Study of formation constant of Schiff base containing thiazole ring in mixed solvent media and their thermodynamic parameters

BN Muthal

DOI: https://doi.org/10.22271/chemi.2020.v8.i2a.8748

Abstract
The Schiff bases derived from substituted aminothiazole i.e. 2,4-Diamino-5-phenylthiazole and R-substituted salicylaldehyde (R-5-CH$_2$ and 5-Cl) or 2-hydroxy-1-naphthaldehyde i.e. (5MS)$_2$ DPT, (5CS)$_2$ DPT and (HN)$_2$ DPT and Rare earth metal ion La$^{3+}$, Ce$^{3+}$, Pr$^{3+}$, Nd$^{3+}$, Sm$^{3+}$, Gd$^{3+}$, Tb$^{3+}$, Ho$^{3+}$, Dy$^{3+}$ and Yb$^{3+}$ Nitrate Salts.

The stability constants of lanthanide metal ion complexes in mixed solvent media in ethanol-water 50:50 (v/v) at different Ionic strength μ = 0.05, 0.1, 0.15 and 0.2 M (NaClO$_4$) and at different temperature (35 $^\circ$C and 45 $^\circ$C) using Bjerrum pH metric technic as adopted by Irving-Rossotti.

The formation constants are determined by Half Integral method. The stability constants of Rare earth metal (III) ion complexes have been proportional to their Ionic strength. The thermodynamic parameter (ΔH, ΔG and ΔS) were determined. The negative free energy change (ΔG) in each cases indicates that the complexity is spontaneous. The enthalpy changes are exothermic. The positive values of ΔS indicates the reactions are entropically favoured.

Keywords: Stability constant, thermodynamic parameter, rare earth metal

Introduction
In continuation of our early work [1-3] deals with the stability constants of Schiff bases and their transition metal (CO2 Ni$^{2+}$, Cu$^{2+}$ and Zn$^{2+}$ complexes. The Schiff base derived from substituted amino thiazole i.e. 2aminothiazole, 2,4-diaminothiazole and 2,4-diamino-5chloro thiazole and O-hydroxy aldehyde i.e. (5-CH$_2$ 5-Cl and 2-hydroxy-1-nataldehyde). The reveal shows that no work on 2,4 Diamino-5- phenyl thiazole, the stability constants of Schiff base and their rare earth metal complexes, hence on interest is taken to study the Schiff base and rare earth. Metal complexes in the present investigation. An attempt has been made to study the stability constant, effect of ionic strength and thermodynamic parameter of the Rare earth metal complexes. The Schiff bases derived from 2,4 diamino5- phenylthiazole and O-hydroxy aldehyde i.e. (5-CH$_2$ 5Cl and 2-hydroxy-1-naphthaldehyde) and rare earths. La$^{3+}$ Ce$^{3+}$, Pr$^{3+}$, Nd$^{3+}$, Sm$^{3+}$, Gd$^{3+}$, Tb$^{3+}$, Ho$^{3+}$, Dy$^{3+}$, Yb$^{3+}$.

Result and Discussion
Proton-ligand stability constant (PK) values of the ligands (5MS)$_2$, DPT, (5CS)$_2$ DPT and (HN)$_2$ DPT, were calculated using half-integral method. The values are summarized in table 1. The ligand posses two pK value due to dissociable proton of the two phenolic -OH group. The protonation of imino nitrogen (HC=N) does not take place in the pH range under study. The pK values of ligands follows the trend: ligand (5MS)$_2$ DPT>(5CS)$_2$ DPT>(HN)$_2$ DPT and it is explained on the grounds of basic nature of azomethine nitrogen and phenolic oxygen [4-6].

The ligand (5CS)$_2$ DPT exhibit higher proton-ligand stability constant values than the ligand (HN)$_2$ DPT and this may be due to presence of -Cl group in the aromatic ring. Cl behave as electron releasing group due to mesomeric effect (+ M) rather than (-1) effect (inductive effect). Hence electron density on phenyl ring increases and azomethine nitrogen and phenolic oxygen become more basic.

The ligands (5MS)$_2$ DPT posses methyl group at meta position with respective to azomethine group. Due to (+1) effect of methyl group, electron density over phenyl ring increases and
azomethine nitrogen and phenolic oxygen become more basic. Hence the ligand posses higher stability constant values. Thus (+I) effect of methyl and stronger (+M) of halogen group present in the phenyl ring in the series of the Schiff base support the trend proposed for proton-ligand stability values.

Metal - Ligand stability constants

The titration curves of acid, ligands and the metal ions are studied. The metal ion curve shows departure from ligand curves at pH much lower than the pH of hydrolysis of metal ion and therefore the liberation of proton is due to chelation 6-8. The metal ligand stability constants were determined by using Half Integral Method and values are summarized in table 2.

The order of stability constant for the trivalent Rare earth complexes have no regular trends that is in many cases no order is apparent [9-13].

Few observations were made for Rare earth complexes, were the increasing stability constants with increasing atomic number up to Tb(III) and Yb(III) respectively [14-15].

In present observation complexes of Rare earth trivalent metal (III) ions and Schiff bases I, II and III shows increasing in stability from La(III) to Yb(III) in agreement with increasing Lewis acidity of the metal ions. The order of stability constant of Rare earth complexes with Schiff bases I, II and III has been found to be as follows,

\[
\text{La}^{III} < \text{Pr}^{III} < \text{Nd}^{III} < \text{Gd}^{III} < \text{Ce}^{III} < \text{Sm}^{III} < \text{Tb}^{III} < \text{Dy}^{III} < \text{Ho}^{III} < \text{Yb}^{III}
\]

The thermodynamic parameters (\(\Delta H, \Delta G\) and \(\Delta S\)) have been calculated and are summarized in Table 2. The \(\Delta G\) and \(\Delta H\) values are negative, the \(\Delta G\) free energy change in each case indicates that the complexation is spontaneous. The enthalpy changes are exothermic. The \(\Delta S\) values are positive. The positive values of \(\Delta S\) indicates that entropy effect is found to be predominant over enthalpy effect.

Materials and Methods

All chemicals are A.R. grade. The Schiff bases were prepared by condensation of 2-4 diamino-5- phenylthiazole and 5-methylsalicylaldehyde, 5-Chlorosalicylaldehyde and 2-hydroxy-1-naphthaldehyde i.e. (5MS)\(_2\) DPT, (5CS)\(_2\) DPT and (HN)\(_2\) DPT respectively. The structure I, II and III.

![Schiff base structure](http://www.chemjournal.com)

The fresh solutions of (5MS)\(_2\) DPT, (5CS)\(_2\) DPT and (HN)\(_2\) DPT were prepared in double distilled ethanol and (HN)\(_2\) DPT were always used. Stock solution of rare earth (Nitrate) salts were prepared in double distilled air-free water and their strength were formed in ethanol - water (50:50%) (v/v) at different ionic strength (n)=0.05, 0.1, 0.015 and 0.2 M (NaClO\(_4\)) and also at different temperature (35 and 45°C) using Bjerrum pH-metric technic as adopted by Irving and Rossotti. The pH-metric titrations were performed according to standard alkali (NaOH) solution as under.

1. Acid titration: A Mixture [2ml 0.2 M HClO\(_4\) + 1ml 0.1 M NaClO\(_4\)+17ml distilled water + 20 ml ethanol]
2. Schiff base titration: A mixture [2ml 0.2 MHCIO\(_4\)+ 1ml 0.1 M NaClO\(_4\)+10 ml ligand solution + 17 ml distilled water + 10ml ethanol]
3. Metal-Ligand titration: A mixture [2ml 0.2 MHCIO\(_4\)+ 1ml 0.1 M NaClO\(_4\)+10 ml ligand solution + 2 ml metal ion solution + 15ml distilled water + 10 ml ethanol]

The titrations were carried out in inert nitrogen atmosphere using Elico-4T-120pH meter with combined glass electrode. The pH meter was calibrated with standard buffer and the readings were corrected as per literature [17]. From titration curves at different pH values different sets of \(n\) values were determined of the corresponding free ligands (L) were calculated. The formation curves were drawn and found to be normal. The values of stepwise stability constant \(\log k_1\) and \(\log k_2\) of these complexes were determined at \(n= 0.5\) and \(n= 1.5\) from the formation curves. At each temperature average values of over all stability constant (logk) were plotted against ionic strength for metal ligand system and the values of thermodynamic stability constant (logk\(_{1,2}\)) at zero ionic strength were calculated by extrapolation. The thermodynamic stability constants, the values of (\(\Delta G^0\)) were calculated at 35 and 45°C using relation free energy change

\[
\Delta Go = 2.303 RT \log k^0
\]
Ethalpy (H⁰) \[1/T₂ \cdot -1/T₁\] = -2.303 (logk⁰T-(log k⁰) T₁) and Entropy (ΔS) = ΔH⁰ - G⁰/T

Society's Kandhar and Principal, Shri Shivaji College, Kandhar for providing facilities. Authors thank to Dr. P.G. More for helpful suggestions and constant encouragement.

Acknowledgement
Author are thank to the authorities of Shri Shivaji Education

Table 1: Stability constant of Rare earth trivalent metal ion in mixed solvent media ethanol – water (50:50) (NaClO₄) at different ionic strength 25 °C±1.

Sr. No.	Proton-Ligand and metal-ligand stability constant, Ionic strength (µ) - (NaClO₄) PK and log K	0.05M	0.1M	0.15M	0.2M
1) LH, PK₁, PK₂					
I	9.80, 12.70	8.65, 11.40	8.50, 11.30	8.40, 11.10	
II	8.50, 11.40	8.26, 11.03	8.05, 10.91	8.85, 10.79	
III	8.10, 11.32	8.05, 11.00	7.90, 10.80	7.80, 10.70	
2) La³⁺	6.95	6.45	6.15	5.95	
II	7.50	7.00	6.70	6.50	
III	7.94	7.44	7.14	6.94	
3) Ce³⁺	7.35	6.85	6.55	6.35	
II	7.75	7.25	6.95	6.65	
III	8.30	7.70	7.40	7.20	
4) Pr³⁺	7.20	6.70	6.40	6.20	
II	7.80	7.30	7.00	6.80	
III	8.02	7.52	7.22	7.02	
5) Nd³⁺	7.40	6.90	6.60	6.40	
II	8.10	7.40	7.10	6.90	
III	8.25	7.75	7.45	7.35	
6) Sm³⁺	7.45	6.95	6.65	6.46	
II	7.82	7.32	7.02	6.82	
III	8.30	7.80	7.50	7.30	
7) Gd³⁺	7.30	6.80	6.50	6.30	
II	7.75	7.25	6.96	6.76	
III	8.05	7.63	7.34	7.14	
8) Tb³⁺	7.45	6.95	6.65	6.46	
II	7.80	7.30	7.00	6.80	
III	7.36	7.85	7.66	7.47	
9) Ho³⁺	7.53	7.03	6.73	6.53	
II	7.92	7.42	7.22	6.98	
III	8.32	7.80	7.50	6.36	
10) Dy³⁺	7.45	6.95	6.66	6.47	
II	7.96	7.46	7.57	6.85	
III	8.35	7.85	7.56	7.36	
11) Yb³⁺	7.67	7.17	6.85	6.66	
II	8.05	7.52	7.22	7.03	
III	8.40	7.90	7.61	7.42	

Table 2: Metal Ligand stability constant of Rare earth trivalent metal ion in mixed solvent media ethanol – water (50:50) (V/V) at ionic strength 0.1 M NaClO₄ and their thermodynamic parameters.

Cation	Logk	ΔG KJ Mol⁻¹	ΔS JK Mol⁻¹	ΔH KJ Mol⁻¹							
La³⁺I	6.45	-104.50	104.50	209.00							
II	7.00	-107.00	107.00	214.00							
III	7.44	-109.50	109.50	220.00							
Ce³⁺I	6.85	-112.00	112.00	224.00							
II	7.25	-114.50	114.50	228.00							
III	7.70	-117.00	117.00	232.00							
Pr³⁺I	6.70	-119.50	119.50	236.00							
II	7.30	-122.00	122.00	240.00							
III	7.52	-124.50	124.50	244.00							
Nd³⁺I	6.90	-127.00	127.00	248.00							
II	7.40	-129.50	129.50	252.00							
III	7.75	-132.00	132.00	256.00							
Sm³⁺I	6.95	-134.50	134.50	260.00							
II	7.32	-137.00	137.00	264.00							
III	7.80	-139.50	139.50	268.00							
Gd³⁺I	6.80	-142.00	142.00	272.00							
II	7.25	-144.50	144.50	276.00							
III	7.63	-147.00	147.00	280.00							
Tb³⁺I	6.95	-149.50	149.50	284.00							
II	7.30	7.20	7.10	37.53	37.24	34.65	27.10	27.17	150.50	45.64	82.53
III	7.85	7.75	7.66	39.43	40.45	39.01	102.85	102.80	21.10	8.75	45.75
HoIII	7.03	6.97	6.87	34.43	34.90	33.60	45.23	45.26	22.28	20.90	40.71
II	7.42	7.32	7.22	38.03	34.16	29.26	11.95	11.94	799.00	34.45	283.38
III	7.80	7.70	7.60	39.40	40.12	38.30	72.01	72.00	66.85	17.90	59.58
DyIII	6.95	6.85	6.76	32.27	34.68	33.46	23.52	11.88	16.60	39.32	39.77
II	7.46	7.36	7.27	38.22	38.30	29.25	08.70	08.70	799.00	34.45	283.38
III	7.85	7.70	7.61	39.50	41.57	39.18	132.71	103.91	10.71	9.37	42.62
YbIII	7.17	7.07	6.98	36.43	32.80	34.15	36.29	36.33	145.00	45.28	68.86
II	7.52	7.42	7.33	38.98	39.85	32.05	36.10	36.11	557.60	27.70	215.75
III	7.90	7.71	7.71	34.00	40.52	39.33	42.40	38.90	4.72	160.67	37.80

References
1. More PG, Muthal BN, Indian Chem. Soc. 2006; 83:3638.
2. More PG, Muthal BN, Proceeding of Int. Congress of Chemistry and Environment, 2005, 655-657.
3. Muthal BN, Kandhare NT, Research Journal of SRTM. University, Nanded, 2007, 24-28.
4. Gurkan P, Gunduz NJ, Ind Chem. Soc. 1997; 74:713.
5. Naikwade DS, Mane PS, Chondhelkar TK, J Ind. Chem., Soc. 2001; 78:41.
6. Sanyal P, Sar P, Sugupta GP. Ind. Chem. Soc. 2002; 79:614.
7. Pauling L. The Nature of Chemical Bond Oxfordand IBH, Calcutta, 1963.
8. Harkins TR, Freiser HJ. Am. Chem. Soc.1956; 78:1143.
9. Krishnamurthy N, Prasad NSK, Indian J. Chem. 1966; 4:316.
10. Serdyuk LS, Smirnova VS, Zh anal. khim: 1965; 20:161.
11. Komok VN, Serebrennikov VV, Zh. neorg khim. 1966; 21:90.
12. Serdyuk LS, Smirnov VS, Zh. neorg khim. 1964 19:451.
13. Panasyuk VD, Golub VA, Zh. neorg khim. 1965; 20:2732.
14. Chondhekar TK, Dhuley DG, Ind. J Chem. 1989; 20A:1014-1015.
15. Garg BS, Singh BK, Deo Nandan Kumar, Singh PK, Ind. J Chem. 2003; 42A:79.83.
16. Pitzer KS, J Am. Chem. Soc. 1937; 50:2365.
17. G Douheret, Bull. Soc, Chim, Fr. 1967; 1412:3122.