MiR-744-5p inducing cell death by directly targeting HNRNPC and NFIX in ovarian cancer cells

Michael Kleemann1,2, Helga Schneider1, Kristian Unger3, Philip Sander4, E. Marion Schneider4, Pamela Fischer-Posovszky5, René Handrick1 & Kerstin Otte1

MicroRNAs (miRNAs) play an important role in the regulation of gene expression. The binding to target messenger RNAs (mRNAs) results in mRNA cleavage or inhibition of the translational machinery leading to decreased protein levels. Various signalling pathways, including apoptosis are modulated by miRNAs. Here, we investigated the role of miR-744-5p in apoptosis signalling in ovarian cancer cell lines. MiR-744-5p expression was reduced in the cancer cell lines independent of the host gene MAP2K4. Overexpression of miR-744-5p activated the intrinsic apoptotic pathway in SKOV3, OVCAR3 and Cisplatin resistant (A2780-cis) and non-resistant A2780 cells leading to cell death. Notably, miR-744-5p overexpression together with Carboplatin treatment led to at least additive pro-apoptotic effects. Investigation of the apoptotic signalling pathways mediated by miR-744-5p revealed that its elevated expression directly downregulated mRNA and protein expression of nuclear factor I X (NFIX) and heterogeneous nuclear ribonucleoprotein C (HNRNPC). HNRNPC caused diminished miR-21 expression and AKT phosphorylation, while NFIX decreased Bcl2 levels, leading to the detected pro-apoptotic effects. Finally, Kaplan-Meier-Plots showed a prolonged median disease-free survival in ovarian serous cystadenocarcinoma patients with high miR-744 expression.

Apoptosis is a form of programmed cell death considered to destroy only single cells without damaging surrounding tissues1. It is induced via the interrelating and tightly controlled intrinsic and extrinsic apoptotic signalling pathways2. The extrinsic pathway is initiated by external signals as for example via the transmembrane receptor tumour necrosis factor receptor (TNFR)1, while the intrinsic pathway is induced by the release of mitochondrial cytochrome C. The integrity of mitochondria is mediated by different pro- and anti-apoptotic B-cell lymphoma 2 (Bcl2) members2. Bcl2-associated X protein (BAX), one of the pro-apoptotic members of this protein family induces apoptosis by the regulation of cytochrome C release from the mitochondria via alteration of mitochondrial membrane permeability1. Apoptotic signalling pathways are activating caspases2. Here the initiator caspase 8 is activated via extrinsic, caspase 9 more via intrinsic apoptosis pathway. Both caspases are activating the effector caspases 3 and -71 and thereby finally leading to the cleavage of genomic DNA by caspase-activated deoxyribonucleases3 and cell shrinkage1. Apoptotic cells are eliminated via phagocytosis1.

MicroRNAs (miRNAs), around 22 nucleotides long, are single-stranded RNAs5. They are involved in the regulation of cellular processes such as apoptosis, proliferation or differentiation6. Due to the fine tuning of the apoptosis regulation7 and the increasing evidence as potential tumour suppressor genes, miRNAs are highly interesting molecules for the generation of novel anticancer therapeutics8.

MiRNAs are transcribed by RNA-polymerase II and processed by the enzymes drosha ribonuclease III (DROSHA) and dicer 1 ribonuclease III (DICER). The miRNAs are bound by Argonaut proteins (AGO2) to the RNA induced silencing complex (RISC). RISC binds to the 3 prime untranslated region (3′ UTR) of a target gene and thereby functions as post-transcriptional regulator9. The binding of a miRNA to the target mRNA typically

1Institute of Applied Biotechnology, University of Applied Sciences Biberach, Hubertus-Liebrecht-Str. 35, 88400, Biberach, Germany. 2University of Ulm, Faculty of Medicine, Albert-Einstein-Allee 11, 89079, Ulm, Germany. 3Research Unit Radiation Cytogenetics, Helmholtz Center Munich, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764, Neuberger, Germany. 4University Medical Center Ulm, Division of Experimental Anesthesiology, Albert-Einstein-Allee 23, 89081, Ulm, Germany. 5University Medical Center Ulm, Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, Eythstr. 24, 89075, Ulm, Germany. Correspondence and requests for materials should be addressed to M.K. (email: kleemann@hochschule-bc.de)
 leads to translational repression and mRNA decay, although highly complementary targets can be cleaved endonucleolytically. miRNAs bind with imperfect base pairing to their targets of multiple genes, and can therefore interact with several signalling pathways.

MiRNA-744 is known to be significantly deregulated in several cancers, for example in human hepatocellular carcinoma, pancreatic, colon or gastric cancer, leading to its investigation as a prognostic biomarker in hepatocellular carcinoma and pancreatic cancer. Due to its deregulation miR-744 has been hypothesized to play an important role in tumour development or tumourigenesis. However, its role in ovarian cancer and the underlying mechanisms leading to the observed cellular responses are unknown. Ovarian cancer (ovarian CA) is a common human cancer with poor prognosis and the highest death-to-incidence ratio. It refers to a highly heterogeneous tumour type including the subgroup of epithelial ovarian carcinoma. Early detection of ovarian CA is very difficult and limited by the method spectra. For cancer therapy, researcher focus on onco genes, tumour suppressors as well as cell signalling pathways exploring their role in tumour progression by inducing proliferation or inhibition of apoptosis.

Based on a previous high throughput screening analysing 188 miRNAs in different cancer cell lines we identified several novel miRNAs to induce cell death in ovarian CA cell lines. The aim of this study was to identify the role of miR-744-5p in programmed cell death of ovarian CA cell lines and analyse underlying cellular mechanisms by identifying target genes regulated by miR-744-5p involved in signalling pathways leading to the cellular response of cell death.

Results

MiR-744-5p, a pro-survival miRNA in patients with ovarian carcinoma. Due to their involvement in the regulation of fundamental cellular processes such as apoptosis, miRNAs are promising candidate molecules for the generation of novel anticancer therapeutics. Therefore, we previously performed an apoptosis screening employing 188 miRNAs in various human cancer cell lines including an ovarian carcinoma (SKOV3) and a glioblastoma (T98G) cell line. In addition, SGBS preadipocyte cells were employed as a non-immortalized and non-cancerous control cell line. Apoptosis induction by miRNAs were accessed by transient miRNA mimics transfection and subsequent apoptosis measurement by quantitative flow cytometry. To identify miRNAs with cell line specific or overlapping functions, we clustered miRNAs inducing apoptosis compared to a non-targeting control (NT) with a fold change of greater 1.5 and a p-value lower 0.01 (Fig. 1a). Here, miR-744-5p induced apoptosis only significantly (p < 0.0001) in SKOV3 cells with a fold change of 2.89 fold +/− 0.13 fold at 72 h after transfection compared to a non-targeting control (NT, 1.00 fold +/− 0.24 fold), but no significant induction of apoptosis was observed for T98G or SGBS cells (Fig. 1a,b). The previously described pro-apoptotic miRNAs miR-135a-5p and miR-137-3p were identified as positive controls in all three cell lines. Here, miR-135a-5p induced apoptosis rates of 4.43 fold +/− 0.15 fold in SKOV3 cells compared to 6.80 fold +/− 0.97 fold in T98G cells (Fig. 1b).

To further assess the potential of miR-744 as a diagnostic or therapeutic agent, data from ovarian CA patients from The Cancer Genome Atlas (TCGA) were analysed and revealed a hitherto unknown pro-survival function of miR-744 in these patients. The median of miRNA expression was used as cut-off criteria for the Kaplan-Meier-Plots. The disease-free survival (DFS) was used as endpoint. We showed that older female patients (older than 67.5 years) with a high expression of hsa-miR-744 have a 5.1 months prolonged median DFS (hazard ratio (HR) 0.54, p = 0.009) compared to patients with a low expression of hsa-miR-744 (19.0 months vs 14.1 months) pointing toward a potential protective effect of miR-744 (Fig. 1c).

Altered miR-744 basal expression level in ovarian cancer cell lines and its modulation during apoptosis induction. Since the expression of miRNAs in cancer cells was reported to be often deregulated, the expression of both miR-744 strands in the ovarian CA cell lines SKOV3 and OVCAR3 were compared to the non-cancerous ovarian cell line human ovarian surface epithelial (HOSE) 2170 derived from healthy tissue. The expression of hsa-miR-744-5p in ovarian CA cells was diminished to 0.52 fold +/− 0.13 fold in OVCAR3 cells and even more strikingly to 0.17 fold +/− 0.07 fold in SKOV3 cells compared to the non-cancerous HOSE cells (Fig. 2a).

MiR-744 is encoded on the human chromosome 17p12 in the coding region for mitogen-activated protein kinase 4 (MAP2K4), placed in intron 4 in close proximity to exon 4 (Fig. 2b). To ensure that the expression of MAP2K4 is not altered in cancer cells qRT-PCR analysis was performed. In contrast to the intronic miR-744, expression levels of the miRNA host gene were not reduced in cancer cell lines. As shown in Fig. 2a, almost equal miRNA levels were present in both cancer cell lines, OVCAR3 and SKOV3, as well as in the normal cell line HOSE 2170.

To assess whether chemotherapeutics influence miR-744 expression non-treated cells were compared with those treated with Carboplatin and Paclitaxel. For ovarian cancer patients chemotherapy most commonly employs Carboplatin and Paclitaxel treatment for 3 to 6 cycles. Paclitaxel inhibits the cell division by binding to α-tubulin and thereby stabilizing the microtubules. The activation of apoptosis by taxol treatment is caspase 3 and 9 independent. Carboplatin leads to apoptosis induction by DNA cross linking. To analyse the expression of MAP2K4 after apoptosis the cells were treated with 80 µM Carboplatin or 0.25 µM Paclitaxel for 48 h. This led to an apoptosis rate of 72.29% +/− 1.40% in SKOV3 cells (Fig. 2e). Analysis of the MAP2K4 expression revealed a downregulation in OVCAR3 cells. Here, the mRNA levels were significantly reduced to 0.66 fold +/− 0.06 fold (p < 0.001) after treatment with Carboplatin while treatment with Paclitaxel only moderately altered MAP2K4 expression in SKOV3 and OVCAR3 cells (Fig. 2e). However, upon Carboplatin induced apoptosis, the expression of miR-744-5p was significantly (p < 0.01) enhanced to 1.62 fold +/− 0.24 fold compared to untreated SKOV3 cells. Paclitaxel mediated reduction of hsa-miR-744-5p expression was almost comparable in both cell lines (reduced to 0.52 fold +/− 0.07 fold in SKOV3 cells and to 0.58 fold...
+/- 0.02 fold in OVCAR3 cells, Fig. 2d), potentially indicating different expression and regulation mechanisms for miR-744 and its host gene MAP2K4.

MiR-744 induces cell death in SKOV3 cells. In order to investigate the pro-apoptotic potential of miR-744-5p, we applied several flow cytometric methods to assess molecular changes in apoptotic pathways. To this end, we chose SKOV3 cells since these cells have been investigated in a previous apoptosis screening (Fig. 1a and b). The amount of miR-744 was increased upon transient miR-744-5p mimic transfection into SKOV3 cells, which show low endogenous miR-744 expression. In these experiments, miR-135a-5p served as a positive control for pro-apoptotic effects induced by miRNAs. By using the NyONE microscope, analysis of cell confluence revealed that the apoptosis inducing siRNA death control (DT) significantly (p < 0.0001) reduced cell confluence over the whole time course to 11.2% +/- 2.1% after 72 h (Fig. 3a). The apoptosis inducing chemotherapeutic agents Etoposide and Paclitaxel diminished the cell confluence to 8.4% +/- 5.8% and 10.1% +/- 1.7% 72 h after treatment, respectively. Compared to the non-targeting control (NT), miR-744-5p reduced the cell confluency to 60.0% +/- 3.2% and control miR-135a-5p to 49.8% +/- 5.2%. As the intrinsic apoptotic pathway is activated by the release of cytochrome C the mitochondrial membrane potential \(\Delta \Psi_m \) is reduced. Nearly all cells treated with the positive control carbonylcyanid-m-chlorphenylhydrazon (CCCP; 99.33% +/- 0.28%) showed a low \(\Delta \Psi_m \) after staining with Tetramethylrhodamine ethyl ester (TMRE). In about 90% of the DMSO treated cells, a normal mitochondrial \(\Delta \Psi_m \) was measured at the indicated time points. MiR-744 transfection led to a reduction of the \(\Delta \Psi_m \) in 79.01% +/- 2.47% of the cells, which was in a similar range induced by Etoposide (83.02% +/- 2.08%) or Paclitaxel (88.67% +/- 1.24%; Fig. 3b).

The activation of initiator caspases is described to start early in the apoptotic process¹, although the activity of the effector caspase 3 and -7 was measured with the CellEvent Caspase-3/7 Green Flow Cytometry Assay Kit 24 h after transfection. At 48 h after transfection, miR-744 led to an activation of caspase 3 and -7 in 41.53% +/- 3.2% of the cells. Both, Etoposide and Paclitaxel increased the activity of caspase 3 and -7 already 24 h after treatment up to 53.45% +/- 3.52% and 50.90% +/- 4.16%, compared to basal levels with NT control.

Figure 1. MiRNA screen validation and Kaplan-Meier-Plot for miR-744. MiRNAs with significant (fold change higher 1.5 and p < 0.01) pro-apoptotic effects were clustered in a Venn diagram (a). For validation screening T98G, SKOV3, and SGBS cells were seeded 24 h before transfection with miRNA mimics (50 nM and 0.4 µl ScreenFect A) or non-targeting siRNA (NT, negative control for cell death) control. Apoptosis rates 72 h after transfection were analysed by Nicoletti staining followed by flow cytometric analysis. Data were normalized to NT control of the referring cell line (b). Kaplan-Meier analysis of elderly (cohort older than 67.5 years) ovarian cancer patients with high (blue) and low expression (red) of hsa-miR-744. The median expression of the miRNA was used as a cut-off criteria for patient dichotomization. Disease-free survival (DFS) was used as endpoint with recurrence or progression defining an event. High and low expressors exhibited a median disease-free survival of 19 and 14.1 months, respectively (c). Statistical analyses were performed by one-way ANOVA followed by Bonferroni post-test. The effect of the transfected miRNAs were compared to NT [n = 3 biological replicates; mean ± SD; ***p < 0.001; ****p < 0.0001].
(14.23% +/- 2.78%) respectively (Fig. 3c). To substantiate these results, Western Blot analysis was performed 60 h after transfection. This time point after transfection was determined in previous experiments to reveal the highest detectable molecular changes whereas at later time points the degradation in apoptotic cells was too high. A substantial increase in cleaved Poly (ADP-ribose) polymerase (PARP) as well as a cleavage of Caspase 3 in DT and miR-744 transfected cells was detected (Fig. 3d, densitometry Supplementary Fig. S1). During apoptosis caspase-activated DNase (CAD) cleaves the DNA 29 resulting in short DNA fragments which can be measured as SubG0/G1 fraction by flow cytometry after Nicoletti staining. DT, Etoposide and Paclitaxel treated controls revealed the highest amount of fragmented DNA with up to 69.36% +/- 1.37% (DT) at 72 h. After miR-744-5p transfection the amount of fragmented DNA increased over time leading to a 1.5 fold increased DNA fragmentation (72 h after transfection) when compared to NT transfected cells (39.43% +/- 0.64% vs 26.18% +/- 1.87%, respectively; Fig. 3e). Next an AnnexinV staining was performed to verify apoptotic alterations in phosphatidylserine plasma membrane asymmetry of the cells. To avoid cell membrane destruction induced by later necrotic effects influencing the level of detectable AnnexinV, the assay was performed for 51 h. In SKOV3 cells transfected with miR-744-5p, the amount of AnnexinV positive cells was significantly higher when compared to NT transfected cells (from 41 h onwards, p < 0.05; two-way ANOVA; Fig. 3f,g).

Combined effects of miR-744 transfection and Carboplatin treatment. In order to analyse potential synergistic and sensitizing effects with a chemotherapeutic agent already in use for ovarian CA treatment 25, Carboplatin was tested in combination with miR-744-5p in SKOV3 cells. For this, SKOV3 cells were seeded, transfected, treated with Carboplatin and analysed every hour by long-term video-microscopy using the IncuCyte ZOOM Live-Cell Analysis System. As shown in Fig. 4, Carboplatin treatment alone induced a moderate caspase 3 and -7 activation starting at approximately 45 h after treatment. Strikingly, already 25 h after treatment, cells transfected with miR-744-5p only as well as cells receiving combination treatment (Carboplatin and miR-744-5p)
induced the activity of caspase 3 and −7. However, 45 h after treatment, the effect of Carboplatin increased and in combination with miR-744-5p, led to a far higher effect of 3.9 fold compared to miR-744-5p transfection only (Fig. 4a,b). A significant increase of the activity of caspase 3 and −7 (c) and their content of fragmented DNA (cells in sub G0/G1, e). 5µM CCCP served as a positive control for the breakdown of mitochondrial potential ΔΨm (b). AnnexinV staining was performed by long term imaging using IncuCyte AnnexinV reagent (f). Quantitative analysis of AnnexinV determined at 48 h (arrow) was significantly different for miR-744-5p compared to NT control (g). For Western Blot analysis (d) the cells were harvested 60 h after treatment. The blots were stained with antibodies against Caspase 3, cleaved Caspase 3, PARP and cleaved PARP. GAPDH was used as loading control. Statistical analysis were performed by one-way ANOVA followed by Bonferroni post-test (a,b,c,e) as well as two-way ANOVA analysing the AnnexinV measurement (f and g) [n = 3 biological replicates; mean ± SD; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001].

Figure 3. Time course and hallmarks of miR-744 induced apoptosis. SKOV3 cells were seeded into 96 well plates 24 h prior transfection with 62.5 nM miR-744 mimics, non-targeting siRNA (NT, negative control for cell death), cell death inducing siRNA (DT, functional transfection control, positive control for cell death) or treatment with Carboplatin, Etoposide or Paclitaxel. 24 h, 48 h and 72 h after treatment the cells were analysed for their cell confluence (a), their loss of mitochondrial potential ΔΨm (b), the activity of caspase 3 and ΔΨm (b) and their content of fragmented DNA (cells in sub G0/G1, e). 5µM CCCP served as a positive control for the breakdown of mitochondrial potential ΔΨm (b). AnnexinV staining was performed by long term imaging using IncuCyte AnnexinV Red Reagent (f). Quantitative analysis of AnnexinV determined at 48 h (arrow) was significantly different for miR-744-5p compared to NT control (g). For Western Blot analysis (d) the cells were harvested 60 h after treatment. The blots were stained with antibodies against Caspase 3, cleaved Caspase 3, PARP and cleaved PARP. GAPDH was used as loading control. Statistical analysis were performed by one-way ANOVA followed by Bonferroni post-test (a,b,c,e) as well as two-way ANOVA analysing the AnnexinV measurement (f and g) [n = 3 biological replicates; mean ± SD; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001].
The protein level is given in Table 2. The online gene classification software PANTHER (Protein Analysis Through Evolutionary Relationships) was used to cluster the potential targets for apoptotic functions. Potential targets with the lowest correlation coefficient (high correlation; cor. coef) and a p-value smaller than 0.05 were processed further (for correlation based on mRNA see Table 1; correlation based on protein). Potential targets with the lowest correlation coefficient and a p-value smaller than 0.05 were processed further (for correlation based on mRNA see Table 1; correlation based on protein).

NFIX and HNRNPC regulation by exogenous miR-744-5p.

To analyse potential targets that might lead to the detected effects of cell death, TCGA data from the “Ovarian serous cystadenocarcinoma” data set were evaluated regarding negative correlation of miR-744-5p expression to the expression of potential target mRNAs or proteins. Here, a high miRNA expression level should correlate with a low level of target mRNA or protein. Potential targets with the lowest correlation coefficient (high correlation; cor. coef) and a p-value smaller than 0.05 were processed further (for correlation based on mRNA see Table 1; correlation based on protein level is given in Table 2). The online gene classification software PANTHER (Protein Analysis Through Evolutionary Relationships) was used to cluster the potential targets for apoptotic functions. Potential targets with apoptotic function and predicted binding sides to miR-744 (based on the databases microRNA.org and TargetScanHuman) were selected for quantitative real-time polymerase chain reaction (qRT-PCR) analysis in both SKOV3 and OVCAR3 cells. After transient transfection of miR-744-5p and subsequent qRT-PCR analysis, the potential targets integrin linked kinase (ILK, 2 binding sides), nuclear factor I X (NFIX, 16 binding sides), inositol hexakisphosphate kinase 1 (IP6K1), Ras-related protein Rab-8A (RAB8A), heterogeneous nuclear ribonucleoprotein C (HNRNPC), adenosine deaminase 1 (ADAR1) and protein kinase C delta (PRKCD) showed significantly (p < 0.05) reduced expression when compared to the NT control (Fig. 6a). Although revealing correlation coefficients with p-values smaller 0.05, CGG triplet repeat binding protein 1 (CGGBP1), cyclin dependent kinase inhibitor 2A (P16INK4A), eukaryotic translation initiation factor 4A2 (EIF4A2), zinc finger protein 653 (ZNF653) and family with sequence similarity 63 member A (FAM63A) were not detectable by qRT-PCR in SKOV3 and OVCAR3 cells (data not shown).

To evaluate whether the downregulated mRNAs analysed by qRT-PCR are directly targeted by miR-744-5p, the predicted binding sides of all downregulated genes (Table 3) were cloned between the NheI/NotI restriction-binding sites _10, _12 and _16 of NFIX (NFIX_10: 0.74 fold +/− 0.14 fold, Fig. 6b), the predicted binding sides _1, _3, _4, _7, _8, _9, _14 and _15 of NFIX did not modulate luciferase activity, i.e. the same activity was measured when cells were transfected with either miR-744-5p or NT control (data not shown).
In order to assess the effect of miR-744-5p on protein expression, Western Blot analysis of the regulated targets NFIX and HNRNPC were performed. MiR-744-5p transfection caused a substantial reduction in protein expression of NFIX and HNRNPC supporting the luciferase reporter data being direct targets of this miRNA (Fig. 6e, densitometry as Supplementary Fig. S2). As the luciferase activity for the binding sides _10, _12 and _16 of NFIX was significantly (p < 0.01) downregulated, indicating a direct interaction (Fig. 6c, left panel), the NFIX protein expression was profoundly diminished (Fig. 6e, densitometry as Supplementary Fig. S2). Further, PRKCD, ADAR1 and IP6K1 seemed not directly to interact with miR-744-5p (Fig. 6b).

MiR-744 modulated signalling pathways leading to apoptosis. To elucidate signalling pathways induced by miR-744-5p leading to programmed cell death we analysed putative pathways downstream of miR-744 on protein level based on literature research. Based on Park et al. and Grabowska et al. the protein expression of NFIX, Forkhead Box A1 (FoxA1) and Bcl2 as well as the phosphorylation of AKT Serine/Threonine Kinase (AKT) were analysed by Western blotting 60 h after NT, miR-744-5p or siRNA transfection. As shown in Fig. 7a (densitometry as Supplementary Fig. S3), the expression of Androgen Receptor (AR) and FoxA1 remained unchanged whereas pro-survival Bcl2 decreased after miRNA and siRNA transfection against NFIX. After transfection of miR-744 or of anti-HNRNPC siRNA, the phosphorylation of AKT was reduced when compared to untreated cells or NT control (Fig. 7b). Interestingly, a report by Park et al. describes an interaction of HNRNPC with miR-21. We therefore transfected SKOV3 cells with miR-744 and analysed the expression of miR-21 which was reduced in both strands (0.53 fold +/− 0.01 fold for -5p and 0.69 fold +/− 0.01 fold for -3p; Fig. 7c). Flow cytometry analysis 72 h after transfection showed that downregulation of HNRNPC as well as of NFIX lead to apoptosis. Compared to NT transfected cells (15.48% +/− 0.41%), 29.90% +/− 2.51% of the SKOV3 cells transfected with siRNA against NFIX and 42.03% +/− 1.12% of the anti-HNRNPC siRNA transfected cells showed...
Discussion

MiRNAs are highly interesting candidate molecules for the generation of novel anticancer therapeutics due to their involvement in the regulation of fundamental cellular processes such as apoptosis. Based on previously published studies, miR-744-5p has been identified as a potential therapeutic target due to its role in apoptosis. The results presented in this study further support the idea that miR-744-5p can modulate apoptotic signalling pathways through direct binding to NFIX and HNRNPC.

Table 1. miRNA correlation to potential targets on mRNA level of the TCGA ovarian serous cystadenocarcinoma dataset.

Potential target	cor. coef	p-value	Number of predicted miRNA binding sites
SLC25A3	-0.189	0.000	0
JST1	-0.188	0.000	0
IP6K1	-0.187	0.000	1
CGGBP1	-0.163	0.002	1
ZFCH1	-0.162	0.002	0
CHTF8	-0.158	0.002	0
EIF4A2	-0.157	0.002	1
ZNF653	-0.150	0.004	2
FANCG	-0.148	0.004	0
DAP3	-0.146	0.005	0
PKNOX1	-0.136	0.009	0
ILK	-0.135	0.009	2
NXF1	-0.134	0.010	0
FAM63A	-0.133	0.010	1
UBA7	-0.129	0.013	0
UIMC1	-0.128	0.014	0
RIC3	-0.124	0.017	0
HMG20A	-0.124	0.017	0
PARPC1L	-0.122	0.019	0
MUTYH	-0.122	0.019	0
USP19	-0.119	0.022	0
BTRD6	-0.118	0.023	0
SYT	-0.114	0.028	0
ESRRA	-0.112	0.032	0
HNRNPC	-0.109	0.036	1
STK33	-0.109	0.036	0
RNF13	-0.106	0.041	0
NFIX	-0.105	0.043	16
RAB8A	-0.103	0.048	1

Table 2. miRNA correlation to potential targets on protein level of the TCGA ovarian serous cystadenocarcinoma dataset.

Potential target	cor. coef	p-value	Number of predicted miRNA binding sites
BRD4	-0.290	0.000	0
BAP1C4	-0.205	0.001	0
RBM15	-0.180	0.004	0
PARP1	-0.171	0.006	0
CDH1	-0.153	0.014	0
P16INK4A	-0.148	0.018	2
PRRCD	-0.137	0.028	1
PDCD4	-0.136	0.030	0
EIF4G	-0.135	0.031	0
GATA6	-0.135	0.032	0
SMAD4	-0.134	0.032	0
ADAR1	-0.128	0.040	1
ZIP	-0.127	0.043	0

fragmented DNA (Fig. 7d). Figure 7e summarizes the analysed apoptotic signalling pathways modulated by miR-744-5p via direct binding to NFIX and HNRNPC.
performed screenings several pro-apoptotic miRNAs were identified18. MiR-744-5p was found to induce apoptosis in various ovarian CA cell lines. In this study, we further validated the pro-apoptotic effect of miR-744-5p in SKOV3 cells and searched for target genes leading to programmed cell death.

Depending on the tissue, miR-744 is reported to have pro-38 as well as anti-apoptotic effects39. We observed that in old patients (older 67.5 years), registered in the TCGA data bank, high miR-744 expression seemed to be associated with a longer median DFS. Further, Guan \39 et al. and Miyamae \12 et al. described a longer median survival in prostate cancer patients with increased miR-744 levels compared to healthy controls. In addition to these findings, we also observed a reduced miR-744 expression in ovarian CA cell lines SKOV3 and OVCAR3 and an increase in miR-744 expression after treatment with Carboplatin. In line with these observations, Chen and Liu reported a reduced expression of miR-744 in cervical cancer tissue and cell lines38. In the current study, we show pro-apoptotic effects of miR-744 in the ovarian CA SKOV3 cells as well as a potential pro-survival function in patients with ovarian serous cystadenocarcinoma.

Ovarian CA is one form of cancer with the highest death-to-incidence ratio14. The prognosis is even worse for women who do not respond to available therapies such as Carboplatin due to platinum-resistant tumour cells40. A therapy combining Carboplatin and miR-744 might sensitize these cells suggested by the at least additive effects of miR-744 on caspase 3 and 7 activity in SKOV3 cells. Even in Cisplatin resistant A2780 cells, a combined treatment with Carboplatin and miR-744 led to apoptosis.

As the tumour suppressor p53 is frequently mutated or deleted in high-grade ovarian cancer cells41 we analysed different ovarian cancer cell lines. The p53 state of the investigated ovarian cancer cell lines differs with the genetic background harbouring either wildtype (A2780), functionally mutated p53 (OVCAR3p53R248Q, A2780-cisp53K35N) or even lacking p53 expression (SKOV3p53null). The finding that in all four cell lines miR-744 induced pro-apoptotic effects, especially in the combination with Carboplatin, might suggest a potential p53-independent mode of miR-744-5p action. This might offer the opportunity to overcome p53 dependent treatment resistance.
reduced phosphorylation of AKT at Ser473 resulting in diminished PDCD4 phosphorylation and suppressed phosphorylates PDCD4 and thus inhibits its tumour suppressor function (Fig. 7e). Silencing HNRNPC leads to protein synthesis and cell proliferation. Programmed cell death 4 (PDCD4) is described as a target of AKT43. AKT on Ser473 leads to the expression of pro-survival genes whereas the downstream activated p70S6 kinase augments kinase AKT2 and the downstream ribosomal serine/threonine kinase p70S6K. Phosphorylated (activated) AKT silencing HNRNPC in T98G cells leads to apoptosis due to reduced phosphorylation of the serine/threonine Table 3. Predicted binding sides cloned into a pmirGlo Dual Luciferase miRNA target expression vector.

Target mRNA	Location in 3′UTR (nt)	Binding sequence
RAB8A	95–101	3′ acgacaanpgGGuU–GGGGGGGGu 5′
		5′ cucccucccACAGCCCCGCCc 3′
IP6K	2773–2781	3′ acgacaUCCGGgAu—GGGGGGGGu 5′
		5′ uacucUCAGCgUGceGCCCCCGGGu 3′
ILK_1	77–98	3′ acGAGAAtcCGGgauGGGGGGGu 5′
		5′ ucoCGUuUGGCcU–cCCCCGCCc 3′
ILK_2	226–232	3′ acgACaauUCGGggAuUUGGGGGGGu 5′
		5′ acaUCggGgAACGgAGtGCCC GGCCc 3′
HNRNPC	268–276	3′ acgAAUugG–AU—GGGGGGGGu 5′
		5′ guasCaUUAautCaAUauGCCC CCCGGGc 3′
PRKCD	95–102	3′ acGAgAucCgggGgAuGGGGGGGu 5′
		5′ ugaCGUucUGCUgUGCCGCCCCGC 3′
ADAR1	866–888	3′ acgacaanpgggauuGGGGGGGu 5′
		5′ uccuuaaacuuaCCCCCCGCc 3′
NFIX_1	185–206	3′ acgacaanpgggaGgGGGGGu 5′
		5′ cuxcagcucggggGCCCCGCCc 3′
NFIX_2	347–368	3′ acgacaanpgggGGGGGGGu 5′
		5′ cuuuucGgCCGgUGCCCCGGGC 3′
NFIX_3	920–941	3′ acgacaanpgggGGGGGGGu 5′
		5′ ggggggccggpcGCCCCGCCc 3′
NFIX_4	1198–1218	3′ acgacaanpgggGGGGGGGu 5′
		5′ ueggccccacacGucCCCCGCCc 3′
NFIX_5	1206–1227	3′ acgacaanpgggGGGGGGGu 5′
		5′ gacruuuGccGcuucCCCCCCGCc 3′
NFIX_6	2511–2517	3′ acgacaanpgggGgGGGGGu 5′
		5′ aagacccpqGgGGGCU–GGCCCCGGGC 3′
NFIX_7	3058–3064	3′ acgacaanpgggGgGGGGGu 5′
		5′ gggccccGCCCCUcocCCCCGgCCa 3′
NFIX_8	3358–3365	3′ acgacaanpgggGGGGGGGu 5′
		5′ cagcacacacgcggGCCCCGCCc 3′
NFIX_9	3370–3376	3′ acgacaanpgggUCCGGGGGGGGu 5′
		5′ ggccGgcccGacacGCCCCGGGC 3′
NFIX_10	3381–3387	3′ acgacaanpgggGgGGGGGGGu 5′
		5′ cacagcccGccGccacoCCCCCGGa 3′
NFIX_11	3404–3425	3′ acGacaAucCGgAuGgGCgGCCCCGGGu 5′
		5′ gGCUuauAcaCgGcccCCCCCCGGGc 3′
NFIX_12	3636–3642	3′ acgacaanpgggGgGgGuGCCCCGGGu 5′
		5′ caggggacGCCAGGcCCCCCGGCc 3′
NFIX_13	3687–3693	3′ acgacaanpgggGgGgGuGCCCCGGGu 5′
		5′ ggggGgGgcCGgCCGCCCCGc 3′
NFIX_14	3709–3715	3′ acgacaAucCggGgAuGgCGGGGGGGGu 5′
		5′ cagccGgGgGC–AGCCCCCCCgGc 3′
NFIX_15	4058–4064	3′ acGACAaUCgGgAucGgGGGGGu 5′
		5′ guCUGUucucGCuCeGCCCgGCCCCGCc 3′
NFIX_16	4068–4074	3′ acgacaanpgGGGanGGGgGgGu 5′
		5′ uccuGGGcC CCCc–GGCCCCCCGCc 3′

However, only little is known about miR-744-5p regulated target genes which are involved in signalling pathways leading to apoptosis.

The heterogeneous nuclear ribonucleoprotein C (HNRNPC) and the nuclear factor I X (NFIX) act as direct target mRNAs of miR-744 involved in apoptotic signalling pathways. Although only a subset of the 16 putative binding sides of NFIX showed downregulated luciferase activity after transfection of miR-744 compared to NT control (Fig. 6c), the protein expression level was clearly reduced indicating an interaction between the miRNA and the target mRNA as described by Kuhn et al.42. Based on literature research combined with our results derived from Western Blotting and qRT-PCR we assessed the role of HNRNPC and NFIX in the potential apoptosis signalling pathway. HNRNPC is a ubiquitously expressed RNA-binding protein that shuttles between the nucleus and the cytoplasm and consists of two isoforms with an identical 3′UTR in the mRNA sequence. It is described to influence mRNA metabolism such as pre-mRNA processing and splicing, mRNA transport, stabilization and translation36. Park et al. reported that silencing HNRNPC in T98G cells leads to apoptosis due to reduced phosphorylation of the serine/threonine kinase AKT2 and the downstream ribosomal serine/threonine kinase p70S6K. Phosphorylated (activated) AKT on Ser473 leads to the expression of pro-survival genes whereas the downstream activated p70S6 kinase augments protein synthesis and cell proliferation. Programmed cell death 4 (PDCD4) is described as a target of AKT41. AKT phosphorylates PDCD4 and thus inhibits its tumour suppressor function (Fig. 7c). Silencing HNRNPC leads to reduced phosphorylation of AKT at Ser473 resulting in diminished PDCD4 phosphorylation and suppressed...
In addition, silencing HNRNPC inhibits the expression of miR-21 which exerts strong pro-survival effects and therefore plays an important role in tumour progression. Reduced miR-21 expression results in increased expression of PDCD4 and PTEN, both targets of miR-21, effects which also would be expected via miR-744 mediated downregulation of miR-21. PTEN dephosphorylates phosphatidylinositol (3,4,5)-trisphosphate (PIP3) resulting in the inactivation of the AKT signalling pathway.

The nuclear factor I/X is part of the NFI family consisting of NFIA, NFIB, NFIC and NFIX. They are all defined by their unique DNA-binding domain. NFIX functions as transcriptional regulator of gene expression especially in embryonic development and cell differentiation. Deficiency of NFIX in murine hematopoietic stem and progenitor cells leads to increased apoptosis. A recent report by Grabowska et al. describes an interaction between NFIX and the Forkhead box protein A1 (FoxA1) by Förster resonance energy transfer (FRET). FoxA1 belongs to the transcription family FoxA that includes FoxA2 and FoxA3. They are involved in the regulation of various diseases and programmed cell death. FoxA1 is reported to mediate apoptosis by binding to the Bcl2 promoter and inhibiting the expression of anti-apoptotic Bcl2 in A549 type II pneumocytes. Our data showed an unchanged FoxA1 expression after miR-744-5p mediated NFIX reduction resulting in reduced Bcl2 expression in ovarian CA cells and supports the finding observed in pneumocytes. The reduced expression of Bcl2 will lead to the release of cytochrome C, a component of the intrinsic apoptotic pathway (Fig. 7c) and the detected loss of mitochondrial membrane potential $\Delta \Psi_m$ after transfection of miR-744 (Fig. 3b).

Figure 7. Signalling pathways leading to apoptosis. Western Blot data based on literature research after transfection of SKOV3 cells with miRNA-744 or with siRNA against NFIX (a) or HNRNPC (b) and qRT-PCR (c) confirmed the potential signalling pathway by reduced expression of NFIX and Bcl2 as well as diminished phosphorylation of AKT. By binding to NFIX and HNRNPC miRNA-744 is interfering with the intrinsic apoptotic pathway. Downregulation of HNRNPC resulted in enhanced expression and activation of PDCD4 and p70S6K (e). Reduced NFIX expression, induced by binding of miR-744, leads to reduced expression of Bcl2 leading to apoptosis (d). The expression analysis of miR-744 and miR-21 was normalized to the CT value of U6 snRNA. Statistical differences were tested using paired t-test. In order to analyse DNA fragmentation (cells in sub G0/G1) SKOV3 cells were seeded and transfected as described in Fig. 3 with miR-744 mimics, non-targeting siRNA (NT, negative control for cell death), or siRNA against NFIX or HNRNPC. Statistical analysis was performed by one-way ANOVA followed by Bonferroni post-test. [n = 3 technical replicates; mean ± SD; “p < 0.01; ***p < 0.001; ****p < 0.0001]. The cells were harvested for Western Blot analysis 60 h after treatment (a and b). GAPDH was used as loading control.
Experimental Procedures

Cell culture. T98G (CRL-1690, LGC Standards, Wesel, Germany) and OVCAR3 (HTB-161, LGC Standards) cells were cultured in RPMI-1640 medium (Th Geyer, Renningen, Germany). HOSE 2170, SGBS and SKOV3 (HTB-77, LGC Standards) cells were cultured in DMEM high glucose medium (Th Geyer). The media were supplemented with 10% (v/v) FBS (Sigma-Aldrich, München, Germany). The A2780 and A2780-cis cells were cultured in RPMI-1640 media supplemented with 20% FBS. All cells were grown at 37 °C and 5% CO₂. The phenotype of all cell lines was frequently proofed by microscopy. The cell density of the adherent cell culture was measured with the automated single well microscope NyONE (SynenTec Bio Services, Münster, Germany) at a magnification of 10x.

Transfection with miRNA mimics. Cells were seeded 24 h before transfection in 96-well culture plates (Greiner Bio-One). They were transfected with a final concentration of 50 nM (for Fig. 1) or 62.5 nM miRNA mimic (Qiagen, Hilden, Germany). The Silencer Select siRNA against NFIX (siRNA ID: s9503) and HNRNPC (siRNA ID: s6721, Thermo Fisher Scientific, Darmstadt, Germany) were used for the siRNA knockdown experiments. A non-targeting siRNA (AllStars Neg. control, order number: 1027281, negative control for cell death; NT) as well as a human cell death control siRNA (AllStars Cell Death control, order number: 1027299, positive control for cell death; DT) (Qiagen) served as functional controls. ScreenFect A reagent (ScreenFect, Eggernstein-Logoeháfen, Germany) was added to 5 μl of miRNA mimic (Qiagen, Hilden, Germany). The Silencer Select siRNA against NFIX (siRNA ID: s9503) and miRNA mimic was incubated for 20 min at room temperature and put on the cells together with 90 μl of fresh medium. As controls, the cells were treated with 25 μM Etoposide or 0.25 μM Paditaxel. For combination treatment with miRNAs 55 μM Carboplatin was used (all reagents from Enzo Life Sciences, Lörrach, Germany). The cells were analysed 24 h, 48 h and 72 h after transfection.

Analysis of apoptotic cells. Apoptotic cells were identified by flow cytometry measuring the amount of cells with reduced DNA content (sub G0/G1) as previously described by Rudner et al.14. The detached cells were mixed with fresh serum-containing medium and centrifuged for 3 min at 130 × g. The cell pellet was resuspended with a phosphate buffered saline (PBS) buffer containing 0.1% (w/v) Trisodium citrate, 0.05% (v/v) Triton X-100, 10 μg/ml PI and 3.3 μg/ml RNase A (Life Technologies, Darmstadt, Germany). Cells were incubated for 30 min at room temperature in the dark.

About 60,000 cells per transfection were quantified by the MACSQuant Analyser (Miltenyi Biotec, Bergisch- Gladbach, Germany). The detection was performed with the fluorescence channel B2 (585/40 nm filter) and B3 (655–730 nm filter) for determining the subG0/G1 fraction.

For detection of the mitochondrial potential of the cells, a TMRE assay was applied. The cells were detached and mixed with TMRE in culture medium without FBS at a final concentration of 300 nM. 20 min after incubation at 37 °C, the cells were analysed by flow cytometry using the fluorescence channel B2 (585/40 nm filter). 5 μM CCCP (Sigma-Aldrich) was added as a positive control.

The activity of the caspase 3 and -7 was analysed with the CellEvent Caspase-3/7 Green Flow Cytometry Assay Kit (Thermo Fisher Scientific) according to the manufacturer’s protocol and measured with the fluorescence channels B1 (525/50 nm) and B3 (655–730 nm filter).

Apoptosis assay with long-term video-microscopy. The activation of caspases was measured by long-term video-microscopy. The cells were transfected as described above and/or treated with Carboplatin. 1 h after treatment IncuCyte Caspase-3/7 Green Apoptosis Assay Reagent or IncuCyte AnnexinV Red Reagent (Sartorius, Goettingen, Germany) was added to a final concentration of 5 nM as well as PI at a final concentration 10 μg/ml (Sigma Aldrich)52. The cells were placed into the IncuCyte ZOOM Live-Cell Analysis System detecting red and green fluorescence. The imaging system is placed in an incubator with standard culture conditions. Pictures from each well in two different positions were taken automatically every hour with a 20x objective and analysed with the IncuCyte ZOOM Software for the amount of fluorescent stained cells. The data were visualized using GraphPad Prism 5 software.

RT-PCR. The extraction of total RNA was done using the miRNeasy Mini Kit (Qiagen). 1000 ng of isolated RNA was transcribed with the miScript II RT Kit (Qiagen) using 5x miScript HiSpec Buffer and an incubation time of 60 min at 37 °C. The 1:30 diluted cDNA was further analysed in the Roche Light Cycler 480 using GreenMasterMix (Genaxxon Bioscience, Ulm, Germany). To analyse the expression of potential target genes, 1000 ng of isolated RNA were transcribed using the Transcriptor High Fidelity cDNA Synthesis Kit from Roche (Penzberg, Germany). For miRNA detection the following primers were used:

Primer name	Sequence
hsa-miR-744-5p	5'-CTGTTGCACTAACAACCTC-3'
hsa-miR-744	5'-TGCGGGTCAGGGCTACAGACA-3'
hsa-miR-21-3p	5'-CAACACCAGTACGGTGTG-3'
hsa-miR-21	5'-CTGCAGTCATGATGGTATAGG-3'

Our study shows for the first time a reduction of HNRNPC and NFIX expression on mRNA and protein level induced by the microRNA miR-744 resulting in programmed cell death.
Western Blotting. For protein expression analysis the cells were lysed with radioimmunoprecipitation assay (RIPA) buffer containing 1% (v/v) Nonidet P40, 0.5% (w/v) Sodium-Deoxycholate, 1 mM EDTA and 0.5µM DTT. The protein concentration was measured with a Bicinchoninic acid assay detecting the OD of the solution at a wavelength of 562 nm. 35µg protein were loaded on a 8% or 12.5% gel and run for 1.5 h. The proteins were transferred onto a PVDF-membrane (Carl Roth, Karlsruhe, Germany). The membrane was blocked with a 5% (w/v) BSA-solution in TBST for 1h. The incubation of the primary antibody followed overnight at 4°C. The antibodies against PARP (cs#9542), cleaved PARP (cs#9541), Caspase 3 (cs#9662) and cleaved Caspase 3 (cs#9664) obtained from Cell Signaling Technology (Danvers, United States) were diluted 1:1,000 in blocking solution.

For detection of target proteins the following antibodies were used: HNRNPC (1:1,000; #91327; Cell Signaling Technology), NFIX (1:250; HPA007533; Atlas Antibodies AB, Bromma, Sweden), Bcl2 (1:500; sc-509; Santa Cruz, Heidelberg, Germany), HNF-3α (FoxA1; 1:250; sc-514695; Santa Cruz Biotechnology), Akt1/2/3 (1:500; sc-81434; Santa Cruz Biotechnology), p-Akt1/2/3 Ser473 (1:500; sc-514032; Santa Cruz Biotechnology) and GAPDH (1:5,000; MA5-15738; Thermo Fisher Scientific).

The secondary anti-rabbit IgG, HRP-linked (cs#7074, Cell Signaling Technology) or anti-mouse IgG, HRP linked (A4416, Sigma Aldrich) were diluted 1:10,000 in blocking solution and incubated for 1 h at room temperature.

The chemiluminescence signal was detected with the Fusion FX (Vilber Lourmat, Eberhardzell, Germany) using the appropriate software and the Immobilon Western Chemiluminescent HRP substrate (Thermo Fisher Scientific).

TCGA analysis. To examine the correlation between the miR-744 expression and potential targets, level 3 miRNA, mRNA and protein expression data of the “Ovarian serous cystadenocarcinoma” data set were downloaded from the cancer genome atlas (TCGA) data base (www.tcga-data.nci.nih.gov/tcga) using the “firehose-get” command-line tool (https://confluence.broadinstitute.org/display/GDAC/Download). A detailed description of the clinical characteristics of the cohort can be found in a study by Cancer Genome Atlas Research Network.

For the delineation of the prognostic effect of miR-744 in different age groups, the dataset defined by the first quartile, mean, median and the third quartile of the age distribution (range: 26–89 years, mean: 67.5 years), differential survival analysis for patients with high versus low expression of miR-744 binding partners, using mean expression as threshold and DFS as endpoint, was conducted. For this, the log-rank test was applied on the resulting cox-proportional hazard-models and for the purpose of visualization Kaplan-Meier-Plots were generated.

For the identification of potential targets the miRNA expression data were negatively correlated to the mRNA and protein expression data from each patient. The online gene classification software PANTHER (Protein Analysis Through Evolutionary Relationships) was used to cluster the potential targets for apoptotic functions. From these, potential targets with miR-744-5p binding sites referring to the database microRNA.org were selected.

Luciferase reporter assay. Complementary oligonucleotide pairs comprising a portion of putative miRNA binding sites were synthesized (Thermo Fisher Scientific), annealed and cloned into the pmirGlo Dual Luciferase miRNA target expression vector (Promega Corporation, USA) between the NheI/NotI restriction sites of the multiple cloning site downstream of a luciferase gene.

For luciferase assays, HEK293T cells were seeded into 96-well cell culture plates. 24 h later, the cells were co-transfected with 200 ng of the pmirGlo Dual Luciferase miRNA target expression vector and miR-744-5p, microRNA inhibitor anti-miR-744-5p or non-targeting siRNA control (NT) at a final concentration of 50 nM using Lipofectamine 3000 (Thermo Fisher Scientific). Three days after transfection, cells were lysed with the Dual-Glo Reagent (Dual-Glo Luciferase Assay System; Promega Corporation, Mannheim, Germany) and luciferase activity was quantified on a SpectraMax M5e microplate reader (Molecular Devices, Sunnyvale, USA). After calculating the ratio of firefly luminescence to the luminescence from Renilla, the experimental well ratio was normalized to the ratio of the control wells.

Statistical analysis. Data in general were expressed as mean ±/− SD. Statistical analysis was carried out using GraphPad Prism Version 5.04. The corresponding statistical test and the level of significance are indicated in each figure legend. For TCGA analysis all calculations were conducted using the R statistical platform and TargetScanHuman were selected.

References
1. Elmore, S. Apoptosis: a review of programmed cell death. Toxicol Pathol 35, 495–516, https://doi.org/10.1080/0192623070132037 (2007).
2. Cory, S. & Adams, J. M. The Bcl2 family: regulators of the cellular life-or-death switch. Nature reviews. Cancer 2, 647–656, https://doi.org/10.1038/nrc883 (2002).
3. Kaufmann, S. H. Detection of DNA cleavage in apoptotic cells. Methods in enzymology 322, 3–15 (2000).
4. Zimmermann, K. C., Bonzon, C. & Green, D. R. The machinery of programmed cell death. Pharmacol Ther 92, 57–70 (2001).
5. Kim, V. N., Han, J. & Siomi, M. C. Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 10, 126–139, https://doi.org/10.1038/nrm2632 (2009).
42. Kuhn, D. E.
41. Cole, A. J.
40. Mantia-Smaldone, G. M., Edwards, R. P. & Vlad, A. M. Targeted treatment of recurrent platinum-resistant ovarian cancer: current
37. Grabowska, M. M.
36. Park, Y. M.
35. Agarwal, V., Bell, G. W., Nam, J. W. & Bartel, D. P. Predicting effective microRNA target sites in mammalian mRNAs. eLife 4, https://doi.org/10.7554/eLife.05005 (2015).
34. Betel, D., Koppal, A., Aguas, P., Sander, C. & Leslie, C. Comprehensive modeling of microRNA targets predicts functional non-
33. Thomas, P. D. et al. PANTHER: a library of protein families and subfamilies indexed by function. Genome Res 13, 2129–2141, https://doi.org/10.1101/gr.772403 (2003).
32. Misawa, H. et al. Increased DNA repair as a mechanism of acquired resistance to cis-diaminedichloroplatinum (II) human ovarian cancer cell lines. Cancer Res 48, 5713–5716 (1998).
31. Behrens, B. C. et al. Characterization of a cis-diaminedichloroplatinum(II)-resistant human ovarian cancer cell line and its use in evaluation of platinum analogues. Cancer Res 47, 414–418 (1987).
30. Nagata, S., Nagase, H., Kawane, K., Mukae, N. & Fukuyama, H. Degradation of chromosomal DNA during apoptosis. Cell death and differentiation 10, 108–116, https://doi.org/10.1038/sj.cdd.4401161 (2003).
29. Zhou, W., Bi, X., Gao, G. & Sun, L. miRNA-133b and miRNA-135a induce apoptosis via the JAK2/STAT3 signaling pathway in human ovarian cancer cell lines. Oncotarget 7, 11002–11017, https://doi.org/10.18632/oncotarget.6760 (2016).
28. Fridley, B. L. et al. Genome-Wide Study of Response to Platinum, Taxane, and Combination Therapy in Ovarian Cancer: In vitro Phenotypes, Inherited Variation, and Disease Recurrence. Frontiers in Genetics 7, 57, https://doi.org/10.3389/fgene.2016.00937 (2016).
27. Ofir, R. et al. Taxol-induced apoptosis in human SKOV3 ovarian and MCF7 breast carcinoma cells is caspase-3 and caspase-9 independent. Cell death and differentiation 9, 636–642, https://doi.org/10.1038/sj/cdd/4401012 (2002).
26. Kuhn, D. E. et al. Decrease expression of microRNA-744 promotes cell proliferation by targeting c-Myc in human hepatocellular carcinoma. Cancer Cell International 14, 58–58, https://doi.org/10.1186/1475-2867-14-58 (2014).
25. Filipowicz, W., Bhattacharyya, S. N. & Sonenberg, N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Cancer 9, 102–114, https://doi.org/10.1038/nrc2690 (2008).
24. Chiang, L. et al. Cancer stem cells and signaling pathways in radioresistance. Oncotarget 7, 11002–11017, https://doi.org/10.18632/oncotarget.6760 (2016).
23. Kleemann, M. et al. Investigation on tissue specific effects of pro-apoptotic micro RNAs revealed miR-147b as a potential biomarker in ovarian cancer prognosis. Oncotarget. https://doi.org/10.18632/oncotarget.13905 (2016).
22. Zhang, L., Li, Z., Gai, F. & Wang, Y. MicroRNA-137 suppresses tumor growth in epithelial ovarian cancer in vitro and in vivo. Molecular medicine reports 12, 3107–3114, https://doi.org/10.3892/mmr.2015.3576 (2015).
21. Zhou, W., Bi, X., Gao, G. & Sun, L. miRNA-133b and miRNA-135a induce apoptosis via the JAK2/STAT3 signaling pathway in human renal carcinoma cells. Biomedicine & pharmacotherapy = Biomedicine & pharmacotheraphy 84, 722–729, https://doi.org/10.1016/j.biopha.2016.09.074 (2016).
20. Tang, W. et al. miR-135a functions as a tumor suppressor in epithelial ovarian cancer and regulates HOXA10 expression. Cellular Signalling 26, 1420–1426, https://doi.org/10.1016/j.cellsig.2014.03.002 (2014).
19. Siegel, R. L., Miller, K. D. & Jemal, A. Cancer Statistics, 2017. CA Cancer J Clin 67, 7–30, https://doi.org/10.3332/caac.21387 (2017).
18. Kleemann, M. et al. Experimental Validation of miRNA Targets. Scientific Reports et al, 2016. #supplementary-information (2016).
17. Kaur, A. M. & Drapkin, R. Ovarian cancer pathogenesis: a model in evolution. J Oncol 2010, 932371, https://doi.org/10.1155/2010/932371 (2010).
16. Moss, E. L., Holverson, J. W. & Mott, T. M. The role of CA125 in clinical practice. J Clin Pathol 58, 308–312, https://doi.org/10.1136/jcp.2004.018077 (2005).
15. Rupaimoole, R., Calin, G. A., Lopez-Berestein, G. & Sood, A. K. MicroRNA deregulation in cancer cells and the tumor microenvironment. Cancer discovery 6, 235–246, https://doi.org/10.1158/2159-8290.CD-15-0893 (2016).
14. Filipowicz, W., Bhattacharyya, S. N. & Sonenberg, N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Cancer 9, 102–114, https://doi.org/10.1038/nrc2690 (2008).
13. Tan, Y. L. et al. miR-744 is a potential prognostic marker in patients with hepatocellular carcinoma. Clinics and research in hepatology and gastroenterology 39, 359–365, https://doi.org/10.1016/j.clintre.2014.09.010 (2015).
12. Filipowicz, W., Bhattacharyya, S. N. & Sonenberg, N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Cancer 9, 102–114, https://doi.org/10.1038/nrc2690 (2008).
11. Kuhn, D. E. et al. Decrease expression of microRNA-744 promotes cell proliferation by targeting c-Myc in human hepatocellular carcinoma. Cancer Cell International 14, 58–58, https://doi.org/10.1186/1475-2867-14-58 (2014).
10. MacFarlane, L.-A. & Murphy, P. R. MicroRNA: Biogenesis, Function and Role in Cancer. Current Genomics 11, 537–561, https://doi.org/10.2174/13892021079315895 (2010).
9. Filipowicz, W., Bhattacharyya, S. N. & Sonenberg, N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Cancer 9, 102–114, https://doi.org/10.1038/nrc2690 (2008).
8. Clinical development of TargomiRs, a miRNA mimic-based treatment for patients with recurrent thoracic cancer. Epigenomics 8, 1079–1085, https://doi.org/10.2217/epi.16-0035 (2016).
7. Lu, J., Getz, G., Miska, E. A., Alvarez-Saavedra, E., Lamb, J., Peck, D. L., Sweet-Cordero, A. L., Eyras, E., Zhou, Q.,uperman, S. P. & Golub, T. R. MicroRNA expression profiles of human cancer and normal tissues. Cancer Cell 4, 83–94, https://doi.org/10.1016/s1535-6108(03)00025-4 (2003).
6. He, L. & Hannon, G. J. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5, 522–531 (2004).
5. Lima, R. T. et al. MicroRNA regulation of core apoptosis pathways in cancer. European Journal of Cancer 47, 163–174, https://doi.org/10.1016/j.ejca.2010.11.005 (2011).
4. Miyaume, M. et al. Plasma microRNA profiles: identification of miR-744 as a novel diagnostic and prognostic biomarker in pancreatic cancer. British Journal of Cancer 113, 1467–1476, https://doi.org/10.1038/bjc.2015.366 (2015).
3. Holmfeldt, P. et al. Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites. Genome Biology 13, R90, https://doi.org/10.1186/gb-2010-11-8-r90 (2010).
2. Villarroya-Basas, I., Pueyo, A. M., Varlet, J. R., Pericas, E., Seco, M. & Pascual, A. microRNA-mediated control of cell cycle progression in cancer cells. Nature reviews. Genetics 9, 102–114, https://doi.org/10.1038/nrg2290 (2008).
1. MacFarlane, L. - A. & Murphy, P. R. MicroRNA: Biogenesis, Function and Role in Cancer. Current Genomics 11, 537–561, https://doi.org/10.2174/13892021079315895 (2010).
Acknowledgements
This study was funded by the Postgraduate Scholarships Act of the Ministry for Science, Research and Arts of the Federal State Government of Baden-Wuerttemberg, Germany. Further acknowledgements address the International Graduate School in Molecular Medicine of Ulm University, Germany, for scientific encouragement and support to Michael Kleemann. Pamela Fischer-Posovszky receives funding from the Baden-Württemberg Stiftung, Germany. The results published here are in part based on data generated by the TCGA Research Network. In addition, the authors are grateful to Alex Shu-Wing Ng from the Department of Obstetrics, Gynecology and Reproductive Biology from the Brigham and Women’s Hospital in Boston, USA for providing us the HOSE 2170 cells. As well as to Verena Jendrossek from the Institute of Cell Biology (Cancer Research) of the German Cancer Research Center in Heidelberg, Germany. Istituto di Patologia Molecolare of Ulm University, Germany. The results published here are in part based on data generated by the TCGA Research Network. In addition, the authors are grateful to Alex Shu-Wing Ng from the Department of Obstetrics, Gynecology and Reproductive Biology form the Brigham and Women’s Hospital in Boston, USA for providing us the HOSE 2170 cells. As well as to Verena Jendrossek from the Institute of Cell Biology (Cancer Research) of the University of Duisburg-Essen for providing us the OVCAR3, A2780 and A2780-cis cells.

Author Contributions
M.K. designed the study, performed and analysed the experiments and wrote the manuscript. H.S. performed Western Blots and luciferase assays and co-authored the manuscript. K.U. analysed data from the TGCA data bank and helped to perform Figure 1c. P.S. helped to perform and analyse the experiments of Figures 3f and 4. E.M.S. provided technical assistance for the experiments of Figures 3f and 4. P.F.-P. kindly provided SGBS cells for the experiments in Figure 1a and b. R.H. and K.O. critically contributed to conception and design of the study and helped with the interpretation of data. All authors reviewed the results and approved the final version of the manuscript.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-018-27438-6.

Competing Interests: The authors declare no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2018