RawlsGCN: Towards Rawlsian Difference Principle on Graph Convolutional Network

Jian Kang¹
Yan Zhu²
Yinglong Xia²
Jiebo Luo²,³
Hanghang Tong¹

¹ University of Illinois at Urbana-Champaign
² Meta AI
³ University of Rochester
Ubiquity of Graphs

Social Network Analysis
Drug Discovery
Recommendation
Traffic Prediction
Fraud Detection
Question Answering

This Presentation: Graph = Network
Graph Convolutional Network (GCN)

- **Key idea:** Learn node representations by aggregating information from the neighbors – a.k.a. graph convolution

- **GCN:** A stack of graph convolution layers
 \[
 H^{(l)} = \sigma(\hat{A}H^{(l-1)}W^{(l)})
 \]

 \(\hat{A} = \tilde{D}^{-\frac{1}{2}}(A + I)\tilde{D}^{-\frac{1}{2}}\)

 \(\tilde{D} = \text{degree matrix of } A + I\)

[1] Kipf, T. N., & Welling, M.. Semi-Supervised Classification with Graph Convolutional Networks. ICLR 2017.
Degree-related Unfairness

• **Observation:** Low-degree node often has
 – High loss
 – Low predictive accuracy

• **Example:** Semi-supervised node classification

![Graphs showing relationship between node degree, average accuracy, and average loss.](image)
Degree-related Unfairness

- **Example:** Online advertising
 - Celebrities often enjoy high-quality recommendations
 - Grassroot users often suffer from bad recommendations
Degree Distribution

- Node degree distribution is often long-tailed

- GCN might
 - Benefit a relatively small fraction of high-degree nodes
 - Overlook a relatively large fraction of low-degree nodes

[1] Faloutsos, M., Faloutsos, P., & Faloutsos, C. On Power-Law Relationships of the Internet Topology. CCR 1999.
Prior Works

• DEMO-Net
 – **Degree-specific weight**: Learn degree-specific weights, randomly initialized

• SL-DSGCN
 – **Degree-specific weight**: Learn degree-specific weights, generated by RNN
 – **Self-supervised learning**: Generate pseudo labels for additional training signals

• Tail-GNN
 – **Neighborhood translation mechanism**: Infer missing neighborhood information of low-degree nodes

• **Limitation 1**: Additional number of weight parameters
 – DEMO-Net, SL-DSGCN

• **Limitation 2**: Change(s) to the GCN architecture
 – SL-DSGCN, Tail-GNN

• **Question**: How to mitigate degree-related unfairness without
 – Hurting the scalability of GCN
 – Changing the GCN architecture?

[1] Wu, J., He, J., & Xu, J.. DEMO-Net: Degree-Specific Graph Neural Networks for Node and Graph Classification. KDD 2019.
[2] Tang, X., Yao, H., Sun, Y., Wang, Y., Tang, J., Aggarwal, C., ... & Wang, S.. Investigating and Mitigating Degree-Related Biases in Graph Convolutional Networks. CIKM 2020.
[3] Liu, Z., Nguyen, T. K., & Fang, Y.. Tail-GNN: Tail-Node Graph Neural Networks. KDD 2021.
Fairness = Just Allocation of Utility

- **Intuition:** Utility = resource to allocate
- **Expected result:** Similar utility (accuracy) for all nodes regardless of their degrees
- **Example**

![Graphs showing fairness in utility allocation](image-url)
Example: Fair Allocation of Utility

- **Example:** Fair online advertising

- **Question:** How to define such fairness?

Debiasing
Problem Definition

• Given
 – An undirected graph $\mathcal{G} = (A, X)$
 – An L-layer GCN with weights θ
 – A task-specific loss J

• Find: A well-trained GCN that
 – Minimizes the task-specific loss
 – Achieves a fair allocation of utility for the groups of nodes with the same degree

• Key question: When is the allocation of utility fair?
Rawlsian Difference Principle

- **Origin:** Distributive justice
- **Goal:** Find a fair allocation of social welfare

“Inequalities are permissible when they maximize [...] the long-term expectations of the least fortunate group.”

-- John Rawls, 1971

- **Intuition:** Treat utility of GCN as welfare to allocate
 - Least fortunate group → group with the smallest utility
 - **Example:** Classification accuracy for node classification

[1] Rawls, J.. A Theory of Justice. Press, Cambridge 1971.

- **Justice as fairness**
 - Justice is a virtue of institutions
 - Free persons enjoy and acknowledge the rules
- **Well-ordered society**
 - Designed to advance the good of its members
 - Regulated by a public conception of justice
Key Challenge: Fair Allocation of Utility

- **Key idea:** Consider the stability of the Rawlsian difference principle
- **How to achieve the stability?**
 - Keep improving the utility of the least fortunate group
- **When do we achieve the stability?**
 - No least fortunate group
 - All groups have the balanced utility
- **Challenge:** Non-differentiable utility
 - **Workaround:** Use loss function as the proxy of utility
 - **Rationale:** Minimize loss in order to maximize utility
- **Goal:** Fair allocation of utility → balanced loss
Roadmap

- Motivation
- Theory: Source of Unfairness
- Algorithms: RawlsGCN
- Experiments
- Conclusion
Theory: Source of Unfairness

- **Intuition:** Understand why the loss varies after training

- **What happens during training?**
 - Extract node representations
 - Predict the outcomes using the node representations
 - Calculate the task-specific loss J
 - Update model weights θ by the gradient $\frac{\partial J}{\partial \theta}$ ← key component for training

- **Question:** Is the unfairness caused by the gradient?
The Gradient of Model Weights

• Given
 – An undirected graph \(\mathcal{G} = (\mathbf{A}, \mathbf{X}) \) with \(\tilde{\mathbf{A}} = \mathbf{D}^{-\frac{1}{2}}(\mathbf{A} + \mathbf{I})\mathbf{D}^{-\frac{1}{2}} \)
 – An arbitrary \(l \)-th graph convolution layer
 • Weight matrix \(\mathbf{W}^{(l)} \)
 • Hidden representations before activation \(\mathbf{E}^{(l)} = \tilde{\mathbf{A}}\mathbf{H}^{(l-1)}\mathbf{W}^{(l)} \)
 – A task-specific loss \(J \)

• The gradient of loss \(J \) w.r.t. weight \(\mathbf{W}^{(l)} \)

\[
\frac{\partial J}{\partial \mathbf{W}^{(l)}} = \left(\mathbf{H}^{(l-1)}\right)^T \tilde{\mathbf{A}}^T \frac{\partial J}{\partial \mathbf{E}^{(l)}}
\]

\[
\frac{\partial J}{\partial \mathbf{W}^{(l)}} = \left(\mathbf{H}^{(l-1)}\right)^T \tilde{\mathbf{A}}^T \frac{\partial J}{\partial \mathbf{E}^{(l)}}
\]
Source of Unfairness: Results

- \(\frac{\partial J}{\partial W^{(l)}} \) is a linear summation of node influence weighted by its degree in \(\hat{A} \)

\[
\frac{\partial J}{\partial W^{(l)}} = \sum_{i=1}^{n} d_{\hat{A}}(i)I_{i}^{(\text{col})} = \sum_{j=1}^{n} d_{\hat{A}}(j)I_{j}^{(\text{row})}
\]

- \(I_{i}^{(\text{col})} = \left(E_{j \sim N(i)} \left[H^{(l-1)}[j,:) \right] \right)^T \frac{\partial J}{\partial E^{(l)}[i,:]} \)
- \(I_{j}^{(\text{row})} = \left(H^{(l-1)}[j,:) \right)^T E_{i \sim \hat{N}(j)} \left[\frac{\partial J}{\partial E^{(l)}[i,:]} \right] \)
- \(j \sim \hat{N}(i) \): Sampling node \(j \) from neighborhood of node \(i \) in \(\hat{A} \)
 - Sampling probability is proportional to \(\hat{A}[i,j] \)

\[
d_{\hat{A}}(1) = 2
\]
\[
d_{\hat{A}}(2) = 1
\]
\[
d_{\hat{A}}(3) = 1
\]

\[
\frac{\partial J}{\partial W^{(l)}} = 2I_{1}^{(\text{col})} + I_{2}^{(\text{col})} + I_{3}^{(\text{col})}
\]

Higher importance due to higher degree
Source of Unfairness: Column-wise Influence

\[\frac{\partial J}{\partial W^{(l)}} \] is a linear summation of node influence weighted by its degree in \(\hat{A} \)

\[\frac{\partial J}{\partial W^{(l)}} = \sum_{i=1}^{n} d_{\hat{A}}(i) \mathbb{I}^{(\text{col})}_i = \sum_{j=1}^{n} d_{\hat{A}}(j) \mathbb{I}^{(\text{row})}_j \]

- \(\mathbb{I}^{(\text{col})}_i = (E_{j \sim \mathcal{N}(i)} [H^{(l-1)} [j,:]])^T \frac{\partial J}{\partial E^{(l)}[i,:]} \)
- \(\mathbb{I}^{(\text{row})}_j = (H^{(l-1)} [j,:])^T \mathbb{E}_{i \sim \mathcal{N}(j)} \left[\frac{\partial J}{\partial E^{(l)}[i,:]} \right] \)
- \(j \sim \mathcal{N}(i) \): Sampling node \(j \) from neighborhood of node \(i \) in \(\hat{A} \)
 - Sampling probability is proportional to \(\hat{A}[i,j] \)

\[d_{\hat{A}}(i) = \text{sum } \hat{A}^T \]

\[\mathbb{I}^{(\text{col})}_i = \mathbb{E} \]

\[(H^{(l-1)})^T \]
Source of Unfairness: Row-wise Influence

- \(\frac{\partial J}{\partial W^{(l)}} \) is a linear summation of node influence weighted by its degree in \(\hat{A} \)

\[
\frac{\partial J}{\partial W^{(l)}} = \sum_{i=1}^{n} d_{\hat{A}}(i) I_{i}^{(\text{col})} = \sum_{j=1}^{n} d_{\hat{A}}(j) I_{j}^{(\text{row})}
\]

- \(I_{i}^{(\text{col})} = (E_{j \sim \mathcal{N}(i)} [H^{(l-1)}[j, :]])^T \frac{\partial J}{\partial E^{(l)}[i,:]} \)
- \(I_{j}^{(\text{row})} = (H^{(l-1)}[j,:])^T E_{i \sim \mathcal{N}(j)} \left[\frac{\partial J}{\partial E^{(l)}[i,:]} \right] \)
- \(j \sim \mathcal{N}(i) \): Sampling node \(j \) from neighborhood of node \(i \) in \(\hat{A} \)
 - Sampling probability is proportional to \(\hat{A}[i,j] \)

\[
d_{\hat{A}}(j) = \text{sum}_{\hat{A}^T}
\]

\[
E \left[\frac{\partial J}{\partial E^{(l)}} \right] = (H^{(l-1)})^T
\]
Source of Unfairness: Summary

• Gradient of loss w.r.t. weight
 \[
 \frac{\partial J}{\partial W^{(l)}} = \sum_{i=1}^{n} d_A(i)\Pi_i^{(col)} = \sum_{j=1}^{n} d_A(j)\Pi_j^{(row)}
 \]

• Intuitions
 - \(\Pi_i^{(col)}\) and \(\Pi_j^{(row)}\) → The directions for gradient descent
 - \(d_A(i)\) and \(d_A(j)\) → The importance of the direction

• High degree → more focus on the corresponding direction

• Question: Why does the node degree vary in \(\hat{A}\)?

Toy graph with adjacency matrix \(A\)

Node degree in \(A\)
- \(d_A(1) = 4\)
- \(d_A(2) = 2\)
- \(d_A(3) = 3\)
- \(d_A(4) = 2\)
- \(d_A(5) = 1\)

Node degree in \(\hat{A}\)
- \(d_{\hat{A}}(1) = 1.26\)
- \(d_{\hat{A}}(2) = 0.88\)
- \(d_{\hat{A}}(3) = 1.05\)
- \(d_{\hat{A}}(4) = 0.88\)
- \(d_{\hat{A}}(5) = 0.82\)

Different node degrees
Symmetric Normalization

- **Key idea**: Normalize the largest eigenvalue, but not degree.

- **Observation**: High degree in A → high degree in \hat{A}
 - $\frac{\partial J}{\partial W(l)}$ favors high-degree nodes in A due to such positive correlation.

- **Consequence**: $\frac{\partial J}{\partial W(l)}$ calculated using \hat{A} is biased.

- **Example**

 Node a: $d_a(a) = 2$
 Node b: $d_a(b) = 1$

 - **Fair direction**: $\Pi_b^{(col)}$
 - **Biased direction**: Favor node a by being closer to $\Pi_a^{(col)}$

 Node degree takes no effect
 Node degree is considered
Doubly Stochastic Matrix Computation

• How to mitigate unfairness in $\frac{\partial J}{\partial W^{(t)}}$?
 – **Intuition:** Enforce row sum and column sum of \hat{A} to be 1
 – **Solution:** Doubly stochastic normalization on \hat{A}

• **Method:** Sinkhorn-Knopp algorithm
 – **Key idea:** Iteratively normalize the row and column of a matrix
 – **Complexity:** Linear time and space complexity
 – **Convergence:** Always converge iff. the matrix has total support

• **Question:** Can we find the doubly stochastic form of \hat{A}?
Existence of Doubly Stochastic Matrix

• Given
 – An undirected graph $\mathcal{G} = (A, X)$
 – The degree matrix \tilde{D} of $A + I$
 – The renormalized graph Laplacian $\hat{A} = \tilde{D}^{-\frac{1}{2}}(A + I)\tilde{D}^{-\frac{1}{2}}$

• The Sinkhorn-Knopp algorithm always finds the unique doubly stochastic form \hat{A}_{DS} of \hat{A}
 – (Check detailed proof in the paper)
Roadmap

• Motivation

• Theory: Source of Unfairness

• Algorithms: RawlsGCN

• Experiments

• Conclusion
The Family of RawlsGCN

• Gradient computation

\[
\left(\frac{\partial J}{\partial W^{(l)}} \right)_{\text{fair}} = \left(H^{(l-1)} \right)^T \hat{A}_{DS}^T \frac{\partial J}{\partial E^{(l)}}
\]

– Key term: \(\hat{A}_{DS} \) – Doubly-stochastic normalization of \(\hat{A} \)

• Proposed methods

– RawlsGCN-Graph: During data pre-processing, compute \(\hat{A}_{DS} \) and treat it as the input of GCN

– RawlsGCN-Grad: During optimization (in-processing), treat \(\hat{A}_{DS} \) as a normalizer to equalize the importance of node influence
RawlsGCN-Graph: Pre-processing

• **Intuition:** Normalize the input renormalized graph Laplacian into a doubly stochastic matrix

• **Key steps**
 1. Precompute the renormalized graph Laplacian \hat{A}
 2. Precompute \hat{A}_{DS} by applying the Sinkhorn-Knopp algorithm
 3. Input \hat{A}_{DS} and X (node features) to GCN for training
RawlsGCN-Grad: In-processing

- **Intuition:** Equalize the importance of node influence in gradient computation

- **Key steps**
 1. Precompute the renormalized graph Laplacian \tilde{A}
 2. Input \tilde{A} and X (node features) to GCN
 3. Compute \tilde{A}_{DS} by applying the Sinkhorn-Knopp algorithm
 4. Repeat until maximum number of training epochs
 - Compute the fair gradient $\left(\frac{\partial j}{\partial W^{(l)}}\right)_{\text{fair}} = (H^{(l-1)})^T \tilde{A}_{DS}^T \frac{\partial j}{\partial E^{(l)}}$ using \tilde{A}_{DS}
 - Update $W^{(l)}$ by the fair gradient $\left(\frac{\partial j}{\partial W^{(l)}}\right)_{\text{fair}}$
Roadmap

• Motivation ✔️
• Theory: Source of Unfairness ✔️
• Algorithms: RawlsGCN ✔️
• Experiments
• Conclusion
Experiments: Settings

• **Task:** Semi-supervised node classification

• **Datasets**

Name	Nodes	Edges	Features	Classes	Median Deg.
Cora-ML	2,995	16,316	2,879	7	3
Citeseer	3,327	9,104	3,703	6	2
Coauthor-CS	18,333	163,788	6,805	15	6
Coauthor-Physics	34,493	495,924	8,415	5	10
Amazon-Computers	13,752	491,722	767	10	22
Amazon-Photo	7,650	238,162	745	8	22

• **Baseline methods**
 – **Vanilla model:** GCN
 – **Fairness-aware models:** DEMO-Net, DSGCN, Tail-GNN, Adversarial Fair GCN, REDRESS

• **Metrics**
 – **Utility:** Classification Accuracy
 – **Bias:** Variance of average loss values
Experiments: Node Classification

Observations
- RawlsGCN achieves the smallest bias
- Classification accuracy can be improved
 - mitigating the bias → higher accuracy for low-degree nodes
 - Higher overall accuracy

Method	Coauthor-Physics		Amazon-Computers		Amazon-Photo	
	Acc.	Bias	Acc.	Bias	Acc.	Bias
GCN	93.96 ± 0.367	0.023 ± 0.001	64.84 ± 0.641	0.353 ± 0.026	79.58 ± 1.507	0.646 ± 0.038
DEMO-Net	77.50 ± 0.566	0.084 ± 0.010	26.48 ± 3.455	0.456 ± 0.021	39.92 ± 1.242	0.243 ± 0.013
DSGCN	79.08 ± 1.533	0.262 ± 0.075	27.68 ± 1.663	1.407 ± 0.685	26.76 ± 3.387	0.921 ± 0.805
Tail-GNN	OOM		76.24 ± 1.491	1.547 ± 0.670	86.00 ± 2.715	0.471 ± 0.264
AdvFair	87.44 ± 1.132	0.892 ± 0.502	53.50 ± 5.362	4.395 ± 1.102	75.80 ± 3.563	51.24 ± 39.94
REDRESS	94.48 ± 0.172	0.019 ± 0.001	80.36 ± 0.206	0.455 ± 0.032	89.00 ± 0.369	0.186 ± 0.030
RawlsGCN-Graph (Ours)	94.06 ± 0.196	0.016 ± 0.000	80.16 ± 0.859	0.121 ± 0.010	88.58 ± 1.116	0.071 ± 0.006
RawlsGCN-Grad (Ours)	94.18 ± 0.306	0.021 ± 0.002	74.18 ± 2.530	0.195 ± 0.029	83.70 ± 0.672	0.186 ± 0.068
Experiments: Node Classification

- **Observation:** RawlsGCN achieves more balanced loss and classification accuracy
 - Flatter slope of the regression line for RawlsGCN (in orange) than GCN (in blue)
Experiments: Efficiency

Method	# Param.	Memory	Training Time
GCN (100 epochs)	48, 264	1,461	13.335
GCN (200 epochs)	48, 264	1,461	28.727
DEMO-Net	11,999,880	1,661	9158.5
DSGCN	181,096	2,431	2714.8
Tail-GNN	2,845,567	2,081	94.058
AdvFair	89,280	1,519	148.11
REDRESS	48,264	1,481	291.69
RawlsGCN-Graph (Ours)	48,264	1,461	11.783
RawlsGCN-Grad (Ours)	48,264	1,461	12.924

- **Observation:** RawlsGCN has the best efficiency compared with other baseline methods
 - Same number of parameters and memory usage (in MB)
 - Much shorter training time (in seconds)
Experiments: Ablation Study

Method	Normalization	Acc.	Bias
RAWLSGCN-Graph	Row	87.98 ± 0.791	0.076 ± 0.006
	Column	88.32 ± 2.315	0.138 ± 0.112
	Symmetric	89.12 ± 0.945	0.071 ± 0.005
Doubly Stochastic		88.58 ± 1.116	**0.071 ± 0.006**
RAWLSGCN-Grad	Row	82.86 ± 1.139	0.852 ± 0.557
	Column	84.96 ± 1.235	0.221 ± 0.064
	Symmetric	82.92 ± 1.121	0.744 ± 0.153
Doubly Stochastic		83.70 ± 0.672	**0.186 ± 0.068**

Observation: Doubly stochastic normalization is the best normalization technique to balance accuracy and fairness.
Roadmap

• Motivation
• Theory: Source of Unfairness
• Algorithms: RawlsGCN
• Experiments
• Conclusion
Conclusion

• **Problem:** Enforce the Rawlsian difference principle on GCN

• **Source of unfairness**
 – Analysis on the gradient w.r.t. model weights
 – Doubly stochastic normalization on the graph

• **Solution:** RawlsGCN
 – Pre-processing by RawlsGCN-Graph
 – In-processing by RawlsGCN-Grad

• **Results**
 – Effectiveness in bias mitigation while maintaining accuracy
 – Significant improvement in efficiency

• **More details in the paper**
 – Proofs and analysis
 – Detailed experiments