Specific HEMTs for deep cryogenic high-impedance ultra low
low-frequency noise read-out electronics

Y.X. Liang, Q. Dong, U. Gennser, A. Cavanna, and Y. Jin
CNRS, Laboratoire de Photonique et de Nanostructures, Route de Nozay, 91460
Marcoussis, France
liang@lpn.cnrs.fr, yong.jin@lpn.cnrs.fr

Abstract. For decades, high-impedance and low-frequency readout electronics with the lowest
noise level is based on silicon JFETs (Junction Field-Effect Transistors) with an equivalent
input noise voltage level of about 1 nV/Hz$^{1/2}$ at 1 kHz. But their operating temperature is
limited to be higher than 100 K due to their intrinsic structure. It is well known that HEMTs
(High Electron Mobility Transistors) are intrinsically available for very low temperature
operation, but conventional HEMTs suffer high gate leakage current and large channel low-
frequency noise under cryogenic condition. In order to overcome these two major issues, we
have extensively investigated the conventional HEMTs at 4.2 K by the bias-cooling method. At
a given working point, the dependence of the channel low-frequency noise on the gate leakage
current has been found out and this has allowed us to devise a new transistor structure. Specific
AlGaAs/GaAs HEMTs have then been fabricated. At 4.2 K, our HEMTs can attain a noise
level lower than 0.8 nV/Hz$^{1/2}$ at 1 kHz with an intrinsic gain A_{int} of 26 and an input gate-source
capacitance of 46 pF, and their gate leakage current can be limited about 1 pA. This result
shows that our specific HEMTs may be a suitable transistor for future ultra-low noise deep
cryogenic high-impedance and low-frequency readout electronics.

1. Introduction
Cryogenic devices are designed and well used in many different fields [1,2]. And, most of them are
concerned about the cryogenic detectors and their signal amplification at very low temperatures, so
that high performance cryo-preamplifiers with very stringent signal-to-noise ratio are urgently needed
[1,2]. For decades, high-impedance and low-frequency readout electronics with the lowest noise level
is based on silicon JFETs (Junction Field-Effect Transistors) with an equivalent input voltage noise of
about 1 nV/Hz$^{1/2}$ at 1 kHz [3]. But their operating temperature is limited to be higher than 100 K due
to their intrinsic structure. The high electron mobility transistors (HEMTs) based on AlGaAs/GaAs 2
dimensional electron gas (2DEG) are naturally promising for the cryogenic application on the high-
impedance and low-frequency readout electronics, due to their special advantages [4-6]. Therefore, it
is of great interest to clarify the origin of their low frequency noise (LFN). Recently, the bias-cooling
method has been used to investigate the random telegraph noise (RTN) in AlGaAs/GaAs 2DEG QPCs
devices and from a microscopic approach RTN is considered as a source of the g-r noise and 1/f noise
[7]. After the sample is cooled from 300 K to 4.2 K with a positive (negative) gate bias V_{ge}, because
more (less) electrons are frozen as the DX centers in the doping area, the gate bias V_{ge} for a same drain
current/bias (I_{ds}/V_{ds}) working point shifts to positive (negative) at 4.2 K. And, the RTN at 4.2 K can be
suppressed for the positive V_{ge} cases [7].

Published under licence by IOP Publishing Ltd
In this work, in Section 2, by the bias-cooling method, from a macroscopic approach, the dependence of the LFN on the gate leakage current I_{gs} in the HEMT at 4.2 K has been investigated. The LFN increases with the increase of $|I_{gs}|$ at the same chosen working point (i.e. same drain bias V_{ds} and drain current I_{ds}). The mechanism of the LFN is elucidated [8]. In Section 3, the specific AlGaAs/GaAs heterojunction is used for the fabrication of the HEMTs. For these special designed HEMTs, I_{gs} is suppressed, so the LFN is suppressed. At 4.2 K, our specific HEMTs can attain a equivalent input noise voltage level $e_{n, in}$ lower than 1 nV/Hz$^{1/2}$ at 1k Hz with a high intrinsic gain, a low source-gate capacitance, and low gate leakage current.

2. Dependence of channel low frequency noise and gate leakage current in conventional HEMTs

2.1. Structure of the conventional HEMTs

The conventional HEMTs are fabricated using a Si δ-doping AlGaAs/GaAs heterojunction grown by molecular beam epitaxy. The structure of the AlGaAs/GaAs heterojunction consist of, a 20 nm Al$_{0.37}$Ga$_{0.63}$As spacer layer on the GaAs buffer layer, a Si δ-doping layer with the dopant density of 1.1\times1011 cm$^{-2}$, a 15 nm Al$_{0.37}$Ga$_{0.63}$As barrier layer, and a 5 nm GaAs cap layer. The AlGaAs/GaAs interface for 2DEG is 40 nm underneath the surface. At 4.2K, the carrier concentration of the 2DEG is 4.9\times1011 cm$^{-2}$ and its mobility is 2.8\times105 cm2/Vs. The gate length is 16 μm and width is 1.89 mm. Before the metallic deposition of the Schottky gate, about 1 nm GaAs cap layer has been etched.

2.2. Measurement results

![Figure 1. I_{ds}-V_{gs} curves (Solid lines) with V_{ds} = 100 mV for the V_{gc} cases of -100 mV (Black), 0 mV (Green), and 100 mV (Red), respectively. The circular symbols indicate the points of I_{ds} = 1 mA V_{ds}=100 mV at V_{gs} = -293, -208 and -113 mV, respectively. I_{ds}-V_{ds} curves (Dashed lines) at these three different V_{gs} for the upper three V_{gc} cases, respectively.](image)

The HEMTs are cooled from 300 K to 4.2 K with an applied gate bias V_{gc} from -120 to 150 mV. Fig. 1 shows I_{ds} vs. V_{gs} at the drain bias V_{ds} = 100 mV for the cases of V_{gc} = -100, 0 100 mV at 4.2 K. For the more negative (positive) V_{gc} case, the I_{ds}-V_{gs} curve clearly shifts to more (less) negative V_{gs}, but keeps the same shape. The working point for the noise measurements is chosen as I_{ds} = 1 mA and V_{ds}=100 mV. For the different V_{gc} cases, at the respective V_{gs} for the chosen working point, Fig. 1 also shows I_{ds} vs. V_{gs}. And, the I_{ds}-V_{ds} curves are identical, independent of V_{gc}. Thus, the transistor characteristics for an amplifier, i.e. the transconductance g_{m} and the output conductance g_{d}, remain the same. For the different V_{gs} cases, V_{gs} for the chosen working point and the corresponding $|I_{gs}|$ are shown in the Fig. 2a. Those V_{gs} data are almost linear to V_{gc}. $|I_{gs}|$ is as small as the measurement limit.
for the cases of $V_{gc} \geq 50$ mV, and increases almost exponentially with the decrease of V_{gc} for $V_{gc} \leq 25$ mV.

The noise measurement setup is shown as the inset of Fig. 2b, where the load resistance R_L is 301 Ω. The channel voltage power spectra density (PSD) S_V is measured by a vector signal analyzer from 50 to 100k Hz. The noise current PSD S_I is deduced from $S_I = S_V / R_c^2 - 4k_B T R_c$, where $R_c = R_g / (R_g + 1)$ is the effective output resistance, k_B is the Boltzmann constant, and T is the temperature. S_I vs. the frequency f at the chosen working point for the cases of $V_{gc} = -100$, -50, 0, 50, 100, and 150 mV are shown in Fig. 2b. For the cases of $V_{gc} = 50$, 100, and 150 mV, S_I curves are almost same, and they show the typical $1/f$ noise shape with $S_I \propto 1/f^\alpha$ and $0.9 < \alpha < 1$. For the cases of $V_{gc} \leq 0$ mV, the curves show $S_I \propto 1/f^\alpha$ with $\alpha \approx 1.65$ in the high frequency regime, and S_I is higher for the more negative V_{gc} cases. For these cases, the g-r noises appear and more g-r noises are added into the LFN for the more negative V_{gc} cases.

Figure 2a. V_{gs}-V_{gc} relationship for the chosen working point $I_{ds} = 1$ mA and $V_{gs} = 100$ mV, the experimental results (circular symbols) are in agreement with the simulation (line). $|I_{gs}|$ for the cases of V_{ge} from -120 to 150 mV is shown by the square symbols.

Figure 2b. S_I vs. f from 50 to 100k Hz at the chosen working point for the different V_{ge} cases. The upper dashed line is proportional to $1/f^{1.65}$ and the lower one is proportional to $1/f^{0.95}$. The insert shows the noise measurement setup.

2.3. Discussion

For the AlGaAs/GaAs 2DEG devices, some electrons are frozen as the meta-stable DX centers (DX-) in the doping area at about 120 K [8]. For the HEMTs at 4.2 K, because the less electrons are frozen as DX- during cooling the samples from 300 K to 4.2 K for the more negative V_{gc} cases, the electron density in the 2DEG is higher and consequently, the V_{gs} needed for a given electron density, and thus I_{ds}-V_{gs}, are shifted towards more negative values.

For the chosen working point, Fig. 3a shows the band diagram for a positive V_{gc} case. For this kind of cases, the gate Fermi level $E_{Fg} = -e V_{gs}$ is much lower than shallow donor levels E_d. Only the direct-tunnelling from the gate to the 2DEG may exist, and the thickness of the heterostructure barrier for the tunnelling is that of the barrier layer plus the spacer layer, so $|I_{gs}|$ reaches our measurement limit as shown in Fig. 2a. And, the direct-tunnelling cannot produce the g-r noise [8], so S_I remains at its minimal level as shown in Fig. 2b.
But, for the negative V_{gc} cases, or even just the case that V_{gc} is lower enough, E_{fg} can be higher than E_d for the chosen working point, as shown as the band diagram in Fig. 3b. When $E_{fg} > E_d$, there is not only the direct-tunnelling, but also the sequential-tunnelling from the gate to the empty levels in the doping area formed by the ionized shallow donors or the potential valley formed by the barrier layer and spacer layer (DAPV area in Fig. 3), and then to the 2DEG. For the sequential-tunnelling, the empty levels in the DAPV area may act as the g-r sites to produce the g-r noises [8]. The LFN is the sum of these g-r noises and the 1/f noise. With the decrease of V_{gc}, because E_{fg} for the chosen working point increases, the electrons can tunnel into the higher energy empty levels in the DAPV area, so more g-r noises are summed into S_I. Hence, $\vert I_{gs}\vert$ increases almost exponentially with the decrease of V_{gc} as shown in Fig. 2a, and S_I increases as shown in Fig. 2b.

In summary, because the different amount of electrons are frozen as the meta-stable DX centers in the doping area, during the conventional AlGaAs/GaAs 2DEG HEMT cooling from 300 K to 4 K with the different gate bias V_{gc}, at 4.2 K, the gate bias V_{gs} for a same drain current/bias (I_{ds}/V_{ds}) working point is different, but the main transistor characteristics, g_m, g_d, and the gain, remain the same. This means, the low frequency noise (LFN) can be observed at the chosen working point at 4.2 K, with the different V_{gs} and gate leakage current I_{gs}. With the increase of I_{gs}, the LFN increases, and its increased component is the g-r noises, which is supposed to be caused by the sequential-tunnelling component of I_{gs}. Hence, if I_{gs} is suppressed, the LFN should also be suppressed.

3. Realization of ultra low low-frequency noise in specific designed HEMTs

3.1. characteristics of the specific designed HEMTs

The specific AlGaAs/GaAs heterojunction are applied to fabricate the HEMTs in order to suppress the gate leakage current. At 4.2 K, the carrier concentration of the 2DEG is 5×10^{11} cm$^{-2}$ and its mobility is 3.7×10^5 cm2/Vs. The gate length and width are as the same as the conventional ones.

3.2. Measurement results

All measurements in this section are performed at 4.2 K. For the HEMTs, I_{ds} and I_{gs} vs. V_{gs}, and I_{ds} vs. V_{ds}, are measured by source meters, and their gate capacitance C vs. V_{gs} at $V_{ds} = 0$ is measured by a
LCR meter. The source-gate capacitance C_{gs} and the drain-gate capacitance C_{gd} are measured by the cut-off frequency method [6,9]. The noise is measured as same as the section 2. The effective output resistance R_e and the external gain A_{ext} are measured by the lock-in amplifier, where $A_{ext} = g_m R_e$. The equivalent input noise voltage level e_{in} is obtained by $e_{in} = \frac{V_{ref}}{A_{ext}}$.

Fig. 4a shows I_{ds} and I_{gs} vs. V_{gs} at $V_{ds} = 10, 60$ and 100 mV, in which V_{gs} regime for the noise measurements is from -159 mV to -190 mV above the threshold. In the noise measurement regime, $|I_{gs}|$ is always less than 1.1 pA due to the specific AlGaAs/GaAs heterojunction. In this regime, the gate capacitance C is almost constant at 72 pF, and C_{gs} and C_{gd} at $V_{ds} = 100$ mV are almost constants as $C_{gs} \approx 46$ pF and $C_{gd} \approx 4.5$ pF.

Fig. 4b shows I_{ds} vs. V_{ds} at V_{gs} from -155 to and -190 mV, and C_{gs} and C_{gd} vs. V_{ds} at $V_{gs} = -165$ mV. C_{gs} increases from $C_{gs} \approx 35$ pF $\approx 1/2C$ at $V_{ds} = 10$ mV in the linear region to $C_{gs} \approx 46$ pF $\approx 2/3C$ in the saturation regime, and C_{gd} decreases from $C_{gd} \approx 40$ pF$\approx 1/2C$ at $V_{ds} = 10$ mV to $C_{gd} < 10$ pF in the saturation regime. C_{gs} and C_{gd} almost keep constant in the saturation region, which is consistent with the theoretical predictions for the characteristic capacitance of an ideal FET [10].

Fig. 5a shows e_{in} at 1 kHz vs. I_{ds} for $V_{ds} = 100$ mV. The lowest e_{in} at 1 kHz is 0.77 nV/Hz$^{1/2}$ at $I_{ds} = 0.8$ mA. The corresponding intrinsic gain A_{int} vs. I_{ds} is also shown in Fig. 5a, where $A_{int} = g_m g_d = A_{ext} R_e / (R_l - R_e)$. And, $A_{int} = 26$ at $I_{ds} = 0.8$ mA and $V_{ds} = 100$ mV. Fig. 5b shows the e_{in} spectra at $I_{ds} = 0.8$ mA and $V_{ds} = 100$ mV, in which e_{in} at 100kHz is 0.18 nV/Hz$^{1/2}$.

Figure 4a. $I_{ds}-V_{gs}$ curves (solid lines) and $I_{gs}-V_{gs}$ curves (dot lines). The noise measurement regime is between the two dashed lines, in which $|I_{gs}| < 1.1$ pA.

Figure 4b. $I_{ds}-V_{ds}$ curves in the noise measurement regime from $V_{gs} = -155$ to -190 mV with the step of -5 mV. $C_{gs}-V_{ds}$ plots and $C_{gd}-V_{ds}$ plots at $V_{gs} = -165$ mV.

Figure 5a. The plots of e_{in} at 1kHz vs. I_{ds} and $A_{int}-I_{ds}$ plots for the fixed $V_{ds} = 100$ mV.

Figure 5b. e_{in} spectra at $I_{ds} = 0.8$ mA and $V_{ds} = 100$ mV.
3.3. Discussion
For the specific designed HEMTs, by the simulation, the gate Fermi level E_{Fg} is found higher than the shallow donor levels E_d in the working regime. But, using the specific AlGaAs/GaAs heterojunction with an additional barrier in barrier layer, at 4.2 K, the gate leakage current I_{gs} is suppressed, so the LFN is suppressed. The lowest $e_{n \text{in}}$ at 1kHz of $0.77 \text{nV/Hz}^{1/2}$ at $I_{ds} = 0.8 \text{mA}$ and $V_{ds} = 100 \text{mV}$ is realized.

4. Conclusion
By the bias-cooling method, from a macroscopic approach, the dependence of the low frequency noise (LFN) on the gate leakage current I_{gs} in the HEMT at 4.2 K has been investigated. The LFN increases with the increase of $|I_{gs}|$ at the same chosen working point (i.e. same drain bias V_{ds} and drain current I_{ds}). The LFN due to I_{gs} is supposed to be caused by the sequential tunnelling component of I_{gs}. The specific AlGaAs/GaAs heterojunction is used for the fabrication of the HEMTs. For these special designed HEMTs, I_{gs} is suppressed, so the LFN is suppressed. At 4.2 K, our specific HEMTs can attain a equivalent input noise voltage level $e_{n \text{in}}$ in about $0.77 \text{nV/Hz}^{1/2}$ at 1kHz at $I_{ds} = 0.8 \text{mA}$ and $V_{ds} = 100 \text{mV}$ with the intrinsic gain $A_{int} = 26$, the source-gate capacitance C_{gs} about 46 pF, the drain-gate capacitance C_{gd} about 4.5 pF, and $|I_{gs}|$ about 1 pA. All these performances are as good as or even better than those of the silicon JFETs for the cryogenic preamplifier. This result shows that our specific HEMTs may be a suitable transistor for future ultra-low noise deep cryogenic high-impedance and low-frequency readout electronics [3].

This work was partly supported by the Réseau RENATECH, “le RTRA Triangle de la Physique” grants N°2008-015T and n° 2009-004T and European FP7-263455. Q. D. is funded by the BDI CNRS/CEA.

References
[1] Gutierrez-D E A, Deen M J and Claeyts C 2001 Low temperature Electronics, (Academic Press) p511-558
[2] Balestra F and Ghibaudo G 2001 Device and circuit cryogenic operation for low temperature electronics (Kluwer Academic Publisher) p 85-125 p241-252
[3] Arnaboldi C, Fasella A, Lund M W and Pessina G 2004 Nuclear Instrum. Meth. Phys. Res. A 517 313
[4] Oukhanski N, Grajcar M, Ilichev E and Meyer H G 2003 Rev. Sci. Instrum. 74 1145
[5] Oukhanski N and Hoenig E 2004 appl. Phys. Lett. 85 2956
[6] Grémion E, Cavanna A, Liang Y X, Gennser U, Cheng M C, Fesquet M, Chardin G, Benoit A and Jin Y 2008 J. Low Temp. Phys. 151 971
[7] Pioro-Ladrière M, Davies J H, Long A R, Sachrajda A S, Gaudreau Zawadzki L P, Lapointe J, Gupta J, Wasilewski Z and Studenikin S 2005 Phys Rev B 72 115331
[8] Liang Y X, Dong Q, Cheng M C, Gennser U, Cavanna A and Jin Y 2011 Insight into low frequency noise induced by gate leakage current in AlGaAs/GaAs HEMTs at 4.2 K, submitted to Appl. Phys. lett.
[9] The same cut-off method is used as Ref. [6], two values of the input resistance in series R_s are used to get two equations to solve C_{gs} and C_{gd}.
[10] Sah C T 1991 Fundamentals of Solid-State Electronics, (World Scientific) Chap 6 651