Label-free and real-time single-molecule detection may aid the development of high-throughput biosensing platforms. Molecular fluctuations are a source of noise that often hinders single-molecule identification by obscuring the fine details of molecular identity. In this study, we report molecular identification through direct observation of quantum-fluctuation-induced inelastic noise in single organic molecules. We investigated current fluctuations flowing through a single molecule that is chemically connected to two electrodes. We found increased current oscillations synchronous to electric field excitations of characteristic molecular vibrational modes that contribute to inelastic electron tunnelling. This finding demonstrates a large contribution of charge interaction with nuclear dynamics on noise properties of single-molecule bridges and suggests a potential use of inelastic noise as a valuable molecular signature for single-molecule identification.
Recent advances in single-molecule detection techniques have revolutionized our understanding of biological phenomena and opened new opportunities for human gene analysis. Unlike ensemble average measurements of macroscopic properties, molecular fluctuations generate a noise that often becomes a serious impediment for identifying important single-molecule signatures. In stark contrast, human sensory apparatus deals with the stochastic nature of biological systems by leveraging the unique ability to use noise for detecting weak electrical signals (via the stochastic resonance mechanism). Likewise, noise analyses have provided valuable insights into single-molecule science. In particular, shot noise measurements have proven to be a powerful method for evaluating the Fano factors, as well as the number and transparency of channels for charge transmission in individual molecules. In spite of these sophisticated experiments, little is known about noise characteristics in the inelastic regime, in which conducting electrons interact with molecular vibrational degrees of freedom.

Here, we report the observation of inelastic contributions to current noise in single organic molecules connected to two metal electrodes. We analysed conductance fluctuations in a current-carrying molecular bridge under a high field. We found stepwise increases in the current oscillation amplitudes at distinct voltages. Our results suggest that this field-induced current noise originates from inelastic excitations of characteristic vibration modes inherent to target molecules, and thus manifests itself as a valuable molecular signature for single-molecule identification.

Results

Current versus bias voltage in single-molecule junctions. We explored high-field conductance fluctuations in 1,6-hexanediithiol (HDT) single molecules trapped between two Au nanoelectrodes (HDT single-molecule junctions) using a self-breaking technique at 4K under a low applied voltage of 0.2 V (Fig. 1a, b; Supplementary Figs S1–S3). Figure 1c shows an I–V_b curve measured by a direct current (DC) method. The linear characteristics represent tunnelling electron transport through an HDT molecule, with a highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) gap exceeding 6 eV that yields a high carrier injection barrier at the metal–molecule interfaces when bonded to Au electrodes. In addition, we observe that current tends to become unstable with increasing V_b. Correspondingly, the numerical differential conductance exhibits considerable fluctuations at high-V_b regimes (Fig. 1d). We note that the magnitude of the fluctuations is enhanced with increasing V_b.

Electric field dependence of current noise in HDT. To elucidate the underlying mechanism responsible for the electric-field-induced conductance fluctuations in single HDT molecules, we carried out consecutive 50 current measurements per V_b condition at a sampling rate of 30 Hz during a bias sweep in a range of $-0.38 \leq V_b \leq 0.38$ V (Fig. 1e) and examined their average current $\langle I \rangle$ and current noise σ (Fig. 1f). $\langle I \rangle$ is plotted as a function of V_b in Figure 2a. We obtained linear $\langle I \rangle$–V_b characteristics analogous to the I–V_b curve shown in Figure 1c. Subtracting the elastic tunnelling current I_e from $\langle I \rangle$ yields the inelastic component $\Delta \langle I \rangle = \langle I \rangle - I_e$. We estimated I_e from a linear fit to the $\langle I \rangle$–V_b curve in a low bias range of $-0.005 \leq V_b \leq 0.005$ V; nonlinearity of elastic tunnelling contributions is anticipated to be negligible small because of the relatively high tunnelling barrier at the electrode–molecule links expected for the insulating molecular wire of HDTs (Supplementary Fig. S4). By extrapolating linear I_e–V_b to high biases (dotted line in Fig. 2a), we extracted $\Delta \langle I \rangle$ and plotted with respect to V_b (Fig. 2b). The fact that $|\Delta \langle I \rangle|$ rises above 0 A with increasing V_b implies opening of active inelastic channels, rendering an increase in transmission of HDT molecules.

Meanwhile, σ is found to increase with V_b, manifesting more pronounced current fluctuations in the HDT single molecule under high field (Fig. 2c). Moreover, although somewhat obscure at a low-V_b region, σ–V_b plots demonstrate a staircase-like voltage dependence. We first note an overall linear response of σ with respect to V_b. This feature is generally interpreted by Hooge’s empirical rule established for bulk materials that states a linear response of the noise fluctuations σ to current I.

Figure 1 | A measurement scheme for characterizing current fluctuations in single-molecule junctions. (a) A schematic illustration showing a measurement circuit used to investigate the high-field conductance fluctuations in Au–HDT–Au single-molecule junctions at 4.2 K. (b) IET spectrum of the HDT single-molecule junction formed by a self-breaking technique at 4.2 K. The peaks indicated by arrows can all be assigned to the IETS-active molecular vibrational modes (Supplementary Figs S1–S3 for details). (c) An example of I–V_b characteristics acquired for HDT single-molecule junctions at 1.3 mG$_\text{c}$, conductance state. (d) Differential conductance numerically derived from the I–V_b curve in (b), revealing considerable fluctuations at high-V_b regimes. (e) 50-point current measurements conducted for evaluating the bias voltage-induced conductance fluctuations observed in HDT single-molecule junctions. (f) A magnified view of the plots in (e). Black and red dots are the 50-point current data measured at each V_b and the corresponding average current $\langle I \rangle$. Error bars denote s.d.
molecule bridges at 1.3 mG. A histogram constructed with V_b data extracted from the σ spectrum of single HDT molecules contains several peaks at almost symmetric positions with respect to zero bias (Fig. 3). As we see in Table 2, the statistical V_b distribution fairly reproduces the σ spectrum shown in Figure 2e.

Table 1 | Peaks in the σ spectrum for an Au–HDT–Au single-molecule junction and an Au–Au single-atom chain.

Peak no.	σ-spectrum	Wavenumber (cm$^{-1}$)	Vibration modes
Au–HDT–Au			
1	30	242	ν (Au-S)
2	66	533	650* ν (C-S)
3	127	1,025	1,050* ν (C-C)
4	172	1,389	1,300* γ_w (CH$_2$)
5	300	2,422	2,575* ν (S-H)
6	337	2,721	2,865* ν s (CH$_2$)
Au–Au			
1	8	65	81† Transverse
2	22	177	145† Longitudinal

- † Assigned molecular vibration mode frequency taken from ref. 21 (electron energy loss spectroscopy).
- † Ref. 22 (Raman spectroscopy).

Figure 3 | A peak voltage histogram constructed with V_b data extracted from the σ spectra of 41 HDT single-molecule junctions formed at 4.2 K. Peaks are numbered as 1–6 and 1’–6’ in the positive and the negative side, respectively.

Figure 2 | Charge transmission and current fluctuations in a single-molecule tunnelling junction. (a) $<I>$–V_b characteristics obtained for an HDT single-molecule junction at 4 K. The dotted lines are the elastic current assumed to increase linearly with V_b. (b) $\Delta<I>$ plots derived from $<I>$–V_b curve in a. (c) σ versus V_b plots acquired for an HDT single-molecule junction at 4.2 K. (d) σ plots after subtracting $1/\nu$-like contributions σ_d. (e) The $d(\nu-\sigma_b)/dV$–V_b curve obtained numerically. The characteristic peaks are labelled numerically.

Table 2 | Peaks in the V_b histogram of Au–HDT–Au single-molecule junctions.

Peak no.	V_b (mV)	ν (cm$^{-1}$)
Au–HDT–Au		
1	30	242
2	78	630
3	−80	646
4	130	1,049
5	134	1,082
6	174	1,405
6'	−199	1,405
5'	310	2,503
6'	−318	2,567
6''	350	2,825
6''	−358	2,890

Noise characteristics of gold single-atom contacts. It is interesting to note that the σ peak profile agrees with what appears in the inelastic electron tunnelling (IET) spectrum22 (Fig. 1b). Indeed, we can assign σ peaks to electron energy loss spectroscopy (EELS) and Raman-active vibrational modes21,22, as listed in Table 1. This implies that the high-field current fluctuations in single HDT molecules are of inelastic origin$^{23–25}$. To verify the possible roles of inelastic excitations of vibration modes of single-molecule junctions on current fluctuations, we conducted σ measurements on Au single-atom chains. Forming 1 G_0 states using the self-breaking method, with a stretching speed of 6 pm s$^{-1}$ at 4 K, we exhibited 50-point current measurements in a bias range of $-0.04 V \leq V_b \leq 0.04 V$. The relatively small bias window was used because Au single-atom contacts tend to become increasingly unstable at bias voltage above 0.05 V presumably because of the local heating and current-induced forces25. $<I>$–V_b plots in Figure 4a show linear characteristics reflecting the quasi-ballistic nature of electron transport through an Au single-atom contact26. We extract the inelastic component by examining linear fitting to Figure 4a in a bias range from $−0.001 V$ to $0.001 V$. In contrast to HDT molecules demonstrating increased transmission via active inelastic channels, $\Delta<I>$–V_b plots in Figure 4b reveal negative contributions of electron–phonon interactions in an Au single-atom chain on the electrical conductance26. This discrepancy can be explained by considering the relative importance of the counteracting effects of elastic and inelastic processes in electron transmission through single-atom and molecule junctions; whereas the inelastic mechanism leads to enhanced transmission,
elast contribution involving virtual phonon excitations decreases transmission $^{27-29}$. Theoretical studies have predicted a shift in the balance towards predominance of inelastic effects as transmission T becomes <0.5 and superior elastic effects for T becomes >0.5, the overall tendency of which agrees with the positive and negative $\Delta<1>$ acquired for HDT single-molecule junctions with $T \sim 10^{-2}$ and Au single-atom chains with $T \sim 1$, respectively $^{27-29}$. As for the high-field current fluctuations, σ shows a stepwise manner analogous to that found for single HDT molecules (Fig. 4c,d). The corresponding σ spectrum demonstrates peaks at $V_g = 8$ and 22 mV (Fig. 4e). Significantly, we again find good accordance between these peak voltages and the characteristic vibration modes of single-atom wires at energies 10 and 18 meV reported in previous scanning tunnelling microscopy studies 30,31 (Table 1). It is therefore corroborated that bias voltage-induced conductance fluctuations can serve as a unique molecular signature for single-molecule identifications.

Discussion

The above results strongly indicate that bias voltage-dependent current oscillations are phonon-assisted phenomena relevant to electron vibration interactions in atomic/molecular bridges. Inelastic tunneling in molecular systems is known to cause a local heating $^{13,32-34}$. A certain amount of heat is anticipated to pile up in the molecular junctions every time a new inelastic channel sets in. Although this excess heat dissipates via lattice conduction through two electrodes connecting a molecule, local heating effectively raises the junction temperature T_{he} above the bath temperature $^{13,32-34}$. This may yield a steplike increase in the thermal noise with increasing V_g, which explains a staircase-like increase of σ observed in single HDT molecules and also in Au single-atom wires. It has been theoretically proposed that the heating rate can be deduced by analyzing the bias voltage dependence of Johnson–Nyquist noise in molecular junctions $^{35-37}$. We therefore sought to extract information regarding electrical heating in HDT junctions from the σ plots in Figure 2d. We evaluated T_{he} by tentatively considering $\sigma_T = (\sigma - \sigma_{he})$, where σ_T is the thermal noise component of σ, and assuming $\sigma_T \propto \sqrt{T_{he}}$. The relative increase in σ_T at $V_g = 0.4$ V from the zero-bias value is about 20, from which we obtain $T_{he} \sim 1.600$ K at a bath temperature of 4 K. The estimated T_{he} is obviously too high and contradicts the fact that an HDT molecule can be held stable during a bias sweep without being burned out.

The overestimation of T_{he}, which is also marked by the fact that the IET spectrum can be observed, suggests significant inelastic noise in the $\sigma-\sigma_{he}$ of single HDT molecules derived from the stochastic nature of phonon-assisted electron tunnelling and concomitant fluctuations in the phonon-induced energy levels 38,39,40. Shot noise measurements have proven to be a powerful method for evaluating Fano factors, as well as the number and transparency of charge transmission channels in atomic/molecular conductors 39,40,41. A theoretical model predicts a linear increase in the power spectral density of this shot noise with the bias voltage in a quasi-ballistic Au single-atom chain under a condition $T_{he} > h/\nu k_B$, where ν is the frequency of phonon modes 38. Indeed, we found a stepwise linear increase in $\sigma-\sigma_{he}$ after each vibration mode excitation above 0.01 V, as shown in Figure 2e, which in turn suggests a significant local heating in an Au chain that raises its T_{he} to $> h/\nu k_B$ at $V_g = 0.02$ V by virtue of the poor contact-cooling efficiency via lattice heat conduction at 4 K. Furthermore, the positive contributions of inelastic channels to noise amplitude found in the present study suggest a weak electron-phonon interaction and symmetric molecule–metal coupling in HDT single-molecule junctions 38. (It should be noted that our discussion on inelastic noise is based on a fixed sampling rate. Although the noise amplitude is an averaged value at different data acquisition speeds, the qualitative arguments on the voltage-specific change in noise amplitudes attributable to the electron-vibration interactions in atomic/molecular conductors still hold.) These results indicate that vibrational mode-specific inelastic noise in single molecules can be more than a useful molecular signature to identify single-molecule junctions: with elaborate theoretical models, it can serve as a unique probe for detailed investigation of the electronic properties of single-molecule bridges.

Methods

Fabrication of mechanically controllable break junctions (MCBJs). Lithographically defined nano-MCBJs were exploited to form single-molecule bridges. Fabrication procedures of nano-MCBJs are described elsewhere 39. In short, we spin-coated a polycarbonate on a phosphorus bronze substrate for electrical insulation. Sub-micrometer-scale Au junctions were then patterned using an electron beam lithography technique and subsequent lift-off processes. The sample was then exposed to reactive ion etching to remove polysilicon underneath the junctions. As a result, we obtained Au nanobiodes with free-standing length of about 2 μm. In experiments, we first bent a substrate with a three-point bending mechanism and ruptured Au junctions immersed in a dilute toluene solution of test molecules. The sample geometries were designed to provide the damping factor $r = \Delta d/\Delta L \sim 3 \times 10^{-4}$, where d and L denote the displacements of the MCBJ electrodes and the substrate deflection, respectively 41. Here, we used HDTs, benchmark molecules the electron transport properties of which have been studied intensively 39,40. Subsequently, we evacuated the sample chamber to remove the solvent, leaving HDT molecules adsorbed on a fresh fracture surface of Au junctions. When the vacuum level reached below 10^{-9} torr, we performed opening and closing of Au junctions repeatedly for hundreds of cycles at room temperatures. At the same time, we examined the evolution of Au–HDT–Au structures by monitoring temporal conductance changes of junctions under a junction-stretching speed v_{st} of 0.6 pm s$^{-1}$ using a picometer (Keithley 6487) under a DC bias voltage of 0.2 V. The measured $G-I$ curves revealed conductance steps at <100 μA, suggestive of formations of Au–HDT–Au systems (Supplementary Fig. S1). After this, we slowly cooled the junctions to 4 K.

Formations of Au–HDT–Au single-molecule bridges. We created an HDT single-molecule bridge using a self-breaking method under $v_{st} = 6$ pm s$^{-1}$ and $V_g = 0.2$ V at 4 K. Conductance decreased in a stepwise manner. We stopped junc-
tion stretching when a well-defined G-plateau at 1.3×10^{-3} G, was detected right after a conductance drop from 1 G, which indicates opening of an atom-sized electrode gap (Supplementary Fig. S2).

Inelastic electron tunnelling spectroscopy measurements. To verify the presence of HDT molecules between two electrodes, we exhibited inelastic electron tunnelling spectroscopy (IETS) analyses by measuring dI/dV, in a bias range of 0.4 V to 0.4 V using a lock-in amplifier (SR830, Stanford Research Systems) with a reference AC voltage of 10 mV in at 1 kHz after forming and holding the single-molecule conductance state (Supplementary Fig. S5). The differential conductance was found to increase in a stepwise manner with V_c, indicating the opening of inelastic channels. dI/dV, V_c characteristics were obtained numerically from the measured dI/dV, V_c curves. Pronounced peaks were observed in the IET spectrum that can be assigned to the IETS-active vibrational modes of Au–alkanethiol–Au bridges.

References

1. Nio, S. & Emory, S. R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275, 1102–1106 (1997).
2. Weiss, S. Fluorescence spectroscopy of single biomolecules. Science 283, 1676–1683 (1999).
3. Giepmans, B. N. G., Adams, S. R., Ellisman, M. H. & Tsien, R. Y. The fluorescent toolbox for assessing protein location and function. Science 312, 217–224 (2006).
4. Branton, D. et al. The potential and challenges of nanopore sequencing. Nat. Biotechnol. 26, 1146–1153 (2008).
5. Eid, J. et al. Real-time DNA sequencing from single polymerase molecules. Science 323, 133–138 (2009).
6. Tsutsui, M., Taniguchi, M., Yokota, K. & Kawai, T. Identifying single nucleotides by tunnelling current. Nat. Nanotechnol. 5, 286–290 (2010).
7. Collins, J. J., Imhoff, T. T. & Grigg, P. Noise-enhanced tactile sensation. Nature 383, 770–770 (1996).
8. Bezzukov, S. M. & Vodyanoy, I. Noise-induced enhancement of signal transduction across voltage-dependent ion channels. Nature 378, 362–366 (2001).
9. Galperin, M., Ratner, M. A., Nitzan, A. & Troisi, A. Nuclear coupling and polarization in molecular transport junctions: beyond tunneling to function. Science 319, 1056 (2008).
10. Dijkstra, D. & van Ruitenbeek, J. M. Shot noise measurements on a single molecule. Nano. Lett. 6, 789 (2006).
11. Troisi, A. & Ratner, M. A. Molecular signatures in the transport properties of molecular wire junctions: what makes a junction ‘molecular’? Small 2, 172–181 (2006).
12. Stipe, B. C., Rezaei, M. A. & Ho, W. Single-molecule vibrational spectroscopy and microscopy. Science 280, 1732–1735 (1998).
13. Tsutsui, M., Taniguchi, M. & Kawai, T. Local heating in metal–molecule–metal junctions. Nano. Lett. 8, 3293–3297 (2008).
14. Hooge, F. N. 1/f noise. Physica B & C 83, 14–23 (1976).
15. Dutta, P. & Horn, P. M. Low-frequency fluctuations in solids: 1/f noise. Adv. Phys. 37, 1366–1380 (1988).
16. Collins, P. G., Fuhrer, M. S. & Zettl, A. 1/f noise in carbon nanotubes. Phys. Rev. B 77, 214204 (2008).
17. Branton, H. S., Noh, J., Hara, M. & Kawai, M. An HREELS study of alkanethiol self-assembled monolayers on Au(111). J. Phys. Chem. B 106, 9655–9658 (2002).
18. Bryant, M. A. & Pemberton, J. E. Surface Raman scattering of self-assembled monolayers formed from 1-alkanethiols: behavior of films at gold and comparison to films at silver. J. Am. Chem. Soc. 113, 8284–8293 (1991).
19. D’Agosta, R., Sai, N. & Di Ventura, M. Local electron heating in nanoscale conductors. Nano. Lett. 6, 2935–2938 (2006).
20. Nault, P., Novotny, T. & Belzig, W. Phonon-assisted current noise in molecular junctions. Phys. Rev. Lett. 103, 136601 (2009).
21. Wheeler, P. J., Russon, J. N., King, N. S. & Natelson, D. Shot noise suppression at room temperature in atomic-scale Au junctions. Nano. Lett. 10, 1287–1292 (2010).
22. Aigrain, N., Yeat, A. L. & van Ruitenbeek, J. M. Quantum properties of atomic-sized conductors. Phys. Rep. 377, 81–279 (2003).
23. Viljas, J. K., Cuvacs, J. C., Pauli, F. & Hafner, M. Electron-vibration interaction in transport through atomic gold wires. Phys. Rev. B 72, 245415 (2005).
24. Tal, O., Krier, M., Leerink, B. & van Ruitenbeek, J. M. Electron-vibration interaction in single-molecule junctions: from contact to tunneling regimes. Phys. Rev. Lett. 100, 196804 (2008).
25. Shimazaki, T. & Asai, Y. Theoretical study of the linehase of inelastic electron tunnelling spectroscopy. Phys. Rev. B 77, 115428 (2008).
26. Gavronski, H., Melhorn, M. & Morgenstern, K. Imaging phonon excitation with atomic resolution. Science 319, 930–933 (2008).
27. Aigrain, N., Untiedt, C., Rubio-Bollinger, G. & Vieira, S. Onset of energy dissipation in ballistic atomic wires. Phys. Rev. Lett. 88, 216802 (2002).
28. Ioffe, Z. et al. Detection of heating in current-carrying molecular junctions by Raman scattering. Nat. Nanotechnol. 3, 727–732 (2008).
29. Chen, Y.-C., Zwoolak, M. K. & Di Ventura, M. Local heating in nanoscale conductors. Nano. Lett. 3, 1691–1694 (2003).
30. Huang, Z., Chen, F., D’Agosta, R., Bennett, P. A., Di Ventura, M. & Tao, N. J. Local ionic and electron heating in single-molecule junctions. Nat. Nanotechnol. 2, 698–703 (2007).
31. Galperin, M., Nitzan, A. & Ratner, M. A. Inelastic tunneling effects on noise properties of molecular junctions. Phys. Rev. B 74, 075326 (2006).
32. Galperin, M., Ratner, M. A. & Nitzan, A. Molecular transport junctions: vibrational effects. J. Phys. Condens. Matter 19, 103201 (2007).
33. Buk, H., de Jong, M. J. & Schönenberger, C. Shot-noise suppression in the single-electron tunneling regime. Phys. Rev. Lett. 75, 1610 (1995).
34. Chen, Y.-C. & Di Ventura, M. Effect of electron-phonon scattering on shot noise in nanoscale junctions. Phys. Rev. Lett. 95, 166802 (2005).
35. Xu, B. & Tao, N. J. Measurement of single-molecule resistance by repeated formation of molecular junctions. Science 301, 1221–1223 (2003).
36. Tao, N. J. Electronic transport in molecular junctions. Nat. Nanotechnol. 1, 173–181 (2006).

Acknowledgments

This research is supported partially by the Japan Society for the Promotion of Science (JSPS) through its ‘Funding Program for World-Leading Innovative R&D on Science and Technology’.

Author contributions

M. Tsutsui, M. Taniguchi and T.K. planned and designed the experiments. M. Tsutsui and M. Taniguchi exhibited single-molecule fabrication of molecular junctions. M. Tsutsui, M. Taniguchi and T.K. wrote the paper.

Additional information

Supplementary Information accompanies this paper at http://www.nature.com/naturecommunications

Competing financial interests: The authors declare no competing financial interests.

License: This work is licensed under a Creative Commons Attribution-NonCommercial-Share Alike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/