HPV16 Seropositivity and Subsequent HPV16 Infection Risk in a Naturally Infected Population: Comparison of Serological Assays

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

Citation	Lin, Shih-Wen, Arpita Ghosh, Carolina Porras, Sarah C. Markt, Ana Cecilia Rodriguez, Mark Schiffman, Sholom Wacholder, et al. 2013. “HPV16 Seropositivity and Subsequent HPV16 Infection Risk in a Naturally Infected Population: Comparison of Serological Assays.” Ed. Zhi-Ming Zheng. PLoS ONE 8 (1) (January 2): e53067.
Published Version	doi:10.1371/journal.pone.0053067;doi:10.1371/journal.pone.0053067
Citable link	http://nrs.harvard.edu/urn-3:HUL.InstRepos:10908603
Terms of Use	This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Introduction

Infection with carcinogenic human papillomaviruses (HPV), most notably types 16 and 18, is necessary for the development of cervical cancer [1], the third most common cancer in women worldwide [2]. While infection with HPV is quite common, with the lifetime incidence estimated to be 80% [3], most infections become undetectable within 1–2 years [4]. Only a small fraction of
infections with high-risk HPV fail to clear, resulting in overt HPV persistence [5]. Persistent HPV infection is strongly associated with the development of cervical intraepithelial neoplasia grade 3 (CIN3), which progresses to invasive cervical cancer in a minority of cases [6]. Immune responses generated upon HPV infection are likely to be a critical mechanism for preventing, controlling, and eliminating HPV infection [7].

Characterization of the immune responses to HPV virions can help explain how prior infection or immunization protects against future infection and associated disease. Correlates of protection are currently still unclear. Neutralizing antibodies are expected to be the primary immune mechanism for protection against HPV infection [8]. Because of the role of antibodies in preventing HPV infections, serological assays are important for measuring the antibodies or other immune factors directed against HPV, and these assays may identify the individuals who had mounted an immune response to previous exposure to HPV and may be protected against subsequent HPV infection [9].

Serological assays for HPV16 based on different biochemistry include the competitive Luminex immunoassay (cLIA), designed to measure antibodies against a specific neutralizing epitope [10]; the secreted alkaline phosphatase neutralization assay, designed to measure overall neutralizing potential, (SEAP-NA) [11]; and the virus-like particle (VLP)-based enzyme-linked immunosorbent assay (ELISA), designed to measure a broad spectrum of neutralizing and non-neutralizing antibodies directed against the L1 capsid protein [12]. Each assay provides only a partial characterization of immune status, and comparison of seroprevalence across assays is complicated because the assays differ quantitatively, i.e., by throughput and detection range, and qualitatively, i.e., whether they detect antibodies against multiple epitopes, which may be indicative of previous exposure, or neutralizing antibodies that may confer immune protection. Immune responses to HPV measured by currently available assays may or may not predict individual protection [13], but limited work has been done to determine if any measured immune response can define immediate or future protection against HPV infection or associated disease [9,14,15].

Safaeian et al. showed that women who have the highest seropositive tertile of HPV16 and HPV18 antibody levels based on a VLP-based direct ELISA assay are significantly protected from subsequent infection with HPV16 and HPV18, respectively [14], after controlling for risk factors associated with newly detected HPV infection. Due to the potential for serological assays to differentially measure HPV antibody levels in association with protection from subsequent HPV infection, we compared the previous HPV16 results obtained using a VLP-based direct ELISA with results obtained using a VLP-based cLIA and a SEAP-NA. Here, we aimed to identify the assays and seropositivity levels after natural infection that better measure and translate to protective immunity.

Materials and Methods

Study Population

We selected serum samples obtained at enrollment visit prior to vaccination from women in the control arm of the Costa Rica HPV16/18 Vaccine Trial (CVT), a publicly funded, randomized trial of the efficacy of the HPV16/18 vaccine manufactured by GlaxoSmithKline (GSK) for the prevention of HPV16/18 infection and related precancerous lesions among women. Informed consent was received from subjects in the trial (registered as Clinical Trial number NCT00128661), and the details of the trial and characteristics of the trial participants have been described elsewhere [16,17]. All study protocols were reviewed and approved by the National Cancer Institute (NCI) and Costa Rican Institutional Review Boards.

Bio-specimens

Prior to randomization and vaccination, pelvic examinations were conducted on all sexually experienced women, and cervical cells were collected and placed in liquid medium (PreservCyt; Cytex Corporation, now Hologic, Marlborough, MA) for liquid-based cytology (Thin-Prep; Cytex Corporation, now Hologic) and for cervical HPV detection. Blood was collected on all participants, and serum samples were used for HPV serological testing by direct ELISA as part of the trial. After vaccination, women were followed-up annually. At each follow-up visit, cervical samples were collected from sexually experienced women for HPV DNA testing. The SPF10-HPV LiPA25 version 1 system (Labo Biomedical Product, Rijswijk, The Netherlands) was used for all HPV DNA testing, as previously described [14].

Stratified Sampling Strategy

The economical sampling strategy (Figure 1) selected 388 women from 2,814 HPV16 DNA-negative women. Sampling strata were defined based on HPV16 serology as measured by ELISA and incident HPV16 infection. Among 2,814 HPV16 DNA-negative women at enrollment in the control arm who had follow-up HPV test results, 699 women were categorized as HPV16 seropositive and 2,115 as seronegative by the VLP-based direct ELISA at enrollment. Among the HPV16 seropositive women, we included all 60 individuals who developed an incident HPV16 infection and 60 women who were HPV16 seronegative at enrollment and developed an incident HPV16 infection. We included a subset of individuals who did not develop an incident HPV16 infection from among the women who were HPV16 seropositive (n = 243) and among those who were HPV16 seronegative (n = 25) at enrollment. This targeted sampling captured a wide range of ELISA titers, enabling us to compare...
Serology Assays from these 388 participants were tested by all three assays. To explore which assay best predicts protection from subsequent incident HPV16 infection during four years of follow-up, identical enrollment prevaccination serum samples were evaluated by new infection status. The HPV16 direct ELISA against the cLIA and SEAP-NA [18] was performed as previously described at the NCI-SAIC HPV Immunology Laboratory (Frederick, MD) [11], and the standard seropositivity cutoff used for HPV16 was 20 mMU/mL (EU/mL). The cLIA assay was performed as previously described at PPD Vaccines, Biologics and Biomarkers (Wayne, PA), and the standard seropositivity cutoff used for HPVPV16 was 20 mMU/mL [21]. The SEAP-NA was performed as previously described at the NCI-SAIC HPV Immunology Laboratory (Frederick, MD) [11], and the standard seropositivity cutoff used for the HPV16 SEAP-NA was 25.1.

Statistical Analysis

The results from each assay were dichotomized as seropositive or seronegative based on laboratory-based standard cutoffs as defined above. In addition, the seropositive samples were further categorized as “low,” “medium,” and “high” based on tertiles. Because our sampling scheme was based on the prior knowledge of the ELISA results and new infection status, to avoid potentially biased estimates, we derived all of our population-based estimates by using inverse-probability weights to account for the stratified sampling scheme. The sampling fraction for a stratum is the ratio of numbers of stratum members in the stratified sample and in the cohort. The reciprocal of the sampling fraction for a stratum served as the weight for every individual in the stratum. Mann-Whitney p-values were calculated for the comparison of sampling-adjusted medians. To study the association between assay seropositivity and subsequent risk of HPV infection, we derived sampling-adjusted odds ratios (ORs) and 95% CIs from weighted logistic regression. All statistical analyses were run using SAS (v 9.2) and R (v 2.11.1).

Results

Table 1 briefly summarizes the HPV16 serology results for the 388 subjects by incident HPV16 DNA infection status. The subjects’ minimum assay values did not differ by incident HPV16 infection status. However, the maximum assay values as well as the sampling-adjusted median values for subjects who did not develop a new incident infection were at least as high (SEAP-NA) or higher (ELISA and cLIA) than the maximum assay values for subjects who did develop a new incident infection. Those who did not develop a new incident infection had similar or higher sampling-adjusted median assay values compared with those subjects who did develop a new incident infection (Mann–Whitney p-values: ELISA, 0.15; cLIA, 0.29; SEAP-NA, <0.05). Graphical presentation of the results comparing each assay by new infection status is shown in Figure 2.

We then examined the association between enrollment HPV16 serology based on laboratory-based standard seropositivity cutoffs and risk of incident HPV16 infection during four years of follow-up (Table 2). Using these sampling-adjusted population estimates, we found that 9% of the individuals who were categorized as seropositive according to laboratory-based standard cutoffs by the direct ELISA, 5% by the cLIA, and 7% by the SEAP-NA developed an incident infection; by contrast, 11% of individuals who were categorized as seronegative by each assay developed an incident infection. Enrollment HPV16 seropositivity by cLIA was significantly associated with protection from incident HPV16 infection (OR = 0.48, 95% CI = 0.27–0.86, compared with seronegatives). However, as we found in our previous report [14], seropositivity using the standard cutoff for the direct ELISA was not associated with risk of incident HPV16 infection (OR = 0.77, 95% CI = 0.57–1.03, compared with seronegatives). Seropositivity using the standard cutoff for the SEAP-NA was also not associated with risk of incident HPV16 infection (OR = 0.66, 95% CI = 0.31–1.41, compared with seronegatives). In an analysis to consider the potential for cross-protection, we found that seropositivity using standard cutoffs for each of the three assays was not associated with risk of incident HPV31 infection (data not shown). We also examined these associations stratified by enrollment age and enrollment lifetime number of sexual partners and did not observe any differences by these strata (data not shown).

We further analyzed the enrollment HPV16 serological assay results that were considered seropositive in tertiles and their association with risk of incident HPV16 infection during four years of follow-up (Table 3). In our previous report [14], we found that compared with seronegative subjects, those who had the highest seropositive tertile by ELISA were significantly protected from incident infection. Here, we found that those subjects who had the highest seropositive tertile by SEAP-NA were also significantly protected from incident HPV16 infection. While seropositivity by the standard cutoff for the cLIA was associated with protection...
from incident infection, further stratification of positive samples into tertiles did not improve the risk prediction for the cLIA assay.

Lastly, we examined the association between enrollment HPV16 seropositivity by multiple assays and the risk of incident HPV16 infection (Table S1A). Compared with the subjects who were categorized as seronegative by all three assays, those subjects who were seropositive by all three assays (using standard cutoffs) had a significantly lower risk of developing an incident infection.

In our previous work [18], we determined that an alternate seropositivity cutoff of 60 EU/mL for the direct ELISA leads to better concordance between the ELISA and cLIA (at standard cutoff). Those who were seropositive using this alternate seropositivity cutoff for the ELISA had a lower risk of developing an incident infection ($OR = 0.57$, 95% CI = 0.33–0.99). Moreover, we also examined the strata of enrollment serology using this alternate seropositivity cutoff for the ELISA (Table S1B) and found similar results as before, such that subjects who were seropositive by all three assays had a significantly lower risk of developing an incident infection ($OR = 0.42$, 95% CI = 0.20–0.89).

Discussion

Here, we evaluate the association between HPV16-specific immune responses generated following natural infection by three different serological assays and risk of subsequent HPV16 infection. We observed a significant association between enrollment HPV16 seropositivity and protection from subsequent incident HPV16 infection over four years of follow-up; however, the extent of protection was dependent on data categorization for individual serological assays. Women whose levels were above the standard cutoff for the cLIA had half the risk of acquiring an incident infection of seronegative women. The risk of subsequent infection in women with enrollment ELISA or SEAP-NA results in the highest seropositive tertile was significantly lower than that of seronegative women. Also, women who were seropositive by all three assays were less likely to acquire a subsequent incident infection than women who were seronegative by all assays.

The currently available assays we used in this study are heterogeneous. Our point estimates of protection for cLIA and SEAP-NA assays were both stronger than that for the ELISA assay. As a polyclonal antibody assay, the VLP-based direct ELISA measures total serum anti-VLP IgG antibodies to all epitopes presented by VLPs, and therefore, the ELISA was designed to measure total antibodies and may be best for measuring previous exposure to HPV, as explored in another study of this population [22]. The ELISA does not differentiate between type-specific conformational antibodies and type-common antibodies, which tend to be specific for epitopes presented by denatured L1 capsid protein and are usually not neutralizing [23].

By contrast, the cLIA was designed to measure epitope-specific antibodies; as a monoclonal antibody assay, the cLIA was developed to specifically detect antibodies that target one immunodominant epitope of HPV16 L1 (the V5 epitope). In our study, the significant association between cLIA seropositivity based on standard cutoffs and protection is an indication that the cLIA is an assay that captures a more specific measure of protective immunity compared with the ELISA and SEAP-NA. These results suggest that the cLIA, using laboratory-determined, standard seropositivity cutoffs, measures a subset of the overall polyclonal responses measured by the ELISA. Such findings are similar to those of a previous study that compared the ELISA and cLIA and found the assays to be well correlated [15]; however, this paper is the first to show correlation between the ELISA and cLIA among non-immunized individuals.

The cLIA may not measure neutralizing antibodies as comprehensively as the SEAP-NA because the cLIA is a limited assay that measures a single, albeit immunodominant, neutralizing

![Graphical presentation of the results comparing each assay by new infection status](https://example.com/graph.png)

Figure 2. Graphical presentation of the results comparing each assay by new infection status. The results are plotted on the log scale for each assay; the dashed lines represent the standard cutoffs for seropositivity for the assays. (A, B, C) Blue points represent enrollment serology results for those subjects who did not have an incident HPV16 infection, and red squares represent enrollment serology results for subjects for whom we detected an incident HPV16 infection. New infection was detected over four years of follow-up. doi:10.1371/journal.pone.0053067.g002
epitope. However, in our study, the standard seropositivity cutoff for the SEAP-NA was not significantly associated with protection from incident infection, which is surprising considering that it is a biological assay that measures neutralizing potential regardless of immune component or mechanism and is considered the gold standard for measuring protection through the in vivo neutralization potential of serum. However, as a complex biological assay, the SEAP-NA suffers from the limitation of being less reproducible (i.e., higher % CVs) than the ELISA and Luminex-based assays.

A challenge in finding an appropriate HPV serological assay to determine a threshold or correlate of protective immunity is that some naturally infected individuals who do not become seropositive using any currently available assay could still be protected against disease following later re-infection, possibly due to cellular immune responses [10]. Moreover, repeated exposure to HPV may lead to stronger responses, but results from a serologic assay do not provide a history of cumulative exposure. In our study, subjects may have been previously exposed to HPV but developed protective immune responses that were not measured by any of the serological assays; such misclassification would have biased our results to the null. In addition, we cannot determine whether women who were HPV16 DNA-negative were actually exposed, although the numbers of recent sexual partners were the same in the infected and non-infected groups [14]. Nonetheless, we can only measure the “failures” (those for whom we detected a new infection) and derive indirect measures of protection. Another limitation is that we do not know if the new infections over follow-up were the result of actual new infections or reactivated infections.

Table 2. Comparison of HPV16 serology assays at enrollment and protection against incident HPV16 DNA infections during four years of follow-up.

Assay	Enrollment Serology	Incident HPV16 infection	OR (95% CI)	
	New infection, N (%b)	No new infection, N (%)b		
ELISA	Negative	60 (11)	25 (89)	0.77 (0.57–1.03)b
	Positive	60 (9)	243 (91)	
cLIA	Negative	109 (11)	183 (89)	0.48 (0.27–0.86)b
	Positive	11 (5)	85 (95)	
SEAP-NA	Negative	100 (11)	151 (89)	0.66 (0.31–1.41)b
	Positive	20 (7)	117 (93)	
ELISA: VLP-based direct enzyme-linked immunosorbent assay; cLIA: Competitive Luminex immunoassay; SEAP-NA: Secreted alkaline phosphatase protein neutralization assay.				
*Enrollment serology based on laboratory-based standard seropositivity cutoffs: ELISA, 8 EU/mL; cLIA, 20 mMU/mL; SEAP-NA, 25.1.
bSampling-adjusted population estimates (see methods).
bPreviously reported in [14].
doi:10.1371/journal.pone.0053067.t002

Table 3. Odds ratios and 95% confidence intervals for seropositive tertile categorizations of HPV16 assay results at baseline and risk of incident HPV16 DNA infection.

Assay	Enrollment Serology*	Incident HPV16 infection	OR (95% CI)	
	New infection, N (%b)	No new infection, N (%)b		
ELISA	Negative	60 (11)	25 (89)	ref
	Low	20 (9)	73 (91)	0.81 (0.50–1.25)b
	Medium	28 (12)	86 (88)	0.95 (0.63–1.38)b
	High	12 (5)	84 (95)	0.53 (0.28–0.90)b
cLIA	Negative	109 (11)	183 (89)	ref
	Low	4 (6)	25 (94)	0.51 (0.18–1.43)b
	Medium	4 (6)	28 (94)	0.54 (0.19–1.50)b
	High	3 (5)	32 (95)	0.40 (0.12–1.26)b
SEAP-NA	Negative	100 (11)	151 (89)	ref
	Low	8 (13)	14 (87)	1.22 (0.24–6.31)b
	Medium	9 (7)	46 (93)	0.62 (0.31–1.23)b
	High	3 (2)	57 (98)	0.20 (0.06–0.64)b
ELISA: VLP-based direct enzyme-linked immunosorbent assay; cLIA: Competitive Luminex immunoassay; SEAP-NA: Secreted alkaline phosphatase protein neutralization assay.				
*Categorization cutoffs for the ELISA: Low 8–16, Medium >16–59, High >59; cLIA: Low 20–52, Medium >52–120, High >120; SEAP-NA assay: Low 25–32.63, Medium >32.63–93.07, High >93.07.
bSampling-adjusted population estimates (see methods).
bPreviously reported in [14].
doi:10.1371/journal.pone.0053067.t003
Biologic complexities hinder interpreting current HPV serology findings. Protective immunity may be associated not only with antibody levels but also with antibody affinity and avidity, which are not measured by the assays used in this study. The correlation between cell-mediated immunity and antibody levels may explain some of the observed associations between antibody assays and protective immunity to subsequent infection; at the same time, the weakness of the correlation may explain the low ability of antibody levels to identify who is protected from subsequent infection.

We used data and serum collected from the control arm of a community-based vaccine trial that included women who were selected from a population census. Rather than measuring the serum samples from all the eligible HPV16-DNA-negative women in the control arm by all three serological assays (n ≈ 8400 assays), we designed this study using knowledge of prior results that indicated that participants with elevated HPV16 antibody levels (by ELISA) following natural infection had a significant 50% reduced risk of subsequent new HPV16 infection compared with seronegatives. Therefore, we selected women based on their enrollment ELISA seropositivity and their newly detected HPV16 infections over the four-year follow-up period. While the limitation was that all samples were selected based on seropositivity by the ELISA, this sampling strategy was efficient, cost-effective, and allowed for inference to be applied to the original control arm. To account for the sampling strategy and avoid biased estimates, we applied an adjustment to all estimates that were weighted to represent the entire cohort. Antibody levels do not fully explain subsequent protection or susceptibility for HPV infection, so there is a continued need for valid and reliable assays to better determine correlates of protection. Future research efforts should be directed toward correlating measures of virus type-specific immunity with protection against re-infection with these types and toward determining the duration of potential cross-protection from natural immunity.

Supporting Information

Table S1 Risk of HPV16 DNA infection in strata of enrollment HPV16 ELISA, cLIA, and SEAP-NA serology (DOC)

References

1. Bosch FX, Lorincz A, Muñoz N, Meijer CJLM, Shah KV (2002) The causal relation between human papillomavirus and cervical cancer. Journal of Clinical Pathology 55: 244–265.
2. (2008) Cervical Cancer Incidence and Mortality Worldwide in 2008 International Agency for Research on Cancer.
3. Einstein MH, Schiller JT, Viscidi RP, Strickler HD, Coursaget P, et al. (2009) Clinician’s guide to human papillomavirus immunology: knowns and unknowns. The Lancet Infectious Diseases 9: 347–356.
4. Rodríguez AC, Schiffman M, Herrero R, Wacholder S, Hildesheim A, et al. (2008) Rapid Clearance of Human Papillomavirus and Implications for Clinical Focus on Persistent Infections. Journal of the National Cancer Institute 100: 513–517.
5. Frazer IH (2009) Interaction of human papillomaviruses with the host immune system: A well evolved relationship. Virology 384: 410–414.
6. Moscicki AB, Schiffman M, Kjaer S, Villa LL (2006) Chapter 5: Updating the natural history of HPV and anogenital cancer. Vaccine 24: 842–851.
7. Stanley MA (2006) Human papillomavirus vaccines. Rev Med Virol 16: 139–149.
8. Shope RE. (1937) Immunization of rabbits to infectious papillomatosis. The Journal of Experimental Medicine 65: 219–231.
9. Schiffman M, Safaiian M, Wentzensen N (2009) The Use of Human Papillomavirus Seroepidemiology to Inform Vaccine Policy. Sexually Transmitted Diseases 36: 675–679.
10. Das D, Van Dooren J, Schlottmann S, Kelly S, Puchalski D, et al. (2005) Optimization and Validation of a Multiplexed Luminescence Assay To Quantify Antibodies to Neutralizing Epitopes on Human Papillomaviruses 6, 11, 16, and 18. Clin Diagn Lab Immunol 12: 959–969.

Acknowledgments

We would like to extend a special thanks to the women of Guanacaste and Puntarenas, Costa Rica, who gave of themselves in participating in this effort. The affiliations of the members of the CVT group are as follows. At the Proyecto Epidemiológico Guanacaste, Fundación INCENSA, San José, Costa Rica, Marco Alvaro (cytologist), Manuel Barrantes (field supervisor), M. Concepcion Bratti (coinvestigator), Fernando Cárdenas (general field supervisor), Bernal Cortés (specimen and repository manager), Albert Espinoza (head, coding and data entry), Yenny Estrada (pharmacist), Paula Gonzalez (coinvestigator), Diego Guillén (pathologist), Rolando Herrero (co-principal investigator), Silvia E. Jimenez (trial coordinator), Jorge Morales (colposcopist), Lidia Ana Morera (head study nurse), Elmer Pérez (field supervisor), Carolina Porras (coinvestigator), Ana Cecilia Rodríguez (coinvestigator), and Maricela Villagés (clinic physician); at the University of Costa Rica, San José, Costa Rica, Enrique Freer (director, HPV Diagnostics Laboratory), José Bonilla (head, HPV Immunology Laboratory), Sandra Silva (head technician, HPV Diagnostics Laboratory), Iva Amatal (immunology technician), and Margarita Ramirez (immunology technician); at the National Cancer Institute, Bethesda, MD, Nora Macklin (trial coordinator), Allan Hildesheim (co-principal investigator and NCI co-project officer), Douglas R. Lowy (HPV virologist), Mark Schiffman (medical monitor and NCI co-project officer), John T. Schiller (HPV virologist), Mark Sherman (quality control pathologist), Diane Solomon (medical monitor and quality control pathologist), and Sholom Wacholder (statistician); at SAIC, NCI– Frederick, Frederick, MD, Lidia Finto (head, HPV Immunology Laboratory) and Alfonso Garcia-Pineres (scientist, HPV Immunology Laboratory); at Womens and Infants’ Hospital, Providence, RI, Claire Ecklund (quality control, cytology) and Martha Hutchinson (quality control, cytology); and DD Diagnostics Laboratory, Voorburg, The Netherlands, Wim Quint (HPV DNA testing) and Leen-Jan van Doorn (HPV DNA testing), GSK Biologicals, Rixensart, Belgium Catherine Bougelet (HPV16/18 ELISA testing).

Author Contributions

Conceived and designed the experiments: SWL AG CP SCM ACR M. Schiffman SW LAP RH AH M. Safaeian. Performed the experiments: CP ACR PG MTE KM TJK AM WQ LV. Analyzed the data: SWL AG SW M. Safaeian. Contributed reagents/materials/analysis tools: M. Schiffman SW NW MTE KM AM WQ LV. Wrote the paper: SWL.

11. Pastrana DV, Buck CB, Pang Y-YS, Thompson CD, Castle PE, et al. (2004) Reactivity of human sera in a sensitive, high-throughput pseudovirus-based papillomavirus neutralization assay for HPV16 and HPV 18. Virology 321: 205–216.
12. Wideroff L, Schiffman MH, Nommensen B, Hubbert N, Kirkbauer R, et al. (1995) Evaluation of Seroreactivity to Human Papillomavirus Type 16 Virus-like Particles in an Incident Case-Control Study of Cervical Neoplasia. Journal of Infectious Diseases 172: 1425–1430.
13. Frazer IH (2010) Measuring serum antibody to human papillomavirus following infection or vaccination. Gynecologic Oncology 118: S8–S11.
14. Safaeian M, Porras C, Schiffman M, Rodriguez AC, Wacholder S, et al. (2010) Epidemiological Study of Anti-HPV16/18 Seropositivity and Subsequent Risk of HPV16 and -18 Infections. Journal of the National Cancer Institute 102: 1653–1662.
15. Wentzensen N, Rodriguez AC, Viscidi R, Herrero R, Hildesheim A, et al. (2011) A Competitive Serological Assay Shows Naturally Acquired Immunity to Human Papillomavirus Infections in the Guanacaste Natural History Study. Journal of Infectious Diseases 204: 94–102.
16. Hildesheim A, Herrero R, Wacholder S, Rodriguez AC, Solomon D, et al. (2007) Effect of Human Papillomavirus 16/18 L1 Virus-Like Particle Vaccine Among Young Women With Preexisting Infection. JAMA: The Journal of the American Medical Association 298: 743–753.
17. Herrero R, Hildesheim A, Rodriguez AC, Wacholder S, Bratti C, et al. (2008) Rationale and design of a community-based double-blind randomized clinical trial of an HPV 16 and 18 vaccine in Guanacaste, Costa Rica. Vaccine 26: 4795–4808.
18. Safarian M, Ghosh A, Porras C, Lin SW, Rodriguez AC, et al. (2012) Direct comparison of HPV16 serological assays used to define HPV-naive women in HPV vaccine trials. Cancer Epidemiol Biomarkers Prev.

19. Dessy FJ, Giannini SL, Bougelet CA, Kemp TJ, David M-PM, et al. (2008) Correlation between direct ELISA, single epitope-based inhibition ELISA and Pseudovirion-based neutralization assay for measuring anti-HPV-16 and anti-HPV-18 antibody response after vaccination with the AS04-adjuvanted HPV-16/18 cervical cancer vaccine. Human Vaccines 4: 425–434.

20. Harper BM, Franco EL, Wheeler C, Ferris DG, Jenkins D, et al. (2004) Efficacy of a bivalent L1 virus-like particle vaccine in prevention of infection with human papillomavirus types 16 and 18 in young women: a randomised controlled trial. The Lancet 364: 1757–1765.

21. Opalka D, Lachman CE, MacMullen SA, Jansen KU, Smith JF, et al. (2003) Simultaneous Quantitation of Antibodies to Neutralizing Epitopes on Virus-Like Particles for Human Papillomavirus Types 6, 11, 16, and 18 by a Multiplexed Luminex Assay. Clin Diagn Lab Immunol 10: 109–115.

22. Coseo SE, Porras C, Dodd LE, Hildesheim A, Rodriguez AC, et al. (2011) Evaluation of the Polyclonal ELISA HPV Serology Assay as a Biomarker for Human Papillomavirus Exposure. Sexually Transmitted Diseases 38: 976–982 910.1097/OLQ.1090b1013e31822540.c1022540.

23. Smith JF, Kowalski R, Eser MT, Brown MJ, Bryan JT (2008) Evolution of type-specific immunoassays to evaluate the functional immune response to GARDASIL®, a vaccine for Human Papillomavirus types 16, 18, 6, and 11. Human Vaccines 4: 134–142.