Stiffness of Composite Beams with Full Shear Connection

Maciej Szumigala 1, Marcin Chybinki 1, Lukasz Polus 1

1 Poznan University of Technology, Faculty of Civil and Environmental Engineering, Institute of Structural Engineering, Poland
lukasz.polus@put.poznan.pl

Abstract. This paper presents an analysis of the stiffness of various composite beams with full shear connection. The authors analysed steel-concrete composite (SCC), aluminium-concrete composite (ACC), steel-timber composite (STC) and aluminium-timber composite (ATC) beams using numerical simulations. The purpose of the analysis was to compare and contrast the stiffness of the above-mentioned composite beams. Non-linear 3D finite element (FE) models of the analysed beams were developed and used to evaluate deflections. The SCC beam demonstrated the highest stiffness and the ATC beam demonstrated the lowest stiffness.

1. Introduction
Composite steel and concrete structures are often used in multi-storey buildings [1] and bridges [2, 3]. General rules for designing these structures are presented in designers’ guide [4] and in standard [5]. Damage diagnosis of steel-concrete composite beams is shown in [6, 7]. There are also other types of composite structures. Composite concrete structures in which there are two concrete parts (a new part and an old part) may be used to strengthen an old concrete slab [8, 9]. Steel and timber composite structures [10] and timber and glass composite structures [11] are a relatively new concept and may be used in floors. Aluminium and concrete composite structures are not new, they are used in bridges [12-16] and may also be used as beams and columns [17]. Timber and concrete composite structures have been extensively investigated and used in floors [18, 19]. Aluminium and timber structures seem to be a new solution when it comes to joining materials [20].

The authors of this article tried to analyse the stiffness of steel-concrete composite (SCC), aluminium-concrete composite (ACC), steel-timber composite (STC) and aluminium-timber composite (ATC) beams using numerical simulations. The stiffness of the composite beams was also compared with the stiffness of the aluminium (A) and steel (S) beam.

2. Problem formulation
In this paper the authors compared the stiffness of the few types of composite beams. They made the following assumptions:
- Composite beams with full shear connection were analysed.
- The beams had the same geometric dimensions.
- Elastic-plastic material models were used.
- The behaviour of the composite beams was analysed until the deflection reached L/250 (L – beam length).
- Non-linear 3D finite element (FE) models of the analysed beams were developed in the Abaqus program.
The geometric configurations and details of a single composite beam are presented in figure 1.

![Figure 1. Geometrical outline and details of the composite beam.](image)

The dead loads of the analysed beams are presented in table 1.

Beam	Dead load [kN/m]
A	0.075
S	0.217
ATC	0.405
STC	0.547
ACC	1.575
SCC	1.717

The aluminium beam is 2.9 times lighter than the steel beam. The aluminium and timber composite beam is the lightest of all the composite beams.

3. Numerical models of the analysed composite beams

3.1. Material models
The behaviour of aluminium, steel and laminated veneer lumber (LVL) was modelled using an elastic-perfectly plastic model. The non-linear behaviour of concrete was captured using the concrete damaged plasticity (CDP) model available in the Abaqus program [21] and successfully used for concrete [22-26]. The behaviour of the materials is presented in figure 2. The stress-strain diagram for the analysis of the concrete subjected to compression was adopted from [27], the stress-strain diagram for the analysis of the concrete subjected to tension was taken from [28]. The compressive strength and the tensile strength of the concrete were based on own laboratory tests. The value of the fracture energy and the critical crack opening were calculated using the formulas presented in [29-31]. The parameters for LVL were based on the manufacturer's data [30]. The material parameters for metals are from the standards [33, 34]. All the materials parameters used in the numerical model are presented in tables 2-4.
Figure 2. Material models.

Table 2. Parameters of materials used in numerical calculations.

Material	Parameter	Value
Concrete C50/60	Young’s modulus E_{cm} [MPa]	37 000
	Poisson’s ratio ν [-]	0.20
	Mean value of concrete cylinder compressive strength f_{cm} [MPa]	61.8
	Mean value of axial tensile strength of concrete f_{tm} [MPa]	4.6
	Largest nominal maximum aggregate size d_{a} [mm]	16.0
	Fracture energy G_F [N/m]	92.0
	Parameter n [-]	1.2
	Dilatation angle [°]	40.0
	Eccentricity [-]	0.1
	f_{00}/f_{0} [-]	1.16
	Parameter κ [-]	0.667
	Viscosity parameter [-]	0.001
LVL	Young’s modulus $E_{0,mean}$ [MPa]	14 000
	Poisson’s ratio ν [-]	0.4
	Tension strength, parallel to grain $f_{0,k}$ [MPa]	36.0
	Compression strength, parallel to grain $f_{0,k}$ [MPa]	40.0
S235	Young’s modulus E [MPa]	210 000
	Poisson’s ratio ν [-]	0.3
	Yield strength [MPa]	235.0
AW-6060 T6	Young’s modulus E [MPa]	70 000
	Poisson’s ratio ν [-]	0.3
	Yield strength [MPa]	140.0
Table 3. Material parameters used in the CDP model for the C50/60 concrete subjected to compression.

Concrete compression hardening	Concrete compression damage		
Stress [MPa]	Crushing strain [-]	Dc [-]	Crushing strain [-]
28.82	0.00000000	0.000	0.00000000
43.79	0.00011650	0.000	0.00011650
48.87	0.00017927	0.000	0.00017927
51.17	0.00021706	0.000	0.00021706
56.96	0.00036056	0.000	0.00036056
59.72	0.00048599	0.000	0.00048599
60.70	0.00055935	0.000	0.00055935
61.75	0.00083104	0.001	0.00083104
61.35	0.00094196	0.007	0.00094196
60.50	0.0106499	0.021	0.0106499
59.14	0.0120157	0.043	0.0120157
57.22	0.0135338	0.074	0.0135338
54.67	0.0152237	0.115	0.0152237
51.40	0.0171087	0.168	0.0171087
47.30	0.0192162	0.235	0.0192162
42.26	0.0215791	0.316	0.0215791
36.12	0.0242372	0.415	0.0242372
28.72	0.0272388	0.535	0.0272388
19.82	0.0306438	0.679	0.0306438
9.150	0.0345263	0.852	0.0345263
3.050	0.0366750	0.951	0.0366750

Table 4. Material parameters used in the CDP model for the C50/60 concrete subjected to tension (n=1.2).

Concrete tension stiffening	Concrete tension damage		
Stress [MPa]	Cracking strain [-]	Dt [-]	Cracking strain [-]
4.600000	0.00000000	0.000000	0.00000000
1.989286	0.0001962	0.10594	0.0001962
1.328445	0.0003141	0.13276	0.0003141
0.982585	0.0004234	0.26520	0.0004234
0.772307	0.0005291	0.42245	0.0005291
0.632294	0.0006329	0.52736	0.0006329
0.532294	0.0007356	0.60194	0.0007356
0.458060	0.0008376	0.65745	0.0008376
0.400827	0.0009392	0.70025	0.0009392
0.355466	0.0010404	0.73417	0.0010404
0.318704	0.0011414	0.76166	0.0011414
0.288359	0.0012422	0.78436	0.0012422
0.262921	0.0013429	0.80338	0.0013429
0.241315	0.0014435	0.81954	0.0014435
0.222755	0.0015440	0.83342	0.0015440
0.206654	0.0016444	0.84546	0.0016444
0.192566	0.0017448	0.85599	0.0017448
0.180144	0.0018451	0.86528	0.0018451
0.169116	0.0019454	0.87353	0.0019454
0.159265	0.0020457	0.88090	0.0020457
0.150418	0.0021459	0.88751	0.0021459
0.142432	0.0022462	0.89349	0.0022462
3.2. Non-linear 3D FE models

The numerical model was prepared in the Abaqus program and it consisted of a beam and a slab. The authors of this article prepared only 1/2 of the model (see figure 3) using one axis of symmetry.

The connection between the beam and the slab was modelled using the tie function (full shear connection). The slab was divided into eight-node cuboidal finite solid elements (C3D8R) and the beam was divided into four-node shell elements (S4R) (see figure 4). The size of the mesh was 20.0 mm. The total number of all elements was 31 137.

![Figure 3](image1.png)

Figure 3. The model of the composite beam in the Abaqus environment:
a) complete model; b) half of the model; 1 – slab, 2 – beam, 3 – plane of symmetry.

The calculations were performed using the Newton-Raphson method. Figure 5 presents the boundary conditions used in the computer model.

![Figure 4](image2.png)

Figure 4. Mesh used in the numerical calculations.

The calculations were performed using the Newton-Raphson method. Figure 5 presents the boundary conditions used in the computer model.
4. Results and discussions

Figure 6 shows the mid-span moments versus the mid-span deflections of SCC, STC, ACC and ATC beams from the FEA analyses.

The comparison of the moments and deflections of the composite beams and metal beams is presented in tables 5 and 6.

Table 5. Comparison of the moments and deflections of composite beams.

Beam	SCC	STC	ACC	ATC							
u^a	M^b	M^c	M^d								
[mm]	[kNm]	[kN]	[kNm]								
5.0	42.2	8440	39.4	31.4	6280	29.7	19.1	3820	16.4	14.5	2898
12.0	78.3	6525	75.5	65.3	5442	63.6	42.1	3508	39.4	34.6	2885

a u - mid-span deflection; b M - mid-span moment; c $\alpha = M / u$; d M^d - mid-span moment – moment from dead load.
Table 6. Comparison of the moments and deflections of metal beams.

Beam	u[^a] [mm]	M[^b] [kNm]	S[^c] [kN]	M[^d] [kNm]	α[^c]	M[^d] [kNm]
5.0	3.4	681	2.2	10.2	2048	8.9
12.0	8.2	681	7.0	24.6	2048	23.2

[^a] u - mid-span deflection;[^b] M - mid-span moment;[^c] α = M / u;[^d] M[^d] - mid-span moment – moment from dead load.

The SCC beam showed the highest stiffness and the ATC beam showed the lowest stiffness among all the analysed composite beams. Both A and S beams showed a lower stiffness than the composite beams presented in this paper. The stiffness of the metal beams was constant up to a point where deflection reached L/250 (they showed linear elastic behaviour). The composite beams started to yield before deflection reached L/250 (12.0 mm).

Table 7. Comparison of stiffness.

Beam	A	S	ATC	STC	ACC	SCC
u[^e] [mm]	β[^e]	β[^e]	β[^e]	β[^e]	β[^e]	β[^e]
5.0	1.0	3.0	4.3	9.2	5.6	12.4
12.0	1.0	3.0	4.2	8.0	5.2	9.6

[^e] β - mid-span moment for the proper beam / mid-span moment for the aluminium beam.

The ATC beam showed a 4.3 greater stiffness than the A beam, and demonstrated a 1.3 lower stiffness than the ACC beam. The STC beam showed a 3.1 greater stiffness than the S beam, and demonstrated 1.3 lower stiffness than the SCC beam.

5. Conclusions

The main conclusions of this paper are as follows:

- The analysed composite beams had a greater stiffness than the analysed metal beams. The combination of materials always provides for a greater stiffness.
- The SCC beam demonstrated the highest stiffness, followed by the ACC beam, the STC beam, the ATC beam, and the S beam. The A beam demonstrated the lowest stiffness.
- The presented composite beams have both advantages and disadvantages. Designers should take into account not only the load bearing capacity and stiffness, but also the cost and construction time of composite structures, as well as their useful properties and durability.

Acknowledgment

Financial support by the grant 01/11/DSMK/0906 and 01/11/DSPB/0805 is kindly acknowledged.

References

[1] R. P. Johnson, “Composite structures of steel and concrete. Beams, slabs, columns, and frames for buildings”, Blackwell Publishing, 2004.

[2] S. Hicks, C. McKenzie, N. Lloyd, K. Graham, G. C. Clifton, “Assessment of existing composite bridges in New Zealand”, *IABSE Conference Structural Engineering: Providing Solutions to Global Challenges*, Geneva, pp. 1049-1055, 2015.
[3] W. Siekierski, “Analysis of concrete shrinkage along truss bridge with steel-concrete composite deck”, *Steel and Composite Structures*, Vol. 20, issue 6, pp. 1237-1257, ISSN 1229-9367, 2016.

[4] R. P. Johnson, Designers’ guide to Eurocode 4: Design of composite steel and concrete structures EN 1994-1-1, Thomas Telford, London 2012.

[5] European Committee for Standardization, EN 1994-1-1, Eurocode 4, Design of composite steel and concrete structures - Part 1-1: General rules and rules for buildings. Brussels 2004.

[6] T. Wróblewski, M. Jarosińska, M. Abramowicz, S. Berczyński, “Experimental validation of the use of energy transfer ratio (ETR) for damage diagnosis of steel-concrete composite beams”, *Journal of Theoretical and Applied Mechanics*, Vol. 55, issue 1, pp. 241-252, ISSN 1429-2955, 2017.

[7] A. Pelka-Sawenko, T. Wróblewski, M. Szumigała, “Validation of Computational Models of Steel-Concrete Composite Beams”, *Engineering Transactions*, Vol. 64, issue 1, pp. 53-67 ISSN 0867-888X, 2016.

[8] A. Halicka, Ł. Jabłoński, “Shear failure mechanism of composite concrete T-shaped beams”, *Proceedings of the Institution of Civil Engineers: Structures and Buildings*, Vol. 169, issue 1, pp. 67-75, ISSN 0965-0911, 2016.

[9] A. Halicka, “Influence new-to-old concrete interface qualities on the behaviour of support zones of composite concrete beams”, *Construction and Building Materials*, Vol. 25, issue 10, pp. 4072-4078, ISSN 0950-0618, 2011.

[10] A. Hassanieh, H. R. Valipour, M. A. Bradford, C. Sandhaas, “Modelling of steel-timber composite connections: Validation of finite element model and parametric study”, *Engineering Structures*, 138, pp. 35-49, ISSN 0141-0296, 2017.

[11] K. Furtak, K. Rodacki, “Experimental investigations of load-bearing capacity of composite timber-glass I-beams”, *Archives of Civil and Mechanical Engineering*, Vol. 18, issue 3, pp. 956-964, ISSN 1644-9665, 2018.

[12] T. Siwowski, “Aluminium Bridges – Past, Present and Future”, *Structural Engineering International*, Vol. 16, issue 4, pp. 286-293, ISSN 1016-8664, 2016.

[13] M. Szumigała, Ł. Polus, “Applications of aluminium and concrete composite structures”, *Procedia Engineering*, 108, pp. 544-549, ISSN 1877-7058, 2015.

[14] P. Kossakowski, “Aluminium alloys as structural material in bridges”, *Zeszyty Naukowe Politechniki Częstochowskiej*, 172, Budownictwo 22, pp. 159-170, ISSN 0860-7214, 2016.

[15] T. Dokšanović, I. Džeba, D. Markulak, “Applications of aluminum alloys in civil engineering”, *Technical Gazette*, Vol. 24, issue 5, pp. 1609-1618, ISSN 1330-3651, 2017.

[16] T. Tindall, “Aluminium in bridges”, ICE Manual of Bridge Engineering, pp. 345-355, 2008.

[17] Y. Chen, R. Feng, J. Xu, “Flexural behaviour of CFRP strengthened concrete-filled aluminium alloy CHS tubes”, *Construction and Building Materials*, 142, pp. 295-319, ISSN 0950-0618, 2017.

[18] M. Szumigała, E. Szumigała, Ł. Polus, “An analysis of the load-bearing capacity of timber-concrete composite beams with profiled sheeting”, *Civil and Environmental Engineering Reports*, Vol. 27, issue 4, pp. 143-156, ISSN 2080-5187, 2017.

[19] E. Łukaszewska, M. Fragiácomo, H. Johnsson, “Laboratory Tests and Numerical Analyses of Prefabricated Timber-Concrete Composite Floors”, *ASCE Journal of Structural Engineering*, Vol. 136, issue 1, pp. 46-55, 2009.

[20] M. Szumigała, M. Chybiński, Ł. Polus, “Preliminary analysis of the aluminium-timber composite beams”, *Civil and Environmental Engineering Reports*, Vol. 27, issue 4, pp. 131-141, ISSN 2080-5187, 2017.

[21] Abaqus 6.13 Documentation, Abaqus Analysis Users Guide, Abaqus Theory Guide.

[22] I. Jankowiak, “Case study of flexure and shear strengthening of RC beams by CFRP using FEA”, *AIP Conference Proceedings*, Vol. 1922, article number 130004, DOI: 10.1063/1.5019134, 2017.
[23] T. Jankowiak, T. Łodygowski, “Quasi-static failure criteria for concrete”, *Archives of Civil Engineering*, Vol. 56, issue 2, pp. 123-154, ISSN 1230-2945, 2010.

[24] M. Szumigała, Ł. Polus, “An numerical simulation of an aluminium-concrete beam”, *Procedia Engineering*, 172, pp. 1086-1092, ISSN 1877-7058, 2017.

[25] I. Jankowiak, A. Madaj, “Numerical analysis of effectiveness of strengthening concrete slab in tension of the steel-concrete composite beam using pretensioned CFRP strips”, *Civil and Environmental Engineering Reports*, Vol. 27, issue 4, pp. 5-15, ISSN 2080-5187, 2017.

[26] P. Szewczyk, M. Szumigała, “The trial of optimal strengthening of composite beams”, [in] *Recent Advances in Computational Mechanics*, T. Łodygowski, J. Rakowski, P. Litewka [Eds.], Taylor & Francis Group, London, pp. 277-283, ISBN 978-1-138-02482-3, 2014.

[27] European Committee for Standardization, EN 1992-1-1, Eurocode 2, Design of concrete structures - Part 1-1: General rules and rules for buildings, Brussels 2004.

[28] P. Kmiecik, M. Kamiński, “Modelling of reinforced concrete structures and composite structures with concrete strength degradation taken into consideration”, *Archives of Civil and Mechanical Engineering*, Vol. 11, issue 3, pp. 623-636, ISSN 1644-9665, 2011.

[29] Z. P. Bazant, E. Becq-Giraudon, “Statistical prediction of fracture parameters of concrete and implications for choice of testing standard”, *Cement and Concrete Research*, 32, pp. 529-556, ISSN 0008-8846, 2002.

[30] Committee Euro-International du Beton, CEB-FIP Model Code 1990, Thomas Telford, London 1991.

[31] D. A. Hordijk, Local approach to fatigue of concrete, PhD Thesis, Delft University of Technology, 1991.

[32] Komorowski M., “Podręcznik projektowania i budowania w systemie STEICO. Podstawy. Fizyka budowli. Zalecenia wykonawcze”, Handbook of designing and building in the STEICO system. Basics. Building physics. Implementation recommendations, Forestor Communication, Warszawa 2017, (in Polish).

[33] European Committee for Standardization, EN 1993-1-1, Eurocode 3, Design of steel structures - Part 1-1: General rules and rules for buildings, Brussels 2005.

[34] European Committee for Standardization, EN 1999-1-1, Eurocode 9, Design of aluminium structures - Part 1-1: General rules and rules for buildings, Brussels 2007.