Abstract

By implementing a quantum repeater protocol, our aim in this paper is the production of entanglement between two two-level atoms locating far from each other. To make our model close to experimental realizations, the atomic and field sources of dissipations are also taken into account. We consider eight of such atoms (1, 2, . . . , 8) sequentially located in a line which begins (ends) with atom 1 (8). We suppose that initially the four atomic pairs \((i, i + 1), i = 1, 3, 5, 7\), are mutually prepared in maximally entangled states. Clearly, the atoms 1, 8, the furthest atoms which we want to entangle them are never entangled, initially. To achieve the purpose of paper, at first, we perform the interaction between the atoms (2, 3) as well as (6, 7) which results in the entanglement creation between (1, 4) and (5, 8), separately. In the mentioned interactions, we take into account spontaneous emission rate \((\Gamma)\) for atoms and field decay rate from the cavities \((\kappa)\) as two important and unavoidable dissipation sources. In the continuation, we transfer the entanglement to the objective pair \((1, 8)\) by two methods: (i) Bell state measurement and (ii) cavity quantum electrodynamics. The successfulness of our protocol is shown via the evaluation of concurrence as the well-established measure of entanglement between the two (far apart) qubits \((1, 8)\). We also observe that if one chooses the cavity and the atom such that \(\kappa = \Gamma\) holds, the effect of dissipations is effectively removed from the entanglement dynamics in our model. In this condition, the time evolutions of concurrence and success probability are regularly periodic. Also, concurrence and success probability reach their maximum values in a large time interval by decreasing the detuning in the presence of dissipation.

Keywords Quantum repeater · Entanglement swapping · Atom–field interaction · Dissipation source
1 Introduction

The idea of quantum repeater is firstly proposed by Briegel et al. [1] in 1998 and then widely spread between the quantum information science and technologies researches [2–4]. That is a method for the distribution of entanglement and entangled states over large distances, i.e., creating entanglement between non-entangled separated atoms, that these transferred entangled states are useful in quantum key distribution [5], quantum cryptography [6] and quantum communication [7,8]. In recent decades, significant efforts have been paid to the implementation of a practical quantum repeater. For instance, the entanglement has been established between two fixed single-atom quantum memories separated by 1 m [9]. Also, the entanglement has been achieved between solid-state qubits separated by 3 m [10], and the authors in [11] reported that the entanglement between spins of two single Rubidium-87 atoms trapped independently 20 m apart has been established. In quantum repeater protocols, the path of process is generally divided into a number of shorter parts and the entanglement is transferred by entanglement swapping processes [12–17] from a pair of original particle state to a far destination particle pair state. Bell state measurement (BSM) [18] and cavity quantum electrodynamics (QED) [19,20] are two well-known ways for swapping the entanglement. In the BSM method, the entanglement is swapped from an entangled state to non-entangled particles. However, in the QED method, entanglement swapping is achieved by performing an interaction between two non-entangled separate particles [21–23], while these interactions are governed by (generalized) Jaynes–Cummings (JC) [24] or sometimes Tavis–Cummings (TC) [25] models. Whereas the distribution of entangled states which is in the heart of quantum repeater is a main point in quantum information science and technologies, the influences of different types of dissipations including photon leakage from non-perfect cavity and spontaneous emission of atoms, etc. are unavoidable in these models [26]. The dissipative terms with κ (rate of photon loss from the cavity) and Γ (rate of spontaneous emission of atom) in JC and TC Hamiltonians have been considered in Refs. [15,26–29] simultaneously using phenomenological method. Also, there are many references about this consideration, for instance see Refs. [30–32] for spontaneous emission and Ref. [33] for photon loss from the cavity. The rates of photon loss and spontaneous emission depend on the quality factor of cavity and the physical characteristics of atom, respectively. The existence of losses in the time evolution of entangled states generally may lead to the attenuation or even death of entanglement, i.e., the unwanted decoherence effects can be occurred.

In [34], the authors have proposed a scheme for overcoming losses by using quantum repeater. In [35], the quantum repeater with continuous variable encoding is discussed. Quantum repeater based on spatial entanglement of photons and quantum-dot spins in optical microcavities has been studied in [36] (for more details about quantum repeater based on quantum dots, see [37]). Also, quantum repeater based on Rydberg atomic ensembles has been analysed in [38,39]. A model has been proposed in [40] for a long-line quantum repeater. Experimental demonstration of a quantum repeater node has been proposed in [41], in which two photons from two entangled atom–photon pairs overlap at BSM and the entanglement is generated between the two atomic ensembles. A system for long-distance distribution of quantum entanglement using quantum repeater has been investigated [42], wherein the interactions between qubits
Fig. 1 The scheme of quantum repeater protocol in the presence of eight atoms (1, 2, \ldots, 8), where $\Gamma' (\kappa)$ is the spontaneous emission of atoms (photon leakage from the non-perfect cavities). The entangled atoms (1, 8) are obtained by use of a BSM method and b QED method and bright coherent light have been considered in the presence of dissipation. Also, the dissipative distillation of entanglement can be employed in a continuous quantum repeater architecture [43]. Recently, experimental schemes for quantum repeater have been reported [44,45] wherein the authors have considered four entangled photon pairs (1, 2), (3, 4), (5, 6) and (7, 8) and studied the entanglement generation between photon pairs (1, 4) and (5, 8) by performing BSM on photons (2, 3) and (6, 7). Finally, the entangled photons (1, 8) have been achieved by a further BSM on photons (4, 5). Now, in this paper, a quantum repeater protocol is implemented via considering a system including of eight aligned two-level atoms with ground state (excited state) $|g\rangle$ ($|e\rangle$) (see Fig. 1). Four pairs of the qubits (1, 2), (3, 4), (5, 6), (7, 8) are initially prepared in some atomic Bell states. Our aim is to distribute entanglement between the two end atoms (1, 8) which are far from each other and possess a separable state. In particular, we want to consider the same system, however, to make the model much more close to experimental realization and we consider the dissipation sources, namely atomic and field decay rates in the dynamical Hamiltonian and investigate their influences on the transferred entanglement to the atoms (1, 8). Interestingly, as an important result of the present paper, we illustrate that in special conditions in which the two mentioned decay rates become equal, the dissipation effects automatically disappear from the entanglement dynamics of the system. Consequently, in this situation, our considered dissipative quantum repeater is then free from the decoherence effects arisen from the two considered dissipation sources.

This paper is organized as follows: We explain that how our quantum repeater protocol works in Sect. 2. The results of our investigations on the proposed protocol are analysed in Sect. 3. Finally, the paper ends with summary and conclusions in Sect. 4.

2 Quantum repeater protocol

Our purpose in this paper is to distribute entanglement between two two-level atoms (1, 8) among eight aligned atoms (1, 2, \ldots, 8) shown in Fig. 1. At first, our linearized
system includes four entangled pairs of atoms \((i, i+1)\) where \(i = 1, 3, 5, 7\). Performing a dissipative interaction between the atoms \((2, 3)\) and \((6, 7)\), respectively, results in the entanglement between atoms \((1, 4)\) and \((5, 8)\) after operating measurement on atoms \((2, 3)\) and \((6, 7)\) [20]. In the following, we demonstrate the mentioned procedure for the produced entangled atomic states \((1, 4)\). The initial state of the atomic pairs \((1, 2)\) and \((3, 4)\) reads as \(|\Psi\rangle_{1,2} \otimes |\Psi\rangle_{3,4}\), where

\[
|\Psi\rangle_{i,i+1} = \frac{1}{\sqrt{2}} (|e, g\rangle - |g, e\rangle)_{i,i+1}, \quad i = 1, 3.
\]

Now, we perform the interaction between the two non-entangled qubits \((2, 3)\) possessing spontaneous emission rates \((\Gamma_2, \Gamma_3)\) with a single-mode field in a non-perfect cavity with photon leakage rate \((\kappa)\). The dynamics is governed by the following Hamiltonian \((\hbar = 1)\), \(\hat{H} = \hat{H}_0 + \hat{H}_1\),

\[
\hat{H}_0 = \omega \hat{a}^\dagger \hat{a} + \sum_{i=2,3} \frac{\omega_i}{2} \hat{\sigma}_i^+ \hat{\sigma}_i^- - \frac{i}{2} \sum_{i=2,3} \Gamma_i \hat{\sigma}_i^+ \hat{\sigma}_i^- - i \frac{\kappa}{2} \hat{a}^\dagger \hat{a},
\]

\[
\hat{H}_1 = g \sum_{i=2,3} \left(\hat{a} \hat{\sigma}_i^+ + \hat{a}^\dagger \hat{\sigma}_i^- \right),
\]

where \(\hat{H}_0\) (\(\hat{H}_1\)) is free (interacting) part of Hamiltonian in which \(\hat{a}^\dagger (\hat{a})\) is creation (annihilation) operator, \(\hat{\sigma}_i^+ = |e\rangle_i \langle g| \) \(\hat{\sigma}_i^- = \hat{\sigma}_i^{\dagger +}\) and \(\hat{\sigma}_i^z\) are, respectively, the raising (lowering) and population inversion operators of the \(i\)th atom. \(\omega_i\) and \(\omega\) are the \(i\)th atom transition and field frequencies, respectively. Also, \(g\) is the atom-field coupling constant.

The interaction Hamiltonian in the interaction picture can be obtained via Baker–Hausdorff formula

\[
\hat{H}_{\text{int}} = e^{i\hat{H}_0 t} \hat{H}_1 e^{-i\hat{H}_0 t} = \hat{H}_1 + it \left[\hat{H}_0, \hat{H}_1 \right] + \frac{(it)^2}{2!} \left[\hat{H}_0, \left[\hat{H}_0, \hat{H}_1 \right] \right] + \cdots
\]

where \(\hat{H}_0\) and \(\hat{H}_1\) have been introduced in Eq. (2). Now, we have:

\[
\left[\hat{H}_0, \hat{H}_1 \right] = g \left[\omega_2 - \omega + \frac{i}{2}(\kappa - \Gamma_2) \right] \hat{a} \hat{\sigma}_2^+ - g \left[\omega_2 - \omega + \frac{i}{2}(\kappa - \Gamma_2) \right] \hat{a}^\dagger \hat{\sigma}_2^- + g \left[\omega_3 - \omega + \frac{i}{2}(\kappa - \Gamma_3) \right] \hat{a} \hat{\sigma}_3^+ - g \left[\omega_3 - \omega + \frac{i}{2}(\kappa - \Gamma_3) \right] \hat{a}^\dagger \hat{\sigma}_3^-,
\]

and

\[
\left[\hat{H}_0, [\hat{H}_0, \hat{H}_1] \right] = g \left[\omega_2 - \omega + \frac{i}{2}(\kappa - \Gamma_2) \right]^2 \hat{a} \hat{\sigma}_2^+.
\]
\begin{align}
&+g \left[\omega_2 - \omega + \frac{i}{2} (\kappa - \Gamma_2) \right]^2 \hat{a}^\dagger \hat{\sigma}_2^- \\
&+g \left[\omega_3 - \omega + \frac{i}{2} (\kappa - \Gamma_3) \right]^2 \hat{a} \hat{\sigma}_3^+ \\
&+g \left[\omega_3 - \omega + \frac{i}{2} (\kappa - \Gamma_3) \right]^2 \hat{a}^\dagger \hat{\sigma}_3^-. \tag{5}
\end{align}

By substituting Eqs. (4) and (5) into the formula (3), one can obtain the interaction Hamiltonian in the interaction picture as (for \(\Delta_2 = \Delta_3 = \Delta \) where \(\Delta_i = \omega_i - \omega \) and \(\Gamma_2 = \Gamma_3 = \Gamma \)):

\begin{align}
\hat{H}_{\text{int}} &= g \sum_{i=2,3} \left(\hat{a} \hat{\sigma}_i^+ e^{i\delta t} + \hat{a}^\dagger \hat{\sigma}_i^- e^{-i\delta t} \right), \\
\delta &= \Delta + \frac{i}{2} (\kappa - \Gamma). \tag{6}
\end{align}

Following the path of Ref. [46], we assume that the cavity is in vacuum state, so the effective Hamiltonian under the limit of large detuning, i.e., \(|\delta| \gg |g|\), is achieved as below (in the case \(|\delta| \gg |g|\); there is no energy exchange between the atomic system and the cavity [46]):

\begin{align}
\hat{H}_{\text{eff}} &= \lambda \sum_{i=2,3} \hat{\sigma}_i^+ \hat{\sigma}_i^- + \lambda \left(\hat{\sigma}_2^+ \hat{\sigma}_3^- + \hat{\sigma}_2^- \hat{\sigma}_3^+ \right), \tag{7}
\end{align}

with \(\lambda = \frac{\kappa^2}{\delta} \). It is readily found that in the above Hamiltonians (6) and (7), if the cavity and atomic decay rates are chosen such that \(\kappa = \Gamma \), the influence of dissipation is then removed. Finally, by using the effective Hamiltonian (7) and initial state \(|\Psi\rangle_{1,2} \otimes |\Psi\rangle_{3,4}\) (see Eq. (1)), the entangled state for atoms \((1-4)\) is achieved as follows:

\begin{align}
|\Psi(t)\rangle_{1,2,3,4} &= \frac{1}{N(t)} (L_1(t) |eeg\rangle + L_2(t) |ege\rangle + L_3(t) |eg\rangle \\
&+ L_4(t) |ge\rangle + L_5(t) |ge\rangle + L_6(t) |gg\rangle)_{1,2,3,4}, \tag{8}
\end{align}

where

\begin{align}
L_1(t) &= L_6(t) = -i \frac{e^{-i\lambda t}}{2} \sin \lambda t, \\
L_2(t) &= L_5(t) = \frac{e^{-i\lambda t}}{2} \cos \lambda t, \\
L_3(t) &= -\frac{1}{2}, \quad L_4(t) = -\frac{e^{-i2\lambda t}}{2}, \\
N(t) &= \sqrt{\sum_{i=1}^{6} |L_i(t)|^2}. \tag{9}
\end{align}
Now, if one applies a measurement\(^{1}\) on the atomic state (2, 3) and obtains \(|eg\rangle_{2,3}\) or \(|ge\rangle_{2,3}\), the outcome results for atoms (1, 4) are, respectively, as follows:

\[
|\Psi(t)\rangle_{1,4} = \frac{1}{\sqrt{|L_1(t)|^2 + |L_5(t)|^2}}(L_1(t)|eg\rangle + L_5(t)|ge\rangle)_{1,4},
\]
\[
|\Psi'(t)\rangle_{1,4} = \frac{1}{\sqrt{|L_2(t)|^2 + |L_6(t)|^2}}(L_2(t)|eg\rangle + L_6(t)|ge\rangle)_{1,4}.
\]

(10)

It is clearly observed that the qubit pair (1, 4) is now entangled.

In a similar manner, the above procedure can be repeated for atoms (5–8), so that the following states can readily be achieved for the previously non-entangled pair (5, 8) as below:

\[
|\Psi(t)\rangle_{5,8} = \frac{1}{\sqrt{|L_1(t)|^2 + |L_5(t)|^2}}(L_1(t)|eg\rangle + L_5(t)|ge\rangle)_{5,8},
\]
\[
|\Psi'(t)\rangle_{5,8} = \frac{1}{\sqrt{|L_2(t)|^2 + |L_6(t)|^2}}(L_2(t)|eg\rangle + L_6(t)|ge\rangle)_{5,8}.
\]

(11)

Now, there exist four possible states in our hand, which constitute from atoms (1, 4, 5, 8), i.e., \(|\Psi(t)\rangle_{1,4} \otimes |\Psi(t)\rangle_{5,8}\), \(|\Psi(t)\rangle_{1,4} \otimes |\Psi'(t)\rangle_{5,8}\), \(|\Psi'(t)\rangle_{1,4} \otimes |\Psi(t)\rangle_{5,8}\) and \(|\Psi'(t)\rangle_{1,4} \otimes |\Psi'(t)\rangle_{5,8}\). The entanglement is now can be swapped from atoms (1, 4) and (5, 8) into the atoms (1, 8) by the BSM method (Fig. 1a) or again performing dissipative interaction between atoms (4, 5) with the interaction time from \(t\) to \(\tau\) (QED method) (Fig. 1b) [18–23]. In the following subsections, we consider all possible cases in detail.

2.1 The state \(|\Psi(t)\rangle_{1,4} \otimes |\Psi(t)\rangle_{5,8}\)

In this stage, we operate BSM method performed with two different atomic Bell states in two distinct process.

(i) By the operation of a BSM using the Bell state \(|B\rangle_{4,5} = \frac{1}{\sqrt{2}}(|ee\rangle + |gg\rangle)_{4,5}\) [47] on the state \(|\Psi(t)\rangle_{1,4} \otimes |\Psi(t)\rangle_{5,8}\), the state of atoms (1, 8) is converted to the Bell state

\[
|B\rangle_{1,8} = \frac{1}{\sqrt{2}}(|ee\rangle + |gg\rangle)_{1,8},
\]

(12)

with the success probability

\[
S_{|B\rangle_{1,8}}(\tau) = \frac{|L_1(t)L_5(t)|^2}{(|L_1(t)|^2 + |L_5(t)|^2)^2}.
\]

(13)

\(^{1}\) With (quantum) measurement (2, 3), for instance, we mean that one should operate the projection operator \(|eg\rangle\langle eg| (|ge\rangle\langle ge|)\) performed with the state \(|eg\rangle_{2,3} (|ge\rangle_{2,3})\) on the state of particles (1, 2, 3, 4); the same is done for (6, 7).
(ii) Also, via performing a BSM with the Bell state $|B\rangle_{4,5} = \frac{1}{\sqrt{2}}(|eg\rangle + |ge\rangle)_{4,5}$ [47] on $|\Psi(t)\rangle_{1,4} \otimes |\Psi(t)\rangle_{5,8}$, the state of atoms (1, 8) is transferred to the following state

$$|\gamma\rangle_{1,8} = \frac{1}{\sqrt{|L_1(t)|^2 + |L_5(t)|^2}}(L_1^2(t)|eg\rangle + L_5^2(t)|ge\rangle)_{1,8},$$

where the concurrence [48] may be straightforwardly obtained as

$$C_1(t) = \frac{2|L_1^2(t)L_5^2(t)|}{|L_1(t)|^4 + |L_5(t)|^4}.$$ (15)

In this status, the entangled atoms (1, 8) are produced by performing the dissipative interaction under the introduced dynamics in (7) between atoms (4, 5). The unnormalized entangled state for atoms (1, 4, 5, 8) after interaction with initial state $|\Psi(t)\rangle_{1,4} \otimes |\Psi(t)\rangle_{5,8}$ is achieved as

$$|\phi\rangle_{1,4,5,8} = \frac{1}{|L_1(t)|^2 + |L_5(t)|^2}\left\{L_1^2(t)\left[\frac{1}{2}(e^{i2\lambda t}e^{-i2\lambda\tau} - 1) |egg\rangle + e^{i2\lambda t}e^{-i2\lambda\tau} + 1 |geg\rangle\right] + L_5^2(t)\left[\frac{1}{2}(e^{i2\lambda t}e^{-i2\lambda\tau} + 1) |gege\rangle + \frac{1}{2}(e^{i2\lambda t}e^{-i2\lambda\tau} - 1) |ggee\rangle\right] + e^{-i2\lambda(\tau-t)} |geg\rangle\right\}_{1,4,5,8},$$ (16)

where τ is the time of interaction between atoms (4, 5) from t to τ. By measuring the state $|eg\rangle_{4,5}$ on state (16), the entangled state of atoms (1, 8) collapses to

$$|\phi\rangle_{1,8} = \frac{1}{\sqrt{|a_1(t, \tau)|^2 + |b_1(t, \tau)|^2}}(a_1(t, \tau)|eg\rangle + b_1(t, \tau)|ge\rangle)_{1,8},$$

$$a_1(t, \tau) = \frac{L_1^2(t)}{2}(e^{i2\lambda t}e^{-i2\lambda\tau} - 1),$$

$$b_1(t, \tau) = \frac{L_5^2(t)}{2}(e^{i2\lambda t}e^{-i2\lambda\tau} + 1),$$ (17)

which possesses the concurrence as

$$C'_1(t, \tau) = \frac{2|a_1^*(t, \tau)b_1(t, \tau)|}{|a_1(t, \tau)|^2 + |b_1(t, \tau)|^2}.$$ (18)
Moreover, by applying a measurement on the state (16) to obtain the atomic state \((4, 5)\) as \(|ge\rangle_{4, 5}\), the following entangled state for atoms \((1, 8)\) is obtained

\[
|\phi'\rangle_{1, 8} = \frac{1}{\sqrt{|a'_1(t, \tau)|^2 + |b'_1(t, \tau)|^2}} (a'_1(t, \tau) |eg\rangle + b'_1(t, \tau) |ge\rangle)_{1, 8},
\]

\[
a'_1(t, \tau) = \frac{L_2(t)}{2} (e^{i2\lambda t} e^{-i2\lambda \tau} + 1),
\]

\[
b'_1(t, \tau) = \frac{L_2(t)}{2} (e^{i2\lambda t} e^{-i2\lambda \tau} - 1),
\]

with the corresponding concurrence as

\[
C''_{1, 8} = \frac{2 |a''_{1}(t, \tau)b''_{1}(t, \tau)|}{|a''_{1}(t, \tau)|^2 + |b''_{1}(t, \tau)|^2}. \tag{20}
\]

2.2 The state \(|\Psi(t)\rangle_{1, 4} \otimes |\Psi'(t)\rangle_{5, 8}\)

Similarly, in this subsection, we apply the BSM method by using two different atomic Bell states in two separate processes.

(i) By the operation of BSM with the state \(|B'\rangle_{4, 5} = \frac{1}{\sqrt{2}} (|eg\rangle + |ge\rangle)_{4, 5}\) on the state \(|\Psi(t)\rangle_{1, 4} \otimes |\Psi'(t)\rangle_{5, 8}\), the following Bell state

\[
|B'\rangle_{1, 8} = \frac{1}{\sqrt{2}} (|eg\rangle + |ge\rangle)_{1, 8}, \tag{21}
\]

is achieved for atoms \((1, 8)\) with the success probability

\[
S_{|B'\rangle_{1, 8}}(t) = \frac{|L_1(t)L_2(t)|^2 + |L_5(t)L_6(t)|^2}{2(|L_1(t)|^2 + |L_5(t)|^2)^2}. \tag{22}
\]

Notice that \(S_{|B\rangle_{1, 8}}(t) = S_{|B'\rangle_{1, 8}}(t)\).

(ii) Also, by the operation of a BSM using the Bell state \(|B\rangle_{4, 5} = \frac{1}{\sqrt{2}} (|ee\rangle + |gg\rangle)_{4, 5}\) on the state \(|\Psi(t)\rangle_{1, 4} \otimes |\Psi'(t)\rangle_{5, 8}\), the state of atoms \((1, 8)\) is transferred to the entangled state as below:

\[
|\gamma\rangle_{1, 8}^2 = \frac{1}{\sqrt{|L_1(t)L_6(t)|^2 + |L_5(t)L_2(t)|^2}} (L_1(t)L_6(t) |ee\rangle + L_2(t)L_5(t) |gg\rangle)_{1, 8}, \tag{23}
\]

and concurrence is calculated as follows:

\[
C_2(t) = \frac{2 |L_0^*(t)L_0(t)L_5(t)L_2(t)|}{|L_1(t)L_6(t)|^2 + |L_5(t)L_2(t)|^2}. \tag{24}
\]
Notice that $C_2(t) = C_1(t)$. But, by performing the dissipative interaction using the Hamiltonian (7) between atoms (4, 5) with initial state $|\Psi(t)\rangle_{1,4} \otimes |\Psi'(t)\rangle_{5,8}$, the unnormalized entangled state for atoms (1, 4, 5, 8) is achieved as

$$
|\phi'\rangle_{1,4,5,8} = \frac{1}{|L_1(t)|^2 + |L_5(t)|^2} \left\{ L_1(t)L_2(t) \left[\frac{1}{2} (e^{i2\lambda t} e^{-i2\lambda \tau} - 1) |eegg\rangle \right.
ight.
$$

$$
+ \frac{1}{2} (e^{i2\lambda t} e^{-i2\lambda \tau} + 1) |egeg\rangle \right. \right.
$$

$$
+ L_5(t)L_6(t) \left[\frac{1}{2} (e^{i2\lambda t} e^{-i2\lambda \tau} + 1) |gege\rangle \right.
ight.
$$

$$
+ \frac{1}{2} (e^{i2\lambda t} e^{-i2\lambda \tau} - 1) |ggee\rangle \right. \right.
$$

$$
+ L_1(t)L_6(t) |egge\rangle + e^{-2i\lambda(\tau-t)}L_2(t)L_5(t) |geeg\rangle \right\}_{1,4,5,8}.
$$

Now, by measuring the states $|eg\rangle_{4,5}$ and $|ge\rangle_{4,5}$ on state (25), after normalization we arrive, respectively, at the states of atoms (1, 8) as follows,

$$
|\phi\rangle_{1,8}^2 = \frac{1}{|a_2(t, \tau)|^2 + |b_2(t, \tau)|^2} (a_2(t, \tau) |eg\rangle + b_2(t, \tau) |ge\rangle)_{1,8} ,
$$

$$
a_2(t, \tau) = \frac{L_1(t)L_2(t)}{2} (e^{i2\lambda t} e^{-i2\lambda \tau} - 1),
$$

$$
b_2(t, \tau) = \frac{L_5(t)L_6(t)}{2} (e^{i2\lambda t} e^{-i2\lambda \tau} + 1),
$$

with concurrence

$$
C'_2(t, \tau) = \frac{2 |a_2^*(t, \tau)b_2(t, \tau)|}{|a_2(t, \tau)|^2 + |b_2(t, \tau)|^2},
$$

and

$$
|\phi\rangle_{1,8}^2 = \frac{1}{|a_2'(t, \tau)|^2 + |b_2'(t, \tau)|^2} (a_2'(t, \tau) |eg\rangle + b_2'(t, \tau) |ge\rangle)_{1,8} ,
$$

$$
a_2'(t, \tau) = \frac{L_1(t)L_2(t)}{2} (e^{i2\lambda t} e^{-i2\lambda \tau} + 1),
$$

$$
b_2'(t, \tau) = \frac{L_5(t)L_6(t)}{2} (e^{i2\lambda t} e^{-i2\lambda \tau} - 1),
$$

with concurrence

$$
C''_2(t, \tau) = \frac{2 |a_2'^*(t, \tau)b_2'(t, \tau)|}{|a_2'(t, \tau)|^2 + |b_2'(t, \tau)|^2}.
$$

 Springer
It is easy to check that $C_2''(t, \tau) = C_2'(t, \tau)$.

2.3 The state $|\Psi'(t)\rangle_{1,4} \otimes |\Psi(t)\rangle_{5,8}$

We repeat the procedure in the above subsections via applying the BSM method by using two different atomic Bell states again in two distinct processes.

(i) By performing BSM with $|B'\rangle_{4,5} = \frac{1}{\sqrt{2}}(|eg\rangle + |ge\rangle)_{4,5}$ on $|\Psi'(t)\rangle_{1,4} \otimes |\Psi(t)\rangle_{5,8}$, the entangled state of atoms (1, 8) is transferred to Bell state $|B'\rangle_{1,8}$ in Eq. (21) with success probability (22).

(ii) Also, by performing the BSM with the help of Bell state $|B\rangle_{4,5} = \frac{1}{\sqrt{2}}(|ee\rangle + |gg\rangle)_{4,5}$ on the state $|\Psi'(t)\rangle_{1,4} \otimes |\Psi(t)\rangle_{5,8}$, the state of atoms (1, 8) is converted to

$$|\gamma\rangle_{1,8}^{3} = \frac{1}{\sqrt{|L_2(t)L_5(t)|^2 + |L_1(t)L_6(t)|^2}} (L_2(t)L_5(t)|ee\rangle + L_1(t)L_6(t)|gg\rangle)_{1,8},$$

(30)

with the concurrence as

$$C_3(t) = \frac{2|L_5^*(t)L_5(t)L_1(t)L_6(t)|}{|L_2(t)L_5(t)|^2 + |L_1(t)L_6(t)|^2}.$$

(31)

Notice that $C_3(t) = C_2(t) = C_1(t)$. The entangled state of atoms (1, 4, 5, 8) is achieved by performing the interaction (7) between atoms (4, 5) with initial state $|\Psi'(t)\rangle_{1,4} \otimes |\Psi(t)\rangle_{5,8}$ as below,

$$|\phi''\rangle_{1,4,5,8}^{3} = \frac{1}{|L_1(t)|^2 + |L_5(t)|^2} \left\{ L_1(t)L_2(t) \left[\frac{1}{2}(e^{i2\lambda t}e^{-i2\lambda \tau} - 1)|eegg\rangle + \frac{1}{2}(e^{i2\lambda t}e^{-i2\lambda \tau} + 1)|egge\rangle \right] + L_5(t)L_6(t) \left[\frac{1}{2}(e^{i2\lambda t}e^{-i2\lambda \tau} + 1)|gege\rangle + \frac{1}{2}(e^{i2\lambda t}e^{-i2\lambda \tau} - 1)|ggee\rangle \right] + L_2(t)L_5(t)|egge\rangle + e^{-2i\lambda(\tau-t)}L_1(t)L_6(t)|gege\rangle \right\}_{1,4,5,8}.$$

(32)

Now, by measuring the states $|eg\rangle_{4,5}$ and $|ge\rangle_{4,5}$ on state (32), the entangled states of atoms (1, 8) are, respectively, converted to $|\phi''\rangle_{1,8}^{3}$ and $|\phi'\rangle_{1,8}^{3}$, where $|\phi''\rangle_{1,8}^{3} = |\phi\rangle_{1,8}^{2}$ and $|\phi'\rangle_{1,8}^{3} = |\phi'\rangle_{1,8}^{2}$ in Eqs. (26) and (28), with calculated concurrences $C_3'(t, \tau) = C_2'(t, \tau)$ and $C_3''(t, \tau) = C_2''(t, \tau)$ as in Eqs. (27) and (29), respectively. It is easy to see that $C_3'(t, \tau) = C_2'(t, \tau) = C_2''(t, \tau) = C_2''(t, \tau)$.

\(\copyright\) Springer
2.4 The state $|\Psi'(t)\rangle_{1,4} \otimes |\Psi'(t)\rangle_{5,8}$

And finally, the BSM method is used with the help of two different atomic Bell states in two distinct processes.

(i) We apply the BSM using $|B\rangle_{4,5} = \frac{1}{\sqrt{2}}(|ee\rangle + |gg\rangle)_{4,5}$ on state $|\Psi'(t)\rangle_{1,4} \otimes |\Psi'(t)\rangle_{5,8}$, so the state of atoms $(1, 8)$ is converted to Bell state $|B\rangle_{1,8}$ in Eq. (12) with the success probability

$$S'_{|B\rangle_{1,8}}(t) = \frac{|L_2(t)L_6(t)|^2}{(|L_1(t)|^2 + |L_5(t)|^2)^2}.$$ \hspace{1cm} (33)

Notice that $S'_{|B\rangle_{1,8}}(t) = S_{|B'\rangle_{1,8}}(t) = S_{|B\rangle_{1,8}}(t)$.

(ii) Also, by the operation of BSM method with the Bell state $|B'\rangle_{4,5} = \frac{1}{\sqrt{2}}(|eg\rangle + |ge\rangle)_{4,5}$ on state $|\Psi'(t)\rangle_{1,4} \otimes |\Psi'(t)\rangle_{5,8}$, the state of atoms $(1, 8)$ reads as

$$|\gamma\rangle_{1,8}^4 = \frac{1}{\sqrt{|L_2(t)|^4 + |L_6(t)|^4}} (L_2^2(t)|eg\rangle + L_6^2(t)|ge\rangle)_{1,8},$$ \hspace{1cm} (34)

with the concurrence

$$C_4(t) = \frac{2 |L_2^2(t)L_6^2(t)|}{|L_2(t)|^4 + |L_6(t)|^4}.$$ \hspace{1cm} (35)

It can straightforwardly be checked that, $C_4(t) = C_3(t) = C_2(t) = C_1(t)$. The unnormalized entangled state of atoms $(1, 4, 5, 8)$ is obtained by performing dissipative interaction (Eq. (7)) with initial state $|\Psi'(t)\rangle_{1,4} \otimes |\Psi'(t)\rangle_{5,8}$ as,

$$|\phi''\rangle_{1,4,5,8} = \frac{1}{|L_2(t)|^2 + |L_6(t)|^2} \left\{ L_2^2(t) \left[\frac{1}{2} (e^{i2\lambda t} e^{-i2\lambda t} - 1) |eeeg\rangle
+ \frac{1}{2} (e^{i2\lambda t} e^{-i2\lambda t} + 1) |egge\rangle
+ \frac{1}{2} (e^{i2\lambda t} e^{-i2\lambda t} - 1) |ggee\rangle \right]
+ L_6^2(t) \left[\frac{1}{2} (e^{i2\lambda t} e^{-i2\lambda t} + 1) |gege\rangle
+ \frac{1}{2} (e^{i2\lambda t} e^{-i2\lambda t} - 1) |ggee\rangle
+ e^{-i2\lambda(t-\tau)} |geeg\rangle \right] \right\}_{1,4,5,8}. \hspace{1cm} (36)$$

By measuring the state $|eg\rangle_{4,5}$ on state (36), the state of atoms $(1, 8)$ collapses to,

$$|\phi_1\rangle_{1,8}^4 = \frac{1}{\sqrt{|a_4(t, \tau)|^2 + |b_4(t, \tau)|^2}} (a_4(t, \tau) |eg\rangle + b_4(t, \tau) |ge\rangle)_{1,8},$$

$$a_4(t, \tau) = \frac{L_2^2(t)}{2} (e^{i2\lambda t} e^{-i2\lambda t} - 1),$$

$$b_4(t, \tau) = \frac{L_6^2(t)}{2} (e^{i2\lambda t} e^{-i2\lambda t} + 1).$$
\[b_4(t, \tau) = \frac{L_6^2(t)}{2} (e^{i2\lambda t} e^{-i2\lambda \tau} + 1), \]

(37)

with the concurrence,

\[C'_4(t, \tau) = \frac{2 |a_4^*(t, \tau)b_4(t, \tau)|}{|a_4(t, \tau)|^2 + |b_4(t, \tau)|^2}. \]

(38)

Notice that, \(C'_4(t, \tau) = C''_4(t, \tau) \). Also, by measuring the state \(|ge\rangle_{4,5} \) on state (36), the state of atoms \((1, 8)\) is converted to the entangled state

\[|\phi'_4\rangle_{1,8} = \frac{1}{\sqrt{|a'_4(t, \tau)|^2 + |b'_4(t, \tau)|^2}} (a'_4(t, \tau) |eg\rangle + b'_4(t, \tau) |ge\rangle)_{1,8}, \]

\[a'_4(t, \tau) = \frac{L_2^2(t)}{2} (e^{i2\lambda t} e^{-i2\lambda \tau} + 1), \]

\[b'_4(t, \tau) = \frac{L_6^2(t)}{2} (e^{i2\lambda t} e^{-i2\lambda \tau} - 1), \]

(39)

whose concurrence reads as

\[C''_4(t, \tau) = \frac{2 |a''_4(t, \tau)b'_4(t, \tau)|}{|a'_4(t, \tau)|^2 + |b'_4(t, \tau)|^2}. \]

(40)

It is clearly seen that \(C''_4(t, \tau) = C'_1(t, \tau) \).

3 Results and discussion

In this section, we have analysed the effects of dissipation and detuning on the time evolution of concurrence or entanglement swapped between two atoms \((1, 8)\) and also success probability of maximally entangled states produced by BSM method. Also, we have considered the effects of detuning, dissipation and initial interaction time which is entered by using different values of \(g \tau \) on the concurrence obtained in QED method. The effects of dissipation and detuning on the degree of entanglement as well as the success probability calculated in BSM method have been shown in Fig. 2, i.e., the regular evolution of concurrence and success probability in the absence of dissipation (the effect of dissipation in Eq. (6) is removed by choosing \(\kappa = \Gamma \) shown in dashed green lines) in Fig. 2a, b is observed, respectively. But, evolution of concurrence and success probability in the presence of dissipation (solid red lines) after one oscillation reaches to 1 and 0.25, respectively, and remains at these maxima so that sudden death of entanglement has been removed in Fig. 2a. In Fig. 2a, b the effect of increasing the detuning (dot–dot–dashed black lines) on the concurrence and success probability has been considered in the presence of dissipation \((\kappa \neq \Gamma) \). We can see that the concurrence and success probability have been reached to their maxima and remain at these values after an oscillation by decreasing the detuning in
solid red lines. Generally, in Fig. 2a the state of target atoms (1, 8) is converted to a maximally entangled state in some times with acceptable success probability shown in Fig. 2b.

In Fig. 3, the effect of detuning on concurrence evaluated in QED method has been considered in the presence of dissipation ($\kappa \neq \Gamma$). In Fig. 3, solid red lines have been plotted for increased detuning and these lines are compared with the dashed green lines. The concurrence in Fig. 3a has not been reached to its maximum even though detuning is increased. In Fig. 3b, the maximum of concurrence has been achieved once for increased detuning. Also, in Fig. 3c, the amplitude of oscillation has been decreased as time goes on by increasing the detuning. From Fig. 3, one can see that, decreasing the detuning causes the stability of entanglement and the maximum of concurrences is obtained in a large time interval.

In Fig. 4, we have considered the effect of dissipation on the concurrence obtained by QED method. In this figure, the dashed green lines (solid red lines) have been plotted in the absence (presence) of dissipation. We can see that the periodic evolution of concurrence in the absence of dissipation ($\kappa = \Gamma$) and this regular behaviour is destroyed in the presence of dissipation ($\kappa \neq \Gamma$). Also, in the presence of dissipation, the atoms (1, 8) have been converted to atomic Bell states and remain at these states after an oscillation of concurrence in Fig. 4a–c.
The interaction time \(g \tau \) between atoms (2, 3) and (6, 7) and its importance have been considered in Fig. 5. In Fig. 5, solid red lines have been plotted for increased interaction time and these lines are compared with the dashed green lines. In Fig. 5a–c, by increasing the initial time \(g \tau \), the states of atoms (1, 8) have been converted to Bell states after one oscillation. So, the interaction time between atoms (2, 3) and (6, 7) is very effective in order to achieve the stable maximally entangled states for atoms (1, 8).

\[C_1'(t, \tau) = C_4'(t, \tau) \]
\[C_1''(t, \tau) = C_4''(t, \tau) \]
\[C_2'(t, \tau) = C_2''(t, \tau) = C_3'(t, \tau) = C_3''(t, \tau) \]

Fig. 3 The effect of detuning on the evolution of concurrence: a \(C_1'(t, \tau) = C_4'(t, \tau) \), b \(C_1''(t, \tau) = C_4''(t, \tau) \), c \(C_2'(t, \tau) = C_2''(t, \tau) = C_3'(t, \tau) = C_3''(t, \tau) \) for \(\Delta = 10g \) (dashed green line) and \(\Delta = 30g \) (solid red line) with \(\kappa = 20g \), \(\Gamma = 10g \) and \(g \tau = 10 \) (Color figure online)
4 Summary and conclusions

Our purpose in this paper was the distribution of entanglement between two distant two-level atoms that have no interaction between each other. By using the quantum repeater protocol, we contrasted with entanglement attenuation in our considered dissipative protocol. We supposed that eight atoms located in four maximally entangled atomic states (1, 2), (3, 4), (5, 6) and (7, 8). At first, by performing interaction between atoms (2, 3) and (6, 7), separately, in the presence of spontaneous emission and pho-
ton leakage, the entanglement was produced between atoms (1, 4) and (5, 8). In this level, we swapped entanglement from entangled atoms (1, 4) and (5, 8) to atoms (1, 8) by BSM and QED methods. The atoms (1, 8) converted to maximally entangled states by choosing suitable Bell states with the help of BSM method. We calculated the entanglement and success probability for atoms (1, 8), and we found that the time evolutions of these parameters are periodic in the absence of dissipation. But, in the presence of dissipation, this regular behaviour is destroyed. Interestingly, for particular case $\kappa = \Gamma$, our system converted to ideal system with no dissipation. This situation

![Figure 5](image-url)
may be achieved by choosing a suitable cavity and a particular two-level atom. We considered the effects of detuning, dissipation and interaction time $g t$ (i.e., the initial state) on entanglement dynamics. We saw the destructive effects of increasing (decreasing) the detuning (interaction time $g t$) on the concurrence. The concurrence was reached to its maximum after an oscillation in a large time interval by decreasing (increasing) the detuning (interaction time) in the presence of dissipation. Also, sudden death of entanglement was removed in the presence of dissipation and the stability of entanglement was achieved for concurrences.

References

1. Briegel, H.J., Dür, W., Cirac, J.I., Zoller, P.: Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81(26), 5932 (1998)
2. Dür, W., Briegel, H.J., Cirac, J., Zoller, P.: Erratum: quantum repeaters based on entanglement purification. Phys. Rev. A 60(1), 725 (1999)
3. Duan, L.M., Lukin, M., Cirac, J.I., Zoller, P.: Long-distance quantum communication with atomic ensembles and linear optics. Nature 414(6862), 413 (2001)
4. Jiang, L., Muralidharan, S., Kim, J., Lutkenhaus, N., Lukin, M.: Ultrafast and fault-tolerant quantum communication over long distances. In: Frontiers in Optics, pp. F7u1A–1. Optical Society of America (2014)
5. Curty, M., Lewenstein, M., Lütkenhaus, N.: Entanglement as a precondition for secure quantum key distribution. Phys. Rev. Lett. 92(21), 217–903 (2004)
6. Jennewein, T., Simon, C., Wehls, G., Weinfurter, H., Zeilinger, A.: Quantum cryptography with entangled photons. Phys. Rev. Lett. 84(20), 4729 (2000)
7. Hsieh, M., Kempe, J., Myrgren, S., Whaley, K.B.: An explicit universal gate-set for exchange-only quantum computation. Quantum Inf. Process. 2(4), 289–307 (2003)
8. Shi, J., Shi, R., Tang, Y., Lee, M.H.: A multiparty quantum proxy group signature scheme for the entangled-state message with quantum fourier transform. Quantum Inf. Process. 10(5), 653–670 (2011)
9. Moehring, D., Maunz, P., Olmschenk, S., Younge, K., Matsukevich, D., Duan, L.M., Monroe, C.: Entanglement of single-atom quantum bits at a distance. Nature 449(7158), 68 (2007)
10. Bernien, H., Hensen, B., Pfaff, W., Koolstra, G., Blok, M., Robledo, L., Taminiau, T., Markham, M., Twitchen, D., Childress, L., et al.: Heralded entanglement between solid-state qubits separated by three metres. Nature 497(7447), 86 (2013)
11. Hofmann, J., Krug, M., Ortega, N., Gérard, L., Weber, M., Weinfurter, H.: Heralded entanglement between widely separated atoms. Science 337(6090), 72–75 (2012)
12. Eghbali-Arani, M., Ameri, V.: Entanglement of two hybrid optomechanical cavities composed of BEC atoms under bell detection. Quantum Inf. Process. 16(2), 47 (2017)
13. Zukowski, M., Zeilinger, A., Horne, M.A., Ekert, A.K.: Event-ready-detectors Bell experiment via entanglement swapping. Phys. Rev. Lett. 71, 4287–4290 (1993)
14. Ghasemi, M., Tavassoly, M.K.: Entanglement swapping to a qutrit–qutrit atomic system in the presence of Kerr medium and detuning parameter. Eur. Phys. J. Plus 131(9), 297 (2016)
15. Ghasemi, M., Tavassoly, M.K., Nourmandipour, A.: Dissipative entanglement swapping in the presence of detuning and Kerr medium: Bell state measurement method. Eur. Phys. J. Plus 132(12), 531 (2017)
16. Nourmandipour, A., Tavassoly, M.K.: Entanglement swapping between dissipative systems. Phys. Rev. A 94(2), 022–339 (2016)
17. Ghasemi, M., Tavassoly, M.K.: A novel approach to entanglement dynamics of two two-level systems interacting with dissipative cavities. Eur. Phys. J. Plus 130(7), 148 (2015)
18. Liao, Q., Fang, G., Wang, Y., Ahmad, M., Liu, S.: Entanglement swapping in two independent Jaynes–Cummings models. Eur. Phys. J. D 61(2), 475–479 (2011)
19. Haroche, S.: Cavity quantum electrodynamics: a review of Rydberg atom-microwave experiments on entanglement and decoherence. In: AIP Conference Proceedings, vol. 464, pp. 45–66. AIP (1999)
20. Chun-Hua, Y., Yong-Cheng, O., Zhi-Ming, Z.: Entanglement swapping with atoms separated by long distance. Chin. Phys. 15(8), 1793 (2006)
21. Yang, M., Zhao, Y., Song, W., Cao, Z.L.: Entanglement concentration for unknown atomic entangled states via entanglement swapping. Phys. Rev. A 71(4), 042–302 (2005)
22. Pakniat, R., Tavassoly, M.K., Zandi, M.H.: A novel scheme of hybrid entanglement swapping and teleportation using cavity QED in the small and large detuning regimes and quasi-Bell state measurement method. Chin. Phys. B 25(10), 100–303 (2016)
23. Pakniat, R., Tavassoly, M.K., Zandi, M.H.: Entanglement swapping and teleportation based on cavity QED method using the nonlinear atom-field interaction: cavities with a hybrid of coherent and number states. Opt. Commun. 382, 381–385 (2017)
24. Jaynes, E.T., Cummings, F.W.: Comparison of quantum and semiclassical radiation theories with application to the beam maser. Proc. IEEE 51(1), 89–109 (1963)
25. Tavis, M., Cummings, F.W.: Exact solution for an N-moleculeradiation-field Hamiltonian. Phys. Rev. 170(2), 379 (1968)
26. Di Fidio, C., Vogel, W., Khanbekyan, M., Welsch, D.G.: Photon emission by an atom in a lossy cavity. Phys. Rev. A 77(4), 043–822 (2008)
27. Di Fidio, C., Vogel, W.: Entanglement signature in the mode structure of a single photon. Phys. Rev. A 79(5), 050–303 (2009)
28. Man, Z., Xia, Y., An, N.: Quantum dissonance induced by a thermal field and its dynamics in dissipative systems. Eur. Phys. J. D 64(2–3), 521–529 (2011)
29. Grünwald, P., Singh, S., Vogel, W.: Raman-assisted rabi resonances in two-mode cavity qed. Phys. Rev. A 83(6), 063–806 (2011)
30. Zhang, G.F., Xie, X.C.: Entanglement between two atoms in a damping Jaynes–Cummings model. Eur. Phys. J. D 60(2), 423–427 (2010)
31. Baghshahi, H.R., Tavassoly, M.K., Behjat, A.: Entanglement of a damped non-degenerate o-type atom interacting nonlinearly with a single-mode cavity. Eur. Phys. J. Plus 131(4), 80 (2016)
32. Shore, B.W., Knight, P.L.: The Jaynes–Cummings model. J. Mod. Opt. 40(7), 1195–1238 (1993)
33. Barnett, S.M., Jeffers, J.: The damped Jaynes–Cummings model. J. Mod. Opt. 54(13–15), 2033–2048 (2007)
34. Luong, D., Jiang, L., Kim, J., Lütkenhaus, N.: Overcoming lossy channel bounds using a single quantum repeater node. Appl. Phys. B 122(4), 96 (2016)
35. Li, L., Albert, V.V., Michael, M., Muralidharan, S., Zou, C., Jiang, L.: Quantum repeater with continuous variable encoding. In: APS Division of Atomic, Molecular and Optical Physics Meeting Abstracts (2016)
36. Wang, T.J., Song, S.Y., Long, G.L.: Quantum repeater based on spatial entanglement of photons and quantum-dot spins in optical microcavities. Phys. Rev. A 85(6), 062–311 (2012)
37. McMahon, P.L., De Greve, K.: Towards quantum repeaters with solid-state qubits: spin-photon entanglement generation using self-assembled quantum dots. In: Predojevic, A., Mitchell, M.W (eds) Engineering the Atom-Photon Interaction, Chap. 14, pp. 365–402. Springer (2015)
38. Han, Yang, He, Bing, Heshami, Khabat, Li, Cheng-Zu, Simon, Christoph: Quantum repeaters based on Rydberg-blockade-coupled atomic ensembles. Phys. Rev. A 81(5), 052–311 (2010)
39. Zhao, Bo, Müller, Markus, Hammerer, Klems, Zoller, Peter: Efficient quantum repeater based on deterministic Rydberg gates. Phys. Rev. A 81(5), 052–329 (2010)
40. Van Meter, R., Ladd, T.D., Munro, W., Nemoto, K.: System design for a long-line quantum repeater. IEEE/ACM Trans. Netw. 17(3), 1002–1013 (2009)
41. Yuan, Z.S., Chen, Y.A., Zhao, B., Chen, S., Schmiedmayer, J., Pan, J.W.: Experimental demonstration of a BDCZ quantum repeater node. Nature 454(7208), 1098 (2008)
42. Ladd, Thaddeus D., van Loock, Peter, Nemoto, Kae, Munro, William J., Yamamoto, Yoshihisa: Hybrid quantum repeater based on dispersive CQED interactions between matter qubits and bright coherent light. New J. Phys. 8(9), 184 (2006)
43. Vollbrecht, Karl Gerd H., Muschik, Christine A., Cirac, J.Ignacio: Entanglement distillation by dissipation and continuous quantum repeaters. Phys. Rev. Lett. 107(12), 120–502 (2011)
44. Xu, P., Yong, H.L., Chen, L.K., Liu, C., Xiang, T., Yao, X.C., Lu, H., Li, Z.D., Liu, N.L., Li, L., et al.: Two-hierarchy entanglement swapping for a linear optical quantum repeater. Phys. Rev. Lett. 119(17), 170–502 (2017)
45. Chen, L.K., Yong, H.L., Xu, P., Yao, X.C., Xiang, T., Li, Z.D., Liu, C., Lu, H., Liu, N.L., Li, L., et al.: Experimental nested purification for a linear optical quantum repeater. Nat. Photonics 11(11), 695 (2017)
46. Zheng, S.B., Guo, G.C.: Efficient scheme for two-atom entanglement and quantum information processing in cavity QED. Phys. Rev. Lett. 85(11), 2392 (2000)

47. Ai-Xi, C., Li, D.: Entanglement swapping between atom and cavity and generation of entangled state of cavity fields. Chin. Phys. 16(4), 1027 (2007)

48. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80(10), 2245 (1998)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.