A Numerical Approach for Designing Unitary Space Time Codes with Large Diversity Product and Diversity Sum

Guangyue Han1,2, and Joachim Rosenthal
Department of Mathematics, University of Notre Dame
Notre Dame, Indiana 46556, U.S.A.
e-mail: \{ghan, rosen\}@nd.edu, URL: http://www.nd.edu/~ecoding/

Abstract — We define the diversity function and analyze its limiting behavior which results in two important design criteria: the diversity product and the diversity sum. Numerical methods are derived which allows one to construct codes with excellent diversity function and excellent diversity product and sum.

I. INTRODUCTION
A multiple antenna communication system with \(M \) transmit antennas and \(N \) receive antennas operating in a non-coherent Rayleigh flat-fading channel can be characterized by the following equation:

\[
R = \sqrt{\frac{\rho T}{M}} \Phi H + W,
\]

where \(\Phi \) is an element from the unitary signal constellation \(\mathcal{V} := \{ \Phi_1, \ldots, \Phi_L \} \), \(T \) is the quasi-static period.

It is a basic design objective to construct constellations \(\mathcal{V} = \{ \Phi_1, \ldots, \Phi_L \} \) such that the pairwise probabilities \(P_{\Phi_i, \Phi_j} \) are as small as possible. The main purpose of this paper is to develop numerical procedures which allow one to construct unitary constellations with excellent diversity for any set of parameters \(M, N, T, L \) and for any signal to noise ratio \(\rho \).

II. DIVERSITY CRITERIA
We define a simplified function called the diversity function through:

\[
\mathcal{D}(\mathcal{V}, \rho) := \max_{l \neq l'} \frac{1}{2} \prod_{m=1}^{M} \left(1 + \frac{(\rho T/M)^2}{4(1 + \rho T/M)}(1 - \delta_m(\Phi_l^* \Phi_{l'})) \right)^{-N}.
\]

As a result of the limiting behavior analysis of the diversity function, we derive the following design criteria: diversity product (for high SNR) and diversity sum (for low SNR).

The diversity product of a unitary constellation \(\mathcal{V} \) is defined as:

\[
\prod_{l=1}^{L} \frac{\min_{l \neq l'} \left| \prod_{m=1}^{M} (1 - \delta_m(\Phi_l^* \Phi_{l'})) \right|^2}{M}.
\]

The diversity sum is defined as follows: The diversity sum of a unitary constellation \(\mathcal{V} \) is defined as:

\[
\sum_{l=1}^{L} \sqrt{\frac{1 - \|\Phi_l^* \Phi_{l'}\|^2}{M}}.
\]

In general it seems to be difficult to come up with algebraic constructions of constellations with good diversity sum/product or more general good diversity function. In the next section we outline how numerical techniques can lead to near optimal constellations. More details on this can be found in [2]. Essential in the numerical algorithms is the Cayley transform [3].

1Both authors were supported in part by NSF grants DMS-00-72483 and CCR-02-05310.
2Supported by a fellowship from the Center of Applied Mathematics at the University of Notre Dame.

III. NUMERICAL DESIGN OF UNITARY CONSTELLATIONS WITH GOOD DIVERSITY
We used Simulated Annealing Algorithm (SA) and Genetic Algorithm (GA) (see e.g. [1]) to search the optimized constellation. The following constellations were all obtained in less than 3 minutes on an Intel Pentium 800MHz PC.

Results on Diversity Sum (GA)

size	dim=2	optimal DS	dim=3	dim=4	dim=5
3	0.860	0.8860	0.833	0.811	0.779
4	0.802	0.8165	0.780	0.775	0.749
6	0.744	0.7746	0.750	0.729	0.717
10	0.683	0.7071	0.698	0.692	0.681

IV. CONSTELLATIONS OF DIFFERENT DIMENSIONS
We used Genetic Algorithm to optimize the diversity product and diversity sum at the same time to derive two constellations of dimension 3 and 4 respectively. We have chosen the size in such that the rate is comparable in each case.

size	rate	DP	DS	
2 dim	3	0.7925	0.8660	0.8660
3 dim	5	0.7740	0.7183	0.7454
4 dim	9	0.7925	0.5904	0.6403

The first graph below illustrates the performance of the three different constellations. One can see how the 4-dimensional constellation really performs well at high SNR.

REFERENCES
[1] D. A. Coley. An introduction to genetic algorithms for scientists and engineers. Singapore; River Edge, NJ: World Scientific, 1999.
[2] G. Han and J. Rosenthal. A numerical approach for designing unitary space time codes with large diversity. E-print math.OC/0211134, November 2002.
[3] B. Hassibi and B. M. Hochwald. Cayley differential unitary space-time codes. IEEE Trans. Inform. Theory, 48(6):1485-1503, 2002. Special issue on Shannon theory: perspective, trends, and applications.