Improving estimates of coral reef construction and erosion with in situ measurements

Ilsa B. Kuffner,1,∗ Lauren T. Toth,1 J. Harold Hudson,2 William B. Goodwin,3 Anastasios Stathakopoulos,1 Lucy A. Bartlett,4 Elizabeth M. Whitcher5

1U.S. Geological Survey, St. Petersburg Coastal and Marine Science Center, St. Petersburg, Florida
2Reef Tech, Inc., Miami, Florida
3NOAA Florida Keys National Marine Sanctuary, Key Largo, Florida
4Contracted by Cherokee Nation Technologies to U.S. Geological Survey, St. Petersburg Coastal and Marine Science Center, St. Petersburg, Florida
5Florida Institute of Technology, Melbourne, Florida

Abstract

The decline in living coral since the 1970s has conspicuously slowed reef construction on a global scale, but the related process of reef erosion is less visible and not often quantified. Here, we present new data on the constructional and deconstructional sides of the carbonate-budget equation in the Florida Keys, U.S.A. We documented Orbicella spp. calcification rates at four offshore reefs and quantified decadal-scale rates of Orbicella-reef erosion at a mid-shore patch reef. Using Orbicella coral heads fitted with permanent markers in 1998, we measured reef-elevation loss at 28 stations over 17.3 yr to estimate a mean erosion rate of −5.5 (± 3.2, SD) mm yr−1. This loss equates to an erosion rate of −8.2 (± 4.8, SD) kg m−2 yr−1 on dead Orbicella colonies, or −6.6 kg m−2 yr−1 when adjusted reef-wide. Calculating net carbonate production using a census-based approach on the same patch reef in 2017, we estimated a reef-wide bioerosion rate of −1.9 (± 2.0, SD) kg m−2 yr−1, and a net carbonate production rate of 0.5 (± 0.3, SD) kg m−2 yr−1. Substituting the erosion rate we estimated with the markers would suggest that net carbonate production at this patch reef was lower and negative, −4.2 kg m−2 yr−1. This divergence could be a function of high erosion rates measured on the tops of Orbicella colonies, which may be preferentially targeted by parrotfish. Nonetheless, our study suggests the need for new field data to improve estimates of reef-structure persistence as coral reefs continue to degrade.

Coral reefs provide economically valuable ecosystem services, foremost shoreline protection, and food production (fisheries), to coastal communities on a globally relevant scale (Costanza et al. 1997, 2014). Reduction in the quality and estimated value of these corals are particularly vulnerable to climate change and disease (Aronson and Precht 2001; Miller et al. 2009). Following coral mortality, the reef structure is left exposed to the physical and biological agents of reef erosion (Perry et al. 2014).

Carbonate budgets provide a method to estimate the balance of constructional (i.e., calcification) and deconstructional (i.e., erosion) processes that determine whether a reef builds or dwindles away (Sear et al. 1977; Scoffin et al. 1980; Hubbard et al. 1990; Perry et al. 2012); however, the calcification rates used in present-day budgets are necessarily based on literature that is, in many cases, decades old, and researchers must rely on data from congeners for species for which data do not exist. Additionally, evidence indicates that calcification rates may have slowed in recent years (De’ath et al. 2009; Cantin et al. 2010), heightening the need for new data. Calcification rates reported in the past were largely estimated by multiplying annual linear extension rates, measured by examining X-rays or (more currently) computerized tomography (CT) scans of coral cores and slabs taken to reveal annual growth bands (Knutson et al. 1972), by the bulk density of coral specimens measured in various ways (Manzello et al. 2015). While simple in concept, the bulk density of coral skeletons is difficult to measure and can be plastic in response to growth

∗Correspondence: ikuffner@usgs.gov

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
environment (Smith et al. 2007; Kuffner et al. 2017). One approach to circumvent the uncertainty associated with density is to directly measure calcification rate (Jokiel et al. 1978). While most often applied in the laboratory, the technique can also be used for field-grown specimens by temporarily transporting the corals to land to use a balance (Morrison et al. 2013). Since 2009, we have used this approach to measure calcification rates on the outer-reef tract of the Florida Keys (Kuffner et al. 2013).

As the abundance of living corals continues to decline, the relative importance of erosive processes is increasing on reefs around the world (Perry et al. 2013; Kuffner and Toth 2016; Toth et al. 2018). Given that ocean acidification will facilitate bioerosion (Wiisshak et al. 2012; Fang et al. 2013; Enochs et al. 2016) and carbonate dissolution (Eyre et al. 2018) in the future, baseline knowledge about the rates of reef erosion is critical to predicting the persistence of reef structures. Although numerous laboratory and short-term field studies have recently evaluated the agents and processes of reef bioerosion (e.g., Fang et al. 2013; Enochs et al. 2015; Silbiger and Donahue 2015), bioerosion is a long-term process (Glynn 1997), which requires decadal-scale studies to observe adequately. Data directly quantifying reef erosion rates, in volume or linear depth, are rare (however, see Hudson 1977; Bruggemann et al. 1996; Roff et al. 2015). Most assessments of reef erosion have used a census approach, wherein counts of bioeroding taxa are combined with published data on estimated rates of bioerosion to ascribe a rate of bioerosion for a given reef (Perry et al. 2012). Direct, field-based measurements of reef erosion rates are critical to validating the census approach and to provide baseline, real-world data on the rate of reef-structure loss.

Here, we document spatial and temporal variability in coral calcification rates using a field experiment in which calcification rates of 50 Orbicella spp. colonies were measured biannually from 2013 to 2015. To estimate long-term rates of bioerosion, we also completed an experiment performed on an Orbicella-dominated mid-shelf patch reef started in 1998 wherein 28 dead colonies were fitted with permanent, stainless-steel, and cement markers. We quantified the change in elevation of those corals 17 yr later, in 2015. For a comparison with these erosion measurements, we also performed benthic and fish species surveys at the same reef in 2017 to evaluate the carbonate budget using the census-based approach (Perry et al. 2012). Improving estimates of the constructional and deconstructional processes through empirical measurements is paramount to gaining confidence in carbonate budgets that are used to predict reef futures in a time of accelerating climate change and sea-level rise (Perry et al. 2018).

Methods

The Florida Keys Reef Tract (FKRT) is a bank-barrier reef system stretching 350 km along the Florida Straits (Stephenson and Stephenson 1950). The offshore reefs are found approximately 10 km off the coast of the island chain of the Florida Keys, with numerous patch reefs lining the seaward and landward edges of Hawk Channel that spans the length of the reef tract seaward of the islands (Lidz et al. 2006). Our study sites (Fig. 1) for the calcification-assessment network were located at Pulaski Shoal Light (PLS, 24.69355° N 82.77280° W) in Dry Tortugas National Park, Mote Marine Aquarium’s Looe Key coral nursery (LOO, 24.56275° N 81.40013° W), Sombrero Reef (SMK, 24.62687° N 81.10893° W), and Crocker Reef (CRK, 24.90908° N 80.52665° W) in the Florida Keys National Marine Sanctuary (FKNMS), and Fowey Rocks (FWY, 25.59047° N 80.09560° W) in Biscayne National Park. The long-term reef erosion experiment and the carbonate-budget census took place at Hen and Chickens Reef Sanctuary Preservation Area (24.93424° N, 80.54950° W) in the FKNMS, a mid-shelf patch reef at the seaward edge of Hawk Channel.

Calcification measurements

In 2009, a calcification monitoring network was established at sites along the FKRT at offshore reefs from Miami to the Dry Tortugas (Kuffner et al. 2013). For this study, Orbicella spp. fragments-of-opportunity were obtained from the FKNMS Truman Pier Annex mitigation project. On 13 March 2013, 50 colonies of approximately 60 cm² planar surface area were collected from holding baskets attached to the underside of the NOAA Discovery Center docks in Key West, FL. We epoxied the corals to PVC disks fitted with stainless-steel bolts, photographed and weighed them using the buoyant-weight method (Jokiel et al. 1978), and held them under the docks until randomly selected groups of 10 corals were deployed to the experimental sites on 15 May 2013 (PLS), 12 June 2013 (CRK, LOO), or 13 June 2013 (SMK, FWY). Underwater temperature data were recorded every 15 min with two HOBO® Water Temp Pro v2 temperature loggers (Onset®, Pocasset, MA, U.S.A.) deployed at each offshore-reef site (Kuffner 2019). The corals were deployed to pre-existing calcification monitoring stations (concrete blocks) with removable fasteners (Morrison et al. 2013) allowing their removal every 6 months to be weighed using the buoyant-weight method (Jokiel et al. 1978) and photographed, and then returned to the blocks. Calcification rates were normalized to the planar, two-dimensional footprint of the colony, equivalent to a tree’s “dripline” or crown area (Uzoh and Ritchie 1996), at the beginning of the study. Planar-area footprint was measured by tracing the colony on a digital photographic image calibrated with a ruler, placed in the horizontal plane where the colony had the greatest diameter, using iSolution Capture® version 3.1 image analysis software (IMT i-Solution, Vancouver, BC, Canada). Only corals that gained mass during all weighing intervals were used to estimate calcification rates.

Reef erosion measurements

As part of a decades-long research program on coral growth and reef erosion at Hen and Chickens Reef (Fig. 1), on 24–26 June 1998, 12 coral colonies that had likely bleached and died from high-temperature stress were fitted with 1.9-cm-diameter (3/4-in.), 61-cm-long (24-in.) 316-stainless-steel rods that were preamped with identification numbers. Single rods were placed into the top surface of each colony using a hydraulically driven, surface-
powered drill to make a 46-cm-deep (18-in.) hole in each coral, and the rods were inserted into the holes with quick-set epoxy filled flush to the colony surface and approximately 15 cm of the rod protruding out of the colony. Exact measurements of the rod height projecting from each coral were recorded and the rods were photographed (images available in Kuffner et al. 2019) at the time of installation (Fig. 2A). In addition, as part of an earlier study on coral-growth rates, 10-cm-diameter (4-in.) cores were collected in August 1995 from 24 Orbicella colonies that had died of unknown causes. Three years later, the empty bore holes were relocated, and on 8–10 July 1998, the holes were filled with type II Portland cement and fitted with a stainless-steel 10-cm-diameter, 10-cm-tall cylinder assembly that was capped with a numbered plate to make coral “monuments” (Fig. 2C). The holes were filled with cement up to the top of each cylinder, which protruded from the dead colony by approximately 5–8 cm. Once installed, each monument was photographed (images available in Kuffner et al. 2019) and measured relative to the colony’s surface 10 cm from the monument at the four cardinal compass points with a specially designed measuring device. The device fit snugly over the cylinder to support a hacksaw blade placed on its side. Once in place, strips of rigid, white-PVC plastic were marked with a pencil through a hole at the end of the saw blade to denote the height down to the reef surface, 10 cm away from the base of the monument in each cardinal direction.

Over 17 yr later, on 12–13 October 2015, all 12 rods and 16 monuments were relocated, cleaned of epibionts to reveal the identification numbers, photographed (images available in Kuffner et al. 2019), and measured. A hacksaw blade, fitted with a plastic triangle to hold the blade out 10 cm from the edge of the rod or monument, was used to mark PVC strips to measure the height down to the reef surface in each cardinal direction. We used this same technique for the monuments, rather than using the special device described above (it was too time consuming to remove all the biofouling from the sides of the cylinder so that the device would fit), and then later subtracted the height of the device recorded in 1998 to obtain the original height of the monument. The erosion rate at each marker was calculated by subtracting the means, from 1998 to 2015, of the four heights measured 10 cm away from the base of the marker.

For a separate, weight-based estimation of erosion rates, we used the 18 corals from the calcification monitoring network that did not meet the criteria for inclusion in the growth analyses (i.e., lost mass during at least one time interval). If a coral lost mass during two or more time-intervals, the rates for all such intervals were averaged.

Carbonate budgets

We developed carbonate budgets for Hen and Chickens Reef using a modified version of the ReefBudget protocol outlined in...
Perry et al. (2012), summarized in Whitcher (2017). From 07 May 2017 to 09 May 2017, we collected ecological data along six, 10 × 1 m benthic transects and six belt transects to quantify fish abundance, within three sites at Hen and Chickens Reef (SW, NE, and middle [MD]). Along each 10 × 1 m benthic transect, we collected photographic transects of the benthos to determine the coverage of hard corals and crustose coralline algae. The percent coverage of all coral species and other benthic constituents was determined by point-count analysis (25 points per image) in the online program CoralNet© (https://coralnet.ucsd.edu/). Abundance of the bioeroding urchins *Echinometra lucunter*, *Echinometra viridis*, *Diadema antillarum*, and *Eucidaris tribuloides* within 20-mm bins of test sizes and the approximate area in cm² covered by the bioeroding sponges *Cliona aprica*, *C. caribbaea*, *C. tenuis*, *C. varians*, *C. delitrix*, and *Siponodictyon coralliphagum* were quantified along the same 10 × 1 m transects. A diver slowly swam the belt transects to count initial and terminal phase parrotfish (*Scarus vetula*, *Sc. taeniopterus*, *Sc. iseri*, other *Scarus* spp., *Sparisoma viride*, *Sp. aureofrenatum*, *Sp. rubripinne*, *Sp. chrysopterum*, and other *Sparisoma* spp.) across five size classes as assigned based on fish fork length (5–14, 14–24, 24–34, 34–44, and >45 cm). The fish transects were generally 30 × 4 m; however, some transects were shortened to ensure the surveys were only conducted on reef habitat, and some transects were narrowed because of low water clarity during some surveys.

We estimated gross carbonate production at Hen and Chickens Reef by multiplying the proportional coverage of calcifying taxa (hard corals and crustose coralline algae) by taxon-specific calcification rates and a rugosity correction (based on Bozec et al. 2015 and modified by Whitcher 2017) and summing the gross calcification of each taxon. We used calcification rates reported locally at Florida Keys reefs for crustose coralline algae: 0.047 g cm⁻² yr⁻¹ (*Kuffner et al. 2013*), *S. siderea*: 0.99 g cm⁻² yr⁻¹ (*Kuffner et al. 2013*), and *Orbicella* spp.: 0.55 g cm⁻² yr⁻¹ (this study), and for all others used Perry et al.’s (2012) default numbers. We adjusted the calcification rates with a growth-form

Fig. 2. Photographs from Hen and Chickens Reef, Islamorada, FL, in summer 1998 of stainless-steel marker number “998” (A) and cement monument number “9” (C) aside photographs of the same markers 17 yr later in October 2015 (B, D). The amount of reef erosion can be easily visualized because the markers were secured with epoxy or cement, whereas the reef around it has eroded away. The blue boxes contain the measured reef elevation lost for each marker pictured. For scale in the left-hand photographs, the stainless-steel rod in (A) is 4 cm diameter, and the cement marker in (B) is 10 cm diameter. See Kuffner et al. (2019) for time-series photographs of all 28 erosion markers.
Statistix© 10.0 (Analytical Software, Tallahassee, FL, U.S.A.) and statistical analyses

reef-erosion measurements, we conducted a two-sample Student's t-test. ANOVAs were used to test for significant differences in erosion rates estimated with the reference markers and the census-based estimates of gross carbonate production and erosion among sites at Hen and Chickens Reef. The raw data were published and are available in Kuffner et al. (2019).

Results

Mean calcification rates of the 50 Orbicella spp. corals during the predeployment period, while the corals were under the dock in Key West harbor, were not statistically different among future-site assignments (one-way ANOVA, \(F_{4,45} = 0.88, p = 0.48 \)), and averaged 2.0 ± 0.6 mg cm\(^{-2}\) d\(^{-1}\) (± 1 SD). After deployment to the five sites, 28 of the corals sustained growth for the duration of the study, 21 lost mass during one or more weighing interval, died, or lost more than 50% live-tissue area, and one colony was physically lost. Partial mortality was the norm in this study and, on average, colonies lost 21% ± 37% of their live tissue, but only four colonies died, defined as the absence of any live tissue. Percent loss of tissue was not statically different among sites (one-way Kruskal-Wallis test, \(H_{3,35} = 6.1, p = 0.10 \)). Of the 10 corals that were placed at the Looe Key coral nursery, 6 grew (mean calcification 1.7 ± 0.7 mg cm\(^{-2}\) d\(^{-1}\), 3 lost mass, and 1 lost > 50% tissue. The Looe Key corals were injured by predatory snails or a white-syndrome disease early in the study and were removed from the experiment after the first year.

For the 22 corals placed at the offshore reefs (i.e., not including Looe Key) that grew during all time intervals, mean calcification rate was statistically different among time intervals but not among sites (Fig. 3; two-way repeated-measures ANOVA on rank-transformed data, time effect: \(F_{3,54} = 3.4, p = 0.026 \), site effect: \(F_{3,54} = 2.1, p = 0.14 \), two-way interaction: \(F_{9,54} = 2.0, p = 0.058 \)). The overall, average offshore rate of calcification was 1.5 ± 1.3 mg cm\(^{-2}\) d\(^{-1}\), or 0.55 g cm\(^{-2}\) yr\(^{-1}\) (5.5 kg m\(^{-2}\) yr\(^{-1}\)). Tukey HSD all-pairwise comparisons test groupings (α = 0.05) revealed that the second time-interval (winter 2014) had slower calcification rates than during the third time-interval (summer 2014), but there was no significant seasonality observed (a priori contrast of summers vs. winters, Scheffe’s test: \(F_{3,54} = 1.65, p = 0.19 \)).

Underwater temperature was significantly different among sites during the 2-yr study (Fig. 3, one-way Kruskal-Wallis test,
Water temperatures were elevated above seasonal climatology throughout the region because of El Niño conditions during late summer of 2014 (Manzello et al. 2018), but overall, temperatures were cooler in the Dry Tortugas (PLS, 26.5°C) compared with the other three sites (SMK = 27.1°C, CRK = 27.1°C, and FWY = 27.0°C; $H_{3,2747} = 23.7, p < 0.0001$, Dunn’s all-pairwise groupings: PLS > SMK = CRK = FWY).

The long-term erosion study at Hen and Chickens Reef revealed that all 28 markers showed loss of reef elevation except for one (Table 1; Fig. 2), with a mean loss of 9.4 ± 5.6 cm over the 17.3-yr period, which translates to a mean erosion rate of 5.5 ± 3.2 mm yr$^{-1}$. See Kuffner et al. (2019) for time-series photographs of all 28 erosion markers. There was no statistical difference in reef-erosion measurements between the stainless-steel rod and cement monument marker-types (two-sample Student’s t-test: $t = 0.65$, df = 26, $p = 0.52$), or among the three reef sites ($F_{2,25} = 0.3$, $p = 0.75$). Based on the mean density of Orbicella spp. reported by Perry et al. (2012) of 1.5 g cm$^{-3}$, this equates to an average erosion rate of $-8.2 ± 4.8$ kg m$^{-2}$ yr$^{-1}$ for the large, dead Orbicella spp. coral colonies at Hen and Chickens Reef. To estimate reef-wide erosion rates at this site, we scaled the point-based erosion rates by the average proportion of erodible substratum, that is, all substrata excluding living coral and sediment (cf. Perry et al. 2012) on the reef measured during our 2017 surveys: 80.9 ± 10.6%, which results in an estimated reef-wide erosion rate of -6.6 kg m$^{-2}$ yr$^{-1}$ (95% confidence interval = -8.5 to -4.9 kg m$^{-2}$ yr$^{-1}$). The fact that Orbicella spp. corals historically accounted for ~80% of the coral assemblage at Hen and Chickens Reef (Hudson et al. 1976), suggests that rates of Orbicella erosion should provide a

Table 1

Reference markers installed in June/July 1998 at Hen and Chickens Reef, Islamorada, Florida, U.S.A. for measuring reef erosion. Marker identification (ID) refers to the identifying characters welded or stamped on top of the stainless-steel marker. For marker type, M = cement monument and R = stainless-steel rod. Site abbreviations are SW, southwest; MD, middle; and NE, northeast. Reef eroded is the difference between the measurement made during marker installment in summer 1998 and 17 yr later in October 2015.

Marker ID	Marker type	Site	Latitude	Longitude	Water depth (m)	Reef eroded (cm)	Erosion rate (mm yr$^{-1}$)
2	M	SW	24.9375	-80.55129	3.4	9.2	5.3
3	M	SW	24.9375	-80.55135	3.0	5.7	3.3
4	M	SW	24.9369	-80.55129	3.4	12.0	6.9
5	M	SW	24.9349	-80.55097	3.7	6.5	3.8
6	M	SW	24.9363	-80.55121	3.7	6.2	3.6
7	M	SW	24.9356	-80.55118	3.7	8.1	4.7
8	M	SW	24.9362	-80.55106	2.7	8.1	4.7
9	M	SW	24.9350	-80.55102	2.7	28.1	16.3
10	M	MD	24.9404	-80.54948	3.0	15.8	9.2
16	M	MD	24.9421	-80.54948	3.4	12.0	7.0
19	M	MD	24.9473	-80.54873	2.7	13.2	7.7
20	M	MD	24.9468	-80.54874	3.7	-1.1	-0.6
21	M	MD	24.9459	-80.54869	3.7	11.7	6.8
22	M	MD	24.9460	-80.54868	3.7	12.4	7.2
23	M	MD	24.9441	-80.54944	3.0	8.4	4.9
24	M	MD	24.9434	-80.54965	3.7	4.0	2.3
89B	R	NE	24.93729	-80.54765	3.0	11.5	6.6
90B	R	NE	24.93731	-80.54772	4.0	7.8	4.5
91B	R	NE	24.93743	-80.54775	3.7	7.9	4.6
92B	R	NE	24.93731	-80.54779	3.7	3.9	2.3
93B	R	MD	24.93465	-80.54917	3.7	14.0	8.0
94B	R	MD	24.93468	-80.54929	4.0	9.2	5.3
95B	R	MD	24.93460	-80.54917	3.7	5.5	3.2
96B	R	NE	24.93741	-80.54780	3.7	9.2	5.3
97B	R	NE	24.93745	-80.54785	3.4	1.2	0.7
98B	R	NE	24.93747	-80.54784	3.7	8.5	4.9
99B	R	NE	24.93727	-80.54776	3.0	18.4	10.6
100B	R	NE	24.93722	-80.54771	4.0	7.0	4.1
Mean					3.4	9.4	5.5
SD					0.4	5.6	3.2
reasonable approximation of substratum erosion at this site. For the 18 individual corals in the calcification-assessment study that lost mass during one or more weighing intervals, the net erosion rates were highly variable, ranging from −2.1 to −0.03 mg cm$^{-2}$ d$^{-1}$ and averaged −0.51 ± 0.54 mg cm$^{-2}$ d$^{-1}$ or −1.9 kg m$^{-2}$ yr$^{-1}$.

Our surveys in 2017 revealed that the average percent cover of living coral on Hen and Chickens Reef was 15.0% ± 8.0%, with Orbicella spp. at 6.2% ± 6.0%, Siderastrea siderea at 3.9% ± 3.8%, and Colpophyllia natans at 2.4% ± 3.6%, together accounting for nearly all corals observed on our transects. Crustose coralline algae made up 1.9% ± 2.3% of the reef on average and 38.7% ± 10.1% was composed of bare substratum with algal turfs. Gross carbonate production at Hen and Chickens Reef was estimated to be 2.4 ± 1.3 kg m$^{-2}$ yr$^{-1}$ on average and did not vary significantly among sites (Fig. 4, ANOVA: $F_{2,15} = 0.79$, $p = 0.47$). Estimated rates of bioerosion by parrotfish, sponges, microbioeroders, or the total of those groups were also similar among sites (Fig. 4, ANOVAs: $F_{2,15} = 0.54$, $p = 0.59$; $F_{2,15} = 0.34$, $p = 0.72$; $F_{2,15} = 0.19$, $p = 0.83$; $F_{2,15} = 0.10$, $p = 0.91$, respectively). The abundance of adult parrotfishes in our surveys averaged 10.0 ± 21.4 individuals per 100 m2 and the estimated rate of parrotfish bioerosion was −1.6 ± 2.0 kg m$^{-2}$ yr$^{-1}$ reef-wide. Chloa varians and C. delitrix were the most abundant endolithic sponges on Hen and Chickens Reef and on average sponge bioerosion contributed −0.1 ± 0.1 kg m$^{-2}$ yr$^{-1}$ to the total carbonate budget. We did not observe bioeroding urchins on any of the transects. We estimated based on Perry et al. (2012) that the contribution of microbioerosion was −0.2 ± 0.03 kg m$^{-2}$ yr$^{-1}$ on average. In total, the census-based approach estimated an average, total bioerosion rate of −1.9 ± 2.0 kg m$^{-2}$ yr$^{-1}$, which suggests that net carbonate production at Hen and Chickens Reef is 0.5 ± 0.3 (SD based on $n = 3$ sites) kg m$^{-2}$ yr$^{-1}$. Substituting the rate of bioerosion estimated from the small, eroding corals in the calcification experiment (−1.9 kg m$^{-2}$ yr$^{-1}$), the estimated net production was the same: 0.5 kg m$^{-2}$ yr$^{-1}$; however, using the long-term erosion rate estimated from the linear loss of reef at Hen and Chickens (corrected for the proportion of substratum available for bioerosion, −6.6 kg m$^{-2}$ yr$^{-1}$) suggests that net carbonate production was much lower and negative, −4.2 kg m$^{-2}$ yr$^{-1}$.

Discussion

Considering the value of reefs in shoreline protection (Beck et al. 2018), understanding the balance between the growth and destruction of coral reefs is a major research priority (Perry et al. 2018), particularly through the lens of continuing sea-level rise (Storlazzi et al. 2018). Florida’s subtropical reefs may present a canary in a coal mine scenario because reef building throughout the reef tract ceased ~ 3000 yr ago (Toth et al. 2018) and loss of reef elevation has already been documented over the last century (Yates et al. 2017). Our study presents evidence that even *Orbicella*-dominated patch reefs that were thought to be reef refugia based on populations of corals being acclimated to dynamic temperature regimes (Vega-Rodriguez et al. 2015) may be measurably eroding, as evidenced by direct, long-term observations.

Direct measurement of weight-based calcification rates is rare outside of the laboratory. Our experiment using this approach in the field revealed that *Orbicella* spp. colonies growing at four sites on Florida’s offshore reef had a mean calcification rate of 0.55 g cm$^{-2}$ yr$^{-1}$. This value is about half the production rate typically used for this species in carbonate budgets, representing means of calculated values from the published literature (e.g., 1.05 g cm$^{-2}$ yr$^{-1}$ in Guest et al. 2018), though our colonies at Fowey Rocks calcified at rates close to those during the two final time intervals (Fig. 3, 0.95 g cm$^{-2}$ yr$^{-1}$). Manzello et al. (2018) reported recent calcification rates (calculated from CT-scan estimates of linear extension and skeletal density) at a Florida Keys patch reef as high as 1.3 g cm$^{-2}$ yr$^{-1}$, whereas values were lower at an offshore Keys reef, at 0.97 g cm$^{-2}$ yr$^{-1}$ (Manzello et al. 2015). Ideally, and as recognized by Perry et al. (2015), locally and recently collected data on taxon-specific growth parameters should be used whenever possible to accurately predict net-carbonate production.
Our study and Manzello et al.’s (2018) revealed that underwater temperatures were elevated well above average during the summer of 2014, with more than 2 months above the Caribbean wide coral-bleaching threshold of 30.4°C, and several weeks spent above 31°C (Fig. 3). It is possible that the low calcification rates we observed in our small colonies do not accurately reflect rates that are still achievable by healthy, large colonies today, but they are becoming rare. Also, the colonies we used were acclimated to a harbor environment and could have experienced irradiance stress after being moved to optically clear water on the reef crest. The average tissue loss of 21% indicates that stress was a factor, but whether this was reflective of what was happening at the time to wild colonies at the respective sites is unknown. *Oribicella faveolata* is remarkably resistant to complete mortality (Edmunds 2015), as recently demonstrated in the Florida Keys during repetitive bleaching events in 2014 and 2015 (Gintert et al. 2018); however, percent coverage of *Oribicella* spp. across the Florida reef tract has declined significantly since 1998, most likely because of partial mortality (Toth et al. 2014).

With our long-term, permanent markers, we measured a linear erosion rate of $-5.5 \pm 3.2 \text{ mm yr}^{-1}$ of large, dead *Oribicella* colonies present at a mid-shore patch reef in the Upper Florida Keys. A recent, reefscape-scale analysis of seafloor-elevation change estimated the vertical erosion rate for 36 km2 of coral habitat in the Upper Florida Keys at -2.9 mm yr^{-1} (Yates et al. 2017). These rates, arrived at using very dissimilar approaches, are surprisingly similar. An early study, also conducted at Hen and Chickens Reef, estimated erosion of *Oribicella* spp. colonies using X-rays to measure the disappearance of annual growth bands and found an average loss of -6.7 mm yr^{-1} (Hudson 1977). On a windward reef in Belize, Roff et al. (2015) measured a much slower loss of -0.7 mm yr^{-1} from *Oribicella annularis* colonies that were killed by El Niño bleaching in 1998. While differences in the abundance of eroding taxa would be a primary hypothesis accounting for the difference, possible heterogeneity in the density of reef substrata should not be discounted. Roff et al.’s (2015) reef in Belize is a windward-facing, fringing reef, so the dead colonies were likely fortified by secondary cementation and colonization of crustose coralline algae in the high-energy wave environment (Adey and Burke 1976; Adey 1998), thereby hardening the dead corals and making them more resistant to bioerosion (Bruggemann et al. 1996) than those found in low-energy environments. This idea will remain merely speculation, however, until there are empirical measurements of reef erosion rates, bioerosion abundance, and reef-framework density across gradients in wave exposure to assess the vulnerability of reefs to erosion.

The convergence of evidence suggesting that reef framework is losing elevation in relation to sea level and eroding away faster than it is being produced (Yates et al. 2017; Perry et al. 2018) is alarming. The mechanisms driving the erosion that we measured, both as a loss in mass from the small colonies, and loss in linear height in the large colonies at Hen and Chickens Reef, are likely a combination of external removal of the skeletal surface by excavating, herbivorous fish and internal weakening and removal by cryptic, infesting sponges and microbes. Indeed, at Hen and Chickens Reef, our census-based estimates suggested that parrotfish were responsible for more than 80% of the total bioerosion at present. However, Hudson (1977) implicated six species of bioeroding sponges as the main agents of erosion, with parrotfish and the urchin *D. antillarum* (still abundant during the time of the study in the mid-1970s) taking a secondary role. We noted abundant sponge galleries in the slabs we prepared from our small colonies for another study, supporting the conclusion that bioerosing sponges are a significant source of bioerosion on the Florida reef tract as others have noted (Hudson 1977; Enochs et al. 2015); however, our census-based estimates of erosion suggest that sponges only accounted for \sim 7% of bioerosion on Hen and Chickens Reef.

Our deployed-coral method of assessing net carbonate production is similar to the method of deploying experimental substrates (usually blocks cut from dead, massive coral colonies) to measure bioerosion rates (Tribollet and Golubic 2005). One could conclude from our reference-marker results that the substrate-deployment method might not be very scalable over longer time periods or larger spatial scales, but the divergence just highlights the need to reconcile these differences with future experiments. When paired with image analyses wherein the bioeroding agents can be identified, the substrate method will continue to be useful for partitioning the microbioerosion, macrobioerosion, and external (grazing) terms in the budget equations (Tribollet and Golubic 2005). While the census method separately and by species accounts for external erosion by grazers and internal macroerosion by sponges, a single value for microbioerosion is applied uniformly to all non-sand substratum, but there are known to be cross-shelf patterns in this process and interactions among the three erosion categories (Tribollet and Golubic 2005). The weight-based substrate-deployment approach, by design, lumps together all three types of erosion to arrive at a net erosion (or production) rate for the deployed block of carbonate. Thus, it is indeed complicated but instructive to compare the data resulting from these different approaches. Regardless, as infaunal erosion rates will increase from ocean acidification (Wisshak et al. 2012; Crook et al. 2013; Enochs et al. 2015) and coastal eutrophication (Chen et al. 2013), and passive, chemical erosion of carbonate material will increase with ocean acidification (Eyre et al. 2018), the physical structure of reefs is increasingly at risk.

More direct measurements of calcification, erosion, and linear loss in reef height (e.g., this study and Roff et al. 2015) could help reduce the uncertainty in carbonate budgets. Our study suggests that the census method could be underestimating erosion rates in some reef settings. Hen and Chickens Reef appears to be eroding at rates up to three times faster than rates we determined using the census-based carbonate-budget approach. It is possible that our long-term measurement of *Oribicella* bioerosion rates do not apply across the reefscape because parrotfish prefer grazing on the topographic highs of dead, low skeletal-density corals, such as *Oribicella* and *Colpophyllia*, infested with endolithic algae (Bruggemann et al. 1996). However, most of Hen and Chickens Reef was built by
Orbicella (80% of massive corals according to Hudson et al. 1976), suggesting that the majority of erodible substratum is also Orbicella spp., so our study likely provides a reasonable estimate of bioerosion at least as it pertains to decreases in reef elevation. Getting the erosion terms correct in carbonate budgeting will not be easy, as it has been shown that bioerosion rates by fishes vary not just with species (Bellwood and Choat 1990), but also with reef zone and substratum density (Bruggemann et al. 1996). Additionally, grazing rates by fishes can vary with season, reef type, food supply, and schooling behavior (Polunin and Klumpp 1992; Ferreira 1998; Paddack et al. 2006). The amount of reef carbonate removed per species per bite is based on few observational studies (Sc offend et al. 1980, Bruggemann et al. 1996, and reviewed in Glynn and Manzello 1990), and our results highlight the importance of reef porosity (Hein and Risk 1975), higher rates of skeletal bioerosion (Sammarco and Risk 1985), higher rates of carbonate production by live corals (Perry et al. 2013, 2015), but second, live corals also form a protective veneer on reef framework, making it unavailable to excavating herbivores (Bruggemann et al. 1996; Kuffner and Toth 2016). Third, live corals provide topographical complexity, which increases the frictional coefficient of a reef, thereby increasing the amount of wave energy absorbed (Ferrario et al. 2014). Because low recruitment of juvenile corals is a driving force behind lack of reef recovery in the western Atlantic (Hughes and Connell 1999), particularly for the major reef-building corals Orbicella spp. (Edmunds 2002), A. palmata (Williams et al. 2008), and other broadcast-spawning species (Tougas and Porter 2002), populations of reef-building corals are unlikely to increase without intervention measures. Fortuitously, the focus of reef restoration efforts is shifting from restoring populations of the weedy, branching Acropora cervicornis to mixed-species, ecologically minded restoration (Shaver and Silliman 2017), with increased attention to processes like herbivory and predator-prey interactions (Lirman and Schopmeyer 2016), coral recruitment (Montoya-Maya et al. 2016), and facilitating sexual recombination to increase genetic diversity (Baums 2008). A new approach is taking shape wherein the focus is restoring whole-reef ecosystems capable of self-rejuvenation (Suding et al. 2015) under continuing climate change (Webster et al. 2017), because restoration will only succeed in the long term if organisms are able to adapt to the changing conditions.

Data availability statement

Data from the study are publicly available at https://doi.org/10.5066/F92NVINW and https://doi.org/10.5066/F71C1TZK.

References

Adam, T. C., D. E. Burkepile, B. I. Ruttenberg, and M. J. Paddack. 2015. Herbivory and the resilience of Caribbean coral reefs: Knowledge gaps and implications for management. Mar. Ecol. Prog. Ser. 520: 1–20. doi:10.3354/meps11170

Ady, W. H. 1998. Coral reefs: Algal structured and mediated ecosystems in shallow, turbulent, alkaline waters. J. Phycol. 34: 393–406. doi:10.1046/j.1529-8817.1998.340393.x

Ady, W. H., and R. B. Burke. 1976. Holocene bioherms (algal ridges and bank-barrier reefs) of the eastern Caribbean. Geol. Soc. Am. Bull. 87: 95–109. doi:10.1130/0016-7606(1976)87<95:HBRABR2.0.CO;2

Aronson, R. B., and W. F. Prechtl. 2001. White-band disease and the changing face of Caribbean coral reefs. Hydrobiologia 460: 25–38. doi:10.1023/A:101303928980

Baums, I. B. 2008. A restoration genetics guide for coral reef conservation. Mol. Ecol. 17: 2796–2811. doi:10.1111/j.1365-294X.2008.03787.x

Beck, M. W., I. J. Losada, P. Menéndez, B. G. Reguero, P. Díaz-Simal, and F. Fernández. 2018. The global flood protection savings provided by coral reefs. Nat. Commun. 9: 2186. doi:10.1038/s41467-018-04568-z

Bellwood, D. R., and J. H. Choat. 1990. A functional analysis of grazing in parrotfishes (family Scaridae): The ecological

Kuffner et al.
Geology 4: 361–364. doi:10.1130/0091-7613(1976)4<361:SATFIP.2.CO;2
Hughes, T. P., and J. H. Connell. 1999. Multiple stressors on coral reefs: A long-term perspective. Limnol. Oceanogr. 44: 932–940. doi:10.4319/lo.1999.44.3_part_2.0932
Jokiel, P. L., J. E. Maragos, and L. Franzisket. 1978. Coral growth: Buoyant weight technique, p. 529–541. In D. R. Stoddart and R. E. Johannes [eds.], Coral reefs: Research methods. UNESCO.
Knutson, D. W., R. W. Buddemeier, and S. V. Smith. 1972. Coral chronometers: Seasonal growth bands in reef corals. Science 177: 270–272. doi:10.1126/science.177.4045.270
Kuffner, I. B. 2019. Underwater temperature on off-shore coral reefs of the Florida Keys, U.S.A. (ver. 4.0, March 2019): U.S. Geological Survey data release. [accessed on 2019 March 13]. Available from https://doi.org/10.5066/F71C1TZK.
Kuffner, I. B., T. D. Hickey, and J. M. Morrison. 2013. Calibration of the massive coral Siderastrea siderea and crustose coraline algae along the Florida Keys (USA) outer-reef tract. Coral Reefs 32: 987–997. doi:10.1007/s00338-013-1047-8
Kuffner, I. B., and L. T. Toth. 2016. A geological perspective on the degradation and conservation of western Atlantic coral reefs. Conserv. Biol. 30: 706–715. doi:10.1111/cobi.12725
Kuffner, I. B., E. Bartels, A. Stathakopoulos, I. C. Enochs, G. Kolodziej, L. T. Toth, and D. P. Manzello. 2017. Plasticity in skeletal characteristics of nursery-raised staghorn coral, Acropora cervicornis. Coral Reefs 36: 679–684. doi:10.1007/s00338-017-1560-2
Kuffner, I. B., L. T. Toth, J. H. Hudson, W. B. Goodwin, A. Stathakopoulos, L. A. Bartlett, and E. M. Whitlett. 2019. Experimental data on construction and erosion of Orbicella coral reefs in the Florida Keys, U.S.A. USGS data release. [accessed on 2019 April 15]. Available from https://doi.org/10.5066/P92NVNW.
Lidz, B. H., C. D. Reich, R. L. Peterson, and E. A. Shinn. 2006. New maps, new information: Coral reefs of the Florida Keys, J. Coast. Res. 22: 260–282. doi:10.2112/05A-0023.1
Lirman, D., and S. Schopmeyer. 2016. Ecological solutions to reef degradation: Optimizing coral reef restoration in the Caribbean and Western Atlantic. PeerJ 4: e2597. doi:10.7717/peerj.2597
Macintyre, I. G., and J. F. Marshall. 1988. Submarine lithification in coral reefs: Some facts and misconceptions, p. 263–272. In Proceedings of the 6th International Coral Reef Symposium. V. 1. James Cook University, 8-12 August 1988, Townsville, Australia.
Manzello, D. P., I. C. Enochs, G. Kolodziej, and R. Carlton. 2015. Recent decade of growth and calcification of Orbicella faveolata in the Florida Keys: An inshore-offshore comparison. Mar. Ecol. Prog. Ser. 521: 81–89. doi:10.3354/meps11085
Manzello, D. P., I. C. Enochs, G. Kolodziej, R. Carlton, and L. Valentino. 2018. Resilience in carbonate production despite three coral bleaching events in 5 years on an inshore patch reef in the Florida Keys. Mar. Biol. 165: 99.
Marshall, J. F. 1985. Cross-shelf and facies related variations in submarine cementation in the central great barrier reef, p. 221–226. In Proceedings of the 5th International Coral Reef Symposium, 27 May to 1 June 1985, Tahiti.
Miller, J., E. Muller, C. Rogers, R. Waara, A. Atkinson, K. Whelan, M. Patterson, and B. Witcher. 2009. Coral disease following massive bleaching in 2005 causes 60% decline in coral cover on reefs in the US Virgin Islands. Coral Reefs 28: 925–937. doi:10.1007/s00338-009-0531-7
Montoya-Mayo, P. H., K. P. Smit, A. J. Burt, and S. Frias-Torres. 2016. Large-scale coral reef restoration could assist natural recovery in Seychelles, Indian Ocean. Nat. Conserv. 16: 1–17. doi:10.3897/natureconservation.16.8604
Morrison, J. M., I. B. Kuffner, and T. D. Hickey. 2013. Methods for monitoring corals and crustose coralline algae to quantify in-situ calcification rates, p. 11. U.S. Geological Survey Open-File Report 2013-1159. [accessed on 2013 July 30]. Available from http://pubs.usgs.gov/of/2013/1159/.
Paddack, M. J., R. K. Cowen, and S. Sponaugle. 2006. Grazing pressure of herbivorous coral reef fishes on low coral-cover reefs. Coral Reefs 25: 461–472. doi:10.1007/s00338-006-0112-y
Perry, C. T., E. N. Edinger, P. S. Kench, G. N. Murphy, S. G. Smithers, R. S. Seneck, and P. J. Mumby. 2012. Estimating rates of biologically driven coral reef framework production and erosion: A new census-based carbonate budget methodology and applications to the reefs of Bonaire. Coral Reefs 31: 853–868. doi:10.1007/s00338-012-0901-4
Perry, C. T., G. N. Murphy, P. S. Kench, S. G. Smithers, E. N. Edinger, R. S. Seneck, and P. J. Mumby. 2013. Caribbean-wide decline in carbonate production threatens coral reef growth. Nat. Commun. 4: 1402. doi:10.1038/ncomms4209
Perry, C. T., G. N. Murphy, P. S. Kench, E. N. Edinger, S. G. Smithers, R. S. Seneck, and P. J. Mumby. 2014. Changing dynamics of Caribbean reef carbonate budgets: Emergence of reef bioeroders as critical controls on present and future reef growth potential. Proc. R. Soc. Lond. B Biol. Sci. 281: 2014–2018. doi:10.1098/rspb.2014.2018
Perry, C. T., R. S. Seneck, G. N. Murphy, P. S. Kench, E. N. Edinger, S. G. Smithers, and P. J. Mumby. 2015. Regional-scale dominance of non-framework building corals on Caribbean reefs affects carbonate production and future reef growth. Glob. Chang. Biol. 21: 1153–1164. doi:10.1111/gcb.12792
Perry, C. T., and others. 2018. Loss of coral reef growth capacity to track future increases in sea level. Nature 558: 396–400. doi:10.1038/s41586-018-0194-z
Polunin, N. V. C., and D. W. Klumpp. 1992. Algal food supply and grazer demand in a very productive coral-reef zone. J. Exp. Mar. Biol. Ecol. 164: 1–15. doi:10.1016/0022-0981(92)90132-T
Roff, G., J.-X. Zhao, and P. J. Mumby. 2015. Decadal-scale rates of reef erosion following El Niño-related mass coral mortality. Glob. Chang. Biol. 21: 4415–4424. doi:10.1111/gcb.13006
Sammarco, P. W., and M. J. Risk. 1990. Large-scale patterns in internal bioerosion of Porites: Cross continental shelf trends on the Great Barrier Reef. Mar. Ecol. Prog. Ser. 59: 145–156. doi:10.3354/meps059145
Scoffin, T. P., C. W. Stearn, D. Boucher, P. Frydl, C. Hawkins, I. G. Hunter, and J. K. MacGeachy. 1980. Calcium carbonate budget...
of a fringing reef on the west coast of Barbados: Part II - erosion, sediments and internal structure. Bull. Mar. Sci. 30: 475–508.

Shaver, E. C., and B. R. Silliman. 2017. Time to cash in on positive interactions for coral restoration. PeerJ 5: e3499. doi: 10.7717/peerj.3499

Silbiger, N. J., and M. J. Donahue. 2015. Secondary calcification and dissolution respond differently to future ocean conditions. Biogeosciences 12: 567–578. doi:10.5194/bg-12-567-2015

Smith, L. W., D. Barshis, and C. Birkeland. 2007. Phenotypic plasticity for skeletal growth, density and calcification of Porites lobata in response to habitat type. Coral Reefs 26: 559–567. doi:10.1007/s00338-007-0216-z

Stathakopoulos, A., and B. M. Riegl. 2015. Accretion history of mid-Holocene coral reefs from the Southeast Florida continental reef tract, USA. Coral Reefs 34: 173–187. doi:10.1007/s00338-014-1233-3

Stearn, C. W., T. P. Scofield, and W. Martindale. 1977. Calcium carbonate budget of a fringing reef on the west coast of Barbados part I - zonation and productivity. Bull. Mar. Sci. 27: 479–510.

Steneck, R. S., P. J. Mumby, C. MacDonald, D. B. Rasher, and G. Stoyle. 2018. Attenuating effects of ecosystem management on coral reefs. Sci. Adv. 4: eaao5493. doi:10.1126/sciadv.aao5493

Stephenson, T. A., and A. Stephenson. 1950. Life between tide-marks in North America: The Florida Keys. J. Ecol. 38: 354–402. doi:10.2307/2256451

Storlazzi, C. D., and others. 2018. Most atolls will be uninhabitable by the mid-21st century because of sea-level rise exacerbating wave-driven flooding. Sci. Adv. 4: eaap9741. doi:10.1126/sciadv.aap9741

Suding, K., and others. 2015. Committing to ecological restoration. Science 348: 638–640. doi:10.1126/science.aaa4216

Toth, L. T., R. van Woesik, T. J. T. Murdoch, S. R. Smith, J. C. Ogden, W. F. Precht, and R. B. Aronson. 2014. Do no-take reserves benefit Florida’s corals? 14 years of change and stability in the Florida Keys National Marine Sanctuary. Coral Reefs 33: 565–577. doi:10.1007/s00338-014-1158-x

Toth, L. T., I. B. Kuffner, A. Stathakopoulos, and E. A. Shinn. 2018. A 3000-year lag between the geological and ecological collapse of Florida’s coral reefs. Glob. Chang. Biol. 24: 5471–5483. doi:10.1111/gcb.14389

Tougas, J. I., and J. W. Porter. 2002. Differential coral recruitment patterns in the Florida Keys, p. 789–811. In J. W. Porter and K. G. Porter [eds.], The Florida Everglades, Florida Bay, and coral reefs of the Florida Keys - an ecosystem sourcebook. CRC Press.

Tribollet, A., and S. Golubic. 2005. Cross-shelf differences in the pattern and pace of bioerosion of experimental carbonate substrates exposed for 3 years on the northern Great Barrier Reef, Australia. Coral Reefs 24: 422–434. doi:10.1007/s00338-005-0003-7

Uzoh, F. C., and M. W. Ritchie. 1996. Crown area equations for 13 species of trees and shrubs in northern California and southwestern Oregon, p. 13. Research paper PSW-RP-227-Web. Pacific Southwest Research Station, Forest Service, U.S. Department of Agriculture. [accessed on 2018 March 13]. Available from https://www.fs.fed.us/psw/publications/documents/psw_rp227/psw_rp227.pdf

van Oppen, M. J. H., and others. 2017. Shifting paradigms in restoration of the world’s coral reefs. Glob. Chang. Biol. 23: 3437–3448. doi:10.1111/gcb.13647

Vega-Rodriguez, M., and others. 2015. Influence of water-temperature variability on stony coral diversity in Florida Keys patch reefs. Mar. Ecol. Prog. Ser. 528: 173–186. doi: 10.3354/meps11268

Veron, J. E. N., and others. 2009. The coral reef crisis: The critical importance of <350 ppm CO₂. Mar. Pollut. Bull. 58: 1428–1436. doi:10.1016/j.marpolbul.2009.09.009

Webster, M. S., M. A. Colton, E. S. Darling, J. Armstrong, M. L. Pinsky, N. Knowlton, and D. E. Schindler. 2017. Who should pick the winners of climate change? Trends Ecol. Evol. 32: 167–173. doi:10.1016/j.tree.2016.12.007

Whitlcher, E. M. 2017. Reef-building threatened by ecosystem decline: A case study from Buck Island, U.S. Virgin Islands. Masters thesis. Florida Institute of Technology.

Williams, D. E., M. W. Miller, and K. L. Kramer. 2008. Recruitment failure in Florida Keys Acropora palmata, a threatened Caribbean coral. Coral Reefs 27: 697–705. doi:10.1007/s00338-008-0386-3

Wissel, C., H. L. Schonberg, A. Form, and A. Freiwald. 2012. Ocean acidification accelerates reef bioerosion. PLoS One 7: e45124. doi:10.1371/journal.pone.0045124

Yates, K. K., D. G. Zawada, N. A. Smiley, and G. Tilling-Range. 2017. Divergence of seafloor elevation and sea level rise in coral reef ecosystems. Biogeosciences 14: 1739–1772. doi: 10.5194/bg-14-1739-2017

Acknowledgments
We thank A. Rosenberg and International SeaKeepers Society for in-kind contribution of the vessel from which we conducted the reef-erosion surveys. For field and laboratory help, we thank J. Morrison, C. Reich, B. Reynolds, K. Jackson, and R. Fidler. We also thank M. Colella of the Florida Fish and Wildlife Conservation Commission and two anonymous reviewers for their highly constructive suggestions that improved the manuscript. The study was conducted under scientific permits from the Florida Keys National Marine Sanctuary (FKNMS-2013-024-A2 and FKNMS-2016-085-A1) and the National Park Service (BISC-2013-SCI-0011, BISC-2014-SCI-0020, BISC-2015-SCI-0003, DRTO-2013-SCI-0008, and DRTO-2015-SCI-0010), and coral samples are curated under NPS accession numbers BSC-228 and DRTO-274. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. This study was funded by the U.S. Geological Survey (USGS) Coastal-Marine Hazards and Resources Program of the Hazards Mission Area.

Conflict of Interest
None declared.