Short and long-term outcomes of elderly patients undergoing left-sided colorectal resection with primary anastomosis for cancer

Marius Kryzauskas1*, Augustinas Bausys1,2†, Justas Kuliavas1, Klaudija Bickaite3, Audrius Dulskas3, Eligijus Poskus1, Rimantas Bausys1, Kestutis Strupas1 and Tomas Poskus1

Abstract

Background: The proportion of elderly colorectal cancer (CRC) patients requiring surgery is increasing. Colorectal resection for left-sided cancers is the most controversial as the primary anastomosis or end-colostomy and open or minimally invasive approaches are available. Therefore, this study was conducted to investigate the short- and long-term outcomes in elderly patients after resection with primary anastomosis for left-sided CRC.

Methods: The cohort study included left-sided colorectal cancer patients who underwent resection with primary anastomosis. The participants were divided into non-elderly (≤75 years) and elderly (>75 years) groups. Short- and long-term postoperative outcomes were investigated.

Results: In total 738 (82%) and 162 (18%) patients were allocated to non-elderly and elderly groups, respectively. Minimally invasive surgery (MIS) was less prevalent in the elderly (42.6% vs 52.7%, \(p = 0.024 \)) and a higher proportion of these suffered severe or lethal complications (15.4% vs 9.8%, \(p = 0.040 \)). MIS decreased the odds for postoperative complications (OR: 0.41; 95% CI: 0.19–0.89, \(p = 0.038 \)). The rate of anastomotic leakage was similar (8.5% vs 11.7%, \(p = 0.201 \)), although, in the case of leakage, 21.1% of elderly patients died within 90-days after surgery. Overall- and disease-free survival was impaired in the elderly. MIS increased the odds for long-term survival.

Conclusions: Elderly patients suffer more severe complications after resection with primary anastomosis for left-sided CRC. The risk of anastomotic leakage in the elderly and non-elderly is similar, although, leakages in the elderly seem to be associated with a higher 90-day mortality rate. Minimally invasive surgery is associated with decreased morbidity in the elderly.

Keywords: Colorectal cancer, Elderly, Morbidity, Mortality, Anastomotic leakage

Introduction

Colorectal cancer (CRC) is a major health care issue as it is the third most deadly and fourth most commonly diagnosed cancer worldwide [1]. Surgery remains the only potentially curative treatment option for it [2]. As society is aging in many developed countries, the proportion of elderly patients requiring surgery for CRC is increasing as well [3, 4]. Despite improvements in perioperative care and surgical techniques, the treatment of elderly CRC patients remains challenging because of comorbidities, frailty,
malnutrition, impaired functional, and cognitive status [5–8]. Such complex patients are at higher risk for various postoperative complications after major surgery, including a higher risk for infectious complications and anastomotic leakage (AL) [9–12]. Furthermore, elderly patients are at higher risk for death in case of postoperative complications because of the impaired functional reserve [13, 14]. These risks usually impact the surgeon’s decision on the surgical plan, especially for elderly patients with left-sided CRC where Hartmann’s procedure may be selected instead of primary anastomosis [15, 16]. Further, advanced age had initially been viewed as a relative contraindication to laparoscopic surgery [17], and minimally invasive surgery (MIS) is still underutilized in the elderly [18]. Since elderly patients are significantly underrepresented in the clinical studies due to careful participant selection by common age, performance status, or comorbidities restrictions [19, 20], there is a lack of evidence for the most appropriate surgical strategies in such patients. Therefore, this study was conducted to investigate the short- and long-term outcomes after resection with primary anastomosis for left-sided CRC in elderly patients, with a special focus on the rate of AL and utilization of MIS.

Materials and methods

Ethics

The study was approved by Vilnius Regional Bioethics Committee (Approval number 2019/3–116-608) and

Table 1	Baseline clinical characteristics of non-elderly and elderly patients					
	NE group (≤75 years); n = 738	Missing data; n (%)	E group (>75 years); n = 162	Missing data; n (%)	p value	
BMI; n (%)	<30	496 (71.2%)	41 (5.8%)	128 (84.2%)	10 (6.2%)	0.001
	≥30	201 (28.8%)	24 (15.8%)	89 (54.9%)	0 (0%)	0.729
Gender; n (%)	Female	344 (46.6%)	0 (0%)	73 (45.1%)	0 (0%)	0.001
	Male	394 (53.4%)	24 (15.8%)	55 (35.7%)	8 (4.9%)	0.001
ASA; n (%)	I-II	535 (76.0%)	34 (4.6%)	99 (64.3%)	0 (0%)	0.001
	III-IV	169 (24.0%)	99 (64.3%)	153 (94.4%)	0 (0%)	0.001
CCI; n (%)	≤5	603 (81.7%)	0 (0%)	47 (29.0%)	0 (0%)	0.001
	>5	135 (18.3%)	115 (71.0%)	158 (97.5%)	0 (0%)	0.001
Ischemic heart disease; n (%)	Yes	26 (3.5%)	0 (0%)	17 (10.5%)	0 (0%)	0.001
	No	712 (96.5%)	145 (89.5%)	138 (85.2%)	0 (0%)	0.001
Diabetes mellitus; n (%)	Yes	71 (9.6%)	0 (0%)	24 (14.8%)	0 (0%)	0.001
	No	667 (90.4%)	145 (89.5%)	138 (85.2%)	0 (0%)	0.001
Cerebrovascular disease; n (%)	Yes	18 (2.4%)	0 (0%)	9 (5.6%)	0 (0%)	0.001
	No	720 (97.6%)	153 (94.4%)	158 (97.5%)	0 (0%)	0.001
Chronic kidney failure; n (%)	Yes	9 (1.2%)	0 (0%)	4 (2.5%)	0 (0%)	0.267
	No	729 (98.8%)	158 (97.5%)	158 (97.5%)	0 (0%)	0.267
Neoadjuvant treatment; n (%)	Yes	163 (22.1%)	0 (0%)	29 (17.9%)	0 (0%)	0.289
	No	575 (77.9%)	133 (82.1%)	133 (82.1%)	0 (0%)	0.289
Specimen length, cm (Mean ± SD)	19 ± 8	22 (2.9%)	21 ± 6	4 (2.4%)	0.436	
Proximal end, cm (Mean ± SD)	13 ± 7	27 (3.6%)	13 ± 6	5 (3.0%)	0.346	
Distal end, cm (Mean ± SD)	4 ± 3	26 (3.5%)	4 ± 4	5 (3.0%)	0.109	
T; n (%)	T0–2	271 (36.7%)	0 (0%)	30 (18.5%)	0 (0%)	0.001
	T3–4	467 (63.3%)	132 (81.5%)	132 (81.5%)	0 (0%)	0.001
N; n (%)	NO	449 (61.8%)	12 (1.6%)	92 (57.1%)	1 (0.6%)	0.284
	N+	277 (38.2%)	92 (57.1%)	69 (42.9%)	0 (0%)	0.284
M; n (%)	MO	666 (90.2%)	0 (0%)	144 (88.9%)	0 (0%)	0.566
	M1	72 (9.8%)	18 (11.1%)	18 (11.1%)	0 (0%)	0.566
Stage; n (%)	0	11 (1.5%)	0 (0%)	1 (0.6%)	0 (0%)	0.002
	I	203 (27.5%)	14 (8.7%)	23 (14.2%)	0 (0%)	0.002
	II	205 (27.8%)	14 (8.7%)	23 (14.2%)	0 (0%)	0.002
	III	246 (33.3%)	14 (8.7%)	23 (14.2%)	0 (0%)	0.002
	IV	73 (9.9%)	18 (11.1%)	18 (11.1%)	0 (0%)	0.002
conducted according to the Declaration of Helsinki of 1964, as revised in later versions.

Patients and study design
This retrospective cohort study included all patients who underwent elective colorectal resection with primary anastomosis at two major gastrointestinal cancer treatment centers in Lithuania – National Cancer Institute and Vilnius University hospital Santaros Klinikos between January 2014 and December 2018. Patients were divided into non-elderly (NE; ≤ 75 years) and elderly groups (E; > 75 years) according to the age at the time of surgery.

Data collection
The database used for the present study was used previously [12]. All patients’ characteristics and clinical data were obtained from the medical records and prospectively collected databases. The preoperative data included: age, gender, body mass index (BMI), Charlson comorbidity index (CCI), comorbidities, American Society of Anesthesiology (ASA) score, type of neoadjuvant treatment, tumor localization. Chronic kidney failure was defined as a kidney damage or glomerular filtration rate (GFR) < 60 mL/min/1.73 m² for 3 months or more, irrespective of cause as proposed by Kidney Disease: Improving Global Outcomes (KDIGO) [21]. Intraoperative details included: type of surgery, the approach of surgery (open or minimally invasive), operation time, blood loss, the height of anastomosis measured from the anal verge, presence of diverting ileostomy. Standard laparoscopic colorectal resection, hand-assisted laparoscopic surgery, natural orifice specimen extraction surgery, and transanal total mesorectal excision operations were defined as minimally invasive approaches. Postoperative data included histological report results, hospitalization time, postoperative complications graded by Clavien-Dindo classification, 30-day, and 90-day mortality rates. The tumor stage was set according to the TNM system as described at the American Joint Committee on Cancer 8th edition.

Table 2 Intraoperative and postoperative outcomes of non-elderly and elderly patients after resection with primary anastomosis for left-sided colorectal cancer

	NE group (≤75 years); n = 738	E group (> 75 years); n = 162	p value
Type of surgery; n (%)	Sigmoid resection 214 (29.0%)	43 (26.5%)	0.565
	Rectal resection 524 (71.0%)	119 (73.5%)	
Approach of surgery; n (%)	Open 349 (47.3%)	93 (57.4%)	0.024
	Minimally invasive 389 (52.7%)	69 (42.6%)	
Operation time, minutes (mean ± SD)	147 ± 60	150 ± 67	0.190
Blood loss, ml (median; Q1, Q3)	≤5 cm 145 (23.7%)	29 (22.3%)	0.860
	6–12 cm 239 (39.0%)	54 (41.5%)	
	> 12 cm 229 (37.3%)	47 (36.2%)	
Diverting ileostomy; n (%)	Yes 302 (40.9%)	72 (44.4%)	0.429
	No 436 (59.1%)	90 (55.6%)	
Postoperative hospitalization; days (mean ± SD)	10 ± 6	13 ± 11	0.001
Retrieved lymph nodes; n (%)	< 12 130 (17.6%)	18 (11.1%)	0.046
	≥ 12 608 (82.4%)	144 (88.9%)	
Postoperative complications; n (%)	Yes 219 (29.7%)	60 (37.0%)	0.066
	No 519 (70.3%)	102 (63.0%)	
Severe complications by Clavien-Dindo score III-V; n (%)	73 (9.8%)	25 (15.4%)	0.040
30-day mortality; n (%)	7 (0.9%)	5 (3.1%)	0.048
90-day mortality; n (%)	12 (1.6%)	12 (7.4%)	0.001

Study outcomes
The primary outcome of the study was the anastomotic leakage rate in NE and E patients. The secondary outcomes were overall postoperative morbidity rate; in-hospital, 30-day, and 90-day mortality rates; the rate of MIS; overall survival (OS), and disease-free survival (DFS) rates in NE and E patients. OS was defined as the time from surgery to death. DFS was defined as the time from surgery to disease progression including local or distant recurrence or death. Data on survival and date of death were collected from the National Lithuanian Cancer registry.
Statistical analysis

All statistical analyses were performed using SPSS version 25.0 software (SPSS, Chicago, IL, USA). Continuous variables between groups were compared by Student’s t-test or Mann–Whitney U-test depending on data distribution and expressed as mean ± standard deviation (±SD) or median with first (Q1) and third (Q3) quartiles. Categorical variables were compared by χ² test or Fisher’s exact test and expressed as proportion and percentages.

Missing data was not handled at the statistical analysis and no imputation techniques were used. To determine the risk factors for anastomotic leakage, all potential risk factors were included in univariate analyses. These variables which showed significance were included in subsequent multivariable analysis. Kaplan-Meier method was used for OS and DFS analysis and curves were compared by the log-rank test. Multivariable survival analysis was performed using the Cox proportional hazards model.

Table 3 Univariate analysis of risk factors for anastomotic leakage in patients after resection with primary anastomosis for left-sided colorectal cancer

Risk Factor	No anastomotic leakage	Anastomotic leakage	p value	
Gender; n (%)	Female	391 (93.8%)	26 (6.2%)	0.005
	Male	427 (88.4%)	56 (11.6%)	
CCI; n (%)	≤5	602 (92.6%)	48 (7.4%)	0.004
	> 5	216 (86.4%)	34 (13.6%)	
Ischemic heart disease; n (%)	Yes	39 (90.7%)	4 (9.3%)	0.999
	No	779 (90.9%)	78 (9.1%)	
Diabetes mellitus; n (%)	Yes	82 (86.3%)	13 (13.7%)	0.101
	No	736 (91.4%)	69 (8.6%)	
Cerebrovascular disease; n (%)	Yes	25 (92.6%)	2 (7.4%)	0.999
	No	793 (90.8%)	80 (9.2%)	
Chronic kidney failure; n (%)	Yes	12 (92.3%)	1 (7.7%)	0.999
	No	806 (90.9%)	81 (9.1%)	
Neoadjuvant treatment; n (%)	Yes	169 (88.0%)	23 (12.0%)	0.119
	No	649 (91.7%)	59 (8.3%)	
Tumor localization; n (%)	Rectum	458 (89.3%)	55 (10.7%)	0.132
	Rectosigmoid	112 (91.8%)	10 (8.2%)	
	Sigmoid	248 (93.6%)	17 (6.4%)	
T; n (%)	T0–2	284 (94.4%)	17 (5.6%)	0.010
	T3–4	534 (89.1%)	65 (10.9%)	
M; n (%)	M0	740 (91.4%)	70 (8.6%)	0.142
	M1	78 (86.7%)	12 (13.3%)	
Stage; n (%)	0	11 (91.7%)	1 (8.3%)	0.290
	I	221 (93.4%)	15 (6.6%)	
	II	246 (91.4%)	23 (8.6%)	
	III	272 (90.1%)	30 (9.9%)	
	IV	78 (85.7%)	13 (14.3%)	
Ligation of inferior mesenteric artery; n (%)	High	631 (90.5%)	66 (9.5%)	0.610
	Low	167 (91.8%)	15 (8.2%)	
Simultaneous operation; n (%)	Yes	73 (86.9%)	11 (13.1%)	0.183
	No	745 (91.3%)	71 (8.7%)	
Anastomosis level from anal verge; n (%)	≤5 cm	155 (89.1%)	19 (10.9%)	0.023
	6–12 cm	255 (87.0%)	38 (13.0%)	
	> 12 cm	259 (93.8%)	17 (6.2%)	
Approach of surgery; n (%)	Open	391 (88.5%)	51 (11.5%)	0.013
	Minimally invasive	427 (93.2%)	31 (6.8%)	
Age; n (%)	NE group (≤75 years)	675 (91.5%)	63 (8.5%)	0.201
	E group (>75 years)	143 (88.3%)	19 (11.7%)	
(hazard ratio and 95% confidence intervals). Statistical significance was assumed for p values < 0.05.

Results
Patients baseline characteristics
A total of 900 patients were included in this study. Seven hundred thirty-eight (82%) patients were allocated to the NE group (≤75 years) and 162 (18%) patients were allocated to the E group (>75 years). Baseline characteristics of the study patients are presented in Table 1. E patients had higher ASA and CCI scores, but a lower proportion of these was obese (Table 1).

Intraoperative and postoperative outcomes
Intraoperative and postoperative outcomes are shown in Table 2. Lower proportion of E patients received MIS (52.7% vs 42.6%, p = 0.024). There was some tendency for a higher postoperative morbidity rate in the E (37.0%) group compared to NE (29.7%) group, however, the difference failed for significance (p = 0.066). Although, severe or lethal complications by Clavien-Dindo score III-V were more common in the E group (15.4% vs 9.8%, p = 0.040).

Anastomotic leakage in the study cohort
Eighty-two of 900 (9.1%) patients included in the study developed AL. Male gender, higher CCI score (>5), advanced pT stage (pT3–4), lower anastomoses, and open surgery were associated with AL in the univariate analysis (Table 3). The rate of AL was similar between NE (8.5%) and E (11.7%) groups, p = 0.201. Although, there was some tendency for increased 90-days mortality in E patients who developed AL, but without statistical significance (6.3% vs 21.1%, p = 0.079). Variables that showed significance in univariate analysis were included in subsequent multivariable analysis. Male gender (OR: 1.94; 95% CI: 1.15–3.29, p = 0.013), CCI score >5 (OR: 1.90; 95% CI: 1.14–3.16, p = 0.013), and anastomoses at 6–12 cm from anal verge (OR: 2.29; 95% CI: 1.24–4.21, p = 0.008) were identified as a risk factor for AL (Table 4).

Factors associated with postoperative morbidity in the subgroup of elderly patients
Since the E patients were at higher risk for postoperative morbidity and mortality, the univariate analysis was performed to identify the variables associated with postoperative complications in the subgroup of E patients. Open surgery was the only risk factor associated with postoperative complications in the univariate setting (Table 5).

Survival
The median time to follow-up was 38 (Q1: 22; Q3: 53) months. Overall and disease-free survival was significantly lower in E patients (Figs. 1 and 2). The multivariable Cox proportional hazards model was performed to identify the factors associated with OS and DFS in the E group. E patients who received MIS had higher probability for OS (HR: 0.47; 95% CI: (0.25–0.86), p = 0.015) and DFS (HR: 0.48; 95% CI: (0.27–0.86) (Table 6).

Discussion
The present study demonstrated the trend of a slightly higher rate of postoperative morbidity in the elderly patients after colorectal resection with the primary anastomosis for left-sided cancer. However, the rate of severe or lethal complications was undoubtedly higher in the elderly patients group. Interestingly, the rate of AL was similar across the study groups, but in the case of leakage elderly patients were at much higher risk for death within 90-days after surgery. The MIS was associated with reduced postoperative morbidity in the elderly; however, this approach was underutilized in these patients.

The reported rate of postoperative complications in elderly colorectal cancer patients varies between 26 and 53.7% [22–24], as our study showed a comparable rate of 37%. The elderly patients often have a higher ASA score [25–27], which is the risk factor for postoperative complications as shown in the present study and some previous reports [22]. It is not surprising, that the frequent presence of comorbidities, frailty and impaired functional reserves in the elderly leads to the increased postoperative morbidity and mortality [23, 28–30]. However, it remains unclear if elderly patients are at a higher risk for all types of complications or only specific ones. The particularly important question is whether the elderly patients are at higher risk for the AL, especially after resection for left-sided cancer. This has special importance, because, the higher rate of AL

Risk factor	Odds ratio (95% CI)	p value
Gender		
Female	1 (Reference)	
Male	1.94 (1.15–3.29)	0.013
CCI		
≤5	1 (Reference)	
> 5	1.90 (1.14–3.16)	0.013
pT stage		
T0–2	1 (Reference)	
T3–4	1.82 (0.97–3.42)	0.060
Anastomosis level from anal verge		
> 12 cm	1 (Reference)	
6–12 cm	2.29 (1.24–4.21)	0.008
≤5 cm	1.90 (0.93–3.87)	0.076
Approach of surgery		
Open	1 (Reference)	
Minimally invasive	0.65 (0.39–1.09)	0.109

Table 4 Multivariable analysis of risk factors for anastomotic leakage in patients after resection with primary anastomosis for left-sided colorectal cancer
compared to right-side surgery [31] is preventable by utilizing Hartmann’s procedure. The current data on the risk of AL in elderly patients is inconclusive. Some studies suggest a higher risk because of co-existing medical conditions, which are known risk factors for AL, such as coronary heart disease and diabetes [27, 32, 33]. In contrast, the other series of previous studies identified a similar risk of AL in elderly and non-elderly patients [34–37]. The present study shows that the risk in elderly and non-elderly patients after resection for left-sided CRC is similar. However, it is necessary to note, that the consequences of leakage in the elderly were much more dramatic since the 90-day mortality rate exceeded 20%. Thus, we consider, that primary anastomosis after left-sided resection for CRC is feasible in the elderly, but these patients must be monitored closely, and in the case of AL the aggressive treatment of the complication is mandatory.

Table 5	Univariate analysis of risk factors for postoperative complications in elderly patients after resection with primary anastomosis for left-sided colorectal cancer			
	No postoperative complications	Postoperative complications	p value	
Gender; n (%)	Female	51 (50.0%)	22 (36.7%)	0.106
	Male	51 (50.0%)	38 (63.3%)	
ASA; n (%)	I-II	40 (40.8%)	15 (26.8%)	0.115
	III-IV	58 (59.2%)	41 (73.2%)	
CCI; n (%)	≤5	33 (32.4%)	14 (23.3%)	0.283
	>5	69 (67.6%)	46 (76.7%)	
Ischemic heart disease; n (%)	Yes	12 (11.8%)	5 (8.3%)	0.601
	No	90 (88.2%)	55 (91.7%)	
Diabetes mellitus; n (%)	Yes	16 (15.7%)	8 (13.3%)	0.820
	No	86 (84.3%)	52 (86.7%)	
Cerebrovascular disease; n (%)	Yes	7 (6.9%)	2 (3.3%)	0.487
	No	95 (93.1%)	58 (96.7%)	
Chronic kidney failure; n (%)	Yes	3 (2.9%)	1 (1.7%)	0.999
	No	99 (97.1%)	59 (98.3%)	
Neoadjuvant treatment; n (%)	Yes	19 (18.6%)	10 (16.7%)	0.834
	No	83 (81.4%)	50 (83.3%)	
Tumor localization; n (%)	Rectum	55 (53.9%)	33 (55.0%)	0.170
	Rectosigmoid	14 (13.7%)	14 (23.3%)	
	Sigmoid	33 (32.4%)	13 (21.7%)	
T; n (%)	T0–2	20 (19.6%)	10 (16.7%)	0.681
	T3–4	82 (80.4%)	50 (83.3%)	
M; n (%)	MO	92 (90.2%)	52 (86.7%)	0.606
	M1	10 (9.8%)	8 (13.3%)	
Stage; n (%)	0	1 (1.0%)	0 (0.0%)	0.735
	I	13 (12.7%)	10 (16.7%)	
	II	40 (39.2%)	24 (40.0%)	
	III	38 (37.3%)	18 (30.0%)	
	IV	10 (9.8%)	8 (13.3%)	
Ligation of inferior mesenteric artery; n (%)	High	71 (70.3%)	42 (72.4%)	0.857
	Low	30 (29.7%)	16 (27.6%)	
Simultaneous operation; n (%)	Yes	6 (5.9%)	8 (13.3%)	0.146
	No	96 (94.1%)	52 (86.7%)	
Anastomosis level from anal verge; n (%)	≤5 cm	16 (19.8%)	13 (26.5%)	0.351
	6–12 cm	32 (39.5%)	22 (44.9%)	
	> 12 cm	33 (40.7%)	14 (28.6%)	
Approach of surgery; n (%)	Open	52 (51.0%)	41 (68.3%)	0.034
	Minimally invasive	50 (49.0%)	19 (31.7%)	
Fig. 1 Overall survival in non-elderly and elderly patients who received colorectal resection with primary anastomosis for left-sided colorectal cancer

Fig. 2 Disease-free survival in non-elderly and elderly patients who received colorectal resection with primary anastomosis for left-sided colorectal cancer
MIS is currently considered an excellent alternative for open CRC surgery since large-scale RCTs demonstrated improved short-term and similar long-term outcomes [38–43]. Furthermore, large-scale population-based studies show that MIS is associated with decreased morbidity and mortality in CRC patients [44, 45]. Despite such evidence, MIS is underutilized in elderly patients as demonstrated by this study. A similar pattern of slow and even decreasing adoption of laparoscopic CRC surgery in the elderly is observed not only in our cohort but in other Western countries as well [18]. The reasons for such disparities in implementing MIS for younger and elderly CRC patients remain unclear. Although, some controversies exist on this topic and they may be responsible for the reluctance to perform MIS in the elderly. First, MIS is associated with significantly longer operative time, therefore there is a long time of the patient under anesthesia. Second, the potential cardiopulmonary changes induced by pneumoperitoneum and prolonged patient positioning remains a concern. Third, the studies which proved the benefit of MIS in CRC patients underrepresented the elderly population. Thus, there is a background for some scepticism regarding MIS adoption in elderly. Although, several previous studies showed the favourable outcomes of MIS in elderly CRC patients [46–50]. Further, our study confirmed, that MIS is associated with lower odds for postoperative complications in elderly patients who undergo resection with primary anastomosis for left-sided cancer. Hence, surgeons should not avoid MIS in the elderly, because this high-risk population seems to receive a significant benefit from this technique.

In contrast to some previous reports [51, 52], we found impaired long-term outcomes in elderly patients after resection for left-sided CRC. The first 3 months after surgery were suggested as the most critical for these patients [51] and the results of the present confirmed the importance of the early postoperative period as 90-days mortality reached 7.4% in elderly and only 1.6% in younger counterparts. Such findings indicate the need for remarkably close monitoring of late postoperative complications and life-threatening events during the early postoperative period in elderly population undergoing colorectal resection. To our surprise, we found impaired DFS in elderly patients as well. There is no clear explanation for such a finding since there is no evidence for a more aggressive biological behaviour of CRC in the elderly. However, few patients and treatment-related may be responsible. At first, the most frail elderly patients do not

Table 6 Cox regression (multivariable) analysis for overall and disease-free survival in the elderly patients after resection with primary anastomosis for left-sided CRC

	Overall survival		Disease-free survival	
	HR (95% CI)	p	HR (95% CI)	p
Gender				
Female	1 (reference)		1 (reference)	
Male	1.20 (0.68–2.13)	0.521	1.18 (0.67–2.07)	0.558
pT				
T0–2	1 (reference)		1 (reference)	
T3–4	0.89 (0.41–1.93)	0.783	0.87 (0.41–1.85)	0.723
pN				
N0	1 (reference)		1 (reference)	
N+	1.28 (0.69–2.36)	0.422	1.46 (0.80–2.66)	0.210
pM				
M0	1 (reference)		1 (reference)	
M1	2.00 (0.69–2.36)	0.422	1.94 (0.82–4.57)	0.128
ASA score				
I–II	1 (reference)		1 (reference)	
III–IV	1.91 (0.98–3.75)	0.057	2.12 (1.09–4.12)	0.026
Postoperative complications				
No	1 (reference)		1 (reference)	
Yes	0.82 (0.41–1.63)	0.580	0.92 (0.47–1.80)	0.816
Anastomotic leakage				
No	1 (reference)		1 (reference)	
Yes	1.69 (0.68–4.19)	0.256	1.85 (0.78–4.38)	0.160
Surgical approach				
Open	1 (reference)		1 (reference)	
Minimally invasive	0.47 (0.25–0.86)	0.015	0.48 (0.27–0.86)	0.015
LN retrieval				
≥12	1 (reference)		1 (reference)	
<12	0.52 (0.26–1.02)	0.060	0.53 (0.27–1.02)	0.058
Tumor localization				
Sigmoid	1 (reference)		1 (reference)	
Rectum	1.64 (0.71–3.81)	0.242	1.45 (0.63–3.35)	0.375
receive adjuvant chemotherapy because of poor physical condition [53]. Second, elderly patients are at higher risk for postoperative complications, which are responsible for the delay of adjuvant chemotherapy [54], thus the impaired oncological outcomes [55]. Third, elderly patients, who receive adjuvant therapy, are at higher risk for dose de-escalation because of renal and liver dysfunctions [3]. For these reasons, successful surgical treatment with an uneventful postoperative course plays a key role in the management of CRC in this population. As the present study showed, the MIS is an excellent option for elderly patients since the lower odds for postoperative morbidity, recurrence of disease, and death.

Our study has several limitations. First, it is a retrospective cohort study, therefore it is subject to the biases and confounding factors linked to such methods of research. Moreover, missing data was not handled at the statistical analysis and no imputation techniques were used as missing rate of <5% is considered inconsequential. Second, there was an unidentifiable bias in the decisions to perform open or MIS in elderly patients. It is possible that the choice was made in settings of surgeon experience and the patient’s global health status, thus, lower morbidity after MIS may be the consequence of the selection bias, rather than the real advantage of the method. Third, this study did not include any patient-reported outcomes, such as quality of life or others.

A strength of the current multi-center study includes a large sample size of the left-sided CRC patients who receive resection with primary anastomosis with long-term survival data.

Conclusions
Short- and long-term outcomes of elderly patients who underwent resections with primary anastomosis for left-sided CRC are impaired. The risk of anastomotic leakage in the elderly and non-elderly patients is similar, but leakages in the elderly seem to be associated with a higher 90-day mortality rate. Minimally invasive surgery is associated with decreased morbidity in the elderly and better long-term outcomes.

Abbreviations
CRC: Colorectal cancer; AL: Anastomotic leakage; MIS: Minimally invasive surgery; NE: Non-elderly; E: Elderly; BMI: Body mass index; CCS: Charlson comorbidity index; ASA: American Society of Anesthesiology; OS: Overall survival; DFS: Disease-free survival.

Acknowledgments
Not applicable.

Authors’ contributions
Study conception design: MK, AB, TP. Data acquisition: TP, KB, MK, AB. Data analysis and interpretation: MK, AB, TP. Drafting the article: MK, AB, KB, RB, JK, TP. Critical revision for intellectual content: EP, AD, KS, TP. All authors read and approved the final manuscript.

Funding
Audrius Dulskas received funding for the study by the European Social Fund under the No O9.3.3-LMT-K-712 “Development of Competencies of Scientists, other Researchers, and Students through Practical Research Activities” measure. The funding played no role in the design of this study, the collection, analysis, and interpretation of data, or the preparation of the manuscript.

Availability of data and materials
The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Declarations
Ethics approval and consent to participate
Vilnius Regional Research Ethics Committee approval (No. 2019/3–116-608) was obtained before the study. Because this study was retrospective and all included data were anonymous, the requirement that patients give informed consent was waived. Waiver of informed consent was approved by Vilnius Regional Research Ethics Committee.

Consent for publication
Not applicable.

Competing interests
The authors have no conflict of interest to declare.

Author details
1 Clinic of Gastroenterology, Nephrourology, and Surgery, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania. 2 Centre for Visceral Medicine and Translational Research, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania. 3 Faculty of Medicine, Vilnius University, Vilnius, Lithuania.

Received: 25 February 2021 Accepted: 16 November 2021
Published online: 07 December 2021

References
1. Rawla P, Sunkara T, Barsouk A. Epidemiology of colorectal cancer: incidence, mortality, survival, and risk factors. Przeglad Gastroenterol. 2019;14:89–103.
2. Kuipers EJ, Grady WM, Lieberman D, Seufferlein T, Sung JJ, Boelens PG, et al. Colorectal cancer. Nat Rev Dis Primer. 2015;1:15065.
3. Itatani Y, Kawada K, Sakai Y. Treatment of Elderly Patients with Colorectal Cancer: Biomed Res Int. 2018;2018:2176056.
4. Fagard K, Leonard S, Deschodt M, Devriendt E, Wolkhuys A, Prenen H, et al. The impact of frailty on postoperative outcomes in individuals aged 65 and over undergoing elective surgery for colorectal cancer: a systematic review. J Geriatr Oncol. 2016;7:479–91.
5. Robinson TN, Wu DS, Pointer L, Dunn CL, Cleveland JC, Moss M. Simple frailty score predicts postoperative complications across surgical specialties. Am J Surg. 2013;206:544–50.
6. Ommundsen N, Wyller TB, Nesbakken A, Jordhøy MS, Bakka A, Skovlund E, et al. Frailty is an independent predictor of survival in older patients with colorectal Cancer. Oncologist. 2014;19:1268–75.
7. Mistry PK, Gaunay GS, Hoening DM. Prediction of surgical complications in the elderly: can we improve outcomes? Asian J Urol. 2017;4:44–9.
8. Poskus E, Kryzauskas M, Poskus T, Mikalauskas S, Samalavicius NE, Allosin O, et al. Improved perioperative care is associated with improved long-term survival in colorectal cancer. Int J Color Dis. 2018;33:779–85.
9. Yang R, Wolfson M, Lewis MC. Unique aspects of the elderly surgical population. Geriatr Orthop Surg Rehabil. 2011;1:56–64.
10. Lu Q, Liu J-W, Wu Z, Liu X-M, Li J-H, Dong J, et al. Perioperative outcome of elderly versus younger patients undergoing major hepatic or pancreatic surgery. Clin Interv Aging. 2018;13:133–41.
11. Aquina CT, Mohile SG, Tejani MA, Becerra AZ, Xu Z, Hensley BJ, et al. The impact of age on complications, survival, and cause of death following...
12. Kryzauskas M, Bausys A, Deguteyte AE, Abecianas V, Poskus E, Bausys R, et al. Risk factors for anastomotic leakage and its impact on long-term survival in left-sided colorectal cancer surgery. World J Surg Oncol. 2020;18:205.
13. Pérez Dominguez L, Cáceres Alvarado N, Toscano Novella A, Casal Núñez JE. Results of colon cancer surgery in patients over 75 years old. ANZ J Surg. 2019;88:E11–5.
14. Al-Abed Y, Parker M, Arulampalam T, Tutton M. Survival following rectal cancer surgery: does the age matter? Acta Chir Belg. 2019;119:282–8.
15. Hallam S, Mothe B, Tirimula Raju. Hartmann's procedure, reversal and rate of stoma-free survival. Ann R Coll Surg Engl. 2018;100:301–7.
16. GlobalSurg Collaborative, Writing group, Glasbey JC, Adisa AO, Costas-Chavarri A, Qureshi AU, et al. Global variation in anastomosis and end colostomy formation following left-sided colorectal resection. BJU Open. 2019;3:403–14.
17. Kolarick PA, Sacchi M, Spinelli A, Wexner SD. Minimizing the impact of colorectal surgery in the elderly patient: the role of minimally invasive surgery in the geriatric population. Eur J Surg Oncol. 2020;46:333–7 Elsevier.
18. Keller DS, de Paula TR, Quj J, Kiran RP. The Trends in Adoption, Outcomes, and Costs of Laparoscopic Surgery for Colorectal Cancer in the Elderly Population. J Gastrointest Surg. 2020; doi: https://doi.org/10.1007/s11605-020-05457-6 [cited 16 Nov 2020].
19. Sehl M, Sawhney R, Naime A. Physiologic aspects of aging: impact on cancer management and decision making, part II. Cancer J Southdub Mass. 2005;1:1461–73.
20. Vacante M, Cristaldi E, Basile F, Borzi AM, Biondi A. Surgical approach and geriatric evaluation for elderly patients with colorectal cancer. Update Surg. 2019;71:411–7.
21. Levey AS, Eckardt K-U, Tsukamoto Y, Levin A, Coresh J, Rossert J, et al. Definition and classification of chronic kidney disease: a position statement from kidney disease: improving global outcomes (KDIGO). Kidney Int. 2005;67:2089–100.
22. Kim YW, Kim YF. Factors associated with postoperative complications and 1-year mortality after surgery for colorectal cancer in octogenarians and nonagenarians. Clin Interv Aging. 2016;11:689–97.
23. Hermans E, van Schaik PM, Prins HA, Dautzenberg PJL, Bosscha K. Outcome of colonic surgery in elderly patients with Colon Cancer. J Oncol. 2010;2010:1–5.
24. Weerink LBM, Gant CM, van Leeuwen BL, de Boek GH, Kouwenhoven EA, Faneyte IF. Long-term survival in octogenarians after surgical treatment for colorectal Cancer: prevention of postoperative complications is key. Ann Surg Oncol. 2018;25:3874–82.
25. Tan K-K, Koh HH-X, Tan Y-Y, Liu JZ, Sim R. Long-term outcome following surgery for colorectal cancers in octogenarians: a single institution’s experience of 204 patients. J Gastrointest Surg Off J Soc Surg Aliment Tract. 2012;16:1029–36.
26. Samuelsson KS, Egnell M, Klarin I, Løkk J, Gunnarsson U. Preoperative geriatric assessment and follow-up of patients older than 75 years undergoing elective surgery for suspected colorectal cancer. J Geriatr Oncol. 2019;10:709–15.
27. Mákelä JT, Klintstrup KH, Rautio TT. Mortality and survival after surgical treatment of colorectal Cancer in patients aged over 80 years. Gastrointest Tumors. 2017;4:36–44.
28. Zawadzki M, Krzystek-Korpacka M, Rączka M, Czarnecki R, Obuszko Z, Witkiewicz W. Colorectal surgery in elderly population. Pol Przegl Chir. 2018;90:29–34.
29. Veyre N, Ata T, Muscari F, Coughard A-C, Msika S, Hay J-M, et al. Anastomotic leakage after elective right versus left colectomy for cancer: prevalence and independent risk factors. J Am Coll Surg. 2007;205:785–93.
30. Tan Y, Xu B, Yu G, Li Y, Liu H. Comorbidity and the risk of anastomotic leak in Chinese patients with colorectal cancer undergoing colorectal surgery. Int J Colorectal Dis. 2017;116:389–97. Nature Publishing Group.
31. Lago V, Fotopoulou C, Chiantera V, Minig L, Gil-Moreno A, Cascales-Campos PA, et al. Risk factors for anastomotic leakage after colorectal resection in ovarian cancer surgery: a multi-Centre study. Gynecol Oncol. 2019;153:549–54.
32. Hoshino N, Fuku Y, Hida K, Sakai Y. Short-term outcomes of laparoscopic surgery for colorectal cancer in the elderly versus non-elderly: a systematic review and meta-analysis. Int J Colorectal Dis. 2019;34:377–86.
33. Banyisch M, Akkaya T, Gureniko P, Papadakis M, Heuer T, Kasim E, et al. Surgery for colorectal cancer in elderly patients: is there such a thing as being too old? Il G Chir. 2018;39:355–62.
34. Manceau G, Karoui M, Wemer A, Mortensen NJ, Hannoun L. Comparative outcomes of rectal cancer surgery between elderly and non-elderly patients: a systematic review. Lancet Oncol. 2012;13:e525–36.
35. Law WL, Choi HK, Heo JW, Lee YM, Seto CL. Outcomes of surgery for mid and distal rectal cancer in the elderly. World J Surg. 2006;30:598–604.
36. van der Pas MH, Haglind E, Cuesta MA, Frust A, Lacity AM, Hop WC, et al. Laparoscopic versus open surgery for rectal cancer (COLOR II): short-term outcomes of a randomised, phase 3 trial. Lancet Oncol. 2013;14:210–8.
37. Jeong S-Y, Park JW, Nam BH, Kim S, Kang S-B, Lim S-B, et al. Open versus laparoscopic surgery for mid-rectal or low-rectal cancer after neoadjuvant chemoradiotherapy (COREAN trial): survival outcomes of an open-label, non-inferiority, randomised controlled trial. Lancet Oncol. 2014;15:767–74.
38. Stevenson AR, Solomon MJ, Brown CSB, Lumley JW, Hewett P, Clouston AD, et al. Disease-free survival and local recurrence after laparoscopic-assisted resection or open resection for rectal Cancer: the Australasian Laparoscopic Colorectal Cancer of the rectum randomized clinical trial. Ann Surg. 2019;269:596–602.
39. Veldkamp R, Kuhry E, Hop WCJ, Jeeleki J, Kazemier G, Bonjer HJ, et al. Laparoscopic surgery versus open surgery for colon cancer: short-term outcomes of a randomised trial. Lancet Oncol. 2005;6:477–84.
40. Kitano S, Inomata M, Mizusawa J, Katayama H, Watanabe M, Yamamoto S, et al. Survival outcomes following laparoscopic versus open D3 dissection for stage II or III colon cancer (JCC0403): a phase 3, randomised controlled trial. Lancet Gastroenterol Hepatol. 2017;2:261–8.
41. McCombie AM, Frizelle F, Bagshaw PF, Frampont CM, Hewett PJ, McMurray PJ, et al. The ALCCAs trial: a randomized controlled trial comparing quality of life following laparoscopic versus open colectomy for Colon Cancer. Dis Colon Rectum. 2018;61:1156–62.
42. Mamidanna R, Burns EM, Bottle A, Aylin P, Stonell C, Hanna GB, et al. Reduced risk of medical morbidity and mortality in patients selected for laparoscopic colorectal resection in England: a population-based study. Arch Surg Chic Ill 1960. 2012;147:219–27.
43. Gietelink L, Wouters MMW, Bemelman WA, Dekker JW, Tolleen RAEM, Tanis PJ, et al. Reduced 30-day mortality after laparoscopic colorectal Cancer surgery: a population based study from the Dutch surgical colorectal audit (DSCA). Ann Surg. 2016;264:135–40.
44. Delgado S, Lacy AM, García Valdecasas JC, Balagué C, Pera M, Salvador L, et al. Could age be an indication for laparoscopic colectomy in colorectal cancer? Surg Endosc. 2003;17:923–9.
45. Frasson M, Braga M, Vignali A, Zuliani W, Di Carlo V. Benefits of laparoscopic colorectal resection are more pronounced in elderly patients. Dis Colon Rectum. 2008;51:296–300.
46. Tomimaru Y, Ide Y, Murata K. Outcome of laparoscopic surgery for colon cancer in elderly patients. Asian J Endosc Surg. 2011;4:1–6.
47. She W-H, Poon JT-C, Fan J-KM, Lo OS-H, Law WW-L. Outcomes of laparoscopic colectomy for cancer in elderly patients. Surg Endosc. 2013;27:308–12.
48. Niemeläinen S, Huhtala H, Ehrlich A, Kossi J, Jämsen E, Hyötty M. Long-term survival following elective colon cancer surgery in the aged. A population-based cohort study. Color Dis. 2020;22:1585–96.
52. Mothes H, Bauschke A, Schuele S, Eigendorff E, Altendorf-Hofmann A, Settmacher U. Surgery for colorectal cancer in elderly patients: how can we improve outcome? J Cancer Res Clin Oncol. 2017;143:1879–89.
53. Kim JH. Chemotherapy for colorectal cancer in the elderly. World J Gastroenterol. 2015;21:5158.
54. Tevis SE, Kohlhofer BM, Stringfield S, Foley E, Harms BA, Heise CP, et al. Postoperative Complications in Patients With Rectal Cancer Are Associated With Delays in Chemotherapy That Lead to Worse Disease-free and Overall Survival. Dis Colon Rectum. 2013;56:1339–48.
55. Gao P, Huang X, Song Y, Sun J, Chen X, Sun Y, et al. Impact of timing of adjuvant chemotherapy on survival in stage III colon cancer: a population-based study. BMC Cancer. 2018;18:234.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.