Comparison Between Angiotensin-Converting Enzyme Inhibitors and Angiotensin Receptor Blockers in Patients with Unstable Angina with Preserved Left Ventricular Systolic Function

Jiong Xiao, MM¹,², Linze Liu, MM¹, and Wenhua Lin, MM¹

Abstract
The present study evaluated the clinical results of angiotensin-converting enzyme inhibitor (ACEI) or angiotensin receptor blocker (ARB) treatment in patients with unstable angina (UA) with preserved left ventricular systolic function who underwent percutaneous coronary intervention (PCI) due to uncertainty regarding the long-term prognosis using ACEI or ARB. A total of 1627 UA patients with preserved left ventricular systolic function after PCI were enrolled. After propensity score matching, there were no differences in major adverse cardiovascular and cerebrovascular events (MACCEs) (hazard ratio (HR) = .860, 95% confidence interval (CI): .465–1.590, P = .630), all-cause death (HR = .334, 95% CI: .090–1.238, P = .101), nonfatal myocardial infarction (HR = 4.929, 95% CI: .576–42.195, P = .145), stroke (HR = 1.049, 95% CI: 208–5.290, P = .954) and target vessel revascularization (TVR) (HR = 1.276, 95% CI: .537–3.031, P = .581) between the ACEI and ARB groups. In conclusion, prognoses were comparable between ACEI or ARB treatment in UA patients who had preserved left ventricular systolic function after PCI.

Keywords
angiotensin-converting enzyme inhibitor, angiotensin receptor blocker, unstable angina, left ventricular systolic function, percutaneous coronary intervention

Introduction
Unstable angina (UA) is a common type of non–ST-elevation acute coronary syndrome (NSTE-ACS) with severe conditions and rapid progression. In recent decades, percutaneous coronary intervention (PCI) has been a main treatment technique for UA. However, optimal therapeutic drugs remain the cornerstone of treatment in patients with UA even in the age of PCI. Angiotensin-converting enzyme inhibitor (ACEI) can decrease mortality and the risk of myocardial infarction in patients who have left ventricular systolic dysfunction. The European guidelines recommend that ACEI is suitable for UA patients with heart failure (HF) with left ventricular ejection fraction (LVEF) <40%, while angiotensin receptor blocker (ARB) is an alternative for those who are intolerant to ACEI.

However, there is a paucity of comparisons with regard to long-term use of ACEI or ARB therapy in UA patients with preserved left ventricular systolic function. Consequently, we compared 13-month clinical outcomes between ACEI or ARB treatment in UA patients undergoing successful PCI with preserved left ventricular systolic function.

Material and Methods

Study Population and Design
A total of 3812 coronary heart disease (CHD) patients who underwent successful PCI at Tianjin Economic-Technological Development Area (TEDA) International Cardiovascular Hospital from October 2016 to September 2017 were enrolled. We made these exclusion rules:

1. Stable CHD (n = 338, 8.9%);
2. Myocardial infarction (n = 890, 23.3%);
3. Follow-up loss (n = 224, 5.9%);

1Department of Cardiology I, Tianjin Economic-Technological Development Area International Cardiovascular Hospital, Tianjin, China
2Department of Cardiology, Taihe Hospital, Hubei University of Medicine, Hubei, China

Corresponding Author:
Wenhua Lin, MM, Department of Cardiology I, Tianjin Economic-Technological Development Area International Cardiovascular Hospital, 61 Third Avenue, Tianjin 300457, China.
Email: linwernhua@sina.com
(4) Patients who had not been treated with ACEI or ARB at discharge (n = 689, 18.1%);
(5) Patients with LVEF <40% (n = 44, 1.2%).

Ultimately, 1627 UA patients who had preserved left ventricular systolic function after PCI were included. We allocated those patients into 2 groups, the ACEI group (n = 918, 56.4%) and the ARB group (n = 709, 43.6%), based on the use of ACEI or ARB at discharge (Figure 1). This research was approved by the ethics committee of TEDA International Cardiovascular Hospital and was conducted according to the Declaration of Helsinki. After discharge, follow-up of the 1627 patients was carried out by clinic visits, readmission, or telephone at 13 months.

PCI Procedure and Medical Treatment

Coronary angiography (CAG) and PCI were performed through standard radial or femoral approaches. All patients were given a loading dose of aspirin 300 mg and clopidogrel 300 mg or ticagrelor 180 mg pre-procedure. After discharge, all patients were advised to continue taking medications following their hospital stay, including dual antiplatelet aggregation treatment, beta-blockers, lipid-lowering medication, and ACEI or ARB. In particular, dual antiplatelet aggregation treatment (aspirin 100 mg daily and clopidogrel 75 mg daily or ticagrelor 90 mg twice a day) was recommended for at least 1 year.

Study Definitions and Clinical Outcomes

UA was defined as myocardial ischemia in a resting state or on slight exertion in the absence of cardiomyocyte damage or necrosis. The primary endpoint was the incidence of major adverse cardiovascular and cerebrovascular events (MACCEs), including all-cause death, nonfatal myocardial infarction (MI), stroke and target vessel revascularization (TVR), with a follow-up period of 13 months. The secondary endpoint was the occurrence of separate components of MACCEs (all-cause death, nonfatal MI, stroke and TVR).

Statistical Analysis

Continuous variables are presented as mean ± standard deviation, and intergroup differences were compared using independent-samples t tests. Categorical variables are presented as numbers (percentages), and intergroup differences were assessed by the chi-square test. We applied the Kaplan–Meier method to depict survival curves, while intergroup differences were performed using the log-rank test. Multivariable Cox regression analysis was applied to assess the prognostic influence of various factors. To balance potential confounding biases derived from differences in baseline levels, propensity score matching (PSM) was used to adjust for confounders between the ACEI and ARB groups. We assessed all covariates regarded as potentially relevant, including demographics, previous medical history, laboratory indicators, discharge medication, and coronary angiography characteristics. PSM was conducted by 1:1 nearest-neighbor matching with a caliper of .02. After PSM, 660 pairs in each group were created. We applied multivariable Cox regression analysis to calculate the hazard ratio (HR) and 95% confidence interval (CI) in PSM patients. A P < .05 (2-sided) was considered statistically significant. All data analysis was performed using SPSS software, version 26 (IBM, city, New York, USA).

![Figure 1. Study population flowchart. CHD, coronary heart disease; PCI, percutaneous coronary intervention; ACEI, angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker; LVEF, left ventricular ejection fraction; UA, unstable angina.](image-url)
Results

Baseline Clinical and Coronary Angiography Characteristics

Among the 1627 UA patients undergoing successful PCI with preserved left ventricular systolic function, 918 patients (56.4%) were treated with ACEI, and 709 patients (43.6%) were treated with ARB at the time of discharge. Table 1 displays the demographics, laboratory indicators, discharge medication and coronary angiography characteristics between the 2 groups.

Compared with patients prescribed ACEI, the average BMI (26.3 ± 3.3 vs 25.8 ± 3.2 kg/m², \(P = .009 \)) and the number of

Table 1. Baseline Clinical and Coronary Angiography Characteristics.

Variables	All Patients	Propensity Score Matching Patients				
	ACEI (n = 918)	ARB (n = 709)	\(P \)	ACEI (n = 660)	ARB (n = 660)	\(P \)
Age (years)	62.5 ± 9.1	63.2 ± 9.3	.120	63.1 ± 9.0	63.0 ± 9.4	.940
Men, n (%)	561 (61.1)	408 (57.5)	.146	389 (58.9)	384 (58.2)	.780
BMI (kg/m²)	25.8 ± 3.2	26.3 ± 3.3	.009	26.1 ± 3.2	26.1 ± 3.2	.990
Hypertension, n (%)	696 (75.8)	585 (82.5)	.001	530 (80.3)	537 (81.4)	.624
Diabetes mellitus, n (%)	510 (55.6)	408 (57.5)	.422	372 (56.4)	379 (57.4)	.697
Previous angina, n (%)	844 (91.9)	659 (92.9)	.477	615 (93.2)	614 (93.0)	.913
Previous MI, n (%)	162 (17.6)	85 (12.0)	.002	84 (12.7)	85 (12.9)	.934
Previous PCI, n (%)	271 (29.5)	196 (27.6)	.407	178 (27.0)	182 (27.6)	.805
Current smokers, n (%)	366 (39.9)	278 (39.2)	.787	270 (40.9)	259 (39.2)	.537
LVEF (%)	61.9 ± 5.5	62.4 ± 4.8	.073	62.4 ± 4.9	62.4 ± 4.9	.977
SBP (mmHg)	139.1 ± 19.1	138.2 ± 19.2	.332	138.9 ± 19.2	138.5 ± 19.1	.707
DBP (mmHg)	80.4 ± 12.0	79.2 ± 11.2	.054	79.8 ± 11.8	79.6 ± 11.2	.831
Laboratory indicators						
Serum creatinine (μmol/L)	68.7 ± 18.4	68.4 ± 16.8	.777	68.7 ± 18.3	68.3 ± 16.8	.641
Blood glucose (mmol/L)	7.9 ± 2.8	7.8 ± 2.9	.760	7.9 ± 2.8	7.8 ± 2.9	.736
Total cholesterol (mmol/L)	4.5 ± 1.3	4.5 ± 1.3	.813	4.5 ± 1.4	4.5 ± 1.3	.793
Triglycerides (mmol/L)	1.7 ± 1.3	1.8 ± 1.1	.555	1.8 ± 1.4	1.8 ± 1.2	.920
HDL-cholesterol (mmol/L)	1.1 ± 0.3	1.1 ± 0.3	.590	1.1 ± 0.3	1.1 ± 0.3	.945
LDL-cholesterol (mmol/L)	2.7 ± 1.0	2.7 ± 0.9	.952	2.7 ± 1.0	2.7 ± 0.9	.890
Hemoglobin (g/L)	137.1 ± 15.7	136.6 ± 15.5	.471	136.8 ± 15.4	136.6 ± 15.5	.784
Discharge medication						
Aspirin, n (%)	915 (99.7)	706 (99.6)	1.000	658 (99.7)	657 (99.5)	1.000
Clopidogrel, n (%)	730 (79.5)	610 (86.0)	.001	554 (83.9)	564 (85.5)	.445
Ticagrelor, n (%)	188 (20.5)	99 (14.0)	.001	106 (16.1)	96 (14.5)	.445
Lipid-lowering agents, n (%)	888 (96.7)	685 (96.6)	.896	637 (96.5)	640 (97.0)	.642
Beta-blockers, n (%)	698 (76.0)	472 (66.6)	<.001	471 (71.4)	456 (69.1)	.367
Coronary angiography features						
Infarct-related artery						
Left main, n (%)	23 (2.5)	12 (1.7)	.262	12 (1.8)	12 (1.8)	1.000
Left anterior descending, n (%)	479 (52.2)	367 (51.8)	.868	346 (52.4)	344 (52.1)	.912
Left circumflex, n (%)	232 (25.3)	199 (28.1)	.205	177 (26.8)	182 (27.6)	.757
Right coronary, n (%)	324 (35.3)	254 (35.8)	.824	237 (35.9)	232 (35.2)	.774
2-vessel, n (%)	114 (12.4)	109 (15.4)	.086	96 (14.5)	96 (14.5)	1.000
3-vessel, n (%)	1 (1.1)	1 (1.1)	.855	1 (2)	1 (2)	1.000
Number of stents	1.4 ± 0.6	1.4 ± 0.6	.912	1.4 ± 0.6	1.4 ± 0.6	.828

Abbreviations: ACEI, angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker; BMI, body mass index; CABG, coronary artery bypass graft; CKD, chronic kidney disease; COPD, chronic obstructive pulmonary disease; DBP, diastolic blood pressure; HDL, high-density lipoprotein; HF, heart failure; LDL, low-density lipoprotein; LVEF, left ventricular ejection fraction; MI, myocardial infarction; PCI, percutaneous coronary intervention; PVD, peripheral vascular disease; SBP, systolic blood pressure.
patients who had hypertension (82.5 vs 75.8%, \(P = .001 \)) were higher in patients prescribed ARB. In contrast, the ACEI group showed a higher prevalence of a previous history of MI (17.6 vs 12.0%, \(P = .002 \)). In addition, we found that prescription rates for ticagrelor (20.5 vs 14.0%, \(P = .001 \)) and beta-blockers (76.0 vs 66.6%, \(P < .001 \)) were higher in the ACEI group at discharge. In contrast, the use of clopidogrel (86.0 vs 79.5%, \(P = .001 \)) was more frequent in the ARB group. Laboratory indicators and coronary angiography characteristics were comparable in both groups.

After PSM, potential confounding biases derived from differences in baseline levels were considered in excellent balance between the 2 groups.

Clinical Outcomes

Clinical outcomes by the Kaplan–Meier method and the multivariable Cox regression analysis with a follow-up period of 13 months between both groups are demonstrated in Table 2 and Figure 2.

The occurrence of MACCEs (3.6 vs 3.0%, Log-rank \(P = .473, HR = .860, 95\% CI: .494–1.495, P = .593 \)), all-cause death (1.5 vs 6%, Log-rank \(P = .066, HR = .385, 95\% CI: .124–1.191, P = .097 \)), nonfatal MI (3 vs 7%, Log-rank \(P = .285, HR = 2.540, 95\% CI: .592–10.898, P = .210 \)), stroke (3 vs 6%, Log-rank \(P = .473, HR = 1.718, 95\% CI: .384–7.675, P = .479 \)) and TVR (1.7 vs 1.7%, Log-rank \(P = .925, HR = .998, 95\% CI: .471–2.116, P = .997 \)) did not differ significantly between the 2 groups.

After PSM, we also found no differences in the incidence of MACCEs (3.3 vs 2.9%, Log-rank \(P = .625, HR = .860, 95\% CI: .465–1.590, P = .630 \)), all-cause death (1.5 vs 8%, Log-rank \(P = .051, HR = .334, 95\% CI: .090–1.238, P = .101 \)), nonfatal MI (2 vs 8%, Log-rank \(P = .104, HR = 4.929, 95\% CI: .576–42.195, P = .145 \)), stroke (5 vs 5%, Log-rank \(P = .996, HR = 1.049, 95\% CI: 0.208–5.290, P = .954 \)) and TVR (1.4 vs 1.8%, Log-rank \(P = .522, HR = 1.276, 95\% CI: .537–3.031, P = .581 \)) between the ACEI and ARB groups.

Figure 3 presents subgroup analyses concerning MACCEs in all study populations. There was no obvious difference in prognosis according to the multivariate Cox regression analysis between the 2 groups.

Discussion

The present study was the first to indicate that there were no differences in MACCEs, all-cause death, nonfatal MI, stroke or TVR between the ACEI and ARB groups in UA patients undergoing successful PCI with preserved left ventricular systolic function. Similarly, we also found no differences in subgroup analyses based on age, sex, risk factors for coronary disease (hypertension and diabetes mellitus), discharge medication (beta-blockers) and coronary angiography characteristics (left anterior descending artery occlusion).

ACEI can decrease mortality and the risk of MI in patients who have left ventricular systolic dysfunction.\(^5\)–\(^7\) Therefore, the 2020 European guideline advises that ACEI should be taken into consideration in UA patients with HF with LVEF <40% unless contraindicated, while ARB is an alternative treatment for patients with ACEI intolerance.\(^8\) Nevertheless, presently, the long-term prognosis using ACEI or ARB is still controversial. In the Valsartan in Acute Myocardial Infarction (VALIANT) trial,\(^9\) valsartan and captopril demonstrated similar effectiveness in reducing death from any cause after acute myocardial infarction (AMI). Similar drug effects were in accordance with our findings. However, only AMI patients who had left ventricular systolic dysfunction in the VALIANT trial were enrolled, which made the conclusions less conclusive. In the ONgoing Telmisartan Alone and in combination with Ramipril Global Endpoint Trial

Table 2. Clinical Outcomes by the Kaplan–Meier Method and Multivariable Cox Regression Analysis.

Outcomes	ACEI	ARB	Log-Rank	Hazard Ratio (95% CI)	\(P \)
All patients					
MACCEs	33 (3.6%)	21 (3.0%)	.473	.860 (0.494–1.495)	.593
All-cause death	14 (1.5%)	4 (6.6%)	.066	.385 (1.124–1.191)	.097
Nonfatal MI	3 (3%)	5 (7%)	.285	2.540 (0.592–10.898)	.210
Stroke	3 (3%)	4 (6.6%)	.473	1.718 (0.384–7.675)	.479
TVR	16 (1.7%)	12 (1.7%)	.925	.998 (0.471–2.116)	.997
Propensity score matching patients					
MACCEs	22 (3.3%)	19 (2.9%)	.625	.860 (0.465–1.590)	.630
All-cause death	10 (1.5%)	3 (5%)	.051	.334 (0.090–1.238)	.101
Nonfatal MI	1 (2%)	5 (8%)	.104	4.929 (0.576–42.195)	.145
Stroke	3 (5%)	3 (5%)	.996	1.049 (208–5.290)	.954
TVR	9 (1.4%)	12 (1.8%)	.522	1.276 (0.537–3.031)	.581

Abbreviations: ACEI, angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker; CI, confidence interval; MACCEs, major adverse cardiovascular and cerebrovascular events; Nonfatal MI, nonfatal myocardial infarction; TVR, target vessel revascularization.
telmisartan also showed no significant difference in cardiac outcomes compared to ramipril in diabetes mellitus or vascular disease patients, who were not associated with HF. However, the small proportion of UA patients (14.9%) and the lack of LVEF data in the ONTARGET trial made the results not meet our targeted population. In addition, the Optimal Trial in Myocardial Infarction with the Angiotensin II Antagonist Losartan (OPTIMAAL) trial also showed no differences in the incidence of deaths (18 vs 16%, HR = 1.13, 95% CI: 0.99–1.28, P = .07), cardiac death (CD) (9 vs 7%, HR = 1.19, 95% CI: 0.98–1.43, P = .07), nonfatal re-infarction (14 vs 14%, HR = 1.03, 95% CI: 0.89–1.18, P = .72) and all-cause hospital admission (66 vs 65%, HR = 1.03, 95% CI: 0.97–1.10, P = .37) between losartan and captopril groups at a median follow-up period of 2.7 (9) years.

Even though there was comparable cardiovascular risk between 2 groups, the OPTIMAAL trial recommended that ACEI should be considered as preferred therapy in patients who had a high risk AMI.

It was recently pointed out that patients with AMI registered in the Osaka Acute Coronary Insufficiency Study prescribed ACEI had more improved survival than those prescribed ARB in a period of 5 years (HR = .53, 95% CI: .38–.74, P < .001).12

ACEI and ARB have their respective mechanisms of action that may contribute to differences in long-term prognosis between the 2 groups. ACEI has been shown to decrease the risk of death and MI in patients with hypertension, diabetes mellitus and HF. Conversely, ARB does not seem to decrease the risk of death or MI. This is because ACEI has cardiovascular benefits independent of antihypertensive effects, which are absent in ARB.13,14 ACEI inhibits angiotensin-converting enzyme (ACE) and consequently reduces the production of angiotensin II. ACEI also suppresses bradykinin breakdown into inactive peptides, whereas bradykinin has many benefits, such as the improvement of endothelial function and ischemic preconditioning, delaying the development of atherosclerosis, vasodilation and stimulation of nitric oxide1.15-17 ARB blocks selectivity for the angiotensin II type 1 (AT1) receptor, which contributes to a compensatory elevation of angiotensin II levels and the activation of the angiotensin II type 2 (AT2) receptor. Moreover, the AT2 receptor causes detrimental effects, including instability and rupture of plaques, thrombosis, inflammation and myocyte apoptosis.18,19

Briefly, current European guidelines do not fully encompass the longer-term use of ACEI/ARB in UA patients with preserved left ventricular systolic function after PCI. However, in-stent restenosis (ISR) is a major drawback of PCI. Groenewegen et al20 found that angiotensin II can promote neointimal proliferation in rats after stenting; neointimal area was increased in the angiotensin II group (.88 ± .21 mm²) vs control group (.66 ± .16 mm²) (P < .05). Recent studies suggest the importance of ACEI/ARB in improving long-term prognosis and reducing ISR. Peters et al21 demonstrated that ARB reduced the rates of ISR and revascularization with complex coronary artery disease after PCI. Guneri et al22 showed that ACEI may reduce the incidence of ISR in type 2 diabetic patients with D allele. Furthermore, the therapeutic mechanism involving ACEI/ARB depends on the blockade of angiotensin II, and angiotensin II contributes directly to the pathogenesis of coronary ischemic events via the development of atherosclerosis, cardiovascular remodeling, and decreased fibrinolysis.23 Based on these studies,20-23 we believe that ACEI/ARB should not be limited to UA with left ventricular systolic dysfunction after PCI, which could be applied to reduce ISR and delay the process of atherosclerosis in UA patients undergoing successful PCI with preserved left ventricular systolic function. In addition, as the percentage of patients with preserved left ventricular systolic function is
significantly more than those with left ventricular systolic dysfunction, there is a great need to investigate the effects of ACEI/ARB on long-term prognosis. Thus, we compared clinical outcomes between ACEI or ARB treatment in UA patients with preserved left ventricular systolic function after PCI.

Several retrospective observational studies have recently described comparable cardiovascular risk between ACEI/ARB treatment in UA patients with preserved left ventricular systolic function after PCI. Raposeiras et al reported that patients who had NSTE-ACS with preserved left ventricular systolic function did not appear to benefit from ACEI/ARB in reducing mortality. An increasing degree of prescribed ACEI/ARB in all patients after NSTE-ACS is mainly because of a tendency to therapeutic optimism. Regrettfully, this study did not evaluate the effects of ACEI and ARB separately. Cespon et al focused on a ACS population with preserved left ventricular systolic function to assess whether the selection between ACEI and ARB could contribute to differences in long-term prognosis. They found that there were no differences in combined events (all-cause death, AMI and HF) (HR = 1.03, 95% CI: .85–1.24, P = .796), AMI (HR = 1.03, 95% CI: .75–1.43, P = .839) and HF (HR = 1.04, 95% CI: .81–1.34, P = .768) between the ACEI and ARB groups after the follow-up period (median follow-up: 3.6 ± 2.1 years). Their findings on the lack of differences in prognosis were consistent with ours. Ann et al divided their study population with CHD into AMI (n = 21747) and angina (n = 28708). They allocated those patients into 2 groups, the ACEI and ARB groups, based on discharge medications. After PSM, they found that the occurrence of all-cause death (HR = 1.113, 95% CI: .986–1.257, P = .084) was not significantly different in the angina group, with a median follow-up of 2.2 years. Nevertheless, neither of the above study populations were restricted to patients with UA.

Our study is the first to examine the longer-term use of ACEI or ARB treatment in an East Asian population with UA with preserved left ventricular systolic function after PCI, which manifests a real clinical world outlook. Prognoses were comparable between ACEI or ARB treatment according to our final conclusion. Hence, we think that our study may not only increase indications and prescriptions of ARB but also provide important references for cardiologists about the selection of renin–angiotensin–aldosterone system (RAAS) inhibitors after PCI. However, further prospective, high-quality, large-sample randomized controlled trials are required to evaluate the conclusion.

The present study has limitations even though we performed PSM to adjust for possible confounding baseline factors. First, it was a single-center retrospective study with a small sample size, which might cause data loss and selection bias. Second, our study did not collect specific data concerning the specific ACEI and ARB used or their dose. Third, the study population were divided by post-discharge medication, we do not know how long patients had been taking their medications and changes in drug after hospital discharge. Such confounding factors might significantly influence the reliability of

Variable	No. of patients	MACCEs	Hazard ratio (95% CI)	P
Age (years)				
≥ 65	708		0.798(0.585–1.176)	.580
< 65	919		0.831(0.593–1.370)	.629
Gender				
Men	969		0.870(0.445–1.700)	.684
Women	658		0.750(0.291–1.934)	.551
Hypertension				
Yes	1281		0.985(0.544–1.783)	.960
No	346		0.197(0.025–1.555)	1.123
Diabetes mellitus				
Yes	918		0.671(0.342–1.318)	.247
No	709		1.201(0.464–3.114)	.706
Beta-blockers				
Yes	1170		0.869(0.468–1.613)	.657
No	457		0.775(0.237–2.540)	.674
LAD occlusion				
Yes	846		1.038(0.486–2.217)	.924
No	781		0.637(0.286–1.419)	.270

Figure 3. Subgroup analyses concerning MACCEs in all study populations. MACCEs, major adverse cardiovascular and cerebrovascular events; CI, confidence interval; LAD, left anterior descending; ACEI, angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker.
the outcomes. Fourth, the selection of RAAS inhibitors after PCI was at the discretion of the cardiologists.

Conclusion

No clear differences in MACCEs, all-cause death, nonfatal MI, stroke or TVR were observed between the ACEI and ARB groups during a 13-month follow-up period. Thus, we consider that prognoses are comparable between ACEI or ARB treatment in UA patients who have preserved left ventricular systolic function after PCI. To further confirm our results, prospective and large-sample randomized controlled trials are needed.

Author Contribution

All authors contributed to (1) substantial contributions to conception and design, or acquisition of data, or analysis and interpretation of data, (2) drafting the article or revising it critically for important intellectual content, and (3) final approval of the version to be published.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported by the Tianjin Science and Technology Project (16ZXJJSY00080).

ORCID iD

Jiong Xiao https://orcid.org/0000-0002-4153-7125

References

1. Giugliano RP, Braunwald E. The year in non-ST-segment elevation acute coronary syndrome. J Am Coll Cardiol. 2011;58:2342-2354.
2. Fox KA, Poole-Wilson PA, Henderson RA, et al. Interventional versus conservative treatment for patients with unstable angina or non-ST-elevation myocardial infarction: the British Heart Foundation RITA 3 randomised trial. Randomized intervention trial of unstable angina. Lancet. 2002;360:743-751.
3. Singh M, Rihal CS, Berger PB, et al. Improving outcome over time of percutaneous coronary interventions in unstable angina. J Am Coll Cardiol. 2000;36:674-678.
4. Jneid H, Anderson JL, Wright RS, et al. 2012 ACCF/AHA focused update of the guideline for the management of patients with unstable angina/non-ST-elevation myocardial infarction (updating the 2007 guideline and replacing the 2011 focused update): a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2012;60:645-681.
5. SOLVD Investigators Yusuf S, Pitt B, Davis CE, Hood WB, Cohn JN. Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure. N Engl J Med. 1991;325:293-302.
6. Pfeffer MA, Braunwald E, Moye LA, et al. Effect of captopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction. Results of the survival and ventricular enlargement trial. The SAVE investigators. N Engl J Med. 1992;327:669-677.
7. Flather MD, Yusuf S, Kober L, et al. Long-term ACE-inhibitor therapy in patients with heart failure or left-ventricular dysfunction: a systematic overview of data from individual patients. Ace-inhibitor myocardial infarction collaborative group. Lancet. 2000;355:1575-1581.
8. Collet JP, Thiele H, Barbato E, et al. 2020 ESC guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur Heart J. 2021;42:1289-1367.
9. Pfeffer MA, McMurray JJ, Velazquez EJ, et al. Valsartan, captopril, or both in myocardial infarction complicated by heart failure, left ventricular dysfunction, or both. N Engl J Med. 2003;349:1893-1906.
10. ONTARGET Investigators Yusuf S, Teo KK, et al. Telmisartan, ramipril, or both in patients at high risk for vascular events. N Engl J Med. 2008;358:1547-1559.
11. Dickstein K, Kjekshus J, Group OPTIMAAL Steering Committee of the OPTIMAAL Study Group. Effects of losartan and captopril on mortality and morbidity in high-risk patients after acute myocardial infarction: the OPTIMAAL randomised trial. Optimal trial in myocardial infarction with angiotensin ii antagonist losartan. Lancet. 2002;360:752-760.
12. Hara M, Sakata Y, Nakatani D, et al. Comparison of 5-year survival after acute myocardial infarction using angiotensin-converting enzyme inhibitor versus angiotensin ii receptor blocker. Am J Cardiol. 2014;114:1-8.
13. Strauss MH, Hall AS. The divergent cardiovascular effects of angiotensin converting enzyme inhibitors and angiotensin receptor blockers on myocadiarcl infarction and death. Prog Cardiovasc Dis. 2016;58:473-482.
14. Blood Pressure Lowering Treatment Trials Collaboraturnell bull F, Neal B, et al. Blood pressure-dependent and independent effects of agents that inhibit the renin-angiotensin system. J Hypertens. 2007;25:951-958.
15. Probstfield JL, O’Brien KD. Progression of cardiovascular damage: the role of renin-angiotensin system blockade. Am J Cardiol. 2010;105:10A-20A.
16. Dezsö CA, Szentes V. Effects of angiotensin-converting enzyme inhibitors and angiotensin receptor blockers on prothrombotic processes and myocardial infarction risk. Am J Cardiavasc Drugs. 2016;16:399-406.
17. Effect of ramipril on mortality and morbidity of survivors of acute myocardial infarction with clinical evidence of heart failure. The acute infarction ramipril efficacy (AIRE) study investigators. Lancet. 1993;342:821-828.
18. Montezano AC, Dinh Cat AN, Rios FJ, Touyz RM. Angiotensin II and vascular injury. Curr Hypertens Rep. 2014;16:431.
19. Strauss MH, Hall AS. Angiotensin receptor blockers may increase risk of myocardial infarction: unraveling the arb-mi paradox. Circulation. 2006;114:838-854.
20. Groenewegen HC, van der Harst P, Roks AJ, et al. Effects of angiotensin ii and angiotensin ii type 1 receptor blockade on neointimal formation after stent implantation. Int J Cardiol. 2008;126:209-215.
21. Peters S, Gotting B, Trummel M, Rust H, Brattstrom A.Valsartan for prevention of restenosis after stenting of type b2/c lesions: the VAL-PREST trial. J Invasive Cardiol. 2001;13:93-97.
22. Guneri S, Baris N, Aytekin D, Akdeniz B, Pekel N, Bozdemir V. The relationship between angiotensin converting enzyme gene polymorphism, coronary artery disease, and stent restenosis: the role of angiotensin converting enzyme inhibitors in stent restenosis in patients with diabetes mellitus. Int Heart J. 2005;46:889-897.
23. Miyazaki M, Sakonjo H, Takai S. Anti-atherosclerotic effects of an angiotensin converting enzyme inhibitor and an angiotensin ii antagonist in cynomolgus monkeys fed a high-cholesterol diet. Br J Pharmacol. 1999;128:523-529.
24. Raposeiras-Roubin S, Abu-Assi E, Cespon-Fernandez M, et al. Impact of renin-angiotensin system blockade on the prognosis of acute coronary syndrome based on left ventricular ejection fraction. Rev Esp Cardiol 2020;73:114-122.
25. Cespon-Fernandez M, Raposeiras-Roubin S, Abu-Assi E, et al. Angiotensin-converting enzyme inhibitors versus angiotensin ii receptor blockers in acute coronary syndrome and preserved ventricular ejection fraction. Angiology. 2020;71:886-893.
26. Ann SH, Strauss MH, Park GM, et al. Comparison between angiotensin-converting enzyme inhibitor and angiotensin receptor blocker after percutaneous coronary intervention. Int J Cardiol. 2020;306:35-41.