Perioperative outcomes after laparoscopic cholecystectomy in elderly patients: a systematic review and meta-analysis

Sivesh K. Kamarajah1,2 · Santhosh Karri3 · James R. Bundred3 · Richard P. T. Evans4,5 · Aaron Lin3 · Tania Kew3 · Chinenyé Ekeozor3 · Susan L. Powell6 · Pritam Singh7,8 · Ewen A. Griffiths4,5

Received: 12 April 2020 / Accepted: 25 June 2020
© The Author(s) 2020

Abstract

Background Laparoscopic cholecystectomy is increasingly performed in an ever ageing population; however, the risks are poorly quantified. The study aims to review the current evidence to quantify further the postoperative risk of cholecystectomy in the elderly population compared to younger patients.

Method A systematic literature search of PubMed, EMBASE and the Cochrane Library databases were conducted including studies reporting laparoscopic cholecystectomy in the elderly population. A meta-analysis was reported in accordance with the recommendations of the Cochrane Library and PRISMA guidelines. Primary outcome was overall complications and secondary outcomes were conversion to open surgery, bile leaks, postoperative mortality and length of stay.

Results This review identified 99 studies incorporating 326,517 patients. Increasing age was significantly associated with increased rates of overall complications (OR 2.37, CI95% 2.00–2.78), major complication (OR 1.79, CI95% 1.45–2.20), risk of conversion to open cholecystectomy (OR 2.17, CI95% 1.84–2.55), risk of bile leaks (OR 1.50, CI95% 1.07–2.10), risk of postoperative mortality (OR 7.20, CI95% 4.41–11.73) and was significantly associated with increased length of stay (MD 2.21 days, CI95% 1.24–3.18).

Conclusion Postoperative outcomes such as overall and major complications appear to be significantly higher in all age cutoffs in this meta-analysis. This study demonstrated there is a sevenfold increase in perioperative mortality which increases by tenfold in patients > 80 years old. This study appears to confirm preconceived suspicions of higher risks in elderly patients undergoing cholecystectomy and may aid treatment planning and informed consent.

Keywords Cholecystectomy · Elderly · Outcomes · Laparoscopic

Over 66,000 cholecystectomies are performed each year in the UK costing over £110 million to the National Health Service [1, 2]. The majority of these cases are now done laparoscopically, owing to significantly lower rates of morbidity and mortality compared to conventional open surgery. Recently, a national multicentre study highlighted that 96% of cases are done laparoscopically, establishing laparoscopic cholecystectomy as mainstay management for various benign gallbladder diseases [3, 4]. Biliary colic or acute cholecystitis accounts for > 70% of the indications for performing a cholecystectomy.

With an ageing population, demands for surgery are expected to rise over the next decade with associated increasing frailty [5, 6]. In parallel, it is estimated that increasing numbers of elderly patients will present with gallstone disease [7, 8], and it is thought that patients aged 80–89 years account for 28% and 42% of male and female patients, respectively [8, 9]. Since age is associated with existence of multiple comorbidities and reduced functional reserve, it is thought that operating on elderly patients could be associated with an increased risk of complications [10–12]. Despite this, elderly patients may still undergo laparoscopic...
cholecystectomy. Many studies evaluating outcomes of laparoscopic cholecystectomy in their definition of elderly patients versus younger patients have shown that increasing age leads to higher conversion rates, more complications and a longer hospital stay [7–10].

Despite this, current literature on definition of an elderly population in regard to outcomes following laparoscopic cholecystectomy is heterogeneous. Hence, counselling elderly patients regarding morbidity and mortality of laparoscopic cholecystectomy is difficult. To date, current evidence is limited to cohort studies and no meta-analysis characterising the impact of age on postoperative complications following laparoscopic cholecystectomy exists. Therefore, this study aimed to perform a systematic review and meta-analysis to summarise postoperative outcomes of elderly patients undergoing laparoscopic cholecystectomy.

Methods

This paper is reported according to the PRISMA guidelines [13] and was prospectively registered with the PROSPERO database (Registration CRD42019125343). This study did not require approval by the Institutional Review Board as this was a systematic review of current literature and no patient consent was required. There was deviation from the protocol with additional analyses by urgency of surgery and the use of ROBINS-I for study quality assessment.

Search strategy

A systematic search of PubMed, EMBASE and the Cochrane Library databases was conducted on the 1 November 2018 by two independent investigators (SKK, SK). The search terms used were ‘cholecystectomy’ or ‘laparoscopic’, and ‘treatment outcome’ or ‘complications’ or ‘intraoperative complications’ or ‘postoperative complication’, and ‘elderly’ or ‘octogenarian’ or ‘frail’ individually or in combination. Search terms used for this review are presented as shown in Supplementary Table 1. The ‘related articles’ function was used to broaden the search, and all citations were considered for relevance. A manual search of reference lists in recent reviews and eligible studies was also undertaken.

Inclusion and exclusion criteria

The inclusion criteria were (1) studies reporting comparative analysis of laparoscopic cholecystectomy in elderly patients; (2) published in the English language. Studies were still included even if all the relevant outcome data were not provided. Exclusion criteria were (1) conference abstracts, systematic reviews, meta-analyses and case reports (<5 patients); (2) any studies that did not report the outcomes of the surgery numerically. Two independent authors (RSK, SK) excluded duplicates and independently reviewed the titles, abstracts and full articles of the studies identified by the literature search. Where the full article was not available, in paper or electronic form, the article was excluded. Major reviews were manually searched to obtain any other potentially relevant studies. The authors discussed any cases which presented any differences.

Study outcomes

The primary outcome measures were overall complications (Grade I–V) and major complications (≥Grade III) reported according to Clavien–Dindo Classification [14]. Secondary outcomes were conversion to open surgery, bile leaks, perioperative mortality and length of hospital stay.

Data extraction

Three authors extracted data independently and reviewed the data for any discrepancies. The data collected included study characteristics (authors, year of publication, country of origin, patient number, definition of elderly, type of study), indications for surgery and outcome measures (overall and major complications, major complications, conversion, bile leaks, perioperative mortality, length of hospital stay).

Assessment of methodological quality

Four independent authors (SKK, RSK, CE, TC) assessed the methodological quality using the risk of bias in non-randomised studies of interventions (ROBINS-I) [15]. The ROBINS-I assessed each study on seven distinct domains through which bias might be introduced. These domains are divided according to pre-intervention (bias due to confounding and bias in selection of participants into the study), at intervention (bias in classification of interventions), and post-intervention (bias due to deviations from intended interventions, bias due to missing data, bias in measurement of outcomes and bias in selection of the reported result). Each of these seven domains is graded according to low, moderate, critical, serious or no information.

Statistical methods

This systematic review and meta-analysis was conducted in accordance with the recommendations of the Cochrane Library and PRISMA guidelines [13]. For binary variables, analysis was performed by calculating the odds ratio (OR). For continuous data, analysis was performed to calculate the cumulative mean difference (MD) with 95% confidence intervals (CI95%). The random effects, the DerSimonian–Laird method, was used for the meta-analysis of
outcomes. Heterogeneity between studies was assessed using the I^2 value in order to determine the degree of variation not attributable to chance alone. I^2 values were considered to represent low, moderate and high degrees of heterogeneity where values were $< 25\%$, $25-75\%$ and $> 75\%$, respectively. Assessment of small study effects was carried out by visual assessment of funnel plots and Egger regressions. Stratified analyses were performed by urgency of surgery (i.e. elective and emergency) for each postoperative outcome. Statistical significance was considered when $p < 0.05$. Statistical analyses were performed using the RevMan 5.3 software (Copenhagen: The Nordic Cochrane Centre, The Cochrane Collaboration, 2011) and R statistical software (Version 3.5.2, R Foundation for Statistical Computing, Vienna, Austria) as previously described [16, 17].

Results

Study characteristics

This study included 99 studies ($n = 326,517$ patients) reported according to the PRISMA guidelines as shown in Fig. 1. Baseline characteristics of studies are presented in Supplementary Table 2. Studies identified were from North America ($n = 28$), Asia ($n = 31$) and Europe ($n = 39$). Indication for surgery was reported only in 77 studies. Urgency of cholecystectomy were reported in 90 studies ($n = 303,463$ patients), of which 7% ($n = 19,754$) were elective cases and 67% ($n = 203,924$) were emergency cases. In this study, 52 studies were comparative studies.

Fig. 1 PRISMA diagram of included studies
Reporting standards and methodological quality

Study quality was assessed using ROBINS-I for comparative studies, with majority of studies (78%, n = 77/99) deemed as overall low risk of bias (Supplementary Table 3). There was significant variation in cut-off ages used to define elderly populations with age ≥ 60 (n = 8 studies), ≥ 65 (n = 39 studies), ≥ 70 (n = 14 studies), ≥ 75 (n = 11 studies), ≥ 80 (n = 22 studies) the most commonly used. Studies were pooled into subgroups according to age cut-off value.

Overall complications

Impact of increasing age on overall complications was reported in 48 studies, including 49,215 patients. Overall, increasing age was significantly associated with increased rates of overall complications (OR 2.37, CI95% 2.01–2.78, I² = 56%) (Supplementary Fig. 1). Overall complication rates were significantly increased in age subgroups: ≥ 65 years (OR 2.63, CI95% 1.96–3.54, I² = 70%), ≥ 70 years (OR 1.76 CI95% 1.30–2.39, I² = 0%) and ≥ 80 (OR 2.71, CI95% 1.83–3.99, I² = 52%) (Table 1, Fig. 2). When stratified by urgency, increasing age was associated with significantly higher overall complications for elective (OR 2.46, CI95% 1.63–3.71, I² = 38%) and emergency (OR 1.98, CI95% 1.33–2.94, I² = 48%) laparoscopic cholecystectomy (Table 2).

Major complications

Impact of increasing age on major complications was reported in 14 studies, including 34,748 patients. Increasing age was associated with significantly higher rates of major postoperative complications (OR 1.79, CI95% 1.45–2.20, I² = 34%) (Supplementary Fig. 2). Major complication rates were significantly increased in subgroups: ≥ 65 years (OR 1.51, CI95% 1.38–1.65, I² = 0%) and ≥ 80 years (OR 1.95, CI95% 1.65–2.29, I² = 0%) (Supplementary Fig. 3). Since there was only one study reporting outcomes for major complications elective and emergency laparoscopic cholecystectomy, subgroup analyses were not possible (Table 2).

Conversion to open surgery

Impact of increasing age on conversion to open cholecystectomy was reported in 53 studies, including 59,173 patients. Overall, increasing age was significantly associated with increased odds of conversion to open cholecystectomy (OR 2.17, CI95% 1.84–2.55, I² = 56%) (Supplementary Fig. 4). Conversion to open cholecystectomy was significantly increased in subgroups with the following age cut-offs: ≥ 65 (OR 2.62, CI95% 1.97–3.49, I² = 63%), ≥ 75 (OR 2.04, CI95% 1.54–2.69, I² = 0%), ≥ 80 (OR 2.48, CI95% 1.97–3.12, I² = 13%) (Table 1, Supplementary Fig. 5). When stratified by urgency, increasing age was associated with significantly higher odds for conversion for elective (OR 2.48, CI95% 1.71–3.59, I² = 0%) and emergency (OR 2.28, CI95% 1.39–3.75, I² = 58%) laparoscopic cholecystectomy (Table 2).

Bile leaks

Impact of increasing age on bile leaks was reported in 30 studies, including 42,765 patients. Overall, increasing age was significantly associated with increased rates of bile leaks (OR 1.50, CI95% 1.07–2.10, I² = 0%) (Supplementary Fig. 6). However, bile leaks were not increased in studies reporting age in all age cut-offs (Table 1, Supplementary Fig. 7). When stratified by urgency, increasing age was not associated with higher rates of bile leaks for elective (OR 0.56, CI95% 0.12–2.69, I² = 0%) and emergency (OR 1.28, CI95% 0.75–2.18, I² = 0%) laparoscopic cholecystectomy (Table 2).

Postoperative mortality

Impact of increasing age on postoperative mortality was reported in 50 studies, including 78,404 patients. Overall, increasing age was significantly associated with increased rates of postoperative mortality (OR 7.20, CI95% 4.41–11.73, I² = 59%) (Supplementary Fig. 8). Postoperative mortality rates were significantly increased in all age cut-off subgroups: ≥ 65 (OR 5.17, CI95% 2.48–10.77, I² = 56%), ≥ 70 (OR 4.86, CI95% 1.04–22.75, I² = 0%), ≥ 75 (OR 6.09, CI95% 1.61–23.02, I² = 2%), ≥ 80 (OR 10.20, CI95% 4.97–20.92, I² = 32%) (Fig. 3). When stratified by urgency, increasing age was associated with significantly higher rates of postoperative mortality for elective (OR 13.34, CI95% 2.07–85.92, I² = 0%) and emergency (OR 5.54, CI95% 1.96–15.70, I² = 0%) laparoscopic cholecystectomy (Table 2).

Length of stay

Impact of increasing age on length of stay following cholecystectomy was reported in 24 studies, including 10,997 patients. Overall, increasing age was significantly associated with increased length of stay (Mean difference (MD): 2.21, CI95% 1.24–3.18, I² = 99%) (Supplementary Fig. 9). Length of stay was significantly increased in age cut-off subgroups: ≥ 65 (MD 2.33, CI95% 1.10–3.56, I² = 96%), ≥ 70 (MD 3.37, CI95% 0.28–6.46, I² = 98%) and ≥ 80 (MD 1.33, CI95% 0.54–2.11, I² = 83%) (Table 1, Supplementary Fig. 10). When stratified by urgency, increasing age was associated with significantly longer length of stay for elective (MD 1.84, CI95% 1.27–2.41, I² = 64%) and emergency (MD 2.63, CI95% 1.13–4.14, I² = 88%) laparoscopic cholecystectomy (Table 2).
Egger regression testing suggested publication biases were minimal for reporting of major complications ($p = 0.314$, Supplementary Fig. 11), conversion to open ($p = 0.352$, Supplementary Fig. 12), bile leaks ($p = 0.589$, (Supplementary Fig. 13) and postoperative mortality ($p = 0.172$, (Supplementary Fig. 14), and length of stay ($p = 0.728$, Supplementary Fig. 15). Egger regression testing for publication bias was significant for reporting of overall complications ($p = 0.004$, Supplementary Fig. 16). Subgroup analyses showed that publication biases were present in the subgroup of studies reporting age $>$ 65 as a cut-off ($p = 0.0012$) and not in any of the other subgroups.
Sensitivity analysis of adjusted outcomes

Heterogeneity in the effect of increasing age on the reported outcomes was hypothesised to be due to the wide-range of age cut-offs used. Subgroup analyses of studies reporting only age cut-offs ≥ 70 and ≥ 75 were therefore completed.

Discussion

This systematic review and meta-analysis including 99 studies and 326,517 patients undergoing laparoscopic cholecystectomy demonstrated postoperative outcomes such as overall and major complications (Clavien–Dindo ≥ Grade III) were significantly higher in all age cut-offs. Further, this study demonstrated there is a sevenfold increase in perioperative mortality in the elderly compared to the non-elderly which increases by tenfold in patients ≥ 80 years old. Although the risk of bile leak was higher in the overall cohort, there were no significant differences in bile leak in age cut-offs of ≥ 70 and ≥ 75 years old, respectively. There were significantly higher rates of conversions, as high as threefold in the elderly population. Patients converted from a minimally access surgery to open surgery have a higher risk of perioperative mortality and morbidity, as demonstrated in this review [18–20]. These findings were consistent even when stratified by urgency of surgery (i.e. elective or emergency). Whilst current risk estimation considers presence of comorbidities or American Society of Anaesthesiologist (ASA) grade, adopting risk profiles of varying age groups should also be considered during pre-operative counselling. Pre-operative optimisation of comorbidities, medications, screening for dementia and addressing frailty by a geriatrician or a full multi-disciplinary team could help improve operative outcomes in these patients [21–23].

The proportion of the population over the age of 65 is projected to rise from 18% currently to 25% in 30 years’ time. Gallstone disease more commonly affects the elderly and in turn the sequelae of gallstone disease such as biliary colic, cholecystitis and pancreatitis make up a large aspect of acute surgical admissions. Current guidance advocates acute cholecystectomy within 1 week from the onset of acute cholecystitis and within 2 weeks if gallstones are the precipitant cause of pancreatitis [24]. Cholecystectomy in the acute setting has been shown to be both safe and cost effective [4, 25]. Increasing evidence also suggests superiority of cholecystectomy over cholecystostomy in high-risk patients [26, 27]. Patients undergoing cholecystostomy are predominantly elderly and up to a quarter of patients undergoing cholecystostomy will be re-admitted within 30 days of discharge [28]. Elderly patients undergoing cholecystostomy have been shown to have higher rates of mortality, post-procedural infection, bleeding and length of stay as compared to cholecystectomy [29]. These factors are changing the way we interpret and treat gallstone disease leading to a rise in the number of cholecystectomies performed each year. This highlights the importance in understanding and defining the impact of laparoscopic cholecystectomy on the elderly population.

This systematic review and meta-analysis adds evidence to quantify risk in elderly populations undergoing cholecystectomy. Increasingly healthcare professionals are questioned about discriminating against patients due to their age. It is often assumed that age is synonymous with increased co-morbidity. Due to lack of reporting in numerous studies, it was not possible to analyse age independently of co-morbidity. Future studies are increasingly adjusting for comorbidities and this is a potential area for enhancement in subsequent reviews. The meta-analysis is challenged by the lack of reporting of randomised and multicentre publications which is a further source of potential improvement with the publication of higher quality evidence. Despite some of the potential areas for improvement, this meta-analysis is the first to specifically quantify the postoperative risk of cholecystectomy in the elderly population. It encompasses a large number of studies which in turn incorporates over 300,000 patients. As the population ages, it is important that we improve our understanding of risk for elderly patients undergoing cholecystectomy and this meta-analysis makes significant strides to achieve this.

Consideration of alternative treatment strategies to laparoscopic in elderly patients will aid in informed-decision making amongst patients. In patients with acute cholecystitis, alternative strategies may include antibiotic management and percutaneous catheter drainage [30, 31]. A recent randomised controlled trial [26] comparing percutaneous catheter drainage and laparoscopic cholecystectomy for high-risk patients with acute cholecystitis identified laparoscopic cholecystectomy to be associated with significantly lower rates of major complications and re-interventions, although
no significant difference in mortality rates. Whilst bridging with percutaneous catheter drainage prior to laparoscopic cholecystectomy may be a sensible treatment strategy, this needs to be evaluated in a case-by-case basis. However, alternative strategies for biliary colic and chronic cholecystitis are conservative options such as diet and weight control to reduce episodes of gallstone related complications. Nonetheless, careful discussion with patients on risks and benefits of laparoscopic cholecystectomy is warranted.

Our systematic review and meta-analysis do have some limitations to be addressed. Firstly, whilst it is a thorough review containing large patient numbers, the evidence comes from mainly retrospective case series and from studies which have used different age cut-offs. Secondly, chronological age has many limitations and data on biological fitness is lacking to explain why elderly patients develop poorer outcomes compared to younger patients [32]. For example, prospective scoring of patient frailty, an increasingly recognised feature associated with poor postoperative outcomes, is lacking [7, 33]. Thirdly, a precise scoring of intraoperative cholecystectomy difficulty is lacking [34, 35]. Elderly patients often have gallstones for many years and features of chronic cholecystitis with the obliteration of the tissue planes in Calot’s triangle and even chronic fistulation, such as Mirizzi syndrome [36] or cholecysto-enteric fistulation, which naturally lead to poorer patient outcomes [37]. These challenging operative conditions require a modification in surgical strategies to ensure best patient outcomes [38]. Finally, whilst length of stay should ideally come with discharge to a nursing facility, it remains unclear from the included studies if this were the case and hence could not be evaluated.

Table 2 Summary postoperative outcomes in elderly and non-elderly patients by urgency of laparoscopic cholecystectomy

Outcomes	Studies, n	Patients, n	Odds ratio (95% CI)	p value	I²
Overall complications					
Elective	10	4630	2.46 (1.63–3.71)	<0.001	38
Emergency	8	5396	1.98 (1.33–2.94)	<0.001	48
Mixed	24	36,324	2.27 (1.83–2.82)	<0.001	52
Major complications					
Elective	1	284	–	–	–
Emergency	1	152	–	–	–
Mixed	10	33,058	1.81 (1.47–2.21)	<0.001	35
Conversion to open					
Elective	9	4630	2.48 (1.71–3.59)	<0.001	0
Emergency	11	6414	2.28 (1.39–3.75)	0.001	58
Mixed	27	44,069	2.09 (1.67–2.63)	<0.001	69
Bile leaks					
Elective	4	442	0.56 (0.12–2.69)	0.5	0
Emergency	8	5819	1.28 (0.75–2.18)	0.3	0
Mixed	15	34,603	1.53 (0.95–2.45)	0.1	0
Postoperative mortality					
Elective	9	2595	13.34 (2.07–85.92)	0.006	0
Emergency	11	6414	5.54 (1.96–15.70)	0.001	0
Mixed	25	65,482	8.08 (4.37–14.92)	<0.001	73
Length of stay, days					
Elective	4	752	1.84 (1.27–2.41)	<0.001	64
Emergency	7	1513	2.63 (1.13–4.14)	<0.001	88
Mixed	5	8020	1.99 (0.44–3.54)	0.012	99
Fig. 3 Impact of age cut-offs on bile leaks in patients undergoing laparoscopic cholecystectomy

	Elderly Total	Non-Elderly Total	Odds Ratio	OR	95%–CI	Weight
A	Rey 1995	0 48	0 316			
	Lo 1996	0 30	0 40			
	Kauvar 2005	1 59	0 256			
	do 2006	1 39	1 151			
	Kaya 2008	0 318	0 1783			
	Osman 2008	0 101	0 208			
	Chang 2009	0 117	1 510			
	Cui 2010	2 737	3 3311			
	Lill 2011	0 160	0 80			
	Tucker 2011	131 11926	48 11926			
	Qasaimeh 2012	2 234	2 1305			
	Agrusa 2014	2 416	0 811			
	Niels 2014	85 5612	12 8805			
	Teixeira 2014	2 81	0 168			
	Lee 2015	0 126	0 176			
	Zhao 2015	0 52	0 60			
	Heterogeneity: $I^2 = 56\%$, $r^2 = 0.4495$, $p = 0.02$					
	Random effects model 20056	29906				5.17 [2.48; 10.77] 100.0%

B	Study	Elderly Total	Non-Elderly Total	Odds Ratio	OR	95%–CI	Weight
	Pag 2002	1 77	0 207				
	Bi 2003	5 230	1 165				
	Annam 2005	0 29	0 17				
	Yetki 2009	0 68	0 257				
	Fujikawa 2012	0 49	0 62				
	Anb 2015	2 74	0 78				
	Heterogeneity: $I^2 = 3.9\%$, $r^2 = 0.00$, $p = 0.92$						
	Random effects model 527	1056				4.86 [1.04; 22.75] 100.0%	

C	Study	Elderly Total	Non-Elderly Total	Odds Ratio	OR	95%–CI	Weight
	Firi 1996	0 61	2 133				
	Pessa 2000	1 102	0 761				
	Majeski 2004	2 35	0 47				
	Kir 2008	2 42	1 183				
	Osman 2008	0 23	0 286				
	Pol 2008	0 153	0 2259				
	Su 2009	0 17	0 39				
	Lill 2011	0 80	0 160				
	Fuk 2015	1 78	0 336				
	Heterogeneity: $I^2 = 2\%$, $r^2 = 0.0483$, $p = 0.39$						
	Random effects model 591	4204				6.09 [1.61; 23.02] 100.0%	

D	Study	Elderly Total	Non-Elderly Total	Odds Ratio	OR	95%–CI	Weight
	Tagl 1997	2 20	0 70				
	Maxw 1998	5 105	0 210				
	Brun 2001	2 70	0 351				
	Bi 2003	1 49	5 346				
	Co 2007	1 27	0 133				
	Pav 2008	0 21	1 1242				
	Chang 2009	0 17	1 610				
	Lee 2013	6 57	7 323				
	Agru 2014	2 65	0 1162				
	Mauro 2014	1 18	0 113				
	Niels 2014	44 697	53 17320				
	Peker 2014	1 111	2 185				
	Lee 2015	0 35	0 267				
	Wakis 2017	0 47	0 763				
	Yokota 2018	0 52	0 298				
	Heterogeneity: $I^2 = 32\%$, $r^2 = 0.4044$, $p = 0.13$						
	Random effects model 1391	19794				10.20 [4.97; 20.92] 100.0%	
Conclusion

Overall and major complications are significantly increased in the elderly following laparoscopic cholecystectomy. There is an associated sevenfold increase in perioperative mortality which increases to tenfold in patients ≥ 80 years old group. This study confirms preconceived suspicions of higher risks in elderly patients undergoing cholecystectomy and will aid treatment planning and informed consent.

Compliance with ethical standards

Disclosures Dr Sivesh K Kamarajah has no conflicts of interest or financial ties to disclose. Dr James Bundred has no conflicts of interest or financial ties to disclose. Mr Richard PT Evans has no conflicts of interest or financial ties to disclose. Dr Aaron Lin has no conflicts of interest or financial ties to disclose. Miss Tania Kew has no conflicts of interest or financial ties to disclose. Miss Chinenye Ekeozor has no conflicts of interest or financial ties to disclose. Dr Susan L Powell has no conflicts of interest or financial ties to disclose. Mr Pritam Singh has no conflicts of interest or financial ties to disclose. Mr Ewen Griffiths has no conflicts of interest or financial ties to disclose. Dr Santhosh Karri has no conflicts of interest or financial ties to disclose. Dr Sivesh K Kamarajah has no conflicts of interest or financial ties to disclose. Dr James Bundred has no conflicts of interest or financial ties to disclose. Mr Richard PT Evans has no conflicts of interest or financial ties to disclose. Dr Aaron Lin has no conflicts of interest or financial ties to disclose. Miss Tania Kew has no conflicts of interest or financial ties to disclose. Miss Chinenye Ekeozor has no conflicts of interest or financial ties to disclose. Dr Susan L Powell has no conflicts of interest or financial ties to disclose. Mr Pritam Singh has no conflicts of interest or financial ties to disclose. Mr Ewen Griffiths has no conflicts of interest or financial ties to disclose.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Wilson E, Gurusamy K, Ghluč M, Davidson BR (2010) Cost-utility and value-of-information analysis of early versus delayed laparoscopic cholecystectomy for acute cholecystitis. Br J Surg 97(2):210–219
2. Uzzaman MM, Tayeh S, Sinha S, Ratnasingham K, Stoker DL (2011) Consenting practice for laparoscopic cholecystectomy: are we doing enough to warn patients about their operation? Int J Surg 9(8):643–647
3. CholeS Study Group (2016) Population-based cohort study of variation in the use of emergency cholecystectomy for benign gallbladder diseases. Br J Surg 103(12):1716–1726
4. Sutton AJ, Vohra RS, Hollyman M, Marriott PJ, Buja A, Alderson D, Pasquali S, Griffiths EA, Chole SS, the West Midlands Research (2017) Cost-effectiveness of emergency versus delayed laparoscopic cholecystectomy for acute gallbladder pathology. Br J Surg 104(1):98–107
5. Parmar KL, Law J, Carter B, Hewitt J, Boyle JM, Casey P, Maitra I, Farrell IS, Pearce L, Moug SJ, Group ELFS (2019) Frailty in older patients undergoing emergency laparotomy: results From the UK observational emergency laparotomy and frailty (ELF) study. Ann Surg. https://doi.org/10.1097/SLA.0000000000004302
6. Hewitt J, Carter B, McCarthy K, Pearce L, Law J, Wilson FV, Tay HS, McCormack C, Stechman MJ, Moug SJ, Myint PK (2019) Frailty predicts mortality in all emergency surgical admissions regardless of age. An observational study. Age Ageing 48(3):388–394
7. Pisanos M, Ceresoli M, Cimbanassi S, Gurusamy K, Cocoloni F, Borzellino G, Costa G, Allievi N, Amato B, Boerma D, Calcagno P, Campanati L, Campanile FC, Casati A, Chiara O, Crucitti A, di Saverio S, Filauro M, Gabrielli F, Guttaduro A, Kluger Y, Magnone S, Merli C, Poisainesa E, Puzziello A, Sartelli M, Catena F, Ansaloni L (2019) 2017 WSES and SICG guidelines on acute calculous cholecystitis in elderly population. World J Emerg Surg 14:10
8. Mora-Guzman I, Di Martino M, Bonito AC, Jodra VV, Hernandez SG, Martin-Perez E (2019) Conservative management of gallstone disease in the elderly population: outcomes and recurrence. Scand J Surg 150:515–525
9. Arthur JD, Edwards PR, Chagla LS (2003) Management of gallstone disease in the elderly. Ann R Coll Surg Engl 85(2):91–96
10. Bingener J, Richards ML, Schwesinger WH, Strodel WE, Sirinck KR (2003) Laparoscopic cholecystectomy for elderly patients: gold standard for golden years? Arch Surg 138(5):531–535
11. Turventine FE, Wang H, Simpson VB, Jones RS (2006) Surgical risk factors, morbidity, and mortality in elderly patients. J Am Coll Surg 203(6):865–877
12. Yetkin G, Uludag M, Oba S, Citgez B, Paksoy I (2009) Laparoscopic cholecystectomy in elderly patients. JSLS 13(4):587–591
13. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC, Ioannidis JP, Clarke M, Devereaux PJ, Kleijnen J, Moher D (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ 339:b2700
14. Clavien PA, Barkun J, de Oliveira ML, Vauthay JN, Dindo D, Schulick RD, de Santibanes E, Pekolj J, Slankamenac K, Bassi C, Graf R, Vonlanthen R, Padbury R, Cameron JL, Makuuchi M (2009) The Clavien–Dindo classification of surgical complications: five-year experience. Ann Surg 250(2):187–196
15. Sterne JA, Hernan MA, Reeves BC, Savovic J, Berkman ND, Viswanathan M, Henry D, Altman DG, Ansari MT, Boutron I, Campbell MJ, Car J, Roderick P, Forastiere A, Ioannidis JP, Oberlander T, Perera R, Wiersma S, Alonso A, Kirkham J, Juni P, Loke YK, Pigott TD, Ramsay CR, Regidor D, bone fracture: a systematic review and meta-analysis. Gastric Cancer 22(1):10–22
16. Kamarajah SK, Bundred J, Tan BHL (2019) Body composition assessment and sarcopenia in patients with gastric cancer: a systematic review and meta-analysis. Gastric Cancer 22(1):10–22
17. Kamarajah SK, Sutandi N, Robinson SR, French JJ, White SA (2019) Robotic versus conventional laparoscopic distal
18. Franko J, O’Connell BG, Mehall JR, Harper SG, Nejman JH, Zebly DM, Fassler SA (2006) The influence of prior abdominal operations on conversion and complication rates in laparoscopic colorectal surgery. JSLS 10(2):169–175
19. Tekkis PP, Senagore AJ, Delaney CP (2005) Conversion rates in laparoscopic colorectal surgery: a predictive model with, 1253 patients. Surg Endosc 19(1):47–54
20. Sutcliffe RP, Hollyman M, Hodson J, Bonney G, Vohra RS, Griffiths EA, CholeS Study Group (2016) Preoperative risk factors for conversion from laparoscopic to open cholecystectomy: a validated risk score derived from a prospective UK database of 8820 patients. HPB (Oxford) 18(11):922–928
21. Braude P, Goodman A, Elias T, Babic-Illman G, Challacombe B, Harari D, Dhesi JK (2017) Evaluation and establishment of a ward-based geriatric liaison service for older urological surgical patients: proactive care of Older People undergoing Surgery (POPS)-Urology. BJU Int 120(1):123–129
22. Partridge J, Shai M, Dhesi J (2018) Proactive care of older people undergoing surgery. Aging Clin Exp Res 30(3):253–257
23. Harari D, Hopper A, Dhesi J, Bubic-Iljman G, Lockwood L, Martin F (2007) Proactive care of older people undergoing surgery ('POPS'): designing, embedding, evaluating and funding a comprehensive geriatric assessment service for older elective surgical patients. Age Ageing 36(2):190–196
24. Association of Upper Gastrointestinal Surgeons of Great Britain and Ireland, de Mestral C, Hoch JS, Laupacis A, Wijeysundera HC, Rotondo MF, Loozen CS, van Santvoort HC, van Duijvendijk P, Besselink MG, Hall BR, Armijo PR, Krause C, Burnett T, Oleynikov D (2018) Emergent cholecystectomy in patients (CHOCOLATE): multicentre randomised clinical trial. BMJ 363:k3965
25. Esmaili S, van Souto MC, van der Wouden CH, van Duijvendijk P, Besselink MG, Gouma DJ, Nieuwenhuijzen GA, van der Peet DL, Crolla RM, van Ramshorst B, Bolten TL, Boerma D (2018) Laparoscopic cholecystectomy versus percutaneous catheter drainage for acute cholecystitis in high risk patients (CHOCOLATE): multicentre randomised controlled trial. BMJ 363:k3965
26. Lujan JA, Sanchez-Bueno F, Parrilla P, Robles R, Torralba JA, Gonzalez-Costea R (1998) Laparoscopic vs open cholecystectomy in the management of acute cholecystitis in elderly patients. J Laparoendosc Adv Surg 65(5):312–315
27. pigott JP, Williams GB (1988) Cholecystectomy in the elderly. Am J Surg 155(3):408–410
28. Saxe A, Lawson J, Phillips E (1993) Laparoscopic cholecystectomy in patients aged 65 or older. J Laparoendosc Surg 3(3):215–219
29. Askew AR (1995) Surgery for gallstones in the elderly. ANZ J Surg 65(5):312–315
30. Escarce JJ, Shea JA, Chen W, Qian Z, Schwartz JS (1995) Outcomes of open cholecystectomy in the elderly: a longitudinal analysis of 21,000 cases in the prelaparoscopic era. Surgery 117(2):156–164
31. Lujan JA, Sanchez-Bueno F, Parrilla P, Robles R, Torralba JA, Gonzalez-Costea R (1998) Laparoscopic vs open cholecystectomy in patients aged 65 and older. Surg Laparosc Endosc 8(3):208–210
32. Wang YC, Yang HR, Chung PK, Jeng LB, Chen RJ (2006) Role of fundus-first laparoscopic cholecystectomy in the management of acute cholecystitis in elderly patients. J Laparoendosc Adv Surg Tech A 16(2):124–127
33. Malik AM, Laghari AA, Talpur KA, Memon A, Pathan R, Memon JM (2007) Laparoscopic cholecystectomy in the elderly patients. An experience at Liaquat University Hospital Jamshoro. J Ayub Med Coll Abbottabad 19(4):45–48
34. Cheng SP, Chang YC, Liu CL, Yang TL, Jung KS, Lee JJ, Liu TP (2008) Factors associated with prolonged stay after laparoscopic cholecystectomy in elderly patients. Surg Endosc 22(5):1283–1289
35. Lasithiotakis K, Petrakis J, Venianaki M, Georgiades G, Koutsomanolis D, Andreou A, Zoras O, Chalkiadakis G (2012) frailty predicts outcome of elective laparoscopic cholecystectomy in geriatric patients. Surg Endosc 27(4):1144–1150
36. Kenig J, Walega P, Olszewska U, Konturek A, Nowak W (2016) Geriatric Assessment as a qualification element for elective and emergency cholecystectomy in older patients. World J Emerg Surg 11:36
37. Griffiths EA, Hodson J, Vohra RS, Marriott P, Katbeh T, Zino S, Nassar AHM, CholeS Study Group (2019) Correction to: utilisation of an operative difficulty grading scale for laparoscopic cholecystectomy. Surg Endosc 33(1):122–125
38. Griffiths EA, Hodson J, Vohra RS, Marriott P, Katbeh T, Zino S, Nassar AHM, West Midlands Research Group (2019) Utilisation of an operative difficulty grading scale for laparoscopic cholecystectomy. Surg Endosc 33(1):110–121
39. Kulkarni SS, Hotta M, Sher L, Selby RR, Parekh D, Buxbaum J, Stapper M (2017) Complicated gallstone disease: diagnosis and management of Mirizzi syndrome. Surg Endosc 31(5):2215–2222
40. Beltran MA, Csendes A, Cruces KS (2008) The relationship of Mirizzi syndrome and choleystoenteric fistula: validation of a modified classification. World J Surg 32(10):2237–2243
41. Strasberg SM, Pucci MJ, Brunt LM, Deziel DJ (2016) Subtotal cholecystectomy—“fenestrating” vs “reconstituting” subtypes and the prevention of bile duct injury: definition of the optimal procedure in difficult operative conditions. J Am Coll Surg 222(1):89–96
42. Schreiber H, Macon WL, Pories WJ (1978) Incidental cholecystectomy during major abdominal surgery in the elderly. Am J Surg 135(2):196–198
43. Loureiro ER, Klein SC, Pavan CC, Almeida LD, da Silva FH, Paulo DN (2011) Laparoscopic cholecystectomy in 960 elderly patients. Rev Col Bras Cir 38(3):155–160
44. Houghton PW, Jenkinson LR, Donaldson LA (1985) Cholecystectomy in the elderly: a prospective study. Br J Surg 72(3):220–222
45. Amato G, Salamone G, Romano G, Agrusa A, Saladino V, Gulotta G (2010) Open mini-invasive cholecystectomy in high risk elderly. A review of 121 consecutive procedures. G Chir 31(11–12):518–522
46. Pigott JP, Williams GB (1988) Cholecystectomy in the elderly. Am J Surg 155(3):408–410
47. Saxe A, Lawson J, Phillips E (1993) Laparoscopic cholecystectomy in patients aged 65 or older. J Laparoendosc Surg 3(3):215–219
48. Askew AR (1995) Surgery for gallstones in the elderly. ANZ J Surg 65(5):312–315
49. Escarce JJ, Shea JA, Chen W, Qian Z, Schwartz JS (1995) Outcomes of open cholecystectomy in the elderly: a longitudinal analysis of 20,000 cases in the prelaparoscopic era. Surgery 117(2):156–164
50. Lujan JA, Sanchez-Bueno F, Parrilla P, Robles R, Torralba JA, Gonzalez-Costea R (1998) Laparoscopic vs open cholecystectomy in patients aged 65 and older. Surg Laparosc Endosc 8(3):208–210
51. Wang YC, Yang HR, Chung PK, Jeng LB, Chen RJ (2006) Role of fundus-first laparoscopic cholecystectomy in the management of acute cholecystitis in elderly patients. J Laparoendosc Adv Surg Tech A 16(2):124–127
Frailty predicts outcome of elective laparoscopic cholecystectomy in geriatric patients. Surg Endosc 27(4):1144–1150

Cull JD, Velasco JM, Czubak A, Rice D, Brown EC (2014) Management of acute cholecystitis: prevalence of percutaneous cholecystostomy and delayed cholecystectomy in the elderly. J Gastrointest Surg 18(2):328–333

Ferrarese AE, Solej M, Enrico S, Falcone A, Catalano S, Pozzi G, Marola S, Martino V (2013) Elective and emergency laparoscopic cholecystectomy in the elderly: our experience. BMC Surg 13(Suppl 2):S21

Rao A, Polanco A, Qiu S, Kim J, Chin EH, Divino CM, Nguyen SQ (2013) Safety of outpatient laparoscopic cholecystectomy in the elderly: analysis of 15,245 patients using the NSQIP database. J Am Coll Surg 217(6):1038–1043

Rubert CP, Higa RA, Farias FV (2016) Comparison between open and laparoscopic elective cholecystectomy in elderly, in a teaching hospital. Rev Col Bras Cir 43(1):2–5

Zeren S (2017) Bridge treatment for early cholecystectomy in geriatric patients with acute cholecystitis: percutaneous cholecystostomy. Turk J Trauma Emerg Surg 23:501–506

Huber DF, Martin EW Jr, Cooperman M (1983) Cholecystectomy in elderly patients. Am J Surg 146(6):719–722

Margiotta SJ Jr, Horwitz JR, Willis IH, Wallack MK (1988) Cholecystectomy in the elderly. Am J Surg 156(6):509–512

Watemberg S, Landau O, Avrahami R, Nudelman IL, Reiss R (1997) Incidental cholecystectomy in the over-70 age group: A 19-year retrospective, comparative study. Int Surg 82(1):102–104

Montori A, Boscaini M, Gasparrini M, Mischis G, Masoni L, Onorato M, Montori J (2000) Gallstones in elderly patients: impact of laparoscopic cholecystectomy. Can J Gastroenterol 14(11):929–932

Fisichella PM, Di Stefano A, Di Carlo I, La Greca G, Russello D, Latteri F (2002) Efficacy and safety of elective laparoscopic cholecystectomy in elderly: a case-controlled comparison with the open approach. Ann Ital Chir 73(2):149–153

Zappulla E, Russo V, Gullotta I, Salzano A, Sibero L, Scarpalezia M, Occhialini P, Amato M, Bianco T, Serra R, Amato B (2016) Laparoscopic single site (LESS) and classic video-laparoscopic cholecystectomy in the elderly: a single centre experience. Int J Surg 33(Suppl 1):S1–3

Mastalerz K, Kenig J, Olszewska U, Michalik C (2018) The Surgical Appar score and frailty as outcome predictors in short- and long-term evaluation of fit and frail older patients undergoing elective laparoscopic cholecystectomy: a prospective cohort study. Videosurg Other Minim Invas Tech 13(3):350–357

Decker G, Goergen M, Philippart P, Mendes da Costa P (2001) Laparoscopic cholecystectomy for acute cholecystitis in geriatric patients. Acta Chir Belg 101(6):294–299

Pessaux P, Regenet N, Tuche JJ, Rouge C, Bergamaschi R, Arnaud JP (2001) Laparoscopic versus open cholecystectomy: a prospective comparative study in the elderly with acute cholecystitis. Surg Laparosc Endosc Percutan Tech 11(4):252–255

Chau CH, Tang CN, Siu WT, Ha JP, Li MK (2002) Laparoscopic cholecystectomy versus open cholecystectomy in elderly patients with acute cholecystitis: retrospective study. Hong Kong Med J 8(6):394–399

Coene KE, Joudain S, Mendes da Costa P (2005) Laparoscopic cholecystectomy for acute cholecystitis in the elderly: a retrospective study. Hepatogastroenterology 52(61):17–21

Moyson J, Thill V, Simons C, Smets D, Debergh N, Mendes-daCosta P (2008) Laparoscopic cholecystectomy for acute cholecystitis in the elderly: a retrospective study of 100 patients. Hepatogastroenterology 55(88):1975–1980

Maxwell JG, Tyler BA, Rutledge R, Brinker CC, Maxwell BG, Covington DL (1998) Cholecystectomy in patients aged 80 and older. Am J Surg 176(6):627–631

Uecker J, Adams M, Skipper K, Dunn E (2001) Cholecystitis in the octogenarian: is laparoscopic cholecystectomy the best approach? Am Surg 67(7):637–640

Hazzan D, Geron N, Golijanin D, Reissman P, Shilioni E (2003) Laparoscopic cholecystectomy in octogenarians. Surg Endosc 17(5):773–776

Tambryaja AL, Kumar S, Nixon SJ (2004) Outcome of laparoscopic cholecystectomy in patients 80 years and older. World J Surg 28(8):745–748

Tambryaja AL, Kumar S, Nixon SJ (2005) POSSUM scoring for laparoscopic cholecystectomy in the elderly. ANZ J Surg 75(7):550–552

Leandros E, Alexakis N, Archontovasileis F, Albanopoulos K, Dardamanis D, Menenakos E, Tsigris C, Giannopoulos A (2007) Outcome analysis of laparoscopic cholecystectomy in patients aged 80 years and older with complicated gallstone disease. J Laparoendosc Adv Surg Tech A 17(6):731–735

Marcari RS, Lupinacci RM, Nadal LR, Rego RE, Coelho AM, de Matos Farah JF (2012) Outcomes of laparoscopic cholecystectomy in octogenarians. JSLS 16(2):271–275

Lupinacci RM, Nadal LR, Rego RE, Dias AR, Marcaris RS, Lupinacci RA, Farah JF (2013) Surgical management of gallbladder disease in the very elderly: are we operating them at the right time? Eur J Gastroenterol Hepatol 25(3):380–384

Wiggins T, Markar SR, Mackenzie H, Jamel S, Askari A, Faiz O, Karamanakos S, Hanna GB (2018) Evolution in the management of acute cholecystitis in the elderly: population-based cohort study. Surg Endosc 32(10):4078–4086

Dubecz A, Langer M, Stadlhuber RJ, Schweigert M, Solynosi N, Feith M, Stein HJ (2012) Cholecystectomy in the very elderly: is 90 the new 70? J Gastrointest Surg 16(2):282–285

Irojah B (2017) Are they too old for surgery? safety of cholecystectomy versus open cholecystectomy in superelderly patients (≥ age 90). Permanent J. https://doi.org/10.7812/TPP/16-013

Mayol J, Martinez-Sarmiento J, Tamayo FI, Alvarez Fernández-Represa J (1997) Complications of laparoscopic cholecystectomy in the ageing patient. Age Ageing 26(2):77–81

Yetim I, Dervisoglu A, Karakose O, Buyukkarakab-Cak Y, Bek Y, Erzurumlu K (2010) Is advanced age a significant risk factor for laparoscopic cholecystectomy? Minerva Chir 65(5):507–513

Nazeer MA, Ali M, Ahmed K, Saleem R (2012) Outcomes of Laparoscopic Cholecystectomy in the elderly versus young patients. PJMHS 6(3):544–546

Bhandari TR, Shahi S, Bhandari R, Poudel R (2017) Laparoscopic cholecystectomy in the elderly: an experience at a tertiary care hospital in western Nepal. Surg Res Pract 2017:8204578

Ekici U, Yilmaz S, Tatli F (2018) Comparative analysis of laparoscopic cholecystectomy performed in the elderly and younger patients: should we abstain from laparoscopic cholecystectomy in the elderly? Cureus 10(6):e2888

Rey S, Yamakawa T, Kano N, Ishikawa Y, Hakeem R, Sha M, Koishi K (1995) Laparoscopic cholecystectomy: treatment of choice in elderly patients. Dig Endosc 7(4):350–352

Firilas A, Duke BE, Max MH (1996) Laparoscopic cholecystectomy in the elderly. Surg Endosc 10(1):33–35
127. Lee SI, Na BG, Yoo YS, Mun SP, Choi NK (2015) Clinical outcome for laparoscopic cholecystectomy in extremely elderly patients. Ann Surg Treat Res 88(3):145–151

128. Palsson S, Saliba G, Sandblom G (2016) Outcome after cholecystectomy in the elderly: a population-based register study. Scand J Gastroenterol 51(8):974–978

129. Wakasugi M, Tanemura M, Furukawa K, Tei M, Suzuki Y, Masuzawa T, Kishi K, Akamatsu H (2017) Feasibility and safety of single-incision laparoscopic cholecystectomy in elderly patients: a single institution, retrospective case series. Ann Med Surg (Lond) 22:30–33

130. Novello M, Gori D, Di Saverio S, Bianchin M, Maestri L, Mandarin FV, Cavalliari G, Nardo B (2017) How safe is performing cholecystectomy in the oldest old? A 15-year retrospective study from a single institution. World J Surg 42(1):73–81

131. Yokota Y, Tomimaru Y, Noguchi K, Noda T, Hatano H, Nagase H, Hamabe A, Hirota M, Oshima K, Tanida T, Morita S, Imamura H, Iwazawa T, Akagi K, Dono K (2019) Surgical outcomes of laparoscopic cholecystectomy for acute cholecystitis in elderly patients. Asian J Endosc Surg 12(2):157–161

132. Priego Jimenez P, Ruiz-Tovar J, Ramiro C, Molina JM, Morales V, Lobo E (2014) Outcome of laparoscopic cholecystectomy in patients 85 years and older. Am Surg 80(11):E290–E292

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Affiliations

Sivesh K. Kamarajah1,2, Santhosh Karri3, James R. Bundred3, Richard P. T. Evans4,5, Aaron Lin3, Tania Kew3, Chinenye Ekeozor3, Susan L. Powell6, Pritam Singh7,8, Ewen A. Griffiths4,5

1 Department of Hepatobiliary, Pancreatic and Transplant Surgery, Freeman Hospital, Newcastle University NHS Foundation Trust Hospitals, Newcastle Upon Tyne, UK
2 Institute of Cellular Medicine, University of Newcastle, Newcastle Upon Tyne, UK
3 College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
4 Department of Upper Gastrointestinal Surgery, Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham NHS Foundation Trust, Area 6, 7th Floor, Mindelsohn Way, Edgbaston, Birmingham B15 2WB, UK
5 Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
6 Department of Geriatric Medicine, Solihull Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
7 Trent Oesophago-Gastric Unit, City Hospital Campus, Nottingham University Hospitals NHS Trust, Hucknall Road, Nottingham NG5 1PB, UK
8 Regional Oesophago-Gastric Unit, Royal Surrey County Hospital NHS Foundation Trust, Egerton Road, Guildford GU2 7XX, UK