DNA methylation repels targeting of *Arabidopsis* REF6

Qi Qiu1,2,6, Hailiang Mei1,6, Xian Deng1,6, Kaixuan He1,2,6, Baixing Wu3,6, Qingqing Yao3, Jixiang Zhang2,4, Falong Lu2,4, Jinbiao Ma3 & Xiaofeng Cao1,2,5

RELATIVE OF EARLY FLOWERING 6 (REF6/JMJ12), a Jumonji C (JmjC)-domain-containing H3K27me3 histone demethylase, finds its target loci in *Arabidopsis* genome by directly recognizing the CTCTGYTY motif via its zinc-finger (ZnF) domains. REF6 tends to bind motifs located in active chromatin states that are depleted for heterochromatic modifications. However, the underlying mechanism remains unknown. Here, we show that REF6 preferentially bind to hypo-methylated CTCTGYTY motifs in vivo, and that CHG methylation decreases REF6 DNA binding affinity in vitro. In addition, crystal structures of ZnF-clusters in complex with DNA oligonucleotides reveal that 5-methylcytosine is unfavorable for REF6 binding. In *drm1 drm2 cmt2 cmt3 (ddcc)* quadruple mutants, in which non-CG methylation is significantly reduced, REF6 can ectopically bind a small number of new target loci, most of which are located in or neighbored with short TEs in euchromatic regions. Collectively, our findings reveal that DNA methylation, likely acting in combination with other epigenetic modifications, may partially explain why REF6 binding is depleted in heterochromatic loci.

1 State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China. 2 University of Chinese Academy of Sciences, Beijing 100049, China. 3 State Key Laboratory of Genetic Engineering, Collaborative Innovation Centre of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China. 4 State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China. 5 Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Beijing 100101, China. 6 These authors contributed equally: Qi Qiu, Hailiang Mei, Xian Deng, Kaixuan He, Baixing Wu. Correspondence and requests for materials should be addressed to J. M. (email: majb@fudan.edu.cn) or to X.C. (email: xfcao@genetics.ac.cn)
Polycomb-mediated trimethylation of histone H3 lysine 27 (H3K27me3), a conserved epigenetic mark associated with chromatin compaction and gene repression, plays a key role in cell identity and developmental regulation in multicellular eukaryotes. Dynamic regulation of H3K27me3 at specific targets, which is essential for normal development, is achieved by balancing the activity of histone methyltransferases and demethylases of H3K27me3. The RELATIVE OF EARLY FLOWERING 6 protein (REF6/JMJD12), a Junomii C (JmjC) domain-containing histone demethylase, specifically demethylates H3K27me3 at its target loci. REF6 has intrinsic DNA-binding ability and specifically recognizes its target sequence (CTCTGTYT motif, T = G or C) via tandem zinc-finger (Znf) domains located at its C-terminus. Target recognition by REF6 is required for recruitment of the SWI/SNF-type chromatin remodeler BRAHMA to the enzymes’ common target loci. However, CTCTGTYT motifs are not sufficient for REF6 recruitment, and only ~15% of such sequences in the Arabidopsis genome are bound by the enzyme, suggesting that an additional layer of regulation is involved in targeting REF6 in order to precisely control the level of H3K27me3 at developmentally important loci.

5-methylcytosine (5mC), is an evolutionarily conserved epigenetic mark. Accordingly, 5mC has long been considered the ‘fifth base’ in eukaryotic genomes, providing another layer of genome regulation. DNA methylation fine-tunes gene expression and transposon silencing, playing important roles in maintenance of the structure and function of heterochromatin, genome stability, genomic imprinting, transgene silencing, and gene evolution. In animals, almost all methylated cytosines occur in the CG context. However, plant cytosines can be methylated in symmetrical CG and CHG (H = A, T, or C) contexts, but at lower levels in the non-symmetrical CHH context. In Arabidopsis, DNA methylation in all three contexts are enriched in transposons and short transposable elements (TEs), the 24nt-siRNA targeting DOMAINS REARRANGED METHYLTRANSFERASE 2 (DRM2) maintains CHH methylation, while the CHG methylation and H3K9me2 form a self-reinforcing loop between CHROMOMETHYLASE 3 (CMT3) and KRYPTONITE (KYP) in long TEs, both CMT2 and CMT3 mediate CHG methylation, and CMT2 mediates CHI methylation through binding to H3K9me1. Strikingly, non-CG methylation almost lost in drm1, drm2, cmt2, cmt3 (ddcc) quadruple mutant, which shows a global increase of RNA-seq reads in heterochromatic regions, suggesting different non-CG pathways cooperate to silence TEs in the genome.

Within the context of chromatin, there is a complex crosstalk between DNA methylation and histone modifications, especially histone methylation. It was well studied that DNA methylation and histone H3K9 methylation form a self-reinforcing loop to maintain heterochromatic state in Arabidopsis. On the other hand, recent work from mammalian system reveals that cytosine methylation impacts binding of transcription factors (TFs), CTCF, and polycomb-like proteins (PCLs), one family of PRC2-associated factors, to specific DNA sequence, which may affect transcription states, higher-order chromatin interactions and chromatin states. A high-throughput TF-binding site discovery method, namely DNA affinity purification sequencing (DAP-seq), allows to identify the potential genomic-binding sites of several hundreds of TFs. Using this method, they found that 76% of Arabidopsis TFs they studied were sensitive to DNA methylation. However, whether and to what extent DNA methylation affects the binding of a transcriptional activating histone-modifying enzyme genome-wide in vivo, especially in plant, is largely unknown.

In this study, we show that non-CG methylation in CTCTGTYT motifs is one way to prevent REF6 targeting. Structural analysis demonstrates that CHG methylation is unfavorable for REF6 binding and attenuates REF6-binding affinity. In vivo chromatin immunoprecipitation (ChIP) coupled with high-throughput bisulfite sequencing (ChIP-BS-seq) result shows that REF6 prefers to bind hypo-methylated DNA and ectopically binds to multiple new targets in ddcc quadruple mutant where non-CG methylation is significantly diminished. Our findings not only demonstrate the targeting mechanism of REF6, but also reveal a mechanism for a transcriptional-activating histone-modifying enzyme in avoiding heterochromatic binding through its intrinsic DNA methylation unfavorable DNA-binding activity.

Results

REF6 prefers to bind DNA hypo-methylated regions. Because REF6-bound regions are depleted in heterochromatin regions marked by H3K9me2, which is strongly associated with DNA methylation and is required for recruitment of the SWI/SNF-type chromatin remodeler BRAHMA to the enzymes’ common target loci. However, CTCTGTYT motifs are not sufficient for REF6 recruitment, and only ~15% of such sequences in the Arabidopsis genome are bound by the enzyme, suggesting that an additional layer of regulation is involved in targeting REF6 in order to precisely control the level of H3K27me3 at developmentally important loci.

5-methylcytosine (5mC), is an evolutionarily conserved epigenetic mark. Accordingly, 5mC has long been considered the ‘fifth base’ in eukaryotic genomes, providing another layer of genome regulation. DNA methylation fine-tunes gene expression and transposon silencing, playing important roles in maintenance of the structure and function of heterochromatin, genome stability, genomic imprinting, transgene silencing, and gene evolution. In animals, almost all methylated cytosines occur in the CG context. However, plant cytosines can be methylated in symmetrical CG and CHG (H = A, T, or C) contexts, but at lower levels in the non-symmetrical CHH context. In Arabidopsis, DNA methylation in all three contexts are enriched in transposons and short transposable elements (TEs), the 24nt-siRNA targeting DOMAINS REARRANGED METHYLTRANSFERASE 2 (DRM2) maintains CHH methylation, while the CHG methylation and H3K9me2 form a self-reinforcing loop between CHROMOMETHYLASE 3 (CMT3) and KRYPTONITE (KYP) in long TEs, both CMT2 and CMT3 mediate CHG methylation, and CMT2 mediates CHI methylation through binding to H3K9me1. Strikingly, non-CG methylation almost lost in drm1, drm2, cmt2, cmt3 (ddcc) quadruple mutant, which shows a global increase of RNA-seq reads in heterochromatic regions, suggesting different non-CG pathways cooperate to silence TEs in the genome.

Within the context of chromatin, there is a complex crosstalk between DNA methylation and histone modifications, especially histone methylation. It was well studied that DNA methylation and histone H3K9 methylation form a self-reinforcing loop to maintain heterochromatic state in Arabidopsis. On the other hand, recent work from mammalian system reveals that cytosine methylation impacts binding of transcription factors (TFs), CTCF, and polycomb-like proteins (PCLs), one family of PRC2-associated factors, to specific DNA sequence, which may affect transcription states, higher-order chromatin interactions and chromatin states. A high-throughput TF-binding site discovery method, namely DNA affinity purification sequencing (DAP-seq), allows to identify the potential genomic-binding sites of several hundreds of TFs. Using this method, they found that 76% of Arabidopsis TFs they studied were sensitive to DNA methylation. However, whether and to what extent DNA methylation affects the binding of a transcriptional activating histone-modifying enzyme genome-wide in vivo, especially in plant, is largely unknown.

In this study, we show that non-CG methylation in CTCTGTYT motifs is one way to prevent REF6 targeting. Structural analysis demonstrates that CHG methylation is unfavorable for REF6 binding and attenuates REF6-binding affinity. In vivo chromatin immunoprecipitation (ChIP) coupled with high-throughput bisulfite sequencing (ChIP-BS-seq) result shows that REF6 prefers to bind hypo-methylated DNA and ectopically binds to multiple new targets in ddcc quadruple mutant where non-CG methylation is significantly diminished. Our findings not only demonstrate the targeting mechanism of REF6, but also reveal a mechanism for a transcriptional-activating histone-modifying enzyme in avoiding heterochromatic binding through its intrinsic DNA methylation unfavorable DNA-binding activity.

Results

REF6 prefers to bind DNA hypo-methylated regions. Because REF6-bound regions are depleted in heterochromatin regions marked by H3K9me2, which is strongly associated with DNA methylation and is required for recruitment of the SWI/SNF-type chromatin remodeler BRAHMA to the enzymes’ common target loci. However, CTCTGTYT motifs are not sufficient for REF6 recruitment, and only ~15% of such sequences in the Arabidopsis genome are bound by the enzyme, suggesting that an additional layer of regulation is involved in targeting REF6 in order to precisely control the level of H3K27me3 at developmentally important loci.

5-methylcytosine (5mC), is an evolutionarily conserved epigenetic mark. Accordingly, 5mC has long been considered the ‘fifth base’ in eukaryotic genomes, providing another layer of genome regulation. DNA methylation fine-tunes gene expression and transposon silencing, playing important roles in maintenance of the structure and function of heterochromatin, genome stability, genomic imprinting, transgene silencing, and gene evolution. In animals, almost all methylated cytosines occur in the CG context. However, plant cytosines can be methylated in symmetrical CG and CHG (H = A, T, or C) contexts, but at lower levels in the non-symmetrical CHH context. In Arabidopsis, DNA methylation in all three contexts are enriched in transposons and short transposable elements (TEs), the 24nt-siRNA targeting DOMAINS REARRANGED METHYLTRANSFERASE 2 (DRM2) maintains CHH methylation, while the CHG methylation and H3K9me2 form a self-reinforcing loop between CHROMOMETHYLASE 3 (CMT3) and KRYPTONITE (KYP) in long TEs, both CMT2 and CMT3 mediate CHG methylation, and CMT2 mediates CHI methylation through binding to H3K9me1. Strikingly, non-CG methylation almost lost in drm1, drm2, cmt2, cmt3 (ddcc) quadruple mutant, which shows a global increase of RNA-seq reads in heterochromatic regions, suggesting different non-CG pathways cooperate to silence TEs in the genome.

Within the context of chromatin, there is a complex crosstalk between DNA methylation and histone modifications, especially histone methylation. It was well studied that DNA methylation and histone H3K9 methylation form a self-reinforcing loop to maintain heterochromatic state in Arabidopsis. On the other hand, recent work from mammalian system reveals that cytosine methylation impacts binding of transcription factors (TFs), CTCF, and polycomb-like proteins (PCLs), one family of PRC2-associated factors, to specific DNA sequence, which may affect transcription states, higher-order chromatin interactions and chromatin states. A high-throughput TF-binding site discovery method, namely DNA affinity purification sequencing (DAP-seq), allows to identify the potential genomic-binding sites of several hundreds of TFs. Using this method, they found that 76% of Arabidopsis TFs they studied were sensitive to DNA methylation. However, whether and to what extent DNA methylation affects the binding of a transcriptional activating histone-modifying enzyme genome-wide in vivo, especially in plant, is largely unknown.

In this study, we show that non-CG methylation in CTCTGTYT motifs is one way to prevent REF6 targeting. Structural analysis demonstrates that CHG methylation is unfavorable for REF6 binding and attenuates REF6-binding affinity. In vivo chromatin immunoprecipitation (ChIP) coupled with high-throughput bisulfite sequencing (ChIP-BS-seq) result shows that REF6 prefers to bind hypo-methylated DNA and ectopically binds to multiple new targets in ddcc quadruple mutant where non-CG methylation is significantly diminished. Our findings not only demonstrate the targeting mechanism of REF6, but also reveal a mechanism for a transcriptional-activating histone-modifying enzyme in avoiding heterochromatic binding through its intrinsic DNA methylation unfavorable DNA-binding activity.
Cytosine methylation decreases DNA-binding affinity of REF6.

To determine whether and to what extent 5mC repels direct binding of REF6 to CTCTGTYT motifs, we performed electromobility shift assays (EMSA) using 50-bp DNA fragments from the AT1G02230 and AT4G11710 genes, both of which contain the CTCTGTTT motif, with or without 5mC. The probes were incubated with recombinant GST-tagged C-terminal REF6 fused to a tandem array of four Cys2-His2 (C2H2)-ZnFs (GST-REF6C, 1239–1360 a.a.). GST-REF6C bound all probes well in the absence of 5mC, as we reported previously7 (Fig. 3). DNA probes with differential 5mCs on the top strand (5mC1, CHH context) completely abolished the protein–DNA interaction (Fig. 3).

Crystal structures of REF6 ZnF-clusters and unmethylated DNA. To determine in greater detail why REF6 binding to methylated cytosine is unfavorable, we solved the crystal structures of REF6 ZnF-clusters bound to double-stranded DNA of NAC004 containing the CTCTGTTT motif and methylated DNA of NAC004_5mC1 (ZnF2-4-5mC1) and NAC004_5mC3 (ZnF2-4-5mC3) (Fig. 4a and Supplementary Fig. 3). Detailed diffraction statistics were summarized in Supplementary Table 2. ZnF domains adopt the canonical βαβ fold, with a small β-sheet packed against a helix in a globular structure, and wrap more than one turn of the DNA double helix, interacting with DNA in the major groove with a classic α-helix (Fig. 4b). Although the overall structures of the REF6 ZnF domains were similar between complexes with methylated or unmethylated DNA oligos, there are minor conformational changes when DNA strands carrying low affinity for 5mC5, we could not obtain a crystal structure of REF6–5mC3 complex, F1339 contributes some hydrophobic interactions to the binding of the 5mC5, but it could not compensate for the repulsion from the side chain of D1342 due to repellency from the carboxyl group (Fig. 4c and Supplementary Fig. 3). In ZnF2-4-5mC1 complex, S1312 denotes the repelling force to the methyl-group (Fig. 4d and Supplementary Fig. 3b). Because REF6-ZnFs have low affinity for 5mC5, we could not obtain a crystal structure of ZnF2-4 with 5mC5 probes. Modeling analysis suggested that the presence of a methyl group at the C5 atom of C5 would sterically obstruct W1311 in the cytosine-specific conformation (Fig. 4e), explaining the diminished binding to the C5-methylated oligo (Fig. 3).

A recent global analysis revealed that cytosine methylation impacts binding of TFs to DNA: hydrophobic interactions promote direct binding, whereas steric hindrance inhibits...
DNA methylation represses REF6 binding at specific loci. In contrast to the situation in mammals, non-CG methylation is abundant in heterochromatin regions in Arabidopsis. DNA methylation at non-CG context is primarily mediated by DRM1, DRM2, CMT2, and CMT3. DNA methylation at non-CG context are primarily mediated by DRM1, DRM2, CMT2, and CMT3, respectively.

Non-CG methylation in the Arabidopsis genome is mostly absent in drm1 drm2 cmt2 cmt3 (ddcc) quadruple mutants (Supplementary Table 4). To investigate whether non-CG methylation blocks REF6 binding in vivo, we profiled the genome-wide localization of REF6 in wild-type Col and ddcc mutants by ChIP coupled with high-throughput sequencing (ChIP-seq) (Supplementary Table 1). Two biological replicates of REF6 ChIP-seq with anti-REF6 antibody showed high Pearson correlation coefficient with each other (Supplementary Fig. 5a, b). It revealed that in Col, a total of 2026 of 600 bp REF6-binding peaks covering 1907 genes were bound by REF6, 88% of which have one or more CTCTGYTY motifs; these results were highly correlated ($r = 0.83$) with those REF6-HA ChIP-seq using anti-HA antibody (Supplementary Fig. 5c). Moreover, REF6 target genes were efficiently enriched in Col in comparison with a ref6 mutant (Supplementary Fig. 5d), indicating that the anti-REF6 antibody worked well.

Within 1220 CTCTGYTY-motifs containing loci of CHG hypomethylated differentially methylated regions (DMR) in euchromatin (from chromosome arm), REF6 exhibited ectopic binding in ~14 loci in ddcc mutant with two biological replicates for REF6 ChIP-seq (Fig. 5a, b, Supplementary Fig. 6a, and Supplementary Table 4). Although the number of ectopic-binding peaks of REF6 is relatively low in ddcc mutant, the binding affinity to these sites are significantly and reproducibly high (Fig. 5b), indicating these ectopic-binding peaks are bona fide REF6-binding sites in ddcc mutant. Loss of non-CG methylation has minor effects on euchromatic structures associated with gene expression in ddcc mutant. Here we found that most of these ectopic REF6-binding sites in ddcc are located in or neighbored with short TEs in euchromatic regions, and some of these ectopic-binding events are associated with transcriptional activation of TEs or their neighbor protein-coding genes (Supplementary Fig. 6b).

In addition, we validated REF6 binding at these new target sites in Col, ddcc, cmt2, cmt3, and drm1 drm2 mutants by quantitative PCR (ChIP-qPCR), using an independent batch of samples. Consistent with the ChIP-seq results, REF6 bound to the new target loci in ddcc and cmt3 mutants, but not in cmt2 or drm1 drm2 mutants (Fig. 5c and Supplementary Fig. 6c). The ectopic-binding sites were located in restricted regions with low levels of H3K9me2 on chromosome arms (Fig. 5d and Supplementary Fig. 7). Because CMT3 methylates cytosines predominantly in the CHG context, these results indicate that DNA methylation in the CHG context of the CTCTGYTY motif play more important roles in repelling REF6 binding (Fig. 6).

Discussion

Taken together, the findings described here demonstrate how DNA cytosine methylation regulates the affinity of a plant H3K27me3 demethylase, REF6, to CTCTGYTY-motif both in vitro and in vivo. It is unclear why REF6 prefers to bind CTCTGYTY-motif in euchromatic regions and depletes from heterochromatic regions. One mechanism, we tested here, is that DNA methylation may directly repress REF6-binding to motifs located in heterochromatic regions and potentially avoids unwanted transcriptional activation in heterochromatin.

Although DNA methylation on CTCTGYTY motif is sufficient to repel REF6-binding in vitro (Figs. 3 and 4), loss of DNA methylation seems necessary but not sufficient for ectopic REF6-binding in vivo. Comparing with DNA-binding proteins in mammalian systems, such as OCT4, only ectopically bind to very limited number of loci even in mutants with dramatic decrease of non-CG DNA methylation. It is speculated that REF6 ectopic-binding sites in ddcc mutant result from not only loss of
Fig. 3 Cytosine methylation decreases DNA-binding affinity of REF6-ZnF in vitro. EMSA with NAC004 (AT1G02230) and AT4G11710 probes. REF6-ZnF specifically bound the unmethylated probes, but had significantly lower (or no) affinity for probe sequences containing one or more methylated cytosines. Source data are provided as a Source Data file.

Fig. 4 Molecular basis of REF6 ZnF-clusters and unmethylated DNA. a DNA sequence used for crystal analysis and ITC assay. NAC004P is the partial of NAC004 probe. b Crystal structure of REF6 ZnF2-4 in complex with NAC004 dsDNA. Zinc finger domains are highlighted in blue (ZnF2), lime green (ZnF3), and purple (ZnF4). ZnF2-4 and DNA are shown as cartoon representations. The coding strand of DNA is shown in gray, and the non-coding strand in black. Spheres are Zn atoms. c Structural basis of the interaction of mC1 with F1339 and D1342. F1339 engages in hydrophobic interactions with 5mC1 and D1342 forms a weak C-H-O type of hydrogen bond with the 5mC methyl group. d Structural basis of interaction of mC3 with S1312 and E1315. S1312 makes a weak C-H-O type of hydrogen bond with the 5mC methyl group and E1315 forms a direct H-bond with mC3. e Modeling a methyl group onto unmodified C5 in the non-coding strand reveals potential steric hindrance (indicated by a red star) with W1311. f ITC assays showing decreased interaction between REF6-ZnFs and methylated DNA probes. NDB no detectable binding.
Fig. 5 DNA methylation represses REF6 binding at specific loci.

a. REF6 ChIP-seq signal at all regions in wild-type Col and the ddc mutant. The thick red dots represent the region in b.

b. Genome-browser view of REF6 binding and DNA methylation in Col and the ddc mutant at the AT2TE32120 and ATSTE57090 loci. The CUC1 locus was used as the control. Gene models from TAIR10 are shown in black at the bottom of the panel.

c. ChIP-qPCR validation of REF6 binding at AT2TE32120 and ATSTE57090, using ChIP samples of another biological replicate, in wild-type Col and the ddc, cmt2-3, cmt3-11, and dml drm2 mutants. HB23 and NC4 were used as positive and negative controls, respectively. ChIP-qPCR was performed in three technical replicates. Error bars indicate mean ± SE from three independent experiments. The individual data points are shown as dots. Source data are provided as a Source Data file.

d. Distribution of REF6 ChIP-seq signal, TEs (red dot), and H3K9me2 density (yellow line) across chromosome 2. Blue lines with arrows indicate ectopic-binding sites in ddc mutants, one of which is shown at the top right corner. Gray shading covering the area of high H3K9me2 density represent the heterochromatin regions.

Fig. 6 Model of how DNA methylation prevents REF6 binding to the CTCTGYTY motif.
DNA methylation, but also changes of other chromatin features. Additional factors, such as other epigenetic markers of heterochromatin and higher-order chromatin structure, may prevent REF6 from targeting to heterochromatomatic regions. It is still unclear what features of specific short TEs in the genome enabling REF6-targeting them in ddc mutant. In future studies, it will be of great interest to further explore how recruitment of a chromatin-modifying enzyme is tightly regulated to achieve the appropriate level of chromatin modification and maintain proper chromatin status at the right place in the genome.

Methods

Plant materials. All mutant lines used in this study were in the Columbia (Col) ecotype background. ref6-5 (SALK_059549), cm7-2 (SALK_028747), cm7-11 (SALK_148311), and ddc-1 (SALK_063382) mutants were ordered from the Arabidopsis Biological Resource Center. The dmm-2; dmm-2; cm7-2; cm7-11 quadruple mutant, described previously, was a kind gift from Steve Jacobsen’s lab. All Arabidopsis materials were grown on half-strength Murashige and Skoog (MS) medium containing 1% sucrose at 22 °C under long-day conditions (LD: 16 h light, 8 h dark), and 10-day-old seedlings were used for all experiments.

Chromatin immunoprecipitation. About 3 g of seedlings were collected without crosslinking and stored at -80 °C until use. ChIP was performed as previously described with minor modifications. Briefly, plant tissues were ground to a fine powder in liquid nitrogen and resuspended in 30 ml of ChIP extraction buffer 1 (0.4 M sucrose, 10 mM Tris–HCl, 10 mM MgCl2, 1 mM dithiothreitol [DTT], 0.1 mM PMSF, protease inhibitor cocktail, pH 8.0). After the powder dissolved, 810 μl of glycerol solution (1% glycerol added to 1% Trition X-100, final) was added. Then the sample was incubated at 4 °C for 10 min on a rotating mixer to crosslink DNA and protein. The crosslinking reaction was quenched by adding 1.9 ml of 2 M glycine, followed by incubation at 4 °C for 5 min. The nuclear pellet was isolated as described previously, and then resuspended with high-salt buffer (20 mM Tris–HCl, 500 mM NaCl, 1 mM EDTA, 1% Triton X-100, 0.1% SDS, pH 8.0) and kept on ice for 30 min before sonication. The samples were sonicated for 12 min (15 s on, 30 s off, for 16,000 times, high intensity) in a BIORUPTOR (Diagenode UCD-200, Belgium) to yield DNA fragments of 0.2–2 kbp. Lysates were cleared by centrifugation (16,000g, 10 min, 4 °C) and diluted with one volume of 20 mM Tris–HCl (pH 8.0) before counting in an overlying layer of anti-REF6 antibody (Abcam against peptide EQDSGDHGEHARDDG). After 5% of the sample was set aside as input, the rest of the supernatant was incubated with antibody-bound Dynabeads Protein G (Life Technologies, 10003D, 30 μl beads bound to 0.4 μg RE6 antibodies according to the user’s manual) at 4 °C for 3 h on a rotating mixer. Beads were washed twice for 5 min at 4 °C in low-salt washing buffer (20 mM Tris–HCl, 150 mM NaCl, 1 mM EDTA, 1% Triton X-100, 0.1% SDS, pH 8.0), followed by two washes for 5 min in high-salt buffer, one wash for 5 min in TBST, and one wash in TE (10 mM Tris–HCl, 1 mM EDTA, pH 8.0). DNA elution, reverse-crosslinking, and DNA purification steps were performed as described previously.

The ChIP DNA was subjected to qPCR analysis or Illumina sequencing. For ChIP-seq analysis, DNA was eluted and cloned into pGEX-6P-1 (GE Healthcare). Plasmids were transformed into E. coli BL21 (DE3) (Stratagene). Bacterial cultures were cultured at 37 °C in LB medium; Cleaved 3′ was added to a final concentration of 150 μM. Expression of recombinant proteins was induced by addition of 0.2 mM L-arabinose to 101-102-glucosidase and incubation at 18 °C overnight. Bacteria were harvested and lysed with a high-pressure cell cracker in lysis buffer containing 20 mM Tris–HCl, pH 7.5, 250 mM NaCl. After centrifugation, the cleared extract was incubated with glutathione sepharose 4 fast flow beads (GE Healthcare). GST fusion proteins were eluted with 20 mM Tris–HCl (pH 7.5), 250 mM NaCl, and 10 mM glutathione, and then loaded onto a HiTrap-SP column (GE Healthcare). The GST tag bound to the SP column was removed using PreScission protease (purified in-house). Protein was further purified on HiTrap SP columns and a HiLoad Superdex 75 16/60 column (GE Healthcare), and concentrated to 26 mg/ml in 20 mM Tris–HCl (pH 7.5), 0.5 M NaCl.

Electrophoretic mobility shift assay (EMSA). The RE6F fragment (encoding amino acids 1239–1360 including the stop codon) was cloned into pGEX-6P-1 (GE Healthcare), expressed in E. coli (BL21 codon plus, Stratagene), and purified using Glutathione Sepharose 4B beads (GE Healthcare) as described previously. EMSA was performed as described with minor modifications. Complementary oligonucleotides with or without 5mC modifications were annealed and 5′-labelled using T4-PATP (NEB, M0101). About 100 ng of GST-REF6F protein and 3 μl 5′-labelled probes were incubated in 10 μl reaction mixture (containing 25 mM Tris–HCl, 100 mM NaCl, 2.5 mM MgCl2, 0.1% CA-630, 10% glycerol, 1 μM ZnSO4, and 1 mM DTT, pH 8.0) for 1 h on ice, and then separated in 6% native polyacrylamide gel in 0.5X TBE buffer (40 mM Tris–HCl, 45 mM boric acid, 1 mM EDTA, pH 8.3) at 80 V for about 80 min (room temperature). Source data are provided as a Source Data file.

Recombinant protein expression and purification. DNA fragments encoding the ZnF-4 domain (residues 1260–1360) and ZnF-3 domain (residues 1239–1360) of A. thaliana RE6F protein were PCR-amplified and cloned into pGEX-6P-1 (GE Healthcare). Plasmids were transformed into E. coli BL21 (DE3) (Stratagene). Bacterial cells were cultured at 37 °C in LB medium; Cleaved 3′ was added to a final concentration of 150 μM. Expression of recombinant proteins was induced by addition of 0.2 mM L-arabinose to 101-102-glucosidase and incubation at 18 °C overnight. Bacteria were harvested and lysed with a high-pressure cell cracker in lysis buffer containing 20 mM Tris–HCl, pH 7.5, 250 mM NaCl. After centrifugation, the cleared extract was incubated with glutathione sepharose 4 fast flow beads (GE Healthcare). GST fusion proteins were eluted with 20 mM Tris–HCl (pH 7.5), 250 mM NaCl, and 10 mM glutathione, and then loaded onto a HiTrap-SP column (GE Healthcare). The GST tag bound to the SP column was removed using PreScission protease (purified in-house). Protein was further purified on HiTrap SP columns and a HiLoad Superdex 75 16/60 column (GE Healthcare), and concentrated to 26 mg/ml in 20 mM Tris–HCl (pH 7.5), 0.5 M NaCl.

Isothermal titration calorimetry. ITC measurements for DNA binding were performed at 25 °C on an iTC200 calorimeter (Microcal). REF6 ZnF-4 (residues 1239–1360, without the GST tag) and DNA substrates were dialyzed in 20 mM Tris–HCl (pH 7.5), 150 mM NaCl, 20 μM ZnCl2. The DNA concentration in the cell was 16 μM, and the protein concentration in the injection syringe was 200 μM. Raw data were analyzed using the MicroCal ORIGEN software with a single-site binding model.

Crystallography. Before crystallization, purified proteins (10 mg/ml) were incubated with annealed oligonucleotides at a molar ratio of 1:1.2 for 0.5 h at room temperature. Crystals were obtained by the hanging-drop method. Crystals of ZnF-2–NAC004 were grown in 12% PEG 3550, 0.2 M NaH2PO4. Crystals of ZnF-2–NAC001 were also prepared from 14% PEG 3550, 0.1 M NaH2PO4, 0.1 M NaCl, 0.1 M Na2SO4, pH 7.0. Crystals of ZnF-2–NAC004Smc3 were grown in 16% PEG 3550, 0.03 M citrate acid, 0.07 M biss-tris propane (pH 7.6). All crystals grew within 1 day at 18 °C.
Crystals were flash-frozen by plunging into liquid nitrogen. X-ray diffraction data were collected at beamline BL-19U1 of the Shanghai Synchrotron Radiation Facility (SSRF). HKL-3000 was used for diffraction data processing. The structure of ZnF2-4 was solved by molecular replacement with the coordinates of 4ZS as the model, and the other crystal structures were solved by molecular replacement with the coordinates of ZnF2-4, using the PHENIX and Phaser programs. All structural models were refined with REFMAC5 in the CCP4 package. The coordinates of ZnF2-4 were deposited in the Gene Expression Omnibus under accession number GSE11830. The source data underlying Fig. 3, Fig. 5c, Supplementary Fig. 5d, and Supplementary Fig. 6c are provided as a Source Data file.

Received: 13 August 2018 Accepted: 2 April 2019
Published online: 02 May 2019

References

1. Lewis, E. B. A gene complex controlling segmentation in Drosophila. Nature 276, 565–570 (1978).
2. Goodrich, J. et al. A Polycistrom–group regulatory network controls homeotic gene expression in Arabidopsis. Nature 386, 41–51 (1997).
3. Xiao, J. & Wagner, D. Polycomb repression in the regulation of growth and development in Arabidopsis. Curr. Opin. Plant Biol. 23, 15–24 (2015).
4. Lu, F. et al. Comparative analysis of JmjC domain-containing proteins reveals the potential histone demethylases in Arabidopsis and rice. J. Integr. Plant Biol. 50, 886–896 (2008).
5. Margueron, R. & Reinberg, D. The Polycomc complex PRC2 and its mark in life. Nature 469, 343–349 (2011).
6. Blackledge, N. P., Rose, N. R. & Klose, R. J. Targeting Polycomb systems to demethylate DNA. Methods Mol. Biol. 1643–649 (2015).
7. Cui, X. et al. RE6F recognizes a specific DNA sequence to demethylate H3K27me3 and regulate organ boundary formation in Arabidopsis. Nat. Genet. 48, 694–699 (2016).
8. Lu, F., Cui, X., Zhang, S., Jenuwein, T. & Cao, X. Arabidopsis RE6F is a histone H3 lysine 27 demethylase. Nat. Genet. 43, 715–719 (2011).
9. Li, C. et al. Concerted genomic targeting of H3K27 demethylase RE6F and chromatin-remodeling ATPase BRM in Arabidopsis. Nat. Genet. 48, 687–693 (2016).
10. Law, J. A. & Jacobsen, S. E. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat. Rev. Genet. 11, 204–220 (2010).
11. Chan, S. W., Henderson, I. R. & Jacobsen, S. E. Gardening the genome: DNA methylation in Arabidopsis thaliana. Nat. Rev. Genet. 6, 351–360 (2005).
12. Deng, X., Song, X., Wei, L., Liu, C. & Cao, X. Epigenetic regulation and epigenomic landscape in rice. Nat. Rev. Genet. 17, 303–315 (2016).
13. Zhao, Y. & Chen, X. Non-coding RNAs and DNA methylation in plants. Natl. Sci. Rev. 1, 219–229 (2014).
14. Feng, S. & Jacobsen, S. E. Epigenetic modifications in plants: an evolutionary perspective. Curr. Opin. Plant Biol. 14, 179–186 (2011).
15. Wendt, J. M. & Schmitz, R. J. Speciﬁcations of targeting heterochromatin modiﬁcations in plants. Mol. Plant 11, 381–387 (2018).
16. Du, J. et al. Mechanism of DNA methylation-directed histone methylation by KRYPTONITE. Mol. Cell 55, 495–504 (2014).
17. Du, J., Johnson, L. M., Jacobsen, S. E. & Patel, D. J. DNA methylation pathways and their crosstalk with histone methylation. Nat. Rev. Mol. Cell Biol. 16, 519–532 (2015).
18. Du, J. et al. Dual binding of chromomethylase domains to H3K9me2-containing nucleosomes directs DNA methylation in plants. Cell 151, 167–180 (2012).
19. Wendt, J. M. & Schmitz, R. J. Speciﬁcations of targeting heterochromatin modiﬁcations in plants. Mol. Plant 11, 381–387 (2018).
20. Stroud, H. et al. Non-GG methylation patterns shape the epigenetic landscape in Arabidopsis. Nat. Struct. Mol. Biol. 21, 64–72 (2014).
21. Stroud, H., Greenberg, M. V., Feng, S., Bernatavichute, Y. V. & Jacobsen, S. E. Comprehensive analysis of silencing mutants reveals complex regulation of the Arabidopsis histone methylase. Cell 152, 352–364 (2013).
22. Rose, N. R. & Klose, R. J. Understanding the relationship between DNA methylation and histone lysine methylation. Biochim. Biophys. Acta 1839, 1362–1372 (2014).
23. Li, H. et al. Polycistrome-like proteins link the PRC2 complex to CpG islands. Nature 549, 287–291 (2017).
24. Hashimoto, H. et al. Structural basis for the versatile and methylation-dependent binding of CTCF to DNA. Mol. Cell 66, 711–720 e3 (2017).
25. Yin, Y. et al. Impact of cytosine methylation on DNA binding speciﬁcities of human transcription factors. Science 356, eaaj2239 (2017).
26. Bartlett, A. et al. Mapping genome-wide transcription-factor binding sites using DAP-seq. Nat. Protoc. 12, 1659–1672 (2017).
27. O’Malley, R. C. et al. Cistrome and epicistome features shape the regulatory DNA landscape. Cell 166, 1598 (2016).
28. Nathamba, A. L. et al. Bisulfonic sequencing of chromatin immunoprecipitated DNA (BisChIP-seq) directly informs methylation status of histone-modified DNA. Genome Res. 22, 1120–1127 (2012).
29. Cao, X. et al. Role of the DRM and CMT3 methyltransferases in RNA-directed DNA methylation. Curr. Biol. 13, 2221–2237 (2003).
30. Cao, X. & Jacobsen, S. E. Locus-specific control of asymmetric and C5N6P methylations by the DRM and CMT3 methyltransferases genes. Proc. Natl. Acad. Sci. USA 99(Suppl. 4), 16491–16498 (2002).
31. Bowler, C. et al. Chromatin techniques for plant cells. Plant J. 39, 776–789 (2005).
32. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).
33. Ramirez, F. et al. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res. 44, W160–W165 (2016).
34. Robinson, J. T. et al. Integrative genomics viewer. Nat. Biotechnol. 29, 24–26 (2011).
35. Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008).
36. Yu, G., Wang, L. G. & He, Q. Y. ChIPpeeker: an R/Bioconductor package for ChIP peak annotation, comparison and visualization. Bioinformatics 31, 2382–2383 (2015).
37. Ramirez, F., Dundar, F., Diehl, S., Gruning, B. A. & Manke, T. deepTools: a flexible platform for exploring deep-sequencing data. Nucleic Acids Res. 42, W187–W191 (2014).
38. Shao, Z., Zhang, Y., Yuan, G. C., Orkin, S. H. & Waxman, D. J. MAnorm: a robust model for quantitative comparison of ChIP-Seq data sets. Genome Biol. 13, R16 (2012).
39. Inagaki, S. et al. Gene-body chromatin modification dynamics mediate epigenome differentiation in Arabidopsis. EMBO J. 36, 970–980 (2017).
40. Guo, W. et al. BS-Seeker2: a versatile aligning pipeline for bisulfite sequencing data. BMC Genom. 14, 774 (2013).
41. Bewick, A. J. et al. On the origin and evolutionary consequences of gene body DNA methylation. Proc. Natl. Acad. Sci. USA 113, 9111–9116 (2016).
42. Minor, W., Cymborowski, M., Otvosiewicz, Z. & Chruszcz, M. HK1: 3000: the integration of data reduction and structure solution—from diffraction images to an initial model in minutes. Acta Crystallogr. D 62, 859–866 (2006).
43. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010).
44. McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).
45. Vagin, A. A. et al. REFMAC5 dictionary: organization of prior chemical knowledge and guidelines for its use. Acta Crystallogr. D 60, 2184–2195 (2004).
46. Winn, M. D. et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. D 67, 235–242 (2011).
47. Emouley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).
Additional information

Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-019-10026-1.

Competing interests: The authors declare no competing interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

Journal peer review information: Nature Communications thanks Haitao Li, Xuehua Zhong and other anonymous reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2019