The Variational Deficiency Bottleneck

Pradeep Kr. Banerjee
MPI MiS
Email: pradeep@mis.mpg.de

Guido Montúfar
UCLA and MPI MiS
Email: montufar@math.ucla.edu

Abstract—We introduce a bottleneck method for learning data representations based on information deficiency, rather than the more traditional information sufficiency. A variational upper bound allows us to implement this method efficiently. The bound itself is bounded above by the variational information bottleneck objective, and the two methods coincide in the regime of single-shot Monte Carlo approximations. The notion of deficiency provides a principled way of approximating complicated channels by relatively simpler ones. We show that the deficiency of one channel with respect to another has an operational interpretation in terms of the optimal risk gap of decision problems, capturing classification as a special case. Experiments demonstrate that the deficiency bottleneck can provide advantages in terms of minimal sufficiency as measured by information bottleneck curves, while retaining robust test performance in classification tasks.

Index Terms—Blackwell sufficiency, deficiency, information bottleneck, synergy, robustness

I. INTRODUCTION

The information bottleneck (IB) is an approach to learning data representations based on a notion of minimal sufficiency. The general idea is to map an input source to an intermediate representation that retains as little information as possible about the input (minimality), but preserves as much information as possible in relation to a target variable of interest (sufficiency). See Fig. 1. For example, in a classification problem, the target variable could be the class label of the input data. In a reconstruction problem, the target variable could be a denoised reconstruction of the input. Intuitively, a representation which is minimal in relation to a given task, will discard nuisances in the inputs that are irrelevant to the task, and hence distill more meaningful information and allow for a better generalization. The IB methods [1]–[4] have found numerous applications in representation learning, clustering, classification, generative modeling, model selection and analysis in deep neural networks, among others (see, e.g., [5]–[10]).

In the traditional IB paradigm, minimality and sufficiency are measured in terms of the mutual information. Computing the mutual information can be challenging in practice. Recent works have formulated more tractable functions by way of variational bounds on the mutual information [11]–[14]. Instead of maximizing the sufficiency term of the IB, we formulate a new bottleneck method that minimizes deficiency. Deficiencies provide a principled way of approximating complex channels by relatively simpler ones and have a rich heritage in the theory of comparison of statistical experiments [15]–[17]. From this angle, the formalism of deficiencies has been used to obtain bounds on optimal risk gaps of statistical decision problems. As we show, the deficiency bottleneck minimizes a regularized risk gap. Moreover, the proposed method has an immediate variational formulation that can be easily implemented as a modification of the variational information bottleneck (VIB) [13]. In fact, both methods coincide in the limit of single-shot Monte Carlo approximations. We call our method the variational deficiency bottleneck (VDB).

Experiments on basic data sets show that the VDB is able to obtain more compressed representations than the VIB while retaining the same level of sufficiency. Training with the VDB also improves out-of-distribution robustness over the VIB as we demonstrate on two benchmark datasets, the MNIST-C [18] and the CIFAR-10-C [19].

We describe the details of our method in Section II. We elaborate on the theory of deficiencies in Section III. Experimental results with the VDB are presented in Section IV. We use notation that is standard in information theory [20].

II. THE VARIATIONAL DEFICIENCY BOTTLENECK

Let X denote an observation or input variable and Y an output variable of interest and let \mathcal{X}, \mathcal{Y} denote, resp., the space of possible inputs and outputs. Let $p(x, y) = \pi(x)\kappa(y|x)$ be the true joint distribution, where the conditional distribution or channel $\kappa(\cdot|x)$ describes how the output depends on the input. We consider the situation where the true channel is unknown, but we are given a set of N independent and identically distributed (i.i.d.) samples $(x^{(i)}, y^{(i)})_{i=1}^{N}$ from p. Our goal
which any pre-processing at the input (by way of randomized
The parameter
The deficiency of a decoder
variational upper bound [20]:
π
is an input distribution over
representation, we want the decoder to be as powerful as the
original channel κ in terms of ability to recover the output.
The deficiency of a decoder d w.r.t. κ quantifies the extent to
which any pre-processing at the input (by way of randomized
encodings) fails to approximate κ. Let M(X; Y) denote the
space of all channels from X to Y. We define the deficiency
of d w.r.t. κ as follows:

Definition 1 (Deficiency). Given a channel κ ∈ M(X; Y)
from X to Y, and a decoder d ∈ M(Z; Y) from some Z
to Y, the deficiency of d w.r.t. κ is defined as

\[\delta^\pi(d, \kappa) = \min_{e \in M(X; Z)} D_{KL}(\kappa || d \circ e \circ \pi). \]

(1)

Here D_{KL}(\cdot || \cdot) is the conditional KL divergence [20], and
π is an input distribution over X. The definition is similar in
spirit to Lucien Le Cam’s notion of weighted deficiencies of
one channel w.r.t. another [16], [17, Section 6.2] and its recent
generalizations [21].

We propose to train the model by minimizing the deficiency
of d w.r.t. κ subject to a regularization that limits the
rate I(Z; X), i.e., the mutual information between the
representation and the raw inputs. We call our method the
deficiency bottleneck (DB). The DB minimizes the following
objective over all tuples (e ∈ M(X; Z), d ∈ M(Z; Y)):

\[\mathcal{L}_D^\beta(e, d) := \delta^\pi(d, \kappa) + \beta I(Z; X). \]

(2)

The parameter \(\beta \geq 0 \) allows us to adjust the level of
regularization.

For any distribution \(r(z) \), the rate term admits a simple
variational upper bound [20]:

\[I(Z; X) \leq \int p(x, z) \log \frac{e(z|x)}{r(z)} \, dx \, dz . \]

(3)

Let \(\tilde{p}_{data} \) be the empirical distribution of the data (input-
output pairs). By noting that \(\delta^\pi(d, \kappa) \leq D_{KL}(\kappa || d \circ e \circ \pi) \)
for any \(e \in M(X; Z) \), and ignoring data-dependent constants,
we obtain the following optimization objective which we call the
variational deficiency bottleneck (VDB) objective:

\[\mathcal{L}_{VDB}^\beta(e, d) := \mathbb{E}_{(x, y) \sim \tilde{p}_{data}} \left[- \log \int d(y|z)e(z|x) \, dz + \beta D_{KL}(e(Z|x) || r(Z)) \right]. \]

(4)

The computation is simplified by defining \(r(z) \) to be a
standard multivariate Gaussian distribution \(N(0, I) \), and using
an encoder of the form \(e(z|x) = N(z|f_\theta(x)) \), where \(f_\theta \)
is a neural network that outputs the parameters of a Gaussian
distribution. Using the reparameterization trick [22], [23], we
then write \(e(z|x)dz = p(e)de \), where \(z = f(x, \epsilon) \) is a function
of \(x \) and the realization \(\epsilon \) of a standard normal distribution.
This allows us to do stochastic backpropagation through a
single sample \(z \). The KL term in (4) admits an analytic
expression when \(r(z) \) and the encoder are Gaussian. We train
the model by minimizing the following empirical objective
over all tuples \((e \in M(X; Z), d \in M(Z; Y)) \):

\[\frac{1}{N} \sum_{i=1}^{N} \left[-\log \left(\frac{1}{M} \sum_{j=1}^{M} d(y^{(j)}|f(x^{(i)}, e^{(j)})) \right) + \beta D_{KL}(e(Z|x^{(i)}) || r(Z)) \right]. \]

(5)

For training, we choose a mini-batch size of \(N = 100 \). For es-
timating the expectation inside the log, we use \(M = 1, 3, 6, 12 \)
Monte Carlo samples from the encoding distribution.

We note that the Variational Information Bottleneck (VIB) [13]
leads to a similar-looking objective function, with the
only difference that the sum over \(j \) in (5) is outside of
the logarithm. By Jensen’s inequality, the VIB loss is an
upper bound to our loss. If one uses a single sample from
the encoding distribution (i.e., \(M = 1 \)), the VDB and the
VIB empirical objective functions coincide. For a large enough
mini-batch size, e.g., \(N = 100 \), taking \(M = 1 \) is sufficient to
estimate the VIB objective [13]. This is the standard setting
as presented in [13] that we want to compare with. In the case
of the VDB, on the other hand, the mini-batch size \(N \) and \(M \)
are not exchangeable, since the expectation is inside the log
function.

To better understand the behavior of the VDB optimization
(5), we adopt two training strategies:

- a one-shot strategy where the encoder and decoder net-
works are updated simultaneously, and
- a sequential strategy where the encoder network is up-
dated for \(k \) steps before alternating to one decoder update.

We choose \(k = 5, 10, 20 \).

The idea of using the sequential strategy is to better approx-
imate the deficiency which involves an optimization over the
encoder (see Definition 1).

III. TWO PERSPECTIVES ON THE DEFICIENCY
BOTTLENECK

In this section, we present two different perspectives on the
deficiency bottleneck, namely, a decision-theoretic perspective
and an information decomposition perspective.

In Section III-A, we review the notions of information
sufficiency and deficiency through the lens of Blackwell-Le
Cam decision theory [15]–[17]. We formulate the learning task
as a decision problem and give an operational characterization
of the deficiency \(\delta^\pi(d, \kappa) \) as the gap in the expected losses of
optimal decision rules when using the channel \(d \) rather than \(\kappa \).

In Section III-B, we review the classical IB and our DB
objective through the lens of nonnegative mutual information
decompositions [24]–[26]. This leads us to a new interpretation
of the IB as a **Unique Information Bottleneck** and also sheds light on the difference between the IB and DB formulations.

A. A decision-theoretic perspective

1) **Blackwell sufficiency and channel deficiency**: In a seminal paper [15], David Blackwell asked the following question: Suppose that a learner has a finite set of possible actions and she wishes to make an optimal decision to minimize a loss depending on the value of some random variable Y and her chosen action. If the learner cannot observe Y directly before choosing her action and has to pick between two channels with the common input Y, which one should she prefer? Blackwell introduced an ordering that compares channels by the minimal expected loss or risk that a learner incurs when her decisions are based on the channel outputs. He then showed that such an ordering can be equivalently characterized in terms of a purely probabilistic relation between the channels: The learner will always prefer one channel over another if and only if the latter is an *output-degraded* version of the former, in the sense that she can simulate a single use of the latter by randomizing at the output of the former.

Very recently, Nasser [27] asked the same question, only now the learner has to choose between two channels with a *common output* alphabet. Nasser introduced the input-degraded ordering and gave a characterization of input-degradedness that is similar to Blackwell’s ordering [15].

Definition 2 (Blackwell sufficiency). Given two channels, $\kappa \in M(\mathcal{X}; Y)$ and $d \in M(Z; Y)$, κ is input-degraded from d, denoted $d \succeq_Y \kappa$, if $\kappa = d \circ e$ for some $e \in M(\mathcal{X}; Z)$. We say that d is input Blackwell sufficient for κ if $d \succeq_Y \kappa$.

Stated in another way, d is input Blackwell sufficient for κ if d can be reduced to κ by applying a randomization e at its input so that $d \circ e = \kappa$. Blackwell sufficiency induces only a preorder on the set of all channels with a common output alphabet. In practice, most channels are incomparable, i.e., one cannot be reduced to another by a randomization. When such is the case, the deficiency quantifies how far the true channel κ is from being a randomization (by way of any input encoding e) of the decoder d.

2) **Deficiency as an optimal risk gap**: We formulate a learning task as a decision problem and show that the deficiency quantifies the gap in the optimal risks when using the channel d rather than κ.

Let \mathcal{P}_Y be the set of all distributions on \mathcal{Y}. In the following, we assume that \mathcal{X} and \mathcal{Y} are finite. For every $x \in \mathcal{X}$, define $\kappa_x \in \mathcal{P}_Y$ as $\kappa_x(y) = \kappa(y|x), \forall y \in \mathcal{Y}$. Consider the following decision problem between a learner and Nature: Nature draws $x \sim \pi$ and $y \sim \kappa_x$. The learner observes x and proposes a distribution $q_x \in \mathcal{P}_Y$ that expresses her uncertainty about the true value y. The quality of a prediction q_x in relation to y is measured by the log-loss function $\ell(y, q_x) := -\log q_x(y)$. The log-loss is an instance of a “strictly proper” loss function that enjoys nice properties such as the uniqueness of the optimum; see, e.g., [28].

Ideally, the prediction q_x should be as close as possible to the true conditional distribution κ_x. This is achieved by minimizing the expected loss $L(\kappa_x, q_x) := \mathbb{E}_{y \sim \kappa_x} \ell(y, q_x)$, for all $x \in \mathcal{X}$. Define the Bayes act against κ_x as the optimal prediction $q^*_{\kappa_x} := \arg \min_{q_x \in \mathcal{P}_Y} L(\kappa_x, q_x)$, and the Bayes risk for the distribution $P_{XY} = \pi \times \kappa$ as $R(P_{XY}, \kappa) := \mathbb{E}_{x \sim \pi} L(\kappa_x, q^*_{\kappa_x})$. For the log-loss, the Bayes act is $q^*_{\kappa_x} = \kappa_x$ and hence, the Bayes risk is

$$R(P_{XY}, \kappa) = \mathbb{E}_{x \sim \pi} \mathbb{E}_{y \sim \kappa_x} [-\log \kappa_x(y)] = H(Y|X).$$

Given a channel $d \in M(Z; Y)$, we want a representation $z \in Z$ of x (output by some encoder), so that the outputs of d match those of the true channel κ. Let $C = \text{conv} \{d_z : z \in Z\} \subset \mathcal{P}_Y$ be the convex hull of the points $\{d_z : z \in Z\} \subset \mathcal{P}_Y$. The Bayes act against κ_x is $q^*_{d_x} := \arg \min_{q_x \in C} \mathbb{E}_{y \sim \kappa_x} [-\log q_x(y)]$. $q^*_{d_x}$ is the rI-projection of κ_x to the convex set $C \subset \mathcal{P}_Y$ [29]. Such a projection exists but is not necessarily unique. If non-unique, we arbitrarily select one of the minimizers as the Bayes act. The associated Bayes risk is

$$R_d(P_{XY}, \kappa) := \mathbb{E}_{x \sim \pi} \mathbb{E}_{y \sim \kappa_x} [-\log q^*_{d_x}(y)].$$

The next Proposition 3 states that the gap in the Bayes risks, $\Delta R := R_d(P_{XY}, \kappa) - R(P_{XY}, \kappa)$, when making a decision based on Z vs. X is just the deficiency.

Proposition 3 (Deficiency quantifies the optimal risk gap for the log-loss). $\delta^*(d, \kappa) = \Delta R$.

Proof. The proof follows from noting that

$$\Delta R = \sum_{x \in \mathcal{X}} \pi(x) \min_{q_x \in C \subset \mathcal{P}_Y} D_{KL}(\kappa_x \parallel q_x)$$

$$= \min_{e \in M(\mathcal{X}; Z)} \sum_{x \in \mathcal{X}} \pi(x) D_{KL}(\kappa_x \parallel d \circ e_x)$$

$$= \min_{e \in M(\mathcal{X}; Z)} D_{KL}(\kappa \parallel d \circ e) = \delta^*(d, \kappa).$$

\[\square\]

B. An information decomposition perspective

1) **IB as Unique Information Bottleneck**: A quantity that is similar in spirit to the deficiency is the Unique Information Bottleneck (UI) [24]:

Definition 4 (Unique information). Let $(Y, X, Z) \sim P$. The unique information that X conveys about Y w.r.t. Z is

$$UI(Y; X|Z) := \min_{Q \in \Delta_P} I(Q; Y; X|Z),$$

where the subscript Q denotes the joint distribution on which the mutual information is evaluated, and

$$\Delta_P := \{Q \in \mathcal{P}_{YXZ} : Q_{Y|Z}(y, x) = P_{Y|Z}(y, z), Q_{YZ}(y, z) = P_{YZ}(y, z)\}$$

is the set of joint distributions of (Y, X, Z) that have the same marginals on (Y, X) and (Y, Z) as P.

While the deficiency quantifies a deviation from the input-degraded order, the UI quantifies a deviation from the output-degraded order [25]. Note, however, that the vanishing sets
of $\delta^\tau(d, \kappa)$ and $UI(Y; X \setminus Z)$ are not equivalent as the next example shows.

Example 5. Let $\mathcal{Y} = \{0, 1, e\}$, and $\mathcal{X} = \mathcal{Z} = \{0, 1, e\}$. Let $P = P_Y \times P_{X|Y} \times P_{Z|X}$ where $P_Y \sim$ Bernoulli($\frac{1}{2}$) and $P_{X|Y}$ and $P_{Z|X}$ are symmetric erasure channels with erasure probabilities $\frac{1}{6}$ and $\frac{1}{4}$, resp. Recall that a symmetric erasure channel from \mathcal{Y} to \mathcal{X} with erasure probability $\epsilon \in [0, 1]$ has transition probabilities: $P_{X|Y}(e|0) = P_{X|Y}(e|1) = \epsilon$, $P_{X|Y}(0|0) = P_{X|Y}(1|1) = 1 - \epsilon$. For the distribution P, we have $UI(Y; X \setminus Z) = I(Y; X|Z) = \frac{1}{6} > 0$. On the other hand, the induced “reverse” erasure channels $P_Y|X = \kappa$ and $P_{Y|Z} = d$ are identical. Thus, $\delta^\tau(d, \kappa) = 0$.

In [24], the value $UI(Y; X \setminus Z)$ is interpreted as the information about Y that is known to X but unknown to Z. This interpretation is motivated by Blackwell’s result [15]: whenever $UI(Y; X|Z) > 0$, there exists a decision problem in which it is better to know X than to know Z. Moreover, this induces a decomposition of the mutual information between Y and X into four terms:

$$I(Y; XZ) = UI(Y; X \setminus Z) + SI(Y; X, Z) + UI(Y; Z \setminus X) + CI(Y; X, Z).$$

(8)

The quantity

$$SI(Y; X, Z) := I(Y; X) - UI(Y; X \setminus Z)$$

(9)

is interpreted as shared or redundant information, i.e., information about Y that is known in common to both X and Z, and the quantity

$$CI(Y; X, Z) := I(Y; X|Z) - UI(Y; X \setminus Z)$$

(10)

is interpreted as complementary or synergistic information, i.e., the information about Y that materializes only when X and Z act jointly.

Example 6. If X and Z are independent binary random variables, and $Y = X\text{OR}(X, Z)$, then $CI(Y; X, Z) = 1$, while $SI(Y; X, Z) = UI(Y; X \setminus Z) = UI(Y; Z \setminus X) = 0$. This is an instance of a purely synergistic interaction.

If Y, X, Z are uniformly distributed binary random variables, and $Y = X \oplus Z$, then $SI(Y; X, Z) = 1$, while $CI(Y; X, Z) = UI(Y; X \setminus Z) = UI(Y; Z \setminus X) = 0$. This is an instance of a purely redundant interaction.

For some probability distributions P with special structure, the decomposition (8) can be computed analytically [24].

Lemma 7. Let $Q^0 := P_{YX} \times e_{Z|X}$ for some $e \in M(\mathcal{X}; \mathcal{Z})$. Then $UI_{Q^0}(Y; X \setminus Z) = I_{Q^0}(Y; X|Z)$, $SI_{Q^0}(Y; X, Z) = I(Y; Z)$ and $UI_{Q^0}(Y; Z \setminus X) = CI_{Q^0}(Y; X, Z) = 0$.

Proof. The distribution Q^0 defines a Markov chain $Y \rightarrow X \rightarrow Z$, which implies that

$$I_{Q^0}(Y; Z|X) = 0 \leq \min_{Q \in \Delta_P} I_Q(Y; Z|X).$$

Hence, Q^0 solves the optimization problem (6).

In the setting of the Lemma, $CI_{Q^0}(Y; X, Z) = 0$ and therefore Q^0 is a zero-synergy distribution.

The information decomposition leads us to a new interpretation of the IB as a *Unique Information Bottleneck*. To see this we first make the following definition.

Definition 8 (IB curve). The IB curve is defined as follows [1, 3, 30]:

$$B(r) := \max\{I(Z; Y) : I(Z; X) \leq r, r \geq 0\}.$$ (11)

Here the maximization is over all random variables Z satisfying the Markov condition $Y \rightarrow X \rightarrow Z$ with fixed $(X, Y) \sim P$ and it suffices to restrict the size of Z to $|\mathcal{X}|$.

The IB curve is concave and monotonically non-decreasing [1, 30]. We can explore the IB curve by solving the following optimization problem:

$$\min_{e \in M(\mathcal{X}; \mathcal{Z})} \left[UI_{Q^0}(Y; X \setminus Z) + \beta I_{Q^0}(Z; X) \right].$$

(12)

Here Q^0 is a zero-synergy distribution and $\beta \in [0, 1]$ is a Lagrange multiplier. Equation (12) has the flavor of a rate-distortion problem [3] where the term $UI_{Q^0}(Y; X \setminus Z)$ is interpreted as the average distortion and $I_{Q^0}(Z; X)$ as the rate. Classically, the IB is formulated as the maximization of $I_{Q^0}(Y; X \setminus Z) - \beta I_{Q^0}(Z; X)$ [2]. By Lemma 7, we have that $UI_{Q^0}(Y; X \setminus Z) = I_{Q^0}(Y; X|Z) = I_{Q^0}(Y; X) - I_{Q^0}(Z; Y)$. Since $I_{Q^0}(Y; X) = I_{P}(Y; X)$ is constant, it follows that the Unique Information Bottleneck defined by (12) is equivalent to the classical IB. Each point on the IB curve satisfies the Markov condition $Y \rightarrow X \rightarrow Z$ which implies that the solution is always constrained to have zero synergy about the output Y.

Like the UI, the deficiency also induces an information decomposition as we show next.

2) **Deficiency induces an information decomposition:** We first propose a general construction that forms the basis of an information decomposition satisfying (9)-(8) (proved in the Appendix):

Proposition 9. Let $(Y, X, Z) \sim P$ and let δ^X be a nonnegative function defined on the simplex $\mathbb{P}_{\mathcal{Y} \times \mathcal{X} \times \mathcal{Z}}$ that satisfies the bound:

$$0 \leq \delta^X(P) \leq \min\{I(Y; I, I(Y; X|Z)\}.$$ (13)

Let $X^*=Z, Z^*=X$, and define a function $\tau : \mathbb{P}_{\mathcal{Y} \times \mathcal{X} \times \mathcal{Z}} \to \mathbb{P}_{\mathcal{Y} \times \mathcal{X} \times \mathcal{Z}}$ such that $\tau(P_{YXZ}(y, x, z)) = P_{YZX}(y, z, x)$. Let $\delta^Z(P) := \delta^X(\tau(P))$. Then the following functions define a nonnegative information decomposition satisfying (9)-(8):

$$\tilde{UI}(Y; X \setminus Z) = \max\{\delta^X, \delta^Z + I(Y; X) - I(Y; Z)\},$$

$$\tilde{UI}(Y; Z \setminus X) = \max\{\delta^Z, \delta^X + I(Y; Z) - I(Y; X)\},$$

$$\tilde{SI}(Y, X, Z) = \min\{I(Y; X) - \delta^X, I(Y; Z) - \delta^Z\},$$

$$\tilde{CI}(Y; X, Z) = \min\{I(Y; X|Z) - \delta^X, I(Y; Z|X) - \delta^Z\}.$$
following proposition is proved in the Appendix.

Proposition 10. Let \((Y, X, Z) \sim P\), and let \(k \in M(X; Y)\) and \(d \in M(Z; Y)\) be two channels representing, resp., the conditional distributions \(P_{Y|X}\) and \(P_{Z|Y}\). Define \(\delta^X = \delta^T(d, k)\). Then the functions \(\bar{UI}, \bar{SI}, \text{ and } \bar{CI}\) in Proposition 9 define a nonnegative information decomposition.

The next proposition shows the relationship between the decompositions induced by the deficiency (see Proposition 10) and that induced by the \(UI\) (see (6)–(8)).

Proposition 11 ([24]).
\[
\bar{UI}(Y; X|Z) \leq UI(Y; X|Z), \\
\bar{SI}(Y; Z|X) \leq SI(Y; Z|X), \\
\bar{CI}(Y; X|Z) \leq CI(Y; X|Z),
\]
with equality if and only if there exists \(Q \in \Delta_P\) such that \(\bar{CI}_Q(Y; X, Z) = 0\).

IV. EXPERIMENTS

A. Experiments on MNIST

We present experiments on the MNIST dataset. Classification on MNIST is a very well-studied problem. The main objective of these experiments is to evaluate the information-theoretic properties of the representations learned by the VDB model and to compare the classification accuracy for different values of \(M\), the number of encoder output samples used in the training objective (5) when using the oneshot strategy. As mentioned in Section II, when \(M = 1\), we recover the VIB model [13].

Settings. For the encoder, we use a fully connected feedforward network with 784 input units–1024 ReLUs–1024 ReLUs–512 linear output units. The deterministic output of this network is interpreted as the vector of means and variances of a 256-dimensional Gaussian distribution. The decoder is simply a softmax with \(512\) linear output units. The deterministic output of this model and to compare the classification accuracy for different values of \(K\) and \(M\), bottleneck size \(K\), and different values of the regularizer parameter \(\beta\). We

Training dynamics. The dynamics of the information quantities during training are also interesting, and shown in Fig. 3. At early epochs, training mainly effects fitting of the input-output relationship and an increase of \(J(Z; Y)\). At later epochs, training mainly effects a decrease of \(I(Z; X)\) leading to a better generalization. An exception is when the regularizer parameter \(\beta\) is very small, in which case the representation captures more information about the input, and longer training decreases \(J(Z; Y)\), which is indicative of overfitting. Higher values of \(M\) (our method) lead to the representation capturing more information about the output, while at the same time discarding more information about the input. \(M = 1\) corresponds to the VIB.

Low dimensional representations. To better understand the behavior of our method, we also visualize a 2-dimensional Gaussian representations after training the VDB with the oneshot strategy for \(M = 1\) (when the VDB and VIB objectives are the same), and the sequential strategy for \(M = 1\), and different values of the regularization parameter \(\beta\). We

Here \(H(Y)\) is the entropy of the output, which for MNIST is \(\log_2(10)\). Fig. 2(b) shows the VDB curve which traces \(J(Z; Y)\) vs. \(I(Z; X)\) for different values of \(\beta\) at the end of training. Note that the curve corresponding to \(M = 1\) is just the VIB curve which traces \(J(Z; Y)\) vs. \(I(Z; X)\) for different values of \(\beta\). For orientation, lower values of \(\beta\) have higher values of \(I(Z; X)\) (towards the right of the plot). For small values of \(\beta\), when the effect of the regularization is negligible, the bottleneck allows more information from the input through the representation. In this case, \(J(Z; Y)\) increases on the training set, but not necessarily on the test set. This is manifest in the gap between the train and test curves indicative of a degradation in generalization. For intermediate values of \(\beta\), the gap is smaller for larger values of \(M\) (our method). Fig. 2(c) plots the attained mutual information values \(I(Z; Y)\) vs. \(I(Z; X)\) after training with the VDB objective for different values of \(\beta\), while Fig. 2(c) plots the minimality term \(I(Z; X)\) vs. \(\beta\). Evidently, the levels of compression vary depending on \(M\). For good values of \(\beta\), higher values of \(M\) (our method) lead to a more compressed representation while retaining the same level of sufficiency. For example, for \(\beta = 10^{-5}\), setting \(M = 12\) requires storing ~50 less bits of information about the input when compared to the setting \(M = 1\), while retaining the same mutual information about the output.

TABLE I: Test accuracy on MNIST for different values of \(\beta\) and \(M\), bottleneck size \(K\), and \(L = 12\).

\(\beta\)	\(K\)	\(M\)	\(1\)	\(3\)	\(6\)	\(12\)
\(10^{-5}\)	256	0.9869	0.9873	0.9885	0.9878	
2	0.9575	0.9678	0.9696	0.9687		
\(10^{-3}\)	256	0.9872	0.9879	0.9875	0.9882	
2	0.9632	0.9726	0.9790	0.9702		
Fig. 2: Effect of the regularization parameter β: (a) Accuracy on train and test data for the MNIST after training the VDB for different values of M. Here M is the number of encoder samples used in the training objective, and $L = 12$ is the number of encoder samples used for evaluating the classifier. (b) The VDB curve for different values of β. The curves are averages over 5 repetitions of the experiment. Each curve corresponds to one value of $M = 1, 3, 6, 12$. (c) The attained mutual information values $I(Z; Y)$ vs. $I(Z; X)$ for different values of β. (d) $I(X; Z)$ vs. β. For $M = 1$, the VDB and the VIB models coincide.

Fig. 3: Evolution of the sufficiency and minimality terms (values farther up and to the left are better) over 200 training epochs (dark to light color) on MNIST with a 256-dimensional representation for different values of β. The curves are averages over 20 repetitions of the experiment. $M = 1$ corresponds to the VIB model.

We use the same settings as before, with the only difference that the dimension of the output layer of the encoder is 4, with two coordinates representing the mean, and two a diagonal covariance matrix. The results are shown in Fig. 4. We see that for $\beta = 10^{-4}$, representations of the different classes are well separated. We also observe that as the frequency of the encoder updates is increased relative to the decoder (our method), individual clusters tend to be more spread out in latent space. This translates into a better discriminative performance when compared to the oneshot (VIB) strategy as we show next with our robustness experiments.

B. Classification robustness under distributional shift

We demonstrate that the VDB generalizes well across distributional shifts, i.e., when the train and test distributions are different. We use the MNIST-C [18] and CIFAR-10-C [19] benchmarks to evaluate the classifier’s robustness to common corruptions when trained with the VDB objective. These datasets are constructed by applying 15 common corruptions (at 5 different severity levels) to the MNIST and CIFAR-10 test sets. The corruptions comprise of four different categories, namely, noise, blur, weather, and digital.

To evaluate a classifier’s robustness to common corruptions, we use the metrics proposed in [19]. Given a classifier f and a baseline classifier b, the corruption error (CE) on a certain corruption type c is computed as the ratio E_f^c / E_b^c, where E_f^c and E_b^c are resp. the errors of f and b on c, aggregated over five different severity levels. A more nuanced measure is the relative CE that measures corruption robustness relative to the Clean error, the usual classification error on the uncorrupted test set. The relative CE is computed as the ratio $(E_f^c - E_f^{clean}) / (E_b^c - E_b^{clean})$, where E_f^{clean} and E_b^{clean} are resp. the clean errors of f and b. Averaging the CE and relative CE across all 15 corruption types yields the mean CE (mCE) and the Relative mCE values.

Results of computation of the robustness metrics for the MNIST-C and CIFAR-10-C datasets using different training strategies for different values of β are shown, resp., in Tables II and III. The statistics are averages over 4 independent runs. The keys “oneshot/M1” and “oneshot/M6” refer to a oneshot training strategy with resp., $M = 1$ and $M = 6$ encoder samples used for evaluating the training objective (5). The keys “seq:k:10/M1” and “seq:k:10/M6” refer to a sequential training strategy with resp., $M = 1$ and $M = 6$ encoder
with β strategy and the sequential strategy. Boxes in each row have the same dimension. We choose encoder update steps per decoder update. Color corresponds to the class label. Boxes in each row have the same dimension.

Fig. 4: Posterior Gaussian distributions of 5000 test images from MNIST in a 2-dimensional latent space after training with $\beta = 10^{-1}, 10^{-3}, 10^{-4}$ and $M = 1$ with the oneshot strategy and the sequential strategy with $k = 5, 10$ encoder update steps per decoder update. Color corresponds to the class label. Boxes in each row have the same dimension.

TABLE II: Clean Error, mCE, and Relative mCE values for the MNIST-C dataset using a MLP of size 784-1024-1024-512 trained using various strategies for different values of β. Lower values are better.

β	Train strategy	Clean Error	mCE	Relative mCE
10^{-3}	oneshot/M1	1.53±0.10	100.00	100.00
	seq/k:10/M1	1.42±0.13	93.88	93.56
	oneshot/M6	1.38±0.04	86.84	84.46
	seq/k:10/M6	1.39±0.04	85.95	83.39
10^{-4}	oneshot/M1	1.46±0.11	100.00	100.00
	seq/k:10/M1	1.39±0.08	89.64	87.80
	oneshot/M6	1.30±0.08	91.13	90.95
	seq/k:10/M6	1.32±0.07	88.25	86.85
10^{-5}	oneshot/M1	1.63±0.44	100.00	100.00
	seq/k:10/M1	1.32±0.11	84.64	85.98
	oneshot/M6	1.29±0.02	84.51	87.84
	seq/k:10/M6	1.30±0.10	84.85	88.28

TABLE III: Clean Error, mCE, and Relative mCE values for the CIFAR-10-C dataset using the ResNet20 network [31] trained using various strategies for different values of β. Lower values are better.

β	Train strategy	Clean Error	mCE	Relative mCE
10^{-3}	oneshot/M1	20.42±1.05	100.00	100.00
	seq/k:10/M1	18.78±0.52	97.22	97.76
	oneshot/M6	19.10±1.02	97.58	98.07
	seq/k:10/M6	19.48±1.12	97.68	98.01

V. DISCUSSION

We have formulated a bottleneck method based on channel deficiencies. The deficiency of a decoder w.r.t. a given channel quantifies how well an input randomization of the decoder (by a stochastic encoder) can be used to approximate the given channel. The DB has a natural variational formulation which recovers the VIB in the limit of a single sample of the encoder output. Moreover, the resulting variational objective can be implemented as an easy modification of the VIB objective with little to no computational overhead. Experiments show that the VDB can provide advantages in terms of minimality while retaining the same discriminative capacity as the VIB. We demonstrated that training with the VDB improves out-of-distribution robustness over the VIB on two benchmark datasets, the MNIST-C and the CIFAR-10-C.

An unsupervised version of the VDB objective (5) (for $\beta = 1$) shares some superficial similarities with the Importance Weighted Autoencoder (IWAE) [32] which also features a sum inside a logarithm. Note, however, that the IWAE objective cannot be decomposed for $M > 1$. This implies that we cannot trade-off reconstruction fidelity for learning meaningful representations by incorporating bottleneck constraints. As M increases, while the posterior approximation gets better, the magnitude of the gradient w.r.t. the encoder parameters also decays to zero [33]. This potentially limits the IWAE’s ability to learn useful representations. It is plausible that a similar bias-variance trade-off occurs with the VDB objective for high values of M. This is worth investigating.

samples used for evaluating the training objective (5), and with $k = 10$ encoder update steps per decoder update. We choose the baseline classifier as the VIB model (“oneshot/M1”).

For MNIST-C, we used the same encoder with a 256-dimensional representation as before. We trained the VDB for 200 epochs using the Adam optimizer with a fixed learning rate of 10^{-4}. For CIFAR-10-C, we used the 20-layer residual network “ResNet20” from [31] for the encoder with a 20-dimensional Gaussian representation and a softmax layer for the decoder.

We see that for $M = 1$, the sequential training strategy achieves lower mCE and Relative mCE values than the VIB across different values of β for both the MNIST-C and CIFAR-10-C datasets. Recall that the objective of using the sequential strategy is to better approximate the deficiency which involves an optimization over the encoder. The advantage of sampling the encoder multiple times ($M > 1$) for each input sample during training is also evident for both the oneshot and sequential strategy. The improved robustness in this case might be explained by way of data augmentation in latent space.
APPENDIX

Proof of Proposition 9. Nonnegativity of $\tilde{U}I$, \tilde{SI} and \tilde{CI} follows from (13) and the fact that $0 \leq \delta_z \leq \min\{I(Y; Z), I(Y; Z\vert X)\}$ by assumption.

If $I(Y; Z) - \delta_z \leq I(Y; X) - \delta_X$, or equivalently, by the chain rule of mutual information [20], if $I(Y; Z) - \delta_z \leq I(Y; X) - \delta_X$, then we have

$$\tilde{U}I(Y; X \vert Z) = \delta_z + I(Y; X) - I(Y; Z),$$

$$\tilde{U}I(Y; X) = \delta_z,$$

$$\tilde{SI}(Y; X, Z) = I(Y; Z) - \delta_z,$$

$$\tilde{CI}(Y; Z\vert X) = I(Y; Z\vert X) - \delta_z.$$

Clearly, the functions $\tilde{U}I$, \tilde{SI} and \tilde{CI} satisfy (9)-(8), and the proposition is proved. The proof for the case when $I(Y; Z) - \delta_z \geq I(Y; X) - \delta_X$ is similar.

Proof of Proposition 10. It suffices to show that the $\delta_\pi(d, \kappa)$ satisfies the bound (13).

Let $e^\star \in M(X; Z)$ achieve the minimum in (11). By definition, $P_Y \vert X = \kappa$, $P_Y \vert Z = d$ and $P_X = \pi$. We have

$$I(Y; X \vert Z) = \sum_x P(x) \sum_z P(z \vert x) D(P(y \vert x, z) \vert P(y \vert z)) \geq \sum_x P(x) D \left(\sum_z P(z \vert x) P(y \vert x, z) \Vert P(y \vert z) \right) = D(P_Y \vert X \Vert P_Y \vert Z \circ P_Z \vert X) \geq D(\kappa \Vert d \circ e^\star \vert \pi) = \delta_\pi(d, \kappa),$$

where the first inequality follows from the convexity of the KL divergence and the second inequality follows from the definition of e^\star.

$$\delta_\pi(d, \kappa) \leq I(Y; X) \quad \text{since}$$

$$I(Y; X) - \delta_\pi(d, \kappa) = D(P_Y \vert X \Vert P_Y \vert P_X) - D(P_Y \vert X \Vert P_Y \vert P_X \circ e^\star \vert P_X) \geq 0.$$