Evaluation of three obturation techniques in the apical third of mandibular first molar mesial root canals using micro-computed tomography

Soram Oh, Hiran Perinpanayagam, Daniel J.W. Kum, Sang-Min Lim, Yeon-Jee Yoo, Seok Woo Chang, Woocheol Lee, Seung-Ho Baek, Qiang Zhu, Kee Yeon Kum

Department of Conservative Dentistry, Dental Research Institute, Seoul National University Dental Hospital, Seoul National University School of Dentistry, Seoul, Republic of Korea
Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
Bendilde-St. Margaret’s School, St. Louis Park, MN, USA
Department of Conservative Dentistry, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
Division of Endodontontology, Department of Oral Health and Diagnostic Sciences, University of Connecticut Health Center, School of Dental Medicine, Farmington, CT, USA

Received 18 September 2015; Final revision received 6 November 2015
Available online 6 January 2016

Abstract

Background/purpose: Recent studies have demonstrated a high incidence of isthmuses in mandibular first molar mesial roots, and intratubular mineralization following mineral trioxide aggregate obturation. This study assessed the filling quality of three obturation techniques in the apical 5 mm of mandibular first molar mesial root canals.

Materials and methods: Sixty extracted human mandibular first molar mesial roots with two separate canals that had interconnected isthmuses, were prepared to an apical size of 40/0.06. They were allocated to three groups of 20 roots for obturation by either cold lateral compaction (CLC) or the continuous wave of condensation (CW) that used gutta-percha and AH Plus sealer, or by an orthograde canal obturation using OrthoMTA. The obturated roots were scanned by micro-computed tomography and assessed for the volumetric ratio (%) of gutta-percha, sealer, and OrthoMTA within the main canals or isthmuses in the apical 5 mm area. Measurements were analyzed statistically for differences among three obturation techniques.

Results: In the main canals, filled volume ratios were not significantly different among groups. Within isthmuses, the filled volume ratio for CLC was lower than in CW (P = 0.025) or...
Introduction

The main purpose of root canal obturation is to obtain a three-dimensional seal of the entire canal system that prevents communication between the root canal and periapical tissue.1 However, it is difficult to achieve this goal because of intricate anatomy in the canals. Isthmus are a thin communication between two or more canals within the same root.2 They are inaccessible to instruments and harbor pulp tissue and microbes after root canal treatment.3

Anatomical variations in mandibular first molar mesial root canals have been studied by micro-computed tomography (Micro-CT).4 The reported incidence of isthmuses between two mandibular molar mesial canals ranges from 50% to 85% in the apical 5 mm, when using Micro-CT.5,6 The filling quality of these canals has been studied for various obturation techniques.7 Most root canal filling techniques employ a core material, which is most commonly gutta-percha,1 and a sealer. However, gutta-percha placed by the traditional technique of cold lateral compaction (CLC), is inadequate for filling canal irregularities.8 Therefore, heated gutta-percha techniques were developed, such as warm vertical compaction, thermo-plasticized injection, and continuous wave of condensation (CW), to better replicate irregular canal anatomy.9 Additionally, root canal sealers are used to seal the space between gutta-percha and the canal wall, since gutta-percha does not adhere to dentin. However, most root canal sealers undergo dimensional changes after root canal obturation that compromises their seal.10

By contrast, a superior seal and enhanced biocompatibility can be obtained with mineral trioxide aggregate (MTA).11 Although it was originally developed as a root-end filling material in surgical endodontics, MTA is now widely used for pulp capping, pulpotomy, and perforation repairs and has demonstrated formalin. Sixty teeth were selected with mesial roots with two separate canals extending from the pulp chamber to the apex, as confirmed on radiographs.

Endodontic access preparations were prepared with a No. 330 bur. Working lengths were established by inserting a No. 10 K-file into the mesiobuccal and mesiolingual canals, until the tip of the file was just visible at the apical foramen with a dental operating microscope (OPMI Pico, Carl Zeiss Surgical GmbH, Oberkochen, Germany). Prior to instrumentation, canal curvatures were viewed on radiographs taken from both buccal and mesial directions, with No. 15 K-files inserted into the mesiobuccal and mesiolingual canals.22 Their curvatures (radius and degree) were measured with paint.NET software version 3.5 (dotPDN LLC, Kirkland, WA, USA). The teeth were then randomly divided into three groups of 20, so that there was an equitable distribution of canal curvature (radius and degree) between groups, as confirmed by one-way analysis of variance (Table 1).

The mesial root canals were cleaned and shaped with ProTaper Next Ni-Ti rotary files (Dentsply Maillefer, Ballaigues, Switzerland) according to the manufacturer’s instructions, until the X4 file (apical size 40) reached working length. Between each instrumentation step, the canals were irrigated with 1 mL of 3.5% sodium hypochlorite (NaOCl) solution, delivered in a syringe with a 30-gauge needle (Max-i-Probe needle; Dentsply Rinn, Elgin, IL, USA). After instrumentation was completed, each canal was rinsed with 10 mL of 17% ethylenediaminetetraacetic acid (EDTA) to remove the smear layer, and then flushed with OrthoMTA (P = 0.002). In isthmuses, the gutta-percha volume ratio in CLC was lower than in CW (P = 0.005), although the sealer volume ratio was higher in CW (P = 0.049).

Conclusion: CLC demonstrated lower filling densities in isthmuses in the apical region than either CW or OrthoMTA. Orthograde MTA obturation showed comparable filling quality to gutta-percha with sealer.

Copyright © 2015, Association for Dental Sciences of the Republic of China. Published by Elsevier Taiwan LLC. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
10 mL of 3.5% NaOCl. Finally the canals were cleaned ultrasonically with 3.5% NaOCl by the PerioScan ultrasonic unit (Sirona Dental Systems, Bensheim, Germany) and its exclusive ultrasonic irrigation tip [Endospitze No. 5 tip (ISO 20); Sirona Dental Systems]. The ultrasonic tip was placed as far apically inside the canal as it would go without binding, and then moved up and down 2–3 mm for 30 seconds at low power, according to the manufacturer’s instructions.

Root canal obturation

The prepared root canals were divided into three groups for obturation by three different techniques. In the first group (CLC, n = 20), a standardized 40/0.02 master cone (Meta Biomed, Cheongju, South Korea) was coated with AH Plus sealer (Dentsply, Johnson City, TN, USA) and placed to working length. A Ni–Ti Hyflex finger spreader size FM (Coltene/Whaledent, Mahwah, NJ, USA) was inserted into within 1–2 mm of working length and removed, and then a sealer-coated FM accessory cone (Meta Biomed) was placed. Three to five accessory cones were inserted until the spreader no longer went beyond the coronal third of the canal.

In the second group (CW, n = 20), a standardized 40/0.06 gutta-percha cone (Diadent, Chungju, South Korea) was fitted and trimmed to obtain tug back at 1 mm short of working length, and then coated with AH Plus sealer. A B&L-alpha II tip (B&L Biotech, Ansan, South Korea) was heated to 200°C and then coated with AH Plus sealer. A B&L-alpha II tip (B&L Biotech) was fitted and trimmed to obtain tug back at 1 mm short of working length. A Ni–Ti Hyflex finger spreader size FM (Coltene/Whaledent) was inserted to within 1–2 mm of working length and removed, and then a sealer-coated FM accessory cone (Meta Biomed) was placed. The spreader no longer went beyond the coronal third of the canal. Then, heat was reapplied to the B&L-alpha II tip for 1 second as it was retrieved, and the remaining gutta-percha was compacted with the cold S-Kondensor (Obtura Spartan, Fenton, MO, USA). The coronal portion of the canal was obturated with B&L-Beta (B&L Biotech) using regular type GP pellet (B&L Biotech), and vertically condensed with S-Kondenser.

In the third group (OMTA, n = 20), an orthograde root canal filling was performed with OrthoMTA as previously described. OrthoMTA was mixed with distilled water using the OrthoMTA automixer (BioMTA), as recommended by the manufacturer. The paste was introduced into the canal with the OrthoMTA carrier, and applied to the canal wall using the OrthoMTA compactor, which has a 25/0.02 tip. The compactor was inserted to working length and rotated with a circumferential filing motion at 60 rpm. After obtaining an apical stop, the S-Kondensor was used to compact the material.

All of the canal preparation and obturation techniques were performed by one endodontist (S. Oh.), to ensure consistency. Following their obturation the teeth were stored at 37°C with 100% humidity for 7 days to allow complete setting of sealer (CLC, CW) and OrthoMTA.

Micro-CT scan and image reconstruction

The obturated mesial roots were scanned by high-resolution Micro-CT (Skyscan 1172; Bruker-Micro-CT, Kontich, Belgium) at 100kV and 100μA using a 0.5 mm-thick aluminum filter and 30% beam hardening reduction, which had rotational steps of 0.5° and a cross-sectional pixel size of 14.87 μm. From these scans, cross-sectional images were reconstructed with NRecon software (version 1.6.9.18; Bruker-Micro-CT) to show two-dimensional slices of the internal root canal anatomy. Finally, three-dimensional models were created for volumetric analyses using CTAn (version 1.11.0.0; Bruker-Micro-CT) and CTVol software (version 2.1.1.2; Bruker-Micro-CT).

Canal areas that appeared to be filled with gutta-percha, sealer or OrthoMTA in the Micro-CT images were then verified by careful dissection and stereomicroscopic examination. The 3D volumes that were filled with gutta-percha, sealer, or OrthoMTA and the unfilled spaces of main canals or isthmuses in the apical 5 mm region were obtained by CTAn software (Bruker-Micro-CT). Filled volumes are the sum of gutta-percha and sealer occupied volumes in the CLC and CW obturated canals, and the OrthoMTA volumes in the OMTA group. Total root canal and total isthmus volumes in the apical 5 mm were obtained by summing the filled and unfilled volumes. Additionally, to assess adaptability of the filling material, the void volumes at the interface of the filling material and dentin were calculated.
in the apical 5 mm of the main canals. The frequency of complete and incomplete isthmuses, and the mean total isthmus volumes were compared between groups using the Kruskal–Wallis test.

The filled volume ratio, and the gutta-percha and sealer volume ratios were calculated as a percentage of the main canal or isthmus volumes, for the apical 5 mm of the canals. The interface void volume ratio of the main canal was also calculated as a percentage of the main canal volume for the apical 5 mm of the main canals. The frequency of complete and incomplete isthmuses, and the mean total isthmus volumes (Table 2). In the main canals, there were no significant differences in the filled volume ratios, or gutta-percha and sealer volume ratios between groups (Table 3). However, the CLC canals showed significantly higher interface void volume ratios than the CW (P < 0.001), or OMTA (P = 0.017).

In the isthmuses, the filled volume ratio was significantly lower than that in the main canals for all groups (P < 0.001; Table 3). This was clearly visible in the 3D models obtained from Micro-CT (Figure 1). In isthmuses, the filled volume ratio in CLC canals was significantly lower than that in the CW (P = 0.025) or OMTA (P = 0.002). The gutta-percha volume ratio was also significantly lower in CLC than in CW (P = 0.005), but the sealer volume ratio was significantly higher in CLC than in CW (P = 0.049).

The area ratio of filling materials within isthmuses were calculated from Micro-CT cross-sections and plotted along the apical 5 mm length of the roots (Figure 2). The highest filled areas in CLC canals were at 0.5–0.6 mm and 4.6–4.7 mm from the apex, which coincided with the highest sealer occupied areas. The highest filled areas in the CW canals were at 4–5 mm, and these decreased gradually towards the apex. The highest filled areas in the

Table 2	Type of isthmuses and their total volumes (mean ± standard deviation) in the apical 5 mm of the canals.				
Type of isthmus	CLC	CW	OMTA	Statistical differences	
Incomplete Isthmuses	n	10	10	10	NS
	Volume (mm3)	0.0691 ± 0.0392	0.0652 ± 0.0332	0.0645 ± 0.0312	NS
Complete Isthmuses	number	10	10	10	NS
	Volume (mm3)	0.3098 ± 0.4531	0.3129 ± 0.2447	0.3227 ± 0.2662	NS

CLC = cold lateral compaction technique; CW = continuous wave of condensation technique; OMTA = orthograde obturation using Ortho MTA; NS = not significant; Volume = sum of filled and unfilled volume in each isthmus.

Table 3	Filled and void volumes in the main canals and isthmuses in the apical 5 mm of obturated canals.			
Volume (%)	CLC	CW	OMTA	
Main canal	Filled volume	99.22 ± 0.21a,b	99.72 ± 0.13a,b	99.79 ± 0.38a,b
	Gutta-percha volume	91.70 ± 4.75a	93.13 ± 4.29a	N/A
	Sealer volume	8.04 ± 4.76a	6.55 ± 4.27a	N/A
	Interface void volume	0.77 ± 0.16b	0.27 ± 0.12a	0.19 ± 0.19a
Isthmus	Filled volume	61.15 ± 12.46a,b	80.11 ± 12.99b,a	82.98 ± 9.75b,a
	Gutta-percha volume	43.26 ± 14.32a	71.03 ± 12.68b	N/A
	Sealer volume	17.88 ± 12.05b	9.07 ± 6.03a	N/A

Same superscript lowercase letters in each row indicate no significant differences between obturation techniques (P > 0.05). Different superscript uppercase letters in each column indicate a significant difference in filled volume ratio between main canal and isthmus (P < 0.001). CLC = cold lateral compaction technique; CW = continuous wave of condensation technique; OMTA = orthograde obturation using Ortho MTA; N/A = not applicable.
OMTA were at 0.5 e 1 mm near the apex, and they remained relatively high towards the coronal.

Discussion

This study used high-resolution Micro-CT to compare three techniques for obturating the apical 5 mm of mandibular first molar mesial root canals. The apical 5 mm region was chosen for analysis, since the apical 3–5 mm has been reported to have the highest prevalence of isthmuses.5,26 The mesial root canals were prepared to an apical size of 40, to allow adequate volume and exchange of root canal irrigant,27 and effective disinfection of root canals without impairing remaining dentin thickness.28

OMTA were at 0.5–1 mm near the apex, and they remained relatively high towards the coronal.

The Micro-CT images were effective in distinguishing the filling materials, gutta-percha, sealer, and OrthoMTA, from the surrounding root canal dentin walls and void spaces, as shown in prior studies.19–21 All of the roots showed almost complete filling of the canal space (> 99%) with minimal (< 1%) voids in the main canals, regardless of the obturation technique. When sealer was used (CLC, CW), it filled around 6–8% of the total volume in the main canals, and did not show any significant difference between groups.

Figure 1 Micro-computed tomographic images of obturated mandibular first molar mesial root canals with (A–F) complete isthmuses or (G–L) incomplete isthmuses. (A–C, G–I) Reconstructed 3D images of filled roots with gutta-percha (red), sealer (black), OMTA (orange), and unfilled canal space (green). (D–F, J–L) Cross-sectional images at the level of the solid lines (black) (A–C, G–I). (D) 2.0 mm, 3.2 mm; (E) 1.7 mm, 3.3 mm; (F) 1.2 mm, 2.9 mm; (J) 2.0 mm, 3.4 mm; (K) 2.1 mm, 3.8 mm; (L) 1.6 mm, 4.8 mm levels from the working length. (A, D, G, J) Group CLC. (B, E, H, K) Group CW. (C, F, I, L) Group OMTA. CLC = cold lateral compaction technique; CW = continuous wave of condensation technique; OMTA = orthograde MTA obturation using OrthoMTA.
However, the main canals obturated by CLC had less well adapted fillings with significantly more ($P < 0.05$) interfacial void volume than those obturated by CW or OMTA. There were straight linear voids at the interface between the gutta-percha and dentin in the CLC group. These voids were attributed to spreader tracts that had been shown in a previous study, and would become passageways for bacterial leakage and cause endodontic failure.

In contrast to the main canals, the isthmuses were incompletely filled ($60–85\%$). These intricate canal anatomies were better filled by the warm gutta-percha technique of CW than by CLC, as previously reported. There was significantly more gutta-percha filled volume in the CW filled isthmuses than the CLC filled isthmuses ($P < 0.05$).

Nonetheless, cross-sectional Micro-CT analyses of the CW filled isthmuses showed that there was a progressive decrease in gutta-percha density towards the apex, which may have been due to insufficient softening of gutta-percha near the apex.

The incomplete filling of isthmuses was at least partially due to the presence of pulp tissue remnants and hard tissue debris. A previous Micro-CT study found dentin areas of mandibular molar mesial roots that had been irrigated with side-vented 30-gauge needles during canal preparation. They also found that there was much less filling of the isthmus volume (57.5%) compared to the main canals (98.5%). Another Micro-CT study found that a third of the isthmus volume contained hard tissue debris, when mandibular molar mesial root canals had been prepared without irrigation. Therefore this study used passive ultrasonic irrigation to reduce hard tissue debris and the smear layer. Nevertheless some debris remained, as shown in prior studies using the same ultrasonic irrigation to reduce isthmus debris. Ricucci and Siqueira indicated that lateral canals appeared radiographically filled—they were actually not obturated—and the remaining tissue in the ramification was inflamed and enmeshed with the filling material. Effective disinfection of isthmus is more crucial element than obturation in successful root canal treatment.

In this study, the final rinse used 17% EDTA followed by NaOCl, since it is the recommended combination to remove smear layer. However, other studies have indicated that the use of NaOCl after EDTA irrigation can induce excessive erosion of root canal dentin. Therefore we carefully limited the final NaOCl irrigation time to 1 minute to minimize the erosion of dentin.

Even when filling materials adequately fill canals, gutta-percha does not chemically bond to dentin, whereas MTA can form an interfacial layer. This interfacial layer of tag-like structures contains calcium and phosphorus, which optimize the sealing ability of MTA-filled root canals. Furthermore, intratubular mineralization following orthograde OrthoMTA obturation resulted in bacterial entombment in the dentinal tubules of experimentally infected root canals. The manufacturer claims that OrthoMTA can penetrate into dentinal tubules attributing to its small particle size.

In this study, three-dimensional root canal obturations with OrthoMTA were observed by Micro-CT. Similarly, a prior study showed that root canals filled with MTA could be identified by Micro-CT. Direct contact between OrthoMTA
and root canal dentin was seen in this study, although uneven densities in the images may have been due to variations in mineral components and the inherent porosity of the material. Macro- and microporosities of hydrated MTA can be caused by inadequate water-to-powder ratio, insufficient packing or water evaporation, which can lead to leakage of the filling. Furthermore, MTA has a prolonged setting time, can cause tooth discoloration, and is hard to retrieve for retreatment. Therefore, orthograde prolonged setting time can cause tooth discoloration, and lead to leakage of the filling. Furthermore, MTA has a limited debridement, orthograde obturation using OrthoMTA should be performed after thorough cleaning and shaping. Accordingly, the apical enlargement attained with limited debridement, orthograde obturation showed comparable filling quality to gutta-percha with sealer. Filling adaptation to the canal walls and filling density within isthmuses were inferior in the cold lateral compaction filled canals, compared to the continuous wave of condensation or orthograde MTA.

Conflicts of interest
The authors have no conflicts of interest relevant to this article.

Acknowledgments
This research was funded by Engineering-Dentistry Interdisciplinary Research Grant (860-20150009) jointly supported by the College of Engineering and School of Dentistry, Seoul National University.

References
1. Schilder H. Filling root canals in three dimensions. Dent Clin North Am 1967;723-44.
2. American Association of Endodontists. Glossary of Endodontic Terms. 2002. Available at: http://www.nxtbooks.com/nxtbooks/aae/endodonticglossary/index.php#:4 [accessed 12. 05.14].
3. Nair PN, Henry S, Cano V, Vera J. Microbial status of apical root canal system of human mandibular first molars with primary apical periodontitis after “one-visit” endodontic treatment. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2005;99; 231–52.
4. Harris SP, Bowles WR, Fok A, McClanahan SB. An anatomic investigation of the mandibular first molar using micro-computed tomography. J Endod 2013;39;1374-8.
5. Mannocci F, Peru M, Sherriff M, Cook R, Pilt Ford TR. The isthmuses of the mesial root of mandibular molars: a micro-computed tomographic study. Int Endod J 2005;38;558–63.
6. Fan B, Pan Y, Gao Y, Fang F, Wu Q, Gutmann JL. Three-dimensional morphologic analysis of isthmuses in the mesial roots of mandibular molars. J Endod 2010;36;1866–9.
7. Marciano MA, Ordinola-Zapata R, Cunha TV, et al. Analysis of four gutta-percha techniques used to fill mesial root canals of mandibular molars. Int Endod J 2011;44;321–9.
8. Keleş A, Ahmetoglu F, Uzun I. Quality of different gutta-percha techniques when filling experimental internal resorptive cavities: a micro-computed tomography study. Aust Endod J 2014;40;131–5.
9. Barbosa FO, Gusman H, Pimenta de Araújo MC. A comparative study on the frequency, location, and direction of accessory canals filled with the hydraulic vertical condensation and continuous wave of condensation techniques. J Endod 2009;35; 397–400.
10. Ørstavik D, Nordahl I, Tibbals JE. Dimensional change following setting of root canal sealer materials. Dent Mater 2001;17;512–9.
11. Parirókh M, Torabinejad M. Mineral trioxide aggregate: a comprehensive literature review—Part I: chemical, physical, and antibacterial properties. J Endod 2010;36;16–27.
12. Bogen G, Kuttler S. Mineral trioxide aggregate obturation: a review and case series. J Endod 2009;35;777–90.
13. Parirókh M, Torabinejad M. Mineral trioxide aggregate: a comprehensive literature review—Part III: Clinical applications, drawbacks, and mechanism of action. J Endod 2010;36; 400–13.
14. Sarkar NK, Caicedo R, Ritwick P, Moiseyeva R, Kawashima I. Physicochemical basis of the biologic properties of mineral trioxide aggregate. J Endod 2005;31;97–100.
15. Al-Hezaimi K, Noghshbandi J, Oglebsy S, Simon JH, Rotstein I. Human saliva penetration of root canals obturated with two types of mineral trioxide aggregate cements. J Endod 2005;31; 453–6.
16. Kum KY, Zhu Q, Safavi K, Gu Y, Bae KS, Chang SW. Analysis of six heavy metals in Ortho mineral trioxide aggregate and Pro-Root mineral trioxide aggregate by inductively coupled plasma-optical emission spectrometry. Aust Endod J 2013;39;126–30.
17. Yoo JS, Chang SW, Oh SR, et al. Bacterial entombment by intratubular mineralization following orthograde mineral trioxide aggregate obturation: a scanning electron microscopy study. Int J Oral Sci 2014;6;227–32.
18. Kim SY, Kim KJ, Yi YA, Seo DG. Quantitative microleakage analysis of root canal filling materials in single-rooted canals. Scanning 2015;37;237–45.
19. Hammad M, Qualtrough A, Silikas N. Evaluation of root canal obturation: a three-dimensional in vitro study. J Endod 2009; 35;541–4.
20. El-Ma’aïta AM, Qualtrough AJ, Watts DC. A micro-computed tomography evaluation of mineral trioxide aggregate root canal fillings. J Endod 2012;38;670–2.
21. Jung M, Lommel D, Klimiek J. The imaging of root canal obtur- ation using micro-CT. Int Endod J 2005;38;617–26.
22. Schäfer E, Diez C, Hoppe W, Tepel J. Roentgenographic investigation of frequency and degree of canal curvatures in human permanent teeth. J Endod 2002;28;211–6.
23. Yamada RS, Armas A, Goldman M, Lin PS. A scanning electron microscopic comparison of a high volume final flush with several irrigating solutions: Part 3. J Endod 1983;9;137–42.
24. Keleş A, Alcin H, Kamalak A, Versiani MA. Micro-CT evaluation of root filling quality in oval-shaped canals. Int Endod J 2014; 47;1177–84.
25. Mirfendereski M, Roth K, Fan B, et al. Technique acquisition in the use of two thermoplasticized root filling methods by inexperienced dental students: a microcomputed tomography analysis. J Endod 2009;35;1512–7.
26. Jung IY, Seo MA, Fouad AF, et al. Apical anatomy in mesial and mesiobuccal roots of permanent first molars. J Endod 2005;31; 364–8.
27. de Gregorio C, Arias A, Navarrete N, Del Rio V, Oltra E, Cohenca N. Effect of apical size and taper on volume of irrigant delivered at working length with apical negative pressure at different root curvatures. J Endod 2013;39;119–24.
28. Card SJ, Sigurdsson A, Orstavik D, Tropé M. The effectiveness of increased apical enlargement in reducing intracanal bacteria. J Endod 2002;28;779–83.
29. Nair PN. On the causes of persistent apical periodontitis: a review. *Int Endod J* 2006;39:249–81.

30. Carvalho-Sousa B, Almeida-Gomes F, Carvalho PR, Maniglia-Ferreira C, Gurgel-Filho ED, Albuquerque DS. Filling lateral canals: evaluation of different filling techniques. *Eur J Dent* 2010;4:251–6.

31. Endal U, Shen Y, Knut A, Gao Y, Haapasalo M. A high-resolution computed tomographic study of changes in root canal isthmus area by instrumentation and root filling. *J Endod* 2011;37:223–7.

32. De-Deus G, Marins J, Neves Ade A, et al. Assessing accumulated hard-tissue debris using micro-computed tomography and free software for image processing and analysis. *J Endod* 2014;40:271–6.

33. Paqué F, Boessler C, Zehnder M. Accumulated hard tissue debris levels in mesial roots of mandibular molars after sequential irrigation steps. *Int Endod J* 2011;44:148–53.

34. Gutarts R, Nusstein J, Reader A, Beck M. In vivo debridement efficacy of ultrasonic irrigation following hand-rotary instrumentation in human mandibular molars. *J Endod* 2005;31:166–70.

35. Ricucci D, Siqueira Jr JF. Fate of the tissue in lateral canals and apical ramifications in response to pathologic conditions and treatment procedures. *J Endod* 2010;36:1–15.

36. Qian W, Shen Y, Haapasalo M. Quantitative analysis of the effect of irrigant solution sequences on dentin erosion. *J Endod* 2011;37:1437–41.

37. Saghiri MA, Delvarani A, Mehrvarzfar P, et al. A study of the relation between erosion and microhardness of root canal dentin. *Oral Surg Oral Med Oral Pathol Oral Radiol Endod* 2009;108:e29–34.

38. BioMTA, OrthoMTA. Available at: http://www.biomta.com/shop/eng/product_1.php [Date accessed 09.04.15].

39. Saghiri MA, Asgar K, Lotfi M, Karamifar K, Neelakantan P, Ricci JL. Application of mercury intrusion porosimetry for studying the porosity of mineral trioxide aggregate at two different pH. *Acta Odontol Scand* 2012;70:78–82.

40. Fridland M, Rosado R. Mineral trioxide aggregate (MTA) solubility and porosity with different water-to-powder ratios. *J Endod* 2003;29:814–7.