CUBE SUMS OF FORM $3p$ AND $3p^2$ II

JIE SHU AND HONGBO YIN

Abstract. Let $p \equiv 2, 5 \pmod{9}$ be a prime. We prove that both $3p$ and $3p^2$ are cube sums. We also establish some explicit Gross-Zagier formulae and investigate the 3 part full BSD conjecture of the related elliptic curves.

1. Introduction

We call a nonzero rational number a cube sum if it is of the form $a^3 + b^3$ with $a, b \in \mathbb{Q}$. For the history and background about this Diophantine problem please refer to [DV09][DV18][HSY][SSY]. Up to now, only four family numbers with many prime factors are proved to be cube sums [Sat86][Cow00] and the Sylvester conjecture concerning primes p only has partial result [DV18]. In this paper, we mainly prove the following theorem completing our partial result in [SSY] using a different construction.

Theorem 1.1. Let $p \equiv 2, 5 \pmod{9}$ be a prime. Then both $3p$ and $3p^2$ are cube sums.

Since 2 is a cube sum, from now on, we may assume $p \equiv 2, 5 \pmod{9}$ is an odd prime number. Let E_n be the elliptic curve given by $x^3 + y^3 = nz^3$. It has the Weierstrass equation $y^2 = x^3 - 432n^2$. If $n > 2$ is not a cube, then $E_n(\mathbb{Q})_{\text{tor}} = 0$ and n is a cube sum if and only $E_n(\mathbb{Q})$ has rank at least one. Following [Sat87], we use the Heegner points twisted from a fixed elliptic curve to prove the above theorem.

In second part of this paper, we establish some explicit Gross-Zagier formulae (Theorem 4.2) and use them to investigate the 3-part full BSD conjecture for E_{3p} and E_{3p^2}. More explicitly, let $\text{III}(E_n)$, $\text{III}(E_n(\mathbb{Q})_{\text{tor}})$, Ω_n, $R(E_n)$ and $c_\ell(E_n)$ denote the Shafarevich-Tate group, the torsion subgroup, the minimal real period, the regulator and the Tamagawa number of E_n over \mathbb{Q} respectively. Then the full BSD conjecture predicts that if $L(s, E)$ is of order r at $s = 1$, then

$$|\text{III}(E_n)| = \frac{L^{(r)}(1, E_n)}{\Omega_n \cdot R(E_n)} \cdot \frac{|E_n(\mathbb{Q})_{\text{tor}}|^2}{\prod_\ell c_{\ell}(E_n)}.$$

Let P (resp. Q) be a generator of the free part of $E_{3p^2}(\mathbb{Q})$ (resp. $E_{3p}(\mathbb{Q})$). We prove that

Theorem 1.2. Let $p \equiv 2 \pmod{9}$ be a rational prime number. Then

$$|\text{III}(E_p)| \cdot |\text{III}(E_{3p^2})| = \frac{L(1, E_p)}{\Omega_p \cdot h_{\mathbb{Q}}(P)} \cdot \frac{L'(1, E_{3p^2})}{\Omega_{3p^2}} \cdot \frac{|E_p(\mathbb{Q})_{\text{tor}}|^2}{\prod_\ell c_{\ell}(E_p)} \cdot \frac{|E_{3p^2}(\mathbb{Q})_{\text{tor}}|^2}{\prod_\ell c_{\ell}(E_{3p^2})}.$$

up to a power of $2p$.

Let $p \equiv 5 \pmod{9}$ be a rational prime number. Then

$$|\text{III}(E_p^2)| \cdot |\text{III}(E_{3p})| = \frac{L(1, E_{p^2})}{\Omega_{p^2} \cdot h_{\mathbb{Q}}(Q)} \cdot \frac{L'(1, E_{3p})}{\Omega_{3p}} \cdot \frac{|E_{p^2}(\mathbb{Q})_{\text{tor}}|^2}{\prod_\ell c_{\ell}(E_{p^2})} \cdot \frac{|E_{3p}(\mathbb{Q})_{\text{tor}}|^2}{\prod_\ell c_{\ell}(E_{3p})}.$$

up to a power of $2p$.

Note that by the work of Perrin-Riou [PR87], Kobayashi [Kob13], the ℓ part full BSD conjecture of E_{3p} and E_{3p^2} is known for $\ell \nmid 6p$. But the prime 3 is very special in the Iwasawa theory for the elliptic curve family $E_D: y^2 = x^3 + D$ whose CM field $K = \mathbb{Q}(\sqrt{-3})$ has 6 roots of unity and 2 is special for all elliptic curves. In particular, there is no any general results about the 2 and 3 part full BSD conjecture of E_D.

Jie Shu is supported by NSFC-11701092; Hongbo Yin is supported by NSFC-11701548 and Young Scholar Program of Shandong University.
2. Modular Actions on Heegner Points

2.1. Modular curves and modular actions. We will use the notations as in [HSY, Section 2] for the related modular curves. Recall $X_0(3^3)$ is the classical modular curve over \mathbb{Q} of level $\Gamma_0(3^3)$. Define N to be the normalizer of $\Gamma_0(3^3)$ in $\text{GL}_2^+(\mathbb{Q})$. Then the linear fractional transformation action of N on $X_0(3^3)$ induces an isomorphism

$$N/\mathbb{Q}^\times \Gamma_0(3^3) \simeq \text{Aut}_\mathbb{Q}(X_0(3^3)).$$

The quotient group $N/\mathbb{Q}^\times \Gamma_0(3^3) \simeq S_3 \times \mathbb{Z}/3\mathbb{Z}$, where S_3 denotes the symmetric group with 3 letters which is generated by the Atkin-Lehner operator $W = \begin{pmatrix} 0 & -35 \\ 1 & 0 \end{pmatrix}$ and the matrix $A = \begin{pmatrix} 28 & 1/3 \\ 3^4 & 1 \end{pmatrix}$, and the subgroup $\mathbb{Z}/3\mathbb{Z}$ is generated by the matrix $B = \begin{pmatrix} 1 & 0 \\ 3^4 & 1 \end{pmatrix}$.

Put

$$U = \langle U_0(3^3), W, A \rangle \subset \text{GL}_2(\mathbb{A}_f),$$

and

$$\Gamma = \text{GL}_2(\mathbb{Q})^+ \cap U = \langle \Gamma_0(3^3), W, A \rangle,$$

and let X_Γ be the modular curve over \mathbb{Q} of level Γ whose underlying Riemann surface is

$$X_\Gamma(\mathbb{C}) = \text{GL}_2(\mathbb{Q})^+ \setminus (\mathcal{H} \cup \mathbb{P}^1(\mathbb{Q})) \times \text{GL}_2(\mathbb{A}_f)/U.$$

So the curve is the quotient of $X_0(3^3)$ by the actions of W and A. Then X_Γ is a smooth projective curve over \mathbb{Q} of genus 1, and the infinity cusp $[\infty]$ is rational over \mathbb{Q}. We identify X_Γ with an elliptic curve over \mathbb{Q} with $[\infty]$ as its zero element [HSY, Proposition 2.1]. Let N_Γ be the normalizer of Γ in $\text{GL}_2(\mathbb{Q})^+$.

Then we have a natural embedding

$$\Phi : N_\Gamma/\mathbb{Q}^\times \Gamma \rightarrow \text{Aut}_\mathbb{Q}(X_\Gamma) \simeq \mathcal{O}_K^* \ltimes X_\Gamma(\overline{\mathbb{Q}}),$$

where \mathcal{O}_K^* embeds into $\text{Aut}_\mathbb{Q}(X_\Gamma)$ by complex multiplications and $X_\Gamma(\overline{\mathbb{Q}})$ embeds into $\text{Aut}_\mathbb{Q}(X_\Gamma)$ by translations. The matrices

$$B = \begin{pmatrix} 1 & 0 \\ 3^4 & 1 \end{pmatrix}, \quad C = \begin{pmatrix} 1 & 1/9 \\ -3 & -2 \end{pmatrix}$$

lie in N_Γ, and hence induce automorphisms of X_Γ.

The elliptic curves E_n are all endowed with complex multiplication by K and we fix the complex multiplication $[\cdot] : \mathcal{O}_K \simeq \text{End}_K(E_n)$ by $[\omega](x, y) = (\omega x, -y)$. We will always take the simple Weierstrass equation $y^2 = x^3 - 2^4 \cdot 3$ for the elliptic curve E_0. We quote [HSY, Proposition 2.1] as follows.

Proposition 2.1. The elliptic curve $(X_\Gamma, [\infty])$ is isomorphic to E_9 over \mathbb{Q}. Moreover, for any point $P \in X_\Gamma$, we have

$$\Phi(B)(P) = [\omega^2]P, \quad \Phi(C)(P) = [\omega^2]P + (0, 4\sqrt{-3}).$$

In particular, the automorphisms $\Phi(B)$ and $\Phi(C)$ are defined over K.

Note that there exists a unique isomorphism $X_\Gamma \rightarrow E_9$ over \mathbb{Q} such that the cusp $[1/9]$ has coordinates $(0, 4\sqrt{-3})$. We use this isomorphism to identify X_Γ with E_9.

Let $V \subset U_0(3^3)$ be the subgroup consisting of matrices $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ with $a \equiv d \mod 3$, and put $U_0 = \langle V, W, A \rangle$. Let X_Γ^0 be the modular curve over \mathbb{Q} whose underlying Riemann surface is

$$X_\Gamma^0(\mathbb{C}) = \text{GL}_2(\mathbb{Q})^+ \setminus (\mathcal{H} \cup \mathbb{P}^1(\mathbb{Q})) \times \text{GL}_2(\mathbb{A}_f)/U_0.$$

The modular curve X_Γ^0 is isomorphic to $X_\Gamma \times_{\mathbb{Q}} K$ as a curve over \mathbb{Q}. Usually, we denote by $[z, g]U_0$ the point on X_Γ^0 which is represented by the pair (z, g) where $z \in \mathcal{H}$ and $g \in \text{GL}_2(\mathbb{A}_f)$. Let $N_{\text{GL}_2(\mathbb{A}_f)}(U_0)$ be the normalizer of U_0 in $\text{GL}_2(\mathbb{A}_f)$. Then there is a natural homomorphism

$$N_{\text{GL}_2(\mathbb{A}_f)}(U_0)/U_0 \rightarrow \text{Aut}_\mathbb{Q}(X_\Gamma^0)$$

induced by right translation on X_Γ^0: for $P = [z, g]U_0 \in X_\Gamma^0$ and $x \in N_{\text{GL}_2(\mathbb{A}_f)}(U_0)$

$$P \mapsto P^x = [z, gx]U_0.$$

2
2.2. Modular actions on Heegner points. Let \(p \equiv 2, 5 \mod 9 \) be an odd prime number. Denote \(\tau_i = M_i \omega \in \mathcal{H} \), where

\[
M_1 = \begin{pmatrix} p/9 & 0 \\ 2 & 1 \end{pmatrix}, \quad M_2 = \begin{pmatrix} p/9 & 0 \\ 5 & 1 \end{pmatrix}, \quad M_3 = \begin{pmatrix} p/9 & 0 \\ 2 & 4 \end{pmatrix}, \quad \omega = -1 + \sqrt{-3}/2.
\]

For \(i = 1, 2, 3 \), let \(\rho_i : K \rightarrow M_2(\mathbb{Q}) \) be the normalised embedding (see [CST17, HSY]) with fixed point \(\tau_i \in \mathcal{H} \). Then \(\rho_i \) are explicitly given by

\[
\rho_1(\omega) = M_1 \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} M_1^{-1} = \begin{pmatrix} 1 \\ 27/p \\ -2 \end{pmatrix},
\]

\[
\rho_2(\omega) = M_2 \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} M_2^{-1} = \begin{pmatrix} 4 \\ 187/p \\ -5 \end{pmatrix},
\]

\[
\rho_3(\omega) = M_3 \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} M_3^{-1} = \begin{pmatrix} -1/2 \\ 27/p \\ -1/2 \end{pmatrix}.
\]

Let \(R_0(3^5) \) be the standard Eichler order of discriminant \(3^5 \) in \(M_2(\mathbb{Q}) \). Then \(\rho_1(K) \cap R_0(3^5) = \mathcal{O}_{3p} \), \(\rho_2(K) \cap R_0(3^5) = \mathcal{O}_9p \), and \(\rho_3(K) \cap R_0(3^5) = \mathcal{O}_3p \). So \(\tau_1, \tau_2, \tau_3 \) is defined over \(\mathcal{O}_{3p} \) and \(\mathcal{O}_3 \) is defined over \(\mathcal{O}_{3p} \), by the complex multiplication theory. Here \(H_m \) is the ring class field of \(K \) with conductor \(m \).

Remark 2.1. In order to prove Theorem 1.1, we just need \(\tau_1 \) and \(\tau_2 \). But we do not how to get rational points over \(\mathbb{Q} \) from \(\tau_1 \) and \(\tau_2 \) since we do not know how the complex conjugation acts on them. In order to prove Theorem 1.2, we need the help of \(\tau_3 \) which shares the same Galois action with \(\tau_2 \) but will give us real point directly. This is also the reason why only prove half cases in Theorem 1.2.

Let \(\mathcal{O}_{K,3} \) be the completion of \(\mathcal{O}_K \) at the unique place above 3. Let \(\mathcal{O}_{K,3} \) be the completion of \(\mathcal{O}_K \) at the unique place above 3. We have

\[
\mathcal{O}_{K,3}^\infty / \mathbb{Z}_3^\times (1 + 9\mathcal{O}_{K,3}) = \langle \omega_3 \rangle \times (1 + 3\omega_3) \cong \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z},
\]

where \(\omega_3 \) is the image of \(\omega \) into \(\mathcal{O}_{K,3}^\infty \). Under both the embeddings \(\rho_1 \) and \(\rho_2 \), it is straightforward to verify that \(\omega_3 \) and \(1 + 3\omega_3 \) normalize \(U_3 \), and therefore they induce automorphisms of \(X^0_1 \).

Theorem 2.2. Let \(P \) be an arbitrary point on \(X^0_1 \).

1. Under the embedding \(\rho_1 \), we have

\[
P^{1 + 3\omega_3} = [\omega]P, \quad P^{3\omega_3} = [\omega]P + (0, -4\sqrt{-3}).
\]

2. Under the embedding \(\rho_2 \) and \(\rho_3 \), we have

\[
P^{1 + 3\omega_3} = [\omega]P, \quad P^{3\omega_3} = [\omega^2]P + (0, -4\sqrt{-3}).
\]

Proof. We give the proof of the first assertion in details and the case under the embedding \(\rho_2 \) is similar. Now suppose \(K \) is embedded in \(M_2(\mathbb{Q}) \) under \(\rho_1 \). Since \(\omega_3 \) and \(1 + 3\omega_3 \) have determinants \(\equiv 1 \mod 3 \), as elements in \(\text{Aut}_Q(X^0_1) \), they lie in the subgroup \(\text{Aut}_K(X^0_1) \). See [HSY, page 6] for the structure of the automorphism groups. Suppose \(P = [z, 1], z \in \mathcal{H} \), be a point on \(X^0_1 \). We have

\[
A^2B^2(1 + 3\omega_3) = \begin{pmatrix} 783/p + 9508 \\ 2268/p + 27540 \end{pmatrix} - 2377p/3 - 145\sqrt{-3}/3, A^2B^2 \in V,
\]

where the subscript 3 denotes the 3-adic component of the adelic matrices. Then by Proposition 2.1,

\[
P^{1 + 3\omega_3} = \Phi(B^2)(P) = [\omega]P.
\]

Similarly, if \(p \equiv 2 \mod 9 \), then \(AC^2\omega_3 \in V \), and hence

\[
P^{3\omega_3} = \Phi(C^2)(P) = [\omega]P + (0, -4\sqrt{-3}).
\]

If \(p \equiv 5 \mod 9 \), then \(A^2C^2\omega_3 \in V \), and hence

\[
P^{3\omega_3} = \Phi(C^2)(P) = [\omega]P + (0, -4\sqrt{-3}).
\]

For the case under embedding \(\rho_2 \) and \(\rho_3 \), it is straight to verify that \(A^2B^2(1 + 3\omega_3) \in V \) for any odd prime \(p \equiv 2, 5 \mod 9 \), and \(AB^2C^2\omega_3 \), when \(p \equiv 2 \mod 9 \), and \(A^2B^2C^2\omega_3 \in V \) when \(p \equiv 5 \mod 9 \). Then the second assertion follows from Proposition 2.1.

□
2.3. Galois actions on Heegner points. Fix the Artin reciprocity law \(\sigma : \hat{\mathbb{K}}^\times \to \text{Gal}(\mathbb{K}^{ab}/\mathbb{K}) \) by sending local uniformizers to Frobenius automorphisms. Denote by \(\sigma_t \) the image of \(t \in \hat{\mathbb{K}}^\times \). Let \(P_i = [\tau_i,1]_{U_i} \) be the CM points on \(X^1_3 \) for \(i = 1, 2, 3 \). In the following, when we consider the CM point \(P_i \), we assume \(\mathbb{K} \) is embedded in \(M_2(\mathbb{Q}) \) under \(\rho_i \).

Theorem 2.3. For \(i = 1, 2 \), the point \(P_i \in X^1_3(\mathbb{H}_9) \) satisfies
\[
P_i^{\sigma_1+3\omega_3} = [\omega] P_i, \quad \text{and} \quad P_i^{\sigma_2+3\omega_3} = [\omega'] P_i + (0, -4\sqrt{-3}).
\]

Similarly, \(P_3 \in X^1_3(\mathbb{H}_{36}) \) satisfies
\[
P_3^{\sigma_1+3\omega_3} = [\omega] P_3, \quad \text{and} \quad P_3^{\sigma_2+3\omega_3} = [\omega^2] P_3 + (0, -4\sqrt{-3}).
\]

Proof. By Shimura’s reciprocity law [Shi94, Theorems 6.31 and 6.38], we have
\[
P_i^{\sigma_t} = P_i = [\tau_i, t], \quad t \in \hat{\mathbb{K}}^\times.
\]
Since \(\hat{\mathbb{K}}^\times \cap U_0 = \hat{\mathbb{O}}_{\mathbb{K}}^\times \), by class field theory, we see \(P_i \) is defined over the ring class field \(\mathbb{H}_9 \), and the Galois actions of \(\sigma_\omega \) and \(\sigma_1+3\omega_3 \) are clear from Theorem 2.2. The proof for \(P_3 \) is similar. \(\square \)

Remark 2.2. Since \(\tau_3 = p\omega/2(\omega+4) = p\sqrt{-3}/54, e^{\pi i/3} \) is real. So \(P_3 \) is in fact a real point on \(E_3 \).

3. Nontriviality of Heegner points

The elliptic curve \(E_3 \) has Weierstrass equation \(y^2 = x^3 - 243x \). Consider the isomorphism
\[
\phi : E_3 \longrightarrow E_3, \quad (x, y) \mapsto (9x/\sqrt[3]{3}, 9y).
\]
We have the following commutative diagram:
\[
\begin{array}{c}
\begin{array}{c}
E_3(\mathbb{H}_9)^{\sigma_1+3\omega_3 = \omega^2} \\
\downarrow \phi \\
E_3(\mathbb{H}_{36}) \\
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
\downarrow \text{Tr}_{36/3} \quad \text{Tr}_{9/3} \\
\begin{array}{c}
E_3(\mathbb{H}_9)^{\sigma_1+3\omega_3 = \omega^2} \\
\downarrow \phi \\
E_3(\mathbb{L}_3) \\
\end{array}
\end{array}
\end{array}
\]
where the field extension diagram is as follows (\(H_m \) is the ring class field of \(\mathbb{K} \) with conductor \(m \)):

\[
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
H_{36} = H_{36}(\sqrt[3]{3}) \\
\downarrow \text{Tr}_{36/3} \\
L_{(3)} = K(\sqrt[3]{3}) \\
\downarrow \text{Tr}_{9/3} \\
L_{(9)} = K(\sqrt[3]{9}) \\
\downarrow \text{Tr}_{3/3} \\
K(\sqrt{3}) \\
\end{array}
\end{array}
\end{array}
\end{array}
\]

The following proposition on related field extensions is partially quoted from [SSY, Proposition 2.6].

Proposition 3.1. Let \(p \equiv 2, 5 \mod 9 \) be odd primes.

1. The field \(H_{36} = H_{36}(\sqrt[3]{3}) \) with Galois group \(\text{Gal}(H_{36}/H_{36}) \simeq \langle \sigma_1 + 3\omega_3 \rangle_{\mathbb{Z}/3\mathbb{Z}} \), and
\[
(\sqrt[3]{3})^{\sigma_1+3\omega_3} = \omega^2.
\]

2. We have \((\sqrt[3]{3})^{\sigma_\omega} = 1\) and
\[
(\sqrt[3]{p})^{\sigma_\omega} = \begin{cases} \omega, & p \equiv 2 \mod 9; \\ \omega^2, & p \equiv 5 \mod 9. \end{cases}
\]

3. \([H_{36}:H_9] = 6 \) and \(H_{36} = H_{36}(\sqrt{-1}, \sqrt{3}) \) with Galois group
\[
\text{Gal}(H_{36}/H_9) \simeq \langle \sigma_1 + 2\omega_2 \rangle_{\mathbb{Z}/2\mathbb{Z}} \times \langle \sigma_\omega_2 \rangle_{\mathbb{Z}/3\mathbb{Z}}.
\]
Proof. (1) and (2) are contained in [SSY, Proposition 2.6]. We just need to prove (3), but the argument is similar to the proof of (1). Note that $O_m = \mathbb{Z} + mO_K$,

$$\text{Gal}(H_{36p}/H_{3p}) \simeq K \times \hat{O}_{3p}^\times / K \times \hat{O}_{36p}^\times \simeq \hat{O}_{3p}^\times / (\hat{O}_{3p}^\times \cap K \times \hat{O}_{36p}^\times) \simeq O_{K,2}^\times / 2O_{K,2} \times (1 + 4O_{K,2})$$

is of order 6 and generated by ω_3 and $1 + 2\omega_3$. The ideal $\sqrt{-3}O_K = (1 + 2\omega)$ and let v be the place corresponding to the prime ideal $(1 + 2\omega)$. Then by the local-global principle, we have

$$\left(\frac{\sqrt{-1}}{K_2:2}\right)^{\sigma_1+2\omega_2−1} = \left(\frac{1 + 2\omega_2, -1}{K_2:2}\right) = \left(\frac{1 + 2\omega_2, -1}{K_2:2}\right)^{-1} = (-1)^{-(3-1)/2} \mod (1 + 2\omega) = -1,$$

where $\left(\frac{\sqrt{-1}}{K_2:2}\right)$ denotes the second Hilbert symbol over K_w. Similarly,

$$\left(\frac{\sqrt{-1}}{K_2:3}\right)^{\sigma_2−1} = \left(\frac{\omega, 2}{K_2:3}\right) = \omega^{-(4−1)/3} \mod 2 = \omega^2. \tag{5}$$

By Proposition 3.1 and 2.3, $\phi(P_1), \phi(P_2) \in E_3(H_{3p})$. Let

$$(3.1) \quad z_1 = \text{Tr}_{H_{3p}/L(p)} \phi(P_1), \quad z_2 = \text{Tr}_{H_{3p}/L(p)} \phi(P_2),$$

then $z_1, z_2 \in E_3(L(p))$.

Theorem 3.2. Both z_1 and z_2 are nontorsion.

Proof. By Theorem 2.3,

$$(3.2) \quad z_i^{\sigma_3} = [\omega^3] z_i + \frac{p + 1}{3} (0, 36\sqrt{-3})$$

for $i = 1, 2$. By [SSY, Proposition 2.3], the torsion points in $E_3(L(p))$ are $O, (0, \pm 36\sqrt{-3})$ which can not satisfy (3.2). \qed

Let $\phi_p : E_3 \to E_{3p}$ and $\phi_{p^2} : E_3 \to E_{3p^2}$ be the map given by $(x, y) \mapsto (\sqrt{p}x, py)$ and $(x, y) \mapsto (\sqrt{p^2}x, p^2y)$. Set

$$y_i = [\sqrt{-3}] z_i \in E_3(L(p)).$$

By (3.2), we know that $(y_i)^{\sigma_3} = [\omega^3](y_i)$.

Proof of Theorem 1.1. By Proposition 3.1 and Theorem 3.2, if $p \equiv 2 \mod 9$, then $\phi_p(y_2)$ is a nontorsion point in $E_{3p}(K)$ and $\sigma_3(y_1)$ is a nontorsion point in $E_{3p^2}(K)$; if $p \equiv 5 \mod 9$, then $\phi_p(y_1)$ is a nontorsion point in $E_{3p}(K)$ and $\sigma_3(y_2)$ is a nontorsion point in $E_{3p^2}(K)$. Since $E_{3p}(Q)$ has the same rank with $E_{3p}(K)$ and $E_{3p^2}(Q)$ has the same rank with $E_{3p^2}(K)$, we finish the proof. \qed

Define

$$E_3(L(p))^{\sigma_3 = [\omega^3]} := \{P \in E_3(L(p)) : P^{\sigma_3} = [\omega^3]P\}.$$

Theorem 3.3. The point y_i are not divisible by $\sqrt{-3}$ in $E_3(L(p))^{\sigma_3 = [\omega^3]}$.

Proof. Assume the contrary that $y_i = \sqrt{-3}Q + T$ with

$$Q \in E_3(L(p))^{\sigma_3 = [\omega^3]} \text{ and } T \in E_3(L(p))^{\sigma_3 = [\omega^3]}.$$

Then

$$\sqrt{-3}(z_i - Q) = T.$$

Since $E_3(L(p))^{\text{tor}} = E_3[\sqrt{-3}]$, we conclude that $z_i - Q \in E_3[\sqrt{-3}]$. Suppose $z_i = Q + R$ with $R \in E_3[\sqrt{-3}]$. Taking Galois action of σ_3, we obtain

$$0 = [1 - \omega^3]R = (0, \pm 36\sqrt{-3}),$$

which is a contradiction. \qed

Remark 3.1. As is seen if $p \equiv 2 \mod 9$ resp. $p \equiv 5 \mod 9$, y_1 may be identified with a point of infinite order in $E_{3p}(K)$ resp. $E_{3p^2}(K)$; and if $p \equiv 2 \mod 9$ resp. $p \equiv 5 \mod 9$, y_2 may be identified with a point of infinite order in $E_{3p}(K)$ resp. $E_{3p^2}(K)$.

5
4. The explicit Gross-Zagier formulæ

In the rest of the paper we clarify the embedding of K into $M_2(Q)$ as follows. As indicated in the proof of Theorem 1.1, in the case $p \equiv 2 \mod 9$ and $\chi = \chi_{3p^2}$ or the case $p \equiv 5 \mod 9$ and $\chi = \chi_{3p}$, we use the Heegner point z_1 to construct nontrivial points on elliptic curves, and hence we embed K into $M_2(Q)$ under ρ_1. Otherwise, in the case $p \equiv 2 \mod 9$ and $\chi = \chi_{3p}$ or the case $p \equiv 5 \mod 9$ and $\chi = \chi_{3p^2}$, we use the Heegner point z_2, and we embed K into $M_2(Q)$ under ρ_2.

4.1. The explicit Gross-Zagier formulæ. Let π be the automorphic representation of $GL_2(\mathbb{A})$ corresponding to E_9/Q. Then π is only ramified at 3 with conductor 3^3. For $n \in Q^\times$, let $\chi_n : \text{Gal}(K^{ab}/K) \to \mathbb{C}^\times$ be the cubic character given by $\chi_n(\sigma) = (\sqrt{3})^{n-1}$. Define

$$L(s, E_9, \chi_n) := L(s - 1/2, \pi_K \otimes \chi_n), \quad \epsilon(E_9, \chi_n) := \epsilon(1/2, \pi_K \otimes \chi_n),$$

where π_K is the base change of π to $GL_2(\mathbb{A}_K)$.

Let $p \equiv 2, 5 \mod 9$ be an odd prime number, and put $\chi = \chi_{3p}$ resp. χ_{3p^2}. From the Artin formalism, we have

$$L(s, E_9, \chi) = L(s, E_{p^2})L(s, E_{3p}) \text{ resp. } L(s, E_{p^2})L(s, E_{3p}).$$

By [Liv95], we have the epsilon factors $\epsilon(E_{3p^2}^2)(\text{ resp. } \epsilon(E_{3p}^2)) = -1$ and $\epsilon(E_9)(\text{ resp. } \epsilon(E_{3p})) = +1$, and hence the epsilon factor

$$\epsilon(E_9, \chi) = \epsilon(E_{p^2})\epsilon(E_{3p^2}) \text{ resp. } \epsilon(E_{p^2})\epsilon(E_{3p}) = -1.$$

For a quaternion algebra \mathbb{B} over \mathbb{A}, we define its ramification index $\epsilon(\mathbb{B}_v) = +1$ for any place v of Q if the local component \mathbb{B}_v is split and $\epsilon(\mathbb{B}_v) = -1$ otherwise. The following proposition guarantees we are in the same setting as in [HSY, Theorem 4.3].

Proposition 4.1. The incoherent quaternion algebra \mathbb{B} over \mathbb{A}, which satisfies

$$\epsilon(1/2, \pi_{K,v} \otimes \chi_v) = \chi_v(-1)\epsilon_v(\mathbb{B})$$

for all places v of Q, is only ramified at the infinity place.

Proof. Since π is unramified at finite places $v \nmid 3$, χ is unramified at finite places $v \nmid 3p$ and p is inert in K, by [Gro88, Proposition 6.3] we get $\epsilon(1/2, \pi_{K,v} \otimes \chi_v) = +1$ for all finite $v \neq 3$. Again by [Gro88, Proposition 6.5], we also know that $\epsilon(1/2, \pi_{K,\infty} \otimes \chi_{\infty}) = +1$. Since $\epsilon(1/2, \pi_K \otimes \chi) = -1$, we see that $\epsilon(1/2, \pi_{K,3} \otimes \chi_3) = +1$. Since χ is a cubic character, $\chi_v(-1) = 1$ for any v. Hence \mathbb{B} is only ramified at the infinity place. \qed

Recall we have defined the Heegner points z_1, z_2 in (3.1). We also define

(4.1) \[z_3 = \text{Tr}_{H_{3p}/L(p)}(\text{Tr}_{H_{3p}/H_{9p}}(P_3)). \]

Since we use the same elliptic curve E_9 as in [HSY, Theorem 4.3], very little modification of the proof gives us the following explicit Gross-Zagier formulæ once we verify the explicit local computation of toric integrals in Corollary 4.10.

Theorem 4.2. One has the following explicit formulæ of Heegner points

$$L(1, E_{p^2})L'(1, E_{3p^2}) = \begin{cases} 2^{-1} \cdot 9 \cdot \hat{\Delta}_Q(z_2), & \text{if } p \equiv 2 \mod 9; \\ 9 \cdot \hat{\Delta}_Q(z_1), & \text{if } p \equiv 5 \mod 9. \end{cases}$$

And

$$L(1, E_{p^2})L'(1, E_{3p}) = \begin{cases} 9 \cdot \hat{\Delta}_Q(z_1), & \text{if } p \equiv 2 \mod 9; \\ 2^{-1} \cdot 9 \cdot \hat{\Delta}_Q(z_2), & \text{if } p \equiv 5 \mod 9. \end{cases}$$

Theorem 4.3. One also has the following explicit formulæ of Heegner points

$$L(1, E_{p^2})L'(1, E_{3p^2}) = 2^{-3} \cdot \hat{\Delta}_Q(z_1), \quad \text{if } p \equiv 2 \mod 9$$

And

$$L(1, E_{p^2})L'(1, E_{3p}) = 2^{-3} \cdot \hat{\Delta}_Q(z_3), \quad \text{if } p \equiv 5 \mod 9.$$
Corollary 4.4. $z_3 \in E_3(L(p))$ is nontorsion and satisfies $z_3^{\sigma_{\omega_3}} = [\omega^3]z_3$. If $p \equiv 2 \mod 9$, then $\phi_p(z_3)$ is a nontorsion point in $E_{3p}(\mathbb{Q})$. If $p \equiv 5 \mod 9$, then $\phi_p(z_3)$ is a nontorsion point in $E_{3p}(\mathbb{Q})$. In both cases, $\phi_p(z_3)$ and $\phi_p(z_2)$ are not divisible by 3 over \mathbb{Q}.

Proof. Since $[H_{3p} : H_{9p}] = 6$, by Theorem 2.3 and (4.1), we know that $z_3^{\sigma_{\omega_3}} = [\omega^3]z_3$. Since z_3 is a real point by Remark 2.2, by Proposition 3.1, if $p \equiv 2 \mod 9$, $\phi_p(z_3) \in E_{3p}(\mathbb{Q})$ and if $p \equiv 5 \mod 9$, $\phi_p(z_3) \in E_{3p}(\mathbb{Q})$. By Theorem 4.2 and Theorem 4.3, $h_{\mathbb{Q}}(z_3) = 36h_{\mathbb{Q}}(z_2) = 12h_{\mathbb{Q}}(y_2)$. This implies z_3 is nontorsion and $\phi_p(z_3)$, $\phi_p(z_2)$ can not be divisible by 3 over \mathbb{Q}. Otherwise there exists point z in $E_3(L(p))^{\sigma_{\omega_3} = [\omega^3]}$ such that $9h_{\mathbb{Q}}(z) = h_{\mathbb{Q}}(z_3) = 12h_{\mathbb{Q}}(y_2)$. But this is impossible since y_2 is not divisible by $\sqrt{-3}$ in $E_3(L(p))^{\sigma_{\omega_3} = [\omega^3]}$ and $E_3(L(p))^{\sigma_{\omega_3} = [\omega^3]}$ is of rank 1 over K by Kolyvagin.

4.2. Waldspurger’s local period integral. This subsection is purely local and we shall compute the 3-adic period integral for the 3-adic local newform following [HSY19]. Recall π is the automorphic representation of $GL_2(\mathbb{Q})$ corresponding to E_3 and π_3 the 3-adic part of π. Then the conductor $c(\pi_3) = 3^3$. Let $p \equiv 2, 5 \mod 9$ be an odd prime and let $\chi : \text{Gal}(K/K) \to \mathbb{Q}_p^\times$ be the character given by $\chi(\sigma) = \chi_{3p}(\sigma) = (\sqrt[3]{3p})^{\sigma - 1}$ resp. $\chi(\sigma) = \chi_{3p^2}(\sigma) = (\sqrt[3]{3p^2})^{\sigma - 1}$. We also view χ as a Hecke character on \mathbb{A}_K by the Artin map and the conductor the 3 part is $c(\chi_3) = (\sqrt{-3})^3$. Assume that f_3 is the standard newform of π_3. We shall compute the following normalized period integral

$$\beta^2_3(f_3, f_3) = \int_{\tau \in \mathbb{Q}_p^\times} \frac{(\pi(t)f_3, f_3)}{(f_3, f_3)} \chi_3(t)dt$$

which appears in the proof of the explicit Gross-Zagier formulae. Let $\Theta : K^\times \backslash \mathbb{A}_K^\times \to \mathbb{C}^\times$ be the unitary Hecke character associated to the base-changed CM elliptic curve $E_{3f/K}$. Then Θ has conductor $9\mathcal{O}_K$. We denote Θ_3 the 3-adic component of Θ. Then π_3 is the local representation of $GL_2(\mathbb{Q}_3)$ corresponding to Θ_3. Note

$$\mathcal{O}_{K,3}^\times/(1 + 9\mathcal{O}_{K,3}) \cong \langle \pm 1 \rangle^{2\mathbb{Z}/2\mathbb{Z}} \times (1 + \sqrt{-3})^{2\mathbb{Z}/2\mathbb{Z}} \times (1 - \sqrt{-3})^{2\mathbb{Z}/2\mathbb{Z}} \times (1 + 3\sqrt{-3})^{2\mathbb{Z}/2\mathbb{Z}}.$$

Lemma 4.5. We have $c(\Theta_3) = 4$, and Θ_3 is given explicitly by

$$\Theta_3(-1) = -1, \quad \Theta_3(1 + \sqrt{-3}) = -\frac{1 - \sqrt{-3}}{2}, \quad \Theta_3(\sqrt{-3}) = i,$$

$$\Theta_3(1 - \sqrt{-3}) = -\frac{1 + \sqrt{-3}}{2}, \quad \Theta_3(1 + 3\sqrt{-3}) = -1 + \sqrt{-3}.$$

Proof. This is [HSY19, Lemma 4.1].

The local character χ_3 has conductor $\mathbb{Z}_3^\times (1 + 9\mathcal{O}_{K,3})$, and hence it is in fact a character of the quotient group $K_3^\times / \mathbb{Q}_3^\times (1 + 9\mathcal{O}_{K,3})$. Note that

$$K_3^\times / \mathbb{Q}_3^\times (1 + 9\mathcal{O}_{K,3}) \cong \langle \sqrt{-3} \rangle^{2\mathbb{Z}} \times (1 + \sqrt{-3})^{2\mathbb{Z}/2\mathbb{Z}} \times (1 + 3\sqrt{-3})^{2\mathbb{Z}/2\mathbb{Z}}.$$

Lemma 4.6. We have $c(\chi_3) = 4$ and χ_3 is given explicitly by the following tables:

1. if $\chi = \chi_{3p}$, then

$p \mod 9$	$\chi_3(1 + \sqrt{-3})$	$\chi_3(1 + 3\sqrt{-3})$	$\chi_3(\sqrt{-3})$
2	ω^2	ω	1
5	ω	ω	1

2. if $\chi = \chi_{3p^2}$, then

$p \mod 9$	$\chi_3(1 + \sqrt{-3})$	$\chi_3(1 + 3\sqrt{-3})$	$\chi_3(\sqrt{-3})$
2	ω^2	ω	1
5	ω	ω	1

Proof. The proof is routine in class-field theory. See [HSY19, Lemma 4.2] for more details.

Corollary 4.7. If $p \equiv 2 \mod 9$, and $\chi = \chi_{3p}$, then the local character $\Theta_3\bar{\chi}_3$ is given explicitly by

$$\Theta_3\bar{\chi}_3(-1) = -1, \quad \Theta_3\bar{\chi}_3(1 + \sqrt{-3}) = 1,$$

$$\Theta_3\bar{\chi}_3(1 - \sqrt{-3}) = 1, \quad \Theta_3\bar{\chi}_3(1 + 3\sqrt{-3}) = 1, \quad \Theta_3\bar{\chi}_3(\sqrt{-3}) = i.$$
If $p \equiv 2 \text{ resp. } 5 \pmod{9}$, and $\chi = \chi_{3p^2} \text{ resp. } \chi_{3p}$, the local character $\Theta_3|_{\mathbb{A}_3}$ is given explicitly by

\[
\Theta_3|_{\mathbb{A}_3}(-1) = -1, \quad \Theta_3|_{\mathbb{A}_3}(1 + \sqrt{-3}) = \omega, \\
\Theta_3|_{\mathbb{A}_3}(1 - \sqrt{-3}) = \omega^2, \quad \Theta_3|_{\mathbb{A}_3}(1 + 3\sqrt{-3}) = 1, \quad \Theta_3|_{\mathbb{A}_3}(\sqrt{-3}) = i.
\]

Let θ_3 be the 3-adic character which parametrizes the supercuspidal representation π_3 via compact-induction construction as in [HSY19, Section 2.2]. The test vector issue for Waldspurger’s period integral is closely related to $c(\theta_3|_{\mathbb{A}_3})$ or $c(\theta_3|_{\mathbb{A}_3})$. We can work out these by using Lemma 4.5, 4.6 and Corollary 4.7, and the relation between θ_3 and Θ_3 in [HSY19, Theorem 2.8]. Now we can prove the following key Lemma.

Lemma 4.8. If $p \equiv 2 \text{ resp. } 5 \pmod{9}$, and $\chi = \chi_{3p^2} \text{ resp. } \chi_{3p}$, we have $\theta_3|_{\mathbb{A}_3} = 1$. If $p \equiv 2 \text{ resp. } 5 \pmod{9}$, and $\chi = \chi_{3p^2} \text{ resp. } \chi_{3p}$, we have $c(\theta_3|_{\mathbb{A}_3}) = 2$ and $\alpha_3|_{\mathbb{A}_3} = \frac{1}{\sqrt{-3}}$. Moreover, in any cases, $c(\theta_3|_{\mathbb{A}_3}) \leq c(\theta_3|_{\mathbb{A}_3})$.

Proof. Let ψ_3 be the additive character such that $\psi_3(x) = e^{2\pi i u(x)}$ where $\iota : \mathbb{Q}_3 \to \mathbb{Q}_3/\mathbb{Z}_3 \subset \mathbb{Q}/\mathbb{Z}$ is the map given by $x \mapsto -x \pmod{\mathbb{Z}_3}$ which is compatible with the choice in [CST14]. Let $\psi_K(x) = \psi_3 \circ \operatorname{Tr}_{K_3/\mathbb{Q}_3}(x)$, be the additive character of K_3.

Recall that α_3 is the number associated to Θ_3 as in [HSY19, Lemma 2.1] so that

\[
\Theta_3(1 + x) = \psi_K(\alpha_3, x),
\]

for any x satisfying $\psi_K(x) \geq c(\Theta_3)/2 = 2$. By the definition of ψ_K and Lemma 4.5, we know that $\alpha_3 = \frac{1}{\sqrt{-3}}$. Now let θ_3 be the quadratic character associated to the quadratic field extension K_3/\mathbb{Q}_3. Then by [BH06, Proposition 34.3], $\lambda_{K_3/\mathbb{Q}_3}(\psi_3) = \tau(\eta_3, \psi_3)/\sqrt{3} = -i$, here $\tau(\eta_3, \psi_3)$ is the Gauss sum and $\psi_3(x) = \psi_3(\bar{x})$ is the additive character of level one. By [Lan, Lemma 5.1], $\lambda_{K_3/\mathbb{Q}_3}(\psi_3) = \eta_3(3)\lambda_{K_3/\mathbb{Q}_3}(\psi_3) = -i$.

Then Δ_{θ_3} is the unique level one character of K_3 such that $\Delta_{\theta_3}(\sqrt{-3}) = \eta_3$ and

\[
\Delta_{\theta_3}(\sqrt{-3}) = \eta((\sqrt{-3})^3\alpha_3)\lambda_{K_3/\mathbb{Q}_3}(\psi_3)^3 = -i.
\]

Recall that $\theta_3 = \Theta_3|_{\mathbb{A}_3}$. Then by Corollary 4.7 we can easily check that:

1. If $p \equiv 2 \text{ resp. } 5 \pmod{9}$, and $\chi = \chi_{3p^2} \text{ resp. } \chi_{3p}$, $\theta_3|_{\mathbb{A}_3}$ is the trivial character.

2. If $p \equiv 2 \text{ resp. } 5 \pmod{9}$, and $\chi = \chi_{3p^2} \text{ resp. } \chi_{3p}$, $\theta_3|_{\mathbb{A}_3}$ is of level 2 and by definition we can choose $\alpha_3|_{\mathbb{A}_3} = \frac{1}{\sqrt{-3}}$.

Since χ is a cubic character, $\theta_3|_{\mathbb{A}_3} = \theta_3|_{\mathbb{A}_3}$. Since $c(\chi_3) = c(\chi_3) = 4$, $c(\theta_3|_{\mathbb{A}_3}) = 4$ and the last assertion follows.

To apply the results in [HSY19] to calculate the local period integral, we take $F = \mathbb{Q}_3$, $\kappa = 3 = q$, $D = -3$, $K_3 \simeq \mathbb{E} \simeq L \simeq \mathbb{Q}(-\sqrt{-3})$, $c(\chi_3) = c(\chi_3) = 4$, $n = 2$. By [HSY19, Lemma 2.9], we have the minimal vector $\varphi_0 = \operatorname{Char}(\mathbb{E}^{-2}U_f(1))$ in the Kirillov model. Recall K is embedded into $M_2(\mathbb{Q})$ as in Section 2.2 which linearly extends the following map:

\[
\sqrt{-3} \mapsto \left(\begin{array}{cc} a & 3^{-2}b \\ 3^3c & -a \end{array} \right) := \left(\begin{array}{ccc} 3 & -2p/9 \\ 54/p & -3 \end{array} \right), \quad \text{if } K \text{ is embedded under } \rho_1;
\]

\[
\left(\begin{array}{ccc} 9 & -2p/9 \\ 374/p & -9 \end{array} \right), \quad \text{if } K \text{ is embedded under } \rho_2;
\]

\[
\left(\begin{array}{ccc} 0 & -p/18 \\ 54/p & 0 \end{array} \right), \quad \text{if } K \text{ is embedded under } \rho_3.
\]

Proposition 4.9. Suppose $\operatorname{Vol}(\mathbb{Z}_3^\times \backslash \mathbb{O}^\times_{K_3}) = 1$ so that $\operatorname{Vol}(\mathbb{Q}_3^\times \backslash K_3^\times) = 2$. For f_3 being the newform, K being embedded in $M_2(\mathbb{Q})$ as in (4.3), we have

\[
\beta_3(f_3, f_3) = \begin{cases} 1, & \text{if } p \equiv 2 \text{ resp. } 5 \pmod{9}, \chi = \chi_{3p^2} \text{ resp. } \chi_{3p^2} \text{ and } K \text{ is embedded under } \rho_2 \text{ or } \rho_3; \\
1/2, & \text{if } p \equiv 2 \text{ resp. } 5 \pmod{9}, \chi = \chi_{3p^2} \text{ resp. } \chi_{3p^2} \text{ and } K \text{ is embedded under } \rho_1.
\end{cases}
\]

Proof. We may assume f_3 to be L^2-normalized. To evaluate f_3 for the embedding in (4.3) is equivalent to use the standard embedding [HSY19, (2.13)] of \mathbb{E} and use the corresponding translate of the newform. In particular the embedding in (4.3) is conjugate to the standard embedding by the following

\[
\left(\begin{array}{cc} a & 3^{-2}b \\ 3^3c & -a \end{array} \right) = \left(\begin{array}{ccc} -9c & a/3 \\ 0 & 1 \end{array} \right)^{-1} \left(\begin{array}{ccc} 0 & 1 \\ D & 0 \end{array} \right) \left(\begin{array}{ccc} -9c & a/3 \\ 0 & 1 \end{array} \right).
\]
Thus we have

\[
\beta_3^0(f_3, f_3) = \int_{\mathbb{F}^{\times}\backslash \mathbb{E}^{\times}} \left(\pi_3 \left(\left(\begin{array}{cc} -9c & a/3 \\ 0 & 1 \end{array} \right)^{-1} t \left(\begin{array}{cc} -9c & a/3 \\ 0 & 1 \end{array} \right) \right) f_3, f_3 \right) \chi(t) dt
\]

\[
= \int_{\mathbb{F}^{\times}\backslash \mathbb{E}^{\times}} \left(\pi_3 \left(t \left(\begin{array}{cc} -9c & a/3 \\ 0 & 1 \end{array} \right) \right) f_3 \right) \pi_3 \left(\left(\begin{array}{cc} -9c & a/3 \\ 0 & 1 \end{array} \right) f_3 \right) \chi(t) dt,
\]

which is by definition \(\{ \pi_3 \left(\left(\begin{array}{cc} -9c & a/3 \\ 0 & 1 \end{array} \right) f_3, \pi_3 \left(\left(\begin{array}{cc} -9c & a/3 \\ 0 & 1 \end{array} \right) f_3 \right) \right) \} \) for the bilinear pairing as in [HSY19, (3.1)] and the standard embedding as in [HSY19, (2.13)]. Note that by [HSY19, Corollary 2.10],

\[
\pi_3 \left(\left(\begin{array}{cc} -9c & a/3 \\ 0 & 1 \end{array} \right) f_3 \right) = \frac{1}{\sqrt{2}} \sum_{x \in (\mathbb{F}_3 \times \mathbb{F}_3)^{\times}} \pi_3 \left(\left(\begin{array}{cc} 1 & a/3 \\ 0 & 1 \end{array} \right) \left(\begin{array}{cc} x & 0 \\ 0 & 1 \end{array} \right) \right) \varphi_0
\]

where \(\varphi_0 \) is the minimal test vector.

If \(p \equiv 2 \mod 5 \) and \(x = \chi_{3p} \) resp. \(x_{3p} \), we embed \(K \) into \(M_2(\mathbb{Q}) \) under \(\rho_2 \) or \(\rho_3 \). In this case, \(c(\theta_3, \chi_3) = 0 \) and \(a = 0 \) or \(9 \). By the \(l = 0 \) case in [HSY19, Section 2.4], we have a unique \(x \mod \varpi \) for which \(\{ \varphi_x, \varphi_x \} \) is nonvanishing (In fact, we must have \(x \equiv 1 \mod 3 \)). According to [HSY19, Proposition 3.3], there are no off-diagonal terms, and we have

\[
\beta_3^0(f_3, f_3) = \frac{1}{(q - 1)q^{(\frac{2}{3} - 1)}} \{ \varphi_x, \varphi_x \} = \frac{1}{2} \cdot 2 = 1.
\]

If \(p \equiv 2 \mod 5 \) and \(x = \chi_{3p} \) resp. \(x_{3p} \), we embed \(K \) into \(M_2(\mathbb{Q}) \) under \(\rho_1 \). In this case, we have \(c(\theta_3, \chi_3) = 2l = 2 \) and \(u = a/3 = 1 \). The action of \(\left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array} \right) \) on \(\varphi_x = \pi_3 \left(\left(\begin{array}{cc} x & 0 \\ 0 & 1 \end{array} \right) \right) \) \(\varphi_0 \) is by a simple character. This is the case \(l = 1 \) and \(n - l = 1 \) is odd. By the choice in [HSY19, Section 2.4],

\[
D' = \frac{1}{\alpha_{\theta_3}^{2} c a/3} = -3,
\]

noting \(\alpha_{\theta_3} = \alpha_{\theta_3} = \frac{1}{3\sqrt{3}} \) in this case, and we have

\[
\Delta(1) = 4\varpi^n a \varphi_{\chi_3} \sqrt{D} \left(\varpi^n a \varphi_{\chi_3} \sqrt{D} - 2 \sqrt{D} D' \right) + 4 \frac{D}{D'} D
\]

\[
\equiv 4 \cdot 9 \cdot \frac{1}{3\sqrt{3}} \cdot \sqrt{-3} \cdot (-2) + 4 \cdot (-3) \mod \varpi^2
\]

\[
\equiv -8 \cdot 3 - 4 \cdot 3 \mod \varpi^2
\]

\[
\equiv 0 \mod \varpi^2.
\]

\(\Delta(1) \) is indeed congruent to a square. Then we can get a unique solution of \(x \mod \varpi \) from [HSY19, (2.17)], and again by [HSY19, Proposition 3.3],

\[
\beta_3^0(f_3, f_3) = \frac{1}{(q - 1)q^{(\frac{2}{3} - 1)}} \frac{1}{q^{(l/2)}} = \frac{1}{2}.
\]

Let \(f' \) be the admissible test vector of \((\pi, \chi) \) which is as defined in [CST14, Definition 1.4]. By definition, the 3-adic part \(f'_3 \) is \(\chi_{3}^{-1} \)-eigen under the action of \(K_3^{1} \). The following corollary is used in the proof of the explicit Gross-Zagier formulæ.

Corollary 4.10. For the admissible test vector \(f'_3 \) and the newform \(f_3 \) we have

\[
\beta_3^0(f'_3, f'_3) = \begin{cases} 2, & \text{if } p \equiv 2 \mod 5, \chi = \chi_{3p} \text{ resp. } \chi_{3p^2} \text{ and } K \text{ is embedded under } \rho_2 \text{ and } \rho_3, \\ 4, & \text{if } p \equiv 2 \mod 5, \chi = \chi_{3p^2} \text{ resp. } \chi_{3p} \text{ and } K \text{ is embedded under } \rho_1. \end{cases}
\]

Proof. Keep the normalization of the volumes in Proposition 4.9. By definition of \(f' \), we have \(\beta_3^0(f'_3, f'_3) = \text{Vol}(Q_3^1 \backslash K_3^1) = 2 \). Then the corollary follows from Proposition 4.9. \(\square \)
5. The 3-part of the Birch and Swinnerton-Dyer conjectures

Let n be a positive cube-free integer and E_n' be the elliptic curve given by Weierstrass equation $y^2 = x^3 + (4n)^2$. Then there is an unique isogeny $\phi_n : E_n \to E_n'$ of degree 3 up to $\{\pm 1\}$ and denote ϕ_n' its dual isogeny.

Proposition 5.1. Let $p \equiv 2, 5 \mod 9$ be an odd prime. Then
\[
\dim_{\mathbb{F}_p} \text{Sel}_3(E_3p^2(Q)) \leq 1, \quad \dim_{\mathbb{F}_p} \text{Sel}_3(E_p(Q)) = 0.
\]

Proof. By [Sat86, Theorem 2.9], we know that
\[
\text{Sel}_{\phi_{3p^2}}(E_3p^2(Q)) = \text{Sel}_{\phi_{3p^2}'}(E_3^p(Q)) = \mathbb{Z}/3\mathbb{Z},
\]
and
\[
\text{Sel}_{\phi_p}(E_3p^2(Q)) = \mathbb{Z}/3\mathbb{Z}, \quad \text{Sel}_{\phi_p'}(E_3p^2(Q)) = 0.
\]
Note that $E_p[3](Q)$ and $E_{3p^2}[3](Q)$ are trivial and $|E_p'[\phi_p]'(Q)| = |E_p'[\phi_p']'(Q)| = 3$. By [HSY, Lemma 5.1], we have
\[
\dim_{\mathbb{F}_p} \text{Sel}_3(E_3p^2(Q)) \leq 1, \quad \dim_{\mathbb{F}_p} \text{Sel}_3(E_p(Q)) = 0.
\]
Similarly we have
\[
\dim_{\mathbb{F}_p} \text{Sel}_3(E_3p(Q)) \leq 1, \quad \dim_{\mathbb{F}_p} \text{Sel}_3(E_{p^2}(Q)) = 0.
\]

Now we are ready to give the proof of Theorem 1.2.

Proof of Theorem 1.2. We will give the proof of (1.1) when $p \equiv 2 \mod 9$. One can verify (1.2) in case $p \equiv 5 \mod 9$ similarly. Now assume $p \equiv 2 \mod 9$. By [ZK87, Table 1], we know that $c_3(E_p) = 2$ and $c_\ell(E_p) = 1$ for any prime $\ell \neq 3$, while $c_\ell(E_{3p^2}) = 1$ for all primes ℓ.

Let P be the generator of the free part of $E_{3p^2}(Q)$. Then the BSD conjecture predicts that
\[
\frac{L'(1, E_{3p^2})}{\Omega_{3p^2}} = |\text{III}(E_{3p^2})| \cdot \tilde{h}_Q(P) \quad \text{and} \quad \frac{L(1, E_p)}{\Omega_p} = 2 \cdot |\text{III}(E_p)|.
\]
Combining these two, we get
\[
L(1, E_p) \frac{L'(1, E_{3p^2})}{\Omega_{3p^2}} = 2 \cdot |\text{III}(E_p)| \cdot |\text{III}(E_{3p^2})| \cdot \tilde{h}_Q(P).
\]
By Theorem 4.3, we expect
\[
|\text{III}(E_p)| \cdot |\text{III}(E_{3p^2})| = 2^{-4} \cdot \frac{\tilde{h}_Q(z_3)}{\tilde{h}_Q(P)}.
\]
Note the RHS of (5.2) is a nonzero rational number.

By Proposition 5.1, $E_{3p^2}(Q)$ has rank 1, and form the exact sequence
\[
0 \to E(Q)/3E(Q) \to \text{Sel}_3(E(Q)) \to \text{III}(E)[3] \to 0,
\]
we know directly that
\[
|\text{III}(E_p)[3^\infty]| = |\text{III}(E_{3p^2})[3^\infty]| = 1.
\]
In order to prove the 3-part of (5.2), it suffices to prove
\[
\hat{h}_Q(P) = u \cdot \hat{h}_Q(z_3)
\]
for some $u \in \mathbb{Z}_p^\times \cap \mathcal{Q}$. This is clear by Corollary 4.4.

Acknowledgement. Part of this paper is finished during the author Hongbo Yin’s one year stay (2019-2020) in Max-Planck Institute for Mathematics, Bonn. He is grateful to its hospitality and financial support.
References

[BH06] C. Bushnell and G. Henniart. The Local Langlands Conjecture for GL(2). Springer-Verlag, Berlin, 2006.

[Cow00] Daniel R. Coward. Some sums of two rational cubes. Q. J. Math., 51(4):451–464, 2000.

[CST14] Li Cai, Jie Shu, and Ye Tian. Explicit Gross-Zagier and Waldspurger formulae. Algebra & Number Theory, 8(10):2523–2572, 2014.

[CST17] L. Cai, J. Shu, and Y. Tian. Cube sum problem and an explicit Gross-Zagier formula. Amer. Jour. of Math., 139(3):785–816, 2017.

[DV09] Samit Dasgupta and John Voight. Heegner points and Sylvester’s conjecture. Arithmetic Geometry: Clay Mathematics Institute Summer School, Arithmetic Geometry, July 17-August 11, 2006, Mathematisches Institut, Georg-August-Universität, Göttingen, Germany, 8:91, 2009.

[DV18] Samit Dasgupta and John Voight. Sylvester’s problem and mock heegner points. Proc. Amer. Math. Soc., 146:3257–3273, 2018.

[Gro88] Benedict H. Gross. Local orders, root numbers, and modular curves. American Journal of Mathematics, 110(6):1153–1182, 1988.

[HSY] Yueke Hu, Jie Shu, and Hongbo Yin. An explicit Gross-Zagier formula related to the Sylvester conjecture. to appear in Trans. of Amer. Math. Soc.

[HSY19] Yueke Hu, Jie Shu, and Hongbo Yin. Waldspurger’s period integral for newforms. arXiv:1907.11428, 2019.

[Kob13] S. Kobayashi. The p-adic Gross-Zagier formula for elliptic curves at supersingular primes. Invent. Math., 191:527–629, 2013.

[Lan] R.P. Langlands. On the functional equation of the artin L-functions. Unpublished note. https://publications.ias.edu/sites/default/files/a-ps.pdf.

[Liv95] E. Liverance. A formula for the root number of a family of elliptic curves. Journal of Number Theory, 51(2):288–305, 1995.

[PR87] B. Perrin-Riou. Points de heegner et derivées de fonctions L p-adiques. Inventiones mathematicae, 89:455–510, 1987.

[Sat86] P. Satgé. Groupes de Selmer et corps cubiques. J. Number Theory, 23(3):294–317, 1986.

[Sat87] Philippe Satgé. Un analogue du calcul de Heegner. Invent. Math., 87(2):425–439, 1987.

[Shi94] Goro Shimura. Introduction to the arithmetic theory of automorphic functions, volume 11 of Publications of the Mathematical Society of Japan. Princeton University Press, Princeton, NJ, 1994. Reprint of the 1971 original, Kanô Memorial Lectures, 1.

[SSY] Jie Shu, Xu Song, and Hongbo Yin. Cube sums of form 3^p and 3^p^2. arXiv:1804.02924.

[ZK87] D. Zagier and G. Kramarz. Numerical investigations related to the L-series of certain elliptic curves. J. Indian Math. Soc. (N.S.), 52:51–69 (1988), 1987.

School of Mathematical Sciences, Tongji University, Shanghai 200092
E-mail address: shujie@tongji.edu.cn

School of Mathematics, Shandong University, Jinan 250100, P.R.China
E-mail address: yhb2004@mail.sdu.edu.cn