Implicit Generation and Generalization with Energy Based Models

Yilun Du and Igor Mordatch
Energy-Based Model

- Distribution defined by energy function

\[p_\theta(x) = \frac{\exp(-E_\theta(x))}{Z(\theta)} \quad Z(\theta) = \int \exp(-E_\theta(x))dx \]

see [LeCun et al, 2006] for review
Energy-Based Model

- Distribution defined by energy function

\[p_\theta(x) = \frac{\exp(-E_\theta(x))}{Z(\theta)} \]

- Train to maximize data likelihood

\[\mathcal{L}_{\text{ML}}(\theta) = \mathbb{E}_{x \sim p_D}[-\log p_\theta(x)] \]
Energy-Based Model

• Distribution defined by energy function

\[p_\theta(x) = \frac{\exp(-E_\theta(x))}{Z(\theta)} \]

• Train to maximize data likelihood

\[\mathcal{L}_{\text{ML}}(\theta) = \mathbb{E}_{x \sim p_D} [-\log p_\theta(x)] \]

• Gradient:

\[\mathbb{E}_{x^+ \sim p_D} [\nabla_\theta E_\theta(x^+)] - \mathbb{E}_{x^- \sim p_\theta} [\nabla_\theta E_\theta(x^-)] \]

See [Turner, 2006] for derivation
Energy-Based Model

- Distribution defined by energy function

\[p_\theta(x) = \frac{\exp(-E_\theta(x))}{Z(\theta)} \]

- Train to maximize data likelihood

- gradient:

\[\mathbb{E}_{x^+ \sim p_D} [\nabla_\theta E_\theta(x^+)] - \mathbb{E}_{x^- \sim p_\theta} [\nabla_\theta E_\theta(x^-)] \]

- Generate model samples implicitly via stochastic optimization

\[\tilde{x}^k = \tilde{x}^{k-1} - \frac{\lambda}{2} \nabla_x E_\theta(\tilde{x}^{k-1}) + \omega^k, \ \omega^k \sim \mathcal{N}(0, \lambda) \]

Langevin Dynamics [Welling and Teh, 2011]
Why Energy-Based Generative Models?

1 Implicit Generation
 - Flexibility
 - One Object to Learn
 - Compositional
 - Generic Initialization and Computation Time

2 Intriguing Properties
 - Robustness
 - Online Learning
Why Do EBMs Work Now?

More compute and modern deep learning practices

Faster Sampling

- Continuous gradient based sampling using Langevin Dynamics
- Replay buffer of past samples (similar to persistent CD)

Stability improvements

- Constrain Lipschitz constant of energy function (spectral norm)
- Smoother activations (swish)
- And others ...
Comparison to Other Generative Models

- Training Cost
- Sampling Speed

- SNGAN
- Glow
- PixelCNN++
- EBM
| Model | Inception | FID |
|---|-----------|-------|
| **CIFAR-10 Unconditional** | | |
| PixelCNN (Van Oord et al., 2016) | 4.60 | 65.93 |
| PixelIQN (Ostrovski et al., 2018) | 5.29 | 49.46 |
| EBM (single) | 6.02 | 40.58 |
| DCGAN (Radford et al., 2016) | 6.40 | 37.11 |
| WGAN + GP (Gulrajani et al., 2017) | 6.50 | 36.4 |
| EBM (10 historical ensemble) | 6.78 | 38.2 |
| SNGAN (Miyato et al., 2018) | **8.22** | 21.7 |
| **CIFAR-10 Conditional** | | |
| Improved GAN | 8.09 | - |
| EBM (single) | 8.30 | 37.9 |
| Spectral Normalization GAN | **8.59** | 25.5 |
| **ImageNet 32x32 Conditional** | | |
| PixelCNN | 8.33 | 33.27 |
| PixelIQN | 10.18 | 22.99 |
| EBM (single) | **18.22** | 14.31 |
| **ImageNet 128x128 Conditional** | | |
| ACGAN (Odena et al., 2017) | 28.5 | - |
| EBM* (single) | 28.6 | 43.7 |
| SNGAN | **36.8** | **27.62** |
Cross Class Mapping

[Images of various objects and their corresponding classes: Deer, Bird, Frog, Ship, Car, Airplane, Automobile, Truck, Ship, Deer]
Cross Class Mapping
Surprising Benefits of Energy-Based Models

• Robustness
• Continual Learning
• Compositionality
• Trajectory Modeling
Surprising Benefits of Energy-Based Models

• Robustness

• Continual Learning

• Compositionality

• Trajectory Modeling
Out-of-Distribution Relative Likelihoods

Also observed by [Hendrycks et al 2018] and [Nalisnick et al 2019]
Out-of-Distribution Relative Likelihoods

Also observed by [Hendrycks et al 2018] and [Nalisnick et al 2019]
Out-of-Distribution Relative Likelihoods

Also observed by [Hendrycks et al 2018] and [Nalisnick et al 2019]
Out-of-Distribution Generalization

- Following [Hendrycks and Gimpel, 2016]

Model	SVHN	Textures	Monochrome Uniform	Uniform	CIFAR10 Interpolation	Average
PixelCNN++	0.32	0.33	0.0	1.0	0.71	0.47
Glow	0.24	0.27	0.0	1.0	0.59	0.42
EBM (ours)	0.63	0.48	0.30	1.0	0.70	0.62
Robust Classification

(a) L_∞ robustness

(b) L_2 Robustness
Robust Classification

(recent follow-up submission at ICLR 2020 improves baseline EBM performance)
Surprising Benefits of Energy-Based Models

- Robustness
- Continual Learning
- Compositionality
- Trajectory Modeling
Continual Learning: Split MNIST

Method	Memory	Incremental task learning	Incremental domain learning	Incremental class learning
Baselines				
Adam		93.46 ± 2.01	55.16 ± 1.38	19.71 ± 0.08
SGD		97.98 ± 0.09	63.20 ± 0.35	19.46 ± 0.04
Adagrad		98.06 ± 0.53	58.08 ± 1.06	19.82 ± 0.09
L2		98.18 ± 0.96	66.00 ± 3.73	22.52 ± 1.08
Naive rehearsal	✓	99.40 ± 0.08	95.16 ± 0.49	90.78 ± 0.85
Naive rehearsal-C	✓	99.57 ± 0.07	97.11 ± 0.34	95.59 ± 0.49
Continual learning methods				
EWC		97.70 ± 0.81	58.85 ± 2.59	19.80 ± 0.05
Online EWC		98.04 ± 1.10	57.33 ± 1.44	19.77 ± 0.04
SI		98.56 ± 0.49	64.76 ± 3.09	19.67 ± 0.09
MAS		99.22 ± 0.21	68.57 ± 6.85	19.52 ± 0.29
LwF		99.60 ± 0.03	71.02 ± 1.26	24.17 ± 0.33
GEM	✓	98.42 ± 0.10	96.16 ± 0.35	92.20 ± 0.12
DGR	✓	99.47 ± 0.03	95.74 ± 0.23	91.24 ± 0.33
RlF	✓	99.66 ± 0.03	97.31 ± 0.11	92.56 ± 0.21
Offline (upper bound)		99.52 ± 0.16	98.59 ± 0.15	97.53 ± 0.30

Evaluation by [Hsu et al, 2019]
Continual Learning: Split MNIST

Method	Memory	Incremental task learning	Incremental domain learning	Incremental class learning
Baselines				
Adam		93.46 ± 2.01	55.16 ± 1.38	19.71 ± 0.08
SGD		97.98 ± 0.09	63.20 ± 0.35	19.46 ± 0.04
Adagrad		98.06 ± 0.53	58.08 ± 1.06	19.82 ± 0.09
L2		98.18 ± 0.96	66.00 ± 3.73	22.52 ± 1.08
Naive rehearsal	✓	99.40 ± 0.08	95.16 ± 0.49	90.78 ± 0.85
Naive rehearsal-C	✓	**99.57 ± 0.07**	**97.11 ± 0.34**	**95.59 ± 0.49**
Continual learning methods				
EWC		97.70 ± 0.81	58.85 ± 2.59	19.80 ± 0.05
Online EWC		98.04 ± 1.10	57.33 ± 1.44	19.77 ± 0.04
SI		98.56 ± 0.49	64.76 ± 3.09	19.67 ± 0.09
MAS		99.22 ± 0.21	68.57 ± 6.85	19.52 ± 0.29
LwF		99.60 ± 0.03	71.02 ± 1.26	24.17 ± 0.33
GEM	✓	98.42 ± 0.10	96.16 ± 0.35	92.20 ± 0.12
DGR	✓	99.47 ± 0.03	95.74 ± 0.23	91.24 ± 0.33
RtF	✓	**99.66 ± 0.03**	**97.31 ± 0.11**	**92.56 ± 0.21**

Offline (upper bound) 99.52 ± 0.16 98.59 ± 0.15 97.53 ± 0.30

Evaluation by [Hsu at al, 2019]
Continual Learning: Split MNIST

Baselines	Method	Memory	Incremental task learning	Incremental domain learning	Incremental class learning
	Adam		93.46 ± 2.01	55.16 ± 1.38	19.71 ± 0.08
	SGD		97.98 ± 0.09	63.20 ± 0.35	19.46 ± 0.04
	Adagrad		98.06 ± 0.53	58.08 ± 1.06	19.82 ± 0.09
	L2		98.18 ± 0.96	66.00 ± 3.73	22.52 ± 1.08
	Naive rehearsal	✓	99.40 ± 0.08	95.16 ± 0.49	90.78 ± 0.85
	Naive rehearsal-C	✓	**99.57 ± 0.07**	**97.11 ± 0.34**	**95.59 ± 0.49**

Continual learning methods	EWC	Memory	Incremental task learning	Incremental domain learning	Incremental class learning
	Online EWC		97.70 ± 0.81	58.85 ± 2.59	19.80 ± 0.05
	SI		98.04 ± 1.10	57.33 ± 1.44	19.77 ± 0.04
	MAS		98.56 ± 0.49	64.76 ± 3.09	19.67 ± 0.09
	LwF		99.22 ± 0.21	68.57 ± 6.85	19.52 ± 0.29
	GEM	✓	98.42 ± 0.10	96.16 ± 0.35	92.20 ± 0.12
	DGR	✓	99.47 ± 0.03	95.74 ± 0.23	91.24 ± 0.33
	RtF	✓	**99.66 ± 0.03**	**97.31 ± 0.11**	**92.56 ± 0.21**
Offline (upper bound)			99.52 ± 0.16	98.59 ± 0.15	97.53 ± 0.30

EBM: 64.99 ± 4.27 (10 seeds)

Evaluation by [Hsu at al, 2019]
Continual Learning: Split MNIST

Baselines	Method	Memory	Incremental task learning	Incremental domain learning	Incremental class learning
	Adam		93.46 ± 2.01	55.16 ± 1.38	19.71 ± 0.08
	SGD		97.98 ± 0.09	63.20 ± 0.35	19.46 ± 0.04
	Adagrad		98.06 ± 0.53	58.08 ± 1.06	19.82 ± 0.09
	L2		98.18 ± 0.96	66.00 ± 3.73	22.52 ± 1.08
Naive rehearsal		✓	99.40 ± 0.08	95.16 ± 0.49	90.78 ± 0.85
Naive rehearsal-C	✓		**99.57 ± 0.07**	**97.11 ± 0.34**	**95.59 ± 0.49**
Continual learning methods	EWC		97.70 ± 0.81	58.85 ± 2.59	19.80 ± 0.05
	Online EWC		98.04 ± 1.10	57.33 ± 1.44	19.77 ± 0.04
	SI		98.56 ± 0.49	64.76 ± 3.09	19.67 ± 0.09
	MAS		99.22 ± 0.21	68.57 ± 6.85	19.52 ± 0.29
	LwF		99.60 ± 0.03	71.02 ± 1.26	24.17 ± 0.33
GEM		✓	98.42 ± 0.10	96.16 ± 0.35	92.20 ± 0.12
DGR		✓	99.47 ± 0.03	95.74 ± 0.23	91.24 ± 0.33
RtF		✓	**99.66 ± 0.03**	**97.31 ± 0.11**	**92.56 ± 0.21**
Offline (upper bound)			99.52 ± 0.16	98.59 ± 0.15	97.53 ± 0.30

Evaluation by [Hsu at al, 2019]

EBM: 64.99 ± 4.27

Would any generative model work instead? Doesn’t look like it:
VAE: 40.04 ± 1.31
Surprising Benefits of Energy-Based Models

• Robustness

• Continual Learning

• Compositionality

• Trajectory Modeling
Compositionality via Sum of EBMs

[Hinton, 1999]

Specify a concept by successively adding constraints
Compositionality via Sum of Energies

Specify a concept by successively adding constraints

Compositional Visual Generation with EBMs [Du, Li, Mordatch, 2019]
Compositionality via Sum of Energies

Specify a concept by successively adding constraints

Compositional Visual Generation with EBM (Du, Li, Mordatch, 2019)
Compositionality via Sum of Energies

Specify a concept by successively adding constraints

Compositional Visual Generation with EBMs [Du, Li, Mordatch, 2019]
Compositionality via Sum of Energies

Specify a concept by successively adding constraints

Compositional Visual Generation with EBMs [Du, Li, Mordatch, 2019]
Compositionality via Sum of Energies

Specify a concept by successively adding constraints

Compositional Visual Generation with EBMs [Du, Li, Mordatch, 2019]
Surprising Benefits of Energy-Based Models

• Robustness

• Continual Learning

• Compositionality

• Trajectory Modeling
EBMs for Trajectory Modeling and Control

[Du, Lin, Mordatch, 2019]

• Train energy to model pairwise state transitions s_t, s_{t+1}
• Trajectory probability:

$$p_\theta(\tau) = p_\theta(s_1, s_2, \ldots, s_T) = \prod_{t=1}^{T-1} p_\theta(s_t, s_{t+1})$$

$$\propto \exp(- \sum_{t=1}^{T} E(s_t, s_{t+1}))$$
EBMs for Trajectory Modeling and Control

[Du, Lin, Mordatch, 2019]

- Train energy to model pairwise state transitions s_t, s_{t+1}
- Generate trajectories that achieve specific tasks:

$$p_\theta(s_2, \ldots, s_T|s_1, R) \propto \exp(-\sum_{t=1}^{T-1} E(s_t, s_{t+1}) - \sum_{t=1}^{T} R(s_t))$$

(similar to direct trajectory optimization)
EBMs for Control

Data	Model	Particle	Maze	Reacher
Pretrained	EBM	-5.14	-72.07	-19.38
	Action FF	-6.11	-65.06	-25.54
Online	EBM	-20.38	-162.97	-29.87
	Action FF	-850.67	-949.99	-42.37
Source Code

• Images
 • https://github.com/openai/ebm_code_release

• Trajectories
 • https://github.com/yilundu/model_based_planning_ebm

• Compositionality
 • https://drive.google.com/file/d/138w7Oj8rQl_e40_RfZJq2WKWb41NgKn3

• Interactive Notebook
 • https://drive.google.com/file/d/1fCFRW_YtqQPSNoqznlh2b1L2baFgLz4W/view