Electrophysiological evidence for abnormal glutamate-GABA association following psychosis onset

Daisuke Koshiyama1, Kenji Kirihara1, Mariko Tada1,2, Tatsuya Nagai1,3, Mao Fujioka1, Eriko Ichikawa1, Kazusa Ohta1, Motoko Tani1, Maiko Tsuchiya1, Akiko Kanehara1, Kentaro Morita1, Kingo Sawada1, Jun Matsuo1, Yoshihiro Satomura1, Shinsuke Koike1,2,4,5, Motomu Suga1,6, Tsuyoshi Araki1 and Kiyoto Kasai1,2

Abstract

Previous studies have shown glutamatergic dysfunction and γ-aminobutyric acid (GABA)-ergic dysfunction in schizophrenia. Animal studies suggest that N-methyl-D-aspartate receptor (NMDAR) dysfunction and GABA-ergic dysfunction interact with each other and lead to alterations in excitatory/inhibitory balance. The NMDAR and GABAergic-interneuron functions may be indexed by mismatch negativity (MMN) and auditory steady-state gamma-band response (ASSR), respectively. However, no previous studies have tested the hypothesis of an abnormal association between MMN and gamma-band ASSR in the same patients to identify the in vivo evidence of NMDAR-GABA association during the early stages of psychosis. Participants were individuals with recent-onset schizophrenia (ROSZ; N = 21), ultra-high risk (UHR; N = 27), and healthy controls (HCs; N = 24). The MMN amplitude was significantly impaired in ROSZ (p = 0.001, d = 1.20) and UHR (p = 0.003, d = 1.01) compared with HCs. The intertrial phase coherence (ITC) index of gamma-band ASSR was significantly reduced in ROSZ compared with HCs (p < 0.001, d = −1.27) and UHR (p = 0.032, d = −0.75). The event-related spectral perturbation (ERSP) index of gamma-band ASSR was significantly smaller in ROSZ compared with HCs (p < 0.001, d = −1.21). The MMN amplitude was significantly correlated with the ITC in ROSZ (r = −0.69, p < 0.001). These findings provide the first in vivo evidence that an abnormal association of the electrophysiological indices of NMDAR and GABA dysfunctions may be present in recent-onset schizophrenia.

Introduction

Glutamatergic dysfunction is considered to be one of the major hypotheses for the pathophysiology of schizophrenia. In an initial clinical study, Krystal et al. showed that ketamine, an antagonist of N-methyl-D-aspartate receptors (NMDAR: a glutamate receptor), induces schizophrenia-like symptoms in healthy volunteers. Subsequent studies have shown abnormal metabolites of glutamatergic amino acids, which are co-agonists of NMDAR, in the plasma or cerebrospinal fluid (CSF) and in the anterior cingulate cortex (ACC) using proton magnetic resonance spectroscopy (H-MRS) in patients with schizophrenia. In contrast, investigations on postmortem brains of patients with schizophrenia have revealed abnormalities in γ-aminobutyric acid (GABA)-ergic interneurons, such as a reduced expression of GABA-synthesizing enzyme glutamic acid decarboxylase 67 (GAD67) and parvalbumin (PV) in the cortical neurons. Furthermore, clinical studies have shown a reduction of GABA in the ACC measured by H-MRS in chronic schizophrenia and in first-episode schizophrenia.
Both glutamatergic dysfunction and GABAergic dysfunction may reflect an altered excitatory/inhibitory (E/I) balance in schizophrenia. Excitation is mediated by pyramidal neurons that release glutamate as neurotransmitters, and inhibition is mediated by interneurons that release GABA as neurotransmitters. Because pyramidal neurons and interneurons are connected with each other and make networks14, glutamatergic excitation and GABAergic inhibition affect each other and contribute to the E/I balance15. Recent animal studies have shown that interactions between abnormalities in NMDAR and dysfunction of GABAergic interneurons lead to alterations in E/I balance. Repeated administration of NMDAR antagonists16–20 and genetic deletion of NMDAR21–23 cause dysfunction of GABAergic interneurons that cause disinhibition of pyramidal neurons and lead to alterations in E/I balance. Decreased expression of the GABA synthetic enzyme GAD67 causes alterations in NMDAR-dependent processes and leads to alterations in E/I balance24,25. Therefore, glutamatergic dysfunction and GABAergic dysfunction in schizophrenia may interact with each other and lead to alterations in E/I balance.

The mismatch negativity (MMN), an electrophysiological index of auditory deviance detection, is expected to be a useful biomarker for NMDAR dysfunction in schizophrenia26–29, because NMDAR antagonists reduce MMN amplitude30–32. Many original investigations and subsequent meta-analyses have demonstrated MMN amplitude reduction in individuals with chronic schizophrenia33–38, first-episode psychosis38–43, and ultra-high risk for psychosis (UHR)38,42,44–49. Some previous studies have shown that MMN amplitude reduction predicts the onset of psychosis in individuals with UHR47–49. In those studies, the MMN in converters showed significantly greater amplitude reduction than that in non-converters. Furthermore, previous investigations have shown that in schizophrenia patients, MMN is correlated with the plasma level of glutamate50, which is significantly correlated with CSF levels of glutamate51,52, and with the level of glutamate in the ACC measured using 1H-MRS53.

In contrast, gamma-band auditory steady-state response (ASSR) is a candidate electrophysiological index of GABAergic abnormalities in the auditory cortex in schizophrenia. Cortical gamma oscillations are evoked by synaptic interactions between PV-positive GABAergic interneurons and pyramidal neurons54,55. Previous studies have reported deficits of gamma-band ASSR in chronic schizophrenia56–62 and first-episode psychosis63–65. For UHR, Tada et al.65 showed a specific time-course ASSR alteration, with reduction in the late-latency component, while leaving early-latency component intact. Recent meta-analysis confirmed impairment of the 40 Hz ASSR in patients with schizophrenia66.

Accordingly, we hypothesize that there is an abnormal association between NMDAR and GABAergic dysfunction surrounding the auditory cortex, which may lead to altered E/I balance at around the onset of schizophrenia. However, there is a lack of in vivo electrophysiological evidence of an association between NMDAR function and GABA function in individuals in the early stages of psychosis. In this study, we used MMN and gamma-band ASSR as sensitive electrophysiological markers of

Table 1 Demographics of participants

	ROSZ	UHR	HC	Statistics
N (sex ratio M/F)a	21 (11/10)	27 (14/13)	24 (10/14)	$\chi^2 = 0.696, df = 2, p = 0.706$
Age (years)b	240 (6.7)	206 (3.9)	223 (3.0)	$F_{2,46} = 3.04, p = 0.054$
Education (year)b	13.4 (2.5)	13.1 (2.6)	14.5 (1.6)	$F_{2,46} = 2.29, p = 0.109$
Premorbid IQb	104 (9.0)	105 (8.1)	110 (6.4)	$F_{2,46} = 3.03, p = 0.055$
DOI (weeks)	46.5 (47.0)			
PANSSc total	68.9 (19.6)	67.7 (14.3)		$t_{46} = 0.238, p = 0.813$
Positive	15.2 (5.3)	14.3 (3.7)		$t_{46} = 0.684, p = 0.497$
Negative	18.8 (7.0)	17.3 (4.7)		$t_{46} = 0.874, p = 0.387$
General	34.9 (10.0)	36.1 (8.0)		$t_{46} = -0.466, p = 0.643$
GAF scorec	38 (11)	48 (10)		$t_{46} = -3.35, p = 0.002$
Antipsychotic dose (mg/day)c	388 (284)	174 (262)		$t_{46} = 2.70, p = 0.010$

All values are shown as mean (standard deviation) except for the first row. Underlined results indicate $p < 0.05$

aChi-square test

bOne-way ANOVA

cIndependent t-test
NMDAR and GABAergic interneurons, respectively. We predicted that impaired MMN and reduced gamma-band ASSR would show a correlation around the onset of schizophrenia.

Materials and methods

Subjects

We recorded electroencephalograms (EEGs) of 21 individuals with recent-onset schizophrenia (ROSZ), 27 individuals with UHR, and 24 healthy controls (HCs; Table 1). Fourteen of the participants had also participated in our previous MMN study, and 38 had participated in our previous ASSR study. Individuals with ROSZ or UHR were recruited from outpatient and inpatient units at the University of Tokyo Hospital. The HC group was recruited through advertisements at several universities in Tokyo. Inclusion criteria for ROSZ individuals were that they were diagnosed using the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV), aged 15–40 years, and had onset of continuous psychotic symptoms within the past 60 months. Among a total of 21 ROSZ patient sample, N = 15 underwent EEG measurement as the biomarker assessments at Time 1 for the Integrative Neuroimaging Studies for Schizophrenia Targeting Early Intervention and Prevention (IN-STEP) project all satisfied the criteria of first-episode schizophrenia (FES): continuous psychotic symptoms within the past 60 months and no history of antipsychotic drug treatment for more than 16 cumulative weeks at entry into the IN-STEP project; N = 1 did not undergo EEG testing at Time 1, but instead underwent the initial EEG testing during the follow-up period of INSTEP; and N = 5 were newly recruited (N = 3 satisfied FES). Inclusion criteria for individuals with UHR were identified using the Structured Interview for Prodromal Symptoms (SIPS), and all were aged 15–30 years. Inclusion criteria of HC were that they were aged 15–40 years and had onset of continuous psychotic symptoms within the past 60 months and no history of antipsychotic drug treatment for more than 16 cumulative weeks at entry into the IN-STEP project; N = 1 did not undergo EEG testing at Time 1, but instead underwent the initial EEG testing during the follow-up period of INSTEP; and N = 1 did not undergo EEG testing at Time 1, but instead underwent the initial EEG testing during the follow-up period of INSTEP; and N = 5 were newly recruited (N = 3 satisfied FES). Inclusion criteria for individuals with UHR were identified using the Structured Interview for Prodromal Symptoms (SIPS), and all were aged 15–30 years. Inclusion criteria of HC were that they were aged 15–40 years and had onset of continuous psychotic symptoms within the past 60 months and no history of antipsychotic drug treatment for more than 16 cumulative weeks at entry into the IN-STEP project; N = 1 did not undergo EEG testing at Time 1, but instead underwent the initial EEG testing during the follow-up period of INSTEP; and N = 5 were newly recruited (N = 3 satisfied FES). Inclusion criteria for individuals with UHR were identified using the Structured Interview for Prodromal Symptoms (SIPS), and all were aged 15–30 years. Inclusion criteria of HC were that they were aged 15–40 years and had onset of continuous psychotic symptoms within the past 60 months and no history of antipsychotic drug treatment for more than 16 cumulative weeks at entry into the IN-STEP project; N = 1 did not undergo EEG testing at Time 1, but instead underwent the initial EEG testing during the follow-up period of INSTEP; and N = 5 were newly recruited (N = 3 satisfied FES). Inclusion criteria for individuals with UHR were identified using the Structured Interview for Prodromal Symptoms (SIPS), and all were aged 15–30 years. Inclusion criteria of HC were that they were aged 15–40 years and had onset of continuous psychotic symptoms within the past 60 months and no history of antipsychotic drug treatment for more than 16 cumulative weeks at entry into the IN-STEP project; N = 1 did not undergo EEG testing at Time 1, but instead underwent the initial EEG testing during the follow-up period of INSTEP; and N = 5 were newly recruited (N = 3 satisfied FES).

Procedure and analyses of the auditory steady-state response

The ASSR paradigm used in this study, which is described in detail elsewhere, was similar to those used in previous studies from different laboratories. Briefly, subjects were instructed to relax with their eyes open, and they received auditory stimuli presented binaurally...
through inserted earphones, the same as those used in the MMN session. We performed the ASSR as the same as those used in the MMN session, within 30 min. We recorded ASSR at first to avoid muscle artifacts because gamma band ASSR is sensitive to muscle artifacts. We measured both ASSR and MMN in total within 60 min. Click sounds (80 dB, 1 ms) presented in 500 ms trains at 20, 30, and 40 Hz served as the auditory stimuli. Click sound trains were 200 trains at each frequency. The intertrial interval was 500 ms. The sampling rate was 250 Hz. The analog filter bandpass was set at 0.1–100 Hz. We used 40 Hz ASSR data for subsequent analyses because impairment of 40 Hz ASSR in early stages of schizophrenia was confirmed in previous studies.

We analyzed EEG data by using EEGLAB. The continuous EEG data were re-referenced to an average reference, a high-pass filter (1 Hz) and a notch filter (50 Hz) were applied to them in order to remove artifacts, and they were segmented from −250 to 750 ms, relative to the stimulus onset. Independent component analysis was used for eye blink correction, and epochs exceeding ±100 μV at any electrode were rejected.

We performed time-frequency analyses with a short-term Fourier transformation and then calculated intertrial phase coherence (ITC) and event-related spectral perturbation (ERSP) as indices of ASSR. The ITC indicates phase consistency across trials and ranges between 0 (random phase across trials) and 1 (identical phase across trials). The ERSP indicates event-related changes in power relative to a pre-stimulus baseline. Decreases in ITC and ERSP reflect reduced neural responses to auditory steady-state stimulation. We calculated the mean ITC and ERSP by averaging the data over stimulation time (0–500 ms) and stimulation frequency (40 Hz: 36–45 Hz). Because our previous study observed differential alteration of early- and late-time-course components of ITC and ERSP in early stages of psychosis, we additionally calculated the mean ITC and ERSP for each 100 ms-epoch for time-course analyses. We focused on the frontocentral electrode site (FCz) because the most prominent ASSR was found at FCz.

Statistical analyses

We used SPSS (Version 23.0.0.0, IBM Corp., Armonk, NY, USA) for all statistical analyses. We employed χ² tests, independent t-tests, and one-way ANOVAs for comparison of demographics and clinical characteristics among the groups. We performed one-way ANOVAs for comparison of the number of epochs and found no significant differences among groups [MMN, 161 ± 30 for ROSZ, 156 ± 33 for UHR, and 164 ± 24 for HCs (F₂, 69 = 0.44, p = 0.65); ASSR, 182 ± 21 for ROSZ, 183 ± 16 for UHR, and 187 ± 10 for HCs (F₂, 69 = 0.62, p = 0.54)]. For the main comparison of MMN amplitude, we used repeated measures ANOVA with the three groups as the between-subject factors and with seven electrodes around the FCz as the within-subject factor. For the main comparison of ITC (0–500 ms) and ERSP (0–500 ms), we used one-way ANOVA. As a supplementary analysis, we performed repeated measures ANOVA with the three groups as between-subjects factor and with time blocks (0–100, 100–200, 200–300, 400–500 ms) as the within-subject factor. Greenhouse-Geisser correction was used for repeated measure ANOVAs when appropriate. In case of a significant group-by-time interaction, we used one-way ANOVA and post-hoc tests with Bonferroni correction for comparison of ITC and ERSP time blocks, and Cohen’s d effect sizes were calculated for group comparisons of MMN, ITC, and ERSP. The significance level was set at p < 0.05 (two-tailed).

The Pearson correlation coefficients (r) of MMN with ITC and ERSP in each group were calculated. p < 0.0014 (0.05/36) was considered statistically significant based on Bonferroni correction (two-tailed). Additionally, we performed correlation analyses between frequency-deviant MMN and ASSR [20, 30, and 40 Hz; ITC (0–500 ms) and ERSP (0–500 ms); p < 0.0028 (0.05/18) was considered statistically significant based on Bonferroni correction (two-tailed)] and between the duration-deviant MMN and ASSR [20 and 30 Hz; ITC (0–500 ms) and ERSP (0–500 ms); p < 0.0042 (0.05/12) was considered statistically significant based on Bonferroni correction (two-tailed)] in ROSZ, UHR and HCs for supplementary information (Supplementary Table 1 and 2, and Supplementary Text).

If we found a significant correlation of MMN with ITC and ERSP in the group, we further tested whether the correlation was specific to the group by comparing Fisher’s r-to-z transformed correlational coefficients between the groups. Potential effects of age and premorbid IQ on MMN and ITC were tested with correlation analyses between age and MMN/ITC, and between premorbid IQ and MMN/ITC in ROSZ because age (F₂, 69 = 3.04, p = 0.054; Table 1) and premorbid IQ (F₂, 69 = 3.03, p = 0.055; Table 1) were different among the three groups (ROSZ, UHR, and HC) at the trend level. Furthermore, we performed partial correlation analyses between MMN and ITC, after adjustment for age and premorbid IQ in ROSZ. In addition, we sought to parse out the effects of medication on our main findings. We first calculated Pearson’s r between the antipsychotic dose (chlorpromazine equivalents) and MMN/ITC in ROSZ. The partial correlation to adjust for medication effects was calculated for the combination of the MMN amplitude and ITC in ROSZ. The significance level was set at p < 0.05 (two-tailed).
Results

Mismatch negativity

The average waveforms for MMN in the ROSZ, UHR, and HC groups are shown in Fig. 1a. The mean amplitude (SD) of MMN was −1.48 (0.80) in the ROSZ group, −1.61 (0.84) in the UHR group, and −2.44 (0.81) in the HC group. Repeated measures ANOVA revealed a significant main effect of group ($F_{2, 67} = 8.82, p < 0.001$) and a significant main effect of electrode ($F_{4, 268} = 10.9, p < 0.001$) but no significant group-by-electrode interaction ($F_{8, 268} = 0.29, p = 0.97$). The post-hoc tests with Bonferroni correction indicated that the MMN amplitude was
significantly smaller in the ROSZ group ($p = 0.001, d = 1.20$) and the UHR group ($p = 0.003, d = 1.01$) than in the HC group. There were no significant differences in MMN between ROSZ and UHR ($p = 1.00, d = 0.16$). Because we found no significant group-by-electrode interaction, we used the mean MMN amplitude at seven electrodes for further analyses.

Auditory steady-state response

The time-courses of the ITC or ERSP, which are indices of ASSR, are shown in Fig. 1b, c. The grand average time-frequency maps for ITC or ERSP are shown in Fig. 1d. For the analysis of overall ITC (0–500 ms), there was a significant main effect of group ($F_{2, 69} = 9.29, p < 0.001$; Table 2). The post-hoc tests showed that ITC (0–500 ms) was significantly smaller in ROSZ than in UHR ($p = 0.032, d = −0.75$) and HCs ($p < 0.001, d = −1.27$). There were no significant differences in ITC (0–500 ms) between UHR and HCs ($p = 0.20, d = −0.53$). For additional analysis of time-course of ITC, repeated measures ANOVA showed a significant group-by-time interaction ($F_{6, 161} = 5.41, p < 0.001$). Subsequently, the post-hoc tests showed a significant difference between ROSZ and HCs in all five, between ROSZ and UHR in early latency (0–100, 100–200 ms), and between UHR and HCs in late latency (300–400, 400–500 ms) time blocks. For the analysis of overall ERSP (0–500 ms), there was a significant main effect of group ($F_{2, 69} = 9.18, p < 0.001$; Table 2). The post-hoc tests showed that ERSP (0–500 ms) was significantly smaller in ROSZ than in HCs ($p < 0.001, d = −1.21$). There were no significant differences in ERSP (0–500 ms) between ROSZ and UHR ($p = 0.12, d = −0.64$) or between UHR and HCs ($p = 0.061, d = −0.67$). For additional analysis of the time-course of ERSP, a repeated measures ANOVA showed a significant group-by-time interaction ($F_{4, 151} = 5.66, p < 0.001$). The post-hoc tests showed a significant difference between ROSZ and HCs in all five, between ROSZ and UHR in early latency (0–100 ms), and between UHR and HCs in late latency (300–400, 400–500 ms) time blocks.

Table 2 Group comparison of ASSR indices (ITC and ERSP)

Time blocks	ROSZ Mean	ROSZ SD	UHR Mean	UHR SD	HC Mean	HC SD	Statistics	Post-hoc analysis^a	ROSZ–UHR	ROSZ–HC	UHR–HC		
0–500 ms	0.27	0.12	0.35	0.11	0.41	0.11	$F_{2, 69} = 9.29, p < 0.001$	$p^{b} = 0.032$	$−0.75$	< 0.001	$−1.27$	0.202	$−0.53$
0–100 ms	0.18	0.07	0.29	0.09	0.28	0.09	$F_{2, 69} = 12.6, p < 0.001$	< 0.001	$−1.46$	0.001	$−1.23$	1.00	0.20
100–200 ms	0.29	0.12	0.38	0.13	0.41	0.10	$F_{2, 69} = 5.86, p = 0.004$	0.037	$−0.70$	0.005	$−1.05$	1.00	0.24
200–300 ms	0.31	0.16	0.41	0.14	0.49	0.13	$F_{2, 69} = 8.66, p < 0.001$	0.069	$−0.64$	< 0.001	$−1.24$	0.142	0.60
300–400 ms	0.28	0.13	0.34	0.12	0.45	0.14	$F_{2, 69} = 9.27, p < 0.001$	0.337	$−0.48$	< 0.001	$−1.22$	0.018	$−0.79$
400–500 ms	0.27	0.13	0.33	0.12	0.42	0.13	$F_{2, 69} = 8.32, p < 0.001$	0.291	$−0.50$	< 0.001	$−1.17$	0.039	$−0.72$

^aBonferroni correction for three contrasts (ROSZ–UHR, ROSZ–HC, UHR–HC)

^bd means Cohen’s d effect size. Underlined results indicate $p < 0.05$.

ANOVA analysis of variance, SD standard deviation, ROSZ recent-onset schizophrenia, UHR ultra-high risk, HC healthy control, ASSR auditory steady-state response, ITC intertrial phase coherence, ERSP event-related spectral perturbation.

Koshiyama et al. *Translational Psychiatry* (2018) 8:211
Table 3 Correlation of MMN amplitude with ASSR indices (ITC and ERSP)

	MMN			
	ROSZ	UHR	HC	
	r	p	r	p
ITC				
0–500 ms	-0.69	< 0.001	-0.25	0.20
Time blocks				
0–100 ms	-0.13	0.56	-0.04	0.86
100–200 ms	-0.33	0.14	-0.26	0.19
200–300 ms	-0.29	0.21	-0.33	0.10
300–400 ms	-0.36	0.11	-0.27	0.17
400–500 ms	-0.37	0.10	-0.18	0.38
ERSP				
0–500 ms	-0.17	0.47	-0.31	0.11
Time blocks				
0–100 ms	0.09	0.69	-0.19	0.34
100–200 ms	-0.07	0.75	-0.17	0.40
200–300 ms	-0.14	0.55	-0.32	0.10
300–400 ms	-0.21	0.35	-0.36	0.07
400–500 ms	-0.28	0.22	-0.29	0.14

Underlined result indicates *p* < 0.0014 (0.05/36)

ROSZ recent-onset schizophrenia, UHR ultra-high risk, HC healthy control, MMN mismatch negativity, ASSR auditory steady-state response, ITC intertrial phase coherence, ERSP event-related spectral perturbation

Correlations between MMN amplitude and ASSR indices (ITC and ERSP)

The MMN amplitude was significantly correlated with overall ITC (0–500 ms) in ROSZ. (*r* = −0.69, *p* < 0.001; Table 3 and Fig. 2). However, the correlation between MMN amplitude and ITC (0–500 ms) was not significant in UHR (*r* = −0.25, *p* = 0.20) or HCs (*r* = −0.26, *p* = 0.22). The MMN amplitude was not significantly correlated with the overall ERSP (0–500 ms) for either group. Additionally, the MMN amplitude was not significantly correlated with ITC or ERSP for any time-course block.

The correlation between MMN and ITC was specific to the ROSZ group compared to the UHR group (*z* = 1.92, *p* = 0.055) and the HC group (*z* = 1.83, *p* = 0.067) at the trend level. Further, we evaluated potential effects of age and premorbid IQ on MMN and ITC with the correlation analyses between age and MMN/ITC, and between premorbid IQ and MMN/ITC in ROSZ. Age was not significantly correlated with MMN (*r* = 0.11, *p* = 0.64) or ITC (*r* = −0.23, *p* = 0.33) in ROSZ. Premorbid IQ was not significantly correlated with MMN (*r* = −0.22, *p* = 0.34) or ITC (*r* = 0.25, *p* = 0.28) in ROSZ. In addition, partial correlation analyses between MMN and ITC after adjustment for age (*r* = −0.69, *p* = 0.001) and premorbid IQ (*r* = −0.68, *p* = 0.001) showed almost the same results compared with the original results in ROSZ. An antipsychotic dose was not significantly correlated with MMN (*r* = 0.29, *p* = 0.21) or ITC (0–500 ms: *r* = −0.42, *p* = 0.061) in ROSZ. A partial correlational analysis after adjustment for the antipsychotic dose between MMN and ITC (0–500 ms) in ROSZ was performed, and the correlation remained significant (*r* = −0.66, *p* = 0.002).

Discussion

We obtained the following results: (i) the MMN amplitude was reduced in ROSZ and UHR; (ii) ITC and ERSP were significantly reduced in ROSZ, and early-latency ITC and ERSP were intact, while late-latency ITC and ERSP were impaired in UHR; and (iii) as the main finding, the MMN amplitude was significantly correlated with the ITC in ROSZ, but not in UHR. This study is the first to identify an association between electrophysiological indices of glutamate and GABA function in vivo in early psychosis.

Our results of reduced MMN both in ROSZ and UHR are consistent with those of previous studies on early stages of psychosis. These findings indicate that NMDAR shows dysfunction before the onset of schizophrenia. The overall indices of gamma-band ASSR (ITC and ERSP) are also reduced in recent-onset schizophrenia, consistent with previous findings. Confirming our previous investigation, in UHR, early-latency ITC and ERSP were intact, while late-latency ITC and ERSP were impaired. These patterns of abnormality suggest that GABAergic interneuron dysfunction may, at least in part, develop through the onset of psychosis, which might explain the observation that an abnormal association of MMN and ASSR is evident in ROSZ alone.

The main finding of our study was a significant correlation between the MMN amplitude and gamma-band ASSR in ROSZ, but not in UHR. The correlation was specific to the ROSZ group compared to the UHR group at the trend level. This may reflect altered E/I balance in ROSZ but not in UHR. Previous animal studies have shown that NMDAR hypofunction causes dysfunction of GABAergic interneurons. Belforte et al. found that elimination of the NR1 subunit of the NMDAR in cortical and hippocampal interneurons caused a reduction in the expression of GAD67 and PV. Carlen et al. reported that NMDAR dysfunction in PV interneurons caused impairments in gamma oscillations. Furthermore, Nakazawa et al. described that the first NMDAR hypofunction occurs in PV-positive GABA interneurons, in early postnatal development, which would impair the cortical maturation that causes a reduction in intrinsic excitability.
and impaired GABA release, thus leading to the disinhibition of pyramidal neurons. Altogether, these findings suggest that the dysfunction of NMDARs cause dysfunction of GABA interneurons that cause disinhibition of pyramidal neurons and leads to alterations in E/I balance. Decreased expression of the GABA synthetic enzyme GAD67 causes alterations in NMDAR-dependent processes and lead to alterations in E/I balance. Therefore, glutamatergic dysfunction and GABAergic dysfunction may interact with each other and lead to altered E/I balance in ROSZ. On the other hand, individuals with UHR showed reduced MMN and ASSR, but there were no significant correlations between MMN and ASSR. These findings suggest that individuals with UHR may have glutamatergic dysfunction and GABAergic dysfunction but that interactions between glutamatergic dysfunction and GABAergic dysfunction may not be strong enough to lead to an altered E/I balance in UHR. Therefore, glutamatergic dysfunction and GABAergic dysfunction may indicate a risk for psychosis, and interactions between glutamatergic dysfunction and GABAergic dysfunction and subsequent alterations in E/I balance may lead to the onset of psychosis. In contrast to ITC, ERSP showed no significant correlation with MMN. Previous animal studies have shown that dysfunction of NMDAR on GABAergic interneuron decrease evoked power of gamma oscillations but increase spontaneous power of gamma oscillations. Because ERSP reflects power of gamma oscillations and includes both evoked power and spontaneous power, the mixed effects of decreased evoked power and increased spontaneous power may obscure the association between MMN and gamma oscillations. Because ITC does not reflect the power of gamma oscillations, the mixed effects of power do not affect the association.

The study has some limitations. First, potential medication effects might have influenced our findings. However, our main findings remained significant when we applied a partial correlation analysis to adjust for medication effects. Second, this study was a cross-sectional study. Future longitudinal studies will be required to clarify the longitudinal course of the association between MMN amplitude and gamma-band ASSR around the onset of psychosis.

In conclusion, our observations provide the first in vivo electrophysiological evidence that an abnormal association of NMDAR-GABA dysfunctions presumably surrounding the auditory cortex may be present in recent-onset schizophrenia. The MMN and gamma-band ASSR may be useful sensitive markers in the development of early intervention strategies for psychosis, in order to target the alleviation of this aberrant association.

Acknowledgements

We thank the members of the Integrative Neuroimaging Studies for Schizophrenia Targeting Early Intervention and Prevention (IN-STEP) research team in the University of Tokyo Hospital for their advice and assistance with this study. We gratefully acknowledge all the participants of this study. This study was supported by JSPS KAKENHI Grant Numbers JP16H06395, 16H06399, 16K21720 (K.Ka), 15K19713 (K.Ki), 15H05616 (M.T.), and 15K09858 (M.S.), by the Brain Mapping by Integrated Neurotechnologies for Disease Studies (Brain/MINDS) from the Japan Agency for Medical Research and Development, AMED (JP17dm0207004; K. Ka), by the SENSIN Medical Research Foundation (M.T.), by the Takeda Science Foundation (M.T.), by UTokyo Center for Integrative Science of Human Behavior (CiSHub; S.K., K.Ka), and by the International

Fig. 2 Correlation of mismatch negativity with intertrial phase coherence or event-related spectral perturbation. The x-axis indicates mismatch negativity (μV), and the y-axis indicates intertrial phase coherence or event-related spectral perturbation (dB). The asterisk indicates p < 0.0014 (0.05/36)
Research Center for Neurointelligence (WPI-RCN) at the University of Tokyo Institutes for Advanced Study (UTIAS; M.T., S.K., & K.Ka). The funders played no role in the study design, data collection and analysis, publication decision, or manuscript preparation.

Author details
1Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan. 2Department of Psychiatry, Kazuamuro Memorial Hospital, 71, Kita-shinbo, Joetsu-shi, Niiga 943-0109, Japan. 3University of Tokyo Institute for Diversity & Adaptation of Human Mind (UTIDAHM), 3-8-1, Komaba, Meguro-ku, Tokyo 153-8902, Japan. 4Department of Psychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan. 5Department of Rehabilitation, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.

Conflict of interest
The authors declare that they have no conflict of interest.

Publisher's note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information
accompanies this paper at (https://doi.org/10.1038/s41398-018-0261-0).

Received: 1 March 2018 Revised: 26 July 2018 Accepted: 7 September 2018

Published online: 08 October 2018

References
1. Coyle, J. T., Tsai, G. & Goff, D. Converging evidence of NMDA receptor hypofunction in the pathophysiology of schizophrenia. Ann. N. Y. Acad. Sci. 1003, 318–327 (2003).
2. Coyle, J. T. NMDA receptor and schizophrenia: a brief history. Schizophr. Bull. 38, 920–926 (2012).
3. Moghaddam, B. & Krystal, J. H. Capturing the angel in “angel dust”: twenty years of translational neuroscience studies of NMDA receptor antagonists in animals and humans. Schizophr. Bull. 38, 942–949 (2012).
4. Krystal, J. H. et al. Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch. Gen. Psychiatry 51, 199–214 (1994).
5. Hashimoto, K. et al. Elevated glutamate/glutamine ratio in cerebrospinal fluid of first-episode and drug-naive schizophrenic patients. BMC Psychiatry 5, 6 (2005).
6. Brouwer, A., Luu, J. J. van Boxmeer, L., Baiker, S. C. & Kahn, R. S. NMDA-receptor coagonists in serum, plasma, and cerebrospinal fluid of schizophrenia patients: a meta-analysis of case-control studies. Neurosci. Biobehav. Rev. 37, 1587–1596 (2013).
7. Bustillo, J. R. et al. Increased glutamate in patients undergoing long-term treatment for schizophrenia: a proton magnetic resonance spectroscopy study at 3 T. JAMA Psychiatry 71, 265–272 (2014).
8. Bustillo, J. R. et al. NAA-VARS at 4 tesla in minimally treated early schizophrenia. Mol. Psychiatry 15, 629–636 (2010).
9. Alkandari, S. & Huang, H. S. Molecular and cellular mechanisms of altered GAD1/GAD67 expression in schizophrenia and related disorders. Brain Res. 52, 293–306 (2009).
10. Eyles, D. W., McGrath, J. J. & Reynolds, G. P. Neuronal calcium-binding proteins and schizophrenia. Schizophr. Res. 57, 27–34 (2002).
11. González-Burgos, G. & Lewis, D. A. GABA neurons and the mechanisms of network oscillations: implications for understanding cortical dysfunction in schizophrenia. Schizophr. Bull. 34, 944–961 (2008).
12. Dowland, L. M. et al. Medial frontal GABA is lower in older schizophrenia: a MEGA-PRESS with macromolecule suppression study. Mol. Psychiatry 21, 198–204 (2016).
13. Chui, P. W. et al. In vivo gamma-aminobutyric acid and glutamate levels in people with first-episode schizophrenia: a proton magnetic resonance spectroscopy study. Schizophr. Res. 193, 295–303 (2018).
14. Whittington, M. A., Traub, R. D., Kopell, N., Ermentrout, B. & Buhl, E. H. Inhibition-based rhythms: experimental and mathematical observations on network dynamics. Int. J. Psychophysiol. 38, 315–336 (2000).
15. González-Burgos, G., Cho, R. Y. & Lewis, D. A. Alterations in cortical network oscillations and parvalbumin neurons in schizophrenia. Biol. Psychiatry 77, 1031–1040 (2015).
16. Cochrane, S. M. et al. Induction of metabolic hypofunction and neurochemical deficits after chronic intermittent exposure to phencyclidine. Differentia modulation by antipsychotic drugs. Neuropsychopharmacology. 28, 265–275 (2003).
17. Kelhoff, G., Becker, A., Gredsch, G., Wolf, G. & Bernstein, H. G. Repeated application of ketamine to rats induces changes in the hippocampal expression of parvalbumin, neuronal nitric oxide synthase and cFOS similar to those found in human schizophrenia. Neuroscience 126, 591–598 (2004).
18. Rujescu, D. et al. A pharmacological model for psychosis based on N-methyl-D-aspartate receptor hypofunction: molecular, cellular, functional and behavioral abnormalities. Biol. Psychiatry 59, 721–729 (2006).
19. Behrens, M. M. et al. Ketamine-induced loss of phenotype of fast-spiking interneurons is mediated by NADPH-oxidase. Science 318, 1645–1647 (2007).
20. Morrow, B. A., Elsworth, J. D. & Roth, R. H. Repeated phencyclidine in monkeys results in loss of parvalbumin-containing axon-axonic projections in the prefrontal cortex. Psychopharmacol. (Berl.) 192, 283–290 (2007).
21. Bellforte, J. E. et al. Postnatal NMDA receptor ablation in corticobasal interneurons confers schizophrenia-like phenotypes. Nat. Neurosci. 13, 76–83 (2010).
22. Gordon, J. A. Testing the glutamate hypothesis of schizophrenia. Nat. Neurosci. 13, 2–4 (2010).
23. Carlen, M. et al. A critical role for NMDA receptors in parvalbumin interneurons for gamma rhythm induction and behavior. Mol. Psychiatry 17, 537–548 (2012).
24. Fujihara, K. et al. Glutamate decarboxylase 67 deficiency in a subset of gabaergic neurons induces schizophrenia-related phenotypes. Neurpsychopharmacology 40, 2475–2486 (2015).
25. Horiguchi, Y. et al. Mismatch negativity in schizophrenia: a meta-analysis. Schizophr. Res. 15176 (2013).
26. Light, G. A. & Näätänen, R. Mismatch negativity is a breakthrough biomarker for understanding and treating psychotic disorders. Proc. Natl Acad. Sci. USA 110, 15175–15176 (2013).
27. Light, G. A. & Swerdlow, N. R. Future clinical uses of neurophysiological biomarkers to predict and monitor treatment response for schizophrenia. Ann. N. Y. Acad. Sci. 1344, 106–119 (2015).
28. Näätänen, R., Shiga, T., Asano, S. & Yabe, H. Mismatch negativity (MMN) deficiency: a break-through biomarker in predicting psychosis onset. Int. J. Psychophysiol. 95, 338–344 (2015).
29. Näätänen, R., Todd, J. & Schall, U. Mismatch negativity (MMN) as biomarker predicting psychosis in clinically at-risk individuals. Biol. Psychol. 116, 36–40 (2016).
30. Javitt, D. C., Stein Schneider, M., Schroeder, C. E. & Arezzo, J. C. Role of cortical N-methyl-D-aspartate receptors in auditory sensory memory and mismatch negativity generation: implications for schizophrenia. Proc. Natl Acad. Sci. USA 93, 11962–11967 (1996).
31. Umbach, D. et al. Ketamine-induced deficits in auditory and visual context-dependent processing in healthy volunteers: implications for models of cognitive deficits in schizophrenia. Arch. Gen. Psychiatry 57, 1139–1147 (2000).
32. Gil-da Costa, R., Stoner, G. R., Fung, R. & Albright, T. D. Nonhuman primate model of schizophrenia using a noninvasive EEG method. Proc. Natl Acad. Sci. USA 110, 15425–15430 (2013).
33. Shelley, A. M. et al. Mismatch negativity: an index of a prerequisite processing deficit in schizophrenia. Arch. Gen. Psychiatry 57, 1059–1062 (1991).
34. Javitt, D. C. et al. Impairment of early cortical processing in schizophrenia: an event-related potential confirmation study. Biol. Psychiatry 33, 513–519 (1993).
35. Catts, S. V. et al. Brain potential evidence for an auditory sensory memory deficit in schizophrenia. Arch. Gen. Psychiatry 52, 213–219 (1995).
36. Light, G. A. & Braff, D. L. Mismatch negativity deficits are associated with poor functioning in schizophrenia patients. Arch. Gen. Psychiatry 62, 127–136 (2005).
37. Umbach, D. & Kijes, S.Mismatch negativity in schizophrenia: a meta-analysis. Schizophr. Res. 76, 1–23 (2005).
