PHASE TRANSITIONS FOR NONLINEAR NONLOCAL AGGREGATION-DIFFUSION EQUATIONS

JOSÉ A. CARRILLO & RISHABH S. GVALANI
Department of Mathematics, Imperial College London

Abstract. We are interested in studying the stationary solutions and phase transitions of aggregation equations with degenerate diffusion of porous medium-type, with exponent $1 < m < \infty$. We first prove the existence of possibly infinitely many bifurcations from the spatially homogeneous steady state. We then focus our attention on the associated free energy proving existence of minimisers and even uniqueness for sufficiently weak interactions. In the absence of uniqueness, we show that the system exhibits phase transitions: we classify values of m and interaction potentials W for which these phase transitions are continuous or discontinuous. Finally, we comment on the limit $m \to \infty$ and the influence that the presence of a phase transition has on this limit.

MSC Numbers: 35B32, 82B26, 35K65.

1. Introduction

In this work, we deal with the properties of the set of stationary states and long-time asymptotics for a general class of nonlinear aggregation-diffusion equations of the form

$$\begin{cases}
\partial_t \rho = \beta^{-1} \Delta \rho^m + \nabla \cdot (\rho \nabla W \star \rho) \\
\rho(x, 0) = \rho_0(x) \in L^2(\Omega) \cap L^m(\Omega) \cap \mathcal{P}(\Omega) \quad x \in \Omega,
\end{cases} \quad (1.1)$$

where $1 < m < \infty$ is the nonlinear diffusivity exponent of porous medium type [V07], $\beta > 0$ measures the relative strength between repulsion (by nonlinear diffusion) and attraction-repulsion (by the nonlocal aggregation terms), and $W \in C^2(\Omega)$ is the attractive-repulsive interaction potential. Here Ω denotes the d-dimensional torus \mathbb{T}^d having side length $L > 0$, with $\mathcal{P}(\Omega)$ being the set of Borel probability measures on Ω, and $L^m(\Omega)$ the set of m-power integrable functions on Ω. Notice that for $m = 1$ we recover the linear diffusion case which is related to certain nonlocal Fokker-Planck equations, also referred to as McKean-Vlasov equations in the probability community. These equations also share the feature of being gradient flows of free energy functionals of the form

$$F_\beta^m(\rho) := \begin{cases}
\frac{\beta^{-1}}{m-1} \int_{\Omega} \rho^m(x) \, dx - \frac{1}{m-1} + \frac{1}{2} \int_{\Omega \times \Omega} W(x-y)\rho(x)\rho(y) \, dx \, dy, \quad m > 1 \\
\beta^{-1} \int_{\Omega} (\rho \log \rho)(x) \, dx + \frac{1}{2} \int_{\Omega \times \Omega} W(x-y)\rho(x)\rho(y) \, dx \, dy, \quad m = 1
\end{cases}$$

for $\rho \in L^m(\Omega) \cap \mathcal{P}(\Omega)$, as discussed extensively in the literature [JKO98, Ott01, Vil03, CMV03, AGS08]. We refer to [CCY19] for a recent survey of this active field of research.

E-mail address: carrillo@imperial.ac.uk, rg1314@ic.ac.uk.
JAC was partially supported by the EPSRC through grant number EP/P031587/1. RSG is funded by an Imperial College President’s PhD Scholarship, partially through EPSRC Award Ref. 1676118. Part of this work was carried out at the “Junior Trimester Programme in Kinetic Theory” held at the Hausdorff Research Institute for Mathematics, Bonn. RSG is grateful to the institute for its hospitality.
Aggregation-diffusion equations such as \((1.1)\) naturally appear in mathematical biology [BCM07, VS15, CMS+19, BD217, BCD+18] and mathematical physical contexts [Oel90, Phi07, FP08, BV13] as the typical mean-field limits of interacting particle systems of the form

\[
dX_i^t = -\frac{1}{N} \sum_{i \neq j} N W^N(X_i^t - X_j^t) \, dt + \sqrt{2 \beta_2} \, dB_i^t,
\]

where \(W^N = \frac{1}{\beta_2} \varphi^N + W\) and

\[
\varphi^N(x) = N^{-\xi} \varphi(N^{-\xi/d} x), \quad \text{for all } x \in \mathbb{R}^d.
\]

Here, \(\varphi\) is a the typical localized repulsive potential, for instance a gaussian, and \(0 < \xi < 1\). Notice that due to the choice of \(\xi\), the shape of the potential gets squeezed to a Dirac Delta at 0 faster than the typical relative particle distance \(N^{-1/d}\). Also, \(\beta_2 \geq 0\) is the strength of the independent Brownian motion driving each particle. We refer to [Oel90, Phi07, BV13] for the case of quadratic diffusion \(m = 2\) with \(\beta_1 = \beta, \nu = 0\), and to [FP08] for related particle approximations for different exponents \(m\). The McKean-Vlasov equation \(m = 1\) is obtained for the particular case \(\beta_1 = +\infty\) and \(\beta_2 = \beta\), being the inverse temperature of the system for the linear case, and its derivation is classical for regular interaction potentials \(W\), see for instance [Szn91].

Analyzing the set of stationary states of the aggregation-diffusion equation \((1.1)\) and their properties depending on \(\beta\), the relative strength of repulsion by local nonlinear diffusion and attraction-repulsion by nonlocal interactions, is a very challenging problem. As with the linear case, the flat state \(\rho_{\infty} := L^{-d} = |\Omega|^{-1}\) is always a stationary solution of the system. The problem lies in constructing nontrivial stationary solutions and minimisers. In the linear diffusion case \(m = 1\), we refer to [CP10, CGPS19] where quite a complete picture of the appearance of bifurcations and of continuous and discontinuous phase transitions is present, under suitable assumptions on the interaction potential \(W\). Bifurcations of stationary solutions depending on a parameter are usually referred in the physics literature as phase transitions [Daw83]. In this work we make a distinction between the two: referring to the existence of nontrivial stationary solutions as bifurcations and the existence of nontrivial minimisers of \(\mathcal{F}_m^\beta\) as phase transitions. Particular instances of phase transitions related to aggregation-diffusion equations with linear diffusion have been recently studied for the case of the Viesek-Fokker-Planck equation on the sphere [DFL15, FL12] and the approximated homogeneous Cucker-Smale approximations in the whole space [Tug14, BCnCD16, ASBCD19]. We also refer to [Sch85] where the problem was studied on a bounded domain for the Newtonian interaction, and to [Tam84] where the problem was studied on the whole space with a confining potential.

However, there are no general results in the literature for the nonlinear diffusion case \((1.1)\), \(m > 1\), except for the particular case of \(m = 2, d = 1\), with \(W\) given by the fundamental solution of the Laplacian with no flux boundary conditions (the Newtonian interaction) recently studied in [CCW+19]. Despite the simplicity of the setting in [CCW+19], this example revealed how complicated phase transitions for nonlinear diffusion cases could be. The authors showed that infinitely many discontinuous phase transitions occur for that particular problem. Let us mention that the closer result in the periodic setting is [CKY13], where the authors showed that no phase transitions occur for small values of \(\beta\), when the flat state is asymptotically stable, for \(m \in (1, 2]\).

Our main goal is thus to develop a theory for the stationary solutions and phase transitions of \((1.1)\) for general interactions \(W \in C^2(\Omega)\) and nonlinear diffusion in the periodic setting, something that has not been previously studied in the literature. This paper can be thought of as an extension of the results in [CGPS19] to the setting of nonlinear diffusion. Considering this, we need to define
appropriately the notion of phase transition for the case \(m \in (1, \infty) \), as done in [CP10] for the linear case \(m = 1 \).

Note that, unlike in the linear setting, the \(L^1(\Omega) \) topology is not the natural topology to define phase transitions. It seems that for \(m > 1 \) the correct topology to work in is \(L^\infty(\Omega) \) (cf. Definition 5.1 and Remark 5.2 below). For our results we will often require compactness of minimisers in this topology. One possible way of obtaining this compactness is via control of the Hölder norms of the stationary solutions of (1.1). In Section 3 we briefly comment on the existence of solutions to (1.1) before proceeding to the proof of Hölder regularity. Since this is a key element of the subsequent results and the proof of Hölder regularity for such equations is not in the literature we include the proof in full detail in Section 3. It relies on the so-called method of intrinsic scaling introduced by DiBenedetto for the porous medium equation (cf. [DiB79]), which is a version of the De Giorgi–Nash–Moser iteration adapted to the setting of degenerate parabolic equations. We make modifications to the method to deal with the presence of the nonlocal drift term \(\nabla \cdot (\rho \nabla W^{\ast} \rho) \). We remark here that the proof of this result is completely independent of the rest of the paper. In a first reading, readers more interested in the properties of stationary solutions and phase transitions might choose to skip the proof and continue to Section 4.

After the proof of the Hölder regularity we proceed to Section 4, where we discuss the local bifurcations of stationary solutions from the flat state \(\rho_\infty \). In Theorem 4.2, we provide conditions on the interaction potential \(W \) and characterise values of the parameter \(\beta = \beta_* \), such that \((\rho_\infty, \beta_*) \) is a bifurcation point using the Crandall–Rabinowitz theorem (cf. Theorem B.1). In fact for certain choices of \(W \) one can show that there exist infinitely many such bifurcation points. We then move on to Section 5, where we prove the existence and regularity of minimisers \(F^m_\beta \). We also show that, for \(\beta \) small enough, the flat state is the unique minimiser of the energy for \(m \in (1, \infty] \), thus extending the result of [CKY13]. We show that, as in the linear case, the notion of \(H \)-stability (cf. Definition 2.1), provides a sharp criterion for the existence or non-existence of phase transitions. We then proceed, in Lemmas 5.9 and 5.10 and Proposition 5.11, to provide sufficient conditions for the existence of continuous or discontinuous phase transitions, where the proofs rely critically on the Hölder regularity obtained in Section 3. We also provide general conditions on \(W \) for the existence of discontinuous phase transitions. We conclude the section by showing that \(m \in [2, 3] \) all non-\(H \)-stable potentials \(W \) are associated with discontinuous phase transitions of \(F^m_\beta \), while for \(m = 4 \) we can construct a large class of \(W \) that lead to continuous phase transitions of \(F^m_\beta \).

We summarise our results below:

- The proof of Hölder regularity of the weak solutions of (1.1) can be found in Theorem 3.2 and the preceeding lemmas of Section 3.
- The result on the existence and characterisation of local bifurcations of the stationary solutions is contained in Theorem 4.2.
- The results on the characterisation of phase transitions are spread out throughout Section 5. The main result on the characterisation of discontinuous transition points is Theorem 5.12 while the explicit conditions for a continuous transition point can be found in Theorem 5.16.
- In Section 6, we treat the mesa limit \(m \to \infty \). The \(\Gamma \)-convergence of the sequence of energies \(F^m_\beta \) to some limiting free energy \(F^\infty \) as \(m \to \infty \) can be found in Theorem 6.1. We then provide a characterisation of the minimisers of the limiting variational problem in terms of the size of the domain and the potential \(W \) in Theorem 6.2.

In Section 7, we display the results of some numerical experiments which we hope will shed further light on the theoretical results, while also providing us with some conjectures about the behaviour of the system in settings not covered by the theory.
2. Preliminaries and notation

As mentioned earlier, we denote by $\mathcal{P}(\Omega)$ the space of of all Borel probability measures on Ω with ρ the generic element which we will often associate with its density $\rho(x) \in L^1(\Omega)$, if it exists. We use the standard notation of $L^p(\Omega)$ and $H^s(\Omega)$ for the Lebesgue and periodic L^2-Sobolev spaces, respectively. We denote by the $C^k(\Omega), C^\infty(\Omega)$ the space of k-times ($k \in \mathbb{N}$) continuously differentiable and smooth functions, respectively.

Given any function in $f \in L^2(\Omega)$ we define its Fourier transform as

$$\hat{f}(k) = (f, e_k)_{L^2(\Omega)}, \quad k \in \mathbb{Z}^d$$

where

$$e_k(x) = N_k \prod_{i=1}^d e_k(x_i), \quad \text{where} \quad e_k(x_i) = \begin{cases} \cos \left(\frac{2\pi k_i}{L} x_i \right) & k_i > 0, \\ 1 & k_i = 0, \\ \sin \left(\frac{2\pi k_i}{L} x_i \right) & k_i < 0, \end{cases}$$

and N_k is defined as

$$N_k = \frac{1}{L^{d/2}} \prod_{i=1}^d \left(1 - \delta_{k_i, 0} \right)^{\frac{1}{2}} = \Theta(k) \frac{1}{L^{d/2}}.$$

Using this we have the following representation of the convolution of two functions $W, f \in L^2(\Omega)$ where W is even along every coordinate

$$(W \ast f)(y) = \sum_{k \in \mathbb{Z}^d} \hat{W}(k) \left\{ \frac{1}{N_k} \sum_{\sigma \in \text{Sym}(\Lambda)} \hat{f}(\sigma(k)) e_{\sigma(k)}(y) \right\}.$$

where $\text{Sym}(\Lambda)$ represents the symmetry group of the product of two-point spaces, $\Lambda = \{1, -1\}^d$, which acts on \mathbb{Z}^d by pointwise multiplication, i.e., $(\sigma(k))_i = \sigma_i k_i, k \in \mathbb{Z}^d, \sigma \in \text{Sym}(\Lambda)$. Another expression that we will use extensively in the sequel is the Fourier expansion of the following bilinear form

$$\iint_{\Omega \times \Omega} W(x-y) f(x) f(y) \, dx \, dy = \sum_{k \in \mathbb{N}^d} \hat{W}(k) \left\{ \frac{1}{N_k} \sum_{\sigma \in \text{Sym}(\Lambda)} |\hat{f}(\sigma(k))|^2 \right\}. \quad (2.1)$$

The following notion will play an important role in the subsequent analysis.

Definition 2.1. A potential $W \in L^2(\Omega)$ is said to be H-stable denoted by $W \in \mathcal{H}_H$ if

$$\hat{W}(k) \geq 0, \quad \forall k \in \mathbb{Z}^d, k \neq 0.$$\[If this does not hold, we denote this by $W \in \mathcal{H}_H^c$. The above condition is equivalent to the following strict inequality holding true for all $\eta \in L^2(\Omega), \eta(k) \neq 0$ for some $k \in \mathbb{N}^d$:

$$\iint_{\Omega \times \Omega} W(x-y) \eta(x) \eta(y) \, dx \, dy > 0.$$

3. Existence and regularity of solutions

We are interested in solutions of the following nonlinear-nonlocal PDE

$$\begin{cases} \partial_t \rho = \beta^{-1} \Delta \rho^m + \nabla \cdot (\rho \nabla W \ast \rho) & (x,t) \in \Omega \times (0,T], \\ \rho(x,0) = \rho_0(x) \in L^2(\Omega) \cap L^m(\Omega) \cap \mathcal{P}(\Omega) & x \in \Omega, \end{cases} \quad (3.1)$$

where $1 \leq m < \infty$, $\beta > 0$, and $W \in C^2(\Omega)$ is even along every co-ordinate and has mean zero. It is not immediately clear what the correct notion of solution for the above PDE is, as it need
not possess classical solutions. We introduce the appropriate notion of solution in the following definition.

Definition 3.1. A weak solution of (3.1) is a bounded, measurable function

$$\rho \in C(0, T; L^2(\Omega)) \cap L^2(0, T; H^1(\Omega))$$

such that

$$\int_{\Omega} \rho(x, t) \phi(x, t) \, dx \bigg|_0^T + \int_0^T \int_{\Omega} \left(-\rho \phi_t + \beta^{-1} m \rho \nabla \phi + \rho \nabla (W \ast \rho) \cdot \nabla \phi \right) \, dx \, dt = 0$$

for all $\phi \in H^1(0, T; L^2(\Omega)) \cap L^2(0, T; H^1(\Omega))$ and $\rho(x, 0) = \rho_0(x)$.

Theorem 3.1. Given $\rho_0 \in L^2(\Omega) \cap L^m(\Omega) \cap \mathcal{P}(\Omega)$, there exists a unique weak solution of (3.1). Furthermore $\rho(\cdot, t) \in \mathcal{P}(\Omega)$ for all $t \geq 0$.

The proof of this result is classical and we will not include it. It relies on regularisation techniques which remove the degeneracy in the problem. The meat of the matter is proving estimates uniform in the regularisation parameter. We refer to [BCL09, BS10] for proofs of this result with $W \in C^2(\Omega)$.

We turn our attention to the regularity of solutions of (3.1). The proof is based on the method of intrinsic scaling introduced by DiBenedetto for the porous medium equation [DiB79, Urb08]. It is also similar in spirit to the proof in [KZ18] where regularity was proved for a degenerate diffusion equation posed on \mathbb{R}^d with a potentially singular drift term. Since we will mainly be concerned with stationary solutions we assume for the time being that there exists some universal constant $M > 0$ such that $\|\rho\|_{L^\infty(\Omega_T)} \leq M$, where Ω_T is the parabolic domain $\Omega_T := \Omega \times [0, T]$. We first state the result regarding Hölder regularity.

Theorem 3.2. Let ρ be a weak solution of (3.1) such that $\|\rho\|_{L^\infty(\Omega_T)} \leq M < \infty$. Then ρ is Hölder continuous with exponent $\alpha \in (0, 1)$ dependent on the data, m, d, W, and β. Moreover α depends continuously on β for $\beta > 0$.

We remind the reader that this result is only used to obtain the desired regularity and compactness of minimisers in Lemma 5.4, although it is of independent interest by itself. We divide the proof into two parts. In Section 3.1, we derive some apriori estimates that will be useful in the proof of regularity. In Section 3.2, we perform the so-called reduction of oscillation scheme and complete the proof of Theorem 3.2. As mentioned earlier, readers interested only in bifurcations and phase transitions can skip directly to Section 4.

Before turning to the proof of Theorem 3.2, we introduce some notation. Since the equation (3.1) is invariant under translations of the co-ordinate axis, we define the parabolic cylinder

$$Q(\tau, R) = [R, R]^d \times [-\tau, 0],$$

centred at $(0, 0)$ and note that we can move it to any point by adding (x_0, t_0). We also used K_R as a shorthand for $[-R, R]^d$. We denote the parabolic boundary by

$$\partial_p Q(\tau, R) = \partial K_R \times (-\tau, 0) \cup K_R \times \{-\tau, 0\}.$$

We use the following shorthand notation:

$$w_+ = \max(w, 0), \quad w_- = -\min(w, 0), \quad \rho_+ = \min(\rho, \ell), \quad \rho_- = -\min(-\rho, -\ell).$$

Additionally, we consider the cutoff functions ζ such that

$$0 \leq \zeta \leq 1, \quad |\nabla \zeta| < +\infty, \quad \zeta(x, t) = 0, x \notin K_R.$$
Through the rest of this section we will also use $f(x,t)$ to denote $W \ast \rho(x,t)$. Note that
\[
\|\nabla f\|_{L^\infty(\Omega)} \leq \|\nabla W\|_{L^\infty(\Omega)}, \quad \|D^2 f\|_{L^\infty(\Omega)} \leq \|D^2 W\|_{L^\infty(\Omega)}
\]
The reader should note that proof of regularity holds for any $f \in C^2(\Omega)$ that for which one can prove bounds of the kind shown above. We note before starting the proof that all estimates in the proof have constants that depend continuously on $\beta > 0$. Thus the Hölder exponent a and seminorm $|\rho|_a$ also depend continuously on $\beta > 0$.

3.1. Apriori estimates. There are two a priori estimates that play a key role in the proof of Hölder regularity: a Cacciopoli-type energy estimate and a logarithmic estimate. The proof of the energy estimate is essentially the same as [Urb08, Proposition 2.4] and we state it without proof.

Lemma 3.3 (Energy estimates). Pick $k, \ell \in \mathbb{R}_+$ and some cutoff function ζ, such that $\zeta = 0$ on $\partial_pQ(\tau,R)$. Then it holds for any weak solution of (3.1) that
\[
\frac{1}{2} \left[\text{ess sup}_{t \in [-\tau,0]} \int_{K_{R} \times \{t\}} (\rho_{+}^k - k)^2 \zeta^2 \, dx + \int_{Q(\tau,R)} (\rho_{+}^k - |\nabla (\rho_{+}^k - k) + \zeta|^2 \, dx \, dt \right] \leq \int_{Q(\tau,R)} (\rho_{+}^k - k)^2 \zeta \, dx \, dt + 2(\ell-k) \int_{Q(\tau,R)} (\rho_{+}^k - k)^2 \zeta \, dx \, dt
\]
\[
+ 2m\beta^{-1} \int_{Q(\tau,R)} (\rho_{+}^k - k)^2 (\rho_{+}^k)^{m-1} |\nabla \zeta|^2 \, dx \, dt + 2m\beta^{-1}(\ell-k) \int_{Q(\tau,R)} \left(\int_{t}^{\rho} s^{m-1} \, ds \right) |(\nabla \zeta + \zeta \nabla \zeta)|_{\rho \geq t} \, dx \, dt
\]
\[
+ \int_{Q(\tau,R)} |\nabla f||\zeta||\nabla \zeta|(\rho_{+}^k - k)^2 \, dx \, dt + \int_{Q(\tau,R)} |\Delta f|(\rho_{+}^k - k)^2 \zeta^2 \, dx \, dt.
\]

Similarly we have,
\[
\frac{1}{2} \left[\text{ess sup}_{t \in [-\tau,0]} \int_{K_{R} \times \{t\}} (\rho_{-}^k - k)^2 \zeta^2 \, dx + \int_{Q(\tau,R)} (\rho_{-}^k - |\nabla (\rho_{-}^k - k) - \zeta|^2 \, dx \, dt \right] \leq \int_{Q(\tau,R)} (\rho_{-}^k - k)^2 \zeta \, dx \, dt + 2(\ell-k) \int_{Q(\tau,R)} (\rho_{-}^k - k)^2 \zeta \, dx \, dt
\]
\[
+ 2m\beta^{-1} \int_{Q(\tau,R)} (\rho_{-}^k - k)^2 (\rho_{-}^k)^{m-1} |\nabla \zeta|^2 \, dx \, dt - 2m\beta^{-1}(\ell-k) \int_{Q(\tau,R)} \left(\int_{t}^{\rho} s^{m-1} \, ds \right) |(\nabla \zeta + \zeta \nabla \zeta)|_{\rho \leq t} \, dx \, dt
\]
\[
+ \int_{Q(\tau,R)} |\nabla f||\zeta||\nabla \zeta|(\rho_{-}^k - k)^2 \, dx \, dt + \int_{Q(\tau,R)} |\Delta f|(\rho_{-}^k - k)^2 \zeta^2 \, dx \, dt.
\]

We now move on to the logarithmic estimate. The proof of this needs to be adapted from the classical estimate in the presence of the drift term $\nabla \cdot (\nabla f \rho)$. Before stating and proving it, we introduce the following function
\[
\psi^\pm(s) = \psi^\pm_{k,c}(s) := \left(\ln \left(\frac{H_{s,k}^\pm}{(H_{s,k}^\pm + c) - (s-k)^\pm} \right) \right)_+, \quad 0 < c < H_{s,k}^\pm,
\]
where s is a bounded, measurable function on $Q(\tau,R)$ and
\[H_{s,k}^\pm = \text{ess sup}_{Q(\tau,R)} |(s-k)^\pm|.
\]
The function has certain useful properties, namely,
\[
0 \leq \psi^\pm(s) \quad (\psi^+)'(s) \geq 0, \quad (\psi^-)'(s) \leq 0
\]
\[
(\psi^\pm)'' = ((\psi^\pm)')^2.
\]
We also need to define the Steklov average for any \(\rho \in L^1(\Omega \times [0, T]) \) for any \(0 < h < T \) as follows
\[
\rho_h := \begin{cases}
 h^{-1} \int_t^{t+h} \rho(\cdot, \tau) \, d\tau & 0 \leq t \leq T - h \\
 0 & \text{otherwise}
\end{cases}.
\]
The Steklov average has certain nice properties which we state without proving.

Lemma 3.4. [Urb08, Lemma 2.2] Let \(\rho \in L^q(0, T; L^r(\Omega)) \) then \(\rho_h \) converges to \(\rho \in L^q(0, T; L^r(\Omega)) \) as \(h \to 0 \) for \(q, r \in (1, \infty) \). Additionally, if \(\rho \in C(0, T; L^2(\Omega)) \), then \(\rho_h(\cdot, t) \) converges to \(\rho(\cdot, t) \) in \(L^q(\Omega) \) for \(t \in [0, T] \).

Using this we have the following alternative notion of a weak solution of

Definition 3.2. A weak solution (3.1) of is a bounded measurable function
\[
\rho \in C(0, T; L^2(\Omega)) \cap L^2(0, T; H^1(\Omega))
\]
such that
\[
\int_{\Omega \times \{t\}} \partial_t(\rho_h) \phi + m \beta^{-1} (\rho^{m-1} \nabla \rho_h) \cdot \nabla \phi + (\rho \nabla W \ast \rho) \cdot \nabla \phi \, dx = 0, \tag{3.3}
\]
for all \(\phi \in H^1(\Omega) \), \(h \in (0, T) \), \(t \in (0, T] \) and \(\rho(x, 0) = \rho_0 \).

Proposition 3.5. [Urb08] The notion of weak solution introduced in Definition 3.1 and Definition 3.2 are equivalent.

Lemma 3.6 (Logarithmic estimates). Let \(\rho \) be a nonnegative weak solution of (3.1) and \(\zeta \) be a time-independent cutoff function, then it holds that
\[
\int_{K_h \times \{t\}} ((\psi^\pm)^2)(\rho) \zeta^2 \, dx \leq \int_{K_h \times \{-\tau\}} ((\psi^\pm)^2)(\rho) \zeta^2 \, dx - 2m \beta^{-1} \int_{\tau}^{t} \int_{K_h \times \{s\}} (\rho^{m-1} |\nabla \rho|^2 ((\psi^\pm)'(\rho))^2 \zeta^2) \, dx \, ds
\]
\[
+ 2m \beta^{-1} \int_{\tau}^{t} \int_{K_h \times \{s\}} \rho^{m-1} \psi^\pm(\rho) |\nabla \zeta|^2 \, dx \, ds
\]
\[
+ 2 \int_{\tau}^{t} \int_{K_h \times \{s\}} \rho |\nabla f| |\nabla \rho| ((\psi^\pm)'(\rho))^2 (1 + (\psi^\pm(\rho))) \zeta^2 \, dx \, ds
\]
\[
+ 4 \int_{\tau}^{t} \int_{K_h \times \{s\}} \rho |\nabla f| |\nabla \zeta| ((\psi^\pm)'(\rho)) \psi^\pm(\rho) |\zeta| \, dx \, ds.
\]
for any \(-\tau \leq t \leq 0 \).

Proof. We start by testing (3.3) against \(((\psi^\pm)^2)'(\rho_h) \zeta^2 \) and integrating by parts to obtain
\[
\int_{\Omega \times \{t\}} \partial_t(\rho_h)((\psi^\pm)^2)'(\rho_h) \zeta^2 + m \beta^{-1} (\rho^{m-1} \nabla \rho_h) \cdot \nabla (((\psi^\pm)^2)'(\rho_h) \zeta^2) + (\rho \nabla f)_h \cdot \nabla (((\psi^\pm)^2)'(\rho_h) \zeta^2) \, dx = 0, \tag{3.4}
\]
Consider the first term on the LHS and integrating from \(-\tau \) to \(t \)
\[
\int_{-\tau}^{t} \int_{\Omega \times \{s\}} \partial_s(\rho_h)((\psi^\pm)^2)'(\rho_h) \zeta^2 \, dx \, ds
\]
\[
= \int_{-\tau}^{t} \int_{\Omega \times \{s\}} \partial_s((\psi^\pm)^2)(\rho_h) \zeta^2 \, dx \, ds
\]
\[
= \int_{\Omega \times \{-\tau\}} ((\psi^\pm)^2)(\rho_h) \zeta^2 \, dx - \int_{\Omega \times \{t\}} ((\psi^\pm)^2)(\rho_h) \zeta^2 \, dx.
\]
Passing to the limit as $h \to 0$ we obtain that
\[
\int_{-\tau}^{t} \int_{Q(t)} \partial_s (\rho_h) ((\psi^\pm)^2)(\rho_h) \zeta^2 \, dx \, ds \to \int_{\Omega \times \{t\}} ((\psi^\pm)^2)(\rho) \zeta^2 \, dx - \int_{\Omega \times \{-\tau\}} ((\psi^\pm)^2)(\rho) \zeta^2 \, dx.
\]
Now consider the second term on the LHS of (3.4) (after passing to the limit as $h \to 0$)
\[
\beta^{-1} \int_{-\tau}^{t} \int_{\Omega \times \{s\}} m (\rho^{m-1} \nabla \rho) \cdot \nabla (((\psi^\pm)^2)'(\rho) \zeta^2) \, dx \, ds
\]
\[= 2m \beta^{-1} \int_{-\tau}^{t} \int_{\Omega \times \{s\}} (\rho^{m-1} \nabla \rho)^2 (((\psi^\pm)^2)'(\rho))^2 (1 + (\psi^\pm(\rho))^2) \zeta^2 \, dx \, ds
\]
\[+ 4m \beta^{-1} \int_{-\tau}^{t} \int_{\Omega \times \{s\}} (\rho^{m-1} \nabla \rho (\psi^\pm)'(\rho) \psi^\pm(\rho) \zeta \cdot \nabla \zeta) \, dx \, ds
\]
\[\geq 2m \beta^{-1} \int_{-\tau}^{t} \int_{\Omega \times \{s\}} (\rho^{m-1} \nabla \rho)^2 (((\psi^\pm)^2)'(\rho))^2 \zeta^2 \, dx \, ds
\]
\[- 2m \beta^{-1} \int_{-\tau}^{t} \int_{\Omega \times \{s\}} \rho^{m-1} \psi^\pm(\rho) |\nabla \zeta|^2 \, dx \, ds,
\]
where the last expression follows from Young’s inequality. Finally we consider the last term on the LHS of (3.4) (after passing to the limit as $h \to 0$)
\[
\int_{-\tau}^{t} \int_{\Omega \times \{s\}} (\rho \nabla f) \cdot \nabla (((\psi^\pm)^2)'(\rho) \zeta^2) \, dx \, ds
\]
\[= 2 \int_{-\tau}^{t} \int_{\Omega \times \{s\}} \rho \nabla f \cdot \nabla \rho (((\psi^\pm)^2)'(\rho))^2 (1 + (\psi^\pm(\rho))^2) \zeta^2 \, dx \, ds
\]
\[+ 4 \int_{-\tau}^{t} \int_{\Omega \times \{s\}} \rho \nabla f \cdot \nabla \zeta (((\psi^\pm)^2)'(\rho)) \psi^\pm(\rho) \zeta \, dx \, ds
\]
\[\geq - 2 \int_{-\tau}^{t} \int_{\Omega \times \{s\}} \rho |\nabla f| |\nabla \rho| (((\psi^\pm)^2)'(\rho))^2 (1 + (\psi^\pm(\rho))^2) \zeta^2 \, dx \, ds
\]
\[- 4 \int_{-\tau}^{t} \int_{\Omega \times \{s\}} \rho |\nabla f| |\nabla \zeta| (((\psi^\pm)^2)'(\rho)) \psi^\pm(\rho) ||\zeta|| \, dx \, ds.
\]
Putting it all together we obtain
\[
\int_{\Omega \times \{t\}} (((\psi^\pm)^2)'(\rho) \zeta^2 \, dx \leq \int_{\Omega \times \{-\tau\}} (((\psi^\pm)^2)(\rho) \zeta^2 \, dx - 2m \beta^{-1} \int_{-\tau}^{t} \int_{\Omega \times \{s\}} (\rho^{m-1} \nabla \rho)^2 (((\psi^\pm)^2)'(\rho))^2 \zeta^2 \, dx \, ds
\]
\[+ 2m \beta^{-1} \int_{-\tau}^{t} \int_{\Omega \times \{s\}} \rho^{m-1} \psi^\pm(\rho) |\nabla \zeta|^2 \, dx \, ds
\]
\[+ 2 \int_{-\tau}^{t} \int_{\Omega \times \{s\}} \rho |\nabla f| |\nabla \rho| (((\psi^\pm)^2)'(\rho))^2 (1 + (\psi^\pm(\rho))^2) \zeta^2 \, dx \, ds
\]
\[+ 4 \int_{-\tau}^{t} \int_{\Omega \times \{s\}} \rho |\nabla f| |\nabla \zeta| (((\psi^\pm)^2)'(\rho)) \psi^\pm(\rho) ||\zeta|| \, dx \, ds.
\]
Taking into account the support of ζ, one obtains the result of the lemma. \(\square \)

3.2. Proof of Theorem 3.2. We now get to the meat of the regularity argument, i.e., the reduction of oscillation. We assume again that ρ is a nonnegative weak solution of (3.1). We pick a cylinder $Q(4R^{2-\varepsilon}, 2R)$ that lies inside Ω_T (shifted to $(0,0)$) for $0 < R < 1$. Then we can define
\[
\mu^+ = \text{ess sup}_{Q(4R^{2-\varepsilon}, 2R)} \rho, \quad \mu^- = \text{ess inf}_{Q(4R^{2-\varepsilon}, 2R)} \rho,
\]
along with
\[
\omega = \mu^+ - \mu^- = \text{ess osc}_{Q(4R^{2-\varepsilon}, 2R)} \rho.
\]
We then define the rescaled cylinder
\[Q(\omega^{1-m}R^2, R) \subset Q(4R^{2-\varepsilon}, 2R), \]
which holds true if
\[\alpha \omega^{m-1} > R^\varepsilon. \quad (3.5) \]
For a fixed \(\varepsilon > 0, \alpha \in (0,1) \) if the above inequality does not hold true for any \(R \) that can be made arbitrarily small, it follows that \(\omega \) is comparable to the radius of the cylinder and thus we have Hölder continuity already. The proof of this statement is by contradiction. Let \(\omega_R := \text{ess osc}_{Q(4R^{2-\varepsilon}, 2R)} \rho \). Then for any point \((x, t) \in \Omega_T\) we set \(R := d_T(x, 0) + |t|^{1/2}\), the parabolic distance to the origin. Thus we have
\[|\rho(x, t) - \rho(0, 0)| \leq \omega_R \leq \alpha \frac{1}{1 - \varepsilon} R^\frac{\varepsilon - 1}{2} = \alpha \frac{1}{1 - \varepsilon} \left(d_T(x, 0) + |t|^{1/2} \right)^{\frac{\varepsilon - 1}{2}}. \]
We will specify the value of \(\alpha \) later. We thus have by this inclusion that
\[\text{ess osc}_{Q(\omega^{1-m}R^2, R)} \leq \omega. \]
We will also assume throughout the remainder of this proof that \(\mu^- < \omega/4 \), as otherwise the equation is uniformly parabolic in \(Q(4R^{2-\varepsilon}, 2R) \). Before we proceed we pick some \(\nu_0 \in (0,1) \) and divide our analysis into two cases.

Case 1.
\[\frac{|(x, t) \in Q(\omega^{1-m}R^2, R) : \rho < \mu^- + \omega/2|}{|Q(\omega^{1-m}R^2, R)|} < \nu_0, \quad (3.6) \]
or

Case 2.
\[\frac{|(x, t) \in Q(\omega^{1-m}R^2, R) : \rho \geq \mu^- + \omega/2|}{|Q(\omega^{1-m}R^2, R)|} < 1 - \nu_0, \quad (3.7) \]
or equivalently
\[\frac{|(x, t) \in Q(\omega^{1-m}R^2, R) : \rho \geq \mu^+ - \omega/2|}{|Q(\omega^{1-m}R^2, R)|} < 1 - \nu_0. \]

We now treat the two cases independently.

3.2.1. Reduction of oscillation in case 1. In the first case, we start by proving the following result.

Lemma 3.7. Assume that \(\mu^- < \omega/4 \) and that (3.6) holds for some \(\nu_0 \) (to be chosen), then
\[\rho(x, t) > \mu^- + \frac{\omega}{4} \text{ a.e. in } Q\left(\omega^{1-m} \left(\frac{R}{2} \right)^2, \frac{R}{2} \right). \]

Proof. We start by considering the sequence
\[R_n = \frac{R}{2} + \frac{R}{2^n}, \quad n = 0, 1, \ldots \]
such that \(R_0 = R \) and \(R_n \to R/2 \) as \(n \to \infty \). We then construct a sequence of nested shrinking cylinders \(Q(\omega^{1-m}R_n^2, R_n) \) along with cutoff functions \(\zeta_n \) satisfying
\[0 \leq \zeta_n \leq 1, \quad \zeta_n = 1 \text{ in } Q(\omega^{1-m}R_{n+1}^2, R_{n+1}), \quad \zeta_n = 0 \text{ on } \partial Q(\omega^{1-m}R_n^2, R_n), \]
\[|\nabla \zeta_n| \leq \frac{2^{n-1}}{R}, \quad 0 \leq (\zeta_n) \leq \frac{2^{2n-2}}{R^2} \omega^{-m-1}, \quad \Delta \zeta_n \leq \frac{2^{2n-2}}{R^2}. \]
We now apply the energy estimate of Lemma 3.3 in \(Q(\omega^{1-m}R_n^2, R_n) \) with \(\ell = \mu^- + \omega/4 \), and \(k_n = \mu^- + \omega/4 + \omega/(2^{n+1}) \) for the function \((\rho^\ell - k_n)^- \). We will bound the terms on the LHS and

9
RHS separately. Considering first the terms on the LHS we have
\[
\frac{1}{2} \left[\text{ess sup}_{-R^2\omega^{1-m} < t < 0} \int_{K_{R^n} \times \{ t \}} \rho_m - k_n \right]^2 \Delta \zeta_n \, dx + \int_{Q(\omega^{1-m} R^2, R^n)} (\rho_m^{1-m})^2 \frac{1}{2} |\nabla (\rho_m - k_n) - \zeta_n|^2 \, dx \, dt
\]
\[
\geq 2^{1-2m} \left[\text{ess sup}_{-R^2\omega^{1-m} < t < 0} \int_{K_{R^n} \times \{ t \}} \rho_m - k_n \right]^2 \Delta \zeta_n \, dx + \int_{Q(\omega^{1-m} R^2, R^n)} |\nabla (\rho_m - k_n) - \zeta_n|^2 \, dx \, dt
\]
where we have used the fact that \(\rho_m^2 = \max(\rho, \rho^m + \omega/4) \geq \mu^- + \omega/4 \geq \omega/4 \). For the RHS we first note the following facts:

1. \(0 \leq \mu^- \leq \omega/4 \) which implies that \(\rho \leq 5\omega/4, \ell \leq \omega/2, \) and \(\rho_m^2 \leq 5\omega/4 \)
2. \(\ell = \mu^- + \omega/4 < k_n \) which implies that \(\chi(\rho \leq \ell) = \chi(\rho \leq k_n) = \chi(\rho \leq k_n) > 0 \)
3. If \(\rho_m^2 = \rho \), then \(\chi(\rho^m_k - k_n) > 0 \). On the other hand if \(\rho_m^2 = \ell \), we have that \(\rho \leq \ell \leq k_n \) and we have that \(\chi(\rho^m_k - k_n) > 0 \).
4. \((\ell - k_n)^2 = \omega/(2^{n+1}) \leq \omega/2, (\rho_m^1 - k_n) \leq \omega/2 \leq \omega/4 \).

We now proceed to bound individual terms on the RHS of (3.2). For the first term we have:
\[
\int_{Q(\omega^{1-m} R^2, R^n)} (\rho_m^1 - k_n)^2 \zeta_n(\zeta_n) \, dx \, dt + 2(\ell - k_n) - \int_{Q(\omega^{1-m} R^2, R^n)} \rho_m^1 - \zeta_n(\zeta_n) \, dx \, dt
\]
\[
\leq \frac{3}{8} \omega^{1-m} \frac{2^{2n-2}}{R^2} \int_{Q(\omega^{1-m} R^2, R^n)} \chi(\rho_m^1 - k_n) \, dx \, dt.
\]
For the second term:
\[
2m\beta^{-1} \int_{Q(\omega^{1-m} R^2, R^n)} (\rho_m^1 - k_n)^2 (\rho_m^1)^{m-1} |\nabla \zeta_n|^2 \, dx \, dt
\]
\[
\leq m\beta^{-1} \left(\frac{5}{4} \right)^{m-1} \omega^{2} \omega^{m-1} \frac{2^{2n-3}}{R^2} \int_{Q(\omega^{1-m} R^2, R^n)} \chi(\rho_m^1 - k_n) > 0 \, dx \, dt.
\]
For the third term:
\[
-2m\beta^{-1} (\ell - k_n) - \int_{Q(\omega^{1-m} R^2, R^n)} \left(\int_{\ell} \rho_m^1 \right)^{s^{-1}} \, dx \, dt
\]
\[
\leq m\beta^{-1} \omega^{2} \omega^{m-1} \frac{2^{2n-1}}{R^2} \int_{Q(\omega^{1-m} R^2, R^n)} \chi(\rho_m^1 - k_n) \, dx \, dt.
\]
For the final two terms we have:
\[
\int_{Q(\omega^{1-m} R^2, R^n)} |\nabla f| |\zeta_n| |\nabla \zeta_n| (\rho_m^1 - k_n)^2 \, dx \, dt + \int_{Q(\omega^{1-m} R^2, R^n)} |\Delta f| (\rho_m^1 - k_n)^2 \zeta_n^2 \, dx \, dt
\]
\[
\leq \left(\frac{2^{n-1}}{R} \| \nabla f \|_{L^\infty(\Omega)} + \| \Delta f \|_{L^\infty(\Omega)} \right) \omega^{2} \omega^{m-1} \frac{2^{2n}}{R^2} \int_{Q(\omega^{1-m} R^2, R^n)} \chi(\rho_m^1 - k_n) \, dx \, dt
\]
\[
= \frac{2^{n-1}}{R} \omega^{m-1} \left(\frac{2^{n+1}}{R} \| \nabla f \|_{L^\infty(\Omega)} + \| \Delta f \|_{L^\infty(\Omega)} \right) \omega^{2} \omega^{m-1} \frac{2^{2n}}{R^2} \int_{Q(\omega^{1-m} R^2, R^n)} \chi(\rho_m^1 - k_n) \, dx \, dt.
\]
where in the last step we have used the fact that \(R \omega^{1-m} < \alpha < 1 \) and that \(R < L \). Putting the bounds for the LHS and RHS of (3.2) together we obtain
\[
\left[\text{ess sup}_{-R^2\omega^{1-m} < t < 0} \int_{K_{R^n} \times \{ t \}} (\rho_m^1 - k_n)^2 \zeta_n^2 \, dx + \omega^{m-1} \int_{Q(\omega^{1-m} R^2, R^n)} |\nabla (\rho_m^1 - k_n) - \zeta_n|^2 \, dx \, dt \right]
\]
\[
\leq C \left(m, L, \| \nabla f \|_{L^\infty(\Omega)}, \| \Delta f \|_{L^\infty(\Omega)} \right) \frac{2^{n-1}}{R^2} \omega^{m-1} \frac{1}{2} \int_{Q(\omega^{1-m} R^2, R^n)} \chi(\rho_m^1 - k_n) \, dx \, dt.
\]
Let \(\tilde{t} = \omega^{m-1} t \) and define the following rescaled functions
\[
\tilde{\rho}_\varepsilon^\ell (\cdot, \tilde{t}) = \rho_\varepsilon^\ell (\cdot, t), \quad \tilde{\zeta}_\epsilon^\ell (\cdot, \tilde{t}) = \zeta_\epsilon^\ell (\cdot, t).
\]
In these new variables the inequality simplifies to
\[
\left[\operatorname{ess} \sup_{R_0^2 \times \{ \tilde{t} < 0 \}} \int_{K_{R_n} \times \{ \tilde{t} \}} (\tilde{\rho}_\varepsilon^\ell - k_n \tilde{\zeta}_\epsilon^\ell)^2 \, dx + \int_{R_n^2, R_n} |\nabla (\tilde{\rho}_\varepsilon^\ell - k_n \tilde{\zeta}_\epsilon^\ell)|^2 \, dx \right] dt
\leq C \frac{2^{2n} \omega^2}{R^2} A_n,
\]
where
\[
A_n := \int_{Q(R_n^2, R_n)} \chi_{[|\tilde{\rho}_\varepsilon^\ell - k_n| > 0]} \, dx dt.
\]
Furthermore we have
\[
\frac{1}{2^{2n+2}} \frac{\omega^2}{4} A_{n+1} = |k_n - k_{n+1}|^2 A_{n+1}
= \int_{Q(R_{n+1}^2, R_{n+1})} |k_n - k_{n+1}|^2 \chi_{[|\tilde{\rho}_\varepsilon^\ell - k_{n+1}| > 0]} \, dx dt
\leq \int_{Q(R_{n+1}^2, R_{n+1})} |k_n - \tilde{\rho}_\varepsilon^\ell|^2 \chi_{[|\tilde{\rho}_\varepsilon^\ell - k_{n+1}| > 0]} \, dx dt
\leq \left\| (k_n - \tilde{\rho}_\varepsilon^\ell)_- \right\|^2_{L^2(Q(R_{n+1}^2, R_{n+1}))}
\leq C_d \frac{A_{n+1}^{2/(2+d)}}{2} \left\| (k_n - \tilde{\rho}_\varepsilon^\ell)_- \right\|_{V^2(Q(R_{n+1}^2, R_{n+1}))}^2,
\]
where in the last step we have used the embedding into the parabolic space \(V^2 \)(cf. Lemma A.3). Thus we have
\[
\frac{1}{2^{2n+2}} \frac{\omega^2}{4} A_{n+1} \leq C_d \left[\operatorname{ess} \sup_{R_n^2 \times \{ \tilde{t} < 0 \}} \int_{K_{R_{n+1}} \times \{ \tilde{t} \}} (\tilde{\rho}_\varepsilon^\ell - k_n \tilde{\zeta}_\epsilon^\ell)^2 \, dx + \int_{R_n^2, R_n} |\nabla (\tilde{\rho}_\varepsilon^\ell - k_n \tilde{\zeta}_\epsilon^\ell)|^2 \, dx \right] dt
\leq C_d \frac{A_{n+1}^{2/(2+d)}}{2} \left[\operatorname{ess} \sup_{R_n^2 \times \{ \tilde{t} < 0 \}} \int_{K_{R_n} \times \{ \tilde{t} \}} (\tilde{\rho}_\varepsilon^\ell - k_n \tilde{\zeta}_\epsilon^\ell)^2 \, dx + \int_{R_n^2, R_n} |\nabla (\tilde{\rho}_\varepsilon^\ell - k_n \tilde{\zeta}_\epsilon^\ell)|^2 \, dx \right] dt
\leq C \frac{2^{2n} \omega^2}{R^2} A_{n+1}^{1+2/(d+2)},
\]
where we have used the fact that \(\tilde{\zeta}_\epsilon = 1 \) on \(Q(R_{n+1}^2, R_{n+1}) \) and have used (3.8). Thus we have
\[
\frac{A_{n+1}}{|Q(R_{n+1}^2, R_{n+1})|} \leq C \frac{|Q(R_n^2, R_n)|^{2/(2+d)} 2^{2n+1}}{R^2 \left| \frac{A_n}{Q(R_{n+1}^2, R_{n+1})} \right|^{1+2/(d+2)}}
\leq C 4^{2n} \left(\frac{|Q(R_n^2, R_n)|}{|Q(R_{n+1}^2, R_{n+1})|} \right)^{1+2/(d+2)} \leq C 4^{2n} \left(\frac{A_n}{|Q(R_n^2, R_n)|} \right)^{1+2/(d+2)},
\]
where we use the fact that \(|Q(R_n^2, R_n)| = R_n^{d+2} \leq R_{n+1}^{d+2} \) and \(R_n/R_{n+1} \leq 2 \). Setting
\[
X_n := \left(\frac{A_n}{|Q(R_n^2, R_n)|} \right),
\]
we have the recursive inequality
\[
X_{n+1} \leq C 4^{2n} X_n^{1+2/(2+d)},
\]
with the constant \(C \) independent of \(\omega, R, n \) and dependent only \(d, m, \beta, f \). Setting \(\nu_0 = C^{-(d+2)/24} - (d+2)^2/2 \), we see that \(X_0 \leq \nu_0 \) is equivalent (3.6) to being satisfied with constant \(\nu_0 \), since \(k_0 = \omega/2 \). Thus,
for this choice, \(X_n \to 0\) by the geometric convergence lemma (cf. Lemma A.1). It follows then, after changing variables, that \(\rho^\ast > \mu^- + \omega/4\) a.e. in \(Q(\omega^{1-m}(\frac{R}{2}), \frac{R}{2})\). The result follows by noting that \(\rho^\ast > \mu^- + \omega/4 = \ell\) implies that \(\rho^\ast = \rho\). \qed

Corollary 3.8 (Reduction of oscillation in case 1). Assume that (3.6) holds with constant \(\nu_0\) as specified in the proof of Lemma 3.7. Then there exists a \(\sigma_1 \in (0,1)\), independent of \(\omega, R\), such that

\[
\text{ess osc}_{Q(\omega^{1-m}(\frac{R}{2}), \frac{R}{2})} \rho \leq \sigma_1 \omega.
\]

Proof. We have by the result of the previous lemma that

\[
\text{ess inf}_{Q(\omega^{1-m}(\frac{R}{2}), \frac{R}{2})} \rho \geq \mu^- + \omega/4.
\]

Thus we have that

\[
\text{ess osc}_{Q(\omega^{1-m}(\frac{R}{2}), \frac{R}{2})} \rho = \text{ess sup}_{Q(\omega^{1-m}(\frac{R}{2}), \frac{R}{2})} \rho - \text{ess inf}_{Q(\omega^{1-m}(\frac{R}{2}), \frac{R}{2})} \rho
\]

\[
\leq \mu^+ - \mu^- - \omega/4
\]

\[
\leq \frac{3}{4} \omega.
\]

Thus, the result holds with \(\sigma_1 = \frac{3}{4}\). \qed

3.2.2. Reduction of oscillation in case 2. We now assume that (3.7) holds but with the constant \(\nu_0\) fixed from the previous argument. We argue now that if (3.7) is satisfied then there exists some \(t_0\),

\[t_0 \in [-\omega^{1-m} R^2, -\frac{\nu_0}{2} \omega^{1-m} R^2].\]

such that

\[
\left\{x \in K_R : \rho(x,t_0) > \mu^+ - \frac{\omega}{2}\right\} \leq \frac{1 - \nu_0}{1 - \nu_0/2} |K_R|.
\]

We prove this by contradiction. Assume this is not the case then

\[
\left\{x \in Q(\omega^{1-m} R^2, R) : \rho(x,t) > \mu^+ - \frac{\omega}{2}\right\}
\]

\[
\geq \int_{-\omega^{1-m} R^2}^{\omega^{1-m} R^2} |x \in K_R : \rho(x,s) > \mu^+ - \omega/2| \, ds
\]

\[
\geq \left(\frac{\nu_0}{2} \omega^{1-m} R^2 + \omega^{1-m} R^2\right) \left(\frac{1 - \nu_0}{1 - \nu_0/2}\right) |K_R|
\]

\[
=(1 - \nu_0) |Q(\omega^{1-m} R^2, R)|,
\]

which contradicts (3.7). We now proceed to prove the following lemma.

Lemma 3.9. Assume that (3.7) holds. Then there exists a \(q \in \mathbb{N}\), depending only on the data, such that

\[
\left\{x \in K_R : \rho(x,t) > \mu^+ - \frac{\omega}{2}\right\} \leq \left(1 - \left(\frac{\nu_0}{2}\right)^2\right) |K_R|,
\]

for all \(t \in [-\frac{\nu_0}{2} \omega^{1-m} R^2, 0]\) and \(\alpha\) in (3.5) chosen to be small, depending only on \(\nu_0, m, d, \beta, W, M\) but independent of \(R\) and \(\omega\).

Proof. The proof of this lemma relies on the Lemma 3.6 with the function \(\psi^*(u)\) on the cylinder \(Q(-t_0, R)\). We choose

\[k = \mu^+ - \frac{\omega}{2}, \quad c = \frac{\omega}{2^{m+1}}.\]
where the constant \(n > 1 \) will be chosen later. It is fine to apply it to this function as we can assume that
\[
H^+_{n,k} = \text{ess sup}_{Q(-t_0,R)} \left(\rho - \mu^+ + \frac{\omega}{2} \right)_+ > \frac{\omega}{4} \geq \frac{\omega}{2n+1},
\]
otherwise the proof of the lemma would be complete with \(q = 2 \). Indeed, we would have for all \(t \in [t_0,0] \):
\[
\left\{ x \in K_R : \rho(x,t) > \mu^+ - \frac{\omega}{4} \right\} = \left\{ x \in K_R : \rho(x,t) - \mu^+ + \frac{\omega}{2} > \frac{\omega}{4} \right\} = 0.
\]
Before we write down the inequality, we need to further understand the properties of the function \(\psi^+(\rho) \) defined on the cylinder \(Q(-t_0,R) \). Note first that
\[
\psi^+(\rho) = \begin{cases}
\ln \left(\frac{H^+_{n,k}}{H^+_{n,k} - \rho + k + \frac{\omega}{2n+1}} \right) & \rho > k + \frac{\omega}{2n+1}, \\
0 & \rho \leq k + \frac{\omega}{2n+1}.
\end{cases}
\]
Furthermore in \(Q(-t_0,R) \), we have that
\[
\rho - k \leq H^+_{n,k} \leq \frac{\omega}{2}.
\]
Therefore
\[
\psi^+(\rho) \leq \ln \left(\frac{H^+_{n,k}}{H^+_{n,k} - \rho + k + \frac{\omega}{2n+1}} \right) \leq \ln(2^n) \leq n \ln(2).
\]
Furthermore, we need to study the properties of \((\psi^+)'(\rho)\):
\[
(\psi^+)'(\rho) = \begin{cases}
\frac{1}{H^+_{n,k} - \rho + k + \frac{\omega}{2n+1}} & \rho > k + \frac{\omega}{2n+1}, \\
0 & \rho \leq k + \frac{\omega}{2n+1}.
\end{cases}
\]
Thus we have
\[
0 \leq (\psi^+)'(\rho) \leq \frac{2^{n+1}}{\omega}.
\]
We now proceed to writing down the estimate
\[
\int_{K_R \times \{t\}} (\psi^+)^2(\rho) \zeta^2 \, dx \leq \int_{K_{R_1} \times \{t_0\}} (\psi^+)^2(\rho) \zeta^2 \, dx - 2m\beta^{-1} \int_{t_0}^t \int_{K_{R_1} \times \{s\}} (\rho^{m-1}|\nabla \rho|^2((\psi^+)'(\rho))^2\zeta^2) \, dx \, ds \\
+ 2m\beta^{-1} \int_{t_0}^t \int_{K_{R_1} \times \{s\}} \rho^{m-1}\psi^+(\rho)|\nabla \zeta|^2 \, dx \, ds \\
+ 2 \int_{t_0}^t \int_{K_{R_1} \times \{s\}} \rho|\nabla f|\nabla |(\psi^+)'(\rho))^2(1 + (\psi^+(\rho))|\zeta|^2 \, dx \, ds \\
+ 4 \int_{t_0}^t \int_{K_{R_1} \times \{s\}} \rho|\nabla f|\nabla |((\psi^+)'(\rho))\psi^+(\rho)||\zeta| \, dx \, ds,
\]
for any \(t_0 \leq t \leq 0 \). We choose a time-independent cutoff function \(0 \leq \zeta \leq 1 \) such that
\[
\zeta \equiv 1, \quad x \in K_{(1-\delta)R}, \quad |\nabla \zeta| \leq (\delta R)^{-1}.
\]
Consider now the first term involving \(f \) on the RHS of (3.9)
\[
2 \int_{t_0}^t \int_{K_{R_1} \times \{s\}} \rho|\nabla f|\nabla |((\psi^+)'(\rho))^2(1 + (\psi^+(\rho))|\zeta|^2 \, dx \, ds \\
\leq 2m\beta^{-1} \int_{t_0}^t \int_{K_{R_1} \times \{s\}} (\rho^{m-1}|\nabla \rho|^2((\psi^+)'(\rho))^2\zeta^2) \, dx \, ds
\]
We proceed to bound each of the terms individually. For the first term on the RHS of (3.9) we use the fact that

\[
\rho^{-m}|\nabla f|^2((\psi^+)'(\rho)) (1 + (\psi^+)(\rho))^2 |\xi|^2 \, dx \, ds,
\]

where we have simply applied Young’s inequality and the constant \(\lambda \in (0, 1/2) \). We derive a similar bound for the second term involving \(f \) as follows

\[
4 \int_{t_0}^t \int_{K_R \times \{s\}} \rho |\nabla f| |\nabla \xi| ((\psi^+)'(\rho)) |\xi| \, dx \, ds \\
\leq 2m\beta^{-1} \int_{t_0}^t \int_{K_R \times \{s\}} \rho^{n-1} \psi^+(\rho)|\nabla \xi|^2 \, dx \, ds \\
+ \frac{1}{2 \lambda m\beta^{-1}} \int_{t_0}^t \int_{K_R} \rho^{3-m} |\nabla f|^2 ((\psi^+)'(\rho))^2 (1 + (\psi^+)(\rho))^2 |\xi|^2 \, dx \, ds.
\]

Putting it all together we can get rid of the negative term in (3.9) and take the \(\text{ess sup} \) to obtain:

\[
\text{ess sup}_{t \in [t_0, t]} \int_{K_R \times \{t\}} ((\psi^+)^2)(\rho) \xi^2 \, dx \leq \int_{K_R \times \{t_0\}} ((\psi^+)^2)(\rho) \xi^2 \, dx \\
+ 2m\beta^{-1} \int_{t_0}^t \int_{K_R \times \{s\}} \rho^{n-1} \psi^+(\rho)|\nabla \xi|^2 \, dx \, ds \\
+ \frac{1}{2 \lambda m\beta^{-1}} \int_{t_0}^t \int_{K_R} \rho^{3-m} |\nabla f|^2 ((\psi^+)'(\rho))^2 (1 + (\psi^+)(\rho))^2 |\xi|^2 \, dx \, ds.
\]

(3.10)

We proceed to bound each of the terms individually. For the first term on the RHS of (3.10) we obtain:

\[
\int_{K_R \times \{t_0\}} ((\psi^+)^2)(\rho) \xi^2 \, dx \leq n^2 \ln(2)^2 \frac{1 - \nu_0}{1 - \nu_0/2} |K_R|.
\]

For the second term we use the fact that \(\rho \leq 5\omega/4 \) to obtain:

\[
2m\beta^{-1} \int_{t_0}^0 \int_{K_R \times \{s\}} \rho^{m-1} \psi^+(\rho)|\nabla \xi|^2 \, dx \, ds \leq 2m\beta^{-1} \left(\frac{5}{4} \right)^{m-1} \omega^{m-1}(\delta R)^{-2} |t_0| n \ln(2) |K_R| \\
\leq 2m\beta^{-1} \left(\frac{5}{4} \right)^{m-1} \ln(2)^2 \delta^{-2} n |K_R|.
\]

For the third term we use the fact that \(5/4 \omega \geq \rho \geq \omega/2 \) on the supports of \(\psi^+(\rho) \) and \((\psi^+)'(\rho) \) to obtain:

\[
\frac{1}{2 \lambda m\beta^{-1}} \int_{t_0}^0 \int_{K_R} \rho^{3-m} |\nabla f|^2 ((\psi^+)'(\rho))^2 (1 + (\psi^+)(\rho))^2 |\xi|^2 \, dx \, ds \\
\leq C \frac{1}{2 \lambda m\beta^{-1}} \omega^{3-m} \omega^{1-m} R^2 \|\nabla f\|_{L^\infty(\Omega)}^2 n^{n+1} \omega^{-2} (1 + n \ln(2))^2 |K_R| \\
= \frac{C}{2 \lambda m\beta^{-1}} \omega^{1-m} \omega^{1-m} R^2 \|\nabla f\|_{L^\infty(\Omega)}^2 n^{n+1} (1 + n \ln(2))^2 |K_R|.
\]

Similarly for the final term we obtain

\[
\frac{2}{\lambda m\beta^{-1}} \int_{t_0}^0 \int_{K_R} \rho^{3-m} |\nabla f|^2 (\psi^+(\rho))^2 |\nabla \xi|^2 \, dx \, ds \\
\leq 2C \omega^{1-m} \omega^{1-m} R^2 \|\nabla f\|_{L^\infty(\Omega)}^2 n \ln(2)^2 |K_R|.
\]
For the LHS of (3.7), consider the set

\[S_t = \{ x \in K_{(1-\delta)R} : \rho(x,t) > \mu^+ - \omega/2^{n+1} \} \subset K_R, \quad t \in (t_0, 0) \].

It is clear that \(\zeta = 1 \) on \(S_t \) and, since \(-\rho + k + \omega/2^{n+1} < 0\), the function

\[H_{\rho,k}^+ \frac{H_{\rho,k}^+ - \rho + k + \frac{\omega}{2^{n+1}}}{\omega/2} \]

is decreasing in \(H_{\rho,k}^+ \). Thus in \(S_t \) we have

\[\frac{H_{\rho,k}^+}{H_{\rho,k}^+ - \rho + k + \frac{\omega}{2^{n+1}}} \geq \frac{\omega/2}{\omega/2 - \rho + k + \frac{\omega}{2^{n+1}}} \geq \frac{\omega/2}{\omega/2 + \omega/2^n - \omega/2 + \omega/2^{n+1}} = 2^{n-1}. \]

Thus we have

\[\text{ess sup}_{t \in [t_0,0]} \int_{K_R \times \{t\}} ((\psi^+)(\rho)\zeta^2 \, dx \geq (n-1)^2 \ln(2)|S_t|. \]

Putting all the terms back together we obtain and bounding \(\omega^2 \) by \(M^2 \),

\[|S_t| \leq \left(\frac{n}{n-1} \right)^2 \frac{1 - \nu_0}{1 - \nu_0/2} + C(m,\beta)\delta^{-2} \frac{n}{(n-1)^2} |K_R| \]

\[+ C_1 \left(m, \beta \lambda \| \nabla f \|_{L^\infty(\Omega)} \right) \omega^{1-m} \omega^{1-m} R^2 2^{2n+1} \left(\frac{1 + n \ln(2)}{n-1} \right)^2 |K_R| \]

\[+ C_2 \left(m, \beta \lambda \| \nabla f \|_{L^\infty(\Omega)}, M \right) \omega^{1-m} \omega^{1-m} R^2 \left(\frac{n}{n-1} \right)^2 |K_R|. \]

Finally, we obtain the estimate we need

\[\left| \left\{ x \in K_R : \rho(x,t) > \mu^+ - \frac{\omega}{2^t} \right\} \right| \]

\[\leq |S_t| + |K_R \setminus K_{(1-\delta)R}| \]

\[\leq \left(\frac{n}{n-1} \right)^2 \frac{1 - \nu_0}{1 - \nu_0/2} + C(m,\beta)\delta^{-2} \frac{n}{(n-1)^2} + d\delta \right) |K_R| \]

\[+ C_1 \left(m, \beta \lambda \| \nabla f \|_{L^\infty(\Omega)} \right) R^\alpha \omega^{1-m} R^\alpha \omega^{1-m} L^{2-2\varepsilon} 2^{n+1} \left(\frac{1 + n \ln(2)}{n-1} \right)^2 |K_R| \]

\[+ C_2 \left(m, \beta \lambda \| \nabla f \|_{L^\infty(\Omega)}, M \right) R^\alpha \omega^{1-m} R^\alpha \omega^{1-m} L^{2-2\varepsilon} \left(\frac{n}{n-1} \right)^2 |K_R|, \]

where one should note that \(R \leq L \) and the term \(R^\alpha \omega^{1-m} \) can be controlled by \(\alpha \) through (3.5).

Note that for the term in the first set of brackets we can choose \(d\delta \leq 3/16n_0^2 \) and \(n \) large enough such that

\[\left(\frac{n}{n-1} \right)^2 \leq (1 - \nu_0/2)(1 + \nu_0), \quad C(m,\beta)\frac{n}{(n-1)^2} \delta^{-2} \leq 3/16n_0^2, \]

because \((1 - \nu_0/2)(1 + \nu_0) > 1 \). Now that \(n \) and \(\delta \) have been fixed we note that the constant \(\alpha \) in (3.5) can be made small enough (independent of \(\omega \) and \(R \)) so that terms in the other two
brackets are lesser that $3\nu_0^2/16$. This gives us

$$\left|\left\{ x \in K_R : \rho(x, t) > \mu^+ - \frac{\omega}{2\nu}\right\} \right| \leq \left(1 - \frac{\nu_0^2}{8} + 3\nu_0^2/4\right)|K_R| = \left(1 - \frac{\nu_0^2}{4}\right)|K_R|.$$

The proof follows by setting $q = n + 1$ and noting that $[t_0, 0] \supset \left[\frac{-\omega^1}{2^{n/2}}\omega^1 R^2, 0\right]$.

We now proceed to prove that ρ is strictly lesser than its supremum in a smaller parabolic cylinder.

Lemma 3.10. Assume that (3.7) holds. Then there exists some $s_0 \in \mathbb{N}$ large enough, independent of ω, such that

$$\rho(x, t) < \mu^+ - \frac{\omega}{2s_0} \text{ a.e. } (x, t) \in Q\left(\frac{m_0}{2^s} \omega^1 - m \left(\frac{R^2}{2^s}\right)^2, \frac{R^2}{2^s}\right).$$

Proof. The proof is similar to that of Lemma 3.7 and relies on the energy estimates in Lemma 3.3. We start by considering the sequence

$$R_n = \frac{R^2}{2^n} + \frac{R^2}{2^n} \quad n = 0, 1, \ldots$$

such that $R_0 = R$ and $R_n \to R/2$ as $n \to \infty$. We then construct a sequence of nested shrinking cylinders $Q(\nu_0^{-1}\omega^1 - m R^2, R_n)$ along with cutoff functions ζ_n satisfying

$$0 \leq \zeta \leq 1, \quad \zeta_n = 1 \text{ in } Q(\nu_0^{-1}\omega^1 - m R^2, R_{n+1}), \quad \zeta_n = 0 \text{ on } \partial Q(\nu_0^{-1}\omega^1 - m R^2, R_n),$$

$$|\nabla \zeta_n| \leq \frac{2^{n-1}}{R}, \quad 0 \leq (\zeta_n)_{x} \leq \frac{2^{n-2}}{R^2} \omega^m, \quad \Delta \zeta_n \leq \frac{2^{n-2}}{R^2}.$$

We now apply the energy estimate of Lemma 3.3 in $Q(\nu_0^{-1}\omega^1 - m R^2, R_n)$ with $\ell = \mu^+ - \omega/2s_0$, and $k_n = \mu^+ - \omega/(2s_0) - \omega/(2^{n+s_0})$ for the function $(\rho^\ell + k_n)_+$. We will bound the terms on the LHS and RHS separately. Considering first the terms on the LHS we have

$$\leq \frac{1}{2} \left[\mathop{\text{ess sup}}_{-R_n^2 \omega^1 - m < x < 0} \int_{K_{R_n} \times \{t\}} (\rho^\ell_n - k_n)^2 \zeta_n^2 \ dx + \int_{Q(\nu_0^{-2}\omega^1 - m R^2, R_n)} (\rho^\ell_n)^m - m |\nabla (\rho^\ell_n + k_n) + \zeta_n|^2 \ dx \ dt \right]$$

$$\geq 2^{-m} \left[\mathop{\text{ess sup}}_{-R_n^2 \omega^1 - m < x < 0} \int_{K_{R_n} \times \{t\}} (\rho^\ell_n - k_n)^2 \zeta_n^2 \ dx + \omega^m \int_{Q(\nu_0^{-2}\omega^1 - m R^2, R_n)} |\nabla (\rho^\ell_n + k_n) + \zeta_n|^2 \ dx \ dt \right],$$

where we have used the fact that when $|\nabla (\rho^\ell_n - k_n) + \zeta_n|$ is nonzero, $\rho^\ell_n \geq k_n \geq \omega/2$. For the RHS we first note the following facts:

1. $0 \leq \mu^+ - \omega/4$ which implies that $\rho \leq 5\omega/4$, and $\rho^\ell_n \leq 5\omega/4$.
2. $\ell = \mu^+ - \omega/2s_0 > k_n$ which implies that $\chi_{[\rho \geq \ell]} \leq \chi_{[\rho \geq k_n]} = \chi_{[(\rho - k_n) > 0]}$.
3. If $\rho^\ell_n = \rho$, then $\chi_{[(\rho^\ell_n - k_n) = 0]} = \chi_{[(\rho - k_n) = 0]}$. On the other hand if $\rho^\ell_n = \ell$, we have that $\rho \geq \ell \geq k_n$. Thus we have that $\chi_{[(\rho - k_n) > 0]} = \chi_{[(\rho - k_n) > 0]}$.
4. $(l - k_n) = \omega/(2^{n+s_0}) - \omega/2^{n+s_0}, (\rho^\ell_n - k_n) \leq \omega/2^{n+s_0} \leq \omega/2^{n-s_0}, (\rho - \ell) \leq \omega/2^{n-s_0}.$

Applying, essentially the same bounds as Lemma 3.7, we obtain

$$\leq \mathcal{C}(m, L, \beta, \|\nabla f\|_{L^\infty(\Omega)}, \|\Delta f\|_{L^\infty(\Omega)}) \left(\frac{2^{n-s_0}}{R^2} \omega^m \int_{Q(\nu_0^{-2}\omega^1 - m R^2, R_n)} \chi_{[(\rho^\ell_n - k_n) > 0]} \ dx \ dt \right).$$

Let $\ell = \nu_0^{-1}\omega^m - t$ and define the following rescaled functions

$$\rho^\ell_n(\cdot, \cdot, t) = \rho^\ell_n(\cdot, t), \quad \zeta_n(\cdot, \cdot, t) = \zeta_n(\cdot, t).$$

16
In these new variables the inequality simplifies to
\[
\begin{aligned}
\text{ess sup}_{-R^2 < t < 0} & \int_{K_{R_n} \times \{t\}} (\hat{\rho}_+ - k_n)^2 \zeta_n^2 \, dx + \frac{\nu_0}{2} \int_{R^2_n \backslash R_n} |\nabla (\hat{\rho}_+ - k_n) + \zeta_n|^2 \, dx \, dt \\
\leq C \frac{2^n \nu_0}{R^2} \frac{\omega^2}{2^{2n-2}} A_n,
\end{aligned}
\]
where
\[
A_n := \int_{Q(R^2_n \backslash R_n)} \chi_{[(\hat{\rho}_+ - k_n) > 0]} \, dx \, dt.
\]
Since \(\nu_0 \in (0, 1)\) it simplifies to,
\[
\begin{aligned}
\text{ess sup}_{-R^2 < t < 0} & \int_{K_{R_n} \times \{t\}} (\hat{\rho}_+ - k_n)^2 \zeta_n^2 \, dx + \int_{R^2_n \backslash R_n} |\nabla (\hat{\rho}_+ - k_n) + \zeta_n|^2 \, dx \, dt \\
\leq C \frac{2^n}{R^2} \frac{\omega^2}{2^{2n-2}} A_n.
\end{aligned}
\]

Furthermore we have
\[
\frac{1}{2^{2n+2}} \frac{\omega^2}{2^{2n-2}} A_{n+1} = |k_n - k_{n+1}|^2 A_{n+1}
\]
\[
= \int_{Q(R^2_{n+1}, R_{n+1})} |k_n - k_{n+1}|^2 \chi_{[(\hat{\rho}_+ - k_{n+1}) > 0]} \, dx \, dt
\]
\[
\leq \int_{Q(R^2_{n+1}, R_{n+1})} |k_n - \hat{\rho}_+|^2 \chi_{[(\hat{\rho}_+ - k_{n+1}) > 0]} \, dx \, dt
\]
\[
\leq \left\| (k_n - \hat{\rho}_+) \right\|^2_{L^2(Q(R^2_{n+1}, R_{n+1}))}
\]
\[
\leq C_d A_n^{2/(2+d)} \left\| (k_n - \hat{\rho}_+) \right\|^2_{V^2(Q(R^2_{n+1}, R_{n+1}))},
\]
where in the last step we have used the embedding into the parabolic space \(V^2\) (cf. Lemma A.3).
Thus, as in Lemma 3.7 we have
\[
\frac{1}{2^{2n+2}} \frac{\omega^2}{2^{2n-2}} A_{n+1} \leq C \frac{2^n}{R^2} \frac{\omega^2}{2^{2n-2}} A_n^{1+2/(d+2)}.
\]
This can be simplified to
\[
X_{n+1} \leq C 4^{2n} X_n^{1+2/(d+2)},
\]
where
\[
X_n = \frac{A_n}{Q(R^2_n, R_n)},
\]
and the constant \(C\) independent of \(\omega, R, n\) and dependent only \(d, m, \beta, f\). Thus if
\[
X_0 \leq C^{-(d+2)/4} 4^{(d+2)/2} := \nu_0^*,
\]
by the geometric convergence lemma (cf. Lemma A.1), \(X_n \to 0\) and the result follows as in the proof of Lemma 3.7. Thus all that remains to be shown is (3.11) holds. Before we do this we introduce the following notation
\[
B_x(t) = \left\{ x \in K_R : \rho(x, t) > \mu^+ - \frac{\omega}{2\sigma} \right\},
\]
and
\[
B_\sigma = \left\{ (x, t) \in Q \left(\frac{\nu_0}{2} \omega^{1-m} R^2, R \right) : \rho(x, t) > \mu^+ - \frac{\omega}{2\sigma} \right\}.
\]
In this notation (3.11) reads as

\[|B_{s_0-1}| \leq \nu_0^\ell Q\left(\frac{v_0}{2}\omega^{1-m}R^2, R\right). \]

The above inequality means that the subset of \(Q\left(\frac{v_0}{2}\omega^{1-m}R^2, R\right)\) where \(\rho\) is close to its supremum can be made arbitrarily small. To show this, we apply the energy estimate of Lemma 3.3 to the function \((\rho_+^k - k)_+\) with

\[k = \mu^+ - \frac{\omega}{2^s}, \quad q < s < s_0, \]

with a cutoff function \(\zeta\) defined in \(Q\left(\frac{v_0}{2}\omega^{1-m}R^2, 2R\right)\) such that

\[\zeta \equiv 1, \quad \text{in } Q\left(\frac{v_0}{2}\omega^{1-m}R^2, R\right), \]

\[\zeta = 0 \quad \text{on } \partial_p Q\left(\frac{v_0}{2}\omega^{1-m}R^2, 2R\right), \]

\[|\nabla \zeta| \leq \frac{1}{R}, \quad 0 \leq \zeta \leq \frac{\omega^{m-1}}{R^2}. \]

We delete the first term on the LHS and bound the rest as follows:

\[
\frac{1}{2} \left[\text{ess sup}_{-R^2} \omega^{1-m} |\zeta| \leq \int_{K_{2R}} (\rho - k)_+^2 \zeta^2 \, dx + \int_{Q(v_0, 2^{-1}, \omega^{1-m} R^2, 2R)} (\rho)_+^{m-1} |\nabla (\rho - k)_+ \zeta|^2 \, dx \, dt \right]
\]

\[
\geq 2^{-m} \int_{Q(v_0, 2^{-1}, \omega^{1-m} R^2, 2R)} |\nabla (\rho - k)_+ \zeta|^2 \, dx \, dt \geq 2^{-m} \int_{Q(v_0, 2^{-1}, \omega^{1-m} R^2, 2R)} |\nabla (\rho - k)_+|^2 \, dx \, dt,
\]

where we have used the fact that when \(|\nabla (\rho - k)_+ \zeta|\) is nonzero then \(\rho > k > \omega/2\). For the terms on the RHS we bound them as in Lemma 3.7 (note that two of the terms are zero because \(\rho \leq t = \mu^+\) a.e. \((x, t))\). Thus we have the bound

\[
2^{-m} \omega^{m-1} \int_{Q(v_0, 2^{-1}, \omega^{1-m} R^2, 2R)} |\nabla (\rho - k)_+|^2 \, dx \, dt
\]

\[
\leq C = \left(\frac{m}{2} + \|\nabla f\|_{L^\infty(\Omega)} + \|\Delta f\|_{L^\infty(\Omega)}\right) \frac{\omega^{m-1}}{R^2} \int_{Q(v_0, 2^{-1}, \omega^{1-m} R^2, 2R)} \frac{\omega}{2^s-2} \, dx \, dt
\]

\[
\leq C \frac{\omega^{m-1}}{R^2} \frac{\omega}{2^s-2} |Q(v_0, 2^{-1}, \omega^{1-m} R^2, 2R)|
\]

Since \(|Q(v_0, 2^{-1}, \omega^{1-m} R^2, 2R)| = 2^{d+1} |Q(v_0, 2^{-1}, \omega^{1-m} R^2, 2R)|\), multiplying my \(\omega^{1-m}\) this reduces to

\[
\int_{Q(v_0, 2^{-1}, \omega^{1-m} R^2, 2R)} |\nabla (\rho - k)_+|^2 \, dx \, dt \leq C \frac{\omega^2}{2^s-2} |Q(v_0, 2^{-1}, \omega^{1-m} R^2, 2R)|.
\]

Note now that \(B_s \subset Q(v_0, 2^{-1}, \omega^{1-m} R^2, 2R)\) and, in \(B_s\), \(|\nabla (\rho - k)_+| = |\nabla (\rho - k)| = |\nabla \rho|\). Thus the above inequality gives us

\[
\int_{B_s} |\nabla \rho|^2 \, dx \, dt \leq C \frac{\omega^2}{2^s-2} |Q(v_0, 2^{-1}, \omega^{1-m} R^2, 2R)|.
\]

(3.12)

We now apply the lemma of De Giorgi (cf. Lemma A.2) with \(k_1 = \mu^+ - \omega/2^s\) and \(k_2 = \mu^+ - \omega/2^{s+1}\), to obtain that for all \(t \in [-v_0^2, \omega^{1-m} R^2, 0]\)

\[
\frac{\omega}{2^{s+1}} |B_{s_1+1}(t)| \leq C \frac{R^{d+1}}{|K_R \setminus B_s(t)|} \int_{B_s(t) \setminus B_{s_1+1}(t)} |\nabla \rho| \, dx.
\]

(3.13)

Since \(q \leq s - 1\), by Lemma 3.9, it follows that \(|B_{s_1-1}(t)| \leq |B_q(t)| \leq (1 - v_0^2/4)|K_R|\) for all \(t \in [-v_0^2, \omega^{1-m} R^2, 0]\). Thus for all such \(t\) it follows that

\[
|K_R \setminus B_s(t)| = \left| \left\{ x \in K_R : \rho(x, t) < \mu^+ - \frac{\omega}{2^s} \right\} \right|
\]

\[
\geq \left| \left\{ x \in K_R : \rho(x, t) < \mu^+ - \frac{\omega}{2^{s+1}} \right\} \right|
\]

18
\[|K_R| - |B_{s-1}(t)| \geq \frac{\nu_0^2}{4} |K_R|. \]

Thus, (3.13) can be rewritten as
\[\frac{\omega}{2^{s+1}} |B_{s+1}(t)| \leq C \frac{R^{d+1}}{|K_R|^2} \int_{B_s(t) \setminus B_{s+1}(t)} |\nabla \rho| \, dx. \]

for \(t \in [-\nu_0 2^{-1} \omega^{1-m} R^2, 0] \). We integrate the above inequality over \([-\nu_0 2^{-1} \omega^{1-m} R^2, 0]\) to obtain
\[\frac{\omega}{2^{s+1}} |B_{s+1}| \leq C \frac{R}{|K_R|^2} \left(\int_{B_s \setminus B_{s+1}} |\nabla \rho|^2 \, dx \, dt \right)^{1/2} |B_s \setminus B_{s+1}|^{1/2}. \]

where in the last step we have applied (3.12). Squaring both sides we obtain
\[|B_{s+1}|^2 \leq C \frac{\omega}{\nu_0^2} |Q(\nu_0 2^{-1} \omega^{1-m} R^2, R)| |B_s \setminus B_{s+1}|. \]

Since \(q < s < s_0 \), we sum the above inequality for \(s = q + 1, \ldots, s_0 - 2 \) to obtain
\[\sum_{s=q+1}^{s_0} |B_{s+1}|^2 \leq C \frac{\nu_0}{Q(\nu_0)^{2} (\omega, \frac{\omega}{2^{s_0}})} \sum_{s=q+1}^{s_0} |B_s \setminus B_{s+1}|. \]

Note that \(\sum_{s=q+1}^{s_0} |B_s \setminus B_{s+1}| \leq |Q(\nu_0 2^{-1} \omega^{1-m} R^2, R)|. \) Additionally, \(B_{s_0-1} \subset B_s \) for all \(s = q + 1, \ldots, s_0 - 2 \). Thus we have
\[|B_{s_0-1}|^2 \leq C \frac{\nu_0}{Q(\nu_0)^{2} (\omega, \frac{\omega}{2^{s_0}})} |Q(\nu_0 2^{-1} \omega^{1-m} R^2, R)|^2. \]

For \(s_0 \in \mathbb{N} \) sufficiently large independent of \(\omega, R \), (3.11) is satisfied and the result follows. \(\square \)

Finally we can state the reduction of oscillation result in case 2.

Corollary 3.11 (Reduction of oscillation in case 2). Assume that (3.6) holds with constant \(\nu_0 \) as specified in the proof of Lemma 3.7. Then there exists a \(\sigma_2 \in (0, 1) \), independent of \(\omega, R \), such that
\[\text{ess osc}_{\nu_0 2^{-1} \omega^{1-m}} (\frac{\omega}{2^{s_0}}) \rho \leq \sigma_2 \omega. \]

Proof. We know from Lemma 3.10 that there exists some \(s_0 \in \mathbb{N} \) such that
\[\text{ess sup}_{\nu_0 2^{-1} \omega^{1-m}} (\frac{\omega}{2^{s_0}}) \rho \leq \mu^+ - \frac{\omega}{2^{s_0}}. \]

Thus
\[\text{ess osc}_{\nu_0 2^{-1} \omega^{1-m}} (\frac{\omega}{2^{s_0}}) \rho \leq \mu^+ - \frac{\omega}{2^{s_0}} - \mu^- \leq \left(1 - \frac{1}{2^{s_0}} \right) \omega. \]

Thus, for \(\sigma_2 = (1 - \frac{1}{2^{s_0}}) \) the result follows. \(\square \)

We combine the two cases into one:

Lemma 3.12 (Total reduction of oscillation). Fix some \(0 < R < L \) such that \(Q(4R^{2-\varepsilon}, 2R) \subset \Omega_T \). Assume that \(\text{ess osc}_{Q(4R^{2-\varepsilon}, 2R)} \rho \leq \omega \) and \(\omega \omega^{m-1} > R^\varepsilon \) and that \(\mu^- > \omega/4 \). Then there exists a constant \(\sigma \in (0, 1) \), depending only on the data (and continuously on \(\beta > 0 \)), and independent of
ω and R, such that
\[\text{ess osc}_{Q(\nu_0 2^{-1}, \omega^{1-m} (\frac{R}{\nu_0}), \frac{R}{\nu_0})} \rho \leq \sigma \omega. \]

Proof. The proof follows from the fact that \(Q(\nu_0 2^{-1}, \omega^{1-m} (\frac{R}{\nu_0}), \frac{R}{\nu_0}) \subset Q(\omega^{1-m} (\frac{R}{\nu_0}), \frac{R}{\nu_0}) \) and setting \(\sigma = \max\{\sigma_1, \sigma_2\}. \)

We can now complete the proof of Theorem 3.2:

Proof of Theorem 3.2. We now show that there exist constants \(\gamma > 1, a \in (0, 1) \), depending only on the data \((W, \beta, m, d, M)\), such that for all \(0 \leq r \leq L \) we have
\[\text{ess osc}_{Q(\omega^{1-m} r^2, r)} \rho \leq \gamma \omega^{2/(L^2)^a}, \tag{3.14} \]
where \(\omega = c_1 M \) and \(c_1 \) is chosen to be large enough so that \(\alpha \omega^{m-1} > L^\varepsilon \). We choose as our starting point the cylinder \(Q(4(L/2)^2, L) \subset \Omega_T \). We start by defining
\[R_k = k^L L/2, \quad \omega_0 = \frac{1}{2} \frac{\sigma(m-1)/L}{\varepsilon/2} < \frac{1}{2}, \quad \omega_k = \sigma^k \omega, \]
for \(k = 0, 1, \ldots \) and \(\varepsilon \leq (m-1) \). We already have that \(\alpha \omega^{m-1} > R_0^\varepsilon \) for all \(0 \leq r \leq R \). This implies that
\[\omega_k^{1-m} R_k^\varepsilon = \sigma^{k(1-m)} \omega^{1-m} R_0^\varepsilon < \alpha \left(\frac{\nu_0}{4} \right)^{\varepsilon k} < \alpha. \]
Additionally, we also have that
\[\sigma = \sigma_1^{1/m} \sigma^{m-1} \]
\[> c_0. \]
It follows that
\[\text{ess osc}_{Q(\omega^{1-m} R_0^\varepsilon, R_0)} \leq \text{ess osc}_{Q(4R_0^{2-\varepsilon}, R_0)} \leq M \leq c_1 M = \omega. \]
Furthermore, we have
\[\text{ess osc}_{Q(\omega^{1-m} R_0^\varepsilon, R_0)} \leq \text{ess osc}_{Q(\omega^{1-m} \nu_0 2^{-1} (R/2)^2, R/2)} \leq \sigma \omega, \]
where we have applied Lemma 3.12. We can repeat the procedure starting at \(R_k \) with \(\omega_k = \sigma_k \omega \) and \(\mu_k := \text{ess inf}_{Q(\omega^{1-m} R_k^\varepsilon, R_k)} \rho \) assumed to be smaller than \(\omega_k/4 \). If this is not the case, then the equation is uniformly parabolic in \(Q(\omega^{1-m} R_k^\varepsilon, R_k) \) and by parabolic regularity theory (cf. [LSU68]), (3.14) holds for some constants \(\gamma' > 1, a' \in (0, 1) \), depending only on the data. The dependence of the constants on \(\beta > 0 \) is continuous.

Assuming \(\mu_k > \omega_k/4 \) and applying the results of Lemma 3.12 to \(R_{k+1} \) we obtain
\[\text{ess osc}_{Q(\omega^{1-m} R_{k+1}^\varepsilon, R_{k+1})} = \text{ess osc}_{Q(\omega^{1-m} \nu_0 2^{-1} (R_{k+1}/2)^2, R_{k+1}/2)} \leq \text{ess osc}_{Q(\omega^{1-m} \nu_0 2^{-1} (R_k/2)^2, R_k/2)} \leq \sigma \omega_k. \]
By induction it follows that
\[\text{ess osc}_{Q(\omega^{1-m} R_k^\varepsilon, R_k)} \leq \sigma^k \omega. \]
Additionally, for all \(0 \leq r \leq L \) we have that
\[c_{0,k+1}^{1}(L/2) \leq r \leq c_{0}^{1}(L/2), \]

20
for some \(k \). Picking \(a = \log_{c_0} \sigma > 0 \), we derive
\[
\sigma^{k+1} \leq \left(\frac{2r}{L} \right)^a .
\]
Thus we have
\[
\text{ess osc}_{Q(\omega^{1-m^2}, r)} \rho \leq \gamma \omega \left(\frac{2r}{L} \right)^a ,
\]
where \(\gamma = \max \{ \sigma^{-1}, \gamma' \} > 1 \) and \(a = \min \{ \log_{c_0} \sigma, a' \} \in (0, 1) \) since \(\sigma > \sigma_1 > 1/2 > c_0 \). Note that (3.14) implies that \(\rho \) is continuous. One can see this by mollifying with some standard mollifier \(\varphi^\varepsilon \) and applying Arzelà–Ascoli to show that the limit as \(\varepsilon \to 0 \) is continuous.

Now that we have control on the oscillation of the solution we can proceed to the proof of Hölder regularity. Consider a weak solution \(\rho(x, t) \) defined on \(\Omega_T \). We would like the Hölder regularity to be uniform in space and time so we consider only those points such that \((x, t) + Q(4(L/2)^2-\varepsilon, L) \subseteq \Omega_T^\sigma \). The local regularity near \(\partial \Omega_T \) can be derived in a similar manner. Fix two points \((x, t)\) and \((y, t)\) for some \(t \) large enough, and consider the recursive scheme starting from \(K := (x, t) + Q(4(L/2)^2-\varepsilon, L) \subseteq \Omega_T \). Setting \(r = d_{\Omega_T}(x, y) \) and applying (3.14), we obtain
\[
|\rho(x, t) - \rho(y, t)| \leq \text{ess osc}_{Q(\omega^{1-m^2}, r)} \rho \leq \gamma \omega \left(\frac{2r}{L} \right)^a \leq \gamma^2 a c_1 L^{-a} d_{\Omega_T}(x, y)^a .
\]
(3.15)

For the time regularity we consider two points \((x, t_1), (x, t_2) \in \Omega_T \) and \(t_1 > t_2 \) assuming that \(|t_1 - t_2|^{1/2} \leq \omega^{1-m}(L/2)^2 \). We consider the recursive scheme starting from \(K := (x, t_1) + Q(4(L/2)^2-\varepsilon, L) \subseteq \Omega_T \). Setting \(r = \omega^{(m-1)/2}|t_1 - t_2|^{1/2} \), we obtain
\[
|\rho(x, t_2) - \rho(x, t_1)| \leq \text{ess osc}_{Q(\omega^{1-m^2}, r)} \rho \leq \gamma \omega \left(\frac{2r}{L} \right)^a \leq \gamma^2 a (c_1 M)^{(2+a(m-1))/2} L^{-a} |t_1 - t_2|^{a/2} .
\]
(3.16)

For \(|t_1 - t_2|^{1/2} > \omega^{1-m}(L/2)^2 \), the proof is easier since
\[
|\rho(x, t_2) - \rho(x, t_1)| \leq 2M \leq 2M |t_1 - t_2|^{a/2} (L/2)^{-a} (c_1 M)^{(m-1)/2} .
\]
(3.17)

Combining (3.15), (3.16), and (3.17) together we have the required Hölder regularity away from the boundary:
\[
|\rho(x, t_1) - \rho(y, t_2)| \leq C_h (d_{\Omega_T}(x, y)^a + |t_1 - t_2|^{a/2})
\leq C_h (d_{\Omega_T}(x, y) + |t_1 - t_2|^{1/2})^a ,
\]
(3.18)

where \(a \in (0, 1) \) depends continuously on \(\beta > 0 \) and \(C_h \) depends on \(M, L, m, \gamma, \) and \(d \). The regularity near the parabolic boundary can be derived in a similar manner. \(\square \)

4. Characterisation of stationary solutions and bifurcations

Now that we have characterised the notion of solution for (3.1) we study the associated stationary problem which is given by
\[
\beta^{-1} \Delta \rho^m + \nabla \cdot (\rho \nabla W \ast \rho) = 0 , \quad x \in \Omega
\]
(4.1)

with the notion of solution identical to the one defined in Definition 3.1. One can immediately see that \(\rho_\infty := L^{-d} \) is a solution to (4.1) for all \(\beta > 0 \). As mentioned earlier, (3.1) and (4.1) are
intimately associated to the free energy functional \(F^m_\beta : \mathcal{P}(\Omega) \to (-\infty, +\infty]\) which is defined as

\[
F^m_\beta(\rho) := \begin{cases}
\frac{\beta^{-1}}{m!} \int_\Omega \rho^m(x) \, dx - \frac{1}{m-1} + \frac{1}{2} \int_{\Omega \times \Omega} W(x - y) \rho(x) \rho(y) \, dx \, dy, & m > 1 \\
\frac{\beta^{-1}}{m} \int_\Omega (\rho \log \rho)(x) \, dx + \frac{1}{2} \int_{\Omega \times \Omega} W(x - y) \rho(x) \rho(y) \, dx \, dy, & m = 1
\end{cases},
\]

whenever the above quantities are finite and as +\infty otherwise. We will often use the shorthand notation \(S^m_\beta(\rho) := \frac{\beta^{-1}}{m!} \int_\Omega \rho^m(x) \, dx - \frac{1}{m-1}\) and \(S_\beta := \frac{\beta^{-1}}{m} \int_\Omega (\rho \log \rho)(x) \, dx\) for the entropies and \(\mathcal{E}(\rho) := \frac{1}{2} \int_{\Omega \times \Omega} W(x - y) \rho(x) \rho(y) \, dx \, dy\) for the interaction energy. We will also drop the superscript \(m\) and just use \(F_\beta(\rho)\) whenever \(m = 1\).

Another object that will play an important role in the analysis below is the following self-consistency equation

\[
\beta^{-1} \frac{m}{m-1} \rho^{m-1} + W \star \rho = C,
\]

for some constant \(C > 0\). We discuss how the above equation, solutions of (4.1), and \(F^m_\beta(\rho)\) are related to each other for the case \(m > 1\) in the following proposition. (the case \(m = 1\) is discussed in [CGPS19] and the proofs are essentially identical)

Proposition 4.1. Let \(\rho \in \mathcal{P}(\Omega) \cap L^m(\Omega)\) and fix \(\beta > 0, m > 1\). Then the following statements are equivalent

1. \(\rho\) is a weak solution of (4.1)
2. \(\rho\) is a critical point of \(F^m_\beta\), i.e., the metric slope \(|\partial F^m_\beta(\rho)|\) is 0.
3. For every connected component \(A\) of its support \(\rho\) satisfies the self-consistency equation, i.e.,

\[
\beta^{-1} \frac{m}{m-1} \rho^{m-1} + W \star \rho = C(A, \rho)
\]

with \(C(A, \rho)\) given by

\[
C(A, \rho) = \beta^{-1} \frac{m}{|A|(m-1)} \|\rho\|_{L^{m-1}(A)}^{m-1}.
\]

Now that we have various equivalent characterisations of stationary solutions of (3.1), we proceed to state and prove the main result of this section regarding the existence of bifurcations from the uniform state \(\rho_\infty\). Before doing this however we need to introduce some relevant notions. We denote by \(H^n_0(\Omega)\) the homogeneous \(H^n(\Omega)\) space and by \(H^m_{0,s}(\Omega)\) the closed subspace of \(H^m_0(\Omega)\) consisting of functions which are even along every coordinate (pointwise a.e.). Note that the \(\{\psi_k\}_{k \in \mathbb{N}^d, k \neq 0}\) form an orthogonal basis for \(H^m_{0,s}(\Omega)\). We then introduce the following map \(F : H^m_{0,s}(\Omega) \times \mathbb{R} \to H^m_{0,s}(\Omega)\) for \(n > d/2\) which is given by

\[
F(\eta, \beta) := \beta^{-1} \frac{m}{m-1} (\rho_\infty + \eta)^{m-1} + W \star \eta - \beta^{-1} \frac{m}{|\Omega|(m-1)} \|\rho_\infty + \eta\|_{L^{m-1}(\Omega)}^{m-1}.
\]

Note that if \(F(\eta, \beta) = 0\) then the pair \((\rho_\infty + \eta, \beta)\) satisfies (4.2) on all of \(\Omega\). If one can show that \((\rho_\infty + \eta)(x) \geq 0, \forall x \in \Omega\) then we have found a bona fide stationary solution of (3.1) by the equivalency established in Proposition 4.1. Thus we would like to study the bifurcations of the map \(F\) from its trivial branch \((0, \beta)\). To this order we compute its Fréchet derivatives around 0 as follows:

\[
D_\eta F(0, \beta)(e_1) = \beta^{-1} m \rho_\infty^{m-2} e_1 + W \star e_1
\]

\[
D^2_{\eta \beta} F(0, \beta)(e_1) = - \beta^{-2} m \rho_\infty^{m-2} e_1
\]

\[
D^2_{\eta \eta} F(0, \beta)(e_1, e_2) = \beta^{-1} m (m-2) \rho_\infty^{m-3} e_2 e_1 - \beta^{-1} \frac{m(m-2)}{|\Omega|} \rho_\infty^{m-3} \int_{\Omega} e_1 e_2 \, dx
\]
\[D^3_{\eta \eta}(0, \beta)(e_1, e_2, e_3) = \beta^{-1}m(m-2)(m-3)\rho_\infty^{m-4}e_1e_2e_3 - \beta^{-1}m(m-2)(m-3)\int_{\Omega} e_1e_2e_3 \, dx, \]

for some \(e_1, e_2, e_3 \in H^m_{0,s}(\Omega). \) We then have the following result:

Theorem 4.2 (Existence of bifurcations). Consider the map \(F : H^m_{0,s}(\Omega) \times \mathbb{R}_+ \to H^m_{0,s}(\Omega) \) for \(n > d/2 \) as defined in (4.3) with its trivial branch \((0, \beta)\). Assume there exists \(k^* \in \mathbb{N}^d, k^* \neq 0 \) such that the following two conditions are satisfied

1. \(\hat{W}(k^*) < 0 \)
2. \(\text{card}\{ k \in \mathbb{N}^d, k \neq 0 : \frac{\hat{W}(k)}{\eta(k)} = \frac{\hat{W}(k^*)}{\eta(k^*)} \} = 1 \).

Then, \((0, \beta_*)\) is a bifurcation point of \((0, \beta)\) with

\[\beta_* = -\frac{m\rho_\infty^{m-3/2}\Theta(k^*)}{\hat{W}(k^*)}, \]

i.e., there exists a neighbourhood \(N \) of \((0, \beta_*)\) and a curve \((\eta(s), \beta(s)) \in N, s \in (-\delta, \delta), \delta > 0 \) such that \(F(\eta(s), s) = 0 \). The branch \(\eta(s) \) has the form

\[\eta(s) = se_{k_*} + r(se_{k_*}, \beta(s)), \]

where \(\|r\|_{H^m_{0,s}(\Omega)} = o(s) \) as \(s \to 0 \). Additionally, we have that \(\beta'(0) = 0 \) and

\[\beta''(0) = \frac{\beta_*(m-2)(m-3)}{3\rho_\infty^2} \int_{\Omega} e^4_{k_*} \, dx. \]

Proof. The proof of this theorem relies on the Crandall–Rabinowitz theorem (cf. Theorem B.1). Note that \(F \in C^2(H^m_{0,s}(\Omega) \times \mathbb{R}_+; H^m_{0,s}(\Omega)) \). Thus we need to show that: (a) \(D_\eta F(0, \beta_*) : H^m_{0,s}(\Omega) \to H^m_{0,s}(\Omega) \) is Fredholm with index zero and has a one-dimensional kernel and (b) for any \(e \in \ker(D_\eta F(0, \beta_*)), e \neq 0 \) it holds that \(D^2_{\eta \eta} F(0, \beta)(e) \notin \text{Im}(D_\eta F(0, \beta_*)). \)

For (a) we first note that \(D_\eta F(0, \beta_*) \) is a compact perturbation of the identity as the operator \(W* e \) is compact on \(H^m_{0,s}. \) It follows then that it is a Fredholm operator. Note that the functions \(\{ e_k \}_{k \in \mathbb{N}^d, k \neq 0} \) diagonalise the operator \(D_\eta F(0, \beta_*). \) Indeed, we have

\[D_\eta F(0, \beta_*)(e_k) = \left(\beta_*^{-1}m\rho_\infty^{m-2} + \frac{1}{N_k} \hat{W}(k) \right) e_k \]

\[= \left(\beta_*^{-1}m\rho_\infty^{m-2} + \rho_\infty^{-1/2} \frac{\hat{W}(k)}{\Theta(k)} \right) e_k. \]

Note that if the conditions (1) and (2) in the statement of the theorem are satisfied it follows, using the expression for \(\beta_* \), that \(D_\eta F(0, \beta_*)(e_k) \) if and only if \(k = k^* \). Thus we have that \(\ker(D_\eta F(0, \beta_*)) = \text{span}(e_{k^*}) \). This completes the verification of the condition (1) in Theorem B.1.

For condition (2) in Theorem B.1, we note again by the diagonalisation of \(D_\eta F(0, \beta_*) \) that \(\text{Im}(D_\eta F(0, \beta_*)) = \{ \text{span}(e_{k^*}) \}^\perp \). Thus we have that

\[D^2_{\eta \eta} F(0, \beta)(e_{k^*}) = -\beta^{-2}m\rho_\infty^{m-2}e_{k^*} \notin \text{Im}(D_\eta F(0, \beta_*)). \]

We can now compute the derivatives of the branch. Using the identity [Kie12, I.6.3], it follows that \(\beta'(0) = 0 \) if \(D^2_{\eta \eta} F(0, \beta_*)(e_{k^*}, e_{k^*}) \in \text{Im}(D_\eta F(0, \beta_*)). \) Thus it is sufficient to check that

\[\langle D^2_{\eta \eta} F(0, \beta_*)(e_{k^*}, e_{k^*}), e_{k^*} \rangle = \langle \beta_*(m-2)\rho_\infty^{m-3} e_{k^*}, e_{k^*} \rangle = 0, \]

where the last inequality follows by using the expression for \(e_{k^*}^2 \) from Proposition 5.15 and orthogonality of the basis \(\{ e_k \}_{k \in \mathbb{N}^d} \). Here \(\langle \cdot, \cdot \rangle \) denotes the dual pairing in \(H^m_{0,s}. \) Thus we have that
\(\beta'(0) = 0 \). Finally we can compute \(\beta''(0) \) by using [Kie12, I.6.11] to obtain

\[
\beta''(0) = -\frac{\langle D^3_{uq} F(0, \beta_0)(e_k, e_k^*, e_k^*, e_k^*) \rangle}{3\langle D^2_{\nu\beta} F(0, \beta_0)(e_k^*) \rangle} = \frac{\beta_*^{-1} m(m-2)(m-3)\rho^m_{\infty} - 4 \int_{\Omega} e_k^4 \, dx}{3\beta_*^2 m \rho^m_{\infty}} = \frac{\beta_* (m-2)(m-3)}{3 \rho^2_{\infty}} \int_{\Omega} e_k^4 \, dx.
\]

This completes the proof of the theorem. \(\square \)

Remark 4.1. Since \(H^0_{0,s}(\Omega) \) is continuously embedded in \(C^0(\Omega) \) it follows that for the branch of solutions \(\rho_\infty + \eta(s) \) found in Theorem 4.2 are in fact strictly positive for \(s \) sufficiently small and are thus stationary solutions by the result of Proposition 4.1. Any interaction potential \(W(x) \) such that infinitely many \(k \) satisfy the conditions of Theorem 4.2 will have infinitely many bifurcation points \((0, \beta_k) \) from the trivial branch. A typical example would be a potential for which the map \(k \mapsto W(k) \) is strictly negative and injective.

Remark 4.2. Note that \(\beta''(0) > 0 \) for all \(m \in (1,2) \cup (3, \infty) \). This means that the branch turns to the right, i.e., it is supercritical. On the other hand if \(m \in (2, 3) \), then \(\beta''(0) < 0 \). This means that the branch turns to the left, i.e., it is subcritical. If \(m \in \{2, 3\} \) we have that \(\beta''(0) = 0 \). The relation of this phenomenon to the minimisers of the free energy will be discussed in Proposition 5.14.

5. Minimisers of the free energy and phase transitions

The nontrivial stationary solutions found as a result of the bifurcation analysis in the previous section need not correspond to minimisers of the free energy, \(F_\beta^m(\rho) \). Indeed, we do not know yet if minimisers even exist. We start first by proving the existence of minimisers of \(F_\beta^m \). We then show that for \(\beta \) sufficiently small \(F_\beta^m \) has a unique minimiser, namely \(\rho_\infty \).

The natural question to ask then is if this scenario changes for larger values of \(\beta \). We provide a rigorous definition by which this change can be characterised via the notion of a transition point and define two possible kinds of transition points, continuous and discontinuous. We then provide necessary and sufficient conditions on \(W \) for the existence of a transition point and sufficient conditions for the existence of continuous and discontinuous transition points.

We start with a technical lemma that provides us with some useful apriori bounds on the minimisers of \(F_\beta^m \).

Lemma 5.1 \((L^\infty(\Omega))\)-bounds. Assume \(\beta > 0, m > 1 \). Then there exists some \(B_{\beta,m} > 0 \), such that if \(\rho \in \mathcal{P}(\Omega) \) with \(\|\rho\|_{L^\infty(\Omega)} > B_{\beta,m} \), then there exists \(\bar{\rho} \in \mathcal{P}(\Omega) \) with \(\|\bar{\rho}\|_{L^\infty(\Omega)} \leq B_{\beta,m} \) with

\[
F_\beta^m(\rho) < F_\beta^m(\bar{\rho}).
\]

Proof. We start by noting that the following bounds hold

\[
\mathcal{E}(\rho) \geq -\frac{1}{2} \|W^{-}\|_{L^\infty(\Omega)}.
\]

We divide our analysis into two cases. For \(B > 0 \) and \(\rho \in \mathcal{P}(\Omega) \) let

\[
\mathcal{B}_B := \{ x \in \Omega : \rho(x) \geq B \},
\]

and define \(B_{\beta,m} \) such that

\[
\mathcal{E}(\mathcal{B}_B) \geq \frac{\beta^{-1}}{m-1} \left(\frac{1}{|\Omega|} \right)^{m-1}
\]

and

\[
\mathcal{E}(\mathcal{B}_B) \geq -\frac{1}{2} \|W^{-}\|_{L^\infty(\Omega)}.
\]

Then, we have

\[
\mathcal{E}(\mathcal{B}_B) \geq \frac{\beta^{-1}}{m-1} \left(\frac{1}{|\Omega|} \right)^{m-1}.
\]

Finally, we obtain

\[
\mathcal{E}(\mathcal{B}_B) \geq \frac{\beta^{-1}}{m-1} \left(\frac{1}{|\Omega|} \right)^{m-1}.
\]

This completes the proof of the theorem. \(\square \)
and
\[\varepsilon_B = \int_{B^n} \rho \, dx. \]

Case 1: \((\rho, B)\) s.t. \(\varepsilon_B \geq \frac{1}{2}\)

We then have the following bounds on the entropy.
\[S_B^m(\rho) = \frac{\beta^{-1} B^{m-1}}{m-1} \left(\int_{B^n} \rho^m \, dx + \int_{\mathbb{R}^n} \rho^m \, dx \right) \geq \frac{\beta^{-1} B^{m-1}}{2(m-1)} \]

It follows then that we have the following bound on the free energy.
\[F(\rho) \geq \frac{\beta^{-1} B^{m-1}}{2(m-1)} \cdot \frac{1}{2} \left\| W_\varepsilon \right\|_{L^\infty(\Omega)}. \]

If we define a constant \(B_1\) as follows
\[B_1(m, \beta) := \left(\frac{2}{|\Omega|} + \beta(m-1)\left\| W_\varepsilon \right\|_{L^\infty(\Omega)} \right)^{1/(m-1)}, \]

such that for \(B > B_1, 1/|\Omega|\) has a lower value of the free energy than \(\rho\).

Case 2: \((\rho, B)\) s.t. \(\varepsilon_B < \frac{1}{2}\)

We write \(\rho = \rho_B + \rho_r\), where \(\rho_B := \rho \cdot \chi_{B^n}\) and \(\rho_r := \rho - \rho_B\). We then have the following bound on the entropy.
\[S_B^m(\rho) \leq S_B^m(\rho_r) + \frac{\beta^{-1} B^{m-1}}{m-1} \varepsilon_B \leq S_B^m(\rho_r). \]

We can assume w.l.o.g that \(F(\rho) < F(1/|\Omega|)\), otherwise the proof is complete. It follows then that
\[E(\rho) < E(1/|\Omega|), \quad S_B^m(\rho_r) \leq S_B^m(\rho) \leq \frac{1}{2} \left\| W_{\varepsilon_B} \right\|_{L^\infty(\Omega)} + \frac{\beta^{-1}}{(m-1)|\Omega|^{m-1}} := s_*(m, \beta). \]

By expanding \(E(\rho)\), the following estimate can be obtained
\[E(\rho_r) < E(1/|\Omega|) + \frac{1}{2} \left\| W_{\varepsilon_B} \right\|_{L^\infty(\Omega)} := \varepsilon_*, \]

where we have used the fact that \(\varepsilon_B < 1/2\). Define \(\bar{\rho}_r := (1 - \varepsilon_B)^{-1} \rho_r \in \mathcal{P}(\Omega)\). We have
\[S_B^m(\rho) - S_B^m(\rho_r) \geq S_B^m(\rho) - \frac{\beta^{-1} B^{m-1}}{m-1} \varepsilon_B - \frac{\beta^{-1}}{m-1} (1 - \varepsilon_B)^{-m} \int_{\Omega} \rho_r^m \, dx \]
\[= \varepsilon_B \left[\frac{\beta^{-1} B^{m-1}}{m-1} - \frac{(1 - \varepsilon_B)^{-m} - 1}{\varepsilon_B} \right] s_*(m, \beta). \]

One can control the second term in the brackets as follows
\[\left(\frac{(1 - \varepsilon_B)^{-m} - 1}{\varepsilon_B} \right) s_*(m, \beta) \leq \max \left(m + \frac{m(m+1)(1 - \delta)^{-m-2\delta} 2^m - 1}{\delta} \right) s_*(m, \beta), \]

for any \(\delta < 1\). Setting \(\delta = \frac{1}{2}\), we obtain
\[\left(\frac{(1 - \varepsilon_B)^{-m} - 1}{\varepsilon_B} \right) s_*(m, \beta) \leq m(1 + (m + 1)2^m). \]

Similarly for the interaction energy we can compute the difference as follows
\[E(\rho) - E(\rho_r) = E(\rho) - E(\rho_r) + E(\rho_r) - E(\tilde{\rho}_r) \]
\[\geq - \frac{1}{2} \left\| W_{\varepsilon_B} \right\|_{L^\infty(\Omega)} + E(\rho_r) \left(\frac{\varepsilon_B^2 - 2\varepsilon_B}{(1 - \varepsilon_B)^2} \right) \]

25
Using the fact that \(\epsilon_B < 1/2 \) we can obtain
\[
\mathcal{E}(\rho) - \mathcal{E}(\bar{\rho}) \geq \epsilon_B \left[-8\epsilon_* - \frac{1}{2}\|W_-\|_{L^\infty(\Omega)} \right].
\]

Now we can define a second constant as follows
\[
B_2(\beta, m) := \left((m - 1)\beta \left(m(1 + 2^m(m + 1))s_\ast(m, \beta) - 8\epsilon_* - \frac{1}{2}\|W_-\|_{L^\infty(\Omega)} \right) \right)^{1/(m-1)},
\]
such that for \(B > B_2, \bar{\rho}_r \) has a lower value of the free energy than \(\rho \). We now set our constant as follows
\[
B_{\beta, m} := \max(B_1(\beta, m), 2B_2(\beta, m)),
\]
and set \(\bar{\rho} \) to either be \((1/|\Omega|) \) of \(\bar{\rho}_r \). The constant 2 in front of \(B_2(\beta, m) \) follows from the fact that \(\bar{\rho}_r \) has been normalised.

The expression for the constant \(B_{\beta, m} \) is explicit as a result of which we can even obtain some uniform control in \(m \).

Corollary 5.2. Let \((\beta, m) \in (0, C) \times [1, \infty) \): \(A \subset (0, \infty) \times (1, \infty) \) for some \(C, \epsilon > 0 \). Then \(B^* := \sup_A B_{\beta, m} < \infty \).

We now proceed to the existence result for minimisers of \(F^m_\beta \).

Theorem 5.3 (Existence of minimisers). Fix \(\beta > 0 \) and \(m > 1 \), then \(F^m_\beta : \mathcal{P}(\Omega) \to (-\infty, +\infty] \) has a minimiser \(\rho^* \in \mathcal{P}(\Omega) \cap L^\infty(\Omega) \). Additionally we have that
\[
\|\rho^*\|_{L^\infty(\Omega)} \leq B_{\beta, m}.
\]

Proof. We note first that, from (5.1) and (5.2), \(F^m_\beta \) is bounded below on \(\mathcal{P}(\Omega) \). Let \(\{\rho_n\}_{n \in \mathbb{N}} \) be a minimising sequence. Note that by Lemma 5.1 we can pick this sequence such that \(\|\rho_n\|_{L^\infty(\Omega)} \leq B_{\beta, m} \). By the Banach–Alaoglu theorem we have a subsequence \(\{\rho_{n_k}\}_{k \in \mathbb{N}} \) and measure \(\rho^* \in L^\infty(\Omega) \) such that
\[
\rho_{n_k} \rightharpoonup \rho^* \text{ in weak-}^* L^\infty(\Omega).
\]
Note that \(\rho^* \) is nonnegative a.e. and also has mass one. Thus, \(\rho^* \in \mathcal{P}(\Omega) \cap L^\infty(\Omega) \). The proof would be complete if we can show lower semicontinuity of \(F^m_\beta \) in weak-\(* \) \(L^\infty(\Omega) \). Note that for \(W \in C^2(\Omega), \mathcal{E}(\rho) \) is continuous. On the other hand, \(S^m_\beta(\rho) \) is convex and strongly continuous in the \(L^\infty(\Omega) \) topology. It follows from fairly classical results (cf. [Bre11, Theorem 3.7]) that \(F^m_\beta \) is also weakly-\(* \) lower semicontinuous. This concludes the proof of existence of minimisers. The bound simply follows from the fact that norms are lower semicontinuous under weak-\(* \) convergence.

Lemma 5.4 (Regularity and compactness of minimisers). Let \(\rho_\beta \in \mathcal{P}(\Omega) \) be a minimiser of \(F^m_\beta(\rho) \). Then \(\rho_\beta \) is Hölder continuous with exponent \(a \in (0, 1) \) given by Theorem 3.2, where \(a \) depends continuously on \(\beta \). Let \(\{\rho_\beta\}_{\beta \in I} \) be a family of such minimisers, where \(I \subset \mathbb{R}_+ \) is some bounded interval. Then the family \(\{\rho_\beta\}_{\beta \in I} \) is relatively compact in \(C^0(\Omega) \).

Proof. The proof of the first statement follows simply by applying Proposition 4.1 and Theorem 3.2 with \(M = B_{\beta, m} \). For the second statement, let \(\bar{I} \) be the closure of \(I \). Then applying (3.18) for some \(x, y \in \mathbb{T}^d \), we have that
\[
|\rho_\beta(x) - \rho_\beta(y)| \leq C_B d_{\mathcal{E}}(x, y)^a,
\]
where \(a = a(\beta), C_h = C_h(\beta) \). Setting \(a^* = \max_I a(\beta) \) and \(B^* \) to be as in Corollary 5.2, we have that

\[
|\rho_\beta(x) - \rho_\beta(y)| \leq C_h^* d_{Tm}(x, y)^{a^*},
\]

where \(C_h^* \) is some new constant depending on \(B^*, m, d, \) and \(W \). Thus the family \(\{\rho_\beta\}_{\beta \in I} \) is equicontinuous. It is clearly equibounded from Corollary 5.2. Applying the Arzela–Ascoli theorem, the result follows.

Now that we have shown existence and regularity of minimisers we show that for \(\beta \) small or \(W \in \mathcal{H} \), minimisers of \(\mathcal{F}_\beta^m \) are unique and given by \(\rho_\infty \). To show this we start with the following lemma.

Lemma 5.5. There exists an \(\delta > 0 \) depending on \(m \), such that for all \(\beta < \delta \) it holds that if \(\rho \in \mathcal{P}(\Omega) \) is a minimiser of \(\mathcal{F}_\beta^m \), then \(\rho(x) \geq 2^{1/(2(m-1))} \) for all \(x \in \Omega \).

Proof. Assume \(\rho \in \mathcal{P}(\Omega) \) is a minimiser of \(\mathcal{F}_\beta^m \). We will show that for \(\varepsilon := 2^{1/(2(m-1))} \), \(\beta \) small enough (depending on \(\varepsilon \), independent of \(\rho \)), we can construct a competitor \(\tilde{\rho} \) which bounded below by \(\varepsilon \) and has a lower value of the free energy. This would be a contradiction. Given any \(\rho \in \mathcal{P}(\Omega) \cap L^1(\Omega) \) which is a minimiser of \(\mathcal{F}_\beta^m \), we define the following sets

\[
A^\varepsilon := \{ x \in \Omega : \rho(x) \leq \varepsilon \}
\]

\[
A_\infty := \{ x \in \Omega : \rho(x) \geq \rho_\infty \}
\]

\[
B := \Omega \setminus (A^\varepsilon \cup A_\infty),
\]

where for the sake of notational convenience we suppress the dependence of the sets on \(\rho \). We assume further that \(|A^\varepsilon| > 0 \) otherwise there is nothing to prove. We then define the following measure \(\tilde{\rho} \in \mathcal{P}(\Omega) \cap L^1(\Omega) \) as follows

\[
\tilde{\rho}(x) := \begin{cases}
\rho(x) + \varepsilon & x \in A^\varepsilon \\
\rho(x) & x \in B \\
\rho(x) - \varepsilon \frac{|A^\varepsilon|}{|A_\infty|} & x \in A_\infty
\end{cases},
\]

where again we suppress the dependence of \(\tilde{\rho} \) on \(\varepsilon > 0 \). It is not immediately clear that \(\tilde{\rho} \) is nonnegative. We show that for \(\varepsilon > 0 \) small enough, independent of \(\rho \), this is indeed the case. We know that \(\int_\Omega \rho \, dx = 1 \), which gives us the following bound,

\[
1 = \int_{A^\varepsilon} \rho \, dx + \int_B \rho \, dx + \int_{A_\infty} \rho \, dx \\
\leq \varepsilon |A^\varepsilon| + \rho_\infty |B| + B_{\beta, m} |A_\infty| \\
\leq \varepsilon |A^\varepsilon| + \rho_\infty |B| + B^* |A_\infty|,
\]

where \(B^* \) is the constant from Corollary 5.2. Dividing through by \(|A^\varepsilon| \) we obtain

\[
|A^\varepsilon|^{-1} \leq \varepsilon + \rho_\infty (|\Omega| - |A^\varepsilon| - |A_\infty|) |A^\varepsilon|^{-1} + B^* \frac{|A_\infty|}{|A^\varepsilon|}.
\]

This leaves us with the following estimate

\[
\frac{|A_\infty|}{|A^\varepsilon|} \geq \frac{\rho_\infty - \varepsilon}{B^* - \rho_\infty}.
\]

It is clear that \(\tilde{\rho} \) can be negative only on the set \(A_\infty \). We have the following bound for all \(x \in A_\infty \),

\[
\tilde{\rho}(x) \geq \rho_\infty - \varepsilon \frac{|A^\varepsilon|}{|A_\infty|}.
\]
Picking \(\varepsilon \) small enough is clearly nonnegative. Additionally, using the same estimate for \(\varepsilon \) small enough, we conclude that \(\bar{\rho}(x) \geq \varepsilon \) for all \(x \in \Omega \). We now try and compute the free energy of \(\bar{\rho} \) by first estimating the entropy as follows

\[
S_\beta(\bar{\rho}) = \frac{\beta^{-1}}{m-1} \left(\int_{A^c} (\rho + \varepsilon)^m \, dx + \int_B \rho^m \, dx + \int_{A^\infty} \left(\rho - \varepsilon \frac{|A^c|}{|A^\infty|} \right)^m \, dx \right) - \frac{1}{m-1}
\]

\[
= S_\beta(\rho) + \frac{\varepsilon}{m-1} \left(\int_{A^c} \rho^{m-1} \, dx + \frac{m}{m-1} \int_{A} \rho^m \, dx - \frac{m}{m-1} \frac{|A^c|}{|A^\infty|} \int_{A^\infty} \rho^{m-1} \, dx \right)
\]

\[
+ \beta^{-1} \left(m \varepsilon^2 \int_{A^c} f_1^m \, dx + m \varepsilon^2 \frac{|A^c|^2}{|A^\infty|^2} \int_{A^\infty} f_2^m \, dx \right),
\]

where \(f_1(x) \in (\rho(x), \rho(x) + \varepsilon) \) and \(f_2(x) \in (\rho(x), \rho(x) - \varepsilon |A^c| / |A^\infty|) \). Since \(|A^c| / |A^\infty| \) is bounded above for \(\varepsilon \) small enough, we have that

\[
S_\beta(\bar{\rho}) \leq S_\beta(\rho) + \frac{m}{m-1} |A^c| (\varepsilon^{m-1} - \rho^{m-1})
\]

\[
+ \beta^{-1} \left(m \varepsilon^2 (2\varepsilon |A^c| + m \varepsilon^2 |A^\infty|^2) (B^*)^{m-2} \right).
\]

Picking \(\varepsilon < \rho_\infty / 2^{1-m} \), we obtain

\[
S_\beta(\bar{\rho}) \leq S_\beta(\rho) - \frac{m}{2(m-1)} \frac{1}{|A^\infty|^2},
\]

where, for \(\varepsilon \) small, the constant \(C_1 \) depends only on \(B^* \) and \(m \). We now estimate the interaction energy as follows

\[
E(\bar{\rho}) = \frac{1}{2} \int_{\Omega \times \Omega} W(x - y) \bar{\rho}(x) \bar{\rho}(y) \, dx \, dy
\]

\[
= \frac{1}{2} \int_{A^c \times A^c} W(x - y)(\rho + \varepsilon)(x)(\rho + \varepsilon)(y) \, dx \, dy
\]

\[
+ \frac{1}{2} \int_{A^c \times A^\infty} W(x - y)(\rho + \varepsilon)(x)\left(\rho - \varepsilon \frac{|A^c|}{|A^\infty|} \right) (y) \, dx \, dy
\]

\[
+ \frac{1}{2} \int_{A^\infty \times A^\infty} W(x - y)\left(\rho - \varepsilon \frac{|A^c|}{|A^\infty|} \right) (x)\left(\rho - \varepsilon \frac{|A^c|}{|A^\infty|} \right) (y) \, dx \, dy
\]

\[
+ \int_{A^c \times B} W(x - y)(\rho + \varepsilon)(x)(\rho)(y) \, dx \, dy
\]

\[
+ \int_{A^\infty \times B} W(x - y)\left(\rho - \varepsilon \frac{|A^c|}{|A^\infty|} \right) (x)(\rho)(y) \, dx \, dy
\]

\[
+ \int_{B \times B} W(x - y)(\rho)(x)(\rho)(y) \, dx \, dy.
\]

Combining the appropriate terms together and bounding the rest, we obtain

\[
E(\bar{\rho}) \leq E(\rho) + \varepsilon^2 |A^c| ||W||_{L^1(\Omega)} + \frac{\varepsilon^2}{2} |A^c| ||W||_{L^1(\Omega)} + \varepsilon |A^c| ||W||_{L^\infty(\Omega)}
\]

\[
+ 2\varepsilon^2 |A^c| ||W||_{L^1(\Omega)} + \varepsilon |A^c| ||W||_{L^1(\Omega)} + \varepsilon^2 |A^c|^2 ||W||_{L^\infty(\Omega)}
\]

28
where again for, \(\varepsilon \) small enough, \(C_2 \) depends only on \(W \). Combining the two estimates we have that
\[
F_{\beta}^{m}(\rho) \leq F_{\beta}^{m}(\rho) + |A'| \left(-\beta^{-1} \frac{m}{2(m-1)} (\rho_{m}^{\varepsilon}) + C_1 \beta^{-1} \varepsilon^2 + C_2 \varepsilon \right).
\]

Setting \(\beta = \varepsilon^{2(m-1)} \) we have
\[
F_{\beta}^{m}(\rho) \leq F_{\beta}^{m}(\rho) + |A'| \left(-\varepsilon^{2m} \frac{m}{2(m-1)} (\rho_{m}^{\varepsilon}) + C_1 \varepsilon^{4-2m} + C_2 \varepsilon \right).
\]

Clearly for \(\varepsilon \) less than some \(\varepsilon' \) (which depends on \(m \)) the second term on the RHS of the above expression is negative. Thus we have that \(F_{\beta}^{m}(\rho) < F_{\beta}^{m}(\rho) \) providing us with a contradiction. It follows that any minimiser \(\rho \in \mathcal{P}(\Omega) \) of \(F_{\beta}^{m} \) for \(\beta < (\varepsilon')^{2(m-1)} =: \delta \), \(\rho(x) \geq \varepsilon = \beta^{1/(2(m-1))} \) for all \(x \in \Omega \).

The positivity estimate of the previous lemma then imply the following proposition on uniqueness of minimisers for small \(\beta \). This improves the result of [CKY13] in which uniqueness is proved only for \(1 \leq m \leq 2 \).

Theorem 5.6. Let \(W \in H_s \) or \(\beta \ll 1 \). Then \(F_{\beta}^{m}(\rho) \) has a unique minimiser \(\rho = \rho_{\infty} \).

Proof. We first consider the case in which \(W \in H_s \). We write the linear interpolant as \(\rho_{t} = \rho_{0} + t \eta \) where \(\eta = \rho_{1} - \rho_{0} \) where \(\rho_{0}, \rho_{1} \in \mathcal{P}(\Omega) \) with \(F_{\beta}^{m}(\rho_{0}), F_{\beta}^{m}(\rho_{1}) < \infty \). Differentiating w.r.t \(t \) twice we obtain that
\[
\frac{d^2}{dt^2} F_{\beta}^{m}(\rho_{t}) = \beta^{-1} \int_{\Omega} m \rho_{t}^{m-2} \eta^2 \, dx + \int_{\Omega \times \Omega} W(x-y) \eta(x) \eta(y) \, dx \, dy.
\]

For \(W \in H_s \) the above expression is strictly positive. Thus \(F_{\beta}^{m}(\rho_{t}) \) is a convex function, from which it follows that \(F_{\beta}^{m} \) must have unique minimisers. We further argue that the minimiser must be \(\rho_{\infty} \). Indeed, we have for any \(\mathcal{P}(\Omega) \ni \rho \neq \rho_{\infty} \) that
\[
F_{\beta}^{m}(\rho) = S_{\beta}^{m}(\rho) + \mathcal{E}(\rho) \geq S_{\beta}^{m}(\rho_{\infty}) + \mathcal{E}(\rho),
\]

where the first inequality follows from Jensen’s inequality and the second one from the fact that \(W \in H_s \) and Definition 2.1.

Consider the case \(m \in (1, \infty) \) with \(\rho_{0}, \rho_{1} \in \mathcal{P}(\Omega) \), now assumed to be distinct minimisers of \(F_{\beta}^{m} \). We let \(\beta < \delta \) where \(\delta \) is the same as in Lemma 5.5. We then have
\[
\frac{d^2}{dt^2} F_{\beta}^{m}(\rho_{t}) \geq \beta^{-m/(2(m-1))} \int_{\Omega} \eta^2 \, dx + \rho_{\infty}^{-1/2} \min_{k \in \mathbb{N}^4} \frac{W(k)}{\Theta(k)} \int_{\Omega} \eta^2 \, dx.
\]

For \(\beta < \min \left\{ \delta, \left(\frac{\rho_{\infty}^{-1/2}}{m} \min_{k \in \mathbb{N}^4} \frac{W(k)}{\Theta(k)} \right)^{(2(m-1)/m)} \right\} \) the above term is strictly positive. Thus for \(m \in (1, \infty) \) for \(\beta \) small enough the function \(t \mapsto F_{\beta}^{m}(\rho_{t}) \) is strictly convex and thus \(F_{\beta}^{m} \) has a unique minimiser.

Note now that if the minimiser \(\rho \) of \(F_{\beta}^{m} \) is unique, then it must be \(\rho_{\infty} \). Indeed, if \(\beta \) is small enough we know from Lemma 5.5 that the minimiser must be bounded strictly away from 0. By Proposition 4.1 we know that \(\rho \in H^1(\Omega) \cap \mathcal{P}(\Omega) \) is a weak solution of (4.1), i.e., for all
We have the following estimates on \(f_1 := \rho^{-n-1} \) and \(f_2 := W \ast \rho \) to be known functions. Note that from Lemma 5.1 and Lemma 5.5 we have the following estimates on \(f_1, f_2 \)

\[
|f_2| \leq \|W\|_{L^\infty(\Omega)}, \quad |\nabla f_2| \leq \|\nabla W\|_{L^\infty(\Omega)}
\]

\[
\beta^{1/2} \leq f_1 \leq (B^*)^{n-1}.
\]

Consider the the bilinear form \(B : H_0^1(\Omega) \times H_0^1(\Omega) \to \mathbb{R} \) defined as

\[
B[\psi, \phi] := \beta^{-1}m \int_\Omega (\nabla \phi \cdot \nabla \psi) f_1 \, dx + \int_\Omega (\nabla f_2 \cdot \nabla \phi) \psi \, dx.
\]

We have the following bound

\[
B[\psi, \phi] \leq \beta^{-1}m \|\nabla \psi\|^2_{L^2(\Omega)} \|\nabla \phi\|^2_{L^2(\Omega)} (B^*)^{n-1} + \|\nabla W\|_{L^\infty(\Omega)} \|\psi\|_{L^2(\Omega)} \|\nabla \phi\|_{L^2(\Omega)}
\]

\[
\leq C(\beta, m) \|\psi\|_{H_0^1(\Omega)} \|\phi\|_{H_0^1(\Omega)},
\]

where in the final step we have used the Poincaré inequality. Thus \(B[\cdot, \cdot] \) is bounded on \(H_0^1(\Omega) \times H_0^1(\Omega) \). We also have the following lower bound

\[
B[\psi, \psi] \geq \beta^{-1/2}m \|\psi\|^2_{H_0^1(\Omega)} - \frac{1 + c_p}{2} \|\nabla W\|_{L^\infty(\Omega)} \|\psi\|^2_{H_0^1(\Omega)},
\]

where \(c_p \) is the Poincaré constant on \(\mathbb{T}^d \). For \(\beta \) small enough, independent of \(\rho \), we have that \(B[\cdot, \cdot] \) is coercive on \(H_0^1(\Omega) \times H_0^1(\Omega) \). By the Lax–Milgram theorem, there exists a unique weak solution \(\psi \in H_0^1(\Omega) \) to \(B[\psi, \phi] = 0 \). Since \(\psi = c \) (its entire equivalence class) is such a solution it must be the unique solution. It follows then that \(\rho = \psi = \rho_\infty \) is the unique solution in the class \(H^1(\Omega) \cap P(\Omega) \). Thus for

\[
\beta < \min \left\{ \delta, \left(\frac{-\rho_\infty^{-1/2}}{m} \min_{k \in \mathbb{N}^d} \left(\frac{W(k)}{\Theta(k)} \right)^{2(m-1)/m} \right), \left(\frac{2m}{(1 + c_p) \|\nabla W\|_{L^\infty(\Omega)}} \right)^2 \right\},
\]

\(\rho_\infty \) is the unique minimiser of \(F_\beta^{\infty} \).

We know now that under certain circumstances \(\rho_\infty \) is the unique minimiser of \(F_\beta^{\infty} \). It is also immediately clear that \(W \in H_0^1 \) is a necessary condition for the existence of a nontrivial minimiser at higher values of the parameter \(\beta \). Before we discuss this any further, we introduce a notion of transition point that allows us to capture this change.

Definition 5.1 (Transition point). A parameter value \(\beta_c > 0 \) is said to be a transition point of \(F_\beta^{\infty} \) if the following conditions are satisfied.

1. For \(\beta < \beta_c \), \(\rho_\infty \) is the unique minimiser of \(F_\beta^{\infty} \).
2. At \(\beta = \beta_c \), \(\rho_\infty \) is a minimiser of \(F_\beta^{\infty} \).
3. For \(\beta > \beta_c \), there exists \(P(\Omega) \supset \rho_\beta \neq \rho_\infty \), such that \(\rho_\beta \) is a minimiser of \(F_\beta^{\infty} \).

We further classify transition points into discontinuous and continuous transition points.

Definition 5.2 (Continuous and discontinuous transition points). A transition point \(\beta_c \) of \(F_\beta^{\infty} \) is said to be a continuous transition point if

1. At \(\beta = \beta_c \), \(\rho_\infty \) is the unique minimiser of \(F_\beta^{\infty} \).
2. For any family of minimisers \(\{\rho_\beta\}_{\beta > \beta_c} \) it holds that

\[
\limsup_{\beta \to \beta_c^+} \|\rho_\beta - \rho_\infty\|_{L^\infty(\Omega)} = 0.
\]
A transition point \(\beta_c > 0 \) of \(F^m_{\beta} \) which is not continuous is said to be discontinuous.

It turns out that \(W \in H_0^1 \) is in fact a sufficient condition for the existence of a transition point. This result is analogous to the result in case \(m = 1 \) discussed in [GP70, CP10, CGPS19].

Proposition 5.7. Assume \(W \in H_0^1 \). Then there exists some parameter value \(0 < \beta_c \leq \beta^m_1 \) with \(\beta^m_1 \) defined as

\[
\beta^m_1 := -\frac{m\rho_{\infty}^{m-3/2}}{\min_{k \in \mathbb{N}^d, k \neq 0} \left\{ \frac{\hat{W}(k)}{\Theta(k)} \right\}},
\]

such that \(\beta_c \) is a transition point of \(F^m_{\beta} \). Thus \(W \in H_0^1 \) is a necessary and sufficient condition for the existence of a transition point.

Proof. Consider the measure \(\rho^* = \rho_{\infty} + \varepsilon k^2 \in \mathcal{P}(\Omega) \) for \(0 < \varepsilon \ll 1 \) where \(k^2 \in \mathbb{N}^d \) is defined as

\[
k^2 := \arg \min_{k \in \mathbb{N}^d, k \neq 0} \left\{ \frac{\hat{W}(k)}{\Theta(k)} \right\},
\]

if it is defined uniquely. If not we pick any \(k^2 \) that realises the minimum of the above expression. We now consider an expansion of the energy \(F^m_{\beta}(\rho^*) \) around \(\rho^* \) which we will use repeatedly throughout the rest of this section. We Taylor expand around \(\rho_{\infty} \) to obtain

\[
F^m_{\beta}(\rho^*) = F^m_{\beta}(\rho_{\infty}) + \left(\beta^{-1}m\rho_{\infty}^{m-2} + \rho_{\infty}^{-1/2} \frac{\hat{W}(k^2)}{\Theta(k^2)} \right) \frac{\varepsilon^2}{2} \| e_k \|_{L^2(\Omega)}^2 + \left(\beta^{-1}m(m-2) \right) \frac{\varepsilon^3}{6} \int_\Omega f^{m-3} \rho_{\infty}^3 \, dx,
\]

where the function \(f(x) \in (\rho_{\infty}, \rho^*(x)) \). For \(\varepsilon > 0 \) small enough the highest order term can be controlled as follows

\[
F^m_{\beta}(\rho^*) = F^m_{\beta}(\rho_{\infty}) + \beta^{-1}m(m-2) \frac{\varepsilon^3}{3} \int_\Omega f^{m-3} \rho_{\infty}^3 \, dx + \beta^{-1}m(m-2) \rho_{\infty}^{-1/2} \frac{\hat{W}(k^2)}{\Theta(k^2)} \| e_k \|_{L^2(\Omega)}^2 + o(\varepsilon^2).
\]

For \(\beta > \beta^m_1 \), the second order term in the above expression has a negative sign. Thus for \(\varepsilon > 0 \) sufficiently small we have that \(F^m_{\beta}(\rho^*) < F^m_{\beta}(\rho_{\infty}) \). Since, by Theorem 5.3, minimisers of \(F^m_{\beta} \) exists for all \(\beta > 0 \), it follows that for all \(\beta > \beta^m_1 \) there exist nontrivial minimisers of the free energy. Thus there exists some \(\beta_c > \beta^m_1 \) which is a transition point of the free energy \(F^m_{\beta}(\rho) \).

Remark 5.1. We note here that the \(\beta^m_1 \) defined in the statement of Proposition 5.7 corresponds exactly to the point of critical stability of the uniform state \(\rho_{\infty} \), i.e., if the stationary problem is linearised about \(\rho_{\infty} \), then \(\beta^m_1 \) corresponds to the value of the parameter at which the first eigenvalue of the linearised operator crosses the imaginary axis.

Before attempting to characterise continuous and discontinuous transition points we define the function \(F^m: (0, \infty) \to \mathbb{R} \)

\[
F^m(\beta) := \min_{\rho \in \mathcal{P}(\Omega)} F^m_{\beta}.
\]
Lemma 5.8. For all $\beta > 0$ the function F^m is strictly decreasing and continuous. Assume further that there exists $\beta > 0$ and $\mathcal{P}(\Omega) \ni \rho_{\beta} \neq \rho_{\infty}$ such that $F^m_{\beta}(\rho_{\beta}) = F^m(\beta)$. Then for all $\beta > \beta'$, $F^m_{\beta}(\rho_{\infty}) > F^m(\beta)$.

Proof. We note that for $0 < \beta \leq \beta_c$ (where β_c is possibly $+\infty$) we have that $F^m(\beta) = F^m_{\beta}(\rho_{\infty})$ which is clearly a strictly decreasing function of β. Let $\beta_2 > \beta_1 > \beta_c$ (if $\beta_c < \infty$, else we are done) and let ρ_{β_1} be the minimiser of $F^m_{\beta_1}$. Note however due to the structure of the free energy we have that

$$F^m(\beta_2) \leq F^m_{\beta_1}(\rho_{\beta_1})$$

and let $\rho = F^m_{\beta_1}(\rho_{\beta_1}) + \frac{1}{m-1}(\beta - 1) \int_\Omega \rho_{\beta_1} \, dx = F^m(\beta_1) + \frac{1}{m-1}(\beta - 1) \int_\Omega \rho_{\beta_1} \, dx < F^m(\beta_1),$$

which shows that F^m is strictly decreasing. Continuity of the F^m also follows from the above argument since ρ_{β} is uniformly bounded by the result of Theorem 5.3.

Assume now that $F^m_{\beta_1}(\rho_{\beta_1}) = F^m_{\beta_2}(\rho_{\beta_2})$ and let $\beta > \beta'$. We then have that

$$F^m(\beta) \leq F^m_{\beta}(\rho_{\beta})$$

$$= F^m_{\beta}(\rho_{\beta}) + \frac{1}{m-1}(\beta - 1) \int_\Omega \rho_{\beta} \, dx$$

$$\leq F^m_{\beta}(\rho_{\beta}) + \frac{1}{m-1}(\beta - 1) \int_\Omega \rho_{\beta_1} \, dx$$

$$< F^m_{\beta}(\rho_{\beta}) + \frac{1}{m-1}(\beta - 1) \int_\Omega \rho_{\beta_1} \, dx = F^m_{\beta}(\rho_{\beta_1})$$

$$\leq F^m_{\beta}(\rho_{\beta}) + \frac{1}{m-1}(\beta - 1) \int_\Omega \rho_{\beta_1} \, dx = F^m_{\beta}(\rho_{\beta_1})$$

\[\square\]

We will now try and refine our characterisations of discontinuous and continuous transition points in analogy with the results in [CP10, CGPS19].

Lemma 5.9. If a transition point $\beta_c > 0$ is continuous, then $\beta_c = \beta^m_c$.

Proof. We know already from Proposition 5.7 that $\beta_c \leq \beta^m_c$. Let us assume that $\beta_c < \beta^m_c$. We know from Definition 5.2 that ρ_{∞} is the unique minimiser of $F^m_{\beta_c}$. Additionally for any sequence of minimisers $\{\rho_{\beta}\}_{\beta > \beta_c}$ we know that

$$\lim_{\beta \to \beta_c^+} \|\rho_{\beta} - \rho_{\infty}\|_{L^\infty(\Omega)} = 0.$$

Consider such a sequence and set $\eta_{\beta} = \rho_{\beta} - \rho_{\infty}$. For $\beta > \beta_c$, we expand the free energy about ρ_{∞} as follows

$$F^m_{\beta}(\rho_{\beta}) = F^m_{\beta}(\rho_{\infty}) + \beta^{-1} m \rho_{\infty}^{-2} \frac{\|\eta_{\beta}\|^2_{L^2(\Omega)}}{2} + \rho_{\infty}^{-1/2} \sum_{k \in \mathbb{N}^d} \frac{\tilde{W}(k)}{\Theta(k)} \sum_{\sigma \in \text{Sym}(\Lambda)} |\eta_{\beta}(\sigma)|^2$$

$$- \frac{\beta^{-1} m (m-2)}{6} \int_\Omega f^{m-3} \eta_{\beta}^3 \, dx,$$

where $f(x) \in (\rho_{\infty}, \rho_{\beta}(x))$ and can be bounded by $\|\eta_{\beta}\|_{L^\infty(\Omega)} \leq B_{\beta,m} \leq B$ from the result of Theorem 5.3 and Corollary 5.2. Additionally we can control $\frac{\tilde{W}(k)}{\Theta(k)}$ (using the fact that $W \in H_\#$) to obtain the following bound

$$F^m_{\beta}(\rho_{\beta}) \geq F^m_{\beta}(\rho_{\infty}) + \left(\beta^{-1} m \rho_{\infty}^{-2} + \rho_{\infty}^{-1/2} \min_{k \in \mathbb{N}^d, k \neq 0} \frac{\tilde{W}(k)}{\Theta(k)} \right) \frac{\|\eta_{\beta}\|^2_{L^2(\Omega)}}{2}$$

$$- \frac{\beta^{-1} m (m-2)}{6} B^{m-3} \|\eta_{\beta}\|^3_{L^3(\Omega)}.$$
Note that due to the fact that $||\eta_\beta||_{L^\infty(\Omega)} \to 0$ as $\beta \to \beta^+_c$, we have that $||\eta_\beta||_{L^2(\Omega)}^3 = o(||\eta_\beta||_{L^2(\Omega)}^2)$, i.e., $||\eta_\beta||_{L^3(\Omega)}^3 \leq ||\eta_\beta||_{L^\infty(\Omega)}||\eta_\beta||_{L^2(\Omega)}^2$. This leaves us with

$$F^{m}_\beta(\rho_\beta) \geq F^{m}_\beta(\rho_\infty) + \left(\beta^{-1}m\rho_\infty^{-2} + \rho_\infty^{-1/2}\min_{k\in\mathbb{N}^*, k \neq 0} \frac{\tilde{W}(k)}{\Theta(k)}\right)\frac{||\eta_\beta||_{L^2(\Omega)}^2}{2} - o\left(||\eta_\beta||_{L^2(\Omega)}^2\right).$$

Since $\beta_c < \beta^+_c$, the term in the brackets is positive close to β_c; we obtain a contradiction as ρ_β is a nontrivial minimiser of F^{m}_β. Thus we must have that $\beta_c = \beta^+_c$.

From Definition 5.2, we see that some $\beta_c > 0$ is a discontinuous transition point if it violates (or both) of the conditions (1) and (2). In the following lemma, we will show that if (2) is violated then (1) is as well.

Lemma 5.10. Assume $\beta_c > 0$ is a discontinuous transition point of the energy F^{m}_β and that for some family of minimisers $\{\rho_\beta\}_{\beta > \beta_c}$, it holds that

$$\limsup_{\beta \to \beta_c} ||\rho_\beta - \rho_\infty||_{L^\infty(\Omega)} \neq 0.$$

Then there exists $\mathcal{P}(\Omega) \ni \rho_{\beta_c} \neq \rho_\infty$ such that:

1. $F^{m}_\beta(\rho_{\beta_c}) = F^{m}_\beta(\rho_\infty)$.
2. $S^{m}_\beta(\rho_{\beta_c}) > S^{m}_\beta(\rho_\infty)$ and $\mathcal{E}(\rho_{\beta_c}) < \mathcal{E}(\rho_\infty) = 0$.

Proof. Consider a sequence of points $\{\beta_n\}_{n \in \mathbb{N}} > \beta_c$ and $\beta_n \to \beta_c$ as $n \to \infty$. We know that the set of minimisers $\{\rho_{\beta_n}\}_{n \in \mathbb{N}}$ is compact in $C^0(\Omega) \cap \mathcal{P}(\Omega)$ from Lemma 5.4. Thus, there exists a subsequence $\rho_{\beta_n} \in \{\rho_\beta\}_{\beta > \beta_c}$ (which we do not relabel) and a limit $\rho_{\beta_c} \in \mathcal{P}(\Omega) \cap C^0(\Omega)$ such that

$$\lim_{n \to \infty} ||\rho_{\beta_n} - \rho_{\beta_c}||_{C^0(\Omega)} = 0.$$

From the statement of the lemma we know that $\rho_{\beta_c} \neq \rho_\infty$. All that remains is to show that ρ_{β_c} is a minimiser of F^{m}_β. We first note that $\lim_{n \to \infty} F^{m}_\beta(\rho_{\beta_n}) = F^{m}_\beta(\rho_{\beta_c})$. This follows from the fact that the interaction energy \mathcal{E} is continuous on $C^0(\Omega) \cap \mathcal{P}(\Omega)$ for $W \in C^2(\Omega)$ and the entropy S^{m}_β is essentially an L^m-norm and is thus also controlled by the $C^0(\Omega)$ topology. Finally we use the result of Lemma 5.8 to note that

$$F^{m}_\beta(\rho_{\beta_c}) = \lim_{n \to \infty} F^{m}_\beta(\rho_{\beta_n}) = \lim_{n \to \infty} F^{m}(\beta_n) = F^{m}(\beta_c),$$

which completes the proof of (1). The proof of (2) follows immediately from the fact that ρ_∞ is the unique minimiser of $S^{m}_\beta(\rho)$ on $\mathcal{P}(\Omega)$ (which is a consequence of Jensen’s inequality).

Remark 5.2. The above lemma tells us that we have not lost much by defining discontinuous transition points w.r.t the $L^\infty(\Omega)$ norm since the transition points obtained are discontinuous w.r.t the $L^p(\Omega)$ norm as well for all $p \in [1, \infty]$. Indeed if we consider the sequence constructed in the proof of Lemma 5.10 $\{\rho_{\beta_n}\}_{n \in \mathbb{N}}$ it follows that

$$\lim_{n \to \infty} ||\rho_{\beta_n} - \rho_{\beta_c}||_{L^p(\Omega)} \leq ||\Omega||^{1/p} \lim_{n \to \infty} ||\rho_{\beta_n} - \rho_{\beta_c}||_{C^0(\Omega)} = 0,$$

where ρ_{β_c} is the limiting object bained in the proof of Lemma 5.10. Thus $\limsup_{\beta \to \beta_c} ||\rho_\beta - \rho_\infty||_{L^p(\Omega)} \neq 0$ for all $p \in [1, \infty]$.

In the following proposition we outline the strategy we will use to provide sufficient conditions for the existence of continuous and discontinuous transition points.
Proposition 5.11. Assume that $W \in H^s$ so that there exists a transition point $\beta_c > 0$ of F^m_β. Then:

(a) If ρ_∞ is the unique minimiser of F^m_β, then $\beta_c = \beta^m_1$ is a continuous transition point.
(b) If ρ_∞ is not a minimiser of F^m_β, then $\beta_c < \beta^m_2$ is a discontinuous transition point.

Proof. For the proof of Proposition 5.11(a) we note that β_c already satisfies condition (1) of Definition 5.2. All we need to show is that it satisfies condition (2). Assume $\beta_c > \beta^m_1$, then by the very definition of a transition point we would have a contradiction since ρ_∞ is the unique minimiser of F^m_β at $\beta_c = \beta^m_2$. It follows then that $\beta_c = \beta^m_1$. Assume now that condition (2) of Definition 5.2 is violated, i.e., there exists a family of minimisers $\{\rho_\beta\}_{\beta > \beta^m_1}$ such that

$$
\lim_{\beta \to \beta^m_1} \|\rho_\beta - \rho_\infty\|_{L^\infty(\Omega)} \neq 0.
$$

By Lemma 5.10 it follows that there exists $\mathcal{P}(\Omega) \ni \rho^m_{\beta^m_1} \neq \rho_\infty$ which minimises F^m_β. This is a contradiction.

For Proposition 5.11(b), we note that since ρ_∞ is not a minimiser at $\beta = \beta^m_1$ by Definition 5.1 and Proposition 5.7 it follows that $\beta_c < \beta_1$. Thus, by Lemma 5.9, β_c is a discontinuous transition point.

The next theorem provides conditions on the Fourier modes of $W(x)$ for the existence of discontinuous transition points. It can be thought of as the analogue of for the case of nonlinear diffusion.

Theorem 5.12. Assume $W \in H^s$ and define, for some $\delta > 0$, the set K^δ as follows

$$
K^\delta := \left\{ k' \in \mathbb{N}^d \setminus \{0\} : \frac{\hat{W}(k')}{\hat{\Theta}(k')} \leq \min_{k \in \mathbb{N}^d \setminus \{0\}} \frac{\hat{W}(k)}{\hat{\Theta}(k)} + \delta \right\}
$$

We define δ_* to be the smallest value, if it exists, of δ for which the following condition is satisfied:

$$
\text{there exist } k^a, k^b, k^c \in K^{\delta_*}, \text{ such that } k^a = k^b + k^c.
$$

(C1)

Then if δ_* is sufficiently small, F^m_β exhibits a discontinuous transition point at some $\beta_c < \beta_1$.

Proof. We know already from Proposition 5.7 that the system possesses a transition point β_c. We are going to use Proposition 5.11(b) and construct a competitor $\rho \in \mathcal{P}(\Omega)$ which has a lower value of the free energy than ρ_∞ at $\beta = \beta^m_1$. Define the function

$$
\gamma(m) :=
\begin{cases}
1 & m < 2 \\
-1 & m \geq 2
\end{cases}
$$

and let

$$
\rho^* = \rho_\infty \left(1 + \gamma(m) \varepsilon \sum_{k \in K^{\delta_*}} e_k \right) \in \mathcal{P}(\Omega),
$$

for some $\varepsilon > 0$, sufficiently small. We denote by $|K^{\delta_*}|$ the cardinality of K^{δ_*}, which is necessarily finite as $W \in L^2(\Omega)$. Expanding about the free energy about ρ_∞ we obtain

$$
F^m_\beta(\rho^*) \leq F^m_\beta(\rho_\infty) + |K^{\delta_*}| \left((\beta^m_1)^{-1} m \rho_\infty^{-m-2} + \rho_\infty^{-1/2} \min_{k \in \mathbb{N}^d \setminus \{0\}} \frac{\hat{W}(k)}{\hat{\Theta}(k)} + \rho_\infty^{-1/2} \delta_* \right) \frac{\varepsilon^2}{2} \|e_k\|_{L^2(\Omega)}^2 + (\beta^m_1)^{-1} \gamma(m)^3 m(m-2) \rho_\infty^{-3} \frac{\varepsilon^3}{6} \int_\Omega \left(\sum_{k \in K^{\delta_*}} e_k \right)^3 dx.
$$

34
where the function \(f(x) \in (\rho_\infty, \rho^* (x)) \). We use the definition of \(\beta_m^m \) and control the highest order term in the same manner as Proposition 5.7 to simplify the expansion as follows:

\[
F_m^m (\rho^*) \leq F_m^m (\rho_\infty) + |K^{\delta_*}| \left(\rho_\infty^{-1/2} \delta_* \right)^{\frac{\epsilon^2}{2}} + (\beta_m^m)^{-1} \gamma (m)^3 m(m-2) \rho_\infty^{-3} \frac{\epsilon^3}{6} \int_{\Omega} \left(\sum_{k \in K^\delta_*} e_k \right)^3 dx + o(\epsilon^3),
\]

Setting \(\epsilon = \delta_*^2 \) (if \(\delta_* > 0 \), otherwise we stop here), we obtain

\[
F_m^m (\rho^*) \leq F_m^m (\rho_\infty) + (\beta_m^m)^{-1} \gamma (m)^3 m(m-2) \rho_\infty^{-3} \frac{\delta_*^{3/2}}{3} \int_{\Omega} \left(\sum_{k \in K^\delta_*} e_k \right)^3 dx + |K^{\delta_*}| \rho_\infty^{-1/2} \frac{\delta_*^2}{2} + o(\delta_*^2).
\]

One can now check that under condition (C1), it holds that

\[
\int_{\Omega} \left(\sum_{k \in K^\delta_*} e_k \right)^3 dx > a > 0,
\]

where the constant \(a \) is independent of \(\delta_* \). Indeed, the cube of the sum of \(n \) numbers \(a_i, i = 1, \ldots, n \) consists of only three types of terms, namely: \(a_i^3 \), \(a_i^2 a_j \), and \(a_i a_j a_k \). Setting the \(a_i = w_{s(i)} \), with \(s(i) \in K^{\delta_*} \), one can check that the first type of term will always integrate to zero. The other two will take nonzero and in fact positive values if and only if condition (C1) is satisfied. This follows from the fact that

\[
\int_{-\pi}^{\pi} \cos (lx) \cos (nx) \cos (nx) dx = \frac{\pi}{2} (\delta_{l+m,n} + \delta_{m+n,l} + \delta_{n+l,m}).
\]

Also the term \(\gamma (m)^3 m(m-2) \) is always negative. Thus, for \(\delta_* \) sufficiently small, considering the fact that |\(K^{\delta_*} | \geq 2 \) and is nonincreasing as \(\delta_* \) decreases, \(\rho^* \) has smaller free energy and \(\rho_\infty \) is not a minimiser at \(\beta = \beta_1^m \).

The following lemma shows that discontinuous transitions are stable in \(m \).

Lemma 5.13. Assume \(W \in H^\epsilon_s \) such that \(F_m^{m'} \) has a discontinuous continuous transition point and \(\beta_c^{m'} < \beta_c^{m} \). Then for \(m \in (m'-\epsilon, m'+\epsilon) \) (or \(m \in [1, 1+\epsilon] \) for \(m' = 1 \) for some \(\epsilon > 0 \) small enough, \(F_m^{m'} \) has a discontinuous transition point at some \(\beta_c^{m} < \beta_c^{m'} \).

Proof. We start with the case \(m' > 1 \). Denote by \(\rho^* \in C^0(\Omega) \cap \mathcal{P}(\Omega) \) the nontrivial minimiser of \(F_m^{m'} (\rho) \). We know that

\[
F_m^{m'} (\rho_\infty) - F_m^{m'} (\rho^*) = \delta > 0.
\]

It would be sufficient for the purposes of this proof to show that such a nontrivial minimiser exists for \(F_m^{m'} \) for \(m \) close enough to \(m' \). We choose as \(\rho^* \) to be the competitor state, we have

\[
F_m^{m'} (\rho_\infty) - F_m^{m'} (\rho^*) = F_m^{m'} (\rho_\infty) - F_m^{m'} (\rho^*) + \frac{1}{m-1 |\Omega|^{m-1}} - \frac{1}{m-1} - \frac{1}{m'-1 |\Omega|^{m'-1}} + \frac{1}{m'-1}
\]

\[
= \delta + \frac{1}{m-1 |\Omega|^{m-1}} - \frac{1}{m-1} - \frac{1}{m'-1 |\Omega|^{m'-1}} + \frac{1}{m'-1}
\]

\[
= \delta + \frac{1}{m-1 |\Omega|^{m-1}} - \frac{1}{m-1} - \frac{1}{m'-1 |\Omega|^{m'-1}} + \frac{1}{m'-1}
\]
\[-(\beta m - \beta m^\ast)E(\rho^\ast) + \left(\frac{1}{m - 1} \int_{\Omega} (\rho^\ast)^{m'} \, dx + \frac{1}{m - 1} - \frac{1}{m - 1} \int_{\Omega} \rho^m \, dx + \frac{1}{m - 1}\right)\]

Since \(\beta m \to \beta m^\ast\) and \((m - 1)^{-1}(a^m - 1) \to (m - 1)^{-1}(a^{m'} - 1), a \geq 0\) as \(m \to m'\), it follows, using the fact that \(\rho^\ast \in C^0(\Omega)\), that we can choose \(m\) close enough to 1 so that the above term is strictly positive. We then have that for \(m \in (m' - \epsilon, m' + \epsilon)\) for some \(\epsilon > 0\) small enough, \(\rho_\infty\) is not a minimiser of the free energy \(F^m(\rho)\). By Proposition 5.11(b), it follows that \(F^m(\rho)\) possesses a discontinuous transition point at some \(\beta \leq \beta m^\ast\). The case \(m' = 1\) can be treated similarly. \(\square\)

In the following proposition, we single out some special values of \(m\) at which one always finds a discontinuous transition point for \(W \in H^c_s\).

Proposition 5.14. Assume \(W \in H^c_s\) such that \(\beta c\) is a transition point of \(F^m(\rho)\). Then if \(m \in [2, 3]\), \(\beta c\) is a discontinuous transition point. Specifically for the case \(m = 2\) we have that

1. \(\beta c^2 = \beta c^2\)
2. There exists a one parameter family of minimisers \(\{\rho_\alpha\}_{\alpha \in [0, [t]^{-1/2}]_{\Theta(k^{-1})}}\) of \(F^2(\rho)\) with \(\rho_0 = \rho_\infty\).

Proof. We will try again to show that we have a competitor at \(\beta m^\ast\). We start with the case \(2 < m < 3\). Consider the competitor \(\rho^\ast = \rho + \epsilon e_k\)

for \(\epsilon > 0\) and small and \(k^\ast := \arg\min_{k \in \mathbb{N}^d \setminus \{0\}} \tilde{W}(k)/\Theta(k)\) if it is uniquely defined or any one such \(k\) if it is not. Expanding the energy up to fifth order and noting that second order terms vanish we obtain

\[
\begin{align*}
F^m(\rho^\ast) &= F^m(\rho_\infty) + (\beta m - \beta m^\ast)^{-1} m(m - 2)\rho_\infty^{-1} \frac{\epsilon^3}{3!} \int_\Omega e_k e_k \, dx \\
&+ (\beta m - \beta m^\ast)^{-1} m(m - 2)\rho_\infty^{-1} \frac{\epsilon^4}{4!} \int_\Omega e_k e_k \, dx \\
&+ (\beta m - \beta m^\ast)^{-1} m(m - 2)\rho_\infty^{-1} \frac{\epsilon^5}{5!} \int_\Omega e_k e_k \, dx,
\end{align*}
\]

where the function \(f(x) \in (\rho_\infty, \rho^\ast(x))\). We again bound the highest order term as in Proposition 5.7 and use the fact that \(\int_\Omega e_k e_k \, dx = 0\) for any \(k \in \mathbb{N}^d \setminus \{0\}\) to obtain

\[
F^m(\rho^\ast) = F^m(\rho_\infty) + (\beta m - \beta m^\ast)^{-1} m(m - 2)\rho_\infty^{-1} \frac{\epsilon^4}{4!} \int_\Omega e_k e_k \, dx + o(\epsilon^4).
\]

Since \(m(m - 2)(m - 3)\) is negative for \(m \in (2, 3)\), for \(\epsilon > 0\) sufficiently small, we have shown that \(\rho_\infty\) is no longer the minimiser of \(F^m(\rho)\). The result follows by Proposition 5.11(b): we have a discontinuous transition point at some \(\beta c < \beta m^\ast\).

We now consider the case \(m = 2, 3\). Using the same expansion we have that

\[
F^2(\rho^\ast) = F^2(\rho_\infty) \quad F^3(\rho^\ast) = F^3(\rho_\infty).
\]

Thus \(\rho_\infty\) is not the unique minimiser of \(F^m(\rho)\) for \(m = 2, 3\). It then follows from Definition 5.1 that there must be a discontinuous transition point at \(\beta m \leq \beta m^\ast\).

Consider now the convex interpolant \(\rho_t := (1 - t)\rho_0 + t\rho_1, t \in (0, 1)\) for \(\rho_0, \rho_1 \in \mathcal{P}(\Omega)\) such that \(F^3(\rho_0), F^3(\rho_1) < \infty\). We then have that

\[
\frac{d}{dt} F^3(\rho_t) = 2\beta^{-1} \int_{\Omega} \eta^2 \, dx + \int_{\Omega \times \Omega} W(x - y) \eta(x) \eta(y) \, dx \, dy
\]

\[
\geq \left(2\beta^{-1} + \min_{k \in \mathbb{N}^d \setminus \{0\}} \frac{\tilde{W}(k)}{\Theta(k)}\right) ||\eta||^2_{L^1(\Omega)}.
\]

36
Note that the above expression is strictly positive if $\beta < \beta_0^2$. Thus F_{β}^{2} is strictly convex for $\beta < \beta_0^2$ and has only one minimiser, namely, ρ_0. Since the function F is continuous (cf. Lemma 5.8), it follows that $\beta_0^2 = \beta^*_0$ for all $W \in H^2$. Furthermore, $\rho_\alpha = \rho_\infty + \alpha e_{k^d}$ form a one-parameter family of minimisers of $F_{\beta_0^2}^{2}$ for $\alpha \in [0, |\Omega|^{-1/2} \Theta(k^d)^{-1}]$.

We conclude the section by discussing the existence of continuous transition points. We show that for $m = 4$ one can construct a large class of potentials for which the transition point β_c is continuous. We start with the following proposition.

Proposition 5.15. Let $k \in \mathbb{N}^d$ be such that $k \not= 0$ and let $k_i \in \mathbb{N}, i = 1, \ldots, d$ be such that

$$k = (k_1 \ldots k_d).$$

Then we have:

$$e_k^2 = \sum_{j \in P_3(k)} c_j e_j + c_0 e_0,$$

where

$$P_3(k) := \{e_j : j \not= 0, j_i \in \{2k_i, 0\}\} \text{ and } c_j = \frac{\rho_\infty}{N_j}.$$

Similarly

$$e_k^3 = \sum_{\ell \in P_3(k)} c_\ell e_\ell + c_k e_k$$

with

$$P_3(k) := \{e_\ell : \ell \not= k, \ell_i \in \{3k_i, k_i\}\} \text{ and } c_\ell = \frac{\rho_\infty}{N_k N_\ell (3) \{\ell_i = k_i\}}.$$

Note that $P_3(k) \cap P_3(k) = \emptyset$.

Proof. The proof is simply an application of the trigonometric identities $\cos^2(a) = 2^{-1}(1 + \cos(2a))$ and $\cos^3(a) = 4^{-1}(\cos(3a) + 3\cos(a))$.

We now proceed to the result concerning continuous transition points for $m = 4$.

Theorem 5.16. Let $W \in H^4$, such that $\beta_c < \infty$ is a transition point of F_{β}^{4}. Assume that

$$k^d := \text{arg min}_{k \in \mathbb{N}^d, k \not= 0} \frac{\bar{W}(k)}{\Theta(k)},$$

is uniquely defined. Furthermore, we assume that $\bar{W}(k) \geq 0$ for all $k \not= k^d$ and that

$$\bar{W}(j) > \left(\frac{3}{2}\right)^d |P_3(k^d)| \frac{\rho_\infty}{N_k N_\ell} \left(\int_{\Omega} e_{k^d}^d \, dx\right)^{-1} |\bar{W}(k^d)| \quad \forall j \in P_3(k^d) \quad (A1)$$

$$\bar{W}(\ell) > \left(3^{2(d-1)}\right)^d |P_3(k^d)| \frac{\rho_\infty}{N_k N_\ell} \left(\int_{\Omega} e_{k^d}^d \, dx\right)^{-1} |\bar{W}(k^d)| \quad \forall \ell \in P_3(k^d) \quad (A2)$$

where the sets P_2, P_3 are as defined in Proposition 5.15. Then $\beta_c = \beta_0^2$ is a continuous transition point.

Proof. We will rely on Proposition 5.11 (a) for the proof of this result. We need to show that at $\beta = \beta_0^2$, ρ_∞ is the unique minimiser of F_{β}^{4}. Let $\rho \in \mathcal{P}(\Omega) \in L^\infty(\Omega)$ be any measure different from ρ_∞. Then it is sufficient to show that $F_{\beta_0^2}^{4}(\rho) > F_{\beta_0^2}^{4}(\rho_\infty)$ (it is sufficient to check bounded densities from the result of Lemma 5.1). Note that due to the fact that W is even along every co-ordinate.
the energy $F_ρ^4$ is translation invariant. Furthermore, there exists a translate $ρ_r$ of $ρ$ such that

$$|ρ_r(k^2)|^2 = \sum_{σ ∈ \text{Sym}(Λ)} |ρ_r(σ(k^2))|^2.$$

Since $F_ρ^4(ρ) = F_ρ^4(ρ_r)$, we assume w.l.o.g. that $ρ = ρ_r$, i.e., $ρ(σ(k^2)) = 0$ for all $σ ∈ \text{Sym}(Λ) \setminus \{\text{Id}\}$. We now define $η := ρ - ρ_∞$ and note that $η$ has the following properties

$$η ∈ L^∞(Ω), \quad η ≥ -ρ_∞, \quad ̂η(σ(k^2)) = 0, ∀σ ∈ \text{Sym}(Λ) \setminus \{\text{Id}\}, \quad \int Ω η dx = 0. \quad (5.3)$$

Finally we can compute the free energy of $ρ$ as follows

$$F_ρ^4(ρ) = \frac{(β_2^4)^{-1}}{3} \int Ω ρ^4 dx + \frac{1}{2} \int Ω × Ω W(x - y)ρ(x)ρ(y) dx dy$$

$$= \frac{(β_2^4)^{-1}}{3} \left(\begin{array}{c} \int ρ_∞^4 dx + 2 \int ρ_∞^3η dx + 4 \int ρ_∞^2η^2 dx + 2 \int ρ_∞η^3 dx + \int η^4 dx \end{array} \right)$$

$$+ \sum_{k ∈ \mathbb{N}_k} \frac{1}{2N_k} \sum_{σ ∈ \text{Sym}(Λ)} |̂η(σ(k))|^2,$$

where we have used (2.1). Simplifying further, by using the definition of $β_2^4$ and the fact that $η$ has mean zero, we obtain

$$F_ρ^4(ρ) = \frac{(β_2^4)^{-1}}{3} \int Ω ρ_∞^3 dx$$

$$+ 2 \frac{(β_2^4)^{-1}}{3} \int \rho_∞η^3 dx + \frac{1}{2} \int η^4 dx. \quad (5.4)$$

We define $η_2 := η - ̂η(k^2)e_{k^2}$ and deal with the two terms I_1 and I_2 separately. We then have

$$I_1 = 2 \frac{(β_2^4)^{-1}}{3} \int \rho_∞η^3 dx$$

$$= 2 \frac{(β_2^4)^{-1}}{3} \int (̂η(k^2))^3 e_{k^2}^3 + 3 ̂η(k^2)^2 e_{k^2}^2 η_2 + 3 ̂η(k^2) e_{k^2} η_2^3 + η_2^4) dx$$

$$= 2 \frac{(β_2^4)^{-1}}{3} \int (3 ̂η(k^2))^3 e_{k^2}^3 η_2 + 2 ̂η(k^2) e_{k^2} η_2^3 + η_2^4) dx,$$

where we have substituted the expression for $η_2$ and have used the fact that $\int Ω e_{k^2}^3 dx = 0$. We now apply the lower bound on $η$ and the fact that $η$ has mean zero from (5.3) and Proposition 5.15 to obtain

$$I_1 ≥ - 2 \frac{(β_2^4)^{-1}}{3} ρ_∞^2||η_2||^2_{L^2(Ω)} + 4 \frac{(β_2^4)^{-1}}{3} ρ_∞ \int Ω ̂η(k^2)e_{k^2} η_2^3 dx + 2(β_2^4)^{-1} ̂η(k^2)^2 ρ_∞ \sum_{j ∈ P_3(k^2)} c_j η_2(j). \quad (5.5)$$

For the second term we obtain

$$I_2 = \frac{(β_2^4)^{-1}}{3} \int Ω η^4 dx$$

$$= \frac{(β_2^4)^{-1}}{3} \int Ω ̂η(k^2)^4 e_{k^2}^3 + 2 ̂η(k^2)^3 e_{k^2} η_2 + 4 ̂η(k^2)^2 e_{k^2} η_2^3 + 2 ̂η(k^2) e_{k^2} η_2^3 + η_2^4) dx$$

$$= \frac{(β_2^4)^{-1}}{3} \int Ω ̂η(k^2)^4 e_{k^2}^3 + 2 ̂η(k^2)^3 e_{k^2} η_2 + 3 ̂η(k^2)^2 e_{k^2} η_2^3 + η_2^4) dx,$$
where again in the last step we have substituted the expression for η_2. Applying Proposition 5.15 again, we obtain

$$I_2 = \left(\frac{\beta_4}{2}\right)^{-1} \frac{1}{3} \int_{T_{k}^{(2)}} \bar{h}(k^{2})^{4} e_{k}^{4} + 3\bar{h}(k^{2})^{2} e_{k}^{2} \eta_2 + \eta_2^{2} \eta_2^{2} \, dx + 2 \left(\frac{\beta_4}{3}\right)^{-1} \bar{h}(k^{2})^{3} \sum_{\ell} c_{\ell} \bar{h}_2(\ell).$$

(5.6)

We now note that since $\bar{h}(\sigma(k^{2})) = 0, \forall \sigma \in \text{Sym}(\Lambda) \setminus \{\text{Id}\}$, it follows that

$$\sum_{k \in \mathbb{N}^{2}, k \neq k^{2}} \sum_{\sigma \in \text{Sym}(\Lambda)} |\bar{h}(\sigma(k))|^{2} = \|\eta_2\|_{L_{2}(\Omega)}^{2}.$$

(5.7)

Putting (5.4), (5.5), (5.6), and (5.7), together we obtain

$$F_{\beta_4}^{4}(\rho) \geq F_{\beta_4}^{4}(\rho) + \sum_{k \in \mathbb{N}^{2}, k \neq k^{2}} \left(\frac{W(k)}{2N_{k}}\right) \sum_{\sigma \in \text{Sym}(\Lambda)} |\eta_2(\sigma(k))|^{2} + 2(\beta_4^{2})^{-1} \bar{h}(k^{2})^{2} \rho_{\infty} \sum_{j \in \mathbb{P}_{3}(k^{2})} c_{\ell} \bar{h}_2(j) + 2 \left(\frac{\beta_4^{2}}{3}\right) \bar{h}(k^{2})^{3} \sum_{\ell} c_{\ell} \bar{h}_2(\ell)$$

$$+ \frac{(\beta_4^{2})^{-1}}{3} \int_{\Omega} \left(2\rho_{\infty}^{2} + 4\rho_{\infty} \bar{h}(k^{2})^{2} e_{k}^{2} + 3\bar{h}(k^{2})^{2} e_{k}^{3} + \eta_2^{2} \eta_2^{2}\right) \eta_2(\sigma(k)) \, dx + \frac{(\beta_4^{2})^{-1}}{3} \int_{\Omega} \bar{h}(k^{2})^{4} e_{k}^{4} \, dx$$

$$\geq F_{\beta_4}^{4}(\rho) + \sum_{k \in \mathbb{P}_{3}(k^{2}) \cup \mathbb{P}_{3}(k^{3})} \left(\frac{W(k)}{2N_{k}}\right) |\eta_2(k)|^{2} + 2(\beta_4^{2})^{-1} \rho_{\infty} \bar{h}(k^{2})^{2} \sum_{j \in \mathbb{P}_{3}(k^{2})} c_{\ell} \bar{h}_2(j) + 2 \left(\frac{\beta_4^{2}}{3}\right) \bar{h}(k^{2})^{3} \sum_{\ell} c_{\ell} \bar{h}_2(\ell) + \frac{(\beta_4^{2})^{-1}}{3} \int_{\Omega} \bar{h}(k^{2})^{4} e_{k}^{4} \, dx,$$

where in the last step we have simply used the fact that $W(k) \geq 0$ for all $k \neq k^{2}$. We can rewrite the above expression as

$$F_{\beta_4}^{4}(\rho) \geq F_{\beta_4}^{4}(\rho) + \sum_{j \in \mathbb{P}_{3}(k^{2})} (A_{j} \eta_2(j)^{2} + B_{j} \bar{h}(j) + C_{j}) + \sum_{\ell \in \mathbb{P}_{3}(k^{3})} (A_{\ell} \bar{h}_2(\ell)^{2} + B_{\ell} \bar{h}(\ell) + C_{\ell}),$$

(5.8)

where

$$A_{j} = \frac{W(j)}{2N_{j}} \quad A_{\ell} = \frac{W(\ell)}{2N_{\ell}}$$

$$B_{j} = 2(\beta_4^{2})^{-1} \bar{h}(k^{2})^{2} \rho_{\infty} c_{j} \quad B_{\ell} = 2 \left(\frac{\beta_4^{2}}{3}\right) \bar{h}(k^{2})^{3} c_{\ell}$$

$$C_{j} = C_{\ell} = \frac{(\beta_4^{2})^{-1}}{3|\mathbb{P}_{3}(k^{2}) \cup \mathbb{P}_{3}(k^{3})|} \bar{h}(k^{2})^{4} \int_{\Omega} e_{k}^{4} \, dx.$$

Assume that $\bar{h}(k^{2}) \neq 0$. Then (A1) and (A2) along with the expression for β_4^{2} and the fact that $|\bar{h}(k^{2})| \leq N_{k}$, imply that the discriminants of the quadratic expressions in (5.8) are all negative, i.e., $B_{j}^{2} - 4A_{j}C_{j} < 0$, $B_{\ell}^{2} - 4A_{\ell}C_{\ell} < 0$. Indeed, we have that

$$\frac{B_{j}^{2}}{4A_{j}C_{j}} = \frac{6(\beta_4^{2})^{-1} \rho_{\infty}|\mathbb{P}_{3}(k^{2}) \cup \mathbb{P}_{3}(k^{3})|}{N_{j}^{2} \int_{\Omega} e_{k}^{4} \, dx \, W(j)}.$$
\[
\frac{3|\hat{W}(k^j)|\rho_{\infty}^2 |P_2(k|^j) \cup P_1(k^j)|}{2N_j N_k (\int_\Omega \epsilon_{k^j}^4 \, dx) \hat{W}(j)} < 1. \tag{A1}
\]

Similarly,
\[
\frac{B_{\ell}^2}{4ArC_{\ell}} = \frac{2(\beta_1^2)^{-1}\eta(k^j)^2 \rho_{\infty}^4 |P_2(k^j) \cup P_4(k^j)| (3)^2 \{\ell \in \ell, \ell = k^j\}}{3N \ell N_k^2 (\int_\Omega \epsilon_{k^j}^4 \, dx) \hat{W}(\ell)} \leq \frac{2(\beta_1^2)^{-1}\rho_{\infty}^4 |P_2(k^j) \cup P_4(k^j)| 3^{2d}}{3N \ell (\int_\Omega \epsilon_{k^j}^4 \, dx) \hat{W}(\ell)} \leq \frac{3(\beta_1^2)^{-1}\rho_{\infty}^2 |P_2(k^j) \cup P_4(k^j)| 3^{2d}}{N \ell N_k^2 \ell (\int_\Omega \epsilon_{k^j}^4 \, dx) \hat{W}(\ell)} < 1. \tag{A2}
\]

Thus it follows that \(F_{\rho_{\infty}}^4(\rho) < F_{\rho_{\infty}}^4(\rho_{\infty})\). On the other hand if \(\eta(k^j) = 0\), the proof follows by noting that any contribution from the interaction energy is positive and that \(\rho_{\infty}\) is the unique minimiser of \(S_{\beta}^2(\rho)\). That \(\beta_c = \beta_1^2\) is a consequence of Lemma 5.9. \(\square\)

Remark 5.3. Note that although the assumptions in Theorem 5.16 seem complicated, all they really require is that all Fourier coefficient of \(W\), except the dominant negative mode \(W(k^j)\) are nonnegative and that a finitely many of them “positive enough” compared to \(W(k^j)\). Consider \(d = 1\), with \(W(x) = w_1e_1(x) + w_2e_2(x) + w_3e_3(x)\) with \(w_1 < 0\) and \(w_2, w_3 > 0\). If, for some explicitly computable positive constants \(c_2, c_3 > 0\), \(w_2 > c_2|w_1|\) and \(w_3 > c_3|w_1|\), the conditions of Theorem 5.16 are satisfied and the transition point \(\beta_c = \beta_1^2\) is continuous. In this setting, \(P_2(1) = \{e_2\}\) and \(P_3(1) = \{e_3\}\).

6. The mesa limit \(m \to \infty\)

A natural question to ask is how the sequence of free energies \(F_{\beta}^m : \mathcal{P}(\Omega) \to (-\infty, +\infty]\) behave in the limit as \(m \to \infty\). We conjecture the following limit free energy, \(F_{\infty}^\infty : \mathcal{P}(\Omega) \to (-\infty, +\infty]\),

\[
F_{\infty}(\rho) = \frac{1}{2} \int_{\Omega \times \Omega} W(x - y) \rho(x) \rho(y) \, dx \, dy \quad \|\rho\|_{L^\infty(\Omega)} \leq 1. \tag{6.1}
\]

This is analogous to the so-called mesa limit of the porous medium equation considered by Caffarelli and Friedman[CF87]. It is also studied in [CKY18] for Newtonian interactions and [KWP19] for general drift-diffusion equations. We rederive the result in our setting.

Theorem 6.1. Consider the sequence of functionals \(\{F_{\beta}^m\}_{m \geq 1}\) defined on \(\mathcal{P}(\Omega) \cap L^\infty(\Omega)\) equipped with the weak* topology. Then

\[
F_{\infty} = \Gamma^- \lim_{m \to \infty} F_{\beta}^m,
\]

for any fixed \(\beta > 0\).

Proof. (1) Recovery sequence: For each \(\rho \in \mathcal{P}(\Omega) \cap L^\infty(\Omega)\) we choose \(\rho_m = \rho\) as the recovery sequence. The interaction energy term remains unchanged as it is independent of \(m\), while \((m - 1)^{-1} \to 0\) converges to 0 as \(m \to \infty\). Assume first that \(\|\rho\|_{L^\infty(\Omega)} > 1\). It follows that there exists some \(\epsilon > 1\) and a set \(A\) of positive measure such that \(\rho|_A > 1 + \epsilon\). Thus we have

\[
\frac{\beta^{-1}}{m - 1} \int_{\Omega} \rho^m \, dx \geq \frac{\beta^{-1}}{m - 1} |A|(1 + \epsilon)^m \to 0 \quad \text{as} \quad m \to \infty,
\]

and thus \(F_{\beta}^m(\rho) \to \infty\) for all \(\|\rho\|_{L^\infty(\Omega)} > 1\). Now, let us assume that \(\|\rho\|_{L^\infty(\Omega)} \leq 1\). This gives us

\[
\frac{\beta^{-1}}{m - 1} \int_{\Omega} \rho^m \, dx \leq \frac{\beta^{-1}}{m - 1} \|\rho\|_{L^\infty(\Omega)} \to 0 \quad \text{as} \quad m \to \infty,
\]

40
and thus completes the construction of the recovery sequence.

(2) Γ-lim inf: Assume that there exists $\{\rho_m\}_{m \geq 1}$ such that $\rho_m \rightharpoonup \rho$ in L^∞-weak*. For $W \in C^2(\Omega)$, the interaction energy is continuous and so we can disregard its behaviour. We start with the case in which $\|\rho\|_{L^\infty(\Omega)} \leq 1$. In this case the entropic term, $S^m_\beta(\rho_m)$, can be controlled from below by 0 and thus the Γ-lim inf holds trivially. The other case left to treat is when $\|\rho\|_{L^\infty(\Omega)} > 1$. This implies again that there exists some $\varepsilon > 0$ and a set of positive measure A such that $\rho|_A > 1 + \varepsilon$. It follows from the weak-* convergence that

$$\lim_{m \to \infty} \int_A \rho_m \, dx = (1 + \varepsilon)|A| + \delta,$$

for some fixed positive constant $\delta > 0$ independent of m. We define the sets $A_m^+ := \{x \in A : \rho_m > (1 + \varepsilon)\}$ and $A_m^- := A \setminus A_m^+$. There also exists $N \in \mathbb{N}$ such that for $m \geq N$, $\int_{A_m} \rho_m \, dx \geq (1 + \varepsilon)|A| + \delta/2$. Thus for $m \geq N$ we have that

$$\int_{A_m^+} \rho_m \, dx + \int_{A_m^-} \rho_m \, dx \geq (1 + \varepsilon)|A_m^+| + (1 + \varepsilon)|A_m^-| + \delta/2$$

from which it follows that

$$\int_{A_m^-} \rho_m \, dx \geq \delta/2.$$

This gives us the estimate we need on the entropic term since

$$\frac{\beta^{-1}}{m-1} \int_\Omega \rho_m^m \, dx \geq \frac{\beta^{-1}}{m-1} \int_{A_m} \rho_m^m \, dx \geq \frac{\beta^{-1}}{m-1} (1 + \varepsilon)^{m-1} \int_{A_m^+} \rho_m \, dx \geq \frac{\beta^{-1}}{m-1} (1 + \varepsilon)^{m-1} \delta/2.$$

Passing to the limit as $m \to \infty$, the result follows.

We would now like to understand how the presence of phase transitions for finite m affects the minimisers of \mathcal{F}^∞. This is discussed in the next result.

Theorem 6.2 (Minimisers of the mesa problem). Let $\mathcal{F}^\infty : \mathcal{P}(\Omega) \to (-\infty, +\infty]$ be as defined in (6.1). Then

(a) If $|\Omega| < 1$, $\mathcal{F}^\infty \equiv +\infty$.

(b) If $|\Omega| = 1$, $\mathcal{F}^\infty(\rho) < +\infty$ if and only if $\rho = \rho_\infty$. Thus ρ_∞ is the unique minimiser of \mathcal{F}^∞.

(c) If $|\Omega| > 1$ and $W \in H^s$, and $W \neq 0$, ρ_∞ is the unique minimiser of \mathcal{F}^∞. On the other hand if $W \in H^s$ there exists $\mathcal{P}(\Omega) \ni \rho \neq \rho_\infty$ such that ρ is the minimiser of \mathcal{F}^∞ with $\mathcal{F}^\infty(\rho) < \mathcal{F}^\infty(\rho_\infty)$. Furthermore, there exists a sequence, $\{\rho_m\}_{m \geq 1}$ of nontrivial minimisers of \mathcal{F}^m_β such that $\rho_m \rightharpoonup \rho$ in L^∞-weak* as $m \to \infty$.

Proof. The proof of Theorem 6.2(a) follows from the fact that if $|\Omega| < 1$, then for any $\rho \in \mathcal{P}(\Omega) \cap L^1(\Omega)$ there exists a set A of positive measure such that $\rho(x) > 1$ for all $x \in A$. Indeed, if this were not the case we would have that

$$\int_\Omega \rho \, dx \leq \frac{1}{|\Omega|} < 1,$$

which would be a contradiction. Thus we have that $\|\rho\|_{L^\infty(\Omega)} > 1$ for all $\rho \in \mathcal{P}(\Omega) \cap L^1(\Omega)$ and so $\mathcal{F}^\infty \equiv \infty$.

41
The proof of Theorem 6.2(b) is similar. If \(\rho \neq \rho_\infty \), we can again find a set of positive measure \(A \) such that \(\rho(x) > 1 \) for all \(x \in A \). We then repeat the same argument as in the previous case.

Assume now that \(|\Omega| > 1 \) and \(W \in H_s, W \neq 0 \) (if \(W \) is identically zero then clearly \(F_\infty \equiv 0 \)). Since \(W \) is mean-zero we have that

\[
F_\infty(\rho_\infty) = 0.
\]

On the other hand if \(\mathcal{P}(\Omega) \cap L^\infty(\Omega) \ni \rho \neq \rho_\infty \) we know from Definition 2.1 that

\[
F_\infty(\rho_\infty) = \frac{1}{2} \iint_{\Omega \times \Omega} W(x - y) \rho(x) \rho(y) \, dx \, dy > 0.
\]

Finally consider the case \(\beta > 0 \) be fixed and note that, since \(|\Omega| > 1 \), \(\beta_m \to 0 \) as \(m \to \infty \). Clearly for \(m \) large enough a nontrivial minimiser \(\rho_m \in \mathcal{P}(\Omega) \) exists for \(\beta > 0 \) from the result of Proposition 5.7. Consider the measure \(\rho^* = \rho_\infty + \varepsilon \kappa_1 \) where \(\kappa_1 \) is as defined previously. We then have the following bound

\[
F_m^m(\rho_m) \leq F_m^m(\rho^*) = F_m^m(\rho_\infty) + \left(\beta^{-1} m \rho_{\infty}^{-2} + \rho_{\infty}^{-1/2} \frac{\hat{W}(k_1)}{\Theta(k_1^2)} \right) \frac{\varepsilon^2}{2} \|\kappa_1\|^2_{L^2(\Omega)}
\]

\[
+ \beta^{-1} m (m - 2) \frac{\varepsilon^3}{6} \int_{\Omega} f^{m-3} \kappa_1 \, dx,
\]

where the function \(f(x) \in (\rho_\infty, \rho^*(x)) \). Note that \(|f| \leq \rho_\infty + \varepsilon N_k \). Thus we have the bound

\[
F_m^m(\rho_m) \leq F_m^m(\rho^*) \leq F_m^m(\rho_\infty) + \left(\beta^{-1} m \rho_{\infty}^{-2} + \rho_{\infty}^{-1/2} \frac{\hat{W}(k_1)}{\Theta(k_1^2)} \right) \frac{\varepsilon^2}{2} \|\kappa_1\|^2_{L^2(\Omega)}
\]

\[
+ \beta^{-1} m (m - 2) \frac{\varepsilon^3}{6} (\rho_\infty + \varepsilon N_k)^{m-3} N_k^3 |\Omega|,
\]

Additionally note that if \(\varepsilon \) is small enough and \(\rho_\infty < 1 \), the last term tends to 0 as \(m \to \infty \). Also since \(W \in H_s^e \), the second term in the above expression is negative for \(m \) large enough as \(m \rho_{\infty}^3 \to 0 \) as \(m \to \infty \). It follows from this that, for \(m \) large enough, the following estimate holds

\[
F_m^m(\rho_m) \leq F_m^m(\rho^*) \leq F_m^m(\rho_\infty) - C_1 \varepsilon^2 + C_2 \varepsilon^3,
\]

(6.2)

where \(C_1, C_2 > 0 \) are independent of \(m \). It has follows from Theorem 6.1, (6.2), and the definition of \(\Gamma \)-convergence that

\[
F_\infty(\rho) < F_\infty(\rho_\infty),
\]

where \(\rho \in \mathcal{P}(\Omega) \) is the minimiser of \(F_\infty \). Thus \(\rho \neq \rho_\infty \) and the result follows.

\[\square\]

7. Numerical experiments

The numerical experiments in this section are meant to shed light on the qualitative features of the global bifurcation diagram of the system, while also serving as a source of possible conjectures that can be studied in future work. They were performed using a modified version on the numerical scheme in [CCH15].

7.1. Discontinuous bifurcations for \(m > 2 \) and \(W = -\cos(2\pi x/L) \). Fig. 7.1 shows the branches of stationary solutions obtained in the long-time limit for \(m \geq 2 \) and \(W = -\cos(2\pi x/L) \). The black dot denotes the point of linear stability \(\beta^m_1 \) while the red dot denotes the value of \(\beta \) at which the support of the stationary solution is a strict subset of \(\mathbb{T} \). Note that the diagram does not necessarily reflect the actual bifurcation diagram of the system as it is obtained from the long-time dynamics and thus will only see stable solutions. We already know that this choice of \(W \) satisfies the conditions of Theorem 4.2 and so there will a bifurcation at \(\beta^m_1 \) (the black points
Figure 7.1. Stationary solutions in the long-time limit for \(m \geq 2 \) and \(W = -\cos(2\pi x/L) \). The black dot denotes the point of linear stability \(\beta^m_* \) while the red dot denotes the value of \(\beta \) at which the support of the stationary solution is a strict subset of \(T \). Note that \(\|\rho_s\|_{L^\infty} = 0.1 \) corresponds to the flat state \(\rho_\infty \).

Figure 7.2. Stationary solutions/minimisers for \(m \) large and \(|\Omega| > 1 \). The limiting object seems to be the indicator function of some interval.

in Fig. 7.1). One would expect this branch to turn to the right for \(m \in (2, 3) \) (cf. Remark 4.2) and then turn back. We conjecture that the red points are all saddle-node bifurcations and correspond to discontinuous phase transitions for \(m \geq 2 \) due to Lemma 5.9 and the fact that they lie ahead of the corresponding \(\beta^m_* \).

7.2. The mesa minimisers. In Fig. 7.2, we plot the stationary solutions observed in the long-time limit for \(m \) large and \(\beta > \beta_c \). Since the stationary solutions are potentially minimisers of \(F^m_\beta \) and the minimisers converge to the minimisers of \(F_\infty \) as \(m \to \infty \) (cf. Theorem 6.1), the plots in Fig. 7.2 provide us with some information about the structure of the minimisers of the mesa problem. It seems to be that they converge to the indicator function of some fixed set. A natural next question one can ask is what happens to the continuity of phase transitions in the limit as \(m \to \infty \).

Acknowledgements. The authors would like to thanks Felix Otto and Yao Yao for useful discussions during the course of this work.
APPENDIX A. SOME USEFUL RESULTS

In this section we state some useful lemmas and inequalities which we will use in the proof of Theorem 3.2.

Lemma A.1 (Geometric convergence lemma). Let \(\{X_n\}_{n \in \mathbb{N}} \) be a sequence of nonnegative real numbers satisfying the recurrence inequality
\[
X_{n+1} \leq Cb^n X_n^{1+a},
\]
for some \(C, b > 1 \) and \(a > 0 \). If \(X_0 \leq C^{-1/a} b^{-1/a^2} \), then \(\lim_{n \to \infty} X_n = 0. \)

Let \(\Omega \subset \mathbb{T}^d \) be a smooth, convex, open subdomain. Then we have the following lemma due to De Giorgi [DG57]:

Lemma A.2. Given a function \(v \in W^{1,1}(\Omega) \) and real numbers \(k_1 < k_2 \) we define
\[
[k_1 \leq k_2] := \{ x \in \Omega : v(x) \geq k_1 \}.
\]
Then there exists a constant \(C = C(d) \) such that
\[
(k_2 - k_1)[k_1 < k_2] \leq C \frac{\rho^{d+1}}{[k_1 < k_2]} \int_{[k_1 < k_2]} |\nabla v| \, dx,
\]
where \(R = \text{diam}(\Omega) \).

Consider now the parabolic space \(V^2(\Omega_T) \), equipped with the norm
\[
\|\rho\|_{V^2(\Omega_T)} := \text{ess sup}_{t \leq T} \|\rho\|_{L^2(\Omega)}(t) + \|\nabla \rho\|_{L^2(\Omega_T)}^2.
\]
We then have the following embedding [DiB93, page 9]:

Lemma A.3. Let \(\rho \in V^2(\Omega_T) \). Then there exists a constant \(C_d \) depending only on \(d \) such that
\[
\|\rho\|_{L^2(\Omega_T)}^2 \leq C_d \|\rho\|_{V^2(\Omega_T)}^{2/(2+d)}.
\]

APPENDIX B. BIFURCATION THEORY

We state here the Crandall–Rabinowitz theorem (cf. [Nir01, Kie12]) for bifurcations with a one-dimensional kernel.

Theorem B.1. Consider a separable Hilbert space \(X \) with \(U \subset X \) an open neighbourhood of 0, and a nonlinear \(C^2 \) map, \(F : U \times V \to X \), where \(V \) is an open subset of \(\mathbb{R}^+ \) such that \(F(0, \kappa) = 0 \) for all \(\kappa \in V \). Assume the following conditions are satisfied for some \(\kappa_* \in V \):
1. \(D_\kappa(0, \kappa_*) \) is a Fredholm operator with index zero and has a one-dimensional kernel.
2. \(\frac{D^2}{D\kappa^2}(0, \kappa_*)[\tilde{v}_0] \notin \text{Im}(D_\kappa(0, \kappa_*)), \) where \(\tilde{v}_0 \in \ker(D_\kappa(0, \kappa_*)), \|\tilde{v}_0\| = 1 \).

Then, there exists a nontrivial \(C^1 \) curve through \((0, \kappa_*)\) such that for some \(\delta > 0 \),
\[
\{(x(s), \kappa(s)) : s \in (-\delta, \delta), x(0) = 0, \kappa(0) = \kappa_* \},
\]
and \(F(x(s), \kappa(s)) = 0 \). Additionally, for some neighbourhood of \((0, \kappa_*)\), this is the only such solution (apart from the trivial solution) and it has the following form:
\[
x(s) = s\tilde{v}_0 + \Psi(s\tilde{v}_0, \psi(s)), \quad \kappa(s) = \psi(s),
\]
where \(\Psi : \ker(D_\kappa(0, \kappa_*)) \times \mathbb{R}^+ \to \ker(D_\kappa(0, \kappa_*)) \) is a \(C^1 \) map and \(\psi : (-\delta, \delta) \to V \) is a \(C^1 \) function such that \(\psi(0) = \kappa_* \). Furthermore if \(D_\kappa \Psi(\tilde{v}_0, \kappa_*) = 0 \), we obtain a simplified expression
of the form

$$x(s) = s\tilde{v}_0 + r_1(s\tilde{v}_0, \psi(s)),$$

such that

$$\lim_{|s| + |\psi(s) - \kappa_*| \to 0} \frac{\|r_1(s\tilde{v}_0, \psi(s))\|}{|s| + |\psi(s) - \kappa_*|} = 0.$$
