SNPs in AKIRIN2, TTN, EDG1 and MYBPC1 genes are associated with growth-related traits in Chinese Qinchuan cattle

Yaxing Li
Inner Mongolia University

Gong Cheng
Northwest Agriculture and Forestry University

Yunbo Zhao
Inner Mongolia University

Chunling Bai
Inner Mongolia University

Shenyuan Wang
Inner Mongolia Agriculture University

Kaifeng Wu
Inner Mongolia Agricultural University

Lixin Cheng
Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences

Seiki Sasaki
Livestock Improvement Association of Japan

Takahisa Yamada
Niigata University

Huanmin Zhou
Inner Mongolia Agricultural University

Guangpeng Li
Inner Mongolia University

Linsen Zan (zanlinsen@163.com)
Northwest Agriculture and Forestry University

Bin Tong (tongbin87@163.com)
Inner Mongolia University https://orcid.org/0000-0003-4170-8737

Short report

Keywords: AKIRIN2, Association analysis, Chinese Qinchuan cattle, EDG1, Growth-related traits, MYBPC1, SNPs, TTN

DOI: https://doi.org/10.21203/rs.3.rs-25135/v1
Abstract

Growth performances are the main breeding objectives in Chinese beef cattle. The objective of this study was to confirm genetic effects of the c.*188G > A SNP in AKIRIN2, the g.231054C > T SNP in TTN, the g.1471620G > T SNP in EDG1, and the g.70014208A > G SNP in MYBPC1 gene on growth-related traits in Chinese Qinchuan cattle, as well as to compare the frequencies of the well-characterized alleles of these SNPs among six Chinese cattle populations, three Japanese cattle populations, two European cattle populations and one Korean cattle breed. In this study, a total of 655 cattle samples were genotyped using MassARRAY and PCR-RFLP. Association analysis indicated that the four SNPs have effects one to six indexes of growth-related traits including body length, wither height, hip height, hip width, rump length, chest depth and chest circumference in Chinese Qinchuan cattle (P < 0.05 to P < 0.001). The well-characterized A (c.*188G > A), T (g.231054C > T) and T (g.1471620G > T) alleles in Japanese Black cattle were significantly higher than Chinese cattle breeds, on the contrary, the G allele (g.70014208A > G) was markedly higher in Chinese cattle breeds than other cattle breeds. These results suggest that the four SNPs might be useful as a molecular marker for growth-related traits in Chinese Qinchuan cattle.

Background

Growth-related traits are complex and controlled by multiple genes [1, 2], which have an important effect on the economics of beef production. Thus, a better knowledge of the molecular architecture of growth-related traits is important as it may generate new opportunities for more effective marker-assisted breeding, leading to economic benefits to the beef production industry.

To date, numerous candidate genes and molecular markers associated with economic traits have been identified, and some of them have already been used in cattle breeding [3–5]. Among them, the akirin 2 (AKIRIN2) gene is located within genomic regions of quantitative trait loci (QTLs) for marbling score and longissimus muscle area in Japanese Black (JB) cattle [6], as well as marbling score in Angus cattle [7]; the titin (TTN) gene was found in the genomic regions within QTLs for marbling score, longissimus muscle area and subcutaneous fat thickness in JB [6], as well as subcutaneous fat thickness in a Brahmah x Hereford sire developed half-sib family [8]; the endothelial differentiation sphingolipid G-protein-coupled receptor 1 (EDG1) gene is located within genomic regions of QTLs for marbling score and body weight in JB [6], subcutaneous fat thickness in Angus [9], as well as marbling score in a Belgian Blue x MARC III developed half-sib family and a Piedmontese x Angus sire developed half-sib family [10], and the myosin binding protein C, slow type (MYBPC1) is included in the genomics regions of QTLs for rib thickness and subcutaneous fat thickness in JB [6], marbling score in Angus [7], hip height, rump length, rump width and chest depth in a cattle population including 1554 AI bulls distributed in 14 half-sib families (nine in Holstein, three in Normande and two in Montbéliarde breeds [11], as well as intramuscular fat in a Brangus heifers population [12]. Thus, these genes could be considered as important candidate genes for growth-related traits in beef cattle. Furthermore, the c.*188G > A single nucleotide polymorphism (SNP) in AKIRIN2, the g.231054C > T SNP in TTN, the g.1471620G > T SNP in EDG1, and the g.70014208A > G SNP in the MYBPC1 genes showed associations of these SNPs with growth-related traits in JB [13–18] and Korean native (KN) [19] cattle. However, the relationships of these SNPs with growth-related traits in Chinese cattle breed have not been investigated.

Chinese indigenous cattle breeds can be divided into three groups based on their geographic distribution, morphological characteristics and sex chromosome polymorphisms: the northern type in North China (NC), the central type in the middle (CC) and lower areas of the Yellow River and the southern type in South China (SC) [20]. The Qinchuan (QC) cattle which is a typical breed of CC, are well-known to be good beef cattle in China, because of
distinctive qualities including good adaptability and fine beef flavor among others. However, Qinchuan cattle exhibit a number of limitations compared to imported commercial beef cattle breeds, such as slow growth rate and underdeveloped hind hips. Accordingly, it is necessary to select important functional genes and molecular marker to increase the economic traits in Chinese native cattle.

Therefore, the objectives of this study reported herein were to: (1) perform association analyses between these SNPs in the *AKIRIN2*, *TTN*, *EDG1* and *MYBPC1* genes and growth-related traits in QC, (2) investigate the genetic diversity of these SNPs in three Chinese typical cattle groups (including QC, Mongolia cattle (MG), Luxi (LX), Wuling (WL) and Longlin (LL) cattle breeds), and (3) compare the frequencies of the well-characterized alleles of these SNPs in Chinese cattle breeds to those of JB, Japanese Brown (JBR), Japanese Short Horn (JSH), Holstein (HOL), Brown Swiss (BS) [21–23], and KN breeds [19].

Methods

Ethics Standards and Animals

The 41 MG population in Inner Mongolia Autonomous Region of China (MGC) and 24 LX cattle were sampled from Chifeng Shengquan Ecological Animal Husbandry Co., Ltd. Ten milliliters of blood was collected from each cattle for DNA extraction.

DNA and Phenotypic Data

Genomic DNA of 41 MGC and 24 LX were extracted from blood samples with a TIANamp Blood DNA kit (TIANGEN Biotech, Beijing, China). The quality and quantity of the extracted DNA were evaluated using a Nanodrop® spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA) and by agarose gel electrophoresis. The DNA samples and phenotypes of 350 QC adult females were provided from the National Beef Cattle Improvement Center, Northwest A & F University [24, 25]. The measurement of growth-related traits (body length, withers height, hip height, hip width, rump length, chest depth and chest circumference) were described in the previous reports [24, 25]. The DNA samples of 50 MG population in Mongolia (MGM), 50 WL and 50 LL cattle were provided from the Inner Mongolia Key Laboratory of Biomanufacture, Inner Mongolia Agriculture University. The geographical distribution of cattle breeds in this study are shown in Figure 1, as well as the information is shown in Table 1.

Genotyping

For 350 QC cattle population, the c.*188G>A SNP in *AKIRIN2*, the g.231054C>T SNP in *TTN*, the g.1471620G>T SNP in *EDG1*, and the g.70014208A>G SNP in the *MYBPC1* genes were genotyped with the MassARRAY® SNP genotyping system (Agena Bioscience, San Diego, CA, USA). PCR and extension primers were designed from sequences containing each target mutation and ~ 100 upstream and downstream bases with Assay Design Suite (http://agenabio.com/assay-design-suite-20-software) using the default settings. The genotype of each allele was analyzed using the Sequenom MassARRAY iPLEX platform [26]. The resulting data was analyzed using the MassARRAY Typer 4.0 Analyzer software (Agena Bioscience).

For 41 MGC, 50 MGM, 50 WL, 50 LL and 24 LX cattle populations, the c.*188G>A SNP in *AKIRIN2*, the g.231054C>T SNP in *TTN*, the g.1471620G>T SNP in *EDG1*, and the g.70014208A>G SNP in the *MYBPC1* genes were genotyped using PCR-restriction fragment length polymorphism (RFLP) method as described previously [13, 14, 16, 17]. The PCR primers and restriction enzymes used for PCR-RFLP are shown in Table S1.
Data Analyses

Genotypic and allelic frequencies and Hardy-Weinberg equilibria were calculated for QC, MGC, MGG, WL, LL and LX cattle populations. Population genetic indices, observed heterozygosity \((H_o)\), expected heterozygosity \((H_e)\), effective allele numbers \((n_e)\) and polymorphism information content \((PIC)\) were calculated by Nei’s methods [27]. The allelic frequencies of each SNP among cattle breeds or groups were compared by a \(\chi^2\) test. The relationship between different genotypes and growth-related traits of QC cattle was analyzed in SPSS 24.0 (SPSS, Inc., Chicago, IL, USA). The statistical linear model for this analysis was the same as previous reports [25]:

\[
Y_{ijk} = \mu + G_i + A_i + A_k + E_{ijk}
\]

Where, \(Y_{ijk}\) = trait value per individual, \(\mu\) = overall population mean per trait, \(G_i\) = fixed effect associated with genotype, \(A_i\) = fixed effect of age, \(A_k\) was the fixed effect due to the age of dam and \(E_{ijk}\) = standard error. The Bonferroni correction was used to adjust \(P\) values [25].

Results

Genetic Diversity of Four SNPs in Six Cattle Populations

For the c.*188G>A SNP in AKIRIN2, the g.231054C>T SNP in TTN, the g.1471620G>T SNP in EDG1, and the g.70014208A>G SNP in MYBPC1 genes, the frequencies of the two alleles and the three genotypes of each SNP in the MGC, MGG, QC, LX, WL and LL cattle populations are listed in Table 2, as are the genetic indices \((H_o, H_e, n_e \text{ and } PIC)\). No significant departures at the 5% level were detected by any test for the four SNPs, except for the c.*188G>A SNP of the AKIRIN2 gene in MGC (Table 2). In this study, the LL populations showed the lowest value of PIC in each of four SNPs than the other cattle populations.

Associations Between Four SNPs and Growth-related Traits in Qinchuan Cattle

The effects of the c.*188G>A SNP in AKIRIN2, the g.231054C>T SNP in TTN, the g.1471620G>T SNP in EDG1, and the g.70014208A>G SNP in MYBPC1 genes on growth-related traits were analyzed in 350 QC population (Table 3). For the c.*188G>A SNP in AKIRIN2, the individuals with AA and GA genotypes had significantly longer body length than individuals with GG genotype \((P < 0.05)\); the individuals with AA and GA had significantly greater hip width than the individuals with GG \((P < 0.05, P < 0.001, \text{ respectively})\); and the SNP genotype also had statistically significant effect on chest depth \((P < 0.05)\) and chest circumference \((P < 0.05)\). For the g.231054C>T SNP in TTN, there were only six cattle with the TT genotype. Therefore, their associations and effects could not be reliably estimated and they were excluded from the analysis. The individuals with CT genotype had significantly greater wither height \((P < 0.05)\), chest depth \((P < 0.05)\) and chest circumference \((P < 0.05)\) compared with CC genotype. For the g.1471620G>T SNP in EDG1, there were significant difference between GG and GT genotype of hip width \((P < 0.05)\), whereas no association was detected in the other growth-related traits. For the g.70014208A>G SNP in MYBPC1, the only six cattle with AA genotype were excluded from the analysis. Thus, the GG homozygotes exhibited significantly greater body length \((P < 0.001)\), wither height \((P < 0.05)\), hip height \((P < 0.05)\), hip width \((P < 0.01)\), rump length \((P < 0.01)\) and chest depth \((P < 0.05)\) compared to GA heterozygotes (Table 3).

Statistical Comparaisons of Allele Frequencies among Six Cattle Groups
To further analyze the distribution of the well-characterized allele of each SNP in the cattle populations based on the different genetic background, the MGC, MGG, QC, LX, WL and LL of this study as well as the JB, JBR, JSH, HOL, BS and KN [19, 21-23] were divided into six groups which including North China (MGC and MGG) [20], Central China (QC and LX) [20], South China (WL and LL) [20], Japanese cattle group (JB, JBR and JSH), European cattle group (HOL and BS), and Korean cattle (KN) (Figure 2; Table 4). At the c.*188G>A locus in AKIRIN2, the well-characterized A allele frequency in the JG and KN was obviously higher than the other cattle groups (Fig. 2a; Table 4). At the g.231054C>T locus in TTN, the well-characterized T allele frequency in the JG was significantly higher than the other cattle groups (P < 0.001, Fig. 2b; Table 4). At the g.1471620G>T locus in EDG1, the well-characterized T allele frequency in the JG was significantly higher than the other cattle groups (P < 0.001, Fig. 2c; Table 4). In addition, the well-characterized T allele of the g.231054C>T SNP were almost absent in SC and EG (Fig. 2b), the same to the well-characterized T allele of the g.1471620G>T SNP in SC and EG (Fig. 2c), as well as the well-characterized G allele frequency of the g.70014208A>G SNP in EG (Fig. 2d). The χ² tests for different distribution of allele frequencies of the c.*188G>A SNP in AKIRIN2, the g.231054C>T SNP in TTN, the g.1471620G>T SNP in EDG1 and the g.70014208A>G SNP in MYBPC1 genes between any two cattle groups are listed in Tables S2-5.

Discussion

The AKIRIN2, TTN, EDG1 and MYBPC1 genes were first found in relationship with economic traits in cattle, because they showed different expression levels in the *musculus longissimus* muscle between JB and HOL [28]. These genes are located within genomic regions of QTLs for carcass and growth-related traits in JB, Angus and crossbred populations [6–12]. Since then, the c.*188G>A SNP, the g.231054C>T SNP, the g.1471620G>T SNP and the g.70014208A>G SNP were identified in the AKIRIN2, TTN, EDG1 and MYBPC1 genes of JB [13, 14, 16, 17], respectively. The c.*188G>A SNP of AKIRIN2 showed associations with marbling score in JB [13] as well as marbling score and longissimus muscle area in KN [19]. The g.231054C>T SNP of TTN showed associations with marbling score and longissimus muscle area in JB [14, 15]. The g.1471620G>T SNP of EDG1 showed association with marbling score in JB [16], simultaneously one other SNP in EDG1 had effects on marbling score, subcutaneous fat thickness, carcass weight, longissimus muscle area and rib thickness [29, 30]. The g.70014208A>G SNP of MYBPC1 had effects on marbling score and longissimus muscle area [17, 18]. Furthermore, the results of the present study confirmed the significant genetic effects of the c.*188G>A SNP in AKIRIN2, the g.231054C>T SNP in TTN, the g.1471620G>T SNP in EDG1, and the g.70014208A>G SNP in MYBPC1 genes on growth-related traits in Chinese QC cattle population.

Around the second century A.D., cattle migrated from North Asian continent via the Korean peninsula to Japan [31]. In Japanese cattle, both genetic [32] and morphological [33] studies have illustrated that native Japanese cattle are *Bos taurus* and are representatives of the “Turano-Mongolian” type [34]. The Korean native cattle (Hanwoo), is a cattle breed that is native to the Korean peninsula and the Japanese islands, which is considered to belong to the *Bos taurus* [35–37]. Actually, the JB has been performed for a strong selection for high marbling over the last 50 years, but not in other breeds such as JBR and JSH [38], as well as all Korean indigenous cattle breeds are just used for beef meat production [39] and consumer demands are driving efforts to increase meat production and produce higher quality meat in Korea [40]. Unlike them, the growth performance was regarded as the major breeding goal in most breeds of Chinese indigenous cattle. In this study, the frequencies of the well-characterized A allele (in the c.*188G>A SNP of AKIRIN2) in the JB and KN, T allele (in the g.231054C>T SNP of TTN) in JB and T
allele (in the g.1471620G>T SNP of EDG1) in JB were significantly higher than Chinese cattle breeds (Tables S2-4), maybe due to the breeding aim for high marbling in JB and KN. Interestingly and conversely, the well-characterized G allele (in the g.70014208A>G SNP of MYBPC1) was markedly higher in Chinese cattle breeds than JB (Table S5). Moreover, the G allele (in the g.70014208A>G SNP of MYBPC1) was almost null in JBR and JSH, on the contrary, the G allele was almost full in WL and LL breeds of CC (Tables S2-5), likely due to genetic background. In addition, the PIC of each SNPs in HOL and BS of EG was related low or null, maybe due to the breeding aim for dairy-related traits in HOL and BS. We noted that such as Angus and Shorthorn breeds should be tested to better understand the distribution of the well-characterized allele in European beef cattle in the future study.

Recently, China cattle beef industry is growing rapidly to meet the meat demand of large population. Although a lot of researches have been performed to identify marker for breeding, it still needs more useful molecular markers for more effectively breeding [5]. In this study, there were significant associations between the c.*188G>A SNP of AKIRIN2 and body length, hip width, chest depth and chest circumference, between the g.231054C>T SNP of TTN and wither height, chest depth and chest circumference, between the g.1471620G>T SNP of EDG1 and hip width, between the g.70014208A>G SNP of MYBPC1 and body length, wither height, hip height, hip width, rump length and chest depth in Chinese QC cattle.

Conclusions

In conclusion, the results of this study suggest that the c.*188G>A SNP of AKIRIN2 the g.231054C>T SNP of TTN, the g.1471620G>T SNP of EDG1, and the g.70014208A>G SNP of MYBPC1 genes might be useful as a specific DNA marker for growth-related traits in Chinese QC cattle.

Additional Files

Additional file 1: Table S1. PCR primers and restriction enzymes used for PCR-RFLP method. (DOCX 16kb)

Additional file 2: Table S2. Statistical significance for differences in the allele frequency of c.*188G>A SNP among 12 cattle populations. (DOCX 17kb)

Additional file 3: Table S3. Statistical significance for differences in the allele frequency of g.231054C>T SNP among 11 cattle populations. (DOCX 17kb)

Additional file 4: Table S4. Statistical significance for differences in the allele frequency of g.1471620G>T SNP among 11 cattle populations. (DOCX 17kb)

Additional file 5: Table S5. Statistical significance for differences in the allele frequency of g.70014208A>G SNP among 11 cattle populations. (DOCX 17kb)

Abbreviations

SNP: Single nucleotide polymorphism; AKIRIN2: akirin 2 gene; TTN: titin gene; EDG1: the endothelial differentiation sphingolipid G-protein-coupled receptor 1 gene; MYBPC1: the myosin binding protein C, slow type gene; PCR: Polymerase Chain Reaction; RFLP: Restriction Fragment Length Polymorphism; QTL: quantitative trait locus

Declarations
Acknowledgments

The authors thank Dr. Li Zhang (Inner Mongolia University) for their assistance with sample collection. The authors also thank the Chifeng Shengquan Ecological Animal Husbandry Co., Ltd. for providing purebred cattle breed samples.

Funding

This work was supported by grants from the Inner Mongolia Science & Technology Plan (No. 20180260) of China, the "Grassland Meritocrat" Scholars Program (CYYC6068) of Inner Mongolia Autonomous Region, and the High-level Talents Import Program (No. 21400-5165112) of Inner Mongolia University of China, the High Level Overseas Talents Project ([2018]No.190) from Ministry of Human Resources and Social Security of China and National Key R&D Program of China (2018YFD0501700).

Availability of data and materials

All data analyzed during this study are included in this article and its supplementary files.

Authors’ contributions

BT, LZ, GL, HZ and TY designed the experiments. YL, GC, YZ, CB, SW, KW, LC and SS carried out the experiments and calculated data. YL, GC, LZ and BT wrote the manuscript and edited. All authors read and approved the final manuscript.

Ethics approval and consent to participate

The animal care and experiments were conducted according to the Administration of Affairs Concerning Experimental Animals (Ministry of Science and Technology, 2004) China. The protocol was approved on 01/03/2018 by the Institutional Animal Care and Use Ethics Committee of Inner Mongolia University, with the permit number for conducting animal experiments of (IMU-2018-01).

Consent for publication

Not applicable.

Competing interests

The authors declare no conflict of interest.

References

1. Andersson L. Genetic dissection of phenotypic diversity in farm animals. Nat Rev Genet. 2001;2:130–8.
2. Andersson L, Georges M. Domestic-animal genomics: Deciphering the genetics of complex traits. Nat Rev Genet. 2004;5:202–12.
3. Raza S, Khan R, Abdelnour SA, Abd EM, Khafaga AF, Taha A, et al. Advances of molecular markers and their application for body variables and carcass traits in Qinchuan cattle. Genes (Basel). 2019;10:e717.
4. Yamada T. Genetic dissection of marbling trait through integration of mapping and expression profiling. Anim Sci J. 2014;85:349–55.
5. Tong B, Zhang L, Li GP. Progress in the molecular and genetic modification breeding of beef cattle in China. Hereditas. 2017;39:984–1015.

6. Takasuga A, Watanabe T, Mizoguchi Y, Hirano T, Ihara N, Takano A, et al. Identification of bovine QTL for growth and carcass traits in Japanese Black cattle by replication and identical-by-descent mapping. Mamm Genome. 2007;18:125–36.

7. McClure MC, Morsci NS, Schnabel RD, Kim JW, Yao P, Rolf MM, et al. A genome scan for quantitative trait loci influencing carcass, post-natal growth and reproductive traits in commercial Angus cattle. Anim Genet. 2010;41:597–607.

8. Casas E, Shackelford SD, Keene JW, Koohmaraie M, Smith TPL, Stone RT. Detection of quantitative trait loci for growth and carcass composition in cattle. J Anim Sci. 2003;81:2976–83.

9. Mateescu RG, Garrick DJ, Reecy JM. Network analysis reveals putative genes affecting meat quality in Angus cattle. Front Genet. 2017;8:e171.

10. Casas E, Stone RT, Keene JW, Shackelford SD, Kappes SM, Koohmaraie M. A comprehensive search for quantitative trait loci affecting growth and carcass composition of cattle segregating alternative forms of the myostatin gene. J Anim Sci. 2001;79:854–60.

11. Boichard D, Grohs C, Bourgeois F, Cerqueira F, Faugeras R, Neau A, et al. Detection of genes influencing economic traits in three French dairy cattle breeds. Genet Sel Evol. 2003;35:77–101.

12. Peters SO, Kizilkaya K, Garrick DJ, Fernando RL, Reecy JM, Weaber RL, et al. Bayesian genome-wide association analysis of growth and yearling ultrasound measures of carcass traits in Brangus heifers. J Anim Sci. 2012;90:3398–409.

13. Sasaki S, Yamada T, Sukeyawa S, Miyake T, Fujita T, Morita M, et al. Association of a single nucleotide polymorphism in akirin 2 gene with marbling in Japanese Black beef cattle. BMC Res notes. 2009;2:e131.

14. Yamada T, Sasaki S, Sukeyawa S, Yoshioka S, Takahagi Y, Morita M, et al. Association of a single nucleotide polymorphism in titin gene with marbling in Japanese Black beef cattle. BMC Res notes. 2009;2:e78.

15. Yamada T, Sasaki S, Sukeyawa S, Yoshioka S, Takahagi Y, Morita M, et al. Possible association of single nucleotide polymorphism in titin gene with growth-related traits in Japanese Black beef Cattle. J Anim Vet Adv. 2011;10:2603–6.

16. Yamada T, Sasaki S, Sukeyawa S, Miyake T, Fujita T, Kose H, et al. Novel SNP in 5' flanking region of EDG1 associated with marbling in Japanese Black beef cattle. Anim Sci J. 2009;80:486–9.

17. Tong B, Sasaki S, Muramatsu Y, Ohta T, Kose H, Yamashiro H, et al. Association of a single-nucleotide polymorphism inmyosin-binding protein C, slow-type (MYBPC1) gene with marbling in Japanese Black beef cattle. Anim Genet. 2014;45:611–2.

18. Tong B, Xing YP, Muramatsu Y, Ohta T, Kose H, Zhou HM, et al. Association of expression levels in skeletal muscle and a SNP in the MYBPC1 gene with growth-related trait in Japanese Black beef cattle. J Genet. 2015;94:135–7.

19. Kim H, Lee SK, Hong MW, Park SR, Lee YS, Kim JW, et al. Association of a single nucleotide polymorphism in the akirin 2 gene with economically important traits in Korean native cattle. Anim Genet. 2013;44:750–3.

20. China national commission of animal genetic resources. Animal Genetic Resources in China: bovine. Beijing: China Agriculture Press; 2011. pp. 15–20.

21. Watanabe N, Yamada T, Yoshioka S, Iton M, Satoh Y, Furuta M, et al. The T allele at the g.1471620G > T in the EDG1 gene associated with high marbling in Japanese Black cattle is at a low frequency in breeds not
22. Watanabe N, Satoh Y, Fujita T, Ohta T, Kose H, Muramatsu Y, et al. Distribution of allele frequencies at TTN g.231054C > T, RPL27A g.3109537C > T and AKIRIN2 c.188G > a between Japanese Black and four other cattle breeds with differing historical selection for marbling. BMC Res. notes. 2011;4:e10.

23. Tong B, Sasaki S, Muramatsu Y, Ohta T, Kose H, Fujita T, et al. The G allele at the g.70014208A > G in the MYBPC1 gene associated with high marbling in Japanese Black cattle is at a low frequency in breeds not selected for marbling. J Genet. 2014;93:231–3.

24. Wu S, Wang Y, Ning Y, Guo H, Wang X, Zhang L, et al. Genetic variants in STAT3 promoter regions and their application in molecular breeding for body size traits in Qinchuan cattle. Int J Mol Sci. 2018;19:e1035.

25. Wei D, Raza S, Zhang J, Gui L, Rahman S, Khan R, et al. Polymorphism in promoter of SIX4 gene shows association with its transcription and body measurement traits in Qinchuan cattle. Gene. 2018;656:9–16.

26. Gabriel S, Ziaugra L, Tabbaa D. SNP genotyping using the sequenom MassARRAY iPLEX platform. Curr Protoc Hum Genet. 2009. doi: 10.1002/0471142905.hg0212s60.

27. Masatoshi N, Roychoudhury AK. Sampling variances of heterozygosity and genetic distance. Genetics. 1973;76:379–90.

28. Sasaki Y, Nagai K, Nagata Y, Doronbekov K, Nishimura S, Yoshioka S, et al. Exploration of genes showing intramuscular fat deposition-associated expression changes in musculus longissimus muscle. Anim Genet. 2006;37:40–6.

29. Yamada T, Itoh M, Nishimura S, Taniguchi Y, Miyake T, Sasaki S, et al. Association of single nucleotide polymorphisms in the endothelial differentiation sphingolipid G-protein-coupled receptor 1 gene with marbling in Japanese Black beef cattle. Anim Genet. 2008;40:209–16.

30. Sukegawa S, Miyake T, Takahagi Y, Murakami H, Morimitsu F, Yamada T, et al. Replicated association of the single nucleotide polymorphism in EDG1 with marbling in three general populations of Japanese Black beef cattle. BMC Res Notes. 2010;3:e66.

31. Mukai F, Tsuji S, Fukazawa K, Ohtagaki S, Nambu Y. History and population structure of a closed strain of Japanese Black Cattle. J Anim Breed Genet. 1989;106:254–64.

32. Namikawa T. Genetic aspects of domestication and phylogeny in cattle. Japanese Journal of Zootechnical Science. 1980, 235–46.

33. Ogawa Y, Daigo M, Amasaki H. Craniometrical estimation of the native Japanese Mishima cattle, using multivariate analysis. Anatomischer Anzeiger. 1989;168:197–202.

34. Felius M. Cattle breeds: An encyclopedia; 1995.

35. Mannen H, Tsuji S, Loftus RT, Bradley DG. Mitochondrial DNA variation and evolution of Japanese black cattle (Bos taurus). Genetics. 1998;150:1169–75.

36. Mannen H, Kohno M, Nagata Y, Tsuji S, Amano T. Independent mitochondrial origin and historical genetic differentiation of north eastern asian cattle. Mol Phylogenet Evol. 2004;32:539–44.

37. Seung SY, Ji YS, Seon OW, Hyung WJ, Keun CK, Dong SS. Genetic relationship of Korean cattle (Hanwoo) based on nucleotide variation of mitochondrial D-loop region. Korean J Genetics. 2004;26:297–307.

38. Sasaki Y, Miyake T, Gaillard C, Oguni T, Ohtagaki S. Comparison of genetic gains per year for carcass traits among breeding programs in the Japanese Brown and the Japanese Black cattle1. J Anim Sci. 2006;84:317–23.
39. Han SH, Cho IC, Ko MS, Kim EY, Oh HS. A promoter polymorphism of MSTN g.-371T > A and its associations with carcass traits in Korean cattle. Mol Biol Rep. 2011;39:3767–72.

40. Seong J, Suh DS, Park KD, Lee HK, Kong HS. Identification and analysis of MC4R polymorphisms and their association with economic traits of Korean cattle (Hanwoo). Mol Biol Rep. 2012;39:3597–601.

Tables

Table 1 Information of six cattle populations selected for genotyping

Breed	Abbreviation	Number	Type
Mongolia cattle population	MGC	41	North China (NC)
Mongolia Autonomous Region of China			
Mongolia cattle population	MGG	50	North China (NC)
Mongolian cattle population	QC	350	Central China (CC)
Luxi cattle	UM	24	Central China (CC)
Wuling cattle	WL	50	South China (SC)
Longlin cattle	LL	50	South China (SC)
Table 2 Genotypic frequencies, allelic frequencies and diversity parameters of four SNPs in six cattle populations

SNP	Breed (Type)	Genotypic frequency	Allelic frequency	Diversity parameter
				Ho
				He
				θ
				PIC*
				χ^2 (HW E*)
c.188 G>A	MGC (NC)	AA 0.073 AG 0.146 GG 0.780	A 0.146 G 0.854	0.750 0.250 1.333 0.218 7.037
NC	MGG (NC)	AA 0.140 AG 0.460 GG 0.400	A 0.370 G 0.630	0.534 0.466 1.873 0.358 0.099
CC	QC (CC)	AA 0.051 AG 0.343 GG 0.606	A 0.223 G 0.777	0.654 0.346 1.530 0.286 0.036
SC	LX (CC)	AA 0.000 AG 0.167 GG 0.780	A 0.083 G 0.917	0.847 0.153 1.180 0.141 0.198
SC	WL (SC)	AA 0.020 AG 0.220 GG 0.760	A 0.130 G 0.870	0.774 0.226 1.292 0.201 0.038
SC	LL (SC)	AA 0.000 AG 0.000 GG 1.000	A 0.000 G 1.000	1.000 0.000 1.000 0.000 -
g.2310 G>C	MGC (NC)	TT 0.000 TC 0.122 CC 0.878	T 0.061 C 0.939	0.885 0.115 1.129 0.185 0.173
TTN	MGG (NC)	TT 0.020 TC 0.180 CC 0.800	T 0.110 C 0.890	0.804 0.196 1.243 0.282 0.326
CC	QC (CC)	TT 0.017 TC 0.249 CC 0.734	T 0.141 C 0.859	0.757 0.243 1.321 0.213 0.194
CC	LX (CC)	TT 0.000 TC 0.125 CC 0.878	T 0.063 C 0.938	0.883 0.117 1.133 0.240 0.107
SC	WL (SC)	TT 0.000 TC 0.060 CC 0.940	T 0.030 C 0.970	0.942 0.058 1.062 0.090 0.048
SC	LL (SC)	TT 0.000 TC 0.000 CC 1.000	T 0.000 C 1.000	1.000 0.000 1.000 0.000 -
g.4203 A>G	MGC (NC)	TT 0.000 GT 0.146 GG 0.854	T 0.073 G 0.927	0.864 0.136 1.157 0.126 0.256
1062G>CT	MGG (NC)	TT 0.000 GT 0.180 GG 0.820	T 0.090 G 0.910	0.836 0.164 1.196 0.150 0.489
TTN	QC (CC)	TT 0.034 TC 0.237 CC 0.729	T 0.153 C 0.847	0.741 0.259 1.349 0.226 2.489
CC	LX (CC)	TT 0.000 TC 0.042 CC 0.854	T 0.021 C 0.979	0.959 0.041 1.043 0.040 0.011
CC	WL (SC)	TT 0.000 TC 0.060 CC 0.940	T 0.030 C 0.970	0.942 0.058 1.062 0.057 0.048
SC	LL (SC)	TT 0.000 TC 0.020 CC 0.980	T 0.010 C 0.990	0.980 0.020 1.020 0.020 0.005
g.7001 A>G	MGC (NC)	GG 0.829 GA 0.146 AA 0.024	G 0.902 A 0.098	0.824 0.176 1.214 0.161 1.170
4208G>CT	MGG (NC)	GG 0.820 GA 0.180 AA 0.000	G 0.910 A 0.090	0.836 0.164 1.196 0.150 0.489
CTC	QC (CC)	GG 0.831 GA 0.151 AA 0.017	G 0.907 A 0.093	0.832 0.168 1.203 0.154 3.581
CC	LX (CC)	GG 0.917 GA 0.083 AA 0.024	G 0.958 A 0.042	0.920 0.080 1.087 0.077 0.045
CC	WL (SC)	GG 0.940 GA 0.060 AA 0.000	G 0.970 A 0.030	0.942 0.058 1.062 0.057 0.048
SC	LL (SC)	GG 0.980 GA 0.020 AA 0.000	G 0.990 A 0.010	0.980 0.020 1.020 0.020 0.005

*a NC, North China; CC, Central China; SC, South China

*b The classification was conducted according to the PIC values (PIC value < 0.25, low polymorphism; 0.25 < PIC value < 0.5, moderate polymorphism; and PIC value > 0.5, high polymorphism)

c No Hardy-Weinberg departure was detected from the obtained genotype frequencies
QC, Qinchuan; LX, Luxi; MGC, Mongolia cattle population (Inner Mongolia Autonomous Region of China); MGG, Mongolia cattle population (Mongolia); WL, Wuling; LL, Longlin; Ho, observed heterozygosity; He, expected heterozygosity; n_e, effective allele numbers; PIC, polymorphism information content; HWE, Hardy-Weinberg equilibrium

SNP	Genotype (No.)	Body Length (cm)	Wither Height (cm)	Hip Height (cm)	Hip Width (cm)	Rump Length (cm)	Chest Depth (cm)	Chest Circumference (cm)
c.*188G>A (A	**GG** (212)	133.24 ± 0.90\(^a\)	120.53 ± 0.61	123.33 ± 0.55	38.24 ± 0.41\(^a\)	41.68 ± 0.32	58.02 ± 0.43\(^b\)	161.33 ± 1.22\(^a\)
KIRIN2)	**GA** (120)	134.60 ± 1.18\(^b\)	121.67 ± 0.84	123.89 ± 0.72	38.42 ± 0.55\(^f\)	41.98 ± 0.40	59.30 ± 0.66	164.04 ± 1.68\(^b\)
	AA (18)	141.03 ± 3.89\(^b\)	124.19 ± 2.25	126.64 ± 2.06	41.36 ± 1.77\(^b\)	43.53 ± 1.17	62.69 ± 2.38\(^b\)	169.06 ± 4.50
g.231054C>T (**CC** (257)	133.78 ± 0.82	120.41 ± 0.55\(^a\)	123.22 ± 0.48	38.17 ± 0.38	41.75 ± 0.27	58.19 ± 0.42\(^a\)	161.21 ± 1.10\(^a\)
TTN)	**CT** (87)	134.28 ± 1.49	122.62 ± 1.06\(^b\)	124.71 ± 0.91	39.03 ± 0.67	42.05 ± 0.57	59.90 ± 0.80\(^b\)	165.95 ± 2.11\(^b\)
g.42041062G>	**GG** (255)	134.77 ± 0.82	121.28 ± 0.54	123.89 ± 0.47	38.87 ± 0.35\(^a\)	41.98 ± 0.28	58.83 ± 0.42	163.52 ± 1.09
T (EDG1)	**GT** (83)	131.37 ± 1.49	120.13 ± 1.12	122.73 ± 1.02	37.02 ± 0.77\(^b\)	41.42 ± 0.55	58.23 ± 0.85	159.25 ± 2.24
g.70014208A>	**GG** (291)	135.19 ± 0.80\(^c\)	121.71 ± 0.53\(^a\)	124.11 ± 0.47\(^a\)	38.89 ± 0.35\(^c\)	42.19 ± 0.27\(^c\)	59.04 ± 0.41\(^a\)	163.93 ± 1.07
G(MYBPC1)	**GA** (53)	128.17 ± 1.41\(^d\)	118.25 ± 1.17\(^b\)	121.57 ± 1.03\(^b\)	35.97 ± 0.82\(^d\)	40.22 ± 0.54\(^d\)	56.85 ± 0.91\(^b\)	156.16 ± 2.31

Values are shown as the means ± standard error; Values with different superscripts within the same column differ significantly at \(P < 0.05\) \((a, b)\), \(P < 0.01\) \((c, d)\) and \(P < 0.001\) \((e, f)\) after Bonferroni correction.
Table 4 Statistical significance for differences in the allele frequencies of the four SNPs among the six groups of cattle populations

SNP/Group	Groupa	Central China	South China	Japanese cattle group	European cattle group	Korean cattleb
c.*188G>A SNP (AKIRIN2)²						
North China	n.s.d	***	**	n.s.	***	***
Central China	***	***	***	n.s.	***	***
South China	***	***	***	***		
Japanese cattle group	***	***	***	n.s.	***	
European cattle group	***	***	***			
g.231054C>T SNP (TTN)²						
North China	n.s.	**	***	***		-
Central China	***	***	***	***		-
South China	***	**	***			-
Japanese cattle group	***	***	***			-
g.1471620G>T SNP (EDG1)²						
North China	*	**	***	***		-
Central China	***	***	***	***		-
South China	***	*	***			-
Japanese cattle group	***	***	***			-
g.70014208A>G SNP (MYBPC1)²						
North China	n.s.	**	***	***		-
Central China	***	***	***	***		-
South China	***	***	***			-
Japanese cattle group	***	***	***			-

²North China: MGC and MGG; Central China: QC and LX; South China: WL and LL; Japanese cattle group: JB, JBR and JSH; European cattle group: HOL and BS, and Korean cattle;

²The data of the c.*188G>A SNP (AKIRIN2) in Korean native cattle was referred from [119];

²The data of the g.1471620G>T SNP (EDG1), c.*188G>A SNP (AKIRIN2), g.231054C>T SNP (TTN), and g.70014208A>G SNP (MYBPC1) in Japanese and European cattle breeds were referred from [21-23];

²n.s., Non-significant. *, P < 0.05; **, P < 0.01; ***, P < 0.001

Figures
Figure 1

Geographic map indicating the origins of the cattle populations. Cattle populations of North China type in green; Cattle breeds of Central China type in yellow; Cattle breeds of South China type in blue; Japanese cattle breeds in purple; Korean native cattle in red; European cattle breeds in brown. MGM, Mongolia cattle population (Inner Mongolia Autonomous Region of China); MGC, Mongolia cattle population (Mongolia); QC, Qinchuan; LX, Luxi; WL, Wuling; LL, Longlin; JB, Japanese Black; JBR, Japanese Brown; JSH, Japanese Short Horn; KN, Korean native cattle; HOL, Holstein; BS, Brown Swiss. Note: The designations employed and the presentation of the material on this map do not imply the expression of any opinion whatsoever on the part of Research Square concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. This map has been provided by the authors.
Figure 2

Distribution of allele frequency in the six cattle groups. (a-d) The allele frequency of the c.*188G>A SNP in AKIRIN2, the g.231054C>T SNP in TTN, the g.1471620G>T SNP in EDG1, and the g.70014208A>G SNP in MYBPC1 genes, respectively. NC: North China; CC: Central China; SC: South China; JG: Japanese cattle group [21-23]; EC: European cattle group [21-23]; KN: Korean cattle [19].

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- TableS1.pdf
- TableS2.pdf
- TableS5.pdf
- TableS4.pdf
- TableS3.pdf