Reliability assessment of cylindrical joints with tensioned roll band of the rolling mill

O N Checheneva¹, A N Pashkov¹, E E Balakhnina¹, E I Sizova¹ and
V V Devyatiarova¹,*

¹National Research Technological University MISiS, 4,Leninsky pr., Moscow, 119991, Russia

*E-mail: vikdev@yandex.ru

Abstract: The work addresses to the problem of ensuring the operability of a composite roll made in the form of a cylindrical joint with the tension of a carbide band and a steel axis. When considering the wear processes, all the characteristics related to the surface microgeometry are combined by a dimensionless complex roughness parameter, which, along with the roughness class, includes the features of the surface treatment technology. To determine the contact pressure associated with the tension, the Lame formula for calculating thick-walled cylinders is used. When a hard-alloy bandage is placed on a steel roll with the tension between the contacting surfaces, a plastic unsaturated or saturated contact is performed, for which a method for calculating the tension values shall be proposed. Formulas are given for determining the maximum permissible torque that does not cause a change in the strength of the joint with tension under conditions of plastic saturated and unsaturated contact. In order to test the strength of the connection elements with tension, the theory of the greatest tangential stresses is applied for two dangerous points located on the inner surfaces of the covered and the covering parts: a formula is obtained for determining the maximum permissible calculated value of tension from the strength condition of the covered part. An example of fitting with the tension of a band made of hard alloy VK8 on a working roll made of improved steel 45 with a diameter of d = 100 mm is considered. The band is installed using a press with an H7/p6 fit to transmit a torque of M = 5 kNm. The minimum tension value is obtained from the condition of fixing the contact surfaces without their relative slippage, and the maximum tension value is obtained from the condition of the strength of the steel axis. As a result of the calculations, it was found that the minimum tolerance for this attachment does not provide the transmission of the specified torque since its value is less than the minimum allowable tension. Therefore, to ensure reliable operation of the connection with tension, it is recommended to use the H7/s6 fit, which provides the transmission of the specified torque without the strength of the connection elements.

1. Introduction
Recently, the reliability of technological machines and equipment has become one of the main engineering problems, which is becoming increasingly important for metallurgical production [1-4]. Insufficient reliability of technological machines and their components and devices not only leads to significant downtime of equipment but also significantly increases the cost of their operation. Increasing requirements for the quality of technological machines and equipment in order to reduce material, labor, and financial costs for maintenance and repair leads to the need for modernizing and reconstructing equipment [5-10]. At the same time, attention shall be paid to equipment for the base metal production [11-14].

2. Setting of a Problem
In the process of rolling workpieces made of refractory metals, the working rolls undergo significant thermal and mechanical pressures. Therefore, for high-temperature rolling of hard-to-deform
materials, carbide rolls are often used. In order to save expensive carbide material, the working roll is often produced composite, consisting of a steel roll and a carbide band [15-16].

The cylindrical connection with the tension of the band with the rolling roll should ensure that the contact surfaces are fixed without their relative slippage. This occurs by assigning the appropriate tightnesses. Due to the spread of the values of the coefficient of friction and tension, when an external (excessive) load and vibration are applied, a relative displacement of the band relative to the roll may occur, which negatively affects the further ability to transmit the full load. Under the action of variable loads, especially at the moment of starting and stopping, micro-displacements and fretting corrosion occur on the mating surfaces at the ends of the connected parts [17-20].

3. Purpose and Objectives of the Study
When considering the wear processes, all the characteristics related to the surface microgeometry can be combined by a complex dimensionless parameter [17-19]

\[
\Delta_\gamma = \frac{R_{\max}}{r_{eq} \sqrt{\beta}}.
\]

(1)

Here \(r_{eq}\) is the reduced average radius of curvature of the vertices of the projections, equal to

\[
r_{eq} = \frac{r_1 \cdot r_2}{r_1 + r_2},
\]

where \(r_1\) и \(r_2\) are the average values of the radii of curvature of the vertices of the projections in the longitudinal and transverse directions.

It is fundamentally important here that, along with the roughness class, the surface treatment technology also plays a great role, on which the other characteristics included in the formula (1) depend. For the treated surfaces, which are characterized by an equilibrium roughness, the parameters of the reference curve of the profile take fairly stable values of \(b \approx v \approx 2\).

The contact pressure \(p_c\), MPa, is related to the tension \(N\), m, the Lame dependence, which is derived in the course “Resistance of materials” [21]

\[
p_c = \frac{N}{d \cdot C} = \frac{N}{d \cdot \left(\frac{C_1 + C_2}{E_1 + E_2}\right)}.
\]

(2)

Here \(N\)-tension in the joint, m;
\(d\)-roll diameter, m;
\(C\)-coefficient, which is determined by the formula

\[
C = \frac{C_1}{E_1} + \frac{C_2}{E_2} = \frac{\left(\frac{d_1^2 + d_1^3}{d_2^2 - d_1^2} - \mu_1\right)}{E_1} + \frac{\left(\frac{d_2^2 + d_2^3}{d_2^2 - d_1^2} + \mu_2\right)}{E_2},
\]

(3)

where \(d_1\) - the diameter of the hole of the covered part (for a solid roll \(d_1 = 0\);
\(d_2\) – outer diameter of the covering part, m;
\(E_1\) and \(E_2\) – elastic modulus of the material of the covered (of the roll) and covering (sleeve) surface, MPa;
\(\mu_1\) and \(\mu_2\) are the Poisson coefficients of the material of the covered (of the roll) and covering (sleeve) surface.
4. Results of the study
When the carbide band is placed on a steel roll with the tension between the contacting surfaces, as a rule, a plastic unsaturated or saturated contact occurs.

Plastic unsaturated contact occurs in the case

\[N > \frac{14.5 \cdot d \cdot \Theta^4 \cdot HB^5 \cdot C}{\Delta_{\text{ unpl}}^2}. \]

Here \(\Theta = (1-\mu^2)/E \) - elastic constant for a less rigid body, MPa\(^{-1}\);

\(HB \) – hardness of a less solid body, MPa;

\(\Delta_{\text{ unpl}} \) – a complex characteristic of roughness.

Plastic saturated contact occurs in the case when

\[N > 0.124 \cdot K_{\text{as}} \cdot HB \cdot d \cdot C, \]

where \(K_{\text{as}} \) is the assembly coefficient; for thermal assembly \(K_{\text{as}} = 1 \), for press assembly \(-K_{\text{as}} = 0.5 \) [20].

The maximum permissible moment \([M]\), which does not cause a change in the strength of the joint with tension in the conditions of plastic contact, is determined by the formula

\[[M] = \left[\frac{f_m \cdot N}{d \cdot C} + K_S \cdot \sqrt{\Delta_{\text{ unpl}} \cdot \frac{N}{HB \cdot C}} \right] \frac{\pi \cdot d^2 \cdot l}{2}, \]

where \(f_m \) is the molecular component of the coefficient of friction, the value of which for practical calculations can be assumed to be equal to \(f_m = 0.12 \) [17-19];

\(K_S \) – coefficient depending on the type of contact; for unsaturated plastic contact \(K_S = 0.21 \), for saturated \(-K_S = 0.45 \) [20].

Calculations show that for the connection of the band with the roll in the formula (6), the second term can be neglected. Then, for both types of contact, the formula for the permissible moment takes the following form

\[[M] = \left(\frac{f_m \cdot N}{d \cdot C} \right) \frac{\pi \cdot d^2 \cdot l}{2}. \]

The minimum allowable design tension value \(N_{\text{min,p}} \) is found when the permissible torque value is equated with the corresponding values of the technological resistance moments \(M \), i.e.

\[N_{\text{min,p}} \approx \frac{2 \cdot M \cdot C}{f_m \cdot \pi \cdot d \cdot l} + \Delta N, \]

where \(\Delta N \) is the reduction of tension during press assembly [5];

\(\Delta N = 12 \) \(\mu \)m at the roughness parameter \(Ra = 2.5 \ldots 1.25 \) \(\mu \)m, \(\Delta N = 8 \) \(\mu \)m at \(Ra = 1.25 \ldots 0.63 \) \(\mu \)m, \(\Delta N = \) \(\mu \)m at \(Ra = 0.63 \ldots 0.32 \) \(\mu \)m.

The maximum design tension \(N_{\text{max,p}} \) is determined from the solution of the problem of calculating thick-walled cylinders [22] and is reduced to testing for strength at dangerous points where the greatest tensile and compressive stresses act (Figure 1):

- on the inner surface of the enclosing part

\[\sigma_1 = \sigma_{12} = p_{\text{max}} \cdot \frac{d_2^2 + d_1^2}{2d_1^2 - d_2^2}; \quad \sigma_3 = \sigma_2 = -p_{\text{max}}, \]

- on the inner surface of the covered part
\[
\sigma_1 = \sigma_{r2} = P_{max} \cdot \frac{d_2^2 + d^2}{d_2^2 - d^2}; \quad \sigma_3 = \sigma_r = -P_{max}.
\] (10)

Figure 1. Stresses in parts connected with tension.

According to the theory of the greatest tangential stresses, the strength condition has the form [21]

\[
\sigma_{\text{m宾客}} = \sigma_1 - \sigma_3 \leq \sigma_1.
\] (11)

Given this expression from formulas (9) and (10), we shall obtain

\[
P_{max,2} \leq \sigma_{r2} \cdot \frac{d_2^2 - d^2}{2 \cdot d_2^2}; \quad P_{max,1} \leq \sigma_{r1} \cdot \frac{d^2 - d_1^2}{2 \cdot d_1^2}.
\] (12)

Of the two values \(P_{max} \), the lower value limits the amount of allowable pressure determined by the formula (2). The dangerous element, as a rule, is the covered part [21], and therefore from (12) for a solid roll \((d_1 = 0) \), we get \(p_{max} = \sigma_{r1}/2 \). Then the maximum permissible calculated value of the tension \(N_{max, p} \) according to formula (2) will be equal to

\[
N_{max, p} = P_{max} \cdot d \cdot \left(\frac{C_1}{E_1} + \frac{C_2}{E_2} \right) = \frac{d \cdot \sigma_{r1}}{2} \left(\frac{C_1}{E_1} + \frac{C_2}{E_2} \right).
\] (13)

Because building connections smooths roughness, the maximum actual tension \(N_{max} \) take more received by the formula (16), at the height of the roughness of the mating surfaces, i.e.

\[
N_{max} = N_{max, p} + 1.2(R_{Z_1} + R_{Z_2}).
\] (14)

Usually, the surfaces of the covered parts (rolls) are treated with a roughness of \(R_{Z_1} = 0.4 \ldots 3.2 \) \(\mu m \), and the covering (holes) - with a roughness of \(R_{Z_2} = 0.8 \ldots 6.3 \) \(\mu m \). Therefore,

\[
N_{max} = N_{max, p} + (2 \ldots 10) \mu m.
\] (15)
According to the calculated values of the tension N_{max} и N_{min}, the corresponding standard fit is selected; most often, H7/p6, H7/r6, H7/s6, H7/t7, H7/z6, H7u7 landings are used.

5. Discussion of the research results
An example of fitting with the tension of a band made of hard alloy VK8 [23] on a working roll made of improved steel 45 [23] with a diameter of $d = 100$ mm is considered. The band is installed using a press with a H7/p6 fit to transmit a torque of $M = 5$ kN·m. The outer diameter of the band $d_2 = 170$ mm, the length of the landing surface $l = 145$ mm. The landing surface is treated according to the 6th class of cleanliness, for which the complex roughness characteristic of the $\Delta_r = 0.5$. The surface hardness of the roll HB = 2500 MPa. Check whether the specified torque can be transmitted.

For the H7/p6 landing [24], we find the lower and upper limit deviations of the roll and the hole, and then the lower $N_{\text{low}} = 2 \mu$m and the upper $N_{\text{high}} = 59 \mu$m limit values of the tightness (Figure 2).

![Figure 2](image-url)

Figure 2 Roll tolerance fields and holes with a diameter of 100 mm for tight fit H7/p6, H7/r6, H7/s6.

Substituting the corresponding values of the diameters and mechanical characteristics of the materials in the formula (3), we obtained the value of the coefficient $C = 0.7 \cdot 10^{-5}$ MPa$^{-1}$.

To determine the type of contact, we use the formula (5) to determine the amount of tension that characterizes the transition condition to plastic contact, taking into account that when pressing $C_{\text{as}} = 0.5$.

Therefore, in connection with the tension, both unsaturated ($N_{\text{low}} = 2 \mu$m) and saturated ($N_{\text{high}} = 59 \mu$m) plastic contact can be performed. For the maximum amount of tension, according to the formula (7), we obtain the maximum permissible moment $[M]$

$$[M] = \left(\frac{f_{\text{in}} \cdot N}{d \cdot C} \right) \frac{\pi \cdot d^2 \cdot l}{2} = \left(\frac{0.12 \cdot 59 \cdot 10^{-6}}{0.1 \cdot 0.7 \cdot 10^{-5}} \right) \frac{\pi \cdot 0.1^2 \cdot 0.145}{2} \approx 0.026 \text{ MN} \cdot \text{m} = 26 \text{ kN} \cdot \text{m}.$$

For the minimum amount of tension, using the formula (7), we obtain the minimum allowable moment $[M]$

$$[M] = \left(\frac{f_{\text{in}} \cdot N}{d \cdot C} \right) \frac{\pi \cdot d^2 \cdot l}{2} = \left(\frac{0.12 \cdot 2 \cdot 10^{-6}}{0.1 \cdot 0.7 \cdot 10^{-5}} \right) \frac{\pi \cdot 0.1^2 \cdot 0.145}{2} \approx 0.001 \text{ MN} \cdot \text{m} = 1 \text{ kN} \cdot \text{m}.$$

Since $[M]_{\text{min}} = 1 \text{ kH} \cdot \text{m} < M = 5 \text{ kH}$, the minimum tolerance for this fit does not provide the transmission of the specified torque.

During the press assembly, it is necessary to switch to a different type of fit to ensure the minimum allowable tension, which can be estimated using the formula (8)
The value of the tension reduction $\Delta N = 12 \mu m$ is taken for the 6th class of surface treatment purity, i.e. for $Ra = 2.5...1.25 \mu m$.

For the H7/r6 landing, we find [8] the lower $N_{low} = 51 \mu m$ and the upper $N_{high} = 73 \mu m$ values of the limit deviations (see Figure 2), and we determine the lower $N_{low} = 16 \mu m$ and the upper $N_{high} = 73 \mu m$ of the tension values, which is also not enough to transmit the specified torque.

For the H7/s6 landing, we find [24] the lower $N_{low} = 71 \mu m$ and the upper $N_{high} = 93 \mu m$ values of the limit deviations (see Figure 2), and we determine the lower $N_{low} = 136 \mu m$ and the upper $N_{high} = 93 \mu m$ of the tension values. This landing ensures the transmission of the specified torque.

Tight joints are used in various technological machines [25-29]. The proposed method can be useful in continuing the work [30-36].

6. Conclusions
When considering the wear processes, all the characteristics related to the surface microgeometry are combined by a dimensionless complex roughness parameter, which, along with the roughness class, includes the features of the surface treatment technology. To determine tensed contact pressure, the Lame formula for calculating thick-walled cylinders is used. Formulas are given for determining the maximum permissible torque that does not cause a change in the strength of the joint with tension under conditions of plastic saturated and unsaturated contact. In order to test the strength of the connection elements with tension, the theory of the greatest tangential stresses is applied for two dangerous points located on the inner surfaces of the covered and the covering parts: a formula is obtained for determining the maximum permissible calculated value of tension from the strength condition of the covered part. An example of fitting with the tension of a band made of hard alloy VK8 on a working roll is considered. The band is installed using a press with an H7/p6 fit to transmit a torque of $M = 5 \text{kN} \cdot \text{m}$. Calculations have shown that the minimum tolerance for this landing does not provide the transmission of the specified torque. Therefore, to ensure reliable operation of the connection with tension, it is recommended to use the H7/s6 fit, which provides the transmission of the specified torque without the strength of the connection elements.

References
[1] Chicheneva O N and Zarapin Y L 1995 Strain resistant of metals in electroplastic forming Steel in Translation 25 (3) pp 36-38
[2] Chicheneva O N, Savchenko V S and Zarapin Y L 1995 Mathematical model of the electroplastic rolling process Steel in Translation 25 (5) pp 53-55
[3] Zarapin A Yu, Shur A I and Chichenev, N A, 1999 Improvement of the unit for rolling aluminum strip clad with corrosion-resistant steel Steel in Translation 29 (10) pp 69-71
[4] Durelli A J, Chichenev N A and Clark J A 1972 Developments in the optical spatial filtering of superposed crossed gratings - Spatial-filtering techniques are used to obtain individually, as separate patterns in a simple and precise manner, the whole field of displacement components and of their time and space derivatives Experimental Mechanics 12 (11) pp 496-501 doi: 10.1007/BF02320745
[5] Bardovsky A D, Gerasimova A A and Basyrov I I 2019 Study of oscillating process of harp screens Lecture Notes in Mechanical Engineering 9783319956299 pp 133-139 doi: 10.1007/978-3-319-95630-5_14
[6] Zhiltsov A P, Vishnevskii D A, Kozachishen V A and Bocharov A V 2018 Razrabotka algoritma i kompyuternoi programmy dlya rascheta nadezhnosti oborudovaniya i proizvodstvennogo riska v metallurgicheskoi otрасли Chernye metally 11 pp 27-33
[7] Gorbatyuk S M, Zarapin A Y and Chichenev N A 2018 Retrofit of vibrating screen of Catoca Mining Company (Angola) Mining Informational and Analytical Bulletin 1 pp 143-149 doi: 10.25018/0236-1493-2018-1-0-143-149

[8] Albagachiev A Y, Keropyan A M, Gerasimova A A and Kobelev O A 2020 Determination of rational friction temperature in lengthwise rolling CIS Iron and Steel Review 19 pp 33-36 doi: 10.17580/cisissr.2020.01.07

[9] Chichenev N A 2018. Reengineering of the Slab-Centering Unit of a Roughing Mill Stand Metalurgist 62 (7-8) pp 701–706

[10] Chichenev N A 2015 Import-replacing re-engineering of the drive of the rollers in the intermediate roller table of a continuous bloom caster Metalurgist 58 (9-10) pp 892–895

[11] Kobelev O A and Tyurin V A 2007 Production of large plates Steel in Translation 37 (9) pp 727-729 doi: 10.1007/978-3-030-22063-1_75

[12] Keropyan A M, Kuziev D A and Krivenko A E 2020 Process Research of Wheel-Rail Mining Machines Traction Lecture Notes in Mechanical Engineering pp 703-709. doi: 10.1007/978-3-030-22063-1_75

[13] Kuzyiyev D, Krivenko A, Chezganova D and Valeriy B 2019 Sensing of dynamic loads in the open-cast mine combine E3S Web of Conferences 105 03014 doi: 10.1051/e3sconf/201910503014

[14] Jiawan L, Timushev S, Klimenko D and Krivenko A 2019 Modeling pressure pulsation fields in a screw centrifugal pump Proceedings of the 26th International Congress on Sound and Vibration ICSV

[15] Naumova M G, Morozova I G and Borisov P V 2020 Study of metal surface with color image obtained with laser marking Solid State Phenomena 299 pp 943-948

[16] Kostetskii B I et al 1975 Nadezhnost’ i dolgovechnost’ mashin (Kiev: Tekhnika) 405

[17] Kragel’skii I V et al 1977 Osnovy raschetov na trenie i iznos (Moscow: Mashinostroenie) 526

[18] Ikramov U A and Levitin M A 1984 Osnovy triboniki: Uchebne posobie dlja vuzov (Tashkent: Ukitovchii) 183

[19] Zhirkin Yu V 2002 Nadezhnost’, ekspluatatsiya, tekhnicheskoе obsluzhivanie i remont metallurgicheskikh mashin: Uchebnik (Magnetogorsk: MGU) 330

[20] Feodos’ev V I 1999 Soprotivlenie materialov: Uchebnik (Moscow MGU im. N.E.Baumana) 592

[21] Detali mashin 2002 Uchebnik Pod red. O.A. Ryakhovskogo (Moscow: MGTU im. N.E.Baumana) 544

[22] GOST 3882-74 (ISO 513-75) 2008 Splavy tverdye spechennye Marki (Moscow: Standartinform) 10s.

[23] GOST 1050-74 2008 Stal’ uglerodistaya kachestvennaya konstruktsionnaya (Moscow: Standartinform) 32

[24] GOST 25347-82 2004 Edinaya sistema dopuskov i posadok. Polya dopuskov i rekomenduemye posadki (Moscow: IPK Izdatelstvo standartov) 24

[25] Surianinov M and Shyliaiev O 2018 Calculation of plate-beam systems by method of boundary elements International Journal of Engineering and Technology (UAE) 7 (2) pp 238-241 doi: 10.14419/ijet.v7i2.23.11927

[26] Krutii Y, Suriyaninov M and Vandynskyi V 2017 Exact solution of the differential equation of transverse oscillations of the rod taking into account own weight MATEC Web of Conferences 116 02022 doi: 10.1051/matecconf/201711602022

[27] Kondratenko V E, Devyatiarova V V, Albil S V and Kartyshnev D S 2020 Improving methodology for calculating scaffolding formwork of monolithic slabs in building constructions IOP Conference Series: Materials Science and Engineering 971 (5) 052037 doi: 10.1088/1757-899X/971/5/052037
[28] Kondratenko V E, Devyatiarova V V, Albul S V and Valeeva L M 2020 Method of calculating volumetric scaffold of monolithic slab formwork *IOP Conference Series: Materials Science and Engineering* **971** (5) 052036 doi: 10.1088/1757-899X/971/5/052036

[29] Kondratenko V E, Sedykh L V and Surkova R Y 2020 Effective design features of rotor shafts *IOP Conference Series: Materials Science and Engineering* **971** (4) 042010 doi: 10.1088/1757-899X/971/4/042010

[30] Kobelev O A, Zinov'ev A V and Tsepin M A 2009 Effective production of large pipe blanks *Steel in Translation* **39** (6) pp 501-505 doi: 10.3103/S0967091209060163

[31] Nazaratin V V, Kobelev O A, Efimov M V, Selyutin A A and Yavtushenko P M 2013 Analysis of technologies used to make hollow ingots and prospects for their improvement *Metallurgist* **56** (9-10) pp 672-678 doi: 10.1007/s11015-013-9634-z

[32] Shatalov R L and Kulikov M A 2020 Influence of Outer Parts of a Strip on the Deformation and Force Parameters of Thin-Sheet Rolling *Metallurgist* **64** (7-8) pp 687-698 doi: 10.1007/s11015-020-01045-1

[33] Titov V N, Saifullaev S D, Skripalenko M M, Ternovykh A and I Sidorov A A 2020 Using Deform-2d Software to Study Heat-Insulation Materials as Protection of Air Tuyeres Against Burnout *Metallurgist* **64** (5-6) pp 388-395 doi: 10.1007/s11015-020-01007-7

[34] Korchunov A G, Polyakova M A, Konstantinov D V and Dabalá M 2019 Mechanical properties of prestressing strands and how they tend to change under thermo-mechanical treatment *CIS Iron and Steel Review* **18** pp 14-19 doi: 10.17580/cisisr.2019.02.03

[35] Keropyan A M, Kuziev D A and Krivenko A E 2020 Process Research of Wheel-Rail Mining Machines Traction *Lecture Notes in Mechanical Engineering* pp 703-709 doi: 10.1007/978-3-030-22063-1_75

[36] Kouziyev D, Krivenko A, Chezganova D and Valeriy B 2019 Sensing of dynamic loads in the open-cast mine combine *E3S Web of Conferences* **105** 03014 doi: 10.1051/e3sconf/201910503014