Melanism in Peromyscus Is Caused by Independent Mutations in Agouti

Citation
Kingsley, Evan P., Marie Manceau, Christopher D. Wiley, and Hopi E. Hoekstra. 2009. Melanism in Peromyscus Is Caused by Independent Mutations in Agouti. PLoS ONE 4(7): e6435.

Published Version
doi:10.1371/journal.pone.0006435

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:4454675

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP

Share Your Story
The Harvard community has made this article openly available. Please share how this access benefits you. Submit a story.

Accessibility
Melanism in *Peromyscus* Is Caused by Independent Mutations in *Agouti*

Evan P. Kingsley1,*, Marie Manceau1, Christopher D. Wiley2*, Hopi E. Hoekstra1

1 Department of Organismic and Evolutionary Biology and the Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, United States of America, 2 Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, United States of America

Abstract

Identifying the molecular basis of phenotypes that have evolved independently can provide insight into the ways genetic and developmental constraints influence the maintenance of phenotypic diversity. Melanic (darkly pigmented) phenotypes in mammals provide a potent system in which to study the genetic basis of naturally occurring mutant phenotypes because melanism occurs in many mammals, and the mammalian pigmentation pathway is well understood. Spontaneous alleles of a few key pigmentation loci are known to cause melanism in domestic or laboratory populations of mammals, but in natural populations, mutations at one gene, the melanocortin-1 receptor (*Mc1r*), have been implicated in the vast majority of cases, possibly due to its minimal pleiotropic effects. To investigate whether mutations in this or other genes cause melanism in the wild, we investigated the genetic basis of melanism in the rodent genus *Peromyscus*, in which melanic mice have been reported in several populations. We focused on two genes known to cause melanism in other taxa, *Mc1r* and its antagonist, the agouti signaling protein (*Agouti*). While variation in the *Mc1r* coding region does not correlate with melanism in any population, in a New Hampshire population, we find that a 125-kb deletion, which includes the upstream regulatory region and exons 1 and 2 of *Agouti*, results in a loss of *Agouti* expression and is perfectly associated with melanic color. In a second population from Alaska, we find that a premature stop codon in exon 3 of *Agouti* is associated with a similar melanic phenotype. These results show that melanism has evolved independently in these populations through mutations in the same gene, and suggest that melanism produced by mutations in genes other than *Mc1r* may be more common than previously thought.

Introduction

From complex patterns, like the stripes of a tiger, to the simple changes in the presence/absence of pigment, as in arctic hares, the diversity in mammalian pigmentation is vast [1]. But in addition to diversity among species, there is often appreciable variation in pigmentation within species. Because members of the same species that differ in their pigmentation phenotype can be crossed, this within-species variation is amenable to traditional genetic analyses. In addition, the molecular genetic factors that regulate mammalian pigmentation are relatively well known [reviewed in 2–4], thus enabling the genetic bases of these phenotypes to be explored. Furthermore, a nontrivial advantage to studying pigmentation traits is that variation is often easily detectable by eye. Mutant phenotypes that affect the coloration of the entire body are especially conspicuous and are easily recognized by both captive breeders and field biologists. One such phenotype is dark pigmentation or melanism. It is clear that melanism has evolved many times in wide variety of animal taxa [5].

The genes that can cause darkening of coat color have been studied most thoroughly in the laboratory mouse. Although experimentally induced mutations in over 25 genes can produce dark fur in lab mice [6], spontaneous coat-darkening mutations have been reported in only four genes: the *Agouti* signaling protein (*Agouti*), attractin (*Atm*), melanocortin-1 receptor (*Mc1r*), and mahogunin (*Mgn*) [7–10]. The protein products of these genes, *Mc1r*, *Atm*, and *Agouti*, interact at the surface of pigment-producing cells (melanocytes) and constitute the machinery responsible for “pigment type switching,” the ability of melanocytes to switch between the production of dark brown/black (eumelanin) and light yellow/red pigment (pheomelanin). *Mc1r* is a membrane-bound receptor that, when active, signals the melanocyte to produce eumelanin, whereas *Agouti* is a paracrine signaling protein that antagonizes *Mc1r*, causing the melanocyte to produce pheomelanin. Thus, mutations that cause either constitutive- or hyper-activation of *Mc1r* or loss-of-function of *Agouti* will result in a melanic phenotype. The functions of *Atm* and *Mgn* are not as well understood, although *Atm* is thought to stabilize interactions between *Mc1r* and *Agouti* [11]. Here, we focus on *Mc1r* and *Agouti* because their interaction has been well characterized in the lab mouse and thus can be extended to the study of melanism in other taxa.

Melanic phenotypes have evolved both in nature and in captivity in a wide diversity of animals and in some cases their
genetic basis has been identified. In captive vertebrates, spontaneous mutants of Agouti, Mc1r, Mgn, and Atrn have all been found to cause melanism [e.g., 12,13,10,9]. In natural populations, however, mutations in Mc1r are most commonly associated with melanism [e.g., 12,14–16], although both Agouti and Atrn are larger mutational targets. In addition, mutations in Agouti or Atrn that reduce protein expression or activity lead to melanism; these knock-out mutations are certainly more likely to occur than the gain-of-function Mc1r mutations that cause melanism because there are more ways to “break” a gene than to “improve” a gene’s activity. Thus, it is unclear why Mc1r knock-out mutations are certainly more likely to occur than the Agouti melanism-inducing mutations in Agouti not found because they occur less often, or are they simply more difficult to detect?

To address this question, we studied melanism in the deer mouse, Peromyscus maniculatus (Figure 1). Melanism has been reported in several populations of Peromyscus; melanic individuals have been captured in a number of locations in North America, including New Hampshire [17], California [10], Michigan, and Alaska [C. Conroy, pers. comm.]. Although it is unclear if these melanic phenotypes affect fitness, their repeated occurrence provides us with multiple comparisons of the same phenotype in the same genetic system (i.e. species). Horner et al. [17] showed that, in mice from New Hampshire, melanism is caused by a recessive allele at a single locus. The authors suggested the locus might be Agouti, based on its similarity to the nonagouti phenotype in Mus. Here we uncover the molecular variation that causes melanism in P. maniculatus from New Hampshire and show that the Agouti gene is responsible. We also investigate the molecular basis of melanotic phenotypes from geographically distant populations of P. maniculatus and find that melanism has independently arisen at least three times and by different mutations in the same gene, Agouti, in two of those cases.

Results

Melanism caused by a single, recessive locus

The inheritance of the melanotic phenotype in the New Hampshire strain of P. maniculatus was previously investigated by Horner et al. [17]. We confirmed their results with two crosses that clearly demonstrate that a single autosomal recessive allele is responsible for the melanotic phenotype (Table S1). Agouti is a candidate gene for Peromyscus melanism

The phenotypic similarity between melanic Peromyscus and mouse (Mus) Agouti mutants and the recessive nature of the melanic allele in P. maniculatus suggested that Agouti is a strong candidate gene. We sequenced a 180 kb BAC clone containing Agouti from P. maniculatus rufinus and compared it to the corresponding sequence from the Mus genome. In Mus, the Agouti gene consists of four non-coding exons (1A, 1A’, 1B, and 1C) and three protein-coding exons (2, 3, and 4); this arrangement appears to be conserved in other mammals, including rat (Rattus). Sequences orthologous to the exons in Mus and Rattus are conserved in the P. maniculatus sequence (Figure 2). However, when compared to the published genome sequences of Mus and Rattus, an inversion of the region containing exons 1A and 1A’ is present in P. maniculatus. Inversions in this region are sometimes associated with differences in ventral pigmentation in different strains of Mus [19].

To determine whether a mutation(s) in the Agouti locus is associated with melanism, we genotyped the 49 offspring of an A+/a × A'/a cross. We found a perfect association between successful amplification of exon 2 and phenotype: we always produced an exon 2 product of the expected size in wild type individuals (A'/a−, N = 34) but never in melanic (a+/a−, N = 15) individuals. In addition, while we amplified all the Agouti exons (untranslated 1A, 1A’, 1B, 1C and translated 2–4) in all wild type offspring, we were able to amplify only exons 3 and 4 from melanic mice. By contrast, we did not find any amino acid differences between wild type and melanic individuals in the entire Mc1r coding region. These results strongly suggest, first, that melanism is caused by variation at the Agouti locus and second, that a large deletion in Agouti may be responsible for the melanic phenotype.

Large deletion in Agouti associated with melanism

To determine if there was a deletion in the a− allele and if so, its size, we used genome-walking PCR to sequence upstream (5') of exon 3. We found that sequence identity between the wild type BAC sequence and the melanic Agouti allele extends about 1.3 kb 5' of exon 3. Thereafter, the melanic Agouti allele sequence is identical to the sequence 125 kb upstream in the wild type BAC (Figure 2). Thus, melanic P. maniculatus are homozygous for an allele with a large 125 kb deletion (A125kb), which eliminates the main regulatory region, the noncoding exons 1A, 1A’, 1B, 1C, and coding exon 2.

Figure 1. Pigmentation phenotypes of P. maniculatus. (A) Typical wild type individual, dorsal hairs are banded (containing both pheomelanin and eumelanin) and ventral hairs are white with a light grey base. This phenotype is dominant to the melanic phenotype. (B) Melanic individual with completely eumelanic hairs. These mice were captured in Hubbard Brook Experimental Forest, NH.
To test whether this 125 kb deletion affects the abundance of Agouti transcript, we measured Agouti mRNA in the skin of P4 pups. In animals heterozygous for the wild type and the dA125kb alleles, levels of Agouti expression were significantly higher than those of animals homozygous for dA125kb (Figure 3A). These data show that the dA125kb allele produces significantly less Agouti mRNA transcript and is thus likely the cause of melanism. Mc1r transcript levels, on the other hand, were not significantly different between melanic and wild type individuals (Figure 3B). In addition, we performed in situ hybridizations on 12.5 day-old embryos to determine whether Agouti is expressed in melan Nichols embryos. At this stage, wild type embryos express Agouti in the whisker plate and in parts of the limbs (Figure 3C), an expression pattern similar to that seen in Mus [20]. We did not detect any Agouti expression in melanic embryos (Figure 3D).

Molecular basis of melanism in Alaskan mice

To determine if the same gene and same mutation was responsible for melanism in other populations of P. maniculatus, we sequenced both Mc1r and Agouti in melanic and wild type mice from an additional population. First, we sequenced Mc1r in melanic (N = 2) and non-melanin (N = 4) P. maniculatus from Alaska and found four amino acid polymorphisms segregating in the sample (Figure 4). None of these polymorphisms likely cause the melanic phenotype for several reasons: (1) none of these mutations overlaps with any previously described darkening mutations, (2) all four amino acids appear in other, non-melanic individuals from other geographic locations of P. maniculatus (Figure 4), and (3) none of the polymorphisms correlate with the melanin phenotype in this population.

In the same sample, we also sequenced the coding exons of Agouti and found one segregating amino acid polymorphism, a mutation at nucleotide position 193 (in exon 3) that results in a change from glutamine to a stop codon at amino acid position 65 (dQ65term). This premature stop codon eliminates exon 4, which contains a cysteine-rich region that is integral to the function of the Agouti protein (Figure 4; [21,22]). Thus, this mutation very likely results in a non-functional protein. Individuals both homozygous and heterozygous for the dQ65term allele had the wild type phenotype, consistent with the dQ65term allele being recessive and its being a null allele. Though the small number of animals sampled does not allow us to rule out the involvement of other loci, these data strongly suggest that the dQ65term allele is the cause of the melanin phenotype in the Alaskan population.

Melanism also has been reported in a third population, P. m. gracilis from the upper peninsula of Michigan [P. Myers, pers. comm.]. We sequenced the complete coding regions of Agouti in a single melanin individual. The Agouti sequence possesses neither the dQ65term nor the dA125kb mutation, nor does it contain any obvious melanin-causing mutations in Mc1r, demonstrating a third independent origin of melanin in P. maniculatus.

Discussion

The results of our laboratory crosses confirmed that melanism in New Hampshire P. maniculatus is caused by a single, recessive allele. In laboratory mice, dominant melanism is usually caused by alleles of Mc1r, while recessive melanism is usually caused by alleles of Agouti. Consistent with this dominance hierarchy, we found that melanism in P. maniculatus is perfectly correlated with the presence of an allele (dA125kb) with a large deletion at the Agouti locus. When mice are homozygous for this allele, the abundance of Agouti transcript in the skin is significantly lower than that in individuals with a single copy of the wild type Agouti allele. This accords with the observation that the deleted region contains the 5′ untranslated regions that are important for temporal and spatial regulation of Agouti and probably any associated cis-regulatory information. The deletion also encompasses exon 2, which contains the start of the Agouti protein (amino acids 1–54). Together, this evidence strongly suggests that the dA125kb allele causes melanism in P. maniculatus from New Hampshire.

Sequencing of Agouti and Mc1r coding regions in melanic individuals from other geographic locations shows that melanism arose independently at least three times in P. maniculatus. Melanic individuals from Shrubby Island, AK are homozygous for an allele (dQ65term) of Agouti that contains a premature stop codon in exon 3. This mutation is predicted to result in a non-functional protein. Although we cannot rule out contributions of linked variation to the melanin phenotypes possessed by mice from New Hampshire and Alaska, the likely effects of the A125kb and Q65term alleles...
Figure 3. *Agouti* and *Mc1r* expression in wild type and melanic mice. (A, B) Relative expression of *Agouti* and *Mc1r* transcripts in dorsal skin of P4 *P. maniculatus* was measured by quantitative RT-PCR. Expression level of the target gene is standardized with that of β-actin. We compared relative expression levels of each gene with Student’s t-test (two-tailed, unequal variance). For each phenotype class, N = 5. (A) *Agouti* expression is significantly higher in the dorsal skin of wild type mice than in melanic mice; expression level in melanic mice is not significantly different from zero. (B) *Mc1r* expression in wild type and melanic mice does not significantly differ. Bars indicate standard error. (C,D) Lateral views of whole-mount in situ hybridizations for *Agouti* in E12.5 embryos. (C) Wild type embryos express *Agouti* in the whisker plate and the limbs (arrows). (D) *Agouti* expression is not detected in *a125kb* homozygote embryos.

DOI: 10.1371/journal.pone.0006435.g003
mutations and the known effects of null Agouti alleles in other taxa, it is very likely that these mutations represent the causative variation underlying these melanic phenotypes. The melanic individual from Michigan possesses neither the $a_{\text{D}125kb}$ nor the $aQ65term$ allele; melanism in this population must be caused either by variation at another locus or possibly by unexamined variation at the Agouti or Mc1r loci. This study presents two cases in which a specific molecular variant at the Agouti locus appears to cause melanism in a natural population. Mc1r mutants represent the vast majority of cases of melanism in natural populations of mammals, despite many occurrences of melanic Agouti mutants in captive and domestic stocks (Table 1). There are a number of possible explanations for this discrepancy.

One possible explanation involves dominance. Haldane [23] suggested that, when natural selection acts on new (i.e., rare) beneficial mutations, adaptation will be biased toward fixing dominant alleles, which are immediately visible to selection (but see [24]). Thus, we expect that when melanism is adaptive, we may see a prevalence of melanic Mc1r mutants. On the other hand, if melanism is deleterious and is being held at mutation-
selection equilibrium, we might expect melanism caused by mutations in \textit{Agouti} if they are recessive. Thus, depending on environmental conditions, expectations regarding the fixation probabilities of \textit{Mc1r} versus \textit{Agouti} alleles are different. In \textit{Peromyscus}, the melanic alleles in both populations described in this study were found at low frequencies – 3–7\% assuming Hardy-Weinberg equilibrium \cite{17}; data not shown) – and there is no obvious association between melanism and environmental conditions as observed in other species (e.g., pocket mice; \cite{25}), suggesting these alleles may not be adaptive. Thus, if melanic phenotypes are often fixed from new dominant mutations rather than standing genetic variation, this may explain the prevalence of melanism caused by \textit{Mc1r}.

Second, if mutations in \textit{Agouti} have greater negative pleiotropic effects than mutations in \textit{Mc1r}, then we would expect to see more evolution in the latter. Having fewer negative pleiotropic consequences of mutations at a locus translates to less evolutionary constraint (or higher net selection coefficients). While deleterious effects may be tolerated when organisms are raised in captivity, they could have important fitness consequences in nature. Whether differing amounts of pleiotropy of mutations at these loci affects the evolution of melanism is difficult to say, because mutations in both \textit{Agouti} and \textit{Mc1r} may affect traits other than pigmentation. Mutations in \textit{Mc1r}, for example, have recently been discovered to have effects in the nervous system \cite{26}. Pleiotropy is especially well documented in \textit{Agouti}: ectopic expression of \textit{Agouti} in \textit{Mus} can result in obesity and lethality \cite{27,28} and null mutants in \textit{Rattus} and \textit{Peromyscus} exhibit behavioral differences \cite{29,30}. But pleiotropic consequences may be mitigated by the precise type and location of mutations. It has been predicted that for any given

\begin{table}
\centering
\caption{Spontaneous alleles causing melanic phenotypes in mammals and birds.}
\begin{tabular}{llllll}
\hline
\textbf{gene} & \textbf{wild/domestic} & \textbf{taxon} & \textbf{allele name} & \textbf{homozygous phenotype} & \textbf{mutation} & \textbf{reference} \\
\hline
\textit{Agouti} & d & \textit{Canis familiaris} & a & black coat & R96C & \cite{55} \\
& w/d & \textit{Equus caballus} & A* & black coat & 11 bp deletion in exon 2 (frameshift) & \cite{57,58} \\
& d & \textit{Felis catus} & ASIP-A2 & black coat & 2 bp deletion in exon 2 (frameshift) & \cite{12} \\
& d & \textit{Mus} & a_{12D} & black coat & F118S & \cite{59} \\
& d & \textit{Ovis aries} & A* & black coat & unknown non-coding mutation & \cite{60} \\
& d & \textit{Rattus} & a & black coat & 19 bp deletion in exon 2 (frameshift) & \cite{61} \\
& d & \textit{Vulpes vulpes} & a & dark “silver” coat & 166 bp deletion of entire exon 2 & \cite{62} \\
\textit{Mahogunin} & d & \textit{Mus} & Mgrn1md & dark brown coat & 5 kb insertion in intron 11 & \cite{10} \\
& d & \textit{Mus} & Mgrn1md-2J & dark brown coat & 5 kb insertion in exon 12 & \cite{10} \\
& d & \textit{Mus} & Mgrn1md-5J & dark brown coat & 8 kb insertion in intron 2 & \cite{10} \\
\textit{Attractin} & d & \textit{Mus} & Attnmg & dark brown coat & 5 kb insertion in intron 26 & \cite{63} \\
& d & \textit{Mus} & Attnmg-L & dark brown coat & 5 kb insertion in intron 27 & \cite{63} \\
& d & \textit{Mus} & Attnmg-2J & dark brown coat & 5 bp deletion in exon 16 (frameshift) & \cite{8} \\
& d & \textit{Mus} & Attnmg-4J & dark brown coat & large deletion of N-terminal exons & \cite{64} \\
\textit{\textbeta-defensin 103} & w/d & \textit{Canis familiaris} & K8 & black coat & 1 bp deletion (frameshift) & \cite{65,66} \\
& d & \textit{Bos taurus} & ED & black coat & L99P & \cite{67} \\
& d & \textit{Coturnix japonica} & E & dark brown plumage & E92K & \cite{13} \\
& d & \textit{Gallus gallus} & E & black plumage & E92K & \cite{68,69} \\
& d & \textit{Mus} & ED0 & dark brown coat & L96P & \cite{9} \\
& d & \textit{Mus} & ED-1J & dark brown coat & E92K & \cite{9} \\
& d & \textit{Ovis aries} & ED & black coat & M73K, D119N* & \cite{70,71} \\
& d & \textit{Sus scrofa} & ED1 & black coat & L99P and D121N & \cite{72} \\
& d & \textit{Vulpes vulpes} & EA & dark “silver” coat & C125R & \cite{62} \\
& w & \textit{Alopex lagopus} & blue & dark grey/blue coat & G5C, F280C & \cite{73} \\
& w & \textit{Anser c. caerulescens} & blue & dark plumage & V85M & \cite{14} \\
& w & \textit{Chaetodipus intermedius} & dark & dark brown coat & R18C, R109W, R160W, Q233H* & \cite{15} \\
& w & \textit{Coereba flaveola} & GSV & black coat & E92K & \cite{16} \\
& w & \textit{Herpailuris yaguarondi} & MC1R-A24 & dark brown coat & 24bp deletion & \cite{12} \\
& w & \textit{Mus} & EDbb & black coat until 8 weeks & S69L & \cite{9} \\
& w & \textit{Panthera onca} & MC1R-A15 & dark coat & 15 bp deletion & \cite{12} \\
& w & \textit{Stercorarius parasiticus} & dark & dark plumage & R230H & \cite{14} \\
& w & \textit{Sula sula} & dark & dark plumage & V85M and H207R & \cite{74} \\
\hline
\end{tabular}
\end{table}

*indicates mutations in complete linkage disequilibrium.

doi:10.1371/journal.pone.0006435.t001
gene, mutations in the cis-regulatory elements may minimize antagonist pleiotropic effects relative to those in coding regions because such mutations can alter the time or place of gene expression in some tissues while preserving gene function in others [31–33]. Our data provide examples of mutations that are associated with morphological diversity: in one case, a premature stop codon, and in a second, a large deletion of both regulatory and exonic DNA. Thus, our data show, despite potential stop codon, and in a second, a large deletion of both regulatory and coding mutations in a highly pleiotropic gene, Agouti, cause a visible melanophene that segregates in natural populations. Alternatively, it is possible that the melanic alleles in this study do generate negative pleiotropic effects that prevent them from increasing in frequency.

The third possibility is that a bias exists toward detecting mutations in the small Mc1r locus versus the larger, more complex Agouti locus. In fact, one would expect that there are more possible mutations that can cause a null Agouti allele than a constitutively active Mc1r allele. Many cases of melanism that have not yet been assigned a precise mutational cause (e.g., some populations of pocket mice [34]; pocket gophers [35]; leaf warblers [36]) may be caused by variation at Agouti, or indeed other loci.

Understanding the genetic basis of phenotypes that have arisen independently underpins studies of convergence by natural selection. While the fitness consequences of the melanic phenotypes in this study are unknown, studies of pigmentation may be uniquely positioned to identify convergence and to uncover its molecular basis because pigmentation traits are easily recognizable and many of the genes involved in producing pigments are well characterized. As the number of cases of convergence on a particular phenotype increases, so does our understanding of the constraints limiting the ways that phenotypes can evolve. In some cases, like stomach lysozyme [37,38], pelvic reduction in sticklebacks [39,40], or cycloiden resistance in a number of insect taxa (reviewed in [41]), evolution appears to be tightly constrained, and the same gene is the repeated target of natural selection. In other cases, such as pigmentation, many different genetic mechanisms can produce the same phenotype (beach mice [42,43]; pocket mice [34]; Drosophila [44]; cavefish [45,46]; Heliconius [47]). However, in these cases and others, it seems that a handful of proteins at key regulatory points in the pigmentation pathway are major targets of evolution change (e.g., Mc1r/Agouti in vertebrates; ebony/yellow in Drosophila; DEF in flowering plants [48]). Thus, natural selection may repeatedly target either the same key points in a genetic pathway or even the same genes to produce the most beneficial phenotype while minimizing deleterious pleiotropy. Future work on additional phenotypes in additional taxa will shed light on the myriad ways that evolution can generate morphological diversity.

Materials and Methods

Ethics statement

Experiments were approved by the Harvard University Institutional Animal Care and Use Committee and were conducted in accordance with National Institutes of Health regulations governing the humane treatment of vertebrate animals.

Animal samples

For this study, we first focused on mice from a wild-derived captive strain of melanic Peromyscus maintained at the Peromyscus Genetic Stock Center (Columbia, South Carolina). These melanic animals (P. maniculatus gracilis) are derived from mice captured in 1977 at the Hubbard Brook Experimental Forest in New Hampshire [17]. Second, to study the genetic basis of other melanic phenotypes, we obtained tissue samples of melanic mice from natural history collections originally captured in two additional populations in Alaska (P. m. keeni) and Michigan (P. m. gracilis).

Genetic Crosses

To determine the genetic basis of melanism in P. maniculatus from New Hampshire, we conducted two types of genetic crosses. First, to confirm dominance, we set up four mating pairs of wild type P. maniculatus bairdi and melanic P. m. gracilis [17]. Second, for the single-locus test, we established three mating pairs and backcrossed mice that were heterozygous for the melanic allele to the wild type. We then scored the phenotypes of the resulting offspring by eye.

Tissue Samples

We acquired tissue samples from two additional populations of P. maniculatus that harbor melanic individuals. First, we received tissue samples from mice (P. m. keeni) inhabiting Shrubbery Island in southeastern Alaska (University of Alaska Museum of the North, accession numbers UAM20875, 20876, 20878, 20880, 20882), although the status of P. m. keeni as a subspecies of P. maniculatus [49] or its sister species, P. keeni, [50] is unresolved. We also acquired a tissue sample of a single melanic individual of P. m. gracilis from Macinac County, Michigan (University of Michigan Museum of Zoology). Tissue samples from another melanic population (P. m. gambeli) in California [18] were not available.

PCR amplification and sequencing

We extracted genomic DNA from liver using the DNeasy kit (Qiagen, Valencia, CA). Primers and PCR conditions used to amplify the complete Agouti coding exons are shown in Table S2; these amplification primers were also used in the sequencing reactions. Primers to amplify the Mc1r coding region were used as previously described [51]. We used ABI3730xl and 3130xl sequencers (Applied Biosystems, Foster City, CA) and aligned all sequences in SEQUENCHER (Gene Codes, Ann Arbor, MI). When a deletion was identified, we used genome-walking to identify the breakpoint (GenomeWalker Universal kit; Clontech, Mountain View, CA); primers are shown in Table S3. Once we identified the precise deletion breakpoint, we designed primers across the deletion to genotype individuals; these primers are listed in Table S2.

BAC sequencing

To examine the Mc1r and Agouti loci in Peromyscus, we screened an available BAC library for P. m. rufinus. For the Agouti locus, we captured the entire described regulatory region [52] by using two probes representing untranslated exon 1A/1A’ and the last coding region, exon 4, which span approximately 100 kb in Mus. A 160 kb BAC containing Mc1r and a 180 kb BAC containing Agouti were then shotgun sequenced by Agencourt (Beverly, MA) until sequences from each BAC could be assembled into a single contig for each locus and all gaps were filled.

Real time quantitative PCR

To quantify Mc1r and Agouti transcript levels in wild type and melanic mice from New Hampshire, we used quantitative real-time PCR to detect Mc1r and Agouti mRNA in the skin of 4-day-old (P4) pups, a time when Agouti expression is high [52]. First, we extracted total RNA from dorsal skin that had been frozen in liquid nitrogen with an RNeasy kit (Qiagen). Next, we generated
cDNA pools by reverse transcribing from ~1ug total RNA with Superscript II reverse transcriptase and poly-dT(20) primer. Finally, we measured transcript abundances with TaqMan custom probe based on exon-4 sequence (Applied Biosystems, Foster City, CA) as previously described [53] on a Mastercycler Realplex2 (Eppendorf North America, New York, NY). We compared expression of the target transcript to that of β-actin by calculating \(\Delta \Delta CT \) in which \(\Delta CT \) is the difference between the target and β-actin CTs for a given sample. We assayed expression level for each individual in duplicate.

In situ hybridization

We generated a cDNA pool from Peromyscus embryonic skin at E13, and amplified the entire coding region of Agouti (exons 2 to 4). An Agouti anti-sense riboprobe was obtained by RNA synthesis reaction and used to perform in situ hybridization on wild type and melanin embryos at E12.5 as previously described [54].

Supporting Information

Table S1 Melanin is caused by a single autosomal recessive allele in P. manipulatus. We found complete recessivity of the melanin phenotype in the New Hampshire strain of P. manipulatus consistent with previous observations [17]. Offspring resulting from crosses between homozygous wild type mice (A\(^2\)/A\(^2\)) and homozygous melanin mice (a\(^2\)/a\(^2\)) were all phenotypically indistinguishable from wild type (N = 64), confirming that the allele(s) causing the melanin phenotype is recessive to the wild type allele. In a second experiment, offspring that were heterozygous for the melanin allele (A\(^2\)/a; although phenotypically wild type) – were intercrossed, resulting in 49 offspring, of which 34 (69%) were melanin and 15 (31%) were wild type phenotype, 15 (31%) were melanic, and none had an intermediate phenotype. The ratio of phenotypes is not significantly different from 3:1 (χ\(^2\) = 0.02, 1 d.f., p>0.35), confirming that a recessive allele at a single locus is responsible for the melanin phenotype in this strain of P. manipulatus. Subsequent genotyping of these offspring revealed a ratio of homozygous wild type:heterozygous:melaninogenic melanin ratio not significantly different from 1:2:1 (χ\(^2\) = 0.38, 2 d.f., p>0.6).

Found at: doi:10.1371/journal.pone.0006435.s001 (0.04 MB DOC)

Table S2 Standard PCR primer sequences and conditions.

Found at: doi:10.1371/journal.pone.0006435.s002 (0.03 MB DOC)

Table S3 Genome walking PCR primer sequences.

Found at: doi:10.1371/journal.pone.0006435.s003 (0.03 MB DOC)

Acknowledgments

We wish to thank the University of Alaska Museum of the North, the University of Michigan Museum of Zoology, P. Myers, and C. Comroy for their assistance with tissue loans, and the Peromyscus Genetic Stock Center for maintaining our crosses. M. Chin, B. Hehli, K. Hogan and C. Stiecer contributed to the molecular work. BAC screening was performed in the lab of P. Vrana. W. Parsons provided photographs of the mice. V. Domingues, C. Linnen, J. Losos, M. Shapiro and P. Wittkopp provided thoughtful discussion and comments on the manuscript.

Author Contributions

Conceived and designed the experiments: EK MCM HEH. Performed the experiments: EK MCM CDW. Analyzed the data: EK MCM HEH. Contributed reagents/materials/analysis tools: CDW HEH. Wrote the paper: EK HEH.

References

1. Cott HB (1940) Adaptive Coloration in Animals. Methuen, London.
2. Barsh GS (1996) The genetics of pigmentation: From fancy genes to complex traits. Trends in Genetics 12: 299–305.
3. Bennett DG, Lamoreux ML (2003) The color loci of mice - A genetic century. Pigment Cell Research 16: 333–344.
4. Hoekstra HE (2006) Genetics, development and evolution of adaptive pigmentation in vertebrates. Heredity 97: 222–234.
5. Majerus ME (1990) Melanism: evolution in action. New York: Oxford University Press.
6. Bult CJ, Eppig JT, Kadin JA, Richardson JE, Barlow CA, et al. (2008) The Mouse Genome Database (MGD): Mouse biology and model systems. Nucleic Acids Research 36: D441–D445.
7. Bultman SJ, Kleib MG, Michael EJ, Sweet HO, Davidson MT, et al. (1994) Molecular analysis of reverse mutations from nonagouti (a) to black-and-tan (a(t)) and white-bellied agouti (Aw) reveals alternative forms of agouti transcripts. Genes & Development 8: 481–490.
8. Nagle DL, McGrail SH, Vitale J, Woolf EA, Dussault BJ, et al. (1999) Themahogany -actin duplication and allelic variation at the mouse agouti locus. Genetics 157: 875–884.
9. Cottle CA, Price EO (1987) Effects of the nonagouti pelage-color allele on the behavior of captive wild Norway rats (Rattus norvegicus). Journal of Comparative Psychology 101: 390–394.
30. Hayssen V (1997) Effects of the nonagouti coat-color allele on behavior of deer mice (*Peromyscus maniculatus*): A comparison with Norway rats (*Rattus norvegicus*). Journal of Comparative Psychology 111: 419–423.

31. Stern DL (2000) Perspective: Evolutionary developmental biology and the problem of variation. Evolution 54: 1079–1091.

32. Carroll SB (2005) Evolution at two levels: On genes and form. PLoS Biology 3: 1159–1166.

33. Carroll SB (2008) Evo-devo and an expanding evolutionary synthesis: A genetic theory of morphological evolution. Cell 134: 23–36.

34. Hoekstra HE, Nachman MW (2003) Different genes underlie adaptive melanism in different populations of rock pocket mice. Molecular Ecology 12: 1185–1194.

35. Wlasiuk G, Nachman MW (2007) The genetics of adaptive coat color in gophers: Coding variation at *Mc1r* is not responsible for dorsal color differences. Journal of Heredity 98: 567–574.

36. MacDougall-Shackleton EA, Blanchard L, Gibbs HL (2003) Unmelanized plumage patterns in old world leaf warblers do not correspond to sequence variation at the melanocortin-1 receptor locus (*MC1R*). Molecular Biology and Evolution 20: 1675–1681.

37. Stewart CB, Schilling JW, Wilson AC (1987) Adaptive evolution in the stomach lysozymes of forest ferrets. Nature 330: 401–404.

38. Koruzya JR, Schilling JW, Wilson AC (1994) Molecular adaptation of a feeding bird - stomach lysozyme of the hoatzin. Molecular Biology and Evolution 11: 921–928.

39. Shapiro MD, Marks ME, Pritch CL, Blackman BK, Neeng KS, et al. (2004) Genetic and developmental basis of evolutionary pelvis reduction in three-spined sticklebacks. Nature 428: 717–723.

40. Shapiro MD, Bell MA, Kingsley DM (2006) Parallel genetic origins of pelvic reduction in vertebrates. Proceedings of the National Academy of Sciences of the United States of America 103: 13753–13758.

41. flye-Constant RH, Anthony N, Arounkin K, Rocheleau T, Stittwell G (2000) Cylcoidine insecticide resistance: From molecule to population genetics. Annual Reviews of Evolution 45: 449–466.

42. Hoekstra HE, Hirschmann RJ, Bundey RA, Insel PA, Crossland JP (2006) A novel role for *Mc1r* in the mahogany gene. PLoS Genet 5: e1000326.

43. Wlasiuk G, Nachman MW (2003) Different genes underlie adaptive melanism in different populations of rock pocket mice. Molecular Ecology 12: 1185–1194.

44. Wittkopp PJ, Williams BL, Selegue JE, Carroll SB (2003) Recessive black is allelic to the yellow plumage locus in Japanese quail and associated with a frameshift deletion in the ASIP gene. Genetics 178: 771–775.

45. Protas ME, Hersey C, Kochanek D, Zhou Y, Wilkens H, et al. (2006) Genetic variation at the melanocortin-1 receptor locus (*MC1R*). Mammalian Genome 17: 1150–1157.

46. Gross JB, Borowsky R, Tabin CJ (2009) A novel role for *Mc1r* in the mahogany gene. PLoS Genet 5: e1000326.

47. Baxter SW, Papa R, Chamberlain N, Humphray SJ, Joron M, et al. (2008) A molecular and taxonomic implications of karyotypic, electrophoretic, and mitochondrial-DNA variation in *Peromyscus* from the Pacific Northwest. Journal of Mammalogy 79: 819–831.

48. Rausher MD (2008) Evolutionary transitions in floral color. International Journal of Plant Sciences 7: 6–21.

49. Osgood WH (1909) Revision of the Mice of the American Genus *Peromyscus*. Bulletin of the United States Department of Agriculture 70: 819–831.

50. Hogan KM, Hedin MC, Koh HS, Davis SK, Greenbaum IF (1993) Systematic analysis of cavefish reveals molecular convergence in the evolution of albinism. Science 262: 1418–1423.

51. Andersson TM, vonHoldt BM, Candille SI, Musiani M, Greens C, et al. (2009) Molecular and evolutionary history of melanin in North American gray wolves. Science 323: 1339–1343.

52. Kijas JMH, Wales R, Tornsten A, Chardon P, Moller M, et al. (1998) A non-ragout coat-color allele in sheep. Mammalian Genome 9: 592–604.

53. Candille SI, Kaelin CB, Cattanach BM, Yu B, Thompson DA, et al. (2007) A beta-defensin mutation causes black coat color in domestic dogs. Science 318: 1418–1423.

54. Henrique D, Adam J, Myat A, Chitnis A, Lewis J, et al. (1995) Expression of a melanocortin receptor in bovine coat color determination. Mammalian Genome 6: 636–639.

55. Kojis JMH, Wales R, Tornsten A, Chardon P, Moller M, et al. (1998) A Non-Ragout coat-color allele in sheep. Molecular and Evolutionary Genetics 15: 311–315.

56. Lint MK, Kijas JMH, Wales R, Tornsten A, Chardon P, Moller M, et al. (1998) Association of feather color with coat color and coat color in sheep. Evolutionary Biology 5: 567–571.

57. Kojis JMH, Wales R, Tornsten A, Chardon P, Moller M, et al. (1998) A Non-Ragout coat-color allele in sheep. Molecular and Evolutionary Genetics 15: 311–315.

58. Lodge A, Probst M, Reissmann M, Benecke N, Brockmann GA, et al. (2009) Coat color variation at the beginning of horse domestication. Science 324(5926): 483.

59. Rademacher MJ, Weisshaar B, Buechele J, Hoekstra HE (2006) A single amino acid mutation contributes to adaptive beach mouse color pattern. Science 313: 101–104.

60. Norris BJ, Whan VA (2008) A gene duplication affecting expression of the ovine *Agouti* gene and identification of the rat nonagouti mutation. Mammalian Genome 19: 13753–13758.

61. Kurosaka T, Nomoto T, Sugimura T, Ushijima T (2001) Cloning of the rat nonagouti mutation. Mammalian Genome 12: 469–471.

62. Vage DI, Ly Ø, Klanglund H, Lien S, Adalsteinsson S, et al. (1997) A non-epistatic interaction of *agouti* and *eaxenius* in the fox. *Fusilus culpaeus*. Nature Genetics 15: 311–315.

63. Vage DI, Ly Ø, Klanglund H, Lien S, Adalsteinsson S, et al. (1997) A non-epistatic interaction of *agouti* and *eaxenius* in the fox. *Fusilus culpaeus*. Nature Genetics 15: 311–315.

64. Guill TM, Miller KA, He L, Hyman RV, Davis RW, et al. (1999) The mouse *agouti* locus encodes a transmembrane form of human attractin. Nature 398: 152–156.

65. Candille SI, Kaelin CB, Cattanach BM, Yu B, Thompson DA, et al. (2007) A beta-defensin mutation causes black coat color in domestic dogs. Science 318: 1418–1423.

66. Andersson TM, vonHoldt BM, Candille SI, Musiani M, Greens C, et al. (2009) Molecular and evolutionary history of melanin in North American gray wolves. Science 323: 1339–1343.

67. Klanglund H, Vage DI, Gomezryza L, Adalsteinsson S, Lien S (1993) The role of melanocyte-stimulating hormone (MSH*) receptor in bovine coat color determination. Mammalian Genome 4: 636–639.

68. Takeuchi S, Suzuki H, Yabuchi M, Takahashi S (1996) A possible involvement of melanocortin-1 receptor in regulating feather color pigmentation in the chicken. Biochimica Et Biophysica Acta-Genze Structure and Expression 1308: 164–168.

69. Ling MK, Largetstrom MG, Fredriksson R, Okimoto R, Mundy NI, et al. (2003) Association of feather colour with constitutively active melanocortin-1 receptors in chicken. European Journal of Biochemistry 270: 1441–1449.

70. Andersson TM, vonHoldt BM, Candille SI, Musiani M, Greens C, et al. (2009) Molecular and evolutionary history of melanin in North American gray wolves. Science 323: 1339–1343.

71. Shephard LS, Towns C, van der Walt S, et al. (2009) Visualizing global DNA sequence alignments of arbitrary length. Bioinformatics 25: 2207–2208.

72. Vage DI, Klanglund H, Lien S (1993) The role of melanocyte-stimulating hormone (MSH) receptor in bovine coat color determination. Mammalian Genome 4: 636–639.

73. Vage DI, Klanglund H, Lien S (1993) The role of melanocyte-stimulating hormone (MSH) receptor in bovine coat color determination. Mammalian Genome 4: 636–639.

74. Baia˜o PC, Schreiber FA, Parker PG (2007) The genetic basis of the plumage coloration of the Rattus norvegicus. Journal of Comparative Psychology 121: 819–831.