The data content of this paper is related to the original research article entitled "Vegetation Structure and Effects of Human Use of the Dambo Ecosystem in Northern Mozambique" that was published in the Global Ecology and Conservation. Woody and grass vegetation was inventoried in the dambos wetlands of the Niassa National Reserve (NNR), the largest Protected Area (PA) in Mozambique and the third largest in Africa. The six dambos assessed were selected through Google Earth, MODIS satellite images and exploratory field visits. The selected dambos were surveyed using a two-stage systematic sampling procedure in which woody vegetation was inventoried by means of transects, and the grass was inventoried using quadratic sub-plots laid down within the transects. The woody vegetation survey included the identification of all species.
individuals to the species level, measurement of total height and diameter at breast height (DBH). The grass vegetation survey consisted of measurement of the total height and species identification within sub-plots. Woody vegetation data in this article includes also estimation of total richness, absolute and relative abundance, dominance, frequency, species volume and successional stage of each species in the vertical structure. Estimation of richness and absolute dominance is also presented for the grass vegetation.

© 2019 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Data

Information of the grass species, that includes species richness and absolute (Ab) dominance in each dambo and the whole ecosystem of dambos assessed, is provided in the Table 1. Table 2 presents detailed information related to the species and families of woody vegetation. Woody vegetation data, includes estimation of absolute and relative abundance (Ab and Ar), dominance (Da and Dr), frequency
Table 1
Species richness and absolute dominance of the grass vegetation in the dambos. Species richness that is the total number of species assessed in each dambo is in the last line. The total in the lines, is the number of individuals per species, while in the last column, is the total number of individual grass of each dambo.

Dambos	No	Species	1	2	3	4	5	6	Total
1	Alloteropsis semialata	0	0	0	0	0	0	16	16
2	Andropogon appendiculatus	0	0	0	0	0	0	15	15
3	Andropogon eucomus	182	139	435	253	347	25	1381	
4	Andropogon gayanus	133	99	249	26	49	0	154	710
5	Andropogon hailliensis	0	28	0	44	88	0	0	160
6	Andropogon schirensis	0	0	0	0	0	0	13	13
7	Anthephora pubescens	0	9	0	34	22	0	65	
8	Aristida adscensionis	98	37	38	141	29	74	417	
9	Aristida canescens	0	0	0	0	0	0	12	12
10	Aristida congesta	17	28	51	8	0	0	78	182
11	Aristida diffusa	0	0	0	0	0	0	8	8
12	Aristida junciformis	122	0	0	0	0	0	296	418
13	Aristida meridionalis	0	0	0	0	0	0	24	24
14	Aristida stipitata	0	30	0	0	0	0	0	30
15	Cenchrus ciliaris	0	0	0	0	46	0	156	202
16	Chrysopogon serratulus	28	0	0	21	0	0	71	120
17	Ctenium concinnum	0	0	4	0	0	0	4	
18	Cymbopogon excavatus	19	0	0	0	0	0	28	47
19	Cymbopogon plumosus	0	0	0	6	0	0	20	26
20	Cymbopogon validus	0	73	0	0	14	38	125	
21	Digitaria eriantha	13	0	0	0	0	0	65	78
22	Digitaria monodactyla	1	0	0	19	27	83	130	
23	Ehrharta erecta	6	6	0	0	0	0	12	
24	Elionurus muticus	0	0	0	0	0	0	12	12
25	Emarthria altissima	0	0	0	0	0	0	61	61
26	Enteropogon macrostachyus	7	7	0	29	13	21	77	
27	Eragrostis capensis	0	0	0	0	24	0	0	24
28	Eragrostis ciliaris	44	0	0	0	0	0	44	
29	Eragrostis pseudosclerantha	0	7	0	11	0	0	18	
30	Eragrostis racemosa	5	0	0	0	0	0	5	
31	Eragrostis rigidior	48	47	0	11	0	0	42	148
32	Eragrostis teichophora	16	16	0	0	0	0	32	
33	Eragrostis vescosa	26	5	0	0	0	0	33	64
34	Erharta erecta	0	5	0	0	0	0	5	
35	Helictotrichon turgidulum	178	44	259	132	353	31	997	
36	Hemarthria altissima	0	0	0	35	0	19	54	
37	Heteropogon contortus	68	0	0	0	39	59	166	
38	Heteropogon macrostachyus	19	0	0	0	0	0	9	28
39	Heteropogon contortu	0	0	0	7	0	0	7	
40	Hyparrhenia cymbaria	44	93	0	34	0	0	114	285
41	Hyparrhenia filipendula	100	274	39	28	19	195	655	
42	Hyparrhenia hirta	132	161	0	0	0	103	396	
43	Hyparrhenia tamba	20	84	0	11	75	50	240	
44	Hyperthelia dissolata	57	261	186	0	241	72	779	
45	Imperata cylindrica	0	0	0	0	19	0	0	19
46	Koeleria capensis	0	0	0	0	0	0	8	8
47	Monocymbium cerosiforme	10	0	0	18	19	60	107	
48	Panicum coloratum	0	0	0	0	0	0	26	26
49	Panicum maximum	0	0	0	0	0	0	29	29
50	Panicum natalensis	0	0	0	12	0	6	18	
51	Panicum schinzi	4	0	0	14	0	0	26	
52	Pennisetum macrostrum	71	0	0	0	0	0	80	151
53	Pennisetum sphacelatum	0	0	0	14	0	0	14	
54	Pentaschistis natalensis	0	0	0	0	0	0	6	6
55	Pentaschistis pallida	0	0	0	12	0	0	12	
56	Schizachyrium jeffreysii	0	0	0	11	14	50	75	
57	Schizachyrium sanguineum	0	0	0	0	8	45	53	

(continued on next page)
Table 1 (continued)

Dambos	Species	No 1	2	3	4	5	6	Total
58	*Setaria pallide-fusca*	0	0	89	19	70	31	209
59	*Setaria sphacelata*	0	18	0	26	0	6	50
60	*Setaria verticillata*	0	0	0	0	4	4	
61	*Sorghum bicolor*	0	0	0	0	7	6	
62	*Sorghum versicolor*	0	0	0	0	9	7	
63	*Sporobolus africanus*	0	0	0	24	35	23	82
64	*Sporobolus festivus*	0	0	0	0	5	5	
65	*Sporobolus fimbriatus*	0	0	0	24	0	12	36
66	*Sporobolus panicoides*	0	0	0	0	2	7	
67	*Sporobolus firmiatus*	0	0	0	0	5	5	
68	*Stenotaphrum secundatum*	0	16	0	19	187	41	311
69	*Themeda triandra*	0	0	0	0	84	84	
70	*Trachypogon spicatus*	64	0	0	19	23	70	464
71	*Tragus berteronianus*	6	0	0	0	0	0	6
72	*Tristachya leucothrix*	0	0	0	0	13	28	
73	*Urelytrum agropyroide*	32	10	34	23	55	73	

Species richness: 32 24 10 34 23 55 73
Total: 1592 1653 1364 1283 1743 2606 10203

Table 2

Description of the vertical and horizontal structure of the six dambos assessed in the Niassa National Reserve. Variables describe the vertical structure, including the percentage of trees in the lower, middle and upper. While in the horizontal structure are abundance, dominance, frequency and Importance Value Index (IVI).

Family	No Specie	Abundance	Dominance	Frequency	% of Tree/Strata	Volume
		(n)	Da (m²/ha)	Dr (%)	Fa (%)	IVI
					Lower Middle Upper	m³/ha

Anacardiaceae
1. *Ozoroa concolor* 19 0.35 0.01 0.10 6.90 0.63 0.00 84.21 15.79 0.05 1.08
2. *Ozoroa paniculosa* 7 0.13 0.00 0.00 5.17 0.47 28.57 71.43 0.00 0.00 0.60
3. *Ozoroa sphaerocarpa* 2 0.04 0.00 0.00 1.72 0.16 0.00 100.00 0.00 0.00 0.20

Annonaceae
4. *Annona senegalensis* 514 9.42 0.16 1.84 79.31 7.28 0.97 97.86 1.17 1.18 18.54
5. *Antidesma venosum* 69 1.27 0.01 0.07 12.07 1.11 1.45 98.55 0.00 0.03 2.44
6. *Artabotrys monteiroae* 12 0.22 0.03 0.29 5.17 0.47 0.00 83.33 16.67 0.24 0.98
7. *Cleistochlamys kirkii* 1 0.02 0.00 0.02 1.72 0.16 0.00 100.00 0.02 0.20
8. *Friesodielsia obovata* 1 0.02 0.00 0.01 1.72 0.16 0.00 100.00 0.00 0.01 0.19
9. *Xylopia parvi flora* 2 0.04 0.00 0.00 1.72 0.16 0.00 100.00 0.00 0.00 0.20

Apocynaceae
10. *Diplorhynchus condylocarpon* 272 4.99 0.10 0.12 37.93 3.45 3.31 93.75 2.94 0.63 9.59

Asteraceae
11. *Vernonia colorata* 2 0.04 0.00 0.00 1.72 0.16 0.00 100.00 0.00 0.00 0.20

Burséraceae
12. *Albizia forbesii* 9 0.17 0.06 0.66 6.90 0.63 33.33 66.67 0.82 1.46
13. *Albizia tanganyicensis* 7 0.13 0.03 0.40 1.72 0.16 0.00 71.43 28.57 0.47 0.69
14. *Bauhinia petersiana* 9 0.17 0.00 0.04 1.72 0.16 0.00 100.00 0.00 0.00 0.36
15. *Brachystegia boehmii* 4 0.07 0.09 1.07 5.17 0.47 0.00 25.00 75.00 1.32 1.62
16. *Brachystegia utilis* 97 1.78 0.21 2.46 27.59 2.53 7.22 75.26 17.53 2.61 6.77

Caesalpinaceae
17. *Dalbergia melanoxylon* 5 0.09 0.04 0.01 1.72 0.16 0.00 100.00 0.00 0.00 0.20
18. *Julbernardia globiflora* 9 0.17 0.03 0.39 8.62 0.79 11.11 44.44 44.44 0.44 1.35
19. *Pyrostegma toningii* 4 0.07 0.00 0.03 1.72 0.16 0.00 100.00 0.00 0.00 0.27

Capparaceae
20. *Boscia mossambicensis* 20 0.37 0.02 0.25 6.90 0.63 0.00 50.00 50.00 0.67 0.84
21. *Maerua angolensis* 5 0.09 0.00 0.04 1.72 0.16 0.00 100.00 0.00 0.00 0.27
22. *Maerua schinzii* 32 0.59 0.02 0.19 5.17 0.47 0.00 90.63 9.38 0.15 1.26
23. *Gymnoporia mosambicensis* 13 0.24 0.00 0.22 5.17 0.47 0.00 100.00 0.00 0.01 0.74

Celastraceae
24. *A.A. Mbanze et al. / Data in brief 26 (2019) 104454*
Family	N°	Specie	Ab (n)	Ar (%)	Da (m²/ha)	Dr (%)	Fa (%)	Fr (%)	% of Tree/Strata	Volume VI
Ebenaceae	52	Diospyros kirkii	13.24	0.02	0.02	10.34	0.05	0.00	100.00	23.08
	53	Diospyros lyoides	7	0.02	0.00	1.72	0.01	0.00	100.00	1.72
	54	Diospyros natalensis	7	0.03	0.02	1.72	0.01	0.00	100.00	1.72
	55	Diospyros usambarensis	3	0.06	0.02	1.72	0.01	0.00	100.00	1.72
	56	Diospyros villosa	5	0.09	0.00	1.72	0.01	0.00	100.00	1.72
Euphorbiaceae	57	Bridelia cathartica	7	0.13	0.00	1.72	0.01	0.00	100.00	1.72
	58	Hymenocardia acida	101	1.85	0.03	1.72	0.01	0.00	100.00	2.27
	59	Margaritaria discoidea	206	3.78	0.14	1.72	0.01	0.00	100.00	1.72
	60	Phyllanthus reticulatus	35	0.64	0.01	1.72	0.01	0.00	100.00	1.72
	61	Pseudolachnostylis	392	7.19	0.45	1.72	0.01	0.00	100.00	1.72
Fabaceae	62	Spirostachys africanus	7.01	0.03	0.03	1.72	0.01	0.00	100.00	1.72
	63	Burkea africana	55.1	1.08	0.28	1.72	0.01	0.00	100.00	1.72
	64	Cassia abbreviata	4	0.07	0.00	1.72	0.01	0.00	100.00	1.72
	65	Dichrostachys cinerea	14.26	0.26	0.00	1.72	0.01	0.00	100.00	1.72
	66	Indigofera jacundu	10	0.18	0.00	1.72	0.01	0.00	100.00	1.72
	67	Indigofera hylli	48.88	0.88	0.00	1.72	0.01	0.00	100.00	1.72
	68	Mombulina sericea	8	0.15	0.00	1.72	0.01	0.00	100.00	1.72
	69	Pericopsis angolensis	22.40	0.40	0.01	1.72	0.01	0.00	100.00	1.72
	70	Pilostigma thompingii	45	0.83	0.01	1.72	0.01	0.00	100.00	1.72
	71	Pterocarpus angolensis	11	0.20	0.00	1.72	0.01	0.00	100.00	1.72
	72	Senna petersiana	40.73	0.73	0.01	1.72	0.01	0.00	100.00	1.72
	73	Sesbania punicea	9	0.17	0.01	1.72	0.01	0.00	100.00	1.72
	74	Swartzia madagascariensis	111	2.04	0.04	1.72	0.01	0.00	100.00	1.72
Flacourtiae	75	Doxylalis zeyheri	8	0.15	0.00	1.72	0.01	0.00	100.00	1.72
	76	Flacourtia indica	35	0.64	0.01	1.72	0.01	0.00	100.00	1.72
Lamiaceae	77	Vitex doniana	121	2.22	0.06	1.72	0.01	0.00	100.00	1.72
	78	Vitex obovata	62.14	1.04	0.21	1.72	0.01	0.00	100.00	1.72
	79	Vitex payos	23.42	0.42	0.00	1.72	0.01	0.00	100.00	1.72
Loganiaceae	80	Anthocelesta grandiflora	6	0.10	0.09	1.72	0.01	0.00	100.00	1.72
	81	Styrcnhus decussatus	3	0.06	0.04	1.72	0.01	0.00	100.00	1.72
	82	Styrcnhus madagascariensis	3	0.06	0.00	1.72	0.01	0.00	100.00	1.72
	83	Styrcnhus pungens	1	0.02	0.00	1.72	0.01	0.00	100.00	1.72
Meliaceae	84	Ekebergia capensis	2	0.04	0.01	1.72	0.01	0.00	100.00	1.72
Mimosaceae	85	Acacia xanthophloea	1	0.02	0.00	1.72	0.01	0.00	100.00	1.72
	86	Amblygonocarpus andongensis	18	0.33	0.03	1.72	0.01	0.00	100.00	1.72
Moraceae	87	Ficus nigrescens	2	0.04	0.06	1.72	0.01	0.00	100.00	1.72
	88	Ficus sycomorus	2	0.04	0.12	1.72	0.01	0.00	100.00	1.72
Myrtaceae	89	Syzygium cordatum	607	11.13	3.87	1.72	0.01	0.00	100.00	1.72
The six dambos sampled in this study were selected using Google Earth and MODIS satellite images. After the identification of the dambos, an exploratory field trip was made to verify whether the candidate dambos were appropriate for the establishment of the survey plots. The selection was required to offer a representative sample size and proximity to the Mbatamila Center Office of the Reserve, due to budget constraints and poor road access. A preliminary, basic characterization was conducted in each dambo, which consisted of assessing the occurrence of fire in the last two years, shifting cultivation (Sc), artisanal fishing (Af), soils and vegetation characteristics, seasonal water (Sw) and representativeness of each species in the vertical strata. Importance Value Index (IVI), was also computed in order to have a broader picture of the position of each species in the structure of the dambos [1,2].

Table 3 presented the location and the general characterization of all dambos assessed. While in the Fig. 1, represents the sampling scheme used to collect data on trees, shrub and grass and vegetation in the main transects and subplots respectively.

2. Experimental design, materials and methods

The six dambos sampled in this study were selected using Google Earth and MODIS satellite images. After the identification of the dambos, an exploratory field trip was made to verify whether the candidate dambos were appropriate for the establishment of the survey plots. The selection was required to offer a representative sample size and proximity to the Mbatamila Center Office of the Reserve, due to budget constraints and poor road access. A preliminary, basic characterization was conducted in each dambo, which consisted of assessing the occurrence of fire in the last two years, shifting cultivation (Sc), artisanal fishing (Af), soils and vegetation characteristics, seasonal water (Sw) and

Family	No. Specie	Abundance	Dominance	Frequency	% of Tree/Strata	Volume	IVI					
Ab (n)	Ar (%)	Da (m²/ha)	Dr (%)	Fa (%)	Fr (%)	Lower	Middle	Upper	m³/ha	107.91	300.00	
90	Syzygium guineense	171	3.14	0.37	4.24	18.97	1.74	3.51	78.95	17.54	4.92	9.12
91	Ximenia americana	4	0.07	0.00	0.03	3.45	0.32	0.00	100.00	0.00	0.02	0.42
92	Ximenia caffra	12	0.22	0.01	0.11	5.17	0.47	0.00	91.67	8.33	0.07	0.80
93	Pittosporum viridiflorum	6	0.11	0.00	0.03	1.72	0.16	0.00	100.00	0.00	0.02	0.30
94	Protea saligna	12	0.22	0.01	0.13	3.45	0.32	0.00	66.67	33.33	0.11	0.66
95	Protea nitida	604	11.07	0.05	0.62	15.52	1.42	6.29	93.71	0.00	0.22	13.12
96	Ziziphus mucronata	3	0.06	0.00	0.01	3.45	0.32	0.00	100.00	0.00	0.02	0.42
97	Vangueria cyanescens	8	0.15	0.00	0.03	3.45	0.32	0.00	100.00	0.00	0.02	0.49
98	Burchellia bubalina	30	0.55	0.06	0.66	6.90	0.63	0.00	63.33	36.67	0.75	1.85
99	Canthium gillifanii	10	0.18	0.00	0.03	3.45	0.32	0.00	100.00	0.00	0.01	0.53
100	Crossopteryx febrifuga	207	3.80	0.12	1.43	41.38	3.80	1.93	89.37	8.70	1.03	9.02
101	Feretia aeruginascens	3	0.06	0.00	0.01	1.72	0.16	0.00	100.00	0.00	0.02	0.26
102	Gardenia ternifolia	17	0.31	0.00	0.03	12.07	1.11	0.00	100.00	0.00	0.01	1.45
103	Keetia gueinzii	35	0.64	0.04	0.48	13.79	1.27	77.14	22.86	0.46	2.39	
104	Lagynias lasiantha	2	0.04	0.00	0.02	1.72	0.16	0.00	100.00	0.00	0.02	0.22
105	Vangueria infausta	8	0.15	0.00	0.02	6.90	0.63	0.00	100.00	0.00	0.01	0.80
106	Ptaeroxylon obliquum	11	0.20	0.01	0.16	6.90	0.63	0.00	90.91	9.09	0.17	1.00
107	Dodonaea angustifolia	5	0.09	0.00	0.01	1.72	0.16	0.00	100.00	0.00	0.02	0.26
108	Manilkara mochisia	13	0.24	0.00	0.02	3.45	0.32	0.00	100.00	0.00	0.01	0.57
109	Rhoicissus tridentata	6	0.11	0.00	0.00	1.72	0.16	0.00	100.00	0.00	0.02	0.27
TOTAL	5454	100.00	8.70	100.00	1089.66	100.00	NA	NA	107.91	300.00		

Table 3 Location and characterization of the dambos assessed in the Niassa National Reserve, northern Mozambique.

Dambo Location	Latitude S	Longitude E	Elevation (m)	Characteristics
Mbatamila center	12° 10'48.60"	37° 32'19.00"	451	Sc and Sw
Kiboko	12° 25'50.81"	37° 40'11.97"	284	Sc and Sw
Kuchiranga	12° 25'09.52"	37° 39'57.22"	290	Sc and Pw
Nyate Junction	12° 08'26.72"	37° 34'41.63"	450	Pw
Matondovela Junction (10 km from Mbatamila)	12° 08'19.34"	37° 32'05.31"	421	Af and Pw
Matondovela Junction (25 km from Mbatamila)	12° 09'06.53"	37° 28'13.78"	482	Af and Pw

Characteristics: Sc — shifting cultivation, Sw — seasonal water, Pw — permanent water, Af — artisanal fishing.
Table 3 presents detailed information regarding the location and characteristics of the selected dambos. The occurrence of grass vegetation was dominant in all dambos, which is a defining characteristic of these ecosystems, as described in the literature [3]. Fire also occurred in all dambos in the recent years.

Data were collected using a two-stage systematic sampling procedure. In the first stage, tree and shrub vegetation information was collected in transects of 100 x 10 m (0.1 ha), established perpendicularly to the length of the dambo. The center of the plot was marked after identifying the bottom of the dambo in the middle of the transect, extending 50 m to each side. Because the distance between transects within the dambos was 300 m, the number of transects established in each dambo varied, depending on the dambo’s size. In total, 58 transects were established and surveyed. In a second stage, grass vegetation was counted, height measured and collected for later identification in six square subplots of 0.25m² (50 x 50 cm), established within the main transects, according to Tito et al. (2009) [4]. The distance between each pair of subplots was about 15 m. Thus, a total of 336 subplots were established in all transects (see Fig. 1).

The tree heights were measured with the support of a hypsometric bar and Vertex when necessary, whereas the diameters (dbh and D) were measured with a measuring tape. Subsequently, each stem was identified to species and family and recorded in the field, based on authoritative field guides to trees of southern Africa [5] and the grasses of southern Africa [6]. For the species that were difficult to identify in the field, samples were collected for later identification by a botanist.

The successional stage of each species in the vertical structure was analyzed according to its position, by dividing the forest canopy in three main strata, namely: lower, middle and upper, based on the variable height (h), according to the following equation: lower (us) h_1 < (\bar{h} - S), middle (ms) (\bar{h} - S) ≤ h_j < (\bar{h} + S) and upper (us) h_j ≥ (\bar{h} + S), where \bar{h} is the mean height of all trees in a given sample, S is the standard deviation of h in a given sample and h_j is the total height of j-th individual tree. According to Hosokawa et al. (2008) [1], a given species is well placed in the forest when it is well represented in all forest strata, with a large proportion of trees in the lower stratum. More information regarding the data collection and analysis is provided in Mbanze et al. (2019) [7].
Acknowledgements

Authors acknowledge all institutions and individuals who directly and indirectly contributed for the dambos survey in the NNR. We especially acknowledge the NNR administration for logistic support, especially Cornélio Miguel Coelho, Conservation Manager of the reserve. Thomas Prin and Tomas Chipiri Buruwate gave important advice on sampling procedures and data collection. Marcia Tembo provided field assistance. Robert Colwell performed a thorough revision to the manuscript and provided counseling on data analysis. Russell E. Train Education for Nature Program/World Wildlife Fund (WWF) in the United States of America (USA), provided grant n° RF37 for data collection and the Fundação para Ciência e Tecnologia (FCT) of Portugal supported the scholarship for the first author (Ref n° SFRH/BD/113955/2015) research unit UID/AGR/04129/2013 (LEAF) and Fundo Nacional de Investigaç~ao (FNI) in Mozambique.

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could influence the work reported in this paper.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.dib.2019.104454.

References

[1] R. Hosokawa, J.B. Moura, U. Cunha, Introduç~ao ao maneio e economia de florestas, UFPR, Curitiba, 2008.
[2] C.J. Krebs, Ecological data for field studies, Ecol. Methodol. (2014) 1–19.
[3] R. Whilow, Conservation status of wetlands in Zimbabwe: past and present, Geojournal 3 (1990) 191–202.
[4] M. Tito, M. León, R. Porro, Guia para la determinaci~on de carbono en pequeñ~as propriedades rurales, first ed., World Agroforestry Centre (ICRAF), Lima, 2009. http://www.worldagroforestry.org/.
[5] B. van Wyk, P. van Wyk, Field Guide to Trees of Southern Africa, First, Struik Publishers, Cape Town, 1997, https://doi.org/10.1365/s10337-010-1583-0.
[6] F. van Oudtshoorn, Guide to Grasses of Southern Africa, Third Edic, Briza Publication, Pritoria, 2018. www.briza.co.za.
[7] A.A. Mbanze, A. Martins, R. Rivaes, A. Ribeiro-Barros, N. Ribeiro, Vegetation structure and effects of human use of the dambos ecosystem in northern Mozambique, Glob. Ecol. Conserv. 20 (2019) 1–14, https://doi.org/10.1016/j.gecco.2019.e00704.