A Systematic Review of Traditionally Used Herbs and Animal-Derived Products as Potential Analgesics

Kannan R.R. Rengasamy1,2,3, Mohamad Fawzi Mahomoodally4,5,*, Teshika Joaheer6 and Yansheng Zhang7

1Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam; 2Faculty of Environment and Chemical Engineering, Duy Tan University, Da Nang 550000, Vietnam; 3Indigenous Knowledge Systems Centre, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2745, North West Province, South Africa; 4Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam; 5Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam; 6Department of Health Sciences, Faculty of Science, University of Mauritius, Reduit, Mauritius; 7Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China

Abstract: Pain is a distressing but fundamental manifestation that prepares the body for potentially detrimental stimuli while ensuring its protection. Plant and animal products have traditionally been used to relieve pain for centuries. However, no attempt has been made to compile a single report of plant and animal products possessing analgesic properties. This review endeavours to recover data from published articles to establish a collective literature review on folk remedies from plant and animal sources used as analgesics and in the treatment of pain-related conditions, identifying gaps in existing knowledge and future works. Relevant information was systematically retrieved using the PRISMA method. In this review, in total, 209 plants were found to be either used raw or prepared by decoctions or maceration. Administration was either oral or topical, and they were predominantly used in Asian countries. In vivo studies of plants with analgesic properties, which were tested using different methods including acetic-induced writhing test, hotplate test, tail-flick test, and formalin-induced pain test, were compiled. Animal products with analgesic properties were obtained mainly from compounds present in venom; their bioactive compounds were also identified. In the literature search, certain gaps were noted, which could be reviewed in future studies. For instance, there was a disparity of information regarding the traditional uses of medicinal plants. In this study, an attempt was made to critically assess and describe the pharmacological properties and bioactive composition of indigenous plants, some animal species, and animal venom by scrutinizing databases and looking for published articles. Therefore, it can be concluded that the compounds obtained from these sources can serve as important ingredients in therapeutic agents to alleviate pain once their limitations are assessed and improved upon. In the literature search, certain gaps were noted, which could be reviewed in future studies.

Keywords: Traditional medicine, pain, analgesics, pharmacological, plants, animals.

1. INTRODUCTION

The ubiquitous nature of pain is complex. It entails both the peripheral and central nervous systems with multiple neurotransmitters and receptor-mediated events. In addition, emotional and psychological modifiers participate in the experience [1]. Pain is a distressing but fundamental manifestation that prepares the body for a potentially detrimental stimuli, while ensuring its protection. This notion highlights the biological importance of pain, which is relevant when acute pain is experienced. Basically, acute pain occurs for a short duration and can be attributed to diseases or injury. Nonetheless, pain can also last for a longer duration than the predicted prognosis; this pain is termed chronic or persistent pain. In this condition, pain no longer plays a role as a signal for impeding danger [2].

The International Association for the Study of Pain describes the term “pain” as “an unpleasant sensory and emotional experience associated with actual or potential tissue damage or described in terms of such damage.” Consequently, pain is a term that has evolved from a mono-dimensional to a multidimensional entity entailing several aspects, such as sensors, cognition, motivation, affection, behavior, and spirituality [3]. Pain is often subjected to each individual’s perception of their experience related to injury or physical
damage. Pain can be classified based on pain physiology, intensity, temporal characteristics, type of tissue affected, and syndrome.

Despite the fact that pain is regarded with such significance, chronic pain is considered a plague. It is quite perplexing to evaluate, manage, and treat it as a multifactorial condition [4]. A statistical report stated that more than 1.5 billion of the global population suffers from this agonizing condition [5]. Regardless of the alarming prevalence of chronic pain, the mechanisms underlying the transition from acute to chronic pain are still unclear. The amplification of pain is multifactorial. Risk factors contributing to the severity of the condition include genetic predisposition, age, gender, previous experience, and attitude toward pain [6]. Some of the most commonly experienced pain-related conditions include back pain, headaches, migraines, angina pectoris, arthritis pain, nerve damage pain, and cancer pain. In other conditions, such as fibromyalgia, patients experience pain at a significantly higher level [7]. Therefore, pain relief and management are a matter of great importance and have been regarded as one of the uttermost human equity.

Moreover, pain can also be trivial and transient; thus, the ascendency and favorable outcomes of folk remedies or conventional methods for its treatment cannot be left unnoticed [8]. Nevertheless, at times, pain may be perpetual, and conventional methods, including opioid and non-opioid analgesics, non-steroidal anti-inflammatory drugs (NSAIDs), and corticosteroids, among others, are less potent [9]. Medications commonly used to alleviate pain include drugs such as ibuprofen, naproxen, aspirin, acetaminophen, anti-depressants, and anti-seizure medications [10]. However, conventional therapies have been linked with multiple challenges including long-term efficiency, dosage, and tolerance issues and other side effects [11]. These limitations have led to an increased prevalence of folk remedies as supported by numerous anecdotal accounts [12, 13]. The use of folk remedies in recent times is correlated with psychosocial factors, ethnic and cultural characteristics, accessibility to healthcare resources, and individual perceptions of physical and medical conditions [14]. The most acknowledged therapies used for pain management are herbal remedies.

Herbal medicine has been a tradition for centuries. Some terrestrial plants are considered medicinal owing to their

Fig. (1). Flowchart of selection process.
analgesic properties. Some of the most commonly used analgesics from food plant sources are moringa/drumstick (*Moringa oleifera*), guava (*Psidium guajava*), turmeric (*Curcuma longa*), and ginger (*Zingiber officinale*) for abdominal pain; potato (*Solanum tuberosum*) for headache; carrot (*Daucus carota*) for painful urination; and celery (*Apium graveolens*) for labor and joint pain [13, 15-18].

Numerous studies have emphasized the application of countless medicinal plants for pain management in different regions. However, an updated compilation of the available literature on plants, animals, and related products that are used as analgesics across the world as well as their pharmacology is lacking. In this context, we aimed to recover data from numerous published articles to establish a collective literature review on folk remedies from plant and animal sources used as analgesics and in the treatment of pain-related conditions.

2. METHODOLOGY

2.1. Search Strategy

Relevant information was systematically retrieved using the PRISMA method. Databases such as PubMed/Medline, Science Direct, and Google Scholar were scrutinized. Alternate sources, including books, dissertations, and online published material, were considered as well. Scientifically, a plant was identified according to the International Plant Name Index (www.ipni.org) and The Plant List database (theplantlist.org). The main chemical constituents of each plant were identified using the PubChem database. Similarly, potential pain killers from animal origin were searched and their chemical constituents were identified.

Databases were scrutinized using numerous keywords, such as “medicinal plant,” “traditional,” “medicinal,” “herbal remedies,” “analgesics,” “pain,” “pain management,” and “pain relief;” additionally, at times, a combination of keywords was used. The published literature was mainly taken from primary sources. *In vitro, in vivo*, and clinical studies were taken into consideration, and the literature search was limited to the English language. The search strategy for Medline (by PubMed) was (“analgesics” [Pharmacological Action] OR “analgesics” [MeSH Terms] OR “analgesics” [All Fields]) AND (“plants” [MeSH Terms] OR “plants” [All Fields] OR “plant” [All Fields]).

2.2. Study selection

Studies were selected according to two inclusion criteria. First, the original research articles must be published in English; second, the articles should date from 2009 to 2019. To ensure consistency, reproducibility of the process, and transparent reporting, the recommendations of the PRISMA statement were followed [19]. The selection process of the articles is represented in a flowchart (Fig. 1).

2.3. Data Extraction and Description of Sections

In this review, we evaluated the traditional uses, chemical composition, and pharmacological properties of various plants used as analgesics. After screening the articles, the data was extracted and tabulated (Table 1) with regard to the ethno-pharmacological uses of the medical plants used for pain management; the data included the plant family, scientific name, common name, country, method of preparation/dosage, ailments, and references to provide an overview of the various applications of the plants used for pain relief. Section 3 provides a comprehensive and critical analysis of the pharmacological properties of each plant (Table 2), with regard to the chemistry and traditional uses.

3. RESULTS AND DISCUSSION

3.1. Traditional Remedies Made with Plants Presenting Analgesic Properties

In ancient times, the diverse population of plants represented medicinal wealth for indigenous people. While searching ways to relieve pain and cure diseases, traditional healers discovered new plants that could serve as analgesics. In total, 209 ethnomedicinal studies demonstrated the different uses of combinations of wild and domestic plants for pain relief, which are summarized in Table 1. The study results are presented in alphabetical order of plant families, with their respective scientific name, local name, plant parts used, therapeutic use, mode of preparation, and route of administration for ethnomedicinal application. Most methods of preparation involved decoction or maceration; alternatively, the plants were used in their raw form. The administration was either oral or topical. These medicinal plants were used predominantly in Asian countries, such as India, Nepal, Pakistan, Iran, and Myanmar, and African countries (Table 1).

Accordingly, stomach pain, earache, and joint pain were the most common types of pain that were targeted. As per the study of Bhatia et al. [20], *Justicia adhatoda* was used to alleviate headaches using fresh leaves that were topically applied on the forehead. In the same study, when mixed with other medicinal plants, *Justicia adhatoda* was also reported to cure fever, herpes, and pneumonia. Thus, the study showed that plants can have multiple functions by acting at different targets to cure diseases. Recently, Ong et al. [21] have identified wild medicinal plant species and evaluated their properties and uses among the local population. The herb *Acorus calamus* was reported to relieve earache and toothache when the rhizome extract is applied as a drop and drunk as a decoction, respectively. Other plants, such as *Sansevieria trifasciata*, *Spondias pinnata*, *Chrysanthemum indicum*, *Ananas comosus* (pineapple), *Matricaria chamomilla* (Camomile flower), *Costus speciosus* (Crêpe ginger), *Cuscuta europaea*, and *Cymbidium aloifolium*, were found to alleviate ear pain by the application of ear drops prepared by macerating the parts of the plants [15, 22].

Furthermore, *Aloe vera* (leaves) juice, *Matricaria chamomilla* (leaves and aerial part), *Calendula officinalis* (flower), *Fumaria indica* (whole plant), *Geranium wallichianum* (root), *Alstonia scholaris* (bark and sap), *Holarrhena pubescens* (bark), [17, 18, 23] have been identified as plants with analgesics effects. Ayyanar and Ignacimuthu [12] categorized and grouped various ailments with regard to the human anatomy, and the associated pain was reported in the different sections: stomachache in general health, earache in ear problems, breast pain as genito-urinary ailments, chest...
Table 1. Traditional remedies of plant used to relieve pain.

Family	Scientific Name	CEM/VN	Type of Pain	Region	Part of Plant Used	Method of Preparation	Administration	Refs.	
Acanthaceae	Justicia adhatoda L.	Malabar nut, adulsa, adhatoda, vasa	Headache	India	Leaves	Fresh leaves are placed on forehead	Topical	[20]	
Acoraceae	Acorus calamus L.	Sweet flag	Earache Toothache	Myanmar	Rhizome	Decoction	Rhizome extract as eardrop	Oral	[21]
Agavaceae	Sansevieria trifasciata Hort. Ex Prain	Snake plant, mother-in-law's tongue, and viper's bowstring hemp	Earache	India	Stem	Maceration	Ear drops	[15]	
Amaranthaceae	Achyranthes aspera L.	Chaff-flower, prickly chaff flower, devil's horsewhip	Toothache Abdominal pain	Pakistan	Leaves	Decoction	Oral	[24]	
Amaranthaceae	Aerva lanata (L.) Juss.	Mountain knotgrass	Angina pectoris	India	Whole plant	Powder	Oral	[12]	
Amaranthaceae	Alteranthera sessilis (L.) R.Br. ex DC.	Seselis joyweed and dwarf copperleaf	Eye pain	India	Leaf	Juice	Oral	[12]	
Amaranthaceae	Achyranthes aspera L.	Chaff-flower, prickly chaff flower, devil's horsewhip	Toothache	India	leaves	Cotton soaked in leaf juice	Topical	[20]	
Amaranthaceae	Amaranthus viridis L.	Slender amaranth or green amaranth.	Labor pain	India	Seeds	Seeds fried in clarified butter are given to pregnant ladies to curb	Topical	[20]	
Amaricaceae	Tamarix arceuthoides Bunge	Gaz	Myalgia Back pain Hand and foot pain Knee pain	Iran	Stem Leaves	Decoction of mixed herb, Heated on embers	NI	[13]	
Amaryllidaceae	Allium oreophilum C.A.Mey.	Pink lily leek	Abdominal pain Labour pain	Iran	Leaves Root	Raw	Oral	[13]	
Anacardiaceae	*Mangifera indica L.	Mango	Abdominal pain	Nepal	Bark	Crushed	Oral	[17]	
Anacardiaceae	Spondias pinnata (L.f.) Kurz	Wild (or forest) mango, Amda	Earache	India	Leaves	NI	NI	[22]	
Anacardiaceae	*Mangifera indica L.	Mango	Labor pain	India	Stem bark	Powder and paste	Oral	[12]	
Anacardiaceae	Pistacia atlantica Desf.	Mt. Atlas mastic tree, Persian turpentine	Back pain Toothache Abdominal pain Arthralgia	Iran	Leaves, Fruits	Decoction, Pulverized, Burned on embers, Smoke Inhalation, Poul-tice, Liniment, Condensed	Topical	[13]	
Anacardiaceae	Pistacia khinjuk Stocks	Kasour	Back pain Abdominal pain	Iran	Leaves, Fruits	Raw, Decoction, Pulverized, Poul-tice	Oral	[13]	
Apiaceae	Prangos latiloba Korovin	Paterk	Abdominal pain	Iran	Leaves, Stem	Raw taken with garlic	Oral	[13]	
Apiaceae	Achillea eriophora DC.	Anboul	Abdominal pain	Iran	Leaves, Stem	Decoction, Maceration, Pulverized	Oral	[13]	

(Table 1) contd....
Family	Scientific Name	CEM/VN	Type of Pain	Region	Part of Plant Used	Method of Preparation	Administration	Refs.
Apiaceae	*Foeniculum vulgare*	Fennel	Angina pectoris, Renal pain	India	Seeds	Seeds boiled in milk	Oral	[23]
Apiaceae	*Daucus carota L.*	Carrot	Dysuria	Root	Extract		NI	[18]
Apiaceae	*Apium graveolens* L.	Celery	Arthralgia, Myalgia, Abdominal pain, Labor pain	Iran	Aerial parts, Leaves, Seeds	Decoction, Pulverised, Infusion	Topical	[13]
Apiaceae	Bunium persicum (Boiss.) B. Fedtsch.	Great pignut, black zira, earthnut	Toothache Renal pain, Abdominal pain	Iran	Flower, Seeds	Decoction, Pulverised, Poultice Bath, Liniment	Topical	[13]
Apiaceae	*Dorema ammoniacum* D. Don	Poušhk Oshterk	Toothache Renal pain, Abdominal pain	Iran	Aerial parts, Leaves	Decoction, Pulverised, Poultice	Topical	[13]
Apiaceae	Daucus anethifolia (DC.) Boiss.	Goatak	Abdominal pain, Headache Renal pain, Foot pain	Iran	Aerial parts, Leaves, Fruits	Decoction, Infusion, Pulverised	Topical	[13]
Apiaceae	Achillea wilhelmsii K.Koch	Berenjask	Abdominal pain	Iran	Aerial parts, Leaves, Fruits	Decoction, Maceration, Pulverised	Topical	[13]
Apiaceae	Acroptilon repens (L.) DC.	Russian knapweed	Hands and Foot pains	Iran	Aerial parts	Heated on embers	Topical	[13]
Apiaceae	Artemisia deserti Krasch.	Drannag	Abdominal pain	Iran	Aerial parts, Leaves, Flower	Decoction, Maceration, Pulverised	Topical	[13]
Apiaceae	Cousinia pseudomollis C. Winkl.	Polouah	Headache, Hand and Foot pain	Iran	Aerial parts	Vapour bath	Topical	[13]
Apiaceae	Echinops endotrichus Rech.f.	Chazhou	Abdominal pain	Iran	Rhizome	Decoction	Topical	[13]
Apiaceae	Pulicaria gnaphalodes (Vent.) Boiss.	Boumadran	Abdominal pain	Iran	Aerial parts	Decoction, Infusion, Raw, Maceration, Liniment	Topical	[13]
Apiaceae	*Dorema ammoniacum* D. Don	Poušhk Oshterk	Toothache Renal pain	Iran	Aerial parts, leaves	Decoction, Infusion, Raw	Oral	[13]
Apiaceae	Daucus anethifolia (DC.) Boiss.	Goatak	Abdominal pain, Headache Renal pain, Foot pain	Iran	Aerial parts, leaves, fruits, seeds	Decoction, Infusion, Pulverised	Topical	[13]
Apiaceae	Scorzonera tortuosissima Boiss.	Marooba	Abdominal pain	Iran	Aerial parts, leaves	Raw	NI	[13]
Apiaceae	Centella asiatica (L.) Urb.	Centella	Myalgia	Nepal	Leaves	Crushed	Oral	[17]
Apocynaceae	Alstonia scholaris (L.) R. Br.	Blackboard tree, devil tree, ditabark, milkwoodpine, saptparni, saitan tree, white cheesewood	Myalgia Back pain	Nepal	Bark and sap	Bark placed into water and slightly cut stem to get sap	Oral	[17]

(Table 1) contd...
Family	Scientific Name	CEM/VN	Type of Pain	Region	Part of Plant Used	Method of Preparation	Administration	Refs.
Apocynaceae	*Holarrhena pubescens* Wall. ex G.Don	Big tiger milk	Myalgia, Abdominal pain	Nepal	Bark	Dry, pulverize and mix with water	Oral	[17]
Apocynaceae	Calotropis gigantea (L.) Dryand	Crown flower	Myalgia, Abdominal pain	Nepal	Latex, leaves, bark, stem and root	Crushed	Topical	[17]
Apocynaceae	Carissa carandas L.	Kalakkai	Abdominal pain	India	Fruit	Pickle	Oral	[12]
Araceae	*Rhaphidophora ppepla* (Roxb.) Schott	Mini Monstera	Toothache, Abdominal pain	Myanmar	Leaves	Boil leaves and gargle	Gargle	[21]
Asclepiadaceae	*Calotropis procera* (Aiton) Dryand	Apple of Sodom, king's crown, rubber tree	Arthralgia	India	Leaves	Leaves soaked in hot mustard oil are fastened on joints	Topical	[20]
Asphodelaceae	*Aloe vera* (L.) Brum.	Aloe vera	Myalgia, Abdominal pain	Nepal	Leaves	Pound and drink juice	Oral	[17]
Asteraceae	*Chrysanthemum indicum* L.	Indian chrysanthemum	Earache	India	Leaves	Maceration	Ear drops	[15]
Asteraceae	*Arctium lappa* L.	Greater burdock	Myalgia, Abdominal pain	India	Leaves, Root	Paste	Topical	[23]
Asteraceae	*Taraxacum campylodes* G.E.Haglund	Common dandelion	Labor pain, Abdominal pain	India	Leaves	Cooked as vegetables and given to pregnant ladies	Oral	[23]
Asteraceae	*Taraxacum campylodes* G.E.Haglund	Common dandelion	Labor pain, Abdominal pain	India	Leaves	Cooked	Oral	[18]
Asteraceae	*Achillea nobilis* L.	Noble yarrow	Dysmenorrhea	India	Aerial parts	Infusion	Oral	[18]
Asteraceae	*Artemisia maritima* L.	Sea wormwood, old woman	Arthralgia	DeosaiPlateau	Leaves	Infusion	Oral	[25]
Asteraceae	*Erigeron multiflorus* var. multiradiatus	Himalayan fleabane	Abdominal pain	DeosaiPlateau	Leaves	Paste	Oral with water	[25]
Asteraceae	*Matricaria chamomilla* L.	Chamomille	Myalgia, Abdominal pain	Deosai Plateau	Leaves	Paste Infusion	Oral	[25]
Asteraceae	*Achillea millefolium* L.	Common yarrow	Toothache, Abdominal pain	India	Root	Cotton soaked in fine root paste	Topical	[20]
Berberidaceae	*Berberis integerrima* Bunge	American barberry, or Allegheny barberry	Myalgia	Iran	Fruit	Tablets, Mashed, Condensed	Oral	[13]
Bignoniaceae	*Millingtonia hortensis* L.	Indian cork tree	Abdominal pain	India	Root	Maceration	Oral	[15]

(Table 1) contd....
Family	Scientific Name	CEM/VN	Type of Pain	Region	Part of Plant Used	Method of Preparation	Administration	Refs.
Bignoniaceae	*Oroxylum indicum* L. Kurz	Midnight horror, oroxylum, Indian trumpet flower, broken bones	Myalgia	Nepal	Bark	Crushed	Topical	[17]
Bombacaceae	*Bombax ceiba* L.	Red cotton tree	Abdominal pain	Nepal	Resin, bark and root	Crushed	Oral	[17]
Boraginaceae	*Alyssum menioides* Boiss.	Espantan koohi	Angina pectoris	Iran	Fruits	Decoction, Infusion	NI	[13]
Boraginaceae	*Chyopola jonhlaopi* L.	Toutary	Abdominal pain, Angina pectoris	Iran	Fruits	Decoction, Infusion	NI	[13]
Boraginaceae	Descurainia Sophia (L.) Webb ex Prantl	Flixweed, herb-Sophia and tansy mustard	Abdominal pain	Iran	Seeds	Syrup	Oral	[13]
Brassicaceae	Descurainia Sophia (L.) Webb ex Prantl	Flixweed, herb-Sophia and tansy mustard	Myalgia	India	Whole plant, seeds	Whole plant decoction Seeds powder	Oral	[23]
Brassicaceae	*Mecacarpa polyandra* L. Benth.	Barmoola	Abdominal pain	India	Roots	NI	NI	[22]
Brassicaceae	Lepidium sativum L.	Garden Cress	Labor pain	India	Seeds	Seed decoction in milk and clarified butter curbs	Oral	[20]
Bromeliaceae	*Ananas comosus* (L.) Merr.	Pineapple	Earache	India	Leaves	Maceration	Ear drops	[15]
Buxaceae	Saracocca saligna var. chimenis Franch.	Sweet box or Christmas box	Arthralgia	India	Roots	NI	NI	[22]
Caesalpiniaeae	*Cassia tora* L.	Sickle Senna	Abdominal pain	India	Seeds	Seeds taken with water Relieve side stomach pain	Topical	[20]
Cannabaceae	*Cannabis sativa* L.	Cannabis	Myalgia	India	Leaves	Juice	Leaf juice obtained after crushing leaves is spread on a cloth which is then tied around limbs to relieve severe pain	[23]
Caricaceae	*Carica papaya* L.	Papaya, Pawpaw	Abdominal pain	India	Root	Maceration	Topical	[15]
Chenopodiaceae	*Chenopodium album* L.	Lamb's quarters, melde, geosefoot, manure weed, and fat-hen	Abdominal pain	Pakistan	Whole plant	Cooked juice	Oral	[24]
Chenopodiaceae	*Chenopodium album* L.	Lamb's quarters, melde, geosefoot, manure weed, and fat-hen	Arthralgia	Nepal	Tender shoots, whole plant	Pound	Oral	[17]
Combretaceae	*Terminalia bellirica* (Gaertn.) Roxb.	Bahera or beleric or bastard myrobalan, Aksik	Headache	Nepal	Fruit, leaves	Roast (fruit) and pound (leaves and bark)	Oral	[17]

(Table 1) contd....
Family	Scientific Name	CEM/VN	Type of Pain	Region	Part of Plant Used	Method of Preparation	Administration	Refs.
Combretaceae	*Terminalia chebula* Retz.	Black-or chebulic myrob-alan	Headache	Nepal	Fruit, leaves and bark	Roast (fruit) and pound (leaves and bark)	Oral	[17]
Compositae	*Artemisia indica* Wild.	Artemisia indica	Headache	Nepal	Leaves	Pound	Oral	[17]
Compositae	*Calendula officinalis* L.	Calendula	Myalgia	Italy	Flower	Poultices	NI	[17]
Convolvulaceae	*Datura Stramonium* L.	Jimsonweed or devil's snare, hell's bells, devil's trumpet, devil's weed, *tolguacha*, Jamestown weed, stinkweed, loco-weed, pricklyburr, devil's cucumber	Knee pain	India	Leaves	Paste	Topical	[26]
Convolvulaceae	*Cuscuta capitata* Roxb.	Cuscuta capitata	Angina pectoris	India	Whole plant	Juice	Oral	[23]
Convolvulaceae	*Ipomoea carnea* Jacq.	Pink morning glory	Arthralgia	India	Leaves	Leaves soaked in hot mustard oil are fastened	Topical	[20]
Convolvulaceae	*Convulvus arvensis* L.	Lesser bindweed, European bindweed, small-flowered morning glory, creeping jenny, and possession vine	Angina pectoris	Iran	Aerial parts, leaves	Decoction, Infusion	NI	[13]
Costaceae	*Costus speciosus* (J.Koenig) Sm.	Crêpe ginger	Earache	India	Stem	Maceration	Ear drops	[15]
Crassulaceae	*Sedum quadrifarium* Pall.	Sooru	Headache	India	Tender shoots	NI	NI	[22]
Crassulaceae	*Rhodiola imbricata* Edgew	Rhodiola imbricata	Headache	Deosai Plateau	Root	Powder	Oral with milk	[25]
Crassulaceae	*Senecio tectorum* L.	Sopra-vivo	Headache	Italy	Aerial part	Used to be beaten and placed on the brow with a handkerchief	NI	[17]
Cucurbitaceae	*Luffa cylindrica* (L.) M.Roem.	Smooth luffa, Egyptian luffa, dishrug gourd, gourd loofa	Arthralgia	India	Leaves	Maceration	Topical	[15]
Cucurbitaceae	*Luffa cylindrica* (L.) M.Roem.	Smooth luffa, Egyptian luffa, dishrug gourd, gourd loofa	Abdominal pain	India	Fruit	Boiled with milk	Oral	[18]
Cucurbitaceae	*Solanum hetrophyllum* Lour.	Creeping Cucumber	Toothache	Nepal	Leaves, fruit and root	Crushed	Oral	[17]
Cucurbitaceae	*Bryonia multiflora* Boiss.	Bryony	Bladder pain	Iran	Fruits	Poultice	NI	[13]
Cucurbitaceae	*Citrullus colocynthis* (L.) Schrad.	Colocynth, bitter apple, bitter cucumber, desert gourd, wild gourd, vine of Sodom	Hand and foot pain	Iran	Aerial part, leaves, fruits, seeds	Poultice, Liniment	NI	[13]

(Table 1) contd....
Family	Scientific Name	CEM/VN	Type of Pain	Region	Part of Plant Used	Method of Preparation	Administration	Refs.
Cupressaceae	Juniperus communis L.	Common juniper	Causalgia	Pakistan	Fruit	Powder	NI	[27]
Cuscutaceae	Cuscuta europaea L.	Greater dodder	Earache	India	Stem	NI	NI	[22]
Dilleniaceae	Dillenia pentagyna Roxb.	Dillenia pentagyna	Myalgia	Nepal	Bark	Dry and grind	Oral	[17]
Dioscoreaceae	Dioscorea alata L.	Purpule, Ube	Abdominal pain	Myanmar	Root	Crushed root	Topical	[21]
Dioscoreaceae	Dioscorea esculenta (Lour.) Burkill	Lesser yam	Causalgia	West Bengal	Tuber roots	Apply grated tuber on swellings	Topical	[27]
Dipsaceae	Scabiosa olivieri Coult.	Brik dal	Foot pain	Iran	Aerial parts	Decoction	Topical	[13]
Ebenaceae	Diospyros coroidifolia Roxb.	Rajaan	Toothache	-	Twig	Brushing teeth with twig	Topical	[20]
Ephedraceae	Ephedra intermedium Schrenk & C.A.Mey.	Hoomok Khoumok	Abdominal pain	Iran	Aerial parts	Decoction, Poultice, Pulverised, Condensed	Oral	[13]
Ericaceae	Rhododendron campanulatum D. Don	Shamru	Myalgia	India	Flowers and roots	NI	NI	[22]
Euphorbiaceae	Justicia gendarussa Burm.f.	willow-leaved justicia	Renal pain	India	Leaves	Paste	Topical	[26]
Euphorbiaceae	Ricinus communis L.	castor bean or castor oil plant	Arthralgia, Myalgia	India	Seed	Raw	Topical	[12]
Euphorbiaceae	Ricinus communis L.	castor bean or castor oil plant	Arthralgia	India	Leaves	Leaves soaked in hot mustard oil are fastened on joints	Topical	[20]
Euphorbiaceae	Phyllanthus emblica L.	Emblic, India gooseberry, Malacca tree, amla, amalaki	Abdominal pain Headache	Nepal	Fruit, leaves, stem and root	Crushed	Oral	[17]
Euphorbiaceae	Phyllanthus emblica L.	Emblic, India gooseberry, Malacca tree, amla, amalaki	Abdominal pain Headache	Nepal	Fruit, leaves, stem and root	Crushed	Oral	[17]
Fabaceae	Alysicarpus vaginatus (L.) DC.	Alyce clover, buffalo clover, buffalo-bur, one-leaf clover, and white moneywort	Abdominal pain	India	Whole plant	Maceration	Topical	[15]
Fabaceae	Mimosa pudica L.	Sensitive plant, sleepy plant, action plant, Dormilones, touch-me-not, shameplant, zombie plant, or dry plant	Dysuria	Myanmar	Whole plant	Decoction	Oral	[21]

(Table 1) contd....
Family	Scientific Name	CEM/VN	Type of Pain	Region	Part of Plant Used	Method of Preparation	Administration	Refs.
Fabaceae	*Clitoria ternatea* L.	[562]	Throat pain	India	Leaf	Paste	Oral	[12]
Fabaceae	*Alhagi pseudalhagi* (M.Bieb.)	[562]	Bladder pain	Iran	Stem, Seeds	Decoction, Mix with milk, Infusion, Poultice	Oral	[13]
Fabaceae	*Astragalus fasiculifolius* Bois	[562]	Abdominal pain Toothache	Iran	Stem, Seeds	Decoction, Mix with milk, Infusion, Poultice	NI	[13]
Fabaceae	*Astragalus pseudoalbus* Bois	[562]	Abdominal pain	Iran	Aerial parts, Leaves, Flower	Decoction, Raw	Oral	[13]
Fabaceae	*Glycyrrhiza glabra* L.	[562]	Hand and foot pains	Iran	Aerial parts, Flower	Decoction, Pulverised, Topical	Topical	[13]
Fabaceae	*Sophora alopecuroides* L.	[562]	Renal pain	Iran	Aerial parts, Leaves, Flower	Decoction, Pulverised, Oral	Oral	[13]
Fagaceae	*Quercus leucotrachophora* A. Camus	[562]	Toothache	India	Bark	Decoction, Topical	Topical	[20]
Fumariaceae	*Corydalis cornuta* Royle	[562]	Abdominal pain	India	Leaves, roots,	NI	NI	[22]
Fumariaceae	*Fumaria indica* (Haussk.) Pugsley	[562]	Myalgia	India	Whole plant	Filtrate	The filtrate is used for bathing to cure rheumatic pain	[18]
Fumariaceae	*Fumaria aspasia* Boiss	[562]	Abdominal pain	Iran	Aerial parts, Leaves, Flower	Decoction	Oral	[13]
Gentianaceae	*Gentiana kurroo* Royle	[562]	Abdominal pain	Pakistan	Flower	Infusion	Oral	[25]
Geraniaceae	*Geranium wallichianum* D.Don ex Sweet	[562]	Myalgia	India	Root	Herbal tea prepared from roots curbs	Oral	[23]
Labiatae	*Colebrookea oppositifolia* Sm.	[562]	Myalgia	Nepal	Leaves, tender shoots and root	Pound	Topical	[17]
Labiatae	*Ocimum sanctum* L.	[562]	Throat pain	Nepal	Leaves	Crushed	Topical	[17]
Labiatae	*Pogostemon benghalensis* (Burm.f.) Kuntze	[562]	Headache	Nepal	Leaves	Crushed	Inhaler	[17]
Lamiaceae	*Clinopodium vulgare* L.	[562]	Abdominal pain	India	Leaves, Flowers	Powder	Oral	[23]
Lamiaceae	*Ocimum tenuiflorum* L.	[562]	Headache	Myanmar	Leaves, Fruits	Boil leaves and fruits	Eat boiled leaves and fruit	[21]
Lamiaceae	*Leucas aspera* (Willd.)	[562]	Eye pain	India	Leaf	Paste	Oral	[12]

(Table 1) contd....
Family	Scientific Name	CEM/VN	Type of Pain	Region	Part of Plant Used	Method of Preparation	Administration	Refs.
Lamiaceae	*Isodon rugosus* (Wall. Ex Benth.) Codd	Isodon	Toothache	Pakistan	Dried leaves	Dried	Oral	[25]
Lamiaceae	*Ajuga bracteosa* Benth.		Headache	India	Leaves	Crushed	Topical	[20]
Lamiaceae	*Colebrookea oppositifolia Sm.*	Colebrookea, Chitti Suali	Arthralgia Myalgia	India	Leaves	Leaves soaked in hot mustard oil are fastened on the affected part	Topical	[20]
Lamiaceae	*Vitex negundo* L.		Toothache	India	Twig	Brushing teeth with twig checks	Topical	[20]
Lamiaceae	*Marrubium anisodon* K.Koch		Abdominal pain	Iran	Aerial parts, Flower	Decoction, Poultice, Heat	Topical	[13]
Lamiaceae	*Mentha longifolia* (L.) L.		Abdominal pain, Hands and Foot pain Renal pain Labor pain	Iran	Aerial parts, Leaves, Flower	Decoction, Poultice, Heat, Raw, Vapour bath	NI	[13]
Lamiaceae	*Rydingia persica* (Burm.f.) Scheen		Hand and Foot pain	Iran	Aerial parts, Leaves, Flower	Decoction, Maceration, Pulverised	NI	[13]
Lamiaceae	*Perovskia atriplicifolia* Benth.	Russian sage	Abdominal pain Hand and Foot pain	Iran	Aerial parts, Leaves, Flower	Decoction, Poultice	NI	[13]
Lamiaceae	*Salvia macrocephalon* Boiss.		Abdominal pain, Hands and Foot pain Renal pain Labor pain	Iran	Aerial part, Seeds, Leaves	Decoction, Poultice, liniment	NI	[13]
Lamiaceae	*Salvia mirzayani* Boiss.	Mor	Abdominal pain Hand and Foot pain	Iran	Leaves	Decoction, Poultice, Maceration	NI	[13]
Lamiaceae	*Salvia rhytidea* Benth.	Mor	Abdominal pain	Iran	Leaves	Decoction	NI	[13]
Lamiaceae	*Ziziphus clinopoides* Lam.	Gole lala, Chai ka	Abdominal pain Headache	Iran	Aerial parts, Leaves, Flower	Decoction, Infusion	NI	[13]
Lamiaceae	*Ziziphus tenuior* L.	Chahi ka	Abdominal pain	Iran	Aerial parts	Infusion	Oral	[13]
Lamiaceae	*Salvia macrocephalon* Boiss.	Mor	Abdominal pain, Angina pectoris	Iran	Aerial part, Seeds	Decoction, Poultice, Liniment	Oral	[13]
Lamiaceae	*Salvia mirzayani* Rech.f.	Mor	Abdominal pain, Hands and Foot pain Renal pain Labor pain	Iran	Leaves	Decoction, Poultice, Maceration, Pulverised	Oral	[13]
Lauraceae	*Litsea cubeba* (Lour.) Pers.	Mountain pepper	Abdominal pain	Myanmar	Fruits, seeds	Powder	Oral	[21]

(Table 1) contd....
Family	Scientific Name	CEM/VN	Type of Pain	Region	Part of Plant Used	Method of Preparation	Administration	Refs.
Leguminosae	*Moringa oleifera* L.	Moringa oleifera	Abdominal pain	Nepal	Root	Crushed	Oral	[15]
Liliaceae	*Allium sativum* L.	Garlic	Arthralgia	India	Bulb, seeds	Cooked	Oral	[18]
Liliaceae	Aloe vera	Aloe vera	Headache	India	Leaves	NI	Oral	[18]
Liliaceae	*Allium sativum* L.	Garlic	Arthralgia	India	Bulbs	Curry prepared	Oral	[20]
Lythraceae	Lagerstroemia hypopoeuca Kurz	Andaman	Abdominal pain	India	Leaves	Paste	Oral	[15]
Lythraceae	Leucas aspera (Wild.) Link	Thumba	Myalgia	India	Leaves	Paste	Oral	[17]
Lythraceae	Woodfordia fruticosa (L.) Kurz	Dhakati	Abdominal pain	Nepal	Flower	Crushed	Oral	[17]
Magnoliaceae	Michelia champaca L.	Champak	Eye pain	India	Leaf	Decoction	Topical	[12]
Meliaceae	Azadirachta indica A.Juss	Neem, nirtree or Indian lilac	Myalgia	India	Seed	Maceration	Topical	[15]
Meliaceae	Melia azedarach L.	Chinaberry tree, cape lilac, Pride of India, bead tree, Persian lilac, Syringa berry tree	Abdominal pain	India	Leaf, stem	Juice Paste	Oral	[12]
Meliaceae	Melia azedarach L.	Chinaberry tree, cape lilac, Pride of India, bead tree, Persian lilac, Syringa berry tree	Headache	India	leave	Leaves are stitched to make a cap and worn on head	Topical	[20]
Moraceae	Ficus religiosa L.	Sacred Fig, Bodhi tree, Bodhi tree, pippala tree, peepul tree, peepal tree, aswaththa tree	Angina pectoris	India	Leaf	Powder	Oral	[12]
Moraceae	Ficus racemosa L.	Cluster fig, Indian fig tree, goolar fig	Abdominal pain	Nepal	Plant sap, resin	Cut stem slightly	Oral	[17]
Moraceae	Morus nigra L.	Shah toot	Abdominal pain	Iran	Leaves, Fruits	Raw, Decoction, Infusion, Pulverised	-	[13]
Moringaceae	*Moringa oleifera* L.	Moringa, drumstick tree, horseradish tree, ben oil tree	Abdominal pain	India	Root	Maceration	Oral	[15]
Myrtaceae	Premna barbata Wall.	Premna barbata	Headache	India	Raw fruit	Applied on forehead	Topical	[20]
Myrtaceae	*Psidium guajava* L.	Common guava, lemon guava, yellow guava	Abdominal pain	Nepal	Leaves and bark	Boil	Oral	[17]
Myrtaceae	*Syzygium cumini* (L.) Skeels	Jambolan, Java plum, black plum	Abdominal pain	Nepal	Fruit, seed and bark	Dry (fruit) and pound (bark)	Oral	[17]

(Table 1 contd....)
Family	Scientific Name	CEM/VN	Type of Pain	Region	Part of Plant Used	Method of Preparation	Administration	Refs.
Nitrariaceae	*Peganum harmala L.*	Espantan, Doudny	Abdominal pain, Toothache, Hand and Foot pain	Iran	Aerial part, Leaves, Fruits	Decoction, Maceration, Pou, Raw, Pulverised,	Oral	13
Nyctaginaceae	*Mirabilis jalapa L.*	Marvel of Peru, Galwasi	Myalgia	India	Leaves	Boiled leaves are eaten to reduce body pains	Oral	20
Orchidaceae	*Cymbidium aloifolium* (L.) Sw.	*Cymbidium aloifolium*	Earache	India	Leaves	Maceration	Ear drops	15
Oxalidaceae	*Oxalis corniculata L.*	Creeping wood sorrel, procumbent yellow sorrel, sleeping beauty	Myalgia	Nepal	Whole plant	Crushed	Oral	17
Paeonaceae	*Paeonia emodi Wall. ex Royle*	Dhandra, Chandra	Abdominal pain	India	Leaves, flowers and fruits	NI	NI	22
Papaveraceae	*Fumaria indica* (Hausskn.) Pugsley	Fumitory	Myalgia	India	Whole plant, leaves	Decoction	Decoction of the aerial parts is filtered and the filtrate is used for bathing	[23]
Papilionaceae	*Indigofera heterantha* Brandis	Himalayan indigo	Angina pectoris	Pakistan	Rhizome	Powder	Oral	24
Papilionaceae	*Oxypolis lapponica* (Wahl.)	*Oxypolis lapponica*	Arthralgia	Pakistan	Aerial parts	Decoction	Oral	25
Phytolaccaceae	*Rivina humilis* L.	Dogblood	Dysmenorrhrea	Jamaica	Whole plant	Decoction	Oral	16
Pinaceae	*Pinus kesiya* Royle ex Gordon	Khasi pine, Benguet pine, three-needle pine	Abdominal pain Toothache	Myanmar	Wood resin	Powder	Topical	21
Pinaceae	*Cedrus libani* A.Rich.	Cedar of Lebanon, Lebanon cedar	Abdominal pain	India	Resin, seeds	Cataplasm Decoction Smear	Topical	18
Piperaceae	*Piper betle* L.	Betel leaves, paan	Myalgia	India	Leaves	Maceration	Oral	15
Piperaceae	*Piper clematis* Trel.	Pepper	Toothache	Myanmar	Leaves	NI	Chew fresh leaves	21
Poaceae	*Cynodon dactylo* (L.) Pers.	Bermuda grass, Dhooob, dog's tooth grass, scutch grass	Myalgia	Whole plant	Decoction	Oral	12	
Poaceae	*Stipa arabica* Trim.	Vashi, Kok Kartek	Hand and Foot pain	Iran	Aerial part	Heat	NI	13
Polygonaceae	*Persicaria hydropiper* (L.) Delarbre	Marshpepper knot-wood	Dysmenorrhrea	India	Leaves, stem	Leaves extract	Oral	23
Polygonaceae	*Rheum ribes* L.	Pil goshk	Arthralgia, Kidney pain	Iran	Leaves, stem	Raw, Pulverised, Decoction	NI	13
Polygonaceae	*Persicaria amphibia* (L.) Delarbre	Chusmin	Abdominal pain	Pakistan	Leaves	Infusion	Oral	25
Pteridaceae	*Adiantum capillus-veneris* L.	Siah lengok	Hand and Foot pains	Iran	Aerial parts, Leaves	Decoction, Infusion	Topical	13
Pteridaceae	*Pteropryum aucneri* Jaub.	Karvankosh, Patont	Abdominal pain, Foot pains	Iran	Aerial parts, Leaves, fruits, flower	Decoction, Maceration, Pulverised, Poultice, Condensed	NI	13

(Table 1 contd...)
Family	Scientific Name	CEM/VN	Type of Pain	Region	Part of Plant Used	Method of Preparation	Administration	Refs.
Ranunculaceae	Aquilegia pubiflora	Domba	Toothache	Pakistan	Dried root	Dried	Topical	[25]
	Wall. ex Royle							
Rhamnaceae	Rosa beggeriana	Khar golok	Abdominal pain	Iran	Stem, Fruits	Tablets, Condensed	Oral	[13]
	Fisch							
Rhamnaceae	Amygdalus scoparia	Goatam	Hand and Foot pain	Iran	Leaves, Fruits	Decoction, Infusion, Bath, Poultice	Topical	[13]
	Spach							
Rosaceae	Prunus armeniaca L.	Apricot	Arthralgia	India	Seeds	Seeds along with kernel are burnt to ash	Topical	[23]
Rosaceae	Rubus ellipticus Sm.	Golden Himalayan raspberry	Abdominal pain	Nepal	Root	Crushed	Oral	[17]
Rubiaceae	Adina cordifolia	Kadam	Eye pain	Nepal	Tender leaves and bark	Crushed	Oral	[17]
(Roxb.) Hook.								
	f.							
Rubiaceae	Gaillonia macrantha	Toso	Abdominal pain, Renal pain	Iran	Aerial part, Leaves, Flower,	Decoction, Pulverised, Infusion	Oral	[13]
(Blatt.)	Bodako	Khar tos						
Rutaceae	Citrus medica L.	Citron	Arthralgia, Headache	India	Fruit	Paste	Topical	[15]
Rutaceae	Murraya koenigii (L.)	Curry tree	Eye pain	India	Leaf	Paste	Oral	[12]
Spreng								
Rutaceae	Aegle marmelos (L.)	Bael, golden apple, wood apple	Headache	Nepal	Fruit and leaves	Cut and squeeze the fruit and boil the leaves	Oral	[17]
(Corrêa)								
Rutaceae	Aerva javanica (Burm.f.) Juss. Ex	Kapok bush, desert cotton	Arthralgia	India	Leaves	Paste	Topical	[26]
Schult								
Salicaceae	Salix alba L.	White willow	Leg pain	India	Leaves	Decoction	Oral	[23]
Salicaceae	Salix acmophylla Boiss.	Bid	Myalgia	Iran	Leaves	Heat on embers	Topical	[13]
Sapindaceae	Aesculus hippocastanum L.	Horse chestnut, Buckeye	Back pain	India	Seeds	Oil extract	Topical	[23]
Sapindaceae	Cardiospermum halicacabum L.	Ballon plant, love in a puff	Labor pain	India	Leaves	Juice	Oral	[12]
Sapindaceae	Stocksia brahuica Benth.	Kotour	Abdominal pain Myalgia	Iran	Aerial part, leaves	Poultice	Topical	[13]
Saururaceae	Hyptis suaveolens (L.) Poir.	Pignut, chan	Myalgia	India	Leaves	Decoction	Oral	[26]
Saxifragaceae	Bergenia stracheyts	Khichlay	Abdominal pain	Pakistan	Leaves	Infusion	Oral	[25]
(Hook.f.) Engl.								
Scrophulariace	Verbasca carmanica	Mor, Lu leng	Hand and foot pains	Iran	Leaves	Pulverised	Topical	[13]
Bormm.								
Solanacea	Lycium ruthenicum Murray	Russian box thorn	Abdominal pain	Iran	Fruits	Decoction, Poultice	Oral	[13]
Solanacea	Solanum nigrum L.	Angour toul	Bladder pain	Iran	Aerial part, fruits, leaves	Decoction	Oral	[13]

(Table 1) contd....
In addition, Maleki and Akhani [13] investigated the flora in Iran, where herbs and shrubs are usually used in folk medicine. A remarkable therapy was documented in the same study for the alleviation of muscular, skeletal, and rheumatic pains termed by the local people as “chohzadan.” In this unusual method, the heat arising from burnt plants

Family	Scientific Name	CEM/VN	Type of Pain	Region	Part of Plant Used	Method of Preparation	Administration	Refs.
Solanaceae	Solanum virginianum L.	Surattense nightshade, yellow-fruit nightshade, yellow-berried nightshade, Thai green eggplant, Thai striped eggplant	Toothache	Myanmar	Fruits, seeds	Ashes	Apply ash of burnt fruits and seeds	[21]
Solanaceae	*Capsicum frutescens L.	Chilli pepper	Labor pain	India	Fruit	Paste	Oral	[12]
Solanaceae	Solanum surattense Burm. f.	Neeli Kandiari, Kandiari	Arthralgia	India	Leaves	Leaves soaked in hot mustard oil are fastened on joints	Topical	[20]
Solanaceae	*Solanum tuberosum L.	Potato	Headache	India	Tuber	Paste	Topical	[20]
Solanaceae	Solanum diffusum Roxb	Solanum diffusum	Toothache	Nepal	Fruits	Burn	Inhalate	[17]
Solanaceae	Hyoscyamus maleki-anus Parsa	Kermoshan	Toothache	Iran	Aerial part, seeds	Burn	NI	[13]
Solanaceae	Hyoscyamus paucilis L.	Dantan shan Ker-moshan	Toothache	Iran	Seeds	Decoction, Infusion, Mouthwash	NI	[13]
Taxaceae	Taxus wallichiana Zucc.	Himalayan yew	Abdominal pain	Myanmar	Bark	Paste	Add water to powdered bark, apply as paste	[21]
Tiliaceae	Grewia optiva J.R.Drumm. ex Burret	Grewia optiva	Arthralgia	Pakistan	Leaves, bark	Decoction, bark extract	NI	[27]
Urticaceae	Urtica dioica L.	Common nettle, Stinging nettle	Myalgia	India	Whole plant	Whole plant is rubbed on the body	Topical	[23]
Verbenaceae	Vitex negundo L.	Chinese chaste tree, five-leaved chaste tree, or horseshoe vitex	Myalgia	India	Leaf	Decoction	Topical (bath)	[12]
Verbenaceae	Callicarpa macrophylla Vahl	Callicarpa macrophylla	Throat pain	Nepal	Root	Boil decoction	Oral	[17]
Verbenaceae	Premna barbata Wall. Ex Schauer	Gineri	Abdominal pain	Nepal	Bark, leaves and flowers	Chew (bark) and dip into water (leaves and flowers)	Oral	[17]
Vitaceae	Vitis parvifolia Roxb.	Creeping grape	Renal pain	Pakistan	Fruit, Leaves	Leaves extract	NI	[27]
Zingiberaceae	*Curcuma longa L.	Turmeric	Abdominal pain	India	Rhizome	Paste Maceration	Topical Oral	[15]
Zingiberaceae	*Zingiber officinale Roscoe	Ginger	Abdominal pain	Jamaica	Rhizome	Decoction	Oral	[16]

Keywords: CEN-common English name, VN-vernacular name, NI-not indicated.

pain as respiratory systems disorders, and headaches and body pain as skeleton-muscular system disorder. In this particular survey, commonly used medicinal plants were identified among the Kani tribals (India). Interestingly, pickle was one of the peculiar preparation methods used to cure stomachaches using the fruit Carissa carandas.
Table 2. Analgesic properties of plants.

Family	Plant	Part of Plant used	Model used	Test	Extract Type	Positive Control	Main Findings	Refs.
Amaranthaceae	Cyathula prostrata L. Blume	Whole plant	In vivo	AWT	Methanolic	Acetylsalicylic (10mg/kg) Morphine (10mg/kg)	AWT: It showed maximum inhibitory response (50%) at the dose of 200mg/kg. The inhibition elicited by the extract at 200mg/kg was however lower than that observed for acid at a dose of 10 mg/kg (63%). HPT: It showed a dose dependent effect with maximum inhibition (44%) at the highest dose of 200 mg/kg while Morphine showed a significant protective effect (62% inhibition).	[71]
Amaranthaceae	Celosia argentea L. var. cristata (L.)	Flower	In vivo	AWT	Ethanollic	Diclofenac sodium (50 and 100 mg/kg) Tramadol (5 and 10 mg/kg)	AWT: At a dose of 200 mg/kg and 400 mg/kg, the aqueous extract was effective and showed a % percent-age protection of 51% and 63% respectively.	[72]
Amaranthaceae	Aerva monsoniae	Whole plant	In vivo	FT	Petroleum ether	Diclofenac sodium gel (100 mg/mL)	HPT: The plant extract was an effective analgesic agent at lower dose of 100mg/kg. The animals treated with 250 mg/kg exhibited poor reaction time.	[73]
Anacardiaceae	Antrocaryon klaineanum Pierre	Stem	In vivo	AWT	Methanolic	Paracetamol, 50 mg/kg Morphine, 5 mg/kg	AWT: A decrease in the number of abdominal constrictions induced by acetic acid by 46% at a dose of 600 mg/kg. FT: Oral administration of methanol extract of A. klaineanum significantly inhibited the neurogenic phase of formalin-induced nociceptive response by 59% at a dose 600 mg/kg. HPT: At doses of 400 and 600 mg/kg the latency time increased from 3.29 ± 0.26 s to 21.46±0.27 s and from 3.08±0.14 s to 22.90± 1.00 s (n=7) respectively 3 h after treatment. This increasing of the latency times might be due to the central analgesic effect of the extract.	[46]
Anacardiaceae	Lannea coromandelica (Hout.) Merr.	Leaves	In vivo	AWT	Ethanollic	Diclofenac sodium	AWT: At 50, 100, and 200 mg/kg doses caused a significant reduction in the number of writhing FT: At 50, 100, and 200 mg/kg dose caused a significant dose-dependent inhibition of both neurogenic (0-5 min) and inflammatory (15-30 min) phases	[74]

(Table 2) contd....
Family	Plant	Part of Plant used	Model used	Test	Extract Type	Positive Control	Main Findings	Refs.
Anacardiaceae	Mangifera indica L.	Leaves	In vivo	AWT	Methanolic	Diclofenac Sodium (40mg/kg)	Leaves extract reduced the writhing count from 66.75±2.28 to 29.5±2.72/20 minutes.	[75]
Annonaceae	Annona squamosa L.	Bark	In vivo	HPT	Crude petroleum ether	Pentazocin (50mg/kg)	The maximum activity was observed with caryophyllene oxide (25mg/kg body wt., i.p.) at the 120min time interval, which is comparable to the standard pentazocin. The dose of 25mg/kg body wt., caryophyllene oxide inhibited the writhing response almost to the same degree as aspirin (74.41%).	[76]
Apiaceae	Heracleum persicum	Fruits	In vivo	AWT	Essential oil	Indomethacin (10 mg/kg)	AWT: Oral administration of Heracleum persicum essential oil at doses of 50-200 mg/kg and Heracleum persicum hydroalcoholic extract at doses of 250 and 500 mg/kg significantly reduced acetic acid-induced abdominal constrictions FT: Both extracts significantly attenuated the pain response of the second phase of formalin test.	[77]
Apocynaceae	Ichnocarpus frutescens	Roots	In vivo	AWT	Methanolic	Diclofenac (10 mg/kg)	59%, 51% and 46% inhibition of writhing at 1, 3 and 6 mg/kg dose with much improved level of pain killing effect.	[45]
Aracaceae	Areca catechu Linn.	Seeds	In vivo	HPT	Hydroalcoholic	Pentazocine (10 mg/kg) Aspirin (500 mg/kg)	HPT: A dose of 1000 mg/kg exhibited highest analgesic (54%) at 60 min and which was gradually decreased at 90min. FT: At a dose of 500 mg/kg, it exhibited 92% of during the second phase (20-25min).	[78]
Araceae	Typhonium trilobatum L. Schott	Leaves	In vivo	AWT	Ethanolic	Diclofenac sodium (10 mg/kg)	50% and 65% writhing inhibition at the doses of 250 and 500 mg/kg body weight respectively, which was comparable to the standard drug diclofenac sodium that caused 71% inhibition.	[79]
Aselepiadaceae	Pergularia daemia	Roots	In vivo	HPT	Ethanolic	NI	The highest reaction time was observed for ethanol extract of P. daemia (9.08 sec.) at a dose of 200 mg/kg.	[80]

(Table 2) contd....
Family	Plant	Part of Plant used	Model used	Test	Extract Type	Positive Control	Main Findings	Refs.
Asparagaceae	Sansevieria roxburghiana Schult.	Whole plant	In vivo	AWT	Ethyl acetate, Chloroform, Methanolic	Diclofenac sodium	The ethyl acetate, the chloroform and the petroleum-ether soluble fraction of crude methanolic extract of S. roxburghiana demonstrated significant analgesic activity with writhing inhibition of 63%, 60% and 57% respectively	[81]
Asteraceae	Matricaria pubescens (Desf.)	Whole plant	In vivo	AWT	Crude	Acetyl salicylic acid	Abdominal contraction inhibiting power was observed in mice treated with 200 mg/kg of M. pubescens alkaloids followed by those treated with 100 mg/kg, with percentages of 33.07 and 31% respectively	[82]
Asteraceae	Ageratum conyzoides L.	Leaves	In vivo	AWT	Ethanol	Diclofenac Sodium (250 and 500 mg/kg)	% of writhing inhibition was highest (45%) at a dose of (500 mg/kg)	[34]
Asteraceae	Mikania cordifolia L..	Leaves	In vivo	AWT	Ethanol	Diclofenac Sodium (250 and 500 mg/kg)	% of writhing inhibition was highest (42%) at a dose of (500 mg/kg)	[34]
Asteraceae	Inula cuspidata	Stem Root	In vivo	HPT	Methanolic	Tramadol 10 mg/kg	HPT: The methanol extracts at both the doses 100, 200 mg/kg exhibited a significant effect at 60 and 90 min readings as compared to control. AWT: All the tested extracts of stem and roots significantly exhibited dose dependent reduction in number of writhes within the 30 min of injection of acetic acid	[83]
Asteraceae	Achillea fragrantissima (Forsk.)	Whole plant	In vivo	HPT	Ethanol	Indomethacin (20mg/kg)	HPT: Maximum protection against the thermal stimulus was seen at 90 at a dose of 400 mg/kg of the non-polar extract (81%), which was not statistically different compared to the reference drug (89%) AWT: Maximum protection was observed with a polar extract dose of 400 mg/kg (55%), which was not statistically different than the acetyl salicylic acid reference drug (58%)	[84]
Betulaceae	Alnus nitida (Spach) Endl.	Stem bark	In vivo	HPT	Methanolic	Morphine (10 mg/kg)	HPT: Administration of extract at 50 mg/kg, 100 mg/kg and 200 mg/kg has elevated the latency by 56%, 58% and 61% after 120 min of the test sample administration. AWT: At 50 mg/kg (68%), 100 mg/kg (75%) and 200 mg/kg (79%), the extract exhibited the moderate level of analgesic activity.	[85]

(Table 2) contd....
Family	Plant	Part of Plant used	Model used	Test	Extract Type	Positive Control	Main Findings	Refs.
Buxaceae	Sarcococca saligna (D. Don) Mull.	Fruits	In vivo	AWT	Methanolic	Diclofenac sodium (10 mg/kg)	At a dose of 500 mg/kg, the highest % of writhing inhibition were observed within 10 min.	[86]
Cactaceae	Opuntia microdasys (Lehm.) Pfeiff	Flower	In vivo	AWT	Aqueous	ASL at 200 mg/kg	Doses of 50 (58%) and 100 mg/kg (72%) of aqueous extracts significantly decreased the writhing reflex.	[49]
Capparidaceae	Cleome rutiliflora DC.	Whole plant	In vivo Swiss Albino mice	HPT TFT FT AWT	Methanolic	Morphone (5 mg/kg)	HPT: At the doses of 100 and 200 mg/kg respectively, MECR displayed the significant ability of sustaining the latency of reaction to thermal-induced nociception throughout the 120 min experiment. FT: There were no significant difference in the antinociceptive effect of 100 and 200 mg/kg. FT: a dose-dependent antinociceptive effect in both the neurological (0–5 min) and inflammatory (15–30 min) phase at 100 and 200 mg/kg. AWT: A significant inhibition (39% and 47%) of the writhing response at 100 and 200 mg/kg.	[40]
Chenopodiaceae	Bassia eriophora	Whole plant	In vivo Albino Wistar rats and albino Swiss mice	HPT AWT	Alcoholic	Indomethacin (4 mg/kg bw)	HPT: t 90 min, the mean reaction time for indomethacin of analgesia effect showed 9.18 ± 0.22 (n=5), while 250 and 500 mg/kg B. eriophora showed significant analgesic effect (8.10 ± 0.18 and 8.10 ± 0.12, n=5) respectively. AWT: The indomethacin was shown 86% inhibitions of analgesia, while 250 and 500 mg/kg B. eriophora showed 55% and 68% inhibitions of analgesia respectively	[87]
Cistaceae	Cistus salviifolius L.	Whole plant	In vivo Adult Swiss mice and adult Wistar rat	AWT TFT	Aqueous	Aspirin (150 mg/kg)	AWT: Aqueous extracts of both plants (500 mg/kg) caused significant inhibition of writhes 49% compared to the standard drug aspirine that produced 40% inhibition at 150 mg/kg bw. TFT: Both extracts (500 mg/kg) have maximum effect at 60 min; their effects at 120 min were less than those of the control drug morphine.	[88]
Clusaceae	Garcinia lancefolia Roxb.	Whole plant	In vivo 20-25 g Swiss-albino mice (aged 4-5 weeks)	Peripheral: AWT method Central: TFT	Methanolic	Peripheral: Diclofenac (50 mg/kgbw) Central: Morphine	In peripheral antinociceptive activity, 400 and 200 mg/kg of extract exhibited significant inhibition of writhing with 59% and 49% respectively. In central antinociceptive activity, the extract (400 and 200 mg/kg) exhibited significant analgesic activity having 78% and 90% elongation of reaction time respectively in 90 min.	[35]

(Table 2 contd....)
Family	Plant	Part of Plant used	Model used	Test	Extract Type	Positive Control	Main Findings	Refs.
Convolvulaceae	Rivea hypocrateriformis	Leaves	In vivo	TFT	Ethanolic	Ibuprofen	Doses of 400 mg/kg increased the pain threshold significantly after 30 min, 1,2 and 4 hours.	[89]
Cucurbitaceae	Citrullus colocynthis Schrad.	Immature seeds	In vivo	AWT	Aqueous extract	Acetyl salicylate of lysine 200mg/kg	The immature fruits and seeds possess the highest analgesic properties; the most active of them were immature fruits as well as at 0.1 mg/kg (94%)	[37]
Cucurbitaceae	Momordica dioica Roxb.	Seed	In vivo	AWT	Methanolic	Paracetamol (50 mg/kg) Pentazocine 10 mg/kg	AWT: At a dose of 50 and 100 mg/kg, the extract showed a reduction in number of writhing, which is 4% and 12% respectively. HPT: A dose of 50 mg/kg was found effective at 60 and 90 minutes.	[90]
Cyperaceae	Cyperus rotundus Linn.	Whole plant	In vivo	TFT	Ethanolic	Diclofenac sodium (50 m/kg)	The reaction time (1 to 4 hours) to pain stimulus was increased after crude extract administration (300mg/kg)	[86]
Dilleniaceae	Dillenia indica f. elongata (Miq.)	Bark	In vivo	HPT	Ethyl acetate extracts	Pentazocine 30 mg/kg and 25 mg/kg Indomethacin (10 mg/kg)	HPT: Ethyl acetate extract of D. indica f. elongata (300 mg/ kg) showed significant analgesic activity at 60 min respectively. TFT: D. indica f. elongata (100 mg/kg) possessed significant analgesic activity more than that of standard drug pentazocine at 1 h. FT: D. indica f. elongata (100 mg/kg) extracts were potent than indomethacin and decreased the number of paw lickings at the second phase.	[38]
Dipterocarpaceae	Shorea robusta Gaertn.	Bark	In vivo	HPT	Ethyl acetate extracts	Pentazocine 30 mg/kg and 25 mg/kg Indomethacin (10 mg/kg)	HPT: S. robusta was effective at a dose of (300 mg/ kg) at 30 min. TFT: Ethyl acetate extract of S. robusta (100 and 300 mg/kg) showed significant analgesic activity which was more potent than standard pentazocine from 0.5 h to 1 h. FT: S. robusta at 300 mg/kg was more effective than the indomethacin.	[38]
Fabaceae	Cassia siamea Lam.	Stem	In vivo	HPT	Ethanolic	Morphine (2mg/kg)	At a dose of 200 and 400 mg/kg, the ethanol extract was more effective.	[91]
Fabaceae	Senna stigamea Del. Lock	Leaves	In vivo	AWT	Methanolic	Diclofenac sodium (10 mg/kg) Morphine sulfate (5 mg/kg)	Percentage maximum inhibition of writhing response was 80% at a dose of 400 mg/kg. A combination of drug and the plant extract was found more effective in all three methods.	[92]

(Table 2) contd.
Family	Plant	Part of Plant used	Model used	Test	Extract Type	Positive Control	Main Findings	Refs.
Flacourtiaceae	Scolopia crenata (Wight & Arn.) Clos.	Stem bark and leaves	*In vivo* Swiss albino mice (25-30g)	AWT HPT	Methanolic	Indomethacin (5mg/kg) Morphine (5 mg/kg)	The oral administration of methanol extract of leaf and bark at higher dose of 400mg/kg reduced the number of writhings from 65.33 (induced) to 12.83 (80%) and 17.17 (74%), respectively. An increase in the response latency time at 30 min, which persisted in a dose dependent manner of 200 and 400mg/kg.	[93]
Lamiaceae	Hyptis suaveolens L. Poit.	Whole plant	*In vivo* Male Swiss albino mice (25-30 g)	HPT	Ethanolic	Morphine (5 mg/kg)	AEHS (400 mg/kg) had produced higher latency time at 120 min (after treatment) and mean latency time was 5.30 ± 0.36 s	[36]
Lamiaceae	Mentha rotundifolia L.	Leaves	*In vivo* Swiss albino mice (25-30 g)	AWT	Methanolic	Aspirin (150 mg/kg)	Doses of 200, 400, and 600 mg/kg bw had significantly analgesic effects and dose dependent with inhibition percentages from 79% to 85%. The analgesic effect of the extract (at 600 mg/kg bw) was greater than the Aspirin (150 mg/kg bw)	[32]
Lamiaceae	Stachys lavan dulifolia Vahl.	Whole plant	*In vivo* Young-adult male Swiss mice (28-33 g)	FT CNT	Essential oil	Morphine (3mg/kg)	FT: Higher dose (50 mg/kg) produced significant inhibitory (35.50 ± 4.405) effects on nociceptive face-rubbing behavioral response in the first phase. CNT: All doses (78.50 ± 12.68 and 63.00 ± 9.495; or 59.50 ± 13.57 and 48.50 ± 11.48, (n=6 respectively) inhibited nociceptive behavior in mice.	[43]
Lamiaceae	Mentha arvensis L.	Whole plant	*In vivo* Swiss albino mice of either sex (20-29 g body weight)	AWT	Ethanolic	Diclofenac sodium (25 mg/kg of body weight)	The extract produced 46% and 64% writhing inhibition in mice at oral doses of 250 mg/kg and 500 mg/kg body weights of mice respectively while the standard drug exhibited inhibition of 77% at a dose of 25 mg/kg body weight	[44]
Leguminosae	Dalbegia saxatilis	Leaves	*In vivo* Wistar rats and mice of both sexes weighing 100-150 g and 20-25 g	AWT HPT	Methanolic	Aspirin (300 mg/kg) Morphine (10 mg/kg)	AWT: The extract significantly decreased the number of writhes caused by acetic acid in a dose independent manner. HPT: The methanol leaf extract significantly increased the reaction. At 30 min, there was significant increase in reaction time in the 500 mg/kg and 1000 mg/kg.	[94]
Leguminosae	Albizia lebbeck Benth.	Bark	*In vivo* Long-Evans rats (150-200 g) and Swiss albino mice (25-30 g)	AWT TFT	Petroleum ether, ethyl acetate and methanolic	Aminopyrine (50mg/kg) Morphine (2mg/kg)	AWT: Inhibition of writhing was 52% at 400mg/kg. TFT: % elongation was highest (61.48) using 400 mg/kg at 30 min.	[95]
Leguminosae	Acacia ferruginea DC.	Leaves Bark	*In vivo* Wistar albino rats (180-220 g, Male) and Swiss albino mice (25-40 g)	HPT AWT	Hydroalcoholic	Tramadol (10 mg/kg) Aspirin (5 mg/kg)	HPT: Bark extract at the same dose of 100 mg/kg showed higher inhibition (8.85 ± 0.45 min) of thermal stimulation as compared to leaf extract (6.79 ± 0.29 min) at a response time of 90 min. AWT: The maximum protection was observed at a dose of 100 mg/kg in both leaf (93%) and bark extracts (99%) against acetic acid, which was comparable to standard aspirin (51%).	[96]

(Table 2) contd....
Family	Plant	Part of Plant used	Model used	Test	Extract Type	Positive Control	Main Findings	Refs.
Liliaceae	Polygonatum verticillatum L.	Roots	In vivo	AWT	Methanolic	Aspirin (300 mg/kg) Morphine (10 mg/kg)	AWT: The analgesic response of PR at 200 mg/kg was quite similar to the positive control (77% at 100 mg/kg) FT: At a dose of 200 mg/kg, the extract was effective.	[97]
Malvaceae	Microcos paniculata	Bark, Fruits	In vivo	FT	Methanolic	Aspirin (1.0 mg/l) Diclofenac sodium (100 mg/kg) Tramadol (10 mg/kg)	FT: Bark extract of 400 mg/kg showed the maximum percentage inhibition (78%) of paw licking in mice in the last phase of formalin injection. AWT: The highest percentage inhibition of writhing resulting from treatment with plant extracts (54%) was obtained by fruit extract at 400 mg/kg. TFT: AT 60 min, the maximum effects of bark extracts at 400 mg/kg, and fruit extract at 200 and 400 mg/kg had significant analgesic activities.	[42]
Moraceae	Ficus racemosa Linn.	Whole plant	In vivo	HPT	Ethanolic	Diclofenac sodium 10 mg/kg	At 90 minutes, the percent inhibition of two different doses (100 and 200 mg/kg body weight) was 50% and 57%.	[98]
Moringaceae	Moringa oleifera Lamarck	Leaves	In vivo	FT	Hexane	Naproxen (10 mg/kg)	During phase I, significant effect was observed at a dose of 30 mg/kg resembling the effect of the positive control.	[99]
Myrtaceae	Psidium cattleianum Sabine	Leaves	In vivo	AWT	Hydrolco-holic	Indomethacin (5 mg/kg) morphine (5 mg/kg)	AWT: The inhibition percentage of the number of writhing of acetic acid-induced writhing in mice was 86, 91, 81, 99, and 73% at doses of 60, 80, 100, 200, and 400 mg/kg, respectively. HPT: No analgesic effect on the central nervous system that would contribute to its peripheral analgesic effect.	[39]
Myrtaceae	Syzygium calophyllum Walp.	Bark	In vivo	GMT	Methanolic	Aspirin (150 mg/kg) Penazocine (5 mg/kg)	AWT: The extract displayed profound analgesic activity (6.75 ± 1.38, n=6) at a higher dose (200 mg/kg). HPT: Oral administration of 200 mg/kg methanol extract showed a significant capacity to inhibit the pain sense by 81%. FT: A dose of 200 mg/kg increased the latency period (9.00 ± 0.82 s), thereby increasing the heat tolerance of the mice by 54%.	[100]
Nymphaeaceae	Nymphaea nouchali Burm.f.	Flower	In vivo	TFT	Methanolic	Diclofenac sodium (50 mg/kg) Morphine (25 mg/kg)	TFT: The highest dose (400 g/kg) exhibited effective analgesic effect from 60-120 min. AWT: The methanolic extract produced 60% and 65% writhing inhibition at oral doses of 200 mg/kg and 400mg/kg.	[101]

(Table 2) contd....
Family	Plant	Part of Plant used	Model used	Test	Extract Type	Positive Control	Main Findings	Refs.
Oleaceae	Jasminum sambac L.	Roots	In vivo	AWT	Ethanolic	Diclofenac (10 mg/kg)	At 400 mg/kg, p.o. reduced writhing counts up to 49%.	[102]
Oleaceae	Jasminum abyssinicum Hochst. ex. DC.	Roots	In vivo	AWT	Methanolic	Aspirin (150 mg/kg, 100 mg/kg)	The percentage inhibition for the extract was 38.7%, 70.6% and 66.8% at 50 mg/kg, 100 mg/kg and 200 mg/kg respectively. The extract at doses of 100 mg/kg and 200 mg/kg showed a better effect than aspirin (which had a percentage inhibition of 56%).	[103]
Oleaceae	Nyctanthes arbor-tristis Linn.	Leaves	In vivo	HPT	Petroleum ether extract	Paracetamol (50mg/kg)	Petroleum ether, chloroform and ethyl acetate extracts (50 mg/kg) produced significant inhibition of writhing reaction induced by acetic acid compared to the control group β-Sitosterol (5, 10 and 20 mg/kg, i.p., each) isolated from petroleum ether extract showed comparable activity with standard drug paracetamol.	[104]
Passifloraceae	Passiflora subpeltata Ortega	Leaves	In vivo	AWT	Acetone	Morphine (10 mg/kg)	AWT: At doses of 200 and 400mg/kg reduced the number of writhes to 8.5 ± 0.29, n=3 (51% inhibition) and 3 ± 0.82 (83% inhibition) respectively. At a dose of 400mg/kg showed higher analgesic activity. FT: The extract possessed only mild inhibitory effect deterrent from the licking response at the dose of 200 and 400 mg/kg.	[105]
Pinaceae	Pinus roxburghii Sarg.	Stem	In vivo	TFT	Alcoholic	Diclofenac sodium (50mg/kg)	AWT: Doses of 100, 300, and 500 mg/kg significantly and dependently reduced the number of abdominal constrictions induced in mice. TFT: The extract showed a significant elongation of reaction time after 30 min to 90 min at 500 mg/kg.	[106]
Piperaceae	Piper nigrum L.	Fruit	In vivo	TFT	Crude	Diclofenac sodium (5 mg/kg)	TFT: Piperine exhibited maximum activity after 120 min at a dose of 5 mg/kg. The hexane extract showed maximum analgesic activity at a dose of 10 mg/kg after 60 min. Ethanol extract was effective at doses of 5, 10 and 15 mg/kg. Analgesy-meter: ethanol extract exhibited maximum analgesic activity at a dose of 10 mg/kg after 60 min. HPT: Maximum analgesic effect was noted at a dose of 10 mg/kg after 120 min for piperine. AWT: Piperine and ethanol extract (10 mg/kg) showed 100% protection. Hexane extract exhibited 99% at 10 mg/kg.	[107]

(Table 2) contd....
Family	Plant	Part of Plant used	Model used	Test	Extract Type	Positive Control	Main Findings	Refs.
Rhamnaceae	Ziziphus nummularia	Leaves	In vivo	AWT	Ethanolic	Aspirin 100 mg/kg, morphine 5 mg/kg BW	AWT: A reduced number of writhes was observed with an increased dose of plant extract. TFTP: A dose of 10 mg/kg, the latency time was 09.48 ± 0.34 s, n=6.	[108]
Rhamnaceae	Ziziphus xylopyrus	Stem	In vivo	HPT	Petroleum ether, chloroform and methanolic	Morphine sulphate	HPT: The different dose of methanol extract of Z. xylopyrus showed highly significant effect at 30, 60, 120 and 180 minutes as compared with control group. The chloroform extract 200mg/kg showed a significant activity at 30minute and highly significant activity at 60,120 and 180 minutes. TFTP: The methanol extract of Z. xylopyrus at a dose of 200mg/kg showed peak effect of 13.6±0.173 at 180 minutes	[109]
Rubiaceae	Hedyotis puberula	Whole plant	In vivo	AWT	Methanolic	Indomethacin (5 mg/kg), Pentazocine (30 mg/kg)	AWT: treatment with methanol extract of H. puberula at doses of 200 and 400 mg/kg reduced the number of writhes to 33.83 ± 2.70, n=6 (42% inhibition) and 21.00 ± 0.63 (64% inhibition). The extract dose 400mg/kg registered higher levels of analgesic activity than the positive control. HPT: At 400 mg/kg and 60 min reaction time, the analgesic activity (7.30 ± 0.20 s) of the test extract was higher than the positive control.	[110]
Rubiaceae	Morinda citrifolia L.	Fruits	In vivo	HPT	Ethanolic	Tramadol (30 mg/kg)	The application of 10% of the noni fruit puree concentrate in the drinking water of the mice for a period of 4 days prior to the experiment resulted in a reaction time of 9.2 s.	[111]
Rutaceae	Clausena anisata (Wild) Hook. F. ex Benth	Leaves	In vivo	AWT	Ethanolic	NI	AWT: At a dose of 39 mg/kg, the extract was effective for an interval of 15 min (8.11 ± 0.21, n=6) FT: At a dose of 78 mg/kg, the extract was found more effective (4.82± 0.98) than the standard drug (2.28± 0.22).	[112]
Sapindaceae	Schleicheria oleosa (Lor.) Oken.	Stem	In vivo	FT	Ethanolic	Indomethacin	The extract (400 mg/kg) produced a significant reduction in response time of the animals against pain, from 100 sec in control group to 38 sec	[113]
Scrophulariaceae	Scoparia dulcis L.	Whole plant	In vivo	HPT	Ethanolic	Diclofenac sodium 10 mg/kg	At 90 minutes, the percent inhibition of two different doses (100 and 200 mg/kg body weight) was 55% and 62%.	[98]
Solanaceae	Solanum paniculatum L.	Leaves	In vivo	AWT	Aqueous ethyl acetate	Acetaminophen (90, 180 or 360 mg/kg bw)	Treatment of mice with ethyl acetate partition (300 mg/kg bw) produced approximately 50% reduction in the writhing nociceptive response	[33]

(Table 2) contd....
and charcoal in a grave-like pit is projected toward the body, which is simply covered with a blanket for approximately 45 minutes. This process is also known as “heated on embers.”

3.2. Analgesic Properties of Plants

In the present review, we evaluated various studies in which pain assessments, such as tail-flick test, hotplate test, acetic-induced writhing test, and formalin test were included. The tail-flick test utilizes a spinal reflex that targets the µ1- and δ-opioid receptors, whereas the hotplate test demonstrates the supraspinal reflex mediated by the µ1- and µ2-opioid receptors [28]. Writhing is induced by the intense intrinsic pain produced by the parenteral administration of acetic acid in mice, which persists for a prolonged period of time. The analgesic effect of a test compound is determined upon a decrease in writhing or inhibition of writhing [29].

Plants contain readily available polyphenols, including flavonoids that possess analgesic and anti-inflammatory properties [30]. Flavonoids cross the brain-blood barrier and manage pain using different mechanisms; they mainly affect

Family	Plant	Part of Plant used	Model used In vivo	Test	Extract Type	Positive Control	Main Findings	Refs.
Solanaceae	Schwencia americana L.	Whole plant	In vivo	AWT	Methanolic	Piroxicam (10 mg/kg)	AWT: The percentage inhibition (53.3, 58.0 and 86%) of the extract at 25, 50 and 100 mg/kg, respectively were significant. FT: The percentage pain inhibition between 0 and 10min (early phase) were 44.00, 56.04, and 56% for 25, 50 and 100 mg/kg intra-peritoneal doses. The percentage pain inhibition between 15 and 60 min (late phase) were 33.00, 36.63 and 60%, for 25, 50 and 100mg/kg intra-peritoneal doses of the extract.	[114]
Vitaceae	Vitis vinifera L.	Leaves	In vivo	FT	Ethanolic	Morphine (10 mg/kg)	FT: In the second phase, the middle, highest dose of the extract (200, 400mg/kg) and morphin all inhibited the licking response significantly the licking times were (33.35 ± 2.29 s), (23.79 ± 1.43 s), (20.32 ± 0.52 s), n=5 respectively. AWT: A peak inhibitory effect (66%) was observed at a dose of 400 mg/kg.	[41]
Vitaceae	Cissus repanda Vahl	Stem	In vivo	TFT	NI	Pentazocine (20 mg/kg)	FT: A significant decrease in % inhibition of paw licking response (17.5%) was seen after 24 hours. TFT: Not effective	[48]
Zingiberaceae	Alpinia nigra (Gaertn.) B.L. Burtt	Leaves	In vivo	FT	Methanolic	Diclofenac sodium (5 mg/kg)	FT: The extract at the dose of 200 mg/kg displayed inhibition of the late phase. TFT: It exhibited potent analgesic effect after 30 and 60 minutes of administration at a dose level of 200 mg/kg.	[48]
weight (bw) produced an approximately 50% reduction in the writhing nociceptive response.

In addition, Dewan et al. [34] investigated the analgesic potential of the crude ethanolic extract of two plants, Ageratum conyzoides and Mikania cordifolia. Ethanolic extract of both plants leaves were found to exert significant analgesic effects at a dose of 500 mg/kg-bw when the writhing test was performed; moreover, A. conyzoides was fairly stronger in terms of antioxidant potential. However, the positive control, diclofenac sodium (250 and 500 mg/kg-bw), showed a higher inhibition of writhing compared to the two plants extracts.

Ghosh et al. [35] evaluated the antinociceptive (peripheral and central) activity of the methanolic extract of Garcinia lanceifolia (whole plant). At doses of 200 and 400 mg/kg, the plant extract exhibited high antinociceptive activity. Notably, the plant extract demonstrated 50% and 60% of writhing inhibition at doses of 200 and 400 mg/kg, respectively, whereas the standard (diclofenac) showed 60% inhibition. The central antinociceptive activity was evaluated using the tail immersion method. The crude extract at doses of 200 and 400 mg/kg-bw showed significant analgesic activity, with 90% and 78.31% prolongation in the reaction time, respectively, in the 90 min after the sample was administered. This particular study confirmed that the analgesic effect of the plant was attributed to the presence of numerous flavonoids, saponins, terpenoids, diterpenes, and steroids that inhibited the synthesis of prostaglandins.

In the study by Begum et al. [36], the aerial parts of Hyp Arist suaveolens extracted in 80% aqueous ethanol demonstrated analgesic properties at 400 mg/kg; moreover, the petroleum ether and ethyl acetate extracts exerted remarkable central analgesic effects against heat-induced pain. Naloxone was used to antagonize the action of endogenous opioids; the results demonstrated that the antinociceptive effects of the extracts (400 mg/kg) and morphine (10 mg/kg) were reversed in the hotplate test.

Furthermore, Marzouk et al. [37] evaluated the analgesic properties of an aqueous extract of Citrullus colocynthis fruits and seeds. They found that immature seeds had the highest percentage of writhing inhibition (99%) at a dose of 8 mg/kg. Even at the lowest concentration (0.1 mg/kg), the percentage of writhing inhibition was 94% for the immature fruits. This demonstrates the strong analgesic capacity of these immature fruits and seeds; however, the active compounds (alkaloids, iridoids, flavonoids, steroids, etc.) change according to the maturation process of the fruits.

When evaluating the analgesic effects of the stem bark extracts of Dillenia indica f. elongata and Shorea robusta, Singh et al. [38] performed three tests: the hotplate test, tail-flick test, and formalin-induced pain test, in rats. The hotplate test confirmed the analgesic properties of the ethyl acetate extracts of D. indica f. elongata and S. robusta (300 mg/kg) at 60 and 30 minutes, respectively. Interestingly, the tail-flick test revealed that the analgesic effect of the ethyl acetate extract of S. robusta (100 and 300 mg/kg) was greater than that of the positive control (pentazocine) after 30 minutes. The formalin-induced pain test demonstrated that both plant extracts were more potent than the standard (indomethacin) during the second phase (15-30 min), as the number of paw lickings was significantly reduced. Thus, this study confirmed that ethyl acetate extracts of both plants have central and peripheral analgesic activity that can be attributed to the blockade of opioid receptors (κ, μ, and δ), prostaglandins, and histamine.

In the study of Alvarenga et al. [39], the hydroalcoholic extract of the leaves of Psidium cattleianum was screened for in vivo analgesic activity. The results revealed that, in the acetic-induced writhing test, the extract had the highest percentage of inhibition (99%) at a dose of 100 mg/kg compared to the standard drug (indomethacin). Nonetheless, the hotplate test did not show any central analgesic effect. Cleome rutidosperma, which originated in Southeast Asia, is a medicinal plant used in folk medicine. The plant was tested for its analgesic effect, and positive results were obtained in different tests. Specifically, in the hotplate test, at a dose of 200 mg/kg, the methanolic extract of the plant (13.22 ± 0.52, n=5; 53.52%) could sustain the latency time at 30 minutes; this result was comparable to that of the positive control morphine (5 mg/kg; 15.35 ± 0.32, n=5; 67.27%). The results of tail-flick test showed no significant differences in the analgesic effects of the plant extract at the two doses (100 and 200 mg/kg), compared to the standard drugs. In the formalin-induced paw lick test, investigators found that, with the methanolic extract of the plant, the number of paw licks was significantly decreased in both the neurological and inflammatory phases, compared to the positive control. At the same doses, in the acetic-induced writhing test, the extract showed significant inhibition (40% and 47%, respectively) in a dose-dependent manner [40].

Furthermore, the effects of the hydroalcoholic leaf extract of Vitis vinifera (grapevine) were evaluated in the acetic-induced writhing test and formalin-induced paw lick test in mice. The results demonstrated that the extract at dosages of 100, 200, and 400 mg/kg-bw significantly decreased the acetic-induced writhing by 48%, 58%, and 68%, respectively. However, the low percentage of inhibition (50%) suggests that it is not a centrally-acting analgesic. Remarkably, the extract causes a dose-dependent inhibition of formalin-induced pain in the second phase [41].

Aziz [42] evaluated the analgesic properties of the methanolic extracts of the fresh bark and fruits of Microcos paniculata, which has been traditionally used in Bangladesh to treat several diseases such as fever, diarrhea, dyspepsia, heat stroke, colds, hepatitis and wounds. In the formalin-induced paw lick test in mice, it was observed that both extracts (400 mg/kg) showed an increase in the percentage inhibition of paw licking (with the highest inhibition at 78%) from the acute phase to the delayed phase; however, the percentage inhibition of paw licking was lowered in the late phase for the fruit extract. In the writhing test, the extract displayed a significantly higher percentage inhibition of writhing compared to the standard drug (diclofenac sodium, 100 mg/kg). Moreover, the fruit extract showed the highest percentage inhibition of writhing (54%) at 400 mg/kg. However, in the tail immersion test, the tramadol group (positive control group) showed a significant increase in latency after 30 minutes, compared to the plant extract.
Barreto et al. [43] tested the analgesic effect of the extract of *Stachys lavandulifolia* essential oil, which is commonly used to treat orofacial pain in Turkish traditional medicine. Orofacial pain was induced using formalin in the perinasal area of a rat. The same process was repeated using capsaicin. The essential oil extract caused a decrease in the face-rubbing behavior induced by formalin. At elevated doses of the essential oil extract (50 mg/kg), the inhibitory effect was observed in both phases. Further, it was highlighted that the inhibition in both phases of the formalin test by monoterpenes may be attributed to the blockade of the voltage-dependent sodium ion channels (thus stabilizing the excitable membrane) or the involvement of the descending modulatory pain systems. The capsaicin test demonstrated strong analgesic activity at all doses. This model is relevant to the activation of the capsaicin vanilloid receptors, which elicit axon reflex vasodilation.

Moreover, *Mentha arvensis*, commonly known as wild mint in India and Bangladesh, was analyzed for its pain-relieving effects. The effects of the ethanolic extract of the plant were evaluated using the acetic-induced writhing test in mice. At oral doses of 250 and 500 mg/kg-bw, the extract displayed 46% and 64% writhing inhibition, respectively, whereas the standard drug, diclofenac sodium, exhibited 77% inhibition at a lower dosage of 25 mg/kg [44].

The root of the climber, *Ichnocarpus frutescens*, which originated in India, was evaluated for its analgesic efficacy. The methanolic extract of the root demonstrated positive analgesic effects against acetic-induced writhing; furthermore, it exhibited nociceptive peripheral pain effects and the highest percentage of inhibition (59%) at a dose of 1 mg/kg in an *in vivo* animal model. Therefore, the study confirms the role of the methanolic root extract of *Ichnocarpus frutescens* in the management of pain in arthritis, comparable to the compound dexamethasone-like phystosterol property [45].

The indigenous African plant, *Antrocaryon klaineanum*, is traditionally used for the treatment of pain. Fongang et al. [46] assessed the analgesic properties of the methanolic extract of the stem bark in a rat model. In the acetic-induced writhing test, at a dose of 600 mg/kg, the extract caused a significant decrease in abdominal constriction at a percentage of 45%. In the formalin test, the plant extract inhibited the nociceptive response by 59% at the highest dose (600 mg/kg). In the hotplate test, at doses of 400 and 600 mg/kg, the extract caused an increase in the latency time, which explains its central analgesic properties. The experiments revealed that the plants could be used to treat acute and neurologic pain.

Sinomenium acutum is used in Chinese herbal medicine to treat rheumatoid arthritis. Sinomenine, a phytochemical compound isolated from the root of *Sinomenium acutum*, is responsible for its analgesic potential in relieving neuropathic pain. Gao et al. [47] confirmed this by performing the hotplate test and tail-flick test. The results of the hotplate test showed a latency time of 30 min at a dose of 40 mg/kg. In the tail-flick test, a change was observed at 30, 60, and 90 minutes using the same dosage. Harisha et al. [48] evaluated the analgesic effect of the folklore medicinal plant *Cissus repanda*, which originated in Orissa. The effects of the root and stem extracts were evaluated in the formalin-induced

![Fig. (2). Plant part used for analgesic activity.](image-url)
pain test and tail-flick test. The root extract was effective in reducing the paw licking episodes in both phases. Nevertheless, the stem extract of the plant failed to antagonize this effect and no change was seen in the tail-flick test. The aqueous flower extract of *Opuntia microdasys* (100 mg/kg) reduced pain by inhibiting prostaglandin synthesis. Furthermore, the abundance of polyphenols and, especially, flavonoids, such as kaempferol (159±3 µg/g extract, n=6) and isorhamnetin (14 368±28 µg/g extract, n=6), in the *O. microdasys* flowers could be correlated with this significant pain-relieving activity [49].

In an experimental randomized study, complex behavior was observed when patients suffering from chronic pain due to fibromyalgia inhaled cannabinoids; only a minimal analgesic response was observed after a single inhalation. However, further detailed studies are necessary to determine if this could be used as a long-term treatment to manage pain [50]. Based on the reviewed literature, leaves (27.5%) (Fig. 1) were the most common plant part studied for their analgesic activity, followed by stem/barks (24.6%) and whole plants (24.6%) (Fig. 2). Other parts, such as seeds and flowers, as well as multiple plant parts, were the least used. This is explained by the fact that leaves are more available, compared to other plant parts, and their plucking would cause no severe harm or impair the survival of the plant or tree, as harvesting the root would [51]. Different types of extraction solvents were used for the different analgesic tests. The most frequently used extraction solvent was methanol (34%), followed by ethanol (29%). Other solvents, such as ethyl acetate (7%), petroleum ether (6%), hydroalcoholic (5%), crude (4%), aqueous (4%), alcoholic (3%), hexane (3%), essential oil (2%), and acetone (1%), were less frequently used (Fig. 3).

3.3. Bioactive Constituents

Several studies have reported the pharmacological properties, including analgesic and anti-inflammatory effects, of plants utilized for their therapeutic benefits; the effects mentioned in these studies were supported by the presence of phytochemicals. Since ancient times, the most common and natural remedy for the treatment of pain was opium. Greek and Roman medical practitioners used opium as a pain reliever and sleep inducer. From the plant *Papaver somniferum*, bioactive compounds, such as morphine, codeine, and thebaine, were derived. Researchers have found that opioid analogs evoke pain relief by the activation of opioid receptors such as the mu opioid peptide receptor. However, several side effects, such as constipation, respiratory problems, depression, and tolerance, were also attributed to opioid use [52]. *Mitragynine speciosa*, which originated in Thailand, was screened and an alkaloid called mitragynine was found. This compound displayed analgesic, muscle-relaxant, and anti-inflammatory properties. Nevertheless, its administration at high dosages was linked to anorexic effects, tolerance, and unpleasant withdrawal effects. Further, another compound, salvinorin A, derived from the plant *Salvia divinorum*, was found to be a kappa opioid peptide receptor agonist; this compound was previously used to aid in childbirth [53]. Quintans-Júnior *et al.* [54] demonstrated the analgesic activity of the monoterpene citronella from the plant *Corymbia citriodora*; its effect is also mediated via the opioid system.

Opioid peptides, such as beta-endorphin, enkephalin, and diamorphine, are broadly dispersed in the hypothalamus, brain, and spinal cord. Opioid peptides bind to opioid receptors (mu, delta, and kappa receptors) to diminish the release of nociceptive substances and cause a strong analgesic effect. The aromatic monocyclic monoterpene, *p*-cymene, which is naturally present in the volatile oils of certain plants, was antagonized by naloxone in a tail-flick test [55]. Furthermore, menthol from peppermint is commonly utilized for the relief of pain due to injuries and arthritis. Naloxone and nor-BNI serve as antagonists against the antinociceptive effect of menthol [56]. Quercetin, which is one of the major flavonoids present in allium species, was found to mitigate cancer
pain and neuropathic pain in diabetic patients through an opioid-dependent analgesic mechanism [57]. Capsaicin, the dominant ingredient present in hot peppers or capscicum, was suggested to elevate proopiomelanocortin mRNA levels in the arcuate nucleus of rat models, suggesting that the analgesic properties of capsaicin are linked to the cerebral opioid system [58].

Indrayoni et al [59] studied the metabolic profile of Justicia gendarussa. The ethanolic extract of the Justicia gendarussa leaves was tested for its analgesic effect using the acetic-induced writhing and hotplate tests; positive results were obtained. This extract is traditionally used to treat rheumatic pain; the bioactive components present include friedelin, β-sitosterol, lupeol, apigenin conjugates, and justidrusamides A-D. Lupeol, isolated from the stem of Diospyros mespiliformis, displays pain-relieving properties [60]. It mediates the inhibition of interleukin-1 beta and tumor necrosis factor alpha synthesis. Likewise, fridelin, found in Azima tetracantha, and ursolic acid, found in Cissus repens, both displayed analgesic and anti-inflammatory activities [61, 62].

Calotropis gigantea leaves were used by the Bhil tribe in India to treat body pain [23]. Studies have reported that the leaves contain calotropigen, calactin, calotocin, calotropin, taraxasteryl acetate, beta-sitosterol, stigmasterol-alpha, and beta-amyrin [63, 64]. Mimosa pudica is an indigenous plant used for the treatment of arthritis in India, headaches in Panama, and stomach pain in Mexico [65]. The aqueous extract of the plant demonstrated antinociceptive activity in the hot-plate test, tail-flick test, and acetic-induced writhing test. This extract contained beta-sitosterol, leucoanthocyanidin, dimethyl crocetin, quercetin, luteolin derivatives, mimosainic acid, and mimosinamine [66]. Further, Chan et al. (Chan et al., 2016) reported that the fruits of Vitis trifolia were used to treat headaches, migraines, and rheumatism in Asian regions. They reviewed the compounds that demonstrated analgesic potential and identified the presence of flavones, such as glycosides, luteolin, ursolic acid, and m-hydroxybenzoic acid, and flavonoids, such as casticin, vitexin, artemetin, corniferdaldehyde, and vanillin.

In a recent review, [67] gave a detailed account of the pharmacological and remedial activity of several species of mushrooms. They confirmed the effects of the following species together with their respective bioactive compounds: Pleurotus pulmonarius (β-glucans), Pleurotus floridus (hydroethanolic extract), Pleurotus eous (methanol and aqueous extract), Agaricus brasiliensis (fucogalactan), Agaricus bisporus var. hortensis (fucogalactan), Agaricus macrospores (agaricoglycrides), Corydalis versicolor (polysaccharopeptides), Cordyceps sinensis (corydmin), Termotomycetes albulominosus (crude saponin and polysaccharide extract), Inonotus obliquus (methanol extract), Phellinus linteus (ethanolic extract), Lactarius rufus (soluble β-glucans), and Grifola frondosa (agarucoglycrides).

Wang et al. [68] studied the progress of analgesic components commonly used in traditional Chinese medicine and compiled all the compounds that were shown to produce a positive analgesic effect in vivo. The different compounds obtained from plants were categorized as alkaloids, flavonoids, terpenes, aromatic compounds, coumarins, and lignans. The following 39 alkaloids compounds, coumarins, and lignans. The following 39 alkaloids were reported: trilobine, patmatine, tetrandrine, berberine, rhoifoline A, dicentrine, govanadiene, sinomenine, tetrahydropalmatine, gelsemine, coronaridine, rataecarpine, mitragynine, harmin, 21-O-syringoylantirhine, angeline, antihime, harmane, norharmane, mesaconitine, yunaconitine, lappedaconitine, bullatine A, aconitine, guiwuline, incarvilleanine, 8-O-ethylaconosine, aconcarnisulfonine A, oxymatrine, spectaline, huperzine A, matrine, capsacin, scotanamine B, skimmianine, veratraline A, veratraline B, veratraline C, and isomurrayafoline B. As for the flavonoids, 16 compounds were screened, including gossypin, hyperin, chrysirin, lycopene, eupatilin, acacetin, ellagic acid, quercetin, rutin, kaempferol, hesperidin chalcone, hesperidin, curcumin, kempferol-3, 4′-di-O-L-rhamno-pyranoside, and myricitrin. The terpenes consisted of 1,8-cineole, p-cymene, menthol, paoniflorin, borneol, swertiamarin, geniposide, geraniol, 6-gingerol, and myrtenol. The aromatic compounds were paonol, divaricateol, cinnamaldehyde, sinapyl alcohol, and caffeic acid. The ten coumarins were as follows notopoterol, columbianadin, daphnetin, decursinol, 7-hydroxycoumarin, osthole, alf biflorin, scopoletin, fumaric acid, and embelin. Finally, the only lignin was liriodendrin.

In India, spices are one of the pillars of tradition and are widely used in every Indian kitchen. Interestingly, in addition to providing taste and aroma, spices were found to be medically beneficial. Turmeric, which is also known as the golden spice, was found to cure rheumatic pain and gastrointestinal pain and have strong wound healing properties. In vivo, in vitro, and clinical studies have confirmed the efficacy of the different extracts of Curcuma species in osteoarthritic patients. The patients showed significant improvement in terms of pain relief, physical movement, and quality of life after the administration of curcumin. A decrease in the use of concomitant analgesics and side effects was also reported. In vitro research determined that curcumin possibly inhibits the apoptosis of chondrocytes, reduces the release of proteoglycans and metal metalloproteases, and suppresses the expression of COX, prostaglandin E2, and inflammatory cytokines in chondrocytes [69].

Ginger has been traditionally used as a painkiller. This is of interest as it is suggested that ginger can heal multiple types of pain. Ginger ointments are prepared by crushing ginger and then adding water (a little at a time); this preparation is then applied to the forehead to relieve headaches. Applying the same ointment to the gum helps alleviate toothaches. A few drops of ginger juice instilled into the ear can alleviate earaches. New compounds isolated from ginger rhizomes include cassumurins A, B, and C, which are found to have strong antioxidant and anti-inflammatory potential. Numerous spices are prospective sources of compounds useful for the treatment of pain. These include curcuma, black cumin, ginger, garlic, saffron, black pepper, and chilli pepper, which contain many effective bioactive compounds, such as curcumin, thymoquinone, pipericine, and capsaicin. These bioactive compounds mainly exert their effects by interfering with various mechanisms such as apoptosis; suppressing proliferation, migration, and invasion of tumors; and sensitizing tumors to radiotherapy and chemotherapy [69, 70].
3.4. Animal-Derived Compounds with Analgesic Properties

Biologically active compounds isolated from animal sources were found to have potent effects. Zadeh-Ardabili and Rad [115] concluded that fish oil and Neptune krill oil could exert a potential analgesic effect by downregulating pro-inflammatory cytokines. Results showed that 500 mg/kg of fish oil and Neptune krill oil reduced the number of writhes by 22.5% and 50%, respectively, in the acetict-induced writhing test in mice. The analgesic effect of the crude petroleum ether and ether extracts of electric ray fish (Narcine brunnnea) was assessed using the hotplate test and tail clip method in rats. The hotplate test, the petroleum ether extract and ether extract displayed a basal reaction time of 2.150±0.043 and 2.300±0.058 at 0 min to 6.102±0.037 and 8.783±0.070 at 120 min, respectively. In the tail clip method, a significant increase in the basal reaction time of 6.817±0.031 in petroleum ether and 8.852±0.043 in ether extract was observed at 120 min (P<0.05), compared to the control groups (2.233±0.061). The compounds, which are present in the crude extract of the electric ray and are responsible for its analgesic properties, were identified as 3, 5- dihydroxy phenyl acetic acid, N-methyl 2, 3- dihydro 3- but-2- enyl indole 5-sulfonic acid, and 3-but-2 enyl indole-5-sulfonic acid. Interestingly, the same compounds were also identified in other marine sources, such as herring, mackerel, cod liver oil, and shark liver oil [116].

Animal venoms are definite reservoirs for drug discovery and the enhancement of pharmacological tools [117]. Leite dos Santos and colleagues [118] investigated the antinociceptive potential of Micrurus lemniscatus venom by performing the writhing test, formalin test, and tail-flick test in vivo. Oral administration of a dry crude extract of M. lemniscatus at a dose of 19.7-1600 µg/kg caused a significant inhibition of the abdominal constriction induced by acetic acid. In the formalin test, oral administration of 1600 µg/kg of the extract caused an analgesic effect in both the early and late phases in the central mechanism. An orally administered dose of 177-1600 µg/kg of venom extract enhanced the reaction time in the tail-flick test; this effect lasted for 5.5 hours. The M. lemniscatus venom acts in the opioid system via the µ-opioid receptor.

Saez and Herzig [119] reviewed the versatile repertoires of peptides in spider venom and their therapeutic effects for medicinal application. Some of the pain-relieving peptides are Pn3a (Pamphobetous nigricolor), Cd1α (Ceratogyrys darlings), protoxin-III (Thrixopelma pruviens), Cox1 (Ceratogyrys marshalli), Gptx1 (Grammastola porteri), and Phx1β (Phoneutria nigriventer) [120-129].

The spider neurotoxin, Phx1β-6, is patented as an antinociceptive agent (Phx1β). The analgesic effects were assessed using the formalin test in Wistar rats pre-treated with Phx1β (100 pmol/site); the nociceptive behavior was reduced by 72.0±7.8% (n=4-12 per group). Multiple isoforms of Phx1β have demonstrated to have analgesic potency, including PnTx3-3, PnTx3-4 and PnTx3-5 [127]. However, adverse effects, including body shaking and serpentine-like tail movements due to the high dose, have been documented [127]. Similar results demonstrating the synergistic analgesic activity of Phx1β in combination with the TRPV1 blocker were confirmed in animal studies [130]. Furthermore, Deuis et al. [124] revealed that the original Gptx1 peptide from tarantula exerted analgesic effects when administered locally, but not systemically, as evaluated in an ODI-induced spontaneous pain rat model. Another novel neurotoxin, Hwntoxin-XVI (HWTX-XVI), extracted from the venom of the Chinese tarantula, Ornithoctonus huwena, was tested for its pain relief properties using the formalin test and hotplate test in vivo. A dose of 112.7 nmol/kg was intraperitoneally injected and the effect of the neurotoxin was evaluated in the formalin test; it was observed that pain was reduced only in the second phase. In the hotplate test, an acute thermal pain model was used; a dose of 56.3 nmol/kg of HWTX-XVI showed slight analgesic activity with a maximum effect of 68±7% (n=8) from 0.5 to 1 hour after injection. A plantar incision rat model was used to test the analgesic effect of the venom on mechanical allodynia. Intramuscular infusion of venom at a dose of 56.3 nmol/kg displayed a significant reduction of post-incision allodynia, reaching its maximum effect at 2.5 hours [131].

In a study by Maatooug et al. [132], a new scorpion toxin, Buthus occitanus tunetanus (BotAF), was analyzed for its potent analgesic effect in rodents. The antinociceptive writhing test revealed a positive analgesic effect up to 50%, even after 90 min after the BotAF (5 mg/kg; intraperitoneal) injection. This result also indicated that BotAF is a 2.3-fold stronger analgesic compound than the standard drug beta-endorphin for viscera-somatic pain. BotAF was tested using the hotplate method to evaluate its efficacy in reducing acute somatic nociception. The same dose had a maximum effect at 60 min after intraperitoneal injection. The analgesic activity was further evaluated using the tail-flick test and formalin test. The results of the tail-flick test revealed that a maximal antinociceptive effect was obtained at 60 min and was still significant up to 120 min after injection. The formalin test suggested that BotAF acted on both phases when injected locally; moreover, on average, BotAF was shown to be more efficient (2-fold increase) than morphine sulfate. Furthermore, the venom of scorpion Buthus martensii Karsch is traditionally used to treat several diseases; it has also been used as a painkiller. The peptide BmK AGAP-SYPU2 was assayed using the mouse-twisting model (pain in the internal organs) and the hotplate test (pain in the limbs) in vivo. In the mouse-twisting model, the peptide was intravenously injected at different doses; the maximum dose (0.35 mg/mL) showed an analgesic effect. The hotplate test demonstrated that 0.35 mg/mL of BmK AGAP-SYPU2 had a stronger analgesic effect than the positive control (morphine; 1.5 mg/kg). Therefore, the neuropeptide exhibited a powerful analgesic effect against both visceral and somatic pain [133].

Bee venom has been used in oriental medicine to treat several diseases and relieve pain through a chemical acupuncture point, termed apipuncture [134]. Shin et al. [135] studied the effectiveness of bee venom acupuncture for reducing pain and disability in subjects suffering from chronic lower back pain using a randomized, sham-controlled, triple-blind, two-group parallel clinical trial. Sixty participants
were randomly divided into a bee venom acupuncture group and a sham control group. In total, six acupoints (0.1 mL BVA for each acupoint) were injected for an interval of 4 weeks. Both groups responded positively without any adverse reactions and medical interventions showed improvements in pain intensity; thus, it was concluded that this therapy can be considered safe for managing pain. Jeong et al. [136] attempted to enhance the efficiency of bee venom acupuncture by loading the venom into biodegradable poly(d,l-lactide-co-glycolide) nanoparticles (BV-PLGA-NPs) using a water-in-oil-in-water-emulsion/solvent-evaporation technique. A formalin rat test was conducted and bee venom was injected into the Zusanli acupuncture, which significantly reduced pain behavior in the late phase; the effect lasted for approximately 12 hours.

Several bioactive compounds have been identified from amphibian skin secretions. Analgesin-HJ and analgesin-HJ (15T) are two novel analgesic compounds found in the skin of the tree frog *Hyla japonica*. Multiple tests, including the acetic-induced abdominal writhing test, formalin test, and thermal pain test, confirmed the efficacy of the compounds. In the acetic-induced writhing test, analgesin-HJ (1.25, 2.5, and 5 mg/kg) and analgesin-HJ (15T; 1.25, 2.5, and 5 mg/kg) were found to be more potent than the standard drug (morphine; 2.5 mg/kg). An intraperitoneal injection of analgesin-HJ significantly attenuated neurogenic and inflammatory pain responses. In the formalin-induced test, at doses of 1.25, 2.5, and 5 mg/kg, the licking time was reduced by ~106, 90, and 75 seconds, respectively, in a rat model. Applications of both analgesin-HJ and analgesin-HJ (15T) increased the tail-flick latency. The analgesic effect lasted for a minimum of 360 seconds. In the hotplate test, administration at various doses (1.25, 2.5, and 5 mg/kg) increased the latency time to 15, 17.5, and 19 seconds for analgesin-HJ and 16, 17, and 20 seconds for analgesin-HJ (15T), respectively [137].

Recently, a novel compound, anntoxin, has been identified in skin secretions of the amphibian *Hyla annectans* (Jerdon). Different pain tests were carried out in both male and female Kunming mice (20-25 g) using recombinant anntoxin at a dose of 2.5 g/kg. The recombinant anntoxin at a dose of 2.5 g/kg delayed the reaction time to 9 seconds after either 30 or 60 minutes of administration. In the hotplate test, the same dose delayed the reaction time to 22.5 seconds after 60 minutes of administration. In the formalin-induced paw licking test, anntoxin significantly inhibited the response time in the late phase. Lastly, in the acetic-induced writhing test, the analgesic effect of anntoxin was demonstrated as the number of writhings decreased from 72 to 39 with increased doses of anntoxin (0.625, 1.25, and 2.5 mg/kg body weight), compared to the control, which was 90 after 30 minutes of administration [138]. Therefore, it was noted that animal sources contain potent analgesic compounds that can be further evaluated for therapeutic consideration.

4. LIMITATIONS AND FUTURE WORK

In the literature search, certain gaps were noted, which could be reviewed in future studies. First, there was a disparity of information with regard to the traditional use of medicinal plants. Even though the analgesic effects of many indigenous plants were recorded, there was a paucity of information regarding the mode of administration, variety of plants used, dosage, and method of preparation; these details are essential when carrying out ethnomedical studies. It was also found that most studies were conducted in Asian and African regions (Table 1). Furthermore, many studies were rejected as they did not match the inclusion criteria. Correct taxonomic nomenclature, including author citations, allows duplicability and documentation, reducing the risk of misinterpretation [139]. Similar vernacular names are frequently used for numerous species, which are generally not related to each other [140]. Additionally, vernacular names are termed in and within languages, which add further confusion.

Furthermore, it was found that many food plants were traditionally used for their analgesic properties. However, there was no pharmacological validation to critically analyze the data. Therefore, more studies (in vitro, in vivo, and clinical studies) should be carried out using traditional formulations to validate the different pharmacological properties. In the present review, many plants were found to have multiple therapeutic properties along with pain alleviating properties. Other data on the herb-drug interactions can help clarify the pharmacodynamics and pharmacokinetic interactions to limit toxicological issues. Analgesic compounds derived from animal sources remain an issue when it comes to ethics and dietary restrictions.

Maatoug et al. [132] stated that several analgesic compounds were derived from animals; however, to date, ziconotide is the only toxin-derived medicine used in clinics to treat pain. The major challenges posed when translating preclinical trials to therapeutics are: (i) reaching the right potency and selectivity and (ii) providing the correct target accessibility and coverage. Analgesics from venom sources and species require diverse screening strategies that are target-based, toxin-based, and activity-based.

In this review, we found that 24.6% whole plants and 8.7% roots were used to test for analgesics; thus, it should be noted that the extensive use of some plant species may disturb their ecological patterns and populations, leading to extinction. Considerable investigations should be directed to prevent such harm to the ecological patterns of medicinal plants [141]. Eventually, more than half of all hospitalized patients will suffer from pain in the last stages of their lives. Despite the therapies provided to alleviate discomfort and pain, especially for patients with cancer, studies show that 50% to 75% of patients still die in moderate to severe pain.

Preclinical studies aim to discover disease mechanisms and analgesic targets to implement new treatments and provide more sophisticated therapies; however, only a few new such therapies are being practiced in the medical domain. Other challenges include the translation of preclinical research in murine models to clinical studies in patients. Additionally, the complexity of pain makes it difficult to understand the dimensions of pain. Therefore, a better and more detailed comprehension of the role of reward/motivational circuits in pain could promote analgesic drug discovery in a purposeful way [142, 143]. Much work remains to be done to provide effective treatments using natural ingredients in conjunction with advanced technology.
CONCLUSION

In the present review, the pain was described as sensory occurrence; and was explained as an unpleasant sensory and emotional experience attributed to tissue damage, inflammation and other causative factors. Consequently, this multidimensional entity has been associated with multiple aspects, including sensors, cognition, motivation, affection, behavior, and spirituality. The mechanism of pain is complex, but the condition is still perceived as a plague despite being regarded with such significance. The WHO confirmed that approximately 80% of the global population is deprived of proper access to opioid analgesics for the treatment of pain. Despite the fact that opioids and non-steroidal anti-inflammatory drugs, such as morphine and aspirin, have proven efficacy, they are associated with potentially harmful side effects and societal drawbacks. In this review, an attempt was made to critically assess and describe the pharmacological properties and bioactive composition of indigenous plants, some animal species, and animal venom by scrutinizing databases and looking for published articles. It should be noted that the analgesic activities were highlighted and the in vivo results were also compiled. Therefore, it can be concluded that the compounds obtained from these sources can serve as important ingredients in therapeutic agents to alleviate pain once their limitations are assessed and improved upon.

AUTHORS’ CONTRIBUTION

All authors were involved in conceptualization. F. Mahomoodally and T. Joaheer did the data mining. K. Rangasamy and Yansheng Zhang reviewed and edited the manuscript and language check. All authors were actively involved in the preparation of the first draft and editing.

CONSENT FOR PUBLICATION

Not applicable.

FUNDING

None.

CONFLICT OF INTEREST

The authors declare no conflict of interest, financial or otherwise.

ACKNOWLEDGEMENTS

Declared none.

REFERENCES

[1] Hay, D.; Nesbitt, V. Management of acute pain Surgery - Oxford International Edition, 2019, 37(8), 460-466.
[2] King, S.; Chambers, C.T.; Huguet, A.; MacNevin, R.C.; McGrath, P.J.; Parker, L.; MacDonald, A.J. The epidemiology of chronic pain in children and adolescents revisited: a systematic review. Pain, 2011, 152(12), 2729-2738. http://dx.doi.org/10.1016/j.pain.2011.07.016 PMID: 22078064
[3] WHO guidelines on the pharmacological treatment of persisting pain in children with medical illnesses https://www.who.int/medicines/areas/safety/perspainchild/en/
[4] Mun, C.J.; Ruehlman, L.; Karoly, P. Examining the adjustment patterns of adults with multiple chronic pain conditions and multiple pain sites: More pain, no gain. J. Pain, 2019. http://dx.doi.org/10.1016/j.jpain.2019.06.002 PMID: 31201991
[5] Analysist, G.I. Global pain management market to reach US$60 billion by 2015, according to a new report http://www.prweb.com/pdfdownload/8052240.pdf 2013.
[6] Ossipov, M.H.; Morimura, K.; Porreca, F. Descending pain modulation and chronification of pain. Curr. Opin. Support. Palliat. Care, 2014, 8(2), 143-151. PMID: 24752199
[7] Fan, K.W. National Center for Complementary and Alternative Medicine Website. J. Med. Libr. Assoc., 2005, 93(3), 410-412.
[8] Schofield, P. Pain management in older adults. Medicine (Baltimore), 2013, 41, 34-38. http://dx.doi.org/10.1016/j.mpmed.2012.10.012
[9] Bashir, U.; Colvin, L.A. The place of pharmacological treatment in chronic pain. Anaesth. Intens. Care Med., 2013, 14(2), 528-532. http://dx.doi.org/10.1016/j.mpmed.2013.09.005
[10] Jahan, R.; Mandal, R.; Jannat, K.; Rahman, T.; Islam, M.; Shova, N.A.; Rahmatullah, M. An Evaluation of some medicinal plants used to treat pain in Bangladesh. SciFed. J. Headache Pain, 2018, 1(1)
[11] Verkamp, E.K.; Flowers, S.R.; Lynch-Jordan, A.M.; Taylor, J.; Ting, T.V.; Kashikar-Zuck, S. A survey of conventional and complementary therapies used by youth with juvenile-onset fibromyalgia. Pain Manag. Nurs., 2013, 14(4), e244-e250. http://dx.doi.org/10.1016/j.pmn.2012.02.002 PMID: 24315277
[12] Ayyanar, M.; Ignacimuthu, S. Ethnobotanical survey of medicinal plants commonly used by Kani tribals in Tirunelveli hills of Western Ghats, India. J. Ethnopharmacol., 2011, 134(3), 851-864. http://dx.doi.org/10.1016/j.jep.2011.01.029 PMID: 21291981
[13] Maleki, T.; Akhani, H. Ethnobotanical and ethnomedicinal studies in Baluchi tribes: A case study in Mt. Taftan, southeastern Iran. J. Ethnopharmacol., 2018, 217, 163-177. http://dx.doi.org/10.1016/j.jep.2018.02.017 PMID: 29447950
[14] Geboers, B.; Brainard, J.S.; Loke, Y.K.; Jansen, C.J.; Salter, C.; Reijnoveld, S.A.; de Winter, A.F. The association of health literacy with adherence in older adults, and its role in interventions: a systematic meta-review. BMC Public Health, 2015, 15(1), 903. http://dx.doi.org/10.1186/s12889-015-2251-y PMID: 26377316
[15] Chander, M.P.; Kartick, C.; Vijayachari, P. Ethnomedicinal knowledge among Karans of Andaman & Nicobar Islands, India. J. Ethnopharmacol., 2015, 162, 127-133. http://dx.doi.org/10.1016/j.jep.2014.12.033 PMID: 25557035
[16] Picking, D.; Delgoda, R.; Younger, N.; Germosén-Robineau, L.; Boulogne, I.; Mitchell, S. TRAMIL ethnomedicinal survey in Jamaica. J. Ethnopharmacol., 2015, 160, 314-327. http://dx.doi.org/10.1016/j.jep.2015.04.027 PMID: 25929450
[17] Ghimire, K.; Bastakoti, R.R. Ethnomedicinal knowledge and healthcare practices among the Tharus of Nawalparasi district in central Nepal. For. Ecol. Manage., 2009, 257(10), 2066-2072. http://dx.doi.org/10.1016/j.foreco.2009.01.039
[18] Rao, P.K.; Hasan, S.S.; Bhellum, B.L.; Manhas, R.K. Ethnomedicinal plants of Kathua district, J&K, India. J. Ethnopharmacol., 2015, 171, 12-27. http://dx.doi.org/10.1016/j.jep.2015.05.028 PMID: 26023030
[19] Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. Ann. Intern. Med., 2009, 151(4), W65-94. http://dx.doi.org/10.7326/0003-4819-151-4-200908180-00136 PMID: 19622512
[20] Bhutia, H.; Sharma, Y.P.; Manhas, R.K.; Kumar, K. Ethnomedicinal plants used by the villagers of district Udhampur, J&K, India. J. Ethnopharmacol., 2014, 151(2), 1005-1018. http://dx.doi.org/10.1016/j.jep.2013.12.017 PMID: 24365639
[21] Ong, H.G.; Ling, S.M.; Win, T.T.M.; Kang, D.H.; Lee, J-H.; Kim, Y-D. Ethnomedicinal plants and traditional knowledge among three Chin indigenous groups in Natma Taung National Park (Myanmar). J. Ethnopharmacol., 2018, 225, 136-158. http://dx.doi.org/10.1016/j.jep.2018.07.006 PMID: 30026169
A Systematic Review of Traditionally Used Herbs and Animal-Derived Medicines

Current Neuropharmacology, 2021, Vol. 19, No. 4 585

Singh, G.; Rawat, G. Ethnomedicinal survey of Kedarnath wildlife sanctuary in Western Himalaya, India. Indian J. Fundamental Appl. Life Sci., 2011, 1(1), 35-46.

Kumar, K.; Sharma, Y.P.; Manhas, R.K.; Bhatia, H. Ethnomedicinal plants of Shankaracharya Hill, Sinigar, J&K, India. J. Ethnopharmacol., 2015, 170, 255-274.

Jan, H.A.; Wali, S.; Ahmad, L.; Jan, S.; Ahmad, N.; Ullah, N. Ethnomedicinal survey of medicinal plants of Chinglai valley, Buner district, Pakistan. Eur. J. Integr. Med., 2017, 13, 64-74.

Bano, A.; Ahmad, M.; Zafar, M.; Sultana, S.; Rashid, S.; Khan, M.A. Ethnomedicinal knowledge of the most commonly used plants from Deosai Plateau, Western Himalayas, Gilgit Baltistan, Pakistan. J. Ethnopharmacol., 2014, 155(2), 1046-1052.

Choudhary, M.; Kumar, V.; Malhotra, H.; Singh, S. Medicinal plants with potential anti-arithmetic activity. J. Interdisc. Ethnopharmacol., 2015, 4(2), 147-179.

Khan, M.P.Z.; Ahmad, M.; Zafar, M.; Sultana, S.; Ali, M.I.; Sun, H. Ethnomedicinal uses of edible wild fruits (EWFs) in Swat Valley, Northern Pakistan. J. Ethnopharmacol., 2015, 173, 191-203.

Arlan, R.T.; Bektas, N. Antiinflammatory effect of methanol extract of Capparis ovata in mice. Pharm. Biol., 2010, 48(10), 1185-1190.

Gawade, S.P. Acetic acid induced painful endogenous infliction in writhing test on mice. J. Pharmacol. Pharmacother., 2012, 3(4), 348.

Hoodgar, F.; Nasir, S.; Amin, G. Investigation of antinociceptive and anti-inflammatory effects of hydro-alcoholic extract of Securigera varia L. Horizon of Medical Sciences, 2011, 17(1), 12-19.

Rahnama, P.; Montazeri, A.; Huseini, H.F.; Kiankabht, S.; Naseri, M. Effect of Zingerbin officinale R. rhizomes (ginger) on pain relief in primary dysmenorrhea: a placebo randomized trial. BMC Complement. Altern. Med., 2012, 12(1), 92.

Boussoufl, L.; Bouhtennoune, H.; Kebiecbe, M.; Adjeroud, N.; Al-Qaoud, K.; Madani, K. Anti-inflammatory, analgesic and antioxidative effects of phenolic compound from Algerian Mentha menthoides L. leaves on experimental animals. S. Afr. J. Bot., 2017, 113, 77-83.

de Souza, G.R.; De-Oliveira, A.C.A.X.; Soares, V.; Chagas, L.F.; Barbi, N.S.; Paumgarten, F.J.R.; da Silva, A.J.R. Chemical profile, liver protective effects and analgesic properties of a Solanum panniculatum leaf extract. J. Ethnopharmacol., 2019, 210, 129-138.

Dewan, S.M.R.; Amin, M.N.; Adnan, T.; Uddin, S.N.; Shahid-Ud-Daula, A.; Sarwar, G.; Hossain, M.S. Investigation of analgesic potential and in vitro antioxidant activity of two plants of Asteraceae family growing in Bangladesh. J. Pharm. Res., 2013, 6(6), 599-603.

http://dx.doi.org/10.1016/j.jsb.2017.07.003

de Souza, G.R.; De-Oliveira, A.C.A.X.; Soares, V.; Chagas, L.F.; Barbi, N.S.; Paumgarten, F.J.R.; da Silva, A.J.R. Chemical profile, liver protective effects and analgesic properties of a Solanum panniculatum leaf extract. J. Ethnopharmacol., 2019, 210, 129-138.

Dewan, S.M.R.; Amin, M.N.; Adnan, T.; Uddin, S.N.; Shahid-Ud-Daula, A.; Sarwar, G.; Hossain, M.S. Investigation of analgesic potential and in vitro antioxidant activity of two plants of Asteraceae family growing in Bangladesh. J. Pharm. Res., 2013, 6(6), 599-603.

http://dx.doi.org/10.1016/j.jsb.2017.07.003

Ghosh, A.; Banik, S.; Amin, M.N.; Ahmed, J. Evaluation of antinociceptive, antiinflammatory, and membrane stabilizing activities of Garcinia lancifolia Roxb. J. Tradit. Complement. Med., 2017, 8(2), 303-307.

Begum, A.; Sama, V.; Dodle, J.P. Study of antinociceptive effects on acute pain treated by bioactive fractions of Hypsia suaveolens. J. Acute Dis., 2016, 5(5), 397-401.

Marzouk, B.; Marzouk, Z.; Haloui, E.; Fenina, N.; Bouraoui, A.; Aouni, M. Screening of analgesic and anti-inflammatory activities of Citrdulis colocynthis from southern Tunisia. J. Ethnopharmacol., 2010, 128(1), 15-19.

http://dx.doi.org/10.1016/j.jsb.2017.07.003

Singh, P.A.; Brindavanam, N.B.; Kimothi, G.P.; Aeri, V. Evaluation of in vivo anti-inflammatory and analgesic activity of Dillenia indica f. elongata (Miq.) Miq. and Shorea robusta stem bark extracts. Asian Pac. J. Trop. Dis., 2016, 6(1), 75-81.

http://dx.doi.org/10.1016/j.jsb.2017.07.003

http://dx.doi.org/10.1016/j.jsb.2017.07.003

Sanchez, J.G.; Arredondo, P.; Lostao-Arrieta, O.; Pineda, V.; De La Cruz, H.; Vizcaino, S.; Espinosa, J.; Gonzalez, M.; Chacon, A. Antinociceptive and anti-inflammatory activities of Teucrium fruticans. J. Ethnopharmacol., 2014, 154(1), 139-148.

http://dx.doi.org/10.1016/j.jsb.2017.07.003

Sanchez, J.G.; Arredondo, P.; Lostao-Arrieta, O.; Pineda, V.; De La Cruz, H.; Vizcaino, S.; Espinosa, J.; Gonzalez, M.; Chacon, A. Antinociceptive and anti-inflammatory activities of Teucrium fruticans. J. Ethnopharmacol., 2014, 154(1), 139-148.

http://dx.doi.org/10.1016/j.jsb.2017.07.003

Sanchez, J.G.; Arredondo, P.; Lostao-Arrieta, O.; Pineda, V.; De La Cruz, H.; Vizcaino, S.; Espinosa, J.; Gonzalez, M.; Chacon, A. Antinociceptive and anti-inflammatory activities of Teucrium fruticans. J. Ethnopharmacol., 2014, 154(1), 139-148.

http://dx.doi.org/10.1016/j.jsb.2017.07.003

Sanchez, J.G.; Arredondo, P.; Lostao-Arrieta, O.; Pineda, V.; De La Cruz, H.; Vizcaino, S.; Espinosa, J.; Gonzalez, M.; Chacon, A. Antinociceptive and anti-inflammatory activities of Teucrium fruticans. J. Ethnopharmacol., 2014, 154(1), 139-148.

http://dx.doi.org/10.1016/j.jsb.2017.07.003

Sanchez, J.G.; Arredondo, P.; Lostao-Arrieta, O.; Pineda, V.; De La Cruz, H.; Vizcaino, S.; Espinosa, J.; Gonzalez, M.; Chacon, A. Antinociceptive and anti-inflammatory activities of Teucrium fruticans. J. Ethnopharmacol., 2014, 154(1), 139-148.

http://dx.doi.org/10.1016/j.jsb.2017.07.003

Sanchez, J.G.; Arredondo, P.; Lostao-Arrieta, O.; Pineda, V.; De La Cruz, H.; Vizcaino, S.; Espinosa, J.; Gonzalez, M.; Chacon, A. Antinociceptive and anti-inflammatory activities of Teucrium fruticans. J. Ethnopharmacol., 2014, 154(1), 139-148.

http://dx.doi.org/10.1016/j.jsb.2017.07.003

Sanchez, J.G.; Arredondo, P.; Lostao-Arrieta, O.; Pineda, V.; De La Cruz, H.; Vizcaino, S.; Espinosa, J.; Gonzalez, M.; Chacon, A. Antinociceptive and anti-inflammatory activities of Teucrium fruticans. J. Ethnopharmacol., 2014, 154(1), 139-148.

http://dx.doi.org/10.1016/j.jsb.2017.07.003

Sanchez, J.G.; Arredondo, P.; Lostao-Arrieta, O.; Pineda, V.; De La Cruz, H.; Vizcaino, S.; Espinosa, J.; Gonzalez, M.; Chacon, A. Antinociceptive and anti-inflammatory activities of Teucrium fruticans. J. Ethnopharmacol., 2014, 154(1), 139-148.

http://dx.doi.org/10.1016/j.jsb.2017.07.003
A Systematic Review of Traditionally Used Herbs and Animal-Derived flower extract of *Nymphaea nouchali*. *Saudi J. Med. Pharm. Sci.*, 2016, 2(9), 256-261.

Sengar, N.; Joshi, A.; Prasad, S.K.; Hemalatha, S. Anti-inflammatory, analgesic and anti-pyretic activities of standardized root extract of *Jasminum sambac*. *J. Ethnopharmacol.*, 2015, 160, 140-148.

http://dx.doi.org/10.1016/j.jep.2017.02.036 PMID: 28242284

[107] Nirmal, S.A.; Pal, S.C.; Mandal, S.C.; Patil, A.N. Anti-inflammatory activity of *β*-sitosterol isolated from *Nyctanthes arboritoxic leaves*. *Inflammopharmacology*, 2012, 20(4), 219-224. http://dx.doi.org/10.1016/j.ishpm.2011.01-0110-8 PMID: 22207496

[108] Saravanan, S.; Arunachalam, K.; Parmelazhagan, T. Antioxidant, anti-inflammatory and anti-pyretic effects of polyphenols from *Passiflora subspetula* leaves—A promising species of passi-flora. *Int. Crops Prod.*, 2014, 54, 272-280. http://dx.doi.org/10.1016/j.indcrop.2014.01.038

[109] Kaushik, D.; Kumar, A.; Kaushik, P.; Rana, A. Anti-inflammatory activity of *Pinus roxburghii* Sarg. *Adv. Pharmacol. Sci.*, 2012.

[110] June, F.; Azhar, I.; Ali, S.N.; Perven, S.; Mahmood, Z.A. Anti-inflammatory and anti-inflammatory activities of *Piper nigrum* L. *Asian Pac. J. Trop. Med.*, 2014, 7, S461-468.

[111] Goyal, M.; Ghosh, M.; Nagori, B.P.; Sasmal, D. Anti-inflammatory and anti-inflammatory studies of cyclopeptide alkaloid fraction of leaves of *Zizyphus nummularia*. *Saudi J. Biol. Sci.*, 2013, 20(4), 363-371.

http://dx.doi.org/10.1016/j.sjbs.2013.04.003 PMID: 24235873

[112] Mishra, H.; Khan, F.A. A double-blind, placebo-controlled randomized comparison of pre and postoperative administration of ketorolac and tramadol for dental extraction pain. *J. Anaesthesiol. Clin. Pharmacol.*, 2012, 28(2), 221-225.

http://dx.doi.org/10.4103/0970-9185.94892 PMID: 22557747

[113] Joseph, J.M.; Sowndhararajan, K.; Manian, S. Evaluation of anti-inflammatory and anti-inflammatory potential of *Hedyotis puberula* (G. Don) R. Br. ex Arn. in experimental animal models. *Food Chem. Toxicol.*, 2010, 48(7), 1876-1880.

http://dx.doi.org/10.1016/j.fct.2010.04.027 PMID: 20417244

[114] Basar, S.; Uhlenhut, K.; Högg, P.; Schöne, F.; Westendorf, J. *J. Ethnopharmacol.* 2015, 166, 74-78.

http://dx.doi.org/10.1016/j.jep.2015.05.030 PMID: 25771356

[115] Hassan, F.I.; Zezi, A.U.; Yaro, A.H.; Dammalum, U.H. *J. Ethnopharmacol.*, 2015, 171, 49-53.

http://dx.doi.org/10.1016/j.jep.2018.02.002 PMID: 29421592

[116] Hasson, C.A.; Manian, S. *J. Ethnopharmacol.*, 2015, 166, 74-78.

http://dx.doi.org/10.1016/j.jep.2015.03.007 PMID: 25771356

[117] Saha, A.; Ahmad, M. *J. Ethnopharmacol.*, 2015, 166, 74-78.

http://dx.doi.org/10.1016/j.jep.2015.03.007 PMID: 25771356

[118] Faujdar, S.; Sharma, S.; Sati, B.; Pathak, A.; Paliwal, S.K. *Clausena anisata* Fruits. *Saudi J. Med. Pharm. Sci.*, 2012, 5(3), 214-219.

http://dx.doi.org/10.1016/j.sjms.2012.04.003 PMID: 31061802

[119] Iyer, S.K.; Panda, S.; Mohapatra, P.; Patra, P.; Mohapatra, B.; Giri, A.K.; Pm, P.K.; Bhakta, P.; Sengupta, A.; Roy, M. *J. Ethnopharmacol.*, 2011, 137(1), 543-546.

http://dx.doi.org/10.1016/j.jep.2011.06.014 PMID: 21704143

[120] Zadeh-Ardabili, P.M.; Rad, S.K. Risk prediction for Pneumonia in children with asthma: A machine learning method. *Saudi J. Med. Pharm. Sci.*, 2012, 5(3), 214-219.

http://dx.doi.org/10.1016/j.sjms.2012.04.003 PMID: 31061816

[121] Ravitchandiran, V.; Yogamooorth, A.; Thangaraj, M. Assessment of anti-inflammatory and anti-inflammatory properties of crude extracts of *Moringa oleifera*. *J. Ethnopharmacol.*, 2011, 137(1), 543-546.

http://dx.doi.org/10.1016/j.jep.2011.06.014 PMID: 21704143

[122] Advani, S.; Pandit, S.; Sonleman, S.; Rujan, S. *J. Ethnopharmacol.*, 2011, 137(1), 543-546.

http://dx.doi.org/10.1016/j.jep.2011.06.014 PMID: 21704143

[123] Zadeh-Ardabili, P.M.; Rad, S.K. Risk prediction for *M. oleifera*. *J. Ethnopharmacol.*, 2011, 137(1), 543-546.

http://dx.doi.org/10.1016/j.jep.2011.06.014 PMID: 21704143

[124] Advani, S.; Pandit, S.; Sonleman, S.; Rujan, S. *J. Ethnopharmacol.*, 2011, 137(1), 543-546.

http://dx.doi.org/10.1016/j.jep.2011.06.014 PMID: 21704143

[125] Zadeh-Ardabili, P.M.; Rad, S.K. Risk prediction for *M. oleifera*. *J. Ethnopharmacol.*, 2011, 137(1), 543-546.

http://dx.doi.org/10.1016/j.jep.2011.06.014 PMID: 21704143

[126] Advani, S.; Pandit, S.; Sonleman, S.; Rujan, S. *J. Ethnopharmacol.*, 2011, 137(1), 543-546.

http://dx.doi.org/10.1016/j.jep.2011.06.014 PMID: 21704143

[127] Zadeh-Ardabili, P.M.; Rad, S.K. Risk prediction for *M. oleifera*. *J. Ethnopharmacol.*, 2011, 137(1), 543-546.

http://dx.doi.org/10.1016/j.jep.2011.06.014 PMID: 21704143

[128] Advani, S.; Pandit, S.; Sonleman, S.; Rujan, S. *J. Ethnopharmacol.*, 2011, 137(1), 543-546.

http://dx.doi.org/10.1016/j.jep.2011.06.014 PMID: 21704143

[129] Zadeh-Ardabili, P.M.; Rad, S.K. Risk prediction for *M. oleifera*. *J. Ethnopharmacol.*, 2011, 137(1), 543-546.

http://dx.doi.org/10.1016/j.jep.2011.06.014 PMID: 21704143
A new voltage-gated sodium channel inhibitor from venom of the tarantula Theritoxa pruiriens.

Phelix, from spider venom, acts as a TRPA1 channel antagonist with antinociceptive effects in mice. Br. J. Pharmacol., 2017, 174(1), 57-69.

Maetzou, R.; Jebali, J.; Guieu, R.; De Waard, M.; Kharrat, R.; Bot, A.F. BotAF, a new Bothus ocellatus tenuatus scorpion toxin, produces potent analgesia in rodents. Toxicol, 2018, 149, 72-85.

http://dx.doi.org/10.1016/j.toxicon.2018.01.003 PMID: 29373272

Shao, J.-H.; Cui, Y.; Zhao, M.-Y.; Wu, C.-F.; Liu, Y.-F.; Zhang, J.-H. Purification, characterization, and bioactivity of a new anagelse-anain peptide from Chinese scorpion Bothus martensi Karsch. Peptides, 2014, 53, 89-96.

http://dx.doi.org/10.1016/j.peptides.2013.10.023 PMID: 24269605

Kang, S.-Y.; Roh, D.-H.; Yoon, S.-Y.; Moon, J.-Y.; Kim, H.-W.; Lee, H.-J.; Beitz, A.J.; Lee, J.-H. Repetitive treatment with diluted bee venom reduces neuropathic pain via potentiation of locus coeruleus noradrenergic neuronal activity and modulation of spinal NMDA phosphorylation in rats. J. Pain, 2012, 13(2), 155-166.

http://dx.doi.org/10.1016/j.jpain.2011.10.012 PMID: 22217441

Shin, B.-K.; Kong, J.C.; Park, T.-Y.; Yang, C.-Y.; Kang, K.-W.; Choi, S.-M. Bee venom acupuncture for chronic low back pain: A randomised, sham-controlled, triple-blind clinical trial. Eur. J. Integr. Med., 2012, 4(3), e271-e280.

http://dx.doi.org/10.1016/j.ejim.2012.02.005

Jeong, I.; Kim, B-S.; Lee, H.; Lee, K-M.; Shim, I.; Kang, S-K.; Yin, C-S.; Hahn, D-H. Prolonged analgesic effect of PLA2-encapsulated bee venom on formalin-induced pain in rats. Int. J. Pharm., 2009, 380(1-2), 62-66.

http://dx.doi.org/10.1016/j.ijpharm.2009.06.034 PMID: 19577620

Zhu, Y.; Li, Z.; Liu, H.; He, X.; Zhang, Y.; Jin, J.; Che, J.; Li, C.; Chen, W.; Lai, R.; Liu, J. Novel analgesic peptides from the tree frog of Hyla japonica. Biochem. 2014, 59, 38-43.

http://dx.doi.org/10.1016/j.biocombio.2013.10.017 PMID: 24211591

Wei, L.; Dong, L.; Zhao, T.; You, D.; Liu, R.; Liu, H.; Yang, H.; Lai, R. Analgesic and anti-inflammatory effects of the amphibian neurotoxin, amtokin. Biochim. 2011, 93(6), 995-1000.

http://dx.doi.org/10.1016/j.biochim.2010.11.005

Rivera, D.; Allikén, R.; Obón, C.; Alcaraz, F.; Verpoorte, R.; Heinrich, M. What is a name? The need for accurate scientific nomenclature for plants. J. Ethnopharmacol., 2014, 152(3), 393-402.

http://dx.doi.org/10.1016/j.jep.2013.12.022 PMID: 24374235

Bennett, B.C.; Balick, M.J. Does the name really matter? The influence of taxonomic classification on the use of medicinal plants. J. Ethnopharmacol., 2014, 152(3), 387-392.

http://dx.doi.org/10.1016/j.jep.2013.11.042 PMID: 24321863

Sharma, N.; Kala, C.P. Harvesting and management of medicinal plants for commercial and agricultural applications. J. Ethnopharmacol., 2014, 155, 95-126.

http://dx.doi.org/10.1016/j.jep.2014.03.015