CASE REPORT

Smith-Peterson osteotomy and lordotic posterior column compressive screw fixation proceed by postural pillow reduction improved realignment for unstable lumbar burst fracture

Abstract

Lumbar burst fractures (LBF) is a common trauma case of the spine, recently still a difficult problem to solve. Experts have published the approaches and techniques, but there is still a high incidence of morbidity and mortality, unsatisfactory clinical and radiological results especially in developing countries. The minimal tissue destruction approach with rigid screw-rod construction allowed to lowering surgical costs and earlier patient recovery with successfully clinical and radiological results in the short term follow up.

Keywords: Lumbar burst fracture, Lordotic posterior column, Postural pillow; Smith-Peterson osteotomy

Introduction

Lumbar burst fracture (LBF) or thoracolumbar burst fracture is a frequently unsolved problem. LBF often result in spinal trauma in the form of kyphosis and even spinal cord injury. This fracture often occurs at a young age and can disrupt daily activities. A good posture is a vital indicator of bone and muscle health. A disturbance in the system will result in mechanical stress, which can lead to spinal pain. Some previous studies use pillows of a specific size and thickness to improve posture and to reduce pain.

Surgery is needed for an unstable LBF or Thoracolumbar fracture accompanied by nerve disorders. Previous studies feature several surgical techniques, including the Smith-Peterson osteotomy (SPO) technique, which is often used in cases of adult idiopathic scoliosis, despite the controversy about its usefulness and effectiveness for clinical patients. We treated our patients with Smith-Peterson osteotomy and posterior column compressive screw fixation proceed by postural pillow reduction and short segment fixation.

The preoperative customized pillow was placed below the fracture site to allow indirect external restoration to the spine. Customized pillow made from a rolling blanket about 10 cm height. The timing of postural pillow use for reduction is 1-3 days (Figure 1A). Giving analgesics during the procedure. Interval neurological assessment was done.
Procedures

After the procedure of anesthesia, the patients change into prone position. A pillow was placed over the thoracic region, and the pelvis region, thus free area below the abdominal space to allow compression force during surgical correction of lumbar kyphosis (Figure 1B). A midline linear skin incision and subperiosteal muscle dissection performed to expose the posterior spine structure. A screw-rod construct fixation with open conventional technique under the guidance of fluoroscopy. After the fluoroscopy checking level for SPO, we performed resection of the inferior and superior facet complex bilaterally and inferior laminotomy for upper lamina and superior laminotomy for lower lamina to achieve a significant osteotomy space. Typically, the space of the osteotomy is 7 to 10 mm but slightly larger in the second case (Figure 2A). The screw-rod construct fixation according to the degree of lumbar spine curvature (Figure 2B). 1,12-14

Case Report

Case 1

A 48-year-old male with a history of traumatic injury presented to the emergency department of our hospital after a fall from a height of approximately 5-meters with severe lower back pain, sensory loss, and weakness bilateral leg. On physical examination, body temperature was 37.3°C, blood pressure was 120/70 mm Hg, heart rate was 82 beats per minute, respiratory rate was 21 breaths per minute, and oxygen saturation was 98 while the patient was breathing ambient air. The patient was fully conscious. He had tenderness in the thoracolumbar region. On neurological examination, bilateral muscle strength was 4/5, and the patient had superficial hypesthesia from the level of the inguinal. Increase tendon reflex or central nervous system pathology was identified. Disturbance of urination also reported. The back pain visual analog scale (VAS) scored 7. Plain X-ray demonstrated a burst fracture at L1. Magnetic resonance imaging (MRI) demonstrated a burst fracture at L1 compressed the conus medullaris. The patient was diagnosed with a burst fracture at L1 (Figure 3).
hypesthesia from the level below the knee. Increase tendon reflex or central nervous system pathology was not identified. Disturbance of urination also reported. The back pain visual analog scale (VAS) scored 8. Plain X-ray demonstrated a burst fracture at L4. Magnetic resonance imaging (MRI) demonstrated a burst fracture on L4 compressed the cauda equina. The patient was diagnosed with a burst fracture at L4 (Figure 4)

![Figure 4](image1.png) (A) CT-scan preoperative burst fracture. (B) T2WI MRI preoperative

Figure 4. (A) CT-scan preoperative burst fracture. (B) T2WI MRI preoperative

Figure 5. (A) Plain X-ray preoperative show burst fracture and kyphosis. (B) Improved sagittal balanced after surgery

![Figure 5](image2.png)

Discussion

To obtain optimal results, the surgery requires careful planning and a complete radiological examination. Kim et al., recommend a technique of gradual restoration and low pressure using a postural pillow before surgery using ligamentotaxis, aiming to help restore the fractured bone height and to reposition broken bone fragments in the nerve canal at the same time. Some previous studies of thoracolumbar fractures performed the SPO technique. Schwab et al., also recommend the same technique, but other previous studies also state that the use of conventional surgical techniques such as laminectomy can result in the instability and failure of buffer implants. Previous studies revealed successfully treated nonsurgically with conservatively or with hyperextension bracing or casting no neurological deterioration was reported. Installation of pedicle instrumentation can help improve kyphosis, reduce indirect narrowing of the nerve canal, and facilitate faster postoperative mobilization. Conventional techniques, which are one level above and below the fractured bone, have the potential to fail and redefine kyphosis. Therefore, some previous studies recommend modifying the old technique of screw installation on broken bones or administration of bone cement. Some studies suggest that the surgery results in an improvement, either the "short segment or long segment" techniques. In our case, the technique applied in a preoperative kyphosis. After 3-months, postoperative kyphosis was improved 66.7% from baseline. Preoperative pain complaints indicated a VAS scale improved 62.5% from baseline (Figure 3) (Figure 5). In the case no-1, improvement of motoric grading 20% from baseline and 60% from baseline on the case no-2. Less bleeding, decreased surgical time, and length of hospital stay. No complication during outpatient department visits.

There has been no consensus between the improvement of the narrowing of the spinal nerve canal and the repair of nerve disorders. Some studies state that the improvement of symptoms depends on the level of nerve damage. This study was conducted in a private hospital with limited government insurance coverage. Thus, the authors suggest further research discussing canal remodeling indicators, more complete radiological modalities and longer duration of observations.

Conclusion

This technique improved the realignment of kyphosis. Postoperative improvement of pain and neurological deficit related to restoration of sagittal alignment. In addition, this technique, which was applied to the lumbar burst fractures, could be a useful alternative to another extensive approach.

Acknowledgment

There is no potential conflict of interest relevant to this article reported. No specific grant was provided for this article. All authors took part in the design of the study, literature review, and writing the manuscript.
References

1. Kim HS, Paudel B, Kim KJ, et al. Spontaneous spinal canal remodeling after postural pillow reduction and lordotic posterior column compressive percutaneous transpedicular screw fixation in neurologically intact thoracolumbar burst fractures. Journal of Minimally Invasive Spine Surgery and Technique. 2017;2(1):20-6. DOI: 10.2118/jmisst.2017.00213

2. Torio T, Kikkawa J, Kannari F, et al. Short segment pedicle screw fixation by using additional screws at the fracture level - for the fixation of thoracolumbar burst fractures. J Saitama Medical University. 2017;43(2):155–61. Available at: http://www.saitama-med.ac.jp/jsms/vol43/02/jsms43_155_161.pdf

3. Aly TA. Short segment versus long segment pedicle screws fixation in management of thoracolumbar burst fractures: Meta-analysis. Asian Spine J. 2017;11(1):150-60. DOI: 10.4184/asj.2017.11.1.150

4. Kang WS, Kim JC, Choi IS, et al. Indirect reduction and spinal canal remodeling through ligamentotaxis for lumbar burst fracture. J Trauma Int. 2017;30(4):212-5. DOI: 10.20408/jti.2017.30.4.212

5. Lee JH, Shin JS, Yoo HK, et al. Short-term effects of a functional cervical pillow on inpatients with neck discomfort: A randomized controlled trial. Int J Clin Exp Med. 2016;9(6):11397-408. Available at: http://www.ijcem.com/files/ijcem0025888.pdf

6. Ren S, Wong DWC, Yang H, et al. Effect of pillow height on the biomechanics of the head-neck complex: Investigation of the cranio-cervical pressure and cervical spine alignment. Peer J. 2016;4:1-18. DOI: 10.7717/peerj.2397

7. Aroeira RMC, Furlan RMM, Pertence AEM, et al. Relationship between head posture and lumbar curve in a sitting position: a biomechanical study. Fisioter Mov. Curitiba. 2017;3(30):453-61. DOI: 10.1590/1980-5918.030.003.a003

8. Kim HS, Park SK, Joy H, et al. Bone cement augmentation of short segment fixation for unstable burst fracture in severe osteoporosis. J Korean Neurosurg Soc. 2008;44:8-14. DOI: 10.3340/jkns.2008.44.1.8

9. Keith H, Bridwell MD. Decision making regarding smith-petersen vs. Pedicle subtraction osteotomy vs. Vertebral column resection for spinal deformity. SPINE. 2006;19(31):S171–S178. DOI: 10.1097/01.brs.0000231963.72810.38

10. Wu Y, Chen CH, Tsuang FY, et al. The stability of long-segment and short-segment fixation for treating severe burst fractures at the thoracolumbar junction in osteoporotic bone: A finite element analysis. PLoS ONE. 2019;14(2):1-11. DOI: 10.1371/journal.pone.0211676

11. Feng J, Zhou J, Huang M. Clinical and radiological outcomes of the multilevel Ponte osteotomy with posterior selective segmental pedicle screw constructs to treat adolescent thoracic idiopathic scoliosis. Journal of Orthopaedic Surgery and Research. 2018;13(305):3-7. DOI: 10.1371/journal.pone.0211676

12. Gill JB, Levin A, Burd T, et al. Corrective Osteotomies in Spine Surgery. J Bone Joint Surg Am. 2008;90:2509-20. DOI: 10.2106/JBJS.H.00081

13. Hu WH, Wang Y. Osteotomy Techniques for Spinal Deformity. Chin Med J 2016;129:2639-41. DOI: 10.2106/JBJS.H.00081

14. Zhang Z, Chen G, Sun J, et al. Posterior indirect reduction and pedicle screw fixation without laminectomy for Denis type B thoracolumbar burst fractures with incomplete neurologic deficit. Journal of Orthopaedic Surgery and Research. 2015;10(85):3-6. DOI: 10.1186/s13018-015-0227-3

15. Molloy SS, Ahmad FU, Baum GR, et al. Focal correction of severe fixed kyphosis with single level posterior ponte osteotomy and interbody fusion. Curreus. 2016;8(6):8-10. DOI: 10.7759/cureus.653

16. Sangondimath G, Das K, Varma K. Thoracolumbar fractures: Nonsurgical versus surgical treatment. Indian Spine J. 2018;1:79-85. DOI: 10.4103/isj.isj_22_18

17. Liao JC, Chen WP, Wang H. Treatment of thoracolumbar burst fractures by short-segment pedicle screw fixation using a combination of two additional pedicle screws and vertebroplasty at the level of the fracture: A finite element analysis. BMC Musculoskeletal Disorders. 2017;18(262):1-8. DOI: 10.1186/s12891-017-1623-0

18. Deng Z, Zou H, Cai L, et al. The retrospective analysis of posterior short-segment pedicle instrumentation without fusion for thoracolumbar burst fracture with neurological deficit. The Scientific World Journal. 2014;1:8. DOI: 10.1155/2014/4576