Abstract

In this paper, some tensor commutation matrices are expressed in terms of the generalized Pauli matrices by tensor products of the Pauli matrices.

1 Introduction

The tensor product of matrices is not commutative in general. However, a tensor commutation matrix (TCM) $n \otimes p$, $S_{n \otimes p}$ commutes the tensor product $A \otimes B$ for any $A \in \mathbb{C}^{n \times n}$ and $B \in \mathbb{C}^{p \times p}$ as the following

$$S_{n \otimes p}(A \otimes B) = (B \otimes A)S_{n \otimes p}$$

The tensor commutation matrices (TCMs) are useful in quantum theory and for solving matrix equations. In quantum theory $S_{2 \otimes 2}$ can be expressed in the following way (Cf. for example[1, 2, 3])

$$S_{2 \otimes 2} = \frac{1}{2}I_2 \otimes I_2 + \frac{1}{2} \sum_{i=1}^{3} \sigma_i \otimes \sigma_i \quad (1)$$

where $\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $\sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$ and $\sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ are the Pauli matrices, I_2 is the 2×2 unit-matrix.
\[S_{2 \otimes 2} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \]

\[S_{3 \otimes 3} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix} \]

The Gell-Mann matrices are a generalization of the Pauli matrices. The TCM \(n \otimes n \) can be expressed in terms of \(n \times n \) Gell-Mann matrices, under the following expression \[4\]

\[S_{n \otimes n} = \frac{1}{n} I_n \otimes I_n + \frac{1}{2} \sum_{i=1}^{n^2-1} \Lambda_i \otimes \Lambda_i \] (2)

This expression of \(S_{n \otimes n} \) suggests us the topic of generalizing the formula \[1\] to an expression in terms of some generalized Pauli matrices. For the calculus, we have used SCILAB a mathematical software for numerical analysis.

2 SOME GENERALIZATIONS OF THE PAULI MATRICES

In this section we give some generalizations of the Pauli matrices other than the Gell-Mann matrices

2.1 KIBLER MATRICES

The Kibler matrices are

\[k_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad k_2 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, \quad k_3 = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, \quad k_4 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & q & 0 \\ 0 & 0 & q^2 \end{pmatrix}, \quad k_5 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & q^2 & 0 \\ 0 & 0 & q \end{pmatrix}, \quad k_6 = \begin{pmatrix} 0 & q & 0 \\ 0 & 0 & q^2 \\ 1 & 0 & 0 \end{pmatrix}. \]
\[k_7 = \begin{pmatrix} 0 & 0 & q \\ 1 & 0 & 0 \\ 0 & q^2 & 0 \end{pmatrix}, \quad k_8 = \begin{pmatrix} 0 & 0 & q^2 \\ 1 & 0 & 0 \\ 0 & q & 0 \end{pmatrix}, \quad k_9 = \begin{pmatrix} 0 & q^2 & 0 \\ 0 & 0 & q \\ 1 & 0 & 0 \end{pmatrix}, \] are the 3 \times 3 Kibler matrices \[5\].

The Kibler matrices are traceless and
\[
\frac{1}{3}I_3 \otimes I_3 + \frac{1}{3} \sum_{i=1}^{8} k_i \otimes k_i = P
\] (3)

with
\[
P = \begin{pmatrix}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{pmatrix}
\]
a permutation matrix.

2.2 THE NONIONS

The nonions matrices are \[6\]
\[
q_0 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad q_1 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, \quad q_2 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & j \\ j^2 & 0 & 0 \end{pmatrix},
\]
\[
q_3 = \begin{pmatrix} 0 & 0 & j^2 \\ 0 & j & 0 \\ j & 0 & 0 \end{pmatrix}, \quad q_4 = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \quad q_5 = \begin{pmatrix} 0 & 0 & j \\ j & 0 & 0 \\ 0 & j^2 & 0 \end{pmatrix},
\]
\[
q_6 = \begin{pmatrix} j & 0 & 0 \\ 0 & j & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad q_7 = \begin{pmatrix} j & 0 & 0 \\ 0 & j^2 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad q_8 = \begin{pmatrix} j^2 & 0 & 0 \\ 0 & j & 0 \\ 0 & 0 & 1 \end{pmatrix}
\]
The nonions are traceless and
\[
\frac{1}{3}I_3 \otimes I_3 + \frac{1}{3} \sum_{i=1}^{8} q_i \otimes q_i = P
\] (4)

2.3 GENERALIZATION BY TENSOR PRODUCTS OF PAULI MATRICES

There are also some generalizations of the Pauli matrices constructed by tensor products of the Pauli matrices, namely. \((\sigma_i \otimes \sigma_j)_{0 \leq i,j \leq 3}, (\sigma_i \otimes \sigma_j \otimes \sigma_k)_{0 \leq i,j,k \leq 3}, (\sigma_i \otimes \sigma_i \otimes \ldots \otimes \sigma_i)_{0 \leq i, i_2, \ldots, i_n \leq 3}\) (Cf. for example, \[7, 8\]). The elements of the set \((\sigma_i \otimes \sigma_i \otimes \ldots \otimes \sigma_i)_{0 \leq i, i_2, \ldots, i_n \leq 3}\) satisfy the following properties (Cf. for example, \[7, 8\])
\[
\Sigma_j^+ = \Sigma_j \text{ (hermitian)}
\] (5)
\[\Sigma_j^2 = I_{2^n} \text{ (Square root of unity)} \] \hfill (6)

\[\text{Tr} \Sigma_j^+ \Sigma_k = 2^n \delta_{ij} \text{ (Orthogonal)} \] \hfill (7)

3 EXPRESSING A TENSOR COMMUTATION MATRIX IN TERMS OF THE GENERALIZED PAULI MATRICES

Definition 1 For \(n \in \mathbb{N}^*, n \geq 2 \), we call tensor commutation matrix \(n \otimes n \) the permutation matrix \(S_{n \otimes n} \) such that

\[S_{n \otimes n}(a \otimes b) = b \otimes a \]

for any \(a, b \in \mathbb{C}^{n \times 1} \).

The relations (1), (2), (3) and (4) suggest us that there should be a generalization of the Pauli matrices \((s_i)_{0 \leq i \leq 2^n - 1} \) such that

\[S_{n \otimes n} = \frac{1}{n} I_n \otimes I_n + \frac{1}{n} \sum_{i=1}^{n^2-1} s_i \otimes s_i \] \hfill (8)

We would like to look for matrices \((s_i)_{0 \leq i \leq 8} \) which satisfy the relation (8). The TCMs \(S_{4 \otimes 4}, S_{8 \otimes 8} \) can be expressed respectively in terms of the generalized Pauli matrices \((\sigma_i \otimes \sigma_j)_{0 \leq i,j \leq 3}, (\sigma_i \otimes \sigma_j \otimes \sigma_k)_{0 \leq i,j,k \leq 3} \) in the following way.

\[S_{4 \otimes 4} = \frac{1}{4} I_4 \otimes I_4 + \frac{1}{4} \sum_{i=1}^{15} s_i \otimes s_i \]

where \(s_1 = \sigma_0 \otimes \sigma_1, s_2 = \sigma_0 \otimes \sigma_2, \ldots, s_{13} = \sigma_3 \otimes \sigma_1, s_{14} = \sigma_3 \otimes \sigma_2, s_{15} = \sigma_3 \otimes \sigma_3 \).

\[S_{8 \otimes 8} = \frac{1}{8} I_8 \otimes I_8 + \frac{1}{8} \sum_{i=1}^{63} S_i \otimes S_i \]

where \(S_1 = \sigma_0 \otimes \sigma_0 \otimes \sigma_1, \ldots, S_{63} = \sigma_3 \otimes \sigma_3 \otimes \sigma_3 \). That is to say, this generalization by the tensor products of the Pauli matrices satisfy the relation (8). So we think that (8) should be true for \(n = 2^p, p \in \mathbb{N}, p \geq 2 \). For proving it, we give the following lemma which is the generalization of a proposition in [9].

Lemma 2 If \(\sum_{j=1}^m M_j \otimes N_j = \sum_{i=1}^n A_i \otimes B_i \) then

\[\sum_{j=1}^m M_j \otimes K \otimes N_j = \sum_{i=1}^n A_i \otimes K \otimes B_i \]
Proof. Let $K = (K_{j1}^{j2}) \in \mathbb{C}^{q \times s}$, $M_j = M_{(j)k_2}^{k_1} \in \mathbb{C}^{p \times r}$, $A_i = A_{(i)k_2}^{k_1} \in \mathbb{C}^{p \times r}$, $N_j = N_{(j)l_2}^{l_1} \in \mathbb{C}^{t \times u}$ and $B_j = B_{(j)l_2}^{l_1} \in \mathbb{C}^{t \times u}$.

$$
\sum_{j=1}^{m} M_{(j)k_2}^{k_1} N_{(j)l_2}^{l_1} = \sum_{i=1}^{n} A_{(i)k_2}^{k_1} B_{(j)l_2}^{l_1}
$$

$K_{j2}^{j1} \sum_{j=1}^{m} M_{(j)k_2}^{k_1} N_{(j)l_2}^{l_1} = K_{j2}^{j1} \sum_{i=1}^{n} A_{(i)k_2}^{k_1} B_{(j)l_2}^{l_1}$

$K_{j2}^{j1} \sum_{j=1}^{m} M_{(j)k_2}^{k_1} N_{(j)l_2}^{l_1} = \sum_{i=1}^{n} A_{(i)k_2}^{k_1} K_{j2}^{j1} B_{(j)l_2}^{l_1}$

$\sum_{j=1}^{m} M_{(j)k_2}^{k_1} N_{(j)l_2}^{l_1} = \sum_{i=1}^{n} A_{(i)k_2}^{k_1} K_{j2}^{j1} B_{(j)l_2}^{l_1}$

are respectively the elements of the k_1j1l_1 row and k_2j2l_2 column.

That is true for any $k_1, j_1, k_2, j_2, l_1, l_2$. Hence, $\sum_{j=1}^{m} M_j \otimes K \otimes N_j = \sum_{i=1}^{n} A_i \otimes K \otimes B_i$. ■

Proposition 3 For any $n \in N^*, n \geq 2$,

$$
S_{2^n \otimes 2^n} = \frac{1}{2^n} \sum_{i_1, i_2, \ldots, i_n=0}^{3} (\sigma_{i_1} \otimes \sigma_{i_2} \otimes \cdots \otimes \sigma_{i_n}) \otimes (\sigma_{i_1} \otimes \sigma_{i_2} \otimes \cdots \otimes \sigma_{i_n})
$$

Proof. Let us proof it by recurrence. According to the relation (1). The proposition is true for $n = 1$. Suppose that is true for any $n \in N^*, n \geq 2$.

Let us take $e_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $e_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$, which form a basis of the \mathbb{C}-vector space $\mathbb{C}^{2 \times 1}$. It suffice us to prove

$$
\frac{1}{2^n+1} \sum_{j_1, j_2, \ldots, j_{n+1}=0}^{3} (\sigma_{j_1} \otimes \cdots \otimes \sigma_{j_{n+1}}) \otimes (\sigma_{j_1} \otimes \cdots \otimes \sigma_{j_{n+1}}) (e_{\alpha_1} \otimes \cdots \otimes e_{\alpha_{n+1}}) \otimes (e_{\beta_1} \otimes \cdots \otimes e_{\beta_{n+1}}) = (e_{\beta_1} \otimes \cdots \otimes e_{\beta_n}) \otimes (e_{\alpha_1} \otimes \cdots \otimes e_{\alpha_n})
$$

that is

$$
\frac{1}{2^n} \sum_{j_1, j_2, \ldots, j_{n}=0}^{3} (\sigma_{j_1} \otimes \cdots \otimes \sigma_{j_n}) \otimes (\sigma_{j_1} \otimes \cdots \otimes \sigma_{j_n}) (e_{\alpha_1} \otimes \cdots \otimes e_{\alpha_n}) \otimes (e_{\beta_1} \otimes \cdots \otimes e_{\beta_n}) = (e_{\beta_1} \otimes \cdots \otimes e_{\beta_n}) \otimes (e_{\alpha_1} \otimes \cdots \otimes e_{\alpha_n})
$$

that is
According to the lemma above

\[
\frac{1}{2^n} \frac{1}{2} \sum_{j_1,j_2,...,j_n,j_{n+1}=0}^{3} \left[(\sigma_{j_1} e_{\alpha_1}) \otimes \cdots \otimes (\sigma_{j_{n+1}} e_{\alpha_{n+1}}) \right] \otimes \left[(\sigma_{j_1} e_{\beta_1}) \otimes \cdots \otimes (\sigma_{j_{n+1}} e_{\beta_{n+1}}) \right]
\]

\[
= \frac{1}{2} \sum_{j_{n+1}=0}^{3} (e_{\beta_1} \otimes \cdots \otimes e_{\beta_n}) \otimes (\sigma_{j_{n+1}} e_{\alpha_{n+1}}) \otimes (e_{\alpha_1} \otimes \cdots \otimes e_{\alpha_n}) \otimes (\sigma_{j_{n+1}} e_{\beta_{n+1}})
\]

from the relation (1)

\[
S_{2^\otimes 2}(\alpha_{n+1} \otimes \beta_{n+1}) = \frac{1}{2} \sum_{j_{n+1}=0}^{3} (\sigma_{j_{n+1}} e_{\alpha_{n+1}}) \otimes (\sigma_{j_{n+1}} e_{\beta_{n+1}}) = e_{\beta_{n+1}} \otimes e_{\alpha_{n+1}}
\]

According again to the lemma above

\[
\frac{1}{2} \sum_{j_{n+1}=0}^{3} (e_{\beta_1} \otimes \cdots \otimes e_{\beta_n}) \otimes (\sigma_{j_{n+1}} e_{\alpha_{n+1}}) \otimes (e_{\alpha_1} \otimes \cdots \otimes e_{\alpha_n}) \otimes (\sigma_{j_{n+1}} e_{\beta_{n+1}})
\]

\[
= (e_{\beta_1} \otimes \cdots \otimes e_{\beta_n} \otimes e_{\beta_{n+1}}) \otimes (e_{\alpha_1} \otimes \cdots \otimes e_{\alpha_n} \otimes e_{\alpha_{n+1}})
\]

\[\blacksquare\]

Conclusion and discussion

We have calculated the left hand side of the relations (3) and (4), respectively for the 3×3 Pauli matrices of Kibler and the nonions in expecting to have the formula (8), for $n = 3$. Instead of $S_{3^\otimes 3}$ we have the permutation matrix P as result. However, that makes us to think that there should be other 3×3 Pauli matrices which would satisfy the relation (8). These 3×3 Pauli matrices should not be the normalized Gell-Mann matrices in [10], because the 4×4 matrices which satisfy the relation (8) above are not the 4×4 normalized Gell-Mann matrices in [10], even though these normalized Gell-Mann matrices satisfy (8). The relation (8) is satisfied by the generalized Pauli matrices by tensor products of the Pauli matrices, but only for $n = 2^k$.

However, there is no 3×3 matrix, formed by zeros in the diagonal which satisfy both the relations (5) and (6). Thus, the 3×3 Pauli matrices which should satisfy (8), if there exist, do not satisfy both the relations (5), (6) and (7) like the generalized Pauli matrices by tensor products of the Pauli matrices.

References

[1] Faddev L.D., *Algebraic Aspects of the Bethe Ansatz*, Int.J.Mod.Phys.A, 10, No 13, May, 1848(1995).
[2] Verstraete F., *A Study of Entanglement in Quantum Information Theory*, Thèse de Doctorat, Katholieke Universiteit Leuven, 90-93(2002).

[3] Fujii K.: *Introduction to Coherent States and Quantum Information Theory*, arXiv: quant-ph/0112090, prepared for 10th Numazu Meeting on Integral System, Noncommutative Geometry and Quantum theory, Numazu, Shizuoka, Japan, 7-9 Mai 2002(2002).

[4] Rakotonirina C., *Expression of a Tensor Commutation Matrix in Terms of the Generalized Gell-Mann Matrices*, International Journal of Mathematics and Mathematical Sciences, Volume 2007, Article ID 20672

[5] Kibler M.R., *An angular momentum approach to quadratic Fourier transform, Hadamard matrices, Gauss sums, mutually unbiased bases, the unitary group and the Pauli group*, J. Phys. A: Math. Theor. 42 353001 (28pp) (2009).

[6] Volkov G., *Ternary Quaternions and Ternary TU(3) algebra*, arXiv: 1006.5627v1 (2010).

[7] Rigetti C., Mosseri R. and Devoret M., *Geometric Approach to Digital Quantum Information*, Quantum Information Processing, Vol. 3, No. 6, December 2004 (2004)

[8] Saniga M., Planat M. and Pracna P., *Projective Ring Line Encompassing Two-Qubits*, hal-00111733, version 5 - 28 Dec 2006, (2006).

[9] Rakotonirina C., Hanitriarivo Rakotoson, *Expressing a Tensor Permutation Matrix \(p \otimes n \) in Terms of the Generalized Gell-Mann Matrices*, HEP-MAD-2007-317, http://www.slac.stanford.edu/econf/C0709107/pdf/317.pdf (2007)

[10] Gil J.I.and San José I., *Invariant indices of polarimetric purity Generalized indices of purity for \(n \otimes n \) covariance matrices*, Opt. Commun. 284 (2011) 38.