Conduction of a Laboratory Experiment with the Goal of Researching Submerged Flow Peculiarities

S R Kildibaeva¹, I K Gimaltdinov²,³, E I Kharisov⁴

¹Applied Informatics and Programming Department, Sterlitamak branch of Bashkir state University, 49 Lenin avenue, Sterlitamak, Republic of Bashkortostan, Russia
²Physics Department, Ufa State Oil Technical University, 1 Cosmonauts street, Ufa, Republic of Bashkortostan, Russia
³The Academy of Sciences of Bashkortostan, 15 Kirova street, Ufa, Republic of Bashkortostan, Russia

E-mail: freya.13@mail.ru

Abstract. In connection with the decreasing hydrocarbon reserves on land, the interest of researchers in new alternative methods of hydrocarbon production is growing. One of the actively developing areas is the production of hydrocarbons from deep-water deposits, in connection with which the share of developed deposits in the water area of the World Ocean is growing every year. However, this production method is not completely safe, since any damage to the production structure can lead to leakage of hydrocarbons. In this case, hydrocarbons are distributed in the form of a submerged jet. Predicting the behavior of submerged jets, calculating their trajectories and thermophysical parameters is important in the elimination of leakage. The article discusses an experimental study of a submerged jet. The results of the experiment will make it possible to verify the mathematical model describing the propagation of a submerged jet. The experiment was carried out to study the trajectory of the jet and its temperature. This paper presents the results on the analysis of the jet trajectory. In the experiment, gasoline or diesel fuel was used as a liquid, air was used as a gas. The work shows a diagram of the experimental setup, describes the process of the experiment, and also shows a photograph of the experiment and a comparison with the results of calculations.

1. Introduction

The process of deep-sea hydrocarbon recovery in the shelf is promising: the bowels of the World Ocean contain most of the hydrocarbon reserves (oil, gas and hydrates) and are practically untouched. The negative aspect is the increased likelihood of a hydrocarbon spill that can occur during production. In this case, hydrocarbons are distributed in the form of a submerged flow. The relevance of the study of submerged jets is associated with the need to predict the features of the oil flow, which will make it possible to understand how the jet will behave and what measures can be taken to contain the spill. Thus, the study of the peculiarities of submerged jets is a necessary fundamental component to prevent man-made leaks when using of deep-water wells. One of the ways to eliminate leaks is considered in [1-2].

The experiment performed allows us to verify the mathematical model of the flow of submerged jets, which is generally written for the case of a multiphase submerged jet propagating at great depths under conditions of stable hydrate existence. This model is described in more detail in [3-5] and can be modified for the case of a jet flow at shallow depths. The study of hydrates is important from the point
of view of the study of alternative methods of hydrocarbon production [6-10]. For more information about the features of the spread of submerged jets in the works [11-21]. The calculation results obtained using this model will be compared with the experimental results.

2. Conducting an experiment

To study the trajectory of the submerged jet, the following setup was assembled: at the bottom of a water-filled aquarium, a nozzle with a flexible tube supplied to it is fixed, through which liquid (gasoline or diesel fuel) is supplied using a low-power electric pump (Figure 1). The nozzle is fixed in such a way that at the initial moment the jet velocity is directed vertically. The pump power is regulated by variac. The results of the experiment are recorded on a camera directed at the front surface of the aquarium. To assess the linear dimensions, a scale is used, which is attached to the back wall of the aquarium. The density of the liquid supplied through the nozzle (gasoline or diesel) is measured using a hydrometer.

To measure the volumetric flow rate of the liquid supplied from the nozzle, a 400 ml graduated beaker, fixed upside down, is used. The distance from the nozzle through which the jet is supplied to the lower edge of the beaker is 20 cm. The filling time of each subsequent 50 ml of the volume of the graduated beaker is measured. Knowing the filling time, the volumetric flow rate of the supplied liquid is determined.

![Figure 1. Experimental setup scheme: 1 — aquarium, 2 — tube, 3 — electric pump, 4 — diesel fuel container.](image)

During the experiment, the nozzle was fixed vertically. Gasoline is dispensed from the nozzle. Figure 2 shows the configuration of the jet at a certain moment in time. The volumetric consumption of gasoline is $Q_o^c=1.09 \cdot 10^{-5}$ m3/s, the radius of the nozzle is $r = 0.2$ cm, gasoline density is $\rho_o=760$ kg/m3, and the water density is $\rho_w=1000$ kg/m3.
Figure 2. Photo of the experiment.

Figure 3 shows a photograph of the experiment, combined with the results of calculations of the mathematical model [3] for the initial parameters. It can be determined from the figure that a qualitative match was obtained between the experimental and calculated results.

Let us compare the obtained and empirical data given in [11]. Let us determine the specific impulse flux at the mouth M_0 and the specific buoyancy flux F_0:

$$M_0 = Q_0 \cdot w_0, \quad F_0 = Q_0 \cdot (g \Delta \rho / \rho_w).$$

Figure 3. Jet’s trajectory (solid line) combined with the experiment photo. Starting parameters: $r=0.2 \text{ cm}$, $Q_0=1.09 \cdot 10^{-5} \text{ m}^3/\text{s}$, $\rho_o=760 \text{ kg/m}^3$, $\rho_w=1000 \text{ kg/m}^3$, $\varphi=90^\circ$, $\tan \gamma=0.154$.
Then the distance at which the specific impulse of the buoyancy force exceeds the specific impulse acquired by the jet at the beginning:

\[z_s = \frac{M_0^{3/4}}{F_0^{1/2}} \] \hspace{1cm} (1)

The radius of the jet at height \(z \) is represented as:

\[b = b_0 + \beta z, \] \hspace{1cm} (2)

where \(\beta = 0.149 \) is an empirical parameter.

Jet lift velocity and volumetric flow rate in cross section \(z \):

\[w = \left(\frac{M}{nb^2} \right)^{1/2}, \quad Q = \pi wb^2. \] \hspace{1cm} (3)

The temperature in any cross section of the jet can be determined, assuming that it is the same in the cross section, and depends only on the coordinate \(z \):

\[T_{jet} = T_w + (T^v - T_w) \frac{(Q_v^e + Q_g^e)}{Q}. \] \hspace{1cm} (4)

For the case of the experiment, the distance at which the specific impulse of the buoyancy force exceeds the specific impulse acquired by the jet at the beginning is \(z_s = 3.4 \) cm.

3. Results

An experiment was carried out to study the flow of a submerged jet in laboratory conditions. The data obtained during the experiments were compared with the results calculated by the integral Lagrangian control volume method. Paper also shows estimates of empirical data which is consistent with the results of the experiment.

4. References

[1] Gimaltdinov I K and Kildibaeva S R 2015 About the theory of initial stage of oil accumulation in a dome-separator Thermophysics and Aeromechanics vol 22 3 387-392

[2] Gimaltdinov I K and Kildibaeva S R 2018 On the theory of accumulation of hydrocarbons in a dome used to eliminate a technogenic spill at the bottom of the ocean Journal of Engineering Physics and Thermophysics vol 91 1 246-251

[3] Gimaltdinov I K and Kildibaeva S R 2018 Model of a submerged jet accounting for two limiting schemes of hydrate formation Thermophysics and Aeromechanics Vol 25 1 75-83

[4] Kildibaeva S R, Gimaltdinov I K and Kildibaeva G R 2019 Mathematical model of the submerged jet for the cases of man-made spills Journal of Physics: Conference Series vol 1404 conference 1 1-5 doi:10.1088/1742-6596/1404/1/012023

[5] Kildibaeva S R and Gimaltdinov I K 2019 Mathematical model of the submerged jet taking into account the influence of 3D flow of the ambient water Bulletin of the South Ural State University, Series: Mathematical Modelling, Programming and Computer Software vol 12 1 137-143

[6] Khasanov M K, Musakaev N G, Stolpovsky M V and Kildibaeva S R 2020 Mathematical model of decomposition of methane hydrate during the injection of liquid carbon dioxide into a reservoir
saturated with methane and its hydrate *Mathematics* 8(9) 1482 15

[7] Khasanov M K and Kildibaeva S R 2019 Gas hydrate formation of sulfur dioxide by injection of liquid carbon dioxide into a natural layer saturated with methane and ice *Conference Series: Earth and Environmental Science* pp 012053

[8] Khasanov M K and Kildibaeva S R 2019 Formation of gas hydrate of sulfur dioxide at liquid sulfur dioxide injection in a porous medium saturated with methane and water *AIP Conference Proceedings* pp 020007

[9] Khasanov M K, Stolpovsky M V and Kildibaeva S R 2017 Mathematical model of methane replacement process in gas hydrate with carbon dioxide in a porous layer *Bulletin of the South Ural State University, Series: Mathematical Modelling, Programming and Computer Software* vol 10 4 124-131

[10] Khasanov M K, Stolpovsky M V, Kildibaeva S R and Gimaltdinov I K 2018 Injection of carbon dioxide in gas hydrate porous reservoir *Bulletin of the Tomsk Polytechnic University, Geo Assets Engineering* pp 012053

[11] Lee J H W and Chu V H 2003 Turbulent jets and plumes – a Lagrangian approach (United States: Kluwer) p 390

[12] Yapa P D, Zheng L and Chen F G 2001 A model for deepwater oil/gas blowouts *Marine pollution bulletin* vol 43 7-12 234-241

[13] Yapa P D, Dasanayaka L K, Bandara U S and Nakata K 2010 A model to simulate the transport and fate of gas and hydrates released in deepwater *Journal of hydraulic research* Vol 48 5 559-572

[14] Yapa P D, Zheng L and Nakata K 1999 Modeling of underwater oil/gas jets and plumes *Journal of hydraulic research* Vol 125 5 481-491

[15] Yapa P D and Zheng L 1997 Modeling oil and gas releases from deep water: A review *Spill science and technology bulletin* vol 4 4 189-198

[16] Yapa P D and Zheng L 1997 Simulation of oil spills from underwater accidents I: model development *Journal of hydraulic research, international association of hydraulic research* Vol 35 5 673-688

[17] Yapa P D, Zheng L and Chen F 2001 A model for simulating deepwater oil and gas blowouts – part I: theory and model formulation *Journal of hydraulic research* vol 41 4 339-351

[18] Yapa P D and Zheng L 2001 Modeling gas dissolution in deepwater oil/gas spills *Journal of marine systems* vol 31 4 299-309

[19] Yapa P D and Zheng L 1998 Simulation of oil spills from underwater accidents II: Model verification *Journal of hydraulic research, international association of hydraulic research* Vol 36 1 117-134

[20] Chen F H and Yapa P D 2003 A model for simulating deepwater oil and gas blowouts e part ii: comparison of numerical simulations with deepspill field experiments *Journal of hydraulic research* vol 41 4 353-365

[21] Chen F H and Yapa P D 2001 Estimating hydrate formation and decomposition of gases released in a deepwater ocean plume *Journal of marine systems* 30 21–32

Acknowledgments

The research was carried out at the expense of a grant Russian Science Foundation No. 21-79-10227, https://rscf.ru/en/project/21-79-10227/.