A More Experimental Results

The prediction accuracy on adversarial examples under $\epsilon = 0.08$ are shown (lower is better).

Method	Sup.	VGG-19	Inception	ResNet	DenseNet	SENet	WRN	PNASNet	MobileNet v2	Average
Naïve†	✓	53.92%	70.18%	68.16%	63.98%	72.48%	66.60%	78.28%	47.38%	65.13%
Jigsaw	✓	40.00%	58.20%	55.66%	50.30%	66.62%	59.52%	70.36%	34.60%	54.41%
Rotation	✓	58.88%	56.16%	57.06%	49.36%	65.30%	58.14%	67.70%	34.64%	53.43%
Naïve†	✓	76.64%	81.24%	83.98%	79.54%	87.14%	84.30%	87.12%	73.16%	81.64%
Prototypical	✓	30.80%	49.28%	50.56%	40.30%	56.58%	48.88%	60.94%	28.50%	45.73%
Prototypical*	✓	30.08%	45.74%	47.28%	37.66%	54.42%	44.82%	57.58%	27.32%	43.11%
Beyonder	✓	27.70%	53.58%	33.74%	30.58%	46.70%	37.26%	54.92%	29.42%	**39.24%**

Table 3: Top-1 prediction accuracy of victim models on the randomly selected 5000 benign ImageNet images.

Model	VGG-19	Inception	ResNet	DenseNet	SENet	WRN	PNASNet	MobileNet v2	Average
Accuracy	86.26%	86.64%	88.72%	85.46%	90.14%	88.90%	90.36%	83.88%	87.55%

Visualizations and explanations Here we visualize some adversarial examples and the model attention on the examples using Grad-CAM in Figure 6. Grad-CAM provides interesting visual explanations of how our adversarial examples fool an advance victim model that is trained on millions of images. Here the results are obtained on the VGG-19 victim model. Obviously, our adversarial examples divert the model attention from important image regions, *e.g.*, from the distinctive body parts of the animals to irrelevant background regions. We also compare our generated no-box adversarial examples with the adversarial examples generated by Beyonder (which is basically just like in the white-box setting or a transfer-based black-box setting), and it can be seen that our no-box adversarial examples are intrinsically and perceptually very different from the Beyonder adversarial examples. Particularly, visual artifacts (somewhat like moiré patterns) may present in the no-box adversarial examples under $\epsilon=0.1$.

* Work done during an internship at ByteDance
† Corresponding author
Number of training images We also tested our mechanisms in settings with even less training images. Though more data is more likely to lead to better performance for a supervised mechanism, we would like to know how the proposed mechanisms perform under more challenging circumstances with even less data. We summarize the performance of our rotation, jigsaw, prototypical (with single or multiple decoders) mechanisms on ImageNet in Figure [7]. Lower prediction accuracy indicates better attack performance in the figure. It can be seen that all the proposed mechanisms perform reasonably well with no more than 20 images (i.e., $n \leq 20$) on ImageNet. By further increasing n to 40, the prototypical mechanism achieves even better performance in the sense of no-box transfer. Rotation and Jigsaw models seemingly works better with less training images, due to faster training convergence within the limited number of training iterations.

![Figure 6: Visual explanation of how the Beyonder adversarial examples and our no-box adversarial examples fool the VGG-19 victim model. Grad-CAM is used.](image)

![Figure 7: How the attack performance of our approach varies with the number of training images on ImageNet. Lower average accuracy indicate better performance in attacking the victim models.](image)

Number of prototypical decoders As mentioned in the main paper, we studied how the number of decoders would affect the attack success rate in our no-box setting. Table 4 summarizes the attack performance using our prototypical models equipped with 1, 5, 10, and 20 decoders in attacking the ImageNet models. Apparently, the more decoders get involved, the higher attack success rates can be achieved. However, it also takes longer to converge with more decoders, suggesting a trade-off between the attack success rate and training scale. It is somewhat unsurprising that multiple-decoder models outperform single-decoder models in mounting no-box attacks, since, as has been explained, richer supervision can be obtained from more decoders and more image anchors.

#decoders	VGG-19	Inception v3	ResNet	DenseNet	SENet	WRN	PNASNet	MobileNet v2	Average
1	19.78%	36.46%	37.92%	29.16%	44.56%	37.28%	48.58%	17.78%	33.94%
5	19.48%	34.32%	35.90%	26.44%	42.70%	34.72%	46.12%	17.37%	32.13%
10	19.16%	34.18%	35.00%	25.94%	42.14%	33.16%	45.22%	17.18%	31.90%
20	18.74%	33.68%	34.72%	26.06%	42.36%	33.14%	45.02%	16.34%	31.26%
Other baseline attacks There exist other baseline attacks that can be used to craft adversarial examples on our substitute models. We tested different gradient-based baseline methods combined with ILA. As mentioned in Section 3.2 in the main paper, an image anchor from a different class (than that of the example to be perturbed) can be used as the directional guide. We tested such a strategy as well and denote it as “None+ILA”. The obtained results are summarized in Table 5. Apparently, it does not perform as good as our introduced strategy applying I-FGSM with $L_{\text{adversarial}}$ first, which is denoted as “I-FGSM+ILA”. As expected, PGD performs even better than I-FGSM, and it can be further explored. Note that PGD tested here incorporated randomness at each of its optimization iterations. The possibility of replacing ILA with other methods (e.g., TAP [10]) for improving the transferability was also considered. Specifically, our prototypical mechanism led to an average victim accuracy of 28.82% on ImageNet with TAP, under $\epsilon = 0.1$, which is remarkably superior to naive† (77.39%) with TAP.

Table 5: Compare the transferability of different baseline attacks on the prototypical auto-encoding models on ImageNet, under $\epsilon = 0.1$. The prediction accuracy of the victim models on different sets of adversarial examples are shown (lower is better). PGD incorporates randomness in attacks, but we observed that the standard deviation of the attack performance among different runs are small (e.g., it is only 0.06% for VGG-19, 0.12% for Inception v3, and 0.16% for ResNet), hence we omit it and only report the mean performance of “PGD+ILA” over 5 runs for clearer comparison in the table.

Method	VGG-19	Inception v3	ResNet v1	DenseNet	SENet v2	WRN v2	PNASNet v3	MobileNet v2	Average
None+ILA	19.52%	35.62%	35.76%	27.08%	43.44%	34.24%	46.42%	17.64%	32.47%
I-FGSM+ILA	18.74%	33.68%	34.72%	26.00%	42.36%	33.14%	45.02%	16.34%	31.26%
PGD+ILA	18.02%	32.06%	33.64%	23.62%	40.78%	31.88%	43.64%	14.94%	29.82%

l_2 attacks In addition to the l_∞ attacks, we also considered l_2 attacks. Specifically, by restricting the l_2 norm of the perturbations to be not greater than a common threshold, our prototypical mechanism led to a significantly lower average prediction accuracy (59.48%) of the victim models, in comparison to the supervised baseline (i.e., naïve†: 81.37%).

References
[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In CVPR, 2016.
[2] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In CVPR, 2018.
[3] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected convolutional networks. In CVPR, 2017.
[4] Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan Yuille, Jonathan Huang, and Kevin Murphy. Progressive neural architecture search. In ECCV, 2018.
[5] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mobilenetv2: Inverted residuals and linear bottlenecks. In CVPR, 2018.
[6] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh, and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based localization. In ICCV, 2017.
[7] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition. In ICLR, 2015.
[8] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethinking the inception architecture for computer vision. In CVPR, 2016.
[9] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In BMVC, 2016.
[10] Wen Zhou, Xin Hou, Yongjun Chen, Mengyun Tang, Xiangqi Huang, Xiang Gan, and Yong Yang. Transferable adversarial perturbations. In ECCV, 2018.