Neutrino Factory Superbeam

Patrick Huber, a* Walter Winter, b†

aDepartment of Physics, University of Wisconsin, Madison, WI 53706, USA
bInstitut für theoretische Physik und Astrophysik, Universität Würzburg, D-97074 Würzburg, Germany

Abstract

We discuss the optimization of a neutrino factory for large $\sin^2 2\theta_{13}$, where we assume minimum effort on the accelerator side. This implies that we use low muon energies for the price of an optimized detection system. We demonstrate that such a neutrino factory performs excellent if combined with the electron neutrino appearance channel. Instead of the platinum channel operated with the muon neutrinos from the muon decays, we propose to use the initial superbeam from the decaying pions and kaons, which might be utilized at little extra effort. Since we assume out-of-phase bunches arriving at the same detector, we do not require electron charge identification. In addition, we can choose the proton energy such that we obtain a synergistic spectrum peaking at lower energies. We find that both the superbeam and the neutrino factory beam should used at the identical baseline to reduce matter density uncertainties, possibly with the same detector. This effectively makes the configuration a single experiment, which we call “neutrino factory superbeam”. We demonstrate that this experiment outperforms a low-energy neutrino factory or a wide band beam alone beyond a simple addition of statistics.

PACS: 14.60.Pq

Key words: Neutrino oscillations, long-baseline experiments, neutrino factory, superbeam

1. Introduction

Future neutrino oscillation facilities are primarily targeted towards the discovery of a non-zero $\sin^2 2\theta_{13}$, the neutrino mass hierarchy determination, and the measurement of leptonic CP violation. All of these measurements depend heavily on the magnitude of $\sin^2 2\theta_{13}$. Two examples for experiments under way, which will test the magnitude of $\sin^2 2\theta_{13}$, are the T2K superbeam (SB) project [1] and the Double Chooz reactor experiment [2]. From all such neutrino oscillation experiments, one may expect a $\sin^2 2\theta_{13}$ sensitivity limit of about 0.01 in a decade from now (see, e.g., Ref. [3]), i.e., $\sin^2 2\theta_{13}$ can either be constrained to be smaller than this value, or it will be discovered until then. Since the discovery of $\sin^2 2\theta_{13}$ affects the experimental strategy how to measure the mass hierarchy and CP violation, this “branching point” [4] will, at the latest, tell us how to proceed.

If $\sin^2 2\theta_{13}$ turns out to be small, one may optimize for a maximum $\sin^2 2\theta_{13}$ reach of all measurements. It seems that a neutrino factory [5-8] (NF) or a higher gamma beta beam [9, 10] could be the most promising alternative; for the optimization discussions, see, e.g., Refs. [11, 12]. For large $\sin^2 2\theta_{13}$, the measurement far away from the oscillation maximum and matter density uncertainties affect the NF performance [8, 13]. Therefore, other alternatives may outperform a NF, such as SB upgrades or beta beams (see, e.g., Refs. [11, 14] for a direct comparison).

Recently, potential improvements in the muon charge identification (CID) at low energies (see, e.g., Ref. [15]) have brought back a NF into the discussion for large $\sin^2 2\theta_{13}$. In Ref. [16], a muon energy of 4.12 GeV was proposed at baselines of 1000 to 1500 km, an option similar to a wide band beam in terms of neutrino energies and baseline. The relatively low muon energy allows for a significant reduction of the effort on...
the accelerator side, which means that this option might indeed be competitive to SB upgrades, etc.

Other alternatives to improve the NF for large $\sin^2 2\theta_{13}$ are the use of the magic baseline [12,17], or the platinum channel $\nu_\mu \to \nu_e$ (with the ν_μ's coming from the muon decays), which requires electron detection with CID [12]. In this way, the impact of matter density uncertainties can be significantly reduced as well.

In this letter, we discuss the optimization of a low-energy NF. We compare such an optimized experiment to wide band beams and beta beams. Furthermore, we propose to use the neutrinos from the secondary pion/kaon beam in addition to the NF beam. This SB, possibly targeted towards the same detector, will provide similar information to the platinum channel. However, it has two major advantages: First, the (at least in a magnetized iron calorimeter) very difficult electron CID is not required if operated out-of-phase with the NF beam. Second, the proton energy can be chosen such that the event rates are peaking at lower energies, where the NF has less events. We discuss the requirements for such a hybrid configuration, which we call “neutrino factory superbeam” (NF-SB), and we show the physics potential.

2. Setup and Experimental Requirements

The primary information from a NF comes from the “golden” $\nu_e \to \nu_\mu$ appearance channel [7]. The two major challenges for large $\sin^2 2\theta_{13}$ are the matter density uncertainties and the lack of events at low energies, where the interesting higher-order oscillation effects are present. As demonstrated in Ref. [12], complementary information from the T-conjugated $\nu_\mu \to \nu_e$ appearance channel (platinum channel) would help, partly because of the correlated matter effect. However, CID for electrons in a magnetized iron calorimeter appears to be difficult because the electrons produce showers early (though it may not be impossible for low neutrino energies). In this letter, we propose to use the SB from the pion and kaon decays instead of the platinum channel.

The schematics for such a setup can be found in Figure 1. We require that it be operated out-of-phase with the NF beam, which means that CID will not be required for this channel. In addition, the proton energy can be adjusted within the range acceptable for the NF3 such that a spectrum peaking at lower energies can be obtained. As one can see from Figure 1, there are two major requirements for such a setup: First, the geometry has to be chosen such that the tertiary and quaternary neutrino beams point towards the same detector (not to scale). Second, the target station has to be able to separate and focus the pion and kaon charges in a way that both experiments can be operated simultaneously. From Figure 1, this requirement may be acceptable if we only use half of the luminosity of an exclusive NF (because only one polarity can be operated at the same time). However, one may speculate that a more sophisticated target station might recycle a fraction of the muons from the SB mode. Note that, for the NF plus SB, we have now three phenomenological degrees of freedom: E_p, E_μ, and L.

The main prerequisite for a low-energy NF is an improved detection system with sufficient golden channel efficiencies at low energies. These efficiencies with a threshold possibly as low as 0.5 GeV might be obtained by cuts leading to a higher charge mis-identification background, or a more refined detector than a magnetized iron calorimeter (such as a NOνA-like detector or a liquid argon detector with a large magnetic volume). For large $\sin^2 2\theta_{13}$, such a background will not be very important as long as the background level is $\lesssim \sin^2 2\theta_{13}$. We follow Refs. [12,16] by using a low-threshold (500 MeV) with improved energy resolution option ($15\%/\sqrt{E}$), which we call Golden*. We use 50% efficiency for the golden channel requiring CID, and 90% efficiency for the disappearance channel without CID. Note that an even higher appearance efficiency may be obtained for the price of larger backgrounds. We use a total luminosity of 5 yr running time $\times 10^{21}$ useful muon decays/year $\times 50$ kt detector mass in

3Note we will also use antineutrinos in all of the discussed channels.

4The acceptable range is relatively wide $8\text{ GeV} \lesssim E_p \lesssim 30\text{ GeV}$ (see, e.g., Ref. [18]).
each polarity (μ^+, μ^- stored) if operated as NF alone, and half of that for the NF-SB. We assume that the number of useful muon decays/year approximately requires a target power of 4 MW, but this number scales with non-trivial aspects of the muon cooling and acceleration system. For the comparison to the platinum channel, we again follow the optimistic choice in Ref. [12] using 40% efficiency, no upper threshold, and 1% charge misidentification (cf., e.g., Ref. [19] for liquid argon).

For the SB operation, we have tested a MiniBOONE-like wide band beam ($E_p = 8$ GeV) and an AGS-like wide band beam ($E_p = 28$ GeV). Since the MiniBOONE-like beam has turned out too have too low neutrino energies for our application, we focus on the AGS-like beam in the following (see Refs. [14, 20, 21] for details on the simulation). Note that a considerably higher proton energy may lead to a significant loss of efficiency for the NF. We assume an electron detection efficiency of 80% without CID (in Golden*) and that the experiments is subject to the same NC background as the muons. This assumption is probably too optimistic, but the intrinsic beam background is larger anyway. Our systematical errors are chosen to be 5% except for the signal normalization errors in the NF (2.5%). We compare in Figure 2 the event rate spectra from the three potentially used appearance channels (NF, SB, platinum). The peak of the platinum channel is at higher energies than the peak of the NF because of the corresponding spectra from the muon decays (the electron neutrinos peak at lower energies than the muon neutrinos). On the other hand, E_p is chosen such that the SB peaks at lower energies, where oscillation effects are more prominent (cf., right panel). Note that this figure assumes the muon decay numbers of the NF-SB, whereas an exclusive NF operation will allow for the double luminosity.

For the simulation, we use the GLoBES software [22, 23]. For the oscillation parameters, we use $\sin^2 \theta_{12} = 0.3$, $\sin^2 \theta_{23} = 0.5$, $\Delta m^2_{21} = 7.9 \times 10^{-5}$ eV2, $\Delta m^2_{31} = 2.5 \times 10^{-3}$ eV2, and a normal mass hierarchy unless stated otherwise.

Figure 1. Schematics of a NF-SB (not to scale). Our degrees of freedom are given by red/gray labels. Here we adopt the conservative point of view that only half the muons can be collected for the NF.

Figure 2. Appearance event rates as a function of the reconstructed neutrino energy. The figures compare the NF (golden), SB, and platinum channel appearance. The curves are computed for $E_\nu = 5$ GeV, $E_p = 28$ GeV, $L = 1250$ km, $\sin^2 2\theta_{13} = 0.1$, $\delta_{CP} = 0$, $m_{\text{Det}} = 50$ kt, 2.5×10^{21} useful muon decays, and $P_{\text{target}} = 4$ MW.
Figure 3. Fraction of δ_{CP} for which CP violation can be measured as a function of L and E_{μ} ($\sin^2 2\theta_{13} = 0.1, 3\sigma$ confidence level). The left panel is for a NF alone with twice the luminosity as in the right panel. The right panel is for a NF plus SB combination with a fixed proton energy of $E_p = 28$ GeV. The contours are spaced by 0.02, where the thick curves correspond to a fraction of $\delta_{CP} \in \{0.8, 0.7, 0.6, \ldots\}$. The optima are marked by the diamonds. The luminosity “L” stands for 0.5×10^{21} useful muon decays/yr.

(see, e.g., Ref. [24]). In addition, we assume that Δm^2_{21}, θ_{12}, and the matter density will be known at the level of 5%.

3. Optimization for Large $\sin^2 2\theta_{13}$

As far as the optimizations of a low-energy NF and the NF-SB are concerned, let us first of all focus on the NF alone. In Figure 3, left panel, we show the fraction of (true) δ_{CP} for which CP violation can be measured as a function of L and E_{μ} (for $\sin^2 2\theta_{13} = 0.1$). At the optimum (diamond), one can establish CP violation for 81% of all possible values of δ_{CP}. One has close-to-optimum performance for $L \sim 800 \text{ km} - 1300 \text{ km}$ and $E_{\mu} \gtrsim 4 \text{ GeV}$, which is consistent with the configuration discussed in Ref. [16]. For the mass hierarchy, we find that $L \gtrsim 800 \text{ km}$ to establish the mass hierarchy for any δ_{CP} (the E_{μ}-dependence is moderate). In addition, note that for such a large $\sin^2 2\theta_{13}$, none of the discussed facilities has a problem to establish a non-zero $\sin^2 2\theta_{13}$.

In Figure 3, right panel, we show the same optimization for NF-SB with a fixed proton energy of $E_p = 28$ GeV and half the useful number of muon decays from the last example. At the optimum (diamond), one can establish CP violation for 85% of all possible values of δ_{CP}. The optimal baseline range depends on E_{μ}. For instance, one has close-to-optimum performance for $L \sim 800 \text{ km} - 1500 \text{ km}$ for $E_{\mu} \gtrsim 4 \text{ GeV}$. For the mass hierarchy, shorter baselines $L \gtrsim 500 \text{ km}$ are, in principle, sufficient. This effect has been discussed in Ref. [25]. Since the NF luminosity in this hybrid is only half of the one for the NF alone, we conclude that we have identified a synergy between the NF and the SB which goes beyond the simple addition of statistics (for a definition of synergy, see Ref. [26]). Note that the SB alone operated at double luminosity approximately compares to the low-energy NF alone (for $\sin^2 2\theta_{13} = 0.1$ and the same detector).

Now one may argue that it may be better to use a combination with two different baselines in the fashion of Ref. [27] (NF plus SB). Therefore, we show in Figure 4 the two-baseline optimization of the NF and SB with uncorrelated matter effect and a fixed muon energy of $E_{\mu} = 5 \text{ GeV}$. The optimum turns out to be close to the same-baseline diagonal. However, it is somewhat worse than for the correlated matter density case above.
Since a option requiring only one site and, possibly, only one detector is much more cost efficient, we will not discuss the two-baseline case anymore. We have, in addition, tested a 500 kt water Cherenkov detector for the SB part together with the 50 kt Golden*. More or less, we obtain the same qualitative results with the difference of a much higher fraction of δCP: CP violation can be measured for about 91% of all values of δCP (for sin² 2θ13 = 0.1). Of course, this option would require an additional very large detector. Furthermore, we have checked that our optimization results to not change for somewhat smaller sin² 2θ13. In the following section, we will use these standard setups from the optimization discussion above as given in Table 1.

4. Comparison of Facilities

We compare in Figure 5 the different setups from Table 1 for different values of (large) sin² 2θ13. Obviously, the NF-SB outperforms any of the chosen facilities for large enough sin² 2θ13 except for the beta beam. In particular, it is significantly better than low-E NF (with or without platinum channel), and slightly better than High-E NF2B (except for sin² 2θ13 = 0.01). Note that these setups are operated at the double muon decay rate compared to the NF-SB, which means that the information from NF and SB is very complementary in terms of channel and spectrum. As far as the beta beam is concerned, we find that it has the best absolute performance. However, given the relatively high gamma and the challenging ion decay rates, it is difficult to judge how this setup compares in terms of feasibility and effort. The comparison to the wide band beam (in this case with a 500 kt water Cherenkov detector compared to the 50 kt Golden* used for the NF-SB hybrid) depends very much on sin² 2θ13: For very large sin² 2θ13 ≃ 0.1, the wide band beam might be the natural choice, because it is based on known technology. However, for a somewhat smaller sin² 2θ13, the NF-SB is significantly better.

We have also studied further potential improvements of the NF-SB. Very little physics reach can be gained by the additional use of the magic baseline or platinum channel, or by better knowledge on the matter density profile, since the underlying correlations are already resolved. The most significant improvement can be obtained by luminosity upgrades, such as by using a large water Cherenkov detector (for the SB) in addition to Golden* at the same site. In this case, even the beta beam can be outperformed for very large sin² 2θ13. Note that one could imagine different staged scenarios with this observation, such as WBBGolden*, followed by NF-SB. We expect that further significant improvements could be obtained by better absolute efficiencies for the muon neutrino appearance channel (for the price of larger backgrounds), by recycling a fraction of the muons produced in the SB channel for the NF, or by a further optimization of proton energy and horn characterizing the SB.

5. Summary and Discussion

We have studied a low-energy neutrino factory (NF) in combination with a superbeam (SB) produced in the decay chain of the same protons, which we have called “neutrino factory superbeam”. We have demonstrated that this configuration outperforms a low-energy NF alone be-
Table 1
Setups used for the comparison. The running time is five years for each polarity for all setups. The abbreviation "umd" stands for "useful muon decays per year", the abbreviation "WC" for a water Cherenkov detector, and the label Golden* for our optimized detector (see description in Section 2 and Ref. [12]).

Setup name	Description/Parameters	Det.	m_{Det}	Ref.
WBB_{WC}	$E_p = 28$ GeV, $P_{target} = 4$ MW	WC	500 kt	[20]
Low-E NF	$E_p = 5$ GeV, $L = 900$ km, 10^{21} umd	Golden*	50 kt	this
Low-E NF&Pt	Same as Low-E NF, plus platinum channel	Golden*	50 kt	this
High-E NF_{2B}	$E_p = 20$ GeV, $L = 4000$ km + 7500 km, 10^{21} umd	Golden*	2 x 50 kt	[12]
NF-SB	$E_p = 5$ GeV, $L = 1250$ km, 0.5×10^{21} umd, $E_p = 28$ GeV, $P_{target} = 4$ MW (SB)	Golden*	50 kt	this
BB350	$\gamma = 350$, $L = 730$ km, $5.8 \cdot 10^{18}$ useful 6He decays/yr, $2.2 \cdot 10^{18}$ useful 18Ne decays/yr	WC	500 kt	[10]

Figure 5. Comparison of the fraction of (true) δ_{CP} for which CP violation can be discovered (3σ) for the different facilities listed in Table 1. The different panels correspond to different values of $\sin^2 2\theta_{13}$, as given in the captions.

Beyond a simple addition of statistics even if one can use the platinum channel, as well as it outperforms a wide band beam with the same proton energy. The reason for this excellent performance is the SB spectrum peaking at lower energies, and the information from the T-conjugated $\nu_\mu \rightarrow \nu_e$ channel at the same baseline (i.e., with correlated matter effect).

As far as the technical requirements for such a configuration are concerned, the same detector might be used at the same baseline. As for any low-energy neutrino factory, sufficiently good efficiencies at low energies are required. The extra effort mainly reduces to a more sophisticated target station, which has to separate the pion and kaon charges and utilize them for the NF and SB. In addition, we have assumed that the NF and SB bunches arrive out-of-phase at the (possibly same) detector. For the electron neutrino detection, we have required a relatively high efficiency without CID, which is different from the platinum channel (where the requirement of CID significantly reduces the efficiency). As far as systematics is concerned, we expect this experiment to be of low risk: The NF systematics has been assumed very conservatively, and the wide band...
beam is rather robust with respect to systematics [14]. This might be an important decision criterion in comparison to narrow band beams.

From the optimization, we have found $L \sim 800 \text{ km} - 1500 \text{ km}$ and $E_\mu \gtrsim 4 \text{ GeV}$ to be close-to-optional, which, for instance, corresponds to Fermilab to Homestake or Henderson. For the proton energy, we have tested two configurations at the lower end upper end of the admissible range for a NF, and we have chosen $E_p = 28 \text{ GeV}$. This means that we obtain a completely different configuration from a high-energy NF optimized for small $\sin^2 \theta_{13}$ [12] in terms of baselines, muon energy, and target station. For the detector, the need for high efficiencies at low energies is independent of the NF configuration (but not a prerequisite for a high-energy NF). However, higher backgrounds may be admissible for the low-energy NF, which means that the overall efficiency could be higher. Although a high-energy NF with two baselines (and possibly platinum channel) might be used for large $\sin^2 \theta_{13}$ as well, the effort might be considerably higher. The same, in principle, applies to a higher gamma beta beam. We conclude that a reasonable decision can be made when the branching point sensitivity $\sin^2 \theta_{13} \simeq 0.01$ is reached. Before that point, one may want to develop two different NF approaches: One optimized for $\sin^2 \theta_{13}$ reach operated as a discovery machine, the other optimized for large $\sin^2 \theta_{13}$ operated as a precision instrument.

Acknowledgments WW acknowledges support from the Emmy Noether program of Deutsche Forschungsgemeinschaft. Computing was performed on facilities supported by the US NSF Grants EIA-032078 (GLOW), PHY-0516857 (CMS Research Program subcontract from UCLA), PHY-0533280 (DISUN), and the University of Wisconsin Graduate School/Wisconsin Alumni Research Foundation.

REFERENCES
1. Y. Itow et al., Nucl. Phys. Proc. Suppl. 111 (2001) 146, hep-ex/0106019.
2. Double Chooz, F. Ardellier et al., (2006), hep-ex/0606025.
3. P. Huber et al., Phys. Rev. D70 (2004) 073014, hep-ph/0403068.
4. M.G. Albrow et al., (2005), hep-ex/0509019.
5. S. Geer, Phys. Rev. D57 (1998) 6989, hep-ph/9712290.
6. V.D. Barger et al., Phys. Rev. D62 (2000) 013004, hep-ph/9911524.
7. A. Cervera et al., Nucl. Phys. B579 (2000) 17, hep-ph/0002108.
8. P. Huber, M. Lindner and W. Winter, Nucl. Phys. B645 (2002) 3, hep-ph/0204352.
9. J. Burguet-Castell et al., Nucl. Phys. B695 (2004) 217, hep-ph/0312068.
10. J. Burguet-Castell et al., Nucl. Phys. B725 (2005) 306, hep-ph/0503021.
11. P. Huber et al., Phys. Rev. D73 (2006) 053002, hep-ph/0506237.
12. P. Huber et al., Phys. Rev. D74 (2006) 073003, hep-ph/0606119.
13. T. Ohlsson and W. Winter, Phys. Rev. D68 (2003) 073007, hep-ph/0307178.
14. V. Barger et al., (2007), hep-ph/0703029.
15. M. Ellis, ISS detector working group report, Talk at NuFact06.
16. S. Geer, O. Mena and S. Pascoli, Phys. Rev. D75 (2007) 093001, hep-ph/0701258.
17. P. Huber and W. Winter, Phys. Rev. D68 (2003) 037301, hep-ph/0301257.
18. M. Zisman, ISS accelerator group summary, Talk at IDS meeting, CERN, March 2007.
19. A. Rubbia, (2001), hep-ph/0106088.
20. V. Barger et al., Phys. Rev. D74 (2006) 073004, hep-ph/0607177.
21. V. Barger et al., (2006), hep-ph/0610301.
22. P. Huber, M. Lindner and W. Winter, Comput. Phys. Commun. 167 (2005) 195, hep-ph/0407333.
23. P. Huber et al., (2007), hep-ph/0701187.
24. T. Schwetz, Phys. Scripta T127 (2006) 1, hep-ph/0606060.
25. T. Schwetz, (2007), hep-ph/0703279.
26. P. Huber, M. Lindner and W. Winter, Nucl. Phys. B654 (2003) 3, hep-ph/0211300.
27. J. Burguet-Castell et al., Nucl. Phys. B646 (2002) 301, hep-ph/0207080.