Trascriptome meta-analysis of microalga *Dunaliella tertiolecta* under stress condition

Bahman Panahi*1, Mohammad Farhadian2, Seyyed Abolghasem Mohammadi3, Mohammad Amin Hejazi4

1- Department of Genomics, Branch for Northwest & West region, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Tabriz, Iran
2- Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
3- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
4- Department of Food Biotechnology, Branch for Northwest & West region, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Tabriz, Iran

*Corresponding authors, Bahman Panahi, b.panahi@abrii.ac.ir

CC-BY 4.0 International license available under a [license](https://creativecommons.org/licenses/by/4.0/) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a [CC-BY 4.0 International license](https://creativecommons.org/licenses/by/4.0/).
Abstract

Microalgae are photosynthetic organisms, which are considered as a potential source for sustainable metabolite production. Furthermore, stress conditions can affect metabolite production. In this study, a meta-analysis of RNA-seq experiments was performed to evaluate the response of metabolite biosynthesis pathways in *Dunaliella tertiolecta* to abiotic stress conditions, including high light, nitrogen deficiency, and high salinity. The results indicated down-regulation of light reaction, photorespiration, tetrapyrrole, and lipid-related pathways in salt stress. In comparison to salt stress, nitrogen deficiency mostly induced light reaction and photorespiration metabolisms. The up-regulation of phosphoenolpyruvate carboxylase, phosphoglucose isomerase, bisphosphoglycerate mutase, and glucose-6-phosphate-1-dehydrogenase (involved in central carbon metabolism) was observed under salt, high light, and nitrogen stress conditions. Interestingly, the results indicated that the meta-genes (i.e., modules of genes strongly correlated) tended to be located in a hub of stress-specific PPI (Protein-Protein Interaction) networks. Module enrichment of meta-genes PPI networks highlighted the cross talk between photosynthesis, fatty acids, starch, and sucrose metabolism under multiple stress conditions. Moreover, it was observed that the coordinated expression of the tetrapyrrole intermediated with meta-genes involved in starch biosynthesis. The results of the present study also showed that some pathways such as vitamin B6 metabolism, methane metabolism, ribosome biogenesis, and folate biosynthesis responded to different stress factors specifically. In conclusion, the results of this study revealed the main pathways underlying the abiotic stress responses for optimized metabolite production by the microalga *Dunaliella* in future studies. PRISMA check list was also included in the study.
Keyword: Network analysis, Central carbon metabolism, Translation-related genes, Tetrapyrrole biosynthesis.
Introduction

Photosynthetic microalgae have been considered as a potential source of secondary metabolites and proposed as a promising cell factory since they have efficient photosynthesis apparatus and biomass production (Spolaore et al. 2006, Del Campo et al. 2007). Environmental stress conditions can redirect microalga energy flux towards the production and accumulation of fatty acids, starch, and carotenoids (Dellomonaco et al. 2010). This feature is exploited to produce biofuels, pigments, and starch; however, it can reduce metabolite production as well. The growth rates and productivity of microalgae are dramatically diminished under stress conditions (Adams et al. 2013). Growth media optimization is proposed as an effective method to overcome this problem (Feng et al. 2011, San Pedro et al. 2013); however, previous attempts to gain sufficient levels of productivity have failed because the underlying molecular mechanisms are not well understood (Courchesne et al. 2009, Prochnik et al. 2010).

It has been documented that abiotic stresses increase the transcription and activity of key enzymes involved in various metabolite biosynthesis pathways (Ho et al. 2017). Salt stress has also been reported to enhance the activity of glycerol metabolism enzymes such as glycerol-3-salina (Breuer et al. 2013). Recent study have also showed that mRNA level of zeaxanthin epoxidase, an enzyme involved in the accumulation and conversion of zeaxanthin, increases rapidly in response to the increased salinity or light/dark cycle (Kim et al. 2019). Similar results were also obtained for the enzymatic activities of fructose-bisphosphate aldolase (FBPA) involved in starch metabolism (Klok et al. 2013). The high light condition phosphate phosphatase, glycerol 2-dehydrogenase, and dihydroxyacetone kinase in Dunaliella leads to energy dissipation and the inhibition of photosynthetic apparatus and generates reactive oxygen species (ROS) (Jin et al. 2003). Cells can utilize the higher light energy for growth only after
adjusting the photosynthetic apparatus and cellular processes (Nymark et al. 2009). The expression of most photosynthesis genes decreases under high light conditions, indicating excess light capture (Binte Safie et al. 2018). Fang et al. (2012) demonstrated that about 15% of energy metabolism and carbon metabolism and 25% of Tricarboxylic acid (TCA) related genes were up-regulated under high light conditions. It has also been confirmed that the overexpression of genes involved in carbon metabolism (e.g., fructose -1, 6-bisphosphatase) improves photosynthetic performance as well as the total organic carbon and glycerol production of Dunaliella bardawil (Fang et al. 2012). The metabolome reprogramming effects of nitrate deficiency and/or high light in D. tertiolecta cells has also been examined in the literature. It is revealed that such stresses increase saturated fatty acids and decrease polyunsaturated fatty acids (Lee et al. 2014).

Despite the broad scientific interest in identifying the responses of D. tertiolecta to environmental stresses, the involved biochemical pathways and the underlying genetic mechanisms have still remained unknown (Binte Safie et al. 2018). Moreover, contradictory information on the transcriptional regulation of Dunaliella under stress conditions has been reported. For example, some studies reported that Glycerol-3-phosphate dehydrogenase GPDH-c transcription levels were increased under salinity stress (Kim et al. 2010), whereas another study showed that the GPDH-c expression level was decreased under salt stress (Alkayal et al. 2010). Additionally, various studies have reported different degrees of FBPA expression under abiotic conditions (Cai et al. 2013, Kim et al. 2010). On the other hand, not all Dunaliella species respond in the same manner to abiotic stress conditions (Kim et al. 2010, Pereira and Otero. 2019).

Transcriptome meta-analysis is the most promising strategies to overcome the abovementioned challenges (Zhang et al. 2020). It is an efficient tool for the identification of fundamental and
principal genes/pathways and often forms the basis for novel hypotheses (Zhang et al. 2018). For RNA-seq meta-analysis, the p-value combination technique is proposed based on the inverse normalization and Fisher’s methods (Rau A. et al. 2014a). This approach has been successfully applied to gain insight into crop responses to environmental stresses (Rest et al. 2016). More recently, salt stress transcriptome responses in different rice genotypes were elucidated by using RNA-seq meta-analysis (Kong et al. 2019).

The microalga *Dunaliella* is frequently considered for industrial applications because of its potential to produce high value compounds such as beta-carotene, its high growth rate, tolerance under extreme physiological conditions, lack of cell wall, and low energy requirements in harvesting (Einali et al. 2017, Oren 2010, Rammuni et al. 2019).

In the present study, RNA-seq meta-analysis of *D. tertiolecta* was performed under high light, nitrogen deficiency, and high salinity stress conditions. Then, protein-protein interaction (PPI) network analysis was constructed to extend the possible functions of identified meta-genes in different stress conditions.

Materials and Methods

Dataset Collection

RNA-seq raw reads were retrieved from the Gene Expression Omnibus (GEO), Sequence Read Archive (SRA), and European Nucleotide Archive (ENA) databases. Raw reads of samples treated under high salinity/NaCl, high light intensity, and nitrogen deficiency conditions were included in the meta-analysis. The details of included datasets are presented in Table 1.

Processing RNA-Seq data
Raw FASTQ files of the above-mentioned datasets were quality controlled using FastQC software version 0.11.5. In this step, reads with quality score below 30 were excluded. Subsequently, the high-quality reads were trimmed using Trimmomatic software version 0.32 (Bolger et al. 2014) with the following parameters: LEADING: 30, TRAILING: 3, SLIDINGWINDOW: 4:20, and MINLEN: 45. We first mapped the trimmed reads to the *Dunaliella salina* genome (available at https://www.ncbi.nlm.nih.gov/genome/10713) using TopHat2 software (Trapnell et al. 2009). Since mapping rate was extremely low, de novo assembling with strand-specific mode (—SS_lib_type RF) was performed using Trinity software v2.4.0 (Haas *et al*., 2013). In the next step, the trimmed raw reads were aligned to *de novo* assembled transcripts using Kallisto software v0.44.0 (Bray *et al*., 2016) with default parameters. The expression of genes was determined as Fragments Per Kilobase Million (FPKM) values per gene, and differential expression of genes between treated and untreated samples was estimated by using the edgeR package (Robinson *et al*., 2010). A significant differential expression was defined as a fold change ≥ 2 and a False Discovery Rate (FDR) corrected p-value ≤ 0.05 (Benjamini and Hochberg 1995). Protein orthology was determined using blastx (cut off E-value of 1.0E-10) of assembled transcript against the *Chlamydomonas reinhardtii* annotation. The top five hits were extracted using in-house python scripts.

Meta-analysis of differential gene expression

To run the meta-analysis, p-values of differentially expressed genes were combined with two “Fisher’s and inverse” normalization methods complimented in metaRNASeq package (Rau Andrea *et al*., 2014b). To this end, each stress type dataset was analysed separately using the GLM (Generalized Linear Models). The raw P-values for each gene from each of the datasets
were combined using Fisher and Stouffer’s methods (inverse normal method). Fisher’s method combines the P-values from each experiment with one test statistic defined as:

$$X^2 = -2 \sum_{s=1}^{S} \ln (p_{gs})$$

where, p_i denotes the raw P-value obtained from gene g in experiment s. S is the number of the combined experiments. Under the null hypothesis, the test statistic χ follows a χ^2 distribution with 2 S degrees of freedom. This test provides a meta P-value, and the classical procedures for multiple testing correction can be applied to obtain the adjusted P-values to control the false discovery rate. In the Stouffer’s method, standard normal deviate, the effect size, and its standard are often directly calculated as:

$$Z = \frac{\sum_{i=1}^{k} Z_i}{\sqrt{k}}$$

where, Z_i denotes the one-side P-value obtained from gene i in the experiment K under the null hypothesis indicating no effect in each study. The Benjamini-Hochberg method (Benjamini and Hochberg 1995) was used to correct for multiple testing. Genes with the adjusted meta P-value ≤ 0.05 were considered to be statistically significant.

Functional analysis of DEGs (Differentially Expressed Genes) and meta-genes

GO enrichment analysis was performed in three categories of biological processes (BP), molecular functions (MF), and cellular components (CC) using the Algal Functional Annotation tool (Lopez et al. 2011). $P \leq 0.05$ was set as the cut-off threshold. To visualize DEGs
(Differentially Expressed Genes) and meta-genes within the enriched pathways, MapMan software (Thimm et al. 2004) was used. The PPI analysis was also performed to extend the possible functions of meta-genes in the system level. The STRING database (https://string-db.org/) (Szklarczyk et al. 2015) was employed for PPI network construction based on the previous knowledge of *Chlamydomonas reinhardtii* at high level of confidence (score ≥ 0.70). Only experimentally validated interactions were included for the network construction. Then the K-means algorithm was used to statistically distinguish functional modules. Finally, the biological functions of each module were enriched using the KEGG database (Kanehisa and Goto 2000). *P*-values were considered to be statistically significant at Benjamini-Hochberg adjusted P ≤ 0.05.

Results and Discussion

Metabolism overview of differentially expressed genes

The results demonstrated down-regulation of light reactions, photorespiration, tetrapyrrole and lipid-related pathways under salt stress. In comparison to salt stress, nitrogen deficiency mostly induced light reaction and photorespiration metabolisms. Down-regulation of the TCA, starch, and sucrose metabolism-related genes was also revealed under high light stress condition (Fig. 1). It was proposed that the TCA cycle, glycolysis, oxidative pentose phosphate pathway (OPPP), and the carbon concentrating mechanism (CCM) were the main determinants in the carbon flux towards different forms of stored carbon (Tan et al. 2016). Conserved up-regulation of phosphoenolpyruvate carboxylase, phosphoglucose isomerase, bisphosphoglycerate mutase, and glucose-6-phosphate-1-dehydrogenase involved in central carbon metabolism was also observed across high salt, high light, and nitrogen stress conditions (Fig. 1 and Supplementary Table S1). Despite down-regulation of the genes directly involved in the Triacylglycerol (TAG)
and Fatty acid (FA) synthesis, up-regulation of glycolytic-related transcripts such as pyruvate kinase and pyruvate dehydrogenase are observed (Fig. 1 and Supplementary table S1).

The findings also demonstrated that nitrogen deficiency down-regulated the ACP, whilst salt stress up-regulated this gene. In response to light stress, the majority of genes involved in lipid metabolism were up-regulated. Ketoacyl ACP synthase and Omega-6 desaturase were two genes with a striking increase in expression (fold change >3) under the same condition. Moreover, in line with the result of this study, it has been reported that genes related to photosynthetic antenna proteins were down-regulated in high light stress condition (Binte Safie et al., 2018). As nitrogen is an important component for the synthesis of chlorophyll and photosystem proteins, the reduction in nitrogen availability could hinder the expression of genes related to photosynthesis (Yao et al., 2017). The results also indicated that nitrogen deficiency up-regulated biotin carboxylase and down-regulated the diacylglycerol kinase. Interestingly, a similar expression pattern of diacylglycerol kinase and biotin carboxylase were observed under both salt and nitrogen stress conditions. Down-regulation of starch degrading enzymes were observed in *D. tertiolecta* cells under high light and nitrogen deficiency conditions (Fig. 1). These results support the idea that *D. tertiolecta* cells tend to accumulate more starch than lipids under high light and nitrogen deficiency conditions (Tan *et al.* 2016).

Regulation overview of differentially expressed genes

The effects of different stress conditions on regulatory elements are presented in Fig. 2 and Supplementary Figs S4-7. Transcription factors, protein modification, and degradation-related genes, and G-proteins have been frequently identified in the differentially expressed genes. Interestingly, most of the regulatory elements were expressed with stress specific manners. In the
category of transcription factors, Cytokinesis related protein (MOB1), Histone deacetylase (HDA), and C3H zing finger family were down-regulated, whereas Histone acetyltransferase (HAM) and Chromatin remodeling factor (CHR) were dramatically up-regulated under salt stress condition (Fig. 2). On the other hand, the up-regulation of the MOB1 and HDA was observed under nitrogen deficiency conditions. Moreover, the CHR was moderately down-regulated under high light condition. Peptide methionine sulfoxide reductase (MSRA3), involved in post-translational modification, was significantly down-regulated under salt stress, whereas it was not involved in the differentially expressed gene list under high light and nitrogen deficiency conditions (Fig. 2). Regarding the protein degradation-related genes, the down-regulation of 26S proteasome regulatory subunit RPN7, ubiquitin-activating enzyme E1 (UBA1), and active subunits of chloroplast ClpP complex (CLPP5) and the up-regulation of ClpD chaperon (CLPD) were noticed under the salt stress condition. On the contrary, the CLPD was down-regulated under light and nitrogen stresses.

bZIP (basic leucine zipper) which trigger the cascade of signaling pathways (Zheng et al. 2016), is other key regulatory element of stress responses in *D. tertiolecta*. Results of our study showed that there were similar expression patterns of *bZIP* and *bHLH* (basic helix-loop-helix) (Supplementary Figs. S5-7) with 6-phosphogluconate dehydrogenase (*6PGD*) and glucose-6-phosphate dehydrogenase (*G6PD*, which are involved in oxidative pentose phosphate (OPPP) pathway. The results of our analysis also revealed that *PHD*- and *SET*- transcriptional regulator family is another important regulatory factor in multiple stress responses. As reported, these TFs are regulatory factors in CCM metabolism (in the TCA pathway) and chromatin structure (Bienz 2006). Similar expression patterns of PHD-finger family and some TCA pathway genes (Fig. 2) also highlight this hypothesis.
Meta-analysis of transcriptome data

Although the transcriptome analysis simplifies some complexities of stress response pathways, it poses some questions in this regard. What are the principal pathways mediating the responses to each type of stress? Are there any putative and unique pathways between different stresses? To answer these questions, we performed the statistical meta-analysis along with the system-level survey of meta-genes. Fig. 3 presents the statistical results of the transcriptome meta-analysis of multiple stresses. Under salt stress condition, 477 (317 down-regulated and 144 up-regulated genes) and 144 (101 down-regulated and 43 up-regulated genes) genes were defined as meta-genes based on the Fisher’s and reverse normalization methods, respectively (Fig. 3A). Under nitrogen deficiency condition, 50 (39 up-regulated and 11 down-regulated genes) and 15 (10 genes up-regulated and 5 genes down-regulated) genes were identified as meta-genes based on the Fisher’s and reverse normalization methods, respectively (Fig. 3B). Moreover, under high light stress condition, 108 (50 up-regulated and 58 down-regulated genes) and 41 (22 up-regulated and 19 down-regulated genes) genes were defined using Fisher’s and reverse normalization methods, respectively (Fig. 3C). Supplementary Table S2 lists the meta-genes for each abiotic stress. Oxygen-evolving enhancer protein (PSBQ), superoxide dismutase (FSD1) and ascorbate peroxidase (ASP) are examples of the key genes under nitrogen deficiency condition. FAT1, encoding the acyl carrier protein thioesterase, and PPX1, encoding the protoporphyrinogen oxidase specifically, were determined as the key genes under salinity stress condition (Supplementary Table S2).

Interestingly, the results indicate that the key meta-analysis genes tend to be located in a hub situation of the stress-specific PPI networks (indicated by a circle, Fig. 4). Surprisingly,
some of these hubs such as serine hydroxyl methyltransferase (*SHMT1*) and *PSBO* are the key regulators of CCM pathways (Fang *et al.* 2017). Not unexpectedly, it the overproduction of storage metabolites seems to be interconnected with defense-related pathways. It is also reported that the functions of *SHMT1* influence resistance to different stress, and the mutation of *SHMT1* leads to increased cell damage due to accumulation of H$_2$O$_2$ (Moreno *et al.* 2005). *STA1*, which is the key enzyme in starch granulation under stress condition, was defined as a core responsive gene (Supplementary Table S2). It has been proposed that the *STA1* mutants significantly reduce granular starch deposition (Wattebled *et al.* 2003).

The module enrichment of the PPI networks also highlighted the cross talk between photosynthesis, fatty acids, starch, and sucrose metabolism under multiple stress conditions (Fig. 4). The KEGG enrichment of the identified meta-genes under the above-mentioned stress conditions suggested that tetrapyrrole biosynthesis was a key stress responsive pathway in *D. tertiolecta*. Among different genes involved in the tetrapyrrole biosynthetic pathways, glutamyl-tRNA reductase (*GluTR*), uroporphyrinogen decarboxylase (*UROD*), porphobilinogen synthase (*ALAD*), chlorophyllide a oxygenase (*CAO*), Mg$^{2+}$-protoporphyrin IX monomethyl ester cyclase (*CHLE*), glutamyl-tRNA synthetase (*EARS*), and protochlorophyllide reductase (*POR*) were defined as meta-genes under high light condition (Supplementary Table S2); however, protoporphyrin/coproporphyrin ferrochelatase (hemH), geranylgeranyl diphosphate (chlP), hydroxymethylbilane synthase (*HMBS*), and GluTR were detected as meta-genes under high salt stress condition. Under nitrogen deficiency condition, coproporphyrinogen III oxidase (*CPOX*), geranylgeranyl diphosphate (chlP), and hydroxymethylbilane synthase (*HMBS*) were identified as meta-genes (Supplementary Table S2). Two main functions of the tetrapyrrole biosynthesis pathway are the chlorophyll (Chl) biosynthesis and plastid to nucleus retrograde signaling
In contrast with previous findings in plants, our analysis indicated that a majority of meta-genes involved in the tetrapyrrole pathway genes are dominantly up-regulated by high light (Cihlář et al. 2016). In line with the results of our analysis, the up-regulation of tetrapyrrole biosynthesis genes under photo-oxidative stress condition has been documented, as reported in Chlamydomonas reinhardtii (Nogaj et al. 2005). It has been also reported that oxidative stress triggers chloroplast to nucleus communication (Wang et al. 2018). Similar expression patterns of the identified meta-genes were noticed under nitrogen deficiency condition. The coordinated expression of the tetrapyrrole intermediated with starch biosynthesis involved meta-genes was observed in this study. Moreover, the co-occurrence and physical interaction of the starch biosynthesis with tetrapyrrole biosynthesis involved meta-genes under high salt, high light, and nitrogen deficiency conditions confirm the hypothesis indicating that plastid to nucleus retrograde signals are essential for the expression of nuclear starch biosynthesis genes (Wang et al. 2018).

The meta-genes of the three abiotic stresses were also enriched in photosynthesis processes. The functional module enrichment of PPI highlighted this finding. Photosynthetic-reaction center complexes, light-harvesting complexes, and photosynthetic antennae were the most abundant functional groups of photosynthesis-involved meta-genes. Transcripts of light-harvesting chlorophyll (Chl) a/b-binding proteins B2 (Lhcb2) and LHCBA4 were constitutively decreased under the three abiotic stress conditions (Supplementary Table S2). LHCs allows the reaction centers of photosystem (PS) I and II to initiate charge separation and fuel the photosynthetic electron transport chain in the thylakoid membranes (Ishizaki et al., 2012; Perrine et al., 2012). It has been proposed that feedback regulation of Lhcb is essential to reduce the effects of reactive oxygen species on Chls and to accumulate metabolic intermediates under oxidative stress.
conditions (Wang et al. 2018). Hence, the reduced accumulation of the Mg-Proto, corresponded with decreased expression of LHCB2 and LHCB4, proposed the regulatory effects of tetrapyrrole biosynthesis intermediates on Chl and carotenoid pigment biosynthesis under multiple stress conditions.

Furthermore, the KEGG enrichment analysis of the meta-genes and functional modules of PPI networks indicated that vitamin B6 metabolism, methane metabolism, ribosome biogenesis, folate biosynthesis, and tetracycline biosynthesis responded to the different stresses (Fig. 4 and Supplementary Table S2). Vitamin B6 metabolism and methane metabolism were specifically enriched in light stress meta-genes (Supplementary Table S2). Indeed, the accumulation of the vitamin B6 confers oxidative stress tolerance (Raschke et al. 2011). It has been also reported that the vitamin B6 alleviates oxidative damage of Chl and carotenoid pigments intermediates (Havaux et al. 2009).

The findings also indicated that ribosome biogenesis specifically enriched under salt stress (Fig. 4). Among protein synthesis apparatus involved genes in D. tertiolecta, nine large (RPL15, RPL37, RPL27A, RPL8, RPL23A, MRPL9, MRPL17, MRPL27, and RPL7) and 3 small (RPSA, RPS19, RPS27) subunits of ribosomal proteins were defined as core responsive-genes under salt stress condition. Most interestingly the cytosolic ribosomal proteins, including the RPL15, RPL23A, RPL27A, RPL37, RPL7, RPL8, RPS19, and RPS27 were found to be up-regulated under salt stress condition, while mitochondrial ribosomal proteins such as MRPL9, MRPL17, MRPL27, and RPSA were down-regulated under salt stress (Supplementary Table S2). The salt stress-dependent down-regulation of MRPL9, MRPL17, and MRPL27 may contribute to mitochondrial functionality through maintaining redox status. It was proposed that the transcriptional control of the ribosome synthesis is an important regulatory point of signal and
regulon generation under salt stress condition (Omidbakhshfard et al. 2012). Although, microalgae ribosomal proteins have not yet been studied in detail, preliminary studies showed that a mutation in the RP genes (RPS18A, RPL24B, RPS5B, RPS13B, and RPL27A) leads to decreased cell division and growth rate (Liang et al. 2017).

Conclusion

The present study employed a meta-analysis of RNAseq studies under the abiotic stress conditions, including high light, high salt, and nitrogen deficiency on D. tertiolecta. This approach magnifies the efficiencies in the identification of key and core stress response genes/pathways, which might be overlooked by previous studies. The comparative analysis of differential expression analysis and KEGG pathway enrichment of the three stress conditions indicated the existence of shared and unique pathways under high light, high salt, and nitrogen deficient conditions. The shared stress-responsive genes were found to be involved in the tetapyrrole biosynthesis pathway, starch, and sucrose metabolism. These changes in metabolism allow D. tertiolecta to maintain its homeostatic state and redirect the carbon flux to over-accumulate multiple secondary metabolites.

Author contributions:

Conceived and designed the experiments: BP. Analyse the data: BP, MF, writing the paper: BP, SAM, and MAH.

Acknowledgements
The authors are grateful to Dr Anusuya Willis (CSIRO, Australia) for critical reviewing of manuscript. The financial support of the Agricultural Biotechnology Research Institute of Iran (ABRII) is gratefully acknowledged.

Competing interests

The authors declare that they have no competing interests.

References

Adams C, Godfrey V, Wahlen B, Seefeldt L, Bugbee B. 2013. Understanding precision nitrogen stress to optimize the growth and lipid content tradeoff in oleaginous green microalgae. Bioresour Technol 131: 188-194.

Alkayal F, Albion RL, Tillett RL, Hathwaik LT, Lemos MS, Cushman JC. 2010. Expressed sequence tag (EST) profiling in hyper saline shocked Dunaliella salina reveals high expression of protein synthetic apparatus components. Plant Sci 179: 437-449.

Benjamini Y, Hochberg Y. 1995. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society. Series B (Methodological) 57: 289-300.

Bienz M. 2006. The PHD finger, a nuclear protein-interaction domain. Trends Biochem Sci 31: 35-40.

Binte Safie SR, Ng YK, Yao L, Lee YK. 2018. Growth bottlenecks of microalga Dunaliella tertiolecta in response to an up-shift in light intensity. European Journal of Phycology 53: 509-519.

Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics (Oxford, England) 30: 2114-2120.

Bray NL, Pimentel H, Melsted P, Pachter L. 2016. Near-optimal probabilistic RNA-seq quantification. Nature Biotechnology 34: 525.

Breuer G, Evers WA, de Vree CJH, Kleinegris DM, Martens DE, Wijffels RH, Lamers PP. 2013. Analysis of fatty acid content and composition in microalgae. J Vis Exp.

Cai T, Park SY, Li Y. 2013. Nutrient recovery from wastewater streams by microalgae: Status and prospects. Renewable and Sustainable Energy Reviews 19: 360-369.

Cihlář J, Fissy Z, Horák A, Oborník M. 2016. Evolution of the Tetrapyrrole Biosynthetic Pathway in Secondary Algae: Conservation, Redundancy and Replacement. PLOS ONE 11: e0166338.

Courchesne NM, Parisien A, Wang B, Lan CQ. 2009. Enhancement of lipid production using biochemical, genetic and transcription factor engineering approaches. J Biotechnol 141: 31-41.
Del Campo JA, Garcia-Gonzalez M, Guerrero MG. 2007. Outdoor cultivation of microalgae for carotenoid production: current state and perspectives. Appl Microbiol Biotechnol 74: 1163-1174.

Dellomonaco C, Fava F, Gonzalez R. 2010. The path to next generation biofuels: successes and challenges in the era of synthetic biology. Microbial Cell Factories 9: 3.

Einali A, Mazang-Ghasemi S, Valizadeh J, Noorozifar M. 2017. Metabolic responses and 2-carotene production by the unicellular green alga Dunaliella salina exposed to leaf extracts. Acta Botanica Brasiliaca 31: 180-190.

Fang L, Lin HX, Low CS, Wu MH, Chow Y, Lee YK. 2012. Expression of the Chlamydomonas reinhardtii sedoheptulose-1,7-bisphosphatase in Dunaliella bardawil leads to enhanced photosynthesis and increased glycerol production. Plant Biotechnol J 10: 1129-1135.

Fang L, Qi S, Xu Z, Wang W, He J, Chen X, Liu J. 2017. De novo transcriptomic profiling of Dunaliella salina reveals concordant flows of glycerol metabolic pathways upon reciprocal salinity changes. Algal Research 23: 135-149.

Feng D, Chen Z, Xue S, Zhang W. 2011. Increased lipid production of the marine oleaginous microalga Isochrysis zhangjiangensis (Chrysophyta) by nitrogen supplement. Bioresour Technol 102: 6710-6716.

Havaux M, Ksas B, Szewczyk A, Rumeau D, Franck F, Caffarri S, Triantaphylides C. 2009. Vitamin B6 deficient plants display increased sensitivity to high light and photo-oxidative stress. BMC Plant Biol 9: 130.

Ho S-H, Nakanishi A, Kato Y, Yamasaki H, Chang J-S, Misawa N, Hirose Y, Minagawa J, Hasunuma T, Kondo A. 2017. Dynamic metabolic profiling together with transcription analysis reveals salinity-induced starch-to-lipid biosynthesis in alga Chlamydomonas sp. JSC4. Scientific reports 7: 45471-45471.

Ishizaki A, and Fleming GR, 2012. Quantum coherence in photosynthetic light harvesting. Annu. Rev. Condens. Matter Phys., 3(1), pp.333-361.

Jin E, Yokthongwattana K, Polle JEW, Melis A. 2003. Role of the Reversible Xanthophyll Cycle in the Photosystem II Damage and Repair Cycle in Dunaliella salina. Plant Physiology 132: 352-364.

Kanehisa M, Goto S. 2000. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28: 27-30.

Kim M, Kang Y, Jin E. 2019. Gene Expression Analysis of Zeaxanthin Epoxidase from the Marine Microalga Dunaliella tertiolecta in Response to Light/Dark Cycle and Salinity. Journal of microbiology and biotechnology 29: 1453-1459.

Kim M, Park S, Polle JEW, Jin E. 2010. Gene expression profiling of Dunaliella sp. acclimated to different salinities. Phycological Research 58: 17-28.

Klok AJ, Martens DE, Wijffels RH, Lamers PP. 2013. Simultaneous growth and neutral lipid accumulation in microalgae. Bioresource Technology 134: 233-243.
Kobayashi K, Masuda T. 2016. Transcriptional Regulation of Tetrapyrrole Biosynthesis in *Arabidopsis thaliana*. Frontiers in plant science 7: 1811-1811.

Kong W, Zhong H, Gong Z, Fang X, Sun T, Deng X, Li Y. 2019. Meta-Analysis of Salt Stress Transcriptome Responses in Different Rice Genotypes at the Seedling Stage. Plants (Basel) 8.

Lee S-Y, Kim S-H, Hyun S-H, Suh HW, Hong S-J, Cho B-K, Lee C-G, Lee H, Choi H-K. 2014. Fatty acids and global metabolites profiling of *Dunaliella tertiolecta* by shifting culture conditions to nitrate deficiency and high light at different growth phases. Process Biochemistry 49: 996-1004.

Liang S, Qi Y, Zhao J, Li Y, Wang R, Shao J, Liu X, An L, Yu F. 2017. Mutations in the *Arabidopsis AtMRS2-11/AtMGT10/VAR5* Gene Cause Leaf Reticulation. Front Plant Sci 8: 2007.

Lopez D, Casero D, Cokus SJ, Merchant SS, Pellegrini M. 2011. Algal Functional Annotation Tool: a web-based analysis suite to functionally interpret large gene lists using integrated annotation and expression data. BMC Bioinformatics 12: 282.

Moreno JI, Martín R, Castresana C. 2005. Arabidopsis SHMT1, a serine hydroxymethyltransferase that functions in the photorespiratory pathway influences resistance to biotic and abiotic stress. The Plant Journal 41: 451-463.

Nogaj LA, Srivastava A, van Lis R, Beale SI. 2005. Cellular levels of glutamyl-tRNA reductase and glutamate-1-semialdehyde aminotransferase do not control chlorophyll synthesis in *Chlamydomonas reinhardtii*. Plant Physiol 139: 389-396.

Nymark M, Valle KC, Brembu T, Hancke K, Winge P, Andresen K, Johnsen G, Bones AM. 2009. An Integrated Analysis of Molecular Acclimation to High Light in the Marine Diatom *Phaeodactylum tricornutum*. PLOS ONE 4: e7743.

Omidbakhshfard MA, Omranian N, Ahmadi FS, Nikoloski Z, Mueller-Roeber B. 2012. Effect of salt stress on genes encoding translation-associated proteins in *Arabidopsis thaliana*. Plant signaling & behavior 7: 1095-1102.

Oren A. 2010. Industrial and environmental applications of halophilic microorganisms. Environmental Technology 31: 825-834.

Perrine Z, Negi S, and Sayre RT. 2012. Optimization of photosynthetic light energy utilization by microalgae. Algal Research, 1(2), pp.134-142.

Prochnik SE, et al. 2010. Genomic analysis of organismal complexity in the multicellular green alga *Volvox carteri*. Science 329: 223-226.

Rammuni MN, Ariyadasa TU, Nimarshana PHV, Attalage RA. 2019. Comparative assessment on the extraction of carotenoids from microalgal sources: Astaxanthin from *H. pluvialis* and β-carotene from *Dunaliella salina*. Food Chemistry 277: 128-134.
Raschke M, Boycheva S, Crevecoeur M, Nunes-Nesi A, Witt S, Fernie AR, Amrhein N, Fitzpatrick TB. 2011. Enhanced levels of vitamin B(6) increase aerial organ size and positively affect stress tolerance in Arabidopsis. Plant J 66: 414-432.

Rau A, Marot G, Jaffrezic F. 2014a. Differential meta-analysis of RNA-seq data from multiple studies. BMC Bioinformatics 15: 91.

Rau A, Marot G, Jaffrézic F. 2014b. Differential meta-analysis of RNA-seq data from multiple studies. BMC Bioinformatics 15: 91.

Rest JS, Wilkins O, Yuan W, Purugganan MD, Gurevitch J. 2016. Meta-analysis and meta-regression of transcriptomic responses to water stress in Arabidopsis. The Plant Journal 85: 548-560.

Rismani-Yazdi H, Haznedaroglu BZ, Bibby K, and Peccia J. 2011. Transcriptome sequencing and annotation of the microalgae Dunaliella tertiolecta: pathway description and gene discovery for production of next-generation biofuels. BMC genomics, 12(1), p.148.

Robinson MD, McCarthy DJ, Smyth GK. 2010. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26: 139-140.

San Pedro A, González-López CV, Acién FG, Molina-Grima E. 2013. Marine microalgae selection and culture conditions optimization for biodiesel production. Bioresource Technology 134: 353-361.

Shin H, Hong SJ, Kim H, Yoo C, Lee H, Choi HK, Lee CG, Cho BK. 2015. Elucidation of the growth delimitation of Dunaliella tertiolecta under nitrogen stress by integrating transcriptome and peptidome analysis. Bioresource technology, 194: 57-66.

Spolaore P, Joannis-Cassan C, Duran E, Isambert A. 2006. Commercial applications of microalgae. Journal of Bioscience and Bioengineering 101: 87-96.

Szklarczyk D, et al. 2015. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic acids research 43: D447-D452.

Tan KWM, Lin H, Shen H, Lee YK. 2016. Nitrogen-induced metabolic changes and molecular determinants of carbon allocation in Dunaliella tertiolecta. Scientific Reports 6: 37235.

Thimm O, Blasing O, Gibon Y, Nagel A, Meyer S, Kruger P, Selbig J, Muller LA, Rhee SY, Stitt M. 2004. MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J 37: 914-939.

Trapnell C, Pachter L, Salzberg SL. 2009. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25: 1105-1111.

Wang P, Liang FC, Wittmann D, Siegel A, Shan SO. 2018. Chloroplast SRP43 acts as a chaperone for glutamyl-tRNA reductase, the rate-limiting enzyme in tetrapyrrole biosynthesis. 115: E3588-e3596.
Wattebled F, Ral JP, Dauvillee D, Myers AM, James MG, Schlichting R, Giersch C, Ball SG, D'Hulst C. 2003. STA11, a Chlamydomonas reinhardtii locus required for normal starch granule biogenesis, encodes disproportionating enzyme. Further evidence for a function of alpha-1,4 glucanotransferases during starch granule biosynthesis in green algae. Plant Physiol 132: 137-145.

Yao L, Tan KWM, Tan TW, and Lee YK. 2017. Exploring the transcriptome of non-model oleaginous microalga Dunaliella tertiolecta through high-throughput sequencing and high performance computing. BMC bioinformatics, 18(1), p.122.

Zhang L, Zhang Z, Zhang X, Yao Y, Wang R, Duan B, Fan S. 2018. Comprehensive meta-analysis and co-expression network analysis identify candidate genes for salt stress response in Arabidopsis. Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology: 1-11.

Zhang X, Yao Y, Li X, Zhang L, Fan S. 2020. Transcriptomic analysis identifies novel genes and pathways for salt stress responses in Suaeda salsa leaves. Scientific Reports 10: 4236.

Zheng Y, et al. 2016. iTAK: A Program for Genome-wide Prediction and Classification of Plant Transcription Factors, Transcriptional Regulators, and Protein Kinases. Mol Plant 9: 1667-1670.

Table 1. Raw data set ID, run accession and read count (before and after trimming).

Fig. 1: Metabolic overview of differentially expressed genes in Light stress conditions in D. tertiolecta. Green and red box represented the down and up-regulation in corresponding stress, respectively. Up-regulation of myo-inositol-phosphate synthase, phospholipid synthase PGP1b and fatty acid desaturase are indicated. Most of the genes involved in photorespiration were down-regulated in response to light stress.

Fig. 2: Regulation overview of differentially expressed genes under salt stress condition. Most of the genes involved in protein modification and degradation were down regulated in response to salt stress.
Fig. 3: Venn diagram for DEGs of Salt (A), Light (B) and Nitrogen (C) stress (A) and meta-analysis results for each corresponding stress. In total 621, 65 and 149 meta-genes were defined for salt, nitrogen deficiency and high light stress conditions, respectively. Most of the identified meta-genes were down regulated at all of the mentioned stresses.

Fig. 4: Protein-Protein interaction network of meta genes for light stress (A), Salt stress (B) and nitrogen deficiency (C) conditions in *D. tertiolecta* based on the *chlamydomonas reinhardtii* knowledge. The results indicate that the key meta-analysis genes (signed with red circle) tend to be located in a hub situation of the stress-specific PPI networks.
Fig. 1: Gen Ontology of DEGs of three Nitrogen stress related experiments. A, C and E, represented the Biological Process, and B, D and F represented the Molecular functions in the SRP003930, SRP052730 and SRP081094 experiments, respectively.
Fig. 2: metabolic overview of differentially expressed genes in Light stress conditions in *D. tertiolecta*. Green and red box represented the down and up-regulation in corresponding stress, respectively.
Fig. 3: Secondary metabolism genes affected by high light stress. The blue and red boxes represented the up and down regulation severity, respectively.

Fig. 4: transcriptional changes of lipid metabolism related genes in responses to nitrogen deficiency, salt and high light stress conditions.
Fig. 5: Regulation overview of differentially expressed genes under salt stress condition.
Fig. 6: Venn diagram for DEGs of Salt (A), Light (B) and Nitrogen (C) stress (A) and meta results for each corresponding stress.

Fig. 7: Protein-Protein interaction network of meta genes for light stress (A), Salt stress (B) and nitrogen deficiency (C) conditions in *D. tertiolecta* based on the *chlamydomonas reinhardtii* knowledge.
Table 1. Raw data set ID, run accession and read count (before and after trimming).

Data set ID	stress type	Reference	Data base	Run accession	Library layout	Read Count (before trimming)	Read Count (after trimming)
SRP052730	Light and Nitrogen	Shin et al., 2015	SRA	SRR2120818	SINGLE	43,014,956	38,345,362
				SRR2120819	SINGLE	43,342,701	39,921,921
				SRR2120820	SINGLE	42,219,714	40,632,920
				SRR2120821	SINGLE	49,394,621	47,982,792
SRP081094	Nitrogen	Not available	ENA	SRR4011621	PAIRED	3,763,251	2,946,132
				SRR4011622	PAIRED	3,990,351	3,011,629
				SRR4011623	PAIRED	3,501,613	2,720,419
				SRR4011624	PAIRED	3,852,588	2,940,240
				SRR4011625	PAIRED	3,303,153	2,708,372
				SRR4011626	PAIRED	3,503,731	2,659,457
				SRR4011627	PAIRED	3,536,396	2,947,635
				SRR4011628	PAIRED	4,079,043	3,745,201
SRP106620	Salinity	Safie et al., 2017	ENA	SRR5520491	PAIRED	1,370,286	1,056,393
				SRR5520492	PAIRED	1,498,758	1,139,345
				SRR5520493	PAIRED	1,395,338	1,183,222
				SRR5520494	PAIRED	1,421,445	1,103,289
				SRR5520495	PAIRED	944,136	826,327
SRP005987	Salinity	Yao et al., 2017	GEO	SRR124253	SINGLE	21,798,484	19,972,634
				SRR124254	SINGLE	21,855,046	18,928,637
SRP003930	Nitrogen and Salinity	Riemann-Yazdi et al., 2011	ENA	SRR070439	SINGLE	305,673	299,374
				SRR070440	SINGLE	333,808	300,341
				SRR070441	SINGLE	183,731	173,922
				SRR070442	SINGLE	229,538	200,231
SRP063050	Light	Safie et al., 2017	ENA	SRR6517590	PAIRED	1,399,689	1,200,384
				SRR6517591	PAIRED	1,522,878	1,392,774
				SRR6517592	PAIRED	1,572,853	1,234,093
				SRR6517593	PAIRED	1,961,343	1,893,674
				SRR6517594	PAIRED	1,839,092	1,725,468
				SRR6517595	PAIRED	3,441,148	2,992,346
				SRR5514896	PAIRED	3,653,262	3,481,926
				SRR5514897	PAIRED	2,410,762	2,001,018
				SRR5514898	PAIRED	2,199,299	1,972,364
				SRR5514899	PAIRED	2,238,539	1,990,233
				SRR5514900	PAIRED	3,017,386	2,873,087
				SRR5514901	PAIRED	3,721,648	3,200,132
				SRR5514902	PAIRED	3,071,374	2,963,692
				SRR5514903	PAIRED	2,768,536	2,517,291
				SRR5514904	PAIRED	3,017,778	2,904,828
				SRR5514905	PAIRED	2,483,867	2,018,310
				SRR5514906	PAIRED	2,184,064	1,927,438