Dietary patterns and colorectal cancer risk in a Korean population
A case-control study
Yoon Park (MPH)b, Jeonghee Lee (MS)b, Jae Hwan Oh (MD, PhD)c, Aesun Shin (MD, PhD)b,d,e,∗, Jeongseon Kim (PhD)b,h.

Abstract
Colorectal cancer (CRC) has been recognized as one of the major malignancies in Korea. Analyses of dietary patterns can provide insight into the complex interactions of foods, nutrients, and biologically active components within a diet, which vary among populations. We aimed to investigate the associations between dietary patterns and colorectal cancer risk in Koreans. In a study of 923 cases and 1846 controls, principal component analysis was used to identify dietary patterns based on 33 predefined food groups using a 106-item semiquantitative food frequency questionnaire (SQFFQ). The associations between dietary patterns and CRC risk were assessed using binary and polytomous logistic regression models to estimate odds ratios (ORs) and 95% confidence intervals (CIs). Three dietary patterns (traditional, Westernized, and prudent) were derived. The proportion of total variation explained by 3 patterns was 24.2% for men and 25.3% for women. The traditional and prudent patterns were inversely associated with CRC risk [OR and 95% CI for the highest intake tertile of pattern score vs. the lowest = 0.35 (0.27–0.46) and 0.37 (0.28–0.48), respectively], whereas the Westernized pattern showed a positive association, especially among women [OR = 2.13 (1.35–3.34) for the highest tertile vs. the lowest]. A decrease in CRC risk among those with the highest intake of the prudent pattern was observed in all anatomical subsites in both men [OR = 0.36 (0.19–0.68) for proximal colon; 0.21 (0.12–0.36) for distal colon; 0.28 (0.18–0.44) for rectum] and women [OR = 0.28 (0.11–0.71); 0.27 (0.13–0.54); 0.45 (0.25–0.83)]. Our results indicate that individuals who prefer the Westernized dietary pattern should be made aware of their increased CRC risk. The traditional dietary pattern and the prudent pattern, which are rich in fruits and dairy products, are recommended for the Korean population to prevent CRC.

Abbreviations: BMI = body mass index, CI = confidence interval, CRC = colorectal cancer, OR = odds ratio, PCA = principal component analysis, RR = relative risk, SQFFQ = semiquantitative food frequency questionnaire.

Keywords: case-control studies, colorectal cancer, dietary patterns, factor analysis, Korea

1. Introduction
Colorectal cancer (CRC) ranks globally as the third most commonly diagnosed cancer.[1] Moreover, the rates of CRC have increased in economically developing countries, while in developed Western countries, the incidence and mortality rates of CRC have stabilized or decreased in recent years.[1–3] The GLOBOCAN estimates presented for 2012 reported a high incidence of CRC,[3] which is the third most common cancer in Korea. According to the Korean Central Cancer Registry, the age-adjusted incidences of CRC were 51.4 per 100000 for men and 28.0 per 100000 for women in 2012.[4,5] The annual percent changes in CRC incidence were 5.6% in men and 4.3% in women between 1999 and 2012.[5]

This increase in CRC is thought to be associated with environmental factors such as changes in lifestyle due to Westernization and economic development in recent decades.[6] Among diverse factors, diet has been regarded as a crucial factor that might modify the risk of CRC. Previous studies have demonstrated that different foods and their active constituents regulate epigenetic mechanisms that affect the colorectal carcinogenesis process.[7,8] In addition, nutritional exposure during adolescence may result in persistent epigenetic changes that later influence CRC development.[9] Previous meta-analyses of prospective studies have investigated the associations between CRC risk and intake of food groups, micronutrients, and...
macronutrients. The carcinogenicity levels of red and processed meat were recently reclassified by the World Health Organization as “probably carcinogenic to humans (Group 2A)” and “carcinogenic to humans (Group 1),” respectively, on the basis of sufficient evidence for CRC. However, in these analyses, which were conducted with individual dietary components, it was difficult to determine the relationships between health and a person’s total diet, which includes a combination of various foods and nutrients. In this context, the multivariate data analysis of dietary patterns has emerged as a methodological approach to capture overall diet rather than a single food or nutrient and to assess the complex dietary exposures that are likely to be interactive or synergistic. Previous studies have reported inconsistent results of potential dietary risk for CRC in different populations with different cultures and backgrounds, especially those with varied diets and dietary patterns. In Korea, studies focusing on dietary patterns have been conducted since the early 2000s, especially with regard to cancer and the risk association. Furthermore, a previous study conducted in Korea suggested that risk factors might differentially influence cancer risk at different subsites. To date, there is little published information on the association between dietary patterns and CRC risk according to anatomical subsites in the Korean population. Therefore, the objective of the present study was to identify major dietary patterns among Koreans and to evaluate the associations of these patterns with CRC risk by gender, taking into account different anatomical subsites.

2. Methods

2.1. Study participants

To conduct a case-control study, newly diagnosed CRC patients were considered eligible for enrollment when they were admitted to the Center for Colorectal Cancer, National Cancer Center (NCC) in Korea from August 2010 to August 2013. We contacted 1259 of 1427 patients who underwent surgery for CRC, and 1070 patients agreed to participate in the study. A total of 923 patients were selected after the exclusion of 145 participants with incomplete semiquantitative food frequency questionnaires (SQFFQs), and 2 participants due to implausible energy intake (<500 or ≥4000 kcal/day). The selected cases were confirmed based on both pathology reports and chart review. We selected controls from among the visitors who underwent a health screening examination (a benefit program of the National Health Insurance) at the Center for Cancer Prevention and Detection, NCC in Korea, between October 2007 and December 2014. Among the visitors to the cancer-screening center, 14201 subjects agreed to participate in the study. A total of 9037 subjects remained after the exclusion of 5044 subjects with incomplete SQFFQs and 120 with implausible energy intakes. The data of the remaining subjects were linked with the Korea Central Cancer Registry and NCC medical charts to confirm that these subjects had not been diagnosed with CRC. Among the remaining subjects, 1846 controls were selected by a 1:2 frequency-matching to 923 cases by gender and age at 5-year intervals (Fig. 1).

2.2. Data collection

An interviewer collected information on subject’s lifestyle and dietary intake by using a SQFFQ for CRC cases. Eligible controls were asked to complete a self-administered lifestyle questionnaire and a SQFFQ. All participants provided written informed consent and the study protocol was approved by the Institutional Review Board of the National Cancer Center (IRB Nos. NCCNCS-10-350 and NCC2015-0202). The lifestyle questionnaire included information on demographics, medical history, alcohol consumption, smoking habits, and physical activity. A validated SQFFQ was applied to determine dietary intake of the participants by collecting data on average intake frequency and portion size for 106 informative food items, which consisted of 410 different food compositions. The 106 food items listed in the SQFFQ were categorized into 33 food groups based on nutrient profiles and culinary usage (Appendix, http://links.lww.com/MD/B47). For the specific analyses by cancer site, anatomical locations were abstracted from medical records and classified into 3 distinct locations: proximal colon (cecum, ascending colon, hepatic flexure), transverse colon, and splenic flexure), distal colon (descending colon, sigmoid-descending colon junction, and sigmoid colon), and rectum.

2.3. Assessment of dietary patterns

To define dietary patterns, an exploratory or a posteriori approach in which dietary patterns were derived empirically by applying statistical techniques to existing dietary data was conducted using a principal component analysis (PCA; PROC FACTOR). Extraction of principal components was followed by a varimax rotation (orthogonal) to achieve a structure with independent factors and greater potential for interpretability. The minimum eigenvalues of 1.0, the scree plot, and the interpretability of the factors were taken into account to determine which factors to retain with regard to dietary patterns. For each pattern, a factor score was calculated as a linear composite of the food groups with meaningful loadings (≥ 0.20)
for only that pattern. Gender-specific pattern scores were obtained by conducting separate factor analyses to identify major dietary patterns in men and women. For further analysis, measurements of the dietary consumption of each pattern were adjusted for total energy intake using the linear residual regression method. The intake levels of each pattern were categorized into tertiles based on the distribution of the control groups. To understand the characteristics of the identified dietary patterns, analyses of nutritional intake were performed using CAN-Pro version 4.0 (Computer-Aided Nutritional Analysis Program, the Korean Nutrition Society, Seoul, Korea).

2.4. Statistical analyses

To compare the general characteristics of the cases and controls, Student t tests and χ² tests were performed to compare continuous and categorical variables, respectively. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated across the tertiles of dietary patterns by logistic regression models after controlling for confounding factors, which included the potential risk factors of CRC. Multivariate models were adjusted for body mass index (BMI; defined by the criteria for the Asia-Pacific region), smoking status, alcohol consumption, physical activity, a first-degree family history of CRC, education level, occupation, marital status, monthly income, and total energy intake. Subgroup analyses of dietary patterns and CRC risk by cancer subsites (anatomical locations) were conducted using polytomous logistic regression methods across tertiles. The median intake of each tertile category of dietary pattern score was used as a continuous variable to test for trends. All statistical analyses were performed using SAS version 9.3 (SAS Institute Inc, Cary, NC). All statistical tests were 2-sided, and P values less than 0.05 were considered statistically significant.

3. Results

The socio-demographics and lifestyle characteristics of the 923 cases and 1846 controls are shown in Table 1. Due to the

| Table 1 |
| General characteristics of the study subjects (n=2769). |
Controls (n=1846)	Cases (n=923)	P value	
Age, y	56.1 ± 9.1†	56.6 ± 9.7	>0.99
Gender [n (%)]			>0.99
Male	1250 (67.7)	625 (67.7)	
Female	596 (32.2)	296 (32.2)	
Body mass index, kg/m² [n (%)]			<0.001
<18.5	24 (1.3)	37 (4.0)	
18.5–23	623 (33.7)	374 (40.5)	
23–25	571 (30.9)	226 (24.4)	
≥25	577 (31.2)	252 (27.3)	
Smoking status [n (%)]			0.16
Nonsmoker	818 (44.3)	409 (44.3)	
Former smoker	687 (37.2)	318 (34.5)	
Current smoker	341 (18.5)	196 (21.2)	
Alcohol consumption [n (%)]			<0.001
Nondrinker	560 (30.3)	279 (30.2)	
Former drinker	169 (9.2)	129 (14.0)	
Current drinker	1117 (60.5)	515 (55.8)	
Physical activity [n (%)]			<0.001
Yes	1047 (66.7)	311 (33.7)	
No	753 (40.8)	612 (66.3)	
First-degree family history of colorectal cancer [n (%)]			<0.001
Elementary school or less	127 (6.9)	180 (19.5)	
Middle school	155 (8.5)	141 (15.3)	
High school	587 (31.8)	369 (40.0)	
College or more	934 (50.6)	233 (25.2)	
Occupation [n (%)]			<0.001
Group 1: professionals, administrative management, office jobs	481 (26.1)	180 (20.5)	
Group 2: sales and service positions	403 (21.8)	38 (4.1)	
Group 3: agriculture, manufacturing, mining, army service	241 (13.1)	141 (15.3)	
Group 4: housekeeping, unemployment, and others	698 (37.8)	555 (60.1)	
Marital status [n (%)]			<0.001
Married	1654 (90.6)	773 (84.1)	
Others: single, divorced, separated, widowed, cohabitating	171 (9.4)	146 (15.9)	
Monthly income [n (%)]			<0.001
<200	388 (21.0)	321 (34.8)	
200–400	754 (40.9)	387 (41.9)	
≥ 400	545 (29.5)	215 (23.3)	

Tests of association by χ² test (categorical variables) or by t test (continuous variables). Mean ± SD (all such values). Unit is 10000 won in Korean currency.

[1] For only that pattern. Gender-specific pattern scores were obtained by conducting separate factor analyses to identify major dietary patterns in men and women.

For further analysis, measurements of the dietary consumption of each pattern were adjusted for total energy intake using the linear residual regression method. The intake levels of each pattern were categorized into tertiles based on the distribution of the control groups. To understand the characteristics of the identified dietary patterns, analyses of nutritional intake were performed using CAN-Pro version 4.0 (Computer-Aided Nutritional Analysis Program, the Korean Nutrition Society, Seoul, Korea).

2.4. Statistical analyses

To compare the general characteristics of the cases and controls, Student t tests and χ² tests were performed to compare continuous and categorical variables, respectively. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated across the tertiles of dietary patterns by logistic regression models after controlling for confounding factors, which included the potential risk factors of CRC. Multivariate models were adjusted for body mass index (BMI; defined by the criteria for the Asia-Pacific region), smoking status, alcohol consumption, physical activity, a first-degree family history of CRC, education level, occupation, marital status, monthly income, and total energy intake. Subgroup analyses of dietary patterns and CRC risk by cancer subsites (anatomical locations) were conducted using polytomous logistic regression methods across tertiles. The median intake of each tertile category of dietary pattern score was used as a continuous variable to test for trends. All statistical analyses were performed using SAS version 9.3 (SAS Institute Inc, Cary, NC). All statistical tests were 2-sided, and P values less than 0.05 were considered statistically significant.

3. Results

The socio-demographics and lifestyle characteristics of the 923 cases and 1846 controls are shown in Table 1. Due to the
The 3 major dietary patterns derived by using exploratory factor analysis and the factor loading matrices for both genders are shown in Table 2. Factors were interpreted as dietary patterns and named based on the food groups with high factor loadings. Pattern 1 was termed the traditional pattern because it showed high loadings of traditional food items regularly consumed in the Korean population, including vegetables, tubers, seaweeds, noodles, oil and sugar.\(^{[35]}\) Pattern 3 was termed the prudent pattern, which included high loadings of fruits, milk and dairy products, and vegetables.

In the subsequent analyses, these variables were considered potential confounding factors in the association with the risk of CRC.

Based on the intake tertiles of pattern score, the ORs (95% CIs) were obtained to explain CRC risk association with each dietary pattern in both genders adjusting for potential confounders.

Table 2

Food group	Overall		Male		Female				
	Pattern 1	Pattern 2	Pattern 3	Pattern 1	Pattern 2	Pattern 3	Pattern 1	Pattern 2	Pattern 3
--------------------------------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------
Condiments/seasonings	0.74	0.74	0.74	0.75			0.75		
Light-colored vegetables	0.70	0.70	0.67	0.71			0.71		
Green/yellow vegetables	0.70	0.56	0.67	0.71	0.50		0.50		
Tubs	0.54	0.48	0.46	0.46			0.46		
Other seafoods	0.46	0.40	0.41	0.5			0.5		
Fish	0.44	0.42	0.42	0.37	0.38	0.38	0.38		
Sea weeds	0.41	0.52	0.52	0.47	0.47	0.47	0.47	0.47	
Mushrooms	0.38	0.35	0.56	0.33	0.43	0.33	0.43	0.33	
Tofu/soymilk	0.35	0.36	0.36	0.52	0.33	0.33	0.33	0.33	
Pickled vegetables	0.21	0.27	0.27	0.52			0.52		
Red meat		0.56	0.56		0.59	0.59		0.59	
Oil		0.59	0.59		0.53	0.53		0.53	
Meat by-products		0.56	0.56		0.52	0.52		0.52	
Processed meat	0.39	0.55	0.55	0.53	0.53	0.53	0.53	0.53	
Noodles	0.52	0.47	0.47	0.47	0.47	0.47	0.47	0.47	
Poultry	0.46	0.30	0.30	0.30	0.30	0.30	0.30	0.30	
Sweets	0.54	0.38	0.38	0.38	0.38	0.38	0.38	0.38	
Bread/cake/pizza/hamburger	0.30	0.36	0.36	0.30	0.30	0.30	0.30	0.30	
Carbonated beverages	0.34	0.38	0.38	0.38	0.38	0.38	0.38	0.38	
Seafood products	0.28	0.39	0.39	0.39	0.39	0.39	0.39	0.39	
Cereals and snack	0.23	0.36	0.36	0.36	0.36	0.36	0.36	0.36	
Eggs	0.52	0.24	0.24	0.24	0.24	0.24	0.24	0.24	
Salted fermented seafoods	0.27	0.31	0.31	0.31	0.31	0.31	0.31	0.31	
Legumes		0.21	0.21		0.25	0.25		0.25	
Whole grains									
Fruits		0.54	0.54		0.56	0.56		0.56	
Milk		0.47	0.47		0.50	0.50		0.50	
Dairy products		0.40	0.40		0.51	0.51		0.51	
Nuts		0.21	0.21		0.24	0.24		0.24	
Coffee/tea		0.2	0.2		0.23	0.23		0.23	
Rice cakes									
Kimchi									
Refined grains	-0.61	-0.64	-0.61	-0.54	-0.51	-0.51	-0.51	-0.36	-0.36
Proportion of variance explained (%)	10.58	8.14	5.92	11.1	7.49	5.59	10.19	9.08	6.06

a Factor loadings of less than <0.20 were not listed for simplicity.
conducted in different populations. Moreover, the same might not be consistent with those observed in other studies factor analysis, the characteristics of a particular dietary pattern the subjective decision-making criteria used when performing for proximal colon cancer; OR = 0.31 (0.12–0.78) for distal colon cancer; OR = 0.31 (0.16–0.59) for rectal cancer. For rectal cancer, a higher risk was significantly associated with the Westernized pattern [OR = 3.02 (1.60–5.72)] among females. In both genders (Table 3), the prudent pattern was inversely related to the risk of CRC at all cancer subsites [OR = 0.32 (0.19–0.52) for proximal colon cancer; OR = 0.37 (0.25–0.55) for distal colon cancer; OR = 0.38 (0.27–0.54) for rectal cancer].

4. Discussion

Overall, the findings of the current study demonstrate a significant positive association between the Westernized diet and the risk of CRC. Significant reductions in CRC risk were observed with the traditional and prudent dietary patterns, indicating that these patterns confer a protective effect against CRC. In particular, the prudent pattern was associated with a significantly lower cancer risk across all CRC subsites in both genders. Based on the dietary cultures or customs of different populations, dietary patterns might vary at local or national scales. Furthermore, food consumption patterns can change over time depending on food availability and preferences. Due to the subjective decision-making criteria used when performing factor analysis, the characteristics of a particular dietary pattern might not be consistent with those observed in other studies conducted in different populations. Moreover, the same dietary pattern term might differ slightly between Western and Asian populations based on food composition, which may lead to difficulties with reproducibility across different populations. In this study, the traditional dietary pattern was generally characterized by a higher intake of healthy foods of plant or animal origin, such as vegetables, tubers, fish, seaweeds, mushrooms, and soybeans. The Westernized dietary pattern was defined according to previous studies that have examined the Western-style diet, which includes high proportions of meat and processed meat consumption, and nuts.

Considering the increased risk of CRC, the Westernized dietary pattern, which involved higher consumption of meats, oil, carbohydrates, and sugar than did the other 2 patterns, showed a positive association with CRC risk as we had hypothesized. The representative food components of this pattern were found to be disadvantageous in terms of CRC and have been investigated for their carcinogenic effects in numerous epidemiological studies. A case-control study conducted in Korea that involved a food group-based analysis showed that high red meat intake increased the odds of CRC, which was consistent with previous studies. There is supporting evidence of a dose–response relationship between red and processed meat consumption and the development of CRC;

Table 3	Colorectal cancer risks by anatomical locations according to dietary intake of the identified dietary patterns for both genders.										
	Case-control	Multivariate									
No.	Crude	Multivariate									
Pattern 1: traditional dietary pattern	Pattern 2: Westernized diet	Pattern 3: prudent dietary pattern	Pattern 4: all dietary patterns								
Low	Moderate	High									
No.	615	615	616	616	616	616	616	616	616	616	616
(95% CI)	373 (40.4)	382 (41.3)	408 (44.2)	59 (35.5)	71 (42.7)	116 (40.5)	427 (46.2)	393 (40.3)	408 (44.2)	373 (40.4)	382 (41.3)
(0.01)	1.00 (ref)	1.02 (0.85, 1.22)	2.57 (2.07, 3.21)	1.20 (0.83, 1.72)	1.28 (0.83, 1.97)	1.49 (1.10, 1.98)	0.49 (0.36, 0.66)	0.90 (0.72, 1.12)	1.00 (ref)	1.00 (ref)	
OR	1.00 (ref)										
(95% CI)	1.00 (ref)										
for trend	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001				
P	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001				
Table 4
Colorectal cancer risks by anatomical locations according to dietary intake of the identified dietary patterns for men.

Dietary Pattern	No. controls (n=199)	No. cases (%)	Crude OR (95% CI)	Multivariate OR (95% CI)¹
Pattern 1: Traditional dietary pattern				
Low	118 (39.6)	22 (18.8)	0.68 (0.47, 0.98)	0.62 (0.39, 0.99)
Moderate	123 (41.2)	28 (22.5)	1.24 (0.85, 1.79)	0.94 (0.55, 1.62)
High	58 (19.4)	18 (31.0)	2.10 (1.30, 3.37)	1.45 (0.80, 2.51)
Pattern 2: Westernized dietary pattern				
Low	179 (50.6)	23 (13.0)	0.71 (0.47, 1.06)	0.62 (0.35, 1.10)
Moderate	176 (53.3)	25 (14.4)	1.20 (0.78, 1.85)	0.98 (0.56, 1.53)
High	178 (56.7)	31 (17.5)	2.09 (1.28, 3.45)	1.52 (0.88, 2.65)
Pattern 3: Prudent dietary pattern				
Low	122 (38.9)	15 (12.2)	0.85 (0.54, 1.33)	0.72 (0.39, 1.35)
Moderate	120 (37.6)	20 (16.7)	1.20 (0.77, 1.88)	0.97 (0.53, 1.75)
High	117 (37.8)	36 (30.8)	2.35 (1.51, 3.63)	1.77 (1.04, 3.00)

Tests of association from logistic regression were used. To test for trends across tertiles, the median intake of each tertile category was used as a continuous variable. Adjusted for marital status, educational level, monthly income, BMI, occupation, smoking status, alcohol consumption, physical activity, first-degree family of colorectal cancer, and total energy intake.

Table 5
Colorectal cancer risks by anatomical locations according to dietary intake of the identified dietary patterns for women.

Dietary Pattern	No. controls (n=199)	No. cases (%)	Crude OR (95% CI)	Multivariate OR (95% CI)¹
Pattern 1: Traditional dietary pattern				
Low	118 (39.6)	30 (25.3)	0.74 (0.53, 1.04)	0.65 (0.41, 1.01)
Moderate	123 (41.2)	31 (25.0)	1.13 (0.79, 1.63)	0.91 (0.54, 1.54)
High	58 (19.4)	16 (27.6)	3.52 (0.84, 14.1)	1.13 (0.15, 8.31)
Pattern 2: Westernized dietary pattern				
Low	179 (50.6)	22 (12.2)	0.79 (0.50, 1.22)	0.64 (0.34, 1.18)
Moderate	176 (53.3)	23 (13.4)	1.20 (0.77, 1.88)	0.97 (0.53, 1.75)
High	178 (56.7)	36 (20.1)	2.35 (1.51, 3.63)	1.77 (1.04, 3.00)
Pattern 3: Prudent dietary pattern				
Low	122 (38.9)	15 (12.2)	0.85 (0.54, 1.33)	0.72 (0.39, 1.35)
Moderate	120 (37.6)	20 (16.7)	1.20 (0.77, 1.88)	0.97 (0.53, 1.75)
High	117 (37.8)	36 (30.8)	2.35 (1.51, 3.63)	1.77 (1.04, 3.00)

Tests of association from logistic regression were used. To test for trends across tertiles, the median intake of each tertile category was used as a continuous variable. Adjusted for marital status, educational level, monthly income, BMI, occupation, smoking status, alcohol consumption, physical activity, first-degree family of colorectal cancer, and total energy intake.
it was reported in a meta-analysis including 10 cohort studies that the CRC risk increased by 17% when an average of 100g red meat had been consumed daily, and by 18% for a average of 50g/day processed meat consumption (e.g. eating 2 slices of bacon a day). In addition, it has been suggested that the chemicals produced during the cooking process and culinary usage are more likely to increase the CRC risk. Studies on CRC have also revealed significant positive associations between CRC and exposure to heterocyclic amines. Several studies conducted in industrialized countries indicate that Western diets rich in red and processed meat, refined starches, sugar, and saturated and trans-fatty acids are closely associated with an increased risk of CRC. A systematic review of diet and CRC risk in Asia reported that red and processed meats, animal fats, cholesterol, high-sugar foods, and refined carbohydrates were positively associated with CRC risk. Moreover, previous studies have suggested that modifications of the Western-style diet could substantially reduce the incidence and mortality of CRC by reducing the consumption of red meat and increasing consumption of foods of plant origin.

With respect to modifying the Western diet, 2 dietary patterns can be recommended to reduce the risk of CRC in the Korean population. First, our findings indicated that a higher consumption of the traditional pattern significantly reduced the risk of CRC, particularly the risk of rectal cancer in both genders. In addition, a significant association between the prudent pattern and a decreased risk of CRC at all subsites was observed in both genders. Previous studies conducted in diverse populations have suggested that a diet consisting of a high intake of vegetables, fruits, and cereals might be protective against CRC. Studies conducted in the United States also support that dietary patterns characterized by a low frequency of meat and fat-rich foods and frequent consumption of fruit and vegetables are associated with a reduced risk of CRC, particularly colon cancer. Among Caucasian participants in the North Carolina Colon Cancer Study, a dietary pattern rich in fruits and whole grains was associated with a reduced risk of rectal cancer. Vegetables and fruits are rich in fiber, antioxidant vitamins, carotenoids, folate, acid, and other phytochemical compounds, which might have preventive effects against colorectal carcinogenesis. The inclusion of plant-based foods with a high anticancer phytochemical content has been reported to be beneficial in terms of CRC prevention. Studies reporting that highly refined cereals might increase the risk of cancer also support the protective effect of the prudent pattern, which includes a low intake of refined grains. A high rate of digestion of refined grains and the consequent increases in plasma insulin and insulin-like growth factor 1 have been related to an increased risk of CRC. Furthermore, a meta-analysis indicated that a high intake of milk with a relative risk of 0.83 (95% CI = 0.74–0.93) and a high intake of total dairy products with a RR of 0.81 (95% CI = 0.74–0.90) were associated with reductions in CRC risk compared with low intake of these foods.

The strengths of the present study include a methodological approach that employed principal component analysis to consider the complexity and interactions within or among the dietary patterns of individuals in a specified population. This approach accounted for the cultural diversities in each population with respect to different dietary patterns and habits. Identification of the major food groups contributing to each pattern allowed us to suggest dietary modifications that could reduce cancer risk in the Korean population. Another strength of the study was the relatively large number of included cases compared with other previous case-control studies of diet and CRC risk conducted in Korea. An additional advantage of this study was the analysis of the risk association between each dietary pattern and distinct CRC location for each gender. Because dietary etiological factors may vary among sites, such anatomical stratification may help in further understanding cancer risk and prevention. Some previous studies from the United States conducted analyses based on particular anatomical subsites to assess the association with dietary patterns. Although dietary patterns had different effects on the risk of colon cancer depending on anatomical subsites, the reasons for these differences remain unclear, as described in a systematic review.

This study has some potential limitations. First, recall of dietary habits may differ between men and women, or between cases and controls due to different levels of dietary knowledge and health compliance. Furthermore, case-control studies are prone to recall bias, and cancer patients are more likely to recall perceived unhealthy dietary habits compared with healthy controls. Second, the use of factor analysis to derive dietary patterns involves subjective decisions when consolidating food items into food groups (variables), extracting the number of factors, and labeling of the patterns. Last, the case and control groups were recruited from the same hospital of the NCC in Korea. However, this does not ensure that the groups were from the same source population due to the location and specialization of the medical facility.

In conclusion, the Westernized dietary pattern was associated with an elevated risk of CRC, whereas the traditional and prudent patterns were associated with a decreased risk of rectal cancer and all types of CRC, respectively. Our findings suggest that individuals who have a high intake of meat and sugar should be made aware of their increased risk for CRC and of the preventive strategies. To prevent CRC, transitioning from a Westernized dietary pattern to a more traditional pattern is recommended; this can be accomplished by consuming more foods of plant or natural origin in combination with regular intake of fruits, milk, and dairy products, which are major contributors to the prudent dietary pattern. The dietary recommendations described in this study can be used to support guidelines for CRC prevention and to develop public health policies.

References

[1] Fitzmaurice C, Dicker D, Pain A, et al. The global burden of cancer 2013. JAMA Oncol 2015;1:103-27.
[2] Center MM, Jemal A, Ward E. International trends in colorectal cancer incidence rates. Cancer Epidemiol Biomarkers Prev 2009;186:1688–94.
[3] International Agency for Research on Cancer. GLOBOCAN 2012. Estimated cancer incidence, mortality, and prevalence worldwide in 2012. Available at: http://globoCAN.iarc.fr/Default.aspx. Accessed October 1, 2015.
[4] Jung KW, Won YJ, Kong HJ, et al. Cancer statistics in Korea: incidence, mortality, survival, and prevalence in 2012. Cancer Res Treat 2015;47:127–41.
[5] Jung KW, Won YJ, Kong HJ, et al. Cancer statistics in Korea: incidence, mortality, survival, and prevalence in 2012. Cancer Res Treat 2015;47:127–41.
[6] Center MM, Jemal A, Smith RA, Ward E. Worldwide variations in colorectal cancer. CA Cancer J Clin 2009;59:466–78.
[7] Wang LS, Kuo CT, Huang YW, et al. Gene-diet interactions on colorectal cancer risk. Curr Nutr Rep 2012;1:132–41.
[8] Nishihara R, Wang M, Qian ZR, et al. Alcohol, one-carbon nutrient intake, and risk of colorectal cancer according to tumor methylation level of IGF2 differentially methylated region. Am J Clin Nutr 2014;100:1479–88.
[9] Hughes LA, Van den Brandt PA, De Bruijne AP, et al. Early life exposure to famine and colorectal cancer risk: a role for epigenetic mechanisms. PLoS One 2009;4:e7951.

[10] Chan D, Lau R, Aune D, et al. Red and processed meat and colorectal cancer incidence: meta-analysis of prospective studies. PLoS One 2011;6:e20456.

[11] Alexander DD, Weed DL, Cushing CA, Lowe KA. Meta-analysis of prospective studies of red meat consumption and colorectal cancer. Eur J Cancer Prev 2011;20:293–307.

[12] Aune D, Lau R, Chan D, et al. Dairy products and colorectal cancer risk: a systematic review and meta-analysis of cohort studies. Ann Oncol 2012;23:1599–609.

[13] Wu S, Feng B, Li K, et al. Fish consumption and colorectal cancer risk in Chinese population. Public Health Nutr 2016;19:893–905.

[14] Wu QJ, Yang Y, Voggemann E, et al. Cruciferous vegetables intake and the risk of colorectal cancer: a meta-analysis of observational studies. Ann Oncol 2013;24:1079–87.

[15] Cho YA, Kim J, Shin A, et al. Dietary patterns and breast cancer risk in a Korean population. PLoS One 2011;6:e23196.

[16] Butler LM, Millikan RC, Sinha R, et al. Modifying factors for colorectal cancer and colorectal adenomas. Nutr Rev 2010;68:389–96.

[17] Chun YJ, Sohn SK, Song HK, et al. Dietary patterns and the risk of colorectal adenomas: the black women’s health study. Cancer Epidemiol Biomarkers Prev 2011;20:818–25.

[18] Martinez ME, Marshall JR, Sechrest L. The arbitrary nature of the factor analytic process. Am J Epidemiol 1998;148:17–9.

[19] Terry P, Hu FB, Hansen H, Wolk A. Prospective study of major dietary patterns and colorectal cancer risk in women. Am J Epidemiol 2001;154:1143–9.

[20] Kim MK, Sasaki S, Otani T, Tsugane S. Dietary patterns and subsequent colorectal cancer risk by subtype: a prospective cohort study. Int J Cancer 2005;115:790–8.

[21] IARC. Carcinogenicity of heterocyclic amines and colon cancer in a multiethnic study. Mutat Res 2011;697:82–9.

[22] Muratori F, De Vries JH, Duif N, et al. Selecting informative food items for compiling food-frequency questionnaires: comparison of procedures. Br J Nutr 2010;104:446–56.

[23] Randi G, Edelfort V, Ferraroni M, et al. Dietary patterns and the risk of colorectal cancer and adenomas. Nutr Rev 2010;68:389–408.

[24] Cui X, Dai Q, Tseng M, et al. Dietary patterns and breast cancer risk in the Shanghai breast cancer study. Cancer Epidemiol Biomarkers Prev 2007;16:1453–5.

[25] DiStefano C, Zhu M, Mindrila D. Understanding and using factor scores: considerations for the applied researcher. Pract Assess Res Eval 2009;14:1–1.

[26] Willen W, Nutritional Epidemiology. New York: Oxford University Press; 2012.

[27] World Health Organization. The Asia-Pacific Perspective: Redefining Obesity and Its Treatment. Sydney: Health Communications Australia; 2000.