Extremal Type II \mathbb{Z}_4-codes constructed from binary doubly even self-dual codes of length 40

Masaaki Harada*

June 13, 2017

Abstract

In this note, we demonstrate that every binary doubly even self-dual code of length 40 can be realized as the residue code of some extremal Type II \mathbb{Z}_4-code. As a consequence, it is shown that there are at least 94356 inequivalent extremal Type II \mathbb{Z}_4-codes of length 40.

1 Introduction

Let $\mathbb{Z}_4 (= \{0, 1, 2, 3\})$ denote the ring of integers modulo 4. A \mathbb{Z}_4-code C of length n is a \mathbb{Z}_4-submodule of \mathbb{Z}_4^n. Two \mathbb{Z}_4-codes are equivalent if one can be obtained from the other by permuting the coordinates and (if necessary) changing the signs of certain coordinates. A code C is self-dual if $C = C^\perp$, where the dual code C^\perp is defined as $\{x \in \mathbb{Z}_4^n \mid x \cdot y = 0 \text{ for all } y \in C\}$ under the standard inner product $x \cdot y$. The Euclidean weight of a codeword $x = (x_1, \ldots, x_n)$ of C is $n_1(x) + 4n_2(x) + n_3(x)$, where $n_\alpha(x)$ denotes the number of components i with $x_i = \alpha$ ($\alpha = 1, 2, 3$). A \mathbb{Z}_4-code C is Type II if C is self-dual and the Euclidean weights of all codewords of C are divisible by 8 [2] and [3]. This is a remarkable class of self-dual \mathbb{Z}_4-codes related to even unimodular lattices. A Type II \mathbb{Z}_4-code of length n exists if and only if $n \equiv 0 \pmod{8}$. The minimum Euclidean weight d_E of C is the smallest Euclidean

*Research Center for Pure and Applied Mathematics, Graduate School of Information Sciences, Tohoku University, Sendai 980-8579, Japan. email: mharada@m.tohoku.ac.jp. This work was partially carried out at Yamagata University.
weight among all nonzero codewords of \(C \). The minimum Euclidean weight \(d_E \) of a Type II \(Z_4 \)-code of length \(n \) is bounded by \(d_E \leq 8\lfloor n/24 \rfloor + 8 \) \cite{2}. A Type II \(Z_4 \)-code meeting this bound with equality is called extremal.

The residue code \(C^{(1)} \) of a \(Z_4 \)-code \(C \) is the binary code \(C^{(1)} = \{ c \mod 2 \mid c \in C \} \). If \(C \) is self-dual, then \(C^{(1)} \) is a binary doubly even code \cite{5}. If \(C \) is Type II, then \(C^{(1)} \) contains the all-ones vector \(1 \) \cite{8}. It follows that there is a Type II \(Z_4 \)-code \(C \) with \(C^{(1)} = B \) for a given binary doubly even code \(B \) containing \(1 \) (see \cite{9}). However, it is not known in general whether there is an extremal Type II \(Z_4 \)-code \(C \) with \(C^{(1)} = B \) or not.

A binary doubly even self-dual code of length \(n \) exists if and only if \(n \equiv 0 \) \pmod{8}, and the minimum weight \(d \) of a binary doubly even self-dual code of length \(n \) is bounded by \(d \leq 4\lfloor n/24 \rfloor + 4 \). A binary doubly even self-dual code meeting this bound with equality is called extremal. Two binary codes \(B \) and \(B' \) are equivalent if \(B \) can be obtained from \(B' \) by permuting the coordinates. The classification of binary doubly even self-dual codes has been done for lengths up to 40 (see \cite{1}). For every binary doubly even self-dual code \(B \) of length 24, there is an extremal Type II \(Z_4 \)-code \(C \) with \(C^{(1)} = B \) \cite{4}. Postscript] (see also \cite{7}). In addition, for every binary doubly even self-dual code \(B \) of length 32, there is an extremal Type II \(Z_4 \)-code \(C \) with \(C^{(1)} = B \) \cite{6}.

In this note, this work is extended to length 40. We demonstrate that there is an extremal Type II \(Z_4 \)-code \(C \) with \(C^{(1)} = B \) for every binary doubly even self-dual code \(B \) of length 40. As a consequence, it is shown that there are at least 94356 inequivalent extremal Type II \(Z_4 \)-codes of length 40. In addition, our result implies that there is an extremal Type II \(Z_4 \)-code \(C \) with \(C^{(1)} = B \) for every binary doubly even self-dual code \(B \) of length \(n \in \{8, 16, 24, 32, 40\} \). Also, there is an extremal Type II \(Z_4 \)-code \(C \) with \(C^{(1)} = B \) for every binary extremal doubly even self-dual code \(B \) of length \(n \in \{8, 16, 24, 32, 40, 48\} \).

All computer calculations in this note were done by Magma \cite{3}.

2 Extremal Type II \(Z_4 \)-codes of length 40

2.1 Construction method

We review the method for constructing Type II \(Z_4 \)-codes, which was given in \cite{9}. Let \(B \) be a binary doubly even self-dual code of length \(n \). Let \(I_n \)
denote the identity matrix of order n and let

$$
\tilde{I}_n = \begin{pmatrix}
1 & \cdots & 1 \\
0 \\
\vdots & & I_{n-1} \\
0
\end{pmatrix}.
$$

Without loss of generality, we may assume that B has generator matrix of the following form:

(1) $$
G_1 = \begin{pmatrix}
A_1 & \tilde{I}_n
\end{pmatrix},
$$

where A_1 is an $n/2 \times n/2$ matrix which has the property that the first row is 1. Then we have a generator matrix of a Type II \mathbb{Z}_4-code C as follows:

(2) $$
\begin{pmatrix}
A_1 & \tilde{I}_n + 2A_2
\end{pmatrix},
$$

where A_2 is an $n/2 \times n/2$ $(1, 0)$-matrix and we regard the matrices as matrices over \mathbb{Z}_4. Here, we can choose freely the entries above the diagonal elements and the $(1, 1)$-entry of A_2, and the rest is completely determined from the property that C is Type II. Since any Type II \mathbb{Z}_4-code is equivalent to some Type II \mathbb{Z}_4-code containing 1 [8], without loss of generality, we may assume that the first row of A_2 is the zero vector. This reduces our search space for finding extremal Type II \mathbb{Z}_4-codes. It is the aim of this work to find a 20×20 $(1, 0)$-matrix A_2 such that the matrix of form (2) generates an extremal Type II \mathbb{Z}_4-code from a generator matrix of form (1) for a given binary doubly even self-dual code of length 40.

2.2 Extremal Type II \mathbb{Z}_4-codes of length 40

There are 94343 inequivalent binary doubly even self-dual codes of length 40 [II]. Let B be one of the 94343 binary codes. Without loss of generality, we may assume that B has generator matrix of form (1). In the above method, we explicitly found a 20×20 $(1, 0)$-matrix A_2 such that the matrix of form (2) generates an extremal Type II \mathbb{Z}_4-code C. Note that $C^{(1)} = B$. This was done for all the 94343 binary doubly even self-dual codes. Hence, we have the following:

Proposition 1. Let B be a binary doubly even self-dual code of length 40. Then there is an extremal Type II \mathbb{Z}_4-code C with $C^{(1)} = B$.

Remark 2. The extremality of the code was verified as follows. Let \(C \) be a Type II \(\mathbb{Z}_4 \)-code of length 40. The following lattice

\[
A_4(C) = \frac{1}{2}\{ (x_1, \ldots, x_n) \in \mathbb{Z}^n \mid (x_1 \mod 4, \ldots, x_n \mod 4) \in C \}
\]

has minimum norm 4 if and only if \(C \) is extremal \([2]\). Instead of calculating the minimum Euclidean weight of \(C \), we calculated the minimum norm of \(A_4(C) \). This speeded up the calculations by MAGMA \([3]\) considerably. As an example, for some five extremal Type II \(\mathbb{Z}_4 \)-codes, the calculations for the minimum Euclidean weights took about 1223 minutes, but the calculations for the minimum norms took about 3 seconds only, using a single core of a PC Intel i7 4 core processor.

By the above proposition, 94343 extremal Type II \(\mathbb{Z}_4 \)-codes are constructed from the 94343 inequivalent binary doubly even self-dual codes of length 40. The 94343 extremal Type II \(\mathbb{Z}_4 \)-codes are inequivalent, since their residue codes are inequivalent. Generator matrices for the 94343 codes can be written in the form \((I_{20} \ M) \), where \(M \) can be obtained electronically from \url{http://www.math.is.tohoku.ac.jp/~mharada/Paper/Z4-40-II.txt}.

For \(m = 7, 8, \ldots, 19 \), an extremal Type II \(\mathbb{Z}_4 \)-code \(C \) of length 40 such that the residue code \(C^{(1)} \) has dimension \(m \) is known \([6]\). Hence, we have the following:

Corollary 3. There are at least 94356 inequivalent extremal Type II \(\mathbb{Z}_4 \)-codes of length 40.

As described above, for every binary doubly even self-dual code \(B \) of length 24 (resp. 32), there is an extremal Type II \(\mathbb{Z}_4 \)-code \(C \) with \(C^{(1)} = B \) \([4]\).\[Postscript\] (resp. \([6]\)). Hence, we have the following:

Corollary 4. Suppose that \(n \in \{8, 16, 24, 32, 40\} \). Let \(B \) be a binary doubly even self-dual code of length \(n \). Then there is an extremal Type II \(\mathbb{Z}_4 \)-code \(C \) with \(C^{(1)} = B \).

It is known that the binary extended quadratic residue code \(QR_{48} \) of length 48 is the unique binary extremal doubly even self-dual code of that length. The binary code \(QR_{48} \) is the residue code of the extended lifted quadratic residue \(\mathbb{Z}_4 \)-code of length 48, which is an extremal Type II \(\mathbb{Z}_4 \)-code \([2]\). Hence, we have the following:
Corollary 5. Suppose that $n \in \{8, 16, 24, 32, 40, 48\}$. Let B be a binary extremal doubly even self-dual code of length n. Then there is an extremal Type II \mathbb{Z}_4-code C with $C^{(1)} = B$.

In this note, 94343 inequivalent extremal Type II \mathbb{Z}_4-codes C_i of length 40 were constructed explicitly ($i = 1, 2, \ldots, 94343$). It is a worthwhile problem to determine whether extremal even unimodular lattices $A_4(C_i)$ ($i = 1, 2, \ldots, 94343$) are isomorphic or not.

Acknowledgment. This work was supported by JSPS KAKENHI Grant Number 15H03633.

References

[1] K. Betsumiya, M. Harada and A. Munemasa, A complete classification of doubly even self-dual codes of length 40, Electronic J. Combin. 19 (2012), #P18 (12 pp.).

[2] A. Bonnecaze, P. Solé, C. Bachoc and B. Mourrain, Type II codes over \mathbb{Z}_4, IEEE Trans. Inform. Theory 43 (1997), 969–976.

[3] W. Bosma, J. Cannon and C. Playoust, The Magma algebra system I: The user language, J. Symbolic Comput. 24 (1997), 235–265.

[4] A.R. Calderbank and N.J.A. Sloane, Double circulant codes over \mathbb{Z}_4 and even unimodular lattices, J. Algebraic Combin. 6 (1997), 119–131.

[5] J.H. Conway and N.J.A. Sloane, Self-dual codes over the integers modulo 4, J. Combin. Theory Ser. A 62 (1993), 30–45.

[6] M. Harada, On the residue codes of extremal Type II \mathbb{Z}_4-codes of lengths 32 and 40, Discrete Math. 311 (2011), 2148–2157.

[7] M. Harada, C.H. Lam and A. Munemasa, Residue codes of extremal Type II \mathbb{Z}_4-codes and the moonshine vertex operator algebra, Math. Z. 274 (2013), 685–700.

[8] M. Harada, P. Solé and P. Gaborit, Self-dual codes over \mathbb{Z}_4 and unimodular lattices: a survey, Algebras and combinatorics (Hong Kong, 1997), 255–275, Springer, Singapore, 1999.
[9] V. Pless, J. Leon and J. Fields, All \mathbb{Z}_4 codes of Type II and length 16 are known, *J. Combin. Theory Ser. A* **78** (1997), 32–50.