Modular Label-Free Electrochemical Biosensor Loading Nature-Inspired Peptide toward the Widespread Use of COVID-19 Antibody Tests

Ana C. H. Castro, Ítalo R. S. Bezerra, Aline M. Pascon, Gabriela H. da Silva, Eric A. Philot, Vivian L. de Oliveira, Rodrigo S. N. Mancini, Gabriel R. Schleder, Carlos E. Castro, Luciani R. S. de Carvalho, Bianca H. V. Fernandes, Eduardo M. Cilli, Paulo R. S. Sanches, Murilo Santhiago, Ives Charlie-Silva, Diego S. T. Martinez, Ana L. Scott, Wendel A. Alves, and Renato S. Lima*

Cite This: https://doi.org/10.1021/acsnano.2c04364

ABSTRACT: Limitations of the recognition elements in terms of synthesis, cost, availability, and stability have impeded the translation of biosensors into practical use. Inspired by nature to mimic the molecular recognition of the anti-SARS-CoV-2 S protein antibody (Ab\(^S\)) by the S protein binding site, we synthesized the peptide sequence of Asn-Asn-Ala-Thr-Asn-COOH (abbreviated as PEP2003) to create COVID-19 screening label-free (LF) biosensors based on a carbon electrode, gold nanoparticles (AuNPs), and electrochemical impedance spectroscopy. The PEP2003 is easily obtained by chemical synthesis, and it can be adsorbed on electrodes while maintaining its ability for Ab\(^S\) recognition, further leading to a sensitivity 3.4-fold higher than the full-length S protein, which is in agreement with the increase in the target-to-receptor size ratio. Peptide-loaded LF devices based on noncovalent immobilization were developed by affording fast and simple analyses, along with a modular functionalization. From studies by molecular docking, the peptide−Ab\(^S\) binding was found to be driven by hydrogen bonds and hydrophobic interactions. Moreover, the peptide is not amenable to denaturation, thus addressing the trade-off between scalability, cost, and robustness. The biosensor preserves 95.1% of the initial signal for 20 days when stored dry at 4 °C. With the aid of two simple equations fitted by machine learning (ML), the method was able to make the COVID-19 screening of 39 biological samples into healthy and infected groups with 100.0% accuracy. By taking advantage of peptide-related merits combined with advances in surface chemistry and ML-aided accuracy, this platform is promising to bring COVID-19 biosensors into mainstream use toward straightforward, fast, and accurate analyses at the point of care, with social and economic impacts being achieved.

KEYWORDS: noncovalent immobilization, gold nanoparticle, electrochemical impedance spectroscopy, SARS-CoV-2, machine learning

Lessons from the 2002 severe acute respiratory syndrome virus (SARS-CoV) outbreak have driven the adoption of technological methods to combat the Coronavirus disease 2019 (COVID-19) pandemic, which has deeply impacted our health and lifestyle.\(^1\) For instance, while the SARS-CoV was identified in 5 months using methods such as transmission electron microscopy (TEM) and genetic sequencing, these tools assured the identification of the new SARS-CoV-2 after only 3 weeks.\(^2\) Conversely, the translation of testing technologies capable of delivering point-of-care (POC) and extensive diagnostics trials (many trials per thousand people) into the real world remains a crucial challenge.\(^3,4\) On-field and mass testing kits play a pivotal role at the front line to combat epidemics and pandemics as they...
REFERENCES...

Scheme 1. Increase in sensitivity by the peptide-loaded biosensor. (A) LF-EIS device with protein and (B) peptide adsorbed on negatively charged AuNPs and GCE to sense Ab by measuring the blocking of electron-transfer reactions between the redox probe \((\text{Fe(CN)}_6^{4-/3-})\) and electrode. The AuNPs are crucial to increase the electron-transfer kinetics. The peptide-loaded route leads to higher relative variations in \(R_t\) (calculated from the Randles circuit as shown in (A)) before (blue) and after (red data) Ab binding to proteins, hence affording a superior sensitivity. \(R_p\) and \(W\) are constant phase element, and Warburg element. \(R_{ct}^p\) and \(R_{ct}^s\) represent the signal in the absence of Ab using S protein and peptide as receptors, respectively, with \(R_{ct}^s > R_{ct}^p\) as illustrated in the images (highlighted by blue/red rectangles) for GCE/receptor surfaces (the same principle is valid for AuNP/receptor surfaces). The illustrations are out of scale. In contrast to the S protein arrangement in (A), it is noteworthy that this protein is hypothesized here to be mainly adsorbed on AuNPs with steric hindrance of its binding domains as discussed later.

There is thus a critical need to develop hand-held and portable devices for disease screening and mass testing, such as point-of-care (POC) platforms, that can be used in resource-poor settings, further contributing to life-saving procedures by remotely providing physicians with rapid and cost-effective physiological data, ultimately aiding clinical prognoses, early treatments, and personalized medicine.\(^{5,6}\)

The primary methods used for sensing the SARS-CoV-2 have contributed to slowing down the spread of COVID-19, with a significant global impact even after the economy opened.\(^7\) Although valuable, such approaches show key limitations that limit their usefulness, throughput, and massive applications. While polymerase chain reaction (PCR) and enzyme-linked immunosorbent assays (ELISA) typically suffer from time-consuming tests, high workload (multistep routines), and the requirement for skilled personnel, costly centralized laboratory settings, and special reagent kits, the LF-EIS biosensors can enable disease diagnoses/screening faster and simpler than the broadly used competitive and sandwich immunoassays.

Concerning the biomarker, while antibody assays struggle to provide early diagnostics due to the lag in their production, such analyses carry benefits over the nucleic acid and antigen tests that include, but are not confined to, a much longer detection window (2 to 3 months), higher stability of antibodies in comparison with viral RNA, and more uniform distribution of Ab in blood than virus in respiratory tract samples.\(^4,14\) These properties are helpful to translate biosensors into clinical practice.\(^7\) In addition to disease screening and diagnostics, the Ab tests play a key role in identifying convalescent plasma donors, supporting the deployment of vaccines and guiding decision making on social restrictions, contact tracing, and lockdown because they can detect prior infection and assess immunity.\(^4,14\)

Biological macromolecules have been widely used as recognition elements for specifically sensing analytes. For instance, the spike (S) protein has been applied to target binding antibodies, i.e., the immunoglobulins IgG and IgM, for COVID-19 diagnostics. As a limitation, similar to other biological molecules, the S protein is difficult to express in prokaryotic cells,\(^9\) therefore making its synthesis laborious and costly and limiting its large-scale production. In fact, the recognition reagents were in short supply during the COVID-19 pandemic,\(^5\) limiting the total testing capacity. Further, biological macromolecules can undergo denaturation that impairs their "lock and key" property, with the ensuing incidence of false negatives and positives.\(^15,16\) To date, the poor stability of big-molecule recognition elements (typically 3
days when stored at 4 °C in electrolyte) along with their complex and low-yield synthesis have contributed to impair commercialization and clinical adaptation of biosensors due to obstacles such as improper handling, transportation and storage, and high cost.

Protein subunits such as receptor-binding domain (RBD) and peptides (5 to 15 amino acids) have been devised as promising solutions to cope with the issues mentioned above of biosensors loading big-molecule bioreceptors. Cai et al. used a peptide-loaded assay for the chemiluminescence detection of COVID-19 IgG and IgM. The peptides can be synthetically synthesized via reproducible routines, and they are also not amenable to denaturation, showing mechanical and thermal stabilities. To date, these subunits can maintain their “one-lock, one-key” interaction ability with ligands even at high temperatures (e.g., >100 °C). Therefore, nature-inspired peptides identified from structural analyses and computational modeling to mimic biomolecule epitopes have garnered considerable interest in developing the next-generation class of POC biosensors.

To address the gaps in the current state-of-the-art biosensing technologies as discussed before, we here developed an LF-EIS immunosensor based on a peptide mimicking the N-terminal domain (NTD) in S protein (it is located on the N-terminal subunit, S1) for sensing anti-SARS-CoV-2 S protein Ab (abbreviated herein as AbS). Our goal is to generate a straightforward, fast, and accurate COVID-19 screening method loading a stable (long shelf life), easily synthesized, and cost-effective recognition element. Screening of patient sera and plasma was successfully reached by taking advantage of (1) bioreceptor-related features, (2) advances in surface chemistry, and (3) high accuracy, which are key to bring the devices into mainstream use. (1) Inspired by nature to mimic anti-AbS binding, the peptide (abbreviated as PEP2003) was used to produce a glassy carbon-based LF-EIS biosensor. Originated from a no template control (NTC) portion of the S protein NTD, such a peptide was gleaned from phagolysosomal proteolysis using a virtual proteolytic cleavage tool.

PEP2003 avoids denaturation risks, and it can be chemically synthesized. (2) This peptide was physiosorbed on a glassy carbon electrode (GCE) coated with gold nanoparticle (AuNPs) through a fast routine (30 min). In contrast to covalent functionalization, physical adsorptions avoid the sp²−sp³ rehybridization of carbon, thus preserving its conductivity. Such a process further can be easily tailored to sense other targets from a simple, fast, and universal drop-casting...
RESULTS AND DISCUSSION

Functionalization and Peptide. The method relied on noncovalent adsorption of the recognition element on GCE/AuNPs from simple drop-casting steps to make the immunoassays. The routines for recognition element immobilization and detection lasted roughly 125 and 35 min, respectively. Briefly, the AuNPs (6.0 μL, 1 h to guarantee solvent evaporation) and receptor (6 μL, 1 h; PEP2003 and S protein were tested as elements to recognize Ab) were subsequently dropped onto GCE followed by the protocols of incubation in diluted samples (6 μL, 30 min), washing, and probe dropping (1.0 mmol L\(^{-1}\) [Fe(CN)\(_6\)]\(^{3/4+}\)) for EIS detection. The increase in \(R_D\) with target binding was used as the transducer response to detect Ab (see Scheme 1).

Using citrate as a biocompatible reducer, the method described by Turkевич-Frens was adopted to synthesize the AuNPs by affording a simple, low-cost, and reproducible routine.\(^{26}\) Spherical AuNPs (Figure S1) had an average diameter of 28.0 ± 0.3 nm based on images by scanning transmission electron microscope (STEM; Figure 1A). In accordance with analyses by dynamic light scattering (DLS), as expected, the AuNPs increased in size when dispersed in water, with the hydrodynamic radius (\(R_H\)) being 17.0 ± 0.1 nm (average diameter: 34 nm). From ultraviolet-visible (UV–vis) spectroscopy tests, these dispersed AuNPs led to an absorbance peak at 520 nm, which is in agreement with the S protein and PEP2003 showed a slightly superior adsorption effect (Figure S2). The existence of interactions between the AuNPs and bioreceptors was also revealed by UV–vis absorption analyses (Figure S5). The biomolecules led to a shift in the absorption peak (initially at 525 nm) of 4 nm, suggesting their adsorption, as the binding and proximity of the biomolecules on AuNP surfaces can alter the absorption wavelength.\(^{30}\) This plasmon coupling effect can be used for colorimetric sensing and studies on molecular conformational modification.\(^{38-41}\)

Hyperspectral imaging analyses also indicated the noncovalent adsorption of the peptide onto AuNPs. Such measurements provided a multivariate signature of the dispersions (AuNP and AuNP/PEP2003) by combining dark-field imaging with spectrophotometry assays.\(^{32,43}\) Spectra ranging from 400 to 1000 nm were collected at each pixel, thus generating a robust analysis. The spectra from AuNPs and AuNP/peptide could be easily recognized as confirmed by the nonsupervised method of principal component analysis (PCA; Figure 1C). The resulting average angular coefficients (\(r\)) were found as +0.87 for AuNP and −0.18 for AuNP/peptide.

The formation of single-composition corona layers (protein or peptide) around the AuNPs was indicated by SLS. The values of gyration radius (\(R_g\)) and \(R_D\) increased by ±5 nm with each PEP2003 additional layer (see Figure S4), meaning the peptide can cover the AuNPs and thus contribute to the stabilizing corona effect (Table S1). The S protein thicknesses could be obtained by differential centrifugal sedimentation (DCS) using a correction model reported by Davidson et al.\(^{45}\) The corona thickness was revealed to be 17.4 nm, whereas this value was 2.3-fold lower for the PEP2003, 7.6 nm. The corona layer created by this small-size peptide was only detected when doubling its concentration (Figure S6). While the S protein is about 18–23 nm long and comprises 1160 to 1400 amino acids,\(^{37,46}\) the peptide is composed of only five amino acids, thus supporting the prior discrepancies.

step. (3) PEP2003 was impressively found to generate a sensitivity higher than the full-length S protein (Scheme 1), which is supported by the increase in the target-to-receptor size (TRS) ratio.\(^{13}\) This high sensitivity was key to ensure accurate COVID-19 screening by allowing a high dilution of the samples (500-fold). In addition to delivering the analysis of small-volume samples (12.0 nL), this step inhibits the nonspecific adsorption of proteins (biofouling) as the interferences present in the biofluids are diluted to negligible contents,\(^{24}\) preventing the occurrence of false positives.

We further used a recent shortcut to reach accurate diagnoses, that is, the amalgamation of biosensing advances with machine learning (ML) to treat the device data.\(^{22,23}\) The impedances were subjected to processing by methods such as the algorithm sure independence screening and sparsifying operator (SISSO). This supervised approach converts the recorded input features into low-dimensional and straightforward mathematical equations aiming at accurate qualitative and/or quantitative analyses even from a small number of training sets, thus meeting the trade-off between accuracy and simplicity/speed of computation.\(^{24-27}\) In this work, SISSO was capable of providing the classification of 39 samples into two groups, prepandemic individuals (15) and COVID-19 convalescent patients (24).
The prior bulk optical techniques confirmed the non-covalent adsorption of the PEP2003 onto the AuNPs in dispersion. Next, we sought to chemically investigate the solid nanoparticles (after drying) by XPS (Figure S7). The incidence of the N 1s peaks proved the coating of the AuNPs by the S protein and PEP2003. In the latter case, a sensitive detection was only achieved when concentrating the PEP2003 by a factor of 8 times (Supporting Information).

Specificity of the PEP2003 against AbS. The peptide proved to be an effective bioreceptor for COVID-19 Ab sensing. From ELISA studies, the optical density responses (at 450 nm) mediated by enzyme-loaded anti-S protein IgG increased with the concentration of PEP2003 in the range from 0.4 to 50.0 ng L\(^{-1}\) (Figure S8). This enhancement occurred as a rate of 198.9\(\times 10^{-3}\) per ng L\(^{-1}\) (\(R^2 = 0.86\)). It is noteworthy that the specificity of IgG against SARS-CoV-2 has been reported to be higher than the values achieved by IgA and IgM.\(^{2,8}\)

Because the specific binds of the peptide to AbS lead to a partial electrical neutralization of the AuNP/peptide conjugates as mentioned above, they are expected to cause the aggregation of the nanoparticles,\(^{37}\) as it was indeed observed in serum samples through hyperspectral imaging (Figure 1D). The aggregation of the peptide-coated AuNPs was more prominent after exposure to a COVID-19 positive serum when compared with incubation in a negative serum, further agreeing with the anti-AbS reactivity of the PEP2003.

One should highlight that our immunoassay is not susceptible to bulk colloidal phenomena such as nanoparticle aggregation because only interface interactions occur between the electrode-coating recognition elements and AbS present in the samples. In addition, the rates for false negatives and positives could be inhibited as a function of the high sensitivity of the LF-EIS biosensor by allowing a relevant dilution of the patient sample. The prior ELISA and hyperspectral imaging results with AuNP/peptide conjugates in dispersion suggest that the peptide can act as a recognition element for COVID-19 Ab tests.

Figure 2. Immunoassays. (A) \(R_{ct}\) before and after exposures to a positive serum (1:500 v/v in electrolyte) to assess the peptide concentration (\(C_p\)). (B) Nyquist plots for GCE after exposures to AuNP, AuNP/peptide (AuNP/P), AuNP/peptide/negative sample (AuNP/P/NS), and AuNP/peptide/positive sample (AuNP/P/PS). Inset shows an enlarged view of the high-frequency data. \(Z’\) and \(Z’’\) mean imaginary and real impedances, respectively. (C) Resulting \(R_{ct}\) using PEP2003 or S protein (S) as bioreceptor. The investigated systems are further discriminated in the graphic (vertical texts). (D) STEM (bright-field signals; 1–3) and AFM (4) images of the peptide in the presence of AuNPs on a carbon grid (1–3) and GCE (4). The scale bars represent 100 (1), 250 (2, 3), and 300 nm (4). The height scale in (4) varies from 0 to 20 nm. (E) AFM-KPFM tests of an area (4 \(\mu m^2\)) covering AuNPs (NP) on GCE. 2D maps of topography (1) and

\(V_{CPD}\) (2) and resulting profiles of height and \(V_{CPD}\) (3) along a line as underlined in (1) and (2). Further profiles are shown in (4), whose corresponding topography and \(V_{CPD}\) maps are shown in the Supporting Information (see Figure S15). (F) Nyquist plots before and after exposures to a positive serum with S protein, RBD, and peptide. (G) \(R_{ct}\) data from Nyquist plots in the absence and presence of the peptide.
probes can approach the underneath electrode for undergoing redox reactions at a slower rate, leading to a suppression of the faradic current and amplification of the R_ct when interrogating the sensors with SWV and EIS, respectively (see Scheme 1). Importantly, the variations in these signals are quantitatively related to the target concentration and size, with the biosensor responding significantly to the specific binding of the target to its recognition element. Further, the collisional dynamics of the redox probe is hampered by big-size recognition elements (e.g., proteins), while no significant blocking is noted when using small-size elements (e.g., peptides). In this regard, the signal relative changes in the absence and incidence of specific binding events are supposed to increase with the target-to-receptor size ratio, as it was indeed observed herein, as the peptide-loading devices led to a superior sensitivity compared with the S protein-based systems as discussed later. One should also emphasize that conformational changes of proteins acting as receptors in biological fluids can also modify the signals of steric hindrance-based immunosensing devices.

Peptide Concentration. LF-EIS analyses ($n = 3$) were made to optimize the PEP2003 concentration that ranged from 10.0 to 80.0 ng mL$^{-1}$ (Figure 2A). Nyquist plots were obtained before and after exposures to a positive serum sample for COVID-19 (1:500 v/v in phosphate buffer), displaying semi-circle areas and straight lines tied to charge-transfer- and diffusion-limited steps, respectively. A similar profile was noted throughout this work. The relative alterations in R_ct (collected from the Nyquist plots), which happened at a rate of 0.9 kΩ g$^{-1}$ L$^{-1}$, increased with the amount of peptide adsorbed on GCEs in the range from 10.0 to 40.0 ng mL$^{-1}$. Such a result is likely due to a gradual increase in the total number of targets bound at the sensor surface, with an enhanced peptide–Ab5 binding-induced steric hindrance being achieved.

With the PEP2003 at 80.0 ng mL$^{-1}$, conversely, we observed a decrease in the R_ct relative changes (see Figure 2A), revealing a drop in the binding-induced steric hindrance that is supposed to be caused by the blocking of the peptide binding sites. Hence, the PEP2003 concentration of 40.0 ng mL$^{-1}$ was selected for the subsequent assays. Concerning the S protein, its concentration (4.0 μg mL$^{-1}$) was based on ELISA assays as recently described in the literature.

Transduction Approach. The spatial blocking effect created by the Ab5 (after binding to PEP2003 and S protein) against the probe collisional dynamics could be more sensitively monitored by EIS through the increase in R_ct compared with the SWV detection of the faradaic current suppression (Figure 2B and Figure S9). In fact, EIS is a more sensitively method facing small changes at the interface. The relative variations in response after incubation of PEP2003-loaded biosensors in positive serum ($n = 3$) were measured as 25.2% (SWV) and 85.1% (EIS) over the data for a healthy person serum (control). Thus, LF-EIS devices were used in the following experiments.

Sensitivity: Peptide vs Protein. From the prior Nyquist plots (see Figure 2B) and Randles circuit, we collected the R_ct values for GCE after modifications with nanoparticles and the bioreceptors ($n = 3$; Figure 2C). In addition to assisting the noncovalent immobilization of the S protein and peptide, the AuNPs enhanced the charge-transfer kinetics as endorsed by the substantial decrease in R_ct from 1.0 (bare GCE) to 0.3 kΩ (GCE coated with AuNPs). The R_ct attained by the peptide-loaded electrodes after exposure to a negative serum (5.2 kΩ) was 2.3-fold lower than the resistance by the GCE loading the full-length S protein (11.7 kΩ). This result is ascribed to the smaller size of the peptide, resulting in less prominent steric hindrance against the $\text{[Fe(CN)}_6\text{]}^{3/2-}$ redox probe. Further, in agreement with the larger TRS ratio in the PEP2003 with immunosensor when compared with the S protein-based system11 as discussed before, the tests utilizing the PEP2003 resulted in a superior ability to discriminate the negative from positive serum (see Figure 2C). The relative increments in R_ct were around 1.2 (11.7 to 14.3 kΩ, data for negative and positive serum, respectively; ~22.2%) and 7.8 times (5.2 to 40.4 kΩ; ~676.9%) when employing the S protein and PEP2003 as recognition elements, respectively.

While the peptide is expected to generate both (i) a lower R_ct after incubation in negative serum and (ii) higher relative variations in R_ct upon exposure to negative and positive samples as observed here, the S protein is supposed to provide a more pronounced increase in the final R_ct (after Ab5 with binding) by exhibiting a large number of epitopes, eight, with the probe steric hindrance and, therefore, the reactivity for IgG and IgM being boosted.50 In contrast, after exposure to the positive serum, the peptide with biosensor led to an R_ct (40.4 kΩ) 2.8 times higher than the resistance attained by the S protein (14.3 kΩ). This data indicates that the load of Ab5 captured by the S protein-based electrode is lower than the number of targeted antibodies bound at the PEP2003-based surface. The steric hindrance of the protein binding sites after electrostatic adsorption on electrodes is hypothesized to trigger its poor anti-Ab5 reactivity, as demonstrated herein through electrostatic potential studies (these data are discussed later).

The higher sensitivity provided by the PEP2003 can thus be attributed to two phenomena, namely, its larger (i) TRS ratio in comparison with the S protein-based system11 and (ii) anti-Ab5 reactivity in our sensing mode. Both characteristics contribute to amplifying the changes in R_ct for negative and positive samples, thus increasing the clinical sensitivity of the impedimetric label-free immunosensor.

Surface Arrangement of the AuNPs and Peptide. The peptides can aggregate into different forms depending on the substrate, concentration, and medium conditions. For instance, according to a recent study,52 a SARS-CoV-2 S protein-based peptide could generate globular aggregates (30–40 nm), nanotapes (20–100 nm fibrillar structures), or even mesh-like networks on Cu/carbon grids. The fibril self-assemblies can create globular aggregates because of backbone hydrogen bonds that lead to the stacking of extended peptide structures. Here, the PEP2003 aggregates were found out to be mostly composed of 136.9 ± 16.6 nm globular structures ($n = 17$), with a few fibrils being verified as well according to AFM images (Figure S10).

From STEM and AFM analyses on a carbon grid and GCE (our electrode for the immunoassays), respectively, the prior globular structures were also observed in the presence of the AuNPs (Figure 2D and Figures S11–S14). Their diameters onto GCE were 112.2 ± 9.2 nm ($n = 9$). Such structures suffered from degradation under continued exposure to the STEM beam, indicating that they correspond to biological material, i.e., peptide aggregates. The latter aggregated into single spherical nanoassemblies on the AuNPs and, especially, the GCE surfaces, while the AuNPs created both single and aggregated forms. Nonetheless, it is worthy to emphasize that the partial AuNP aggregation on the electrodes did not compromise the reproducibility of the immunoassays that resulted in low standard deviations, as discussed later.
Regarding the S protein, it only led to the self-assembly of fibrillar structures on carbon surfaces according to SEM analyses (Figure S15).

In addition to the anchoring on AuNPs, the physisorption of the recognition elements on GCE experiences electrostatic attractions because the surface of this electrode was also revealed to be negatively charged. This charging is caused by electronic transfers from the AuNPs as demonstrated by analyses of AFM coupled to Kelvin probe force microscopy (KPFM), which provided the monitoring of the contact potential differences (V\text{CPD}) of GCE (V\text{CPD}^\text{GCE}) with AuNP (V\text{CPD}^\text{NP}) (Figure 2E and Figure S16). We found positive differences V\text{CPD}^\text{NP} - V\text{CPD}^\text{GCE} (+165.5 \pm 75.3 \text{ mV}, n = 4), thus revealing the spontaneous transfer of electrons from AuNPs to GCE surface. This phenomenon aims to equalize the Fermi level, and it arises from the distinct work functions (\Phi) of the materials, with AuNP \Phi < GCE \Phi in this case.

Immunoassays with Protein, RBD, and Peptide. Analyses of another positive serum with RBD as receptor (n = 3), an immunogenic fragment from S protein,34 also confirmed hypotheses addressed before, namely, the increase in the initial (before) and final (after binding to AbS) R\textsubscript{ct} with the size and number of epitopes on the recognition element (Figure 2F), respectively. When using RBD, the initial and final R\textsubscript{ct} values were, respectively, 36.6% and 17.3% higher than these same values reached by the peptide-loaded biosensor. Such variations agree with the higher size and anti-AbS reactivity of the RBD compared with the peptide.55,56 Nonetheless, the biosensors loading these bioreceptors led to a similar sensitivity in terms of the variations in R\textsubscript{ct}, which were roughly 9.7 k\Omega, further supporting that the peptide can act as an AbS bioreceptor for COVID-19 screening.

Effect of the Electrode Biofouling on Clinical Accuracy. The R\textsubscript{ct} by the peptide-based biosensor to a negative sample was 1.6-fold higher than the background R\textsubscript{ct} (achieved after incubation in electrolyte; see Figure 2C), indicating the nonspecific adsorption of proteins in the serum onto the electrodes. This biofouling was also indicated by hyperspectral imaging (see Figure 1D). In this case, the AuNP/PEP2003 conjugates showed a subtle aggregation in negative serum that was likely induced by the protein corona nonspecifically adsorbed around the AuNPs in dispersion.57 While a blocking agent covering the electrode could decrease the R\textsubscript{ct} signal in negative sera by preventing biofouling,23 these protective layers are expected to create a steric hindrance of the small-sized surface-tethered peptides, hampering their ability for AbS recognition. Despite the absence of an antibiofouling layer, such a biofouling did not appear to disturb the clinical accuracy, as discussed next.

In the absence of the PEP2003, the protein corona originating from the nonspecific biofouling did not result in any differentiation between the samples of healthy individuals and infected patients. In practice, the R\textsubscript{ct} achieved for these samples (without recognition element) were similar to each other (~3.0 k\Omega, Figure 2G and Figure S17), along with the background R\textsubscript{ct} (peptide-based electrode in electrolyte). In contrast, the R\textsubscript{ct} data for negative and positive samples in the presence of the PEP2003 were 1.8- and 5.0-fold higher than the background response, respectively, further supporting the capability of our biosensor in recognizing AbS.

Relationship with Concentration. To properly evaluate the sensitivity of the S protein- and PEP2003-loaded LF-EIS biosensors, further tests (n = 3) were made by changing the dilution of a positive serum sample that covered a broad range, varying from 1:1000 to 1:100 v/v in electrolyte (Figure S18). The R\textsubscript{ct}-to-dilution signals followed a linear model (R2 = 0.95). In agreement with the prior findings, the peptide-based electrodes provided a sensitivity (angular coefficient of the regression curves) 3.7 times higher than the value attained by the biosensors with the S protein. The sensitivities were calculated as 2.1 (S protein) and 7.7 × 10−3 IΩ (v/v)−1 (peptide). Analyses of standard solutions of anti-SARS-CoV-2 S protein IgG (IgGS) at distinct concentrations were also accomplished (Figure 3). R\textsubscript{ct} varied linearly at the range from 0.5 to 10.0 \mu g mL−1 (R2 = 0.99), with the limit-of-detection (LOD) being 0.2 \mu g mL−1. The use of graphene on carbon electrode is an alternative to improve this LOD, as recently described in the literature for IgGS detection.58 In this case, paper-based LF-EIS biosensors with S protein RBD as receptor achieved a LOD as low as ~1.0 ng mL−1. One should also note that independent electrodes were used in all of the prior assays for each evaluated condition. The low standard deviations suggest satisfactory levels of reproducibility (see the error bars in Figure 2).

Shelf-Life Evaluation. The stability of the raw materials that are required to prototype the device and prepare the immunosensing interface is commonly a considerable drawback facing the commercialization and translation of biosensors into the real world.59 This issue is particularly challenging for the biological macromolecules as described above. According to recent studies,60 LF-SWV biosensors bearing the human angiotensin-converting enzyme 2 (ACE2) receptor covalently bound at graphite surfaces were stable for 1 day after being stored under dry conditions at 4 \Celsius. When stored at 4 \Celsius in electrolyte, nonetheless, the biosensors preserved 100% of their initial signals for 3 days and a decrease of 23% was observed after 6 days in these conditions. The peptide-loaded devices are expected to show a higher shelf-life, as these small-sized biomolecules are not amenable to denaturation. In fact, our LF-EIS biosensors with the PEP2003 as bioreceptor preserved 95.1% and 83.6% of the initial R\textsubscript{ct} after 20 and 30 days, respectively. The electrodes were stored dry at 4 \Celsius, and the EIS assays were made after exposure to a positive serum sample. Considering the assays since day 1, the global average R\textsubscript{ct} was 4.2 ± 0.2 k\Omega with the intraday confidence intervals ranging from 0.2 to 0.4 k\Omega (α = 0.05).

Poor Reactivity of S Protein. The electrostatic potentials of the full-length S protein were scrutinized to understand its poor anti-IgGS reactivity (as previously observed), as these potentials provide information on the most likely orientations of this protein upon electrostatic adsorption on a nanoparticle.

![Figure 3. Relationship with concentration. (A) Nyquist plots to standards of IgGS at different concentrations as indicated. (B) Resulting analytical curve as a function of the R\textsubscript{ct} responses (k\Omega).](image-url)
bearing a net negative charge. From the data (Figure 4A), the NTD and RDB domains show a surface mostly comprised of positively charged regions, whereas the ACE2 anti-receptor binding site is dominantly negative. Based on charge complementarities, we can thus hypothesize that the non-covalent immobilization of the S protein onto AuNPs is subjected to electrostatic interactions involving the negatively charged nanoparticles and the NTD and RDB domains of the S protein (Figure 4B), which are relevant anti-Ab binding regions. Thereby, this immobilization is supposed to produce a partial steric hindrance of the S protein binding domains (Figure 4C and Figure S19), with the IgG_S recognition by this protein being compromised, as verified herein.

One should emphasize that the S protein binding sites are also supposed to be partially hidden upon physisorption on GCE because the AuNPs electronically charge its surface as discussed before (see Figure 2E and Figure S16). We have also achieved the electrostatic potentials of the peptide, and the result suggests that it behaves like a dipole, with its N-terminal end carrying a net positive charge (Figure 4D). Although this binding region is subjected to electrostatic interactions with the electrodes, the peptide exhibits distinct anti-IgG_S binding regions as discussed next, thus supporting its ability to recognize the targeted Ab.

Binding of PEP2003 to IgG_S. We used a molecular docking method to assess the PEP2003−IgG_S binding in terms of energy, bound poses, and interaction modes. The 10 most thermodynamically stable poses (Figure 5A and Figure S20) showed energies from −6.7 to −7.2 kcal mol^{−1} (Table S2). This investigation also revealed the amino acids involved in these specific interactions (Tables S3−S5), which were revealed to be driven by hydrogen bond and, especially, hydrophobic interactions (Figure 5B). In agreement with the maintenance of the Ab_S recognition ability by the peptide after its adsorption on the electrode, the above data indicate the incidence of various domains in the peptide with anti-IgG_S reactivity. Another point to be stressed is the conformational adaptability of the IgG_S loops present in the variable region of the fragment antigen binding (Fab), which can undergo...
conformational changes to accommodate the peptide upon adsorption on GCE/AuNP surfaces.

Effect of the AuNP Size. Analyses with AuNPs smaller than 30 nm also led to the differentiation of negative from positive serum. Such nanoparticles also had a spherical shape with an average diameter of 8.1 ± 0.1 nm based on STEM images (Figure S21). From DLS, the RH was 10.0 ± 0.3 nm (average diameter: 20 nm) with a zeta potential of −35.0 mV.

In this case, the best results in terms of reproducibility and sensitivity were attained by mixing AuNPs and recognition element (1:1 v/v) in the liquid phase for 1 h, followed by the dropping of this dispersion onto the electrode and the same succeeding steps as made with the 28 nm AuNPs. Compared with these nanoparticles, the 17 nm AuNPs promoted a higher charge-transfer kinetics (0.1 kΩ Rct) likely due to their larger surface areas (Figure S22). We could distinguish the Rct of negative from positive serum in the presence of the S protein on 17 nm AuNP-based electrodes, but even more clearly in the presence of the PEP2003 as observed before when using the 28 nm nanoparticles (Figure S23). Such a result reinforces the increase in sensitivity with the TRS ratio.

Although their higher electrocatalytic effect over the 28 nm AuNPs, the smaller ones lead to an increase in the response time (the time needed for a detectable number of target molecules to be captured by the biosensor) according to the first-order Langmuir kinetics (binding-limited regimes), along with a decrease in the total number, i.e., surface concentration, of targets bound at the biosensor surface. This decrease originates from the reduced surface concentration of recognition elements (this factor is less relevant for the small-size PEP2003) and the increase in the AuNP curvature, with a spatial blocking being noted against the target approaching. Such phenomena reduce the binding-induced steric hindrance and, thereby the sensitivity of the 17 nm AuNP with biosensor that was revealed to be only commensurate with the data using the 28 nm AuNPs. Specifically, the relative changes in Rct were 3.8 (2.9 to 11.0 kΩ, data for negative and positive serum, respectively; 73.6%) and 3.9 times (4.6 to 18.1 kΩ; 74.6%) when employing the 17 and 28 nm AuNPs, respectively (see Figure S23). Conversely, one should note that the smaller AuNPs remained stable in the dispersion for 1 week, while the 28 nm AuNPs sedimented after this period (see Figure S3). This higher stability of the 17 nm AuNPs is a relevant feature in terms of the commercial adaption of the method.

COVID-19 Screening. Using 28 nm AuNPs, the clinical applicability of the biosensor was investigated through the recognition of two types of diluted human samples: (i) prepandemic individuals (15) and (ii) COVID-19 convalescent patients (24). These samples were diluted 1:500 v/v in electrolyte (7.3 pH). Apart from the merits of Ab biosensors to deploy POC and mass tests as discussed above, the incidence of IgG in sera or plasma has delivered diagnostics with high accuracy.

Figure 6. Application to 39 diluted human samples for COVID-19 screening. (A) Typical Nyquist plots of 1.0 mmol L−1 [Fe(CN)6]3/4− after incubation of the electrodes in sample (1:500 v/v in electrolyte) from some prepandemic individuals (PP) and convalescent patients (CO). The color definitions of the samples are valid throughout this figure. (B) Violin, (C) ROC, and (D) PCA score plots obtained from the values of Rct. The blue circle in the PCA plots highlights 90.0% of the Z data from all of the samples. (E) Treatment of the sensor features by the SISSO for classifying human samples into two groups, i.e., PP and CO. The Rct values recorded of all samples were used as input data (1), which were separated at training and test sets. The training set was split at a ratio of 75/25 (training/validation sets) for optimizing the descriptor through 5-fold cross-validation (2). Then, the trained model was used in the classification of the test set (blind test) for accuracy evaluation (3). (F) Screening of the human samples into PP and CO using two simple SISSO descriptors (ϕ₁ and ϕ₂). In these cases, the superscripts “i” and “r” mean Z″ and Z′, respectively, whereas the numeric superscripts correspond to the frequencies 30.0 kΩ (1), 1.2 kΩ (12), 85.0 Ω (21), 63.4 Ω (22), 8.1 Ω (29), 6.1 Ω (30), 1.9 Ω (34), and 1.4 Ω (35).
From the achieved Bode (Figure S24), Nyquist (Figure 6A), and violin plots (Figure 6B), all of the prepandemic samples showed similar final R_{ct} responses, while the signals for the positive sera were found to be dispersed. This high heterogeneity is likely owing to factors such as age, sex, and genetics that make the tumoral responses of the patients different, modifying the IgG concentration and ultimately the data of R_{ct}. Overall, the R_{ct} derived from healthy individuals did not exceed 10.0 kΩ, whereas the responses from convalescent patients ranged from \sim10.0 up to \sim50.0 kΩ. Accordingly, some false negatives were noted as the signals from positive sera exceeded the cutoff line. We obtained the receiver operating characteristic curve (ROC) to quantitatively assess the screening performance (Figure 6C). The area under this curve (AUC) was 0.99, with the cutoff R_{ct} being 6.3 kΩ. The sensitivity and specificity were 93.0% and 100.0% (70.2% to 99.7% confidence interval, $n = 3$), respectively.

Following preliminary COVID-19 screening from cutoff R_{ct} values, we attempted to further improve the sensitivity by processing the biosensing data by ML methods, i.e., PCA, partial least-squares-based discriminant analysis (PLS-DA), and SISSO. The exploratory analysis of the data set was first made by PCA. From the score plots (Figure 6D), the two first principal components (PCs) explained 99.6% of the signal variance, with a substantial weight of the low-frequency region (0.1 to 114.0 Hz; Figure S25). This result reveals a higher relevance of the diffusion-limited steps for COVID-19 screening. Approximately 90.0% of the Z values from prepandemic individual samples remained grouped on the score plot negative quadrants (PC1 and PC2).

Next, the PLS-DA method was utilized for classification. We split the training/test samples at a 76/24 ratio. To attain a robust model of PLS-DA, the training set was processed through a randomized 10-fold cross-validation using the same prior ratio for this so-called training/validation set. The accuracies were scrutinized assuming the clinical condition of the samples (prepandemic individuals or convalescent patients) as the true data. The three first latent variables (LV) explained 99.8% of the variance on the X-block. The addition of the LV3 enabled a better separation between the two sample classes in the score plots (Figure S26). Concerning the threshold, the predicted y was 0.5964, below which any Z value was inferred as signaling convalescent patients (Figure S27). We reached an accuracy of 100.0% for the test set (Table S6).

The ability of the immunosensor to ensure accurate COVID-19 screening was further successfully assessed by a descriptor-based ML method, i.e., SISSO, with ensuing 100.0% accuracy as well (Figure 6E). The training/test and training/calibration sets were split at the ratios of 85/15 and 75/25, respectively, with a randomized 5-fold cross-validation to fit two mathematical descriptors. As an advantage over PLS-DA, the SISSO-based learning tasks deliver simple descriptors that meet the trade-off between accuracy and simplicity/velocity of computation. The method generated two equations each covering only four features from the entire Nyquist plots (44 values of Z vs frequency), with the sample classes being clearly classified (Figure 6F).

In contrast to PCA, Z values throughout the range of frequencies were selected by SISSO, meaning both charge-transfer and diffusion rates were important for the classification in this case. The easy-to-use SISSO descriptors benefit the development of ML-aided sample-to-answer analyses on mobile phones, which would greatly facilitate detection at the point of care because no data treatment or result interpretation by the user is required. One should also stress that these findings show the potentiality in using ML for smartly picking up specific features from whole spectra for improving the clinical accuracy compared with univariate database-based traditional approaches.

Selectivity of the PEP2003 against Ab. Importantly, the results above also support the selectivity of the PEP2003-loaded biosensor, as all of the 15 prepandemic samples tested positive (through ELISA) for the endemic human coronaviruses (hCoVs) 229E, NL43, OC43, and HKU1 (Table S7). Recently, these hCoVs were revealed to be responsible for 5% of the respiratory tract infections around the world, hence being potential interferents against the COVID-19 Ab tests. Cross-specificity of the PEP2003 with hCoVs was not noted by taking up the accurate screening of the samples from prepandemic individuals and COVID-19 convalescent patients as discussed above.

The method also showed a satisfactory specificity when challenged against individual nontarget antibodies (Figure S28), including monoclonal antibodies produced in vitro against the (i) glycoprotein RBD (IgGR1) and (ii) fusion protein containing the RBD and mouse IgG fragment crystallizable domain (mFc, IgGR2). Both these immunoglobulins were built to be specific for RBD, and, hence, they should not be specific for the PEP2003 since this peptide is located in the NTD (between amino acids 121 and 125), i.e., a domain that precedes the S protein RBD. Accordingly, 28 nm AuNP-loaded biosensors did not respond markedly to these anti-RBD nontargeted antibodies, with their signals being commensurate with the background R_{ct}. Last, no signal was verified for the other two antibodies with no direct relationship with the SARS-CoV-2 virus. Specifically, mouse monoclonal antibodies prepared against a (i) guinea pig T-Bet 12 amino acid peptide (IgGT) and (ii) guinea pig CD3 Epsilon recombinant form (IgGE) were scrutinized as nontargeted Ab as well (see Figure S28). The prior results reinforce the anti-Ab specificity of the PEP2003.

CONCLUSION

Combining a nature-inspired peptide with advances in surface chemistry, analytical performance, and ML-mediated accuracy, our ultimate goal was to generate a biosensing platform that can be helpful to translate field-deployable, modular, and accurate diagnostic systems into clinical practice. To meet these requirements, we developed LF-EIS biosensors with noncovalent adsorption of a peptide onto glassy-carbon electrodes for COVID-19 Ab testing. Notably, the PEP2003 can be easily obtained by chemical synthesis, and it is not prone to denaturation, thus addressing the trade-off between scalability, cost, and robustness. The biosensor preserved 95.1% of the initial R_{ct} data for 20 days when stored dry at 4°C. Our findings further confirmed that the peptide can be adsorbed on an electrode while maintaining its ability for anti-SARS-CoV-2 Ab molecular recognition and leading to a sensitivity higher than the S protein.

Regarding the noncovalent functionalization of the recognition elements, it creates a modular architecture, as it can be easily extended to other targets from a simple and fast drop-casting step. One should also note that our method is not a reagentless strategy because of the use of [Fe(CN)$_6$]$_{3/4}^-$ probe in solution. Nonetheless, our steric-
hindrance-assisted immunosensor required only one washing step (after preparing the biosensing interface as accomplished during the shelf-life assays).

The synergy between sensitivity and ML assured a good clinical accuracy. The sensitive responses afforded by the biosensor allowed for a large sample dilution, thus preventing cross-reactivity and biofouling interferences, whereas two simple ML-fitted descriptors were able to deliver the COVID-19 screening of 39 human samples (sera and plasma) with 100.0% accuracy.

Although the set of results above is an encouraging indicator, assays of large-cohort patient samples need to be conducted further to reliably scrutinize the (i) capacity of the platform for accurately providing quantitative readouts and (ii) its accuracy.

MATERIALS AND METHODS

Chemicals. All reagents were of analytical grade without prior purification. Ultra-high-purity water (Millipore Milli-Q system) was used in the preparation of the solutions. Potassium ferrocyanide (K₃[Fe(CN)₆]), potassium ferricyanide (K₄[Fe(CN)₆]), sodium citrate (Na₃C₆H₅O₇), and gold(III) chloride trihydrate (HAuCl₄·3H₂O) were purchased from Sigma-Aldrich (St. Louis, MO, USA). Potassium chloride (KCl), dibasic sodium phosphate (Na₂HPO₄), and monobasic sodium phosphate (NaH₂PO₄) were acquired from Lasybath (Diadema, SP).

Biological Material. We use the recombinant S protein from SARS-CoV-2, provided by the Cell Culture Engineering Laboratory at COPPE/UFRJ, as a biological recognition element after being diluted in phosphate-buffered saline (PBS) solution (4.0 μg mL⁻¹). The RBD protein was purchased from BioLinker (São Paulo, Brazil). The PEP2003 was synthesized according to the literature. The lyophilized powder was resuspended in PBS at distinct concentrations (20.0, 40.0, and 80.0 ng mL⁻¹). The biological samples and human serum were acquired from the Cell Bank of Rio de Janeiro (BCRJ, Brazil). Sera from SARS-CoV-2 positive donor patients were analyzed by an antibody test, i.e., the Medtest SARS-CoV-2 IgG/IgM rapid test cassette (lot COV20030081). Besides, plasma from SARS-CoV-2 negative donor patients were collected before the outbreak (CAAE: 431399212.0000.5594). These samples were stored at −80 °C for use, they were kept at room temperature until complete thawing. Last, the four nontargeted antibodies (IgGR1, IgGR2, IgGT, and IgGE) were provided by the Biodefense and Emerging Infections Research Resources Repository (BEI Resources).

Gold Nanoparticles. The AuNPs were synthesized according to Turkevich-Frens. To synthesize 100 mL AuNP dispersions (final concentration of 0.8 mmol L⁻¹), 3.30 mg of HAuCl₄·3H₂O in 95.0 mL of ultrapure deionized water was heated at 100 °C. Then, 5.0 mL of 1% v/v sodium citrate solution at 100 °C as well as added into the gold dispersion under stirring. The mixture was left under stirring until it reached the characteristic red color (approximately 20 min), and then it was allowed to cool naturally. The colloidal dispersions were stored at 18 °C.

Characterization. The AuNPs in the dispersion were characterized by DLS, electrophoretic light scattering (ELS), UV–vis spectroscopy, hyperspectral imaging, and DCS. Further techniques used to obtain information on the nanoparticles, receptors, and interactions were SEM, TEM, STEM AFM, AFM-KPFM, XPS, and FTIR. Details about these measurements are available in the Supporting Information.

Biosensor Preparation. To perform the immunoassays, 6.0 μL of AuNP dispersion was dropped on GCE. After dispersion evaporation (60 min) with the ensuing AuNP deposition, 6.0 μL of the biomolecule solution was dropped and left for 60 min as well. Then, the functionalized electrodes were placed in contact with 6.0 μL of patient or standard samples (diluted 1:500 v/v in phosphate buffer: 0.1 mol L⁻¹, pH 7.4) for 30 min, followed by the protocols of washing for 10 s under agitation in phosphate buffer and probe dropping (1.0 mmol L⁻¹ [Fe(CN)₆]⁴⁻/³⁻) for electrochemical detection at room temperature. The molecules investigated were the S protein, RBD, and PEP2003. The concentration of S protein and RBD was 4.0 μg mL⁻¹. For the assays using the peptide, the concentrations ranged from 10.0 to 80.0 ng mL⁻¹.

Electrochemical Analyses. The GCE (disk with 3.0 mm diameter) was used as the working electrode, whereas Ag/AgCl and platinum wire were employed as reference and counter electrodes, respectively. To ensure surface homogeneity, the GCE was polished in an aluminia suspension on a polishing fabric and then placed in an ultrasound bath for 15 min and washed with high-purity water. The assays were done on the Metrohm Autolab PGSTAT 302N system equipped with FRA2 using NOVA 2.1.3 software. The probe (1.0 mmol L⁻¹ [Fe(CN)₆]⁴⁻/³⁻) was diluted in 0.1 mol L⁻¹ KCl. The EIS tests were conducted at the half-wave potential (roughly 240.0 mV) and the frequency range from 1.0 × 10⁻¹ up to 3.0 × 10⁶ Hz. The SV tests were performed at a potential window from −0.2 to +0.7 mV, modulation amplitude of 20 mV, step potential of 1 mV, and frequency of 20 Hz. The analyses were made in triplicate and at room temperature. Details about ELISA are described in the Supporting Information.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsnano.2c04364.

Characterization of the biosensor, synthesis of the smaller nanoparticles, electrostatic potential calculation, molecular docking, data arrangement and analysis, enzyme-linked immunosorbent assays, cross-specificity evaluation against endemic human coronaviruses, specificity tests to nontargeted antibodies, supporting tables, and supporting figures (PDF)

AUTHOR INFORMATION

Corresponding Author

Renato S. Lima — Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil; Center for Natural and Human Sciences, Federal University of ABC, Santo André, São Paulo 09210-580, Brazil; Institute of Chemistry, University of Campinas, Campinas, São Paulo 13083-970, Brazil; São Carlos Institute of Chemistry, University of São Paulo, São Carlos, São Paulo 09210-580, Brazil; orcid.org/0000-0001-8450-1475; Email: renato.lima@lnnano.cnpem.br
Authors

Ana C. H. Castro — Center for Natural and Human Sciences, Federal University of ABC, Santo André, São Paulo 09210-580, Brazil

Italo R. S. Bezerra — Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil; Center for Natural and Human Sciences, Federal University of ABC, Santo André, São Paulo 09210-580, Brazil

Gabriela H. da Silva — Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil

Eric A. Philot — Center for Mathematics, Computing and Cognition, Federal University of ABC, Santo André, São Paulo 09210-580, Brazil

Vivian L. de Oliveira — Center for Natural and Human Sciences, Federal University of ABC, Santo André, São Paulo 09210-580, Brazil

Rodrigo S. N. Mancini — Center for Natural and Human Sciences, Federal University of ABC, Santo André, São Paulo 09210-580, Brazil

Carlo S. Castro — Center for Natural and Human Sciences, Federal University of ABC, Santo André, São Paulo 09210-580, Brazil

Luciani R. S. de Carvalho — Medical School, University of São Paulo, São Paulo 05403-000, Brazil

Bianca H. V. Fernandes — Medical School, University of São Paulo, São Paulo 05403-000, Brazil

Eduardo M. Cilli — Institute of Chemistry, São Paulo State University, Araraquara, São Paulo 14800-900, Brazil

Paulo R. S. Sanches — Institute of Chemistry, São Paulo State University, Araraquara, São Paulo 14800-900, Brazil

Murilo Santinagi — Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil; Center for Natural and Human Sciences, Federal University of ABC, Santo André, São Paulo 09210-580, Brazil; orcid.org/0000-0002-9423-9730

Ives Charlie-Silva — Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil

Diego S. T. Martinez — Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil; orcid.org/0000-0002-8394-2751

Ana L. Scott — Center for Mathematics, Computing and Cognition, Federal University of ABC, Santo André, São Paulo 09210-580, Brazil; orcid.org/0000-0002-8394-2751

Complete contact information is available at: https://pubs.acs.org/10.1021/acsnano.2c04364

Notes

The authors declare the following competing financial interest(s): R.S.L, W.A.A., A.C.H.C., and I.R.S.B. are listed as inventors on a patent filing application describing this technology.

ACKNOWLEDGMENTS

We wish to acknowledge Carlos A. R. Costa, Clayton A. Biffe, Elicio L. Pires, João M. da Silva, Caroline Y. N. Nicoliche, and Otavio Berenguél for helping us with the characterization analyses. All these professionals are from the Brazilian Center for Research in Energy and Materials. This work was sponsored by the Brazilian Coordination for Improvement of Higher Education Personnel (CAPES; grant 88881.504639/2020-01), the Brazilian National Council for Scientific and Technological Development (CNPq; grants 304389/2019-6 and 407951/2021-0), the São Paulo Research Foundation (FAPESP; grants 2017/02317-2, 2019/19939-1, and 2020/05761-3), the National Institute of Science and Technology in Bioanalytics (grant FAPESP 2014/50867-3 and grants CNPq 465389/2014-7 and 401256/2020-0), and the Medical School Foundation (grant CG19110). We would also like to thank the Cell Culture Engineering Laboratory at COPPE/UFRJ for providing the recombinant SARS-Cov-2 S protein and the Biodefense and Emerging Infections Research Resources Repository (BEI Resources Repository), National Institute of Health (NIH), and National Institute of Allergy and Infectious Diseases (NIAID) for providing the monoclonal antibodies used in this work.

REFERENCES

(1) Zhou, P.; Yang, X. L.; Wang, X. G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H. R.; Zhu, Y.; Li, B.; Huang, C. L.; Chen, H.-D.; Chen, J.; Luo, Y.; Guo, H.; Jiang, R.-D.; Liu, M.-Q.; Chen, Y.; Shen, X.-R.; Wang, X.; Zheng, X.-S.; et al. A Pneumonia Outbreak Associated with a New Coronavirus of Probable Bat Origin. Nature 2020, 579, 270–273.

(2) Gooding, J. J.; Ligler, F. S. Virus Detection: What Were We Doing Before COVID-19 Changed the World? ACS Sens. 2020, 5, 1503–1504.

(3) Gooding, J. J.; Liu, S. M. A New Year Period Emphasizing the Need for Better Sensors. ACS Sens. 2020, 5, 597–598.

(4) Russell, S. M.; Alba-Patiño, A.; Barón, E.; Borges, M.; Gonzalez-Freire, M.; de la Rica, R. Biosensors for Managing the COVID-19 Cytokine Storm: Challenges Ahead. ACS Sens. 2020, 5, 1506–1513.

(5) Clifford, A.; Das, J.; Yousefi, H.; Mahmud, A.; Chen, J. B.; Kelley, S. O. Strategies for Biomolecular Analysis and Continuous Physiological Monitoring. J. Am. Chem. Soc. 2021, 143, 5281–5294.

(6) Yousefi, H.; Mahmud, A.; Chang, D.; Das, J.; Gomis, S.; Chen, J. B.; Wang, H.; Been, T.; Yip, L.; Coomes, E.; Li, Z.; Mubareka, S.; McGeer, A.; Christie, N.; Gray-Owen, S.; Cochrane, A.; Rini, J. M.; Sargent, E. H.; Kelley, S. O. Detection of SARS-CoV-2 Viral Particles Using Direct Reagent-Free Electrochemical Sensing. J. Am. Chem. Soc. 2021, 143, 1722–1727.

(7) Ali, Md. A.; Hu, C.; Jahan, S.; Yuan, B.; Saleh, M. S.; Ju, E.; Gao, S.-J.; Panat, R. Sensing of COVID-19 Antibodies in Seconds Via Aerosol Jet Nanoprinted Reduced-Graphene-Oxide-Coated 3D Electrodes. Adv. Mater. 2021, 33, No. e2006647.

(8) Liu, G.; Rusling, J. F. COVID-19 Antibody Tests and Their Limitations. ACS Sens. 2021, 6, 593–612.

(9) Younes, N.; Al-Sadeq, D. W.; Al-Jihgehee, H.; Younes, S.; Al-Jamal, O.; Daas, H. I.; Yassin, H. M.; Nasrallah, G. K. Challenges in
Laboratory Diagnosis of the Novel Coronavirus SARS-CoV-2. *Viruses* 2020, 12, 582.

(10) Guo, K.; Wustoni, S.; Kokku, A.; Díaz-Galicia, E.; Moser, M.; Hama, A.; Alqahtani, A. A.; Ahmad, A. N.; Alhamlan, F. S.; Shaibah, M.; Pain, A.; McCulloch, I.; Arold, S. T.; Grünberg, R.; Inal, S. Rapid Single-Molecule Detection of COVID-19 and MERS Antigens Via Nanobody-Functionalized Organic Electrochemical Transistors. *Nat. Biomed. Eng.* 2021, 5, 666–677.

(11) Broza, Y. Z.; Zhou, X.; Yuan, M.; Qiu, D.; Zheng, Y.; Vishkin, R.; Khatib, M.; Wu, W.; Haick, H. Disease Detection with Molecular Biomarkers: From Chemistry of Body Fluids to Nature-Inspired Single-Molecule Detection of COVID-19 and MERS Antigens Via Electrochemical Capillary-Flow Immunoassay for Detecting Antibody and Adverse Reaction. *ACS Sens.* 2020, 5, 3346–3364.

(22) Nicoliche, C. Y. N.; Pascon, A. M.; Bezerra, I. R. S.; de Castro, A. C. H.; Martins, G. R.; Bettini, J.; Alves, W. A.; Santtiago, M.; Lima, R. S. In-Situ Nanocoating on Porous Pyrolyzed Paper Enables Antibiofouling and Sensitive Electrochemical Analyses in Biological Fluids. *ACS Appl. Mater. Interfaces* 2020, 12, 2522−2533.

(23) Cui, F.; Yue, Y.; Zhang, Y.; Zhang, Z.; Zhou, H. S. Advancing Biosensors with Machine Learning. *ACS Sens.* 2020, 5, 3346–3364.

(24) Schleider, G. R.; Acosta, C. M.; Fazzio, A. Exploring Two-Dimensional Materials Thermodynamic Stability via Machine Learning. *ACS Appl. Mater. Interfaces* 2020, 12, 20149−20157.

(25) Schleider, G. R.; Padilha, A. C. M.; Acosta, C. M.; Costa, M.; Fazzio, A. From DFT to Machine Learning: Recent Approaches to Materials Science - A Review. *J. Phys. Mater.* 2019, 3, 032001.

(26) da Silva, G. S.; de Oliveira, J. P.; Costa, G. F.; Giordano, G. F.; Nicoliche, C. Y. N.; da Silva, A. A.; Khan, L. U.; da Silva, G. H.; Gobbi, A. L.; Silveira, J. V.; Souza-Filho, A. G.; Schleider, G. R.; Fazzio, A.; Martinez, D. S. T.; Lima, R. S. Ordinary Microfluidic Electrodos Combined with Bulk Nanoprobe Produce Multidimensional Electric Double-Layer Capacitances Towards Metal Ion Recognition. *Sens. Actuators B Chem.* 2020, 305, 127482.

(27) Giordano, G. F.; Freitas, V. M. S.; Schleider, G. R.; Santtiago, M.; Gobbi, A. L.; Lima, R. S. Bifunctional Metal Meshes Acting as a Semi-permeable Membrane and Electrode for Sensitive Electrochemical Determination of Voltale Compounds. *ACS Appl. Mater. Interfaces* 2021, 13, 35914−35923.

(28) Turkевич, J.; Stevenson, P. C.; Hillier, J. 1951. A Study of the Nucleation and Growth Processes in the Synthesis of Colloidal Gold. *Discuss. Faraday Soc.* 1951, 11, 55–75.

(29) López-Marzo, A. M.; Baldrich, E. AuNPs/Methylene Blue Dual-Signal Nanomicroconjugates and Electrode Activation for Electrochemical Biosensors. *J. Electroanal. Chem.* 2019, 855, 113500.

(30) Verissimo, T. V.; Santos, N. T.; Silva, J. R.; Azevedo, R. B.; Gomes, A. J.; Lunardi, C. N. In vitro Cytotoxicity and Phototoxicity of Surface-Modified Gold Nanoparticles Associated with Neutral Red as a Potential Drug Delivery System in Phototherapy. *Mater. Sci. Eng. C Mater. Biol. Appl.* 2016, 65, 199–204.

(31) El-Soad, A. M. A.; Lazzara, G.; El-Magied, M. O. A.; Cavallaro, G.; Al-Otaibi, J. S.; Sayeed, M. I.; Kovaleva, E. G. Chitosan Functionalized with Carboxyl Groups as a Recyclable Biomaterial for the Adsorption of Cu (II) and Zn (II) Ions in Aqueous Media. *Int. J. Mol. Sci.* 2022, 23, 2396.

(32) Rothchild, K. J. The Early Development and Application of FTIR Difference Spectroscopy to Membrane Proteins: A Personal Perspective. *Biom. Spectrosc. Imaging* 2016, 5, 231–267.

(33) Bakshi, K.; Liyanage, M. R.; Volkin, D. B.; Middaugh, C. R. Fourier Transform Infrared Spectroscopy of Peptides. In *Therapeutic Peptides. Methods in Molecular Biology*; Nixon, A. E., Ed.; Humana Press: NJ, 2013; pp 255–269.

(34) Zhang, Y. P.; Lewis, R. N. A. H.; Hodges, R. S.; McElhaney, R. N. FTIR Spectroscopic Studies of the Conformation and Amide Hydrogen Exchange of a Peptide Model of the Hydrophobic Transmembrane Alpha-Helices of Membrane Proteins. *Biochemistry* 1992, 31, 11572−11578.

(35) Miyazawa, T.; Blout, E. R. The Infrared Spectra of Polypeptides in Various Conformations: Amide I and II Bands. *J. Am. Chem. Soc.* 1961, 83, 719−729.

(36) Neoh, K. N.; Cheng, S. K. S.; Wu, H.; Chen, A.; Sun, Y.; Li, B.; Cao, A.; Han, P. S. pH-Responsive Carbon Nanotube Film-Based Microfluidic Chip for Efficient Capture and Release of Cancer Cells. *ACS Appl. Nano Mater.* 2020, 5, 691−692.

(37) Beduk, T.; Beduk, D.; de Oliveira Filho, J. I.; Zhihnoglou, F.; Cicek, C.; Sertoz, R.; Arda, B.; Goksel, T.; Turhan, K.; Salama, K. N.; Timur, S. Rapid Point-of-Care COVID-19 Diagnosis with a Gold-Nanoarchitecture-Assisted Laser-Scribed Graphene Biosensor. *Anal. Chem.* 2021, 93, 8585−8594.

(38) Oliveira, D. A.; Silva, J. V.; Flauzino, J. M. R.; Castro, A. C. H.; Moço, A. C. R.; Soares, M.; Madurador, J. M.; Brito-Madurado, A. G. Application of Nanomaterials for the Electrical and Optical Detection of the Hepatitis B Virus. *Anal. Biochem.* 2018, 549, 157–163.
(39) Alves, L. M.; Rodolfovalho, V. B.; Castro, A. C. H.; Freitas, M. A. R.; Mota, C. M.; Mineo, T. W. P.; Mineo, J. R.; Madurro, J. M.; Brito- Madurro, A. G. Development of Direct Assays for Toxoplasma Gondii and Its Use in Genomic DNA Sample. *J. Pharm. Biomed. Anal.* 2017, 145, 838–844.

(40) Wang, L.; Liu, Z.-J.; Cao, H.-X.; Liang, G.-X. Ultrasonic sequencing Colorimetric miRNA Detection Based on Magnetic 3D DNA Walker and Unmodified AuNPs. *Sens. Actuators B Chem.* 2021, 337, 129813.

(41) Yang, T.; Luo, Z.; Tian, Y.; Qian, C.; Duan, Y. Design Strategies of AuNPs-Based Nucleic Acid Colorimetric Biosensors. *Trends Analit. Chem.* 2020, 124, 115795.

(42) Alaleef, M.; Dighe, K.; Moitra, P.; Fan, D. Rapid, Ultrasensitive, and Quantitative Detection of SARS-CoV-2 Using Antisense Oligonucleotides Directed Electrochemical Biosensor Chip. *ACS Nano* 2020, 14, 17028–17045.

(43) Bortolozzo, L. S.; Cfa, F.; Khan, L.; Medeiros, A. M. Z.; da Silva, G. H.; Delite, F. S.; Strauss, M.; Martinez, D. S. T. Mitigation of Graphene Oxide Toxicity in C. elegans After Chemical Degradation with Sodium Hypochlorite. *Chemosphere* 2021, 278, 130421.

(44) Davidson, A. M.; Brust, M.; Cooper, D. L.; Volk, M. Sensitive Analysis of Protein Adsorption to Colloidal Gold by Differential Precision medicine based on nanoparticles: the paradigm between targeting and colloidal stability. *Nanoscale* 2021, 13, 11817–11821.

(45) Wrapp, D.; Wang, N.; Corbett, K. S.; Goldsmith, J. A.; Hsieh, C. L.; Abiona, O.; Graham, B. S.; McLellan, J. S. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. *Biosens. Bioelectron.* 2021, 176, 112912.

(46) Cao, Y.; Yi, Y.; Luo, Y.; Li, L.; Wang, J.; Sobitan, A.; Teng, S.; Tang, Q.; Li, L. Spike Proteins of SARS-CoV and SARS-CoV-2 Utilize Different Mechanisms to Bind with Human ACE2. *Front. Mol. Biosci.* 2020, 7, 591873–591873.

(47) Eissa, S.; Zourob, M. Selection and Characterization of DNA Aptamers for Electrochemical Biosensing of Carbendazim. *Anal. Chim. Acta* 2020, 1057, 6814–6824.

(48) Idili, A.; Bonini, A.; Parolo, C.; Alvarez-Diduk, R.; Francesco, F. D. Merkoçi, A. A Programmable Electrochemical Y-Shaped DNA Scaffold Sensor for the Single-Step Detection of Antibodies and Proteins in Untreated Biological Fluids. *Adv. Funct. Mater.* 2022, 32, 2201881.

(49) Eissa, S.; Zahra, O. Selective and Characterization of DNA aptamers for Electrochemical Biosensing of Carbendazim. *An. Chem. 2017, 89, 3318–3345.*

(50) Bard, A. J. F. L. R. *Electrochemical Methods: Fundamentals and Applications*; Wiley: New York, 1980; pp 383–388.

(51) Wang, H.; Wu, X.; Zhang, X.; Hou, X.; Liang, T.; Wang, D.; Teng, F.; Dai, J.; Duan, H.; Guo, S.; Li, Y.; Xu, Y. SARS-CoV-2 Proteome Microarray for Mapping COVID-19 Antibody Interactions at Amino Acid Resolution. *ACS Cent. Sci.* 2020, 6, 2238–2249.

(52) Garrote, B. L.; Fernandes, F. C. B.; Cilli, E. M.; Bueno, P. R. Field Effect in Molecule-Gated Switches and the Role of Target-to-Receptor Size Ratio in Biosensor Sensitivity. *Biosens. Bioelectron.* 2019, 127, 215–220.

(53) Castelletto, V.; Hamley, I. W. Amyloid and Hydrogel Formation of a Peptide Sequence from a Coronavirus Spike Protein. *ACS Nano* 2022, 16, 1857–1867.

(54) Ferreira, L. F.; Giordano, G. F.; Gobbi, A. L.; Piazzetta, M. H. O.; Schleider, G. R.; Lima, R. S. Real-Time and In Situ Monitoring of the Morphology of Silk Nanoparticles. *ACS Sens.* 2022, 7, 1045–1057.

(55) Suh, J.-S.; Kim, H.-S.; Kim, T.-J. Development of a SARS-CoV-2-Derived Receptor-Binding Domain-Based ACE2 Biosensor. *Sens. Actuators B Chem.* 2021, 334, 129663.

(56) Xu, W.; Zhuo, Y.; Song, D.; Han, X.; Xu, J.; Long, F. Development of a Novel Label-Free All-Fiber Optofluorochromatography Based on Fresnel Reflection and its Applications. *Anal. Chem. Acta* 2021, 1181, 338910.

(57) Ribeiro, J. R. S.; Galdino, F. E.; Silveira, C. P.; Cardoso, M. B. Precise medicine based on nanoparticles: the paradigm between targeting and colloidal stability. *Nanomaterials* 2021, 16, 1451–1456.

(58) Yakoh, A.; Pimpikut, U.; Rengpipat, S.; Hirankarn, N.; Chailapakul, O.; Chaiyo, S. Paper-Based Electrochemical Biosensor for Diagnosing COVID-19: Detection of SARS-CoV-2 Antibodies and Antigen. *Biosens. Bioelectron.* 2021, 176, 112912.
Overcome Debye Length Limitations for Small-Molecule Sensing.
Science 2018, 362, 319.