Thermalization time and specific heat of neutron stars crust

M. FORTIN
CAMK, Warsaw & LUTH, Meudon

M. F, F. Grill, J. Margueron, D. Page, N. Sandulescu,
arXiv/nucl-th/0910.5488

MODE-SNR-PWN 2010
Study of the cooling of a neutron star (NS) with fast cooling. Cooling time essentially determined by the properties of the inner-crust ie. :

- the thickness,
- the properties of the baryonic matter.

Composition of the inner-crust :

- ultrarelativistic electrons,
- unbound neutrons that can be superfluid,
- nuclear clusters, whose influence on the superfluid properties has to be taken into account.
Solve the relativistic heat equation in the whole NS using NSCool\(^1\) (D. Page),

- with a model of NS that is almost completely consistent (SLy4 nuclear interaction),
- using new calculations for the specific heat of unbound neutrons in the inner-crust.
- estimation of the cooling time.

\(^1\)available on http://www.astroscu.unam.mx/neutrones/NSCool/
Thermalization time and specific heat of neutron stars crust

M. FORTIN CAMK, Warsaw & LUTh, Meudon

1S_0 neutron pairing

HFB-FT calculations

- Mean field : Skyrme force SLy4 (Chabanat et al. 1997),
- Nuclear clusters : WS cells from Negele & Vautherin (1973),
- Pairing correlations :

\[
V(r - r') = V_0 \left[1 - \eta \left(\frac{\rho(r)}{\rho_0} \right)^\alpha \right] \delta(r - r'),
\]

with V_0, η and α simulating two pairing scenarios :
1S_0 neutron pairing

Introduction

- 1S_0 neutron specific heat calculations
- Cooling model
- Neutron star model
- Heat equation
- Cooling
- Crust thermalization
- Scaling relations
- Conclusion

Thermalization time and specific heat of neutron stars crust

M. FORTIN CAMK, Warsaw & LUTH, Meudon

Weak pairing

![Graph showing the weak pairing for different cells with temperature (T) vs specific heat (C_v) for various temperatures.]

Strong pairing

![Graph showing the strong pairing for different cells with temperature (T) vs specific heat (C_v) for various temperatures.]

- Weak pairing graphs for cells 1 to 5 and cells 6 to 10.
- Strong pairing graphs for cells 1 to 5 and cells 6 to 10.
Neutron star model

Equation of state (EoS):

- Core: Douchin & Haensel (2001)
 - based on the SLy4 effective nuclear interaction (the same as in the C_V calculations),
 - $npe\mu\mu$ composition.
- Inner-crust: Negele & Vautherin (1973)
 - $4 \times 10^{11} \leq \rho \leq 1.6 \times 10^{14} \text{ g cm}^{-3}$
 - density functional,
 - Hartree-Fock calculations.
- Outer-crust: Haensel, Zdunik & Dobaczewski (1989)
 - Skyrme effective nucleon-nucleon interaction (Dobaczewski, Flocard & Treiner, 1984),
 - Hartree-Fock-Bogoliubov (HFB) calculations.
- Effective mass: Skyrme nuclear interaction.
Thermalization time and specific heat of neutron stars crust

M. FORTIN
CAMK, Warsaw & LUTH, Meudon

Introduction

Heat equation (Thorne, 1977)

\[
\frac{\partial}{\partial r} \left(\frac{Kr^2}{\Gamma(r)} e^\phi \frac{\partial}{\partial r} (Te^\phi) \right) = r^2 \Gamma(r) e^\phi \left(C_V \frac{\partial T}{\partial t} + e^\phi Q_\nu \right),
\]

- $\Gamma = \left(1 - \frac{2Gm(r)}{rc^2} \right)^{-1/2}$, ϕ the gravitational potential,
- K the thermal conductivity,
- Q_ν the neutrino emissivity,
- C_V the specific heat.

Boundary conditions:

- $T(r, t = 0) = T_i$
- $\rho = 10^{10}$ g cm$^{-3}$, model of non-accreted envelope (Potekhin et al. 1997).
Thermalization time and specific heat of neutron stars crust

M. FORTIN CAMK, Warsaw & LUTh, Meudon

Introduction
1 S_0 neutron specific heat calculations

Cooling model
Neutron star model
Heat equation

Cooling
Crust thermalization
Scaling relations

Conclusion

Thermal conductivity

Core :
- electrons & muons (Shternin & Yakovlev, 2007)
- nucleons (Baiko et al. 2001)

Crust :
- electron-ion (Gnedin et al. 2001)
- electron-electron (Shternin & Yakovlev, 2006)
Neutrino emissivity (1)

Core:

- bremsstrahlung processes,
- MURCA,
- DURCA imposed for $\rho \geq 5 \times 10^{14}$ g cm$^{-3}$ → fast cooling.

Cooling model

- Neutrino emissivity (1)
- Core:
 - bremsstrahlung processes,
 - MURCA,
 - DURCA imposed for $\rho \geq 5 \times 10^{14}$ g cm$^{-3}$ → fast cooling.
Neutrino emissivity (2)

Thermalization time and specific heat of neutron stars crust

M. FORTIN CAMK, Warsaw & LUTh, Meudon

Introduction

S_0 neutron specific heat calculations

Cooling model

Neutron star model

Heat equation

Cooling

Crust thermalization

Scaling relations

Conclusion

Crust:
- plasmon decay,
- $e^- - e^-$, $e^- - Z$ & n-n bremsstrahlung.

Superfluidity:
- reduction of the emissivities,
- Cooper pair breaking and formation processes (PBF).

Cooling model

$T = 10^9$ K

$\log_{10} (Q, \text{[erg s}^{-1}\text{cm}^{-3}])$

$\log_{10} (\rho, \text{[g cm}^{-3}])$

$T = 10^9$ K

Plasmon
e$^- - e^-$ brems
e$^- - Z$ brems
n-n brems
PBF n 1S_0 weak
PBF n 1S_0 strong
PBF p 3S_0
Specific heat (1)

Electrons:
- \(C_V \) of a uniform, degenerate gas.

Ions in the crust:
- solid-liquid phase transition included,

Protons in the core:
- \(^1S_0\) pairing from Takatsuka (1973),
Specific heat (2)

Unbound neutrons:

- In the core:
 - 3P_2 pairing: model "a" from Page et al. 2004 with $T_c^{\text{max}} \sim 10^9$ K,

- In the inner-crust:
 - 1S_0 pairing: fits of the previous calculations.

![Graph showing specific heat vs. density and temperature](image)

- **Ions**
- **Electrons**
- **Protons**
- **Non-superfluid neutrons**
- **Weakly paired neutrons**
- **Strongly paired neutrons**

T = 10^9 K

- $\log_{10}(C_V [\text{erg cm}^{-3}\text{K}^{-1}])$
- $\log_{10}(\rho [\text{g cm}^{-3}])$
Thermalization time and specific heat of neutron stars crust

M. FORTIN CAMK, Warsaw & LUTh, Meudon

Introduction

1 S_0 neutron specific heat calculations

Cooling model

Neutron star model

Heat equation

Cooling

Crust thermalization

Scaling relations

Conclusion

M = 1.6 M_☉ & T_i = 5 \times 10^9 K

No pairing

Weak pairing

Strong pairing

\[t(\text{yr}) = 10^{-1}, 10^{-2}, 10^{-3}, 10^{-4}, 10^{-5} \]

\[t(\text{yr}) = 1, 5, 10, 15, 20 \]

\[r \text{ [km]} = 10.5, 10.8, 11.1, 11.4 \]
Crust thermalization

Cooling curves & pairing scenarios - $M=1.6\, M_\odot$

Cooling time t_w : $T_\infty(t = t_w)$ has its most negative slope.
Introduction

1\textsuperscript{S\textsubscript{0}} neutron specific heat calculations

Cooling model

Neutron star model

Heat equation

Cooling

Crust thermalization

Scaling relations

Conclusion

M. FORTIN CAMK, Warsaw & LUTH, Meudon

Thermalization time and specific heat of neutron stars crust

M \in [1.4, 2.0] \, M_{\odot} \, \& \, T_i = 5 \times 10^{9} \, K

\begin{align*}
\log (t_w [\text{years}]) & \quad \log (\alpha) \\
\begin{array}{c}
\text{Normal Neutrons} \\
\text{Strong Pairing} \\
\text{Weak Pairing}
\end{array}
\end{align*}

Lattimer et al. 1994, Gnedin et al. 2001

Scaling parameter: \(\alpha = \left(\frac{\Delta R_{\text{crust}}}{1 \, \text{km}} \right)^2 \left(1 - \frac{2GM}{c^2R} \right)^{-3/2} \)
Conclusion (1)

New calculations of the specific heat of neutrons in the crust:
- HFB at finite temperature;
- inclusion of the effects of:
 - the temperature,
 - the nuclear clusters,
 - the pairing correlations.

Study the thermalization of NS crusts in the fast cooling scenario for an almost completely consistent model (SLy4).
Results

- The pairing correlations have a strong influence on cooling.
- The cluster structure of the inner-crust has a non-trivial influence.

Perspective

- Performing cooling calculations in WS cells calculated for the SLy4 force.
Thermalization time and specific heat of neutron stars crust

M. FORTIN
CAMK, Warsaw & LUTh, Meudon

Introduction

1S_0 neutron specific heat calculations

Cooling model
Neutron star model
Heat equation

Cooling
Crust thermalization
Scaling relations

Conclusion
Thermalization time and specific heat of neutron stars crust

M. FORTIN
CAMK, Warsaw &
LUTh, Meudon

Introduction

S_0 neutron specific heat calculations

Cooling model

Neutron star model

Heat equation

Cooling

Crust thermalization

Scaling relations

Conclusion

Thermalization time and specific heat of neutron stars crust

Cooling curves & pairing scenarios - $M=1.6 \, M_\odot$

$T_i = 5 \times 10^9 \, K$

- no pairing
- weak pairing
- strong pairing
- weak pairing (NC)
- strong pairing (NC)

$\log_{10}(T^{\text{eff}}_\infty) [\text{K}]$

Time [years]

0 10 20 30 40 50 60 70 80 90 100
Crust thermalization

Cooling curves & pairing scenarios - M=1.6 M⊙

- no pairing
- weak pairing
- strong pairing
- weak pairing (NC)
- strong pairing (NC)

Introduction

- 1S\textsubscript{0} neutron specific heat calculations
- Cooling model
- Neutron star model
- Heat equation

Conclusion
Thermalization time and specific heat of neutron stars crust

M. FORTIN
CAMK, Warsaw & LUTh, Meudon

Introduction

\[C^n_V = (1 - x_{cl})C^{cl}_V + x_{cl}RC^q_V \]

with:

- \(C^{cl}_V \) the specific of non-superfluid unbound neutrons in the classical regime,
- \(C^q_V \) the specific of non-superfluid unbound neutrons in the quantum regime,
- \(x_{cl} \) the factor describing the transition between classic and quantum behavior,
- \(R \) the factor simulating the reduction due to pairing correlations.

1S_0 neutron pairing
$^{1}S_0$ neutron pairing

Parametrization of C^n_V

$$C^n_V = x_{cl} R C^q_V + (1 - x_{cl}) C^{cl}_V$$

with:

- the factor describing the transition between classic and quantum behavior,
 $$x_{cl} = \left(1 + e^{5(\frac{\pi T}{\varepsilon_F} - 1)}\right)^{-1}$$

- with $\varepsilon_F = \hbar^2 k_F^2 / 2m^*_n$ the Fermi energy at zero T.

For normal, unbound neutrons:

$$C^q_V = \frac{1}{6} \left(\frac{2m^*_n}{\hbar^2}\right)^{3/2} \varepsilon_F^{1/2} T \times \left[1 - \frac{7}{40} \left(\frac{\pi T}{\varepsilon_F}\right)^2 - \frac{155}{896} \left(\frac{\pi T}{\varepsilon_F}\right)^4\right].$$
Parametrization of C^n_V

\[
C^n_V = x_{cl} R C^q_V + (1 - x_{cl}) C^{cl}_V
\]

with:

- **For classic neutrons:**
 \[
 C^{cl}_V = \frac{3}{2} \rho_{gas},
 \]

 with, for $T < T_{gas} = 5.5$ MeV,
 \[
 \rho_{gas} = \rho_n(T = 0) + \frac{T}{T_{gas}} (\rho_{max} - \rho_n(T = 0)),
 \]

 for $T > T_{gas} = 5.5$ MeV,
 \[
 \rho_{gas} = \rho_{max}.
 \]

- with ρ_{max} for neutrons uniformly distributed in the cell.
1S_0 neutron pairing

Parametrization of C^n_V

$$C^n_V = x_{cl} R C^q_V + (1 - x_{cl}) C^{cl}_V$$

with the factor simulating the reduction due to pairing correlations:

$$R = R_{YL}(u) f_1(T, \Delta_o, a_0, a_1, a_3) (1 - f_2(T, \Delta_o, a_0, a_2, a_3)),$$

where

- $R_{YL}(u)$ is the superfluid reduction factor for uniform neutron matter (Levenfish et al., 1994),
- f_1 & f_2 are two functions describing the normal/superfluid transition, depending on:
 - Δ_o the pairing energy gap in the neutron gas at $T=0$,
 - a_0, a_1, a_2, a_3 four parameters fitted to reproduce the results of the HFB calculations.
Scaling relations

\[t_w = \alpha t_1 \text{ with } \alpha = \left(\frac{\Delta R_{\text{crust}}}{1 \text{ km}} \right)^2 \left(1 - \frac{2GM}{c^2R} \right)^{-3/2} \]

\[M = 1.5M_\odot \text{ & } T_i = 5 \times 10^9 \text{ K} \]

Model of neutron superfluidity	\(t_w \)	\(t_1 \)
No superfluidity	76.3	66.4
Weak pairing	43.1	37.4
Strong pairing	24.7	21.5