Leaf area index development of local rice varieties as a response to different irrigation management

R Maftukhah, A S Suli, H N Annisa and B D A Nugroho

Department of Agricultural and Biosystem Engineering, Faculty of Agricultural Technology, Universitas Gadjah Mada, Jl. Flora No. 1 Bulaksumur, Yogyakarta, Indonesia

E-mail: mafukhah.rizki@ugm.ac.id

Abstract. Rice is a semi-aquatic plant and grown under anaerobic condition as long as water is available. Nowadays, water scarcity and climate change issues need to address with new technology to increase water use efficiency in rice production. In the other hand, rice varieties must be able to adapt climate change in the future, especially drought even during rice growth periods. A shallow water depth irrigation, as a strategy to reduce water use might influence the rice growth development. The aim of this study was to characterize the leaf area index development of three different rice varieties grown in continuous flooding and shallow water depth irrigation. Pot experiments were conducted in Yogyakarta, Indonesia with three different rice varieties, i.e Mutiara, IR 64, and Hitam, and cultivated with two different irrigation system namely shallow water depth (SWD) and continuous flooding (CF). Leaf Area Index (LAI) was measured every 10 days and polynomial equation was used to describe LAI development during plant growth. Analysis of variance (ANOVA) was performed using Ms. Excel to determine significant differences between treatments (p < 0.05). Pearson correlation coefficient (R) was used to evaluate the performance of mathematical model. Leaf Area Index (LAI) under shallow water depth irrigation in different rice varieties were not significantly different compare to continuous flooding irrigation. LAI development in different treatment were described by polynomial equation, with various correlation value, ranged between 0.46 – 0.88. IR64 variety under control irrigation resulted lowest R (0.46), indicated that prediction value from observation data was not strongly correlated. However, other treatments showed strong relationship between prediction and observation data.

1. Introduction
Rice as a staple food in Indonesia is a semi-aquatic plant and grown under submerged condition when water is available. Traditional farmer in Indonesia normally use continuous flooding with chemical fertilizer for their rice cultivation. Nowadays, with increasing of water scarcity and environmental issues due to high input of chemical in agricultural field, it is necessary to improve and optimize of water and fertilizer managements for rice cultivation. Therefore, various water saving irrigation techniques have been developed in different countries to maintain acceptable rice yields [1–3]. Saturated soil culture or shallow water depth (SWD) is an emerging technology by irrigating to about 1 cm water depth a day to enhance water use efficiency under rice production [4,5].
In previous study, rice cultivation under SWD framework with alternations of aerobic and anaerobic condition during rice plant growth was greater than continuous flooding. Rice yields under SWD also higher than conventional [6]. Compared to continuous flooding irrigation, SWD provides a different growth environment. Alternation between aerobic and anaerobic condition resulted favorable soil redox potential (Eh) in the rhizosphere to support rice plant growth [6,7]. Moreover, [1] also reported that water use efficiency of rice was increased under SWD.

Although SWD irrigation and alternate wetting and drying culture was resulted positive impact on rice cultivation as mention above, studies on rice physiology in different rice varieties under SWD and alternate wetting and drying culture have been scarcely reported, especially in Indonesia. Different irrigation technique in rice cultivation will give different effect on rice physiology. Leaf is the main organ of plant and responsible to plant photosynthesis. Development of leaf area described light interception, which could affect photosynthetic rates. Besides providing indication of photosynthetic, leaf area also was an indicator to understand plant responses in different environmental condition [8]. This research was aimed to characterize the leaf area index development of three different rice varieties grown in continuous flooding and shallow water depth irrigation.

2. Materials and Methods
2.1. Experimental site
Pot experiment was carried out in the screen house of Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta, Indonesia (latitude: 7º46'05,0" S, longitude: 110º22'48,1" E) with altitude 139 m above sea level in dry season (April to July 2018). This area has tropical monsoon climate with average temperature during experiment ranged from 26.75 – 27.76°C, relative humidity was 72.96 – 79.22 %, wind velocity 0.87 – 0.97 m/s, and solar intensity 155.4 – 174.38 lux.

2.2. Experimental design
This study was laid out in a randomized block design with three replications. Local rice varieties (Hitam and Mutiara) and IR 64 variety were grown in pot experiments with diameter 30 cm. Two different irrigation regimes, shallow water depth (SWD) and continuous flooding (CF) were conducted during plant growth. CF was conducted as control treatment followed local farmer cultivation system. Soil for pot experiment was taken from rice field near Yogyakarta, Indonesia with depth 0-30 cm. The soil was clay (32% sand, 25% silt, and 43%clay) with bulk density (BD) was 1.36 gr/cc, specific gravity (SG) was 2.57, C-organic was 2.65 %, N-total 0.11 %, and P$_2$O$_5$ was 45 ppm. Soil was homogenized in the pot before transplanting.

Rice was planted with young seedling (12 days after nursery) and one seed for every pot followed System of Rice Intensification (SRI) framework. Irrigation was added every day to maintain water depth in the pot experiment. SWD was 1 cm during vegetative phase and 5 cm during generative phase. Further, CF was 5 cm during vegetative and generative phase. In this study, fertilizer application was similar both in SWD and CF treatments. Organic fertilizer as basal fertilizer (2 ton/ha), which equivalent to 200 gr/pot applied a week before transplanting. Organic fertilizer was compost from manure. For additional fertilizer, also used organic fertilizer with 1 ton/ha or equivalent to 100 gr/pot applied 30 days after transplanting.

2.3. Properties measurements
Leaf area index (Eq. 1) was determined by measuring leaf area of rice plant, by planimeter

\[
\text{LAI} = \frac{\text{Leaf area}}{\text{Total shaded area}}
\]

(1)

Mathematical model was developed to describe plant growth phenomena. In this study, polynomial equation (Eq. 2) was used to describe LAI development in different treatment. This equation provides a tool for understanding the characteristic of rice plant growth in various locations and treatments.
\[W = \exp(a_0 + a_1 t + a_2 t^2 + a_3 t^3 + \ldots) \]
(2)

Where \(W \) is the growth function at time \(t \) and \(a \) is parameter.

2.4. Statistical analysis
Analysis of variance (ANOVA) was performed using Ms. Excel to determine significant differences between treatments (\(p < 0.05 \)). Pearson correlation coefficient (R) was used to evaluate the performance of mathematical model.

3. Results and discussion
3.1. Leaf area index development in different rice varieties and irrigation management
In this study, we found that leaf area index (LAI) was varied among treatment. The LAI showed an increasing trend from initial growth stage up to 60 DAP (vegetative phase) and afterwards it showed a decreasing trend up to final stage. The effect of irrigation treatments on LAI in different rice varieties was consistent over the crop growth stages. Generally, IR-64 variety was significantly having lower LAI (0 – 1) than Hitam and Mutiara varieties (0 – 2.5), both under SWD and CF irrigation (Fig 1, 2, and 3). Different rice varieties might respond differently to different irrigation water level both physiological and biochemical behavior [9].

Mutiara variety under CF irrigation tend to be higher than SWD irrigation (\(p<0.05 \)) (Fig 1). Maximum value of LAI was achieved at vegetative phase (40 – 60 DAP), where CF was 2.63 and SWD was 1.97. Moreover, LAI of Hitam variety was comparable between SWD and CF (\(p>0.05 \)) (Fig 2). In the other hand, IR-64 resulted different trend where LAI under SWD was higher than CF irrigation (Fig 3).

LAI was an indicator that reflects biochemical and physiological processes of plants. This study described that different varieties of rice showed different behavior as an impact of irrigation treatment. Furthermore, all rice varieties could adapt both in SWD irrigation and CF irrigation. SWD irrigation has a positive impact for water saving. Previous study by [10] [11] found that alternate moderate wetting and drying irrigation (AMWD) regime was helped to save water irrigation about 16% to 28.8% compared to continuous flooding (CI) regime. This water saving was mainly due to differences in the vegetative stage treatments.

![Figure 1. Leaf Area Index (LAI) development of Mutiara variety under shallow water depth and continuous flooding irrigation](image-url)
3.2. Mathematical model of leaf area index in different rice varieties and irrigation management

Polynomial equation analysis was used to predict leaf area index (LAI) in different rice varieties under SWD and CF irrigation (Fig 4, 5, and 6). The polynomial functions were carried from time variables that showed varied result of correlation, ranged from 0.46 to 0.88.

Mutiara variety under SWD and CF irrigation resulted high correlation between observed and predicted model (0.88 and 0.80 respectively) as shown in Fig 4. Hitam variety also shown high correlation (0.81 and 0.86 respectively for SWD and CF). Moreover, IR-64 resulted lowest correlation (0.73 and 0.46 respectively for SWD and CF). Present study resulted that polynomial equation was not proper to describe LAI development of IR-64 variety under CF irrigation.

[12] reported that in the polynomial model, growth function follows a smooth curve, potentially of great complexity. This model can be fit in a linear model framework. However, polynomial model tends
to make false upward or downward prediction, especially at the extremes data. For more precise modeling, environmental factors as well as growth factor should be included in the model.

Figure 4. Observed and predicted LAI of Mutiara variety under shallow water depth (a) and continuous flooding (b) irrigation

Figure 5. Observed and predicted LAI in Hitam variety under shallow water depth (a) and continuous flooding (b) irrigation
4. Conclusion

In this study, IR-64 variety was significantly having lower LAI (0 – 1) than Hitam and Mutiara varieties (0 – 2.5), both under SWD and CF irrigation. Mutiara variety under CF irrigation tend to be higher than SWD irrigation (p<0.05). Maximum value of LAI was achieved at vegetative phase (40 – 60 DAP), where CF was 2.63 and SWD was 1.97. Moreover, LAI of Hitam variety was comparable between SWD and CF (p>0.05). In the other hand, IR-64 resulted different trend where LAI under SWD was higher than CF irrigation.

The polynomial functions were carried from time variables that showed varied result of correlation, ranged from 0.46 to 0.88. Mutiara variety under SWD and CF irrigation resulted high correlation between observed and predicted model (0.88 and 0.80 respectively). Hitam variety also shown high correlation (0.81 and 0.86 respectively for SWD and CF). Moreover, IR-64 resulted lowest correlation (0.73 and 0.46 respectively for SWD and CF). Present study resulted that polynomial equation was not proper to describe LAI development of IR-64 variety under CF irrigation. For more precise modeling, environmental factors as well as growth factor should be included in the model.

Acknowledgements

This study was performed within the frame of the “Hibah Rekognisi Tugas Akhir Universitas Gadjah Mada (UGM)” and supported by Faculty of Agricultural Technology UGM. Moreover, we thank to Aji Herman Saputra for his support during our research. Also, for Dr. Ngadisih and Dr. Murtiningrum for their kindly advises for research and manuscript.

References

[1] Bouman B A M, Lampayan R M and Tuong T P 2007 Water Management in Irrigated Rice: Coping with Water Scarcity
[2] Howell K R, Shrestha P and Dodd I C 2015 Alternate wetting and drying irrigation maintained rice yields despite half the irrigation volume, but is currently unlikely to be adopted by smallholder lowland rice farmers in Nepal Food Energy Secur. 4 144–57
[3] Young M D 2014 Designing water abstraction regimes for an ever-changing and ever-varying
future Agric. Water Manag. 145 32–8
[4] Tuong, T. P., and Bouman B A M 2003 Rice production in water scarce environments. In Water Productivity in Agriculture: Limits and Opportunities for Improvement CAB↑I Publ. Wallingford, UK. 53–67
[5] Kato Y and Okami M 2010 Root growth dynamics and stomatal behaviour of rice (Oryza sativa L.) grown under aerobic and flooded conditions F. Crop. Res. 117 9–17
[6] Maftukhah R, Erni R, Benito H P, Sri R and Sigit S A 2015 Shallow Water Depth Management to Enhance Rice Performances under System of Rice Intensification (SRI) Framework J. Irrig. 10 41–8
[7] Lin X, Zhu D and Lin X 2011 Effects of water management and organic fertilization with SRI crop practices on hybrid rice performance and rhizosphere dynamics Paddy Water Environ. 9 33–9
[8] da Silva R T L, de Souza L C, Nishijima T, Fronza D, Moreira W K O, de Oliveira Neto C F, da Conceição H E O, Monfort L E F, de Oliveira Lucas F and Okumura R S 2015 Mathematical model to estimate leaf area of guava (Psidium guajava) J. Food, Agric. Environ. 13 101–6
[9] Kumar A, Nayak A K, Das B S, Panigrahi N, Dasgupta P, Mohanty S, Kumar U, Panneerselvam P and Pathak H 2019 Effects of water deficit stress on agronomic and physiological responses of rice and greenhouse gas emission from rice soil under elevated atmospheric CO2 Sci. Total Environ. 650 2032–50
[10] Li Z, Li Z, Letuma P, Zhao H, Zhang Z, Lin W, Chen H and Lin W 2018 A positive response of rice rhizosphere to alternate moderate wetting and drying irrigation at grain filling stage Agric. Water Manag. 207 26–36
[11] Thakur A K, Mandal K G, Mohanty R K and Ambast S K 2018 Rice root growth, photosynthesis, yield and water productivity improvements through modifying cultivation practices and water management Agric. Water Manag. 206 67–77
[12] Paine C E T, Marthews T R, Vogt D R, Purves D, Rees M, Hector A and Turnbull L A 2012 How to fit nonlinear plant growth models and calculate growth rates: an update for ecologists 245–56