Whole Genome Detection of Sequence and Structural Polymorphism in Six Diverse Horses

Mohammed Ali Al Abri¹,², Heather Marie Holl², Sara E Kalla³, Nate Sutter⁴ and Samantha Brooks⁵*

1. Current Address: Department of Animal and Veterinary Sciences, College of Agriculture and Marine Sciences, Sultan Qaboos University, Al Khod, Muscat, Oman (email: abri1st@squ.edu.om)

2. Department of Animal Science, Cornell University, Ithaca, NY, USA (email: maa288@cornell.edu)

3. Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA (email: sek239@cornell.edu)

4. Baker Institute for Animal Health, Cornell University, Ithaca, NY, USA (email: dfa1@cornell.edu)

5. La Sierra University, Department of Biology, Riverwalk Parkway, Riverside, CA (email: nsutter@lasierra.edu)

6. Department of Animal Sciences, University of Florida Genetics Institute, University of Florida, Gainesville, FL, USA (email: samantha.brooks@ufl.edu)

*Corresponding author: email: samantha.brooks@ufl.edu (SB)
Abstract

The domesticated horse has played a unique role in human history, serving not just as a source of animal protein, but also as a catalyst for long-distance migration and military conquest. As a result, the horse developed unique physiological adaptations to meet the demands of both their climatic environment and their relationship with man. Completed in 2009, the first domesticated horse reference genome assembly (EquCab 2.0) produced most of the publicly available genetic variations annotations in this species. Yet, there are around 400 geographically and physiologically diverse breeds of horse. To enrich the current collection of genetic variants in the horse, we sequenced whole genomes from six horses of six different breeds: an American Miniature, a Percheron, an Arabian, a Mangalarga Marchador, a Native Mongolian Chakouyi, and a Tennessee Walking Horse. Aside from extreme contrasts in body size, these breeds originate from diverse global locations and each possess unique adaptive physiology. A total of 1.3 billion reads were generated for the six horses with coverage between 15x to 24x per horse. After applying rigorous filtration, we identified and functionally annotated 8,128,658 Single Nucleotide Polymorphisms (SNPs), and 830,370 Insertions/Deletions (INDELs), as well as novel Copy Number Variations (CNVs) and Structural Variations (SVs). Our results revealed putatively functional variants including genes associated with size variation like ANKRD1 and HMGA1 in the very large Percheron and the ZFAT gene in the American Miniature horse. We detected a copy number gain in the Latherin gene that may be the result of evolutionary selection for thermoregulation by sweating, an important component of athleticism and heat tolerance. The newly discovered variants were formatted into user-friendly browser tracks and will provide a foundational database for future studies of the genetic underpinnings of diverse phenotypes within the horse.
Author Summary

The domesticated horse played a unique role in human history, serving not just as a source of dietary animal protein, but also as a catalyst for long-distance migration and military conquest. As a result, the horse developed unique physiological adaptations to meet the demands of both their climatic environment and their relationship with man. Although the completion of the horse reference genome yielded the discovery of many genetic variants, the remarkable diversity across breeds of horse calls for additional effort in quantification of the breadth of genetic polymorphism within this unique species. Here, we present genome re-sequencing and variant detection analysis for six horses belonging to geographically and physiologically diverse breeds. We identified and annotated not just single nucleotide polymorphisms (SNPs), but also large insertions and deletions (INDELs), copy number variations (CNVs) and structural variations (SVs). Our results illustrate novel sources of polymorphism and highlight potentially impactful variations for phenotypes of body size and conformation. We also detected a copy number gain in the Latherin gene that could be the result of an evolutionary selection for thermoregulation through sweating. Our newly discovered variants were formatted into easy-to-use tracks that can be easily accessed by researchers around the globe.

Introduction

Quantifying genetic variation is an important theme in modern biology and population genetics. Recent technological advances in genomics have benefitted livestock by allowing examination of genetic variation in these non-traditional model species at an unprecedented scale and resolution. Cataloging that variation lays the foundation for dissecting the complex genetic architecture of phenotypic variation, which in turn has many applications in livestock
health, welfare, physiology and production traits [1,2]. Application of these variations also improves inference of ancient demographic and evolutionary histories, as well as the mechanisms underlying adaptation in various species [3]. In addition, cross-species comparisons of genetic variation improves our understanding of the structure-to-function relationship within conserved elements of the mammalian genome [4].

Domesticated approximately 5,500 years ago, horses were historically used for food, transportation, trade, warfare, and as draught animals [5]. Man has since selected horses suitable for a range of physical and behaviorally desirable traits, ultimately resulting in the formation of more than 400 unique horse breeds [6]. Comparisons between ancient and domesticated horse genomes revealed signatures of this selective pressure in ~125 potential domestication target genes [5]. Advantageously, the Equidae possess a particularly old and diverse fossil record, aiding not only in characterizing their demographic history but also ancient human movement and migration [3,5,6]. However, compared to other livestock species, relatively few studies have focused on the discovery of the standing genetic variation within different horse breeds [7]. Therefore, additional investigation of the equine genomic architecture is critical for a better understanding of the equine genome, as well as for expanded comparisons across diverse mammalian species. Furthermore, the equine industry itself provides an eager opportunity to apply genomic discoveries towards improvements in the health and well-being of this valuable livestock species.

Here, we sequenced six horses belonging to six divergent breeds in order to enrich the current collection of genetic variants in the horse. Namely, we sequenced a female Percheron (PER) and an American Miniature (AMH), and a Tennessee Walking Horse (TWH), a Mangalarga Marchador (MM) and a Native Mongolian Chakouyi (CH) male horses. These breeds were historically selected to perform distinct tasks and therefore may harbor a wealth of
unique variation at the genome level. For example, the Arabian horse was primarily selected for metabolic efficiency, endurance and strength. Severe desert conditions required a resilient animal with absolute loyalty. Arabian horses were central to the survival and culture of the Bedouins peoples of the Arabian Peninsula [8]. The Percheron horse was primarily selected for large size and developed as draft horse and was used as both a war horse and a farm horse [9]. On the other hand, the American miniature horse was selected for small body size [10,11]. The Mangalarga Marchador is a Brazilian Iberian horse breed that was selected for its versatility and stamina. It is capable of performing diverse tasks, from performance racing to herding cattle [12]. The Tennessee Walking Horse (or Tennessee Walker) is a unique in that it is the only U.S. breed able to perform an even-timed 4-beat gait called the “running-walk” at intermediate speeds [13].

Our goal was to investigate not just single nucleotide polymorphisms (SNPs) and small insertion deletions (INDELs), but also copy number variations (CNVs) and structural variations (SV). After applying rigorous filtration criteria to the read qualities, we detected and annotated the variation in each of these four classes within the six horses. These genetic variants are now publically available in European Nucleotide Archive (ENA) as well as in the National Animal Genome Research Program (NAGRP) Data Repository. CNVs and SVs are often difficult to access in public databases, therefore we have processed these novel variants into user-friendly tracks available for download at https://www.animalgenome.org/repository/horse/6_horse-breeds_variants/.
Results and Discussion

Whole genome sequencing, alignment and quality control

High throughput Next Generation Sequencing (NGS) provides affordable access to the enormous collection of existing genetic variation in genomes. We used paired-end Illumina sequencing to interrogate the genomes of an Arabian, a Percheron (a breed of primarily French origin), an American Miniature, a Mangalarga Marchador (from Brazil), a Native Mongolian Chakouyi, and a Tennessee Walking Horse to an average sequence coverage of 10x to 24x. Sequencing was completed using the Illumina HiSeq2500 (Illumina, San Diego, CA) with manufacturer recommended reagents and procedures by the Biotechnology Resource Center at Cornell University. A total of 1.3 billion reads were generated for the six horses. The raw number of reads ranged between 142 million reads on the Native Mongolian horse to 324 million reads on the American miniature (Table 1). After filtering, between 83 million (Mangalarga Marchadore) and 187 million (Percheron) paired reads were retained. Both read pairs aligned to the EquCab2 reference genome [1] in 92 - 97 % of reads, indicating a successful mapping procedure (Table 1).
Table 1: Yield, filtering and mapping summary of the next generation sequencing data of six horses from different breeds. The depth of coverage and mapping metrics show a descent quality of the 6 genomes sequencing and genome coverage.

	ARB	PER	AMH	TWH	MM	CH
Number of paired-end reads before trimming	241,480,555	296,460,133	324,123,384	198,749,393	169,680,137	142,502,233
Read lengths	100/100	100/100	100/100	150/150	150/150	150/150
Estimated average depth of coverage before trimming¹	17.8x	21.96x	24x	22.0x	18.9x	15.833x
Number of reads after trimming	165,277,009	187,223,705	138,772,441	161,659,278	134,732,394	121,744,242
Total number of aligned reads	330,554,018	374,447,410	277,544,882	323,318,556	269,464,788	243,488,484
Estimated depth of coverage ¹	12.24x	13.87x	10.28x	17.96x	14.97x	13.53x
Percentage of mapped reads²	98%	93%	93%	97%	95%	96%
Percentage of reads where both pairs mapped²	97%	92%	92%	96%	94%	94%

1. Estimated from trimmed and aligned reads using the formula C= L*N/G (where G is the haploid genome length \(2.7\times10^9\), L is the read length and N is the number of reads)
2. Estimated using the bamtools stats procedure in bamtools.

Identification of Variants

SNPs

In total, 8,562,696 SNPs were detected using the GATK HaplotypeCaller and processed using the GATK VariantRecalibrator procedure, producing a final set of 8,128,658 SNPs. The number of SNPs is about 0.3 % of the size of the genome (about 1 every 300 base pairs) which is very similar to the percentage of SNPs estimated in the human genome [14]. Amongst those, 11,537 SNPs (0.14 %) were multi-allelic. The mean transition to transversion ratio in these
horses is 1.998 (range 1.991 to 2.008) (Table 2), a value very close to other mammalian species [15].

The allelic frequency spectrum (Figure S1) showed an expected decline in the frequency of SNPs as the observed number of the alternative allele increased, as observed in other studies [16],[17]. The mean, median and standard deviation of Phred-scaled quality scores for the SNPs were 785.78, 543 and 732.85, respectively, which signifies a very high call accuracy.

Table 2: Genotype categories of SNPs and INDELs and counts of CNVs and SVs in the six horses.

	ARB	PER	AMH	TWH	MM	CH
SNPs						
Homozygous						
Reference	3,861,988	3,549,746	3,814,288	3,530,966	3,731,291	3,577,545
Heterozygous	2,328,125	2,491,424	2,266,059	2,658,622	2,387,676	2,513,707
Homozygous	1,907,689	2,054,426	1,998,897	1,922,879	1,954,411	1,989,304
Alternative						
Missing	30,856	33,062	49,414	16,191	55,280	48,102
Transitions	4,090,739	4,406,054	4,179,785	4,335,010	4,194,652	4,321,840
Transversions	2,052,764	2,194,222	2,084,068	2,169,370	2,101,846	2,170,475
INDELs						
Homozygous						
Reference	272,640	254,728	276,892	255,475	277,540	244,701
Heterozygous	193,566	198,211	182,198	208,226	189,440	210,612
Homozygous	356,999	370,374	357,710	359,412	337,514	360,065
Alternative						
Missing	7165	7057	13,570	7257	25,876	14,992
CNVs						
Gains	854	863	776	814	794	613
Losses	145	145	147	162	141	96
Structural Variations						
Interchromosomal	3166	4,072	10,707	4,385	8,296	1,394
Intrachromosomal	178	201	116	708	1495	198

Table 2: Genotype categories of SNPs and INDELs and counts of CNVs and SVs in the six horses.
Two of the sequenced horses were genotyped previously using the Illumina EquineSNP50 array (Illumina Inc.) enabling a test of the genotype concordance between the array and sequencing methods. The concordance of the genotypes detected using the Equine SNP50 genotyping array and those detected by NGS was 96% for the American Miniature and 98% for the Percheron horse, illustrating that the SNPs detection is comparable to array-based methods and is reliable for the purposes of this study.

The highest proportion of genotype calls were the homozygous reference genotype, comprising 43 to 47% of the SNPs in each horse (Table 2). Relative to the chromosome size, the highest proportion of SNPs was found in chromosome 12 (0.5%) followed by chromosome 20 (0.4%) (Figure 1). Overall, the highest proportion of homozygous reference genotypes was found in the Arabian horse. This may be explained by the fact that, among the breeds included, the Arabian horse has the closest historical relationship to the reference genome derived from a mare of the Thoroughbred breed. The Thoroughbred horse population originated by mating three prominent Arabian stallions to native mares in England during the 17th century [18].
Figure 1. Circos plot summarizing the genetic variants detected in each horse. The pattern of variation across the genomes of the six horses reveals structurally diverse regions important for immunity and olfactory reception at chromosomes 12 and 20 in all six horses. From the inside out, each plot shows two endpoints of the inter-(orange) and intra-(blue) chromosomal translocations. Intrachromosomal translocations > 5 MB are in dark blue. The yellow ring shows the copy number variations (green = normal, blue = loss, red = gain). The histogram (in orange) shows the density of SNPs detected using 1MB windows. The outermost track in yellow marks the lower 1% (red) and upper 1% (blue) values of the average nucleotide diversity (π) calculated using 1 MB windows.

INDELs

It is well established that INDELs are the second most common form of genomic variations, altering a similar total proportion of base pairs as SNPs [19]. In horses, some known INDELs cause genetic disorders such as the Lavender Foal Syndrome (LFS) [20] and the Severe Combined Immunodeficiency (SCID) [21]. We detected 830,370 small INDEL loci.
using the GATK *HaplotypeCaller* procedure. Within this set, 10,811 INDELs were multi-
allelic. The mean, median and standard deviation of Phred-scaled quality scores for the
INDELs were 1,025, 785 and 1,076 respectively, which signifies a higher accuracy but greater
dispersion in accuracy, to that observed in SNPs. INDEL size ranged from 2 to 233bp, with
mean of 39 bp and a median of 83 bp. The INDELs were split almost equally between
insertions and deletions (48 % and 52 % respectively), as was observed in the INDELs pattern
in humans [22], [23]. Unlike SNPs, the most frequent small INDELs calls were the
homozygous alternative calls, ranging between 40 and 44 % of the total INDELs calls in each
horse (*Table 2*). INDELs are more rare events than SNPs and are thus more likely to be unique
to a breed of horses than to be shared between breeds [24]. In fact, the resolution of Eukaryotic
phylogenetic trees can be improved by incorporating INDELs [25].

It is noteworthy that the incidence of homozygous alternative (non-reference homozygous)
SNPs and INDELs was highest in the Percheron horse. This could be a result of a greater
divergence between the reference genome (a Thoroughbred horse) and the Percheron relative to
the other breeds. The SNP and INDEL genotype missingness was the highest in the
Mangalarga Marchadore and was inversely correlated with the aligned reads depth (before
trimming) (*Tables 1 and 2*). The total number of INDELs called within each genome was
influenced by the depth of coverage, as previously observed in NGS data of human genomes
[26].

CNVs and SVs

CNVs and SVs contribute significantly to genomic diversity [27]. Genome-wide datasets
produced by NGS technologies are revealing a wealth of knowledge about the frequency and
structure of these types of polymorphisms. Of the identified CNVs, the number of gains was
consistently higher than the number of losses for all horses (Table 2, 786 mean gains vs 139 mean losses). Since many of the gains are shared between horses, we hypothesize that the excess of gains is an artifact of the computational assembly of EquCab2.0, compressing regions of repetitive sequences and highly homologous gene families. Numerous CNV regions (or genes) in the genome could represent duplication events incorrectly assigned to regions of high homology in EquCab2. Some of those regions were annotated within the unscaffolded “ChrUn”, which rendered them difficult to study, and likely to represent expanded gene families and repetitive elements unamenable to computational assembly.

Additionally, we also observe a consistent excess of intrachromosomal SVs compared to the interchromosomal SVs (Table 2). Bias towards intrachromosomal SVs is not uncommon in this type of analysis and is often due to a preference for intrachromosomal joining resulting from the relative closer proximity of these genomic regions. This same phenomenon was observed in studies of the mouse [28], human [29] and chicken [30]. It is proposed that a biological mechanism preferring proximal intrachromosomal rearrangement reduces large-scale genomic alterations, and therefore maintains genomic stability [28].

The American miniature horse possessed the highest number of the Intrachromosomal SVs (n=10,591) compared to other horses. These results are more than double the average of the corresponding values in the other horses and may be an artifact of imperfect library preparation or fragment size selection prior to sequencing. Indeed, filtering of such artifacts is a significant challenge for reliable discovery and genotyping of SVs by sequence based methods. Notably, more interchromosomal SVs were detected in the Mangalarga Marchador and the Tennessee Walking Horse (n=1,495 and n=708 respectively). Sequencing libraries from these horses also possessed the largest average insert size (248 bp and 207 bp respectively). Larger insert sizes
allow for the discovery of relatively more SVs in NGS data [31] and comparisons of SVs totals across individuals with varying insert size need to account for this effect.

Annotation of Detected Variants

The majority of SNPs were intergenic, followed by intronic, comprising 60% and 27% of SNPs, respectively (Table S1) [32]. The small percentage of exonic SNPs (0.08%) and INDELs (0.06%) is likely the result of strong negative selective pressure exerted on coding regions due to the potentially severe functional implications of these alterations [23]. Likewise, a lower diversity around 3’ UTR and 5’ UTR regions was found in SNPs and INDELs (0.02% - 0.07%), which was also reported in other mammalian species [23,32] (Table S1). In terms of predicted functional impact, the majority of SNPs found in coding sequences (33,593, 0.39%) were synonymous (Table S1). Yet, 26,322 (0.30%) SNPs were predicted to result in a non-synonymous amino acid change and 2,863 (0.316%) INDELs caused frame-shifts. The highest concentration of SNPs in the genomes of all the horses was observed amidst ECA12 and ECA20. Functional annotation of these regions showed that they are involved in metabolic and sensory perception (ECA12) and immune response and antigen processing (ECA20). This could be indicative of an evolution of these genes. However, it might be the result of mis-assembles in the reference genome or misalignment of reads (which is unlikely to occur in all six genomes simultaneously).

Copy number and structural variations are given relatively little attention compared to SNPs in studies of genetic diversity. Nevertheless, they are ubiquitous in the mammalian genome and influence a number of phenotypes [33,34]. The resulting CNVs and SVs were annotated using the ENSEMBL genes they overlap with and are available at (https://www.animalgenome.org/repository/horse/6_horse-breeds_variants/). We found that chromosomes
ECA12 and ECA20 possessed the highest density of CNVs. Functional annotation of these regions revealed large gene families involved in olfactory reception and immunity. The same observation was made by array CGH in the horse [33] and corresponding findings were also obtained in the human genome [35].

Our functional CNVs annotation revealed a copy number gain in a gene cluster that includes Latherin (*LATH*) (ENSEMBL Gene Symbol: ENSECAG00000009747.1). The reference genome assembly indicates just one copy of this gene, yet a copy-number gain was previously reported in a Quarter Horse using NGS data [7], and using array CGH a copy number loss was observed in the same region [33] (ECA 22:23893194-24009882). *LATH* (also known as *BPIFA4*) is a member of the palate lung and nasal epithelium clone (*PLUNC*) family of proteins that is common in the oral cavity and saliva of mammals [36,37]. Based on ENSEMBL gene models (V.86) and alignment of non-horse RefSeq genes (UCSC), the region surrounding equine *LATH* in EquCab2.0 contained evidence for 14 BPIF family gene models. In contrast, the orthologous bovine region in BosTau8 contained just ten, and the human genome (hg38) has eight BPIF RefSeq gene models. In horses this gene produces a surfactant protein that is expressed in the saliva and uniquely to the Equidae, as the primary protein component of sweat [38]. Therefore, equine Latherin protein may play an important role in mastication of fibrous food, as well as in enhancing evaporative cooling [36]. Therefore, it is reasonable to postulate that the gain in *LATH* copies observed in this study results from an evolutionary pressure for improved evaporative dissipation of heat, yielding athleticism and endurance in hot environments.

The CNV gains/losses across the *LATH* regions were common across the six horses included in the study, suggesting that the reference genome may possess errors in this region. We therefore validated the presence of a copy number variation in the *LATH* gene and genes
surrounding it using quantitative PCR (qPCR) analysis in eight horses, including the horse used
to produce the EquCab2.0 assembly. QPCR showed evidence of between two and six copies of
\textit{LATH} relative to a single copy control gene (\textit{ASIP}) across X individual horses of diverse
breeds, although the limited resolution of the qPCR approach could not significantly
differentiate copy numbers for individual animals when compared to the horse utilized in the
reference genome assembly (Figure 2). Notably, the reference genome animal (‘‘Twilight’’)
possess a mean copy number of four, by qPCR, though the assembly derived from her
documents just one \textit{LATH} locus. On the other hand, the QPCR analysis indicated statistically
significant difference in copy number between horses of some nearby genes (\textit{BPIFB4}, and
\textit{BPIFA1}) but not \textit{BPIFA2}. Precise haplotype analysis of this complex CNV polymorphism is
challenging due to the poor quality of the reference assembly within this region, and the
technical challenges of qPCR result in limited resolution for this application. Thus, more
precise determination of polymorphic CNVs and gene family expansion in the \textit{LATH} region
will require the use of more advanced techniques like long-read sequencing and digital qPCR
quantification of the CNV in future work [39].
Figure 2: RT-qPCR results of the *LATH* CNV region. Results for different primers are shown relative to their position in the genome. No evidence of a copy number variation is seen for *BPIFB4* (a) and *BPIFA1* (d) two genes that flank *LATH* (c) in the EquCab 2.0 assembly.
Our annotation of the SVs also indicated duplication events within the \textit{ZFAT} gene (ECA 9: 75076827 bp, Table S2) unique to the American Miniature horse. The \textit{ZFAT} region is associated with withers height and overall skeletal size in horses [40,41]. We also detected an inverted duplication unique to the Percheron horse in \textit{HMGA1}. In the mouse, a \textit{HMGA1}/\textit{HMGA2} double knockout produces the “superpygmy” phenotype [42]. Mapping efforts previously identified an effect on overall body size in horses due to the \textit{HMGA2} region [41]. Later, it was shown that a non-synonymous mutation in the first exon of \textit{HMGA2} reduced withers height by an average of 9.5 cm per copy of the mutant allele in small Shetland ponies [43]. These small SVs may impact regulatory motifs in these genes, leading to the size phenotypes observed in these breeds. However, future work is needed to investigate the impact of this new inverted duplication on height or growth within the genetic background of these breeds.

\textbf{Genome-wide diversity (\(\pi\))}

Nucleotide diversity (\(\pi\)) [44] is defined as the average number of nucleotide differences per site between two randomly chosen sequences in a population. Assessment of nucleotide diversity provides a valuable insight into the divergence of populations, inferring the demographic history of the species, as well as the historical size of the population [45]. Areas of lower than expected nucleotide diversity may signify signatures of past selection events [46]. Traditionally, such regions are found by comparing the same sequences from multiple individuals [44]. However, \(\pi\) as implemented in VCFtools is calculated from a single genome of a diploid individual [47-49]. In this study, regions with very low diversity were found by calculating \(\pi\) for each horse genome as the average number of differences between two chromosomes using one megabase (MB) non-overlapping windows in VCFtools [50].
The average nucleotide diversity across all six horses was 0.00097 for all SNP polymorphisms, and ranged from a minimum of 0.00090 for the American Miniature Horse and 0.0011 for the Tennessee Walking Horse. This could reflect a higher inbreeding in the American Miniature horse compared to the Tennessee Walking Horse. Average diversity in the autosomal chromosomes for all horses was 0.0010, which is four times as high as the mean diversity observed in the X chromosome (0.00026). Since the X chromosome has three-quarters the effective population size (N_e) of that of the autosomes, lower nucleotide diversity for the X chromosome is to be expected. However, a lower diversity level could also be due to a lower mutation rate (μ) on ECAX. Clearly, X copy number differences specifically influence the calculation of nucleotide diversity levels in the male horses used in this study, as compared to the female reference animal (Figure 1).

Notably, the SNP dense regions on ECA20 and ECA12 were amongst the highest (top 1%) in nucleotide diversity (π) value (Figure 1). We used PANTHER (v14.0) [54] statistical over-representation test (using a Bonferroni correction at $P < 0.05$) analysis of xenoRefGene genes in these regions after removing exact duplicate gene names as horses have relatively few refseq genes (Table S3). PANTHER further removed duplicate genes, keeping only a single gene ID cases at loci with two or more xenoRefGene names. The analysis revealed that enrichment for the T cell receptor signaling pathway and adaptive immune response on ECA20 and sensory perception on ECA12 (Table S4). Paralogous regions like those in large gene families catalyze a collapse of these regions within computational genome assemblies leading to an inflation in the number of SNPs at these loci.

The bottom 1% of the empirical distribution of π values for each horse (Table S5) gives potential selected regions. PANTHER statistical over-representation test (using a Bonferroni correction at $P < 0.05$) of genes in these regions (Table S6) revealed regions significantly for...
response to cold and temperature stimulus in the Arabian horse and genes involved in negative regulation of apoptotic processes and cell differentiation in the Mangalarga Marchador horse. In the Tennessee Walking Horse, the test revealed enrichment for the regulation of cellular processes and inorganic ion homeostasis. In the American Miniature horse, the same test revealed genes involved in development processes and cellular development and in the Percheron horse, it highlighted regions significantly enriched for genes involved in regulation of cell morphogenesis, cytoskeleton organization and actin cytoskeleton organization. These regions included the gene ANKRD1 which contributes to body size variation in horses [10]. In the Native Mongolian Chakouyi horse, no statistically significant over-represented terms were found. We also investigated the functional classification of gene models from these regions using GO-slim biological processes in PANTHER. Notably, this analysis showed that the Percheron and American Miniature horses were the only two horses with regions containing genes in the category “Growth”, although it formed a small percentage of the total number of genes (Table S7).

The low diversity regions found in this study did not overlap with the regions previously reported in Petersen et al. using Illumina SNP50 Beadchip and an FST-based statistic [51], likely due to the differences in sample size as well as the methodology. On the other hand, three gene regions reported in this study were also reported to be under selection in the horse by Orlando et al. [3]. However, unlike our study, Orlando et al. [3] aimed to detect selection signatures in modern horses and included several genomes and compared ancient horse genomes to those of Przewalski’s and modern domesticated horses. Namely, the three genes shared between both studies were NINJ1 and SEC63 in the Tennessee Walking Horse and COMMD1 in the Arabian horse. NINJ1 encodes the ninjurin protein which is highly expressed in human brain endothelium [52] and becomes up-regulated after nerve injuries in Schwann
cells and in dorsal root ganglion neurons [53]. SEC63 encodes a highly-conserved membrane protein important for protein translocation in the Endoplasmic Reticulum [54]. COMMD1 (Copper Metabolism MURR1 Domain 1) is involved in copper ion homeostasis and sodium transport [55]. It plays an essential role in the termination of NF-κB activity and control of inflammation [55,56]. COMMD1 causes copper storage disorder in Bedlington terriers, an autosomal recessive disorder that causes rapid accumulation of copper in the liver of affected dogs [57].

Data Availability

The raw fastq reads for all horses analyzed in the current study are available in the European Nucleotide Archive under study number PRJEB9799 (http://www.ebi.ac.uk/ena/data/view/PRJEB9799). The aligned BAM files, detected SNPs and INDELs, as well as CNVs and SVs and their functional annotations are available for download at https://www.animalgenome.org/repository/horse/6_horse-breeds_variants/. We formatted our SVs into two separate tracks, one each for inter and intra chromosomal translocations. Different colors designate different SV types in a manner similar to the system used by the human DGV [58]. Clicking on an interchromosomal translocation feature links the user to the chromosomal address of the other end of the feature. For the intrachromosomal translocations, the putative breakpoints of the feature are displayed joined together in a GFF-like style. The CNVs were formatted into a bed format with different colors for gains, losses and normal copy numbers.
Materials and Methods

DNA Collection and Whole Genome Sequencing

All animal procedures for DNA sampling were approved by the Cornell University Institutional Animal Care and Use Committee (protocol 2008-0121). DNA was extracted from blood using Puregene whole-blood extraction kit (Qiagen Inc., Valencia, CA, USA) or hair samples using previously published methods [59]. Paired-end sequencing was performed at the Biotechnology Resource Center, Cornell University. For the construction of sequencing libraries, genomic DNA was sheared using a Covaris acoustic sonicator (Covaris, Woburn MA) and converted to Illumina sequencing libraries by blunt end-repair of the sheared DNA fragments, adenylation, ligation with paired-end adaptors, and enriched by PCR according to the manufacturer’s protocol (Illumina, San Diego CA). The size of the sequencing library was estimated by capillary electrophoresis using a Fragment Analyzer (AATI, Ames IA) and Qubit quantification (Life Technologies, Carlsbad CA). Cluster generation and paired-end sequencing on Illumina HiSeq instruments were performed according to the manufacturer’s protocols (Illumina, San Diego) at the Biotechnology Resource Center, Cornell University. The Percheron (PER), Miniature and Arabian horse (AMH) had a library read length of 100 bp and an average insert size of 188 bp, 181 bp and 181 bp respectively. The Brazilian Mangalarga Marchador (MM), a Native Mongolian Chakouyi (CH) and a Tennessee walking horse (TWH) had a library read length of 140 bp and an average insert size of 248 bp, 168 bp and 207 bp respectively.
Read Filtering and Alignment

A diagram summarizing the process of reads filtering, mapping, variant identification and the tools used in each step is shown in (Figure S2). Raw reads were first inspected using the quality control program FastQC v10.1 (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Then, the reads were quality filtered and adaptors removed using Trimmomatic [60]. The quality filtering utilized a sliding window of 4 bp and required a minimum mean Phred quality score of 20 within each window. Windows with an average quality less than 20 were sequentially removed from a read. Subsequently, reads with less than 60 bp of sequence remaining were removed from analysis along with their corresponding pairs. The genomes were then aligned to EquCab2 using BWA [61] in the bwa aln procedure and the aligned .sai files were combined into Sequence Alignment (SAM) files using bwa sampe procedure designated for paired end sequences. The SAM files were sorted and converted to Binary Alignment (BAM) files using PICARD toolkit v1.89 (http://sourceforge.net/projects/picard/) using SortSam.jar, then, the duplicate reads in the BAM file were removed using MarkDuplicates.jar in the same toolkit. The Genome Analysis Toolkit (GATK) v2.6-5 [62], procedures RealignerTargetCreator and IndelRealigner, were used to perform local realignment of the BAM file reads around the INDELs in order to correct misalignments due to the presence of INDELs.

Base Quality Score Recalibration and Calling SNPs and small INDELs

SNPs and small INDELs (<50bp) were detected using the GATK HaplotypeCaller procedure [63]. The GATK HaplotypeCaller was designed to be very permissive so that it did not miss rare variants. In order to recalibrate base quality scores we used the BaseRecalibrator procedure in GATK. Since we do not currently have a gold standard set of variants for the
horse (required by the procedure), we undertook an iterative approach (described in the GATK best practices (version 2.4-3). The approach simultaneously recalibrated base quality scores and eventually resulted in the final set of reported variants. First, the GATK *HaplotypeCaller* procedure [63] obtains an initial set of variants subsequently used to recalibrate base quality scores and generate recalibrated BAM files for each genome. The recalibrated files were then used to call variants in the next iteration. Subsequently, variants called in each iteration were used as a bootstrap set in place of “gold standard” variants to recalibrate the base quality scores in the following iterations. The procedure was iterated until the number of variants and the base quality score recalibrations stabilized, which in our pipeline occurred following the fifth iteration. After that, we used the GATK *VariantRecalibrator* procedure to recalibrate the variants using polymorphisms obtained from the horse genome assembly project as training set (www.ncbi.nlm.nih.gov/projects/SNP/). The VariantRecalibrator algorithm is designed to assign probabilities and quality scores used to filter out those false positives using a statistical machine learning approach. The algorithm learns the best quality score filters based on the data itself and allows the user to trade off sensitivity and specificity. It builds a Gaussian mixture model which uses variants from the input set that overlap variants in the training set. Once the model is trained, variants in the input set that have desired properties as determined by the Gaussian mixture model were filtered using the *ApplyRecalibration* procedure. After careful examination of the tranches plot (resulting from *ApplyRecalibration*) a tranches filter level of 99 was used as it resulted in the highest number of true positive SNPs while minimizing false positives (*Figure S3*).

Identifying Structural Variations and Copy Number Variations

Structural variations (SVs) and large INDELs were identified using SVDetect [64]. The program uses anomalously mapped read pairs to localize rearrangements within the genome.
and classify them into their various types. After filtering out correctly mapped pairs, we used a
sliding window of size \(2\mu + 2\sqrt{2\sigma}\) to partition the genome, where \(\mu\) is the estimated insert size
and \(\sigma\) is the standard deviation. The length of steps in which the sliding window moved across
the genome were set to half of the window size. Control-Freec \[65\] was used to detect copy
number variations (CNVs). The program uses GC-content and mapability profiles to normalize
read count and therefore gives a better estimate of copy number profiles in high GC or low
coverage regions \[65\]. A breakpoint threshold of 0.6 and a coefficient of variation of 0.05 were
used in the analysis.

Variant Annotation

We used SNPEff v4.0 \[66\] to annotate the SNPs and short INDELs using the latest
available ENSEMBL gene annotation database (EquCab2.76). The output of SNPEff is a full
list of effects per variant. SNPs and Indels located within 5,000 bases (5 kb) upstream or
downstream genes as well as those within exons, introns, splice sites, and 5’ and 3’
untranslated regions (UTRs) were also annotated. Since SNPEff output can be integrated into
GATK VCF file, we have produced an annotated version of the GATK VCF file which can be
loaded and viewed easily in genome browsers. The CNVs and SV breakpoints overlapping
ENSEMBL genes were detected using Bedtools (v2.23.0). Ensembl gene IDs were then
converted to gene names using Biomart.

We used Nucleotide Diversity \((\pi)\) to identify regions with low diversity. For each of the
genomes, the nucleotide diversity \((\pi)\) was calculated for the SNPs in 1 MB non-overlapping
windows using VCFtools v1.10 \[50\]. Regions in the lower 1% tail of the \(\pi\) distribution were
considered low diversity regions following a similar approach by Branca \textit{et al.} \[67\]. Genes in
these regions were annotated for biological process, using PANTHER v14.0 \[68\]. Circos plots
summarizing the distribution of the genomic variations were then created for each of the
six genomes. To enhance visualization, we removed the small intrachromosomal elements
(endpoints size <10 bp) and interchromosomal elements (endpoints size <500 bp) due to their
abundance in the output which makes it difficult to visualize in the circos plot.

RT q-PCR analysis of the Latherin CNV

We used Quantitative PCR to quantify the copy number variation in exons of 4 genes
from 8 horses, including the horse used to produce the EquCab 2.0 reference genome assembly.
Primers designed in Primer3 v0.4.0 targeted exons overlapping the NGS identified copy
number variation [70] (Table 3). Genomic DNA (25 ng) was amplified in 10 uL reactions
using the Quanta Biosciences PerfeCta SYBR Green (FastMix) as per the manufacturers
recommended conditions (Gaithersburg, MD, USA). ASIP exon 2 was amplified as reference
due to their abundance in the output which makes it difficult to visualize in the circos plot.

Table 3: Real-time quantitative PCR primers.

Gene	Forward primer	Reverse primer	Amplicon size (BP)
LATH	AGGACTCTTGTACGGGAACT	AGGGCCAACCATCAGTTC	112
BPFA1	GGAGAAAGCAGAACCACGACT	CTCCAGAAGTTCGTTTCT	207
BPFB4	TGTGGTGTGGTTCCCTACA	TAGTCGCCATTTCGAAGGTCC	198
BPFA2	CGTTTTGTCAGGTGTCCCTC	CCCAAAGAAACCACATCAGTC	157
Acknowledgements

The authors would like to thank all owners who volunteered samples from their horses for the study. The authors would also like to thank Chuzhao Lei, Yun Ma and Wansheng Liu for providing the DNA of the Native Mongolian Chakouyi horse. The authors also thank Dr. Doug Antzack and Dr. Donald Miller for providing part of the computational resources based on which part of this work was completed.
Supporting Information

Table S1: Annotation of SNPs and INDELs by putative functional consequence.

Table S2: Annotations of Structural variants and SVs and Copy number variants (CNVs) detected in six horses. ENSEMBL gene names and their corresponding biomart IDs (when available) overlapping the variants locations are given.

Table S3: Chromosomal regions and genes in high nucleotide diversity (π) regions (top 1% of the empirical distribution).

Table S4: Statistical overrepresentation test (Bonferroni-corrected for P < 0.05) for genes in high π regions in the six horses in chromosomes 12 and 20.

Table S5: Chromosomal regions and genes in low high nucleotide diversity (π) regions (lower 1% of the empirical distribution).

Table S6: Statistical overrepresentation test (Bonferroni-corrected for P < 0.05) for genes in low π regions in various horses.
Table S7: PANTHER GO-Slim biological processes for xenoRefGene genes in regions with low pi values in these 6 horse genomes. The table shows, for each horse, the percentage of genes hit against total number of processes hits. The average for each biological category shows abundance in metabolic processes and biological regulation compared to other. Genes pertaining to growth are present in the Percheron and American miniature horses only and cell proliferation is only present in the Arabian horse.

Figure S1: The allele frequencies of SNPs from whole-genome sequence data of the six horses showing a lower frequency as observations of the alternate allele increased.

Figure S2: An overview of the pipeline used in the reads processing and variant detection. Description of the step and the name of the program/software given in parenthesis.

Figure S3: Tranches plot generated by GATK VariantRecallibration procedure. The plot shows the trade off in (gain in cumulative false positives (FP)) resulting from choosing a certain level of cumulative true positive (TPs) variants. Tranche specific true positives and false positives are shown in blue and orange respectively.
References

1. Womack JE (2005) Advances in livestock genomics: Opening the barn door.

2. Daetwyler HD, Capitan A, Pausch H, Stothard P, Binsbergen Rv, et al. (2014) Whole-genome sequencing of 234 bulls facilitates mapping of monogenic and complex traits in cattle. Nature Genetics 46: 858-865.

3. Orlando L, Ginolhac A, Zhang G, Froese D, Albrechtsen A, et al. (2013) Recalibrating Equus evolution using the genome sequence of an early Middle Pleistocene horse. Nature 499: 74-78.

4. Thomas JW, Touchman JW, Blakesley RW, Bouffard GG, Beckstrom-Sternberg SM, et al. (2003) Comparative analyses of multi-species sequences from targeted genomic regions. Nature 424: 788-793.

5. Schubert M, Jónsson H, Chang D, Sarkissian CD, Ermini L, et al. (2014) Prehistoric genomes reveal the genetic foundation and cost of horse domestication.

6. Warmuth V, UK UoCDoZC, Manica A, UK UoCDoZC, Eriksson A, et al. (2015) Autosomal genetic diversity in non-breed horses from eastern Eurasia provides insights into historical population movements. Animal Genetics 44: 53-61.

7. Doan R, Cohen ND, Sawyer J, Ghaffari N, Johnson CD, et al. (2012) Whole-genome sequencing and genetic variant analysis of a Quarter Horse mare. BMC genomics 13: 78-78.

8. Khanshour A, Conant E, Juras R, Cothran EG (2013) Microsatellite analysis of genetic diversity and population structure of Arabian horse populations. J Hered 104: 386-398.

9. (2018) The History of the Percheron. http://percheron.ca/history-of-the-percheron/. Accessed 2 March 2018.

10. Al Abri MA, Posbergh C, Palermo K, Sutter NB, Eberth J, et al. (2017) Genome-Wide Scans Reveal a Quantitative Trait Locus for Withers Height in Horses Near the ANKRD1 Gene. Journal of Equine Veterinary Science.

11. Chakouyi Horse. http://www.theequinest.com/breeds/chakouyi/. Accessed 2 March 2018.

12. U.S. Mangalarga Marchador Association (USMMA). http://www.namarchador.org/. Accessed 2 March 2018.

13. Staiger EA, Abri MA, Silva CAS, Brooks SA (2016) Loci impacting polymorphic gait in the Tennessee Walking Horse1. Journal of animal science.
14. Gibbs RA, Belmont JW, Hardenbol P, Willis TD, Yu F, et al. (2003) The International HapMap Project. Nature 426: 789-796.

15. Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM, et al. (2012) An integrated map of genetic variation from 1,092 human genomes. Nature 491: 56-65.

16. Manske M, Miotto O, Campino S, Auburn S, Almagro-Garcia J, et al. (2012) Analysis of Plasmodium falciparum diversity in natural infections by deep sequencing. Nature 487: 375-379.

17. Gravel S, Henn BM, Gutenkunst RN, Indap AR, Marth GT, et al. (2011) Demographic history and rare allele sharing among human populations.

18. Bower MA, McGivney BA, Campana MG, Gu J, Andersson LS, et al. (2012) The genetic origin and history of speed in the Thoroughbred racehorse. Nature communications 3: 643-643.

19. Mullaney JM, Mills RE, Pittard WS, Devine SE (2010) Small insertions and deletions (INDELs) in human genomes.

20. Brooks SA, Gabreski N, Miller D, Brisbin A, Brown HE, et al. (2010) Whole-genome SNP association in the horse: identification of a deletion in myosin Va responsible for Lavender Foal Syndrome. PLoS genetics 6: e1000909-e1000909.

21. Piro M, Benjouad A, Tligui NS, Allali KE, Kohen ME, et al. (2008) Frequency of the severe combined immunodeficiency disease gene among horses in Morocco. Equine Veterinary Journal 40: 590-591.

22. Mills RE, Luttig CT, Larkins CE, Beauchamp A, Tsui C, et al. (2006) An initial map of insertion and deletion (INDEL) variation in the human genome. Genome Res 16: 1182-1190.

23. Bhangale TR, Rieder MJ, Livingston RJ, Nickerson DA (2005) Comprehensive identification and characterization of diallelic insertion-deletion polymorphisms in 330 human candidate genes. Hum Mol Genet 14: 59-69.

24. Ajawatanawong P, Baldauf SL (2013) Evolution of protein indels in plants, animals and fungi. BMC evolutionary biology 13: 140-140.

25. Bapteste E, Philippe H (2002) The Potential Value of Indels as Phylogenetic Markers: Position of Trichomonads as a Case Study.

26. Hasan MS, Wu X, Zhang L (2015) Performance evaluation of indel calling tools using real short-read data. Human Genomics 9: 20.

27. Eichler CA, Bradley PC, Evan E (2011) Genome structural variation discovery and genotyping. Nature Reviews Genetics 12: 363-376.
28. Klein Isaac A, Resch W, Jankovic M, Oliveira T, Yamane A, et al. (2011) Translocation-Capture Sequencing Reveals the Extent and Nature of Chromosomal Rearrangements in B Lymphocytes. Cell 147: 95-106.

29. Lieberman-Aiden E, Berkum NLv, Williams L, Imakaev M, Ragoczy T, et al. (2009) Comprehensive Mapping of Long-Range Interactions Reveals Folding Principles of the Human Genome.

30. Bourque G, Zdobnov EM, Bork P, Pevzner PA, Tesler G (2005) Comparative architectures of mammalian and chicken genomes reveal highly variable rates of genomic rearrangements across different lineages. Genome Res 15: 98-110.

31. Rausch T, Zichner T, Schlattl A, Stütz AM, Benes V, et al. (2012) DELLY: structural variant discovery by integrated paired-end and split-read analysis. Bioinformatics 28: i333-i339.

32. Zhao Z, Fu Y-X, Hewett-Emmett D, Boerwinkle E (2003) Investigating single nucleotide polymorphism (SNP) density in the human genome and its implications for molecular evolution. Gene 312: 207-213.

33. Wang W, Wang S, Hou C, Xing Y, Cao J, et al. (2014) Genome-Wide Detection of Copy Number Variations among Diverse Horse Breeds by Array CGH. PLoS ONE 9: e86860.

34. Gizaw S, Getachew T, Goshme S, Mwai O, Dessie T (2013) A cooperative village breeding scheme for smallholder sheep farming systems in Ethiopia. 5689-5689.

35. Nguyen DQ, Webber C, Ponting CP (2006) Bias of selection on human copy-number variants. PLoS Genet 2: e20.

36. Vance SJ, McDonald RE, Cooper A, Smith BO, Kennedy MW (2013) The structure of latherin, a surfactant allergen protein from horse sweat and saliva.

37. Bingle C, Seal R, Craven C (2011) Systematic nomenclature for the PLUNC/PSP/BSP30/SMGB proteins as a subfamily of the BPI fold-containing superfamily. Biochem Soc Trans 39: 977-983.

38. McDonald RE, Fleming RI, Beeley JG, Bovell DL, Lu JR, et al. (2009) Latherin: A Surfactant Protein of Horse Sweat and Saliva. PLoS ONE 4: e5726.

39. Baker M (2012) Digital PCR hits its stride. Nature Methods 9: 541-544.

40. Signer-Hasler H, Flury C, Haase B, Burger D, Simianer H, et al. (2012) A Genome-Wide Association Study Reveals Loci Influencing Height and Other Conformation Traits in Horses. PLoS ONE 7: e37282.

41. Makvandi-Nejad S, Hoffman GE, Allen JJ, Chu E, Gu E, et al. (2012) Four loci explain 83% of size variation in the horse. PLoS ONE 7: e39929-e39929.
42. Federico A, Forzati F, Esposito F, Arra C, Palma G, et al. (2014) Hmga1/Hmga2 double knock-out mice display a “superpygmy” phenotype. Biol Open. pp. 372-378.

43. Frischknecht M, Jagannathan V, Plattet P, Neuditschko M, Signer-Hasler H, et al. (2015) A Non-Synonymous HMGA2 Variant Decreases Height in Shetland Ponies and Other Small Horses. Plos One 10: e0140749.

44. Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci U S A 76: 5269-5273.

45. Yu N, Jensen-Seaman MI, Chemnick L, Ryder O, Li W-H (2004) Nucleotide Diversity in Gorillas.

46. Quach H, Barreiro LB, Laval G, Zidane N, Patin E, et al. (2009) Signatures of Purifying and Local Positive Selection in Human miRNAs. The American Journal of Human Genetics 84: 316-327.

47. Osada N (2014) Extracting population genetics information from a diploid genome sequence. Frontiers in Ecology and Evolution 2: 7.

48. Lynch M (2008) Estimation of Nucleotide Diversity, Disequilibrium Coefficients, and Mutation Rates from High-Coverage Genome-Sequencing Projects. Molecular biology and evolution 25: 2409-2421.

49. Dutoit L, Burri R, Nater A, Mugal CF, Ellegren H (2017) Genomic distribution and estimation of nucleotide diversity in natural populations: perspectives from the collared flycatcher (Ficedula albicollis) genome. Molecular ecology resources 17: 586-597.

50. Danecek P, Auton A, Abecasis G, Albers CA, Banks E, et al. (2011) The variant call format and VCFtools. Bioinformatics (Oxford, England) 27: 2156-2158.

51. Petersen JL, Mickelson JR, Rendahl AK, Valberg SJ, Andersson LS, et al. (2013) Genome-wide analysis reveals selection for important traits in domestic horse breeds. PLoS genetics 9: e1003211-e1003211.

52. Ifergan I, Kebir H, Terouz S, Alvarez JI, Lecuyer MA, et al. (2011) Role of Ninjurin-1 in the migration of myeloid cells to central nervous system inflammatory lesions. Ann Neurol 70: 751-763.

53. Araki T, Milbrandt J (1996) Ninjurin, a novel adhesion molecule, is induced by nerve injury and promotes axonal growth. Neuron 17: 353-361.

54. Davila S, Furu L, Gharavi AG, Tian X, Onoe T, et al. (2004) Mutations in SEC63 cause autosomal dominant polycystic liver disease. Nature Genetics 36: 575-577.
55. de Bie P, van de Sluis B, Burstein E, Duran Karen J, Berger R, et al. (2006) Characterization of COMMD protein–protein interactions in NF-κB signalling. Biochemical Journal 398: 63-71.

56. de Becdelièvre A, Rocca J, Aissat A, Drévillon L, Moutereau S, et al. (2013) COMMD1 modulates noxious inflammation in cystic fibrosis. The International Journal of Biochemistry & Cell Biology 45: 2402-2409.

57. Fedoseienko A, Netherlands MGsUoGUMCGGt, Bartuzi P, Netherlands MGsUoGUMCGGt, Sluis B, et al. (2015) Functional understanding of the versatile protein copper metabolism MURR1 domain 1 (COMMD1) in copper homeostasis. Annals of the New York Academy of Sciences 1314: 6-14.

58. MacDonald JR, Ziman R, Yuen RKC, Feuk L, Scherer SW (2014) The Database of Genomic Variants: a curated collection of structural variation in the human genome. Nucleic Acids Res. pp. D986-992.

59. Locke MM, Penedo MCT, Bricker SJ, Millon LV, Murray JD (2002) Linkage of the grey coat colour locus to microsatellites on horse chromosome 25. Animal Genetics 33: 329-337.

60. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimer for Illumina sequence data. Bioinformatics (Oxford, England) 30: 2114-2120.

61. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics (Oxford, England) 25: 1754-1760.

62. DePristo Ma, Banks E, Poplin R, Garimella KV, Maguire JR, et al. (2011) A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nature genetics 43: 491-498.

63. Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, del Angel G, et al. (2013) From fastQ data to high-confidence variant calls: The genome analysis toolkit best practices pipeline. Current Protocols in Bioinformatics.

64. Zeitouni B, Boeva V, Janoueix-Lerosey I, Loeillet S, Legoix-né P, et al. (2010) SVDetect: a tool to identify genomic structural variations from paired-end and mate-pair sequencing data. Bioinformatics (Oxford, England) 26: 1895-1896.

65. Boeva V, Popova T, Bleakley K, Chiche P, Cappo J, et al. (2012) Control-FREEC: a tool for assessing copy number and allelic content using next-generation sequencing data. Bioinformatics (Oxford, England) 28: 423-425.

66. Cingolani P, Platts A, Wang le L, Coon M, Nguyen T, et al. (2012) A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin). United States. pp. 80-92.
67. Branca A, Paape TD, Zhou P, Briskine R, Farmer AD, et al. (2011) Whole-genome nucleotide diversity, recombination, and linkage disequilibrium in the model legume Medicago truncatula. Proceedings of the National Academy of Sciences 108: E864.

68. Mi H, Muruganujan A, Casagrande JT, Thomas PD (2013) Large-scale gene function analysis with the PANTHER classification system. Nature protocols 8: 1551-1566.

69. Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, et al. (2009) Circos: an information aesthetic for comparative genomics. Genome research 19: 1639-1645.

70. Untergasser A, Cutcutache I, Koressaar T, Ye J, Faicloth BC, et al. (2012) Primer3--new capabilities and interfaces. Nucleic Acids Res 40: e115.

71. Comprehensive identification and characterization of diallelic insertion-deletion polymorphisms in 330 human candidate genes.
Figure 1
Figure 2