A case of ganglioneuroma of the colon during routine colonoscopy

Michael Herman, Jean Abed, Wenjing Shi, Arzu Buyuk, Pavan Kumar Mankal, Donald Kotler, Gabriel Ionescu

ABSTRACT

Introduction: Colonic ganglioneuromas are classified as hamartomatous polyps that are composed of ganglion cells, nerve fibers, and enteric nervous system cells. The GNs of the gastrointestinal tract can be classified into three groups based on the size and the number of polyps: polypoid GN, ganglioneuromatous polyposis, and diffuse ganglioneuromatosis. Polypoid GNs, seen in patients with Cowden's syndrome, are small, sessile or pedunculated polyps that have a similar appearance to hyperplastic and adenomatous polyps. Ganglioneuromatous polyposis, seen most commonly in patients with MEN IIB, NF1, Cowden’s syndrome, usually manifests as more than 20 sessile or pedunculated polyps. Lastly, diffuse ganglioneuromatosis, seen in MEN IIB7 and NF1, involves proliferation of neuronal cells in the entire colon, but does not extend into the ileum.

Case Report: A 57-year-old African-American male with a history of untreated chronic hepatitis C cirrhosis with viral load of over 4 million copies, seizure disorder, mild mental retardation, hypothyroidism, hypertension, diabetes mellitus type 2, presented to the gastroenterology clinic for scheduling of a screening colonoscopy. At that time, he was completely asymptomatic. On colonoscopy, one 4 mm sessile polyp was resected in the sigmoid colon and was histologically diagnosed as a ganglioneuroma (GN).

Conclusion: The finding of an asymptomatic, solitary GN in our patient does not warrant more frequent colon cancer screening given its benign nature.
A case of ganglioneuroma of the colon during routine colonoscopy

Michael Herman, Jean Abed, Wenjing Shi, Arzu Buyuk, Pavan Kumar Mankal, Donald Kotler, Gabriel Ionescu

ABSTRACT

Introduction: Colonic ganglioneuromas are classified as hamartomatous polyps that are composed of ganglion cells, nerve fibers, and enteric nervous system cells. The GNs of the gastrointestinal tract can be classified into three groups based on the size and the number of polyps: polypoid GN, ganglioneuromatous polyposis, and diffuse ganglioneuromatosis. Polypoid GNs, seen in patients with Cowden’s syndrome, are small, sessile or pedunculated polyps that have a similar appearance to hyperplastic and adenomatous polyps. Ganglioneuromatous polyposis, seen most commonly in patients with MEN IIB, NF1, Cowden’s syndrome, usually manifests as more than 20 sessile or pedunculated polyps. Lastly, diffuse ganglioneuromatosis, seen in MEN IIB7 and NF1, involves proliferation of neuronal cells in the entire colon, but does not extend into the ileum. Case Report: A 57-year-old African-American male with a history of untreated chronic hepatitis C cirrhosis with viral load of over 4 million copies, seizure disorder, mild mental retardation, hypothyroidism, hypertension, diabetes mellitus type 2, presented to the gastroenterology clinic for scheduling of a screening colonoscopy. At that time, he was completely asymptomatic. On colonoscopy, one 4 mm sessile polyp was resected in the sigmoid colon and was histologically diagnosed as a ganglioneuroma (GN). Conclusion: The finding of an asymptomatic, solitary GN in our patient does not warrant more frequent colon cancer screening given its benign nature.

Keywords: Cancer, Colonoscopy, Cowden’s syndrome, Ganglioneuroma, Neurocutaneous syndromes

How to cite this article
Herman M, Abed J, Shi W, Buyuk A, Mankal PK, Kotler D, Ionescu G. A case of ganglioneuroma of the colon during routine colonoscopy. Int J Case Rep Images 2015;6(9):560–563.
doi:10.5348/ijcri-201590-CR-10551

INTRODUCTION

Ganglioneuromas (GNs) are a subset of neuroblastomas. They are rare, slow growing, well-differentiated large tumors that arise from sympathetic ganglion cells. They are often benign and have excellent prognoses even when the tumor is not completely resected, regardless of where they are located in the body. Epidemiologically, GNs are seen more frequently...
in females, with 60% occurring before the age of 20 years [1]. The most common locations for GNs to appear are the mediastinum, retroperitoneum, and adrenal glands, and less commonly the colon. Patients with intestinal GNs usually have (1) neurocutaneous syndromes, such as neurofibromatosis type 1 (NF1) and tuberous sclerosis, (2) genetic polyposis syndromes, such as juvenile polyposis, polyposis coli, or Cowden’s disease, or (3) multiple endocrine neoplasia type IIB (MEN IIB). However, solitary lesions do not embody the same association. Colonic GNs are relatively asymptomatic and patients with the above syndromes have the same risk of having gastrointestinal manifestations of GNs as the general population [1].

CASE REPORT

A 57-year-old African-American male with a history of untreated chronic hepatitis C cirrhosis with viral load of over 4 million copies, seizure disorder, mild mental retardation, hypothyroidism, hypertension, diabetes mellitus type 2, presented to the gastroenterology clinic for scheduling of a screening colonoscopy. At that time, the patient was asymptomatic and did not report any fever, chills, nausea, vomiting, abdominal pain, diarrhea or constipation. He never had any alarming symptoms such as weight loss, melena and hematochezia. In addition to denying toxic habits (i.e., tobacco, alcohol, drugs), he also denied any personal or family history of colon or small bowel cancer. His physical examination was unremarkable, as he did not have scleral icterus, murmurs, wheezing, abdominal distention, organomegaly, café au lait spots or fibromas on his skin. At home, the patient was taking metformin, levothyroxine, ferrous sulfate, tamsulosin, lactulose, omeprazole, divalproex sodium, propranolol, aripiprazole, vitamin C, multivitamin, and saline nasal spray. Initially, patient underwent a screening colonoscopy, one 8 mm pedunculated polyp in the ascending colon was removed with a cold biopsy forceps and was histologically identified as a tubular adenoma. Additionally, a pink, tan sessile polyp-like lesion was identified, measuring 4 mm in diameter, and resected with a hot snare from the sigmoid colon (Figure 1). After the procedure, the patient had no complications and was discharged home. The histology of the biopsied 4 mm lesion revealed a solitary small sessile colonic polyp at low magnification (Figures 2 and 3). At high magnification, there are irregular distributions of dysmorphic ganglion cells in the lamina propria (Figures 3 and 4).

They range from nearly normal ganglion cells with large round nuclei, prominent nucleoli and abundant cytoplasm to abnormal ganglion cells with hyperchromatic nuclei with irregular nuclear membrane, invisible nucleoli, and scanty cytoplasm. Scattered spindle cells are also seen. Both of them are highlighted by immunostain S100 (Figure 5), but negative for AE1/AE3 and EMA (markers for 69 epithelium) or CD117 (the marker for GIST). No mitosis or cell necrosis is seen. Diagnosis of ganglioneuroma was subsequently made by the pathologist.

DISCUSSION

Colonic GNs are classified as hamartomatous polyps that are composed of ganglion cells, nerve fibers, and enteric nervous system cells. The GNs of the gastrointestinal tract can be classified into three groups based on the size and the number of polyps: polypoid GN, ganglioneuromatous polyposis, and diffuse ganglioneuromatosis [1]. All three types of GNs are usually incidental findings found on colonoscopy and typically do not present with symptoms. Polypoid GNs, which can be sessile or
pedunculated, are small and appear to be very similar to hyperplastic and adenomatous polyps endoscopically [1]. This subset is most commonly seen in patient with Cowden’s syndrome, characterized by ganglieneuromas found in the breast, thyroid, genitourinary tract, and mucocutaneous areas [2].

Ganglioneuromatous polyposis is seen most commonly in patients with MEN IIB, NF1, Cowden’s syndrome, often accompanied by more than 20 sessile or pedunculated polyps [3]. Lastly, diffuse ganglioneuromatosis involves proliferation of neuronal cells in the entire colon, but does not extend into the ileum. Polyps can be as large as 17 cm in diameter with a variable (intramural or transmural) penetration into the colonic wall. They are seen as a component of MEN IIB7 and NF1 [4]. Histologically, the polyp is confirmed to be a GN by immunohistochemical staining with S100 protein confirming the presence of ganglion cells. The histological features of isolated polypoid GNs show disturbed crypt architecture and expanded lamina propria at low magnification. Higher magnification demonstrates the spindle cells in the fibrillary matrix and irregular groups of ganglion cells within the expanded lamina propria. The isolated GNs may also present submucosal extension and a plexiform-like arrangement involving submucosal nerve plexus. This pattern is suggestive of neurofibromas, but the presence of ganglion cells distinguishes them from neurofibromas. The GNs in ganglioneuromatous polyposis have overlapping features with isolated GNs. However, they are more variable and consist of more numerous ganglion cells. Diffuse ganglioneuromatosis may exhibit fusiform expansion of the myenteric plexus or confluent transmural ganglioneuromatous proliferations involving nerve fibers, ganglion cells, and supporting cells of enteric nervous system. The management of GNs depends on the patient’s clinical history and presentation. For the polypoid subgroup, polypectomy is the cure, however, colectomy may be required for ganglioneuromatous polyposis and diffuse ganglioneuromatosis, particularly if the patient is symptomatic [5]. Rarely, large GNs may cause symptoms of abdominal pain, constipation, obstruction, or bleeding secondary to the size and location within the colon. In general, solitary polypoid GNs are asymptomatic [6, 7].

CONCLUSION

To our knowledge, no guideline is available for repeat colonoscopy, although there are reports of association...
with tubular adenomas. The finding of an asymptomatic, solitary ganglioneuroma in our patient, does not warrant more frequent colon cancer screening given its benign nature.

Author Contributions
Michael Herman – Substantial contributions to conception and design, Acquisition of data, Analysis and interpretation of data, Drafting the article, Revising it critically for important intellectual content, Final approval of the version to be published
Jean Abed – Analysis and interpretation of data, Revising it critically for important intellectual content, Final approval of the version to be published
Wenjing Shi – Analysis and interpretation of data, Revising it critically for important intellectual content, Final approval of the version to be published
Arzu Buyuk – Analysis and interpretation of data, Revising it critically for important intellectual content, Final approval of the version to be published
Pavan Kumar Mankal – Analysis and interpretation of data, Revising it critically for important intellectual content, Final approval of the version to be published
Donald Kotler – Analysis and interpretation of data, Revising it critically for important intellectual content, Final approval of the version to be published
Gabriel Ionescu – Analysis and interpretation of data, Revising it critically for important intellectual content, Final approval of the version to be published

Guarantor
The corresponding author is the guarantor of submission.

Conflict of Interest
Authors declare no conflict of interest.

Copyright
© 2015 Michael Herman et al. This article is distributed under the terms of Creative Commons Attribution License which permits unrestricted use, distribution and reproduction in any medium provided the original author(s) and original publisher are properly credited. Please see the copyright policy on the journal website for more information.

REFERENCES
1. Fiori E, Pozzessere C, Lamazza A, et al. Endoscopic treatment of ganglioneuroma of the colon associated with a lipoma: a case report. J Med Case Rep 2012 Sep 14;6:304.
2. Shekitka KM, Sobin LH. Ganglioneuromas of the gastrointestinal tract. Relation to Von Recklinghausen disease and other multiple tumor syndromes. Am J Surg Pathol 1994 Mar;18(3):250–7.
3. Pilarski R. Cowden syndrome: a critical review of the clinical literature. J Genet Couns 2009 Feb;18(1):13–27.
4. Eng C. Will the real Cowden syndrome please stand up: revised diagnostic criteria. J Med Genet 2000 Nov;37(11):828–30.
5. Chan OT, Haghighi P. Hamartomatous polypos of the colon: ganglioneuromatous, stromal, and lipomatous. Arch Pathol Lab Med 2006 Oct;130(10):1561–6.
6. Ledwidge SF, Moorghen M, Longman RJ, Thomas MG. Adult transmural intestinal ganglioneuromatosis is not always associated with multiple endocrine neoplasia or neurofibromatosis: a case report. J Clin Pathol 2007 Feb;60(2):222–3.
7. Rafiq S, Hameer H, Sitrin MD. Ganglioneuromatous polyposis associated with juvenile polyps and a tubular adenoma. Dig Dis Sci 2005 Mar;50(3):506–8.
Edorium Journals: An introduction
Edorium Journals Team

About Edorium Journals
Edorium Journals is a publisher of high-quality, open access, international scholarly journals covering subjects in basic sciences and clinical specialties and sub specialties.

Invitation for article submission
We sincerely invite you to submit your valuable research for publication to Edorium Journals.

But why should you publish with Edorium Journals?
In less than 10 words - we give you what no one does.

Vision of being the best
We have the vision of making our journals the best and the most authoritative journals in their respective specialties. We are working towards this goal every day of every week of every month of every year.

Exceptional services
We care for you, your work and your time. Our efficient, personalized and courteous services are a testimony to this.

Editorial Review
All manuscripts submitted to Edorium Journals undergo pre-processing review, first editorial review, peer review, second editorial review and finally third editorial review.

Peer Review
All manuscripts submitted to Edorium Journals undergo anonymous, double-blind, external peer review.

Early View version
Early View version of your manuscript will be published in the journal within 72 hours of final acceptance.

Manuscript status
From submission to publication of your article you will get regular updates (minimum six times) about status of your manuscripts directly in your email.

Our Commitment

Six weeks
You will get first decision on your manuscript within six weeks (42 days) of submission. If we fail to honor this by even one day, we will publish your manuscript free of charge.

Four weeks
After we receive page proofs, your manuscript will be published in the journal within four weeks (31 days). If we fail to honor this by even one day, we will publish your manuscript free of charge and refund you the full article publication charges you paid for your manuscript.

Most Favored Author program
Join this program and publish any number of articles free of charge for one to five years.

Favored Author program
One email is all it takes to become our favored author. You will not only get fee waivers but also get information and insights about scholarly publishing.

Institutional Membership program
Join our Institutional Memberships program and help scholars from your institute make their research accessible to all and save thousands of dollars in fees make their research accessible to all.

Our presence
We have some of the best designed publication formats. Our websites are very user friendly and enable you to do your work very easily with no hassle.

Something more...
We request you to have a look at our website to know more about us and our services.

We welcome you to interact with us, share with us, join us and of course publish with us.

CONNECT WITH US
Edorium Journals: On Web Browse Journals