 \otimes (\delta a)\)] that the isomorphisms above at different \(p\) glue together and give a global isomorphism \(\text{Im} \rho_{\mathcal{O}_{X,1,1}} \simeq \mathcal{O}_X\).

This example suggests studying the comparison between \(\text{DR}(\text{Im} \rho_{\mathcal{E},k,k'})\), \(k,k' \gg 0\), and \(\text{IC}_X(\mathcal{L})\) in theorem [1.6], independent of the fact that \(\rho_{\mathcal{E},k}\) and \(\rho_{\mathcal{E}',k'}\) are isomorphisms or not.

2 Bernstein-Sato polynomials for cyclic integrable logarithmic connections

In the situation of [1.4] let us assume that \(E\) is a cyclic \(\mathcal{V}_0\)-module generated by an element \(e \in E\). The following result is proved in [10] prop. (3.2.3)).

(2.1) **Proposition.** Under the above conditions, the polynomial \(b_{\mathcal{E},p}(s)\) coincides with the Bernstein-Sato polynomial \(b_e(s)\) of \(e\) with respect to \(f\), where \(e\) is considered to be an element of the holonomic \(\mathcal{D}\)-module \(E[f^{-1}]\) (cf. [12]).

(2.2) Let \(\Theta_{f,s} \subset \mathcal{D}[s]\) be the set of operators in \(\text{ann}_{\mathcal{D}[s]} f^s\) of total order \((in s and in the derivatives) \leq 1\). The elements of \(\Theta_{f,s}\) are of the form \(\delta - \alpha s\) with \(\delta \in \text{Der}_C(\mathcal{O}), \alpha \in \mathcal{O}\) and \(\delta(f) = \alpha f\). In particular \(\Theta_{f,s} \subset \mathcal{V}_0[s]\).

The \(\mathcal{O}\)-linear map
\[
\delta \in \text{Der}(\text{log } D)_p \mapsto \delta - \frac{\delta(f)}{f} s \in \Theta_{f,s}
\]
is an isomorphism of Lie-Rinehart algebras over \((\mathbb{C}, \mathcal{O})\) and extends to a unique ring isomorphism \(\Phi : \mathcal{V}_0[s] \to \mathcal{V}_0[s]\) with \(\Phi(s) = s\) and \(\Phi(a) = a\) for all \(a \in \mathcal{O}\).

Let us note that \(\Phi^{-1}(\delta) = \delta + \frac{\delta(f)}{s}\) for each \(\delta \in \text{Der}(\log D)_{P}\).

It is clear that \(E[s]f^s\) is a sub-\(\mathcal{V}_0[s]\)-module of \(E[s, f^{-1}]f^s\) and that for any \(P \in \mathcal{V}_0[s]\) and any \(e' \in E[s]\), the following relation holds

\[
(Pe')f^s = \Phi(P)(e'f^s).
\]

(5)

(2.3) Proposition. Under the above conditions, the following relation holds

\[
\text{ann}_{\mathcal{V}_0[s]}(ef^s) = \mathcal{V}_0[s] \cdot \Phi(\text{ann}_{\mathcal{V}_0}e).
\]

Proof. The inclusion \(\supseteq\) comes from (5). For the other inclusion, let \(Q \in \text{ann}_{\mathcal{V}_0[s]}(ef^s)\) and let us write \(\Phi^{-1}(Q) = \sum_{i=1}^{d} P_is^i\) with \(P_i \in \mathcal{V}_0\). We have

\[
0 = Q(ef^s) = (\Phi^{-1}(Q)e)f^s = \left(\sum_{i=1}^{d} (P_is^i)f^s\right)
\]

and then \(P_i \in \text{ann}_{\mathcal{V}_0}e\). Therefore

\[
Q = \Phi\left(\sum_{i=1}^{d} P_is^i\right) = \sum_{i=1}^{d} \Phi(P_i)s^i \in \mathcal{V}_0[s] \cdot \Phi(\text{ann}_{\mathcal{V}_0}e).
\]

Q.E.D.

(2.4) Proposition. Under the above conditions, if \(D\) is a locally quasi-homogeneous free divisor, then

\[
\text{ann}_{D[s]}(ef^s) = D[s] \cdot \text{ann}_{\mathcal{V}_0[s]}(ef^s).
\]

Proof. From [4] we know that \(E[s]f^s = \mathcal{V}_0[s] \cdot (ef^s)\), and from [4] cor. (3.1.2)] we know that the morphism

\[
\rho_{E,s} : P \otimes (e'f^s) \in D[s] \otimes_{\mathcal{V}_0[s]} E[s]f^s \mapsto P(e'f^s) \in D[s] \cdot (E[s]f^s) = D[s] \cdot (ef^s)
\]

is an isomorphism of left \(D[s]\)-modules. Therefore

\[
\text{ann}_{D[s]}(ef^s) = D[s] \cdot \text{ann}_{\mathcal{V}_0[s]}(ef^s).
\]

Q.E.D.

(2.5) Corollary. Under the above conditions, if \(D\) is a locally quasi-homogeneous free divisor, then

\[
\text{ann}_{D[s]}(ef^s) = D[s] \cdot \Phi(\text{ann}_{\mathcal{V}_0}e).
\]

Proof. It follows from propositions [2.3] and [2.4] Q.E.D.
(2.6) Remark. Theorems (1.5) and (1.6), proposition (2.4) and corollary (2.5) remain true if we only assume that our divisor D is Koszul free and of commutative linear type, i.e. its jacobian ideal is of linear type (see [3, §3]).

(2.7) Remark. As we shall see in sections 3 and 4, theorem (1.6), proposition (2.1) and corollary (2.5) provide an effective method of computing the intersection \mathcal{D}_X-module corresponding to $\text{IC}(L)$ in terms of the ILC \mathcal{E}, at least if D is a locally quasi-homogeneous free divisor, or more generally, if D is Koszul free and of commutative linear type (see remark (2.6)).

(2.8) Remark. In the particular case of $E = \mathcal{O}_X$ and $E = \mathcal{O}$, corollary (2.5) says that

$$\text{ann}_{\mathcal{D}[s]}(f^s) = \mathcal{D}[s] \cdot (\delta_1 - \alpha_1 s, \ldots, \delta_n - \alpha_n s),$$

where $\delta_1, \ldots, \delta_n$ is a local basis of $\text{Der}(\log D)_p$ and $\delta_i(f) = \alpha_i f$ (see corollary 5.8, (b) in [4]).

(2.9) Example. Let us suppose that $D \subset X$ is a non-necessarily free divisor and let $f = 0$ be a reduced local equation of D at a point $p \in D$. Let $\{\delta_1, \ldots, \delta_m\}$ a system of generators of $\text{Der}(\log D)_p$ and let us write $\delta_i(f) = \alpha_i f$.

Let us call $\text{ann}_{\mathcal{D}[s]}^{(1)}(f^s)$ the ideal of $\mathcal{D}[s]$ generated by $\Theta_{f,s}$ (see (2.2)):

$$\text{ann}_{\mathcal{D}[s]}^{(1)}(f^s) = \mathcal{D}[s] \cdot (\delta_1 - \alpha_1 s, \ldots, \delta_m - \alpha_m s) \subset \text{ann}_{\mathcal{D}[s]}(f^s).$$

The Bernstein functional equation for f

$$b(s)f^s = P(s)f^{s+1}$$

means that the operator $b(s) - P(s)f$ belongs to the annihilator of f^s over $\mathcal{D}[s]$. Then, an explicit knowledge of the ideal $\text{ann}_{\mathcal{D}[s]}(f^s)$ allows us to find $b(s)$ by computing the ideal

$$\mathbb{C}[s] \cap (\mathcal{D}[s] \cdot f + \text{ann}_{\mathcal{D}[s]}(f^s)),
$$

(see [23]). However, the ideal $\text{ann}_{\mathcal{D}[s]}(f^s)$ is in general difficult to compute.

When D is a locally quasi-homogeneous free divisor, or more generally, a divisor of differential linear type ([3, def. (1.4.5)]), $\text{ann}_{\mathcal{D}[s]}(f^s) = \text{ann}_{\mathcal{D}[s]}^{(1)}(f^s)$ and the computation of $b(s)$ is in principle easier.

But there are other examples where the Bernstein polynomial $b(s)$ belongs to

$$\mathbb{C}[s] \cap (\mathcal{D}[s] \cdot f + \text{ann}_{\mathcal{D}[s]}^{(1)}(f^s))$$

even if $\text{ann}_{\mathcal{D}[s]}(f^s) \neq \text{ann}_{\mathcal{D}[s]}^{(1)}(f^s)$. For instance, when $X = \mathbb{C}^3$ and $f = x_1x_2(x_1 + x_2)(x_1 + x_2x_3)$ (see example 6.2 in [4]) or in any of the examples in page 445 of [9]. In all these examples the divisor is free and satisfies the logarithmic comparison theorem.
3 Integrable logarithmic connections along quasi-homogeneous plane curves

Let $D \subset X = \mathbb{C}^2$ be a divisor defined by a reduced polynomial equation $h(x_1, x_2)$, which is quasi-homogeneous with respect to the strictly positive integer weights ω_1, ω_2 of the variables x_1, x_2. We denote by $\omega(f)$ the weight of a quasi-homogeneous polynomial $f(x_1, x_2)$. The divisor D is free, a global basis of $\text{Der}(\log D)$ is $\{\delta_1, \delta_2\}$, where

\[
\begin{pmatrix}
\delta_1 \\
\delta_2
\end{pmatrix} = \begin{pmatrix}
\omega_1 x_1 & \omega_2 x_2 \\
-h_{x_2} & h_{x_1}
\end{pmatrix} \begin{pmatrix}
\frac{\partial}{\partial x_1} \\
\frac{\partial}{\partial x_2}
\end{pmatrix}.
\]

We have:
- $\delta_1(h) = \omega(h)h$, $\delta_2(h) = 0$,
- the determinant of the coefficient matrix is equal to $\omega(h)h$,
- $[\delta_1, \delta_2] = c\delta_2$, with $c = \omega(h) - \omega_1 - \omega_2$.

We consider a logarithmic connection $\mathcal{E} = \bigoplus_{i=1}^n \mathcal{O}_X e_i$ given by actions:

\[
\begin{align*}
\delta_1 \cdot \begin{pmatrix} e_1 \\ \vdots \\ e_n \end{pmatrix} &= A_1 \begin{pmatrix} e_1 \\ \vdots \\ e_n \end{pmatrix}, \\
\delta_2 \cdot \begin{pmatrix} e_1 \\ \vdots \\ e_n \end{pmatrix} &= A_2 \begin{pmatrix} e_1 \\ \vdots \\ e_n \end{pmatrix}.
\end{align*}
\]

For \mathcal{E} to be integrable, the following integrability condition

\[
\delta_1(A_2) - \delta_2(A_1) + [A_2, A_1] = cA_2
\]

must hold.

(3.1) We shall focus on the case where A_1, A_2 are $n \times n$ matrices satisfying \mathbb{F} and of the form:

\[
A_1 = \begin{pmatrix}
-a & 0 & 0 & \cdots & 0 & 0 \\
-\delta_2(a) & -a+c & 0 & \cdots & 0 & 0 \\
-\delta_2^2(a) & -\frac{n-2}{2} \delta_2(a) & -a+2c & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots & \vdots \\
-\delta_2^{n-2}(a) & -\binom{n-2}{1} \delta_2^{n-3}(a) & -\binom{n-2}{2} \delta_2^{n-4}(a) & \cdots & -a+(n-2)c & 0 \\
-\delta_2^{n-1}(a) & -\binom{n-1}{1} \delta_2^{n-2}(a) & -\binom{n-1}{2} \delta_2^{n-3}(a) & \cdots & -\binom{n-1}{n-2} \delta_2(a) & -a+(n-1)c
\end{pmatrix},
\]

\[
A_2 = \begin{pmatrix}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
-b_0 & -b_1 & -b_2 & \cdots & -b_{n-1}
\end{pmatrix},
\]

with a, b_0, \ldots, b_{n-1} polynomials. Let us call $\mathcal{E}_{a,b}$ the corresponding ILC.

(3.2) Lemma. The $\mathcal{D}_X(\log D)$-module $\mathcal{E}_{a,b}$ is generated by e_1 (so it is cyclic) and the $\mathcal{D}_X(\log D)$-annihilator of e_1 is the left ideal $J_{a,b}$ generated by $\delta_1 + a$ and
\[\delta_2^g + b_{n-1}\delta_2^{g-1} + \cdots + b_1\delta_2 + b_0. \] So, the \(D_X(\log D) \)-module \(\mathcal{E}_{a,b} \) is isomorphic to \(D_X(\log D)/J_{a,b} \).

Proof. The first part is clear since \(\delta_2 \cdot e_i = e_{i+1} \) for \(i = 1, \ldots, n - 1 \). For the second part, the inclusion \(J_{a,b} \subset \text{ann}_{D_X(\log D)}(e_1) \) is also clear. To prove the opposite inclusion, we use the fact that any germ of logarithmic differential operator \(P \) has a unique expression as a sum \(P = \sum_{i,j} a_{i,j}\delta_1^i\delta_2^j \), where the \(a_{i,j} \) are germs of holomorphic functions (see section (1.1)).

(3.3) **Remark.** Theorem 2.1.4 in [2] says that \(D_X(\log D) = \mathcal{O}_X[\delta_1, \delta_2] \) with relations:

\[[\delta_1, f] = \delta_1(f), [\delta_2, f] = \delta_2(f), [\delta_1, \delta_2] = c\delta_2, \quad f \in \mathcal{O}_X. \]

In particular, we can define the support and the exponent of any germ of logarithmic differential operator \(P \) (or of any polynomial logarithmic differential operator in the Weyl algebra) by using the (unique) expression \(P = \sum_{i,j} a_{i,j}\delta_1^i\delta_2^j \), and we obtain a division theorem and a notion of Gröbner basis for ideals. Under this scope, the integrability condition reads out as the fact that the generators

\[g_1 = \delta_1 + a, \quad g_2 = \delta_2^n + b_{n-1}\delta_2^{n-1} + \cdots + b_0 \]

of \(J_{a,b} \) satisfy Buchberger’s criterion, i.e. that \(\delta_2^2g_1 - \delta_1g_2 \) has a vanishing remainder with respect to the division by \(g_1, g_2 \), and then they form a Gröbner basis of \(J_{a,b} \).

(3.4) **Corollary.** The \(D_X \)-module \(D_X \otimes_{D_X(\log D)} \mathcal{E}_{a,b} \) is isomorphic to \(D_X/J_{a,b} \), where \(J_{a,b} = D_X(\delta_1 + a, \delta_2^n + b_{n-1}\delta_2^{n-1} + \cdots + b_0) \).

For any integer \(k \), we can consider the logarithmic connections \(\mathcal{E}_{a,b}(kD) \) and \(\mathcal{E}^*_{a,b} \) (see section (1.1)).

(3.5) **Lemma.** With the above notations, the ILC \(\mathcal{E}_{a,b}(kD) \) and \(\mathcal{E}_{a+\omega(h)k} \) are isomorphic.

Proof. An \(\mathcal{O}_X \)-basis of \(\mathcal{E}_{a,b}(kD) \) is \(\{ e_i^k = e_i \otimes h^{-k} \}_{i=1}^n \) and the action of \(\text{Der}(\log D) \) over this basis is given by (see [2]):

\[\delta_1 \cdot e_i^k = (\delta_1 \cdot e_i) \otimes h^{-k} + e_i \otimes (-\omega(h)kh^{-k}), \quad \delta_2 \cdot e_i^k = (\delta_2 \cdot e_i) \otimes h^{-k}. \]

Then, the isomorphism of \(\mathcal{O}_X \)-modules

\[\sum_{i=1}^n b_ie_i \in \mathcal{E}_{a+\omega(k)k} \rightarrow \sum_{i=1}^n b_ie_i^k \in \mathcal{E}_{a,b}(kD) \]

is clearly \(D_X(\log D) \)-linear. Q.E.D.

The proof of the following proposition is clear.

(3.6) **Proposition.** The morphism

\[g_{\mathcal{E}_{a,b},k,k'} : D_X \otimes_{D_X(\log D)} \mathcal{E}_{a,b}(1-k')D \rightarrow D_X \otimes_{D_X(\log D)} \mathcal{E}_{a,b}(kD), \]
defined in (4), corresponds, through the isomorphisms in corollary (3.4) and lemma (3.5), to the morphism
\[\varphi_{E,a,b,c,k,k'} : \mathcal{P} \in \mathcal{D}_{X/I_{\omega(h)^{1-k'}}} \mapsto \mathcal{P}h^{k-k'-1} \in \mathcal{D}_{X/I_{\omega(h)^{k}}} \]

For the dual connection \(E^*_{a,b,c} \), in order to simplify, let us concentrate on case \(n = 2 \), where the integrability condition (6) reduces to:
\[(\delta_1 - c)(b_1) = 2\delta_2(a), \quad (\delta_1 - 2c)(b_0) = \delta_2^2(a) + b_1\delta_2(a). \]
(7)

(3.7) Lemma. With the above notations, the ILC \(E^*_{a,b,c} \) and \(E_{c-a,b,c}^* \), with \(b = (b_1, b_0) \) and \(b' = (-b_1, b_0 - \delta_2(b_1)) \), are isomorphic.

Proof. The action of \(\text{Der}(\log D) \) over the dual basis \(\{ e_1^*, e_2^* \} \) in \(E^*_{a,b,c} \) is given by:
\[(\delta_1 \cdot e_j^*)(e_k) = \delta_1(e_j^*(e_k)) - e_j^*(\delta_1 e_k) = -e_j^*(\delta_1 e_k), \]
for \(i = 1, 2 \) and \(j, k = 1, 2 \) (see (2)). Then
\[\delta_1 \left(\begin{array}{c} e_1^* \\ e_2^* \end{array} \right) = -A_1^t \left(\begin{array}{c} e_1^* \\ e_2^* \end{array} \right), \quad \delta_2 \left(\begin{array}{c} e_1^* \\ e_2^* \end{array} \right) = -A_2^t \left(\begin{array}{c} e_1^* \\ e_2^* \end{array} \right). \]

Choosing the new basis \(\{ w_1 = e_2^*, w_2 = -e_1^* + b_1e_2^* \} \) of \(E^*_{a,b,c} \), we obtain
\[\delta_1 \left(\begin{array}{c} w_1 \\ w_2 \end{array} \right) = \cdots = \left(\begin{array}{cc} a - c & 0 \\ \delta_2(a) & a \end{array} \right) \left(\begin{array}{c} w_1 \\ w_2 \end{array} \right), \]
\[\delta_2 \left(\begin{array}{c} w_1 \\ w_2 \end{array} \right) = \cdots = \left(\begin{array}{cc} 0 & 1 \\ \delta_2(b_1) - b_0 & b_1 \end{array} \right) \left(\begin{array}{c} w_1 \\ w_2 \end{array} \right) \]
and the isomorphism of \(\mathcal{O}_X \)-modules
\[\sum_{i=1}^{2} b_i w_i \in E^*_{a,b,c} \mapsto \sum_{i=1}^{2} b_i e_i \in E_{c-a,b,c}^* \]

is clearly \(\mathcal{D}_X(\log D) \)-linear. Q.E.D.

4 Some explicit examples

In this section we consider the case where \(D \subset X = \mathbb{C}^2 \) is defined by the reduced equation \(h = x_1^2 - x_2^3 \), and then \(\omega(x_1) = 3, \omega(x_2) = 2, \omega(h) = 6 \) and the basis of \(\text{Der}(\log D) \) is \(\{ \delta_1, \delta_2 \} \), with
\[\left(\begin{array}{c} \delta_1 \\ \delta_2 \end{array} \right) = \left(\begin{array}{cc} 3x_1 & 2x_2 \\ 3x_2^2 & 2x_1 \end{array} \right) \left(\begin{array}{c} \frac{\partial}{\partial x_1} \\ \frac{\partial}{\partial x_2} \end{array} \right), \]
- \(\delta_1(h) = 6h, \quad \delta_2(h) = 0, \)
- the determinant of the coefficient matrix is equal to \(6h, \)
- \([\delta_1, \delta_2] = \delta_2 \quad (c = 1). \)
(4.1) Since the ILC $\mathcal{E}_{a,b}$ and the ideals $I_{a,b}$ in corollary [3.4] are defined globally by differential operators with polynomial coefficients and D has a global polynomial equation, the study of morphism

$$\rho_{\mathcal{E}_{a,b},k} : \mathcal{D}_X^L \otimes_{\mathcal{D}_X(\log D)} \mathcal{E}_{a,b}(kD) \to \mathcal{E}_{a,b}(*D)$$

can be done globally at the level of the Weyl algebra $\mathcal{W}_2 = \mathbb{C}[x_1, x_2, \frac{\partial}{\partial x_1}, \frac{\partial}{\partial x_2}]$.

The integrability conditions in \mathcal{I} (for $n = 2$) become in our case

$$(\delta_1 - 1)(b_1) = 2\delta_2(a), \quad (\delta_1 - 2)(b_0) = \delta_2^2(a) + b_1\delta_2(a). \quad (8)$$

Once a is fixed, it allows us to determine, uniquely, b_1 (the operator $\delta_1 - 1$ is injective), and to also determine b_0 up to a term ex_2, $e \in \mathbb{C}$ (the kernel of the operator $\delta_1 - 2$ is generated by x_2). In order to simplify, let us take

$$a = \lambda + mx_1 + nx_2,$$

where $\underline{\mu} = (\lambda, m, n)$ are complex parameters, and then

$$b_1 = 2mx_2^2 + 2nx_1$$

and

$$b_0 = ex_2 + 3nx_2^2 + 4mx_1x_2 + n^2x_1^2 + 2mnx_1x_2 + m^2x_2^2,$$

with e another complex parameter. For convenience (see the rational factorization of $B(s)$ below), let us consider another complex parameter ν and make $e = \nu - \nu^2$.

Let us define the family of ILC of rank two, $\mathcal{F}_{\nu,\underline{\mu}} := \mathcal{E}_{a,b}$ (see [3.1]), with a, b_0, b_1 as above. We have $\mathcal{F}_{\nu,\underline{\mu}} = \mathcal{D}_X(\log D) \cdot e_1$ and $\text{ann}_{\mathcal{D}_X(\log D)} e_1 = \mathcal{D}_X(\log D)(g_1, g_2)$, with $g_1 = \delta_1 + a$ and $g_2 = \delta_2^2 + b_1\delta_2 + b_0$ (see lemma [3.2]). It is clear that $\mathcal{F}_{\nu,\underline{\mu}} = \mathcal{F}_{1-\nu,\underline{\mu}}$.

The conclusion of corollary [2.5] can be globalized and we obtain

$$\text{ann}_{\mathcal{D}_X[s]}(e_1h^* = \mathcal{D}_X[s](\Phi(g_1), \Phi(g_2)) = \mathcal{D}_X[s](\delta_1 + a - 6s, g_2)$$

and

$$\text{ann}_{\mathcal{W}_2[s]}(e_1h^*) = \mathcal{W}_2[s](\delta_1 + a - 6s, g_2).$$

Let us consider the Weyl algebra with parameters

$$\mathcal{W}' = \mathbb{C} \left[\lambda, m, n, \nu, x_1, x_2, \frac{\partial}{\partial x_1}, \frac{\partial}{\partial x_2}, s\right]$$

and the left ideal I generated by

$$h, \quad \delta_1 + a - 6s, \quad \delta_2^2 + b_1\delta_2 + b_0.$$

By a Gröbner basis computation with an elimination order, for example, with the help of [11], we compute the generator $B(s)$ of the ideal $I \cap \mathbb{C}[s]$ and operators $P(s), C(s), D(s) \in \mathcal{W}'$ such that

$$B(s) = P(s)h + C(s)(\delta_1 + a - 6s) + D(s)(\delta_2^2 + b_1\delta_2 + b_0).$$
We find
\[
B(s) = \left(s - \frac{\lambda - 5}{6}\right) \left(s - \frac{\lambda - 8}{6}\right) \left(s - \frac{\lambda - \nu - 6}{6}\right) \left(s - \frac{\lambda + \nu - 7}{6}\right).
\]

For \(\lambda, \nu \in \mathbb{C}\), let us call \(B_{\lambda,\nu}(s) \in \mathbb{C}[s]\) the polynomial obtained from \(B(s)\) in the obvious way. We obtain then for each \(\nu, \lambda, m, n \in \mathbb{C}\) the global Bernstein-Sato functional equation
\[
B_{\lambda,\nu}(s) e_1 h^s = P(s) \left(e_1 h^{s+1}\right)
\]
in \(\mathcal{F}_{\nu,\mu}[h^{-1}, s]h^s\). Therefore, \(b_{\mathcal{F}_{\nu,\mu}}(s) | B_{\lambda,\nu}(s)\) (see prop. (2.1)) for any \(p \in D^1\) and
\[
\kappa(\mathcal{F}_{\nu,\mu}) \geq \tau(\lambda, \nu) := \min\{\text{integer roots of } B_{\lambda,\nu}(s)\} \in \mathbb{Z} \cup \{+\infty\}.
\]

We can apply theorem (1.5) to deduce that morphism
\[\rho_{\mathcal{F}_{\nu,\mu}} : \mathcal{D}_X \otimes_{\mathcal{D}_X(\log D)} \mathcal{F}_{\nu,\mu}(kD) \to \mathcal{F}_{\nu,\mu}(\ast D)\]
is an isomorphism for all \(k \geq -\tau(\lambda, \nu)\). On the other hand, from lemma (3.7) we know that \((\mathcal{F}_{\nu,\lambda,m,n})^* = \mathcal{F}_{\nu,1-\lambda,-m,-n}\) and then morphism
\[\rho_{\mathcal{F}_{\nu,\mu}}' : \mathcal{D}_X \otimes_{\mathcal{D}_X(\log D)} \mathcal{F}_{\nu,\mu}^*(k'D) \to \mathcal{F}_{\nu,\mu}^*(\ast D)\]
is an isomorphism for all \(k' \geq -\tau(1-\lambda, \nu)\).

The above results can be rephrased in the following way:

1) Morphism
\[\rho_{\mathcal{F}_{\nu,\mu}} : \mathcal{D}_X \otimes_{\mathcal{D}_X(\log D)} \mathcal{F}_{\nu,\mu}(kD) \to \mathcal{F}_{\nu,\mu}(\ast D)\]
is an isomorphism if the four following conditions hold:
- \(\lambda + 6k \neq -1, -7, -13, -19, \ldots\)
- \(\lambda + 6k \neq -2, -4, -10, -16, \ldots\)
- \(\lambda + 6k - \nu \neq 0, -6, -12, -18, \ldots\)
- \(\lambda + 6k + \nu \neq -1, -15, -11, -17, \ldots\)

2) Morphism
\[\rho_{\mathcal{F}_{\nu,\mu}}' : \mathcal{D}_X \otimes_{\mathcal{D}_X(\log D)} \mathcal{F}_{\nu,\mu}^*(k'D) \to \mathcal{F}_{\nu,\mu}^*(\ast D)\]
is an isomorphism if the four following conditions hold:
- \(1 - \lambda + 6k' \neq -1, -7, -13, -19, \ldots\)
- \(1 - \lambda + 6k' \neq -2, -4, -10, -16, \ldots\)
- \(1 - \lambda + 6k' - \nu \neq 0, -6, -12, -18, \ldots\)
- \(1 - \lambda + 6k' + \nu \neq -1, -5, -11, -17, \ldots\)

or equivalently, if the four following conditions hold:
- \(\lambda - 6k' \neq 2, 8, 14, 20, \ldots\)
- \(\lambda - 6k' \neq -1, 5, 11, 17, \ldots\)
- \(\lambda + \nu - 6k' \neq 1, 7, 13, 19, \ldots\)
- \(\lambda - \nu - 6k' \neq 1, -5, -11, -17, \ldots\)

In particular, if the four following conditions:

\[\text{In fact it is possible to show that } b_{\mathcal{F}_{\nu,\mu,0}}(s) = B_{\lambda,\nu}(s).\]
(i) $\lambda \not\equiv 2 \pmod{6}$ or $\lambda = 2$

(ii) $\lambda \not\equiv 5 \pmod{6}$ or $\lambda = -1$

(iii) $\lambda + \nu \not\equiv 1 \pmod{6}$ or $\lambda + \nu = 1$

(iv) $\lambda - \nu \not\equiv 0 \pmod{6}$ or $\lambda - \nu = 0$

hold, both morphisms

$\rho \iota_{\nu,\mu}^{-1} : \mathcal{D}_X \otimes_{\mathcal{D}_X(\log D)} \mathcal{F}_{\nu,\mu}(D) \to \mathcal{F}_{\nu,\mu}^*(\ast D),$

$\rho \iota_{\nu,\mu}^{-1} : \mathcal{D}_X \otimes_{\mathcal{D}_X(\log D)} \mathcal{F}_{\nu,\mu}^*(D) \to \mathcal{F}_{\nu,\mu}^*(\ast D)$

are isomorphisms.

Let us denote by $\mathcal{L}_{\nu,\mu}$ the local system over $X - D$ of the horizontal sections of $\mathcal{F}_{\nu,\mu}$. By theorem (1.6), we have

$\text{IC}_X(\mathcal{L}_{\nu,\mu}) \simeq \text{DR}(\text{Im} \, \varrho_{\nu,\mu}, 1),$

provided that conditions (i)-(iv) are satisfied.

Proposition (3.6) and (4.1) reduce the computation of $\text{Im} \, \varrho_{\nu,\mu}, 1$ to the computation of the image of the map

$\theta_{\nu,\mu} : \mathcal{I} \in \mathbb{W}_2/\mathbb{W}_2(g_1, g_2) \mapsto \mathcal{I} h \in \mathbb{W}_2/\mathbb{W}_2(g_1 + 6, g_2),$

but $\text{Im} \, \theta_{\nu,\mu} = \mathbb{W}_2/K_{\nu,\mu}$ where

$K_{\nu,\mu} = \{ R \in \mathbb{W}_2 \mid Rh \in \mathbb{W}_2(g_1 + 6, g_2) \}.$

Now, in order to compute generators of $K_{\nu,\mu}$, we proceed as follows. Since $[g_1, g_2] = 2g_2$ (for any ν, μ) and the symbols $\sigma(g_1) = \sigma(\delta_1)$, $\sigma(g_2) = \sigma(\delta_2)^2$ form a regular sequence (D is Koszul free!), we deduce that

$\sigma \left(\mathbb{W}_2(g_1 + 6, g_2) \right) = (\sigma(\delta_1), \sigma(\delta_2)^2)$

and consequently $\sigma \left(K_{\nu,\mu} \right) \subset (\sigma(\delta_1), \sigma(\delta_2)^2) : h$. A straightforward (commutative) computation shows that

$\left(\sigma(\delta_1), \sigma(\delta_2)^2 \right) : h = (\sigma(\delta_1), \sigma(Q_0))$

with $Q_0 = 9x_2 \frac{\partial^2}{\partial x_1^2} - 4 \frac{\partial^2}{\partial x_2^2}$, and

$\sigma(Q_0)h = x_2 \sigma(\delta_1)^2 - \sigma(\delta_2)^2 = x_2 \sigma(\delta_1)\sigma(g_1 + 6) - \sigma(g_2).$ \hfill (10)

Searching to lift the relation (10) to \mathbb{W}_2, we find

$Qh = x_2(\delta_1 + mx_1 + nx_2 + 7 - \lambda)(g_1 + 6) - g_2 + (\lambda^2 - \lambda + \nu - \nu^2)x_2,$

with $Q = Q_0 + 6mx_2 \frac{\partial}{\partial x_1} - 4nx_2 \frac{\partial}{\partial x_2} + m^2x_2 - n^2$. In particular, if condition

$\lambda^2 - \lambda + \nu - \nu^2 = 0 \quad (\iff \lambda - \nu = 0 \; \text{or} \; \lambda + \nu = 1) \hfill (11)$
holds, then $Q \in K_{\nu,\mu}$.

Actually, by using the equality $[Q, g_1] = 4Q$ and the fact that $\sigma(Q) = \sigma(Q_0)$ and $\sigma(g_1) = \sigma(\delta_1)$ also form a regular sequence in $\text{Gr } \mathbb{W}_2$, condition (11) implies that

$$K_{\nu,\mu} = \mathbb{W}_2(g_1, Q), \quad \sigma(K_{\nu,\mu}) = (\sigma(\delta_1), \sigma(Q_0)).$$

On the other hand, since $\sigma(Q_0)$ is not contained in the ideal (x_1, x_2), we finally deduce the following result:

If parameters $\nu, \mu = (\lambda, m, n)$ satisfy conditions (i)-(iv) and (11), then the conormal of the origin $T_0^*(X)$ does not appear as an irreducible component of the characteristic variety of $\text{Im } \theta_{\nu,\mu} = \mathbb{W}_2/K_{\nu,\mu}$, and consequently

$$\text{Ch}(\text{IC}_X(\mathcal{L}_{\nu,\mu})) = \text{Ch} \left(\mathbb{W}_2/K_{\nu,\mu} \right) = \{ \sigma(\delta_1) = \sigma(Q_0) = 0 \} = T_X^* (X) \cup T_0^*(X).$$

The existence of such an example has been suggested by [21], example (3.4), but the question on the values of the parameters ν, μ for which the local system $\mathcal{L}_{\nu,\mu}$ is irreducible will be treated elsewhere.

If condition (11) does not hold, it is not clear that there exists a general expression for a system of generators of $K_{\nu,\mu}$ as before.

(4.2) REMARK. The relationship between the preceding results and examples and the hypergeometric local systems (cf. [23, 24, 29]) is interesting and possibly deserves further work.

References

[1] A.A. Beilinson, J. Bernstein, and P. Deligne. Faisceaux pervers, Astérisque 100. S.M.F., Paris, 1983.

[2] F. J. Calderón-Moreno. Logarithmic differential operators and logarithmic de Rham complexes relative to a free divisor. Ann. Sci. École Norm. Sup. (4), 32(5) (1999), 701–714. [math.AG/9807047].

[3] F. J. Calderón Moreno and L. Narváez Macarro. Locally quasi-homogeneous free divisors are Koszul free. Proc. Steklov Inst. Math., 238 (2002), 72–77.

[4] F. J. Calderón-Moreno and L. Narváez-Macarro. The module $\mathcal{D}f^*$ for locally quasi-homogeneous free divisors. Compositio Math., 134(1) (2002), 59–74. [math.AG/0206262].

[5] F. J. Calderón Moreno and L. Narváez Macarro. Dualité et comparaison sur les complexes de de Rham logarithmiques par rapport aux diviseurs libres. Ann. Inst. Fourier (Grenoble), 55(1), 2005. [math.AG/0411045].

[6] F. J. Calderón Moreno and L. Narváez Macarro. On the logarithmic comparison theorem for integrable logarithmic connections. Preprint, 2006. [math.AG/0603003].

[7] F. J. Castro-Jiménez, D. Mond, and L. Narváez-Macarro. Cohomology of the complement of a free divisor. Trans. A.M.S., 348 (1996), 3037–3049.
[8] F. J. Castro-Jiménez and J. M. Ucha-Enríquez. Free divisors and duality for \mathcal{D}-modules. *Proc. Steklov Inst. Math.*, 238 (2002), 88–96. (math.AG/0103085).

[9] F. J. Castro-Jiménez and J. M. Ucha-Enríquez. Testing the logarithmic comparison theorem for free divisors. *Experiment. Math.*, 13(4) (2004), 441–449.

[10] P. Deligne. *Equations Différentielles à Points Singuliers Réguliers*, Lect. Notes in Math. 163 Springer-Verlag, Berlin-Heidelberg, 1970.

[11] D. R. Grayson and M. E. Stillman. Macaulay 2, a software system for research in algebraic geometry. Available at http://www.math.uiuc.edu/Macaulay2/

[12] M. Kashiwara. On the holonomic systems of linear differential equations II. *Invent. Math.*, 49 (1978), 121–135.

[13] M. Kashiwara. The Riemann-Hilbert problem for holonomic systems. *Publ. Res. Inst. Math. Sci.*, 20(2) (1984), 319–365.

[14] A. Leykin and H. Tsai. D-modules for Macaulay 2. Package included in [11].

[15] Ph. Maisonobe and L. Narváez Macarro (editors). *Éléments de la théorie des systèmes différentiels géométriques*, Séminaires et Congrès 8. Soc. Math. France, Paris, 2004. Cours du CIMPA, École d’été de Séville (1996).

[16] Z. Mebkhout. Une équivalence de catégories. *Compositio Math.*, 51 (1984), 51–62.

[17] Z. Mebkhout. Une autre équivalence de catégories. *Compositio Math.*, 51 (1984), 63–88.

[18] Z. Mebkhout. *Le formalisme des six opérations de Grothendieck pour les \mathcal{D}_X-modules cohérents*, Travaux en cours 35. Hermann, Paris, 1989.

[19] Z. Mebkhout. Le théorème de positivité, le théorème de comparaison et le théorème d’existence de Riemann. In [15], pages 165–308, 2004.

[20] Z. Mebkhout and L. Narváez-Macarro. La théorie du polynôme de Bernstein-Sato pour les algèbres de Tate et de Dwork-Monsky-Washnitzer. *Ann. Sci. E.N.S.*, 24 (1991), 227–256.

[21] L. Narváez-Macarro. Cycles évanescents et faisceaux pervers: ca des courbes planes irréductibles. *Compositio Math.*, 65 (1988), 321–347.

[22] L. Narváez Macarro. The Local Duality Theorem in \mathcal{D}-module Theory. In [15], pages 59–88, 2004.

[23] O. Neto and P. C. Silva. Holonomic systems with solutions ramified along a cusp. *C. R. Math. Acad. Sci. Paris*, 335(2) (2002), 171–176.

[24] O. Neto and P. C. Silva. On regular holonomic systems with solutions ramified along $y^k = x^n$. *Pacific J. Math.*, 207(2) (2002), 463–487.
[25] T. Oaku. An algorithm of computing b-functions. *Duke Math. J.*, 87(1) (1997), 115–132.

[26] T. Oaku and N. Takayama. Algorithms for D-modules—restriction, tensor product, localization, and local cohomology groups. *J. Pure Appl. Algebra*, 156(2-3) (2001), 267–308.

[27] T. Oaku, N. Takayama, and U. Walther. A localization algorithm for D-modules. *J. Symbolic Comput.*, 29(4-5) (2000), 721–728. Symbolic computation in algebra, analysis, and geometry (Berkeley, CA, 1998).

[28] K. Saito. Theory of logarithmic differential forms and logarithmic vector fields. *J. Fac. Sci. Univ. Tokyo*, 27 (1980), 265–291.

[29] P. C. Silva. Estrutura Local dos Sistemas Holónomos Regulares. Faculdade de Ciências, Univ. Lisboa, January 2003. Ph.D. Thesis.

[30] T. Torrelli. On meromorphic functions defined by a differential system of order 1. *Bull. Soc. Math. France*, 132 (2004), 591–612.

[31] T. Torrelli. Logarithmic comparison theorem and D-modules: an overview. Preprint, 2005. ([math.AG/0510430](https://arxiv.org/abs/math.AG/0510430)).

Departamento de Álgebra
Facultad de Matemáticas
Universidad de Sevilla
P.O. Box 1160
41080 Sevilla
Spain.

E-mail: {calderon,narvaez}@algebra.us.es