RESEARCH ARTICLE

THE EFFECT OF COMBINED Al$_2$SO$_4$ AND PERSULFATE ON COD, COLOR AND NH$_3$–H REMOVAL FROM LEACHATE

Salem S. Abu Amr1, Abbas F. M. Alkarkhi2, Marlia M. Hanafiah3, Mohammed Shadi S Abujazar4

1Universiti Kuala Lumpur, Malaysian Institute of Chemical and Bioengineering Technology (UniKL, MICET), Melaka, Malaysia.
2School of Environment and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Malaysia.
3Faculty of sciences, Al-Aqsa University, Gaza, Palestine.
*Corresponding author: sabuamr@hotmail.com

This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

ARTICLE DETAILS

ABSTRACT

In this paper, Al$_2$SO$_4$ was added to persulfate as an activator to increase reaction and to help increase oxidation during the leachate oxidation process. The effect of Al$_2$SO$_4$, persulfate dosage, pH and reaction time on COD, color and ammonia removal was investigated during landfill leachate treatment. A face centered composite design (FCCD) was employed to model and optimize the process. The results of the analysis of variance (ANOVA) showed that Al$_2$SO$_4$ has a significant effect on the selected responses. Furthermore, a second order model was selected to describe the relationship between input factors and the three responses. The maximum removal for COD, color and NH$_3$–N was reported as 67%, 81%, and 48%, respectively, by using 5.5 ml from each persulfate and Al$_2$SO$_4$ dosage (0.2 M), 6 pH, and 105 (min) reaction time. The performance of combined S$_2$O$_8^2$/Al$_2$SO$_4$ process compared with S$_2$O$_8^2$ alone and Al$_2$SO$_4$ alone, and the results showed that the combined method achieved a higher removal efficiency for COD, color, and NH$_3$–N.

KEYWORDS

Al$_2$SO$_4$, persulfate, oxidation, removal, face centered composite design (FCCD), optimization.

1. INTRODUCTION

Increasing population growth and industries led to increase solid waste generation from residential areas. Although landfilling is still considered the most common and suitable method for municipal solid waste (MSW) disposal [1]. Large quantity of leachate generated from landfilling may cause of significant environmental concern [2]. Leachate contains high level organic and inorganic pollutant, such as ammonia and heavy metals which is directly affect to the surface and groundwater and may affect human health and aquatic environment. Leachate pollution in Malaysia is very serious, and generation of large quantity of this type of leachate in tropical areas such as Malaysia is mainly attributed to the high amount of rainfall [3]. Suitable and effective treatment for leachate is requires before final discharge [4]. Recently, the number of leachate treatment application has been applied [5-10].

Advanced oxidation processes (AOPs) recently received attraction as an efficient methods for reducing the high organic level in leachate. Persulfate reagents recently received attraction in removing organics from wastewater and landfill leachate. Although persulfate can act as a direct oxidant, the performance can be improved when applying different activation processes on persulfate reagent to initiate sulfate radicals. Persulfate oxidation works by releasing sulfate radicals that have powerful effects on the oxidation of organics [11, 12]. Generation of sulfate radicals during persulfate oxidation can be significantly enhanced by catalysts, namely, heat, UV radiation, ozone, H$_2$O$_2$, and high pH [13-16]. Rostaghy employed ferrous persulfomonsulphate oxidant to generate sulfate radicals from persulfate for PCBs degradation in aqueous solution [17].

Al$_2$SO$_4$ reagent is widely used for wastewater treatment, however, the performance utilize Al$_2$SO$_4$ in activating persulfate for leachate treatment has not been investigated. The relationships between various parameters (intetactions) for each advanced oxidation process and optimization have not been well studied. Thus, response surface methodology (RSM) was used to evaluate the statistical relationship between experimental variables and response (COD, color and NH$_3$–H removal). In this work, experimental operational conditions are optimized, and quadratic model equations for COD, color and NH$_3$–N removal are provided. Moreover, the performance of simultaneous persulfate/ Al$_2$SO$_4$ was compared with persulfate alone and Al$_2$SO$_4$ alone.

2. EXPERIMENTAL DESIGN, MATERIALS AND METHODS

2.1. Leachate Sampling and Characteristics

Leachate samples were collected from the detention pond at Sungai Udang Landfill Site (SULS), Melaka, Malaysia. SULS has an area of 7 ha, receiving approximately 1200 tons of municipal solid waste daily and start receiving waste at 1st of April 2015. In this study, the leachate samples were collected 6 times manually from February 2017 to Jun 2017 using 2 L plastic containers. The collected samples were immediately transported to the laboratory, characterized, and stored in cool room to 4°C. The general characteristics of the leachate used in the study are presented in Table 1. All samples were collected, preserved and analysed by following Standard Methods for the Examination of Water and Wastewater [18].

Parameters	Value*
COD (mg/L)	2300
BOD (mg/L)	110
NH$_3$–N (mg/L)	870
Color (PT Co.)	4800
pH	8.6
Suspended solids (mg/L)	88
Conductivity, (μS/cm)	18,940

*Averaged of two samples taken from March and June 2017.
2.2. Experimental Procedures

In the current study, Sodium persulfate (Na2S2O8: M = 238 g/mol) and Aluminum sulfate (Al2(SO4)3: 342.15 g/mol) were used for advanced oxidation during the oxidation of leachate samples. Several dosages of S2O82− and Al2(SO4)3 were gradually mixed with 100 ml of leachate samples to determine the optimum S2O82− and Al2(SO4)3 dosage according to the efficiencies of COD, Color and NH3–N removal. Orbital Shaker (Lachham R100/TW Rotatable Shaker 340 mm X 245 mm) with at 200 rpm was used for samples shaking [10]. All experiments were performed at room temperature (28 °C) using 100 ml leachate samples in conical flasks with a 250 ml capacity. pH of the samples was controlled by using 3 M sulphuric acid solution and 3 M sodium hydroxide solution [9]. All experiments were performed at laboratory of Malaysian Institute of Chemical & Bioengineering Technology, University of Kuala Lumpur, Malaka, Malaysia.

2.3. Experimental design

The effect of four factors, namely persulfate dosage (X1), Al2(SO4)3 dosage (X2), pH (X3) and reaction time (X4) on three responses COD (Y1), color (Y2) and ammonia (Y3) removal efficiencies from leachate was studied. The relationship between the factors and the three responses was modelled and optimized by using face centered composite design (FFCD). FFCD is one of the frequently used design in response surface methodology (RSM) to model and optimize the relationship between the input factors and the output responses. The levels of selected factors were chosen based on literature and preliminary experiments, the actual and coded levels are given in Table 2.

Variables	Symbol	Range and levels
Persulfate dosage	X1	Low level (-1)
		Center (0)
		High level (+1)
Al2(SO4)3 dosage	X2	1 ml
		5.5 ml
		10 ml
pH	X3	3
		6
		9
Reaction time	X4	30
		105
		180

The relationship between the selected factors (X1, X2, X3, X4) and each of the responses (Y1, Y2, Y3) is usually described in response surface methodology (RSM) by a second-order polynomial as given in Eq. (1).

\[Y = \beta_0 + \sum_{i=1}^{4} \beta_i X_i + \sum_{i=1}^{4} \sum_{j=1}^{4} \beta_{ij} X_i X_j + \sum_{i=1}^{4} \sum_{k=1}^{4} \beta_{ik} X_i^2 + \sum_{i=1}^{4} \sum_{k=1}^{4} \beta_{ik} X_i X_k \]

(1)

where Y represents the dependent variable, \(\beta_0, \beta_i, \) and \(\beta_{ij} \) are linear coefficient, quadratic coefficient and interaction coefficients respectively, need to be estimated, and \(X_i \) represents the independent variables.

Thirty runs were required for FFCD to cover all possible combination of \(X_1, X_2, X_3, X_4 \), and eight runs are for axial (star) points and six runs at the center of the design [19,20]. To avoid or minimize the effect of unexpected variability in the responses, these experiments were run in random order. The data for the thirty-run of FFCD with the coded and actual levels of the four factors are given in Table 3.

2.4. Analytical Methods

COD, color and NH3–N, were immediately tested before and after each experiment. Leachate sample was shocked well analyzed. NH3–N concentration was measured by the Phenol Method No. (4500) using a UV-VIS spectrophotometer at 640 nm with a light path of 1 cm or greater. pH was measured using a portable digital pH/MV meter. COD concentration was determined by the open reflux method No. (5220). The test values are presented as the average of the three measurements, and the difference between the measurements of each value was less than 3%. The removal efficiencies of COD and NH3–N were obtained using the following equation (2):

\[\text{Removal}(\%) = \left(\frac{C_{i} - C_{f}}{C_{i}} \right) \times 100 \]

(2)

where Ci and Cf refer to the initial and final COD, color and NH3–N concentrations respectively.

3. RESULTS AND DISCUSSION

Four independent factors (variables), namely: persulfate dosage (X1), Al2(SO4)3 (X2), pH (X3), and reaction time (X4) were identified to be influential in removing chemical Oxygen COD, color and NH3–N from landfill leachate. Thirty-runs were performed using the FFCD; the interactions between the four experimental variables were considered in each run to evaluate the validity of leachate treatment using simultaneous S2O82− and Al2(SO4)3 oxidation process. Al2(SO4)3 reagent was used to activate S2O82− during the oxidation of the leachate. As shown in Table 3, the removal efficiencies ranged between 38% to 68% for COD, 75% to 81% for color and 18% to 47% for ammonia.

Activation of persulfate under the effect of pH was discussed by Furman [21]. Sulfate radical can be initiated at high pH (Eq. 4), as shown in Table 3, the maximum removal for COD was achieved at shorter reaction time (30 min) under low pH value (3) [22]. Deng and Ezyske and Mohajeri obtained higher removal of COD from landfill leachate at lower pH value, but the higher removal for ammonia can be obtained by persulfate oxidation at high pH [23,24].

\[S_2O_8^{2−} + OH^− \rightarrow HSO_4^{−} + SO_4^{2−} + 1/2 O_2 \]

(3)

The results of thirty-run obtained from face-centered composite design (FFCD) were analyzed using analysis of variance (ANOVA) to investigate the relationship between the four independent variables (factors) and the three responses (COD removal, Color removal, and NH3–N) and presented in Table 4. The effect of persulfate dosage (X1) was significant (p<0.0001). Persulfate and pH showed a significant quadratic effect on COD removal (p=0.0047 and 0.0001 respectively). Two-factor interaction between X1 and X2, X3 and X4, and X1 and X4 was significant as presented in Table 4. Significant interaction was exhibited between persulfate and pH, and between Al2(SO4)3 and pH while other two-factor interactions were insignificant (Table 4).

| Table 2: Independent variables (factors) and corresponding levels used for optimization |

Variables	Symbol	Range and levels
Persulfate dosage	X1	Low level (-1)
		Center (0)
		High level (+1)
Al2(SO4)3 dosage	X2	1 ml
		5.5 ml
		10 ml
pH	X3	3
		6
		9
Reaction time	X4	30
		105
		180

| Table 3: The results of FFCD including coded and actual variable with the results of three responses (Color, COD, NH3 removers) |

Coded variable	Actual variable	Responses
Al2SO4 Persulfate pH RT	Al2SO4 Persulfate pH RT Color removal COD removal NH3 removal	
-1 0 0 0	1 5.5 6 105 69 67.3 47.8	
0 0 0 0	5.5 5.5 6 105 69.53 51.4 35.6	
-1 1 -1 -1	1 10 3 30 70.6 47.9 34.33	
-1 -1 1 1	9 30 64.24 54.5 31.2	
0 -1 0 0	5.5 1 6 105 56.8 39.78 31.07	

Cite The Article: Salem S. Abu Amr, Abbas F. M. Alkarkhi, Marlia M. Hanafiah. Mohammed Shadi S Abujaizar (2017). The Effect Of Combined Al2(SO4)3 and Persulfate On COD, Color and NH3–N Removal From Leachate, Acta Chemica Malaysia, 1(2) : 11-17.
Table 4: The results of ANOVA for color, COD and NH₃–N removals

Color removal% (R-square = 0.904)	Source	Squares	Mean Square	DF	P-value F	Value	P-value
Model 896.92	14	64.07	10.09	< 0.0001	0.901	< 0.0001	
X_1 8.83	1	8.83	1.39	0.2565	0.901	< 0.0001	
X_2 154.41	1	154.41	24.32	0.0002	0.901	< 0.0001	
X_3 3.71	1	3.71	0.58	0.4565	0.901	< 0.0001	
X_4 193.45	1	193.45	30.47	< 0.0001	0.901	< 0.0001	
X_5^2 0.58	1	0.58	0.091	0.7665	0.901	< 0.0001	
X_6^2 245.70	1	245.70	38.71	< 0.0001	0.901	< 0.0001	
X_7^2 101.10	1	101.10	15.93	0.0012	0.901	< 0.0001	
X_8^2 27.31	1	27.31	4.30	0.0557	0.901	< 0.0001	
X_9X_2 9.33	1	9.33	1.47	0.2441	0.901	< 0.0001	
X_1X_5 51.84	1	51.84	8.17	0.0120	0.901	< 0.0001	
X_2X_6 53.36	1	53.36	8.41	0.0110	0.901	< 0.0001	
X_3X_7 113.00	1	113.00	17.80	0.0007	0.901	< 0.0001	
X_4X_8 16.61	1	16.61	2.62	0.1266	0.901	< 0.0001	
X_5X_6 0.45	1	0.45	0.071	0.7939	0.901	< 0.0001	
Residual 95.22	15	6.35			0.901	< 0.0001	
Lack of Fit	67.20	10	6.72	1.20	0.4458		
Pure Error	28.02	5	5.60				
Total 992.14	29						

COD removal % (R-square = 0.901)

COD removal% (R-square = 0.901)	Source	Squares	Mean Square	DF	P-value F	Value	P-value
Model 2206.30	14	157.59	9.82	< 0.0001	0.901	< 0.0001	
X_1 84.41	1	84.41	5.26	0.0367	0.901	< 0.0001	
X_2 1.60	1	1.60	0.100	0.7564	0.901	< 0.0001	
X_3 52.87	1	52.87	3.29	0.0896	0.901	< 0.0001	
X_4 97.44	1	97.44	6.07	0.0263	0.901	< 0.0001	
X_5^2 52.770	1	52.770	32.88	< 0.0001	0.901	< 0.0001	
X_2^2 211.90	1	211.90	13.20	0.0025	0.901	< 0.0001	
X_2^2 414.18	1	414.18	25.80	0.0001	0.901	< 0.0001	
X_2^2 11.19	1	11.19	0.074	0.7889	0.901	< 0.0001	
X_2X_3 266.67	1	266.67	16.61	0.0010	0.901	< 0.0001	
X_2X_4 169.78	1	169.78	10.58	0.0054	0.901	< 0.0001	
X_3X_4 153.02	1	153.02	9.53	0.0075	0.901	< 0.0001	
$X_3X_5^2$ 17.89	1	17.89	1.11	0.3078	0.901	< 0.0001	

Cite This Article: Salem S. Abu Amr, Abbas F. M. Allarkhi, Marlia M. Hanafiah. Mohammed Shadi S Abujazar (2017). The Effect Of Combined Al₂SO₄ And Persulfate On COD, Color And NH₃–H Removal From Leachate.Acta Chemica Malaysia, 1(2) : 11-17.
The normal probability plots for COD, color and NH$_3$–N removal is demonstrated in Figure 1. Generally, most of the points follow the straight line for COD color and ammonia. A significant interaction between persulfate and Al$_2$SO$_4$ is presented in Fig. 2, showing the effect of the combination of the two reagents on color removal which is higher than the effect on COD removal.

The mathematical equation model was established to understand the behavior of relationship between the independent variables (factors) and responses to investigate the ability of optimizing the process. A second-order polynomial model was found as the best model that describes the relationship between the independent variables and the responses.

Table 1: Regression Analysis

Source	Sum of Squares	df	Mean Square	F Value	P-value
Model	1557.91	14	111.28	6.70	0.0004
X_1	1.92	1	1.92	0.12	0.7385
X_2	19.41	1	19.41	1.17	0.2967
X_3	142.58	1	142.58	8.59	0.0103
X_4	276.75	1	276.75	16.67	0.0010
X_1^2	186.08	1	186.08	11.21	0.0044
X_2^2	86.57	1	86.57	5.21	0.0374
X_3^2	13.77	1	13.77	0.83	0.3769
X_4^2	192.30	1	192.30	11.58	0.0010
X_1X_2	52.27	1	52.27	3.15	0.0963
X_1X_3	117.29	1	117.29	7.06	0.0179
X_1X_4	34.22	1	34.22	2.06	0.1716
X_2X_3	22.28	1	22.28	1.34	0.2648
X_2X_4	127.92	1	127.92	7.70	0.0141
Residual	240.77	15	16.05		
Lack of Fit	204.48	10	20.45	2.82	0.1322
Pure Error	36.28	5	7.26		
Total	1244.07	29			

Figure 1: Design Expert plot; Predicted and actual standardized residual for (A) COD, (B) color (C) NH$_3$–N, removal
The second-order polynomial model for COD, color, and NH3-N removals are given in Eqs. 4-6, respectively.

\[
COD = 53.88 - 2.17X_1 - 0.30X_2 - 1.71X_3 - 2.33X_4 + 14.27X_1^2 - 9.04X_2^2 - 12.64X_3^2 - 0.68X_4^2 + 4.08X_1X_2 - 3.26X_1X_3 - 3.09X_1X_4 - 1.06X_2X_3 - 0.59X_2X_4 + 2.79X_3X_4
\]

(4)

\[
\text{Color} = 71.37 + 0.69X_1 + 2.93X_2 - 0.45X_3 + 3.28X_4 - 0.40X_1^2 - 9.77X_2^2 + 6.22X_3^2 + 3.22X_4^2 + 0.76X_1X_2 - 1.80X_1X_3 - 1.83X_1X_4 - 2.66X_2X_3 - 1.02X_2X_4 - 0.17X_3X_4
\]

(5)

\[
NH_3-N = 34.60 - 0.33X_1 - 1.04X_2 - 2.81X_3 - 3.92X_4 + 8.47X_1^2 - 5.78X_2^2 - 2.31X_3^2 - 8.62X_4^2 + 1.62X_1X_2 - 1.81X_1X_3 - 2.71X_1X_4 - 1.46X_2X_3 - 1.18X_2X_4 + 2.83X_3X_4
\]

(6)

where \(Y_1, Y_2 \), and \(Y_3 \) represent the COD removal, color removal, and ammonia (NH₃), respectively.

The second-order polynomial models explained most of the variation in the COD, color, and NH₃-N data since the coefficients of determination \(R^2 \) for the model is high and close to 1. The values of \(R^2 \) for COD, color, and NH₃-N models are 0.97, 0.98, and 0.94 respectively which shows that most of the variation is explained and a very small amount is unexplained by a model. The effect of each independent variable can be assessed by the coefficient associated with the variable, positive coefficient tells us the ability of the variable to increase the response with high setting while negative coefficient indicates the ability to decrease the value of the response with the high setting.

The behavior of the independent variables and the selected responses can be represented in three-dimensional response surface plot as given in Figure 4 for COD, color, and NH₃-N removals, showing the behavior of pH and persulfate (a) and Al₂SO₄ (b). For COD, color, and NH₃-N removals revealed a clear picture for maximum removal for all selected responses. Furthermore, maximum percentage of removal for COD, color, and NH₃-N was observed within the selected intervals of the independent variables (factors).

The models presented in Figure 3 were used simultaneously to optimize the process and provide the suitable setting for the persulfate dosage, Al₂SO₄, pH, and reaction time to produce maximum removals for COD, color, and NH₃-N. The optimum solution (maximum removals) for advanced oxidation process was found at persulfate 10 ml, Al₂SO₄ 5.5 ml, pH 5, and RT 105 min with removals of 68%, 82% and 48% for COD, color, and NH₃-N, respectively.

To evaluate the effectiveness of simultaneous S₂O₅²⁻ and Al₂SO₄ oxidation, leachate sample was treated with S₂O₅²⁻ only and Al₂SO₄ only (Figure 4). The efficiency of persulfate only was found to be limited for COD, color and ammonia removal (35%, 42% and 18%, respectively). Although Al₂SO₄
achieved higher removal for COD and color (42% and 53%, respectively), the effectiveness of simultaneous $S_2O_8^{2-}/ Al_2SO_4$ oxidation was higher than other applications. (67%, 82% and 47% removal for COD, color and ammonia, respectively).

![Figure 3](image)

Figure 3: Three-dimensional response surface showing the effect of persulfate/AlSO_4 on (A) COD (B) color (C) and NH$_3$-N removal at 5.5 ml of persulfate and 105 min reaction time.

![Figure 4](image)

Figure 4: Comparison the performance of persulfate, AlSO_4, and combined persulfate/AlSO_4 for COD, color and NH$_3$-N removal.

4. CONCLUSION

In the current study, the performance of employing AlSO_4 to activate persulfate during oxidation of leachate was performed and evaluated. The optimum experimental conditions for the treatment was conducted with respect to operational conditions, namely, persulfate and AlSO_4 concentration, pH variation, and oxidation time. The performance of combined $S_2O_8^{2-}/ Al_2SO_4$ oxidation process is more efficient than the $S_2O_8^{2-}$ alone and AlSO_4 alone for leachate treatment. Accordingly, the combined $S_2O_8^{2-}/ Al_2SO_4$ treatment process improved the oxidation potential of organics and ammonia in landfill leachate.

ACKNOWLEDGMENT

This study was made possible through the support of the Malaysian Institute of Chemical & Bioengineering Technology, Universiti Kuala Lumpur, (Unikl, MICT).

REFERENCES

[1] Renou, S., Givaudan, J.G., Poulin, S., Dirassouyan, F., Moulin, P. 2008. Landfill leachate treatment: Review and opportunity. Journal of Hazardous Materials, 150, 469–493.

[2] Kurniawan, T.A., Lo, W., Chan, G.Y.S. 2006. Degradation of recalcitrant compounds from stabilized landfill leachate using a combination of ozone-GAC adsorption treatments. Journal of Hazardous Materials, 137, 443–455.

[3] Aziz, H.A., Adlan, M.N., Zahari, M.S.M., Alias, S. 2004. Removal of ammoniacal nitrogen (N-NH3) from municipal solid waste leachate by using activated carbon and limestone. Waste Management and Research, 22, 371–375.

[4] Aziz, S.Q., Aziz, H.A., Yusoff, M.S., Bashir, M.J.K., Umar, M. 2010. Leachate characterization in semi-aerobic and anaerobic sanitary landfills: A comparative study. Journal of Environmental Management, 12, 2608-2614.

[5] Goi, A., Veressinina, Y., Trapido, M. 2009. Combination of Ozonation and the Fenton Processes for Landfill Leachate Treatment: Evaluation of Treatment Efficiency. Ozone: Science & Engineering, 31, 28–36.
[6] Abu Amr, S.S., Zakaria, S.N.F., Aziz, H.A. 2016. Performance of combined ozone and zirconium tetrachloride in stabilized landfill leachate treatment. Journal of Material cycles and waste management, 19, 1384–1390.

[7] Daud, Z., Hijab Abubakar, M., Abdul Kadir, A., Abdul Latif, Ab. A., Awang, H., Abdul Halim A., Marto A. 2017. Batch study on cod and ammonia nitrogen removal using granular activated carbon and cockle shells. International Journal of Engineering, Transactions A, 30, 7937–7944.

[8] Davarnejad, R., Arpanahzadeh, S., Karimi A., Pirhadi, M. 2015. Landfill leachate treatment using an electrochemical technique: an optimized process (research note). International Journal of Engineering, Transactions A, 28 (1), 7-15.

[9] Davarnejad, R., Hosseinitabar P. 2016. Application of iron electrode in textile industry wastewater treatment using electro-Fenton technique: experimental and statistical study. International Journal of Engineering, Transactions A, 29 (7), 887-897.

[10] Hilles, A.H., Abu Amr, S.S., Hussein, R.A., Arafa, A.L, El-Sebaie, O.D. 2015. Effect of persulfate and persulfate/H2O2 on biodegradability of an anaerobic stabilized landfill leachate. Waste Management 44 (2015) 172 - 177, DOI: 10.1016/j.wasman.2015.07.046

[11] Watts, R.J. 2011. Enhanced Reactant-Contaminant Contact through the Use of Persulfate in Situ Chemical Oxidation (ISCO), SERDP Project ER-1489 Washington State University.

[12] Renaud, I.P., Sibi, M.P. 2001. Radicals in organics synthesis. Wiley-VCH, Weinheim. New York, pp. 479-488.

[13] Gao, Y., Gao, N., Deng, Y., Yang, Y., Ma, Y. 2012. Ultraviolet (UV) light-activated persulfate oxidation of sulfamethazine in water. Chemical Engineering Journal, 196, 248-253.

[14] Hilles, A.H., Abu Amr, S.S., Hussein, R.A., Arafa, A.L, El-Sebaie, O.D. 2016. Performance of combined sodium persulfate/H2O2 based advanced oxidation process in stabilized landfill leachate treatment. Journal of Environmental Management, 166, 493 – 498.

[15] Abu Amr, S.S., Alkarkhi, A.F.M., Alsabti, T.M., Abujazar, M.S.S. 2018. Performance of combined persulfate/Aluminum sulfate for landfill leachate treatment, Data in Brief, 19, 951–958.

[16] Abu Amr, S.S., Aziz, H.A., Adlan, M.N. 2013. Optimization of stabilized leachate treatment using ozone/persulfate in the advanced oxidation process. Waste Management, 33, 1434 – 1441.

[17] Rastogi, A., Al-Abed, S.R., Dionysiou, D.D. 2009. Sulfate radical-based ferrous peroxymonosulfate oxidative system for PCBs degradation in aqueous and sediment systems. Applied Catalysis B: Environmental, 85, 171–179.

[18] APHA. 2005. Standard Methods for the Examination of Water and Wastewater APHA, American Public Health Association (APHA), 21th ed., Washington, DC.

[19] Talebi, A., Nori, I., Teng, T.T., Alkarkhi, A.F.M. 2014. Optimization of COD, apparent color and turbidity reductions of landfill leachate by Fenton reagent. Desalination and Water Treatment, 52, 1524-1530.

[20] Taiwo, O.F.W., Alkarkhi, A.F.M., Ghaazi, A., Daud, W.W. 2017. Optimization of the Strength Properties of Waste Oil Palm (Elaeis Guineensis) Fronds Fiber. Journal of Natural Fibers, 14, 551-563.

[21] Furman, O., Teel, A., Ahmad, M., Merker, M., Watts, R. 2011. Effect of Basicity on Persulfate Reactivity. Journal of Environmental Engineering, 137 (4), 241–247.

[22] Hulling, S.G., Pivetz, B.E. 2006. In-situ chemical oxidation: Engineering Issue. EPA/600/R-06/072. Cincinnati, OH. Office of Research and Development. National Risk Management Research Laboratory, USEPA.

[23] Deng, Y., Ezyske, C.M. 2011. Sulfate radical-advanced oxidation process (SR-AOP) for simultaneous removal of refractory organic contaminants and ammonia in landfill leachate. Water Research, 45, 6189 – 6194.

[24] Mohajeri, S., Aziz, H.A., Isa, M.H., Bashir, M.J.K., Mohajeri, L., Adlan, MN. 2010. Influence of Fenton reagent oxidation on mineralization and decolourisation of municipal landfill leachate. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 45, 692-698.