The Effect of Cylinder Head Variations on the Mixture of Bio-Oil and Diesel Fuel on The Noise Value, Specific Fuel Consumption, and Gas Opacity

A Aminudin¹, NIF Nisa², F Susanto¹, BJ Pitoyo³, AM Bagaskoro¹

¹Automotive Engineering, Politeknik Negeri Madiun, Indonesia
²Chemical Engineering, Universitas PGRI Madiun, Indonesia
³Politeknik Penerbangan Surabaya, Indonesia

Email: udin@pnm.ac.id, nurihda_fn@unipma.ac.id; fredy@pnm.ac.id; bambang.junipitoyo@poltekbangsby.ac.id; bagasbluk@gmail.com

Abstract. The increasing number of motorized vehicle users causes increasing air pollution in atmosphere. This condition is due to the exhaust gas content generated by the consumption of this fuel. To resolve this, one of the efforts is to use a mixture of bio-oil in diesel fuel. Bio-oil is a dark brown liquid composed of highly oxygenated compounds produced through pyrolysis, where its properties are close to heavy fuel oil. This study aims to determine the effect of cylinder head variations on the mixture of bio-oil and diesel fuel on the performance of an engine. The engine used in this research is a single-cylinder engine with a direct injection system. When the standard cylinder head variations are used, the best noise, specific fuel consumption, and gas opacity values are obtained. The best noise value is 92.1 dB with a composition of 15% bio-oil and 85% diesel fuel. Meanwhile, the best specific fuel consumption value is 0.236 gram/watt.second with a variation of 20% bio-oil and 80% diesel fuel mixture. The best opacity value is obtained at 30.3% when bio-oil fuel composition is 15% and diesel is 85%.

1. Introduction

Diesel engines are widely used because of their high fuel efficiency and power compared to gasoline engines. This makes diesel engines widely used as a driving force in heavy vehicles and transportation equipment in the industrial and automotive industries. Another advantage of diesel engines is the flexibility of the types of fuels that can be used such as diesel, Jatropha, and renewable energy butanol, methanol, and ethanol [1][2][3]. This is because the combustion that occurs does not require controlling the sparks. To obtain high heat to ignite the fuel, the diesel engine must have a higher compression ratio than the gasoline engine compression ratio [4].

Diesel engines have compression ranges from 12:1 to 18:1. The compression pressure can reach 400 to 700 Psi and the compressed air temperature can reach 1000°F. The greater the engine speed, the greater the power generated because the load is also large. From the above explanation, the author wants to use biodiesel from plastic waste as a fuel mixture that is applied directly to a single-cylinder diesel engine by varying [5][6].

The limitation of the problem in this study are:

a. The engine used is a single-cylinder diesel engine
b. The fuel used is a mixture of bio-oil and fuel diesel with variations B15 and B20
c. Not discussing the manufacture of bio-oil
d. Bio-oil which is used as a biodiesel blend
e. Only discusses variations of the cylinder head on a single-cylinder diesel engine
f. Only discusses noise, specific fuel consumption, and gas opacity
g. Not discussing the compression ratio

2. Method
This type of research is experimental. The equipment used is a single-cylinder four-stroke diesel engine [7]. The fuel used is a mixture of vegetable oil and diesel which is modified by the surface of the cylinder head to determine the optimum performance of the engine.

2.1. Types of Variations
To determine the optimal engine performance, modifications were made to the surface of the cylinder head with standard variations (180 mm), modification 1 (thickness reduction 2 mm), and modification 2 (additional thickness 2 mm).

2.2. Testing of Diesel Engines
The testing process was carried out at Automotive Machinery Laboratory Politeknik Negeri Madiun. The tools used are a sound level meter (noise test), a burette (specific fuel consumption test), and an opacity smoke meter (gas opacity test).

2.3. Research Schemes
The test scheme in this study can be seen in Figure 1.

![Fig. 1. Testing engine](image)

From Figure 1 it can be seen that to determine the best performance of a diesel engine, testing is carried out using equipment including an opacity smoke meter, sound level meter, burette, blower, stopwatch, tachometer, generator, modified cylinder head, and light panels.

3. Results and Discussion
3.1. Noise Testing Results
The amount of load lamp given to the machine influences the noise value. The results of noise testing at various variations can be seen in Table 1.

Variation	Fuel	Noise value (dB)	Load lamp (watt)	
		1500	3000	4000
Standard	B15	92.1 dB	92.4 dB	93.2 dB
head				
It can be seen in Table 1 that the higher the loading on the machine, the noise value obtained increases. The best noise value is obtained when the standard cylinder head variation is 15% bio-oil and 85% diesel fuel. This is because the amount of loading will cause an increase in the sound in the exhaust gas so that the noise test also increases [8].

3.2. Specific Fuel Consumption (SFC) Test Results

In addition to the noise value, the amount of load lamp on the engine also affects the specific fuel consumption value. The results of specific fuel consumption test on variations of the cylinder head can be seen in Table 2.

Variation	Fuel	Load lamp (watt)		
		1500	3000	4000
Standard head cylinder	B15	0.216	0.123	0.107
	B20	0.236	0.135	0.110
Modification 1	B15	0.167	0.098	0.089
	B20	0.132	0.100	0.112
Modification 2	B15	0.167	0.098	0.089
	B20	0.123	0.100	0.079

It can be seen in Table 2 that the higher the loading on the engine, the smaller the value of the specific fuel consumption obtained. The best specific fuel consumption is obtained when the standard cylinder head variation with the composition of 20% bio-oil and 80% diesel is 0.236 gram/watt.second. This is because the amount of loading will cause the amount of fuel to be injected into the combustion chamber to increase so that the engine speed remains stable [9].

3.3. Gas Opacity Test Results

The gas opacity value of an engine is also influenced by the amount of load lamp applied to the diesel engine. The results of testing the gas opacity value at variations of the cylinder head can be seen in Table 3.

Variation	Fuel	Load lamp (watt)		
		1500	3000	4000
Standard head cylinder	B15	30.3%	50.2%	67.6%
	B20	53.5%	61.7%	68.9%
Modification 1	B15	59.6%	59.5%	65.6%
	B20	59.9%	79.0%	82.5%
Modification 2	B15	41.1%	62.7%	75.4%
	B20	43.9%	53.0%	64.7%

It can be seen in Table 3 that the amount of load lamp on the engine causes gas opacity value increases [10]. The best exhaust gas opacity value is obtained when the standard cylinder head variation with bio-oil composition is 15% and diesel fuel is 85% which is 30.3%. This is because a
large amount of lamp loading on the engine will cause the exhaust gas to concentrate [11][12].

4. Conclusions

From the results of the tests that have been carried out, the results show that the best noise value is 92.1 dB with a fuel composition of 15% bio-oil and 85% diesel. Meanwhile, the best specific fuel consumption value is 0.236 gram/watt.second with a standard cylinder head variation of 20% bio-oil and 80% diesel fuel. For the best opacity value is obtained when the standard cylinder head variation is the composition of 15% bio-oil and 85% diesel fuel with a value of 30.3%

References

[1] Rajak U and Verma T N 2018 Effect of emission from ethylic biodiesel of edible and non-edible vegetable oil, animal fats, waste oil and alcohol in CI engine Energy Conversion and Management 166 704–18
[2] Nour M, Attia A M A and Nada S A 2019 Combustion, performance and emission analysis of diesel engine fuelled by higher alcohols (butanol, octanol and heptanol)/diesel blends Energy conversion and management 185 313–29
[3] Mofijur M, Masjuki H H, Kalam M A and Atabani A E 2013 Evaluation of biodiesel blending, engine performance and emissions characteristics of Jatropha curcas methyl ester: Malaysian perspective Energy 55 879–87
[4] Rakopoulos D C, Rakopoulos C D, Giakoumis E G and Dimaratos A M 2012 Characteristics of performance and emissions in high-speed direct injection diesel engine fueled with diethyl ether/diesel fuel blends Energy 43 214–24
[5] Swaminathan C and Sarangan J 2012 Performance and exhaustion emission characteristics of a CI engine fueled with biodiesel (fish oil) with DEE as additive biomass and bioenergy 39 168–74
[6] Ashraful A M, Masjuki H H, Kalam M A, Fattah I M R, Imtenan S, Shahir S A and Mobarak H M 2014 Production and comparison of fuel properties, engine performance, and emission characteristics of biodiesel from various non-edible vegetable oils: A review Energy Conversion and Management 80 202–28
[7] Alenezi R A, Mamat R, Norkhizan A M, Najafi G and others 2020 The effect of fusel-biodiesel blends on the emissions and performance of a single cylinder diesel engine Fuel 279 118438
[8] Torregrosa A J, Broatch A, Gil A and Gómez-Soriano J 2018 Numerical approach for assessing combustion noise in compression-ignited Diesel engines Applied Acoustics 135 91–100
[9] Emiroıglu A O 2018 Experimental examination of performance, exhaust emission and combustion behaviours of a CI engine fuelled with biodiesel/diesel fuel blends Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22 1274–81
[10] Yesilyurt M K and Aydin M 2020 Experimental investigation on the performance, combustion and exhaust emission characteristics of a compression-ignition engine fueled with cottonseed oil biodiesel/diethyl ether/diesel fuel blends Energy Conversion and Management 205 112355
[11] Hirner F S, Hwang J, Bae C, Patel C, Gupta T and Agarwal A K 2019 Performance and emission evaluation of a small-bore biodiesel compression-ignition engine Energy 183 971–82
[12] Palash S M, Masjuki H H, Kalam M A, Masum B M, Sanjid A and Abedin M J 2013 State of the art of NOx mitigation technologies and their effect on the performance and emission characteristics of biodiesel-fueled Compression Ignition engines Energy conversion and management 76 400–20