In-situ characterization of growth of isothermal ω-phase in metastable β-Ti alloy TIMETAL LCB

Lucie Bodnárováᵃᵇ*, Jitka Nejezchlebováᵃ, Michaela Janovskáᵃ, Petr Sedlákᵃ, Hanuš Seinerᵃ, Jana Šmilauerováᵇ, Miloš Janečekᵇ, Benoit Appolaireᶜ

ᵃInstitute of Thermomechanics, Czech Academy of Sciences, Prague, Czech Republic
ᵇFaculty of Mathematics and Physics, Charles University, Prague, Czech Republic
ᶜMaterials Science and Engineering - Metallurgy Department, IJL Nancy, France

Metastable β-Ti alloys exhibit various solid-solid phase transitions. Our study is focused on the characterization of the diffusion controlled β→ωᵢso phase transition. The particles of ω phase play an important part in thermomechanical treatment since they serve as heterogeneous nucleation sites for precipitation of finely dispersed particles of hexagonal α phase. The in-situ observation of the growth of particles of ω phase could be difficult by conventional techniques. However, it was shown recently that the ω phase significantly influences the elastic constants of the material, and the different forms of ω phase have different effects on the elastic anisotropy, as well as on the internal friction coefficients [1]. Therefore, the β→ω phase transformation could be in-situ observed by the precise measurement of elastic constants [2]. In this contribution, we present the study of the kinetics of the β→ωᵢso phase transformation by resonant ultrasound spectroscopy. The polycrystalline samples of TIMETAL LCB alloy were examined by this technique during isothermal and non-isothermal ageing at temperatures up to 300°C. The experiment was complemented by the phase-field model that helped to explain the measured data.

Keywords: Phase transitions, elasticity, resonant ultrasound spectroscopy.

Acknowledgment: Czech Science Foundation, project No. 20-12624S

References:

[1] J. Nejezchlebova, M. Janovska, H. Seiner, P. Sedlak, M. Landa, J. Smilauerova, J. Strasky, P. Harcuba, M. Janecek, The effect of athermal and isothermal ω phase particles on elasticity of β-Ti single crystals, Acta Materialia 110, 2016, 185 – 191.

[2] P. Sedlak, H. Seiner, J. Zidek, M. Janovska, M. Landa, Determination of All 21 Independent Elastic Coefficients of Generally Anisotropic Solids by Resonant Ultrasound Spectroscopy: Benchmark Examples, Exp. Mech. 54, 2014, 1073 - 1085.