Endoscopic submucosal dissection for the diagnosis and therapy of pedunculated gastric cancer with prolapse into the duodenal bulb: A case report

Norihiro Suzuki a, Masashi Yoshida a,⁎, Hironori Ohdaira a, Tomonori Imakita a, Nobuhiro Tsutsui a, Yasunobu Kobayashi a, Junji Takahashi a, Shinya Okada b, Masaki Kitajima a, Yutaka Suzuki a

a Department of Surgery, International University of Health and Welfare Hospital, 537-3, Iguchi, Nasushiobara-city, Tochigi, 329-2763, Japan
b Department of Pathology, International University of Health and Welfare Hospital, 537-3, Iguchi, Nasushiobara-city, Tochigi, 329-2763, Japan

1. Introduction

Preoperative diagnosis of gastric cancer invasion is not always sufficiently accurate; pre- and post-ESD discrepancies were reported to be 20.1% [1]. Using high-frequency ultrasound probe sonography, it was found that the depth of early gastric cancer was also not accurately determined in 10% of cases [2]. Diagnostic endoscopic submucosal dissection (ESD) can be performed for the purpose of minimizing the treatment or avoiding over-treatment. We encountered a patient with large (3.5 cm) pedunculated polyp-shaped gastric cancer with prolapse into the duodenal bulb. In order to determine the depth of invasion, diagnostic ESD was performed. This paper has been reported in line with the SCARE criteria [3].

2. Case presentation

A 70-year-old man underwent gastric cancer screening by combined assay for serum anti-Helicobacter pylori (Hp) IGG antibody and serum pepsinogen (PG) levels [4]. He presented at our institute because both anti-Hp IGG antibody and PG were classified as positive: individuals with PG I levels of ≤70 μg/l and a PG I/II ratio of < 3 were classified as PG-positive, and those with a serum Hp antibody titer of > 10Ul/ml were classified as anti-Hp IGG antibody positive. Upper gastrointestinal endoscopy was performed, and a large (3.5 cm) pedunculated polyp with prolapse into the duodenal bulb was found (Fig. 1). The prolapse was easily corrected, and

⁎ Corresponding author.
E-mail address: masashi@iuhw.ac.jp (M. Yoshida).

https://doi.org/10.1016/j.ijscr.2018.02.004
2210-2612 © 2018 The Authors. Published by Elsevier Ltd on behalf of IJS Publishing Group Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
it was located at the anterior wall of the antrum. At biopsy, the tumor was histologically diagnosed as a well differentiated tubular adenocarcinoma.

Abdominopelvic computed tomography (CT) showed the pedunculated polyp with prolapse into the duodenal bulb without evidence of distant metastasis or lymph node metastasis (Fig. 2). [fluorine-18]-fluorodeoxy-glucose (18F-FDG)-positron emission tomography (PET)/computed tomography (CT) imaging showed high 18F-FDG uptake, suggesting the possibility of advanced gastric cancer (Fig. 3). Since the pre-operative diagnosis of the cancer invasion was indeterminable, diagnostic ESD was performed. A dual knife (Electrosurgical Knife [KD-650L]; Olympus) was used for marking, mucosal incision, and submucosal dissection, and hyaluronic-acid containing solution was used as a submucosal fluid cushion. ESD was completed without complications, and the tumor was resected in an en bloc fashion (Fig. 4). The post-ESD course was uneventful. The pathohistological diagnosis was early gastric cancer (33 × 35 × 20 mm, well differentiated tubular adenocarcinoma [tub1, pT1a|M|, ly[–], v[–], UL[–], pHM0, pVM0 [Fig. 5]) according to the Japanese classification of gastric carcinoma [5].

After the patient discharged from our hospital, upper gastrointestinal endoscopy (9 month after the ESD: Fig. 6) and abdominopelvic CT (12 month after the ESD) was performed and revealed no recurrence. The latest visit to our hospital was 14 month after the ESD and no sign of recurrence was observed.

3. Discussion

The present case is a good example of diagnostic ESD possibly minimizing the damage of gastric cancer treatment. It was reported that ESD for early gastric cancers that met the expanded criteria [6] for intestinal-type gastric cancer (cT1a) was acceptable and should be the standard treatment instead of gastrectomy [7]. The expanded criteria included cancer confined to the mucosa (cT1a), a single primary intestinal-type gastric adenocarcinoma, an ulcer-negative lesion of any size, or a ≤3 cm ulcer-positive lesion, cN0M0, and no prior treatment. Preoperative diagnosis of the depth of cancer invasion in the present case was uncertain because the size, especially the height of the tumor, was large. However, it was speculated that the cancer invasion was, at most, confined to the submucosa because the cancer had a pedunculated shape. Therefore, diagnostic ESD was performed. Pathohistological diagnosis revealed that the resection was curative and met the expanded criteria, so gastrectomy was not required.
Fig. 2. Findings of contrast-enhanced computed tomography. Abdominopelvic computed tomography (CT) showed the pedunculated polyp with prolapse into the duodenal bulb with no evidence of distant metastasis or lymph node metastasis.
Fig. 3. ([fluorine-18]-fluorodeoxy-glucose (18F-FDG)-positron emission tomography (PET)/computed tomography (CT). 18F-FDG-PET/CT imaging showed high 18F-FDG uptake, suggesting the possibility of advanced gastric cancer.
Fig. 4. ESD.
A dual knife (Electrosurgical Knife [KD-650L]; Olympus) was used for marking, mucosal incision, and submucosal dissection, and hyaluronic-acid containing solution was used as a submucosal fluid cushion. The tumor was resected in an en bloc fashion.
Fig. 5. Pathohistological findings.
Adenocarcinoma, tub1, pT1aN0M0, ly(−), v(−), UL(−), 33 × 35 × 20 mm in size.
A) A cut section of the polypoid lesion (HE stain, loupe image).
B) Atypical foveolar epithelium in the top of the polyp (HE stain, object lens ×20).
C) Fusiogenic atypical glands in the bottom of the polyp (HE stain, object lens ×20).
D) No stalk invasion, stump free, pHM0, pVM0. (HE stain, object lens ×2).
E) Immunohistochemical stain of Desmin, no invasion to muscularis mucosae of the stalk (object lens ×2).

Fig. 6. Upper gastrointestinal endoscopy performed 9 month after the ESD.
No local recurrence was found by the upper gastrointestinal endoscopy performed 9 month after the ESD.
We reported a case of pedunculated gastric cancer with prolapse into the duodenal bulb that could be treated by ESD. The present case is a good example of diagnostic ESD being used to minimize the damage of gastric cancer treatment.

Conflict of interest

The authors declare no conflict of interests related to this article.

Funding

None.

Ethical approval

Written informed consent was obtained from the patient for publication of these case reports and accompanying images.

This is a report of a case and written informed consent was obtained from the patients for publication of these case reports and accompanying images. The ethical approval of this case report was exempted by International University of Health and Welfare Hospital.

Consent

This patient was properly informed and gave consent for his clinical information to be included in an Elsevier publication.

Author contribution

Norihiko Suzuki and Masashi Yoshida performed the procedure, wrote the manuscript and is responsible for the information. Norihiko Suzuki, Yasunobu Kobayashi, Junji Takahashi, Nobuhiro Tsutsui and Tomonori Imakita assisted the procedure and were in charge of the post ESD management. Phathohistological diagnosis was provided by Shinya Okada, Hiroroni Ohdaira, Masaki Kitajima and Yutaka Suzuki critically reviewed and assisted to write the manuscript.

Guarantor

Masashi Yoshida is the guarantor of this paper.

Acknowledgement

Authors would like to express sincere appreciation to Mr. Chris Rowthorn for correcting the English language.

References

[1] Joon Mee Kim, Jin Hee Sohn, Mee-Yon Cho, et al., Pre- and post-ESD discrepancies in clinicopathologic criteria in early gastric cancer: the NECA–Korea ESD for early gastric cancer prospective study (N-Keep), Gastric Cancer 19 (2016) 1104–1113.

[2] S. Yoshida, S. Tanaka, K. Kunihiro, et al., Diagnostic ability of high-frequency ultrasound probe sonography in staging early gastric cancer, especially for submucosal invasion, Abdom. Imaging 30 (2005) 518–523.

[3] R.A. Agha, A.J. Fowler, A. Saetta, I. Barai, S. Rajmohan, D.P. Orgill, The SCARE Group, The SCARE statement: consensus-based surgical case report guidelines, Int. J. Surg. 34 (2016) 180–186.

[4] Yasuharu Yamaguchi, Yasuhiho Nagata, Ryuuta Hiratsuka, et al., Gastric cancer screening by combined assay for serum anti-Helicobacter pylori IgG antibody and serum pepsinogen levels – the ABC method, Digestion 93 (2016) 13–18.

[5] Japanese Gastric Cancer Association, Japanese classification of gastric carcinoma. 3rd English edition, Gastric Cancer 14 (2011) 101–112.

[6] T. Gotoda, A. Yanagisawa, M. Sasaki, et al., Incidence of lymph node metastasis from early gastric cancer: estimation with a large number of cases at two large centers, Gastric Cancer 3 (December (4)) (2000 Dec) 219–225.

[7] N. Hasuie, H. Ono, N. Boku, et al., A non-randomized confirmatory trial of an expanded indication for endoscopic submucosal dissection for intestinal-type gastric cancer (cT1a): the Japan clinical oncology group study (JCOG0607), Gastric Cancer 21 (2018) 114–123.