DECOMPOSITION OF HYPERCUBES INTO SUNLET GRAPHS

A.V. SONAWANE
Government of Maharashtra’s Ismail Yusuf College of Arts, Science and Commerce, Mumbai 400 060, INDIA.
e-mail: amolson@gmail.com

Abstract
For any positive integer $k \geq 3$, the sunlet graph of order 2k, denoted by L_{2k}, is the graph obtained by adding a pendant edge to each vertex of a cycle of length k. In this paper, we prove that the necessary and sufficient condition for the existence of an L_{16}-decomposition of the n-dimensional hypercube Q_n is $n = 4$ or $n \geq 6$. Also, we prove that for any integer $m \geq 2$, Q_{mn} has an L_{2k}-decomposition if Q_n has a C_k-decomposition.

Keywords: decomposition, hypercube, sunlet graph

2020 Mathematics Subject Classification: 05C51

1 Introduction

All graphs under consideration are simple and finite. For any positive integer n, the hypercube of dimension n, denoted by Q_n, is a graph with vertex set $\{x_1x_2\cdots x_n : x_i = 0 \text{ or } 1 \text{ for } i = 1, 2, \cdots, n\}$ and any two vertices are adjacent in Q_n if and only if they differ at exactly one position. The Cartesian product of graphs G and H, denoted by $G \square H$, is a graph with vertex set $V(G) \times V(H)$, and two vertices (x, y) and (u, v) are adjacent in $G \square H$ if and only if either $x = u$ and y is adjacent to v in H, or x is adjacent to u in G and $y = v$. It is well-known that Q_n is the Cartesian product of n copies of the complete graph K_2. Note that Q_n is an n-regular and n-connected graph with 2^n vertices and $n2^{n-1}$ edges.

Let $k \geq 3$ be an integer. A cycle of length k is denoted by C_k. The sunlet graph of order 2k, denoted by L_{2k}, is obtained by adding a pendant edge to each vertex of the cycle C_k. Note that L_{2k} has $2k$ vertices and $2k$ edges. The sunlet graph of order sixteen L_{16} is shown in Figure 1.

Figure 1. The sunlet graph L_{16}
A decomposition of a graph G is a collection of edge-disjoint subgraphs of G such that the edge set of the subgraphs partitions the edge set of G. For a given graph H, an H-decomposition of G is a decomposition into subgraphs each isomorphic to H.

The problem of decomposing the given graph into the sunlet graphs is studied for various classes of regular graphs in the literature \cite{Fu1999, Fu2000, Anitha2001, Akwu2003, Sowndhariya2005, Sonawane2006}. Fu et al. \cite{Fu1999} proved that if $k = 6, 10, 14$ or 2^m ($m \geq 2$), then there exists an L_{2k}-decomposition of K_n if and only if $n \geq 2k$ and $n(n-1) \equiv 0$ (mod $4k$). The existence of an L_{10}-decomposition of the complete graph K_n for $n \equiv 0, 1, 5, 16$ (mod 20) is guaranteed by Fu, Huang and Lin \cite{Fu2000}. Anitha and Lekshmi \cite{Anitha2001} established that the complete graph K_{2n}, the complete bipartite graph $K_{2n, 2n}$ and the Harary graph $H_{4,2n}$ have L_{2n}-decompositions for all $n \geq 3$. Akwu and Ajayi \cite{Akwu2003} proved that for even $m \geq 2$, odd $n \geq 3$ and odd prime p, the lexicographic product of K_n and the graph K_m consisting of only m isolated vertices has an L_{2p}-decomposition if and only if $\frac{1}{2}n(n-1)m^2 \equiv 0$ (mod $2p$). Sowndhariya and Muthusamy \cite{Sowndhariya2005} gave necessary and sufficient conditions for the existence of an L_8-decomposition of tensor product and wreath product of complete graphs. Sowndhariya and Muthusamy \cite{Sowndhariya2006} studied an L_8-decomposition of the graph $K_n \square K_m$ and proved that such a decomposition exists if and only if n and m satisfy one of the specific eight conditions. Sonawane and Borse \cite{Sonawane2006} proved that the n-dimensional hypercube Q_n has an L_8-decomposition if and only if n is 4 or $n \geq 6$.

In this paper, we consider the problem of decomposing the hypercube Q_n into the sunlet graphs. In Section 2, we prove that the necessary and sufficient condition for the existence of an L_{16}-decomposition of Q_n is $n = 4$ or $n \geq 6$. In Section 3, we prove that if Q_n has a C_k-decomposition, then Q_{mn} has an L_{2k}-decomposition for $m \geq 2$.

2 An L_{16}-decomposition of hypercubes

In this section, we prove that the necessary and sufficient condition for the existence of an L_{16}-decomposition of Q_n is $n = 4$ or $n \geq 6$.

We need a corollary of the following result due to El-Zanati and Eyinden \cite{El-Zanati2013}. They considered the cycle decomposition of the Cartesian product of cycles each of length power of 2 and obtained the result, which is stated below.

Theorem 2.1. Let $n, k_1, k_2, \ldots, k_n \geq 2$ be integers and let G be the Cartesian product of the cycles $C_{k_1}, C_{k_2}, \cdots C_{k_n}$. Then there exists a C_s-decomposition of G if and only if $s = 2^t$ with $2 \leq t \leq k_1 + k_2 + + k_n$.

The following result is a corollary of the above theorem as Q_n is the Cartesian product of $\frac{n}{2}$ cycles of length 4 for any even integer $n \geq 2$.

Corollary 2.2. For any even integer $n \geq 2$, there exists a C_s-decomposition of Q_n if and only if $s = 2^t$ with $2 \leq t \leq 2^n$.

In the next lemma, we prove that the necessary condition for the existence of an L_{16}-decomposition of Q_n is $n = 4$ or $n \geq 6$.

Lemma 2.3. There does not exist an L_{16}-decomposition of Q_n if $n \in \{1, 2, 3, 5\}$.

Proof. Contrary assume that Q_n has an L_{16}-decomposition for some $n \in \{1, 2, 3, 5\}$. Then the number of edges of L_{16} must divide the number of edges of Q_n. Hence 16 divides $n2^{n-1}$. This shows that $n \geq 4$ and so, $n = 5$. Since Q_5 has 80 edges, there are five copies of the graph L_{16} in the L_{16}-decomposition of Q_5. Every vertex of Q_5 has degree 5 whereas L_{16} has eight vertices of degree 3 and eight of degree 1. Therefore, a degree 3 vertex of any copy of L_{16} in the decomposition cannot be a degree 3 vertex of another copy of L_{16}. This implies that Q_5 has at least 40 vertices, a contradiction. \(\blacksquare\)

In the next lemma, we give decomposition of $C_k \square C_k$ into spanning sunlet subgraphs for any even integer $k \geq 4$.

Lemma 2.4. For any even integer $k \geq 4$, the graph $C_k \square C_k$ has an L_{k^2}-decomposition.

Proof. Let $V(C_k) = Z_k$ such that a vertex i is adjacent to a vertex $i + 1 \pmod{k}$. Then $V(C_k \square C_k) = \{(i, j) : i, j = 1, 2, \cdots, k\}$. We construct two vertex-disjoint cycles Z_1 and Z_2 of length $\frac{k^2}{2}$ in $C_k \square C_k$ as $Z_1 = \langle (1, 1), (1, 2), \cdots, (1, \frac{k}{2}), (2, \frac{k}{2} + 1), \cdots, (2, k - 1), (3, k - 1), (3, 1), \cdots, (3, \frac{k}{2} - 2), \cdots, (k, 1) \rangle$ and $Z_2 = \langle (1, \frac{k}{2} + 1), (1, \frac{k}{2} + 2), \cdots, (1, k), (2, k), (2, 1), \cdots, (2, \frac{k}{2} - 1), (3, \frac{k}{2} - 1), (3, \frac{k}{2}), \cdots, (3, k - 1), \cdots, (k, \frac{k}{2} + 1) \rangle$. Now we adjoin a pendant edge to each vertex of Z_1 and Z_2 in the lexicographic order as per the availability of the vertex, so that we get two edge-disjoint spanning subgraphs of $C_k \square C_k$ which are isomorphic to L_{k^2}. This completes the proof. \(\blacksquare\)

For an illustration, an L_{64}-decomposition of $C_8 \square C_8$ is shown in Figure 2. For convenience, edges of the cycles C_{32} are shown by lines and edges with the pendant vertices by dotted lines in both the copies of L_{64}.
The following result is a corollary of the above lemma.

Corollary 2.5. For any integer \(n \geq 1 \), there exists an \(L_{2^n} \)-decomposition of \(Q_{4n} \). In other words, \(Q_{4n} \) has a decomposition into the spanning sunlet graphs for any integer \(n \geq 1 \).

Proof. We can write \(Q_{4n} = Q_{2n} \sqcap Q_{2n} \). By Corollary 2.2, \(Q_{2n} \) has a decomposition into Hamiltonian cycles. Let \(Z_1, Z_2, \ldots, Z_n \) be Hamiltonian cycles in \(Q_{2n} \) such that the collection \(\{ Z_1, Z_2, \ldots, Z_n \} \) decomposes \(Q_{2n} \). Then \(Z_1 \sqcap Z_1, Z_2 \sqcap Z_2, \ldots, Z_n \sqcap Z_n \) are edge-disjoint spanning subgraphs of \(Q_{4n} \) and their collection decomposes \(Q_{4n} \). By Lemma 2.4, each \(Z_i \sqcap Z_i \) has an \(L_{16} \)-decomposition. Hence \(Q_{4n} \) has an \(L_{2^{2n}} \)-decomposition. \(\square \)

Now we prove the necessary condition for the existence of an \(L_{16} \)-decomposition of \(Q_n \) is also sufficient.

We need the following four lemmas to prove the sufficient condition.

Lemma 2.6. There exists an \(L_{16} \)-decomposition of \(Q_6 \).

Proof. Write \(Q_6 = Q_4 \sqcap C_4 \) as \(C_4 = C_2 \). Thus \(Q_6 \) is obtained by replacing each vertex of \(C_4 \) by a copy of \(Q_4 \) and replacing each edge of \(C_4 \) by a matching between two copies of \(Q_4 \) corresponding to the end vertices of that edge. Let \(C_4 = \langle 0, 1, 2, 3, 0 \rangle \) and \(Q_4^1, Q_4^2, Q_4^3, Q_4^0 \) be copies of \(Q_4 \) in \(Q_6 \) corresponding to vertices 0, 1, 2, 3 of \(C_4 \), respectively. For \(i \in \{ 0, 2 \} \), \(Q_4^i \) has an \(L_{16} \)-decomposition by Lemma 2.4 as each \(Q_4^i \) can be written as the Cartesian product of cycles of length 4. For \(i \in \{ 1, 3 \} \), from each vertex of \(Q_4^i \), exactly two cycles of length eight
passes as Q_1^3 has a C_8-decomposition by Corollary 2.2. Adjoin each vertex of one of two cycles to the corresponding vertex in Q_4^2, and adjoin each vertex of the other cycle to the corresponding vertex in Q_4^2. So, from each copy of the cycle of length eight, we get a copy of L_{16}. This completes the proof. □

Lemma 2.7. There exists an L_{16}-decomposition of Q_7.

Proof. Write Q_7 as $Q_7 = Q_4 \Box Q_3$. Let D be a directed graph obtained from Q_3 by giving directions to the edges, as shown in Figure 3.

![Figure 3.](image)

In D, there are two vertices with in-degree 3 and out-degree 0, and the in-degrees and out-degrees of remaining all vertices are 1 and 2, respectively. The graph Q_7 is obtained by replacing each vertex of Q_3 with a copy of Q_4 and replacing each edge of Q_3 by a matching between two copies of Q_4 corresponding to the end vertices of that edge. Consider an L_{16}-decomposition of copies of Q_4 corresponding to each vertex of D with out-degree 0, and a C_8-decomposition of copies of Q_4 corresponding to each vertex of D with out-degree 2. In a C_8-decomposition of copies of Q_4, exactly two cycles pass from each vertex. Adjoin a pedant edge to each vertex of copies of Q_4 of a vertex corresponding the out-degree 2, to one of the vertices of its nearest copy of Q_4 according to the direction of the corresponding edge in D. Then we get L_{16} from each C_8 from a C_8-decomposition of each copy of Q_4 of a vertex corresponding to the out-degree 2. Hence we get an L_{16}-decomposition of Q_7. □

Lemma 2.8. There exists an L_{16}-decomposition of Q_9.

Proof. Write Q_9 as $Q_9 = Q_6 \Box Q_3$. Let D be a directed graph obtained from Q_3 by giving directions to the edges, as shown in Figure 4.
Decomposition of hypercubes into sunlet graphs

In D, there are four vertices with out-degree 0, and the out-degree of the remaining four vertices is 3. The graph Q_9 is obtained by replacing each vertex of Q_3 with a copy of Q_6 and replacing each edge of Q_3 by a matching between two copies of Q_6 corresponding to the end vertices of that edge. Consider an L_{16}-decomposition of copies of Q_6 of vertices corresponding to the out-degree 0 and a C_8-decomposition of copies of Q_6 of vertices corresponding to the out-degree 3. In a C_8-decomposition of copies of Q_6, exactly three cycles pass from each vertex. Adjoin a pendant edge to each vertex of copies of Q_6 corresponding to each vertex with out-degree 3, to one of the vertices of its nearest copy of Q_6 according to the direction of the corresponding edge in D. Then we get a copy of L_{16} from each copy of C_8 from a C_8-decomposition of each copy of Q_6 corresponding to each vertex with out-degree 3. Hence we get an L_{16}-decomposition of Q_9.

The following lemma follows from the definition of the Cartesian product of graphs.

Lemma 2.9. If the graphs G_1 and G_2 each has an H-decomposition, then the graph $G_1 \square G_2$ has an H-decomposition.

In the following lemma, we prove that the sufficient condition for the existence of an L_{16}-decomposition of Q_n is $n = 4$ or $n \geq 6$.

Lemma 2.10. There exists an L_{16}-decomposition of Q_n if $n = 4$ or $n \geq 6$.

Proof. We prove the result by induction on n. For $n = 4$, the result holds as Q_4 has an L_{16}-decomposition by Lemma 2.4. For $n = 8$, we write $Q_8 = Q_4 \square Q_4$ and the result holds by Lemma 2.9. For $n \in \{6, 7, 9\}$, the result follows by Lemmas 2.6, 2.7 and 2.8. Suppose that $n \geq 10$. Assume that the result holds for the k-dimensional hypercube for any integer k with $6 \leq k \leq n - 1$. Write $Q_n = Q_{n-4} \square Q_4$. By induction hypothesis, Q_{n-4} has an L_{16}-decomposition as $n - 4 \geq 6$. Hence Q_n has an L_{16}-decomposition by Lemma 2.9. This completes the proof.

The following result follows from Lemmas 2.3 and 2.10.
Theorem 2.11. The necessary and sufficient condition for the existence of an \(L_{16} \)-decomposition of \(Q_n \) is \(n = 4 \) or \(n \geq 6 \).

3 An \(L_{2k} \)-decomposition of hypercubes

In this section, we prove that \(Q_{mn} \) has an \(L_{2k} \)-decomposition if \(Q_n \) has a \(C_k \)-decomposition for \(m \geq 2 \). In next two lemmas, we prove the result for \(m = 2 \) and \(m = 3 \). Note that a \(C_k \)-decomposition of \(Q_n \) is possible only for an even integer \(n \geq 2 \). For \(n = 2 \), \(Q_n = C_4 \).

Lemma 3.1. If \(Q_n \) has a \(C_k \)-decomposition, then \(Q_{2n} \) has an \(L_{2k} \)-decomposition.

Proof. Suppose \(Q_n \) has a \(C_k \)-decomposition. Note that in the \(C_k \)-decomposition of \(Q_n \), from each vertex of \(Q_n \) exactly \(\frac{n}{2} \) cycles passes. We can write \(Q_{2n} = Q_n \square Q_n \). Let \(W_0, W_1, \ldots, W_{2^n-1} \) be copies of \(Q_n \) in \(Q_{2n} \) replaced by vertices of \(Q_n \). Then each \(W_i \) has a \(C_k \)-decomposition. Also, there are \(n \) copies of \(W_j \)'s that are adjacent to \(W_i \) for each \(i \).

Since \(Q_n \) is a regular and connected graph with even degree \(n \), there is a directed Eulerian circuit in \(Q_n \) in which each of in-degree and out-degree of each vertex is \(\frac{n}{2} \). In a \(C_k \)-decomposition of each \(W_i \), adjoin each vertex of each cycle to exactly one vertex of the nearest copy \(W_j \) of \(W_i \) in \(Q_{2n} \), if there is a directed edge in the directed Eulerian circuit from the vertex \(i \) to the vertex \(j \). From a \(C_k \)-decomposition of each \(W_i \)'s, we get edge-disjoint copies of \(L_{2k} \). This completes the proof.

We need concepts of even and odd parity vertex in the proof of the following lemma. A vertex \(v = x_1x_2\cdots x_n \) of \(Q_n \) is said to be a vertex with even (odd) parity if there are even (odd) number of \(x_i \)'s are 1 in \(v \). Let \(X \) and \(Y \) be subsets of vertex set of \(Q_n \) containing vertices with even parity and odd parity, respectively and \(X \cup Y = V(Q_n) \). Then \((X,Y) \) is a bipartition of the bipartite graph \(Q_n \).

Lemma 3.2. If \(Q_n \) has a \(C_k \)-decomposition, then \(Q_{3n} \) has an \(L_{2k} \)-decomposition.

Proof. We can write, \(Q_{3n} = Q_{2n} \square Q_n \). Let \(W_0, W_1, \ldots, W_{2^n-1} \) be copies of \(Q_{2n} \) in \(Q_{3n} \) replaced by vertices of \(Q_n \). Let \(D \) be a digraph obtained from \(Q_n \) such that out-degree of each vertex with even parity is \(n \) and odd parity is 0. By Lemma 3.1, each \(W_j \) corresponding to vertex of \(Q_n \) with odd parity, has an \(L_{2k} \)-decomposition. Consider a \(C_k \)-decomposition of \(W_j \) corresponding to vertex of \(Q_n \) with even parity. Note that in the \(C_k \)-decomposition of \(W_j \), from each vertex exactly \(n \) edge-disjoint cycles passes. By adjoining exactly one vertex to each cycle in \(W_j \).
corresponding to vertex of Q_n with even parity, we get copies of L_{2k} corresponding to each C_k in the C_k-decomposition of W_j. This completes the proof.

Now, we have the following result.

Theorem 3.3. If Q_n has a C_k-decomposition, then Q_{mn} has an L_{2k}-decomposition for $m \geq 2$.

Proof. If m is multiple of 2, the result holds by Lemmas 2.9 and 3.1 as Q_{mn} is the Cartesian product of $m/2$ copies of Q_{2n}. Similarly, the result holds by Lemmas 2.9 and 3.2 if m is multiple of 3 as Q_{mn} is the Cartesian product of $m/3$ copies of Q_{2n}. For $m = 5$ and 7, we can write Q_{mn} as $Q_{5n} = Q_{2n} \square Q_{3n}$ and $Q_{7n} = Q_{4n} \square Q_{3n}$, respectively. Thus the result holds by Lemmas 2.9, 3.1 and 3.2 for $m = 5, 7$. It follows that the result holds for m with $2 \leq m \leq 10$. Suppose that $m \geq 11$, and m is not multiple of 2 and 3. Then either $m = 6q + 5$ for some $q \geq 1$ or $m = 6q + 1$ for some $q \geq 2$. Suppose $m = 6q + 5$ for $q \geq 1$. Then we can write Q_{mn} as $Q_{mn} = Q_{6qn} \square Q_{5n}$. Suppose $m = 6q + 1$ for $q \geq 2$. Then we can write Q_{mn} as $Q_{mn} = Q_{6(q-1)n} \square Q_{7n}$. Note that for any $r \geq 1$, Q_{6rn} has an L_{2k}-decomposition by both Lemmas 3.1 and 3.2. Thus by Lemma 2.9, Q_{mn} has an L_{2k}-decomposition.

As a consequence of Theorem 3.3, we have the following result.

Corollary 3.4. Let $m \geq 2$ be an integer and $n \geq 4$ be an even integer.

1. Q_{mn} has an L_{2t+1}-decomposition for $2 \leq t \leq n-1$.
2. Q_{mn} has an L_{2n}-decomposition.
3. Q_{mn} has an L_{4n}-decomposition.
4. Q_{mn} has an L_{8n}-decomposition.
5. Q_{mn} has an $L_{n2^{k+1}}$-decomposition for $2n \leq n2^k \leq \frac{2n}{n}$.

Proof. We have following C_k-decompositions of Q_n for an even integer $n \geq 4$.

1. Zanati and Eynden [12] proved that Q_n has a C_{2^t}-decomposition for $2 \leq t \leq n-1$.
2. Ramras [7] proved that Q_n has a C_n-decomposition.
3. Mollard and Ramras [6] proved that Q_n has a C_{2n}-decomposition.
4. Tapadia, Borse and Waphare [11] obtained that Q_n has a C_{4n}-decomposition.

5. Axenovich, Offner and Tompkins [3] established that Q_n has a C_{n2^k}-decomposition for $2n \leq n2^k \leq \frac{2n}{n}$.

By applying Theorem 3.3 to each of above C_k-decompositions of Q_n, we get the desired L_{2k}-decomposition of Q_{mn}.

References

[1] A.D. Akwu and D.O.A. Ajayi, Decomposing certain equipartite graphs into sunlet graphs of length $2p$, AKCE Int. J. Graphs Combin. 13 (2016), 267–271.

[2] R. Anitha and R.S. Lekshmi, N-sun decomposition of complete, complete bipartite and some Harary graphs, Int. J. Math. Comput. Sci. 2(1) (2008), 33–38.

[3] M. Axenovich, D. Offner and C. Tompkins, Long path and cycle decompositions of even hypercubes, Eur. J. Comb. 95 (2021), 103320 20 pages.

[4] C.M. Fu, M.H. Huang and Y.L. Lin, On the existence of 5-sun systems, Discrete Math. 313 (2013), 2942–2950.

[5] C.M. Fu, N.H. Jhuang, Y.L. Lin and H.M. Sung, On the existence of k-sun systems, Discrete Math. 312 (2012), 1931–1939.

[6] M. Mollard and M. Ramras, Edge decompositions of hypercubes by paths and by cycles, Graphs Combin. 31(3) (2015), 729–741.

[7] M. Ramras, Symmetric edge-decomposition of hypercubes, Graphs Combin. 7 (1991), 65–87.

[8] A.V. Sonawane and Y.M. Borse, Decomposition of hypercubes into sunlet graphs of order eight, Discrete Math. Algorithms Appl. (2021) https://dx.doi.org/10.1142/S1793830921501238.

[9] K. Sowndhariya and A. Muthusamy, Decomposition of product graphs into sunlet graphs of order eight, J. Algebra Comb. Discrete Appl. 8(1) (2020) 41–51.
[10] K. Sowndhariya and A. Muthusamy, Decomposition of Cartesian product of complete graphs into sunlet graphs of order eight, arxiv.org/pdf/1907.12329v1 (2019), 23 Pages.

[11] S.A. Tapadia, Y.M. Borse and B.N. Waphare, Cycle decompositions of the Cartesian product of cycles, Australas. J. Combin. 74(3) (2019), 443–459.

[12] S. El-Zanati and C.V. Eynden, Cycle factorizations of cycle products, Discrete Math. 189 (1998), 267–275.