A three-dimensional automated classification scheme for the TAUVEX data pipeline

Archana Bora,1,2★ Ranjan Gupta,1★ Harinder P. Singh,3★ Jayant Murthy,4★ Rekhesh Mohan4★ and K. Duorah2

1 IUCAA, Post Bag 4, Ganeshkhind, Pune-411007, India
2 Department of Physics, Gauhati University, Gauhati 781014, India
3 Department of Physics and Astrophysics, University of Delhi, Delhi 110007, India
4 Indian Institute of Astrophysics, Koramangala, Bangalore 560034, India

Accepted 2007 November 23. Received 2007 November 13; in original form 2007 June 15

ABSTRACT
In order to develop a pipeline for automated classification of stars to be observed by the Tel-Aviv University Ultra-Violet Experiment (TAUVEX) ultraviolet space telescope, we employ an artificial neural network (ANN) technique for classifying stars by using synthetic spectra in the ultraviolet (UV) region from 1250 to 3220 Å as the training set and International Ultraviolet Explorer (IUE) low-resolution spectra as the test set. Both the data sets have been pre-processed to mimic the observations of the TAUVEX UV imager. We have successfully classified 229 stars from the IUE low-resolution catalogue to within three to four spectral subclass using two different simulated training spectra, the TAUVEX spectra of 286 spectral types and UVBLUE (http://www.inaoep.mx/~modelos/uvblue/uvblue.html) spectra of 277 spectral types. Further, we have also been able to obtain the colour excess [i.e. $E(B-V)$ in magnitude units] or the interstellar reddening for those IUE spectra which have known reddening to an accuracy of better than 0.1 mag. It has been shown that even with the limitation of data from just photometric bands, ANNs have not only classified the stars, but also provided satisfactory estimates for interstellar extinction. The ANN based classification scheme has been successfully tested on the simulated TAUVEX data pipeline. It is expected that the same technique can be employed for data validation in the UV from the virtual observatories. Finally, the interstellar extinction estimated by applying the ANNs on the TAUVEX data base would provide an extensive extinction map for our Galaxy and which could in turn be modelled for the dust distribution in the Galaxy.

Key words: methods: data analysis – space vehicles: instruments – astronomical data bases: miscellaneous – dust, extinction – ultraviolet: general.

1 INTRODUCTION
Tel-Aviv University Ultra-Violet Experiment (TAUVEX) is an Indo-Israeli Ultraviolet Imaging space mission that will image large parts of the sky in the wavelength region between 1300 and 3200 Å. The instrument consists of three equivalent 20-cm ultraviolet (UV) imaging telescopes with a choice of filters for each telescope. Each telescope has a field of view (FOV) of about 54 arcmin and a spatial resolution of about 6–10 arcsec, depending on the wavelength. TAUVEX will be launched into a geostationary orbit as part of Indian Space Research Organization’s GSAT-4 mission in 2008 April.

Observations will be available using filters in five UV bands.
(i) BBF: broad-band filter (1300–3300 Å).
(ii) SF1: intermediate-band filter 1 (1250–2250 Å).
(iii) SF2: intermediate-band filter 2 (1800–2600 Å).
(iv) SF3: intermediate-band filter 3 (2100–3100 Å).
(v) NBF: narrow-band filter (2000–2400 Å).

Fig. 1 shows the response curves for each of the TAUVEX filters in units of Effective Area cm².

The TAUVEX mission will have added advantages as compared to other earlier UV missions like the TD satellites and GALEX etc. The estimation of the slope R_V of the interstellar extinction curve with a greater sensitivity, will allow to construct deeper maps of the UV sky. Further, TAUVEX and TD satellites would complement each other by having a total of six data points for the interstellar extinction curve for their common sources (see Maheshwar et al. 2007).
TAUVEX will mostly operate in scanning mode, since it will be mounted on GSAT-4, a geosynchronous satellite. The FOV will be scanning a strip of the sky with constant declination and a limiting magnitude of 19 (Murthy 2003). A few years of successful run of the mission will record more than a million UV point sources apart from galaxies, quasi-stellar objects and the UV background. The need for an automated classification pipeline for the stellar sources that is repeatable and fast is, therefore, immense.

The Artificial Neural Network (ANN) based schemes are now being routinely used to classify spectra from large spectral data bases (Gulati et al. 1994; Singh, Gulati & Gupta 1998; Bailer-Jones 2002; Gupta et al. 2004; Valdés et al. 2004; Singh et al. 2006) for the purpose of sorting these large spectral data base into groups of main spectral types (O, B, A, F, G, K and M) and subclasses. Further, these schemes can also be used for obtaining stellar fundamental atmospheric parameters (Gulati, Gupta & Rao 1997a; Gulati, Gupta & Singh 1997b). Of these Gulati et al. (1997b) is of particular interest, since it was shown that ANNs can determine the colour excess, i.e. $E(B - V)$ in units of magnitudes, as an additional parameter when applied to the International Ultraviolet Explorer IUE spectral data base.

The current work has used the ANN based tools for classifying the IUE spectral data base (reduced to the TAUVEX band data) in terms of the spectral types and also hierarchically estimated the colour excess using this tool. It is worth noting that whereas the Gulati et al. (1997b) used the IUE full spectra for spectral-type classification and estimation of colour excess, the present work uses the simulated band data as expected from the TAUVEX satellite and even with this limitation, the neural network scheme has been able to assign the spectral classes and also obtain reddening estimate to satisfactory levels.

In the next section, we describe the generation and pre-processing of the simulated TAUVEX data that are used for training of the neural network as well as the processing of the IUE spectral data which is used as the test set. In Section 3, we describe results of the ANN classification scheme as well as the colour excess determination. In Section 4, we present important conclusions of the study.

2 ANN ARCHITECTURE, GENERATION OF SIMULATED DATA, AND ANN TRAIN AND TEST SETS

Following sections describe the ANN architecture, simulated data generation, and the ANN train and test sets.

2.1 ANN architecture

The ANN architecture considered here is an supervised one with a minimum configuration of three layers, i.e. (i) input layer where the patterns are read, (ii) hidden layer where the information is processed from the input layer and (iii) output layer where the output patterns are rendered (see Bailer-Jones, Gupta & Singh 2002, for a review). The hidden layer can have several nodes which interconnect the input and the output layers with each connection with its designated connection weight. We have used a back-propagation algorithm (Gulati et al. 1994, 1997a,b; Singh et al. 1998) with two hidden layers of 64 nodes each, and this scheme requires a training session where the ANN output and the desired output get compared after each iteration and the connection weights get updated till the desired minimum error threshold is reached. At this stage, the network training is complete and the connection weights are considered frozen. The next stage is the testing session where the test patterns are fed to the network and output is the classified spectral pattern or colour excess in terms of the training sets.

In the actual post launch of TAUVEX when the real data will be available, the scheme applied to estimate the colour excess will have to run the ANN in two stages, i.e. in a hierarchical manner such that, the first stage classifies the test set (IUE data base or the expected TAUVEX data base) into the spectral classes and then a second ANN stage performs the colour excess estimation.

2.2 Simulated data generation

We have used two independent sources to generate the training sets of spectra with solar-type stars with [M/H] = 0. One is the stellar flux calculator from TAUVEX website (http://tauvex.iap.res.in/html/tools/fluxcalc/) containing 286 spectroluminosity classes and the other is the UVBLUE fluxes (Rodriguez-Merino et al. 2005) (http://www.bo.astro.it/~eps/uvblue/uvblue.html). Based on the spectral type and luminosity class of a star, the TAUVEX calculator derives the effective temperature and surface gravity using the calibration of Allen (2000), Colina (1995) and Lang (1982), and calculates the spectral energy distribution for each star using appropriate Kurucz model available on the webpage http://kurucz.harvard.edu/ (see Sujatha et al. 2004). We have used the information from Allen (2000), Erika Böhm-Vitense (1981), Johnson (1966), Ridgway et al. (1980), Alonso, Arríbas & Martinez-Roger (1999) and Bertone et al. (2004) for matching the parameter space of UVBLUE to spectral types and luminosity classes. Both the sources provide sets of theoretical fluxes (based on Kurucz model atmospheres) in the UV region. These fluxes need to be processed via a common flux integration programme provided at the TAUVEX tools site to form two sets of band data (each having four fluxes corresponding to the four TAUVEX bands) and they constitute the simulated band data set for the ANN training sets.

We have also obtained two sets of fluxes (with 50 Å resolution and 40 data bins covering the spectral region of 1250–3220 Å) aimed at preparing the ANN tools for another Indian scientific mission satellite ASTROSAT (http://www.rri.res.in/astrosat/) which will have gratings to provide slitless spectra for spatially...
resolved stars. It will also prepare us for the future GAIA mission (http://gaia.esa.int/science-e/www/area/index.cfm?fareaid=26).

2.3 ANN train and test sets

While making the train and test sets, one has to ensure that the number of spectral fluxes at the respective wavelengths and the starting/ending wavelengths are identical. Also the spectral resolution needs to be same and for this, the spectral libraries had to be convolved with appropriate Gaussian functions to bring them at par with each other. The fluxes are normalized to unity with respect to maximum flux in each spectrum before sending to the ANN inputs. The spectra for 286 TAUVE X spectral types generated in the range 1250–3200 Å have a resolution of 10 Å which we have degraded to 50 Å. The resolution of 277 UVBLUE spectral types has been degraded similarly (using the relevant codes provided on the UVBLUE library website). These sets of data are then reddened (using the observed extinction curve of Seaton 1979) in the range of 0.00–1.00 mag, for preparing the training sets for the two stages of the hierarchal scheme viz. the separation of the different spectral types and the evaluation of reddening values. Below we provide the details of the procedure adopted for generating the training sets for the two stages:

(i) Generating data set for spectral-type determination. In the first stage, reddening values are added in step sizes of 0.20 mag to the simulated data. The 0.20 step is chosen for the computational convenience. For example, the TAUVE X data consist of 286 different classes with 58 spectral types, each having five luminosity classes (except for O6.5V). If one wants to classify the spectral type, luminosity class and the reddening value in a single run; reddening these 286 data sets with reddening value from 0.00–1.00, even at a step of 0.1 leads to $286 \times 11 = 3146$ number of distinct classes. However, this is not possible with our current computational facilities and the present version of our ANN. Instead, we go for the hierarchal scheme by first merging all the luminosity classes. For example, instead of considering O3I–O3V as five separate classes, the ANN will be trained to learn all the five different patterns as single O3 spectral type only, though the variation in all the five spectra still go as input to the ANN. The process thus reduces the number of distinct classes from 286 to only 58 classes, making the computation fast. When the learning process is completed, ANN can separate different spectral types, thus making it possible to find out the reddening values in the next stage.

(ii) Generating data set for reddening evaluation. In the second stage, reddening values are added in step sizes of 0.05 to the simulated data. The separation of the available spectra into different groups O, B, A, F, G, K, etc. in the first stage, makes it possible to select this finer step size of 0.05. In our work, we have not classified the luminosity classes separately, however, this can be done easily by adding one more stage in the hierarchal scheme.

A sample of normalized simulated spectra of different spectral types is shown in Fig. 2. Their integrated fluxes in the four TAUVE X bands, NBF, SF1, SF2 and SF3, have been computed using respective filter response curves of Fig. 1. Fig. 3 shows the residuals obtained by subtracting IUE fluxes from the corresponding TAUVE X simulated fluxes. The discrepancies observed in these figures could be due the following reasons.

In the early-type stars, i.e. O and B, the main discrepancy between observed and theoretical is near 1500 Å. This is a consequence of the physical origin of the CIV line, which gets strongly affected by stellar winds and mass-loss processes in massive stars. For F-type stars, the metallic features at 2400 Å (Fe ii), 2500 Å (Fe i/Si i), 2800 Å (Mg ii) are more enhanced in the simulated spectra. For G-type stars, the chromospheric activities increase, and thus trigger prominent Mg core emissions which are not seen in the simulated spectra. The chromospheric activities are not accounted for in the Kurucz’s model (Rodriguez-Merino et al. 2005). The discrepancy is more clearly visible in the band integration of the fluxes of late-type stars in Fig. 3.

The final training set thus contains (i) the spectra in the form shown in Fig. 2 and (ii) four flux values in the four bands of TAUVE X in the form shown in Fig. 3 – for each of the 286 TAUVE X spectra.
(277 spectra for the UVBLUE case) with reddening in the range of 0.00–1.00 mag with a step of 0.2 mag. Fig. 4 shows a block diagram of the flow chart for preparing these two training sets for spectral-type classification.

The test spectra were taken from the IUE low-resolution spectra: reference atlas, normal stars, ESA SP-1052 by Heck et al. (1984) which contains 229 low-dispersion flux-calibrated spectra of O to K spectral type obtained by the IUE satellite. The spectra were trimmed to 1250–3220 Å. The original resolution of 6 Å of IUE spectra was convolved by a Gaussian function to produce a degraded resolution of 50 Å. Fig. 5 shows the block diagram of the flow chart for generating this IUE test set for spectral classification. Fig. 6 shows a block diagram for the flow chart for creating the train set for extinction classification, and Fig. 7 shows the corresponding block diagram of the flow chart for creating the IUE test set.

Table 1 shows the number of spectra per spectral type used in this analysis. The numbers in the second and third column are the basic sets for training sessions of the ANN. The hierarchal ANN scheme used by us works in two stages viz. first stage performs the spectral-type classification and for this these numbers get multiplied by six, and in the second stage which performs the colour excess classification, they get multiplied by 21. Further, in order to have an uniform number of spectra per spectral type, classes which have just one example are duplicated during the training session.

Spectral class	TAUVEK	UVBLUE	IUE
O	36	36	42
B	50	41	115
A	50	50	48
F	50	50	20
G	50	50	3
K	50	50	1
3 RESULTS OF THE ANN CLASSIFICATION

The results of spectral classification are depicted in the Fig. 8. The numbers on the axes of this figure refer to the spectral coding which is briefly described as follows.

(i) Main spectral type: O = 1000, B = 2000, A = 3000, . . . K = 6000,
(ii) Subspectral type: O1 = 1100, O2 = 1200, . . . O9 = 1900,
(iii) Luminosity class: I = 1.5, II = 3.5, III = 5.5, IV = 7.5 and V = 9.5.

For example, Sun is a G2V star, and hence its code will be 5209.5. A classification error of 500 implies that a G2 star can, at worse, be classified either as F7 or G7 spectral type.

Fig. 9 shows the scatter plots for pre-classified IUE stars (in O, B, A and F spectral types) for UVBLUE fluxes with their colour excess estimates. The classification accuracy values σ are shown for each case in units of $E(B-V)$ mag.

Fig. 10 shows the scatter plots for pre-classified IUE stars (in O, B, A and F spectral types) with UVBLUE bands for colour excess estimates. The classification accuracy values σ are shown for each case in units of $E(B-V)$ mag.

Fig. 11 shows the scatter plots for pre-classified IUE stars (in O, B, A and F spectral types) with TAUVEX fluxes for colour excess estimates. The classification accuracy values σ are shown for each case in units of $E(B-V)$ mag.

It is important to see that in the spectral classification scheme, the outliers in the all the four panels of Fig. 8 belong to G and K type, they being misclassified as the F-type stars. This can be attributed to the discrepancies mentioned in Section 2.3. In the two excess estimates σ in units of magnitudes. Fig. 10 shows the scatter plots for pre-classified IUE stars (in O, B, A and F spectral types) for UVBLUE bands with their colour excess estimates σ in units of magnitudes. Figs 11 and 12 show the corresponding classification results for TAUVEX fluxes and bands, respectively. In these three-dimensional scatter plots, the ‘Cat’ and ‘ANN’ denote the catalogue and ANN classes, respectively. Further, the vertical axis in the plots gives the number of stars (N) present for a particular colour excess value and is re-scaled as the square root of the actual number (i.e. $N^{1/2}$) for better representation; otherwise in the cases where this number is large, the corresponding points for single stars would look too small on the plots.

It is important to see that in the spectral classification scheme, the outliers in the all the four panels of Fig. 8 belong to G and K type, they being misclassified as the F-type stars. This can be attributed to the discrepancies mentioned in Section 2.3. In the two
exceptional cases, G8 gets classified as O2 type in FLUX UVBLUE panel whereas A2 gets classified as K3 in FLUX TAUVEX panel. The misclassification of G8 as O2 may be because G8 IUE spectra show a moderate UV excess compared to the theoretical one as mentioned in Rodriguez-Merino et al. (2005).

From the Figs 9, 10, 11 and 12, we see an overall colour excess estimate accuracy in the range of 0.20 in the worst case of F-type spectra with bands to 0.06 in the best case for B-type spectra with bands. The results with bands show better accuracies in comparison to the fluxes which may indicate that band data are a better estimator for colour excess than the fluxes.

The ANN inputs take most of the information in terms of absorption features which are embedded in the full range of spectral fluxes (or the integrated fluxes in the band data) for performing the classification. This information is available for the hot stars like O, B and A but lacks in F or later spectral types. Due to this reason, the ANNs do not provide a good estimate of reddening for these late-type stars. Thus, we have not estimated the colour excess for the G- and K-type spectra with bands to an accuracy of up to 0.1 mag in terms of \(E(B - V) \) colours. Thus, even with the limitation of data from just photometric bands, ANNs have not only classified the stars, but also provided satisfactory estimates for interstellar extinction.

We hope that our automated pipeline will be used extensively to extract and validate data from virtual observatories as well as for the upcoming satellite data base expected from the TAUVEX and also the ASTROSAT and GAIA missions where one will be able to provide the interstellar extinction maps of our Galaxy and which in turn could be modelled for dust distribution (Vaidya et al. 2001; Gupta et al. 2005; Vaidya, Gupta & Snow 2007).

Table 2. Summary of classification results.

Spectral classification error	TAUVEX	UVBLUE		
\(\sigma \) (subspectral type)	Flux	Band	Flux	Band
Simulated source:				
Colour excess \(E(B - V) \) Error				
\(\sigma \) (mag)	0.10	0.09	0.11	0.09
O type	0.09	0.07	0.08	0.06
B type	0.10	0.08	0.14	0.09
A type	0.10	0.16	0.18	0.20
F type				

4 Conclusions

Till now several studies have demonstrated that the artificial neural network schemes can reliably and successfully classify stellar spectral data as well as extract fundamental stellar parameters in the visible region. The extension of applicability of this scheme to UV region has been less prevalent mainly because of non-availability of abundant data in this region. Nevertheless, some attempts have been made in the past to automate the process of classification of spectral data from the IUE satellite. In this paper, we have demonstrated that the artificial neural networks can be successfully employed to classify stellar photometric (band) data.

We have shown that the ANN tools developed by us can successfully classify the 229 IUE spectra reduced to the four TAUVEX bands to an accuracy in the range of three to four subspectral types. We have also estimated the colour excess for the hot stars (O, B and A types) to an accuracy of up to 0.1 mag in terms of \(E(B - V) \) colours. Thus, even with the limitation of data from just photometric bands, ANNs have not only classified the stars, but also provided satisfactory estimates for interstellar extinction.

We hope that our automated pipeline will be used extensively to extract and validate data from virtual observatories as well as for the upcoming satellite data base expected from the TAUVEX and also the ASTROSAT and GAIA missions where one will be able to provide the interstellar extinction maps of our Galaxy and which in turn could be modelled for dust distribution (Vaidya et al. 2001; Gupta et al. 2005; Vaidya, Gupta & Snow 2007).

Acknowledgments

This work is supported by a Grant from Indian Space Research Organization under its RESPOND scheme. We would like to acknowledge an email correspondence with Professor E. Bertone, for providing the relevant references which helped us in matching the UVBLUE parameter space to spectral types and luminosity classes.

References

Allen 2000, Astrophysical Quantities, 4th edn, Springer-Verlag, New York
Alonso A., Arribas S., Martínez-Roger C., 1999, A&AS, 140, 261
Bailer-Jones C. A. L., 2002, in Gupta R., Singh H. P., Bailer-Jones C. A. L., eds, Automated Data Analysis in Astronomy. Narosa, New Delhi, p. 83
Bailer-Jones C. A. L., Gupta R., Singh H. P., 2002, in Gupta R., Singh H. P., Bailer-Jones C. A. L., eds, Automated Data Analysis in Astronomy. Narosa, New Delhi, p. 51
Bertone E., Buzzoni A., Rodriguez-Merino L. H., Chavez M., 2004, AJ, 128, 829
Colina L., 1995, CDBS Kurucz Stellar Atmosphere Atlas, Instrument Science Report SCS/CAL-006 (STScI/OSG)
Erika Béohm-Vitéense, 1981, ARA&A, 295, 318
Gulati R. K., Gupta R., Gotherskar P., Khobragade S., 1994, ApJ, 426, 340
Gulati R. K., Gupta R., Rao N. K., 1997a, A& A, 322, 933
Gulati R. K., Gupta R., Singh H. P., 1997b, PASP, 109, 843
Gupta R., Singh H. P., Volk K., Kwok S., 2004, ApJS, 152n2, 201
Gupta R., Mukai T., Vaidya D. B., Sen A. K., Okada Y., 2005, A&A, 441, 555
Heck A., Egret D., Jaschek M., Jaschek C., 1984, ESA SP-1052, IUE low-dispersion spectra reference atlas. Part 1. Normal Stars, ESA SP-1052
Johnson H. L., 1966, ARA&A, 4, 193
Lang K. R., 1982, Astrophysical Data: Planets and Stars. Springer-Verlag, Berlin
Maheshwar G., Muthu C., Sujatha N. V., Pandey G., Bhatt H. C., Kameswara Rao N., Murthy J., 2007, BASI, 35, 233
Murthy J., 2003, BASI, 31, 243
Ridgway S. T., Joyce R. R., White N. M., Wing R. F., 1980, ApJ, 235, 126
Rodriguez-Merino L. H., Chavez M., Bertone E., Buzzoni A., 2005, ApJ, 626, 411
Seaton M. J., 1979, MNRAS, 187, 73
Singh H. P., Gulati R. K., Gupta R., 1998, MNRAS, 295, 312
Singh H. P., Yuasa M., Yamamoto N., Gupta R., 2006, PASJ, 58, 177
Sujatha N. V., Chakraborty P., Murthy J., Henry R. C., 2004, BASI, 32, 151
Vaidya D. B., Gupta R., Dobbie J. S., Chylek P., 2001, A&A, 375, 584
Vaidya D. B., Gupta R., Snow T. P., 2007, MNRAS, 371, 791
Valdes F., Gupta R., Rose J. A., Singh H. P., Bell D. J., 2004, ApJS, 152, 251

This paper has been typeset from a TeX/LaTeX file prepared by the author.