Analytical Synthesis of Non-Linear Control Algorithms of a Chemical Reactor Thermal Mode

Alexander Nikolaevich Labutin 1, Milan Vaško 2,*, Ivan Kuric 3, Vladimir Yuryevich Nevinitsyn 1, Milan Sága 2, Yulia Nikolaevna Zagarinskaya 1 and Galina Vitalievna Volkova 1

1 Department of Technical Cybernetics and Automation, Ivanovo State University of Chemistry and Technology, Sheremetevskiy Avenue 7, 153000 Ivanovo, Russia; lan@isuct.ru (A.N.L.); nevinitsyn@gmail.com (V.Y.N.); julia-zagarinskaya@yandex.ru (Y.N.Z.); konf_gv@mail.ru (G.V.V.)
2 Department of Applied Mechanics, Faculty of Mechanical Engineering, University of Žilina, 010 26 Žilina, Slovakia; milan.saga@fstroj.uniza.sk
3 Department of Automation and Production Systems, Faculty of Mechanical Engineering, University of Žilina, 010 26 Žilina, Slovakia; ivan.kuric@fstroj.uniza.sk
* Correspondence: milan.vasko@fstroj.uniza.sk; Tel.: +421-41-513-2981

Abstract: The paper deals with two approaches to the synthesis of a non-linear control system of the thermal regime of a liquid-phase chemical reactor at the realization of a bimolecular exothermic reaction. Synthesis of control algorithms is carried out by the method of analytical design of aggregated regulators (ADAR). The first variant assumes synthesis of temperature controller by classic ADAR method on the basis of a sequential set of invariant manifolds. The second one is based on the cascade control system structure. Computer simulation is used to study and compare the synthesized control systems.

Keywords: chemical reactor; thermal condition; cascade control system; analytical design of aggregated regulators; synergetic control theory; computer simulation

1. Introduction

The reactor subsystem is a central part of the overall scheme for the transformation of initial reagents into target products and largely determines resource and energy saving, the economic efficiency of the production process as a whole, and the consumer demand for certain products [1].

The purpose of the chemical reactor operation is to provide, by standards, a value of the concentration of the target product at the outlet that determines the quality of the product. In the case of a constant amount of starting reagents, the product concentration value is determined by the process temperature, since it determines the rate at which the starting materials are transformed into reaction products. For this reason, and due to the complexity of real-time concentrations measurement, the process is often performed at temperature and the role of the automatic control system of the object is to stabilize the thermal regime of the process under fault conditions, as well as when transferring an object from one regime to another [2,3].

The main feature of chemical reactors as control objects is their nonlinearity and multi-connectivity, as well as the parametric uncertainty of the reactor mathematical model in the design stage. Until now, the reactor’s thermal regime has been controlled in most cases using single-circuit or cascade automatic control systems based on linear Proportional Integral Derivative (PID) algorithms [4,5]. The main drawback of such systems is the problem of maintaining the robustness properties, i.e., maintaining the stability and control quality under the action of parametric disturbances and the transition of the object from one mode to another [6,7], as the synthesis of these systems does not take into account the nonlinearity of the object mathematical model.
In our opinion, the Analytical Design of Aggregated Regulators (ADAR) method, developed as part of synergetic control theory [8–18], which provides asymptotic stability of the automatic control system as a whole in a wide range of changes in state variables and the input variables appear promising in this regard.

Earlier in [17,18], the task of synthesizing a nonlinear algorithm for temperature stabilization using the ADAR method was solved. This paper considers and analyses two alternatives for the synthesis of a nonlinear reactor thermal control system using the ADAR method. The first variant assumes synthesis of the temperature regulator by the classic ADAR method based on a successive set of invariant manifolds. The second one is based on the cascade control system structure.

2. Control Object Description and Control Problem Statement

A liquid-phase chemical reactor is a continuous capacitive device operating in polytropical mode (Figure 1). The apparatus has a bimolecular exothermic reaction \( A + B \rightarrow P \), where \( A \) and \( B \) are the initial substances; \( P \) is the reaction product; \( k_1 \) is the speed constant. Source reagents \( A \) and \( B \) are fed into the device in separate streams. The mixture is taken from the reactor by a pump. To remove heat and stabilize the temperature in the reactor, the apparatus is equipped with a jacket, into which the coolant enters.

![Figure 1. Scheme of the chemical reactor.](image)

In Figure 1, the following nomenclature is used: \( C_A^{in}, C_B^{in} \) are the concentrations of initial reagents; \( v_1, v_2 \) are the flow of initial reagents; \( t_1, t_2 \) are the temperatures of initial reagent flows; \( t_{c1}, t_{c2} \) are the temperatures of the coolant at the inlet and outlet of the unit, respectively; \( v_c \) is the coolant flow at the inlet and outlet of the unit; \( t \) is the temperature of the reaction mixture in the apparatus; \( v \) is the flow of reaction mixture at the outlet of the apparatus; \( C_A, C_B, C_P \) are the concentrations of components \( A, B \) and \( P \) in the reactor, respectively; \( V \) is the volume of the reaction mixture in the apparatus; \( V_c \) is the volume of the coolant in the jacket.

The mathematical model of the object’s dynamics under the assumption of level constancy has the form:

\[
\begin{align*}
\frac{dC_A}{dt} &= f_1, \\
\frac{dC_B}{dt} &= f_2, \\
\frac{dC_P}{dt} &= f_3, \\
\frac{dt_1}{dt} &= f_4 + \frac{\beta_1}{\kappa_1} t_c, \\
\frac{dt_2}{dt} &= f_5 + \frac{\beta_2}{\kappa_2} \Delta t_c,
\end{align*}
\]
where

\[
\begin{align*}
f_1 &= \frac{v_1 - C_A}{v_1 + v_2} - \frac{C_A - v_1 - C_A - C_B}{v_1 + v_2}, \\
f_2 &= \frac{v_2 - C_B}{v_1 + v_2} - \frac{C_B - v_1 - C_A - C_B}{v_1 + v_2}, \\
f_3 &= \frac{V}{v_1} - \frac{C_A}{v_1 - C_A - C_B}, \\
f_4 &= \frac{v_1 v_2}{v_1 + v_2} + \frac{a k_1 C_A C_B}{v_1 + v_2} - \frac{t - t_1}{v_1 + v_2}, \\
f_5 &= \frac{v_1 (t_0 - t_1) + \beta_2 (t - t_1)}{v_1 + v_2}, \\
\beta_1 &= \frac{\Delta H}{v_1}, \\
\beta_2 &= \frac{\Delta H}{v_1 C_\nu}, \\
k_1 &= k_1^0 \exp\left[\frac{-E_1}{R (t + 273)}\right],
\end{align*}
\]

and where \( k_1 \) is the speed constant; \( k_1^0 \) is the pre-exponential multiplier of the rate constant; \( E_1 \) is the activation energy; \( R \) is the universal gas constant; \( \Delta H \) is the heat effect of the reaction; \( \rho \) and \( C \) are the density and heat capacity of the reaction mixture, respectively; \( \rho_c \) and \( C_c \) are the coolant density and heat capacity, respectively; \( K \) is the heat transfer coefficient; \( F \) is the heat exchange surface; \( \Delta v_c \) is the deviation of the coolant flow from the nominal value.

The general task of the chemical reactor control is to stabilize the mixture temperature in the apparatus at a given level, \( T \), under conditions of disturbances. The control activity is the coolant flow rate fed into the jacket.

2.1. Control Algorithm Synthesis by the ADAR Method Based on a Sequential Set of Invariant Manifolds

Since the mathematical model of the object, Equation (1), contains one external control action \( u = \Delta v_c \), it is necessary to use the ADAR method based on a sequential set of invariant manifolds [8]. The analysis of Equation (1) shows that the control action \( u = \Delta v_c \) affects the variable \( t \) through the variable \( t_c \). Thus, the control channel for the temperature of the mixture in the apparatus will be written in full form \( u \rightarrow t_c \rightarrow t \). According to the ADAR method [8,19], it is possible to create a number of manifolds in the phase space of dynamic systems, to which phase trajectories are attracted.

Hence, it is possible to construct such a set of attracting invariant manifolds \( \psi_1 (\tau) = 0 \), where \( s \) is from 1 to \( m \), where the depicting point of the system, having started moving from an arbitrary initial position in the phase space, moves sequentially from one manifold to another until it reaches the last one \( \psi_m (\tau) = 0 \), resulting in a given final state. In this way, the depicting point first approaches the manifold \( \psi_1 (\tau) = 0 \), then the manifold \( \psi_2 (\tau) = 0 \), etc. When using \( m \) attracting manifolds, the dimension of each \( i^{th} \) manifold will be one unit smaller than the previous one, which results in phase volume compression and dynamic decomposition of the task.

A qualitative analysis of the structure of the right parts of the system Equation (1) shows that the state variables are interconnected (e.g., there are other phase coordinates in the right part of the equation for \( t \)).

Based on this fact, and the principle of control equivalence, we will introduce the invariant manifold:

\[
\psi_1 = t_c + v(t) = 0, \tag{2}
\]

where \( v(t) \) is the unknown function of \( t \). The control law is synthesized in such a way that the system’s depicted point in the phase space is transferred from an arbitrary start position...
to the neighborhood of manifold $\psi_1 = 0$. A change in the aggregated macro variable that plays the role of an order parameter shall be subject to the functional equation:

$$T_1 \psi_1 + \psi_1 = 0,$$

where value $T_1$ (and $T_2$ in other equations) are algorithm tuning parameters. Equation (3), taking into account Equation (2), takes the following form:

$$T_1 \left[ \frac{dt}{d\tau} + \frac{\partial v}{\partial t} \frac{dt}{d\tau} \right] = -\psi_1.$$

Due to equations of the object, Equation (1), this expression will be written down:

$$T_1 \left[ f_5 + \left( \frac{t^n - t_c}{V_c} \right) u + \frac{\partial v}{\partial t} \left[ f_4 + \frac{\beta_1}{V} t_c \right] \right] + t_c + v = 0,$$

where $u = \Delta \nu_c$. From Equation (4) we obtain an expression for the control algorithm:

$$u = -\frac{V_c (t + v)}{T_1 (t^n - t_c)} - \frac{\partial v}{\partial t} \frac{f_4 + \beta_1 t_c}{t^n - t_c} - \frac{f_5 V_c}{t^n - t_c}.$$  

(5)

The control action $u$ transfers the depicting point of the system to the neighborhood of manifold $\psi_1 = 0$, where the link $t_c = -v$ is implemented and the effect of ‘phase space compression’ is realized, i.e., there is a decrease in the dimension of the system of Equation (1). The equations of the decomposed system taking into account the relation $t_c = -v$ will take the form:

$$\frac{d\xi^\Delta}{d\tau} = f_1, \quad \frac{d\xi}{d\tau} = f_2, \quad \frac{dC_a}{d\tau} = f_3, \quad \frac{dt}{d\tau} = f_4 - \frac{\beta_1}{V} \cdot v.$$  

(6)

The function $\nu(t)$ in the decomposed system, Equation (6), can be regarded as an ‘internal’ control that moves the object, Equation (6), along manifold $\psi_1 = 0$. In the second step of the control law synthesizing procedure, the expression for $\nu(t)$ is searched. The purpose of the system movement, Equation (6), is introduced in the form of an invariant manifold which represents a technological requirement of the system:

$$\psi_2 = t - \bar{t} = 0.$$  

(7)

Macro variable $\psi_2$ satisfies the solution of the functional equation $T_2 \psi_2 + \psi_2 = 0$ which, taking into account the expression, Equation (7), due to the decomposed system model, Equation (6), will take the form:

$$T_2 \left( f_4 - \frac{\beta_1}{V} v \right) + t - \bar{t} = 0.$$  

(8)

‘Internal’ control action according to Equation (8) will be written down

$$v = \frac{(t - \bar{t}) \cdot V}{T_2 \beta_1} + \frac{f_4 \cdot V}{\beta_1}.$$  

(9)

Control law, Equation (9), ensures that the depicted point is asymptotically close to the second attracting manifold $\psi_2 = t - \bar{t} = 0$. The final expression for the external control law $u$ can be obtained by substituting in Equation (5), the function $v$ and its partial derivative $\partial v / \partial t$. 
The control law tuning parameters, which affect the quality of the process dynamics in an isolated object-regulator system, are the time constants $T_1, T_2$. The asymptotic stability conditions of the system as a whole with respect to the manifolds $\psi_1 = 0, \psi_2 = 0$ introduced into the phase space have the form: $T_1 > 0, T_2 > 0$ [8].

2.2. Synthesis of a Cascade Thermal Control System

The structural and technological features of the chemical reactor, the specific conditions of the complex technological process implementation, and, accordingly, the structural features of the mathematical model, Equation (1), allow decomposition of the system, Equation (1), into two subsystems. The first subsystem is the material balance equation by component and the thermal balance equation of the reaction mixture. The temperature of the coolant in the jacket is a control action for the temperature of the mixture in the tank. The second subsystem is the reactor jacket, the functioning of which is described by the thermal equilibrium equation, and the state is characterized by the coolant temperature $t_c$. The control for $t_c$ is the coolant flow rate $v_c$. The object structural diagram is shown in Figure 2.

![Figure 2. Structural diagram of the control object.](image)

Cascade control systems are widely used in the linear automatic control theory and the automation practice of objects with such structure [20]. We will solve the problem of synthesis of the cascade control system of temperature in the reactor by the methods of synergistic control theory. The mathematical model of the perturbed movement of the first subsystem will take the form:

$$
\frac{dC_A}{dt} = f_1,
\frac{dC_B}{dt} = f_2,
\frac{dC_C}{dt} = f_3,
\frac{dt}{d\tau} = f_4 + \frac{\beta}{\psi} u_1,
$$

where $u_1 = t_c$.

The task is formulated as follows. It is necessary to synthesize the control law $u_1$, which transfers an object from an arbitrary starting position to the neighborhood of a given invariant manifold $\psi_1 = 0$ and ensures stable movement along $\psi_1 = 0$ to a final state. This problem is solved in one step, as the control is directly included in the temperature equation for the reaction mixture [8].

Let us introduce the macro variable $\psi_1$:

$$\psi_1 = t - \tilde{t},$$

where $\tilde{t}$ is the set temperature point. The control action must be such that the change in the macro variable $\psi_1$ is subject to the basic functional equation:

$$T_1 \psi_1 + \psi_1 = 0.$$
We will write this equation in full form due to the equations of the model, Equation (10):

\[ f_4 + \frac{\beta_1}{V} u_1 = - \frac{1}{T_1} (t - T). \]

From here we obtain:

\[ u_1 = - \frac{V}{T_2 \beta_1} (t - T) - \frac{f_4 V}{\beta_1}. \tag{11} \]

The algorithm tuning parameter is the value \( T_1 \). A condition of asymptotic stability of the closed-loop control subsystem of the reaction tank is \( T_1 > 0 \).

Another step in the synthesis of the temperature control system is the synthesis of the algorithm for controlling the coolant temperature \( t_c \). The task of the subsystem which controls the coolant temperature in the jacket is to define such external control \( \Delta u_c \), which would provide the coolant temperature value \( T_{cl} = u_1 \) defined at the first stage. The model of the subsystem is as follows:

\[ \frac{dt}{d\tau} = f_5 + \frac{(t_{cm} - t_c)}{V_c} u_2, \tag{12} \]

where \( u_2 = \Delta u_c \).

In terms of the ADAR method, the task of synthesizing the coolant temperature control algorithm is formulated as follows. It is necessary to synthesize the control law \( u_2 \), which transfers the object from an arbitrary starting position to the neighborhood of the manifold \( \psi_2 = 0 \) and provides stable movement to a given final state.

The attracting invariant manifold will be written down:

\[ \psi_2 = t_c - u_1 = 0. \]

Using the functional equation \( T_2 \psi_2 + \psi_2 = 0 \) and Equation (12), we will obtain the control law:

\[ u_2 = - \frac{V_c}{T_2 (t_{cm} - t_c)} (t_c - u_1) - \frac{f_5 V_c}{t_{cm} - t_c}. \tag{13} \]

The algorithm tuning parameter is the \( T_2 \). A condition of asymptotic stability of the reactor jacket closed control subsystem is \( T_2 > 0 \).

Based on the type of Equations (11) and (13), the structure of the cascade control system without parametric perturbations can be presented as follows (Figure 3).

By substituting \( u_1 \) from Equations (3)–(5), we obtain a control law for the auxiliary regulator that defines the value of the external control action:

\[ u_2 = - \frac{V_c}{T_2 (t_{cm} - t_c)} \left[ t_c + \frac{V}{T_2 \beta_1} (t - T) + \frac{f_4 V}{\beta_1} \right] - \frac{f_5 V_c}{t_{cm} - t_c}. \tag{14} \]

![Figure 3. Structure of the cascade reactor thermal control system: Reg1—main controller; Reg2—auxiliary control system.](image-url)
2.3. Computer Simulation of the Control System

The performance of the thermal control system of the chemical reactor using the synthesized nonlinear laws, Equations (5), (9), and (14) was examined by computer simulation methods. The properties of perturbation invariance, covariance with temperature set points, and asymptotic stability of the closed system were studied.

Simulation was carried out at technological and structural parameters ensuring optimal operation mode of the chemical reactor [21,22]:

- \( V = 500 \text{ L}, V^c = 290 \text{ L} \);
- \( C_A^\text{in} = 19.74 \text{ mol/L}, C_B^\text{in} = 10.93 \text{ mol/L} \);
- \( v_1 = 1.5 \text{ L/min}, v_2 = 3.5 \text{ L/min}, v = 5 \text{ L/min}, v^c = 3.84 \text{ L/min} \);
- \( t_1 = 20 \text{ °C}, t_2 = 30 \text{ °C}, t^c = 20 \text{ °C} \);
- \( K = 12 \text{ kJ/(m}^2\cdot\text{min}\cdot\text{K}), F = 2.9 \text{ m}^2\);
- \( \rho = 0.9 \text{ kg/L}, \rho^c = 1 \text{ kg/L} \);
- \( C = 2 \text{ kJ/(kg} \cdot \text{K}), C^c = 4.18 \text{ kJ/(kg} \cdot \text{K}) \);
- \( \Delta H = 80 \text{ kJ/mol}, E_1 = 48635 \text{ J/mol}, k^0 = 109860 \text{ l/(mol} \cdot \text{min}) \).

The parameters of control laws are as follows: time constants values \( \tau_1 = \tau_2 = 20 \text{ min} \) (determined from the time requirements of the control process); set point of reactor mixture temperature \( T = 140 \text{ °C} \).

Figures 4 and 5 show examples of control transients in a closed system under an initial deviation of all state variables from the statics by \(-20\% (\Delta C_A = -0.2C_A^0, \Delta C_B = -0.2C_B^0, \Delta T = -0.2T, \Delta t = -0.2t^0)\) and at a step change in the set point value \( (\Delta T = -10\text{ °C}) \). For clarity, the transients before applying the input action \( (\tau = 50 \text{ min}) \) are given in a static mode. In the first variant, the value of the control effect \( \Delta v^c \) is calculated using Equations (5) and (9), and in the second one using Equation (14). The figures show that the quality indicators of the proposed control systems with identical control settings are close.

![Figure 4](https://example.com/figure4)

**Figure 4.** Transients in a closed system with an initial deviation of the state vector from static by \(-20\%: 1—\text{the first variant of the algorithm (classic ADAR method); 2—second variant (cascade control system).}

![Figure 5](https://example.com/figure5)

**Figure 5.** Transients in a closed system with a step change in temperature set point by \(-10\text{ °C}: 1—\text{the first variant of the algorithm (classic ADAR method); 2—second one (cascade control system).}
3. Conclusions

The paper considers possible approaches to the synthesis of a nonlinear thermal control system of a liquid-phase chemical reactor using the ADAR method. Temperature control algorithms were obtained using a nonlinear mathematical model of the object without using the linearization procedure. This fact is a significant advantage in the synthesis of an automatic control system in the design stage in the case of a real control object absence.

The principal difference between the approach to the synergistic synthesis of a cascade automatic control system for reactor thermal control and the classical approach (ADAR method based on a sequential set of invariant manifolds) is as follows. The classical ADAR method implements a cascade synthesis of the automatic control system, in which a dynamic decomposition of the model takes place with the decrease in its dimensionality per unit after the first stage of synthesis (defining the external control that transfers the object to the first invariant manifold). In the second stage, the law of internal control change is defined, which ensures that the object moves along the first manifold to the final state. The proposed approach preliminarily decomposes the object and therefore the dynamic model into two related subsystems. In the first stage, the internal control is defined, which transfers the object to the specified final state, and in the second phase, the external control is defined, which provides the evaluated value of the internal control.

In general, both variants of the synthesized automatic thermal control systems are operable and can be recommended for any type of reaction.

Author Contributions: Conceptualization, A.N.L., V.Y.N., Y.N.Z., and G.V.V.; methodology, A.N.L. and M.S.; software, Y.N.Z. and I.K.; validation, A.N.L., V.Y.N., and M.V.; formal analysis, Y.N.Z. and I.K.; investigation, A.N.L., G.V.V., and M.S.; data curation, V.Y.N. and M.V.; writing—original draft preparation, A.N.L., Y.N.Z., and M.V.; writing—review and editing, A.N.L., V.Y.N., and M.V.; supervision, A.N.L.; project administration, A.N.L. and M.V.; funding acquisition, M.S. All authors have read and agreed to the published version of the manuscript.

Funding: This work has been supported by the grant project KEGA No. 001ŽU-4/2020.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Gordeev, L.S.; Labutin, A.N.; Gordeeva, E.L. Optimal synthesis of multiproduct resource-conserving reactor systems. Theor. Found. Chem. Eng. 2014, 48, 637–643. [CrossRef]
2. Anil, C.; Sree, R.P. PID control of integrating systems using Multiple Dominant Poleplacement method. Asia-Pac. J. Chem. Eng. 2015, 10, 734–742. [CrossRef]
3. Alvarez-Ramirez, J.; Alvarez, J.; Schaum, A. On the global stability of conventional PID control for a class of chemical reactors. Int. J. Robust Nonlinear Control 2011, 22, 575–590. [CrossRef]
4. Sivo, A.; Galaverna, R.D.S.; Gomes, G.R.; Pastre, J.C.; Vilé, G. From circular synthesis to material manufacturing: Advances, challenges, and future steps for using flow chemistry in novel application area. React. Chem. Eng. 2020. [CrossRef]
5. Tortoioli, S.; Friedli, A.; Prud’Homme, A.; Richard-Bildstein, S.; Kohler, P.; Abele, S.; Vilé, G. Development of an efficient and sustainable synthesis of 2-(3-methyl-1H-1,2,4-triazol-1-yl) acetic acid under continuous-flow conditions. Green Chem. 2020, 22, 3748–3758. [CrossRef]
6. Tutikov, V.V.; Voronin, A.I. Influence analysis of zeros of object transfer function on parametric sensitivity of the systems synthesized by using ADAR method. Vestn. Ivanov. Gos. Energeticheskogo Univ. 2012, 2, 48–51. (In Russian)
7. Tutikov, V.V.; Kotov, D.G.; Tararykin, S.V. Parametric roughness conditions of the ACS with state regulators. Izv. Trtu 2005, 1, 53–62. (In Russian)
8. Kolesnikov, A.A. Synergistic Theory of Control; Energoatomizdat: Moscow, Russia, 1994; 344p. (In Russian)
9. Kolesnikov, A.A.; Kuz’Menko, A.A. The ADAR Method and Theory of Optimal Control in the Problems of Synthesis of Nonlinear Control Systems. Mekhatronika Avtom. Upr. 2016, 17, 657–669. (In Russian) [CrossRef]
10. Tusun, S.; Erceg, I.; Mehmedović, M.; Sumina, D. Decentralized Synergetic Power System Stabilizer. Electr. Eng. 2017, 100, 311–320. [CrossRef]
11. Rastegar, S.; Araújo, R.; Sadati, J.; Mendes, J. A novel robust control scheme for LTV systems using output integral discrete-time synergetic control theory. *Eur. J. Control.* 2017, 34, 39–48. [CrossRef]

12. Humaidi, A.J.; Ibraheem, I.K.; Azar, A.T.; Sadiq, M.E. A New Adaptive Synergetic Control Design for Single Link Robot Arm Actuated by Pneumatic Muscles. *Entropy* 2020, 22, 723. [CrossRef] [PubMed]

13. Lu, S.; Tian, C.; Yan, P. Adaptive Extended State Observer-Based Synergetic Control for a Long-Stroke Compliant Microstage With Stress Stiffening. *IEEE/Asme Trans. Mechatron.* 2020, 25, 259–270. [CrossRef]

14. Labutin, A.N.; Nevintsyn, V.Y. Analytical synthesis of chemical reactor control system. *Theor. Found. Chem. Eng.* 2014, 48, 296–300. [CrossRef]

15. Labutin, A.N.; Nevintsyn, V.Y. Synthesis of Chemical Reactor Nonlinear Control Algorithm Using Synergetic Approach. *Izv. Vyssh. Uchebn. Zaved. Khimiya Khimicheskaia Tekhnol.* 2017, 60, 296–300. [CrossRef]

16. Labutin, A.N.; Nevintsyn, V.Y.; Zaytsev, V.A.; Volkova, G.V. Robust Concentration Control of Target Product in Chemical Reactor. *Izv. Vyssh. Uchebn. Zaved. Khimiya Khimicheskaia Tekhnol.* 2018, 61, 129–136. (In Russian) [CrossRef]

17. Labutin, A.N.; Nevintsyn, V.Y.; Volkova, G.V. Robust control of a chemical reactor temperature regime. *Inform. I Sist. Upr.* 2018, 3, 115–123. (In Russian) [CrossRef]

18. Nevintsyn, V.Y.; Labutin, A.N.; Volkova, G.V. Control of a chemical reactor temperature regime. *Avtom. I Modelirovanie V Proekt. I Upr.* 2018, 2, 41–48. (In Russian) [CrossRef]

19. Gorban, A.N.; Roose, D. (Eds.) *Coping with Complexity: Model. Reduction and Data Analysis*; Lecture Notes in Computational Science and Engineering; Springer: Berlin/Heidelberg, Germany, 2011; 356p, ISBN 978-3-642-14940-5. [CrossRef]

20. Rotach, V.Y. *Theory of Automatic Control*; Izdatel’stvo MEHI: Moscow, Russia, 2004; 400p. (In Russian)

21. Labutin, A.N.; Nevintsyn, V.Y.; Volkova, G.V. Analysis and optimal synthesis of the chemical reactor as a control object. *Khimicheskaya Promyshlennost* 2018, 95, 241–248. (In Russian)

22. Nevintsyn, V.Y.; Labutin, A.N.; Volkova, G.V.; Devetyarov, A.N. System analysis of chemical reactor as a control object. *Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.* 2017, 60, 92–99. (In Russian) [CrossRef]