Sex Steroids Affect Triglyceride Handling, Glucose-Dependent Insulinotropic Polypeptide, and Insulin Sensitivity

A 1-week randomized clinical trial in healthy young men

Bruno Lapauw, MD1
Margriet Ouwens, PhD3
Leen M. ‘t Hart, PhD4
Birgitte Wuys, PhD2
Jens J. Holst, PhD5
Guy T’Sjoen, MD1
Jean-Marc Kaufman, MD1
Johannes B. Ruige, MD1

OBJECTIVE — To evaluate metabolic effects of sex steroids in nonfasting and fasting conditions, independent from changes in body composition.

RESEARCH DESIGN AND METHODS — A randomized clinical trial was performed to create contrasting sex steroid levels in healthy young men: by letrozole (aromatase inhibitor) to lower estradiol (E2) and increase testosterone (group T) or an aromatase inhibitor (AI) reducing conversion of testosterone, by an aromatase inhibitor (AI) to lower E2 and raise E2 (group E). E2 patches in men (aged 20–40 years) were randomly treated with an AI to lower E2 and increase testosterone (group T) or an AI (Femara; Novartis, Basel, Switzerland) reduced conversion through the feedback mechanism. A week is supposed to be sufficient to reach a steady state.

RESULTS — Following intervention, the postprandial triglyceride response displayed a diverging response with a decline in group T and an increase in group E, the postprandial glucose-dependent insulinotropic polypeptide (GIP) response increased in group T. Insulin sensitivity increased in group T but remained unaltered in group E.

CONCLUSIONS — In healthy young men, short-term changes in sex steroids affect postprandial triglyceride and GIP response and insulin sensitivity.

Diabetes Care 33:1831–1833, 2010

RESEARCH DESIGN AND METHODS — Twenty healthy young men (aged 20–40 years) were randomized to receive either 2.5 mg letrozole (Femara; Novartis, Basel, Switzerland) (group T, n = 10) or letrozole plus Dermostil, exemption 75 µg/day (Besins, Brussels, Belgium) (group E, n = 10). All subjects gave written informed consent and completed the trial, which was approved by the ethical review board of the Ghent University Hospital, conducted according to the principles of the Declaration of Helsinki and registered at clinicaltrials.gov (NCT00740194).

Measurements before and after a 1-week treatment period were performed in similar conditions, starting at 0800 h after overnight fasting and a 10-min bed rest at the hospital. Hyperinsulinemic-euglycemic clamps were initiated by a primed-continuous insulin infusion and fixed at 10 mIU/m²/h body surface area/min throughout the 120-min clamp to completely suppress endogenous glucose production (6). The insulin infusion rate was similar in both groups. Variable infusion of glucose, adjusted every 5 min, was used to maintain euglycemia (5 mmol/l). Venous blood was arterialized through retrograde cannulation of a wrist vein while heating the hand at 60–70°C using a custom-made heating box. The glucose disposal rate (insulin sensitivity; M value) was measured during the last 30 min and corrected for lean body mass (dual-energy X-ray absorptiometry). Thirty minutes after the clamp, a standard mixed meal (bread, margarine, cheese, and milk), providing a caloric content of 1,000 kcal (45% fat, 36% carbohydrates, and 19% proteins), was served and blood samples were taken before and 10, 30, 60, 120, 180, 240, and 300 min after ingestion. Triglycerides, glucose, and C-peptide serum concentrations were determined using standard laboratory assays (modular immunoassay; Roche Diagnostics, Penzberg, Germany). Intra- and interassay coefficients of variation for all parameters were <3 and 6%, respec-
Sex steroids and glucose metabolism in men

Table 1—A 1-week hormonal intervention and effects on postprandial and fasting metabolic parameters in healthy young men

Sex steroids	Group T (letrozole only) (n = 10)	Group E (letrozole + E2 patches) (n = 10)
Testosterone (ng/dl)	Before: 495 ± 138, After: 988 ± 137, P value*: <0.001	Before: 425 ± 137, After: 246 ± 127, P value*: <0.001
Free testosterone (ng/dl)	Before: 8.8 ± 2.0, After: 21.5 ± 4.9, P value*: <0.001	Before: 9.5 ± 2.2, After: 5.3 ± 2.7, P value*: <0.001
Sex hormone–binding globulin (nmol/l)	Before: 41 ± 18, After: 39 ± 16, P value: 0.11	Before: 41 ± 18, After: 39 ± 16, P value: 0.11
Estradiol (pg/ml)†	Before: 20.5 (16.8–23.0), After: 8.9 (8.5–9.4), P value: 0.005	Before: 16.3 (15.1–19.8), After: 19.4 (15.9–41.3), P value: 0.059
Free E2 (pg/ml)†	Before: 0.37 (0.30–0.42), After: 0.18 (0.17–0.19), P value: 0.005	Before: 0.30 (0.28–0.38), After: 0.36 (0.28–0.76), P value: 0.074

Postprandial response

- Glucose response (mg/dl/min)‡: Before: 1.20, After: 1.25, P value: 0.11
- C-peptide response (ng/ml/min)‡: Before: 0.070, After: 0.069, P value: 0.71
- Glucagon-like peptide 1 response (pM/min)‡: Before: 0.57, After: 0.59, P value: 0.55
- GIP response (pM/min)‡: Before: 1.19, After: 1.24, P value: 0.047
- Triglyceride response (mg/dl/min)‡: Before: 0.50, After: 0.44, P value: 0.036

Fasting measurements

- Glucose (mg/dl): Before: 0.88 ± 0.15, After: 0.84 ± 0.08, P value: 0.40
- Insulin (IU/l)†: Before: 5.1 (3.2–8.7), After: 4.3 (2.5–7.1), P value: 0.17
- Triglycerides (mg/dl): Before: 79 (61–139), After: 75 (56–92), P value: 0.12

Euglycemic-hyperinsulinemic clamp

- Mean glycemic level (mmol/l): Before: 5.1 ± 0.27, After: 4.9 ± 0.15, P value: 0.11
- GIR (ml/h): Before: 167 ± 65, After: 190 ± 65, P value: 0.051
- M valueLBM (μmol/min/kgLBM): Before: 51.3 ± 21.5, After: 61.3 ± 21.9, P value: 0.042

Data are means ± SD or median (1st–3rd quartile) in case of non-Gaussian distribution. *According to paired Student t test. †According to Wilcoxon signed-rank test. ‡Longitudinal mixed-effects modeling.

Nonfasting measurements

Following intervention, postprandial responses of glucose, C-peptide, and glucagon-like peptide 1 remained unchanged, though triglycerides displayed a diverging response, declining in group T and increasing in group E, and the glucose-dependent insulinotropic polypeptide response increased in group T.

Fasting measurements

Following intervention, no differences in fasting glucose, insulin levels, or triglyceride levels were revealed. Yet, an increase in insulin sensitivity (M valueLBM) was observed in group T, whereas no change was observed after intervention in group E. The observation remained similar when adjusting for mean glucose levels during steady state (data not shown; P = 0.018).

RESULTS — All subjects were Caucasian, and no anthropometric differences were observed between both groups (age 34 ± 7 and 31 ± 5 years; BMI 22.4 ± 2.4 and 23.4 ± 2.2 kg/m²; waist-to-hip ratio 0.87 ± 0.05 and 0.86 ± 0.04, group T and E, respectively) (Table 1).

Sex steroid changes

Following intervention, E2 levels decreased by 56% and testosterone levels increased by 114% in group T, whereas in group E, testosterone levels declined by 44% and total E2 levels increased by 43%. Adverse events or side effects did not occur.

CONCLUSIONS — The study shows that short-term changes in sex steroids affect glucose and lipid metabolism in fasting and nonfasting conditions in healthy young men.

Concomitantly increasing testosterone and decreasing E2 levels has positive effects on both postprandial triglyceride handling and insulin sensitivity. Effects on postprandial triglyceride handling are in line with previous reports (8) and seem relevant for metabolic risk (9). The improvement in insulin sensitivity explains our previous findings of reduced fasting glucose and insulin levels after 4 weeks of AI in young men (4) and corroborates a former report (10) showing acute reduction in insulin sensitivity 2 weeks after discontinuing testosterone replacement in hypogonadal men. It remains unclear whether these observations result from changes in lipid metabolism or altered postreceptor insulin signaling in muscle (11) and whether improved insulin sensitivity enhances muscle lipid uptake (12). Further, this same intervention increased postprandial glucose-dependent insulinotropic polypeptide (GIP) response, though future research is needed to establish metabolic consequences. Effects of sex steroids on GIP have not been reported before. Action of GIP is not limited to pancreatic cells and may affect lipid homeostasis (13) and intestinal glucose transport (14).
number of healthy male subjects, necessitating confirmation and extension to populations at risk (those who are obese, those with disturbed glucose metabolism, and the elderly) to evaluate potential clinical implications (e.g., related to lipid handling or buffering of adipocytes for prevention of lipotoxicity) (9,13,15).

In summary, changing sex steroid levels in a largely physiological range influences postprandial triglyceride handling, GIP, and insulin sensitivity in healthy young men. Given the short term of this intervention, these effects can be assumed to occur independently from changes in body composition.

Acknowledgments—This study was supported in part by grant G0066207 of the Flemish Fund for Scientific Research (FWO Vlaanderen).

No potential conflicts of interest relevant to this article were reported.

B.L. researched data and wrote the manuscript. M.O. reviewed/editd the manuscript. L.M.H. contributed to discussion. B.W. researched data. J.J.H. researched data and reviewed/editd the manuscript. G.T. contributed to discussion and reviewed/editd the manuscript. J.B.R. researched data and reviewed/editd the manuscript.

The authors are indebted to Dr. S. Vansteelandt, Ghent University, Belgium, for statistical consulting, as well as to the employees of the Department of Endocrinology, Kaatje Toye, Bea Vervinckt, and Nera Steyaert, for the meticulous realization of the study protocol. We thank Inge Bocquaert and Kathelijne Mertens for performing the immunoassays. We also thank Eric Matthys for using his skills to create the custom-made heating box. We thank all volunteers who participated as study subjects.

References
1. Haring R, Volzke H, Felix SB, Schipf S, Dorr M, Rosskopf D, Nauck M, Scholl C, Wallaschofski H. Prediction of metabolic syndrome by low serum testosterone levels in men: results from the study of health in Pomerania. Diabetes 2009;58:2027–2031
2. Khaw KT, Barrett-Connor E. Lower endogenous androgens predict central adiposity in men. Metabolism Ann Epidemiol 1992; 2:675–682
3. Colangelo LA, Ouyang P, Liu K, Kopp P, Golden SH, Dobs AS, Szoko M, Vaidya D, Cushman M, Gapstur SM. Association of endogenous sex hormones with diabetes and impaired fasting glucose in men: multi-ethnic study of atherosclerosis. Diabetes Care 2009;32:1049–1051
4. Lapauw B, T’Sjoen G, Mahmoud A, Kaufman JM, Ruige JB. Short-term aromatase inhibition: effects on glucose metabolism and serum leptin levels in young and elderly men. Eur J Endocrinol 2009;160:397–402
5. Lin HJ, Lee BC, Ho YL, Lin YH, Chen CY, Hsu HC, Lin MS, Chien KL, Chen MF. Postprandial glucose improves the risk prediction of cardiovascular death beyond the metabolic syndrome in the non-diabetic population. Diabetes Care 2009;32:1721–1726
6. Ferrannini E, Mari A. How to measure insulin sensitivity. J Hypertens 1998;16:895–906
7. Deacon CF, Holst JJ. Immunoassays for the incretin hormones GIP and GLP-1. Best Pract Res Clin Endocrinol Metab 2009;23:425–432
8. Agledahl I, Skjørnøe PA, Hansen JB, Svatberg J. Low serum testosterone in men is inversely associated with non-fasting serum triglycerides: the Tromsø study. Nutr Metab Cardiovasc Dis 2008;18:256–262
9. Ruige JB, Van Gaal LF. Low fasting triglycerides: hallmark of the healthy large hip? Obesity (Silver Spring) 2009;17:1621–1626
10. Yialamas MA, Dwyer AA, Hanley E, Lee H, Pitteloud N, Hayes FJ. Acute sex steroid withdrawal reduces insulin sensitivity in healthy men with idiopathic hypogonadotropic hypogonadism. J Clin Endocrinol Metab 2007;92:4254–4259
11. Bellot R, Mandarino L, Kashyap S, Wirfel K, Pratipanawatr T, Berria R, Defronzo RA, Cusi K. Dose-response effect of elevated plasma free fatty acid on insulin signaling. Diabetes 2005;54:1640–1648
12. Ukropcova B, McNeil M, Sereda O, de Jonge L, Xie H, Bray GA, Smith SR. Dynamic changes in fat oxidation in human primary myocytes mirror metabolic characteristics of the donor. J Clin Invest 2005;115:1934–1941
13. Song DH, Getty-Kaushik L, Tseng E, Simon J, Corkey BE, Wolfe MM. Glucose-dependent insulinotropic polypeptide enhances adipocyte development and glucose uptake in part through Akt activation. Gastroenterology 2007;133:1796–1805
14. Singh SK, Bartoo AC, Krishnan S, Boylan MO, Schwartz JH, Michael Wolfe M. Glucose-dependent insulinotropic polypeptide (GIP) stimulates transepithelial glucose transport. Obesity (Silver Spring) 2008;16:2412–2416
15. Frayn KN. Adipose tissue as a buffer for daily lipid flux. Diabetologia 2002;45:1201–1210