About the finding of independent vertices of a graph

Anatoly D. Plotnikov

Abstract

We examine the Maximum Independent Set Problem in an undirected graph.

The main result is that this problem can be considered as the solving the same problem in a subclass of the weighted normal twin-orthogonal graphs.

The problem is formulated which is dual to the problem above. It is shown that, for trivial twin-orthogonal graphs, any of its maximal independent set is also maximum one.

1 Statement of the problem

Consider the class \(L \) of undirected graphs without loops and multiple edges with weighted vertices.

Assume that there is a graph \(G = (X, \Gamma, M) \in L \), where \(X = \{x_1, \ldots, x_n\} \) be the set of the graph vertices, \(\Gamma \) is the mapping \(X \) into \(X \), and \(M = \{\mu(x_1), \ldots, \mu(x_n)\} \) is the set of the non-negative integers – weights of the graph vertices. If \(X_1 = \{x_{i_1}, \ldots, x_{i_m}\} \subset X \) then \(\Gamma X_1 = \Gamma x_{i_1} \cup \cdots \cup \Gamma x_{i_m} \).

A graph \(G = (X, \Gamma, M) \in L \) is called isometric if \(\mu(x_i) = \mu(x_j) \) \((i \neq j) \) for all \(x_i, x_j \in X \).

For any \(A \subset X \) we shall designate

\[
\mu(A) = \sum_{\forall x_i \in A} \mu(x_i).
\]

As a problem \(Z \), given on a graph \(G = (X, \Gamma, M) \in L \), we shall call the problem of finding of vertex set \(U \subset X \) such that satisfies conditions

\[
U \cap \Gamma U = \emptyset, \quad (1)
\]

\[
U \cup \Gamma U = X \quad (2)
\]

1
and supplies the maximum of a function
\[\mu(U). \] (3)

Any vertex set \(U \subset X \), satisfying the condition (1), is called independent. An independent set \(U \subset X \), satisfying (2), is called the maximal independent set (MIS) of the graph \(G \).

A MIS \(\hat{U} \subset X \), supplying the maximum of the function (3), is called the maximum independent set (MMIS) of the graph \(G \) (the optimum solution of the problem \(Z \)).

The problem \(Z \) has the different applications \([1, 4, 5, 3]\). It has the special significance in Computation Complexity Theory, as it is NP-complete \([2]\). From the point of view of applications, the significance of any NP-complete problem is that it can be considered as a mathematical model of all discrete problems.

The existing methods for solving of the problem \(Z \) (as a rule, in an isometric graph) consist in basic in finding all MIS of the graph \(G \in L \) and selection of them the maximum independent set \([1, 3]\).

The inefficiency of such approach to solving the problem \(Z \) is proved by that the maximum number of the MISs \(\sigma_G(n) \), a graph \(G \in L \) can has, is equal to \(\sigma_G(n) = \gamma(s)3^{r-1} \) \([1, 3]\), where \(n = 3r + s \), \(\gamma(0) = 3 \), \(\gamma(1) = 4 \), \(\gamma(2) = 6 \). Hence, complexity of any algorithm, based on searching of all MIS of a graph \(G \), can not have an evaluation better than \(O(3^{n/3}) \).

With the problem \(Z \), given on a graph \(G \), it is usually connected a problem of finding the maximum complete subgraph (the maximal clique) in the additional graph \(\overline{G} = (X, \Gamma, M) \in L \) as the subset of vertices \(\hat{U} \in X \), inducing the maximum clique of a graph \(\overline{G} \), is MMIS of a graph \(G \) \([1]\).

Notice that the Maximum Clique Problem is a maximize problem, and from the point of view of the approach, accepted in Operations Research, is not dual to the problem \(Z \).

Unfortunately, the difficulties, connected with finding MMIS of a graph \(G \in L \), can not are overcome by development of a polynomial algorithm, enabling to find approximate solution of the problem \(Z \) with a guaranteed deviation from the optimum solution \([3]\). Therefore, for development of the solution methods of the problem \(Z \), it is necessary either to try to create an algorithm, discovering its exact solution (in this case it will be proven that \(P=NP \)), or to find the exact solution of the problem for separate subclasses of graphs of \(L \) (the majority authors go to the last way).

The main result of the given work is that the problem \(Z \), given on an arbitrary graph \(G \in L \), can be considered as the solving the same problem in subclass of the normal conjugate-orthogonal graphs. A problem is formu-
lated that is dual to the problem Z. It is shown that, for trivial conjugate-

orthogonal graphs, any of its MIS is also a MMIS.

2 A normal graph

Divide a set of all vertices of a graph $G = (X, \Gamma, \epsilon) \in L$ into classes j ($j = 1, \ldots, s$) such that if $i_1, i_2 \in K_j$, then $\Gamma_i = \Gamma_{i_2}$. The set of all such classes of the graph is designated by H_G.

Theorem 2.1 If $i_1 \in U$ and $i_1 \in j$ then $j \in U$, where U be a MIS of a graph $G = (X, \Gamma, \epsilon)$.

Assume the conditions of Theorem 2.1 are satisfied and we allow that there exists a vertex $i_2 \in j$ such that $i_2 \notin U$ ($i_2 \neq i_1$).

As $\Gamma x_{i_2} = \Gamma x_{i_1}$ then $i_2 \notin \Gamma U$ owing to (1). But, it takes into considering (2), we have $i_2 \in U$. The contradiction have obtained. Q.E.D.

Theorem 2.2 For any vertex $x \in (i = 1, n)$ of a graph $G = (X, \Gamma, \epsilon)$

$$\Gamma x_i = \bigcup_r K'_{jr} \quad (K'_{jr} \in H_G)$$

It is clear that the vertex set Γx_i can be divided into the classes $K'_{j_1}, \ldots, K'_{jt}$ as it is mentioned above. Assume that these classes of vertices are distinct from similar vertex classes of the graph G, that is, $K'_{j_1} \subset K'_{j_r}$ and $K'_{j_1} \neq K'_{j_r}$ ($= 1, t$).

It follows from here that there are the vertices $k_1 \in K'_{j_1} \subset K_j$ and $x_{k_2} \in j \setminus K'_{j_1}$ such that $k_1 \in \Gamma x_i$ and $x_{k_2} \notin \Gamma x_i$.

As vertices $k_1, k_2 \in j$, then $\Gamma x_{k_1} = \Gamma x_{k_2}$ by the definition. If $k_1 \in \Gamma x_i$ then $i \in K_{k_1}$, it signifies, $i \in K_{k_2}$. Then we have $x_{k_2} \notin \Gamma x_i$. The contradiction have obtained. Q.E.D.

Thus, it is established that Γx_i, for any vertex $i \in (i = 1, n)$ of a graph $G = (X, \Gamma, \epsilon)$, be an union of some classes $j \in H_G$.

Corollary 2.1 For any class $j \in H_G$ of a graph $G = (X, \Gamma, \epsilon)$

$$\Gamma K_j = \bigcup_r K'_{jr} \quad (K'_{jr} \in H_G)$$

A graph $G_1 = (X_1, \Gamma_1, \epsilon_1) \in L$ is called normal if for any two vertices $y_{j_1}, j_2 \in X_1$ ($j_1 \neq j_2$) the relation $\Gamma y_{j_1} \neq \Gamma y_{j_2}$ takes place.

Obviously, that for any graph $G = (X, \Gamma, M) \in L$ can be found a mapping ϕ: $G_1 = \phi(G)$, where $G_1 = (X_1, \Gamma_1, M_1) \in L$ be the normal graph. Thus,
\[G_1 = \phi(G) \text{ if } y_j = \phi(K_j) \ (K_j \in H_G) \text{ and } \Gamma_1 y_j = \phi(\Gamma K_j), \ \mu(y_j) = \mu(K_j) \text{ for all } y_j \in X_1 \ (j = 1, s). \]

Fig. 1 (a) shows the graph \(G \in L \) with the unit weights of its vertices, and Fig. 1 (B) shows the normal graph \(G_1 \) that corresponds it (weights of its vertices are put in brackets).

Designate by \(L_H \) the set of all normal graphs with the weighted vertices that correspond graphs of the class \(L \).

Further, speaking about a graph \(G = (X, \Gamma_\cdot) \), we shall mean that \(G \in L_H \). Besides, we assume that \(\text{Card}X = n. \)

3 A twin-orthogonal graph

Let \(G = (X, \Gamma_\cdot) \in L_H. \)

The adjacent vertices \(x, x_2 \in X \) of the graph \(G \) is called **orthogonal** if for all vertices \(x_i \in \Gamma x_1 \setminus \{x_2\} \) and \(x_{i_2} \in \Gamma_2 \setminus \{x_1\} \), when they exist, the relation are fulfilled:

\[\Gamma x_1 \subseteq \Gamma x_{i_2}, \quad \Gamma x_2 \subseteq \Gamma x_{i_1}. \]

Theorem 3.1 If at least one of adjacent vertices \(x, x_2 \in X \) of a graph \(G \) is dangling then the vertices \(x_1 \) and \(x_2 \) are orthogonal.

Really, suppose, for example, a vertex \(x_1 \in X \) of a graph \(G \), adjacent with a vertex \(x_2 \in X \), is dangling. Hence, \(\Gamma_1 = \{2\}. \)

Then we shall have \(\Gamma_1 \setminus \{x_2\} \neq \emptyset \) and \(\Gamma_1 \subseteq \Gamma x_{i_2} \) for all \(x_{i_2} \in \Gamma_2 \setminus \{1\} \) when \(\Gamma x_2 \setminus \{x_1\} \neq \emptyset \) (as \(x_2 \in \Gamma x_{i_2} \)).

\[\text{Q.E.D.} \]
Theorem 3.2 Let \(U \subset \) be an arbitrary MIS of a graph \(G = (X, \Gamma, M) \). If \(x_1, x_2 \in \) is the orthogonal vertices of \(G \) either \(1 \in U \) or \(2 \in U \).

Assume that the conditions of Theorem 3.2 are satisfied, and suppose that \(x_1, x_2 \in \Gamma U \). Then there exists at least vertex \(3 \in \Gamma x_1 \) such that \(x_3 \in U \), and at least vertex \(4 \in \Gamma x_2 \) such that \(x_4 \in U \).

By the condition (4), for the orthogonal vertices \(x_1, x_2 \in X \), we shall have \(x_3 \in \Gamma_4 \) and \(x_4 \in \Gamma x_3 \), that is, the vertices \(x_3, x_4 \in U \) are adjacent. We have received the contradiction. Q.E.D.

A graph \(\tilde{G} = (\tilde{X}, \tilde{\Gamma}, \tilde{M}) \in L_H \) is called **twin-orthogonal** if graph vertices can divide into pairs of the orthogonal vertices. It is clear that \(rd() = n = 2k \), where \(k \) is a non-negative integer.

![Fig. 2: A twin-orthogonal graph](image)

Fig. 2 is represented of a twin-orthogonal graph with the unit weights of the vertices.

We shall be to say that the twin-orthogonal graph \(\tilde{G} = (\tilde{X}, \tilde{\Gamma}, \tilde{\gamma}) \) corresponds a graph \(G = (X, \Gamma, \gamma) \), if:

a) \(X \subset \tilde{X} \);

b) \(\mu(x_i) = 0 \) for any vertex \(x_i \in \tilde{X} \setminus X \);

c) any MIS \(U \subset X \) of \(G \) can be obtained from some MIS \(\tilde{U} \subset \tilde{X} \) of \(\tilde{G} \) by removal of all vertices \(x_i \in \tilde{X} \) such that \(x_i \notin X \).

It is easy to see that one of twin-orthogonal graphs \(\tilde{G} = (\tilde{X}, \tilde{\Gamma}, \tilde{\gamma}) \), corresponding a graph \(G = (X, \Gamma, M) \), can be constructed as follows.
Let \(X_1 \subset G \) be the set of all vertices of the graph \(G \), not being orthogonal for one vertex of this graph. We join a set of vertices \(2 = \{x_{n+1}, \ldots, x_{n+p}\} \) (\(p = rd(X_1) \)) to the graph \(G \), and each of vertices \(k \in 2 \) we connect by an edge with one and only one of vertices \(j \in X_1 \). We assume that \(\mu(x_k) = 0 \) for all \(k \in X_2 \).

It is clear that, as a result, a twin-orthogonal graph \(\tilde{G} = (\tilde{X}, \tilde{\Gamma}, \tilde{\mu}) \) will be obtained that is induced on a vertex set \(\tilde{X} = \cup X_1 \cup 2 \), where \(\tilde{\Gamma}_i = \Gamma_i \cup \{j\} \) for any vertex \(i \in X_1 \) and \(\tilde{\Gamma}_x = \{x\} \) for all \(x \in X_2 \).

It is easy to be convinced that the constructed twin-orthogonal graph \(\tilde{G} \) corresponds the initial graph \(G \).

More simple way for a construction of the twin-orthogonal graph \(\tilde{G} = (\tilde{X}, \tilde{\Gamma}, \tilde{\mu}) \), corresponding a graph \(G = (X, \Gamma, M) \), is based on Theorem 3.1.

We shall join a vertex set \(1 = \{x_{n+1}, \ldots, x_{n+p}\} \) (\(p = rd(X_1) \)) to a graph \(G \) such that each vertex \(j \in 1 \) we shall connect by an edge with one and only one of vertices \(i \in X \). We assume \(\mu(j) = 0 \) for all \(j \in X_1 \). As a result, obviously, it be also obtained a twin-orthogonal graph \(\tilde{G} = (\tilde{X}, \tilde{\Gamma}, \tilde{\mu}) \) induced on a set of vertices \(\tilde{X} = \cup \cup X_1 \), where \(\tilde{\Gamma}_i = \Gamma_i \cup \{j\} \) for any vertex \(i \in X \) and \(\tilde{\Gamma}_x = \{x\} \) for all \(x \in X_2 \).

Theorem 3.3 If \(\tilde{U} \subset \tilde{X} \) be an optimum solution of the problem \(\tilde{U} \) on the twin-orthogonal graph \(\tilde{\Gamma}_i = \Gamma_i \cup \{j\} \) corresponding a graph \(\tilde{G} = (X, \Gamma, M) \) then an optimum solution \(U \in X \) of the problem \(\tilde{U} \), given on the graph \(\tilde{G} \), can be obtained by removal from \(\tilde{U} \) of all vertices \(i \in X \) such that \(i \in \tilde{X} \), and, besides, \(\mu(U) = \mu(\tilde{U}) \).

It follows from the definition of a twin-orthogonal graph \(\tilde{G} \), corresponding a graph \(G \).

\[\text{Q.E.D.} \]

4 Some properties of a twin-orthogonal graph

Let \(L_0 \) be the set of the normal twin-orthogonal graphs.

Theorem 4.1 If \(U_1, U_2 \in \tilde{X} \) be the different MISs of a twin-orthogonal graph \(G = (X, \Gamma, M) \in L_0 \) then \(rd(U_1) = rd(U_2) = k \), where \(rd() = n = 2k \), \(k \) be a non-negative integer.

It follows from Theorem 3.2. Q.E.D.

A twin-orthogonal graph \(G = (X, \Gamma, M) \) is called trivial if for any orthogonal vertices \(i, j \in X \) the relation is fulfilled: \(\mu(i) = \mu(x_j) \).

Theorem 4.2 If \(G = (X, \Gamma, M) \) be a trivial twin-orthogonal graph then any MIS is also MMIS.
It follows from Theorems 3.2 and 4.1. Q.E.D.

Theorem 4.3 If \(x_1, x_2 \in \) be the orthogonal vertices of a graph \(G = (X, \Gamma,) \) then any pair of vertices from a set \(\Gamma x_1 \setminus \{x_2\} \neq \emptyset \) \(\Gamma x_2 \setminus \{x_1\} \neq \emptyset \) is not orthogonal.

Assume that the conditions of Theorem 4.3 are satisfied, and we suppose that the vertices \(i_1, i_2 \in \Gamma x_1 \setminus \{2\} \) are orthogonal. Then we have \(1 \in \Gamma x_{i_1} \), and \(1 \in \Gamma i_2 \), that is, the relation (4) are not fulfilled for vertices \(x_{i_1}, x_{i_2} \in \). We have obtained the contradiction. Q.E.D.

Corollary 4.1 If the vertices \(1, x_2 \in \) of a graph \(G = (X, \Gamma,) \) are orthogonal then they do not form a three-vertex clique with any vertex \(i \in (i \neq 1, i \neq 2). \)

Corollary 4.2 If the vertices \(1, 2 \in \) of a graph \(G = (X, \Gamma,) \) are orthogonal then \((\Gamma x_1 \setminus \{x_2\}) \cap (\Gamma x_2 \setminus \{x_1\}) = \emptyset. \)

5 A dual problem

Further, for convenience, any two orthogonal vertices of a graph \(G = (X, \Gamma,) \in L_0 \) we shall designate by \(_i \) and \(_*i \).

A graph \(G^* = (X, \Gamma^*, M) \in L_0 \), obtained from a graph \(G = (X, \Gamma,) \in L_0 \) by renaming of pairs of orthogonal vertices, is called conjugate for the graph \(G \).

Thus, any orthogonal vertices \(_i, _j \in \) are adjacent in graphs \(G \) and \(G^* \). The vertices \(_i, _j \in \) if they are not orthogonal in the graph \(G \), are adjacent in the graph \(G^* \) if and only if corresponding vertices \(x_i ^*, x_j^* \in X \) are adjacent in the graph \(G \).

Obviously, that \((G^*)^* = G \).

A problem of finding of a vertex set \(U \subset \) of a graph \(G^* = (X, \Gamma^*,) \), satisfying conditions (1), (2) and supplying the minimum of the function (3), we shall call dual to the problem \(Z \).

A MIS \(U \subset X \), supplying the minimum of the function (3), is called the minimum independent set of vertices (MNMIS) of a graph \(G^* \).

The following statements are proved easily.

Theorem 5.1 If \(U \subset \) be a MIS of a graph \(G = (X, \Gamma, M) \) then \(\Gamma U = \setminus U \) be a MIS of the conjugate graph \(G^* = (X, \Gamma^*,) \).
Theorem 5.2 If \(U_1, U_2 \in \text{MISs of a graph } G = (X, \Gamma) \) then \(\mu(U_1) \geq \mu(U_2) \) if and only if \(\mu(\Gamma U_1) \leq \mu(\Gamma U_2) \).

The following theorem is a corollary of Theorems 5.1 and 5.2.

Theorem 5.3 MIS \(\hat{U} \subset \) is MNMIS of a graph \(G = (X, \Gamma) \) if and only if \(\Gamma \hat{U} = \setminus \hat{U} \) is MNMIS of a conjugate graph \(G^* = (X, \Gamma^*) \).

Theorem 5.4 Let \(\hat{U}, \check{U} \subset \) be MMIS and MNMIS of a graph \(G = (X, \Gamma, M) \) respectively. Then a relation takes place

\[
0 \leq \mu(\hat{U}) - \mu(\check{U}) \leq \sum_{\forall x_i, x_i^* \in X} |\mu(x_i) - \mu(x_i^*)|.
\]

It is also easy to be convinced in a validity of this statement.

References

[1] N. Christofides. Graph theory (An Algorithmic Approach). Academic press, New York, 1975.

[2] M. R. Garey and D. S. Johnson. Computers and Intractability. W.H.Freeman and Company, San Francisco, 1979.

[3] V. A. Gorbatov. Foundation of Discrete mathematics (in Russian). High school, Moscow, 1986.

[4] V. V. Noskov. The maximum independent sets and constructive coding problems. Problemy kibernetiki (in Russian), 36:33–54, 1979.

[5] S. M. Starobinets. On an algorithm for finding the maximum stable set of a graph. Izvestia Akademii Nauk SSSR. Tehnicheskaya kibernetika (in Russian), (5):135–140, 1972.