Cloning and characterization of a UDP-glucose dehydrogenase gene from mulberry *Broussonetia kazinoki* × *Broussonetia papyifera*

R.H. Ji1,2, Z. Zhang1, X. Guo3, Y.L. Bao1, W.B. Zhang4, X.F. Lin2, and S.L. Bai5*

College of Forestry, Inner Mongolia Agricultural University, Hohhot 010019, P.R. China1
School of Life Sciences, Inner Mongolia University, Hohhot 010070, P.R. China2
College of Biological Science, China Agriculture University, Beijing 100083, P.R. China3

Abstract

Uridine diphosphate glucose dehydrogenase (UGDH) is a key enzyme in the hemicellulose and pectin biosynthesis pathway and participates in the regulation of growth and development in plants. In this study, we isolated a BpUGDH gene from paper mulberry (*Broussonetia kazinoki* × *Broussonetia papyifera*) and analyzed its function and expression characteristics. The results show that the BpUGDH was expressed in all organs of paper mulberry with a higher expression in stems than in leaves and roots. A pBpUGDH::GUS gene construct was highly expressed in transgenic Arabidopsis thaliana seedlings, and its expression was induced by a low temperature, methyl jasmonate, gibberellin A, ethylene, and auxin. The overexpression of BpUGDH increased the soluble sugar content, promoted the accumulation of hemicellulose, and enhanced the vegetative growth of transgenic plants. These results provide a basis for regulating the growth and adaptability of paper mulberry and improving its utilization value via genetic modification of the BpUGDH gene.

Additional key words: UGDH, hemicellulose, RACE, sugars, UDP-GlcA.

Introduction

The biosynthesis of hemicellulose and pectin in higher plants is regulated mainly by cytosolic UDP-glucose dehydrogenase (UGDH, EC1.1.1.22) (Labate et al. 2010) which uses NAD+ as a coenzyme to catalyze the conversion of uridine diphosphate glucose (UDP-Glc) to UDP-glucuronate (UDP-GlcA), the key precursor in the synthesis of many nucleoside sugars including UDP-galacturonic acid, UDP-xylene, UDP-mannose, UDP-arabinose, and UDP-apiose (UDP-Amp) (Campbell et al. 2000). These nucleoside sugars are further involved in the formation of polysaccharides in plants and participate in the formation of pectin and hemicellulose. Hemicellulose and pectin are key components of the cell wall and form a matrix that enhances the cell wall structure (Delmer et al. 1988, Witt 1992, Gibeaut and Carpita 1994, Gibeaut 2000). Up to 60% of the total cell wall polysaccharide content is derived directly or indirectly from UDP-GlcA (Seitz et al. 2000).

A UGDH gene was first isolated from the livers of Dutch pigs (Strominger et al. 1954), while the first higher plant UGDH gene was cloned from soybean (Tenhaken and Thulke 1996). Subsequently, the UGDH genes were isolated from other species such as Arabidopsis thaliana (Seitz et al. 2000), Escherichia coli (Campbell et al. 2000), Populus tremula × Populus tremuloides (Johansson et al. 2002), Dunaliella salina (He et al. 2005), Zea mays (Kärkönen et al. 2005), Boehmeria nivea (Liu et al. 2008), Eucalyptus grandis (Labate et al. 2010), Gossypium hirsutum (Pang et al. 2010), Hordeum vulgare (Matsumoto et al. 2011), Prunus persica (Sato et al. 2013), Ipomoea batatas (Lai et al. 2014), and Larix gmelinii (Li et al. 2017). The protein encoded by the UGDH gene has a molecular mass of approximately 40-53 kDa (Robertson et al. 1996). UGDH proteins are generally considered to be localized in the cytoplasm and most are membrane-bound (Griffith et al. 2004, Rigg et al. 1998). Plant...
UGDHs share high sequence homology with each other, and lower sequence homology with prokaryotic UGDHs. Plant UGDHs contain two functional domains, the NAD coenzyme binding site (G-A-G-Y-V-G-G) located at amino acids 8 - 14, and the catalytic site (G-F-G-S-C-F-Q-K-D-I-L) located at amino acids 267 - 278. Other active residues, such as Pro89, Pro156, and Cys272 have been identified and are involved in catalytic reactions of the UGDH enzyme (Wang et al. 2013, Johansson et al. 2002).

In Prunus persica, the content of PpUGD1 (AB181204) mRNA is much higher in immature leaves than in mature leaves indicating a possible function in cell wall biosynthesis during leaf development. The change in the PpUGD1 mRNA content during peach fruit development corresponds to changes in the amount of cell wall material and the cell wall uronic acid content, and the expression of PpUGD1 is higher in the fruits of gene (LC005487) in 2005). Five genes from paper mulberry and investigated IbUDPGH1 using genes are slightly expressed in mutant lines (Kärkönen et al., Baotou, Inner Mongolia. The cuttings were plant RNA extraction kit (TransStart Taq, TransGen Biotech) is rapidly induced by salt stress, demonstrates genome, and they exhibit a limited amount of research devoted to its physiology, biochemistry, and molecular biology (Li et al. 2008, Sun et al. 2014). Therefore, further study on the molecular mechanism of the regulation of growth and development as well as stress tolerance in paper mulberry is necessary for rational utilization of this multifunctional and common tree species. Therefore, in this study, we isolated an ortholog of the UGDH gene from paper mulberry and investigated features of its DNA sequence, its expression pattern, and its function in regulating growth, development, and cold-tolerance. Our results may provide a basis for improving growth and adaptability of mulberry and increasing its utilization value through genetic modification of the BpUGD gene.

Materials and methods

Plants: Paper mulberry [Broussonetia kazinoki] Siebold × Broussonetia papyfera (L.) Went] cuttings were provided by the Lü He Agriculture and Forestry Limited Liability Company, Baotou, Inner Mongolia. The cuttings were planted in pots containing a 1:1 (m/m) mixture of soil and Vermiculite, and RNA and DNA were extracted from young leaves after 4 weeks of culture.

Seeds of Arabidopsis thaliana L. ecotype Columbia were sterilized with 75 % (v/v) ethanol and 2 % (m/v) NaClO solution and then sown on 1/2 Murashige and Skoog (1962; MS) medium. After vernalization at a temperature of 4 °C for 3 d, the seeds were cultured at 24 °C, a 16-h photoperiod, and an irradiance of 45 μmol m⁻² s⁻¹. Two-week-old A. thaliana seedlings were transplanted into pots containing soil and grown under the same conditions as described above.

Isolation of BpUGDH cDNA: The total RNA was extracted from approximately 100 mg of young paper mulberry leaves using the MiniBEST plant RNA extraction kit (Takara, Beijing, China). First-strand cDNA was synthesized from 1 μg of total RNA using the TransScript first-strand cDNA synthesis SuperMix reverse transcription kit (TransGen Biotech, Beijing, China) at 42 °C for 30 min with 1 mm³ of 100 μM oligo-dT adaptor primer. Degenerate PCR was performed using the degenerate primer pairs F1 and R1, and F2 and R2 (Table 1 Suppl.) designed by Li et al. (2017). The first PCR reaction was performed, using 2.5 mm³ of 10× TransStart buffer (TransGen Biotech), 2 mm³ of 2.5 mM dNTPs, 0.2 mm³ of 2.5 units of TransStart Taq DNA polymerase significantly in ZmUGDH mutant lines (Kärkönen et al. 2005). These results indicate that UGDH plays a key role in regulating growth and development in plants.

Paper mulberry is a multifunctional and common tree species that is widely used in the paper manufacturing, animal feed, and medicine industries, and plays an important role in environmental protection and ecological restoration (Li et al. 2011, Nagpal et al. 2011, Yan et al. 2011, Kuang et al. 2012). A previous research on paper mulberry focused mainly on developmental regulation and applications for breeding, animal feed, and medicine, with a limited amount of research devoted to its physiology, biochemistry, and molecular biology (Li et al. 2008, Sun et al. 2014). Therefore, further study on the molecular mechanism of the regulation of growth and development as well as stress tolerance in paper mulberry is necessary for rational utilization of this multifunctional and common tree species. Therefore, in this study, we isolated an ortholog of the UGDH gene from paper mulberry and investigated features of its DNA sequence, its expression pattern, and its function in regulating growth, development, and cold-tolerance. Our results may provide a basis for improving growth and adaptability of mulberry and increasing its utilization value through genetic modification of the BpUGD gene.
(TransGen Biotech), 1 mm³ of 50 µM primers (F1 and R1), and 1 mm³ of cDNA in a 25-mm³ volume, with the following conditions: 35 cycles of 94 °C for 30 s, 48 °C for 60 s, and 72 °C for 1 min, followed by 72 °C for 5 min as a final extension. The second PCR was performed with primers (F2 and R2) under the same conditions as the first PCR. First strand cDNAs for 5'- and 3'-rapid amplification of cDNA ends (RACE) were synthesized using 1 µg of the total RNA with a SMARTer RACE 5'/3' kit (Takara) according to the manufacturer’s instructions. The 5'- and 3'-RACE fragments of the BpUGDH gene were amplified by 5'/3'-RACE PCR using the gene-specific primers 5'R1 and 5'R2/3'F1 and 3’F2 (Table 1 Suppl.) and the Universal Primer Mix (UPM) and Universal Primer Mix short (UPM short) provided by a SMARTer RACE kit under the following conditions: 25 cycles of 94 °C for 30 s, 68 °C for 30 s, and 72 °C for 2 min, followed by 72 °C for 5 min as a final extension.

A full-length BpUGDH cDNA fragment containing the complete coding region was obtained using standard PCR with the BpUGDH-full-F and BpUGDH-full-R primers (Table 1 Suppl.) under the following conditions: 35 cycles of 94 °C for 30 s, 59 °C for 30 s, and 72 °C for 2 min, followed by 72 °C for 5 min as a final extension. The products of the above PCRs were inserted into the pMD-19T vector and transformed into Trans1-T1 Phage Resistant competent cells (TransGen Biotech, Beijing, China), and DNA sequencing was performed by the Beijing Genomics Institute (Beijing, China).

Characterization of the BpUGDH gene: Analysis of BpUGDH expression was performed with real-time PCR using the BpUGDH-specific primers BpUGDH-SP-F and BpUGDH-SP-R (Table 1 Suppl.). BpActin (ID in transcriptomic data: T7-27886, one of the unigenes annotated as BpActin was used for the primer design, in the NCBI Short Read Archive (SRA) database under accession number SRP029966) expression was assessed using BpActin-F and BpActin-R primers (Li et al. 2007, Peng et al. 2015) and served as an internal control. First-strand cDNA was synthesized from total RNA (2 µg) prepared from leaves, stems, and roots of paper mulberry seedlings using Transcript All-in-One first-strand cDNA synthesis SuperMix for qPCR (one-step gDNA removal) (Takara). The cDNA was diluted ten-fold and used as template for RT-PCR analysis with a LightCycler 480 real time PCR platform (Roche, San Francisco, CA, USA). All experiments were repeated three times, and the data were analyzed with the SAS software by the comparative CT (2^ΔΔCT) method as previously described (Livak and Schmittgen 2001).

Cloning and sequence analysis of the BpUGDH promoter: The BpUGDH promoter sequence was isolated using a Genome Walking kit (Takara) with the BpUGDH-specific primers BpUGDH-P-SP1, BpUGDH-P-SP2, and BpUGDH-P-SP3 (Table 1 Suppl.) and the arbitrary degenerate primers AD1, AD2, and AD3 according to the manufacturer’s instructions. Sequence analysis of the BpUGDH promoter was carried out using the Plant CARE database (Lescot et al. 2002) and Berkeley Drosophila Genome project (BDGP).

Construction of pBI101-BpUGDH and pORE R1-BpUGDH: GUS binary vectors: The binary expression vectors, pBI101-BpUGDH and pORE R1-pUGDH::GUS were constructed by homologous recombination and used for functional analysis and expression detection of BpUGDH in transformed A. thaliana plants. Primers for amplifying the BpUGDH open reading frame (BpUGDH-BamHI-F and BpUGDH-BamHI-R) and for amplifying the BpUGDH promoter sequence (BpUGDH-XbaI-F and BpUGDH-XbaI-R) (Table 1 Suppl.) were designed to overlap sequences of the pBI101-Km-35S::Gus-Hm vector (provided by Professor Nakamura Kenzo; Chubu University, Japan) and the pORE R1 vector (provided by Professor Qi Zhi; Inner Mongolia University, China), respectively. The target fragments were amplified using the TransStart FastPfu DNA polymerase kit (TransGen Biotech) in PCR reactions containing 10 mm³ of 5’TransStart FastPfu buffer, 4 mm² of 2.5 mM dNTPs, 1 mm² of 2.5 units of TransStart FastPfu DNA polymerase (TransGen Biotech), 1 mm² of 10 µM primers, and 2 mm³ of cDNA in a 50-mm³ volume with the following conditions: 35 cycles of 95 °C for 20 s, 68 °C for 20 s, and 72 °C for 2 min, followed by 72 °C for 5 min as a final extension. Homologous recombination of linearized vector (pBI101-Km-35S::Gus-Hm digested with BamHI and pORE R1 digested with XbaI) and target fragment was performed using the pEASY-Uni seamless cloning and assembly kit (TransGen Biotech). The reaction contained 5 mm² of 2× assembly mix, 0.02 pmole of linearized vector, and 0.04 pmole of target fragments in a 10-mm³ volume at 50 °C for 15 min.

Screening and identification of transgenic A. thaliana lines: Recombinant plasmids were introduced into the Agrobacterium tumefaciens strain GV3101 and used to transform A. thaliana via the simplified in planta infiltration method described by Kim et al. (1999). Transgenic lines were obtained by screening on 1/2 MS medium containing kanamycin (40 mg dm⁻³) and confirmed by PCR analysis of genomic DNA from wild-type and transgenic A. thaliana. Genomic DNA PCR was performed using the BpUGDH promoter/gene-specific primers with annealing at 55 °C for the BpUGDH promoter and 59 °C for the BpUGDH gene for 30 s. RT-PCR was performed to detect transgene expression with the vector-specific primers GUS-F and GUS-R (Table 1 Suppl.), and BpUGDH gene-specific primers BpUGDH-full-F and BpUGDH-full-R (Table 1 Suppl.). AtActin2 gene (AT3G18780 AK317453) expression (Atactin2-F and Atactin2-R primers, Lin et al. 2008) served as an internal control. PCR was performed using the following conditions: 94 °C for 3 min; 35 cycles of 94 °C for 30 s, 65 °C (gusA), 59 °C (BpUGDH), or 55 °C (AtActin) for 30 s, and 72 °C for 1 min, followed by 72 °C for 5 min as a final extension.

β-Glucuronidase staining: β-Glucuronidase (GUS) expression driven by the BpUGDH promoter in
A. thaliana plants transformed with the pORE R1-pUGDH::GUS construct was detected using a GUS staining kit (Hua Yueyang, Beijing, China) at various plant growth stages. The plant tissues were immersed in GUS staining solution at 37 °C overnight, decolorized 2-3 times with 70% (v/v) ethanol to remove chlorophyll, and observed under a Nikon SMZI1000 (Tokyo, Japan) microscope. To investigate the effects of phytohormones on GUS expression at various growth stages of transgenic A. thaliana, seeds transplanted onto 1/2 MS medium supplemented with 100 μM methyl jasmonate (MeJA), 100 μM ethylene (ETH), 50 μM indole acetic acid (IAA), or 50 mg dm⁻³ gibberellin A₃ (GA₃) and 6, 13, and 20-d-old plants were used for GUS staining. To investigate GUS expression in flowers and seeds, transgenic plants grown in pots were sprayed with 100 μM MeJA, 100 μM ETH, 50 μM IAA, or 50 mg dm⁻³ GA₃; at 12-h intervals and GUS staining was performed after 48 h.

Phenotypic analysis of transgenic A. thaliana: Individual kanamycin-resistant plants were self-pollinated to establish lines homozygous for the transgene. All analyses were carried out with homoyzgous lines. Physical characteristics including length and maximum width of the fifth rosette leaf, number of cauline branches, internode distances, and plant height were measured in 40-d-old wild-type and transgenic A. thaliana plants, while root lengths were measured in 28-d-old plants.

Cold tolerance of transgenic A. thaliana: To investigate the cold tolerance of transgenic A. thaliana, 8-d-old wild-type and transgenic plants were transferred to 4°C, and their fresh masses were recorded after 0, 3, 7, and 14 d.

Activity of UGDH: Protein was extracted from the fifth rosette leaves of 30-d-old wild-type and transgenic A. thaliana plants as previously described (Li et al. 2017) and UGDH activity was measured using a UGDH activity detection kit (COMIN, Suzhou, China). As UGDH catalyzes the reaction of D-glucose and NAD⁺ to generate UDP-GlcA and NADH, UGDH activity was determined by measuring the change in absorbance at 340 nm caused by reduction of NAD⁺ to NADH using a Spectramax 130303923 microplate reader (MD, San Jose, CA, USA).

Determination of sugar, lignin, cellulose, and hemicellulose content: The sugar content of the fifth rosette leaves of 30-d-old A. thaliana plants were measured using specific detection kits (COMIN, Suzhou, China) according to the manufacturer’s instructions. Absorbance values at 505, 480, 620, 480, and 620 nm were measured using a Spectramax 130303923 microplate reader, and the content of glucose, fructose, soluble sugars, sucrose, and starch were calculated. Lignin, cellulose, hemicelluloses, and pectin content in stems of 45-d-old A. thaliana plants were measured by detecting absorbance values at 620, 540, 530, and 280 nm using specific detection kits (COMIN) according to the manufacturer’s instructions.

Data analyses: All data are expressed as means ± standard deviations (SDs). Statistical differences were assessed by one-way analysis of variance (ANOVA) using Fisher's least significant difference (LSD) test. The significance of differences between means was identified at a probability value of 0.05. All statistical analyses were performed using the Sigma Plot v12.0 software (Systat Software, San Jose, CA, USA).

Results

Nested RT-PCR using degenerate primer sets was used to isolate a 752-bp BpUGDH fragment. Primers for RACE were then generated and 3’ and 5’ RACE were performed to isolate a full-length BpUGDH cDNA sequence of 1 658 bp (DDBJ, accession No. LC457701), which encoded a protein of 480 amino acids with a theoretical molecular mass of 53.1 kDa and a pl of 5.98. BLAST X analysis showed that the cloned BpUGDH sequence shared high sequence similarity with homologous genes from Vitis vinifera (VVUGDH XP_010661331.1). Morus notabilis (MnUGDH XP_010089612.1). Zipitrus jujuba (ZjUGDH XP_015879845.1). B. nivae (BnUGDH ABM55267.3). Citrus sinensis (CsUGDH XP_006482729.1). Juglans regia (JrUGDH XP_018816674.1). A. thaliana (AtUGDH BAB02581.1), and Medicago truncatula (MtUGDH XP_003621403.1) (Fig.1 Suppl.). The encoded BpUGDH protein contained all the conserved features of plant UGDHs including the NAD coenzyme binding site (G-A-G-Y-V-G-G) located at amino acids 8-14, the catalytic site (G-F-G-G-S-C-F-Q-K-D-I-L) located at 267-278, and other active residues, such as Pro residues at positions 89 and 156, which were conserved in all of the eukaryotic UGDHs and are believed to correspond to the main bends in the protein structure (Wang et al. 2013), two Lys residues at positions 217 and 330 which correspond to Lys 216 and Lys 335 of Tremula × P. tremuloide (AtUGDH AAF04455.1) (one of these Lys residues is probably involved in the conversion of UDP-glucose to UDP-aldehydoglucose), and an important Cys residue at position 272 which is involved in the UGDH-catalyzed conversion of UDP-aldehydoglucose to UDP-GlcA (Wang et al. 2013) (Fig. 1 Suppl.).
the start codon (Fig. 2 Suppl.), and functional cis-elements were identified including not only the CAAT box and the TATA box common in eukaryotic genes, but also response elements to phytohormones such as MeJA, GA₃, IAA, and ETH, suggesting that BpUGDH expression is regulated by phytohormones. In addition, elements responsive to abiotic stress, such as low temperature, were also found in the BpUGDH promoter region (Table 2 Suppl.). These results suggest that BpUGDH is involved in the regulation of growth and development, as well as in the response to abiotic stress, including cold.

To further understand BpUGDH expression characteristics, we introduced a pORE-R1-pBpUGDH::GUS expression vector into A. thaliana and confirmed by RT-PCR analysis. We investigated the pattern of BpUGDH expression in transgenic A. thaliana plants at various growth stages (6-, 13-, 20-, 27-, and 34-d-old plants) by GUS histochemical staining (Fig. 2). GUS was expressed in all organs of the transgenic plants and its expression was induced by low temperature. MeJA, GA₃, IAA, and ETH (Fig. 2A-F). Higher GUS expression was detected in young seedling, including leaves, stems, and roots, while its expression decreased in mature organs (Fig. 2A-C), corresponding to the role of UGDH in cell wall biosynthesis. After flowering, higher GUS expression was detected in reproductive organs (Fig. 2D-E), including petals, calyx, stamens, and siliques, while no GUS staining was observed in seeds (Fig. 2F).

To further analyze the features and functions of BpUGDH, we constructed the plB1101-BpUGDH plasmid containing the BpUGDH cDNA sequence with expression driven by the CaMV35S promoter (Fig. 3A) and introduced it into A. thaliana. Expression of the BpUGDH transgene was confirmed by RT-PCR analysis in four homozygous transgenic lines produced by self-pollination (Fig. 3B). UGDH activity was measured in the four transgenic lines using the fifth rosette leaf of 30-d-old plants to confirm BpUGDH expression at the translation level. UGDH activity was higher in the four BpUGDH transgenic lines than in the wild-type plants (Fig. 3C).

Overexpression of BpUGDH in transgenic A. thaliana resulted in distinct phenotypes at various developmental stages, compared to the wild-type plants. There was no significant difference in the growth rate of the aboveground parts between wild-type and transgenic plants within two weeks after germination, while 28-d-old transgenic seedlings exhibited longer and more of well-developed roots (Fig. 4A). After transplanting into soil, the transgenic plants grew faster than the wild-type plants (Fig. 4B,C). To precisely analyze phenotypic differences between the wild-type and transgenic plants, we measured morphological characteristics of 40-d-old plants including the length and width of the fifth rosette leaves, the number of cauline branches, internode distances, and plant height. All of the transgenic plants were taller than the wild-type plants, and significant differences in leaf width, internode length, and root length were observed between wild-type and BpUGDH transgenic plants (Fig. 4A,D). These results demonstrated that overexpression of BpUGDH enhanced vegetative growth in the transgenic plants. The content of sucrose, fructose, and soluble sugars of the four BpUGDH transgenic lines increased significantly relative to the wild-type plants, whereas the sucrose content decreased significantly and no significant difference in starch content was observed (Fig. 5). The hemicellulose content in the stems of the four transgenic lines was significantly higher than in the wild-type plants, the cellulose content was significantly lower than in wild-type and no significant difference in lignin and pectin content was observed (Fig. 6). These results demonstrated that the BpUGDH gene plays a role in controlling polysaccharide metabolism and biosynthesis of secondary cell walls.

To investigate the cold-tolerance of transgenic A. thaliana plants, 8-d-old seedlings were cultured at 4 °C for 0, 3, 7, and 14 d, and fresh masses were measured (Fig. 7). There was no significant difference in fresh mass between the wild type and the four transgenic lines during 0 - 3 d of culture at 4 °C, while damage induced by low temperature began to appear in wild-type plants after 7 d, and the fresh masses of wild-type plants were significantly lower than those of the four transgenic lines. These results showed that overexpression of BpUGDH enhanced cold-tolerance in transgenic A. thaliana plants. To examine expression of BpUGDH under the cold stress conditions, 4-week-old paper mulberry tissue culture seedlings were grown at 4 °C for 0, 6, 12, 24, 48, 72 h, respectively, and the expressions of BpUGDH were measured. Real-time PCR results show that expression of BpUGDH increased to a maximum at 6 h after culture under 4 °C and with the prolongation of stress time, the relative expression decreased slowly, and the expression was lowest at 72 h after culture at 4 °C (Fig. 3 Suppl.). These results indicate that the BpUGDH gene could play an important role in adaptation of paper mulberry plants to low temperature.

Discussion

Polysaccharides essential for plant cell wall biosynthesis include cellulose, hemicelluloses, and tannins. The UGPase is an important regulatory enzyme in the biosynthesis of cellulose and callose and catalyzes the
Fig. 2. β-Glucuronidase staining transgenic Arabidopsis thaliana tissues at various growth stages under different induction conditions; A - 6-d-old seedlings, B - 13-d-old plants, C - leaves of 20-d-old plants, D - 20-d-old plants, E - flowers of 27-d-old plants, F - pods of 34-d-old plants. MeJA - methyl jasmonate, 4 °C - cold treatment, IAA - indole acetic acid, GA₃ - gibberellin A₃, ETH - ethylene. Scale bars - 2 mm.

Fig. 3. Molecular identification of transgenic Arabidopsis thaliana lines. A - diagram of the T-DNA region of the pBI101-BpUGDH vector used to produce transgenic Broussonetia papyifera uridine diphosphate glucose dehydrogenase (BpUGDH) plants (35S promoter, NOS p - nopaline synthase promoter, NOS t - nopaline synthase terminator, NPT II - neomycin phosphotransferase II gene, RB - right border, LB - left border). B - confirmation of BpUGDH transgene expression in various transgenic lines by RT-PCR analysis; the AtActin2 gene served as an internal control. C - uridine diphosphate glucose dehydrogenase (UGDH) activities in wild-type and transgenic lines. Error bars represent SDs of three independent biological replicates. Different letters indicate significant differences \((P < 0.05) \).
reversible conversion of glucose-1-phosphate and uridine triphosphate to UDP-Glc and pyrophosphate (Winter and Huber 2000, Kleczkowski et al. 2004, Li et al. 2014). UDP-Glc is converted by UGDH to UDP-GlcA, which is involved in the biosynthesis of hemicellulose and pectin. As a key enzyme in the hemicellulose biosynthesis pathway, UGDH promotes vegetative growth of plants by regulating the metabolism of polysaccharides in plants to promote hemicellulose deposition and cell wall formation (Li et al. 2017). Therefore, it is important to analyze the expression characteristics and roles of UGDH in regulating the growth and development of plants.

In this study, we cloned a UGDH ortholog from paper mulberry. It shares high sequence similarity with

Fig. 4. Effects of Broussonetia papyrifera uridine diphosphate glucose dehydrogenase overexpression on transgenic Arabidopsis thaliana plants. A - 28-d-old wild-type and transgenic plants (T3-23, T3-6, T3-14, and T3-22 lines) cultivated on vertical plates showing differences in root growth and development (scale bar - 1.6 cm). B - 20-d-old transgenic plants showing a better growth than wild-type plants (left) (scale bar - 5 cm). C - 35-d-old transgenic plants considerably taller than wild-type plants (left) (scale bar - 5 cm). D - morphological analysis of 40-d-old wild-type and transgenic plants including the length and width of the fifth rosette leaves, the number of cauline branches, internode distances, and plant height. Error bars represent SDs of three independent biological replicates with six plants. Different letters indicate significant differences ($P < 0.05$).
the UGDH genes of other plant species and contains all the conserved features of plant UGDH proteins (Fig. 1 Suppl.), indicating its function in converting UDP-Glc to UDP-GlcA. Real time RT-PCR analysis showed that the BpUGDH gene was expressed in all plant organs with higher expression in stems than in leaves and roots (Fig. 1), which is similar to the expression of the LgUGDH gene from Larix gmelinii (Li et al. 2017) and the BnUGDH gene (EF178294) from Boehmeria nivea (Liu et al. 2008). LgUGDH showed the highest expression in stems, followed by leaves and roots. The BnUGDH gene was expressed in roots, stems, leaves, and phloem, with the highest expression in stems (Liu et al. 2008), while the UGDH gene in G. max (GmUGDH U53418.1) was highly expressed in radicle roots (Tenhaken and Thulke 1996). Previous studies have shown that UGDH expression is more active in young and rapidly developing tissues (Stewart 1998). In this study, GUS staining showed, that during expression driven by the BpUGDH promoter, GUS was strongly expressed in young and developing tissues consistent with patterns seen for expression of P. tremula × P. tremuloides PtUGDH and A. thaliana AtUGDH genes. PtUGDH expression occurs predominantly in developing xylem and young leaves, with some expression in mature and apical leaves (Johansson et al. 2002), and AtUGDH is mainly expressed in young growing tissues and is not expressed in mature tissues (Seitz et al. 2000).

The regulation of gene expression is a complex process controlled by multiple factors that can act during transcription, RNA splicing, and mRNA translation.

Fig. 5. Sucrose, glucose, fructose, soluble sugar, and starch content in fresh mass in the fifth rosette leaf of 30-d-old wild-type and transgenic Arabidopsis thaliana plants. Error bars represent SDs of three independent biological replicates. Different letters indicate significant differences at P < 0.05.

Fig. 6. Lignin, cellulose, and hemicellulose content in dry mass, and pectin content in fresh mass in stems of 45-d-old wild-type and transgenic Arabidopsis thaliana plants. Error bars represent SDs of three independent biological replicates. Different letters indicate significant differences at P < 0.05.

674
Regulation of eukaryotic gene expression is generally divided into multiple levels, with the transcription level being the most critical. Cis-regulatory elements located in the promoter region play important roles in transcriptional regulation, and therefore functional analysis of the upstream promoter is important for understanding the transcriptional regulation mechanism of genes. In this study, we cloned the BpUGDH gene promoter, and sequence analysis showed that some cis-elements involved in responses to low temperature and phytohormones, including GA₃, IAA, ETH, and MeJA, were present in the BpUGDH promoter, suggesting that BpUGDH is involved in the plant response to cold and in regulation by phytohormones. GUS staining showed that, with GUS expression driven by the BpUGDH promoter, GUS was strongly expressed in young and developing tissues of transgenic A. thaliana plants, and its expression was strongly induced by low temperature, GA₃, IAA, MeJA, and ETH (Fig. 2) consistent with the function of UGDH and the cis-elements present in the BpUGDH promoter.

Multiple UGDH isoforms were indentified in plant genome, such as in Arabidopsis, the UGDH gene family is represented by four highly similar UGDH isoforms and five UGDH pseudogenes (Seitz et al. 2000, Reiter and Vanzin 2001, Klinghammer and Tenhaken 2007). Moreover, in poplar, at least two isoforms were reported (Johansson et al. 2002). In the L. gmelinii genome, two copies of UGDH exist (Li et al. 2017). In Eucalyptus more than one copy of UGDH is present (Labate et al. 2010). In suspension-cultured maize cells, several lines of evidence indicated the existence of three isoforms with widely differing substrate affinities (Kärkönen et al. 2005). In culm tissue of Saccharum spp., another gramineous plant, only one UGDH was detected (Turner and Botha 2002). In our previous study, five UGDH transcripts were found in the transcriptome database of paper mulberry (unpublished data).

Fig. 7. Cold-tolerance of Broussonetia papyifera uridine diphosphate glucose dehydrogenase transgenic plants. Wild-type and four transgenic lines first cultured on a half strength Murasige and Skoog medium for 8 d were subsequently cultured at 22 °C (A) or 4 °C (B) for 0, 3, 7, and 14 d, and fresh masses were measured. Error bars represent SDs of three independent biological replicates. Different letters indicate significant differences at $P < 0.05$.

Fig. 7. Cold-tolerance of *Broussonetia papyifera* uridine diphosphate glucose dehydrogenase transgenic plants. Wild-type and four transgenic lines first cultured on a half strength Murasige and Skoog medium for 8 d were subsequently cultured at 22 °C (A) or 4 °C (B) for 0, 3, 7, and 14 d, and fresh masses were measured. Error bars represent SDs of three independent biological replicates. Different letters indicate significant differences at $P < 0.05$.

675
Each UGDH isoform exhibits a different expression pattern during plant development. In *Ipomoea batatas*, *IbUDPGH1* is strongly expressed in the tuberous roots, *IbUDPGH2* and *IbUDPGH5* are expressed in stems, and the other *IbUGDH* genes are slightly expressed in different tissues (Lai et al. 2014). Moreover, four functional UGDH genes and one pseudogene of *Arabidopsis* exhibit distinct tissue-specific expression patterns (Klinghammer and Tenhaken 2007). During germination and the vegetative phase, the expression patterns of *AtUGDH2*, *3*, and *4* were very similar, with strong expression in primary roots, root tips, young root hairs, and calyptras, while *AtUGDH1* showed an almost inverse organ-specific pattern with low expression in cotyledons. During the reproductive phase, all *AtUGDH* activities were detected in stigma, filaments, and mature pollen, while each *AtUGDH* gene showed a different expression pattern in sepals, petals, pollen sacs, and siliques. In this work, GUS staining showed that the *BpUGDH* promoter was active in all organs of transgenic *A. thaliana* during the growth and development phases, with a higher activity in young leaves, roots, petals, calyx, stamens, and siliques, indicating the importance of *BpUGDH* regulation in the growth and development of paper mulberry. No *BpUGDH::GUS* activity was detected in seeds of transgenic *A. thaliana*, suggesting the possibility that the *BpUGDH* promoter could be used to drive functional genes for genetic improvement of grain crops.

Overexpression of *BpUGDH* enhanced the vegetative growth of transgenic *A. thaliana* plants, similar to results of our previous study of *L. gmelinii UGDH* (Li et al. 2017). Overexpression of *LgUGDH* significantly enhances vegetative growth in transgenic *A. thaliana* (Nossen ecotype) during all growth stages (Li et al. 2017). In this study, no obvious difference between wild-type and transgenic plants overexpressing *BpUGDH* was found during the early stage, while a different growth phenotype was observed after transplanting to soil (Fig. 4B,C). The difference in growth phenotype was due to the different ecotype backgrounds of the plants; the *A. thaliana* Nossen ecotype was used for overexpression of *L. gmelinii UGDH* (Li et al. 2017), while the *Columbia* ecotype was used for overexpression of *BpUGDH* in this study.

The *Z. mays* knockout mutant *ugdh-A1* reduces pentosan biosynthesis, suggesting that *UGDH* is a critical factor in sugar metabolism (Kärkönen and Fry 2006). Our results showed that the contents of sucrose, fructose, and soluble sugars in leaves of *BpUGDH* transgenic *A. thaliana* were significantly higher than those of wild-type plants (Fig. 5), indicating that *BpUGDH* may modify carbon allocation in favour of soluble sugars. However, the glucose content was significantly reduced in the transgenic plants, while no significant difference in starch content was observed. Glucose is converted by UGPase to UDP-Glc. UDP-Glc can be converted by UGDH to UDP-GlcA, which is involved in hemicellulose and pectin synthesis. Therefore, the reduction in glucose content may be caused by substrate consumption in hemicellulose and pectin biosynthetic pathways. Our results indicated that the accumulated sugar was probably not stored in leaves in the form of starch, but formed a pool of available soluble sugars to accelerate metabolism and enhance vegetative growth.

Plant cell walls play a crucial role in plant growth, defense, and structural integrity, and contain many polysaccharides including cellulose, hemicelluloses, and tannins. Hemicellulose is an important factor for secondary cell wall biosynthesis and accounts for half of the primary cell wall biomass (Delmer et al. 1988, Witt 1992, Gibeaut 2000, Seifert 2004, Kärkönen and Fry 2006, Sato et al. 2013). The hemicellulose content of transgenic plants overexpressing *BpUGDH* increased significantly compared to the wild-type plants (Fig. 6), indicating that *BpUGDH* plays an important role in glucose metabolism, especially in hemicellulose biosynthesis. This result is similar to those of our previous research on *L. gmelinii UGDH* (Li et al. 2017). The cellulose content decreased significantly, especially in the transgenic lines T3-23, T3-6 and T3-22. The reason may be that the overexpression of *BpUGDH* significantly increased the activity of UGDH in transgenic plants. As a result, a large amount of UDP-Glc is consumed, and cellulose which is a main component of the cell wall is formed by the binding of dextran, and thus overexpression of *BpUGDH* causes a decrease in the cellulose content in the stem of the transgenic *A. thaliana*. Control of UGDH activity by feedback inhibition seems to be a common mechanism controlling the enzymes involved in sugar-nucleotide interconversions. The control for this system might occur at the transcriptional level of genes encoding kinetically distinct enzymes (Seifert 2004). In our experiments, the transgenic line T3-14 with the highest UGDH activity had sugar content lower than other transgenic plants. It seems that, in transgenic *A. thaliana*, nucleoside sugars at low concentrations function as a feedback stimulator, activating the synthesis of UDP-GlcA and thus potentially its own synthesis (Kärkönen and Fry 2006). The increase in the hemicellulose and soluble sugar content indicated that *BpUGDH* overexpression may contribute to plant adaptation to stress, which was confirmed by the cold tolerance exhibited by the transgenic plants in this study. Previous research has shown that transgenic plants overexpressing *L. gmelinii UGDH* showed stronger cold tolerance (Li et al. 2017). Our results strongly suggest that *BpUGDH* may be a good candidate gene for improving cold resistance, accelerating fiber cell development, and enhancing plant vegetative growth.

References

Aubertin, C.: Paper mulberry (*Broussonetia papyrifera*) in Lao PDR: a successful example of forest product domestication. - In: Kusters, K., Belcher, B.: Forest Products, Livelihoods and Conservation: Case-studies of Non-timber Forest Product Systems. Vol. 1. Pp. 227-246. CIFOR, Bogor 2004.

Campbell, R.E., Mosimann, S.C., Rijn, I.V.D., Tanner, M.E., Strynadka, N.C.: The first structure of UDP-glucose dehydrogenase reveals the catalytic residues necessary for the two-fold oxidation. - Biochemistry 39: 7012-7023, 2000.

Delmer, D.P., Stone, B.A., Preiss, J.: Biosynthesis of plant cell walls. - Biochem. Plants 14: 373-420, 1988.
improves tolerance to both salt and drought stress in Broussonetia papyrifera (L.) Vent. - Tree Physiol. 31: 349-357, 2011.

Li, L.H., Li, X., Li, Z.P., Lin, X.F., Zhang, W.B., Takeki, K., Takeki, H.: Overexpression of UDP-glucose dehydrogenase from Lirix gmelini enhances growth and cold tolerance in transgenic Arabidopsis thaliana. - Biol. Plant. 61: 95-105, 2017.

Li, L.Z., Wang, L., Zhang, W.B., Takeki, K., Takeki, H., Lin, X.F.: Overexpression of UDP-glucose pyrophosphorylase from Lirix gmelini enhances vegetative growth in transgenic Arabidopsis thaliana. - Plant Cell Rep. 33: 779-791, 2014.

Li, Y., Li, G.: [Cloning and sequence analysis of actin gene from Broussonetia papyrifera]. - Biotechnology 17: 1-3, 2007. [In Port.]

Lin, X.F., Minamisawa, N., Takeki, K., Zhang, W.B., Sato, H., Takio, S., Tsukaya, H., Takeki, H.: Isolation and characterization of the Lirix gmelini ANGSTIFOLIA (LgAN) gene. - Planta 228: 601-608, 2008.

Liu, F., Huang, Y., Guo, Q.Q., Zhang, L.W., Li, L.Y., Deng, J., Xie, L.L.: [Cloning and expression of UDP-glucose dehydrogenase (UDPGDH) cDNA in ramie (Boehmeria nivea (Linn.) Gaud)]. - Sci. agr. sin. 41: 3542-3548, 2008. [In Chin.]

Livak, K.J., Schmittgen, T.D.: Analysis of relative gene expression using real-time quantitative PCR and the 2(-Delta Delta CT) method. - Methods 25: 402-408, 2001.

Matsumoto, T., Tanaka, T., Sakai, H., Amano, N., Kamonari, H., Kurita, K., Kikut, A., Kiami, K., Yamamoto, M., Ikawa, H., Fujii, N., Hor, K., Itoh, T., Sato, K.: Comprehensive sequence analysis of 24738 barley full-length cDNAs derived from 12 clone libraries. - Plant Physiol. 156: 20-28, 2011.

Mithra, S.V.A., Kulkarni, K., Srinivasan, R.: Plant promoters: characterization and applications in transgenic technology. - In: Abdin, M.Z., Kiran, U., Kamaluddin, A.A. (ed.): Plant Biotechnology: Principles and Applications. Pp. 117-172. Springer, Singapore 2017.

Nagpal, U.M., Bankar, A.V., Pawar, N.J., Kapadnis, B.P., Zinjarde, S.S.: Equilibrium and kinetic studies on biosorption of heavy metals by leaf powder of paper mulberry (Broussonetia papyrifera). - Water Air Soil Pollut. 215: 177-188, 2011.

Pang, C.Y., Wang, H., Pang, Y., Xu, C., Jiao, Y., Qin, Y.M., Western, T.L., Yu, S.X., Zhu, Y.X.: Comparative proteomics indicates that biosynthesis of pectic precursors is important for cotton fiber and Arabidopsis root hair elongation. - Mol. cell. Proteomics 9: 2019-2033, 2010.

Peng, X.J., Jeng, L.H., Yan, X.Q., Zhao, M.L., Shen, S.H.: The cold responsive mechanism of the paper mulberry: decreased photosynthesis capacity and increased starch accumulation. - BMC Genomics 16: 898, 2015.

Reiter, W.D., Vanzin, G.F.: Molecular genetics of nucleotide sugar interconversion pathways in plants. - Plant mol. Biol. 47: 95-113, 2001.

Neill, G.P., Barrett, B., Roberts, I.S.: The localization of KpsC, S and T, and KfaA, C and D proteins involved in the biosynthesis of the Escherichia coli K5 capsular polysaccharide: evidence for a membrane-bound complex. - Microbiology 144: 2905-2914, 1998.

Robertson, D., Smith, C., Bolwell, G.P.: Inducible UDP-glucose dehydrogenase from French bean (Phaseolus vulgaris L.) locates to vascular tissue and has alcohol dehydrogenase activity. - Biochem. J. 313: 311-317, 1996.

Sato, K., Hihara, E., Yamaguchi, M., Kanahama, K., Kanayama, Y.: Possible role of a peach homolog of UDP-glucose dehydrogenase in fruit development. - Scientia hort. 150: 195-200, 2013.

Seifert, G.J.: Nucleotide sugar interconversions and cell wall structure. - Plant Mol. Biol. 76: 1091-1102, 2013.
biosynthesis: how to bring the inside to the outside. - Curr. Opin. Plant Biol. 7: 277-284, 2004.

Seitz, B., Klos, C., Wurm, M., Tenhaken, R.: Matrix polysaccharide precursors in Arabidopsis cell walls are synthesized by alternate pathways with organ-specific expression patterns. - Plant J. 21: 537-546, 2000.

Stewart, D.C., Copeland, L.: Uridine 5'-diphosphate-glucose dehydrogenase from soybean nodules. - Plant Physiol. 116: 349-355, 1998.

Strominger, J.L., Kalckar, H.M., Axelrod, J., Maxwell, E.S.: Enzymatic oxidation of uridine diphosphate glucose to uridine diphosphate glucuronic acid. - J. amer. chem. Soc. 76: 6411-6412, 1954.

Sun, J., Liu, S.F., Zhang, C.S., Yu, L.N., Bi, J., Zhu, F., Yang, Q.L.: Chemical composition and antioxidiant activities of Broussonetia papyrifera fruits. - PLoS ONE 7: e32021, 2012.

Sun, J.W., Peng, X.J., Fan, W.H., Tang, M.J., Liu, J., Shen, S.H.: Functional analysis of BpDREB2 gene involved in salt and drought response from a woody plant Broussonetia papyrifera. - Gene 535: 140-149, 2014.

Tenhaken, R., Thulke, O.: Cloning of an enzyme that synthesizes a key nucleotide sugar precursor of hemicellulose biosynthesis from soybean: UDP-glucose dehydrogenase. - Plant Physiol. 112: 1127-1134, 1996.

Turner, W., Botha, F.C.: Purification and kinetic properties of UDP-glucose dehydrogenase from sugarcane. - Arch. Biochem. Biophys. 407: 209-216, 2002.

Wang, J., Li, A., Wang, C.G., Song, W.Q., Chen, C.B.: [Cloning and expression of UDP-glucose dehydrogenase cDNA in larix kaempferi.] - Forest Res. 26: 76-81, 2013. [In Chin.]

Winter, H., Huber, S.C.: Regulation of sucrose metabolism in higher plants: localization and regulation of activity of key enzymes. - Crit. Rev. Plant Sci. 19: 253-289, 2000.

Witt, H.J.: UDP-glucose metabolism during differentiation and dedifferentiation of Riella helicophylla. - J. Plant Physiol. 140: 276-281, 1992.

Yan, J., Wu, P., Du, H., Zhang, Q.: First report of black spot caused by Colletotrichum gloeosporioides on paper mulberry in China. - Plant Dis. 95: 880-880, 2011.