Infra-nilmanifolds modeled on the group of uni-triangular matrices

Younggi Choi¹ · Jong Bum Lee² · Kyung Bai Lee³

Received: 27 October 2016 / Accepted: 24 January 2017 / Published online: 9 February 2017
© Springer Science+Business Media Dordrecht 2017

Abstract Let \(N_m \) be the group of \(m \times m \) upper triangular real matrices with all the diagonal entries 1. Then it is an \((m - 1)\)-step nilpotent Lie group, diffeomorphic to \(\mathbb{R}^{1\frac{1}{2}m(m-1)} \). It contains all the integer matrices as a lattice \(\Gamma_m \). The automorphism group of \(N_m \) (\(m \geq 4 \)) turns out to be extremely small. In fact, \(\text{Aut}(N) = I \times \text{Out}(N) \), where \(I \) is a connected, simply connected nilpotent Lie group, and \(\text{Out}(N) = \tilde{K} = (\mathbb{R}^*)^{m-1} \rtimes \mathbb{Z}_2 \). With a nice left-invariant Riemannian metric on \(N \), the isometry group is \(\text{Isom}(N) = N \rtimes K \), where \(K = (\mathbb{Z}_2)^{m-1} \rtimes \mathbb{Z}_2 \subset \tilde{K} \) is a maximal compact subgroup of \(\text{Aut}(N) \). We prove that, for odd \(m \geq 4 \), there is no infra-nilmanifold which is essentially covered by the nilmanifold \(\Gamma_m \setminus N_m \). For \(m = 2n \geq 4 \) (even), there is a unique infra-nilmanifold which is essentially (and doubly) covered by the nilmanifold \(\Gamma_m \setminus N_m \).

Keywords Almost Bieberbach group · Almost crystallographic group · Almost flat manifold · Infra-nilmanifold · Nilpotent Lie group · Uni-triangular matrix

Mathematics Subject Classification (2010) Primary 57S30 · 57S20 · 22E25

Younggi Choi was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (NRF-2013R1A1A2006926). Jong Bum Lee was supported in part by Basic Science Researcher Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. 2013R1A1A2058693).

Kyung Bai Lee
kblee@math.ou.edu
Younggi Choi
yochoi@snu.ac.kr
Jong Bum Lee
jlee@sogang.ac.kr

¹ Department of Mathematics Education, Seoul National University, Seoul 08826, Korea
² Department of Mathematics, Sogang University, Seoul 04107, Korea
³ Department of Mathematics, University of Oklahoma, Norman, OK 73019, USA
1 Introduction

Let \mathcal{N}_m be the group of uni-triangular (upper-triangular unipotent) matrices of size m, i.e., \mathcal{N}_m consists of all $m \times m$ upper triangular real matrices with all the diagonal entries 1. Then it is an $(m - 1)$-step nilpotent Lie group, diffeomorphic to $\mathbb{R}^{\frac{1}{2}m(m-1)}$. We note that \mathcal{N}_2 is the abelian group \mathbb{R}, and \mathcal{N}_3 is the Heisenberg group. We will suppress m whenever no confusion is likely. We shall show that $\text{Aut}(\mathcal{N}_m)$, $m \geq 4$, contains a maximal compact subgroup $K = (\mathbb{Z}_2)^{m-1} \rtimes \mathbb{Z}_2$.

By Gordon–Wilson [4, Corollary 5.3], with any left-invariant metric on \mathcal{N}, the group of isometries, $\text{Isom}(\mathcal{N})$, lies in $\mathcal{N} \ltimes \text{Aut}(\mathcal{N})$. Let K be a maximal compact subgroup of $\text{Aut}(\mathcal{N})$. Since a stabilizer of the isometry group must be compact, $\text{Isom}(\mathcal{N})$ can be conjugated so that it lies in $\mathcal{N} \ltimes K$. Conversely, starting with any left-invariant metric on \mathcal{N}, by a standard averaging method over the compact group K, one can find a left-invariant metric on \mathcal{N} whose group of isometries is exactly

$$\text{Isom}(\mathcal{N}) = \mathcal{N} \ltimes K.$$

Therefore, it is important to understand a maximal compact subgroup of $\text{Aut}(\mathcal{N})$.

As is well known, a discrete cocompact subgroup of $\mathcal{N} \ltimes K$ is called an almost crystallographic group of \mathcal{N}. A torsion free almost crystallographic group is an almost Bieberbach group.

Let $\Gamma \subset \mathcal{N}$ be the subgroup consisting of all matrices with integer entries. Then Γ is a lattice of \mathcal{N}. The quotient $\Gamma \backslash \mathcal{N}$ is a nilmanifold, and a finite quotient of $\Gamma \backslash \mathcal{N}$ is an infra-nilmanifold. By the works of Gromov [5] and Ruh [11], infra-nilmanifold is synonymous to almost flat manifold.

It is the purpose of this work to classify all infra-nilmanifolds that are covered by the (standard) nilmanifold $\Gamma_m \backslash \mathcal{N}_m$ for every m. We prove that (Theorem 5.1), for odd $m \geq 4$, there is no infra-nilmanifold which is essentially covered by the nilmanifold $\Gamma_m \backslash \mathcal{N}_m$. For $m = 2n \geq 4$ (even), there is a unique infra-nilmanifold which is essentially (and doubly) covered by $\Gamma_m \backslash \mathcal{N}_m$.

2 Bieberbach theorems on nilpotent Lie groups

Let G be a Lie group, and let $\text{Aut}(G)$ be the group of continuous automorphisms of G. The group $\text{Aff}(G)$ is the semi-direct product $\text{Aff}(G) = G \ltimes \text{Aut}(G)$ with multiplication

$$(a, A) \cdot (b, B) = (a \cdot A(b), AB).$$

It has a Lie group structure and acts on G by

$$(a, A) \cdot x = a \cdot A(x)$$

for all $x \in G$. With the linear connection on G defined by the left invariant vector fields, it is known that $\text{Aff}(G)$ is the group of connection-preserving diffeomorphisms of G.

Celebrated works of Bieberbach on \mathbb{R}^n have been generalized to nilpotent groups.

Theorem 2.1 [Generalization to nilpotent groups (see [10, Chapter 8])]

(A) [1] Let G be a connected, simply connected nilpotent Lie group, and let C be a compact subgroup of $\text{Aut}(G)$. If $\Pi \subset G \ltimes C$ is a lattice, then $\Gamma = \Pi \cap G$ is a lattice of G, and Γ has finite index in Π.

Springer
Let G be a connected, simply connected nilpotent Lie group. Let $\Pi, \Pi' \subset \text{Aff}(G)$ be finite extensions of lattices in G. Then every isomorphism $\theta: \Pi \to \Pi'$ is a conjugation by an element of $\text{Aff}(G)$.

For a lattice Γ of a connected, simply connected nilpotent Lie group G, there are only finitely many extensions of Γ by finite groups containing Γ as a discrete nil-radical (i.e., maximal normal, nilpotent subgroup).

These can be interpreted as topological statements.

Corollary 2.2

(A) Every almost flat Riemannian manifold is finitely covered by a nilmanifold.

(B) Homotopy equivalent almost flat manifolds are affinely diffeomorphic.

(C) Under each nilmanifold M, there are only finitely many almost flat manifolds which are essentially covered by M.

A covering is an essential covering if no deck transformation is homotopically trivial.

In this paper we shall consider N as our connected and simply connected nilpotent Lie group and take Γ as the lattice consisting of matrices with integer entries. Then we will study almost Bieberbach groups Π of N having Γ as its nil-radical. Hence Π fits in the following commutative diagram

$$
\begin{array}{c}
1 \longrightarrow N \longrightarrow N \rtimes C \longrightarrow C \longrightarrow 1 \\
\uparrow U \quad \uparrow U \quad \uparrow U \\
1 \longrightarrow \Gamma \longrightarrow \Pi \longrightarrow \Phi \longrightarrow 1
\end{array}
$$

where C is a maximal compact subgroup of $\text{Aut}(N)$ and Φ is a finite group, called the holonomy group of Π.

3 Automorphism group of N

The group of automorphisms $\text{GL}(m, \mathbb{R})$ of \mathbb{R}^m is obtained after a lattice \mathbb{Z}^m is fixed. Likewise, in order to calculate the group of automorphisms of N_m, we fix a lattice of N_m first. Let Γ_m be the subgroup of all integer matrices. Then clearly Γ_m is a lattice of N_m.

Let \mathfrak{N} be the Lie algebra of N (We suppress m). Then \mathfrak{N} is the algebra of $m \times m$ strictly upper triangular real matrices. We use the notation $\mathfrak{N}^{(k+1)} = [\mathfrak{N}, \mathfrak{N}^{(k)}]$, and the same for N. Let $e_{i,j} \in \mathfrak{N}$ ($i < j$) be the matrix whose entries are all zero, except for the (i, j)-entry which is 1. When we use the notation $e_{i,j}$, we assume $i < j$.

We also define $E_{i,j}$ as $\exp e_{i,j}$,

$$E_{i,j} = \exp e_{i,j} = I_m + e_{i,j} \in N,$$

(because $e_{i,j}^2 = 0$ for $i < j$). We use the notation for commutator

$$[x, y] = xy - yx, \quad \text{in the Lie algebra} \ \mathfrak{N}$$

$$[X, Y] = X Y X^{-1} Y^{-1}, \quad \text{in the Lie group} \ N$$

Then

$$e_{i,j} e_{p,q} = \begin{cases} e_{i,q} & \text{if } j = p \\ 0 \text{ (zero matrix)} & \text{otherwise.} \end{cases}$$
Therefore,
\[
\begin{bmatrix}
 e_{i,j}, e_{p,q}
\end{bmatrix} = \begin{cases}
 e_{i,q} & \text{if } j = p \\
 -e_{p,j} & \text{if } i = q \\
 0 & \text{otherwise}
\end{cases}
\] (3.1)

It is easy to observe that
\[
\begin{bmatrix}
 E_{i,j}, E_{p,q}
\end{bmatrix} = \begin{cases}
 E_{i,q} & \text{if } j = p \\
 E_{p,j}^{-1} & \text{if } i = q \\
 e (= \text{identity matrix in } N) & \text{otherwise}
\end{cases}
\] (3.2)

Let
\[
L_1 = \{ e_{1,2}, e_{2,3}, \ldots, e_{m-1,m} \} \quad \text{linear basis of } \mathcal{N}/\mathcal{N}^{(2)}
\]
\[
L_2 = \{ e_{1,3}, e_{2,4}, \ldots, e_{m-2,m} \} \quad \text{linear basis of } \mathcal{N}^{(2)}/\mathcal{N}^{(3)}
\]
\[
\vdots
\]
\[
L_{m-1} = \{ e_{1,m} \} \quad \text{linear basis of } \mathcal{N}^{(m-1)}/\mathcal{N}^{(m)}
\]

Lemma 3.1 The set
\[
L_1 = \{ e_{1,2}, e_{2,3}, \ldots, e_{m-1,m} \}
\]
generates the Lie algebra \(\mathcal{N} \).

Proof Observe that \(e_{p,p+q} \) can be expressed using repeated commutators of the elements of \(L_1 \) only. Suppose \(e_{p,p+q-1} \in \mathcal{N}^{(q-1)} \). Then
\[
e_{p,p+q} = [e_{p,p+q-1}, e_{p+q-1,p+q}] \in \mathcal{N}^{(q)},
\]
the \(q \)-fold commutator of \(\mathcal{N} \). \(\square \)

Consider the natural homomorphism
\[
\vartheta : \text{Aut}(\mathcal{N}) \longrightarrow \text{Aut}(\mathcal{N}/\mathcal{N}^2) = \text{Aut}(\mathbb{R}^{m-1}).
\]

First we study the image of \(\vartheta \). Suppose that we are given an automorphism \(A \in \text{GL}(m - 1, \mathbb{R}) \) of \(\mathbb{R}^{m-1} \). In general, there does not exist \(\tilde{A} : \mathcal{N} \rightarrow \mathcal{N} \) which induces \(A \) on the quotient \(\mathbb{R}^{m-1} \), unless \(A \) satisfies some very specific requirements.

Lemma 3.2 ([2, Lemma 3.9]) Assume \(m \geq 4 \). For \(A \in \text{GL}(m - 1, \mathbb{R}) = \text{Aut}(\mathcal{N}/[\mathcal{N}, \mathcal{N}]) \), \(A \) is lifted to \(\tilde{A} \in \text{Aut}(\mathcal{N}) \) if and only if \(A \) is either diagonal or anti-diagonal; that is, the only possible \(A \in \tilde{K} \) are
\[
\begin{pmatrix}
 a_{1,1} & 0 & \cdots & 0 \\
 0 & a_{2,2} & \cdots & 0 \\
 \vdots & \vdots & \ddots & \vdots \\
 0 & 0 & \cdots & a_{m-1,m-1}
\end{pmatrix}
\]
or
\[
\begin{pmatrix}
 0 & \cdots & 0 & a_{1,m-1} \\
 0 & \cdots & a_{2,m-2} & 0 \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{m-1,1} & \cdots & 0 & 0
\end{pmatrix}
\]

with all \(a_{i,j} \neq 0 \).

The matrices in Lemma 3.2 form a subgroup
\[
\tilde{K} = (\mathbb{R}^*)^{m-1} \rtimes \mathbb{Z}_2 \subset \text{GL}(m - 1, \mathbb{R}),
\] (3.3)
where

\[(\mathbb{R}^*)^{m-1} = \left\{ \begin{pmatrix} a_{1,1} & 0 & \cdots & 0 \\ 0 & a_{2,2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{m-1,m-1} \end{pmatrix} \right\} \quad \text{and} \quad \tau = \begin{pmatrix} 0 & \cdots & 0 & 1 \\ 0 & \cdots & 1 & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & \cdots & 0 & 0 \end{pmatrix} \]

generates \(\mathbb{Z}_2 \). The image of \(\vartheta \) is exactly \(\tilde{K} \). Let \(I \) be the kernel of \(\vartheta \). Since \(\tilde{K} \) is sitting in \(\text{Aut}(\mathfrak{N}) \) already, the homomorphism \(\vartheta : \text{Aut}(\mathfrak{N}) \to \tilde{K} \) splits so that

\[\text{Aut}(\mathfrak{N}) = I \rtimes \tilde{K}. \]

Inside \(\tilde{K} \) of equality (3.3), we have

\[K = \tilde{K} \cap \text{GL}(m - 1, \mathbb{Z}). \]

Then

\[K = (\mathbb{Z}_2)^{m-1} \rtimes \mathbb{Z}_2, \]

where

\[\mathbb{Z}_2^{m-1} = \left\{ \begin{pmatrix} \pm 1 & 0 & \cdots & 0 \\ 0 & \pm 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \pm 1 \end{pmatrix} \right\} \quad \text{and} \quad \mathbb{Z}_2 \text{ is generated by } \tau. \]

Clearly, \(K \subset \tilde{K} \) is the totality of torsion elements, which forms a subgroup. Thus, \(K \) is a fully normal subgroup of \(\tilde{K} \). Furthermore, it is a unique maximal compact subgroup of \(\tilde{K} \).

We turn our attention to the group \(\mathcal{I} \) of automorphisms of \(\mathfrak{N} \) which induce the identity map on \(\mathfrak{N}/\mathfrak{N}^2 \).

Lemma 3.3 \(\mathcal{I} \) is a connected, simply connected nilpotent Lie group.

Proof We use the (ordered) linear basis of \(\mathfrak{N} \)

\[\mathcal{L} = \{ L_1, L_2, \ldots, L_{m-1} \}. \]

With respect to the basis \(\mathcal{L} \) (of \(\frac{1}{2}m(m-1) \) elements), any automorphism of \(\mathcal{I} \) becomes a lower triangular matrix with diagonal entries 1. One can show that \(\mathcal{I} \) is connected by induction on \(m \) in \(\mathcal{N}_m \). Then, \(\mathcal{I} \) is a connected subgroup of the group of all lower triangular matrices, which is a connected, simply connected nilpotent Lie group. Any such subgroup is simply connected as well.

Alternatively, one can use the classification of automorphisms of \(\mathfrak{N} \) in [2]. By [2, Theorem 3.14],

\[\text{Aut}(\mathcal{N}) \cong ((\text{Inn}(\mathcal{N}) \rtimes (\mathcal{C} \times \mathcal{E})) \rtimes \mathcal{D}) \rtimes \mathcal{G} \]

where

\[\mathcal{C} \cong \mathbb{R}^{m-1}, \mathcal{E} \cong \mathbb{R}^2, \mathcal{D} \cong (\mathbb{R}^*)^{m-1}, \mathcal{G} \cong \mathbb{Z}_2. \]

Hence \(\text{Out}(\mathcal{N}) \cong ((\mathcal{C} \times \mathcal{E})) \rtimes \mathcal{D} \rtimes \mathcal{G} \). Remark also that \(\text{Aut}(\mathcal{N}) \to \text{Aut}(\mathcal{N}/[\mathcal{N}, \mathcal{N}]) \) has image \(\mathcal{D} \rtimes \mathcal{G} \) and kernel \(\mathcal{I} = \text{Inn}(\mathcal{N}) \rtimes (\mathcal{C} \times \mathcal{E}). \)
Proposition 3.4 Let $F \subset \text{Aut}(\mathfrak{N})$ be a finite group. Then F can be conjugated into $K \subset \tilde{K}$.

Proof Let $\pi : \text{Aut}(\mathfrak{N}) = \mathcal{I} \rtimes \tilde{K} \rightarrow \tilde{K}$ be the projection, and $F_1 = \pi(F) \subset \tilde{K}$. Since \mathcal{I} is torsion free and F is finite, π is injective on F. Define

$$\lambda : F_1 \rightarrow \mathcal{I}$$

by $\lambda(A) = a$, if $(a, A) \in F$. Then $\lambda \in Z^1(F_1, \mathcal{I})$, a crossed homomorphism.

Now we apply [8, p. 436, Theorem]. Set the space W to be a singleton space, and Q to be a finite group. Then Q acts on W properly discontinuously. The theorem states exactly

Lemma 3.5 Let Q be a finite group, L a connected, simply connected nilpotent Lie group. Then $H^i(Q; L) = 0$, for $i = 1, 2$.

The proof of the above lemma uses induction on the nilpotency of L together with the fact that $H^i(Q; L) = 0$ for a finite group Q and a real vector group L.

Thus we have $H^1(F_1, \mathcal{I}) = 0$. Consequently, λ is principal, and there exists $b \in \mathcal{I}$ such that $\lambda(A) = \delta(b)$ so that $\lambda(A) = b^{-1} \cdot A(b)$ for all $A \in F_1$. Therefore,

$$(b, I)(a, A)(b^{-1}, I) = (b \cdot A^{-1} \cdot A(b^{-1}), A)$$

for all $(a, A) \in F$. Thus we have shown that $b \in \mathcal{I}$ conjugates F into \tilde{K}.

Since $K \subset \tilde{K}$ is the totality of torsion elements, the conjugation image lies inside K. This finishes the proof of Preposition 3.4 as well as the following.

Theorem 3.6 $K = (\mathbb{Z}_2)^{m-1} \rtimes \mathbb{Z}_2$ is a maximal compact subgroup of $\text{Aut}(\mathfrak{N})$.

4 Action of K on \mathcal{N}

It is well known that $\text{Aut}(\mathcal{N}_3) \cong \mathbb{R}^2 \rtimes \text{GL}(2, \mathbb{R})$ and $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{GL}(2, \mathbb{R})$ is an automorphism of \mathcal{N}_3 given by

$$A : \begin{pmatrix} 1 & x_1 & x_3 \\ 0 & 1 & x_2 \\ 0 & 0 & 1 \end{pmatrix} \mapsto \begin{pmatrix} 1 & ax_1 + bx_2 & x_3' \\ 0 & 1 & cx_1 + dx_2 \\ 0 & 0 & 1 \end{pmatrix} \quad (4.1)$$

where

$$x_3' = \frac{1}{2} (ax_1(cx_1 + 2dx_2) + x_2(bdx_2 - 2x_1)) + (ad - bc)x_3.$$

For $m \geq 4$, we use the commutative diagram

$$\begin{array}{ccc}
\mathcal{N} & \xrightarrow{\tilde{A}} & \mathcal{N} \\
\log \uparrow & & \downarrow \exp \\
\mathcal{N} & \longrightarrow & \mathcal{N}
\end{array}$$

to obtain an automorphism of \mathcal{N}, $\exp \circ \tilde{A} \circ \log$, determined by A.

Springer
Here is an explicit description of the automorphisms $A \in K$ when $m = 4$ and 5.

For $x = \begin{pmatrix} 1 & x_1 & x_4 & x_6 \\ 0 & 1 & x_2 & x_5 \\ 0 & 0 & 1 & x_3 \\ 0 & 0 & 0 & 1 \end{pmatrix} \in N_4$,

\[
\left(\begin{array}{llll}
\epsilon_1 & 0 & 0 & 0 \\
0 & \epsilon_2 & 0 & 0 \\
0 & 0 & \epsilon_3 & 0 \\
0 & 0 & 0 & \epsilon_4 \\
\end{array} \right) \cdot x = \begin{pmatrix} 1 & \epsilon_1x_1 & \epsilon_1\epsilon_2x_4 & \epsilon_1\epsilon_2\epsilon_3x_6 \\ 0 & 1 & \epsilon_2x_2 & \epsilon_2\epsilon_3x_5 \\ 0 & 0 & 1 & \epsilon_3x_3 \\ 0 & 0 & 0 & 1 \end{pmatrix},
\]

where

\[
x_6' = \epsilon_1\epsilon_2\epsilon_3(x_1x_2x_3 - x_1x_5 - x_3x_4 + x_6).
\]

For $x = \begin{pmatrix} 1 & x_1 & x_5 & x_8 & x_{10} \\ 0 & 1 & x_2 & x_6 & x_9 \\ 0 & 0 & 1 & x_3 & x_7 \\ 0 & 0 & 0 & 1 & x_4 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \in N_5$,

\[
\left(\begin{array}{lllll}
\epsilon_1 & 0 & 0 & 0 & 0 \\
0 & \epsilon_2 & 0 & 0 & 0 \\
0 & 0 & \epsilon_3 & 0 & 0 \\
0 & 0 & 0 & \epsilon_4 & 0 \\
0 & 0 & 0 & \epsilon_5 & 0 \\
0 & \epsilon_6 & 0 & 0 & 0 \\
\end{array} \right) \cdot x = \begin{pmatrix} 1 & \epsilon_1x_1 & \epsilon_1\epsilon_2x_5 & \epsilon_1\epsilon_2\epsilon_3x_8 & \epsilon_1\epsilon_2\epsilon_3\epsilon_4x_{10} \\ 0 & 1 & \epsilon_2x_2 & \epsilon_2\epsilon_3x_6 & \epsilon_2\epsilon_3\epsilon_4x_9 \\ 0 & 0 & 1 & \epsilon_3x_3 & \epsilon_3\epsilon_4x_7 \\ 0 & 0 & 0 & 1 & \epsilon_4x_4 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix},
\]

where

\[
\begin{align*}
x_8' &= \epsilon_1\epsilon_2\epsilon_3(x_2x_3x_4 - x_2x_7 - x_4x_6 + x_9) \\
x_9' &= \epsilon_2\epsilon_3\epsilon_4(x_1x_2x_3 - x_1x_6 - x_3x_5 + x_8) \\
x_{10}' &= \epsilon_1\epsilon_2\epsilon_3\epsilon_4(x_1x_2x_3x_4 - x_1x_2x_7 - x_1x_4x_6 - x_3x_4x_5 \\
&\quad + x_1x_9 + x_4x_8 + x_5x_7 - x_{10}).
\end{align*}
\]
We introduce notation \(\text{diag}(\epsilon_1, \epsilon_2, \cdots, \epsilon_{m-1}) \), and \(\text{adiag}(\epsilon_1, \epsilon_2, \cdots, \epsilon_{m-1}) \):

\[
\begin{pmatrix}
\epsilon_1 & 0 & \cdots & 0 \\
0 & \epsilon_2 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \epsilon_{m-1}
\end{pmatrix}
\]

\[
\begin{pmatrix}
0 & \cdots & 0 & \epsilon_1 \\
0 & \cdots & \epsilon_2 & 0 \\
\vdots & \vdots & \ddots & \vdots \\
\epsilon_{m-1} & \cdots & 0 & 0
\end{pmatrix}
\]

Also, we introduce \(Z[z] \):

\[
Z[z] = \begin{pmatrix}
1 & 0 & \cdots & z \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{pmatrix} \in N_m \subset GL(m, \mathbb{R}),
\]

the central element of \(N_m \) with the entry \(z \).

Lemma 4.1 The matrices in \(K \subset GL(m - 1, \mathbb{Z}) \) act on \(Z[z] \) by

\[
\text{diag}(\epsilon_1, \epsilon_2, \cdots, \epsilon_{m-1}) \cdot Z[z] = Z[(\epsilon_1 \epsilon_2 \cdots \epsilon_{m-1}) z],
\]

\[
\text{adiag}(\epsilon_1, \epsilon_2, \cdots, \epsilon_{m-1}) \cdot Z[z] = Z[(-1)^m (\epsilon_1 \epsilon_2 \cdots \epsilon_{m-1}) z].
\]

For \(m = 2n \), \(\det(\text{adiag}(\epsilon_1, \epsilon_2, \cdots, \epsilon_{m-1})) = (-1)^{n+1}(\epsilon_1 \epsilon_2 \cdots \epsilon_{m-1}) \).

Proof Let \(A \in K \). By Lemma 3.2, \(A \) induces an automorphism \(\tilde{A} \in \text{Aut}(\Gamma) \subset \text{Aut}(\mathcal{N}) = \text{Aut}(\mathfrak{M}) \). Since the center of \(\mathfrak{M} \) is one-dimensional and is generated by \(e_{1,m} \), it suffices to compute \(\tilde{A}(e_{1,m}) = \lambda e_{1,m} \). For simplicity, we consider only the case where \(A = \text{adiag}(\epsilon_1, \epsilon_2, \cdots, \epsilon_{m-1}) \). Recall that

\[
e_{1,m} = [\cdots[[e_{1,2}, e_{2,3}], e_{3,4}], \cdots, e_{m-1,m}] .
\]

Applying \(\tilde{A} \) on both sides, we obtain

\[
\tilde{A}(e_{1,m}) = [\cdots[[A(e_{1,2}), A(e_{2,3})], A(e_{3,4})], \cdots, A(e_{m-1,m})]
\]

\[
= [\cdots[[\epsilon_{m-1} e_{m-1,m}, \epsilon_{m-2} e_{m-2,m-1}], \epsilon_{m-3} e_{m-3,m-2}], \cdots, \epsilon_1 e_{1,2}]
\]

\[
= \epsilon_1 \epsilon_2 \cdots \epsilon_{m-1} \cdot [\cdots[[e_{m-1,m}, e_{m-2,m-1}], e_{m-3,m-2}], \cdots, e_{1,2}]
\]

\[
= (-1)^m \epsilon_1 \epsilon_2 \cdots \epsilon_{m-1} [\cdots[[e_{1,2}, e_{2,3}], e_{3,4}], \cdots, e_{m-1,m}] \quad \text{(by (3.1))}
\]

\[
= (-1)^m \epsilon_1 \epsilon_2 \cdots \epsilon_{m-1} e_{1,m} .
\]

\(\square \)

Lemma 4.2 For \(m \geq 4 \), every automorphism in \(K \) maps the lattice \(\Gamma_m \) onto itself.

By Theorem 2.1 (A), an almost crystallographic group \(\Pi \subset \mathcal{N} \times K \) for which \(\Gamma \) is the discrete nil-radical is generated by \(\Gamma \) together with a finitely many elements of \(\mathcal{N} \times K \): \(\Pi = \langle \Gamma, (a_1, A_1), \cdots, (a_k, A_k) \rangle \). Since \(\Gamma \) is a normal subgroup of \(\Pi \), we must have that

\[
(a_i, A_i)\Gamma(a_i, A_i)^{-1} = \Gamma, \text{ for all } i.
\]
For any \(g \in \Gamma \) and \((a, A) \in \mathcal{N} \times C \),

\[
(a, A)(g, I)(a, A)^{-1} = (a \cdot A(g), A^{-1}(a^{-1}), A^{-1}) = (a \cdot A(g) \cdot a^{-1}, I).
\]

This shows that \((a, A)\) normalizes \(\Gamma \) if and only if \(\mu(a) \circ A \) maps \(\Gamma \) onto itself, where \(\mu(a) \) is conjugation by \(a \). In particular, if \(A \in C \subset \text{Aut}(\mathcal{N}) \) preserves \(\Gamma \) (this is the case of \(m \geq 4 \)) then \(a \in \mathcal{N} \) should normalize \(\Gamma \). Consequently the following result is crucial in our discussion.

Lemma 4.3 The normalizer of \(\Gamma \) in \(\mathcal{N} \) is the group \((\text{Center of } \mathcal{N}) \cdot \Gamma\). That is,

\[
\mathcal{N}_\mathcal{N}(\Gamma) = \mathcal{Z}(\mathcal{N}) \cdot \Gamma \cong \mathbb{R} \cdot \Gamma.
\]

Proof Clearly, \(\mathcal{Z}(\mathcal{N}) \) is 1-dimensional, consisting of all matrices, the identity matrix \(I_m \) with the \((1, m)\)-entry replaced by any real.

It is clear that the subgroup \(\mathcal{Z}(\mathcal{N}) \cdot \Gamma \) normalizes \(\Gamma \). For the reverse inclusion, we will use induction on \(m \). If \(m = 2 \), then \(\mathcal{N} \cong \mathbb{R} \) is abelian and the result is trivial. Assume \(m \geq 3 \).

For \(x \in \mathcal{N} \), we write \(x \) as

\[
x = \begin{pmatrix} \bar{x}_{m-1} & \bar{x} \\ \bar{x} & 1 \end{pmatrix}.
\]

Assume \(x \in \mathcal{N} \) normalizes \(\Gamma \). Then for any \(g \in \Gamma \), we have

\[
\begin{pmatrix} \bar{x} & x \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \bar{g} & g \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \bar{x} & x \\ 0 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} \bar{x}g & x + \bar{x} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \bar{x}^{-1} & -\bar{x}^{-1} \\ 0 & 1 \end{pmatrix}
\]

\[
= \begin{pmatrix} \bar{x}g & x + \bar{x} \\ 0 & 1 \end{pmatrix} \in \Gamma.
\]

Hence \(\bar{x} \in \mathcal{N}_{m-1} \) normalizes \(\Gamma_{m-1} \), and the column vector \(-\bar{x}g\bar{x}^{-1}x + \bar{x}g + x\) is integral for all \(g \in \Gamma \). By induction hypothesis, we can write \(\bar{x} = \bar{z}h \) where \(h \in \Gamma_{m-1} \), and \(\bar{z} \in \mathcal{Z}(\mathcal{N}_{m-1}) \). Let’s say \(\bar{z} = \mathcal{Z}(\mathcal{N}_{m-1}) \). We claim that \(c = 0 \) so that \(\bar{z} = I_{m-1} \).

Let \(e_{i,j} \in \mathbb{N} \) \((i < j)\) be the matrix whose whose entries are all zero, except for the \((i, j)\)-entry which is 1. Choose \(g = I_m + e_{m-1,m} \in \Gamma \). Then \(\bar{g} = I_{m-1} \) and \(g = (0, 0, \cdots, 0, 1)^t \in \mathbb{Z}^{m-1} \). Then

\[
\begin{pmatrix} \bar{x} & x \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \bar{g} & g \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \bar{x} & x \\ 0 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} \bar{x} & x \\ 0 & 1 \end{pmatrix} \begin{pmatrix} I & g \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \bar{x} & x \\ 0 & 1 \end{pmatrix}^{-1}
\]

\[
= \begin{pmatrix} \bar{x} & x + x' \\ 0 & 1 \end{pmatrix} \left(\begin{pmatrix} \bar{x} & x \\ 0 & 1 \end{pmatrix} \right)^{-1} \quad (x' = (m-1)-\text{st column of } \bar{x})
\]

\[
= \left(\begin{pmatrix} \bar{x} & x' \\ 0 & 1 \end{pmatrix} \right) + \left(\begin{pmatrix} \bar{x} & x \\ 0 & 1 \end{pmatrix} \right)^{-1}
\]

\[
= \begin{pmatrix} \bar{x} & x' \\ 0 & 1 \end{pmatrix} + \left(\begin{pmatrix} \bar{x} & x \\ 0 & 1 \end{pmatrix} \right)^{-1}
\]

\[
= \begin{pmatrix} \bar{x} & x' \\ 0 & 1 \end{pmatrix} + I
\]
Now we see that the \((1, m)\)-entry of the right hand side is the \((1, m - 1)\)-entry of \(\bar{x}\) which is \(x_{1,m-1}\). Since \(xgx^{-1} \in \Gamma\), this entry must be an integer, say \(k\). Let \(J = I_{m-1} + ke_{1,m-1}\). We can rewrite \(\bar{x}\) as \(\tilde{z} = (\tilde{z} J^{-1}) (Jh) \in \mathcal{Z}(N_{m-1}) \cdot \Gamma_{m-1}\). Notice that our new \(\tilde{z}\) (which is now \(\tilde{z} J^{-1}\)) has \((1, m - 1)\)-entry 0, and hence is equal to \(I_{m-1}\). Thus we may assume \(\tilde{z} = I_{m-1}\).

Then \(\tilde{z}h = I_{m-1}h = h\), and

\[
\begin{pmatrix}
\bar{x} \cdot x \\
0 \cdot 1
\end{pmatrix}
= \begin{pmatrix}
I \cdot x \\
0 \cdot 1
\end{pmatrix} = \begin{pmatrix}
h \cdot x \\
0 \cdot 1
\end{pmatrix}.
\]

Since the product \(\begin{pmatrix}
I \cdot x \\
0 \cdot 1
\end{pmatrix} \begin{pmatrix}
h \cdot 0 \\
0 \cdot 1
\end{pmatrix}\) normalizes \(\Gamma\), and \(\begin{pmatrix}
h \cdot 0 \\
0 \cdot 1
\end{pmatrix} \in \Gamma\), \(\begin{pmatrix}
I \cdot x \\
0 \cdot 1
\end{pmatrix}\) must normalize \(\Gamma\). Therefore,

\[
\begin{pmatrix}
I \cdot x \\
0 \cdot 1
\end{pmatrix} \begin{pmatrix}
g \cdot x \\
0 \cdot 1
\end{pmatrix}^{-1} \begin{pmatrix}
I \cdot x \\
0 \cdot 1
\end{pmatrix} = \begin{pmatrix}
g \cdot -gx + g + x \\
0 \cdot 1
\end{pmatrix} \in \Gamma.
\]

Thus

\[
-\tilde{g}x + g + x = (I - \tilde{g})x + g \in \mathbb{Z}^{m-1}
\]

for all \(\tilde{g} \in \Gamma_{m-1}\) and \(g \in \mathbb{Z}^{m-1}\). This is equivalent to

\[
(I - \tilde{g})x \in \mathbb{Z}^{m-1}
\]

for all \(\tilde{g} \in \Gamma_{m-1}\). Since \((I - \tilde{g})\) takes all possible upper-triangular integral matrices with diagonal entries all 0, the above condition readily implies

\[
x = (r, n_2, n_3, \ldots, n_{m-1})', \; r \in \mathbb{R}, \; n_i \in \mathbb{Z}.
\]

Let

\[
x = r + n = (r, 0, 0, \ldots, 0)' + (0, n_2, n_3, \ldots, n_{m-1})'.
\]

Then

\[
x = \begin{pmatrix}
\bar{x} \\
0 \cdot 1
\end{pmatrix} = \begin{pmatrix}
h \cdot x \\
0 \cdot 1
\end{pmatrix} = \begin{pmatrix}
h \cdot r + n \\
0 \cdot 1
\end{pmatrix} = \begin{pmatrix}
I \cdot r \\
0 \cdot 1
\end{pmatrix} \begin{pmatrix}
h \cdot n \\
0 \cdot 1
\end{pmatrix} \in \mathcal{Z}(N_m) \cdot \Gamma.
\]

Proposition 4.4 Let \(m \geq 3\) and let \(A(\neq I) \in K \subset \text{GL}(m - 1, \mathbb{Z})\) be a diagonal matrix. There is no torsion free almost crystallographic group of \(N\), with discrete nil-radical \(\Gamma\), and with holonomy group containing \(A\).
Proof Let $A = \text{diag}(\epsilon_1, \epsilon_2, \cdots, \epsilon_d)$. It acts on $\mathcal{Z}[a] / \Gamma_1$ by

$$A : \mathcal{Z}[a] \to \mathcal{Z}[\prod \epsilon_j a].$$

If $\prod \epsilon_j = -1$, then

$$A(\mathcal{Z}[a]) = \mathcal{Z}[-a].$$

This immediately implies that $\alpha^2 = (a, A)^2 = (e, I)$, for any choice of $a \in \mathcal{Z}(\mathcal{N})$, so that the group generated by Γ and $\alpha = (a, A)$ has a torsion. Therefore, we may assume now that $\prod \epsilon_j = +1$.

Suppose the p-th entry is the first diagonal entry of A which is -1. Then $\prod_{j=1}^p \epsilon_j = -1$, and then $\prod_{j=p+1}^{m-1} \epsilon_j = -1$. Now $\{E_{i, p+1}, E_{p+1, i}, E_{1, i}\}$ generates a subgroup $\Gamma' \mathcal{N}$ of Γ isomorphic to the standard lattice Γ_3 of the Heisenberg group \mathcal{N}; that is,

$$[E_{i, p+1}, E_{p+1, i}] = E_{1, i},$$

$$[E_{i, p+1}, E_{1, i}] = 1,$$

$$[E_{p+1, i}, E_{1, i}] = 1.$$

Moreover,

$$A(E_{1, p+1}) = A([\cdots [E_{1, 2}, E_{2, 3}, E_{3, 4}], \cdots, E_{p, p+1}])$$

$$= [\cdots [E_{1, 2}^{\epsilon_{1, 2}}, E_{2, 3}^{\epsilon_{2, 3}}, \cdots, E_{p, p+1}^{\epsilon_{p, p+1}}]$$

$$= \cdots = E_{1, p+1}^{\epsilon_{1, p+1}} = E_{1, p+1}^{-1},$$

$$A(E_{p+1, i}) = E_{p+1, i}^{\epsilon_{p+1, i}} = E_{p+1, i}^{-1},$$

$$A(E_{1, i}) = E_{1, i}^{\epsilon_{1, i}} = E_{1, i}^{-1}.$$
Proof If there is a crystallographic group Π of \mathcal{N} whose holonomy group contains A, then its holonomy will contain A^2. But A^2 is diagonal and $A^2 \neq I$ if A is not symmetric. Thus by Proposition 4.4, the group Π must contain a torsion.

Proposition 4.6 For $m \geq 5$ odd, there is no torsion free almost crystallographic group of \mathcal{N} with discrete nil-radical Γ and with non-trivial holonomy group.

Proof Let $A = \text{diag}(\epsilon_1, \epsilon_2, \cdots, \epsilon_d)$, $d = m - 1$. If m is odd, then $d + 1 = (m - 1) + 1 = m$ is odd, and
\[
A \cdot \mathbb{Z}[z] = \mathbb{Z}[-1]^{d+1}(\epsilon_1 \epsilon_2 \cdots \epsilon_d) z] = \mathbb{Z}[-(\epsilon_1 \epsilon_2 \cdots \epsilon_d) z].
\]
By Proposition 4.5, we may assume that A is symmetric. Then $\prod \epsilon_i = +1$ and,
\[
A \cdot \mathbb{Z}[z] = \mathbb{Z}[-z].
\]
Now notice that A has order 2. Therefore,
\[
(\mathbb{Z}[z], A)^2 = (\mathbb{Z}[z] \cdot A(\mathbb{Z}[z]), I) = (\mathbb{Z}[z - z], I) = (e, I).
\]
Consequently, $(\mathbb{Z}[z], A)$ is a torsion for any choice of z. □

Remark that by the mapping (4.1), Lemma 4.1 is true even when $m = 3$. Hence Propositions 4.4, 4.5, and 4.6 are true when $m = 3$. Thus we have:

Corollary 4.7 Let $A(\neq I_2) \in K \subset \text{GL}(2, \mathbb{Z})$ (diagonal or anti-diagonal). Then there is no torsion free almost crystallographic group of \mathcal{N}_3 with discrete nil-radical Γ_3 and with holonomy group containing A.

5 Bieberbach groups of \mathcal{N}_m ($m \geq 4$)

For our \mathcal{N}, $\Gamma \backslash \mathcal{N}$ will be our “standard” nilmanifold. A covering of an aspherical manifold $\tilde{M} \to M$ is called an essential covering if no element of the deck transformation group is homotopic to the identity.

We intend to classify all infra-nilmanifolds which are essentially covered by $\Gamma \backslash \mathcal{N}$. This is the same as classifying torsion free cocompact subgroups
\[
\Pi \subset \mathcal{N} \rtimes C,
\]
(where $C \subset \text{Aut}(\mathcal{N})$ is a compact subgroup), which contain Γ as a discrete nil-radical. Recall that a maximal compact subgroup
\[
K = \mathbb{Z}_2^{m-1} \rtimes \mathbb{Z}_2 \subset \text{Aut}(\mathcal{N}).
\]

had been found. We have a complete classification of all Bieberbach groups of \mathcal{N}_m ($m \geq 4$) containing the standard lattice consisting of matrices with integer entries as the discrete nil-radical.

Springer
Theorem 5.1 (Classification) For odd $m \geq 4$, there is no infra-nilmanifold which is essentially covered by $\Gamma_m \backslash N_m$.

For $m = 2n \geq 4$, there is a unique infra-nilmanifold which is essentially covered by the nilmanifold $\Gamma_m \backslash N_m$. This manifold has the covering group \mathbb{Z}_2 generated by $\alpha = (a, J) \in N \times K$, where $a = \mathbb{Z}\left[\frac{1}{2}\right]$ and

$$J = \begin{pmatrix}
0 & 0 & \cdots & 0 & 1 \\
0 & 0 & \cdots & 1 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 1 & \cdots & 0 & 0 \\
1 & 0 & \cdots & 0 & 0
\end{pmatrix} \in \text{GL}(m - 1, \mathbb{Z}).$$

When $m = 2n$, note $\alpha^2 = (\mathbb{Z}[1], I) \in \Gamma$, where $\mathbb{Z}[1] \in \mathcal{Z}(\Gamma_m)$, and this yields a 2-fold covering:

$$\Gamma_m \backslash N_m \xrightarrow{\mathbb{Z}_2} \text{(infra-nilmanifold)}.$$

The resulting infra-nilmanifold is orientable/non-orientable depending on whether $(n - 1)$ is even/odd.

Proof By Proposition 4.6, for $m \geq 5$ odd, there is no torsion free almost crystallographic group of N with discrete nil-radical Γ and with non-trivial holonomy group. Assume $m = 2n$.

Let $A \in K$ be a symmetric and anti-diagonal matrix of size $m - 1$. Note that A maps Γ onto itself. Therefore, for any $\alpha = (a, A)$ to conjugate Γ onto itself, by Lemma 4.3, it is necessary and sufficient that $a \in \mathbb{Z}(N)$. Let $a = \mathbb{Z}[z]$.

Since A is symmetric, $A^2 = I$. By Lemma 4.1, $\alpha^2 = (\mathbb{Z}[z + \epsilon z], I)$, where $\epsilon = \prod \epsilon_i$. If $\epsilon = -1$ then α is a torsion. Hence $\epsilon = 1$. Then $\alpha^2 = (\mathbb{Z}[2z], I)$. For this to be in Γ, $2z \equiv 0 \mod \mathbb{Z}$. Thus the only non-trivial z is $\frac{1}{2}$, and $(a, A)^2 = (e_d, I) = t_d$, where $d = \frac{1}{2}m(m - 1)$.

With the most general element of Γ

$$s = \begin{pmatrix}
1 & n_1 & n_m & * & * & n_d \\
0 & 1 & n_2 & n_{m+1} & * & * \\
0 & 0 & 1 & n_3 & \ddots & * \\
0 & 0 & 0 & 1 & * & n_\ell \\
0 & 0 & 0 & 0 & 1 & n_{m-1} \\
0 & 0 & 0 & 0 & 0 & 1
\end{pmatrix} \in \text{GL}(m - 1, \mathbb{Z}),$$

denote the matrix $s \cdot \mathbb{Z}[z]$ by t. Then

$$(s, I) \cdot \alpha = (s, I)(a, A) = (t, A).$$

We try to solve the equation

$$(t, A)^2 = (e, I)$$

for n_i’s.

First, we assume that all of A’s entries are $+1$:

$$A = \begin{pmatrix}
0 & 0 & * & 0 & 1 \\
0 & 0 & * & 1 & 0 \\
* & * & \ddots & * & * \\
0 & 1 & * & 0 & 0 \\
1 & 0 & * & 0 & 0
\end{pmatrix} \in K.$$
Since A maps
\[
\{n_1, n_2, \cdots, n_{m-1}\} \longrightarrow \{n_{m-1}, \cdots, n_2, n_1\},
\]
\[
t \cdot A(t) = \begin{pmatrix}
1 & n_1 + n_{m-1} & * & * & * \\
0 & 1 & n_2 + n_{m-2} & * & * \\
0 & 0 & 1 & 0 & * \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{pmatrix}.
\]

The matrix $t \cdot A(t)$ has its entries one above the diagonal
\[
\{n_1 + n_{m-1}, n_2 + n_{m-2}, \cdots, n_{m-1} + n_1\}.
\]

For $(t, A)^2 = (e, I)$, we must have all these entries 0. Then the result is of the form
\[
t \cdot A(t) = \begin{pmatrix}
1 & 0 & n_p - n_q & * & * & * \\
0 & 1 & 0 & n_{p+1} - n_{q-1} & * & * \\
0 & 0 & 1 & 0 & * \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{pmatrix}.
\]

The entries two above the diagonal are
\[
\{n_p - n_q, n_{p+1} - n_{q-1}, \cdots, n_q - n_p\}, \ p = m, \ q = (m-1) + (m-2).
\]
For $(t, A)^2 = (e, I)$, we must have all these entries 0.

Similarly, the entries three above the diagonal are
\[
\{n_p + n_q, n_{p+1} + n_{q-1}, \cdots, n_q + n_p\}, \ p = 2m - 2, \ q = 3m - 6.
\]
For $(t, A)^2 = (e, I)$, we must have all these entries 0.

In general, the entries k above the diagonal are
\[
\{n_p \pm n_q, n_{p+1} \pm n_{q-1}, \cdots, n_q \pm n_p\}, \ p = \sum_{i=1}^{k-1} (m-i) + 1, \ q = \sum_{i=1}^{k} (m-i),
\]
where the signature is determined to be $(-1)^{k-1}$.

For $(t, A)^2 = (e, I)$, we must have all these entries 0.

After $(m-2)$ steps, we finally obtain
\[
t \cdot A(t) = Z[2z + 2n_d].
\]
Recall that $z \equiv \frac{1}{2} \mod \mathbb{Z}$, and $n_d \in \mathbb{Z}$. These imply that
\[
2z + 2n_d \neq 0.
\]
Thus, the equation $((s, I) \cdot \alpha)^2 = (e, I)$ does not have an integral solution for
\[
\{n_1, n_2, \cdots, n_d\}. \text{ We conclude that the group } \langle \Gamma, \alpha \rangle \text{ is torsion free.}
\]

Let $B \in K$ be an arbitrary element. Then $A(t) - B(t) \in \text{gl}(m, 2\mathbb{Z})$. This implies, after imposing the conditions layer by layer, the $(1, m)$-entry is still the same as before modulo 2, and we get the same result:
\[
2z + 2n_d \neq 0.
\]
We conclude that the group \(\langle \Gamma, (a, A) \rangle \) is torsion free for any choice of \(A \in K \), where \(A \) is one of the following:

\[
\begin{pmatrix}
0 & 0 & \cdots & 0 & \epsilon_1 \\
0 & 0 & \cdots & \epsilon_2 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & \epsilon_{m-2} & \cdots & 0 & 0 \\
\epsilon_{m-1} & 0 & \cdots & 0 & 0
\end{pmatrix}
\in \text{GL}(m - 1, \mathbb{Z}),
\]

\(\epsilon_j = \pm 1 \), where the signs are taken in such a way that the number of \(-1\)'s is even, and the matrix is symmetric.

Finally it remains to show that such a group \(\langle \Gamma, (a, A) \rangle \) is isomorphic to \(\langle \Gamma, (a, J) \rangle \).

Let

\[
X = \begin{pmatrix}
0 & 0 & \cdots & 0 & \delta_1 \\
0 & 0 & \cdots & \delta_2 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & \delta_{m-2} & \cdots & 0 & 0 \\
\delta_{m-1} & 0 & \cdots & 0 & 0
\end{pmatrix}
\]

where \(\delta_i = 1 \) for \(1 \leq i \leq n - 1 \) and

\[
\delta_{m-i} = \begin{cases}
1 & \text{if } \epsilon_i(= \epsilon_{m-i}) = 1; \\
-1 & \text{if } \epsilon_i(= \epsilon_{m-i}) = -1.
\end{cases}
\]

For example, if \(A = \text{diag}(1, -1, 1, -1, 1) \) then \(X = \text{diag}(1, 1, 1, -1, 1) \).

Then \(X \in K = (\mathbb{Z}_2)^{m-1} \times \mathbb{Z}_2 \subset \text{Aut}(\Gamma_m) \subset \text{Aut}(\mathcal{N}_m) \), and

\[
XAX^{-1} = J.
\]

Hence \((e, X) \in \text{Aff}(\mathcal{N}_m) \) and it can be seen that

\[
(e, X)\langle \Gamma, (a, A) \rangle (e, X)^{-1} = \langle \Gamma, (a^{\pm 1}, J) \rangle.
\]

In fact,

\[
(e, X)\Gamma(e, X)^{-1} = e \cdot X(\Gamma) \cdot e = X(\Gamma) = \Gamma,
\]

\[
(e, X)(a, A)(e, X)^{-1} = (X(a), XAX^{-1}) = (a^{\pm 1}, J).
\]

Here, the last identity follows from Lemma 4.1:

\[
X(a) = \text{diag}({\delta_1, \cdots, \delta_{m-1}}) \cdot \mathbb{Z}[\frac{1}{2}] = \mathbb{Z}[(-1)^m({\delta_1, \cdots, \delta_{m-1}})] = a^{\pm 1}.
\]

Since \((a^{-1}, J) t_d = (a, J) \),

\[
\langle \Gamma, (a^{-1}, J) \rangle = \langle \Gamma, (a, J) \rangle.
\]

Therefore, every \(\langle \Gamma, (a, A) \rangle \) is a conjugate of \(\langle \Gamma, (a, J) \rangle \). \(\square \)

Acknowledgements The authors would like to thank the referee for making careful corrections of a few expressions and valuable comments in their original version.
References

1. Auslander, L.: Bieberbach’s theorem on space groups and discrete uniform subgroups of Lie groups II. Am. J. Math. 83, 276–280 (1961)
2. Cao, Y., Tan, Z.: Automorphisms of the Lie algebra of strictly upper triangular matrices over a commutative ring. Linear Algebra Appl. 360, 105–122 (2003)
3. Dekimpe, K., Igodt, P., Malfait, W.: There are only finitely many infra-nilmanifolds under each nilmanifold: a new proof. Indag. Math. (N.S.) 5, 259–266 (1994)
4. Gordon, C.S., Wilson, E.N.: Isometry groups of Riemannian solvmanifolds. Trans. Am. Math. Soc. 307, 245–269 (1988)
5. Gromov, M.: Almost flat manifolds. J. Differ. Geom. 13, 231–241 (1978)
6. Lee, K.B.: There are only finitely many infra-nilmanifolds under each nilmanifold. Q. J. Math. Oxf. Ser. (2) 39, 61–66 (1988)
7. Lee, K.B.: Maps of infra-nilmanifolds. Pacific J. Math. 168(1), 157–166 (1995)
8. Kamishima, Y., Lee, K.B., Raymond, F.: The Seifert construction and its applications to infranilmanifolds. Q. J. Math. Oxf. Ser. (2) 34, 433–452 (1983)
9. Lee, K.B., Raymond, F.: Rigidity of almost crystallographic groups. In: Contemporary Mathematics, vol. 44, pp. 73–78. American Mathematical Society, Providence, R.I. (1985)
10. Lee, K.B., Raymond, F.: Seifert Fiberings. Mathematical Surveys and Monographs, vol. 166. American Mathematical Society, Providence, RI (2010)
11. Ruh, E.A.: Almost flat manifolds. J. Differ. Geom. 17, 1–14 (1982)