Microtiter plate test using liquid medium is an alternative method for monitoring metyltetraprole sensitivity in *Cercospora beticola*

Yuichi Matsuzaki,a* Yukie Uda,a Makoto Kurahashi*b and Fukumatsu Iwahashi a

Abstract

BACKGROUND: Metyltetraprole is a new quinone outside inhibitor (QoI) fungicide showing potent activity against QoI-resistant fungi that possess the G143A cytochrome *b* mutation, which confers resistance to existing QoIs such as trifloxystrobin. For its sustainable use, monitoring of metyltetraprole sensitivity is necessary and the establishment of appropriate methodology is important in each pathogen species.

RESULTS: In *Cercospora beticola*, the causal agent of sugar beet leaf spot, some isolates were less sensitive to metyltetraprole (EC50 > 1 mg L\(^{-1}\), higher than the saturated concentration) using the common agar plate method, even with 100 mg L\(^{-1}\) salicylhydroxamic acid, an alternative oxidase inhibitor. However, microtiter tests (EC50 < 0.01 mg L\(^{-1}\)), conidial germination tests (EC50 < 0.01 mg L\(^{-1}\)) and *in planta* tests (>80% control at 75 mg L\(^{-1}\) run-off spraying) confirmed that all tested isolates were highly sensitive to metyltetraprole. For trifloxystrobin, G143A mutants were clearly resistant upon microtiter plate tests (median EC50 > 2 mg L\(^{-1}\)) and distinct from wild-type isolates (median EC50 < 0.01 mg L\(^{-1}\)). Notably, mycelium fragments were usable for the microtiter plate tests and the test was applicable for isolates that do not form sufficient conidia. Our monitoring study by microtiter plate tests did not indicate the presence of metyltetraprole-resistant *C. beticola* isolates in populations in Hokkaido, Japan.

CONCLUSION: The microtiter tests were revealed to be useful for monitoring the sensitivity of *C. beticola* to metyltetraprole and trifloxystrobin. © 2020 The Authors. *Pest Management Science* published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

Supporting information may be found in the online version of this article.

Keywords: metyltetraprole; quinone outside inhibitors; G143A; *Cercospora*

1 INTRODUCTION

Metyltetraprole,\(^1\)\(^–\)\(^3\) being developed under the trade name Pavecto®, is a new quinone outside inhibitor (QoI) that overcomes QoI-resistant fungi harboring G143A or F129L mutations in cytochrome *b* (Cyt*b*), which are very problematic for disease management in many crops.\(^5\) Although metyltetraprole is very effective against current QoI-resistant fungal populations, new genotypes of metyltetraprole-resistant strains might emerge in the future. Therefore, early detection of such resistant isolates is important to implement a countermeasure before its critical spread. More importantly, the accuracy of any monitoring method is of paramount importance to avoid making decisions on false-positive or false-negative results. As already reported, metyltetraprole shows potent activity against a broad range of species in Ascomycota; its activity against *Cercospora beticola*, the causal agent of sugar beet leaf spot, has not yet been reported.\(^1\) However, some fungal species such as *Cercospora* spp. and *Corynespora* spp. are not highly sensitive to QoI upon agar plate tests, which are commonly used for other fungicide classes such as for sterol biosynthesis inhibitors, even though those fungi are highly QoI-sensitive in *in planta* tests.\(^5\)\(^,\)\(^6\) The reason for the low sensitivity in agar plate tests is attributed mainly to the expression of alternative oxidase (AOX), which can regulate the redox balance in mitochondria by oxidizing redundant ubiquinol.\(^7\)\(^–\)\(^12\) By contrast, this enzyme plays a minor role in *in planta* QoI sensitivity as it does not generate sufficient ATP to achieve complex and energy-
2 MATERIALS AND METHODS

2.1 Chemical materials

SHAM was purchased from Tokyo Kasei Kogyo Co., Ltd. (Tokyo, Japan). The analytical standard trifloxystrobin was purchased from Sigma-Aldrich (Tokyo, Japan). Metyltetraprole (>99% purity) was synthesized in our laboratory as described previously. For conducting agar medium and liquid medium tests, all chemical compounds were dissolved in dimethyl sulfoxide to make 10 mg mL\(^{-1}\) stock solutions, which subsequently were diluted to obtain the desired solutions. For conducting \textit{in planta} tests, 25% trifloxystrobin flowable formulation (Flint, Bayer CropScience Japan, Tokyo, Japan) was purchased and a 40% suspension concentrate formulation of metyltetraprole was prepared.

2.2 Fungal materials

The \textit{C. beticola} strains were isolated in Japan (Supporting Information, Tables S1 and S2) and kept on potato dextrose agar (PDA) medium (39 g in 1 L water) at 27 °C for normal cultivation and 12 °C for storage. The presence of mutations in \textit{Cytb} in each resistant isolate was checked as previously described. The DNA from mycelia of each isolate was extracted using PrepMan Ultra Reagent (Applied Biosystems, Waltham, MA, USA) according to the manufacturer’s instructions. Polymerase chain reaction (PCR) amplification of the \textit{Cytb} gene were performed using the Ex Taq Kit (TaKaRa, Kyoto, Japan) by 40 cycles of 98 °C for 30 s, 55 °C for 30 s, and 72 °C for 60 s. DNA sequencing was performed using Genetic Analyzer ABI PRISM 3100 (Applied Biosystems) according to the manufacturer’s instructions. The primers used in this study are listed in Table S3. Sequences were analyzed using GENETYX v12 (Genetyx Corporation, Tokyo, Japan).

2.3 Agar plate method

Fungi inoculated as a 5-mm diameter mycelium plug, harvested from another PDA medium incubated in the dark at 27 °C for 7–10 days, were cultured on PDA medium supplemented with a series of fungicides at designated concentrations (Table 1). All fungicide-supplemented PDA and fungicide-free reference PDA medium contained SHAM at a final concentration of 100 mg L\(^{-1}\). The medium and the concentration of SHAM were the same as described previously. The mean mycelial radial growth (mm) from inocula, on each agar plate, was measured at designated periods after inoculation (two biological replicates were used). The inhibitory effect of each fungicide was determined from the mean radial growth of the mycelia and compared to that of the fungicide-free medium with SHAM at 100 mg L\(^{-1}\). The values of 50% effective concentrations (EC\(_{50}\)) were calculated using the ‘Nonlinear regression (curve fit)’ function of PRISM.
Table 1. Conditions of antifungal tests

Test method	Fungal species	Medium	Incubation	Final concentrations mg L⁻¹
Agar plate	Cercospora beticola	PDA + SHAM*	27 °C, 12–17 days	0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, 3, 10, for all fungicides
	Corynespora cassiicola	PDA + SHAM*	27 °C, 4 days	0.003, 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1 for metyltetraprole and trifloxystrobin
	Colletotrichum gloeosporioides	PDA + SHAM*	27 °C, 4 days	0.0003, 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1 for metyltetraprole and trifloxystrobin
Microtiter plate	Cercospora beticola	YBA	23 °C, 4 days	0.00012, 0.00049, 0.0020, 0.0078, 0.013, 0.031, 0.13, 0.50, 2.0 for metyltetraprole and trifloxystrobin
	(Fig 3 and S2)			
	Corynespora cassiicola			
	(Fig S3)			
	Colletotrichum gloeosporioides	YBA	23 °C, 4 days	0.0003, 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, 3, 10 for azoxystrobin
Microtiter plate	Cercospora beticola	YBA	23 °C, 4 days	0.00012, 0.00049, 0.0020, 0.0078, 0.013, 0.031, 0.13, 0.50, 2.0 for metyltetraprole and trifloxystrobin
	(Fig 2)			

*Salicylhydroxamic acid (SHAM) was added at the final concentration 100 mg L⁻¹.
† Cercospora beticola was tested at different concentrations in microtiter plate tests between Table 3 (see also Table S2) and Fig. 2.

8 (GraphPad Software, San Diego, CA, USA). The resistance factor (RF) was calculated using the following formula:

RF = (EC₅₀ for trifloxystrobin—resistant isolate carrying G143A mutation) / (EC₅₀ for wild—type isolate without mutations in Cytb).

2.4 Microtiter plate method using liquid medium

For C. beticola, mycelia were collected from a colony on PDA medium incubated in the dark at 27 °C for 7–10 days, cultured for 17 days in potato dextrose broth (PDB, 24 g in 1 L water) at 23 °C, collected by brief centrifugation, and subjected to fragmentation using a bead mill, Multi-beads shocker (Yasui Kikai, Osaka, Japan). After four rounds of fragmentation (2000 rpm, 30 s each), mycelium fragments that were 30–120 μm long in YBA medium (yeast extract 10 g L⁻¹, peptone 10 g L⁻¹ and sodium acetate 20 g L⁻¹ in distilled water), reported as a suitable medium for the microtiter plate method, were adjusted to 5 × 10⁴ pieces mm⁻³ as inocula. A 100-fold dilution series of fungicides (0.3, 0.1, 0.3, 1, 3, 10, 30 and 100 mg L⁻¹) in dimethyl sulfoxide, corresponding to final concentrations of 0.0003, 0.001, 0.003, 0.01, 0.03, 0.1, 0.3 and 1 mg L⁻¹ in the medium, respectively) was prepared for each test (Table 1), and aliquots (1 μL) of each fungicide were mixed with the inoculum (99 μL) prepared in the medium. Fungal cultures in 96-well microtiter plates (two biological replicates) were cultured for designated periods at 23 °C in the dark at 72 h in a rotary incubator. After preincubation, mycelia were cultured in 100 mL PDB at 23 °C in the dark for 16 or 24 h in a rotary incubator. Mycelium samples were filtered and rinsed with distilled water on a hydrophilic nylon membrane (Merck Millipore, Burlington, MA, USA), and immediately frozen in liquid nitrogen. Total RNA was extracted from mycelia using an RNeasy Plant Mini Kit (QiAGEN, Venlo, Netherlands). cDNA was synthesized from 1 μg total RNA with random hexamers using the ReverTra Ace quantitative reverse-transcription (qRT)-PCR kit (Toyobo, Osaka, Japan), following the supplied protocol. Single-strand cDNA was used directly for real-time RT-PCR using SYBR GREEN PCR Master Mix and StepOnePlus System (Applied Biosystems). The primers for qRT-PCR were designed using Primer Express Software (Applied Biosystems) based on the mRNA sequences of AOX (GenBank accession number XM_023603643.1) and α-tubulin (GenBank accession number XM_023595832.1). The α-tubulin was used as a housekeeping gene for normalization purposes. Cycle threshold values were obtained from the exponential phase of PCR amplification, and normalization to gene expression levels was performed using the 2⁻ΔΔCt method.

2.5 Expression analysis of AOX genes

In order to check the involvement of the AOX expression level of each isolate in antifungal tests, the following experiments were performed. For preincubation, mycelia were cultured in 100 mL PDB at 23 °C in the dark for 72 h in a rotary incubator. After preincubation, aliquots (20 μL) of 100 mg L⁻¹ metyltetraprole solution or 20 μL dimethyl sulfoxide (control) were mixed with the preincubated inoculum (20 mL) and incubated at 23 °C in the dark for 16 or 24 h in a rotary incubator. Each mycelium sample was filtered and rinsed with distilled water on a hydrophilic nylon membrane (Merck Millipore, Burlington, MA, USA), and immediately frozen in liquid nitrogen. Total RNA was extracted from mycelia using an RNeasy Plant Mini Kit (QiAGEN, Venlo, Netherlands). cDNA was synthesized from 1 μg total RNA with random hexamers using the ReverTra Ace quantitative reverse-transcription (qRT)-PCR kit (Toyobo, Osaka, Japan), following the supplied protocol. Single-strand cDNA was used directly for real-time RT-PCR using SYBR GREEN PCR Master Mix and StepOnePlus System (Applied Biosystems). The primers for qRT-PCR were designed using Primer Express Software (Applied Biosystems) based on the mRNA sequences of AOX (GenBank accession number XM_023603643.1) and α-tubulin (GenBank accession number XM_023595832.1). The α-tubulin was used as a housekeeping gene for normalization purposes. Cycle threshold values were obtained from the exponential phase of PCR amplification, and normalization to gene expression levels was performed using the 2⁻ΔΔCt method.

2.6 In planta tests of C. beticola

Seedlings of the ‘Stout’ sugar beet variety at the second true leaf stage were planted into 25-cm diameter plastic pots filled with Echigo-baido soil (Honemari, Niigata, Japan). One plant was planted per pot. Pots were placed in a greenhouse at an average temperature of 23 °C under natural light conditions. Plants were
were carried out for three replicates. SEs for each fungicide treatment in each isolate (harvested from lesions on sugar beets that were inoculated with mycelia and conidia mixture of each isolate; incubated following day, with two replicates for each treatment. Conidia from which represent the stage at which six fully expanded leaves were present, plants were used in the experiments.

Dilutions of metyltetraprole (150 or 75 mg active ingredient (AI) L⁻¹, i.e. the expected labeled concentration in Japan for sugar beets or half of that concentration) and trifloxystrobin (167 or 83 mg AI L⁻¹, i.e. the labeled concentration for sugar beets in Japan or half of that concentration) in water with 0.02% v/v spreading agent (Guramin-S, Mitsui-Agro, Tokyo, Japan) were sprayed using a hand sprayer onto sugar beet plants until there was run-off. These plants were kept at 23 °C in a greenhouse until inoculation on the following day, with two replicates for each treatment. Conidia from each isolate (harvested from lesions on sugar beets that were inoculated with mycelia and conidia mixture of each isolate; incubated 20–30 days in the abovementioned glasshouse followed by 3–5 days in a 100% humidity chamber before harvesting conidia) were collected from lesions on sugar beet leaves in the greenhouse, and adjusted to 5 × 10⁶ mL⁻¹. Conidial suspensions were spray-inoculated onto potted sugar beet plants treated with the fungicide previously, and kept in a dew chamber for three days at 23 °C in a glasshouse. After 20–26 days of incubation in a 23 °C glasshouse (maintained at 100% humidity for 4 h per day), the development of Cercospora leaf spot disease in each leaf, which had unfolded at the time of spraying, was assessed visually as the percentage area of greenness lost owing to the diseased spot (diseased leaf area). The disease severity for each isolate was calculated as the mean of diseased leaf area without fungicide spraying for each isolate. The efficacy of each treatment was calculated using the following formula:

\[
\text{%Efficacy} = 100 \times \left(1 - \frac{\text{mean of diseased leaf area in the untreated plant}}{\text{mean of diseased leaf area of the treated leaf}}\right)
\]

The mean % efficacy was calculated for all assessed leaves with SEs for each fungicide treatment in each C. beticola isolate, and was tested between wild-type (WT) isolates (N = 7) and G143A isolates (N = 6) by the Mann–Whitney U-test using BellCurve for Excel (Social Survey Research Information Co., Ltd, Tokyo, Japan).

Table 2. Range of EC₅₀ values for C. beticola in agar plate tests

Genotype of cytochrome b	Number of isolates	EC₅₀ mg L⁻¹	MIN* (isolate)	MAX* (isolate)	Median	MAX/MIN†
Metyltetraprole						
Wild-type	11	0.030 (Cb10)	3.926 (Cb15)	0.147	130.9	
G143A	5	0.125 (Cb16)	1.138 (Cb14)	0.841	9.1	
Trifloxystrobin						
Wild-type	11	0.004 (Cb10)	1.426 (Cb15)	0.039	356.5	
G143A	5	>10 (All isolate)	>10 (All isolate)	>10	N.D.‡	

*The lowest (MIN) and the highest (MAX) EC₅₀ values.
† Ranges of EC₅₀ values, MAX was divided by MIN.
‡ Not calculated because all isolates within the group showed low sensitivity (EC₅₀ > 10 mg L⁻¹).

3 RESULTS

3.1 Agar plate tests in C. beticola

In C. beticola, 10 mg L⁻¹ metyltetraprole showed activity against all isolates, regardless of the presence of the G143A mutation. However, the EC₅₀ values for metyltetraprole in the most sensitive isolate (Cb10) and in the least sensitive isolate (Cb15) varied by 130.9-fold (Tables 2 and S1). Therefore, Cb15 could be categorized as an isolate that is moderately resistant to metyltetraprole, based on EC₅₀ values obtained with this method.

All cytb G143A mutation-harboring isolates showed <50% growth inhibition by trifloxystrobin, even at 10 mg L⁻¹ in the presence of 100 mg L⁻¹ SHAM (Fig. 1). Therefore, separation of WT isolates and G143A mutants was possible at this discriminatory concentration of trifloxystrobin. However, WT isolates without the G143A mutation showed different levels of inhibition by trifloxystrobin, depending on the isolates (Fig. 1). The growth of the Cb10 isolate was completely inhibited by 0.3 mg L⁻¹ trifloxystrobin, and the EC₅₀ was 0.0041 mg L⁻¹ (Tables 2 and S1, Fig. 1). By contrast, the growth of the Cb15 isolate did not show complete inhibition even with 10 mg L⁻¹ trifloxystrobin (Fig. 1). The trifloxystrobin EC₅₀ values of Cb10 and Cb15 isolates varied by ≈350-fold (Table 2). Therefore, Cb15 could be categorized as an isolate that is resistant to trifloxystrobin, based on the EC₅₀ values obtained with this method.

Conidial germination tests were carried out for three representative isolates in each of the WT and G143A-harboring mutants to investigate the possible low QoI sensitivities in the Cb15 isolate. Consequently, the EC₅₀ values for the Cb15 isolate (EC₅₀ = 0.0026 mg L⁻¹ for metyltetraprole and 0.0146 mg L⁻¹ for trifloxystrobin) did not differ by >10-fold as compared to those of the most sensitive Cb10 isolate (EC₅₀ = 0.030 mg L⁻¹ for metyltetraprole and 0.0021 mg L⁻¹ for trifloxystrobin; Table S4). Therefore, the Cb15 isolate was not considered metyltetraprole resistant in conidial germination tests.

3.2 Microtiter plate tests in C. beticola

For 16 isolates used for the agar plate tests, metyltetraprole showed potent activity against C. beticola, regardless of the...
Table 3. Range of EC_{50} values for *Cercospora beticola* in microtiter plate tests*

Genotype of cytochrome b	Number of isolates	EC_{50} mg L^{-1}	MIN\(^\dagger\) (isolate)	MAX\(^\dagger\) (isolate)	Mean	MAX/MIN\(^\dagger\)
Metyltetraprole	Wild-type	11				
	G143A	5	0.0004 (Cb11)	0.0038 (Cb2)	0.0016	9.5
Trifloxystrobin	Wild-type	11	0.0003 (Cb9)	0.0025 (Cb10)	0.0010	8.3
	G143A	5	>2 (All isolate)	>2 (All isolate)	>2	N.D.\(^\ddagger\)

\(^*\) Summary of the 16 isolates that were subjected to agar plate tests (Tables 2 and S1).
\(^\dagger\) The lowest (MIN) and the highest (MAX) EC_{50} values.
\(^\ddagger\) Ranges of EC_{50} values, MAX was divided by MIN.
\(^\ddag\) Not calculated because all isolates within the group showed low sensitivity (EC_{50} > 2 mg L^{-1}).

Figure 1. *Cercospora beticola* sensitivity tests using the agar plate method. Dose–response curves for fungal growth in the presence of metyltetraprole (a) and trifloxystrobin (b) in potato dextrose agar plate medium supplemented with 100 mg L^{-1} alternative oxidase inhibitor salicylhydroxamic acid. White squares, triangles and circles represent wild-type Cb10, Cb12 and Cb15 isolates, respectively; black triangles, circles and squares represent G143A-harboring QoI-resistant mutants Cb13, Cb14 and Cb16, respectively. Each point represents the mean of two biological replicates.

Figure 2. *Cercospora beticola* sensitivity tests using the microtiter plate method. Dose–response curves for fungal growth in the presence of metyltetraprole (a) and trifloxystrobin (b) in YBA (10 g L^{-1} yeast extract, 10 g L^{-1} peptone and 20 g L^{-1} sodium acetate in distilled water). White squares, triangles and circles represent wild-type Cb10, Cb12 and Cb15 isolates, respectively; black triangles, circles and squares represent G143A-harboring QoI-resistant mutants Cb13, Cb14 and Cb16, respectively. Each point represents the mean of two biological replicates.
With the use of microtiter plate tests, all Cytb G143A mutation-harboring isolates grew in medium containing 1 mg L\(^{-1}\) trifloxystrobin, whereas all WT isolates were >90% inhibited by trifloxystrobin at concentrations ranging from 0.01–0.1 mg L\(^{-1}\) (Fig. 2). The EC\(_{50}\) values for trifloxystrobin were not significantly different between Cb15 and Cb10 isolates (0.0018 and 0.0025 mg L\(^{-1}\), respectively) when using the microtiter plate tests, and thus Cb15 was considered sensitive to this fungicide.

3.3 Expression analysis of the AOX gene

Constitutive and inductive expression of AOX gene was confirmed in all isolates except for the Cb10 isolate, in which metyltetraprole and trifloxystrobin sensitivities from the agar plate tests were the highest among the six representative isolates (Fig. 3, Table S1). In the isolates with detectable AOX gene expression, metyltetraprole increased its expression by approximately 10-fold, and its expression level was similar at 30 and 60 min after metyltetraprole treatment (Figs 3 and S1). The Cb15 isolate showed the highest AOX gene expression among the three WT isolates; however, it was not higher than that of the G143A-harboring isolates. G143A-harboring isolates, in general, showed higher AOX gene expression in comparison with that in the WT isolates, although the number of tested isolates was small and the trend is not conclusive. The highest AOX gene expression among the six isolates was observed in Cb14, which had the highest metyltetraprole EC\(_{50}\) value among the G143A mutants upon the agar plate tests (Tables 2 and S1), whereas the metyltetraprole EC\(_{50}\) in Cb14 was not higher than that in Cb15.

Table 4. In planta sensitivity of Cercospora beticola to metyltetraprole and trifloxystrobin

Isolate	Severity (%)	Metyltetraprole	Trifloxystrobin		
		150 mg L\(^{-1}\)	75 mg L\(^{-1}\)	166 mg L\(^{-1}\)	83 mg L\(^{-1}\)
Wild-type (QoI-sensitive)					
Cb9	67.0	94.6 (2.1)	94.6 (1.4)	99.5 (0.2)	98.7 (0.5)
Cb10	29.3	97.2 (1.4)	82.9 (8.5)	98.1 (0.6)	90.3 (5.0)
Cb12	56.7	92.9 (5.3)	98.2 (0.3)	96.5 (2.3)	99.3 (0.3)
Cb15	54.1	98.9 (0.5)	88.0 (8.9)	94.2 (1.0)	87.1 (5.3)
18.32	17.0	96.3 (1.1)	93.3 (2.7)	95.8 (1.1)	97.1 (1.3)
18.47	25.6	91.5 (1.8)	95.6 (1.6)	97.1 (0.6)	96.6 (0.6)
18.57	26.1	91.1 (3.7)	87.6 (1.6)	96.2 (0.7)	95.7 (1.1)
Mean		94.6	91.5	96.8	95.0
G143A (QoI-resistant)					
Cb13	100.0	98.6 (0.4)	82.2 (13.1)	48.1 (10.7)	30.8 (9.5)
Cb14	64.0	98.0 (1.0)	96.6 (1.0)	68.9 (17.1)	40.2 (21.8)
Cb16	65.0	99.0 (0.4)	94.3 (2.9)	49.6 (17.5)	17.3 (15.1)
18.25	56.7	98.0 (0.4)	98.7 (0.3)	53.4 (10.4)	36.8 (14.1)
18.31	62.0	95.9 (1.1)	98.0 (1.0)	48.0 (11.9)	26.4 (11.1)
18.52	36.9	93.1 (3.1)	95.7 (1.6)	82.5 (5.5)	17.9 (24.8)
Mean		97.1	94.2	58.4	28.2
P-value\(^b\)	0.1336	0.2840	0.0034	0.0034	

\(^a\) P-value of the Mann-Whitney U-test between wild-type and G143A isolates.

\(^b\) % efficacy = 100 \times \left[1 - \left(\text{diseased leaf area of the treated leaf/mean of diseased leaf area in the untreated plant}\right)\right]. The mean of % efficacy was calculated and represented from all assessed leaves with standard errors for each fungicide treatment in each C. beticola isolate.

\(^c\) Mean of diseased leaf area without fungicide spraying in each isolate.
they should be checked carefully. Therefore, it would be reasonable to assume that the G143A mutation is responsible for the resistance to metyltetraprole and trioxystrobin. In addition, the Cb15 isolate, which showed lower sensitivity to trioxystrobin, was effectively suppressed by these two fungicides, which was similar to that observed in other WT isolates for trioxystrobin. The results of the in planta test confirmed that Cb15 is a metyltetraprole- and trioxystrobin-sensitive isolate. Moreover, in our preventative treatment, Cb15 was successfully suppressed by these two fungicides, which was similar to that observed in other WT isolates for trioxystrobin or all other isolates for metyltetraprole. The microtiter plate tests also successfully separated WT isolates and G143A mutants with clearly lower in planta trioxystrobin sensitivities.

3.4 In planta tests of C. beticola

We next investigated the in planta sensitivity of isolates that showed variable sensitivity to metyltetraprole and trioxystrobin in agar plate tests. As shown in Table 4, all WT isolates, including Cb15, were effectively inhibited by trioxystrobin even at 83 mg L\(^{-1}\). By contrast, metyltetraprole did not substantially inhibit disease development by isolates harboring the G143A mutation even at 166 mg L\(^{-1}\) (the labeled concentration of trioxystrobin for sugar beets in Japan). Alternatively, the in planta activity of metyltetraprole was not affected by the presence of the G143A mutation. In addition, the Cb15 isolate, which showed lower sensitivity as per the agar plate tests, was effectively suppressed by metyltetraprole, as was observed for the other isolates.

3.5 Cercospora beticola sensitivity monitoring in Hokkaido

A total of 103 isolates were collected from Hokkaido, the main sugar beet production area in Japan. Among them, 31 isolates harbored the G143A mutation whereas all others had no mutation in Cyt\(b\) (Fig. 4). Investigation of sequencing charts for these isolates indicated that the position relevant to the G143A mutation showed no evidence of heteroplasmy. The median EC\(_{50}\) value for trioxystrobin in WT isolates was 0.0022 mg L\(^{-1}\) and that in the G143A mutants was >2 mg L\(^{-1}\) (\(P < 0.001,\) Mann–Whitney U-test). By contrast, the median EC\(_{50}\) value of metyltetraprole in WT isolates was 0.0025 mg L\(^{-1}\) and that in the G143A mutants was 0.0029 mg L\(^{-1}\) (\(P = 0.1697,\) Mann–Whitney U-test). Isolates showing >10-fold higher metyltetraprole EC\(_{50}\) values than the median EC\(_{50}\) value were not detected. The range of metyltetraprole EC\(_{50}\) values was not significantly different between the four isolates obtained before the use of QoI (Cb1, Cb2, Cb3 and Cb4) and others obtained after the use of QoI on sugar beets of the area (Table S2). Smirnov–Grubbs analysis did not indicate the presence of an outlier at \(P = 0.3964\) for metyltetraprole EC\(_{50}\) values.

4 DISCUSSION

Fungicide resistance is a growing concern for sustainable agriculture. There is no doubt that early detection of resistant isolates is important to implement prompt countermeasures. As many plant pathogenic fungi can grow in various growth media, in vitro tests are widely utilized for monitoring of fungicide sensitivity rather than in planta tests owing to higher throughput. However, it is important to confirm whether the in vitro test method correlates with the in planta tests; otherwise, false-positive or -negative results might cause confusion. Although several methods have been successfully established for examining C. beticola sensitivities for existing QoI,\(^{15,23,25,35}\) they should be checked carefully when applied to metyltetraprole.

The choice of in vitro test is critical for the accurate assessment of fungicide effectiveness. For instance, isolates such as Cb15, shown in Fig. 1, could be misidentified as the isolated that are resistant to the fungicides tested, if judged based on the EC\(_{50}\) values of the agar plate tests on PDA with 100 mg L\(^{-1}\) SHAM. The observed low sensitivity of C. beticola by agar plate tests using PDA with 100 mg L\(^{-1}\) SHAM might be attributed to constitutive and inductive AOX expression. To adopt the agar plate method using mycelia for metyltetraprole sensitivity testing in C. beticola, adjustment of the molecule used as an AOX inhibitor and also of its concentration will be required. However, other underlying mechanisms also might be present given the weak correlation between QoI sensitivities on agar plate and AOX expression level (Figs 1 and 3). By contrast, the metyltetraprole and trioxystrobin sensitivities of the Cb15 isolate were within the range of sensitive isolates in microtiter plate tests and conidial germination tests even without AOX inhibitors. The results of the in planta test confirmed that Cb15 is a metyltetraprole- and trioxystrobin-sensitive isolate. Moreover, in our preventative treatment, Cb15 was successfully suppressed by these two fungicides, which was similar to that observed in other WT isolates for trioxystrobin or all other isolates for metyltetraprole. The microtiter plate tests also successfully separated WT isolates and G143A mutants with clearly lower in planta trioxystrobin sensitivities.

Cercospora beticola mycelium, similar to that of many other phytopathogenic fungi, needs to grow in apoplasts filled with water, containing some nutrients during the nonsymptomatic early stage of infection.\(^{38–40}\) Therefore, it would be reasonable to expect a correlation between in planta sensitivity and that in liquid medium. In addition, conidia and mycelia can be exposed to fungicide in water droplets formed by rainfall or morning dew. Therefore, the microtiter method using liquid culture would be valid for assessing fungicide sensitivity. Jin et al.\(^{11}\) observed the recovery of fungal oxygen consumption after several hours of azoxystrobin treatment with SHAM in the mycelium of some fungal species/isolates grown in agar medium. Therefore, SHAM was not sufficient to stop oxygen consumption in the mycelium of some fungi, possibly owing to the activation of aerobic glycolysis or other oxidative pathways to generate ATP. In liquid medium, the availability of oxygen is estimated to be low for fungi, and the abovementioned pathways might be insufficient for supporting fast fungal growth. Moreover, as mentioned by Spiegel and Stammler,\(^{31}\) restriction of nutrients in medium is expected to prevent fungi from gaining energy via alternative pathways such as alternative respiration or anaerobic fermentation. Indeed, QoI fungicides showed potent antifungal activities in microtiter plate tests, even without AOX inhibitors (Table 3, Figs 4 and S3).

Our monitoring of metyltetraprole and trioxystrobin sensitivity using the microtiter tests did not indicate the presence of metyltetraprole-resistant isolates, but confirmed the spread of G143A-harboring trioxystrobin-resistant isolates of C. beticola in Hokkaido, as already described by Kayamori et al.\(^{15}\)
The microtiter plate tests were not only applicable for assessing metyltetraprole and other QoI fungicide sensitivities in *C. beticola*, but also in *C. gloeosporioides* and *C. cassicola* (Figs S2 and S3), for which SHAM is reported to be necessary for agar plate tests. In our microtiter plate tests without SHAM, both metyltetraprole and azoxystrobin showed satisfactory antifungal activities with lower concentrations than those in agar plate tests, except when azoxystrobin was tested against G143A mutants (Figs S2 and S3). The microtiter plate tests also might be applicable for other fungal species where fungicides show insufficient growth inhibition in the agar plate tests, even at saturating concentrations, or when a high concentration of AOX inhibitor shows adverse effects to the fungi by itself. Although the optimization of the AOX inhibitor and its concentration might improve the accuracy of agar plate tests, use of microtiter plate tests may be a suitable alternative for researchers.

QoI fungicide resistance in fungal species related to *C. beticola*, *C. gloeosporioides* and *C. cassicola* is a growing concern for the cultivation of many major crops. For example, QoI fungicide resistance, based on the G143A mutation in *C. beticola*, has also been detected in *Cercospora sojina*, *Cercospora cf. flagellaris*, *Cercospora nicotinae*, *Cercospora kikuchii, Cynosepssia cassicola* and *Colletotrichum truncatum*, probably owing to the intensive use of QoIs for soybean production. Therefore, the incorporation of metyltetraprole into the soybean disease protection program could be beneficial for soybean growers. If this does occur, then an effective method for monitoring metyltetraprole sensitivity will be required.

In this study, we have demonstrated that microtiter plate testing appears to be a valid option for successful monitoring of the metyltetraprole sensitivity.

For researchers, the equipment used in this study, such as a microtiter plate reader and a bead mill, might be unavailable. In these cases, this method could be altered by simply growing the mycelial plug in YBA and visually assessing fungal growth. This would be convenient, especially for the simple detection of resistant strains at one discriminatory concentration (e.g. detecting isolates that are less sensitive to metyltetraprole by testing with metyltetraprole at 0.1 mg L\(^{-1}\)).

5 CONCLUSIONS

In this study, we established a novel approach, the microtiter plate test, that was effective at monitoring metyltetraprole sensitivity in *C. beticola* and also may be applicable for other QoI fungicides. This research would provide a useful reference for researchers who are involved in fungicide monitoring programs for various crops, worldwide.

ACKNOWLEDGEMENTS

We would like to thank Miyuki Kayamori (Hokkaido Research Organization), Shiho Takamura (Hokusan Co., Ltd), Takashi Okada (Hokusan Co. Co., Ltd) and Takane Sakagami (Hokusan Co., Ltd) for the collection of *Cercospora beticola*. We also wish to thank Hisayo Sato, Haruka Tendo and Ryota Sakai of Sumitomo Chemical for technical assistance in the sensitivity tests.

REFERENCES

1. Suemoto H, Matsuzaki Y and Iwahashi F, Metyltetraprole, a novel putative complex III inhibitor, targets known QoI-resistant strains of *Zymoseptoria tritici* and *Pyrenophora teres*. Pest Manag Sci 75: 1181–1189 (2019).
2. Matsuzaki Y, Yoshimoto Y, Arimori S, Kiguchi S, Harada T and Iwahashi F, Discovery of metyltetraprole: identification of tetrazolium-nitrometer and SHAM as to overcome QoI resistance. Bioorg Med Chem 28: 115211 (2020a).
3. Matsuzaki Y, Kiguchi S, Suemoto H and Iwahashi F, Antifungal activity of metyltetraprole against the existing QoI-resistant mutants of various plant pathogens. Pest Manag Sci 76: 1743–1750 (2020b).
4. Sierens H, Respiration inhibitors complex III, in *Fungicide Resistance in Plant Pathogens*, ed. by Ishi H and Hollomon DW. Springer, Tokyo, pp. 119–143 (2015).
5. Karadimos DA, Kaoagianlidis BS and Tzavella-Klanoric K, Biological activity and physical modes of action of the Qo inhibitor fungicides trifloxystrobin and pyraclostrobin against *Cercospora beticola*. J Crop Prot 24: 23–29 (2005).
6. Ishi H, Yano K, Date H, Furuta A, Sagahashi Y, Yamaguchi T et al., Molecular characterization and diagnosis of QoI resistance in cucumber and eggplant fungal pathogens. Phytopathology 97: 1458–1466 (2007).
7. Hayashi K, Watanabe M, Tanaka T and Uesugi Y, Cyanide-insensitive respiration of phytopathogenic fungi demonstrated by antifungal joint action of respiration inhibitors. Pest Sci 21: 399–403 (1996).
8. Berthold DA, Andersson ME and Nordlund P, New insight into the structure and function of the alternative oxidase. Biochim Biophys Acta 1460: 241–254 (2000).
9. Masuko M, Kataoka T, Ichinari M and Niikawa M, Development of new fungicide, metominostrob in. Pest Sci 26: 203–214 (2001).
10. Avila-Adame C, Olaya G and Köller W, Characterization of *Colletotrichum graminicola* isolates resistant to strobilurin-related QoI fungicides. Plant Dis 87: 1426–1432 (2003).
11. Jin L-H, Chen Y, Chen C-J, Wang J-X and Zhou M-G, Activity of azoxystrobin and SHAM to four phytopathogens. Agr Sci China 8: 835–842 (2009).
12. Inoue K, Tsurumi T, Ishi H, Park P and Ikeda K, Cytological evaluation of the effect of azoxystrobin and alternative oxidase inhibitors in *Botrytis cinerea*. FEMS Microbiol Lett 326: 83–90 (2012).
13. Zlogas BN, Baldwin BC and Young JE, Alternative respiration: a biochemical mechanism of resistance to azoxystrobin (ICIA 5504) in *Septoria tritici*. Pestic Sci 50: 28–34 (1997).
14. Moore AL, Shiba T, Young L, Harada S, Kita K and Ito K, Unraveling the heat: new insights into the structure of the alternative oxidase. Ann Rev Plant Biol 46: 637–663 (2013).
15. Kayamori M, Shimizu M, Yamana T, Komatsu T, S-Iketani M, Shimamura A et al., First report of QoI resistance in *Cercospora beticola* in sugar beet in Japan. J Gen Plant Pathol 86: 149–153 (2020).
16. MacKenzie KJ, Xavier KV, Wen A, Timilisina S, Adkinson HM, Dufault NS et al., Widespread QoI fungicide resistance revealed among *Corynespora cassicola* tomato isolates in Florida. Plant Dis 104: 893–903 (2020).
17. Teramoto A, Meyer MC, Suassuna ND and da Cunha MG, In vitro sensitivity of *Corynespora cassicola* isolated from soybean to fungicides and field chemical control of target spot. *Summa Phytopathol* 43: 283–289 (2017).
18. Inada M, Yamaguchi J and Furuta A, An agar dilution method to test the sensitivity of *Glomerella cingulata*, causal fungus of strawberry anthracnose, to azoxystrobin. *Jpn J Phytopathol* 76: 1–6 (2010).
19. Stemmler AJ, Kampf JW, Kirk ML and Pecoraro VL, A model for the inhibition of urease by hydroxamates. *J Am Chem Soc* 117: 6368–6369 (1995).
20. Tsukamoto K, Itakura H, Sato K, Fukuyama K, Miura S, Takahashi S et al., Binding of salicylhydroxamic acid and several aromatic donor molecules to *Arthromyces ramosus* peroxidase, investigated by X-ray crystallography, optical difference spectroscopy, NMR relaxation, molecular dynamics and kinetics. *Biochemistry* 38: 12558–12568 (1999).
21. Wells WW, Xu DP, Washburn MP, Cirrito HK and Olson LK, Polyhydroxy-alkylhydroxamates inhibit ascorbic acid activation of mitochondrial glycerol-3-phosphate dehydrogenase - implications for glucose metabolism and insulin secretion. *J Biol Chem* 276: 2404–2410 (2001).
22. Lin YF, Hu YH, Lin HT, Liu X, Chen YH, Zhang S et al., Inhibitory effects of propyl gallate on tyrosinase and its application in controlling pericarp browning of harvested longan fruits. *J Agric Food Chem* 61: 2889–2895 (2013).
23. Secor GA and Rivera VW, Fungicide resistance assays for fungal plant pathogens, in *Plant Fungal Pathogens: Methods and Protocols*.
