A two-stage prediction model for heterogeneous effects of many treatment options: application to drugs for Multiple Sclerosis

Konstantina Chalkou, Georgia Salanti
Institute of Social and Preventive Medicine, University of Bern, Switzerland
Motivation: Effectiveness of drugs in Relapsing-Remitting Multiple Sclerosis (MS)

- Several drugs, compared in Network Meta-Analyses (NMA) #not personalized predictions
- We focus on Dimethyl Fumarate, Glatiramer Acetate, and Natalizumab
- Outcome: Relapse MS in 2 years (Yes/No) for patients diagnosed with relapsing-remitting MS
- We want to find the drug that minimizes the risk of relapse, subject to patient characteristics
 - Previous evidence suggests that patients at different age groups and at different stages of the disease might respond differently to the same treatment ➔ Heterogeneous Treatment Effects
Question: Which treatment is the best for a specific patient?

1. Individual characteristics influence the variation of HTE
 ➢ **Baseline risk score prior to treatment** of patients seems to be a determinant predictor for HTE, **Prognosis research** is a key-tool for estimating risk scores

2. Numerous treatment options available for each disease **Network meta-analysis (NMA)** is a key-tool for comparing many different treatment options [2]
Aim

To develop a two-stage evidence synthesis prediction model to predict the most likely outcome under several possible treatment options while accounting for patients’ characteristics using individual participant data network meta-regression with risk scores
DATA

- 3 randomized clinical trials (phase III), 2990 observations in total
- Disease: Relapsing-remitting Multiple Sclerosis (MS)
- Outcome: Relapse MS in 2 years
Treatments

Dimethyl Fumarate → Predicted Outcome A

Glatiramer acetate → Predicted Outcome B

Natalizumab → Predicted Outcome C

Placebo → Predicted Outcome D

Prognostic model

\[h(y_i) = \beta_0 + \sum_{j=1}^{n} \beta_j \times PF_{ij} \]

Risk score

Prediction model using IPD Network meta-regression with PF and EM

Prediction model with IPD Network meta-regression using only the risk score
Risk score

Prediction model using IPD Network meta-regression using only the risk score

\[h(y_i) = \beta_0 + \sum_{j=1}^{n} \beta_j \times PF_{ij} \]

#STAGE1

Prognostic model

#STAGE2

Prediction model using IPD Network meta-regression using only the risk score

- **Dimethyl Fumarate** → Predicted Outcome A
- **Glatiramer acetate** → Predicted Outcome B
- **Natalizumab** → Predicted Outcome C
- **Placebo** → Predicted Outcome D

Treatments
Treatments

- Dimethyl Fumarate
- Glatiramer acetate
- Natalizumab
- Placebo

Predicted Outcome

A
B
C
D

Risk score

Prognostic model

\[h(y_i) = \beta_0 + \sum_{j=1}^{n} \beta_j \times PF_{ij} \]

Prediction model using IPD Network meta-regression using only the risk score

#STAGE1
Development of prognostic models

Two different prognostic models for comparable reasons

LASSO model
1. **Prognostic factors:**
 Selected via LASSO method
2. **Shrinkage of coefficients:**
 LASSO shrinkage of coefficients

Pre-specified model
1. **Prognostic factors:**
 14 prognostic factors identified by Pellegrini et al. for annualized relapse rate of MS.
 These variables included in this model
2. **Shrinkage of coefficients:**
 penalized maximum estimation likelihood
Included variables

Prognostic factors included in LASSO model

Prognostic factors included in pre-specified model

All 31 prognostic factors

- 1st Practice to Foot Walk
- Dominant hand
- Pyramidal FSS
- McDonald Criteria
- Cerebral FSS
- Global VAS
- Bowel or Bladder FSS
- Brainstem FSS
- Practice to 9-Hole Peg Test
- Actual Distance Walked
- 1st Practice to PASAT-3
- Sensory FSS
- Visual FSS
- Timed 25-Foot Walk
- SF-36 PCS
- EDSS
- Prior MS treatment group
- Number of relapses one year prior to study
- PASAT-3
- Years since onset of symptoms
- VFT 2.5%
- SF-36 MCS
- Months since pre-study relapse
- 9-Hole Peg Test
- Sex
- Ethnicity
- Age

© The HTx Consortium 2019-2023. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement Nº 825162.
Baseline risk score

LASSO model

Pre-specified model
Prediction model using IPD Network meta-regression using only the risk score

\[h(y_i) = \beta_0 + \sum_{j=1}^{n} \beta_j \times PF_{ij} \]
IPD Network meta-regression

Notation

- i: Individuals
- j: study
- k: treatment
- b_j: baseline treatment in study j

Likelihood

$Y_{ijk} \sim Bernoulli(p_{ijk})$

B: Individual level covariate regression term for Risk / the impact of Risk as prognostic factor

D_{bjk}: the treatment effect of treatment k versus placebo / **fixed effect**

G_{bjk}: The interaction of treatment and risk. Different for each treatment vs study’s control / the impact of Risk as effect modifier

\[
\text{logit}(p_{ijk}) = \begin{cases}
 u_j + B \times (\text{logit}R_{ij} - \text{logit}R_j) & \text{if } k = b_j \\
 u_j + D_{bjk} + B \times (\text{logit}R_{ij} - \text{logit}R_j) + G_{bjk} \times (\text{logit}R_{ij} - \text{logit}R_j), & \text{if } k \neq b_j
\end{cases}
\]

Saramago et al., 2012
IPD Network meta-regression

Results: Estimation of model parameters

OR for relapse for one unit increase in logit-risk in untreated patients (placebo) - \(\exp(B) \) = 3.32

Drug	OR for relapse versus placebo at the study mean risk \(\exp(D) \)	OR versus placebo for one unit of increase in the logit risk \(\exp(G) \)
Natalizumab	0.18	0.67
Glatiramer Acetate	0.41	0.87
Dimethyl Fumarate	0.43	1.06

\[
\text{logit}(p_{ijk}) = \begin{cases}
 u_j + B \times (\logit R_{ij} - \logit R_j) & \text{if } k = b_j \\
 u_j + D_{bk} + B \times (\logit R_{ij} - \logit R_j) + G_{bk} \times (\logit R_{ij} - \logit R_j), & \text{if } k \neq b_j
\end{cases}
\]
Predicted relapse rate by baseline risk score

Treatment	Mean	Less than 25% Risk	More than 75%
Natalizumab	29%	12%	48%
Glatiramer Acetate	41%	10%	60%
Dimethyl Fumarate	39%	9%	62%

Best treatment

Dimethyl fumarate - 3% Absolute benefit compared to Natalizumab

Best treatment

Natalizumab - 14% Absolute benefit compared to Dimethyl Fumarate
Further research

Treatments

- Dimethyl Fumarate
- Glatiramer acetate
- Natalizumab
- Placebo

Predicted Outcome

- A
- B
- C
- D

New External Dataset
IPD from Swiss MS Cohort

Risk score

$\mathbf{h}(\mathbf{y}_i) = \beta_0 + \sum_{j=1}^{n} \beta_j \times \mathbf{PF}_{ij}$

Prognostic model

#STAGE1

Combination of AD and IPD

26 studies - Published reports (Tramacere, 2018)

#STAGE2

Validation methods

Prediction model using IPD Network meta-regression using only the risk score
R-Shiny app

https://cinema.ispm.unibe.ch/shinies/koms/