One-dimensional Stark operators in the half-line

Julio H. Toloza and Alfredo Uribe

1Instituto de Matemática (INMABB), Departamento de Matemática, Universidad Nacional del Sur (UNS) - CONICET, Bahía Blanca, Argentina
2Departamento de Matemáticas, Universidad Autónoma Metropolitana, Av. San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, C.P. 09340, México D.F.

Abstract

We obtain asymptotic formulas for the spectral data of perturbed Stark operators associated with the differential expression

$$\frac{d^2}{dx^2} + x + q(x), \quad x \in [0, \infty), \quad q \in L^1(0, \infty),$$

and having either Dirichlet or Neumann boundary condition at the origin.

Keywords: Stark operators, spectral theory, asymptotic analysis

2010 MSC: 34E10, 34L15, 81Q05, 81Q10

1 Introduction and statement of results

Self-adjoint operators of the form

$$\frac{d^2}{dx^2} + f(x) + q(x), \quad x \in (0, \infty),$$

with domain in $L^2(\mathbb{R}_+)$, occur naturally in the context of quantum-mechanical operators with spherical symmetry; here q plays the role of a small perturbation of f in some suitable sense. The spectral analysis of this kind of operators have attracted considerable attention for various choices of the dominant term f, usually in connection with well-known special functions. Most remarkable among them are the investigations concerning perturbed Bessel operators $[1,3,4,10,16–19]$ (corresponding to $f(x) = l(l + 1)x^{-2}, \ l \geq -1/2$), and perturbed harmonic oscillator in the half-line $[7,8]$ (in this case $f(x) = x^2$); the latter is closely related to the spectral analysis of perturbed harmonic oscillator in the whole real line $[5,6]$.

In this paper we consider self-adjoint operators associated with a differential expression of the form

$$\tau = -\frac{d^2}{dx^2} + x + q(x), \quad x \in [0, \infty),$$

acting in the space $L^2(\mathbb{R}_+)$, where q is a real-valued function that lies in $L^1(\mathbb{R}_+)$. Self-adjoint operators are defined by adjoining to τ a standard boundary condition (see Section 2) at the left endpoint. For the sake of brevity, we only consider Dirichlet ($\varphi(0) = 0$) and Neumann
\((\varphi'(0) = 0)\) boundary conditions; let \(H^D\) and \(H^N\) denote the corresponding self-adjoint operators.

Clearly the unperturbed case \(q \equiv 0\) can be solved explicitly. For in this case a square-integrable solution to the associated eigenvalue problem is given by the Airy function of the first kind \(\text{Ai}(z)\) so

\[
\sigma(H_0^D) = \{-a_k\}_{k \in \mathbb{N}} \quad \text{and} \quad \sigma(H_0^N) = \{-a'_k\}_{k \in \mathbb{N}},
\]

where \(a_k\) and \(a'_k\) denote the zeros of \(\text{Ai}(z)\) and its derivative \(\text{Ai}'(z)\), respectively. The corresponding set of norming constants \(\{\nu^D_{0,k}\}_{k \in \mathbb{N}}\) and \(\{\nu^N_{0,k}\}_{k \in \mathbb{N}}\) are then given by

\[
\frac{1}{\nu^D_{0,k}} = \frac{\|\text{Ai}(\cdot + a_k)\|^2}{(\text{Ai}'(a_k))^2} = 1 \quad \text{and} \quad \frac{1}{\nu^N_{0,k}} = \frac{\|\text{Ai}(\cdot + a'_k)\|^2}{(\text{Ai}'(a'_k))^2} = -a'_k.
\]

The related results for arbitrary \(q\) are stated in Theorems 3.5, 3.6, 3.8 and 3.9. They can be summarized as follows:

Theorem. Suppose \(q \in L^1(\mathbb{R}_+)\). Then the eigenvalues and norming constants of \(H^D\), the operator associated with \(\tau\) and boundary condition \(\varphi(0) = 0\), satisfy

\[
\lambda^D_k = \left(\frac{3}{2} \pi (k - \frac{1}{4})\right)^{2/3} \left(1 + O(k^{-1})\right) \quad \text{and} \quad \frac{1}{\nu^D_k} = 1 + o(1)
\]

as \(k \to \infty\). Similarly, the eigenvalues and norming constants of \(H^N\) corresponding to the boundary condition \(\varphi'(0) = 0\) satisfy

\[
\lambda^N_k = \left(\frac{3}{2} \pi (k - \frac{3}{4})\right)^{2/3} \left(1 + O(k^{-1})\right) \quad \text{and} \quad \frac{1}{\nu^N_k} = \left(\frac{3}{2} \pi (k - \frac{3}{4})\right)^{2/3} (1 + o(1))
\]

as \(k \to \infty\).

The direct spectral problem for the one-dimensional Stark operator in the semi-axis, with Dirichlet boundary condition, has also been treated recently in [22], where the authors use transformation operator methods and their results are valid under the more restrictive assumption \(q \in C^1(0, \infty) \cap L^1(\mathbb{R}_+, x^4 dx)\), \(q(x) = o(x)\) as \(x \to \infty\). The corresponding inverse spectral problem is discussed in [20].

Finally, it is worth mentioning that one-dimensional Stark operators have been studied mostly when defined on the whole real line, see for instance [2, 11–13, 21, 25]. As it is well-known, Stark operators on the real line are characterized by the presence of resonances; see [14, 15] for some recent developments on this subject.

2 Preliminaries

In what follows, we consider the differential expression

\[
\tau = -\frac{d^2}{dx^2} + x + q(x), \quad x \in [0, \infty),
\]

where \(q \in L^1(\mathbb{R}_+)\) and it is real-valued.

By standard theory (see e.g. [26, Ch. 6]), \(\tau\) is in the limit-circle case at 0 and in the limit-point case at \(\infty\). Hence (the closure of) the minimal operator \(H'\) defined by \(\tau\) is symmetric and has deficiency indices \((1, 1)\). Also, there exists a solution \(\psi(z, x)\) to the eigenvalue equation \(\tau \varphi = z \varphi\), real entire as a function of \(z \in \mathbb{C}\) for every \(x \in [0, \infty)\), such that \(\psi(z, \cdot) \in L^2(\mathbb{R}_+)\) for
every $z \in \mathbb{C}$. This function is unique up to multiplication by a zero-free, real entire function of the spectral parameter z.

The self-adjoint extensions H^β ($0 \leq \beta < \pi$) of H' are determined by imposing the usual boundary condition at $x = 0$. Namely,

\[D(H^\beta) = \left\{ \varphi \in L^2(\mathbb{R}_+) : \varphi, \varphi' \in AC_{\text{loc}}([0, \infty)), \quad \cos(\beta)\varphi(0) - \sin(\beta)\varphi'(0) = 0 \right\}, \quad H^\beta \varphi = \tau \varphi. \]

Since $x + q(x) \to \infty$ as $x \to \infty$, it follows that $\sigma(H^\beta)$ has only eigenvalues of multiplicity one, possibly with a finite number of them being negative. Moreover,

\[\sigma(H^\beta) = \{ \lambda \in \mathbb{R} : \cos(\beta)\psi(\lambda, 0) - \sin(\beta)\psi'(\lambda, 0) = 0 \} \quad (0 \leq \beta < \pi). \]

We henceforth suppose $\sigma(H^\beta)$ is arranged as an increasing sequence, viz., $\sigma(H^\beta) = \{ \lambda_k^\beta \}_{k \in \mathbb{N}}$ with $\lambda_k^\beta < \lambda_{k+1}^\beta$.

In what follows we use the notation $' = \partial_x$ and $\cdot = \partial_z$. Along with the spectrum $\{ \lambda_k^\beta \}_{k \in \mathbb{N}}$ one has the corresponding set of norming constants $\{ \nu_k^\beta \}_{k \in \mathbb{N}}$. In terms of $\psi(z, x)$, the norming constants for Dirichlet ($\beta = 0$) and Neumann ($\beta = \pi/2$) boundary conditions are given by the formulas

\[\frac{1}{\nu_k^D} = \frac{\psi(\lambda_k^D, 0)}{\psi'(\lambda_k^D, 0)} \quad \text{and} \quad \frac{1}{\nu_k^N} = \frac{\psi(\lambda_k^N, 0)}{\psi'(\lambda_k^N, 0)}, \]

respectively. The second part of these equations follows from the identity $W'(\eta, \dot{\eta}) = -\eta^2$, which is valid for any solution to $\tau \eta = z \eta$. We recall that the spectral data $\{ \{ \mu_k^\beta \}_{N \in \mathbb{N}}, \{ \nu_k^\beta \}_{k \in \mathbb{N}} \}$ are the poles and residues of the Weyl function associated with H^β, and they determine the potential q by virtue of the Borg–Marchenko uniqueness theorem [9].

As mentioned in the Introduction, the unperturbed case $q = 0$ can be treated explicitly. A solution to the equation $-\varphi'' + (x - z)\varphi$, belonging to $L^2(\mathbb{R}_+)$, is

\[\psi_0(z, x) = \sqrt{\pi} \text{Ai}(x - z), \]

where the factor $\sqrt{\pi}$ is included for convenience. It follows that

\[\sigma(H_0^D) = \{-a_k\}_{k \in \mathbb{N}} \quad \text{and} \quad \sigma(H_0^N) = \{-a_k'\}_{k \in \mathbb{N}} \]

respectively, where the zeros of $\text{Ai}(z)$ and $\text{Ai}'(z)$ obey the asymptotic formulas

\[-a_k = \left(\frac{3}{2} \pi (k - \frac{1}{4}) \right)^{2/3} \left(1 + O(k^{-2}) \right) \quad (1) \]

and

\[-a_k' = \left(\frac{3}{2} \pi (k - \frac{3}{4}) \right)^{2/3} \left(1 + O(k^{-2}) \right) \]

as $k \to \infty$ (see [23, §9.9(iv)]).

Lemma 2.1. There exists a constant $C_0 > 0$ such that

\[|\text{Ai}(z)| \leq C_0 \frac{g_A(z)}{1 + |z|^{1/4}} \quad \text{and} \quad |\text{Ai}'(z)| \leq C_0 (1 + |z|^{1/4}) g_A(z), \]

for all $z \in \mathbb{C}$, where $g_A(z) = \exp(-\frac{2}{3} \text{Re} z^{3/2})$.

3
Proof. Define \(\zeta = \frac{2}{3} z^{3/2} \) with branch cut along \(\mathbb{R}_- \). According to [23, §9.7(ii)], the function \(\text{Ai}(z) \) satisfies the asymptotic expansions

\[
\text{Ai}(z) = \frac{e^{-\zeta}}{2\sqrt{\pi} z^{1/4}} \left[1 + O(\zeta^{-1}) \right], \quad |\text{arg}(z)| \leq \pi - \delta, \tag{2}
\]

and

\[
\text{Ai}(-z) = \frac{1}{\sqrt{\pi} z^{1/4}} \left[\sin(\zeta + \frac{\pi}{4}) + O\left(\zeta^{-1} e^{i\text{Im}\zeta}\right) \right], \quad |\text{arg}(z)| \leq \frac{2\pi}{3} - \delta, \tag{3}
\]
as \(|z| \to \infty \). These expansions are uniform for any given small \(\delta > 0 \) and \(|z| \geq 1 \). In what follows we set \(\delta = \pi/3 \). Since \(\text{Ai}(z) \) is an entire function, it follows that there exists \(C_0 > 0 \) such that

\[
|\text{Ai}(z)| \leq \frac{C_0}{1 + |z|^{1/4}} \times \begin{cases} \exp(-\frac{2}{3} \text{Re} z^{3/2}), \quad \text{arg}(z) \in [-\frac{2\pi}{3}, \frac{2\pi}{3}], \\ \exp(\frac{2}{3} \text{Im}(-z)^{3/2}), \quad \text{arg}(z) \in (-\pi, -\frac{2\pi}{3}) \cup (\frac{2\pi}{3}, \pi]. \end{cases}
\]

Thus, the bound on \(\text{Ai}(z) \) follows after noticing that \(|\text{Im}(-z)^{3/2}| = |\text{Re} z^{3/2}| \) and \(|\text{Re} z^{3/2}| = -\text{Re} z^{3/2} \) if \(\text{arg}(z) \in (-\pi, -\frac{2\pi}{3}) \cup (\frac{2\pi}{3}, \pi]. \) The bound on \(\text{Ai}'(z) \) follows an analogous argument so the details are omitted. \(\blacksquare \)

Lemma 2.1 clearly implies

\[
|\psi_0(z, x)| \leq C_0 e^{-\frac{2}{3} \text{Re}(x-z)^{3/2}} \] and \(|\psi_0'(z, x)| \leq C_0 (1 + |x-z|^{1/4}) e^{-\frac{2}{3} \text{Re}(x-z)^{3/2}} \tag{4}
\]

with \((x, z) \in \mathbb{R}_+ \times \mathbb{C}. \) Later we will make use of a linearly independent solution to \(-\varphi'' + (x-z)\varphi. \) An obvious choice is given by the Airy function of the second kind

\[
\theta_0(z, x) = \sqrt{\pi} \text{Bi}(x-z).
\]

However, it will be more convenient to use an independent solution of the form

\[
\theta_{\pm}(z, x) = \theta_0(z, x) \mp i\psi_0(z, x) = 2\sqrt{\pi} e^{\mp i\pi/6} \text{Ai}((x-z)e^{\mp i2\pi/3})
\]

(in the context of the present work any of these two functions is equally good). According to [23, §9.2(iv)], one has \(W(\psi_0(z), \theta_\pm(z)) \equiv 1 \). Moreover, since \(\text{Re}(z e^{\mp i2\pi/3})^{3/2} = -\text{Re} z^{3/2} \), we have the bounds

\[
|\theta_\pm(z, x)| \leq 2C_0 e^{\frac{2}{3} \text{Re}(x-z)^{3/2}} \quad \text{and} \quad |\theta_\pm'(z, x)| \leq 2C_0 (1 + |x-z|^{1/4}) e^{\frac{2}{3} \text{Re}(x-z)^{3/2}}. \tag{5}
\]

Lemma 2.2. The map \(x \mapsto g_A(x-z), x \in \mathbb{R}_+, \) is decreasing whenever \(z \in \mathbb{C} \setminus \mathbb{R}. \) If \(z \in \mathbb{R}, \) then \(g_A(x-z) \) is constant (equal to 1) for \(x \in [0, z] \) and decreasing for \(x \in (z, \infty). \)

Proof. Suppose \(z \in \mathbb{C}. \) A simple computation shows that, given \(x \in \mathbb{R}, \) there exists a unique \(\gamma \in (0, \pi) \) such that

\[
x - z = \frac{|\text{Im} z|}{\sin \gamma} e^{i\gamma}.
\]

Then,

\[
\text{Re}(x - z)^{3/2} = |\text{Im} z|^{3/2} \frac{\cos \frac{3\gamma}{2}}{(\sin \gamma)^{3/2}}.
\]

The right hand side of the last equation is decreasing as a function of \(\gamma. \) But the map \(x \mapsto \gamma \) is also decreasing so the map \(x \mapsto \text{Re}(x-z)^{3/2} \) is increasing. This in turn implies the assertion. Clearly, a similar reasoning works if \(z \in \mathbb{C}_+. \) The statement is obvious for \(z \in \mathbb{R}. \) \(\blacksquare \)
3 Main results

3.1 Adding a perturbation

We look for a solution to the eigenvalue equation $\tau \varphi = z \varphi$, with $q \in L^1(\mathbb{R}_+)$, that is real entire with respect to the spectral parameter $z \in \mathbb{C}$ and lies in $L^2(\mathbb{R}_+)$. To this end we introduce the auxiliary function

$$\omega(z) = \int_0^\infty \frac{|q(x)|}{\sqrt{1+|x-z|}} \, dx.$$

Clearly, $\omega(z)$ is well defined for all $z \in \mathbb{C}$. Moreover, $\omega(z)$ is well defined under the weaker assumption $q \in L^1(\mathbb{R}_+, (1+x)^{-1/2} \, dx)$. However, our hypothesis on q gives us control on the decay of $\omega(z)$ as it is shown next.

Lemma 3.1. Assume $q \in L^1(\mathbb{R}_+)$. Then $\omega(z) \to 0$ as $z \to \infty$.

Proof. Given $\varepsilon > 0$, choose $x_+ > 0$ and $\mu_+ > x_+$ such that

$$\int_{x_+}^\infty |q(x)| \, dx < \frac{\varepsilon}{2} \quad \text{and} \quad \frac{1}{\sqrt{\mu_+ - x_+}} < \frac{\varepsilon}{2\|q\|_1}.$$

Suppose $|\text{Im}(z)| > \mu_+$. Then $|x-z| > \mu_+$ for any $x > 0$. Hence,

$$\frac{1}{\sqrt{1+|x-z|}} \leq \frac{1}{\sqrt{\mu_+ - x_+}} \int_{x_+}^x |q(x)| \, dx + \int_x^\infty |q(x)| \, dx < \varepsilon,$$

for all $x \in \mathbb{R}_+$, which in turn implies $\omega(q, z) < \varepsilon$. A similar reasoning applies when $|\text{Im}(z)| \leq \mu_+$ and $\text{Re}(z) < -\mu_+$. Finally, suppose that $|\text{Im}(z)| \leq \mu_+$ and $\text{Re}(z) > \mu_+$. Since $\omega(q, z) \leq \omega(q, \text{Re}(z))$, it suffices to consider $z = \mu \in \mathbb{R}$ with $\mu > \mu_+$. Then,

$$\omega(q, \mu) < \frac{1}{\sqrt{1+|\mu_+ - x_+|}} \int_{x_+}^\mu |q(x)| \, dx + \int_{x_+}^\infty |q(x)| \, dx < \varepsilon.$$

Thus, we have shown that $\omega(q, z) < \varepsilon$ whenever $|\text{Re}(z)| + |\text{Im}(z)| > \mu_+$. □

In what follows C denotes a generic positive constant.

Proposition 3.2. Suppose $q \in L^1(\mathbb{R}_+, (1+x)^{-1/2} \, dx)$. Then, the eigenvalue equation $\tau \varphi = z \varphi$ admits a solution $\psi(z, x)$, real entire with respect to z, such that:

(i) $\psi(z, x)$ solves the Volterra integral equation

$$\psi(z, x) = \psi_0(z, x) - \int_x^\infty J_0(z, x, y) q(y) \psi(z, y) \, dy,$$

where

$$J_0(z, x, y) = \psi_0(z, y) \theta_0(z, x) - \psi_0(z, x) \theta_0(z, y),$$

and satisfies the estimates

$$|\psi(z, x)| \leq C e^{C \omega(z)} \frac{g_A(x-z)}{1+|x-z|^{1/4}} \quad \text{and} \quad |\psi(z, x) - \psi_0(z, x)| \leq C \omega(z) e^{C \omega(z)} \frac{g_A(x-z)}{1+|x-z|^{1/4}}.$$

(7)
(ii) Moreover, \(\psi'(z, x) \) obeys the equation

\[
\psi'(z, x) = \psi'_0(z, x) - \int_x^\infty \partial_x J_0(z, x, y)q(y)\psi(z, y)dy
\]

and satisfies the estimates

\[
|\psi'(z, x) - \psi'_0(z, x)| \leq C \omega(z)e^{C\omega(z)}(1 + |x - z|^{1/4})g_A(x - z).
\]

Proof. For \(n \in \mathbb{N} \) define

\[
\psi_n(z, x) = -\int_x^\infty J_0(z, x, y)q(y)\psi_{n-1}(z, y)dy.
\]

Then,

\[
|\psi_n(z, x)| \leq \int_x^\infty |J_0(z, x, y)||q(y)||\psi_{n-1}(z, y)|
dy.
\]

Next, we note that

\[
J_0(z, x, y) = \pm i[\psi_0(z, x)\theta_{\pm}(z, y) - \psi_0(z, y)\theta_{\pm}(z, x)]
\]

(the choice of sign is irrelevant). Then, recalling (4) and (5), (9) yields

\[
|\psi_n(z, x)| \leq 2C_0^2 \frac{g_A(x - z)}{1 + |x - z|^{1/4}} \int_x^\infty \frac{|q(y)|}{1 + |y - z|^{1/4}}g_{\#}(y - z)|\psi_{n-1}(z, y)|
dy + 2C_0^2 \frac{g_{\#}(x - z)}{1 + |x - z|^{1/4}} \int_x^\infty \frac{|q(y)|}{1 + |y - z|^{1/4}}g_A(y - z)|\psi_{n-1}(z, y)|
dy.
\]

where \(g_{\#}(z) := 1/g_A(z) \). We claim that every \(\psi_n(z, x) \) is real entire with respect to the spectral parameter and satisfies the estimate

\[
|\psi_n(z, x)| \leq \frac{4^n}{n!}c_0^{2n+1}\omega^n(z)\frac{g_A(x - z)}{1 + |x - z|^{1/4}}.
\]

From this it will follow that

\[
\psi(z, x) = \sum_{n=0}^\infty \psi_n(z, x)
\]

converges uniformly on compact subsets of \(\mathbb{C} \) to the solution with the desired properties.

First, consider \(n = 1 \). Then, we have

\[
|\psi_1(z, x)| \leq 2C_0^3 \frac{g_A(x - z)}{1 + |x - z|^{1/4}} \int_x^\infty \frac{|q(y)|}{(1 + |y - z|^{1/4})^2}g_{\#}(y - z)g_A(y - z)dy
\]

\[
+ 2C_0^3 \frac{g_{\#}(x - z)}{1 + |x - z|^{1/4}} \int_x^\infty \frac{|q(y)|}{(1 + |y - z|^{1/4})^2}(g_A(y - z))^2dy.
\]

Clearly, \((g_Ag_{\#})(x - z) \equiv 1 \). Also, Lemma 2.2 implies \(g_A(y - z) \leq g_A(x - z) \) for all \(y \in [x, \infty) \). Hence,

\[
|\psi_1(z, x)| \leq 2C_0^3 \frac{g_A(x - z)}{1 + |x - z|^{1/4}} \int_x^\infty \frac{|q(y)|}{(1 + |y - z|^{1/4})^2}dy
\]

\[
+ 2C_0^3 \frac{(g_{\#}g_A)(x - z)}{1 + |x - z|^{1/4}} \int_x^\infty \frac{|q(y)|}{(1 + |y - z|^{1/4})^2}dy,
\]

6
that is,
\[|\psi_1(z, x)| \leq 4C_0^3 \frac{g_A(x - z)}{1 + |x - z|^{1/4}} \int_x^\infty \frac{|q(y)|}{(1 + |y - z|^{1/4})^2} dy. \]

For arbitrary \(n \in \mathbb{N} \) we use the identity
\[
\int_x^\infty \int_{y_1}^\infty \cdots \int_{y_{n-1}}^\infty \prod_{i=1}^n h(y_i) dy_1 \cdots dy_n = \frac{1}{n!} \left(\int_x^\infty h(y) dy \right)^n
\]
to obtain
\[
|\psi_n(z, x)| \leq \frac{4^n}{n!} C_0^{2n+1} \frac{g_A(x - z)}{1 + |x - z|^{1/4}} \left(\int_x^\infty \frac{|q(y)|}{(1 + |y - z|^{1/4})^2} dy \right)^n
\]
which in turn implies (10). Then (i) follows after a suitable choice for the constant \(C \).

Clearly, (7) implies that \(\psi(z, x) \) so constructed belongs to the domain of the maximal operator \(H \).

The asymptotic analysis of the norming constants depends also on the following estimates.

Proposition 3.3. Suppose \(q \in L^1(\mathbb{R}_+) \). Then, \(\psi(z, x) \) satisfies
\[
|\psi'(z, x) - \psi_0'(z, x)| \leq Ce^{C\|q\|} \left((1 + |x - z|^{1/4}) \omega(z) + \frac{\|q\|}{1 + |x - z|^{1/4}} \right) g_A(x - z).
\]

Also,
\[
|\psi'(z, x) - \psi'_0(z, x)| \leq Ce^{C\|q\|} \left((1 + |x - z|^{1/4}) \|q\|^2 + \frac{|x - z| \omega(z)}{1 + |x - z|^{1/4}} \right) g_A(x - z).
\]

Proof. From (6) we see that \(\psi(z, x) \) is a solution to the integral equation
\[
\psi(z, x) = \psi_0(z, x) - \int_x^\infty \partial_z J_0(z, x, y) q(y) \psi(z, y) dy - \int_x^\infty J_0(z, x, y) q(y) \psi(z, y) dy.
\]

Let \(\{\eta_k(z, x)\}_{k \in \mathbb{N}} \), be solutions to the recursive equation
\[
\eta_k(z, x) = -\int_x^\infty \partial_z J_0(z, x, y) q(y) \psi_{k-1}(z, y) dy - \int_x^\infty J_0(z, x, y) q(y) \eta_{k-1}(z, y),
\]
where \(\{\psi_k(z, x)\}_{k \in \mathbb{N}} \) are defined in the proof of Proposition 3.2 and \(\eta_0(z, x) := \psi_0(z, x) \). Using induction one can show that
\[
|\eta_k(z, x)| \leq \frac{4k C_0^{2k+1}}{k!} \left((1 + |x - z|^{1/4}) \left(\int_x^\infty \frac{|q(y)|}{(1 + |y - z|^{1/4})^2} dy \right)^k + \frac{2k}{1 + |x - z|^{1/4}} \left(\int_x^\infty |q(y)| dy \right)^k \right) g_A(x - z),
\]

hence
\[
|\eta_k(z, x)| \leq \frac{4k C_0^{2k+1}}{k!} \left((1 + |x - z|^{1/4}) \omega(z)^k + \frac{2k}{1 + |x - z|^{1/4}} \|q\|^k \right) g_A(x - z).
\]

It follows that
\[
\psi(z, x) = \sum_{k=0}^\infty \eta_k(z, x)
\]
(the convergence being uniform on compact subsets of \(\mathbb{C} \)) which in turn implies the assertion.

The proof of the second inequality follows from an analogous reasoning.
3.2 Dirichlet boundary condition

Define the contours
\[E^m := \{ z \in \mathbb{C} : |\zeta| = (m + \frac{1}{4})\pi \}, \quad E_k := \{ z \in \mathbb{C} : |\zeta - (k - \frac{1}{4})\pi| = \frac{\pi}{2} \}, \quad m, k \in \mathbb{N}. \]

In view of (1), every \(E_k \) encloses one and only one zero of \(\text{Ai}(-\lambda) \), at least for \(k \) sufficiently large.

Lemma 3.4. There exists \(m_0, k_0 \in \mathbb{N} \) such that, for every \(m \geq m_0 \) and \(k \geq k_0 \), the following statement holds true:
\[
\frac{g_A(-z)}{1 + |z|^{1/4}} < 8\sqrt{\pi} |\text{Ai}(-z)|, \tag{15}
\]

whenever \(z \in E^m \) or \(z \in E_k \).

Proof. Let us begin by recalling (2) and (3) in more precise terms:
\[
\text{Ai}(z) = \frac{e^{-\zeta}}{2\sqrt{\pi}z^{1/4}} [1 + W_1(z)], \quad |\arg(z)| \leq \frac{2\pi}{3}, \quad |z| \geq 1, \tag{16}
\]
\[
\text{Ai}(-z) = \frac{1}{\sqrt{\pi}z^{1/4}} [\sin(\zeta + \frac{\pi}{4}) + W_2(z)], \quad |\arg(z)| \leq \frac{\pi}{3}, \quad |z| \geq 1, \tag{17}
\]

where the functions \(W_1(z) \) and \(W_2(z) \) satisfy
\[
\left| \frac{W_1(z)}{\zeta^{1/4}} \right| \leq D_1, \quad |\arg(z)| \leq \frac{2\pi}{3}, \quad |z| \geq 1, \quad \left| \frac{W_2(z)}{\zeta^{-1}e^{\text{Im}\zeta}} \right| \leq D_2, \quad |\arg(z)| \leq \frac{\pi}{3}, \quad |z| \geq 1. \tag{18}
\]

There exists \(k_0 \in \mathbb{N} \) such that, for all \(k \geq k_0 \), \(z \in E_k \) implies \(\text{Re} z \geq 1 \) and \(\arg(z) \in (-\frac{\pi}{3}, \frac{\pi}{3}) \) so \(\text{arg}(-z) \in (-\pi, -\frac{2\pi}{3}) \cup (\frac{2\pi}{3}, \pi] \). Since in this case \(|\text{Im} z^{3/2}| = -\text{Re}(-z)^{3/2} \), one has
\[
\frac{g_A(-z)}{1 + |z|^{1/4}} = \frac{e^{\text{Im}\zeta}}{1 + |z|^{1/4}} \leq \frac{e^{\text{Im}(\zeta + \frac{\pi}{4})}}{|z|^{1/4}}
\]
for all \(z \in E_k \) and \(k \geq k_0 \). By a well-known result (see [24, Ch. 2, Lemma 1]),
\[
|w - n\pi| \geq \frac{\pi}{4} \implies e^{\text{Im} w} < 4 |\sin w|
\]
for all integer \(n \). Hence,
\[
\frac{g_A(-z)}{1 + |z|^{1/4}} < 4 \frac{|\sin(\zeta + \frac{\pi}{4})|}{|z|^{1/4}} \tag{19}
\]
for all \(z \in E_k \) and \(k \geq k_0 \). On the other hand, since \(|\sin(\zeta + \frac{\pi}{4})| \geq d > 0 \) for all \(z \in E_k \) and \(k \geq k_0 \), (17) implies
\[
|\text{Ai}(-z)| \geq \frac{|\sin(\zeta + \frac{\pi}{4})|}{\sqrt{\pi}|z|^{1/4}} \left| 1 - \frac{|W_2(z)|}{|\sin(\zeta + \frac{\pi}{4})|} \right|.
\]

However,
\[
\frac{|W_2(z)|}{|\sin(\zeta + \frac{\pi}{4})|} \leq \frac{e^{\text{Im}\zeta}}{|\zeta|} \frac{D_2}{d},
\]

8
and note that $|\text{Im } \zeta| \leq \pi/2$ if $z \in \mathcal{E}_k$. Thus, by increasing k_0 if necessary, we have

$$|\text{Ai}(-z)| \geq \frac{|\sin(\zeta + \frac{\pi}{4})|}{2\sqrt{\pi}|z|^{1/4}},$$

for all $z \in \mathcal{E}_k$ with $k \geq k_0$.

The proof concerning \mathcal{E}_m is analogous: Suppose $m_0 = k_0$. Then, by the previous argument, (15) holds for $z \in \mathcal{E}_m$ within the sector $\arg(z) \in [-\frac{\pi}{3}, \frac{\pi}{3}]$, for $m \geq m_0$. Within the sector $\arg(-z) \in [-\frac{2\pi}{3}, \frac{2\pi}{3}]$, we have ($\eta := \frac{2}{3}(-z)^{3/2}$)

$$\frac{g_A(-z)}{1 + |z|^{1/4}} \leq \frac{e^{-\text{Re } \eta}}{|z|^{1/4}},$$

and, due to (16),

$$|\text{Ai}(-z)| \geq \frac{e^{-\text{Re } \eta}}{2\sqrt{\pi}|z|^{1/4}|1 - |W_1(-z)||}.$$

Finally, using (18) —and increasing m_0 if required—, we have $1 - |W_1(-z)| \geq 1/4$ whenever $|z| \geq m_0$. ■

Theorem 3.5. Suppose $q \in L^1(\mathbb{R}_+)$. Then, the eigenvalues of H^D satisfy

$$\lambda^D_k = \left(\frac{3}{2\pi}(k - \frac{1}{4})\right)^{2/3} \left(1 + O(k^{-1})\right), \quad k \to \infty.$$

Proof. Abbreviate

$$\psi_0(z) := \psi_0(z, 0), \quad \psi(z) := \psi(z, 0), \quad \mu_k := -a_k.$$

Since $\sup_{z \in \mathcal{C}} \omega(z) < \infty$, Proposition 3.2 yields

$$|\psi(z) - \psi_0(z)| \leq C\omega(z)\frac{g_A(-z)}{1 + |z|^{1/4}},$$

after redefining the constant C. Due to Lemma 3.1, there exists $k_1 \in \mathbb{N}$ such that $\omega(z) \leq (8C)^{-1}$ whenever $|z| \geq (\frac{3}{2}\pi(k_1 + \frac{1}{4}))^{2/3}$. Then, by Lemma 3.4, there exists $k_2 \geq k_1$ such that

$$|\psi(z) - \psi_0(z)| < |\psi_0(z)|$$

for all $z \in \mathcal{E}^{k_2}$; k_2 can be assumed large enough so \mathcal{E}^{k_2} encloses all the (finitely many) negative zeros of $\psi(z)$. Increase k_2 (if necessary) to ensure that (20) holds true for z on every contour \mathcal{E}_n whenever $n \geq n_2$. Then, in view of Rouché's theorem, we obtain

$$\left|\frac{3}{2}(\lambda^D_k)^{3/2} - \frac{3}{2}(-a_k)^{3/2}\right| \leq \pi$$

for sufficiently large k, whence the asymptotics for the eigenvalues follows. ■

Theorem 3.6. Suppose $q \in L^1(\mathbb{R}_+)$. Then the Dirichlet norming constants ν^D_k satisfies

$$\frac{1}{\nu^D_k} = 1 + o(1)$$

as $k \to \infty$. 9
Proof. Abbreviate
\[
\Delta_1(\lambda) := \frac{\psi'(\lambda, 0) - \psi_0'(\lambda, 0)}{\sqrt{\pi} A'(-\lambda)}, \quad \Delta_2(\lambda) := \frac{\psi(\lambda, 0) - \psi_0(\lambda, 0)}{\sqrt{\pi} A'(-\lambda)}.
\]
It is straightforward to see that
\[
-\frac{\psi(\lambda_k^D, 0)}{\psi'(\lambda_k^D, 0)} = 1 - \frac{\Delta_1(\lambda_k^D)}{1 + \Delta_1(\lambda_k^D)} - \frac{\Delta_2(\lambda_k^D)}{1 + \Delta_1(\lambda_k^D)}
\]
so it suffices to show that
\[
\Delta_1(\lambda_k^D) \to 0 \quad \text{and} \quad \Delta_2(\lambda_k^D) \to 0
\]
as \(k \to \infty\).

From Theorem 3.5 we obtain \(\lambda_k^D = -a_k + O(k^{-1/3})\) thus
\[
\sqrt{\pi} A'(-\lambda_k^D) = (-1)^{k-1} \left(\frac{3}{2\pi}(k - \frac{1}{4})\right)^{1/6} (1 + o(1)) = (-1)^{k-1}(\lambda_k^D)^{1/4}(1 + o(1))
\]
as \(k \to \infty\). On the other hand, from (8), we have
\[
\left|\psi(\lambda_k^D, 0) - \psi_0(\lambda_k^D, 0)\right| \leq C\omega(\lambda_k^D)e^{C\omega(\lambda_k^D)}|\lambda_k^D|^{1/4}
\]
hence the assertion on \(\Delta_1(\lambda_k^D)\) holds true since \(\omega(\lambda_k^D) \to 0\) as \(k \to \infty\) due to Lemma 3.1. Finally, (13) implies the corresponding assertion on \(\Delta_2(\lambda_k^D)\).

3.3 Neumann boundary condition

The analysis of the asymptotic behavior of \(\sigma(H^N)\) does not differ much from the Dirichlet case. We start by defining the contours
\[
\mathcal{F}^m := \left\{ z \in \mathbb{C} : |\zeta| = (m - \frac{1}{4})\pi \right\}, \quad \mathcal{F}_k := \left\{ z \in \mathbb{C} : \left|\zeta - (k + \frac{1}{4})\pi\right| = \frac{\pi}{2} \right\}, \quad m, k \in \mathbb{N}.
\]

As expected, \(\mathcal{F}_k\) encloses exactly one zero of \(A'(\lambda)\) for sufficiently large values of \(k\).

Lemma 3.7. There exists \(m_0, k_0 \in \mathbb{N}\) such that, for every \(m \geq m_0\) and \(k \geq k_0\), the following statement holds true:
\[
(1 + |x - z|^{1/4})g_A(-z) < 16\sqrt{\pi}|A'(z)|,
\]
whenever \(z \in \mathcal{F}^m\) or \(z \in \mathcal{F}_k\).

The proof of this assertion is nearly identical to the proof of Lemma 3.4, except that it relies on the identities
\[
A'(z) = -z^{1/4} \frac{e^{-\zeta}}{2\sqrt{\pi}} \left[1 + W_3(z)\right], \quad |\arg(z)| \leq \frac{2\pi}{3}, \quad |z| \geq 1,
\]
\[
A'(z) = z^{1/4} \frac{\sin(\zeta - \frac{1}{4}) + W_4(z)}{\sqrt{\pi}}, \quad |\arg(z)| \leq \frac{\pi}{4}, \quad |z| \geq 1,
\]
where the functions \(W_3(z)\) and \(W_4(z)\) satisfy
\[
|W_3(z)| \leq D_1, \quad |\arg(z)| \leq \frac{2\pi}{3}, \quad |z| \geq 1,
\]
\[
|W_4(z)| \leq D_2, \quad |\arg(z)| \leq \frac{\pi}{4}, \quad |z| \geq 1.
\]
The details are therefore omitted.
Theorem 3.8. Suppose \(q \in L^1(\mathbb{R}_+) \). Then, the eigenvalues of \(H^N \) satisfy

\[
\lambda^N_k = \left(\frac{2}{3} \pi (k - \frac{3}{4}) \right)^{2/3} \left(1 + O(k^{-1}) \right), \quad k \to \infty.
\]

Proof. Since it is similar to the proof of Theorem 3.5, we only hint at the main departure from it. Recalling that \(\sup_{z \in \mathbb{C}} \omega(z) < \infty \), (8) implies

\[
|\psi'(z) - \psi'_0(z)| \leq C \omega(z)(1 + |z|^{1/4})g_A(-z)
\]

for certain positive constant \(C \). Because of Lemma 3.7, there exists \(k_1 \in \mathbb{N} \) such that

\[
|\psi'(z) - \psi'_0(z)| < |\psi'_0(z)|
\]

for all \(z \in F^{k_1} \) and \(z \in F_k \) for every \(k > k_1 \), hence \(|(\lambda^N_k)^{3/2} - (-a_k^N)^{3/2}| < \pi \) for all \(k \) large enough. ■

Theorem 3.9. Suppose \(q \in L^1(\mathbb{R}_+) \). Then the Neumann norming constants \(\nu^N_k \) satisfies

\[
\frac{1}{\nu^N_k} = \left(\frac{2}{3} \pi (k - \frac{3}{4}) \right)^{2/3} (1 + o(1))
\]

as \(k \to \infty \).

Proof. The argument goes along the lines of the proof of Theorem 3.6. Define

\[
\Delta_3(\lambda) := \frac{\psi'(\lambda, 0) - \psi'_0(\lambda, 0)}{\sqrt{\pi \lambda} \text{Ai}(-\lambda)}, \quad \Delta_4(\lambda) := \frac{\psi(\lambda, 0) - \psi'_0(\lambda, 0)}{\sqrt{\pi} \text{Ai}(-\lambda)}.
\]

Then

\[
\frac{\psi'(\lambda^N_k, 0)}{\psi(\lambda^N_k, 0)} = \lambda^N_k \frac{1 + \Delta_3(\lambda^N_k)}{1 + \Delta_4(\lambda^N_k)}
\]

so we only need to prove that

\[
\Delta_3(\lambda^N_k) \to 0 \quad \text{and} \quad \Delta_4(\lambda^N_k) \to 0
\]

as \(k \to \infty \). But this follows from (7) and (14). ■

Acknowledgments. This research is based upon work supported by Universidad Nacional del Sur (Argentina) under grant PGI 24/L117.

References

[1] S. Albeverio, R. Hryniv and Ya. Mykytyuk, Inverse spectral problems for Bessel operators, J. Diff. Eqs. 241 (2007), 130–159.

[2] F. Calogero and A. Degasperis, Inverse spectral problem for the one-dimensional Schrödinger equation with an additional linear potential, Lett. Nuovo Cimento 23 (1978), 143–149.

[3] R. Carlson, Inverse spectral theory for some singular Sturm–Liouville problems, J. Diff. Eqs. 106 (1993), 121–140.

[4] R. Carlson A Borg–Levinson theorem for Bessel operators, Pacific J. Math. 177 (1997), 1–26.
[5] D. Chelkak, P. Kargaev and E. Korotyaev, *An inverse problem for an harmonic oscillator perturbed by potential: uniqueness*, Lett. Math. Phys. **64** (2003), 7–21.

[6] D. Chelkak, P. Kargaev and E. Korotyaev, *Inverse problem for harmonic oscillator perturbed by potential, characterization*, Comm. Math. Phys. **249** (2004), 133–196.

[7] D. Chelkak and E. Korotyaev, *The inverse problem for perturbed harmonic oscillator on the half-line*, Institut Mittag–Leffler, Preprint No. 10, 2005/2006 fall.

[8] D. Chelkak and E. Korotyaev, *The inverse problem for perturbed harmonic oscillator on the half-line with a Dirichlet boundary condition*, Ann. Henri Poincaré **8** (2007), 1115–1150.

[9] F. Gesztesy and B. Simon, *Uniqueness theorems in inverse spectral theory for one-dimensional Schrödinger operators*, Trans. Amer. Math. Soc. **348** (1996), 349–373.

[10] N. J. Guliyev, *Inverse square singularities and eigenparameter dependent boundary conditions are two sides of the same coin*, preprint arXiv:2001.00061 [math-ph].

[11] A. Its and V. Sukhanov, *A Riemann–Hilbert approach to the inverse problem for the Stark operator on the line*, Inverse Problems **32** (2016), 055003 (27pp).

[12] A. P. Katchalov and Ya. V. Kurylev, *Inverse scattering problem for a one-dimensional Stark effect Hamiltonian*, Inverse Problems **6** (1990), L1–L5.

[13] A. Kh. Khanmamedov and M. G. Makhmudova, *Inverse spectral problem for the Schrödinger equation with an additional linear potential*, Theor. Math. Phys. **202** (2020), 58–71.

[14] E. L. Korotyaev, *Asymptotics of resonances for 1D Stark operators*, Lett. Math. Phys. **108** (2018), 1307–1322.

[15] E. L. Korotyaev, *Resonances for 1d Stark operators*, J. Spectr. Theory **7** (2017), 699–732.

[16] A. Kostenko, A. Sakhnovich and G. Teschl, *Inverse eigenvalue problems for perturbed spherical Schrödinger operators*, Inverse Problems **26** (2010), 105013 (14pp).

[17] A. Kostenko, A. Sakhnovich and G. Teschl, *Weyl–Titchmarsh theory for Schrödinger operators with strongly singular potentials*, Int. Math. Res. Not. **2012** (2012), 1699–1747.

[18] A. Kostenko and G. Teschl, *On the singular Weyl–Titchmarsh function of perturbed spherical Schrödinger operators*, J. Differential Equations **250** (2011), 3701–3739.

[19] A. Kostenko and G. Teschl, *Spectral asymptotics for perturbed spherical Schrödinger operators and applications to quantum scattering*, Comm. Math. Phys. **322** (2013), 255–275.

[20] A. R. Latifova and A. Kh. Khanmamedov, *Inverse spectral problem for the one-dimensional Stark operator on the semiaxis*, Ukr. Math. J. **72** (2020), 568–584.

[21] W. Liu, *Criteria for eigenvalues embedded into the absolutely continuous spectrum of perturbed Stark type operators*, J. Funct. Anal. **276** (2019), 2936–2967.

[22] M. G. Makhmudova and A. Kh. Khanmamedov, *On spectral properties of the one-dimensional Stark operator on the semiaxis*, Ukr. Math. J. **71** (2020), 1813–1819.
[23] F. W. J. Olver, D. W. Lozier, R. F. Boisvert and C. W. Clark, *NIST Handbook of Mathematical Functions*, U.S. Department of Commerce National Institute of Standards and Technology, Washington D.C., 2010.

[24] J. Pöschel and E. Trubowitz, *Inverse Spectral Theory*, Pure and Applied Mathematics, vol. 130, Academic Press, Boston, 1987.

[25] V. V. Sukhanov, *Trace formulas for the one-dimensional Stark operator and integrals of motion for the cylindrical Korteweg–de Vries equation*, St. Petersburg Math. J. **31** (2020) 903-910.

[26] J. Weidmann, *Spectral Theory of Ordinary Differential Operators* Lecture Notes in Mathematics **1258**, Springer, Berlin, 1987.