Contrasting the complexity of the climate of the past 122,000 years and recent 2000 years

Zhi-Gang Shao

The complexity of the climate of the past 122,000 years and recent 2000 years was investigated by analyzing the δ18O records of ice cores based on the sample entropy (SampEn) method and Lempel-Ziv (LZ) complexity. In using SampEn method, the climate complexity is measured by the sample entropy, which is a modified approximate entropy defined in terms of the occurring probability of new modes in a record. A larger sample entropy reflects a higher probability to spot a new mode in the data, and in this sense signals a larger complexity of the sample. The δ18O record of the past 122,000-year is found to have smaller SampEn than the recent 2000-year. This result suggests that the climate of the past 122,000-year has less complexity than that of the recent 2000 years, even though the record for the former exhibits stronger fluctuations and multifractality than the latter. This diagnosis is additionally supported by calculations of LZ complexity, which has smaller value for the record of the past 122,000 years than the recent 2000 years. Our theoretical findings may further contribute to ongoing explorations into the nonlinear statistical character of the climate change.

Paleoclimatic changes through the history of Earth can be evidenced in the high temporal resolution Oxygen isotopic (δ18O) records from ice cores, where the δ18O presents a proxy for the temperature1–10. Driven by the present interests in the climate change, the δ18O records of ice cores have attracted significant attention10–18. In this context, the intrinsic statistic properties of the δ18O records of ice cores have been intensively studied. For example, from the δ18O records of GRIP ice core, Schmitt et al.19. have found multifractality in the climate change19–21. Recently, a new δ18O record of NGRIP ice core for avoiding the disturbance in chronology due to ice mixing near the bedrock has been reported by North Greenland Ice Core Project (NGRIP) members22. This new δ18O record contains data that ranges from the age of 20 years before 2000 to the age of 122,280 years before 2000, thus encoding the climate information during the past 122,000 years. Based on this data, Amaelle Landais et al.23 have revealed a large climatic change during the glacial inception. In addition, Kaufman et al.24 have found a climate warming in recent years, instead of the long-term Arctic cooling, from the analysis of a recent 2000-year δ18O record that is reconstructed from Agassiz, DYE3, Renland, and NGRIP ice cores. Along this line of research, it is interesting to investigate from these records the complexity of the climate in the past 122,000 years and the recent 2000 years.

The assessment of the complexity of the climate in a time interval can be understood as the assessment of the complexity associated with the corresponding non-stationary time-series data25. In this spirit, a technique known as the approximate entropy (ApEn) method has been proposed by Pincus et al.26, 27. While this method has been successfully applied in the physiological time-series analysis26, 27, it can nonetheless lead to inconsistent results. To avoid such inconsistency, Richman et al. have developed a new and related complexity measure in terms of the sample entropy (SampEn)28. Comparing to ApEn, SampEn maintains the relative consistency and allows a better agreement with the theory28. Specifically, SampEn is a modified approximate entropy defined in terms of the occurring probability of new modes in a time-series data26–28. A larger SampEn reflects a higher probability to spot a new mode, and from this perspective, shows the sample has a larger complexity26–28. The SampEn method has been extensively applied in a variety of scientific fields, including physiological time series28–31, earth science32, and engineering33, 34. In addition, for one dimensional time series, an alternative measurement of complexity is provided by Lempel-Ziv (LZ) complexity, a larger value of which represents more complexity in time series35. LZ complexity has been applied in some areas, such as brain36–38, EEGs39–41, and protein science42.

Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, SPTE, South China Normal University, Guangzhou, 510006, China. Correspondence and requests for materials should be addressed to Z.-G.S. (email: zgshao@scnu.edu.cn)
Using both the SampEn method and LZ complexity, below we analyze the complexity of the $\delta^{18}O$ records of ice cores in the past 122,000 years and the recent 2000 years. In addition, we investigate the multifractality of these data, as well as comparing the scaling properties of the interglacial and glacial climates based on some climate records. Our comprehensive analysis on the complexity, the temperature volatility, and the multifractality of the $\delta^{18}O$ records may also contribute to the understanding of the nonlinear statistical character of the climate change.

Results

In Table 1, we compare (i) the SampEn values for $m = 2$ and $r = 0.2$ and (ii) LZC of the two climate periods. We see that the SampEn value for the record of the past 122,000 years is much smaller than that of the recent 2000 years, meaning it is easier to spot a new mode in the time-series associated with the recent 2000 record. Hence, while the past 122,000-year record is observed to exhibit stronger fluctuations than the recent 2000-year one, the SampEn diagnosis suggests that the climate in the recent 2000-year has higher complexity. Our analysis is supported by additional calculations of LZC, which is much smaller for the record of past 122,000 years than that of the recent 2000 years.

To further establish our analysis, we study the stability of above results on SampEn and LZC against variations in the time resolution of the records. To this end, we take the original 2000-year data with the annual resolution and generate from it new samples such that the new data has a time resolution of 20 years. Defined only modulo 20 years, there are 20 distinct samples that can be produced, e.g., $\{1, 21, 41 \ldots\}, \{2, 22, 42 \ldots\}$, etc. For every new sample, we calculate the SampEn and LZC values following aforementioned procedures, with results shown in Fig. 2. The mean SampEn value is found to be 2.3 with a deviation 0.5, while the mean LZC value is 1.16 with a deviation of 0.08. Again, both mean values stay larger than that of the past 122,000 years than that of the recent 2000 years.

Why do these two records show different complexities and what causes the higher complexity of the recent 2000-year record? According to the theory of nonlinear dynamics, different complexities indicate various forcing processes and the higher complexity of the recent 2000-year record uncovers the climate of recent 2000 years has more forcing processes. In the view of climate change, the past 122,000-year climate is dominated by natural forcing processes including orbital effect, solar radiation, volcanic eruption, changes in land cover, greenhouse gas, aerosol, etc. By comparison, the recent 2000-year climate is further dominated anthropogenic forcing processes besides natural forcing processes. In addition, anthropogenic forcing processes not only include raising greenhouse gas and aerosol because of human activities, but also contain sulphate air pollutants, reactive nitrogen, dust, urban heat islands, ozone change, and land-surface change due to human activities.

Climate period	Past 122,000 years	Recent 2000 years
Time period (B2K)	20 to 12280 years	5 to 2000 years
SampEn	0.7 ± 0.1	2.2 ± 0.2
LZC	0.29 ± 0.03	0.99 ± 0.05

Table 1. SampEn values with $m = 2$ and $r = 0.2$ and LZC of two climate periods.

![Figure 1](https://www.scientificreports.org/content/7/4143)

Figure 1. The $\delta^{18}O$ records of ice cores before 2000 (B2K). (a) The past 120,000-year record from 20 to 122,280 years B2K, (b) the recent 2000-year record B2K.
Discussion

In summary, the complexity of the climate of the past 122,000 years and recent 2000 years have been investigated based on the analysis of the ice core δ18O records using the Sample Entropy method and LZ complexity. Our results show that the δ18O record of the past 122,000 years has smaller SampEn and LZ complexity than the recent 2000 years. We interpret this as an indication that the climate of recent 2000 years has a larger complexity than the recent 2000 years, even though the δ18O record of the past 122,000 years shows stronger fluctuations and multifractality.

Data and Methods

Data. Figure 1 shows the δ18O records of ice cores before 2000 (B2K). Specifically, Fig. 1a demonstrates the past 122,000 year record from 20 to 122,280 years B2K. The past 122,000 year δ18O record was the GICC05modelext, which is released on 19 November 2010 on the website http://www.iceandclimate.nbi.ku.dk/data. The data in this record ranges from the age of 20 years B2K to the age of 122,280 years B2K with a temporal resolution of 20 years. Figure 1b shows the recent 2000-year record B2K with a resolution of 1 year, which was obtained from the Supporting Online Material for ref. 24.

Sample Entropy Method. As a basic dynamical entropy, SampEn is a modification of ApEn used for measuring complexity. It is defined as the negative logarithm of the conditional probability that two sequences which is similar for the embedding dimension \(m \) remain similar for \(m + 1 \), and is represented by \(\text{SampEn}(m, r, N) \). Here \(N \) labels the length of the time series and \(r \) is the tolerance. Note that the self-matches are excluded when the probability is calculated. The value of SampEn is independent of the length of the time-series data, thus allows a characteristic measure of the complexity of the sample. Below, we calculate the SampEn in five steps:

\(i \) We first generate the embedding vectors for the given time series \(x(i) (i = 1, 2, \ldots, N) \) associated with an embedding dimension of \(m \), i.e.,

\[
X(j) = [x(j), x(j + 1), \ldots, x(j + m - 1)],
\]

\(j = 1, \ldots, N - m + 1. \) (1)

\(ii \) We then measure the similarity between any two vectors \(X(i) \) and \(X(j) \), by calculating the following quantity

\[
D_{ij}(r) = \begin{cases} 1, & d_{ij} < r \\ 0, & d_{ij} \geq r \end{cases} \]

which is the Heaviside function with a predefined tolerance \(r \). Here,

\(d_{ij} = \max_{k=0,1,\ldots,m-1} |x(i + k) - x(j + k)|. \)

\(iii \) Next, we compute the correlation sum under the constraint \(i \neq j \) so as to exclude the self-matches, i.e.,

\[
B_{m}^{n}(r) = \frac{\sum_{j=1}^{N-m+1} D_{ij}(r)}{N - m + 1}. \]

\(iv \) Then, the probability of template matching for all vectors is given by:

![Figure 2. SampEn values (red circle) and LZC values (black square) of the 20 new samples generated from the 2000-year record with annual resolution, each resolved on a 20-year time scale (see main text). The mean SampEn value of these 20 records is 2.3 and the deviation is 0.5. The mean LZC value of these 20 records is 1.16 and the deviation is 0.08.](chart.png)
Finally, the SampEn can be readily calculated as:

\[
SampEn(m, r) = \left[\lim_{N \to \infty} \left(-\frac{\ln B^m(r)}{\ln B^m_{\text{median}}(r)} \right) \right]
\]

While the exact determination of SampEn relies on the specific values of \(m \) and \(r \), in principle, a good estimation of SampEn can be obtained by using the widely established parameter values: \(m = 1 \) or \(m = 2 \), where \(r \) is the standard deviation of the original time series \(x(i) \) multiplied by a factor chosen from the regime \([0.1, 0.25]\). Without loss of generality, we will demonstrate our results for \(m = 2 \) and \(r = 0.2 \) in the following.

Lempel-Ziv complexity. Lempel-Ziv complexity is a method of symbolic sequence analysis that measures the complexity of finite length time series. It is based on computing the number of distinct substrings and the rate of their recurrence along time series, with a larger value of LZ complexity reflecting more complexity in time series. The LZ complexity can be calculated in three steps:

(i) First, the time series are converted into a 0–1 sequence \(P = s(1), s(2), \ldots, s(n) \), with \(s(i) \) encoding a comparison between individual sample of the time series \(x(i) \) with the median of the time series \(x_{\text{median}} \). Specifically, we have

\[
s(i) = \begin{cases}
0, & x(i) < x_{\text{median}} \\
1, & x(i) \geq x_{\text{median}}
\end{cases}
\]

(ii) Then, LZ complexity (LZC) can be calculated by means of a complexity counter \(C(n) \), where \(n \) is the length of time series. Scanning from left to right in a given sequence \(P \), \(C(n) \) increases by one unit when a new subsequence of consecutive characters is encountered.

(iii) Normalizing the values of \(C(n) \), we finally obtain

\[
\text{LZC} = \frac{C(n)}{n/\log(n)}.
\]

References

1. Dansgaard, W. et al. Evidence for general instability of past climate from a 250-kyr. *Nature* **364**, 218–220 (1993).
2. Stuiver, M. & Grootes, P. M. Oxygen isotope ratios. *Quaternary Res.* **53**, 277–284 (2000).
3. Thompson, L. D. et al. A high-resolution millennial record of the South Asian monsoon from Himalayan ice cores. *Science* **289**, 1916–1919 (2000).
4. Thompson, L. D., Mosley-Thompson, E. & Henderson, K. A. Ice-core paleoclimate records in tropical South America since the Last Glacial Maximum. *J. Quaternary Sci.* **15**(4), 377–394 (2000).
5. Thompson, L. D. et al. Tropical climate instability: The last glacial cycle from a Qinghai-Tibetan ice core. *Science* **276**, 1821–1825 (1997).
6. GRIP Project Members. Climate instability during the last interglacial period recorded in the GRIP ice core, *Nature* **364**(6434), 703–207 (1995).
7. Jouzel, J. et al. Validity of the temperature reconstruction from water isotopes in ice cores. *J. Geophys. Res.* **102**(C12), 26471–26487 (1997).
23. Landais, A. et al. The glacial inception as recorded in the NorthGRIP Greenland ice core: timing, structure and associated abrupt temperature changes. *Clim. Dyn.* **26**, 273–284 (2006).
24. Kaufman, D. S. et al. Recent warming reverses long-term Arctic cooling. *Science* **325**(5945), 1236–1239 (2009).
25. Tang, L., Lv, H., Yang, F. & Yu, L. Complexity testing techniques for time series data: A comprehensive literature review. *Chaos Soliton. Fract.* **81**, 117–135 (2015).
26. Pincus, S. M. Approximate entropy as a measure of system complexity. *Proc. Natl. Acad. Sci. USA* **88**(6), 2297–2301 (1991).
27. Pincus, S. M. Approximate entropy (ApEn) as a complexity measure. *Chaos* **5**, 110–117 (1995).
28. Richman, J. S. & Moorman, J. R. Physiological time-series analysis using approximate entropy and sample entropy. *Am. J. Physiol.* Heart Circ. Physiol. **278**(6), 2039–2049 (2000).
29. Lake, D. E., Richman, J. S., Griffin, M. P. & Moorman, J. R. Sample entropy analysis of neonatal heart rate variability. *Am. J. Physiol. Regul. Integr. Comp. Physiol.* **283**(3), 789–797 (2002).
30. Alcaraz, R. & Rieta, J. A. A novel application of sample entropy to the electrocardiogram of atrial fibrillation. *Nonlinear Analysis: Real World Applications* **11**, 1026–1035 (2010).
31. Eduardo Virgilio Silva, L. & Otavio Murta, L. Jr. Evaluation of physiologic complexity in time series using generalized sample entropy and surrogate data analysis. *Chaos* **22**, 043105 (2012).
32. Mihalovici, D. T., Nicolić-Dorčić, E., Dresković, N. & Mićić, G. Complexity analysis of the turbulent environmental flow time series. *Physica A* **395**, 96–104 (2014).
33. Sun, Y. H., Jou, H. L. & Wu, J. C. Auxiliary diagnosis method for lead-acid battery health based on sample entropy. *Energy Convers Manage* **50**, 2250–2256 (2009).
34. Yin, Y. & Shang, P. Asymmetrical asynchronous analysis of financial time series based on asymmetric multiscale cross-sample entropy. *Chaos* **25**, 032101 (2015).
35. Lempel, A. & Ziv, J. On the complexity of finite sequences. *IEEE Trans Inform Theory* **22**, 75–81 (1976).
36. Abásolo, D., Simons, S., da Silva, R. M., Tononi, G. & Vazquez-Salazar, V. V. Lempel-Ziv complexity of biological activity during sleep and waking in rats. *Journal of neurophysiology* **113**(7), 2742–2752 (2015).
37. Wu, X. & Xu, J. Complexity and brain function. *Acta Biophysica Sinica* **7**, 103–106 (1991).
38. Xu, J., Liu, Z. R., Liu, R. & Yang, Q. F. Information transmission in human cortex: A vortex. *Physica D* **106**, 363–374 (1997).
39. Radhakrishnan, N. & Gangadar, B. N. Estimating regularity in epileptic seizure time-series data. *IEEE engineering in medicine and biology magazine* **17**, 89–94 (1998).
40. Hu, J., Gao, J. & Principe, J. C. Analysis of biomedical signals by the Lempel-Ziv complexity: the effect of finite data size. *IEEE Transactions on Biomedical Engineering* **12**, 2606–2609 (2006).
41. Abásolo, D., Hornero, R., Gómez, C., García, M. & López, M. Analyzing EEG background activity in Alzheimer’s disease patients with Lempel-Ziv complexity and central tendency measure. *Medical engineering and physics* **28**(4), 315–322 (2006).
42. Li, C., Li, Z., Zheng, X., Ma, H. & Yu, X. A generalization of Lempel-Ziv complexity and its application to the comparison of protein sequences. *Journal of mathematical chemistry* **48**(2), 330–338 (2010).
43. Shao, Z.-G. & Wang, H.-H. Multifractal detrended fluctuation analysis of the d18O record of NGRIP ice core. *Clim. Dyn.* **43**, 2105–2109 (2014).
44. Shao, Z.-G. & Ditlevsen, P. D. Contrasting some properties of interglacial and glacial climates. *Nat. Commun.* **7**, 10951 (2016).
45. Bryant, E. Climate Process and Change. *Cambridge Univ. Press, New York.* 1997.
46. Zucchi, M. The impact of natural and anthropogenic forcings on past and present global climate change. *Fresen. Environ. Bull.* **21**(11), 3287–3291 (2012).
47. Tett, S. F. B. et al. The impact of natural and anthropogenic forcings on climate and hydrology since 1550. *Clim. Dyn.* **28**, 3–34 (2007).
48. Pielke, R. et al. Climate change: the need to consider human forcings besides greenhouse gases. *Eos* **90**, 413–135 (2009).

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos 11105054 and 11274124).

Author Contributions

Z.-G.S. designed and performed the research and wrote the manuscript.

Additional Information

Competing Interests: The authors declare that they have no competing interests.

Publishers note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2017