INDEX THEORY AND TOPOLOGICAL PHASES OF APERIODIC LATTICES

C. BOURNE AND B. MESLAND

Abstract. We examine the noncommutative index theory associated to the dynamics of a Delone set and the corresponding transversal groupoid. Our main motivation comes from the application to topological phases of aperiodic lattices and materials, and covers invariants from tilings as well. Our discussion concerns semifinite index pairings, factorisation properties of Kasparov modules and the construction of unbounded Fredholm modules for lattices with finite local complexity.

Contents

Introduction 2
Outline 3
1. Preliminaries on groupoids and Kasparov theory 4
1.1. Kasparov modules and semifinite spectral triples 4
1.2. Étale groupoids, twisted algebras and C^*-modules 5
1.3. The C^*-module of a groupoid and the reduced twisted C^*-algebra 6
1.4. Morita equivalence of twisted groupoid C^*-algebras 7
1.5. Exact cocycles and unbounded KK-cycles 9
2. Delone sets and the transversal groupoid 11
2.1. The transversal groupoid 12
2.2. The twisted groupoid algebra and its K-theory 15
2.3. One dimensional Delone sets as Cuntz–Pimsner algebras 17
3. Factorisation and the bulk-boundary correspondence 20
3.1. The edge groupoid and the bulk-boundary extension 20
3.2. Factorisation 23
3.3. KK-cycles with higher codimension 24
4. Spectral triple constructions 26
4.1. The evaluation spectral triple 26
4.2. Invariant measures and the semifinite spectral triple 27
5. Unbounded Fredholm modules for lattices with finite local complexity 30
5.1. The Pearson–Bellissard spectral triple 30
5.2. The product operator 32
5.3. The bounded transform as a Fredholm module 34
6. Index pairings and topological phases 40
6.1. Complex pairings 40
6.2. Real pairings and analytic indices 41
6.3. Pairings for lattices with finite local complexity 43
6.4. The bulk-boundary correspondence 44
6.5. Examples from materials science and meta-materials 45
References 45

Date: August 1, 2018.
INTRODUCTION

Models of systems in solid state physics that do not make reference to a Bloch decomposition or Fourier transform are essential if one wishes to understand topological phases of disordered or aperiodic systems. A description of disordered media using crossed product C^*-algebras has successfully adapted many important properties of periodic topological insulators to the disordered setting, see [11, 71, 38] for example.

Recently, newer proposed models of topological materials and meta-materials have emerged whose underlying lattice has a quasicrystalline [7] or amorphous configuration [63]. Because there is no canonical labelling of points in amorphous configurations, a crossed product model of the system cannot describe tight-binding Hamiltonians acting on the amorphous lattice. Similarly, if the material under consideration is quasicrystalline, a crossed product description requires an additional step that may not be physical [79].

In such aperiodic lattice models, we can instead use a description of aperiodic media via the transversal (étale) groupoid associated to a Delone set developed in [8, 43, 44, 12]. Index theory and K-theoretic results of this lattice can then be probed using the C^*-algebra of this groupoid. In previous work, this groupoid description was used to describe bulk topological phases [18]. In this paper, we show that a (gapped) Hamiltonian acting on a Delone set $\mathcal{L} \subset \mathbb{R}^d$ is enough to consider strong and weak topological phases as well as the bulk-edge correspondence of Hamiltonians acting on the lattice $\ell^2(\mathcal{L})$. Furthermore, if the unit space Ω_0 of the transversal groupoid \mathcal{G} has an invariant measure, then Chern number formulas can also be considered for complex topological phases.

Because of the generality of Delone sets, they are able to model materials that go beyond what is normally considered when discussing topological phases of matter. These include quasicrystal structures but also other materials such as glasses and some liquids, see [9] for example. This tells us, at least from a mathematical perspective, that the techniques developed may potentially be used to consider larger classes of topological materials and meta-materials.

In the present paper, our central object of study is an unbounded KK-cycle for the transversal groupoid C^*-algebra which gives rise to a class in $KK^d(C^*_r(\mathcal{G}, \sigma), C(\Omega_0))$ (real or complex) with d the dimension of the underlying space, σ a magnetic twisting and Ω_0 the transversal space. When this KK-cycle is coupled with the K-theoretic phase of a gapped free-fermionic Hamiltonian (which gives a class in $K_n(C^*_r(\mathcal{G}, \sigma)))$, the corresponding index pairing gives analytic indices that encode the strong topological phase. When the transversal Ω_0 has an invariant probability measure, we can construct a semifinite spectral triple and measure this (disorder-averaged) pairing using the semifinite local index formula (considered for ergodic measures in [18]).

The factorisation properties of the unbounded KK-cycle also allow us to express the index pairing as a pairing over a closed subgroupoid Υ that encodes the dynamics of the transversal in $(d-1)$-dimensions and models an edge system. Namely, we can link these systems explicitly via a short exact sequence

$$0 \to C^*_r(\Upsilon, \sigma) \otimes K \to \mathcal{T} \to C^*_r(\mathcal{G}, \sigma) \to 0$$

with \mathcal{T} modelling a half-space system. When the lattices we consider have a canonical \mathbb{Z}^d-labelling, then this short exact sequence is the usual Toeplitz extension of a crossed product considered in [71]. Our result, analogous to the crossed-product case, [71, 17], is that our d-dimensional pairing with $C^*_r(\mathcal{G}, \sigma)$ is (up to a possible sign) the same as the $(d-1)$-dimensional pairing with $C^*_r(\Upsilon, \sigma)$.

For aperiodic lattices with finitely many pattern configurations (e.g. those that come from quasicrystals or aperiodic tilings), the transversal Ω_0 is totally disconnected. In this case a general construction due to Pearson and Bellissard [69] gives a family of spectral triples on $C(\Omega_0)$. Coupling the unbounded KK-cycle for $(C^*_r(\mathcal{G}), C(\Omega_0))$ to such a spectral triple for $C(\Omega_0)$ using the unbounded Kasparov product, gives us K-homology representatives for $C^*_r(\mathcal{G})$. The construction of the product operator employs the techniques developed in [61], but the
commutators with $C^*_r(G)$ turn out to be unbounded. Nonetheless, using arguments similar to [33] and recent results in [58], we are able to show that the operator represents the Kasparov product of the given classes via the bounded transform. The analytic difficulties with the commutators can directly attributed to the disorder, that is, the nonperiodicity of the Delone set.

Let us remark that the unbounded Fredholm module constructed from quasicrystalline lattice configurations allows us to consider new topological phases that cannot be defined in periodic systems or disordered systems with a contractible disorder space of configurations. Indeed, the totally disconnected structure of the transversal Ω_0 is a crucial ingredient in defining these new phases.

Some of our results show parallels with those of Kubota and of Ewert–Meyer, who study topological phases associated to Delone sets and the corresponding Roe algebra [28, 50]. Briefly, the Roe algebra, by its universal nature, provides a means to compare topological phases from different lattice configurations (see [50, Lemma 2.19]). Conversely, the transversal groupoid algebra is used to determine the topological phase of Hamiltonians associated to a fixed lattice configuration. Because the groupoid algebra is separable (while the Roe algebra is not), it is more susceptible to the use of KK-theoretic machinery, which is a central theme of this paper. In particular, it is generally easier to both define and compute the pairings with KK-cycles or cyclic cocycles that characterise the numerical phase labels; see [18, Section 3] for numerical simulations.

As previously mentioned, if we are given a Delone set with finite local complexity and transversal Ω_0, there is a closed subset $Z \subset \Omega_0$ such that, at the level of operator algebras, there is often a passage from $C^*_r(G)$ to the crossed product $C(Z) \rtimes \mathbb{Z}^d$ [79]. We will still predominantly work with the groupoid picture as many of our results do not require finite local complexity and we would like to remain as close to the initial setup as possible. Furthermore, from a KK- and index-theoretic perspective, there are no essential technical differences between working with the groupoid as opposed to a \mathbb{Z}^d-action.

Lastly, the groupoid of a transversal is typically used to study the dynamics of aperiodic tilings and related dynamical systems. We have not emphasised this application here, though our constructions and results may have broader interest.

Outline. Because our paper draws from aspects of dynamical systems, operator algebras, Kasparov theory and physics, we aim to give a systematic and largely self-contained exposition of our results.

We first give a brief overview of the mathematical tools we require in Section 1, which include Kasparov theory, semifinite index theory and C^*-algebras of étale groupoids twisted by a 2-cocycle. We consider C^*-modules constructed from étale groupoids and review how groupoid equivalences can be naturally expressed in terms of C^*-modules. In particular, we consider groupoids with a normalised 2-cocycle, where groupoid equivalence for compatible twists gives rise to a Morita equivalence of the twisted groupoid C^*-algebras. We also provide a higher dimensional extension of the result in [60], where if one has a continuous 1-cocycle $c : G \to \mathbb{R}^n$ that is exact in the sense of [60], then this cocycle gives rise to a Dirac-like operator and unbounded Kasparov module over the twisted C^*-algebra of G relative to that of a closed subgroupoid $H = \text{Ker}(c)$.

In Section 2, we review the construction of the transversal groupoid following [8, 43, 12, 46] and show how it fits into our general KK-theoretic framework. In the case of dimension 1, we give an alternative description of the groupoid C^*-algebra and unbounded KK-cycle using Cuntz–Pimsner algebras and results from [75, 74].

In Section 3 we show how the unbounded KK-cycle we build factorises into the product of an ‘edge’ KK-cycle modelling a system of codimension 1 with a linking KK-cycle that relates the two systems. This can also be extended to higher codimension and is related to weak topological insulators.
We then consider spectral triple constructions in Sections 4 and 5. We construct spectral triples using the evaluation map of the transversal, an invariant measure (which gives a semifinite spectral triple) and the product with a Pearson–Bellissard spectral triple. The latter construction yields an unbounded Fredholm module with mildly unbounded commutators as in [33], so that the bounded transform represents the Kasparov product.

Lastly, we apply our results to topological phases in Section 6, where the physical invariants of interest naturally arise as index pairings of classes in $K_n(C^*_r(G,\sigma))$ with our unbounded KK-cycles (or spectral triples). Here we consider Chern number formulas for complex phases, analytic indices for systems with anti-linear symmetries, the bulk-boundary correspondence and weak topological phases. Much like the crossed product setting, our bulk indices are also well-defined for a much larger algebra that can be constructed using noncommutative L^p-spaces. Though unlike the case of \mathbb{Z}^d-lattices, we do not currently have an explicit connection to our ‘Sobolev algebra’ with regions of dynamical localisation.

Acknowledgements. We thank Jean Bellissard, Magnus Goffeng, Johannes Kellendonk and Makoto Yamashita for helpful discussions. CB was supported by a postdoctoral fellowship from The Japan Society for the Promotion of Science (No. P16728) and both authors were supported by a KAKENHI Grant-in-Aid for JSPS fellows (No. 16F16728). This work is also supported by World Premier International Research Center Initiative (WPI), MEXT, Japan. BM gratefully acknowledges support from the Hausdorff Center for Mathematics in Bonn, Germany and thanks Tohoku University, Sendai, Japan for its hospitality.

Part of this work was carried out during the Lorentz Center program KK-theory, Gauge Theory and Topological Phases held in Leiden, Netherlands in March 2017. We also thank the Leibniz Universität Hannover, Germany and the Radboud University Nijmegen, Netherlands for hospitality during the initial stages of this work.

1. Preliminaries on groupoids and Kasparov theory

1.1. Kasparov modules and semifinite spectral triples. In this section we establish basic results and notation that we will need for this paper. Because we are motivated by topological phases whose relation to real K-theory is now well-established [31, 36, 45], we will work in both real and complex vector spaces and algebras.

Given a real or complex right-B C^*-module E_B, we denote the right action by $e \cdot b$ and B-valued inner product $(\cdot \mid \cdot)_B$. The set of adjointable endomorphisms on E_B with respect to this inner product is denoted $\text{End}^*(E_B)$. The rank-1 operators $\Theta_{e,f}, e, f \in E_B$, are defined such that

$$\Theta_{e,f}(g) = e \cdot (f \mid g)_B, \quad e, f, g \in E_B.$$

The norm-closure of the algebraic span of such rank-1 operators are the compact operators on E_B and denoted $K(E_B)$. We will often work with \mathbb{Z}_2-graded algebras and spaces and denote by \otimes the graded tensor product (see [40, Section 2] and [15, Section 14]). A densely defined closed symmetric operator $D : \text{Dom} D \to E_B$ is regular if the operators $D \pm i : \text{Dom} D \to E_B$ have dense range. See [56, Chapter 9] for the basic theory of unbounded operators on C^*-modules.

Definition 1.1. Let A and B be \mathbb{Z}_2-graded real (resp. complex) C^*-algebras. A real (resp. complex) unbounded Kasparov module $(A,\pi E_B, D)$ (also called an unbounded KK-cycle) for (A, B) consists of

1. a \mathbb{Z}_2-graded real (resp. complex) C^*-module E_B,
2. a graded $*$-homomorphism $\pi : A \to \text{End}^*(E_B)$,
3. an unbounded self-adjoint, regular and odd operator D and a dense $*$-subalgebra $A \subset A$ such that for all $a \in A \subset A$,

$$[D, \pi(a)]_\pm \in \text{End}^*(E_B), \quad \pi(a)(1 + D^2)^{-1} \in K(E_B).$$

For complex algebras and spaces, one can also remove the gradings, in which case the Kasparov module is called odd (otherwise even).
We will often omit the representation π when the left-action is unambiguous. Unbounded Kasparov modules represent classes in the KK-group $KK(A,B)$ or $KKO(A,B)$ [6]. We note that an unbounded A-\mathbb{C} or A-\mathbb{R} Kasparov module is precisely the definition of a complex or real spectral triple.

Another noncommutative extension of index theory and closely related to unbounded Kasparov theory are semifinite spectral triples [22, 23]. Let τ be a fixed faithful, normal, semifinite trace on a von Neumann algebra \mathcal{N}. We denote by K_N the τ-compact operators in \mathcal{N}, that is, the norm closed ideal generated by the projections $P \in \mathcal{N}$ with $\tau(P) < \infty$.

Definition 1.2. Let $\mathcal{N} \subset B(\mathcal{H})$ be a graded semifinite von Neumann algebra with trace τ. A semifinite spectral triple $(\mathcal{A}, \mathcal{H}, D)$ is given by a \mathbb{Z}_2-graded Hilbert space \mathcal{H}, a graded $*$-algebra $\mathcal{A} \subset \mathcal{N}$ with C^*-closure \mathcal{A} and a graded representation on \mathcal{H}, together with a densely defined odd unbounded self-adjoint operator D affiliated to \mathcal{N} such that

1. $[D, a]_\pm$ is well-defined on $\text{Dom}(D)$ and extends to a bounded operator on \mathcal{H} for all $a \in \mathcal{A}$,
2. $a(1 + D^2)^{-1} \in K_N$ for all $a \in \mathcal{A}$.

For $\mathcal{N} = B(\mathcal{H})$ and $\tau = \text{Tr}$, one recovers the usual definition of a spectral triple. A semifinite spectral triple relative to (\mathcal{N}, τ) with \mathcal{A} unital is called p-summable if $(1 + D^2)^{-s/2}$ is τ-trace class for all $s > p$. We also call a semifinite spectral triple QC^n if $a, [D, a] \in \text{Dom}(\delta^k)$ for all $k \in \mathbb{N}$ with $\delta(T) = \|D, T\|$ the partial derivation.

Semifinite spectral triples can be paired with K-theory classes $K_*(\mathcal{A})$ via a semifinite Fredholm index [14], where we recall that an operator $T \in \mathcal{N}$ that is invertible modulo K_N has semifinite Fredholm index

$$\text{Index}_\tau(T) = \tau(\text{P}_{\text{Ker}(T)}) - \tau(\text{P}_{\text{Ker}(T^*)}).$$

If the semifinite spectral triples are p-summable and QC^n, the complex index pairing can be computed using the the resolvent cocycle and semifinite local index formula [22, 23]. By writing the index pairing as a pairing with cyclic cohomology, the topological invariants of interest can more easily be connected to physics and are more amenable to numerical simulation. See [29, 14, 23] for further details on semifinite index theory.

If (\mathcal{A}, E_B, D) is an unbounded Kasparov module for a separable C^*-algebra A and the right-hand algebra B has a faithful, semifinite and norm lower semicontinuous trace τ_B, then one can often construct a semifinite spectral triple via a dual trace construction [54]. We follow this approach in Section 4.2. By constructing a semifinite spectral triple from a Kasparov module, we obtain a KK-theoretic interpretation of the semifinite index pairing, which can be expressed via the map

$$K_*(\mathcal{A}) \times KK^*(A, B) \to K_0(B) \stackrel{(\tau_B)_s}{\to} \mathbb{R},$$

with (\mathcal{A}, E_B, D) representing the class in $KK^*(A, B)$. Equation (1) allows us to more explicitly characterise the range of the semifinite index pairing (which is in general \mathbb{R}-valued). The local index formula then gives us a computable expression for the KK-theoretic composition in Equation (1).

1.2. Étale groupoids, twisted algebras and C^*-modules.

We start with some basic definitions for convenience. Our standard reference for groupoid C^*-algebras is [73].

Definition 1.3. A groupoid is a set \mathcal{G} with a subset $\mathcal{G}^{(2)} \subset \mathcal{G} \times \mathcal{G}$, a multiplication map $\mathcal{G}^{(2)} \to \mathcal{G}$, $(\gamma, \xi) \mapsto \gamma \xi$ and an inverse $\mathcal{G} \to \mathcal{G}$, $\gamma \mapsto \gamma^{-1}$ such that

1. $(\gamma^{-1})^{-1} = \gamma$ for all $\gamma \in \mathcal{G}$,
2. if $(\gamma, \xi), (\xi, \eta) \in \mathcal{G}^{(2)}$, then $(\gamma \xi, \eta), (\gamma, \xi \eta) \in \mathcal{G}^{(2)}$,
3. $(\gamma, \gamma^{-1}) \in \mathcal{G}^{(2)}$ for all $\gamma \in \mathcal{G}$,
4. for all $(\gamma, \xi) \in \mathcal{G}^{(2)}$, $(\gamma \xi)^{-1} = \gamma$ and $\gamma^{-1} (\gamma \xi) = \xi$.
Given a groupoid we denote by \(G^{(0)} = \{ \gamma \gamma^{-1} : \gamma \in G \} \) the space of units and define the source and range maps \(r, s : G \to G^{(0)} \) by the equations
\[
 r(\gamma) = \gamma \gamma^{-1}, \quad s(\gamma) = \gamma^{-1} \gamma
\]
for all \(\gamma \in G \). The source and range maps allow us to characterise
\[
 G^{(2)} = \{ (\gamma, \xi) \in G \times G : s(\gamma) = r(\xi) \}.
\]

We furthermore assume that \(G \) has a locally compact topology such that \(G^{(0)} \subset G \) is Hausdorff in the relative topology and multiplication, inversion, source and range maps all continuous. In this work we will only be concerned with étale groupoids.

Definition 1.4. A topological groupoid \(G \) is called étale if the range map \(r : G \to G \) is a local homeomorphism.

Definition 1.5. Let \(G \) be a locally compact and Hausdorff groupoid. A continuous map \(\sigma : G^{(2)} \to \mathbb{T} \) (or \(G^{(2)} \to O(1) = \{ \pm 1 \} \) for real algebras) is a 2-cocycle if
\[
 \sigma(\gamma, \xi) \sigma(\gamma \xi, \eta) = \sigma(\gamma, \xi \eta) \sigma(\xi, \eta)
\]
for any \((\gamma, \xi), (\xi, \eta) \in G^{(2)} \), and
\[
 \sigma(\gamma, s(\gamma)) = 1 = \sigma(r(\gamma), \gamma)
\]
for all \(\gamma \in G \). We will call a groupoid 2-cocyle normalised if \(\sigma(\gamma, \gamma^{-1}) = 1 \) for all \(\gamma \in G \).

Given an étale groupoid \(G \) and 2-cocycle \(\sigma \), we define \(C_c(G, \sigma) \) to be the \(*\)-algebra of compactly supported functions on \(G \) with twisted convolution and involution
\[
 (f_1 \ast f_2)(\gamma) = \sum_{\gamma = \xi \eta} f_1(\xi) f_2(\eta) \sigma(\xi, \eta), \quad f^*(\gamma) = \sigma(\gamma, \gamma^{-1}) \overline{f(\gamma^{-1})}.
\]
The 2-cocycle condition ensures that \(C_c(G, \sigma) \) is an associative \(*\)-algebra. In the present paper, we restrict ourselves to considering normalised cocycles, which covers all examples of interest to us. Our definition of the groupoid 2-cocyle and twisted convolution algebra comes from Renault [73]. For a broader version of twisted groupoid algebra, see [52].

1.3. The \(C^* \)-module of a groupoid and the reduced twisted \(C^* \)-algebra.

Take an étale groupoid \(G \) with a normalised 2-cocycle \(\sigma \). The space \(C_c(G, \sigma) \) is a right module over \(C_0(G^{(0)}) \) via \((f \cdot g)(\xi) = f(\xi) g(s(\xi)) \). Since \(G^{(0)} \subset G \) is closed, we can consider the restriction map \(\rho : C_c(G) \to C_0(G^{(0)}) \). This defines a \(C_0(G^{(0)}) \)-valued inner product on the right module \(C_c(G, \sigma) \) via
\[
 (f_1 | f_2)_{C_c(G^{(0)})} (x) := \rho(f_1^* \ast f_2)(x) = \sum_{\xi \in s^{-1}(x)} \overline{f_1(\xi^{-1})} f_2(\xi^{-1}) \sigma(\xi, \xi^{-1}) = \sum_{x \in r^{-1}(x)} \overline{f_1(\xi)} f_2(\xi)
\]
as \(\sigma \) is normalised. Denote by \(E_{C_0(G^{(0)})} \) the \(C^* \)-module completion of \(C_c(G) \) in this inner product. There is an action of the \(*\)-algebra \(C_c(G, \sigma) \) on the \(C^* \)-module \(E_{C_0(G^{(0)})} \) by bounded adjointable endomorphisms, extending the action of \(C_c(G, \sigma) \) on itself by left-multiplication.

Definition 1.6 (cf. [48]). The reduced groupoid \(C^* \)-algebra \(C^*_r(G, \sigma) \) is the completion of \(C_c(G, \sigma) \) in the norm inherited from the embedding \(C_c(G, \sigma) \hookrightarrow \text{End}^*(E_{C_0(G^{(0)})}) \).

Definition 1.7. Let \(G \) be an étale groupoid over \(G^{(0)} \). An \(s \)-cover of \(G \) is a locally finite countable open cover \(V := \{ V_i \}_{i \in \mathbb{N}} \) consisting of pre-compact sets, such that \(s : V_i \to G^{(0)} \) is a homeomorphism onto its image.
Lemma 1.8. Let $V := \{V_i\}_{i \in \mathbb{N}}$ be an s-cover of G and $\chi_i : V_i \to \mathbb{R}$ a partition of unity subordinate to V, that is $\sum \chi_i(\eta)^2 = 1$ for all $\eta \in G$. Write $u_m := \sum_{i \leq m} \Theta_{x_i}$, Then for all $f \in C_c(G, \sigma)$ there exists $N \in \mathbb{N}$ such that for all $n \geq N$

$$f(\eta) = u_nf(\eta) = \sum_{i \leq n} \chi_i * \rho(\chi_i^* * f)(\eta).$$

In particular u_nf converges to f in the norm of $E_{C_0(G(0))}$.

Proof. The above, together with the fact that we have an s-cover gives

$$\sum_i (\chi_i \rho(\chi_i^* * f))(\eta) = \sum_i \chi_i(\eta) \rho(\chi_i^* * f)(s(\eta)) = \sum_i \sum_{\xi \in r^{-1}(s(\eta))} \chi_i(\eta) \chi_i(\xi) f(\xi^{-1}) \sigma(\xi, \xi^{-1})$$

$$= \sum_i \sum_{\xi \in r^{-1}(s(\eta))} \chi_i(\eta) \chi_i(\xi) f(\xi^{-1}) = \sum_i \sum_{\xi \in s^{-1}(s(\eta))} \chi_i(\eta) \chi_i(\xi) f(\xi)$$

$$= \sum_{\{i : n \in V_i\}} \chi_i^2(\eta) f(\eta) = f(\eta).$$

Since f has compact support, there exists $N = N_f$ such that $\chi_n |_{\text{supp} f} = 0$ for all $n \geq N$. Thus the sum above is uniformly finite and hence convergent in the ρ-norm.

Note that the above result implies that u_n is a sequence of local units for $C_c(G^{(2)}) \subset K(E_{C_0(G(0))}).$

Lemma 1.9. We have $\sup_n \|u_n\|_{\text{End}^*(E_{C_0(G(0))})} \leq 1$.

Proof. We compute the operator norm of the u_n directly. Let $f \in C_c(G, \sigma)$:

$$(u_n f | u_n f)_{C(G(0))}(x) = \sum_{\xi \in r^{-1}(x)} |u_n f(\xi)|^2$$

$$= \sum_{\xi \in r^{-1}(x)} \left(\sum_{i \leq n} \chi_i(\xi)^2 |f(\xi)| \right)^2 \leq \sum_{\xi \in r^{-1}(x)} \left(\sum_{i \leq n} \chi_i(\xi) |f(\xi)| \right)^2$$

Thus it follows that

$$\|u_n f\|_{C_0(G(0))}^2 = \sup_{x \in G(0)} (u_n f | u_n f)_{C(G(0))}(x) \leq \sup_{x \in G(0)} (f | f)_{C(G(0))}(x) = \|f\|_{C_0(G(0))}^2,$$

and we find that $\sup \|u_n\|_{\text{End}^*(E_{C_0(G(0))})} \leq 1$ as claimed.

Proposition 1.10. The sequence u_n forms an approximate unit for $K(E_{C_0(G(0))})$. In other words, the $\chi_i \in E_{C_0(G(0))}$ form a frame for $E_{C_0(G(0))}$.

Proof. The sequence u_n is uniformly bounded in operator norm and converges strongly to 1 on a dense subset. This implies it converges strongly to 1 on all of $E_{C_0(G(0))}$, which is equivalent to being an approximate unit for $K(E_{C_0(G(0))})$.

1.4. Morita equivalence of twisted groupoid C^*-algebras. In this section we work with an arbitrary etale groupoid G with closed subgroupoid H that admits a Haar system and a normalised 2-cocycle $\sigma : G^{(2)} \to T$ or $\{\pm 1\}$. The map σ restricts to a 2-cocycle on the subgroupoid H. Denote by

$$\rho_H : C_c(G, \sigma) \to C_c(H, \sigma),$$
the restriction map. This map is a generalised conditional expectation by [73, Proposition 2.9]. It gives rise to a $C_c(\mathcal{H}, \sigma)$-valued inner product, where

$$(f_1 \mid f_2)_{C_c(\mathcal{H}, \sigma)}(\eta) = r_H(f_1 \ast f_2)(\eta) = \sum_{\xi \in r_H^{-1}(r_H(\eta))} f_1^*(\eta^{-1}\xi) f_2(\xi^{-1}) \sigma(\eta^{-1}\xi, \xi^{-1}).$$

This map is compatible with the right-action,

$$(f \cdot h)(\gamma) = \sum_{\eta \in r_H^{-1}(s_G(\gamma))} f(\eta) h(\eta^{-1}) \sigma(\gamma, \eta^{-1}), \quad f \in C_c(\mathcal{G}, \sigma), \ h \in C_c(\mathcal{H}, \sigma).$$

We again take the completion of $C_c(\mathcal{G}, \sigma)$ in the $C^*_r(\mathcal{H}, \sigma)$-valued inner-product to obtain a right C^*-module $E_{C^*_r(\mathcal{H}, \sigma)}$. The left-action of $C_c(\mathcal{G}, \sigma)$ on itself makes $E_{C^*_r(\mathcal{H}, \sigma)}$ into a $(C^*_r(\mathcal{G}, \sigma), C^*_r(\mathcal{H}, \sigma))$-bimodule by [62, Theorem 1.4]. These bimodules often support a natural operator making them into KK-cycles, as we will discuss in Section 1.5.

At present we wish to describe the compact operators on $E_{C^*_r(\mathcal{H}, \sigma)}$. To this end we first define

$$\mathcal{G}/\mathcal{H} \cong \{[\xi] : \xi \in \mathcal{G}, \ [\gamma] = [\xi] \iff \text{there exists } \eta \in \mathcal{H} \text{ with } \gamma \eta = \xi\}.$$

We can define a new groupoid by considering a left-action of \mathcal{G} on this quotient space. Namely, we take

$$\mathcal{G} \times \mathcal{G}/\mathcal{H} := \{([\xi], [\gamma]) \in \mathcal{G} \times \mathcal{G}/\mathcal{H} : s_G(\xi) = r_G(\gamma)\},$$

where we have $(\mathcal{G} \times \mathcal{G}/\mathcal{H})^0 = \mathcal{G} \times \mathcal{H}$ and

$$r([\xi], [\gamma]) = [\xi\gamma], \quad s([\xi], [\gamma]) = [\gamma],$$

$$(\xi, [\gamma])^{-1} = ([\xi^{-1}], [\xi]), \quad (\xi, [\gamma]) \circ ([\eta, [\eta^{-1}\gamma]]) = ([\xi\eta], [\eta^{-1}\gamma]).$$

Furthermore, we can again use the 2-cocycle σ on \mathcal{G} to define a 2-cocycle on $\mathcal{G} \times \mathcal{G}/\mathcal{H}$,

$$\sigma((\xi, [\gamma]), ([\eta, [\eta^{-1}\gamma]])) = \sigma(\xi, \eta).$$

The groupoid \mathcal{G} naturally implements an equivalence between $\mathcal{G} \times \mathcal{G}/\mathcal{H}$ and \mathcal{H} in the sense of [66]. Namely \mathcal{G} is a free and proper left $(\mathcal{G} \times \mathcal{G}/\mathcal{H})$-space and a free and proper right \mathcal{H}-space via the groupoid actions,

$$(\xi, [\gamma]) \cdot \eta = \xi \eta, \quad s(\xi) = r(\gamma) = r(\eta), \quad \gamma \cdot \eta = \gamma \eta, \quad s(\gamma) = r(\eta).$$

In particular $C_c(\mathcal{G})$ can be completed into Morita equivalence bimodules for both the full and reduced C^*-algebras of \mathcal{H} and $\mathcal{G} \times \mathcal{G}/\mathcal{H}$ [66, 83]. In case the 2-cocycles on \mathcal{H} and $\mathcal{G} \times \mathcal{G}/\mathcal{H}$ are compatible (e.g. if both are inherited from a fixed 2-cocycle on \mathcal{G}), then the full twisted groupoid C^*-algebras are Morita equivalent by [27, Theorem 9.1]. Morita equivalence was extended to the reduced C^*-algebras of Fell bundles in [65, 64, 84], which includes twisted reduced groupoid C^*-algebras (see [65, Proposition 6.2]). We briefly review this construction for the special case in which we are working.

We define a left-action of $C_c(\mathcal{G} \times \mathcal{G}/\mathcal{H}, \sigma)$ on $C_c(\mathcal{G}, \sigma)$ (seen as a right $C_c(\mathcal{H}, \sigma)$-module) by the formula

$$(\pi(g)f)(\gamma) = \sum_{\xi \in r_H^{-1}(s_G(\gamma))} g(\xi, [\xi^{-1}\gamma]) f(\xi^{-1}\gamma) \sigma(\xi, \xi^{-1}\gamma), \quad g \in C_c(\mathcal{G} \times \mathcal{G}/\mathcal{H}, \sigma), \ f \in C_c(\mathcal{G}, \sigma).$$

As we argue below, this action extends to an isomorphism

$$C^*_r(\mathcal{G} \times \mathcal{G}/\mathcal{H}, \sigma) \xrightarrow{\sim} \mathbb{K}(E_{C^*_r(\mathcal{H}, \sigma)}),$$

to obtain the following result.

Proposition 1.11 ([65], Theorem 5.5, [83], Theorem 4.1, [84], Theorem 14). The C^*-algebras $C^*_r(\mathcal{H}, \sigma)$ and $C^*_r(\mathcal{G} \times \mathcal{G}/\mathcal{H}, \sigma)$ are Morita equivalent.
This statement is derived from the proof in [83] with fairly minor alterations. The more general Fell bundle setting requires more machinery, see [65, 84]. We define the linking groupoid as the topological disjoint union,
\[L = (\mathcal{G} \times \mathcal{G}/\mathcal{H}) \sqcup \mathcal{G} \sqcup \mathcal{G}^{\text{op}} \sqcup \mathcal{H} \]
where \(\mathcal{G}^{\text{op}} \) is the opposite groupoid \(\mathcal{G}^{\text{op}} = \{ \gamma : \gamma \in \mathcal{G} \} \), which we can equip with a 2-cocycle \(\sigma^{\text{op}}(\gamma_1, \gamma_2) = \sigma(\gamma_2, \gamma_1) \). As the name suggests, \(L \) is a groupoid with unit space \(\mathcal{G}/\mathcal{H} \sqcup \mathcal{H} \) and source and range maps inherited from the groupoid structure on its parts [83, Lemma 2.1]. We can consider the twisted convolution algebra of \(L \) with respect to the cocycle \(\hat{\sigma} : L \to \mathbb{T} \) which coincides with the given cocycles on each of the components of the disjoint union.

The algebraic machinery used in [67, 83] also works in the twisted case (see [73, Chapter II, Lemma 2.5] or [64, Chapter 5]) and, as such, uses the exterior algebra notation, where \(\mathcal{G} \) is an étale groupoid and \(\mathcal{H} \) is a closed subgroupoid of \(\mathcal{G} \). We will assume \(\mathcal{G} \) is étale, so that in this higher dimensional setting exactness entails that \(\text{Ker}(c) \) admits a Haar system and the map
\[r \times c : \mathcal{G} \to \mathcal{G}(0) \times \mathbb{R}^n, \quad \xi \mapsto (r(\xi), c(\xi)), \]
is a quotient map onto its image.

Given \(\mathcal{H} = \text{Ker}(c) \) a closed subgroupoid of \(\mathcal{G} \), we will construct a KK-cycle from \(c \) supported on the module \(E_{\hat{\mathcal{G}}^*_r(\mathcal{H}, \sigma)} \) constructed in the previous section. We use the representation of \(C_c(\mathcal{G}, \sigma) \) on \(E_{\hat{\mathcal{G}}^*_r(\mathcal{H}, \sigma)} \) by left-multiplication, \(\pi(f_1)f_2 = f_1 \ast f_2 \) for \(f_2 \in C_c(\mathcal{G}, \sigma) \subset E_{\hat{\mathcal{G}}^*_r(\mathcal{H}, \sigma)} \).

Again by [62, Theorem 1.4] this action extends to a representation of \(C^*_r(\mathcal{G}, \sigma) \).

The components of the exact cocycle \(c : \mathcal{G} \to \mathbb{R}^n \) give \(n \) real cocycles \(c_k(\xi) := (\pi_k \circ c)(\xi) \) by composition with the \(k \)-th coordinate projection
\[\pi_k : \mathbb{R}^n \to \mathbb{R}, \quad x = (x_1, \ldots, x_n) \mapsto x_k. \]
Following [73], \(C^*_r(\mathcal{G}, \sigma) \) has \(n \) mutually commuting commuting one-parameter groups of automorphisms \(\{u^{(k)}_t\}_{t=1}^n \), which on \(C_c(\mathcal{G}, \sigma) \) are given by
\[(u^{(k)}_t) f(\xi) = e^{itc_k(\xi)} f(\xi), \quad t \in \mathbb{R} \]
with \(c_k = \pi_k \circ c \) as above. The generators or these automorphisms are derivations \(\{\partial_j\}_{j=1}^n \) on \(C_c(\mathcal{G}, \sigma) \), where \((\partial_j f)(\xi) = c_j(\xi)f(\xi) \) (pointwise multiplication). We denote by \(D_{c_j} \) the extension of these derivations to an unbounded operator on \(E_{\hat{\mathcal{G}}^*_r(\mathcal{H}, \sigma)} \).

We use this differential structure to define a unbounded operator that plays the rôle of an elliptic differential operator. Our construction mimics the construction of the elements \(\alpha \) and \(\beta \) in [40, Section 5] and, as such, uses the exterior algebra \(\bigwedge^* \mathbb{R}^n \). We briefly establish our Clifford algebra notation, where \(C_{l_{r,s}} \) is the (real) \(\mathbb{Z}_2 \)-graded \(C^* \)-algebra generated by the mutually anti-commuting odd elements \(\{\gamma^j\}_{j=1}^n, \{\rho^k\}_{k=1}^n \) such that
\[(\gamma^j)^2 = 1, \quad (\gamma^j)^* = \gamma^j, \quad (\rho^k)^2 = -1, \quad (\rho^k)^* = -\rho^k. \]
The exterior algebra \(\bigwedge^* \mathbb{R}^n \) has representations of \(Cl_{0,n} \) and \(Cl_{n,0} \) with generators
\[\rho^j(\omega) = e_j \wedge \omega - i(e_j) \omega, \]
\[\gamma^j(\omega) = e_j \wedge \omega + i(e_j) \omega, \]
where \(\{e_j\}_{j=1}^n \) is the standard basis of \(\mathbb{R}^n \) and \(i(\nu) \omega \) is the contraction of \(\omega \) along \(\nu \). One readily checks that \(\rho^j \) and \(\gamma^j \) mutually anti-commute and generate representations of \(Cl_{0,n} \) and \(Cl_{n,0} \) respectively. An analogous construction holds in the complex case where \(\text{End}_{\mathbb{C}}(\bigwedge^* \mathbb{C}^n) \cong Cl_n \otimes Cl_n \), where the two representations graded-commute.

Proposition 1.12. Let \(\mathcal{G} \) be an étale groupoid and \(c : \mathcal{G} \to \mathbb{R}^n \) an exact cocycle with kernel \(\mathcal{H} \). The triple
\[n\mathcal{L}_\mathcal{H} = \left(C_c(\mathcal{G}, \sigma) \otimes Cl_{0,n}, E_{\hat{\mathcal{G}}^*_r(\mathcal{H}, \sigma)} \otimes \bigwedge^* \mathbb{R}^n, D_c = \sum_{j=1}^n D_{c_j} \otimes \gamma^j \right) \]
Let \(\mathcal{G}, \sigma \) be an \(\mathbb{R}^n \)-valued function on \(\mathcal{G} \). If we use complex algebras and \(\bigwedge^n \mathbb{C}^n \), the Kasparov module is complex.

Proof. The essential self-adjointness and regularity of \(D \) follow since the subset
\[
C_c(\mathcal{G}, \sigma) \otimes \bigwedge \mathbb{R}^n \subset E_{\mathcal{G}^*}(\mathcal{H}, \sigma) \otimes \bigwedge \mathbb{R}^n,
\]
is a core for \(D \) and \(D^2 = c^2 \otimes 1_{\bigwedge^n \mathbb{R}^n} \) with \((c^2 f)(\xi) = (c_1(\xi)^2 + \cdots + c_n(\xi)^2) f(\xi) \). Therefore \(1 + D^2 \) has dense range. We note that in particular
\[
(1 + D^2)^{-1} = (1 + c^2)^{-1} \otimes 1_{\bigwedge^n \mathbb{R}^n}.
\]
Using exactness of \(c \), the same argument as [60, Theorem 3.9] can now be applied to show that \((1 + D^2)^{-1} \) is compact in \(E_{\mathcal{G}^*}(\mathcal{H}) \). For \(f \in C_c(\mathcal{G}, \sigma) \), a simple computation using the regular representation gives that
\[
[D_c, \pi(f)] = \sum_{j=1}^n [D_{c_j}, \pi(f)] \otimes \gamma_j = \sum_{j=1}^n \pi(\partial_j f) \otimes \gamma_j
\]
which is adjointable as \(C_c(\mathcal{G}, \sigma) \) is invariant under the derivations \(\{\partial_j\}_{j=1}^n \).

We remark that there is additional structure on the K K-cycles constructed in Proposition 1.12. Namely, using the action of Spin\(_{n,0}\) or Spin\(_{n,n}\) on \(\bigwedge^n \mathbb{R}^n \) defined in [40, §2.18] and using the notation from [40, §5], the unbounded KK-cycle \(n\mathcal{A}_{\mathcal{H}} \) determines a class in the equivariant Kasparov group \(KK^{\mathcal{A}_{\mathcal{H}}}(\mathcal{C}^*(G, \sigma), \mathcal{C}^*(\mathcal{H}, \sigma)) \) or \(KK^{\mathcal{C}_{\mathcal{H}}}(\mathcal{C}^*(G, \sigma), \mathcal{C}^*(\mathcal{H}, \sigma)) \). We can then restrict the C*-module \(E_{\mathcal{G}^*}(\mathcal{H}, \sigma) \otimes \bigwedge^n \mathbb{R}^n \) to the irreducible spinor representation space. By [40, §5, Lemma 1], the resulting map at the level of KK-groups is an isomorphism.

For concreteness, we write out the unbounded representatives of the spinor Kasparov modules explicitly. Denote by \(S^c_n \) and \(S_n \) the (trivial) complex and real spinor bundles of \(\mathbb{R}^n \) and let \(K_n \) be maximal commuting subalgebra for the irreducible representation of \(Cl_{n,0} \) on \(S_n \).

Proposition 1.13. Let \(\mathcal{G} \) be an étale groupoid and \(c : \mathcal{G} \to \mathbb{R}^n \) an exact cocycle and \(\mathcal{H} := ker c \).

Then the triple
\[
n\mathcal{A}_{\mathcal{H}}^{S^c} = \left(C_c(\mathcal{G}, \sigma), E_{\mathcal{G}^*}(\mathcal{H}, \sigma) \otimes S^c_n, \sum_{j=1}^n D_{c_j} \otimes \gamma^j \right)
\]
is a complex Kasparov module of parity \(n \) mod 2.

Let \(S_n \) be the real spinor bundle of \(\mathbb{R}^n \). If \(n \not\equiv 1 \mod 4 \), then
\[
n\mathcal{A}_{\mathcal{H}}^S = \left(C_c(\mathcal{G}, \sigma), \left(F \otimes S_n\right)_{\mathcal{G}^*}(\mathcal{H}, \sigma) \otimes K_n, \sum_{j=1}^n D_{c_j} \otimes \gamma^j \right), \quad K_n = \begin{cases} \mathbb{R}, & n = 0, 2 \mod 8, \\ \mathbb{C}, & n = 3 \mod 4, \\ \mathbb{H}, & n = 4, 6 \mod 8 \end{cases}
\]
is a real graded unbounded Kasparov module. If \(n \equiv 1 \mod 4 \), then
\[
n\mathcal{A}_{\mathcal{H}}^S = \left(C_c(\mathcal{G}, \sigma) \otimes Cl_{0,1}, \left(E_{\mathcal{G}^*}(\mathcal{H}, \sigma) \otimes S_n\right)_{K_n}, \left(\sum_{j=1}^n D_{c_j} \otimes \gamma^j\right) \otimes \sigma_1 \right), \quad K_n = \begin{cases} \mathbb{R}, & n = 1 \mod 8, \\ \mathbb{H}, & n = 5 \mod 8 \end{cases}
\]
is an unbounded Kasparov module, where the left-action of \(Cl_{0,1} \) is generated by \(\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \).

The spinor Kasparov modules have the advantage that the left algebra is no longer graded, which is useful if we wish to apply the local index formula (for complex semifinite spectral triples constructed from \(n\mathcal{A}_{\mathcal{H}}^S \)). We will predominantly work with the ‘oriented’ Kasparov module \(n\mathcal{A}_{\mathcal{H}}^S \) and class \([n\mathcal{A}_{\mathcal{H}}^S] \in KK^n(\mathcal{C}^*(\mathcal{G}, \sigma), \mathcal{C}^*(\mathcal{H}, \sigma)) \) (real or complex) as the representations are more tractable and we can work in the real or complex category interchangeably. Though we emphasise that at the level of K-groups (and up to a possible normalisation), there is no loss of information working with either the spin or oriented KK-cycles.
2. Delone sets and the transversal groupoid

We briefly summarise the construction of a groupoid of an aperiodic hull. Results and further details can be found in [2, 12, 43, 44, 46, 10]. We most closely follow the perspective of [12, 10] and construct a dynamical system and transversal groupoid from the topology of point measures in \(\mathbb{R}^d \).

Definition 2.1. Let \(\mathcal{L} \subset \mathbb{R}^d \) be discrete and infinite and fix \(0 < r < R \).

1. \(\mathcal{L} \) is \(r \)-uniformly discrete if \(|B(x; r) \cap \mathcal{L}| \leq 1 \) for all \(x \in \mathbb{R}^d \).
2. \(\mathcal{L} \) is \(R \)-relatively dense if \(|B(x; R) \cap \mathcal{L}| \geq 1 \) for all \(x \in \mathbb{R}^d \).

An \(r \)-uniformly discrete and \(R \)-relatively dense set \(\mathcal{L} \) is called an \((r,R)\)-Delone set.

We will occasionally want extra structure on our Delone set.

Definition 2.2. Let \(\mathcal{L} \subset \mathbb{R}^d \) be discrete and infinite.

1. A patch of radius \(R > 0 \) of \(\mathcal{L} \) is a subset of \(\mathbb{R}^d \) of the form \((\mathcal{L} - x) \cap B(0; R)\), for some \(x \in \mathcal{L} \). If for all \(R > 0 \) the set of its patches of radius \(R \) is finite, then \(\mathcal{L} \) has finite local complexity.
2. We call \(\mathcal{L} \) repetitive if given any finite subset \(p \subset \mathcal{L} \) and \(\varepsilon > 0 \), there is an \(R > 0 \) such that in any ball \(B(x; R) \) there is a subset \(p' \subset \mathcal{L} \cap B(x; R) \) that is a translation of \(p \) within the distance \(\varepsilon \); that is, there is an \(a \in \mathbb{R}^d \) such that the Hausdorff distance between \(p' \) and \(p + a \) is less that \(\varepsilon \).
3. We call \(\mathcal{L} \) aperiodic if there is no \(x \neq 0 \in \mathbb{R}^d \) such that \(\mathcal{L} - x = \mathcal{L} \).

There is an equivalence between discrete sets and point measures in \(\mathbb{R}^d \). Let \(\mathcal{M}(\mathbb{R}^d) \) denote the space of measures on \(\mathbb{R}^d \) and consider

\[
QD(\mathbb{R}^d) = \{ \nu \in \mathcal{M}(\mathbb{R}^d) : \forall x \in \mathbb{R}^d, \nu \text{ is pure point and } \nu(\{x\}) \in \mathbb{N} \},
\]

\[
UD_r(\mathbb{R}^d) = \{ \nu \in QD(\mathbb{R}^d) : \forall x \in \mathbb{R}^d, \nu(B(x; r)) \leq 1 \}.
\]

For \(\nu \in QD(\mathbb{R}^d) \), \(\mathcal{L}^{(\nu)} = \text{supp}(\nu) \) is discrete. Similarly for a discrete set \(\mathcal{L} \) we can define a measure \(\delta_{\mathcal{L}} = \sum_{x \in \mathcal{L}} \delta_x \in QD(\mathbb{R}^d) \), where \(\delta_x \) is the point measure. We can also relate measures and Delone sets.

Proposition 2.3. Consider the measure \(\nu \in UD_r(\mathbb{R}^d) \) such that for all \(x \in \mathbb{R}^d \), \(\nu(B(x; R)) \geq 1 \). Then \(\mathcal{L}^{(\nu)} \) is an \((r,R)\)-Delone set.

As \(\mathcal{M}(\mathbb{R}^d) \) is a subspace of \(C_c(\mathbb{R}^d)^* \), it can be given the weak \(*\)-topology.

Proposition 2.4 ([12], Theorem 1.5). The set \(UD_r(\mathbb{R}^d) \) is a compact subspace of \(\mathcal{M}(\mathbb{R}^d) \).

Proposition 2.5 (cf. [55], Section 3, [30], Chapter 1). The set of \((r,R)\)-Delone sets is a compact and metrizable space. Let \(d_H \) denote the Hausdorff distance between sets. A neighborhood base at \(\omega \in \Omega_L \) is given by the sets

\[
U_{\varepsilon,M}(\omega) = \{ \eta \in \text{Del}(r,R) : d_H(\mathcal{L}^{(\omega)} \cap B(0; M), \mathcal{L}^{(\eta)} \cap B(0; M)) < \varepsilon \}
\]

with \(M, \varepsilon > 0 \).

The translation action on \(\mathbb{R}^d \) gives an action on \(C_c(\mathbb{R}^d) \) and thus an action on \(UD_r(\mathbb{R}^d) \), where

\[
(T_a \nu)(f) = \nu(T_{-a} f), \quad (T_{-a} f)(x) = f(x - a), \quad f \in C_c(\mathbb{R}^d).
\]

As expected, the \(\mathbb{R}^d \)-action on \(UD_r(\mathbb{R}^d) \) induces an \(\mathbb{R}^d \)-action on the discrete lattices \(\mathcal{L}^{(\nu)} \) by translation, \(T_a(\mathcal{L}^{(\nu)}) = \mathcal{L}^{(\nu)} + a \).

Definition 2.6 (cf. [8], Section 2, [12], Definition 1.7). Let \(\mathcal{L} \) be a uniformly discrete discrete subset of \(\mathbb{R}^d \). The continuous hull of \(\mathcal{L} \) is the dynamical system \((\Omega_L, \mathbb{R}^d, T) \), where \(\Omega_L \) is the closure of the orbit of \(\nu \in UD_r(\mathbb{R}^d) \) such that \(\text{supp}(\nu) = \mathcal{L} \).
We note that Ω_L is compact by Proposition 2.4. The translation action on $UD_r(\mathbb{R}^d)$ gives the family of homeomorphisms $\{T_a\}_{a \in \mathbb{R}^d}$ on Ω_L. Thus, starting from a Delone set L, we may associate to it a continuous topological dynamical system $(\Omega_L, T, \mathbb{R}^d)$. This dynamical system is minimal if and only if the lattice L is repetitive [12, Theorem 2.13].

Example 2.7. For the case of L a periodic and cocompact group G, then it is immediate that $\Omega_L \cong \mathbb{R}^d/G$. This is the classical picture with no aperiodicity or disorder on our lattice. We can use Rieffel induction on the C^\ast-dynamical system to simplify the crossed product algebra
\[C(\Omega_L) \rtimes \mathbb{R}^d \cong C(\mathbb{R}^d/G) \rtimes \mathbb{R}^d \cong C^\ast(G) \otimes K, \]
which then implies that, for $L = \mathbb{Z}^d$, $K_s(\Omega_L \rtimes \mathbb{R}^d) \cong K^{-\ast}(\mathbb{T}^d)$. Considering applications to topological phases, we see that for periodic lattices the dynamics of the hull reproduces the K-theoretic phases of the Bloch bundle over the Brillouin torus.

There is a loose equivalence between Delone sets and tilings of \mathbb{R}^d, where much of the terminology we use was originally formulated [43, 30, 2, 46].

Definition 2.8. A tile of \mathbb{R}^d is a compact subset of \mathbb{R}^d that is homeomorphic to the unit ball. A tiling of \mathbb{R}^d is a covering of \mathbb{R}^d by a family of tiles whose interiors are pairwise disjoint.

Given a tiling T, we can choose a point from the interior of every tile to obtain a Delone set L_T for some (r, R). The converse is also true.

Definition 2.9. Let L be a (r, R)-Delone set in \mathbb{R}^d. The Voronoi tile around a point $x \in L$ is the set
\[V_x = \{ y \in \mathbb{R}^d : \|y - x\| \leq \|y - x'\| \text{ for all } x' \in L \}. \]
The Voronoi tiling V associated to L is the family $\{V_x\}_{x \in L}$.

Remark 2.10 (A note on topologies). Given a Delone set, one may instead consider the corresponding Voronoi tiling. If each tile in the Voronoi tiling comes from a finite collection of prototiles, there is a canonical tiling space with tiling metric (cf. [78, Chapter 1]). The topology of the tiling space is strictly finer than the topology coming from the weak-\ast topology on the space of Delone sets. However, if the Delone set is repetitive and has finite local complexity, then the topologies are equivalent, see [46] and [10, Section 2].

We will mostly work under the assumption that L is (r, R)-Delone only. Therefore if one wishes to apply our work to tilings, they should also assume that L is repetitive and has finite local complexity.

2.1. The transversal groupoid. The notion of an abstract transversal in a groupoid allows one to replace a topological groupoid by a smaller subgroupoid, up to Morita equivalence.

Definition 2.11. A topological groupoid \mathcal{F} admits an abstract transversal if there is a closed subset $X \subset \mathcal{F}^{(0)}$ such that
\begin{enumerate}
 \item X meets every orbit of the \mathcal{F}-action on $\mathcal{F}^{(0)}$;
 \item for the relative topologies on X and
 \[\mathcal{F}_X := \{ \xi \in \mathcal{F} : r(\xi) \in X \} \subset \mathcal{F}, \]
 the restrictions $r : \mathcal{F}_X \to X$ and $s : \mathcal{F}_X \to \mathcal{F}^{(0)}$ are open maps for the relative topologies on \mathcal{F}_X and X.
\end{enumerate}

The set $\mathcal{G} := \mathcal{F}_X \cap \mathcal{F}_X^{-1}$ is a closed subgroupoid and \mathcal{F}_X is a groupoid equivalence between \mathcal{F} and \mathcal{G} (with its relative topology), see [66, Example 2.7]. Abstract transversals were studied more generally in [70, Section 3]. We will describe an abstract transversal $\mathcal{G} \subset \Omega_L \rtimes \mathbb{R}^d$ which is étale in the relative topology.

Definition 2.12. The transversal of a lattice L is given by the set
\[\Omega_0 = \{ \omega \in \Omega_L : 0 \in L^{(\omega)} \}, \]
We see that Ω_0 is a closed subset of Ω_L and so is compact by Proposition 2.4.

Proposition 2.13 ([12], Proposition 2.3, [10], Proposition 2.24). Let \mathcal{L} be a Delone set.

1. If \mathcal{L} has finite local complexity, then Ω_0 is totally disconnected.
2. If \mathcal{L} is repetitive, aperiodic and of finite local complexity, then Ω_0 is a Cantor set (totally disconnected with no isolated points).

The passage from the continuous hull Ω_L to the transversal Ω_0 discretises the \mathbb{R}^d-action at the cost that we no longer have a group action, but only a groupoid structure.

Proposition 2.14 ([8], Section 3, [44], Lemma 2). Given a Delone set \mathcal{L} with transversal Ω_0, define the set

$$ \mathcal{G} := \{ (\omega, x) \in \Omega_0 \times \mathbb{R}^d : T_{-x}\omega \in \Omega_0 \} = \{ (\omega, x) \in \Omega_0 \times \mathbb{R}^d : x \in \mathcal{L}(\omega) \}. $$

Then \mathcal{G} is an étale groupoid with maps

1. $(\omega, x)^{-1} = (T_{-x}\omega, -x)$,
2. $s(\omega, x) = T_{-x}\omega$, $r(\omega, x) = \omega$ and unit space $\mathcal{G}(0) = \Omega_0$.

The transversal groupoid \mathcal{G} and its corresponding (twisted) C^*-algebra will be our central object of study. The space Ω_0 is an abstract transversal in the sense of Definition 2.11, so that $\mathcal{G} \subset \Omega_0 \times \mathbb{R}^d$ with its subspace topology is Morita equivalent to $\Omega_L \times \mathbb{R}^d$. This result is well-known to experts, see [30, Chapter 2, Section 2] for the case of tilings. We find it worthwhile to give a detailed proof in the Delone lattice setting. To this end we first make the following observation.

Lemma 2.15. Let $0 < \varepsilon < r/2$. For any $\omega \in \Omega_0$, the intersection $\mathcal{L}(\omega) \cap B(y; \varepsilon)$ contains at most one point.

Proof. Suppose that the intersection is nonempty and the $x_1, x_2 \in \mathcal{L}(\omega) \cap B(y; \varepsilon)$. Then $d(x_1, x_2) < 2\varepsilon < r$ so it must hold that $x_1 = x_2$. \qed

For $\mu \in \mathbb{R}_{>0}$ we denote by

$$ P_\mu := \{ \mathcal{L}(\omega) \cap B(0; \mu) : \omega \in \Omega_0 \}, $$

the set of patterns of radius μ. The sets

$$ U_{p, \mu} := \{ \omega \in \Omega_L : 0 \in \mathcal{L}(\omega), \mathcal{L}(\omega) \cap B(0; \mu) = \{ p \} \} \subset \Omega_0, \quad \mu \in \mathbb{R}_{>0}, \quad p \in P_\mu, $$

define the relative topology on the closed subset $\Omega_0 := \{ \omega \in \Omega_L : 0 \in \mathcal{L}(\omega) \}$. In case \mathcal{L} has finite local complexity each set P_μ is finite and the clopen sets $U_{p, \mu}$ determine the totally disconnected topology on Ω_0. We now provide the proof that Ω_0 is indeed an abstract transversal.

Proposition 2.16. Let $\mathcal{L} \subset \mathbb{R}^d$ be a uniformly r-discrete subset with transversal Ω_0 and associated groupoid \mathcal{G}. For $U \subset \Omega_0$ an open set, the sets

$$ V_{(U, y, \varepsilon)} := (U \times B(y; \varepsilon)) \cap \mathcal{G} = \{ (\omega, x) \in \Omega_0 \times \mathbb{R}^d : \omega \in U, \quad x \in \mathcal{L}(\omega) \cap B(y; \varepsilon) \}, $$

form a base for the topology on \mathcal{G}. For $0 < \varepsilon < r/2$, the restriction $s : V_{(U, y, \varepsilon)} \to \Omega_0$ is a homeomorphism onto its image. Moreover the restrictions

$$ s : \Omega_L \times \mathbb{R}^d \cap r^{-1}(\Omega_0) \to \Omega_L, \quad r : \Omega_L \times \mathbb{R}^d \cap r^{-1}(\Omega_0) \to \Omega_0, $$

are open maps. Therefore the set Ω_0 is an abstract transversal and the groupoid $\Omega_0 \times \mathbb{R}^d$, with the subspace topology, is Morita equivalent to $\Omega_L \times \mathbb{R}^d$.

13
Now consider \(\omega \) groupoid \(\Omega \) and the equality \(T_{-\omega} x = T_{-\omega} y \) implies that \(\omega = T_{-\omega} \eta \) and \(x - z \in \mathcal{L}(\omega) \). Now \(x, z \in B(y; \varepsilon) \) so \(d(x, z) < 2\varepsilon < r \), and thus \(x = z \) because \(\mathcal{L}(\omega) \) is \(r \)-discrete. It then follows that \(\omega = \eta \) as well.

Now consider \(s(\omega, x) \mapsto T_{-\omega} x \) and the image

\[
\begin{align*}
 s(V(U, \eta, \varepsilon)) &= \{ \omega \in \Omega_0 : \exists x \in B(y; \varepsilon), \quad T_{-\omega} x \in U \} \\
 &= \{ \omega \in \Omega_0 : \exists x \in B(0; \varepsilon), \quad T_{-\omega} x + y \in U \} \\
 &= \Omega_0 \cap T_{-\eta} \{ \omega \in \Omega_0 : \exists x \in B(0; \varepsilon), \quad T_{-\omega} x \in U \} \\
 &= \Omega_0 \cap T_{-\eta} (s(U \times B(0; \varepsilon))),
\end{align*}
\]

with \(s(\omega, x) = \phi(\omega, -x) \) and \(\phi \) as in \([10, \text{Lemma 2.10}]\), and by that result the map \(s \) is a homeomorphism onto its image. Thus, since \(y \) is fixed, the set \(s(V(U, \eta, \varepsilon)) \) is open in \(\Omega_0 \). Now \(\omega \in s(V(U, \eta, \varepsilon)) \) implies that \(B(-y; \varepsilon) \cap \mathcal{L}(\omega) \neq \emptyset \) and thus contains a unique point \(x_{\omega}^y \). The map

\[
t_y : s(V(U, \eta, \varepsilon)) \rightarrow V(U, \eta, \varepsilon), \quad \omega \mapsto (T_{-\omega} - y \omega, -x_{\omega}^y),
\]

is an inverse for \(s \): If \(\omega = T_{-\eta} \eta \) with \(\{ x \} = B(y; \varepsilon) \cap \mathcal{L}(\eta) \) then

\[
x_{\omega}^y = x_{T_{-\eta} \eta}^y = B(-y; \varepsilon) \cap \mathcal{L}(T_{-\omega} \eta) = -x,
\]

and so indeed

\[
t_y \circ s(\eta, x) = s_y(\omega) = (T_{\varepsilon} \omega, x) = (\eta, x).
\]

The points \(x_{\omega}^y \) satisfy the equality \(x_{\omega}^y = y + x_{T_{-\eta} \omega}^0 \) and thus the map \(t_y \) can be written

\[
t_y(\omega) = (T_{-\omega} - y \omega, -x_{\omega}^y) = (T_y T_{-\omega} \eta \omega, y - x_{T_{-\eta} \omega}^0) = (T_y \times T_{-\eta} \omega) \circ t_0 \circ T_y(\omega).
\]

The map \(t_0 \) is continuous by \([10, \text{Lemma 2.10}]\) and \(y \) is fixed, proving continuity of \(t_y \).

We now proceed to show the maps \(s, r \) are open when restricted to \(r^{-1}(\Omega_0) \). As above we have

\[
s(U \times B(y; \varepsilon)) \cap r^{-1}(\Omega_0)) = \{ T_{-\omega}(\omega) : \omega \in U \cap \Omega_0, x \in B(y; \varepsilon) \cap \mathcal{L}(\eta) \},
\]

and to prove that the map \(s|_{r^{-1}(\Omega_0)} \) is open we may restrict ourselves sets \(U = U_{(\delta, M)}(\omega) \cap \Omega_0 \) and \(M \) sufficiently large, \(\delta \) sufficiently small. It then suffices to show that the set \(s(U \times B(y; \varepsilon) \cap r^{-1}(\Omega_0)) \) contains a basic open neighborhood of any of its elements \(T_{-\omega}(\omega) \). Let \(\delta < \varepsilon < r/2 \) and \(M > \delta \). Then if \(\eta \in \Omega_\mathcal{L} \) is such that

\[
d_\mathcal{L}(B(0; M + \|y\| + r) \cap \mathcal{L}(T_{-\omega}), B(0; M + \|y\| + r) \cap \mathcal{L}(\eta)) < \delta/2,
\]

we have that \(-x \in \mathcal{L}(T_{-\omega}) \cap B(0; M + \|y\| + r) \). By definition of the Hausdorff distance, we have

\[
\inf_{w \in B(0; M + \|y\|) \cap \mathcal{L}(\eta)} \|w + x\| < \delta/2,
\]

and since the sets involved are discrete, there exists a point \(w \in \mathcal{L}(\eta) \) with \(\|w + x\| \leq \delta/2 \). Moreover, if \(\delta < r \) then this point \(w \) is unique because \(\mathcal{L}(\eta) \) is \(r \)-discrete. Then for \(z \in B(0; M) \cap \mathcal{L}(\omega) \) and \(v \in B(0; M) \cap \mathcal{L}(T_{-\omega}) \) we have

\[
(z - w) \in B(0; M + \|y\| + r) \cap \mathcal{L}(T_{-\omega}), \quad (v + x) \in B(0; M + \|y\| + r) \cap \mathcal{L}(\eta),
\]

from which we deduce

\[
\|z - v\| \leq \|(v + x) - (z - w)\| + \|x + w\| < \delta,
\]

and therefore it follows that

\[
d_\mathcal{L}(B(0; M) \cap \mathcal{L}(\omega), B(0; M) \cap \mathcal{L}(T_{-\omega})) < \delta.
\]

Since \(\|w + y\| \leq \|w + x\| + \|x - y\| < \delta < \varepsilon \) it holds that \((T_{-\omega} \eta, -w) \in U \times B(y; \varepsilon) \) and \(0 \in T_{-\omega} \eta \). Therefore \(\eta \in s(U \times B(y; \varepsilon)) \cap r^{-1}(\Omega_0)) \) and \(s : r^{-1}(\Omega_0) \rightarrow \Omega_\mathcal{L} \) is an open map. The statement
that \(r \) is an open map is immediate because \(\Omega_0 \) carries the relative topology inherited from \(\Omega_C \). This completes the proof. \(\square \)

From this we derive several structure statements for the groupoid \(\mathcal{G} \).

Proposition 2.17. For any \(1 \leq k \leq d \) the groupoid cocycles

\[
\hat{c}_k := (c_1, \cdots, c_k) : (\omega, x) \mapsto (x_1, \cdots, x_k),
\]

are exact in the sense of [60, Definition 3.3].

Proof. For \((\omega, x) \in \mathcal{G}\) it holds that \(x \in \mathcal{L}\), and for each \((\eta, z)\) in the open set \((\Omega_0 \times B(x, \varepsilon)) \cap \mathcal{G}\) it thus holds that \(z = x \). In particular each \(\hat{c}_k \) is locally constant and \(\hat{c}_k^{-1}(0) \) is a clopen subgroupoid. Since \(\mathcal{G} \) is étale, counting measures define a Haar system on \(\hat{c}_k^{-1}(0) \). The subspace topology on \(\mathcal{G} \) has a base consisting of the sets

\[
\{U_{(\mu, p)} \times B(y; \varepsilon) \cap \mathcal{G} = \{ (\omega, x) \in \Omega_0 \times \mathbb{R}^d : \mathcal{L}^0 \cap B(0; \mu) = p, x \in \mathcal{L} \cap B(y; \varepsilon) \},
\]

with \(\mu \in [0, \infty) \), \(p \in P_\mu \), \(y \in \mathbb{R}^d \) and \(0 < \varepsilon < r/2 \). Exactness of the cocycles \(\hat{c}_k \) entails that the map \((\omega, x) \mapsto (\omega, \hat{c}_k(x)) = (\omega, x_1, \cdots, x_k) \) is a complete quotient map onto its image. This map is equal to the restriction of the map \(\text{id} \times \pi_k \) to \(\mathcal{G} \), with \(\pi_k : \mathbb{R}^d \to \mathbb{R}^k \) the projection onto the first \(k \) coordinates, which is a complete quotient map. \(\square \)

Note that the above proof applies to any cocycle \(c : \mathcal{G} \to \mathbb{R}^k \) that factors through the cocycle \(\hat{c}_d : \mathcal{G} \to \mathbb{R}^d \). Now that we have characterised the étale topology on \(\mathcal{G} \), we recall the constructions in Section 1 and consider an \(s \)-cover for \(\mathcal{G} \) (Definition 1.7), which will then give a frame for the \(C^* \)-module over the unit space, which we denote \(E_{C(\Omega_0)} \). We fix a choice of \(0 < \varepsilon < r/2 \) and a countable set of points \(Y \subset \mathbb{R}^d \) for which \(B(y; \varepsilon) \) form an open cover of \(\mathbb{R}^d \). Note that we can choose the set \(Y = \lambda \mathbb{Z}^d \) with \(\lambda > 0 \) sufficiently small, which is convenient but not necessary.

Proposition 2.18. Let \(\mathcal{L} \subset \mathbb{R}^d \) be a uniformly discrete subset, \(\mathcal{G} \) the associated groupoid and \(E_{C(\Omega_0)} \) its Haar module. For any \(0 < \varepsilon < r/2 \) and any countable cover \(\{ B(y; \varepsilon) \}_{y \in Y} \) of the open sets

\[
V_y := V_{(0,0,y,\varepsilon)} = \{ (\omega, x) \in \Omega_0 \times \mathbb{R}^d : x \in \mathcal{L}^0 \cap B(y, \varepsilon) \}
\]

form an \(s \)-cover for \(\mathcal{G} \). Any partition of unity \(\chi_y \) subordinate to the cover \(\{ B(y, \varepsilon) \}_{y \in Y} \) of \(\mathbb{R}^d \) can be lifted to a partition of unity subordinate to the cover \(V_y \) of \(\mathcal{G} \) via \(\chi_y(\omega, x) = \chi_y(x) \). Consequently the functions \(\chi_y : \mathcal{G} \to \mathbb{R} \) define a frame for \(E_{C(\Omega_0)} \).

Proof. The sets \(V_y \) form an open cover of \(\mathcal{G} \) because each \((\omega, x) \in \mathcal{G} \) is an element of \(V_y \) whenever \(x \in B(y, \varepsilon) \) and such \(y \) exists because \(B(y, \varepsilon) \) form an open cover. Moreover, each of the \(V_y \) is an \(s \)-set by Lemma 2.16. The functions \(\chi_y \) define a frame by Proposition 1.10. \(\square \)

2.2. The twisted groupoid algebra and its \(K \)-theory.

Given our transversal groupoid, we fix a normalised 2-cocycle \(\sigma : \mathcal{G}(\mathcal{L}) \to T \) (or \(\{ \pm 1 \} \) in the real case). Our central motivation for working with twisted groupoid algebras comes from the following example.

Example 2.19 (Magnetic twists). For the transversal groupoid, we can encode the action of a magnetic field that twists the translation action of the lattice. Working first with the continuous hull \(\Omega_C \times \mathbb{R}^d \), we follow [13, Section 2.2] and define a 2-cocycle,

\[
\sigma : \mathbb{R}^d \times \mathbb{R}^d \to U(C(\Omega_C)), \quad \sigma(x, y) = \exp \left(-i \Gamma(0, x, x + y) \right)
\]

where \(\Gamma(0, x, x+y) \) is the magnetic flux through the triangle defined by the points \(0, x, x+y \in \mathbb{R}^d \). The magnetic field need not be constant over \(C(\Omega_C) \) and can generally be described by a continuous map \(B : \Omega_C \to \wedge^2 \mathbb{R}^d \), where \(\Gamma(x, y, z) = \int_{(x,y,z)} B \), and \((x, y, z) \subset \mathbb{R}^d \) is the triangle with corners \(x, y, z \in \mathbb{R}^d \). If the magnetic field is constant over \(\Omega_C \), then our general flux equation can be simplified by a skew-symmetric matrix \(B \) with

\[
\sigma(x, y) = \exp \left(-i \langle x, B(x + y) \rangle \right) = \exp \left(-i \langle x, B y \rangle \right).
\]
Our choice of 2-cocycle on the crossed product \(C(\Omega_L) \times_{\sigma} \mathbb{R}^d \) restricts to a 2-cocycle on the transversal groupoid, which we also denote by \(\sigma \). Namely, we define
\[
\sigma((\omega, x), (T_{-x}\omega, y)) = \exp \left(-i \Gamma(\omega) (0, x, x + y) \right)
\]
where \(\Gamma(\omega) (0, x, x + y) \) is the magnetic flux through the triangle defined by the points \(0, x, x + y \in \mathcal{L}(\omega) \). We note that our twist will always be trivial for \(d = 1 \) and is normalised because
\[
\sigma((\omega, x), (T_{-x}, -x)) = \exp \left(-i \Gamma(\omega) (0, x, 0) \right) = 1.
\]
The cocycle condition on \(\sigma \) translates into the condition that for \(x, x + y, x + y + z \in \mathcal{L}(\omega) \),
\[
\Gamma(\omega)(0, x, x + y) + \Gamma(\omega)(0, x + y, x + y + z) = \Gamma(\omega)(0, x, x + y + z) + \Gamma(\mathcal{L}, x -\omega)(0, y, y + z),
\]
which follows from Stokes’ Theorem and the observation that
\[
\Gamma(\mathcal{L}, x -\omega)(0, y, y + z) = \Gamma(\mathcal{L})(x, x + y, x + y + z).
\]
Given our groupoid \(\mathcal{G} \) and cocycle \(\sigma \), we can construct the groupoid \(C^* \)-algebra by the method given in Section 1.3, acting on the \(C^* \)-module over the unit space. The \(K \)-theory of the twisted groupoid algebra is used to describe topological phases of gapped Hamiltonians, which we will then pair with \(KK \)-cycles to obtain numerical labels for these phases. In the absence of a 2-cocycle twist, the continuous dynamical system \((\Omega_L, T, \mathbb{R}^d) \) can be described via the crossed product groupoid \(\Omega_L \times \mathbb{R}^d \), which is then groupoid-equivalent to \(\mathcal{G} \). Then applying the equivalence theorem of \([66, 83] \) and the Connes–Thom isomorphism \([24]\) one obtains the isomorphisms
\[
K_*(C^*_r(\mathcal{G})) \cong K_*(C(\Omega_L) \times_{\sigma} \mathbb{R}^d) \cong K_{*-d}(C(\Omega_L)) \cong K^{d-*}(\Omega_L),
\]
in both real and complex \(K \)-theory. This result remains true for twists by 2-cocycles.

Proposition 2.20. Let \(\mathcal{L} \) be a Delone set and \(\sigma : (\Omega_L \times \mathbb{R}^d)^{(2)} \rightarrow \mathbb{T} \) (or \(\{ \pm 1 \} \) in the real case) a continuous 2-cocycle. Then the twisted groupoid \(C^* \)-algebra \(C^*_{\tau}(\mathcal{G}, \sigma) \) is Morita equivalent to the twisted crossed product \(C(\Omega_L) \times_{\sigma} \mathbb{R}^d \) and there is an isomorphism \(K_*(C^*_r(\mathcal{G}, \sigma)) \rightarrow K^{d-*}(\Omega_L) \).

Proof. As the 2-cocycle on \(\mathcal{G} \) comes from the restriction of a 2-cocycle on \(\Omega_L \times \mathbb{R}^d \), we can apply \([27, Theorem 9.1]\), which gives that \(C^*_r(\mathcal{G}, \sigma) \) is Morita equivalent to the twisted crossed product \(C(\Omega_L) \times_{\sigma} \mathbb{R}^d \). Then, by Packer–Raeburn stabilisation, \([68, Section 3]\), and the Connes–Thom isomorphism we obtain that
\[
K_*(C^*_r(\mathcal{G}, \sigma)) \cong K_*(C(\Omega_L) \times_{\sigma} \mathbb{R}^d) \cong K_*(C(\Omega_L) \otimes \mathbb{K} \times \mathbb{R}^d) \cong K_{*-d}(C(\Omega_L) \otimes \mathbb{K}) \cong K^{d-*}(\Omega_L).
\]
Hence the \(K \)-theory of the twisted groupoid \(C^* \)-algebra reduces to that of the continuous hull \(\Omega_L \).

Let us emphasise that the computation of the \(K \)-theory of \(\Omega_L \) is highly non-trivial. A homological description of the \(K \)-theory of \(\Omega_L \) for a large class of tilings with finite local complexity is given in \([30]\) as well as computational techniques. See also the review \([39]\). In the case that \(\mathcal{L} \) is repetitive, aperiodic and has finite local complexity, one can characterise \(\Omega_L \) as a projective limit \([2, 46, 10]\) and compute its \(K \)-theory using the Pimsner–Voiculescu spectral sequence \([81]\) (adapted from the spectral sequence used by Kasparov \([41, \S 6.10]\)), whose \(E_2 \)-page is isomorphic to the Čech cohomology of \(\Omega_L \) with integer coefficients. In the case of low-dimensional substitution tilings with finite local complexity and a primitive and injective substitution map, Gonçalves–Ramírez-Solano relate the Čech cohomology of \(\Omega_L \) to the \(K \)-theory of the groupoid \(C^* \)-algebra of the unstable equivalence relation on \(\Omega_L \) (note that this groupoid \(C^* \)-algebra is Morita equivalent to \(C^*_r(\mathcal{G}) \)) \([35, Theorem 2.3]\). See \([35]\) for a detailed exposition on these (and other) matters.
2.2.1. The bulk KK-cycle. We now introduce our main tool to extract numerical invariants from $K_*^s(C^*_r(G, \sigma))$ (see Section 6). The transversal groupoid G is étale and the cocycles $\check{c}_k : G \to \mathbb{R}^k$, $\check{c}_k(\omega, x) = (x_1, \ldots, x_k)$ are exact by Proposition 2.17. Hence we can construct a family of unbounded KK-cycles for G by Proposition 1.12.

We call the special case $c(\omega, x) := \check{c}_d(\omega, x) = x$, where Ker$(c) \cong G(0) \cong \Omega_0$, the bulk KK-cycle as it spans all dimensions of the lattice, where the terminology is taken from topological phases. Explicitly,

$$d\lambda_{\Omega_0} = \left(C_\omega(G, \sigma) \otimes C_0^{d, d}, E_{C_\Omega(\Omega_0)} \otimes \bigwedge^d \mathbb{R}^d, \sum_{j=1}^d X_j \otimes \gamma^j \right),$$

is an unbounded Kasparov module, with X_j is the self-adjoint regular operator $(X_j f)(\omega, x) = x_j f(\omega, x)$ on $E_{C_\Omega(\Omega_0)}$. We will consider other unbounded KK-cycles from cocycles on G and their properties in Section 3.

2.3. One dimensional Delone sets as Cuntz–Pimsner algebras. Given an (r, R)-Delone set $L \subset \mathbb{R}^d$, we have constructed the groupoid G and a class in $KK^s(C^*_r(G, \sigma), C(\Omega_0))$ that encodes the translation action on the transversal. For the case $d = 1$ and trivial cocycle $\sigma = 1$, we now give an equivalent description of $C^*_r(G)$ as a Cuntz–Pimsner algebra. We also find that the Kasparov cycle from Equation (3) is equivalent to the class of the defining extension of the Cuntz–Pimsner algebra. We remark that a similar construction is done in [87] that includes higher dimensions but for more restrictive substitution tilings. Here we leave open the question of higher dimensions where, in analogy with crossed products by \mathbb{Z}^d, a description of $C^*_r(G, \sigma)$ as an iterated Cuntz–Pimsner algebra or C^*-algebra of a product system [85] is a natural aim.

In the case $d = 1$, recall the cocycle $c(\omega, x) = x \in \mathbb{R}$ and write

$$G(0) = G_0 := c^{-1}(0), \quad G_1 := c^{-1}(r, R), \quad G_{-1} := c^{-1}(-R, -r).$$

Lemma 2.21. Let $(\omega, x) \in G$ and $x > 0$. There exist $(\omega_j, x_j) \in G_1, j = 1, \ldots, n$ such that

$$(\omega, x) = \prod_{j=1}^n (\omega_j, x_j),$$

and this decomposition is unique. A similar statement holds for (ω, x) with $x < 0$ where we replace G_1 with G_{-1}.

Proof. The lattice $L(\omega) \subset \mathbb{R}$ is discrete, so we can order it as

$$L(\omega) = \{ y_n \}_{n \in \mathbb{Z}}, \quad y_0 = 0, \quad y_j < y_{j+1}, \quad r < y_{j+1} - y_j < R.$$

Then $(\omega, x) = (\omega, y_n)$ for some n and we set

$$\omega_j := T_{-x_{j-1}} \omega, \quad x_j := y_j - y_{j-1}.$$

It follows that

$$(\omega, x) = (\omega, y_n) = (\omega, y_1) \cdot (T_{-y_1} \omega, y_2 - y_1) \cdots (T_{-y_{n-1}} \omega, y_n - y_{n-1}) = \prod_{j=1}^n (\omega_j, x_j),$$

as claimed. Suppose that

$$(\omega, x) = \prod_{j=1}^m (\eta_j, z_j),$$

is another such decomposition and assume without loss of generality that $m > n$. Then $\eta_1 = \omega_1 = \omega$. Since $z_1, x_1 \in L(\omega) \cap (r, R)$ it follows that $z_1 = x_1$. This argument can be repeated to find $\eta_j = \omega_j$ and $x_j = z_j$ for $1 \leq j \leq n$. Then

$$(\eta_{n+1}, 1) = (\eta_{n+1}, z_{n+1}) \cdots (\eta_m, z_m) = (\eta_{n+1}, z_{n+1} + \cdots + z_m),$$

so $0 < z_{n+1} + \cdots + z_m = 0$, a contradiction. \hfill \Box
The previous result indicates that the 1-dimensional transversal groupoid is in some sense generated by $G_1 = c^{-1}(r, R)$. This then gives us a pathway to recharacterise $C^*_r(G)$ as a Cuntz–Pimsner algebra. The following result comes from standard arguments.

Lemma 2.22. Suppose $d = 1$ and let $E_{C_c(G_1)}^{(r, R)}$ be the completion of $C_c(G_1)$ in $C^*_r(G)$. Then $E_{C_c(G_1)}^{(r, R)}$ is a C^*-bimodule over $C(O_0)$ with structure

$$
(f_1 | f_2) C_{c(O_0)}(\omega) = (f_1^* f_2)(\omega, 0),
$$

$$
C_{c(O_0)}(f_1 | f_2)(\omega) = (f_1^* f_2^*)(\omega, 0),
$$

An analogous result also holds for the completion of $C_c(G_1)$.

Denote by $d : G \to Z$ the map that associates to an element (ω, x) the integer n for which $x = y_n$ with $L^{(\omega)} = \{y_n\}_{n \in \mathbb{Z}}$ as in Equation (4). We call $d(\omega, x)$ the degree of (ω, x).

Proposition 2.23. The map $d : G \to Z$ is a continuous 1-cocycle that is unperforated in the sense of [75]. Consequently $C^*_r(G)$ is isomorphic to the Cuntz–Pimsner algebra $O_{E^{(r, R)}}$ and for $n > 0$ the sets

$$
G_{\pm n} := \{\xi_1 \cdots \xi_n : \xi_i \in G_{\pm 1}\},
$$

define a decomposition $G = \bigcup_{n \in \mathbb{Z}} G_n$ into clopen subsets.

Proof. We prove that d is locally constant. Let $(\omega, x) \in G$ and choose μ, ν such that $x \in B(y; \varepsilon) \subset B(0; \mu)$ with $\varepsilon < r/2$. Then $(\omega, x) \in V_{\{\mu, \nu, \varepsilon\}}$ for $p = L^{(\omega)} \cap B(0; \mu)$ and consider $(\eta, z) \in V_{\{\mu, \nu, \varepsilon\}}$. Since

$$
x, z \in B(y; \varepsilon) \subset L^{(\omega)} \cap B(0; \mu) = L^{(\eta)} \cap B(0; \mu),
$$

and $\varepsilon < r/2$ it follows that $x = z$. Then since

$$
L^{(\omega)} \cap B(0; \mu) = L^{(\eta)} \cap B(0; \mu)
$$

it follows that $d(\omega, x) = d(\eta, z)$. Thus the degree is locally constant on G. By Lemma 2.21 the degree is additive, and it thus defines a continuous 1-cocycle with

$$
d^{-1}(n) = G_n := (G_{\pm n})_{[n]}^{[n]},
$$

and each G_n is clopen. We thus satisfy the hypothesis of [75, Proposition 10], which gives the isomorphism $O_{E^{(r, R)}} \to C^*_r(G)$. \qed

2.3.1. The Cuntz–Pimsner extension class. We extend the equivalence of the one-dimensional transversal groupoid with a Cuntz–Pimsner algebra to a compatibility of the bulk KK-cycle from Equation (3) with the class in $KK^1(O_{E^{(r, R)}}, C(O_0))$ that comes from the defining extension of $O_{E^{(r, R)}}$.

Lemma 2.24. The C^*-module $E_{C(O_0)}^{(r, R)}$ is a self-Morita equivalence bimodule (SMEB).

Proof. Given $\omega \in O_0$ with ordering $L^{(\omega)} = \{x_n\}_{n \in \mathbb{Z}}$ with $x_0 = 0$ and $x_n - x_{n-1} \in (r, R)$, a generic element in $c^{-1}(r, R)$ can be written as $(T^{-x_n} \omega, x_{n+1} - x_n)$. We first compute

$$
(C_{c(O_0)}(f_1 | f_2) \cdot f_3)(T^{-x_n} \omega, x_{n+1} - x_n) = (f_1^* f_2^*)(T^{-x_n} \omega, 0) f_3(T^{-x_n} \omega, x_{n+1} - x_n)
$$

$$
= f_1(T^{-x_n} \omega, x_{n+1} - x_n) f_2^*(T^{-x_n} \omega, x_{n+1} - x_n) f_3(T^{-x_n} \omega, x_{n+1} - x_n)
$$

and then compare to

$$
(f_1 \cdot f_2 | f_3)(T^{-x_n} \omega, x_{n+1} - x_n) = f_1(T^{-x_n} \omega, x_{n+1} - x_n) f_2^*(T^{-x_n} \omega, x_{n+1} - x_n) f_3(T^{-x_n} \omega, x_{n+1} - x_n)
$$

and

$$
(f_1 | f_2 \cdot f_3)(T^{-x_n} \omega, x_{n+1} - x_n) = f_1(T^{-x_n} \omega, x_{n+1} - x_n) f_2^*(T^{-x_n} \omega, x_{n+1} - x_n) f_3(T^{-x_n} \omega, x_{n+1} - x_n)
$$

and

$$
(f_1 \cdot f_2 \cdot f_3)(T^{-x_n} \omega, x_{n+1} - x_n) = f_1(T^{-x_n} \omega, x_{n+1} - x_n) f_2^*(T^{-x_n} \omega, x_{n+1} - x_n) f_3(T^{-x_n} \omega, x_{n+1} - x_n)
$$

and

$$
(f_1 | f_2 \cdot f_3)(T^{-x_n} \omega, x_{n+1} - x_n) = f_1(T^{-x_n} \omega, x_{n+1} - x_n) f_2^*(T^{-x_n} \omega, x_{n+1} - x_n) f_3(T^{-x_n} \omega, x_{n+1} - x_n)
$$

18
as required. Lastly the bi-module is full as by the compactness of \(\Omega_0 \), any \(g \in C(\Omega_0) \) can be written
\[
g(\omega) = f_1(\omega, x_1)\overline{f_2(\omega, x_1)} = C(\Omega)(f_1 \mid f_2)(\omega)
\]
\[
= f_1(T_{-x_1}\omega, -x_1)f_2(T_{-x_1}\omega, -x_1) = (f_1 \mid f_2)C(\Omega_0)(\omega)
\]
for some \(f_1, f_2, \tilde{f}_1, \tilde{f}_2 \in C_c(e^{-1}(r, R)) \).

Given the bimodule \(E_{C(\Omega_0)}^{(r,R)} \) we can use [74, Section 3.1] to construct an unbounded Kasparov module giving a class in \(KK^1(\mathcal{O}_{E^{(r,R)}}^E, C(\Omega_0)) \) and representing the extension
\[
0 \to \mathbb{K} \left((F_{E^{(r,R)}^E})_C(\Omega_0) \right) \to T_{E^{(r,R)}} \to O_{E^{(r,R)}} \to 0
\]

defining the Cuntz–Pimsner algebra \(\mathcal{O}_{E^{(r,R)}}^E \). Using the conjugate module \(\mathcal{E}_{C(\Omega)}^{(r,R)} \), we define for \(n < 0 \), \((E^{(r,R)})^\otimes n = (\mathcal{E}_{C(\Omega)}^{(r,R)})^\otimes |n| \). We can then consider the bi-infinite Fock module
\[
F_{E,Z} := \bigoplus_{n \in \mathbb{Z}} (E^{(r,R)})^\otimes n C(\Omega_0),
\]

which carries a natural representation of \(O_E \) and an operator making into a KK-cycyle.

Proposition 2.25 ([74], Theorem 3.1). Define an operator \(N \) on the algebraic direct sum \(\bigoplus_{n \in \mathbb{Z}} E^\otimes m \) by \(N \xi = n \xi \) for \(\xi \in E^\otimes n \). There is a \(* \)-homomorphism \(\mathcal{O}_{E^{(r,R)}}^E \to \text{End}^*(\mathbb{K}[F_{E,Z}]) \) such that \(S_f \xi := f \otimes \xi \) for all \(f \in E^{(r,R)} \) and \(\xi \in (E^{(r,R)})^\otimes n \). The triple \((\mathcal{O}_{E^{(r,R)}^E}, (F_{E,Z})^\otimes n, N) \) is an unbounded Kasparov module that represents the class \([\text{ext}] \otimes \mathbb{K}[F_{E,Z}] \in KK^1(\mathcal{O}_{E^{(r,R)}^E}, C(\Omega_0)) \).

Corollary 2.26. The odd Kasparov module from Proposition 2.25 defines the same class in \(KK^1(C^{\ast}_r(\mathcal{G}), C(\Omega_0)) \) as the bulk Kasparov module \(d_A\Omega_0 \) from Equation (3) with \(d = 1 \).

Proof. The \(C^\ast \)-algebras are isomorphic by Proposition 2.23. Furthermore, the positive semisplitting from both the groupoid and Cuntz–Pimsner Kasparov modules is the projection onto elements with non-negative cocycle values. Hence the extensions are equivalent, which also gives equivalence within \(KK^1 \).

By the presentation of \(C_r^{\ast}(\mathcal{G}) \) as a Cuntz–Pimsner algebra, we can use the long (cyclic) exact sequence as a tool for the computation of \(K_*^{\ast}(C^{\ast}_r(\mathcal{G})) \). Namely, for complex algebras,
\[
\begin{array}{cccccc}
K_0(C(\Omega_0)) & \otimes (C(\Omega_0) - [E^{(r,R)}]) & K_0(C(\Omega_0)) & \otimes (C(\Omega_0) - [E^{(r,R)}]) & K_0(C^{\ast}_r(\mathcal{G}))
\end{array}
\]
\[
\begin{array}{c}
\downarrow \\
\downarrow \\
\downarrow \\
\downarrow \\
\downarrow \\
\end{array}
\]
\[
\begin{array}{cccccc}
K_1(C^{\ast}_r(\mathcal{G})) & \otimes (C(\Omega_0) - [E^{(r,R)}]) & K_1(C(\Omega_0)) & \otimes (C(\Omega_0) - [E^{(r,R)}]) & K_1(C(\Omega_0))
\end{array}
\]

where the map \(K_*(C(\Omega_0)) \otimes [E^{(r,R)}] \to K_*(C(\Omega_0)) \) comes from the internal product of the \(K \)-theory class with the element \([E^{(r,R)}] \in KK(C(\Omega_0), C(\Omega_0)) \). There is an analogous but longer exact sequence for \(C^{\ast}_r \)-algebras,
\[
\cdots \to KO_0(C(\Omega_0)) \otimes (C(\Omega_0) - [E^{(r,R)}]) \to KO_0(C(\Omega_0)) \otimes (C(\Omega_0) - [E^{(r,R)}]) \to KO_0(C^{\ast}_r(\mathcal{G})) \to \cdots
\]

By the Morita equivalence of \(C^{\ast}_r(\mathcal{G}) \) and \(C(\Omega_\mathcal{L}) \times \mathbb{R} \), we know that \(K_0(C^{\ast}_r(\mathcal{G})) \cong K_{1}(C(\Omega_\mathcal{L})) \) by the Connes–Thom isomorphism. As the \(K \)-theory of \(C(\Omega_\mathcal{L}) \) is generally quite difficult to compute, the Pimsner exact sequence for \(C^{\ast}_r(\mathcal{G}) \) may be a helpful tool for such \(K \)-theory computations. For example, if \(K_1(C(\Omega_0)) = 0 \) (e.g. \(\mathcal{L} \) has finite local complexity), then we immediately obtain that
\[
K_0(C^{\ast}_r(\mathcal{G})) \cong \text{coKer}(1 - [E^{(r,R)}]), \\
K_1(C^{\ast}_r(\mathcal{G})) \cong \text{Ker}(1 - [E^{(r,R)}]).
\]
Hence, for a one-dimensional lattice \mathcal{L} with finite local complexity,

$$K_0(C(\Omega_\mathcal{L})) \cong \text{Ker}(1 - [E^{(r,R)}]), \quad K_1(C(\Omega_\mathcal{L})) \cong \text{coKer}(1 - [E^{(r,R)}]).$$

Of course, this result is restricted to one-dimensional lattices or tilings. A description of $C^*_\omega(\mathcal{G})$ for higher dimensions using the C^*-algebra of a product system or as an iterated Cuntz-Pimsner algebra may be possible. We leave this analysis to future research.

Remark 2.27. As a brief cautionary remark, we note that our bimodule $C(\Omega_0)E^{(r,R)}_C(\Omega_0)$ looks quite similar but is different to the crossed product bimodule αA_A with $\alpha : \mathbb{Z} \to \text{Aut}(A)$ and such that $\mathcal{O}_\alpha \cong A \rtimes_{\alpha} \mathbb{Z}$. Indeed, given $\omega \in \Omega_0$, our Cuntz–Pimsner algebra is in some sense generated by $x_1 \in \mathcal{L}(\omega) \cap (r,R)$, but there is no guarantee that $T_{-2x_1}\omega \in \Omega_0$ as would be the case for a \mathbb{Z}-action.

3. Factorisation and the bulk-boundary correspondence

A key attribute of the operator algebra approach to topological phases via crossed products is that both bulk and boundary systems can be treated under the same general framework with an extension of C^*-algebras linking the two systems. Namely, up to stabilisation the edge algebra can be described via $C(\Omega) \rtimes_\sigma \mathbb{Z}^{d-1}$ and, we can recover the bulk algebra by the iterated crossed product $(C(\Omega) \rtimes_\sigma \mathbb{Z}^{d-1}) \rtimes \mathbb{Z} \cong C(\Omega) \rtimes_\sigma \mathbb{Z}^d$ for normalised twists.

In this section we use the groupoid cocycle $c_d : \mathcal{G} \to \mathbb{R}$ to consider the closed subgroupoid $\Upsilon = \text{Ker}(c_d)$. This subgroupoid is too small to completely model an edge system but is groupoid equivalent to one that we argue encodes the translation dynamics on the transversal in $(d - 1)$-directions. Furthermore, we show that the subgroupoid Υ gives rise to a canonical *bulk-boundary extension* of reduced C^*-algebras that generalises the Toeplitz extension for crossed products.

In particular, we use this extension to factorise the groupoid KK-cycle into a product of a $(d - 1)$-dimensional system and the bulk-boundary extension that recovers the bulk system.

3.1. The edge groupoid and the bulk-boundary extension

We now apply our results on twisted groupoid equivalences to the transversal groupoid and the bulk-boundary short exact sequence.

Recall the groupoid cocycle $c_d : \mathcal{G} \to \mathbb{R}$, $c_d(\omega,x) = x_d$. Because c_d is exact, we can apply the results from Section 1.5 and construct an unbounded KK-cycle. We consider the closed subgroupoid $\Upsilon = \text{Ker}(c_d)$, namely

$$\Upsilon = \{ (\omega, y) \in \Omega_0 \times \mathbb{R}^{d-1} : T_{(-y,0)}\omega \in \Omega_0 \}.$$

with multiplication, range and source maps inherited from \mathcal{G}. Furthermore, the restriction of σ to Υ gives a well defined 2-cocycle for Υ. Recalling Section 1.4, the restriction map

$$\rho_\Upsilon : C_\omega(\mathcal{G}, \sigma) \to C_\omega(\Upsilon, \sigma)$$

defines a $(C^*_\omega(\mathcal{G}, \sigma), C^*_\omega(\Upsilon, \sigma))$-bimodule $E_{C^*_\omega(\Upsilon, \sigma)}$. Applying Proposition 1.12 to the cocycle ρ_Υ, and writing $X_d := D_{c_d}$, gives us the following.

Proposition 3.1 ([60], Theorem 3.9). The triple

$$d\lambda_{d-1} = \left(C_\omega(\mathcal{G}, \sigma) \hat{\otimes} \text{Cl}_{0,1}, E_{C^*_\omega(\Upsilon, \sigma)} \hat{\otimes} \bigwedge^\ast \mathbb{R}, X_d \hat{\otimes} \gamma \right)$$

is a real or complex unbounded Kasparov module.

The groupoid Υ is too small to be thought of as representing an edge system. Instead, we will consider the groupoid $\mathcal{G} \rtimes \mathcal{G}/\Upsilon$ whose twisted reduced C^*-algebra is Morita equivalent to $C^*_\omega(\Upsilon, \sigma)$, cf. Section 1.4.

The cocycle c_d determines the subset $\text{Ran}(c_d) \subset \mathbb{R}^d$ (which need not be a subgroup). Having fixed this set, the groupoid $\mathcal{G} \rtimes \mathcal{G}/\Upsilon$ allows us to put a groupoid structure back into our system with the translation action in $(d - 1)$-directions.

The space \mathcal{G}/Υ is given by equivalence classes of elements $[(\omega, x)] \in \mathcal{G}$ under the relation

$$(\omega, x) \sim (\omega', x') \iff \exists (T_{-\omega}(y,0)) \in \Upsilon \quad (\omega, x + (y,0)) = (\omega', x').$$
Hence we can describe the quotient G/Y by the pair $[(\omega, x_d)]$ with $(\omega, x_d) \in \Omega_0 \times \text{Ran}(c_d)$. We have the presentation of $G \rtimes G/Y$ by pairs

$$G \times G/Y \cong \{((\omega, x), [\omega', y_d]) : r_G(c_0^{-1}(y_d)) = T_{-x}\omega\} \cong \{((\omega, x), [(T_{-x}\omega, y_d)])\} \subset G \times G/Y.$$

Recall that $(\omega, x) \in G$ if $x \in \mathcal{L}(\omega)$. Our presentation says that $((\omega, x), [(T_{-x}\omega, y_d)]) \in G \times G/Y$ if there is some $u \in \mathbb{R}^{d-1}$ such that $x + (u, y_d) \in \mathcal{L}(\omega)$. The unit space is given by

$$(G \times G/Y)^{(0)} = G/Y,$$

and the groupoid structure is determined by

$$s((\omega, x), [(T_{-x}\omega, y_d)]) = [(T_{-x}\omega, y_d)], \quad r((\omega, x), [(T_{-x}\omega, y_d)]) = [(\omega, x + y_d)],$$

$$((\omega, x), [(T_{-x}\omega, y_d)])^{-1} = ((T_{-x}\omega, -x), [(\omega, x + y_d)]),$$

$$(\omega, x), [(T_{-x}\omega, y_d)] \cdot (\omega, x), [(T_{-x}\omega, y_d - z_d)] = ((\omega, x + z), [(T_{-x}\omega, y_d - z_d)]).$$

We note that for $((T_{-x}\omega, z), [(T_{-x}\omega, y_d - z_d)])$ to be in $G \times G/Y$, there must be some $v \in \mathbb{R}^{d-1}$ such that $x + (v, y_d) \in \mathcal{L}(\omega)$. Because $((\omega, x), [(T_{-x}\omega, y_d)]) \in G \times G/Y$ implies $x + (u, y_d) \in \mathcal{L}(\omega)$ for some $u \in \mathbb{R}^{d-1}$, the groupoid multiplication involves a translation in $(d-1)$-dimensions only. Thus we see the groupoid $G \times G/Y$ models the dynamics of the transversal Ω_0 relative to the fixed set $\text{Ran}(c_d)$. We use the 2-cocycle σ on G to define a 2-cocycle on $G \times G/Y$ via

$$\sigma ((\omega, x), [(T_{-x}\omega, y_d)]), ((\omega, x), [(T_{-x}\omega, y_d - z_d)]) = \sigma ((\omega, x), (T_{-x}\omega, z)).$$

Applying Proposition 1.11, we obtain the following.

Proposition 3.2. The left action of $G \times G/Y$ and the right action of Y on G induce an isomorphism $C^*_r(G \times G/Y, \sigma) \cong \mathcal{K}(E_{C^*_r(Y, \sigma)})$.

Hence, the C^*-module $E_{C^*_r(Y, \sigma)}$ is a Morita equivalence bimodule and gives an invertible element in $KK(C^*_r(G \times G/Y, \sigma), C^*_r(Y, \sigma))$. From the perspective of index theory, we can work with either Y or $G \times G/Y$. While we consider $G \times G/Y$ to be our edge groupoid, the subgroupoid $Y \subset G$ will be easier to work with for some of our mathematical arguments.

3.1.1. The Toeplitz extension

To the Kasparov module from Proposition 3.1 we associate an extension of C^*-algebras representing the same class in $KKO^1(C^*_r(G, \sigma), C^*_r(Y, \sigma))$.

Recall that for all $\omega \in \Omega_0$ we have $0 \in \mathcal{L}(\omega)$. Since each $\mathcal{L}(\omega)$ is uniformly discrete there exists $0 < \delta < r/2$ such that $-\delta \not\in \text{Ran}(c_d)$. Therefore the spectrum of the self-adjoint regular operator X_d has a gap near 0 and we can choose a continuous function $\chi : \mathbb{R} \to \mathbb{R}$ with $\chi(x) = 0$ for $x \leq -\delta$ and $\chi(x) = 1$ for $x \geq 0$. Using the functional calculus for self-adjoint regular operators, we define the adjointable projection

$$\Pi_d := \chi(X_d) \in \text{End}^*(E_{C^*_r(Y, \sigma)}),$$

which is implemented by pointwise multiplication with bounded function $\chi \circ c_d : G \to \mathbb{R}

We consider the map

$$\varphi : C^*_r(G, \sigma) \to \mathcal{Q}(E_{C^*_r(Y, \sigma)}), \quad \varphi(a) = q(\Pi_d a \Pi_d).$$

To sketch why φ is injective, one compares the left-actions of $\Pi_d \pi(f) \Pi_d$ with $\pi(h)$ for $f \in C_c(G, \sigma)$ and $h \in C_c(G \times G/Y, \sigma)$. Because $\pi(f)$ involves a convolution product in all d directions and $\pi(h)$ takes a convolution in $(d-1)$ directions relative to $\text{Ran}(c_d)$, one finds that $\Pi_d \pi(f) \Pi_d = \pi(h)$ only when $f = 0$. Using the isomorphism $\mathcal{K}(E_{C^*_r(Y, \sigma)} \cong C^*_r(G \times G/Y, \sigma)$ and the injectivity of φ, we construct the generalised Toeplitz extension

$$0 \to C^*_r(G \times G/Y, \sigma) \to C^*_r(\Pi_d C^*_r(G, \sigma) \Pi_d, C^*_r(G \times G/Y, \sigma)) \to C^*_r(G, \sigma) \to 0$$

with completely positive semi-splitting $a \mapsto \Pi_d a \Pi_d$ and Busby invariant φ. In the case $d = 1$ we have $Y \cong G^{(0)} \cong \Omega_0$, and the extension (5) is equivalent to the Toeplitz–Cuntz–Pimsner extension for $C^*_r(G, \sigma)$ of Corollary 2.26.
The algebra $\mathcal{T} = C^*(\Pi_dC^*_r(\mathcal{G}, \sigma)\Pi_d, C^*_r(\mathcal{G} \rtimes \mathcal{G}/\mathcal{T}, \sigma))$ can be represented on $\Pi_dE_{C'(\Omega_0)}$ or $(\Pi_d)_\omega \ell^2(\mathbb{C}^\omega)$ for a fixed $\omega \in \Omega_0$ with $(\Pi_d\psi_\omega)(x) = \chi(X_d)\psi_\omega(x)$. Therefore the Toeplitz-like algebra \mathcal{T} can be thought of as acting on a half-infinite system with boundary.

Remark 3.3 (Integer-valued cocycles and the Pimsner–Voiculescu extension). It is shown in [60, Proposition 3.22] that if the an exact cocycle c_d is integer-valued, then the associated KK-class $[D_{cd}] \in KK^1(C^*_r(\mathcal{G}, \sigma), C^*_r(\mathcal{T}, \sigma))$ coincides with the KK-class defined from the circle action

$$\alpha^c : \mathbb{T} \to \text{Aut}(C^*_r(\mathcal{G}, \sigma)), \quad \alpha^c_\xi(f)(\xi) := e^{ic_d(\xi)}f(\xi),$$

via the construction in [21]. For crossed products by \mathbb{Z}, the Kasparov module of a circle action is the same as the Kasparov module constructed from the Toeplitz extension of the crossed product (constructed in, for example, [17])

$$0 \to C^*_r(\mathcal{T}, \sigma) \otimes \mathbb{K} \to \mathcal{T} \to C^*_r(\mathcal{T}, \sigma) \rtimes \mathbb{Z} \to 0$$

with $C^*_r(\mathcal{T}, \sigma) \rtimes \mathbb{Z} \cong C^*_r(\mathcal{G}, \sigma)$. A similar result holds for semisaturated circle actions (see [4, Section 3] or [3, Section 3.3]). Hence we recover the ‘usual’ bulk-boundary extension considered in [71] for special cases of integer-valued cocycles c_d. This applies in particular if c_d is unperforated.

Remark 3.4 (The Connes–Thom class). Let us now consider the relation between the Kasparov module of Proposition 3.1 and its Toeplitz extension with the Connes–Thom isomorphism and the Wiener–Hoph extension of [47], when $d \geq 2$.

The transversal groupoid \mathcal{G} is Morita equivalent to the crossed product groupoid $\Omega_\mathcal{G} \rtimes \mathbb{R}^d$ and for $d \geq 2$ the boundary groupoid \mathcal{Y} is equivalent to $\Omega_\mathcal{G} \rtimes \mathbb{R}^{d-1}$. Given a normalised 2-cocycle $\sigma : \mathbb{R}^d \times \mathbb{R}^d \to \mathcal{U}(C(\Omega_\mathcal{G}))$, there is an isomorphism $C(\Omega_\mathcal{G}) \rtimes \sigma \mathbb{R}^d \cong (C(\Omega_\mathcal{G}) \rtimes \sigma \mathbb{R}^{d-1}) \rtimes \mathbb{R}$ and a Wiener–Hopf extension

$$0 \to C(\Omega_\mathcal{G}) \rtimes \sigma \mathbb{R}^d \to \mathbb{K} \otimes L^2(\mathbb{R}) \to W \to C(\Omega_\mathcal{G}) \rtimes \sigma \mathbb{R}^d \to 0,$$

see [47]. In [19, Section 6], it was shown that the Wiener–Hopf extension can be represented by the unbounded Kasparov module

$$(6) \quad \left(C_c(\mathbb{R}, C(\Omega_\mathcal{G}) \rtimes \sigma \mathbb{R}^d-1) \otimes C(\Omega_\mathcal{G}) \rtimes \sigma \mathbb{R}^d \otimes \bigwedge^* \mathbb{R}, X \otimes \gamma, \right),$$

where $F_{C(\Omega_\mathcal{G}) \rtimes \sigma \mathbb{R}^d-1}$ is the bimodule obtained from the conditional expectation induced from the restriction to the closed subgroupoid $\Omega_\mathcal{G} \times \mathbb{R}^{d-1} \subset \Omega_\mathcal{G} \times \mathbb{R}^d$,

$$\rho : C_c(\Omega_\mathcal{G} \rtimes \sigma \mathbb{R}^d) \to C_c(\Omega_\mathcal{G} \rtimes \sigma \mathbb{R}^{d-1}), \quad \rho(f)(x_1, \ldots, x_d-1) = f(x_1, \ldots, x_d-1, 0).$$

We consider the composition of KK-classes

$$\left(C(\Omega_\mathcal{G}) \rtimes \sigma \mathbb{R}^d, F_{C^*_c(\mathcal{G}, \sigma), 0} \otimes C^*_c(\mathcal{G}, \sigma)[d\lambda_{d-1}] \otimes C^*_c(\mathcal{Y}, \sigma) \otimes C^*_r(\mathcal{Y}, \sigma), (F^{d-1}_{C(\Omega_\mathcal{G}) \rtimes \sigma \mathbb{R}^d-1}, 0), \right),$$

where the left and right Kasparov modules represent the Morita equivalence (resp. dual Morita equivalence) of the groupoid algebras and crossed products. The end result of this triple product is a Kasparov module representing a class in $KK^1(C(\Omega_\mathcal{G}) \rtimes \sigma \mathbb{R}^d, C(\Omega_\mathcal{G}) \rtimes \sigma \mathbb{R}^{d-1})$. Its relation to the Kasparov module in Equation (6) is as follows. By Definition 2.11 and Proposition 2.16 the Morita equivalence bimodule $F_{C^*_c(\mathcal{G}, \sigma)}$ is obtained from restriction of the crossed product dynamics to the transversal Ω_0. The C^*-module $E_{C^*_c(\mathcal{Y}, \sigma)}$ from $d\lambda_{d-1}$ in Proposition 3.1 is defined by a restriction $C_c(\mathcal{G}, \sigma) \to C_c(\mathcal{Y}, \sigma)$. Lastly the dual Morita equivalence bimodule $(F^{d-1}_{C(\Omega_\mathcal{G}) \rtimes \sigma \mathbb{R}^d-1})^*$ is induced by the inclusion of \mathcal{Y} into $\Omega_\mathcal{G} \times \mathbb{R}^{d-1}$. Hence the inner product on the balanced tensor product can be considered as coming from a generalised conditional expectation $C_c(\Omega_\mathcal{G} \times \mathbb{R}^d, \sigma) \to C_c(\Omega_\mathcal{G} \times \mathbb{R}^{d-1}, \sigma)$ and there is a natural identification

$$F^d \otimes C^*_c(\mathcal{G}, \sigma) \otimes C^*_r(\mathcal{Y}, \sigma) \otimes (F^{d-1}_{C(\Omega_\mathcal{G}) \rtimes \sigma \mathbb{R}^d-1})^* \cong F_{C(\Omega_\mathcal{G}) \rtimes \sigma \mathbb{R}^d-1}. $$

An argument similar to that in the proof of Theorem 3.6 below shows that the operator X in $F_{C(\Omega_\mathcal{G}) \rtimes \sigma \mathbb{R}^d-1}$ satisfies the connection condition with respect to the operator $X \otimes 1$ in $E \otimes C^*_c(\mathcal{Y}, \sigma) (F^{d-1}_{C(\Omega_\mathcal{G}) \rtimes \sigma \mathbb{R}^d-1})^*$. As these maps are also compatible with the Clifford actions, we
recover the unbounded representative of the Wiener–Hopf extension from Equation (6). The boundary maps in K-theory and K-homology from the Wiener–Hopf extension, i.e. the product with the unbounded Kasparov module from Equation (6), implement the inverse of the Connes–Thom isomorphism \cite{[76]}. Hence, these maps are represented by our Toeplitz extension up to groupoid/Morita equivalence.

3.2. Factorisation. By the same basic argument as the bulk algebra, we can build a KK-cycle for $C^*_r(\mathcal{T}, \sigma)$ which is stably isomorphic to the edge algebra $C^*_r(\mathcal{G} \rtimes \mathcal{T}, \sigma)$. We denote by $F_{C(\Omega_0)}$ the $(C^*_r(\mathcal{T}, \sigma), C(\Omega_0))$-$C^*$-bimodule coming from the restriction of $C^*_r(\mathcal{T}, \sigma)$ to the unit space. The notation $F_{C(\Omega_0)}$ distinguishes it from the C^*-module $E_{C(\Omega_0)}$ constructed from $C^*_r(\mathcal{G}, \sigma)$. Specifically,

$$d-1\lambda_{\Omega_0} = \left(C_c(\mathcal{T}, \sigma) \hat{\otimes} C_0, d-1, F_{C(\Omega_0)} \hat{\otimes} \bigwedge^* \mathbb{R}^{d-1}, \sum_{j=1}^{d-1} X_j \hat{\otimes} \lambda^j \right)$$

is an unbounded Kasparov module and gives rise to a class in $KK^{d-1}(C^*_r(\mathcal{T}, \sigma), C(\Omega_0))$ (real or complex). We have constructed a class representing our bulk-boundary extension and a KK-cycle for the edge algebra. The key K-theoretic result that drives the bulk-boundary correspondence is that these two KK-cycles can be put together using the unbounded Kasparov product to reconstruct the bulk KK-cycle.

Theorem 3.5. Under the boundary map coming from the extension of Equation (5),

$$\partial(d-1\lambda_{\Omega_0}) = [d\lambda_{d-1}] \hat{\otimes} C^*_r(\mathcal{T}, \sigma)[\lambda_{d-1} \lambda_{\Omega_0}] = (-1)^{d-1} [\lambda_{\Omega_0}],$$

with $d\lambda_{\Omega_0}$ the bulk KK-cycle from Equation (3) and where $\lbrack x \rbrack$ denotes the inverse in the KK-group. Furthermore, the equality is an unbounded equivalence up to a permutation of the Clifford algebra basis.

Theorem 3.5 is a special case of Theorem 3.6 with $k = d - 1$. Hence we delay the proof until Section 3.3.

3.2.1. A remark on more general boundaries. Our edge groupoid \mathcal{T} can be thought of as the result of a cut along the lattices $\mathcal{L}^{(i)} \in \Omega_0$ along the plane defined by $\text{Ker}(c_d) \cong \mathbb{R}^{d-1} \times \{0\}$. This choice of cut or boundary is somewhat arbitrary. Let us briefly consider more general boundary choices though, by a basis reordering, working with c_d is sufficient.

Let $b : \mathbb{R}^d \rightarrow \mathbb{R}$ be a continuous homomorphism such that as a vector space $\text{dim}(\text{Ran}(b)) = 1$. The plane defined by $\text{Ker}(b)$ defines a new $(d - 1)$-dimensional plane in \mathbb{R}^d which we can cut along to make a new boundary. It is easy to check that the corresponding map $c_b : \mathcal{G} \rightarrow \mathbb{R}$, $c_b(\omega, x) = b(x)$ is an exact groupoid cocycle. Hence, we can study this boundary via the closed subgroupoid $\mathcal{Y}_b = \text{Ker}(c_b)$ and equivalent groupoid $\mathcal{G} \rtimes \mathcal{Y}_b$, which models the $(d - 1)$-dimensional dynamics of the transversal relative to $\text{Ran}(b)$. Because c_b is exact, we can construct an ungraded and unbounded Kasparov module $(C^*_r(\mathcal{G}, \sigma), E_{C^*_r(\mathcal{Y}_b, \sigma)}), b)$ that gives a class in $KK^{d}(C^*_r(\mathcal{G}, \sigma), C^*_r(\mathcal{Y}_b, \sigma))$ and a bulk-boundary short exact sequence

$$0 \rightarrow C^*_r(\mathcal{G} \rtimes \mathcal{Y}_b, \sigma) \rightarrow \mathcal{T} \rightarrow C^*_r(\mathcal{G}, \sigma) \rightarrow 0.$$

As a vector space, $\text{Ker}(b)$ is $(d - 1)$-dimensional and so fix an orthonormal basis $\{z_1, \ldots, z_{d-1}\}$. These basis vectors are orthogonal to z_d, a unit vector that spans $\text{Ran}(b)$. By fixing this notation, we define a natural automorphism $\phi_U \in \text{Aut}(\mathcal{G})$, where $\phi_U((\omega, x)) = (\omega, Ux)$ with $U \in M_d(\mathbb{R})$ the orthogonal matrix that sends the standard basis of \mathbb{R}^d to $\{z_1, \ldots, z_{d-1}, z_d\}$. This map gives an isomorphism between our original edge groupoid \mathcal{T} and \mathcal{Y}_b. Hence the extension that we construct for the boundary $\text{Ran}(b)$ is equivalent to our original boundary and extension. Similarly, by reducing to this picture, the factorisation of Theorem 3.5 carries over and the KK-cycle for $C^*_r(\mathcal{Y}_b, \sigma)$ is mapped to the bulk KK-cycle for $C^*_r(\mathcal{G}, \sigma)$ (up to the $(-1)^{d-1}$ sign).

Let us briefly note that while any crystallographic group $G \subset \mathbb{R}^d$ is a Delone set and our choice of boundary is quite general, the factorisation and bulk-boundary result in Theorem 3.5 is too coarse to detect boundary indices derived from the crystalline structure as in \cite{[34]}.
3.3. *KK*-cycles with higher codimension. Let us now generalise the constructions and ideas from the previous section to consider subinvariants of arbitrary codimension. Such invariants are linked to so-called weak topological phases which are characterised by elements in $K_*(C^*_r(G, \sigma))$ that are not detected by the ‘top degree form’ that comes via a pairing with $d\lambda_{\Omega_0}$.

Once again we use a groupoid homomorphism $\hat{\epsilon}_k : G \to \mathbb{R}^{d-k}$ via $\hat{\epsilon}_k(\omega, x) = (x_{k+1}, \ldots, x_d)$ and define $\Upsilon_k = \text{Ker}(\hat{\epsilon}_k)$, where we characterise

$$\Upsilon_k = \left\{ (\omega, x_1, \ldots, x_k) \in \Omega_0 \times \mathbb{R}^k : (x_1, \ldots, x_k, 0, \ldots, 0) \in \mathcal{L}(\omega) \right\}.$$

As in the case of $k = d - 1$, Υ_k is a closed subgroupoid of G and is equivalent to $G \ltimes \mathcal{G}/\Upsilon_k$. By Proposition 1.12, we can build a Kasparov module

$$d\lambda_k = \left(C_c(G, \sigma) \hat{\otimes} Cl_{0,d-k}, \mathbb{R}^{d-k}, E_{C^*_r(\Upsilon_k, \sigma)}^k \right) \cong \left(\bigwedge^* \mathbb{R}^k, \sum_{j=1}^k X_j \hat{\otimes} \gamma_j \right).$$

In the case $k = d - 1$, $d\lambda_{d-1}$ is the unbounded KK-cycle representing the bulk-boundary extension considered in Section 3.1. We will be interested in pairings of $d\lambda_k$ with the K-theory of $C^*_r(G, \sigma)$. Such pairings naturally take values in the K-theory of $C^*_r(\Upsilon_k, \sigma)$.

As in the case of $k = d - 1$, we can construct an unbounded KK-cycle for the subgroupoid Υ_k,

$$k\lambda_{\Omega_0} = \left(C_c(\Upsilon_k, \sigma) \hat{\otimes} Cl_{0,k}, F_{C^*_r(\Omega_0)}^k \bigwedge^* \mathbb{R}^k, \sum_{j=1}^k X_j \hat{\otimes} \gamma_j \right), \quad F_{C^*_r(\Omega_0)}^k := \overline{C_c(\Upsilon_k, \sigma), C(\Omega_0)},$$

which represents the class $[k\lambda_{\Omega_0}] \in KK(C^*_r(\Upsilon_k, \sigma) \otimes Cl_{0,k}, C(\Omega_0))$.

We now present our main factorisation result, which allows us to decompose the bulk Kasparov module $d\lambda_{\Omega_0}$ as the product of $d\lambda_k$ with $k\lambda_{\Omega_0}$ (up to a sign related to the orientation of Clifford algebras).

Theorem 3.6. Taking the Kasparov product,

$$[d\lambda_k] \hat{\otimes} C^*_r(\Upsilon_k, \sigma) [k\lambda_{\Omega_0}] = (-1)^{k(d-k)}[d\lambda_{\Omega_0}].$$

Furthermore, our equivalence is at the unbounded level up to a permutation of the Clifford basis.

Proof. Much of this proof is book-keeping and is very similar to the proof in [17, Theorem 3.4]. To take the product of the $C^*_r(G, \sigma) \hat{\otimes} Cl_{0,d-k} - C^*_r(\Upsilon_k, \sigma)$ Kasparov module with a $C^*_r(\Upsilon_k, \sigma) \hat{\otimes} Cl_{0,k} - C(\Omega_0)$ Kasparov module, we first take the external product of $d\lambda_k$ with both $k\lambda_{\Omega_0}$ and the KK-cycle representing the identity in $KK(Cl_{0,k}, Cl_{0,k})$. This identity class can be represented by $(Cl_{0,k}, Cl_{0,k}, Cl_{0,k}, 0)$ with right and left actions by multiplication. We then take the product of a $(C^*_r(G, \sigma) \hat{\otimes} Cl_{0,d}, C^*_r(\Upsilon_k, \sigma) \hat{\otimes} Cl_{0,k})$ Kasparov module with a $(C^*_r(\Upsilon_k, \sigma) \hat{\otimes} Cl_{0,k}, C(\Omega_0))$ Kasparov module. First the balanced tensor product gives the C^*-module

$$\left(E^{d-k} \bigwedge^* \mathbb{R}^{d-k} \hat{\otimes} Cl_{0,k} \right) \hat{\otimes} C^*_r(\Upsilon_k, \sigma) \hat{\otimes} Cl_{0,k} \left. \bigwedge^* \mathbb{R}^k \right)_{C(\Omega_0)} \cong \left(E^{d-k} \hat{\otimes} C^*_r(\Upsilon_k, \sigma) \hat{\otimes} Cl_{0,k} \bigwedge^* \mathbb{R}^k \right) \hat{\otimes} C^*_r(\Upsilon_k, \sigma) \hat{\otimes} Cl_{0,k} \bigwedge^* \mathbb{R}^k$$

as $Cl_{0,d-1}$ acts on $\bigwedge^* \mathbb{R}^{d-1}$ non-degeneratively. Next we define a unitary isomorphism

$$E^{d-k} \otimes C^*_r(\Upsilon_k, \sigma) F_{C^*_r(\Omega_0)}^k \to E_{C^*_r(\Omega_0)}^k,$$

by first considering defining a map on dense submodules,

$$v : C_c(G, \sigma) \otimes C^*_r(\Upsilon_k, \sigma) C_c(\Upsilon_k, \sigma) C(\Omega_0) \ni f \otimes h \mapsto f \cdot h \in C_c(G, \sigma) C(\Omega_0).$$

This map preserves the inner-product structures, is thus uniformly bounded and, hence, extends to an isomorphism of C^*-modules. Furthermore the map commutes with the representation of...
with generators, \(\text{bulk-cycle}[\mathcal{G}, \sigma]\) commute with the right-action of \(\text{C}^*(\mathbb{T}_k, \sigma)\). Similarly, \(\{X_i\}_{i=k+1}^d\) also commutes with this map as \(X_i\) is right \(\text{C}^*(\mathbb{T}_k, \sigma)\)-linear on \(E_{C^*(\mathbb{T}_k, \sigma)}^{d-k}\). The operators \(\{X_j\}_{j=1}^k\) satisfy the connection condition under the unitary isomorphism \(v\). Let \(f \in C_c(\mathcal{G}, \sigma)\) and consider the map

\[
v \circ |f| : C_c(\mathbb{T}_k, \sigma) \rightarrow C_c(\mathcal{G}, \sigma), \quad h \mapsto f \cdot h.
\]

Then we need to check that \(X_j \circ v \circ |f| - v \circ |f| \circ X_j\) defines a bounded operator \(F^k_{\mathbb{T}(\Omega_0)} \rightarrow E_{C^*(\Omega_0)}\). This follows since each \(X_j\) acts as a derivation of \(C_c(\mathcal{G}, \sigma)\):

\[
\left((X_j f) \cdot h + f \cdot (X_j h)\right)(\omega, x) = \sum_{(y, d, k) \in \mathcal{L}(\omega) - x} \left((x_j + y_j) f(\omega, x + y) h(T_{x-y} \omega, -y) + f(\omega, x + y) (-y_j) h(T_{x-y} \omega, -y)\right) \sigma(\omega, x + y), (T_{x-y} \omega, -y))
\]

\[
= x_j \left(\sum_{(y, d, k) \in \mathcal{L}(\omega) - x} f(\omega, x + y) h(T_{x-y} \omega, -y) \sigma(\omega, x + y), (T_{x-y} \omega, -y))\right)
\]

\[
= X_j(f \cdot h)(\omega, x).
\]

It follows that \(X_j \circ v \circ |f| - v \circ |f| \circ X_j = v \circ |X_j f|\), which is a bounded adjointable operator. The left and right Clifford actions on \(\wedge^* \mathbb{R}^d \otimes \mathbb{R}^k\) given by

\[
\rho^l \otimes 1(\omega_1 \otimes \omega_2) = (\epsilon_l \wedge \omega_1 - \epsilon(\epsilon_l \wedge \omega_2), 1 \otimes \rho^l(\omega_1 \otimes \omega_2) = (-1)^{[\omega_1]} \epsilon_l \otimes (\epsilon_l \wedge \omega_2 - \epsilon(\epsilon_l \wedge \omega_2))
\]

\[
\gamma^l \otimes 1(\omega_1 \otimes \omega_2) = (\epsilon_l \wedge \omega_1 + \epsilon(\epsilon_l \wedge \omega_2) \otimes \omega_2), 1 \otimes \gamma^l(\omega_1 \otimes \omega_2) = (-1)^{[\omega_1]} \epsilon_l \otimes (\epsilon_l \wedge \omega_2 + \epsilon(\epsilon_l \wedge \omega_2))
\]

with \(\omega\) the degree of the form and \(\{\epsilon_l\}_{l=1}^{d-k}\) and \(\{\epsilon_j\}_{j=1}^k\) the standard basis of \(\mathbb{R}^{d-k}\) and \(\mathbb{R}^k\) respectively.

We relate \(\wedge^* \mathbb{R}^d \otimes \mathbb{R}^k \cong \mathbb{R}^d\), which sends the \(\text{Cl}_{d-k} \otimes \text{Cl}_{0,k} \rightarrow \text{Cl}_{d,k}\) by the map on generators,

\[
\rho^l \otimes 1 \mapsto \rho^l, 1 \otimes \rho^l \mapsto \rho^{d-k+j}
\]

with \(l \in \{1, \ldots, d-k\}\) and \(j \in \{1, \ldots, k\}\) (see [40, §2.16]). There is an analogous map for the right-action of \(\text{Cl}_{d-k,0} \otimes \text{Cl}_{0,k}\).

This leads us to conclude that the unbounded Kasparov module

\[
\left(C_c(\mathcal{G}, \sigma) \otimes \text{Cl}_{0,d}, E_{C^*(\Omega_0)} \otimes \bigwedge^* \mathbb{R}^d, \sum_{l=k+1}^d X_l \hat{\otimes} \gamma^{l-k} + \sum_{j=1}^k X_j \hat{\otimes} \gamma^{d-j}\right),
\]

represents the Kasparov product \([d \lambda, \mathbb{T}_k(\gamma_0, \sigma)]\), because it satisfies the hypotheses of [51, Theorem 13]. Its operator satisfies the connection condition as shown above, the domain of the the operator is included included in the domain of \(\sum_{l=k+1}^d X_l \hat{\otimes} \gamma^{l-k}\) and since the \(X_j \hat{\otimes} \gamma^j\) mutually anticommute, the positivity condition is satisfied as well.

The Kasparov module (8) recovers the bulk module \(d \lambda\) up to a re-ordering of the Clifford basis, as we now show. We consider the map \(\eta_{d-k}(\gamma^j) = \gamma^{j-(d-k)}\) on \(\text{Cl}_{d,0}\) where we identify \(\gamma^j = \gamma^{d-j}\) if \(l \leq 0\). We define the same map on \(\rho^l\) and \(\text{Cl}_{0,d}\). The map \(\eta\) is an automorphism of Clifford algebras but may reverse the canonical orientation, namely

\[
\eta_{d-k}(\omega_{\text{Cl}_{d,0}}) = \eta_{d-k}(\gamma^1 \cdots \gamma^d) = \gamma^{k+1} \cdots \gamma^k \gamma^1 \cdots \gamma^k = (-1)^{k(d-k)} \gamma^{2 \cdots k} \gamma^{d-k} \gamma^1 \cdots \gamma^k = (-1)^{k(d-k)} \omega_{\text{Cl}_{d,0}},
\]

with the same result for the orientation of \(\text{Cl}_{0,d}\). We can apply the map \(\eta_{d-k}\) to obtain the bulk-cycle \(d \lambda\) but at the expense that at the level of KK-classes \([x] \mapsto (-1)^{k(d-k)}[x]\) [40, §5, Theorem 3]. This finishes the proof.

\[\square\]
3.3.1. Another factorisation. Let us also show another way our Kasparov modules can be factorised using a different short exact sequence. Starting with Υ_k, Γ_{k-1} is a closed subgroupoid and we can build the C^*-bimodule $F_{C_d^*(\Upsilon_{k-1}, \sigma)}$ via the restriction $C_c(\Upsilon_k, \sigma) \to C_c(\Gamma_{k-1}, \sigma)$. Applying Proposition 1.12, we obtain the unbounded Kasparov module

$$k\lambda_{k-1} = \left(C_c(\Upsilon_k, \sigma) \hat{\otimes} Cl_{0,1}, F_{C_d^*(\Upsilon_{k-1}, \sigma)} \hat{\otimes} \bigwedge^+ \mathbb{R}, X_k \hat{\otimes} \gamma \right)$$

and for $(\Pi_k f)(\omega, y) = \chi_{[-\delta, \infty]}(yk)f(\omega, y)$, we have an extension

$$0 \to C^*_r(\Upsilon_k \times \Upsilon_k/\Gamma_{k-1}, \sigma) \to C^*(\Pi_k C^*_r(\Upsilon_k, \sigma) \Pi_k, C^*_r(\Upsilon_k \times \Upsilon_k/\Gamma_{k-1}, \sigma)) \to C^*_r(\Upsilon_k, \sigma) \to 0.$$

Theorem 3.7. Taking the Kasparov product,

$$[d\lambda_k] \hat{\otimes} C^*_r(\Upsilon_{k, \sigma})[k\lambda_{k-1}] = (-1)^{d-k} [d\lambda_{k-1}].$$

Furthermore, our equivalence is at the unbounded level up to a permutation of the Clifford basis.

Proof. The proof follows a very similar argument as the proof of Theorem 3.6. First we define a map

$$v : C_c(\mathcal{G}, \sigma) \otimes C_c(\Upsilon_k, \sigma) C_c(\Upsilon_k, \sigma) \to E_{C^*_r(\Upsilon_{k-1}, \sigma)}^{d-(k-1)} f \otimes h \mapsto f \cdot h,$$

where we consider $f \cdot h$ as an element in $E_{C^*_r(\Upsilon_{k-1}, \sigma)}^{d-(k-1)}$. One can check analogously to the proof of Theorem 3.5 that this map extends to a unitary isomorphism of C^*-modules

$$v : E_{C^*_r(\Upsilon_{k-1}, \sigma)}^{d-k} \otimes C^*_r(\Upsilon_k, \sigma) F_{C^*_r(\Upsilon_{k-1}, \sigma)} \to E_{C^*_r(\Upsilon_{k-1}, \sigma)}^{d-(k-1)}.$$

Similarly, we check that

$$(X_k \circ v \circ |f|) = (X_k f) \cdot h = v \circ |X_j f|(h),$$

defines a bounded operator and for $j \in \{k+1, \ldots, d\}$, $(X_j \otimes 1) \mapsto X_j$ as X_j is right $C^*_r(\Upsilon_k)$-linear.

Applying the bounded isomorphism and grouping together the Clifford actions, we obtain the unbounded Kasparov module

$$\left(C_c(\mathcal{G}, \sigma) \hat{\otimes} Cl_{0,d-(k-1)}, E_{C_d^*(\Upsilon_k)}^{d-(k-1)} \hat{\otimes} \bigwedge^d \mathbb{R}^{d-(k-1)}, X_k \hat{\otimes} \gamma^{d-k} + \sum_{j=k+1}^d X_j \hat{\otimes} \gamma^{j-k} \right),$$

which as before satisfies [51, Theorem 13] and thus represents the Kasparov product. To relate this KK-cycle to $d\lambda_{k-1}$, we correct the Clifford labelling by the map $\gamma_j \mapsto \gamma^{j+1}$ for $1 \leq j \leq d-k$ and $\gamma^{d-k+1} \mapsto \gamma^1$. Such a map will change the orientation of $Cl_{0,d-(k-1)}$ and $Cl_{d-(k-1),0}$ by a factor of $(-1)^{d-k}$. The result follows.

4. Spectral triple constructions

We now present two constructions of (semifinite) spectral triples obtained from localising the bulk KK-cycle for $(C^*_r(\mathcal{G}, \sigma), C(\Omega_0))$ over a state of $C(\Omega_0)$. Their index theoretic properties are discussed in Section 6.

4.1. The evaluation spectral triple. We can directly construct a spectral triple on $\ell^2(\mathcal{L}(\omega))$ by considering the internal product of the Kasparov module $d\lambda_{\Omega_0}$ with the trivially graded Kasparov module $ev_\omega = (C(\Omega_0), ev_\omega \mathbb{R}, 0)$ coming from the evaluation map on $C(\Omega_0) \to \mathbb{R}$ (or \mathbb{C}). This spectral triple was considered in [18] for complex algebras. The Kasparov module ev_ω
gives a class in $KKO(C(\Omega_0), \mathbb{R})$ or $KK(C(\Omega_0), \mathbb{C})$ if the algebra and space is complex. If we take the internal product, then

$$\left(C_c(\mathcal{G}, \sigma) \hat{\otimes} Cl_{0,d}, \ E_{C(\Omega_0)} \hat{\otimes} \bigwedge^* \mathbb{R}^d, \ X = \sum_{j=1}^{d} X_j \hat{\otimes} \gamma^j \right) \hat{\otimes} C(\Omega_0) (C(\Omega), ev_\omega \mathbb{R}, 0)$$

$$\cong \left(C_c(\mathcal{G}, \sigma) \hat{\otimes} Cl_{0,d}, \ (E_{C(\Omega_0)} \otimes ev_\omega \mathbb{R}) \hat{\otimes} \bigwedge^* \mathbb{R}^d, \ \sum_{j=1}^{d} X_j \otimes 1 \hat{\otimes} \gamma^j \right).$$

There is an isometric isomorphism $E_{C(\Omega_0)} \otimes ev_\omega \mathbb{R} \rightarrow \ell^2(s^{-1}(\omega))$ (see for instance [48, p.50]). Since

$$s^{-1}(\omega) = \{ (T_{-x}\omega, -x) : x \in \mathcal{L}(\omega) \} \simeq \mathcal{L}(\omega), \quad (T_{-x}\omega, -x) \mapsto x,$$

the Hilbert space $\ell^2(s^{-1}(\omega))$ can be canonically identified with $\ell^2(\mathcal{L}(\omega))$. This gives a map

$$\rho_\omega : E_{C(\Omega_0)} \otimes ev_\omega \mathbb{R} \rightarrow \ell^2(\mathcal{L}(\omega)), \quad \rho_\omega(f \otimes t)(x) = tf(T_{-x}\omega, -x),$$

and the action of $C_c(\mathcal{G}, \sigma)$ is then computed to be

$$\rho_\omega(\pi(f_1)f_2)(x) = (f_1 \ast f_2)(T_{-x}\omega, -x)$$

$$= \sum_{y \in \mathcal{L}(\omega)-x} \sigma((T_{-y}\omega, y), (T_{-x-y}\omega, -x-y))f_1(T_{-x}\omega, y)f_2(T_{-x-y}\omega, -x-y)$$

$$= \sum_{u \in \mathcal{L}(\omega)} \sigma((T_{-u}\omega, -u), (T_{-u}\omega, -u))f_1(T_{-x}\omega, -u)f_2(T_{-u}\omega, -u)$$

$$= \sum_{u \in \mathcal{L}(\omega)} \sigma((T_{-u}\omega, -u), (T_{-u}\omega, -u))f_1(T_{-x}\omega, -u)(\rho_\omega f_2)(u).$$

Hence for $f \in C_c(\mathcal{G}, \sigma)$ the representation of $C^*_r(\mathcal{G}, \sigma)$ on $\ell^2(\mathcal{L}(\omega))$ is given by

$$(\pi_\omega(f)\psi)(x) = \sum_{y \in \mathcal{L}(\omega)} \sigma((T_{-x}\omega, y-x), (T_{-y}\omega, -y))f(T_{-x}\omega, y-x)\psi(y).$$

Proposition 4.1 ([18], Proposition 5.1). The triple

$$d\lambda_\omega \left(C_c(\mathcal{G}, \sigma) \hat{\otimes} Cl_{0,d}, \pi_\omega \ell^2(\mathcal{L}(\omega)) \hat{\otimes} \bigwedge^* \mathbb{R}^d, \sum_{j=1}^{d} X_j \otimes \gamma^j \right)$$

is a QC$^\infty$ and d-summable spectral triple. If $\omega, \omega' \in \Omega_0$ are such that $\omega' = T_{-u}\omega$, then the spectral triples $d\lambda_\omega$ and $d\lambda_{\omega'}$ define the same class in the K-homology of $C^*_r(\mathcal{G}, \sigma)$.

4.2. Invariant measures and the semifinite spectral triple. Measure theoretic properties of the continuous hull $\Omega_\mathcal{L}$ have been extensively studied. We note a useful result below.

Proposition 4.2 ([10, 80]). There is a one-to-one correspondence between measures on $\Omega_\mathcal{L}$ invariant under the \mathbb{R}^d-action and measures on the unit space Ω_0 invariant under the groupoid action. Furthermore, if \mathcal{L} is repetitive, aperiodic and has finite local complexity, then there is a one-to-one correspondence between the invariant measures on $\Omega_\mathcal{L}$ and a canonical positive cone in $H_d(\Omega_\mathcal{L}, \mathbb{R})$.

Hence under additional hypotheses, invariant measure theory on the transversal Ω_0 can be reduced to a homological condition on the continuous hull $\Omega_\mathcal{L}$. We will now assume that the unit space Ω_0 has a probability measure \mathbf{P} that is invariant under the action of groupoid action Ω_0 with $\text{supp}(\mathbf{P}) = \Omega_0$. Using [54, Theorem 1.1], given the trace

$$\tau_\mathbf{P} : C(\Omega_0) \rightarrow \mathbb{C}, \quad f \mapsto \int f(\omega) d\mathbf{P}(\omega)$$
on $C(\Omega_0)$ we can define the dual trace on finite-rank endomorphisms $\text{Fin}(E_{C(\Omega_0)}) \subset \mathbb{K}(E_{C(\Omega_0)})$ by the formula

$$\text{Tr}_\tau(\Theta_{e_1,e_2}) = \tau((e_2 \mid e_1)_{C(\Omega_0)}),$$

which then extends to a faithful, semifinite and norm lower semicontinuous trace on the von Neumann algebra $\mathcal{N} = \text{Fin}(E_{C(\Omega_0)})'' \subset \mathcal{B}(\mathcal{H}_\tau)$, with \mathcal{H}_τ the completion of $C(\mathcal{G},\sigma)$ under the inner-product

$$\langle f_1, f_2 \rangle = \int_{\Omega_0} (f_1 \mid f_2)_{C(\Omega_0)}(\omega) \, d\mathbf{P}(\omega) = \int_{\Omega_0} (f_1^* f_2)(\omega,0) \, d\mathbf{P}(\omega).$$

We note that for $f \in C_c(\mathcal{G},\sigma)$, the dual trace Tr_τ can also be written by the simple formula

$$\text{Tr}_\tau(f) = \int_{\Omega_0} f(\omega,0) \, d\mathbf{P}(\omega).$$

The semifinite trace we use is quite abstract but can be related to the so-called trace per unit volume if we also assume ergodicity.

Proposition 4.3 ([18], Proposition 4.23). If the measure on $\Omega_{\mathcal{L}}$ is ergodic under the translation action, then for almost all $\omega \in \Omega_0$ and any $f \in C_c(\mathcal{G},\sigma)$,

$$\text{Tr}_\tau(f) = \text{Tr}_{\text{Vol}}(\pi_\omega(f)) := \lim_{\Lambda \uparrow \mathcal{L}(\omega)} \frac{1}{|\Lambda|} \text{Tr}_{\mathcal{E}L(\omega)}(P_{\Lambda}\pi_\omega(f)), \quad P_{\Lambda} : \ell^2(\mathcal{L}(\omega)) \rightarrow \ell^2(\Lambda),$$

where the limit $\Lambda \uparrow \mathcal{L}(\omega)$ is an increasing sequence of finite sets approximating $\mathcal{L}(\omega)$.

The following result does not require an ergodicity assumption.

Proposition 4.4. The triple

$$d\lambda_\tau = \left(C_c(\mathcal{G},\sigma) \hat{\otimes} C\ell_{0,d}, \mathcal{H}_\tau \hat{\otimes} \bigwedge^n \mathbb{R}^d, \sum_{j=1}^d X_j \otimes \gamma_j^2\right)$$

is a QC$^\infty$ and d-summable semifinite spectral triple relative to $(\mathcal{N},\text{Tr}_\tau)$. Furthermore, for $f \in C_c(\mathcal{G},\sigma)$, the identity

$$\text{res}_z \, \text{Tr}_\tau(\pi(f)(1 + |X|^2)^{-s/2}) = \text{Vol}_{d-1}(S^{d-1}) \, \text{Tr}_\tau(f),$$

holds true.

Proof. The representation of $C^*_c(\mathcal{G},\sigma)$ on $E_{C(\Omega_0)}$ gives a representation $\pi : C^*_c(\mathcal{G},\sigma) \rightarrow \mathcal{B}(\mathcal{H}_\tau)$ as $\mathcal{H}_\tau \cong E \otimes C(\Omega_0) L^2(\Omega_0,\mathbf{P})$. This representation retains the property that $[X_j, \pi(f)] = \pi(\partial_j f)$ and, as such, $[|X|^k, \pi(f)]$ is well-defined and bounded for all $k \in \mathbb{N}$. To consider the summability, we first note that $(1 + X^2)^{-s/2} = (1 + |X|^2)^{-s/2} \otimes 1_{A^* \mathbb{R}^d}$ and so it suffices to prove the summability of $(1 + |X|^2)^{-s/2}$. We then observe that space of trace class elements under the dual trace $\mathcal{L}^1(\mathcal{N},\text{Tr}_\tau)$ contains the trace class operators on the space $\int_{\Omega_0} \ell^2(\mathcal{L}(\omega)) \, d\mathbf{P}(\omega)$ and, on this subalgebra, the dual trace acts as the usual trace on the direct integral. With this in mind, we first compute

$$(\pi(f)(1 + |X|^2)^{-s/4}\psi)(T_{-\mathbf{x}}\omega, -\mathbf{x}) = \sum_{y \in \mathcal{L}(\omega)} \sigma((T_{-\mathbf{x}}\omega, y - x), (T_{-\mathbf{y}}\omega, -y)) f(T_{-\mathbf{x}}\omega, y - x)(1 + |y|^2)^{-s/4}\psi(T_{-\mathbf{y}}\omega, -y).$$

Hence the ‘integral kernel’ of this operator is

$$k_f(\omega; x, y) = \sigma((T_{-\mathbf{x}}\omega, y - x), (T_{-\mathbf{y}}\omega, -y)) f(T_{-\mathbf{x}}\omega, y - x)(1 + |y|^2)^{-s/4}.$$
Then we can estimate the Tr_r-Hilbert–Schmidt norm

\[
\|\pi(f)(1 + |X|^2)^{-s/2}\|_2^2 = \int_{\Omega_0} \sum_{x,y \in \mathcal{L}(\omega)} k_f(\omega; x, y) k_f(\omega; y, x) \, d\mathbf{P}(\omega)
\]

\[
= \int_{\Omega_0} \sum_{x,y \in \mathcal{L}(\omega)} \sigma((T-x\omega, y-x), (T-y\omega, -y)) \sigma(T-y\omega, x-y), (T-x\omega, -x))
\]

\[
\times f^*(T-x\omega, y-x)f(T-y\omega, x-y)(1 + |x|^2)^{-s/2} \, d\mathbf{P}(\omega)
\]

\[
= \int_{\Omega_0} \sum_{x,y \in \mathcal{L}(\omega)} \sigma((T-x\omega, y-x), (T-y\omega, x-y)) \sigma((T-x\omega, 0), (T-x\omega, -x))
\]

\[
\times f(T-y\omega, x-y)^2(1 + |x|^2)^{-s/2} \, d\mathbf{P}(\omega)
\]

\[
\leq C \int_{\Omega_0} \sum_{x \in \mathcal{L}(\omega)} (1 + |x|^2)^{-s/2} \, d\mathbf{P}(\omega) = C \int_{\Omega_0} C_\mathcal{L}(\omega) \, d\mathbf{P}(\omega),
\]

where in the third line we have used cocycle identity, where we then note that

\[
\sigma((T-x\omega, y-x), (T-y\omega, x-y)) \sigma((T-x\omega, 0), (T-x\omega, -x)) = \sigma(\xi, \xi^{-1}) \sigma(r(\eta), \eta) = 1.
\]

Because Delone subsets of \mathbb{R}^d sets display the same summability asymptotics as \mathbb{Z}^d, we see that $C_\mathcal{L}(\omega)$ is bounded for all $\omega \in \Omega_0$ and $s > d$. Hence we have that $\pi(f)(1 + |X|^2)^{-s/4}$ is Tr_r-Hilbert–Schmidt. Therefore $(1 + |X|^2)^{-s/4} \pi(f) f)(1 + |X|^2)^{-s/4}$ is Tr_r-trace class for all $f \in C_c(\mathcal{G}, \sigma)$ and $s > d$. In particular, $(1 + |X|^2)^{-s/2}$ is Tr_r-trace class for $s > d$.

Let us now consider the residue trace of $\pi(f)(1 + |X|^2)^{-z/2}$ for $\Re(z) < d$. By the properties of the dual trace, we can compute the trace by summing along the diagonal of this integral kernel.

\[
\text{Tr}_r (\pi(f)(1 + |X|^2)^{-z/2}) = \int_{\Omega_0} \sum_{x \in \mathcal{L}(\omega)} k(x, x) \, d\mathbf{P}(\omega)
\]

\[
= \int_{\Omega_0} \sum_{x \in \mathcal{L}(\omega)} \sigma((T-x\omega, 0), (T-x, -x)) f(T-x\omega, 0)(1 + |x|^2)^{-z/2} \, d\mathbf{P}(\omega)
\]

\[
= \int_{\Omega_0} f(\omega, 0) \sum_{x \in \mathcal{L}(\omega)} (1 + |x|^2)^{-z/2} \, d\mathbf{P}(\omega)
\]

\[
= C(z) \int_{\Omega_0} f(\omega, 0) \, d\mathbf{P}(\omega),
\]

where we have used that $\sigma(r(\xi), \xi) = 1$ for all $\xi \in \mathcal{G}$ and the invariance of the measure \mathbf{P} under the groupoid action. For any Delone set $\omega \in \Omega_0$, we use an integral approximation to compute that

\[
C(z) = \sum_{x \in \mathcal{L}(\omega)} (1 + |x|^2)^{-z/2} = \text{Vol}_{d-1}(S^{d-1}) \left(\frac{d}{2} \right) \frac{\Gamma\left(\frac{z+d}{2}\right)}{2\Gamma\left(\frac{d}{2}\right)} + h(z)
\]

with h a function holomorphic in a neighbourhood at $\Re(z) = d$. The function $C(z)$ has a meromorphic extension to the complex plane with a simple pole at $\Re(z) = d$ with $\text{res}_{z=d} C(z) = \text{Vol}_{d-1}(S^{d-1})$. The result follows. \square
the topology on Ω_0 is totally disconnected. In particular, we have an explicit description of the basis of the topology of Ω_0 by closed and open sets. Namely, for some $n \in \mathbb{N}$ and $P \subset B(0; n)$ discrete, the sets $U_{P,n} = \{ \omega \in \Omega_0 : B(0; n) \cap \mathcal{L}(\omega) = P \}$. Give a basis of the topology of Ω_0, see [43]. We will use these sets to characterise Ω_0 as the boundary of a rooted tree. This then allows us to use the Pearson–Bellissard construction to obtain a spectral triple and corresponding class in $KK_0(C(\Omega_0), \mathbb{C})$. We compose this spectral triple with our bulk KK-cycle via the unbounded Kasparov product. As in [33, Section 6], the resulting operator exhibits mildly unbounded commutators with the algebra $C_c(\mathcal{G})$ and its bounded transform is a Fredholm module.

Spectral triple constructions for $C^*_r(\mathcal{G})$ building from the Pearson–Bellissard framework have already appeared in the tiling literature [53, 59]. While the setting of each construction is quite different, it would be interesting to better understand the relationship between these spectral triples and our unbounded Fredholm module.

5. Unbounded Fredholm modules for lattices with finite local complexity

We will now assume our lattice L has finite local complexity. Recall from Proposition 2.13 that this implies that the transversal Ω_0 is totally disconnected. In particular, we have an explicit description of the basis of the topology of Ω_0 by closed and open sets. Namely, for some $n \in \mathbb{N}$ and $P \subset B(0; n)$ discrete, the sets $U_{P,n} = \{ \omega \in \Omega_0 : B(0; n) \cap \mathcal{L}(\omega) = P \}$. Give a basis of the topology of Ω_0, see [43]. We will use these sets to characterise Ω_0 as the boundary of a rooted tree. This then allows us to use the Pearson–Bellissard construction to obtain a spectral triple and corresponding class in $KK_0(C(\Omega_0), \mathbb{C})$. We compose this spectral triple with our bulk KK-cycle via the unbounded Kasparov product. As in [33, Section 6], the resulting operator exhibits mildly unbounded commutators with the algebra $C_c(\mathcal{G})$ and its bounded transform is a Fredholm module.

Spectral triple constructions for $C^*_r(\mathcal{G})$ building from the Pearson–Bellissard framework have already appeared in the tiling literature [53, 59]. While the setting of each construction is quite different, it would be interesting to better understand the relationship between these spectral triples and our unbounded Fredholm module.

5.1. The Pearson–Bellissard spectral triple. In the case that L has finite local complexity, Ω_0 is totally disconnected and can be conveniently described as the boundary of a rooted tree $T = T_L$ using the local patterns $p \in P_\mu$. The set of vertices of T_L is denoted V_L and set of edges by E_L. They are given explicitly by

$$V_L := \{ p \in P_{nR} : n \in \mathbb{N} \}, \quad E_L := \{ (p, q) \in P_{nR} \times P_{(n+1)R} : p \subset q \}.$$

Thus, the vertices are the patterns seen at all levels nR and there is an edge from $p \in P_{nR}$ to $q \in P_{(n+1)R}$ if and only if $p \subset q$. The root of this tree is the unique element $\{ 0 \} \in P_0$. The vertex set V is naturally \mathbb{N}-graded by

$$V_n := \{ p \in V : p \in P_{nR} \},$$

and we denote the degree of $v \in V$ by $|v|$. The boundary ∂T is defined to be the set of infinite paths $\alpha = p_0 \cdots p_n \cdots$ with

$$\{ 0 \} = p_0 \subset p_1 \subset \cdots \subset p_n \subset p_{n+1} \subset \cdots$$

Such a boundary point determines a unique set $L^{(\alpha)} := \bigcup_{n=0}^{\infty} p_n \subset \mathbb{R}^d$ and since $0 \in L^{(\alpha)}$ we have $L^{(\alpha)} \in \Omega_0$. Conversely and element $L \in \Omega_0$ defines a boundary point by setting $p_n := L \cap B(0; nR)$.

The topology on the boundary of a tree is defined by the so-called cylinder sets associated to vertices

$$C_p := \{ \alpha \in \partial T : \alpha_{|p|} = p \} \simeq \{ \omega \in \Omega_0 : L^{(\omega)} \cap B(0; nR) = p \} = U_{(nR,p)},$$

where the latter identification is given by sending a boundary point to its associated set. Thus the topology on ∂T matches that on Ω_0 and the two spaces are homeomorphic. Equivalently the topology on ∂T can be defined through the ultrametric

$$\rho(\alpha, \omega) = \min\{ e^{-nR} : \exists p \in P_{nR} : \alpha, \omega \in C_p \}.$$
By a choice function we mean a map \(\tau : \mathcal{V} \to \partial \mathcal{T} \) such that \(\tau(v) \in C_p \). A choice function defines a representation

\[
\pi_\tau : C(\Omega_0) \to B(\ell^2(\mathcal{V})), \quad \pi(f) \phi(v) := f(\tau(v)) \phi(v).
\]

It is straightforward to verify that for any pair of choice functions \((\tau_+, \tau_-)\) the pair \((\pi_{\tau_+}, \pi_{\tau_-})\) defines a quasi-homomorphism \(C(\Omega_0) \to K(\ell^2(\mathcal{V}))\) and hence a class in \(KK(C(\Omega_0), \mathbb{C})\) [26]. We associate a spectral triple to this data in the spirit of Pearson–Bellissard [69], with some extra flexibility for reasons similar to those in [33], related to the pathologies of the unbounded Kasparov product.

Proposition 5.1. Let \((\tau_+, \tau_-)\) be a pair of choice functions, \(\rho\) an ultrametric on \(\Omega_0\) and \(\zeta : \mathbb{N} \to \mathbb{R}_{\geq 0}\) be a sequence with \(\zeta_n \to \infty\) and \(\zeta_n << (\sup_{p \in \mathcal{V}_n} \text{diam}_p C_p)^{-1}\). The representation

\[
\pi(f) \left(\begin{array}{c}
\phi_+ \\
\phi_-
\end{array}\right)(v) := \left(\begin{array}{c}
f(\tau_+(v)) \phi_+(v) \\
f(\tau_-(v)) \phi_-(v)
\end{array}\right),
\]

and self-adjoint operator

\[
D \left(\begin{array}{c}
\phi_+ \\
\phi_-
\end{array}\right)(v) = \left(\begin{array}{cc}
0 & D_- \\
D_+ & 0
\end{array}\right) \left(\begin{array}{c}
\phi_+ \\
\phi_-
\end{array}\right)(v) := \left(\begin{array}{c}
\zeta_v |\phi_-(v)\rangle \\
\zeta_v |\phi_+(v)\rangle
\end{array}\right),
\]

define a spectral triple \((\text{Lip}(\Omega_0), \ell^2(\mathcal{V}, \mathbb{C}^2), D)\) for \(C(\Omega_0)\) whose \(K\)-homology class coincides with that of the quasi-homomorphism \((\pi_{\tau_+}, \pi_{\tau_-})\).

Proof. The only thing to check is that the Lipschitz functions for the metric \(\rho\) have bounded commutators with each such \(D\). This follows since

\[
\| [D, f] \phi(v) \| = \zeta_{|v|} \| f(\tau_+(v)) - f(\tau_-(v)) \| \| \phi(v) \|,
\]

and by assumption the sequence \(\zeta_{|v|}\) satisfies \(\zeta_{|v|} \leq C \rho(\tau_+(v), \tau_-(v))^{-n}\). \(\square\)

The spectral triple constructed in [69, Proposition 8] corresponds to choosing the sequence \(\zeta_n := e^{nR}\). Here we choose the sequence \(\zeta_n := \log(1 + n)\). Before we proceed we record the following observation which serves as the main technical tool in our arguments below.

Lemma 5.2. Let \(x, y \in B(0; nR)\) and \(|x - y| < r\). If \(\alpha, \omega \in \Omega_0\) are such that \(x \in \mathcal{L}(\omega), y \in \mathcal{L}(\alpha)\) and \(\rho(T_{-x} \omega, T_{-y} \alpha) \leq e^{-nR}\), then \(x = y\) and \(\rho(\alpha, \omega) \leq e^{-nR + \|x\|}\).

Proof. Since \(\rho(T_{-x} \omega, T_{-y} \alpha) \leq e^{-nR}\) it holds that

\[
\mathcal{L}(T_{-x} \omega) \cap B(0; nR) = \mathcal{L}(T_{-y} \alpha) \cap B(0; nR),
\]

and \(x, y \in \mathbb{R}^d \cap B(0; nR)\) gives

\[
-x, -y \in \mathcal{L}(T_{-x} \omega) \cap B(0; nR) = \mathcal{L}(T_{-y} \alpha) \cap B(0; nR),
\]

and since \(|x - y| < r\) it follows that \(x = y\). Then because

\[
B(-x; nR - \|x\|) \subseteq B(0; nR), \quad T_x (B(-x; nR - \|x\|)) = B(0; nR - \|x\|)
\]

it follows that

\[
\mathcal{L}(\omega) \cap B(0; nR - \|x\|) = \mathcal{L}(\alpha) \cap B(0; nR - \|x\|).
\]

This means that \(\rho(\alpha, \omega) \leq e^{-(nR - \|x\|)} = e^{-nR + \|x\|}\). \(\square\)
5.2. The product operator.} We now proceed to describe the product operator (in the sense of [61]) defined from the unbounded Kasparov module of Proposition 1.12 and the Pearson–Bellissard spectral triples of Proposition 5.1. Because the formulas that appear in this section are somewhat involved, we condense our notation for the groupoid \(\mathcal{G} \). Namely we denote \(\xi = (\omega, x) \in \mathcal{G} \) a generic groupoid element and let \(x(\xi) \in \mathbb{R}^d \) be the image of the cocycle \((\omega, x) \mapsto x \in \mathbb{R}^d \) with \(x_k(\xi) \) the \(k \)-th component, \(x_k \). Furthermore, to reduce computational complexity, for the remainder of this section we set \(\sigma = 1 \). The case of a non-trivial cocycle twist would have to be treated separately but would exhibit similar analytic subtleties.

Given a choice function \(\tau : \mathcal{V} \to \partial \mathcal{T} = \Omega_0 \), consider the fiber product
\[
\mathcal{G}_s \times_\tau \mathcal{V} := \{ (\xi, v) \in \mathcal{G} \times \mathcal{V} : s(\xi) = \tau(v) \}.
\]
Denote by \(L^2(\mathcal{G}_s \times_\tau \mathcal{V}) \) the completion of \(C_c(\mathcal{G}_s \times_\tau \mathcal{V}) \) in the inner product
\[
\langle \phi, \psi \rangle = \sum_{\xi \in \mathcal{V}, s(\xi) = \tau(v)} \overline{\phi(\xi, v)} \psi(\xi, v).
\]

Lemma 5.3. Let \(\tau : \mathcal{V} \to \Omega_0 \) be a choice function. The map
\[
\alpha : C_c(\mathcal{G}) \otimes_{\tau}^\mathbb{b} C_c(\mathcal{V}) \to C_c(\mathcal{G}_s \times_\tau \mathcal{V}), \quad \alpha(f \otimes \psi) = f(\xi) \psi(v),
\]
extends to a unitary isomorphism \(E_{C(\Omega_0)} \otimes_{\pi_*} L^2(\mathcal{V}) \cong L^2(\mathcal{G}_s \times_\tau \mathcal{V}) \). The left representation of \(C_c(\mathcal{G}) \) is concretely expressed as
\[
f * \phi(\eta, w) = \sum_{s(\xi) = r(\eta)} f(\xi) \phi(\xi, \xi^{-1} \eta, v).
\]

Proof. This is a straightforward verification. \(\square \)

By the previous lemma, we can decompose the tensor product Hilbert space via the choice function,
\[
\mathcal{H} = \mathcal{H}_+ \oplus \mathcal{H}_- = L^2(\mathcal{G}_s \times_\tau \mathcal{V}) \otimes \bigwedge^\mathbb{b} \mathbb{R}^d \oplus L^2(\mathcal{G}_s \times_\tau \mathcal{V}) \otimes \bigwedge^\mathbb{b} \mathbb{R}^d,
\]
though we note that \(\mathcal{H}_\pm \) is not the decomposition of the tensor product Hilbert space due to the grading, which also takes into account the \(\mathbb{Z}_2 \)-graded structure of \(\bigwedge \mathbb{R}^d \). On this Hilbert space the operator \(X \) from the bulk \(K \overline{K} \)-cycle in Equation (3) is mapped to the operator
\[
X = \sum_{k=1}^{d} x_k \otimes \gamma^k : \mathcal{H}_+ \to \mathcal{H}_+, \quad X(\phi \otimes w)(\xi, v) = \sum_{k=1}^{d} x_k(\xi) \phi(\xi, v) \otimes \gamma^k w.
\]

We fix \(\varepsilon \) with \(0 < \varepsilon < \frac{\pi}{2} \), a discrete lattice \(Y \subset \mathbb{R}^d \) and a uniformly locally finite cover for \(\mathbb{R}^d \) with subordinate partition of unity
\[
\mathcal{V} := \{ B(y; \varepsilon) \}_{y \in Y}, \quad \chi_y : B(y; \varepsilon) \to [0, 1], \quad \sum_{y \in \mathcal{V}} \chi_y^2 = 1,
\]
Recalling Proposition 2.18, from \(\mathcal{V} \), we consider the sets \(\{ V_y \}_{y \in \mathcal{Y}} \),
\[
V_y = \{ \xi = (\omega, x) \in \Omega_0 \times \mathbb{R}^d : x \in \ell^2(\mathcal{V}) \cap B(y; \varepsilon) \},
\]
that form an s-cover of \(\mathcal{G} \). Consequently the functions \(\chi_y : \mathcal{G} \to \mathbb{R} \) define a frame for \(E_{C(\Omega_0)} \).

In order to construct the connection operator we wish to describe the maps
\[
\langle \chi_y^\# \rangle : \ell^2(\mathcal{V}) \to L^2(\mathcal{G}_s \times_\tau_\pm \mathcal{V}), \quad \langle \chi_y^\# \rangle : \ell^2(\mathcal{V}) \to L^2(\mathcal{G}_s \times_\tau_\pm \mathcal{V}),
\]
Since \(\chi_y \) has small support inside the set \(V_y \), the convolution product takes the form
\[
\chi_y f(\eta, v) = \sum_{\xi \in r^{-1}(r(\eta))} \chi_y(\xi) f(\xi^{-1} \eta, v) = \sum_{\xi \in r^{-1}(r(\eta))} \chi_y(\xi^{-1}) f(\xi^{-1} \eta, v)
\]
\[
= \sum_{\xi \in s^{-1}(r(\eta)) \cap V_y} \chi_y(\xi) f(\xi, v) = \chi_y(\xi) f(\xi, v), \quad \text{with } \xi \in s^{-1}(r(\eta)) \cap V_y.
\]

32
and 0 when the latter set is empty. This shows that the maps become
\[
\langle \chi^y \chi^z | : L^2(G \times \tau \mathcal{V}) \to l^2(\mathcal{V}), \quad \langle \chi^y \phi | : L^2(G \times \tau \mathcal{V}) \to l^2(\mathcal{V}),
\]
whenever \(V_y \cap s^{-1}(\tau(\pm (v)) \neq \emptyset \) and \(\xi^{y}_+(v) \) is the unique point in \(V_y \cap s^{-1}(\tau(\pm (v)) \). We can define the operators
\[
T_{\pm} : C_c(G \times \tau \mathcal{V}) \to C_c(G \times \tau \mathcal{V}),
\]
by
\[
T_{\pm} \phi_+(\eta, v) = \sum_y \sum_{\xi \in s^{-1}(\tau_{\pm} (v))} \zeta_y(\xi) \chi_y(\xi) \phi_+(\xi, v), \quad s(\eta) = \tau_{\pm} (v).
\]
The above sum is in fact finite for each \((\eta, v) \in G \times \tau \mathcal{V} \), since the summands are nonzero only for those \(y \) with \(\eta \in V_y \) and \(V_y \cap s^{-1}(\tau_{\pm} (v)) \neq \emptyset \). For \(T_- \) we have an analogous formula.

Lemma 5.4. The operator
\[
T := \begin{pmatrix} 0 & T_- \\ T_+ & 0 \end{pmatrix} : C_c(G \times \tau \mathcal{V}) \oplus C_c(G \times \tau_- \mathcal{V}) \to L^2(G \times \tau \mathcal{V}) \oplus L^2(G \times \tau_- \mathcal{V}),
\]
is essentially self-adjoint.

Proof. For fixed \(z \) the continuous functions
\[
\langle \chi_y \chi_z | : C(\Omega_0) \to \sum_{\xi \in s^{-1}(\omega)} \chi_y(\xi) \chi_z(\xi),
\]
are possibly nonzero only for those \(y \) with \(B(y; \varepsilon) \cap B(z; \varepsilon) \neq \emptyset \). There are only finitely many such \(y \) since the cover \(\mathcal{Y} \) has finite intersection number. Moreover they are locally constant since for \(\rho(\alpha, \omega) < e^{-nR} \) sufficiently small we have
\[
\langle \chi_y \chi_z | : C(\Omega_0) \to \chi_y \chi_z(C(\Omega_0), \omega) = \langle \chi_y \chi_z | : C(\Omega_0) \to \omega,
\]
by Lemma 5.2. Thus the frame \(\chi_y \) is column finite in the sense of [61, Proposition 3.2], the operators \(\Theta_{\chi_y, \chi_z} := \Theta_{\chi_y, \chi_z} \) preserve a core for \(T \) by [61, Lemma 3.15] and the commutators \([T, \Theta_{\chi_y, \chi_z}] \) extend to bounded operators by [61, Lemma 3.8].

It remains to show that there exists an approximate unit \(u_n \) in the convex hull of the \(\Theta_{\chi_y, \chi_z} \) that satisfies [61, Definition 3.9]. For a fixed \(n \), consider the set
\[
I_n := \bigcup_{y \in B(0; \eta R)} \{ y \in Y : \tau(\pm (v)) \cap V_y \neq \emptyset \},
\]
and consider the operator \(u_n := \sum_{y \in I_n} \Theta_{\chi_y, \chi_z} \). Since
\[
[T, \Theta_{\chi_y, \chi_z} \phi_+(\eta, v) = \sum_{y, \xi} (\chi_y(\xi) - \chi_z(\eta) \chi_y(\xi)) \chi_z(\eta) \phi_+(\xi, v),
\]
we see that for \(|v| \geq nR \), Lemma 5.2 gives that \(x(\xi) = x(\eta) \) and thus \(\chi_z(\xi) = \chi_z(\eta) \), so we have \([T, u_n] \phi_+(\eta, v) = 0 \). For \(|v| \leq nR \) we find
\[
\sum_{y \in I_n} (\chi_y(\xi) - \chi_y(\eta) \chi_y(\xi)) \chi_z(\eta) \phi_+(\xi, v) = 0,
\]
because \(\xi, \eta \in \tau(\pm (v)) \) and \(v \in B(0; nR) \) so \(\sum_{y \in I_n} \chi^2_y(\xi) = \sum_{y \in I_n} \chi^2_y(\eta) = 1 \). This proves that \([T, u_n] = 0 \), so the \(\chi_i \) form a complete frame and \(T \) is essentially self-adjoint by [61, Theorem 3.18]. □

Denote by
\[
C = C_+ \oplus C_- := C_c(G \times \tau \mathcal{V}) \hotimes \wedge^* \mathbb{R}^d \oplus C_c(G \times \tau_- \mathcal{V}) \hotimes \wedge^* \mathbb{R}^d,
\]
the common core for \(X \) and \(T \) and by \(\kappa \) the grading operator on \(\wedge^* \mathbb{R}^d \). Then we have \(X\kappa = -\kappa X \) and \(T\kappa = \kappa T \).
Proposition 5.5. The resolvent \((X \pm i)^{-1}\) maps the core \(\mathcal{C}\) bijectively onto itself. For \(\phi \in \mathcal{C}_\pm\) and \(w \in \wedge^* \mathbb{R}^d\) we have the estimate
\[
\langle (XT\kappa + T\kappa X)(\phi \otimes w), (XT\kappa + T\kappa X)(\phi \otimes w) \rangle \leq r^2 \|T\kappa(\phi \otimes w)\|^2.
\]
Consequently the sum operator \(D := X + T\kappa\) is essentially self-adjoint with compact resolvent and the bounded transforms of \(X\) and \(D\) satisfy the Connes–Skandalis positivity and connection conditions (see [25, Appendix A]).

Proof. The statement about the resolvent is immediate since \(X\) is given by Clifford multiplication by a real valued function. Thus the anticommutator \(XT\kappa + T\kappa X = (XT - TX)\kappa\) is defined on \(\mathcal{C}\). The commutator \(XT - TX\) can be explicitly computed as
\[
(TX - XT)(\phi(\eta, v) \otimes w) = \sum_{k=1}^d \sum_{y, \xi}(x_k(\xi) - x_k(\eta))\zeta_{(\eta)}(\xi)\chi_y(\eta)\phi(\xi, v) \otimes \gamma^k w
\]
and since the \(\gamma^k\) are Clifford matrices it holds that
\[
\left\| \sum_{k=1}^d (x_k(\xi) - x_k(\eta))(T\phi)(\eta, v) \otimes \gamma^k w \right\|^2 = \sum_{k} \|x_k(\xi) - x_k(\eta)\|^2 \|T\kappa(\phi \otimes w)\|^2.
\]
Since \(x(\xi), x(\eta) \in B(y, \varepsilon)\) it follows that \(\sum_k \|x_k(\xi) - x_k(\eta)\|^2 < 4\varepsilon^2 \leq r^2\), which gives us the desired estimate. Self-adjointness, compact resolvent and positivity follow from [58, Theorem 4.5, Theorem 7.4, Proposition 7.12] and the connection condition follows from [61, Theorem 4.4]. \(\square\)

Remark 5.6. Note that we have not yet shown that \(D\) has bounded commutators with \(\mathcal{C}_e(\mathcal{G})\) and that this is the only obstruction to \(D\) representing the unbounded Kasparov product via [58, Theorem 7.4]. In fact the operator \(X\) has bounded commutators with all \(f \in \mathcal{C}_e(\mathcal{G})\), but the operator \(T\) does not. In the next section we will show that whenever \(\zeta_{(\eta)}\) is chosen so that it grows sufficiently slow, the bounded transform of \(D\) will be a Fredholm module. This Fredholm module will satisfy the Connes–Skandalis connection and positivity conditions by the previous Proposition, and thus represents the Kasparov product.

5.3. The bounded transform as a Fredholm module. Recall that a continuous function \(b : \mathbb{R} \to [-1, 1]\) is a normalising function if it is odd and \(\lim_{x \to \pm \infty} b(x) = \pm 1\). To prove that for the right choice of \(\zeta_{(\eta)}\) we obtain a Fredholm module we use the following Lemma.

Lemma 5.7. Let \((S, T)\) be a weakly anticommuting pair of self-adjoint regular operators on the Hilbert \(C^*\)-module \(E_B\), \(a \in \text{End}^*(E_B)\), \(b : \mathbb{R} \to [-1, 1]\) normalising function and \(0 < \delta < \frac{1}{2}\). Write \(D = S + T\) and suppose that \(a(D \pm i)^{-1}\) is compact and the operators
\[
[S, a], \quad (1 + S^2)^{-\delta}[T, a], \quad [T, a](1 + S^2)^{-\delta},
\]
extend boundedly to all of \(E_B\). Then \([b(D), a]\) is a compact operator.

Proof. We only need to show that \([T, a](1 + D^2)^{-\delta}\) and its adjoint extend to bounded operators. Then [33, Theorem A.6] applies to reach the conclusion. Since we have the factorisation
\[
[T, a](1 + D^2)^{-\delta} = [T, a](1 + S^2)^{-\delta}(1 + S^2)^{\delta}(1 + D^2)^{-\delta},
\]
it suffices to show that \((1 + S^2)^{\delta}(1 + D^2)^{-\delta}\) is bounded. Now if \(R\) is a densely defined operator on \(E_B\) with bounded adjoint, then
\[
\sup_{e_1 \in \text{Dom} \ R, e_2 \in E} \| (Re_1 | e_2)_{B} \| = \sup_{e_1 \in \text{Dom} \ R, e_2 \in E} \| (e_1 | R^*e_2)_{B} \| \leq C\|e_1\|\|e_2\|,
\]
so R is bounded on its domain. Since $D = S + T$ is self-adjoint and regular on $\text{Dom} S \cap \text{Dom} T$ the operators $(S \pm i)(D \pm i)^{-1}$ are everywhere defined and closed, hence bounded. Their adjoints are the extension of $(D \pm i)^{-1}(S \pm i)$. Hence

$$((1 + D^2)^{-1}e | e)_B = ((D + i)^{-1}e | (D + i)^{-1}e)_B$$

$$= ((D + i)^{-1}(S + i)(S + i)^{-1}e | (D + i)^{-1}(S + i)(S + i)^{-1}e)_B$$

$$\leq C((S + i)^{-1}e | (S + i)^{-1}e)_B = C((1 + S^2)^{-1}e | e)_B.$$

and it thus holds that

$$(1 + D^2)^{-1} \leq C(1 + S^2)^{-1}.$$

For $0 < \delta < \frac{1}{2}$ we have the form estimate

$$((1 + D^2)^{-\delta}(1 + S^2)^{\delta}e | (1 + D^2)^{-\delta}(1 + S^2)^{\delta}e)_B \leq C^{\delta}(e | e)_B,$$

which proves that the adjoint is bounded.

Proof. Since $0 \leq \rho(\alpha, \omega) \leq 1$ it follows that

$$\rho(\alpha, \omega) \leq \log(e - \log(\rho(\alpha, \omega))) \leq \log(1 - \log(\rho(\alpha, \omega))) + \log(e - 1).$$

So for $\rho(\alpha, \omega)$ small there is a uniform constant with

$$\rho(x, y) \leq C\log(1 - \log(\rho(\alpha, \omega))),$$

and $\|f\|_{\log} \leq \frac{\|f\|_{lip}}{C}$. The statement follows.

Lemma 5.8. Let $f \in \text{Lip}(\Omega_0)$. Then

$$\|f\|_{\log} := \sup_{\alpha \neq \omega} \frac{|f(\alpha) - f(\omega)|}{\log(1 - \log(\rho(\alpha, \omega)))} < \infty,$$

and so $\|f(\alpha) - f(\omega)\| \leq \|f\|_{\log} \log(1 - \log(\rho(\alpha, \omega)))$.

Proof. Since $0 \leq \rho(\alpha, \omega) \leq 1$ it follows that

$$\rho(\alpha, \omega) \leq \log(e - \log(\rho(\alpha, \omega))) \leq \log(1 - \log(\rho(\alpha, \omega))) + \log(e - 1).$$

So for $\rho(\alpha, \omega)$ small there is a uniform constant with

$$\rho(x, y) \leq C\log(1 - \log(\rho(\alpha, \omega))),$$

and $\|f\|_{\log} \leq \frac{\|f\|_{lip}}{C}$. The statement follows.

Lemma 5.9. Let $\mathcal{V} := \{V_y\}_{y \in Y}$ be an s-cover of a groupoid \mathcal{G} with intersection number N and χ_y a subordinate partition of unity. For $\eta \in \mathcal{G}$ and $\omega \in \mathcal{G}(0)$ fixed, the set

$$Y_{\eta, \omega} := \{((\xi, y) \in s^{-1}(\omega) \times Y : \chi_y(\xi)\chi_y(\eta) \neq 0\},$$

contains at most N elements.

Proof. First of all observe that $(\xi, y) \in Y_{\eta, \omega}$ only if $\xi, \eta \in V_y$ and there can be at most N distinct indices y for which $\eta \in V_y$. Secondly if $(\xi, y), (\xi', y) \in Y_{\eta, \omega}$ then since V_y is an s-cover it follows that $\xi = \xi'$. Thus there are at most N distinct pairs $(\xi, y) \in Y_{\eta, \omega}$.

Proposition 5.10. For $f \in \text{Lip}(\Omega_0)$ and $\delta > 0$ the operators $(1 + X^2)^{-\delta}[T, f]$ and $[T, f](1 + X^2)^{-\delta}$ extend to bounded operators.

Proof. Because X^2 and T act diagonally on the finite dimensional Clifford representation space $\bigwedge^* \mathbb{R}^d$, it suffices to prove boundedness on $L^2(\mathcal{G}_s \times_{\tau_+} \mathcal{V}) \oplus L^2(\mathcal{G}_s \times_{\tau_-} \mathcal{V})$. For $f \in \text{Lip}(\Omega_0)$ the commutator takes the simple form

$$[T_+, f](1 + X^2)^{-\delta}\phi_+(\eta, v) = \sum_y \sum_{\xi \in s^{-1}(\tau_+(v))} \chi_{[\xi]}(1 + \|x(\xi)\|)^{-\delta}(f(\tau_+(\xi)) - f(\tau_-(\eta)))\chi_y(\eta)\chi_y(\xi)\phi_+(\xi, v),$$

with $s(\eta) = \tau_-(v)$. We consider the two cases namely

$$\xi \in J_v := x^{-1}(B(0; |v|R - r)), \quad \xi \notin J_v.$$
In the first case we have \(\chi_y(\xi), \chi_y(\eta) \neq 0 \) only if \(x(\eta) \in B(0; |v| R) \), and Lemma 5.2 gives that \(x(\xi) = x(\eta) \). Then applying Lemma 5.8 yields the estimate

\[
\|f(r(\xi)) - f(r(\eta))\| \leq \|f\| \log(1 + |v| R - \|x(\xi)\|).
\]

Since

\[
\sup_v \sup_{\xi \in J_v} \log(1 + |v| R - \|x(\xi)\|)(1 + \|x(\xi)\|)^{- \delta} \log(1 + |v|) < \infty,
\]

and denoting by \(J_v^c \) the complement of \(J_v \),

\[
\sup_v \sup_{\xi \in J_v^c} \zeta_{\eta}(1 + \|x(\xi)\|)^{- \delta} < \infty,
\]

so we have the following norm estimates (with \(C \) denoting a generic constant):

\[
\|[T_+ f](1 + X^2)^{- \delta} \phi_+ (\eta, v)\|^2 = \sum_{v \in \mathcal{V}, \eta \in s^{-1}(\tau_+(v))} \left(\sum_{\xi \in s^{-1}(\tau_+(v))} \zeta_{\eta}(1 + \|x(\xi)\|)^{- \delta} (f(r(\xi))) \chi_y(\eta) \chi_y(\xi) \phi_+ (\xi, v) \right)^2
\]

\[
\leq C \sum_{v, \eta} \left(\sum_{\xi \in s^{-1}(\tau_+(v))} \left(\sum_{y \in V} \chi_y(\eta) \chi_y(\xi) \phi_+ (\xi, v) \right)^2 \right)
\]

\[
\leq C \sum_{v, \eta} \left(\sum_{\xi \in s^{-1}(\tau_+(v))} \sum_{y \in V} \chi_y(\eta) \chi_y(\xi) \|\phi_+ (\xi, v)\|^2 \right)^2
\]

\[
\leq CN \sum_{v, \eta} \sum_{\xi \in s^{-1}(\tau_+(v))} \sum_{y \in V} \chi_y(\eta)^2 \chi_y(\xi)^2 \|\phi_+ (\xi, v)\|^2,
\]

where we have used Lemma 5.9 and the estimate \((a_1 + \cdots + a_N)^2 \leq N(a_1^2 + \cdots + a_N^2) \). Now we use that for a fixed \(\xi \in s^{-1}(\tau_+(v)) \) and \(y \in Y \) with \(\chi_y(\xi) \neq 0 \) there is at most one \(\eta \in s^{-1}(\tau_-(v)) \) with \(0 \neq \chi_y(\eta) \leq 1 \) so

\[
\|\|T_+ f\|(1 + X^2)^{- \delta} \phi_+ (\eta, v)\|^2 \leq CN \sum_{v \in \mathcal{V}, \xi \in s^{-1}(\tau_+(v))} \sum_{y \in Y} \chi_y(\xi)^2 \|\phi_+ (\xi, v)\|^2
\]

\[
\leq CN \sum_{v \in \mathcal{V}, \xi \in s^{-1}(\tau_+(v))} \|\phi_+ (\xi, v)\|^2 = N\|\phi\|^2,
\]

it follows that \([T, f](1 + X^2)^{- \delta} \) defines a bounded operator for all \(\delta > 0 \). \(\square \)

Next we consider the commutator \([T, \chi_z^*] \) with \(\chi_z \) the frame elements. We obtain the same statement for them.

Lemma 5.11. For \(\phi \in C_c(\mathcal{G}_s \times \tau_+) \) we have

\[
\langle [T_+, \chi_z^*] \phi, [T_+, \chi_z^*] \phi \rangle = \sum_{\xi \in \mathcal{V}} \sum_{\eta \in s^{-1}(\tau_-(v))} \zeta_{\xi}(\eta)^2 \left(\sum_{\xi \in s^{-1}(\tau_+(v))} \chi_y(\eta) \chi_y(\xi) \chi_y(\alpha \xi) - \chi_z(\beta \chi_y(\eta) \chi_y(\xi) \phi(\xi, v) \right)^2,
\]

where we used the shorthand notation \(\sum_{y, \alpha, \beta} := \sum_{\alpha \in s^{-1}(\tau(\xi))} \sum_{\beta \in s^{-1}(\tau(\eta))} \sum_{y \in Y} \).
Proof. The formula is obtained by direct calculation. First we compute the commutator acting on a function \(\phi \in C_c(\mathcal{G}_s \times \tau_+ \mathcal{V}) \):

\[
[T_+, \chi_z^*] \phi(\eta, v) = \sum_y \sum_{\xi \in s^{-1}(\tau_+(v))} \sum_{\alpha \in r^{-1}(r(\xi))} \zeta_{[v]} \chi_y(\eta) \chi_y(\xi) \chi_z(\alpha) \phi(\alpha^{-1} \xi, v) - \sum_y \sum_{\beta \in r^{-1}(r(\eta))} \sum_{\xi \in s^{-1}(\tau_+(v))} \zeta_{[v]} \chi_z(\beta) \chi_y(\beta^{-1} \eta) \chi_y(\xi) \phi(\xi, v)
\]

\[
= \sum_y \sum_{\xi \in s^{-1}(\tau_+(v))} \sum_{\alpha \in s^{-1}(r(\xi))} \zeta_{[v]} \chi_z(\alpha) \chi_y(\eta) \chi_y(\alpha \xi) \phi(\xi, v) - \sum_y \sum_{\beta \in r^{-1}(r(\eta))} \sum_{\xi \in s^{-1}(\tau_+(v))} \zeta_{[v]} \chi_z(\beta) \chi_y(\beta^{-1} \eta) \chi_y(\xi) \phi(\xi, v)
\]

\[
= \sum_y \zeta_{[v]} \left(\sum_{\alpha \in s^{-1}(r(\xi))} \chi_z(\alpha) \chi_y(\eta) \chi_y(\alpha \xi) - \sum_{\beta \in r^{-1}(r(\eta))} \chi_z(\beta) \chi_y(\beta^{-1} \eta) \chi_y(\xi) \right) \phi(\xi, v).
\]

The \(L^2 \)-norm of the vector \([T_+, \chi_z^*] \phi\) is thus computed as

\[
\langle [T_+, \chi_z^*] \phi, [T_+, \chi_z^*] \phi \rangle = \sum_{v, \eta, \xi} \left(\sum_{\alpha \in s^{-1}(r(\xi))} \chi_z(\alpha) \chi_y(\eta) \chi_y(\alpha \xi) - \sum_{\beta \in r^{-1}(r(\eta))} \chi_z(\beta) \chi_y(\beta^{-1} \eta) \chi_y(\xi) \right) \phi(\xi, v)
\]

\[
= \sum_{v, \eta, \xi} \zeta_{[v]} \left(\sum_{\alpha \in s^{-1}(r(\xi))} \chi_z(\alpha) \chi_y(\eta) \chi_y(\alpha \xi) - \sum_{\beta \in r^{-1}(r(\eta))} \chi_z(\beta) \chi_y(\beta^{-1} \eta) \chi_y(\xi) \right) \phi(\xi, v)
\]

\[
= \sum_{v, \eta, \xi} \zeta_{[v]} \left(\sum_{\alpha, \beta \in s^{-1}(r(\xi))} \chi_z(\alpha) \chi_y(\beta \eta) \chi_y(\alpha \xi) - \chi_z(\beta) \chi_y(\eta) \chi_y(\xi) \right) \phi(\xi, v)
\]

This is the desired formula. \(\square \)

In the inner product expression (11) we split the sum over \(\mathcal{V} \) into a sum over

\[
\mathcal{V}_z := \{ v \in \mathcal{V} : z \in B(0; |v| R - r) \}, \quad \mathcal{V} \setminus \mathcal{V}_z = \{ v \in \mathcal{V} : z \notin B(0; |v| R - r) \},
\]

The sum over \(\mathcal{V} \setminus \mathcal{V}_z \) is easily seen to define a bounded operator \(B \). We further examine the expression that occurs inside the norm bars in (11), namely

\[
\sum_{\xi \in s^{-1}(\tau_+(v))} \sum_{\alpha \in s^{-1}(r(\xi))} \sum_{\beta \in s^{-1}(r(\eta))} \sum_y \chi_z(\alpha) \chi_y(\beta \eta) \chi_y(\alpha \xi) - \chi_z(\beta) \chi_y(\eta) \chi_y(\xi)
\]

for \(v \in \mathcal{V}_z \) and \(\eta \in s^{-1}(\tau_-(v)) \) fixed. We need to further distinguish between two cases for \(\xi \in s^{-1}(\tau_+(v)) \) with \(\xi, \eta \in \mathcal{V}_y \). For the fixed function \(\chi_z \) we split the sum over \(\xi \in s^{-1}(\tau_+(v)) \) into a sum over

\[
J_{z,v} := \{ \xi \in s^{-1}(\tau_+(v)) : x(\xi) \notin B(0; |v| R - \|z\| - r) \}, \quad s^{-1}(\tau_+(v)) \setminus J_{z,v},
\]

for which we obtain the following expression:
Lemma 5.12. We have an equality

\[
\sum_{v \in V_x} \zeta_v^2 \left\| \sum_{\xi \in s^{-1}(\tau_+)} \sum_{y, \alpha, \beta} (\chi_\alpha(\alpha)\chi_\beta(\beta\eta)\chi_\gamma(\alpha\xi) - \chi_\alpha(\beta)\chi_\gamma(\eta)\chi_\gamma(\xi)) \phi(\xi, v) \right\|^2
\]
\[
= (B\phi, B\phi) + \sum_{v \in V_x, \eta \in s^{-1}(\tau_-)} \zeta_v^2 \left\| \sum_{\xi \in J_{(z,v)}(\tau_+)} \sum_{y, \alpha, \beta} (\chi_\alpha(\alpha)\chi_\beta(\beta\eta)\chi_\gamma(\alpha\xi) - \chi_\alpha(\beta)\chi_\gamma(\eta)\chi_\gamma(\xi)) \phi(\xi, v) \right\|^2,
\]

where \(B \) is a bounded operator.

Proof. We need to show that the sum over

\[\xi \in s^{-1}(\tau_+ \setminus J_{(z,v)}) = \{ \xi \in s^{-1}(\tau_+) : x(\xi) \in B(0; |v| R - \|z\| - r) \}, \]

vanishes. To this end we prove the implication

(13) \[\xi \in s^{-1}(\tau_+ \setminus J_{(z,v)}) \Rightarrow x(\xi) = x(\eta), \quad x(\alpha) = x(\beta), \quad x(\alpha\xi) = x(\beta\eta). \]

Using (13) we deduce that the sum over \(J'_{(z,v)} := s^{-1}(\tau_+) \setminus J_{(z,v)} \) vanishes, because \(\chi_y(\eta) \) depends only on \(x(\eta) \):

\[
\sum_{y} \sum_{\xi \in J'_{(z,v)}} \sum_{\alpha \in s^{-1}(\tau(\xi))} \sum_{\beta \in s^{-1}(\tau(\eta))} (\chi_\alpha(\alpha)\chi_\beta(\beta\eta)\chi_\gamma(\alpha\xi) - \chi_\alpha(\beta)\chi_\gamma(\eta)\chi_\gamma(\xi)) \phi(\xi, v) = 0,
\]

and we are left with the sum over the complement \(J_{(z,v)} \). It thus remains to show (13) holds true.

Let \(\eta \in s^{-1}(\tau_-) \) and \(\xi \in s^{-1}(\tau_+) \) with \(x(\xi), x(\eta) \in B(y, \varepsilon) \) as well as \(\xi \in s^{-1}(\tau_+ \setminus J_{(z,v)}) \). First observe that we have

\[
L(\tau_+) \cap B(0; |v| R) = L(\tau_-) \cap B(0; |v| R),
\]

since \(\rho(\tau_+, \tau_-) \) is bounded. Then since

\[x(\xi) \in B(0; |v| R - \|z\| - r) \subset B(0; |v| R - r) \]

and \(\|x(\xi) - x(\eta)\| < r \) it must hold that \(x := x(\xi) = x(\eta) \). We also conclude that

\[\rho(T_x \tau_+, T_x \tau_-) \leq e^{-|v| R + \|x(\xi)\|}, \]

by Lemma 5.2, and thus

\[
L^{(T_x \tau_+)} \cap B(0; |v| R - \|x(\xi)\|) = L^{(T_x \tau_-)} \cap B(0; |v| R - \|x(\xi)\|) = L^{(T_x \tau_+)} \cap B(0; |v| R - \|x(\xi)\|).
\]

For any two elements

\[\alpha = (T_x(\alpha) r(\xi), x(\alpha)) \in s^{-1}(r(\xi)) \cap V_x, \quad \beta = (T_x(\beta) r(\eta), x(\beta)) \in s^{-1}(r(\eta)) \cap V_x, \]

we have

\[-x(\alpha) \in L^{(T_x \tau_+)} \cap B(z; \varepsilon), \quad -x(\beta) \in L^{(T_x \tau_-)} \cap B(z; \varepsilon). \]

Now for \(x = x(\xi) = x(\eta) \in B(0; |v| R - \|z\| - r) \) we have \(B(z; \varepsilon) \subset B(0; |v| R - \|x(\xi)\|) \). Using Lemma 5.2 we find

\[-x(\alpha) \in L^{(T_x \tau_+)} \cap B(0; |v| R - \|x(\xi)\|) = L^{(T_x \tau_-)} \cap B(0; |v| R - \|x(\xi)\|), \]

and since \(\|x(\alpha) - x(\beta)\| < r \) it must hold that \(z := x(\alpha) = x(\beta) \). Thus

\[\alpha = (T_{x+w} \tau_+, w), \quad \beta = (T_{x+w} \tau_-, w), \]

where \(w \) is the unique point in \(L^{(T_x \tau_+)} \cap B(z; \varepsilon) = L^{(T_x \tau_-)} \cap B(z; \varepsilon) \). We then have

\[\alpha\xi = (T_{w+x} \tau_+, w + x), \quad \beta\eta = (T_{w+x} \tau_-, w + x), \]

38
that is \(x(\alpha \xi) = x(\beta \eta) \). This proves (13). \(\square \)

Proposition 5.13. Let \(\chi_k \) be the partition of unity elements associated to the s-cover \(\{ V_y \}_{y \in \mathcal{V}} \).
The operators
\[
[T, \chi_k^*](1 + X^2)^{-\delta}, \quad (1 + X^2)^{-\delta}[T, \chi_k^*]
\]
extend boundedly to all of \(L^2(\mathcal{G} \times \tau, \mathcal{V}) \otimes \Lambda^* \mathbb{R}^d \oplus L^2(\mathcal{G} \times \tau, \mathcal{V}) \otimes \Lambda^* \mathbb{R}^d \).

Proof. We can again ignore the finite dimensional space \(\Lambda^* \mathbb{R}^d \), where \(X^2 \) and \(T \) act diagonally. Consider
\[
\langle [T, \chi_k^*](1 + X^2)^{-\delta} \phi, [T, \chi_k^*](1 + X^2)^{-\delta} \phi \rangle - \langle B \phi, B \phi \rangle
\]
\[
= \sum_{v \in \mathcal{V}_z, \eta \in s^{-1}(\tau_-(v))} \xi^2_{|v|} \left(\sum_{\xi \in J(z, v)} (1 + \|x(\xi)\|^2)^{-\delta} \sum_{y, \alpha, \beta} (\chi_k(\alpha) \chi_y(\beta \eta) \chi_y(\alpha \xi) - \chi_k(\beta) \chi_y(\eta) \chi_y(\xi)) \phi(\xi, v) \right)^2
\]
\[
\leq \sum_{v \in \mathcal{V}_z, \eta \in s^{-1}(\tau_-(v))} \left(\sum_{\xi \in J(z, v)} \left(\sum_{y, \alpha, \beta} (\chi_k(\alpha) \chi_y(\beta \eta) \chi_y(\alpha \xi) - \chi_k(\beta) \chi_y(\eta) \chi_y(\xi)) \phi(\xi, v) \right)^2 \right)^{1/2} \sum_{\xi \in J(z, v)} N \sum_{y, \alpha, \beta} \left(\chi_k(\alpha) \chi_y(\beta \eta) \chi_y(\alpha \xi) - \chi_k(\beta) \chi_y(\eta) \chi_y(\xi) \right)^2 \|\phi(\xi, v)\|^2,
\]
where the last inequality follows from Lemma 5.9. We proceed
\[
\langle [T, \chi_k^*](1 + X^2)^{-\delta} \phi, [T, \chi_k^*](1 + X^2)^{-\delta} \phi \rangle - \langle B \phi, B \phi \rangle
\]
\[
\leq 2N \sum_{v \in \mathcal{V}_z, \eta \in s^{-1}(\tau_-(v))} \xi^2_{|v|} \sum_{\xi \in J(z, v)} \sum_{y, \alpha, \beta} \left(\chi_k(\alpha) \chi_y(\beta \eta) \chi_y(\alpha \xi)^2 \chi_y(\beta \eta)^2 + \chi_k(\beta) \chi_y(\eta) \chi_y(\xi)^2 \chi_y(\eta)^2 \right) \|\phi(\xi, v)\|^2
\]
\[
\leq 2N \sum_{v \in \mathcal{V}_z, \eta \in s^{-1}(\tau_-(v))} \xi^2_{|v|} \sum_{\alpha, \beta} \left(\chi_k(\alpha)^2 + \chi_k(\beta)^2 \right) \|\phi(\xi, v)\|^2
\]
\[
\leq 4N \sum_{v \in \mathcal{V}_z, \eta \in s^{-1}(\tau_-(v))} \xi^2_{|v|} \sum_{\alpha, \beta} \|\phi(\xi, v)\|^2 \leq 4N \|\phi\|^2,
\]
and we conclude that \([T, \chi_k^*](1 + X^2)^{-\delta} \) is bounded for all \(\delta \). The statement for \((1 + X^2)^{-\delta}[T, \chi_k^*] \) follows in a similar manner. \(\square \)

Theorem 5.14. The triple
\[
\left(C_c(\mathcal{G}) \otimes C_0(\mathcal{V}), L^2(\mathcal{G} \times \tau, \mathcal{V}) \right) \otimes \Lambda^* \mathbb{R}^d \oplus L^2(\mathcal{G} \times \tau, \mathcal{V}) \otimes \Lambda^* \mathbb{R}^d, \ X + T \kappa
\]
is a \(\varepsilon \)-unbounded Fredholm module for all \(0 < \varepsilon < 1 \) in the sense of [33, Definition A.1]. It represents the Kasparov product of the class \([d] \chi_{|\Omega_0|} \in KK(C^*_r(\mathcal{G}) \otimes C_0(\mathcal{V}), C(\Omega_0))\) of Equation (3) and the quasi-homomorphism \([\kappa_{\tau_+, \tau_-}] \in KK(C(\Omega_0), C)\).

Proof. By [33, Theorem A.6] the bounded transform of \(X + T \kappa \) is a Fredholm module. By Proposition 5.5 and [25, Theorem A.3] this Fredholm module represents the Kasparov product of the indicated classes. \(\square \)

As previously mentioned, it would be interesting to compare the \(K \)-homology class of the \(\varepsilon \)-unbounded Fredholm module from Theorem 5.14 with similar constructions in the tiling literature [59, 53].

We have concretely represented a \(K \)-homology class containing information of both the transversal dynamics and internal structure of the unit space. In Section 6.3 we will briefly consider its potential applications to topological phases of lattices or tilings with finite local complexity (e.g. quasicrystals) via the index pairing.
6. Index pairings and topological phases

Up to now we have largely been concerned with the \(K \)-homology and KK-theory of \(C^n_r(\mathcal{G}, \sigma) \). In this section, we use these constructions and properties to consider homomorphisms on \(K \)-theory. That is, we are interested in product pairings in real or complex \(K \)-theory

\[
K_n(C^n_r(\mathcal{G}, \sigma)) \times KK^d(C^n_r(\mathcal{G}, \sigma), C(\Omega_0)) \to K_{n-d}(C(\Omega_0)).
\]

Our motivation for studying such maps comes from the following result, which has appeared in numerous forms.

Proposition 6.1 ([31, 86, 16, 45, 49]). Suppose that \(h = h^* \in C^n_r(\mathcal{G}, \sigma) \) has a spectral gap. Then \(h \) determines a class in \(K_0(C^n_r(\mathcal{G}, \sigma)) \) If \(h \) has a chiral symmetry, then \(h \) determines a class in \(K_1(C^n_r(\mathcal{G}, \sigma)) \). If \(h \in C^n_r(\mathcal{G}, \sigma) \) is time reversal-symmetric and/or particle-hole symmetric, then \(h \) determines a class in \(KO_n(C^n_r(\mathcal{G}, \sigma)) \) with \(n \) determined by the nature of the symmetry.

We can improve the above result slightly and say that when \(h \) has a spectral gap, then the relevant projection or unitary or Clifford module gives a class in \(K_n(A) \) for \(A \subset C^n_r(\mathcal{G}, \sigma) \) a dense \(*\)-subalgebra that is Fréchet and stable under the holomorphic functional calculus, see [18] for example.

Equation (14) can be described using a Clifford index similar to Atiyah–Bott–Shapiro. This index then serves as an explicit phase label of the \(K \)-theory class from Proposition 6.1.

Also of importance are numerical pairings, which can be defined in a few ways. One is by point evaluation \(C(\Omega_0) \to \mathbb{C} \) or \(\mathbb{R} \), which leads to \(\mathbb{Z} \) or \(\mathbb{Z}_2 \)-valued invariants. Alternatively, if the pairing lands in \(K_0(C(\Omega_0)) \), then the measure on \(\Omega_0 \) gives a trace on \(C(\Omega_0) \) and homomorphism \(K_0(C(\Omega_0)) \to \mathbb{R} \).

In particular, for complex algebras, the composition

\[
K_*(C^n_r(\mathcal{G}, \sigma)) \times KK^*(C^n_r(\mathcal{G}, \sigma), C(\Omega_0)) \to K_0(C(\Omega_0)) \xrightarrow{f} \mathbb{R}
\]

can be computed using the semifinite local index formula. The cyclic formula that we obtain from the local index formula is then more amenable to physical interpretation and numerical approximation.

6.1. Complex pairings

For complex algebras, we use the semifinite local index formula to pair complex \(K \)-theory classes in \(K_*(C^n_r(\mathcal{G}, \sigma)) \) with the spin\(^c \) semifinite spectral triple from Equation (10). Algebraic manipulation of the Dirac operator means that only the top degree term survives as in [14, Appendix]. Then we can evaluate the resolvent cocycle, which uses the residue trace computation from Proposition 4.4. We will simply state the result as the proof follows the same argument as analogous results in [19, 20].

Proposition 6.2. Let \(u \) be a complex unitary in \(M_q(A) \) and \(d\lambda^n_{S^c} \) the complex semifinite spectral triple from Equation (10) with \(d \) odd. Then the semifinite index pairing is given by the formula

\[
\langle[u], [d\lambda^n_{S^c}] \rangle = \mathcal{C}_d \sum_{\rho \in \mathcal{S}_d} (-1)^{\rho \cdot (\text{Tr}_{\mathcal{C}^q} \otimes \text{Tr}_r)} \left(\prod_{j=1}^{d} u^* \partial_{\rho(j)} u \right), \quad \mathcal{C}_{2n+1} = \frac{2(2\pi i)^n n!}{(2n+1)!},
\]

where \(\text{Tr}_{\mathcal{C}^q} \) is the matrix trace on \(\mathbb{C}^q \) and \(\mathcal{S}_d \) is the permutation group on \(d \) letters.

If \(p \) is a projection in \(M_q(A) \), then the pairing with \(d\lambda^n_{S^c} \) with \(d \) even is given by

\[
\langle[p], [d\lambda^n_{S^c}] \rangle = C_d \sum_{\rho \in \mathcal{S}_d} (-1)^{\rho \cdot (\text{Tr}_{\mathcal{C}^q} \otimes \text{Tr}_r)} \left(p \prod_{j=1}^{d} \partial_{\rho(j)} p \right), \quad C_{2n} = \frac{(2\pi i)^n n!}{n!}.
\]

If the measure on the unit space is ergodic, then we can almost surely describe the semifinite index pairing via the usual \(\mathbb{Z} \)-valued index pairing with the evaluation spectral triple from Proposition 4.1. Namely, setting \(F_X = X(1 + X^2)^{-1/2} \) and \(\Pi_q = \frac{1}{2}(1 + F_X) \otimes 1_q \), we have for
almost all $\omega \in \Omega_0$,

\[
\text{Index } (\Pi_q \pi_\omega(u) \Pi_q + (1 - \Pi_q)) = \tilde{C}_d \sum_{\rho \in S_d} (-1)^\rho \langle \text{Tr}_\tau \otimes \text{Tr}_\text{Vol} \rangle \left(\prod_{j=1}^d \pi_\omega(u)^* \{ X_{\rho(j)}, \pi_\omega(u) \} \right),
\]

\[
\text{Index } (\pi_\omega(p)(F_X \otimes 1_q) + \pi_\omega(p)) = C_d \sum_{\rho \in S_d} (-1)^\rho \langle \text{Tr}_\tau \otimes \text{Tr}_\text{Vol} \rangle \left(\pi_\omega(p) \prod_{j=1}^d \{ X_{\rho(j)}, \pi_\omega(p) \} \right),
\]

which was proved by slightly different means in [18].

6.1. Weak chern numbers. Analogous to the construction in Section 4.2, we can construct a semifinite spectral triple $d\lambda_S^k$ from the Kasparov module $d\lambda_k$ via the dual trace Tr_τ, constructed from the trace τ_k on $C^*_r(\mathcal{T}_k, \sigma)$. This semifinite spectral triple is QC^∞ and $(d - k)$-summable with a residue trace evaluation analogous to Proposition 4.4. The semifinite pairing with $d\lambda_S^k$ represents the composition

\[
K_{d-k}(C^*_r(G, \sigma)) \times KK^{d-k}(C^*_r(G, \sigma), C^*_r(\mathcal{T}_k, \sigma)) \to K_0(C^*_r(\mathcal{T}_k, \sigma)) \xrightarrow{\tau_k} \mathbb{R}.
\]

We again use the local index formula to compute this pairing; the interested reader can consult [20], where the proof transfers to this setting without issue.

Proposition 6.3. The composition from Equation (16) is computed by, for $d - k$ and $p \in M_q(A)$ a projection,

\[
\langle [\rho], [d\lambda_S^k] \rangle = C_{d-k} \sum_{\rho \in S_{d-k}} (-1)^\rho \langle \text{Tr}_\tau \otimes \text{Tr}_\text{Vol} \rangle \left(p \prod_{j=k+1}^d \partial_{\rho(j)}(p) \right), \quad C_{2n} = \frac{(-2\pi i)^n}{n!}.
\]

If $d - k$ is odd and $u \in M_q(A)$ is unitary, then

\[
\langle [u], [d\lambda_S^k] \rangle = \tilde{C}_{d-k} \sum_{\rho \in S_{d-k}} (-1)^\rho \langle \text{Tr}_\tau \otimes \text{Tr}_\text{Vol} \rangle \left(\prod_{j=k+1}^d u^* \partial_{\rho(j)}(u) \right), \quad \tilde{C}_{2n+1} = \frac{2(2\pi)^n n!}{(2n + 1)!}.
\]

Hence we recover and extend results from [72, 20].

6.2. Real pairings and analytic indices. Our aim for this section is to define an analytic index representing the map

\[
KO_n(C^*_r(G, \sigma)) \times KK^d(C^*_r(G, \sigma), C(\Omega_0)) \to KO_{n-d}(C(\Omega_0))
\]

Suppose we are given a gapped Hamiltonian $h = h^*$ in a C^*-algebra A such that h is compatible with the CT-symmetry group $G \subset \{ T, C, CT \}$. Then, following the construction in [16, Section 3.3], one is able to construct, up to Morita equivalence, a finitely generated and projective module $pA^{\otimes N}_A$ with a representation $Cl_{n,0} \to \text{End}^*(pA^{\otimes N}_A)$ constructed from the symmetry group G. Note that if the Hamiltonian is particle hole symmetric, then the projection $p \in M_N(A)$ is closely related, but not equal, to the Fermi projection $\chi_{(-\infty, Ep]}(h)$.

When we apply this construction to the transversal groupoid, we obtain the projective module $pC^*_r(G, \sigma)^{\otimes N}_{C^*_r(G, \sigma)}$ which, with its left $Cl_{n,0}$ action, is a representative of the class $[h] \in KO_n(C^*_r(G, \sigma))$ from Proposition 6.1. The fact that the Hamiltonian is gapped implies that this class can be represented by a smooth projective submodule in $KO_n(A)$.

The perspective outlined in [16, 36] is that topological phases are measured via a pairing of this K-theory class $[h] \in KO_n(C^*_r(G, \sigma))$ with a dual element. In our case, this element is precisely the bulk KK-cycle from Equation (3). Hence we compute the product

\[
\left(Cl_{n,0}, pC^*_r(G, \sigma)^{\otimes N}_{C^*_r(G, \sigma)} \right) \otimes C^*_r(G, \sigma) \cdot (\lambda_S^k) = \left(Cl_{n,d}, \mathbb{R}^2, p(X \otimes 1_N) \right)
\]

Making small adjustments (that do not change the KK-class) if necessary, we can ensure that the product $pXPp$ graded-commutes with the left $Cl_{n,d}$-action. We denote by pFP the bounded transform of pXP. If the operator pFP is a regular Fredholm operator (as characterised in [37,
Section 4.3), then \(\text{Ker}(pFp)_{C(\Omega_0)} \) is a complemented \(C^* \)-submodule of \(pE_{C(\Omega_0)}^{\oplus N} \otimes \Lambda^* \mathbb{R}^d \) with a graded left-action of \(Cl_{n,d} \). Furthermore, all index-theoretic information of the Kasparov product is contained in the Clifford module \(\text{Ker}(pFp)_{C(\Omega_0)} \), see [16, Appendix B]. If \(pFp \) is not regular, then we can take amplification of \(pFp \) to a regular Fredholm operator at the expense that this changes the supporting model \(pE_{C(\Omega_0)}^{\oplus N} \otimes C(\Omega_0)^K \) for some \(K \). The physical significance of this amplification is not always clear and, as such, needs to be considered on a case by case basis.

We briefly summarise our argument.

Proposition 6.4. The \(C^* \)-module \(\text{Ker}(pFp)_{C(\Omega_0)} \) with left \(Cl_{n,d} \)-action represents the Kasparov product of the class \([h] \in KO_n(C^*_r(\mathcal{G}, \sigma)) \) with the bulk \(KK \)-cycle from Equation (3).

Let us now associate an analytic index to the Kasparov product.

Definition 6.5. We let \(r,s,\mathcal{M}_{C(\Omega_0)} \) be the Grothendieck group of equivalence classes of real \(\mathbb{Z}_2 \)-graded right-\(C(\Omega_0) \) \(C^* \)-modules carrying a graded left-representation of \(Ct_{r,s} \).

The product \(\text{Ker}(pFp) \) determines a class in the quotient group \(n,d,\mathcal{M}_{C(\Omega_0)}^{\ast} / i\ast (n+1,d,\mathcal{M}_{C(\Omega_0)}) \), where \(i\ast \) comes from restricting a Clifford action of \(Ct_{n+1,d} \) to \(Ct_{n,d} \). Next, we use an extension of the Atiyah–Bott–Shapiro isomorphism, see [82, §2.3], to make the identification

\[
n,d,\mathcal{M}_{C(\Omega_0)}^{\ast} / i\ast n+1,d,\mathcal{M}_{C(\Omega_0)} \cong KO_{n-d}(C(\Omega_0)).
\]

Definition 6.6. The Clifford index of \(pFp \) is given by the class

\[
\text{Index}_{n-d}(pFp) = [\text{Ker}(pFp)] \in n,d,\mathcal{M}_{C(\Omega_0)}^{\ast} / i\ast n+1,d,\mathcal{M}_{C(\Omega_0)} \cong KO_{n-d}(C(\Omega_0)).
\]

Remark 6.7 (Range of the pairing). In general it is a difficult task to compute \(KO_{n-d}(C(\Omega_0)) \) for a transversal set \(\Omega_0 \) that comes from a generic Delone set. However, if our original Delone lattice has finite local complexity, then \(\Omega_0 \) is totally disconnected (Proposition 2.13), so by the continuity of the \(K \)-functor,

\[
KO_j(C(\Omega_0)) \cong C(\Omega_0, KO_j(\mathbb{R})) = \begin{cases}
C(\Omega_0, \mathbb{Z}), & j = 0 \mod 4, \\
C(\Omega_0, \mathbb{Z}_2), & j = 1, 2 \mod 8, \\
0, & \text{otherwise}
\end{cases}
\]

Example 6.8 (Spectral triple pairings). By the evaluation map \(ev_\omega : C(\Omega_0) \to \mathbb{R} \), We can also pair our \(K \)-theory classes with the evaluation spectral triple \(d\lambda_\omega \) from Proposition 4.1,

\[
KO_n(C^*_r(\mathcal{G})) \times KO^d(C^*_r(\mathcal{G})) \to KO_{n-d}(\mathbb{R}).
\]

The \(\mathbb{Z} \) or \(\mathbb{Z}_2 \)-valued indices can be measured using results from [5, 36, 42]. Writing these pairings explicitly,

\[
[h] \otimes [d\lambda_\omega] = \begin{cases}
\dim_{\mathbb{R}} \text{Ker}(p_\omega F_+ p_\omega) - \dim_{\mathbb{R}} \text{Ker}(p_\omega F_- p_\omega), & n - d = 0 \mod 8 \\
\dim_{\mathbb{R}} \text{Ker}(p_\omega F_+ p_\omega) \mod 2, & n - d = 1 \mod 8 \\
\dim_{\mathbb{C}} \text{Ker}(p_\omega F_+ p_\omega) \mod 2, & n - d = 2 \mod 8 \\
\dim_{\mathbb{H}} \text{Ker}(p_\omega F_+ p_\omega) - \dim_{\mathbb{H}} \text{Ker}(p_\omega F_- p_\omega), & n - d = 4 \mod 8 \\
0, & \text{otherwise}
\end{cases}
\]

under the decomposition of \(F = \begin{pmatrix} 0 & F_- \\ F_+ & 0 \end{pmatrix} \) by the grading. By considering \(\mathbb{H} \) as an even-dimensional complex space, then the quaternionic index naturally takes values in \(2\mathbb{Z} \).

Let us also briefly remark that complex topological phase labels can also be defined via a Clifford index, though generally indices defined via cyclic cocycles can be more easily related to measurable physical phenomena.
6.2.1. Extending the pairings. In [18], complex bulk indices are extended to a larger algebra constructed from the noncommutative Sobolev spaces $\mathcal{W}_{r,p}$, obtained as the closure of $C_c(G, \sigma)$ in the norms
\[
\|f\|_{r,p} = \sum_{|\alpha| \leq r} \text{Tr}_r \left(|\partial^\alpha f|^p \right)^{1/p}, \quad r \in \mathbb{N}, \quad p \in [1, \infty), \quad \alpha \in \mathbb{N}^d, \quad \partial^\alpha = \partial_1^{\alpha_1} \cdots \partial_d^{\alpha_d}, \quad |\alpha| = \sum_{j=1}^d \alpha_j.
\]
Defining \mathcal{A}_{Sob} as the intersection of $\mathcal{W}_{r,p}$ for $r, p \in \mathbb{N}$ with the von Neumann closure $L^\infty(G, \text{Tr}_r)$, if the measure on continuous hull Ω_L is ergodic under the translation action, then \mathbb{Z} and \mathbb{Z}_2-valued bulk topological phases can be defined over \mathcal{A}_{Sob}. For complex pairings, the Hochschild cocycle from the semifinite spectral triple is also well-defined for the Sobolev algebra and, as this cocycle represents the Chern character (because the lower-order terms vanish), the cyclic formulas for the index also extend to the Sobolev algebra. For real pairings with an ergodic measure, the analytic indices considered in Example 6.8 are almost surely well defined and constant over Ω_0 in the Sobolev setting. See [36, 42, 19] for a more comprehensive treatment.

For Hamiltonians without a spectral gap, but instead a region of almost surely dense pure point spectrum (dynamical localisation) and acting on $\ell^2(\mathbb{Z}^d) \otimes \mathbb{C}^n$, the pairings with \mathcal{A}_{Sob} can be connected to these localised regions via the Aizenman–Molchanov bound [1, 71]. For the case of a general Delone set, the Hamiltonian $h \in \mathcal{A}_{\text{Sob}}$ acts on the family $\{\ell^2(\mathcal{L}^\omega L^\omega)\}_{\omega \in \Omega_0}$. In this general setting, spectral properties of the Hamiltonian are more difficult to determine. See [57, 32, 77] for more information.

6.2.2. Weak indices. Our KK-theoretic pairings can also be used to define analytic indices for the pairing with the higher codimension Kasparov modules constructed in Section 3.3. Namely, using the KK-cycles $d\lambda_k$ from Section 3.3 we have a well-defined map,
\[
KO_n(C_r^*(G, \sigma)) \times KK K^{d-k}(C_r^*(G, \sigma), C_r^*(T_k, \sigma)) \to KO_{n-(d-k)}(C_r^*(T_k, \sigma)).
\]
Once again this index can be described using Clifford modules.

6.3. Pairings for lattices with finite local complexity. The complex and real pairings from the previous section can be defined for general Delone sets. When the underlying lattice \mathcal{L} used to construct the continuous hull $\Omega_\mathcal{L}$ has finite local complexity, we can define new numerical phase labels via the ε-unbounded Fredholm module from Theorem 5.14.

Recall the unbounded operator $X + T\kappa$ on $(L^2(G_\mathcal{L} \times \tau, \mathcal{V}) \oplus L^2(G_\mathcal{L} \times \tau_-, \mathcal{V})) \otimes \wedge^* \mathbb{R}^d$ whose bounded transform $b(X + T\kappa)$ is Fredholm and has compact commutators with the representation of $C_c(G)$ (cf. Lemma 5.7).

There are well-defined index pairings for the K-theoretic phase of the Hamiltonian $[h] \in K_n(C_r^*(G))$ with the K-homology class $[b(X + T\kappa)] \in K^d(C_r^*(G))$ via a Fredholm index for complex phases and skew-adjoint Fredholm index for real phases,
\[
K_n(C_r^*(G)) \times K^d(C_r^*(G)) \to K_{n-d}(\mathbb{F}), \quad \mathbb{F} = \mathbb{R}, \mathbb{C}.
\]

We emphasise that unlike the cases of \mathbb{Z} or \mathbb{Z}_2-valued indices that can be defined by the evaluation map $e\omega : \Omega_\mathcal{L} \to \mathbb{F}$, these indices depend on the ultra-metric structure of the transversal. To more explicitly show this, we note the following result, which is an immediate consequence of the associativity of the Kasparov product.

Proposition 6.9. The index pairing of the K-theoretic Hamiltonian phase $[h] \in K_n(C_r^*(G))$ with the class $[b(X + T\kappa)] \in K^d(C_r^*(G))$ is the same as the pairing of the class of the Clifford module $[\text{Ker}(pFp)] \in K_{n-d}(C(\Omega_0))$ from Proposition 6.4 with the Pearson–Bellissard spectral triple $[(\pi_{\tau_+}, \pi_{\tau_-})] \in K^0(C(\Omega_0))$ from Proposition 5.1.

It is worth noting that the index pairing of any fixed class $\alpha \in K_{n-d}(C(\Omega_0))$ with $[(\pi_{\tau_+}, \pi_{\tau_-})]$ depends only finitely many of the values $\tau_\pm(v)$, viewed as a pair of point evaluations. This
follows from the fact that $K^0(C(\Omega_0))$ is generated by the classes of indicator functions χ_p of the cylinder sets C_p. For $|v| > |p|$, it holds that $\tau_+(v) \in C_p$ if and only if $\tau_-(v) \in C_p$, and thus
\[
[\chi_p] \otimes [(\pi_{\tau_+}, \pi_{\tau_-})] = \sum_{|v| \leq |p|} [\chi_p] \otimes [(\pi_{\tau_+}(v), \pi_{\tau_+}(v))].
\]

This generic observation was used in [33, Theorem 6.3.1] to determine the rational K-homology class of an analogous operator. This does not seem to be possible in the present context.

The physical distinction between the indices defined via $b(X + T\kappa)$ and the more standard bulk index pairings in Section 6.1 and 6.2 is currently unclear to us as well. Another question is whether the class of the ε-unbounded Fredholm module has a finitely summable representative and, if so, whether the corresponding Chern character gives additional physical information.

6.4. The bulk-boundary correspondence. Because our topological phases arise as pairings with the bulk KK-cycle, the results from Section 3 can be used to relate pairings of differing dimension. Recall that we have the extension,
\[
0 \to C^*_r(\mathcal{G} \ltimes \mathcal{G}/\mathcal{T}, \sigma) \to \mathcal{T} \to C^*_r(\mathcal{G}, \sigma) \to 0,
\]
with $\mathcal{G} \ltimes \mathcal{G}/\mathcal{T}$ the edge groupoid and \mathcal{T} acting on a half-infinite space. Suppose that $[h] \in K_n(C^*_r(\mathcal{G}, \sigma))$ (real or complex) and consider the product with $d\lambda_{\Omega_0}$. Then by Theorem 3.5,
\[
[h]\hat{\otimes}_{C^*_r(\mathcal{G}, \sigma)}[d\lambda_{\Omega_0}] = (-1)^{d-1} [h]\hat{\otimes}_{C^*_r(\mathcal{G}, \sigma)}[(d\lambda_{\Omega_0})\hat{\otimes}_{C^*_r(\mathcal{G}, \sigma)}[d\lambda_{\Omega_0}]]
= (-1)^{d-1} ([h]\hat{\otimes}_{C^*_r(\mathcal{G}, \sigma)}[d\lambda_{\Omega_0}])\hat{\otimes}_{C^*_r(\mathcal{G}, \sigma)}[d\lambda_{\Omega_0}]
= (-1)^{d-1} \partial[h]\hat{\otimes}_{C^*_r(\mathcal{G}, \sigma)}[d\lambda_{\Omega_0}]
\]
with $\partial[h] \in KO_{n-1}(C^*_r(\mathcal{G} \ltimes \mathcal{G}/\mathcal{T}, \sigma))$ the image of the boundary map in K-theory. That is, the pairing with respect to the bulk algebra $C^*_r(\mathcal{G}, \sigma)$ is non-trivial if and only if the pairing $\partial[h]\hat{\otimes}_{C^*_r(\mathcal{G}, \sigma)}[d\lambda_{\Omega_0}]$ over the edge algebra $C^*_r(\mathcal{T}, \sigma)$ (or $C^*_r(\mathcal{G} \ltimes \mathcal{G}/\mathcal{T}, \sigma)$) is non-trivial.

Furthermore, because the semifinite pairings involve the Kasparov product and then the trace, the bulk-edge correspondence also holds for the Chern number formulas (using the Morita equivalence between spinc and oriented structures). Using the notation from Proposition 6.2,
\[
\langle [p], [d\lambda^{S^c}_{n-1}] \rangle = -\langle \partial[p], [d\lambda^{S^c}_{n-1}] \rangle, \quad \langle [u], [d\lambda^{S^c}_{n-1}] \rangle = \langle \partial[u], [d\lambda^{S^c}_{n-1}] \rangle.
\]

Similarly our weak or higher codimension pairings also factorise by Theorem 3.7. Namely, via the short exact sequence,
\[
0 \to C^*_r(\mathcal{T}_k \ltimes (\mathcal{T}_k/\mathcal{T}_{k-1}), \sigma) \to \mathcal{T}_k \to C^*_r(\mathcal{T}_k, \sigma) \to 0,
\]
we have the equality of pairings,
\[
[h]\hat{\otimes}_{C^*_r(\mathcal{G}, \sigma)}[d\lambda_{k-1}] = (-1)^{d-k} [h]\hat{\otimes}_{C^*_r(\mathcal{G}, \sigma)}[(d\lambda_{k-1})\hat{\otimes}_{C^*_r(\mathcal{G}, \sigma)}[d\lambda_{k-1}]]
= (-1)^{d-k} ([h]\hat{\otimes}_{C^*_r(\mathcal{G}, \sigma)}[d\lambda_{k-1}])\hat{\otimes}_{C^*_r(\mathcal{G}, \sigma)}[d\lambda_{k-1}]
= (-1)^{d-k} \partial([h]\hat{\otimes}_{C^*_r(\mathcal{G}, \sigma)}[d\lambda_{k-1}]).
\]
That is, our weak pairing $[h]\hat{\otimes}_{C^*_r(\mathcal{G}, \sigma)}[d\lambda_k]$ takes values in $K_{n-d+k}(C^*_r(\mathcal{T}_k, \sigma))$ and if we apply the boundary map coming from the short exact sequence in Equation (17), then up to a sign we obtain the weak pairing $[h]\hat{\otimes}_{C^*_r(\mathcal{G}, \sigma)}[d\lambda_{k-1}] \in K_{n-d+k-1}(C^*_r(\mathcal{T}_{k-1}, \sigma))$. Of course this equality is not necessarily related to the presence of a boundary and is more a property of the Kasparov modules that we use to define the weak topological phases.

For lattices with finite local complexity, we also obtain a factorisation of index pairings of the class $[h] \in K_n(C^*_r(\mathcal{G}, \sigma))$ with the ε-unbounded Fredholm module from Theorem 5.14,
\[
[h]\hat{\otimes}_{C^*_r(\mathcal{G}, \sigma)}[(d\lambda_{\Omega_0})\hat{\otimes}_{C^*_r(\mathcal{G}, \sigma)}[(\pi_{\tau_+}, \pi_{\tau_-})]] = (-1)^{d-1} \partial[h]\hat{\otimes}_{C^*_r(\mathcal{G}, \sigma)}[(d\lambda_{\Omega_0})\hat{\otimes}_{C^*_r(\mathcal{G}, \sigma)}[(\pi_{\tau_+}, \pi_{\tau_-})]],
\]
where the right-hand side is a pairing $K_{n-1}(C^*_r(\mathcal{G})) \times K^{d-1}(C^*_r(\mathcal{G})) \rightarrow K_{n-d}(\mathbb{R})$ (or complex).
6.5. Examples from materials science and meta-materials. Constructing model Hamiltonians for generic Delone sets is in general a difficult task, particularly if the underlying lattice is amorphous. However, given $\omega \in \Omega_0$, we can write down a basic Hamiltonian by coupling lattice sites with exponential decay and twisting by a magnetic flux,

$$(H_\omega \psi)(x) = \sum_{y \in \mathcal{L}(\omega)} e^{-i t \mathcal{E}_\omega(0,x,y)} e^{-\beta |x-y|} \psi(y), \quad \beta > 0, \ \psi \in \ell^2(\mathcal{L}(\omega)).$$

There is some element $h \in C^*_r(\mathcal{G}, \sigma)$ such that $\pi_\omega(h) = H_\omega$ using the point-wise representation. If $\Delta \subset \mathbb{R}$ is a spectral gap on h, then the spectral projection $P_E = \chi_{(-\infty, E]}(h)$ is in a smooth \ast-subalgebra $A \subset C^*_r(\mathcal{G}, \sigma)$ for any $E \in \Delta$. One of the reasons we include a magnetic flux is to open gaps in the spectrum of h so that the gap condition is satisfied. Let us also remark that our choice of Hamiltonian can also be used to model mechanical or gyroscopic meta-materials provided the energies are low, see [63] for example.

In the setting of a spectral gap, our results give that for d even,

$$(18) \ C_d \sum_{\mu \in S_d} (-1)^{\mu} \text{Tr}\left(P_E \prod_{j=1}^d \partial_{\mu(j)}(P_E) \right) = -C_{d-1} \sum_{\nu \in S_{d-1}} (-1)^{\nu} (\text{Tr}_{\mathcal{T}} \otimes \text{Tr}_H) \left(\prod_{j=1}^{d-1} \tilde{u}_h \partial_{\nu(j)}(\tilde{u}_h) \right)$$

where $\tilde{u}_h = e^{2\pi i f(\Pi_h^d \Pi_d)}$ with Π_d the projection onto a half-space and f a function that smoothly goes from 0 to 1 inside the spectral gap Δ. We also use that $C^*_r(\mathcal{G} \rtimes \mathcal{G} / \mathcal{T}, \sigma) \cong C^*_r(\mathcal{T}, \sigma) \otimes \mathcal{K}(\mathcal{H})$ and so our boundary semifinite pairing can be written using the semifinite spectral triple over $C^*_r(\mathcal{G} \rtimes \mathcal{G} / \mathcal{T}, \sigma) \otimes \mathcal{K}(\mathcal{H})$ relative to $\text{Tr}_I \otimes \text{Tr}_H$.

If $R_C^* h R_C = -h$ for some self-adjoint unitary $R_C \in \mathcal{A}$, then we can define the Fermi unitary $U_F = \frac{1}{2}(1 - R_C)(1 - 2P_F)\frac{1}{2}(1 + R_C)$ with $[U_F] \in K_1(\mathcal{A})$. Then, for d odd

$$(19) \ C_d \sum_{\mu \in S_d} (-1)^{\mu} \text{Tr}\left(\prod_{j=1}^d U_F^* \partial_{\mu(j)} U_F \right) = C_{d-1} \sum_{\nu \in S_{d-1}} (-1)^{\nu} (\text{Tr}_{\mathcal{T}} \otimes \text{Tr}_H) \left(\text{Ind}(U_F) \prod_{j=1}^{d-1} \partial_{\nu(j)} \text{Ind}(U_F) \right)$$

with $\text{Ind}(U_F)$ the index map in complex K-theory.

If the measure on $\Omega_{\mathcal{L}}$ is ergodic under the translation action, we can replace the dual trace in the left-hand side Equation (18) and (19) with the trace per unit volume on $\ell^2(\mathcal{L}(\omega))$ for almost all $\omega \in \Omega_0$. In this setting the bulk cyclic formulas continue to be well-defined and integer-valued if the assumption on Δ is relaxed to a mobility gap (as characterised in [18, Section 6.2]).

We can implement other CT-symmetries on h by a choice of Real structure on $C^*_r(\mathcal{G}, \sigma)$. Because the equation for h is quite generic, such symmetries and invariants can be implemented by passing to matrices over $C^*_r(\mathcal{G}, \sigma)$. The corresponding bulk and boundary pairings are described in Section 6.2, though let us note that if there is no magnetic flux (such as in time-reversal symmetric Hamiltonians), then a model Hamiltonian with spectral gap may be difficult to construct for a generic Delone lattice. However, gaps in the spectrum without a magnetic field may be possible by considering more ordered (but still aperiodic) lattices coming from quasicrystals or substitution tilings.

References

[1] M. Aizenman and S. Molchanov. Localization at large disorder and at extreme energies: An elementary derivation. Comm. Math. Phys. 157 (1993), no. 2, 245–278.
[2] J. E. Anderson and I. F. Putnam. Topological invariants for substitution tilings and their associated C*-algebras. Ergodic Theory Dynam. Systems, 18 (1998), no. 3, 509–537.
[3] F. Arici, F. D’Andrea and G. Landi. Pimsner algebras and circle bundles. In D. Alpay, F. Cipriani, F. Colombo, D. Guido, I. Sabadini and J.-L. Sauvageot, editors, Noncommutative Analysis, Operator Theory and Applications, pages 1–25, Springer International Publishing (2016).
[4] F. Arici, J. Kaad and G. Landi. Pimsner algebras and Gysin sequences from principal circle actions J. Noncommut. Geom., 10 (2016), no. 1, 29–64.
[5] M. F. Atiyah and I. M. Singer. Index theory for skew-adjoint Fredholm operators. Inst. Hautes Études Sci. Publ. Math., 37 (1969), 5–26.
[70] I. F. Putnam and J. Spielberg. *The structure of C*-algebras associated with hyperbolic dynamical systems.* J. Funct. Anal. **163** (1999), no. 2, 279–299.

[71] E. Prodan and H. Schulz-Baldes. *Bulk and Boundary Invariants for Complex Topological Insulators: From K-Theory to Physics.* Springer, Berlin (2016).

[72] E. Prodan and H. Schulz-Baldes. *Generalized Connes-Chern characters in KK-theory with an application to weak invariants of topological insulators.* Rev. Math. Phys., **28** (2016), 1650024.

[73] J. Renault. *A groupoid approach to C*-algebras.* Lecture Notes in Mathematics, vol. 793, Springer-Verlag (1980).

[74] A. Rennie, D. Robertson and A. Sims. *The extension class and KMS states for Cuntz-Pimsner algebras of some bi-Hilbertian bimodules.* J. Topol. Anal., **9** (2017), no. 2, 297–327.

[75] A. Rennie, D. Robertson and A. Sims. *Groupoid algebras as Cuntz-Pimsner algebras.* Math. Scand., **120** (2017), no. 1, 115–123.

[76] M. Rieffel. *Connes’ analogue for crossed products of the Thom isomorphism.* Contemp. Math., **10** (1982), 143–154.

[77] C. Rojas-Molina. *Random Schrödinger Operators on discrete structures.* arXiv:1710.02293 (2017).

[78] L. Sadun. *Topology of tiling spaces.* Volume 46 of University Lecture Series, American Mathematical Society, Providence (2008).

[79] L. Sadun and R. W. Williams. *Tiling spaces are Cantor set fiber bundles.* Ergodic Theory Dynam. Systems, **23** (2003), no. 1, 307–316.

[80] J. Savinien. *Cohomology and K-theory of aperiodic tilings.* PhD thesis, Georgia Institute of Technology (2008).

[81] J. Savinien and J. Bellissard. *A spectral sequence for the K-theory of tiling spaces.* Ergodic Theory Dynam. Systems, **29** (2009), no. 3, 997–1031.

[82] H. Schröder. *K-theory for real C*-algebras and applications.* Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons Inc., New York, (1993).

[83] A. Sims and D. P. Williams. *Renault equivalence Theorem for reduced groupoid C*-algebras.* J. Operator Theory **68** (2012), no. 1, 223–239.

[84] A. Sims and D. P. Williams. *An equivalence theorem for reduced Fell bundle C*-algebras.* New York J. Math., **19** (2013), 159–178.

[85] A. Sims and T. Yeend. *C*-algebras associated to product systems of Hilbert bimodules.* J. Operator Theory **64** (2010), no. 2, 349–376.

[86] G. C. Thiang. *On the K-theoretic classification of topological phases of matter.* Ann. Henri Poincaré, **17** (2016), no. 4, 757–794.

[87] P. Williamson. *Cuntz–Pimsner algebras associated with substitution tilings.* PhD thesis, University of Victoria (2016).

WPI-Advanced Institute for Materials Research (WPI-AMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan and iTHEMS Research Group, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan

E-mail address: chris.bourne@tohoku.ac.jp

Max Planck Institut für Mathematik, Vivatsgasse 7 D-53111, Bonn, Germany

E-mail address: brammesland@gmail.com