Equidistribution theorems for holomorphic Siegel modular forms for GSp_4; Hecke fields and n-level density

Henry H. Kim1,2 · Satoshi Wakatsuki3 · Takuya Yamauchi4

Received: 1 July 2019 / Accepted: 1 July 2019 / Published online: 6 August 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
This paper is a continuation of Kim et al. (J Inst Math Jussieu, 2018). We supplement four results on a family of holomorphic Siegel cusp forms for GSp_4/\mathbb{Q}. First, we improve the result on Hecke fields. Namely, we prove that the degree of Hecke fields is unbounded on the subspace of genuine forms which do not come from functorial lift of smaller subgroups of GSp_4. Second, we prove simultaneous vertical Sato–Tate theorem. Namely, we prove simultaneous equidistribution of Hecke eigenvalues at finitely many primes. Third, we compute the n-level density of degree 4 spinor L-functions, and thus we can distinguish the symmetry type depending on the root numbers. This is conditional on certain conjecture on root numbers. Fourth, we consider equidistribution of paramodular forms. In this case, we can prove the conjecture on root numbers. Main tools are the equidistribution theorem in our previous work and Shin–Templier’s (Compos Math 150(12):2003–2053, 2014) work.

Keywords Trace formula · Hecke fields · Siegel modular forms

Mathematics Subject Classification 11F46 · 11F70 · 22E55 · 11R45

Henry H. Kim is partially supported by NSERC #482564. Satoshi Wakatsuki is partially supported by JSPS Grant-in-Aid for Scientific Research (Nos. 26800006, 25247001, 15K04795). Takuya Yamauchi is partially supported by JSPS Grant-in-Aid for Scientific Research (C) No. 15K04787.
1 Introduction

This paper is a continuation of [16]. We use the same notations throughout this paper. We study Hecke fields, simultaneous vertical Sato–Tate theorem, and the n-level density on a family of holomorphic Siegel cusp forms for GSp_4 / \mathbb{Q}.

First, Hecke fields. Let $S^1_k(\Gamma_0(N))$ be the space of elliptic cusp forms of weight $k \geq 2$ with respect to a congruent subgroup $\Gamma_0(N)$. The Hecke operators $\{T_p\}_{p \mid N}$ acting on the space and it has a basis consisting of simultaneous eigenforms in Hecke operators which are called normalized Hecke eigenforms. Let f be such an eigenform and $a_p(f)$ be the Hecke eigenvalue of T_p for $p \nmid N$, i.e. $T_p f = a_p(f) f$. The field $\mathbb{Q}_f := \mathbb{Q}(a_p(f) \mid p \nmid N)$ generated by such eigenvalues over \mathbb{Q} is called the Hecke field of f. Since $S^1_k(\Gamma_0(N))$ has an integral structure preserved by Hecke operators, the eigenvalues are algebraic numbers and it turns out that \mathbb{Q}_f is a finite extension over \mathbb{Q}. The Hecke field of f reflects various arithmetic properties of f and has been studied by many people [32,34]. For example \mathbb{Q}-simple factors of the Jacobian $J_0(N)$ of the modular curve $X_0(N)$ can be described in terms of the degree of the Hecke fields and one can ask the maximal dimension of \mathbb{Q}-simple factors for $J_0(N)$. (See [23,24,26,32,42].)

Let $S_k(\Gamma(N), \chi)$ be the space of classical holomorphic Siegel cusp forms of degree 2 with the level $\Gamma(N)$, a central character $\chi : (\mathbb{Z}/N\mathbb{Z})^\times \to \mathbb{C}^\times$, and weight $k = (k_1, k_2), k_1 \geq k_2 \geq 3$ (cf. Section 2 of [16]). For a prime $p \nmid N$, let $T(p^n)$ be the Hecke operator with the similitude p^n. Any eigenform with respect to $T(p^n)$ for any non-negative integer n and any prime $p \nmid N$ is called a Hecke eigen cusp form. We denote by $HE^+_k(\Gamma(N), \chi)$ a basis of $S_k(\Gamma(N), \chi)$ consisting of Hecke eigen cusp forms.

Let F be a Hecke eigen cusp form and $\lambda_F(p^n)$ be the Hecke eigenvalue of F for $T(p^n)$, i.e. $T(p^n)F = \lambda_F(p^n) F$. It is known that $\lambda_F(p^n)$ is an algebraic integer (cf. Lemma 2.1 of [38]). We consider the Hecke field $\mathbb{Q}_F := \mathbb{Q}(\lambda_F(p^n), \chi(p), \chi_2(p) \mid p \nmid N)$ which turns out to be a finite extension over \mathbb{Q} (see (2.12) of [16] for χ_2). We call F a genuine form if it never comes from any functorial lift from a smaller subgroup of GSp_4. Hence it is neither a CAP form, an endoscopic lift, a base change lift, an Asai lift, nor a symmetric cubic lift (see Sect. 2 for the details).

Theorem 1.1 Fix a weight $k = (k_1, k_2)$ with $k_1 \geq k_2 \geq 3$ and a prime p. Then

$$\limsup_{N \to \infty, p \nmid N, (N, 11) = 1, \ord_{\ell}(N) \geq 4 \text{ if } \ell \nmid N} \left\{ [\mathbb{Q}_F : \mathbb{Q}] \mid F \in HE^+_k(\Gamma(N), \chi) : \text{genuine} \right\} = \infty.$$

Theorem 1.2 Let the notation and assumptions be as above. Let p be a fixed prime and A a positive constant. Put $d_{k,N}(\chi) = |HE^+_k(\Gamma(N), \chi)|$. Then

$$|[F \in HE^+_k(\Gamma(N), \chi) \mid [\mathbb{Q}_F : \mathbb{Q}] \leq A]| = o_A \left(d_{k,N}(\chi)\right),$$

as $N \to \infty$, satisfying either of the following conditions:

1. $\ord_p(N) \geq 4$ if $\ell \mid N$ and $(N, p) = 1$; or
2. $\ord_p(N) \to \infty$ as $N \to \infty$.

The claim is still true even if we replace $HE^+_k(\Gamma(N), \chi)$ with $\{F \in HE^+_k(\Gamma(N), \chi) \mid F : \text{genuine}\}$ but keeping the additional condition $(N, 11!) = 1$, since we have $\#\{F \in HE^+_k(\Gamma(N), \chi) \mid F : \text{genuine}\} = d_{k,N}(\chi) + O_{k,e}(N^{8+\epsilon})$. [Note that $d_{k,N}(\chi) \sim C_k N^{10}/\phi(N)$ for some constant C_k.]
Theorem 1.3 Keep the condition in Theorem 1.2. Then

$$\inf \{ [\mathbb{Q}_F : \mathbb{Q}] \mid F \in HE_2(\Gamma(N), \chi) : \text{genuine} \} \gg f(N),$$

as \(N \) goes to infinity with \((N, 1!) = 1\), where

$$f(N) = \begin{cases} \left(\log \log N \right)^{\frac{1}{2}}, & \text{if } N \text{ is in the first case of the two conditions in Theorem 1.2} \\ \left(\log N \right)^{\frac{1}{2}}, & \text{otherwise} \end{cases}.$$

Second, simultaneous vertical Sato–Tate theorem. Let \(S_k^\natural(\Gamma(N), \chi)_{\text{im}} \) be the subspace of \(S_k^\natural(\Gamma(N), \chi) \) generated by Hecke eigen forms \(F \) outside \(N \) so that \(\pi_{F,p} \) is tempered for any \(p \nmid N \). Let \(HE_k^\natural(\Gamma(N), \chi)^{\text{im}} = S_k^\natural(\Gamma(N), \chi)^{\text{im}} \cap HE_k(\Gamma(N), \chi) \). For a prime \(p \nmid N \), let \(a_{F,p}, b_{F,p} \in [-2, 2] \) be Hecke eigenvalues as in [16]. Then in Sect. 4, we generalize Theorem 1.4 of [16] to finitely many primes. Namely, given finitely many distinct primes \(p_1, \ldots, p_r \), \(((a_{F,p_1}, b_{F,p_1}), \ldots, (a_{F,p_r}, b_{F,p_r}))\) is equidistributed with respect to a suitable measure (Theorem 4.1).

Third, \(n \)-level density of degree 4 spinor \(L \)-functions. In [16], we studied the one-level density of degree 4 spinor \(L \)-functions of a family of holomorphic Siegel cusp forms for \(GSp_4/\mathbb{Q} \), and we showed that its symmetry type is \(\text{SO(\text{even})}, \text{SO(\text{odd})}, \text{or O type} \). Since the support of \(\phi \) is smaller than \((-1, 1)\). In order to distinguish them, we need to compute the \(n \)-level density. For the degree 4 spinor \(L \)-function \(L(s, \pi_F, \text{Spin}) \), we denote the non-trivial zeros of \(L(s, \pi_F, \text{Spin}) \) by \(\frac{1}{2} + \sqrt{-1} \gamma_j \). Let \(\phi(x_1, \ldots, x_n) = \prod_{i=1}^n \phi_i(x_i) \) be an even Schwartz class function in each variables whose Fourier transform \(\hat{\phi}(u_1, \ldots, u_n) \) is compactly supported. We define \(D^{(n)}(\pi_F, \phi, \text{Spin}) \) as in Sect. 5.

We first prove the following theorem which may be of independent interest. Let \(L(s, \pi_F, \text{Spin}) = \sum_{m=1}^\infty \tilde{\lambda}_F(m) m^{-s} \). Let \(m = \prod_{p|m} h_{\nu_p(m)} \). For simplicity, denote \(S_k^\natural(\Gamma(N), 1), d_{k,N}(1) \) by \(S_k(N), d_{k,N}, \) resp.

Theorem 1.4 Put \(k = (k_1, k_2) \), \(k_1 \geq k_2 \geq 3 \).

1. (level-aspect) Fix \(k_1, k_2 \). Then as \(N \to \infty \),

$$\frac{1}{d_{k,N}} \sum_{F \in HE_k^\natural(N)} \tilde{\lambda}_F(m) = \delta_\square m^{-\frac{1}{2}} \prod_{p|m} (1 + p^{-2} + \cdots + p^{-\nu_p(m)}) + O_k(N^{-2} m^c),$$

where \(\delta_\square = \begin{cases} 1, & \text{if } m \text{ is a square} \\ 0, & \text{otherwise} \end{cases} \).

2. (weight-aspect) Fix \(N \). Then as \(k_1 + k_2 \to \infty \),

$$\frac{1}{d_{k,N}} \sum_{F \in HE_k^\natural(N)} \tilde{\lambda}_F(m) = \delta_\square m^{-\frac{1}{2}} \prod_{p|m} \left(1 + p^{-2} + \cdots + p^{-\nu_p(m)} \right)$$

$$+ O_N \left(\frac{m^c}{(k_1 - 1)(k_2 - 2)} \right) + O_N \left(\frac{m^d}{(k_1 - k_2 + 1)(k_1 + k_2 - 3)} \right),$$

for some constants \(c, d > 0 \).

For one-level density, the root number \(\epsilon(\pi_F) \) did not play a role. However, higher level density depends on the root number.

When \(N = 1 \) (i.e., level one case), we have \(\epsilon(\pi_F) = (-1)^{k_2} [30] \). (In this case, \(k_1 - k_2 \) should be even.) Then we have the following \(n \)-level density in the weight aspect. Let \(HE_k^\natural = HE_k(1) \) and \(d_k = d_{k,1} \).
Theorem 1.5 Let $N = 1$. Let $\phi(x_1, \ldots, x_n) = \phi_1(x_1) \cdots \phi_n(x_n)$, where each ϕ_i is an even Schwartz function and $\hat{\phi}(u_1, \ldots, u_n) = \hat{\phi}_1(u_1) \cdots \hat{\phi}_n(u_n)$. Assume the Fourier transform $\hat{\phi}_i$ of ϕ_i is supported in $(-\beta_n, \beta_n)$ for $i = 1, \ldots, n$. ($\beta_n < 1$ can be explicitly determined.) Then
\[
\frac{1}{d_{k}} \sum_{F \in HE_k} D(n)(\pi_F, \phi, \text{Spin}) = \begin{cases}
\int_{\mathbb{R}^n} \phi(x)W(\text{SO(even)})(x) \, dx + O \left(\frac{1}{\log c_k} \right), & \text{if } k_2 \text{ is even} \\
\int_{\mathbb{R}^n} \phi(x)W(\text{SO(odd)})(x) \, dx + O \left(\frac{1}{\log c_k} \right), & \text{if } k_2 \text{ is odd}
\end{cases},
\]
where $W(\text{SO(even)})$ and $W(\text{SO(even)})$ are the n-level density functions defined in Sect. 5, and $c_k = c_{k,1}$ is the analytic conductor defined in Sect. 5.

Let $S^\pm_k(N)$ be the subspace of $S_k(N)$ with the root number $\epsilon(\pi_F) = \pm 1$. Let $HE^\pm_k(N)$ be a basis of $S^\pm_k(N)$ consisting of Hecke eigenforms outside N, and denote $|HE^\pm_k(N)| = d^\pm_{k,N}$. In level aspect, for a fixed k, we expect $d^\pm_{k,N} = \frac{1}{k} d_{k,N} + O_k(\varepsilon(N^9 - \varepsilon))$ as $N \to \infty$, and the analogue of Theorem 1.4 would hold when we replace $HE_k(N)$ by $HE^\pm_k(N)$. We have a similar expectation for weight aspect. We assume them as Conjecture 5.1. Then we can prove the n-level density result for $HE^\pm_k(N)$ (Theorems 5.9 and 5.10).

In Sect. 6, we study the n-level density of the degree 5 standard L-functions of holomorphic Siegel cusp forms. In this case the root number is always one. Hence the symmetry type of the n-level density should be Sp. Under Conjecture 6.1 which is an analogue of Conjecture 5.1, we prove Theorem 6.2.

Fourth, we consider paramodular forms. In our previous paper [16], we considered only principal congruence subgroup $\Gamma(N)$. Here we can deal with the paramodular group $\overline{\Gamma}_{\text{para}}(N)$. We prove equidistribution results on paramodular forms. In particular we can show Conjecture 5.1 for paramodular forms in weight aspect. Hence n-level density for spinor L-functions of paramodular forms for weight aspect (analogues of Theorem 5.9 and Theorem 5.10) hold. In a similar way, we can show simultaneous vertical Sato–Tate theorem for paramodular forms (analogue of Theorem 4.1).

2 Genuine forms

In this section, we follow the notation and the contents in Section 2 of [16] for holomorphic Siegel modular forms of genus 2. The readers should consult the references there if necessary.

2.1 Classical Siegel modular forms and Hecke fields

For a pair of non-negative integers $k = (k_1, k_2), k_1 \geq k_2 \geq 3$ and $N \geq 1$, we denote by $S_k(\Gamma(N), \chi)$ the space of cusp forms of the weight k with the character $\chi : (\mathbb{Z}/N\mathbb{Z})^\times \longrightarrow \mathbb{C}^\times$ for a principal congruence subgroup $\Gamma(N)$. Here the weight corresponds to the algebraic representation λ_k of GL_2 with the highest weight k by
\[
V_k = \text{Sym}^{k_1-k_2} \text{St}_2 \otimes \text{det}^{k_2} \text{St}_2,
\]
where St_2 is the standard representation of dimension 2.

For each prime $p \nmid N$ and $n \geq 1$ one can define the Hecke operator $T(p^n)$ acting on $S_k(\Gamma(N), \chi)$. Let $HE_k(\Gamma(N), \chi)$ be a basis of $S_k(\Gamma(N), \chi)$ consisting of Hecke eigen
cusp forms. For $F \in HE_k(\Gamma(N), \chi)$ we have $T(p^n)F = \lambda_F(p^n)F$, $\lambda_F(p^n) \in \mathbb{C}$. Since $S_k(\Gamma(N), \chi)$ has an integral structure and is finite dimensional, the eigenvalue $\lambda_F(p^n)$ is an algebraic integer once we fix an embedding $\mathbb{Q} \hookrightarrow \mathbb{C}$. We define the Hecke field \mathbb{Q}_F of F by Definition 2.14 in [16].

2.2 CAP forms and endoscopic lifts

For $F \in HE_k(\Gamma(N), \chi)$ let π_F be the corresponding cuspidal representation of $GSp_4(\mathbb{A}_Q)$. We say F is a CAP form (resp. endoscopic lift) if π_F is a CAP (resp. endoscopic) representation. We denote by $S_k(\Gamma(N), \chi)^{CAP}$ the space generated by all CAP forms in $S_k(\Gamma(N), \chi)$. We also define $S_k(\Gamma(N), \chi)^{EN}$ for endoscopic lifts similarly. Under mild condition on the level N, we have the following estimation on the dimension of the space above.

Proposition 2.1 If $k_1 \neq k_2$ or χ is not the square of a character, then $S_k(\Gamma(N), \chi)^{CAP} = 0$.

If $k := k_1 = k_2$ and χ is the square of a character, then for any $\epsilon > 0$,

$$\dim S_k(\Gamma(N), \chi)^{CAP} = O_\epsilon(kN^{7+\epsilon}),$$

as $N + k \to \infty$ and $(N, 11!) = 1$.

Proof It follows from Section 4.4 and Theorem 4.3 in [16].

Next we consider endoscopic lifts.

Proposition 2.2 For any $\epsilon > 0$,

$$\dim S_k(\Gamma(N), \chi)^{EN} = O_\epsilon((k_1 - k_2 + 1)(k_1 + k_2 - 3)N^{8+\epsilon}),$$

as $N + k_1 + k_2 \to \infty$ and $(N, 11!) = 1$.

Proof It follows from Theorem 4.2 in [16].

2.3 Local-global compatibility for holomorphic Siegel modular forms

In this subsection we discuss some results concerning the local-global compatibility for holomorphic Siegel modular forms. They are unconditionally proved by Theorem 3.1.1 and Theorem 7.4.1 in [7]. Therefore Conjecture 1 of [10] is now a theorem.

Let $S_k^{Stable}(\Gamma(N))$ be the space generated by all non-endoscopic, non-CAP Hecke eigen cusp forms in $S_k(\Gamma(N))$. Such a form is called a stable form by Arthur. For a Hecke eigenform F in $S_k^{Stable}(\Gamma(N))$ let us consider the corresponding cuspidal representation $\pi_F = \otimes'_p \pi_p$ of $GSp_4(\mathbb{A}_Q)$.

Proposition 2.3 Keep the notation as above. Then there exists a unique globally generic cuspidal representation $\pi' = \otimes'_p \pi'_p$ of $GSp_4(\mathbb{A}_Q)$ such that for every p, π_p and π'_p belong to the same L-packet and they are both tempered.

Proof For such π_F, by Weissauer [40], there exists a globally generic cohomological cuspidal representation Π of $GSp_4(\mathbb{A}_Q)$ so that π_F is weakly equivalent to Π. By [37], for any fixed prime ℓ, it gives rise to a Galois representation $\rho_{\Pi, \ell} : G_{\mathbb{Q}} \to GSp_4(\overline{\mathbb{Q}}_\ell)$ which satisfies local-global compatibility. By Theorem 3.1.1 and Theorem 7.4.1 in [7] we also have a Galois representation $\rho_{\pi_F, \ell} : G_{\mathbb{Q}} \to GSp_4(\overline{\mathbb{Q}}_\ell)$ which satisfies the local-global compatibility and $\rho_{\pi, \ell} \sim \rho_{\pi_F, \ell}$ by Chebotarev density theorem. Therefore π_p and Π_p belong to the same L-packet. The temperedness of Π_p which is proved in [37] implies that of π_p by [6] (one can also consult Conjecture 2.4.1 of [7] in general).
Corollary 2.4 Keep the notation as in the previous proposition. Then \(\pi_p \) is generic if its L-packet is a singleton (in particular \(\pi_i \) is generic if it is unramified). Otherwise the L-packet of \(\pi_p \) has two members which are given in the notation of [25] by \{VIa, Vlb\}, \{VIIa, VIIb\}, \{Va, \(\theta((\sigma S_{T2})^{JL}, (\sigma \xi S_{T2})^{JL}) \)\}, \{Xla, \(\theta((\sigma S_{T2})^{JL}, (\sigma \pi^{sc})^{JL}) \)\}, or \{\(\theta(\pi_{p,1}, \pi_{p,2}) \), \(\theta((\pi_{p,1})^{JL}, (\pi_{p,2})^{JL}) \)\} where \(\pi^{sc} \), \(\pi_{1,p} \), and \(\pi_{2,p} \) stand for unitary supercuspidal representations of \(GL_2(\mathbb{Q}_p) \) such that \(\pi_{1,p} \approx \pi_{2,p} \), \(\sigma \) is a quasi character of \(\mathbb{Q}_p^\times \) and \(\xi \) is a quadratic character of \(\mathbb{Q}_p^\times \). Here \(\theta \) is the local theta correspondence from \(GSO(4) \) or \(GSO(2, 2) \) to \(GSp_4 \) (cf. Section 4.3 of [16]).

Proof If \(\pi_p \) is unramified, it is an unramified irreducible induced representation from the Borel subgroup since \(\pi_p \) is tempered by Proposition 2.3. Next we remark that the L-packet of \(\pi_p \) consists of two members. Assume further that \((p, 11!) = 1 \). Then \(\dim \pi_p^{K(p')} = O(p^{9r}) \) as \(p^r \to \infty \).

Proposition 2.5 Let \(\pi_p \) be the representation as in Proposition 2.3. Assume that the L-packet of \(\pi_p \) consists of two members. Assume further that \((p, 11!) = 1 \). Then \(\dim \pi_p^{K(p')} = O(p^{9r}) \) as \(p^r \to \infty \).

Proof It follows from the local-global compatibility that \(\pi_p \) is one of the representations listed in Corollary 2.4. Except for the representations obtained by the local theta correspondence it is a constituent of a normalized induced representation \(\text{Ind}_{B(\mathbb{Q}_p)}^{GSp_4(\mathbb{Q}_p)} \chi \) where \(\chi \) is a quasi character of \(B(\mathbb{Q}_p) \). Let \(\gamma_1, \ldots, \gamma_l \) be a complete system of the double coset representatives of \(B(\mathbb{Q}_p) \backslash GSp_4(\mathbb{Q}_p) / K(p') \). Then \(\langle \text{Ind}_{B(\mathbb{Q}_p)}^{GSp_4(\mathbb{Q}_p)} \chi \rangle^{K(p')} \) is generated by the following functions:

\[
 f_i(g) = \begin{cases}
 \frac{1}{\delta_B^4}(b)(b), & \text{if } g = b\gamma_i k \in B(\mathbb{Q}_p)\gamma_i K(p'), \\
 0, & \text{otherwise.}
 \end{cases}
\]

so that \(\chi \) is trivial on \(B(\mathbb{Q}_p) \cap \gamma_i K(p')\gamma_i^{-1} \). Therefore we roughly estimate

\[
 \dim \pi^{K(p')} \leq \dim \langle \text{Ind}_{B(\mathbb{Q}_p)}^{GSp_4(\mathbb{Q}_p)} \chi \rangle^{K(p')} \leq t = \sharp (B(\mathbb{Z}/p^r \mathbb{Z}) \backslash GSp_4(\mathbb{Z}/p^r \mathbb{Z})) / \langle K(p') \rangle = O(p^{4r}).
\]

Let us suppose that \(\pi_p = \theta((\sigma S_{T2})^{JL}, (\sigma \xi S_{T2})^{JL}), or \pi_p = \theta((\sigma S_{T2})^{JL}, (\sigma \pi^{sc})^{JL}) \). Put \(\tau = \sigma S_{T2} \times \sigma \xi S_{T2} \) or \(\tau = \sigma S_{T2} \times \sigma \pi^{sc} \), respectively. Recall that \((p, 11!) = 1 \). Then one can apply the argument in Theorem 4.2 of [16] which gives us a similar estimation:

\[
 \dim \pi^{K(p')} = \frac{\text{vol}(K_H(p'))}{\text{vol}(K(p'))} \cdot \frac{1}{p^{2r}} \dim \tau K_H(p') = O(p^{9r})
\]

where \(K_H(p') := \text{Ker}(H(\mathbb{Z}_p) \to H(\mathbb{Z}_p/p^r \mathbb{Z})) \) for a unique endoscopic subgroup \(H = GSO(2, 2) \) in \(GSp_4 \) (see Section 4.3 of [16]). The remaining case is similar to this case. □

The following lemma will be used to define a non-canonical map (2.2).
Lemma 2.6 Let \(\pi_p \) be as in Corollary 2.4. Assume that L-packet of \(\pi_p \) is not a singleton and let \((\pi_p, \pi_p^g) \) be the L-packet where \(\pi_p \) is non-generic and \(\pi_p^g \) is generic. Then for a positive integer \(r \), \((\pi_p^g)^K(p^r) \neq 0 \) (resp. \((\pi_p^g)^K(p^{\max[K,r]}) \neq 0 \)) if \((\pi_p)^K(p^r) \neq 0 \) except for the case of \(\pi_p = V \Gamma b \) (resp. for the case of \(\pi_p = V \Gamma b \)).

Proof We prove this lemma case by case and all cases are given in Corollary 2.4. Let us first consider the type VIa and VIb. Then \(\pi_p^g = \tau(S, v^{-\frac{1}{2}} \sigma) \) and \(\pi_p = \tau(T, v^{-\frac{1}{2}} \sigma) \). By definition \(\tau(T, v^{-\frac{1}{2}} \sigma) = \sigma \otimes \tau(T, v^{-\frac{1}{2}}) \) and \(\tau(S, v^{-\frac{1}{2}} \sigma) = \sigma \otimes \tau(S, v^{-\frac{1}{2}}) \). Therefore the character \(\sigma \) should be trivial on \(1 + p^r \mathbb{Z}_p \). Note that \(\tau(S, v^{-\frac{1}{2}}) \) (resp. \(\tau(S, v^{-\frac{1}{2}}) \)) is of paramodular level 4 (resp. 2). Since the paramodular subgroup \(K_{\text{para}}(p^f) \) contains \(K(p^f) \) for any positive integer \(f \), the claim follows.

In the case of VIIa and VIIIb, by Table A.4 of [25], both of their Jacquet modules along the Klingen parabolic subgroup are \(1 \times \pi \) where \(\pi \) is a unitary supercuspidal representation of \(GL_2(\mathbb{Q}_p) \). The claim follows from this.

Next we consider the case \(\pi_p^g = V a = \delta(\{\xi, v\xi\}, v^{-\frac{1}{2}} \sigma) \) where \(\xi \) is a quadratic character. Clearly \(\sigma \) is trivial on \(1 + p^r \mathbb{Z}_p \). If \(\xi \sigma \) is ramified, then \(\delta(\{\xi, v\xi\}, v^{-\frac{1}{2}} \sigma) = \sigma \otimes \delta(\{\xi, v\xi\}, v^{-\frac{1}{2}}) \). The claim now follows easily. The other remaining case is done similarly.

For the level of theta correspondence we can apply the argument in Theorem 4.2 of [16] regarding the transfer of some Hecke elements with respect to congruence subgroups and the claim follows from this directly. \(\Box \)

2.4 Stable holomorphic forms

By using Arthur’s classification for \(GSp_4 \) which will be completed by [7] we study non-generic forms among holomorphic stable forms. According to Lemma 2.6 we also assume that \(\text{ord}_p(N) \geq 4 \) when a prime \(p \) divides \(N \). Let \(\pi_{\Delta} := D_{l_1,-l_2}^{\text{large}} \) be the large discrete series with Harish-Chandra parameter \((l_1, l_2) = (k_1 - 1, k_2 - 2)\) (see Section 2.3 of [39]) Let \(S^g_{\Delta}(\Gamma(N)) \) be the space of globally generic forms. For \(\pi = \otimes_p \pi_p \in S^{\text{Stable}}_{\Delta}(\Gamma(N)) \), we define the finite set \(S \) of primes \(p \) so that the L-packet of \(\pi_p \) is not a singleton and \(\pi_p \) is non-generic. It follows from Corollary 2.4 that \(S \) is a subset of \(\{p|N\} \).

We denote by \(\pi_p^g \) the generic representation in the L-packet of \(\pi_p \) for \(p \in S \). Since \(\pi \) is stable, by Arthur’s classification for \(GSp_4 \) (cf. line 5 in p.11 of [31] or Conjecture 2.5.6 of [7]), the admissible representation

\[
\pi^g := D_{l_1,-l_2}^{\text{large}} \otimes \bigotimes_{p \in S} \pi_p^g \otimes \bigotimes_{p \notin S \cup \{\infty\}} \pi_p
\]

is an automorphic cuspidal representation which is generic everywhere. By Conjecture 2.5.6 of [7] and taking the projection we have a \(\mathbb{C} \)-linear map

\[
T^g : S^{\text{Stable}}_{\Delta}(\Gamma(N)) = \bigoplus_{\pi: \text{stable}} \pi K_2(N) \rightarrow \bigoplus_{\pi: \text{globally generic}} \pi K_2(N) = S^{\text{gg}}_{\Delta}(\Gamma(N)). \tag{2.1}
\]

See p.16 in [16] for \(K_2(N) \). Notice that the multiplicity \(m(\pi) = 1 \) for any stable \(\pi \) by Theorem 3.1.1 in [7] (see also Conjecture 2.4.1-(3) in loc.cit.). Note that \(T^g \) maps the forms with the level \(\Gamma(N) \) to those with the same level by Lemma 2.6. For any subset \(S' \subset S \) one can also consider...
\[\pi(S') := D_{l_1, l_2}^{\text{large}} \otimes_{p \in S'} \pi_p^g \otimes_{p \notin S' \cup \{\infty\}} \pi_p \]

which is also automorphic. We say that \(\pi(S') \) is of type \(S' \) which means that it is generic at any place in \(S' \cup \{\infty\} \).

Similarly we have a \(\mathbb{C} \)-linear map

\[T(S') : S_k^{\text{Stable}}(\Gamma(N)) = \bigoplus_{\pi : \text{stable}} \pi^{K_2(N)} \rightarrow \bigoplus_{\pi : \text{type } S'} \pi^{K_2(N)} =: S_k^{\text{type } S'}(\Gamma(N)) \tag{2.2} \]

where the latter space should be understood with the obvious meaning. There exists \(2^{[S]} \) maps for \(T(S') \).

We will exploit this map to estimate the number of functorial lifts with the following proposition.

Proposition 2.7 Under the assumptions in this section, for any \(\epsilon > 0 \), \(\dim \ker T^g = O_{\epsilon}(N^{8+\epsilon}) \).

Proof Let \(A_k^{\text{Stable}}(\Gamma(N)) \) be the space of automorphic forms on \(GSp_4(\mathbb{A}) \) which correspond to \(S_k^{\text{Stable}}(\Gamma(N)) \). Then by [16, (2.17)], \(\dim A_k^{\text{Stable}}(\Gamma(N)) = \varphi(N) \dim S_k^{\text{Stable}}(\Gamma(N)) \). Hence the contribution from adelic forms to classical forms differs by \(\varphi(N) \). Proposition 2.5 implies that the dimension of the adelic version of \(T^g \) is \(O(N^9) \). Since \(2^{[S]} = O(2^{\omega(N)}) = O_{\epsilon}(N^\epsilon) \) for any \(\epsilon > 0 \), the claim follows. \(\square \)

2.5 Symmetric cube lifts

There is a functorial lift from \(GL_2 \) to \(GL_4 \) which is called symmetric cube lift constructed by Kim and Shahidi [15]. For an elliptic cusp form \(f \) of weight greater than 2, let \(\Pi_f \) be the image of \(\pi_f \) under the symmetric cube lift. Then it descends to a unique globally generic cuspidal representation \(\Pi_f := \text{Sym}^3 \pi_f \) of \(GSp_4(\mathbb{A}_{\mathbb{Q}}) \). We say \(F \in HE_k(\Gamma(N)) \) is a symmetric cube lift if there exists an elliptic cusp form \(f \) such that for almost all \(p \neq \infty, \pi_{F,p} \sim \Pi_f,p \). We denote by \(S_k(\Gamma(N), \chi)^{\text{Cube}} \) the space generated by all symmetric cube lifts in \(S_k(\Gamma(N), \chi) \).

In what follows we will try to estimate the dimension of this space. We can define the following map as in (2.1):

\[T^g := T^g_k(N, \chi) : S_k^{\text{Stable}}(\Gamma(N), \chi) \rightarrow S_k^{\text{non-E,gg}}(\Gamma(N), \chi) \rightarrow S_k^{\text{non-E,gg}}(\Gamma(N), \chi) \tag{2.3} \]

where \(S_k^{\text{Stable}}(\Gamma(N), \chi) \) is the space generated by all Hecke eigen stable forms in \(S_k(\Gamma(N), \chi) \) and \(S_k^{\text{non-E,gg}}(\Gamma(N), \chi) \) is the space generated by all non-endoscopic globally generic Hecke eigen forms in \(S_k^{\text{gg}}(\Gamma(N), \chi) \).

Let \(S_k^{\text{Cube}}(\Gamma(N), \chi) \) (resp. \(S_k^{\text{Cube}, \text{gg}}(\Gamma(N), \chi) \)) be the space generated by all symmetric cube lifts (resp. all generic symmetric cube lifts) in \(S_k^{\text{Cube}}(\Gamma(N), \chi) \) (resp. \(S_k^{\text{Cube}, \text{gg}}(\Gamma(N), \chi) \)).

It is easy to see that \(S_k^{\text{Cube}}(\Gamma(N), \chi) \subset S_k^{\text{Stable}}(\Gamma(N), \chi) \) and \(S_k^{\text{Cube}, \text{gg}}(\Gamma(N), \chi) \subset S_k^{\text{non-E,gg}}(\Gamma(N), \chi) \). Furthermore \(T^g \) induces a surjective linear map

\[T^g : S_k^{\text{Cube}}(\Gamma(N), \chi) \rightarrow S_k^{\text{Cube,gg}}(\Gamma(N), \chi) \]

Then we have
Theorem 2.8 Fix a weight k. Then for any $\epsilon > 0$,

$$\dim S_k^{\text{Cube}, gg}(\Gamma(N), \chi) = O_{k, \epsilon}(N^{4+\epsilon}),$$

as $N \to \infty$ with $(N, 11!) = 1$.

Proof Let F be a globally generic Hecke eigen cusp form in $S_k^{\text{Cube}, gg}(\Gamma(N), \chi)$. By Lemma 9.1 of [16], the conductor of π_F is bounded by N^4. On the other hand, if $\pi_F = \text{Sym}^3 \pi_f$ for an elliptic cusp form f, by applying Theorem in Section 6.5 of [1] to $\text{Sym}^2 \pi_f$ and π_f, the lower bound of the conductor of π_F is given by

$$\frac{c(\pi_f)(c(\pi_f)^2 - c(\pi_f))}{c(\pi_f)} = c(\pi_f)^2 - c(\pi_f)$$

since $\text{Sym}^2 \pi_f \boxplus \pi_f = \text{Sym}^3 \pi_f \boxplus \pi_f \boxtimes \omega_{\pi_f}$. Hence we have that $c(\pi_f) = O(N^2)$. The first claim follows from this with the dimension formula for the space of elliptic cusp forms with respect to $\Gamma_1(N^2)$ for a fixed weight. \hfill \square

2.6 Automorphic induction

In this section we are concerned with Automorphic induction. For a quadratic field K/\mathbb{Q}, there is a functorial lift from GL_2/K to GL_4/\mathbb{Q} which is called Automorphic induction (some people call it an Asai lift). To descend it to a globally generic representation of GSp_4, the central character ω_{π} should be invariant under the non-trivial element σ in $\text{Gal}(K/\mathbb{Q})$. Hence $\omega_{\pi} = \omega \circ N_K/\mathbb{Q}$. For a character $\omega : \mathbb{Q}^\times \backslash \mathbb{A}^\times \to \mathbb{C}^\times$.

When K is a real quadratic field, then for any Hilbert modular cusp form f of weight $(k_1 + k_2 - 2, k_1 - k_2 + 2)$ one can construct a generic cuspidal automorphic representation whose representation $\Pi = \Pi_f$ at infinity is isomorphic to D_{l_1, l_2} with $(l_1, l_2) = (k_1 - 1, k_2 - 2)$. We say $F \in S_k(\Gamma(N))$ is an automorphic induction if π_F is weakly equivalent to such a Π.

Similarly one can consider an automorphic induction for an imaginary quadratic field K. However by [8] if $F \in S_k(\Gamma(N))$ is given in such a way, then k_2 has to be 2 which contradicts our condition $k_2 \geq 3$. Therefore we have only to consider contributions from Hilbert modular forms for real quadratic fields.

Let $S_k^{\text{AI}}(\Gamma(N), \chi)$ (resp. $S_k^{\text{AI}, gg}(\Gamma(N), \chi)$) be the space generated by all automorphic induction (resp. all generic automorphic induction) in $S_k(\Gamma(N), \chi)$ (resp. $S_k^{gg}(\Gamma(N), \chi)$). It is easy to see that $S_k^{\text{AI}}(\Gamma(N), \chi) \subset S_k^{\text{stable}}(\Gamma(N), \chi)$ and $S_k^{\text{AI}, gg}(\Gamma(N), \chi) \subset S_k^{\text{gg}, \text{non-E}}(\Gamma(N), \chi)$. Furthermore T^g induces a surjective linear map

$$T^g : S_k^{\text{AI}}(\Gamma(N), \chi) \to S_k^{\text{AI}, gg}(\Gamma(N), \chi).$$

Then we have

Theorem 2.9 Fix a weight k. Then for any $\epsilon > 0$,

$$\dim S_k^{\text{AI}, gg}(\Gamma(N), \chi) = O_{k, \epsilon} \left(N^{11 + \epsilon} \right),$$

as $N \to \infty$ with $(N, 11!) = 1$. \hfill \\copyright Springer
Proof Let F be a globally generic Hecke eigen cusp form in $S^A_{\text{large}}(\Gamma(N), \chi)$. By Lemma 9.1 of [16] again, the conductor of π_F is bounded by N^4. Assume that π_F comes from a unique Hilbert cusp form for a quadratic field K with weight $(k_1 + k_2 - 2, k_1 - k_2 + 2)$ and level $A \subset O_K$ with a character χ' so that $\chi'^* \chi' = \chi$. By comparing the conductor we have $D_K N_K / Q(A) = O(N^4)$. Then we have

$$\dim S^A_{\text{large}}(\Gamma(N), \chi) = O_k\left(\sum_{D_K | N} D_K \right)$$

by Shimizu’s dimension formula in [33].

Now for a real quadratic field K, $\zeta_K(-1) = \frac{\zeta_K(2)}{\pi^3 \Gamma(-\frac{1}{2})^2} D_K^\frac{3}{2}$ by the functional equation.

Since $\zeta_K(2) \leq \zeta(2)^2$,

$$\sum_{D_K | N} D_K \zeta_K(-1) \ll \sum_{D_K | N} D_K^\frac{3}{2} \ll N^{3+\epsilon}.$$

\[\square\]

2.7 Asai transfer

In this section we are concerned with the Asai transfer which is a transfer from GL_2/K to GL_4/\mathbb{Q} for an etale algebra K of degree 2 over \mathbb{Q}. When $F = \mathbb{Q} \oplus \mathbb{Q}$, it is the Rankin–Selberg convolution product. When F is a field, it is called the Asai transfer. In the former case, given a pair (π_1, π_2) of two cuspidal representations of $GL_2(A_{\mathbb{Q}})$, the automorphic product $\pi_1 \boxtimes \pi_2$ descend to a unique globally generic representation of GSp_4 only when one of π_i’s is dihedral. (See [12].) When K is a field, the Asai transfer $A_{\text{As}}(\pi)$ of a cuspidal representation π of GL_2/K descend to GSp_4 only when π is dihedral. We say $F \in S_k(\Gamma(N), \chi)$ is an Asai lift if π_F is weakly equivalent to such a representation of GSp_4.

We denote by $S^A_{k, \text{Asai, non-E}}(\Gamma(N), \chi)$ the space generated by all non-endoscopic Asai lifts in $S^A_{k, \text{stable}}(\Gamma(N), \chi)$. Similarly we can define $S^A_{k, \text{Asai, non-E, gg}}(\Gamma(N), \chi)$. As in the previous section we have a surjective linear map

$$T^g : S^A_{k, \text{Asai, non-E}}(\Gamma(N), \chi) \longrightarrow S^A_{k, \text{Asai, non-E, gg}}(\Gamma(N), \chi).$$

By using this map we have

Theorem 2.10 Fix a weight k. Then it holds that

$$\dim S^A_{k, \text{Asai, non-E, gg}}(\Gamma(N), \chi) = O_k(\epsilon) N^{6+\epsilon}$$

as $N \to \infty$ with $(N, 11!) = 1$.

Proof Let us first consider the case when K is not a field. Let (f_1, f_2) be a pair of two elliptic cusp forms of level N_1, N_2 with characters χ_1, χ_2 so that $\chi_1 \chi_2 = \chi$ but one of them is a CM form (say, f_2). Note that once we fix an imaginary quadratic field defining f_2, then the character of f_2 is fixed and so is f_1. As in the previous proposition, we have $N_1 N_2 \leq N^4$ by
Theorem in Section 6.5 of [1]. Therefore we have only to consider
\[
\sum_{N_1 | N^4} \sum_{a^2 D_K | N_1} h(a^2 D_K) \cdot \dim S_{k_1}^1 \left(\Gamma_0(N^4 N_1^{-1}), \ast \right),
\]
where \(a^2\) is the square factor dividing \(N_1\), and \(\ast\) is a fixed character and \(h(a^2 D_K)\) stands for the class number of the binary forms with discriminant \(a^2 D_K\).

Now for a fixed \(k_1\) and \(N_1\), \(\dim S_{k_1}^1(\Gamma_0(N^4 N_1^{-1})) = O(N^4 N_1^{-1})\), and
\[
h(a^2 D_K) = h_K a \prod_p \left(1 - \left(\frac{D_K}{p}\right) p^{-1}\right) \ll |D_K|^{\frac{1}{2} + \epsilon} a^{1+\epsilon}.
\]
Hence
\[
\dim S_{k}^{\text{Asai, non-E, gg}}(\Gamma(N), \chi) \ll_{\epsilon} \sum_{N_1 | N^4} N^4 N_1^{-1} \sum_{a^2 D_K | N_1} (a^2 D_K)^{\frac{1}{2} + \epsilon} \ll N^4 \sum_{N_1 | N^4} N_1^{-\frac{1}{2} + \epsilon} \ll N^{4+\epsilon}.
\]

When \(K\) is a field, then there exists a quartic field \(L/Q\) which contains \(K\) such that \(\pi_F\) is weakly equivalent to \(A L_Q^1(\tau)\) for some Hecke character \(\tau : \mathbb{H}^1/\mathbb{Z}^\times \rightarrow \mathbb{C}^\times\). By comparing the conductor we see that \(D_L N_L/Q(c(\tau)) = O(N^4)\) where \(c(\tau)\) is the conductor of \(\tau\). Hence we need to count the number of such Hecke characters. Given a quartic field of discriminant \(d\), \(N_L/Q(c(\tau)) = O(N^4 |d|^{-1})\). Given a positive integer \(n\), there are \(O(\tau(n))\) integral ideals of norm \(n\), where \(\tau(n)\) is the number of divisors of \(n\). Given an ideal \(a\), there are at most \(N(a) h_L\) Hecke characters with the conductor \(a\). Therefore, given a positive integer \(n\), there are at most \(n \tau(n) h_L \ll_{\epsilon} n^{1+\epsilon} D_L^{\frac{1}{2} + \epsilon}\) Hecke characters. Hence the number of Hecke characters in question is
\[
\ll_{\epsilon} \sum_{|D_L| < N^4} (N^4 |d_L|^{-1})^{1+\epsilon} D_L^{\frac{1}{2} + \epsilon} \ll N^{4+\epsilon} \sum_{|D_L| < N^4} |D_L|^{-\frac{1}{2} + \epsilon}.
\]
Let \(N(d)\) be the number of quartic fields of discriminant \(|d|\) which contains a quadratic subfield. Then \(\sum_{|d| \leq x} N(d) \ll x [4]\). Hence by partial summation, the last estimation becomes \(O(N^{6+\epsilon})\). Hence our result follows.

\[\square\]

2.8 Proofs of main theorems for Hecke fields

We are now ready to prove main theorems. Before going into proofs, we give a precise definition of genuine forms.

Definition 2.4 Let \(F\) be a Hecke eigen Siegel cusp form of weight \((k_1, k_2)\), \(k_1 \geq k_2 \geq 3\) which is neither a CAP form nor an endoscopic lift. We say \(F\) is a genuine form if the corresponding automorphic representation \(\pi_F\) is not weakly equivalent to any of a base change lift, an Asai lift, and a symmetric cube lift.

By using results in the previous section, Theorem 1.1 and 1.3 of [16] hold if we replace \(H E_k(N, \chi)\) with the subset \(\{F \in H E_k(N, \chi) \mid F \text{: genuine}\}\), since for any \(\epsilon > 0\),
\[
\{F \in H E_k(N, \chi) \mid F \text{: non-genuine}\} = O(\dim \text{Ker}(T^8)) + \dim S_{k}^{\text{Cube,gg}}(\Gamma(N), \chi) + \dim S_{k}^{\text{Al,gg}}(\Gamma(N), \chi) + \dim S_{k}^{\text{Asai,non-E,gg}}(\Gamma(N), \chi) = O_{k,\epsilon}(N^{8+\epsilon}).
\]
This proves Theorem 1.1.

Theorems 1.2 and 1.3 follow from the argument in Section 6.2 and 6.3 of [36] with Theorem 1.1 of [16].

3 Galois representations for genuine forms

In this section we characterize a genuine form in terms of Galois representations. Let F be a Hecke eigen Siegel cusp form in $S_k(\Gamma(N))$ which is neither CAP nor endoscopic. By Laumon–Weissauer [20,21,41], for any prime ℓ there exists a unique irreducible Galois representation

$$\rho_F,\ell : G_{\mathbb{Q}} := \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \rightarrow \text{GSp}_4(\overline{\mathbb{Q}}_\ell)$$

such that $\det(I - X\rho_{F,\ell}(\text{Frob}_p))$ coincides with the Hecke polynomial at p for any prime $p \nmid \ell N$ (see (2.13) of [16] for Hecke polynomials). Since π_F is weakly equivalent to a generic cuspidal representation of GSp_4, it can be transferred to a cuspidal representation of GL_4. The irreducibility of $\rho_{F,\ell}$ follows from this fact and the main result of [2].

Theorem 3.1 The notation being as above. Then F is genuine if and only if the Zariski closure of the image of $\rho_{F,\ell}$ contains Sp_4 for all but finitely many ℓ.

Proof Let G_ℓ be the Zariski closure of the image of $\rho_{F,\ell}$. By Corollary 4.4 and Proposition 4.5 of [2] one of the following cases happens: (1) G_ℓ contains Sp_4; (2) G_ℓ is contained in the subgroup $GO(2, 2) = GL_2 \times GL_2/GL_1$ of GSp_4; (3) G_ℓ is contained in the subgroup Sym^3GL_2 of GL_4; (4) $\rho_{F,\ell}$ is an induced representation of 2-dimensional Galois representation associated to a Hilbert modular form for a quadratic real field; (5) $\rho_{F,\ell}$ is an induced representation of a character.

By Theorem 8.7 of [2], for all but finitely many ℓ, the reduction $\overline{\rho}_{F,\ell}$ is irreducible. In the case (2), there exists a 2-dimensional irreducible Galois representation $\rho_\ell : G_{\mathbb{Q}} \rightarrow GL_2(\overline{\mathbb{Q}}_\ell)$ such that $\rho_{F,\ell} = \text{Sym}^3\rho_\ell$. The irreducibility of $\overline{\rho}_{F,\ell}$ implies that of $\overline{\rho}_\ell$. Therefore $\overline{\rho}_\ell$ is modular by Serre conjecture due to Khare–Wintenberger [13]. It follows that its image contains $SL_2(\overline{\mathbb{F}}_\ell)$ otherwise $\text{Sym}^3\rho_\ell$ is reducible. Hence ρ is absolute irreducible even if we restrict it to $G_{\mathbb{Q}(\ell)}$. Then by Kisin [14] for the ordinary case and Emerton [5] for the non-ordinary case, ρ_p is modular. Hence the case (2) corresponds to a symmetric cubic lift.

We now assume that F is genuine and $\rho_{F,\ell}$ does not contain Sp_4 for infinitely many ℓ. We denote by Σ the set of such primes ℓ. The cases (3), (4) and (5) are excluded since F is genuine with the argument above in the case (3). Then by applying Theorem 1.0.1 of [22] for a sufficiently large $\ell \in \Sigma$ (note that they used the notation $SGO(4)$ instead of $GSO(4)$), we see that F is a Rankin–Selberg convolution which contradicts with the assumption on F.

4 Simultaneous vertical Sato–Tate theorem

Let $F \in HE_k(\Gamma(N), \chi)^{\text{im}}$. For a prime $p \nmid N$, let $a_{F,p}, b_{F,p} \in [-2, 2]$ be Hecke eigenvalues as in [16]. Recall also the measure

$$\mu_p = f_p(x, y)g_p^+(x, y)g_p^-(x, y) \cdot \mu_\infty^{ST}$$
on $\Omega := [-2, 2]^2/\mathbb{G}_2$ (the non-trivial element in \mathbb{G}_2 acts by $(x, y) \mapsto (y, x)$ on $[-2, 2]^2$), where
\[
f_p(x, y) = \frac{(p + 1)^2}{\left(\sqrt{p} + \frac{1}{\sqrt{p}} \right)^2 - x^2} \left(\sqrt{p} + \frac{1}{\sqrt{p}} \right)^2 - y^2 \right), \quad \mu_\infty^{ST}
\]
\]\[
= \frac{(x - y)^2}{\pi^2} \sqrt{1 - \frac{x^2}{4}} \sqrt{1 - \frac{y^2}{4}},
\]
\[
g_p^\pm(x, y) = \frac{p + 1}{\left(\sqrt{p} + \frac{1}{\sqrt{p}} \right)^2 - 2 \left(1 + \frac{x}{4} \pm \sqrt{1 - \frac{x^2}{4}} \sqrt{1 - \frac{y^2}{4}} \right)}.
\]

Let $C^0(\Omega, \mathbb{R})$ be the space of \mathbb{R}-valued continuous functions on Ω. Then we can generalize Theorem 1.4 of [16] to finitely many primes.

Theorem 4.1 Let p_1, \ldots, p_r be distinct primes. Then for $f \in C^0(\Omega^r, \mathbb{R})$,
\[
\frac{1}{d_{\underline{E}, N}(\chi)} \sum_{F \in HE_2(\Gamma(N), \chi)} f((a_F, p_1, b_F, p_1), \ldots, (a_F, p_r, b_F, p_r)),
\]
\[
= \int_{\Omega^r} f((x_1, y_1), \ldots, (x_r, y_r)) \prod_{i=1}^r d\mu_{p_i}
\]
\[
+ \begin{cases} O(\left((p_1 \cdots p_r)^\alpha \phi(N) N^{-2}\right), & \text{level aspect} \\
O\left((p_1 \cdots p_r)^6 \left(\frac{(p_1 \cdots p_r)^c}{((k_1 - k_2 + 1)(k_1 - 1)(k_2 - 2))}\right)\right) & \text{weight aspect}
\end{cases}
\]
for some constants $a, b, c > 0$.

Proof Take $S' = \{p_1, \ldots, p_r\}$ in Proposition 4.3 of [16]. Then we can follow along the proof of Theorem 1.3 of [16] by using Theorem 5.4 and 5.5 of [16].

5 n-level density of degree 4 spinor L-functions

Katz and Sarnak [11] proposed a conjecture on low-lying zeros of L-functions in natural families, which says that the distributions of the low-lying zeros of L-functions in a family \mathfrak{F} is predicted by a symmetry type $G(\mathfrak{F})$ attached to \mathfrak{F}: For a given entire L-function $L(s, \pi)$, we denote the non-trivial zeros of $L(s, \pi)$ by $\frac{1}{2} + \sqrt{-1} \gamma_j$. Since we don’t assume GRH for $L(s, \pi)$, γ_j can be a complex number. Let $\phi(x_1, \ldots, x_n) = \prod_{i=1}^n \phi_i(x_i)$ be an even Schwartz class function in each variables whose Fourier transform $\hat{\phi}(u_1, \ldots, u_n)$ is compactly supported. We define
\[
D^{(n)}(\pi, \phi) = \sum_{j_1, \ldots, j_n} \phi \left(\gamma_{j_1} \log c_\pi \frac{2}{2\pi}, \gamma_{j_2} \log c_\pi \frac{2}{2\pi}, \ldots, \gamma_{j_n} \log c_\pi \frac{2}{2\pi} \right)
\]
where \sum_{j_1, \ldots, j_n} is over $j_i \in \mathbb{Z}$ (if the root number is -1) or $\mathbb{Z}\setminus\{0\}$ with $j_a \neq \pm j_b$ for $a \neq b$, and c_π is the analytic conductor of $L(s, \pi)$.

 Springer
Let $\mathfrak{F}(X)$ be the set of L-functions in \mathfrak{F} such that $X < c_\pi < 2X$. The n-level density conjecture says that

$$\lim_{X \to \infty} \frac{1}{|\mathfrak{F}(X)|} \sum_{\pi \in \mathfrak{F}(X)} D^{(n)}(\pi, \phi) = \int_{\mathbb{R}^n} \phi(x) W(G(\mathfrak{F})) \, dx,$$

where $W(G(\mathfrak{F}))$ is the n-level density function.

There are five possible symmetry types of families of L-functions: U, $\text{SO}($even$)$, $\text{SO}($odd$)$, O, and Sp. The corresponding density functions $W(G)$ are determined in [11] (cf. [27]). They are

$$W(U)(x) = \det(K_0(x_j, x_k))_{1 \leq j \leq n}, \quad 1 \leq k \leq n,$$

$$W(\text{SO}($$even$)))(x) = \det(K_1(x_j, x_k))_{1 \leq j \leq n}, \quad 1 \leq k \leq n,$$

$$W(\text{SO}($$odd$)))(x) = \det(K_{-1}(x_j, x_k))_{1 \leq j \leq n} + \sum_{v=1}^{n} \delta(x_v) \det(K_{-1}(x_j, x_k))_{1 \leq j \neq v \leq n}, \quad 1 \leq k \neq v \leq n,$$

$$W(\text{Sp})(x) = \det(K_{-1}(x_j, x_k))_{1 \leq j \leq n}, \quad 1 \leq k \leq n,$$

$$W(O)(x) = \frac{1}{2}(W(\text{SO}($$even$))(x) + W(\text{SO}($$odd$))(x)),$$

where $\delta(x)$ is the Dirac delta function, and $K_\epsilon(x, y) = \frac{\sin \pi(x - y)}{\pi(x - y)} + \epsilon \frac{\sin \pi(x + y)}{\pi(x + y)},$ $\epsilon \in \{\pm 1, 0\}.$

We will study the family of degree 4 spinor L-functions $L(s, \pi_F, \text{Spin})$ for $F \in HE_k(N)$. We may assume that π_F is not a CAP form. (For a CAP form, $|a_F(p)| \leq 4p^{1/2}$ and $|a_F(p^2)| \leq 4p$ in (5.2). Hence if the support of ϕ is smaller than $(-\frac{1}{4}, \frac{1}{4})$, then the sum over p in (5.2) is $O(N)$. But the dimension of the space of CAP forms is $O(e(N^{7+\epsilon})$. Hence it is negligible.)

Let $L(s, \pi_F, \text{Spin})$ be the degree 4 spinor L-function. Let

$$L(s, \pi_F, \text{Spin}) = \sum_{n=1}^{\infty} \lambda_F(n)n^{-s}.$$

It satisfies the functional equation:

$$\Lambda(s, \pi_F, \text{Spin}) = q(F)^{\frac{s}{2}} \Gamma_C \left(s + \frac{k_2 - 3}{2} \right) \Gamma_C \left(s + \frac{k_1 - k_2 + 1}{2} \right) L(s, \pi_F, \text{Spin}),$$

$$\Lambda(s, \pi_F, \text{Spin}) = \epsilon(\pi_F) \Lambda(1-s, \pi_F, \text{Spin}),$$

where $\epsilon(\pi_F) \in \{\pm 1\}$ and $N \leq q(F) \leq N^4.$

Let ϕ be a Schwartz function which is even and whose Fourier transform has a compact support. Define

$$D(\pi_F, \phi, \text{Spin}) = \sum_{\gamma_F} \phi \left(\frac{\gamma_F}{2\pi} \log c_{k,N} \right),$$

where $\log c_{k,N} = \frac{1}{d_k} \sum_{F \in HE_k(N)} \log c(F)$ for $k = (k_1, k_2)$, and $c(F) = (k_1 + k_2)^2(k_1 - k_2 + 1)^2 q(F)$ is the analytic conductor. We showed in [16] that

$$\frac{1}{d_k} \sum_{F \in HE_k(N)} D(\pi_F, \phi, \text{Spin}) = \hat{\phi}(0) + \frac{1}{2} \phi(0) + O \left(\omega(N) \log c_{k,N} \right).$$
where \(\omega(N) \) is the number of distinct prime factors of \(N \). So the possible symmetry type could be \(O, \text{SO(even)} \) or \(\text{SO(odd)} \) but we cannot distinguish them because the support of \(\hat{\phi} \) is too small. In order to distinguish them, we need to compute the \(n \)-level density.

Let \(\lambda_F(p^n) \) be the eigenvalue of the Hecke operator \(T(p^n) \) for \(p \nmid N \). Here \(T(p^n) \) is the sum of Hecke operators \(T_m \) for \(m = \text{text}(p^{a_1}, p^{a_2}, p^{-a_1+\kappa}, p^{-a_2+\kappa}) \), where \(0 \leq a_2 \leq a_1 \leq \kappa \).

Let \(T'(p^n) = T(p^n)p^{-\frac{k_1+k_2-3}{2}} \). Then
\[
L(s, \pi_F, \text{Spin}) = L\left(s - \frac{k_1+k_2-3}{2}, F, \text{Spin}\right),
\]
and \(L(s, F, \text{Spin}) = \prod Q_{F,p}(p^{-s})^{-1} \),
\[
Q_{F,p}(t)^{-1} = \left(1 - p^{k_1+k_2-4}t^2\right)^{-1} \sum_{n=0}^{\infty} \lambda_F(p^n)t^n.
\]

Therefore
\[
L(s, \pi_F, \text{Spin}) = \prod Q'_{F,p}(p^{-s})^{-1},
\]
where
\[
Q'_{F,p}(t)^{-1} = (1 - p^{-1}t^2)^{-1} \sum_{n=0}^{\infty} \lambda'_F(p^n)t^n.
\]

Hence \(\tilde{\lambda}_F(p) = \lambda'_F(p) \), and
\[
\tilde{\lambda}_F(p^n) = \begin{cases}
p^{-\frac{n}{2}} + \sum_{i=1}^{\frac{n}{2}} p^{-\frac{n}{2}+i} \lambda'_F(p^{2i}), & \text{if } n \text{ is even} \\
\sum_{i=0}^{\frac{n-1}{2}} p^{-\frac{n-1}{2}+i} \lambda'_F(p^{2i+1}), & \text{if } n \text{ is odd}
\end{cases}
\]

Therefore by [16, Theorem 7.1], we have the following. Note that \(T'(p^{2i}) \) is a sum of Hecke operators and only \(T'_{p^{2i}E_4} \) contributes the main term \(p^{-3i} \).

Theorem 5.1 Put \(k = (k_1, k_2) \), \(k_1 \geq k_2 \geq 3 \).

1. **(level-aspect)** Fix \(k_1, k_2 \). Then as \(N \to \infty \),
\[
\frac{1}{d_{k,N}} \sum_{F \in \mathcal{H}_{E_k}(N)} \tilde{\lambda}_F(p^n) = \begin{cases}
\sum_{i=0}^{\frac{n}{2}} p^{-\frac{n}{2}-2i} + O(N^{-2}p^c), & \text{if } n \text{ is even} \\
O(N^{-2}p^c), & \text{if } n \text{ is odd}
\end{cases}
\]

for some constant \(c > 0 \).

2. **(weight-aspect)** Fix \(N \). Then as \(k_1 + k_2 \to \infty \),
\[
\frac{1}{d_{k,N}} \sum_{F \in \mathcal{H}_{E_k}(N)} \tilde{\lambda}_F(p^n)
\]
For an arbitrary m in Theorem 1.4, take $S' = \{p|m\}$ in Proposition 5.3 of [16]. Then we obtain an analogue of Theorem 7.1 of [16]. This proves Theorem 1.4.

For one-level density, the root number $\epsilon(\pi_F)$ did not play a role. However, higher level density depends on the root number.

Let $S^\pm_k(N)$ be the subspace of $S_k(N)$ with the root number $\epsilon(\pi_F) = \pm 1$. Let $HE^\pm_k(N) = S^\pm_k(N) \cap HE_k(N)$, and denote $|HE^\pm_k(N)| = d^\pm_kN$.

When $N = 1$ (i.e., level one case), we have $\epsilon(\pi_F) = (-1)^k$ [30]. (In this case, $k_1 - k_2$ should be even.) Hence $HE^+_k(1) = HE_k(1)$ when k_2 is even, and $HE^-_k(1) = HE_k(1)$ when k_2 is odd.

However, when $N + k_1 + k_2 \to \infty$, we expect

Conjecture 5.1 Put $k = (k_1, k_2), k_1 \geq k_2 \geq 3$.

1. (level-aspect) Fix k_1, k_2. Then there exists a constant $\delta > 0$ such that $d^\pm_kN = \frac{1}{2}d_kN + O_k(N^{9-\delta})$, and Theorem 1.4 is true for each subspace $HE^\pm_k(N)$, namely, for $m = \prod p^{v_p(m)}$,

$$\frac{1}{d^\pm_kN} \sum_{F \in HE^\pm_k(N)} \tilde{\lambda}_F(m) = \delta m^{-\frac{1}{2}} \prod_{p|m} \left(1 + p^{-2} + \cdots + p^{-v_p(m)}\right) + O_k(N^{-2m^c}).$$

2. (weight-aspect) Fix N. Then $d^\pm_kN = \frac{1}{2}d_kN + O_N((k_1 - 1)(k_2 - 2)) + O((k_1 - k_2 + 1)(k_1 + k_2 - 3))$, and Theorem 1.4 is true for each subspace $HE^\pm_k(N)$, namely, for $m = \prod p^{v_p(m)}$,

$$\frac{1}{d^\pm_kN} \sum_{F \in HE^\pm_k(N)} \tilde{\lambda}_F(m) = \delta m^{-\frac{1}{2}} \prod_{p|m} \left(1 + p^{-2} + \cdots + p^{-v_p(m)}\right)$$

$$+ O_N \left(\frac{mc}{(k_1 - 1)(k_2 - 2)}\right) + O_N \left(\frac{md}{(k_1 - k_2 + 1)(k_1 + k_2 - 3)}\right).$$

We assume Conjecture 5.1 in this paper.

The calculation of the n-level density is well-known. But for the sake of completeness, we give an outline. We follow closely [3,27].

5.1 The case $\epsilon(\pi_F) = 1$

We denote the non-trivial zeros of $L(s, \pi_F, \text{Spin})$ by $\sigma_{F,i} = \frac{1}{2} + \sqrt{-1} \gamma_{F,i}$. Without assuming the GRH for $L(s, \pi_F, \text{Spin})$, we can order them as

$$\cdots \leq \text{Re}(\gamma_{F,-2}) \leq \text{Re}(\gamma_{F,-1}) \leq 0 \leq \text{Re}(\gamma_{F,1}) \leq \text{Re}(\gamma_{F,2}) \leq \cdots.$$
Let \(\phi(x_1, \ldots, x_n) = \phi_1(x_1) \cdots \phi_n(x_n) \), where each \(\phi_i \) is an even Schwartz function and \(\hat{\phi}(u_1, \ldots, u_n) = \hat{\phi}_1(u_1) \cdots \hat{\phi}_n(u_n) \). For a fixed \(n > 0 \), assume the Fourier transform \(\hat{\phi}_i \) of \(\phi_i \) is supported in \((-\beta_n, \beta_n)\) for \(i = 1, \ldots, n \). (\(\beta_n < 1 \) can be explicitly determined.)

The \(n \)-level density function is

\[
D^{(n)}(\pi_F, \phi, \text{Spin}) = \sum_{j_1, \ldots, j_n} \phi \left(\frac{\log c_{k,N}}{2\pi}, \frac{\log c_{k,N}}{2\pi}, \ldots, \frac{\log c_{k,N}}{2\pi} \right) \tag{5.1}
\]

where \(\sum_{j_1, \ldots, j_n} \) is over \(j_i = \pm 1, \pm 2, \ldots \) with \(j_a \neq \pm j_b \) for \(a \neq b \), and \(\log c_{k,N} = \frac{1}{d_{k,N}} \sum_{F \in HE_{k,N}^+} \log c(F) \) for \(k = (k_1, k_2) \), and \(c(F) = (k_1 + k_2)^2(k_1 - k_2 + 1)^2q(F) \) is the analytic conductor. Let

\[
-L'(s, \pi_F, \text{Spin}) = \sum_{n=1}^{\infty} \Lambda(n)a_F(n)n^{-s}.
\]

Recall the one-level density function [16, page 68]):

\[
\frac{1}{d_{k,N}} \sum_{F \in HE_{k,N}^+} D^{(1)}(\pi_F, \phi, \text{Spin}) = \hat{\phi}(0)
- \frac{2}{d_{k,N} \log c_{k,N}} \sum_{F \in HE_{k,N}^+} \sum_p \frac{a_F(p)}{\sqrt{p}} \hat{\phi} \left(\frac{\log p}{\log c_{k,N}} \right)
- \frac{2}{d_{k,N} \log c_{k,N}} \sum_{F \in HE_{k,N}^+} \sum_p \frac{a_F(p^2)}{p} \hat{\phi} \left(\frac{2 \log p}{\log c_{k,N}} \right) + O \left(\frac{1}{\log c_{k,N}} \right). \tag{5.2}
\]

Let \(L \) run over all ways of decomposing \{1, \ldots, n\} into disjoint subsets \(\{L_1, \ldots, L_v\} \). Let \(\nu = \nu(L) \). For each \(l = 1, \ldots, v \), let \(\Phi_l = \prod_{i \in S_l} \phi_i \).

By Rubinstein [27],

\[
\frac{1}{d_{k,N}^+} \sum_{F \in HE_{k,N}^+} D^{(n)}(\pi_F, \phi, \text{Spin}) = \frac{1}{d_{k,N}^+} \sum_{F \in HE_{k,N}^+} \sum_{L} (-2)^{n-\nu(L)}
\cdot \prod_{l=1}^{v(L)} (|L_l| - 1)! \left(\int_{\mathbb{R}} \Phi_l(x)dx - \frac{2}{\log R} \Sigma_{l,1}(\Phi_l) - \frac{2}{\log c_{k,N}} \Sigma_{l,2}(\Phi_l) + O \left(\frac{1}{\log c_{k,N}} \right) \right), \tag{5.3}
\]

where

\[
\Sigma_{l,1}(\Phi_l) = \sum_p \frac{a_F(p) \log p}{\sqrt{p}} \hat{\phi}_l \left(\frac{\log p}{\log c_{k,N}} \right),
\]

\[
\Sigma_{l,2}(\Phi_l) = \sum_p \frac{a_F(p^2) \log p}{p} \hat{\phi}_l \left(\frac{2 \log p}{\log c_{k,N}} \right).
\]

Note that

\[
\int_{\mathbb{R}} \Phi_l(x)dx - \frac{2}{\log c_{k,N}} \Sigma_{l,1}(\Phi_l) - \frac{2}{\log c_{k,N}} \Sigma_{l,2}(\Phi_l) = D^{(1)}(\pi_F, \Phi_l) + O \left(\frac{1}{\log c_{k,N}} \right),
\]

We show, following Lemma 2 in [27], that we can ignore \(O \left(\frac{1}{\log c_{k,N}} \right) \) terms in (5.3).
Lemma 5.2
\[
\frac{1}{d_{k, N}^+} \sum_{F \in H E_{k, N}^+} \prod_{l=1}^{v(F)} \left(\int_{\mathbb{R}} \Phi_l(x) dx - \frac{2}{\log c_{k, N}^+} \Sigma_{l, 1}(\Phi_l) - \frac{2}{\log c_{k, N}^+} \Sigma_{l, 2}(\Phi_l) \right)
= \frac{1}{d_{k, N}^+} \sum_{F \in H E_{k, N}^+} \prod_{l=1}^{v(F)} \left(D^{(1)}(\pi_F, \Phi_l) \right) + O \left(\frac{1}{\log c_{k, N}^+} \right).
\]

We prove two lemmas analogous to Claims 2 and 3 in Rubinstein [27].

Lemma 5.3 (Claim 2 of [27])
\[
\sum_{F \in H E_{k, N}^+} \sum_{m_i \geq 1} \prod_{j=1}^{a} \frac{\Lambda(m_j) a_F(m_j)}{\sqrt{m_j}} \Phi_{l_j} \left(\frac{\log m_j}{\log c_{k, N}^+} \right) \ll d_{k, N}^+ (\log c_{k, N}^+)^{a-1}.
\]

where \(m_i\)'s are a prime or a square of a prime.

Proof By changing the order of the sums, we need to consider, for \(p_1, p_2, \ldots, p_r, q_1, q_2, \ldots, q_t\), distinct primes,
\[
\sum_{F \in H E_{k, N}^+} a_F(p_1)^{e_1} \cdots a_F(p_r)^{e_r} a_F(q_1^2)^{\gamma_1} \cdots a_F(q_t^2)^{\gamma_t}, \tag{5.4}
\]
where \(e_1 + \cdots + e_r + \gamma_1 + \cdots + \gamma_t = a\).

Now, by rearranging, if there exists \(e_i = 1\) for some \(i\), we can assume that \(e_1 = \cdots = e_b = 1\) and \(e_{b+1} > 1, \ldots, e_r > 1\). Then use the fact that \(\lambda_F(p)^e = \sum_{i=0}^e c_i \lambda_F(p^i)\) for some constants \(c_i\). Hence \(a_F(p_1)^{e_1} \cdots a_F(p_r)^{e_r} a_F(q_1^2)^{\gamma_1} \cdots a_F(q_t^2)^{\gamma_t}\) is the sum of \(\lambda_F(p_1 \cdots p_{bh})\), where \(n\) is not divisible by \(p_1, \ldots, p_b\). Hence by Theorem 1.4, (5.4) gives rise to an error term. So we have the result.

Suppose \(e_i > 1\) for all \(i\). Then \(e_i \geq 3\) for some \(i\) by assumption. Then we have the result by using the bounds [3, (4.10) and (4.11)]:
\[
\sum_{p \leq R^{bn}} \frac{|a_F(p)|^j (\log p)^j}{\sqrt{p^j}} \ll \begin{cases} R^{\frac{b}{2}}, & \text{if } i = 1 \\ (\log R)^2, & \text{if } i = 2 \\ O(1), & \text{if } i \geq 3. \end{cases} \tag{5.5}
\]
\[
\sum_{p \leq R^{bn/2}} \frac{|a_F(p^2)|^j (\log p)^j}{p^j} \ll \begin{cases} O(\log R), & \text{if } j = 1 \\ O(1), & \text{if } j \geq 2. \end{cases} \tag{5.6}
\]

Lemma 5.4 (Claim 3 of [27])
\[
\frac{1}{d_{k, N}^+} \left(\frac{-2}{\log c_{k, N}^+} \right)^a \sum_{F \in H E_{k, N}^+} \sum_{m_i \geq 1} \prod_{l=1}^{\delta_X^a} \frac{\Lambda(m_j) a_F(m_j)}{\sqrt{m_j}} \Phi_{l_j} \left(\frac{\log m_j}{\log c_{k, N}^+} \right)
= \sum_{S \subset S \subset S_2 \text{ even}} \left(\frac{\delta_S}{2} \right)^{|S_2|} \left| \prod_{l \in S_2} \int_{\mathbb{R}} \Phi_{l}(u) du \right|
\]

\(\text{ Springer}\)
We use the fact that $\sum_{S_2 \subseteq S} m_i$ is a prime or a square of a prime, and $S = \{l_1, \ldots, l_a\}$, $\sum_{|S_2| = \text{even}} S$ is over all subsets S_2 of S whose size is even, and \sum_{p_2} is over all ways of pairing up the elements of S_2.

Proof First of all, in (5.4), if $e_i \geq 4$ or $\gamma_i \geq 2$ for some i, then by (5.5) and (5.6), those terms are majorized by $d_{k,N}^2 (\log c_{k,N})^a$. Hence we only need to consider the sum

$$
\sum_{F \in HE_{k,N}^+} a_F(p_1)^2 \cdots a_F(p_r)^2 a_F(q_1^2) \cdots a_F(q_t^2),
$$

where $2r+t = a$. In this case, $S_2 = \{l_1, l_2, \ldots, l_{2r-1}, l_{2r}\}$, and $S = \{l_1, \ldots, l_{2r}, l_{2r+1}, \ldots, l_a\}$. We use the fact that $a_F(p)^2 = 1 + p^{-1} \times \text{polynomials in } p^{-1} + \text{sum of Hecke operators}$, and $a_F(p^2) = -1 + p^{-1} \times \text{polynomials in } p^{-1} + \text{sum of Hecke operators}$. \hfill \square

We define

$$
\Delta_{l,2}(\Phi_l) = \Sigma_{l,2}(\Phi_l) + \frac{1}{4} \Phi_l(0) \log c_{k,N}.
$$

Since $\int_{\mathbb{R}} \Phi_l(x)dx = \hat{\Phi}_l(0)$,

$$
(5.3) = \frac{1}{d_{k,N}^+} \sum_{F \in HE_{k,N}^+} \sum_{L} (-2)^{a-v(L)} \prod_{l=1}^{v(L)} (|F_l| - 1)!
\times \left(\hat{\Phi}_l(0) + \frac{1}{2} \Phi_l(0) \right) - \frac{2}{\log c_{k,N}} \Sigma_{l,1}(\Phi_l) - 2 \frac{2}{\log c_{k,N}} \Delta_{l,2}(\Phi_l) + O \left(\frac{1}{\log c_{k,N}} \right).
$$

The following three lemmas enable us to find an explicit expression for (5.3).

Lemma 5.5

$$
\frac{1}{d_{k,N}^+} \left(\frac{-2}{\log c_{k,N}} \right)^a \sum_{F \in HE_{k,N}^+} \Delta_{l,1,2}(\Phi_{l_1}) \cdots \Delta_{l,a,2}(\Phi_{l_a}) \ll \frac{1}{\log c_{k,N}}.
$$

Lemma 5.6

$$
\frac{1}{d_{k,N}^+} \left(\frac{-2}{\log c_{k,N}} \right)^a \sum_{F \in HE_{k,N}^+} \Sigma_{l,1}(\Phi_{l_1}) \cdots \Sigma_{l,1}(\Phi_{l_r}) \Delta_{l,1,2}(\Phi_{l_{r+1}}) \cdots \Delta_{l,a,2}(\Phi_{l_a})
= O \left(\frac{1}{\log c_{k,N}} \right).
$$

Lemma 5.7

$$
\frac{1}{d_{k,N}^+} \left(\frac{-2}{\log c_{k,N}} \right)^a \sum_{F \in HE_{k,N}^+} \Sigma_{l,1}(\Phi_{l_1}) \cdots \Sigma_{l,1}(\Phi_{l_a})
$$

\[\text{ Springer} \]
function and \(\hat{\Phi}_{l_a}(u) \hat{\Phi}_{l_b}(u) du + O \left(\frac{1}{\log c_{k,N}} \right) \), if \(a \) is even
\[
O \left(\frac{1}{\log c_{k,N}} \right),
\]
otherwise.

Here \(\sum_{P_2} \) is over all ways of paring up the elements of \(\{1, 2, \ldots, a\} \). If \(a = 2r \), it runs through products of 2-cycles of the form \((l_1l_2) \cdots (l_{2r-1}l_{2r}) \). There are \(\frac{(2r)!}{2^r r!} \) of them.

Therefore, we have proved

Theorem 5.8

\[
\frac{1}{d_{k,N}^+} \sum_{F \in HE_{k,N}^+} D^{(n)}(\pi_F, \phi, \text{Spin}) = \sum_{L} (-2)^{n-v(L)} \prod_{i=1}^{v(L)} (|F_i| - 1)!
\times \sum_{S \text{ even}} \left(\prod_{\nu \in S^c} \left(\frac{1}{2} \Phi_{l}(0) + \frac{1}{2} \Phi_{r}(0) \right) \right) \left(\sum_{P_2} 2^{\frac{|S|}{2}} \prod_{i=1}^{\frac{|S|}{2}} |u| \hat{\Phi}_{l_a}(u) \hat{\Phi}_{l_b}(u) du \right)
+ O \left(\frac{1}{\log c_{k,N}} \right),
\]

where \(S \) runs through the subset of even cardinality in \(\{1, \ldots, v(L)\} \), and \(\sum_{P_2} \) is over all ways of paring up the elements of \(S \).

We summarize it as

Theorem 5.9 Let \(\phi(x_1, \ldots, x_n) = \phi_1(x_1) \cdots \phi_n(x_n) \), where each \(\phi_i \) is an even Schwartz function and \(\hat{\phi}(u_1, \ldots, u_n) = \hat{\phi}_1(u_1) \cdots \hat{\phi}_n(u_n) \). Assume the Fourier transform \(\hat{\phi}_i \) of \(\phi_i \) is supported in \((-\beta_i, \beta_i) \) for \(i = 1, \ldots, n \). Then

\[
\frac{1}{d_{k,N}^+} \sum_{F \in HE_{k,N}^+} D^{(n)}(\pi_F, \phi, \text{Spin}) = \int_{\mathbb{R}^n} \phi(x) W(\text{SO(even)})(x) \, dx + O \left(\frac{\omega(N)}{\log c_{k,N}} \right).
\]

5.2 The case \(\varepsilon(\pi_F) = -1 \)

If \(\varepsilon(\pi_F) = -1 \), \(L(s, \pi_F, \text{Spin}) \) always has a family zero at \(s = \frac{1}{2} \). By Rubinstein [27], the \(n \)-level density function is

\[
D^{(n)}(\pi_F, \phi, \text{Spin}) = \sum_{j_1, \ldots, j_n}^* \phi \left(\gamma_{j_1}, \frac{\log c_{k,N}}{2\pi}, \gamma_{j_2}, \frac{\log c_{k,N}}{2\pi}, \ldots, \gamma_{j_n}, \frac{\log c_{k,N}}{2\pi} \right)
= \sum_{j_1 \neq 0, \ldots, j_n \neq 0}^* \phi \left(\gamma_{j_1}, \frac{\log c_{k,N}}{2\pi}, \gamma_{j_2}, \frac{\log c_{k,N}}{2\pi}, \ldots, \gamma_{j_n}, \frac{\log c_{k,N}}{2\pi} \right)
+ \sum_{v=1}^n \sum_{j_v=0, j_k \neq 0, k \neq v}^* \phi \left(\gamma_{j_1}, \frac{\log c_{k,N}}{2\pi}, \gamma_{j_2}, \frac{\log c_{k,N}}{2\pi}, \ldots, \gamma_{j_{v-1}}, \frac{\log c_{k,N}}{2\pi}, 0, \gamma_{j_{v+1}}, \frac{\log c_{k,N}}{2\pi}, \ldots, \gamma_{j_n}, \frac{\log c_{k,N}}{2\pi} \right).
\]
By Rubinstein [27], the first term gives rise to
\[
\frac{1}{d_{k,N}} \sum_{F \in HE_{k,N}^1} \sum_{j_1 \neq 0, \ldots, j_n \neq 0} \phi \left(\frac{\log c_{k,N}}{2\pi}, \frac{\log c_{k,N}}{2\pi}, \ldots, \frac{\log c_{k,N}}{2\pi} \right)
\]
\[
= \sum_{L} (-2)^{n-v(L)} \prod_{l=1}^{v(L)} (|F_l| - 1)!
\times \left(\Phi(0) - \frac{2\Sigma_{l,1}(\Phi_l)}{\log c_{k,N}} - \frac{2\Sigma_{l,2}(\Phi_l)}{\log c_{k,N}} - \Phi(0) + O \left(\frac{1}{\log c_{k,N}} \right) \right)
\]
\[
= \sum_{L} (-2)^{n-v(L)} \prod_{l=1}^{v(L)} (|F_l| - 1)!
\times \left(\left(\Phi(0) - \frac{1}{2} \Phi(0) \right) - \frac{2\Sigma_{l,1}(\Phi_l)}{\log c_{k,N}} - \frac{2\Delta_{l,2}(\Phi_l)}{\log c_{k,N}} \right) + O \left(\frac{1}{\log c_{k,N}} \right).
\]

It is equal to
\[
\sum_{L} (-2)^{n-v(L)} \prod_{l=1}^{v(L)} (|F_l| - 1)! \sum_{S \text{ even}} \left(\prod_{l \in S^c} \left(\Phi(0) - \frac{1}{2} \Phi(0) \right) \right)
\times \left(\sum_{p_2} 2^{|S|} \prod_{l=1}^{\frac{|S|}{2}} |u|\Phi_{l_{a_1}}(u)\Phi_{l_{b_1}}(u) \right) + O \left(\frac{1}{\log c_{k,N}} \right),
\]

which equals the \(n\)-level density of the symplectic type.

We summarize it as

Theorem 5.10 Let the notations be as in Theorem 5.9. Then
\[
\frac{1}{d_{k,N}} \sum_{F \in HE_{k,N}^1} D^{(n)}(\pi_F, \phi, \text{Spin}) = \int_{\mathbb{R}^n} \phi(x) W(\text{SO(odd)})(x) \, dx + O \left(\frac{\omega(N)}{\log c_{k,N}} \right).
\]

6 \(n\)-level density of degree 5 standard \(L\)-functions

Let \(L(s, \pi_F, \text{St})\) be the degree 5 standard \(L\)-function. Let
\[
L(s, \pi_F, \text{St}) = \sum_{n=1}^{\infty} \mu_F(n)n^{-s}.
\]

It satisfies the functional equation: Let \(\Lambda(s, \pi_F, \text{St}) = q(F, \text{St})^{\frac{s}{2}} \Gamma_{\mathbb{R}}(s) \Gamma_{\mathbb{C}}(s+k_1-1) \Gamma_{\mathbb{C}}(s+k_2-2) L(s, \pi_F, \text{St})\). Then
\[
\Lambda(s, \pi_F, \text{St}) = \epsilon(\pi_F, \text{St}) \Lambda(1-s, \pi_F, \text{St}),
\]
where \(\epsilon(\pi_F, \text{St}) \in \{ \pm 1 \}\) and \(N \leq q(F, \text{St}) \leq N^{28}\). Lapid [19] showed

Proposition 6.1 Let \(\pi_F\) be as above. Then \(\epsilon(\pi_F, \text{St}) = 1\).
In fact, Lapid proved it only for globally generic cusp forms. However, holomorphic cusp forms are always in the same L-packet with a globally generic cusp form. (See Section 10 in [16].) Hence the result follows. Because of the above proposition, we expect that the symmetry type of $L(s, \pi_F, \St)$ is \Sp. However, we need the following conjecture. We showed it in [16, Proposition 9.5] when $m = p$ or p^2, where p is a prime. We will prove it for a general degree in an upcoming paper [17].

Conjecture 6.1 Put $k = (k_1, k_2)$, $k_1 \geq k_2 \geq 3$.

1. (level-aspect) Fix k_1, k_2. Let $m = \prod_{p \mid m} p^{v_p(m)}$. Then as $N \to \infty$,
 \[
 \frac{1}{d_{k,N}} \sum_{F \in HE_k(N)} \mu_F(m) = \prod_{p \mid m} (\delta_{p,m} + p^{-1}h(p^{-1})) + O(N^{-2}m^c),
 \]
 where $\delta_{p,m} = \begin{cases} 1, & \text{if } v_p(m) \text{ is even} \\ 0, & \text{otherwise} \end{cases}$, and h is a polynomial with integer coefficients and $c > 0$ is a constant.

2. (weight-aspect) Fix N. Then as $k_1 + k_2 \to \infty$,
 \[
 \frac{1}{d_{k,N}} \sum_{F \in HE_k(N)} \mu_F(m) = \prod_{p \mid m} (\delta_{p,m} + p^{-1}h(p^{-1})) + O\left(\frac{m^c}{(k_1 - 1)(k_2 - 2)}\right) + O\left(\frac{m^d}{(k_1 - k_2 + 1)(k_1 + k_2 - 3)}\right).
 \]

Let ϕ be a Schwartz function which is even and whose Fourier transform has a compact support. Define
 \[
 D(\pi_F, \phi, \St) = \sum_{\gamma_F} \phi(\gamma_F/2\pi) \cdot \log c_{k,\St,N},
 \]
 where $\log c_{k,\St,N} = \frac{1}{d_{k,N}} \sum_{F \in HE_k(N)} \log c(F, \St)$, and $c(F, \St) = (k_1k_2)^2 q(F, \St)$ is the analytic conductor.

We showed in [16] that
 \[
 \frac{1}{d_{k,N}} \sum_{F \in HE_k(N)} D(\pi_F, \St, \phi) = \tilde{\phi}(0) - \frac{1}{2} \phi(0) + O\left(\frac{1}{\log c_{k,\St,N}}\right)
 \]
 \[
 = \int \phi(x) W(\Sp)(x) \, dx + O\left(\frac{\omega(N)}{\log c_{k,\St,N}}\right).
 \]

Let $\phi(x_1, \ldots, x_n) = \phi_1(x_1) \cdots \phi_n(x_n)$, where each ϕ_i is an even Schwartz function and $\hat{\phi}(u_1, \ldots, u_n) = \phi_1(u_1) \cdots \phi_n(u_n)$. For a fixed $n > 0$, assume the Fourier transform $\hat{\phi}_i$ of ϕ_i is supported in $(-\beta_n, \beta_n)$ for $i = 1, \ldots, n$. ($\beta_n < 1$ can be explicitly determined.) The n-level density function is
 \[
 D^{(n)}(\pi_F, \phi, \St) = \sum_{j_1, \ldots, j_n}^* \phi\left(\gamma_{j_1} \log c_{k,\St,N}/2\pi, \gamma_{j_2} \log c_{k,\St,N}/2\pi, \ldots, \gamma_{j_n} \log c_{k,\St,N}/2\pi\right)
 \]
 where $\sum_{j_1, \ldots, j_n}^*$ is over $j_i = \pm 1, \pm 2, \ldots$ with $j_a \neq \pm j_b$ for $a \neq b$.

Let
 \[
 \frac{L'}{L}(s, \pi_F, \St) = \sum_{n=1}^\infty \Lambda(n) b_F(n)n^{-s}.
 \]
We can prove the analogues of (5.5) and (5.6) for $b_F(p^t)$ from [16, Appendix]: Let Π be the cuspidal representation of GL_3/\mathbb{Q} such that $L(s, \Pi) = L(s, \pi_{\Gamma_0(F)}, St)$. Then (5.5) follows from the fact that $L(s, \Pi \times \Pi)$ converges absolutely for $Re(s) > 1$ and has a simple pole at $s = 1$; (5.6) follows from the fact that $|b_F(p^2)| \ll |b_F(p)|^2$ for any p, and the Ramanujan bound $|b_F(p^2)| \leq 5p^{1 - \frac{2}{\log p}}$. Then as in the degree 4 spinor L-functions, we can show

Theorem 6.2 Assume Conjecture 6.1. Let $\phi(x_1, \ldots, x_n) = \phi_1(x_1) \cdots \phi_n(x_n)$, where each ϕ_i is an even Schwartz function and $\hat{\phi}(u_1, \ldots, u_n) = \phi_1(u_1) \cdots \phi_n(u_n)$. Assume the Fourier transform $\hat{\phi}$ of ϕ is supported in $(-\beta_n, \beta_n)$ for $i = 1, \ldots, n$. Then

$$\frac{1}{d_{\mathbb{Z}, N}} \sum_{F \in HE_{\mathbb{Z}, N}} D(n)(\pi F, \phi, St) = \int_{\mathbb{R}^n} \phi(x) W(Sp)(x) \, dx + O \left(\frac{\omega(N)}{\log c_{\mathbb{Z}, N}} \right).$$

7 Paramodular forms

In this section, we fix a square free positive integer N. We deal with a compact subgroup $K_{p}^{\text{param}}(N)$ of level N in $G(\mathbb{Q}_p)$, which is defined by

$$K_{p}^{\text{param}}(N) = xM_4(\mathbb{Z}_p)x^{-1} \cap G(\mathbb{Q}_p), \quad x = \text{diag}(1, 1, N, 1),$$

where G means GSp_4 as in [16, Section 2]. We have an open compact subgroup $K^{\text{para}}(N) = \prod_{p} K_{p}^{\text{para}}(N)$ in $G(\mathbb{A}_{\text{fin}})$. Furthermore, an arithmetic subgroup $\Gamma^{\text{para}}(N)$ of $G(\mathbb{Q})$ is given by $\Gamma^{\text{para}}(N) = G(\mathbb{Q}) \cap (G(\mathbb{R})K^{\text{para}}(N))$, called the paramodular subgroup. An element $w_{N,p}$ in $G(\mathbb{Q}_p)$ is given by

$$w_{N,p} = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \\ 0 & N & 0 & 0 \\ N & 0 & 0 & 0 \end{pmatrix} \in G(\mathbb{Q}_p).$$

Then, the Atkin–Lehner involution on $G(\mathbb{Q}_p)$ is provided by the double coset

$$K_{p}^{\text{para}}(N)w_{N,p}K_{p}^{\text{para}}(N) = w_{N,p}K_{p}^{\text{para}}(N) = K_{p}^{\text{para}}(N)w_{N,p}.$$

Let $k = (k_1, k_2), k_1 \geq k_2 \geq 4$, and $S_k(\Gamma^{\text{para}}(N))$ denote the space of paramodular forms of weight k with the trivial central character. Set $d_{k}^{\text{para}} = \dim S_k(\Gamma^{\text{para}}(N))$. Then by [9],

$$d_{k}^{\text{para}} = 2^{-7}3^{-3}5^{-1}(k_1 - 1)(k_2 - 2)(k_1 - k_2 + 1)(k_1 + k_2 - 3)\prod_{p | N}(p^2 + 1) + O(N(k_1 - k_2 + 1)(k_1 + k_2 - 3)) + O(N(k_1 - 1)(k_2 - 2)).$$

Here note that $\prod_{p | N}(p^2 + 1) = c_NN^2$ for some constant $1 < c_N < 5$.

We obtain the Hecke operator $T_m'(m = \text{diag}(p^{a_1}, p^{a_2}, p^{-a_1+\kappa}, p^{-a_2+\kappa}))$ as in [16, Section 8]. Define, for $M | N$, the Atkin-Lehner involution $w_{N,M}$ on $S_k(\Gamma^{\text{para}}(N))$, where $w_{N,M}$ is induced from the coset $\prod_{p | M} K_{p}^{\text{para}}(N)w_{N,p}$ in $\prod_{p | M} G(\mathbb{Q}_p)$.

Theorem 7.1 Suppose $k_1 \geq k_2 \geq 4$. There exist absolute constants a and b such that for each prime $p \nmid N$, square-free natural number M dividing N, and $m = \text{diag}(p^{a_1}, p^{a_2}, p^{-a_1+\kappa}, p^{-a_2+\kappa})$, $a_1, a_2, \kappa \in \mathbb{Z}$ satisfying $0 \leq a_2 \leq a_1 \leq \kappa$, we have

$$\frac{1}{d_{k}^{\text{para}}} \text{tr} \left(T_m' w_{N,M} S_k(\Gamma^{\text{para}}(N)) \right)$$

$\geq a \frac{d_{k}^{\text{para}}}{d_{k}^{\text{para}}} + b \frac{d_{k}^{\text{para}}}{d_{k}^{\text{para}}}$.
\[= B_1 + B_2 + O_N \left(\frac{p^{\alpha k + b}}{(k_1 - k_2 + 1)(k_1 - 1)(k_1 - 2)} \right) \quad (k_1 + k_2 \to \infty), \]
\[B_1 = O_N \left(\frac{p^{-\frac{z}{2}}}{(k_1 - 1)(k_2 - 2)} \right), \quad B_2 = O_N \left(\frac{p^{-\frac{z}{2}}}{(k_1 - k_2 + 1)(k_1 + k_2 - 3)} \right) \]

if \(m \notin \mathbb{Z}_G(\mathbb{Q}) \) or \(M \neq 1 \).

Remark 7.2 We remark on the exponent \(-\kappa/2\) of \(p \) in the terms \(B_1 \) and \(B_2 \) in the above theorem. As explained in [16, Proof of Theorem 7.1], the normalization of \(T^*_m \) is different from that of the test function \(f \) in the following proof. Therefore, we obtain \(p^{-\kappa/2} \) from \(p^\kappa \) in the estimations of \(I_2(f) \) and \(I_3(f) \). This normalization is also related to the exponent \(-1/2\) of \(m \) in the leading term of formulas of Theorem 1.4.

Proof We recall the notations as in Sections 5 and 6 of [16]. For the trace formula, we choose a test function \(f = f_{\delta}h \) as

\[h = f_{S',\alpha} \tilde{f} \left(\bigotimes_{p \in S', S' \cap [v \mid N \infty]} \text{char}_{K_p} \right) \]

where \(\tilde{f} \) denotes \(\left(\otimes_{p \mid N, p \mid M \text{char}_{K_{p}}(N)} \right) \otimes \left(\otimes_{p \mid M \text{char}_{w_{N,p}K_{p}}(N)} \right) \). By the same argument as the proof of [16, Proposition 6.3], one can show that there exist positive constants \(a' \) and \(b' \) such that

\[I_2(f) \times \text{vol}(K_{\text{para}}(N))^{-1} \times |\nu(\alpha)|_{S'}^{-k_1+k_2} = O \left(p_{S'}^{k_1+k_2}(k_1 - k_2 + 1)(k_1 + k_2 - 3) \right) \]
\[I_3(f) \times \text{vol}(K_{\text{para}}(N))^{-1} \times |\nu(\alpha)|_{S'}^{-k_1+k_2} = O \left(p_{S'}^{k_1+k_2}(k_1 - 1)(k_2 - 2) \right) \]
\[[I_4(f) + I_6(f)] \times \text{vol}(K_{\text{para}}(N))^{-1} \times |\nu(\alpha)|_{S'}^{-k_1+k_2} = O \left(p_{S'}^{a'k+b'}(k_1 + k_2 - 3) \right) \]
\[I_5(f) \times \text{vol}(K_{\text{para}}(N))^{-1} \times |\nu(\alpha)|_{S'}^{-k_1+k_2} = O \left(p_{S'}^{a'k+b'}(k_1 - k_2 - 3) \right) \]

for any \((k_1, k_2), \kappa \geq 1, S', \) and \(f_{S',\alpha} \), which satisfy the conditions \(k_1 \geq k_2 \geq 3, f_{S',\alpha} \in H^{ur}(G(\mathbb{Q}_{S'})) \), and \(N \) is prime to \(\prod_{p \in S'} p \). Notice that an important result [35, Proposition 8.7] was used for the proof. Thus, this theorem is derived from the above estimates. \(\square \)

Let \(S^{\text{non-C}}_k(\Gamma_{\text{para}}(N)) \) denote the space of paramodular forms whose associated representations are not related to the Saito–Kurokawa representations. We write \(S^{\text{CAP}}_k(\Gamma_{\text{para}}(N)) \) for the subspace consisting of Saito–Kurokawa liftings in \(S_k(\Gamma_{\text{para}}(N)) \) (i.e., it is called the Maass space). Hence, \(S^{\text{CAP}}_k(\Gamma_{\text{para}}(N)) \) is the orthogonal complement of \(S^{\text{non-C}}_k(\Gamma_{\text{para}}(N)) \) in \(S_k(\Gamma_{\text{para}}(N)) \) by the Petersson inner product. Namely, we have an isomorphism

\[S^{\text{non-C}}_k(\Gamma_{\text{para}}(N)) \cong \bigoplus_{\pi = \pi_{\infty} \otimes \pi_{\text{fin}}} N_\pi \left(K_{\text{para}}(N) \right) \]

where \(\pi \) moves over automorphic representations of \(G(\mathbb{A}) \) such that \(\pi \) has the trivial central character, \(\pi \) is not a Saito–Kurokawa representation, \(\pi_{\infty} \) is isomorphic to the holomorphic discrete series of \(G(\mathbb{R}) \) with the Harish–Chandra parameter \((k_1 - 1, k_2 - 2)\), and the subspace \(N_\pi(\pi_{\text{fin}}) \) of \(K_{\text{para}}(N) \)-fixed vectors in \(\pi_{\text{fin}} \) is not trivial. By [41, Theorem 3.3] or [18, a comment for \(n = 2 \) after Theorem A], for each above \(\pi_{\text{fin}} = \otimes_{\nu < \infty} \pi_{\nu} \), if \(\pi_{\nu} \) is spherical, then \(\pi_{\nu} \) satisfies the Ramanujan conjecture. Hence, all spherical representations \(\pi_{\nu} \) belong

\(\Box \) Springer
to the class I in [25, Table A.13 in p.293] (see also [28, Table 3]). Hence, by [25,28], one has an isomorphism
\[N_{\pi} \left(K_{\text{para}}^\varpara(N) \right) \cong \bigotimes_{v < \infty} N_{\pi_v} \left(K_v^\varpara(N) \right) \]
where \(N_{\pi_v} \left(K_v^\varpara(N) \right) \) denotes the subspace of \(K_v^\varpara(N) \)-fixed vectors in \(\pi_v \), and for each prime \(p \mid N \), \(\pi_p \) satisfies (i) or (ii);

(i) \(\pi_p \) is spherical and \(\dim N_{\pi_p} \left(K_p^\varpara(N) \right) = 2 \),

(ii) \(\pi_p \) is non-spherical and \(\dim N_{\pi_p} \left(K_p^\varpara(N) \right) = 1 \).

As for the case (i), the trace of the Atkin–Lehner involution on \(N_{\pi_p} \left(K_p^\varpara(N) \right) \) is zero. When \(\pi_p \) satisfies (ii), the eigenvalue of the Atkin–Lehner involution means the \(\varepsilon \)-factor of its local spinor L-factor (see [25, Theorem 5.7.3 in p.185] or [28, Proposition 1.3.1]).

Let us consider the case \(k_1 = k_2 \geq 3 \) for \(S_k^\text{CAP} (\Gamma^\text{para}(N)) \), because the space vanishes if \(k_1 > k_2 \geq 3 \). By [29] the trace of \(T_m \mid_{\Gamma^\text{para}(N)} \) on \(S_k^\text{CAP} (\Gamma^\text{para}(N)) \) can be described by a linear combination of traces of Hecke operators on \(S_{2k_1-2}^1(\Gamma(0)) \). Therefore, one can prove
\[
\frac{1}{d_k(N)} \text{tr} \left(T_m \mid_{\Gamma^\text{para}(N)} \right) S_{k}^\text{CAP} (\Gamma^\text{para}(N)) = O_N \left(\frac{p^{ax+b}}{(k_1 - k_2 + 1)(k_1 - 1)(k_2 - 2)} \right)
\]
for some \(a \) and \(b \).

Let \(S_k^{\text{non-C,new}} (\Gamma^\text{para}(N)) \) denote the subspace of newforms in \(S_k^{\text{non-C}} (\Gamma^\text{para}(N)) \). Here, newform means that its associated automorphic representation \(\pi \) has no \(K^\text{para}(M) \)-fixed vectors for any natural number \(M \) such that \(M \mid N \) and \(M < N \). Namely,
\[
S_k^{\text{non-C,new}} (\Gamma^\text{para}(N)) \cong \bigoplus_{\pi = \otimes v \pi_v} N_{\pi} \left(K^\text{para}(N) \right)
\]
where \(\pi \) moves over all automorphic representations satisfying the same conditions as above and \(\pi_p \) is of the case (ii) for each \(p \mid N \). Therefore, one has
\[
\text{tr} \left(T_m \mid_{S_k^{\text{non-C,new}} (\Gamma^\text{para}(N))} \right) = \sum_{M \mid N} (-2)^{\omega(M)} \text{tr} \left(T_m \mid_{S_k^{\text{non-C}} (\Gamma^\text{para}(N) / M)} \right)
\]
where \(\omega(M) \) is the number of distinct prime factors of \(M \).

Let \(S_k^{\text{non-C,new,\pm}} (\Gamma^\text{para}(N)) \) (resp. \(S_k^{\text{non-C,new,\mp}} (\Gamma^\text{para}(N)) \)) denote the subspace of newforms whose \(\varepsilon \)-factors are 1 (resp. –1). By the above mentioned arguments, one gets
\[
\text{tr} \left(T_m \mid_{S_k^{\text{non-C,new,\pm}} (\Gamma^\text{para}(N))} \right) = \frac{1}{2} \left[\text{tr} \left(T_m \mid_{S_k^{\text{non-C,new,\mp}} (\Gamma^\text{para}(N))} \right) \pm (-1)^{k_2} \text{tr} \left(T_m \mid_{S_k^{\text{non-C,new,\pm}} (\Gamma^\text{para}(N))} \right) \right],
\]
Therefore, if we set
\[
d_k^{\text{para,new,\pm}} = \dim S_k^{\text{non-C,new,\pm}} (\Gamma^\text{para}(N)),
\]
then by [9] and Theorem 7.1,
\[
d_k^{\text{para,new,\pm}} = 2^{-8} 3^{-3} 5^{-1} (k_1 - 1)(k_2 - 2)(k_1 - k_2 + 1)(k_1 + k_2 - 3) \prod_{p \mid N} (p^2 - 1)
\]
\[
+ O (N(k_1 - k_2 + 1)(k_1 + k_2 - 3)) + O (N(k_1 - 1)(k_2 - 2)).
\]
Furthermore, by Theorem 7.1, there exist absolute constants a and b such that for each prime $p \mid N$ and $m = \text{diag}(p^{a_1}, p^{a_2}, p^{-a_1+a}, p^{-a_2+a})$, $a_1, a_2, \kappa \in \mathbb{Z}$ satisfying $0 \leq a_2 \leq a_1 \leq \kappa$ and $m \not\in Z_G(\mathbb{Q})$,
\[
\frac{1}{d_{\text{para,new},\pm}^\prime(N)} \text{tr} \left(T_{m'}^{\text{non-C,new,}\pm} \left| \Gamma_{\text{para}}(N) \right) \right) = B_1 + B_2 + O \left(\frac{p^{a_1+b}}{(k_1 - k_2 + 1)(k_1 - 1)(k_2 - 2)} \right).
\]
Hence we have proved Conjecture 5.1 in weight aspect for paramodular newforms. Therefore, we have proved n-level density for spinor L-functions of paramodular newforms in weight aspect (analogues of Theorems 5.9 and 5.10 for paramodular forms).

In a similar way, we can show a simultaneous vertical Sato–Tate theorem for paramodular forms (analogue of Theorem 4.1).

Acknowledgements We would like to thank K. Morimoto, R. Schmidt and S-W. Shin for helpful discussions. We thank the referee and P. Michel for their help.

References

1. Bushnell, C.J., Henniart, G., Kutzko, P.: Local Rankin–Selberg convolutions for GL$_n$: explicit conductor formula. J. Am. Math. Soc. 11(3), 703–730 (1998)
2. Calegari, F., Gee, T.: Irreducibility of automorphic Galois representations. Annales de l’Institut Fourier 63(5), 1881–1912 (2013)
3. Cho, P.J., Kim, H.H.: n-level densities of Artin L-functions. IMRN 2015, 7861–7883 (2015)
4. Cohen, H., Diaz, F., Diaz, Y., Olivier, M.: Enumerating quartic dihedral extensions of \mathbb{Q}. Comput. Math 133, 65–93 (2002)
5. Emerton, M.: A local-global compatibility conjecture in the p-adic Langlands programme for GL_2/\mathbb{Q}. Pure Appl. Math. Q. 2(2), 279–393 (2006) (Special Issue: In honor of John H. Coates. Part 2)
6. Gan, W.-T., Takeda, S.: The local Langlands conjecture for $GSp(4)$. Ann. Math. (2) 173(3), 1841–1882 (2011)
7. Gee, T., Taibi, O.: Arthur’s multiplicity formula for GSp_4 and restriction to Sp_4. arXiv:1807.03988
8. Harris, M., Soudry, D., Taylor, R.: l-adic representations associated to modular forms over imaginary quadratic fields. I. Lifting to $GSp_4(\mathbb{Q})$. Invent. Math. 112(2), 377–411 (1993)
9. Ibukiyama, T., Kitayama, H.: Dimensional formulas of paramodular forms of squarefree level and comparison with inner twist. J. Math. Soc. Japan 69, 597–671 (2017)
10. Jorza, A.: Galois representations for holomorphic Siegel modular forms. Math. Ann. 355, 381–400 (2013)
11. Katz, N., Sarnak, P.: Random Matrices, Frobenius Eigenvalues, and Monodromy. American Mathematical Society Colloquium Publications, vol. 45. American Mathematical Society, Providence, RI (1999)
12. Kim, H.: An Application of Exterior Square Functoriality of GL_4: Asai Lift, Number theory, CRM Proc. Lecture Notes, vol. 36, pp. 197–202. Amer. Math. Soc., Providence (2004)
13. Khare, C., Wintenberger, J.-P.: Serre’s modularity conjecture. I. Invent. Math. 178(3), 485–504 (2009)
14. Kisin, M.: The Fontaine–Mazur conjecture for GL_2. J. Am. Math. Soc. 22(3), 641–690 (2009)
15. Kim, H.-H., Shahidi, F.: Functorial products for $GL_2 \times GL_3$ and the symmetric cube for GL_2. With an appendix by Colin J. Bushnell and Guy Henniart. Ann. Math (2) 155(3), 837–893 (2002)
16. Kim, H.H., Wakatsuki, S., Yamauchi, T.: An equidistribution theorem for holomorphic Siegel modular forms for GSp_4 and its applications. J. Inst. Math. Jussieu (2018). https://doi.org/10.1017/S147474801800004X
17. Kim, H.H., Wakatsuki, S., Yamauchi, T.: Equidistribution theorems of holomorphic Siegel cusp forms of general degree (in preparation)
18. Kret, A., Shin, S.W.: Galois representations for general symplectic groups (2016). arXiv:1609.04223
19. Lapid, E.: On the root number of representations of orthogonal type. Comput. Math. 140(2), 274–286 (2004)
20. Laumon, G.: Sur la cohomologie a supports compacts des varietes de Shimura pour $GSp(4)$. Comput. Math. 105(3), 267–359 (1997)
21. Laumon, G.: Fonctions zetas des variétés de Siegel de dimension trois, Formes automorphes. II. Le cas du groupe GSp(4). Astérisque 302, 1–66 (2005)
22. Liu, T., Yu, J.-K.: On automorphy of certain Galois representations of GO_4-type. With an appendix by Liang Xiao. J. Number Theory 161, 49–74 (2016)
23. Mazur, B.: Modular curves and the Eisenstein ideal. Inst. Hautes Études Sci. Publ. Math. 47, 33–186 (1977)
24. Murty, R., Sinha, K.: Effective equidistribution of eigenvalues of Hecke operators. J. Number Theory 129(3), 681–714 (2009)
25. Roberts, B., Schmidt, R.: Local Newforms for $GSp(4)$. Lecture Notes in Mathematics, vol. 1918. Springer, Berlin (2007)
26. Royer, E.: Facteurs \mathbb{Q}-simples de $J_0(N)$ de grande dimension et de grand rang. Bull. Soc. Math. France 128(2), 219–248 (2000)
27. Rubin, M.: Low-lying zeros of L-functions and random matrix theory. Duke Math. J. 109(1), 147–181 (2001)
28. Schmidt, R.: Iwahori-spherical representations of $GSp(2)$ and Siegel modular forms of degree 2 with square-free level. J. Math. Soc. Japan 57, 259–293 (2005)
29. Schmidt, R.: On classical Saito–Kurokawa liftings. J. Reine Angew. Math. 604, 211–236 (2007)
30. Schmidt, R.: Archimedean aspects of Siegel modular forms of degree 2. Rocky Mountain J. Math. 47(7), 2381–2422 (2017)
31. Shimizu, H.: On discontinuous groups operating on the product of the upper half planes. Ann. Math (2) 77, 33–71 (1963)
32. Shimura, G.: Class fields over real quadratic fields and Hecke operators. Ann. Math. (2) 95, 130–190 (1972)
33. Shin, S.W., Templier, N.: Sato–Tate theorem for families and low-lying zeros of automorphic L-functions. Invent. Math. 203(1), 1–177 (2016)
34. Shin, S.W., Templier, N.: On fields of rationality for automorphic representations. Compos. Math. 150(12), 2003–2053 (2014)
35. Sorensen, C.M.: Galois representations attached to Hilbert–Siegel modular forms. Doc. Math. 15, 623–670 (2010)
36. Taylor, R.: On congruences of modular forms. Thesis (1988)
37. Wakatsuki, S.: Multiplicity formulas for discrete series representations in $L^2(\Gamma\backslash Sp(2, \mathbb{R}))$. J. Number Theory 133, 3394–3425 (2013)
38. Weissauer, R.: Existence of Whittaker Models Related to Four Dimensional Symplectic Galois Representations, Modular Forms on Schiermonnikoog, pp. 285–310. Cambridge Univ. Press, Cambridge (2008)
39. Weissauer, R.: Endoscopy for $GSp(4)$ and the cohomology of Siegel modular threefolds. Lecture Notes in Mathematics, vol. 1968. Springer, Berlin (2009)
40. Yamauchi, T.: On \mathbb{Q}-simple factors of Jacobian varieties of modular curves. Yokohama Math. J. 53(2), 149–160 (2007)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.