The Na\(^+\)/H\(^+\) Antiporter Potentiates Growth and Retinoic Acid-induced Differentiation of P19 Embryonal Carcinoma Cells*

(Received for publication, June 9, 1997, and in revised form, August 1, 1997)

Huayan Wang‡, Dyal Singh§, and Larry Fliegel¶

From the Departments of ‡Pediatrics, ¶Biochemistry, and §Cell Biology and Anatomy, Medical Research Council Group in the Molecular Biology of Membranes, Faculty of Medicine, University of Alberta, Edmonton, Alberta, Canada T6G 2S2

The Na\(^+\)/H\(^+\) exchanger is a ubiquitous plasma membrane protein that is responsible for pH regulation and is activated by growth factors. We examined the role of the Na\(^+\)/H\(^+\) exchanger in cell growth and differentiation. Treatment of P19 cells with the Na\(^+\)/H\(^+\) exchanger inhibitor Hoe 694 eliminated retinoic acid-induced differentiation in this cell line. We developed a P19 embryonal carcinoma cell line that was deficient in the Na\(^+\)/H\(^+\) antiporter. Na\(^+\)/H\(^+\) exchanger-deficient cells were reduced in the rate of cell growth and this effect was enhanced by the removal of added HCO\(_3\)- and by reducing extracellular pH. The antiporter-deficient cells were also markedly deficient in their ability to differentiate to neuronal-like cells and recovered this ability when the Na\(^+\)/H\(^+\) antiporter was reintroduced. The results show that the absence of Na\(^+\)/H\(^+\) antiport as a pH regulatory mechanism can result in deficiencies in both cell growth and differentiation in embryonal carcinoma cells.

The Na\(^+\)/H\(^+\) exchanger is a plasma membrane protein that exchanges intracellular protons for extracellular sodium. In eukaryotes it is involved in pH regulation (1) and the control of cell volume and is stimulated by growth factors (2). Several isoforms of the protein have been identified (NHE1 to NHE5) in many mammalian cell types, and the NHE1 isoform is the most ubiquitous isoform, being present in most, if not all, mammalian cells (3).

Studies have shown that NHE1 mRNA levels are increased due to a number of treatments including treatments that cause cellular differentiation and chronic acid loading (4–6). During differentiation of human leukemic cells (HL-60), there is an 18-fold increase in NHE1 transcription and a 7-fold increase in protein levels (4, 7). More recently we have shown that there is a transient increase in the level of NHE1 transcription during retinoic acid-induced differentiation of P19 cells and an increase in activity of the protein (8). We have also shown that NHE1 mRNA levels increase when L6 cells differentiate from myoblast to myotubes and the NHE1 promoter was also activated during L6 muscle cell differentiation (9). This data suggests that Na\(^+\)/H\(^+\) antiporter plays an important role in cellular differentiation. Increased antiporter activity during differentiation has been suggested to be important for differentiation to occur, at least in some cell types (10, 11). However, this requirement has not been shown to occur universally and the role of the Na\(^+\)/H\(^+\) exchanger may vary between cell types (12).

Another important related aspect of pH regulation is its role in cell growth and proliferation. It has long been suggested that the Na\(^+\)/H\(^+\) antiporter may play a role in the onset and/or maintenance of cell proliferation (13). In HCO\(_3\)- free media, some types of Na\(^+\)/H\(^+\) exchanger-deficient cells cannot proliferate in media of low external pH (14). In addition, extracellular Na\(^+\) is a limiting factor in growth factor dependent proliferation (15). The Na\(^+\)/H\(^+\) exchanger inhibitor, amiloride and its analogs, block changes caused by growth factor stimulation especially in HCO\(_3\)- free or low Na\(^+\) medium (16). It is also clear that in some cell types the mechanism by which the Na\(^+\)/H\(^+\) exchanger acts is to attain a permissive pH\(_i\), which is critical to the development of mitogenic responses elicited by growth factors (17). In addition, Na\(^+\)/H\(^+\) exchange is important in pH regulation in some tumor types and is a target for inhibition in tumor selective therapy (18). However, it should be noted that Na\(^+\)/H\(^+\) antiporter activation is not a prerequisite for cell proliferation in all cell types (19).

We recently showed that the NHE1 promoter is activated during the early stages of neuronal differentiation of P19 cells (8). This suggested that this protein may play an important role in differentiation in this cell type. To examine this possibility we studied the role of the NHE1 protein in cell growth and differentiation of P19 cells. The results show that the Na\(^+\)/H\(^+\) exchanger plays an important role in cell proliferation and differentiation of P19 cells, an important and widely used model of cell differentiation. These findings are the first direct demonstration that deletion of the Na\(^+\)/H\(^+\) exchanger can directly affect differentiation of mammalian cells.

EXPERIMENTAL PROCEDURES

Materials—Ethyl methanesulfonate (EtMes), all trans-retinoic acid and G418 were obtained from Sigma. 2,7-bis(2-carboxyethyl)-5(6)-carboxyfluorescein acetoxymethyl ester (BCECF-AM) was purchased from Molecular Probes (Eugene, OR). All other chemicals were of analytical or molecular biology grade and were purchased from Fisher Scientific, Sigma, BDH (Toronto, Ontario, Canada), or Life Technologies, Inc. The neuron specific class III \(\beta\)-tubulin monoclonal antibody was a gift from Dr. A. Frankfurter of the University of Virginia. Fluorescein-conjugated goat anti-rabbit IgG was from Bio/Can Scientific, Inc. (Mississauga, Ontario, Canada). 5-(N,N-hexamethylene)-amiloride (HMA) was from Research Biochemicals International (Natick, MA). Hoe 694 was a gift from Drs. H. J. Lang and W. Scholz (Hoechst, Frankfurt).

Cell Culture—P19 mouse embryonal carcinoma cells were obtained

* This work was supported by Program Grant PG-11440 from the Medical Research Council of Canada. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

‡ Senior Scholar of the Alberta Heritage Foundation for Medical Research. To whom correspondence should be addressed: Depts. of Pediatrics and Biochemistry, Faculty of Medicine, University of Alberta, 347 Medical Science Bldg., Edmonton, Alberta, Canada T6G 2H7. Tel.: 403-442-1848; Fax: 403-442-0886; E-mail: lfliege@pgu.srv.ualberta.ca.

¶ The abbreviations used are: pH\(_i\), intracellular pH; BCECF-AM, 2,7-bis(2-carboxyethyl)-5(6)-carboxyfluorescein acetoxymethyl ester; EtMes, ethyl methanesulfonate; HMA, 5-(N,N-hexamethylene)-amiloride; \(\alpha\)-MEM, \(\alpha\)-minimum essential medium; PAGE, polyacrylamide gel electrophoresis.
Neuronal Differentiation and the Na⁺/H⁺ Exchanger

from American Type Culture Collection. Wild-type and mutant P19 cells were maintained in α-minimum essential medium supplemented with 25 mM NaHCO₃, 2.5% fetal bovine serum, and 7.5% newborn calf serum as reported earlier (8). G20 cells were derived from mutated P19 cells (described below) and lacked Na⁺/H⁺ exchange activity. Mutant G20 cells were grown in the above medium, which contained 30 mM HEPES pH 7.4 to ensure that the medium pH did not acidify with cell growth. Cell numbers were measured using a hemocytometer. To induce cell differentiation, wild-type and mutant P19 cells were grown in medium with 1 μM retinoic acid in nonadhesive plates for 48 h, and after aggregation they were plated on adhesive substrates without retinoic acid and grown another 48 h. In some experiments we examined the effect of Hoe 694 on differentiation of P19 cells. In these experiments, experimental cells had the same protocol except in the presence of 10 μM Hoe 694.

P19 cells were mutagenized with EtMes essentially as described elsewhere (20). P19 cells grown to 70% confluency were treated with 0.25 μM/l EtMes in α-MEM overnight. With this treatment, 90–95% of the cells did not survive. Surviving cells were grown to confluency and then selected for lack of Na⁺/H⁺ antiport by the "proton suicide" technique. The technique is based on the reversibility of Na⁺/H⁺ antiport and the fact that Li⁺ is transported by the exchanger. It results in reversal of activity and H⁺-killing of cells with an active transporter (14). Trypsinized cells were incubated in LiCl buffer (130 mM LiCl, 5 mM KCl, 5 mM MgSO₄, 2 mM CaCl₂, 5 mM glucose, and 20 mM 2-(N-morpholino)ethanesulfonic acid, pH 5.5) for 1 h at 37 °C. The cells were pelleted again and resuspended and grown in α-MEM supplemented with 20 mM HEPES, pH 7.4. After 7–10 days, resistant colonies were formed and grown individually. The individual clones were selected two additional times using the proton suicide technique. The recovery of an ammonium chloride-induced acid load was used to confirm that clones were devoid of Na⁺/H⁺ antiporter activity (21).

To reintroduce the Na⁺/H⁺ exchanger back into G20 cells, the expression system used was the pOPRSVicat mammalian expression system (Stratagene). The vector was digested with NdeI and filled in with the enzyme Klenow, and a full-length insert coding for the human NHE1 isoform of the Na⁺/H⁺ exchanger (22) was blunt end ligated and screened for orientation. The resulting plasmid, pYN4, was used to transform G20 cells, using the calcium phosphate precipitation method as described earlier (8, 9). G20 cells were selected with 400 μg/ml G418. Resistant colonies (G20pY4) were identified, and individual colonies were propagated until reaching a higher density.

Internal pH Measurement—Measurement of pH in P19 cells was essentially as described earlier (8). P19 and G20 cells were grown to 80% confluency on coverslips. Fluorescence measurements were made on a Shimadzu RF-5000 spectrofluorophotometer. Coverslips were incubated in a cuvette with constant stirring. The acetoxymethyl ester of BCECF-AM (0.1 mM) was then changed to one containing 135 mM NaCl, and the initial rate of rise of internal pH was measured during the first 40 s of recovery. In some experiments we examined the effect of Hoe 694 on differentiation of P19 cells. In these experiments, experimental cells had the same protocol except in the presence of 10 μM Hoe 694.

FIG. 1. Effect of 10 μM Hoe 694 on the ability of P19 cells to differentiate to neuronal-like cells. P19 cells were treated with 1 μM retinoic acid for 2 days in nontissue culture dishes with or without 10 μM Hoe 694. Cells were then transferred to tissue culture Petri dishes and grown for 2 more days in α-MEM in the presence or absence of Hoe 694 (pH 7.4). The cells were collected, and equal amounts of protein of each sample (25 μg) were separated by 12% SDS-PAGE and examined by Western blotting with neuronal specific class III β-tubulin antibody. Lane 1, control cells not treated with retinoic acid (P19); lane 2, cells treated with 10 μM Hoe 694 throughout the differentiation procedure (P19+RA+Hoe694); lane 3, cells treated with retinoic acid in the absence of Hoe 694 (P19+RA).

RESULTS

We initially examined whether the Na⁺/H⁺ exchanger could play a role in the differentiation of P19 cells. Cells were treated with retinoic acid in the presence of Hoe 694, a potent inhibitor of the Na⁺/H⁺ exchanger. Cell extracts were then examined for the presence of β-tubulin, a marker of neuronal differentiation (25). Typical results are shown in Fig. 1. Control cells contained residual amounts of β-tubulin, likely due to a small amount of spontaneous differentiation that usually occurs in these cells. P19 cells treated with retinoic acid and Hoe 694 showed only the same small amount of β-tubulin. In contrast P19 cells treated with retinoic acid in the absence of Hoe 694 showed a much larger amount of β-tubulin, which is typical of cells undergoing differentiation.

To establish a Na⁺/H⁺ exchanger-deficient cell line, P19 cells were treated with 0.25 μg/ml EtMes for 12 h. This treatment resulted in the death of approximately 90% of the cells. Following this treatment, cells were then subjected to the proton suicide selection technique for 3 h (20). The surviving cells formed colonies after 7–10 days of growth. We examined 22 colonies for Na⁺/H⁺ exchanger activity. Four out of 22 clones showed no, or greatly diminished, pH recovery when subjected to ammonium chloride-induced acid load. One of the mutant clones, G20, was reselected two more times by the proton suicide technique. This clone had the same morphology as the wild-type P19 cells. Since it was sensitive to external pH variation, the cells were maintained in medium containing HEPES, pH 7.4. We examined the G20 clone for Na⁺/H⁺ exchanger activity using the NH₄Cl prepulse technique (Fig. 2A). The results showed that the rate of recovery from an acid load was greatly diminished in this cell line. There was no apparent difference in the degree of acidification induced by NH₄Cl sug-
Neuronal Differentiation and the Na\(^+\)/H\(^+\) Exchanger 26547

![Figure 2: Recovery from an acute acid load by wild-type P19 cells and in mutant G20 cells.](image)

FIG. 2. Recovery from an acute acid load by wild-type P19 cells and in mutant G20 cells. Cells were treated with 10 mM HCl at pH 6.4 and then incubated in bicarbonate-free medium. The pH was measured as described under "Experimental Procedures." G20 cells were derived from mutated P19 cells and lacked Na\(^+\)/H\(^+\) exchanger activity. The plasmid pYN4 contained full-length cDNA for the Na\(^+\)/H\(^+\) exchanger and was used to transform G20 cells and make stable cell line (G20;pYN4) with Na\(^+\)/H\(^+\) exchanger activity. Intracellular pH regulation of P19, G20, and G20;pYN4 cells was made on a Shimadzu RF-5000 spectrophotometer as described earlier using the acetoxymethyl ester of 2',7'-bis-(2-carboxyethyl)-5(6)-carboxyfluorescein. Initial rates of proton extrusion were measured after an acid challenge using the NH\(_4\)Cl prepulse method (8). Results are typical of at least three experiments, and discontinuities in the tracings were caused by addition or removal of liquids. A, intracellular pH recovery of wild-type P19 and mutant G20 cells after ammonium chloride-induced acidosis. Only part of the NH\(_4\)Cl containing period is shown plus the time period in NaCl free buffer and the recovery in 135 mM NaCl. The recovery by P19 cells is superimposed on the results of the G20 cells. The degree of acidification by NH\(_4\)Cl was the same in all the cell types examined. B, intracellular pH recovery of wild-type P19 and mutant G20 cells in the presence of 10 \(\mu\)M HMA. Only part of the Na\(^+\) free period is shown plus the recovery in the presence of 135 mM NaCl and 10 \(\mu\)M HMA. The tracing for P19 cells is superimposed on that of the G20 cells. C, recovery from acidosis by G20 cells transfected with full-length Na\(^+\)/H\(^+\) exchanger cDNA (G20;pYN4). The Na\(^+\) free period and the recovery period in 135 mM NaCl are shown. In the example indicated 10 \(\mu\)M HMA was added during the recovery period.

suggesting that the buffering capacity of G20 was unchanged in comparison with P19 cells. We noticed that there was still a very small and gradual recovery of pH, in the G20 cells. To examine if this was due to Na\(^+\)/H\(^+\) exchanger activity, we added 10 \(\mu\)M HMA to the recovery phase of both G20 and P19 cells. In the presence of HMA, the pH recovery was the same in both wild-type P19 and mutant G20 cells (Fig. 2B). This result indicates that NHE1 activity was excluded or very nearly absent in the slow pH recovery in mutant G20 cells. Some other exchanger-deficient clones had a tendency to "revert" to a cell line with an active Na\(^+\)/H\(^+\) antiporter. We found that to prevent the reversion of the mutant clones, it was necessary to repeat the proton suicide technique routinely, especially after storing cells as a frozen stock (not shown). The steady state resting intracellular pH of P19 and G20 cells was determined in bicarbonate free medium. For P19 cells the resting pH was 7.2 ± 0.06, whereas for G20 cells it was 6.9 ± 0.07. There was no appreciable change in the resting pH, in either case with the addition of 25 mM HCO\(_3\)\(_{-}\).

To confirm that the effects on intracellular pH regulation were specifically due to deletion of the Na\(^+\)/H\(^+\) antiporter, we reintroduced the exchanger back into G20 cells. G20 cells were stably transfected with cDNA coding for antiporter using the calcium phosphate technique (22, 26). A stable cell line was selected using HMA, the inhibitor of the Na\(^+\)/H\(^+\) antiporter.

To examine if the G20 cell line contained the Na\(^+\)/H\(^+\) exchanger protein we used Western blotting with an antibody against the protein. The results (Fig. 3) showed that G20 cells had only a small amount of detectable immunoreactive protein of 100–105 kDa in size, whereas control cells contained much more immunoreactive protein. Both cells types contained an 80–90-kDa immunoreactive band, and G20 cells had a noticeable amount of smaller immunoreactive bands.

We also examined the growth rate of P19 and G20 cells in the presence of HCO\(_3\)\(_{-}\). In this experiment cells were allowed to proliferate continuously in culture for 3 days. Under these conditions we found that P19 cells grew much better than G20 cells. When the Na\(^+\)/H\(^+\) exchanger was introduced back into G20 cells, this effect was eliminated (Fig. 4). When the same experiment was repeated in the absence of HCO\(_3\)\(_{-}\), growth was even more reduced in G20 cells in comparison with controls. For wild-type P19 cells the change to HCO\(_3\)\(_{-}\) free medium represented approximately a 34% drop in growth, whereas for G20 cells the same treatment caused approximately an 80% drop in the growth of these cells (not shown).

To examine if the absence of Na\(^+\)/H\(^+\) exchange activity had an effect on differentiation in P19 cells we tested the ability of the cells to differentiate using neuronal specific class III \(\beta\)-tubulin as a marker. Under normal conditions, both wild-type P19 cells and mutant G20 cells contained low levels of \(\beta\)-tubulin (Fig. 5A) due to a small amount of cells that normally spontaneously differentiate. Control P19 cells were able to differentiate when treated with retinoic acid. G20 cells showed no apparent increase in the level of class III \(\beta\)-tubulin when treated with retinoic acid. In addition we could only detect a very low level of \(\beta\)-tubulin in G20 cells grown in medium without added HCO\(_3\)\(_{-}\), suggesting that less spontaneous differentiation occurred (Fig. 5B). When cells were treated with retinoic acid in the absence of HCO\(_3\)\(_{-}\), control cells maintained the ability to differentiate, whereas the levels of class III \(\beta\)-tubulin in G20 cells again did not increase with retinoic acid treatment. There also appeared to be a decrease in the amount of \(\beta\)-tubulin that is normally present in G20 cells that are not stimulated with retinoic acid.

We also examined the ability of G20 cells to differentiate when they had the Na\(^+\)/H\(^+\) exchanger reintroduced (Fig. 5C). Control cells treated with retinoic acid once again showed much higher levels of class III \(\beta\)-tubulin than G20 cells. However G20 cells transformed with the Na\(^+\)/H\(^+\) antiporter were equivalent to wild-type P19 cells. G20 cells transfected with the antiporter also showed the characteristic structural features of neuronal-like cells, similar to wild-type P19 cells but unlike G20 cells not containing the antiporter (not shown). These results show that reintroduction of the Na\(^+\)/H\(^+\) antiporter into P19 exchanger-deficient cells facilitates the process of differentiation.

FIG. 3. Analysis of Na\(^+\)/H\(^+\) exchanger expression in P19 and G20 cells. Western blot analysis of Na\(^+\)/H\(^+\) exchanger expression in P19 and G20 cells. P19 and G20 cells were grown in α-MEM supplemented with 25 mM NaHCO\(_3\). Cells were harvested, and crude microsomes were made as described in the "Experimental Procedures." Equal amounts of protein (25 \(\mu\)g) of each sample were separated by 9% SDS-PAGE and transferred to nitrocellulose for immunoblotting with affinity purified anti-Na\(^+\)/H\(^+\) exchanger antibody.

![Figure 3](image)
differentiation of this cell type (8). In addition, in some other cell types such as HL60 cells, both the protein and mRNA for the NHE1 isoform of the protein are elevated dramatically when differentiation is induced (4, 28). This led us to suspect that the protein plays an important role in the differentiation process. In addition, a number of studies have suggested that the activity of the Na\(^+/\)H\(^+\) antiporter either facilitates or is permissive in cell growth (13). Studies have also suggested that in some cell types the expression of the Na\(^+/\)H\(^+\) antiporter is dramatically increased during stimulation of cell proliferation (29). For these reasons we examined the role of this protein in both cell proliferation and differentiation in P19 cells.

Initial experiments examined the effect of Hoe 694 on the differentiation of P19 cells. The results showed that this Na\(^+/\)H\(^+\) exchanger inhibitor dramatically reduced the rate of differentiation in this cell type in comparison with controls (Fig. 1). Hoe 694 is a newly developed inhibitor of the Na\(^+/\)H\(^+\) exchanger with a relatively high specificity for the NHE1 isoform (30). To confirm this result using a second independent technique, we chose to delete the Na\(^+/\)H\(^+\) exchanger from P19 cells. Mutagenesis and the subsequent proton suicide technique (14) were used to select exchanger-deficient cells. We obtained several cell lines with similar characteristics that showed no significant Na\(^+/\)H\(^+\) exchanger activity when measuring the recovery from an acutely induced acid load. One of these (G20cells) was more stable for the mutation than the others and was examined for the presence and activity of the protein. It displayed no Na\(^+/\)H\(^+\) exchange activity (Fig. 2), and resting pH declined in G20 cells. Western blotting suggested that the 100–105-kDa protein was either absent or greatly reduced in quantity (Fig. 3). In addition we noted the presence of a number of smaller immunoreactive proteins in G20 cells, which suggests that the defect may be related to targeting or degradation of the protein.

Therefore we examined the effects of deletion of the protein on the growth of G20 cells. When we grew cells continuously in culture for a period of 3 days, the effects on growth were pronounced (Fig. 4). We also found that an acidic external pH reduced cell growth in G20 cells much more than in controls (not shown). This was similar to a recent report that suggested that NHE1 expression is critical for inner medullary collecting duct cells to survive some types of acid stress (31). Earlier studies have shown that Na\(^+\) is limiting in growth factor-dependent cell proliferation, and amiloride and amiloride analogs can block growth factor-induced stimulation of cell proliferation, especially in HCO\(_3\)^ free or low Na\(^+\) medium (15, 16). The mechanism by which the Na\(^+/\)H\(^+\) antiporter stimulates cell proliferation is not yet clear but may involve raising pH and facilitating entry into the S phase of the cell cycle (32, 33). The more acidic resting pH of G20 and the absence of the Na\(^+/\)H\(^+\) antiporter to modulate pH might cause an inhibition of this normal progression. We noted that when HCO\(_3\)^ was removed from the medium of exchanger-deficient P19 cells, there was a dramatic enhancement of the effects on cell proliferation. The likely explanation is that without added HCO\(_3\)^ some bicarbonate-based pH regulatory proteins are not as effective in assisting with pH regulation in these cells. A candidate for this activity is the recently described Na\(^+/\)dependent HCO\(_3\)^/Cl\(^-\) exchanger (34–36). This, or some other bicarbonate-based transporter, may contribute at least partially to pH regulation in P19 cells.

We examined the ability of G20 cells to differentiate and found that it was greatly impaired in comparison to wild-type P19 cells (Fig. 5). To our knowledge this is the first direct demonstration that the absence of a Na\(^+/\)H\(^+\) antiporter affects the ability of cells to differentiate. This result confirms by an
independent method the results we observed by the addition of Hoe 694. In addition, reintroduction of the Na\(^+\)/H\(^+\) exchanger back into G20 cells rescued the ability of these cells to differentiate. These results suggest that the activity of the Na\(^+\)/H\(^+\) antiporter also facilitates differentiation in P19 cells. The results contrast with that observed in HL60 leukemic cells. Na\(^+\)/H\(^+\) antiport was not required for HL60 differentiation (12). This observation was surprising because both protein and mRNA have been shown to be elevated during differentiation of this cell line (4, 28). It should be noted, however, that apart from the differences in cell origin, this conclusion was based on studies using dimethylamiloride (an amiloride analog) to inhibit Na\(^+\)/H\(^+\) exchange. Under similar conditions using the same concentration of the more potent analog HMA we found only slightly reduced inhibition of differentiation in P19 cells (not shown). It may be that some residual Na\(^+\)/H\(^+\) antiporter remains in the presence of amiloride analogs that can contribute to cellular differentiation. Long term treatments of cells in culture with these analogs could also be affected by degradation or binding to components of serum. Alternatively, the differences observed between our study on P19 cells and HL60 cells may only be related to differences in cell types. Future studies may address this question.

Acknowledgments—We thank Dr. A. Frankfurter of the University of Virginia for the gift of β-tubulin antibody. We are grateful to Drs. H. J. Lang and W. Scholz (Hoechst, Frankfurt) for the gift of Hoe 694.

REFERENCES

1. Boron, W. F., and Boulpaep, E. L. (1983) J. Gen. Physiol. 81, 59–52
2. Grinstein, S., Clarke, C. A., and Rothstein, A. (1983) J. Gen. Physiol. 82, 619–638
3. Pouyssegur, J. (1985) Trends Biochem. Sci. 10, 543–545
4. Rao, G. N., Sardet, C., Pouyssegur, J., and Berk, B. C. (1992) J. Cell. Physiol. 151, 361–366
5. Herie, S., Moe, O., Miller, R. T., and Alpern, R. J. (1992) J. Clin. Invest. 89, 365–372
6. Krapf, R., Pearce, D., Lynch, C., Xi, X. P., Reudelhuber, T. L., Pouyssegur, J., and Rector, F. C., Jr. (1991) J. Clin. Invest. 87, 747–751
7. Ladoix, A., Miglierina, R., Krawiec, I., Crago, E. J., Abita, J. P., and Frelin, C. (1998) Eur. J. Biochem. 175, 455–460
8. Dyck, J. R. B., and Fliegel, L. (1995) J. Biol. Chem. 270, 10420–10427
9. Yang, W., Dyck, J. R. B., and Fliegel, L. (1996) Biochim. Biophys. Acta 1306, 107–113
10. Alvarez, J., Garcia-Sancho, J., Molinero, F., and Sanchez, A. (1989) Eur. J. Biochem. 183, 709–714
11. Hataz, P., Shany, S., Moran, A., and Levy, R. (1989) Cancer Res. 49, 72–75
12. Vairo, G., and Hamilton, J. A. (1993) Cell Growth Different. 4, 461–466
13. Grinstein, S., Rotin, D., and Mason, M. J. (1989) Biochim. Biophys. Acta 998, 73–97
14. Pouyssegur, J., Sardet, C., Franchi, A., L'Allemain, G., and Paris, S. (1984) Proc. Natl. Acad. Sci. U. S. A. 81, 4833–4837
15. Burns, C. P., and Rozengurt, E. (1988) Biochem. Biophys. Res. Commun. 116, 931–938
16. L'Allemain, G., Paris, S., and Pouyssegur, J. (1984) J. Biol. Chem. 259, 5809–5815
17. Largade, A. E., and Pouyssegur, J. M. (1986) Cancer Biochem. Biophys. 9, 1–14
18. Tamagata, Y., and Tannock, I. F. (1996) in The Na\(^+\)/H\(^+\) Exchanger (Fliegel, L., ed), pp. 299–294, Springer-R. G. Landes Company, Austin, TX
19. Church, J. G., Mills, B., and Buick, R. N. (1989) Biochem. J. 257, 151–157
20. Pouyssegur, J., Franchi, A., Salmen, J.-C., and Silvestre, P. (1980) Proc. Natl. Acad. Sci. U. S. A. 77, 2698–2701
21. Dyck, J. R. B., Maddaford, T., Pierre, G. N., and Fliegel, L. (1995) Cardiovasc. Res. 29, 203–208
22. Fliegel, L., Dyck, J. R. B., Wang, H., Fong, C., and Haworth, R. S. (1993) Mol. Cell. Biochem. 125, 137–143
23. Chaillie, J. R., and Boron, W. F. (1985) J. Gen. Physiol. 86, 765–795
24. Fliegel, L., Haworth, R. S., and Dyck, J. R. B. (1993) Biochem J. 298, 101–107
25. Alexander, J. E., Hunt, D. F., Lee, M. K., Shabanowitz, J., Michel, H., Berlin, S. C., Macdonald, T. L., Sundberg, R. J., Reihum, L. I., and Frankfurter, A. (1991) Proc. Natl. Acad. Sci. U. S. A. 88, 4685–4689
26. Dyck, J. R. B., Silva, N. L. C. L., and Fliegel, L. (1995) J. Biol. Chem. 270, 1375–1381
27. McBurney, M. W. (1993) Int J. Dev. Biol 37, 135–140
28. Rao, G. N., de Roux, N., Sardet, C., Pouyssegur, J., and Berk, B. C. (1991) J. Biol. Chem. 266, 13485–13488
29. Rao, G. N., Sardet, C., Pouyssegur, J., and Berk, B. C. (1996) Biochem. J. 265, 19393–19396
30. Coumillon, L., Scholz, W., Lang, H. L., and Pouyssegur, J. (1993) Mol. Pharmacol. 44, 1041–1045
31. Singh, G., McAteer, J. A., and Soleimani, M. (1995) Biochim. Biophys. Acta 1239, 740–748
32. Vairo, G., Cocks, B. G., Crago, E. J., Jr., and Hamilton, J. A. (1992) J. Biol. Chem. 267, 19043–19046
33. Hensley, C. B., Bradley, M. E., and Mircheff, A. K. (1989) Am. J. Physiol. 257, C687–C694
34. Gleeson, S. M., Smith, N. D., and Boyer, J. L. (1989) J. Biol. Chem. 264, 116, 7825–7832
35. Neylon, C. B., Little, P. J., Cragoe, E. J., Jr., and Bobik, A. (1990) Cancer Res. 37, 321–325
36. Casella, D., Scharf, O., Rotman, M., Crago, E. J., Jr., and Katz, M. (1988) J. Biol. Chem. 263, 6122–6127