Catalyst-free synthesis of tetrahydrodipyrazolopyridines via an one-pot tandem and green pseudo-six-component reaction in water

Mina Keihanfar and Bi Bi Fatemeh Mirjalili*

Abstract

Background: A new, green and environmentally friendly protocol has been developed for the synthesis of tetrahydrodipyrazolopyridine derivatives. The structures of these products were determined in terms of melting point, FTIR, NMR and Mass spectroscopy.

Results: The tetrahydrodipyrazolopyridine derivatives were synthesized in water through a catalyst-free pseudo-six-component reaction of hydrazine hydrate, ethyl acetoacetate, ammonium acetate and aldehyde at room temperature.

Conclusions: This novel procedure has some advantages such as aqueous media, high yield and simple work-up.

Keywords: Tetrahydrodipyrazolopyridines (THDPP’s), Multicomponent reaction, Environmentally friendly protocol, Catalyst-free reaction

Graphical Abstract
Introduction

Multicomponent reactions (MCRs) are selective, simple and effective as compared to the conventional multistep synthesis [1–4]. They have been utilized to reduce environmental pollution. Water, as a green solvent, is presumed to speed up some organic reactions through hydrophobic effects [5]. Therefore, catalyst-free organic reactions in water that yield resolvable products are attractive for many organic chemists [6, 7]. THDPPs fuse the heterocyclic moieties of pyrazolopyridine with pharmaceutical activities, which exist in Etazolate, Cartazolate and Tracazolate drugs [8] (Fig. 1).

Meanwhile, Due to the existence of two biologically active moieties, namely pyrazole and 1,4-dihydropyridine pyrazole in the structure of THDPPs, these compounds have various pharmaceutical applications such as antiallergic, anti-herpetic and anxiolytic effects [9, 10], anti-Leishmania activities [11] and HIF 1α-prolyl hydroxylase inhibition [12].

A common protocol for the synthesis of THDPP is the reaction of aldehydes, hydrazine hydrate, ethyl acetoacetate, and ammonium acetate in a multi-component manner with the presence of a catalyst. Previously, pseudopolymeric magnetic nanoparticles [13], KCC-1-NH₂-DPA [14], CuFe₂O₄@HNTs [15], acetic acid [16], and carbonaceous material (CSO₃H) [17], Fe₃O₄/KCC1/IL/HPWMMNPs [24], Nano-CdZr₂(PO₄)₆ [25], Nano-Fe₃O₄@ SiO₂–SO₃H [23], FeNi₃-ILs MNPs [21], Nano-CuCr₂O₄ [26], Nano-ovalbumin [20], M(II)/Schiff base@MWCNT-Fe₃O₄/SiO₂ [27]. Meanwhile, a catalyst free protocol using ammonium carbonate instead of ammonium acetate has been reported [16], Ammonium carbonate is a basic salt and can catalysis the synthesis of THDPP's. In here, we have used ammonium acetate as neutral salt for production of ammonia in water and absence of any catalyst.

In this study, THDPPs are synthesized with a green catalyst-free protocol implemented in a water medium at room temperature (Scheme 1).

Table 1 Optimization of the reaction conditions for the synthesis of 4-(4-chlorophenyl)-3,5-dimethyl-1,4,7,8-tetrahydrodipyrazolo[3,4-b:4’,3’-e]pyridine

Entry	Solvent	Conditions	Time (min)	Yield (%)
1	EtOH	r.t	180	–
2	EtOH	reflux	120	23
3	H₂O	reflux	60	53
4	H₂O	r.t	45	98 [This work]

*a The molar ratio of hydrazine hydrate (2 mmol), ethyl acetoacetate (2 mmol),4-chlorobenzaldehyde (1 mmol) and ammonium acetate (4 mmol) is equal to 2:2:1:4

*b Isolated yields
Experimental

Materials and methods

General

A Bruker, Equinox 55 spectrometer was used to record the Fourier transforms infrared (FT-IR) spectra. A Bruker (DRX-400 Avance) nuclear magnetic resonance (NMR) instrument was also used to record the NMR spectra. In addition, a Buchi B-540 B.V.CHI apparatus served to determine the melting points of the compounds. Mass spectrometry spectra were recorded with an Agilent Technology (HP), Model: 5793, Ion source: Electron Impact (EI), 20-EV, 230 °C, and Quadrupole analyzer.

Chemistry

General procedure for the synthesis of THDPPs

Firstly, a solution of 2.0 mmol of hydrazine hydrate, 2.0 mmol of ethyl acetoacetate and 3 mL of water was stirred in a 25-mL round-bottom flask at room temperature. Secondly, 1.0 mmol of aldehyde and 4.0 mmol of ammonium acetate were added to it and stirred at room temperature. The reaction was monitored by thin-layer chromatography (TLC; n-hexane:EtOAc, 70:30). After the completion of the reaction, the solution was diluted with cold water, and the product was appeared as water insoluble solid which isolated by simple filtration.

Results and discussion

Although, catalytic synthesis of THDPPs protocols have many advantages such as high yields of products and short reaction time. But the hard work-up and expensive catalysts are some of drawbacks of them. Therefore, we...
have decided to design a catalyst-free protocol for synthesis of THDPPs.

In order to optimize the reaction conditions for the preparation of THDPPs in the absence of a catalyst, some reactions were performed between ethylacetoacetate, ammonium acetate, 4-chlorobenzaldehyde and hydrazine hydrate in the presence of different solvents (Table 1). As the results indicated, tetrahydrodipyrazolopyridines could be synthesized in good-to-high yields and short reaction times.

Hydrazine and ammonium acetate are soluble in water, ethyl acetoacetate is partially soluble and aldehyde is insoluble in water. In the first step, hydrazine hydrate and ethyl acetoacetate react in water to produce a insoluble intermediate which react with aldehyde in water cage. Regarding the conditions for the synthesis of THDPPs, the optimization process was implemented with different aldehydes, hydrazine hydrate, ethyl acetoacetate and ammonium acetate (Table 2).

Meanwhile, we have synthesis THDPP using citral as aliphatic aldehyde (Scheme 2).

A mechanism proposed for the catalyst-free synthesis of THDPPs is shown in Scheme 3. Ammonium acetate was used as a source of nitrogen for the formation of 1,4-dihydropyridine ring in the THDPPs. Hydrazine is soluble and ethylacetoacetate is partially soluble (2.86 g/100 mL) in water. Initially, the reaction was begun with the versatile condensation of ethyl acetoacetate with hydrazine and then the elimination of ethanol to form pyrazolone A (B, tautomer of A) as a water insoluble solid. The A (B) and aldehyde are hydrophobia materi als and react in a water cage to form the intermediate C through the Knoevenagel condensation. Then, the second molecule of B was condensed with C via Michael reaction to produce bipyrazolone D. Ammonia, which was produced from ammonium acetate, condensed with D to form imine E which produced product F through intramolecular cyclization, tautomerization and water removal.

In order to show the superiority of the THDPPs synthesis process in the absence of catalysts, this process was compared to some others in terms of conditions, reaction time and yield. The results are listed in Table 3.
Conclusions

In this study, an environmentally friendly protocol is introduced for the synthesis of THDPPs in a neutral aqueous medium without using any catalyst or organic solvent. In this green versatile protocol hydrophobia intermediate and aldehyde had been reacted under high pressure condition in water cage. In solubility of products in water caused having a simple work-up and purification of them. The attractive advantages of the protocol are excellent yields, mild reaction conditions, less pollution, short time reaction, simple workup and high-purity products.

Table 3 The comparison of catalyst-free protocol with other methods for synthesis of 5a

Entry	Catalyst	Conditions	Time (min)/yield (%)	Reference
1	Fe₃O₄/KCC1/IL/HPWMNPs (0.0001 mg)	H₂O/r.t	30/96	[24]
2	Nano-CdZr₄(PO₄)₆ (0.6 mol%)	EtOH/reflux	43/88	[25]
3	Nano-Fe₃O₄@SiO₂-SO₃H (0.004 g)	EtOH/MW	20/90	[23]
4	FeNi₉-ILs MNPs (0.002 g)	EtOH/reflux	48/86	[21]
5	Nano-CuCr₂O₄ (4 mol%)	EtOH/25 °C	50/90	[26]
6	Nano-ovalbumin (0.05 g)	H₂O/55 °C	45/93	[20]
7	M (II)/Schiff base@MWCNT-Fe₃O₄/SiO₂ (0.02 g)	~/r.t	90/85	[27]
8	Pseudopolymeric magnetic nanoparticles (10 mg)	EtOH/r.t	10–180/45–92	[13]
9	KCC-1-NH₂-DPA (0.1 g)	EtOH/reflux	30/95	[14]
10	CuFe₂O₄@HNTs (5 mg)	EtOH/r.t	20/90–96	[15]
11	acetic acid	AcOH/reflux	300/90	[16]
12	carbonaceous material (CSO₃H) (10 mg)	H₂O/60 °C	360/86	[17]
13	Catalyst-free	H₂O/r.t	45/98 [This work]	

* Isolated yields

Abbreviations
THDPP’s: Tetrahydrodipyrazolopyridines; MCRs: Multi-component reactions; FT-IR: Fourier transform infrared; NMR: Nuclear magnetic resonance; TLC: Thin layer chromatography.

Supplementary Information
The online version contains supplementary material available at https://doi.org/10.1186/s13065-022-00802-4.

Additional file 1: Spectroscopic data for the synthesized tetrahydrodipyrazolo[3,4-b:4',3'-e] pyridine derivatives.

Acknowledgements
The Research Council of Yazd University gratefully acknowledged for the financial support for this work.
Authors’ contributions
M.K. wrote the main manuscript and prepared figures. B.F.M edited the main manuscript and submit it as corresponding author. All authors read and approved the final manuscript.

Funding
This study was financially supported by Yazd University. The funding bodies played no role in the design of the study and collection, analysis, and interpretation of data and in writing the manuscript.

Availability of data and materials
All data generated or analysed during this study are included in this published article.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

References
1. Ahmadi T, Ziarani GM, Gholamzadeh P, Mollabagher H. Recent advances in asymmetric multicomponent reactions (AMCRs). Tetrahedron Asymmetry. 2017:28(5):708–24.
2. Huilme C, Chappetta S, Griffith C, Lee Y-S, Dietrich J. An efficient solution phase synthesis of triazadibenzoazulenones/designer isonitrile free/methodology enabled by microwaves. Tetrahedron Lett. 2009;50(17):1939–42.
3. Domling A, Wang W, Wang K. Chemistry and biology of multicomponent reactions. Chem Rev. 2012;112(6):3083–135.
4. Gu Y. Multicomponent reactions in unconventional solvents: state of the art. Green Chem. 2012;14(8):2091–128.
5. Lubineau A, Augé J. Water as solvent in organic synthesis. In: Knochel P, editor. Modern solvents in organic synthesis. Topics in current chemistry, vol. 206. Berlin: Springer; 1999. p. 1–39.
6. Katada M, Kitahara K, Iwasa S, Shibatomi K. Catalyst-free decarboxylative fluorination of tertiary β-keto carboxylic acids. Synlett. 2018;29(18):2408–11.
7. Tian Y, Liu Q, Liu Y, Zhao R, Li G, Xu F. Catalyst-free Mannich-type reactions in water: expedient synthesis of naphthol-substituted isocoumarolones. Tetrahedron Lett. 2018;59(15):1454–7.
8. Manjunatha UH, Vinayak S, Zambinski JA, Chao AT, Sy T, Noble CG, Bonamy GM, Kondreddi RR, Zou B, Gedeck P. A cryptophane-based nanocatalyst for the synthesis of tetrahydrodipyrazolopyridines in water. RSC Adv. 2015;5(11):9273–8.
9. Yu G, Mason H, Wu X, Wang J, Chong S, Beyer B, Henwood A, Pongrac R, Seliger L, He B. Substituted pyrazolopyridopyridazines as orally bioavailable potent and selective PDE5 inhibitors: potential agents for treatment of erectile dysfunction. J Med Chem. 2003;46(4):457–60.
10. Liu C, Li Z, Zhao L, Shen L. One-step, facile synthesis of pyrazolopyridines and tetrahydrodipyrazolopyridines through disproportionation of initially formed pyrazolo Hantzsch dihydroxypyridine. ARKIVOC. 2009;2:258–68.
11. de Mello H, Echevarria A, Bernardino AM, Canto-Cavallheiro M, Leon LL. Antileishmanial pyrazolopyridine derivatives: synthesis and structure-activity relationship analysis. J Med Chem. 2004;47(22):5427–32.
12. Warschkoon NC, Wu S, Boyer A, Kawamoto R, Renock S, Xu K, Pokross M, Erodkimov AG, Zhou S, Winter C. Design and synthesis of a series of novel pyrazolopyridines as HIF 1-α prolyl hydroxylase inhibitors. Bioorg Med Chem Lett. 2006;16(21):5687–90.
13. Dasthê M, Yarie M, Zolfîglî MA, Khazeî A, Makhduomi S. Novel pseudopolymeric magnetic nanoparticles as a hydrogen bond catalyst for the synthesis of tetrahydrodipyrazolopyridine derivatives under mild reaction conditions. Appl Organomet Chem. 2021;35(6):e6222.
14. Azzi S, Shadjou N, Hasanzeideh M. KCC-1-NH2-DPA: a novel heterogeneous recyclable nanocomposite for the catalytic synthesis of tetrahydrodipyrazolopyridines as a well-known organic scaffold in various bioactive derivatives. Nanocomposites. 2019;5(4):124–32.
15. Maleki A, Hajzadeh Z, Salehi P. Mesoporous halloysite nanotubes modified by CuFe2O4 spinel ferrite nanoparticles and study of its application as a novel and efficient heterogeneous catalyst in the synthesis of pyrazolo- pyridine derivatives. Sci Rep. 2019;9(1):1–8.
16. Ghaedi A, Bardajee G, Mishokrâji A, Mahdavî M, Sâfêe A, Akbarzâdeh T. Facile, novel and efficient synthesis of new pyrazolopyridines [3,4-b] pyridine products from condensation of pyrazole-5-amine derivatives and activated carbonyl groups. RSC Adv. 2015;5(109):89652–8.
17. Chen Z, Shi Y, Shen Q, Xu H, Zhang F. Facile and efficient synthesis of pyrazoloisoquinoline and pyrazolopyridine derivatives using recoverable carbonaceous material as solid acid catalyst. Tetrahedron lett. 2015;56(33):4749–52.
18. Zhao K, Lei M, Ma L, Hu L. A facile protocol for the synthesis of 4-aryl-1, 4, 7, 8-tetrahydro-3, 5-dimethylpyridozopyrazine [3, 4-b" e", 3-e"] pyridine derivatives by a Hantzsch-type reaction. Monatsh Chem. 2011;142(11):1169–73.
19. Mirjalili BF, Jalil Bahabadi N, Banonitii A, Trentholamine-sodium acetate as a novel deep eutectic solvent for promotion of tetrahydrodipyrazolo pyridines synthesis under microwave irradiation. J Iran Chem Soc. 2021;18:1–7.
20. Salehi N, Mirjalili BF. Nano-ovallumibin: a green biocatalyst for biomimetic synthesis of tetrahydrodipyrazolopyridine in water. Res Chem Intermed. 2018;44(11):7065–77.
21. Safaei-Ghomi J, Sadeghzadeh R, Shahbazi-Alavi H. A pseudo six-compo- nent process for the synthesis of tetrahydrodipyrazolo pyridines using an ionic liquid ildized on a FeNi3 nanocatalyst. RSC Adv. 2016;6(640):33676–85.
22. Shabalala NG, Pagadala R, Jonnalagadda SB. Ultrasonic-accelerated rapid protocol for the improved synthesis of pyrazoles. Ultrasan Sonicchem. 2015;27:423–9.
23. Safaei-Ghomi J, Shahbazi-Alavi H. A flexible one-pot synthesis of pyrazolopyridine catalyzed by Fe2O3@SiO2–SO3H nanocatalyst under microwave irradiation. Sci Iran. 2017;24(3):1209–19.
24. Sadeghzadeh SM. A heteropolyacid-based ionic liquid immobilized onto magnetic fibrous nano-silica as robust and recyclable heterogeneous catalysts for the synthesis of tetrahydrodipyrazolopyridines in water. RSC Adv. 2016;6(79):79737–80.
25. Chioua M, Samadi A, Sonano E, Lozach O, Meijer L, Marco-Contelles J. Synthesis and biological evaluation of 3,6-diamino-1H-pyrazolo [3,4-b] pyridine derivatives as protein kinase inhibitors. Bioorg Med Chem Lett. 2009;19(16):4566–9.
26. Shahbazi-Alavi H, Safaei-Ghomi J, Eshteghali F, Zahedi S, Nazemzadeh SH, Alemi-Tameh F, Tavazo M, Basharnavaz H, Lashkari MR. Nano-CuCr2O4 as an efficient catalyst for a one-pot synthesis of tetrahydrodipyrazolopyridine. J Chem Res. 2016;40(6):361–3.
27. Lasharzanadegan M, Nikozfar K, Aghaei A, Mehrkaram F, Mirzahezadeh M. Immobilized Cu(II) and Co(II) Schiff base complexes on the surface of functionalized magnetized multiwalled carbon nanotubes: Novel cata- lysts for oxidation and solvent-free pseudo six-component condensation reaction. Solid State Sci. 2019;95:105937.