Finite dimensional modules and perpendicular subcategories

M. Grime
University of Bristol
e-mail: Matt.Grime@bris.ac.uk

June 2007

Abstract

We explain how, under some hypotheses, one can construct a sequence of finite dimensional kG-modules that lie in certain prescribed additive subcategories, but whose direct limits do not. We use these to show that many of the triangulated quotients of $\text{Mod}(kG)$ are not generated, as triangulated categories, by the corresponding quotient of $\text{mod}(kG)$ considered as a full subcategory.

1 Introduction

Let G be a finite group, and k an field such that char(k) divides $|G|$. The categories $\text{mod}(kG)$ and $\text{Mod}(kG)$ are Frobenius categories (see [3] for example, for an explanation), which implies that the quotients

$$\text{stmod}(kG) := \frac{\text{mod}(kG)}{\text{f.g.projective } kG-\text{modules}}$$

and

$$\text{StMod}(kG) = \frac{\text{Mod}(kG)}{\text{projective } kG-\text{modules}}$$

are triangulated categories. Whenever one has a triangulated category it is natural to ask if there is a smaller subcategory which generates it. Recall that if $S \subset T$ are triangulated categories, then S generates T if $(S, X)_T = 0$ for all $S \in S$ implies that $X = 0$. It is not too hard to show that $\text{stmod}(kG)$ generates $\text{StMod}(kG)$. Our aim is to show that in other triangulated quotients of $\text{Mod}(kG)$ the finite dimensional objects do not often form a generating subcategory. We will do this by producing a sequence of finite dimensional modules in $\text{mod}(kG)$ that are zero in the quotient, but with direct limit in $\text{Mod}(kG)$ that does not become zero.

2 Modular representation theory and triangulated quotients

We continue with the assumption that k is a field, and char(k) divides $|G|$. We assume that the reader is familiar with the content of, say, Alperin’s book [1].

Definition 2.1 (Relatively projectivity).

Let w be a finite dimensional kG-module. Let $\mathcal{P}(w)$ denote the smallest additive subcategory of $\text{Mod}(kG)$ that contains w and is closed under tensor with an arbitrary module and arbitrary direct sums and summands.

The class $\mathcal{P}(w)$ is sufficient to allow a relative cohomology theory, and a triangulated quotient of $\text{Mod}(kG)$. Objects in $\mathcal{P}(w)$ are called w-projective.
Theorem 2.2.
Let Δ be the class of short exact sequences in $\text{Mod}(kG)$ that split when tensored with w. Then Δ is an exact structure on $\text{Mod}(kG)$, and the class of objects $\mathcal{P}(w)$ constitute the projective and injective objects with respect to that structure. Moreover, there are enough pro/injective objects, and we can define triangulated quotients

$$\text{StMod}_w(kG) := \frac{\text{Mod}(kG)}{\mathcal{P}(w)} \quad \text{and} \quad \text{stmod}_w(kG) := \frac{\text{mod}(kG)}{\mathcal{P} \cap \text{mod}(kG)}$$

Proof. See, e.g. [2].

If one picks a subgroup $H < G$, and sets $w = \text{Ind}^G_H(k)$, then one obtains the usual definition of H-projective. The ordinary stable category can be recovered by choosing $w = kG$.

2.1 Twisting kH-modules
We continue with the assumption that k is a field of characteristic p, and further suppose that q is a power of p. Let H be a group, a short exact sequence of kH-modules, and let $G = H \times C_q$. We wish to use this short exact sequence to define a kG-module, $(X, Y, Z) \mapsto G_H$. The reader should think of \mapsto as meaning twisted induction\(^1\). As a vector space sum $(X, Y, Z) \mapsto G_H$ will be given by

$$X + \cdots + X + Y + Z + \cdots + Z$$

and the H-action will be the obvious one in each summand. Thus it remains to describe the C_q-action. Let C_q be generated by u. Then $u - 1$ acts by shifting summands in the following manner:

$$X \rightarrow X \rightarrow Y \rightarrow Z \rightarrow 0$$

Notice that $(u - 1)^q = u^q - 1 = 0$, since applying $u - 1$ q times to any of the summands of $(X, Y, Z)^G_H$ will mean applying d_2d_1, or 0, at some point.

Proposition 2.3.
Let X, Y, Z and $(X, Y, Z)^G_H$ be as above, then $(X, Y, Z)^G_H$ is H-projective if and only if the map $X \rightarrow Y$ splits.

Proof. Consider $X \otimes k$ as a $kH \times C_q$ module with the diagonal action. The module $(X, Y, Z)^G_H$ is H-projective if and only if it has the lifting property with respect to H-split short exact sequences, thus consider the H-split surjection

$$\pi : \text{Ind}^G_H(\text{Res}^G_H(X \otimes k)) \rightarrow X \otimes k$$

There is a map from $(X, Y, Z)^G_H$ to $X \otimes k$ given by projection into the first copy of X. We will show that this map factors through π and only if $d_1 : X \rightarrow Y$ is split.

Suppose that θ is such that $(X, Y, Z)^G_H \rightarrow X \otimes k$ factors as $\pi\theta$. We will use the vector space decomposition of $(X, Y, Z)^G_H$ as above, and we can consider $\text{Ind}_H^G(X)$ as a vector space sum

$$X + \cdots + X$$

in the usual manner: the summands are indexed by cosets of H, i.e. powers of u. Let us write θ as a block matrix with respect to these vector space sum

\(^1\)I am indebted to Jeremy Rickard for suggesting this construction to me
\[
\theta = \begin{pmatrix}
\theta_{1,1} & \theta_{1,2} & \cdots & \theta_{1,2q-1} \\
\vdots & \vdots & \ddots & \vdots \\
\theta_{q,1} & \theta_{q,2} & \cdots & \theta_{q,2q-1}
\end{pmatrix}
\]

with each \(\theta_{r,s} \) a \(kH \)-equivariant map. Similarly \(\pi \) is given by

\[
\begin{pmatrix}
1, \ldots, 1 \\
\vdots \\
1, \ldots, 1
\end{pmatrix}_{q}
\]

and the projection from \((X, Y, Z)^G_H\) to \(X \otimes k \) is

\[
\begin{pmatrix}
1, 0, \ldots, 0 \\
\vdots \\
1, 0, \ldots, 0
\end{pmatrix}_{2q-2}
\]

From the factorization of the projection as \(\pi \theta \) one obtains

\[
(\sum_i \theta_{i,1}, \sum_i \theta_{i,2}, \ldots, \sum_i \theta_{i,2q-1}) = (1, 0, \ldots, 0).
\]

We also know that \(h\theta = \theta h \). The reader is encouraged to work out the case of \(q = 2 \) by hand, and to write down the matrices for larger \(q \). When they have done so they will notice that one has the extra relations (indices are to be read mod \(q \))

\[
\theta_{r,s} = \theta_{r+1,s} + \theta_{r+1,s+1} \quad 1 \leq r \leq q - 1 \tag{1}
\]

\[
\theta_{q,q-1} = \theta_{1,q-1} + \theta_{1,q}d_1 \tag{2}
\]

It follows from (1) by induction on \(k \) that

\[
\theta_{r,s} = \sum_{i=0}^{k} \binom{k}{i} \theta_{r-k+i,s-k}
\]

for all \(1 \leq s \leq q - 1 \). We find it easiest not to insert limits in the sums for what follows. Recall that we define \(\binom{n}{m} \) to be zero if \(m \) is not between 0 and \(n \). Thus, using the relations we generated, (2), and showing a healthy disregard for indices it follows that

\[
\begin{align*}
\theta_{1,q}d_1 &= \theta_{q,q-1} - \theta_{1,q-1} \\
&= \sum_i (-1)^i \binom{q-1}{i} \theta_{p-(p-1)+i,1} - \sum_i (-1)^i \binom{q-1}{i} \theta_{1-(q-1)+i,1} \\
&= \sum_i (-1)^i \binom{q-1}{i} \theta_{1+i,1} - \sum_i (-1)^i \binom{q-1}{i} \theta_{2-i,1} \\
&= \sum_i (-1)^i \binom{q-1}{i} \theta_{1+i,1} - \sum_i (-1)^i \binom{q-1}{i} \theta_{2+i,1} \\
&= \sum_i (-1)^i \left(\binom{q-1}{i} + \binom{q-1}{1} \right) \theta_{1+i,1} \\
&= \sum_i (-1)^i \binom{q-1}{i} \theta_{1+i,1} = \sum_i ((-1)^i)^2 \theta_{1+i,1}
\end{align*}
\]

and thus (recalling that indices are mod \(q \))

\[
\theta_{1,q}d = \sum_i \theta_{i,1} = 1_X
\]

which completes the proof that \(d_1 \) splits. \(\square \)
In this section we will argue that under some reasonable assumptions on G and w, we may show that $\text{stmod}_w(kG)$ does not generate $\text{StMod}_w(kG)$. The tactic is to write some non-w-projective module as a direct limit of w-projective modules. In fact, we shall show something slightly stronger: the direct limit will not be $\text{vtx}(w)$-projective. First, we will need a way to show a module is not w-projective.

Lemma 3.1.
Let X be a w-projective kG-module, then X is projective with respect to any vertex of w.

Proof. It suffices to consider the case $X \cong w \otimes Y$. Let Q be a vertex of w and let v be a source. Then

$$w \otimes Y \mid \text{Ind}_Q^G(v) \otimes Y \cong \text{Ind}(v \otimes \text{Res}_Q^G(Y))$$

and we see X is Q-projective.

Now we show that it suffices to pass to the Sylow-p subgroup of G.

Proposition 3.2.
Suppose that P is a Sylow-p subgroup of G and let v the restriction of w to kP. Suppose that $M = \lim_{\rightarrow} m_{\alpha}$ is a filtered colimit in $\text{Mod}(kP)$ where each m_{α} is finite dimensional and v-projective and M is not projective with respect to $\text{vtx}(w)$, then $\text{Ind}_P^G(M) = \lim_{\rightarrow} \text{Ind}_{P}^G(m_{\alpha})$ is a non-w-projective kG-module that is the direct limit of finite dimensional w-projectives.

Proof. This is reasonably clear by the last lemma.

Thus we may suppose that G is a p-group. The most natural statement (i.e. the one with fewest hypotheses) is when $w = \text{Ind}_H^G(k)$.

Theorem 3.3.
Let H be a p-group with non-finite representation type, and let $G = H \times C_q$. Set $w = \text{Ind}_H^G(k)$, then $\text{StMod}_w(kG)$ is not generated by $\text{stmod}_w(kG)$.

Proof. The hypothesis on H ensures that there is an indecomposable countable dimensional kH-module M. Suppose that we write M as the direct limit of a sequence of finite dimensional modules

$$\lim_{n \in \mathbb{N}} m_n$$

Let ι_n denote the inclusion of m_n into m_{n+1} and consider the (non-split) short exact sequence

$$0 \longrightarrow \prod m_n \xrightarrow{1 - \iota_n} \prod m_n \longrightarrow M \longrightarrow 0$$

which is the direct limit of the split short exact sequences

$$0 \longrightarrow \prod_{n=1}^N m_n \longrightarrow \prod_{n=1}^{N+1} m_n \longrightarrow m_{N+1} \longrightarrow 0$$

Construct the module $(\prod m_n, \prod m_n, M)^{\dagger}_H$ as in subsection 2.1. This is not H-projective as the map $\prod m_n \rightarrow M$ does not split. However, $(\prod m_n, \prod m_n, M)^{\dagger}_H$ is the direct limit of the modules

$$\prod_{n=1}^N (\prod_{n=1}^{N+1} m_n, m_{N+1})^{\dagger}_H$$

each of which is H-projective, since $\prod_{n=1}^{N+1} m_n \rightarrow m_{N+1}$ is split. Now, any map from a finite dimensional kG-module to $(\prod m_n, \prod m_n, M)^{\dagger}_H$ factors through a finite dimensional
submodule, and thus through some H-projective submodule. Hence $(\coprod m_n, \coprod m_n, M)^H$ is orthogonal to the set of finite dimensional modules.

All that remains is to extend this to the case when w is not a trivial source module.

Theorem 3.4.
Let G, H and M be as in 3.3 and suppose that w is a kG-module with $\text{vtx}(w) \subseteq_G H$. Suppose that $\text{Res}^G_H(w) \otimes M$ is not pure projective. Then $\text{stmod}_w(kG)$ does not generate $\text{StMod}_w(kG)$.

Proof. Let $v = \text{Res}^G_H(w)$. The hypotheses imply that

$$0 \to \coprod v \otimes m_n \xrightarrow{1-\iota_n} \coprod v \otimes m_n \to v \otimes M \to 0$$

is non-split, and hence, $(\coprod v \otimes m_n, \coprod v \otimes m_n, v \otimes M)^H$ is not w-projective. This module is the direct limit of the modules

$$((\coprod_{n=1}^N v \otimes m_n, \coprod_{n=1}^{N+1} v \otimes m_n, v \otimes m_{N+1})^H)^G.$$

Thus we need to show that these are w-projective for each n. We know that any such module is H-projective, which means it is a summand of

$$\text{Ind}^G_H(\text{Res}^G_H((\coprod_{n=1}^N v \otimes m_n, \coprod_{n=1}^{N+1} v \otimes m_n, v \otimes m_{N+1})^H))$$

but this is nothing more than a direct sum of copies of modules of the form

$$\text{Ind}^G_H(v \otimes m_n) \cong w \otimes \text{Ind}^G_H(m_n)$$

and thus is w-projective as we were required to show.

We will end by collecting these theorems into one statement.

Theorem 3.5.
Let G be a finite group and w a kG-module with vertex (conjugate to) Q. Assume that G and w satisfy the following conditions:

- if P is a Sylow-p subgroup of G then P is isomorphic to $P' \times C_q$ for some P';
- in such a decomposition $Q \leq_G P'$;
- there is a kP' module M such that neither M nor $M \otimes \text{Res}(w)$ are pure projective (in particular kQ and thus kP' cannot have finite representation type);

then $\text{stmod}_w(kG)$ does not generate $\text{StMod}_w(kG)$ as a triangulated category.

References

[1] Jon Alperin, *Local representation theory*, Cambridge studies in advanced mathematics, vol 11, CUP, 1986.

[2] Jon F. Carlson, Chuang, ‘Transfer maps and virtual projectivity’, *J. Algebra*, 204 (1), pp 286–311, 1998.

[3] Dieter Happel, ‘On the derived category of a finite dimensional algebra’, *Commentarii Mathematici Helvetici*, 62, pp 339-389, 1992.