Supplemental information

Targeting non-canonical pathways
as a strategy to modulate
the sodium iodide symporter

Martin L. Read, Katie Brookes, Caitlin E.M. Thornton, Alice Fletcher, Hannah R. Nieto, Mohammed Alshahrani, Rashida Khan, Patricia Borges de Souza, Ling Zha, Jamie R.M. Webster, Luke J. Alderwick, Moray J. Campbell, Kristien Boelaert, Vicki E. Smith, and Christopher J. McCabe
Figure S1 (related to Fig. 1, 2G, 3C, 3D). Identification of FDA-Approved Drugs that Enhance NIS Function

(A) High throughput screen (HTS) based on a newly adapted YFP biosensor assay was used in the primary screen (green boxes) to determine the efficacy of 1200 drugs (Prestwick Chemical Library, single dose) to increase intracellular iodide in TPC1-NIS-YFP cells. A secondary multi-dose screen (orange boxes) was undertaken to validate 73 of these drugs at 10 different doses in two YFP-expressing cell lines (i.e., TPC-1-NIS-YFP and TPC1-YFP). From this, a total of 40 drugs were validated in radioiodide uptake assays (red box) in multiple cell types as listed. Finally, a shortlist of 10 drugs was generated (blue box) and different drug combinations evaluated in radioiodide uptake assays. (B) TPC-1-NIS-YFP cell viability following treatment with a 10 μM dose of 1200 drugs (Prestwick Chemical Library) for 24 hr. Each circle represents a mean value from 2 biological replicates. Table (left) summarizes number of drugs associated with TPC-1-NIS-YFP cellular viability equal or greater than 70, 80 or 90%. Cellular viability determined using the alamarBlue (resazurin) assay. (C) YFP-based biosensing and cell viability of TPC-1-NIS-YFP cells treated for 24 hr at 10 different drug doses (0.1 – 50 μM). 8 out of 73 representative drug profiles are shown. Blue circles represent mean ΔYFP values from 2 biological replicates. Cell viability (red circles) was determined using the alamarBlue (resazurin) assay (Mean ± S.E.M., n = 4). Pharmacologic parameters (e.g., AUC) were determined up to maximum drug dose associated with cell viability ≥ 70% (indicated by vertical black line). (D, E) Radioiodide uptake of TPC-1-NIS cells (D) and primary human thyrocytes (E) treated with the indicated drug for 24 hr. Data for astemizole† is compiled from human primary thyrocytes treated with two different doses (0.5 and 0.75 μM). (F) Western blot analysis of NIS expression in TPC-1-NIS cells treated with SAHA at indicated doses for 24 hr. (G) Radioiodide uptake of TPC-1-NIS cells treated with SAHA at indicated doses for 24 hr. (H) Western blot analyses of NIS protein levels in TPC-1-NIS (upper) and 8505C-NIS cells (lower) at indicated times post-treatment (hr) with 2.5 μM SAHA. (I) Same as (D) but radioiodide uptake in TPC-1-NIS cells at indicated times post-treatment (hr) with 2.5 μM SAHA. Data presented as mean ± S.E.M., n = 3, one-way ANOVA followed by Dunnett’s post hoc test (NS, not significant; *p < 0.05; **p < 0.01; ***p < 0.001) or unpaired two-tailed t-test (*p < 0.05).
Figure S2 (related to Fig. 3). Combined VCP Inhibitor and SAHA Treatment Augments Radioiodide Uptake in Thyroid and Breast Cancer Cells

(A, B) Radioiodide uptake (A) and relative NIS expression (B) in TPC-1-NIS cells treated with 2.5 μM eyarestatin-1 (ES-1) or 5.0 μM NMS-873 either alone or in combination with 2.5 μM SAHA. SAHA was added 12 hr prior to ES-1 or NMS-873. (C) Radioiodide uptake of MDA-MB-231-NIS cells treated with carebastine (CBT) at indicated doses for 24 hr. Controls: DMSO and 0.5 μM ebastine (EBT). (D) Relative NIS protein expression in parental TPC-1 cells treated with 0.2 μM selumetinib (SEL), 2.5 μM SAHA, 0.5 μM EBT and 1.0 μM CBT, either alone or in combination as indicated. SEL treatment included for comparison. (E) Relative VCP expression in parental TPC-1 cells treated with 2.5 μM SAHA and 1.0 μM CBT either alone or in combination. (F, G) Radioiodide uptake (F) and relative NIS mRNA levels (G) in parental MDA-MB-231 cells treated with 2.5 μM SAHA and 1.0 μM CBT either alone or in combination. (H) Same as (E) but with parental MDA-MB-231 cells. (I-K) Same as (F-H) but with parental MCF7 cells. (L) Same as (D) but with parental MCF7 cells. Red boxes highlight induction of NIS protein by SAHA and SAHA+CBT compared to DMSO or CBT treatment alone. (M) Relative VCP protein levels in TPC-1-NIS cells following VCP-siRNA depletion and treatment with 1.0 μM CBT and/or 2.5 μM SAHA. (N, O) Radioiodide uptake (N) and relative NIS mRNA levels (O) in MDA-MB-231-NIS cells following VCP-siRNA depletion and treatment with 1.0 μM CBT. (P, Q) Relative VCP mRNA (P) and protein levels (Q), as well as NIS expression (Q), in MDA-MB-231-NIS cells following VCP-siRNA depletion and treatment with 1.0 μM CBT and/or 2.5 μM SAHA. Data presented as mean ± S.E.M., n = 3-6, one-way ANOVA followed by Tukey’s (A, F, I) or Dunnett’s (C, M, N, O) post hoc test (NS, not significant; *p < 0.05; **p < 0.01; ***p < 0.001) or unpaired two-tailed t-test (*p < 0.05; ##p < 0.01; ###p < 0.001).
Figure S3 (related to Fig. 3L, 4A-E). Autophagy Inhibitor BafA1 Augments NIS Expression and Radioiodide Uptake in Thyroid Cells

(A) Scanning densitometry performed relative to β-actin on Western blot analysis of LC3B-II (left) and p62 protein levels (right) in TPC-1-NIS cells treated with 1.0 μM carebastine (CBT, red spots) or 100 nM bafilomycin A1 (bafA1, blue spots) for the indicated timecourse (hr). See also Figure 3L. (B) Western blot analysis of LC3B-I, LC3B-II and p62 protein levels in 8505C-NIS cells treated with 1.0 μM CBT (left) or 100 nM bafA1 (right) for the indicated timecourse (hr). Scanning densitometry (below) performed relative to β-actin. Relative NIS expression levels are also shown for CBT treated 8505-NIS cells. (C-D) Western blot analysis of NIS protein levels in TPC-1-NIS and 8505C-NIS cells treated with 100 nM bafA1 for the indicated timecourse (hr). Scanning densitometry performed relative to β-actin (D). (E) Radioiodide uptake of primary human thyrocytes treated with bafA1 at the indicated dose for 24 hr. (F) Radioiodide uptake of TPC-1-NIS and 8505C-NIS cells treated with 0.5 μM disulfiram for the indicated timecourse. (G) Relative NIS protein levels in TPC-1-NIS and 8505C-NIS cells treated with 0.5 μM disulfiram for the indicated timecourse (hr). Scanning densitometry (right) performed relative to β-actin (n = 6). (H) Western blot analysis of LC3B-I, LC3B-II and p62 protein levels in TPC-1-NIS and 8505C-NIS cells treated with 0.5 μM disulfiram for the indicated timecourse (hr). Scanning densitometry (below) performed relative to β-actin (n = 3). (I) Evaluation of VCP binding to NIS using NanoBiT in HeLa cells treated with disulfiram or VCP inhibitor CB5083 for 24 hr at the indicated dose (left, n = 4). Normalised NanoBiT assay results shown at 6 min after addition of Nano-Glo live cell assay solution (right). (J) Radioiodide uptake of 8505C-NIS cells following VCP-siRNA depletion and treatment with 0.5 μM disulfiram. (K) Relative NIS and VCP protein levels in 8505C-NIS cells following VCP-siRNA depletion and treatment with 0.5 μM disulfiram. Data presented as mean ± S.E.M., one-way ANOVA followed by Dunnett’s post hoc test (NS, not significant; *p < 0.05; **p < 0.01; ***p < 0.001) or unpaired two-tailed t-test (⁎p < 0.05; ⁎⁎p < 0.01; ⁎⁎⁎p < 0.01).
Figure S4 (related to Fig. 5A-C). Identification of Proteostasis Modulators Associated with Cancer Genetic Signature, Recurrence and Radioiodide Therapy

(A) (upper) Volcano plots comparing log2FC with q-value (-log base 10) for 142 core proteostasis genes in the BRAF-like (left) or RAS-like (middle) THCA cohort (C) versus normal (N). (upper right) Volcano plot illustrating log2FC with q-value (-log base 10) for 142 core proteostasis genes in the RAI-treated THCA cohort [recurrent (REC) versus non-recurrent (NON-REC)]. (lower) Volcano plots comparing log2FC with q-value (-log base 10) for 142 core proteostasis genes in the BRAF-like (left), RAS-like (middle) or entire (right) THCA cohort [REC versus NON-REC]. Gene categories indicated by coloured spots. (B) Box and whisker plots showing expression (log2) of 13 core proteostasis genes in the BRAF-like, RAI-treated THCA cohort [recurrent (REC) versus non-recurrent (NON-REC)]; P-values determined by Mann-Whitney test and adjusted using the Benjamini-Hochberg FDR correction procedure (NS, not significant; *p < 0.05; **p < 0.01; ***p < 0.001). (C) Stacked bar charts showing clinical characteristics of (i) RAI (n = 260) versus non-RAI (n = 173) treated THCA patients or (ii) THCA patients stratified by BRAF-like (n = 272) or RAS-like (n = 119) tumoral genetic signatures. Clinical staging attributes include risk group, tumor staging, lymph node staging and disease staging. P-values derived using Chi-Squared test and adjusted using the Benjamini-Hochberg FDR correction procedure. NS, not significant.
C. THCA (BRAF-like, RAI treated (n = 137)): ROC analysis cut-off values

ATG2A: High vs. Low
- Sensitivity: 0.629, Specificity: 0.686, AUC: 0.686, p = 0.009
- Sensitivity: 0.576, Specificity: 0.670, AUC: 0.726, p = 0.001

PSMII: High vs. Low
- Sensitivity: 0.666, Specificity: 0.686, AUC: 0.726, p = 0.009
- Sensitivity: 0.576, Specificity: 0.670, AUC: 0.726, p = 0.001

VCP: High vs. Low
- Sensitivity: 0.629, Specificity: 0.686, AUC: 0.686, p = 0.009
- Sensitivity: 0.576, Specificity: 0.670, AUC: 0.726, p = 0.001

D. THCA (BRAF-like, RAI-treated, n = 137): Percentile cut-off values

Gene	90th percentile	95th percentile	99th percentile	99.5th percentile	99.9th percentile
APD1	100	100	100	100	100
AP4B1	100	100	100	100	100
ATG2A	100	100	100	100	100
ATG9A	100	100	100	100	100
BECN1	100	100	100	100	100
HPS1	100	100	100	100	100
HPSA5	100	100	100	100	100
PSMD2	100	100	100	100	100
PSMD8	100	100	100	100	100
PSMD11	100	100	100	100	100
SQSTM1	100	100	100	100	100
VCP	100	100	100	100	100

Genes (p < 0.05; q < 0.05):
- ATG2A
- ATG9A
- BECN1
- HPS1
- HPSA5
- PSMD2
- PSMD8
- PSMD11
- SQSTM1
- VCP
Figure S5 (related to Fig. 5D-F). A 13 Proteostasis Gene Panel is Associated with Recurrence in the BRAF-like, RAI-Treated THCA Cohort

(A) Representative ROC curves of 6 proteostasis genes in the BRAF-like, RAI-treated THCA cohort (n = 137). (B) Comparison of clinical sensitivity and specificity of 13 proteostasis genes derived by ROC analysis using optimal cut-off expression values (log2 values) in the BRAF-like, RAI-treated THCA cohort (n = 137). (C) Representative Kaplan-Meier analysis of DFS for the BRAF-like, RAI-treated THCA cohort stratified on high versus low tumoral expression of indicated core proteostasis genes; log-rank test. Number (n) of patients per expression sub-group (high/low), p-values and q-values are shown. (D) Kaplan-Meier analysis of the BRAF-like, RAI-treated THCA cohort stratified on high versus low tumoral expression according to indicated percentile cut-off values; log-rank test. Significance indicated by p- and q-values. \(\text{N}_{\text{REC}} \) = number of recurrent cases in cohort with either high (left) or low (right) tumoral proteostasis expression. Green = FDR < 5%; Orange = greatest level of significance per percentile cut-off group; Yellow = highest percentage of stratified recurrent cases per percentile cut-off group.
A THCA (BRAF-like, RAI-treated, n = 137)

Gene	Multivariate Coefficient	p-value
AP3D1	0.00000882	0.982
AP4E1	0.0002902	0.584
ATG2A	-0.009032	0.447
ATG5A	0.0001311	0.116
BECN1	0.000286	0.110
HSPH1	-0.000125	0.831
HSPH2	0.0000045	0.969
PSMD2	-0.001065	0.687
PSMD8	0.000185	0.687
PSMD11	0.000249	0.440
SEC24C	0.0002052	0.281
SQSTM1	0.000036	0.653
VCP	0.000265	0.354

B THCA (BRAF-like, RAI-treated, n = 137)

RiskScore	Sensitivity (%)	Specificity (%)	HR (95% CI)	p-value
10.84	190	18.97	26.381 (0.164-4231.231)	NS
12.69	95.24	69.83	35.862 (4.81-267.405)	4.79x10^-4
12.73	90.48	71.55	17.794 (4.142-76.445)	1.09x10^-3
12.86	85.71	75.86	13.352 (3.930-45.358)	3.3x10^-3
13.03	89.95	80.17	11.978 (4.027-35.626)	8.0x10^-6
13.13	71.43	82.76	7.977 (3.090-20.589)	1.8x10^-5
13.16	66.67	82.76	6.980 (2.812-17.326)	2.8x10^-5
13.21	61.9	83.62	6.189 (2.554-14.951)	5.1x10^-5

C GSE27155: PTC (BRAF T1799A, n = 26) v N (n = 4)

D GSE27155: PTC (RAS mutation, n = 7) v N (n = 4)

E GSE27155

F GSE27155 v THCA

142 proteostasis gene panel

- UPR
- Proteasomal
- Autophagy
- Transport
- Not significant

GSE27155 (BRAF T1799A PTC v N: 58/129 proteostasis genes; p < 0.05; FDR < 10%)

THCA (BRAF-like PTC v N: 102/142 proteostasis genes; p < 0.03; FDR < 5%)

p = 0.032
Figure S6 (related to Fig. 5C, G, H, I). Profiling and Validation of the 13 Proteostasis Gene Riskscore Classifier

(A) Regression coefficients of 13 proteostasis genes in the BRAF-like, RAI-treated THCA cohort (multivariate Cox regression analysis). (B) Profile of riskscore cut-off values of the 13 gene proteostasis riskscore classifier along with estimations of sensitivity and specificity (%) for the BRAF-like, RAI-treated THCA cohort (n = 137). Hazard ratios (HR) ± 95% CI using riskscore cut-off values to stratify into high and low risk cohorts are shown (univariate Cox regression analysis). (C, D) Volcano plot comparing log2FC with q-value (-log base 10) for 142 core proteostasis genes in the GSE27155 dataset [BRAF T1799A PTC versus N (C) and RAS mutation PTC versus N (D)]. Gene categories indicated by coloured spots. (E) Representative box and whisker plots showing expression (log2) of 5 core proteostasis genes in the GSE27155 (BRAF T1799A PTC versus normal; left) and THCA (BRAF-like PTC versus normal; right) datasets; P-values determined by Mann-Whitney test and adjusted using the Benjamini-Hochberg FDR correction procedure (**p < 0.01; ***p < 0.001). (F) Venn diagram showing significant overlap in the 142 core proteostasis gene panel between the GSE27155 (BRAF T1799A PTC versus normal) and THCA (BRAF-like PTC versus normal) datasets. Genes in the 13 gene proteostasis riskscore classifier are underlined.
Figure S7 (related to Fig. 5). Greater Predictive Value of the 13-Gene Riskscore Classifier Compared to a Panel of Molecular Biomarkers

(A) Volcano plot comparing log2FC with q-value (-log base 10) for 142 core proteostasis genes in the GSE276039 dataset [anaplastic thyroid cancer (n = 17) versus PDTC (n = 12)]. (B) Volcano plot illustrating log2FC with q-value (-log base 10) for 142 core proteostasis genes in the entire THCA cohort [T3+T4 versus T1+T2 (middle); N1 versus N0 (right)]. Gene categories indicated by coloured spots. (C) Venn diagram showing overlap in the 142 core proteostasis gene panel between the GSE276039 (anaplastic thyroid cancer versus PDTC), THCA (T3+T4 versus T1+T2) and THCA (N0 versus N1) datasets. Genes in the 13 gene proteostasis risk score classifier are underlined. (D) Representative ROC curves (left) of 3 molecular biomarkers in the BRAF-like, RAI-treated THCA cohort (n = 137). Comparison of ROC analysis (right) using 7 molecular biomarkers in the BRAF-like, RAI-treated THCA cohort (n = 137). AUC, p-values and optimal cut-off expression values (log2 values) are shown. (E) Representative Kaplan-Meier analysis of DFS for the BRAF-like, RAI-treated THCA cohort (n = 124) stratified on high versus low tumoral expression of 7 genes reported as biomarkers of thyroid cancer recurrence; log-rank test. Kaplan-Meier analysis using the 13-gene riskscore classifier to stratify patients is included for comparison. Number (n) of patients per expression/risk sub-group (high/low) and p-values are shown.
Table S1 (related to Fig. 1D, 1E, S1A, S1B). Top 50 Drugs Identified in the Primary High Throughput Screen Using YFP as a Biosensor of Intracellular Iodide

Drug	ΔYFP	Cell Viability (%)	Category	Known or putative target(s)
Antimycin A	5.063	89.30	Phagocytosis	Autophagy
Dexamethasium	5.008	77.22	Anticholinesterase	N/A
Ethastine	4.524	83.37	Antihistamine	VCP
Tiacomazole	4.254	61.72	Antifungal	Autophagy (ATG4B inhibitor)
Bromocryptine	4.199	51.41	Dopamine agonist	Autophagy
Vanoverine	4.145	64.00	Dopamine reuptake	N/A
Dequalinium	3.757	54.66	Antimicrobial	N/A
Articaine	3.598	84.90	Anesthetic	N/A
Astemizole	3.259	9.85	Antifungal	Lysozymotrophic, VCP
Nomegestrol	3.189	99.87	Progestogen	N/A
Eucatropine	3.087	96.65	Anticholinergic	N/A
Lithocholic acid	3.078	77.97	Detergent	Autophagy, ER stress
Tofloxacacin	2.959	76.29	Antibiotic	N/A
Clofibrate	2.923	89.98	Antifungal	VCP
Rosiglitazone	2.854	96.47	Hypoglycemic	Autophagy, mTOR
Vatalanib	2.832	78.49	Antinecancer	Tyrosine kinase inhibitor (TK1)
Pyridium	2.831	72.32	Anthelmintic	Autophagy
Phenolamine	2.830	108.85	o-adrenergic antagonist	N/A
Atenolol	2.808	98.52	Beta blocker	N/A
Iprapride	2.760	80.40	Dopamine D2 antagonist	N/A
Formoterol	2.741	119.65	β2(2)-agonist	Autophagy, proteasomal
Fenofibrate	2.606	103.58	Lipid-lowering	Autophagy
Terfenadine	2.578	83.49	Antihistamine	VCP
Clofibrate	2.534	39.77	Anti-arrhythmia	N/A
Rivastigmine	2.483	122.32	Anticholinesterase	N/A
Pravastatin	2.467	101.97	Lipid-lowering	HMG-CoA reductase
Fenofibrate	2.412	70.95	Calcium channel blocker	N/A
Imatinib	2.358	105.36	Antinecancer	Autophagy, lysosomotrophic, TKI
Mifepristone	2.341	93.41	Antiprogestogenic	Autophagy, unfolded protein response
Pisciprazole	2.321	85.25	Antipsychotic	N/A
Methyldopate	2.311	103.17	Antihypertensive	N/A
Hesperidin	2.270	68.98	Flavonol glycoside	Autophagy, ER stress
Rufloxacin	2.269	112.38	Antibiotic	N/A
Nortriptiline	2.248	74.00	Antidepressant	Autophagy, lysosomotrophic
Methotrexaproprazine	2.222	91.01	Phenothiazine	N/A
Oxyphenbutazone	2.219	62.83	Anti-inflammatory	N/A
Prednisolone	2.209	92.22	Anti-inflammatory	N/A
Phenformin	2.165	102.43	Antidiabetic	Autophagy, mTOR
Clozapine	2.151	87.88	Antidepressant	Autophagy, lysosomotrophic
Halofantrine	2.143	105.63	Antimalarial	Autophagy, lysosomotrophic
Sisomicin	2.122	147.72	Antibiotic	N/A
Oxatol	2.115	78.93	Anthelmintic	N/A
Trimethoprim	2.108	97.82	Antibiotic	N/A
Chloroquine	2.075	120.91	Antimalarial	Autophagy, lysosomotrophic, vesicular transport
Propylfluorid	2.070	85.28	Intercalation	N/A
Meclozine	2.060	69.82	Anti-Histamine	Histamine II antagonist
Quinidine	2.059	88.15	Anti-arrhythmia	Lysosomotrophic
Ceforanide	2.049	89.90	Antibiotic	N/A
Cimoxin	2.009	120.13	Anti-inflammatory	N/A
Tropisetron	2.004	78.57	Antiemetic	N/A

Drugs listed in order of ΔYFP values utilizing TPC-1-NIS cells treated with a 10 μM dose for 24 hr. TPC-1-NIS cell viability (%) after 24 hr drug treatment, drug category and known or putative proteostasis drug targets are shown.
A TPC-1-NIS-YFP cells (> 70% cell viability)

Drug	AUC	Maximal ΔYFP	Dose (μM)	Drug	AUC	Maximal ΔYFP	Dose (μM)	Drug	AUC	Maximal ΔYFP	Dose (μM)
Demeclarium	8.02	5.06	25	Alverine	3.63	2.52	12.50	Levocabastine	1.15	2.10	3.13
Pyrinizine	6.73	6.17	0.78	Clofibrate	3.32	2.53	0.20	Amikacin	0.65	2.29	0.20
Guanabenz	5.56	4.12	1.56	Phenformin	3.19	3.97	50	Sertaconazole	0.36	2.44	25
Propargacine	5.41	3.87	0.39	Sulconazole	3.09	3.83	12.5	(R)-Atenolol	3.16	1.87	0.78
Niflumic acid	4.95	2.70	1.56	Terfenadine	3.00	2.56	6.25	Azathioprine	2.93	1.92	12.50
Morocidine	4.86	2.61	0.39	Halofantrine	2.28	2.06	3.13	Flornicolide	2.61	1.74	0.10
Nortriptyline	4.46	2.52	12.50	Hexachlorophene	2.00	3.10	50	Zimelidine	2.23	1.94	6.25
Chlorhexitine	4.24	5.09	6.25	Retinonic acid	1.62	2.91	0.39	Amrinone	2.11	1.91	3.13
Ebastine	4.19	4.52	6.25	Disulfiram	1.55	2.78	3.13	Praziquantel	1.83	1.71	12.5
Ethacrynic acid	3.70	2.22	0.10	Hesperidin	1.15	2.76	0.20	Articaine	1.22	1.66	1.56

B TPC-1-YFP cells (> 70% cell viability)

Drug	AUC	Maximal ΔYFP	Dose (μM)	Drug	AUC	Maximal ΔYFP	Dose (μM)
Prednisolone	4.95	3.27	0.78	Methotreximeprazone	1.38	2.92	50
Pirepazolazine	3.81	3.02	12.5	Guanabenz	2.40	1.94	3.13
Demeclarium	3.50	4.51	12.5	Fenofibrate	2.25	1.59	12.5
Pyrinizine	3.37	4.99	0.78	Praziquantel	2.22	1.91	0.39
Phenformin	3.31	3.90	50	Piretanide	1.41	1.86	0.1
Miosartine	3.30	4.34	50	Niflumic acid	1.26	1.87	0.39
Sertaconazole	3.05	3.57	25	Tioconazole	1.15	1.54	0.20
Ebastine	2.94	4.56	6.25	Tridihexethyl	0.92	1.92	50
Dexamethasone	2.24	2.03	0.78	Retinonic acid	0.83	1.89	0.39
Chlorhexitine	2.17	2.49	6.25	Clomiphene	0.82	1.81	12.5
Ethacrynic acid	1.72	2.02	0.10	Clomipramine	0.78	1.67	25
Disulfiram	1.69	2.55	0.39	Vanoxerine	0.73	1.64	6.25
Oximidine	1.58	2.41	12.5	Bisacodyl	0.42	1.86	50

C TPC-1-NIS-YFP v TPC-1-YFP cells (> 70% cell viability; i.e. adjusted for YFP effects)

Drug	ΔAUC	Drug	ΔAUC	Drug	ΔAUC
Propargacine	3.31	Sulconazole	3.06	Hesperidin	1.14
Morocidine	4.57	Azathioprine	2.86	Levocabastine	1.13
Demeclarium	4.53	Clofibric acid	2.81	Halofantrine	1.06
Nortriptyline	4.24	Terfenadine	2.53	Articaine	0.95
Niflumic acid	3.70	Chlorhexitine	2.07	Ketamine	0.92
Alverine	3.45	Hexachlorophene	2.00	Retinolic acid	0.70
Pyrinizine	3.36	Ethacrynic acid	1.96	Quinidine	0.68
Clofibric acid	3.32	Zimelidine	1.81	Molindone	0.66
Guanabenz	3.16	Amrinone	1.77	Atenolone	0.60
(R)-Atenolol	3.16	Hesperidin	1.25	Amikacin	0.54

D TPC-1-NIS-YFP

- **Maximal ΔYFP**
- **AUC**

E TPC-1-NIS-YFP (○) vs TPC-1-YFP (●)

- **Cumulative fraction**
- **AUC**
- **P = 0.0001**
Table S2 (related to Fig. 1F, S1C). Ranking of Drug Efficacy to Enhance Intracellular Iodide Adjusting for Multiple Doses, YFP-Only Effects, and Cell Viability

(A) Top 30 drugs ranked on area under the curve (AUC) values derived from ΔYFP values of TPC-1-NIS-YFP cells treated with multiple drug doses (0.1-50 μM) and > 70% cell viability. Maximal ΔYFP value and associated dose (μM) for each drug are shown. Drugs with maximal ΔYFP values < 2 were ranked lower. (B) Same as (A) but with TPC-1-YFP cells. (C) Top 30 drugs ranked on ΔAUC values, i.e., difference in AUC values between drug-treated TPC-1-NIS-YFP and TPC-1-YFP cells. (D) Representative dose response YFP-iodide profile highlighting pharmacologic parameters used in analysis, i.e., area under the curve (AUC) and maximal ΔYFP values, in TPC-1-NIS-YFP cells treated with niflumic acid. (E) Comparison of drug efficacy in thyroid cells with different NIS levels. Cumulative frequency distribution plot comparing AUC values for top 30 drugs identified to increase intracellular iodide in parental TPC-1-YFP and TPC-1-NIS-YFP cells; P-value determined by the Kolmogorov-Smirnov test.
Table S3 (related to Fig. 3A, Table 1). Chemical Structure of Putative VCP inhibitors

Drug	2D Structure	3D Structure	Supporting Evidence
Carebastine	![2D Image](image1)	![3D Image](image2)	Drug Combination, RAI Uptake & VCP siRNA assays (this study)
			Active carboxylic acid metabolite of ebastine
Fexofenadine	![2D Image](image3)	![3D Image](image4)	RAI Uptake assays (this study)
			Active metabolite of terfenadine
Terfenadine	![2D Image](image5)	![3D Image](image6)	CMAP (L1000) & RAI Uptake assays (this study)
			CMAP (build 02): MCF7 Breast cells (p = 3.0E-31) (Segura-Cabrera et al., 2017)
Disulfiram	![2D Image](image7)	![3D Image](image8)	Drug Combination & RAI Uptake assays (this study)
			Disulfiram Metabolite (DTC) Binds NPL4 to Disable the VCP-NPL4-UF1 Pathway (Skrott et al., 2017)
Ebastine	![2D Image](image9)	![3D Image](image10)	Drug Combination & RAI Uptake assays (this study)
			Structure-Based Virtual Screening, Cell-Based & Biochemical assays (Segura-Cabrera et al., 2017)
			RAI Uptake, VCP siRNA & Cell Surface Biotinylation (CSB) assays (Fletcher et al., 2020)
Astemizole	![2D Image](image11)	![3D Image](image12)	Drug Combination & RAI Uptake assays (this study)
			CMAP (build 02): MCF7 Breast cells (p = 8.4E-39) Structure-based Virtual Screening, Cell-Based & Biochemical assays (Segura-Cabrera et al., 2017)
			RAI uptake, VCP siRNA & CSB assays (Fletcher et al., 2020)
Ciotrimazole	![2D Image](image13)	![3D Image](image14)	CMAP (L1000), Drug Combination & RAI Uptake assays (this study)
			CMAP (build 02): MCF7 Breast cells (p = 4.0E-46) Structure-Based Virtual Screening Cell-Based & Biochemical assays (Segura-Cabrera et al., 2017)
			RAI uptake, VCP siRNA & CSB assays (Fletcher et al., 2020)
NMS-873	![2D Image](image15)	![3D Image](image16)	Well-established VCP inhibitor
			Used as a control drug for VCP inhibitor studies
			Drug combination & RAI uptake assays (this study)

2D and 3D images of putative VCP inhibitors are shown, as well as supporting evidence for their ability to target VCP function and enhance NIS function to increase radioiodide uptake. Source: ChemSpider; PubChem.
Table S4 (related to Fig. 5, S4, S6, S7). Panel of 142 Core Proteostasis Genes

Unfolded Protein Response (UPR)	Proteasomal	Autophagy	Transport (protein, vesicular)						
ATF4	PSMA1	PSMC1	PSMD12	ATG2A	EPG5	APIAR	APIM2	COPG1	SEC23A
ATF6	PSMA2	PSMC2	PSMD3	ATG2B	ERN1	APIB1	APIS1	COPG2	SEC23B
DDIT3 (CHOP)	PSMA3	PSMC3	PSMD4	ATG3	GABARAFLI (ATG8)	APIG1	APIS2	COPZ1	SEC24A
EIF2AK3 (PERK)	PSMA4	PSMC4	PSME1	ATG4A	SQSTM1 (p62)	APIG2	AP4B1	COPZ2	SEC24B
HSPA5 (GRP78)	PSMA5	PSMC5	PSME2	ATG4B	ULK1 (ATG1)	APIM1	APIE1	DNM2	SEC24C
XBP1	PSMA6	PSMC6	PSME3	ATG4C	WDR45	APIM2	APIE1	DTMNP1	SEC24D
	PSMA7	PSMD1	PSME4	ATG4D	WDR45B	API51	ARCNI	EHD1	SEC31A
	PSMB1	PSMD2	PSMF1	ATG5	WIP1 (ATG18)	API52	BLOC1S3	EHD2	SEC31B
	PSMB2	PSMD3	UBB	ATG7	WIP12 (ATG18B)	API53	CAV1	EHD4	SNAP29
	PSMB3	PSMD4	UBC	ATG9A		AP2A1	CAV2	HPS1	VAMP1
	PSMB4	PSMD5	VCP	ATG10		AP2A2	CLTA	HPS3	VAMP2
	PSMB5	PSMD6	ATG12		AP2B1	CLTB	HPS4	VAMP3	
	PSMB6	PSMD7	ATG13		AP2M1	CLTC	HPS5	VPS33B	
	PSMB7	PSMD8	ATG14		AP2S1	COPA	HPS6	VPS33B	
	PSMB8	PSMD9	ATG16L1		AP3B1	COPB1	PLIN3		
	PSMB9	PSMD10	ATG16L2		AP3D1	COPB2	SARA1A		
	PSMB10	PSMD11	Becn1 (ATG6)		AP3M1	COPE	SEC13		

Functional categories of core proteostasis genes used in study which include: the unfolded protein response (UPR, 6 genes, orange), proteasomal degradation (45 genes, red), autophagy (26 genes, green) and transport (protein/vesicular, 65 genes, blue).
Table S5 (related to Fig. 5F). Core Proteostasis Genes are Predictive Indicators of an Increased Risk of Recurrence

Gene	Category	High vs Low Expression Groups	Cut-Off Value	B	Hazard Ratio	95.0% CI Lower	95.0% CI Upper	p-value
AP3D1	Transport		11.89	1.311	3.709	1.574	8.741	0.003
AP4B1	Transport		8.23	-1.620	0.198	0.058	0.672	0.009
ATG2A	Autophagy		10.10	1.747	5.736	1.928	17.063	0.002
ATG9A	Autophagy		10.48	1.414	4.111	1.505	11.224	0.006
BECN1	Autophagy		10.76	1.065	2.901	1.222	6.892	0.016
HPS1	Transport		10.75	1.481	4.399	1.611	12.010	0.004
HSPA5	UPR		14.04	-1.437	0.238	0.08	0.707	0.010
PSMD2	Proteasomal		11.76	1.221	3.390	1.241	9.256	0.017
PSMD8	Proteasomal		11.47	0.892	2.441	1.029	5.794	0.043
PSMD11	Proteasomal		9.48	1.591	4.908	1.650	14.601	0.004
SEC24C	Transport		11.52	1.414	4.112	1.506	11.228	0.006
SQSTM1	Autophagy		14.15	1.179	3.251	1.191	8.876	0.021
VCP	Proteasomal		12.66	2.374	10.744	1.442	80.073	0.021

Univariate Cox regression analysis in the BRAF-like, RAI-treated THCA cohort stratified using optimal expression cut-off values for 13 proteostasis genes. Cut-off value- log2 expression value; B- regression coefficient.
Table S6 (related to Fig. 5H, I). Univariate and Multivariate Analysis of the RAI-Treated (BRAF-like) and Non-RAI Treated THCA Cohort

A

Clinical Variable	BRAF-like, RAI-treated (n = 124)	Non-RAI treated (n = 151)								
	Univariate	Multivariate	Univariate	Multivariate						
	p-value	HR (95% CI)								
Age, years (±SD)										
< 50	79	0.072	2.288 (0.929-5.634)	0.403	2.054 (0.380-11.105)	83	0.057	1.159 (0.204-5.744)	0.548	0.567 (0.089-3.604)
> 50	45					68				
Gender										
Male	39	0.994	0.996 (0.378-2.623)	0.807	0.877 (0.308-2.500)	28	0.300	2.456 (0.449-13.439)	0.216	3.116 (0.516-18.826)
Female	85					123				
Stage										
I + II	70	0.114	2.085 (0.839-5.185)	0.856	0.855 (0.158-4.634)	125	0.244	2.744 (0.502-15.004)	0.677	2.104 (0.063-69.879)
III + IV	54					26				
T stage										
T1 + T2	62	0.222	1.789 (0.704-4.544)	0.785	1.149 (0.424-3.113)	120	0.403	2.663 (0.378-11.272)	0.533	2.677 (0.104-79.966)
T3 + T4	62					31				
Node stage										
N0	34	0.449	1.531 (0.508-4.617)	0.109	2.587 (0.810-8.264)	110	0.642	0.600 (0.070-5.147)	0.412	0.396 (0.044-3.607)
N1	90					41				
Risk score (13 gene classifier)										
High	50	7.0x10^-4	32.614 (4.350-244.534)			33	0.445	0.035 (0.000-190.755)	0.974	N/A
Low	74					118				

- **n**, number; **HR**, hazard ratio; **CI**, confidence interval. **P-values** in bold were less than 0.05 and considered statistically significant. Some patients in the BRAF-like, RAI-treated (n = 13) and non-RAI treated cohorts (n = 16) were not included in univariate and multivariate analysis of the THCA dataset due to missing clinical variables.

B

Clinical Variable	BRAF-like, RAI-treated (n = 124)	Non-RAI treated (n = 151)								
	Univariate	Multivariate	Univariate	Multivariate						
	p-value	HR (95% CI)								
VCP expression										
High	84	0.031	9.166 (1.223-68.679)	0.038	8.472 (1.122-63.969)	51	0.940	1.067 (0.195-5.830)	0.872	0.867 (0.154-4.876)
Low	40					100				

(B) Same as (A) except VCP expression was used instead of the 13-gene risk score classifier in multivariate analysis.
Table S7 (related to Fig. 5H, I). Univariate and Multivariate Analysis of the RAI-Treated and Entire THCA Cohorts

A

Clinical Variable	n	RAI-treated (n = 226)	THCA (n = 438)							
		Univariate	Multivariate	Univariate	Multivariate					
		p-value	HR (95% CI)							
Age, years (±SD)										
< 50	136	0.039	2.113 (1.039-4.296)	0.352	1.771 (0.532-5.807)	250	0.074	1.732 (0.949-3.162)	0.038	1.036 (0.430-2.496)
> 50	90									
Gender										
Male	74	0.678	1.169 (0.560-2.44)	0.537	1.271 (0.593-2.725)	119	0.352	1.354 (0.715-2.554)	0.456	1.282 (0.668-2.460)
Female	152									
Stage										
I + II	133	0.028	2.228 (1.068-4.565)	0.719	0.795 (0.227-2.779)	291	0.001	2.854 (1.561-5.217)	0.285	1.689 (0.646-4.415)
III + IV	93									
T stage										
T1 + T2	116	0.010	2.758 (1.270-5.99)	0.053	2.274 (0.990-5.223)	268	0.002	2.638 (1.421-4.898)	0.243	1.516 (0.754-3.049)
T3 + T4	110									
Node stage										
N0	81	0.391	1.404 (0.646-3.050)	0.349	1.471 (0.650-3.302)	221	0.046	1.892 (1.010-3.542)	0.413	1.32 (0.679-2.568)
N1	145									
Risk score (13 gene classifier)										
High	80	8.7x10^-7	11.070 (4.248-28.851)	2.0x10^-6	10.577 (3.996-28.001)	313	3.8x10^-7	5.523 (2.801-10.038)	5.0x10^-6	4.553 (2.379-8.714)
Low	146									

Note: P-values in bold were less than 0.05 and considered statistically significant. Some patients in the RAI-treated (n = 31) and entire THCA cohorts (n = 50) were not included in univariate and multivariate analysis of the THCA dataset due to missing clinical variables.

B

Clinical Variable	n	RAI-treated (n = 226)	THCA (n = 438)							
		Univariate	Multivariate	Univariate	Multivariate					
		p-value	HR (95% CI)							
VCP expression										
High	78	0.102	1.801 (0.890-3.645)	0.172	1.654 (0.804-3.404)	163	0.159	1.539 (0.845-2.803)	0.193	1.491 (0.817-2.722)
Low	148									

Note: Same as (A) except VCP expression was used instead of the 13-gene risk score classifier in multivariate analysis.1