Inci, H.; Kappeler, T.; Topalov, P.

On the regularity of the composition of diffeomorphisms. (English) [Zbl 1293.58004]

Mem. Am. Math. Soc. 1062, v, 60 p. (2013).

In this paper the group of diffeomorphisms \mathcal{D} of a smooth manifold M is considered. In various settings, the space of diffeomorphisms of a given manifold with prescribed regularity turns out to be an (infinite-dimensional) topological group with the group operation given by the composition. For such a group of diffeomorphisms, in order to be a Lie group, the composition and the inverse map have to be C^∞-smooth. A straightforward formal computation shows that the differential of the left translation $L_\varphi : \varphi \mapsto \psi \circ \varphi$ of a diffeomorphism φ by a diffeomorphism ψ in direction $h : M \to TM$ can be formally computed to be $(dL_\varphi)(h)(x) = (d\varphi(x)\psi)(h(x))$, $x \in M$, and hence involves a loss of derivative of ψ. As a consequence, for a space of diffeomorphisms of M to be a Lie group, it is necessary that they are C^∞-smooth and hence such a group cannot have the structure of a Banach manifold, but only of a Fréchet manifold. It is well known that the calculus in Fréchet manifolds is quite involved as the classical inverse function theorem does not hold. However, in many situations, one has to consider diffeomorphisms of Sobolev type. Let $\text{Diff}^s(M)$ denotes the set of all orientation-preserving C^1 smooth diffeomorphisms of M. For any integer s with $s > \frac{n}{2} + 1$ define $\mathcal{D}^s(M) := \{ \varphi \in \text{Diff}^1(M) \mid \varphi \in H^s(M, M) \}$ where $H^s(M) = H^s(M, M)$ denotes the set of all maps $M \to M$ of Sobolev class H^s. Then the group \mathcal{D}^s is a smooth Hilbert manifold, but the group operations are not smooth. It is known that the composition $H^s(M) \times \mathcal{D}^s(M) \to H^s(M)$ is continuous, whereas $H^{s+\tau}(M) \times \mathcal{D}^s(M) \to H^s(M)$ and $\text{inv} : \mathcal{D}^{s+\tau}(M) \to \mathcal{D}^s(M)$, $\varphi \mapsto \varphi^{-1}$, are mappings of class C^τ. Various versions of these statements can be found in the literature, however mostly without proofs.

For M a closed manifold or the Euclidean space \mathbb{R}^n, the authors present a detailed proof of regularity properties of the composition of H^s-regular diffeomorphisms of M for $s > \frac{n}{2} \dim M + 1$:

Theorem 1. For any $r \in \mathbb{Z}_{\geq 0}$ and any integer s with $s > n/2 + 1$, the maps $\mu : H^{s+r}(\mathbb{R}^n, \mathbb{R}^d) \times \mathcal{D}^s(\mathbb{R}^n) \to H^s(\mathbb{R}^n, \mathbb{R}^n)$, $(u, \varphi) \mapsto u \circ \varphi$, and $\text{inv} : \mathcal{D}^{s+\tau}(\mathbb{R}^n) \to \mathcal{D}^s(\mathbb{R}^n)$, $\varphi \mapsto \varphi^{-1}$, are C^τ-maps.

Theorem 2. Let M be a closed oriented manifold of dimension n, N a C^∞-manifold, and s an integer satisfying $s > n/2 + 1$. Then for any $r \in \mathbb{Z}_{\geq 0}$, the maps $\mu : H^{s+r}(M, N) \times \mathcal{D}^s(M) \to H^s(M, N)$, $(f, \varphi) \mapsto f \circ \varphi$, and $\text{inv} : \mathcal{D}^{s+\tau}(M) \to \mathcal{D}^s(M)$, $\varphi \mapsto \varphi^{-1}$, are both C^τ-maps.

There is no other proof of Theorem 1 available in the literature. A complete, quite involved proof of the first statement of Theorem 2 can be found in [H. Omori, Infinite-dimensional Lie groups. Providence, RI: American Mathematical Society (1997; Zbl 0871.58007)].

Reviewer: Nicolai K. Smolentsev (Kemerovo)

MSC:
58D05 Groups of diffeomorphisms and homeomorphisms as manifolds
58B10 Differentiability questions for infinite-dimensional manifolds
58D15 Manifolds of mappings
58B30 Applications of manifolds of mappings to the sciences

Keywords:
group of diffeomorphisms; infinite-dimensional Lie groups; Fréchet manifolds; diffeomorphisms of Sobolev class; composition of diffeomorphisms

Full Text: DOI arXiv

References:
[1] Ralph Abraham and Joel Robbin. Transversal mappings and flows, An appendix by Al Kelley, W. A. Benjamin, Inc., New York-Amsterdam, 1967. · Zbl 0171.44404
[2] Robert A. Adams, Sobolev spaces, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London.
Boris Khesin and Robert Wendt, The geometry of infinite-dimensional groups, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 51, Springer-Verlag, Berlin, 2009. - Zbl 1160.22011

Richard S. Hamilton, The inverse function theorem of Nash and Moser, Bull. Amer. Math. Soc. (N.S.) 7 (1982), no. 1, 65-222.

T. Kappeler, E. Loubet, and P. Topalov, Analyticity of Riemannian exponential maps on Diff(T), J. Lie Theory 17 (2007), no. 1-3, 87-126. - Zbl 1123.35045 - doi:10.1007/s11856-006-091470

David G. Ebin, On the space of Riemannian metrics, Bull. Amer. Math. Soc. (N.S.) 74 (1968), 1001-1003.

A. Constantin, T. Kappeler, B. Kolev, and P. Topalov, On geodesic exponential maps of the Virasoro group, Ann. Global Anal. Geom. 31 (2007), no. 2, 155-180. - Zbl 1121.35111 - doi:10.1007/s10455-006-9042-8

Adrian Constantin and Boris Kolev, Geodesic flow on the diffeomorphism group of the circle, Comment. Math. Helv. 78 (2003), no. 4, 787-804. - Zbl 1037.37032 - doi:10.1007/s00014-003-0775-6

Camillo de Lellis, Thomas Kappeler, and Peter Topalov, Low-regularity solutions of the periodic Camassa-Holm equation, Comm. Partial Differential Equations 32 (2007), no. 1-3, 87-126. - Zbl 1123.35045 - doi:10.1080/036053006091470

David G. Ebin, On the space of Riemannian metrics, Bull. Amer. Math. Soc. 74 (1968), 1001-1003. - Zbl 0172.22905 - doi:10.1090/S0002-9904-1968-12115-9

David G. Ebin and Jerrold Marsden, Groups of diffeomorphisms and the motion of an incompressible fluid., Ann. of Math. (2) 92 (1970), 102-163. - Zbl 0206.76001

Jerrold E. Marsden, David G. Ebin, and Arthur E. Fischer, Diffeomorphism groups, hydrodynamics and relativity, Proceedings of the Thirteenth Biennial Seminar of the Canadian Mathematical Congress Differential Geometry and Applications, (Dalhousie Univ., Halifax, N. S., 1971) Canad. Math. Congr., Montreal, Que., 1972, pp. 135-279. - Zbl 0284.58092

Halldór I. Eliasson, Geometry of manifolds of maps, J. Differential Geometry 1 (1967), 169-194.

B. Fuchssteiner and A. S. Fokas, Symplectic structures, their Bäcklund transformations and hereditary symmetries, Phys. D 4 (1981/82), no. 1, 47-66. - Zbl 0596.47023 - doi:10.1090/S0002-9904-1968-15004-2

Richard S. Hamilton, The inverse function theorem of Nash and Moser, Bull. Amer. Math. Soc. (N.S.) 7 (1982), no. 1, 65-222. - Zbl 0499.58003 - doi:10.1090/S0273-0979-1982-15004-2

Darryl D. Holm, Jerrold E. Marsden, and Tudor S. Ratiu, The Euler-Poincaré equations and semidirect products with applications to continuum theories, Adv. Math. 137 (1998), no. 1, 1-81. - Zbl 0950.37020 - doi:10.1006/aima.1998.1721

T. Kappeler, E. Loubet, and P. Topalov, Analyticity of Riemannian exponential maps on Diff(T), J. Lie Theory 17 (2007), no. 3, 481-503. - Zbl 1160.22011

Thomas Kappeler, Enrique Loubet, and Peter Topalov, Riemannian exponential maps of the diffeomorphism groups of \mathbb{R}^d and \mathbb{T}^2, Asian J. Math. 12 (2008), no. 3, 391-420. - Zbl 1161.58008 - doi:10.4310/AMJ.2008.v12.n3.a7

V. Yu. Ovsienko and B. A. Khesin, The super Korteweg-de Vries equation as an Euler equation, Funktsional. Anal. i Prilozhen. 21 (1987), no. 4, 81-82 (Russian).

Boris Khesin and Robert Wendt, The geometry of infinite-dimensional groups, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 51, Springer-Verlag, Berlin, 2009. - Zbl 1160.22001

Andreas Kriegl and Peter W. Michor, The convenient setting of global analysis, Mathematical Surveys and Monographs, vol. 53, American Mathematical Society, Providence, RI, 1997. - Zbl 0889.58001

Serge Lang, Fundamentals of differential geometry, Graduate Texts in Mathematics, vol. 191, Springer-Verlag, New York, 1999. - Zbl 0932.53001

R. de la Llave and R. Obaya, Regularity of the composition operator in spaces of Hölder functions, Discrete Contin. Dynam. Systems 5 (1999), no. 1, 157-184. - Zbl 0956.47029

J. Marsden, R. Abraham: Hamiltonian mechanics on Lie groups and hydrodynamics, Proc. Symp. Pure Math., AMS, 16 (1970), 237-244. - Zbl 0211.57402

J. T. Marti, Introduction to Sobolev spaces and finite element solution of elliptic boundary value problems, Computational Mathematics and Applications, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London, 1986. - Zbl 0651.46038

H. P. McKean, Breakdown of a shallow water equation, Asian J. Math. 2 (1998), no. 4, 867-874. Mikio Sato: a great Japanese mathematician of the twentieth century. - Zbl 0959.35140 - doi:10.4310/AMJ.1998.v2.n4.a10

P. Michor: Some geometric evolution equations arising as geodesic equations on groups of diffeomorphisms including the Hamiltonian approach, Lecture Notes, http://www.met.univie.ac.at/~michor/listpubl.html. - Zbl 1221.58006

J. Milnor, Remarks on infinite-dimensional Lie groups, Relativity, groups and topology, II (Les Houches, 1983) North-Holland, Amsterdam, 1984, pp. 1007-1057. - Zbl 0594.22009
[32] Gerard Misiołek, A shallow water equation as a geodesic flow on the Bott-Virasoro group, J. Geom. Phys. 24 (1998), no. 3, 203-208. · Zbl 0901.58022 · doi:10.1016/S0393-0440(97)00010-7

[33] G. Misiołek, Classical solutions of the periodic Camassa-Holm equation, Geom. Funct. Anal. 12 (2002), no. 5, 1080-1104. · Zbl 1158.37311 · doi:10.1007/PL00012648

[34] Hideki Omori, On the group of diffeomorphisms on a compact manifold, Global Analysis (Proc. Sympos. Pure Math., Vol. XV, Berkeley, Calif., 1968), Amer. Math. Soc., Providence, R.I., 1970, pp. 167-183.

[35] Hideki Omori, Infinite-dimensional Lie groups, Translations of Mathematical Monographs, vol. 158, American Mathematical Society, Providence, RI, 1997. Translated from the 1979 Japanese original and revised by the author. · Zbl 0871.58007

[36] Richard S. Palais, Foundations of global non-linear analysis, W. A. Benjamin, Inc., New York-Amsterdam, 1968. · Zbl 0164.1102

[37] R. Palais: Seminar on the Atiyah-Singer index theorem, Princeton, 1965 · Zbl 0137.17002

[38] Vyacheslav S. Rychkov, On restrictions and extensions of the Besov and Triebel-Lizorkin spaces with respect to Lipschitz domains, J. London Math. Soc. (2) 60 (1999), no. 1, 237-257. · Zbl 0940.46017 · doi:10.1112/S0024610799007723

[39] Michael E. Taylor, Tools for PDE, Mathematical Surveys and Monographs, vol. 81, American Mathematical Society, Providence, RI, 2000. Pseudodifferential operators, paradifferential operators, and layer potentials. · Zbl 0963.35211

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.