Research Article

An updated meta-analysis of the association between fibroblast growth factor receptor 4 polymorphisms and susceptibility to cancer

Abdolkarim Moazeni-Roodi1,2, Sahel Sarabandi3, Shima Karami3, Mohammad Hashemi3,4,* and Saeid Ghavami5,6

1Tropical and Communicable Diseases Research Centre, Iranshahr University of Medical Sciences, Iranshahr, Iran; 2Department of Clinical Biochemistry, Iranshahr University of Medical Sciences, Iranshahr, Iran; 3Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran; 4Genetics of Non-Communicable Disease Research Center, Zahedan University of Medical Sciences, Zahedan, Iran; 5Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada; 6Research Institute in Oncology and Hematology, CancerCare Manitoba, University of Manitoba, Winnipeg, Canada

Correspondence: Saeid Ghavami (saeid.ghavami@umanitoba.ca)

Fibroblast growth factor receptor 4 (FGFR4) is a cell surface receptor tyrosine kinases (RTKs) for FGFs. Several studies have focused on the association between FGFR4 polymorphisms and cancer development. This meta-analysis aimed to estimate the association between FGFR4 rs351855 (Gly388Arg), rs1966265 (Val10Ile), rs7708357, rs2011077, and rs376618 polymorphisms and cancer risk. Eligible studies were identified from electronic databases. All statistical analyses were achieved with the STATA 14.0 software. Pooled odds ratios (ORs) with 95% confidence intervals (CIs) were used to quantitatively estimate the association. Overall, no significant association was found among rs351855, rs2011077, and rs376618 polymorphisms with the risk of overall cancer. The rs1966265 polymorphism significantly decreased the risk of cancer in recessive (OR = 0.87, 95% CI = 0.78–0.97, P = 0.009, TT vs CT+CC) genetic model. Whereas the rs7708357 polymorphism was positively associated with cancer risk in dominant (OR = 1.17, 95% CI = 1.02–1.36, P = 0.028) genetic model. Stratified analysis revealed that rs351855 variant significantly increased the risk of prostate cancer in heterozygous (OR = 1.16, 95% CI = 1.02–1.32, P = 0.025 AG vs GG), dominant (OR = 1.20, 95% CI = 1.06–1.35, P = 0.004, AG+AA vs GG), and allele (OR = 1.22, 95% CI = 1.06–1.41, P = 0.005, A vs G) genetic models.

In summary, the findings of this meta-analysis indicate that rs1966265, rs7708357, and rs351855 polymorphisms are correlated to cancer development. Further well-designed studies are necessary to draw more precise conclusions.

Introduction

Cancer poses a major health problem in both developing and developed countries [1–3]. There were approximately 18.1 million new cases and 9.6 million cancer deaths in 2018 [4]. The exact mechanism of cancer development is not clear yet. Mounting evidence have indicated that cancer development and progression is influenced by environmental and genetic factors [3,5–7].

The human fibroblast growth factor receptors (FGFRs), a subfamily of cell surface receptor tyrosine kinases (RTKs), consist of four closely related family members (FGFR1–4) [8]. FGFR activation by various fibroblast growth factors (FGFs) triggers a cascade that leads to the activation of multiple signal transduction pathways, including the Ras/Raf/MapK, PI3K/Akt, STAT, and PLCγ, which can promote cell survival,
cell proliferation, tissue development, differentiation, angiogenesis, epithelial-to-mesenchymal transition (EMT), angiogenesis, and can thereby involve in carcinogenesis [9–11].

The human FGFR4 gene, also termed as cluster of differentiation 334 (CD334), is mapped to chromosome 5 (5q 35.1) [12] and is highly polymorphic. A common nonsynonymous single nucleotide polymorphism (SNP) at codon 388 (rs351855 G>A) in exon 9, which results in a change of glycine to arginine (Gly388Arg), was recognized in the transmembrane domain of the FGFR4 receptor [13]. Several studies investigated the relationship between FGFR4 gene rs351855 G>A polymorphism and numerous types of cancer including breast cancer [13–18], cervical cancer [19–21], colon cancer [13,18,22], gastric cancer [23], prostate cancer [24–27], head and neck squamous cell carcinoma (HNSCC) [28,29], oral squamous cell carcinoma (OSCC) [30,31], lung cancer [32–34], hepatocellular carcinoma [35–37], sarcoma [38], skin cancer [39], neuroblastoma [40], non-Hodgkin’s lymphoma [41], and glioma [42]. There are few direct reports about the effect of FGFR4 polymorphism on the gene expression. FGFR4 rs351855 polymorphism induced higher expression of FGFR4 protein and worse prognosis in breast cancer [43]. It has been reported that the rate of degradation of the Arg388 receptor was slower than the Gly388 receptor in neuroblastoma cells and also initiated internalization of the receptor into multivesicular structures (Rev1-1) [40]. In another investigation, the researchers showed that expression of the FGFR4 Arg388 protein activated the extracellular signal-related kinase pathway with subsequent expression of several genes which were associated with the aggressive form of prostate cancer [44], (Rev1-1). Researchers have reported that there was no significant difference between different genotypes of FGFR4 in gastric cancer [45]. Interestingly in the lung normal tissue, genotype-dependent transcriptional profile is present [46]. In the past few years, there were few epidemiological analysis and meta-analysis focusing on FGFR4 in uterine leiomyomata [47], hip bone geometry [48–50], and all types of cancer [31,51]. Our current meta-analysis covers Gly388Arg rs351855 G>A and Val10Ile rs1966265 polymorphism in FGFR4 polymorphisms to cancer susceptibility and provide wider information in this important regulator of cancers (Rev 1-2).

Methods

Literature search and inclusion criteria

We performed a literature research for all eligible articles regarding the association between FGFR4 polymorphisms on multiple electronic databases including Web of Science, PubMed, Scopus, and Google Scholar databases through using the following terms: ‘FGFR4 OR CD334’ AND ‘polymorphism OR, SNP, OR variation OR mutation’ AND ‘cancer OR carcinoma OR neoplasm OR tumor’ up to 10 May 2020. Besides, we also screened references of the included studies. Figure 1 shows the process of studies selection. Relevant studies included the meta-analysis if they met the following inclusion criteria: (1) original case–control studies addressing the correlation between FGFR4 polymorphisms; (2) studies containing sufficient genotype data in both cases and controls; (3) the largest sample sizes were selected when repeatedly published articles by the same team. The exclusion criteria were: (1) conference abstract, case reports, reviews, duplication data; (2) insufficient genotype data provided.

Data extraction

Two investigators independently screened the literature and extracted data from eligible studies according to exclusion and inclusion criteria. The following data were collected from each study including the first author’s name, publication year, country, ethnicity of participants, cancer type, genotyping methods, the sample size, and the genotype and allele frequencies of cases and controls (Table 1).

Quality assessment

Two investigators evaluated the quality of each study using the quality assessment criteria [52]. Quality scores of studies ranged from 0 (lowest) to 15 (highest). Studies with scores \(\leq 9 \) were considered as low quality, while those with scores \(> 9 \) were considered as high quality.

Statistical analysis

Meta-analysis was carried out using STATA 14.0 software (Stata Corporation, College Station, TX, U.S.A.). The Hardy–Weinberg equilibrium (HWE) of control genotypes was determined by the chi-square test.

The strength of the association between FGFR4 polymorphisms and cancer susceptibility was evaluated by pooled odds ratios (ORs) and their 95% confidence intervals (CIs) in five (heterozygous, homozygous, dominant, recessive, and allele) genetic models. The significance of the pooled OR was assessed by the Z-test, and \(P < 0.05 \) was considered to be statistically significant. The between-study heterogeneity was evaluated by the Q statistic. When the PQ < 0.1,
First author	Year	Country	Ethnicity	Type of cancer	Source of control	Genotyping method	Case/control	Case	Control	HWE Score	Score
Ansell	2009	Sweden	Caucasian	HNSCC	PB	PCR-RFLP	110/192	61	49	-	-
Bange	2002	Russia	Caucasian	Breast	PB	PCR-RFLP	81/123	55	60	8	170
Bange	2002	Germany	Caucasian	Breast	PB	PCR-RFLP	84/123	55	60	8	170
Bange	2002	Italy	Caucasian	Colon cancer	PB	PCR-RFLP	82/123	55	60	8	170
Batschauer	2011	Brazil	Caucasian	Breast	PB	PCR-RFLP	88/85	47	35	3	129
Chen	2018	Taiwan	Asian	Cervical cancer	HB	TaqMan	226/335	96	165	74	357
Chou	2017	Taiwan	Asian	OSCC	PB	TaqMan	955/1191	334	596	261	1264
Fang	2013	China	Asian	NSCLC	HB	Sequencing	629/729	193	331	105	717
FitzGerald	2009	U.S.A.	Caucasian	Prostate	PB	SNPlex	1254/1251	587	544	123	1718
FitzGerald	2009	U.S.A.	African	Prostate	PB	SNPlex	146/80	104	39	3	247
Gao	2014	China	Asian	NHL	NA	PCR-RFLP	421/486	117	189	115	423
Heinze	2012	Austria	Caucasian	Colon cancer	PB	TaqMan	85/1660	42	33	10	117
Ho	2009	Singapore	Asian	HCC	PB	Sequencing	58/88	30	38	20	98
Ho	2010	U.K.	Caucasian	Prostate	PB	TaqMan	397/291	183	182	32	548
Hosseini	2017	Iran	Asian	Breast cancer	PB	PCR-RFLP	126/160	87	33	6	207
Jiang	2015	China	Asian	Breast cancer	NA	Snapshot	747/716	205	404	138	814
Li	2017	China	Asian	Cervical cancer	HB	PCR-RFLP	162/162	35	79	48	149
Ma	2008	Japan	Asian	Prostate	HB	PCR-RFLP	492/179	163	196	133	522
Mawrin	2006	Germany	Caucasian	Glioma	PB	PCR-RFLP	94/25	10	13	2	33
Morimoto	2003	Japan	Asian	Sarcomas	NA	PCR-RFLP	143/102	54	72	17	180
Naide	2009	Malaysia	Asian	Breast	HB	PCR-RFLP	387/252	179	172	36	530
Nan	2009	U.S.A.	Caucasian	Skin cancer	PB	Sequencing	768/833	365	325	78	1055
Shen	2013	China	Asian	Gastric cancer	PB	Sequencing	304/982	118	124	62	360
Sheu	2015	China	Asian	HCC	HB	TaqMan	289/595	82	150	57	314
Spinola	2005	Italy	Caucasian	Lung	HB	Pyrosequencing	274/401	148	104	22	400
Spinola	2005	Italy	Caucasian	Breast	HB	Pyrosequencing	142/220	67	55	20	189
Spinola	2005	Italy	Caucasian	CRC	HB	Pyrosequencing	179/220	98	63	18	259
Tanuma	2010	Japan	Asian	OSCC	HB	PCR-SSCP	150/100	69	53	28	191
Tsay	2020	Taiwan	Asian	Cervical cancer	HB	TaqMan	428/856	114	222	92	450
Ture	2015	Turkey	Asian	Lung cancer	HB	PCR-RFLP	124/100	66	47	11	179
Wang	2004	U.S.A.	Caucasian	Prostate	PB	PCR-RFLP	284/97	125	117	42	367
Wang	2004	U.S.A.	African	Prostate	PB	PCR-RFLP	45/94	37	6	2	80
Table 1 Characteristics of the studies eligible for meta-analysis (Continued)

First author	Year	Country	Ethnicity	Type of cancer	Source of control	Genotyping method	Case/control	Cases	Controls	HWE Score									
Whittle	2016	U.S.A.	Caucasian	Neuroblastoma	NA	PCR-RFLP	126/114	45	69	12	159	93	50	60	4	160	68	0.006	9
Wimmer	2019	Germany	Caucasian	HNSCC	PB	PCR-RFLP	284/123	188	84	12	460	108	55	60	8	170	76	0.114	9
Yang	2012	China	Asian	HCC	HB	TaqMan	711/740	216	351	144	783	639	247	361	132	855	625	0.996	10
Gly388Arg							GG AG AA G A												
rs351855G							GG AG AA G A												
Whittle	2016	U.S.A.	Caucasian	Neuroblastoma	NA	PCR-RFLP	126/114	61	105	61	227	227	91	168	76	350	320	0.927	9
Wimmer	2019	Germany	Caucasian	HNSCC	PB	PCR-RFLP	284/123	213	514	228	940	970	742	447	65	1931	577	0.827	15
Yang	2012	China	Asian	HCC	HB	TaqMan	711/740	132	15	0	279	15	70	10	0	150	50	0.551	13
Val10Ile							GG AG AA G A												
rs1966265							GG AG AA G A												
Chen	2018	Taiwan	Asian	Uterine Cervical	HB	TaqMan	227/335	61	105	61	227	227	91	168	76	350	320	0.927	9
Chou	2017	Taiwan	Asian	OSCC	PB	TaqMan	955/1191	213	514	228	940	970	742	447	65	1931	577	0.827	15
Sheu	2015	China	Asian	HCC	HB	TaqMan	289/595	132	15	0	279	15	70	10	0	150	50	0.551	13
Val10Ile							GG AG AA G A												
rs7708357							GG AG AA G A												
Chen	2018	Taiwan	Asian	Uterine cervical	HB	TaqMan	227/335	321	13	1	655	15	0.038	9					
Chou	2017	Taiwan	Asian	OSCC	PB	TaqMan	955/1191	1167	23	1	2357	25	0.015	11					
Sheu	2015	China	Asian	HCC	HB	TaqMan	289/595	577	18	0	1172	18	0.708	8					
Val10Ile							GG AG AA G A												
rs2011077							GG AG AA G A												
Chen	2018	Taiwan	Asian	UT-cervical	HB	TaqMan	227/335	94	163	78	351	319	0.652	9					
Chou	2017	Taiwan	Asian	OSCC	PB	TaqMan	955/1191	288	577	326	1153	1229	0.299	11					
Table 1 Characteristics of the studies eligible for meta-analysis (Continued)

First author	Year	Country	Ethnicity	Type of cancer	Source of control	Genotyping method	Case/control	Cases	Controls	HWE	Score
Ma	2008	Japan	Asian	Prostate	HB	PCR-RFLP	492/179	94	283		0.075
Sheu	2015	China	Asian	HCC	HB	TaqMan	289/595	66	159		0.968
Tsay	2020	Taiwan	Asian	Cervical cancer	HB	TaqMan	428/856	94	224		0.495
FitzGerald	2009	U.S.A.	Caucasian	Prostate	PB	SNPlex	1238/1245	703	448		0.013
Nan	2009	U.S.A.	Caucasian	Skin cancer	PB	TaqMan	762/830	451	273		0.026
indicating the presence of heterogeneity, the random-effects model was selected, otherwise, the fixed-effects model was chosen.

Publication bias was inspected by using Begg’s funnel plots and the asymmetric plots implied potential publication bias. Egger’s test was used to measure the degree of asymmetry. A $P < 0.05$ indicated significant publication bias.

Sensitivity analyses was done to evaluate whether a single study influenced the overall pooled results by omitting each study in turn.

Results

Study characteristics

A total of 57 case–control studies from 30 published articles [13–42] that met the inclusion criteria were included in our meta-analyses. Of these 57 studies, the FGFR4 rs351855 in 35 studies, rs1966265 in 8 studies, rs7708357 in 6 studies, rs2011077 in 5 studies, and rs376618 in 3 studies were analyzed, respectively. The characteristics and relevant data of the included studies are presented in Table 1.

Meta-analysis results

The findings did not support an association between FGFR4 rs351855 polymorphism and overall cancer susceptibility in heterozygous (OR = 0.97, 95% CI = 0.87–1.07, $P = 0.514$, AG vs GG), homozygous (OR = 1.14, 95% CI = 0.95–1.37, $P = 0.166$, AG vs GG), dominant (OR = 0.98, 95% CI = 0.87–1.10, $P = 0.686$, AG+AA vs GG), recessive (OR = 1.15, 95% CI = 0.98–1.33, $P = 0.79$, AA vs AG+GG), and allele (OR = 1.02, 95% CI = 0.93–1.12, $P = 0.663$, A vs G) genetic models (Figure 2 and Table 2). Stratified analysis was achieved by ethnicity and cancer type (Table 3 and Figure 3). The results indicated that rs351855 variant significantly increased the risk of prostate cancer in heterozygous (OR = 1.16, 95% CI = 1.02–1.32, $P = 0.025$, AG vs GG), dominant (OR = 1.20, 95% CI = 1.06–1.35, $P = 0.004$, AG+AA vs GG), and allele (OR = 1.22, 95% CI = 1.06–1.41, $P = 0.005$, A vs G) genetic models.
Figure 2. Forest plot for the association of the FGFR4 rs351855 polymorphism with overall cancer susceptibility in codominant (AG+AA vs GG)

Study	OR (95% CI)	Weight
Ansell (2009)	0.59 (0.37, 0.94)	2.59
Bange (2002)	1.09 (0.59, 2.02)	1.98
Bange (2002)	0.85 (0.49, 1.48)	2.22
Bange (2002)	0.98 (0.56, 1.73)	2.20
Batschauer (2011)	0.92 (0.48, 1.75)	1.89
Chen (2018)	0.91 (0.63, 1.32)	3.11
Chou (2017)	1.26 (1.04, 1.54)	4.03
Fang (2013)	0.65 (0.51, 0.83)	3.79
FitzGerald (2009)	1.16 (0.99, 1.35)	4.21
FitzGerald (2009)	1.21 (1.05, 1.25)	1.97
Gao (2014)	1.41 (1.06, 1.87)	3.58
Heinzel (2012)	0.96 (0.62, 1.48)	2.77
Ho (2009)	0.59 (0.30, 1.17)	1.77
Ho (2010)	1.24 (0.92, 1.68)	3.47
Hosseini (2017)	0.23 (0.14, 0.38)	2.46
Jiang (2015)	1.60 (1.28, 2.00)	3.91
Li (2017)	1.62 (0.98, 2.67)	2.46
Ma (2008)	1.21 (0.85, 1.72)	3.18
Mawrin (2006)	0.94 (0.38, 2.31)	1.21
Minamoto (2003)	1.02 (0.60, 1.72)	2.36
Naidu (2009)	1.28 (0.93, 1.76)	3.39
Nan (2009)	1.05 (0.86, 1.28)	4.03
Shen (2013)	0.80 (0.59, 1.09)	3.42
Sheu (2015)	0.92 (0.67, 1.26)	3.41
Spinola (1) (2005)	0.79 (0.58, 1.07)	3.44
Spinola (2) (2005)	1.16 (0.76, 1.77)	2.83
Spinola (2) (2005)	0.86 (0.58, 1.27)	2.97
Tanuma (2010)	0.85 (0.51, 1.42)	2.41
Tsay (2020)	1.09 (0.84, 1.41)	3.70
Ture (2015)	0.81 (0.58, 1.17)	2.34
Wang (2004)	1.53 (0.96, 2.44)	2.63
Wang (2004)	0.91 (0.36, 2.29)	1.17
Whittle (2016)	1.41 (0.84, 2.36)	2.38
Wimmer (2019)	0.41 (0.27, 0.64)	2.79
Yang (2012)	1.15 (0.92, 1.45)	3.91
Overall (I-squared = 72.2%, p = 0.000)	0.96 (0.87, 1.01)	100.00

NOTE: Weights are from random effects analysis

Figure 3. Forest plot for the association of the FGFR4 rs351855 polymorphism with prostate cancer susceptibility (A vs G)

Study	OR (95% CI)	Weight
FitzGerald (2009)	1.09 (0.66, 1.76)	38.37
FitzGerald (2009)	1.14 (0.66, 1.98)	5.81
Ho (2010)	1.13 (0.90, 1.43)	21.45
Ma (2008)	1.43 (1.12, 1.83)	20.14
Wang (2004)	1.67 (1.15, 2.41)	11.43
Wang (2004)	1.18 (0.52, 2.67)	2.80
Overall (I-squared = 33.8%, p = 0.183)	1.22 (1.06, 1.41)	100.00

NOTE: Weights are from random effects analysis
Table 2: The pooled ORs and 95% CIs for the association between FGFR4 polymorphisms and cancer susceptibility

n	Genetic model	Association test	Heterogeneity test	Egger’s test	Begg’s test					
		OR (95% CI)	Z	P	χ²	I² (%)	P			
Overall										
rs351855 G>A	35	AG vs GG	0.97 (0.87–1.07)	0.65	0.514	82.87	60.2	<0.0001	0.012	0.084
AA vs GG	1.14 (0.95–1.37)	1.39	0.166	116.25	71.6	<0.0001	0.966	0.975		
AG+AA vs GG	0.98 (0.87–1.10)	0.40	0.686	122.33	72.2	<0.0001	0.061	0.129		
AA vs AG+GG	1.15 (0.98–1.33)	1.76	0.79	94.88	65.2	<0.0001	0.476	0.306		
A vs G	1.02 (0.93–1.12)	0.47	0.639	150.59	78.1	<0.0001	0.416	0.293		
rs1966265 C>T	8	CT vs CC	1.01 (0.89–1.14)	0.14	0.891	11.12	37.1	0.133	0.739	1.000
TT vs CC	0.94 (0.77–1.16)	0.56	0.574	14.60	58.9	0.024	0.373	0.176		
CT+TT vs CC	0.98 (0.87–1.11)	0.31	0.759	11.52	39.2	<0.0001	0.810	0.805		
TT vs CT+CC	0.87 (0.78–0.97)	2.61	0.009	14.07	57.3	0.029	0.094	0.051		
T vs C	0.95 (0.87–1.04)	1.03	0.303	14.24	50.8	0.047	0.722	0.805		
rs7708357 G>A	6	AG vs GG	1.17 (0.95–1.44)	1.45	0.146	5.61	10.9	0.346	0.221	0.039
AA vs GG	1.10 (0.87–1.40)	0.83	0.406	3.61	0.00	0.607	0.143	1.000		
AG+AA vs GG	1.17 (1.02–1.36)	2.19	0.028	4.72	0.00	0.451	0.467	0.091		
AA vs AG+GG	0.98 (0.79–1.21)	0.20	0.840	3.77	0.00	0.593	0.097	0.624		
A vs G	1.08 (0.99–1.20)	1.51	0.132	4.22	0.00	0.518	0.964	0.348		
rs2011077 C>T	5	CT vs CC	1.03 (0.79–1.33)	0.21	0.831	11.30	64.6	0.023	0.054	0.014
TT vs CC	0.79 (0.49–1.25)	1.02	0.309	28.54	86.0	<0.0001	0.228	0.327		
CT+TT vs CC	0.94 (0.69–1.28)	0.39	0.695	17.85	77.6	0.001	0.091	0.050		
TT vs CT+CC	0.79 (0.56–1.13)	1.27	0.203	28.84	86.1	<0.0001	0.681	1.000		
T vs C	0.89 (0.70–1.13)	0.97	0.332	33.89	88.2	<0.0001	0.380	0.327		
rs376618 A>G	3	AG vs AA	0.95 (0.85–1.09)	0.56	0.753	1.76	0.0	0.414	0.761	0.602
GG vs AA	1.04 (0.81–1.33)	0.29	0.771	4.12	51.5	0.012	0.067	0.117		
AG+GG vs AA	0.97 (0.76–1.20)	0.45	0.654	1.27	0.00	0.531	0.858	0.602		
GG vs AG+AA	1.19 (0.74–1.93)	0.71	0.476	5.04	60.3	0.080	0.014	0.117		
G vs A	0.99 (0.90–1.09)	0.20	0.841	2.21	9.5	0.331	0.383	0.602		

For FGFR4 rs1966265 polymorphism, the findings revealed that this variant significantly reduced the risk of cancer susceptibility in recessive (OR = 0.87, 95% CI = 0.78–0.97, P = 0.009, TT vs CT+CC) model (Table 2 and Figure 4). The rs7708357 variant of FGFR4 significantly increased the risk of cancer development in dominant (OR = 1.17, 95% CI = 1.02–1.36, P = 0.028, AG+AA GG) genetic model (Table 2 and Figure 5).

The rs2011077 and rs376618 variants were not associated with overall cancer risk in any genetic models tested (Table 2).

Heterogeneity and publication bias

As shown in Table 2, heterogeneity among the studies was observed in all genetic comparisons for rs351855 and rs2011077. For rs1966265, heterogeneity was not found in heterozygous and dominant genetic models. While, heterogeneity was not detected in all genetic models for rs7708357 and rs376618.

The potential publication bias was evaluated using Begg’s funnel plot and Egger’s test. The shape of funnel plots was symmetrical and the Egger’s test supported no existence of publication bias in all comparison except rs351855 polymorphism in heterozygous and rs376618 polymorphism in recessive genetic model (Table 2 and Figure 6).

Sensitivity analysis

We performed sensitivity analysis to assess the effect of a specific publication on the overall estimate. For rs351855, the pooled ORs showed no significant change appeared when each study was neglected, one at a time, in heterozygous, dominant, and allele genetic models (Figure 7). For rs1966265, sensitivity analysis indicated no changes of results in heterozygous, homozygous, dominant, recessive, and allele genetic models. For rs7708357, no alterations of results were detected in homozygous, recessive, and allele genetic models. Thus, the final pooled results are both stable and reliable.
Table 3 Stratified analysis of rs351855 polymorphisms by ethnicity and cancer type

	n	Genetic model	Association test	Heterogeneity test	Egger's test	Begg's test				
			OR (95% CI)	Z	χ^2 (%)	P				
			Z	P						
			I^2 (%)							
Caucasian	15	AG vs GG	0.97 (0.84–1.12)	0.42	0.672	26.56	47.3	0.002	0.162	0.586
		AA vs GG	1.11 (0.95–1.29)	1.30	0.193	19.36	27.7	0.152	0.331	0.216
		AG+AA vs GG	0.96 (0.83–1.12)	0.47	0.636	35.15	57.3	0.002	0.257	0.471
		AA vs AG+GG	1.09 (0.94–1.26)	1.09	0.278	16.49	15.1	0.284	0.118	0.125
		A vs G	1.03 (0.92–1.15)	0.43	0.666	30.34	53.9	0.007	0.789	0.458
Asian	17	AG vs GG	0.96 (0.82–1.12)	0.56	0.572	55.29	71.1	0.000	0.023	0.039
		AA vs GG	1.1 (0.84–1.44)	0.72	0.470	94.65	83.1	0.000	0.636	0.510
		AG+AA vs GG	0.98 (0.81–1.17)	0.27	0.786	86.32	81.5	0.000	0.092	0.070
		AA vs AG+GG	1.13 (0.91–1.40)	1.12	0.262	76.08	79.0	0.000	0.832	0.458
		A vs G	1.01 (0.87–1.16)	0.11	0.913	119.83	86.6	0.000	0.352	0.217
Breast cancer	7	AG vs GG	0.94 (0.66–1.33)	0.35	0.729	26.00	76.9	0.000	0.050	0.099
		AA vs GG	1.03 (0.48–2.22)	0.08	0.939	44.25	86.4	0.000	0.358	0.186
		AG+AA vs GG	0.91 (0.58–1.44)	0.40	0.691	50.88	88.2	0.000	0.135	0.099
		AA vs AG+GG	1.05 (0.56–1.96)	0.16	0.877	31.50	81.0	0.000	0.540	0.176
		A vs G	0.92 (0.61–1.38)	0.40	0.690	71.30	91.6	0.000	0.233	0.072
Prostate cancer	6	AG vs GG	1.16 (1.02–1.32)	2.25	0.025	2.91	0.0	0.714	0.422	0.188
		AA vs GG	1.60 (0.98–2.61)	1.90	0.058	13.39	62.7	0.020	0.378	0.462
		AG+AA vs GG	1.20 (1.06–1.35)	2.89	0.004	1.87	0.0	0.892	0.639	0.851
		AA vs AG+GG	1.56 (0.92–2.65)	1.63	0.103	17.29	71.1	0.004	0.452	0.624
		A vs G	1.22 (1.06–1.41)	2.81	0.005	7.55	33.8	0.183	0.279	0.260
Gastrointestinal cancer	7	AG vs GG	0.92 (0.80–1.08)	1.17	0.243	6.73	10.9	0.346	0.071	0.090
		AA vs GG	1.06 (0.88–1.28)	0.63	0.528	3.72	0.0	0.715	0.581	0.881
		AG+AA vs GG	0.95 (0.84–1.09)	0.70	0.487	6.14	2.2	0.408	0.093	0.652
		AA vs AG+GG	1.10 (0.94–1.30)	1.17	0.241	2.34	0.0	0.886	0.824	0.762
		A vs G	1.01 (0.92–1.10)	0.16	0.873	4.97	0.0	0.627	0.172	0.230

Bold values denote statistical significance at the $P < 0.05$ level.

Figure 4. Forest plot for the association between FGFR4 rs1966265 and overall cancer risk in recessive (TT vs CT+CC) models

© 2020 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY).
Discussion

FGFs and their receptors (FGFRs) regulate numerous cellular processes including the regulation of cell proliferation, differentiation, migration, and metabolism [12]. Deregulation of FGFRs signaling have been found to play an important role in cancer development and progression as well as resistance to anticancer [53–55]. Overexpression of FGFR4 predict metastasis and poor survival outcome in various cancers [56–58]. Blocking FGFR4 significantly suppresses the cancer and indicates that FGFR4 is a potential target for the cancer treatment [59]. Polymorphisms in the FGFR4 rs351855 (Gly388Arg) polymorphism, is positioned in the transmembrane domain of the EGFR4. It has been found that Arg388 allele causes increased receptor stability and prolonged receptor activation [60].
Several reports have examined the relationship between FGFR4 gene polymorphisms and diverse cancer types [13–20,22–42]. However, the findings were inconsistent. Therefore, this updated meta-analysis including more eligible studies was performed to evaluate the impact of FGFR4 polymorphisms on cancer susceptibility. For FGFR4 rs351855 polymorphism, the findings from 34 studies including 10407 cases and 12382 controls did not support an association between this polymorphism and overall cancer susceptibility. Stratified analyses showed that this SNP significantly increased the risk of prostate cancer (n=6) in heterozygous, homozygous, dominant, and allele genetic models. The variant was not related to breast cancer as well as gastrointestinal cancer. Furthermore, the variant was not correlated with ethnicity. A meta-analysis performed by Xiong et al. [51] from 27 studies indicated a significant association between FGFR4 rs351855 polymorphism and overall cancer risk in recessive genetic model. Stratified analysis showed that rs351855 SNP significantly increased the risk of prostate cancer. A meta-analysis performed by Shu et al. [61] on 14 studies investigated the association between FGFR4 rs351855 polymorphism and various cancer risks indicated a significant association between this SNP and risk of overall cancer in all heterozygous, homozygous, dominant, recessive, and allele tested genetic models.

FGFR4 rs1966265 changes chemotherapy response in breast cancer [62], higher risk of oral squamous cell carcinoma susceptibility [31], initiation of cervical cancer (Taiwanese women) [19], and higher risk of breast cancer in Chinese women of Heilongjiang province [16]. FGFR4 rs2011077 TC+CC polymorphism is associated with higher tumor stage, tumor size, and grading in urothelial cell carcinoma [21]. FGFR4 rs2011077 with the GG genotype also increased the risk of prostate cancer in Japanese population [26].

To the best of our knowledge, for the first time, we performed pooled analysis to inspect the impact of rs1966265, rs7708357, rs2011077, and rs376618 polymorphisms and overall cancer risk.

For FGFR4 rs1966265 polymorphism, the findings revealed that this variant significantly reduced the risk of cancer susceptibility in recessive (OR = 0.87, 95% CI = 0.78–0.97, P = 0.009, TT vs CT+CC) model (Table 2 and Figure 3). Regarding rs7708357 polymorphism, the finding indicated that the rs1966265 variant significantly increased the risk of overall cancer in dominant (OR = 1.17, 95% CI = 1.02–1.36, P = 0.028, AG+AA GG) genetic model (Table 2 and Figure 4). While, the rs2011077 and rs376618 polymorphisms were not associated with cancer risk in any genetic models tested (Table 2).

Some limitations of this meta-analysis should be taken into account. First, the sample sizes of this meta-analysis were not large especially for rs1966265 (n=7 studies), rs7708357 (n=5 studies), rs2011077 (n=4 studies), and rs376618 (n=3 studies) polymorphisms as well as in stratified analyses, which may lead to reduced statistical power. Second, the strength of the association were measured by unadjusted ORs for confounding factors due to the lack

Figure 7. Sensitivity analysis on the association between the rs351855 polymorphism and susceptibility of overall cancer in allele genetic model (A vs G)
of demographic and environmental factors, which might have affected the results. Third, publication bias may be unavoidable since we were only able to acquire data from published articles. Finally, the meta-analysis was associated with a significant heterogeneity in some polymorphisms.

The current investigation provided a source for basic medical scientist and clinician to understand the importance of FGFR4 in different types of cancers and use the results as potential biomarkers for susceptibility to cancers. It also provided a collection of previous investigation on this gene to help epidemiologist scientists for their future investigations (Rev 1-4).

In summary, this meta-analysis revealed that FGFR4 rs351855 (Gly388Arg) polymorphism might be a marker for susceptibility to prostate cancer. The rs1966265 polymorphism significantly decreased and rs1966265 polymorphism significantly increased the risk of overall cancer. No significant associations were found for the FGFR4 rs2011077 and rs376618 polymorphisms. However, these findings need to be further confirmed through large samples and different ethnic populations.

Competing Interests
The authors declare that there are no competing interests associated with the manuscript.

Funding
The authors declare that there are no sources of funding to be acknowledged.

Author Contribution
Abdolkarim Moazeni-Roodi did the analysis, participated in revision and updating the manuscript. Sahel Sarabandi and Shima Karami did the literature review and helped in data analysis. Mohammad Hashemi prepared the final draft of manuscript and supervised the analysis. Saeid Ghavami prepared the final edit of manuscript, supervised the whole project and led the revision after passing away of Professor Mohammad Hashemi.

Acknowledgements
We would like to dedicate this article to Professor Mohammad Hashemi who passed away recently after the submission of this work. He was a pioneer in genetic studies.

Abbreviations
CD334, cluster of differentiation 334; CI, confidence interval; EGFR , epidermal growth factor receptor; EMT , epithelial-to-mesenchymal transition; FGF, fibroblast growth factor; FGFR, FGF receptor; HNSCC , head and neck squamous cell carcinoma; MAPK , mitogen-activated protein kinase; OR, odds ratio; PI3K , Phosphoinositide 3-kinases; PLCγ, phospholipase C gamma; RTK, receptor tyrosine kinases; SNP , single nucleotide polymorphism; STAT, signal transducer and activator of transcription.

References
1 Moazeni-Roodi, A., Aftabi, S., Sarabandi, S., Karami, S., Hashemi, M. and Ghavami, S. (2020) Genetic association between HOTAIR gene and the risk of cancer: an updated meta-analysis. J. Genet. 99, 48, https://doi.org/10.1007/s12041-020-01214-w
2 Hashemi, M., Aftabi, S., Moazeni-Roodi, A., Sarani, H., Wiechec, E. and Ghavami, S. (2020) Association of CASP8 polymorphisms and cancer susceptibility: a meta-analysis. Eur. J. Pharmacol. 881, 173201, https://doi.org/10.1016/j.ejphar.2020.173201
3 Hashemi, M., Karami, S., Sarabandi, S., Moazeni-Roodi, A., Malecki, A., Ghavami, S. et al. (2019) Association between PD-1 and PD-L1 polymorphisms and the risk of cancer: a meta-analysis of case-control studies. Cancers (Basel) 11, https://doi.org/10.3390/cancers11081150
4 Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R.L., Torre, L.A. and Jemal, A. (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68, 394–424, https://doi.org/10.3322/caac.21492
5 Moazeni-Roodi, A., Ghavami, S. and Hashemi, M. (2019) Survivin rs9904341 polymorphism significantly increased the risk of cancer: evidence from an updated meta-analysis of case-control studies. Int. J. Oncol. 24, 335–349, https://doi.org/10.1016/j.ijon.2019.01.009-y
6 Hashemi, M., Sarabandi, S., Karami, S., Smieja, J., Moazeni-Roodi, A., Ghavami, S. et al. (2020) LMO1 polymorphisms and the risk of neuroblastoma: Assessment of meta-analysis of case-control studies. J. Cell. Mol. Med. 24, 1160–1168, https://doi.org/10.1111/jcmm.14836
7 Shojaei, S., Koleini, N., Samiei, E., Aghaei, M., Cole, L.K., Alizadeh, J. et al. (2020) Simvastatin increases temozolomide-induced cell death by targeting the fusion of autophagosomes and lysosomes. FEBS J. 287, 1005–1034, https://doi.org/10.1111/febs.15069
8 Burke, D., Wilkes, D., Blundell, T.L. and Malcolm, S. (1998) Fibroblast growth factor receptors: lessons from the genes. Trends Biochem. Sci. 23, 59–62, https://doi.org/10.1016/S0968-0004(97)01170-5
9 Semrad, T.J. and Mack, P.C. (2012) Fibroblast growth factor signaling in non-small-cell lung cancer. Clin. Lung Cancer 13, 90–95, https://doi.org/10.1016/j.cllc.2011.08.001
10 Powers, C.J., McLeskey, S.W. and Wellstein, A. (2000) Fibroblast growth factors, their receptors and signaling. Endocr. Relat. Cancer 7, 165–197, https://doi.org/10.1677/erc.0.0070165

11 Turner, N. and Grose, R. (2010) Fibroblast growth factor signalling: from development to cancer. Nat. Rev. Cancer 10, 116–129, https://doi.org/10.1038/nrc2780

12 Läng, L. and Teng, Y. (2019) Fibroblast growth factor receptor 4 targeting in cancer: new insights into mechanisms and therapeutic strategies. Cells 8, 31, https://doi.org/10.3390/cells8010031

13 Bange, J., Prechtli, D., Cheburkin, Y., Specht, K., Harbeck, N., Schmitt, M. et al. (2002) Cancer progression and tumor cell motility are associated with the FGFR4 Arg388 allele. Cancer Res. 62, 840–847

14 Batschauer, A.P., Cruz, N.G., Oliveira, V.C., Coelho, F.F., Santos, I.R., Alves, M.T. et al. (2011) HFE, MTHFR, and FGFR4 genes polymorphisms and breast cancer in Brazilian women. Mol. Cell. Biochem. 357, 247–253, https://doi.org/10.1007/s11010-011-0895-1

15 Hosseinl, M. (2017) The relationship between polymorphic fibroblast growth factor receptor (FGFR) gene and breast cancer risk. Arch. Breast Cancer 4, 24–27

16 Jiang, Y., Sun, S., Wei, W., Ren, Y., Liu, J. and Pang, D. (2015) Association of FGFR3 and FGFR4 gene polymorphisms with breast cancer in Chinese women of Heilongjiang province. Oncotarget 6, 34023–34029, https://doi.org/10.18632/oncotarget.5850

17 Naidu, R., Har, Y.C. and Taib, N.A. (2009) Polymorphism of FGFR4 Gly388Arg does not confer an increased risk to breast cancer development. Oncol. Res. 18, 65–71, https://doi.org/10.3727/096504009789954609

18 Spinola, M., Leoni, V.P., Tanuma, J., Pettinichio, A., Frattini, M., Signoroni, S. et al. (2005) FGFR4 Gly388Arg polymorphism and prognosis of breast cancer and colorectal cancer. Oncol. Rep. 14, 415–419

19 Chen, T.H., Yang, S.F., Liu, Y.F., Lin, W.L., Han, C.P. and Wang, P.H. (2018) Association of fibroblast growth factor receptor 4 genetic polymorphisms with the development of uterine cervical cancer and patient prognosis. Reprod. Sci. 25, 86–93, https://doi.org/10.1177/1933719117702250

20 Li, Y.P., Zhang, L., Zou, Y.L. and Yu, Y. (2017) Association between FGFR4 gene polymorphism and high-risk HPV infection cervical cancer. Asian Pac. J. Trop. Med. 10, 680–684, https://doi.org/10.1016/j.ajpm.2017.07.008

21 Tsay, M.-D., Hsieh, M.-J., Lee, C.-Y., Wang, S.-S., Chen, C.-S., Hung, S.-C. et al. (2020) Involvement of FGFR4 gene variants on the clinical severity in urothelial cell carcinoma. Int. J. Environ. Res. Public Health 17, 129, https://doi.org/10.3390/ijerph17010129

22 Heinzle, C., Gour, A., Hunjadi, M., Erdem, Z., Gauglhofer, C., Stattner, S. et al. (2017) Differential effects of polymorphic alleles of FGF receptor 4 on colon cancer growth and metastasis. Cancer Res. 72, 5767–5777, https://doi.org/10.1158/0008-5472.CAN-16-3654

23 Chen, Y.Y., Lin, C.T., Liu, D.P., Su, Y.Y., Zhu, G.S. et al. (2013) FGFR3 and FGFR4 genetic polymorphisms and breast cancer risk in Taiwanese women. Trop. Med. Int. Health 18, 4568–4575, https://doi.org/10.1111/tmi.12312

24 Fitzgerald, L.M., Karlins, E., Karyadi, D.M., Kwon, E.M., Koopmeiners, J.S., Stanford, J.L. et al. (2009) Association of FGFR4 genetic polymorphisms with prostate cancer risk and prognosis. Prostate Cancer Prostatac Dis. 12, 192–197, https://doi.org/10.1038/prcan.2008.46

25 Ho, C.K., Anwar, S., Nanda, J. and Habib, F.K. (2010) FGFR4 Gly388Arg polymorphism and prostate cancer risk in Scottish men. Prostate Cancer Prostatac Dis. 13, 94–96, https://doi.org/10.1038/prcan.2009.49

26 Ma, Z., Tsujiya, N., Yusa, T., Insue, T., Kumazawa, T., Narita, S. et al. (2008) Polymorphisms of fibroblast growth factor receptor 4 have association with the development of prostate cancer and benign prostatic hyperplasia and the progression of prostate cancer in a Japanese population. Int. J. Cancer 123, 2574–2579, https://doi.org/10.1002/ijc.23578

27 Wang, J., Stockton, D.W. and Littmann, M. (2004) The fibroblast growth factor receptor-4 Arg388 allele is associated with prostate cancer initiation and progression. Clin. Cancer Res. 10, 6169–6178, https://doi.org/10.1158/1078-0432.CCR-04-0406

28 Ansell, A., Farnebo, L., Grenman, R., Roberg, K. and Thunell, L.K. (2009) Polymorphism of FGFR4 in cancer development and sensitivity to cisplatin and colon cancer growth and metastasis. Cancer Res. 72, 5767–5777, https://doi.org/10.1158/0008-5472.CAN-08-3007

29 Wimmer, E., Ihrler, S., Gires, D., Streit, S., Issing, W. and Bergmann, C. (2019) Fibroblast growth factor receptor 4 3′UTR polymorphism in cervical cancer patients. World J. Gastroenterol. 19, 4568–4575, https://doi.org/10.3748/wjg.v19.i28.4568

30 Bange, J., Prechtl, D., Cheburkin, Y., Specht, K., Harbeck, N., Schmitt, M. et al. (2002) Cancer progression and tumor cell motility are associated with the FGFR4 Arg388 allele. Cancer Res. 62, 840–847

31 Batschauer, A.P., Cruz, N.G., Oliveira, V.C., Coelho, F.F., Santos, I.R., Alves, M.T. et al. (2011) HFE, MTHFR, and FGFR4 genes polymorphisms and breast cancer in Brazilian women. Mol. Cell. Biochem. 357, 247–253, https://doi.org/10.1007/s11010-011-0895-1

32 Spinola, M., Leoni, V.P., Tanuma, J., Pettinichio, A., Frattini, M., Signoroni, S. et al. (2005) FGFR4 Gly388Arg polymorphism and prognosis of breast cancer and colorectal cancer. Oncol. Rep. 14, 415–419

33 Ture, M., Yakut, T., Deligonul, A., Karkucak, M., Sag, S.O., Hartavi, M. et al. (2015) Investigation of FGFR4 (Gly388Arg) gene polymorphism in primary liver cirrhosis in hepatocarcinoma. World J. Clin. Oncol. 6, 2245–2250, https://doi.org/10.1016/j.wjco.2015.03.136

34 Fang, H.M., Tian, G., Zhou, L.J., Zhou, H.Y. and Fang, Y.Z. (2013) FGFR4 genetic polymorphisms determine the chemotherapy response of Chinese patients with non-small cell lung cancer. Acta Pharmacol. Sin. 34, 549–554, https://doi.org/10.1038/aps.2012.206

35 Ho, H.K., Pok, S., Streit, S., Ruhe, J.E., Hart, S., Lim, K.S. et al. (2009) Fibroblast growth factor receptor 4 regulates proliferation, anti-apoptosis and alpha-fetoprotein secretion during hepatic carcinoma progression and represents a potential target for therapeutic intervention. J. Hepatol. 50, 118–127, https://doi.org/10.1016/j.jhep.2008.08.015

36 Sheu, M.J., Hsieh, M.J., Chiang, W.L., Yang, S.F., Lee, H.L., Lee, L.M. et al. (2015) Fibroblast growth factor receptor 4 polymorphism is associated with liver cirrhosis in hepatocarcinoma. PLoS ONE 10, e0122961, https://doi.org/10.1371/journal.pone.0122961

37 Yang, Y., Zhou, Y., Lu, M., An, Y., Li, R., Chen, Y. et al. (2012) Association between fibroblast growth factor receptor 4 polymorphisms and risk of hepatocellular carcinoma. Mol. Carcinog. 51, 515–521, https://doi.org/10.1002/mc.20805

38 Morimoto, Y., Ozaki, T., Ouchida, M., Umehara, N., Ohata, N., Yeshida, A. et al. (2003) Single nucleotide polymorphism in fibroblast growth factor receptor 4 at codon 388 is associated with prognosis in high-grade soft tissue sarcoma. Cancer 98, 2245–2250, https://doi.org/10.1002/cncr.11778

© 2020 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY).
39 Nan, H., Qureshi, A.A., Hunter, D.J. and Han, J. (2009) Genetic variants in FGFR2 and FGFR4 genes and skin cancer risk in the Nurses’ Health Study. *BMC Cancer* 9, 172, https://doi.org/10.1186/1471-2407-9-172

40 Whittle, S.B., Reyes, S., Du, M., Gireud, M., Zhang, L., Woodfield, S.E. et al. (2016) A polymorphism in the FGFR4 gene is associated with risk of neuroblastoma and altered receptor degradation. *J. Pediatr. Hematol. Oncol.* 38, 131–138, https://doi.org/10.1097/MPH.0000000000000506

41 Gao, L., Feng, Z., Li, Q., Li, L., Chen, L. and Xiao, T. (2014) Fibroblast growth factor receptor 4 polymorphism is associated with increased risk and poor prognosis of non-Hodgkin’s lymphoma. *Tumour Biol.* 35, 2997–3002, https://doi.org/10.1007/s13277-013-1386-7

42 Mawrin, C., Kirches, E., Diete, S., Wiedermann, F.R., Schneider, T., Firsching, R. et al. (2006) Analysis of a single nucleotide polymorphism in codon 388 of the FGFR4 gene in malignant gliomas. *Cancer Lett.* 239, 239–245, https://doi.org/10.1016/j.canlet.2005.08.013

43 Wei, W., You, Z., Sun, S., Wang, Y., Zhang, X., Pang, D. et al. (2018) Prognostic implications of fibroblast growth factor receptor 4 polymorphisms in primary breast cancer. *Mol. Carcinog.* 57, 988–996, https://doi.org/10.1002/mc.22819

44 Yu, W., Feng, S., Dakhova, O., Creighton, C.J., Cai, Y., Wang, J. et al. (2011) FGFR-4 Arg(3)(8)(8) enhances prostate cancer progression via extracellular signal-related kinase and serum response factor signaling. *Clin. Cancer Res.* 17, 4355–4366, https://doi.org/10.1158/1078-0432.CCR-10-2858

45 Ye, Y., Shi, Y., Zhou, Y., Du, C., Wang, C., Zhan, H. et al. (2010) The fibroblast growth factor receptor-4 Arg388 allele is associated with gastric cancer progression. *Ann. Surg. Oncol.* 17, 3354–3361, https://doi.org/10.1245/s10434-010-1323-6

46 Falvello, F.S., Frullanti, E., Galvan, A., Spinola, M., Noci, S., De Cecco, L. et al. (2009) FGFR4 Gly388Arg polymorphism may affect the clinical stage of patients with lung cancer by modulating the transcriptional profile of normal lung. *Int. J. Cancer* 124, 2880–2885, https://doi.org/10.1002/ijc.24302

47 Gallagher, C.S., Makinen, N., Harris, H.R., Rahmioglu, N., Uimari, O., Cook, J.P. et al. (2019) Genome-wide association and epidemiological analyses reveal common genetic origins between uterine leiomyomata and endometriosis. *Nat. Commun.* 10, 4857, https://doi.org/10.1038/s41467-019-12536-4

48 Hsu, Y.H., Estrada, K., Engelou, E., Ackert-Bicknell, C., Akesson, K., Beck, T. et al. (2019) Meta-analysis of genomewide association studies reveals genetic variants for hip bone geometry. *Bone. Res.* 7, 1284–1296, https://doi.org/10.1002/bonr.3698

49 Baird, D.A., Evans, D.S., Kamanu, F.K., Gregory, J.S., Saunders, F.R., Giuraniuc, C.V. et al. (2019) Identification of novel loci associated with hip shape: a meta-analysis of genomewide association studies. *Bone Res.* 34, 241–251, https://doi.org/10.1002/bonr.3605

50 Wang, J., Liu, Q., Yuan, S., Xie, W., Liu, Y., Xiang, Y. et al. (2017) Genetic predisposition to lung cancer: comprehensive literature integration, meta-analysis, and multiple evidence assessment of candidate-gene association studies. *Sci. Rep.* 7, 8371, https://doi.org/10.1038/s41598-017-07737-0

51 Xiong, S.W., Ma, J., Feng, F., Fu, W., Shu, S.R., Ma, T. et al. (2017) Functional FGFR4 Gly388Arg polymorphism contributes to cancer susceptibility: Evidence from meta-analysis. *Oncotarget* 8, 25300–25309, https://doi.org/10.18632/oncotarget.15811

52 He, J., Liao, X.Y., Zhu, J.H., Xue, W.Q., Shen, G.P., Huang, S.Y. et al. (2014) Association of MTHFR C677T and A1298C polymorphisms with non-Hodgkin lymphoma susceptibility: evidence from a meta-analysis. *Sci. Rep.* 4, 6159, https://doi.org/10.1038/srep06159

53 Babina, I.S. and Turner, N.C. (2017) Advances and challenges in targeting FGFR signalling in cancer. *Nat. Rev. Cancer* 17, 318–332, https://doi.org/10.1038/nrc.2017.8

54 Porta, R., Borea, R., Coelho, A., Khan, S., Araujo, A., Reclusa, P. et al. (2017) FGFR a promising druggable target in cancer: Molecular biology and new drugs. *Crit. Rev. Oncol. Hematol.* 113, 256–267, https://doi.org/10.1016/j.critrevonc.2017.02.018

55 Dienstmann, R., Redon, J., Prat, A., Perez-Garcia, J., Adamo, B., Feip, E. et al. (2014) Genomic aberrations in the FGFR pathway: opportunities for targeted therapies in solid tumors. *Ann. Oncol.* 25, 552–563, https://doi.org/10.1093/annonc/mdt419

56 Ye, Y.W., Zhang, X., Zhou, Y., Wu, J., Zhao, C., Yuan, L. et al. (2012) The correlations between the expression of FGFR4 protein and clinicopathological parameters as well as prognosis of gastric cancer patients. *J. Surg. Oncol.* 106, 872–879, https://doi.org/10.1002/jso.23153

57 Li, J., Ye, Y., Wang, M., Lu, L., Han, C., Zhou, Y. et al. (2016) The over-expression of FGFR4 could influence the features of gastric cancer cells and inhibit the efficacy of PD173074 and 5-fluorouracil towards gastric cancer. *Tumour Biol.* 37, 6881–6891, https://doi.org/10.1007/s13277-015-4411-1

58 Sahadevan, K., Darby, S., Leung, H.Y., Mathers, M.E., Robson, C.N. and Gnanapragasam, V.J. (2007) Selective over-expression of fibroblast growth factor receptors 1 and 4 in clinical prostate cancer. *J. Pathol.* 213, 82–90, https://doi.org/10.1002/jpath.2205

59 Xin, Z., Song, X., Jiang, B., Gongsun, X., Song, L., Qin, Q. et al. (2018) Blocking FGFR4 exerts distinct anti-tumorogenic effects in esophageal squamous cell carcinoma. *Thorac. Cancer* 9, 1687–1698, https://doi.org/10.1111/1759-7714.12883

60 Wang, J., Yu, W., Cai, Y., Ren, C. and Ittmann, M.M. (2008) Altered fibroblast growth factor receptor 4 stability promotes prostate cancer progression. *Neoplasia* 10, 847–856, https://doi.org/10.1593/neo.08450

61 Shu, C. and Wang, J. (2017) Association between FGFR4 Gly388Arg polymorphism (rs351855) and cancer risk: A meta analysis including 10,584 subjects. *Meta Gene* 13, 32–37, https://doi.org/10.1016/j.mgene.2017.04.003

62 Chen, L., Qi, H., Zhang, L., Li, H., Shao, J., Chen, H. et al. (2018) Effects of FGFR gene polymorphisms on response and toxicity of cyclophosphamide-epirubicin-docetaxel-based chemotherapy in breast cancer patients. *BMC Cancer* 18, 1038, https://doi.org/10.1186/s12885-018-4951-z