AN EXPLICIT REPRESENTATION AND ENUMERATION FOR NEGACYCLIC CODES OF LENGTH $2^k n$ OVER $\mathbb{Z}_4 + u\mathbb{Z}_4$

YUAN CAO
School of Mathematics and Statistics, Shandong University of Technology
Zibo, Shandong 255091, China
Hubei Key Laboratory of Applied Mathematics, Faculty of Mathematics and Statistics
Hubei University, Wuhan 430062, China
School of Mathematics and Statistics, Changsha University of Science and Technology
Changsha, Hunan 410114, China

YONGLIN CAO*
School of Mathematics and Statistics, Shandong University of Technology
Zibo, Shandong 255091, China

HAI Q. DINH
Division of Computational Mathematics and Engineering, Institute for Computational Science
Ton Duc Thang University, Ho Chi Minh City, Vietnam
Faculty of Mathematics and Statistics, Ton Duc Thang University
Ho Chi Minh City, Vietnam

RAMAKRISHNA BANDI
Department of Mathematics, Dr. SPM IIIT Naya Raipur, Atal Nagar 493661, India

FANG-WEI FU
Chern Institute of Mathematics and LPMC, Nankai University
Tianjin Key Laboratory of Network and Data Security Technology, Tianjin 300071, China

(Communicated by the Chunming Tang)

Abstract. In this paper, we give an explicit representation and enumeration for negacyclic codes of length $2^k n$ over the local non-principal ideal ring $R = \mathbb{Z}_4 + u\mathbb{Z}_4$ ($u^2 = 0$), where k, n are arbitrary positive integers and n is odd. In particular, we present all distinct negacyclic codes of length 2^k over R precisely. Moreover, we provide an exact mass formula for the number of negacyclic codes of length $2^k n$ over R and correct several mistakes in some literatures.

2010 Mathematics Subject Classification: Primary: 94B15, 94B05; Secondary: 11T71.

Key words and phrases: Negacyclic codes, Mass formula, Galois rings, finite chain rings.

This research is supported in part by National Natural Science Foundation of China (Grant Nos. 11801324, 11671235, 61571243, 61971243, the Shandong Provincial Natural Science Foundation, China (Grant No. ZR2018BA007), the Scientific Research Foundation for the PhD of Shandong University of Technology (Grant No. 417037), the Scientific Research Fund of Hubei Provincial Key Laboratory of Applied Mathematics (Hubei University) (Grant Nos. HBAM201906, HBAM201804) and the Scientific Research Fund of Hunan Provincial Key Laboratory of Mathematical Modeling and Analysis in Engineering (No. 2018MMAEZD009) and the Nankai Zhidai Foundation.

* Corresponding author: Yonglin Cao.
1. Introduction

Algebraic coding theory deals with the design of error-correcting and error-detecting codes for the reliable transmission of information across noisy channels. The class of constacyclic codes play a very significant role in the theory of error-correcting codes. Since 1999, special classes of constacyclic codes over certain classes of finite commutative chain rings have been studied by numerous authors (see [1], [2], [5], [6], [8]–[11], [15], [17]–[19], [21]–[24], for example). It is an important way and an interesting topic to construct optimal codes (over finite fields or finite rings) from special linear codes over some appropriate rings.

Let A be a finite commutative ring with identity $1 \neq 0$, and denote by A^\times the multiplicative group of units in A. For any $a, b \in A$, we denote by $\langle a, b \rangle$ the ideal of A generated by a (resp. a and b), i.e. $\langle a \rangle = aA$ (resp. $\langle a, b \rangle = aA + bA$). For any ideal I of A, we will identify the element $a + I$ of the residue class ring A/I with a (mod I) in this paper.

For any positive integer N, let $A^N = \{(a_0, a_1, \ldots, a_{N-1}) \mid a_i \in A, 0 \leq i \leq N-1\}$, which is an A-module with componentwise addition and scalar multiplication by elements of A. Then an A-submodule C of A^N is called a linear code over A of length N. For any vectors $a = (a_0, a_1, \ldots, a_{N-1})$, $b = (b_0, b_1, \ldots, b_{N-1}) \in A^N$. The usual Euclidian inner product of a and b is defined by $\langle a, b \rangle = \sum_{j=0}^{N-1} a_j b_j \in A$. Let C be a linear code over A of length N. The Euclidian dual code of C is defined by $C^\perp = \{a \in A^N \mid \langle a, b \rangle = 0, \forall b \in C\}$, and C is said to be self-dual if $C = C^\perp$.

Let $\gamma \in A^\times$. Then a linear code C over A of length N is called a γ-constacyclic code if $(\gamma a_{N-1}, a_0, a_1, \ldots, a_{N-2}) \in C$ for all $(a_0, a_1, \ldots, a_{N-1}) \in C$. In particular, C is a negacyclic code (resp. cyclic code) if $\gamma = -1$ (resp. $\gamma = 1$).

For any vector $a = (a_0, a_1, \ldots, a_{N-1}) \in A^N$, let $a(x) = a_0 + a_1 x + \ldots + a_{N-1} x^{N-1} \in A[x]/(x^N - \gamma)$. We will identify a with $a(x)$ in this paper. It is well known that C is a γ-constacyclic code of length N over A if and only if C is an ideal of the residue class ring $A[x]/(x^N - \gamma)$. Moreover, its dual code C^\perp is an ideal of the ring $A[x]/(x^N - \gamma^{-1})$ (cf. [18] Propositions 2.2 and 2.3).

In 1999, Wood in [27] showed that for certain reasons finite Frobenius rings are the most general class of rings that should be used for alphabets of codes. Then Dougherty et al. [20] investigated self-dual codes over commutative Frobenius rings. In [28] and [29], Yildiz et al. studied codes over an extension ring of \mathbb{Z}_4 and obtained some good \mathbb{Z}_4-codes. Here the ring was described as $\mathbb{Z}_4[u]/(u^2) = \mathbb{Z}_4 + u\mathbb{Z}_4 (u^2 = 0)$ which is a local non-principal ring. Then a complete classification and an explicit representation for cyclic codes of odd length over $\mathbb{Z}_4[u]/(u^k) = \mathbb{Z}_4 + u\mathbb{Z}_4 + \ldots + u^{k-1}\mathbb{Z}_4 (u^k = 0)$ were provided by Cao et al. [7] for any integer $k \geq 2$.

Shi et al. in [25] studied $(1+2u)$-constacyclic codes over the ring $\mathbb{Z}_4[u]/(u^2-1) = \mathbb{Z}_4 + u\mathbb{Z}_4 (u^2 = 1)$ of odd length. Then Cao et al. gave a complete description for negacyclic codes of oddly even length and cyclic codes of odd length over the local ring $\mathbb{Z}_4[v]/(v^2 + 2v)$ by [12] and [13], respectively. In the papers, some new and good \mathbb{Z}_4-codes were obtained from \mathbb{Z}_4-images of codes over $\mathbb{Z}_4[u]/(u^2-1)$ and $\mathbb{Z}_4[v]/(v^2 + 2v)$. Moreover, a complete classification for simple-root cyclic codes over $\mathbb{F}_p[v]/(v^2 - pv)$ was provided in [14] for any prime number p and integer $s \geq 2$.

In [4], Bandi et al. studied negacyclic codes of length 2^k over the ring $R = \mathbb{Z}_4 + u\mathbb{Z}_4 (u^2 = 0)$. Moreover, the structure of ideals in $R[u]/(x^{2^k} + 1)$ were described roughly by Discrete Fourier Transform, where n is an odd integer, and the number
of all negacyclic codes of length $2^k n$ over R was given by $\prod_{i \in J} N_{\xi}$, where J denotes a complete set of representatives of the 2-cyclotomic cosets modulo n, and

1. r_ξ is the size of the 2-cyclotomic coset modulo n containing ξ;
2. $\text{GR}(R, r_{\xi})$ is the Galois extension ring of R with degree r_{ξ};
3. N_{ξ} is the number of all ideals in the ring $S_{r_{\xi}} = \frac{\text{GR}(R, r_{\xi})[x]}{(x^{2^n} + 1)}$,

for every $\xi \in J$. To the best of our knowledge, the following problems have not been completely solved, where $R = \mathbb{Z}_4 + u\mathbb{Z}_4$ ($u^2 = 0)$:

- Give a clear formula to enumerate the number of all negacyclic codes of length 2^k over R. Although a mass formula for the number of all negacyclic codes of length 2^k over R was given by Theorem 12 in [4], this formula is wrong (see Remark 4.4 in this paper).
- Give a clear formula to enumerate the number of negacyclic codes of length $2^k n$ over R, for any odd positive integer n. In [4], there was no clear formula given to calculate the number N_{ξ} of ideals in $S_{r_{\xi}}$ for any $\xi \in J$.
- Give an explicit representation for every negacyclic codes of arbitrary even length over R. Although negacyclic codes over R of even length were studied in [4], the expression for each code is a little complicated. It is not clear enough for the readers to list negacyclic codes over R easily, for specific even lengths.

To solve these problems above, we will adopt a new idea and use some new methods.

In this paper, let $\mathbb{Z}_4 = \{0, 1, 2, 3\}$ in which the arithmetic is done modulo 4, and denote $\mathbb{F}_2 = \{0, 1\}$ in which the arithmetic is done modulo 2. We will regard \mathbb{F}_2 as a subset of \mathbb{Z}_4 in this paper. But \mathbb{F}_2 is not a subring of \mathbb{Z}_4. Let $a \in \mathbb{Z}_4$. Then a has a unique 2-adic expansion: $a = 2a_0, a_0, a_1 \in \mathbb{F}_2$. It is well known that $a \in \mathbb{Z}_4^*$ if and only if $a_0 \neq 0$. Denote $\overline{a} = a_0 \in \mathbb{F}_2$. Then $- : a \mapsto \overline{a}$ ($\forall a \in \mathbb{Z}_4$) is a ring homomorphism from \mathbb{Z}_4 onto \mathbb{F}_2, and this homomorphism can be extended to a ring homomorphism from $\mathbb{Z}_4[y]$ onto $\mathbb{F}_2[y]$ by: $\overline{f}(y) = \sum_{i=0}^{n} \overline{b}_i y^i$, for any $f(y) = \sum_{i=0}^{n} b_i y^i \in \mathbb{Z}_4[y]$ where $b_i \in \mathbb{Z}_4$.

Let $f(y)$ be a monic polynomial in $\mathbb{Z}_4[y]$ of degree $d \geq 1$. Then $f(y)$ is said to be basic irreducible if $\overline{f}(y)$ is an irreducible polynomial in $\mathbb{F}_2[y]$ (cf. § 13.4 in [26]).

From now on, we adopt the following notation.

- Let $\mathbb{Z}_4[y]_{\overline{f}(y)} = \{\sum_{i=0}^{d-1} a_i y^i | a_0, a_1, \ldots, a_{d-1} \in \mathbb{Z}_4\}$ in which the arithmetic is done modulo $\overline{f}(y)$.
- Let $\mathbb{F}_2[y]_{\overline{f}(y)} = \{\sum_{i=0}^{d-1} b_i y^i | b_0, b_1, \ldots, b_{d-1} \in \mathbb{F}_2\}$ in which the arithmetic is done modulo $\overline{f}(y)$.

In the following, we still use \overline{f} to denote the homomorphism of rings from $\mathbb{Z}_4[y]_{\overline{f}(y)}$ onto $\mathbb{F}_2[y]_{\overline{f}(y)}$ defined by: $\sum_{i=0}^{d-1} a_i y^i \mapsto \sum_{i=0}^{d-1} \overline{a}_i y^i$, $\forall a_0, a_1, \ldots, a_{d-1} \in \mathbb{Z}_4$.

In the rest of this paper, let k be any positive integer and n be an odd positive integer. We assume

\begin{equation}
\sum_{i=0}^{n} f_1(y) f_2(y) \cdots f_r(y),
\end{equation}

where $f_1(y), f_2(y), \ldots, f_r(y)$ are pairwise coprime monic basic irreducible polynomials in $\mathbb{Z}_4[y]$ and

\[\deg(f_j(y)) = d_j, \quad j = 1, \ldots, r.\]

Then $\overline{f_1}(y), \overline{f_2}(y), \ldots, \overline{f_r}(y)$ are pairwise coprime irreducible polynomials in $\mathbb{F}_2[y]$ and $\deg(\overline{f_j}(y)) = d_j$ for all j. We will adopt the following notation, where $1 \leq j \leq r$:
• Let \(\mathbb{Z}_4 + u\mathbb{Z}_4 = \mathbb{Z}_4[u]/(u^2) = \{a + ub \mid a, b \in \mathbb{Z}_4\} \) (\(u^2 = 0\)) in which the operations are defined by \(\alpha + \beta = (a + b) + u(c + d)\) and \(\alpha\beta = ac + u(ad + bc)\), for any \(\alpha = a + bu, \beta = c + du \in \mathbb{Z}_4 + u\mathbb{Z}_4\) with \(a, b, c, d \in \mathbb{Z}_4\). Then \(\mathbb{Z}_4 + u\mathbb{Z}_4\) is a local non-principal ideal ring (cf. [29]).

• Let \(A = \frac{\mathbb{Z}_4[x]}{(x^k + 1)} = \{\sum_{i=0}^{k-1} a_ix^i \mid a_0, a_1, \ldots, a_{k-1} \in \mathbb{Z}_4\}\) in which the arithmetic is done modulo \(x^k + 1\).

• Let \(R_j = \frac{\mathbb{Z}_4[x]}{(f_j(x^2^j))} = \{\sum_{i=0}^{d_j-1} a_ix^i \mid a_0, a_1, \ldots, a_{d_j-1} \in \mathbb{Z}_4\}\) in which the arithmetic is done modulo \(f_j(-x^{2^j})\), where \(\deg(f_j(-x^{2^j})) = 2^j d_j\).

• Let \(T_j = \{\sum_{i=0}^{d_j-1} t_i x^i \mid t_0, t_1, \ldots, t_{d_j-1} \in \mathbb{F}_2\}\) \(\subset R_j\). Then \(|T_j| = 2^{d_j}\).

This paper is organized as follows. In Section 2, we prove that each \(R_j\) is a finite chain ring, \(1 \leq j \leq r\), and establish an isomorphism of rings from the direct product ring \(R_1 \times \cdots \times R_r\) onto \(A\). In Section 3, we construct a precise isomorphism of rings from the direct product ring \((R_1 + uR_1) \times \cdots \times (R_r + uR_r)\) onto \(\frac{\mathbb{Z}_4 + u\mathbb{Z}_4[x]}{(x^k + 1)}\) first. Then we present all distinct ideals of each ring \(R_j + uR_j\) explicitly. Hence we give an explicit representation and enumeration for all distinct negacyclic codes of length \(2^n\) over \(\mathbb{Z}_4 + u\mathbb{Z}_4\). In Section 4, we give an explicit expression for every negacyclic codes of length \(2^k\) over \(\mathbb{Z}_4 + u\mathbb{Z}_4\) and obtain an exact formula to count the number of all these codes. Then we correct a mistake in the mass formula for the number of negacyclic codes of length \(2^k\) over \(\mathbb{Z}_4 + u\mathbb{Z}_4\) in [4]. In Section 5, we give an explicit representation for all distinct cyclic codes of odd length \(n\) over \(\mathbb{Z}_4 + u\mathbb{Z}_4\) and correct some mistakes in [3] and [23]. Section 6 concludes the paper.

2. Structure of the ring \(A = \frac{\mathbb{Z}_4[x]}{(x^k + 1)}\)

In this section, we consider to decompose the ring \(A\) into a direct sum of finite chain rings first. To do this, we need the following lemmas.

Lemma 2.1. ([17] Proposition 2.1) Let \(A\) be a finite associative and commutative ring with identity. Then the following conditions are equivalent:

(i) \(A\) is a local ring and the maximal ideal \(M\) of \(A\) is principal, i.e., \(M = \langle \pi \rangle\) for some \(\pi \in A\);

(ii) \(A\) is a local principal ideal ring;

(iii) \(A\) is a chain ring with ideals \(\langle \pi^i \rangle, 0 \leq i \leq \nu\), where \(\nu\) is the nilpotency index of \(\pi\).

Lemma 2.2. ([22] Proposition 2.2) Let \(A\) be a finite commutative chain ring, with maximal ideal \(M = \langle \pi \rangle\), and let \(\nu\) be the nilpotency index of \(\pi\). Then

(i) For some prime \(p\) and positive integer \(m\), \(|A/\langle \pi \rangle| = q\) where \(q = p^m, |A| = q^{\nu}\), and the characteristic of \(A/\langle \pi \rangle\) and \(A\) are powers of \(p\);

(ii) For \(i = 0, 1, \ldots, \nu\), \(|\langle \pi^i \rangle| = q^{\nu-i}\).

Lemma 2.3. ([22] Lemma 2.4) Using the notations in Lemma 2.2, let \(V \subseteq A\) be a system of representatives for the equivalence classes of \(A\) under congruence modulo \(\pi\). (Equivalently, we can define \(V\) to be a maximal subset of \(A\) with the property that \(r_1 - r_2 \notin \langle \pi \rangle\) for all \(r_1, r_2 \in V, r_1 \neq r_2\).) Then
(i) Every element \(a \) of \(A \) has a unique \(\pi \)-adic expansion: \(a = \sum_{j=0}^{\nu-1} r_j \pi^j \), \(r_0, r_1, \ldots, r_{\nu-1} \in V \).

(ii) \(|A/(\langle \pi \rangle)| = |V| \) and \(|\langle \pi^i \rangle| = |V|^{\nu-i} \), for all integers \(j \): \(0 \leq i \leq \nu - 1 \).

Let \(1 \leq j \leq r \). From now on, we adopt the following notation:

- Let \(\Gamma_j = \frac{Z_4[y]}{\langle f_j(y) \rangle} = \{ \sum_{i=0}^{d_j-1} a_i y^i \mid a_0, a_1, \ldots, a_{d_j-1} \in Z_4 \} \) in which the arithmetic is done modulo \(f_j(y) \).
- Let \(\overline{\Gamma}_j = \frac{\mathbb{F}_2[y]}{\langle f_j(y) \rangle} = \{ \sum_{i=0}^{d_j-1} b_i y^i \mid b_0, b_1, \ldots, b_{d_j-1} \in \mathbb{F}_2 \} \) in which the arithmetic is done modulo \(f_j(y) \).

Lemma 2.4. Using the notation above, we have the following conclusions:

(i) (cf. [26] Theorem 14.1) \(\Gamma_j \) is a Galois ring of characteristic 4 and cardinality \(4^{d_j} \), in symbol as \(\Gamma_j = \text{GR}(4, d_j) \). Moreover, we have \(\Gamma_j = Z_4[\zeta_j] \), where \(\zeta_j = y \in \Gamma_j \) satisfying \(\zeta_j^{2^{d_j} - 1} = 1 \), i.e. \(\zeta_j^{2^{d_j}} = \zeta_j \).

Denote \(\overline{\zeta}_j = y \in \overline{\Gamma}_j \). Then \(\overline{\Gamma}_j = \mathbb{F}_2[\overline{\zeta}_j] \) which is a finite field of cardinality \(2^{d_j} \), \(\overline{\Gamma}_j(x) = \prod_{i=0}^{d_j-1} (x-\overline{\zeta}_j^i) \in \mathbb{F}_2[x] \) and that \(\overline{\zeta}_j \) can be extended to a ring homomorphism from \(\Gamma_j \) onto \(\overline{\Gamma}_j \) by \(\xi \mapsto \overline{\xi} = \sum_{i=0}^{d_j-1} \overline{\alpha}_i \overline{\zeta}_j^i \), for all \(\xi = \sum_{i=0}^{d_j-1} \alpha_i \zeta_j^i \in \Gamma_j \) where \(\alpha_0, \alpha_1, \ldots, \alpha_{d_j-1} \in \mathbb{Z}_4 \).

(ii) (cf. [6] Lemma 2.3(ii)) \(f_j(x) = \prod_{i=0}^{d_j-1} (x - \zeta_j^i) \) in \(\Gamma_j[x] \).

Now, we determine the algebraic structure of each ring \(\mathcal{R}_j = \frac{\mathbb{Z}_4[x]}{\langle f_j(x) \rangle} \), where \(1 \leq j \leq r \). The following lemma is the key to this paper.

Lemma 2.5. Using the notation in Section 1, let \(1 \leq j \leq r \). Then

(i) There is an invertible element \(\vartheta_j(x) \) of the ring \(\mathcal{R}_j \) such that

\[
(f_j(x))^{2^k} = 2\vartheta_j(x) \text{ in } \mathcal{R}_j.
\]

Hence \((2) = (f_j(x)^{2^k}) \) as ideals of \(\mathcal{R}_j \).

(ii) \(\mathcal{R}_j \) is a finite chain ring with the unique maximal ideal \(\langle f_j(x) \rangle \), where \(\langle f_j(x) \rangle = f_j(x)\mathcal{R}_j \), the nilpotency index of \(f_j(x) \) is equal to \(2^{k+1} \) and \(\mathcal{R}_j/\langle f_j(x) \rangle \) is a finite field of cardinality \(4^{d_j} \).

(iii) Each element \(\alpha \in \mathcal{R}_j \) has a unique \(f_j(x) \)-adic expansion:

\[
\alpha = b_0(x) + b_1(x)f_j(x) + \cdots + b_{2^{k+1}-1}(x)f_j(x)^{2^{k+1}-1},
\]

where \(b_i(x) \in \mathcal{T}_j \) for all \(i = 0, 1, \ldots, 2^{k+1} - 1 \).

(iv) All distinct ideals of \(\mathcal{R}_j \) are given by: \(\langle f_j(x)^i \rangle = f_j(x)^i\mathcal{R}_j, \) \(i = 0, 1, 2, \ldots, 2^{k+1} \). Moreover, we have \(|\langle f_j(x)^i \rangle| = 2^{(2^{k+1}-i)d_j} \).

(v) Let \(1 \leq l \leq 2^{k+1} \). Then \(\mathcal{R}_j/\langle f_j(x)^l \rangle = \{ \sum_{i=0}^{l-1} b_i(x)f_j(x)^{i} \mid b_0(x), \ldots, b_{l-1} \in \mathcal{T}_j \} \)

(in which \(f_j(x)^l = 0 \)) and \(|\mathcal{R}_j/\langle f_j(x)^l \rangle| = 2^{ld_j} \).

(vi) Let \(0 \leq l \leq t \leq 2^{k+1} - 1 \). Then

\[
f_j(x)^l \cdot \mathcal{R}_j/\langle f_j(x)^l \rangle = \left\{ \sum_{i=0}^{t-1} b_i(x)f_j(x)^i \mid b_0(x), \ldots, b_{t-1} \in \mathcal{T}_j \right\},
\]
where we set $f_j(x)^\gamma \in \mathbb{F}_2[x]$ for convenience. Hence $|f_j(x)^\gamma \in \mathbb{F}_2[x]| = 2^{(t-1)d_j}$.

Proof. (i) By Lemma 2.4(ii), we have $f_j(x) = \prod_{i=0}^{d_j-1} (x - \zeta_j^i i)$ in $\Gamma_j[x]$. This implies $f(x)^{2^k} = \prod_{i=0}^{d_j-1} (x - \zeta_j^{2^i i})^{2^k}$, where

$$(x - \zeta_j^{2^i i})^{2^k} = \sum_{t=0}^{2^k} \left(\binom{2^k}{t} \right) x^{2^k-t} (-\zeta_j^{2^i i})^t = -\left(x^{2^k} - (\zeta_j^{2^i i})^{2^k} \right) + 2x^{2^k-1} - (\zeta_j^{2^i i})^{2^k-1},$$

since $\left(\binom{2^k}{t} \right) = 2$ and $\left(\binom{2^k}{t} \right) = 0$ in \mathbb{Z}_4 for all $t \notin \{0, 2^{k-1}, 2^k \}$. Hence

$$f(x)^{2^k} = (-1)^{d_j} \prod_{i=0}^{d_j-1} \left((-x^{2^k}) - (\zeta_j^{2^i i})^{2^k} \right) + 2 \sum_{i=0}^{d_j-1} \left(\prod_{0 \leq t \leq d_j-1, t \neq i} x^{2^k} - (\zeta_j^{2^i i})^{2^k} \right).$$

Denote $g_{j,i}(x) = x^{2^k-1} (-\zeta_j^{2^i i})^{2^k-1} \prod_{0 \leq t \leq d_j-1, t \neq i} \left(x^{2^k} + (\zeta_j^{2^i i})^{2^k} \right) \in \Gamma_j[x]$, where $0 \leq i \leq d_j - 1$, and set $g_j(x) = \sum_{i=0}^{d_j-1} g_{j,i}(x)$. Then we have

$$f(x)^{2^k} = (-1)^{d_j} f_j(-x^{2^k}) + 2g_j(x).$$

This implies $g_j(x) = \frac{f(x)^{2^k} - (-1)^{d_j} f_j(-x^{2^k})}{2} \pmod{4}$ and so $g_j(x) \in \mathbb{Z}_4[x]$. As $4 = 0$, we have $2g_j(x) = 2g_j(x)$.

As stated above, we conclude that $f(x)^{2^k} \equiv 2g_j(x) \pmod{f_j(-x^{2^k})}$. This implies

$$f(x)^{2^k} = 2g_j(x) \in \mathbb{F}_2[x].$$

Here, we regard $\mathbb{F}_2[x]$ as a subset of $\mathbb{Z}_4[x]$, but $\mathbb{F}_2[x]$ is not a subring of $\mathbb{Z}_4[x]$.

Now, let $\overline{g}_j(x) = g_j(x) \in \mathbb{R}_j$. As a polynomial in $\Gamma_j[x]$, we see that

$$\overline{g}_{j,i}(x) = x^{2^k-1} \left(\zeta_j^{2^i} \right)^{2^k-1} \prod_{0 \leq t \leq d_j-1, t \neq i} \left(x + \zeta_j^{2^i} \right)^{2^k}$$

for all $i = 0, 1, \ldots, d_j - 1$, and $\overline{g}_j(x) = \sum_{i=0}^{d_j-1} \overline{g}_{j,i}(x)$. Since $\zeta_j, \zeta_j^2, \ldots, \zeta_j^{2^{d_j-1}}$ are all distinct roots of the polynomial $\overline{f}_j(x)$ in the extension field Γ_j of \mathbb{F}_2 and $\zeta_j^{2^{d_j-1}} = \zeta_j$, for any integer λ: $0 \leq \lambda \leq d_j - 1$, we have

$$\overline{g}_{j,i}(\zeta_j^{2^\lambda}) = \left(\zeta_j^{2^\lambda} \right)^{2^k-1} \left(\zeta_j^{2^\lambda} \right)^{2^k-1} \prod_{0 \leq t \leq d_j-1, t \neq i} \left(\zeta_j^{2^\lambda} + \zeta_j^{2^t} \right)^{2^k} = 0, \text{ if } i \neq \lambda;$$

and $\overline{g}_{j,\lambda}(\zeta_j^{2^\lambda}) = \zeta_j^{2^\lambda} \prod_{0 \leq t \leq d_j-1, t \neq \lambda} \left(\zeta_j^{2^\lambda} + \zeta_j^{2^t} \right)^{2^k} \neq 0$. These imply

$$\overline{g}_j(\zeta_j^{2^\lambda}) = \left(\sum_{i=0}^{d_j-1} \overline{g}_{j,i}(\zeta_j^{2^\lambda}) \right) = \overline{g}_{j,\lambda}(\zeta_j^{2^\lambda}) \neq 0.$$
Therefore, we conclude that \(\gcd(\overline{f}_j(x), \overline{g}_j(x)) = 1 \). This implies \(\gcd(f_j(x)^2, g_j(x)) = 1 \) as polynomials in \(F_2[x] \). Then by \(\overline{f}_j(-x^{2^k}) = \overline{f}_j(x)^{2^k} \), we see that \(f_j(-x^{2^k}) \) and \(g_j(x) \) are coprime in \(\mathbb{Z}_4[x] \). This implies that \(a(x)\overline{g}_j(x) + b(x)f_j(-x^{2^k}) = 1 \) for some \(a(x), b(x) \in \mathbb{Z}_4[x] \), i.e., \(a(x)\overline{g}_j(x) \equiv 1 \pmod{f_j(-x^{2^k})} \). Hence \(\overline{g}_j(x) \) is an invertible element in the ring \(R_j \). Moreover, by (i) we have \(\langle \overline{f}_j(x)^{2^k} \rangle = \langle \overline{g}_j(x) \rangle \) as ideals of \(R_j \).

(ii) Let \(M = \langle f_j(x), 2 \rangle \) be the ideal of \(R_j \) generated by \(f_j(x) \) and 2. Then the residue class ring of \(R_j \) modulo \(M \) is given by:

\[
\frac{R_j}{M} = \frac{R_j}{\langle f_j(x), 2 \rangle} \cong \frac{F_2[x]/\langle f_j(x)^{2^k} \rangle}{\langle f_j(x) \rangle} \cong \frac{F_2[x]}{\langle f_j(x) \rangle} = \Gamma_j,
\]

where \(\Gamma_j \) is a finite field of \(2^{d_j} \) elements. Hence \(M \) is a maximal ideal of \(R_j \).

As \(f_j(x)^{2^{k+1}} = (2\overline{g}_j(x))^2 = 4\overline{g}_j(x)^2 = 0 \) in \(R_j \), we see that every element of \(M \) is nilpotent. Hence each element in \(R_j \setminus M \) must be an invertible element, and so \(M \) is the unique maximal ideal of \(R_j \). Therefore, \(R_j \) is a finite chain ring with the unique maximal ideal \(\langle f_j(x) \rangle \) by Lemma 2.1.

Let \(\nu \) be the nilpotency index of \(f_j(x) \) in \(R_j \). Then \(|R_j| = |\frac{R_j}{\langle f_j(x) \rangle}|^{\nu} \) by Lemma 2.2. From this, by \(|R_j| = 4^{2^{d_j}} \) and \(|\frac{R_j}{\langle f_j(x) \rangle}| = |\frac{R_j}{M}| = |\Gamma_j| = 2^{d_j} \), we deduce that \(\nu = 2^{k+1} \).

(iii) Using the notation of Section 1, we know that \(T_j = \{ \sum_{i=0}^{d_j-1} t_i x^i \mid t_0, t_1, \ldots, t_{d_j-1} \in \{0, 1\} \} \subseteq R_j \). As \(f_j(x) \) is a monic basic irreducible polynomial in \(\mathbb{Z}_4[x] \), it follows that \(\gamma_1 - \gamma_2 \notin \langle f_j(x) \rangle \) for all \(\gamma_1, \gamma_2 \in T_j \) satisfying \(\gamma_1 \neq \gamma_2 \). Moreover, we have \(|\frac{R_j}{\langle f_j(x) \rangle}| = 2^{d_j} = |T_j| \). Hence \(T_j \) is a system of representatives for the equivalence classes of \(R_j \) under congruence modulo \(f_j(x) \). Then the conclusion follows from Lemma 2.3 immediately.

(iv)–(vi) The conclusions follow from properties of finite chain rings (cf. [22]). Here, we omit the proofs.

Finally, we decompose the ring \(A = \frac{\mathbb{Z}_4[x]}{(x^{2^k} + 1)} \) into a direct sum of the finite chain rings \(R_j \) under the isomorphism meaning.

Let \(1 \leq j \leq r \) and denote \(F_j(y) = \frac{y^{2^k}-1}{f_j(y)} \in \mathbb{Z}_4[y] \). As \(\gcd(F_j(y), \overline{f}_j(y)) = 1 \), we see that \(F_j(y) \) and \(f_j(y) \) are coprime in \(\mathbb{Z}_4[y] \) (cf. [26] Lemma 13.5). Hence there are polynomials \(a_j(y), b_j(y) \in \mathbb{Z}_4[y] \) such that

\[
(2) \quad a_j(y)F_j(y) + b_j(y)f_j(y) = 1.
\]

In this paper, we define \(\theta_j(x) \in A \) by:

\[
\bullet \quad \theta_j(x) \equiv a_j(-x^{2^k})F_j(-x^{2^k}) = 1 - b_j(-x^{2^k})f_j(-x^{2^k}) \pmod{x^{2^k} + 1}.
\]

Substituting \(-x^{2^k}\) for \(y \) in Equations (1) of Section 1 and (2) above, we obtain

\[-(x^{2^k} + 1) = -(x^{2^k})^n - 1 = f_1(-x^{2^k})f_2(-x^{2^k}) \cdots f_r(-x^{2^k}). \]

Hence \(x^{2^k} + 1 = -f_1(-x^{2^k})f_2(-x^{2^k}) \cdots f_r(-x^{2^k}) \) and

\[
a_j(-x^{2^k})F_j(-x^{2^k}) + b_j(-x^{2^k})f_j(-x^{2^k}) = 1.
\]
Then from the definition of $\theta_j(x)$ and the Chinese Remainder Theorem for commutative rings with identity, we deduce the following conclusion.

Theorem 2.6. Using the notation above, we have the following conclusions:

(i) $\theta_1(x) + \ldots + \theta_r(x) = 1$, $\theta_j(x)^2 = \theta_j(x)$ and $\theta_i(x)\theta_j(x) = 0$ in \mathcal{A}, for all integers i and j: $1 \leq i \neq j \leq r$.

(ii) $\mathcal{A} = \mathcal{A}_1 \oplus \ldots \oplus \mathcal{A}_r$, where $\mathcal{A}_j = \theta_j(x)\mathcal{A}$ and its multiplicative identity is $\theta_j(x)$. Moreover, this decomposition is a direct sum of rings in that $\mathcal{A}_i\mathcal{A}_j = \{0\}$ for all integers i and j: $1 \leq i \neq j \leq r$.

(iii) For each $1 \leq j \leq r$ and $a(x) \in \mathcal{R}_j = \frac{\mathbb{Z}_4[x]}{(f_j(-x^2))}$, define a map τ_j by

$$\tau_j : a(x) \mapsto \theta_j(x)a(x) \pmod{x^{2^k} + 1}.$$

Then τ_j is a ring isomorphism from \mathcal{R}_j onto \mathcal{A}_j. Hence $|\mathcal{A}_j| = 4^{2^kd_j} = 2^{k+1}d_j$.

(iv) Define $\tau : (a_1(x), \ldots, a_r(x)) \mapsto \tau_1(a_1(x)) + \ldots + \tau_r(a_r(x))$, i.e.,

$$\tau(a_1(x), \ldots, a_r(x)) = \sum_{j=1}^r \theta_j(x)a_j(x) \pmod{x^{2^k} + 1},$$

for all $a_j(x) \in \mathcal{R}_j$ and $j = 1, \ldots, r$. Then τ is a ring isomorphism from the direct product ring $\mathcal{R}_1 \times \ldots \times \mathcal{R}_r$ onto \mathcal{A}.

3. **Explicit representation and enumeration for negacyclic codes over the ring $\mathbb{Z}_4 + u\mathbb{Z}_4$ of length 2^kn**

In this section, we determine all distinct negacyclic codes over the ring $\mathbb{Z}_4 + u\mathbb{Z}_4$ of length 2^kn, i.e., all distinct ideals of the ring $\frac{(\mathbb{Z}_4 + u\mathbb{Z}_4)[x]}{(x^{2^kn} + 1)}$.

In this paper, for a ring $\mathcal{Y} \in \{\mathcal{A}, \mathcal{A}_j, \mathcal{R}_j\}$ where $1 \leq j \leq r$, we set $\mathcal{Y}[u]/(u^2) = \mathcal{Y} + u\mathcal{Y} (u^2 = 0)$ in which the operations are defined by:

$$(\xi_1 + u\eta_1) + (\xi_2 + u\eta_2) = (\xi_1 + \xi_2) + u(\eta_1 + \eta_2);$$

$$\xi_1 + u\eta_1)(\xi_2 + u\eta_2) = \xi_1\xi_2 + u(\xi_1\eta_2 + \xi_2\eta_1),$$

for any $\xi_1, \eta_1, \xi_2, \eta_2 \in \mathcal{Y}$. Let $\alpha \in \frac{(\mathbb{Z}_4 + u\mathbb{Z}_4)[x]}{(x^{2^kn} + 1)}$. Then α can be uniquely expressed as

$$\alpha = \sum_{i=0}^{2^kn-1} (a_i + b_iu)x^i, \quad a_i, b_i \in \mathbb{Z}_4, \quad i = 0, 1, \ldots, 2^kn - 1.$$

Denote $\xi = \sum_{i=0}^{2^kn-1} a_ix^i$ and $\eta = \sum_{i=0}^{2^kn-1} b_ix^i$. Then we have $\xi, \eta \in \mathcal{A} = \frac{\mathbb{Z}_4[x]}{(x^{2^kn} + 1)}$.

Now, define $\sigma : \alpha \mapsto \xi + u\eta$. It can be verified easily that σ is a ring isomorphism from the ring $\mathcal{A} = \frac{\mathbb{Z}_4[x]}{(x^{2^kn} + 1)}$ onto $\mathcal{A} + u\mathcal{A}$.

In the rest of this paper, we will identify $\frac{(\mathbb{Z}_4 + u\mathbb{Z}_4)[x]}{(x^{2^kn} + 1)}$ with $\mathcal{A} + u\mathcal{A}$ under the above isomorphism σ. Moreover, we have the following conclusions:

Lemma 3.1. Let $1 \leq j \leq r$. Using the notations of Theorem 2.6, for any $a(x), b(x) \in \mathcal{R}_j$ we define

$$\tau_j(a(x) + b(x)u) = \tau_j(a(x)) + \tau_j(b(x))u = \theta_j(x)(a(x) + b(x)u) \pmod{x^{2^kn} + 1}.$$

Then τ_j is a ring isomorphism from $\mathcal{R}_j + u\mathcal{R}_j$ onto $\mathcal{A}_j + u\mathcal{A}_j$.

Proof. By Theorem 2.6 (iii), the isomorphism $\tau_j : \mathcal{R}_j \to A_j$ induces an isomorphism of polynomial rings from $\mathcal{R}_j[u]$ onto $A_j[u]$ in the natural way that
\[
\sum_i a_i(x)u^i \rightarrow \sum_i \tau_j(a_i(x))u^i \quad (\forall a_i(x) \in \mathcal{R}_j).
\]
Hence τ_j is a ring isomorphism from $\mathcal{R}_j + u\mathcal{R}_j$ onto $A_j + uA_j$. \hfill \Box

Lemma 3.2. The following statements are equivalent:

(i) C is a negacyclic code over $\mathbb{Z}_4 + u\mathbb{Z}_4$ of length $2^k n$.

(ii) C is an ideal of the ring $A + uA$.

(iii) For each integer $1 \leq j \leq r$, there is a unique ideal C_j of the ring $\mathcal{R}_j + u\mathcal{R}_j$ such that $C = \bigoplus_{j=1}^r \theta_j(x)C_j \pmod{x^{2^k n} + 1}$. In this case, we have $|C| = \prod_{j=1}^r |C_j|$.

Proof. (i)\Leftrightarrow (ii) It follows from the identification of $\mathcal{R}_j[u]/(x^{2^k n} + 1)$ with $A + uA$.

(ii)\Leftrightarrow (iii) By Theorem 2.6 (ii), we have $A = \bigoplus_{j=1}^r A_j$. Hence
\[
A + uA = \frac{A[u]}{u^2} = \bigoplus_{j=1}^r \frac{A_j[u]}{u^2} = \bigoplus_{j=1}^r (A_j + uA_j).
\]
This decomposition is a direct sum of rings in that $(A_i + uA_i)(A_j + uA_j) = \{0\}$, for any integers i, j: $1 \leq i \neq j \leq r$. Therefore, C is an ideal of $A + uA$ if and only if for each integer j: $1 \leq j \leq r$, there is a unique ideal C_j of the ring $A_j + uA_j$ such that $C = \bigoplus_{j=1}^r C_j$. From this and by Lemma 3.1, we deduce that C_j is an ideal of $A_j + uA_j$ if and only if there is a unique ideal C_j of $\mathcal{R}_j + u\mathcal{R}_j$ such that
\[
C_j = \tau_j(C_j) = \theta_j(x)C_j = \{\theta_j(x)c_j(x) \mid c_j(x) \in C_j\} \pmod{x^{2^k n} + 1}.
\]
Hence $C = \bigoplus_{j=1}^r \theta_j(x)C_j$ and $|C| = \prod_{j=1}^r |C_j| = \prod_{j=1}^r |C_j|$. \hfill \Box

Therefore, in order to present all negacyclic codes over $\mathbb{Z}_4 + u\mathbb{Z}_4$ of length $2^k n$, it is sufficient to determine all ideals of the ring $\mathcal{R}_j + u\mathcal{R}_j$ for each j.

By Theorem 3.8 in [15], we determined all distinct ideals of the ring $K_j + uK_j$ $(u^2 = 0)$, where $K_j = \frac{F_{p^m}[x]}{(f_j(x))^{p^m}} = \left\{ \sum_{i=0}^{p^m d_{j,i}-1} a_i x^i \mid a_0, a_1, \ldots, a_{p^m d_{j,i}-1} \in F_{p^m} \right\}$ in which the arithmetic is done modulo $f_j(x)^{p^m}$, and

- p is a prime number, m, s are positive integers and F_{p^m} is a finite field of p^m elements.
- $f_j(x)$ is an irreducible polynomial in $F_{p^m}[x]$ with degree d_j.
- (15) Lemma 3.1 (i) K_j is a finite chain ring with the unique maximal ideal $(f_j(x))$, and the nilpotency index of $f_j(x)$ in K_j is p^s.
- (15) Lemma 3.1 (ii) Let $T_j = \left\{ \sum_{i=0}^{d_{j,i}-1} t_i x^i \mid t_0, t_1, \ldots, t_{d_{j,i}-1} \in F_{p^m} \right\} \subset K_j$. Then each element $x \in K_j$ has a unique $f_j(x)$-expansion:
\[
\xi = \sum_{i=0}^{p^s-1} b_i(x)f_j(x)^i, \ b_0(x), b_1(x), \ldots, b_{p^s-1}(x) \in T_j.
\]

For clarity, using Lemma 2.5 we give a table below:
For any positive integer \(i\), let \(\lfloor \frac{i}{2} \rfloor = \min\{l \in \mathbb{Z}^+ | l \geq \frac{i}{2}\}\) and \(\lceil \frac{i}{2} \rceil = \max\{l \in \mathbb{Z}^+ \cup \{0\} | l \leq \frac{i}{2}\}\). Making the following replacements in Theorem 3.8 of [15]:

\[
\mathcal{K}_j \rightarrow \mathcal{R}_j, \quad p \rightarrow 2, \quad s \rightarrow k + 1, \quad k \rightarrow \lambda, \quad m \rightarrow 1,
\]

we obtain the following conclusion.

Theorem 3.3. Using the notations above, all distinct ideals \(C_j\) of the ring \(\mathcal{R}_j + u\mathcal{R}_j\) \((a^2 = 0)\) and the number \(|C_j|\) of elements in \(C_j\) are given by the following five cases:

(I) \(2^{2d_j}\) ideals:

- \(C_j = (f_j(x)b(x) + u)\) with \(|C_j| = 2^{2k+1-d_j}\),

where \(b(x) = \sum_{i=2t-1}^{2k+1-\lambda} b_i(x)f_j(x)^i\) and \(b_{2k+1}(x), \ldots, b_{2k+1-2}(x) \in \mathcal{T}_j\).

(II) \(2^{2k+1-1}\) ideals:

- \(C_j = (uf_j(x)^{2k+1-1})\) with \(|C_j| = 2^{d_j}\);
- \(C_j = (f_j(x)^{2k+1-\lambda}b(x) + uf_j(x)^{2k+1-\lambda})\) with \(|C_j| = 2^{d_j(2k+1-\lambda)}\),

where \(b(x) = \sum_{i=2k+1-\lambda-2}^{2k+1-\lambda-1} b_i(x)f_j(x)^i\), \(b_i(x) \in \mathcal{T}_j\), \(\lfloor \frac{1}{2}(2k+1-\lambda) \rfloor \leq i \leq 2k+1-\lambda - 2\) and \(1 \leq \lambda \leq 2k+1 - 2\).

(III) \(2^{k+1} + 1\) ideals:

- \(C_j = (f_j(x)^\lambda)\) with \(|C_j| = 2^{2d_j(2k+1-\lambda)}\), where \(0 \leq \lambda \leq 2k+1\).

(IV) \(2^{2k+1-1}\) ideals:

- \(C_j = \langle u, f_j(x) \rangle\) with \(|C_j| = 2^{d_j(2k+2-1)}\);
- \(C_j = (f_j(x)b(x) + u, f_j(x)^t)\) with \(|C_j| = 2^{d_j(2k+2-1)}\),

where \(b(x) = \sum_{i=2t-1}^{2k+1-\lambda} b_i(x)f_j(x)^i\), \(b_i(x) \in \mathcal{T}_j\), \(\lfloor \frac{1}{2} \rfloor \leq i \leq t - 2\) and \(2 \leq t \leq 2^{k+1} - 1\).

(V) \(2^{2k+1-2}\) ideals:

- \(C_j = \langle u f_j(x)^\lambda, f_j(x)^\lambda t \rangle\) with \(|C_j| = 2^{d_j(2k+2-2\lambda-1)}\), where \(1 \leq \lambda \leq 2k+1 - 1\);
- \(C_j = (f_j(x)^{\lambda+1}b(x) + uf_j(x)^{\lambda-t})\) with \(|C_j| = 2^{d_j(2k+2-2\lambda-t)}\),

where \(b(x) = \sum_{i=2k+1-\lambda-1}^{2k+1-\lambda} b_i(x)f_j(x)^i\), \(b_i(x) \in \mathcal{T}_j\), \(\lfloor \frac{1}{2} \rfloor \leq i \leq t - 2\), \(2 \leq t \leq 2^{k+1} - 1\) and \(1 \leq \lambda \leq 2k+1 - 3\).

Moreover, let \(N_{(2,d_j,2^{k+1})}\) be the number of ideals in \(\mathcal{R}_j + u\mathcal{R}_j\). Then

\[
N_{(2,d_j,2^{k+1})} = \sum_{i=0}^{2k} (1 + 4i)2^{(2k-i)d_j}.
\]
Proof. A direct proof can be given by an argument paralleling to that of Lemma 3.2, Lemma 3.7 and Theorem 3.8 in [15]. Here, we omitted. □

By the following proposition, we give a simplified expression for the number \(N_{(2,d_j,2k+1)} \) of ideals in \(R_j + uR_j \).

Proposition 3.4. The number of ideals in \(R_j + uR_j \) is equal to

\[
N_{(2,d_j,2k+1)} = \frac{(2^{d_j} + 3)2^{2k+1}d_j - 2^{d_j}2^{k+2} + 5 + 2^{k+2} + 1}{(2^{d_j} - 1)^2}.
\]

Especially, we have \(N_{(2,1,2k+1)} = 10 \cdot 2^k - 2^{k+2} - 9 \) when \(d_j = 1 \), and \(N_{(2,d_j,2k+1)} = 4^{d_j} + 5 \cdot 2^{d_j} + 9 \) when \(k = 1 \).

Proof. By Theorem 3.3, it follows that

\[
N_{(2,d_j,2k+1)} = \sum_{i=0}^{2^k} (2^{d_j})^{2^k-i} + 2^{2^k-1}d_j + 2 \sum_{i=1}^{2^k} i(\frac{1}{2^{d_j}})^{i-1},
\]

where \(\sum_{i=0}^{2^k} (2^{d_j})^{2^k-i} = \sum_{i=0}^{2^k} (2^{d_j})^i = \frac{2^{(2^k+1)d_j-1}}{2^{d_j} - 1} \). Then by

\[
\sum_{i=1}^{2^k} i(x^{-1})^{i-1} = \frac{d}{dx} \left(\sum_{i=0}^{2^k} x^i \right) = \frac{d}{dx} \left(\frac{x^{2^k+1} - 1}{x - 1} \right) = \frac{(2^k + 1)x^{2^k}(x - 1) - (x^{2^k+1} - 1)}{(x - 1)^2},
\]

we have

\[
\sum_{i=1}^{2^k} i(\frac{1}{2^{d_j}})^{i-1} = (2^k + 1)(\frac{1}{2^{d_j}})^{2^k}(\frac{1}{2^{d_j}} - 1) - (\frac{1}{2^{d_j}})^{2^k+1} - 1 \]

\[
= \frac{2^{-(2^k-1)d_j}}{(2^{d_j} - 1)^2} \left(2^{(2^k+1)d_j} - 2^{d_j}(2^k + 1) + 2^k \right).
\]

From these, we deduce that

\[
N_{(2,d_j,2k+1)} = \frac{2(2^{d_j+1}d_j - 1)}{2^{d_j} - 1} + \frac{4}{(2^{d_j} - 1)^2} \left(2^{(2^k+1)d_j} - 2^{d_j}(2^k + 1) + 2^k \right)
\]

\[
= \frac{(2^{d_j+3})2^{2^k+1}d_j - 2^{d_j}(2^{k+2} + 5) + 2^{k+2} + 1}{(2^{d_j} - 1)^2}.
\]

Especially, we have \(N_{(2,1,2k+1)} = 10 \cdot 2^k - 2^{k+2} - 9 \) when \(d_j = 1 \). □

Then by Lemma 3.2, Theorem 3.3 and Proposition 3.4, we give an explicit representation and enumeration for all distinct negacyclic codes over \(\mathbb{Z}_4 + u\mathbb{Z}_4 \) of arbitrary even length as follows:

Theorem 3.5. Every negacyclic code \(C \) over \(\mathbb{Z}_4 + u\mathbb{Z}_4 \) (\(u^2 = 0 \)) of length \(2^k \) can be constructed by the following two steps:

(i) For each integer \(j, 1 \leq j \leq r \), choose an ideal \(C_j \) of \(R_j + uR_j \) listed in Theorem 3.3.
(ii) Set $C = \bigoplus_{j=1}^{r} \theta_j(x)C_j = \sum_{j=1}^{r} \theta_j(x)C_j \pmod{x^{2^kn} + 1}$. Moreover, the number of codewords in C is equal to $|C| = \prod_{j=1}^{r} |C_j|$.

Then the number of negacyclic codes over $\mathbb{Z}_4 + u\mathbb{Z}_4$ of length 2^kn is equal to

$$\prod_{j=1}^{r} N_{(2,d_j,2^{k+1})} = \prod_{j=1}^{r} \frac{(2d_j + 3)(2^{k+1})d_j - 2d_j(2^{k+2} + 5) + 2^{k+2} + 1}{(2^{d_j} - 1)^2}.$$

Especially, the number of negacyclic codes over $\mathbb{Z}_4 + u\mathbb{Z}_4$ of length $2n$ is equal to \(\prod_{j=1}^{r} (4^{d_j} + 5 \cdot 2^{d_j} + 9)\).

Using the notations of Theorem 3.5, $C = \bigoplus_{j=1}^{r} \theta_j(x)C_j$ is called the canonical form decomposition of the negacyclic code C over $\mathbb{Z}_4 + u\mathbb{Z}_4$.

As an application of Theorem 3.5, we list the number of negacyclic codes over $\mathbb{Z}_4 + u\mathbb{Z}_4$ of length $2n$ for odd positive integers $3 \leq n \leq 21$ as follows:

n	The number of negacyclic codes over $\mathbb{Z}_4 + u\mathbb{Z}_4$ of length $2n$
3	1035 = $(4^1 + 5 \cdot 2^1 + 9)(4^2 + 5 \cdot 2^2 + 9)$
5	7935 = $(4^1 + 5 \cdot 2^1 + 9)(4^4 + 5 \cdot 2^4 + 9)$
7	293687 = $(4^1 + 5 \cdot 2^1 + 9)(4^6 + 5 \cdot 2^6 + 9)^2$
9	4579875 = $(4^1 + 5 \cdot 2^1 + 9)(4^3 + 5 \cdot 2^3 + 9)(4^6 + 5 \cdot 2^6 + 9)$
11	24235215 = $(4^1 + 5 \cdot 2^1 + 9)(4^{10} + 5 \cdot 2^{10} + 9)$
13	386347215 = $(4^1 + 5 \cdot 2^1 + 9)(4^{12} + 5 \cdot 2^{12} + 9)$
15	42500851875 = $(4^1 + 5 \cdot 2^1 + 9)(4^{14} + 5 \cdot 2^{14} + 9)^4$
17	102708354375 = $(4^1 + 5 \cdot 2^1 + 9)(4^6 + 5 \cdot 2^6 + 9)^2$
19	1580578116695 = $(4^1 + 5 \cdot 2^1 + 9)(4^{18} + 5 \cdot 2^{18} + 9)$
21	258775875646875 = $23 \cdot 45 \cdot (4^3 + 5 \cdot 2^3 + 9)^2(4^6 + 5 \cdot 2^6 + 9)^2$

By the following example, we show how to list all distinct negacyclic codes over $\mathbb{Z}_4 + u\mathbb{Z}_4$ of specific lengths, using Theorem 3.5.

Example 3.6. All distinct negacyclic codes over $\mathbb{Z}_4 + u\mathbb{Z}_4$ of length 14 are given by:

$$C = \theta_1(x)C_1 \oplus \theta_2(x)C_2 \oplus \theta_3(x)C_3 = \sum_{j=1}^{3} \theta_j(x)C_j \pmod{x^{14} + 1}$$

and the number of codewords in C is equal to $|C_1||C_2||C_3|$, where

- $\theta_1(x) = 3 + x^2 + 3x^4 + x^6 + 3x^8 + x^{10} + 3x^{12}$;
- $\theta_2(x) = 1 + x^2 + 3x^4 + 2x^6 + 3x^8 + 2x^{10} + 2x^{12}$;
- $\theta_3(x) = 1 + 2x^2 + 2x^4 + x^6 + 2x^8 + x^{10} + 3x^{12}$;

\diamond C_1 is one of the following 23 ideals in $\mathbb{Z}_4 + u\mathbb{Z}_4[\frac{x}{(x^2+1)}] = \mathbb{Z}_4[u][\frac{x}{(x^2+1)}]$.

1. (1-I) 4 ideals:
- $C_1 = (x-1) \cdot (b_1(x-1) + b_2(x-1)^2) + u$ with $|C_1| = 2^4$, where $b_1, b_2 \in \{0, 1\}$.
2. (1-II) 5 ideals:
- $C_1 = (x-1)^2 \cdot b_1(x-1) + u(x-1)$ with $|C_1| = 2^3$, where $b_1 \in \{0, 1\}$;
- $C_1 = (x-1)^3 \cdot b_0 + u(x-1)^2$ with $|C_1| = 2^2$, where $b_0 \in \{0, 1\}$;
- $C_1 = (u(x-1))^3$ with $|C_1| = 2$.
3. (1-III) 5 ideals:
- $C_1 = (x-1)^\lambda$ with $|C_1| = 4^{\lambda-1}$, $0 \leq \lambda \leq 4$.
4. (1-IV) 5 ideals:
- $C_1 = (u, x-1)$ with $|C_1| = 2^2$.

\(\text{ADVANCES IN MATHEMATICS OF COMMUNICATIONS}\)
Negacyclic codes of length 2^kn over $\mathbb{Z}_4 + u\mathbb{Z}_4$

$C_1 = ((x-1)\cdot b_0 + u, (x-1)^2)$ with $|C_1| = 2^6$, where $b_0 \in \{0, 1\}$;
$C_1 = ((x-1)\cdot b_1(x-1) + u, (x-1)^3)$ with $|C_1| = 2^5$, where $b_1 \in \{0, 1\}$.

(1-V) 4 ideals:
$C_1 = (u(x-1), (x-1)^2)$ with $|C_1| = 2^5$;
$C_1 = (u(x-1)^2, (x-1)^3)$ with $|C_1| = 2^3$;
$C_1 = ((x-1)^2 \cdot b_0 + u(x-1), (x-1)^3)$ with $|C_1| = 2^4$, where $b_0 \in \{0, 1\}$.

\forall Denote $f_2(x) = x^3 + 2x^2 + x + 3$, $f_3(x) = x^3 + 3x^2 + 2x + 3$, and set $T_2 = T_3 = \{t_0 + t_1x + t_2x^2 \mid t_0, t_1, t_2 \in \{0, 1\}\}$.

Let $j = 2, 3$. Then C_j is one of the following 113 ideals in $\frac{\mathbb{Z}_4[x]}{(f_j(x^{-1}))}$:

(1) 64 codes:
$C_j = (f_j(x) \cdot (\beta_1 f_j(x) + \beta_2 f_j(x)^2) + u)$ with $|C_j| = 2^{12}$, where $\beta_1, \beta_2 \in T_j$.

(II) 17 codes:
$C_j = (f_j(x)^2 \cdot \beta_1 f_j(x) + u f_j(x))$ with $|C_j| = 2^{16}$, where $\beta_1 \in T_j$;
$C_j = (f_j(x)^3 \cdot \beta_0 + u f_j(x)^2)$ with $|C_j| = 2^{16}$, where $\beta_0 \in T_j$;
$C_j = (u f_j(x)^3)$ with $|C_j| = 2^{3}$.

(III) 5 codes:
$C_j = (f_j(x)^3)$ with $|C_j| = 2^{3}$.

4. Negacyclic codes over $\mathbb{Z}_4 + u\mathbb{Z}_4$ of length 2^k

As an application of Theorem 3.3, we determine all distinct negacyclic codes of length 2^k over $\mathbb{Z}_4 + u\mathbb{Z}_4$ ($u^2 = 0$), i.e., all distinct ideals of the ring $\frac{\mathbb{Z}_4 + u\mathbb{Z}_4[x]}{(x^2 + 1)}$.

In this case, we have $n = 1, f_1(x) = x - 1$ with degree $d_1 = 1, r = 1, \theta_1(x) = 1, R_1 = \frac{\mathbb{Z}_4[x]}{(f_1(x^{-1}))} = \frac{\mathbb{Z}_4[x]}{(x^2 + 1)}$ and $T_1 = \{0, 1\} = F_2$ as a subset of R_1. Then from these, by Theorem 3.3 and Proposition 3.4, we deduce the following conclusion.

Theorem 4.1. Let $k \geq 1$. Then all distinct negacyclic codes of length 2^k over $\mathbb{Z}_4 + u\mathbb{Z}_4$ ($u^2 = 0$) are given by the following five cases:

(I) 2^{2k} codes:
$\bigcirc C = ((x-1)b(x) + u)$ with $|C| = 2^{2k+1}$,
where $b(x) = \sum_{i=2}^{2k+1} b_i(x-1)^i$ with $b_i \in \{0, 1\}$ for all $i = 2^k - 1, \ldots, 2^{k+1} - 2$.

(II) $\sum_{\lambda=1}^{2^{k+1} - 1} 2^{2k+1 - \lambda - \lambda(2^{k+1} - \lambda)}$ codes:
$\bigcirc C = (u(x-1)^{2^{k+1} - 1})$ with $|C| = 2$;
$\bigcirc C = ((x-1)^{2^{k+1} - 1} b(x) + u(x-1)^{2^{k+1} - 1})$ with $|C| = 2^{2k+1 - \lambda}$,
where $b(x) = \sum_{i=2}^{2^{k+1} - \lambda - 1} b_i(x-1)^i$,
$b_i \in \{0, 1\}$ for all $i = \left[\frac{2^{k+1} - \lambda}{2} \right] - 1, \ldots, 2^{k+1} - \lambda - 2$, and $1 \leq \lambda \leq 2^{k+1} - 2$.

(III) $2^{k+1} + 1$ codes:
\(\mathcal{C} = \langle (x-1)^\lambda \rangle \) with \(|\mathcal{C}| = 2^{2(2k+1-\lambda)}, \ 0 \leq \lambda \leq 2k+1. \)

(IV) \(\sum_{t=1}^{2k+1-1} 2t-\lceil \frac{t}{2} \rceil \) codes:

- \(\mathcal{C} = \langle u_i (x-1) \rangle \) with \(|\mathcal{C}| = 2^{2k+2-i}, \quad 0 \leq i \leq 2k+1. \)
- \(\mathcal{C} = \langle (x-1)^\lambda b(x) + u, (x-1)^i \rangle \) with \(|\mathcal{C}| = 2^{2k+2-i}, \)
 \[\text{where } b(x) = \sum_{i=\lceil \frac{t}{2} \rceil -1}^{t-2} b_i (x-1)^i, \]
 \[b_i \in \{0,1\} \text{ for all } i = \left\lceil \frac{t}{2} \right\rceil -1, \ldots, t-2, \text{ and } 2 \leq t \leq 2k+1-1. \]

Moreover, the number of negacyclic codes of length \(2^k \) over \(\mathbb{Z}_4 + u\mathbb{Z}_4 \) is

\[N_{(2,1,2k+1)} = 10 \cdot 2^{2k} - 2^{k+2} - 9. \]

As in Dougherty and Ling [21], let \(h_m(x) \) be a monic basic irreducible polynomial in \(\mathbb{Z}_4[x] \) of degree \(m \) that divides \(x^{2^m} - 1 \) and set

\[\text{GR}(4, m) = \frac{\mathbb{Z}_4[x]}{\langle h_m(x) \rangle} = \left\{ \sum_{i=0}^{m-1} a_i x^i \mid a_0, a_1, \ldots, a_{m-1} \in \mathbb{Z}_4 \right\} \]

in which the arithmetic is done modulo \(h_m(x) \). Then \(\text{GR}(4, m) \) is a Galois ring of characteristic 4 and cardinality \(4^m \) (cf. [26] Theorem 14.1). Define

\[R_4(z, m) = \frac{\text{GR}(4, m)[z]}{(z^{2^k} - 1)} = \left\{ \sum_{i=0}^{2^k-1} \alpha_i z^i \mid \alpha_0, \alpha_1, \ldots, \alpha_{2^k-1} \in \text{GR}(4, m) \right\} \]

in which the arithmetic is done modulo \(z^{2^k} - 1 \). By Theorem 2.6 in [21], the number of all distinct ideals in the ring \(R_4(z, m) \) is equal to

\[5 + (2m)^2 - 1 + (5 \cdot 2^m - 1)(2m) \frac{(2m)^{2^k-1} - 1}{(2m - 1)^2} - 4 \cdot \frac{2^{k-1} - 1}{2m - 1} \]

\[= \frac{(2m + 3)2^{(2^k+1)m} - 2m(2^{k+1} + 5) + 2^k + 1}{(2m - 1)^2} \]

\[= N_{(2, m, 2^k)}. \]

Especially, if \(m = 1 \), the number all distinct ideals in \(\frac{\mathbb{Z}_4[z]}{(z^{2^k} - 1)} \) is

\[N_{(2,1,2^k)} = 10 \cdot 2^{2k-1} - 2^{k+1} - 9. \]

Using Proposition 3.4 and by setting \(m = d_j \), we have the following conclusion:

Corollary 4.2. Let \(1 \leq j \leq r, f_j(x) \) be a monic basic irreducible polynomial in \(\mathbb{Z}_4[x] \) of degree \(d_j \), and let \(\mathcal{R}_j = \frac{\mathbb{Z}_4[x]}{\langle f_j(x) \rangle} \) be defined as in Section 1. Then the number of ideals in the ring \(\mathcal{R}_j + u\mathcal{R}_j \) \((u^2 = 0) \) is the same as the number of ideals in the ring \(\frac{\text{GR}(4,d_j)[z]}{(z^{2^k+1})} \), where \(\text{GR}(4,d_j) = \frac{\mathbb{Z}_4[z]}{(f_j(x))} \).
Especially, let $f_j(x) = x - 1$. Then the number of ideals in the ring $\frac{(\mathbb{Z}_4 + u\mathbb{Z}_4)[x]}{(x^2^k + 1)}$ is the same as the number of ideals in the ring $\frac{\mathbb{Z}_4[x]}{(x^2^k - 1)}$.

Therefore, the number of negacyclic codes over $\mathbb{Z}_4 + u\mathbb{Z}_4$ with length 2^k is the same as the number of cyclic codes over \mathbb{Z}_4 with length 2^{k+1}.

By the following example, we show how to list all distinct negacyclic codes over $\mathbb{Z}_4 + u\mathbb{Z}_4$ of length 2^k for specific positive integer k, using Theorem 4.1.

Example 4.3. All distinct 135 negacyclic codes of length 2^2 over $\mathbb{Z}_4 + u\mathbb{Z}_4$ are given by the following five cases:

(I) $2^4 = 16$ codes:
- $C = \langle (x - 1) \cdot (\sum_{i=0}^{6} b_i(x - 1)^i) + u \rangle$ with $|C| = 2^8$, where $b_i \in \{0, 1\}$ for all $i = 3, 4, 5, 6$.

(II) $2 \cdot 2^3 + 2 \cdot 2^2 + 2 \cdot 2 + 1 = 29$ codes:
- $C = \langle u(x - 1)^7 \rangle$ with $|C| = 2$;
- $C = \langle (x - 1)^{\lambda + 1} \cdot (\sum_{i=0}^{6} \lambda^i - 1) b_i(x - 1)^i + u(x - 1)^{\lambda} \rangle$ with $|C| = 2^{8 - \lambda}$, where $b_i \in \{0, 1\}$ for all $i = \left[\frac{8 - \lambda}{2}\right], 1, \ldots, 6 - \lambda$, and $1 \leq \lambda \leq 6$.

(III) 9 codes:
- $C = \langle (x - 1)^{\lambda} \rangle$ with $|C| = 2^{2(8 - \lambda)}$, where $0 \leq \lambda \leq 8$.

(IV) $1 + 2 \cdot 2 + 2 \cdot 2^2 + 2 \cdot 2^3 = 29$ codes:
- $C = \langle u, (x - 1) \rangle$ with $|C| = 2^7$;
- $C = \langle (x - 1) \cdot (\sum_{i=0}^{t - 2} \frac{1}{2}) b_i(x - 1)^i) + u, (x - 1)^{\lambda} \rangle$ with $|C| = 2^{16 - t}$, where $b_i \in \{0, 1\}$ for all $i = \left[\frac{1}{2}\right], 1, \ldots, t - 2$, and $2 \leq t \leq 7$.

(V) $\sum_{\lambda=1}^{k} \sum_{t=1}^{\lambda - 1} 2^{t - \left[\frac{t}{2}\right]} = 20 + 12 + 8 + 4 + 2 + 6 = 52$ codes:
- $C = \langle u(x - 1)^{\lambda}, (x - 1)^{\lambda + 1} \rangle$ with $|C| = 2^{16 - 2\lambda - 1}$, where $1 \leq \lambda \leq 6$;
- $C = \langle (x - 1)^{\lambda + 1} \cdot (\sum_{i=0}^{(t - 2)} \frac{1}{2}) b_i(x - 1)^i) + u(x - 1)^{\lambda}, (x - 1)^{\lambda + t} \rangle$ with $|C| = 2^{16 - 2\lambda - t}$, where $b_i \in \{0, 1\}$ for all $i = \left[\frac{1}{2}\right], 1, \ldots, t - 2$, $2 \leq t \leq 8 - \lambda - 1$ and $1 \leq \lambda \leq 5$.

Remark 4.4. By Theorem 4.1, there are $N_{(2,1,2^{t+1})} = 23$ negacyclic codes of length 2 and $N_{(2,1,2^{t+1})} = 135$ negacyclic codes of length 2^2 over $R = \mathbb{Z}_4 + u\mathbb{Z}_4$ ($u^2 = 0$).

However, in [4, Theorem 12], the authors claimed that: *The number $\mathcal{N}(2^k)$ of negacyclic codes of length 2^k over R is*

$$\mathcal{N}(2^k) = 11 \cdot 2^{2^k} + 2^{2^k - 1} (5 \cdot 2^k - 12) - ((2^k)^2 + 5 \cdot 2^k + 4).$$

Using this formula, we have $\mathcal{N}(2) = 44 - 2 - 18 = 24$ when $k = 1$; and $\mathcal{N}(2^2) = 176 + 16 - 40 = 152$ if $k = 2$. Hence the formula (3) is incorrect. See [16] for details.

5. **Negacyclic codes of odd length over $\mathbb{Z}_4 + u\mathbb{Z}_4$**

In previous sections, we always suppose $k \geq 1$. In this section, let $k = 0$. We give a brief discussion on negacyclic codes of odd length n over the ring $R = \mathbb{Z}_4 + u\mathbb{Z}_4$.

As in [29], we define $\phi : R^n \to \mathbb{Z}_4^{2^n}$ by:

$$\phi(\xi) = (b_0, b_1, \ldots, b_{n-1}, a_0 + b_0, a_1 + b_1, \ldots, a_{n-1} + b_{n-1})$$

for any $\xi = (a_0 + ub_0, a_1 + ub_1, \ldots, a_{n-1} + ub_{n-1}) \in R^n$ where $a_i, b_i \in \mathbb{Z}_4$ for all $i = 0, 1, \ldots, n - 1$. Then we define the Lee weight w_L on R by letting

$$w_L(a + ub) = w_L(b, a + b),$$
where $a, b \in \mathbb{Z}_4$ and $w_L(b, a+b)$ describes the usual Lee weight on \mathbb{Z}_4^2. Furthermore, the Lee distance is defined accordingly. Note that with this definition of the Lee weight and the Gray map we know the following conclusion.

Proposition 5.1. ([29] Theorem 2.3) The map $\phi : R^n \to \mathbb{Z}_4^{2n}$ is a distance preserving linear isometry. Thus, if C is a linear code over R of length n, then $\phi(C)$ is a linear code over \mathbb{Z}_4 of length $2n$ and the two codes have the same Lee weight enumerators.

In the following, let n be odd. In the ring $\mathbb{Z}_4[x] \subset R[x]$, we have $(-x)^n - 1 = -(x^n + 1)$. Hence the map $\varphi : \frac{R[x]}{(x^n - 1)} \to \frac{R[x]}{(x^n + 1)}$ defined by

$$\varphi(\alpha(x)) = \alpha(-x) = \sum_{i=0}^{n-1} (-1)^i \alpha_i x^i \quad (\forall \alpha(x) = \sum_{i=0}^{n-1} \alpha_i x^i \text{ where } \alpha_i \in R \text{ for all } i)$$

is a ring isomorphism. Therefore, C is a negacyclic code over R of length n, i.e. C is an ideal of the ring $\frac{R[x]}{(x^n - 1)}$, if and only if there is a unique cyclic code D over R of length n, i.e. D is an ideal of the ring $\frac{R[x]}{(x^n + 1)}$, such that

$$C = \varphi(D) = \left\{ \sum_{i=0}^{n-1} (-1)^i \alpha_i x^i \mid \sum_{i=0}^{n-1} \alpha_i x^i \in D \text{ where } \alpha_0, \alpha_1, \ldots, \alpha_{n-1} \in R \right\}.$$

From this, one can easily verify the following conclusion.

Proposition 5.2. The isomorphism φ is a distance preserving linear isometry on R^n. Hence the two codes $\varphi(D)$ and D have the same Lee weight (and Hamming weight) enumerators, for every cyclic code D of length n over R.

Therefore, it is sufficient to determine all cyclic codes of length n over $R = \mathbb{Z}_4 + u\mathbb{Z}_4$ ($u^2 = 0$), in order to determine all negacyclic codes of length n over R (corresponding to the case of $k = 0$ in previous sections). There were some literatures on this kind of cyclic codes. Please refer to [3], [23] and [29], for examples. In these papers, the following results were given:

† “There are 7^m cyclic codes of length n over R^n (Corollary 11 in [3] and Corollary 4.1 in [23]). Here $R = \mathbb{Z}_4 + u\mathbb{Z}_4$ ($u^2 = 0$), $x^n - 1 = g_1g_2\ldots g_k$ and g_1, \ldots, g_k are basic irreducible pairwise coprime polynomials in $\mathbb{Z}_4[x] \subset R[x]$. In fact, the number 7^m of cyclic codes over R with length n is wrong (see Remark 5.4 of this paper).

⊥ Let C be a cyclic code of odd length n over R. Then

$$C = \langle f_1(x) + 2f_2(x) + uf_3(x), uf_4(x) + 2uf_4(x) \rangle,$$

where $f_2(x) \mid f_1(x) \mid x^n - 1$ and $f_4(x) \mid f_3(x) \mid x^n - 1$ in $R[x]$ (Theorem 4.4 in [23] and Theorem 4 in [29]).

Now, we provided a new way different from the methods used in [3], [23] and [29] to study cyclic codes of odd length n over $R = \mathbb{Z}_4 + u\mathbb{Z}_4$ ($u^2 = 0$). To do this, we adopt the previous notations in Sections 1 and 2, for any integer $1 \leq j \leq r$ by Equations (1) and (2):

- Let $e_j(x) \in \frac{R[x]}{(x^n - 1)} \subset \frac{R[x]}{(x^n - 1)}$ be defined by
 $$e_j(x) = a_j(x)F_j(x) + 1 - b_j(x)f_j(x) \pmod{x^n - 1}.$$
Let $K_j = \{ \frac{Z_n}{f_j(x)} \} = \{ \sum_{i=0}^{d_j-1} a_i x^i \mid a_0, a_1, \ldots, a_{d_j-1} \in Z_4 \}$ in which the arithmetic is done modulo $f_j(x)$. Then K_j is a Galois ring of 4^{d_j} elements.

- Let $F_j = \{ \sum_{i=0}^{d_j-1} b_i x^i \mid b_0, b_1, \ldots, b_{d_j-1} \in F_2 \} \subset K_j$.

- Define a map $\Psi : \frac{Z_n}{f(x)} + u \frac{Z_n}{f(x)} \rightarrow R[x]/(x^n - 1)$ by: for any $\xi = \sum_{i=0}^{n-1} a_i x^i + u \sum_{i=0}^{n-1} a_{i+1} x^i$ with $a_i, a_{i+1} \in Z_4$ for all i, we set

$$\Psi(\xi) = \sum_{i=0}^{n-1} a_i x^i,$$

where $a_i = a_{i+1} + ua_{i+1} \in R$ for all $i = 0, 1, \ldots, n - 1$.

Then Ψ is a ring isomorphism from $\frac{Z_n}{f(x)} + u \frac{Z_n}{f(x)}$ onto $R[x]/(x^n - 1)$.

In the following, we think of $\frac{Z_n}{f(x)} + u \frac{Z_n}{f(x)} (u^2 = 0)$ and $R[x]/(x^n - 1)$ as the same under the isomorphism Ψ. Then as a direct corollary of Theorems 3.4 and 3.7 in [7], we obtain the following conclusion:

Theorem 5.3. All distinct cyclic code over R of odd length n are given by

$$C = \bigoplus_{j=1}^{r} e_j(x)C_j \pmod{x^n - 1},$$

where C_j is an ideal of the ring $K_j + uK_j$ listed by the following table for all $j = 1, \ldots, r$:

| case | number of ideals | C_j | $|C_j|$ |
|------|-----------------|-------|--------|
| I. | 3 | $\langle u^i \rangle$ ($i = 0, 1, 2$) | $2^{d_j(2-i)}$ |
| II. | 2 | $\langle 2u^s \rangle$ ($s = 0, 1$) | $2^{d_j(2-s)}$ |
| III. | $2^{d_j} - 1$ | $\langle u + 2h(x) \rangle$ ($h(x) \in F_j \setminus \{0\}$) | 2^{2d_j} |
| V. | 1 | $\langle u, 2 \rangle$ | 2^{2d_j} |

Moreover, the number of codewords in C is equal to $|C| = \prod_{j=1}^{r} |C_j|$. Hence the number of all cyclic codes over R of odd length n is $\prod_{j=1}^{r} (2^{d_j} + 5)$.

Remark 5.4. (†) By Theorem 5.3, the number of all cyclic codes of length 7 over $Z_4 + uZ_4$ is $(2^3 + 1) \cdot (2^3 + 5)^2 = 1183$. But in [3] and [23], the authors claimed that the number of all cyclic codes of length 7 over $Z_4 + uZ_4$ is equal to $7^3 = 343$. Therefore, the formula for cyclic codes given by [3] and [23] is wrong.

Moreover, we obtained 39 formally self-dual quasi-cyclic codes of length 14 and index 2 over Z_4 by the distance preserving isometry from $(Z_4 + uZ_4)^7$ to Z_4^{14} (see Section 6 of [7]).

(†) Using the ring isomorphism $\varphi : \frac{R[x]}{(x^5 - 1)} \rightarrow \frac{R[x]}{(x^5 + 1)}$, by Theorem 5.3, one can list all distinct $\prod_{j=1}^{r} (2^{d_j} + 5)$ negacyclic codes of length n over $Z_4 + uZ_4$ precisely and easily, for any specific odd positive integer n.

6. Conclusion

In this paper, we give an explicit expression for every negacyclic code over $Z_4 + uZ_4$ $(u^2 = 0)$ of arbitrary even length 2^kn, and provide an exact mass formula to enumerate the number of all these codes.

A natural problem is to represent all distinct self-dual negacyclic codes over $Z_4 + uZ_4$ of length 2^kn precisely and provide a clear formula to enumerate the
number of all these self-dual codes, for any positive integer k and odd positive integer n.

Acknowledgments

Part of this work was done when Yonglin Cao was visiting Chern Institute of Mathematics, Nankai University, Tianjin, China. He would like to thank the institution for the kind hospitality.

References

[1] T. Abualrub and R. Oehmke, On the generators of \mathbb{Z}_4 cyclic codes of length 2^k, IEEE Trans. Inform. Theory, 49 (2003), 2126–2133.

[2] T. Abualrub and I. Siap, Cyclic codes over the ring $\mathbb{Z}_2 + u\mathbb{Z}_2$ and $\mathbb{Z}_2 + u\mathbb{Z}_2 + u^2\mathbb{Z}_2$, Des. Codes Cryptogr., 42 (2007), 273–287.

[3] R. Bandi and M. Bhaintwal, Cyclic codes over $\mathbb{Z}_4 + u\mathbb{Z}_4$, 2015, https://www.researchgate.net/publication/289506486.

[4] R. Bandi, M. Bhaintwal and N. Aydin, A mass formula for negacyclic codes of length 2^k and some good negacyclic codes over $\mathbb{Z}_4 + u\mathbb{Z}_4$, Cryptogr. Commun., 9 (2017), 241–272.

[5] T. Blackford, Negacyclic codes over \mathbb{Z}_4 of even length, IEEE Trans. Inform. Theory, 49 (2003), 1417–1424.

[6] Y. Cao, On constacyclic codes over finite chain rings, Finite Fields Appl., 24 (2013), 124–135.

[7] Y. Cao and Q. Li, Cyclic codes of odd length over $\mathbb{Z}_4[u]/(u^k)$, Cryptogr. Commun., 9 (2017), 599–624.

[8] Y. Cao, Y. Cao and F.-W. Fu, Cyclic codes over $\mathbb{F}_{2^m}[u]/(u^k)$ of oddly even length, Appl. Algebra in Engrg. Commun. Comput., 27 (2016), 259–277.

[9] Y. Cao, Y. Cao and Q. Li, Concatenated structure of cyclic codes over \mathbb{Z}_4 of length $4n$, Appl. Algebra in Engrg. Commun. Comput., 27 (2016), 279–302.

[10] Y. Cao, Y. Cao, S. T. Dougherty and S. Ling, Construction and enumeration for self-dual cyclic codes over \mathbb{Z}_4 of oddly even length, Des. Codes Cryptogr., 87 (2019), 2419–2446.

[11] Y. Cao, Y. Cao and Q. Li, The concatenated structure of cyclic codes over \mathbb{Z}_4^2, J. Appl. Math. Comput., 52 (2016), 363–385.

[12] Y. Cao and Y. Cao, Negacyclic codes over the local ring $\mathbb{Z}_4[v]/(v^2 + 2v)$ of oddly even length and their Gray images, Finite Fields Appl., 52 (2018), 67–93.

[13] Y. Cao and Y. Cao, Complete classification for simple root cyclic codes over the local ring $\mathbb{Z}_4[v]/(v^2 + 2v)$, Cryptogr. Commun., (2019), 1–19.

[14] Y. Cao and Y. Cao, Complete classification for simple-root cyclic codes over $\mathbb{Z}_{p^r}[v]/(v^2 - pv)$, 2017, https://www.researchgate.net/publication/320620031.

[15] Y. Cao, Y. Cao, H. Q. Dinh, F.-W. Fu, J. Gao and S. Sriboonchitta, Constacyclic codes of length np^s over $\mathbb{F}_{p^{rm}} + u\mathbb{F}_{p^{rm}}$, Adv. Math. Commun., 12 (2018), 231–262.

[16] Y. Cao, Y. Cao, R. Bandi and F.-W. Fu, An explicit representation and enumeration for negacyclic codes of length 2^kn over $\mathbb{Z}_4 + u\mathbb{Z}_4$, arXiv:1811.10991.

[17] H. Q. Dinh and S. R. López-Permouth, Cyclic and negacyclic codes over finite chain rings, IEEE Trans. Inform. Theory, 50 (2004), 1728–1744.

[18] H. Q. Dinh, Constacyclic codes of length p^s over $\mathbb{F}_{p^{rm}} + u\mathbb{F}_{p^{rm}}$, J. Algebra, 324 (2010), 940–950.

[19] H. Q. Dinh, S. Dhombres and S. Sriboonchitta, Repeated-root constacyclic codes of prime power length over $\mathbb{F}_{p^{rm}}[u]/(u^v)$ and their duals, Discrete Math., 339 (2016), 1706–1715.

[20] S. T. Dougherty, J.-L. Kim, H. Kulosman and H. Liu, Self-dual codes over commutative Frobenius rings, Finite Fields Appl., 16 (2010), 14–26.

[21] S. T. Dougherty and S. Ling, Cyclic codes over \mathbb{Z}_4 of even length, Des. Codes Cryptogr., 39 (2006), 127–153.

[22] G. Norton and A. Sáilágean-Mandache, On the structure of linear and cyclic codes over finite chain rings, Appl. Algebra in Engrg. Commun. Comput., 10 (2000), 489–506.

[23] P. Pattanayek and A. K. Singh, A class of cyclic codes over the ring $\mathbb{Z}_4[u]/(u^2)$ and its gray image, arXiv:1507.04938.

[24] M. Shi, L. Xu and G. Yang, A note on one weight and two weight projective \mathbb{Z}_4-codes, IEEE Trans. Inform. Theory, 63 (2017), 177–182.
Negacyclic codes of length $2^k n$ over $\mathbb{Z}_4 + u\mathbb{Z}_4$

[25] M. Shi, L. Qian, L. Sok, N. Aydin and P. Solé, On constacyclic codes over $\mathbb{Z}_4[u]/(u^2 - 1)$ and their Gray images, *Finite Fields Appl.*, 45 (2017), 86–95.

[26] Z.-X. Wan, *Lectures on Finite Fields and Galois Rings*, World Scientific Publishing Co., Inc., River Edge, NJ, 2003.

[27] J. A. Wood, Duality for modules over finite rings and applications to coding theory, *American Journal of Mathematics*, 121 (1999), 555–575.

[28] B. Yildiz and S. Karadeniz, Linear codes over $\mathbb{Z}_4 + u\mathbb{Z}_4$: MacWilliams identities, projections, and formally self-dual codes, *Finite Fields Appl.*, 27 (2014), 24–40.

[29] B. Yildiz and N. Aydin, Cyclic codes over $\mathbb{Z}_4 + u\mathbb{Z}_4$ and \mathbb{Z}_4 images, *International Journal of Information and Coding Theory*, 2 (2014), 226–237.

Received June 2019; revised October 2019.

E-mail address: yuancao@sdut.edu.cn
E-mail address: ylcao@sdut.edu.cn
E-mail address: dinhquanghai@tdtu.edu.vn
E-mail address: bandi.ramakrishna@gmail.com
E-mail address: fwfu@nankai.edu.cn