A fresh look at W- compound: A potential marker for fetal thyroid function – Fetal to maternal transfer of sulfated thyroid hormone metabolites

Sing-Yung Wua, Christine Mab, Bi-Xin Xic and Timothy Synoldd

aResearch Service, VA Medical Center, USA
bAnalytical Pharmacology Core Facility (APCF), USA

Background

Thyroid hormone (TH) plays a profoundly important role in fetal neurological maturation. The differentiation and maturation of the brain is chronologically programmed by TH [1]. The changes in TH levels in fetuses may have serious and long-term neurodevelopmental consequences. In humans, early diagnosis and treatment are essential to ensure the normal Central Nervous System (CNS) development and prevent the sequelae of congenital hypothyroidism; cretinism is the most serious form. Currently, screening for congenital hypothyroidism is initiated at 2 to 3 days after birth by measuring TSH levels in the neonatal heel blood and starting therapy in the postnatal period. This neonatal screening strategy may be late for securing a normal brain development that starts at first trimester of pregnancy [2,3]. A significant number of school age children diagnosed hypothyroidism brain development which cross-reacts with T\textsubscript{3}S antibody but is slightly more hydrophobic than T\textsubscript{3}S. Consistent with being an analogue of iodothyroline, we recently found high level of iodine content in highly purified W-Compound preparation analyzed by a Triple Quadrupole ICP-MS (Inductively Coupled Plasma Mass Spectrum) (Xi BX, Synold T, Wu SY. unpublished results).

In normal pregnancies, both maternal and fetal W-Compound levels increased progressively with a significant direct correlation (p<0.001, in both mothers and fetuses) [12] (Figure 2). In addition, in 436 paired cord and maternal sera obtained from women at delivery, a highly significant correlation was found between the concentrations of Compound W in newborn cord and maternal serum (p<0.01) [12]. A significant positive correlation was observed in serum levels between fetal W-Compound and fetal T\textsubscript{3} (p<0.003) and between maternal and fetal W-Compound (p<0.0001) whereas no correlation was observed between maternal serum W-Compound and maternal serum T\textsubscript{3} in euthyroid or hyperthyroid women. Thus, these data strongly suggest the fetal origin of W-Compound.

To further explore the possible origin of W-Compound, the serum concentrations of sulfated iodothyronines from cord arterial and venous samples were compared. There were no significant differences between the mean T\textsubscript{3}S, T\textsubscript{4}S, or reverse-T\textsubscript{3}S (rT\textsubscript{3}S) concentrations of arterial and venous serum samples. However, the venous T\textsubscript{3}S-equivalent concentration was higher than arterial in seven of the paired samples and lower in two. The mean "corrected" W concentration in nine pairs of cord serum was found to be significantly higher in venous samples than in arterial samples [11]. In addition, the mean of the maternal serum concentrations of T\textsubscript{3}S-reactive material was significantly lower than that of the paired cord serum concentrations. The rapid disappearance of W from maternal serum immediately after delivery supports this hypothesis [9] (Figure 1). A similar disappearance slope of serum W was also found in newborn infants.

W-Compound, a T\textsubscript{3}S-Crossreactive Material, as a Potential Marker for Fetal Thyroid Function:

In sheep study, we have demonstrated that the high production rate (\(\mu\text{g/kg/d}\)) of T\textsubscript{3} sulfate (T\textsubscript{3}S) in fetuses reflects the dominate role of the sulfation pathway in TH metabolism. It also predicts that 3,3'-diiodothyronine sulfate (T\textsubscript{3}S) is a major thyroid hormone metabolite in the fetus [6]. The high gradient between fetal and maternal serum concentrations of iodothyronine sulfates raises the possibility that there may be significant fetal to maternal transfer of sulfated TH metabolites (iodothyronine sulfoconjugates). When the ovine fetus was infused with pharmacological amounts of T\textsubscript{3} or T\textsubscript{3}S, significant fetal to maternal transfer of T\textsubscript{3}S and T\textsubscript{4}S occurred [6-8]. In humans, we found high levels of radioimmunoassayable T\textsubscript{3}S in maternal serum [9] and urine [10].

Sulfoconjugation is the major pathway for thyroid hormone metabolism in mammalian fetuses

In sheep study, we have demonstrated that the high production rate (\(\mu\text{g/kg/d}\)) of T\textsubscript{3} sulfate (T\textsubscript{3}S) in fetuses reflects the dominate role of the sulfation pathway in TH metabolism. It also predicts that 3,3'-diiodothyronine sulfate (T\textsubscript{3}S) is a major thyroid hormone metabolite in the fetus [6]. The high gradient between fetal and maternal serum concentrations of iodothyronine sulfates raises the possibility that there may be significant fetal to maternal transfer of sulfated TH metabolites (iodothyronine sulfoconjugates). When the ovine fetus was infused with pharmacological amounts of T\textsubscript{3} or T\textsubscript{3}S, significant fetal to maternal transfer of T\textsubscript{3}S and T\textsubscript{4}S occurred [6-8]. In humans, we found high levels of radioimmunoassayable T\textsubscript{3}S in maternal serum [9] and urine [10].

Over 40 known synthetic thyroid hormone analogs were examined and none was found to be identical to the T2S-like material in pregnant women’s serum [11]. Thus, the name W-Compound was given. It is postulated that W-Compound is a side-chain modification of T\textsubscript{3}S, which cross-reacts with T\textsubscript{3}S antibody but is slightly more hydrophobic than T\textsubscript{3}S. Consistent with being an analogue of iodothyroline, we recently found high level of iodine content in highly purified W-Compound preparation analyzed by a Triple Quadrupole ICP-MS (Inductively Coupled Plasma Mass Spectrum) (Xi BX, Synold T, Wu SY. unpublished results).

In normal pregnancies, both maternal and fetal W-Compound levels increased progressively with a significant direct correlation (p<0.001, in both mothers and fetuses) [12] (Figure 2). In addition, in 436 paired cord and maternal sera obtained from women at delivery, a highly significant correlation was found between the concentrations of Compound W in newborn cord and maternal serum (p<0.01) [12]. A significant positive correlation was observed in serum levels between fetal W-Compound and fetal T\textsubscript{3} (p<0.003) and between maternal and fetal W-Compound (p<0.0001) whereas no correlation was observed between maternal serum W-Compound and maternal serum T\textsubscript{3} in euthyroid or hyperthyroid women. Thus, these data strongly suggest the fetal origin of W-Compound.

To further explore the possible origin of W-Compound, the serum concentrations of sulfated iodothyronines from cord arterial and venous samples were compared. There were no significant differences between the mean T\textsubscript{3}S, T\textsubscript{4}S, or reverse-T\textsubscript{3}S (rT\textsubscript{3}S) concentrations of arterial and venous serum samples. However, the venous T\textsubscript{3}S-equivalent concentration was higher than arterial in seven of the paired samples and lower in two. The mean “corrected” W concentration in nine pairs of cord serum was found to be significantly higher in venous samples than in arterial samples [11]. In addition, the mean of the maternal serum concentrations of T\textsubscript{3}S-reactive material was significantly lower than that of the paired cord serum concentrations. The rapid disappearance of W from maternal serum immediately after delivery supports this hypothesis [9] (Figure 1). A similar disappearance slope of serum W was also found in newborn infants.
Sing-Yung Wu (2018) A fresh look at W- compound: A potential marker for fetal thyroid function – Fetal to maternal transfer of sulfated thyroid hormone metabolites

Figure 1. Concentrations of T₄S and W-compound in cord serum of newborns and W-compound levels in maternal serum samples at the time of deliver (D). The connected lines represent serial measurements in the same patients (n = 18). T₄S concentrations also were measured in 14 nonpregnant women (NP) for comparison. The decrease in serum W-compound concentrations after parturition is depicted in the semilog plot in the inset. The closed circles in vertical bars represent the mean (±SEM) and (n) represent the total number of samples studied at each time period in a total of 35 patients.

Figure 2. Normal values of T₂S-crossreactive material (W-Compound) in serum from pregnant women, nonpregnant women, and newborns. Vertical bars are mean ± 1 SD. * p < 0.05 cf. 3-7 weeks pregnancy.
These findings support the postulation that W is produced in the placenta with iodothyronine precursor of fetal origin.

Summary

Sulfoconjugation is a major metabolic pathway for thyroid hormone in developing mammals. The significant rise of sulfated iodothyronines in mammalian fetal compartments raises the possibilities that significant fetal to maternal transfer of the TH sulfoconjugates may occur in the late gestation as the fetal hypothalamic-pituitary-thyroid system become more mature. This transfer may be a novel mechanism to maintain low T₃ states or regulate serum 3,3'-T₂, a thermogenic hormone [14], that is important for normal tissue maturity. The possibility that the transferred iodothyronine sulfate, especially 3,3'-T₂S and its metabolite may serve as a marker of fetal thyroid function needs to be further explored. To facilitate the further study on W-Compound as a fetal thyroid function marker, we have recently developed a non-isotopic method [15].

References

1. Bernal J (2015) Thyroid hormones in brain development and function, NCBI Bookshelf, www.endotext.org. Updated September 2, 2015.
2. Stiles J, Jernigan TL (2010) The basics of brain development. *Neuropsychol Rev* 20: 327-348. [Crossref]
3. Clairman H, Skocic J, Lischinsky JE, Rovet J (2015) Do children with congenital hypothyroidism exhibit abnormal cortical morphology. *Pediatr Res* 78: 286-297. [Crossref]
4. Rovet JF (1999) Long-term neuropsychological sequelae of early-treated congenital hypothyroidism: Effects in adolescence. *Acta Paediatrica Suppl* 88: 88-95. [Crossref]
5. Leger J, Ecosse E, Roussey M, Lanoe JL, Larroque B (2011) French Hypothyroidism Study Group. Subtle health impairment and socioeconomic attainment in young adult patients with congenital hypothyroidism diagnosed by neonatal screening: a longitudinal population-based cohort study. *J Clin Endocrinol Metab* 96: 1771-1782. [Crossref]
6. Wu SY, Green WL, Huang WS, Hays MT, Chopra IJ (2005) Alternate pathways of thyroid hormone metabolism. *Thyroid* 15: 945-960. [Crossref]
7. Wu SY, Polk D, Fisher DA, Huang WS, Reviczky AL, et al. (1995) Identification of 3,3'-diiodothyronine sulfate (3,3'-T₂S) as a fetal thyroid hormone derivative in maternal urine in sheep. *Am J Physiol* 268: E33-E39. [Crossref]
8. Wu SY, Polk DH, Huang WS, Fisher DA (1999) Fetal-to-maternal transfer of 3,3'-triiodothyronine sulfate and its metabolite in sheep. *Am J Physiol* 277: E915-E919. [Crossref]
9. Wu SY, Polk DH, Chen WL, Fisher DA, Huang WS, et al. (1994) A 3,3'-diiodothyronine sulfate crossreactive compound in pregnant women serum. *J Clin Endocrinol Metab* 78: 1505-1509. [Crossref]
10. Wu SY, Fisher DA, Huang WS, Beck-Peccoz P, Emerson CH, et al. (1998) Urinary compound W in pregnant women is a potential marker for fetal thyroid function. *Am J Obstet Gynecol* 178: 886-891. [Crossref]
11. Wu SY, Huang WS, Ho E, Wu ESC, Fisher DA (2007) A 3,3'-diiodothyronine sulfate cross-reactive substance,compound W, in serum from pregnant women – a potential marker for fetal thyroid function, *Pediatr Res* 61: 307-312.
12. Cortelazzi D, Morpurgo PS, Zamperini P, Fisher DA, Beck-Peccoz P, et al. (1999) Maternal compound W serial measurements for the management of fetal hypothyroidism. *Eur J Endocrinol* 141: 570-578. [Crossref]
13. Chen D, Yu H, Bao J, Xue W, Xing Y, et al. (2012) 3, 3'-Diiodothyronine sulfite cross-reactive material (Compound W) in human newborns. *Pediatr Res* 72: 521-524. [Crossref]
14. Lanni A, Moreno M, Ciolfi M, Foglia F (1992) Effect of 3,3'-diiodothyronine and 3,5-diiodothyronine on rat liver oxidative capacity. *Biochem J* 286: 313-317. [Crossref]
15. Huang B, Yu H, Hao J, Zhang M, Green WL, et al. (2018) A homogeneous time-resolved fluorescence immunoassay method for the measurement of Compound W. *Biomark Insights* 13: 1177271918757484. [Crossref]

Copyright: ©2018 Sing-Yung Wu. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.