Chan, Kwokwai; Leung, Naichung Conan; Ma, Ziming Nicolas
Scattering diagrams from asymptotic analysis on Maurer-Cartan equations. (English)
J. Eur. Math. Soc. (JEMS) 24, No. 3, 773-849 (2022)

Summary: Let \tilde{X}_0 be a semi-flat Calabi-Yau manifold equipped with a Lagrangian torus fibration $\tilde{p}: \tilde{X}_0 \rightarrow B_0$. We investigate the asymptotic behavior of Maurer-Cartan solutions of the Kodaira-Spencer deformation theory on \tilde{X}_0 by expanding them into Fourier series along fibres of \tilde{p} over a contractible open subset $U \subset B_0$, following a program set forth by Fukaya [Graphs and Patterns in Mathematics and Theoretical Physics (2005)] in 2005. We prove that semi-classical limits (i.e. leading order terms in asymptotic expansions) of the Fourier modes of a specific class of Maurer-Cartan solutions naturally give rise to consistent scattering diagrams, which are tropical combinatorial objects that have played a crucial role in works of Kontsevich and Soibelman [The Unity of Mathematics (2006)] and Gross and Siebert [Ann. of Math. (2) 174 (2011)] on the reconstruction problem in mirror symmetry.

MSC:
14J33 Mirror symmetry (algebro-geometric aspects)
32G05 Deformations of complex structures
14T90 Applications of tropical geometry
53D37 Symplectic aspects of mirror symmetry, homological mirror symmetry, and Fukaya category

Keywords:
scattering diagram; Maurer-Cartan equation; deformation theory; mirror symmetry

Full Text: DOI arXiv

References:
[1] Abouzaid, M.: Homogeneous coordinate rings and mirror symmetry for toric varieties. Geom. Topol. 10, 1097-1156 (2006)
[2] Abouzaid, M.: Morse homology, tropical geometry, and homological mirror symmetry for toric varieties. Selecta Math. (N. S.) 15, 189-270 (2009)
[3] Abouzaid, M., Auroux, D., Katzarkov, L.: Lagrangian fibrations on blowups of toric varieties and mirror symmetry for hypersurfaces. Publ. Math. Inst. Hautes Études Sci. 123, 199-282 (2016)
[4] Aspinwall, P. S., Bridgeland, T., Craw, A., Douglas, D. M., Gross, M., Kapustin, A., Moore, G. W., Segal, G., Szendrői, B., Wilson, P. M. H.: Dirichlet Branes and Mirror Symmetry. Clay Math. Monogr. 4, American Mathematical Society, Providence (2009)
[5] Auroux, D.: Mirror symmetry and T-duality in the complement of an anticanonical divisor. J. Gökova Geom. Topol. GGT 1, 51-91 (2007)
[6] Auroux, D.: Special Lagrangian fibrations, wall-crossing, and mirror symmetry. In: Surveys in Differential Geometry. Vol. XIII. Geometry, Analysis, and Algebraic Geometry: Forty Years of the Journal of Differential Geometry, Surv. Differ. Geom. 13, International Press, Somerville, 1-47 (2009)
[7] Bridgeland, T., Toledano Laredo, V.: Stability conditions and Stokes factors. Invent. Math. 187, 61-98 (2012)
[8] Chan, K., Cho, C.-H., Lau, S.-C., Tseng, H.-H.: Gross fibrations, SYZ mirror symmetry, and open Gromov-Witten invariants for toric Calabi-Yau orbifolds. J. Differential Geom. 103, 207-288 (2016)
[9] Chan, K., Lau, S.-C., Leung, N. C.: SYZ mirror symmetry for toric Calabi-Yau manifolds. J. Differential Geom. 90, 177-250 (2012)
[10] Chan, K., Leung, N. C.: Mirror symmetry for toric Fano manifolds via SYZ transformations. Adv. Math. 223, 797-839 (2010)
[11] Chan, K., Leung, N. C.: On SYZ mirror transformations. In: New Developments in Algebraic Geometry, Integrable Systems and Mirror Symmetry (Kyoto, 2008), Adv. Stud. Pure Math. 59, Mathematical Society of Japan, Tokyo, 1-30 (2010)
[12] Chan, K., Leung, N. C., Ma, Z. N.: Fukaya's conjecture on Witten's twisted A 1 structure. J. Differential Geom., to appear.
[13] Cho, C.-H.: Products of Floer cohomology of torus fibers in toric Fano manifolds. Comm. Math. Phys. 260, 613-640 (2005) Zbl 1109.53079 MR 2183959 - Zbl 1109.53079

[14] Cho, C.-H., Oh, Y.-G.: Floer cohomology and disc instantons of Lagrangian torus fibers in Fano toric manifolds. Asian J. Math. 10, 773-814 (2006) Zbl 1130.53055 MR 2283265 - Zbl 1130.53055

[15] Dimassi, M., Sjöstrand, J.: Spectral Asymptotics in the Semi-Classical Limit. London Math. Soc. Lecture Note Ser. 268, Cambridge University, Cambridge (1999) Zbl 0926.35002 MR 1735654 - Zbl 0926.35002

[16] Duistermaat, J. J.: On global action-angle coordinates. Comm. Pure Appl. Math. 33, 687-706 (1980) Zbl 0439.58014 MR 596430 - Zbl 0439.58014

[17] Fang, B.: Homological mirror symmetry is T -duality for P n . Commun. Number Theory Phys. 2, 719-742 (2008) Zbl 1214.53065 MR 2429197 - Zbl 1214.53065

[18] Fang, B., Liu, C.-C. M., Treumann, D., Zaslow, E.: T-duality and homological mirror symmetry for toric varieties. Adv. Math. 229, 1875-1911 (2012) Zbl 1260.14049 MR 2871160 - Zbl 1260.14049

[19] Filippini, S. A., Garcia-Fernandez, M., Stoppa, J.: Stability data, irregular connections and tropical curves. Selecta Math. (N. S.) 23, 1355-1418 (2017) Zbl 1365.14074 MR 3629174 - Zbl 1365.14074

[20] Fukaya, K.: Deformation theory, homological algebra and mirror symmetry. In: Geometry and Physics of Branes (Como 2001), Ser. High Energy Phys. Cosmol. Gravit., IOP, Bristol, 121-209 (2003) MR 1950958

[21] Fukaya, K.: Multivalued Morse theory, asymptotic analysis and mirror symmetry. In: Graphs and Patterns in Mathematics and Theoretical Physics, Proc. Sympos., Pure Math. 73, American Mathematical Society, Providence, 205-278 (2005) Zbl 1085.53080 MR 2131017 - Zbl 1085.53080

[22] Fukaya, K., Oh, Y.-G., Ohta, H., Ono, K.: Lagrangian Floer theory on compact toric manifolds. I. Duke Math. J. 151, 23-174 (2010) Zbl 1190.53078 MR 2537826 - Zbl 1190.53078

[23] Fukaya, K., Oh, Y.-G., Ohta, H., Ono, K.: Lagrangian Floer theory on compact toric manifolds II: Bulk deformations. Selecta Math. (N. S.) 17, 609-711 (2011) Zbl 1234.53023 MR 2827178 - Zbl 1234.53023

[24] Fukaya, K., Oh, Y.-G., Ohta, H., Ono, K.: Lagrangian Floer Theory and Mirror Symmetry on Compact Toric Manifolds. Astérisque 340, Société Mathématique de France, Paris (2016) Zbl 1344.53001 MR 3460884 - Zbl 1344.53001

[25] Gross, M.: Examples of special Lagrangian fibrations. In: Symplectic Geometry and Mirror Symmetry (Seoul, 2000), World Scientific, River Edge, 81-109 (2001) Zbl 1034.53054 MR 1882328 - Zbl 1034.53054

[26] Gross, M.: Topological mirror symmetry. Invent. Math. 144, 75-137 (2001) Zbl 1072.14046 MR 1821145 - Zbl 1072.14046

[27] Gross, M., Pandharipande, R., Siebert, B.: The tropical vertex. Duke Math. J. 153, 297-362 (2010) Zbl 1205.14069 MR 2667135 - Zbl 1205.14069

[28] Gross, M., Siebert, B.: From real affine geometry to complex geometry. Ann. of Math. (2) 174, 1301-1428 (2011) Zbl 1266.53074 MR 2846484 - Zbl 1266.53074

[29] Gross, M., Siebert, B.: Local mirror symmetry in the tropics. In: Proceedings of the International Congress of Mathematicians-Seoul 2014. Vol. II, Kyung Moon Sa, Seoul, 723-744 (2014) Zbl 1373.14041 MR 3728635

[30] Helffer, B., Sjöstrand, J.: Multiple wells in the semiclassical limit. I. Comm. Partial Dif-rential Equations 9, 337-408 (1984) Zbl 0546.35053 MR 740094 - Zbl 0546.35053

[31] Helffer, B., Sjöstrand, J.: Puits multiples en mécanique semi-classique. IV. Étude du complexe de Witten. Comm. Partial Differential Equations 10, 245-340 (1985) Zbl 0597.35024 MR 780068 - Zbl 0597.35024

[32] Hitchin, N. J.: The moduli space of special Lagrangian submanifolds. Ann. Sc. Norm. Super. Pisa Cl. Sci. (4) 25, 503-515 (1997) Zbl 1015.32022 MR 1655530 - Zbl 1015.32022

[33] Hori, K., Iqbal, A., Vafa, C.: D-branes and mirror symmetry. arXiv:hep-th/0005247 (2000)

[34] Hori, K., Iqbal, A., Vafa, C.: D-branes and mirror symmetry. arXiv:hep-th/0005247 (2000)

[35] Hori, K., Iqbal, A., Vafa, C.: D-branes and mirror symmetry. arXiv:hep-th/0005247 (2000)

[36] Kontsevich, M., Soibelman, Y.: Homological mirror symmetry and torus fibrations. In: Symplectic Geometry and Mirror Symmetry (Seoul, 2000), World Scientific, River Edge, 81-109 (2001) Zbl 1034.53054 MR 1882328 - Zbl 1034.53054

[37] Kontsevich, M., Soibelman, Y.: Homological mirror symmetry and torus fibrations. In: Symplectic Geometry and Mirror Symmetry (Seoul, 2000), World Scientific, River Edge, 81-109 (2001) Zbl 1034.53054 MR 1882328 - Zbl 1034.53054

[38] Kuranishi, M.: New proof for the existence of locally complete families of complex structures. In: Proceedings of the Conference on Complex Analysis (Minneapolis, 1964), Springer, Berlin, 142-154 (1965) Zbl 0144.21102 MR 0176496 - Zbl 0144.21102

[39] Leung, N. C.: Mirror symmetry without corrections. Comm. Anal. Geom. 13, 287-331 (2005) Zbl 1086.32022 MR 2137376 - Zbl 1086.32022

[40] Leung, N. C., Vafa, C.: Branes and toric geometry. Adv. Theor. Math. Phys. 2, 91-118 (1998) Zbl 0914.14024 MR 1635926 - Zbl 0914.14024

[41] Ma, Z. N.: SYZ mirror symmetry from Witten-Morse theory. In: Gromov-Witten Theory, Gauge Theory and Dualities, Proc. Sympos. Pure Math. 80, American Mathematical Society, Providence, 596-643 (2009) Zbl 1190.53078 MR 2573826 - Zbl 1190.53078

[42] Manetti, M.: Differential graded Lie algebras and formal deformation theory. In: Algebraic Geometry-Seattle 2005. Part 2, Proc. Sympos. Pure Math. 244, Birkhäuser, Boston, 321-385 (2006) Zbl 1114.14027 MR 2181810 - Zbl 1114.14027

[43] Manetti, M.: Differential graded Lie algebras and formal deformation theory. In: Algebraic Geometry-Seattle 2005. Part 2, Proc. Sympos. Pure Math. 244, Birkhäuser, Boston, 321-385 (2006) Zbl 1114.14027 MR 2181810 - Zbl 1114.14027
[43] Morrow, J., Kodaira, K.: Complex Manifolds. AMS Chelsea, Providence (2006) Zbl 1087.32501 MR 2214741 · Zbl 1087.32501

[44] Reineke, M.: Poisson automorphisms and quiver moduli. J. Inst. Math. Jussieu 9, 653-667 (2010) Zbl 1232.53072 MR 2650811 · Zbl 1232.53072

[45] Strominger, A., Yau, S.-T., Zaslow, E.: Mirror symmetry is T -duality. Nuclear Phys. B 479, 243-259 (1996) Zbl 0896.14024 MR 1429831 · Zbl 0896.14024

[46] Witten, E.: Supersymmetry and Morse theory. J. Differential Geometry 17, 661-692 (1982) Zbl 0499.53056 MR 683171 · Zbl 0499.53056

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.