Laparoscopic Organopexy with Non-mesh Genital (LONG) Suspension: A Novel Uterine Preservation Procedure for the Treatment of Apical Prolapse

Cheng-Yu Long¹,²,³, Chiu-Lin Wang³,⁴, Chin-Ru Ker², Yung-Shun Juan¹, Eing-Mei Tsai¹,³ & Kun-Ling Lin¹,³

To assess whether our novel uterus-sparing procedure- laparoscopic organopexy with non-mesh genital (LONG) suspension is an effective, safe, and timesaving surgery for the treatment of apical prolapse. Forty consecutive women with main uterine prolapse stage II or greater defined by the POP quantification (POP-Q) staging system were referred for LONG procedures at our hospitals. Clinical evaluations before and 6 months after surgery included pelvic examination, urodynamic study, and a personal interview to evaluate urinary and sexual symptoms with overactive bladder symptom score (OABSS), the short forms of Urogenital Distress Inventory (UDI-6) and Incontinence Impact Questionnaire (IIQ-7), and the Female Sexual Function Index (FSFI). After follow-up time of 12 to 30 months, anatomical cure rate was 85% (34/40), and the success rates for apical, anterior, and posterior vaginal prolapse were 95% (38/40), 85% (34/40), and 97.5% (39/40), respectively. Six recurrences of anterior vaginal wall all suffered from significant cystocele (stage 3; Ba + 1) preoperatively. The average operative time was 73.1 ± 30.8 minutes. One bladder injury occurred and was recognized during surgery. The dyspareunia domain and total FSFI scores of the twelve sexually-active premenopausal women improved postoperatively in a significant manner (P < 0.05). The results of our study suggest that LONG suspension is an effective and safe uterus-sparing surgery for the treatment of apical prolapse.

Pelvic organ prolapse (POP) is a chronic illness in women that has received growing attention among gynecologists worldwide because of the aging population and people's pursuit of life quality. In search for a safe and effective treatment strategy, various surgical techniques have been evolved, such as vaginal hysterectomy and/or anterior-posterior colporrhaphy, sacrospinous fixation, laparotomy or laparoscopic sacrocolpopexy, and transvaginal mesh (TVM) implantation. Studies and debates have been devoted to compare the objective and subjective surgical outcomes of these approaches, and some consensuses were reached.¹

Firstly, sacral colpopexy was considered the gold standard procedure in treating apical prolapse. With the advent of minimal invasive methods, laparoscopic or robot-assisted laparoscopic sacrocolpopexy has comparable anatomic correction and patient satisfaction rates, with the advantages of less blood loss, shorter hospital stay and reduced medical cost.²⁻⁴ However, anterior vaginal prolapse recurrence is common because the anterior compartment fixation becomes compromised with the posterior compartment fixation at the sacrum. Longer operating time and learning curve restricted its popularity as well. Secondly, synthetic graft implantation, once considered a breakthrough innovation in repairing POP in experienced hands, was criticized for the insufficient evidence.

¹Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan. ²Department of Obstetrics and Gynecology, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan. ³Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan. ⁴Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan. Correspondence and requests for materials should be addressed to K.-L.L. (email: nancylin95@gmail.com)
that support its safety

The enthusiasm for mesh-augmented POP repairs further declined after USFDA publicly issued a warning in 2011 for the same reason 5. Maher et al. later added to this issue by showing the superiority of laparoscopic sacrocolpopexy to total vaginal mesh procedure in reduced blood loss, reduced reoperation rates, no mesh-related complications and greater patient satisfaction in a randomized controlled trial 6. Thirdly, an increasing number of women are choosing not to have hysterectomy for reasons of personal identity, perceived body image, or childbearing potential apart from the common contraindications such as cervical dysplasia, uterine pathology, and postmenopausal uterine bleeding, etc 7,8. Furthermore, hysterectomy and uterine preservation seems to have comparable anatomical outcomes after TVM surgery 9.

Taking the above-mentioned concerns altogether, we invented a novel uterus-sparing procedure- Laparoscopic Organopexy with Non-mesh Genital (LONG) Suspension for the treatment of apical prolapse. The procedure is designed to create ventral uterine suspension to the transversalis fascia underneath rectus abdominis without use of mesh. Reviewing the literature, most uterine suspension procedures are performed either vaginally or laparoscopically with synthetic meshes, and non-mesh and ventral uterine suspension has never been reported. The aim of our study was to assess whether LONG suspension is an effective, safe, and timesaving surgery. In addition, surgical complications and functional outcomes were also evaluated.

Results

The demographic data of the enrolled 40 women are shown in Table 1. The ages of all participants ranged from 37 to 78 years, with an average of 58.3 years; parity ranged from 0 to 4, with a mean of 2.1. Twenty-six (65%) patients were postmenopausal and only one (2.5%) was under hormone therapy. None had previous prolapse surgery. Either anterior or posterior colporrhaphy with the LONG suspension were performed in two (5%) women; another single patient (2.5%) had combined myomectomy and LONG operation. Concomitant mid-urethral slings were done in four (10%) women, and all of them were free of stress urinary incontinence (SUI) postoperatively. None of the twenty-two preoperative continent women developed de novo SUI.

After follow-up time of 12 to 30 months, there was a significant improvement at points Aa, Ba, C, Ap, Bp, and total vaginal length (P < 0.01; Wilcoxon signed rank test). Anatomical cure rate was 85% (34/40), and the success rates for apical, anterior, and posterior vaginal prolapse were 95% (38/40), 85% (34/40), and 97.5% (39/40), respectively (Table 2). Good attachment of uterus to the abdominal wall can be observed on ultrasound in women with successful outcomes (Fig. 1). Six recurrences of anterior vaginal compartment occurred at 2–6 months after LONG suspension, and they all suffered from significant cystocele (stage 3; Ba > +1) preoperatively; one underwent vaginal hysterectomy plus sacrospinous ligament fixation; two had TVM surgery; and the remaining three did not desire additional surgery due to asymptomatic POP.

The prevalences of urinary symptoms, including SUI, urge incontinence, and incomplete bladder emptying, were found to be significantly lower 6 months after LONG surgery (P < 0.01; McNemar’s test) (Table 3). Other symptoms, such as urinary frequency, urinary hesitancy, and nocturia improved, but did not show significant difference postoperatively. In addition, postoperative scores of OABSS, UDI-6, and IIQ-7 decreased significantly (P < 0.05; Paired t-test) (Table 3). Twenty women (20/40; 50%) were diagnosed as OAB by OABSS records and the OABSS scores improved in 15 (75%) women following surgical correction. None experienced de novo OAB symptoms.

Parameters	Mean ± Std or N (%)
Mean age (years)	58.3 ± 13.0
Mean parity	2.1 ± 1.2
Mean body mass index (kg/m²)	22.6 ± 2.4
Menopause	26 (65)
Current hormone therapy	1 (2.5)
Diabetes mellitus	2 (5)
Hypertension	16 (40)
Baseline apical POP stage 2	21 (52.5)
with anterior POP stage 2	8 (25)
with anterior POP stage 3	2 (5)
with posterior POP stage 2	1 (2.5)
apical POP stage 3	19 (47.5)
with anterior POP stage 3	4 (10)
Concomitant procedures in this study	
Anterior colporrhaphy	1 (2.5)
Posterior colporrhaphy	1 (2.5)
Myomectomy	1 (2.5)
Midurethral sling	4 (10)
Follow-up (months)	2–30

Table 1. Demographic data (n = 40) are given as mean ± standard deviation or n (%). BMI, body mass index; POP, pelvic organ prolapse; SUI, stress urinary incontinence; Sx, surgery.
The residual urine decreased in a significant manner postoperatively (P < 0.05; Table 4). However, the rate of DO and other urodynamic parameters, including maximum flow rate, maximum cystometric capacity, maximum urethral closure pressure and urethral closure area revealed that analogous parameters were not significantly different following the LONG procedures (P > 0.05; Paired t-test) (Table 4). The average operative time was

POP-Q parameters (cm)	Pre-OP (n = 77)	Post-OP (n = 77)	P values*
Aa	−1 (−3−2)	−2 (−3−2)	<0.001
Ba	1 (−3−3)	−2 (−3−2)	<0.001
C	1 (−2−3)	−7 (−4−9)	<0.001
Ap	−2 (−3−0)	−3 (−3−2)	0.005
Bp	1 (−3−2)	−3 (−5−0)	0.003
Tvl	9 (7−10.5)	10 (9−10)	0.002

Table 2. Pelvic organ prolapse quantification (POP-Q) values before and after surgery. Data are given as median (range) or N (%). Pre-OP, preoperative; Post-OP, postoperative; Tvl, total vaginal length. *Wilcoxon signed rank test. Statistical significance.

Symptoms	Pre-OP (n = 40)	Post-OP (n = 40)	P values
Daytime frequency	14 (35)	7 (17.5)	0.07*
Stress urinary incontinence	18 (45)	6 (15)	<0.001***
Urge urinary incontinence	16 (40)	6 (15)	0.012***
Feeling of incomplete emptying	15 (37.5)	2 (5)	0.002***
Hesitancy	7 (17.5)	2 (5)	0.063*
Nocturia	22 (55)	17 (42.5)	0.45*
OABSS	3.6 ± 1.7	1.5 ± 0.5	<0.001***
UDI-6	57.5 ± 38.0	42.0 ± 25.5	0.02**
IIQ-7	32.9 ± 18.2	21.2 ± 11.7	0.038**

Table 3. Urinary symptoms and quality of life questionnaires before and 6 months after surgery. Data are given as N (%). OABSS: Overactive Bladder Symptom Score; UDI-6: the short forms of Urogenital Distress Inventory; IIQ-7: the Incontinence Impact Questionnaire. *McNemar’s test, †Fisher’s exact test, ‡Paired t-test ‡Statistical significance.

Figure 1. Good attachment of uterus to the abdominal wall can be observed on ultrasound after LONG suspension.
73.1 ± 30.8 minutes. One bladder injury occurred and was recognized during surgery, with laparoscopic closure of bladder rupture being carried out immediately. Postoperative day 1 VAS score was 2.4 ± 1.3. Urinary tract infection occurred in five women (5/40; 12.5%) (Table 5). All complications according to the Clavien-Dindo classification are summarized in Table 6.

When evaluating the changes in sexual function, only 12 sexually-active premenopausal women were included in this study. The domains of FSFI, including sexual desire, sexual arousal, lubrication, orgasm, and satisfaction, were not significantly different following LONG suspension (P > 0.05). However, the dyspareunia domain and total scores improved postoperatively in a significant manner (P < 0.05) (Table 7).

Discussion

Among abdominal uterine preservation surgeries, laparoscopic sacrohysteropexy has remained a gold standard for the treatment of apical prolapse. However, the procedure has some limitations such as access into the para-rectal and perisacral spaces, the area of retroperitoneal nerve plexuses, and non-physiologic axis of the vagina associated with a possible risk of vascular and recurrent complications. This technique is suitable for experienced operators who have excellent orientation in pelvic anatomy with the focus on retroperitoneal and rectovaginal space, although longer learning curve and operative time has restricted its popularity as well.

Recently, TVM surgery has gained popularity over the last decade due to the excellent short-term cure rate, especially in the anterior compartment. Moreover, hysteropexy and hysterectomy seems to have comparable surgical outcomes after TVM surgery. However, the United States Food and Drug Administration (FDA) announced a public health notification regarding serious complications associated with transvaginal placement of TVM.
of surgical mesh in repair of POP and stress urinary incontinence (SUI)” on 2011 July^5^. Indeed, the FDA warning has raised further caution when selecting the type of mesh kits.

The mean age of 58 years for all subjects in this study was the same as women undergoing laparoscopic sacrohysteropexy in a recent report^12^, but younger than the age of 63 years in our previous study of TVM^10^. This implies similar age groups of subjects among laparoscopic hysteropexy procedures. Recently, hysteropexy using the mesh procedure has gained more and more popularity, irrespective abdominally, laparoscopically, or vaginally^1-6^. Laparoscopic uterine suspension without mesh has never been reported except for the Gilliam round-ligament uterine ventro-suspension procedure^11^. A review study concluded that Laparoscopic uterine ventro-suspension using round ligaments has a very limited role, with a success rate less than 50%^14^.

Theoretically, uterine ventral suspension causes an upward traction of anterior vaginal wall, helping to correct the anterior compartment prolapse as well. However, LONG surgery created an anatomical cure rate of 85% in the anterior compartment, slightly lower than a recent study showing 9% recurrent anterior prolapse following laparoscopic sacral hysteropexy^12^, but younger than the age of 63 years in our previous study of TVM^10^. This implies non-mesh nature in this novel procedure.

Table 7. Changes in scores of Female Sexual Function Index before and 6 months after LONG surgery. Data are given as mean ± standard deviation. Pre-OP, preoperatively; Post-OP, postoperatively; *Paired t-test; † Statistical significance.

Domains	Pre-OP (n = 12)	Post-OP (n = 12)	P values
Sexual desire	3.2 ± 0.8	3.4 ± 0.3	0.31
Sexual arousal	3.9 ± 0.6	4.0 ± 0.9	0.34
Lubrication	5.7 ± 2.1	5.6 ± 0.3	0.28
Orgasm	5.6 ± 0.4	5.6 ± 0.6	0.17
Satisfaction	5.5 ± 0.8	5.5 ± 0.7	0.17
Dyspareunia	3.7 ± 1.4	5.4 ± 0.6	0.009*
Total scores	27.5 ± 2.5	29.4 ± 2.2	0.037†

One bladder injury occurred in the second case, during the dissection of fat and transversalis fascia. The average operative time for the first 10 cases was 87.5 minutes and 58.5 minutes for cases 11–40, indicating short learning curve existed in this procedure. Compared with TVM, comparable outcomes were also observed in both surgeries. In theory, the less the amount of mesh placed, the lower the rate of extrusion occurrence. Despite the learning curve existed in this procedure. Compared with TVM, comparable outcomes were also observed in both surgeries. In theory, the less the amount of mesh placed, the lower the rate of extrusion occurrence. Despite the theoretical, uterine ventral suspension creates an upward traction of anterior vaginal wall, helping to correct the anterior compartment prolapse as well. However, LONG surgery created an anatomical cure rate of 85% in the anterior compartment, slightly lower than a recent study showing 9% recurrent anterior prolapse following laparoscopic sacral hysteropexy^12^, but younger than the age of 63 years in our previous study of TVM^10^.

Some may question the possibility of intestinal obstruction because the small bowel might be incased into the space between uterus and bladder. We are sure that no women met this condition after the follow-up time of 12–30 months. This could be partly explained by no visible space between uterus and bladder from ultrasound image (Fig. 1). Another concern might arise about the feasibility of subsequent bladder-related surgery or hysterectomy when uterine pathology appears. We believe the above-mentioned surgeries can be carried out easily due to only 3 stitches being done between the uterus and abdominal fascia.

The results of our study suggest that LONG suspension is an effective and safe uterus-sparing surgery for the treatment of apical prolapse. It takes advantages over laparoscopic sacrocolpopexy and TVM with time-saving.
performance and better functional outcome respectively. A flaw of this study was the absence of women with stage 4 uterine prolapse. This was due to the fact that women with severe uterine prolapse were scheduled for vaginal hysterectomy during this study period due to cervical elongation, hypertrophic uterus, history of endometrial pathology, and postmenopausal bleeding. Of course, more case numbers and longer follow-up time are necessary to confirm the durability and safety of this novel procedure.

Methods
From April 2014 through October 2016, 48 consecutive women with main uterine prolapse stage II or greater as defined by the POP quantification (POP-Q) staging system\(^\text{20}\), were referred for LONG procedure at our hospitals. We excluded women with cervical elongation, hypertrophic uterus, prior TVM recurrence, history of cervical dysplasia or endometrial pathology, and postmenopausal bleeding in the past 12 months. Concomitant anti-incontinence sling operations were performed in women with current or occult urodynamic stress incontinence (USI), unless they did not desire a concomitant surgery. All patients gave their written informed consent before surgery. These mid-urethral sling procedures included MiniArc (AMS, Inc., Minnetonka, MN, USA), and TVT-O (Gynecare TVT-Obturator System, Ethicon, Inc., Somerville, NJ). Eight women were excluded due to
various reasons, including incomplete medical records (n = 5), and loss of follow-up (n = 3). Finally, the remaining 40 women were included for analysis in this cohort study.

Clinical evaluations before and 6 months after surgery included pelvic examination using the POP-Q system, multichannel urodynamic study, transabdominal ultrasound, and a personal interview to evaluate overactive bladder symptom score (OABSS)32, the short forms of Urogenital Distress Inventory (UDI-6), the Incontinence Impact Questionnaire (IIQ-7)23, the Female Sexual Function Index (FSFI) questionnaire23, and urinary symptoms with the standardized questionnaire taking into account the 2002 ICS definitions24. Women were asked to fill out the VAS (visual analogue scale) scores during the postoperative day1 rounds. Urodynamic studies, including non-instrumented uroflowmetry, filling and voiding cystometry, and urethral pressure profilometry, were performed by the recommendations by the International Continence Society25 with a multichannel urodynamic monitor (MMS; UD2000, Enschede, The Netherlands). USI was diagnosed by involuntary urine leakage with cough in the absence of detrusor contractions during filling cystometry. The diagnosis of occult USI was made by the occurrence of urine loss during the reduction of POP. Any uninhibited detrusor contraction during filling cystometry was deemed positive for idiopathic detrusor overactivity (DO).

Operative technique. The procedure is described as follows: Under laparoscopy, the peritoneum lining the abdominal wall above the uterus is dissected carefully until reaching the transversalis fascia underrectus abdominis (Fig. 2A). A Prolene 1.0 (Prolene, Ethicon, Inc., Somerville, NJ, USA) is inserted at the point 2 cm above the pubic symphysis, leaving at least 3 cm of the suture material extracorporeally (Fig 2B) for a fixation tie in the final step. An anchorage is then created using the Prolene 1.0 to surround the uterus, starting from penetrating the broad ligament on the right side (Fig. 2C), bypassing the posterior aspect of the uterus to the broad ligament on the opposite side (Fig. 2D) and finally exiting the Prolene 1.0 from the abdominal wall about 3 cm horizontally away from the entry site. An abrasion wound over the anterior surface of the uterus (Fig. 2E) is made to augment adhesion effect between the uterus and the abdominal wall. Fixation of the uterus to the transversalis fascia is then performed with 3 stitches of a V-loc suture (Covidien, Mansfield, MA, USA) (Fig. 2F,G). Tisseel (Baxter; Deerfield, Italy) could be applied to promote hemostasis among surrounding tissues (Fig. 2H), completing the intra-abdominal steps. Finally, a fixation tie with the Prolene 1.0 (used at the beginning of the operation) is made over a folded gauze as a cushion outside the body (Fig. 2I). The tie and the gauze cushion (prevention of skin collapse) are left in place for 2 weeks, when wound healing is thought to be completed and adhesion between the uterus and abdominal wall stabilized. The tie and gauze cushion can be removed easily in the outpatient settings. Pelvic examination showed good outcomes after surgery (Fig. 2J), and Foley catheterization for one day.

As follow-up, postoperative outpatient visits were at 1, 2, 3, 6, and 12 months and then semiannually beyond one year. Pelvic examination was performed routinely in every visit of clinics. Recurrence was defined as the most dependent portion of POP stage II or greater. The Clavien-Dindo grading was used for the classification of the complications of LONG procedure26. A statistical analysis was performed using Paired t-test, or Wilcoxon signed rank test for continuous variables, and McNemar’s test for categorical variables. A difference was considered statistically significant when p < 0.05. The study protocols were approved by the Institutional Review Board of Kaohsiung Medical University Hospital, by which relevant guidelines and regulations were followed accordingly. We assessed the power of tests for differentiating the surgical outcomes of LONG procedure, and power analysis showed that around 36–40 women in this study would have a power of 80%. Although some comparisons, such as DO rates, could not reach sufficient power due to the limited numbers, we utilized multiple parameters of POP-Q system to evaluate the postoperative change. We found that our subjects over 32 women, there would be a power of over 85% for discrimination.

Data Availability Statement. The datasets analyzed during the current study are available from the corresponding author on reasonable request.

Ethical Approval and Informed Consent. Ethics approval by the Institutional Review Board of Kaohsiung Medical University Hospital had been obtained for data analysis.

References

1. Maher, C., Feiner, B., Baessler, K. & Schmid, C. Surgical management of pelvic organ prolapse in women. Cochrane Database Systemic Review 30, CD004014, https://doi.org/10.1002/14651858.CD004014 (2013).
2. Serati, M. et al. Robot-assisted sacrocolpopexy for pelvic organ prolapse: a systematic review and meta-analysis of comparative studies. Eur Urol 66, 303–318 (2014).
3. Sarlos, D., Kots, L., Ryu, G. & Schaer, G. Long-term follow-up of laparoscopic sacrocolpopexy. Int Urogynecol J 25, 1207–1212 (2014).
4. Higgs, P. J., Chua, H. L. & Smith, A. R. Long term review of laparoscopic sacrocolpopexy. BJOG 112, 1134–1138 (2005).
5. FDA executive summary: surgical mesh for the treatment of women with pelvic organ prolapse and stress urinary incontinence. http://www.fda.gov/downloads/advisorycommittees/committeesMeetingMaterials/MedicalDevices/MedicalDevicesAdvisoryCommittee/ObstetricsandGynecologyDevices/UCM270402.pdf (2011).
6. Maher, C. E. et al. Laparoscopic sacral colpopexy versus total vaginal mesh for vaginal vault prolapse: a randomized trial. Am J Obstet Gynecol 204, 360.e1–7 (2011).
7. Wu, M. P. et al. Changing trends of surgical approaches for uterine prolapse: An 11-year population based nationwide descriptive study. Int Urogynecol J 7, 865–872 (2012).
8. Korbody, N. B. et al. Patient preferences for uterine preservation and hysterectomy in women with pelvic organ prolapse. Am J Obstet Gynecol 209, 470.e1–6 (2013).
9. Huang, L. Y. et al. Medium-term comparison of uterus preservation versus hysterectomy in pelvic organ prolapse treatment with Prolift mesh. Int Urogynecol J 26, 1013–1020 (2015).
10. Long, C. Y. et al. Comparison of clinical outcomes using “elevate anterior” versus “Perigee” system devices for the treatment of pelvic organ prolapse. Biomed Res Int 479610, https://doi.org/10.1155/2015/479610 (2015).
11. Long, C. Y. et al. Three-year outcome of transvaginal mesh repair for the treatment of pelvic organ prolapse. *Eur J Obstet Gynecol Reprod Biol* **161**, 105–108 (2012).
12. Gutman, R. E. et al. Vaginal and laparoscopic mesh hysteropexy for uterovaginal prolapse: a parallel cohort study. *Am J Obstet Gynecol* **216**, e1–38.e11 (2017).
13. Candy, J. W. Modified Gilliam uterine suspension using laparoscopic visualization. *Obstet Gynecol* **47**, 242–243 (1976).
14. Lin, L. L. et al. A review of laparoscopic uterine suspension procedures for uterine preservation. *Curr Opin Obstet Gynecol* **17**, 541–546 (2005).
15. Tomoe, H. Improvement of overactive bladder symptoms after tension-free vaginal mesh operation in women with pelvic organ prolapse: Correlation with preoperative urodynamic findings. *Int J Urol* **22**, 577–580 (2015).
16. Long, C. Y. et al. Comparison of the Changes in Sexual Function of Premenopausal and Postmenopausal Women Following Transvaginal Mesh Surgery. *J Sex Med* **8**, 2009–2016 (2011).
17. Long, C. Y. et al. Changes in Female Sexual Function following Anterior with and without Posterior Vaginal Mesh Surgery for the Treatment of Pelvic Organ Prolapse. *J Sex Med* **9**, 2167–2174 (2012).
18. Thibault, F. et al. Impact of laparoscopic sacrocolpopexy on symptoms, health-related quality of life and sexuality: a medium-term analysis. *BJU Int* **112**, 1143–1149 (2013).
19. Chang, S. R., Chang, T. C., Chen, K. H. & Lin, H. H. Developing and validating a Taiwan version of the female sexual function index for pregnant women. *J Sex Med* **6**, 1609–1616 (2009).
20. Bump, R. C. et al. The standardization of terminology of female pelvic organ prolapse and pelvic floor dysfunction. *Am J Obstet Gynecol* **175**, 10–17 (1996).
21. Homma, Y. et al. Symptom assessment tool for overactive bladder syndrome-overactive bladder symptom score. *Urol Int* **68**, 318–323 (2006).
22. Übersax, J. S., Wyman, J. F., Shumaker, S. A., McClish, D. K. & Fantl, J. A. Short forms to assess life quality and symptom distress for urinary incontinence in women: The Incontinence Impact Questionnaire and the Urogenital Distress Inventory. *Contience Program for Women Research Group. Neurourol Urodyn* **14**, 131–139 (1995).
23. Rosen, R. et al. The Female Sexual Function Index (FSFI): a multidimensional self-report instrument for the assessment of female sexual function. *J Sex Marital Ther* **26**, 191–208 (2000).
24. Rosier, P., Ullmsten, U., van Kerrebroeck, P., Victor, A. & Wein, A. The standardisation of terminology of lower urinary tract function: report from the Standardisation Sub-committee of the International Continence Society. *Neurourol Urodyn* **21**, 167–178 (2002).
25. Abrams, P., Blaivas, J. G., Stanton, S. L. & Andersen, J. T. The standardization of terminology of low urinary tract function recommended by the international continence society. *Scand J Urol Nephrol Suppl* **114**, 5–19 (1988).
26. Clavien, P. A. et al. The Clavien-Dindo classification of surgical complications: five-year experience. *Ann Surg* **187**, 187–196 (2009).

Author Contributions
C.L. and C.W. are responsible for the writing of the manuscript. C.K. participated in patient recruitment and data acquirement. Y.J. and E.T. conducted statistical analysis; while K.L., the corresponding author, designs and directs the study.

Additional Information

Competing Interests: The authors declare no competing interests.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2018