Massive Dual Spinless Fields Revisited

Thomas L. Curtright
Department of Physics, University of Miami
P O Box 248046, Coral Gables, Florida 33124
21 August 2019

Abstract

Massive dual spin zero fields are reconsidered in four spacetime dimensions. A closed-form Lagrangian is presented that describes a field coupled to the curl of its own energy-momentum tensor.

In tribute to Peter George Oliver Freund (1936-2018)

Introduction

As indicated in the Abstract, the point of this paper is to find an explicit Lagrangian for the dual form of a massive scalar field self-coupled in a particular way to its own energy-momentum tensor. This boils down to a well-defined mathematical problem whose solution is given here, thereby completing some research initiated and published long ago in this journal [1].

After first presenting a concise mathematical statement of the problem, and then giving a closed-form solution in terms of elementary functions, the field theory that led to the problem is re-examined from a fresh perspective. The net result is a very direct approach that leads to both the problem and its solution.

Some History

Here I reconsider research first pursued in collaboration with Peter Freund, in an effort to tie up some loose ends. In the spring of 1980, when I was a post-doctoral fellow in Yoichiro Nambu’s theory group at The Enrico Fermi Institute, Peter and I were confronted by a pair of partial differential equations (see [1] p 417).

\[m^2 \frac{\partial^2 \mathcal{L}}{\partial u^2} + 2 \left(\frac{\partial \mathcal{L}}{\partial u} \right) = 4g \left(\frac{\partial \mathcal{L}}{\partial u} \right) \left(u \frac{\partial^2 \mathcal{L}}{\partial u \partial v} + v \frac{\partial^2 \mathcal{L}}{\partial v^2} - \frac{\partial \mathcal{L}}{\partial v} \right) , \]

\[m^2 \frac{\partial^2 \mathcal{L}}{\partial u \partial v} = 4g \left(\frac{\partial \mathcal{L}}{\partial u} \right) \left(u \frac{\partial^2 \mathcal{L}}{\partial u^2} + v \frac{\partial^2 \mathcal{L}}{\partial u \partial v} - \frac{\partial \mathcal{L}}{\partial u} \right) , \]

where \(m \) and \(g \) are constants. We noticed in passing that these PDEs imply the secondary condition

\[\left(\frac{\partial^2 \mathcal{L}}{\partial u \partial v} \right)^2 = \left(\frac{\partial^2 \mathcal{L}}{\partial u^2} \right) \left(\frac{\partial^2 \mathcal{L}}{\partial v^2} \right) , \]

and we then looked for a solution to (1-3) as a series in \(g \) beginning with

\[\mathcal{L}(u,v) = \frac{1}{2} v^2 - \frac{1}{2} m^2 u + \frac{g}{m} \left(\frac{1}{3} v^3 - m^2 uv \right) + O(g^2) . \]
To simplify the equations to follow, I will rescale \(g = m \kappa \) so that the constant \(m \) always appears in (1-3) only in the combination \(v/m \). Thus I may as well set \(m = 1 \), and hence \(\kappa = g \). I can then restore the parameter \(m \) in any subsequent solution for \(\mathcal{L} \) by the substitution \(\mathcal{L}(u, v) \to m^2 \mathcal{L}(u, v/m) \).

Clearly, there is a two-parameter family of exact solutions to these PDEs which depends only on \(v \), namely,

\[
\mathcal{L}_0(v) = a + b v ,
\]

where \(a \) and \(b \) are constants. However, for the model field theory that gave rise to the partial differential equations (1,2), this linear function of \(v \) amounts to a topological term in the action and therefore gives no contribution to the bulk equations of motion. Moreover, \(\mathcal{L}_0(v) \) contributes only a (cosmological) constant term to the canonical energy-momentum tensor. So, in the context of our 1980 paper \([1]\) where solutions of (1,2) were sought which gave more interesting contributions, this \(\mathcal{L}_0(v) \) was not worth noting. Nevertheless, it reappeared in another context, somewhat later \([2]\).

Completing Some Unfinished Business

It so happened in 1980 that Peter and I did not find an exact \(\mathcal{L}(u, v) \) to solve the PDEs (1,2). In fact, we reported then only the terms given in \([4]\). Here I wish to present an exact, closed-form solution to all orders in \(g \).

The crucial feature leading to this particular solution is that the dependence on \(v \) is only through the linear combination \(v - gu \). The result is

\[
\mathcal{L}(u, v) = -\frac{1}{2} u + \frac{1}{2} (v - gu)^2 + \frac{1}{3} g (v - gu)^3 \binom{n}{g} F_2 \left(1, \frac{1}{2}; \frac{3}{2}, \frac{5}{2}; -4g^2 (v - gu)^2\right) ,
\]

where as a series

\[
F(w) = \frac{1}{3} w^3 \binom{n}{g} F_2 \left(1, \frac{1}{2}; \frac{3}{2}, \frac{5}{2}; -4w^2\right) = \sum_{n=1}^{\infty} \frac{(2n - 2)!}{(n-1)! n!} \frac{(-1)^{n+1}}{2n+1} w^{2n+1}
\]

\[
= \frac{1}{3} w^3 - \frac{1}{5} w^5 + \frac{2}{7} w^7 - \frac{5}{9} w^9 + \frac{14}{11} w^{11} - \frac{42}{13} w^{13} + \frac{44}{5} w^{15} + O(w^{17}) .
\]

Fortunately, the \(\binom{n}{g} F_2 \) hypergeometric function in \([7]\) reduces to elementary functions. For real \(w \),

\[
F(w) = -\frac{1}{2} w + \frac{1}{4} w \sqrt{1 + 4w^2} + \frac{1}{8} \ln \left(2w + \sqrt{1 + 4w^2}\right) .
\]

Nevertheless, the solution \([6]\) was first obtained in its series form \([7]\) and only afterwards was it expressed as a special case of the hypergeometric \(\binom{n}{g} F_2 \), with its subsequent simplification to elementary functions.

More generally, it is not so difficult to establish that solutions to (1-3) necessarily have the form

\[
\mathcal{L}(u, v) = -\frac{1}{2g} v + G \left(v + 2g \int u H(s) ds\right) ,
\]

where the function \(G \) is differentiable, and \(H \) is integrable, but otherwise not yet determined, as befits the general solution of a more easily solvable 1st-order PDE, albeit nonlinear:

\[
\frac{\partial}{\partial v} \ln \left(\frac{\partial \mathcal{L}}{\partial u}\right) = \frac{\partial}{\partial v} \ln \left(1 + 2g \frac{\partial \mathcal{L}}{\partial v}\right) .
\]

Note in \([9]\) the return of an explicit term linear in \(v \). This term arises as the particular solution of the inhomogeneous 1st-order PDE that results from integrating \([10]\) and exponentiating, namely,

\[
\frac{1}{H(u)} \frac{\partial \mathcal{L}}{\partial u} - 2g \frac{\partial \mathcal{L}}{\partial v} = 1 .
\]

The functions \(G \) and \(H \) are now constrained by additional conditions that lie hidden within (1) and (2).

I will leave it to the reader to flesh out those additional conditions. I will not go through that analysis here. Instead, I will reconsider the model field theory that led to the partial differential equations (1,2) in light of the exact solution \([6]\). That solution provides a good vantage point to view and analyze the model.
The Model Revisited

Consider a Lagrangian density \(\mathcal{L}(u, v) \) depending on a vector field \(V^\mu \) through the two scalar variables,

\[
u = V_\mu V^\mu, \quad v = \partial_\mu V^\mu.
\] (12)

This vector field is to be understood in terms of an antisymmetric, rank 3, tensor gauge field, \(V_{\alpha\beta\gamma} \), i.e. the four-dimensional spacetime dual of a massive scalar [1], with its corresponding gauge invariant field strength,

\[
F_{\mu\alpha\beta\gamma} = \partial_\mu V_{\alpha\beta\gamma} - \partial_\alpha V_{\beta\gamma\mu} + \partial_\beta V_{\gamma\mu\alpha} - \partial_\gamma V_{\mu\alpha\beta}.
\]

Thus

\[
V^\mu = \frac{1}{6} \varepsilon^{\mu\alpha\beta\gamma} V_{\alpha\beta\gamma}, \quad \partial_\mu V^\mu = \frac{1}{24} \varepsilon^{\mu\alpha\beta\gamma} F_{\mu\alpha\beta\gamma}.
\] (13)

The bulk field equations that follow from the action of \(\mathcal{L}(u, v) \) by varying \(V_\mu \) are simply

\[
\partial_\mu \mathcal{L}_v = 2 V_\mu \mathcal{L}_u,
\] (14)

where the partial derivatives of \(\mathcal{L} \) are designated by \(\mathcal{L}_u \equiv \partial \mathcal{L}(u, v)/\partial u \) and \(\mathcal{L}_v \equiv \partial \mathcal{L}(u, v)/\partial v \). An obvious inference from these field equations is that the on-shell vector \(V_\mu \) is a gradient of a scalar \(\Phi \),

\[
V_\mu = \partial_\mu \Phi,
\] (15)

if and only if \(\mathcal{L}_u \) is a function of \(\mathcal{L}_v \). For example, if \(\mathcal{L}_u \) has a linear relation to \(\mathcal{L}_v \) with \(\mathcal{L}_u = a + b \mathcal{L}_v \) for constants \(a \) and \(b \), the field equations give

\[
\Phi = \frac{1}{2b} \ln (a + b \mathcal{L}_v),
\] (16)

More generally, if \(\mathcal{L}_u = \Psi(\mathcal{L}_v) \), then

\[
\Phi = \frac{1}{2} \int \mathcal{L}_v \frac{dz}{\Psi(z)}.
\] (17)

But in any case, on-shell the combination \(U_\mu = V_\mu \mathcal{L}_u \) is a spacetime gradient.

An additional gradient of the field equations then gives

\[
\partial_\lambda \partial_\mu \mathcal{L}_v = 2 (\partial_\lambda V_\mu) \mathcal{L}_u + 2 V_\mu \partial_\lambda \mathcal{L}_u.
\] (18)

From \(\partial_\lambda \partial_\mu \mathcal{L}_v = \partial_\mu \partial_\lambda \mathcal{L}_v \) it follows that

\[
(\partial_\mu V_\lambda - \partial_\lambda V_\mu) \mathcal{L}_u = V_\mu \partial_\lambda \mathcal{L}_u - V_\lambda \partial_\mu \mathcal{L}_u.
\] (19)

Thus the vector \(V_\mu \) is a gradient of a scalar, as in (15), such that

\[
\partial_\mu V_\lambda = \partial_\lambda V_\mu,
\] (20)

if and only if for some scalar function \(\Omega \),

\[
\partial_\lambda \mathcal{L}_u = V_\lambda \Omega.
\] (21)

Simplification

Now for simplicity, demand that \(\mathcal{L}_u = a + b \mathcal{L}_v \) for constants \(a \) and \(b \), in accordance with \(V_\mu \) being a gradient, as in (15) and (20). This linear condition is immediately integrated to obtain

\[
\mathcal{L}(u, v) = au + L(v + bu),
\] (22)

where \(L(v + bu) \) is a differentiable function of the linear combination \(v + bu \). The field equations (14) are now

\[
\partial_\lambda \mathcal{L}_v = \partial_\lambda L' = 2(a + b L') V_\lambda = 2 V_\lambda \mathcal{L}_u.
\] (23)

That is to say, the scalar in (21) is \(\Omega = 2ab + 2b^2 L' \).
Energy-momentum tensors

In [1] Peter and I say that, given (1-3), the field equations for V_μ amount to (20) along with the “simple, indeed elegant” statement

$$(\Box + m^2) V_\mu = \frac{g}{m} \partial_\mu \theta ,$$

where g has units of length, and θ is the trace of the conformally improved energy-momentum tensor.

Be that as it may, there is a less oracular method to reach this form for the field equations in light of the simplification (22). As is well-known, there may be two distinct expressions for energy-momentum tensors that result from any Lagrangian. From (22) the canonical results for $\Theta_{\mu \nu}$, and its trace $\Theta = \Theta_{\mu}^{\mu}$, are immediately seen to be

$$\Theta^{[\text{canon}]}_{\mu \nu} = (\partial_\mu V_\nu) L' - g_{\mu \nu} (au + L) , \quad \Theta^{[\text{canon}]} = v L' - 4 (au + L) .$$

(25)

Although not manifestly symmetric, it is nonetheless true that $\Theta^{[\text{canon}]}_{\mu \nu} = \Theta^{[\text{canon}]}_{\nu \mu}$ on-shell in light of the condition (20).

Surprisingly different results follow from covariantizing (22) with respect to an arbitrary background metric $g_{\mu \nu}$, varying the action for $\sqrt{-\det g_{\alpha \beta}} L$ with respect to that metric, and then taking the flat-space limit. This procedure gives the “gravitational” energy-momentum tensor and its trace:

$$\Theta^{[\text{grav}]}_{\mu \nu} = -2 (a + bL') V_\mu V_\nu - g_{\mu \nu} (L - au - (v + 2bu) L') , \quad \Theta^{[\text{grav}]} = 4v + 6bu) L' + 2au - 4L .$$

(26)

The unusual structure exhibited in this tensor follows because in curved spacetime V^μ as defined by (13) is a relative contravariant vector of weight +1 with no dependence on the metric, so $\partial_\mu V^\mu$ is a relative scalar of weight +1 also with no dependence on $g_{\mu \nu}$, and $V_\mu V^\mu = g_{\mu \nu} V^\mu V^\nu$ is a relative scalar of weight +2 where all dependence on the metric is shown explicitly. Hence the absolute scalar version of $\mathcal{L}(u, v)$ is given by

$$\mathcal{L} = ag_{\mu \nu} V^\mu V^\nu / (-\det g_{\alpha \beta}) + L \left((\partial_\mu V^\mu) / \sqrt{-\det g_{\alpha \beta}} + bg_{\mu \nu} V^\mu V^\nu / (-\det g_{\alpha \beta}) \right) ,$$

(27)

where again all the metric dependence is shown explicitly.

It is straightforward to check on-shell conservation of either (25) or (26), separately. However, it turns out the flat-space equations of motion can now be written in the form (24) provided a linear combination of $\Theta^{[\text{canon}]}_{\mu \nu}$ and $\Theta^{[\text{grav}]}_{\mu \nu}$ is used for the system’s energy-momentum tensor. Let

$$\Theta_{\mu \nu} = \frac{2}{3} \Theta^{[\text{canon}]}_{\mu \nu} + \frac{1}{3} \Theta^{[\text{grav}]}_{\mu \nu} .$$

(28)

The trace is then

$$\Theta = \Theta_{\mu}^{\mu} = 2 (v + bu) L' - 4L - 2au .$$

(29)

Field equation redux

Since various scales have been previously chosen to set $m = 1$, the field equations (20) and (24) give for the left-hand side of (24)

$$(\Box + 1) V_\mu = \left(1 + \frac{1}{2} \frac{L''}{a + bL'} \right) \partial_\mu (v + bu) - b \partial_\mu u ,$$

(30)

where (24) implies $\Box V_\mu = \partial^\lambda \partial_\lambda V_\mu = \partial^\lambda \partial_\lambda \partial_\mu u = \partial_\mu v$. On the other hand, from (24) for any constant c,

$$c \partial_\mu \Theta = 2c ((v + bu) L'' - L') \partial_\mu (v + bu) - 2ac \partial_\mu u .$$

(31)

The choice $2ac = b$ reconciles the spurious $\partial_\mu u$ term to give the desired form

$$(\Box + 1) V_\mu = c \partial_\mu \Theta$$

(32)

provided the function L satisfies the second-order nonlinear equation

$$1 + \frac{1}{2} \frac{L''(z)}{a + bL'(z)} = 2c (zL''(z) - L'(z)) .$$

(33)

But note, the constant c can be set to a convenient nonzero value by further rescalings.
For example, if \((a, L) \to \left(\frac{a}{2c}, \frac{L}{2b}\right)\), along with the previous choice \(2ac = b \to a = 1\), the equation for \(L\) becomes
\[
1 + \frac{1}{2b} \frac{L''}{b} = \frac{1}{b} \left(zL'' - L'\right).
\] (34)
Finally, rescaling \(z \to w/b\) gives
\[
1 + \frac{1}{2} \frac{L''}{1 + L'} = (wL'' - L')
\] (35)
The solution of this equation for \(L'\) with initial condition \(L'(0) = 0\) is
\[
L'(w) = -1 - 2w + \sqrt{1 + 4w^2}.
\] (36)
Imposing the additional initial condition \(L(0) = 0\), this integrates immediately to
\[
L(w) = -w - w^2 + \frac{1}{2} w\sqrt{1 + 4w^2} + \frac{1}{4} \ln \left(2w + \sqrt{1 + 4w^2}\right).
\] (37)
Comparison with \(\Box\) shows that
\[
L(w) = -w^2 + 2F(w).
\] (38)
Given the previous rescalings, namely, \(\mathcal{L}(u, v) = au + L(v + bu) \to \left[\frac{a}{2c}u + \frac{1}{2b}L(w = bz)\right]_{a=1}\), the Lagrangian density for the model becomes
\[
\mathcal{L}(u, v) = \frac{b}{2c}u + \frac{1}{2bc} \left(-bz - (bz)^2 + \frac{1}{2} (bz) \sqrt{1 + 4(bz)^2} + \frac{1}{4} \ln \left(2(bz) + \sqrt{1 + 4(bz)^2}\right)\right)
\] (39)
\[
= \frac{b}{2c}u - \frac{b}{2c}z^2 + \frac{b^2}{3c}z^3 + O(z^4).
\] (40)
As before, \(v = \partial_\mu V^\mu, u = V^\mu V_\mu\), and \(z = v + bu\). Note that the term linear in \(z\) in (39) cancels out upon power series expansion, so the result agrees with (4) up to and including all terms of \(O(V^3)\).
To comport to the conventions in \([1]\), choose \(b = -g\) and \(c = g\), so that \(z = v - gu\), to find
\[
\mathcal{L}(u, v) = -\frac{1}{2} - \frac{1}{2g^2} \left(\frac{g(v - gu) - g^2(v - gu)^2 - \frac{1}{2} g(v - gu)\sqrt{1 + 4g^2(v - gu)^2}}{\sqrt{1 + 4g^2(v - gu)^2}}\right)
\] (41)
\[
= -\frac{1}{2} u + \frac{1}{2} (v - gu)^2 + \frac{1}{3} g(v - gu)^3 + O((v - gu)^4),
\] (42)
Now restore \(m\) via the coordinate rescaling \(x_\mu \to mx_\mu\), hence \(v \to v/m\) and \(\mathcal{L}(u, v) \to m^2 \mathcal{L}(u, v/m)\), thereby converting (42) into the form (21), with \(\theta = m^2 \Theta\).

Discussion

The conventional integral equation form of (21), including a free-field term with \(\Box + m^2 V^{(0)}\mu\) = 0, is given by
\[
V_\mu(x) = V^{(0)}_\mu(x) + \frac{g}{m} \int G(x - y) \frac{\partial \Theta(y)}{\partial y^\mu} \, d^4 y,
\] (43)
where \(\Theta(y)\) depends implicitly on the field \(V_\mu(y)\) and \(G\) is the usual isotropic, homogeneous, Dirichlet boundary condition Green function that solves \((\Box + m^2) G(x - y) = \delta^4(x - y)\). The free-field term must be a gradient, \(V^{(0)}_\mu(x) = \partial_\mu \Phi^{(0)}(x)\) with \((\Box + m^2) \Phi^{(0)} = 0\), to ensure that \(V_\mu(x) = \partial_\mu \Phi(x)\) is also a gradient. Integration by parts followed by an overall integration then gives
\[
\Phi(x) = \Phi^{(0)}(x) + \frac{g}{m} \int G(x - y) \Theta(y) \, d^4 y,
\] (44)
where now \(\Theta(y)\) depends implicitly on \(\Phi(y)\). That is to say, \((\Box + m^2) \Phi = \frac{a}{m} \Theta [\Phi(x)]\).
On the one hand, this is not surprising, since there is a long-known construction of an explicit local Lagrangian that leads directly to this form for the scalar field equations [6]. (It amounts to the Goldstone model after scalar field redefinition.) Taking a gradient to reverse the steps above then leads back to [43]. On the other hand, it is far from obvious that Θ [Φ (x)] can be re-expressed as a local function of V μ = ∂μΦ, and that Θ [V μ (x)] follows in turn from a local, closed-form Lagrangian for V μ. The main point of this paper was to show that, indeed, there is an L such that all this is true.

Were Θ due to anything other than V μ, field equations of the form (24) would easily follow from $L_{\text{easy}} = \frac{1}{2} (\partial_\mu V_\nu \partial^\mu V^\nu - m^2 V_\mu V^\mu) + \frac{g}{m} V^\mu \partial_\mu \Theta^\text{other}$,
\[(45) \]
i.e. a simple direct coupling of the vector to the gradient of any other traced energy-momentum tensor. With a pinch of plausibility, this calls to mind the axion coupling, albeit without the group theoretical and topological underpinnings, not to mention the phenomenology.

In any case, Peter and I certainly did not have axions in mind in 1980 when we wrote [1]. As best I can recall, we had only some embryonic thoughts about massive gravity. In that context we speculated (see [1] p 418) that \(g/m \sim L_{\text{Hubble}}L_{\text{Planck}} = (4.7 \times 10^{-5} \text{ m})^3 = 1/(4.2 \times 10^{-3} \text{ eV})^2 \). In retrospect, we were both struck by the fact that this guess is approximately the same as phenomenological lower limits for \(1/m^2_{\text{axion}} \).

There is one more noteworthy piece of unfinished business in [1], namely, a closed-form Lagrangian for a massive spin 2 field coupled to the four-dimensional curl of its own energy-momentum tensor, where the spin 2 field is not the usual symmetric tensor, but rather the rank three tensor \(T_\lambda^{\mu \nu} \). For progress on this additional unfinished business, please see [8]. With enough effort, perhaps a complete formulation of this spin 2 model will also be available soon, along with a few other variations on the theme of fields coupled to Θ_μν.

In closing, so far as I can tell, Peter had little if any interest in totally antisymmetric tensor gauge fields prior to our paper [1]. But he quickly pursued the subject in stellar fashion with his subsequent work on dimensional compactification [2]. While all this work is still conjectural, at the very least it provided and continues to provide fundamental research problems in theoretical physics, especially for doctoral students.

Acknowledgements

I thank H. Alshal and D. Fairlie for comments and discussions, and the late Peter Freund for many fond memories. This work was supported in part by a University of Miami Cooper Fellowship.

References

[1] T.L. Curtright and P.G.O. Freund, “Massive Dual Fields” Nucl.Phys. B172 (1980) 413-424
[2] P.G.O. Freund and M. Rubin, “Dynamics of Dimensional Reduction” Phys.Lett. 97B (1980) 233-235
[3] In other words, \(W[\mathcal{L}_u, \mathcal{L}_v] = 0 \), where \(W[f, g] = \det \left(\begin{array}{cc} \partial f/\partial u & \partial g/\partial u \\ \partial f/\partial v & \partial g/\partial v \end{array} \right) \). Note that \(W[f, g] = 0 \) is a necessary (but not sufficient) condition for a linear dependence between \(f \) and \(g \) [4]. In fact, \(W[f, g] = 0 \) for any (differentiable) functional dependence between \(f \) and \(g \). For the case at hand, \(W \) is actually a determinant of a 2 × 2 Hessian matrix, an expression familiar from galileon models (e.g. see [5]).
[4] K. Wolsson, “Linear dependence of a function set of m variables with vanishing generalized Wronskians” Linear Algebra and its Applications 117 (1989) 73-80
[5] T.L. Curtright and D.B. Fairlie, “A Galileon Primer” arXiv:1212.6972 [hep-th]
[6] P.G.O. Freund and Y. Nambu “Scalar Fields Coupled to the Trace of the Energy-Momentum Tensor” Phys.Rev. 174 (1968) 1741-1743
[7] T.L. Curtright, “Generalized Gauge Fields” Phys.Lett. 165B (1985) 304-308
[8] T.L. Curtright and H. Alshal, “Massive Dual Spin 2 Revisited” arXiv:1907.11532 [hep-th]