This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the author guidelines.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the ethical guidelines, outlined in our author and reviewer resource centre, still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Hg\textsuperscript{2+} and Cd\textsuperscript{2+} binding of a bioinspired hexapeptide with two cysteine units constructed as a minimalistic metal ion sensing fluorescent probe

Levente I. Szekeres,\textsuperscript{a} Sára Bálint,\textsuperscript{a} Gábor Galbács,\textsuperscript{a} Ildikó Káломista,\textsuperscript{a} Tamás Kiss,\textsuperscript{a} Flemming H. Larsen,\textsuperscript{b} Lars Hemmingsen,\textsuperscript{c} Attila Jancsó*\textsuperscript{a}

Hg\textsuperscript{2+} and Cd\textsuperscript{2+} complexation of a short hexapeptide, Ac-DCSSCY-NH\textsubscript{2} (DY), was studied by pH-potentiometry, UV and NMR spectroscopies and fluorimetry in aqueous solutions and the Hg\textsuperscript{2+}-binding ability of the ligand was also described in immobilized form, where the peptides were anchored to a hydrophilic resin. Hg\textsuperscript{2+} was demonstrated to form a 1:1 complex with the ligand even at pH = 2.0 while Cd\textsuperscript{2+} coordination by the peptide takes place only above pH ~ 3.5. Both metal ions form bis-ligand complexes by the coordination of four Cys-thiolates at ligand excess above pH ~ 5.5 (Cd\textsuperscript{2+}) and 7.0 (Hg\textsuperscript{2+}). Fluorescence studies demonstrated a Hg\textsuperscript{2+} induced concentration-dependent quenching of the Tyr fluorescence until a 1:1 Hg\textsuperscript{2+}-DY ratio. The fluorescence emission intensity decreases linearly with the increasing Hg\textsuperscript{2+} concentration in a range of over two orders of magnitude. The fact that this occurs even in the presence of 1.0 eq. of Cd\textsuperscript{2+} per ligand reflects a complete displacement of the latter metal ion by Hg\textsuperscript{2+} from its peptide-bound form. The immobilized peptide was also shown to bind Hg\textsuperscript{2+} very efficiently even from samples at pH = 2.0. However, the existence of lower affinity binding sites was also demonstrated by binding of more than 1.0 eq. of Hg\textsuperscript{2+} per immobilized DY molecules under Hg\textsuperscript{2+}-excess conditions. Experiments performed with a mixture of four metal ions, Hg\textsuperscript{2+}, Cd\textsuperscript{2+}, Zn\textsuperscript{2+} and Ni\textsuperscript{2+}, indicate that this molecular probe may potentially be used in Hg\textsuperscript{2+}-sensing systems under acidic conditions for the measurement of μM range concentrations.

Introduction

Hg\textsuperscript{2+} and Cd\textsuperscript{2+} ions can induce serious cytotoxic effects and cancer development in living organisms. Among others, Cd\textsuperscript{2+} can interfere with DNA repair mechanisms and causes osteoporosis by mimicking Zn\textsuperscript{2+} and Ca\textsuperscript{2+} ions.\textsuperscript{1,2} The high affinity of Hg\textsuperscript{2+} to the sulfhydryl groups of thiols has long been accepted to play a role in Hg\textsuperscript{2+} toxicity. Nevertheless, it has also been suggested that the major mechanism of toxicity is related to its interaction with the selenocysteine residues of glutathione peroxidase and thioredoxin reductase, leading to the inhibition of gap junction-mediated intercellular communication and proinflammatory cytokine production.\textsuperscript{3,4} Cellular defence mechanisms remove these toxic metal ions from the cytosol. In many bacteria the removal of Cd\textsuperscript{2+} ions, owing to their similarity to Zn\textsuperscript{2+}, can be implemented by multication resistance-mediating CzcABC efflux pumps\textsuperscript{5} and by the P-type ATPase ZntA or the more specific CadA systems.\textsuperscript{6} In contrast, the detoxification of Hg\textsuperscript{2+} takes place in the form of Hg\textsubscript{0} via the specific mercury resistance mer system.\textsuperscript{7,8} Cys-abundant sequence motifs can provide efficient Hg\textsuperscript{2+} and Cd\textsuperscript{2+} binding for proteins. The CXXC motif often constitutes the metal ion binding site in proteins, like in rubredoxins,\textsuperscript{9} P-type ATPases,\textsuperscript{10} alcohol dehydrogenases,\textsuperscript{11} zinc fingers,\textsuperscript{12} metallochaperones,\textsuperscript{13,14} metallothioneins,\textsuperscript{15} as well as in the members of the Hg\textsuperscript{2+} and Cd\textsuperscript{2+} selective resistance systems (MerP,\textsuperscript{16} MerC,\textsuperscript{17} CadA,\textsuperscript{6} ZntA\textsuperscript{6} NMerA\textsuperscript{18}).

Hg\textsuperscript{2+} can form extremely stable complexes with linear, \{HgS\textsubscript{2}\} type coordination mode with thiol ligands, e.g. Cys (log $\beta_1 = 39.4 \pm 43.6$)\textsuperscript{19–21}, BAL (log $\beta_1 = 44.8$)\textsuperscript{22} etc. The formation of this binding mode was observed during the interaction of Hg\textsuperscript{2+} with many CXXC-type proteins, like MerP,\textsuperscript{16} NMerA,\textsuperscript{23} Atx1,\textsuperscript{24} and with cyclic\textsuperscript{25,26} or linear\textsuperscript{27,28} metalloprotein model peptides, etc. The presence of amino acids with high rigidity and/or helical penalty (e.g Pro, Gly) in the positions of X\textsubscript{i} and X\textsubscript{j} increases the Hg\textsuperscript{2+} binding efficiency by preorganising the peptide structure. Moreover, the Hg\textsuperscript{2+} complex of the rigid CysPPC peptide displays an exceptionally high stability constant (log $\beta_1 = 40.0$) even compared to the effective CPPC sequence.\textsuperscript{29} There are also examples for the formation of bis complexes with a \{HgS\textsubscript{2}\} binding mode among proteins bearing a CXXC motif (HAH1,\textsuperscript{7,8} Rubredoxins,\textsuperscript{30} etc).

In its complexes, Cd\textsuperscript{2+}, similarly to Zn\textsuperscript{2+}, prefers to possess a tetrahedral coordination sphere with two or four thiolate moieties but Cd\textsuperscript{2+} has a higher thiophilic character. When the coordination sphere of Cd\textsuperscript{2+} is not saturated by thiolate groups,
The complexes are stabilized mostly by complementary binding of other functional groups. Interactions with the carbonyl groups of Glu and Asp units probably play a role in the selectivity of CadA and ZntA.31 Besides monomeric bis complexes with a pure (CdS)_{4} coordination mode, the presence of dimeric species with a mixed Cys-Glu ((CdS)_{4}O) coordination was also observed in the system of Cd^{2+} and a 71 amino acid long polypeptide, derived from CadA, at pH = 6.0.31

CXXC moieties are potentially applicable as metal ion binding units in Hg^{2+} and Cd^{2+} sensing systems, since their interaction is typically characterized by a well-defined stoichiometry, high efficiency and selectivity. Since these metal ions can accumulate in the food chain and therefore ingested by humans, they pose significant health risks, and therefore their fast, selective sensing and remediation is highly prioritized.5 Sensing schemes for these metal ions, based on fluorimetry,32 potentiometry,33-35 impedance measurement,36 protein-functionalized microcantilevers,37 or differential surface plasmon resonance38 etc., were already proposed. Peptide ionophores can be designed with an ability for signalling by introducing fluorescing groups, as well as the fluorophores themselves, in addition to their sequence.39-41 Metal ion binding to peptide probes mostly induce fluorescence quenching, especially with Cu^{2+},42-53 and Hg^{2+},42,48,54 However, chelation can also enhance the fluorescence (CHEF) via electronic interactions between the fluorophore and the altered coordination sphere. This is very frequent with Zn^{2+} 43,46-49,51,53 and Cd^{2+} 43,46-48 but examples are also known with Ag^{+},42,46-48 Pb^{2+} 46,47 and Hg^{2+}.48 In addition, the metal ion promoted conformational change of the peptide may lead to a “close contact” and thus to a Förster resonance energy transfer (FRET) effect between different fluorophore residues.46,52,54-56 Aggregation induced emission (AIE) enhancement can also be utilized for the analysis of metal ions.57,58 The response mechanism and the sensitivity and selectivity of a peptide sensor designed for a specific metal ion is highly influenced by the quality and quantity of the binding groups, as well as the fluorophores themselves, in addition to the amino acid sequence and the higher order peptide structure. Although many fluorescent peptides have already been tested as potential sensor candidates for Hg^{2+} and Cd^{2+} or other metal ions, examples where the studied ionophore bears a CXXC motif are rather scarce. In the unique case of the short Dansyl-CPGCW-NH{sub 2} peptide, the intervening amino acids between the two Cys residues provide high backbone rigidity for the ionophore. Upon excitation of either of the two fluorophore units, Cd^{2+} ions induced a significant enhancement in the light emission of dansyl. Rather interestingly, Hg^{2+} and Zn^{2+} were shown to have no effect on the fluorescent response of the molecule.56 Another notable, previously studied dicysteiny1 peptidic probe possesses a CXXHC binding motif combined with dansyl and Trp fluorophores. This probe displayed a ratiometric turn on response for Hg^{2+}, Cd^{2+}, Pb^{2+}, Zn^{2+}, and Ag^{+} ions upon the excitation of either of the two fluorophore units.48 In addition, Joshi and co-workers also observed a turn-on response for Zn^{2+} with two fluorescent peptides containing a Cys and a His residue in a 1,4-arrangement.47,49

Optrochemical sensors, constructed by the covalent attachment of fluorescent peptides to the surface of solid carriers (e.g. optical fibers) may allow in-situ trace analysis of toxic metal ions with low sample quantity requirements. Such systems may present simple alternatives to currently used reliable, but expensive and robust laboratory-based instrumental methods. Despite the fact that several studies have already reported the successful design of such sensors,32,59-67 there have only been a very few attempts to characterize the metal capturing peptide elements both in their dissolved and immobilized forms.47,49 With an aim of exploiting the metal ion binding properties of the CXXC motif, we designed and synthesized the short, DCSSCY-NH{sub 2} hexapeptide in an acetylated and amidated free form (AcDCSSCY-NH{sub 2} (DY)) and in an immobilized, resin-attached form (DY-NTG). Compared to other aromatic amino acids, Tyr is less hydrophobic and still exhibits a reasonable quantum yield (0.14).62 The fluorescence of Tyr has proved to be applicable in determining the Cu^{2+} complex stabilities of different peptides,63-65 in spite of the relatively close excitation (\(\lambda_{ex} = 275\) nm) and emission (\(\lambda_{em} = 304\) nm) maxima of the fluorophore.62 Accordingly, this simple ligand and the obtained data may be relevant in the design of peptide-based metal ion sensing systems.

Results and discussion

UV absorption experiments

UV absorption spectra of DY, as a function of pH, were recorded in the absence and presence of metal ions with the purpose of monitoring the effect of Hg^{2+} and Cd^{2+} on the deprotonation processes of the ligand. As it is expected, the proton dissociation of both the Cys –SH groups and the phenolic –OH group markedly influence the recorded spectra, even in the absence of metal ions (Figure S1). Deprotonated thiol groups are characterized by a UV-band centred around \(\lambda = 235-236\) nm66,67 while the proton release from the Tyr–OH function is known to result in a shift of two characteristic absorption peaks from 223 to 240 nm and from 277 to 295 nm.68 The dissociation of the Asp sidechain carboxyl group does not have a noticeable spectral influence in the \(\lambda = 220 – 400\) nm range. Since the Cys and Tyr residues all deprotonate above neutral pH, a continuous evolution of the absorbance is observed between pH ~ 6.5 and 11.0 around 240 nm while the absorbance at 295 nm starts increasing from a notably higher pH, above pH ~ 8.5 (Figure S1), indicating the exclusive effect of the deprotonation of the Tyr residue. One may estimate the pK{sub a} value of the Tyr –OH function from the A{sub 295nm} vs. pH plot (Figure S1) to be around 10.0 which is in line with the data determined from pH-metric titrations (see later).

UV/pH titrations were conducted in the presence of 0.5 and 1.0 equivalent of Hg^{2+} ions within the range of pH ~ 1.8 – 11.0 (Figure S2) and representative absorbance traces from selected wavelength values are depicted in Figure 1.A. The significantly larger absorbances observed at pH = 1.8 at \(\lambda = 210 – 230\) nm in the presence of Hg^{2+} relative to the metal ion free sample is originated from S−–Hg^{2+} charge transfer bands and clearly

2 | J. Name., 2012, 00, 1-3

This journal is © The Royal Society of Chemistry 20xx

Dalton Transactions Accepted Manuscript

Please do not adjust margins
indicate peptide binding to the metal ion, as was also observed previously for other systems of Hg$^{2+}$ and cysteine containing peptides under acidic conditions.$^{29,69-71}$ Furthermore, the absorbance increase, induced by Hg$^{2+}$-binding, seems to be proportional to the applied Hg$^{2+}$:DY ratio (Figures 1.A and S2.B) between pH $\sim$ 1.8 – 7.0. At the same time, absorbances in the higher wavelength regime, i.e. around 295 nm, are almost identical independently of the Hg$^{2+}$ concentration. These findings suggest an unvarying speciation up to neutral pH at any Hg$^{2+}$:DY ratio (and even up to pH 11.0 at one equivalent of Hg$^{2+}$ per peptide) and the high energy charge transfer band, characterized by an absorption maximum below 220 nm (see the calculated difference spectra in Figure S3.), indicates a (HgS$_2$) type coordination mode in the complexes formed.$^{26,29,69,70,72,73}$

A remarkable difference between the speciation in Hg$^{2+}$:DY 0.5:1 and 1:1 above pH $\sim$ 7.5 is reflected by the diagonal vs. pH profiles, representing the evolution of S$^-$–Cd$^{2+}$ charge transfer bands,$^{77-83}$ which suggests that metal ion binding is essentially complete by pH $\sim$ 6 at 1 eq. of Cd$^{2+}$ per ligand, however, the curve for Cd$^{2+}$:DY 0.5:1 is characterized by a narrow plateau near pH 6 and a second step levelling off above pH $\sim$ 7.5 (Figure 1.B). This indicates a different complexation pathway when the peptide is in excess over Cd$^{2+}$. One may presume the formation of bis-ligand species, as was also reported for the Cd$^{2+}$ binding of other short, two Cys-containing peptides.$^{79-81,84}$ This is also supported by the systematically higher absorbances observed for Cd$^{2+}$:DY 0.5 relative to those observed both for Cd$^{2+}$:DY 1:1 and for the free ligand (Figure 1.B). Indeed, the molar extinction coefficients for $\lambda$ = 240 nm that one may estimate for the species present at pH $\sim$ 8.0 at 0.5 and 1 eq. of Cd$^{2+}$ per ligand (25 100 M$^{-1}$ cm$^{-1}$ and 11 700 M$^{-1}$ cm$^{-1}$) correspond well to four and two thiolates coordinated Cd$^{2+}$-centres, respectively.$^{77,78}$ The further increase of absorbance above pH 8 (at any Cd$^{2+}$:DY ratio) is most likely the consequence of the deprotonation of the Tyr sidechain phenol, nevertheless, other processes that may affect the coordination sphere of the metal ion, e.g. proton release(s) from Cd$^{2+}$-coordinated water molecules, may also contribute to the observed spectral changes under alkaline conditions.

$^{1}$H NMR studies

$^{1}$H NMR spectra of the free peptide were recorded as a function of pH (Figure S6) and resonances of DY were assigned as described in the Experimental part and are shown in Figure S5. We performed NMR titrations in the Hg$^{2+}$:DY (Figure 2) and Cd$^{2+}$:DY (Figure S9) systems by changing the metal ion to ligand ratio at selected pH values or at constant Hg$^{2+}$:DY ratios (0.5:1 and 1:1) as a function of pH (Figures S7-S8). However, pH-dependent $^{1}$H NMR experiments were not executed for Cd$^{2+}$:DY because of severe line broadening and poorly resolved resonances observed for all of the signals already at 0.25 eq. of Cd$^{2+}$ per ligand (see Figure S9). We had previously observed a similarly strong influence of Cd$^{2+}$ on the $^{1}$H NMR signals of other,

![Figure 1. Absorbances at selected wavelength values as a function of pH, recorded for Hg$^{2+}$:DY (A) and Cd$^{2+}$:DY (B). $\{C_0 = 1 \times 10^{-4}$ M (A) or $5 \times 10^{-4}$ M (B), $T = 298 K\}$.](image-url)

A remarkable difference between the speciation in Hg$^{2+}$:DY 0.5:1 and 1:1 above pH $\sim$ 7.5 is reflected by the A vs. pH profiles at 295 nm. The absorbances observed for Hg$^{2+}$:DY 1:1 up to pH = 11.0 are nearly identical with those obtained for the free ligand suggesting that the bound Hg$^{2+}$ has only a minor influence, if any, on the deprotonation of the Tyr sidechain group. The remarkably different $A_{295nm}$ vs. pH trace of Hg$^{2+}$:DY 0.5:1 (Figure 1.A) suggests a fundamental rearrangement in the coordination sphere of Hg$^{2+}$ above neutral pH, most probably induced by the coordination of a second ligand and the formation of additional S$^-$–Hg$^{2+}$ bonds. LMCT bands with maxima around 240-250 nm or 280-300 nm in the UV spectra of Hg$^{2+}$-thiolate complexes were previously assigned as signatures of trigonal (HgS$_3$)$^{27,28}$ or (pseudo)tetrahedral (HgS$_4$) species, respectively.$^{27,75,76}$ This suggests that the two DY ligands binds Hg$^{2+}$ with both of their two thiolates under basic conditions (see Figure S3). The slight batochromic shift of the absorption maximum, observed above pH $\sim$ 9.5 (Figure S2.A), is presumably the effect of the deprotonation of the Tyr residues of the bound ligands taking place without metal ion assistance. This interpretation is further supported by the fact that isosbestic points are observed above pH 10 at $\lambda$ $\sim$ 264 nm and $\sim$ 282 nm (Figure S2.A), indicating a simple transition between two species.

The pH-dependent series of UV spectra recorded for Cd$^{2+}$:DY 0.5:1 and 1:1 (Figures 1.B and S4) indicate metal ion coordination via the formation of thiolate–Cd$^{2+}$ bonds from pH $\sim$ 4.5. The A$_{240nm}$ vs. pH profiles, representing the evolution of S$^-$–Cd$^{2+}$ charge transfer bands,$^{77-83}$ suggests that metal ion binding is essentially complete by pH $\sim$ 6 at 1 eq. of Cd$^{2+}$ per ligand, however, the curve for Cd$^{2+}$:DY 0.5:1 is characterized by a narrow plateau near pH 6 and a second step levelling off above pH $\sim$ 7.5 (Figure 1.B). This indicates a different complexation pathway when the peptide is in excess over Cd$^{2+}$. One may presume the formation of bis-ligand species, as was also reported for the Cd$^{2+}$ binding of other short, two Cys-containing peptides.$^{79-81,84}$ This is also supported by the systematically higher absorbances observed for Cd$^{2+}$:DY 0.5 relative to those observed both for Cd$^{2+}$:DY 1:1 and for the free ligand (Figure 1.B). Indeed, the molar extinction coefficients for $\lambda$ = 240 nm that one may estimate for the species present at pH $\sim$ 8.0 at 0.5 and 1 eq. of Cd$^{2+}$ per ligand (25 100 M$^{-1}$ cm$^{-1}$ and 11 700 M$^{-1}$ cm$^{-1}$) correspond well to four and two thiolates coordinated Cd$^{2+}$-centres, respectively.$^{77,78}$ The further increase of absorbance above pH 8 (at any Cd$^{2+}$:DY ratio) is most likely the consequence of the deprotonation of the Tyr sidechain phenol, nevertheless, other processes that may affect the coordination sphere of the metal ion, e.g. proton release(s) from Cd$^{2+}$-coordinated water molecules, may also contribute to the observed spectral changes under alkaline conditions.
relatively short, Cys-containing peptides and as in those reported cases, the line broadening seen in the spectra of Cd\(^{2+}\):DY indicates ligand exchange and/or conformational dynamics occurring in an intermediate time regime, relative to the NMR time scale.

The deprotonation processes of the carboxyl group of the Asp residue, the two Cys-thiols and the sidechain phenolic function of Tyr in the free DY ligand can be clearly followed by the gradual shifting of the corresponding C\(_2\)H\(_2\) resonances or the C\(_6\)H and C\(_5\)H signals of Tyr towards lower chemical shifts in the relevant pH-ranges (Figure S6). The presence of Hg\(^{2+}\) has only minor effect on the shape and chemical shift of these resonances (with the exception of the slightly more influenced C\(_6\)H signals of Asp – see later), suggesting that Hg\(^{2+}\) does not bind to these moieties. As opposed to this, below neutral pH Hg\(^{2+}\) binding of the two thiolates are represented by the collapse of the Cys C\(_6\)H signals of the unbound ligand and the emerging new resonances attributed to the bound molecule (see the effect of the increasing Hg\(^{2+}\):DY ratio at pH = 5.7, Figure 2.A). This indicates that the ligand exchange dynamics is moderately slow at this pH, relative to the NMR timescale.

Complex speciation in the metal ion – peptide systems, unravelled by pH-potentiometric titrations

pH-potentiometry is, in general, a powerful method for the characterization of complex formation processes that lead to the release of protons from the metal ion binding moieties of the ligand, and \(pK_a\) values of the free ligand and its Cd\(^{2+}\) complexes are presented in Table 1. However, Hg\(^{2+}\) ions are bound so efficiently to ligands with thiol groups, including the studied DY peptide, that the free metal ion fraction is negligible even at the very acidic end of the pH-range coverable by a glass electrode. As a consequence, the relevant metal-ion induced deprotonation processes are completed at the initial pH of the titrations and thus the method is not directly applicable to the determination of stability constants in such systems. (An indirect pH-metric approach for the characterization of Hg\(^{2+}\)-peptide complex speciation using a competing Hg\(^{2+}\)-binding ligand has been previously reported by Iranzo et al.\(^{29}\)) In spite of the limitations of this method for the present system, we executed pH-potentiometric titrations aiming to follow the various deprotonation processes occurring at the Hg\(^{2+}\)-bound peptide(s) and to determine the proton dissociation constants characterizing the interconversion of the differently protonated complex species. These data, collected in Table S1 in the ESI, allowed of the calculation of species distribution curves for Hg\(^{2+}\):DY 0.5:1 and 1:1 (Figure 3) based on the plausible assumption that the species present at pH = 2.0 is HgH\(_2\)L with two Hg\(^{2+}\)-coordinated thiolate groups and protonated Asp and Tyr residues of the ligand. Indeed, the calculation of such a speciation scheme required the overall formation constant (\(log\beta\)) of one of the species to be fixed (conveniently the \(log\beta\) of HgH\(_2\)L). Since we did not have an experimentally measured value for \(log\beta\) of HgL, we assumed that the Hg\(^{2+}\) + H\(_2\)L\(^{2-}\) \(\rightarrow\) [HgH\(_2\)L] process of DY could be characterized by the same stability constant as that of the parent mono complex (HgL) of the terminally protected CoPPC peptide, determined by Iranzo et al. (\(logK = 40.0\)).\(^{29}\) By this assumption we could set a fixed, “arbitrary” \(log\beta\) value (see more details in the Supplementary information) required for the formation of a bis-ligand complex with a (HgL) coordination geometry. The fact that the chemical shifts of the Cys protons lie in between those of the free peptide and the resonances of the mono-complex (see the broad peaks around 2.9 and 3.2 ppm on the middle spectrum in Figure 2.B) may simply reflect that Hg\(^{2+}\) quite efficiently attracts electrons in the (HgL) type species, but that this effect (per cysteine) is less pronounced in the (HgS\(_4\)) structure. Consequently, the deshielding effect on the Cys protons caused by Hg\(^{2+}\) coordination is weaker for the (HgS\(_4\)) than for (HgL) structures. It is also interesting to note that the signals of the Cys C\(_6\)H\(_2\) protons are hardly observable around neutral pH at 0.5:1 Hg\(^{2+}\):DY ratio (Figure S7.A), possibly as a consequence of severe line broadening. This might imply that the increase of pH and approaching the range where the thiol groups of the unbound ligands deprotonate has an influence on the ligand exchange rate and that ligand exchange dynamics also affects the observed Cys C\(_6\)H\(_2\) resonances.

The \(pK_a\)-dependence of resonances observed with 0.5 eq. of Hg\(^{2+}\) per peptide agrees excellently with the UV data and with...
data evaluation. Note that it does not affect the conclusions of this work how closely this arbitrary stability data approaches its real value, as long as it is high enough to ensure a complete binding of Hg\(^{2+}\) at the lowest utilized pH. This is also reflected by model calculations where in spite of the different applied log\(K_{a}\) values the resulting pK\(_a\) data for the deprotonation processes of the complexes turned out to be identical (Table S2). The calculated distribution of species (Figure 3) well supports all of our previous conclusions drawn from the spectroscopic data. The pK\(_a\) values associated with the release of the two protons, leading to [HgHL\(^-\)]\(^2+\) (pK\(_a\) = 4.1, Table S1) and then to [HgL\(^3-\)] (pK\(_a\) = 9.6, Table S1), are close to the values determined for the deprotonations of the Asp and Tyr units of the free ligand, respectively (pK\(_a\) = 3.80 and pK\(_a\) = 10.05, see Table 1). This indicates that the deprotonation of these groups are essentially not affected by the metal ion in the Hg\(^{2+}\)-bound peptide. At Hg\(^{2+}\):DY = 0.5:1 the bis-ligand complexes dominate above pH 8. Considering the characteristic pH-range for the presence of the differently protonated bis complexes and the observed position of their \(S^-\)-Hg\(^{2+}\) charge transfer bands, it is straightforward to suggest three coordinating thiolate groups in [HgH\(_2\)L\(^2+\)]\(^-\) and thus a (HgS\(_4\)) coordination mode in [HgH\(_2\)L\(^2+\)]\(^-\). Similar to the deprotonation step of the [HgL\(^2+\)]\(^2+\) parent complex, the two H\(^+\)-dissociation processes of the [HgH\(_2\)L\(^2+\)]\(^-\) species, occurring in the alkaline pH range (pK\(_a\) = 10.0 and 11.2 - Table S1), are assigned to the deprotonation of non-coordinating Tyr sidechains. Proposed schematic structures for the Hg\(^{2+}\):DY complexes are collected in Scheme S1.

![Figure 3. Distribution of species in the Hg\(^{2+}\):DY 0.5:1 (continuous lines) and 1:1 (dashed lines) systems (c\(_{Hg}\) = 1.0×10\(^{-3}\) M, T = 298 K).](image)

Evaluation of pH-potentiometric data obtained for Cd\(^{2+}\):DY reveal that Cd\(^{2+}\)-binding occurs above pH ~ 3.5 and the first dominant species, formed in parallel with a small amount of a dinuclear species, is a mono-protonated mono complex independently of the metal ion to ligand ratio (Figure 4). The composition [CdHL\(^-\)]\(^2+\) corresponds well with the coordination of both thiolates to Cd\(^{2+}\) and with a protonated Tyr phenol group in this species. Obviously, the Asp carboxyl function is deprotonated in [CdHL\(^-\)], however, since the formation of this complex spans the pH-range where the Asp sidechain of the free ligand also deprotonates, pH-metric data are not conclusive with regard to the Cd\(^{2+}\)-binding of this group.

Previous studies on short oligopeptides containing both Cys and Asp residues reflected, however, that participation of the available carboxylate groups in Cd\(^{2+}\)-binding is possible, even if two thiolate donors are also coordinated. Binding of the Asp sidechain of DY to Cd\(^{2+}\) is supported by the stability constant calculated for the Cd\(^{2+}\) + [HL\(^3-\)] = [CdHL\(^-\)]\(^2+\) process (log\(K_{a}\)\(^{2+}\) = 12.56). This value is nearly identical to the stability that may be calculated for the relevant, (CdS\(_2\)O\(_2\)) type complex of a short phytochelatin peptide (([γ-Glu-Cys]_2-Gly-PC2, log\(K_{a}\)\(^{2+}\) = 12.57)\(^{80}\) and significantly higher than the stability of the protonated mono complex of ACSSACS-NH\(_2\) with only two coordinating thiolate groups (log\(K_{a}\)\(^{2+}\) = 10.22).\(^{24}\) The remarkable extra stability observed for the mono complex of DY is presumably only partly related to the additional binding of the Asp carboxylate group, and may also be a consequence of the more favoured CXXC amino acid pattern vs. the CXXXC sequence in the ACSSACS-NH\(_2\) heptapeptide.

![Figure 4. Distribution of species in the Cd\(^{2+}\):DY 0.5:1 (A) and 1:1 (B) systems (c\(_{Cd}\) = 1.0×10\(^{-3}\) M, T = 298 K).](image)

Furthermore, the additional coordination of one of the internal peptide carboxyl groups, as suggested for PC2, is also possible in the [CdHL\(^-\)]\(^2+\) complex of DY resulting in a [S\(_2\),S\(^-\),COO\(^-\),O\(^-\)] donor group environment around the metal ion. The pK\(_a\) value determined for the [CdHL\(^-\)]\(^2+\) + H\(^+\) process (pK\(_a\) = 9.83) is very close to the pK\(_a\) of the Tyr residue in the free ligand indicating that the sidechain phenolate is not bound to Cd\(^{2+}\),
similarly to what was concluded for the Hg²⁺ complexes of DY. (Suggested schematic structures for the Cd²⁺:DY complexes are shown in Scheme S2.) Calculation of the apparent dissociation constant for the Cd²⁺:DY mono complexes at pH = 7.0, according to the equation $K_d = \frac{[\text{Cd}^{2+}]_{\text{free}} \times [\text{Ligand}]_{\text{free}}}{[\text{Cd}^{2+}\text{L}]_{\text{complexed}}}$, may allow to compare the Cd²⁺-binding affinity of DY to other relevant cysteine containing peptides or proteins. The calculated $K_d = 9.1 \times 10^{-10}$ M indicates a slightly larger Cd²⁺-binding affinity of DY compared to that of the PC2 phytochelatin pentapeptide (Kd = 1.7 x 10⁻⁹ M) but a substantially stronger Cd²⁺-binding relative to the reduced glutathione (Kd = 1.4 x 10⁻⁸ M). However, the average dissociation constants determined for the α and β domains of MT-2 metallothioneins (Kd = 1.0 x 10⁻¹⁵ M (α) and 0.1-1.0 x 10⁻¹² M (β)) clearly reflect a more efficient Cd²⁺-coordination by these proteins, provided by the thiolate-clusters.

At twofold DY excess over Cd²⁺ the bis-ligand complexes start to form at ca. pH 5 and become fully dominant by pH ~ 8 (Figure 4.A), as also suggested by the pH dependent evolution of the $S^-\text{–Cd}^{2+}$ charge transfer band and the calculated molar extinction coefficient for $\lambda = 240$ nm at Cd²⁺:DY 0.5:1, vide supra. The two proton release processes, leading from the four-thiolate coordinated $[\text{CdH}_4\text{L}_4]^{2-}$ complex to $[\text{CdHL}]^{3-}$ and then to $[\text{CdL}]^{5-}$, are assigned to dissociations of the non-coordinating Tyr phenol sidechains (see Table 1). The stability constant calculated for the protonated bis complex ($[\text{CdHL}]^{4-} = [\text{HL}]^{-} = [\text{CdH}_4\text{L}_4]^{2-}$, log $K_{a\text{CdxHyLz}} = 8.21$) and the relative stability of the protonated mono and bis-ligand species (log $K_{a\text{CdxHyLz}}$ = 4.35) indicate that binding of the second ligand is substantially less favoured than that of the first one. Very similar data have been reported for the bis complex formation of the phytochelatin pentapeptide PC2 (log $K_{a\text{CdxHyLz}}$ = 4.39) leading to a four thiolate coordinated species. The relative positions of the two Cys residues in DY and PC2 are different (CXC, CXC) just as the overall charges of their relevant mono and bis complexes (DY: –1/-4, PC2: –2/-6), nevertheless, the two peptides are of similar sizes. This suggests that the relative binding strength of the second DY or PC2 ligand is determined by similar factors, i.e. the notably high stability of their mono complex and steric hindrance (bulkiness of the peptides) but the log $K_{a\text{CdxHyLz}}$ values are probably not large enough to assume a major change in the coordination geometry of Cd²⁺.

### Influence of metal ions on the fluorescence of the ligand

The effect of the metal ions on the fluorescence of the Tyr residue, as a function of the metal ion to DY ratio, was monitored at selected pH values, applying excitation at $\lambda = 278$ nm. Gradual addition of Cd²⁺ ions to a solution of the peptide at pH = 7.1 (Figure S10) showed a partial quenching (~35 % drop) of the original emission intensities, levelling off at a ca. 0.6-0.7:1 Cd²⁺:DY ratio. This $I_{\text{obs}}$ vs. Cd²⁺:DY ratio profile perfectly correlates with the disappearance of the free ligand, occurring slightly above a 0.5:1 Cd²⁺:peptide ratio at pH = 7.1 (see Figure 4.A), especially under the small concentrations used for the fluorimetric studies. Since further increase of the Cd²⁺:DY ratio was found to have no influence on the observed emission intensity, Cd²⁺ seems to exert very similar quenching effect on the fluorescence of the Tyr residue, independently of the number of coordinated DY molecules. In a double (Trp and Dansyl) labelled peptide containing two Cys residues, Cd²⁺ was found to induce a turn-on response, nevertheless, the chelation enhanced fluorescence also reached a maximum around a 0.5:1 Cd²⁺:peptide ratio, and accordingly, it was attributed to the presence of a bis complex.

For the experiments in the Hg²⁺:DY system pH = 6.0 was chosen to apply a close-to-neutral condition while avoiding the occurrence of bis complexes and thus maintaining a relatively simple speciation that should be desirable for a molecular probe. In view of the outstanding affinity of DY towards Hg²⁺ that, in contrast to Cd²⁺, results in a complete binding of this metal ion even at rather low pH values, we recorded Hg²⁺:DY ratio dependent emission spectra at pH = 2.0, as well.

### Table 1

| Species       | logβ | pK_a  |
|---------------|------|-------|
| [HL]^{3-}     | 10.05(1) | 10.05 |
| [H_2L]^{2-}   | 19.29(4) | 9.24  |
| [H_L]^{+}     | 27.56(2) | 8.27  |
| [H_L]^{2-}    | 31.36(2) | 3.80  |
| [H_L]^{2-}    | 31.76(1) | 3.12  |
| [H_L]^{3-}    | 31.76(1) | 3.12  |
| [H_L]^{2-}    | 31.76(1) | 3.12  |
| [H_L]^{3-}    | 31.76(1) | 3.12  |
| [H_L]^{3-}    | 31.76(1) | 3.12  |
As Figure 5 clearly shows, the increase of the concentration of Hg\(^{2+}\) leads to a significant drop of emission intensities, following a linear trend until reaching a 1:1 Hg\(^{2+}\):DY ratio both at pH = 6.0 and 2.0. This correlates well with the calculated complex speciation (Figure 3) and indicates a strong and complete binding of 1 eq. Hg\(^{2+}\) per DY. However, it also suggests that the ligand cannot capture a second Hg\(^{2+}\) ion in solution, which is also a desirable property for a Hg\(^{2+}\) sensor. Although different species dominate at the two selected pH values (HgH\(_2\)L at pH = 2.0 and [HgLH\(_4\)]\(^-\) at pH = 6.0), the observed trends in the decreasing fluorescence emission intensities are nearly identical in the two cases. This suggests that the protonation state of the uncoordinated Asp carboxyl group has no impact on the Hg\(^{2+}\)-induced quenching of the Tyr fluorescence.

Different possibilities may be considered for the mechanism of the metal ion induced quenching of the fluorescence of DY, as suggested by Chen’s in-depth overview of the interaction of Hg\(^{2+}\) with proteins containing aromatic amino acids.\(^{88}\) Indeed, Hg\(^{2+}\) was shown to quench the fluorescence of the vast majority of tested proteins, especially of those that contained Cys residues near the aromatic amino acids.\(^{88}\) Although direct interaction of both of the studied metal ions with the Tyr residue of DY has been excluded in our systems, an overlap between the thiolate-related absorption bands and the Tyr emission might cause quenching via energy transfer. Besides, metal ion promoted conformational changes in the peptide structure may also play a role in the altered fluorescence.

We also tested the Hg\(^{2+}\)-induced quenching of the fluorescence of DY in the presence of 1.0 eq. of Cd\(^{2+}\). Since the latter metal ion is not bound to the peptide at pH = 2.0 (Figure 4) it has no influence on the emission intensities at any Hg\(^{2+}\):DY ratio. Nevertheless, 1.0 eq. Cd\(^{2+}\) per DY at pH = 6.0 induces a notable fluorescence quenching, as compared to the Cd\(^{2+}\)-free sample, reflecting that Cd\(^{2+}\)-DY complexes are present at the start of the titration. When this sample is titrated by Hg\(^{2+}\) the observed fluorescence is gradually quenched down to the same level as seen in the absence of Cd\(^{2+}\), suggesting that the DY-bound Cd\(^{2+}\) is completely displaced by Hg\(^{2+}\).

In view of the potential analytical applicability of such a molecular probe the most promising findings of the above experiments are the significant fluorescence response of the ligand, proportional to Hg\(^{2+}\)-concentration up to a 1:1 Hg\(^{2+}\):DY ratio, as well as the remarkable metal ion binding selectivity that is also manifested in the Hg\(^{2+}\)-mediated changes in emission intensities. In this context, the data series recorded at pH 2 (Figure 5) demonstrates selective binding of Hg\(^{2+}\) at low pH, which may be used to eliminate interferences from other metal ions, such as Cd\(^{2+}\), in a fluorophore based Hg\(^{2+}\) assay. A quick assessment of the potential analytical figures of merit for Hg\(^{2+}\) sensing under our measurement conditions yields an estimated limit of detection of ca. 2×10\(^{-7}\) M and a linear dynamic range exceeding 2 orders of magnitude.

**Hg\(^{2+}\)** binding of the DY peptide immobilized to a resin

Next we aimed to explore Hg\(^{2+}\) binding to the DY ligand in an immobilized form. To achieve this, we synthesized a construct carrying the peptide anchored to a hydrophilic resin (DY-NTG). Hg\(^{2+}\) binding to DY-NTG was studied as a function of contact time, pH and metal ion concentration at pH = 2.0. As a reference system, the peptide-free resin with acetylated terminal amino groups (Ac-NTG) was also tested at pH = 2.0 by adding 1.5 eq. of Hg\(^{2+}\) per the available blocked peptide anchoring sites. The determined 0.0354 mmole Hg\(^{2+}\) per g Ac-NTG metal ion binding capacity represents ca. 13% of the theoretical loading of the resin (quantity of available functionalization sites on the resin beads, L = 0.267 mmole/g). It seems that a small but non-negligible amount of Hg\(^{2+}\) may be bound by Ac-NTG, probably at the polyethylene-glycol chains. However, such binding sites in the peptide functionalized resin, DY-NTG, may play a role in metal ion binding only under metal ion excess conditions.

Since metal ion complexion processes could be slower at the resin beads-supported binding sites as compared to the solution phase, first we determined the contact time necessary for a complete equilibration in the reaction of Hg\(^{2+}\) and DY-NTG. Samples were prepared at pH = 2.0 by adding Hg\(^{2+}\) ions in concentrations corresponding to 1.5, 2.0 and 3.0 eq. of Hg\(^{2+}\) relative to the theoretical loading of the resin, i.e. to the available immobilized peptide chains (0.227 mmole/g, see the sample preparation protocol in the Methods section). The excess of metal ion ensured that the concentration of Hg\(^{2+}\) could be conveniently and accurately measured back by ICP-MS after the termination of reaction. The studied samples were shaken for 30, 45, 60, 120, 180 and 300 minutes. Three additional samples, prepared with 0.33, 0.66 and 1.0 eq. of Hg\(^{2+}\) per peptide, were also tested by using 60 and 120 min contact times. Analysis of the remaining Hg\(^{2+}\) concentrations in all these samples showed that up to 1.0 eq. of Hg\(^{2+}\) per ligand the concentration of the metal ion was stable after 60 min (or even less, as suggested by other preliminary tests), however, 120 min equilibration time seemed to be necessary for samples containing metal ion excess. Accordingly, a contact time of 120

---

**Figure 5. Fluorescence titration of DY by Hg\(^{2+}\) at pH = 2.0 (circles) and pH = 6.0 (triangles) in the absence (filled symbols) and presence (open symbols) of Cd\(^{2+}\). Fitted lines represent the trends in the decrease of intensity and the breakpoint at 1.0 eq. of Hg\(^{2+}\) (C_{DY} = 3.0×10^{-5} M, λ_{EX} = 308 nm, λ_{EM} = 278 nm). The inset shows the recorded spectra at pH = 6.0 in the absence of Cd\(^{2+}\).**
The effect of pH on the Hg2+ binding ability of DY-NTG was monitored between pH = 1.0 and 6.0 by preparing samples of ~1.0 eq. Hg2+ per DY ligand. In a good correlation with the complex speciation determined for the Hg2+:DY system in solution (Figure S3), no variation in the bound metal ion quantity was observed. Consequently, the immobilized peptide resembles well the Hg2+ binding ability of DY in solution up to a 1:1 Hg2+:DY ratio, as indicated by the binding of ca. 95% of the added Hg2+ ions to DY-NTG independently of the applied pH (Figure S11).

Hg2+ binding to DY-NTG was investigated at pH = 2.0 as a function of Hg2+ concentration in a range of 0.774 – 6.49 µmol/10.0 mL sample representing ca. 0.34 – 2.86 eq. of metal ion per available immobilized peptide (Figure 6). The bound quantity of Hg2+, calculated from the remaining metal ion concentrations of the samples contacted with DY-NTG, increases linearly up to ca. 1.0 eq. Hg2+ per peptide. At this specific point the bound quantity of Hg2+, as measured by ICP-MS, indicates that nearly 95% (2.07 µmole) of the added Hg2+ ions (2.20 µmole) are bound. As seen in Figure 6, the bound Hg2+ quantity further increases in parallel with the increasing Hg2+ concentration of the samples and the obtained curve follows a saturation-like trend converging towards what appears to be ~2.0 eq. bound Hg2+ per peptide. This suggests that other, weaker binding sites also participate in metal ion binding and the quantity of Hg2+ ions, captured at these sites, cannot be explained by the metal ion binding ability of the non-peptidic parts of the resin, considering the value measured for the reference Ac-NTG (0.0354 mmole/g). In some of the previously published studies on the metal ion binding abilities of cysteine containing peptides,89–91 immobilized to various matrices, the authors also reported about the presence of binding sites with different affinities in their constructs.91 Since solution phase experiments with the DY peptide showed that it was able to bind only one Hg2+ ion per molecule, coordination of the second metal ion must be attributed to binding positions originating from the immobilization of the ligands. These positions are probably less accessible than the primary binding positions and might require a slow structural change of the solid supported ligands, as suggested by the longer contact times needed for equilibration when metal ion excess is used.

These results demonstrate that DY-NTG efficiently binds Hg2+ even at low pH (pH = 2.0) and the bound quantity linearly increases with the increasing metal ion concentration in samples where the Hg2+ content does not exceed the theoretical Hg2+-binding capacity of the resin.

In order to test whether DY-NTG displays a selectivity in the binding of Hg2+, two types of samples containing the resin and four selected metal ions, Hg2+, Cd2+, Zn2+ and Ni2+, were prepared. Since data for Cd2+:DY showed that this metal ion cannot be bound by the ligand at pH = 2.0, which most probably also holds for Zn2+ or Ni2+, the metal ion selectivity experiments were performed at pH 6.0 by applying 1.0 or 2.0 equivalents of all the four metal ions, relative to the available immobilized peptide, in both types of samples. The results obtained reveal a dominance of Hg2+ in occupying the available binding sites of DY-NTG, especially at twofold excess of the metal ions relative to the peptide where only Hg2+ is bound by DY-NTG. However, a significant amount of Cd2+ (0.59 µmole), besides 1.96 µmole Hg2+, was also captured from the sample containing 1.0 eq. of all the four metal ions (Figure 7). These data represent ca. 90% and 24% binding of the added Hg2+ and Cd2+ ions, respectively. Consequently, at pH = 6.0 Cd2+ can successfully occupy presumably some of the lower affinity sites of the resin, even in the presence of 1.0 eq. of Hg2+ per peptide. Since Cd2+ induces a notable quenching of the fluorescence of DY in solution it may potentially act as an interference in the Hg2+-binding of this molecular probe at pH = 6.0 and in samples with sub-stoichiometric M2+:peptide ratios. However, Zn2+ and Ni2+...
cannot compete with Hg$^{2+}$ or Cd$^{2+}$ in binding at the lower affinity sites.

Conclusions

In an attempt to investigate the possibility of using simple, very short, bioinspired peptides as fluorescent molecular probes for heavy metal ion sensing, we studied the interaction of a hexapeptide, Ac-DCCSYC-NH$_2$ (DY), with Cd$^{2+}$ and Hg$^{2+}$ ions in solution phase and characterized the Hg$^{2+}$-binding ability of the ligand in immobilized form, too. The outstanding affinity of Hg$^{2+}$ to the Cys thiolates results in a complete binding of 1.0 eq. of Hg$^{2+}$ to the peptide even at pH = 2.0, whereas Cd$^{2+}$ complexation starts only at ca. pH 3.5. Both mono- and bis-ligand complexes, with the participation of two and four thiolates, respectively, as the key donors in metal ion binding, are present with Cd$^{2+}$ and Hg$^{2+}$ above pH ~ 5.5 (Cd$^{2+}$) and 7 (Hg$^{2+}$), depending on the applied metal ion to ligand ratio. Both metal ions were found to quench the fluorescence of the Tyr residue of DY at pH = 6.0, nevertheless, this effect is significantly stronger with Hg$^{2+}$, resulting in a 60-65 % drop of the original emission intensity until 1.0 eq. of Hg$^{2+}$ is added to the ligand. The decrease of intensity follows a linear trend until reaching a 1:1 Hg$^{2+}$:DY ratio even in the presence of 1.0 eq. Cd$^{2+}$ that reflects a complete displacement of the peptide-bound Cd$^{2+}$ by Hg$^{2+}$. Based on experimental data in solution and related to the fluorescence emission detected at 308 nm, an estimated 2$x$10$^{-8}$ M value for the limit of detection for Hg$^{2+}$ and a linear dynamic range exceeding 2 orders of magnitude were obtained.

The strong Hg$^{2+}$-binding affinity of DY in acidic samples (pH = 2.0) is preserved even in the resin-supported form. The immobilized DY displays a nearly complete Hg$^{2+}$-binding ability up to 1.0 eq. of Hg$^{2+}$ per immobilized peptide is added. However, a further, saturation-type increase in the amount of bound Hg$^{2+}$ is observed from samples containing Hg$^{2+}$ ions in excess (from 1.0 to 3.0 eq. per ligand), suggesting a role of lower affinity binding positions in metal ion binding. This is in a slight contrast to the Hg$^{2+}$-coordinating features of the peptide in solution phase where no signs of dinuclear/oligonuclear Hg$^{2+}$-complex formation is seen. Indeed, binding of Hg$^{2+}$ beyond 1.0 eq. per immobilized DY possibly occurs via structures that may exist only under the ligand-rich conditions present in the swollen resin beads and/or by the participation of the PEG chains in metal ion coordination. The presented experimental data, including the remarkable, concentration-dependent quenching effect of Hg$^{2+}$ on the fluorescence of the ligand and the efficient Hg$^{2+}$-binding of DY either in solution or immobilized form show the potential of such simple bio-inspired systems in metal ion sensing. In addition to this, our metal ion selectivity experiments suggest that interference from other metal ions may be avoided by using acidic pH.

In our view, this work presents a fine example for the advantages of a combined study of metal binding molecular probes in solution and immobilized forms as this way the altering effects of immobilization on the metal ion binding characteristics can also be unravelled, thereby promoting the development of practical metal ion sensing constructs.

Experimental

Materials

The hexapeptide N-acetyl-Asp-Cys-Ser-Cys-Tyr-NH$_2$ (abbreviated as DY) was purchased from CASLO ApS with a purity of 98.03 %. All other chemicals and solvents, such as N-$\alpha$-Fmoc-O-tert-butyl-tyrosine, N-$\alpha$-Fmoc-S-trityl-L-cysteine, N-$\alpha$-Fmoc-O-tert-butyl-L-serine, N-$\alpha$-Fmoc-L-aspartic acid β-tetrt-butyl ester, 2-(1H-benzotriazole-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate (HBTU), N-hydroxybenzotriazole (HOBr), Novasyn TG amino resin (all Novabiochem products), pyridine (Merck), N,N-disopropylethylamine (DIPEA), diethyl ether, trisopropylsilane (TIS), 1,2-ethanediethiol (EDT), piperidine, acetic anhydride, trifluoroacetic acid (TFA), phenol, NaClO$_4$, HgCl$_2$, ZnCl$_2$, CdCl$_2$·xH$_2$O, NiCl$_2$·6H$_2$O, Hg(ClO$_4$)$_2$·xH$_2$O, potassium hydrogen phthalate, NaOH solution (all from Sigma-Aldrich), 1-methyl-2-pyrrolidone (NMP), dichloromethane, methanol (Molar Chemicals products), acetonitrile (BDH Prolabo Chemicals) and Cd(ClO$_4$)$_2$·xH$_2$O (Alfa-Aesar) were also of commercial origin and used without further purification. Hg(ClO$_4$)$_2$·xH$_2$O stock solutions were prepared by dissolving the salt in a 0.060 M perchloric acid. Metal ion stock solutions (Hg$^{2+}$, Cd$^{2+}$, Zn$^{2+}$, Ni$^{2+}$) were standardized complexometrically except that of HgCl$_2$. Stock solutions of HgCl$_2$ of the desired concentrations were prepared from precise weights of the high purity mercury salt, pH-potentiometric titrations were performed by NaOH titrant, standardized with potassium hydrogen phthalate.

Synthesis of the immobilized ligand. The hexapeptide in immobilized form was synthesized on a Novasyn TG amino resin (NTG, 90 μm beads, loading: 0.26 mmole/g) by solid phase peptide synthesis using the Fmoc methodology (Fmoc = 9-fluorenylethoxycarbonyl). The polyethylene glycol (PEG) polystyrene composite resin was chosen owing to its excellent swelling characteristics in aqueous media. The synthesized peptide molecules were tightly anchored to the resin via amide bonds between the C-terminal Tyr carboxylic groups and the amino functions of the resin which prevented the cleavage of the peptides off the resin under the conditions of the performed experiments. The notation “DY-NTG”, referring to the immobilized ligand, is used throughout the text. As a reference compound, “Ac-NTG” (a peptide-free resin with acetylated amino functions) was also prepared and tested in the metal-ion binding studies. The synthesis of the immobilized peptide, DY-NTG, and the reference material, Ac-NTG, was executed according to the steps described in details earlier.

Methods

UV absorption and fluorescence measurements. UV–Visible (UV–Vis) spectra were measured on a Thermo Scientific Evolution 220 spectrophotometer in the wavelength range of 285–400 nm, using a quartz cell with 1.0 cm optical pathlength, equipped with a Teflon cap. The concentration of the ligand was 1.0×10$^{-4}$ M and the metal ion concentration varied between 5.0×10$^{-5}$ and 2.0×10$^{-4}$ M. In order to avoid the eventual oxidation of the ligand, weighed amounts of the peptide were
initially dissolved in a 1.0×10⁻² M HClO₄ solution. The concentration of the stock solutions of the ligand was determined by pH-potentiometric titrations. The pH of the samples was adjusted by NaOH solutions and measured by an Orion 710A precision digital pH-meter equipped with a Metrohm Micro pH glass electrode. The water baseline was subtracted from the raw spectra and the spectra were normalized to a 1.0×10⁻⁴ M peptide concentration to correct for the possible dilution occurring in the titrations.

Fluorescence emission spectra were recorded on a Hitachi F4500 spectrofluorimeter in the wavelength range of 285 – 400 nm applying an excitation wavelength of 278 nm and slit widths of 5 nm (excitation beam) and 10 nm (emission beam), using a 1.0 cm × 1.0 cm quartz cell equipped with a PTFE cap. For samples of Hg²⁺-DY, the experiments were performed at two pH values (pH = 2.0 and 6.0; T = 298 K) by varying the Hg²⁺-concentration (c = 0.0 – 75.0 μM) and accordingly, the Hg²⁺ to peptide ratio. The initial concentration of the ligand (c₀ = 28.0 μM) varied only as a result of the slight dilution during the titrations. The pH of the samples at pH = 6.0 was monitored during the titrations and corrected, when necessary, by the addition of small volumes of a 0.01 M NaOH solution. There was no need for pH-correction in samples adjusted to pH = 2.0. Experiments were also performed in the presence of Cd²⁺ ions where a constant 1:1 concentration ratio of Cd²⁺ and DY was maintained. Variation of the fluorescence intensity as a function of pH was monitored in samples containing Cd²⁺ and DY in different concentration ratios (0:1, 0.5:1 and 1:1).

The background-subtracted spectra were corrected for the inner filter effects according to the equation:⁵²

\[
F_{corr} = F_{obs} \times \frac{\alpha_{ex} + \alpha_{em}}{2}
\]

where \(F_{corr}\) and \(F_{obs}\) denote the corrected and observed fluorescence intensities, while \(\alpha_{ex}\) and \(\alpha_{em}\) are the observed absorbances of the samples at the excitation and emission wavelengths, respectively.

**NMR experiments.** ¹H NMR measurements were performed on a Bruker Avance DRX 500 spectrometer operating at 500.132 MHz. Samples were prepared in H₂O containing D₂O in 10 % (v/v) and in a few cases in pure D₂O and the spectra were recorded at T = 298 K. The zgpr or zgcppr pulse sequences were applied for the presaturation of the H²O/HDO resonances. The typical concentration of the peptide was 1.3×10⁻⁴ M. In the purpose of the titration of the ligand stock solutions was also to obtain the accurate concentration of the peptide. Complex formation constants were calculated from 3-4 independent titrations in the different metal ion ligand systems (60-100 data points per titration). The ratio of the metal ion (Cd²⁺ or Hg²⁺) and the ligand was 0.5:1, 1:1 and 2:1 with the ligand concentrations varying between 7.3×10⁻⁴ – 1.0×10⁻³ M. In the Hg²⁺-DY 2:1 system precipitation occurred even under acidic conditions that prevented to perform titrations under such conditions with this metal ion.

**Experimental conditions and instrumentation utilized in studying Hg²⁺-binding to the immobilized peptide.** Metal ion binding properties of DY-NTG were investigated in 10.00 mL volume samples containing 10.0 mg (±1 %) of the resin-supported peptide and the metal ion (typically from a HgCl₂ stock solution) in a concentration range of 7.57×10⁻⁵ – 6.81×10⁻⁴ M depending on the type of experiment. The pH of the samples varied between pH = 1.0 and 6.0 and adjusted by perchloric acid solutions (c = 1.0 M or 0.1 M) or by AcOH/NaOAc (pH = 4.0) or MES/NaOH (pH = 6.0) buffer systems. All solutions used for sample preparations were carefully degassed by Ar to prevent the potential oxidation of the peptide. The 10.0 mL samples, placed in glass vessels, were vertically rotated for 120

**pH-potentiometric measurements.** (De)protonation and complex formation processes were studied in aqueous solutions degassed by high purity Ar gas and applying Ar atmosphere throughout the experiments to avoid the oxidation of the ligand. The pH-potentiometric titrations were carried out by a PC-controlled automatic titration set including a Metrohm Dosimat 765 autoburette, an Orion 710A pH/ISE meter equipped with a Thermo Scientific Orion 8103BN UW P Ross Ultra pH electrode (165×6 mm). Relative mV values, as pH-meter readings, were converted to hydrogen ion concentrations as described earlier.⁴⁵ The protonation and complex formation equilibria were characterized by the following general equilibrium process and the relevant overall formation constant:

\[
pM + qH + rL ⇌ \frac{[MqHrL]}{[M]^{q}[H]^{r}[L]^{l}}
\]

where M stands for the metal ion, L for the deprotonated ligand molecule, and H for the protons. Charges are omitted in the above equations for simplicity but can be calculated from the composition of the fully protonated, neutral ligand form, HuL. Overall formation constants (\(\beta_{MqHrL}\)) defined by the above equation were calculated by the PSEQUAD software.⁴⁴ Four parallel titrations (60-70 data points per titration) were executed in the absence of metal ions (\(K_{peptide} \sim 1.0×10^{-3} M\)) for determining the (de)protonation constants of the ligand. The purpose of the titration of the ligand stock solutions was also to obtain the accurate concentration of the peptide. Complex formation constants were calculated from 3-4 independent titrations in the different metal ion ligand systems (60-100 data points per titration). The applied ratio of the metal ion (Cd²⁺ or Hg²⁺) and the ligand was 0.5:1, 1:1 and 2:1 with the ligand concentrations varying between 7.3×10⁻⁴ – 1.0×10⁻³ M. In the Hg²⁺-DY 2:1 system precipitation occurred even under acidic conditions that prevented to perform titrations under such conditions with this metal ion.
min by a vertical rotating shaker to allow of a complete equilibration in the metal ion binding process under any conditions. The resin beads were settled by centrifugation for 15 min at 5000 rpm and 2.0 mL aliquots of the solutions were precisely diluted and analyzed for determining the residual metal ion concentrations in the liquid phase of the resin contacted samples.

The applied concentrations of the metal ions were calculated on the basis of the theoretical peptide loading of the resins and the increase of resin mass during the synthesis, according to

\[ L = \frac{L_i}{1.0 + \text{M}_\text{ad}} \]

where \( L \) is the loading of the resin after the completion of the synthesis, \( L_i \) stands for the initial loading value and \( \text{M}_\text{ad} \) represents the molar mass of the added peptide fragment. Considering a nearly 100 % coupling efficiency in the synthesis, the above formula gives 0.227 \( \times \) 10\(^{-3} \) and 0.267 \( \times \) 10\(^{-3} \) mole/g theoretical loadings for DY-NTG and Ac-NTG, respectively. Previous experiences with the very same Novasyn TG amino resin functionalized by a closely related peptide clearly showed the usability of the above estimation of the loading values. Concentrations of the metal ions in the studied samples were set to achieve a desired metal ion to ligand ratio, according to the theoretical loadings. All of the presented data are the results of duplicate experiments except that of the Hg\(^{2+} \) binding capacity of Ac-NTG obtained from five repetitions.

Determination of metal ion concentrations in the solutions was accomplished on an Agilent 7700x inductively coupled plasma mass spectrometer (ICP-MS). The instrument was used in the helium mode of the OSR\(^3 \) collisional cell. Calibrating solutions were prepared from a certified monoelemental Hg stock standard solution (CaPurAn M324.5NP.L1) and trace quality deionized lab-water (Millipore Elix Advantage 5 + Bi and Cd isotopes were utilized for quantitation with collisional cell. Calibrating stock standard solution (CaPurAn M324.5NP.L1) and trace standard solutions supplied by Agilent. All labware was cleaned prior to all experiments except that of the Hg\(^{2+} \) binding capacity of Ac-NTG obtained from five repetitions.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This research was supported by the Hungarian National Research, Development and Innovation Office-NKFIH through project GINOP-2.3.2-15-2016-00038 and grant No. K_16/120130. Lsz wishes to thank the Balassi Institute for a fellowship within the frames of the Campus Hungary Programme, contract No. 47607.

Notes and references

1. D. F. Flick, H. F. Kraybill and J. M. Dimitroff, *Environ. Res.*, 1971, 4, 71–85.
2. G. Bertin and D. Averbeck, *Biochimie*, 2006, 88, 1549–1559.
3. C. M. L. Carvalho, E.-H. Chew, S. I. Hashemy, J. Lu and A. Holmgren, *J. Biol. Chem.*, 2008, 283, 11913–11923.
4. R. Zefferino, C. Piccoli, N. Ricciardi, R. Scrima and N. Capitanio, *Oxid. Med. Cell. Longev.*, 2017 DOI: 10.1155/2017/7028583
5. D. H. Nies, *J. Bacteriol.*, 1995, 177, 2707–2712.
6. C. Rensing, B. Mitra and B. P. Rosen, *Proc. Natl. Acad. Sci. USA.*, 1997, 94, 14326–14331.
7. E. Aguilar-Barajas, M. I. Ramírez-Díaz, H. Riveros-Rosas and C. Cervantes, in *Pseudomonas*, eds. J. L. Ramos and A. Filloux, Springer, Dordrecht, 2010, ch 9, pp. 255–282.
8. T. Barkay, S. M. Miller and A. O. Summers, *FEMS Microbiol. Rev.*, 2003, 27, 355–384.
9. F. Bonomi, S. Iametti, D. M. Kurtz, E. M. Ragg and K. A. Richie, *J. Biol. Inorg. Chem.*, 1998, 3, 595–605.
10. I. Voskoboinik, D. Strausak, M. Greenough, H. Brooks, M. Petris, S. Smith, J. F. Mercer, J. Camakaris, *J. Biol. Chem.*, 1997, 274, 22008–22012.
11. A. J. Sytkowski and B. L. Vallee, *Proc. Natl. Acad. Sci. USA.*, 1976, 73, 344–348.
12. C. Frauer, A. Rottach, D. Meiling, S. Bultmann, K. Fellinger, S. Hasenöbler, M. Wang, W. Qin, J. Söding, F. Spada and H. Leonhardt, *PloS One*, 2011, 6, e16627.
13. T. V. O’Halloran and V. C. Culotta, *J. Biol. Chem.*, 2000, 275, 25057–25060.
14. A. C. Rosenzweig, *Chem. Biol.*, 2002, 9, 673–677.
15. C. A. Blindauer, *J. Biol. Inorg. Chem.*, 2011, 16, 1011–1024.
16. R. A. Steele and S. J. Opella, *Biochemistry*, 1997, 36, 6885–6895.
17. T. K. Misra, N. L. Brown, L. Haberstroh, A. Schmidt, D. Goddette and S. Silver, *Gene*, 1985, 34, 253–262.
18. R. Ledwidge, B. Patel, A. Dong, D. Fiedler, M. Falkowski, I. Voskoboinik, D. Strausak, M. Greenough, H. Brooks, M. Petris, S. Smith, J. F. Mercer, J. Camakaris, *J. Biol. Chem.*, 1997, 274, 22008–22012.
19. A. J. Sytkowski and B. L. Vallee, *Proc. Natl. Acad. Sci. USA.*, 1976, 73, 344–348.
20. J. Starý and K. Kratzer, *J. Radioanal. Nucl. Chem. Lett.*, 1998, 126, 69–75.
21. W. Stricks and I. M. Kolloth, *J. Am. Chem. Soc.*, 1953, 75, 5733–5738.
22. J. S. Casas and M. M. Jones, *J. Inorg. Nucl. Chem.*, 1980, 42, 99–102.
23. R. Ledwidge, B. Hong, V. Dötsch and S. M. Miller, *Biochemistry*, 2010, 49, 8988–8998.
24. A. C. Rosenzweig, D. L. Huffman, M. Y. Hou, A. K. Wernimont, R. A. Pufahl and T. B. O’Halloran, *Structure, 1999, 7, 605–617.
25. O. Sénèque, S. Crouzy, D. Botury, P. Dumy, M. Ferrand and P. Delangle, *Chem. Commun.*, 2004, 0, 770–771.
26. P. Rousselot-Pailley, O. Sénèque, C. Lebrun, S. Crouzy, D. Botury, P. Dumy, M. Ferrand and P. Delangle, *Inorg. Chem.*, 2006, 45, 5510–5520.
27. G. Veglia, F. Porcelli, T. DeSilva, A. Prantner and S. J. Opella, *J. Am. Chem. Soc.*, 2000, 122, 2389–2390.
28. T. M. DeSilva, G. Veglia, F. Porcelli, A. M. Prantner and S. J. Opella, *Biopolymers*, 2002, 64, 189–197.
29. S. Pires, J. Habjanič, M. Sezer, C. M. Soares, L. Hemmingsen and O. Irazoqui, *Inorg. Chem.*, 2012, 51, 11339–11348.
30. P. Faller, B. Cortecka, W. Tröger, T. Butz, *ISOLDE
Efficient and selective Hg$^{2+}$ binding of a hexapeptide containing two cysteine residues was demonstrated both in solution and immobilized forms.