Genetic interactions regulate hypoxia tolerance conferred by activating Notch in excitatory amino acid transporter 1-positive glial cells in *Drosophila melanogaster*

Dan Zhou, a Tsering Stobdan, a DeeAnn Visk, a,† Jin Xue, a Gabriel G. Haddad a,†,‡

* Division of Respiratory Medicine, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093
† Department of Neurosciences, University of California at San Diego, La Jolla, CA 92093
‡ Rady Children's Hospital, San Diego, CA 92123

1 Present address: DeeAnn Visk, DeeAnn Visk Consulting, Poway, CA 92064

© The Author(s) (2021). Published by Oxford University Press on behalf of the Genetics Society of America. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
Running Title: Notch interactions and hypoxia tolerance

Keywords: Notch signaling, Genetic interactions, Eaat1-positive glia, Hypoxia, *Drosophila melanogaster*

Corresponding authors:
Gabriel G. Haddad
Dan Zhou
9500 Gilman Dr. MC 0735
La Jolla, CA 92093-0735
Phone#: (858)-822-4740
E-mail: ghaddad@health.ucsd.edu
d2zhou@health.ucsd.edu
ABSTRACT

Hypoxia is a critical pathological element in many human diseases, including ischemic stroke, myocardial infarction and solid tumors. Of particular significance and interest of ours are the cellular and molecular mechanisms that underlie susceptibility or tolerance to low O\(_2\). Previous studies have demonstrated that Notch signaling pathway regulates hypoxia tolerance in both *Drosophila melanogaster* and humans. However, the mechanisms mediating Notch-conferring hypoxia tolerance are largely unknown. In the current study, we delineate the evolutionarily conserved mechanisms underlying this hypoxia tolerant phenotype. We determined the role of a group of conserved genes that were obtained from a comparative genomic analysis of hypoxia-tolerant *Drosophila melanogaster* populations and human highlanders living at the high-altitude regions of the world (Tibetans, Ethiopians and Andeans). We developed a novel dual-UAS/Gal4 system that allows us to activate Notch signaling in the Eaat1-positive glial cells, which remarkably enhances hypoxia tolerance in *Drosophila melanogaster*, and, simultaneously, knock down a candidate gene in the same set of glial cells. Using this system, we discovered that the interactions between Notch signaling and *bnl* (fibroblast growth factor), *croc* (forkhead transcription factor C) or *Mkk4* (mitogen-activated protein kinase kinase 4) are important for hypoxia tolerance, at least in part, through regulating neuronal development and survival under hypoxic conditions. Since these genetic mechanisms are evolutionarily conserved, this group of genes may serve as novel targets for developing therapeutic strategies and have a strong potential to be translated to humans to treat/prevent hypoxia-related diseases.

INTRODUCTION
Hypoxia (O₂ deprivation) is a common pathological factor in many human diseases, including apnea of prematurity, hypoxemia in ICU settings resulting from neurologic, hematologic, respiratory and cardiac diseases, stroke and cancer (Adler et al. 2017; Di Fiore et al. 2019; Group 2018; Sands and Owens 2015; Schmidt et al. 2017; Schmidt et al. 2019; Thille et al. 2018). To date, strategies to treat or prevent hypoxia-induced injury are very limited. Thus, understanding the mechanisms regulating tolerance or susceptibility to hypoxia is crucial for developing effective therapeutic strategies.

A number of studies have demonstrated that Notch signaling plays an important role in regulating the cellular and molecular mechanisms underlying the responses to hypoxic stress (for selected reviews see (Alberi et al. 2013; Andersson et al. 2011; Arumugam et al. 2018; Borggrefe et al. 2016; Fearon et al. 2016; Marignol et al. 2013; Zhou and Haddad 2013)). For example, 1) it has been shown that Notch intracellular domain coordinates with HIF signaling to regulate cellular response to hypoxia (Gustafsson et al. 2005; Pear and Simon 2005; Sainson and Harris 2006); 2) we have previously discovered that Notch signaling is activated and plays a critical role in regulating hypoxia tolerance in Drosophila melanogaster (i.e., Drosophila melanogaster carrying Notch loss-of-function alleles are super-sensitive to low O₂, and, in contrast, the fruit flies carrying gain-of-function alleles are remarkably resistant) (Zhou et al. 2011; Zhou et al. 2008); 3) neuronal- or glial-specific activation of Notch rescues naïve flies from lethal degree of O₂ deprivation (Zhou et al. 2011); and 4) Notch signaling is an evolutionarily conserved mechanism regulating adaptation to low O₂ environments not only in Drosophila but also in humans (Jha et al. 2016). However, the molecular mechanisms underlying the role of Notch signaling in regulating hypoxia responses are still not well understood. Since Notch is highly pleiotropic, it is clear that specific downstream responses to Notch activation
depend on cellular context and its synergic integration with other signaling pathways (Bray and Bernard 2010; Ho et al. 2018). Furthermore, due to the broad physiological role of Notch signaling in cell differentiation and metabolism, therapeutic strategies directly targeting Notch may introduce severe side-effects (Mollen et al. 2018; Rizzo et al. 2014; Takebe et al. 2014). Therefore, identifying genetic modifiers or downstream effectors that mediate the role of Notch in hypoxia are very important for developing effective therapeutic strategies.

It has long been recognized that hypoxia does not affect all organs/tissues of the body equally. Of all the organs, brain is one of the organs that are very sensitive to oxygen deprivation (Leach and Treacher 1998; Purins et al. 2012). We previously discovered that hypoxia-induced lethality can be rescued by activating Notch signaling only in the excitatory amino acid transporter 1 (Eaat1)-positive glial cells in Drosophila melanogaster, which is likely through cell injury prevention in the central nervous system. It is remarkable that the activation of Notch in this group of glial cells alone is sufficient to enhance the organismal survival under prolonged hypoxic conditions (Zhou et al. 2011). Presumably, this group of Eaat1-positive glial cells regulates hypoxia tolerance through suppression of glutamate neurotoxicity, neuronal proliferation as well as the growth and organization of axons (Gibson 1989; Ikonomidou et al. 1989; Stacey et al. 2010). Furthermore, since we have identified a group of evolutionarily conserved genes and biological processes (including Notch signaling) between Drosophila melanogaster and human highlanders (Jha et al. 2016) that are important for survival in hypoxic environment, some of these conserved genes may interact with Notch signaling to regulate Notch activation-conferred hypoxia tolerance. In this work, we studied the genetic interactions between Notch signaling and a group of these conserved genes (i.e., branchless (bnl), crocodile (croc), Epidermal growth factor receptor (Egfr), grain (grn), hairy (h), invected (inv) and MAP kinase
kinase 4 (Mkk4)) and identified modifiers that regulate Notch activation-conferring hypoxia tolerance in *Drosophila melanogaster*.

MATERIALS AND METHODS

Drosophila stocks and culture conditions. The following available TRiP UAS-RNAi lines, UAS-reaper lines and Gal4 driver stocks were obtained from the Bloomington *Drosophila* Stock Center: \([y^I\ sc^* v^I\ sev^{21}; P\{TRiP.HMS01046\}attP2] (bln-RNAi, FBst0034572), [y^I sc^* v^I sev^{21}; P\{TRiP.HMS01122\}attP2] (croc-RNAi, FBst0034547), [y^I v^I; P\{TRiP.JF02283\}attP2] (Egfr RNAi, FBst0033476), [y^I sc^* v^I sev^{21}; P\{TRiP.HMS01052\}attP2] (grn-RNAi, FBst0034578), [y^I sc^* v^I sev^{21}; P\{TRiP.HMS01313\}attP2] (h-RNAi, FBst0034326), [y^I sc^* v^I sev^{21}; P\{TRiP.HMS02209\}attP2] (inv-RNAi, FBst0041675), [y^I sc^* v^I sev^{21}; P\{TRiP.HMS02524\}attP40] (Mkk4-RNAi, FBst0042832), [w^{1118}; P\{UAS-rpr.C\}27] (FBst0005823), [w^{1118}; P\{UAS-rpr.C\}14] (FBst0005824), [w^*; Kr[If-1]/CyO; P\{w+[mW.hs]=GAL4-da.G32\}UH1] (FBst0055850, was used to derive da-Gal4) and [w^*; P\{w+[mC]=Eaat1-GAL4.R\}2] (Eaat1-Gal4, FBst0008849). The UAS-NICD and 4XSu(H)-lacZ stocks were kindly provided by Dr. J. Posakony. Since UAS-NICD transgenic stock was generated on the background of w^{1118} (Go et al. 1998), the w^{1118} stock (FBst0003605) was used as one of the negative controls in the dual-UAS/Gal4 experiments.

Flies were maintained in vials with Cornmeal-Molasses-Yeast medium. Flies for the hypoxia tolerance assay were prepared as follows. 20 Females of UAS-RNAi were crossed with 20 males of EN line, Eaat1-Gal4 or da-Gal4 and incubated at room air/temperature condition. After 24 hours, parents were removed. One group of the vials (n = 3 to 6 vials) containing the
embryos were transferred to a computerized atmosphere chamber supplied with 5% oxygen for hypoxia treatment, and the other group of vials (n = 3 to 6 vials) were cultured in room air condition and used as controls.

Generation of dual-UAS/Gal-4 system. We have generated a unique fly line that has Notch upregulated specifically in the glial cells that produce the glutamate transporter EAAT1. The details on the strategy to generate this line are provided in Supplementary Figure S1. Briefly the UAS-NICD inserted on 3rd chromosome and Eaat1-Gal4 ([w*; P[w+[mC]=Eaat1-GAL4.R]2] (FBst0008849); stock# 8849, Bloomington, US) were simultaneously crossed with a double balancer [w*;CyO;TM3, Sb’] (stock#2475, Bloomington, US). The F1 flies with both CyO and Sb phenotype from both crosses (i.e., [w; +/CyO; UAS-NICD/TM3,Sb’] from the first cross and [w; P[Eaat1-GAL4.R]2/Cyo; +/-TM3,Sb’] from the second cross) were selected and self-crossed to remove flies with Sb’ phenotype from the [w; +/CyO; UAS-NICD/TM3,Sb’] line and CyO phenotype from the [P[Eaat1-GAL4.R]2/Cyo; +/-TM3,Sb’] lines. Subsequently, these flies were intercrossed and again select for flies with CyO and Sb’ phenotype. Finally, they were self-crossed to obtain homozygote [w; P[Eaat1-GAL4.R]2; UAS-NICD] (i.e., the EN line).

Hypoxia treatment and survival test. Three- to five-day-old Eaat1-Gal4 and EN males (n=10) were crossed to the UAS-RNAi virgin females (n=10) targeting specific genes. Sufficient time was given (~3 days) for the flies to mate/cross. Simultaneously the w^{1118} and the Gal4 line were ‘self-crossed’ and used as negative controls, the [EN] x [w^{1118}] cross was used as a positive control. Each set of crosses were in 3 to 6 replicate vials. The vials were kept under ambient conditions for 48 hours so that the flies can lay sufficient number (50 to 100) of eggs. After 48 hours, the adults were transferred to a new vial. For the hypoxia tolerance test the original vials were then transferred to a computer-controlled hypoxia chamber, constantly maintained at 5%
oxygen. The chambers were in a room with 12/12 hours light/dark cycle, and temperature ~22°C. The adults from the new vials (i.e., from the second batch of vials) were discarded after 48 hours, and the vials with the eggs were kept at ambient oxygen conditions (~21% O₂) also with 12/12 hours light/dark cycle (temperature ~22°C) as room air controls. After 21 days, the ratio of the empty pupae (eclosed) to the total number of pupae formed (eclosed + uneclosed) in each vial was calculated to determine the eclosion rate. Due to the fact that most of the collected embryos will be at an early larval stage, this hypoxia test was mainly to determine the survival rate from larval stage to adulthood, as represented by eclosion rate.

Immunostaining and microscopy. The third instar larval brain samples for immunostaining were prepared according to previous descriptions (Wu and Luo 2006; Zhou et al. 2011). Briefly, brains of wandering third instar larvae were dissected in PBS and fixed in 4% paraformaldehyde in PBS. Cell membranes were permeabilized with 0.3% Triton X-100 in PBS, blocked with 7% goat serum, and put in primary antibody overnight at 4°C (or for 1 hour at room temperature). This procedure was followed by washes in 0.3% Triton X-100 in PBS, incubation with secondary antibody for 90 minutes. Following staining, the brain samples were washed multiple times with PBS, mounting and microscopy. The mouse anti-NICD (undiluted in-house supernatant) and rat anti-elav (1:50) were obtained from the Developmental Studies Hybridoma Bank (DSHB); rabbit anti-repo (1:500) was a kind gift of Dr. G. Technau at the Institute of Genetics, University of Mainz, Mainz, Germany. Secondary antibodies used were goat anti-mouse; goat anti-rabbit; and goat anti-rat conjugated to Alexa 488, 546, or 647 (1:250, Invitrogen). The Prolong Gold anti-fade reagent with DAPI (Invitrogen) was used as mounting media. Confocal microscopy was performed in the University of California at San Diego.
Neuroscience Microscopy Shared Facility. Imaging was done on a confocal microscope (Olympus FV1000) and the images were processed with Image J.

Statistical Analysis. Data were analyzed and graphed using GraphPad Prism 6 software. The differences in eclosion rate at 5% oxygen between the [EN] x [UAS-RNAi] and [Eaat1-Gal4] x [UAS-RNAi] and all the controls were assessed using ordinary one-way ANOVA with Turkey’s multiple comparison tests.

RESULTS AND DISCUSSION

The Eaat1-positive cells are a group of glia regulating glutamate metabolism and transport as well as neuronal activity in *Drosophila* brain (Peco et al. 2016; Rival et al. 2004). We have previously discovered that hypoxia activates Notch signaling (Zhou et al. 2008), and this activation particularly in the Eaat1-positive glial cells can significantly enhance survival of *Drosophila* in severely hypoxic environments (Zhou et al. 2011). We aimed in this study to dissect the potential mediators of Notch-conferred hypoxia tolerance.

Eaat1-positive glial cells are critical for *Drosophila* development and survival.

Glutamate is both the principal excitatory neurotransmitter and a potent neurotoxin (at high concentrations) in the mammalian CNS (Choi 1988; Fonnum 1984; Krnjevic 1970; Nicholls 1993; Olney and Ho 1970). Indeed, extracellular glutamate levels are tightly regulated for precise control of neurotransmission at glutamatergic synapses, and to prevent neuronal cell death from excitotoxicity (Danbolt 2001). In *Drosophila*, this process is regulated by a group of cells that express Eaat1, the only *Drosophila* high-affinity glutamate transporter (Besson et al. 1999). Although a previous study in adult flies has shown that RNAi-mediated knocking down of *Eaat1* in glial cells increased sensitivity to oxidative stress, enhanced degeneration of the
brain neuropil and decreased lifespan (Rival et al. 2004), the importance of this group of glial cells in neuronal development and function still remains largely unknown.

First, we determined the developmental expression pattern of *Eaat1* by crossing *Eaat1-Gal4* with UAS-GFP. As shown in Figure 1, the *Eaat1-Gal4* expressing cells were detected throughout all developmental stages from first instar larvae to adulthood. The *Eaat1-Gal4* positive cells are a subgroup of glial cell that co-express the glial marker Repo (Figure 1C).

Then, to further determine the role of *Eaat1*-positive glial cells in development and survival of *Drosophila melanogaster*, we ablated these cells by specific expression of an apoptotic gene *reaper (rpr)* in the *Eaat1*-positive glial cells through crossing the virgin female *Eaat1-GAL4* with male UAS-*rpr* carrying the UAS-*rpr* transgene on the 2nd or the X chromosome. We found that depletion of this group of cells in both males and females (in the progeny of *Eaat1-Gal4* female crossed with male UAS-*rpr* carrying transgene on the 2nd chromosome) terminated *Drosophila melanogaster* development at embryonic stage under room air condition, as no pupae and adult flies were obtained. To further confirm this phenotype, we crossed the *Eaat1-Gal4* female with male UAS-*rpr* carrying the transgene on the X chromosome. With this cross, the *rpr* transgene was only expressed in the female progeny. As expected, only male progeny survived (Figure 2), demonstrating that these glial cells are essential in organismal development and survival.

Neurons and glia are two major cell types in the nervous system of both vertebrate and invertebrate animals. Glial cells are critical for the development and function of neurons by providing neurons with survival and axonal guidance cues, electric shield, and acting as macrophages to remove injured/dead cells (Bittern et al. 2020; Hilu-Dadia and Kurant 2020; Yildirim et al. 2019). Previous studies have shown that Notch signaling plays an important and evolutionarily conserved role in regulating glial differentiation and proliferation during
development or following neuronal injuries (Bahrampour and Thor 2020; Hidalgo and Logan 2017; Jacobs 2000; Kato et al. 2018). Our previous study has shown that increasing Notch activity specifically in this set of glial cells dramatically enhanced hypoxia survival, implying that these glial cells also play an important role in regulating organismal development and survival under stress conditions (Zhou et al. 2011), which, at least in part, through rebalancing hypoxia-induced dysregulation and neurotoxicity of glutamate, maintaining the function of neuropil and development of neuronal-glial system (Choi and Rothman 1990; MacNamee et al. 2016; Stacey et al. 2010). In addition, discovery of the property of Notch signaling in regulating cellular responses to hypoxic challenge further broadened the pleiotropic nature of this signaling pathway (Arumugam et al. 2018; Zhou et al. 2011).

Creation and Characterization of a dual-UAS/Gal4 system.

In order to determine genetic interactions that mediate the function of Notch signaling under hypoxic conditions, we created a dual-UAS/Gal4 system (Supplementary Figure S1). This system contains an Eaat1-Gal4 transgene that simultaneously drives the expression of a UAS-NICD (the functional domain of Notch receptor) transgene to activate Notch signaling and a UAS-RNAi transgene to target and knockdown the expression of the specific candidate gene of choice. In order to test the efficiency of this system, we crossed the EN-line with a UAS-LacZ transgene or a background Drosophila strain for the transgenic lines (w1118 or yw). As shown in Figure 3, the crosses containing Eaat1-Gal4, UAS-NICD and UAS-LacZ (one copy of each transgene) showed a hypoxia tolerance similar to those containing only Eaat1-Gal4 and UAS-NICD (60% to 80%), but significantly higher than those of controls (<25%) (p<0.01), demonstrating that the presence of an additional UAS (Gal4 upstream activating sequence) did not significantly reduce the efficiency of Gal4-driven expression of UAS-NICD transgene, nor
did it significantly affect the phenotype that is induced by NICD overexpression. Hence, the dosage of Eaat1-Gal4 is sufficient to simultaneously drive the expression of two UAS-transgenes.

Evolutionarily conserved mechanisms underlying Notch-conferred hypoxia tolerance.

It has been shown that combinatorial and context-dependent interactions between cellular signaling pathways regulate a wide and diverse range of biological processes for development, homeostasis and disease. Previous studies have demonstrated that cellular context-specific integration of Notch signaling with other genes and pathways are essential for mediating the action of Notch in various developmental and pathological processes (Borggrefe and Liefke 2012; Bray and Bernard 2010; Hurlbut et al. 2007). However, the specific mechanisms by which Notch regulates hypoxia survival still largely remain uncharacterized.

To identify the genetic interactions regulating Notch-conferred hypoxia tolerance in Eaat1-positive glial cells, we tested 7 of the 23 evolutionarily conserved candidate genes (i.e., *branchless (bnl)*, *crocodile (croc)*, *Epidermal growth factor receptor (Egfr)*, *grain (grn)*, *hairy (h)*, *in vested (inv)* and *MAP kinase kinase 4 (Mkk4)*) that have available VALIUM20 UAS-RNAi transgenic lines from the *Drosophila* Transgenic RNAi Project (TRiP) at Harvard Medical School. These TRiP RNAi lines contain a 21 bp targeting shRNAi sequence embedded into a micro-RNA (miR-1) backbone that is very effective for knocking down the expression of a target gene in both soma and germline (Ni et al. 2011; Perkins et al. 2015). As expected, knocking down *hairy (h)*, one of the Notch downstream genes that regulates development and hypoxia tolerance in *Drosophila* (Cui 2005; Kim et al. 2000; Zhou et al. 2008)) decreased Notch activation-conferred hypoxia tolerance, reducing survival rate from 86.1% to 34.7% in hypoxia (p<0.01) (Figure 4G). Furthermore, we found that knocking down *bnl, croc* and *Mkk4* also
reduced Notch-conferred hypoxia tolerance (Figure 4A-4C). However, knocking down the other candidate genes (Egfr, grn and inv) did not show a clear modifier effect, i.e., knocking down Egfr, grn and inv on the background of Notch activation ([EN] x [UAS-RNAiEgfr]; [EN] x [UAS-RNAigrn] and [EN] x [UAS-RNAiinv]) showed hypoxia survival rates that were still significantly higher than those of the controls (Figure 4D-4F).

The role of bnl, croc and Mkk4 in Drosophila neuronal development has been reported in various studies. Branchless (bnl) is a fibroblast growth factor (FGF) homolog in Drosophila that is an important regulator of tracheal and neuronal morphogenesis (Barrett et al. 2008; Du et al. 2017; Muha and Muller 2013). A neuronal expression of bnl has been detected in embryo and larval brain, which is essential for the induction of cell migration and neuronal connection (Du et al. 2017). Our results indicate that bnl is also expressed in the Eaatl-positive glial cells in addition to neurons. This pattern of expression may be important in neuronal development through regulating cell migration and axon outgrowth to create functional neuronal networks. Furthermore, the expression of bnl is highly inducible by hypoxia, and such expression of bnl is important to trigger the growth of the tracheal system to improve O2 delivery (Centanin et al. 2008; Jarecki et al. 1999). Since interactions between FGF and Notch signaling has been observed in Drosophila and mammals in particular in the neuronal system (Bartlett et al. 1998; Fujita et al. 2011; Ghabrial and Krasnow 2006; James et al. 2004; Voelkel et al. 2014; Yoon et al. 2004; Zhou and Armstrong 2007), the current results suggest that bnl produced by the Eaatl-positive glial cells is essential for Notch-activation-conferred survival under severe hypoxic conditions, at least in part, by maintaining axon growth and integrity of proper neuronal-glial connectivity during development (Figure 6).
The *crocodile* (*croc*) gene encodes a member of the forkhead transcription factor family in *Drosophila*. Genes encoding this family of transcription factors are widely conserved during evolution ranging from yeast to humans (Hannenhalli and Kaestner 2009). In *Drosophila*, the expression of *croc* is mainly detected in embryo, third instar larvae and adult female flies (Lee and Frasch 2004; Lopez *et al.* 2017). At the embryonic stage, it is expressed in the head anlagen of the blastoderm and controls the establishment of head structures (Hacker *et al.* 1995). Although signaling mechanisms regulating the activity of croc are yet uncharacterized, our results indicate that the Notch/croc interaction within the Eaat1-positive glial cells is essential for organismal survival under hypoxic condition, possibly through maintaining the viability and function of these Eaat1-positive glial cells and, thus, neuronal development (Figure 6).

A number of studies have shown that Mkk4 regulates the activity of JNK pathway and neuronal development in *Drosophila* (Geuking *et al.* 2009; Rallis *et al.* 2010). The interactions between Notch and JNK signaling have been reported in *Drosophila* and mammals during development or under disease conditions. Such interactions may determine or fine-tune the final output of Notch signaling in a cell context-dependent fashion (Curry *et al.* 2006; Ho *et al.* 2015; Kim *et al.* 2010; Kim *et al.* 2005; Zecchini *et al.* 1999). It was very interesting to find that cell-specific and ubiquitous manipulation of Mkk4 exhibited opposite phenotypes in terms of hypoxia tolerance (i.e., knocking down Mkk4 specifically in Eaat1-positive glial cells led to lethality, but ubiquitous knocking down this gene enhanced hypoxia survival) (Figure 4C and Figure 5), implying a cell context-dependent role of JNK signaling in hypoxia response. Indeed, it has been shown in tumor cells that hypoxia-induced JNK activation increases resistance to chemotherapeutic treatment (Comerford *et al.* 2004), but, in the pulmonary arteries, such activation leads to structural remodeling (Jin *et al.* 2000). Furthermore, we found that ubiquitous
knocking down of several genes modulating the activity of JNK signaling can enhance hypoxia survival (Azad et al. 2012), which suggests a cell context-dependent role of JNK signaling on hypoxia response in the organism. Therefore, we hypothesize that the interaction between Mkk4 and Notch may regulate survival of glial cells under hypoxic conditions, and, hence, hypoxia tolerance in Drosophila (Figure 6).

In addition, we performed an experiment with ubiquitous knocking down of these candidate genes using the da-Gal4 driver to evaluate their role in Drosophila development and hypoxia tolerance (Figure 5). We found that the progeny of [da-Gal4] x [UAS-RNAibnl] or [da-Gal4] x [UAS-RNAiEgfr] crosses were lethal under both normoxia and hypoxia conditions. In contrast, flies with da-Gal4>UAS-RNAiigrn, da-Gal4>UAS-RNAiinv or da-Gal4>UAS-RNAiMkk4 exhibited significantly enhanced tolerance to hypoxia with > 2-fold eclosion rates as compared to those of the controls under hypoxia (p<0.01). The result of Mkk4 KD is somewhat surprising: unlike specific knocking down in the Eaat1-positive glial cells (Eaat1-Gal4>UAS-RNAiMkk4) (Figure 4C), ubiquitous knockdown of Mkk4 significantly enhanced hypoxia tolerance in Drosophila, suggesting a developmental and/or cell type specific role of Mkk4 in regulating organismal response to hypoxia.

CONCLUSIONS AND PERSPECTIVES

In conclusion, we evaluated the interactions between Notch signaling and a group of evolutionarily conserved genes in Eaat1-positive glial cells and the role of such interactions in regulating hypoxia survival in Drosophila. The synergy of signaling between Notch and bnl, Notch and croc and between Notch and Mkk4 were found to be essential for Notch activation-conferred hypoxia tolerance. We hypothesize that the synergy between these functionally distinct
signaling mechanisms regulates cell survival and neuronal development under hypoxic conditions in the *Drosophila* central nervous system, and this is also sufficient for the survival of the organism as a whole (Figure 6). Furthermore, we provided evidence indicating that *bnl*, *croc* and *Mkk4* are expressed in the Eaat1-positive glial cells. These conserved mechanisms have high potential to be translated into humans for developing strategies to treat hypoxia-induced injuries in the central nervous system.

Data Availability. *Drosophila melanogaster* strains are available upon request. The authors affirm that all data necessary for confirming the conclusions of the article are present within the article, figures, and tables.

ACKNOWLEDGEMENTS

We sincerely appreciate the comments and suggestions from Dr. James W. Posakony and thank Ms. Yu Hsin Hsiao and Ms. Ying Lu-Bo for technical supports.

FUNDING

Research reported in this publication was supported by National Heart, Lung, and Blood Institute and National Institute of Neurological Disorders and Stroke of the National Institutes of Health under award number 5R01HL146530 and 1R21NS111270.

LITERATURE CITED

Adler, D., J.L. Pepin, E. Dupuis-Lozeron, K. Espa-Cervena, R. Merlet-Violet *et al.*, 2017

Comorbidities and Subgroups of Patients Surviving Severe Acute Hypercapnic Respiratory Failure in the Intensive Care Unit. *Am J Respir Crit Care Med* 196 (2):200-207.
Alberi, L., S.E. Hoey, E. Brai, A.L. Scotti, and S. Marathe, 2013 Notch signaling in the brain: in good and bad times. *Ageing Res Rev* 12 (3):801-814.

Andersson, E.R., R. Sandberg, and U. Lendahl, 2011 Notch signaling: simplicity in design, versatility in function. *Development* 138 (17):3593-3612.

Arumugam, T.V., S.H. Baik, P. Balaganapathy, C.G. Sobey, M.P. Mattson *et al.*, 2018 Notch signaling and neuronal death in stroke. *Prog Neurobiol* 165-167:103-116.

Azad, P., D. Zhou, R. Zarndt, and G.G. Haddad, 2012 Identification of genes underlying hypoxia tolerance in Drosophila by a P-element screen. *G3 (Bethesda)* 2 (10):1169-1178.

Bahrampour, S., and S. Thor, 2020 The Five Faces of Notch Signalling During Drosophila melanogaster Embryonic CNS Development. *Adv Exp Med Biol* 1218:39-58.

Barrett, A.L., S. Krueger, and S. Datta, 2008 Branchless and Hedgehog operate in a positive feedback loop to regulate the initiation of neuroblast division in the Drosophila larval brain. *Dev Biol* 317 (1):234-245.

Bartlett, P.F., G.J. Brooker, C.H. Faux, R. Dutton, M. Murphy *et al.*, 1998 Regulation of neural stem cell differentiation in the forebrain. *Immunol Cell Biol* 76 (5):414-418.

Besson, M.T., L. Soustelle, and S. Birman, 1999 Identification and structural characterization of two genes encoding glutamate transporter homologues differently expressed in the nervous system of Drosophila melanogaster. *FEBS Lett* 443 (2):97-104.

Bittern, J., N. Pogodalla, H. Ohm, L. Bruser, R. Kottmeier *et al.*, 2020 Neuron-glia interaction in the Drosophila nervous system. *Dev Neurobiol*.

Borggrefe, T., M. Lauth, A. Zwijsen, D. Huylebroeck, F. Oswald *et al.*, 2016 The Notch intracellular domain integrates signals from Wnt, Hedgehog, TGFbeta/BMP and hypoxia pathways. *Biochim Biophys Acta* 1863 (2):303-313.
Borggrefe, T., and R. Liefke, 2012 Fine-tuning of the intracellular canonical Notch signaling pathway. *Cell Cycle* 11 (2):264-276.

Bray, S., and F. Bernard, 2010 Notch targets and their regulation. *Curr Top Dev Biol* 92:253-275.

Centanin, L., A. Dekanty, N. Romero, M. Irisarri, T.A. Gorr *et al.*, 2008 Cell autonomy of HIF effects in Drosophila: tracheal cells sense hypoxia and induce terminal branch sprouting. *Dev Cell* 14 (4):547-558.

Choi, D.W., 1988 Glutamate neurotoxicity and diseases of the nervous system. *Neuron* 1 (8):623-634.

Choi, D.W., and S.M. Rothman, 1990 The role of glutamate neurotoxicity in hypoxic-ischemic neuronal death. *Annu Rev Neurosci* 13:171-182.

Comerford, K.M., E.P. Cummins, and C.T. Taylor, 2004 c-Jun NH₂-terminal kinase activation contributes to hypoxia-inducible factor 1alpha-dependent P-glycoprotein expression in hypoxia. *Cancer Res* 64 (24):9057-9061.

Cui, Y., 2005 Hairy is a cell context signal controlling Notch activity. *Dev Growth Differ* 47 (9):609-625.

Curry, C.L., L.L. Reed, B.J. Nickoloff, L. Miele, and K.E. Foreman, 2006 Notch-independent regulation of Hes-1 expression by c-Jun N-terminal kinase signaling in human endothelial cells. *Lab Invest* 86 (8):842-852.

Danbolt, N.C., 2001 Glutamate uptake. *Prog Neurobiol* 65 (1):1-105.

Di Fiore, J.M., P.M. MacFarlane, and R.J. Martin, 2019 Intermittent Hypoxemia in Preterm Infants. *Clin Perinatol* 46 (3):553-565.
Du, L., A. Zhou, A. Patel, M. Rao, K. Anderson et al., 2017 Unique patterns of organization and migration of FGF-expressing cells during Drosophila morphogenesis. *Dev Biol* 427 (1):35-48.

Fearon, U., M. Canavan, M. Biniecka, and D.J. Veale, 2016 Hypoxia, mitochondrial dysfunction and synovial invasiveness in rheumatoid arthritis. *Nat Rev Rheumatol* 12 (7):385-397.

Fonnum, F., 1984 Glutamate: a neurotransmitter in mammalian brain. *J Neurochem* 42 (1):1-11.

Fujita, K., S. Yasui, T. Shinohara, and K. Ito, 2011 Interaction between NF-kappaB signaling and Notch signaling in gliogenesis of mouse mesencephalic neural crest cells. *Mech Dev* 128 (7-10):496-509.

Geuking, P., R. Narasimamurthy, B. Lemaitre, K. Basler, and F. Leulier, 2009 A non-redundant role for Drosophila Mkk4 and hemipterous/Mkk7 in TAK1-mediated activation of JNK. *PLoS One* 4 (11):e7709.

Ghabrial, A.S., and M.A. Krasnow, 2006 Social interactions among epithelial cells during tracheal branching morphogenesis. *Nature* 441 (7094):746-749.

Gibson, G., 1989 Causes of cell damage in hypoxia/ischemia, aging and Alzheimer’s disease. *Neurobiol Aging* 10 (5):608-609; discussion 618-620.

Go, M.J., D.S. Eastman, and S. Artavanis-Tsakonas, 1998 Cell proliferation control by Notch signaling in Drosophila development. *Development* 125 (11):2031-2040.

Group, S.T., 2018 Hypoxemia in the ICU: prevalence, treatment, and outcome. *Ann Intensive Care* 8 (1):82.

Gustafsson, M.V., X. Zheng, T. Pereira, K. Gradin, S. Jin et al., 2005 Hypoxia requires notch signaling to maintain the undifferentiated cell state. *Dev Cell* 9 (5):617-628.
Hacker, U., E. Kaufmann, C. Hartmann, G. Jurgens, W. Knochel et al., 1995 The Drosophila fork head domain protein crocodile is required for the establishment of head structures. *EMBO J* 14 (21):5306-5317.

Hannenhalli, S., and K.H. Kaestner, 2009 The evolution of Fox genes and their role in development and disease. *Nat Rev Genet* 10 (4):233-240.

Hidalgo, A., and A. Logan, 2017 Go and stop signals for glial regeneration. *Curr Opin Neurobiol* 47:182-187.

Hilu-Dadia, R., and E. Kurant, 2020 Glial phagocytosis in developing and mature Drosophila CNS: tight regulation for a healthy brain. *Curr Opin Immunol* 62:62-68.

Ho, D.M., K.G. Guruharsha, and S. Artavanis-Tsakonas, 2018 The Notch Interactome: Complexity in Signaling Circuitry. *Adv Exp Med Biol* 1066:125-140.

Ho, D.M., S.K. Pallavi, and S. Artavanis-Tsakonas, 2015 The Notch-mediated hyperplasia circuitry in Drosophila reveals a Src-JNK signaling axis. *Elife* 4:e05996.

Hurlbut, G.D., M.W. Kankel, R.J. Lake, and S. Artavanis-Tsakonas, 2007 Crossing paths with Notch in the hyper-network. *Curr Opin Cell Biol* 19 (2):166-175.

Ikonomidou, C., J.L. Mosinger, K.S. Salles, J. Labruyere, and J.W. Olney, 1989 Sensitivity of the developing rat brain to hypobaric/ischemic damage parallels sensitivity to N-methyl-aspartate neurotoxicity. *J Neurosci* 9 (8):2809-2818.

Jacobs, J.R., 2000 The midline glia of Drosophila: a molecular genetic model for the developmental functions of glia. *Prog Neurobiol* 62 (5):475-508.

James, J., A.V. Das, J. Rahnenfuhrer, and I. Ahmad, 2004 Cellular and molecular characterization of early and late retinal stem cells/progenitors: differential regulation of proliferation and context dependent role of Notch signaling. *J Neurobiol* 61 (3):359-376.
Jarecki, J., E. Johnson, and M.A. Krasnow, 1999 Oxygen regulation of airway branching in Drosophila is mediated by branchless FGF. *Cell* 99 (2):211-220.

Jha, A.R., D. Zhou, C.D. Brown, M. Kreitman, G.G. Haddad et al., 2016 Shared Genetic Signals of Hypoxia Adaptation in Drosophila and in High-Altitude Human Populations. *Mol Biol Evol* 33 (2):501-517.

Jin, N., N. Hatton, D.R. Swartz, X. Xia, M.A. Harrington et al., 2000 Hypoxia activates jun-N-terminal kinase, extracellular signal-regulated protein kinase, and p38 kinase in pulmonary arteries. *Am J Respir Cell Mol Biol* 23 (5):593-601.

Kato, K., M. Losada-Perez, and A. Hidalgo, 2018 Gene network underlying the glial regenerative response to central nervous system injury. *Dev Dyn* 247 (1):85-93.

Kim, J., J.Q. Kerr, and G.S. Min, 2000 Molecular heterochrony in the early development of Drosophila. *Proc Natl Acad Sci U S A* 97 (1):212-216.

Kim, J.W., M.J. Kim, K.J. Kim, H.J. Yun, J.S. Chae et al., 2005 Notch interferes with the scaffold function of JNK-interacting protein 1 to inhibit the JNK signaling pathway. *Proc Natl Acad Sci U S A* 102 (40):14308-14313.

Kim, M.Y., E.J. Ann, J.S. Mo, F. Dajas-Bailador, M.S. Seo et al., 2010 JIP1 binding to RBP-Jk mediates cross-talk between the Notch1 and JIP1-JNK signaling pathway. *Cell Death Differ* 17 (11):1728-1738.

Krnjevic, K., 1970 Glutamate and gamma-aminobutyric acid in brain. *Nature* 228 (5267):119-124.

Leach, R.M., and D.F. Treacher, 1998 Oxygen transport-2. Tissue hypoxia. *BMJ* 317 (7169):1370-1373.
Lee, H.H., and M. Frasch, 2004 Survey of forkhead domain encoding genes in the Drosophila genome: Classification and embryonic expression patterns. *Dev Dyn* 229 (2):357-366.

Lopez, Y., A. Vandenbon, A. Nose, and K. Nakai, 2017 Modeling the cis-regulatory modules of genes expressed in developmental stages of Drosophila melanogaster. *PeerJ* 5:e3389.

MacNamee, S.E., K.E. Liu, S. Gerhard, C.T. Tran, R.D. Fetter *et al.*, 2016 Astrocytic glutamate transport regulates a Drosophila CNS synapse that lacks astrocyte ensheathment. *J Comp Neurol* 524 (10):1979-1998.

Marignol, L., K. Rivera-Figueroa, T. Lynch, and D. Hollywood, 2013 Hypoxia, notch signalling, and prostate cancer. *Nat Rev Urol* 10 (7):405-413.

Mollen, E.W.J., J. Ient, V.C.G. Tjan-Heijnen, L.J. Boersma, L. Miele *et al.*, 2018 Moving Breast Cancer Therapy up a Notch. *Front Oncol* 8:518.

Muha, V., and H.A. Muller, 2013 Functions and Mechanisms of Fibroblast Growth Factor (FGF) Signalling in Drosophila melanogaster. *Int J Mol Sci* 14 (3):5920-5937.

Ni, J.Q., R. Zhou, B. Czech, L.P. Liu, L. Holderbaum *et al.*, 2011 A genome-scale shRNA resource for transgenic RNAi in Drosophila. *Nat Methods* 8 (5):405-407.

Nicholls, D.G., 1993 The glutamatergic nerve terminal. *Eur J Biochem* 212 (3):613-631.

Olney, J.W., and O.L. Ho, 1970 Brain damage in infant mice following oral intake of glutamate, aspartate or cysteine. *Nature* 227 (5258):609-611.

Pear, W.S., and M.C. Simon, 2005 Lasting longer without oxygen: The influence of hypoxia on Notch signaling. *Cancer Cell* 8 (6):435-437.

Peco, E., S. Davla, D. Camp, S.M. Stacey, M. Landgraf *et al.*, 2016 Drosophila astrocytes cover specific territories of the CNS neuropil and are instructed to differentiate by Prospero, a key effector of Notch. *Development* 143 (7):1170-1181.
Perkins, L.A., L. Holderbaum, R. Tao, Y. Hu, R. Sopko et al., 2015 The Transgenic RNAi Project at Harvard Medical School: Resources and Validation. *Genetics* 201 (3):843-852.

Purins, K., P. Enblad, L. Wiklund, and A. Lewen, 2012 Brain tissue oxygenation and cerebral perfusion pressure thresholds of ischemia in a standardized pig brain death model. *Neurocrit Care* 16 (3):462-469.

Rallis, A., C. Moore, and J. Ng, 2010 Signal strength and signal duration define two distinct aspects of JNK-regulated axon stability. *Dev Biol* 339 (1):65-77.

Rival, T., L. Soustelle, C. Strambi, M.T. Besson, M. Iche et al., 2004 Decreasing glutamate buffering capacity triggers oxidative stress and neuropil degeneration in the Drosophila brain. *Curr Biol* 14 (7):599-605.

Rizzo, P., D. Mele, C. Caliceti, M. Pannella, C. Fortini et al., 2014 The role of notch in the cardiovascular system: potential adverse effects of investigational notch inhibitors. *Front Oncol* 4:384.

Sainson, R.C., and A.L. Harris, 2006 Hypoxia-regulated differentiation: let's step it up a Notch. *Trends Mol Med* 12 (4):141-143.

Sands, S.A., and R.L. Owens, 2015 Congestive heart failure and central sleep apnea. *Crit Care Clin* 31 (3):473-495.

Schmidt, B., P.J. Anderson, E.V. Asztalos, L.W. Doyle, R.E. Grunau et al., 2019 Self-reported Quality of Life at Middle School Age in Survivors of Very Preterm Birth: Results From the Caffeine for Apnea of Prematurity Trial. *JAMA Pediatr* 173 (5):487-489.

Schmidt, B., R.S. Roberts, P.J. Anderson, E.V. Asztalos, L. Costantini et al., 2017 Academic Performance, Motor Function, and Behavior 11 Years After Neonatal Caffeine Citrate
Therapy for Apnea of Prematurity: An 11-Year Follow-up of the CAP Randomized Clinical Trial. *JAMA Pediatr* 171 (6):564-572.

Stacey, S.M., N.I. Muraro, E. Peco, A. Labbe, G.B. Thomas *et al.*, 2010 Drosophila glial glutamate transporter Eaat1 is regulated by fringe-mediated notch signaling and is essential for larval locomotion. *J Neurosci* 30 (43):14446-14457.

Takebe, N., D. Nguyen, and S.X. Yang, 2014 Targeting notch signaling pathway in cancer: clinical development advances and challenges. *Pharmacol Ther* 141 (2):140-149.

Thille, A.W., A. Cordoba-Izquierdo, B. Maitre, L. Boyer, L. Brochard *et al.*, 2018 High prevalence of sleep apnea syndrome in patients admitted to ICU for acute hypercapnic respiratory failure: a preliminary study. *Intensive Care Med* 44 (2):267-269.

Voelkel, J.E., J.A. Harvey, J.S. Adams, R.N. Lassiter, and M.R. Stark, 2014 FGF and Notch signaling in sensory neuron formation: a multifactorial approach to understanding signaling pathway hierarchy. *Mech Dev* 134:55-66.

Wu, J.S., and L. Luo, 2006 A protocol for dissecting Drosophila melanogaster brains for live imaging or immunostaining. *Nat Protoc* 1 (4):2110-2115.

Yildirim, K., J. Petri, R. Kottmeier, and C. Klambt, 2019 Drosophila glia: Few cell types and many conserved functions. *Glia* 67 (1):5-26.

Yoon, K., S. Nery, M.L. Rutlin, F. Radtke, G. Fishell *et al.*, 2004 Fibroblast growth factor receptor signaling promotes radial glial identity and interacts with Notch1 signaling in telencephalic progenitors. *J Neurosci* 24 (43):9497-9506.

Zecchini, V., K. Brennan, and A. Martínez-Arias, 1999 An activity of Notch regulates JNK signalling and affects dorsal closure in Drosophila. *Curr Biol* 9 (9):460-469.
Zhou, D., and G.G. Haddad, 2013 Genetic analysis of hypoxia tolerance and susceptibility in Drosophila and humans. *Annu Rev Genomics Hum Genet* 14:25-43.

Zhou, D., N. Udpa, M. Gersten, D.W. Visk, A. Bashir et al., 2011 Experimental selection of hypoxia-tolerant Drosophila melanogaster. *Proc Natl Acad Sci U S A* 108 (6):2349-2354.

Zhou, D., J. Xue, J.C. Lai, N.J. Schork, K.P. White et al., 2008 Mechanisms underlying hypoxia tolerance in Drosophila melanogaster: hairy as a metabolic switch. *PLoS Genet* 4 (10):e1000221.

Zhou, Y.X., and R.C. Armstrong, 2007 Interaction of fibroblast growth factor 2 (FGF2) and notch signaling components in inhibition of oligodendrocyte progenitor (OP) differentiation. *Neurosci Lett* 421 (1):27-32.
FIGURES AND LEGENDS

Figure 1. Distribution of Eaat1-positive glial cells during development. The Eaat1-positive glial cells were labelled by GFP in the progeny of \([\text{Eaat1-GAL4}] \times [\text{UAS-GFP}]\) crosses. The expression of glial marker (repo) and neuronal marker (elav) were labelled by immunostaining. A-D: the distribution of Eaat1-positive glial cells at first (A), second (B) and third (C) instar larval as well as adult (D) brain. Colocalization of GFP and Repo within the same cell was highlighted in C (insert, image represents a Z-projection of 5 to 12 slices). GFP (green), Repo (red), and Elav (blue). Scale bar = 50µm.

Figure 2. Eaat1-positive glial cells are important for the development and survival of \textit{Drosophila melanogaster}. \textit{Eaat1-Gal4} virgin female was crossed with male \textit{UAS-rpr} with transgene inserted on 2nd or X chromosome (Chr2 or ChrX) to deplete the Eaat1-positive glial cells by rpr-induced cell death. The crosses of \textit{Eaat1-Gal4} with \textit{UAS-rpr} (m, Chr2) were lethal in both males and females, none of the embryos reached adult stage. In the cross between female \textit{Eaat1-Gal4} and male \textit{UAS-rpr} (m, ChrX), only male flies were obtained, demonstrating that the Eaat1-positive glial cells are essential for the development and survival of \textit{Drosophila melanogaster}.

Figure 3. Characterization of the dual-UAS/Eaat1-Gal4 system. The EN line was crossed with UAS-LacZ or the background \textit{Drosophila melanogaster} strains (\textit{w}1118 or \textit{yw}) for the transgenic lines to test the efficiency of this system. No alterations on survival were observed in the crosses and controls under room air condition. A significant enhancement of hypoxia survival was detected in the \([\text{EN}] \times [\text{w1118}], [\text{EN}] \times [\text{yw}],\) and \([\text{EN}] \times [\text{UAS-LacZ}]\) as compared to the controls (\textit{w1118, yw,} and \textit{UAS-LacZ}) under 5\% O\textsubscript{2}, demonstrating that double the dosage of UAS-transgenes (Eaat1-Gal4 > UAS-NICD/UAS-LacZ (the progeny of \([\text{EN}] \times [\text{UAS-LacZ}]\)) did not
significantly affect the hypoxia tolerant phenotype showing in Eaat1-Gal4 > UAS-NICD (the progeny of [EN] x [w1118] or [EN] x [yw]). Bars represent mean ± SD (n=3 vials) for each group/treatment. Ordinary one-way ANOVA ($F_{(13, 28)} = 108.3$, $p < 0.0001$) with Turkey’s multiple comparison tests (*** $p<0.001$; ns: not significant).

Figure 4. Genetic interactions regulating hypoxia tolerance conferred by activating Notch in Eaat1-positive glial cells. Specific UAS-RNAi line targeting bnl, croc, Egfr, grn, h, inv or Mkk4 was crossed with the EN line to knock down the expression of the targeted genes individually on the background of Notch activation in the Eaat1-positive glial cells. The eclosion rate of the progeny under hypoxic condition (5% O$_2$) were measured. A significant reduction of Notch activation-conferred hypoxia survival was observed in the crosses with (A) bnl knock down (Ordinary one-way ANOVA ($F_{(4,10)} = 18.25$, $p = 0.0001$)), (B) croc knock down (Ordinary one-way ANOVA ($F_{(4,10)} = 11.09$, $p = 0.0011$)), (C) Mkk4 knock down (Ordinary one-way ANOVA ($F_{(4,10)} = 13.44$, $p = 0.0005$)), or (G) h knock down (F$_{(4,10)} = 44.24$, $p < 0.0001$)). In contrast, knock down (D) Egfr (Ordinary one-way ANOVA ($F_{(4,10)} = 37.23$, $p < 0.0001$)), (E) grn (Ordinary one-way ANOVA ($F_{(4,10)} = 23.66$, $p < 0.0001$)) or (F) inv (Ordinary one-way ANOVA ($F_{(4,10)} = 56.93$, $p < 0.0001$)) did not significantly diminish the hypoxia survival rate to control levels. Bars represent mean ± SD (n = 3 to 6 vials) for each group (* $p<0.05$, ** $p<0.01$, *** $p<0.001$; Turkey’s multiple comparison tests).

Figure 5. Effect of ubiquitous knocking down of candidate genes on hypoxia tolerance. Specific UAS-RNAi line targeting bnl, croc, Egfr, grn, h, inv or Mkk4 was crossed with the da-Gal4 driver to ubiquitously knock down the expression of the targeted genes individually in *Drosophila melanogaster*. The eclosion rate of the progeny under 5% O$_2$ hypoxic condition was measured. A significant enhancement of hypoxia survival was detected in the flies with specific
knocking down of grn, inv and Mkk4. In contrast, the crosses with croc and h knocking down showed a similar survival rate with the controls. And ubiquitous knocking down of bnl or Egfr was lethal. Bars represent means ± SD (n = 3 to 6 vials) for each cross. Ordinary one-way ANOVA (F(8,48) = 31.93, p < 0.0001) with Turkey’s multiple comparison tests (**: p<0.01).

Figure 6. Schematic illustration of hypothetical functional output of Notch/bnl, Notch/croc and Notch/Mkk4 interactions under hypoxia. Hypoxia tolerance conferred by Notch activation in the Eaat1-positive glial cells requires functional synchronization with bnl, croc and Mkk4 to regulate cell survival and proliferation, such functional synchronization is essential for organismal survival under prolonged severe hypoxic conditions.
Eaat1-positive Glial cell

Cell survival and proliferation

Hypoxia

Notch↑

bnl

croc

Mkk4