REGULARITY OF PRIMES ASSOCIATED WITH POLYNOMIAL PARAMETRISATIONS

FRANCESCA CIOFFI AND ALDO CONCA

Abstract. We prove a doubly exponential bound for the Castelnuovo-Mumford regularity of prime ideals defining varieties with polynomial parametrisation.

1. Introduction

Let I be a homogeneous ideal in the polynomial ring $R = K[x_1, \ldots, x_n]$ over a field K. The Castelnuovo-Mumford regularity $\text{reg}(I)$ of I has been introduced in [9] and [17] as an algebraic counterpart of the corresponding notion introduced by Mumford [15] for coherent sheaves over projective spaces. It quickly became one of the most important homological and cohomological invariants of I. It is defined in terms of the graded Betti numbers $\beta_{i,j}(I)$ as

$$\text{reg}(I) = \max\{j - i : \beta_{i,j}(I) \neq 0\}$$

as well as in terms of the graded local cohomology modules $H^i_m(I)$ as

$$\text{reg}(I) = \max\{j + i : H^i_m(I)_j \neq 0\},$$

where $m = (x_1, \ldots, x_n)$. It is known [1, 4] that $\text{reg}(I) \leq (2u)^{2n^2}$, where u is the largest degree of a generator of I. When P is a prime homogeneous ideal one expects better bounds for $\text{reg}(P)$, see [1] and the recent [14] for an overview. On the other hand, McCullough and Peeva proved in [13] that $\text{reg}(P)$ cannot be bounded above by any polynomial in the degree (or multiplicity) $\deg(R/P)$ hence disproving the long-standing Eisenbud-Goto conjecture [9]. Later on Caviglia, Chardin, McCullough, Peeva and Vbaro [5] proved that $\text{reg}(P)$ can be actually bounded by (a highly exponential) function in $\deg(R/P)$.

In this short note we prove a doubly exponential bound for $\text{reg}(P)$ when P defines a variety with a polynomial parametrisation that does not involve the degree of the generators of P but only the numerical data of the parametrisation.

Theorem 1.1. Let P be the kernel of a K-algebra map $\phi : K[x_1, \ldots, x_n] \to K[y_1, \ldots, y_m]$ with $\phi(x_i) = f_i$ homogeneous polynomials of degree $d > 0$. Then one has:

$$\text{reg}(P) \leq d^{n^2m^2 - 1}.$$

We remark that a “combinatorial” bound for $\text{reg}(P)$ in the case of curves (i.e. $m = 2$) with a monomial parametrisation has been obtained in [12, Prop. 5.5] and that it would be very interesting to obtain similar bounds for higher dimensional toric ideals. We thank two anonymous referees for helpful comments and for suggesting that a bound comparable with that of Theorem [14] might be obtained using the techniques and the ideas of [5] combined with other estimates on the regularity and on the degree.

2. Flat extensions, regularity and elimination

For the proof of Theorem [14] we need to collect some ingredients.

Both authors are supported by INdAM-GNSAGA. MSC classification: 13D02, 13P10.
2.1. Regularity and flat extensions. Let \(R = K[x_1, \ldots, x_n] \) with its standard graded structure. Let \(d \) be a positive integer and let \(\alpha : R \to R \) be the \(K \)-algebra map defined by \(\alpha(x_i) = x_i^d \) for \(i = 1, \ldots, n \). For a homogeneous ideal \(I \) of \(S \) we set \(I' = \alpha(I)R \). By construction \(I' \) is homogeneous and we have:

Lemma 2.1. \(\text{reg}(I) \leq \text{reg}(I')/d. \)

Proof. By \([10]\) the map \(\alpha \) is flat. Hence if \(F \) is a minimal graded free resolution of \(I \) then \(\alpha(F)R \) is a minimal graded free resolution of \(I' \). Therefore the graded Betti numbers of \(I \) and \(I' \) are related as follows: \(\beta_{i,j}(I') = \beta_{i,j}(I) \) for all \(i,j \) and \(\beta_{i,j}(I') = 0 \) if \(d \) does not divide \(j \). For \(i = 0, \ldots, \text{projdim}(I) \) set \(t_i(I) = \max\{j : \beta_{i,j}(I) \neq 0\} \). Then we have \(t_i(I') = dt_i(I) \). By definition \(\text{reg}(I) = \max\{t_i(I) - i : i = 0, \ldots, \text{projdim}(I)\} \). Let \(p \) be the largest integer \(i \) such that \(\text{reg}(I) = t_i(I) - i \). Then

\[
\text{reg}(I') \geq t_p(I') - p = dt_p(I) - p = d(\text{reg}(I) + p) - p = d \text{reg}(I) + p(d-1).
\]

It follows that

\[
\text{reg}(I')/d \geq \text{reg}(I) + p(d-1)/d
\]

and, in particular,

\[
\text{reg}(I')/d \geq \text{reg}(I).
\]

\(\square \)

Remark 2.2. The proof of Lemma 2.1 shows that the inequality in Lemma 2.1 is strict unless \(d = 1 \) (which is obvious) or the index \(p \) defined in the proof is \(0 \) and this happens only if \(I \) is principal. If \(R/I \) is Cohen-Macaulay then \(p = \text{height}(I) - 1 \) and in Eq. (1) one has equality. For example if \(I \) is a complete intersection of \(c \) forms of degree \(s \) then \(\text{reg}(I) = sc - (c - 1) \) and \(\text{reg}(I') = dsc - (c - 1) \) so that

\[
\text{reg}(I')/d - \text{reg}(I) = (c - 1)(d - 1)/d.
\]

In general however in Eq. (1) one does not have equality. For example for an ideal \(I \) with \(\text{projdim}(I) = 4 \) and

\[
(t_0(I), t_1(I), t_2(I), t_3(I), t_4(I)) = (2, 4, 5, 5, 6)
\]

one has \(\text{reg}(I) = 3 \), \(p = 2 \) and \(\text{reg}(I') = 6d - 4 \) for \(d > 1 \). Hence the inequality in Eq. (1) is strict for \(d > 2 \). An ideal with invariants as in (2) is, for example, \(I = (x_1)x_1, x_2, \ldots, x_5) + (x_2^2, x_3^2) \).

2.2. Flat extensions and elimination. Now let \(\ell \geq n \) and \(S = K[x_1, \ldots, x_\ell] \). Let \(J \) be an ideal of \(S \) and \(I = J \cap R \). Let \(d_1, \ldots, d_\ell \in \mathbb{N}_{>0} \) and \(\varphi : S \to S \) be the \(K \)-algebra map defined by \(\varphi(x_i) = x_i^{d_i} \) and let \(\alpha \) be the restriction of \(\varphi \) to \(R \). Let \(J \) be an ideal of \(S \) and \(I = J \cap R \). Set

\[
I' = \alpha(I)R \text{ and } J' = \varphi(J)S.
\]

Let \(< \) be the lexicographic order associated with \(x_\ell > x_{\ell-1} > \cdots > x_1 \). Recall that \(< \) is an elimination term order for the variables \(x_{n+1}, \ldots, x_\ell \). In particular, if \(G \) is a Gröbner basis of \(J \) with respect to \(< \), then \(G \cap R \) is a Gröbner basis of \(I \) with respect to \(< \) restricted to \(R \), see for example [7], Thm. 2, Sect. 3.1.

Lemma 2.3. With the notation above we have:

(i) If \(G \) is a Gröbner basis of \(J \) with respect to \(< \), then \(\varphi(G) = \{ \varphi(g) : g \in G \} \) is a Gröbner basis of \(J' \) with respect to \(< \).

(ii) \(I' = J' \cap R \).
Proof. Firstly we observe that, since we deal with the lex order, for every pair of monomials \(\tau \) and \(\sigma \) of \(S \), we have \(\tau < \sigma \) if and only if \(\varphi(\tau) < \varphi(\sigma) \). In particular, \(\text{in}(\varphi(f)) = \varphi(\text{in}(f)) \) for any non-zero \(f \in S \). Secondly, we observe that \(\varphi \) is compatible with the Buchberger criterion. Indeed denoting by \(S(f, h) \) the \(S \)-polynomial of two polynomials \(f \) and \(h \) of \(S \), one has that \(\varphi(S(f, h)) = S(\varphi(f), \varphi(h)) \). Furthermore if \(h = \sum_{g \in G} p_g g \) is a division with remainder 0 of \(h \) with respect to \(G \), then \(\varphi(h) = \sum_{g \in G} \varphi(p_g) \varphi(g) \) is a division with remainder 0 of \(\varphi(h) \) with respect to \(\varphi(G) \). By the Buchberger criterion [8], this is enough to conclude that (i) holds.

To prove (ii) we observe that \(I \) is generated by \(G \cap R \) so that \(I' \) is generated by the set \(\alpha(G \cap R) \). On the other hand, by (i), \(J' \cap R \) is generated by the set \(\alpha(G) \cap R \). Clearly \(\alpha(G \cap R) = \varphi(G) \cap R \) and hence it follows that \(I' = J' \cap R \).

2.3. Regularity and elimination. We keep the notation above, i.e. \(\ell \geq n \) and \(S = K[x_1, \ldots, x_n] \supseteq R = K[x_1, \ldots, x_n] \). Let \(J \) be a homogeneous ideal of \(S \) and \(I = J \cap R \). In general it can happen that \(\text{reg}(I) > \text{reg}(J) \) or \(\text{reg}(I) < \text{reg}(J) \).

Example 2.4. Let \(J = (x_1^2, x_2^2) \) and \(I = J \cap K[x_1] = (x_1^2) \). Then \(\text{reg}(J) = 3 \) and \(\text{reg}(I) = 2 \). Let \(J = (x_1x_2 + x_2x_3, x_1x_3, x_3^2) \) and \(I = J \cap K[x_1, x_2] = (x_1^2x_2) \). Then \(\text{reg}(J) = 2 \) and \(\text{reg}(I) = 3 \).

However we can get a bound for \(\text{reg}(I) \) in terms of the regularity of the lexicographic ideal \(\text{Lex}(J) \) of the ideal \(J \). We refer the reader to [3] for generalities on the lexicographic ideal \(\text{Lex}(J) \). Here we just recall that \(\text{Lex}(J) \) is defined as \(\oplus_{i \in \mathbb{N}} \text{Lex}(J_i) \) where \(\text{Lex}(J_i) \) is the \(K \)-vector space generated by the largest \(\ell_i \) monomials of degree \(i \) with respect to the lexicographic order. Macaulay proved that \(\text{Lex}(J) \) is actually an ideal of \(S \) and Bigatti [2], Hulett [11] and Pardue [18] proved that \(\beta_{ij}(J) \leq \beta_{ij}(\text{Lex}(J)) \) for all \(i, j \). In particular one has \(\text{reg}(J) \leq \text{reg}(\text{Lex}(J)) \).

Proposition 2.5. With the notations above we have \(\text{reg}(I) \leq \text{reg}(\text{Lex}(J)) \).

Proof. Let \(G \) be a Gröbner basis of \(J \) with respect to the lex order with \(x_\ell > x_{\ell-1} > \cdots > x_1 \). The elements of \(G \) that belong to \(R \) form a Gröbner basis of \(I \). In particular \(\text{in}(I) = \text{in}(J) \cap R \). It is known that \(\text{reg}(I) \leq \text{reg}(\text{in}(I)) \) [8]. Furthermore by [16] Cor. 2.5 we have \(\text{reg}(\text{in}(I)) \leq \text{reg}(\text{in}(J)) \) since \(R/\text{in}(I) \) is an algebra retract of \(S/\text{in}(J) \). Finally \(\text{Lex}(J) = \text{Lex}(\text{in}(J)) \) because \(J \) and \(\text{in}(J) \) have the same Hilbert function and \(\text{reg}(\text{in}(J)) \leq \text{reg}(\text{Lex}(J)) \) by the Bigatti-Hulett-Pardue theorem mentioned above. Summing up,

\[
\text{reg}(I) \leq \text{reg}(\text{in}(I)) \leq \text{reg}(\text{in}(J)) \leq \text{reg}(\text{Lex}(J))
\]

and we are done.

3. Proof of the main theorem

We have collected all the ingredients for the proof of Theorem 1.1.

Proof of Theorem 1.1. One has \(P = J \cap K[x_1, \ldots, x_n] \) with \(J = (x_i - f_i : i = 1, \ldots, n) \subset S = K[x_1, \ldots, x_n, y_1, \ldots, y_m] \). Consider \(\varphi : S \rightarrow S \) defined by \(\varphi(x_i) = x_i^d \) and \(\varphi(y_i) = y_i \) and let \(\alpha : R \rightarrow R \) be the restriction of \(\varphi \) to \(R \), so that \(\alpha(x_i) = x_i^d \).

In this setting, we have \(J' = \varphi(J)S = (x_i^d - f_i : i = 1, \ldots, n) \) and \(P' = \alpha(P)R \). The ideal \(J' \) is a complete intersection of \(n \) forms of degree \(d \) and dimension \(m \) so its Hilbert function and hence \(\text{Lex}(J') \) just depend on \(n, d, m \). Set \(G_{n,d,m} = \text{reg}(\text{Lex}(J')) \).

By Lemma 2.3(ii) we have \(P' = J' \cap R \) and thanks to Proposition 2.5,

\[
\text{reg}(P') \leq G_{n,d,m}.
\]
Since by Lemma 2.1 \(\text{reg}(P) \leq \text{reg}(P')/d \) we conclude
\[
\text{reg}(P) \leq G_{n,d,m}/d.
\]
Taking into account that by [6, Corollary 3.4] we have \(G_{n,d,m} \leq d^{n^2-1} \), we obtain the desired inequality. \(\square \)

REFERENCES

[1] Dave Bayer and David Mumford, *What can be computed in algebraic geometry?*, Computational algebraic geometry and commutative algebra (Cortona, 1991), Sympos. Math., XXXIV, Cambridge Univ. Press, Cambridge, 1993, pp. 1–48.
[2] Anna Maria Bigatti, *Upper bounds for the Betti numbers of a given Hilbert function*, Comm. Algebra **21** (1993), no. 7, 2317–2334.
[3] Winfried Bruns and Jürgen Herzog, *Cohen-Macaulay rings*, Cambridge Studies in Advanced Mathematics, vol. 39, Cambridge University Press, Cambridge, 1993.
[4] Giulio Caviglia and Enrico Sbarra, *Characteristic-free bounds for the Castelnuovo-Mumford regularity*, Compos. Math. **141** (2005), no. 6, 1365–1373.
[5] Giulio Caviglia, Marc Chardin, Jason McCullough, Irena Peeva, and Matteo Varbaro, *Regularity of prime ideals*, Math. Z. **291** (2019), no. 1-2, 421–435.
[6] Marc Chardin and Guillermo Moreno-Socías, *Regularity of lex-segment ideals: some closed formulas and applications*, Proc. Amer. Math. Soc. **131** (2003), no. 4, 1093–1102.
[7] David Cox, John Little, and Donal O’Shea, *Ideals, varieties, and algorithms*, second ed., Undergraduate Texts in Mathematics, Springer-Verlag, New York, 1997, An introduction to computational algebraic geometry and commutative algebra.
[8] David Eisenbud, *Commutative algebra*, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995. With a view toward algebraic geometry.
[9] David Eisenbud and Shiro Goto, *Linear free resolutions and minimal multiplicity*, J. Algebra **88** (1984), no. 1, 89–133.
[10] Robin Hartshorne, *A property of A-sequences*, Bull. Soc. Math. France **94** (1966), 61–65.
[11] Heather A. Hulett, *Maximum Betti numbers of homogeneous ideals with a given Hilbert function*, Comm. Algebra **21** (1993), no. 7, 2335–2350.
[12] S. L’vovskiy, *On inflection points, monomial curves, and hypersurfaces containing projective curves*, Math. Ann. **306** (1996), no. 4, 719–735.
[13] Jason McCullough and Irena Peeva, *Counterexamples to the Eisenbud-Goto regularity conjecture*, J. Amer. Math. Soc. **31** (2018), no. 2, 473–496.
[14] ______, *The regularity conjecture for prime ideals in polynomial rings*, EMS Surv. Math. Sci. **7** (2020), no. 1, 173–206.
[15] David Mumford, *Lectures on curves on an algebraic surface*, Annals of Mathematics Studies, No. 59, Princeton University Press, Princeton, N.J., 1966. With a section by G. M. Bergman.
[16] Hidefumi Ohsugi, Jürgen Herzog, and Takayuki Hibi, *Combinatorial pure subrings*, Osaka J. Math. **37** (2000), no. 3, 745–757.
[17] Akira Ooishi, *Castelnuovo’s regularity of graded rings and modules*, Hiroshima Math. J. **12** (1982), no. 3, 627–644.
[18] Keith Pardue, *Deformation classes of graded modules and maximal Betti numbers*, Illinois J. Math. **40** (1996), no. 4, 564–585.

DIPARTIMENTO DI MATEMATICA E APPLICAZIONI DELL’UNIVERSITÀ DI NAPOLI FEDERICO II, VIA CINTIA, 80126 NAPOLI, ITALY

Email address: cioffifr@unina.it

DIPARTIMENTO DI MATEMATICA DELL’UNIVERSITÀ DI GENOVA, VIA DODECANESO 35, 16146 GENOVA, ITALY

Email address: conca@dima.unige.it