The consistency strength of projective uniformization, revisited

Ralf Schindler*

March 30, 2022

Consider the following assumptions, whose conjunction we denote by (RP):

(1) every projective set of reals is Lebesgue measurable and has the property of Baire, and

(2) every projective subset of the plane has a projective uniformization.

Woodin had asked, in [4], whether (RP) implies Projective Determinacy. This is not the case, by a recent observation of Steel:

Theorem 0.1 (Woodin, Steel) Suppose $V = K$, where K is Steel’s core model. If there are $\kappa_0 < \kappa_1 < \ldots$ with supremum λ such that for all $n < \omega \kappa_n$ is $< \lambda^+$ strong [i.e., for all $x \in H_{\lambda^+}$ there is $\pi: V \to M$ with critical point κ_n and M transitive such that $x \in M$] then (RP) holds in a generic extension.

We here show that this is best possible:

Theorem 0.2 If $ZFC + (RP)$ holds and Steel’s K exists then $J_{\omega_1}^K \models$ there are infinitely many strong cardinals.

*The author gratefully acknowledges a DFG fellowship. He is heavily indebted to Kai Hauser, John Steel, and, indirectly, Hugh Woodin.
Proof. Suppose not. Let $n < \omega$ be the number of strongs in $J_{\omega_1}^K$. We work towards a contradiction.

Case 1. ω_1 is a successor in K.

Then Corollary 2.2 of [2] gives that $J_{\omega_1}^K$ is (boldface) Δ^1_{n+4} (in the codes). But then we get a projective sequence of distinct reals of length ω_1, contradicting [4].

Case 2. ω_1 is inaccessible in K.

Let $\Phi_m(M)$ denote the following statement, for $m \geq n$:

M is a countable m-full mouse, $M \models$ there are $\leq m$ many strongs, and for all countable m-full N, if M, N simply coiterate to M^*, N^* with iteration maps $i : M \to M^*$ and $j : N \to N^*$ such that M^* is an initial segment of N^* then $i''M \subset j''N$.

The concept of m-fullness was defined in [2] where we showed that $\Phi_m(J_{\kappa}^K)$ holds for all $\kappa \leq$ the $(m+1)^{st}$ strong cardinal of $J_{\omega_1}^K$ which is either a double successor or an inaccessible in K.

It is also shown in [2] that if ω_1 is inaccessible in K and there are $\leq m$ strong cardinals in $J_{\omega_1}^K$ then $\Phi_m(M)$ characterizes (in a Π^1_{m+4} way) (cofinally many of) the proper initial segments of $J_{\omega_1}^K$. (Cf. [2] Theorem 2.1. This gives a (lightface) Δ^1_{m+5} definition of $J_{\omega_1}^K$.)

In particular, for all $m \geq n$ the following holds, abbreviated by Ψ^m_n:

For any two M, M', if $\Phi_m(M)$ and $\Phi_m(M')$ both hold then M and M' are lined up and if \tilde{M} is the "union" of all M's with $\Phi_m(M)$ then $On \cap \tilde{M} = \omega_1$ and $\tilde{M} \models$ there are exactly n strong cardinals.

Notice that Ψ^m_n is Π^1_{m+5}.

By [3], there is a model $P = L_{\omega_1}[X] \models ZFC$ for some $X \subset \omega_1$, such that

(a) $P[g]$ is Σ^1_{n+1000} correct in $P[g][h]$ whenever g is set-generic over P and h is set-generic over $P[g]$, and

(b) P is Σ^1_{n+1000} correct in V.

2
Now $P \models \Psi_n^{n+94}$ by (b) and the fact that Ψ_n^{n+94} holds in V. Moreover, P is closed under the dagger operator by (a), so Steel’s K exists in P, denoted by K^P, and $K^P \models$ there are $> n$ strong cardinals, by [1] and (a). We may pick $\mathcal{g} \mathcal{C}ol(\mu, \omega)$-generic over P for some appropriate μ such that in $P[g]$, $J_{\omega_1}^K \models$ there are $> n$ strongs. By (a), Ψ_n^{n+94} still holds in $P[g]$.

From this we now derive a contradiction, by working in $P[g]$ for the rest of this proof. So let us assume that (in V) Ψ_n^{n+94} holds, Steel’s K exists, and $J_{\omega_1}^K \models$ there are $> n$ strongs.

By Ψ_n^{n+96}, there is a J-model \tilde{M} of height ω_1 such that $\tilde{M} \models ZF^- + \text{there are exactly } n \text{ strong cardinals, and } \Phi_{n+96}(M) \text{ holds for every proper initial segment } M \text{ of } \tilde{M}$. By [2], there is a universal weasel W end-extending \tilde{M} such that for all countable (in V) κ which are cardinals in W and such that $J_{\kappa}^{\tilde{M}} \models$ there are $< n + 94$ strong cardinals, W has the definability property at κ. [This follows from the fact that cofinally many proper initial segments of \tilde{M} are $n + 94$ full].

Because W is universal, there is some $\sigma: K \to W$ given by the coiteration of K with W. Let κ denote the $(n+1)^{st}$ strong cardinal of $J_{\omega_1}^K$. By a remark above, J_{κ}^K is an initial segment of W. But this implies that the critical point of σ is $> \kappa$. [This follows from the fact that if μ is strong in J_{κ}^K, or $\mu = \kappa$, then K as well as W has the definability property at μ.] But now, using σ, $\tilde{M} = J_{\omega_1}^W \models$ there are at least $n + 1$ many strong cardinals. Contradiction!

□

References

[1] Hauser, Kai, The consistency strength of projective absoluteness.
[2] Schindler, Ralf, The projectiveness of $K \cap HC$, handwritten notes.
[3] Steel, John, The core model iterability problem.
[4] Woodin, Hugh, The consistency strength of projective uniformization.