Lab resource

Metagenome analysis of the root endophytic microbial community of Indian rice (O. sativa L.)

Subhadipa Sengupta a,⁎, Sayak Ganguli b, Pankaj K Singh c,1

a Department of Botany, Bidhannagar College, EB-2, Sector-1, Salt Lake, Kolkata 700064, India
b Theoretical and Computational Biology Division, AIIST, Palta 743122, India
c Computational Biology Division, The Biome, Kolkata 700064, India

A B S T R A C T

This study reports the root endophytic microbial community profile in rice (Oryza sativa L.), the largest food crop of Asia, using 16S rRNA gene amplicon sequencing. Metagenome of OS01 and OS04 consisted of 11,17,900 sequences with 300 Mbp size and average 55.6% G + C content. Data of this study are available at NCBI Bioproject (PRJNA360379). The taxonomic analysis of 843 OTU's showed that the sequences belonged to four major phyla revealing dominance of Proteobacteria, Firmicutes, Cyanobacteria and Actinobacteria. Results reveal the dominance of Bacillus as major endophytic genera in rice roots, probably playing a key role in Nitrogen fixation.

© 2017 Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords:
Endophytic microbial community
Food crop
Metagenome
OTU
Rice

Resource table

Name of resource	Metagenome of rice root endophytic community
Institution	aBidhannagar College
bAIIST, PALTA - 743122	
"The Biome, Kolkata - 700064"	
Person who created resource	Subhadipa Sengupta a, Sayak Ganguli b and Pankaj K Singh b
Contact person and email	bansubha@gmail.com
Date archived/stock date	31/08/2016
Type of resource	Raw sequence reads of rice root endophytic metagenome
Link to directly related literature that employed/validated this resource	https://www.ncbi.nlm.nih.gov/sra/SRX2524586
https://www.ncbi.nlm.nih.gov/sra/SRX2527833	
Information in public databases	https://www.ncbi.nlm.nih.gov/sra?linkname=bioproject_sra_all&from_uid=360379

1. Resource details

As rice yield is enormously affected by large number of pathogenic organisms, nematodes, fungi, insects and virus hence, understanding and exploitation of the root endophytic community for this high demand Asian crop can result in the promotion of crop health. This could be an alternative approach towards eco-friendly potential natural source for biological control in disease management [1]. Advances in high-throughput environmental genomic DNA sequencing or metagenomic sequencing as well as various analytical tools and data resources has enabled us to understand the vast diversity of microorganisms, specially rare and uncultured microorganism and their phylogeny in community analysis. It also gives us insight into the enormous amount of functional gene diversity of a microenvironment [2]. The low cost of this technology and easy generation of draft genomes from complex dataset has made metagenomics study a much popular technique bypassing the need for isolation and lab cultivation of individual microorganism.

In this study, we thoroughly investigated the root endophytic microbial community present in the local cultivar of rice (Oryza sativa L.) at different field condition of West Bengal. The rice plants were selected at 60 days stage and were dug out from some selected wet land local rice fields which produces the bulk of the requirement of the population of Kolkata. Average temp of the area was 86 °F and soil pH ranges from pH 7.2 to pH 8.1.

Among 10 collected samples, two samples OS01 and OS04 were randomly selected for metagenomic sequencing. The total number of reads obtained for sample OS01 was 5,66,012 and that for sample OS04 was 5,51,888 (Fig. 1). In both the samples, the community study revealed an abundance of over 50% for the members of Firmicutes. In sample OS01 the percentage was found to be 58.4% while in sample OS04 it was 97%. At the genus level Bacillus was the most dominant microbial

http://dx.doi.org/10.1016/j.gdata.2017.02.010
2213-5960/© 2017 Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
member with abundance of over 50% in both the samples. In sample OS01 gammaproteobacteria had a high abundance of 34.9% but in sample OS04 the percentage was as low as 0.2% as evidenced in the heat map prepared with OTU abundance of 200 or more (Fig. 2).

2. Materials and methods

Samples were collected directly from field in and around Kolkata in triplicates and were stored in sterile plastic bags. Root samples were thoroughly washed in tap water, several times. Surface sterilization of the root tips were then performed with 70% ethanol for 1 min followed by 1.2% (w/v) NaOCl solution for 15 min. Samples were then washed three times with sterile distilled water with shaking (10 min). Root samples were finally dried and stored at −20 °C. The DNA of each sample was isolated according to the protocol reported by Bonet et al. 2012 [3].The DNA was quantified using QubitsDNA HS Assay kit (Life Tech).

1 μl of each sample was used for determining concentration using Qubit®2.0 Fluorometer. The amplicon libraries were prepared using Nextera XT Index Kit (Illumina) as per the 16S Metagenomic Sequencing Library preparation protocol (Part # 15044223 Rev. B).

2.1. Verification and authentication

Our study revealed that in both the samples, the dominant member of rice root microbiome is Bacillus and this data is well supported by other literatures [4,5].QIIME analysis indicated that Shannon α-Diversity = 3.10 and no. of observed species = 420 and the Shannon α-Diversity = 2.40 and no. of observed species = 297 for Sample OS01 and for sample OS04 respectively. At phylum level, both the samples are enriched with Firmicutes followed by Proteobacteria, Bacilli, whereas Gammaproteobacteria were the most abundant at class level in both the samples. At genus level, Bacillus and Acinetobacter were found to be the most abundant genus enriched in both the root samples. Moreover, our findings were also consistent with the reports of Ji et al. 2014 [6] where three major diazotrophic endophytic communities were identified as Actinobacteria, Gammaproteobacteria and Bacillus.

Although, the functional annotations of the endophytic bacterial community of our samples are still pending, however, the dominant groups suggests their probable role of atmospheric N2 fixation, a primary requisite for plant growth particularly in rice.
2.2. Nucleotide sequence accession numbers

Metagenome sequence data from this study are available at the NCBI Sequence Read Archive (SRA) and Biosamples under accession numbers: SAMN06209694 and SAMN06209718.

Funding

The work was supported by the grants given to Subhadipa Sengupta (Grant No. PSW-039/14-15 ERO) by the University Grants Commission (UGC), New Delhi, India.

Acknowledgement

The authors hereby acknowledge the Department of Botany, Bidhannagar College for providing the required space for conducting the work and Xcelris Labs Limited, Ahmedabad for conducting the sequencing.

References

[1] T.R. Turner, E.K. James, P.S. Poole, The plant microbiome. Genome Biol. 14 (2013) 209.
[2] P. Wilmes, P.L. Bond, Metaproteomics: studying functional gene expression in microbial ecosystems. Trends Microbiol. 14 (2) (2006) 92–97.
[3] N. Garcias-Bonet, J.M. Arrieta, C.N. de Santana, C.M. Duarte, N. Marba, Endophytic bacterial community of a Mediterranean marine angiosperm (Posidonia oceanica). Front. Microbiol. 3 (2012) 342, http://dx.doi.org/10.3389/fmicb.2012.00342.
[4] E.J. Chung, M.T. Hossain, A. Khan, K.H. Kim, C.O. Jeon, Y.R. Chung, Bacillus oryzicola sp. nov., an endophytic bacterium isolated from the roots of rice with antimicrobial, plant growth promoting, and systemic resistance inducing activities in rice. Plant Pathol. J. 31 (2) (2015) 152–164, http://dx.doi.org/10.5423/PPJ.OA.12.2014.0136.
[5] L. Zhao, Y. Xu, R. Sun, Z. Deng, W. Yang, G. Wei, Identification and characterization of the endophytic plant growth promoter Bacillus Cereus strain mq23 isolated from Sophora Alopecuroides root nodules. Braz. J. Microbiol. 42 (2) (2011) 567–575, http://dx.doi.org/10.1590/S1517-83822011000200022.
[6] S.H. Ji, M.A. Gururani, S. Chun, Isolation and characterization of plant growth promoting endophytic diazotrophic bacteria from Korean rice cultivars. Microbiol. Res. 169 (2014) 83–98, http://dx.doi.org/10.1016/j.micres.2013.06.003.