Rational-Valued, Small-Prime-Based Qubit-Qutrit and Rebit-Retrit Rank-4/Rank-6 Conjectured Hilbert-Schmidt Separability Probability Ratios

Paul B. Slater

Kavli Institute for Theoretical Physics,
University of California,
Santa Barbara, CA 93106-4030

(Dated: April 23, 2021)
Abstract

We implement a procedure—based on the Wishart-Laguerre distribution—recently outlined by both K. Życzkowski and the group of A. Khvedelidze, I. Rogojin and V. Abgaryan, for the generation of random (complex or real) $N \times N$ density matrices of rank $k \leq N$ with respect to Hilbert-Schmidt (HS) measure. In the complex case, one commences with a Ginibre matrix (of normal variates) A of dimensions $k \times k + 2(N - k)$, while for a real scenario, one employs a Ginibre matrix B of dimensions $k \times k + 1 + 2(N - k)$. Then, the $k \times k$ product AA^\dagger or BB^T is diagonalized—padded with zeros to size $N \times N$—and rotated by a random unitary or orthogonal matrix to obtain a random density matrix with respect to HS measure. Implementing the indicated procedure for rank-4 rebit-retrit states, for 800 million Ginibre-matrix realizations, 6,192,047 were found separable, for a sample probability of $.00774006$—suggestive of an exact value of $\frac{387}{5000} = \frac{3^2 \cdot 43}{2^5 \cdot 5^2} = .0774$. A prior conjecture for the HS separability probability of rebit-retrit systems of full rank is $\frac{860}{6561} = \frac{2^2 \cdot 5 \cdot 43}{3^8} \approx 0.1310775$ (while the two-rebit counterpart has been proven to be $\frac{29}{64} = \frac{2^3}{2^6}$, and the two-qubit one, very strongly indicated to be $\frac{8}{33} = \frac{2^3}{3^3 \cdot 11}$). Subject to these two conjectures, the ratio of the rank-4 to rank-6 probabilities would be $\frac{59049}{1000000} = \frac{3^{10}}{2^8 \cdot 5^6} \approx 0.059049$, with the common factor 43 cancelling. As to the intermediate rank-5 probability, application of a 2006 theorem of Szarek, Bengtsson and Życzkowski informs us that it must be one-half the rank-6 probability—its conjectured to be $\frac{27}{1000} = \frac{3^3}{2^3 \cdot 5^3}$, while for rank 3 or less, the associated probabilities must be 0 by a 2009 result of Ruskai and Werner. We are led to re-examine a 2005 qubit-qutrit analysis of ours, in these regards, and now find evidence for a $\frac{70}{2673} = \frac{2 \cdot 5 \cdot 7}{3^3 \cdot 11} \approx 0.0261878$ rank-4 to rank-6 probability ratio.

PACS numbers: Valid PACS 03.67.Mn, 02.50.Cw, 02.40.Ft, 02.10.Yn, 03.65.-w

*Electronic address: slater@kitp.ucsb.edu
I. INTRODUCTION

Pursuit of the problem “of quantum separability or inseparability from a measurement theoretical point of view” posed in 1998 by Žyczkowski, Horodecki, Sanpera and Lewenstein [1] has generated a considerable literature [2–15].

Of particular interest is the finding—motivated by the results reported in [5]—that the Hilbert-Schmidt PPT (positive-partial-transpose) probability of the generic class of $N \times N$ density matrices of rank $N - 1$ is one-half the probability of the density matrices of full rank (N) [7]. (For $N = 4, 6$, PPT-probability is equivalent to separability probability.) However, the interesting line of geometric reasoning (Archimedes’ formula,...) applied in [7] does not seem extendable to density matrices of rank $k = N - n$, for $n > 1$, so further investigative approaches seem necessary in such regards.

In [13], questions of this (reduced rank) nature were posed. However, the Hilbert-Schmidt separability probability of 0.1652 reported for the rank-three two-qubit states seemed inconsistent with the indicated analysis of Szarek, Bengtsson and Žyzckowski [7], since the evidence (both numerical and analytical)—though yet short of a formalized proof—is highly compelling that the Hilbert-Schmidt separability probability of full-rank (4) two-qubit states is $\frac{8}{33} \approx 0.242424$ [10, 11, 14].

We now implement a procedure—based on the Wishart-Laguerre distribution [16, 17]—recently outlined in email communications by both K. Žyczkowski and the group of A. Khvedelidze, I. Rogojin and V. Abgaryan for the generation of random (complex or real) $N \times N$ density matrices of rank k with respect to Hilbert-Schmidt measure. In the complex case, one commences with a Ginibre matrix (of normal variates) A of dimensions $k \times k + 2(N - k)$, while for a real scenario, one employs a Ginibre matrix B of dimensions $k \times k + 1 + 2(N - k)$. Then, the $k \times k$ product AA^\dagger or BB^T is diagonalized, padded with zeros to size $N \times N$, and then rotated by a random unitary or orthogonal matrix to obtain, as desired, a random density matrix with respect to Hilbert-Schmidt measure.

In [15], conjectures of Hilbert-Schmidt separability probabilities of $\frac{860}{6561} = \frac{2^2 \cdot 5 \cdot 43}{3^8} \approx 0.1310775$ and $\frac{27}{1000} = \frac{3^3}{2^2 \cdot 5^3} \approx 0.027$ were advanced—based on 1,850,000,000 and 2,415,000,000 iterations—for generic rebit-retrit and qubit-qutrit systems, respectively. (In [13] Tab. 1] a qubit-qutrit probability estimate of 0.0270 was reported.) Additionally, in the 2005 study [5], the rank-4 qubit-qutrit Hilbert-Schmidt separability probability was reported to be close
FIG. 1: Estimates of rank-4 rebit-retrit Hilbert-Schmidt PPT/separability probability and conjectured value of \(\frac{387}{50000} = \frac{3^2 \cdot 43}{2^5 \cdot 5^3} = 0.00774 \).

\((\frac{1}{33.9982})\) to \(\frac{1}{54}\) as large as the full-rank probability, presently conjectured to be \(\frac{27}{1000}\). (The rank-4 two-rebit HS separability probability has been proven by Lovas and Andai to equal \(\frac{29}{64} = \frac{29}{2^6}\).)

II. ANALYSES

A. Rebit-retrit analysis

Implementing the indicated procedure for rank-4 rebit-retrit states, for 800 million Ginibre-matrix realizations, 6,192,047 were found separable for a sample probability of .00774006–suggestive of an exact value of \(\frac{387}{50000} = \frac{3^2 \cdot 43}{2^5 \cdot 5^3} = 0.00774\) (Fig. 1). Subject to such a conjecture and the indicated \(\frac{860}{6561} = \frac{2^5 \cdot 5 \cdot 43}{3^8}\) full-rank one, the ratio of the rank-4 to rank-6 probabilities would be \(\frac{59049}{10000000} = \frac{3^{10}}{2^{26} \cdot 5^6} = (\frac{243}{1000})^2 \approx 0.059049\), with the common factor 43 interestingly cancelling. For ranks of three and less, the 2009 theorem of Ruskai and Werner \([18]\) informs us that the associated separability probabilities are zero.

B. Qubit-qutrit analysis

However, this new–to us, intriguing–rebit-retrit conjecture of \(\frac{59049}{10000000} = \frac{3^{10}}{2^{26} \cdot 5^6}\), seemed somewhat different (perhaps more “elegant”) in nature than–at this point in time–its
FIG. 2: Estimates of rank-4 qubit-qutrit Hilbert-Schmidt PPT/separability probability and conjectured value of \(\frac{7}{9900} = \frac{7}{2^2 \cdot 3^2 \cdot 5^2 \cdot 11} = 0.000707071 \).

apparent qubit-qutrit counterpart, which would involve dividing \(\frac{27}{1000} \) by \(\frac{1}{34} \), yielding \(\frac{27}{34000} = \frac{3^3}{2^4 \cdot 5^3 \cdot 17} \approx 0.000794118 \). Since the “34” stemmed from an estimate of 33.9982 reported in our “long ago” 2005 study \([5]\)–relying upon quasi-Monte Carlo (Tezuka-Faure) numerical integration–we decided to re-examine it employing the new, detailed-above Wishart-Laguerre-based methodology of K. Žyczkowski and the group of A. Khvedelidze, I. Rogojin and V. Abgaryan.

Then, employing for hundred million \(4 \times 8 \) complex-entry Ginibre matrices, we obtained an estimate of 0.000707020, of similar magnitude, but still markedly different from the indicated 0.000794118 (Fig. 2). (In the 2005 study, contrastingly, an Euler-angle parameterization of unitary matrices was employed. But it is not now quite clear there, in what manner the parameterization was adopted to the rank-4 analysis.) This result is suggestive of an exact value of \(\frac{7}{9900} = \frac{7}{2^2 \cdot 3^2 \cdot 5^2 \cdot 11} = 0.000707071 \). Subject to this conjecture and the indicated \(\frac{27}{1000} \) full-rank one, the ratio of the rank-4 to rank-6 probabilities would be \(\frac{70}{2673} = \frac{2 \cdot 5 \cdot 7}{3^5 \cdot 11} \approx 0.0261878 \).

C. Qubit-ququart analysis

In \([15]\), a Hilbert-Schmidt PPT-probability conjecture of \(\frac{16}{12375} = \frac{2^4}{3^2 \cdot 5^2 \cdot 11} \approx 0.0012929 \) was advanced for \(2 \times 4 \) qubit-ququart systems. In a further analysis of ours, for rank-6 such systems, based on 149 million Ginibre-matrix realizations, we obtained a PPT-probability
estimate of 0.0000546242. Though we plan to extend this analysis, a tentative conjecture for
this last value is $\frac{169}{3093750} = \frac{13^2}{2^2 \cdot 3^2 \cdot 5^6 \cdot 11} \approx 0.0000546263$ with the rank-6/rank-8 ratio, then, being
$\frac{169}{4000} = \frac{13^2}{2^3 \cdot 3} \approx 0.04225$.

III. CONCLUDING REMARKS

In the course of the research reported above, we have, in particular, sought rational-valued Hilbert-Schmidt PPT/separability rebit-retrit and qubit-qutrit probability formulas. Certainly, we have no demonstration that this must, in fact, be the case. But in light of the proven nature of the two-rebit probability $\left(\frac{29}{64}\right)$ [12], and the strong evidence for the two-qubit $\left(\frac{8}{33}\right)$, two-quat[neronic]bit $\left(\frac{26}{323}\right)$,... counterparts [14], this seems a direction worth pursuing–especially in light of the elegant nature of the formulas so far found (not to mention also the “half-theorem” of Szarek, Bengtsson and Žyczkowski [7]). Also, in terms of the Hilbert-Schmidt measure, the two-qubit separability probability is equally divided between those states for which $|\rho| > |\rho^{PT}|$ and those for which $|\rho^{PT}| > |\rho|$ [19].

Needless to say, it would seem, the intrinsic high-dimensionality (twenty and thirty-five) of the problems under consideration above, and related ones, presents formidable challenges to exact, symbolic analyses, as contrasted with the numerical approach adopted here.

Acknowledgments

This research was supported by the National Science Foundation under Grant No. NSF PHY-1748958. I thank K. Žyczkowski and the research group of A. Khvedelidze, I. Rogojin and V. Abgaryan for their several communications.

[1] K. Žyczkowski, P. Horodecki, A. Sanpera, and M. Lewenstein, Physical Review A 58, 883 (1998).
[2] P. B. Slater, Journal of Physics A: Mathematical and General 32, 5261 (1999).
[3] P. B. Slater, J. Phys. A 32, 8231 (1999).
[4] P. B. Slater, The European Physical Journal B-Condensed Matter and Complex Systems 17, 471 (2000).
[5] P. B. Slater, Physical Review A 71, 052319 (2005).
[6] P. B. Slater, Journal of Geometry and Physics 53, 74 (2005).
[7] S. J. Szarek, I. Bengtsson, and K. Życzkowski, Journal of Physics A: Mathematical and General 39, L119 (2006).
[8] P. B. Slater, Journal of Physics A: Mathematical and Theoretical 40, 14279 (2007).
[9] P. B. Slater, Journal of Physics A: Mathematical and Theoretical 46, 445302 (2013).
[10] S. Milz and W. T. Strunz, Journal of Physics A: Mathematical and Theoretical 48, 035306 (2014).
[11] J. Fei and R. Joynt, Reports on Mathematical Physics 78, 177 (2016).
[12] A. Lovas and A. Andai, Journal of Physics A: Mathematical and Theoretical 50, 295303 (2017).
[13] A. Khvedelidze and I. Rogojin, arXiv preprint arXiv:1708.07846 (2017).
[14] P. B. Slater, Quantum Information Processing 17, 83 (2018).
[15] P. B. Slater, Quantum Information Processing 18, 312 (2019).
[16] G. Livan, M. Novaes, and P. Vivo, in Introduction to Random Matrices (Springer, 2018), pp. 89–95.
[17] V. Abgaryan, A. Khvedelidze, I. Rogojin, and A. Torosyan (2020).
[18] M. B. Ruskai and E. M. Werner, Journal of Physics A: Mathematical and Theoretical 42, 095303 (2009).
[19] P. B. Slater, Advances in Mathematical Physics 2018 (2018).