First Order Logic on Pathwidth Revisited

Again

Michael Lampis
LAMSADE

July 12th 2023 – ICALP Track B
Theorem: Fix a positive integer p. Then, there is an algorithm that takes as input a graph G, a **path decomposition** of G of width p, and a **FO formula** ϕ, and decides if $G \models \phi$ in time $f(\phi)|G|^{O(1)}$, where f is an **elementary** function of ϕ.
Theorem: Fix a positive integer p. Then, there is an algorithm that takes as input a graph G, a **path decomposition** of G of width p, and a **FO formula** ϕ, and decides if $G \models \phi$ in time $f(\phi)|G|^{O(1)}$, where f is an **elementary** function of ϕ.

Fun Fact: I couldn’t sleep at night when I thought of this question!
Theorem: Fix a positive integer p. Then, there is an algorithm that takes as input a graph G, a path decomposition of G of width p, and a FO formula ϕ, and decides if $G \models \phi$ in time $f(\phi)|G|^{O(1)}$, where f is an elementary function of ϕ.

Normal people: This question makes me sleepy!
Theorem: Fix a positive integer p. Then, there is an algorithm that takes as input a graph G, a **path decomposition** of G of width p, and a **FO formula** ϕ, and decides if $G \models \phi$ in time $f(\phi)|G|^{O(1)}$, where f is an **elementary** function of ϕ.

Necessary Background:

- Treewidth, Pathwidth, Parameterized Complexity
- Meta-Theorems, Courcelle’s Theorem, **Non-elementary** dependence
- Meta-Theorems with **elementary** dependence
Background I: Graph Widths and Parameterized Complexity
Gentle definition of pathwidth k:

- We have k stacks. Initially each contains a vertex. They are arbitrarily connected.
- At each step we add a vertex to the top of a stack. It can be connected to vertices currently on top of a stack.
Treewidth – Pathwidth

Gentle definition of pathwidth k:

- We have k stacks. Initially each contains a vertex. They are arbitrarily connected.
- At each step we add a vertex to the top of a stack. It can be connected to vertices currently on top of a stack.
Treewidth – Pathwidth

Gentle definition of pathwidth k:

- We have k stacks. Initially each contains a vertex. They are arbitrarily connected.
- At each step we add a vertex to the top of a stack. It can be connected to vertices currently on top of a stack.
Gentle definition of pathwidth k:

- We have k stacks. Initially each contains a vertex. They are arbitrarily connected.
- At each step we add a vertex to the top of a stack. It can be connected to vertices currently on top of a stack.
Gentle definition of pathwidth k:

- We have k stacks. Initially each contains a vertex. They are arbitrarily connected.
- At each step we add a vertex to the top of a stack. It can be connected to vertices currently on top of a stack.
Gentle definition of pathwidth k:

- We have k stacks. Initially each contains a vertex. They are arbitrarily connected.
- At each step we add a vertex to the top of a stack. It can be connected to vertices currently on top of a stack.
Gentle definition of pathwidth k:

- We have k stacks. Initially each contains a vertex. They are arbitrarily connected.
- At each step we add a vertex to the top of a stack. It can be connected to vertices currently on top of a stack.
Gentle definition of pathwidth k:

- We have k stacks. Initially each contains a vertex. They are arbitrarily connected.
- At each step we add a vertex to the top of a stack. It can be connected to vertices currently on top of a stack.
Gentle definition of pathwidth k:

- We have k stacks. Initially each contains a vertex. They are arbitrarily connected.
- At each step we add a vertex to the top of a stack. It can be connected to vertices currently on top of a stack.
Gentle definition of pathwidth k:

- We have k stacks. Initially each contains a vertex. They are arbitrarily connected.
- At each step we add a vertex to the top of a stack. It can be connected to vertices currently on top of a stack.
Note that this is equivalent to the standard definition of path decompositions.
Note that this is equivalent to the standard definition of path decompositions.
A connection to graph classes:
A connection to graph classes:

Corresponding interval graph:
A connection to graph classes:

Corresponding interval graph:

Treewidth \((G)\) \(\min \omega(G'')\) where \(G''\) is chordal supergraph of \(G\)
Pathwidth \((G)\) \(\min \omega(G')\) where \(G'\) is interval supergraph of \(G\)
Tree-depth \((G)\) \(\min \omega(G')\) where \(G'\) is trivially perfect supergraph of \(G\)
Treewidth vs Pathwidth

- Treewidth k is a much wider class than Pathwidth k.
- But most problems have same complexity for both parameters!
 - Ind. Set, Dom. Set, Steiner Tree, Coloring, ...
 - (Hamiltonicity?)
- In particular, almost all natural problems which are FPT for pathwidth, are FPT for treewidth.

Exception: Grundy Coloring

Theorem: Grundy Coloring is FPT parameterized by pathwidth but W[1]-hard parameterized by treewidth. [Belmonte, Kim, L., Mitsou, Otachi, ESA 2020 SIDMA 2022].
Background II: Meta-Theorems
Statements of the form:
“Every problem in family \(\mathcal{F} \) is tractable”

- Family \(\mathcal{F} \): often “expressible in FO/MSO or other logic”
- Tractable: often “FPT parameterized by some parameter”
Meta-Theorems and Courcelle’s Theorem

- Statements of the form:
 “Every problem in family \mathcal{F} is tractable”

 - Family \mathcal{F}: often “expressible in FO/MSO or other logic”
 - Tractable: often “FPT parameterized by some parameter”

Courcelle’s famous meta-theorem:

All problems expressible in MSO logic are FPT parameterized by treewidth.
FO logic:

- Two relations: $=$ and \sim (equality, adjacency)
- (Quantified) Variables x_1, x_2, \ldots represent vertices
- Standard boolean connectives ($\lor, \land, \neg, \rightarrow$)

Standard Example: 2-Dominating set

$$\exists x_1 \exists x_2 \forall x_3 (x_1 = x_3 \lor x_2 = x_3 \lor x_1 \sim x_3 \lor x_2 \sim x_3)$$
FO and MSO logic reminder

FO logic:
- Two relations: $=$ and \sim (equality, adjacency)
- (Quantified) Variables x_1, x_2, \ldots represent vertices
- Standard boolean connectives ($\lor, \land, \neg, \rightarrow$)

MSO logic: FO logic plus the following
- \in relation
- (Quantified) Set Variables X_1, X_2, \ldots represent sets of vertices

Standard Examples: 3-Coloring, Connectivity

$$
\exists X_1 \exists X_2 \exists X_3 \left(\forall x_1 \ (x_1 \in X_1 \lor x_1 \in X_2 \lor x_1 \in X_3) \land \\
\forall x_2 \ (x_1 \sim x_2 \rightarrow \neg(x_1 \in X_1 \land x_2 \in X_1)) \land \\
\neg(x_1 \in X_2 \land x_2 \in X_2) \land \\
\neg(x_1 \in X_3 \land x_2 \in X_3) \right)
$$
Courcelle: If G has treewidth tw, we can check if it satisfies an MSO property ϕ in time

$$f(tw, \phi) \cdot |G|$$
• Courcelle: If G has treewidth tw, we can check if it satisfies an MSO property ϕ in time

$$f(tw, \phi) \cdot |G|$$

• Problem: f is approximately $2^{2^{2^{\cdot\cdot\cdot^{2^{tw}}}}}$, where the height of the tower is upper-bounded by the number of quantifier alternations in ϕ.
A Closer Look

- Courcelle: If G has treewidth tw, we can check if it satisfies an MSO property ϕ in time

$$f(tw, \phi) \cdot |G|$$

- Problem: f is approximately $2^{2^{\cdots^{2^{tw}}}}$, where the height of the tower is upper-bounded by the number of **quantifier alternations** in ϕ.

- **Serious Problem**: This tower of exponentials cannot be avoided\(^1\) even for **FO logic on trees**!

 - “The complexity of first-order and monadic second-order logic revisited”, [Frick and Grohe, APAL 2004].

- **Question**: Does f become nicer if we consider more restricted parameters?

\(^1\)Assuming $P \neq NP$ or $FPT \neq W[1]$.
Known Fine-Grained Meta-Theorems

- Vertex Cover
 - MSO with q quantifiers can be decided in $2^{O(vc + q)}$
 - FO with q quantifiers can be decided in $2^{O(vc \cdot q) \cdot q^{O(q)}}$

- These are **optimal under ETH**.
 - There exists fixed MSO formula which cannot be decided in $2^{2^{o(vc)}}$.

- “Algorithmic Meta-Theorems for Restrictions of Treewidth”, [L. ESA 2010, Algorithmica 2012].
• Tree-depth
 • MSO/FO with q quantifiers can be decided by an algorithm running in time $2^{2^{td+q}}$
 • ...where height of tower is at most td (even for large q)
 • This is **optimal under ETH**.

• “Kernelizing MSO Properties of Trees of Fixed Height, and Some Consequences”, [Gajarsky and Hlineny, MFCS 2012, LMCS 2015].
• “Model-Checking Lower Bounds for Simple Graphs”, [L. ICALP 2013, LMCS 2014].
Summary

• For treewidth we can solve MSO in $f(tw, \phi) \cdot n$
 • But f is non-elementary!
 • Inevitable even for $tw = 1$ and FO logic!
• For tree-depth we can solve MSO in $f(td, \phi) \cdot n$
 • For each fixed value of td, f is an elementary function of ϕ.
• Can the same be done for pathwidth?
• (For MSO logic \rightarrow No [Frick and Grohe, APAL 2004])
For treewidth we can solve MSO in $f(tw, \phi) \cdot n$

- But f is non-elementary!
- Inevitable even for $tw = 1$ and FO logic!

For tree-depth we can solve MSO in $f(td, \phi) \cdot n$

- For each fixed value of td, f is an elementary function of ϕ.

Can the same be done for pathwidth?

(For MSO logic → No [Frick and Grohe, APAL 2004])
Background III: Techniques
Given a graph with vertex cover \(vc = 5 \)
we want to check an FO property \(\phi \) with \(q = 3 \) variables.
Sentence has form $\exists x_1 \psi(x_1)$
- We must “place” x_1 somewhere in the graph
- If we try all cases we get n^q running time.
Sentence has form $\exists x_1 \psi(x_1)$

- We must “place” x_1 somewhere in the graph
- If we try all cases we get n^q running time.
Sentence has form $\exists x_1 \psi(x_1)$
- We must “place” x_1 somewhere in the graph
- If we try all cases we get n^q running time.
We observe that some vertices of the independent set have the same neighbors. These vertices should be equivalent.
We observe that some vertices of the independent set have the same neighbors. These vertices should be equivalent. Key idea: if a group has $> q$ vertices, we can simply remove one!
We have a rooted tree with d layers (d fixed)
Apply the previous argument to the bottom layer (leaves)
Apply the previous argument to the bottom layer (leaves)
Key intuition: same argument can be applied to level 2, deleting identical sub-trees.
Key intuition: same argument can be applied to level 2, deleting identical sub-trees.
There are q^q different “types” of vertices at level 2. Applying the same argument to level 3, there are q^{q^q} types of vertices of level 3. . . .

In the end graph has bounded size!2

2bounded by a tower of exponentials of height d.
FO logic is local

Classical Example:
FO logic with q quantifiers cannot distinguish a long (say 4^q) path, and a union of a path and a cycle.

CONNECTIVITY cannot be expressed in FO logic!
FO logic is local

Classical Example:
FO logic with q quantifiers cannot distinguish a long (say 4^q) path, and a union of a path and a cycle.

CONNECTIVITY cannot be expressed in FO logic!
FO logic is local

Classical Example:
FO logic with q quantifiers cannot distinguish a long (say 4^q) path, and a union of a path and a cycle.

CONNECTIVITY cannot be expressed in FO logic!
FO logic is local

Classical Example:
FO logic with q quantifiers cannot distinguish a long (say 4^q) path, and a union of a path and a cycle.

CONNECTIVITY cannot be expressed in FO logic!
The Algorithm
Where we are

Parameter	FO	MSO
Treewidth	Non-elementary on Trees [FrickG04]	Non-elementary on Trees [FrickG04]
Pathwidth	Non-elementary on Caterpillars [FrickG04]	Elementary [GajarskyH15]
Tree-depth	Elementary [GajarskyH15]	Elementary [GajarskyH15]

FO Logic and Pathwidth

![Diagram](Dauphine.png)
Where we are

Parameter	FO	MSO
Treewidth	Non-elementary on Trees [FrickG04]	Non-elementary on Trees [FrickG04]
Pathwidth	Elementary	Non-elementary on Caterpillars [FrickG04]
Tree-depth	Elementary [GajarskyH15]	Elementary [GajarskyH15]

- Last missing case where it was not known if dependence is elementary.
- Complexity different for pathwidth/treewidth (!!)
- Complexity different for FO/MSO (cf. tree-depth)

To obtain algorithm will use:
- A **ranked** version of path decompositions that will make graph hierarchical (like tree-depth).
- A generalized version of the “delete identical parts” argument.
- To find identical parts: a **surgical** operation that relies on the locality of FO logic.
Intuition: try to delete identical parts on lower levels.
Works well for level 1, there are only $2^{O(pw)}$ types.

Strategy breaks down at level 2.
No twins are guaranteed to exist.
Deleting something makes locally detectable changes to graph.
Must carefully cut out parts to make sure formula validity is not affected.
• Intuition: try to delete identical parts on lower levels.
• Works well for level 1, there are only $2^{O(pw)}$ types.

• Strategy breaks down at level 2.
• No twins are guaranteed to exist.
• Deleting something makes locally detectable changes to graph.
• Must carefully **cut out** parts to make sure formula validity is not affected.
• Intuition: try to delete identical parts on lower levels.
• Works well for level 1, there are only $2^{O(pw)}$ types.

• Strategy breaks down at level 2.
• No twins are guaranteed to exist.
• Deleting something makes locally detectable changes to graph.
• Must carefully **cut out** parts to make sure formula validity is not affected.
- Intuition: try to delete identical parts on lower levels.
- Works well for level 1, there are only $2^{O(pw)}$ types.

- Strategy breaks down at level 2.
- No twins are guaranteed to exist.
- Deleting something makes locally detectable changes to graph.
- Must carefully **cut out** parts to make sure formula validity is not affected.
Intuition: try to delete identical parts on lower levels.
Works well for level 1, there are only $2^{O(pw)}$ types.

Strategy breaks down at level 2.
No twins are guaranteed to exist.
Deleting something makes locally detectable changes to graph.
Must carefully cut out parts to make sure formula validity is not affected.
Intuition: try to delete identical parts on lower levels.
Works well for level 1, there are only $2^{O(pw)}$ types.

Strategy breaks down at level 2.
No twins are guaranteed to exist.
Deleting something makes locally detectable changes to graph.
Must carefully **cut out** parts to make sure formula validity is not affected.
Idea: Path \leftrightarrow Path+Ring transformation.

- Identify two areas where for a large radius things are similar.
- Cut graph in middle of each area.
- Paste into a main path and a ring.
- Appropriately chosen radius \rightarrow area around each vertex the same \rightarrow FO-equivalent graphs.
A surgical operation

Idea: Path \leftrightarrow Path+Ring transformation.

- Identify two areas where for a large radius things are similar.
- Cut graph in middle of each area.
- Paste into a main path and a ring.
- Appropriately chosen radius \rightarrow area around each vertex the same \rightarrow FO-equivalent graphs.
A surgical operation

Idea: Path \leftrightarrow Path+Ring transformation.

- Identify two areas where for a large radius things are similar.
- Cut graph in middle of each area.
- Paste into a main path and a ring.
- Appropriately chosen radius \rightarrow area around each vertex the same \rightarrow FO-equivalent graphs.
A surgical operation

Idea: Path \leftrightarrow Path+Ring transformation.

- Identify two areas where for a large radius things are similar.
- Cut graph in middle of each area.
- Paste into a main path and a ring.
- Appropriately chosen radius \rightarrow area around each vertex the same \rightarrow FO-equivalent graphs.
A surgical operation

Idea: Path ↔ Path+Ring transformation.

- Identify two areas where for a large radius things are similar.
- Cut graph in middle of each area.
- Paste into a main path and a ring.
- Appropriately chosen radius → area around each vertex the same → FO-equivalent graphs.
A surgical operation

Idea: Path \leftrightarrow Path+Ring transformation.

- Identify two areas where for a large radius things are similar.
- Cut graph in middle of each area.
- Paste into a main path and a ring.
- Appropriately chosen radius \rightarrow area around each vertex the same \rightarrow FO-equivalent graphs.
A surgical operation

Idea: Path \leftrightarrow Path+Ring transformation.

- Identify two areas where for a large radius things are similar.
- Cut graph in middle of each area.
- Paste into a main path and a ring.
- Appropriately chosen radius \rightarrow area around each vertex the same \rightarrow FO-equivalent graphs.
A surgical operation

Idea: Path \leftrightarrow Path+Ring transformation.

- Identify two areas where for a large radius things are similar.
- Cut graph in middle of each area.
- Paste into a main path and a ring.
- Appropriately chosen radius \rightarrow area around each vertex the same \rightarrow FO-equivalent graphs.
Putting it all together

- Inductive Hypothesis: intervals of color \(\leq i \rightarrow \) length at most \(f(i, q) \).
- Process color \(i + 1 \):
 - Find \(q + 1 \) identical blocks where surgical operation applies
 - Argue that one can be shortened.
 - \(\rightarrow \) interval has length \(\leq f(i + 1, q) \), (which is \(> 2f(i, q) \)).
- End result: bounded-degree graph.
• Inductive Hypothesis: intervals of color $\leq i \rightarrow$ length at most $f(i, q)$.
• Process color $i + 1$:
 • Find $q + 1$ identical blocks where surgical operation applies
 • Argue that one can be shortened.
 • \rightarrow interval has length $\leq f(i + 1, q)$, (which is $> 2f(i, q)$).
• End result: bounded-degree graph.
Putting it all together

- Inductive Hypothesis: intervals of color $\leq i \rightarrow$ length at most $f(i, q)$.
- Process color $i + 1$:
 - Find $q + 1$ identical blocks where surgical operation applies
 - Argue that one can be shortened.
 - \rightarrow interval has length $\leq f(i + 1, q)$, (which is $> 2f(i, q)$).
- End result: bounded-degree graph.
Putting it all together

- Inductive Hypothesis: intervals of color $\leq i \rightarrow$ length at most $f(i, q)$.
- Process color $i + 1$:
 - Find $q + 1$ identical blocks where surgical operation applies
 - Argue that one can be shortened.
 - \rightarrow interval has length $\leq f(i + 1, q)$, (which is $> 2f(i, q)$).
- End result: bounded-degree graph.
Inductive Hypothesis: intervals of color $\leq i \rightarrow$ length at most $f(i, q)$.

Process color $i + 1$:

- Find $q + 1$ identical blocks where surgical operation applies
- Argue that one can be shortened.
- \rightarrow interval has length $\leq f(i + 1, q)$, (which is $> 2f(i, q)$).

End result: bounded-degree graph.
Conclusions
Conclusions

- FO model-checking is **elementary** for graphs of bounded pathwidth.
 - Surprising because tw/pw are usually similar.
 - Surprising that this was not known!

Open problems:
- Extension to dense graphs?
 - Extension to linear clique-width impossible due to hardness for threshold graphs.
- Other graph classes with elementary model-checking?
- **Realistic** meta-theorems?
Conclusions

- FO model-checking is **elementary** for graphs of bounded pathwidth.
 - Surprising because tw/pw are usually similar.
 - Surprising that this was not known!

Open problems:
- Extension to dense graphs?
 - Extension to linear clique-width impossible due to hardness for threshold graphs.
- Other graph classes with elementary model-checking?
- **Realistic** meta-theorems?

Thank you!