Ode to commutator operators

Stephen W. Semmes
Rice University

Abstract
These brief remarks have been prepared in connection with a conference in honor of my thesis advisor, Richard Rochberg.

Contents

1 It was a dark and stormy night 1
2 Commutators 2
3 The Calderón commutator 2
4 Connes’ noncommutative geometry 3
5 Commutators as derivatives 3
6 Projections 3
7 Toeplitz operators 4
8 Extensions 4
9 Abstract elliptic operators 5
10 Fredholm indices 5

1 It was a dark and stormy night

Or maybe it was just another pleasant springtime evening in the suburbs of Stockholm. The professor was sharing a house on the institute grounds with a couple of messy bachelor mathematicians, and numerous empty beer bottles were scattered about the room. The professor was enjoying a cool swedish brew too while his earnest doctoral student listened intently. “People have been studying the linear terms for fifty years”, or something like that. This was in the context of nonlinear problems in which functions are themselves variables for some other functional. Linearizations in simpler situations have been studied
for a much longer period of time. Now it would be time to pursue the quadratic and higher-order terms, as in the calculus of Newton and Leibniz.

2 Commutators

If \(A \) is an associative algebra and \(a, b \in A \), then the \textit{commutator} of \(a, b \in A \) is defined by
\[
[a, b] = ab - ba. \tag{2.1}
\]

Commutators automatically satisfy the Leibniz rule for products,
\[
[a, bc] = abc - bca = [a, b]c + b[a, c]. \tag{2.2}
\]

Thus a commutator is like a derivative.

A typical situation of interest would be an algebra of linear operators on a vector space of functions. Suppose that \(D \) is a first-order differential operator acting on functions on some space, which satisfies the ordinary Leibniz rule
\[
D(f_1, f_2) = (Df_1)f_2 + f_1(Df_2) \tag{2.3}
\]
with respect to pointwise multiplication of functions. Let \(b \) be a function on the same space, and let \(M_b \) be the corresponding operator of multiplication by \(b \), \(M_b(f) = bf \). In this case, the commutator of \(D \) and \(M_b \) is the same as the operator of multiplication by \(Db \).

3 The Calderón commutator

Let \(H \) be the Hilbert transform on the real line \(\mathbb{R} \), and let \(D \) be the usual differentiation operator \(d/dx \). Suppose that \(A \) is a Lipschitz function on \(\mathbb{R} \), so that the derivative \(a = A' \) of \(A \) is bounded. If \(M_A \) again denotes the operator of multiplication by \(A \), then a celebrated theorem of Calderón [10] states that the commutator \([M_A, HD]\) determines a bounded operator on \(L^2(\mathbb{R}) \). This would be trivial without the Hilbert transform, since multiplication by a bounded function is a bounded operator on \(L^2 \).

Observe that
\[
D[M_A, H] = D M_A H - D H M_A = M_a H + M_A D H - D H M_A = M_a H + [M_A, HD]. \tag{3.1}
\]

Hence the boundedness of \([M_A, HD]\) and \(D[M_A, H] \) on \(L^2(\mathbb{R}) \) are equivalent when \(A \) is Lipschitz, since the Hilbert transform is bounded too. The boundedness of \(D[M_A, H] \) on \(L^2(\mathbb{R}) \) can be reformulated as the boundedness of \([M_A, H]\) as a mapping from \(L^2(\mathbb{R}) \) to the Sobolev space of functions on the real line with first derivative in \(L^2 \). This suggests many interesting questions about analogous operators on other metric spaces, where it may be easier to make sense of something like \(|Df|\) than \(Df\).
4 Connes’ noncommutative geometry

In Connes’ theory [21], the commutator \([T, M_b]\) between a singular integral operator \(T\) and the operator \(M_b\) of multiplication by a function \(b\) represents a sort of derivative of \(b\). Situations in which \(T^2 = I\) are of particular interest. More precisely, one may work with operators acting on vector-valued functions here. For instance, \(T\) could be made up of Riesz transforms.

As analogues of classical integrals of products of functions, Connes studies certain types of traces of products of commutators. These products of commutators are normally not quite of trace class, and so an extension of the trace due to Dixmier [27] is employed. The one-dimensional case where such a commutator might be of trace class is somewhat exceptional in this context. The Dixmier trace of a trace class operator is equal to 0, and involves asymptotic behavior of an operator in general.

For that matter, ordinary derivatives involve limits. This is an important part of localization. That is a natural feature to try to have.

5 Commutators as derivatives

Commutators often occur as derivatives of nonlinear functionals. This is a familiar theme in mathematics, where the nonlinear functional involves some form of conjugation. As a basic example, the commutator \([M_b, T]\) of the operator \(M_b\) of multiplication by \(b\) and another linear operator \(T\) can be seen as the derivative in \(b\) at the origin of the conjugation \(M_e^b T M_e^{-b}\) of \(T\) by multiplication by \(e^b\). This was studied in [18] in connection with weighted norm inequalities for singular integral operators and bounded mean oscillation.

The Calderón commutators correspond to derivatives of the Cauchy integral operator on Lipschitz graphs, with respect to the Lipschitz function being graphed. As in [15, 16], this is closely related to the conjugation of the Hilbert transform by a change of variables. More precisely, the Cauchy integral operator can be obtained as an analytic continuation of the conjugation of the Hilbert transform by a change of variables, by interpreting it as a conjugation of the Hilbert transform by a change of variables that extends into the complex plane.

6 Projections

Let \(\mathcal{H}\) be a Hilbert space, and let \(P\) be a bounded linear operator on \(\mathcal{H}\) which is a projection. Thus \(P^2 = P\). Let \(V_0\) be the set of \(v \in \mathcal{H}\) such that \(P(v) = 0\), and let \(V_1\) be the set of \(v \in \mathcal{H}\) such that \(P(v) = v\). These are closed linear subspaces of \(\mathcal{H}\), and \(P\) is the projection of \(\mathcal{H}\) onto \(V_1\) with kernel \(V_0\). Consider \(T = 2P - I\). Equivalently, \(T\) is characterized by the conditions that \(T(v) = -v\) when \(v \in V_0\) and \(T(v) = v\) when \(v \in V_1\). In particular, \(T^2 = I\). Note that \(T\) is self-adjoint if and only if \(P\) is, which happens exactly when \(V_0\) and \(V_1\) are orthogonal. If \(P\) is the orthogonal projection of \(L^2\) on the real line or unit circle onto the Hardy space of functions of analytic type, then \(T\) corresponds to
the Hilbert transform. Examples that are not self-adjoint can be obtained from Cauchy integrals and using weights.

7 Toeplitz operators

Let \(X \) be a space equipped with a topology and a Borel measure, and perhaps a metric. As a Hilbert space \(\mathcal{H} \), consider \(L^2(X) \). Suppose that \(P \) is a bounded linear operator on \(\mathcal{H} \) which is a projection. It might also be nice if \(T = 2P - I \) is something like a singular integral operator. A key point is for \([M_b, T] \) to be compact when \(b \) is a continuous function on \(X \) which is continuous at infinity if \(X \) is not compact. Because compact operators form a closed linear subspace of the space of bounded linear operators on \(\mathcal{H} \), it suffices to check this for a dense class of functions \(b \). For instance, \([M_b, T] \) is more regular when \(b \) is a Lipschitz function with compact support. Under these conditions, one can consider Toeplitz operators \(P M_b \) on \(V_1 = P(L^2(X)) \). These are the classical Toeplitz operators when \(X \) is the unit circle or real line and \(P \) is the orthogonal projection onto the associated Hardy space.

In some cases, it may be convenient to allow vector-valued functions on \(X \). For example, one might be interested in functions on \(\mathbb{R}^n \) with values in a Clifford algebra. Using Clifford analysis, one gets a Hardy space and a projection defined in terms of singular integral operators. In the classical situation, the product of holomorphic functions is homomorphic. This does not work for Clifford holomorphic functions. Thus some of the usual structure is not available. One way to deal with this is to restrict one’s attention to scalar-valued functions \(b \). This ensures that \(b \) commutes with elements of the Clifford algebra, so that the commutator \([M_b, T] \) still behaves well. Alternatively, one can be more careful about the way in which a multiplication operator acts, from the left or the right. Because of noncommutativity, Clifford holomorphicity can also be defined from the left or right. The product of a Clifford holomorphic function and a constant in the Clifford algebra is Clifford holomorphic, when the constant is on the appropriate side. Similarly, commutators of Clifford-valued multiplication operators and singular integral operators also behave well when the operators involve multiplication on opposite sides.

8 Extensions

Let \(X \) be a compact metric space, and let \(\mathcal{C}(X) \) be the Banach algebra of continuous complex-valued functions on \(X \) with the supremum norm. Let \(\mathcal{H} \) be a complex Hilbert space, and let \(\mathcal{B}(\mathcal{H}) \) be the Banach algebra of bounded linear operators on \(\mathcal{H} \). Suppose that \(\mathcal{E} \) is a \(\mathcal{C}^* \)-subalgebra of \(\mathcal{B}(\mathcal{H}) \) and that \(\phi \) is a \(\mathcal{C}^* \)-algebra homomorphism of \(\mathcal{E} \) onto \(\mathcal{C}(X) \) whose kernel is contained in the ideal \(\mathcal{K}(\mathcal{H}) \) of compact operators on \(\mathcal{H} \). If \(T \in \mathcal{E} \) and \(\phi(T) \) is an invertible continuous function on \(X \), then \(T \) is a Fredholm operator on \(\mathcal{H} \). For if \(R \in \mathcal{E} \) and \(\phi(R) = \phi(T)^{-1} \), then \(RT - I \) and \(TR - I \) are compact operators. It may
be that T is a compact perturbation of an invertible operator. However, this is not possible when the index of T is nonzero.

As in [7, 8, 9, 28], these are interesting circumstances to be in. Classical Toeplitz operators in one or more complex variables and pseudodifferential operators of order 0 provide basic examples of this type of situation. From the point of view of this theory, it is very natural to consider Toeplitz operators associated to multiplication by scalar-valued functions in the context of complexified Clifford analysis. One can also compress these Toeplitz operators to smaller spaces of Clifford-holomorphic functions.

9 Abstract elliptic operators

Let X be a compact metric space equipped with a positive Borel measure μ. As in [3], it is interesting to look at bounded linear operators on $L^2(X)$ whose commutators with multiplication by continuous functions on X are compact. In particular, Fredholm operators of this type generalize classical elliptic pseudodifferential operators of order 0 on compact smooth manifolds. One can also consider operators acting on vector-valued functions, and other extensions, as explained in [3].

The Hilbert transform on the unit circle is a basic example. Fractional integral operators of imaginary order are also examples. These may be given as imaginary powers of unbounded nonnegative self-adjoint operators, like Laplace operators.

10 Fredholm indices

As in [3], Fredholm operators with compact commutators with operators of multiplication by continuous functions lead to other Fredholm operators, using vector bundles on the underlying metric space. Thus one gets indices for all of these operators. One also gets Fredholm operators and hence indices associated to invertible continuous complex-valued functions in the context of Section 8. This can be extended to matrix-valued functions, since matrices of complex functions lead to matrices of operators which can be interpreted as operators on other spaces. Of course, these two theories are closely related to each other. In connection with Toeplitz-type operators defined using Clifford analysis, one should be careful about the precise domains and ranges of the operators. At any rate, nontrivial indices can be a good indication of the presence of significant geometric or other structure.

References

[1] J. Anderson and R. Rochberg, *Toeplitz operators associated with subalgebras of the disk algebra*, Indiana University Mathematics Journal 30 (1981), 813–820.
[2] W. Arveson, *A Short Course on Spectral Theory*, Springer-Verlag, 2002.

[3] M. Atiyah, *Global theory of elliptic operators*, in *Proceedings of the International Conference on Functional Analysis and Related Topics*, 21–30, University of Tokyo Press, 1970.

[4] M. Atiyah, *K-Theory*, notes by D. Anderson, 2nd edition, Addison-Wesley, 1989.

[5] R. Beals, *Characterization of pseudodifferential operators and applications*, Duke Mathematical Journal 44 (1977), 45–57.

[6] F. Brackx, R. Delanghe, and F. Sommen, *Clifford Analysis*, Pitman, 1982.

[7] L. Brown, R. Douglas, and P. Fillmore, *Extensions of C*-algebras, operators with compact self-commutators, and K-homology*, Bulletin of the American Mathematical Society 79 (1973), 973–978.

[8] L. Brown, R. Douglas, and P. Fillmore, *Unitary equivalence modulo the compact operators and extensions of C*-algebras*, in *Proceedings of a Conference on Operator Theory*, 58–128, Lecture Notes in Mathematics 345, Springer-Verlag, 1973.

[9] L. Brown, R. Douglas, and P. Fillmore, *Extensions of C*-algebras and K-homology*, Annals of Mathematics (2) 105 (1977), 265–324.

[10] A. Calderón, *Commutators of singular integral operators*, Proceedings of the National Academy of Sciences U.S.A. 53 (1965), 1092–1099.

[11] A. Calderón, *Cauchy integrals on Lipschitz curves and related operators*, Proceedings of the National Academy of Sciences U.S.A. 74 (1977), 1324–1327.

[12] A. Calderón, *Commutators, singular integrals on Lipschitz curves and applications*, in *Proceedings of the International Congress of Mathematicians (Helsinki, 1978)*, 85–96, Academiae Scientiarum Fennicae, 1980.

[13] R. Coifman, A. McIntosh, and Y. Meyer, *L’Intégrale de Cauchy définit un opérateur borné sur L² pour les courbes lipschitziennes*, Annals of Mathematics (2) 116 (1982), 361–387.

[14] R. Coifman and Y. Meyer, *Au-delà des Opérateurs Pseudo-Différentiels*, Astérisque 57, 1978.

[15] R. Coifman and Y. Meyer, *Le théorème de Calderón par les “méthodes de variables réelle”*, Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences Paris Sér. A et B 289 (1979), A425–A428.

[16] R. Coifman and Y. Meyer, *Une généralisation du théorème de Calderón sur l’intégrale de Cauchy*, in *Fourier Analysis*, 87–116, Asociacion Matematica Española, 1980.
[17] R. Coifman and R. Rochberg, *Projections in weighted spaces, skew projections and inversion of Toeplitz operators*, Integral Equations and Operator Theory 5 (1982), 145–159.

[18] R. Coifman, R. Rochberg, and G. Weiss, *Factorization theorems for Hardy spaces in several variables*, Annals of Mathematics (2) 103 (1976), 611–635.

[19] R. Coifman and G. Weiss, *Analyse Harmonique Non-Commutative sur Certains Espaces Homogènes: Étude de Certaines Intégrales Singulières*, Lecture Notes in Mathematics 242, 1971.

[20] R. Coifman and G. Weiss, *Extensions of Hardy spaces and their use in analysis*, Bulletin of the American Mathematical Society 83 (1977), 569–645.

[21] A. Connes, *Noncommutative Geometry*, Academic Press, 1994.

[22] A. Connes, D. Sullivan, and N. Teleman, *Formules locales pour les classes de Pontryagin topologiques*, Comptes Rendus de l’Académie des Sciences Paris Série I Mathématique 317 (1993), 521–526.

[23] A. Connes, D. Sullivan, and N. Teleman, *Quasiconformal mappings, operators on Hilbert space, and local formulae for characteristic classes*, Topology 33 (1994), 663–681.

[24] M. Cotlar, *Convolution Operators and Factorization*, McGill University, 1972.

[25] M. Cwikel, B. Jawerth, M. Milman, and R. Rochberg, *Differential estimates and commutators in interpolation theory*, in *Analysis at Urbana*, Volume II, 170–220, Cambridge University Press, 1989.

[26] M. Cwikel, N. Kalton, M. Milman, and R. Rochberg, *A unified theory of commutator estimates for a class of interpolation methods*, Advances in Mathematics 169 (2002), 241–312.

[27] J. Dixmier, *Existence de traces non normales*, Comptes Rendus Hebdomadaires des Scéances de l’Académie des Sciences Paris Séries A et B 262 (1966), A1167–A1168.

[28] R. Douglas, *C*-Algebra Extensions and K-Homology*, Princeton University Press, 1980.

[29] R. Douglas, *Banach Algebra Techniques in Operator Theory*, 2nd edition, Springer-Verlag, 1998.

[30] P. Duren, *Theory of Hp Spaces*, Academic Press, 1970.

[31] P. Duren and A. Schuster, *Bergman Spaces*, American Mathematical Society, 2004.
[32] M. Feldman and R. Rochberg, *Singular value estimates for commutators and Hankel operators on the unit ball and the Heisenberg group*, in *Analysis and Partial Differential Equations*, 121–159, Dekker, 1990.

[33] J. Garnett, *Bounded Analytic Functions*, revised edition, Springer-Verlag, 2007.

[34] J. Gilbert and M. Murray, *Clifford Algebras and Dirac Operators in Harmonic Analysis*, Cambridge University Press, 1991.

[35] H. Hedenmalm, B. Korenblum, and K. Zhu, *Theory of Bergman Spaces*, Springer-Verlag, 2000.

[36] K. Hoffman, *Banach Spaces of Analytic Functions*, Dover, 1988.

[37] S. Janson, *Mean oscillation and commutators of singular integral operators*, Arkiv för Matematik 16 (1978), 263–270.

[38] S. Janson and T. Wolff, *Schatten classes and commutators of singular integral operators*, Arkiv för Matematik 20 (1982), 301–310.

[39] B. Jawerth, R. Rochberg, and G. Weiss, *Commutator and other second order estimates in real interpolation theory*, Arkiv för Matematik 24 (1986), 191–219.

[40] J.-L. Journé, *Calderón–Zygmund Operators, Pseudodifferential Operators, and the Cauchy Integral of Calderón*, Lecture Notes in Mathematics 994, Springer-Verlag, 1983.

[41] J. Kigami, *Analysis on Fractals*, Cambridge University Press, 2001.

[42] P. Koosis, *Introduction to H_p Spaces*, 2nd edition, with two appendices by V. Havin, Cambridge University Press, 1998.

[43] S. Krantz, *Function Theory of Several Complex Variables*, AMS Chelsea, 2001.

[44] S. Krantz and S.-Y. Li, *Boundedness and compactness of integral operators on spaces of homogeneous type and applications, I*, Journal of Mathematical Analysis and Applications 258 (2001), 629–641.

[45] S. Krantz and S.-Y. Li, *Boundedness and compactness of integral operators on spaces of homogeneous type and applications, II*, Journal of Mathematical Analysis and Applications 258 (2001), 642–657.

[46] C. Li, A. McIntosh, and T. Quin, *Clifford algebras, Fourier transforms, and singular convolution operators on Lipschitz surfaces*, Revista Matemática Iberoamericana 10 (1994), 665–721.

[47] C. Li, A. McIntosh, and S. Semmes, *Convolution singular integrals on Lipschitz surfaces*, Journal of the American Mathematical Society 5 (1992), 455–481.
[48] P. Mattila, M. Melnikov, and J. Verdera, *The Cauchy integral, analytic capacity, and uniform rectifiability*, Annals of Mathematics (2) **144** (1996), 127–136.

[49] M. Melnikov, *Analytic capacity: A discrete approach and the curvature of measure*, Mathematics Sbornik **186** (1995), 827–846.

[50] M. Melnikov and J. Verdera, *A geometric proof of the L^2 boundedness of the Cauchy integral on Lipschitz curves*, International Mathematics Research Notices **1995**, 325–331.

[51] A. Nahmod, *Geometry of operators and spectral analysis on spaces of homogeneous type*, Comptes Rendus de l’Académie des Sciences Paris Série I Mathématique **313** (1991), 721–725.

[52] A. Nahmod, *Generalized uncertainty principles on spaces of homogeneous type*, Journal of Functional Analysis **119** (1994), 171–209.

[53] N. Nikolski, *Treatise on the Shift Operator*, with an appendix by S. Hruščev and V. Peller, translated from the Russian by J. Peetre, Springer-Verlag, 1986.

[54] N. Nikolski, *Operators, Functions, and Systems: An Easy Reading*, Volume 1, *Hardy, Hankel, and Toeplitz*, Volume 2, *Model Operators and Systems*, translated from the French by A. Hartmann and revised by the author, American Mathematical Society, 2002.

[55] J. Partington, *An Introduction to Hankel Operators*, Cambridge University Press, 1988.

[56] J. Peetre and R. Rochberg, *Higher order Hankel forms*, in *Multivariable Operator Theory*, 283–306, American Mathematical Society, 1995.

[57] V. Peller, *Hankel Operators and their Applications*, Springer-Verlag, 2003.

[58] S. Power, *Hankel Operators on Hilbert Space*, Pitman, 1982.

[59] R. Rochberg, *Toeplitz operators on weighted H^p spaces*, Indiana University Mathematics Journal **26** (1977), 291–298.

[60] R. Rochberg, *Trace ideal criteria for Hankel operators and commutators*, Indiana University Mathematics Journal **31** (1982), 913–925.

[61] R. Rochberg, *Higher order estimates in complex interpolation theory*, Pacific Journal of Mathematics **174** (1996), 247–267.

[62] R. Rochberg, *Higher-order Hankel forms and commutators*, in *Holomorphic Spaces*, 155–178, Cambridge University Press, 1998.

[63] R. Rochberg and S. Semmes, *A decomposition theorem for BMO and applications*, Journal of Functional Analysis **67** (1986), 228–263.
[64] R. Rochberg and S. Semmes, *End point results for estimates of singular values of singular integral operators*, in *Contributions to Operator Theory and its Applications*, 217–231, Birkhäuser, 1988.

[65] R. Rochberg and S. Semmes, *Nearly weakly orthonormal sequences, singular value estimates, and Calderón–Zygmund operators*, Journal of Functional Analysis **86** (1989), 237–306.

[66] R. Rochberg and G. Weiss, *Derivatives of analytic families of Banach spaces*, Annals of Mathematics (2) **118** (1983), 315–347.

[67] W. Rudin, *Function Theory in the Unit Ball of \(\mathbb{C}^n \)*, Springer-Verlag, 1980.

[68] D. Sarason, *Function Theory on the Unit Circle*, Department of Mathematics, Virginia Polytechnic Institute and State University, 1978.

[69] I. Singer, *Future extensions of index theory and elliptic operators*, in *Prospects in Mathematics*, 171–185, Princeton University Press, 1971.

[70] E. Stein, *Singular Integrals and Differentiability Properties of Functions*, Princeton University Press, 1970.

[71] E. Stein, *Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals*, with the assistance of T. Murphy, Princeton University Press, 1993.

[72] E. Stein and G. Weiss, *Introduction to Fourier Analysis on Euclidean Spaces*, Princeton University Press, 1971.

[73] R. Strichartz, *Analysis on fractals*, Notices of the American Mathematical Society **46** (1999), 1199–1208.

[74] R. Strichartz, *Differential Equations on Fractals: A Tutorial*, Princeton University Press, 2006.

[75] A. Uchiyama, *On the compactness of operators of Hankel type*, Tôhoku Mathematical Journal (2) **30** (1978), 163–171.

[76] J. Verdera, *\(L^2 \) Boundedness of the Cauchy integral and Menger curvature*, in *Harmonic Analysis and Boundary Value Problems*, 139–158, American Mathematical Society, 2001.

[77] N. Weaver, *Lipschitz Algebras*, World Scientific, 1999.

[78] K. Zhu, *Operator Theory in Function Spaces*, Dekker, 1990.

[79] K. Zhu, *Spaces of Holomorphic Functions in the Unit Ball*, Springer-Verlag, 2005.