Supporting Information

Triethyl-borate as Surfactants to Stabilize Semiconductor Nanoplatelets in Polar Solvents and to Tune Their Optical Properties

Yalei Deng,† Xufeng Chen, † Jing Liang, † Yuanyuan Wang†*

† State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China

*To whom correspondence should be addressed. Email: wangyy@nju.edu.cn

Figure S1 | The FT-IR of 4.5 ML-TEB treated by OA or Olam back exchange in nonpolar solvent

Table S1 Element content of samples before and after TEB treatment (mmol)

	Cd	Se	B	Cd/Se
CdSe-OOCR	0.097	0.0746	0	1.30
CdSe-TEB	0.017	0.015	0.0165	1.13
Figure S2| The TEM images of NPLs (a) 3.5 ML-OOCR, (B) 3.5 ML-TEB; (C) 5.5 ML-OOR, (D) 5.5 ML-TEB.

Figure S3| The UV-vis absorption of 4.5 ML-TEB treated by OA or Olam back exchange in nonpolar solvent

Table S2 Optical properties of NPLs capped with RCOO⁻ and TEB

	HH (nm)	LH (nm)	SO (nm)	Em (nm)	PLQY (%)	Stock shift (nm)	FWHM (nm)
CdSe-OOCR	510	479	425	511	17.64	1	10
CdSe-TEB	550	506	431	565	20.42	15	32
Figure S4 | XRD pattern fitting curve of 4.5 ML NPLs.

Figure S5 | XRD pattern fitting curve of 3.5 ML NPLs.

Figure S6 | XRD pattern fitting curve of 5.5 ML NPLs.
Figure S7 | XRD pattern and UV-vis absorption curve of NPLs (A) and (B) 3.5 ML, (C) and (D) 5.5 ML.

Table S3. The lattice parameter information of NPLs for (220) Å

Sample	\(d_{220}\), lateral	\(d_{220}\), thickness	\(a\)	\(c\)	\(a/c\)
3.5 ML-OOR	2.174	2.087	6.149	5.903	1.042
3.5 ML-TEB	2.109	2.209	5.965	6.248	0.955
5.5 ML-OOR	2.23	2.15	6.307	6.081	1.037
5.5 ML-TEB	2.11	2.19	5.968	6.194	0.963

Figure S8 | Energy shift of band gap for 3.5 and 5.5 ML NPLs.

Energy shift calculation (Zhou et al., 2015; Diroll and Schaller, 2019):
\[\Delta E = -\alpha \frac{c_x-c_{OA}}{c_{OA}} Y \]

(1)

\(\alpha \): Band gap pressure coefficient 43.1 meV/Gpa.

Y: Young's modulus 48.9 GPa.

Diroll, B. T., and Schaller, R. D. (2019). Shape-Selective Optical Transformations of CdSe Nanoplatelets Driven by Halide Ion Ligand Exchange. *Chem. Mater.* 31, 3556–3563. doi:10.1021/acs.chemmater.9b01261.

Zhou, Y., Wang, F., and Buhro, W. E. (2015). Large Exciton Energy Shifts by Reversible Surface Exchange in 2D II-VI Nanocrystals. *J. Am. Chem. Soc.* 137, 15198–15208. doi:10.1021/jacs.5b09343.