Examining clustered somatic mutations with SigProfilerClusters
Erik N. Bergstrom1-3, Mousumy Kundu1-3, Noura Tbeileh1-3, and Ludmil B. Alexandrov1-3*

1Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA, 92093, USA
2Department of Bioengineering, UC San Diego, La Jolla, CA, 92093, USA
3Moores Cancer Center, UC San Diego, La Jolla, CA, 92037, USA

*Correspondence should be addressed to L2alexandrov@health.ucsd.edu.
ABSTRACT

Summary: Clustered mutations are found in the human germline as well as in the genomes of cancer and normal somatic cells. Clustered events can be imprinted by a multitude of mutational processes, and they have been implicated in both cancer evolution and development disorders. Prior tools for identifying clustered mutations have been optimized for a particular subtype of clustered event and, in most cases, relied on a predefined inter-mutational distance (IMD) cutoff combined with a piecewise linear regression analysis. Here we present SigProfilerClusters, an automated tool for detecting all types of clustered mutations by calculating a sample-dependent IMD threshold using a simulated background model that takes into account extended sequence context, transcriptional strand asymmetries, and regional mutation densities. SigProfilerClusters disentangles all clustered events from non-clustered mutations and annotates each clustered event into an established subclass, including the widely used classes of doublet-base substitutions, multi-base substitutions, omikli, and kataegis. SigProfilerClusters outputs non-clustered mutations and clustered events using standard data formats as well as provides multiple visualizations for exploring the distributions and patterns of clustered mutations across the genome.

Availability: SigProfilerClusters is freely available at

https://github.com/AlexandrovLab/SigProfilerClusters with support across most operating systems and extensive documentation at https://osf.io/qpmzw/wiki/home/.

Contact: ebergstr@eng.ucsd.edu or L2alexandrov@health.ucsd.edu
INTRODUCTION

Mutations are found on the genomes of all cells in the human body (Martincorena and Campbell, 2015; Stratton, et al., 2009). Most single-base substitutions and small insertions and deletions (indels) accumulate independently across the genome, but a subset of mutations cluster in a non-random manner (Lawrence, et al., 2013; Supek and Lehner, 2017). Previous studies have revealed that clustered mutations are imprinted by a plethora of endogenous and exogenous mutational processes (Alexandrov, et al., 2020; Boichard, et al., 2017; Brash, 2015; Buisson, et al., 2019; Chan, et al., 2015; Chen, et al., 2013; Consortium, 2020; Mas-Ponte and Supek, 2020; Matsuda, et al., 1998; Nik-Zainal, et al., 2012; Nik-Zainal, et al., 2019; Pfeifer, et al., 2005; Roberts, et al., 2012; Supek and Lehner, 2017; Taylor, et al., 2013). Some clustered mutations have been implicated in cancer evolution (Bergstrom, et al., 2022; Chen, et al., 2013; Consortium, 2020; Mas-Ponte and Supek, 2020; Supek and Lehner, 2017; Taylor, et al., 2013), while de novo clustered mutations have been identified in the human germline and shown to contribute to developmental disorders (Kaplanis, et al., 2019). In recent years, sets of simultaneously occurring clustered substitutions have been further subclassified into independent events (Bergstrom, et al., 2022; Mas-Ponte and Supek, 2020), including: (i) doublet base substitutions (DBSs); (ii) multi-base substitutions (MBSs); (iii) diffuse hypermutation termed omikli; (iv) longer strand-coordinated events termed kataegis; and (v) recurrent hypermutation of extra-chromosomal DNA (ecDNA) termed kyklonas.

Traditional methods separate clustered mutations based upon a predefined inter-mutational distance (IMD) threshold typically between 1 and 2 kilobases (Alexandrov, et al., 2020; Alexandrov, et al., 2013; Chan, et al., 2015; D'Antonio, et al., 2016; Maciejowski, et al., 2020;
Many of these approaches utilize a piece-wise linear regression to segment each chromosome, which, in most cases, is optimized for calling larger strand-coordinated kataegic events (Alexandrov, et al., 2013; Lin, et al., 2021; Mas-Ponte and Supek, 2020). Most prior methods have also ignored confounding effects attributed to localized differences in mutation rates, copy number alterations, or the mutational burden across each chromosome within a given sample. Further, the majority of existing tools focus on detecting only a specific class of clustered events including doublet-base substitutions (Chen, et al., 2013; Matsuda, et al., 1998), kataegis (D'Antonio, et al., 2016; Lin, et al., 2021; Taylor, et al., 2013), or APOBEC3-associated events (Chan, et al., 2015; Nik-Zainal, et al., 2012) while ignoring the larger landscape of clustered mutations. For example, a recent study (Mas-Ponte and Supek, 2020) developed an algorithm focused on the detection of APOBEC3-associated omikli and kataegis events in cancer genomes by incorporating simulations of somatic mutations and estimates of cancer cell fractions.

Separation and classification of clustered events is required to fully elucidate the mutational processes operating in cancer and normal somatic cells (Bergstrom, et al., 2022; Supek and Lehner, 2017). Here we present SigProfilerClusters, a tool to comprehensively characterize and subclassify clustered mutations from the complete catalog of mutations within the genome of a single sample (Fig. 1a). SigProfilerClusters classifies all types of clustered mutations, including (i) doublet-base substitutions; (ii) multi-base substitutions; (iii) omikli; (iv) kataegis; and (v) clustered small insertions and deletions (indels). The tool calculates a sample dependent IMD threshold that considers regional differences in mutation rates, variant allele fractions of adjacent mutations, and provides visualizations for downstream analyses (Fig. 1b&c). Further,
SigProfilerClusters integrates within the larger suite of SigProfiler tools (Bergstrom, et al., 2020; Bergstrom, et al., 2019; Islam, et al., 2020) to facilitate downstream mutational signature analysis of both non-clustered and clustered single-base substitutions and indels, thus, allowing the accurate detection of mutational processes giving rise to even low levels of clustered events (Fig. 1d) (Bergstrom, et al., 2019; Bergstrom, et al., 2022; Islam, et al., 2020).

METHODS

SigProfilerClusters derives an IMD cutoff that is unlikely to occur purely by chance given the observed mutational burden and the mutational patterns within the genome of a given sample. To calculate the genome dependent IMD, the tool leverages SigProfilerSimulator (Bergstrom, et al., 2020) to generate background models by randomizing the distribution of mutations across the genome. By default, the genome of each sample is simulated 100 times in order to derive 95% confidence intervals for the expected genomic mutational landscape, with every simulation maintaining the penta-nucleotide sequence context for each substitution, the ratio of all mutations in genic and inter-genic regions, the transcriptional strand asymmetries of all mutations in genic regions, and the mutational burden on each chromosome (Bergstrom, et al., 2020; Bergstrom, et al., 2019). Importantly, this randomization procedure is highly customizable (Bergstrom, et al., 2020) and can be altered based upon the needs of a given study design, thus, allowing the incorporation of other factors that affect the accumulation of mutations such as nucleosome occupancy, presence of histone modifications, and many others. A binary search algorithm is implemented to efficiently derive the global IMD threshold for each genome. The final global IMD threshold is selected by ensuring that 90% of mutations below the chosen cutoff are unlikely to appear by chance given the simulated distribution of mutations (q-
value<0.01) with a maximum global IMD cutoff of 10 kilobases. The algorithm also considers regional heterogeneities of mutation rates, generally associated with replication timing (Stamatoyannopoulos, et al., 2009) or differential gene expression (Buisson, et al., 2019; Hess, et al., 2019; Lawrence, et al., 2013; Pleasance, et al., 2010; Polak, et al., 2015), by correcting for variance in clonality as well as variance in both mutation-dense and mutation-poor regions using a sliding genomic widow (default size of 1 megabase). Specifically, an additional regional IMD cutoff is corrected within each genomic window based upon the fold difference between the number of real and the number of simulated mutations, while maintaining the original criteria of less than 10% of mutations below the IMD cutoff appearing by chance (q-value<0.01). Lastly, when data are available, SigProfilerClusters ensures that adjacent mutations are in the same cells by introducing a maximum difference in variant allele frequencies (VAF) below a certain threshold (default cutoff value of 0.10).

After identifying the set of clustered mutations, SigProfilerClusters subclassifies each clustered substitution into a single category of previously established clustered events (Bergstrom, et al., 2022). Briefly, all clustered substitutions with consistent VAFs are classified into one of four categories. Two mutations with an IMD of 1 are classified as doublet-base substitutions, while clusters of three or more adjacent mutations each with an IMD of 1 are classified as multi-base substitutions. Clusters of two or three mutations with IMDs less than the sample-dependent cutoff and with at least a single IMD greater than 1 are classified as omikli, while clusters of four or more mutations with IMDs less than the sample-dependent cutoff and with at least a single IMD greater than 1 are classified as kataegis. All remaining clustered mutations with
inconsistent VAFs are classified as *other*. Clustered indels are not subclassified into different categories due to a lack of previously defined subtypes.

USAGE

SigProfilerClusters is freely available as a Python package, distributed under the permissive BSD-2 clause license, and can be used on most operating systems including Windows, MacOS, and Linux-based machines. The tool is compatible with large-scale deployments on high-performance computing clusters as well as on cloud infrastructures such as Amazon Web Services (AWS). Input data can be provided in the form of common mutation formats including the Variant Call Format (VCF), the Mutation Annotation Format (MAF), or in the form of a simple text file. The output of SigProfilerClusters results in the partitioning of all mutations into a clustered or non-clustered directory. All clustered mutations are then classified into distinct subcategories of events and provided individually in VCF files for downstream visualization and analyses. The output for each subclass of clustered event can be directly utilized by additional SigProfiler tools including SigProfilerExtractor for mutational signature analysis (Islam, et al., 2020) and SigProfilerPlotting for examining patterns of somatic mutations (Bergstrom, et al., 2019). The results for each sample are also summarized using two individual visualizations that include: *(i)* a rainfall plot depicting the minimum global IMD between all adjacent mutations, where each individual set of adjacent mutations is colored based upon its clustered classification; and *(ii)* a multi-panel figure that displays the mutational patterns across all mutations, clustered mutations, and non-clustered mutations, separately along with the distribution of IMDs across the real and simulated data for each sample *(Fig. 1a).*
Elucidating the compendium of clustered somatic mutations in the genome of a sample allows further understanding of the mutational process that give rise to these events and can provide novel insights into disease etiology (Bergstrom, et al., 2022; Mas-Ponte and Supek, 2020; Supek and Lehner, 2017). Previous studies have traditionally interrogated the complete mutational catalogs of cancer genomes, which can lead to the inability to detect processes active at low levels or those which have been transiently activated. Our prior analysis of clustered mutations (Bergstrom, et al., 2022) have revealed an enrichment of clustered mutations within known cancer driver events, hypermutation of extrachromosomal DNA fueling the evolution of cancers, and ultimately, resulting in a differential patient outcome. Here we provide SigProfilerClusters, an automated and free available Python based tool that comprehensively identifies and classifies clustered mutations enabling users to interrogate the mutational processes giving rise to such events.

FIGURE LEGENDS

Figure 1. Detection and characterization of clustered mutations with SigProfilerClusters.

An example workflow used to detect clustered mutations in a single cancer genome. As an input, SigProfilerClusters accepts common formats for mutations, such as ones in the variant calling format (VCF), and the tool separates all clustered mutations from the complete mutational catalog of the provided sample. Final partitions of mutations in the sample are outputted as VCF files and visualized using the mutational spectra of all mutations, only clustered mutations, and only non-clustered mutations along with a rainfall plot commonly used to show the distribution of inter-mutational distances across a cancer genome (Alexandrov, et al., 2013; Bergstrom, et al.,
b) Schematic demonstrating the process of calculating a sample dependent IMD threshold to separate clustered from non-clustered mutations across each genome. A binary search algorithm is used to efficiently detect the optimal global IMD threshold for each sample. Detection of the global IMD threshold is illustrated using grey arrows. Regional corrections are performed to identify local IMD thresholds based on variance of mutation rates across the genome. c) Every clustered mutation is classified into a single subcategory of clustered event. d) Rainfall plot illustrating the distribution of IMDs across a single glioblastoma sample (left). The mutational spectra for omikli and kataegic events reveal a different mutational pattern compared to the pattern of all non-clustered somatic mutations (right).

ACKNOWLEDGEMENTS

Funding: This work was funded by Cancer Research UK Grand Challenge Award C98/A24032 as well as US National Institute of Health grants R01ES030993-01A1 and R01ES032547. LBA is also supported by a Packard Fellowship for Science and Engineering. The funders had no roles in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Conflicts of Interest: LBA is a compensated consultant and has equity interest in io9, LLC. His spouse is an employee of Biotheranostics, Inc. LBA is also an inventor of a US Patent 10,776,718 for source identification by non-negative matrix factorization. ENB and LBA declare a provisional patent application for utilizing clustered mutations as clinical prognostic biomarkers in cancer. All other authors declare no competing interests.
Contributions: ENB developed the Python code and wrote the manuscript. ENB, MK, and NT tested and documented the code. LBA supervised the overall development of the code and writing of the manuscript. All authors read and approved the final manuscript.
REFERENCES

Alexandrov, L.B., et al. The repertoire of mutational signatures in human cancer. *Nature* 2020;578(7793):94-101.

Alexandrov, L.B., et al. Signatures of mutational processes in human cancer. *Nature* 2013;500(7463):415-421.

Bergstrom, E.N., et al. Generating realistic null hypothesis of cancer mutational landscapes using SigProfilerSimulator. *BMC Bioinformatics* 2020;21(1):438.

Bergstrom, E.N., et al. SigProfilerMatrixGenerator: a tool for visualizing and exploring patterns of small mutational events. *BMC Genomics* 2019;20(1):685.

Bergstrom, E.N., et al. Mapping clustered mutations in cancer reveals APOBEC3 mutagenesis of eDNA. *Nature* 2022.

Boichard, A., Tsigelny, I.F. and Kurzrock, R. High expression of PD-1 ligands is associated with kataegis mutational signature and APOBEC3 alterations. *Oncoimmunology* 2017;6(3):e1284719.

Brash, D.E. UV signature mutations. *Photochem Photobiol* 2015;91(1):15-26.

Buisson, R., et al. Passenger hotspot mutations in cancer driven by APOBEC3A and mesoscale genomic features. *Science* 2019;364(6447).

Chan, K., et al. An APOBEC3A hypermutation signature is distinguishable from the signature of background mutagenesis by APOBEC3B in human cancers. *Nat Genet* 2015;47(9):1067-1072.

Chen, J.M., Ferec, C. and Cooper, D.N. Patterns and mutational signatures of tandem base substitutions causing human inherited disease. *Hum Mutat* 2013;34(8):1119-1130.

Consortium, I.T.P.-C.A.o.W.G. Pan-cancer analysis of whole genomes. *Nature* 2020;578(7793):82-93.

D'Antonio, M., et al. Kataegis Expression Signature in Breast Cancer Is Associated with Late Onset, Better Prognosis, and Higher HER2 Levels. *Cell Rep* 2016;16(3):672-683.

Hess, J.M., et al. Passenger Hotspot Mutations in Cancer. *Cancer Cell* 2019;36(3):288-301 e214.

Islam, S.M.A., et al. Uncovering novel mutational signatures by de novo extraction with SigProfilerExtractor. *bioRxiv* 2020:2020.2012.2013.422570.

Kaplanis, J., et al. Exome-wide assessment of the functional impact and pathogenicity of multinucleotide mutations. *Genome Res* 2019;29(7):1047-1056.

Lawrence, M.S., et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. *Nature* 2013;499(7457):214-218.

Lin, X., et al. kataegis: an R package for identification and visualization of the genomic localized hypermutation regions using high-throughput sequencing. *BMC Genomics* 2021;22(1):440.

Maciejowski, J., et al. APOBEC3-dependent kataegis and TREX1-driven chromothripsis during telomere crisis. *Nat Genet* 2020;52(9):884-890.

Martincorena, I. and Campbell, P.J. Somatic mutation in cancer and normal cells. *Science* 2015;349(6255):1483-1489.

Mas-Ponte, D. and Supek, F. DNA mismatch repair promotes APOBEC3-mediated diffuse hypermutation in human cancers. *Nat Genet* 2020;52(9):958-968.

Matsuda, T., et al. Specific tandem GG to TT base substitutions induced by acetaldehyde are due to intra-strand crosslinks between adjacent guanine bases. *Nucleic Acids Res* 1998;26(7):1769-1774.

Nik-Zainal, S., et al. Mutational processes molding the genomes of 21 breast cancers. *Cell* 2012;149(5):979-993.

Nik-Zainal, S., et al. Author Correction: Landscape of somatic mutations in 560 breast cancer whole-genome sequences. *Nature* 2019;566(7742):E1.
Pfeifer, G.P., You, Y.H. and Besaratinia, A. Mutations induced by ultraviolet light. *Mutar Res* 2005;571(1-2):19-31.

Pleasance, E.D., *et al.* A comprehensive catalogue of somatic mutations from a human cancer genome. *Nature* 2010;463(7278):191-196.

Polak, P., *et al.* Cell-of-origin chromatin organization shapes the mutational landscape of cancer. *Nature* 2015;518(7539):360-364.

Roberts, S.A., *et al.* Clustered mutations in yeast and in human cancers can arise from damaged long single-strand DNA regions. *Mol Cell* 2012;46(4):424-435.

Stamatoyannopoulos, J.A., *et al.* Human mutation rate associated with DNA replication timing. *Nat Genet* 2009;41(4):393-395.

Stratton, M.R., Campbell, P.J. and Futreal, P.A. The cancer genome. *Nature* 2009;458(7239):719-724.

Supek, F. and Lehner, B. Clustered Mutation Signatures Reveal that Error-Prone DNA Repair Targets Mutations to Active Genes. *Cell* 2017;170(3):534-547 e523.

Taylor, B.J., *et al.* DNA deaminases induce break-associated mutation showers with implication of APOBEC3B and 3A in breast cancer kataegis. *Elife* 2013;2:e00534.
Figure 1. Detection and characterization of clustered mutations with SigProfilerClusters

(a) Mutational catalog of a sample

(b) Background Model Generation

(c) Doublet-base sub (DBS)

Kataegis

Multi-base sub (MBS)

Other

Omikli

Small insertions and deletions

(d) Glioblastoma example (SP23775)