Ethnomycological knowledge in three communities in Amealco, Querétaro, México

Daniel Robles-García1, Humberto Suzán-Azpiri2*, Adriana Montoya-Esquivel3, Jesús García-Jiménez4, Edgardo Ulises Esquivel-Naranjo5, Elhadi Yahia6 and Fidel Landeros-Jaime1

Abstract

Background: Fungi have multiple uses in temperate areas of México, but an important decrease in the traditional knowledge of uses and customs of mushrooms becomes a fundamental issue for fungi conservation. However, only few studies quantify the traditional ethnomycological knowledge in México, and this study is the first quantitative report for Querétaro, a central state with both Otomí and Mestizo communities and a high fungi diversity.

Methods: The present study was conducted registering traditional knowledge on the use and consumption of mushrooms in three Hñähñu (Otomí) communities (Tesquedó, Xaja y, and Tenasdá) in Amealco de Bonfil, Querétaro, México, between August 2013 and November 2014. We conducted a stratified sampling, where uses common Hñähñu and Spanish names, and eight quantitative variables that conform the “Edible Mushrooms Cultural Significant Index” (EMCSI) were recorded from 100 informants. For the classification and ordination analysis of species and uses, we used multivariate techniques such as cluster, multidimensional scaling, and principal components (PC).

Results: Thirty-three mushrooms species were registered, most of them used for consumption by households, few aimed for commercial purposes, one species is medicinal, another has veterinary, and other ludic uses (as a toy). The three species with the highest EMCSI were Amanita basii, Fistulinella wolfeana, and Lactarius indigo. Edibility was the main use detected in the survey, and people harvested mushrooms provided by the forest mainly during the rainy season. We observed that mushroom searching and collection are activities that strengthen the family ties and are crucial for the transfer of this knowledge through generations. Cluster analysis separates groups according to different values in EMCSI variables, and principal components ordinate the species by frequencies (PC1) and traditions (PC2).

Conclusions: The current state of knowledge in the studied communities is strong, especially among women, but with a tendency to disappear due to migration and lack of interest among new generations. Future quantitative studies are important to analyze tendencies of the traditional ethnomycological knowledge transferred to new generations.

Keywords: Ethnomycology, México, Otomí, Cultural Significance Index

* Correspondence: hsuzan@uaq.mx
2Laboratorio de Ecología, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Santiago de Querétaro, Querétaro, Mexico
Full list of author information is available at the end of the article

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Background
The first ethnomycological studies in México were conducted with emphasis on mushrooms used in rituals, but indigenous knowledge goes beyond this use, such as species used for food, medicine, and recreation [1–4].

With the arrival of the Spaniards, many of these uses and customs were banned, because these traditions were considered as inappropriate [5]. Responding to this cultural loss, ethnomycological studies have taken great importance, since they have helped to rescue cultural knowledge and practices, not only on mushrooms but on different natural resources that have survived in many indigenous groups [6, 7]. Fungi play an important role as a livelihood mechanism during the rainy season [5, 8–10], and women are the key element in the transmission of this knowledge [11]. In addition, mushrooms are important in the long-term conservation process as a high-value non-timber resource [12].

Data from different sources shows that indigenous people collect fungi mainly in the rainy seasons for direct consumption by households, while mestizo people in México use them to obtain monetary benefits by selling them in municipal markets [12] or house by house, which is a local activity called “rancheo,” which generates an alternative way to obtain economic incomes [9, 13]. It is important to point out that consumption and selling are not exclusive activities of communities in temperate zones but in tropical areas too [10, 14].

Traditional knowledge on the recognition of edible wild mushrooms is very important for the implementation of adequate management strategies and for the transfer of the mycological knowledge to the new generations. Therefore, inadequate practice or ignorance about such species can lead to the use of toxic fungi and then health consequences such as irreversible damage of the vital organs, such as liver and kidneys [15].

The traditional knowledge on forest resources can be measured based on how many times it is mentioned by people [11, 12, 16–18] or by the use value according to how many ways it can be used [19]; nevertheless, there are other quantitative methods, such as the “Cultural Significance Index,” first developed for plants [20, 21] and then modified for mushrooms [22]. This index is used to analyze several variables in a specific region to detect those plants or mushrooms that people consider the most valuable [21–23] and can be adjusted or adapted to each specific case [24–26].

Mycological studies in México with Hñähñu communities have been carried out mainly in two federal estates “Estado de México” and “Hidalgo” [9, 10, 24–29]. However, there are Hñähñu settlements in other states such as Guanajuato, Jalisco, Michoacán, Puebla, Querétaro, Tlaxcala, and Veracruz [30]. The state of Querétaro is located in the center of México, and the municipality of Amealco has several Hñähñu population settlements, with important interactions with the Hñähñu from the neighbor state “Estado de México” where Núñez-López [31] reported that the region is rich in fungi diversity, and that this ethnic group considered them as plants. However, the scarcity of ethnomycological data for the region and for this ethnic group is important [22].

The aim of this study is to answer some fundamental questions about the real knowledge of fungi by the Hñähñu, such as the recognition of mushrooms as a biological group, the recognition of different species and its edibility, medicinal or dangerous properties, and finally how and who are the responsible for the transference of mycological knowledge to the next generations, using interviews and participant observation. A technique that helps us to register and quantify different assets of the traditional knowledge is the Cultural Significant Index because it provides an objective numerical scale, eliminating the subjectivity of giving arbitrary values to each variable. This scale was initially proposed by Pieroni et al. [21] as the “Cultural Food Significant Index” for edible plants in northwestern Tuscany, Italy, and modified to edible mushrooms by Garibay-Orijel et al. [22] that complemented with multivariate analysis could help us to answer those questions.

The two main objectives of this study are (a) to conduct the first ethnomycological study in three Hñähñu communities in Querétaro, México, and (b) to make the first quantitative analysis of ethnomycological knowledge in Querétaro, using the “Cultural Food Significant Index.”

Methods
Location
Amealco is one of the 18 municipalities in the state of Querétaro, located southeast of the capital, between the coordinates 20° 11’ 17” N and 100° 8’ 38” W, with an altitude between 2500 and 3150 m above sea level [32], and with an annual rainfall of 500–800 mm [33]. Tesquedó, Xajay, and Tenasdá communities are located at the base of Peña de Ñado, a rock formation that belongs to the province of the Trans-Mexican Volcanic Belt, and consists mainly of oak forests, sometimes combined with Arbutus (“madroño”), Arctostaphylos (“pingüica”), and pine [34, 35].

Population
Querétaro has the third biggest community Hñähñu speaking Otomí in México: 18,933 inhabitants, of whom 11,740 (62%) live in Amealco [36]. The three selected communities were Tesquedó, Xajay, and Tenasdá, which have a population of 190, 418, and less than 600 inhabitants, respectively [30], and due to the proximity to the forest.
Ethnographic work
To determine the used species of mushrooms, we conducted a stratified sampling [37]. The people interviewed were 70 women and 30 men, 18 of them from Tesquedó, 32 from Xajay, and 50 from Tenasdá (Table 1). Additionally, to obtain more information, we used two techniques: “participant observation” and “snowball technique.” The first aim is creating a trust atmosphere and the second is to find the main informants [38]. Informal interviews were conducted during the dry season. In the interviews, we showed them photographs of mushrooms, so they could recognize those they use for consumption or medicinal purposes. Questions considered all sub-indexes of the Cultural Significant Index (CSI) proposed by Garibay-Orijel et al. [22] for mushrooms. During the rainy season, mushrooms were collected with key informants in each community to find the species more utilized. In addition, local markets were visited to record which mushrooms are sold and their value. Hospitals were also visited to investigate reported cases of mushroom poisoning. Finally, the purpose of the study in the three communities was descriptive and not comparative since the small number of informants and the relatively similar environments for the three human populations.

Edible Mushrooms Cultural Significant Index
The Garibay-Orijel et al. [22] methodology has been followed to determine the Edible Mushrooms Cultural Significant Index (EMCSI), using the following equation:

\[\text{EMCSI} = \frac{\text{QI}}{10} + \text{PAI} + \text{FUI} + \text{TSWI} + \text{MFFI} + \text{KTI} + \text{HI} + \text{EI} \]

Where:

- QI, the quotation or citation index is a sub-index that relates the number of times a fungus is mentioned, divided between the number of informants, and by tenfold (to keep the scale of the other sub-indexes).
- PAI, the perceived abundance index, is the abundance of each species of mushroom that people can perceive during the rainy season, how many of these species they can find, and how many they can collect.
- FUI, Frequency of Use Index, is how often people consume each species of mushrooms during the rainy season.
- TSAI, taste score appreciation index, using the scale to evaluate the taste of mushroom species consumed by people.
- MFFI, multifunctional food index, to evaluate how people cook mushrooms and whether they eat them alone or combined.
- KTI, knowledge transmission index, to determine how knowledge is transmitted or how people learn how to use the mushrooms.
- HI, Health Index, indicates how safe people feel to consume these mushrooms, and how beneficial is for their health.
- EI, Economic Index, indicates if people sell mushrooms.

Multivariate data analysis: cluster of species and sub-indexes, multidimensional scaling, and principal components analysis
For the classification analysis of species (rows) and sub-indexes (columns) in a multivariate matrix, a cluster analysis was conducted with standardized Euclidean distances (SED) and the Ward clustering method using JMP 8 for Mac (SAS Institute, Cary, NC). For the ordination methods (MDS and PCA), a matrix containing the 33 species mentioned in the interviews and the averages of each sub-index were constructed and analyzed with PC-ORD 6.08 [39] methods. Multidimensional scaling (MDS) was conducted to find grouped species based on the similarity of their sub-indexes values. A principal components analysis (PCA) was also carried out considering the eigenvectors with values higher than 0.46 (positive or negative) between the eight sub-indexes and all the species, in order to find out which are the main sub-indexes in this survey.

Collection and determination of species
Specimens were collected from April 2013 to November 2014. The sampling was conducted in forests dominated by Quercus spp. and Pinus spp. according to the methods proposed by Guzmán [40]. Photographs of fresh material were taken with a semi-professional Nikon D3000 camera. Species identification according to specialized literature [41–47] and specialty items were

Table 1	Population interviewed by gender and age in Amealco, Querétaro, Mexico						
Gender	Community	Interviewed	Age range	Interviewed	Age range	Interviewed	Age range
---------	-----------	-------------	-----------	-------------	-----------	-------------	-----------
Male	Tesquedó	6	28–63	13	26–75	11	32–74
Female	Xajay	12	21–62	20	18–73	38	19–72
	Tenasdá	50					
Division	Family	Species	Otomí name	Spanish name(s)			
------------------	---------------------	-------------------------------	--------------------	--			
Ascomycota	Helvellaceae	Helvella crispa	Hyte de mejcua	Hongo Mijcua (Conejo)			
Hypocreaceae							
Basidiomycota	Agaricaceae	Hypomyces lactifluorum	Xihu de dega	Trompas rojas, hongo trucha, trompa de puerco, truchas coloradas, trompitas de puerco, truchas de puerco			
		Agaricus campestris	w/r	Hongo de llano, champiñón de llano, blanco, blanquito, champiñoncito			
		Calvatia cyathiformis	Hyte de bola	Hongo bola, de lagartija, de ternera, de llano, sirena, de ternera, quesadilla, canelita, Bolita de llano, llanero, sirentita, patarana, serena, llanerita, canelitas, bolita, bolita de campo, bola			
		Lycoperdon marginatum	w/r	Hongo de camaleón, de sangra, sirena			
		Lycoperdon perlatum	Hyte de tsija	Hongo bolita, de bola, sangana, quesadilla, hongo sirena, serenas, de lagartija			
		Amanita basii	Gshmu	Cashimón, hongo Santiago, cashimoses, cashimones, yema, amarillo			
		Amanita novinupta	w/r	Hongo Santiago, santiaguero			
	Boletaceae	Boletus auripes	Hyte de ndega	Hongo de buey, de manteca, amanillo			
		Boletus sp.	Hyte de kjoboy	Hongo de res, de buey, vaca, hongo joboy, joboy			
		Boletus variipes	Hyte de ngut'ei	Hongo de buey, de buey rojo, joboy rojo, de madroño			
		Fistulinella wolfeana	Ushki hyethe	Hongo salado, dulce, pansa			
		Harya chromapes	w/r	Hongo de vivora, blanco, de pingüica, de madroño, madroñito			
		Leccinum aurantiacum	Hyte de kjoboy	Hongo de pingüica, de pendicua, de madroño			
		Leccinum rugosiceps	Kast'i hyethe	Hongo amarillo, escobilla, de buey, de manteca			
		Leccinum sp.	w/r	Negrito, blanco, negro, sacatón, de trigos, de trigo			
		Retiboletus aff. griseus	Hyte de ngut'ei	Negrito, de pasto, sacatón, sacatoncito			
			(dega nortexu)				
		Suillus granulatus	Hyte de kjoboy	Hongo de pino, de madroño, de acote, de acote, sacatón, babosa, agrio, panza de acote, panzita de acote, de cossal (hojarasca de pino)			
		Xerocomus illudens	Ika hyethe	Hongo de azufre, agrio, amarillo, de madroño			
	Cantharellaceae	Cantharellus cibarius group	Hyte miikwa	Pericón, Santa María			
	Entolomataceae	Nolanea sp.	Hyte ts'inmu	Hongo de rayo			
	Gomphaceae	Ramaria spp.		Patitas de pájaro, pata de pájaro, hongo pájaro, hongo pata de pájaro, pata amarilla, pata de pájaro blanca			
	Physalacriaceae	Armillaria mellea	Hyte de ngut'ei	Hongo de trono, de hoja, amarillo, clavo, de rama, de palo, de hojarasca			
			(dega nortexu)				
	Russulaceae	Lactarius indigo	Guillai (nari)	Zorillo, zorillo azul, hongo pantalón, trompas azules, hongo azul, hongo de zorillo			
		Russula aff. brevpes	w/r	Hongo de borrega, trompas blancas			
		Russula aff. cyanoxanthra	w/r	Hongo de borrega, hongo de madroño			
used when necessary. The specimens were dried and deposited in the Laboratory of Systematic Ecology and Microorganisms (Laboratorio de Sistemática y Ecología de Microorganismos), Autonomous University of Querétaro (Universidad Autónoma de Querétaro) (Appendix).

Results and discussion
People from the three communities still conserve the tradition of collecting mushrooms, mostly for self-consumption and some for sale, depending on the abundance. We recorded 155 Spanish common names and 21 Otomí common names (Table 2), and “hyethe” was the main word used to refer to mushrooms, that means “in rainy season” or jo (that means “sponge”) as Núñez-López [31] reported for some species. A total of 33 mushrooms species had ethnomycological value (Table 3), mainly Boletes [22] and Agarics [17].

EMCSI sub-indexes
Citation Index (Q1). Amanita basii Guzmán & Ram.-Guill., Lactarius indigo (Schwein.) Fr. and Fistulina wolfeana Singer & J. García, which was the first record of edibility [47], were the most mentioned species during the surveys; these results are comparable to those of Alonso-Aguilar et al. [23] where A. basii is the most important mushroom in San Mateo Huexoyucan, Tlaxcala, México, and Montoya et al. [16] found it only by using a free list. We can argue that most of the time, the first mushroom cited is the most important. In contrast, other genus such as Ramaria Fr. ex Bonord is considered the most important to people of La Laguna de Fúquene, Andes Nororientales [26]. Here, Helvella crispa (Scop.) Fr. was mentioned to be consumed by only one person. Lycophyllum P. Karst had few mentions, which might be because only few people know where to find it [29] (Fig. 1).

perceived abundance index (PAI). Lactarius indigo, Russula aff. brevipes Peck, R. aff. cyanoxantha (Schaeff.) Fr., and Fistulina wolfeana had the highest values, while Amanita novinupta Tulloss & J.E. Lindgren, Boletus auripes Peck, Gymnopus dryophilus (Bull.) Morrill, Helvella crispa, and Suillus granulatus (L.) Roussel had the lowest values. It is important to point out that Russula and Agaricus campestris L. were the most abundant according to with Peña-Cañón & Enao-Mejía [26], while A. campestris is the most abundant for Alonso-Aguilar et al. [23]; this result could be linked to the vegetation or the season where the study was carried out. Even when Russula spp. or S. granulatus is common in the forest, people preferred to collect other mushrooms because they do not consider these palatable. Sometimes, when Ramaria spp. is not common, people prefer to walk long distances to find it. In this case, as mentioned by Bautista [29], some species such as A. basii are more difficult to find due to the condition of forests. Some informants mentioned that the number of mushrooms they could find is decreasing, arguing that the abundance and uses were higher in the past.

Frequency of Use Index (FUI). Amanita basii, Boletus spp., Fistulina wolfeana, Lactarius indigo, Ramaria spp., and Lstilago maydis (DC.) Corda are consumed four times, or more, during the rainy season, and sometimes even four times a week, depending on their abundance. Peña-Cañón and Enao-Mejía [26] and Alonso-Aguilar et al. [23] mentioned that the most commonly used fungi were Russula sp. and A. basii, and Garibay-Orijel et al. [22] said that Cantharellus Juss and Pleurotus (Fr.) P. Kumm. are the most abundant mushrooms in Ixtlán de Juárez, Oaxaca. Hypomyces lactifluorum (Schwein.) Tul. & Tul. has a minor index, probably because people have to scrape the ground to find it. Less-used mushrooms were Helvella crispa, Gymnopus dryophilus, and Lycoperdon marginatum Vittad.; the first is due to its low abundance, the second because only some people consider it as non-edible, and the third is due to the need of finding a considerable number of individual mushrooms to prepare a hearty meal. It is important to note that the frequency of use of determined species is determined by the access and the amount available.
Taste score appreciation index (TSAI). In general, all mushrooms were well accepted by people who consume them; *Amanita basii* was the most palatable species according to many informants as we could see with Alonso-Aguilar et al. [23]. In contrast, species of the genus *Ramaria* were the most appreciated according to Peña-Cañón and Enao-Mejía [26], and *Gomphus clavatus* (Pers.) Gray had the highest value of the overall species reported by Garibay-Orijel et al. [22]. Only few species were not appreciated, such as *Harrya chromapes* (Frost) Halling, *Russula aff. lepida* Fr., *Suillus granulatus*, and *Xerocomus illudens* (Peck) Singer, mainly because some *Russula* species have a spicy flavor, and some have a sour taste, such as the case of these boletes.

Multifunctional food index (MFFI). The main form of mushroom consumption was by roasting, only by cooking on a griddle (comal), with a little salt. Many people cook them with green sauce or "pasilla" chili sauce. The only mushrooms consumed alone were *Amanita basii*, *Ustilago maydis*, *Boletus auripes*, and *Hypomyces*.

Table 3: Cultural significance values for edible wild fungi in Tesquedó, Xajay, and Tenasdá communities in Amealco, Querétaro, Mexico

No.	Species	QI	PAI	FUI	TSAI	MFFI	KTI	HI	EI	EMCSI	
1	*Lactarius indigo*	8.70	9.91	9.34	9.07	9.32	10.00	6.67	0.23	63.24	
2	*Amanita basii*	9.30	8.06	9.06	9.89	8.49	10.00	6.67	0.47	61.95	
3	*Fistulinella wolfana*	8.30	8.92	9.31	8.39	9.12	10.00	6.67	0.52	61.23	
4	*Ramaria* spp.	8.00	8.59	8.53	9.08	8.71	9.97	6.67	0.29	59.85	
5	*Boletus varipes*	7.50	8.63	8.90	9.31	9.76	10.00	6.67	0.31	58.38	
6	*Boletus aff. speciosus*	6.70	7.69	8.36	9.11	8.18	9.78	6.67	0.15	56.52	
7	*Leccinum aff. aurantiacum*	8.00	6.78	7.72	8.71	8.94	10.00	6.67	0.33	55.93	
8	*Hypomyces luctifluorum*	8.20	6.65	6.46	9.03	8.60	10.00	6.67	0.37	54.56	
9	*Calvatia cyathiformis*	6.30	7.69	8.36	9.11	7.06	10.00	6.67	0.31	54.88	
10	*Armillaria mellea*	7.50	8.63	8.90	9.31	7.06	10.00	6.67	0.29	54.38	
11	*Rammaria* spp.	7.50	8.59	8.53	9.08	8.71	9.97	6.67	0.29	54.88	
12	*Boletus aff. speciosus*	6.70	7.69	8.36	9.11	8.18	9.78	6.67	0.15	56.52	
13	*Anthus campestris*	3.50	7.64	7.64	9.52	7.89	10.00	6.67	0.00	52.94	
14	*Russula aff. cyanoxantha*	1.00	10.00	7.75	8.67	8.85	10.00	6.67	0.00	52.94	
15	*Retiboletus aff. griseus*	5.40	8.15	7.78	9.17	8.13	6.52	10.00	6.67	0.12	51.74
16	*Boletus auripes*	5.60	7.88	6.79	9.64	8.18	9.78	6.67	0.00	54.90	
17	*Leccinum sp.*	5.10	7.79	6.91	7.57	6.35	9.95	6.67	0.14	53.82	
18	*Suillus granulatus*	4.80	9.06	6.46	7.08	6.66	9.79	6.67	0.00	54.56	
19	*Russula aff. brevipes*	1.00	9.00	8.25	7.00	8.40	9.50	6.67	0.00	54.90	
20	*Boletus sp.*	2.10	7.50	7.86	8.26	8.17	9.52	6.67	0.00	54.90	
21	*Haryana chromapes*	5.20	6.59	7.02	7.93	5.88	10.00	6.67	0.00	54.90	
22	*Lycoperdon marginatum*	1.60	7.97	5.00	9.17	8.81	10.00	6.67	0.00	54.90	
23	*Lycoperdon perlatum*	2.00	6.13	6.88	9.17	8.33	10.00	6.67	0.00	54.90	
24	*Exudoporus frostii*	1.20	8.75	8.33	8.61	6.13	9.17	6.67	0.00	48.86	
25	*Cantarellus cibarius*	3.60	6.25	6.18	8.98	7.15	9.72	6.67	0.19	48.56	
26	*Nolanea sp.*	1.00	6.50	6.25	9.33	8.70	10.00	6.67	0.00	48.45	
27	*Russula aff. lepida*	2.90	8.62	6.64	6.32	7.45	10.00	6.67	0.00	48.37	
28	*Lyophyllum sp.*	0.30	6.67	6.67	10.00	8.00	10.00	6.67	0.00	48.30	
29	*Leccinum rugosiceps*	4.00	7.00	7.88	8.23	4.08	10.00	6.67	0.00	47.85	
30	*Xerocomus illudens*	5.30	6.42	7.94	6.67	5.71	10.00	6.67	0.00	47.84	
31	*Gymnopus dryophilus*	1.50	5.33	5.50	9.78	8.70	10.00	6.67	0.00	47.84	
32	*Amanita novinupta*	0.60	5.00	6.67	8.34	3.33	10.00	6.67	0.00	46.61	
33	*Helvella crispa*	0.10	2.50	2.50	10.00	7.50	10.00	6.67	0.00	40.27	

QI: Mention Index, PAI: perceived abundance index, FUI: Frequency Of Use Index, TSAI: taste score appreciation index, MFFI: multifunctional food index, KTI: knowledge transmission index, HI: Health Index, EI: Economic Index, EMCSI: Edible Mushrooms Cultural Significance Index
lactifluorum for being very palatable. Fistulinella wolfeana and Lactarius indigo can only be eaten roasted and have fewer larvae inside. Some people like to mix mushrooms, and the most frequent combination include Cantharellus cibarius Fr., Boletus variipes Peck, and Lactarius indigo, referring this as a very delicious combination. Calvatia cyathiformis (Bosc) Morgan and Agaricus campestris could also be consumed mixed together because they have a meat-like taste. Lycoperdon perlatum Pers. and L. marginatum were also consumed alone, as U. maydis in “quesadillas,” but the latter could be eaten mixed with squash blossoms. Ramaria spp. could be prepared alone too, and in many cases with eggs. Some mushrooms can be preserved for long periods, such as L. indigo and F. wolfeana, which are dried on rocks in the sun, or hanged on a chain, as reported by Estrada-Torres and Aroche [7]. Ramaria spp. is shredded in fine strands, and Hypomyces lacryfluorum is cut into thin slices and left in the sun, sometimes preserved frozen for up to 3 months. Our results on the MFFI are consistent with those of Garibay-Orijel et al. [22], Alonso-Aguilar et al. [23], and Peña-Cañón and Enao-Mejía [26] too. For most species, knowledge can be traced for 50 years through two or three generations. It was also noted that discrimination plays an important role since some people argued that mushrooms are the “food of the poor.” As Burrola-Aguilar et al. [27] mentioned, in the case of fungi, many of the knowledge were lost because people migrated to national or international (mainly US) urban areas for better working conditions and the pursuit of economic improvements, resulting in trans-cultural and adoption of Western model over their culture and traditions [29].

Mushroom collection is commonly a family activity, in which people share and strengthen their family ties, and it is where children (from 5 to 10 years old) learn how to recognize edible and inedible mushrooms, and where mushrooms grow (main collection points). People have their techniques to recognize edible specimens from inedible ones, but it has been mentioned that some inedible species were similar to edible mushrooms. People commonly collect only red Russula species, which do not have a spicy taste, or Ramaria that have a mild flavor. Regarding the names of the mushrooms, most of them are similar to those reported elsewhere and are consistent with recent studies in Otomí areas [25–29].

Health Index (HI). People indicate that when they eat mushrooms, they cannot drink milk or alcohol, eat avocado, or consume medicine because they have side effects. Only Russula aff. lepida and Suillus granulatus were consumed with caution. The “skin hat” is commonly removed because it is considered as the main factor causing diarrhea or stomach pain. Xecomus illudens and Harrya chromapes are reported to have a sour taste but without consequences. Besides, only some people mentioned feeling healthier by eating mushrooms in general [22], and not only with the consumption of some species, they generally refer to assimilating minerals.
from the soil through eating mushrooms. It is important to not confuse these with the medicinal proprieties of used fungi, and finally, they think that mushrooms are better than meat or vegetables because they consider mushrooms as a natural product that does not have chemicals as Alonso-Aguilar et al. [23] reported.

Economic Index (EI). *Amanita basii* has the highest price ($60–$80 Mexican pesos per four basidiomata), but only a few people sell it. A 15 l bucket full of *Fistulinella wolfeana* was priced at $35. Other species, such as *Lactarius indigo*, *Ramaria* spp., *Leccinum aff. aurantiacum* (Bull.) Gray, *Hypomyces lactifluorum*, *Boletus variipes*, *B. auripes*, *Agaricus cyathiformis*, *Calvatia cyathiformis*, *Cantharellus cibarius*, and *Armillaria mellea* (Vahl) P. Kumm. have a lower value, between $15 and $50 for about ten basidiomata. *Calvatia cyathiformis* is priced at $70, and *A. campestris* costs $50, but this can only be collected on plains at the beginning of the rainy season. To compare prices, at Acambay market (State of México), fungi prices range from $40 to $80 per 200 to 400 g for species like *B. variipes* and *A. caesarea* (Scop.) Pers. complex, while in the municipal market of Amealco (Querétaro), a plate of mushrooms, which contains about 100 g of *C. cibarius* and *Ramaria* spp. has a price of about $20 or $20 g for $35. Many respondents either have a store, work as laborers, have a piece of land to grow corn, or have relatives who send them money to help cover expenses, thus collecting mushrooms is not their main economic source. Only some people trade mushrooms for basic supplies like corn seeds, oil, beans, rise, etc. Until now, there is no consensus about this sub-index because it is in function of almost all the sub-indexes that compound the EMCSI and could be disregarded [23]. In this case, even with economic potential [22], people prefer to consume the mushrooms over selling them.

The information obtained in the three communities and the value of the indexes and total EMCSI are shown in Table 3. The three main mushrooms were *L. indigo* (63.24), *A. basii* (61.95), and *F. wolfeana* (61.23). It is probably because *L. indigo* and *F. wolfeana* are available after the rainy season, which gives them a high value, even over *A. basii*. Some people consume them for up to 1 year after they have been collected; they put dry basidiomata in hot water and then cook them. This contrasts with QI and PAI values, where *A. basii* had a higher value in the QI and a lower value in the PAI, compared to *L. indigo* and *F. wolfeana*. In many cases, before we start talking about mushrooms, people mention *A. basii* immediately, so we might consider these three species with similar ethnomycological importance values, and this matches with the results of other studies [22, 23], where *A. caesarea* complex are the most priced mushrooms, although it is possible to find other more valuable species in other places [12, 16, 28].

Uses

Edibility was the main use found for mushrooms. Almost all respondents mentioned that they consume fungi, only three people said they quitted eating them or using them for reasons discussed below. Regarding medicinal use, only three people mentioned *Ustilago maydis* as a remedy for burns and to combat vomiting. Mature basidiocarps are used by placing them directly on burn injuries, where informants argue a faster healing. This coincides with reports from other cultures that use *U. maydis* as a remedy for burns [28]. Other informants report that people use this species as a remedy when horses do not want to drink water, so they give them the mushroom in a solution of water with spores, and the horses drink water again. This might be the first veterinary report for mushrooms, and therefore, further research on this aspect is necessary.

Some informants mentioned the use of *E. frostii* to control diabetes. Basidiomes of *Leccinum* spp., which are not consumed, are used by some people as toys during harvest time, throwing these ones to others as a game. Mushrooms that they do not consume are considered poisonous, even if others eat them. A recent record of mushroom poisoning occurred in a community near Amealco, where four people confused the *Omphalotus mexicanus* Guzmán & V. Mora with a *Lactarius indigo*, and the symptoms consisted mainly of vomit and diarrhea; they were treated at the health center only with activated carbon and antihistamines, and people mentioned that one woman and her daughter died about 10 years ago due to the consumption of poisonous mushrooms; however, they do not know which species. According to Peña-Cañón and Enao-Mejía [26], people only eat species they are sure to know.

People harvest mushrooms provided by the forest as part of the natural resources available during the rainy season. On the other hand, many of them used to grow vegetables a couple of months before the rainy season began, so they could get benefits from mushroom collection, by adding diversity and enrichment of the daily diet and helping them to save money. Mushroom recollection was restricted mainly to August and September, the months where we conducted the ethnographic work and where we found most of the species. All mushrooms have a utilitarian category [50]. We suspect in this particular study that they do not have a hierarchical category as Berlin [51] proposed for plants and animals because informants usually just named and used mushrooms related to their daily use, such as *Russula* spp. which is called “*Hongo de Borrego* (a)” (lamb mushroom), because when people take their animals out to the pasture, lambs eat these
mushrooms. *C. cibarius* is called “Pericón” or “Santa María” due to the similar yellow color with *Tagetes lucida* Cav. Other example included *L. indigo*, which has names related with its bright blue color “pant mushroom,” because the blue color is a reminder of a pair of blue jeans. As mentioned, people only named mainly edible mushrooms and considered the remaining non-used as venomous. It is interesting how they recognize the good ones, and this knowledge is transmitted generationally mainly by women, being the principal characteristics color, smell, maturity, and in some cases, the taste (they avoid spicy and bitter flavors). Alonso-Aguilar et al. [23] found *A. basii*, among other mushrooms, is the most appreciated species. In the present work, we found *F. wolfeana*, *L. indigo*, *Ramaria* spp., and *B. variipes* (species close to *B. pinophilus* Piat & Dermek) as having the highest values of EMCSI, and the species had highest sub-indexes values. These values are in function of the QI sub-index because not all the interviewed people mentioned other species with significant abundances, such as *Russula* aff. *brevipes*, *E. frostii*, *Lyophyllum* sp., *G. dryophilus*, *A. novinupta*, or *H. crispa*, which were mentioned by less than 20% of the interviewed people. In this case, those positions in the EMCSI value are relative to the mentioned above and could be modified along the time by the factors mentioned in KTI sub-index discussion.

Finally, we have noted that some people begin to get upset with the intervention of people who do not belong to their community; for this reason, it is important to
consider as necessary a previous diagnose, and then get previous consent, considering and giving all the people the opportunity to participate and being interviewed, as observed by Garibay-Orijel et al. [22], and according to Ford [52], it is necessary to recognize them as authors of any work that involves traditional knowledge, not only on mushrooms. On the other hand, most of the people do not have any problem with sharing their knowledge, and in some cases, we developed a friendly relationship that persists even after the work has been finalized.

Cluster of similarities
The dendrogram of similarities (Fig. 2) with the standardized Euclidean distances (SED) linkage of 7.15 shows that the biggest group (A) is composed by *L. indigo*, *Ramaria* spp., *F. wolfeana*, *A. basii*, *B. variipes*, *B. cf. speciosus*, *C. cyathiformis*, *U. maydis*, *C. cibarius*, *L. aff. aurantiacum*, *H. lactifluorum*, *A. mellea*, and *Clitocybe gibba* (Pers.) P. Kumm., and includes *B. variipes* and *C. cibarius*. *U. maydis* has no EI value but has a high TSAI value because it is one of the most palatable mushrooms. In this group, the closer species

![Fig. 4](image) Principal component analysis obtained from similarities in EMCSI values of mushrooms used in Tesquedó, Xajay, and Tenasdá communities, Amealco, Querétaro, México. Table 3 indicates the numbered species

![Fig. 5](image) Principal components after comparing the results of the sub-indexes. EI, Economic Index; FUI, Frequency of Use Index; QI, Mention Index; KTI, knowledge transmission index; HI, Health Index; TSAI, taste score appreciation index; PAI, perceived abundance index; MFFI, multifunctional food index
were *B. cf. speciosus* and *C. cyathiformis* (with a link-
age SED = 0.65). The second group (B) is formed by *Retiboletus cf. griseus* (Frost) Manfr., *Leccinum* sp., *H. chromapes*, *X. illudens*, *Leccinum rugosiceps* (Peck) Singer, *A. novinupta*, *S. granulatus*, *R. aff. lepida*, *Boletus* sp., *R. aff. brevipes*, and *E. frostii*, species that show medium to low QI values; and the third group (C) is composed of *R. aff. cyanoxyantha*, *L. marginatum*, *L. perlatum*, *Nolanea* (Fr.) P. Kumm., *Lyophyllum* sp., *G. dryophillus*, and *H. crispa*, the last is the one with the lowest EMCSI value. This group had a linkage SED of 3.96.

Multidimensional scaling and principal components analysis

An analysis of the stress in the MDS suggested a 3D configuration (mean = 3.859 and *P* = 0.0196). According to the cluster shown in Fig. 2, mushrooms appear in three main groups A, B, and C (Fig. 3). In this case, we can see a slight difference in the species that conform all groups. The six main mush-
rooms (and at least the majority of the rest of the species that conform this group) are contained in group A, while the species from groups B and C appear mismatched. These results are supported by the PCA (Fig. 4). The first three principal components explain the 70.93% of the variance. PCI variables were FUI (0.538), PAI (0.476), and QI (0.474); PC2 variables were TSAI (0.551) and KTI (0.489); and PC3 variables were HI (0.497) and MFFI (−0.477).

We only consider PCI and PC2 because they are strongly related; frequency of use of sp* i* is directly related to the abundance of sp* i*, and this is influenced by the number of mentions of sp* i* as we can see in PCA. The last components, which conform PC3, have both positive and negative values, which makes sense due to only a few species that cause stomach ache, such as *Suillus* spp. or red spicy cap *Russula* spp., but these species are considerably abundant.

These results make sense if we consider the history behind those species; in all cases, people know them due to their families, which mean that these species have been used for almost three consecutive generations. The relation in PC2 variables is in function of the tradition of consuming the preferred species over the fewer accustomed ones by the main transmitters of knowledge; new collectors learn how to recognize all of them, but making emphasis on the preferred species. This contrasts with the PC1 components since the preference over a specific mushroom depends on its frequency of use and the abundance.

Figure 4 shows the similarities between species related, as a result of the values of every sub-index. This has a similar tendency to MDS analysis and PCA for sub-indexes (Fig. 5), wherein both cases, main species are affected by variables of the PC1 and PC2.

Alonso et al. [14] reported a similar tendency in their results, observing the same six main species we found in a similar environment, and as observed by Garibay-Orijel et al. [22], these mushrooms could be found on forest mainly composed of *Quercus* too, but with different values as we see in this survey. Although, it might be a tendency in temperate zones with their main species [16, 22, 23]. In this case, human communities are very close to the forest, so people can easily collect mushrooms and use them as a food source, which is the main use category. *Agaricus campestris*, *C. cyathiformis*, and *U. maydis* are out of the forest but have an important role, where the first two species are the first available in the season, and the last one depends on corn planting. *Lactarius indigo*, *A. basii*, and *F. wolfeana* are the main species found in this survey, among 33 different mushrooms. Although kids participate in mushroom harvesting, many of them do not like mushrooms. Bautista [29] refers the preference of new tendencies, so that means erosion in the ethnomycological knowledge; the situation also observed in the *Hüähñü* (Otomí) language. On the other hand, people refer that forest does not have the same shape they remember, and many of them mentioned that the amount of mushrooms has decreased because of environmental degradation and deforestation.

Conclusion

The current state of knowledge in the studied communities is strong but with a tendency to disappear due to migration and less interest among new generations. Mushroom consumption is part of integral and seasonal cultural know-
ledge of the resources in the Otomí communities at Amealco municipality in Querétaro, México. Mainly women transmit traditional mushroom knowledge. Food, medicine, and venom were the three principal categories we identified, and only few people use them for trade or sale within the same communities. The use of *U. maydis* as a veterinary medicine could open the possibility for re-
search into animal welfare products. The uses of quantita-
tive methods such as the Edible Mushrooms Cultural Significant Index (EMCSI) prove an easy and important method for future studies. The socio-politic conditions have been changing, and the economy has shown modifications over the last years. Therefore, we consider that future studies must be conducted using compatible methods in order to compare future results and then analyze the tendencies of traditional knowledge over time.
Acknowledgments

We thank CONACyT for the scholarship grant for post-graduate studies, Universidad Autónoma de Querétaro for supporting this research, to everyone who was interviewed and made this ethnomyological work possible, and also all those who helped in the ethnographic work.

Abbreviations

Bt: Economic Index; EMCI: Edible Mushrooms Cultural Significant Index; FUL: Frequency of Use Index; HI: Health Index; KTI: Knowledge transmission index; MDS: Multidimensional scaling; MFPI: Multifunctional food index; PAI: Perceived abundance index; PC1, 2, 3: Principal component one, two, three; PCA: Principal components analysis; QI: Quotation Index; SED: Standardized Euclidean distances; TSAI: Taste score appreciation index

Table 4

Species	Voucher
Agaricus campestris	Robles 331
Amanita basii	Robles 8
Amanita novinupta	Robles 25
Armillaria mellea	Robles 50, 289
Boletus auripes	Robles 268
Boletus cf. speciosus	Robles 222
Boletus variipes	Robles 13, 19, 261, 267
Boletus sp.	Robles 7
Calvatia cyathiformis	Robles 332
Cantharellus cibarius complex	Robles 137
Clitocybe gibba	Robles 29, 148
Exudopsis frosti	Robles 32, 260
Fistulinella wolfana	Robles 10, 162
Gymnopus dirophilus	Robles 100A, 263
Harrya chromapes	Robles 128, 285
Helvella crispa	Robles 99
Hypomyces lactifluorum	Robles 468
Lactarius indigo	Robles 515
Leccinum aff. aurantiacum	Landeros 3465
Leccinum rugosiceps	Robles 122, 287
Leccinum sp.	Robles 35
Lycoperdon marginatum	Robles 26
Lycoperdon perlatum	Robles 281
Nolanea sp.	Robles 3
Ramaria spp.	Robles 9
Retiboletus aff. griseus	Robles 45
Russula aff. brevipes	Robles 24
Russula aff. cyanoxantha	Robles 129
Russula aff. lepida	Robles 11
Suillus granulatus	Robles 12
Ustilago maydis	Robles 667
Xerocomus illudens	Robles 127

Appendix

Table 4 List of the species and its corresponding voucher

Funding

A Master’s scholarship grant provided from “CONACYT” to Daniel Robles García.

Availability of data and materials

The specimens were deposited in the Laboratory of Systematic Ecology and Microorganisms, Universidad Autónoma de Querétaro. Data is available by request from the first author.

Authors’ contributions

DR-G contributed to the proposal of the idea, field and laboratory work, data analysis, and wrote the first draft (Spanish). HS-A contributed to the statistical analysis, ethnobotanical assistance, and wrote the final draft. AM-E is the advisor in ethnomyological studies. JG-J handled the field work and taxonomic identification. EU-E handled the laboratory work and data analysis. EY provided general assistance, laboratory contributions, and wrote the first English draft. FL-J contributed to the proposal of the idea, field and laboratory work, data analysis, and coordination of the group. All authors read and approved the final manuscript.

Ethics approval and consent to participate

The project was approved by the Bioethics committee in the Universidad Autónoma de Querétaro.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details

1Laboratorio de Ecología y Sistemática de Microorganismos, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Santiago de Querétaro, Querétaro, Mexico. 2Laboratorio de Ecología, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Santiago de Querétaro, Querétaro, Mexico. 3Centro de Investigación de Ciencias Biológicas, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico. 4Instituto Tecnológico de Ciudad Victoria, Ciudad Victoria, Tamaulipas, Mexico. 5Laboratorio de Microbiología Molecular (LAMIM), Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Santiago de Querétaro, Querétaro, Mexico. 6Laboratorio de Fitocinéticos y Nutrición Humana, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Santiago de Querétaro, Querétaro, Mexico.

Received: 23 June 2017 Accepted: 14 December 2017

Published online: 26 January 2018

References

1. Herrera T. De los que saben de hongos. Ciencias. 1992;28:37–40.
2. Samorini G. The oldest representation of hallucinogenic mushrooms in the world (Sahara Desert, 9000–7000 B.P.). Integration. 1992;2:369–78.
3. Aker BP, Ruiz JF, Piper A, Ruck CAP. A prehistoric mural in Spain depicting neurotropic Psilocybe mushrooms? Econ Bot. 2011;65(2):121–8.
4. Guzmán G. El uso tradicional de los hongos sagrados: pasado y presente. Etnobiología. 2011;9:11–21.
5. Ruiz-Soto F. 50 años de etnomicología en México. Lacandonia. 2007;1(1):97–108.
6. Toledo VM. La memoria tradicional: la importancia agroecológica de los saberes locales. Leisa Re Agroecología. 2005;20(4):16–9.
7. Toledo VM, Barrera-Bassols N. La memoria biocultural. La importancia ecológica de las sanidurías tradicionales, vol. 3. Barcelona: Icaria editorial; 2008.
8. Villareal L, Pérez-Moreno J. Los hongos comestibles silvestres de México, un enfoque integral. Micología Neotropical Apl. 1989;2:77–114.
9. Estrada-Torres A, Aroche RM. Acervho Etnomicológico en Tres Localidades del Municipio de Acambay, Estado de México. Rev Mex Micología. 1987;3:109–31.
