Types and Utilization Identification of Medicinal Plants: Developing Strategy for Non-Timber Forest Products in Buffer Zone

S Jumiyati, F A Parumpu and Budiman

1Department of Agribusiness, Faculty of Agriculture, Muhammadiyah University, Jabal Nur Street No. 1 Palu 94119, Indonesia
2Department of Pharmacy, Faculty of Teacher Training and Education, Tadulako University, Soekarno Hatta Street KM. 9, Palu 94118, Indonesia
3Department of Public Health, Faculty of Public Health, Muhammadiyah University, Jabal Nur Street No. 1 Palu 94119, Indonesia

Email: srijumiyati1068@gmail.com

Abstract Indonesia is known as a storehouse of medicinal plants so that it has the nickname of a living laboratory. Communities living around forest areas whose lives are highly dependent on forests have traditional knowledge in utilizing plants or natural materials for medicinal purposes. This study aims to determine the types and uses of medicinal plants and the development strategy of medicinal plant agro-industry as one of the non-timber forest products. The research method was carried out through the identification of the types and utilization of medicinal plants, while the determination of the development strategy was carried out through SWOT analysis. The results showed that documentation activities and determining strategies for the development of medicinal forest plant diversity in addition to preserving local wisdom also provided business opportunities for non-timber forest products (NTFPs) in an effort to increase community income around the forest and minimize deforestation and forest degradation.

1. Introduction
The Lore Lindu National Park (TNLL) in the Central Sulawesi region is a tropical forest area that has fertile soil conditions, a good climate, and has abundant biodiversity, including forest plants that have medicinal properties [1,2]. The potential of medicinal plants in this forest has tremendous benefits for local communities around the forest [3]. This medicinal plant is a plant that lives wild in the forest, which can be in the form of trees, herbs, shrubs, and lianas [4]. These medicinal plants are used from generation to generation by the natives as medicine or herbal medicine, by taking parts of the plant in the form of leaves, roots, bark, stems, sap, flowers, and seeds and simply processing them into medicinal herbs to cure various diseases [5]. This method of treatment is commonly known as traditional medicine [6]. The traditional community in Palolo District, Sigi Regency, is one of the communities whose lives still rely on the potential for managing biological natural resources [7]. The people living in the TNLL forest buffer zone, they have quite good experience regarding the introduction, characterization, naming, and utilization of potential types of medicinal plants, food, and so on [8,9].

The diversity of medicinal plants in the Palolo District, which is commonly known to the public, has not been comprehensively recorded and documented to be disseminated as medicinal [10,11]. On this basis, this research was conducted to identify types of traditional medicinal plants and their use by local communities [12]. The use of medicinal plants in the last decade has tended to increase in line with the
development of the herbal or traditional medicine industry [13]. Many people have started to look at developing medicinal plants, both for their own needs and for business, even though initially medicinal plants were non-commercial non-timber forest products. With this background, studies related to internal strengths and weaknesses as well as external opportunities and challenges as well as analysis of market opportunities and competitiveness of similar products produced by other regions or countries [14].

2. Methods
Determination of initial respondents was carried out purposefully by selecting key informants with the consideration of people who are considered to have knowledge of local medicinal plants (key informants). To complete the data, the next respondent was selected from local communities around the forest which is the habitat for medicinal plants. The selection of respondents was carried out by the snowball sampling method, namely the respondent selection technique based on the recommendations of the key informants [15]. The data were collected by answering a questionnaire about the types and uses of medicinal plants. Next, the plant specimens were collected for identification. Meanwhile, the strategy for the development of medicinal plant agro-industry opportunities was carried out through a Focus Group Discussion using a SWOT analysis [16].

3. Results and discussion

3.1. Identification of medicinal plants

No.	Scientific Name	Indonesian Name	Benefits	Picture
1.	*Andrographis paniculata*	Sambiloto	Medicine for colds and sore throat	
2.	*Ortosiphon aristatus*	Kumis kucing	Medicine for kidney stone	
3.	*Anredera cordifolia*	Binahong	Medicine for internal wound	
4.	*Equisetum debile Roxb*	Greges otot	Medicine for broken bone	
5.	*Ipomoea pes-caprae*	Tapak kuda	Medicine for digestive	
	Plant Name	Common Name	Medicinal Use	
---	-------------------	---------------	---	
6.	*Bryophyllum pinnatum*	Cocor bebek	Medicine for boils and bruises	
7.	*Boesenbergia rotunda*	Temu kunci	Medicine for colds and flatulence	
8.	*Zingiber montanum*	Bangle	Medicine for a cough with phlegm	
9.	*Curcuma zedoaria*	Temu putih	Medicine for stomach ulcers	
10.	*Psidium guajava*	Jambu Biji	Medicine for diarrhea	
11.	*Mimosa pudica*	Putri malu	Medicines for rheumatism and spinal pain	
12.	*Equisetum*	Pakis	Medicine for swelling	
13.	*Carica papaya*	Pepaya	Medicine for dengue fever and constipation	
14.	*Musa paradisiaca*	Kulit batang pisang	Medicine for wounds	
	Scientific Name	Common Name	Medicinal Properties	
---	-------------------------	---------------	--	
15.	Morinda citrifolia	Mengkudu	Medicines for anti-cancer	
16.	Annona muricata	Sirsak	Medicines for diabetes and cancer	
17.	Curcuma longa	Kunyit	Medicine for swelling	
18.	Curcuma xanthorrhiza	Temulawak	Medicine for stomach ulcers and appetite enhancer	
19.	Piper betle	Sirih	Medicine for red eyes	
20.	Zingiber zerumbet	Lempuyang	Medicines for colds and seizures	
21.	Imperata cylindrica	Alang-alang	Medicine for malaria and nosebleeds	
22.	Pandanus amaryllifolius	Pandan wangi	Medication for sleep disorders	
23.	Averrhoa bilimbi	Belimbing wuluh	Medicine for coughs	
24.	Senna alata	Ketapeng cina	Medicine for ringworm and tinea versicolor	
Based on Table 1, there are 26 types of medicinal plants that are most often used by respondents in their daily life and the type of medicinal plant that is mostly used by respondents (95%) as traditional medicine is papaya. Apart from its delicious taste, papaya fruit can also be easily obtained because it has been cultivated in community yards and gardens and has become a profitable horticultural commodity. The percentages of plants that are most commonly known as medicinal plants are Beluntas (*Pluchea indica*) and Sirih (*Piper betel L*) of 90 and 95%, while the lowest percentage is Greges otot (*Equisetum debile roxb*) which is only 20%. The percentage of parts of medicinal plants that are most widely used is the leaves about 69.23%, because the leaf part is most often used because the leaves are easy to get if compared to other parts of the plant. Taking leaves for use as medicine will not damage the parent plant because it is easy to grow back [17]. The most used way was by boiling (76.92%). Processing of medicinal plants by boiling it can reduce the taste tasteless and bitter than edible direct, more sterile because it can kill germs or pathogenic bacteria and can lift substances that are contained in plants and have more reactions because they are drunk [18].

3.2. Development strategy of medicinal plant agro-industry

The development strategy of medicinal plant for communities around forest areas is formulated using a SWOT matrix, can be seen in Table 2.

Table 2. SWOT matrix for development strategy of medicinal plants.

External	Internal	Strengths (S)	Weaknesses	
Opportunity	• Promotion opportunities (0.48)	Availability of raw materials (0.56)	Limited capital (0.20)	
	• Government support (0.45)	Quality of raw materials (0.32)	Limited of technology (0.18)	
	• Skills and management training opportunities (0.42)	Availability of labor (0.43)	Lack of motivation of the younger generation motivation (0.16)	
	• Market opportunities (0.50)	Access location (0.48)	Lack of coordination with the government (0.13)	
	• Infrastructure development (0.49)	Local wisdom (0.52)	Lack of partnerships (0.11)	
		2.31	0.78	
Threat	• Competition with similar products (0.20)	Optimizing the quantity and quality of resources based on local wisdom by utilizing the infrastructure and government support to meet market demand	Increase motivation, expertise, and work ethic by forging partnerships with various parties by utilizing the infrastructure and government support to meet market demand	
		Improving of product quality and human resource capabilities based		
		2.34	4.65	3.12
		ST	WT	

The efficiency of production costs and increasing the capacity of human resources based on...
Limited access to information (0.13)
Consumer demands (0.18)
Lack of preservation of local wisdom of medicinal plants (0.15)
The existence of substitute products (0.18)

Strategy	Score
0.84 on local wisdom in facing competition and market demands	3.15
local wisdom by forging partnerships in facing competition and market demands	1.62

Table 2 shows that the best strategy for medicinal plant development is the SO strategy with the highest score of 4.65, namely optimizing the quantity and quality of resources based on local wisdom by utilizing infrastructure and government support to meet market demand. The implementation of this strategy can be done with: a.) Increasing the motivation of the community, especially the younger generation, to cultivate herbal plants to ensure the continuity of the availability of raw materials; b.) Increasing counseling and training in the cultivation and processing of medicinal plant products in a sustainable manner through the transfer of appropriate technology; c.) Network expansion marketing of medicinal plant processed products by means of promotion / exhibitions both at the national and international levels [19]. Research shows that forest communities who depend on forest resources without market access cannot support sustainable agro-industrial development.

4. Conclusion
The development of medicinal plants as raw materials for the herbal medicine agroindustry requires an increase in public understanding of efforts cultivation in a sustainable. The main strength of the development of the herbal medicine agro-industry is the availability of raw materials with the main opportunity namely the opening of market opportunities for herbal medicines, especially during the Covid-19 pandemic, and will continue to develop in a new normal.

References
[1] Gailea R, Bratawinata A A, Pitopang R and Kusuma I 2016 The use of various plant types as medicines by local community in the enclave of the Lore-Lindu national park of Central Sulawesi, Indonesia Glob. J. Res. Med. Plants Indig. Med. 5 29
[2] Stietenroth D, Lorenz W, Tarien S and Malik A 2005 The stability of tropical rainforest margins-linking ecological, economic and social constraints of land use and conservation Symposium A Quarterly Journal In Modern Foreign Literatures (Universitätsverlag Göttingen)
[3] Astutik S, Pretzsch J and Ndzion Kimengsi J 2019 Asian medicinal plants’ production and utilization potentials: A review Sustainability 11 5483
[4] Otieno N E and Analo C 2012 Local indigenous knowledge about some medicinal plants in and around Kakamega forest in western Kenya F1000Research 1
[5] Petrovska B B 2012 Historical review of medicinal plants’ usage Pharmacogn. Rev. 6 1
[6] Jamshidi-Kia F, Lorigooini Z and Amini-Khoei H 2018 Medicinal plants: Past history and future perspective J. herbmed Pharmacol. 7
[7] Jumiyati S, Rajindra R, Arsyad M, Pulubuhu D A T and Hadid A 2019 Strategy of agrarian-forestry crisis management: Participation, collaboration, and conflict IOP Conference Series: Earth and Environmental Science vol 235 (IOP Publishing) p 12041
[8] Sofowora A, Ogumbode E and Onayade A 2013 The role and place of medicinal plants in the strategies for disease prevention African J. Tradit. Complement. Altern. Med. 10 210–29
[9] Jumiyati S, Arsyad M, Hadid A, Toknok B and Sjamsir Z 2020 Implementation of environmental-economic concepts through farming risk management in highland vegetable agroforestry IOP Conference Series: Earth and Environmental Science vol 575 (IOP Publishing) p 12061
[10] Zenebe G, Zerihun M and Solomon Z 2012 An ethnobotanical study of medicinal plants in Asgede
Tsimbila district, Northwestern Tigray, northern Ethiopia Ethnobot. Res. Appl. 10 305–20
[11] Jumiyati S, Arsyad M, Pulubuhu D A T and Hadid A 2018 Cocoa based agroforestry: An economic perspective in resource scarcity conflict era IOP Conference Series: Earth and Environmental Science vol 157 (IOP Publishing) p 12009
[12] Karunamoorthi K, Jegajeevanram K, Vijayalakshmi J and Mengistie E 2013 Traditional medicinal plants: a source of phytotherapeutic modality in resource-constrained health care settings J. Evid. Based. Complementary Altern. Med. 18 67–74
[13] Yuan H, Ma Q, Ye L and Piao G 2016 The traditional medicine and modern medicine from natural products Molecules 21 559
[14] Tapasco J, LeCoq J F, Ruden A, Rivas J S and Ortiz J 2019 The livestock sector in Colombia: toward a program to facilitate large-scale adoption of mitigation and adaptation practices Front. Sustain. Food Syst. 3 61
[15] Kirchherr J and Charles K 2018 Enhancing the sample diversity of snowball samples: Recommendations from a research project on anti-dam movements in Southeast Asia PLoS One 13 e0201710
[16] Pawera L, Khomsan A, Zuhud E A M, Hunter D, Ickowitz A and Polesny Z 2020 Wild food plants and trends in their use: From knowledge and perceptions to drivers of change in West Sumatra, Indonesia Foods 9 1240
[17] Soni P, Siddiqui A A, Dwivedi J and Soni V 2012 Pharmacological properties of Datura stramonium L. as a potential medicinal tree: an overview Asian Pac. J. Trop. Biomed. 2 1002–8
[18] Amber R, Adnan M, Tariq A, Khan S N, Mussarat S, Hashem A, Al-Huqail A A, Al-Arjani A-B F and Abd_Allah E F 2018 Antibacterial activity of selected medicinal plants of northwest Pakistan traditionally used against mastitis in livestock Saudi J. Biol. Sci. 25 154–61
[19] Shahidullah A K M and Haque C E 2010 Linking medicinal plant production with livelihood enhancement in Bangladesh: Implications of a vertically integrated value chain J. Transdiscipl. Environ. Stud. 9 1