Breaking down the entire spectrum of spin correlations of a pair of particles involving fermions and gauge bosons

Rafiqul Rahaman*¹ and Ritesh K. Singh†²

*Regional Centre for Accelerator-based Particle Physics, Harish-Chandra Research Institute, A CI of Homi Bhabha National Institute, Chhatnag Road, Jhunsi, Prayagraj 211019, India
†Department of Physical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India

HRI-RECAPP-2021-010

Abstract

We discuss a formalism for the spin correlations and polarizations in two-particle systems with spins half-half, half-one and one-one, and provide the connections between the polarizations and correlations with the joint angular distributions of decay products identifying the asymmetries for them. We demonstrate the formalism in the processes \(e^- e^+ \rightarrow t \bar{t}, \) \(gb \rightarrow tW^- \) and \(e^- e^+ \rightarrow ZZ \) in the standard model as examples. We investigate the effect of some anomalous couplings on the polarizations and spin correlations in the processes \(e^- e^+ \rightarrow t \bar{t}, \) \(gb \rightarrow tW^- \) and \(u \bar{d} \rightarrow ZW^+ \) at parton level and compare their strengths. The spin correlations have the potential to provide a significant improvement over the polarizations in probing the anomalous couplings.

1 Introduction

The scaler sector of the standard model (SM) particle spectrum will be affected by possible new physics beyond the SM (BSM) needed to address phenomena, such as dark matter, neutrino oscillation, baryogenesis etc. These BSM physics will lead to a modified electroweak sector with modified interactions among the Higgs bosons, top quark, and the gauge bosons. Precise measurement of the interactions in terms of strength and tensorial structure, thus, may uncover new physics at colliders.

Polarizations of top quark and massive gauge bosons are interesting tools for such precision measurement, as they are sensitive to the modification of the interactions involved. The top quark, Z and W bosons being massive, they decay immediately after they are produced, letting their decay products carry their polarization as well as spin correlation information. In general a spin-s particle contains \((2s+1)^2 - 1 = 4s(s+1)\) polarization parameters, e.g., a spin-1/2 particle has 3 vector polarizations, and a spin-1 particle carries 5

¹rafiqulrahaman@hri.res.in
²ritesh.singh@iiserkol.ac.in
tensor polarizations along with 3 vector polarizations [1, 2]. These polarization parameters can be calculated from the production process as well as from the angular distributions of the decay products [2, 3]. Like the polarizations, a system of two particles A and B with spins s_A and s_B contains $4s_A(s_A + 1) \times 4s_B(s_B + 1)$ spin correlation parameters along with $4s_A(s_A + 1) + 4s_B(s_B + 1)$ polarization parameters. These spin correlation parameters can also be calculated from the production process of the two-particle system as well as from the joint angular distributions of their decay products.

There have been a lot of interest in top quark polarizations [4–32] along with spin correlations of $t \bar{t}$ system [20, 33–46] in probing new physics. The top quark polarizations and spin correlations have also been measured at the Tevatron [47–53] as well as at the large hadron collider (LHC) [54–64]. Lately, polarization for Z and W bosons also got some attention in probing new physics [3, 65–76]. The predictions of Z and W polarizations are also being developed within the SM including next-to-leading order effects [77–82]. The polarizations of Z and W have also been measured recently at the LHC in ZW production process [83, 84]. The decay angular correlations, in case of vector boson pair production, are discussed before in Refs. [85–88]. For the spin correlation, although the $t \bar{t}$, i.e., half-half spin system, correlation have been talked about before, only a subset of the full nine correlations are discussed. Furthermore, although spin-correlated spin density matrix (SDM) and decay distribution with correlations have been discussed earlier for the $t \bar{t}$ pair production [89–94], no clear connection between them has been made before. For the tV ($V = Z/W$) or VV pair production, i.e., half-one or one-one spin systems, there exist no formalism for the spin correlated production matrix or SDM, and thus no existence of a connection between the decay distributions and spin correlations. In this article, we present a formalism for the spin correlated density matrix and the connection between joint decay angular distributions and the full-rank spin correlations in three spin systems, namely half-half, half-one, and one-one. The presented formalism is validated in some simple SM processes comparing the analytically obtained values for the spin correlations to those numerically extracted values from the angular distributions of the decay products obtained in Monte-Carlo simulation. The potential of the spin correlations is investigated in probing anomalous couplings, parameterized by effective operators, in some simple partonic processes without realistic effects to make an ansatz for real scenarios with collider data.

We proceed with a general description of production and decay of two spin full particles in section 2 followed by discussing the individual polarizations of spin-$1/2$ and spin-1 particles in section 2.1. Next, we present the formalism for spin correlation for the three spin systems, i.e., half-half, half-one, and one-one successively in section 2.2. In section 2.4, we demonstrate the formalism in the SM by showing the agreement between the analytically calculated correlations from the production process and the numerically calculated values from MADGRAPH5_aMC@NLO [95] simulations using decay distributions in three processes $e^-e^+ \rightarrow t \bar{t}$, $g b \rightarrow tW^-$ and $e^-e^+ \rightarrow ZZ$ as a proof of principle. In section 3, we discuss how spin correlations can help in probing new physics in parallel to polarization in three processes $e^-e^+ \rightarrow t \bar{t}$, $g b \rightarrow tW^-$ and $u \bar{d} \rightarrow ZW^+$ at parton level and without initial state of parton distribution functions (PDFs) folding, for simplicity. We summarize in section 4.
are the total decay width of A and E. I is the flux factor.

Figure 1: Schematic diagram for the production of two particles

To describe the spin correlations along with spin-polarizations of a system of two spin-full particles, let us consider the production and decay of two massive spin-full unstable particles A and B in a general process $B_1B_2 \rightarrow ABC_1C_2...C_N$ with $A \rightarrow aad'$ and $B \rightarrow bb'$, as shown in Fig. 1. The differential rate for such a process can be expressed as [2],

$$d\sigma = \sum_{\lambda_A, \lambda'_A, \lambda_B, \lambda'_B} \left[\frac{1}{I_{B_1B_2}} p_{AB}(\lambda_A, \lambda'_A, \lambda_B, \lambda'_B)(2\pi)^4 \delta^4 \left(p_{B_1} + p_{B_2} - p_A - p_B - \sum_{i=1}^N p_{C_i} \right) \times \left(\frac{d^3p_A}{(2\pi)^32E_A} \right) \left(\frac{d^3p_B}{(2\pi)^32E_B} \right) \prod_{i=1}^N \left(\frac{d^3p_{C_i}}{(2\pi)^32E_{C_i}} \right) \times \frac{1}{\Gamma_A} \frac{(2\pi)^4}{2m_A} \Gamma_A(\lambda_A, \lambda'_A) \delta^4(p_A - p_a - p_{a'}) \left(\frac{d^3p_a}{(2\pi)^32E_a} \right) \left(\frac{d^3p_{a'}}{(2\pi)^32E_{a'}} \right) \times \frac{1}{\Gamma_B} \frac{(2\pi)^4}{2m_B} \Gamma_B(\lambda_B, \lambda'_B) \delta^4(p_B - p_b - p_{b'}) \left(\frac{d^3p_b}{(2\pi)^32E_b} \right) \left(\frac{d^3p_{b'}}{(2\pi)^32E_{b'}} \right) \right]$$

(1)

in the narrow-width approximation of the unstable particles A and B, allowing the factorization of production part (in the first square bracket) and the decay parts (in the second and third square brackets). Here, p_X, m_X and E_X with $X \in \{B_1, A, B, C_1, a, a', b, b'\}$ are the four-momenta, mass and energy of the particles, respectively; the flux factor $I_{B_1B_2}$ is given by $I_{B_1B_2} = 4\sqrt{(p_{B_1} \cdot p_{B_2})^2 - m_{B_1}^2m_{B_2}^2}$, with m_B the mass of the particles B_i; Γ_A/B are the total decay width of A/B. The $\lambda_{A/B}$, $\lambda'_{A/B}$ are the helicities of A/B and they can take values in the range of

$$\lambda_{A/B}, \lambda'_{A/B} \in [-s_{A/B}, -s_{A/B} + 1, \ldots, s_{A/B}]$$
with s_A and s_B as the spins of the particle A and B, respectively. The helicities of all particles other than A and B are suppressed, i.e., helicities are summed over the C_i and averaged over the B_i. The phase space integration of the decay products of A and B can be performed in the rest of A and B separately without any loss of generality. The production part or the production density matrix of A and B can be expressed as,

$$
\rho_{AB}(\lambda_A, \lambda'_A, \lambda_B, \lambda'_B) = \frac{1}{I_{B, B_i}} \int \rho'_{AB}(\lambda_A, \lambda'_A, \lambda_B, \lambda'_B)(2\pi)^4 \delta^4 \left(p_B + p_{B_i} - p_A - p_B - \sum_{i=1}^{N} p_{C_i} \right) \times \left(\frac{d^3 p_A}{(2\pi)^3 2E_A} \right) \left(\frac{d^3 p_B}{(2\pi)^3 2E_B} \right) \prod_{i=1}^{N} \left(\frac{d^3 p_{C_i}}{(2\pi)^3 2E_{C_i}} \right)
$$

(2)

with

$$
\rho'_{AB}(\lambda_A, \lambda'_A, \lambda_B, \lambda'_B) = \mathcal{M}(\lambda_A, \lambda_B) \times \mathcal{M}^\dagger(\lambda'_A, \lambda'_B),
$$

$\mathcal{M}(\lambda_A, \lambda_B)$ being the helicity matrix amplitude with helicities λ_A and λ_B. The cross section for the production of A and B would be,

$$
\sigma_p = \text{Tr} \left[\rho_{AB}(\lambda_A, \lambda'_A, \lambda_B, \lambda'_B) \right] = \sum_{\lambda_A, \lambda'_A, \lambda_B, \lambda'_B} \rho_{AB}(\lambda_A, \lambda'_A, \lambda_B, \lambda'_B).
$$

(3)

Here, only the diagonal elements of the $(2s_A+1)(2s_B+1) \times (2s_A+1)(2s_B+1)$ dimensional production density matrix ρ_{AB} enter, while all the elements in a certain combination contain polarization and spin correlation information of A and B. Thus the normalized production density matrix can be compared to the spin density matrix of the system A and B. We rewrite,

$$
\rho_{AB}(\lambda_A, \lambda'_A, \lambda_B, \lambda'_B) = \sigma_p \times P_{AB(2s_A, 2s_B)}(\lambda_A, \lambda'_A, \lambda_B, \lambda'_B)
$$

(4)

with $P_{AB(2s_A, 2s_B)}(\lambda_A, \lambda'_A, \lambda_B, \lambda'_B)$ as the normalized production density matrix. The decay part of A, after partial phase-space integration, can be expressed as,

$$
\int \frac{1}{\Gamma_A} \frac{(2\pi)^4}{2m_A} \Gamma'_A(\lambda_A, \lambda'_A) \delta^4(p_A - p_a - p_a') \left(\frac{d^3 p_a}{(2\pi)^3 2E_a} \right) \left(\frac{d^3 p_{a'}}{(2\pi)^3 2E_{a'}} \right) = \frac{Br(A \to aa') (2s_A + 1)}{4\pi} \Gamma_{A(2s_A)}(\lambda_A, \lambda'_A)d\Omega_{a/a'},
$$

(5)

where $Br(A \to aa')$ is the branching fraction of A decaying to aa'. The quantity $\Gamma_A(\lambda_A, \lambda'_A)$ is the decay density matrix normalized to unit trace, and $d\Omega_a = \sin \theta_d d\theta_a d\phi_a$ is the measure of solid angle of the daughter a. The decay part of B can also be expressed in the same way as done for A. Combining the production density matrix of A and B in Eq. (2) and their decay density matrices in Eq. (5) according to Eq. (1), one obtains the normalized joint angular distribution of the decay products as,

$$
\frac{1}{\sigma} \frac{d^2 \sigma}{d\Omega_a d\Omega_b} = \frac{2s_A + 1}{4\pi} \frac{2s_B + 1}{4\pi} \sum_{\lambda_A, \lambda'_A, \lambda_B, \lambda'_B} P_{AB(2s_A, 2s_B)}(\lambda_A, \lambda'_A, \lambda_B, \lambda'_B) \times \Gamma_{A(2s_A)}(\lambda_A, \lambda'_A) \times \Gamma_{B(2s_B)}(\lambda_B, \lambda'_B),
$$

(6)

where $\sigma = \sigma_p \times Br(A \to aa') \times Br(B \to bb')$ is the total cross section of the production of A and B followed by their decays.

*For polarized beams, one has to use the initial state polarization density matrix in Eq. (1), e.g., see Ref. [66].
The polarizations of A and B and their spin correlations, embedded into their polarization-correlations density matrix $P_{AB(2\lambda_A,2\lambda_B)}$, are transferred to the distributions of their decay products a and b. One can obtain the polarizations and spin correlations from the production part as well as form the joint angular distributions of the decay products. In this work, we consider a system with a pair of particles combining only with spin-$1/2$ and spin-1 particles, i.e., half-half, half-one, and one-one spin systems. In the next sections, we describe how the spin correlations along with the polarizations of two particles in these systems can be computed from the production part as well as from the decay distributions. First, we briefly present the scenarios with a single spin-$1/2$ and spin-1 particles in the next section for completeness.

2.1 Polarizations of a single particle

The polarization density matrix or the spin-density matrix (SDM) of a spin-s particle can be expressed with the irreducible spin tensors up to rank $2s$, i.e., identity matrix, linear (for spin-$1/2$ and spin-1), bilinear (only for spin-1) combinations of standard spin matrices. The SDM can be represented in terms of multi-pole parameters or can be given in Cartesian form [1]. The properties of the density matrix will then be specified by the expansion coefficients. In Cartesian form, the polarization density matrix of spin-$1/2$ and spin-1 particles can be expressed as [1, 2],

$$P_{f(1)}(\lambda, \lambda') = \frac{1}{2} \left[\frac{1}{2} + p \cdot \tau \right], \quad \lambda, \lambda' \in [+1, -1],$$

$$P_{V(2)}(\lambda, \lambda') = \frac{1}{3} \left[\frac{1}{2} + \frac{p}{\sqrt{3}} \hat{S} + \sqrt{\frac{3}{2}} T_{ij}(S_i S_j + S_j S_i) \right], \quad \lambda, \lambda' \in [+1, 0, -1],$$

respectively. Repeated indices are summed over. Here, τ and S_i are the spin matrices in spin-$1/2$ and spin-1 basis (given in appendix A), respectively. The p_is, components of a three vector $\vec{p} = \{p_x, p_y, p_z\}$, are vector polarizations of the particles; T_{ij}, components of a second-rank symmetric trace-less tensor, are tensor polarizations of the spin-1 particle. For a spin-$1/2$ particle, there are three vector polarizations, while for a spin-1 particle, there are three vector and five independent tensor polarizations. These polarization parameters can be estimated by comparing the polarization density matrices to the respective normalized production density matrices. Combining the polarization density matrices with their respective normalized decay density matrices obtained at their rest frame (given in appendix A in Eqs. (49) and (50)), one obtains the angular distributions of decay products for $f(1)$ and $V(2)$ as [2],

$$\frac{1}{\sigma_f} \frac{d\sigma_f}{d\Omega} = \frac{1}{4\pi} \left[1 + \alpha_1 p_x \sin \theta \cos \phi + \alpha_2 p_y \sin \phi + \alpha_2 p_z \cos \theta \right]$$

and

(9)
\[
\frac{1}{\sigma_v} \frac{d\sigma_v}{d\Omega} = \frac{3}{8\pi} \left[\left(\frac{2}{3} - (1 - 3\delta) \frac{T_{zz}}{\sqrt{6}} \right) + \alpha p_x \cos \theta + \frac{\sqrt{3}}{2} (1 - 3\delta) T_{zz} \cos^2 \theta \right. \\
+ \left. \left(\alpha p_x + 2 \sqrt{\frac{2}{3}} (1 - 3\delta) T_{zz} \cos \theta \right) \sin \theta \cos \phi \right] \\
+ \left. \left(\alpha p_x + 2 \sqrt{\frac{2}{3}} (1 - 3\delta) T_{zz} \cos \theta \right) \sin \theta \sin \phi \right] \\
+ \left(1 - 3\delta \right) \left(\frac{T_{xx} - T_{yy}}{\sqrt{6}} \right) \sin^2 \theta \cos(2\phi) + \sqrt{\frac{7}{3}} (1 - 3\delta) T_{xy} \sin^2 \theta \sin(2\phi) \right],
\]
respectively. Here, \(\theta\) and \(\phi\) are the polar and azimuthal angles of the decay products in the rest frame of the mother particles with their would-be momentum along \(z\)-direction. One can construct several asymmetries related to the polarization parameters by partially integrating the angular distributions with respect to \(\theta\) and \(\phi\). The complete list of polarization asymmetries is given in Refs. [3, 96]. We will list them later while discussing correlations of a pair of particles in the next section.

2.2 Spin correlations of a pair of particles

In the spin correlated density matrix of two spin-full particles, there are correlations between two vector polarizations (vector-vector correlation), correlation between a vector and a tensor polarization (vector-tensor polarization) and correlation between two tensor polarizations (tensor-tensor correlation) apart from the vector polarizations and tensor polarizations. We proceed with, first, discussing the simple spin-1/2 – spin-1/2 correlations and then spin-1/2 – spin-1 and spin-1 – spin-1 subsequently.

2.2.1 Spin-1/2 – spin-1/2 correlations

The spin correlations for a pair of spin-1/2 particles can be accommodated in the polarization-correlation density matrix with an outer product of two Pauli spin-1/2 matrices \((\tau \otimes \tau)\), one for each particle. Thus the fully spin correlated polarization density matrix of a pair of spin-1/2 particles will be given by [89, 90]

\[
P_{AB(1,1)}(\lambda_A, \lambda_A', \lambda_B, \lambda_B') = \frac{1}{(2 \times \frac{1}{2} + 1)} \left[\mathbf{I}_{2 \times 2} \otimes \mathbf{I}_{2 \times 2} + \mathbf{\tilde{p}}^A \cdot \tilde{\tau} \otimes \mathbf{I}_{2 \times 2} + \mathbf{I}_{2 \times 2} \otimes \mathbf{p}^B \cdot \tilde{\tau} \right. \\
+ \left. pp_{ij}^{AB} \mathbf{\tau}_i \otimes \mathbf{\tau}_j \right], \quad (i, j \in [x \equiv 1, y \equiv 2, z \equiv 3]),
\]

where \(\mathbf{p}^A, \mathbf{p}^B\) are the vector polarizations of \(A/B\); \(pp_{ij}^{AB}\), components of a second-rank tensor \(pp^{AB}\), are the vector-vector correlations of \(A\) and \(B\). The elements of \(pp^{AB}\) are completely independent of each other. However, the \(pp^{AB}\) tensor can be symmetric if \(A = B\), i.e., they are identical. Thus, there exists a total of \(3 + 3 + 9 = 15\) polarization and correlation parameters (see Table 1) in a spin-1/2 – spin-1/2 pair of particles production. The polarization \((p_i^A, p_i^B)\) of \(A\) and \(B\) can be obtained either from their individual production density matrices or from the combined production density matrix of \(A\) and \(B\), while the vector-vector spin correlations \(pp_{ij}^{AB}\) can only be obtained from their combined production density matrix. The expanded form
Here, the superscript a on c_i denote the daughter particle of the particle A. One recovers Eq. (9), the angular distribution of a spin-1/2 particle production and decay, by integrating the angles of $a(b)$ in Eq. (12), i.e.,

$$\int_{full} d\Omega_{a(b)} \left(\frac{1}{\sigma} \frac{d^2\sigma}{d\Omega_a d\Omega_b} \right) = \frac{1}{\sigma} \frac{d\sigma}{d\Omega_{b(a)}}.$$ \hspace{1cm} (14)

We know that individual polarizations p_i^A and p_i^B can be obtained from some asymmetries made by partially integrating the angular distributions \cite{3, 96}. We write these asymmetries for A in the following way,

$$\mathcal{A}[p_i^A] \equiv \left(\int_{\theta_a=0}^{\pi} \frac{d\theta_a}{\sigma} \int_{\phi_a=0}^{\pi} \frac{d\phi_a}{\sigma} \right) d\Omega_a \left(\frac{1}{\sigma} \frac{d\sigma}{d\Omega_a} \right) = \frac{1}{2} \alpha_A p_i^A,$$

$$\mathcal{A}[p_2^A] \equiv \left(\int_{\theta_a=0}^{\pi} \frac{d\theta_a}{\sigma} \int_{\phi_a=0}^{\pi} \frac{d\phi_a}{\sigma} \right) d\Omega_a \left(\frac{1}{\sigma} \frac{d\sigma}{d\Omega_a} \right) = \frac{1}{2} \alpha_A p_2^A,$$

$$\mathcal{A}[p_3^A] \equiv \left(\int_{\theta_a=0}^{\pi} \frac{d\theta_a}{\sigma} \int_{\phi_a=0}^{\pi} \frac{d\phi_a}{\sigma} \right) d\Omega_a \left(\frac{1}{\sigma} \frac{d\sigma}{d\Omega_a} \right) = \frac{1}{2} \alpha_A p_3^A,$$

$$\mathcal{A}[p_i^B] \equiv \left(\int_{\theta_a=0}^{\pi} \frac{d\theta_a}{\sigma} \int_{\phi_a=0}^{\pi} \frac{d\phi_a}{\sigma} \right) d\Omega_a \left(\frac{1}{\sigma} \frac{d\sigma}{d\Omega_a} \right) = \frac{1}{2} \alpha_A p_i^B.$$ \hspace{1cm} (15)

to be used later for the asymmetry of spin correlations. The $\int d\Omega_b$ integration is assumed to be performed in the above equation. The asymmetries can also be represented as,

$$\mathcal{A}[p_i^A] \equiv \frac{\sigma(c_i^a > 0) - \sigma(c_i^a < 0)}{\sigma(c_i^a > 0) + \sigma(c_i^a < 0)} = \frac{1}{2} \alpha_A p_i^A$$ \hspace{1cm} (16)

Table 1: Number of polarization and spin correlation parameters in a spin-1/2 – spin-1/2 pair of particles production.

Parameter	p_i^A	p_i^B	pp_{ij}^{AB}	Total
Number of parameter	3	3	9	= 15
for numerical purpose. For the particle B, the polarization asymmetries are obtained by $A \to B$, $a \to b$ in Eq. (15) and Eq. (16). The correlations p_{ij}^{AB} can be obtained from some asymmetries made of partial integration constructed from the individual partial integration in Eq. (15) as,

$$\mathcal{A}[p_{ij}^{AB}] = \int_a^{p_i} d\Omega_a \int_b^{p_j} d\Omega_b \left(\frac{1}{\sigma} \frac{d^2 \sigma}{d\Omega_a d\Omega_b} \right) - \frac{1}{4} \alpha_A \alpha_B p_{ij}^{AB}. \quad (17)$$

For example, the asymmetry for the correlation p_{12}^{AB} will be given by,

$$\mathcal{A}[p_{12}^{AB}] = \int_a^{p_1} d\Omega_a \int_b^{p_2} d\Omega_b \left(\frac{1}{\sigma} \frac{d^2 \sigma}{d\Omega_a d\Omega_b} \right),$$

$$= \int_{0}^{\pi} d\phi_a \int_{-\pi/2}^{\pi/2} d\phi_b \left[\left(\int_{0}^{\pi} d\theta_b \int_{-\pi/2}^{\pi/2} d\phi_b \left(\int_{0}^{\pi} d\theta_a \int_{-\pi/2}^{\pi/2} d\phi_a \right) \right) d\Omega_b \left(\frac{1}{\sigma} \frac{d^2 \sigma}{d\Omega_a d\Omega_b} \right) \right].$$

(18)

For numerical purpose, the asymmetries for the spin correlations can also be represented as,

$$\mathcal{A}[p_{ij}^{AB}] = \frac{\sigma \left(c_i^A c_j^B > 0 \right) - \sigma \left(c_i^A c_j^B < 0 \right)}{\sigma \left(c_i^A c_j^B > 0 \right) + \sigma \left(c_i^A c_j^B < 0 \right)} = \frac{1}{4} \alpha_A \alpha_B p_{ij}^{AB}. \quad (19)$$

In the next section, we discuss the formalism for spin-1/2 – spin-1 correlations assuming B to be a spin-1 particle.

2.2.2 Spin-1/2 – spin-1 correlations

In the spin-1/2 – spin-1 case, apart from the vector-vector correlations, we also have vector-tensor correlations, which we accommodate in the polarization-correlation density matrix with an outer product between a Pauli spin-1/2 matrix (τ) and bilinear combination of the spin-1 matrices S. Thus the full spin correlated polarization density matrix of a system of spin-1/2 and spin-1 particles will be given by,

$$P_{AB(1,2)} (\lambda_A, \lambda_A', \lambda_B, \lambda_B') = \frac{1}{(2 \times \frac{1}{2} + 1)} \left(\frac{1}{2 \times 1 + 1} \right) \left[\mathbb{I}_{2 \times 2} \otimes \mathbb{I}_{3 \times 3} + \frac{p^B}{2} \cdot \tau \otimes \mathbb{I}_{3 \times 3} + \frac{3}{2} \mathbb{I}_{2 \times 2} \otimes \mathbb{I}^B \cdot \mathbb{S} \right],$$

$$+ \sqrt{\frac{3}{2}} \mathbb{I}_{2 \times 2} \otimes T^{AB}_{ij} (S_i S_j + S_j S_i) + p_{ij}^{AB} \varepsilon_i \otimes S_j + p_{T^{AB}_{ij} k} \varepsilon_i \otimes (S_j S_k + S_k S_j), \quad (i, j, k = x, y, z). \quad (20)$$

Here, $p_i^{A/B}$ are the vector polarizations of A/B, T^{AB}_{ij} are the tensor polarizations of B and p_{ij}^{AB} are the vector-vector correlations as appeared in the previous section in Eq. (11). The $p_{T^{AB}_{ijk}}$, representing vector-tensor correlations of A and B, are the components of a third-rank tensor $p T^{AB}$. The tensor $p T^{AB}$ is symmetric and traceless under the last two indices, similar to the case of T^B, i.e.,

$$T^B_{(ij)} = T^B_{ij} = T^B_{ji} = 0; \quad p T^{AB}_{ij} = p T^{AB}_{ji} = p T^{AB}_{jj} = 0. \quad (21)$$
Table 2: Number of independent polarization and spin correlation parameters in a spin-1/2 – spin-1 pair of particles production.

Parameter	p^A_i	p^B_i	$T^B_{(ij)}$	$p p^{AB}_{ij}$	$p T^{AB}_{i(j,k)}$	Total
Number of parameter	3	3	5	9	15	= 35

The parentheses () enclosing the indices i, j represent that the tensor is symmetric under these two indices. Here, we have a total of $3 \times 5 = 15$ independent vector-tensor correlations apart from 9 vector-vector correlations, see Table 2.

After combining the polarization density matrix in Eq. (20) with the normalized decay density matrices in Eqs. (49) for A and (50) for B in accordance with Eq. (6), we obtain the joint angular distribution of the decay products as,

$$
\frac{1}{\sigma} \frac{d^2 \sigma}{d \Omega_a d \Omega_b} = \frac{2}{16 \pi^2} \sum_{\lambda, \lambda', \lambda_B, \lambda_B'} P_{AB(1,2)} (\lambda_A, \lambda'_A, \lambda_B, \lambda_B') \times \Gamma_{A(1)} (\lambda_A, \lambda'_A) \times \Gamma_{B(2)} (\lambda_B, \lambda_B'),
$$

$$
= \frac{1}{16 \pi^2} \left[1 + \alpha_A p^A_i c_i^a + \frac{3}{2} \alpha_B p^B_i c_i^b + \sqrt{3} (1 - 3 \delta_B) T^B_{ij} c_i^a c_j^b (i \neq j) \right] + \frac{1}{2} \sqrt{3} (1 - 3 \delta_B) T^B_{i33} \left(3 (c_3^b)^2 - 1 \right) + \frac{1}{2} \alpha_A \alpha_B p p^{AB}_{ij} c_i^a c_j^b + \frac{1}{2} \alpha_A (1 - 3 \delta_B) p T^{AB}_{i j k} c_i^a c_j^b c_k^b (j \neq k) + \frac{1}{2} \frac{1}{2} \sqrt{3} (1 - 3 \delta_B) \frac{p T^{AB}_{i j k}}{p T^{AB}_{i(1-22)}} c_i^a \left((c_1^b)^2 - (c_2^b)^2 \right) + \frac{1}{2} \alpha_A (1 - 3 \delta_B) p T^{AB}_{i 33} c_i^a \left(3 (c_3^b)^2 - 1 \right) \right].
$$

(22)

Here, systematization of indices on T and $p T$ are not included. The independent vector-tensor correlations ($p T^{AB}$) are nine ($3 \times 3 p T^{AB}_{i(j,k)} (j \neq k)$, three $p T^{AB}_{i(11-22)}$, and three $p T_{i33}$. We recover angular distributions in Eq. (9) for spin-1/2 and Eq. (10) for spin-1 particle production and decay after integrating the angles of b and a in Eq. (22), respectively. In this case, the asymmetries for vector polarizations and vector-vector correlations are given by,

$$
\mathcal{A} [p^A_i] = \frac{1}{2} \alpha_A p^A_i, \quad \mathcal{A} [p^B_i] = \frac{3}{4} \alpha_B p^B_i, \quad \mathcal{A} [p p^{AB}_{ij}] = \frac{1}{4} \alpha_A \alpha_B p p^{AB}_{ij}.
$$

(23)

The asymmetries for tensor polarizations (T) of B are given in appendix C in Eqs. (57)-(62). The independent vector-tensor correlations $p T^{AB}_{i(j,k)}$ can be obtained from the following asymmetries,

$$
\mathcal{A} [p T^{AB}_{i(j,k)}] = \int_a^b d \Omega_a \int_b^a d \Omega_b \left(\frac{1}{\sigma} \frac{d^2 \sigma}{d \Omega_a d \Omega_b} \right) (j \neq k).
$$

9
In accordance with Eq. (6), we obtain the joint angular distribution of the decay products which leaves us \(p_T \) vector correlations, which are identical to \(T T \) correlations with an outer product between two bilinear combinations of spin-1 matrices. The tensor-tensor correlations of the correlated polarization density matrix for a pair of spin-1 particles will be given by:

\[
\frac{1}{16} \alpha_A (1 - 3 \Delta_B) p_{T_{i(11-22)}}^{AB}.
\]

Here, the partial integration rules \(\int^p \) s are for the asymmetries related to tensor polarizations and they are given in appendix C in Eqs. (57)-(61). In the next section, we discuss the formalism for spin-1 – spin-1 correlations considering A also to be spin-1.

2.2.3 Spin-1 – spin-1 correlations

For spin-1 – spin-1 correlations, the polarization-correlation density matrix contains tensor-tensor correlations apart from the vector-vector and vector-tensor correlations. We accommodate the tensor-tensor correlations with an outer product between two bilinear combinations of spin-1 matrices \((S) \). Thus the full spin correlated polarization density matrix for a pair of spin-1 particles will be given by:

\[
P_{AB(2,2)}(\lambda_A, \lambda'_A, \lambda_B, \lambda'_B) = \frac{1}{(2 \times 1 + 1)^2} \left[\frac{3}{2} \hat{p} \cdot \hat{S} \otimes I_{3 \times 3} + \frac{3}{2} \hat{p} \cdot \hat{S} \right] + \frac{3}{2} \frac{3}{2} I_{3 \times 3} \otimes I_{3 \times 3} + \frac{3}{2} \hat{p} \cdot \hat{S} \right],
\]

Here \(TT_{ijkl}^{AB} \) components of a fourth-rank tensor, are the tensor-tensor correlations. The \(T_{ijkl}^{AB} \) are tensor-vector correlations, which are identical to \(p_{T_{ijkl}}^{BA} \). The \(TT_{ijkl}^{AB} \) are symmetric and traceless under the first two and last two indices separately, i.e.,

\[
TT_{ijkl}^{AB} = TT_{ijkl}^{AB} = TT_{ijkl}^{AB} = TT_{ijkl}^{AB}, \quad TT_{ijkl}^{AB} = 0 = TT_{ijkl}^{AB},
\]

which leaves us \(5 \times 5 = 25 \) independent tensor-tensor \((TT) \) correlations, see Table 3.

After combining the polarization density matrix in Eq. (27) with the spin-1 normalized decay density matrix in Eq. (50) in accordance with Eq. (6), we obtain the joint angular distribution of the decay products.
\[
\frac{1}{\sigma} \frac{d^2 \sigma}{d\Omega_a d\Omega_b} = \frac{3}{16\pi^2} \sum_{\lambda_1,\lambda_2,\lambda_B,\lambda_B'} P_{AB(2,2)} (\lambda_A, \lambda_A', \lambda_B, \lambda_B') \times \Gamma_{A(2)} (\lambda_A, \lambda_A') \times \Gamma_{B(2)} (\lambda_B, \lambda_B')
\]
\[
= \frac{1}{16\pi^2} \left\{ 1 + \frac{3}{2} \alpha_{A/B} p_{ij}^{A/B} e_i^a e_j^b + \sqrt{\frac{3}{2}} (1 - 3\delta_{A/B}) T_{ij}^{A/B} e_i^a e_j^b \right\} (i \neq j)
\]
\[
+ \frac{1}{2} \sqrt{\frac{3}{2}} (1 - 3\delta_{A/B}) T_{ij}^{A/B} \left(\frac{T_{i11}^{A/B} - T_{22}^{A/B}}{T_{i11}^{A/B} - T_{22}^{A/B}} \right) \frac{(e_i^a)^2 - (e_j^b)^2}{\sin^2 \theta_{ij}} (2\delta_{ij})
\]
\[
+ \frac{1}{2} \alpha_A (1 - 3\delta_B) p_{ij}^{A/B} e_i^a e_j^b + \alpha_B (1 - 3\delta_A) p_{ij}^{A/B} e_i^a e_j^b (j \neq k)
\]
\[
+ \frac{1}{2} \alpha_A (1 - 3\delta_B) \left(p_{T_{1111}^{A/B} - p_{T_{2222}^{A/B}}} e_i^a \right) \left((e_i^a)^2 - (e_j^b)^2 \right)
\]
\[
+ \frac{1}{2} \alpha_B (1 - 3\delta_A) \left(p_{T_{1111}^{A/B} - p_{T_{2222}^{A/B}}} e_i^a \right) \left((e_i^a)^2 - (e_j^b)^2 \right)
\]
\[
+ \frac{1}{2} \alpha_A (1 - 3\delta_B) T_{ij}^{AB} c_i^a c_j^b (i \neq j, k \neq l)
\]
\[
+ \frac{1}{2} \frac{1}{2} \alpha_B (1 - 3\delta_A) T_{ij}^{A/B} c_i^a c_j^b \left((e_i^a)^2 - (e_j^b)^2 \right) (i \neq j)
\]
\[
+ \frac{1}{2} (1 - 3\delta_A) (1 - 3\delta_B) T_{ij}^{AB} c_i^a c_j^b \left((e_i^a)^2 - (e_j^b)^2 \right) (i \neq j)
\]
\[
+ \frac{1}{2} \alpha_A (1 - 3\delta_B) T_{ij}^{AB} c_i^a c_j^b \left((e_i^a)^2 - (e_j^b)^2 \right)\]
\[
\times \left(\frac{(e_i^a)^2 - (e_j^b)^2}{(e_i^a)^2 - (e_j^b)^2} \right)
\]
\[
+ \frac{1}{4} (1 - 3\delta_A) (1 - 3\delta_B) T_{ij}^{AB} c_i^a c_j^b \left((e_i^a)^2 - (e_j^b)^2 \right) \left((e_i^a)^2 - (e_j^b)^2 \right)
\]
\[
\times \left(\frac{(e_i^a)^2 - (e_j^b)^2}{(e_i^a)^2 - (e_j^b)^2} \right)
\]

Table 3: Number of independent polarization and spin correlation parameters in a spin-1 – spin-1 pair of particles production.
$$+ \frac{1}{4} (1 - 3 \delta_A) (1 - 3 \delta_B) \left(TT^{AB}_{333} - TT^{AB}_{331} \right) \left((c^A_1)^2 - (c^B_2)^2 \right) \left((c^A_3)^2 - 1 \right)$$

$$+ \frac{1}{4} (1 - 3 \delta_A) (1 - 3 \delta_B) TT^{AB}_{333} \left((c^A_3)^2 - 1 \right) \left((c^B_3)^2 - 1 \right).$$

(29)

In the above distribution, systematization of indices on T, pT, and TT are not included. One recovers the angular distribution in Eq. (10) for spin-1 particle production and decay by integrating the angles of a or b in Eq. (29). The independent tensor-tensor correlations (TT^{AB}) are nine $TT^{AB}_{(ij)(kl)} (i \neq j, k \neq l)$, three $TT^{AB}_{(i)(11-22)} (i \neq j)$, three $TT^{AB}_{(11-22)(ij)} (i \neq j)$, three $TT^{AB}_{(ij)33} (i \neq j)$, three $TT^{AB}_{33(ij)} (i \neq j)$, one $TT^{AB}_{(11-22)(11-22)}$, one $TT^{AB}_{(11-22)33}$, one $TT^{AB}_{33(11-22)}$, and one TT^{AB}_{333}. In this case, asymmetries for the vector polarizations, vector-vector and vector-tensor correlations are given by,

$$\mathcal{A}[p_i^{A/B}] = \frac{3}{4} \alpha_{A/B} p_i^{A/B},$$

$$\mathcal{A}[pp_i^{AB}] = \frac{1}{4} \alpha_A \alpha_B p_i^{AB},$$

$$\mathcal{A}[pT_{i(j)}^{AB}] = \frac{2}{3\pi} \alpha_A (1 - 3 \delta_B) pT_{i(j)}^{AB} (j \neq k),$$

$$\mathcal{A}[pT_{i(j,k)}^{BA}] = \frac{2}{3\pi} \alpha_A (1 - 3 \delta_B) pT_{i(j,k)}^{BA} (j \neq k),$$

$$\mathcal{A}[pT_{(i)(11-22)}^{AB}] = \frac{1}{3\pi} \alpha_A (1 - 3 \delta_B) pT_{(i)(11-22)}^{AB},$$

$$\mathcal{A}[pT_{(i)(11-22)}^{BA}] = \frac{1}{3\pi} \alpha_B (1 - 3 \delta_A) pT_{(i)(11-22)}^{BA},$$

$$\mathcal{A}[pT_{33}^{AB}] = \frac{3}{16} \alpha_A (1 - 3 \delta_B) pT_{33}^{AB},$$

$$\mathcal{A}[pT_{33}^{BA}] = \frac{3}{16} \alpha_B (1 - 3 \delta_A) pT_{33}^{BA}.$$

(30)

The asymmetries for the independent tensor-tensor correlations are given by,

$$\mathcal{A}[TT^{AB}_{(ij)(kl)}] = \int_a^{T_i} d\Omega_a \int_b^{T_k} d\Omega_b \left(\frac{d^2 \sigma}{\sigma d\Omega_a d\Omega_b} \right) (i \neq j, k \neq l)$$

$$= \left(\frac{4}{3\pi} \right)^2 (1 - 3 \delta_A) (1 - 3 \delta_B) TT^{AB}_{(ij)(kl)}.$$

(31)

$$\mathcal{A}[TT^{AB}_{(i)(11-22)}] = \int_a^{T_i} d\Omega_a \int_b^{T_{11-22}} d\Omega_b \left(\frac{d^2 \sigma}{\sigma d\Omega_a d\Omega_b} \right) (i \neq j)$$

$$= \left(\frac{8}{9\pi^2} \right) (1 - 3 \delta_A) (1 - 3 \delta_B) TT^{AB}_{(i)(11-22)}.$$

(32)

$$\mathcal{A}[TT^{AB}_{(11-22)(ij)}] = \int_a^{T_{11-22}} d\Omega_a \int_b^{T_i} d\Omega_b \left(\frac{d^2 \sigma}{\sigma d\Omega_a d\Omega_b} \right) (i \neq j)$$

$$= \left(\frac{8}{9\pi^2} \right) (1 - 3 \delta_A) (1 - 3 \delta_B) TT^{AB}_{(11-22)(ij)},$$

(33)

$$\mathcal{A}[TT^{AB}_{(ij)33}] = \int_a^{T_i} d\Omega_a \int_b^{T_{33}} d\Omega_b \left(\frac{d^2 \sigma}{\sigma d\Omega_a d\Omega_b} \right) (i \neq j)$$

$$= \left(\frac{1}{2\pi} \right)^2 (1 - 3 \delta_A) (1 - 3 \delta_B) TT^{AB}_{(ij)33}.$$

(34)

$$\mathcal{A}[TT^{AB}_{33(ij)}] = \int_a^{T_{33}} d\Omega_a \int_b^{T_i} d\Omega_b \left(\frac{d^2 \sigma}{\sigma d\Omega_a d\Omega_b} \right) (i \neq j)$$

$$= \left(\frac{1}{2\pi} \right)^2 (1 - 3 \delta_A) (1 - 3 \delta_B) TT^{AB}_{33(ij)}.$$

(35)
For the numerical purpose, all the independent (25) tensor-tensor correlation asymmetries can be obtained
as,

\[
\mathcal{A}_{mn}[TT^{AB}] = \frac{\sigma(\mathcal{e}_m^{ab} \mathcal{e}_n^{ab} > 0) - \sigma(\mathcal{e}_m^{ab} \mathcal{e}_n^{ab} < 0)}{\sigma(\mathcal{e}_m^{ab} \mathcal{e}_n^{ab} > 0) + \sigma(\mathcal{e}_m^{ab} \mathcal{e}_n^{ab} < 0)}, \quad m, n \in [1, 2, 3, 4, 5],
\]

(40)

where \(\mathcal{e}_m\) are the combinations of \(c_x, c_y, c_z\) given in Eq. (63) in appendix C.

The formalism we presented here for the spin correlations in all three cases, namely half-half, half-one
and one-one spin cases, gives the method to estimate all the spin correlations along with the polarizations
from the normalized production density matrix as well as from the joint angular distribution by constructing
several asymmetries. We test the formalism in some SM scattering processes in section 2.4 for all three
scenarios for the purpose of sanity checking. We will use some compact notations of the polarization and
correlation parameters and their asymmetries for aesthetic visibility. These notations are \(T_{11-22} = T_{11-22}\),
\(TT_{(mn)} = TT^{AB}_{(mn)(mn)}\). For example, we will use \(TT_{(xy)} = TT^{AB}_{(12)(12)}, TT_{(y^2-y^2)} = TT^{AB}_{(11-22)(11-22)}, TT_{(zz)} = TT^{AB}_{3333}\) etc.

2.3 Spin correlations in laboratory frame

The values of the polarization parameters \(p_i\) and \(T_{ij}\) depend on the choice of the reference frame, and thus,
the values of spin correlations do so. The above formalism of spin polarization and correlations is based
on the helicity frame, equivalent to the center-of-mass (CM) frame. For an \(e^-e^+\) collider, CM frame and
laboratory (Lab) frame are the same, while for a hadron collider such as the LHC, they are different due to
the involvement PDFs. In a hadron collider, the polarization density matrix of a single particle receives an
effective total rotation comprising boost and angular rotations, leaving the trace invariant going from CM to
Lab frame. As a result, the polarization parameters \(p_i\) and \(T_{ij}\) get transformed as \([1, 97, 98]\),

\[
\begin{align*}
p_{i}^{\text{Lab}} &= R_{i}^{Y}(\omega)p_{i}^{\text{CM}}, \\
T_{ij}^{\text{Lab}} &= R_{i}^{Y}(\omega)R_{j}^{Y}(\omega)T_{kl}^{\text{CM}},
\end{align*}
\]

(41)
where
\[
\cos \omega = \cos \theta_{CM} \cos \theta_{Lab} + \gamma_{CM} \sin \theta_{CM} \sin \theta_{lab},
\]
\[
\sin \omega = \frac{m}{E} (\sin \theta_{CM} \cos \theta_{Lab} - \gamma_{CM} \cos \theta_{CM} \sin \theta_{Lab}).
\] (42)

The spin correlation parameters \(pp\), \(pT\) and \(TT\) of a system of two particles \(A\) and \(B\), thus, get transformed as,
\[
[p_{ij}^{AB}]_{\text{Lab}} = R_{ik}^{Y} (\omega_A) R_{jk}^{Y} (\omega_B) \left[p_{kl}^{AB} \right]_{\text{CM}},
\]
\[
[p_{ijk}^{AB}]_{\text{Lab}} = R_{ij}^{Y} (\omega_A) R_{jk}^{Y} (\omega_B) R_{kn}^{Y} (\omega_B) \left[p_{lm}^{AB} \right]_{\text{CM}},
\]
\[
[T_{ijkl}^{AB}]_{\text{Lab}} = R_{im}^{Y} (\omega_A) R_{jn}^{Y} (\omega_A) R_{kp}^{T} (\omega_B) R_{lq}^{T} (\omega_B) \left[T_{mnpq}^{AB} \right]_{\text{CM}}.
\] (43)

Here, \(R_{i}^{Y}\) is the usual rotational matrix w.r.t. \(y\)-direction and \(\gamma_{CM} = 1/\sqrt{1 - p_{CM}^2}\) with \(p_{CM}\) being boost of the CM frame. The quantities \(m\) and \(E\) are the mass and energy of the particle in consideration, respectively.

2.4 Examples of spin correlations in the SM

As a demonstration of the formalism discussed above for the spin correlations along with polarizations, we choose three processes namely \(e^- e^+ \rightarrow t\bar{t}\), \(gb \rightarrow tW^-\) and \(e^- e^+ \rightarrow ZZ\) as examples of all three scenarios, i.e., half-half \((t\bar{t})\), half-one \((tW^-)\) and one-one \((ZZ)\) spin systems. The correlation and polarization parameters are constructed at the production level of the particles using the polarization-correlation matrices in Eqs. (11), (20), (27) as well as in their decay level using the normalized angular distributions of the decay products (Eqs. (12), (22), (29)) using the partial integration assuming on-shell production and decay of the mother particles. We calculate all the asymmetries related to spin correlations and polarizations of the particles at the production level using the helicity amplitude technique as a function of center-of-mass energy (c.m.e) in all three processes. At first, the polarization and correlations parameters are obtained with the method explained in appendix B. The asymmetries are then obtained with the appropriate coefficients given above.

We find all the \(CP\)-odd polarization and correlation parameters, i.e., all the parameters with only one \(y\)-suffix, e.g., \(p_y, T_{xy}, pp_{yz}, pT_{x(yz)}, TT_{(xy)zz}\) to be zero as they should be for the SM being \(CP\) conserving. However, correlations appearing with two \(y\)-suffix, e.g., \(pp_{xy}\), can be non-zero in general.

In the \(t\bar{t}\) production process, all the polarization and correlations except the \(CP\)-odd ones are non-vanishing. Furthermore, both \(t\) and \(\bar{t}\) have same values of \(p_x\) and opposite values of \(p_z\), i.e., \(p_x = p'_{x} = \gamma_{CM}\) and \(p_z = -p'_{z}\). The correlations \(pp_{xz}\) and \(pp_{zx}\) are equal and opposite because of the nature of individual \(p_x\) and \(p_z\).

In the \(tW^-\) production process, all the \(CP\)-even polarization and correlations are non-vanishing. There are no relations among the polarizations and correlations here, as the final state particles are entirely different.

In the \(ZZ\) production process, final state being symmetric, there are only eight independent polarizations and thirty six independent correlations\(^4\). Owing to the initial state symmetry, there are only three non-vanishing polarizations \((p_x, T_{x^2-y^2}, T_{zz})\), three non-vanishing vector-vector correlations (diagonals only, i.e., \(pp_{ii}, i = x, y, z\)), three non-vanishing vector-tensor correlations \((pT_{i(y)}, pT_{i(x^2-y^2)}, pT_{zz})\), and six non-vanishing tensor-tensor correlations \((TT_{(xy)}^{(xy)}, TT_{(xz)}^{(xz)}, TT_{(yz)}^{(yz)}, TT_{(x^2-y^2)}, TT_{(x^2-y^2)zz}, TT_{(zz)zz})\) totaling \(3 + 12 = 15\) non-vanishing polarization and correlations. Note that the correlation \(TT_{(xz)}^{(xz)}\) is non-vanishing even the\(^4\)Independent parameters are 3 piece \(p\), 5 piece \(T\), 6 independent \(pp\), 15 independent \(pT\) and 15 independent \(TT\).
Figure 2: The SM values of the asymmetries for spin correlations and polarizations are shown as a function of center-of-mass energy (c.m.e) for $e^-e^+ \rightarrow t\bar{t}$ in the left-top-panel, $e^-e^+ \rightarrow ZZ$ in the right-top-panel and $gb \rightarrow tW^-$ in the bottom-panel. The data points with errorbars correspond to 10^7 events generated in MadGraph5_aMC@NLO.

T_{xz} vanishes. Besides these, correlation of two CP odd polarizations ($pp_{yy}, pT_{(xy)}, TT_{(xy)2}, TT_{(xz)2}$) came out to be non-vanishing.

We further calculate all the asymmetries related to the polarizations and correlations using the angular distributions of the daughter particles in each production process by generating large number of events (10^7) in MadGraph5_aMC@NLO (mg5_aMC) Monte-Carlo event generator. The full processes, including decay, are chosen as follows,

$$e^- e^+ \rightarrow t\bar{t} : \quad t \rightarrow bW^+, \quad W^+ \rightarrow l^+ v_l; \quad \bar{t} \rightarrow \bar{b}W^-, \quad W^- \rightarrow l^- \bar{v}_l,$$

$$gb \rightarrow tW^- : \quad t \rightarrow bW^+, \quad W^+ \rightarrow l^+ v_l; \quad W^- \rightarrow l^- \bar{v}_l,$$

$$e^- e^+ \rightarrow ZZ : \quad Z \rightarrow e^- e^+, \quad Z \rightarrow \mu^+ \mu^-.$$ \hspace{1cm} (44)

We use the b (for t) and \bar{b} (for \bar{t}) angular distributions in $e^- e^+ \rightarrow t\bar{t}$ process, b (for t) and $l^- \ (for \ W^-)$ angular distributions in $gb \rightarrow tW^-$ process, and $e^- \ (for \ Z_1)$ and $\mu^- \ (for \ Z_2)$ angular distributions in $e^- e^+ \rightarrow ZZ$ process. For the top (t) polarization, one can also use the angular distributions of secondary lepton (l) with different analyzing power [7]. The SM values for some chosen asymmetries (in %) (away from zero) related
to spin correlations and polarizations are shown in Fig. 2 as a function of c.m.e (\sqrt{s}) in all three processes. The values for the same asymmetries from the Monte-Carlo simulation are shown with data points with an errorbar corresponding to 10^7 events. One easily finds an excellent agreement between the analytical values shown by lines and the Monte-Carlo simulated values shown by the points for a range of c.m.e. The asymmetries tend to saturate at some value as the energy increases in all three cases. The reasons are the following: The polarization and spin-correlation parameters are ratios of two quantities (cross sections), both depending on the velocity, which approaches unity as the energy increases. As a result, the polarization and spin-correlation parameters saturate to some values. We note that different cuts such as transverse momentum (p_T), pseudorapidity (η), etc., which are necessary for realistic scenarios, on the daughter particles will reduce the full angular phase-space. In that case, one can not recover the actual polarization and spin-correlation parameters from the asymmetries discussed above. Nevertheless, the asymmetries will be related to the polarizations and spin-correlations in the process, and they can be used to study BSM physics. We note that, although the spin density matrices assume on-shell production and decay, the finite width effect included in the MadGraph5_aMC@NLO (see Eq. (44)) simulation gives the identical results. In the next section, we investigate how these polarizations and correlations are affected by BSM physics and how the correlations perform over the polarizations in probing BSM physics.

3 New physics effect on spin correlations and polarizations

We investigate the effect of possible new physics on the spin correlations and polarizations in $e^- e^+ \rightarrow t\bar{t}$, $gb \rightarrow tW^- \gamma$ and $u\bar{d} \rightarrow ZW^+$ processes as example of all three scenarios, namely half-half ($t\bar{t}$), half-one ($tW^-\gamma$) and one-one (ZW^+) spin systems. We consider $\gamma t\bar{t}$, $g t\bar{t}$ and W^+W^-Z anomalous couplings as examples of new physics for $t\bar{t}$, $tW^-\gamma$ and ZW^+ production processes, respectively. The BSM Lagrangians for the $\gamma t\bar{t}$ [99], $g t\bar{t}$ [45] and W^+W^-Z [85] anomalous couplings are given by,

$$\mathcal{L}_{\gamma t} = -ie\frac{g}{m_t} \sigma^\mu\nu q_v \left(d_v^T + id_A^T \gamma_5 \right) t A_\mu,$$

$$\mathcal{L}_{g t} = -\frac{g_s}{m_t} \sigma^\mu\nu \left(d_v^T + id_A^T \gamma_5 \right) \frac{\lambda^a}{2} g_{\mu\nu}^a,$$

$$\mathcal{L}_{WWZ} = -\frac{ie\cos\theta_W}{\sin\theta_W} \left[\frac{\lambda^Z}{m_W} W^\mu W^\nu Z_\rho^\mu \rho + \frac{\tilde{\lambda}^Z}{m_W} W^\mu W^\nu \tilde{Z}_\rho^\mu \rho \right].$$

Here, q is the four-momentum transfer of the photon in $\mathcal{L}_{\gamma t}$; $G^\mu\nu$ are the gluon field strength tensor; λ^a are the Gell-Mann matrices; g_s is the strong coupling constant; m_t is the top quark mass; θ_W is the weak mixing angle: $W^\mu_{\nu} = \partial_{\mu} W^\nu_{\mu} - \partial_{\nu} W^\mu_{\mu}, Z_{\nu} = \partial_{\nu} Z_{\nu} - \partial_{\nu} Z_{\nu}, \tilde{Z}_{\nu} = 1/2\epsilon_{\mu\nu\rho\sigma} Z_{\rho\sigma}$. The $\gamma t\bar{t}$, $g t\bar{t}$ and W^+W^-Z vertices can have more anomalous couplings, but we restrict to only those in Eq. (45) for simplicity. All the couplings $d^{T/s}_A$, λ^Z and $\tilde{\lambda}^Z$ are zero in the SM. $d^{T/s}_A$, λ^Z and $\tilde{\lambda}^Z$ are CP-even; $d^{T/s}_A$, λ^Z and $\tilde{\lambda}^Z$ are CP-odd. The coupling d^{T}_v (d^{s}_v) corresponds to top quark magnetic (chromomagnetic) dipole moment, whereas d^{T}_A (d^{s}_A) correspond to electric (chromoelectric) dipole moment.

Effect of anomalous $\gamma t\bar{t}$ couplings in $e^- e^+ \rightarrow t\bar{t}$: We calculate all the polarizations of t and \bar{t} and their spin correlations in $e^- e^+ \rightarrow t\bar{t}$, analytically from the production process, as a function of the anomalous couplings d^{T}_v and d^{s}_v for a fixed c.m.e of $\sqrt{s} = 500$ GeV in the same decay channel as considered in the SM example.
Figure 3: The absolute deviation of the asymmetry from the SM, i.e., $|\Delta \mathcal{A}| = |\mathcal{A}_{SM+BSM} - \mathcal{A}_{SM}|$ and their square sum, i.e., $\sum |\Delta \mathcal{A}|^2$ are shown as a function of anomalous couplings in the process $e^- e^+ \rightarrow t \bar{t}$ at $\sqrt{s} = 500$ GeV.

given in Eq. (44). The CP-odd coupling d^γ_v appears linearly on the numerator of CP-odd parameters (p_{ij}^{vI}, pp_{ij}, $ij = y$) and only quadratically on the diagonal correlations pp_{ii}. The CP-even coupling d^γ_Λ appears linearly on the numerators of CP-even polarizations (p_{ix}^{Iv}, p_{ix}^{xI}) and off diagonal correlations pp_{ij}, $(i \neq j)$, while the numerators of diagonal correlations (pp_{ii}) have linear as well as quadratic contribution of d^γ_v. The polarization asymmetries for t and \bar{t} are identical except $\mathcal{A}[p_{ix}]$ being opposite. We calculate the deviations of all the asymmetries from the SM, i.e., $|\Delta \mathcal{A}| = |\mathcal{A}_{SM+BSM} - \mathcal{A}_{SM}|$ as functions of the couplings and show their absolute values ($|\Delta \mathcal{A}|$) in percentage (%) in Fig. 3 in the top-row to see their relative strengths. Here, $|\Delta \mathcal{A}[p_{ij}^{vI}]| = |\Delta \mathcal{A}[p_{ij}^{Iv}]|$ and $|\Delta \mathcal{A}[pp_{ij}^{vI}]| = |\Delta \mathcal{A}[pp_{ij}^{Iv}]|$. In Fig. 3 top-row, only one asymmetry is shown in the case of degenerate asymmetries. The $|\Delta \mathcal{A}|$ can be considered as sensitivity if we assume 1% errors for the asymmetries, which corresponds to 10^4 events in the SM. We see that, polarization asymmetries $\mathcal{A}[p_{ix}^{Iv}]$, $\mathcal{A}[p_{ix}^{vI}]$ show large deviation for small values of d^γ_v and $\mathcal{A}[p_{ij}^{vI}]$ for small values of d^γ_Λ. The correlation asymmetries also show similar behavior, especially for d^γ_Λ. We compare the correlation asymmetries and the polarization asymmetries by taking quadratic sum of the $|\Delta \mathcal{A}|$, i.e., $\sum_i |\Delta \mathcal{A}[p_{ii}]|^2$ and $\sum_{ij} |\Delta \mathcal{A}[pp_{ij}]|^2$. These quadratic sums are equivalent to χ^2 for 10^4 events in the SM. In Fig. 3 bottom-row, we show the $\sum |\Delta \mathcal{A}|^2$ for polarization asymmetries, correlation asymmetries and their sum. The correlation asymmetries offer
significant improvement over the polarization asymmetries in probing the anomalous couplings, especially for the CP-odd coupling d_A^V.

![Graphs showing asymmetry deviations](image)

Figure 4: The absolute deviation of the asymmetry from the SM ($|\Delta \mathcal{A}|$) and their square sum ($\sum |\Delta \mathcal{A}|^2$) are shown as a function of anomalous couplings in the process $gb \rightarrow tW^-$ at $\sqrt{s} = 1$ TeV.

Effect of anomalous $g\bar{t}t$ couplings in $gb \rightarrow tW^-$: In $gb \rightarrow tW^-$ partonic process, we choose the same decay channel chosen for the SM example in sec. 2.4 given in Eq. (44). In this case, we use decay distribution of the daughters of t and W^- to obtain their polarization and correlation asymmetries by generating large number of events (10^6) in mg5_aMC for a range of couplings d_V^g at partonic $\sqrt{s} = 1$ TeV.

In this process, all the polarization and correlation asymmetries are entirely different from each other. In Fig. 4 top-row, we show the absolute deviation of the asymmetries from the SM ($|\Delta \mathcal{A}|$) as a function of couplings for all the asymmetries for completeness. The legends are shown only for the asymmetries having $|\Delta \mathcal{A}| > 1$ within the range of couplings shown. There are many correlation asymmetries along with polarization asymmetries that show large $|\Delta \mathcal{A}|$ for small values of couplings. For example, along with the polarization asymmetries $\mathcal{A}[p_W^V]$ and $\mathcal{A}[p_V^W]$, the correlation asymmetries $\mathcal{A}[pp_{xV}]$ and $\mathcal{A}[pp_{xW}]$ also show large $\Delta \mathcal{A}$ for small values of d_V^g, see Fig. 4 left-top-panel. Similarly for the CP-odd coupling d_A^V, shown in Fig. 4 right-top-panel, the correlation asymmetries $\mathcal{A}[pp_{xV}^W]$ and $\mathcal{A}[pp_{xW}^W]$ along with the polarization
asymmetries $\mathcal{A} \left[p^W \right]$ and $\mathcal{A} \left[p^t \right]$ have large $\Delta \mathcal{A}$ for small values of coupling. Thus it is expected that the correlation asymmetries will improve over the polarization asymmetries in $\sum |\Delta \mathcal{A}|^2$, which are shown in Fig. 4 in the bottom-row for both couplings d^ν_W and d^\lambdachargeW. The $\sum |\Delta \mathcal{A}|^2$ for correlation asymmetries ($\mathcal{A}^{\text{corr}}$) are better than that of top polarization asymmetries (\mathcal{A}^{pol}) for both couplings although not better than W polarization asymmetries (\mathcal{A}^W). However, the combined $|\Delta \mathcal{A}|^2$ of polarization and correlation asymmetries improve significantly over the polarization asymmetries.

![Image of graphs showing asymmetry deviations as a function of anomalous couplings](image)

Figure 5: The absolute deviation of the asymmetry from the SM ($|\Delta \mathcal{A}|$) and their square sum ($\sum |\Delta \mathcal{A}|^2$) are shown as a function of anomalous couplings in the process $u\bar{d} \toZW^+$ at $\sqrt{s} = 1$ TeV.

Effect of WWZ anomalous couplings in $u\bar{d} \toZW^+$: We choose the $u\bar{d} \toZW^+$ partonic process as an example to see the effect of anomalous WWZ couplings, one CP-even coupling λZ and one CP-odd coupling $\tilde{\lambda} Z$ (see Eq. (45)), on the polarizations and spin correlations of Z and W^+. The ZW^+ production process including decay is chosen to be,

$$u\bar{d} \toZW^+ : \ Z \to e^+e^-; \ W^+ \to \mu^+\nu\mu.$$ \hspace{1cm} (46)

In this process too, we use decay distribution of the daughters of Z and W^+ to obtain their polarization and correlation asymmetries by generating large number of events (10^6) in mg5_aMC at $\sqrt{s} = 1$ TeV with varying the anomalous couplings λZ and $\tilde{\lambda} Z$. Here also, all the asymmetries are entirely independent of each other, as the final states are entirely different. In Fig. 5, we show the absolute deviation of all the polarization and correlation asymmetries from the SM ($|\Delta \mathcal{A}|$) as a function of the couplings in _top-row_. We labeled the
plot lines only for the asymmetries having $|\Delta \mathcal{A}| > 1$ within the range of couplings shown. For the range of couplings shown in Fig. 5, $|\Delta \mathcal{A}|$ for some parameters for Z and W^+ happen to be same or very close, e.g., $|\Delta \mathcal{A} [T^W_{x \rightarrow y}]| \simeq |\Delta \mathcal{A} [T^Z_{x \rightarrow y}]|$ appearing for λ^Z in the left-top-panel and $|\Delta \mathcal{A} [T^W_{y}]| \simeq |\Delta \mathcal{A} [T^Z_{y}]|$ appearing for $\tilde{\lambda}^Z$ in the right-top-panel. The correlation asymmetries also show large and comparable deviations as the polarization asymmetries do. For example, $|\Delta \mathcal{A}|$ for the correlation asymmetries $\mathcal{A} [pp^Z_{zz}], \mathcal{A} [TT^Z_{(x,y)^2}]$, and $\mathcal{A} [TT^Z_{(x \rightarrow y)^2}]$ are large and comparable to the polarization asymmetries $\mathcal{A} [p^W_{y}], \mathcal{A} [p^W_{z}]$, and $\mathcal{A} [T^W_{y}/2]$ for small values of λ^Z, see left-top-panel in Fig. 5. Similar argument is true for $\tilde{\lambda}^Z$ shown in the right-top-panel of Fig. 5. For example, apart from the polarization asymmetries $\mathcal{A} [p^W_{y}], \mathcal{A} [p^W_{z}]$, and $\mathcal{A} [T^W_{y}/2]$, the correlation asymmetries $\mathcal{A} [pp^Z_{zz}], \mathcal{A} [TT^Z_{(x,y)^2}], \mathcal{A} [TT^Z_{(x \rightarrow y)^2}]$, and $\mathcal{A} [pp^Z_{zz}]$ also show comparable deviation for small value of couplings, see right-top-panel in Fig. 5. The quadratic sum of $|\Delta \mathcal{A}|$ for the correlation asymmetries (\mathcal{A}^Z) is comparable to the polarization asymmetries of (\mathcal{A}^W) and the polarization asymmetries of $W (\mathcal{A}^W)$ for both the couplings λ^Z and $\tilde{\lambda}^Z$, see bottom-panel in Fig. 5. The combinations of the correlations and the polarizations show significant improvement over the combined polarizations $(\mathcal{A}^Z + \mathcal{A}^W)$ for both the couplings λ^Z and $\tilde{\lambda}^Z$.

From the three cases we discussed above, it is evident that the spin correlations play a significant role along with the polarizations in probing new physics. The overall effect is more prominent for CP-odd couplings ($d_A^T, d_A^Z, \tilde{\lambda}^Z$) than the CP-even couplings (d_V^T, λ^Z, d_V^Z). The partonic $Z W^+$ and $t W^-$ production processes are possible in a hadronic collider such as the LHC, where initial states are folded with parton distribution functions. In this case, the Lab frame will be different from the CM frame, and we have to consider the boost and rotations of the polarization and spin correlations through the relations given in section 2.3. Realistic effects, such as initial state radiation (ISR), final state radiation (FSR), hadronization and detector effects, will affect the polarization and correlations. All three processes contain missing neutrinos, which need to be reconstructed to obtain the rest frame of the particles whose polarization and correlations are to be obtained. Reconstruction of missing neutrinos along with realistic effects would change the way $|\Delta A|$ depends on the anomalous couplings. Usually, these effects lead to lower sensitivity to anomalous couplings, but in some cases, the sensitivity can go up, e.g., see Ref. [76] for W polarizations.

3.1 Note on higher order effect

Besides the realistic effects at colliders, higher order perturbative effects are important and should be taken into consideration while estimating the polarization and spin correlations in scattering processes [70, 76, 77]. Though the polarization and spin correlations receive corrections from higher order effect and changes from the tree level value, the formalism we discuss here holds in SM and BSM [7]. Higher order radiative corrections to a full $2 \rightarrow n$ process involve correction to the production part alone, the decay part alone, and the non-factorizable correction connecting the production and decay part.

Corrections only to the production process will change the polarization and spin correlation and hence change the decay product distributions. But the asymmetries from the decay product distribution do measure the polarization and spin correlation, including higher order effects.

On the other hand, real emission from the decay products changes the energy and angle factorization of decay density matrices, hence changing the decay product distributions. However, whether QCD or QED, these corrections are very small and can be neglected [100, 101] if the decay products are color-neutral.
Non-factorizable higher order corrections are also negligible for off-shell weak boson [102, 103] as well as top quark [104–107] production, while zero for on-shell production case and will not affect the decay product distributions.

4 Summary

To summarize, we presented a formalism for the spin correlations of two-particle systems with spins half-half, half-one, and one-one and showed the connection of these correlations with the joint angular distributions of the decay products by identifying the asymmetries for them. We validated the formalism in the SM in three processes, such as $e^- e^+ \rightarrow t \bar{t}$, $gb \rightarrow tW^-$ and $e^- e^+ \rightarrow ZZ$ by calculating the correlations from the production process as well as from the decay angular distributions by generating events in mg5_aMC with complete decay chains with finite width effects of the mother particles. We find that although some individual polarizations vanish in the SM, their correlations do not, e.g., CP-odd polarizations p_y vanish for all particles, but p_{xy} do not vanish in any of the three scenarios. We then investigated the effect of some possible new physics on the correlations and polarizations in three processes, such as $\gamma t\bar{t}$ anomalous couplings in $e^- e^+ \rightarrow t\bar{t}$ process, $g t \bar{t}$ anomalous couplings in $gb \rightarrow tW^-$ process, and $W^+ W^- Z$ anomalous couplings in $u \bar{d} \rightarrow ZW^+$ process. We compare the polarization and correlation asymmetries individually in terms of absolute deviation from the SM ($|\Delta \mathcal{A}|$) as well as combined way by taking the quadratic sum of $|\Delta \mathcal{A}|$ in all three processes. The spin correlations have the potential to provide a significant improvement over the polarizations in probing the anomalous couplings. With a large set of spin correlations asymmetries, it will help to study a large number of anomalous couplings simultaneously in a given process. It is straightforward to extend this method of describing spin correlations of two particles to describe spin correlations of more than two particles [108], which is beyond the scope of this paper.

Acknowledgment: The work of RR is supported by funding available from the Department of Atomic Energy, Government of India, for the Regional Centre for Accelerator-based Particle Physics (RECAPP), Harish-Chandra Research Institute. The work of RKS is partially supported by SERB, DST, Government of India through the project EMR/2017/002778.

A Spin matrices and normalized decay density matrices

The Pauli spin-1/2 matrices are

$$
\tau_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \tau_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \tau_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.
$$

(47)

The spin-1 matrices are given by,

$$
S_x = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \quad S_y = \frac{i}{\sqrt{2}} \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}, \quad S_z = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}.
$$

(48)
The normalized decay density matrices at the helicity rest frame for spin-1/2 particles and spin-1 particles are given by [2],

\[
\Gamma_1(\lambda, \lambda') = \begin{bmatrix}
\frac{1 + \alpha \cos \theta}{2} & \frac{\alpha \sin \theta}{2} e^{i\phi} \\
\frac{\alpha \sin \theta}{2} e^{-i\phi} & \frac{1 - \alpha \cos \theta}{2}
\end{bmatrix}
\]

and

\[
\Gamma_2(\lambda, \lambda') = \begin{bmatrix}
\frac{1 + \delta + (1 - 3\delta) \cos^2 \theta + 2\alpha \cos \theta}{4} & \frac{\sin \theta (\alpha + (1 - 3\delta) \cos \theta)}{2\sqrt{2}} e^{i\phi} \\
\frac{\sin \theta (\alpha + (1 - 3\delta) \cos \theta)}{2\sqrt{2}} e^{-i\phi} & \frac{1 - \delta + (1 - 3\delta) \cos^2 \theta - 2\alpha \cos \theta}{4}
\end{bmatrix}
\]

respectively with \(\theta \) and \(\phi \) being the polar and azimuthal angle of the decay products, in the rest frame or helicity rest frame of the mother particles. The \(\alpha \)s are called spin analyzing power of the decay products. For the spin-1/2 particle \(f \) decaying to another spin-1/2 fermion \(f' \) and a spin-1 vector boson \(V \) through the vertex structure \(f f' \gamma_\mu (C_L P_L + C_R P_R) f' V_\mu \), \(P_{L/R} = \frac{1}{2} (1 \mp \gamma_5) \), the analyzing power \(\alpha \) is given by [2],

\[
\alpha_1 = \frac{(C_R^2 - C_L^2)(1 - x_1^2 - 2x_2^2)\sqrt{1 + (x_1^2 - x_2^2)^2 - 2(x_1^2 + x_2^2)}}{(C_R^2 + C_L^2)(1 - 2x_1^2 + x_1^4 + x_2^4 + x_1^2x_2^2 + x_1^2 - 2x_2^2) - 12C_L C_R x_1 x_2},
\]

(51)

where \(x_i = m_i/m \) with \(m_i \) as the mass of daughters and \(m \) as the mass of mother particle. In the case of \(t \to bW^+ \) decay, within the SM we have \(\alpha \approx -0.396 \). For the case of \(V \to f f' \) decay through the same decay vertex as above, the analyzing power \(\alpha \) and \(\delta \) are given by [2],

\[
\alpha_2 = \frac{2(C_R^2 - C_L^2)\sqrt{1 + (x_1^2 - x_2^2)^2 - 2(x_1^2 + x_2^2)}}{12C_L C_R x_1 x_2 + (C_R^2 + C_L^2)[2 - (x_1^2 - x_2^2)^2 + (x_1^2 + x_2^2)]},
\]

(52)

\[
\delta = \frac{4C_L C_R x_1 x_2 + (C_R^2 + C_L^2)[(x_1^2 + x_2^2) - (x_1^2 - x_2^2)^2]}{12C_L C_R x_1 x_2 + (C_R^2 + C_L^2)[2 - (x_1^2 - x_2^2)^2 + (x_1^2 + x_2^2)]}.
\]

(53)

For massless final state fermions, \(x_1 \to 0 \), \(x_2 \to 0 \); one obtains \(\delta \to 0 \) and \(\alpha \to (C_R^2 - C_L^2)/(C_R^2 + C_L^2) \). Furthermore, for the \(W \) decay, within the SM we have \(C_R = 0 \) and thus \(\alpha = -1 \). For the \(Z \) decay to \(l^+l^- \), \(\alpha \approx -0.2193 \).

B Spin correlations from production process in spin-1/2 – spin-1/2 case

The harmitian spin-polarization density matrix for spin-1/2 – spin-1/2 case in Eq. (11) will be expanded into

\[
P_{AB(1,1)}(\lambda_A, \lambda_B', \lambda_A', \lambda_B) = \begin{bmatrix}
1 + p_3^A + p_3^B + p_{33}^{AB} & p_3^B + p p_{33}^{AB} - i(p p_{23}^{AB} + p_2^B) & p p_{12}^{AB} - i(p p_{12}^{AB} + p_1^B) & p p_{13}^{AB} - i(p p_{13}^{AB} + p_2^B) \\
1 + p_3^A - p_3^B - p_{33}^{AB} & p_3^B + p p_{33}^{AB} + i(p p_{23}^{AB} + p_2^B) & p p_{12}^{AB} + i(p p_{12}^{AB} - p_1^B) & p p_{13}^{AB} + i(p p_{13}^{AB} - p_2^B) \\
1 - p_3^A - p_3^B - p_{33}^{AB} & p_3^B + p p_{33}^{AB} - i(p p_{23}^{AB} + p_2^B) & p p_{12}^{AB} - i(p p_{12}^{AB} + p_1^B) & p p_{13}^{AB} + i(p p_{13}^{AB} - p_2^B) \\
1 - p_3^A + p_3^B + p_{33}^{AB} & p_3^B + p p_{33}^{AB} + i(p p_{23}^{AB} + p_2^B) & p p_{12}^{AB} + i(p p_{12}^{AB} - p_1^B) & p p_{13}^{AB} - i(p p_{13}^{AB} - p_2^B)
\end{bmatrix}
\]

(54)
which can be compared to the normalized production density matrix \(\rho \) of \(A \) and \(B \) given below,

\[
P_{AB(1,1)}(\lambda_A, \lambda'_A, \lambda_B, \lambda'_B) = \frac{1}{\sigma_p} \begin{bmatrix}
\rho_{(+)} & \rho_{(+)} & \rho_{(+)} & \rho_{(+)} \\
\rho_{(+)} & \rho_{(+)} & \rho_{(+)} & \rho_{(+)} \\
\rho_{(+)} & \rho_{(+)} & \rho_{(+)} & \rho_{(+)} \\
\rho_{(+)} & \rho_{(+)} & \rho_{(+)} & \rho_{(+)}
\end{bmatrix}.
\] (55)

Here, we have used the notations \(+ \equiv (+1/2) \) and \(- \equiv (-1/2) \) for the helicities of the spin-1/2 particles \(A \) and \(B \). One obtains the following relations for the polarizations and spin-correlations in terms of \(\rho \):

\[
\begin{align*}
p^A_1 &= \frac{[\rho_{(--)} + \rho_{(--) +} + \rho_{(++) +}] / \sigma_p,}{p^A_2 = -i[\rho_{(--)} + \rho_{(--) +} - \rho_{(++) --}] / \sigma_p,} \\
p^A_3 &= [\rho_{(--)} - \rho_{(--) +} + \rho_{(++) +}] / \sigma_p, \\
p^B_1 &= [\rho_{(--)} + \rho_{(--) +} + \rho_{(++) --}] / \sigma_p, \\
p^B_2 &= -i[\rho_{(--)} - \rho_{(--) +} + \rho_{(++) --}] / \sigma_p, \\
p^B_3 &= [-\rho_{(--)} + \rho_{(--) +} - \rho_{(++) --}] / \sigma_p, \\
p^{AB}_1 &= [\rho_{(--)} + \rho_{(--) +} + \rho_{(++) --}] / \sigma_p, \\
p^{AB}_2 &= -i[\rho_{(--)} - \rho_{(--) +} + \rho_{(++) --}] / \sigma_p, \\
p^{AB}_3 &= [\rho_{(--)} + \rho_{(--) +} - \rho_{(++) --}] / \sigma_p, \\
p^{AB}_4 &= i[\rho_{(--)} - \rho_{(--) +} + \rho_{(++) --}] / \sigma_p, \\
p^{AB}_5 &= [\rho_{(--)} - \rho_{(--) +} - \rho_{(++) --}] / \sigma_p.
\end{align*}
\] (56)

In case of spin-1/2 – spin-1 and spin-1 – spin1 correlations, one needs to use the trace equations and symmetry conditions (Eq. (21), Eq. (28)) along with Eq. (4) to solve for the polarization and correlation parameters.

C **Asymmetries for tensor polarizations of spin-1 particles**

The asymmetries for the five independent tensor \((T) \) polarizations of a spin-1 particle \(A \) are given by the following equations [3, 96],

\[
\mathcal{A}^{[T^A]}_{12} \equiv \left(\int_{\theta_a=0}^{\pi} \int_{\phi_a=0}^{2\pi} \int_{\theta_a=0}^{\pi} \int_{\phi_a=0}^{2\pi} \right) d\Omega_a \left(\frac{d\sigma}{d\Omega_a} \right) \frac{1}{2} \sqrt{\frac{2}{3}(1 - 3\delta_a)} T^A_{12},
\] (57)
\[\mathcal{A}[T^{A}_{13}] = \left(\int_{\theta_a=0}^{\pi} \int_{\phi_a=-\frac{\pi}{2}}^{\frac{\pi}{2}} - \int_{\theta_a=0}^{\pi} \int_{\phi_a=-\frac{\pi}{2}}^{\frac{\pi}{2}} \right) d\Omega_a \left(\frac{1}{\sigma} \frac{d\sigma}{d\Omega_a} \right) + \left(\int_{\theta_a=0}^{\pi} \int_{\phi_a=\frac{\pi}{2}}^{\pi} - \int_{\theta_a=0}^{\pi} \int_{\phi_a=0}^{\pi} \right) d\Omega_a \left(\frac{1}{\sigma} \frac{d\sigma}{d\Omega_a} \right) \]

\[\mathcal{A}[T^{A}_{23}] = \left(\int_{\theta_a=0}^{\pi} \int_{\phi_a=0}^{\pi} - \int_{\theta_a=0}^{\pi} \int_{\phi_a=0}^{\pi} \right) d\Omega_a \left(\frac{1}{\sigma} \frac{d\sigma}{d\Omega_a} \right) + \left(\int_{\theta_a=0}^{\pi} \int_{\phi_a=\pi}^{\frac{\pi}{2}} - \int_{\theta_a=0}^{\pi} \int_{\phi_a=\frac{\pi}{2}}^{\frac{\pi}{2}} \right) d\Omega_a \left(\frac{1}{\sigma} \frac{d\sigma}{d\Omega_a} \right) \]

\[\mathcal{A}[T^{A}_{11-22}] = \left(\int_{\theta_a=0}^{\pi} \int_{\phi_a=0}^{\pi} - \int_{\theta_a=0}^{\pi} \int_{\phi_a=0}^{\pi} \right) d\Omega_a \left(\frac{1}{\sigma} \frac{d\sigma}{d\Omega_a} \right) + \left(\int_{\theta_a=0}^{\pi} \int_{\phi_a=\pi}^{\frac{\pi}{2}} - \int_{\theta_a=0}^{\pi} \int_{\phi_a=\frac{\pi}{2}}^{\frac{\pi}{2}} \right) d\Omega_a \left(\frac{1}{\sigma} \frac{d\sigma}{d\Omega_a} \right) \]

\[\mathcal{A}[T^{A}_{33}] = \left(\int_{\theta_a=0}^{\pi} \int_{\phi_a=0}^{\pi} - \int_{\theta_a=0}^{\pi} \int_{\phi_a=0}^{\pi} \right) d\Omega_a \left(\frac{1}{\sigma} \frac{d\sigma}{d\Omega_a} \right) + \left(\int_{\theta_a=0}^{\pi} \int_{\phi_a=\pi}^{\frac{\pi}{2}} - \int_{\theta_a=0}^{\pi} \int_{\phi_a=\frac{\pi}{2}}^{\frac{\pi}{2}} \right) d\Omega_a \left(\frac{1}{\sigma} \frac{d\sigma}{d\Omega_a} \right) \]

with \(a \) being a daughter of the particle \(A \). For the numerical purpose, these five asymmetries can also be obtained as,

\[\mathcal{A}_m[A^A] = \frac{\sigma(\mathcal{E}_m^A > 0) - \sigma(\mathcal{E}_m^A < 0)}{\sigma(\mathcal{E}_m^A > 0) + \sigma(\mathcal{E}_m^A < 0)}, \quad m \in [1,2,3,4,5], \]

with

\[\mathcal{E}_m = \left[c_x c_y, \ c_x c_z, \ c_y c_z, \ c_x^2 - c_y^2, \ \sqrt{c_x^2 + c_y^2} |(4c_x^2 - 1) = \sin(3\theta) \right]. \]

References

[1] C. Bourrely, J. Soffer, and E. Leader, *Polarization Phenomena in Hadronic Reactions*, Phys. Rept. 59 (1980) 95–297.

[2] F. Boudjema and R. K. Singh, *A Model independent spin analysis of fundamental particles using azimuthal asymmetries*, JHEP 07 (2009) 028, arXiv:0903.4705 [hep-ph].

[3] R. Rahaman and R. K. Singh, *On polarization parameters of spin-1 particles and anomalous couplings in \(e^+e^- \rightarrow ZZ/7\gamma \)*, Eur. Phys. J. C 76 no. 10, (2016) 539, arXiv:1604.06677 [hep-ph].

[4] G. L. Kane, G. A. Ladinsky, and C. P. Yuan, *Using the Top Quark for Testing Standard Model Polarization and CP Predictions*, Phys. Rev. D 45 (1992) 124–141.
[5] M. Jezabek and J. H. Kuhn, V-A tests through leptons from polarized top quarks, *Phys. Lett. B* **329** (1994) 317–324, arXiv:hep-ph/9403366.

[6] K.-i. Hikasa, J. M. Yang, and B.-L. Young, R-parity violation and top quark polarization at the Fermilab Tevatron collider, *Phys. Rev. D* **60** (1999) 114041, arXiv:hep-ph/9908231.

[7] R. M. Godbole, S. D. Rindani, and R. K. Singh, Lepton distribution as a probe of new physics in production and decay of the t quark and its polarization, *JHEP* **12** (2006) 021, arXiv:hep-ph/0605100.

[8] M. Perelstein and A. Weiler, Polarized Tops from Stop Decays at the LHC, *JHEP* **03** (2009) 141, arXiv:0811.1024 [hep-ph].

[9] K. Huitu, S. Kumar Rai, K. Rao, S. D. Rindani, and P. Sharma, Probing top charged-Higgs production using top polarization at the Large Hadron Collider, *JHEP* **04** (2011) 026, arXiv:1012.0527 [hep-ph].

[10] D. Choudhury, R. M. Godbole, S. D. Rindani, and P. Saha, Top polarization, forward-backward asymmetry and new physics, *Phys. Rev. D* **84** (2011) 014023, arXiv:1012.4750 [hep-ph].

[11] M. Arai, K. Huitu, S. K. Rai, and K. Rao, Single production of sleptons with polarized tops at the Large Hadron Collider, *JHEP* **08** (2010) 082, arXiv:1003.4708 [hep-ph].

[12] S. Gopalakrishna, T. Han, I. Lewis, Z.-g. Si, and Y.-F. Zhou, Chiral Couplings of W’ and Top Quark Polarization at the LHC, *Phys. Rev. D* **82** (2010) 115020, arXiv:1008.3508 [hep-ph].

[13] R. M. Godbole, K. Rao, S. D. Rindani, and R. K. Singh, On measurement of top polarization as a probe of t̅t̅ production mechanisms at the LHC, *JHEP* **11** (2010) 144, arXiv:1010.1458 [hep-ph].

[14] R. M. Godbole, L. Hartgring, I. Niessen, and C. D. White, Top polarisation studies in H⁻t and Wᵗ production, *JHEP* **01** (2012) 011, arXiv:1111.0759 [hep-ph].

[15] D. Krohn, T. Liu, J. Shelton, and L.-T. Wang, A Polarized View of the Top Asymmetry, *Phys. Rev. D* **84** (2011) 074034, arXiv:1105.3743 [hep-ph].

[16] S. D. Rindani and P. Sharma, Probing anomalous tbW couplings in single-top production using top polarization at the Large Hadron Collider, *JHEP* **11** (2011) 082, arXiv:1107.2597 [hep-ph].

[17] J. Cao, K. Hikasa, L. Wang, L. Wu, and J. M. Yang, Testing new physics models by top charge asymmetry and polarization at the LHC, *Phys. Rev. D* **85** (2012) 014025, arXiv:1109.6543 [hep-ph].

[18] S. D. Rindani and P. Sharma, CP violation in tbW couplings at the LHC, *Phys. Lett. B* **712** (2012) 413–418, arXiv:1108.4165 [hep-ph].

[19] B. Bhattacharjee, S. K. Mandal, and M. Nojiri, Top Polarization and Stop Mixing from Boosted Jet Substructure, *JHEP* **03** (2013) 105, arXiv:1211.7261 [hep-ph].
[20] S. Fajfer, J. F. Kamenik, and B. Melic, *Discerning New Physics in Top-Antitop Production using Top Spin Observables at Hadron Colliders*, *JHEP* **08**(2012) 114, arXiv:1205.0264 [hep-ph].

[21] S. S. Biswal, S. D. Rindani, and P. Sharma, *Probing chromomagnetic and chromoelectric couplings of the top quark using its polarization in pair production at hadron colliders*, *Phys. Rev. D* **88**(2013) 074018, arXiv:1211.4075 [hep-ph].

[22] G. Belanger, R. M. Godbole, S. Kraml, and S. Kulkarni, *Top Polarization in Shbottom Decays at the LHC*, arXiv:1304.2987 [hep-ph].

[23] M. Baumgart and B. Tweedie, *Transverse Top Quark Polarization and the ttbar Forward-Backward Asymmetry*, *JHEP* **08**(2013) 072, arXiv:1303.1200 [hep-ph].

[24] R. M. Godbole, G. Mendiratta, and S. Rindani, *Looking for bSM physics using top-quark polarization and decay-lepton kinematic asymmetries*, *Phys. Rev. D* **92** no. 9, (2015) 094013, arXiv:1506.07486 [hep-ph].

[25] S. D. Rindani, P. Sharma, and A. W. Thomas, *Polarization of top quark as a probe of its chromomagnetic and chromoelectric couplings in tW production at the Large Hadron Collider*, *JHEP* **10**(2015) 180, arXiv:1507.08385 [hep-ph].

[26] S. D. Rindani, P. Sharma, and A. W. Thomas, *Polarization of the top quark as a probe of its chromomagnetic and chromoelectric couplings in single-top production at the Large Hadron Collider*, *PoS TOP2015* (2016) 063, arXiv:1510.08959 [hep-ph].

[27] S. Behera, R. Islam, M. Kumar, P. Poulose, and R. Rahaman, *Fingerprinting the Top quark FCNC via anomalous Ztq couplings at the LHeC*, *Phys. Rev. D* **100** no. 1, (2019) 015006, arXiv:1811.04681 [hep-ph].

[28] A. Arhrib, A. Jueid, and S. Moretti, *Top quark polarization as a probe of charged Higgs bosons*, *Phys. Rev. D* **98** no. 11, (2018) 115006, arXiv:1807.11306 [hep-ph].

[29] L. Wu and H. Zhou, *Polarization of top and chargino from stop decay in natural SUSY*, *Phys. Lett. B* **794** (2019) 96–102, arXiv:1811.08573 [hep-ph].

[30] H. Zhou and N. Liu, *Polarization of top quark in vector-like quark decay*, *Phys. Lett. B* **791** (2019) 1–5, arXiv:1901.02300 [hep-ph].

[31] A. Arhrib, A. Jueid, and S. Moretti, *Searching for Heavy Charged Higgs Bosons through Top Quark Polarization*, *Int. J. Mod. Phys. A* **35** no. 15n16, (2020) 2041011, arXiv:1903.11489 [hep-ph].

[32] R. Patrick, A. Scaffidi, and P. Sharma, *Top polarisation as a probe of CP-mixing top-Higgs coupling in tjh signals*, *Phys. Rev. D* **101** no. 9, (2020) 093005, arXiv:1909.12772 [hep-ph].

[33] K.-m. Cheung, *Probing nonstandard top couplings using spin correlation*, *Phys. Rev. D* **55** (1997) 4430–4434, arXiv:hep-ph/9610368.
[34] M. Arai, N. Okada, K. Smolek, and V. Simak, Top spin correlations in theories with large extra-dimensions at the large hadron collider, Phys. Rev. D 70 (2004) 115015, arXiv:hep-ph/0409273.

[35] M. Arai, N. Okada, K. Smolek, and V. Simak, Top quark spin correlations in the Randall-Sundrum model at the CERN Large Hadron Collider, Phys. Rev. D 75 (2007) 095008, arXiv:hep-ph/0701155.

[36] M. Arai, N. Okada, and K. Smolek, Effects of unparticle on top spin correlation at the Large Hadron Collider, Phys. Rev. D 79 (2009) 074019, arXiv:0902.0418 [hep-ph].

[37] C.-X. Yue, T.-T. Zhang, and J.-Y. Liu, The Scalars from the Topcolor Scenario and the Spin Correlations of the Top Pair Production at the LHC, J. Phys. G 37 (2010) 075016, arXiv:1003.2770 [hep-ph].

[38] C. Degrande, J.-M. Gerard, C. Grojean, F. Maltoni, and G. Servant, Non-resonant New Physics in Top Pair Production at Hadron Colliders, JHEP 03 (2011) 125, arXiv:1010.6304 [hep-ph].

[39] J. Cao, L. Wu, and J. M. Yang, New physics effects on top quark spin correlation and polarization at the LHC: a comparative study in different models, Phys. Rev. D 83 (2011) 034024, arXiv:1011.5564 [hep-ph].

[40] M. Baumgart and B. Tweedie, Discriminating Top-Antitop Resonances using Azimuthal Decay Correlations, JHEP 09 (2011) 049, arXiv:1104.2043 [hep-ph].

[41] V. Barger, W.-Y. Keung, and B. Yencho, Azimuthal Correlations in Top Pair Decays and The Effects of New Heavy Scalars, Phys. Rev. D 85 (2012) 034016, arXiv:1112.5173 [hep-ph].

[42] K. Kiers, P. Saha, A. Szynkman, D. London, S. Judge, and J. Melendez, Search for New Physics in Rare Top Decays: $t\bar{t}$ Spin Correlations and Other Observables, Phys. Rev. D 90 no. 9, (2014) 094015, arXiv:1407.1724 [hep-ph].

[43] W. Bernreuther and Z.-G. Si, Top quark spin correlations and polarization at the LHC: standard model predictions and effects of anomalous top chromo moments, Phys. Lett. B 725 (2013) 115–122, arXiv:1305.2066 [hep-ph]. [Erratum: Phys.Lett.B 744, 413–413 (2015)].

[44] W. Bernreuther, D. Heisler, and Z.-G. Si, A set of top quark spin correlation and polarization observables for the LHC: Standard Model predictions and new physics contributions, JHEP 12 (2015) 026, arXiv:1508.05271 [hep-ph].

[45] J. A. Aguilar-Saavedra, Dilepton azimuthal correlations in $t\bar{t}$ production, JHEP 09 (2018) 116, arXiv:1806.07438 [hep-ph].

[46] B. Ravina, E. Simpson, and J. Howarth, Observing $t\bar{t}Z$ spin correlations at the LHC, Eur. Phys. J. C 81 (2021) 809, arXiv:2106.09690 [hep-ph].
[47] **CDF** Collaboration, T. Aaltonen et al., *Measurement of $t\bar{t}$ Spin Correlation in $p\bar{p}$ Collisions Using the CDF II Detector at the Tevatron*, *Phys. Rev. D* **83** (2011) 031104, arXiv:1012.3093 [hep-ex].

[48] **D0** Collaboration, V. M. Abazov et al., *Measurement of spin correlation in $t\bar{t}$ production using a matrix element approach*, *Phys. Rev. Lett.* **107** (2011) 032001, arXiv:1104.5194 [hep-ex].

[49] **D0** Collaboration, V. M. Abazov et al., *Measurement of spin correlation in $t\bar{t}$ production using dilepton final states*, *Phys. Lett. B* **702** (2011) 16–23, arXiv:1103.1871 [hep-ex].

[50] **D0** Collaboration, V. M. Abazov et al., *Evidence for spin correlation in $t\bar{t}$ production*, *Phys. Rev. Lett.* **108** (2012) 032004, arXiv:1110.4194 [hep-ex].

[51] **D0** Collaboration, V. M. Abazov et al., *Measurement of Leptonic Asymmetries and Top Quark Polarization in $t\bar{t}$ Production*, *Phys. Rev. D* **87** no. 1, (2013) 011103, arXiv:1207.0364 [hep-ex].

[52] **D0** Collaboration, V. M. Abazov et al., *Measurement of Spin Correlation between Top and Antitop Quarks Produced in $p\bar{p}$ Collisions at $\sqrt{s} = 1.96$ TeV*, *Phys. Lett. B* **757** (2016) 199–206, arXiv:1512.08818 [hep-ex].

[53] Y.-J. Lee, *Measurement of the Top Quark Polarization in the Top Quark Pair Production using the Dilepton Final State Events at the Tevatron*. PhD thesis, Seoul Natl. U., Dept. Phys. Astron., 2018.

[54] **ATLAS** Collaboration, G. Aad et al., *Observation of spin correlation in $t\bar{t}$ events from pp collisions at $\sqrt{s} = 7$ TeV using the ATLAS detector*, *Phys. Rev. Lett.* **108** (2012) 212001, arXiv:1203.4081 [hep-ex].

[55] **ATLAS** Collaboration, G. Aad et al., *Measurement of Top Quark Polarization in Top-Antitop Events from Proton-Proton Collisions at $\sqrt{s} = 7$ TeV Using the ATLAS Detector*, *Phys. Rev. Lett.* **111** no. 23, (2013) 232002, arXiv:1307.6511 [hep-ex].

[56] **ATLAS** Collaboration, G. Aad et al., *Measurements of spin correlation in top-antitop quark events from proton-proton collisions at $\sqrt{s} = 7$ TeV using the ATLAS detector*, *Phys. Rev. D* **90** no. 11, (2014) 112016, arXiv:1407.4314 [hep-ex].

[57] **ATLAS** Collaboration, G. Aad et al., *Measurement of Spin Correlation in Top-Antitop Quark Events and Search for Top Squark Pair Production in pp Collisions at $\sqrt{s} = 8$ TeV Using the ATLAS Detector*, *Phys. Rev. Lett.* **114** no. 14, (2015) 142001, arXiv:1412.4742 [hep-ex].

[58] **CMS** Collaboration, V. Khachatryan et al., *Measurement of Spin Correlations in $t\bar{t}$ Production using the Matrix Element Method in the Muon+Jets Final State in pp Collisions at $\sqrt{s} = 8$ TeV*, *Phys. Lett. B* **758** (2016) 321–346, arXiv:1511.06170 [hep-ex].

[59] **ATLAS** Collaboration, G. Aad et al., *Measurement of the correlations between the polar angles of leptons from top quark decays in the helicity basis at $\sqrt{s} = 7$ TeV using the ATLAS detector*, *Phys. Rev. D* **93** no. 1, (2016) 012002, arXiv:1510.07478 [hep-ex].
[60] CMS Collaboration, A. Tiko, *Measurement of top quark polarisation in t-channel single top quark production*, in 9th International Workshop on Top Quark Physics. 2016. arXiv:1611.09397 [hep-ex].

[61] CMS Collaboration, V. Khachatryan et al., *Measurements of t t-bar spin correlations and top quark polarization using dilepton final states in pp collisions at sqrt(s) = 8 TeV*, *Phys. Rev. D* 93 no. 5, (2016) 052007, arXiv:1601.01107 [hep-ex].

[62] ATLAS Collaboration, M. Aaboud et al., *Measurements of top quark spin observables in t t events using dilepton final states in sqrt(s) = 8 TeV pp collisions with the ATLAS detector*, *JHEP* 03 (2017) 113, arXiv:1612.07004 [hep-ex].

[63] CMS Collaboration, A. M. Sirunyan et al., *Measurement of the top quark polarization and tâ spin correlations using dilepton final states in proton-proton collisions at sqrt(s) = 13 TeV*, *Phys. Rev. D* 100 no. 7, (2019) 072002, arXiv:1907.03729 [hep-ex].

[64] ATLAS Collaboration, M. Aaboud et al., *Measurements of top-quark pair spin correlations in the eµ channel at sqrt(s) = 13 TeV using pp collisions in the ATLAS detector*, *Eur. Phys. J. C* 80 no. 8, (2020) 754, arXiv:1903.07570 [hep-ex].

[65] OPAL Collaboration, G. Abbiendi et al., *Measurement of W boson polarizations and CP violating triple gauge couplings from W^+W^- production at LEP*, *Eur. Phys. J. C19* (2001) 229–240, arXiv:hep-ex/0009021 [hep-ex].

[66] R. Rahaman and R. K. Singh, *On the choice of beam polarization in e^+e^- → ZZ/Zγ and anomalous triple gauge-boson couplings*, *Eur. Phys. J. C77* no. 8, (2017) 521, arXiv:1703.06437 [hep-ph].

[67] R. Rahaman and R. K. Singh, *Constraining anomalous gauge boson couplings in e^+e^- → W^+W^- using polarization asymmetries with polarized beams*, arXiv:1711.04551 [hep-ph].

[68] J. Nakamura, *Polarisations of the Z and W bosons in the processes pp → ZH and pp → W^±H*, *JHEP* 08 (2017) 008, arXiv:1706.01816 [hep-ph].

[69] J. A. Aguilar-Saavedra, J. Bernabéu, V. A. Mitsou, and A. Segarra, *The Z boson spin observables as messengers of new physics*, *Eur. Phys. J. C77* no. 4, (2017) 234, arXiv:1701.03115 [hep-ph].

[70] R. Rahaman and R. K. Singh, *Anomalous triple gauge boson couplings in ZZ production at the LHC and the role of Z boson polarizations*, *Nucl. Phys. B* 948 (2019) 114754, arXiv:1810.11657 [hep-ph].

[71] K. Rao and S. D. Rindani, *W boson polarization as a measure of gauge-Higgs anomalous couplings at the LHC*, *Nucl. Phys. B* 940 (2019) 78–87, arXiv:1805.06602 [hep-ph].

[72] F. M. Renard, *Polarization effects due to dark matter interaction between massive standard particles*, arXiv:1802.10313 [hep-ph].
[73] F. M. Renard, Z Polarization in $e^+e^- \rightarrow t\bar{t}Z$ for testing the top quark mass structure and the presence of final interactions, arXiv:1803.10466 [hep-ph].

[74] F. M. Renard, W polarization in e^+e^-, gluon-gluon and $\gamma\gamma \rightarrow Wt\bar{b}$ for testing the top quark mass structure and the presence of final interactions, arXiv:1807.00621 [hep-ph].

[75] R. Rahaman and R. K. Singh, Probing the anomalous triple gauge boson couplings in $e^+e^- \rightarrow W^+W^-$ using W polarizations with polarized beams, Phys. Rev. D 101 no. 7, (2020) 075044, arXiv:1909.05496 [hep-ph].

[76] R. Rahaman and R. K. Singh, Unravelling the anomalous gauge boson couplings in ZW^\pm production at the LHC and the role of spin-1 polarizations, JHEP 04 (2020) 075, arXiv:1911.03111 [hep-ph].

[77] J. Baglio and N. Le Duc, Fiducial polarization observables in hadronic WZ production: A next-to-leading order QCD+EW study, JHEP 04 (2019) 065, arXiv:1810.11034 [hep-ph].

[78] J. Baglio and L. D. Ninh, Polarization observables in WZ production at the 13 TeV LHC: Inclusive case, Commun. in Phys. 30 no. 1, (2020) 35–47, arXiv:1910.13746 [hep-ph].

[79] A. Denner and G. Pelliccioli, Polarized electroweak bosons in W^+W^- production at the LHC including NLO QCD effects, JHEP 09 (2020) 164, arXiv:2006.14867 [hep-ph].

[80] A. Denner and G. Pelliccioli, NLO QCD predictions for doubly-polarized WZ production at the LHC, Phys. Lett. B 814 (2021) 136107, arXiv:2010.07149 [hep-ph].

[81] A. Denner and G. Pelliccioli, NLO EW and QCD corrections to polarized ZZ production in the four-charged-lepton channel at the LHC, arXiv:2107.06579 [hep-ph].

[82] R. Poncelet and A. Popescu, NNLO QCD study of polarised W^+W^- production at the LHC, JHEP 07 (2021) 023, arXiv:2102.13583 [hep-ph].

[83] ATLAS Collaboration, M. Aaboud et al., Measurement of $W^\pm Z$ production cross sections and gauge boson polarisation in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector, Eur. Phys. J. C 79 no. 6, (2019) 535, arXiv:1902.05759 [hep-ex].

[84] CMS Collaboration, Measurement of the pp \rightarrow WZ inclusive and differential cross sections, polarization angles and search for anomalous gauge couplings at $\sqrt{s} = 13$ TeV, CMS-PAS-SMP-20-014 (2021).

[85] K. Hagiwara, R. D. Peccei, D. Zeppenfeld, and K. Hikasa, Probing the Weak Boson Sector in $e^+e^- \rightarrow W^+W^-$, Nucl. Phys. B282 (1987) 253–307.

[86] J. Ohnemus, Hadronic ZZ, W^-W^+, and $W^\pm Z$ production with QCD corrections and leptonic decays, Phys. Rev. D 50 (1994) 1931–1945, arXiv:hep-ph/9403331.
[101] A. Czarnecki, M. Jezabek, and J. H. Kuhn, *Lepton Spectra From Decays of Polarized Top Quarks*, *Nucl. Phys. B* **351** (1991) 70–80.

[102] W. Beenakker, A. P. Chapovsky, and F. A. Berends, *Nonfactorizable corrections to W pair production*, *Phys. Lett. B* **411** (1997) 203–210, arXiv:hep-ph/9706339.

[103] A. Denner, S. Dittmaier, and M. Roth, *Nonfactorizable photonic corrections to e+ e- —> W W —> four fermions*, *Nucl. Phys. B* **519** (1998) 39–84, arXiv:hep-ph/9710521.

[104] A. Denner, S. Dittmaier, and M. Roth, *Further numerical results on nonfactorizable corrections to e+ e- —> four fermions*, *Phys. Lett. B* **429** (1998) 145–150, arXiv:hep-ph/9803306.

[105] C. Macesanu, *QCD loop corrections to top production and decay at e+ e- colliders*, *Phys. Rev. D* **65** (2002) 074036, arXiv:hep-ph/0112142.

[106] W. Bernreuther, A. Brandenburg, Z. G. Si, and P. Uwer, *Top quark pair production and decay at hadron colliders*, *Nucl. Phys. B* **690** (2004) 81–137, arXiv:hep-ph/0403035.

[107] K. Kolodziej, A. Staron, A. Lorca, and T. Riemann, *Factorizable electroweak O(alpha) corrections for top quark pair production and decay at a linear e+ e- collider*, *Eur. Phys. J. C* **46** (2006) 357–365, arXiv:hep-ph/0510195.

[108] R. Rahaman, *On two-body and three-body spin correlations in leptonic tTZ production and anomalous couplings at the LHC*, arXiv:2204.12152 [hep-ph].