Abstract:
SiO₂ nanostructure is synthesized by the Sol-Gel method and thin films are prepared using dip coating technique. The effect of laser densification is studied. X-ray Diffraction (XRD), Fourier Transformation Infrared Spectrometer (FTIR), and Field Emission Scanning Electron Microscopy (FESEM) are used to analyze the samples. The results show that the silica nanoparticles are successfully synthesized by the sol-gel method after laser densification. XRD patterns show that cristobalite structure is observed from diode laser (410 nm) rather than diode laser (532 nm). FESEM images showed that the shape of nano silica is spherical and the particles size is in nano range (≤ 100 nm). It is concluded that the spherical nanocrystal structure of silica thin films is successfully densified by Doide laser (410 nm).

Key words: SiO₂ thin films, Sol-gel, Densification, XRD, FESEM.

Introduction:
Nanomaterials have attracted extensive attention due to the rapid development of Nanoscience and Nanotechnology in multidisciplinary fields (1). So, nanotechnology is occupying most of the necessary applications of science and technology, namely electronics, aerospace, and medical fields. These include different design, method, characterization, and interaction processes in nanometer range (2). The silica nanostructures are synthesized using different techniques involving CVD (chemical vapor deposition), plasma synthesis, combustion method, hydrothermal techniques and sol-gel synthesis (3). Sol-Gel process could be used to fabricate various photonic materials in different forms such as coatings, optical fibers, and thin films for optical applications (4).

The sol-gel technique is used to produce silica glass via silicon alkoxide in a solution which undergoes hydrolysis and condensation polymerization at room temperature to obtain the gel. The important steps (drying and heat treatment) will rapidly densify the gel by removing water and solvents (5). Laser technology is used as a technique to densify the gel layer which represents an attractive way for processing such materials (6). Sufficient heating and coating layers for good densification result from the laser densification technique regarding no warping or melting of the substrate. Densification of Sol-Gel coating in a furnace differs from lasers in many aspects.

Heating with laser makes organic burnout take place in short time (fractions of a second) because the effective energy of the focused laser is light. On the other hand, when heating is done with an oven, the organic materials are burning out for several minutes (7). Laser densification is used to densify printed sol-gel coatings and improve its surface properties (8). In addition, it could be used in wide applications in different fields (impact on the silicalite optical characteristics, fuel cells, and glass ceramic tapes) (9-11). CO₂ laser and Nd:YAG laser are used for the densification process (7, 12). In this paper, our purpose is to investigate and compare the structure of prepared SiO₂ sol-gel thin films densified by two different lasers and study the effect of different laser wavelengths on the structure of prepared SiO₂ after densification process.

Materials and Methods:
Experimental:

1. Samples Preparation
The SiO₂ samples are synthesized by mixing (2 ml) of Tetraethoxysilicate (TEOS) as a precursor material (Sigma Aldrich, purity 99.9 %), (6 ml) of Ethanol as a solvent (purity 99.9 %), drops of HCL as a catalyst, and (4 ml) of deionized water. The mixture is stirred at the magnetic stirrer for 2 hours. The sample is left for aging about 3 days. Dip Coating Technique is used to obtain SiO₂ thin films. The dipping processes are repeated twice to get a thin layer of SiO₂ films, the films are preheated on a hot plate at 100°C for an hour. The thickness of SiO₂ films is in the range (232 nm to

Received 23/1/2018, Accepted 22/4/2018, Published 4/6/2018

This work is licensed under a Creative Commons Attribution 4.0 International License.

Laser Densification of Prepared SiO₂ Sol-Gel Thin Films

Noor M. Abdulmalek* Mohamed K. Dhahir

Institute of Laser for Postgraduate Studies, University of Baghdad, Baghdad, Iraq.

*Corresponding author: physics_noor@yahoo.com

DOI: http://dx.doi.org/10.21123/bsj.2018.15.2.0234

Baghdad Science Journal
Open Access
Vol.15(2)2018

234
260 nm) and is measured using thin film measurement system model Epp 2000.

2. Densification Process

The densification process is done using two different lasers. The first laser used is 532 nm DPSS laser (1.9 W), while the second laser used is 410 nm Diode laser (100 mW). The exposure time of laser irradiation is 15 minutes. The experimental setup used for the two lasers consists of: laser source, a mirror, and beam expander to extend the laser beam to whole the sample, as shown in Fig.1.

![Figure 1. The Experimental Setup Used for Densification Process.](image)

Results and Discussion:

1. X-Ray Diffraction

X-Ray diffraction patterns of SiO$_2$ nanostructure thin films prepared by Sol-Gel synthesis method is characterized by X-Ray Diffractometer (XRD). Fig.2 shows that the crystobalite structure appears clearly for the diode laser (410 nm) at the position (2θ = 21.7°) which is in good agreement with J. R. Martinez et al. (13), whereas other references observe the amorphous structure at different diffraction angles (23°, 16° to 30°) (14-17) which is approximately obtained from diode laser (532 nm) at the position (2θ = 24.2°).

![Figure 2. XRD Patterns of SiO$_2$ Samples Densified by : DPSS Laser (532 nm), and Diode Laser (410 nm).](image)

2. Fourier Transformation Infrared Spectrometer (FTIR)

The FTIR spectra for SiO$_2$ samples after densification process with two different Diode lasers are shown in Fig.3 which show three bands of Si–O–Si bond vibration. The bands of H–O–H bending vibration of H$_2$O and O–H vibrations are from different species. Si–OH band vibration appears clearly. The appearance of Si–Si bond is due to oxygen vacancies. Symmetric and asymmetric fundamental stretching vibrations of CH$_2$ and CH$_3$ groups belonging to alkoxide and solvent residues appear for diode laser (532 nm) only due to its amorphous structure. The wavenumbers and FTIR bonds for SiO$_2$ samples are summarized in Table 1. These results are in good agreement with (18-22). FTIR results indicate that Silicon Dioxide has been successfully synthesized.

![Figure 3. FTIR Spectra of SiO$_2$ Samples Densified by : DPSS Laser (532 nm), and Diode Laser (410 nm).](image)

Bond Type	Wavenumber (1/cm) for DPSS Laser (532 nm)	Wavenumber (1/cm) for Diode Laser (410 nm)
Si–O–Si	487	487
Si–O–Si	833	815
Si–O–Si	1024	1024
Si–Si	605	605
Si–OH	942	942
H–O–H	1334	1334
CH$_2$ and CH$_3$ groups	2860	—

3. Field Emission Scanning Electron Microscopy (FESEM)

Field Emission Scanning Electron Microscopy is used to study the morphology of the prepared silica samples. FESEM can characterize the shape and size of SiO$_2$ nanostructure thin films.
FESEM images of SiO$_2$ thin films densified by the two Diode Lasers show that SiO$_2$ nanoparticles have roughly a spherical shape with small size nanoparticles around the range of less than 100 nm, Fig. 4.

![FESEM Images of SiO$_2$ Samples Densified by: a- DPSS Laser (532 nm), b- Diode Laser (410 nm)](image)

Figure 4. FESEM Images of SiO$_2$ Samples Densified by: a- DPSS Laser (532 nm), b- Diode Laser (410 nm)

Conclusions:
Spherical silica nanocrystals are successfully densified by diode laser (410 nm) rather than diode laser (532 nm). Cristobalite structure is clearly observed. FTIR results prove a successful preparation of SiO$_2$ nanoparticles. FESEM images show that the SiO$_2$ particles formed are in the nano range (\leq 100 nm). It is concluded that the laser wavelength plays an important role in the laser densification process. SiO$_2$ could be used in chemical sensing.

Conflicts of Interest: None.

References:
1. Huan C, Shu-qing S. Silicon nanoparticles: Preparation, properties, and applications. Chin. Phys. B. 2014;23(8):1–14.
2. Rahman IA, Padavettan V. Synthesis of Silica Nanoparticles by Sol-Gel: Size-Dependent Properties, Surface Modification, and Applications in Silica-Polymer Nanocomposites — A Review. J. Nanomater., 2012; 2012.
3. Dubey RS, Rajesh YBRD, More MA. Synthesis and Characterization of SiO$_2$ Nanoparticles via Sol-gel Method for Industrial Applications. Mater Today Proc [Internet]. 2015;2(4–5):3575–9.
4. Nandanwar R, Singh P, Haque FZ. Synthesis and Characterization of SiO$_2$ Nanoparticles by Sol-Gel Process and Its Degradation of Methylene Blue. Am. Chem. Sci. J., 2015;5(1):1–10.
5. Wang E, Chow KF, Kwan V, Chin T, Wong C, Bocarsly A. Fast and long term optical sensors for pH based on sol-gels. Anal Chim Acta. 2003;495(1–2):45–50.
6. Jiwei Z, Liangying Z, Xi Y, Hodgson SNB. Characteristics of laser-densified and conventionally heat treated sol-gel derived silica-titania films. Surf. Coat. Technol. 2001;138(2–3):135–140.
7. Taylor D.J., Fabes B.D., and Steinthal M.G., Laser Densification of Sol-Gel coating. Mat. Res. Soc. Symp. Proc., 1990;180:1047–52.
8. Hawelka D, Stollenwerk J, Pirch N, Wissenbach K, Loosen P. Improving surface properties by laser-based drying, gelation, and densification of printed sol-gel coatings. J. Coat. Technol. Res. 2014;11(1):3–10.
9. Mandal S, Planells AD, Hunt HK. Impact of deposition and laser densification of Silicalite-1 films on their optical characteristics. Microporous Mesoporous Mater. 2016;223:68–78.
10. Marinho M, Rieu M, Viricelle JP, Garrelie F. Laser induced densification of cerium gadolinium oxide: Application to single-chamber solid oxide fuel cells. Appl Surf. Sci. 2016;374:370–4.
11. Zocca A, Colombo P, Günster J, Mühlcr T, Heinrich JG. Selective laser densification of lithium aluminosilicate glass ceramic tapes. Appl Surf Sci. 2013;265:610–4.
12. Shaw DJ, King TA. Densification of sol—gel silica glass by laser irradiation. Proc. SPIE1328, Sol-Gel Optics.,1990;1328.
13. Martinez JR, Palomares-Sanchez S, Ortega-Zarzosa G, Ruiz F, Chumakoy Y. Rietveld refinement of amorphous SiO$_2$ prepared via sol-gel method. Mater Lett. 2006;60(29–30):3526–9.
14. Sumathi R, Thenmozhi R. Preparation of Spherical Silica Nanoparticles by Sol-Gel Method. 2016;401–5.
15. Sun D. Effect of Zeta Potential and Particle Size on the Stability of SiO$_2$ Nanospheres as Carrier for Ultrasound Imaging Contrast Agents. Int J Electrochem Sci. 2016;11:8520–9.
16. Singh LP, Agarwal SK, Bhattacharyya SK, Sharma U, Ahalawat S. Preparation of silica Nanoparticles and Its Beneficial Role in Cementitious Materials. Nanomater Nanotechol. 2011;1(1):44–51.
17. Nicoleta S, Voicu P, Dinu D, Sima C, Hermenean A, Ardelean A, et al. Silica Nanoparticles Induce Oxidative Stress and Autophagy but Not Apoptosis in the MRC-5 Cell Line. Int J Mol Sci., 2015;16(12):29398–416.

18. Innocenzi P. Infrared spectroscopy of sol – gel derived silica-based films: a spectra-microstructure overview. J Non-Cryst Solids., 2003;316:309–19.

19. Li X, Cao Z, Zhang Z, Dang H. Surface-modification in situ of nano-SiO$_2$ and its structure and tribological properties. Appl Surf Sci. 2006;252(22):7856–61.

20. Rahman IA, Vejayakumaran P, Sipaut CS, Ismail J, Chee CK. Size-dependent physicochemical and optical properties of silica nanoparticles. Mater Chem Phys. 2009;114(1):328–32.

21. Vitanov P, Harizanova A, Ivanova T, Dikov H. Low-temperature deposition of ultrathin SiO$_2$ films on Si substrates. J Phys Conf Ser. 2014;514(1):3–8.

22. Lenza RFS, Vasconcelos WL. Preparation of silica by sol-gel method using formamide. Mater Res. 2001;4(3):189–94.

التكثيف بالليزر لأغشية ثنائي أوكسيد السيليكون الرقيقة المحضرة بطريقة (Sol-Gel)

نوuristic محمد عبدالمilik

المعهد الليزر للدراسات العليا، جامعة بغداد، العراق.

الخلاصة:

تم تحضير مركب ثنائي أوكسيد السيليكون النانوي بطريقة (sol-gel) وتم تحضير أغشية رقيقة من بطاقة الطلاء الإنتهاضي. تم تحضير (sol-gel) التكثيف بالليزر. تم فحص العينات المحضرة وتحليلها بالطرق التالية: الحيدس بأشعة X، مطياف تحويلات فورير بالمنطقية تحت الحمراء، والبيكروكسوبوب الإلكتروني الماسح. أظهرت النتائج أن تركيزات السيليكون النانوية كانت مُحضّرة بنجاح بطرق التكثيف بالليزر. بينت فحوصات XRD التكثيف بالليزر. بينت فوقاتات XRD (410 nm) و(532 nm)، التي تستنتج أن التركيب البلوري النانوي النيتروannouncement الرقيقة كانت ناجحة بواسطة ليزر الداود (410 nm).

الكلمات المفتاحية: أغشية ثنائي أوكسيد السيليكون الرقيقة، Sol – جل، التكثيف، جيود، الأشعة السينية، المجهر الإلكتروني الماسح.