Opportunities for Antimicrobial Stewardship in Caring for Febrile Pediatric Inpatients in Abu Dhabi

Maha Khalil Abass, MBChB1, Junaid Khan, MD1, Emmanuel Fru Nsutebu, FRCP1 and Philip R. Fischer, MD1,2,3

Abstract
Antimicrobial stewardship programs seek to improve patient outcomes, reduce cost, and hinder development of antimicrobial resistance. Collection of inpatient antimicrobial use data is foundational to these programs, and decisions to initiate and discontinue antibiotics are potentially amenable to improvement. In order to better understand our current practices and with a view toward improved antimicrobial stewardship, we reviewed charts of previously healthy children to age 16 years hospitalized with fever (without an evident localized source) and/or other findings suggestive of serious bacterial infection. Of 105 patients (18% 0-2 months of age, 42% 3-12 months, 25% 2-5 years), 100 (95%) received antibiotics, 72% for more than 2 days. Of 98 patients with negative body fluid cultures, 23 received antibiotics for 2 days or less, and 70 received antimicrobial therapy for more than 2 days. Focusing on selective initiation and earlier discontinuation of antimicrobial therapy in hospitalized children might reduce unnecessary antibiotic use.

Keywords
fever, drug resistance, microbial guidelines, pediatrics infectious disease, antibiotic stewardship, review

Received July 23, 2022. Accepted for publication September 3, 2022.

Introduction
In much of the world, antimicrobial stewardship programs seek to improve patient outcomes, reduce cost, and slow the spread of antimicrobial resistance by advocating for and/or enforcing judicious initiation, selection, and discontinuation of antimicrobial therapy.1 A foundational component of effective medication stewardship is a monitoring program to identify and follow antimicrobial therapy.1 Effective antimicrobial stewardship programs may be generalized throughout institutions or targeted toward specific patient groups.2 In Europe, a children’s hospital’s quality improvement program led to significant reductions in overall antibiotic use.3 Antimicrobial stewardship programs focused on children with acute respiratory infections have also led to improved care with decreased costs.4

For children, empiric antimicrobial therapy is often considered and initiated before results of definitive diagnostic tests are available. Guidelines have been developed in North America to assist in management of febrile but otherwise well-appearing young infants.5 However, with increasing resistance to commonly used antibiotics in newborns, several African and Asian countries report widespread resistance to what had been first line agents in standard antimicrobial recommendations for febrile infants.6 Empirc antimicrobial therapy decisions should be based on the local antibiogram, as well as accessibility and affordability of antimicrobials.6 A consensus group suggested that research should be prioritized

1Sheikh Shakhbout Medical City, Abu Dhabi, United Arab Emirates
2Mayo Clinic, Rochester, MN, USA
3Khalifa University College of Medicine and Health Sciences, Abu Dhabi, United Arab Emirates

Corresponding Author:
Maha Khalil Abass, Sheikh Shakhbout Medical City, Abu Dhabi, United Arab Emirates, MBChB, Abu Dhabi, United Arab Emirates.
Emails: mabass@seha.ae; maha.khalil.abass@hotmail.com

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).
that involves benchmarking and peer comparison of antibiotic use for common pediatric infections. As an example, in a Jordanian study, 31% of pediatric inpatients received antibiotics, however the indications were not well-documented in medical records, and the timing of discontinuation was not consistent with recommended procedures. At a US children’s hospital, key targets for improvement in antimicrobial use were found to relate specifically to ear, nose, and throat infections. Thus, evaluation of local antibiotic prescribing habits can identify variations and non-standard practices; then, targeted interventions can potentially improve antimicrobial stewardship.

In our setting in the Arab Gulf region, children are frequently admitted to the hospital with concerns for serious bacterial infection yet without localizing signs or symptoms. In order to determine potential opportunities for improving antimicrobial stewardship, we undertook a retrospective chart review to determine our current antimicrobial use in children of various ages admitted with fever or other concerns for serious bacterial infection who did not have localizing signs or symptoms of infection.

Methods

Sheikh Shakhbout Medical City is a growing local and regional hospital located in the suburbs of metropolitan Abu Dhabi, United Arab Emirates. The general pediatric hospital service cares for patients on a 30-bed unit. Staff physicians have been trained in various regions of the world, including North America, Europe, North Africa, and the Middle East. There are 25 pediatric residents, as well as students from 2 different universities. Patients are mostly from Abu Dhabi and include a mix of national backgrounds with about half being Emirati. This study took place during the COVID-19 pandemic, however our hospital was “COVID-free,” and patients who tested positive for SARS-CoV-2 were transferred to another facility for care.

Via retrospective chart review, previously healthy patients admitted with fever or other concerns for serious bacterial infection (shock, new seizure, oxygen desaturation) during 2021 were included if there was no sign of a localized infection (pneumonia, meningitis, urinary tract infection, osteomyelitis) at the time of admission. Patients with underlying medical conditions including pre-term birth were excluded from the study. Demographic information was noted, as were details about antibiotic use and laboratory testing.

Results

A total of 105 children were included in the study, with 85% less than or equal to 5 years of age; details are noted in Table 1. Procalcitonin was tested in 64 (61%) and was elevated in 37 (58%). C-reactive protein was tested in 104 (99%) and elevated in 81 (78%). Of 105 patients, 100 (96%) received antibiotic therapy. Cephalosporins were most commonly used, as noted in Table 2. Antibiotic treatment was continued for more than 2 days in 72% of patients, but only 18% were still on an antibiotic when discharged from the hospital.

Seven patients had positive body fluid cultures. As noted in Table 3, 1 had positive blood and urine cultures, 4 had blood cultures positive for a pathogen, 2 had positive urine cultures (one for 2 different presumed pathogens), and 1 had a blood culture positive for a presumed contaminant.

Discussion

In our setting, antibiotic use was common in children presenting with findings concerning for serious bacterial infection. However, bacteremia and urinary tract infection were only identified in 7% of the children, despite the majority having elevated inflammatory marker test results. A significant number (1 of 5, 20%) of positive blood cultures included bacteria not considered to be pathogenic. Antibiotic therapy usually (72% of the time) continued for more than 2 days, despite negative culture results. These findings suggest that in our setting it might be possible to reduce unnecessary antimicrobial therapy by reducing initiation of antibiotic therapy and by more rapid discontinuation of antibiotic therapy when culture results are negative.

Most febrile children of more than 2 months of age do not have serious bacterial infections. Even during the first 2 months of life when clinical appearance is less reliable in predicting bacteremia, recent guidelines suggest the possibility of clinical observation without antimicrobial therapy. In newborns, normal results of inflammatory marker tests such as C-reactive protein and procalcitonin, can support decisions not to give antibiotics.

In general, C-reactive protein and procalcitonin are most useful when not elevated given the high negative predictive value for serious bacterial infection. Elevated results are less specific for serious infection and have lower positive predictive values. Elevation of inflammatory markers, alone, should not be considered
an indication to start antimicrobial therapy in febrile children, at least after the first 2 months of life.

Urinalysis, however, can often identify children who are most likely to benefit from antimicrobial therapy. In our study, 3 of the total of 6 children who eventually had body fluid cultures positive for pathogenic bacteria had abnormal urinalyses. One could postulate that the clinical appearance of many of the 97% of children with normal urinalysis results who did not end up having bacteremia might have been appropriately reassuring to allow careful observation without initiation of antimicrobial therapy.

Molecular tests for single pathogens and multi-pathogen panels can also help identify possible etiologic agents in samples taken from febrile children. Early identification of pathogens for which antimicrobial is not necessary (such as enterovirus and human herpesvirus 6) could allow treating clinicians to safely avoid antibiotic initiation or to discontinue unnecessary antimicrobial therapy early. As for inflammatory marker testing, pathogen-specific testing is more useful to avoid antimicrobial use rather than to prompt the initiation of antimicrobial therapy.

The microbiologic etiology of bacteremia varies around the world. In much of Africa and Asia, even with lower rates of immunization against Haemophilus and pneumococcus than in Europe and North America, Gram-negative enteric bacteria and Staphylococcus aureus are more predominant than are other germs. In addition, multi-resistant germs are commonly identified. Thus, when antibiotics are deemed necessary, broader spectrum coverage might be necessary. Nonetheless, in our Middle East setting, only 1 of the 6 pathogen-positive isolates was resistant to cephalosporins.

Table 1. Children Admitted With Fever.

Age group	0-2 months N:19	3-12 months N:44	13-5 years N:26	6-9 years N:5	≥10 years N:11	
Total Number	18%	41.50%	24.50%	5%	10.50%	
Gender	Male	47%	48%	54%	40%	
	Female	53%	53%	50%	60%	
Presentation	Fever	89.5%	95%	92%	100%	
	Others (oxygen desaturation, shock, seizure)	10.5%	4.5%	8%	0	9%
Inflammatory markers	Procalcitonin tested	63%	48%	65%	60%	100%
	Elevated procalcitonin level, Normal ≤0.500 ng/mL	N: 12	N:21	N:17	N:3	N:11
	C-reactive protein tested	95%	100%	100%	100%	100%
Antibiotics Therapy Provided	Percent who had inpatient antibiotics	100%	88%	100%	100%	100%
Urine culture	Negative ≤2 days	21%	27%	15%	20%	36%
	Positive >2 days	79%	61%	85%	80%	63.6%
	Positive Blood culture	95%	91%	96%	100%	82%
	Urine culture	5%	2.3%	4%	0	18%
	CSF culture	0	4.5%	4%	0	0
Discharged on Antibiotics	0	14%	31%	20%	27%	

Abass et al
When presumptive antibiotic therapy is appropriately started, de-escalation (or cessation) of treatment is warranted when negative culture results are available. With current laboratory technology, in settings with effective laboratory support, pathogen-positive blood cultures are almost always positive within 24 hours in newborns and in older children. In our setting, positive results are reported immediately, but negative results are only reported daily, prompting some clinicians to continue therapy until a “negative at 2 days” result is reported. Modification of systems so that clinicians are notified early about children with negative results might lead to shorter durations of antibiotic treatment. In addition, skepticism about the reliability of negative blood cultures leads some clinicians to continuing treatment for “clinical sepsis” based on a concerning initial patient presentation, even with negative culture results.

Contaminated body fluid culture samples pose another problem, with 20% of “positive” blood cultures in our study revealing a non-pathogen. Early notification of a “positive” culture result prompts prolongation of antibiotic therapy until the microbes are identified. As everywhere in the world, careful sampling and handling of culture specimens could reduce some unnecessary antibiotic treatment. In addition, non-elevated procalcitonin levels correlate with non-pathogen contaminants in blood cultures and could contribute to more rapid decisions to de-escalate antibiotic treatment.

As part of good antimicrobial stewardship, clinicians should monitor their own practices. While we identified potential over-initiation and over-prolongation of antibiotic treatment as possible targets for intervention, other centers in the Middle East have found their own specific targets to improve judicious use of antibiotics. Across the Arabian Gulf from us in Iran, excessive initiation of antibiotic treatment in both inpatient and outpatient settings was identified, and antimicrobial stewardship programs led to reductions in unnecessary antibiotic prescriptions. In Jordan, it was the timing of discontinuation of antibiotic therapy that held promise as a good target for stewardship program intervention. Similarly, in Europe, antimicrobial stewardship interventions in a children’s hospital led to less antibiotic use, less cost, and improved patient outcomes. In a North American study, vancomycin use and the treatment of otorhinolaryngology infections were the targets identified as most amenable to helpful stewardship interventions.

There are a number of limitations to our study. First, it was retrospective, and we do not have consistent documentation of the thought processes and clinical assessments behind the decisions to initiate antibiotic treatment. Second, this is a relatively small study in one specific setting. As such, it is useful to us however might not be indicative of situations and needs in other settings. Nonetheless, this study demonstrates an approach.

Table 2. Antibiotics Used During Hospitalization.

Age group	0-2 months N:19	3-12 months N:44	13-5 years N:26	6-9 years N:5	≥10 years N:11	
Antibiotic Used	antibiotic	antibiotic	antibiotic	antibiotic	antibiotic	
Amikacin	0	0	0	0	0	
Amoxicillin/Clavulanic acid	0	0	0	0	0	
Ampicillin	21%	2%	0	0	0	
Azithromycin	0	0	0	0	0	
Cefazolin	0	0	0	0	0	
Cefepime	5%	0	4%	0	0	
Cefotaxime	89%	4.5%	2%	0	0	
Ceftriaxone	0	84%	96%	80%	100%	
Clindamycin	0	2%	19%	0	9%	
Clindamycin	0	0	0	0	9%	
Gentamicin	10.5%	0	4%	20%	9%	
Meropenem	5%	0	0	0	0	
Piperacillin/tazobactam	0	0	4%	0	9%	
Teicoplanin	0	0	0	0	9%	
Vancomycin	0	2%	11.5%	0	45.5%	
Duration of Antibiotics	≤2 days	21%	27%	15%	20%	36%
	>2 days	79%	61%	85%	80%	63.6%
Table 3. Patients With Positive Culture Results, of Total n = 105.

Age	Presentation	Risk factors	Procalcitonin (ng/mL)	C-reactive protein (mg/L)	Antibiotics used	Total Duration of Antibiotics	Body culture	Urine Culture	Resistant to Antibiotics	Discharged on Antibiotics	
1 month	Fever	No	6	65	Cefotaxime and Gentamicin	14 days	Non ESBL E. coli	-	Pansensitive	No	
12 months	Fever	No	0.6	25	Ceftriaxone	2 days	-	Non ESBL E. coli	Pansensitive	No	
10 months	Fever	No	6	60	Ceftriaxone	3 days	-	Non ESBL E. coli & Klebsiella pneumonia	Amikacin and Trimethoprom/ Sulfamethoxazole	Cefixime for another 5 days	
5 months	Fever	No	-	111	Ceftriaxone	4 days	Staphylococcus hominis	-	Benzylpenicillin, Erythromycin and Oxacillin	No	
4 years	Fever	No	2.9	320	Ceftriaxone and Amikacin	7 days	Non ESBL E. coli	Non ESBL E. coli	Amikacin, Amoxicillin/ Clavulanic acid, ciproflaxacin & (Trimethoprom/ Sulfamethoxazole	Cefixime for 3 days	
11 years	Fever	No	14.5	336	Ceftriaxone, Cefazolin, Clindamycin, Flucloxacin, Vancomycin, Gentamicin & Azithromycin	9 days (clindamycin)	Staphylococcus aureus	-	Benzylpenicillin & Trimethoprom/ Sulfamethoxazole	No	
13 years	Fever	No	23	101	Ceftriaxone & Vancomycin	4 days (ceftriaxone)	Staphylococcus aureus (MRSA)	-	Benzylpenicillin	Vancomycin for 2 weeks	No
to identifying potential targets for improved judicious use of antimicrobial therapy.

Antimicrobial stewardship is essential as we deal with severe infections, health care costs, and increasing antimicrobial resistance. Identification of potential sources of overuse of antibiotics, such as over-initiation of treatment for febrile children and excessively long durations of treatment after negative blood culture results, can serve as a means of targeting subsequent antimicrobial stewardship interventions.

Author Contributions
MKA conceived of this study and acquired the relevant data. MKA and PRF designed the study. Each of the four authors contributed to the analysis and interpretation of the data. MKA wrote the first draft of the paper, and PRF wrote subsequent drafts. Each of the four authors critically revised successive drafts of the paper for important intellectual content and approved of the final version to be published. Each author agrees to be accountable for all aspects of the work.

Declaration of Conflicting Interests
The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding
The author(s) received no financial support for the research, authorship, and/or publication of this article.

ORCID iD
Maha Khalil Abass https://orcid.org/0000-0002-1113-0586

References
1. Society for Healthcare Epidemiology of America. Policy Statement on Antimicrobial Stewardship by the Society for Healthcare Epidemiology of America (SHEA), the Infectious Diseases Society of America (IDSA), and the Pediatric Infectious Diseases Society (PIDS). Infect Control Hosp Epidemiol. 2012;33(4):322-327.
2. Grammatico-Guillon L, Abdurrahim L, Shea K, Astagneau P, Pelton S. Scope of antibiotic stewardship programs in Pediatrics. Clin Pediatr. 2019;58(11-12):1291-1301. doi:10.1177/0009922819829285
3. Velasco-Arnaiz E, Simó-Nebot S, Ríos-Barnés M, et al. Benefits of a pediatric antimicrobial stewardship program in antimicrobial use and quality of prescriptions in a referral children’s hospital. J Pediatr. 2020;225:222-230.e1 doi:10.1016/j.jpeds.2020.06.008
4. Kall J, Bowes J, Reddy D, Barrowman N, Le Saux N. Pediatric inpatient antimicrobial stewardship program safely reduces antibiotic use in patients with bronchiolitis caused by respiratory syncytial virus: a retrospective chart review. Pediatr Qual Saf. 2019;4(5):e211. doi:10.1097/pq9.0000000000000111
5. Pantell RH, Roberts KB, Adams WG, et al. Evaluation and management of well-appearing febrile infants 8 to 60 days old. Pediatrics. 2021;148(2):e2021052228. doi:10.1542/peds.2021-052228
6. Thomson KM, Dyer C, Liu F, et al. Effects of antibiotic resistance, drug target attainment, bacterial pathogenicity and virulence, and antibiotic access and affordability on outcomes in neonatal sepsis: an international microbiology and drug evaluation prospective substudy (BARNARDS). Lancet Infect Dis. 2021;21:1677-1688. doi:10.1016/S1473-3099(21)00050-5
7. Coffin SE, Abanyie F, Bryant K, et al. Pediatric research priorities in healthcare-associated infections and antimicrobial stewardship. Infect Control Hosp Epidemiol. 2021;42:519-522. doi:10.1017/ice.2020.1267
8. Abu Hammour K, Al-Heyari E, Allan A, et al. Antimicrobial consumption and resistance in a tertiary care hospital in Jordan: results of an internet-based global point prevalence survey. Antibiotics. 2020;9(9):598. doi:10.3390/antibiotics9090598
9. Klatte JM, Knee A, Szcerba F, Horton ER, Kopcza K, Fisher DJ. Identification of high-yield targets for antimicrobial stewardship program efforts within a nonfreestanding children’s hospital. Hosp Pediatr. 2019;9(5):355-364. doi:10.1542/hpeds.2018-0254
10. Kim JH, Lee JH, Cho HR, Lee JS, Ryu JM, Lee J. High concentration of C-reactive protein is associated with serious bacterial infection in previously healthy children aged 3 to 36 months with fever and extreme leukocytosis. Pediatr Emerg Care. 2019;35(5):347-352. doi:10.1097/PEC.0000000000001080
11. Nellis ME, Pon S, Giambrone AE, et al. The diagnostic accuracy of serum procalcitonin for bacteremia in critically ill children. Infect Dis Clin Pract. 2016;24(6):343-347. doi:10.1097/IPC.0000000000000432
12. Bibi A, Basharat N, Aamir M, Haroon ZH. Procalcitonin as a biomarker of bacterial infection in critically ill patients admitted with suspected sepsis in intensive care unit of a tertiary care hospital. Pak J Med Sci. 2021;37(7):1999-2003. doi:10.12669/pjms.37.7.4183
13. Dien Bard J, McElvania E, Panar C. Panels and syndromic testing in clinical microbiology. Clin Lab Med. 2020;40(4):393-420. doi:10.1016/j.cll.2020.08.001
14. Messacar K, Palmer C, Gregoire L, et al. Clinical and financial impact of a diagnostic stewardship program for children with suspected central nervous system infection. J Pediatr. 2022;244:161-168.e1 doi:10.1016/j.jpeds.2022.02.002
15. Droz N, Hsia Y, Ellis S, Dramowski A, Sharland M, Basmaci R. Bacterial pathogens and resistance causing community acquired paediatric bloodstream infections in low- and middle-income countries; a systematic review and meta-analysis. Antimicrob Resist Infect Control. 2019;8:207. doi:10.1186/s13756-019-0673-5
16. Nivesvivat T, Piayaraj P, Thunyaharn S, Watanaveeradej V, Suwanpakdee D. Clinical epidemiology, risk factors and treatment outcomes of extended-spectrum beta-lactamase producing Enterobacteriaceae bacteremia among children in a tertiary care hospital, Bangkok, Thailand. *BMC Res Notes*. 2018;11(1):624. doi:10.1186/s13104-018-3729-3

17. Marks L, de Waal K, Ferguson JK. Time to positive blood culture in early onset neonatal sepsis: a retrospective clinical study and review of the literature. *J Paediatr Child Health*. 2020;56:1371-1375. doi:10.1111/jpc.14934

18. Theodosiou AA, Mashumba F, Flatt A. Excluding clinically significant bacteremia by 24 hours in otherwise well febrile children younger than 16 years: a study of more than 50,000 blood cultures. *Pediatr Infect Dis J*. 2019;38(9):e203-e208. doi:10.1097/INF.0000000000002359

19. Berthezène C, Aissa N, Manteaux AE, Guéant JL, Oussalah A, Lozniewski A. Accuracy of procalcitonin for diagnosing peripheral blood culture contamination among patients with positive blood culture for potential contaminants. *Infection*. 2021;49(6):1249-1255. doi:10.1007/s15010-021-01697-4

20. Nabovati E, TaherZadeh Z, Eslami S, Abu-Hanna A, Abbasi R. Antibiotic prescribing in inpatient and outpatient settings in Iran: a systematic review and meta-analysis study. *Antimicrob Resist Infect Control*. 2021;10:15. doi:10.1186/s13756-021-00887-x