Comparison of IncL/M Plasmids Using the Neighbor-Joining Method on Basis repA and excA Genes

Touati Abdelaziz and Mairi Assia

Laboratoire d’Ecologie Microbienne, FSNV, Université de Bejaia, 06000 Bejaia, Algérie

Abstract: The aim of this study is to make comparison of IncL/M groups on basis of two genes candidates’ repA and excA genes. The sequences of 27 plasmids were compared using the neighbor-joining method. This method was used to construct a phylogenetic tree for the nucleotide sequences of two genes (repA and excA), using the program MEGA X software. The evolutionary distances were computed using the maximum composite likelihood method. The neighbor-joining method analysis showed different results based on the gene used for comparison. The repA gene was more accurate than excA gene to distinguish between different IncL/M plasmids. This study suggested that IncL/M plasmids harboring different antibiotic resistance genes have evolved differently.

Keywords: Plasmids, IncL/M Type, Phylogenetic Analysis, repA Gene, excA Gene

Introduction

The dissemination of antimicrobial resistance in Gram-negative bacteria has been largely attributed to the horizontal transfer of plasmid-located resistance genes (Carattoli, 2013). A plasmid is defined as a double-stranded, circular DNA molecule able of autonomous replication. By definition, plasmids do not carry genes essential for the growth of host cells under no stressed conditions (Carattoli, 2009).

Carbapenem antibiotics are generally considered the most effective antibacterial agents for the treatment of multidrug-resistant bacterial infections. However, with the widespread use of carbapenem, the prevalence of Carbapenem-Resistant Enterobacteriales (CRE) has increased rapidly and has become a serious threat to public health. The production of carbapenemases is the major mechanism underlying carbapenem resistance in CRE throughout the world (Cui et al., 2019). Carbapenemases belong to Ambler class A (i.e., KPC types), class B (i.e., MBLs: VIM, IMP and NDM types) and class D (i.e., OXA-48). The KPC, NDM, IMP, VIM and OXA-type enzymes are the most common global carbapenemases among Gram-negative bacteria (Pitout et al., 2019). OXA-48-type carbapenem-hydrolyzing class D β-lactamases are widely distributed among Enterobacteriaceae, with significant geographical differences (Mairi et al., 2018).

Genes encoding carbapenemases are mostly located on conjugative plasmids that allow their efficient dissemination among Enterobacteriales species. Although the prevalence of particular plasmids may vary depending on the source and geographical site, they have been increasingly isolated from bacteria of human, animal and environmental origin (Rozwandowicz et al., 2018; Touati and Mairi, 2019). In a recent review, Touati and Mairi concluded that the diffusion of OXA-48 in Algeria is probably linked to plasmid diffusion. This plasmid is largely conjugative between Enterobacteriales members and assigned to IncL/M group (Touati and Mairi, 2019).

The aim of this study was to compare plasmids of IncL/M group encoding different β-lactamases on the basis of two genes repA and excA.

Methods

Plasmid Characterization

The sequences of 14 plasmids carrying the blaOXA-48 gene were already published (Mairi et al., 2019) and served as a matrix for bioinformatics comparison. Briefly, these plasmids were originated from different species of Enterobacteriales strains obtained from different ecological niches in Algeria. They were sequenced on the Illumina genome analyser IIX system by GenoScreen SA (Lille, France). The sequences of these plasmids were deposited in the GenBank (MK121443.1 to MK121456.1).

Bioinformatic Analysis

To generate comparisons, 13 sequenced plasmids carrying different β-lactamases genes were obtained from...
the NCBI nucleotide database (www.ncbi.nlm.nih.gov/nucleotide). Results were filtered to exclude plasmid sequences that did not belong to the IncL/M group. Antimicrobial resistance genes were identified using ResFinder tool 3.2 (https://cge.cbs.dtu.dk/services/ResFinder/). The sequence of two genes was extracted from these plasmid sequences including repA and excA genes.

Complete sequence alignments of these two genes were then undertaken using CLUSTALW on the CLUSTAL Omega website of the EMBL-EBI (www.ebi.ac.uk/Tools/service/web). The neighbor-joining method was used to construct a phylogenetic tree for the nucleotide sequences of these two genes, using the program MEGA X software. The evolutionary distances were computed using the Maximum Composite Likelihood method.

Results and Discussion

The data concerning the 27 analyzed plasmids are presented in Table 1. The size of the plasmids ranged from 49257 pb (pRAY) to 133208 pb (pIMP-HB623). The repA gene has 1056 pb in size while the excA gene has 654 pb in size. All the 14 plasmids reported in our study had the same size (61881).

All plasmids carried the blaOXA-48 gene encoding for carbapenemase except four plasmids wich encoded β-lactamas

Accession number	Species	Plasmid name	Size of plasmid (pb)	repA gene size (pb)	Position	excA gene size (pb)	Position	Blaste
LN064821.1	Raoultella planticola	pRA35	63 434	1056 7938-5900	65	56690-57343	OXA-48	
JX048939.4	Enterobacter cloacae	pECl973	87 731	1056 51866-52921	65	50610-51263	IMP-4	
JQ837276.1	Enterobacter cloacae	pNE1280	66 531	1056 23131-24186	65	21877-22530	KPC-4	
KC534801.1	Klebsiella pneumoniae	pEG011	71 446	1056 65962-67017	65	64702-65355	OXA-48+CTX-M-14	
KM877517.1	Enterobacter cloacae	pIMP-HB623	133 208	1056 547-1602	65	132499-131352	IMP-34	
KX224252.1	Klebsiella pneumoniae	pRay	49 257	1056 16098-17153	65	14838-15491	OXA-48	
HG934082.1	Klebsiella pneumoniae	pFOX-7a	90 439	1056 2428-1373	65	7982-8635	FOX	
KX523901.1	Klebsiella pneumoniae	pOXA-48_3017	65 488	1056 60004-61059	65	58744-59397	OXA-48	
KC335143.1	Klebsiella pneumoniae	E71T	63 578	1056 58552-59607	65	57292-57945	OXA-48	
KM406049.1	Klebsiella pneumoniae	pKrp-E1 N7	63 581	1056 32334-33389	65	31074-31727	OXA-48	
KP695888.1	Klebsiella pneumoniae	pOXA-48E1	62 014	1068 595-1662	65	61361-62014	OXA-48	
JN626286.1	Klebsiella pneumoniae	pOXA-48_Ref	61 681	1056 56394-57449	65	55134-55787	OXA-48	
KJ1021994.1	Proteus mirabilis	pOXA-48_Pm	72 127	1056 527-1582	65	71401-72004	OXA-48	
MK124156.1	Cronobacter malonicatis	pTR94	61 881	1056 56394-57449	65	55134-55787	OXA-48	
MK124185.1	Raoultella ornithinolytica	pTR76	61 881	1056 56394-57449	65	55134-55787	OXA-48	
MK124141.1	Pluralibacter gergoviae	pTR48	61 881	1056 56394-57449	65	55134-55787	OXA-48	
MK124143.1	Citrobacter werkmani	pTR43	61 881	1056 56394-57449	65	55134-55787	OXA-48	
MK124145.1	Klebsiella pneumoniae	pTR103	61 881	1056 56394-57449	65	55134-55787	OXA-48	
MK124145.1	Enterobacter cloacae	pTR67B	61 881	1056 56394-57449	65	55134-55787	OXA-48	
MK124148.1	Escherichia coli	pTR73	61 881	1056 56394-57449	65	55134-55787	OXA-48	
MK124147.1	Klebsiella pneumoniae	pTR69A	61 881	1056 56394-57449	65	55134-55787	OXA-48	
MK124146.1	Enterobacter cloacae	pTR66A	61 881	1056 56394-57449	65	55134-55787	OXA-48	
MK124145.1	Klebsiella pneumoniae	pTR47	61 881	1056 56394-57449	65	55134-55787	OXA-48	
MK124144.1	Escherichia coli	pTR77	61 881	1056 56394-57449	65	55134-55787	OXA-48	
MK124143.1	Escherichia coli	pTR92	61 881	1056 56394-57449	65	55134-55787	OXA-48	
MK124150.1	Escherichia coli	pTR90	61 881	1056 56394-57449	65	55134-55787	OXA-48	
MK124149.1	Escherichia coli	pTR78A	61 881	1056 56394-57449	65	55134-55787	OXA-48	
Fig. 1: The evolutionary history inferred using the Neighbor-joining method on basis of repA gene

Fig. 2: The evolutionary history inferred using the Neighbor-Joining method on basis of excA gene
Acknowledgement

We thank the “Direction Générale de la Recherche Scientifique et du développement technologique (DGRSDT) » of Algerian Ministry of Higher Education and Scientific Research”

Author’s Contributions

Mairi Assia: Has characterized the plasmids and written the article.

Touati Abdelaziz: Has made the bioinformatic analysis of plasmids and reviewed the article

Ethics

This article is original and contains unpublished material. The corresponding author confirms that all of the other authors have read and approved the manuscript and no ethical issues involved.

References

Carattoli, A., 2009. Resistance plasmid families in Enterobacteriaceae. Antimicrob Agents Chemother, 53: 2227-2238. DOI: 10.1128/AAC.01707-08

Carattoli, A., 2013. Plasmids and the spread of resistance. Int. J. Med. Microbiol., 303: 298-304. DOI: 10.1016/J.IJMM.2013.02.001

Cui, X., H. Zhang and H. Du, 2019. Carbapenemases in Enterobacteriaceae: Detection and antimicrobial therapy. Front Microbiol., 10: 1823-1823. DOI: 10.3389/FMICB.2019.01823

Mairi, A., A. Pantel, A. Sotto, J.P. Lavigne and A. Touati, 2018. OXA-48-like carbapenemases producing Enterobacteriaceae in different niches. Eur. J. Clin. Microbiol. Infect. Dis., 37: 587-604. DOI: 10.1007/S10096-017-3112-7

Mairi, A., A. Pantel, F. Ousalem, A. Sotto and A. Touati, 2019. OXA-48-producing Enterobacterales in different ecological niches in Algeria: Clonal expansion, plasmid characteristics and virulence traits. J. Antimicrob Chemother, 74: 1848-55. DOI: 10.1093/JAC/DKX146

Pitout, J.D.D., G. Peirano, M.M. Kock, K.A. Strydom and Y. Matsumura, 2019. The global ascendency of OXA-48-type carbapenemases. Clin. Microbiol. Rev.

Rozwandowicz, M., M.S.M. Brouwer, J. Fischer, J.A. Wagenaar and B. Gonzalez-Zorn et al., 2018. Plasmids carrying antimicrobial resistance genes in Enterobacteriaceae. J. Antimicrob Chemother, 73: 1121-37. DOI: 10.1093/JAC/DKX488

Touati, A. and A. Mairi, 2019. Carbapenemase-producing Enterobacterales in Algeria: A systematic review. Microb. Drug Resist.