SIX GENERATED ACM BUNDLE ON A HYPERSURFACE IS SPLIT

AMIT TRIPATHI

ABSTRACT. Let X be a smooth projective hypersurface. In this note we show that any six generated arithmetically Cohen-Macaulay vector bundle over X splits if $\dim X \geq 6$.

1. Introduction

We work over an algebraically closed field of characteristic 0.

Let $X \subset \mathbb{P}^{n+1}$ be a smooth hypersurface. We say that a vector bundle E on X is split if it is a direct sum of line bundles on X. We say that a vector bundle is k-generated if k is the smallest integer such that there exists a surjection $\bigoplus_{i=1}^k \mathcal{O}_X(a_i) \to E$. A convenient notation for a coherent sheaf \mathcal{F} on X is:

$$H^i_*(X, \mathcal{F}) := \bigoplus_{m \in \mathbb{Z}} H^i(X, \mathcal{F}(m))$$

We say a bundle is split if it is a direct sum of line bundles. An arithmetically Cohen-Macaulay (ACM) bundle on X is a vector bundle E satisfying

$$H^i(X, E(m)) = 0, \forall m \in \mathbb{Z} \text{ and } 0 < i < \dim X$$

This definition is equivalent to saying that $\Gamma_*(X, E)$ is a maximal Cohen-Macaulay as S_X-module where S_X is the graded ring corresponding to X.

A split bundle on a hypersurface or a projective space is obviously an ACM bundle. A theorem of Horrocks [12] tells that over projective spaces, the converse is also true - A vector bundle on a projective space splits if and only if it is an arithmetically Cohen-Macaulay bundle. One can ask if Horrocks’s criterion is true for arithmetically Cohen-Macaulay bundles over hypersurfaces?

The answer is no as there are examples of indecomposable arithmetically Cohen-Macaulay bundles over hypersurfaces (see [15] or [17]). Though there is a conjecture in this direction:

Conjecture (Buchweitz, Greuel and Schreyer [2]): Let $X \subset \mathbb{P}^n$ be a hypersurface. Let E be an ACM bundle on X. If $\text{rank } E < 2^e$, where $e = \left[\frac{n-2}{2} \right]$, then E splits. (Here $[q]$ denotes the largest integer $\leq q$.)

1991 Mathematics Subject Classification. 14J60.

Key words and phrases. Vector bundles, hypersurfaces, arithmetically Cohen-Macaulay.

This work was supported by a postdoctoral fellowship from National Board for Higher Mathematics.
This conjecture can not be strengthened further, as there exists indecomposable arithmetically Cohen-Macaulay bundles of rank 2^e on such hypersurfaces for all degrees (see the construction in [21]).

For low degree cases, we refer the reader to [14] for $d = 2$ and to [4] for the case of $d = 3$ surfaces in \mathbb{P}^3. For rank 2 on a general hypersurface of low degree in \mathbb{P}^4 and \mathbb{P}^5 we suggest [5], [6], [7].

For general hypersurfaces, Sawada [19] found a sufficient condition for a arithmetically Cohen-Macaulay bundle to split depending upon the dimension as well as the degree of the hypersurface and rank of the vector bundle. His method uses matrix factorization (see Eisenbud [9] for a background).

Rank two case is understood fairly well. A rank 2 arithmetically Cohen-Macaulay bundle on a hypersurface X splits if:

1. $\dim(X) \geq 5$ (see [13] and [15]).
2. $\dim(X) = 4$ and X is general hypersurface and $d \geq 3$ (see [15] and [18]).
3. $\dim(X) = 3$ and X is general hypersurface and $d \geq 6$ (see [16] and [18]).

In a previous work [20], we showed that any rank 3 (resp. rank 4) ACM bundle over a hypersurface of $\dim(X) \geq 7$ (resp. $\dim(X) \geq 9$) is split. Our method employed a cohomological chase over a Koszul complex. In this note, we find an improvement for six generated ACM bundles,

Theorem 1.1. Let E be any ACM bundle on a smooth hypersurface $X \subset \mathbb{P}^{n+1}$ where $n \geq 6$. If E is six generated then E is a split bundle.

2. Preliminaries

Let $X \subset \mathbb{P}^{n+1}$ be a hypersurface of degree $d \geq 2$. Let E be a rank r ACM bundle on X which is k-generated. The following facts are well known and will be used several times. The proofs for the same can be found (for instance) in [20] (section 2).

- There exist split bundles $\widetilde{F}_1, \widetilde{F}_0$ of rank k on \mathbb{P}^{n+1} and a minimal resolution of E on \mathbb{P}^{n+1},

\[0 \to \widetilde{F}_1 \to \widetilde{F}_0 \to E \to 0 \]

- Restricting the above resolution to X gives,

\((1) \quad 0 \to G \to F_0 \to E \to 0 \)

\((2) \quad 0 \to E(-d) \to F_1 \to G \to 0 \)

where F_1, F_0 are split bundles over X of rank k and G is an arithmetically Cohen-Macaulay bundle.
Let k be a positive integer. For any sequence $0 \to \mathcal{F}_0 \to \mathcal{F}_1 \to \mathcal{F}_2 \to 0$ of vector bundles on a projective variety Z, there exists a resolution of k-th exterior power of \mathcal{F}_2,

$$0 \to \text{Sym}^k(\mathcal{F}_0) \to \cdots \to \text{Sym}^{k-i}(\mathcal{F}_0) \otimes \wedge^i \mathcal{F}_1 \to \cdots \to \wedge^k \mathcal{F}_1 \to \wedge^k \mathcal{F}_2 \to 0$$

In [20] we have called this the Sym $- \wedge$ sequence of index k associated to the given short exact sequence. Similarly there exists a resolution of k-th symmetric power of \mathcal{F}_2 which we denoted as $\wedge - \text{Sym}$ sequence of index k associated to the given sequence.

$$0 \to \wedge^k(\mathcal{F}_0) \to \cdots \to \wedge^{k-i}(\mathcal{F}_0) \otimes \text{Sym}^i \mathcal{F}_1 \to \cdots \text{Sym}^k \mathcal{F}_1 \to \text{Sym}^k \mathcal{F}_2 \to 0$$

For details we refer to [3] and references provided therein.

Following lemma is from [20]:

Lemma 2.1. Let E be any bundle (not necessarily ACM) on a hypersurface $X \subset \mathbb{P}^{n+1}$, $n \geq 3$. Assume further that $H^1_*(X, E^\vee) = 0$. Let the exact sequence $0 \to G \to F_0 \to E \to 0$ be a minimal (1-step) resolution of E on X. If G admits a line bundle as a direct summand, then E is split.

3. Proof of the theorem

Proof of theorem [1,7] : Let E be a six generated arithmetically Cohen-Macaulay bundle on X where $\text{dim}(X) \geq 6$. We take a minimal (1-step) resolution of E on X:

$$0 \to G \to F_0 \to E \to 0$$

By assumption $\text{rk}(F_0) = 6$ therefore $\text{rk}(E) \leq 6$. The following cases are easily resolved:

1. If $\text{rk}(E) = 6$ then $E \cong F_0$ is split.
2. If $\text{rk}(E) = 5$ then G is a line bundle whence by lemma 2.1 E splits.
3. If $\text{rk}(E) = 4$ then G splits as it is then an ACM bundle of rank 2 on X (see [15]) whence E splits (again by lemma 2.1).
4. If $\text{rk}(E) = 2$ then splitting is by results from [15].

This leaves the case $\text{rk}(E) = 3$ open. G (an ACM bundle) is also of rank 3 for this case. We have a minimal resolution of E on \mathbb{P}^{n+1}:

$$0 \to \widetilde{F}_1 \to \widetilde{F}_0 \to E \to 0$$

Taking exterior product, we get

$$0 \to \wedge^3 \widetilde{F}_1 \to \wedge^3 \widetilde{F}_0 \to \mathcal{F} \to 0$$

where \mathcal{F} is a coherent sheaf with support on X. It can be verified that \mathcal{F} is arithmetically Cohen-Macaulay sheaf which means that it is (infact) an ACM vector bundle on X as X is smooth. Restricting the above sequence to X gives:

$$0 \to \text{Tor}^1(\mathcal{O}_X, \mathcal{F}) \to \wedge^3 F_1 \to \wedge^3 F_0 \to \mathcal{F} \to 0$$

\footnote{We were unable to find any standard terminology in the literature for the given resolution.}
To compute the \(Tor \) term, we tensor the following sequence by \(F \):

\[
0 \to \mathcal{O}_{\mathbb{P}^{n+1}}(-d) \to \mathcal{O}_{\mathbb{P}^{n+1}} \to \mathcal{O}_X \to 0
\]
to get \(Tor^1(\mathcal{O}_X, \mathcal{F}) = \mathcal{F}(-d) \). Thus we get the sequence:

\[
0 \to \mathcal{F}(-d) \to \wedge^3 F_1 \to \wedge^3 F_0 \to \mathcal{F} \to 0
\]

The map \(F_1 \to F_0 \) factors via \(G \) (see section 2). By functoriality of exterior product, the map \(\wedge^3 F_1 \to \wedge^3 F_0 \) will factor via \(\wedge^3 G \). Thus the sequence above breaks up into 2 short exact sequences:

\[
0 \to F(-d) \to \wedge^3 F_1 \to \wedge^3 G \to 0 \quad (4)
\]

\[
0 \to \wedge^3 G \to \wedge^3 F_0 \to F \to 0 \quad (5)
\]

Above sequences along with the fact that \(G \) is rank 3 and \(F_1, F_0 \) are split bundles imply that \(F \) is a split bundle - for example by verifying that \(H^1_*(\mathcal{F}) = 0 \) which implies that equation (4) splits.

Let \(\mathcal{F}_1 = \ker(\wedge^3 F_0 \rightarrow \wedge^3 E) \). We have the following pullback diagram:

\[
\begin{array}{ccccccccc}
0 & \longrightarrow & \wedge^3 G & \longrightarrow & \mathcal{F}_1 & \longrightarrow & \mathcal{E} & \longrightarrow & 0 \\
& & \downarrow & & \downarrow & & \downarrow & & \\
0 & \longrightarrow & \wedge^3 G & \longrightarrow & \wedge^3 F_0 & \longrightarrow & \mathcal{F} & \longrightarrow & 0 \\
& & \downarrow & & \downarrow & & \downarrow & & \\
& & \wedge^3 E & \longrightarrow & \wedge^3 E & & & & \\
& & \downarrow & & \downarrow & & \downarrow & & \\
& & 0 & & 0 & & & & \\
\end{array}
\]

Here the map \(\wedge^3 G \rightarrow \mathcal{F}_1 \) is coming from the filtration diagram for \(\wedge^3 F_0 \) as induced by

the sequence \(0 \to G \to F_0 \to E \to 0 \) and \(\mathcal{E} = \text{coker}(\wedge^3 G \rightarrow \mathcal{F}_1) \).

The above diagram (and the fact that \(\mathcal{F} \) is split) will imply that \(\mathcal{E} \) is split which in turn means that \(\mathcal{F}_1 \) is a split bundle. Lemma \(\text{[3.1]} \) (below) will now imply that \(E \) is split. \(\square \)

We complete the proof of the above theorem with following lemma which uses similar form of cohomological chase as done in [20]:

Lemma 3.1. Let \(E \) be an ACM vector bundle of rank 3 on a hypersurface \(X \) of dimension \(\geq 6 \). Let \(G, F_0 \) denote the vector bundles on \(X \) coming from the 1-step resolution of \(E \) as in sequence (1). Let \(\mathcal{F}_1 = \ker(\wedge^3 F_0 \rightarrow \wedge^3 E) \) (as assumed in the proof of theorem [1.1]). If \(\mathcal{F}_1 \) is split then \(E \) is split.

Proof. Consider the following \(\wedge - \text{Sym} \) sequence for index 3 associated with sequence (2):

\[
0 \rightarrow \wedge^3 E(-d) \rightarrow \wedge^2 E(-d) \otimes F_1 \rightarrow E(-d) \otimes \text{Sym}^2 F_1 \rightarrow \text{Sym}^3 F_1 \rightarrow \text{Sym}^3 G \rightarrow 0
\]
Breaking it into short exact sequences and using the fact that as E is rank 3 therefore $\wedge^3 E(-d), \wedge^2 E(-d), E(-d)$ are all arithmetically Cohen-Macaulay bundle and $\text{Sym}^i F_1$ is a split bundle for all i, we get

$$H^i_\ast (\text{Sym}^3 G) = 0 \text{ for } i = 1, 2, \ldots, \dim(X) - 4$$

Similarly we write the $\wedge - \text{Sym}$ sequence for index 2:

$$0 \to \wedge^2 E(-d) \to E(-d) \otimes F_1 \to \text{Sym}^2 F_1 \to \text{Sym}^2 G \to 0$$

which gives $H^i_\ast (\text{Sym}^2 G) = 0$ for $i = 1, 2, \ldots, \dim(X) - 3$.

Now we write the $\text{Sym} - \wedge$ sequence for index 3 for the short exact sequence (1):

$$0 \to \text{Sym}^3 G \to \text{Sym}^2 G \otimes F_0 \to G \otimes \wedge^2 F_0 \to \wedge^3 F_0 \to \wedge^3 E \to 0$$

Breaking it up we get $0 \to \text{Sym}^3 G \to \text{Sym}^2 G \otimes F_0 \to J_1 \to 0$. The vanishing results for cohomologies of $\text{Sym}^3 G$, $\text{Sym}^2 G$ implies that if $\dim(X) \geq 6$ then $H^i_\ast (X, J_1) = 0$. Now J_1 further fits into the following short exact sequence:

$$0 \to J_1 \to G \otimes \wedge^2 F_1 \to F_1 \to 0 \quad (7)$$

where F_1 is split by assumption. Therefore (7) is a split sequence and hence G admits a line bundle as a direct summand. Lemma 2.1 tells us that E is split. \qed

References

[1] Michael F. Atiyah, *On the Krull-Schmidt theorem with application to sheaves*, Bulletin de la S.M.F., tome 84 (1956), 307-317.

[2] R.-O. Buchweitz, G.-M. Greuel, and F.-O. Schreyer, *Cohen-Macaulay modules on hypersurface singularities II*, Inv. Math. 88 (1987), 165-182.

[3] Chris Brav (http://mathoverflow.net/users/4659/chris-brav), *How to resolve a wedge product of vector bundles*, URL (version: 2010-10-13): http://mathoverflow.net/q/41990

[4] M. Casanellas and R. Hartshorne, *ACM bundles on cubic surfaces*, J. Eur. Math. Soc. 13 (2011), 709-731.

[5] L. Chiantini and C. Madonna, *ACM bundles on a general quintic threefold*, Matematiche (Catania) 55(2000), no. 2 (2002), 239-258.

[6] L. Chiantini and C. Madonna, *A splitting criterion for rank 2 bundles on a general sextic threefold*, Internat. J. Math. 15 (2004), no. 4, 341-359.

[7] L. Chiantini and C. Madonna, *ACM bundles on a general hypersurfaces in \mathbb{P}^5 of low degree*, Collect. Math. 56 (2005), no. 1, 85-96.

[8] [SGA7II] P. Deligne, N. Katz, *Séminaire de Géométrie Algébrique du Bois-Marie - 1967-1969. Groupes de monodromie en géométrie algébrique. II*, LNM 340 (1973), Springer-Verlag.

[9] D. Eisenbud, *Homological algebra on a complete intersection*, Trans. of Amer. Math. Soc. Vol. 260, No. 1 (1980), 35-64.

[10] D. Eisenbud, *Commutative algebra with a view toward algebraic geometry*, Springer-Verlag (1995).

[11] R. Hartshorne, *Ample subvarieties of algebraic varieties*, LNM 156, Springer-Verlag (1970).

[12] G. Horrocks, *Vector bundles on the punctured spectrum of a local ring*, Proc. London Math. Soc. 14 (1964), 689-713.

[13] H. Kleppe, *Deformation of schemes defined by vanishing of pfaffians*, Jour. of algebra 53 (1978), 84-92.

[14] H. Knörrer, *Cohen-Macaulay modules on hypersurface singularities I*, Inv. Math. 88 (1987), 153-164.

[15] N. Mohan Kumar, A.P. Rao and G.V. Ravindra, *Arithmetically Cohen-Macaulay bundles on hypersurfaces*, Commentarii Mathematici Helvetici, 82 (2007), No. 4, 829–843.
[16] N. Mohan Kumar, A.P. Rao and G.V. Ravindra, \textit{Arithmetically Cohen-Macaulay bundles on three dimensional hypersurfaces}, Int. Math. Res. Not. IMRN (2007), No. 8, Art. ID rnm025, 11pp.

[17] N. Mohan Kumar, A.P. Rao and G.V Ravindra, \textit{On codimension two subvarieties in hypersurfaces}, Motives and Algebraic Cycles: A Celebration in honour of Spencer Bloch, Fields Institute Communications vol. 56, 167–174, eds. Rob de Jeu and James Lewis.

[18] G.V Ravindra, \textit{Curves on threefolds and a conjecture of Griffiths-Harris}, Math. Ann. 345 (2009), 731-748.

[19] T. Sawada, \textit{A sufficient condition for splitting of arithmetically Cohen-Macaulay bundles on general hypersurfaces}, Comm. Algebra 38 (2010), no. 5, 1633-1639.

[20] A. Tripathi, \textit{Splitting of low rank ACM bundles on hypersurfaces of high dimension}, \texttt{arXiv:1304.2135} [math.AG]

Department of Mathematics, Indian Statistical Institute, Bangalore - 560059, India
E-mail address: amittr@gmail.com