Cancer Stage, Treatment, and Survival among Transgender Patients in the United States

Sarah S. Jackson, PhD, MPH\(^1\); Xuesong Han, PhD\(^2\); Ziling Mao, MPH\(^2,3\); Leticia Nogueira, PhD, MPH\(^2\); Gita Suneja, MD, MS\(^4,5\); Ahmedin Jemal, DVM, PhD\(^2\); and Meredith S. Shiels, PhD\(^1\)

Affiliations

\(^1\)Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland

\(^2\)Surveillance and Health Services Research, American Cancer Society, Atlanta, Georgia

\(^3\)Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia

\(^4\)Radiation Oncology, University of Utah, Salt Lake City, Utah

\(^5\)Population Health Sciences, University of Utah, Salt Lake City, Utah

Corresponding Author:
Sarah S. Jackson, PhD, MPH
Postdoctoral Research Fellow
Infections and Immunoepidemiology Branch
National Cancer Institute
Division of Cancer Epidemiology and Genetics
9609 Medical Center Drive
Bethesda, MD 20879

© The Author(s) 2021. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
Short title: Cancer in transgender patients

Funding Statement: Supported by the Intramural Research Programs of the National Cancer Institute (National Institutes of Health) and the American Cancer Society.

Key Words: Transgender persons, gender minority, cancer mortality, cancer treatment, cancer stage
Abstract

Background: Transgender persons face many barriers to healthcare that may delay cancer diagnosis and treatment, possibly resulting in decreased survival. Yet, data on cancer in this population are limited. We examined cancer stage at diagnosis, treatment, and survival among transgender patients compared to cisgender patients in the National Cancer Database (NCDB).

Methods: Gender (male, female, or transgender) was extracted from medical records from patients diagnosed with cancer between 2003–2016. Logistic regression estimated odds ratios (ORs) for the associations between gender and stage at diagnosis and treatment receipt. Cox proportional hazards regression estimated hazard ratios (HRs) for associations between gender and all-cause survival.

Results: Among 11,776,699 persons with cancer in NCDB, 589 were transgender. Compared to cisgender patients, transgender patients may be more likely to be diagnosed with advanced stage lung cancer (OR = 1.76, 95% confidence interval [CI] = 0.95, 3.28), less likely to receive treatment for kidney (OR = 0.19, 95%CI = 0.08, 0.47) and pancreas (OR = 0.33, 95%CI = 0.11, 0.95) cancers, and have poorer survival after diagnosis with non-Hodgkin lymphoma (HR = 2.34; 95%CI = 1.51, 3.63), prostate (HR = 1.91, 95%CI = 1.06, 3.45), and bladder cancers (HR = 2.86, 95%CI = 1.36, 6.00). Similar associations were found for other cancer sites, though not statistically significant.

Conclusion: Transgender patients may be diagnosed at later stages, be less likely to receive treatment, and have worse survival for many cancer types. Small sample size hampered our ability to detect statistically significant differences for some cancer sites. There is a need for transgender-focused cancer research as the population ages and grows.
The US population that self-identifies as transgender is estimated to be ~1.4 million adults [1]. Transgender is the umbrella term for a diverse group of individuals whose gender identity differs from their sex assigned at birth [2]. Cancer is an understudied topic in transgender health due to the paucity of available data [3]. Until recently, research on cancer in this population was limited to case reports or small studies [4]. There are several reasons why cancer burden may be higher among transgender individuals than their cisgender counterparts. Transgender persons who retain their natal reproductive organs are at risk for reproductive cancers and the risks related to long term use of gender affirming treatment with high dose estrogens or testosterone is currently unknown [3, 5, 6]. Due to societal stigma related to gender minority status, transgender people may also be at risk for cancers associated with elevated levels of smoking and excessive alcohol use in this community [7, 8]. The prevalence of HIV, hepatitis, and human papillomavirus infections is reportedly higher among transgender persons compared to their cisgender, heterosexual counterparts due to high rates of discrimination, economic marginalization, and unmet healthcare needs [9-13]. The increased prevalence of these viruses among gender minority adults may result in an increased incidence of AIDS-related cancers, as well as cancers of the liver and anus [3, 4, 14, 15].

Transgender patients face many barriers to cancer care at both the provider and patient level. Cancer screenings may be missed due to the lack of clinician training and transgender-specific screening guidelines [16, 17]. Transgender patients have also reported discrimination in medical settings [7, 18]. Due to stigma and discrimination, transgender individuals are also less likely to be employed and to have health insurance than cisgender patients [4, 7]. Consequently, there may be delays in cancer diagnoses and treatment, resulting in advanced stage disease at diagnosis and decreased survival among transgender individuals [4]. Information on the cancer
burden in this community will become increasingly important as the population ages and as best practice recommendations become more transgender-inclusive and culturally competent. We sought to examine the association between gender identity and cancer stage at diagnosis, treatment, and survival.

Methods

Study Population

We used data from >11 million US patients diagnosed with cancer between 2003–2016 from the National Cancer Database (NCDB), a hospital-based registry sponsored by the American Cancer Society and the American College of Surgeons. Sex was recorded in the medical record as “Male,” “Female,” and “Transsexual” (referred to herein as transgender). This field was updated in 2015 to include the patient’s natal sex (e.g. “Transsexual, natal male”) [19]. However, because only 3 cancer cases were delineated as such, we were unable to analyze transgender cases separately by natal sex. Patients with “Other (hermaphrodite)” were excluded because those with disorders of sex development may have unique cancer risk factors from those of transgender individuals [20]. Patients with missing data for sex were also excluded (Supplementary Figure 1).

Ascertainment of Cancer Outcomes

We examined first, primary cancers with ≥10 cases occurring in transgender adults classified with International Classification of Diseases for Oncology, 3rd Edition codes (Supplementary Table 1). Individuals with missing information for stage, diagnosis date, or last contact date were excluded (Supplementary Figure 1). Cancer stage at diagnosis was defined as
stages 0 (breast and bladder cancers), I, II, III, or IV using the sixth edition of the American Joint Committee on Cancer (AJCC) (https://cancerstaging.org/cstage/Pages/default.aspx) collaborative stage supplemented with AJCC Tumor, Nodes, and Metastasis pathological and clinical staging to compensate the high missingness in 2003 and 2016 due to AJCC staging coding change. The type of first course of treatment including surgery, radiation, and chemotherapy was recorded in NCDB.

Ascertainment of Covariates

NCDB collects information on patient demographics, socioeconomic status and clinical characteristics. These included age at diagnosis (18–44, 45–54, 55–64, or ≥65 years), race/ethnicity (non-Hispanic White, non-Hispanic Black, Hispanic [all races], or other), year of diagnosis (2004–2006, 2007–2010, or 2011–2014), median income level for the patient’s zip code (<$38,000, $38,000–$47,999, $48,000–$62,999, or ≥$63,000), insurance status (private, 18–64-year Medicare/Medicaid, ≥65-year Medicare/Medicaid, uninsured, or Government/unknown), and type of treating facility (community center, comprehensive community center, teaching/research institution, National Cancer Institute network cancer center, integrated network, or other/unknown).

Statistical Analysis

For each cancer site we used multivariable logistic regression to evaluate the associations between gender identity (transgender versus cisgender) and cancer stage at diagnosis (0, I and II versus III and IV) and receipt of cancer treatment (yes versus no). For lymphomas, receipt of treatment was defined as chemotherapy, radiotherapy, or a combination. For all other cancers,
treatment was defined as surgery, radiotherapy, chemotherapy, or any combination of these therapies. Those with missing treatment information were categorized as having no treatment. These models were adjusted for age, race/ethnicity, diagnosis year, and stage at diagnosis (in the treatment model only).

We used Cox proportional hazards regression to examine the association between gender identity (transgender vs. cisgender) and survival for each cancer site, adjusting for age at diagnosis, race/ethnicity, diagnosis year, stage at diagnosis, and treatment receipt. Follow-up was defined from cancer diagnosis until death from any cause, loss to follow-up, or end of 2017. Cases were limited to those cancers diagnosed before 2014 (2003–2013) to allow for enough follow-up time. The Schoenfeld residuals method was used to test the proportional hazards assumption, which was met for all models.

Additional models for stage, treatment, and survival were run further adjusted for type of health insurance. A sensitivity analysis was repeated for the treatment models excluding patients who refused treatment. All analyses were conducted in SAS 9.4.

Results

Among the 11,776,699 patients with cancer diagnosed between 2003–2016 in the NCDB, there were 589 patients recorded as transgender (Table 1). Compared to cismen and ciswomen, transgender patients tended to be younger, less likely to be non-Hispanic White, or to have private health insurance (all \(P<0.001 \)). The proportion of total cancers occurring in the anus, liver, and non-melanoma skin, as well as Hodgkin and non-Hodgkin lymphoma, were higher among transgender individuals than cisgender individuals, though the proportion of cancers occurring in the prostate was lower in transgender individuals than cismen (\(P<0.001 \)).
None of the associations between transgender identity and stage at diagnosis were statistically significant for any cancer sites (Table 2), though transgender patients may be more likely to be diagnosed at later stages for cancers of the lung (odds ratio [OR]= 1.76, 95% confidence interval [CI]= 0.95, 3.28) compared to cisgender patients. Transgender patients had lower odds of receiving treatment than cisgender patients for cancers of the kidney (OR= 0.19, 95%CI= 0.08, 0.47) and pancreas (OR= 0.33, 95%CI= 0.11, 0.95; Table 2). Gender identity was not associated with receipt of treatment for any of the other cancer sites. In an analysis where patients who refused treatment were excluded, the results did not differ materially from the main results (Supplementary Tables 2–4).

Transgender patients had two-fold or greater increased risk of death compared to cisgender patients for non-Hodgkin lymphoma (hazard ratio [HR]= 2.34 (1.51 to 3.63)), prostate cancer (HR= 1.91, 95%CI= 1.06, 3.45), and urinary bladder cancer (HR= 2.86, 95%CI= 1.36, 6.00; Table 3). Risk of mortality did not appear to differ between transgender and cisgender patients for other cancer sites.

Discussion

The current study includes nearly 600 transgender patients with cancer in a large national database. Transgender patients tended to be diagnosed with more advanced stage lung cancer and were less likely to receive treatment for kidney and pancreas cancers than cisgender patients. Further, transgender patients with non-Hodgkin lymphoma, prostate cancer, and urinary bladder cancer had worse survival compared to cisgender patients. These disparities persisted even after adjusting for health insurance and excluding individuals who refused treatment. No differences
in stage at diagnosis, receipt of treatment or survival were observed for the other cancer sites
examined.

Cancer screening among transgender patients is lower than their cisgender counterparts
due to several barriers to care [21-24]. Many clinicians are unaware of the unique health needs of
their transgender patients [16, 17]. For instance, physicians may perform cancer screening when
a patients’ gender changes in the medical record (e.g. prostate exams for transwomen) or
erroneously believe that the risk is lower due to assumptions about sexual behavior and gender
identity (e.g. cervical cancer screening for transmen) [23, 25]. Transgender patients also face
substantial financial barriers to healthcare as they are almost three times more likely than
cisgender individuals to be unemployed and thus, more likely to be uninsured or underinsured
[18, 26]. Patients have also reported mistreatment in healthcare settings, with 23% of transgender
people stating that they did not seek healthcare in the past year due to discrimination and stigma
from medical staff [7, 18]. The absence of transgender-specific screening guidelines, lack of
clinician cultural competence, and patients’ fear of discrimination can result in delays in cancer
diagnosis and treatment leading to poorer prognosis in this population [7, 17].

In transwomen, the prostate is not removed as part of gender-affirming surgery because
of possible complications, such as incontinence [27]. Previous research suggests prostate cancer
is rare among transfeminine patients due to treatment with antiandrogen and estrogen therapy,
possibly followed by bilateral orchiectomy [15, 28, 29]. Yet, while the incidence of prostate
cancer may be lower in transwomen than cismen, a growing body of research indicates that
prostate cancer could be more aggressive among transwomen, which may explain our finding of
increased mortality among transgender patients with prostate cancer [28]. Lower levels of serum
testosterone may paradoxically increase the risk for aggressive prostate cancer [30, 31]. Recent
research has also highlighted the role of exogenous estrogen therapy in prostate tumorigenesis [28, 32, 33]. Estrogen mediated through ER-α may have carcinogenic effects on the prostate alone [33] or it may be that a higher estradiol to dihydrotestosterone ratio may promote stromal cell growth [32]. Screening guidelines recommend the same standards for transwomen as cismen [32] even though the use of 5alpha-reductase inhibitors has been shown to decrease serum prostate specific antigen levels leading to under-detection of early lesions [34]. As a result of these findings, it has been suggested that prostate specific antigen levels of 1 ng/ml should be used as an upper threshold of normal or an increase from nadir of 0.3 ng/ml or greater for prostate monitoring in transwomen on antiandrogen therapy [27].

Our finding that mortality is elevated among transgender patients with non-Hodgkin lymphoma may be explained by underlying HIV infection. Worldwide the prevalence of HIV infection is high among gender minority adults. In the US it is estimated that 27.7% of transwomen are HIV positive, with the highest prevalence among African American transwomen (56.3%) [10]. HIV infection is associated with an elevated risk of AIDS-defining cancers such as Kaposi sarcoma, non-Hodgkin lymphoma, and cervical cancer as well as non-AIDS-defining cancers [35-38]. HIV is also associated with more aggressive disease and an increased risk of mortality from cancer [39-41]. Coghill and colleagues found that HIV infection was associated with a more advanced stage of disease in patients with cancers of the lung, breast, prostate, and bladder and melanoma of the skin and increased mortality in patients with breast and anal cancers [41].

Little research has been conducted in transgender patients with urinary bladder cancer. An analysis using Surveillance Epidemiology and End Results (SEER) observed a higher proportional incidence of bladder cancer among transgender individuals compared to cismen
women, but not cismen [5]. Another SEER analysis examining sex differences in bladder cancer survival found that ciswomen had lower 5-year survival compared to cismen, in part because ciswomen present with later stage at diagnosis and higher grade lesions [42]. This finding may suggest sex hormones play a role in the aggressiveness of this cancer. Testosterone has been found to promote bladder cancer carcinogenesis while estrogens appear to inhibit carcinogenesis but promote tumor progression [43, 44]. In animal studies, the observed sex difference in bladder cancer carcinogenesis disappeared when male mice were castrated and female mice were treated with testosterone [45]. Because we are unable to identify the natal sex of our transgender urinary bladder cancer cases, we are unable to shed light on the possible hormonal influence on mortality in our study.

While this is the first study of its kind to examine cancer presentation, treatment and survival among transgender individuals, our analysis was hampered by small sample size. The percentage of persons with first, primary cancers who identify as transgender was 0.005%, similar to a study conducted in the North American Association of Central Cancer Registries, which found 0.004% of patients had a transgender gender identity [14]. It is difficult to estimate the expected proportion of cancer in this population as the US transgender population has not been fully enumerated, though an estimated 0.6% of US adults identify as transgender [1]. Furthermore, the transgender population is younger than the general US population and those with cancer are not representative of the general population. Because gender identity was not self-reported by the patients themselves, we may have missed some transgender patients. Though, with over 11 million individuals, the number of transgender patients misclassified as cisgender is likely to be too small to change our results. Finally, the absence of data on sex
assigned at birth for the transgender patients precluded meaningful comparisons to cismen and ciswomen, respectively.

A thorough examination of cancer disparities among gender minorities relies on complete and representative data on both sex assigned at birth and gender identity [5, 46]. Groups such as the American Society of Clinical Oncology have called for the routine collection of these variables in cancer registries, electronic medical records, and clinical trials [4, 46, 47], which will allow for estimates of both cancer risk and more meaningful comparisons between transgender and cisgender patients [5, 46]. As the population ages and grows, there is a need for cancer research focused among transgender individuals.

Funding

Supported by the American Cancer Society and the Intramural Research Program of the U.S. National Cancer Institute (National Institutes of Health).

Notes

Role of the funders: The funders had no role in the design of the study; the collection, analysis, and interpretation of the data; the writing of the manuscript; and the decision to submit the manuscript for publication.

Disclosures: Xuesong Han, received funding from AstraZeneca for research outside the submitted work. Gita Suneja is supported by grants K08CA228631 from the National Institutes of Health. The other authors made no disclosures.

Acknowledgements: We gratefully acknowledge all cancer registries and their staff for their hard work and diligence in collecting cancer information, without which this research could not have been done.
Author Contributions: SSJ: Conceptualization; Methodology; Writing – original draft. XH: Data curation; Formal analysis; Writing—review and editing. ZM: Data curation; Formal analysis. LN: Writing—review and editing. GS: Writing—review and editing. AJ: Writing—review and editing. MSS: Conceptualization; Methodology; Supervision; Writing—review and editing.

Data Availability

The data underlying this article were provided by the American Cancer Society and the American College of Surgeons by permission. Data access can be requested directly from the American College of Surgeons: https://www.facs.org/quality-programs/cancer/ncdb/puf.

References

1. Flores AR, J.L. H, G.J. G, *et al.* How Many Adults Identify as Transgender in the United States? In. Los Angeles, CA: The Williams Institute; 2016.

2. Centers for Disease Control and Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention. *Lesbian, Gay, Bisexual, and Transgender Health: Transgender Persons.* https://www.cdc.gov/lgbthealth/transgender.htm.

3. Cancer risk in the transgender community. Lancet Oncology 2015;16(9):999.

4. Institute of Medicine (US) Committee on Lesbian, Gay, Bisexual, and Transgender Health Issues and Research Gaps and Opportunities. The Health of Lesbian, Gay, Bisexual, and Transgender People: Building a Foundation for Better Understanding. In. Washington, DC 2011

5. Braun H, Nash R, Tangpricha V, *et al.* Cancer in Transgender People: Evidence and Methodological Considerations. Epidemiol Rev 2017;39(1):93-107.
6. de Blok CJM, Wiepjes CM, Nota NM, et al. Breast cancer risk in transgender people receiving hormone treatment: nationwide cohort study in the Netherlands. Bmj 2019;365:l1652.

7. Grant JM, Mottet LA, Tanis J, et al. Injustice at Every Turn: A Report of the National Transgender Discrimination Survey. In. Washington, DC: National Center for Transgender Equality and National Gay and Lesbian Task Force; 2011.

8. Institute of Medicine. The Health of Lesbian, Gay, Bisexual, and Transgender People: Building a Foundation for Better Understanding. In. Washington, DC 2011

9. Baral SD, Poteat T, Stromdahl S, et al. Worldwide burden of HIV in transgender women: a systematic review and meta-analysis. Lancet Infect Dis 2013;13(3):214-22.

10. Herbst JH, Jacobs ED, Finlayson TJ, et al. Estimating HIV Prevalence and Risk Behaviors of Transgender Persons in the United States: A Systematic Review. AIDS and Behavior 2008;12(1):1-17.

11. Brown B, Poteat T, Marg L, et al. Human Papillomavirus-Related Cancer Surveillance, Prevention, and Screening Among Transgender Men and Women: Neglected Populations at High Risk. LGBT Health 2017;4(5):315-319.

12. Mangla N, Mamun R, Weisberg IS. Viral hepatitis screening in transgender patients undergoing gender identity hormonal therapy. Eur J Gastroenterol Hepatol 2017;29(11):1215-1218.

13. Shover CL, DeVost MA, Beymer MR, et al. Using Sexual Orientation and Gender Identity to Monitor Disparities in HIV, Sexually Transmitted Infections, and Viral Hepatitis. American Journal of Public Health 2018;108(S4):S277-S283.
14. Nash R, Ward KC, Jemal A, et al. Frequency and distribution of primary site among gender minority cancer patients: An analysis of U.S. national surveillance data. Cancer Epidemiol 2018;54:1-6.

15. Silverberg MJ, Nash R, Becerra-Culqui TA, et al. Cohort study of cancer risk among insured transgender people. Ann Epidemiol 2017;27(8):499-501.

16. Shetty G, Sanchez JA, Lancaster JM, et al. Oncology healthcare providers’ knowledge, attitudes, and practice behaviors regarding LGBT health. Patient Educ Couns 2016;99(10):1676-84.

17. Schabath MB, Blackburn CA, Sutter ME, et al. National Survey of Oncologists at National Cancer Institute–Designated Comprehensive Cancer Centers: Attitudes, Knowledge, and Practice Behaviors About LGBTQ Patients With Cancer. Journal of Clinical Oncology 2019;37(7):547-558.

18. James SE, J.L. H, Keisling M, et al. The Report of the 2015 U.S. Transgender Survey. In. Washington, D.C.: National Center for Transgender Equality; 2016.

19. Commission on Cancer. Facility Oncology Registry Data Standards (FORDS) Revised for 2015. American College of Surgeons.; 2015.

20. Mayer KH, Bradford JB, Makadon HJ, et al. Sexual and Gender Minority Health: What We Know and What Needs to Be Done. American Journal of Public Health 2008;98(6):989-995.

21. Tabaac AR, Sutter ME, Wall CSJ, et al. Gender Identity Disparities in Cancer Screening Behaviors. American Journal of Preventive Medicine 2018;54(3):385-393.

22. Clark MA, Boehmer U, Rosenthal S. Cancer screening in lesbian and bisexual women and transmen. In: Boehmer U, Elk R, (eds). Cancer and the LGBT Community. Switzerland: Springer International Publishing; 2015, 83-98.
23. Nelson B. A cancer screening crisis for transgender patients: Discrimination, patient unease, provider ignorance, and a highly gendered health care system are impeding cancer screening and risk assessment in the transgender population. In this article, the first of a 2-part series, we explore how clinicians can begin to address those barriers. Cancer Cytopathol 2019;127(7):421-422.

24. Kiran T, Davie S, Singh D, et al. Cancer screening rates among transgender adults: Cross-sectional analysis of primary care data. Can Fam Physician 2019;65(1):e30-e37.

25. Agenor M, Peitzmeier SM, Bernstein IM, et al. Perceptions of cervical cancer risk and screening among transmasculine individuals: patient and provider perspectives. Cult Health Sex 2016;18(10):1192-206.

26. Gonzales G, Henning-Smith C. Barriers to Care Among Transgender and Gender Nonconforming Adults. Milbank Q 2017;95(4):726-748.

27. Trum HW, Hoebeke P, Gooren LJ. Sex reassignment of transsexual people from a gynecologist's and urologist's perspective. Acta Obstetricia et Gynecologica Scandinavica 2015;94(6):563-567.

28. Gooren L, Morgentaler A. Prostate cancer incidence in orchidectomised male-to-female transsexual persons treated with oestrogens. Andrologia 2014;46(10):1156-60.

29. de Nie I, de Blok CJM, van der Sluis TM, et al. Prostate Cancer Incidence under Androgen Deprivation: Nationwide Cohort Study in Trans Women Receiving Hormone Treatment. J Clin Endocrinol Metab 2020;105(9).

30. Hoffman MA, DeWolf WC, Morgentaler A. Is low serum free testosterone a marker for high grade prostate cancer? J Urol 2000;163(3):824-7.
31. Morgentaler A. Turning conventional wisdom upside-down: Low Serum testosterone and high-risk prostate cancer. Cancer 2011;117(17):3885-3888.

32. Deebel NA, Morin JP, Autorino R, et al. Prostate Cancer in Transgender Women: Incidence, Etiopathogenesis, and Management Challenges. Urology 2017;110:166-171.

33. Sharif A, Malhotra NR, Acosta AM, et al. The Development of Prostate Adenocarcinoma in a Transgender Male to Female Patient: Could Estrogen Therapy Have Played a Role? The Prostate 2017;77(8):824-828.

34. Marks LS, Andriole GL, Fitzpatrick JM, et al. The interpretation of serum prostate specific antigen in men receiving 5alpha-reductase inhibitors: a review and clinical recommendations. J Urol 2006;176(3):868-74.

35. Grulich AE, van Leeuwen MT, Falster MO, et al. Incidence of cancers in people with HIV/AIDS compared with immunosuppressed transplant recipients: a meta-analysis. Lancet 2007;370(9581):59-67.

36. Hernández-Ramírez RU, Shiels MS, Dubrow R, et al. Cancer risk in HIV-infected people in the USA from 1996 to 2012: a population-based, registry-linkage study. Lancet HIV 2017;4(11):e495-e504.

37. Silverberg MJ, Lau B, Achenbach CJ, et al. Cumulative Incidence of Cancer Among Persons With HIV in North America: A Cohort Study. Ann Intern Med 2015;163(7):507-18.

38. Shiels MS, Cole SR, Kirk GD, et al. A meta-analysis of the incidence of non-AIDS cancers in HIV-infected individuals. J Acquir Immune Defic Syndr 2009;52(5):611-22.

39. Coghill AE, Pfeiffer RM, Shiels MS, et al. Excess Mortality among HIV-Infected Individuals with Cancer in the United States. Cancer Epidemiol Biomarkers Prev 2017;26(7):1027-1033.
40. Coghill AE, Shiels MS, Suneja G, et al. Elevated Cancer-Specific Mortality Among HIV-Infected Patients in the United States. J Clin Oncol 2015;33(21):2376-83.

41. Coghill AE, Han X, Suneja G, et al. Advanced stage at diagnosis and elevated mortality among US patients with cancer infected with HIV in the National Cancer Data Base. Cancer 2019;125(16):2868-2876.

42. Cook MB, McGlynn KA, Devesa SS, et al. Sex disparities in cancer mortality and survival. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology 2011;20(8):1629-1637.

43. Zhang Y. Understanding the gender disparity in bladder cancer risk: the impact of sex hormones and liver on bladder susceptibility to carcinogens. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 2013;31(4):287-304.

44. Lucca I, Fajkovic H, Klatte T. Sex steroids and gender differences in nonmuscle invasive bladder cancer. Current Opinion in Urology 2014;24(5).

45. Bertram JS, Craig AW. Specific induction of bladder cancer in mice by butyl-(4-hydroxybutyl)-nitrosamine and the effects of hormonal modifications on the sex difference in response. European Journal of Cancer (1965) 1972;8(6):587-594.

46. Reisner S, Conron K, Scout, et al. "Counting" Transgender and Gender-Nonconforming Adults in Health Research: Recommendations from the Gender Identity in US Surveillance Group. TSQ: Transgender Studies Quarterly 2015;2:34-57.

47. Griggs J, Maingi S, Blinder V, et al. American Society of Clinical Oncology Position Statement: Strategies for Reducing Cancer Health Disparities Among Sexual and Gender Minority Populations. Journal of Clinical Oncology 2017;35(19):2203-2208.
Table 1. Characteristics of patients in the National Cancer Database by gender identity, 2003-2016

Characteristics	Transgender (N= 589)	Cismen (N=5,627,603)	P-valueᵃ	Ciswomen (N=6,148,507)	P-valueᵇ
Demographics					
Age at diagnosis (years)			<0.001		<0.001
18-44	129 (21.9)	415,069 (7.4)		755,202 (12.3)	
45-54	148 (25.1)	812,577 (14.4)		1,103,598 (17.9)	
55-64	168 (28.5)	1,619,691 (28.8)		1,481,905 (24.1)	
≥65	144 (24.4)	2,780,266 (49.4)		2,807,802 (45.7)	
Race/Ethnicity			<0.001		<0.001
White, non-Hispanic	409 (69.4)	4,439,481 (78.9)		4,792,259 (77.9)	
Black	94 (16.0)	626,021 (11.1)		691,063 (11.2)	
Hispanic	57 (9.7)	310,632 (5.5)		365,393 (5.9)	
Other	19 (3.2)	186,201 (3.3)		238,817 (3.9)	
Missing	10 (1.7)	65,268 (1.2)		60,975 (1.0)	
Year of cancer diagnosis			<0.001		0.003
2003-2007	165 (28.0)	1,968,922 (35.0)		2,043,803 (33.2)	
2008-2011	203 (34.5)	1,647,431 (29.3)		1,771,614 (28.8)	
2012-2016	221 (37.5)	2,011,250 (35.7)		2,333,090 (37.9)	
Median area income level			0.07		0.02
<$38,000	157 (26.7)	1,762,459 (31.3)		1,992,171 (32.4)	
$38,000-$47,999	165 (28.0)	1,485,186 (26.4)		1,627,660 (26.5)	
$48,000-$62,999	137 (23.3)	1,309,690 (23.3)		1,399,673 (22.8)	
≥$63,000	125 (21.2)	1,006,517 (17.9)		1,067,294 (17.4)	
Missing	<10 (0.8)³	63,751 (1.1)		61,709 (1.0)	
Cancer site			<0.001		<0.001
Esophagus	10 (1.7)	103318 (1.8)		27498 (0.4)	
Uterine Corpus	10 (1.7)	--		467455 (7.6)	
Pharynx	11 (1.9)	90334 (1.6)		23180 (0.4)	
Thyroid	12 (2.0)	92974 (1.7)		304677 (5)	
Hodgkin Lymphoma	13 (2.2)	38392 (0.7)		31925 (0.5)	
Brain & Other Nervous System	14 (2.4)	110646 (2)		86478 (1.4)	
Other Non-Epithelial Skin	14 (2.4)	25354 (0.5)		14980 (0.2)	
Urinary Bladder	15 (2.5)	186766 (3.3)		67245 (1.1)	
Pancreas	16 (2.7)	155598 (2.8)		153448 (2.5)	
Melanoma of the Skin	17 (2.9)	217743 (3.9)		169150 (2.8)	
Kidney & Renal Pelvis	24 (4.1)	268184 (4.8)		168479 (2.7)	
Liver & Intrahepatic Bile Duct	26 (4.4)	137896 (2.5)		53839 (0.9)	
Rectum	26 (4.4)	202545 (3.6)		149206 (2.4)	
Anus, Anal Canal & Anorectum	28 (4.8)	19145 (0.3)		32861 (0.5)	
Breast	35 (5.9)	19121 (0.3)		1976243 (32.1)	
Prostate	36 (6.1)	1546832 (27.5)		--	
Colon	39 (6.6)	385231 (6.8)		414275 (6.7)	
Non-Hodgkin Lymphoma	47 (8)	246405 (4.4)		215671 (3.5)	
Lung & Bronchus	79 (13.4)	822817 (14.6)		750083 (12.2)	
Other & Unspecified Primary	117 (19.9)	958302 (17)		1041814 (16.9)	
Individual insurance status			<0.001		<0.001
Any private	281 (47.7)	4,004,804 (71.2)		4,463,100 (72.6)	
18-64 Medicare/Medicaid	198 (33.6)	561,566 (10.0)		626,493 (10.2)	
≥65 Medicare/Medicaid	40 (6.8)	652,591 (11.6)		712,300 (11.6)	
Uninsured	53 (9.0)	211,735 (3.8)		198,890 (3.2)	
Type of treating health facility	Yes (n)	Yes (%)	No (n)	No (%)	
---------------------------------------	---------	---------	--------	--------	
Government/unknown	17	2.9	147,724	2.4	
Community center	38	6.5	505,417	8.2	
Comprehensive community center	186	31.6	2,426,115	39.5	
Teaching/research institution	165	28.0	1,353,454	22.0	
NCI network cancer center	90	15.3	738,115	12.0	
Integrated Network	78	13.2	792,605	12.9	
Others/Unknown	32	5.4	332,801	5.4	

Receipt of treatment		<0.001	<0.001	
Yes	473	80.3	5,409,277	88
No	116	19.7	739,230	12

*Comparing transgender patients to cismale patients. Two-tailed chi-square test.
*Comparing transgender patients to cisfemale patients. Two-tailed chi-square test.
*Includes acute lymphocytic leukemia (C91.0); acute myeloid leukemia (C92.0); chronic lymphocytic leukemia (C91.1); larynx (C32.0); multiple myeloma (C90.0); other digestive organs (C26.8 – C26.9, C48.8); other leukemia (C42.0, C42.1, C42.4); other and non-specified primary sites (C96); small intestine (C17); soft tissue (including heart) (C38.0, C47, C49); stomach (C16); testis (C62); tongue (C02); vagina & other genital, female (C52.9, C57.0 – C58.9); and vulva (C51)
*For Hodgkin lymphoma and non-Hodgkin lymphoma, defined as chemotherapy, radiotherapy, or a combination of both. For all other cancer sites, cancer treatment was defined as surgery, radiotherapy, chemotherapy, or any combination of these therapies.
*Cells with more than 0 but fewer than 10 individuals are suppressed
Table 2. Associations between transgender gender identity with stage at cancer diagnosis and receipt of cancer treatment by cancer site among patients in the National Cancer Database, 2003 – 2016

Cancer site and stage at diagnosis	No. transgender cases	OR (95% CI)^a	Received any cancer treatment^b	No. transgender cases	OR (95% CI)^c
Anus, Anal Canal & Anorectum					
I and II	11	1.00 (Referent)	No	<10^e	1.00 (Referent)
III and IV	14	1.61 (0.73 to 3.56)	Yes	26	0.62 (0.14 to 2.69)
Breast					
0, I and II	24	1.00 (Referent)	No	<10^e	1.00 (Referent)
III and IV	11	1.80 (0.87 to 3.70)	Yes	34	0.97 (0.13 to 7.24)
Kidney & Renal Pelvis					
I and II	19	1.00 (Referent)	No	<10^e	1.00 (Referent)
III and IV	<10^e	0.65 (0.24 to 1.77)	Yes	17	0.19 (0.08 to 0.47)
Liver & Intrahepatic Bile Duct					
I and II	14	1.00 (Referent)	No	13	1.00 (Referent)
III and IV	<10^e	0.76 (0.33 to 1.77)	Yes	13	0.65 (0.30 to 1.44)
Lung & Bronchus					
I and II	12	1.00 (Referent)	No	20	1.00 (Referent)
III and IV	63	1.76 (0.95 to 3.28)	Yes	59	0.74 (0.47 to 1.24)
Melanoma of the Skin					
I and II	11	1.00 (Referent)	No	<10^e	1.00 (Referent)
III and IV	<10^e	2.11 (0.77 to 5.82)	Yes	15	0.34 (0.07 to 1.76)
Non-Hodgkin Lymphoma					
I and II	15	1.00 (Referent)	No	12	1.00 (Referent)
III and IV	29	1.59 (0.85 to 2.97)	Yes	35	0.87 (0.44 to 1.69)
Pancreas					
I and II	<10^e	1.00 (Referent)	No	<10^e	1.00 (Referent)
III and IV	10	1.12 (0.41 to 3.08)	Yes	<10^e	0.33 (0.11 to 0.95)

^d Data not available for prostate cancer.
	OR (95% CI)	Transgender	0, I, and II	III and IV	0, I, and II	III and IV			
I and II	1.00 (Referent)	No	<10^e	1.00 (Referent)	10	1.69 (0.81 to 3.55)	Yes	30	0.82 (0.34 to 2.00)
Rectum									
I and II	1.00 (Referent)	No	0	1.00 (Referent)	12	1.00 (Referent)	Yes	26	—
III and IV	0.80 (0.35 to 1.82)	Yes	26	—	—				
Urinary Bladder									
0, I and II	<10^e	No	0	1.00 (Referent)	<10^e	2.11 (0.76 to 5.89)	Yes	15	—
III and IV	<10^e	Yes	15	—	—				

^a OR calculated with multivariable logistic regression for the association of being transgender (using cisgender as reference group) with Stages III and IV vs Stage 0 (if applicable), I, and II, adjusted for age at diagnosis (18–44, 45–54, 55–64, or ≥65 years), race/ethnicity (non-Hispanic White, non-Hispanic Black, Hispanic, or other), and year of diagnosis (2004–2006, 2007–2010, or 2011–2014). Abbreviations: AJCC, American Joint Committee on Cancer; CI: confidence interval; No, number; and OR, odds ratio.

^bCancer treatment is defined as chemotherapy, surgery, and radiotherapy for all sites except lymphoma. Treatment for lymphoma, is defined as chemotherapy and radiotherapy.

^cOR calculated with multivariable logistic regression for the association of being transgender (using cisgender as reference group) with cancer treatment, adjusted for age at diagnosis (18–44, 45–54, 55–64, or ≥65 years), race/ethnicity (non-Hispanic White, non-Hispanic Black, Hispanic, or other), year of diagnosis (2004–2006, 2007–2010, or 2011–2014), and AJCC stage (0-II, III/IV, or unknown).

^dSex-specific site uses cismen only as reference group.

^eCells with more than 0 but fewer than 10 individuals are suppressed.

^fAn em-dash indicates that the cell size was too small to calculate the OR.
Table 3. Associations between transgender gender identity and mortality after cancer diagnosis by cancer site among patients in the National Cancer Database 2003 – 2013

Cancer site and gender identity	No. of deaths	HR (95% CI)^a
Anus, Anal Canal and Anorectum		
Cisgender	16,193	1.00 (Referent)
Transgender	<10^b	1.01 (0.52 to 1.94)
Breast		
Cisgender	358,042	1.00 (Referent)
Transgender	<10^b	1.23 (0.59 to 2.58)
Kidney & Renal Pelvis		
Cisgender	127,260	1.00 (Referent)
Transgender	<10^b	1.72 (0.82 to 3.61)
Liver & Intrahepatic Bile Duct		
Cisgender	111,818	1.00 (Referent)
Transgender	19	1.06 (0.68 to 1.67)
Lung & Bronchus		
Cisgender	1,047,162	1.00 (Referent)
Transgender	46	1.13 (0.85, 1.51)
Melanoma of the Skin		
Cisgender	78,729	1.00 (Referent)
Transgender	<10^b	1.06 (0.51 to 2.22)
Non-Hodgkin Lymphoma		
Cisgender	165,989	1.00 (Referent)
Transgender	20	2.34 (1.51 to 3.63)
Pancreas		
Cisgender	212,072	1.00 (Referent)
Transgender	12	1.37 (0.78 to 2.42)
Prostate		
Cisgender	261,123	1.00 (Referent)
Transgender	11	1.91 (1.06 to 3.45)
Rectum		
Cisgender	128,998	1.00 (Referent)
Transgender	12	1.32 (0.75 to 2.33)
Urinary Bladder		
Cisgender	118,948	1.00 (Referent)
Transgender	<10^b	2.86 (1.36 to 6.00)

^aAdjusted for age at diagnosis, (18–44, 45–54, 55–64, or ≥65 years), year of diagnosis (2003–2007, 2008–2011, or 2012–2013), race/ethnicity (non-Hispanic White, Black, Hispanic, or other), AJCC stage (0-II, III/IV, or unknown), and treatment (yes or no). Abbreviations: AJCC, American Joint Committee on Cancer; CI, confidence interval; HR, hazard ratio; No, number.

^bCells with more than 0 but fewer than 10 individuals are suppressed