Research on E-commerce Customer Evaluation System in the Context of Big Data: Taking Amazon as an Example

Xu Yuelin*, Xu Danyang, LiHui
1Department of Computational Mathematics and Cybernetics, Mathematics and Applied Mathematics, Shenzhen MSU-BIT University, Shenzhen, Guangdong, 518119
2Honours College, Capital Normal University, Beijing, 100048
3School of economics and management, Shenyang Aerospace University, Shenyang, Liaoning, 110000
*duoerxs@163.com

Abstract: Amazon provides the customers an opportunity to assess their purchases. Manufacturers use this data to acquire further insights into the marketing the timing of participation, and potentially successful product designs. The first step is to preprocess the raw data by detecting outliers and using cubic spline method to complete them and verify the correctness. Then, the data is analyzed in time order, followed by data quantification and visualization. The conclusion is that the comment does affect the star rating. Finally, as a consultant hired by Sunshine, put forward some suggestions to the company's marketing director: elaborating the establishment of relevant models, explaining the problems solved by the corresponding models, and summarizing the team's analysis and results.

1. Introduction
The Amazon Web Store provides customers with the opportunity to rate the stars of their purchases and submit reviews [1]. In addition, other customers can help evaluate existing evaluations before buying. Product manufacturers can also use these ratings and evaluations to gain a deeper understanding of the consumer market[2]. Now Sunshine Company wants to identify key models and parameters based on historical ratings and reviews provided by customers, so as to better launch its three products[3].

2. Models and Analyses

2.1. The establishment of RPCA model
Step1: Centralize the sample data;
Step2: Find the sample covariance matrix;
Step3: Eigenvalue decomposition of the sample covariance matrix, and mapping through the eigenvectors corresponding to the first k eigenvalues:
\[\partial'_i = \begin{bmatrix} \delta^1_i \\ \delta^2_i \\ \vdots \\ \delta^d_i \\ \end{bmatrix} \]

(1) Maximum variance derivation

Assuming that the original coordinates are \{v_1, v_2, \ldots, v_n\} and \{\partial_1, \partial_2, \ldots, \partial_n\} = \{v_1 - \mu, v_2 - \mu, \ldots, v_n - \mu\} after centralization, the inner product of the vector can be understood as the projection length of the first vector on the second vector, so the projection of \(\partial_i\) on \(\delta\) can be expressed as \((\partial_i, \delta) = \partial_i^T \delta\). According to the above, the function we need to optimize is to maximize the projection variance, which is

\[W(\partial) = \frac{1}{n} \sum_{i=1}^{n} (\partial_i^T \delta)^2 = \frac{1}{n} \sum_{i=1}^{n} (\partial_i^T \delta) (\partial_i^T \delta) \]

\[= \frac{1}{n} \sum_{i=1}^{n} \delta^T \partial_i \partial_i^T \delta \]

\[= \omega^T \left(\frac{1}{n} \sum_{i=1}^{n} \partial_i \partial_i^T \right) \delta \]

For this reason, we can get the maximum projection direction to be solved is the eigen matrix corresponding to the maximum eigenvalue of the covariance matrix.

\[\{\max \{\delta^T \sum \delta\} \} \]

s. t. \(\delta^T \delta = 1\)

(2) RPCA

RPCA is used to solve data with multiple influence factors. The basic assumption is that the data matrix contains structural information (the matrix is low rank) and influence factor matrix (the matrix is sparse), so RPCA hopes to decompose the original matrix into \(M = W + Q\) form:

\[\min_{\tilde{W}, \tilde{Q}} \text{rank}(\cdot) + \lambda \|Q\|_0 \quad \text{s. t.} \quad W + Q = M \]

(3)

The \(\text{rank}(\cdot)\) and \(L_0\) norms here are non-convex and non-smooth, so they need to be scaled down. That is, use the kernel norm instead of \(\text{rank}(\cdot)\) and \(L_1\) instead of \(L_0\):

\[\min_{\tilde{W}, \tilde{Q}} \|W\|_* + \lambda \|Q\|_1 \quad \text{s. t.} \quad W + Q = M \]

(4)

2.2. Data training

Taking the hair dryer data given in the title as an example, the RPCA model was trained by MATLAB to obtain training result data [4]. The training result data is imported into Excel for sorting. The sorted data is shown in Table1.

Star rating	Number	Effective rate	Vine	Verified purchase
Grade			Y	N
1	1025	77.38%	0	1025
2	637	76.55%	3	634
3	992	78.25%	20	972
4	2090	86.60%	51	2039
5	6673	88.83%	105	6568

Among them, Effective rate represents the ratio of the number of helpful votes to the number of total votes. In order to obtain the relationship between the data of each component in Table 1, the data is visualized, as shown in Figure1 and Figure2.
It can be seen from Figure 1 that the five-star rating accounts for the largest proportion and the two-star rating accounts for the smallest proportion. Can get most customers tending to choose products with high star rating [5]. It can be seen from Figure 2 that the Effective rate is the lowest among the two-star rated products, indicating that the evaluation of the product is the worst among most of the evaluations. Effective rate is the highest among the five-star rated products, indicating that the product's evaluation is the best in most reviews [6]. When Vine(N) and Verified purchase are the lowest, they are also in the two-star rating, and the highest is in the five-star rating. It shows that there is a certain quantitative relationship between the components, which together affect the star rating and star evaluation.

According to the above method, the data of the microwave oven and the pacifier are processed to obtain the following data tables and figures, respectively.

Table 2 Microwave processed data

Grade	Number	Star rating	Effective rate	Vine	Verified purchase
1	399	1	79.82%	0	399
2	110	2	69.66%	0	110
3	131	3	81.10%	2	129
4	296	4	82.15%	8	288
5	662	5	90.24%	9	653
Figure 3 Proportion of star rating

Figure 4 Relationship between component data and star rating

Table 3 Pacifier Processed data

Star rating Grade	Number	Effective rate	Vine Y	Vine N	Verified purchase Y	Verified purchase N
1	1169	59.49%	3	1166	887	282
2	933	66.15%	2	931	781	152
3	1416	63.34%	14	1402	1230	186
4	2692	77.43%	43	2649	2328	364
5	12554	79.45%	71	12483	10961	1593

Figure 5 Proportion of star rating
Figure 6 Relationship between component data and star rating

From the data and graphs compiled by the microwave oven and pacifier, it can be seen that the proportion of star ratings, the relationship between the data of each component and the star rating, and the results obtained by the hair dryer are similar [7]. From this, it can be concluded that the data of each component affect each other and together affect the star rating and star evaluation. From the data point of view, the impact of each component data on star ratings and star ratings is directly proportional.

3. Conclusion

Our team is proud to be a consultant to Sunshine Company. We built relevant models based on data analysis. These models facilitate the sales of your company's three products.

It is understood that the Amazon online mall provides customers with the opportunity to rate the "star rating" of purchased products and submit reviews. In addition, other customers can help evaluate existing evaluations before buying. Product manufacturers can also use these ratings and evaluations to gain a deeper understanding of the consumer market. First, we used mathematical evidence to analyze based on the data provided, and found out the main factors that affect ratings and reviews--Vine and Verified purchase, thereby establishing the RPCA model. Based on the collated data, pie charts and line charts are drawn, and the following relevant conclusions are drawn: the data of each component affect each other and jointly affect the star rating and star evaluation. From the data point of view, the impact of each component data on star ratings and star ratings is directly proportional.

For the existence of a large amount of text data, your company wants to obtain some information from ratings and reviews, which cannot be obtained by directly analyzing the data. Combining the sample data sorted out in question 1, our team established a dictionary word quantization relationship (QCR). Correlation evaluation between text sentences and error probability index were used for correlation evaluation.

The customer is God. In order for the customer to have a good buying experience, our team recommends a personalized method of emotional matching products. This method analyzes the opinions of different users, uses the principle of equal evaluation weight, and finally uses the SentiByTerm algorithm to calculate the customer's emotions on the product Inclination values to learn more about what customers think.

References

[1] Lu Hongwei, Wang Shitong. Prediction method of high-dimensional data subspace clustering based on RPCA [J]. Computer Engineering and Science (3).
[2] Zhong Maosheng. Chinese text segmentation method based on dictionary word quantization relation [J]. CEA, 2008, 44 (21): 25-29.
[3] Hu Yi, Lu Ruzhan, Chen Yuquan, et al. Research on Chinese Text Clustering Based on Quantified Relations of Words in Dictionaries [J]. High Technology Letters, 17 (8): 778-782.

[4] Liang Yan, Xia Letian. Application of ARMA Model of Time Series [J]. Journal of Chongqing University of Technology (Natural Science), 2012, 26 (8): 106-109.

[5] Li Yanshuang, Zeng Zhenxiang. Application of Principal Component Analysis to Multi-index Comprehensive Evaluation Method [J]. Journal of Hebei University of Technology, 1999 (1): 94-97.

[6] Li Xiaosheng, Chen Zhenzhen. How to Apply SPSS Software for Principal Component Analysis [J]. Statistical Research, 2010, 27(8): 105-108.

[7] Hou Yinxiu, Li Weiqing, Wang Weijun, et al. Research on personalized recommendation of books based on user preference and emotional matching of product attributes [J]. Modern Library and Information Technology, 2017, 1(8): 9-17.