Factors Affecting the Severity of Pedestrian Traffic Crashes

Ali Moradi, Pegah Ameri1, Khaled Rahmani2, Maryam Najafi3, Ensiyeh Jamshidi4, Yadolah Fakhri4, Salman Khazaei4, Babak Moeini2, Mohyeddin Amjadian4

Occupational Health and Safety Research Center, Hamadan University of Medical Sciences, Hamadan, Iran, 1Clinical Research Development Unit of Besat Hospital, Hamadan University of Medical Sciences, Hamadan, Iran, 2Social Determinants of Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran, 3Trauma Research Center, Kashan University of Medical Sciences, Kashan, Iran, 4Community Based Participatory Research Center, Iranian Institute for Reduction of High-Risk Behaviors, Tehran University of Medical Sciences, Tehran, Iran, 5Department of Environmental Health Engineering, Student Research Committee, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran, 5Research Center for Health Sciences, Hamadan University of Medical Sciences, Hamadan, Iran, 6Department of Public Health, School of Public Health, Social Determinants of Health Research Center, Hamadan University of Medical Sciences, Hamadan, Iran, 7Department of Clinical Psychology, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran

ORCID:
Ali Moradi: https://orcid.org/0000-0003-0049-7611
Pegah Ameri: https://orcid.org/0000-0003-0351-8000
Khaled Rahmani: https://orcid.org/0000-0002-0860-8040
Maryam Najafi: https://orcid.org/0000-0002-0262-8323
Ensiyeh Jamshidi: https://orcid.org/0000-0001-7387-8226
Yadolah Fakhri: https://orcid.org/0000-0002-3579-7641
Salman Khazaei: https://orcid.org/0000-0001-5918-2310
Babak Moeini: https://orcid.org/0000-0001-9376-0460
Mohyeddin Amjadian: https://orcid.org/0000-0002-0589-3317

Abstract

Background: Considering the importance of pedestrian traffic crashes and the role of environmental and demographic factors in the severity of these crashes, this article aimed to review the published evidence and synthesize the results of related studies to determine any associations between demographic and environmental factors and the severity of pedestrian-vehicle crashes. Methods: All epidemiological studies published from 1970 to 2019 were searched in international electronic databases (PubMed [Medline], Scopus, Web of Science, Embase, ScienceDirect, and Ovid) and reference lists of the identified articles were also searched. Studies were included if they investigated the severity of pedestrian-vehicle crashes as outcome, measured any environmental and demographic factors for pedestrian-vehicular crashes as exposure, designed observational, and if they were written in all languages. Quality of included studies was evaluated using the strengthening the reporting of observational studies in epidemiology checklist for observational studies. Results: We found 3126 references among which 24 studies were included in this review. All retrieved studies were conducted between 1990 and 2019 and had a cross-sectional design. In most of these studies, the associations between environmental and demographic variables such as vehicle speed or speed limits, pedestrian age, lighting, type of road, type of vehicle, and alcohol intake with the severity of pedestrian traffic crashes were examined. Conclusion: This study showed that few studies were conducted in this area; in fact, most of the studies were carried out in metropolises of developed countries. As a result, studies which provide strong causal inferences by focusing on high-risk groups and a higher level of evidence such as cohort and case-control ones are needed in developing countries.

Keywords: Pedestrian, review, severity of traffic crash

Introduction

Deaths and injuries of pedestrians caused by traffic crashes have been growing in recent years in the world.[1] Globally, pedestrians constituted 22% of those killed on the world’s roads. Each year, about 270,000 pedestrians lost their lives due to traffic crashes.[2] Pedestrians also accounted for the...
highest rate of traffic fatalities in the world’s most populated cities. For example, in the cities of Mumbai and New Delhi, deaths of pedestrians constituted 78% and 53% of the traffic fatalities, respectively.[3]

Moreover, world statistics showed that there was a difference in the ratio of pedestrian deaths to the whole traffic fatalities in different countries. This proportion is much higher in developing countries than in developed ones. For example, 86% and 68% of traffic deaths were because of pedestrian traffic crashes in Peru and Mozambique, respectively, while they were 13% and 26% for the United States of America and Canada, respectively.[6-5]

In addition, injuries in pedestrian – vehicle crashes were usually more severe in low- and middle-income countries than in developed ones. However, the proportion of deaths and injuries and the number of cars did not fit. For example, 80% of the cars are in North America, Western Europe, and Japan which only included 15% of the population, whereas 85% of traffic deaths and 90% of disabilities resulting from pedestrian traffic crashes occurred in low- and middle-income countries.[11]

Furthermore, a significant number of victims in traffic crashes were child and teenager pedestrians. According to the World Health Organization (WHO), approximately 21% of traffic crash fatalities were related to child pedestrians, and about 720 child pedestrians lost their lives daily in road crashes.[12]

Given the importance of this issue and lack of a review on existing relevant studies to determine the role of demographic and environmental factors in the severity of pedestrian-vehicle traffic crashes, this review aimed to find, evaluate, and synthesize the results of relevant studies to determine environmental and demographic factors, which were associated with the severity of pedestrian-vehicle crashes.

Objectives

This article aimed to review the published evidence and synthesize the results of related studies to determine any associations between demographic and environmental factors and the severity of pedestrian-vehicle crashes.

Methods

This study sought to identify all observational studies which investigated the association between environmental and demographic factors and the severity of pedestrian-vehicle crashes from 1970 to 2019. The question addressed in this review was: which environmental and demographic factors were significantly associated with severity of pedestrian-vehicle crashes as an outcome?

PubMed (Medline), Scopus, Web of Science, Embase, ScienceDirect, and Ovid databases were searched for published articles and reports. Reference lists of identified articles and proceedings of relevant conferences were also hand-searched. The search was done as follows: (pedestrian) AND (crashes OR vehicle collisions OR injury OR casualties OR hazard OR risk factor OR safety OR security OR environmental attributes OR demographic attributes OR environmental characteristics OR built environment OR vehicle speed OR road segments OR traffic OR transportation OR alcohol intake).

In fact, studies were included if they investigated the severity of pedestrian-vehicle crashes as outcome, measured any environmental and demographic factors for pedestrian-vehicular crashes as exposure, designed observational, and if they were written in all languages. Moreover, assessment of the quality of the studies was done as follows: Published articles in indexed and peer review journals were considered to be the indication for the quality of these articles. In addition, quality of articles published in nonindexed journals, reports, and books published by UN agencies (WHO, UNESCO, UNICEF) and the World Bank, and the proceedings of conferences and seminars were assessed by experts in epidemiology and traffic crashes using the strengthening the reporting of observational studies in epidemiology checklist.

In fact, titles and abstracts of the studies were reviewed by two separate Ph. D. candidates of Epidemiology. Articles and reports that were deemed irrelevant by these two reviewers were excluded from the study list. The number of excluded articles and their titles were recorded. Then, the full text of articles and reports were retrieved and referred to two independent teams of reviewers. Each team separately extracted the answers to the research question from the contents of the paper and took the necessary notes. In case of any discrepancy, the original text of the article was evaluated by the project supervisor and decisions were made.

Results

The reviewers scanned 3126 studies; 3088 titles were irrelevant to the objectives of this review and they were excluded from the study. Full texts of the remaining 38 studies were retrieved and screened, among which, 24 studies met the inclusion criteria. Figure 1 shows the selection process of enrolled studies. All retrieved studies were conducted from 1990 to 2019 and used a cross-sectional design. Characteristics of the studies, including the country, study population, data source, sample size, study period, main results, and the statistical model used in the study, are summarized in Table 1.

The results of the studies which investigated the associations between demographic and environmental variables (independent variables) such as vehicle speed/speed limit, pedestrian age, lighting (light condition), types of road, alcohol intake, and vehicle type with the severity of traffic crashes (dependent variable) were as follows:

Vehicle speed or speed limit

In 14 of the 24 reviewed studies, the associations between the severity of pedestrian-related traffic crashes and vehicle speed or speed limit were statistically significant.[12,14,15,17,19-21,23,25-28,34] These studies used various indicators including speed limit, vehicle speed, speeding, impact speed, unsafe speed and speed. The speed was measured in miles per hour (mph) in a number of studies and kilometers per hour (km/h) in the others. The significance level ranged from $P < 0.05$ to
P < 0.00001. In a study conducted by Mohamed et al., the significance level was P < 0.00001 which was higher than that in other studies. In this study, the statistical population was the total population, and pedestrian death was used as an outcome variable. The correlation was positive in the majority of studies. In other words, studies showed that with the increase of vehicle speed or speed limit, the severity of pedestrian crashes also increased.

Pedestrian age
In 16 out of the 24 studies, the associations between the severity of pedestrian crashes and pedestrian age were statistically significant. In all 10 studies, by increasing the age of pedestrians, the severity of pedestrian traffic crashes also increased and hence that, the severity of injuries was reported to be higher in the elderly people over 60 years old. The significance level ranged from P < 0.05 to P < 0.000001. The significance level, in the study of Zajac and Ivan, was higher than that in other studies (P < 0.000001). In this study, the statistical population was the total population, and the severity of injury was used as an outcome variable.

Light condition
In 13 out of 24 studies, the associations between the severity of pedestrian crashes and lighting were statistically significant. These studies used various indicators including lighting, daylight, and light conditions. The significance level ranged from P < 0.05 to P < 0.0001. In a study conducted by Mohamed et al., the significance level was reported to be higher than that in other studies (P < 0.0001). In this study, the statistical population was the total population, and pedestrian death was used as an outcome variable. The correlation was positive in the majority of the studies. In other words, these studies demonstrated that when darkness increased (with light decreasing), the severity of pedestrian crashes also increased.

Type of road
Twelve of 24 reviewed studies showed statistically significant associations between the severity of pedestrian crashes and type of the road. In most of these studies, the number of traffic lanes in the carriageway was used to divide roads in the area, and in few studies, roads were divided into national and state, urban and rural or main, and side roads.
Authors (year) (reference)	Country	Study population	Data source	Sample size	Study period	Statistical model	Injury severity scale	Outcome
Pitt et al., 1990[12]	USA	Youth <20 years of age	Highway Traffic Safety Administration (NHTSA)	1035	1977-1980	Logistic regression model	ISS	Vehicle travel (speed>30 mph), residential zone, type of road (including collectors and major roads), pedestrian age (<5 years), time of day (either early morning or late afternoon), and center travel lanes increases severity of injury. In contrast, using different maneuvers to avoid the crash reduces injury severity
Zajac and Ivan 2003[13]	USA	Total population	CDOT	264	1989-1998	Ordered probit model	KABCO scale	Vehicle type, driver and pedestrian alcohol involvement, pedestrian age 65 years or older and clear roadway width are significantly related to the severity of injury
Lee and Abdel-Aty 2005[14]	USA	Total population	Florida Department of Highway Safety and Motor Vehicles	7000	1999-2002	Ordered probit model	No injury, Nonincapacitating evident injury, Incapacitating injury, and Fatal injury	Pedestrians’ alcohol/drug use, vehicle high speed, vehicle type (larger than passenger cars), adverse weather, dark lighting, and no traffic control indicate a statistically significant association with injury severity
Sciortino et al., 2005[15]	USA	Total population	SWITRS and records of pedestrians treated at SFGH	1323	2000-2001	Logistic regression model	ISS	Driver movement (straight, turning right or left), driver speeding, driving under influence, pedestrian age (>65), and lighting condition (dark) increase the severity of injury Variables such as school characteristic (recreation), area characteristics (commercial access, transit access), race, population density, and mixed use indicate a statistically significant association with injury severity
Clifton and Kreamer-Fults 2007[16]	USA	Total population	State of Maryland Motor Vehicle Accident Reports	1513	2000-2002	OLS linear regression	KABCO scale	Pedestrian age (under 15 and above the age of 65 years), pedestrian action (crossing road or junction), speed limit (over 50 km/h), obstruction (at or near obstruction), road type (multi-/ dual carriageway), and environmental contributory (pedestrian negligence) indicate a statistically significant relation with injury severity
Sze and Wong 2007[17]	China	Total population	TRADS	73,746	1991-2004	Logistic regression model	Killed or severe injury, Slight injury	Contd...
Table 1: Contd...

Authors (year) (reference)	Country	Study population	Data source	Sample size	Study period	Statistical model	Injury severity scale	Outcome
Eluru et al., 2008[18]	USA	Total population	GES database	2944	2004	MGORL model	No injury, nonincapacitating injury, incapacitating injury, fatal injury	Most important variables influencing nonmotorist injury severity are the age of the individual (bicyclists over 60 years), injury location (head injury), accidents on high-speed roads (>50 mph), pedestrian location (on the crossing, within 15 m of crossing), pedestrian action (crossing road/junction), special circumstance (overcrowded footpath), traffic congestion (severe), junction control (not at junction), road type (two-way carriageway, multi-/dual carriageway), and time-of-day (7:00-9:59 a.m. 7:00 p.m. 6:59 a.m. 10:00 a.m. - 3:59 p.m.)
Kim et al., 2008[19]	USA	>18 years	Police-reported pedestrian-vehicle crashes from the State of North Carolina	5808	1997-2000	Heteroskedastic model	Fatal injury, incapacitating injury, nonincapacitating injury	Increasing pedestrian age, sex (male driver), darkness with or without streetlights (2-4 times greater probability of mortality), intoxicated driver (2.7 times greater probability of mortality), commercial area, sport-utility vehicle, truck, freeway, two-way divided roadway, speeding-involved, off roadway, motorist turning or backing, both driver and pedestrian at fault, and pedestrian only at fault indicate statistically significant association with injury severity
Clifton et al., 2009[20]	USA	Total population	Maryland motor vehicle accident report	4500	2000-2004	Generalized ordered probit model	No injury, nonfatal injury, fatality	Pedestrians who are not in a crosswalk, cross against the traffic signal, and are experienced a crash after dark are associated with a greater injury risk. Regarding built environment, policy variables of interest, transit access and greater pedestrian connectivity, like central city areas are negatively related with the severity of injury

Contd...
Authors (year) (reference)	Country	Study population	Data source	Sample size	Study period	Statistical model	Injury severity scale	Outcome	
Kim et al., 2010[21]	USA	>18 years	Police-reported pedestrian-vehicle crashes from the State of North Carolina	5808	1997-2000	Mixed logit model	Fatal injury, incapacitating injury, nonincapacitating injury, possible/no injury	Darkness without streetlights, vehicle as truck, freeway, speeding involved, and collisions involving a motorist who had been drinking increase fatality probability for pedestrians in motor-vehicle crashes as 400%, 370%, 330%, 360%, and 250%, respectively	
MacLeod et al., 2012[22]	USA	Total population	FARS	34,940	1998-2007	Logistic regression model	Fatality, nonfatality	Time of day (midnight-7:59 am, 8:00-11:59 pm), week day (weekday), light conditions (some light to dark), speed limit (>55 mph), pedestrian age (<25 and >60), location (road), driver age (≤25), driver sex (male), alcohol use (≥10), prior suspensions, invalid license, vehicle older than 5 years indicate a statistically significant relation with fatal accidents	
Rothman et al., 2012[23]	Canada	Total population	Motor Vehicle Collision Reports filed by the Toronto Police Service	9575	2000-2009	Binary and multinomial logistic regression models	No injury, minor injury, major injury, fatal injury, severe injury (major + fatal)	Uncontrolled mid-block crossings and major arterial roadways show a statistically significant association with severe accidents	
Mohamed et al., 2013[24]	Canada and USA	Total population	Quebec’s auto insurance company (SAAQ) and NYCDOT	5820 and 6896	2003-2006 and 2002-2006	Multinomial logit model and Ordered probit model	Fatal crash, minor injury	Location (accident at intersection), type of vehicle movement at accident (strait), environmental condition (after dark), median income, transit access and mixed-use (HGU/1000) indicate statistically significant association with fatal accidents	
Aziz et al., 2013[25]	USA	Total population	NYSDOT	7354	2002-2006	Random parameter logit model	Severe injury, fatality	Road characteristics (number of lanes, grade, light condition, road surface), traffic attributes (presence of signal control), type of vehicle, and land use (parking facilities, commercial and industrial land use) indicate a statistically significant association with the severity of accident	Contd...
Table 1: Contd...

Authors (year) (reference)	Country	Study population	Data source	Sample size	Study period	Statistical model	Injury severity scale	Outcome
Zhao et al., 2014[25]	China	>18 years	Institute of Surgery, Third Military Medical University, Chongqing	121	2006-2011	Logistic regression model	Fatality, nonfatality	Road type (urban road) and vehicle impact speed (>70) indicate statistically significant relation with severe collision accidents
Zhang et al., 2014[26]	China	Total population	Ministry of Public Security of Guangdong Province	6967	2006-2010	Logistic regression model	Killed or serious injured and disappearance Minor or no injury	Pedestrian’s fault, drunk driving, speeding, pedestrian’s age (45-69), driver’s gender (male), driving experience (0-2 years), driver’s job (workers and migrant workers), vehicle unsafe status (unfit safety status), commercial vehicle, vehicle type (truck), urban highways, street-light condition (no street-lighting), week day (weekend) and time (0.00-6.59, 17:00-19:59) indicate a statistically significant relation with severe accidents
Sasidharan and Menéndez 2014[27]	Switzerland	Total population	National accident database maintained by the Federal Road Office	12,630	2008-2012	Partial proportional odds model	Fatal injury, severe injury, minor injury, PDO	Winter months, pedestrians crossing at mid-block, intersection, motorbike, heavy vehicle, distraction, national road, flat, weather, darkness, speed and age indicate a statistically significant association with severe accidents
Haleem et al., 2015[28]	United States	Total population	FDOT	7330	2008-2010	Mixed logit model	Fatal, incapacitating injury, nonincapacitating injury, possible injury, and PDO	At signalized intersections higher AADT, speed limit, and percentage of trucks; very old pedestrians; at-fault pedestrians; rainy weather; and dark lighting condition were associated with higher pedestrian severity risk. At unsignalized intersections, pedestrian walking along roadway, middle and very old pedestrians, at-fault pedestrians, vans, dark lighting condition, and higher speed limit were associated with a higher pedestrian severity risk
Pour-Rouholamin and Zhou 2016[29]	United States	Total population	Police-reported roadway crash data in Illinois	19,361	2010-2013	Generalized ordered logit model	KABCO scale	Older pedestrians (>65-years-old), pedestrians not wearing contrasting clothing, adult drivers (16-24), drunk drivers, time of day (20:00-05:00), divided highways, multilane highways, darkness, and heavy vehicle associated with severe injuries

Contd...
population consisted of people over 18 years old.19,21,25 Except for the study by Pitt \textit{et al}., in which the study population reported to be people <20 years old.12

The results of the reviewed studies showed that the excessive speeding of vehicles, passages with higher speed limits, especially freeways and highways, the darkness of streets, alcohol intake by the drivers or pedestrians, older pedestrians, and heavy vehicles increased the severity of pedestrian crashes.

It is noteworthy that 11, 3, 2, and 1 out of 24 reviewed studies here were conducted in the United States, China, Canada, and Switzerland, respectively. Although various studies showed that most of the pedestrians’ injuries and deaths in traffic crashes occurred in developing countries,2,4,36-38 this study showed that, except for the Chinese studies, none of the reviewed studies was conducted in such countries. Therefore, it is necessary to conduct researches on risk factors affecting the severity of pedestrian-vehicle crashes in developing countries too.
On the other hand, given that most of the studies in this review were conducted in metropolitan areas of developed countries, especially in the United States and Canada, the results cannot be generalized to all urban areas, especially cities with the different demographic and environmental context in low- and middle-income countries.

Moreover, the results showed that most of the reviewed studies were conducted in the metropolitan areas of the United States and Canada, the study area was a city or part of a city, and only inter-urban traffic crashes in the metropolises were investigated. Furthermore, they did not pay attention enough to the severity of crashes and contributing factors in the outer ring and suburban roads, highways, and freeways.

In addition, this review showed that in studies in which the independent variables of population density, land use, and the weather situation were included in the final models, there was a significant association between these variables and the severity of pedestrian crashes as the dependent variable. In order to reduce the severity of injury in pedestrians, it is necessary to implement interventions targeting these factors.

However, only one study investigated the association between household income and the severity of pedestrian crashes. In recent years, most of the studies that investigated the inequity in traffic crashes revealed that the severity of crashes was higher in poor areas. Therefore, further studies should be designed to investigate the association between socioeconomic status and the severity of pedestrian-vehicle crashes, especially in metropolises of developing countries to help adopt appropriate strategies to reduce these types of crashes and their consequences.

Furthermore, 12 of 24 studies included in this review revealed a statistically significant association between overspeeding and the severity of pedestrian crashes. Furthermore, several other studies showed that overspeeding was one of the most important risk factors associated with the increased severity of pedestrian crashes. However, they did not pay attention enough to the role of urban and suburban roadway safety facilities in the severity of pedestrian crashes, such as pedestrian bridges, lining of pedestrians crossing and warning signs. In fact, the association of traffic signs and the severity of pedestrian traffic crashes were investigated only in the studies by Eluru, et al., Mohamed, et al., and Aziz, et al. Considering the fact that these safety facilities are of those environmental factors which can be associated with the severity of pedestrian crashes, it is necessary to include them in the future as well as underway studies.

On the other hand, all studies that met the inclusion criteria of this review were designed as cross-sectional. In fact, lack of studies, especially cohort and case-control methodology, on causal inferences which could provide higher levels of evidence for identifying demographic and environmental risk factors affecting the severity of pedestrian-vehicle crashes was obvious. Therefore, organizations and institutions which are involved in the research and prevention of traffic crashes programs should pay enough attention to these factors, and investigate the risk factors affecting the severity of traffic crashes by conducting studies which provide stronger causal inferences.

Moreover, in most studies (13 of 24), the statistical population was the total population. However, according to the WHO, approximately 21% of deaths of pedestrian traffic crashes occurred in children for which only 1 study, conducted for pedestrians under 18 years old, met the criteria to be included in our study. Because children, especially school-aged children, are one of the most vulnerable groups for such crashes, it seems necessary to focus on this group when studying the risk factors associated with the severity of pedestrian traffic crashes. Finally, no study addressed the role of taxi stations, bus stops, and public parking lots in the severity of pedestrian crashes. Because there is almost a large number of pedestrians in the streets around the bus stops, taxi stations, and public parking lots, the study of the distribution and severity of the pedestrian crashes using the methods such as spatial analysis and regression models can clarify the role of these environmental factors in the severity of pedestrian traffic crashes. Furthermore, the studies showed that the number of bus stops and the area of parking lots had an important role in the severity of pedestrian traffic crashes.

Conclusion

The results showed that few studies were conducted on the association between demographic and environmental factors and the severity of pedestrian traffic crashes. Furthermore, the majority of studies were carried out in developed countries, especially in the metropolises of the United States. In these studies, some environmental factors that played an important role in the severity of pedestrian traffic crashes, such as pedestrian safety facilities, were ignored. Strong causal inference schemes were not used, and sufficient attention was not also paid to high-risk groups. Therefore, it is necessary to conduct more research at national and regional levels in cooperation with international organizations which are active in the field of traffic crashes in various parts of the world such as the WHO, especially in developing countries, because a large number of pedestrian crashes occur in these countries. Preventive programs, to reduce the severity of these crashes and their burden, should be developed and implemented in such countries.

Acknowledgments

We are honestly grateful to all people who contributed us in this study, especially those who were involved in the data collection.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

References

1. Aidoo EN, Amoh-Gyimah R, Ackaah W. The effect of road and
environmental characteristics on pedestrian hit-and-run accidents in Ghana. Accid Anal Prev 2013;53:23-7.

2. World Health Organization. Pedestrian Safety: A Road Safety Manual for Decision-Makers and Practitioners. Geneva: World Health Organization Press; 2013.

3. Mohan D, Tsimhoni O, Sivak M, Flannagan MJ. Road Safety in India: Challenges and Opportunities. The University of Michigan: Transportation Research Institute; 2009.

4. Zegeer CV, Bushell M. Pedestrian crash trends and potential countermeasures from around the world. Accid Anal Prev 2012;44:3-11.

5. Rothman L, Howard AW, Camden A, Macarthur C. Pedestrian crossing location influences injury severity in urban areas. Inj Prev 2012;18:365-70.

6. Asiama G, Mock C, Blanlari J. Understanding the knowledge and attitudes of commercial drivers in Ghana regarding alcohol impaired driving. Inj Prev 2002;8:53-6.

7. Nantulya VM, Reicher MR. The neglected epidemic: Road traffic injuries in developing countries. BMJ 2002;324:1139-41.

8. Mock C, Kabusingye O, Ahe L, Afukaar F, Arreola-Risa C, Rivas C. Human resources for the control of road traffic injury. Bull World Health Organ 2005;83:294-300.

9. A-sheek CM, Gholam S, Adeji S, Acheampong F, Gish O. Economic consequences of injury and resulting family coping strategies in Ghana. Accid Anal Prev 2003;35:81-90.

10. Mabunda MM, Swart LA, Seedat M. Magnitude and categories of pedestrian fatalities in South Africa. Accid Anal Prev 2008;40:586-93.

11. Peden M. World Report on Child Injury Prevention. Geneva: World Health Organization Press; 2008.

12. Pitt R, Guyer B, Hsieh CC, Malek M. The severity of pedestrian injuries in children: An analysis of the pedestrian injury causation study. Accid Anal Prev 1990;22:549-59.

13. Zajac SS, Ivan JD. Factors influencing injury severity of motor vehicle-crossing pedestrian crashes in rural connecticut. Accid Anal Prev 2003;35:369-79.

14. Lee C, Abdel-Aty M. Comprehensive analysis of vehicle – Pedestrian crashes at intersections in Florida. Accid Anal Prev 2005;37:775-86.

15. Sciortino S, Vassar M, Radetsky M, Knudson MM. San Francisco pedestrian injury surveillance: Mapping, under-reporting, and injury severity in police and hospital records. Accid Anal Prev 2005;37:1102-13.

16. Clifton KJ, Kreamer-Fults K. An examination of the environmental attributes associated with pedestrian-vehicular crashes near public schools. Accid Anal Prev 2007;39:708-15.

17. Szcz NN, Wong SC. Diagnostic analysis of the logistic model for pedestrian injury severity in traffic crashes. Accid Anal Prev 2007;39:1267-78.

18. Eluru N, Bhat CR, Hensher DA. A mixed generalized ordered response model for examining pedestrian and bicyclist injury severity level in traffic crashes. Accid Anal Prev 2008;40:1033-54.

19. Kim JK, Ulfarsson GF, Shankar VN, Kim S. Age and pedestrian injury severity in motor-vehicle crashes: A heteroskedastic logit analysis. Accid Anal Prev 2008;40:1695-702.

20. Clifton KJ, Burnier CV, Akar G. Severity of injury resulting from pedestrian-vehicle crashes: What can we learn from examining the built environment? Transp Res D Transp Environ 2009;14:425-36.

21. Kim JK, Ulfarsson GF, Shankar VN, Manning FL. A note on modeling pedestrian-injury severity in motor-vehicle crashes with the mixed logit model. Accid Anal Prev 2010;42:1751-8.

22. MacLeod KE, Griswold JB, Arnold LS, Ragland DR. Factors associated with hit-and-run pedestrian fatalities and driver identification. Accid Anal Prev 2012;45:366-72.

23. Mohamed MG, Sauinier N, Miranda-Moreno LF, Ukkusuri SV. A clustering regression approach: A comprehensive injury severity analysis of pedestrian – vehicle crashes in New York, US and Montreal, Canada. Saf Sci 2013;54:27-37.

24. Aziz HM, Ukkusuri SV, Hasan S. Exploring the determinants of pedestrian-vehicle crash severity in new york city. Accid Anal Prev 2013;50:1298-309.

25. Zhao H, Yin Z, Yang G, Che X, Xie J, Huang W, et al. Analysis of 121 fatal passenger car-adult pedestrian accidents in China. J Forensic Leg Med 2014;27:76-81.

26. Zhang G, You KK, Zhang X. Analyzing fault and severity in pedestrian-motor vehicle accidents in China. Accid Anal Prev 2014;73:141-50.

27. Sasidharan L, Menéndez M. Partial proportional odds model—an alternate choice for analyzing pedestrian crash injury severities. Accid Anal Prev 2014;72:330-40.

28. Haleem K, Alfti P, Gan A. Analyzing pedestrian crash injury severity at signalized and non-signalized locations. Accid Anal Prev 2015;81:14-23.

29. Pour-Rouholamin M, Zhou H. Investigating the risk factors associated with pedestrian injury severity in Illinois. J Safety Res 2016;57:9-17.

30. Kim M, Kho SY, Kim DK. Hierarchical ordered model for injury severity of pedestrian crashes in South Korea. J Safety Res 2017;61:33-40.

31. Xin C, Guo R, Wang Z, Lu Q, Lin P, Amiar SJ. The effects of neighborhood characteristics and the built environment on pedestrian injury severity: A random parameters generalized ordered probability model with heterogeneity in means and variances. Anal Methods Accid 2017;16:117-32.

32. Uddin M, Ahmed FJ. Pedestrian injury severity analysis in motor vehicle crashes in Ohio. Safety 2018;4:20.

33. Moradi A, Soori H, Kavosi A, Esghabadi F, Hashemi Nazari SS, et al. Human factors influencing the severity of traffic accidents related to pedestrians in Tehran. Iran Occup Health 2018;15:55-64.

34. Sun M, Sun X, Shan D. Pedestrian crash analysis with latent class clustering method. Accid Anal Prev 2019;124:50-7.

35. D’Sousa E, Forsyth A, Koepp J, Larson N, Lytle L, Mishra N, et al. NEAT-GIS protocols: Neighborhood environment for active transport. Version 5.1. Geogr Inf Syst 2012;196-7.

36. Naci H, Chisholm D, Baker TD. Distribution of road traffic deaths by road user group: A global comparison. Inj Prev 2009;15:55-9.

37. World Health Organization. Global Status Report on Road Safety: Supporting a Decade of Action. Geneva: World Health Organization; 2013.

38. World Health Organization. Global Status Report on Road Safety: Time for Action. Geneva: World Health Organization Press; 2009.

39. Hasselberg M, Laflamme L, Weitoft GR. Socioeconomic differences in road traffic injuries during childhood and youth: A closer look at different kinds of road user. J Epidemiol Community Health 2001;55:858-62.

40. Zambon F, Hasselberg M. Socioeconomic differences and motorcycle injuries: Age at risk and injury severity among young drivers. A Swedish nationwide cohort study. Accid Anal Prev 2006;38:1183-9.

41. Licaj I, Haddak M, Pochet P, Chiron M. Contextual deprivation, daily travel and road traffic injuries among the young in the Rhône département (France). Accid Anal Prev 2011;43:1617-23.

42. Laflamme L, Engström K. Socioeconomic differences in Swedish children and adolescents injured in road traffic incidents: Cross sectional study. BMJ 2002;324:396-7.

43. Laflamme L, Dideriehsen F. Social differences in traffic injury risks in childhood and youth – A literature review and a research agenda. Inj Prev 2000;6:293-8.

44. Morency P, Lavoie L, Plantz C, Fournier M, Morency C. Neighborhood social inequalities in road traffic injuries: The influence of traffic volume and road design. Am J Public Health 2012;102:1112-9.

45. Laflamme L, Hasselberg M, Reimers AM, Cavalini LT, Ponce de Leon A. Social determinants of child and adolescent traffic-related and intentional injuries: A multilevel study in Stockholm county. Soc Sci Med 2009;68:1826-34.

46. Kröyer HR. The relation between speed environment, age and injury severity of pedestrians struck by a vehicle and the relation to travel speed and age. IATSS Res 2017;16:117-32.

47. Kröyer HR. Is 30km/h ‘safe’ speed? Injury severity of pedestrians struck by a motorized vehicle – A comparison risk as a function of car impact speed. Accid Anal Prev 2011;43:25-33.

48. Tefft BC. Impact speed and a pedestrian’s risk of severe injury or death. Accid Anal Prev 2013;50:871-8.

49. Rosén E, Stigson H, Sander U. Literature review of pedestrian fatality risk as a function of car impact speed. Accid Anal Prev 2011;43:25-33.

50. Kröyer HR. The relation between speed environment, age and injury outcome for bicyclists struck by a motorized vehicle – A comparison with pedestrians. Accid Anal Prev 2015;76:57-63.

51. World Health Organization. Youth and Road Safety. Geneva:: World Health Organization Press; 2007.

52. Elias W, Shiftan Y. Analyzing and modeling risk exposure of pedestrian children to involvement in car crashes. Accid Anal Prev 2014;62:397-405.
53. Meir A, Parmet Y, Oron-Gilad T. Towards understanding child-pedestrians’ hazard perception abilities in a mixed reality dynamic environment. Transp Res F Traffic Psychol Behav 2013;20:90-107.

54. Miranda-Moreno LF, Morency P, El-Geneidy AM. The link between built environment, pedestrian activity and pedestrian-vehicle collision occurrence at signalized intersections. Accid Anal Prev 2011;43:1624-34.

55. Schneider RJ, Ryznar RM, Khattak AJ. An accident waiting to happen: A spatial approach to proactive pedestrian planning. Accid Anal Prev 2004;36:193-211.