Contribution of periphytic biofilm of paddy soils to carbon dioxide fixation and methane emissions

Sichu Wang,1,2,3 Pengfei Sun,1,2 Guangbin Zhang,1 Neil Gray,4 Jan Dolfing,5 Sofia Esquivel-Elizondo,6 Josep Peñuelas,7 and Yonghong Wu1,2,*

*Correspondence: yhwu@issas.ac.cn
Received: August 6, 2021; Accepted: November 23, 2021; Published Online: November 26, 2021; https://doi.org/10.1016/j.xinn.2021.100192
© 2021 The Author(s). This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Graphical abstract

Public summary
- Field experiments were conducted in tropical, subtropical, and temperate rice paddies
- Periphytic biofilm promoted CO2 fixation and CH4 emission
- Periphytic biofilm acted as a biotic converter of atmospheric CO2 to CH4
Contribution of periphytic biofilm of paddy soils to carbon dioxide fixation and methane emissions

Sichu Wang,1,2,4 Pengfei Sun,1,2 Guangbin Zhang,1 Neil Gray,4 Jan Dolfing,6 Sofia Esquivel-Elizondo,6 Josep Peñuelas,7 and Yonghong Wu1,2,*

1State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China
2Zigui Three Gorges Reservoir Ecosystem, Observation and Research Station of Ministry of Water Resources of the People’s Republic of China, Shuitianba Zigui, Yichang 443605, China
3College of Advanced Agricultural Science, University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
4School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
5Faculty of Energy and Environment, Northumbria University, Newcastle upon Tyne NE1 8QH, UK
6Department of Microbiome Science, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany
7Consejo Superior de Investigaciones Científicas (CSIC), Global Ecology Unit, Centre for Forestry Research and Ecology Applications (CREAF)–CSIC–Universitat Autonoma de Barcelona (UAB), Bellaterra, 08193 Barcelona, Catalonia, Spain

*Correspondence: yhwu@issas.ac.cn
Received: August 6, 2021; Accepted: November 23, 2021; Published Online: November 26, 2021, https://dx.doi.org/10.1016/j.xinn.2021.100192
© 2021 The Author(s). This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Citation: Wang S., Sun P., Zhang G., et al., (2022). Contribution of periphytic biofilm of paddy soils to carbon dioxide fixation and methane emissions. The Innovation 3(1), 100192.

Rice paddies are major contributors to anthropogenic greenhouse gas emissions via methane (CH4) flux. The accurate quantification of CH4 emissions from rice paddies remains problematic, in part due to uncertainties and omissions in the contribution of microbial aggregates to these carbon fluxes. Herein, we comprehensively evaluated the contribution of one form of microbial aggregates, periphytic biofilm (PB), to carbon dioxide (CO2) and CH4 emissions from paddies distributed across three climatic zones, and quantified the pathways that drive net CH4 production as well as CO2 fixation. We found that PB accounted for 7.1%–38.5% of CH4 emissions and 7.2%–12.7% of CO2 fixation in the rice paddies. During their growth phase, PB fixed CO2 and increased the redox potential, which promoted aerobic CH4 oxidation. During the decay phase, PB degradation reduced redox potential and increased soil organic carbon availability, which promoted methanogenic microbial community growth and metabolism and increased CH4 emissions. Overall, PB acted as a biotic converter of atmospheric CO2 to CH4 and aggravated carbon emissions by up to 2,318 kg CO2 equiv ha-1 season-1. Our results provide proof-of-concept evidence for the discrimination of the contributions of surface microbial aggregates (i.e., PB) from soil microbes and a profound foundation for the estimation and simulation of carbon fluxes in a potential novel approach to the mitigation of CH4 emissions by manipulating PB growth.

INTRODUCTION

Rice paddies are globally important sinks for carbon dioxide (CO2) and sources of methane (CH4), with high levels of carbon exchange at the soil-atmosphere interface. Annual emissions of CH4 from rice paddies are estimated to be 20–100 Tg and represent about 5%–20% of annual global anthropogenic emissions. However, uncertainties in estimates of CO2 fixation and CH4 emission from rice paddies still exist. One reason is the underestimation of the contribution of soil-surface microbial aggregates to these carbon fluxes. For CH4 emission estimations and simulations, it is generally assumed that methanogenic substrates are derived only from soil microbes, rice plants, and farmyard manure. Organic carbon derived from microbial aggregates on the soil surface has been poorly considered. Furthermore, the biogeochemical function of microbial aggregates on the soil surface has been neglected due to the challenges of distinguishing their contribution from those of the soil microbes. Periphytic biofilm (PB) is a ubiquitous microbial aggregate that develops at the soil or sediment surface in aquatic ecosystems (Figure S1). These biofilms comprise a dominant biophase (bacteria, algae, fungi, prototzoa, and metazoans), along with a minor abiotic phase composed of extracellular polymeric substances, minerals (iron, Fe; aluminum, and calcium), and nutrients (nitrogen, phosphorus). In aquatic ecosystems, PB accounts for 7%–97% of the total primary productivity, and its biomass in rice paddies may reach 50–620 kg ha-1. Algal biomass in decaying PB is more readily fermented than plant biomass and, as a result, PB-derived carbon influences the composition of soil organic carbon (SOC) and provides varied substrates for soil respiration and methanogenesis. In addition to affecting CO2 assimilation and substrate supply, PB inevitably also affects topsoil and floodwater properties directly associated with CH4 production and oxidation. During the colonization and growth phase of the PB, autotrophs, such as microalgae, dominate the microbial aggregates. Oxygen (O2) released during algal photosynthesis may diffuse into the soil, leading to inhibition of CH4 production and facilitating oxidation of CH4 at the interface of soil and water, preventing CH4 fluxes into floodwater and from there to the atmosphere. During the decay phase of PB, heterotrophs replace autotrophs as the dominant community members. Heterotrophic respiration and the release of labile carbon may lead to greater consumption of O2 resulting in a reductive environment and higher levels of CH4 production. In addition, unlike microalgae in floodwater, the multispecies aggregates (PB) release extracellular polymeric substances to form a barrier by clogging the pore space at soil-water interface, limiting carbon transfer to the atmosphere and promoting its reaction with minerals and competing ions in the matrix. To the best of our knowledge, none of these hypotheses have been experimentally verified, and the net contributions of PB to carbon fluxes have not been properly evaluated.

In this study, we quantified the contribution of PB to CO2 fixation and CH4 emission in rice paddies distributed across three climatic zones. We also used incubation and microcosm experiments to explore the underlying mechanisms of PB effects on CH4 production and aerobic oxidation. The composition and metabolisms of soil methanogenic and methanotrophic communities in the presence of PB were measured using qPCR, high-throughput sequencing, and metabolomic analyses. Our results provide proof-of-concept evidence for the quantization of the contribution of surface microbial aggregates (i.e., PB) to CO2 fixation and CH4 emissions and a solid foundation for potential novel approaches to CH4 emission mitigation by manipulating PB growth.

RESULTS

CO2 and CH4 fluxes in fields

CO2 and CH4 fluxes from rice paddies with and without PB were monitored in situ during the whole rice growing season. CO2 fluxes decreased with time in the first 10 days and were usually negative from the fifth day after flooding onward (Figures 1A–1C). Totals of 626, 1,680, and 1,655 kg ha-1 CO2 were fixed in the tropical, subtropical, and temperate experimental paddy fields, respectively, in the presence of PB during the rice season daylight periods. The presence of PB promoted CO2 uptake (Figures 1D–1F); fixation of CO2 by the PB was at 79, 211, and 118 kg ha-1 in the tropical, subtropical, and temperate paddies, representing 12.7%, 12.5%, and 7.2% of the total CO2 fixation. PB tended to fix CO2 during the early half of the rice season.

CH4 fluxes increased after flooding and transiently declined to ~0 mg m-2 h-1 during the mid-season aeration period in the subtropical and temperate paddy fields and essentially stopped after the 80th day, when the soil was dried for rice harvest (Figures 2A–2C). The cumulative CH4 emissions from the tropical,
subtropical, and temperate experimental paddy fields with PB were 68.2, 262.4, and 41.2 kg ha\(^{-1}\), respectively. The presence of PB increased CH\(_4\) emission (Figures 2D–2F): the total CH\(_4\) emission induced by PB amounted to 4.8, 101, and 4.3 kg ha\(^{-1}\) over a single rice growing season across tropical, subtropical, and temperate rice paddies. These represented 7.1%, 38.5%, and 10.4% of the total CH\(_4\) emission of the experimental paddies. During mainly the later half of the rice season, fluxes of CH\(_4\) were lower in the presence of PB than in its absence.

CH\(_4\) production and oxidation by PB

To test whether PB itself produces CH\(_4\), we incubated PB in serum bottles and measured CH\(_4\) concentrations in the headspace over time (Figure 3A). We found that under anaerobic conditions CH\(_4\) emission was not detected in the presence of PB, even with an additional supply of acetate, which is a methanogenic substrate (CH\(_3\)COOH \(\rightarrow\) CH\(_4\) + CO\(_2\))\(^{20}\), in contrast, CH\(_4\) emission was observed from the anaerobic soil, and the presence of PB increased CH\(_4\) flux in the initial 2 days.

To test whether PB is capable of CH\(_4\) oxidation, we incubated different amounts of PB in Woods Hole medium with a high initial concentration of CH\(_4\) (<10,000 ppm/6.530 \(\mu\)g L\(^{-1}\)). The CH\(_4\) was consumed over time in all bottles (Figure 3B), including in the control without PB. Nevertheless, by day 4, the depletion of CH\(_4\) in the incubations that had received the largest amounts of PB amendment was significantly greater (p < 0.05) than in the absence of PB. Consistent with this evidence of biologically mediated CH\(_4\) removal, in separate experiments we detected higher concentrations of dissolved O\(_2\) in floodwater in the presence of PB (Figure S2).

Soil organic carbon

Flooded soil was the main CH\(_4\) source in rice paddy. To evaluate the effect of PB on soil properties, soil columns were incubated for 40 days in microcosms under flooding (Figure S3A). The PB grew rapidly in the first 10 days (growth phase), reached a maximum biomass, and then began autogenic sloughing between day 10 and day 20, and then autogenic sloughing became the dominant process (decay phase) from day 20 onward,\(^{10}\) as indicated by the F\(_2\) in Figure S4A and observed in Figure S5.

The presence of PB increased the concentration and changed the composition of the SOC. Effects were most pronounced in the 0–1 cm soil layer, with a significant increase in total organic carbon (TOC) concentrations, from 21.5 ± 1.8 to 24.6 ± 0.9 g kg\(^{-1}\) (Figure 4A). Dissolved organic carbon (DOC) concentrations in the soil pore water in the presence of PB gradually increased after flooding, from 66.2 ± 8.1 to 81.9 ± 5.6 mg L\(^{-1}\), while DOC concentrations in soil without PB were significantly lower, fluctuating between 48.6 ± 5.9 and 58.8 ± 4.6 mg L\(^{-1}\) (Figure 4B). In the presence of PB, concentrations of 491 different soil organic molecules increased (Figure 4C), with lipids and organic acids accounting for 45% and 13% of those increased organic molecules, respectively (Figure S6A), while the concentrations of 214 soil organic molecules, mostly heterocyclic compounds (Figure S6B), reduced.

Redox potentials

Redox potentials (Ehs) of surface soil and floodwater were profiled during the growth phase (day 10 after flooding) and the decay phase (day 40 after flooding) of PB. At day 10, Ehs of the floodwater and at the 1.5-cm soil depth were similar, but the Eh decreased sharply between the depths of 1.5 and 3.5 cm (Figure 5A). The presence of PB significantly (p < 0.01) increased the Eh of floodwater and surface soil (–1.5 to 1.5 cm depth) from 237 to 257 mV. At depths >3.5 cm, the Eh in soil declined to –30 mV, both with and without PB. At day 40 after flooding there was no change in Eh of the floodwater and surface soil (0–1.5 cm layer) where PB was absent, and in soil >3.5 cm deep, the Eh decreased to –158 mV (Figure 5B). In the presence of PB, there was a steeper decrease in Eh of the surface soil, from 248 mV at the water surface to –200 mV in soil >3.5 cm deep. Regardless of the presence of low-Eh microsites likely present throughout the...
soil column, this low Eh in bulk soil below 3.5 cm is consistent with the potential onset of methanogenesis.27

Microbial composition and metabolism

The size and composition of the communities of methanogens and aerobic methanotrophs in the soil microcosms were influenced by the presence of PB. Regardless of the presence or absence of PB, the mcrA and pmoA gene abundances (indicators of methanogen and methanotroph, respectively) both appeared to be higher in the surface (0–1 cm) soil layer than the abundances at deep soil layers (5–20 cm) (Figures 6A and 6B). This pattern implies that CH4 production and its aerobic oxidation were generally more prevalent in the surface soil. However, the presence of PB enhanced the size of the methanogen community in the surface soil (p < 0.05), which increased from (6.25 ± 0.68) × 10^8 to (8.97 ± 0.78) × 10^8 gene sequences g^−1 soil (Figure 6A). In contrast, pmoA gene abundances were higher (p < 0.05) in soil without PB (Figure 6B), indicating that the proliferation of aerobic methanotrophs was inhibited in the presence of PB. The community size of methanogens and aerobic methanotrophs showed no significant differences (p > 0.05) between microcosms with or without PB.

Based on mcrA and pmoA gene sequence analyses, there were similar methanogen and methanotroph genera found in the soils regardless of PB presence or absence, but the relative abundances in the relevant sequence libraries significantly differed (p < 0.05). More specifically, the presence of PB tended to increase the relative abundance of Methanosarcina in both the surface and the deep soil, and led to decreases in Methanobacterium in surface soil (0–1 cm layer) and Methanocorpusculum in the deep soil (5–20 cm layer) (Figure 6C). For the methanotrophs, the presence of PB increased the relative abundance of Methylocaldum from 13.7% to 77.7% in the surface soil. In the deep soil, PB increased the relative abundance of Methylocystis, but decreased that of Methylomonas (Figure 6D). The methanogen and methanotroph genera found in PB were consistent with those in soil. Methanobacterium and Methylocystis were the most abundant methanogen and methanotroph genera, respectively, in PB, but were in proportions of only 3.8%–12.2% and 3.8%–23.8% in soil.

Figure 2. CH4 flux in the experimental paddy fields

CH4 flux in the (A) tropical, (B) subtropical, and (C) temperate experimental paddy fields during a rice growth season with and without PB, and the fluxes induced by PB (D, tropical; E, subtropical; and F, temperate). In (A–C), the error bars indicate the SD of triplicate results. In (D–F), positive values indicate that gas fluxes in the presence of PB were greater than in the control (absence of PB), and negative values indicate the reverse.

Figure 3. Methanogenesis and CH4 oxidation capacity of PB

(A) Methane emissions by PB and soil under anaerobic incubation. (B) Consumption of CH4 in the headspace of the bottles with different amounts of PB. Error bars are SD of three replicates.
The main methanogenic pathways in paddy soil are acetoclastic methanogenesis (CH₃COOH → CH₄ + CO₂) and hydrogenotrophic methanogenesis (4H₂ + CO₂ → CH₄ + 2H₂O). We analyzed key metabolites involved in methanogenesis via metabolomics (Figure S7 and Table S1) and found that concentrations of coenzyme F₄₂₀, which is a key electron transporter involved in two steps of hydrogenotrophic methanogenesis from methenyltetrahydromethanopterin to methyltetrahydromethanopterin; F₄₂₀H₂, and their precursor, the coenzyme F₄₂₀,18 were upregulated in the presence of PB, leading to an acceleration of methanogenesis via the hydrogenotrophic pathway. In addition, the upregulation of the metabolites acetyl-coenzyme A, malonyl-coenzyme A, and 3-hydroxypropionyl-coenzyme A in the 3-hydroxypropionate (3HP) bicycle metabolic pathway also suggested a more active carbon fixation in the PB group (consistent with Figure 3).

DISCUSSION

Indigenous capacity of periphytic biofilm to produce and oxidize CH₄

The incubation experiments indicated that PB has little indigenous capacity to produce CH₄, but may promote aerobic CH₄ oxidation. However, based on the sequence analyses, both mcrA and pmoA genes were present in PB (Figure S8), indicating that methanogens and methanotrophs coexist in PB. As methanogens are strict anaerobes, methanogenesis was suppressed by photosynthetic microalgae due to O₂ release in the PB environment. Therefore, PB worked as an CH₄ sink through both the production of O₂ and the provision of a habitat for aerobic methanotrophs.

The underlying reasons that PB promoted CH₄ emission and CO₂ fixation

The promotion of CO₂ fixation by PB may be attributed to autotrophs present in PB. Following fertilizer application and flooding, PB colonizes rapidly on the soil surface due to favorable light and nutrient conditions. Microalgae and other autotrophs in PB fix CO₂ from the atmosphere during photosynthesis, the temporal fluctuation in CO₂ flux was consistent with variations in daily weather patterns (temperature and illumination). After the early stages, PB decayed as the canopy cover of the developing rice increased, as a result of reduced light and nutrient availability. The light dependence indicated that microbial CO₂ fixation in rice paddies is phototrophic rather than chemotrophic. Microbial CO₂ fixation plays a significant role in the terrestrial carbon sink. The rate of microbial phototrophic CO₂ fixation was significantly higher in rice paddies than in upland soils, which might be attributed to CO₂ fixation of algae in PB (7.2%–12.7% of the total CO₂ sink in this study).

Fixation of CO₂ was accompanied by release of O₂, and might promote CH₄ oxidation. Expectedly, PB promoted CH₄ emission from soil (Figures 2 and 3A), possibly due to the effects of PB on the soil properties and soil microbial composition directly associated with CH₄ production, e.g., availability of methanogenic substrates, soil Eh, and activity of methaneotrophs.

Variations in Eh reflected the dynamics of the release and depletion of electrons and terminal electron acceptors such as O₂ and Fe³⁺. Photosynthetic microalgae were the dominant community during the growth phase of PB, and O₂ released by microalgae diffused into floodwater and surface soil and increased the Eh (Figure 5A). As PB began autogenic sloughing, the exudations and minimal debris were released to the soil and degraded by soil microbes, leading to a depletion of soil O₂ and of other electron acceptors. When O₂ released by PB was in excess of that consumed during degradation of PB debris, the Eh decreased in the near-surface soil during the decay phase of PB (Figure 5B).

This methanogenic potential is also consistent with the observed reduction of the electron acceptor Fe⁴⁺ at this depth in the PB group soil at day 40 (Figure 5D), which similarly implies a more reducing environment in the presence of PB. Following the typical model of a thermodynamically controlled redox succession in saturated soil, the reduction of Fe⁴⁺ would be predicted to proceed prior to the onset of methanogenesis as a function of depth. Accordingly, it appears that the bulk-phase solid Fe had been reduced.

Changes in size and composition of microbial communities are closely related to their environments, and Eh and substrate composition and availability are major drivers of this change. For instance, since methanogens are strict anaerobes, a higher SOC availability, as well as lower Eh, promoted an increase in the methanogen community size in the surface soil with PB (Figure 6A). The majority of methanogens, e.g., genera Methanococci, Methanosarcina, and Methanocaldus produce CH₄ through the hydrogenotrophic pathway, but Methanosarcina has a broader substrate spectrum, which could also utilize acetate to produce CH₄. Evidence for the shift toward Methanosarcina in the soil of the PB group (Figure 6C) suggested a promotion of acetoclastic methanogenesis. Aerobic methanotrophs obligately require an aerobic environment, and accordingly, we found that their abundance was lower (relative to the control) in the presence of PB, due to the lower Eh in the surface soil.

Figure 4. Effects of PB on SOC in microcosms (A) Concentration of TOC in different soil layers after incubation. (B) Temporal changes in concentration of DOC in soil pore water after flooding. (C) Changes in soil concentrations of organic molecules in the presence of PB. The horizontal axis represents the logarithm of the fold changes in the concentration of organic molecules calculated as average concentration in the PB treatment/average concentration in control. Light and dark blue circles indicate increases and decreases in concentrations of organic molecules, respectively, and gray circles indicate organic molecules with no change in concentration (p > 0.05). (D) Proportion of 13C/12C within PB biomass (light blue circles), soil when PB was absent (orange circles), and soil in the presence of PB (dark blue circles) after pulse labeling by 13CO₂. *p < 0.05 and **p < 0.01.
soil, limitation of O₂ imposed by the PB selected for an increased relative abundance of the genus *Methylocaldum* (Figure 6D) against a backdrop of declining community size of methanotrophs (Figure 6B), which is perhaps because *Methylocaldum* is adapted to surviving periods of stress. This property probably gives it an advantage over the genus *Methylocystis*, as it possesses survival strategies in response to the stress of limited O₂ availability. Furthermore, as a type I methanotroph, *Methylocaldum* is thought to grow quickly under favorable conditions.45,46

Taken together, our results show that the presence of PB affected CH₄ emission through the regulation of microbial composition and metabolism, availability of methanogenic substrates, and soil Eh. During its growth phase, PB grew rapidly, and the surface soil was relatively oxidized.

Previous studies in mangrove reported a decrease in CO₂ fluxes by biofilms due to photosynthetic CO₂ consumption at the sediment surface,49 which is consistent with the results in rice paddies. However, different from in rice paddies, the CH₄ flux was also reduced by biofilm on the mangrove soil surface. This might be attributed to the different biofilm biomass, microbial composition, tidal cycle (flooding and drainage), and flux measurement intervals compared with rice paddies.

Contribution of periphytic biofilm to carbon flux

The global CH₄ emission factor of flooded rice fields was estimated to be 1.19 kg ha⁻¹ day⁻¹ (4.96 mg m⁻² h⁻¹),50 and the seasonal average CH₄ flux in

Figure 5. Effect of PB on redox potential (Eh, mV) of floodwater and surface soil Eh profiles in the microcosms with and without PB during (A) the growth phase (day 10 after flooding) and (B) the decay phase (day 40 after flooding) of PB. Error bars representing SD (n = 3) are mostly smaller than the data symbols and hence not observable.

Figure 6. Effects of PB on the size and composition of methanogen and aerobic methanotroph communities in the surface and deep layer of paddy soil microcosms after incubation. Gene abundances of (A) *mcrA*, quantifying the methanogens, and (B) *pmoA*, quantifying the methanotrophs, and genus-level compositions of (C) methanogenic and (D) methanotrophic communities in the soil.
China is 9.02 mg m⁻² h⁻¹. In this study, the seasonal CH₄ fluxes from tropical, subtropical, and temperate experimental paddy fields were 4.12, 9.42, and 1.48 mg m⁻² h⁻¹ on average in the presence of PB, respectively, and 3.82, 5.57, and 1.32 mg m⁻² h⁻¹ from fields without PB, which are in the same range as other studies.

We quantified the contribution of PB to paddy carbon flux by comparing the fluxes induced by PB with the total flux from fields with PB. In the "with PB" field, the paddy was managed based on local practice, and PB grew normally without intervention, which is suitable for being a reference. The contributions of PB to the total CO₂ sink and CH₄ efflux are estimated as 7.2%–12.7% and 7.1%–38.5%, respectively, in the experimental paddy fields. Variations in the contribution of PB to carbon flux were found among the three climatic zones.

Soil TOC content (Table S2), DOC content (Figure S4B), and PB biomass (Figure S4A) were measured in the three experimental paddy fields. The PB biomass, as well as TOC and DOC contents, was highest in the subtropical field compared with tropical and temperate, indicating a stronger CO₂ uptake of the subtropical PB. The increase in CH₄ emission induced by PB is mainly attributed to the organic input from PB. The highest PB biomass led to maximum DOC accumulation and methanogen abundance and, as a result, the most active CH₄ emission induced by PB. Further studies are still needed to investigate the factors driving PB biomass (e.g., soil and climate properties) and quantitatively explain the changes in CH₄ and CO₂ flux.

Despite the variations in contribution of PB to carbon flux, microbial aggregates on the soil surface of tropical, subtropical, and temperate rice paddies all increased CH₄ emissions through CO₂ fixation, carbon release, and associated increases in labile SOC availability. PB functioned as a biotic converter that transferred atmospheric CO₂ into CH₄. The amount of CO₂ fixed by PB was 2.1–57.3 times that of induced CH₄ emissions, indicating a net flow of carbon from the atmosphere to the rice paddies. However, CH₄ is a potent greenhouse gas, with a 25-fold greater greenhouse warming potential than CO₂ on a 100-year time horizon. The presence of PB reduced greenhouse gas emissions by 11.8 kg CO₂ equiv ha⁻¹ season⁻¹ in the temperate experimental paddy, and increased by 40.8 and 2,318.0 kg CO₂ equiv ha⁻¹ season⁻¹ in the tropical and subtropical experimental paddies, respectively.

Worldwide, the role of PB in CH₄ emissions has not been recognized. PB is ubiquitously distributed across tropical, subtropical, and temperate rice paddies, and the assimilated CO₂ by PB reached 79, 211, and 118 kg ha⁻¹ season⁻¹, respectively. The decay phase of PB (days 20–40 after flooding) exactly overlapped with the period when the paddy soils showed maximum CH₄ emission potentials, and therefore, the PB exudations and debris provided abundant organic carbon for CH₄ production. This suggests the possibility of developing mitigative strategies for greenhouse gas emissions through PB regulation. Decay of PB is due to the low availability of light and nutrients at the tillering stage of rice. If its light and nutrient capture ability are improved, the lifespan of PB is expected to be prolonged, which on one hand helps the rice paddy to fix more CO₂ and, on the other hand, stagger the times of PB carbon input and maximum CH₄ emission potentials, hence enhancing the carbon sink of terrestrial ecosystems and achieving sustainable development and carbon neutrality.

Conclusions
This study provides proof-of-concept evidence for the discrimination of the contributions of surface microbial aggregates (i.e., PB) from those of soil microbes to CO₂ and CH₄ emissions throughout the rice growing season. Microbial aggregates (i.e., PB) on soil surfaces increased CH₄ emission through CO₂ fixation by autotrophs and were associated with increases in availability of labile SOC and changes in Eh and the soil microbiome. Thus, PB functioned as a biotic converter of atmospheric CO₂ into CH₄. Overall, microbial aggregates at the soil surface play a pivotal role in carbon biogeochemistry of rice paddies, confirming that they should be accounted for in the development and optimization of predictive models of global carbon fluxes.

MATERIAL AND METHODS
Material and methods are provided in the supplemental information.

REFERENCES
1. Saito, M., Miyata, A., Nagai, H., and Yamada, T. (2005). Seasonal variation of carbon dioxide exchange in rice paddy field in Japan. Agr. For. Meteorol. 135, 93–109.
2. Runkle, B.R.K., Suvcovec, K., Reba, M.L., et al. (2019). Methane emission reductions from the alternate wetting and drying of rice fields detected using the eddy covariance method. Environ. Sci. Technol. 53, 671–681.
3. Intergovernmental Panel on Climate Change (1997). Methane emissions from rice cultivation. Flooded rice fields. In Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual https://www.ipcc-nggip.iges.or.jp/public/gl/guidelines/ch4ref5.pdf.
4. Intergovernmental Panel on Climate Change (2013). Climate change 2013: the physical science basis. In Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change https://www.ipcc.ch/site/assets/uploads/2018/02/WGIAR5_all_final.pdf.
5. Bridgham, S.D., Cadillo-Díazoz, H., Keller, J.K., and Zhuang, Q. (2009). Global estimates of the inventory and mitigation potential of methane emissions from rice cultivation conducted using the 2006 Intergovernmental Panel on Climate Change Guidelines. Glob. Biogeochem. Cy. 23, GB2002.
6. Han, Y., Saito, M., and Fisher, J.F.M. (1998). A semi-empirical model of methane emission from flooded paddy rice soils. Glob. Change Biol. 4, 247–268.
7. Fumoto, T., Kobayashi, K., Li, C., et al. (2008). Revising a process-based biogeochemistry model (DNDC) to simulate methane emission from rice paddy fields under various residue management and fertilizer regimes. Glob. Change Biol. 14, 382–402.
8. Oertel, C., Matschullat, J., Zurb, K., et al. (2016). Greenhouse gas emissions from soils—a review. Geochim. 76, 327–352.
9. Wu, Y. (2016). Periphyton: Functions and Application in Environmental Remediation (Elsevier).
10. Zhu, N., Wu, Y., Tang, J., et al. (2018). A new concept of promoting nitrate reduction in surface waters: simultaneous supplement of denitrifiers, donor electron pool, and electron mediators. Environ. Sci. Technol. 52, 8617–8626.
11. Azim, M.E. (2009). Photosynthetic periphyton and surfaces. In Encyclopedia of Inland Waters, G.E. Likens, ed. (Academic Press), pp. 184–191.
12. Flipo, N., Rabouille, C., Poulin, M., et al. (2007). Primary production in headwater streams of New Caledonia. Geoderma 142, 202–203.
13. Liang, X., Zhang, X., Sun, Q., et al. (2015). The role of oxic water column methanogenesis as influencing factors. Environ. Sci. Pollut. R. 22, 5350–5363.
14. Iguchi, H., Umeda, R., Taga, H., et al. (2019). Community composition and methane oxidation activity of methanotrophs associated with duckweeds in a fresh water lake. J. Biosci. Bioeng. 128, 450–453.
15. Tang, J., Zhu, N., Zhu, Y., et al. (2018). Sustainable pollutant removal by periphytic biofilm via microbial composition shifts induced by uneven distribution of CeO₂ nanoparticles. Bioresour. Technol. 248, 75–81.
16. Malayan, S.K., Bhata, A., Kumar, A., et al. (2016). Methane production, oxidation and mitigation: a mechanistic understanding and comprehensive evaluation of influencing factors. Sci. Total Environ. 572, 874–896.
17. Wang, Z.P., DeLaure, R.D., Patrick, W.H., and Masschelein, P.H. (1993). Soil redox and pH effects on methane production in a flooded rice soil. Soil Sci. Soc. Am. J. 57, 382–385.
18. Fenchel, T., King, G.M., and Blackburn, T.H. (2012). Chapter 1 – bacterial metabolism. In Bacterial Biogeochemistry, Third Edition, T. Fenchel, G.M. King, and T.H. Blackburn, eds. (Academic Press), pp. 1–34.
19. Allen, K.D., and White, R.H. (2018). Identification of the radical SAM enzymes involved in the biosynthesis of methanoplan and coenzyme F₄³₀ in methanogens. Method. Enzymol. 606, 461–483.
20. Herter, S., Farthesis, J., Gado, O.N., et al. (2001). Autotrophic CO₂ fixation by Chloroflexus aurantiacus: study of glyoxylate formation and assimilation via the 3-hydroxypropionate cycle. J. Bacteriol. 183, 4305–4316.
21. Yan, Z., Shen, T., Li, W., et al. (2012). Contribution of microalgae to carbon sequestration in a natural karst wetland aquatic ecosystem: an in-situ mesocosm study. Sci. Total Environ. 768, 144387.

Report

www.the-innovation.org
32. Ge, T., Wu, X., Chen, X., et al. (2013). Microbial phototrophic fixation of atmospheric CO2 in China subtropical upland and paddy soils. Geochim. Cosmochim. Ac. 113, 70–78.

33. Saad-Pulliçino, U., Minnott, E.F., Sodano, M., et al. (2015). Linking dissolved organic carbon cycling to organic carbon fluxes in rice paddies under different water management practices. Plant Soil 401, 273–290.

34. Hatala, J.A., Detto, M., and Baldocchi, D.D. (2012). Gross ecosystem photosynthesis causes a diurnal pattern in methane emission from rice. Geophys. Res. Lett. 39, 106409.

35. Penning, H., and Conrad, R. (2007). Quantification of carbon flow from stable isotope fractionation in rice field soils with different organic matter content. Org. Geochem. 38, 2058–2069.

36. Klein, T.A., Ahmad, S., and Whitney, J.C. (2020). Contact-dependent interbacterial antagonism mediated by protein secretion machines. Trends Microbiol. 28, 387–400.

37. Spaepen, S., Vanderleyden, J., and Remans, R. (2007). Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol. Rev. 31, 425–448.

38. Yu, C., Harrold, D.R., Claypool, J.T., et al. (2017). Nitrogen amendment of green waste impacts microbial community, enzyme secretion and potential for lignocellulose decomposition. Process. Biochem. 52, 214–222.

39. Kalscheur, K.N., Rojas, M., Peterson, C.G., et al. (2012). Algal exudates and stream organic matter influence the structure and function of denitrifying bacterial communities. Microb. Ecol. 64, 881–892.

40. Thauer, R.K., Kaster, A.K., Seedorf, H., et al. (2008). Methanogenic archaea: ecologically relevant differences in energy conservation. Nat. Rev. Microbiol. 6, 579–591.

41. Ali, M.A., Saltar, M.A., Iqbal, M.N., and Inubushi, K. (2014). Integrated effects of organic, inorganic and biological amendments on methane emission, soil quality and rice productivity in irrigated paddy ecosystem of Bangladesh: field study of two consecutive rice growing seasons. Plant Soil 378, 239–252.

42. Jiang, Y., Liao, P., van Gestel, N., et al. (2018). Lime application lowers the global warming potential of a double rice cropping system. Geoderma 325, 1–8.

43. Thayer, A.K., Marchand, C., and Allenbach, M. (2019). Biofilm and temperature controls on greenhouse gas (CO2 and CH4) emissions from a Rhizophora mangrove soil (New Caledonia). Sci. Total Environ. 650, 1019–1028.

44. Penning, H., Zhang, H., Dong, J., et al. (2018). A comparison of CH4 emissions from coastal and inland rice paddy soils in China. Catena 170, 365–373.

45. Jiang, Y., Liao, P., van Gestel, N., et al. (2018). Lime application lowers the global warming potential of a double rice cropping system. Geoderma 325, 1–8.

46. Sun, M., Zhang, H., Dong, J., et al. (2018). A comparison of CH4 emissions from coastal and inland rice paddy soils in China. Catena 170, 365–373.

47. Jacotot, A., Marchand, C., and Allenbach, M. (2019). Biofilm and temperature controls on greenhouse gas (CO2 and CH4) emissions from a Rhizophora mangrove soil (New Caledonia). Sci. Total Environ. 650, 1019–1028.

48. Kong, D., Li, S., Jin, Y., et al. (2019). Linking methane emissions to methanogenic and methanotrophic communities under different fertilization strategies in rice paddies. Geoderma 347, 233–243.

49. Gao, D., Sheng, R., Whiteley, A.S., et al. (2020). Effect of phosphorus amendments on rice rhizospheric methanogens and methanotrophs in a phosphorus deficient soil. Geoderma 368, 114312.

50. Gao, D., Sheng, R., Whiteley, A.S., et al. (2020). Effect of phosphorus amendments on rice rhizospheric methanogens and methanotrophs in a phosphorus deficient soil. Geoderma 368, 114312.

51. Sherry, A., Osborne, K.A., Sodwyck, F.R., et al. (2016). A temperate river estuary is a sink for methanotrophs adapted to extremes of pH, temperature and salinity. Environ. Microbiol. Rep. 8, 122–131.

52. Sherry, A., Osborne, K.A., Sodwyck, F.R., et al. (2016). A temperate river estuary is a sink for methanotrophs adapted to extremes of pH, temperature and salinity. Environ. Microbiol. Rep. 8, 122–131.

53. Sherry, A., Osborne, K.A., Sodwyck, F.R., et al. (2016). A temperate river estuary is a sink for methanotrophs adapted to extremes of pH, temperature and salinity. Environ. Microbiol. Rep. 8, 122–131.

54. Sherry, A., Osborne, K.A., Sodwyck, F.R., et al. (2016). A temperate river estuary is a sink for methanotrophs adapted to extremes of pH, temperature and salinity. Environ. Microbiol. Rep. 8, 122–131.

55. Sherry, A., Osborne, K.A., Sodwyck, F.R., et al. (2016). A temperate river estuary is a sink for methanotrophs adapted to extremes of pH, temperature and salinity. Environ. Microbiol. Rep. 8, 122–131.