Characterization of the chloroplast genome of *Lonicera ruprechtiana* Regel and comparison with other selected species of Caprifoliaceae

Lei Gu1, Yunyan Hou1, Guangyi Wang1, Qiuping Liu1, Wei Ding2, Qingbei Weng1,3*

1 School of Life Sciences, Guizhou Normal University, Guiyang, China, 2 College of plant protection, Southwest University, Chongqing, China, 3 Qiannan Normal University for Nationalities, Duyun, China

☯ These authors contributed equally to this work.

* wengqingbei@gznu.edu.cn

Abstract

Lonicera ruprechtiana Regel is widely used as a greening tree in China and also displays excellent pharmacological activities. The phylogenetic relationship between *L. ruprechtiana* and other members of Caprifoliaceae remains unclear. In this study, the complete cp genome of *L. ruprechtiana* was identified using high-throughput Illumina pair-end sequencing data. The circular cp genome was 154,611 bp long and has a large single-copy region of 88,182 bp and a small single-copy region of 18,713 bp, with the two parts separated by two inverted repeat (IR) regions (23,858 bp each). A total of 131 genes were annotated, including 8 ribosomal RNAs, 39 transfer RNAs, and 84 protein-coding genes (PCGs). In addition, 49 repeat sequences and 55 simple sequence repeat loci of 18 types were also detected. Codon usage analysis demonstrated that the Leu codon is preferential for the A/U ending. Maximum-likelihood phylogenetic analysis using 22 Caprifoliaceae species revealed that *L. ruprechtiana* was closely related to *Lonicera insularis*. Comparison of IR regions revealed that the cp genome of *L. ruprechtiana* was largely conserved with that of congeneric species. Moreover, synonymous (Ks) and non-synonymous (Ka) substitution rate analysis showed that most genes were under purifying selection pressure; *ycf3*, and some genes associated with subunits of NADH dehydrogenase, subunits of the cytochrome b/f complex, and subunits of the photosystem had been subjected to strong purifying selection pressure (Ka/Ks < 0.1). This study provides useful genetic information for future study of *L. ruprechtiana* evolution.

Introduction

Lonicera is one of the larger genera in Caprifoliaceae, of which approximately 200 species have been identified. Among these species, approximately 100, 30, and 25 species can be found in China, Korea, and Japan, respectively [1]. Many *Lonicera* species are rich in medicinal components and are often used as herbal medicine to treat pharyngodynia, headache, respiratory infection, and acute fever [2,3]. For example, *Lonicera japonica* Thunb. (called Jinyinhua in
accession number MW296954. The associated BioProject, SRA, and Bio-Sample numbers are PRJNA682877, SRX9639378, and SAMN17013271, respectively.

Funding: This study was supported by the Provincial Program on Platform and Talent Development of the Department of Science and Technology of Guizhou China (grant number, 2020-1Y096) to LG, and the Key Project from China National Tobacco Corporation (grant number, 110202001024 (JY-07)) to QL and WD. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing interests: The authors have declared that no competing interests exist.

The chloroplast (cp) genome is derived from the maternal parent and tends to exhibit a more highly conserved genomic structure than the nuclear genome [8]. In most plant species, the cp genome exhibits a typical quadripartite structure containing three parts, namely, inverted repeat (IR) regions (IRA and IRB), one large single-copy (LSC) region, and one small single-copy (SSC) region. The IR regions separate the LSC and SSC regions [9]. The size of the cp genome varies from 72 to 217 kb and includes about 130 genes [9]. Linear genomes have also been found in some plant species [10]. Mutational events, including insertions and deletions, inversions, substitutions, genome rearrangements, and translocations, have also been found in cp genomes [11–13]. Increasingly, studies are using polymorphism in cp genomes to explore taxonomic and phylogenetic discrepancies [14]. Cp genomes can also be used to produce vaccines through transgenic technology [15] and have become a useful and powerful tool for revealing plant phylogenies [16].

The evolution of many cp genomes in Caprifoliaceae has recently been reported [17,18]. Although L. ruprechtiana shows good economic and ornamental value, little genetic or genomic research has been done on this species, and the full cp genome of L. ruprechtiana is still not available in databases. In this work, using an Illumina sequencing platform, we assembled de novo the complete cp genome of L. ruprechtiana. We also downloaded the cp genomes of other members of Caprifoliaceae from public databases and explored the phylogenetic relationships between L. ruprechtiana and other related species. These data will be a useful resource for future genetic studies of L. ruprechtiana.

Materials and methods

Plant materials and sequencing

Plant leaf samples were collected from the School of Traditional Chinese Medicine, JILin Agriculture Science and Technology College, Jilin, Jilin Province, China (44°3′5.44″N, 126°6′34.44″E, 237 m above sea level). The leaf specimen (accession number: GL202001001) was deposited in the herbarium of the School of Life Sciences, Guizhou Normal University. Total genomic DNA (No. GL202001002) was extracted using a DNasecure Plant Kit (TIANGEN, Beijing) and stored at -80°C in the laboratory (room number: 1403) of the School of Life Sciences, Guizhou Normal University. A total concentration of 700 ng DNA served as the input material for the DNA sample preparations. Sequencing libraries were generated using the NEB Next® Ultra DNA Library Prep Kit for Illumina® (NEB, Ipswich, MA, USA), following the manufacturer’s recommendations, and index codes were added to attribute sequences to each sample. Briefly, the DNA was purified
using AMPure XP system (Beckman Coulter, Beverly, USA). After the adenylation of 3’ ends of DNA fragments, the NEB Next Adaptor with a hairpin loop structure was ligated to prepare for hybridization. Electrophoresis was used to select DNA fragments at a specified length. Then 3 µL USER Enzyme (NEB, USA) was used with size-selected, adaptor-ligated DNA at 37˚C for 15 min followed by 5 min at 95˚C before PCR. Then PCR was performed with Phusion High-Fidelity DNA polymerase, Universal PCR primers, and Index (X) Primer. The PCR products were purified (AMPure XP system), and the library quality was assessed on an Agilent Bioanalyzer 2100 system.

Clustering of index-coded samples was performed on a cBot Cluster Generation System using an Illumina Cluster Kit according to the manufacturer’s instructions. After cluster generation, library preparations were sequenced on an Illumina platform, and 150 bp paired-end reads were generated. All of the raw data are available at NCBI (https://www.ncbi.nlm.nih.gov/). The associated BioProject, SRA, and Bio-Sample numbers are PRJNA682877, SRX9639378, and SAMN17013271, respectively.

Genome assembly and gene annotation

After removing the sequencing adapters and low-quality reads with QC values less than 20%, Kraken2 (https://ccb.jhu.edu/software/kraken2/) was used to identify mitochondrial and cp sequences in the clean reads; then metaSPAdes [19] was used to assemble the clean reads. The assembled reads were compared to the complete cp genome of *Lonicera sachalinensis* (GenBank accession: MH028742) using BLASTn (E-value: 10^{-6}) [20] and BLAST+ (Version, 2.9.0) to correct deviations. The assembled cp genome was annotated using GeSeq [21]. A circular gene map of the *L. ruprechtiana* cp genome was generated using OGDraw v1.2 [22]. Finally, the validated complete cp genome sequence was submitted to GenBank under the accession number MW296954.

Repeat sequence and simple sequence repeat detection

The REPuter (https://bibiserv.cebitec.uni-bielefeld.de/reputer/) [23] was used to identify repeat sequences with the following parameters: minimal repeat size to 30, maximum computed repeats to 50, and hamming distance to 10. Match direction included forward, palindrome, reverse, and complement repeat types. To detect simple sequence repeats (SSRs) in the genome, MISA (https://webblast.ipk-gatersleben.de/misa/) [24] was used.

Codon usage analyses

The CodonW1.4.2 program (http://downloads.fyxm.net/CodonW-76666.html) was used to calculate the synonymous codon usage of protein-coding genes (PCGs) with default settings.

Phylogenetic analyses

Phylogenetic analyses were performed using the de novo *L. ruprechtiana* cp genome and 22 cp genomes from across the Caprifoliaceae (14 *Lonicera* species, 3 *Patrinia* species, 2 *Dipelta* species, 1 *Triosteum* species, 1 *Weigela* species, and 1 *Heptacodium* species) (S1 Table). All complete cp genomes were downloaded from NCBI (https://www.ncbi.nlm.nih.gov/). Only the homologous CDs (coding gene sequences) were used to construct phylogenetic tree to reduce data redundancy. A total of 68 homologous CDs (S2 Table) were used to determine phylogenetic relationships. Phylogenetic trees were constructed using the maximum-likelihood (ML) method (Model: Jones-Taylor-Thornton) with 1000 bootstrap replicates using MEGA7 [25].
Whole cp genome sequence comparisons of *L. ruprechtiana*, *L. ferdinandi*, *L. vesicaria*, *L. maackii*, and *L. insularis*

To provide comprehensive information on cp sequence divergence, the *L. ruprechtiana* cp genome was compared to four other *Lonicera* genomes. The divergence of the LSC/IRB/SSC/IRA boundary regions was visualized by IRscope (https://irscope.shinyapps.io/irapp/), based on the annotations of their available cp genomes in GenBank. In addition, the mVISTA program (http://genome.lbl.gov/vista/mvista/submit.shtml) was used to compare to divergence across entire cp genomes with default settings (window size, 100bp; RepeatMasker, do not mask; RankVISTA probability threshold, 0.5).

Synonymous and non-synonymous substitution rate calculations

To obtain the synonymous (Ks) and non-synonymous (Ka) substitution rates, we performed pairwise comparisons of the 77 protein-coding genes between the *L. ruprechtiana* cp genome and four closely related *Lonicera* species. Pairwise alignments of the common genes among species were carried out using MAFFT [26], and the Ka/Ks ratios were calculated using the KaKs_calculator 2.0 [27], with the default parameters for plant plastid code.

Results

Cp genome assembly and genome features

The Illumina sequencing platform produced 3,059 Mb raw data. After identifying mitochondrial and chloroplast sequences using Kraken2, 1,525,022 organellar reads were acquired. After filtering, 2,268 Mb clean reads with a Q20 value of 96.6% were obtained. The metaSPAdes was used to assemble the clean reads. According to the assembly results, there were 548 non-redundant contigs totaling 1,060,153 bp in length and with an N50 of 6,924 bp. Further analysis of the assembly results based on the reference genome (*Lonicera sachalinensis*, the reference sequences used for assembly the cp genome of *L. ruprechtiana*) using BLASTn, we got a single contig. Then, we used the BLAST+ (Version, 2.9.0) software to pairwise alignment between *L. ruprechtiana* and the corresponding reference genome (S1 Fig). As shown in S1 Fig, the genomes mostly preserve synteny, however there was one large inverted repeat (IRA and IRB regions, Fig 1); consistent with earlier research about mammalian evolution [28]. The complete cp genome sequence of *L. ruprechtiana* was 154,611 bp in size, containing an LSC region of 88,182 bp and an SSC region of 18,713 bp (Fig 1; Table 1), separated by a pair of inverted repeats (IRA and IRB) regions of 23,858 bp each (S1 Fig; Fig 1; Table 1). The total GC content of the cp genome was 38.4%; IR regions had the highest GC content, 43.4%, followed by 36.9% in the LSC region, whereas the SSC region exhibited the lowest GC content, 33% (Table 1). The genome contained 131 genes (113 unique genes), including 84 PCGs, 8 rRNA, and 39 tRNA genes (Table 1). Among the assembled genes, all rRNAs, 5 PCGs (rps7, rpl2, ndhB, ycf2, and ycf15), and 7 tRNAs (trnA-UGC, trnL-CAU, trnL-GAU, trnL-CAA, trnN-GUU, trnR-ACG, and trnV-GAC) occurred in two copies (Tables 1 and 2), and 1 tRNA (trnG-GCC) occurred in three copies (Tables 1 and 2). Furthermore, out of 131 genes, 84 and 13 were found in the LSC and SSC regions, respectively, while 17 genes were duplicated in the IR regions (Fig 1). In addition, 18 genes contained one intron, whereas rps12 and ycf3 included two introns (Table 2). Intron-exon analyses showed that the majority (110 genes, 84%) of genes had no introns, whereas 21 (16%) had them (Table 2).
SSR and repeat-sequence analyses

MISA revealed 55 SSR loci of 18 different types (of lengths of at least 10 bp) in the cp genome of *L. ruprechtiana*, which included 36 mono-, 6 di-, 2 tri-, 9 tetra-, and 2 hexanucleotide repeats (Table 3). Mononucleotide repeats were the highest percentage, containing 36 SSR motifs (65.45%) of three nucleotide types (A/T/C) (Table 3). There were six dinucleotide repeats with four different types (AT/TA/TC/GA), two trinucleotide repeats with two types (AA/T/TTC), nine tetranucleotide repeats with seven types (CAAT/TTAA/ATTT/AGAT/ATAA/TATC/TCTT), and two hexanucleotide repeats with two types (TGTTTA/CTTACC).
The longest SSR types in length were two hexanucleotide repeats (TGTTTA/CTTACC) both of 18 bp (Table 3).

We detected 49 repeats sequences, including 18 palindromic and 31 forward repeats with lengths ranging from 55 bp to 287 bp in *L. ruprechtiana* cp genome (*S3 Table*). Within 49 sequences, 7, 10, 12, 5, and 7 repeats were ranging from 50–59 bp, 60–69 bp, 70–79 bp, 80–89 bp, and 90–99 bp, respectively, moreover, 8 were longer than 100 bp in length (*S3 Table*). In all, 30 repeats (61.22%), including 18 forward and 12 palindromic repeats, were located in *ycf2* (*S3 Table*). This result indicates that *ycf2* is a pseudogene. Most of repeats (about 75.51%) were contained in four protein-coding genes (*rps18*, *accD*, *ycf1*, and *ycf2*), whereas the other repeats were also found in intergenic or spacer regions (*S3 Table*).

Codon usage analyses

The coding sequences of the 79 non-redundant PCGs contained 26,000 codons. Among these, leucine had the highest usage frequency, at 10.7%, while cysteine was least frequent, at only 1.1% (*S4 Table; Fig 2A*). To understand the synonymous codon usage bias of the *L. ruprechtiana* cp genome, the relative synonymous codon usage (RSCU) value was calculated. Thirty-one codons had RSCU values were larger than 1 (RSCU > 1), suggesting that these amino acid codons was preferentially utilized by *L. ruprechtiana*. Among these, the third base of most codons were A (41.9%) or U (51.6%), with the exception of two codons, which ended with G (AUG and UUG) (*S4 Table; Fig 2B*).

Phylogenetic analyses and whole cp genome sequence comparisons of *L. ruprechtiana, L. ferdinandi, L. vesicaria, L. maackii, and L. insularis*

To further understand the phylogenetic placement of *L. ruprechtiana*, 68 homologous protein-coding genes of 22 Caprifoliaceae cp genome sequences downloaded from NCBI were used to estimate a phylogeny using MEGA7 [25] with 1,000 bootstrap replicates (Fig 3). We used
Table 2. Summary of assembled gene functions of *L. ruprechtiana* cp genome.

Category for genes	Groups of genes	Name of genes
Self-replication	Ribosomal RNA	rrn4.5\(^{A}\), rrn5\(^{A}\), rrn16\(^{A}\), rrn23\(^{A}\)
	Transfer RNA	trnA-UGC\(^{C, A}\), trnC-GCA, trnD-GUC, trnE-UUC, trnF-GAA, trnM-CAU, trnG-GCC\(^{B}\), trnG-UCC\(^{C}\), trnH-GUG, trnL-CAU\(^{A}\), trnL-GAU\(^{C, A}\), trnK-UU\(^{C}\), trnL-CUA\(^{A}\), trnL-UAA\(^{C}\), trnL-UAG, trnM-CAU, trnN-GUU\(^{A}\), trnP-UGG, trnP-UGG, trnQ-UUG, trnR-AGG\(^{C}\), trnR-UCU, trnS-GCU, trnS-GGA, trnS-UGA, trnT-UGU, trnV-GAC\(^{A}\), trnV-UAC\(^{C}\), trnW-CCA, trnY-GUA
	Small subunit of ribosome	rps2, rps3, rps4, rps7\(^{A}\), rps8, rps11, rps12\(^{A, C}\), rps14, rps15, rps16\(^{A}\), rps18, rps19
	Large subunit of ribosome	rpl2\(^{E}\), rpl14, rpl16\(^{C}\), rpl20, rpl22, rpl23, rpl32, rpl33, rpl36
	DNA-dependent RNA polymerase	rpoA, rpoB, rpoC\(^{D}\), rpoC2
photosynthesis	Subunits of photosystem	psaA, psbA, psbC, psaI, psbA, psbB, psbD, psbE, psbF, psbH, psbI, psbJ, psbK, psbM, psbN, psbT, psbZ
	Large subunit of Rubisco	rbcL
	Subunits of ATP synthase	atpA, atpB, atpE, atpF\(^{C}\), atpH, atpI
	Subunits of cytochrome b/f complex	petA, petB\(^{C}\), petD\(^{C}\), petG, petL, petN
	Subunits of NADH dehydrogenase	ndhA\(^{A}\), ndhB\(^{A, C}\), ndhC, ndhD, ndhE, ndhF, ndhG, ndhH, ndhI, ndhJ, ndhK
Others	Subunit of acetyl-CoA	accD
	C-type cytochrome synthesis	ccaA
	Envelope membrane protein	cemA
	Translational initiation factor	infA
	Protease	clpP
	Maturase	matK
unknown	Conserved open reading frames	ycf1, ycf2\(^{A}\), ycf3\(^{D}\), ycf4, ycf15\(^{A}\)

\(^{A, B, C, D}\) indicate genes with two copies, three copies, harboring one or two introns, respectively.

Weigela as the root, as in other phylogenetic analyses of Caprifoliaceae prior to this study [17,18]. To show the relationships between *L. ruprechtiana* and other 22 family members, the phylogenetic tree is a cladogram and branch lengths we not inferred (Fig 3). The members of the Caprifoliaceae (*Lonicera, Triosteeum, and Heptacodium*) form a clade sister to a clade containing *Dipelta* and *Patrinia*, with *Weigela* as the outgroup (Fig 3). As shown in Fig 3, *L. ruprechtiana* was sister to *L. insularis* with a bootstrap support of 100%.

To investigate divergence in the cp genome between *L. ruprechtiana* and the four other closely related species (*L. ferdinandi, L. vesicaria, L. maackii*, and *L. insularis*) (Fig 3), multiple alignments of the five cp genomes were performed. Sequence identities were plotted using mVISTA with reference to the annotation of *L. ruprechtiana* (Fig 4). All five cp genomes displayed a high sequence similarity (>85%), but several short and long inserted regions were also observed (Fig 4). Our results show that coding regions were more conserved than non-coding regions (Fig 4), consistent with earlier research [29]. The most highly conserved cp genes were the rRNA and tRNA genes (Fig 4), and the most divergent genes were ycf1, accD, ycf2, rpl14, and atpA (Fig 4).

The IR regions were responsible for the size variation in the cp genome. Comprehensive comparison at the LSC/IR/SSC boundaries was performed among five *Lonicera* species (Fig 5). The LSC/IRB and IRA/LSC border regions were relatively more conservative than SSC/IRA and IRB/SSC junctions (Fig 5). The rpl123 gene was present in the LSC/IRB junction; 170 bp was present in the LSC part, and 121 bp was present in the IRB part of all five cp genomes (Fig 5). The ndhF and ycf1 genes were located in the SCC parts in all cp genomes, with the only
difference being the distance of two genes to the junction (Fig 5). For IRB/SSC boundaries, distances of 92 bp, 70 bp, 44 bp, 88 bp, and 35 bp from the \textit{ndhF} gene to the boundary were found in \textit{L. ferdinandi}, \textit{L. vesicaria}, \textit{L. maackii}, \textit{L. insularis}, and \textit{L. ruprechtiana}, respectively (Fig 5). However, for SSC/IRA boundaries, the distances were 137 bp, 239 bp, 261 bp, 231 bp, and 232 bp from the \textit{ycf1} gene to the boundary in \textit{L. ferdinandi}, \textit{L. vesicaria}, \textit{L. maackii}, \textit{L. insularis}, and \textit{L. ruprechtiana}, respectively (Fig 5).

Ks and Ka substitution rate analyses between \textit{L. ruprechtiana} and the four closely related species (\textit{L. ferdinandi}, \textit{L. vesicaria}, \textit{L. maackii}, and \textit{L. insularis})

Ka and Ks are important markers for evaluating selection pressure on genes and genomes [30]. The Ka/Ks values of 77 protein-coding genes were calculated between \textit{L. ruprechtiana} and four other species (\textit{L. ferdinandi}, \textit{L. vesicaria}, \textit{L. maackii}, and \textit{L. insularis}) (S5 Table). Except for no polymorphisms genes, most tested genes had a Ka/Ks value below 1, indicating extensive purifying selection (S5 Table). The \textit{Psbf} and \textit{rpl32} genes had a Ka/Ks value far more than 1 (>45) in all tested comparisons, indicating that these may be pseudogenes [31,32] or may have undergone strong positive selection (S5 Table). Some genes (\textit{atpE}, \textit{atpF}, \textit{matK}, \textit{ndhB}, \textit{petB}, \textit{petD}, \textit{psaI}, and \textit{rpl14}) had different Ka/Ks values (>1 or <1) under different comparisons (S5 Table), possibly due to these species/genes have been subject to different selection regimes. Some genes \textit{(ndhG, petA, petL, petN, psaC, psbA, psbD, psbE, psbM, rpl36, and rps16)} had Ka/Ks values below 0.1 in different comparisons (for \textit{ycf3} it was 0.001 in all tested comparisons), indicating that these genes are under strongly purifying selection (S5 Table).

Discussion

\textit{L. ruprechtiana} is an ornamental tree and also a potential medicinal plant. We assembled de novo the \textit{L. ruprechtiana} cp genome using an Illumina sequencing platform and compared the
cp genome with four closely related *Lonicera* species. The complete cp genome of *L. ruprechtiana* showed a typical quadripartite cycle of 154,611 bp in length (Fig 1; Table 1). The cp genomes in angiosperms have conserved features with almost the same gene content and organization [33,34]. The complete cp genome of *L. ruprechtiana* showed a typical quadripartite cycle of 154,611 bp in length, comparable to that of published *Lonicera* species cp genomes (154,513–155,346) (Fig 1; Tables 1 and S1) [17]. The variation of IR regions and boundaries in SSC/IR and LSC/IR have been thought to be critical in determining the length variation in the angiosperm cp genome [35]. This variation allowed us to explore the evolution of the cp genome [33,36]. Except for some minor variation in the distance from adjacent genes to the

Fig 2. Percentage of amino acids of the *L. ruprechtiana* chloroplast (cp) genome (A) and the ending patterns of biased-usage codons (RSUC > 1) (B).

https://doi.org/10.1371/journal.pone.0262813.g002

Fig 3. Cladogram summarizing the evolutionary relationships of 23 Caprifoliaceae species based on 68 homologous protein-coding genes of the chloroplast genomes. GenBank accession numbers are given. Shown next to the nodes are bootstrap support values based on 1,000 replicates.

https://doi.org/10.1371/journal.pone.0262813.g003
boundaries, the sizes of the junctions of LSC, SSC, and IR of *L. ruprechtiana* were similar to those of the four closely related *Lonicera* species (Fig 5). We obtained 84 protein-coding genes in the *L. ruprechtiana* cp genome. Among the five species compared in this paper, three genes were missing in some species, including *accD* (missing in *L. ferdinandi* and *L. vesicaria*), *psbL* (missing in *L. ruprechtiana*), and *ycf15* (missing in *L. ferdinandi*).

We have obtained a total of 55 SSR motifs including 18 different types in the *L. ruprechtiana* cp genome (Table 3). The A/T type mononucleotide repeats accounted for the majority of these SSRs, similar to other reports [37–40]. The amounts of polyadenine (polyA) and polythymine (polyT) in the cp genome may be the cause for the abundance of A/T type SSRs. The SSR loci identified in this research can help us understand the population genetic structure of *L. ruprechtiana* species. Repeat sequences are thought to play an important role in the rearrangements of genome, and the variation between lineages can be used as a genomic marker for phylogenetic analysis [41,42]. A total of 49 repeat sequences of 55–287 bp were found in the *L. ruprechtiana* cp genome (S3 Table). The *ycf2* gene accounted for about half of these repeats (30 of 55) (S3 Table). Similar results have been reported for other cp genomes [43,44], indicating that *ycf2* is one of the most variable genes in the chloroplast genome.

![Fig 4. Alignment of the chloroplast genome of *L. ruprechtiana* and those of four closely related species. The alignment was performed using mVISTA with *L. ruprechtiana* as a reference. Local collinear blocks within each alignment are indicated by color and linkages.](https://doi.org/10.1371/journal.pone.0262813.g004)
Codon usage is an important parameter to understand evolutionary relationships and the selection pressure acting on genes; the relatively high similarities of codon usage among different species indicated that these species may experience similar environmental stresses [45]. Among the high-usage codons (RSCU > 1) in the *L. ruprechtiana* cp genome, the preference was for codon endings with A/U (S4 Table; Fig 2B). This might be due to the number of A/T nucleotides observed in angiosperm cp genomes [33,46].

A phylogenetics tree was reconstructed based on homologous protein-coding genes for the Caprifoliaceae family, and it revealed a close relationship between *L. ruprechtiana* and *L. insularis* (Fig 3). *L. insularis* is an endemic plant found on Dokdo islet, Korea. *L. insularis* has been phytochemically investigated; an iridoid glycoside, an argininosecologanin, and six lignans have been reported from the stem of this species [47,48]. Like *L. insularis*, *L. ruprechtiana* may also contain iridoids and secoiridoids. The economic and medicinal value of *L. ruprechtiana* require further investigation.

Conclusion

The complete *L. ruprechtiana* cp genome was assembled *de novo* using an Illumina platform. It has a typical quadripartite cycle 154,611 bp long, which includes 84 protein-coding genes, 39 tRNA genes, and 8 rRNA genes. A total of 49 repeat sequences and 55 SSR loci were identified and could be useful for phylogenetic studies and marker development. Codon usage analyses revealed that the Leu codon ending with A/U was preferentially utilized. A phylogenetic tree based on homologous protein-coding genes of 23 Caprifoliaceae family members revealed that *L. ruprechtiana* is closely related to *L. insularis*. Our findings can be used for further cp studies in *L. ruprechtiana*. In addition, our results broaden knowledge of the genome organization and evolution of Caprifoliaceae species.

Supporting information

S1 Fig. Pairwise alignment plots. Red is the result in the same direction; blue is the result in the opposite direction. (TIF)
S1 Table. List of the 23 cp genomes used for phylogenetic analysis.
(XLSX)

S2 Table. The homologous CDs (coding gene sequences) used to construct phylogenetic tree.
(XLSX)

S3 Table. Repeat sequences of *L. ruprechtiana* cp genome.
(ODCX)

S4 Table. Codon usage analysis of protein coding genes of *L. ruprechtiana* cp genome.
(XLSX)

S5 Table. Synonymous (Ks) and non-synonymous (Ka) substitution rates of common coding genes between *L. ruprechtiana* and other four closed related species.
(XLSX)

Author Contributions

Data curation: Yunyan Hou.

Formal analysis: Lei Gu, Yunyan Hou.

Funding acquisition: Lei Gu, Qiuping Liu, Wei Ding.

Investigation: Qingbei Weng.

Methodology: Guangyi Wang.

Project administration: Qingbei Weng.

Resources: Yunyan Hou, Guangyi Wang.

Software: Lei Gu, Yunyan Hou, Qiuping Liu.

Writing – original draft: Lei Gu, Yunyan Hou.

Writing – review & editing: Yunyan Hou, Qiuping Liu, Qingbei Weng.

References

1. Zhou RR, Liu XH, Chen L, Huang JH, Liang XJ, Wan D, et al. Comparison of the Antioxidant Activities and Phenolic Content of Five *Lonicera* Flowers by HPLC-DAD/MS-DPPH and Chemometrics. Int J Anal Chem. 2020; 2020: 2348903. https://doi.org/10.1155/2020/2348903 PMID: 32308664

2. Jin XH, Ohgami K, Shiratori K, Suzuki Y, Koyama Y, Yoshida K, et al. Effects of blue honeysuckle (*Lonicera caerulea* L.) extract on lipopolysaccharide-induced inflammation in vitro and in vivo. Exp Eye Res. 2006; 82: 860–7. https://doi.org/10.1016/j.exer.2005.10.024 PMID: 16309673

3. Kwak WJ, Han CK, Chang HW, Kim HP, Kang SS, Son KH. Loniceroside C, an antiinflammatory saponin from *Lonicer a japonica*. Chem Pharm Bull (Tokyo). 2003; 51: 333–5. https://doi.org/10.1248/cpb.51.333 PMID: 12612424

4. Li RJ, Kuang XP, Wang WJ, Wan CP, Li WX. Comparison of chemical constitution and bioactivity among different parts of *Lonicer a japonica* Thunb. J Sci Food Agric. 2020; 100: 614–622. https://doi.org/10.1002/jsfa.10056 PMID: 31597198

5. Muluye RA, Bian Y, Aleme PN. Anti-inflammatory and Antimicrobial Effects of Heat-Clearing Chinese Herbs: A Current Review. J Tradit Complement Med. 2014; 4: 93–8. https://doi.org/10.4103/2225-4110.126635 PMID: 24860732

6. Li Y, Cai W, Weng X, Li Q, Wang Y, Chen Y, et al. *Lonicerae Japonicae* Flos and *Lonicerae Flos*: A Systematic Pharmacology Review. Evid Based Complement Alternat Med. 2015; 2015: 905063. https://doi.org/10.1155/2015/905063 PMID: 26257818
7. Wang G, Zhou X, Cui J, Zhao X, Yang X. Iridoid compounds in the buds of *Lonicer a ruprechtiana* Regel. Chinese Journal of Medicinal Chemistry. 2009; 19: 206–208. (in chinese) (Web address: https://kns.cnki.net/kns8/defaultresult/index).

8. Wicke S, Schneeweiss GM, de Pamphilis CW, Muller KF, Quandt D. The evolution of the plastid chromosome in land plants: gene content, gene order, gene function. Plant Mol Biol. 2011; 76: 273–97. https://doi.org/10.1007/s11103-011-9762-4 PMID: 21424877

9. Moore MJ, Bell CD, Solits PS, Solits DE. Using plastid genome-scale data to resolve enigmatic relationships among basal angiosperms. Proc Natl Acad Sci USA. 2007; 104: 19363–8. https://doi.org/10.1073/pnas.0708072104 PMID: 18048334

10. Oldenburg DJ, Bendich AJ. The linear plastid chromosomes of maize: terminal sequences, structures, and implications for DNA replication. Curr Genet. 2016; 62: 431–42. https://doi.org/10.1007/s00294-015-0548-0 PMID: 26650613

11. Ahmed I, Biggs PJ, Matthews PJ, Collins LJ, Hendy MD, Lockhart PJ. Mutational dynamics of aroid chloroplast genomes. Genome Biol Evol. 2012; 4: 1316–23. https://doi.org/10.1093/gbe/evs110 PMID: 23204304

12. Sloan DB, Triant DA, Forrester NJ, Bergner LM, Wu M, Taylor DR. A recurring syndrome of accelerated plastid genome evolution in the angiosperm tribe Sileneae (Caryophyllaceae). Mol Phylogenet Evol. 2014; 72: 82–9. https://doi.org/10.1016/j.ympev.2013.12.004 PMID: 24373909

13. Daniell H, Lin CS, Yu M, Chang WJ. Chloroplast genomes: diversity, evolution, and applications in genetic engineering. Genome Biol. 2016; 17: 134. https://doi.org/10.1186/s13059-016-1004-2 PMID: 27339192

14. Guo X, Liu J, Hao G, Zhang L, Mao K, Wang X, et al. Plastome phylogeny and early diversification of Brassicaceae. BMC Genomics. 2017; 18: 176. https://doi.org/10.1186/s12864-017-3555-3 PMID: 28209119

15. Lossl AG, Waheed MT. Chloroplast-derived vaccines against human diseases: achievements, challenges and scopes. Plant Biotechnol J. 2011; 9: 527–39. https://doi.org/10.1111/j.1467-7652.2011.00615.x PMID: 21447052

16. Li HT, Yi TS, Gao LM, Ma PF, Zhang T, Yang JB, et al. Origin of angiosperms and the puzzle of the Jurassic gap. Nat Plants. 2019; 5: 461–470. https://doi.org/10.1038/s41477-019-0421-0 PMID: 31061536

17. Wang HX, Liu H, Moore MJ, Landrein S, Liu B, Zhu ZX, et al. Plastid phylogenomic insights into the evolution of the Caprifoliaceae s.l. (Dipsacales). Mol Phylogenet Evol. 2020; 142: 106641. https://doi.org/10.1016/j.ympev.2019.106641 PMID: 31605813

18. Lee AK, Gilman IS, Srivastav M, Lerner AD, Donoghue MJ, Clement WL. Reconstructing Dipsacales phylogeny using Angiosperms353: issues and insights. Am J Bot. 2021; 108: 1122–1142. https://doi.org/10.1002/ajb2.1695 PMID: 34254290

19. Nurf S, Meleshko D, Korobeynikov A, Pevzner PA. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 2017; 27: 824–834. https://doi.org/10.1101/gr.213959.116 PMID: 28298430

20. Chen Y, Ye W, Zhang Y, Xu Y. High speed BLASTN: an accelerated MegaBLAST search tool. Nucleic Acids Res. 2015; 43: 7762–8. https://doi.org/10.1093/nar/gkv784 PMID: 26250111

21. Tillich M, Lehwark P, Pellizzer T, Ulbricht-Jones ES, Fischer A, Bock R, et al. GeSeq—versatile and accurate annotation of organelle genomes. Nucleic Acids Res. 2017; 45: W6–W11. https://doi.org/10.1093/nar/gkx391 PMID: 28486635

22. Lohse M, Drechsel O, Bock R. OrganellarGenomeDRAW (OGDRAW): a tool for the easy generation of high-quality custom graphical maps of plastid and mitochondrial genomes. Curr Genet. 2007; 52: 267–74. https://doi.org/10.1007/s00294-007-0161-y PMID: 17957369

23. Kurtz S, Choudhuri JV, Ohlebusch E, Schleiermacher C, Stoye J, Giegerich R. REPuter: the manifold applications of repeat analysis on a genomic scale. Nucleic Acids Res. 2001; 29: 4633–42. https://doi.org/10.1093/nar/29.22.4633 PMID: 11713313

24. Beier S, Thiel T, Munch T, Scholz U, Mascher M. MISA-web: a web server for microsatellite prediction. Bioinformatics. 2017; 33: 2583–2585. https://doi.org/10.1093/bioinformatics/btx198 PMID: 28398459

25. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol Biol Evol. 2016; 33: 1870–4. https://doi.org/10.1093/molbev/msw054 PMID: 27004904

26. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013; 30: 772–80. https://doi.org/10.1093/molbev/mst010 PMID: 23329690
27. Wang D, Zhang Y, Zhang Z, Zhu J, Yu J. KaKs_Calculator 2.0: a toolkit incorporating gamma-series methods and sliding window strategies. Genomics Proteomics Bioinformatics. 2010; 8: 77–80. https://doi.org/10.1016/S1672-0293(09)60008-3 PMID: 20451164

28. Chaisson MJ, Raphael BJ, Pevzner PA. Microinversions in mammalian evolution. Proc Natl Acad Sci U S A. 2006; 103: 19824–9. https://doi.org/10.1073/pnas.0603984103 PMID: 17189424

29. Zhu B, Feng Q, Yu J, Yu Y, Zhu X, Wang Y, et al. Chloroplast genome features of an important medicinal and edible plant: Houttuynia cordata (Saururaceae). PLoS One. 2020; 15: e0239823. https://doi.org/10.1371/journal.pone.0239823 PMID: 32986773

30. Yang Z. Nielsen R. Estimating synonymous and nonsynonymous substitution rates under realistic evolutionary models. Mol Biol Evol. 2000; 17: 32–43. https://doi.org/10.1093/oxfordjournals.molbev.a026236 PMID: 10666704

31. Hurst LD. The Ka/Ks ratio: diagnosing the form of sequence evolution. Trends Genet. 2002; 18: 486. https://doi.org/10.1016/s0168-9525(02)02722-1 PMID: 12175810

32. Navarro A, Barton NH. Chromosomal speciation and molecular divergence—accelerated evolution in rearranged chromosomes. Science. 2003; 300: 321–4. https://doi.org/10.1126/science.1080600 PMID: 12690198

33. Abdullah, Mehmood F, Shahzadi I, Waseem S, Mirza B, Ahmed I, et al. Chloroplast genome of Hibiscus rosa-sinensis (Malvaceae): Comparative analyses and identification of mutational hotspots. Genomics. 2020; 112: 581–591. https://doi.org/10.1016/j.ygeno.2019.04.010 PMID: 30998967

34. Amiryousefi A, Hyvonen J, Poczai P. The chloroplast genome sequence of bittersweet (Solanum dulcamara): Plastid genome structure evolution in Solanaceae. PLoS One. 2018; 13: e0196069. https://doi.org/10.1371/journal.pone.0196069 PMID: 29694416

35. Kim KJ, Lee HL. Complete chloroplast genome sequences from Korean ginseng (Panax schinseng Nees) and comparative analysis of sequence evolution among 17 vascular plants. DNA Res. 2004; 11: 247–61. https://doi.org/10.1093/dnares/11.4.247 PMID: 15500250

36. Kim K, Nguyen VB, Dong J, Wang Y, Park JY, Lee SC, et al. Evolution of the Araliaceae family inferred from complete chloroplast genomes and 45S rDNAs of 10 Panax-related species. Sci Rep. 2017; 7: 4917. https://doi.org/10.1038/s41598-017-05218-y PMID: 28687778

37. Yan C, Du J, Gao L, Li Y, Hou X. The complete chloroplast genome sequence of watercress (Nasturtium officinale R. Br.): Genome organization, adaptive evolution and phylogenetic relationships in Cardineae. Gene. 2019; 699: 24–36. https://doi.org/10.1016/j.gene.2019.02.075 PMID: 30849538

38. Li X, Zuo Y, Zhu X, Liao S, Ma J. Complete Chloroplast Genomes and Comparative Analysis of Sequences Evolution among Seven Aristolochia (Aristolochiaceae) Medicinal Species. Int J Mol Sci. 2019; 20. https://doi.org/10.3390/ijms20051045 PMID: 30823362

39. Gao C, Deng Y, Wang J. The Complete Chloroplast Genomes of Echinacanthus Species (Ananthaceae): Phylogenetic Relationships, Adaptive Evolution, and Screening of Molecular Markers. Front Plant Sci. 2018; 9: 1989. https://doi.org/10.3389/fpls.2018.01989 PMID: 30687376

40. Du X, Zeng T, Feng Q, Hu L, Luo X, Weng Q, et al. The complete chloroplast genome sequence of yellow mustard (Sinapis alba L.) and its phylogenetic relationship to other Brassicaceae species. Gene. 2020; 731: 144340. https://doi.org/10.1016/j.gene.2020.144340 PMID: 31923575

41. Jansen RK, Cai Z, Raubeson LA, Daniell H, Depamphilis CW, Leebens-Mack J, et al. Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genome-scale evolutionary patterns. Proc Natl Acad Sci U S A. 2007; 104: 19369–74. https://doi.org/10.1073/pnas.0709121104 PMID: 18048330

42. Nie X, Lv S, Zhang Y, Du X, Wang L, Biradar SS, et al. Complete chloroplast genome sequence of a major invasive species, crofton weed (Ageratina adenophora), PLoS One. 2012; 7: e36869. https://doi.org/10.1371/journal.pone.0036869 PMID: 22606302

43. Ivanova Z, Sablok G, Daskalova E, Zahnmanova G, Apostolova E, Yahubyan G, et al. Chloroplast Genome Analysis of Resurrection Tertiary Relict Haberlea rhodopensis Highlights Genes Important for Desiccation Stress Response. Front Plant Sci. 2017; 8: 204. https://doi.org/10.3389/fpls.2017.00204 PMID: 28265281

44. Li Z, Long H, Zhang L, Liu Z, Cao H, Shi M, et al. The complete chloroplast genome sequence of tung tree (Vernicia fordii): Organization and phylogenetic relationships with other angiosperms. Sci Rep. 2017; 7: 1869. https://doi.org/10.1038/s41598-017-02076-6 PMID: 28500291

45. Yang X, Luo X, Cai X. Analysis of codon usage pattern in Taenia saginata based on a transcriptome dataset. Parasit Vectors. 2014; 7: 527. https://doi.org/10.1186/s13071-014-0527-1 PMID: 25440955

46. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol Biol Evol. 2018; 35: 1547–1549. https://doi.org/10.1093/molbev/msy096 PMID: 29722887
47. Lee JS, Kim HJ, Woo ER, Park YA, Lee YS, Park H. 7-feruloylloganin: an iridoid glucoside from stems of *Lonicera insularis*. Planta Med. 2001; 67: 99–102. https://doi.org/10.1055/s-2001-10623 PMID: 11270737

48. Kang KB, Lee DY, Kim MS, Kim TB, Yang TJ, Sung SH. Argininosecologanin, a secoiridoid-derived guanidine alkaloid from the roots of *Lonicera insularis*. Nat Prod Res. 2018; 32: 788–794. https://doi.org/10.1080/14786419.2017.1361953 PMID: 28774185