Virulence Factor and Biofilm Formation in Clinical Enterococcal Isolates of the West of Iran

Mahsa Kashef,1,2 Amirhooshang Alvandi,1 Banafshe Hasanvand,1,2 Mohsen Azizi,1,2 and Ramin Abiri1,7

1Microbiology Department, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
2Students Research Committee, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran

Corresponding author: Ramin Abiri, Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Shirudi Blvd., Parastar Blvd, Kermanshah, Iran. Tel: +98-912273648, Fax: +98-8334274623, E-mail: rabiri@kums.ac.ir

Received 2016 November 04; Revised 2017 April 18; Accepted 2017 May 17.

Abstract

Background: Enterococcus spp., a part of the normal flora of the human intestine, possess several virulence factors that can develop biofilms to endure harsh environments. Their ability to cause nosocomial infections makes them as critical opportunistic pathogens in hospital settings.

Objectives: The current study aimed at determining the occurrence of 6 genes coding virulence factors and their ability to develop biofilms, and conducting phenotypical assessments of haemolysin and gelatinase in clinical enterococci isolated from the West of Iran.

Methods: A total of 126 isolates were screened for harbouring the following genes: aggregation substance (asa1), cytolysin (cylABM), enterococcal surface protein (esp), and gelatinase (gelE). Isolates were tested for haemolysin and gelatinase expression phenotypically and for biofilm production quantitatively using the microtiter method.

Results: Of the 126 tested isolates, 95 (73%) were Enterococcus faecalis and 28 (21%) were E. faecium. The total frequency of virulence gene was cylA 92 (73%), cylB 85 (67%), cylM 57 (45%), asa1 26 (21%), gelE 64 (51%), and esp 66 (53%); while 98 (75%) of the isolates were able to form biofilm. A total of 74 (58%) and 46 (35%) isolates could secret haemolysin and gelatinase.

Conclusions: There was a significant difference between the frequency of virulence gene in E. faecalis and E. faecium. Enterococcus faecalis isolates lacked the gelE and asa1 genes and the frequency of cylABM genes were lower than that of E. faecalis isolates. Enterococcus faecalis isolates were relatively rich in virulence factors; no association was observed between biofilm formation and the presence of specific virulence genes.

Keywords: Virulence Factor, Biofilm, Enterococcus Faecalis, Enterococcus Faecium

1. Background

Enterococci spp. are Gram-positive and catalase negative cocci, able to grow in the temperature range of 10°C to 45°C and media containing 6.5% NaCl (1). Enterococci are the second or third most prevalent organism responsible for nosocomial infections (2). Among the 50 identified species, Enterococcus faecium and E. faecalis are the most medically significant ones. Enterococcus faecalis is the most predominant species in hospital settings and accounts for 80% to 90% of nosocomial infections, compared to E. faecium, which causes 1% to 5% of such infections (3, 4). Enterococcal infections commonly occur in patients hospitalised for long periods and patients with severe chronic diseases such as renal failure, neutropenia, transplantation, and catheterisation. Important infections caused by enterococci are urinary tract infections (UTIs), bacteraemia, endocarditis, intra-abdominal and pelvic disease, and wound infections (2).

Enterococci are equipped with many genes encoding virulence factors that enable them to survive in harsh environments and sustain infection in vulnerable hosts. Some virulence factors such as cytolysin (cylA, cylB and cylM), gelatinase (gelE), and aggregation substances (asa1) might increase the severity of the infections (5). Cytolysin is the main virulence factor of E. faecalis. The toxin is associated with increased pathogenicity of enterococcal infections in bacteremia, endocarditis, and intraperitoninal infections (6). Cytolysin, as a lantibiotic, can target and lyse bacterial and mammalian cells (7-10). Nucleotide sequence determination for the cytolysin operon revealed a complex determinant encoding 5 genetic markers, of which cylA, cylB, and cylM are the most important ones (11, 12).

Observation of enterococcal biofilms on endodontic surfaces, biliary duct stents, urinary catheters, heart valves, and tissue surfaces suggested a correlation between the lifestyle and virulence (13). Biofilm formation is reportedly less common in E. faecium compared to E. faecalis, although the clinical outcome of infections caused by E. faecium may be worsening as a result of biofilm formation (14, 15). Biofilm production has profound effects on the develop-
opment of endocarditis, periodontitis, and various device-related infections, and also causes resistance to antibiotics (16, 17).

Enterococcal surface protein (Esp) may induce persistent UTIs and increase the ability of microorganisms to colonise in hospitalised patients (18, 19). The corresponding gene, esp, is more frequent in clinical E. faecalis and E. faecium isolates, compared to environmental or food product ones (20, 21). The esp expression is related to the primary bacterial adherence and biofilm formation (22, 23). Gelatinase encoded by gelE gene is an extracellular zinc metalloprotease that hydrolyses gelatine, collagen, casein, haemoglobin, and antimicrobial peptides of the innate immune system (24, 25). The asa1 is encoded by pheromone-responsive plasmids, which often harbour antibiotic resistance genes (26, 27). The protein causes clumping of E. faecalis cells and survival inside polymorphonuclear leucocytes, internalisation by intestinal cells, and increases in bacterial binding to cultured renal epithelial cells (28, 29).

2. Objectives

Considering the importance of bacterial virulence factors in the outcome of infections and lack of any comprehensive information about the prevalence of such factors in clinical isolates of enterococci in Iran, the current study aimed at investigating a possible relationship between the biofilm formation ability and virulence factors of enterococci isolated from clinical samples of an educational hospital in Kermanshah province, West of Iran, and also the role of virulence genes in biofilm development, and their prevalence especially as high-biofilm-producing isolates.

3. Methods

3.1. Bacterial Isolation and Identification

Among 130 suspicious clinical samples collected from January 2012 to April 2013, a total of 126 isolates were selected for the current study; samples were taken mostly from urine, blood, and body fluids samples. All samples were cultured on bile esculin agar (Himedia, India); positive cultures (colonies with a black halo around them) were confirmed at the species level using the standard biochemical methods.

3.2. Hemolysin Production

Haemolysin activity was determined by an overnight incubation of the isolates cultured on blood agar (Himedia, India) supplemented with 5% defibrinated human blood. A clear zone around the colonies indicated haemolysis.

3.3. Gelatinase Production

A pure 24-hour culture was stabbed into tubes containing a 0.8% nutrient broth (Himedia, India) supplemented with 12% gelatine. After 24 to 72 hours of incubation, tubes were refrigerated for 30 minutes. Sufficient gelatinase production by the isolates leads to liquefaction of cultured media, even following the refrigeration; but the presence of intact gelatine after refrigeration means a lack of ability to produce gelatinase.

3.4. Biofilm Formation Assay

The test was conducted using the previously described method (30). An overnight culture was diluted 1:100 into a fresh tryptic soy broth (TSB) medium (Himedia, India) supplemented with 1% glucose and inoculated into 96 polystyrene microplate wells. Following 18 hours of incubation at 37°C, the plates were gently washed 3 times with phosphate-buffered saline (PBS), air dried, and stained with crystal violet. Biofilm bound to crystal violet was diluted with 200 µL of an 80:20 mixture of ethanol and acetic acid, and then, optical density (OD) of the suspension was measured at 570 nm, using an automatic spectrophotometer (Stat Fax® 4200). The ability to form biofilm was scored as follows: OD ≤ 0.120: non-producers, 0.120 < OD ≤ 0.240: weak producers, and OD > 0.240: strong producers. As a control, the level of crystal violet binding to wells was measured for the wells exposed only to the medium without bacteria. All biofilm assays were performed in triplicate (31).

3.5. DNA Extraction

A loopful of pure enterococci culture on brain-heart infusion (BHI) agar (Himedia, India) was suspended in microtubes containing 0.5 mL sterile deionised water. The microtubes were placed in a boiling water bath for 5 minutes, centrifuged for 10 minutes at 10000 rpm, and the supernatant were transferred to new tubes and used as DNA templates for the polymerase chain reaction (PCR).

3.6. Primer Design and PCR

The whole sequence of the enterococcus genome ID number: 427183854, retrieved from the NCBI database, was used as the template. On the basis of the retrieved sequence, 3 sets of primers were designed for E. faecalis and E. faecium ddl genes, which were strain-specific genes and enterococcus tuf gene, a genus-specific gene. Then, 6 sets of primers were designed for asa1, esp, gelE, and cylABM. To optimise the results, the multiplex PCR reaction for 2 separate sets of genes was designed and performed. Enterococcal Tuf gene, E. faecalis and E. faecium ddl genes, gelE, and esp genes were placed in a set; cylMBA and asa1 were placed...
in another set, separately. The primer sequences were summarized in Table 1.

Multiplex PCR reactions were performed with the thermal cycler (Biorad, USA). The oligonucleotides for PCR amplification were purchased from Takapouzist Biotech Company (Iran). Reactions were performed in a total volume of 25 µL, using 0.75 pmol of each of the 4 primer sets, 7.5 µL 5X buffer, 50 mM MgCl₂, 0.50 µL dNTP 10 mM, and 1 U HStaq DNA polymerase (Kappa Biosystem USA). The amplification conditions were as follows: an initial denaturation step at 95°C for 1 minute; 34 cycles of denaturation at 95°C for 10 seconds; annealing at 55°C for 30 seconds for 95°C for 1 minute; 34 cycles of denaturation at 95°C for 10 seconds; annealing at 55°C for 30 seconds for gelE, esp, enterococcus tuf, E. faecalis ddl, and E. faecium ddl; annealing at 52°C for 30 seconds for cylA, cylB, cylM, and asa1, and extension at 72°C for 1 minute, followed by the final extension at 72°C for 30 seconds. DNA from E. faecalis F9190 was used as a positive control in the corresponding PCR reactions.

The PCR products were subjected to electrophoresis through 1% agarose gel, stained with ethidium bromide solution, and visualised under the UV light in the Gel Documentation system (Biorad, USA). Images were analysed using Image Lab software version 2.0.

3.7. Statistical Analysis

All statistical analyses were performed using SPSS version 21. Crosstabs, Chi-square, and the Fischer exact test were performed based on the data. A P value of < 0.05 was considered statistically significant.

4. Results

4.1. Bacterial Isolates Origin

Of the 126 clinical samples, 78 (60%) were isolated from urine, 30 (23%) and 22 (17%) from blood and body fluids samples, respectively; 95 (73%) isolates were E. faecalis and 28 (21%) E. faecium.

4.2. Frequency of Extracellular Enzyme Secretion

In the current study, 74 (58%) isolates were haemolysin producers, of which 5/68% of E. faecalis and 20 (71%) of E. faecium isolates showed haemolytic activity. Alpha haemolytic strains were 26% of E. faecalis and 32% of E. faecium isolates, while beta haemolytic strains were 27% of E. faecalis and 39% of E. faecium. The results showed that 46 (35%) E. faecalis isolates could produce gelatinase. None of the E. faecium could liquefy gelatine; therefore, 49.3% of the E. faecalis isolates harbouring gelE did not show gelatinase activity.

4.3. Capacity for Biofilm Formation

Overall, 98 (75%) of the isolates could form biofilm, of which 75 (76%) and 23 (24%) were E. faecalis and E. faecium, respectively.

4.4. Distribution of Biofilm Production Capacity Among Virulence Marker

As many as 61 (92%) of all esp+ and 64 (87%) of isolates that carried gelE gene could produce biofilm. Biofilm producers were 55 out of 64 gelE+, and 51 out of 64 gelE- isolates; the mean biofilm ODs for gelE+ was more than that of gelE- isolates (2.033 versus 1.746) (Table 2). This trend was observed in the esp-lacking isolates, the mean biofilm OD of gelE+ isolates was higher than that of gelE- ones, but the different was not significant (mean OD, 1.747 for 24 esp+ gelE- isolates versus 1.392 for 31 esp+/gelE- isolates), which suggested a possible contribution of the gelE in biofilm formation in the esp-lacking isolates (Table 2). It was also noted that biofilm ODs were higher in 40 esp+/gelE+ isolates (mean OD = 2.319). Moreover, the lowest mean of OD for the 31 esp+/gelE- isolates (mean OD = 1.392) showed that esp+ isolates produced more biofilm than the esp- ones. A total of 26 esp+/gelE- isolates (mean OD = 2.103) also produced high amounts of biofilm, but a little less than esp+/gelE+ (mean OD = 2.319). This could constitute strong evidence for the role of esp in biofilm formation in the absence of the gelE (Table 2).

However, even among the esp-lacking/gelE- isolates, 14 isolates produced strong biofilm and 8 isolates produced medium biofilm. Further, no significant difference was observed in the mean value of biofilm between the esp+ and esp- isolates (ODs 1.569 vs. 2.211), indicating that neither esp nor gelE was essential to biofilm production. The relationship between biofilm formation capacities, OD values, esp, and gelE are summarised in Table 2.

4.5. Frequency of Virulence Genes

The number of virulence marker genes in E. faecalis isolates varied from 1 to 6. The majority of E. faecalis isolates were positive for 4 virulence genes, but most of E. faecium isolates were positive for 3 virulence genes (Table 3). Of the 95 E. faecalis isolates, 10 (9.7%) were positive for 6 virulence genes, whereas 90 (91.9%) were positive for 2 or more virulence genes. None of E. faecium isolates was positive for cylABM, while 46 (48%) of E. faecalis strains harboured a cylABM complete set of genes. Among E. faecalis and E. faecium isolates, the cylM gene had a significantly lower incidence (Table 3).

The amplification results of enterococcal tuf gene, E. faecalis, and E. faecium ddl genes, gelE, and esp genes are illustrated in Figure 1A and those of cylAB and asa1 in Figure 1B.
Table 1. Designed Primers Sequences

Primer Name	Virulence Factor	Oligonucleotide Sequence (5’ to 3’)	Amplicon Size, bp	Reference
E. faecium F	Faecium species	GAAGGACAATGGGTCAAAGG	596	The current study
E. faecium R		ACTTGGCAAGGAAAGCAC		
Enterococcus spp. F	Enterococcus genus	TATGAGCAAGACATTGATGGC	109	The current study
Enterococcus spp. R		TGGCGAGACGCGGAAC		
E. faecalis ddl F	faecalis species	CCAGAAGACCCAAGCTG	305	The current study
E. faecalis ddl R		GGGCGACCTTACTGC		
esp F	Enterooccocal surface protein	GGTATGGGTGTACTGACTCAC	766	The current study
esp R		CTCGCATGTTAAGTTGACTGG		
gelF F	Gelattinase	GACCAAGACGCTGACACTGC	469	The current study
gelR R		GGATCCTGAGGCTTGAACG		
cylF F	Cytolysin	AGGAGACCTGATCCATGTCGG	238	The current study
cylR R		CAGATGGCAGCTGACACTGC		
asa1 F	Aggregation substance	CCAGAAGACCCAAGCTG	960	The current study
asa1 R		TGAATTAAAGAGGCGGTTG		

Table 2. Biofilm Formation Quantity Based on the Presence of esp/gelE Gene

Virulence Factor	OD of Isolates with	Strong Biofilm Formation, (OD570 ≤ 2)	Medium Biofilm Formation, (OD570, 1 - 2)	Weak Biofilm Formation, (0.5 ≤ OD570 ≥ 1)	No Biofilm Formation, (OD570 ≤ 0.5)	Mean ± SD, P value
esp+/gelE+		2.419 (2.783 - 2.132) (34)	1.284 (1.074 - 1.044) (2)	0.883 (2)	0.204 (1)	2.319 (2.783 - 0.204) (40) (0.57) 0.053
esp+/gelE-		2.650 (2.947 - 2.048) (17)	1.618 (1.855 - 1.154) (6)	0.783 (0.652 - 0.914) (2)	0.209 (1)	2.103 (2.813 - 0.209) (26) (0.79) 0.263
esp-/gelE+		2.440 (2.674 - 2.190) (8)	1.516 (1.988 - 1.108) (12)	0.756 (0.658 - 0.854) (2)	0.115 (0.121 - 0.111) (2)	1.205 (2.993 - 0.111) (24) (0.79) 0.925
esp-/gelE-		2.611 (2.993 - 2.000) (14)	1.461 (1.986 - 1.005) (8)	0.595 (0.661 - 0.579) (8)	0.028 (0.025 - 0.031) (7)	1.392 (2.993 - 0.025) (31) (0.94) 0.196
Total		73	28	14	11	126

Table 3. Frequency of Virulence Genes

Variables	cylA	cylB	CylM	cylAM	Asa1	cylAM, asa1	gelE	esp	gelE, esp
E. faecalis	81 (97)	77 (81)	52 (64)	46 (58)	20 (25)	17 (36)	64 (67)	65 (59)	52 (46)
E. faecium	9 (12)	8 (28)	5 (7)		0	0	0	0	0
Total (126)	92 (73)	85 (67)	57 (45)	46 (37)	20 (26)	14 (18)	64 (51)	65 (53)	40 (33)

*Values are expressed as No. (%).

5. Discussion

Enterococcus is among the 4 most common causes of nosocomial infections worldwide. Due to its intrinsic resistance to antimicrobial agents and harsh environments, it can survive and spread in hostile niches, such as hospitals. In enterococcal infections, biofilm plays an essential role by providing a context to enhance microbial survival in the host (32-34). Several studies were conducted to identify the virulence factors of enterococci and their possible association with biofilm formation, but this issue is not yet well understood. To reduce the rate of nosocomial infections and implement the correct treatment strategies, it is vital to obtain reliable knowledge on bacterial capacities and their virulence factors (17, 32, 33, 35-39).

The current study aimed at evaluating the frequency of several virulence factors in clinical enterococcal isolates and their relationship with biofilm production. Therefore, a multiplex PCR was designed to simultaneously detect tuf (Enterococcus genus), ddl (E. faecalis species), ddl (E. faecium species), gelE (gelatinase), esp, cylA, cylB, cylM (cytolysin), and asa1. All 126 isolates were analysed for the presence of virulence genes by the researcher-designed primers. The
results are presented in Table 3, which revealed a relatively high incidence of virulence factors among isolates. The frequencies of all 6 virulence factors were significantly high in *E. faecalis* than *E. faecium* (Table 3). Previous observations revealed a higher rate of clinical isolates harbouring esp compared to the isolates from other resources (19, 21).

In the present study, the prevalence of esp was consistent with those of other studies in Iran and other parts of the world, although some studies failed to find esp*E. faecium* (18, 36, 40, 41). The Esp has a role in colonisation and persistence of *E. faecalis* in the urinary tract (18). Since most isolates in the current study were isolated from UTIs, a high incidence of esp was not surprising. The Esp protein has a high sequence similarity with Bap (biofilm-associated protein of *Staphylococcus aureus*); thus, this protein may be important for biofilm formation (42). Di Rosa suggested that the synergy between esp and biofilm formation helps to establish a successful infection (43). The current study also detected the ability of enterococcal isolates to form biofilms and their possible relationship with esp.

According to the literature, all enterococcal strains isolated from urinary and blood stream sources can produce biofilm, with a rate typically higher than that of the current study (30, 42, 44). Despite the lack of a significant association between Esp and biofilm formation in the current study, other researches reported conflicting results about the role of *E. faecalis* Esp in biofilm formation (23, 42, 43, 45-48). Although biofilm formation in esp-deficient mutants of *E. faecalis* was not reported in all studies, many others report no correlation between the presence of esp and biofilm formation, which is a multifactorial process (49, 50).

Gelatinase, another virulence factor of *E. faecalis*, was also detected in the current study. The frequency of gelE was the same as those of previous studies (5, 44, 51), which also could not detect this gene in *E. faecium* isolates, although many *E. faecalis* isolates harboured it (52). Furthermore, phenotypical expression of gelE, which leads to the secretion of gelatinase, was assessed and many gelE*E. faecalis* isolates failed to secrete gelatinase. A reason for the phenomenon could be that the presence of a specific gene does not automatically mean phenotypic expression of that gene. This could explain the presence of the gelE* isolates, which were unable to liquefy gelatine (53-56). Despite demonstrations about the necessity of gelatinase enzymatic activity to establish biofilm (45), the current study found no difference in the in vitro biofilm production between gelE* and gelE* isolates; which indicated that, similar to esp, neither gelE, nor gelatinase was required for biofilm formation. In summary, although biofilm production was higher in esp*gelE* compared to esp*gelE* isolates, no significant difference was observed in biofilm production ability between gelE* and gelE* isolates. The asa1 was not found in any of the *E. faecium* strains investigated in the current study. In other studies, asa1 was detected only in *E. faecalis* strains (28, 44, 51, 54, 57). Udo reported a relatively similar frequency of asa1; Moniri and Seno reported a higher frequency (41, 58, 59).

Cytolysin can induce tissue damage through the lysis of erythrocytes and polymorphonuclears (PMNs) (60).
Cylolysin production could also significantly deteriorate the severity of endocarditis (7). Investigation of cytolysin genes revealed the presence of cylA, cylB, and cylM in a high proportion of E. faecalis and a low proportion of E. faecium isolates, but in the studies by Udo, Moniri, and Cosentino, the prevalence of cylA, cylB, and cylM were lower than those of the current study (41, 59, 61). However, Abriouel reported a higher frequency of cyl operon in E. faecalis, although with lower haemolytic activity (62).

Enterococcus faecalis isolates harboured 1 to 6 virulence markers, similar to a report by a Brazilian study in which E. faecalis isolates harboured 1 to 8 virulence-associated genes (63). The current study observed the dominance of some genes or gene combinations. The most common combinations of virulence genes were cylA and cylB (76%) for E. faecalis, and cylM and cylA (12%) for E. faecium isolates. Among all E. faecalis isolates, 9 isolates had 6 virulence markers, all of which were strong biofilm producers.

All E. faecalis isolates harboured more than 1 virulence-associated gene, suggesting that E. faecalis infection depended upon the transaction of several genes bound to the secretion and regulation of the expression of the virulence factors. The small number of E. faecium isolates was the limitation of the current study. However, the current study reinforced the well-known characteristics of E. faecalis species in terms of its virulence, and confirmed that biofilm formation was a multifactorial process requiring different genes and their products.

5.1. Conclusion

In conclusion, E. faecalis strains isolated from UTIs were characterised by higher-virulence strains from other clinical sources. Enterococcus faecium was involved in important processes such as initiating colonisation, infection in the host, and biofilm formation. Overall, esp was not required for biofilm formation, but its presence was significantly associated with a higher proportion of biofilm production in clinical isolates. Therefore, the genotypic and phenotypic assays appear necessary for a better characterisation of the strains, due to silent virulence genes (cyl and gelE). The current study results may serve as a basis for the additional surveillance studies of infections caused by this microorganism.

References

1. Sherman JM. The Streptococci. Bacteriol Rev. 1937;41(1):3-97. [PubMed: 16530049].
2. Jett BD, Huycke MM, Gilmore MS. Virulence of enterococci. Clin Microbiol Rev. 1994;7(4):462-78. doi: 10.1128/CMR.7.4.462. [PubMed: 7834601].
3. Richards MJ, Edwards JR, Culver DH, Gaynes RP. Nosocomial infections in combined medical-surgical intensive care units in the United States. Infect Control Hosp Epidemiol. 2000;21(8):510-5. doi: 10.1086/307955. [PubMed: 10968706].
4. Wisplinghoff H, Seifert H, Tallent SM, Bischoff T, Wenzel RP, Edmond MB. Nosocomial bloodstream infections in pediatric patients in United States hospitals: epidemiology, clinical features and susceptibilities. Pediatr Infect Dis J. 2003;22(8):666-91. doi: 10.1097/01INF.0000071589.53132.40. [PubMed: 12917767].
5. Elsner HA, Sobottka I, Mack D, Claussen M, Laufs R, Wirth R. Virulence factors of Enterococcus faecalis and Enterococcus faecium blood culture isolates. Eur J Clin Microbiol Infect Dis. 2000;19(1):33-42. [PubMed: 10706778].
6. Singh KY, Qin X, Weinstock GM, Murray BE. Generation and testing of mutants of Enterococcus faecalis in a mouse peritonitis model. Infect Dis. 1996;217(5):2416-20. doi: 10.1016/0147-6195(96)00263-3. [PubMed: 9780263].
7. Chow JW, Thal LA, Perri MB, Vazquez JA, Donabedian SM, Clewell DB, et al. Plasmid-associated hemolysin and aggregation substance production contribute to virulence in experimental enterococcal endocarditis. Antimicrob Agents Chemother. 1993;37(1):2474-7. doi: 10.1128/AAC.37.11.2474. [PubMed: 8285637].
8. Huycke MM, Spiegel CA, Gilmore MS. Bacteremia caused by hemolytic, high-level gentamicin-resistant Enterococcus faecalis. Antimicrob Agents Chemother. 1991;35(8):1626-34. doi: 10.1128/AC.35.8.1626. [PubMed: 1929361].
9. Ike Y, Hashimoto H, Clewell DB. Hemolysin of Streptococcus faecalis subspecies zymogenes contributes to virulence in mice. Infect Immun. 1984;45(2):528-30. [PubMed: 6086531].
10. Jett BD, Jensen HG, Nordquist RE, Gilmore MS. Contribution of the pAD1-encoded cylolysin to the severity of experimental Enterococcus faecalis endophthalmitis. Infect Immun. 1992;60(6):2445-52. [PubMed: 1587612].
11. Booth MC, Bogie CP, Sahil HG, Siezen RJ, Hatter KL, Gilmore MS. Structural analysis and proteolytic activation of Enterococcus faecalis cylolysin, a novel lantibiotic. Mol Microbiol. 1996;21(6):1757-84. doi: 10.1046/j.1365-2958.1996.831449.x. [PubMed: 8898386].
12. Sahil HG, Bierbaum G. Lantibiotics: biosynthesis and biological activities of uniquely modified peptides from gram-positive bacteria. Annu Rev Microbiol. 1998;52:41-79. doi: 10.1146/annurev.micro.52.1.41. [PubMed: 9897973].
13. Carniol K, Gilmore MS. Signal transduction, quorum-sensing, and extracellular protease activity in Enterococcus faecalis biofilm formation. J Bacteriol. 2004;186(8):4861-3. doi: 10.1128/JB.186.4.8161-8163.2004. [PubMed: 15576761].
14. Mohamed JA, Huang DB. Biofilm formation by enterococci. J Med Microbiol. 2007;56(Pt 12):1581-8. doi: 10.1099/jmm.0.47313-0. [PubMed: 18038232].
15. Donlan RM, Costerton JW. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev. 2002;15(2):167-93. doi: 10.1128/CMR.15.2.167-193.2002. [PubMed: 11932299].
16. O’Toole G, Kaplan HB, Kolter R. Biofilm formation as microbial development. Annu Rev Microbiol. 2000;54:49-79. doi: 10.1146/annurev.micro.54.1.49. [PubMed: 1081824].
17. Duggan JM, Sedgley CM. Biofilm formation of oral and endodontic Enterococcus faecalis. J Endod. 2007;33(7):815-8. doi: 10.1016/j.joen.2007.02.016. [PubMed: 17804318].
18. Shankar N, Lockatelli CV, Baghdyan AS, Drachenberg C, Gilmore MS, Johnson DE. Role of Enterococcus faecalis surface protein Esp in the pathogenesis of ascending urinary tract infection. Infect Immun. 2001;69(7):4366-72. doi: 10.1128/IAI.69.7.4366-4372.2001. [PubMed: 11409975].
19. Shankar V, Baghdyan AS, Huycke MM, Lindahl G, Gilmore MS. Infection-derived Enterococcus faecalis strains are enriched in esp, a gene encoding a novel surface protein. Infect Immun. 1999;67(1):193-200. [PubMed: 9864215].

Jundishapur J Microbiol. 2017;10(7):e14379.
50. Heikens E, Leendertse M, Wijnands LM, van Luit-Asbroek M, Bonten MJ, van der Poll T, et al. Enterococcal surface protein Esp is not essential for cell adhesion and intestinal colonization of Enterococcus faecium in mice. *BMC Microbiol.* 2009;9:29. doi: 10.1186/1471-2180-9-9. [PubMed: 19878704].

51. Franz CM, Muscholl-Silberhorn AR, Yousif NM, Vancanneyt M, Swings J, Holzapfel WH. Incidence of virulence factors and antibiotic resistance among Enterococci isolated from food. *Appl Environ Microbiol.* 2001;67(9):4385–9. [PubMed: 11526054].

52. Coque TM, Patterson JE, Steckelberg JM, Murray BE. Incidence of hemolysin, gelatinase, and aggregation substance among enterococci isolated from patients with endocarditis and other infections and from feces of hospitalized and community-based persons. *Infect Dis.* 1995;175(5):222–9. [PubMed: 7751697].

53. Creti R, Imperi M, Bertuccini L, Fabretti F, Orefici G, Di Rosa R, et al. Survey for virulence determinants among Enterococcus faecalis isolated from different sources. *J Med Microbiol.* 2004;53(Pt 1):33–20. doi: 10.1099/jmm.0.05353-0. [PubMed: 14663100].

54. Eaton TJ, Gasson MJ. Molecular screening of Enterococcus virulence determinants and potential for genetic exchange between food and medical isolates. *Appl Environ Microbiol.* 2001;67(4):1628–35. doi: 10.1128/AEM.67.4.1628-1635.2001. [PubMed: 11282865].

55. Jurkovic D, Krizkova L, Dusinsky R, Belicova A, Sojka M, Krajcovic J, et al. Identification and characterization of enterococci from brynza cheese. *Lett Appl Microbiol.* 2006;42(5):553–9. doi: 10.1111/j.1472-765X.2006.0198.x. [PubMed: 16706890].

56. Tsirikonis G, Maniatis AN, Labrou M, Ntokou E, Michail G, Dopante A, et al. Differences in biofilm formation and virulence factors between clinical and fecal enterococcal isolates of human and animal origin. *Microb Pathog.* 2012;52(6):336–43. doi: 10.1016/j.micpath.2012.03.003. [PubMed: 22445820].

57. Mannu I, Paba A, Daga E, Comunian R, Zanetti S, Dupre I, et al. Comparison of the incidence of virulence determinants and antibiotic resistance between Enterococcus faecium strains of dairy, animal and clinical origin. *Int J Food Microbiol.* 2003;88(2-3):291–304. doi: 10.1016/S0168-1605(03)00191-6. [PubMed: 14597001].

58. Seno Y, Kariyama R, Mitsuhashi R, Monden K, Kumon H. Clinical implications of biofilm formation by Enterococcus faecalis in the urinary tract. *Acta Med Okayama.* 2005;59(3):79–87. [PubMed: 16049560].

59. Udo EE, Al-Sweih N. Frequency of virulence-associated genes in Enterococcus faecalis isolated in Kuwait hospitals. *Med Princ Pract.* 2011;20(3):259–64. doi: 10.1159/000321230. [PubMed: 21454997].