Low-scale Leptogenesis and Dark Matter

Wei-Chih Huanga,b

aDepartment of Physics and Astronomy, Northwestern University, Evanston, IL 60208
bHigh Energy Physics Division, Argonne National Laboratory, Argonne, IL 60439

The addition of gauge singlet fermions to the Standard Model Lagrangian renders the neutrinos massive and allows one to explain all that is experimentally known about neutrino masses and lepton mixing. At the same time, the gauge singlet fermion decays in the early universe produce a lepton asymmetry, which is converted to a baryon asymmetry via Spharelon processes (leptogenesis). On the other hand, the addition of a gauge singlet scalar to the Standard Model yields a thermal dark matter candidate through interactions between the Higgs boson and the gauge singlet scalar. By imposing a Z_2 symmetry on the gauge singlet scalar and one of the gauge singlet fermions, we can have viable dark matter candidates and new interactions coupling the Z_2-odd scalar to the Z_2-odd fermion, which can lower the leptogenesis scale (and the reheating temperature) to $O(\text{TeV})$.

I. INTRODUCTION

Gauge singlet fields are a simple but very interesting form of physics beyond the Standard Model (SM). A gauge singlet scalar (S) can be a thermal dark matter candidate by having S couple to the Higgs boson (for example, see [1]). In order to have it be stable or long-lived, a symmetry might be imposed or any decay channel has to be suppressed by a high energy scale, usually comparable to the Planck scale.

On the other hand, gauge-singlet fermions, known as right-handed (RH) neutrinos, can explain the observed tiny neutrino masses [2] via the type-I seesaw mechanism [3]. RH neutrinos can also accommodate the observed baryon asymmetry [4] via thermal leptogenesis [5]. The mechanism of leptogenesis satisfies the three Sakharov’s conditions (i) baryon number violation, (ii) C and CP violation, (iii) deviation from thermal equilibrium. A lepton number asymmetry is generated via the decay of heavy RH Majorana neutrinos, which is converted into the baryon number asymmetry through Spharelon processes [6]. In order to be the main source of the baryon asymmetry, the mass scale of the heavy RH neutrinos must typically be larger than 10^9 GeV [5], which requires a high reheating temperature. Such a high reheating temperature leads to gravitino overproduction [10] in the context of supersymmetry. There are many ways to avoid gravitino overproduction. Resonant leptogenesis [10], for instance, assumes the limit $m_{N_1} - m_{N_2} \ll m_{N_2}$ so that m_{N_1} and m_{N_2} can be as low as of order TeV. There is enhancement to the lepton asymmetry by taking into account flavor effects [11]. In [12, 13], and references therein, there are more detailed discussions on the solutions to the gravitino overproduction problem.

It is intriguing to combine these different ideas together, i.e., to have the gauge singlet scalar and fermions at once in the theory. This is done, e.g., in [14], which aims at lifting the tension between X-ray bounds and the Lyman-α bounds in the Dodelson-Widrow (DW) model [13], where the dark matter is the RH neutrino that is generated from neutrino oscillations. The constraint from X-rays puts an upper bound on the mass of the RH neutrino since it can cool down; therefore, they have a lower thermal average momentum than those generated by oscillations. Hence the Lyman-α bounds become weaker. In [16], a similar setup is employed. With the help of an unbroken Abelian family symmetry, G_{family}, under which the full Lagrangian is invariant, all particles carry the charge of G_{family}. The gauge singlet scalar, S, couples to gauge singlet fermions, N’s, with a nontrivial structure and, at the same time, the vacuum expectation value of S provides masses to N’s, in addition to the Majorana mass terms, in such a way that the Maki-Nakagawa-Sakata (MNS) matrix (or the Pontecorvo- Maki-Nakagawa-Sakata (PMNS, or MNSP) matrix) yields $\theta_{13} = 0$ and some regions of the parameter space with the weak washout effect, which can yield thermal leptogenesis.

In this paper, we manage to add more structure into theory, i.e., an extra discrete symmetry, so that the framework can provide dark matter candidates, alleviate the gravitino problem of leptogenesis and make a connection between the baryon asymmetry and dark matter. To be more specific, we introduce a gauge-singlet scalar S and several
gauge-singlet fermions N and impose a Z_2 symmetry on S and one of $N's$. In this situation, the lighter particle of S and N charged under the Z_2 symmetry can be the dark matter and the Z_2 symmetry guarantees the stability of the dark matter candidate. For leptogenesis, loop-diagrams with gauge singlets running inside give rise to the required strong and weak CP phases for the generation of the lepton asymmetry. We found that the contributions to the lepton asymmetry from the new interactions can be a dominant source of matter-antimatter asymmetry without the problem of gravitino overproduction. [17] uses a similar concept with the type-II seesaw mechanism.

This paper is organized as follows. In Sec. II, we describe the formalism and the particle content. In Sec. III, a detailed analysis of leptogenesis from new interactions has been displayed. The discussion on dark matter is in Sec. IV and we conclude in Sec. V.

II. THE FORMALISM

The full Lagrangian can be written in the following way,

$$\mathcal{L} = \mathcal{L}_S + \mathcal{L}_1 + \mathcal{L}_2 + \mathcal{L}_3 + \mathcal{L}_4,$$

where

$$\mathcal{L}_1 = i\bar{N}\gamma^\mu \partial_\mu N_i - \frac{M_i}{2} \bar{N}_i^c N_i - y_{ia} H \bar{N}_i L_j + h.c.,$$

$$\mathcal{L}_2 = i\bar{N}\gamma^\mu \partial_\mu N - \frac{M}{2} \bar{N}^c N,$$

$$\mathcal{L}_3 = -V(H, S) = m_H^2 |H|^2 - \lambda_H |H|^4 - \frac{1}{2} m_\nu S^2 - \frac{1}{4} \lambda_S S^4 - \frac{\lambda_{HS}}{2} |H|^2 S^2,$$

$$\mathcal{L}_4 = -\lambda_i S \bar{N}_i \frac{1-\gamma^5}{2} N + h.c..$$

\mathcal{L}_S refers to the SM Lagrangian and S is a real singlet, whose vacuum expectation value (VEV) is zero, and its mass $m_S^2 = m_H^2 + \lambda_H S \langle H \rangle^2$. We introduce RH Majorana neutrinos, N_i, which generate tiny masses for active neutrinos, and N, which provides a new mechanism for leptogenesis. Here, we are interested in the situation with 3 active, 3 RH neutrinos, N_i, and one extra gauge-singlet Majorana fermion, N. The Lagrangian preserves a discrete symmetry under which $S \rightarrow -S$ and $N \rightarrow -N$ and the other particles remain unchanged. Therefore, there are no cubic terms for S and no $yH\bar{L}_i N$, i.e., N is not responsible for the see-saw mechanism.

III. LEPTOGENESIS

A. Baryon and lepton number

We start by discussing how large the lepton asymmetry, ϵ, should be in order to explain the observed baryon number asymmetry. In [12] [15], the relation between baryon (B) and lepton number (L) before and after sphaleron conversion is

$$B(t_f) = c_s (B - L) = -c_s L(t_i),$$

where subscripts, i and f, refer to before and after the sphaleron process, respectively, $c_s = (8N_f + 4N_H)/(22N_f + 13N_H)$,* in which N_f is the number of generations, N_H is the number of Higgs doublets and $B - L$ is anomaly-free† so that we do not need to assign a time index to it. From the Wilkinson Microwave Anisotropy Probe (WMAP) data [16],

$$\eta_B = \frac{n_b}{n_\gamma} = \eta_0 10^{-10} = 273.9 \Omega_b h^2 2 \times 10^{-10} = (6.23 \pm 0.17) \times 10^{-10},$$

* In the SM, $c_s = 28/70$ and $c_s = 8/23$ for the MSSM.
† In the context of the SM with additional RH neutrinos, the number of RH neutrinos for anomaly cancelation has to be three if $B - L$ is gauged. In this paper, $B - L$ is a global symmetry and there is no constraint on the number of RH neutrinos.
A similar quantity to η is Y, which is the number density in a comoving volume, defined as

$$Y = \frac{n}{s},$$ \hspace{1cm} (III.8)

where n is the number density and s is the entropy density. Obviously, the relation between η and Y is,

$$Y_B = \eta_B \frac{n_\gamma}{s}. \hspace{1cm} (III.9)$$

Assuming the entropy and baryon number per comoving volume remain constant from t_f to the time of BBN, t_{BBN} and to that of matter-photon decoupling, t_{WMAP}, then $Y_B(t_f) = Y_B(t_{BBN}) = Y_B(t_{WMAP})$. Given that at t_{WMAP}, $s = 7.04 n_\gamma$, we have

$$Y_B(t_f) = \eta_B \frac{n_\gamma}{s} = 8.8 \times 10^{-11}, \hspace{1cm} (III.10)$$

and

$$Y_L(t_i) = -\frac{1}{c_s} Y_B(t_f) = -2.53 \times 10^{-10}, \hspace{1cm} (III.11)$$

where we assume $N_H = 2$ and $N_f = 3$ for the MSSM.

B. leptogenesis with new interactions

From the new interactions shown in Fig. 1 and the original seesaw ones in Fig. 2 we have

$$\Gamma(N_1 \rightarrow H^+ l^-) - \Gamma(N_1 \rightarrow H^- l^+) = \left(- \sum_{i \neq 1} \sum_{\alpha} \frac{\text{Im}(g_{1\alpha}^2 y_{1\alpha}^2 \lambda_i \lambda_i^*)}{128 \pi^2} \frac{m_{N_1}^3}{m_{N_i}^2 - m_{N_1}^2} \right) + \left(\sum_{i \neq 1} \frac{m_{N_1} \text{Im}(y y^\dagger)_{1i}^2}{64 \pi^2} f \left(\frac{m_{N_1}^2}{m_{N_i}^2} \right) \right), \hspace{1cm} (III.12)$$
where m_{N_i} is the mass of N_i ($i = 1, 2, 3$) and, from [20],

\[
 f(x) = \sqrt{x} \left(\frac{2 - x}{1 - x} - (1 + x) \ln \left(\frac{1 + x}{x} \right) \right) \rightarrow -\frac{3}{2\sqrt{x}} \text{ (when } x \gg 1) \tag{III.13}
\]

and we do not consider the degenerate situation, in which $m_{N_i} - m_{N_j} \ll m_{N_j}$.\footnote{Even without mass degeneracy, the self-energy diagram, (b) in Fig. 2 contributes to the lepton asymmetry. See [20] for more detail.}

To simplify the expressions, we use the Casas-Ibarra parametrization [21], which separates the high energy physics from the low energy one, and follow the procedure from [8], where they have obtained the bound of $m_{N_1} > 10^9$ GeV for the standard type-I seesaw. First, some quantities are defined as follows,

\[
 D_{\sqrt{m_N}} = \begin{pmatrix}
 \sqrt{m_{N_1}} & 0 & 0 \\
 0 & \sqrt{m_{N_2}} & 0 \\
 0 & 0 & \sqrt{m_{N_3}}
 \end{pmatrix},
\]

\[
 D_{\sqrt{m_{\nu}}} = \begin{pmatrix}
 \sqrt{m_{\nu_1}} & 0 & 0 \\
 0 & \sqrt{m_{\nu_2}} & 0 \\
 0 & 0 & \sqrt{m_{\nu_3}}
 \end{pmatrix},
\]

\[
 RR^t = R^t R = 13 \times 3,
\]

\[
 y_{i\alpha} = \left(\frac{1}{H} \right) D_{\sqrt{m_{\nu}}} R D_{\sqrt{m_N}} (U^\dagger)_{i\alpha}, \tag{III.14}
\]

where m_{ν_i} are the active neutrino masses with $m_{\nu_1} \geq m_{\nu_2} \geq m_{\nu_3}$ and U is the MNS matrix.

For pedagogical purposes, we repeat the derivation of the Davidson-Ibarra bound on ϵ_1 with corrected coefficients for the original leptogenesis [8]. From the second term in Eq. (III.12), we obtain

\[
 \Gamma(N_1 \rightarrow H^+ l^-) - \Gamma(N_1 \rightarrow H^- l^+)] = \left(\sum_i m_{N_i} \right) \frac{\text{Im}(yy^\dagger)_{11}}{64\pi^2} f \left(\frac{m_{N_i}^2}{m_{N_i}} \right),
\]

\[
 \simeq \left(\frac{3m_{N_1}}{128\pi^2} \sum_i \text{Im}(yy^\dagger)_{11} m_{N_i} \right),
\]

\[
 = \left(\frac{3m_{N_1}^2}{128\pi^2} \sum_i \text{Im}(yy^\dagger) \frac{1}{D_{m_N}} y^T y_{11} \right),
\]

\[
 = -\frac{3}{128\pi^2 (H)^4} \sum_i m_{N_i}^3 m_{\nu_i}^2 \text{Im}(R_{1\alpha}^2), \tag{III.15}
\]

where we have used Eq. (III.14) and the fact that $(yy^\dagger)_{11}$ is real. We have,

\[
 \epsilon_1 = \frac{\Gamma(N_1 \rightarrow H^+ l^-) - \Gamma(N_1 \rightarrow H^- l^+)}{\Gamma(N_1 \rightarrow H^+ l^-) + \Gamma(N_1 \rightarrow H^- l^+)} = -\frac{3m_{N_1}}{16\pi (H)^2} \sum_i m_{\nu_i}^2 |\text{Im}(R_{1\alpha}^2)|.
\]

For simplicity, we assume that light neutrino masses are hierarchical, i.e., $m_{\nu_3} \gg m_{\nu_2}, m_{\nu_1}$,

\[
 |\epsilon_1| \leq \frac{3m_{N_1}}{16\pi (H)^2} m_{\nu_3} |\text{Im}(R_{13}^2)|, \tag{III.17}
\]

\[
 \leq \frac{3m_{N_1} m_{\nu_2}}{16\pi (H)^2}, \tag{III.18}
\]

where equality holds when $|\text{Im}(R_{13})| \gg |\text{Re}(R_{13})|$. Thus, we obtain

\[
 m_{N_1} \geq \frac{16\pi (H)^2}{3m_{\nu_3}} |\epsilon_1| \simeq 10^9 \text{ GeV}, \tag{III.19}
\]
where we use the fact that the observed baryon asymmetry is due to leptogenesis to infer $|\epsilon_1|$. We will discuss this in more detail later.

Now, we turn to the new contribution to ϵ_1 from new interactions, the first term in Eq. (III.12). λ_i are assumed real for simplicity, and

$$\sum_\alpha \text{Im}(y_{1\alpha}^* y_{\alpha}) = \sum_\alpha \frac{\sqrt{m_{N_i} m_{N_2} m_{\nu_e}^{*}}}{\langle H \rangle^2} \text{Im}(R_{1\alpha}^* R_{1\alpha}).$$ \hspace{1cm} (III.20)

Therefore, the total lepton number asymmetry from the decay of N_1 is,

$$\epsilon = \frac{\Gamma(N_1 \to H^+ l^-) - \Gamma(N_1 \to H^- l^+)}{\Gamma(N_1 \to H^+ l^-) + \Gamma(N_1 \to H^- l^+) + \Gamma(N_1 \to NS)}$$

$$= -\frac{1}{\lambda_i^2 + (yy^*)_{11}} \left(\sum_\alpha \frac{\lambda_i \lambda_i^*}{16\pi m_{N_i}^2 - m_{N_i}^2} \frac{\sqrt{m_{N_i} m_{N_2} m_{\nu_e}^*}}{\langle H \rangle^2} \text{Im}(R_{1\alpha}^* R_{1\alpha}) + \frac{3}{16\pi \langle H \rangle^2} \sum_\alpha m_{N_i}^2 m_{\nu_e}^2 \text{Im}(R_{1\alpha}^*) \right),$$ \hspace{1cm} (III.21)

where we use Eq. (III.12), (III.15), and (III.20).

Note that $Y_L = \epsilon / \epsilon_0 Y_{N_1}^0 (T \gg m_{N_1})$ \cite{22}, where ϵ_0 is an efficiency factor which measures the wash-out effect and $Y_{N_1}^0 (T \gg m_{N_1}) = 135\zeta(3)/(4\pi^2 g_*)$, where g_* is the number of relativistic degrees of freedom in thermal equilibrium, $g_* \approx 230$ for the MSSM. From \cite{13}, $\eta' \sim m_* / m_{\alpha\alpha}$ in the strong wash out scenario when $m_\alpha > m_*$ and $m_{\alpha\alpha} > m_*$, where $m_* \sim 10^{-3}$ eV and $m_\alpha \equiv \sum_\alpha m_{\alpha\alpha} = \sum_\alpha 8\pi \langle H \rangle^2 m_{N_i}^2 \Gamma(N_1 \to H^+ l^-, H^- l^+) = \langle H \rangle^2 m_{N_i}^2 \lambda_i^2 + (yy^*)_{11}$. To sum, we have

$$Y_L \simeq \frac{135\zeta(3) m_{N_1} m_{N_2}}{4\pi^2 g_*} \frac{\langle H \rangle^2}{\langle H \rangle^2} \left(\sum_\alpha \frac{\lambda_i \lambda_i^*}{16\pi m_{N_i}^2 - m_{N_i}^2} \frac{\sqrt{m_{N_i} m_{N_2} m_{\nu_e}^*}}{\langle H \rangle^2} \text{Im}(R_{1\alpha}^* R_{1\alpha}) + \frac{3}{16\pi \langle H \rangle^2} \sum_\alpha m_{N_i}^2 m_{\nu_e}^2 \text{Im}(R_{1\alpha}^*) \right),$$ \hspace{1cm} (III.22)

where we approximate $m_{\alpha\alpha}$ by m_α.

If $\lambda_i = 0$, $\eta' = 1$, $g_* = 230$, $c_s = 8/23$, and $m_{\nu_3} = \sqrt{\Delta m_{23}^2}$ in the MSSM and requiring the observed baryon asymmetry coming from leptogenesis, we have

$$Y_L(t_i) = \frac{8.8 \times 10^{-11}}{c_s} \leq \frac{135\zeta(3) m_{N_1} m_{\nu_3}}{4\pi^2 g_*} \frac{3 \langle m_{N_1} m_{\nu_3}^2 \rangle}{16\pi \langle H \rangle^2},$$ \hspace{1cm} (III.23)

which infers $m_{N_1} > 10^9$ GeV, that is consistent with the result in \cite{8}.

From Eq. (III.22), it is obvious that m_{N_1} could be smaller than 10^9 GeV if one were to increase λ_i or $R_{i\alpha}$.\footnote{Increasing λ_i or $R_{i\alpha}$ would not allow one to reduce m_{N_1}, since they will be canceled by the denominator in Eq. (III.22).} From now on, we focus on the case with only two RH neutrinos, N_1 and N_2, for simplicity. The generalization to more RH neutrinos is straightforward.

Increasing λ_2 will cause N_2 to depart from thermal equilibrium at later times and the relic density of N_2 is roughly $\exp(-m_{N_2} / T_D) * n_\gamma$ at decoupling, where T_D is the decoupling temperature of N_2 and is fully determined by λ_2. However, as long as $m_{N_2} \gg m_{N_1}$ and λ_2 is large enough, the relic density of N_2 is too low to have any impact on the lepton asymmetry created by m_{N_1} at $T \simeq m_{N_1}$. For instance, we choose $m_{N_2} = 10m_{N_1}$, $\lambda_2^2 \simeq (yy^*)_{12} \geq \frac{m_{N_1} m_{N_2}}{\langle H \rangle^2}$, and $g_* = 230$,

\begin{align*}
8.8 \times 10^{-11} & \leq \frac{135\zeta(3) m_{N_1} m_{N_2}}{4\pi^2 g_*} \frac{\langle H \rangle^2}{\langle H \rangle^2} \left(\frac{1}{64\pi^2 \lambda_1^2} \frac{m_{N_1}^2}{m_{N_2}^2 - m_{N_1}^2} \frac{\sqrt{m_{N_1} m_{N_2} m_{\nu_e}^*}}{\langle H \rangle^2} \text{Im}(R_{1\alpha}^*) \right), \\
v \leq \frac{135\zeta(3) m_{N_1} m_{N_2}}{4\pi^2 g_*} \frac{\langle H \rangle^2}{\langle H \rangle^2} \left(\frac{\lambda_2^2}{\lambda_1^2} \frac{m_{N_1}^2}{m_{N_2}^2 - m_{N_1}^2} \frac{\sqrt{m_{N_1} m_{N_2} m_{\nu_e}^*}}{\langle H \rangle^2} \text{Im}(R_{1\alpha}^*) \right).
\end{align*}

Then, it is easy to show,

$$5.4 \times 10^{11} \leq \left(\frac{\lambda_2}{\lambda_1} \right) \frac{m_{N_1}}{\text{GeV}}.$$ \hspace{1cm} (III.24)

\footnote{This choice implies the strong wash-out scenario.}
In a dramatic situation, we can have m_{N_1} around $O(10\text{TeV})$ by having $\lambda_1 \sim 10^{-7}$ and $\lambda_2 \sim 1$.

On the other hand, increasing $R_{2\alpha}$ yields larger ϵ without changing η', which is independent of $R_{2\alpha}$. However, the estimate $\eta' \sim m_\star/m_{\alpha\alpha}$, takes into account the effect of inverse decay($l + H \rightarrow N_1$) only. By increasing $R_{2\alpha}$, $\Delta L = 2$ ($l^- H^+ \leftrightarrow l^+ H^-$ and $l^+ l^- \leftrightarrow H^- H^+$) interactions will become important as well. To be more precise, from Eq. (III.22), for MSSM in the limit of $m_{N_2} \gg m_{N_1}$ and strong wash out region, $\lambda_2^2 \sim \lambda_1^2 \geq (yy')_{11} \geq \frac{m_{\phi\cdot N_1}}{(m_{H'})_{N_1}}^2$, the constraint on m_{N_1} is

$$10^9 \leq \left(\frac{m_{N_1}}{\text{GeV}} \right) \frac{m_{N_1}^2}{m_{N_2}^2} | \text{Im}(R_{2\alpha N_1}) |. \tag{III.25}$$

For example, if we would like to make $m_{N_1} = 10^8 \text{GeV}$, $\text{Im}(R_{2\alpha})$ has to be $10^{m_{N_1}^2/m_{N_2}^2} \sim 10^3$ for $m_{N_2} = 10m_{N_1}$ and $| \text{Im}(R_{1\alpha}) | \sim 1$. The ratio of $\Delta L = 2$ interactions mediated by N_2 to those mediated by N_1 will be roughly $|R_{2\alpha}^2/R_{1\alpha}^2| \sim 10^{12}$, which is extremely large and has to be carefully considered in the calculation of η'. In other words, increasing $R_{2\alpha}$ may not be an efficient and applicable way to lower m_{N_1}.

IV. THE DARK MATTER

As mentioned before, due to the discrete Z_2 symmetry, the lightest of S and N can be a thermal relic. We first calculate the relic abundance for each of them, respectively, and then discuss if any of them can be the dark matter and at the same time the low-scale leptogenesis is viable.

A. S as dark matter ($m_N > m_S$)

From [23], we know the relic density of the dark matter is determined by the annihilation rate into SM particles in thermal equilibrium at the time of decoupling. A rule of thumb is that it decouples when the interaction rates with SM particles are smaller than the expansion rate of the universe. To be more quantitatively precise, the Boltzmann equation should be used (see chapter 5 in [23]). With the help of [3], where a complex scalar field is assumed, we can calculate $\langle \sigma v \rangle$ for $SS \rightarrow HH$, $SS \rightarrow W^+W^-$, $SS \rightarrow ZZ$ and $SS \rightarrow f^+f^-$, respectively.

- $SS \rightarrow HH$

$$\langle \sigma v \rangle = \frac{\lambda_{HS}^2}{128 \pi m_S^2} \left(1 - \frac{m_h^2}{m_S^2} \right)^{1/2}, \tag{IV.26}$$

- $SS \rightarrow W^+W^-$

$$\langle \sigma v \rangle = \left(1 + \frac{1}{2} \left(1 - \frac{2m_S^2}{m_W^2} \right)^2 \right) \frac{\lambda_{HS}^2 m_w^4}{8\pi m_S^2 (4m_S^2 - m_h^2)^2 + m_h^4} \left(1 - \frac{m_h^2}{m_S^2} \right)^{1/2}, \tag{IV.27}$$

- $SS \rightarrow ZZ$

$$\langle \sigma v \rangle = \left(1 + \frac{1}{2} \left(1 - \frac{2m_S^2}{m_Z^2} \right)^2 \right) \frac{\lambda_{HS}^2 m_Z^4}{16\pi m_S^2 (4m_S^2 - m_h^2)^2 + m_h^4} \left(1 - \frac{m_h^2}{m_S^2} \right)^{1/2}, \tag{IV.28}$$

- $SS \rightarrow f^+f^-$

$$\langle \sigma v \rangle = \frac{m_w^2}{\pi g'^2} \left(4m_S^2 - m_h^2 \right)^2 + m_h^4 \left(1 - \frac{m_h^2}{m_S^2} \right)^{3/2}, \tag{IV.29}$$

where we have an extra factor $1/2$ compared to [3] due to the fact that S is a real scalar field in our case. The relic density of S is given by (see Eq. (2.7) in [3]),

$$\Omega_S = \frac{\rho_S}{\rho_c} \frac{g(T)}{g(1)\cdot g(T)} \frac{K}{T^4} \frac{T^4}{1 - \frac{3}\lambda_{N} \frac{T}{g(T)}} \left(1 - \frac{\rho_c}{\rho_c} \right), \tag{IV.30}$$

where ρ_S is the energy density of S, ρ_c is the critical energy density of the universe, T_{fs} is the freeze-out temperature for S, $x_{fs} = T_{fs}/m_S$, T_γ is the present photon temperature, $g(T)$ is the the number of relativistic degrees of freedom around temperature T, and $K = (4\pi^3 g(T)/45M_{pl}^2)^{1/2}$. An extra factor $1/2$ is again because of S being a real scalar.
FIG. 3: Interactions determine the relic abundance of N.

$\langle \sigma v \rangle = \frac{3}{2048\pi^6} \frac{\lambda^4 \lambda_{HS}^2}{m_{N_i}^2} \frac{T}{m_N} \left(1 - \frac{m_H^2}{m_N^2}\right)^{1/2} \left(\int_0^1 dx \log \frac{m_{N_i}^2}{\Delta}\right)$

where $\Delta = m_S^2 + x^2 E_{cm}^2 - x E_{cm}^2$ and we have assumed $m_{N_i} \gg m_S \geq m_N$. The relic abundance of N is given by Eq. (IV.30) with S replaced by N.

In principle, if $m_S \sim m_N$, we have to consider co-annihilation interactions, i.e., $S + N \to N_i \to l^\pm + H^\mp$, whose amplitude squared is proportional to $y_{\alpha i}^2$. It is small compared to other annihilation channels because, again, we are interested in the situation of $m_{N_i} \leq 100$ TeV.

In summary, for S being the dark matter, $\langle \sigma v \rangle$ is mostly determined by λ_{HS}, which is a free parameter from the point of view of leptogenesis while for N, $\langle \sigma v \rangle$ is determined by λ_i for N_i running in the loop. On the other hand, with the help of the large λ_2 (N_2 propagating inside the loop), we can have the correct abundance for N. Fig. 4 shows the allowed regions of λ_2 and λ_{HS} for generating the right dark matter density and having low-scale leptogenesis. In this situation, we have to push both λ_i and λ_{HS} toward the strongly-coupled region.
FIG. 4: The blue band represents the region of the parameter space of λ_2 and λ_{HS}, which gives the right thermal relic abundance for N_1 and has successful low-scale leptogenesis, where $(m_H, m_N, m_S, m_{N_1}, m_{N_2}) = (100, 150, 200, 3000, 15000)$ in units of GeV.

V. CONCLUSIONS

In this paper, we propose a simple and economical model, which can accommodate both leptogenesis and the dark matter, by introducing the new scalar S, which couples to the Higgs boson and RH Majorana neutrinos (N_i), and N. We impose a Z_2 symmetry under which S and N are odd and the rest is even; therefore, the lighter of S and N could be the dark matter. By increasing the coupling, λ_2, and having N_2 much heavier than N_1, we can easily increase the efficiency of generation of the lepton asymmetry without having a high reheating temperature and N_1 can be as low as O(TeV). Note that all of the estimates of the lepton asymmetry are based on the one-flavor approximation instead of three flavors (e, μ and τ). Taking into account flavor effects, the efficiency factor, η', will be modified. From [13], η' is enhanced by one or two orders of magnitude or remains the same order of magnitude compared to that of one-flavor approximation, which implies the estimate done before remains valid.

Finally, there have been studies of constraints on S as the thermal relic via the decay of the Higgs Boson into S, if kinematics allows, or the elastic scattering between S and nuclei, see for example, [24].

As for N as the dark matter, it can be produced in pairs via the Higgs boson and S. If the produced S is on-shell, the decay width of S into N and a light neutrino is of order $\frac{m_S}{16\pi} \left(\frac{m_N}{m_{N_2}}\right) \sim 10^{-12}$ GeV, which roughly corresponds to the decay time 10^{-13} sec, which implies it can happen inside a detector. However, it is very challenging to identify that a new state (other than S) has been produced since both the N and the light neutrino would escape the detector.

At the time of writing, we notice that, in [25], they have demonstrated how one may obtain leptogenesis and neutrino mass generation in the see-saw picture without invoking a new mass scale far beyond that of electroweak symmetry breaking by introducing more than one Higgs doublet family.

Acknowledgments

I would like to thank André de Gouvêa for enlightening discussions and useful suggestions, and thank André de Gouvêa and Jennifer Kile for reading the paper. This work is supported in part by the U.S. Department of Energy under contracts DE-AC02-06CH11357 and DE-FG02-91ER40684.

[1] J. McDonald, Phys. Rev. D 50, 3637 (1994) [arXiv:hep-ph/0702143].
[2] B. T. Cleveland et al., Nucl. Phys. Proc. Suppl. 38, 47 (1995); Y. Fukuda et al. [Super-Kamiokande Collaboration], Phys. Rev. Lett. 82, 2430 (1999) [arXiv:hep-ex/9812011]; K. Lande et al., Nucl. Phys. Proc. Suppl. 77, 13 (1999); D. N. Abdurashitov et al. [SAGE Collaboration], Nucl. Phys. Proc. Suppl. 77, 20 (1999); T. A. Kirsten [GALLEX and GNO Collaborations], Nucl. Phys. Proc. Suppl. 77, 26 (1999); Y. Fukuda et al. [Super-Kamiokande Collaboration].
Phys. Lett. B 436, 33 (1998) [arXiv:hep-ex/9805006]; C. Athanassopoulos et al. [LSND Collaboration], Phys. Rev. C 54, 2685 (1996) [arXiv:nucl-ex/9605001]; C. Athanassopoulos et al. [LSND Collaboration], Phys. Rev. C 58, 2489 (1998) [arXiv:nucl-ex/9706006].

3. P. Minkowski, Phys. Lett. B 67, 421 (1977); M. Gell-Mann, P. Ramond and R. Slansky in *Supergravity*, eds. D. Freedman and P. Van Nieuwenhuizen (North Holland, Amsterdam, 1979), p. 315; T. Yanagida in *Proceedings of the Workshop on Unified Theory and Baryon Number in the Universe*, eds. O. Sawada and A. Sugamoto (KEK, Tsukuba, Japan, 1979); S.L. Glashow, 1979 *Cargèse Lectures in Physics – Quarks and Leptons*, eds. M. Lévy et al. (Plenum, New York, 1980), p. 707; R.N. Mohapatra and G. Senjanović, Phys. Rev. Lett. 44, 912 (1980); J. Schechter and J.W.F. Valle, Phys. Rev. D 22, 2227 (1980).

4. M. Tegmark et al. [SDSS Collaboration], Phys. Rev. D 69, 103501 (2004) [arXiv:astro-ph/0310723]; G. Hinshaw et al. [WMAP Collaboration], Astrophys. J. Suppl. 180, 225 (2009) [arXiv:0803.0732 [astro-ph]].

5. M. Fukugita and T. Yanagida, Phys. Lett. B174, (1986) 45.

6. A. D. Sakharov, Pis'ma Zh. Eksp. Teor. Fiz. 5, 32 (1967) [JETP Lett. 5, 24 (1967); Sov. Phys. Usp. 34, 392 (1991)].

7. V. A. Kuzmin, V. A. Rubakov and M. A. Shaposhnikov, Phys. Lett. B155, 36 (1985); F. R. Klinkhammer and N. S. Manton, Phys. Rev. D30, 2212 (1984).

8. S. Davidson and A. Ibarra, Phys. Lett. B 535, 25 (2002) [arXiv:hep-ph/0202239].

9. M. Bolz, A. Brandenburg and W. Buchmuller, Nucl. Phys. B 606, 518 (2001) [Erratum-ibid. B 790, 336 (2008)] [arXiv:hep-ph/0012052].

10. A. Pilaftsis, Phys. Rev. D56, 5431 (1997); A. Pilaftsis and T. E. J. Underwood, Nucl. Phys. B692, 303 (2004).

11. A. Abada et al. Flavour matters in leptogenesis. JHEP, 0609:010, 2006.

12. W. Buchmuller, R. D. Peccei and T. Yanagida, Ann. Rev. Nucl. Part. Sci. 55, 311 (2005) [arXiv:hep-ph/0502169].

13. S. Davidson, E. Nardi and Y. Nir, Phys. Rept. 466, 105 (2008) [arXiv:0802.2902 [hep-ph]].

14. K. Petrangeli and A. Kusenko, Phys. Rev. D 77, 065014 (2008) [arXiv:0711.4646 [hep-ph]].

15. S. Dodelson and L. M. Widrow, Phys. Rev. Lett. 72, 17 (1994).

16. C. J. Low, Phys. Rev. D 71, 073007 (2005) [arXiv:hep-ph/0501251]; S. S. C. Law and R. R. Volkas, Phys. Rev. D 75, 043516 (2007) [arXiv:hep-ph/0701189].

17. J. McDonald, N. Sahu and U. Sarkar, JCAP 0804, 037 (2008) [arXiv:0711.4820 [hep-ph]].

18. S. Y. Khlebnikov and M. E. Shaposhnikov, Nucl. Phys. B 308 (1988) 885. J. A. Harvey and M. S. Turner, Phys. Rev. D 42, 3344 (1990).

19. G. Hinshaw et al. [WMAP Collaboration], Astrophys. J. Suppl. 180, 225 (2009) [arXiv:0803.0732 [astro-ph]].

20. L. Covi, E. Roulet and F. Vissani, Phys. Lett. B 384 (1996) 169.

21. J. A. Casas and A. Ibarra, Nucl. Phys. B 618, 171 (2001) [arXiv:hep-ph/0103065].

22. G. F. Giudice, A. Notari, M. Raidal, A. Riotto and A. Strumia, Nucl. Phys. B 685, 89 (2004) [arXiv:hep-ph/0310123].

23. E. W. Kolb and M. S. Turner, *REDWOOD CITY, USA: ADDISON-WESLEY (1988) 719 P. (FRONTIERS IN PHYSICS, 70)*

24. X. G. He, T. Li, X. Q. Li, J. Tandean and H. C. Tsai, Phys. Rev. D 79, 023521 (2009) [arXiv:0811.0658 [hep-ph]].

25. B. Kayser and G. Segre, [arXiv:1011.6362 [hep-ph]].