Biochemical characterization of the Rho GTPase-regulated actin assembly by diaphanous-related formins, mDia1 and Daam1, in platelets (Abstract_要旨)

AUTHOR(S):
Higashi, Tomohito

CITATION:
Higashi, Tomohito. Biochemical characterization of the Rho GTPase-regulated actin assembly by diaphanous-related formins, mDia1 and Daam1, in platelets. 京都大学, 2008, 博士(医科学)

ISSUE DATE:
2008-03-24

URL:
http://hdl.handle.net/2433/135933

RIGHT:
血小板は thrombin などのアゴニスト刺激に応じて動的にアクチン細胞骨格を再構成し、血管壁への粘着や凝集の反応を引き起こす。このアクチン細胞骨格の再構成には、低分子量 G タンパク質 RhoA が関与している事が示唆されて来た。

RhoA 依存的なアクチン再構成の分子機構を明らかにするため、活性型 RhoA 結合タンパク質を血小板膜抽出物よりアフィニティ法によって単離すると、フォルミン相同タンパク質、Daam1 と mDia1 であった。これらのタンパク質は、カルボキシル末端側にアクチン重合核形成活性があるとされる FH1-FH2 ドメインを有していた。

血小板には核がなく、蛋白を細胞内で産生することがほとんどできない。よって遺伝子選択発現実験等の分子生物学的手法を血小板の研究に応用することは困難である。動的なアクチン細胞骨格に関与する因子を検討するためには in vitro のアッセイ系が必要とされた。そこで、細胞質環境において FH1-FH2 ドメインがアクチンを重合する活性を測定できるアッセイ系を構築した。具体的には、リコンビニエンントタンパク質として製した FH1-FH2 ドメインを固定化したビーズに血小板細胞質を添加し、ATP 不存在下でアクチン重合を惹起した後、繊維状アクチンを特異的に認識する蛻光標識 ファイシンを用いて可視化した。

Daam1、及び mDia1 の FH1-FH2 ドメインを固定化したビーズ上には、アクチン繊維が無数に観察され、これらのタンパク質が細胞質中でアクチン重合活性を有していることが分かった。蛻光を測定することにより、フォルミン相同タンパク質のアクチン重合活性を半定量的に解析する事が可能になった。

Daam1 及び mDia1 のカルボキシル末端側とアミノ末端側は、相互作用でき、アミノ末梢側は活性型の RhoA とも相互作用することが分かった。さらに、FH1-FH2 ドメイン固相化ビーズを用いた細胞質アクチン重合アッセイ系に、Daam1、mDia1 のアミノ末端側のリコンビニエンントタンパク質を加えると、濃度依存的にアクチン重合が抑制された。この抑制は、活性型 RhoA の添加により中和された。従って、Daam1 及び mDia1 は分子内結合によって不活性状態に維持され、活性型 Rho によって抑制が解離されてアクチン重合活性を発揮する事が確認された。したがって、RhoA と Daam1、mDia1 との間の結合の Kd 値を測定し、その結合が非常に強固である事を示した。

また、FH2 ドメインの構築を解析し、アッセイ系を用いて評価した。

活性化した血小板で RhoA とフォルミン相同タンパク質がアクチン細胞骨格の再構成に関与し得るのかどうかを調べるため、thrombin で刺激した血小板の抽出物から Daam1 を抗 Daam1 抗体を用いて免疫沈降したところ、刺激後 30 秒後に RhoA が免疫沈降された。このことより、活性化した血小板内において Daam1 と RhoA が複合体を形成している事が明らかになった。さらに、内在性のフォルミンが活性型 RhoA と複合体形成時にアクチン重合活性を発揮できるかどうかを調べるため、活性型 RhoA を固相化したビーズ上に内在性のフォルミンを結合し、細胞質中でアクチンが重合されることを確認した。この重合は、Daam1 及び mDia1 のアミノ末端側リコンビニエンントタンパク質によって抑制された。以上の事より
り、活性化された血小板中において、活性型になった RhoA がフォルミンと複合体を形成してアクチン細胞骨格を再構成する反応に関与している事が示唆された。

論文審査の結果の要旨

活性化血小板は、動的にアクチン細胞骨格を再構成し、血管への粘着や凝集の反応を引き起こす。このアクチン細胞骨格の再構成は、低分子量 G タンパク質 RhoA が関与している事が示されてきた。

本研究において、RhoA の血小板におけるエフェクター分子として、2 種類のフォルミンタンパク質、mDial および Daam1 が同定された。フォルミンタンパク質によって細胞質内で重合されたアクチンの量をビーズを用いて半定量的に解析するアッセイ系を新規に確立し、このアッセイ系を用いて両分子がともに細胞質内でアクチンを重合する活性を持つことが確認された。さらに、mDial 及び Daam1 のアクチン重合活性は、阻害的な分子内結合が活性型 Rho によって解き放たれることにより発揮されることが分かり、Rho によって直接的に制御されている事が証明された。また、アゴニストによって活性化された血小板中で、Daam1 と RhoA が複合体を形成し、その複合体がアクチンを重合する活性を持っていることも示された。これらのことより、活性化血小板中において、活性型になった RhoA がフォルミンと複合体を形成してアクチン細胞骨格を再構成する反応に関与している事が考えられる。

以上の研究は、血小板の形態変化を司る分子機構を明らかにしたもので、血栓止血学及び細胞生物学（特に細胞骨格制御の分子機構解明）に寄与するところが大きい。したがって、本論文は博士（医学）の学位論文として価値あるものと認められる。

なお、本学位授与申請者は、平成 20 年 3 月 6 日実施の論文内容とそれに関連した試問を受け、合格と認められたものである。