Association of early discharge with increased likelihood of hospital readmission in first four weeks for vaginally delivered neonates

Maria Pohjanpää1 | Riitta Ojala1,2 | Tiina Luukkaala3,4 | Mika Gissler5,6,7,8 | Outi Tammela1,2

Abstract

Aim: The main aim was to determine whether hospital readmission rates by 28 days of age are elevated with early discharge (ED) in Finland. We sought to identify the causes and predictors of ED, readmission rates, admissions to the intensive care unit (ICU) and death.

Methods: The data of 333,321 infants were retrieved from nationwide registers. Vaginally delivered single infants at gestational ages (GAs) of ≥37+0, born in 2008–2015 and treated in any maternity ward in Finland, were included. ED was defined as discharge on the day of birth or after one night stay on the maternity ward.

Results: During the study period, the ED and hospital readmission rates increased. Low-risk infants and those born in high population-density areas were more likely to be discharged early. ED predicted hospital readmission but not ICU admission or death. The most common reason for readmission was jaundice, followed by infection. ED seemed not to predict severe cardiologic problems. Rather than ED, being born at 38+0–38+6 weeks' GA significantly predicted ICU admission or death.

Conclusion: Early discharge seems to be associated with increased hospital readmission. Birth at 38+0–38+6 weeks' GA was a significant predictor of ICU admission or death, as opposed to early discharged infants.

Keywords

early discharge, full-term, hospital readmission, newborn discharge timing

INTRODUCTION

Since the 1970s, the lengths of the hospital stay (LOSs) for newborns and their mothers after uncomplicated vaginal deliveries have steadily shortened, especially in developed countries, for example, in the United States, Canada and Sweden.1–3 Early discharge (ED) has several advantages, including reduced costs, reduced risk of iatrogenic infection and the opportunity for the mother and infant to

Abbreviations: AGA, appropriate for gestational age; CCHD, critical congenital heart defect; CI, confidence interval; CRHC, care register for health care; ED, early discharge; GA, gestational age; ICU, intensive care unit; IQR, interquartile range; LGA, large for gestational age; LOS, length of hospital stay; MBR, Medical Birth Register; Md, median; OR, odds ratios; SD, standard deviation; SF, Statistics Finland; SGA, small for gestational age; THL, Finnish Institute for Health and Welfare.

© 2022 The Authors. Acta Paediatrica published by John Wiley & Sons Ltd on behalf of Foundation Acta Paediatrica.
recover in a familiar, home environment. However, ED may hold potential risks. As an example, critical congenital heart defects (CCHDs), jaundice and gastrointestinal obstructions may not appear within one to two days after birth. ED may also lead to fewer opportunities for healthcare practitioners to guide breastfeeding and parenting.

Reduced LOSs have been associated with increased readmission rates, especially due to jaundice. According to a report from California (1992–1995), discharging a neonate on the day of birth increased the risk of infant readmission. However, no significant risk was detected if the newborn was discharged one day after birth. In Finland, the average LOS for newborns decreased from 3.7 days in 2006 to 2.9 days in 2015. In total, 5.7% of neonates were discharged at 0–1 days’ age and 27.4% at 2 days’ age in 2015. There are many recent studies concerning early postpartum discharge, but sparse information is available in the Nordic countries concerning the outcomes of healthy term neonates discharged early from delivery hospitals. Therefore, the aim of this study was to investigate whether ED after uncomplicated vaginal delivery is associated with increased hospital readmission rates by the time infants reach 28 days old. The authors also aimed to establish the causes and predictors of ED, along with readmission rates, admissions to the intensive care unit (ICU) and death.

2 | PATIENTS AND METHODS

2.1 | Selection of the study population

The number of live births in Finland from 2008 to 2015 was 471,232. A national register study included 333,321 vaginally delivered, liveborn single babies at gestational ages (GAs) of ≥37 weeks treated on a maternity ward. Infants born via caesarean section were excluded since they usually stay in the hospital longer given their mothers’ indications. Also, infants born out of the hospital, admitted after birth to the neonatal ICU, or admitted after birth to another paediatric ward at the same or another hospital, were excluded. Infants with chromosomal anomalies were included only if those anomalies were detected after the perinatal period. Finally, 412 infants and mothers with missing information on the date of discharge, or who were discharged when the infant’s age was more than 28 days, and 13,230 newborns with discrepant data across the registers, were excluded.

In Finland, paediatricians examine all newborns before discharge. If the check-up occurs when the infant is <24 h old, newborns are invited to a prescheduled re-examination by the paediatrician, usually at three to five days of age. Infants discharged at the age of <48 h and infants with risk factors will be referred to check-up to outpatient clinic run by a midwife at the hospital. In the remaining cases, a public healthcare nurse checks the newborn at 3–7 days of age.

Data on infants and mothers were collected from the Medical Birth Register (MBR), run by the Finnish Institute for Health and Welfare (THL). This register includes data on livebirths and stillbirths at birthweights of at least 500 g or GAs of at least 22+0 weeks. The MBR’s data sources are maternity hospitals and the Population Information System headed by the Digital and Population Data Services Agency and Cause-of-Death Register, Statistics Finland (SF). The validity of the MBR has been proven reliable.

Data on readmissions and hospital stays were collected from the Care Register for Health Care (CRHC), also maintained by the THL. The CRHC contains information on admissions, discharges, diagnoses, procedures and interventions. The dates and causes of death were obtained from SF. The information from the MBR, CRHC and SF was linked individually via each infant’s anonymised personal identity code made by recordkeeping authorities.

2.2 | Exposure

Neonates were analysed in three groups according to their discharge days: (1) discharged on the day of birth (1st day), (2) discharged one day after birth (2nd day) and (3) discharged beyond day after birth (after 2nd day). Infants discharged on the 1st or 2nd day were defined as discharged early.

The covariates included can be seen in Tables 1 and 2. Regions were divided according to five university hospital areas: southern (population density ~87/km²), eastern (~13/km²), northern (~5/km²), western (~27/km²) and southwestern (~34/km²). GAs were categorised as 37+0~38+6 (early term), 39+0~40+6, 41+0~41+6 and ≥42+0 (post-term). Small for gestational age (SGA) and large for gestational age (LGA) were defined as a birthweight of ≤−2 or ≥+2 standard deviations (SDs), respectively, according to the national sex-specific standard.

Causes of readmission were categorised into 11 groups according to the International Statistical Classification of Diseases and Related Health Problems, Tenth Revision (ICD-10), as follows: lower respiratory infectious diseases (J09–J18, J20–J22 and A37); other infectious diseases (A02.1, A40, A41, P36, A04.3, A39, A85, A87 and B00) including inflammatory diseases of the central nervous system (G00–G09), soft tissue infections (A46, H00.03, L03, H05.0 and P38), bone and joint infections (M00, M86) and urinary tract infections (N10, N12, N39.0 and P39.3); and gastrointestinal problems including congenital lactase deficiency (E73.0), gastrointestinal obstruction and acute

Key Notes
- The early discharge (less than two nights’ stay) and hospital readmission rates increased among low-risk newborns born in Finland.
- Infants discharged early had an increased risk of readmission to hospital but not of admission to the intensive care unit (ICU) or death, by 28 days’ age.
- Being born at 38−0−38+6 weeks’ gestational age predicted admission to the ICU or death by 28 days’ age.
TABLE 1 Characteristics of infants and their mothers

Day of discharge	1st day (n = 2,089; 0.6%)	2nd day (n = 24,296; 7.3%)	After 2nd day (n=306,936; 92.1%)	p-Value*	
	1st day vs. after 2nd day	2nd day vs. after 2nd day			
Mother					
Age (years), n (%)					
<20	11 (0.5)	120 (0.5)	7,056 (2.3)	<0.001	<0.001
20–24	238 (11.4)	2,904 (12.0)	48,680 (15.9)		
25–29	665 (31.8)	7,626 (31.4)	98,087 (32.0)	<0.001	
30–34	723 (34.6)	8,973 (36.9)	99,394 (32.4)	<0.001	
35–39	379 (18.1)	3,969 (16.3)	44,095 (14.4)		
≥40	73 (3.5)	704 (2.9)	9,624 (3.1)		
Marital status, n (%)					
Married	1,305 (62.5)	15,089 (62.1)	17,7209 (57.7)	<0.001	<0.001
Cohabiting	1,905 (91.4)	22,560 (92.9)	278,246 (90.8)	0.601	<0.001
Socioeconomic group, n (%)					
Upper-level employees	727 (34.8)	9,514 (39.2)	135,694 (44.2)	<0.001	
Lower-level employees	3 (0.1)	50 (0.2)	1,071 (0.3)		
Entrepreneurs	59 (2.8)	626 (2.6)	7,031 (2.3)		
Manual workers	230 (11.0)	2,377 (9.8)	34,446 (11.2)	<0.001	
Students	149 (7.1)	1,915 (7.9)	28,800 (9.4)		
Pensioners	0 (0.0)	2 (0.0)	91 (0.0)		
Others1	107 (5.1)	975 (4.0)	11,160 (3.6)		
BMI, n (%)					
<18.5	84 (4.0)	915 (3.8)	11,411 (3.7)	<0.001	
18.5–24.9	1,326 (63.6)	15,644 (64.5)	192,102 (62.8)	<0.001	<0.001
25–29.9	395 (18.9)	4,770 (19.7)	63,680 (20.8)	<0.001	
≥30	184 (8.8)	2,280 (9.4)	33,058 (10.8)		
Pregnancy					
Primipara, n (%)	37 (1.8)	580 (2.4)	97,739 (31.8)	<0.001	<0.001
Previous miscarriages, n (%)	521 (24.9)	5,887 (24.2)	64,780 (21.1)	<0.001	<0.001
Smoking, n (%)					
Stopped smoking during 1st trimester	90 (4.3)	1,214 (5.0)	18,119 (5.9)	<0.001	<0.001
Smoked after 1st trimester	298 (14.3)	2,626 (10.8)	26,385 (8.6)		
Prenatal visits					
Median (IQR)	13 (11–16)	14 (12–16)	15 (13–18)	<0.001	<0.001
At the hospital clinic, median (IQR)	2 (1–3)	2 (1–3)	3 (1–4)	<0.001	<0.001
Insulin treatment started during pregnancy, n (%)	10 (0.5)	212 (0.9)	4,530 (1.5)	<0.001	<0.001
Gestational diabetes2, n (%)	18 (0.9)	921 (3.8)	29,862 (9.7)	<0.001	<0.001
Delivery					
Birth hospital level, n (%)					
University	566 (27.1)	8,625 (35.5)	102,229 (33.3)	<0.001	<0.001
abdomen (K31.1, Q40.0, K40.3, K56, P76, Q41, Q42, Q43.1, R10.0, K63.1 and K65), hepatic failure (K72), gastrointestinal haemorrhage (K92, P54.0 and P54.1) and biliary atresia (Q44.29). Diagnoses P57–P59 and R17 were categorized as jaundice. Haematologic problems included haemolytic anaemia (D59), coagulation disorder (D65, D66) and haemolytic disease of the foetus and newborn (P55 and P56). Hypoglycaemia and inadequate nutrition included hypoglycaemia (P70.4), dehydration (P74.1 and E86), insufficient feeding (P92.3, P98.2 and E40–E46) and abnormal weight loss (R63.4). Cardiologic problems included hypertension (I15), endocarditis and myocarditis (I38 and I51.4), cardiac arrest (I46), paroxysmal tachycardia (I47), heart failure (I50), persistent foetal circulation (P29.31) and cardiac defects (Q20, Q21.30, Q25.1, Q25.21, Q25.6, I35.0 and I37.0). Neurologic problems included convulsions (G40, G41, P90 and G47.3), intracranial
Table 2: Predictors of early discharge after birth

Variable	All (N = 333,321)	Early discharge (ED) (N = 26,385)	Multivariable adjusted for ED*	
	n (%)	ED (n = 26,385) n (%)	p	OR (95% CI)
Mother				
Primipara				
No	234,965	25,768 (11.0)	1	
Yes	98,356	617 (0.6)	<0.001	0.05 (0.04, 0.05)
BMI				
18.5–30	278,593	22,184 (8.0)	<0.001	1
<18.5	12,410	999 (8.0)	0.007	1.10 (1.02, 1.18)
≥30	35,732	2,477 (6.9)	<0.001	0.82 (0.78, 0.86)
Age				
25–29 years	106,378	8,291 (7.8)	<0.001	1
<25 years	59,009	3,272 (5.5)	<0.001	0.91 (0.87, 0.95)
30–34 years	123,684	11,084 (9.0)	<0.001	0.91 (0.88, 0.93)
≥35 years	44,250	3,737 (8.4)	<0.001	0.75 (0.72, 0.78)
Smoking				
No	277,189	21,469 (7.7)	<0.001	1
Yes	48,732	4,228 (8.7)	<0.001	1.27 (1.23, 1.32)
Gestational age				
39+0–40+6	195,354	16,613 (8.5)	<0.001	1
37+0–37+6	12,637	372 (2.9)	<0.001	0.36 (0.33, 0.41)
38+0–38+6	40,307	2,548 (6.3)	<0.001	0.77 (0.74, 0.81)
41+0–41+6	70,524	5,879 (8.3)	0.10	1.02 (1.00, 1.06)
≥42+0	14,498	973 (6.7)	0.007	0.91 (0.85, 0.97)
Mode of vaginal delivery				
Normal vaginal	29,915	25,706 (8.6)	<0.001	1
Breech delivery	2,109	126 (6.0)	0.09	0.84 (0.70, 1.03)
Instrumental delivery¹	32,097	553 (1.7)	<0.001	0.30 (0.27, 0.33)
Time of birth				
Morning (8:00 AM–3:00 PM)	91,978	6,685 (7.3)	<0.001	1
Evening (3:00 PM–10:00 PM)	102,766	3,525 (3.4)	<0.001	0.46 (0.44, 0.48)
Night (10:00 PM–8:00 AM)	138,366	16,171 (11.7)	<0.001	1.76 (1.70, 1.81)
Place of birth				
University hospital	111,420	9,191 (8.2)	<0.001	1
Central hospital	160,863	11,53 (7.2)	<0.001	0.65 (0.63, 0.68)
Other²	61,038	5,664 (9.3)	<0.001	0.68 (0.64, 0.70)
University hospital’s catchment area				
Southern	131,202	14,260 (10.9)	<0.001	1
Eastern	45,158	2,301 (5.1)	<0.001	0.35 (0.34, 0.37)
Northern	53,673	1,029 (1.9)	<0.001	0.12 (0.11, 0.13)
Western	54,030	5,154 (9.5)	<0.001	0.69 (0.66, 0.71)
Southwestern	48,634	3,580 (7.4)	<0.001	0.53 (0.51–0.56)
haemorrhages (P52.0 and I60–169) and malformations of the central nervous system (Q00–Q07). Injuries were categorised as S00–T74. The category of other included social problems (Z59, Z63, Z75 and Z81) and neonatal withdrawal symptoms (P96.1 and P04). Mild conditions, which could not be included in any category, were defined as ’miscellaneous, minor causes’—for example, medical observations and suspicions of diseases or conditions.

2.3 Outcomes

The main endpoint was infant readmission to any hospital ward after discharge by the age of 28 days. The secondary measures were the causes and predictors of ED, ICU admissions or death by the time infants were 28 days old. The causes of ICU admissions and detailed factors of deaths were clarified.

2.4 Statistical analyses

Either Pearson’s chi-squared test, the Kruskal–Wallis test or Cochran–Armitage trend test was used in group comparisons, as appropriate. Potential predictors of ED, readmission, ICU admission and/or death were analysed via multivariable logistic regression analysis. The covariates used can be seen in Table 3. Risk factors of readmission were analysed by dividing the groups into three categories (1st, 2nd and after 2nd day discharge) and into two categories (ED and discharge after the 2nd day). The results were presented as odds ratios (ORs) and 95% confidence intervals (CIs).

Statistical analyses were performed with IBM SPSS Statistics for Windows, versions 24 and 25 (IBM Corp., released 2013). A p-value of < 0.05 was considered statistically significant.

2.5 Missing data

The date of hospital discharge was missing for 1.4% of the newborns. In case of a missing date, the mother’s date of hospital discharge was used in healthy newborns. The missing data for other variables were as follows: cohabitation (4.4%), socioeconomic group (29.5%), smoking (2.2%), prenatal visits (2.1%) and prenatal visits at the hospital clinic (4.2%). The proportions of all other variables were less than 1%.
| TABLE 3 Predictors of readmission, admission to ICU or death (age ≤28 days) |
|-----------------|-----------------|-----------------|-----------------|
| | Readmission (N = 10,443) | ICU or Died (N = 87) |
| | n (%) | Multivariable | n (%) | Multivariable |
| | | p | OR | CI | |
| | (333,321) | | | | |
| Mother | Yes | No | | Yes | |
| Primipara | | | | | |
| No | 234,965 | 7,749 (3.3) | <0.001 | 0.77 (0.73, 0.80) | 63 <0.1 | 1 |
| Yes | 98,356 | 2,694 (2.7) | | | 24 <0.1 | 0.63 0.88 (0.53, 1.47) |
| BMI | | | | | |
| 18.5–29.9 | 278,593 | 8,504 (3.1) | 0.02 | 1 | 70 <0.1 | 0.89 1 |
| <18.5 | 12,410 | 406 (3.3) | 0.29 | 1.06 (0.95, 1.17) | 3 <0.1 | 0.91 0.93 (0.29, 2.98) |
| ≥30 | 35,732 | 1,327 (3.7) | 0.002 | 1.10 (1.03, 1.17) | 14 <0.1 | 0.44 1.26 (0.70, 2.24) |
| Age | | | | | |
| 25–29 years | 106,378 | 3,188 (3.0) | <0.001 | 1 | 27 <0.1 | 0.16 1 |
| <25 years | 59,009 | 1,905 (3.2) | <0.001 | 1.15 (1.08, 1.22) | 23 <0.1 | 0.12 1.58 (0.89, 2.79) |
| 30–34 years | 123,684 | 3,918 (3.2) | 0.68 | 1.01 (0.96, 1.06) | 25 <0.1 | 0.41 0.80 (0.46, 1.38) |
| ≥35 years | 44,250 | 1,432 (3.2) | 0.44 | 0.98 (0.91, 1.04) | 14 <0.1 | 0.82 1.08 (0.54, 2.17) |
| Smoking | | | | | |
| No | 277,189 | 8,690 (3.1) | 0.88 | 1 | 67 <0.1 | 0.65 1 |
| Yes | 48,732 | 1,521 (3.1) | 0.68 | 0.99 (0.93, 1.05) | 18 <0.1 | 0.36 1.29 (0.75, 2.21) |
| Gestational age | | | | | |
| 39^0–40^6 | 195,354 | 5,525 (2.8) | <0.001 | 1 | 47 <0.1 | 0.01 1 |
| 37^6–37^6 | 12,637 | 939 (7.4) | <0.001 | 1.97 (1.83, 2.12) | 6 <0.1 | 0.33 1.54 (0.64, 3.68) |
| 38^6–38^6 | 40,307 | 2,119 (5.3) | <0.001 | 1.67 (1.58, 1.76) | 21 <0.1 | 0.02 1.89 (1.12, 3.18) |
| 41^6–41^6 | 70,524 | 1,549 (2.2) | <0.001 | 0.80 (0.76, 0.85) | 8 <0.1 | 0.08 0.51 (0.24, 1.07) |
| ≥42^10 | 14,498 | 311 (2.1) | <0.001 | 0.79 (0.71, 0.89) | 5 <0.1 | 0.20 1.82 (0.72, 4.62) |
| Mode of vaginal delivery | Yes | Normal vaginal | 29,915 | 9,318 (3.1) | 0.25 | 1 | 82 <0.1 | 0.07 1 |
| Instrumental delivery | Yes | 32,097 | 1,054 (3.3) | 0.12 | 1.06 (0.99, 1.13) | 3 <0.1 | 0.06 0.32 (0.10, 1.03) |
| Time of birth | | Morning (8:00 AM–3:00 PM) | 91,978 | 2,851 (3.1) | 0.04 | 1 | 24 <0.1 | 0.93 1 |
Place of birth	ICU or Died (N = 87)	Readmission (N = 10,443)
	n (%)	n (%)
	p	p
	OR (95% CI)	OR (95% CI)
Evening (3:00 PM–10:00 PM)	102,766	3,348 (3.3)
	0.17	1.04
	(0.99, 1.09)	(0.94, 1.03)
Night (10:00 PM–8:00 AM)	138,366	4,233 (3.1)
	0.50	0.98
	(0.94, 1.03)	(0.94, 1.03)
University hospital hospital		
Central hospital	111,420	3,421 (3.1)
	<0.001	1
	0.17	1.04
	(0.99, 1.09)	(0.94, 1.03)
Other	61,038	2,102 (3.4)
	<0.001	1.23
	(1.16, 1.31)	(1.16, 1.31)
University hospital's catchment area		
Southern	131,202	4,102 (3.1)
	<0.001	1
	0.23	1.04
	(0.98, 1.11)	(1.05, 1.15)
Eastern	45,158	1,383 (3.1)
	<0.001	0.80
	(0.76, 0.86)	(0.91, 1.03)
Northern	53,673	1,649 (3.3)
	<0.001	0.97
	(0.91, 1.03)	(0.98, 1.11)
Western	54,030	1,680 (3.1)
	0.28	0.97
	(0.91, 1.03)	(0.98, 1.11)
Southwestern	48,634	1,614 (3.1)
	0.21	1.04
	(0.98, 1.11)	(0.98, 1.11)
Newborn		
Sex		
Female	166,489	4,795 (2.9)
	1	43
	<0.001	1.12
	(1.08, 1.17)	(1.08, 1.17)
Male	166,832	5,648 (3.4)
	<0.001	1.12
	(1.08, 1.17)	(1.08, 1.17)
One-min Apgar		
7–10	323,121	10,137 (3.1)
	1	82
	<0.001	1.12
	(1.08, 1.17)	(1.08, 1.17)
0–6	9,988	302 (3.0)
	0.10	0.90
	(0.80, 1.02)	(0.80, 1.02)
Birthweight		
AGA	323,744	10,043 (3.1)
	0.001	1
	(0.76, 1.10)	(0.76, 1.10)
SGA	3,925	122 (3.1)
	0.33	0.91
	(0.76, 1.10)	(0.76, 1.10)
LGA	5,634	276 (4.9)
	<0.001	1.27
	(1.12, 1.44)	(1.12, 1.44)
Phototherapy		
No	320,220	8,602 (2.7)
	1	76
	<0.001	5.33
	(5.02, 5.64)	(5.02, 5.64)
Yes	13,101	1,841 (14.1)
	<0.001	5.33
	(5.02, 5.64)	(5.02, 5.64)
Year of birth		

TABLE 3 (Continued)
RESULTS

3.1 Timing and predictors of early discharge

Of all neonates (n = 10,443) were readmitted to the hospital by the time they reached 28 days of age. The infants discharged after the 2nd day were readmitted less often than those discharged earlier (Table 3). Readmission rates increased during time period from 2008 to 2015 (p < 0.001). The time between hospital discharge and readmission was the shortest among infants discharged on the 1st day (1st day median (Md): 5.0, interquartile range (IQR): 2.0–13.5; 2nd day Md: 7.0, IQR 3.0–16.0; after 2nd day Md: 7.0, IQR: 2.0–15.0). The overall difference between groups was p = 0.039, and the pairwise comparisons were as follows: 1st versus 2nd day: p = 0.049; 2nd versus after 2nd day: p = 0.034; 1st versus after 2nd day: p = 0.174.

Of all neonates, 3.1% (n = 10,443) were readmitted to the hospital by the time they reached 28 days of age. The infants discharged after the 2nd day were readmitted less often than those discharged earlier (Table 3). Readmission rates increased during time period from 2008 to 2015 (p < 0.001). The time between hospital discharge and readmission was the shortest among infants discharged on the 1st day (1st day median (Md): 5.0, interquartile range (IQR): 2.0–13.5; 2nd day Md: 7.0, IQR: 3.0–16.0; after 2nd day Md: 7.0, IQR: 2.0–15.0). The overall difference between groups was p = 0.039, and the pairwise comparisons were as follows: 1st versus 2nd day: p = 0.049; 2nd versus after 2nd day: p = 0.034; 1st versus after 2nd day: p = 0.174.

3.2 Causes of readmission

The most common reasons for readmission were ‘miscellaneous’, especially among infants discharged on the 1st day. The most common single cause for readmission was jaundice (7.9%), followed by infection (5.7%). Readmission because of hypoglycaemia and inadequate nutrition affected 0.3% of newborns readmitted (N = 10,443). Of infants discharged within 48 hours of birth (n = 2,206), 2,206 (2.6%) were initially readmitted at ≤7 days old (n = 2,206) at 14–20 days old and 18.6% in 1440 at 21–27 days old (n = 2,008). The number of readmissions ranged from one to five, but 94.0% in (n = 9,617) were readmitted only once.

Abbreviations: AGA, appropriate for gestational age; LGA, large for gestational age; SGA, small for gestational age.

TABLE 3 (Continued)

Discharging group	Readmission (N = 10,443)	ICU or Died (N = 87)			
	Yes (333,321)	Yes (162)			
	n (%)	p OR (95% CI)	n (%)	p OR (95% CI)	
Discharge after					
2nd day					
Early discharge					
2008–2009	85,714	2,206 (2.6)	<0.001	1	5
					(<0.1)
2010–2012	127,082	4,100 (3.2)	<0.001	1.28 (1.22, 1.35)	12
				(<0.1)	0.37 (0.57, 4.60)
2013–2015	120,525	4,137 (3.4)	<0.001	1.30 (1.23, 1.37)	70
				(<0.1)	<0.001 10.10 (4.07, 25.06)

Note: *Multivariable-adjusted logistic regressions were used, and results are shown by odds ratios (ORs) with 95% confidence intervals (CIs).

1. Instrumental delivery includes, for example, forceps and vacuum extraction.
2. Other include regional hospitals and healthcare centres.
3. Birthweight.

The Bold values are statistically significant.
discharged on the 1st day, and 0.1% of newborns discharged on the 2nd day and after the 2nd day \((p = 0.003)\) (Table S1). Other categories contained no statistical differences between neonates discharged on the 1st or 2nd day or after the 2nd day. Some infants had more than one diagnosis code registered as the reason for readmission.

3.4 Risk factors for readmission

The risk factors of readmission were analysed in two different ways, by dividing the groups into two (ED and discharge after the 2nd day) or three (1st, 2nd and after 2nd day discharge) categories. ED was a significant risk factor for readmission in the analysis divided into two discharge groups (Table 3). Additionally, infants of mothers with BMIs \(\geq 30 \) or aged \(< 25 \) years, as well as infants born at 38\(^{+0} \)-38\(^{+6} \) weeks’ GA, in central or other hospitals, who were male, were LGA, with a history of phototherapy or born after the year 2009, were statistically significantly more likely to be readmitted. Infants of primiparae, with GAs of \(\geq 41^{+0} \) weeks, or born in the northern university hospital area had a decreased risk of readmission (Table 3).

The multivariable analysis in which three discharge groups were included detected the same significant risk factors as the first analysis with minor, insignificant differences in \(p \)-values, ORs and CIs. An ‘after 2nd day’ discharge was associated with decreased risk of readmission (OR 0.88 (95% CI 0.82, 0.95) \(p < 0.001 \)), while 1st day discharge was not a statistically significant risk factor for readmission (OR 1.21 (95% CI 0.96, 1.53) \(p = 0.114 \)).

3.5 Admission to ICU and mortality

Table 3 presents risk factors for ICU admission or death; early discharge was not a significant predictor of either.

In total, 75 newborns were admitted to the ICU. Nine (12.0%) of these infants were discharged on the 2nd day and 66 (88.0%) after the 2nd day; none were discharged on the 1st day. Of the infants...
admitted to the ICU, 24 (32.0%) were born at 37–38+6 and 20 (27.0%) at 38+0–38+6 weeks’ GA. Considering their ages, 34 (45.3%) neonates were admitted to the ICU at <7 days old.

The proportions of infants admitted to the ICU increased over time. In 2008, 2/100,000 neonates were admitted to the ICU; in 2011, 7/100,000; in 2012, 12/100,000; in 2013, 54/100,000; in 2014, 47/100,000; and in 2015, 64/100,000 (p < 0.001). No neonates were admitted to the ICU in 2009 or 2010. ICU admission rates differed notably among the university hospital areas. In the southern area, 2/100,000 neonates were admitted to the ICU; in the eastern area, 18/100,000; in the northern area, 7/100,000; in the western area, 74/100,000; and in the southwestern area, 43/100,000 (p < 0.001).

The causes of ICU admission included infections (n = 25), gastrointestinal problems (n = 25), neurologic problems (n = 9), respiratory problems (n = 6) and cardiology problems (n = 2), and a further eight infants were admitted for observation. Jaundice was the most common single cause, followed by respiratory tract infections. In nine of the latter cases, respiratory syncytial virus was diagnosed. Nine other neonates were readmitted because of sepsis—one early onset and the remaining late onset. In the early-onset cases, no specific organisms were detected. Among the laten onset cases, one was caused by streptococci, one by staphylococci and one by a gram-negative organism.

All 12 newborns who died had been discharged at ≥2 days old. The causes of death were sudden infant death syndrome in five, cardiologic problems in four (including oneCCHD, hypoplastic left heart syndrome) and infections in two cases.

4 | DISCUSSION

4.1 | Principal findings

Post-birth LOS for healthy, vaginally delivered single babies was shortened, and hospital readmission rates increased over time. Neonates discharged early were more likely to be low-risk infants born in areas with high population densities. History of phototherapy before discharge was the most common risk factor, and jaundice was the most common single cause of hospital readmission. ED, including infants discharged on the 1st or 2nd day, predicted readmission. Nevertheless, the 1st day discharge did not seem to be a significant, independent risk factor for readmission. The rates of ICU admission and mortality were extremely low, and ED seemed not to be associated with these outcomes. However, birth at 38 weeks’ GA was a significant predictor of ICU admission or death.

4.2 | Strengths of the study

A strength of this study was that it involved a population-based, complete, national cohort with a large number of cases. Using linked data from several national health registers served as a valid method. It was possible to obtain information about diagnoses, complications and causes of death from the registers—providing comprehensive, reliable data.

4.3 | Limitations of the data

The MBR and hospital record data do not contain time labels, and thus, the authors were unable to analyse exactly how many hours old the newborns were when examined by the paediatrician and when discharged. Information on breastfeeding would also have been helpful for establishing factors behind jaundice, hypoglycaemia and inadequate nutrition.

4.4 | Interpretation

The increasing global trend of ED was seen in this population. The mean LOS has, in many countries, become much shorter than that in Finland. In California—up to 90%—of newborns are discharged within 2 days of vaginal birth. ED is a concept that has no standardised definition, and it varies markedly between different countries and hospitals, as well as between publications (Table 4).

The discharge time is associated with parity of birth, infant and psychosocial factors. As predictive, factors necessitating longer...
follow-up periods for either the mother or the neonate, for example, primiparous or older mothers and early or post-term infant or infants required phototherapy were less likely to be discharged early. As found in previous research, mothers’ smoking was associated with ED. It is possible, that the smokers do not feel comfortable in the hospitals, where smoking is prohibited and are therefore eager to get discharged as soon as possible.

The readmission rate and significant predictors (ED and male sex) of readmission, coincided with earlier research (e.g., readmission rate 25–30/1,000 in California and 32/1,000 in Canada). However, in our study, the difference in readmission was slight between ED newborns and those who were not discharged early.

Jaundice was the most common single cause of readmission and ICU admission, but no kernicterus cases were found. In our study, infants born at 38+0–38+6 weeks’ GA were at an increased risk of readmission, in contrast to infants born at ≥39 weeks’ GA. The healthcare professionals tend probably to be more cautious with the infants born at <38 weeks GA, and thus, smaller proportions of these less mature infants are discharged early.

Infants of primiparous mothers have, in earlier research, been found to be at an increased risk of readmission. The present findings, in contrast, might be explained by the fact that infants of primiparous mothers were less likely to be discharged early.

The incidence of early-onset sepsis was also low as since 2013, in Finland, the THL has recommended routine antenatal screening for vaginal carriage of group B streptococcus and antepartum antibiotic prophylaxis. Newborns with increased risk of neonatal sepsis are monitored more closely than they were before, and they now have a longer LOS.

Births in lower than tertiary-level hospitals were associated with increased risk of readmission, but births in northern Finland were associated with decreased risk of readmission. Inside Finland, there were also significant geographical differences concerning ICU admission. These findings could be explained, at least partly, by differences between travelling distances from the hospital to home in the north and south, discharge practices and registration procedures in hospitals.

Sudden infant death syndrome, as well as cardiologic and circulatory issues, including one CCHD, were the most common causes of death in the present sample. CCHDs have occurred in 19.1/10,000 births across 12 countries and approximately 8.85 million births. On average, the prenatal detection rate has been 50%, ranging between 13% and 87% among centres. After 2006, pulse oximetry screens were distributed to most delivery hospitals in Finland. Both high-quality prenatal diagnostics and nationwide neonatal pulse oximetry screening may explain the low rate of adverse events related to CCHDs in the sample.

Birth at 38 weeks seemed associated with increased risk of readmission to the ICU or death. A previous Finnish register study also reported that being born early term was associated with low Apgar scores, perinatal mortality and adverse neurologic outcomes. A correlation between ED and mortality has been previously established in a few single-unit studies. Yet, among 7,009 infants in one study, there were no deaths in the ED group by the time the infants were 30 days old. Furthermore, no correlation between a shorter LOS and death by the age of 14 days was found among 920,554 neonates in another. Accordingly, none of the twelve newborns who died in the present study population were discharged early.

Many studies indicate that ED is safe for neonates if certain criteria are followed and if early follow-up visits are arranged. This, combined with appropriate prenatal and early postnatal diagnostics and screening systems in Finland, has created a structure in which well-selected neonates can be discharged early after birth without increased risk of adverse events.

5 | CONCLUSION

The ED and hospital readmission rates among low-risk newborns increased over the study period. This study shows that ED is marginally associated with the risk of readmission to the hospital. Yet, ED did not seem to predict ICU admission or death. Instead, infants born at ≥38+0–38+6 weeks’ GA had an increased risk of admission to the ICU or death within four weeks after birth.

CONFLICT OF INTEREST

The authors have no conflicts of interest to declare.

ORCID

Maria Pohjanpää https://orcid.org/0000-0001-6818-9434

REFERENCES

1. Vanpee M, Rylander E, Bergius H, Marchini G. Sortie précoce de maternité des nouveau-nés bien portants: expérience Scandinave. Arch Pediatr. 2009;16(6):709-710. doi:10.1016/S0929-693X(09)74121-1
2. Centers for Disease Control and Prevention, (CDC). Trends in length of hospital stay at birth in Canada. Can J Public Health. 2000;91(1):46-50.
3. Liu S, Wen SW, McMillan D, Trouton K, Fowler D, McCourt C. Increased neonatal readmission rate associated with decreased length of hospital stay at birth in canada. Can J Public Health. 2000;91(1):46-50.
4. Danielsen B, Castles AG, Damberg CL, Gould JB. Newborn discharge timing and readmissions: California, 1992-1995. Pediatrics. 2000;106(1):31-39. http://pediatrics.aappublications.org/cgi/content/abstract/106/1/31 doi:10.1542/peds.106.1.31
5. Brousseau T, Sharieff GQ. Newborn emergencies: the first 30 days of life. Pediatr Clin North Am. 2006;53(1):69-84. doi:10.1016/j.pcl.2005.09.011
6. Zimmerman DR, Klinger G, Merlob P. Early discharge after delivery. A study of safety and risk factors. ScientificWorldJournal. 2003;3:1363-1369. doi:10.1100/tsw.2003.108
7. Ever AK. Review of pulse oximetry screening for critical congenital heart defects in newborn infants. Curr Opin Cardiol. 2013;28(2):92-96. https://journals.lww.com/co-cardiology/Abstr
act/2013/03000/Review_of_pulse_oximetry_screening_for_critical3.aspx Accessed Oct 15, 2021 doi: 10.1097/HCO.0b013e32835d7e42

8. Juang D, Snyder CL. Neonatal bowel obstruction. Surg Clin North Am. 2012;92(3):685-711. https://www.clinicalkey.es/playcontent/t/1-s2.0-500396109120000588 doi:10.1016/j.suc.2012.03.008

9. Isayama T, O’Reilly D, Beyene J, Shah P, Lee S, McDonald S. Hospital care cost and resource use of early discharge of healthy late preterm and term singletons: a population-based cohort study and cost analysis. J Pediatr. 2020;226:96-105.e7. https://www-sciencedirect-com.libproxy.tuni.fi/science/article/pii/S0022347620307630 Accessed Oct 28, 2021

10. Farhat R, Rajab M. Length of postnatal hospital stay in healthy newborns and re-hospitalization following early discharge. N Am J Med Sci. 2011;3(3):146-151. doi:10.4297/najms.2011.3146

11. Vuori E, Gissler M. Vastasyntyneet 2006. 2008. http://urn.fi/URN:NBN:fi-fe201204194285

12. Gissler M. Personal communication. 2021.

13. Finland, Statistics. Official Statistics of Finland (OSF). Births (e-publication). Web site. https://pxnet2.stat.fi/PXWeb/pxweb/fi/StatFin/StatFin_vrm_synt/statfin_synt_pxt_12dj.px/table/tableViewLayout1/https://pxnet2.stat.fi:443/PXWeb/api/v1/fi/StatFin/vrm/synt/statfin_synt_pxt_12dj.px

14. Gissler M, Teperi J, Hemminki E, Meriläinen J. Data quality after restructuring a national medical registry. Scand J Soc Med. 1995;23(1):75-80. doi:10.1177/140349489502300113

15. Gissler M, Shelley J. Quality of data on subsequent events in a routine medical birth register. Med Inform Internet Med. 2002;27(1):33-38. doi:10.1080/14639230110119234

16. Pihkala J, Hakala T, Voutilainen P, Raijio K. Characteristic of recent fetal growth curves in finland. Duodecim. 1989;105(18):1540-1546.

17. Gissler M, Hemminki E, Louhiela P, Järvelin M. Health registers as a feasible means of measuring health status in childhood – A 7-year follow-up of the 1987 Finnish birth cohort. Paediatr Perinat Epidemiol. 1998;12(4):437-455.

18. Harron K, Gilbert R, Cromwell D, Oddie S, van der Meulen J. Newborn length of stay and risk of readmission. Paediatr Perinat Epidemiol. 2017;31(3):221-232. doi:10.1111/ppe.12359

19. Nilsson IM, Kronborg H, Knight CH, Strandberg-Larsen K. Early discharge following birth: What characterises mothers and newborns? Sex Reprod Healthc. 2017;11:60-68. 10.1016/j.srhc.2016.10.007

20. Klemetti R, Hakulinen-Vitanen T. Maternity Clinic Guide. THL. 2013. http://Urn.fi/URN:ISBN:978-952-245-972-5

21. Puopolo KM, Benitez WE, Zaoutis TE, et al. Management of neonates born at ≥35 0/7 weeks’ gestation with suspected or proven early-onset bacterial sepsis. Pediatrics. 2018;142(6):e20182894. doi:10.1542/peds.2018-2894

22. Bakker MK, Bergman JEH, Krikov S, et al. Prenatal diagnosis and prevalence of critical congenital heart defects: an international retrospective cohort study. BMJ Open. 2019;9(7):e028139. doi:10.1136/bmjopen-2018-028139

23. Valmari P, Jauhola R, Leskinen M, Heikinheimo M. Oxygen saturation to detect asymptomatic congenital heart disease of newborns. Duodecim. 2006;122:173-176.

24. Ojala T, Valmari P, Pihkala J, Jokinen E, Andersson S. Screening of congenital heart defects in the newborn – Time to unify the practices of oxygen saturation screening in finland. Duodecim. 2015;131:1585-1590.

25. Seikku L, Gissler M, Andersson S, et al. Asphyxia, neurologic morbidity, and perinatal mortality in early-term and postterm birth. Pediatrics. 2016;137(6):e20153334. doi:10.1542/peds.2015-3334

26. Lock M, Ray JG. Higher neonatal morbidity after routine early hospital discharge: are we sending newborns home too early? CMAJ. 1999;161(3):249-253.

27. Lee KS, Perlman M, Ballantyne M, Elliot I, To T. Association between duration of neonatal hospital stay and readmission rate. J Pediatr. 1995;127(5):758-766. 10.1016/S0022-3476(95)70170-2

28. Gupta P, Malhotra S, Singh DK, Dua T. Length of postnatal stay in healthy newborns and re-hospitalization following their early discharge. Indian J Pediatr. 2006;73(10):897-900. doi:10.1007/bf02859282

29. Meara E, Kotagal UR, Atherton HD, Lieu TA. Impact of early newborn discharge legislation and early follow-up visits on infant outcomes in a state medicaid population. Pediatrics. 2004;113(6):1619-1627. doi:10.1542/peds.113.6.1619

SUPPORTING INFORMATION

Additional supporting information may be found in the online version of the article at the publisher’s website.

How to cite this article: Pohjanpää M, Ojala R, Luukkaala T, Gissler M, Tammela O. Association of early discharge with increased likelihood of hospital readmission in first four weeks for vaginally delivered neonates. Acta Paediatr. 2022;111:1144-1156. doi:10.1111/apa.16290