Multiple splice variants within the bovine silver homologue (SILV) gene affecting coat color in cattle indicate a function additional to fibril formation in melanophores
Christa Kuehn* and Rosemarie Weikard

Abstract

Background: The silver homologue (SILV) gene plays a major role in melanosome development. SILV is a target for studies concerning melanoma diagnostics and therapy in humans as well as on skin and coat color pigmentation in many species ranging from zebra fish to mammals. However, the precise functional cellular mechanisms, in which SILV is involved, are still not completely understood. While there are many studies addressing SILV function upon an eumelanic pigment background, there is a substantial lack of information regarding the further relevance of SILV, e.g. for phaeomelanosome development.

Results: In contrast to previous results in other species reporting SILV expression exclusively in pigmented tissues, our experiments provide evidence that the bovine SILV gene is expressed in a variety of tissues independent of pigmentation. Our data show that the bovine SILV gene generates an unexpectedly large number of different transcripts occurring in skin as well as in non-pigmented tissues, e.g. liver or mammary gland. The alternative splice sites are generated by internal splicing and primarily remove complete exons. Alternative splicing predominantly affects the repeat domain of the protein, which has a functional key role in fibril formation during eumelanosome development.

Conclusion: The expression of the bovine SILV gene independent of pigmentation suggests SILV functions exceeding melanosome development in cattle. This hypothesis is further supported by transcript variants lacking functional key elements of the SILV protein relevant for eumelanosome development. Thus, the bovine SILV gene can serve as a model for the investigation of the putative additional functions of SILV. Furthermore, the splice variants of the bovine SILV gene represent a comprehensive natural model to refine the knowledge about functional domains in the SILV protein. Our study exemplifies that the extent of alternative splicing is presumably much higher than previously estimated and that alternatively spliced transcripts presumably can generate molecules of deviating function compared to their constitutive counterpart.
Background

The silver homologue (SILV) gene has been a target for many investigations concerning development of melanosomes, which are the specific pigment carrying compartments within melanophores, e.g. in melanocytes. In humans, SILV plays a major role in studies regarding melanoma diagnosis and therapy, because SILV is a sensitive melanoma marker on transcript and protein level [1, 2] and represents a melanoma specific antigen recognized by tumor infiltrating cytotoxic T lymphocytes [3]. The SILV protein also known as PMEL17, GP100 or ME20 [4] is crucial for proper formation and maturation of melanosomes. In stage II melanosomes, processed SILV protein aggregates to form fibrils, to which presumably the eumelanin pigment is attached [5]. Due to its role in melanosome development, SILV has also been subject to alternative splicing to generate molecules of obviously deviating function compared to constitutive transcripts.

In the present study, we present a comprehensive description of the complex expression pattern of the bovine SILV gene in pigmented and non-pigmented tissues. Multiple transcript variants affecting functional key domains of the SILV protein indicate that the bovine SILV gene may serve as a model for investigations about alternative splicing to generate molecules of obviously deviating function compared to constitutive transcripts.

Results

Identification of the SILV transcription start site

Analysis of several 5'RACE clones from total RNA of eumelanic, non-dilute (black) skin indicated a sharp peak of transcription start sites (TSS) at position -28 bp to the A of the translation start ATG of the SILV gene (GenBank: EF065525). No further promoters were detected. The SILV transcription start obtained in this study adds an additional 7 bp to the previously deposited bovine SILV cDNA sequence [14]. The cDNA sequence generated by this experiment based on CAP carrying full length mRNA confirmed previous findings about the structure of the bovine SILV gene comprising 2046 bp organized in 11 exons (Figure 1) and encoding 649 amino acids. Aligning the obtained SILV cDNA sequence with the bovine genomic contig NCBI: NW_001495046 [22]) indicated that the bovine SILV gene spans a total of 8107 bp with introns sizes ranging from 108 to 2220 bp. A TTATA motif representing the putative TATA box of the SILV promoter is located 30 bp upstream of the transcription initiation site.

Detection of splice variants

Multiple RT-PCR fragments were detected when amplifying SILV cDNA from RNA of eumelanic (black), non-diluted skin with primers in the 5' and 3' UTR of the SILV gene (5UTR_F1 – E11_R2; Table 1, 2). This diversity of transcripts was also obtained with a primer combination spanning exon 1 to exon 7 (E1_F3 – E7_R1) of the bovine SILV gene (Figure 2). While the constitutive transcripts (2039 bp or 1430 bp, respectively, confirmed by sequencing) were dominating, further fragments up to 900 bp smaller than the constitutive transcript were identified with both primer pairs. In contrast, cloned SILV constitutive cDNA yielded only the expected 2039 or 1430 bp PCR fragment, respectively.

A series of PCR amplifications in SILV cDNA samples with primers dissecting the transcribed SILV sequence into smaller segments enabled a better discrimination of the generated fragments. Exons 6, 8 and 9 were identified as putative regions for alternative splicing events, because at least two RT-PCR fragments could be unambiguously discriminated with primer combinations spanning exon 5 – 7 (E5F1 – E7R1) and exon 7 – 11 (E7F1 – E11R2). In contrast, only single RT-PCR fragments were observed for the
primer combinations covering exon 1 – 3, exon 3 – 5, exon 5 – 6, exon 9 – 11 and exon 10 – 11. Notably, all identified fragments were present in all differentially pigmented skin samples investigated (Table 2, Figure 3). Our data show that the expression of the bovine SILV gene is not restricted to eumelaneic (black), non-dilute (Dcd/Dcd) skin, but also occurs in skin expressing exclusively phaeomelanin. Furthermore, also white skin sections of spotted individuals with eumelaneic or phaeomelaneic background showed SILV gene expression as well as the crème white skin of a eumelaneic homozygous dilute DcD/DcD individual.

The SILV transcripts additional to the constitutive fragment that had been identified by RT-PCR were isolated from the agarose gel and sequenced to reveal the specific DNA sequence of the different fragments. Alignment of the obtained sequences to the reference constitutive cDNA (GenBank: EF065525) showed that the additional SILV transcripts lacked different parts of the SILV mRNA (Figure 1). With primers spanning exon 5 to exon 7 (E5_F1 – E7_R1), three alternative transcripts (according to GenBank: EF065525) were characterized: Δ660–1340 lacking 681 bp corresponding to the entire exon 6, Δ816–1340 lacking 525 bp from the 3’ end of exon 6 and Δ1185–1340 lacking 156 bp from the 3’ end of exon 6. With primers span-
ning exon 7 to exon 11 (E7 R1 – E11 R2), we obtained an alternative transcript \(\Delta 1655–1748 \) lacking 94 bp from the 3' end of exon 9. Furthermore, sequencing of an additional RT-PCR transcript amplified with primers from exon 1 and exon 11 (5UTR F1 – E11 R2) detected a \(\text{SILV} \) cDNA \(\Delta 498–1340/\Delta 1655–1748 \) lacking exon 5, exon 6 and 94 bp from the 3' end of exon 9 (Figure 1).

Diversity in \(\text{SILV} \) transcripts was also confirmed in the course of our 5'RACE experiments. Several clones containing inserts smaller than the expected size (1441 bp) were detected. Sequencing of the respective clones revealed \(\text{SILV} \) cDNAs starting from the identified transcription start, but devoid of distinct other regions in the remaining \(\text{SILV} \) mRNA. On the one hand, we received transcripts confirming already detected alternative splice variants e.g., \(\Delta 498–1340, \Delta 660–1340, \Delta 816–1340, \text{and } \Delta 1185–1340 \). Additionally, we identified two further internal splice sites generating a transcript \(\Delta 105–362 \) (skipping exons 2 and 3)/\(\Delta 1332–1340 \) lacking 9 bp at the 3' end of exon 6 (Figure 1).

In order to obtain indication whether combinations of alternative splicing events occurred, we sequenced a collection of clones from a plasmid library containing \(\text{SILV} \) RT-PCR products of variable size generated by cDNA amplification of eumelaneic (black), non-dilute (\(\text{Dc}^\text{e}/\text{Dc}^\text{e} \)) skin with primers spanning exon 1 to exon 7 (E1 F3 – E7 R1). Alignment of the generated sequences to the \(\text{SILV} \) constitutive transcript confirmed previously detected transcripts and yielded an additional new series of transcripts (Figure 1) with deleted exons: \(\Delta 363–1340 \) (lacking exon 4 – 6), \(\Delta 216 – 1340 \) (lacking exon 3 – 6) and \(\Delta 105 – 1340 \) (lacking exons 2 – 6).

Only some alternative internal splice sites completely conformed to the GT-AG rule for splice donor and splice acceptor sites. Notably, the alternative splice sites did not affect the reading frame of the transcript except for \(\Delta 498–1340/\Delta 1655–1748 \). In the transcript \(\Delta 498–1340/\Delta 1655–1748 \), a premature stop codon is generated at position c.1805.

Table 1: Primers for reverse transcription and amplification in the bovine \(\text{SILV} \) gene

Name	Position	Exon	Sequence (5' – 3')
E1 F3	69	1	TGATGGGTGTTCTTCTGGCTG
E3 F1	280	3	CTCTATGGCTGGCACCTTCT
E3 R1	362	3	CATTGATGATGTTGTTTGG
E5 R1	656	5	TAATGGTGAAGCTGGTAACTG
E5 F1	575	5	AACATGGAGGTGACTGGTAC
E7 F1	1430	7	AGCCATAGCTGACGACGAC
E7 R1	1332	7	GATGACACTGGACCTTTAG
E1 F2	2046	11	AGGGAAGACCAAGAGAAAAAC
E6 F2	952	6	CACTACAGATAGGACATGG
E6 R2	1030	6	GCCCATGACTGCTGTTAG
E10 F1	1773	10	CTCCTCTGTTGCTGAGAAG
E9 F1	1643	9	GATTTGACCCAGTACCTGA
RACE_E7 N	1441	7	CAGGGTGAGGAAAAAGAGACCAGATAG
5UTR F1	8	1	GTTCCTGAAAGGAACAGAG
SPex23 F1	88	1/4	TGATGGACCAACAGAGAGAGAGAGAG
E5 R1	656	5	TAATGGTGAGGCTGAAGTGTG
SPex S6 R1	481	4/7	TGCTGGAGACCTGGGCTGCTG
E9 R2	1587	9	TGAACCCCTGCGCAGATG
E5 F2	565	5	GGGCACATACACAAAGAAGGTG
SPex S6 R1	1358	7/5	GACGGGAGCTCAGGACCTGAGCAGAGCAGAGAGAGAG
SPex S6 F1	798	6/7	CCTACACCTGGGACTTGGCTG
SPex S6 R1	1167	6/7	CAACTGCAAAAGCTACAGGAGGAGGAGAGAGAGAGAG
E7 F2	1409	7	GTGGTGCTGATCTGCTGAGTAG
SPex S9 R1	1767	9/10	CTGAGGCCCTGCTTCTGTGCCCTGCT

* Position within the bovine \(\text{SILV} \) mRNA (according to GenBank: EF065523). Underlined, bold sequence: nucleotides specific for alternative splice site.
| Primer combination | Region | Expected fragment [bp] | Observed fragment [bp] | | |
|---|---|---|---|---|---|
| | | Eumelaneic skin | Phaeomelaneic skin | Non-pigmented tissues |
| 5UTR_{F1} – E₁₁R₂ | exon 1 – exon 11 | 2039 | 2039, 1102 and multiple further fragments | n.a. | n.a. |
| E₇F₃ – E₇R₁ | exon 1 – exon 7 | 1430 | 1430 and further multiple bands | n.a. | n.a. |
| E₁F₃ – E₃R₁ | exon 1 – exon 3 | 294 | 294 | 294 | n.a. |
| E₃F₁ – E₅R₁ | exon 3 – exon 5 | 377 | 377 | 377 | n.a. |
| E₅F₁ – E₇R₁ | exon 5 – exon 7 | 856 | 856, 700, 331, 175 | 856, 700, 331, 175 | 856, 700, 331, 175 (pg, tg, ki, ag, li, lu, he, br, ru, if, sf, mg, fu, co, je, mu) |
| E₇F₁ – E₁₁R₂ | exon 7 – exon 11 | 687 | 687, 593 | 687, 593 | n.a. |
| E₆P₂ – E₇R₁ | exon 6 – exon 7 | 479 | 479, 324 | 479, 324 | n.a. |
| E₅F₁ – E₆R₂ | exon 5 – exon 6 | 456 | 456 | 456 | n.a. |
| E₉F₁ – E₁₁R₂ | exon 9 – exon 11 | 404 | 404 | 404 | 404 (pg, tg, ki, ag, li, lu, he, br, ru, if, sf, mg, fu, co, je, mu) |
| E₁₀F₁ – E₁₁R₂ | exon 10 – exon 11 | 274 | 274 | 274 | n.a. |
| E₁F₃ – E₅R₁ | exon 1 – exon 5 | 588 | n.a. | n.a. | 588 (pg, tg, ki, ag, li, lu, he, br, ru, if, sf, mg, fu, co, je, mu) |

pg: pituitary gland, tg: thyroid gland, ki: kidney, ag: adrenal gland, li: liver, lu: lung, he: heart, br: brain, ru: rumen, if: intestinal fat, sf: subcutaneous fat, pf: perirenal fat, mg: mammary gland, du: duodenum, co: colon, je: jejunum, mu: skeletal muscle. n.a.: not analyzed
dilute locus (Dc^D/Dc^D) regardless whether on a eumelaneic or a phaeomelaneic background. Notably, non-pigmented white skin of a spotted, homozygous non-dilute (Dc^D/Dc^D) individual exhibited this splice site albeit at a lower level than the pigmented counterpart. Skin with a crème white coat color characteristic for individuals homozygous at the dilution locus Dc^D/Dc^D also displayed the alternative splicing $\Delta 105-362$. It has to be noted that crème white skin has an essentially pigmented background with melanocytes [23], however, pigmentation is diluted to almost invisibility. In contrast, non-pigmented skin of spotted or piebald individuals is devoid of melanocytes resulting in a white coat color [10].

Analysis of tissue specific SILV gene expression

RT-PCR revealed a specific expression of the bovine SILV gene in all 17 investigated tissues from an adult individual: pituitary gland, thyroid gland, kidney, adrenal gland, liver, lung, heart, brain, rumen, intestinal fat, subcutaneous fat, perirenal fat, mammary gland, duodenum, colon, jejunum, skeletal muscle. All three SILV primer combinations tested spanning exon 1 to exon 5 ($E1F3 – E5R1$), exon 5 to exon 7 ($E5F1 – E7R1$) and exon 9 to exon 11 ($E9F1 – E11R2$) confirmed this observation (Table 2). The relative amount as indicated by semi-quantitative RT-PCR differed between tissues: a strong SILV expression equivalent to skin was seen in a number of tissues with very divergent functions, e.g. thyroid gland and colon, whereas SILV was only weakly expressed in brain, muscle and fat tissues (Figure 5). Analysis with primers spanning exon 5 to exon 7 ($E5F1 – E7R1$) revealed at least two PCR fragments for all tissues with a pattern similar to that obtained for differently pigmented skin tissues.

While alternative splice variants were rather uniformly distributed across the differentially pigmented skins, substantial variation was seen for the other tissues (Table 4). Only transcript variant $\Delta 105–362$ was tissue-specific for skin. Whereas splice variant $\Delta 816–1340$ could be detected in all seven tissues tested (Figure 6), $\Delta 1185–1340$ was only found in mammary gland at a low level.

Discussion

Structure of the bovine SILV gene

The bovine SILV gene shows a strong structural homology with the respective gene in human and mouse. The bovine mRNA (GenBank: EF065525) is separated into 11 exons and revealed a homology of 87% to the human (NM_006928.3) and 83% to mouse mRNA (NM_021882.4). At protein level, the similarities were 78 or 73%, respectively. The sharp peak of transcription start sites detected in CAP finding RACE experiments and the putative TATA box of the SILV promoter located 30 bp upstream correspond to the classical pattern of TATA box promoter architecture characteristic for genes highly con-
served in evolution [24]. Our RACE experiments in the eumelaneic (black) non-dilute (Dcd/Dcd) skin yielded essentially an identical transcription start compared to a SILV mRNA obtained by 5’RACE from a homozygous dilute (DcD/DcD), crème-white skin [18]. Thus, the use of alternative transcription starts can be formally excluded as the background for differences in coat color between dilute and non-dilute individuals.

SILV transcription in phaeomelanic and non-pigmented tissues

Taking advantage of our animal model with individuals expressing exclusively eumelanin or phaeomelanin, our RT-PCR results prove that in cattle SILV expression in skin is not restricted to areas with eumelanocytes, because we also found SILV transcripts in phaeomelanic and non-melaneic skin. This result is in contrast to previous reports in mice [17] indicating that SILV expression could only be detected in cells synthesizing eumelanin. Whereas there are many studies about the melanophore-specific expression of SILV in the literature (reviewed by [4]), only one report in humans also describes SILV to be ubiquitously expressed [25]. This result is supported by 112 ESTs isolated from non-pigmented tissues in a total of 785 human SILV ESTs listed in the NCBI Unigene database [26]. Although no conclusion regarding SILV transcription can be drawn from bovine Unigene data base entries, our own experiments clearly reject the hypothesis that SILV expression is specific to eumelanocytes in cattle. Expression outside of pigmented tissues indicates that products of the bovine SILV gene seem to have a new, up to now unknown function additional to fibril formation in the course of melanosome development. Chakraborty et al. postulate a catalytic role of SILV in melanin synthesis [27]. But as melanin synthesis is restricted to melanophores in skin, uvea and other pigmented tissues [28], involvement of SILV in melanin synthesis would not explain SILV expression in tissues without melanophores. Consequently, the additional role of SILV expression postulated from our study has to exceed melanophore specific functions. Up to now, it is completely unclear, which role SILV transcription may play in e.g. thyroid gland or colon, two tissues with extremely different cell type composition, for which a high SILV expression was detected in our experiments. If indeed human SILV expression is also not restricted to melanophores as indicated by [25], cattle

Table 3: Splice site specific RT-PCR primer combinations applied for the detection of alternative bovine SILV transcripts

Alternative splice site	Upstream primer	Downstream primer	Expected alternative transcript [bp]
Δ105–362	SPex23_F1	TGTAGGGACCACAGAAGGGAG	E5_R1 TAATGGTGAGGGCTGAACCTGG
Δ498–1340	SPex56_F1	TGTCTGGAAGACCTGGGG	E9_R2 TGACACCTGGCGGTGAGAGAGAGCAG
Δ660–1340	E5_F1	GCCAGGAAATGAAAGG	E9_R2 TGACACCTGGCGATGAGAGAGAGCAG
Δ816–1340	SPex6A_F1	CCTACACCTGGGACT	E9_R2 TGACACCTGGCGATGAGAGAGAGCAG
Δ1185–1340	SPex6B_F1	CAACTGCAAAGAATGG	E9_R2 TGACACCTGGCGATGAGAGAGAGCAG
Δ1655–1748	E7_F2	TGTGTTCTGTATCGCTATGGCTC	SPex9_R1 CGTGGAGGCTGCTGCTTGGCTGCTG

Underlined, bold sequence: nucleotides specific for alternative splice site.

Table 4: Expression of bovine SILV splice variants by splice site specific RT-PCR in differentially pigmented skin and non-pigmented tissues

Tissues	Δ105–362	Δ498–1340	Δ660–1340	Δ816–1340	Δ1185–1340	Δ1655–1748
Non-pigmented, heterozygous dilute, eumelaneic	-	+	+	+	++	+
pigmented, heterozygous dilute, eumelaneic	++	++	+	++	++	++
pigmented, homozygous dilute, eumelaneic	+	++	+	++	++	++
Non-pigmented, heterozygous dilute, phaeomelaneic	-	+	+	+	++	+
Pigmented, heterozygous dilute, phaeomelaneic	+	++	+	++	++	++
Non-pigmented, homozygous non-dilute, eumelaneic	+	++	+	++	++	++
Pigmented, homozygous non-dilute, eumelaneic	++	++	+	++	++	++
liver	-	-	-	+	-	-
duodenum	-	-	-	+	-	-
pituitary gland	-	-	-	+	-	-
lung	-	+	+	+	-	-
heart	-	-	-	+	-	-
kidney	-	+	-	+	-	+
mammary gland	-	+	-	+	+	+

- : no expression detected, + expression detected, ++ enhanced expression detected
may serve as an appropriate model to investigate its potential function in non-melanophores.

Alternative splicing in SILV affecting functionally relevant domains

RT-PCR with an overlapping panel of primer pairs indicated nine alternative splice sites in the bovine SILV gene resulting in splicing of cryptic introns predominantly affecting exon 6, but also exons 2, 3, 4, 5 and exon 9. Thus, the splicing pattern comprises the use of single or combined cassette exons and alternative 5’ splice sites resulting predominantly in deletions of single or multiple exons, which is in line with other comprehensive studies investigating alternative splicing [21]. Sequence alignment of the bovine SILV cDNA with the nine cattle ESTs homologous to SILV, which are deposited in the Unigene database [26], did not indicate alternative splicing. However, the confirmed alternative SILV transcripts in cattle from our study are in line with previous experiments in humans describing two alternative splice sites in exon 6 and exon 9 of the SILV gene [19]. The extent of alternative splicing seen in cattle exceeds the number of published alternative transcripts in humans substantially, and we even cannot exclude that further splice variation is present in cattle. The Alternative Splicing Database [29,30] collecting electronic data on constitutive and alternative transcripts lists entries exclusively for human SILV and indicates that the number of alternative transcripts in humans is also presumably higher than presently considered. Interestingly, humans and cattle are the only species for which alternative transcripts have been experimentally established [19,29]. No additional transcripts are published e.g. in mice.

Comparative analysis of the bovine SILV protein with the respective counterpart in human according [4] suggested that several functional domains of the SILV protein as defined by [31] should be affected by alternative splicing.
in cattle. Splice variant Δ105–362 characterized by the complete skipping of exons 2 and 3 results in loss of the proximal part of the N terminal domain (NTD) of the bovine SILV protein. Thus, skipping of exons 2 and 3 would affect the posttranslational modification of the protein substantially, because the NTD carries the majority of SILVs' glycosylation sites as reviewed by [4]. The alternative transcripts Δ363–1340, Δ498–1340 and Δ660–1340 lack 326, 281 or 227 amino acids of the constitutive transcript, respectively, representing the C terminal part of the N terminal domain and the entire Polycystic kidney disease (PKD) and Repeat (RPT) domains. While the PKD has an immunoglobulin folding structure and is thought to mediate protein-protein interactions, the RPT domains seems to be necessary for fibril formation in melanosomes [31]. The entire RPT domain

Figure 5
Expression of SILV in a collection of non-pigmented bovine tissues. A: SILV RT-PCR products generated with primers spanning exon 5 to exon 7 (E5F1 – E7R1) in RNA from non-pigmented tissues; sk: skin, pg: pituitary gland, tg: thyroid gland, ki: kidney, ag: adrenal gland, li: liver, lu: lung, he: heart, br: brain, ru: rumen, if: intestinal fat, pf: perirenal fat, sf: subcutaneous fat, mg: mammary gland, du: duodenum, co: colon, je: jejunum, mu: skeletal muscle. B. RT-PCR products generated with GAPDH primers in different non-pigmented tissues.

Figure 6
Splice site specific SILV RT-PCR in non-pigmented bovine tissues. Detection of SILV splice variant Δ816–1340 by splice site specific RT-PCR with primers SPex6A_F1 – E9_R2 in RNA from non-pigmented tissues. mg: mammary gland, ki: kidney, he: heart, lu: lung, pg: pituitary gland, du: duodenum, li: liver, sk: skin. M: marker; C: negative control.
is also missing in the Δ816–1340 transcript in addition to the distal PKD domain. Transcript Δ1185–1340 lacks the distal part of the RPT domain, whereas Δ1332–1340 is devoid of 3 amino acids of the Gap2 domain. Splice variant Δ1655–1748 is the only transcript with a disrupted reading frame and a premature stop codon generating a truncated protein without transmembrane and C terminal domain or possibly inducing a nonsense-mediated mRNA decay [32]. While the Kringle-like domain and the transmembrane domain seem to be rather invariable, the RPT domain is most frequently affected by the different splice variants in our data set. Experiments with human SILV deletion constructs showed that a protein lacking the Repeat domain (ΔRPT SILV) showed an appropriate intracellular trafficking [31]. However, HELA cells overexpressing ΔRPT SILV formed only abnormal fibrils, indicating that the RPT domain plays a crucial role in the development of the striated fibrillar structure in melanosomes. Hoashi et al. [31] used HMB45, an antibody frequently employed for melanoma diagnostic as a probe specific for melanosomal fibrils and showed that its epitope is located in the second and third amino acid repeat of the RPT domain. Thus, bovine transcripts lacking the respective part of the RPT domain (like 498–1340, Δ660–1340 and Δ816–1340 in our study) should not be able to form intact fibrils, a process central to appropriate melanosome development as determined for human SILV. Interestingly, the two of the four isoforms of SILV in humans due to alternative splicing also affect the RPT domain albeit not the epitope for HMB45 [31]. The alternative splice variants lacking entire functional domains as confirmed for the bovine SILV gene represent ideal candidates for further study into the potential effects of alternative splicing on function [21].

Variation in alternative splicing of SILV with respect to coat color phenotype

In cattle, we did not find any mutation in the coding SILV sequence that could convincingly be associated with phaeomelanin coat color dilution in a F2 resource population based on the Charolais and the Holstein breed [14]. In dogs, Clark et al., [12] described a mutation in intron 10 of the canine SILV gene that was associated with coat color dilution and concluded that the mutation might impair correct splicing of the canine SILV transcript. Thus, another as yet undetected mutation in the genomic sequence of the bovine SILV gene could possibly affect the structure of the SILV mRNA, representing the genetic background for phaeomelanin dilution in cattle. Because we could confirm SILV expression in eumelanic and also phaeomelanic skin, any genetic variant affecting regulation or coding structure of the gene might theoretically also affect phaeomelanin dilution in cattle, although presently there is no indication, which function SILV may exert on maturation of phaeomelanosomes. Thus, given our expression data the SILV gene could not formally be rejected as the background for phaeomelanin dilution in cattle. However, neither the transcription start, which was conserved between homozygous dilute (De°/De°) and non-dilute (De+/De+) individuals, nor the distribution of splice variants in the differentially pigmented skins, convincingly explained the differences in dilution phenotype. Hence, there is no indication that variation in the primary sequence of the SILV protein either due to variation in the coding sequence or due to alternative splicing is responsible for dilution of phaeomelanin in cattle.

Whereas the pattern of transcript variants is rather similar across the panel of differentially pigmented skin, the variability of splice variants detected in other tissues points towards a tissue specific splicing mechanism. This may represent a tool for adapting SILV expression to the requirements of the respective cells [20].

Conclusion

Although the structure of the SILV gene is conserved across a variety of species including cattle, its pattern of transcription shows substantial differences regarding alternative splicing between cattle and human on the one side and mice on the other. Our experiments provide evidence for a ubiquitous transcription of the bovine SILV gene not restricted to pigmented cells and show a striking variety of alternative splice sites. These results indicate that potentially SILV may have functions exceeding melanosome development. This would have to be considered in future investigations concerning melanoma diagnostic and therapy and also in studies taking SILV as a model for amyloid formation [33] or for intracellular transport mechanisms. The similarity in expression pattern compared to human and the variety of alternative transcripts predestine bovine SILV as an adequate animal model.

Whereas alternative splicing is a well established regulatory mechanism for gene expression [20], the confirmed alternative SILV transcripts are in line with the hypothesis of the new postulated additional SILV functions exceeding synthesis and deposition of melanin. This hypothesis is supported by the detection of SILV transcripts in non-melanophores in our study. However, it has to be considered that our analyses are restricted to the transcription level. Thus, subsequent steps modulating SILV expression due to e.g. nonsense mediated decay [32] and translational and posttranslational modification require further investigation to confirm the postulated additional functions of the SILV gene. Due to its extensive, up to now unique pattern of alternative splicing, bovine splice variants represent a naturally occurring model for the function of the domains located in the spliced regions of the SILV and for the alternative functions postulated for SILV.
Furthermore, factors regulating the processes of alternative splicing in the different tissues can be investigated exemplarily.

Methods

Tissue samples

For our study, we included individuals from a Charolais × German Holstein F$_2$ cattle resource population [34]. The resource population segregates for the coat color trait loci (i) Dilution (Dc) responsible for coat color dilution, (ii) Extension (E) responsible for an eumelanin (black) or a phaeomelanin (red) phenotype, and (iii) Spotted (S) resulting in a pigmented-white spotting pattern similar to piebald in mice. We collected differentially pigmented neck skin after slaughter: (1) black and white sections of a homozygous non-dilute (Dcd/Dcd), spotted (s/s) eumelanin (Ep/Ep) animal, (2) dilute colored and white sections of an eumelanin (Ep/Ep), heterozygous (Dcd/Dco), spotted (s/s) individual, (3) dilute colored and white sections of a phaeomelanin (Ep/Eo), heterozygous (Dcd/Dco), spotted (s/s) individual and (4) the crème white skin of a homozygous non-dilute (Dco/Dco), non-spotted, eumelanin (Ep/Ep) individual. Hair and subcutaneous tissue was removed and the remaining cutis was snap frozen. Genotypes of the individuals for the SILV c64G>A mutation, presumably responsible for dilution of eumelanin, were determined as described by [14]. Genotypes at the dominant-recessive Extension locus were determined by sequencing of the MC1R gene. Primers MC1R$_{F1}$ (5’-TAC-TACTTTATCTCTCTGCCTG-3’) and MC1R$_{R1}$ (5’-GGCTA-GAAGATGGAGATGTAG-3’) flanking the causal mutations for the alleles Ep (dominant black, eumelanin) and Eo (recessive red, phaeomelanin) were used for amplification in genomic DNA of individuals tested and consecutive sequencing of the resulting PCR products.

In addition to the differentially pigmented skin samples, 17 tissues (pituitary gland, thyroid gland, kidney, adrenal gland, liver, lung, heart, brain, rumen, intestinal fat, subcutaneous fat, perirenal fat, mammary gland, duodenum, colon, jejunum, skeletal muscle) from an adult female Charolais × German Holstein F$_2$ individual were collected on agarose gels. As a control, expression of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was determined by RT-PCR as described [35].

Sequencing of SILV transcripts

The analysis of SILV transcripts in differently pigmented skin and non-pigmented body tissues detected more than one RT-PCR fragment for several primer combinations. The respective fragments were excised from the agarose gel, purified using the Nucleospin Extract II kit (Macherey and Nagel) and sequenced on a capillary sequencer (ABI 310, Applied Biosoftware; MEGABACE, GE Healthcare) using BigDye$^\text{e}$ (Applied Biosoftware) chemistry. Two prominent RT-PCR fragments >1000 bp generated with primers spanning exon 1 to exon 11 (5UTR$_{F1}$ – E11$_{R2}$, Table 1) were excised from the gel, purified, and cloned into the pCR4 Blunt TOPO vector (Invitrogen) according to the manufacturers instructions. Seven size fractionated subsets of RT-PCR fragments generated by primers enclosing exon 1 to exon 7 (E1$_{F3}$ – E7$_{R1}$, Table 1) were excised from the agarose gel, purified and cloned into pDrive vector (Qiagen) according to the manufacturers instructions. Clones with different insert sizes according to colony PCR were sequenced on a capillary sequencer (ABI 310, Applied Biosoftware; MEGABACE, GE Healthcare) using BigDye$^\text{e}$ (Applied Biosoftware) chemistry.

SILV RNA 5’ RACE experiments

To determine the transcription start site for the bovine SILV gene and to test for alternative promoters, 5’ RACE experiments with the GeneRacer Kit (Invitrogen) based on RNA ligase mediated and oligo-capping methods were performed. After CAP selection in a preparation of total RNA from black skin of a eumelanin (Ep/Ep), non-dilute (Dco/Dco) individual, reverse transcription with oligo dT and re-amplification with the RACE 5’ oligo and a SILV specific primer from exon 7 (RACE, E7N, Table 1) was carried out according to the manufacturers instructions. The generated fragments were cloned into pDrive vector using the Qiagen PCR cloning kit (Qiagen). Clones with different insert sizes according to colony PCR were sequenced. Sequences obtained were aligned to the deposited SILV mRNA (GenBank: EF065525).

Confirmation of SILV splice variants

To confirm the detected SILV splice variants, SILV cDNA samples were investigated by splice site specific RT-PCR. For this purpose, SILV cDNAs were generated by reverse
transcription with the E11R2 primer from total RNA of skins differing in coat color phenotype. Afterwards, the cDNAs were subjected to PCR amplification with one SILV primer corresponding to the sequence of the constitutive SILV mRNA and another primer specific for each splice variant, respectively (Table 1, Table 3). Splice variant specific primers were designed to bridge the splice ends of the addressed alternative splice site. For negative control, DNA of a plasmid with a constitutive SILV cDNA insert was included.

SILV expression in non-pigmented tissues

Finally, SILV expression was screened in a collection of 17 total RNAs from non-pigmented tissues (pituitary gland, thyroid gland, kidney, adrenal gland, liver, lung, heart, brain, rumen, intestinal fat, subcutaneous fat, perirenal fat, mammary gland, duodenum, colon, jejunum, skeletal muscle). Analogous to the RT-PCR in skin tissue, the different RNAs were reversely transcribed and amplified by using primers corresponding to the constitutive SILV cDNA sequence in combinations covering exon 1 to exon 5 (E1F3/E5R1), exon 5 to exon 7 (E5F1/E7R1) and exon 9 to exon 11 (E9F1/E11R2, Table 2).

Because there was evidence on alternative splicing in non-pigmented skin, a collection of eight non-pigmented other tissues (liver, fat, mammary gland, duodenum, colon, jejunum, skeletal muscle) was further investigated for alternative splicing by splice variant specific RT-PCR analogous to the procedure described for skin. The respective primer combinations are listed in Table 3.

Competing interests

The author(s) declare that there are no competing interests.

Authors' contributions

CK conceived, designed and coordinated the study, carried out PCR analysis of RNAs, participated in sequence alignments and drafted the manuscript. RW participated in coordination of the study, participated in sequence alignments, carried out the RACE and splice variant specific experiments, and helped drafting the manuscript. All authors read and approved the final manuscript.

Acknowledgements

We thank Astrid Kuhl, Simone Wohl, Marlies Deutscher and Oda Hauff for skilful technical assistance. The continuous support of our colleagues at the FBN Dummerstorf involved in generation and care of the SEGFAM F2 resource population is thankfully acknowledged.

References

1. Spanknebel K, Coit DG, Bielick SC, Gonen M, Rosai J, Klimstra DS: Characterization of micrometastatic disease in melanoma sentinel lymph nodes by enhanced pathology - Recommendations for standardizing pathologic analysis. Am J Surg Pathol 2005, 29:305-317.

2. Tsukamoto K, Ueda M, Hira O, Asada A, Kitamura R, Takahashi T, Ichihashi M, Shimada S: gp100 mRNA is more sensitive than tyrosinase mRNA for PCR-PCR amplification to detect circulating melanoma cells in peripheral blood of melanoma patients. J Dermatol Sci 2000, 23:126-131.

3. Bakker ABH, Schreurs MWJ, Deboer AJ, Kawakami Y, Rosenberg SA, Adema GJ, Figdor CG: Melanocyte Lineage-Specific Antigen gp100 Is Recognized by Melanoma-Derived Tumor-Infiltrating Lymphocytes. J Exp Med 1994, 179:1005-1009.

4. Theos AC, Truschel ST, Raposo G, Marks MS: The Silver locus product Pmel17/gp100/Silv/ME20: controversial in name and in function. Pigment Cell Res 2005, 18:322-336.

5. Berenson JF, Harper DC, Tenza D, Raposo G, Marks MS: Pmel17 initiates premelanosome morphogenesis within multivesicular bodies. Mol Biol Cell 2001, 12:3431-3464.

6. Brooks SA, Terry RB, Bailey E: A PCR-RFLP for KIT associated with tobiano spotting pattern in horses. Anim Genet 2002, 33:301-303.

7. Rees JL: Genetics of hair and skin color. Ann Rev Genet 2003, 37:67-90.

8. Du JY, Fisher DE: Identification of aim-1 as the underwhite mouse mutant and its transcriptional regulation by MITF. J Biol Chem 2002, 277:41915-41921.

9. Olson TA: Genetics of colour variation. In The Genetics of Cattle Edited by: Fries R and Ruvinsky A. Wallingford, UK, CABI; 1999:33-54.

10. Schable RH: Clonal Distribution of Melanocytes in Piebald-Spotted and Variegated Mice. J Exp Zool 1969, 172:181-199.

11. Brunberg E, Andersson L, Cothran G, Sandberg K, Mikko S, Lindgren F: Expression in non-pigmented tissues differ-ent RNAs were reversely transcribed and amplified by using primers corresponding to the constitutive SILV cDNA sequence in combinations covering exon 1 to exon 5 (E1F3/E5R1), exon 5 to exon 7 (E5F1/E7R1) and exon 9 to exon 11 (E9F1/E11R2, Table 2).

12. Clark LA, Wahl JR, Rees CA, Murphy KE: Recessive transposon insertion in SILV is responsible for merle patterning of the domestic dog. Proc Natl Acad Sci U S A 2006, 103(5):1376-1381.

13. Kerje S, Sharma P, Gunnarsson U, Kim H, Bagchi S, Fredriksson R, Schutze K, Jensen P, von Heijn e G, Okimoto R, Andersson L: The Dominant white, Dun and Smoky color variants in chicken are associated with insertion/deletion polymorphisms in the PMEL17 gene. Genetics 2004, 168:1507-1518.

14. Kuhn C, Weikard R: An investigation into the genetic background of coat colour dilution in a Charolais - German Holstein F2 resource population. Anim Genet 2007, 38:109-113.

15. Martinez-Esparza MM, Jimenez-Cervantes C, Bennett DC, Lozano JA, Solano F, Garcia-Borron JC: The mouse silver locus encodes a single transcript truncated by the silver mutation. Mamm Genome 1999, 10:168-171.

16. Reissmann M, Bierwolf J, Brockmann GA: Two SNPs in the SILV gene are associated with silver coat colour in ponies. Anim Genet 2007, 38:1-6.

17. Kobayashi T, Vieira WD, Potterfer B, Sakai C, Imokawa G, Hearing VJ: Characterization of micrometastatic disease in melanoma sentinel lymph nodes by enhanced pathology - Recommendation for standardizing pathologic analysis. Am J Surg Pathol 2005, 29:305-317.

18. Oulmouden A, Julien R, Laforet JM, Leveziel H: Modulation of melanogenic protein expression during the switch from eumelanogenesis to pheomelanogenesis. J Cell Sci 1995, 108:2301-2309.

19. Oulmouden A, Julien R, Laforet JM, Leveziel H: Use of silver gene for authentication of the racial origin of animal populations, and of the derivative products thereof. WO2005/019473. 2005-03-01.

20. Nichols SE, Harper DC, Berenson JF, Marks MS: A novel splice variant of Pmel17 expressed by human melanocytes and melanoma cells lacking some of the internal repeats. Invest Dermatol 2003, 121:821-830.

21. Sannm S, Ben-Ari S, Ratafiesa L, Tang YS, Zhang ZY, Toiber D, Thanaraj TA, Soreq H: Function of alternative splicing. Gene 2005, 344:1-20.

22. Tress ML, Martelli PL, Frankish A, Reeves GA, Wesseling JJ, Yeats C, Olsson PI, AllRight H, Hegyi H, Raimondo AGD, Lefevre J, Laskowska RA, Lopez G, Sadowski MI, Watson JD, Fariselli P, Rossi I, Nagy A, Kai W, Storling Z, Orsini M, Assenov Y, Blankenburg H, Huthmacher C, Ramirez F, Schickler A, Denoef F, Jones P, Kerrien F, Orchard S, Antonarakis FE, Reymond A, Birney E, Brunak S, Casadio R, Guigo R, Harrow J, Hermjakob H, Jones DT, Lengauer T, Orenco CA, Patthy L, Thornton JM, Tramontano A, Valencia A: The implications of alternative splicing in the ENCODE protein complement. Proc Natl Acad Sci U S A 2007, 104(13):5495-5500.

23. NCBI map viewer 2007 [http://www.ncbi.nlm.nih.gov/mapview/].
23. Guibert S, Girardot M, Leveziel H, Julien R, Oulmouden A: Pheomelanin coat colour dilution in French cattle breeds is not correlated with the TYR, TYRP1 and DCT transcription levels. Pigment Cell Res 2004, 17:337-345.

24. Carninci P, Sandelin A, Lenhard B, Katayama S, Shimokawa K, Ponjavic J, Semple CAM, Taylor MS, Engram PG, Frith MC, Forrest ARR, Akkema WB, Tan SL, Plessy C, Kodzis R, Ravasi T, Kusukawa T, Fukuda S, Kanamori-Katayama M, Kitzagye Y, Kawai H, Kai C, Nakamura M, Konno H, Nakano K, Mattagui-Tabar S, Arner P, Chesi A, Gustincich S, Persichetti F, Suzuki H, Grimmond SM, Wells CA, Orlando V, Wahlestedt C, Liu ET, Harbers M, Kawai J, Bajic VB, Hume DA, Hayashizaki Y: Genome-wide analysis of mammalian promoter architecture and evolution. Nature Genet 2006, 38:626-635.

25. Brouwenstijn N, Slager EH, Bakker ABH, Schreurs MWJ, Van der Spek CW, Adema GJ, Schrier PI, Fid ofor CG: Transcription of the gene encoding melanoma-associated antigen gp100 in tissues and cell lines other than those of the melanocytic lineage. Br J Cancer 1997, 76:1562-1566.

26. NCBI Unigene database 2007 [http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=unigene].

27. Chakraborty AK, Platte JT, Kim KK, Kwon BS, Bennet DC, Pawelek JM: Polymerization of 5,6-dihydroxyindole-2-carboxylic acid to melanin by the pmel 17 silver locus protein. Eur J Biochem 1996, 236:180-188.

28. Hearing VJ, Tsukamoto K: Enzymatic Control of Pigmentation in Mammals. FASEB J 1991, 5:2902-2909.

29. The Alternative Splicing Database 2007 [http://www.ebi.ac.uk/asd/index.html].

30. Thanaraj TA, Stamm S, Clark F, Riethoven JJ, Le Texier V, Mullu J: ASD: the Alternative Splicing Database. Nucl Acids Res 2004, 32:D64-D69.

31. Hoashi T, Muller J, Vieira WD, Rouzaud F, Kikuchi K, Tamaki K, Hearing VJ: The repeat domain of the melanosomal matrix protein PMEL17/GP100 is required for the formation of organellar fibers. J Biol Chem 2006, 281:21198-21208.

32. Maquat LE: Nonsense-mediated mRNA decay: Splicing, translation and mRNP dynamics. Nat Rev Mol Cell Biol 2004, 5(2):89-99.

33. Fowler DM, Koulou AY, Alory-Jost C, Marks MS, Balch WE, Kelly JW: Functional amyloid formation within mammalian tissue. PLoS Biol 2006, 4(1):100-107.

34. Kühn C, Bellmann O, Voigt J, Wegner J, Guiard V, Ender K: An experimental approach for studying the genetic and physiological background of nutrient transformation in cattle with respect to nutrient secretion and accretion type. Arch Anim Breed 2002, 45:317-330.

35. Weikard R, Kuhn C, Goldammer T, Freyer G, Schwerin M: The bovine PPARGC1A gene: molecular characterization and association of an SNP with variation of milk fat synthesis. Physiol Genomics 2005, 21:1-13.