Research Article

2D-DOA Estimation for EMVS Array with Nonuniform Noise

Chang-Xin Cai,1 Guan-Jun Huang1, Fang-Qing Wen2, Xin-Hai Wang3, and Lin Wang4

1National Demonstration Center for Experimental Electrical and Electronic Education, Yangtze University, Jingzhou 434200, China
2College of Computer and Information Technology, China Three Gorges University, Yichang 443002, China
3Nanjing Marine Radar Institute, Nanjing 211153, China
4The 723 Institute of CSIC, Yangzhou 225000, China

Correspondence should be addressed to Guan-Jun Huang; 201971326@yangtzeu.edu.cn

Received 21 June 2021; Revised 24 July 2021; Accepted 9 August 2021; Published 19 August 2021

Copyright © 2021 Chang-Xin Cai et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Electromagnetic vector sensor (EMVS) array is one of the most potential arrays for future wireless communications and radars because it is capable of providing two-dimensional (2D) direction-of-arrival (DOA) estimation as well as polarization angles of the source signal. It is well known that existing subspace algorithm cannot directly be applied to a nonuniform noise scenario. In this paper, we consider the 2D-DOA estimation issue for EMVS array in the presence of nonuniform noise and propose an improved subspace-based algorithm. Firstly, it recasts the nonuniform noise issue as a matrix completion problem. The noiseless array covariance matrix is then recovered via solving a convex optimization problem. Hereafter, the shift invariant principle of the EMVS array is adopted to construct a normalized polarization steering vector, after which 2D-DOA is easily estimated as well as polarization angles by incorporating the vector cross-product technique and the pseudoinverse method. The proposed algorithm is effective to EMVS array with arbitrary sensor geometry. Furthermore, the proposed algorithm is free from the nonuniform noise. Several simulations verify the improvement of the proposed method.

1. Introduction

Sensor array is one of the most important infrastructures in wireless communication and radar detection [1–4]. Among the various branches in array signal processing, direction-of-arrival (DOA) estimation is the most canonical one and has aroused much attention. The principle of DOA estimation is to estimate the direction of the incoming source via the phase characteristics between sensors, and it is a highly nonlinear problem. Many efforts have been devoted to tackling this issue, for instance, an estimation approach to signal parameters with the rotational invariance technique (ESPRIT) [5, 6], Capon, multiple signal classification (MUSIC) [7–9], propagator method (PM) [10], maximum-likelihood (ML) [11], and tensor method [12–14]. Usually, the spectrum search counterparts, such as MUSIC, are always inefficient. Besides, they hardly avoid the off-grid problem. ESPRIT, however, is much more efficient than the spectrum search frameworks because it can acquire closed-form solutions to the parameter estimation issue.

A majority of the current studies focus on how to estimate the one-dimensional (1D) DOA from the scalar sensor arrays, e.g., uniform linear array (ULA). In practice, two-dimensional (2D) DOA may be more attractive. To pursue 2D-DOA estimation with the traditional scalar sensors, nonlinear sensor geometries are necessary [15–17], e.g., L-shape array, circular geometry, and rectangular manifold. Unfortunately, scalar sensor arrays often suffer from the sensor position error. Thus, complex array calibration is indispensable. Unlike scalar sensors, a single electromagnetic vector sensor (EMVS) is capable of providing 2D-DOA estimation [18]. Moreover, it is able to offer additional polarization angles of the source, and such characteristic may be very helpful in detecting stealth source [19]. Besides, an EMVS array with N sensors occupies more degree of freedom (DOF) than a scalar array, and thus, it
provides more accurate estimation result than the latter. Furthermore, it has been proven that parameter estimation using EMVS array is insensitive to sensor positions [20], giving rise to the fact that the EMVS is more flexible than the traditional scalar sensor arrays.

It should be emphasized that the angle estimation issue using EMVS array is often more complex than that using the scalar sensors, since it involves 2D-DOA (azimuth angle and elevation angle) and 2D polarization angle (polarization phase difference and auxiliary polarization angle). In [19], the vector cross product was proposed, and the angles therein were obtained from the Poynting vector of the polarization steering vector. In [20], the ESPRIT-like algorithm was introduced. Therein, the concept of normalized Poynting vector was proposed to estimate the 2D-DOA, which was insensitive to the sensor positions and free from the sensor position error. In [21], the ULA-configured EMVS architecture was presented, and another ESPRIT estimator was derived. Unlike [20], the elevation angle was achieved by using ESPRIT, and the azimuth angle was estimated by using vector cross product. Likewise, in [22–26], the methods of combining the subspace approach and vector cross product were investigated. To avoid the eigen-decomposition in the subspace approaches, a PM-like algorithm was presented in [27]. To further exploit the multidimensional structure in EMVS array, tensor algorithms were also been investigated in [28]. Besides, some efforts have been devoted to the active radar system with EMVS arrays [29–31], which brings new insights to target detection.

Nevertheless, it should be noticed that the subspace-based approaches achieve good performance with Gaussian white noise. In practice, the array noise may be nonuniform due to hardware nonideality. The nonuniform noise issue has been extensively stressed in scalar sensor array [32–35], but little attention has been paid to EMVS array. Therefore, we revisit the 2D-DOA estimation in EMVS array with nonuniform noise in this paper. An improved ESPRIT algorithm is presented. It eliminates the nonuniform noise via constructing a reduced covariance matrix, after which both noise covariance and parts of the signal covariance are removed. The recovery of the noiseless covariance matrix is recast as a matrix completion issue and is accomplished via solving a convex optimization problem. Thereafter, the ESPRIT idea is adopted to construct the normalized polarization steering vector. 2D-DOA, as well as polarization parameters, is then achieved by combining the vector cross product and the least squares (LS) technique. Our algorithm is effective in the scenario with arbitrary array geometry. Numerical simulations are designed to verify its effectiveness.

2. Preliminaries and the Data Model

2.1. EMVS Preliminaries. For a complete EMVS, it consists of six colocated antennas: three electric dipoles, and three magnetic loops. The dipoles and loops, respectively, sense the information of the electric field and magnetic field. Considering that a far-field source signal impinges on a single EMVS, the polarization responses of the six components can be expressed as

\[b = \left[b(1) \ b(2) \ b(3) \ b(4) \ b(5) \ b(6) \right]^T, \]

\[= Dp, \]

where \((\cdot)^T\) denotes transpose. \(D\) and \(p\) are, respectively, given by

\[D = \begin{bmatrix}
\cos \phi \cos \theta & -\sin \phi \\
\sin \phi \cos \theta & \cos \phi \\
-\sin \theta & 0 \\
-\sin \phi & -\cos \phi \cos \theta \\
\cos \phi & -\sin \phi \cos \theta \\
0 & \sin \theta
\end{bmatrix}, \]

and

\[p = \begin{bmatrix}
\sin ye^{j\eta} \\
\cos y
\end{bmatrix}, \]

where \(e\) and \(m\) denote the electric steering vector and the magnetic steering vector, respectively; \(\theta, \phi, y, \eta\) denote, respectively, the elevation angle, the azimuth angle, the auxiliary polarization angle, and the polarization phase difference. \(D \in \mathbb{C}^{6 \times 2}\) denotes the direction-only matrix, and \(p \in \mathbb{C}^{2 \times 1}\) denotes the polarization-only vector, respectively. Moreover, the Poynting vector between \(e\) and \(p\) satisfies [20]

\[\frac{e}{|e|} * \frac{p}{|p|} = \begin{bmatrix}
\sin \theta \cos \phi \\
\sin \theta \sin \phi \\
\cos \theta
\end{bmatrix}, \]

where \((\cdot)^*\) denotes the conjugate, \(|\cdot|\) returns the absolute value, and \(*\) denotes the vector cross product.

2.2. Data Model. Let us consider an \(N\)-element EMVS array. Without loss of generality, let the coordinate of the \(n\)-th EMVS be \(r_n = [x_n, y_n, z_n]^T\). Suppose that \(K\) far-field signals appear in the array. Let \(\theta_k, \phi_k, y_k\), and \(\eta_k\) stand for the \(k\)-th \((k = 1, 2, \ldots, K)\) angle parameters. The array signal can be written as [19]

\[y(t) = \sum_{k=1}^{K} [a_k \otimes b_k] s_k(t) + n(t), \]

where \(t\) is the time index; \(\otimes\) denotes the Kronecker product, \(a_k = [e^{-j\tau_{1,k}}, e^{-j\tau_{2,k}}, \ldots, e^{-j\tau_{N,k}}]^T\), where \(\tau_{n,k} = r_n^T \theta_k / \lambda \in \mathbb{C}^{N \times 1}\) denotes the \(k\)-th spatial response (steering) vector with \(b_k = [\cos(\phi_k) \sin(\theta_k), \sin(\phi_k) \sin(\theta_k), \cos(\theta_k)]^T\) and \(\lambda\) is the carrier wavelength; and \(s_k(t)\) denotes the polarization response vector associated with the \(k\)-th target. \(s_k(t)\) accounts for the \(k\)-th signal; \(n(t)\) denotes the array noise. Let \(A = [a_1, a_2, \ldots, a_K] \in \mathbb{C}^{N \times K}\) and \(B = [b_1, b_2, \ldots, b_K] \in \mathbb{C}^{6 \times K}\). Equation (6) can also be formulated as
\[y(t) = [A \odot B] s(t) + n(t), \]
\[= C s(t) + n(t), \quad (6) \]

where the symbol \(\odot \) stands for the Khatri–Rao product, \(s(t) = [s_1(t), s_2(t), \ldots, s_K(t)]^T \), and \(C = A \odot B \). Suppose that the noise \(n(t) \) is uncorrelated with the signal \(s(t) \); then, the covariance of \(y(t) \) is given by

\[R = E\{y(t)y^H(t)\}, \]
\[= CR_sC^H + R_n, \quad (7) \]
\[= \bar{R} + R_n, \]

where \(E\{\cdot\} \) is to acquire the mathematical expectation and \((\cdot)^H \) denotes Hermitian transpose. \(R_q = E\{s(t)s^H(t)\} \), \(R_n = E\{n(t)n^H(t)\} \), and \(\bar{R} = CR_sC^H \). In the presence of uncorrelated source signals, \(R_q = \text{diag}[\lambda_1, \lambda_2, \ldots, \lambda_K] \), where \(\text{diag}[\cdot] \) accounts for the diagonalization operation and \(\lambda_k \) is the power of the \(k \)-th source. Moreover, since the noise is nonuniform, its covariance matrix is then given by

\[R_n = \text{diag}[\sigma_1^2, \sigma_2^2, \ldots, \sigma_N^2], \quad (8) \]

where \(\sigma_{q_1q_2}^2 \) denotes the noise power corresponding to the \(q \)-th component of the \(n \)-th EMVS. In practical applications, we can estimate \(R \) via \(L \) samples as

\[\hat{R} = \frac{1}{L} \sum_{t=1}^{L} y(t)y^H(t). \quad (9) \]

Our objective here is to estimate the angles from \(\hat{R} \).

3. The Proposed Approach

3.1. Principle of Traditional Eigendecomposition

It is well known that when Gaussian white noise (uniform noise) exists, the noise powers fulfill

\[\sigma_1^2 = \sigma_2^2 = \cdots = \sigma_N^2 = \sigma^2, \quad (10) \]

where \(\sigma^2 \) is a constant, and then, the noise covariance becomes

\[R_n = \sigma^2 I_{6N}, \quad (11) \]

where \(I_M \) stands for the \(M \times M \) identity matrix. If we ignore the noise item in equation (7), the eigendecomposition of \(R \) is given by

\[\bar{R} = \sum_{n=1}^{K} \alpha_n u_n u_n^H, \quad (12) \]

\[U_s = CT. \quad (13) \]

Also, the noiseless covariance matrix can be expressed as

\[\bar{R} = \sum_{n=1}^{K} \alpha_n u_n u_n^H + \sum_{m=1}^{6N-K} 0 \cdot v_n v_n^H, \]

\[= U_s \Sigma_s U_s^H + U_n \Theta_{(6N-K)(6N-K)} U_n^H, \quad (14) \]

where \(v_n \) is the eigenvector from the null subspace of \(U_s \), i.e., \(v_n^H U_s = 0_{k \times K} \), and \(\Theta_{MN} \) represents the \(M \times N \) full zero matrix. \(\Sigma_s = \text{diag}[\alpha_1 + \sigma^2, \alpha_2 + \sigma^2, \ldots, \alpha_K + \sigma^2] \), and \(U_n = [v_1, v_2, \ldots, v_{6N-K}] \in \mathbb{C}^{6N \times (6N-K)} \) is called the noise subspace. Since the identity matrix can be formulated as the product of arbitrary unitary matrix and its Hermitian transpose, the noisy \(R \) can be written as

\[\bar{R} = \sum_{n=1}^{K} (\alpha_n + \sigma^2) u_n u_n^H + \sum_{m=1}^{6N-K} \sigma^2 u_m u_m^H, \]

\[= U_s \Sigma_s U_s^H + U_n \Theta_{n} U_n^H, \quad (15) \]

where \(\Sigma_s = \text{diag}[\sigma^2, \sigma^2, \ldots, \sigma^2] \in \mathbb{C}^{(6N-K)\times(6N-K)} \). The results in equation (15) reveal that the uniform noise would not destroy the eigendistribution of the signal. However, in the presence of nonuniform noise, the noise power is not unique, so the conclusion in equation (15) will be untenable. It is necessary for us to denoise before further processing.

3.2. Denoising

Let \(\Omega \) be a set that records the nonzero entities of \(R_n \), i.e.,

\[\Omega = \{(m,m) | m = 1, 2, \ldots, 6N\}. \quad (16) \]

We define a sampling operator \(S_{\Omega}\{\cdot\} \) that picks up the elements of the matrix in the blanket with indexes in \(\Omega \), for example, \(S_{\Omega}\{R\} = \bar{R} \in \mathbb{C}^{6N \times 6N} \) such that

\[\bar{R}(m,n) = \begin{cases} R(m,n), & (m,n) \in \Omega, \\ 0, & (m,n) \notin \Omega. \end{cases} \quad (17) \]

where \(R(m,n) \) denotes the \((m,n)\)-th entity of \(R \) and is similar to others. Since \(R_n \) is a diagonal matrix, we have \(R_n = S_{\Omega}\{R_n\} \). The effect of the noise can be easily removed via the following reduced covariance matrix:

\[\bar{R} = R - S_{\Omega}\{R\}, \]

\[= R - \bar{R}. \quad (18) \]

The abovementioned denoising procedure is illustrated in Figure 1. However, the abovementioned denoising procedure can also destroy the structure of \(\bar{R} \), so we need to recover \(\bar{R} \) from \(R \). Next, let us focus on the diagonal element of \(\bar{R} \). It can be deduced that the \(m \)-th \((m = 6(n-1) + q)\) diagonal entry of \(\bar{R} \) is
In practice, \(\varepsilon \) is usually chosen according to the noise tolerance; in this paper, it is set to \(10^{-4} \). The abovementioned optimization can be easily accomplished via the convex toolboxes, e.g., cvx. After that, the eigendecomposition can be performed, and then, the estimation of the signal subspace \(U_s \) is accomplished.

3.3. Parameter Estimation. Actually, the following rotational invariance relations exist:

\[
\begin{align*}
AD_1[B] &= AD_2[B]\Phi^{(1,2)}, \\
AD_1[B] &= AD_3[B]\Phi^{(1,3)}, \\
& \vdots \\
AD_1[B] &= AD_6[B]\Phi^{(1,6)},
\end{align*}
\]

where \(D_q[B] \) returns a diagonal matrix, the diagonals of which are the \(n \)-th row of \(B \), and \(\Phi^{(1,q)} = \text{diag}\{\beta_1^{(1,q)}, \beta_2^{(1,q)}, \ldots, \beta_k^{(1,q)}\} \), \(q = 2, 3, \ldots, 6 \), \(\beta_k^{(1,q)} = b_k(q)/b_k(1) \). Next, we define

\[
J_q = I_M \otimes i_{6,q},
\]

where \(i_{6,q} \) accounts for the \(q \)-th column of \(I_6 \). The relations in equation (24) become

\[
\begin{align*}
J_1[A \otimes B] &= J_2[A \otimes B]\Phi^{(1,2)}, \\
J_1[A \otimes B] &= J_3[A \otimes B]\Phi^{(1,3)}, \\
& \vdots \\
J_1[A \otimes B] &= J_6[A \otimes B]\Phi^{(1,6)}. \\
\end{align*}
\]

Inserting equation (26) into equation (13) yields

\[
\begin{align*}
J_1U_s &= J_2U_s T^{-1}\Phi^{(1,2)}T, \\
J_1U_s &= J_3U_s T^{-1}\Phi^{(1,3)}T, \\
& \vdots \\
J_1U_s &= J_6U_s T^{-1}\Phi^{(1,6)}T,
\end{align*}
\]

where \((\cdot)^{-1}\) denotes the inverse. In other words, we have

\[
\begin{align*}
(J_2U_s)^\dagger J_1U_s &= T^{-1}\Phi^{(1,2)}T, \\
T(J_3U_s)^\dagger J_1U_s T^{-1} &= \Phi^{(1,3)}, \\
& \vdots \\
T(J_6U_s)^\dagger J_1U_s T^{-1} &= \Phi^{(1,6)},
\end{align*}
\]

where the superscript \((\cdot)^\dagger\) denotes the pseudoinverse. Performing eigendecomposition on \((J_2U_s)^\dagger J_1U_s\), we can get the eigenvalues of the matrix and the associated eigenvectors, which reveal the estimation of \(\Phi^{(1,2)} \) and the estimation of \(T \) (denoted as \(T \)). Calculating the left parts of equation (28) (except the first row), one can get the estimation of \(\Phi^{(1,3)} \), \(\Phi^{(1,4)} \), \(\Phi^{(1,5)} \), and \(\Phi^{(1,6)} \), respectively.

It has been pointed out in [20] that \(b_k \) can be written as

\[
b_k = b_k(1) \begin{bmatrix} 1 \\ \beta_k^{(1,2)} \\ \vdots \\ \beta_k^{(1,6)} \end{bmatrix}.
\]

It is easy to find that
\[
\begin{pmatrix}
1 \\
\beta_k^{(1,2)} \\
\beta_k^{(1,3)}
\end{pmatrix} \ast \begin{pmatrix}
1 \\
\beta_k^{(1,4)} \\
\beta_k^{(1,5)} \\
\beta_k^{(1,6)}
\end{pmatrix}^* = \|b_k(1)\|^2 \begin{pmatrix}
1 \\
\beta_k^{(1,2)} \\
\beta_k^{(1,3)} \\
\beta_k^{(1,4)} \\
\beta_k^{(1,5)} \\
\beta_k^{(1,6)}
\end{pmatrix}.
\]

(30)

Let \(e_k = [b_k(1), b_k(2), b_k(3)]^T \) and \(h_k = [b_k(4), b_k(5), b_k(6)]^T \). Then, we have

\[
\frac{e_k}{\|e_k\|} \ast \frac{h_k}{\|h_k\|} = \begin{bmatrix}
\sin \theta_k \cos \phi_k \\
\sin \theta_k \sin \phi_k \\
\cos \theta_k
\end{bmatrix}.
\]

(31)

According to equation (30), we can get

\[
\begin{bmatrix}
\mathbf{u}_k \\
\mathbf{v}_k \\
\mathbf{w}_k
\end{bmatrix} \triangleq \begin{bmatrix}
\begin{pmatrix}
1 \\
\beta_k^{(1,2)} \\
\beta_k^{(1,3)}
\end{pmatrix} \\
\begin{pmatrix}
1 \\
\beta_k^{(1,4)} \\
\beta_k^{(1,5)} \\
\beta_k^{(1,6)}
\end{pmatrix}^*
\end{bmatrix} \ast \begin{pmatrix}
\begin{pmatrix}
1 \\
\beta_k^{(1,2)} \\
\beta_k^{(1,3)}
\end{pmatrix} \\
\begin{pmatrix}
1 \\
\beta_k^{(1,4)} \\
\beta_k^{(1,5)} \\
\beta_k^{(1,6)}
\end{pmatrix}^*
\end{pmatrix}^*.
\]

Obviously, \(\|b_k(1)\|^2 \) is a constant, and it has been removed by normalizing calculation. Let the estimations of \(\mathbf{u}_k \), \(\mathbf{v}_k \), and \(\mathbf{w}_k \) be \(\hat{\mathbf{u}}_k \), \(\hat{\mathbf{v}}_k \), and \(\hat{\mathbf{w}}_k \), respectively. 2D-DOA can be estimated by

\[
\begin{bmatrix}
\hat{\theta}_k = \arccos(\hat{\omega}_k), \\
\hat{\phi}_k = \arctan(\hat{v}_k/\hat{u}_k)
\end{bmatrix}.
\]

(33)

Once the 2D-DOA estimation has been accomplished, the polarization parameters can be estimated via the least squares approach in [30]. The details are omitted for simplicity.

\section*{4. Algorithmic Analyses}

\subsection*{4.1. Important Remarks}

Remark 1: as described in the context, the proposed method is insensitive to the \(r_n \), which means it is suitable for arbitrary sensor geometry. Besides, it is insensitive to the sensor position error as well.

Remark 2: it is well known that the uniform noise is a special case of the nonuniform noise. Therefore, the proposed algorithm is effective in the white noise scenario.

Remark 3: as explained in [30], all the estimated parameters \(\theta_k, \phi_k, \eta_k, \gamma_k \) are one-to-one paired.

Remark 4: since the matrix completion would not hurt the rank and the dimension of the covariance matrix, the proposed algorithm can identify the same number of sources in [20].

\subsection*{4.2. Stochastic CRB}

Let \(\mathbf{R}_n = Q(q) \), where \(q = [q_1, q_2 \cdots q_p]^T \) is a real vector that parameterizes \(\mathbf{R}_n \). From the derivations in [35], we can get the stochastic CRB on 2D-DOA and polarization angle, which are given by

\[
\text{CRB} = \frac{1}{L} [\mathbf{H} - M T^{-1} M^T]^{-1},
\]

(34)

with

\[
\begin{aligned}
\mathbf{H} &= \text{2Re} \left\{ \mathbf{D}^H \prod_F \mathbf{D} \otimes \left(\mathbf{R}_c \mathbf{R}_c^H \mathbf{R}_c^H \right) \otimes \mathbf{I}_{4 \times 4} \right\}, \\
\mathbf{M} &= \text{2Re} \left\{ \mathbf{J}^T \left(\mathbf{D}_p^H \prod_F \mathbf{J} \otimes (\mathbf{R}^{-1} \mathbf{F} \mathbf{R}_c^H)^T \right) \tilde{\mathbf{Q}}^* \right\}, \\
\mathbf{T} &= \text{2Re} \left\{ \tilde{\mathbf{Q}}^H \left(\mathbf{R}_c^H \prod_F \tilde{\mathbf{Q}} \right) - \mathbf{Q}^H \left(\prod_F \mathbf{Q} \right) \right\}.
\end{aligned}
\]

(35)
where \(\overline{F} = Q^{-1/2}C \), \(\Pi_{\overline{F}} = I_{6N} - \Pi_{\overline{F}} \) with \(\Pi_{\overline{F}} = \overline{F}F^{\dagger} \), And \(D = [\overline{D}_d, \overline{D}_p] \), where \(\overline{D}_d = Q^{-1/2}D_d \) and \(\overline{D}_p = Q^{-1/2}D_p \) with \(D_d = [\partial f_1/\partial \theta_1, \ldots, \partial f_K/\partial \theta_K, \partial f_1/\partial \phi_1, \ldots, \partial f_K/\partial \phi_K] \) and \(D_p = [\partial f_1/\partial \eta_1, \ldots, \partial f_K/\partial \eta_K, \partial f_1/\partial \gamma_1, \ldots, \partial f_K/\partial \gamma_K] \), respectively, where \(f_k \) denotes that with the \(k \)-th column of \(C \). \(\overline{R} = Q^{-1/2}RQ^{-1/2} \). \(f = [\text{vec}(e_1e_1^T), \text{vec}(e_2e_2^T), \ldots, \text{vec}(e_Ke_K^T)] \), where \(e_k \) denotes the \(k \)-th column of \(I_k \) and \(\text{vec}() \) denotes the vectorization. \(\overline{Q} = [\text{vec}([\overline{Q}_d], \text{vec}([\overline{Q}_2], \ldots, \text{vec}([\overline{Q}_K]) \) with \(\overline{Q}_p = Q^{-1/2}Q_pQ^{-1/2}, \overline{Q}_p = \partial Q/\partial q_p \).

5. Simulation Results

In this subsection, the Monte Carlo simulation is utilized to assess the estimation accuracy. We consider an arbitrary \(N \)-element EMVS receives array configuration, and we assume that \(K = 3 \) far-field sources impinge on the array, whose parameters are \(\theta = (10^\circ, 20^\circ, 30^\circ) \), \(\phi = (20^\circ, 30^\circ, 40^\circ) \), \(\gamma = (30^\circ, 40^\circ, 50^\circ) \), and \(\eta = (25^\circ, 35^\circ, 45^\circ) \). Moreover, we suppose that \(L \) snapshots have been collected. Each result
relies on 200 experiments. In the simulation, the signal-to-
noise ratio (SNR) is defined as the ratio of the power of the
two components in equation (6). Two measures are adopted:
one is the root mean square error (RMSE), and the other is
the probability of successful detection (PSD). In all the
simulations, the noise is randomly generated with powers
which are uniformly chosen from \([1, 100000]\).

Example 1. We give the scattering figures of the proposed
algorithm with \(N = 4\) and \(L = 500\), where the SNR is set to
20 dB. Herein, the EMVS is randomly placed in a three-
dimensional space with \((x_n, y_n, z_n)\) fulfilling a uniform
distribution with interval \([-0.5\lambda, 0.5\lambda]\). Figure 2 shows the
results of direction angle estimation and polarization pa-
rameters estimation. Clearly, all the angles can be correctly
estimated and automatically paired. It is evident that our
estimator is effective in a nonuniform noise scenario.

Example 2. We present the RMSE and PSD curves of the
proposed estimator. Herein, a successful trial is recognized if
the absolute error of the estimated angle is smaller than 1°. In
Figure 3, we plot the average estimation performance on the
direction angle estimate (labelled with the suffix “\(-d\)”) and
polarization angle estimate (labelled with the suffix “\(-p\)”),
where \(N = 4\) and \(L = 500\). In contrast, the RMSE results of
ESPRIT in [20] as well as the CRB are added. From the result,
we can observe that the RMSE performance of both the
proposed estimator and ESPRIT is improved with the in-
creasing SNR, while the PSD of both estimators reaches 100%,
once SNR is larger than a threshold (e.g., 25 dB). Besides, it
depicts that the proposed estimator provides more accurate
parameter estimation performance for direction angle esti-
mation when SNR <10 dB. However, the improvement is not
obvious as for polarization parameter estimation.

6. Conclusions

In this paper, we investigate the issue of angle estimation
using EMVS array with arbitrary sensor geometry and
nonuniform noise. A matrix completion-based algorithm
has been proposed, which first eliminates the effect of
nonuniform via solving a convex problem. After the
noiseless covariance matrix has been recovered, the tradi-
tional subspace method is utilized to estimate the signal
subspace, and the ESPRIT idea is adopted for 2D-DOA
estimation. Our algorithm is robust to nonuniform noise
and sensor position error. It should be pointed out that the
tensor structure has not been exploited. More attention
should be paid to this topic to further increase the estimation
accuracy.

Data Availability

No data were used in this study.

Conflicts of Interest

The authors declare no conflicts of interest.
Acknowledgments
This work was supported by the National Natural Science Foundation of China under Grant no. 62071476.

References
[1] G. Gui, M. Liu, F. Tang, N. Kato, and F. Adachi, “6G: opening new horizons for integration of comfort, security, and intelligence,” IEEE Wireless Communications, vol. 27, no. 5, pp. 126–132, 2020.
[2] H. Wang, L. Xu, Z. Yan, and T. A. Gulliver, “Low-complexity MIMO-FBMC sparse channel parameter estimation for industrial big data communications,” IEEE Transactions on Industrial Inforatics, vol. 17, no. 5, pp. 3422–3430, 2021.
[3] H. Wang, X. Li, R. H. Jhaferi et al., “Sparse bayesian learning based channel estimation in FBMC/OQAM industrial IoT networks,” Computer and Communications, vol. 17, pp. 40–45, 2021.
[4] L. Wan, K. Liu, Y.-C. Liang, and T. Zhu, “DOA and polarization estimation for non-circular signals in 3-D millimeter wave polarized massive MIMO systems,” IEEE Transactions on Wireless Communications, vol. 20, no. 5, pp. 3152–3167, 2021.
[5] D. Chen, B. Chen, and G. Qin, “Angle estimation using ESPRIT in MIMO radar,” Electronics Letters, vol. 44, no. 12, pp. 770–771, 2008.
[6] J. Chen, H. Gu, and W. Su, “Angle estimation using ESPRIT without pairing in MIMO radar,” Electronics Letters, vol. 44, no. 24, pp. 1422–1423, 2008.
[7] I. Bekkerman and J. Tabrikian, “Target detection and localization using MIMO radars and sonars,” IEEE Transactions on Signal Processing, vol. 54, no. 10, pp. 3873–3883, 2006.
[8] H. Yan, J. Li, and G. Liao, “Multitarget identification and localization using bistatic MIMO radar systems,” EURASIP Journal on Applied Signal Processing, vol. 2008, Article ID 8828610, 2008.
[9] X. Zhang, L. Xu, L. Xu, and D. Xu, “Direction of departure (DOA) and direction of arrival (DOA) estimation in mimo radar with reduced-dimension music,” IEEE Communications Letters, vol. 14, no. 12, pp. 1161–1163, 2010.
[10] Z. D. Zheng and J. Y. Zhang, “Fast method for multi-target localisation in bistatic MIMO radar,” Electronics Letters, vol. 47, no. 2, pp. 138–139, 2011.
[11] B. Tang, J. Tang, Y. Zhang, and Z. Zheng, “Maximum-likelihood estimation of DOA and DOA for bistatic MIMO radar,” Signal Processing, vol. 93, no. 5, pp. 1349–1357, 2013.
[12] Y. Cheng, R. Yu, H. Gu, and W. Su, “Multi-SVD based subspace estimation to improve angle estimation accuracy in bistatic MIMO radar,” Signal Processing, vol. 93, no. 7, pp. 2003–2009, 2013.
[13] X. Zhang, Z. Xu, L. Xu, and D. Xu, “Trilinear decomposition-based transmit angle and receive angle estimation for multiple-input multiple-output radar,” IET Radar, Sonar & Navigation, vol. 5, no. 6, pp. 626–631, 2011.
[14] J. Shi, F. Wen, and T. Liu, “Nested MIMO radar: coarrays, tensor modeling and angle estimation,” IEEE Transactions on Aerospace and Electronic Systems, vol. 57, no. 1, pp. 573–585, 2021.
[15] W. Rao, D. Li, and J. Q. Zhang, “A tensor-based approach to L-shaped arrays processing with enhanced degrees of freedom,” IEEE Signal Processing Letters, vol. 25, no. 2, pp. 234–238, 2018.
[16] R. Goossens and H. Rogier, “A hybrid UCA-RARE/Root-MUSIC approach for 2-D direction of arrival estimation in uniform circular arrays in the presence of mutual coupling,” IEEE Transactions on Antennas and Propagation, vol. 55, no. 3, pp. 841–849, 2007.
[17] M. D. Zoltowski, M. Haardt, and C. P. Mathews, “Closed-form 2-D angle estimation with rectangular arrays in element space or beamspace via unitary ESPRIT,” IEEE Transactions on Signal Processing, vol. 44, no. 2, pp. 316–328, 1996.
[18] J. He, L. Li, and T. Shu, “Sparse nested arrays with spatially spread orthogonal dipoles: high accuracy passive direction finding with less mutual coupling,” IEEE Transactions on Aerospace and Electronic Systems, 2021.
[19] K. T. Wong and X. Yuan, “‘‘Vector cross-product direction-finding’’ with an electromagnetic vector-sensor of six orthogonally oriented but spatially noncollimating dipoles/loops,” IEEE Transactions on Signal Processing, vol. 59, no. 1, pp. 160–171, 2011.
[20] K. T. Wong and M. D. Zoltowski, “Closed-form direction finding and polarization estimation with arbitrarily spaced electromagnetic vector-sensors at unknown locations,” IEEE Transactions on Antennas and Propagation, vol. 48, no. 5, pp. 671–681, 2000.
[21] A. Nehorai and E. Paldi, “Vector-sensor array processing for electromagnetic source localization,” IEEE Transactions on Signal Processing, vol. 42, no. 2, pp. 376–398, 1994.
[22] J. Li, “Direction and polarization estimation using arrays with small loops and short dipoles,” IEEE Transactions on Antennas and Propagation, vol. 41, no. 3, pp. 379–387, 1993.
[23] K. T. Wong and M. D. Zoltowski, “Uni-vector-sensor ESPRIT for multisource azimuth, elevation, and polarization estimation,” IEEE Transactions on Antennas and Propagation, vol. 45, no. 10, pp. 1467–1474, 1997.
[24] K. T. Wong and M. D. Zoltowski, “Self-initiating music-based direction finding and polarization estimation in spatial-polarizational beamspace,” IEEE Transactions on Antennas and Propagation, vol. 48, no. 8, pp. 1235–1245, 2000.
[25] M. D. Zoltowski and K. T. Wong, “ESPRIT-based 2-D direction finding with a sparse uniform array of electromagnetic vector sensors,” IEEE Transactions on Signal Processing, vol. 48, no. 8, pp. 2195–2204, 2000.
[26] S. Miron, N. Le Bihan, and J. Mars, “Vector-sensor MUSIC for polarized seismic sources localization,” EURASIP Journal on Applied Signal Processing, vol. 48, no. 8, Article ID 280527, 2005.
[27] J. He and Z. Liu, “Computationally efficient 2D direction finding and polarization estimation with arbitrarily spaced electromagnetic vector sensors at unknown locations using the propagator method,” Digital Signal Processing, vol. 19, no. 3, pp. 491–503, 2009.
[28] T. Ahmed, Z. Xiaoifei, and Z. Wang, “DOA estimation for coprime EMVS arrays via minimum distance criterion based on PARAFAC analysis,” IET Radar, Sonar & Navigation, vol. 13, no. 1, pp. 65–73, 2019.
[29] S. Chintagunta and P. Palanisamy, “2D-DOD and 2D-DOA estimation using the electromagnetic vector sensors,” Signal Processing, vol. 147, pp. 163–172, 2018.
[30] F. Wen, J. Shi, and Z. Zhang, “Closed-form estimation algorithm for EMVS-MIMO radar with arbitrary sensor geometry,” Signal Processing, vol. 186, Article ID 108117, 2021.
[31] X. Wang, M. Huang, and L. Wan, “Joint 2D-DOD and 2D-DOA estimation for coprime EMVS-MIMO radar,” Circuits, Systems, and Signal Processing, 2021.
[32] B. Liao, H. Lei, C. Guo et al., “New approaches to direction-of-arrival estimation with sensor arrays in unknown non-uniform noise,” IEEE Sensors Journal, vol. 16, no. 24, pp. 8982–8989, 2016.

[33] B. Liao, S. C. Chan, H. Lei et al., “Iterative methods for subspace and DOA estimation in nonuniform noise,” IEEE Transactions on Signal Processing, vol. 64, no. 12, pp. 3008–3020, 2016.

[34] B. Liao, “Fast angle estimation for MIMO radar with non-orthogonal waveforms,” IEEE Transactions on Aerospace and Electronic Systems, vol. 54, no. 4, pp. 2091–2096, 2018.

[35] M. Pesavento and A. B. Gershman, “Maximum-likelihood direction-of-arrival estimation in the presence of unknown nonuniform noise fields,” IEEE Transactions on Signal Processing, vol. 49, no. 7, pp. 1310–1324, 2001.