The enantioselective allylation of ketones is a problem of fundamental importance in asymmetric reaction design, especially given that only a very small number of methods can generate tertiary carbinols. Despite the vast amount of attention that synthetic chemists have given to this problem1–6, success has generally been limited to just a few simple ketone types. A method for the selective allylation of functionally complex ketones would greatly increase the utility of ketone allylation methods in the chemical synthesis of important targets. Here we describe the operationally simple, direct, regioselective and enantioselective allylation of β-diketones. The strong tendency of β-diketones to act as nucleophilic species was overcome by using their enol form to provide the necessary Bronsted-acid activation. This reaction significantly expands the pool of enantiomerically enriched and functionally complex tertiary carbinols that may be easily accessed. It also overturns more than a century of received wisdom regarding the reactivity of β-diketones.

Chiral non-racemic tertiary carbinols are common in important natural products and in medicinal-chemistry research programmes. Asymmetric ketone allylation is one of the few methods available for their direct synthesis, and over the past 15 years there have been several seminal reports that describe important and significant progress towards the development of efficient, practical and highly enantioselective techniques6–8. With only a few exceptions, however, these methods are limited in scope to aryl methyl ketones and aryl linear alkyl ketones (that is, ArCOCH$_2$R, where Ar is an aryl group and R is hydrogen, an alkyl group or an aryl group). Thus, although efficiency and practicality rightly constitute one major focus in asymmetric reaction design, scope, generality, reliability and applicability in complex settings are equally vital to the realization of methods with truly broad utility and that will be widely adopted9.

These thoughts were triggered by our retrosynthesis of the AB spiroketal portion of the potent and precious anti-mitotic marine macrolide spongistatin 110–12—which bears a tertiary carbinol—to β-hydroxyketone 1 (Fig. 1a). It seemed that the ideal13 synthesis of 1 should involve a direct asymmetric allylation of acetylacetone (Fig. 1b). However, although a few sporadic examples of the non-asymmetric allylation of acetylacetone have been reported14–16, there are no known examples of an enantioselective addition of a nucleophile to a β-diketone. In fact, there are simply no general methods that use β-diketones as electrophiles in reactions to form carbon–carbon bonds. This is unsurprising given that β-diketones are not simply compounds with two ketones, but rather are distinct chemical entities that exist primarily in their enol tautomer form. They are rarely used in organic chemical synthesis, and when they are, it is typically as nucleophiles in reactions such as simple alkylations or Knoevenagel condensations. As a result, the synthesis of 1 by means of an asymmetric-allylation approach using known methods would require protection or masking of one of the ketones, thus turning what is in principle an ideal synthesis into a multi-step process that would in practice involve protecting-group manipulations and/or oxidation-state adjustments. The development of a method for the direct asymmetric allylation of acetylacetone seemed a worthy enough aim, but the ultimate goal of this study became the generalization of such a method to a broad range of β-diketones, including unsymmetrical β-diketones. Far from representing a straightforward extension of the proposed method, however, the allylation of unsymmetrical β-diketones poses a further distinct and formidable challenge: the control of regioselectivity (Fig. 1c).

Intrigued by these challenges and by the almost total dearth of useful precedent, we have pursued a general, practical and highly regioselective and enantioselective allylation of β-diketones. We report its successful development and mechanistic elucidation.

Rather than attempting to mask the enol tautomer of the β-diketone \textit{in situ}, preclude its formation or otherwise render it innocuous, our approach centred on the idea that we might instead react it with an allylsilanes to generate β-silyloxyenone 2, which would subsequently undergo intramolecular allylation (Fig. 2a). However, this otherwise beneficial tethering strategy would in this case also lead to deactivation of the ketone electrophile by converting it into a vinylogous silyl ester, raising concerns about whether the desired reaction might be impractically slow and allow competing side reactions (for example, Knoevenagel condensation between 2 and unreacted diketone, or intermolecular diketone allylation by the allylsilane or by 2). Ideally, then, to favour the desired pathway, the complexation should be very fast, so that no unreacted diketone is available for such side reactions, and the allylsilane should become strongly activated upon complexation. Allylsilane 3 and other related aminosilanes are strongly activated by protonation with Bronsted acids17,18. Given that the proposed enol silylation reaction would produce an equivalent of hydrochloric acid, it seemed possible that...
3, which is wholly incapable of allylating ketones, might be perfectly configured to react with β-diketones by way of activated silane complex 4 (Fig. 2a). Indeed, it transpired that allenes 3 smoothly allylated acetylacetone, and, on optimization of the reaction conditions (CHCl₃, 23 °C, 1 h), produced 1 in 72% yield and 89% enantiomeric excess (e.e.) (Fig. 2b). This operationally simple reaction provides direct and scalable access to 1 from two commercially available compounds, and neither 5 nor 6 was allylated by 3 (Supplementary Fig. 1 and 2), which strongly implies that the underlying mechanistic proposal is sound. The enol form of the diketone, which usually represents a serious functional-group incompatibility, has thus been co-opted as the very functionality responsible for the success of the reaction.

With this proof of concept in hand, we examined the scope of the reaction (Fig. 3a). We began with three further symmetrical β-diketones: as shown (Fig. 3b), products 7, 8, and 9 were all obtained in good yields and with good to excellent enantioselectivity, establishing that both t-butyl and aryl ketones are well tolerated. We next examined a series of unsymmetrical β-diketones, in an effort to establish whether and under what circumstances useful levels of regioselectivity could be realized. Whereas substrates that pitted two alkyl ketones against each other led to little or no regioselectivity, we quickly discovered that substrates that pitted a conjugated ketone against an alkyl group consistently reacted such that the alkyl group was added to the alkyl ketone with excellent regio- and enantioselectivity (Fig. 3c). This preference not only led to the efficient and selective production of 10–12, but also operated even when the alkyl group is a t-butyl group (as in 13). Next, we examined 1,3-diphenylpropane–1,3-diones with varying substituents. We were disappointed at first to find that the reaction design entails tethering the allylsilane to the enol form of the diketone and activation of the silane by the liberated hydrochloric acid (HCl). Ar, aryl group. b, First demonstration of the asymmetric allylation of acetylacetone.

In principle, the extension of this reaction methodology to crotylation reactions would allow the establishment of a second stereocentre in the allylic position of the homoallylic alcohol products, but examples of highly diastereo- and enantioselective ketone crotylation reactions are rare⁶,⁷,¹⁹. We therefore decided to interrogate the ability of crotylsilanes 20 and 21 (ref. 20) to crotylate β-diketones, and found that treatment of acetylacetone and benzoylecetone with trans-crotylsilane 20 led to the isolation of 22 (69%, 89% e.e.) and 23 (75%, 97% e.e.) respectively (Fig. 4a). However, treatment of benzoylecetone with cis-crotylsilane 21 resulted in a much slower reaction that provided the desired product in very low yield (less than 15%), along with significant amounts of a by-product that we have tentatively identified as 24. The formation of 24 is readily rationalized as the result of a Knoevenagel condensation cascade that presumably begins with attack of the silyl enol ether complex on unreacted β-diketone. This hypothesis implied that the complexation event is slow in these reactions in general, and that the desired carbon–carbon

Figure 2 Reaction design and proof of concept. a, The reaction design entails tethering the alkylline to the enol form of the diketone and activation of the silane by the liberated hydrochloric acid (HCl). Ar, aryl group. b, First demonstration of the asymmetric allylation of acetylacetone.

Figure 3 Scope of the regio- and enantioselective allylation of β-diketones. a, The β-diketone was treated with 1.2 equiv. of (S,S)-3 in chloroform (CHCl₃) and the resultant mixture was stirred at ambient temperature for 13–27 h. In all cases, the reported yield refers to the yield of isolated (greater than or equal to 20:1 regioisomeric purity) major product after workup and purification by flash chromatography, and the enantiomeric excess (e.e.) was determined by chiral high-performance liquid chromatography. d.r., diastereomer ratio. b, Enantioselective allylation of symmetrical β-diketones. Ph, phenyl group. c, Regio- and enantioselective allylation of unsymmetrical aryl, alkyl β-diketones (r.r., regioisomer ratio). d, Regio- and enantioselective allylation of unsymmetrical diaryl β-diketones.
systems that good to excellent diastereocontrol may be realized with stereochemical consequences, and we have demonstrated in similar converted to enols that tautomerize to ketones on quench and workup. Treatment of 21 and benzoylacetone led to vastly improved results, giving products in these reactions are silyl enol ethers (such as

![Figure 4] Regio-, diastereo- and enantioselective crotylation of \(\beta \)-diketones. a, The crotylation of \(\beta \)-diketones allows the establishment of a second stereocentre in the homoallylic alcohol products, OTf, triflate. b, \(\pi \)-Substitution on the \(\beta \)-diketone substrate may be parlayed into reactions that establish three stereocentres from simple starting materials.

The first is that there is no (fast) interconversion between \(31Z \) and \(32Z \), which may be considered as two regioisomeric pairs of \(E \) and \(Z \) isomers. Once it has been established that the \(E \) and \(Z \) isomers in each pair interconvert quickly (Supplementary Fig. 3), there are two readily apparent possibilities. The first is that there is no (fast) interconversion between \(31Z \) and \(32Z \), and the regioselectivity is determined by the relative rates of formation of \(31Z \) and \(32Z \). The second is that interconversion of \(31Z \) and \(32Z \), presumably by way of \(33 \), is fast and the regioselectivity is determined by the relative energies of transition states \(34 \) and \(35 \). To distinguish between these possibilities, we repeated the reaction of \(27 \) with \(21 \) (Fig. 4b) in deuterated chloroform and monitored it by \(^1\)H NMR spectroscopy (Supplementary Fig. 4). After one hour, the singlet for the methyl group in \(27 \) disappeared and three new singlets appeared at 2.53, 2.11 and 1.97 p.p.m. in a roughly 2:3.4:1 ratio. We have assigned these peaks to the three possible silyl enol ether complexes. Given that the peaks all disappear at the same rate and that this reaction is completely regioselective despite only one of these silyl enol ethers being

\[\text{Figure 5} | \text{General mechanism and origin of regioselectivity. a, A general mechanistic scheme for the allylation of } \beta \text{-diketones wherein the product distribution is determined by Curtin–Hammett kinetics. b, Models for the observed regioselectivity.} \]

![Figure 5]
able to react directly to give the product, we conclude that in these reactions, the interconversion between 31Z and 32Z is fast22–25 and the regioselectivity is determined by the relative energies of transition states 34 and 35: that is, the reaction is governed by Curtin–Hamnett kinetics26.

The regioselectivity observed with substrates wherein R1 = aryl/alkenyl and R2 = alkyl (as in Fig. 3c) is difficult to attribute to a simple steric effect, given the regioselective production of 13. Rather, we propose that the energy of transition state 34a is lower than that for 35a because conjugation is maintained in the former pathway but lost completely in the latter (Fig. 5b, case 1). Conversely, we propose that the regioselectivity observed with substrates wherein both R1 and R2 are aryl groups and at least one bears ortho-substitution (as in Fig. 3d) is the result of steric effects (Fig. 5b, case 2). We expect 2-bromophenyl, mesityl and 2-chloro-3-pyridyl groups to be rotated substantially out of conjugation with the ketones to which they are attached27–29, rendering them highly sterically hindered towards nucleophilic attack, as shown in transition state 35b. By contrast, 2-methoxybenzoyl and ortho-unsubstituted phenyl groups are conjugated30, allowing an unhindered approach of the allyl group as in transition state 34b. Thus, in this context, an ortho-bromophenyl group is effectively large and an ortho-methylphenyl group is effectively small. We believe that this steric effect is large enough to overwhelm the complete loss of conjugation in transition state 34b. The moderate regioselectivity for product 16 is more difficult to rationalize, but it may be that the activation energies for the competing carbon–carbon bond-forming steps are nearly equal, and the selectivity derives from a modest shifting of the equilibrium constant K towards 31Z owing to the silane’s preference for residing away from the larger ortho-methylphenyl group.

We have demonstrated that it is possible to achieve not only the highly enantioselective allylation and crotylation of β-diketones, but also the highly regioselective allylation and crotylation of unsymmetrical β-diketones. The method allows the protecting-group-free, single-step (that is, ideal) synthesis of functionally and stereochemically complex products from readily available—and undifferentiated—β-diketone starting materials. We have elucidated important aspects of the mechanism and found that the regioselectivity is governed by Curtin–Hamnett kinetics. This may have important implications for the extension of this methodology to other dicarbonyl substrate types; experiments along these lines are in progress.

METHODS SUMMARY

The general procedure for the allylation reactions described in Fig. 3 is as follows. To a 0.10 M solution of β-diketone (1.0 equiv.) in anhydrous CHCl3 is added (5S,5'-1.2 equiv.). The resulting mixture is stirred at ambient temperature (roughly 23 °C) for between 12 and 27 h. The mixture is cooled to ~40 °C, n-Bu4NF (4.0 equiv., 1 M in tetrhydrofuran) is added, and the resulting mixture is maintained at ~40 °C for 1 h. Saturated aqueous NH4Cl is added and the mixture is allowed to warm to ambient temperature. The mixture is extracted three times with CH2Cl2. The combined organic layers are washed with water and brine, dried over MgSO4, filtered and concentrated. The residue is purified by flash chromatography on silica gel. For complete experimental details and compound characterization, see Supplementary Information.

Received 5 April; accepted 4 May 2012.

Published online 27 June 2012.

1. Nakamura, M., Hirai, A., Sogi, M. & Nakamura, E. Enantioselective addition of allylzinc reagent to alkynyl ketones. J. Am. Chem. Soc. 120, 5846–5847 (1998).
2. Walter, K. M., Gavenonis, J. & Walsh, P. J. A simple, reliable, catalytic asymmetric allylation of ketones. Acc. Chem. Res. 36, 527–535 (2003).
3. Wu, T. R., Shen, L. & Chong, M. Asymmetric allylation of aldehydes and ketones using 3,3'-disubstituteddibenzo[b,1,7]dithiin-modified boronites. Org. Lett. 6, 2701–2704 (2004).
4. Canales, E., Prasai, K. G. & Soderquist, J. A. Allylic-10-Ph-9-borabicyclo[3.3.2]decane: strategically designed for the asymmetric allylation of ketones. J. Am. Chem. Soc. 127, 11572–11573 (2005).
5. Wadamoto, M. & Yamamoto, H. Silver-catalyzed asymmetric Sakurai–Hosomi allylation of ketones. J. Am. Chem. Soc. 127, 14556–14557 (2005).
6. Miller, J. J. & Sigman, M. D. Design and synthesis of modular oxazoline ligands for the enantioselective chromium-catalyzed addition of allyl bromide to ketones. J. Am. Chem. Soc. 129, 2752–2753 (2007).
7. Barnett, D. S., Moquist, P. N. & Schaus, S. E. The mechanism and an improved asymmetric allylation of ketones catalyzed by chiral biphosphines. Angew. Chem. Int. Edn 48, 8679–8682 (2009).
8. Shi, S.-L., Xu, L.-W., Oisaki, K., Kanai, M. & Shibasaki, M. Identification of chiral biphosphine bisphosphines effective for Cu(I)-catalyzed asymmetric allylation and propargylation of ketones. J. Am. Chem. Soc. 132, 6638–6639 (2010).
9. Robak, M. T., Herbage, M. A. & Ellman, J. A. Synthesis and applications of tert-butanesulfinimide. Chem. Commun. 110, 3600–3740 (2010).
10. Pettit, G. R. et al. Isolation and structure of spongistatin 1. J. Org. Chem. 58, 1302–1304 (1993).
11. Fusetani, N., Shinoda, K. & Matsunaga, S. Cinachyrolide A: a potent cytotoxic macrolide possessing two stereocenters from marine sponge Cinachyra sp. J. Am. Chem. Soc. 115, 3977–3981 (1993).
12. Kobayashi, M. et al. Alloxytirin A, a potent anti-tumor macrolide from the Okinawan marine sponge Hyrtios alatum. Tetrahedr. Lett. 34, 2795–2798 (1993).
13. Schur, T. & Baran, P. S. Aiming for the ideal synthesis. J. Org. Chem. 75, 4657–4673 (2010).
14. Deng, D.-L. & Lu, Z.-H. Monooxylation of symmetric diketones in the presence of water by allylic bromide and metallic zinc. Chin. Chem. Lett. 5, 173–176 (1994).
15. Kira, M., Sato, K., Sekimoto, K., Gewald, R. & Sakurai, H. Stereoselective allylation of β-hydroxy- and β-amino-carboxylates with allylfluoroisoureas/triethylamine systems. Chem. Lett. 1995, 281–282 (1995).
16. Marton, D., Stivanello, D. & Tagliavini, G. Allylation of the enantiomer of 3,3'-diketone starting materials. We have elucidated important aspects of the mechanism and found that the regioselectivity is governed by Curtin–Hamnett kinetics. This may have important implications for the extension of this methodology to other dicarbonyl substrate types; experiments along these lines are in progress.