Effect of the droplet activation process on microphysical properties of warm clouds

Kentaroh Suzuki1, Teruyuki Nakajima2, Takashi Y Nakajima3 and Graeme L Stephens1

1 Department of Atmospheric Science, Colorado State University, Fort Collins, CO 80523-1371, USA
2 Atmosphere and Ocean Research Institute, University of Tokyo, Chiba 277-8568, Japan
3 Research and Information Center, Tokai University, Tokyo 151-0063, Japan

E-mail: kenta@atmos.colostate.edu

Received 6 May 2010
Accepted for publication 15 June 2010
Published 30 June 2010
Online at stacks.iop.org/ERL/5/024012

Abstract
This study investigates the effect of the droplet activation process on microphysical characteristics of warm clouds represented by correlation statistics between cloud droplet effective radius r_e and cloud optical thickness τ_c. The conceptual adiabatic model is first employed to interpret satellite-observed $r_e-\tau_c$ correlation statistics over two different regions and to reveal distinctively different increasing patterns of droplet number concentration between these regions. This difference is attributed to a different behavior of the droplet activation process induced by differing microphysical conditions of aerosols. Numerical experiments of changing aerosol size spectrum are then performed with a spectral bin microphysics cloud model. The results show that the slope of the size spectrum controls the $r_e-\tau_c$ relationship through its effect on increasing pattern of droplet number concentration due to the activation process. The simulated results are also found to reproduce the $r_e-\tau_c$ correlation statistics closely resembling those observed when the slope parameter and the aerosol amount are appropriately chosen. These results suggest that the $r_e-\tau_c$ correlation statistics observed by remote sensing studies contains a signature of how the droplet activation process takes place in the real clouds.

Keywords: cloud microphysics, aerosol indirect effect, satellite remote sensing, numerical modeling

1. Introduction
Warm (liquid) clouds exert significant effects on the radiation budget and hydrological cycle in the Earth’s climate. These effects of the clouds are characterized by their microphysical structures, which are controlled by particle formation and growth processes. The liquid cloud droplets are formed through activation process from aerosols serving as cloud condensation nuclei (CCNs) and then grow through condensation and coalescence processes that are dominant for non-drizzling and drizzling stages of cloud development, respectively (e.g., Rogers and Yau 1989). These microphysical processes determine the physical properties of the clouds represented by parameters such as cloud droplet effective radius r_e and cloud optical thickness τ_c, which have been observed by air-borne and space-borne remote sensing techniques (Nakajima et al 1991, Han et al 1994, Nakajima and Nakajima 1995, Kawamoto et al 2001).

Characteristic relationships have been found between these two quantities by previous studies. Nakajima et al (1991) found two distinct relationships between them, i.e. positive and negative correlation patterns. The former and the latter were found for non-drizzling and drizzling clouds, respectively, suggesting distinctively different microphysical characteristics between these two stages of cloud development. These correlation statistics also have an important implication for distinct climatic effects of the clouds with different correlation patterns, which should have very different radiative properties (Slingo 1989).
These analyses were extended to wider regions of the First International Satellite Cloud Climatology Project (ISCCP) Regional Experiment (FIRE) and the Atlantic Stratocumulus Transition Experiment (ASTEX) by Nakajima and Nakajima (1995), who also reported these positive and negative correlation patterns that are found in a more complicated manner. Shown in figure 1 are typical examples of their results illustrating the correlation statistics between r_e and τ_c obtained from the FIRE (figure 1(a)) and ASTEX (figure 1(b)) regions. Figure 1 illustrates that the joint histogram is dominated by positive and negative correlation patterns for the ASTEX and FIRE regions, respectively. Fundamental mechanisms responsible for these correlation statistics were explored by our recent studies (Suzuki et al. 2006, 2010) using a detailed microphysics cloud model. These studies showed that the positive and negative correlation patterns are formed by condensation and coalescence processes, respectively, and also showed how the correlation statistics systematically change with differing conditions of aerosol amount and static stability through their effects on these microphysical processes.

Although these results well explain basic characters of the correlation statistics obtained by previous remote sensing studies, observed joint histograms shown in figure 1 contain more complicated relationships between r_e and τ_c. The example for the FIRE statistics (figure 1(a)) includes a tiny fragment of positive correlation below $r_e \sim 12 \mu m$ underneath the large negative correlation branch, illustrating a ‘high-heeled’ shape as a whole. The ASTEX plot (figure 1(b)), in contrast, appears to include only the positive correlation branch without the negative correlation part. This contrast between these two cases is associated with different behaviors of the droplet activation process as demonstrated in this study, where we investigate how the aerosol microphysical conditions influence the $r_e-\tau_c$ correlation statistics through the droplet activation process and thereby complement our previous studies that examined condensation and coalescence processes.

In this study, the conceptual adiabatic model is at first employed to interpret the satellite-observed correlation statistics and to underscore the significance of the droplet activation process in understanding the distinct difference between the FIRE and ASTEX statistics. We then perform numerical experiments of changing the aerosol size spectrum with a spectral bin microphysics cloud model and demonstrate how the different behaviors of activation process induced by differing aerosol microphysical assumptions lead to the difference in shape of the correlation statistics.

2. Implication from adiabatic model

Figure 1 includes the contour curves associated with specified values of the number concentration N_c and the liquid water path W given by the adiabatic model. This conceptual model introduced by previous studies (e.g., Brenguier et al. 2000) conveniently describes how the cloud droplets tend to grow vertically through adiabatic condensational growth processes.

According to this model, the cloud water content q tends to grow linearly with height h from the cloud base as

$$q = \lambda h,$$

where λ represents the adiabaticity of the atmosphere and is assumed to be $5.2 \times 10^{-3} \text{ g m}^{-2}$ in this study. Under the assumption of constant number concentration N_c for the condensation process, the effective particle radius r_e can be
represented as
\[r_e(h) = k^{-1/3} \left(\frac{3}{4\pi \rho_w N_c} q(h) \right)^{1/3}, \]
where \(\rho_w \) denotes the liquid water density and \(k \) represents the factor relating the effective radius to volume-mean radius and is assumed as \(k^{-1/3} = 1.1 \). These profiles of \(q \) and \(r_e \) determine the optical thickness \(\tau_c \), the liquid water path \(W \) and the effective radius \(r_e(H) \) at the cloud top when the geometrical thickness \(H \) of the cloud is given. The relationships between \(\tau_c \) and \(r_e(H) \) for given values of \(N_c \) and \(W \) are obtained as (see Suzuki et al. (2010) for derivations)
\[
\tau_c = \frac{8}{5} (\pi k)^2 \rho_w N_c^2 r_e(H)^5
\]
and
\[
\tau_c = \frac{9}{5} \left(\frac{W}{\rho_w r_e(H)} \right),
\]
respectively.

Equation (1) represents the condensational growth curves for specified values of \(N_c \) and is shown by blue contours in figure 1. The liquid water path \(W \), representing the vertical extent of the cloud as (2), is shown by red contours in figure 1. These theoretical curves offer a hint at how \(N_c \) and \(W \) tend to change associated with particle growth. Figure 1(a) shows that the lowest edge of the joint histogram crosses the contour curves for specified \(N_c \) values, illustrating a rapid increase in \(N_c \) with increasing \(r_e \) for the incipient stage of cloud formation over the FIRE region, whereas the joint histogram in figure 1(b) shows a more gradual change in \(N_c \) as \(r_e \) increases over the ASTEX region. This difference in changing pattern of \(N_c \) characterizes the contrast in shape of the correlation statistics between these two regions.

The values of \(N_c \) implied here represent equivalent values of the droplet number concentration determined from given effective radius and optical thickness when the adiabatic condensational growth process is assumed. The change in \(N_c \) therefore means the change in this equivalent quantity due to the processes other than the adiabatic condensational growth. A plausible mechanism responsible for the increase in number concentration is provided by the droplet activation process that forms liquid cloud particles from aerosols serving as CCNs. The activation process operates to add the cloud droplets to an existing cloud as determined by the shape of the aerosol size spectrum and a typical increase in supersaturation just above the cloud base. Different increasing patterns of \(N_c \) found between figures 1(a) and (b) suggest that the activation process takes place in a different manner so the liquid particles increase in number at different rates between these two cases. The droplet activation process occurs in a manner that depends on aerosol size spectrum and updraft velocity, the former and the latter being associated with aerosol microphysics and static stability, respectively. Although the updraft velocity is of importance in determining the supersaturation value that affects how many aerosol particles are activated, the aerosol size spectrum is examined here as a factor controlling the way the activation process occurs. Since the droplet activation starts to occur from the largest-sized aerosol particles and proceeds toward smaller sizes, the shape of the aerosol size spectrum characterizes how the number concentration \(N_c \) increases through the activation process. We then investigate this effect on \(r_e \) and \(\tau_c \) with a bin-type detailed microphysics cloud model. Numerical experiments of changing the aerosol size distribution assumptions are performed as described in the next section.

3. Bin model simulation

The model used for the experiments is a non-hydrostatic spectral bin microphysics cloud model developed by Suzuki et al. (2006, 2010) based on the original model of Khain and Sednev (1996) and Khain et al. (1999). This model predicts an explicit change in size distribution function of cloud particles taking into account the microphysical processes of warm clouds, i.e. activation from aerosols, condensational growth and coalescence processes as described in Suzuki et al. (2010).

The droplet activation process, a main focus of this study, is computed from the size distribution function of hygroscopic aerosols \(f_{\text{CCN}}(r) \), which is also predicted in the model. The critical size of aerosol particle is determined from the supersaturation \(S \) according to the Köhler theory and the part of the aerosol spectra greater than the critical size is activated to grow into cloud particles. The cloud particles thus formed are subject to further growth due to condensation and coalescence processes (Suzuki et al. 2010).

The droplet activation process therefore takes place in a manner that depends on the aerosol size spectrum, which is initially assumed to have a power law form as
\[
f_{\text{CCN}}(z, r) = f_0(z) \left(\frac{r}{r_0} \right)^{-p},
\]
where \(r_0 = 0.1 \mu m \) and \(f_0(z) \) is given by an exponential decay profile as
\[
f_0(z) = f_{\text{sc}} \exp \left(-\frac{z}{H} \right),
\]
where \(f_{\text{sc}} \) and \(H \) denote the surface value of \(f_0 \) and the scale height set as 1 km here, respectively. The parameter \(p \) represents the slope of the size spectrum and determines how the number concentration of cloud particles potentially increases in the course of cloud formation: the larger the value of \(p \) is, the more rapidly the number concentration tends to increase. Note that the case of \(p = 4 \) is referred to as the Junge distribution. To examine this effect on \(r_e - \tau_c \) correlation statistics, we perform sensitivity experiments of changing this parameter \(p \) in the simulation of warm cloud formation. We conduct idealized two-dimensional experiments to form a single low-level warm cloud by the experimental design described in Suzuki et al. (2010). This simulation generates low-level clouds with updraft velocities of around 1–2 m s\(^{-1}\). The computational domain is 30 km in the horizontal and 5 km in the vertical direction and the resolutions are 250 m in the horizontal and 50 m in the vertical direction. The unstable and stable layers are assumed for
Figure 2. Joint probability distribution functions between r_e and τ_c simulated by the model for pristine (blue), moderate (green) and polluted (red) conditions under the assumptions of (a) $p = 2$, (b) $p = 3$, (c) $p = 4$ and (d) $p = 5$. The contours are for 1, 3, 10, 30, 50 and 90% μm^{-1}. Theoretical relationships given by the adiabatic model are also shown.

Figure 2 shows the simulated results in the form of $r_e-\tau_c$ joint histograms for pristine (blue), moderate (green) and polluted (red) aerosol amount conditions under the assumption of $p = 2$ (figure 2(a)), $p = 3$ (figure 2(b)), $p = 4$ (figure 2(c)) and $p = 5$ (figure 2(d)). These figures also include theoretical relationships given by the adiabatic model in a manner similar to figure 1. Figure 2 indicates that r_e and τ_c tend to become smaller and larger, respectively, as the aerosol amount increases from pristine to polluted conditions as found by Suzuki et al (2010) for all cases of p values. These tendencies are found to occur in a similar way to changing number concentration N_c: the plot for the more polluted case coincides with the contours for larger N_c values.

Besides this common tendency with changing aerosol amount, the correlation statistics are also found to vary in shape systematically with changing p values. The result for $p = 2$ (figure 2(a)) indicates that the correlation plot for each aerosol amount tends to follow the contour curve for specified N_c values more closely than do those for larger values of p. This difference is clearly found when the lowest edges of the plots are compared: the shape of the lowest edge for smaller p values is found to be closer to N_c contours. This means that the number concentration tends to stay more constant or increase more gradually when p values are smaller whereas the number concentration tends to increase more rapidly when p values are larger, as expected from the activation mechanisms represented in the model described above.

These results suggest that the change in aerosol size spectrum modifies the $r_e-\tau_c$ correlation statistics in a systematic way. The change in amplitude of the spectrum (or the aerosol amount), represented by f_{sic} in the model, causes overall changes of r_e and τ_c in a manner corresponding to change in cloud droplet number concentration. The change in
slope of the spectrum represented by p in the present model, on the contrary, has an effect of modifying the pattern of increase in number concentration, resulting in the change in shape of the r_e–τ_c correlation plot.

Correlation statistics similar to those observed by Nakajima and Nakajima (1995) can be reproduced from the simulation results by choosing appropriate values of the aerosol amount and the slope parameter. Figure 3 shows the correlation plots obtained from the results in figure 2 when composited in a different way: figure 3(a) shows the results for moderate to polluted aerosol amount under the assumption of $p = 4$ and figure 3(b) shows those for moderate conditions with $p = 2$. Figure 3(a) illustrates that the lowest edge of the joint histogram tends to cross the contour curves for N_c values and the correlation plot depicts a ‘high-heeled’ shape similar to the feature in figure 1(a) observed over the FIRE region. The joint histogram in figure 3(b), in contrast, indicates a lowest edge that follows the contour curve for specific N_c values (100 cm$^{-3}$ in this case) and closely resembles the ASTEX plots shown in figure 1(b). The similarity of figures 1 and 3 suggests that the typical difference in satellite-observed correlation statistics between the FIRE and ASTEX regions can be explained by difference in slope of the aerosol size spectrum as well as in aerosol amount.

4. Conclusion and discussion

This study investigates the effect of the droplet activation process on correlation statistics between r_e and τ_c. The adiabatic model applied to satellite-observed correlation plots shows that the number concentration tends to increase more rapidly with increasing r_e over the FIRE region whereas the increase is more gradual over the ASTEX region. This difference suggests that the activation process takes place in a different manner between these two cases. Numerical simulations of changing aerosol size spectrum with a spectral bin microphysics model are then performed to show that the shape of the correlation plot is significantly modified by changing the slope parameter of aerosol size spectrum. The amplitude of the size spectrum, representing the aerosol amount, is found to change the overall location of the correlation plot in a manner corresponding to the change in cloud droplet number concentration as found by our previous study. These results reveal how the r_e–τ_c statistics tend to vary in value and shape with differing conditions of aerosol size spectrum, and provide an understanding of the effect of aerosol microphysical conditions on cloud microphysical properties through the activation process. The correlation statistics is indeed shown to become closely similar to those observed over the FIRE and ASTEX regions when the slope parameter and the aerosol amount are appropriately chosen. These results suggest that the signature of the activation process is contained in the r_e–τ_c correlation statistics observed by remote sensing studies.

The effect of the aerosol size spectrum on the droplet activation process has also been represented by the CCN activity spectrum that describes the number concentration N_{CCN} of CCNs activated at supersaturation S as compiled from measurements of a variety of maritime and continental sites (see, e.g., Andreae and Rosenfeld 2008). This relationship is typically characterized by the form of $N_{CCN} = cS^k$, where values of parameters c and k have been reported by many previous studies since Twomey (1959) to vary with air-mass conditions reflecting the size distribution and the chemical composition of aerosols. For given chemical species, these parameters are determined by the size distribution function, where the parameter k directly relates to the size exponent p as $k = 2(p - 1)/3$. The range of p from 2 to 5 assumed in this study corresponds approximately to that of k from 0.7 to 2.7. This suggests that the clouds formed in air-mass characterized
by different CCN activity spectra may have different $r_e-\tau_c$ relationships.

The findings of this study, when combined with our previous study also demonstrating the stability effect on the correlation statistics, provide a theoretical basis for classifying the $r_e-\tau_c$ statistics in terms of aerosol microphysics and atmospheric stability conditions. As shown by Suzuki et al (2010), the condensation and the coalescence processes are responsible for the positive and negative correlation patterns between r_e and τ_c, respectively, in a manner that depends on environmental factors such as aerosol amount and static stability conditions. These basic tendencies of r_e and τ_c now turn out to be modified by the shape of the aerosol size spectrum through the droplet activation process: differing conditions of the slope parameter p in the present model cause the difference in increasing pattern of droplet number concentration, changing the $r_e-\tau_c$ correlation statistics in shape. The correlation statistics can therefore be understood as being formed from the aerosol size spectrum and static stability conditions through the combined effect of activation, condensation and coalescence processes.

Satellite remote sensing products of aerosols and clouds may offer an opportunity to investigate this hypothesis on the global scale since the satellite observables for aerosols, i.e. the optical thickness and the Ångström exponent, characterize the aerosol microphysical state. The optical thickness represents the aerosol amount and the Ångström exponent uniquely relates to the slope parameter p of the aerosol size spectrum (see, e.g., Nakajima and Higurashi 1997). These aerosol observables characterize the size distribution of aerosol particles acting as CCNs, which may also be inferred from the $r_e-\tau_c$ correlation statistics according to the findings of this study. These satellite-based analyses could be performed in future studies in an attempt to classify cloud properties on the global scale and help improve our understandings of climatic aerosol effect on clouds and its representations in climate models.

Acknowledgments

Aspects of this study have been supported by NASA grant NNX07AR11G, JAXA/GCOM-C, JAXA/EarthCARE and MOE_Global Environment Research Fund B-083.

References

Andreae M O and Rosenfeld D 2008 Aerosol-cloud-precipitation interactions. Part I: the nature and sources of cloud-active aerosols Earth Sci. Rev. 89 13–41

Brenguier J-L, Pawlowska H, Schuller L, Preusker R, Fischer J and Fouquart Y 2000 Radiative properties of boundary layer clouds: drop effective radius versus number concentration J. Atmos. Sci. 57 803–21

Han Q, Rossow W B and Lacis A A 1994 Near-global survey of effective droplet radii in liquid water clouds using ISCCP data J. Clim. 7 465–97

Kawamoto K, Nakajima T and Nakajima T Y 2001 A global determination of cloud microphysics with AVHRR remote sensing J. Clim. 14 2054–68

Khain A, Pokrovsky A and Sednev I 1999 Some effects of cloud-aerosol interaction on cloud microphysics structure and precipitation formation: numerical experiments with a spectral microphysics cloud ensemble model Atmos. Res. 52 195–220

Khain A and Sednev I 1996 Simulation of precipitation formation in the eastern Mediterranean coastal zone using a spectral microphysics cloud ensemble model Atmos. Res. 43 77–110

Nakajima T and Higurashi A 1997 AVHRR remote sensing of aerosol optical properties in the Persian Gulf region, summer 1991 J. Geophys. Res. 102 16935–46

Nakajima T, King M D, Spinhirne J D and Radke L F 1991 Determination of the optical thickness and effective particle radius of clouds from reflected solar radiation measurements Part II: marine stratocumulus observations J. Atmos. Sci. 48 728–51

Nakajima T Y and Nakajima T 1995 Wide-area determination of cloud microphysical properties from NOAA AVHRR measurements for FIRE and ASTEX regions J. Atmos. Sci. 52 4043–59

Rogers R R and Yau M K 1989 A Short Course in Cloud Physics 3rd edn (New York: Elsevier) p 290

Slingo A 1989 A GCM parameterization for the shortwave radiative properties of water clouds J. Atmos. Sci. 46 1419–27

Suzuki K, Nakajima T, Nakajima T Y and Khain A 2006 Correlation pattern between effective radius and optical thickness of water clouds simulated by a spectral bin microphysics cloud model SOLA 2 116–9

Suzuki K, Nakajima T, Nakajima T Y and Khain A P 2010 A study of microphysical mechanisms for correlation patterns between droplet radius and optical thickness of warm clouds with a spectral bin microphysics cloud model J. Atmos. Sci. 67 1126–41

Twomey S 1959 The nuclei of natural cloud formation. Part I: the chemical diffusion method and its application to atmospheric nuclei Geofis. Pura Appl. 43 227–42