SOME GENERALIZATIONS OF HERMITE-HADAMARD TYPE INTEGRAL INEQUALITIES AND THEIR APPLICATIONS

MUHAMMAD MUDDASSAR AND MUHAMMAD IQBAL BHATTI

ABSTRACT. In this paper, we establish various inequalities for some differentiable mappings that are linked with the illustrious Hermite- Hadamard integral inequality for mappings whose derivatives are \((h - (\alpha, m))\)-convex. The generalized integral inequalities contribute some better estimates than some already presented. The inequalities are then applied to numerical integration and some special means.

1. INTRODUCTION

Let \(f : I \subset \mathbb{R} \rightarrow \mathbb{R} \) be a function defined on the interval \(I \) of real numbers. Then \(f \) is called convex if

\[
 f(tx + (1-t)y) \leq tf(x) + (1-t)f(y)
\]

for all \(x, y \in I \) and \(t \in [0,1] \). Geometrically, this means that if \(P, Q \) and \(R \) are three distinct points on graph of \(f \) with \(Q \) between \(P \) and \(R \), then \(Q \) is on or below chord \(PR \). There are many results associated with convex functions in the area of inequalities, but one of those is the classical Hermite Hadamard inequality:

\[
 f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_a^b f(x)dx \leq \frac{f(a) + f(b)}{2} \tag{1.1}
\]

for \(a, b \in I \), with \(a < b \).

In [5], H. Hudzik and L. Maligranda considered, among others, the class of functions which are \(s \)-convex in the first and second sense. This class is defined as follows:

Definition 1. A function \(f : [0, \infty) \rightarrow \mathbb{R} \) is said to be \(s \)-convex or \(f \) belongs to the class \(K_s^1 \) if

\[
 f(\mu x + \nu y) \leq \mu^s f(x) + \nu^s f(y) \tag{1.2}
\]

holds for all \(x, y \in [0, \infty) \), \(\mu, \nu \in [0,1] \) and for some fixed \(s \in (0,1] \).
Note that, if $\mu^s + \nu^s = 1$, the above class of convex functions is called s-convex functions in first sense and represented by K_1^s and if $\mu + \nu = 1$ the above class is called s-convex in second sense and represented by K_2^s.

It may be noted that every 1-convex function is convex. In the same paper [5] H. Hudzik and L. Maligranda discussed a few results connecting with $s-$convex functions in second sense and some new results about Hadamard’s inequality for $s-$convex functions are discussed in [4], while on the other hand there are many important inequalities connecting with 1-convex (convex) functions [4], but one of these is (1.1).

In [9], V.G. Miheşan presented the class of (α, m)-convex functions as reproduced below:

Definition 2. The function $f : [0, b] \rightarrow \mathbb{R}$ is said to be (α, m)-convex, where $(\alpha, m) \in [0, 1]^2$, if for every $x, y \in [0, b]$ and $t \in [0, 1]$ we have

$$f(tx + m(1-t)y) \leq t^\alpha f(x) + m(1-t^\alpha)f(y)$$

Note that for $(\alpha, m) \in \{(0, 0), (\alpha, 0), (1, 0), (1, m), (1, 1), (\alpha, 1)\}$ one receives the following classes of functions respectively: increasing, α-starshaped, starshaped, m-convex, convex and α-convex.

Denote by $K_{m}^\alpha(b)$ the set of all (α, m)-convex functions on $[0, b]$ with $f(0) \leq 0$. For recent results and generalizations referring m-convex and (α, m)-convex functions see [1], [2] and [16].

M. Muddassar et. al., define a new class of convex functions in [12] named as $s-(\alpha, m)$-convex functions as reproduced below

Definition 3. A function $f : [0, \infty) \rightarrow [0, \infty)$ is said to be $s-(\alpha, m)$-convex function in first sense or f belongs to the class $K_{m,1}^{\alpha,s}$, if for all $x, y \in [0, \infty)$ and $\mu \in [0, 1]$, the following inequality holds:

$$f(\mu x + (1-\mu)y) \leq (\mu^\alpha)^s f(x) + m(1-\mu^\alpha)^s f\left(\frac{y}{m}\right)$$

where $(\alpha, m) \in [0, 1]^2$ and for some fixed $s \in (0, 1]$.

Definition 4. A function $f : [0, \infty) \rightarrow [0, \infty)$ is said to be $s-(\alpha, m)$-convex function in second sense or f belongs to the class $K_{m,2}^{\alpha,s}$, if for all $x, y \in [0, \infty)$ and $\mu, \nu \in [0, 1]$, the following inequality holds:

$$f(\mu x + (1-\mu)y) \leq (\mu^\alpha)^s f(x) + m(1-\mu^\alpha)^s f\left(\frac{y}{m}\right)$$

where $(\alpha, m) \in [0, 1]^2$ and for some fixed $s \in (0, 1]$.
Note that for \(s = 1 \), we get \(K_{\alpha}^s(I) \) class of convex functions and for \(\alpha = 1 \) and \(m = 1 \), we get \(K_{\alpha}^1(I) \) and \(K_{\alpha}^2(I) \) class of convex functions.

In [13], S. Varošanec define the following class of convex functions as reproduced below:

Definition 5. Let \(h : \mathcal{J} \subseteq \mathbb{R} \rightarrow \mathbb{R} \) be a non-negative function, \(h \neq 0 \). We say that \(f : I \subseteq \mathbb{R} \rightarrow \mathbb{R} \) is an \(h \)-convex function (or that \(f \) belongs to the class \(SX(h, I) \)) if \(f \) is non-negative and for all \(x, y \in I \), \(\mu, \nu \in (0, 1) \) and \(\mu + \nu = 1 \), we have

\[
 f(\mu x + \nu y) \leq h(\mu)f(x) + h(\nu)f(y)
\]

if the above inequality is reversed, then \(f \) is said to be \(h \)-concave (or \(f \in SV(h, I) \)).

Evidently, if \(h(\mu) = \mu \), then all non-negative convex functions belong to \(SX(h, I) \) and all non-negative concave functions belong to \(SV(h, I) \); if \(h(\mu) = \frac{1}{\mu} \), then \(SX(h, I) = Q(I) \); if \(h(\mu) = 1 \), then \(P(I) \subseteq SX(h, I) \); and if \(h(\mu) = \mu^s \), where \(s \in (0, 1] \), then \(K_s^2 \subseteq SX(h, I) \). In [14], M. E. Özdemir et. al., define a new class of convex functions as below:

Definition 6. Let \(h : \mathcal{J} \subseteq \mathbb{R} \rightarrow \mathbb{R} \) be a non-negative function, \(h \neq 0 \). We say that \(f : I \subseteq \mathbb{R} \rightarrow \mathbb{R} \) is an \((h - (\alpha, m)) \)-convex function (or that \(f \) belongs to the class \(SX((h(\alpha, m)), I) \)) if \(f \) is non-negative and for all \(x, y \in I \) and \(\lambda \in (0, 1) \) for \((\alpha, m) \in [0, 1]^2 \), we have

\[
 f(\lambda x + m(1 - \lambda)y) \leq h^\alpha(\lambda)f(x) + m(1 - h^\alpha(\lambda))f(y)
\]

if the above inequality is reversed, then \(f \) is said to be \((h - (\alpha, m), I) \)-concave, i.e., \(f \in SV(h - (\alpha, m), I) \).

Evidently, if \(h(\lambda) = \lambda \), then all non-negative convex functions belong to \(K_{\alpha}^o(I) \). In [4] S. S. Dragomir et al. discussed inequalities for differentiable and twice differentiable functions connecting with the H-H Inequality on the basis of the following Lemmas.

Lemma 1. Let \(f : I \subseteq \mathbb{R} \rightarrow \mathbb{R} \) be differentiable function on \(I^o \) (interior of \(I \)), \(a, b \in I \) with \(a < b \). If \(f' \in L^1([a, b]) \), then we have

\[
 f\left(\frac{a + b}{2}\right) - \frac{1}{b - a} \int_a^b f(x)dx = \frac{(b - a)}{4} \int_0^1 (1 - t) \left[f'(ta + (1 - t)\frac{a + b}{2}) - f'(tb + (1 - t)\frac{a + b}{2}) \right] dt \quad (1.3)
\]

In [4], Dragomir and Agarwal established the following results connected with the right part of (1.3) as well as to apply them for some elementary inequalities for real numbers and numerical integration.
Lemma 2. Let \(f : I^o \subseteq \mathbb{R} \rightarrow \mathbb{R} \) be differentiable function on \(I^o \), \(a, b \in I \) with \(a < b \). If \(f' \in L^1[a, b] \), then

\[
\frac{f(a) + f(b)}{2} - \frac{1}{b-a} \int_a^b f(x) dx = \frac{(b-a)^2}{2} \int_0^1 t(1-t)f''(ta + (1-t)b)dt \quad (1.4)
\]

Here we give definition of Beta function of Euler type which will be helpful in our next discussion, which is for \(x, y > 0 \) defined as

\[
\beta(x, y) = \frac{\Gamma(x) \Gamma(y)}{\Gamma(x+y)} = \int_0^1 t^{x-1} (1-t)^{y-1} dt
\]

This paper is in the direction of the results discussed in [6] but here we use \(h - (\alpha, m) \)-convex functions instead of \(s \)-convex function. After this introduction, in section 2 we found some new integral inequalities of the type of Hermite Hadamard’s for generalized convex functions. In section 3, we give some new applications of the results from section 2 for some special means. The inequalities are then applied to numerical integration in section 4.

2. MAIN RESULTS

The following theorems were obtained by using the \(h - (\alpha, m) \)-convex function.

Theorem 1. Let \(f : I^o \subseteq \mathbb{R} \rightarrow \mathbb{R} \) be a differentiable function on \(I^o \) (interior of \(I \)), \(a, b \in I \) with \(a < b \). If \(f' \in L^1[a, b] \), if the mapping \(|f'| \) is \(h - (\alpha, m) \)-convex on \([a, b] \), then

\[
\left| f\left(\frac{a+b}{2}\right) - \frac{1}{b-a} \int_a^b f(x) dx \right| \leq \frac{(b-a)^2}{4} \left\{ \left| f'(a) \right| + \left| f'(b) \right| + 2m \left| f'\left(\frac{a+b}{2m}\right) \right| \right\} \int_0^1 (1-t)h^\alpha(t)dt + \frac{m}{2} \left| f'\left(\frac{a+b}{2m}\right) \right| \quad (2.5)
\]

Proof. Taking modulus on both sides of lemma[1] we get

\[
\left| f\left(\frac{a+b}{2}\right) - \frac{1}{b-a} \int_a^b f(x) dx \right| \leq \frac{b-a}{4} \left\{ \int_0^1 |1-t| \left| f'\left(\frac{ta + (1-t)\frac{a+b}{2}}{2}\right) \right| dt - f'\left(\frac{tb + (1-t)\frac{a+b}{2}}{2}\right) \right\} \int_0^1 (1-t)h^\alpha(t)dt + \frac{1}{2} \left| f'\left(\frac{a+b}{2m}\right) \right| \int_0^1 (1-t)h^\alpha(t)dt \quad (2.6)
\]

Since the mapping \(|f'| \) is \(h - (\alpha, m) \) convex on \([a, b] \), then

\[
|f'(tx + (1-t)y)| \leq h^\alpha(t) \left| f'(x) \right| + m(1-h^\alpha(t)) \left| f'\left(\frac{y}{m}\right) \right|
\]
Inequation (2.6) becomes
\[
\left| f\left(\frac{a+b}{2}\right) - \frac{1}{b-a} \int_a^b f(x) \, dx \right| \leq \frac{b-a}{4} \left[\int_0^1 (1-t) \left\{ |f'(a)| h^\alpha(t) + m |f'\left(\frac{a+b}{2m}\right)| (1-h^\alpha(t)) \right\} dt \right] (2.7)
\]
which completes the proof.

Theorem 2. Let \(f : I^o \subseteq \mathbb{R} \rightarrow \mathbb{R} \) be a differentiable function on \(I^o \) (interior of \(I \)), \(a, b \in I \) with \(a < b \). If \(f' \in L^1[a, b] \). If the mapping \(|f'|^q \) is \((h - (\alpha, m))\)-convex on \([a, b]\), then
\[
\left| f\left(\frac{a+b}{2}\right) - \frac{1}{b-a} \int_a^b f(x) \, dx \right| \leq \frac{b-a}{4(p+1)^\frac{q}{p}} \left[\left\{ \left(|f'(a)|^q - m |f'\left(\frac{a+b}{2m}\right)|^q \right) \right\} \times \right.
\]
\[
\int_0^1 h^\alpha(t) dt + m \left| f'\left(\frac{a+b}{2m}\right)\right|^q \right\} \times \int_0^1 h^\alpha(t) dt + m \left| f'\left(\frac{a+b}{2m}\right)\right|^q \right\} \right] (2.8)
\]
Proof. By applying the H"older’s Integral Inequality on the first integral in the right of (2.6), we get
\[
\int_0^1 (1-t) \left| f'\left(\frac{a+b}{2m}\right) \right| dt \leq \left(\int_0^1 (1-t)^p \, dt \right)^\frac{1}{p} \left(\int_0^1 \left| f'\left(\frac{a+b}{2m}\right)\right|^q \right)^\frac{1}{q} \left(\int_0^1 (1-h^\alpha(t)) \, dt \right)^\frac{1}{q} \quad (2.9)
\]
Here
\[
\int_0^1 (1-t)^p \, dt = \frac{1}{p+1} \quad (2.10)
\]
and
\[
\int_0^1 \left| f'\left(\frac{a+b}{2m}\right)\right|^q \, dt = \left| f'(a)\right|^q \int_0^1 h^\alpha(t) \, dt
\]
\[
+ m \left| f'\left(\frac{a+b}{2m}\right)\right|^q \left(\int_0^1 (1-h^\alpha(t)) \, dt \right) \quad (2.11)
\]
Using the inequalities (2.10) and (2.11), the inequality (2.9) turns to
\[
\int_0^1 (1-t) \left| f'\left(\frac{a+b}{2m}\right) \right| dt \leq \left(\frac{1}{p+1} \right)^\frac{1}{p} \times \left| f'(a)\right|^q \int_0^1 h^\alpha(t) \, dt + m \left| f'\left(\frac{a+b}{2m}\right)\right|^q \left(\int_0^1 (1-h^\alpha(t)) \, dt \right) \quad (2.12)
\]
Proof. which completes the proof.

By applying the Hölder’s Integral Inequality on the first integral in the right of (2.16), we get

\[
\int_0^1 (1-t) \left| f' \left(ta + (1-t) \frac{a+b}{2} \right) \right| dt \leq \left(\int_0^1 (1-t) dt \right)^\frac{1}{p} \left(\int_0^1 (1-t) \left| f' \left(ta + (1-t) \frac{a+b}{2} \right) \right|^q dt \right)^\frac{1}{q} \\
= \left(\frac{1}{2} \right)^\frac{1}{p} \left(\int_0^1 (1-t) \left[\left| f'(a) \right|^q - m \left| f' \left(\frac{a+b}{2m} \right) \right|^q \right) h^\alpha(t) dt + m \left| f' \left(\frac{a+b}{2m} \right) \right|^q \right)^\frac{1}{q} \\
= \left(\frac{1}{2} \right)^\frac{1}{p} \left(\left\{ \left| f'(a) \right|^q - m \left| f' \left(\frac{a+b}{2m} \right) \right|^q \right\} \int_0^1 (1-t) h^\alpha(t) dt + m \left| f' \left(\frac{a+b}{2m} \right) \right|^q \right)^\frac{1}{q}
\]

(2.17)
Corollary 2. Let \(f : I^o \subseteq \mathbb{R} \to \mathbb{R} \) be a differentiable function on \(I^o \) (interior of \(I \)), \(a, b \in I \) with \(a < b \). If \(f' \in L^1[a, b] \). If the mapping \(|f'|^q\) is \((h - (\alpha, m))\)-convex on \([a, b]\), then
\[
\int_0^1 (1 - t) \left[f \left(\frac{a + b}{2} \right) - \frac{1}{b - a} \int_a^b f(x) \, dx \right] \, dt \leq \left(\frac{1}{2} \right)^{\frac{1}{q}} \left\{ \int f'(b) \left| f'(a) \right| - m \left| f' \left(\frac{a + b}{2m} \right) \right|^q \right\}^{\frac{1}{q}} \left\{ \int_0^1 (1 - t) h^\alpha(t) \, dt + \frac{m}{2} \left| f' \left(\frac{a + b}{2m} \right) \right|^q \right\}^{\frac{1}{q}} \tag{2.17}
\]
which completes the proof.

Variants of these results for twice differentiable functions are given below. These can be proved in a similar way based on Lemma[2]

Corollary 3. Let \(f : I^o \subseteq \mathbb{R} \to \mathbb{R} \) be a differentiable function on \(I^o \) (interior of \(I \)), \(a, b \in I \) with \(a < b \). If \(f' \in L^1[a, b] \). If the mapping \(|f''|^q\) is \((h - (\alpha, m), \beta)\)-convex on \([a, b]\), then
\[
\int_0^1 (1 - t) \left[f \left(\frac{a + b}{2} \right) - \frac{1}{b - a} \int_a^b f(x) \, dx \right] \, dt \leq \left(\frac{1}{2} \right)^{\frac{1}{q}} \left\{ \int f''(b) \left| f''(a) \right| - m \left| f'' \left(\frac{b}{m} \right) \right|^q \right\}^{\frac{1}{q}} \left\{ \int_0^1 (1 - t) h^\alpha(t) \, dt + \frac{m}{6} \left| f'' \left(\frac{b}{m} \right) \right|^q \right\}^{\frac{1}{q}} \tag{2.19}
\]

Theorem 4. Let \(f : I^o \subseteq \mathbb{R} \to \mathbb{R} \) be a differentiable function on \(I^o \) (interior of \(I \)), \(a, b \in I \) with \(a < b \). If \(f' \in L^1[a, b] \). If the mapping \(|f'|^q\) is \((h - (\alpha, m))\)-convex on \([a, b]\), then
\[
\int_0^1 (1 - t) \left[f \left(\frac{a + b}{2} \right) - \frac{1}{b - a} \int_a^b f(x) \, dx \right] \, dt \leq \left(\frac{1}{2} \right)^{\frac{1}{q}} \left\{ \int f''(b) \left| f''(a) \right| - m \left| f'' \left(\frac{b}{m} \right) \right|^q \right\}^{\frac{1}{q}} \left\{ \int_0^1 (1 - t) \beta^\frac{1}{q}(p + 1, p + 1) \left| f''(a) \right|^q - m \times \beta^\frac{1}{q}(p + 1, p + 1) \left| f'' \left(\frac{b}{m} \right) \right|^q \right\}^{\frac{1}{q}} \tag{2.20}
\]

Theorem 5. Let \(f : I^o \subseteq \mathbb{R} \to \mathbb{R} \) be a differentiable function on \(I^o \) (interior of \(I \)), \(a, b \in I \) with \(a < b \). If \(f' \in L^1[a, b] \). If the mapping \(|f'|^q\) is \((h - (\alpha, m))\)-convex on \([a, b]\), then
\[
\int_0^1 (1 - t) \left[f \left(\frac{a + b}{2} \right) - \frac{1}{b - a} \int_a^b f(x) \, dx \right] \, dt \leq \left(\frac{1}{2} \right)^{\frac{1}{q}} \left\{ \int f''(b) \left| f''(a) \right| - m \times \beta^\frac{1}{q}(p + 1, p + 1) \left| f'' \left(\frac{b}{m} \right) \right|^q \right\}^{\frac{1}{q}} \left\{ \int_0^1 (1 - t) \beta^\frac{1}{q}(p + 1, p + 1) \left| f''(a) \right|^q - m \times \beta^\frac{1}{q}(p + 1, p + 1) \left| f'' \left(\frac{b}{m} \right) \right|^q \right\}^{\frac{1}{q}} \tag{2.21}
\]
Theorem 6. Let \(f : I^o \subseteq \mathbb{R} \rightarrow \mathbb{R} \) be a differentiable function on \(I^o \) (interior of \(I \)), \(a, b \in I \) with \(a < b \). If \(f' \in L^1[a, b] \). If the mapping \(|f''|^q \) is \((h-(\alpha, m))\)-convex on \([a, b]\), then
\[
\left| \frac{f(a) + f(b)}{2} - \frac{1}{b-a} \int_a^b f(x) \, dx \right| \leq \frac{(b-a)\ell}{2.67} \left\{ \left(|f''(a)|^q - m \left| f'' \left(\frac{b}{m} \right) \right|^q \right) \right\}^{\frac{1}{q}} \int_0^1 t(1-t)h^\alpha(t)dt + \frac{m}{6} \left| f'' \left(\frac{b}{m} \right) \right|^q \right\}^{\frac{1}{q}} (2.22)
\]

Corollary 4. Let \(f : I^o \subseteq \mathbb{R} \rightarrow \mathbb{R} \) be a differentiable function on \(I^o \) (interior of \(I \)), \(a, b \in I \) with \(a < b \). If \(f' \in L^1[a, b] \). If the mapping \(|f''|^q \) is \((h-(\alpha, m))\)-convex on \([a, b]\), then
\[
\left| \frac{f(a) + f(b)}{2} - \frac{1}{b-a} \int_a^b f(x) \, dx \right| \leq \frac{(b-a)\ell}{2.67} \left\{ \left(|f''(a)| - m \left| f'' \left(\frac{b}{m} \right) \right| \right) \right\} \int_0^1 t(1-t)h^\alpha(t)dt + \frac{m}{6} \left| f'' \left(\frac{b}{m} \right) \right|^q \right\} (2.23)
\]

3. Application to Some Special Means

Let us recall the following means for any two positive numbers \(a \) and \(b \).

(1) The Arithmetic mean
\[
A \equiv A(a, b) = \frac{a + b}{2}
\]

(2) The Harmonic mean
\[
H \equiv H(a, b) = \frac{2ab}{a + b}
\]

(3) The \(p \)-Logarithmic mean
\[
L_p \equiv L_p(a, b) = \begin{cases} a, & \text{if } a = b; \\ \left(\frac{b^{p+1-a^{p+1}}}{(p+1)(b-a)} \right)^\frac{1}{p}, & \text{if } a \neq b. \end{cases}
\]

(4) The Identric mean
\[
I \equiv I(a, b) = \begin{cases} a, & \text{if } a = b; \\ \frac{1}{e} \left(\frac{b}{a} \right)^\frac{1}{e}, & \text{if } a \neq b. \end{cases}
\]

(5) The Logarithmic mean
\[
L \equiv L(a, b) = \begin{cases} a, & \text{if } a = b; \\ \frac{b-a}{lnb-lna}, & \text{if } a \neq b. \end{cases}
\]
The following inequality is well known in the literature in [9]:

\[H \leq G \leq L \leq I \leq A. \]

It is also known that \(L_p \) is monotonically increasing over \(p \in \mathbb{R} \), denoting \(L_0 = I \) and \(L_{-1} = L \).

Proposition 1. Let \(p > 1, 0 < a < b \) and \(q = \frac{p}{p-1} \). Then one has the inequality.

\[
|G(a, b) - L(a, b)| \leq \frac{\ln b - \ln a}{4(p + 1)^{\frac{1}{p}}} [A(|a|, |b|) + G(|a|, |b|)]. \tag{3.24}
\]

Proof. By Corollary 1 applied for the mapping \(f(x) = e^x \) setting \(h(t) = t, \alpha = 1, m = 1 \) and \(q = 1 \) we have the above inequality (3.24).

Proposition 2. Let \(p > 1, 0 < a < b \) and \(q = \frac{p}{p-1} \), then

\[
\left| \frac{A(a, b)}{I(a, b)} \right| \leq \exp \left\{ \frac{b - a}{3.2^{\frac{1}{p}}} \left(H^{-1}(|a|, |b|) + 2A^{-1}(|a|, |b|) \right) \right\}
\]

Proof. Follows from Corollary 2 for the mapping \(f(x) = -\ln(x) \) setting \(h(t) = t, \alpha = 1, m = 1 \) and \(q = 1 \).

Another result which is connected with \(p \)-Logarithmic mean \(L_p(a, b) \) is the following one:

Proposition 3. Let \(p > 1, 0 < a < b \) and \(q = \frac{p}{p-1} \), then

\[
|H^{-1}(a, b) - L^{-1}(a, b)| \leq (b - a)^2 \beta \frac{1}{2} (p + 1, p + 1) H^{-1}(|a|^3, |b|^3)
\]

Proof. Follows by Corollary 3 for the mapping \(f(x) = \frac{1}{x} \) setting \(h(t) = t, \alpha = 1, m = 1 \) and \(q = 1 \).

Proposition 4. Let \(p > 1, 0 < a < b \) and \(q = \frac{p}{p-1} \), then

\[
|A(a^n, b^n) - L_p^n(a, b)| \leq |n(n - 1)| \frac{(b - a)^2}{2.6^{\frac{1}{p}}} A(|a|^{p-2}, |b|^{p-2})
\]

Proof. Follows by Corollary 4 for the mapping \(f(x) = (1 - x)^n \) setting \(h(t) = t, \alpha = 1, m = 1 \) and \(q = 1 \).

4. **Error Estimates for Midpoint Formula and Trapezoidal Formula**

Let \(K \) be the \(a = x_0 < x_1 < \ldots < x_{n-1} < x_n = b \) of the interval \([a, b]\) and consider the quadrature formula

\[
\int_a^b f(x)dx = S(f, K) + R(f, K) \tag{4.25}
\]
where

\[S(f, K) = \sum_{i=0}^{n-1} f \left(\frac{x_i + x_{i+1}}{2} \right) (x_{i+1} - x_i) \]

for the midpoint version and \(R(f, K) \) denotes the related approximation error.

\[S(f, K) = \sum_{i=0}^{n-1} \frac{f(x_i) + f(x_{i+1})}{2} (x_{i+1} - x_i) \]

for the trapezoidal version and \(R(f, K) \) denotes the related approximation error.

Proposition 5. Let \(f : I \subseteq \mathbb{R} \to \mathbb{R} \) be a differentiable mapping on \(I^o \) such that \(f' \in L^1[a, b] \), where \(a, b \in I \) with \(a < b \) and \(|f'| \) is convex on \([a, b]\), then

\[|R(f, K)| \leq \frac{1}{2^{n-1}} \sum_{i=0}^{n-1} \frac{(x_{i+1} - x_i)^2}{2} (|f'(x_i)| + |f'(x_{i+1})|). \] (4.26)

Proof. By applying subdivisions \([x_i, x_{i+1}]\) of the division \(k \) for \(i = 0, 1, 2, \ldots, n-1 \) on Corollary 2 setting \(h(t) = t, \alpha = 1, m = 1 \) and \(q = 1 \) taking into account that \(|f'| \) is convex, we have

\[\left| \frac{1}{x_{i+1} - x_i} \int_{x_i}^{x_{i+1}} f(x)dx - f \left(\frac{x_{i+1} + x_i}{2} \right) \right| \leq \frac{x_{i+1} - x_i}{2^{n-1}} (|f'(x_{i+1})| + |f'(x_i)|). \] (4.27)

Taking sum over \(i \) from 0 to \(n-1 \), we get

\[\left| \int_a^b f(x)dx - S(f, K) \right| = \sum_{i=0}^{n-1} \left\{ \int_{x_i}^{x_{i+1}} f(x)dx - f \left(\frac{x_{i+1} + x_i}{2} \right) (x_{i+1} - x_i) \right\} \]

\[\leq \sum_{i=0}^{n-1} \left| \int_{x_i}^{x_{i+1}} f(x)dx - (x_{i+1} - x_i) f \left(\frac{x_{i+1} + x_i}{2} \right) \right| \]

\[= \sum_{i=0}^{n-1} (x_{i+1} - x_i) \left| \left\{ \frac{1}{x_{i+1} - x_i} \int_{x_i}^{x_{i+1}} f(x)dx \right. \right. \]

\[\left. - f \left(\frac{x_{i+1} + x_i}{2} \right) \right| \] (4.28)

By combining (4.27) and (4.28), we get (4.26). Which completes the proof.

Proposition 6. Let \(f : I \subseteq \mathbb{R} \to \mathbb{R} \) be a twice differentiable mapping on \(I^o \) such that \(f'' \in L^1[a, b] \), where \(a, b \in I \) with \(a < b \) and \(|f''| \) is \((\alpha, m)\)-convex on \([a, b]\), then

\[|R(f, K)| \leq \frac{\beta(\alpha + 2, 2)}{(6)^7} \sum_{i=0}^{n-1} \frac{(x_{i+1} - x_i)^3}{2} \left(|f''(x_i)| + m\alpha (\alpha + 5) \left| f'' \left(\frac{x_{i+1}}{m} \right) \right| \right) \]

Proof. Proof is very similar as that of Proposition 5 by using corollary 2 setting \(h(t) = t. \)
Some Generalizations of Hermite-Hadamard type Integral Inequalities and Their Applications

REFERENCES

[1] M. K. Bakula, M Emin Özdemir and J. Pečarić, Hadamard type inequalities for m-convex and $\left(\alpha, m\right)$-convex functions, J. Inequal. Pure and Appl. Math., 9(2008), Article 96. [ONLINE: http://jipam.vu.edu.au]

[2] M. Klaričić Bakula, J. Pečarić and M. Ribičić, Companion inequalities to Jensen’s inequality for m-convex and $\left(\alpha, m\right)$-convex functions, J. Inequal. Pure and Appl. Math., 7(2006), Article 194. [ONLINE: http://jipam.vu.edu.au]

[3] S. S. Dragomir and R. P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and trapezoidal formula, App. Math. Lett., 11(5) (1998), 91 - 95.

[4] S. S. Dragomir, C. E. M. Pearce, Selected Topics on Hermite-Hadamard Inequalities and Applications. RGMIA, Monographs Victoria University 2000. [online: http://ajmaa.org/RGMIA/monographs.php/]

[5] H. Hudzik, L. Maligrada, Some remarks on s-convex functions, Aequationes Math. 48(1994) 100-111.

[6] S. Hussain, M. I. Bhatti and M. Iqbal, Hadamard-type inequalities for s-convex functions I, Punjab Univ. Jour. of Math. 41(2009) 51-60.

[7] M. Iqbal, M. I. Bahtti and M. Muddassar, Hadamard-type inequalities for h-Convex functions, Pakistan Journal of Science (ISSN 1016-2526), Vol.63 No. 3 September 2011 pp. 170-175.

[8] Havva Kavurmaci, Merve Avci and M Emin Özdemir, New inequalities of hermite-hadamard type for convex functions with applications. Journal of Inequalities and Applications 2011, Art No. 86, Vol 2011. doi:10.1186/1029-242X-2011-86.

[9] V. G. Mihesan, A generalization of the convexity, Seminar on Functional Equations, Approx. and Convex., Cluj-Napoca (Romania) (1993).

[10] Mehmet Zeki Sarikaya, Erhan Set and M Emin Özdemir, New Inequalities of Hermite-Hadamard’s Type, Research Report Collection, Vol 12, Issue 4, 2009. [online: http://ajmaa.org/RGMIA/papers/v12n4/set2.pdf]

[11] Muhammad Muddassar, Muhammad I. Bhatti and Muhammad Iqbal, Some New s-Hermite Hadamard Type Inequalities for Differentiable Functions and Their Applications, Proceedings of the Pakistan Academy of Sciences 49(1) (2012), 9-17.

[12] Muhammad Muddassar, Muhammad I. Bhatti and Wajeeha Irshad, Generalizations of Integral Inequalities of the type of Hermite-Hadamard through convexity, Bulletin of the Australian Mathematical Society, Available on CJO 2012 doi:10.1017/S0004972712000937.

[13] U. S. Kirmaci, Inequalities for differentiable mappings and applications to special means of real numbers and to mid point formula, App. Math. Comp., 147 (2004), 137 - 146.

[14] U. S. Kirmaci and M.E. Özdemir, On some inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula, Appl. Math. Comp., 153(2004), 361-368.

[15] C. E. M. Pearce and J. Pečarić, Inequalities for differentiable mappings with application to special means and quadrature formulae, Appl. Math. Lett., 13(2) (2000), 51 - 55.

[16] M. E. Özdemir, Havva Kavurmaci and Merve Avci, Hermite-Hadamard Type Inequalities for $\left(h - (\alpha, m)\right)$-convex Functions, RGMIA Research Report Collection, 14(2011)Article 31. [ONLINE: http://rgmia.org/papers/v14/I14a31.pdf]

[17] E. Set, M. Sardari, M.E. Özdemir and J. Rooin, On generalizations of the Hadamard inequality for (α, m)-convex functions, RGMIA Research Report Collection, 12 (4) (2009), Article 4. [ONLINE: http://rgmia.org/papers/v12n4/set.pdf]
[18] Sanja Varošanec, On h-convexity, J. Math. Anal. Appl., 326 (2007) 303-311.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ENGINEERING AND TECHNOLOGY, TAXILA, PAKISTAN

E-mail address: malik.muddassar@gmail.com

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ENGINEERING AND TECHNOLOGY, LAHORE, PAKISTAN

E-mail address: uetzone@hotmail.com