Isolation and Characterisation of Fusarium Resistance Gene Candidates in Zingiber spp. of North East India

N.C. Lenbi1,2, Huidrom Sunitibala Devi1* and Pratap Jyoti Handique2

1Institute of Bioresources and Sustainable Development (IBSD), Imphal, Manipur, India 2Department of Biotechnology, Gauhati University, Assam, India

*Corresponding author

A B S T R A C T

Rhizome rot and yellows caused by Fusarium oxysporum f. sp. Zingiberi, is a serious a serious soil-borne disease of ginger and found to be prevalent in the north-east region of India. Most of the plant disease resistance (R) genes encode a highly conserved nucleotide binding site and leucine-rich repeat structure (NBS-LRR). These structure can be used to isolate candidate genes for Fusarium resistance in Zingiber spp. Degenerate oligonucleotides which have been designed to recognize conserved coding regions of known resistance (R) genes from different species of plant in literature were obtained to target PCR to amplify resistance gene analogs (RGAs) from Zingiber spp. of north east India. PCR amplification from genomic DNA yielded a group of fragments of approximately 350bp and 600bp DNA sequences. From the results we can conclude that Zingiber RGCs belong to the CC-NBS-LRR class of proteins and no TIR-RGCs were found in the study. Although RGCs were detected with degenerate RGC primers and the RGC-specific primers we designed. The expression of the disease resistance seems to be very low or absent in the Zingiber species found in the region.

Keywords R-genes, Resistance gene candidates (RGC), CC-NBS-LRR class, Fusarium oxysporum f. sp. Zingiberi

Introduction

Ginger (Zingiber officinale Rosc., family Zingiberaceae 2n=22), is an important commercial crop in tropical and subtropical countries. Ginger is asexually propagated from portions of the rhizome.

Globally India is the largest producer and exporter of the finest quality ginger. It is estimated that more than 50% of the national production ginger comes from the North Eastern States. Ginger is used throughout the world as a spice or fresh herb or in medicines. Cultivated ginger originated in India or Southeast Asia (Ravindran et al., 1994). Globally, the main producers of ginger are India, China, Nepal, Indonesia and Nigeria (FAOSTAT 2010). India is the largest producer and exporter of the finest quality ginger. India’s production of ginger constitutes about 34.6 % of the total world’s production of ginger (FAOSTAT data, 2014). Ginger is grown in almost all the states of the North-Eastern region of India. Assam ranks first in ginger acreage as well as in production but productivity was highest in Mizoram, followed by Arunachal Pradesh, Assam and
Nagaland (H Rahman et al., 2009). A number of local cultivars of ginger are also found in North-Eastern region. These varieties are high yielder of rhizomes as compared to standard cultivars like Nadia and Rio-De-Janeiro but have more fibre content.

Ginger is one of the most promising spice crop grown in North eastern India. It is estimated that more than 50% of the national production of ginger comes from the North Eastern States. The soil, climate and other ecological factors of the region enormously favours the growth and development of the crop and there is a tremendous scope to develop for increase in its yield per unit area. As such the farmers here are interested for the cultivation of the crop. But it seems the continuous domestication of preferred genotypes of ginger and their exclusive vegetative propagation have resulted in the degradation of the genetic base of this crop and due to this almost all the cultivars available today are equally susceptible to all major diseases.

In India, rhizome rot and yellows caused by *Fusarium oxysporum* f. sp. *Zingiberi* (fusarium yellows on ginger) is a big threat to the production of this crop (Stirling, 2004). Rhizome rot is found to be prevalent in many areas of north-east India as well. As ginger is an obligatory asexual crop, resistance breeding is limited only to its germplasm screening (Ravindran et al., 2005). Till now no work has been taken upto evaluate the wild relatives of ginger for *Fusarium* wilt resistance in North east India. Therefore, the genetic resources of ginger needs to be accessed for identification of *Fusarium* resistance. As such, the most sought after techniques of genetic improvement for disease management, could be applied to increase the yields of the crop in the region. Resistance gene candidates (RGCs) hold much promise to investigate features of resistance-related loci in ginger for its genetic improvement.

Plant disease resistance genes (R-genes) are found to be an important component of the genetic resistance mechanism in plants (Flor 1971; Dangl and Jones 2001). R-genes have a key role in recognizing proteins expressed by specific a virulence (Avr) genes of pathogens (Flor 1956). The NBS-LRR R-genes seems to be abundant in plant genomes with approximately 150 and 600 isolated from *Arabidopsis* and rice respectively (Meyers et al., 2003; Zhou et al., 2004).

About 75% of plant R-genes encode proteins with a nucleotide-binding site and leucine-rich repeat (NBS-LRR) domains that conferring resistance to various pest and pathogens such as bacteria, fungi, viruses, insects and nematodes (Dangl and Jones, 2001). The C-terminal LRR acts as a site for pathogen recognition and the N-terminal NBS initiate signaling which activates signal transduction pathways leading to disease resistance in the plant (Belkhadir et al., 2004).

Wild relatives of many other plants have been used as an important source of genetic variation for disease resistance (Xiao et al., 1998; Zamir, 2001) since they can evolve resistance specificities more efficiently than cultigen (Clay and Kover, 1996; Ebert and Hamilton, 1996). In this context molecular characterization of resistance-related sequences from ginger and its wild relatives may provide a lead towards retrieving resistance specificities suitable for the improvement of ginger.

Materials and Methods

Plant Materials collected

Species of genus *Zingiber*, *Z. montanum*, *Z. zerumbet* var. darcy, *Z. officinale* Roscoe var. Nadia, *Z. officinale* Roscoe var. Baishy, *Z. officinale* Roscoe var. Meitei shing, *Z. zerumbet* (L.) Smith, *Z. kerrii* Craib, *Z. rubens*
Roxb, Z. sp3, Z. sp1, Z.sp2 were obtained from Bioresource Park, Institute of Bioresources and Sustainable Development (IBSD), Hararou, Manipur where the cultivars are maintained as accessions under shade house conditions. Apart from these, Zingiber spp. spreading across different locations of north east from farmer’s fields were collected and maintained as accessions in greenhouse which include, Z. purpureum, Z. roseum, Z. zerumbet (L.) Smith, different cultivars of Z. officinale, Z. montanum and Meitei shing.

Isolation of genomic DNA

Total genomic DNA was extracted from young leaves using CTAB method using the procedure of Doyle and Doyle (1987) with minor modifications. DNA was diluted to 20 ng/µl final concentration in sterile deionised water and stored in 1X TE buffer (10 mM Tris HCl pH 8, 1 mM EDTA pH 8) at -20°C. The quantity and quality of DNA preparation were verified by standard spectrophotometry methods (Nanodrop Spectrophotometer ND 2000) and visualized on 0.8% agarose gel stained with ethidium bromide.

Primers and PCR amplification

A Total of 10 Resistance gene specific degenerate primers (Table 1, Sigma Aldrich Chemicals Pvt. Ltd., India) previously used in published literature for amplifying RGCs in other crops were selected. PCR reaction was carried out in a volume of 25 µl containing 1 unit Taq DNA polymerase, 10X PCR buffer, 1.5 mM of MgCl2, 200 mM of dNTPs, 20 picomole of each primer and 30 ng of template DNA,. PCR amplification was carried out in a thermal cycler Eppendorf Master cycler pro S programmed for an initial denaturation at 94°C for 5 min, followed by 35 amplification cycles, 94°C for 1 min, 55°C for 1 min and 72°C for 1 min and a final extension step at 72°C for 5 min.

Sequencing and phylogenetic analysis

The PCR amplification products were cloned and sequenced at Bioserve Biotechnologies (INDIA) Pvt. Ltd., Hyderabad. The sequence data were subjected to GenBank searches with BLAST (Altschul et al., 1990) and BLASTN algorithm via the National Centre for Biotechnology Information (NCBI) web site. Multiple alignment of the nucleotide and amino acid sequences were performed using Clustal Omega program of EMBL-EBI. Phylogenetic analyses were performed using MEGA6 software and a Neighbor joining tree based on DNA sequence CLUSTALW alignment of the resistance gene candidates were constructed. Robustness of clustering was checked by bootstrapping 1000 replicates. ORF Finder was used to find the ORF in the DNA sequence (www.ncbi.nlm.nih.gov/orffinder/) (Table 2).

RNA isolation and RT-PCR analysis

Zingiber RGC-specific primer pairs were deduced from the RGCs isolated from the amplified *Zingiber spp.* using the software Primer-Blast in NCBI. Altogether 10 RGC-specific primers were designed. Using these primers, conditions for PCR amplification were standardized using genomic DNA. Total RNA was isolated from young leaves collected from infected fields using RNA isolation kit (RN easy Mini Kit, QIAGEN). Total RNA was treated with DNase I to remove any traces of genomic DNA. The RNA was treated with DNase I (Promega, USA) for 1 h to remove DNA contamination. The RT-PCR reactions were performed using One Step RT PCR kit (Invitrogen) following the instructions. The reaction included a positive control with Actin specific primers and a negative control without RNA. The
reaction conditions were 5 min at 94°C, followed by 35 cycles of denaturing at 94°C for 1 min, annealing at 55-57°C for 30 sec, and elongating at 72°C for 2 min followed by a final extension at 72°C for 7 min. Amplicons were separated on a 1.2% agarose gel.

Results and Discussion

Amplification of RGCs from Zingiber spp.

Using the 10 resistance gene specific degenerate primers, PCR products were obtained from genomic DNA templates of Zingiber spp. The amplification products were visualized following electrophoresis in 1.8% agarose gel (Sigma Aldrich Chemicals Pvt. Ltd., India) in 0.5X TBE (10X stock contained 1 M Tris, 0.8 M boric acid, 0.5 M EDTA), and staining with ethidium bromide (0.5 mg/ml). The gels were photographed under a gel documentation system (Perkin Elmer Geliance 200). PCR amplification resulted in the production of major band in the expected size range of ~600bp and ~350bp as reported in the literature for other plant species after amplification at 55°C annealing temperature (Fig. 1 and 2).

Sequence characterisation and phylogenetic relationships of Zingiber RGCs

The 16 selected sequence data were subjected to GenBank searches with BLAST (Altschul et al., 1990) and BLASTN algorithm via the National Centre for Biotechnology Information (NCBI) website. No significant similarity was found in 4 RGC sequence data with the databases in the GenBank. The amplification of such unrelated sequences may be due to the amplification on basis of P-loop alone (Rigden et al., 2000). Remaining RGC sequences showed a high level of sequence identity to comparable regions of disease resistance genes in GenBank, supported by low e-values (Table 3). The level of sequence identity between Zingiber RGC sequences and known resistance genes in the top blast hits varied from 87% to 91% between Zne19p6 and Zne31p6 respectively to Zingiber officinale clone ZoP26 (e-value: 1e-106) and Zingiber zerumbet clone ZzP226 (e-value: 1e-81). BLASTP analysis in the genebank database of deduced amino acid sequences revealed detection of putative conserved domains of super families NS-ARC, significant homology to well characterised R-genes from other plant species and similarity to putative disease resistance proteins. The presence of NB-ARC domain shows the amino acid sequences to be analogous to plant R-gene products. Out of the 16 deduced amino acid sequences 7 sequences were unrelated to resistance genes. Further analysis of the sequences using ORF Finder at NCBI server revealed that all the16 sequences could be translated into a single open reading frame (ORF) of length ranging from 100 amino acids to 138 amino acids. Further analysis of these 16 RGCs revealed the presence of stop codons in 13 out of the 16 Zingiber RGCs.

Multiple alignment of the nucleotide sequences and deduced amino acid sequences were performed using Clustal Omega program of EMBL-EBI (Fig. 3). The amino acid alignment showed homology of Zingiber RGCs with targeted NBS-LRR domains of well characterized R genes from other plants. NBS-LRR domain is found to be the largest class of plant R-genes. Around 150 genes in the genome of Arabidosis thaliana are reported to code for NBS-LRR motifs (Meyers et al., 2003). Such a wide prevalence of the NBS-LRR gene signifies their ancient origin (Dangl and Jones, 2001). Moreover, several features of the RGC sequences isolated shows that RGC sequences belong to non-TIR NBS-LRR class of resistance gene. In this study also no TIR type sequences were found as have been reported from earlier similar works (Meyers et al., 1999: Pan et al., 2000: Cannon et al.,
2002: Joshi et al., 2012). It seems in the earlier studies, TIR domain have not been reported in the NBS-LRR R-genes of other monocots such as in wheat (Dilbirligi and Gill, 2003), rice (Monosi et al., 2004; Zhou et al., 2004) and maize (Xiao et al., 2006).

Phylogenetic analyses were performed using MEGA7 software and a Neighbor joining tree based on amino acid CLUSTALW alignment of the resistance gene candidates were constructed (Fig. 4). It was carried out to examine the relationships of Zingiber resistance gene candidates (RGCs) among themselves and to R-genes from other plant species. Robustness of clustering was checked by boot strapping 1,000 replicates and bootstrap values are given at the branch points. The data revealed moderate to high diversity in the collection, clustering them into four major phylogenetic groups (A-D). The Zingiber RGCs consists of non TIR NBS-LRR disease resistance proteins. Group A consist of 9 RGCs, group B consist of 7 RGCs, group C and D consist of 3 RGC sequences each. In group A sequences of CC NBS LRR of NBS LRR class were clustered together. Further, all the groups i.e., A-D is clustered into two sub-cluster each.

Group B comprises RGC sequences where no putative conserved domains have been detected. The sequences identified in group A can be treated as resistance gene candidates (RGCs) based on their high level of sequence identities to known R-genes from other species, considerably long open reading frames and presence of conserved motifs characteristic of NBS-LRR R genes. The phylogenetic result shows that Zingiber RGCs mainly comprised of CC-NBS-LRR class of disease resistance gene.

Table 1 List of RGC specific degenerate primers used for the PCR amplification of Zingiber resistance gene candidate

Primer	Sequence (5' → 3')	Targeted domain	
FR1	TGGTGG GGTTGGGAA GACAACG	TCCCCGTAGTGGAAC TCCCTAG	NBS-LRR/P-loop: NBS-LRR
FR2	GGIGGIETTIGGIAAAIACIAC A(A/G)IGC(A/G)IGGIA(A/G)ICC	P-loop; GLPL	
FR4	GGTTGGGTTGGGAAAGACAACG CACGCTAGTGGAACATCC	P-loop; GLPL	
FR5	CCGGIGTCAGGIAARACWAC CCCGAAGAAACCRRISACWAR A	P-loop /hydrophobic domain	
FR6	GGIGGIETTIGGIAA(A/G)ACIAC A(A/G)IGC(A/G)IGGIA(A/G)ICC	NBS-LRR/P-loop	
FR16	GGWATGGGWWGWRTHGGW ARAHAC ARNWYTYTVARDGCVARWGGV ARWCC		
FR19	GGNGGNRTNGGNAARACCAC CAANGCCAANGGCAANCC	P-loop /hydrophobic domain	
FR20	GGTGTTGGGTTGGGAAAGACAACG CACGCTAGTGGAACATCC	NBS-LRR/P-loop: NBS-LRR	
FR21	GGNGTNGGNAARACNAC ARIGCTARIGGIARICC	P-loop; GLPL9S/A)	
FR23	GGIGGIETTIGGIAAIACIAC ARIGCTARIGGIARICC	NBS-LRR/P-loop; NBS-LRR	
Table.2 List of RGC specific primers designed using NCBI Primer Blast software

Sl no.	Primer	Sequence (5’ → 3’)	Forward	Reverse
1	RSP1	AGTCATGGTGTTCACGACC	CTGAGGGGAGAAGATCCCCA	
2	RSP2	ACCACTGCAGGACATGTGATG	GCTTCTGGCCTTGCTCAGTA	
3	RSP3	AGGCTGACATGAAAGGGGCTC	GAGGCGTGCAGATTCTTTAG	
4	RSP4	GCAGGCAAAAGAAAGGGCTC	GCCCTGCCATTTTTTCAGCAA	
5	RSP5	GCAGGAGTGTGCAGTCCT	GCCCTGCCATTTTTTCAGCAA	
6	RSP6	GCAGGCAAAAGAAAGGGCTC	GCCCTGCCATTTTTTCAGCAA	
7	RSP7	GCAGGAGTGTGCAGTTTCAGA	GATGTCATTTGGTGTGCC	
8	RSP8	GCAGGAGTGTGCAGTTTCAGA	GATGTCATTTGGTGTGCC	
9	RSP9	GCAGGAGTGTGCAGTTTCAGA	GATGTCATTTGGTGTGCC	
10	RSP10	GCAGGAGTGTGCAGTTTCAGA	GATGTCATTTGGTGTGCC	

Table.3 Similarity of Zingiber RGC to accessions within GenBank using BLASTN

Sl no.	RGC	Blast top hits, organism, Description	Identities	e-value
1	zne10p6	*Zingiber officinale* cloneZO26 CC-NBS-LRR disease resistance protein-like gene, partial sequence	89%	3e-124
2	zne19p6	*Zingiber officinale* cloneZO26 CC-NBS-LRR disease resistance protein-like gene, partial sequence	87%	1e-106
3	zne30p6	*Zingiber zerumbet* cloneZzP29 CC-NBS-LRR disease resistance protein-like gene, partial sequence	90%	1e-77
4	zne31p6	*Zingiber zerumbet* cloneZzP226 CC-NBS-LRR disease resistance protein-like gene, partial sequence	91%	1e-81
5	zne23p6	*Zingiber zerumbet* cloneZzP226 CC-NBS-LRR disease resistance protein-like gene, partial sequence	89%	2e-150
6	zne24p6	*Zingiber zerumbet* putative CC-NBS-LRR disease resistance protein gene, partial sequence	91%	1e-156
Fig. 1 PCR amplification products of 350bp generated by the RGC specific degenerate primer pairs FR19 in different cultivars of *Zingiber spp*. lane M- 100bp ladder; lane 1- *Z. officinale* var. Meitei shing; lane 2- *Z. zerumbet*; lane 3- *Z. Roseum*; lane 4- *Z. officinale* bht; lane 7- *Z. officinale* bpt; lane 9- *Z. sp* 74; lane 10- *Z. sp* 101; lane 11- *Z. zerumbet*126; lane 12- *Z. cassumunar* 12; lane 13- *Z. zerumbet* 42; lane 14- *Z. zerumbet var.* Darceyi Lane15- T3 *Z. montanum*; lane 16- T6 *Z. montanum*; lane 17- *Z. officinale* ms; lane 18- T5 *Z. officinale*

![PCR amplification products of 350bp generated by the RGC specific degenerate primer pairs FR19 in different cultivars of *Zingiber spp*.](image1)

Fig. 2 PCR amplification products of 600bp generated by the RGC specific degenerate primer pairs FR6 in different *Zingiber spp*. lane M- 100bp ladder; lane 1- *Z. zerumbet*; lane 2- *Z. sp* 101; lane 4- *Z. zerumbet var.* Darceyi; lane 7- *Z. cassumunar* 12

![PCR amplification products of 600bp generated by the RGC specific degenerate primer pairs FR6 in different *Zingiber spp*.](image2)
Fig. 3 Multiple amino acid sequence alignment of representative Zingiber RGCs with NBS domains of R-genes using the CLUSTAL Omega program of EMBL-EBI.

CLUSTAL O (1.2.1) multiple sequence alignment

Position	Sequence 1	Sequence 2
1	G-----------	E-----------
2	L-----------	L-----------
3	R-----------	D-----------
4	F-----------	E-----------
5	L-----------	L-----------

RNBS-A non-TIR

Multiple sequence alignment Result
Fig. 4 Neighbor joining tree based on CLUSTALW alignment of amino acid sequences of resistance gene candidate of *Zingiber spp.* collected from North-East India and NBS sequences of R-genes from other plant species. Bootstrap values are given at the nodes and the corresponding RGCs clustering together are indicated. Bootstrap values 1000 and the scale of genetic distance as computed from the pairwise distance in CLUSTALW are indicated. Four phylogenetic groups have been identified (A-D).

Fig. 5 PCR amplification products of 300bp generated by the RGC specific primer pair designed 10p6; lane M- 100bp ladder; lane 4- *Z. officinale* makheer; lane 5- *Z. zerumbet*; lane 6- *Z. zerumbet* 126; lane 7- *Z. sp* 101; lane 8- *Z. officinale* maran; lane 9- *Z. officinale* MSa; lane 10- *Z. zerumbet var. Darcy*; lane 12- +ve Control.
Expression analysis

Using the 10RGC specific primers designed to Zingiber RGCs, PCR was carried out with genomic DNA of the 14 accessions of Zingiber spp. in which PCR amplification product is detected with disease resistance degenerate primers. The 10 primers yielded PCR products of the predicted size from the DNA. When RT-PCR was conducted with the 10RGC specific primer pairs, only two primer pairs i.e., RSP1 and RSP3 were found to yield amplification products of 300 bp and 200 bp respectively (Fig. 6 and 7). These results show that the RGCs failed to produce a transcript for disease resistance. The lack of expression might be due to presence of some non-functional promoter preceding the sequences or due to expression of low transcript levels were not expressed or the RGCs might correspond to pseudogenes. It has been reported earlier that majority of the NBS-LRR resistance genes are generally expressed at a low level (Hulbert et al., 2001).

Expression of R-genes has been found in highly resistant varieties but not in partially resistant varieties (Swetha et al., 2008). The amplicons were gel purified, cloned and sequenced at Bioserve technologies. The sequence data were used for homology searches. The RT-PCR products amplified were not related with disease related proteins and did not show any significant similarity with the R-genes of other plant species. They were uncharacterised proteins.

In summary, Fusarium resistance gene candidates from Zingiber spp. have not been isolated and characterised till now from the North-eastern region of India. This study aims at isolating and characterising the RGCs in the region for the first time. From the results we can conclude that Zingiber RGCs belong to the CC-NBS-LRR class of proteins and no TIR-RGCs were found in the study. Although RGCs were detected with degenerate RGC primers and the RGC-specific primers we designed. The expression of the disease
resistance seems to be very low or absent in the *Zingiber* species found in the region.

Acknowledgement

The authors are thankful to the Director, Institute of Bio-resources and Sustainable Development, Department of Biotechnology (DBT), Govt. of India, Takyelpat, Imphal for providing financial support and research facilities.

References

Aarts MG, Hekkert B, Holub EB, Beynon JL, Stiekema WJ, Pereira A (1998). Identification of R-gene homologous DNA fragments genetically linked to disease resistance loci in Arabidopsis thaliana. Mol Plant Microbe Interact 11:251–258

Anderson P, Lawrence G, Morrish B, AyliVe M, Finnegans E, Ellis J (1997). Inactivation of the Xax rust resistance gene M associated with the loss of a repeated unit within the leucine-rich repeat coding region. Plant Cell 9:641–651

Anonymous, (2002). Basic Statistics of North Eastern Region, North Eastern Council, Ministry of Home Affairs, Shillong

Bai J, Pennill L, Ning J, Lee S, Ramalingam J, Webb C, Zhao B, Sun Q, Nelson J, Leach J, Hubert S (2002). Diversity in nucleotide binding site-leucine-rich repeat genes in cereals. Genome Res 12:1871–1884

Baker B, Zambrayski P, Staskawicz B and Dinesh-Kumar S P 1997. Signaling in plant-microbe interactions. Science 276: 726–733

Baldi P, Patocchi A, Zini E, Toller C, Velasco R and Komjanc M (2004). Cloning and linkage mapping of resistance gene homologues in apple. Theoretical and Applied Genetics. vol. 109, no. 1, p. 231-239

Belkhdar, Y., Nimchuk, Z., Hubert, D.A., Mackey, D., and Dangl, J.L. (2004). Arabidopsis RIN4 negatively regulates disease resistance mediated by RPS2 and RPM1 downstream or independent of the NDR1 signal modulator and is not required for the virulence functions of bacterial type III effectors AvrRpt2 or AvrRpm1. Plant Cell 16:2822–2835

Dangl JL, Jones DG (2001). Plant pathogens and integrated defence responses to infection. Nature 411:826–833

Deng Z, Gmitter FJ (2003). Cloning and characterization of receptor kinase class disease resistance gene candidates in Citrus. Theor Appl Genet 108:53–61

Deng Z, Huang S, Ling P, Chen C, Yu C, Weber C, Moore G, Gmitter FJ (2000). Cloning and characterization of NBS-LRR class resistance- gene candidate sequences in citrus. Theor Appl Genet 101:814–822

Dixon MS, Hatzixanthis K, Jones DA, Harrison K, Jones JDG (1998). The tomato Cf-5 disease resistance gene and six homologs show pronounced allelic variation in leucine-rich repeat copy number. Plant Cell 10:1915–1925

Dohroo, N.P. 1989. Seed transmission of pre-emergence rot and yellows in ginger. Plant Dis Res. 4:73-74

FAOSTAT (2010). Food and Agricultural commodities production. http://faostat.fao.org/site/339/default.aspx. Accessed 31 Aug 2010

FAOSTAT Citation database results (2005). Food and Agricultural Organization, Rome. http://faostat.fao.org Cited 01 July 2006

Ferrier-Cana E, GeVroy V, Macadre C, Creusot F, Imbert-Bollore P, Sevignac M, Langin T (2003). Characterization of expressed NBS-LRR resistance gene
candidates from common bean. Theor Appl Genet 106:251–261
Feuillet C, Schachermayr G, Keller B (1997). Molecular cloning of a new receptor-like kinase gene encoded at the Lr10 disease resistance locus of wheat. Plant J 11:45–52
Flor H.H. (1956). The complementary genetic systems in flax and flax rust. Adv. Genet. 8: 29–54
Flor HH (1971). The current status of gene for gene concept. Ann Rev Phytopathol 9:275–296
Gassmann W, Hinsch ME and Staskawicz BJ (1999). The Arabidopsis RPS4 bacterial-resistance gene is a member of the TIR-NBS-LRR family of disease-resistance genes. Plant J. 20: 265-277
Grant MR, Godiard L, Straube E, AshWeld T, Lewald J, Sattler A, Innes RW, Dangl JL (1995). Structure of the Arabidopsis RPM1 gene enabling dual specificity disease-resistance. Science 269:843–846
H. Rahman, R. Karuppaiyan, K. Kishore and R. Denzongpa (2009). Traditional Practices of Ginger Cultivation in Northeast India. Indian Journal of Traditional Knowledge 8 (1): 23-28
Hammond-Kosack KE and Jones JD (1997). Plant disease resistance genes. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48: 575-607
He CY, Tian AG, Zhang JS, Zhang ZY, Gai JY, Chen SY (2003). Isolation and characterization of a full-length resistance gene homolog from soybean. Theor Appl Genet 106:786–793
Hulbert, S. H., Webb, C. A., Smith, S. M., and Sun, Q. (2001). Resistance gene complexes: Evolution and utilisation. Annual Review of Phytopathology, 39, 285-312
Ilag L L, Yadav R C, Huang N, Ronald P C and Ausubel F M (2000). Isolation and characterization of disease resistance gene homologues from rice cultivar IR64. Gene, vol. 255, no. 2, p. 245-255
Irigoyen ML, Loarce Y, Fominaya A, Ferrer E (2004). Isolation and mapping of resistance gene analogues from the Avena strigosa genome. Theor Appl Genet 109:713–724
Johal G, Briggs S (1992). Reductase activity encoded by the HM1 disease resistance gene in maize. Science 258:985–987
Joshi RK, Kar B, Mohanty S, Subudhi E, Nayak S (2012). Molecular cloning, characterization, and expression analysis of resistance gene candidates in Kaempferia galangal L. MolBiotechnol 50:200-210.
Kanazin V, Marek LF, Shoemaker RC (1996). Resistance gene analogs are conserved and clustered in soybean. Proc Natl Acad Sci USA 93:11746–11750
Karlin.S. & Altschul. S. F. (1990). Proc. Nat. Acad. Sci. USA. 87. 2264-2268
Kavitha P G and Thomas G (2007). Evaluation of Zingiberaceae for resistance to ginger soft rot caused by Pythium aphanidermatum (Edson) Fitzp. Plant Genet. Resorcr. Newslett. 152 1–4
Lacock L, Van Niekkerk C, Loots S, Du Preez F and Botha A M (2003). Functional and comparative analysis of expressed sequences from Diuraphis noxia infested wheat obtained utilizing the conserved Nucleotide Binding Site. African Journal of Biotechnology, vol. 2, no. 4, p. 75-81
Lawrence BM (1984). Major tropical spices—ginger (Zingiber officinale Rosc.). Perfum Flavor 9:1-40
Leister D, Ballvora A, Salamini F, Gebhardt C (1996). A PCR-based approach for isolating pathogen resistance genes from potato with potential for wide application in plants. Nat Genet 14:421–428

441
Liu J-J, Ekramoddoullah AKM (2003). Isolation, genetic variation and expression of TIR-NBS-LRR resistance gene analogs from western white pine (Pinus monticola Dougl Ex D Don.). Mol Genet Genom 270:432–441

Mago R, Nair S, Mohan M (1999). Resistance gene analogues from rice: cloning, sequencing and mapping. Theor Appl Genet 99:50–57

Meyers B, Kozik A, Griego A, Kuang H, Michelmore R (2003). Genome wide analysis of NBS-LRR-encoding genes in Arabidopsis. Plant Cell 15:809–834

Meyers BC, Dickerman AW, Michelmore RW, Sivaramakrishnan S, Sobral BW Young ND (1999). Plant disease resistance genes encode members of an ancient and diverse protein family within the nucleotide-binding super family. Plant J 20:317–332

Nair RA and Thomas G (2007). Evaluation of resistance gene (R-gene) specific primer sets and characterization of resistance gene candidates in ginger (Zingiber officinale Rosc.). Curr. Sci. 93: 61-66

Pan Q, Wendel J, Fluur R (2000). Divergent evolution of plant NBSLRR resistance gene homologues in dicot and cereal genomes. J Mol Evol 50:203–213

Purseglove J W, Brown E G, Green C L, Robbins S R J, (1981). Spices, vol. 1. Longman, London, New York, pp. 447–531

Raabe R D, I L Conners and A P Martinez (1981). Checklist of plant diseases in Hawaii: including records of microorganisms, principally fungi, found in the state. Hawaii Institute of Tropical Agriculture and Human Resources (CTAHR), Information Text Series 022. 313 pp.

Ravindran PN, Babu KN, Shiva KN (2005). Botany and crop improvement of ginger. In: Ravindran PN, Babu KN (eds) Monograph on ginger. CRC Press, Boca Raton pp 15–85

Rivkin MI, Vallejos CE, McClean PE (1999). Disease-resistance related sequences in common bean. Genome 42:41–47

Selvan MT, Thomas K G and Manojkumar K (2002). Ginger (Zingiber officinale Rosc.) in Indian spices: production and utilization (eds) H P Singh, K Sivaraman and M T Selvan (India: Coconut Development Board) pp 110–131

Shen KA, Meyers BC, Nurul Islam Faridi M, Chin DB, Stelly DM, Michelmore RW (1998). Resistance gene candidates identified by PCR with degenerate oligonucleotide primers map to clusters of resistance genes in lettuce. Mol Plant Microbe Interact 11:815–823

Sheo, Govind, Chandra, Ram, Karibasappa G S, Sharma C K and Singh I P, (1998). Research on Spices in NEH Region. ICAR Research Complex for NEH Region, Umiam pp 9-22

Song WY, Pi LY, Wang GL, Gardner J, Holsten T, Ronald PC (1997). Evolution of the rice Xa21 disease resistance gene family. Plant Cell 9:1279–1287

Stirling A. 2004. The causes of poor establishment of ginger (Zingiber officinale) in Queensland, Australia. Australasian Plant Pathology 33:203-10

Swetha Priya, R., R. B. Subramanian (2007). Isolation and molecular analysis of R-gene in resistant Zingiber officinale (ginger) varieties against Fusarium oxysporum f. sp. zingiberi. Bioresource Technology 99:4540-4543

Tang W, Eisenbrand G, (1992). Chinese Drugs of Plant Origin: Chemistry, Pharmacology, and Use in Traditional

...
and Modern Medicine. Springer-Verlag, Berlin, New York, Pp. 1056.
Traut T W (1994). The functions and consensus motifs of nine types of peptide segments that form different types of nucleotide binding-sites. European Journal of Biochemistry. vol. 222, no. 1, p. 9-19
Whitham S, Dinesh-Kumar SP, Choi D, Hehl R, Corr C, Baker B (1994). The product of the tobacco mosaic virus resistance gene N: similarity to Toll and the interleukin-1 receptor. Cell 78:1101–1115
Xiao WK, Xu ML, Zhao JR, Wang FG, Li JS, Dai JR (2006). Genome wide isolation of resistance gene analogs in maize (Zea mays L.). Theor Appl Genet 113:63–72
Zhang J, Guo WZ, Zhang TZ (2002). Molecular linkage map of allotetraploid cotton (Gossypium hirsutum L & Gossypium barbadense L) with a haploid population. Theor Appl Genet 105:1166–1174
Zhou T, Wang T, Chen JQ, Araki H, Jing Z, Jiang K, Shen J, Tian D (2004). Genome-wide identification of NBS genes in japonica rice reveals significant expansion of divergent non-TIR NBS-LRR genes. Mol Genet Genom 271: 402–415

How to cite this article:
Lenbi, N.C., Huidrom Sunitibala Devi and Pratap Jyoti Handique. 2018. Isolation and Characterisation of Fusarium Resistance Gene Candidates in Zingiber spp. of North East India. Int.J.Curr.Microbiol.App.Sci. 7(09): 430-443. doi: https://doi.org/10.20546/ijcmas.2018.709.053