Physical activity and risk of colon adenoma: A meta-analysis

Kathleen Yaus Wolin
Washington University School of Medicine in St. Louis

Yan Yan
Washington University School of Medicine in St. Louis

Graham A. Colditz
Washington University School of Medicine in St. Louis

Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs

Recommended Citation

Wolin, Kathleen Yaus; Yan, Yan; and Colditz, Graham A., "Physical activity and risk of colon adenoma: A meta-analysis." British Journal of Cancer. 104,5. 882-885. (2011).
https://digitalcommons.wustl.edu/open_access_pubs/4047

This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact vanam@wustl.edu.
Physical activity and risk of colon adenoma: a meta-analysis

KY Wolin*,1, Y Yan1 and GA Colditz1
1Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine in St Louis and Alvin J Siteman Cancer Center, 660 S Euclid Avenue, Box 8100, St Louis, MO 63110, USA

BACKGROUND: Little evidence is available on the relation of physical activity with colon adenomas, a colon cancer precursor.

METHODS: We conducted a systematic literature review and meta-analysis of published studies (in English) through April 2010, examining physical activity or exercise and risk or prevalence of colon adenoma or polyp. Random effects models were used to estimate relative risks (RRs) and corresponding confidence intervals (CIs). A total of 20 studies were identified that examined the association and provided RRs and corresponding 95% CIs.

RESULTS: A significant inverse association between physical activity and colon adenomas was found with an overall RR of 0.84 (CI: 0.77–0.92). The association was similar in men (RR = 0.81, CI: 0.67–0.98) and women (RR = 0.87, CI: 0.74–1.02). The association appeared slightly stronger in large/advanced polyps (RR = 0.70, CI: 0.56–0.88).

CONCLUSION: This study confirms previous reports of a significant inverse association of physical activity and colon adenoma, and suggests that physical activity can have an important role in colon cancer prevention.

British Journal of Cancer (2011) 104, 882–885. doi:10.1038/sj.bjc.6606045 www.bjcancer.com
Published online 8 February 2011
© 2011 Cancer Research UK

Keywords: physical activity; colon adenoma; colon polyp

MATERIALS AND METHODS

We searched the literature using PubMed, CINAHL and Scopus for all studies on physical activity or exercise and colon polyps through April 2010. We employed the terms exercise and physical activity in combination with colon polyps using the terms colon polyp, colon adenoma, colorectal polyp, colorectal adenoma and adenomatous polyp. We also utilised a previous review of the data (Samad et al, 2005; Lee and Oguma, 2006; World Cancer Research Fund/American Institute for Cancer Research, 2007a) and manual searches of the reference lists of identified manuscripts. We included recurrent, incident and prevalent cases of colon polyps. We did not limit studies by type of physical activity or study sample demographics.

Our search yielded 89 potential articles. We excluded reviews, non-human studies, editorials/comments/letters to the editor, studies without colon polyps as an outcome, studies where physical activity was only included as a covariate (and thus no measure of association was presented), and where no metric for effect estimate precision (P-value, s.e., confidence interval (CI)) was provided. Combined with searches from the reference sections of manuscripts and previous reviews, this yielded 20 manuscripts. From each manuscript, we abstracted the sample size (including number of cases), gender, years of follow-up or type of control sample, case definition, physical activity domain, adenoma detection method, sample definition criteria and results. We also abstracted the variables that each study used in its most adjusted analysis. Data extraction was performed by a single investigator (KYW). Where studies included more than one type of physical activity without a summary measure, we included only leisure time physical activity, which is the major modifiable component of energy.
Previous meta-analyses have suggested that results for adenomatous polyps need to be presented separately from hyperplastic or malignant polyps. (Botteri et al., 2008) Although we did not restrict our analysis to studies where data was limited to adenomatous polyps, we did consider those results separately. Specifically, we excluded results for hyperplastic polyps where feasible. We also identified studies considered to be the ‘best approach’ using criteria similar to those used in a previous meta-analysis (Botteri et al., 2008), namely, studies that met all of the following: (1) limited the outcome to only adenomatous polyps; (2) all individuals received a full colonoscopy; and (3) the study population excluded anyone with inherited colorectal cancer syndromes, inflammatory bowel disease, a history of colon polyps or cancer, or a previous colon resection.

Data analysis

Meta-analysis of random effects was used to allow for the heterogeneity of results across studies. (Mosteller and Colditz, 1996) Data were processed in SAS, and the analyses were performed using R-package ‘meta’ (SAS Institute Inc., Cary, NC, USA). A summary forest plot was generated in Stata (StataCorp LP, College Station, TX, USA). As most studies reported RRs or odds ratios (ORs) and their associated 95 percent CIs, we used these data as summary statistics for each study. First, we derived the s.e. of log (RR or OR) using the 95 percent CI, with the expression: (log (upper limit) – log (lower limit))/2*1.96. These s.es were used as weights for summary effect estimates in the meta-analysis. We visually examined publication bias using Funnel plots, and employed the rank correlation method to formally test for bias. (Begg and Mazumdar, 1994) Where studies reported results separately for men and women, we included both estimates when reporting the overall association. To evaluate the potential effects of limiting results to only adenomatous polyps, we conducted exploratory analysis in the subset of those studies. We also included results separately for large/advanced adenomas, if the data were presented as such in the original manuscript. We also conducted exploratory analyses limited to those studies defined as the ‘best approach’. To test sub-analysis differences (large vs all adenomas; best approach vs all studies), we partitioned ‘total heterogeneity’ into between-group and within-group heterogeneity, and used the ‘between-group’ heterogeneity index as the test statistic against χ^2 distribution with 1 degree of freedom. (Cooper and Hedges, 1994).

Results

We identified 20 studies of physical activity and colon adenomas (Table 1). (Kono et al., 1991, 1999; Little et al., 1993; Shinchi et al., 1994; Giovannucci et al., 1995, 1996; Sandler et al., 1995; Neugut et al., 1996; Enger et al., 1997; Lubin et al., 1997; Kahn et al., 1998; Enger et al., 1999, 2001; Lieberman et al., 2000; Tiemersma et al., 2001; Hauret et al., 2004; Wallace et al., 2005; Larsen et al., 2006; Rosenberg et al., 2006; Hermann et al., 2009) Most collected physical activity information via questionnaire, with nine studies only collecting information on leisure activity. Studies often did not specify or query the reasons participants underwent colonoscopy or sigmoidoscopy, thus, cases included are all adenomas; best approach vs all studies.

Author and Year	Gender	Number of studies	Number of Cases	Relative Risk	Lower Confidence Interval	Upper Confidence Interval	Type of Physical Activity	Case definition	Non-case/comparison definition
Kono et al., 1991	Both	1148	80	0.44	0.22	0.87	Leisure	Adenoma	None
Little et al., 1993	Both	300	147	0.46	0.17	1.29	Leisure	Adenoma	FOBt negative
Shinchi et al., 1994	Both	1712	228	1.2	0.8	2	Leisure	Adenoma	None
Giovannucci et al., 1995	Men	12,879	455	0.79	0.57	1.09	Leisure	Distal Adenoma	No polyp
Sandler, 1995	Men	234	86	0.92	0.36	2.31	Leisure	Hyperplastic/none	Hyperplastic/none
Sandler, 1995	Women	350	114	0.64	0.35	1.19	Leisure	Distal Adenoma	None
Giovannucci et al., 1996	Women	1,057	330	0.58	0.4	0.86	Leisure	Distal Adenoma	None
Neugut, 1996	Men	400	225	0.6	0.4	1	Total	Adenoma	None
Neugut, 1996	Women	411	283	1.3	0.7	2.3	Total	Adenoma	None
Enger et al., 1997	Both	920	460	1	0.7	1.5	Total	Adenoma	None
Lubin et al., 1997	Both	392	196	0.6	0.3	0.9	Total	Large/advanced Adenoma	Hyperplastic/None
Kahn et al., 1998	Men	72,686	7504	0.83	0.76	0.91	Total	All polyps	None
Kahn et al., 1998	Women	81,356	5,111	0.9	0.78	1.03	Total	All polyps	None
Kono et al., 1999	Both	415	189	0.6	0.3	1.3	Leisure	Adenoma	Normal
Bourtou-Ruault et al., 2001	Both	581	154	1.3	0.7	2.5	Total	Small adenoma	None
Bourtou-Ruault et al., 2001	Both	635	208	0.8	0.4	1.5	Total	Large/advanced adenoma	None
Colbert et al., 2002	Both	1,839	733	1.2	0.9	1.6	Total	Adenoma or cancer	None
Lieberman et al., 2003	Both	2,082	312	0.94	0.86	1.02	Total	Large/advanced adenoma	None
Tiemersma et al., 2003	Women	471	196	1.05	0.72	1.54	Total	Not specified	Adenoma
Tiemersma et al., 2003	Men	398	237	0.69	0.43	1.1	Total	Not specified	Adenoma
Hauret et al., 2004	Both	405	177	0.63	0.34	1.17	Total	Adenoma	Hyperplastic/none
Wallace et al., 2005	Men	787	539	0.35	0.17	0.72	Total	Large/advanced adenoma	None
Wallace et al., 2005	Women	787	205	1.21	0.36	4.03	Total	Large/advanced adenoma	None
Larsen et al., 2006	Both	3696	426	0.96	0.74	1.25	Total	Low risk adenoma	None
Larsen et al., 2006	Both	3376	106	0.56	0.34	0.92	Total	Large/advanced adenoma	None
Rosenberg et al., 2006	Women	45,400	1,390	0.72	0.57	0.91	Leisure	All polyps	None
Hermann et al., 2009	Both	45,100	1,02	0.74	1.42	Total	Adenoma	None	

Abbreviation: FOBt = Fecal occult blood test.
Colbert et al., 2002; Lieberman et al., 2003; Wallace et al., 2005; Larsen et al., 2006) reported results separately for large or advanced adenomas.

We found significant heterogeneity in the results ($P<0.01$) and thus, focus our report on the random effects analysis (Figure 1). Overall, there was a significant inverse association between physical activity and colon polyps (fixed effect $RR = 0.87$, 95% CI: 0.83–0.91; random effects $RR = 0.84$, 95% CI: 0.77–0.92) when comparing the most to least active individuals in each study. The summary RR was significant and similar in men ($RR = 0.81$, 95% CI: 0.67–0.98) and women ($RR = 0.87$, 95% CI: 0.74–1.02).

There was a tendency for the effect of physical activity to be restricted to large or advanced adenomas and not low grade ones. Similarly, physical activity was associated with large (>1 cm) (RR = 0.63, 95% CI: 0.36–1.10), but not with small adenomas in a sample of US male health professionals (Giovannucci et al., 1995). In a cohort of US female nurses, a significant overall risk reduction (RR = 0.58, 95% CI: 0.40–0.86) was reported, which was also stronger for larger than smaller adenomas (Giovannucci et al., 1996). Our meta-analysis found the effect was stronger, though not significantly so ($P = 0.16$), for large or advanced (RR = 0.70, 95% CI: 0.56–0.88) adenomas than for the overall effect. In analyses limited to the 18 studies where results for adenomatous polyps were separated from all polyps (i.e., hyperplastic, malignant polyps), the meta-analysis estimate for the association between physical activity and risk of polyps was largely unchanged ($RR = 0.83$, 95% CI: 0.73–0.93). In analysis limited to the six studies(Kono et al., 1991; Sandler et al., 1995; Colbert et al., 2002; Lieberman et al., 2003; Tiemersma et al., 2003: not specified; Hauret et al., 2004: > 40 MET h per wk vs < 17.1 MET h per wk; Wallace et al., 2005: high vs low tertile; Larsen et al., 2006: high vs low quartile; Rosenberg et al., 2006: > 40 MET h per wk vs none; Hermann et al., 2009: active vs inactive). ES = effect size; MET = metabolic equivalent.

Figure 1 Meta-analysis of physical activity and colon adenoma. Study physical activity level comparisons are as follows: Kono et al., 1991: ≥ 120 vs 0 min per week; Little et al., 1993: ≥ 30 min vs none; Shinchi et al., 1994: daily vs none; Giovannucci et al., 1995: highest vs lowest quintile; Sandler, 1995: highest vs lowest quartile; Giovannucci et al., 1996: highest vs lowest quintile; Neugut et al., 1996: any vs none; Neugut et al., 1996: > 5.5 h per day vs < 4 h per day; Enger et al., 1997: highest vs lowest quartile; Kahn et al., 1998: high vs low; Kono et al., 1999: high vs low; Colbert et al., 2001: high vs low; Colbert et al., 2002: high vs low quartile; Lieberman et al., 2003: per 5 unit change in physical activity index; Tiemersma et al., 2003: not specified; Hauret et al., 2004: > 40 MET h per wk vs < 17.1 MET h per wk; Wallace et al., 2005: high vs low tertile; Larsen et al., 2006: high vs low quartile; Rosenberg et al., 2006: > 40 MET h per wk vs none; Hermann et al., 2009: active vs inactive. ES = effect size; MET = metabolic equivalent.

DISCUSSION

Previous, though limited, reviews have indicated physical activity is associated with a significant reduction in colon polyp risk. (World Cancer Research Fund/American Institute for Cancer Research, 2007a) Our comprehensive meta-analysis supports this conclusion, showing a significant 16% risk reduction when comparing the most to the least active. Risk reductions were similar for men and women, and held when limited to studies designated as the best approach. We found the association was notably stronger when analyses were limited to advanced or large polyps, with a risk reduction of 35%.
These results support the previously documented role of physical activity in colon cancer prevention (International Agency for Research on Cancer WHO, 2002; World Cancer Research Fund/American Institute for Cancer Research, 2007a and 2007b; Wolin et al, 2009). Earlier reports that failed to find an association between physical activity and colon polyps had suggested that physical activity may be more important in the adenoma to carcinoma sequence than in adenoma development (Colbert et al, 2002). Our meta-analysis, combined with the above-mentioned data demonstrating physical activity’s role in colon cancer prevention, suggests that physical activity has a role across the carcinogenic process. Several mechanisms have been proposed for such effects, including enhanced immune function, decreased inflammation, reduced insulin levels and insulin resistance, and higher vitamin D levels (Wolin et al, 2009). Hyperinsulinemia has also been directly related to colon polyp risk (Wei et al, 2006).

This comprehensive meta-analysis provides support for an inverse association between physical activity and colon polyps, and also for the role of physical activity in colon cancer carcinogenesis. Physical activity may reduce the risk of colon polyps by 15% and may provide a substantially larger reduction in risk of large and advanced polyps.

ACKNOWLEDGEMENTS

GAC is supported by an American Cancer Society Clinical Research Professorship. KYW, GAC and YY are supported by CA091842.

REFERENCES

Begg CB, Mazumdar M (1994) Operating characteristics of a rank correlation test for publication bias. Biometrics 50: 1088 – 1101

Botteri E, Iodice S, Raimondi S, Maisonneuve P, Lowenfels AB (2008) Cigarette smoking and adenomatous polyps: a meta-analysis. Gastroenterology 134: 388 – 395

Boutron-Ruault MC, Senesse P, Meance S, Belghiti C, Fairev J (2001) Energy intake, body mass index, physical activity, and the colorectal adenoma-carcinoma sequence. Nutr Cancer 39: 50 – 57

Colbert LH, Lanza E, Ballard-Barbash R, Slattery ML, Tangrea JA, Caan B, Paskett ED, Iber F, Kikendall W, Lance P, Shike M, Schoen RE, Daston G, Schatzkin A (2002) Adenomatous polyp recurrence and physical activity in the Polyp Prevention Trial (United States). Cancer Causes Control 13: 445 – 453

Cooper H, Hedges LV (1994) The Handbook of Research Synthesis: Part VI: Statistically Analyzing Effect Size. Newbury Park, CA: Russell Sage Foundation

Enger SM, Longnecker MP, Lee ER, Frankl HD, Haile RW (1997) Recent past and present physical activity and prevalence of colorectal adenomas. Br J Cancer 75: 740 – 745

Giovannucci E, Ascherio A, Rimm EB, Colditz GA, Stampfer MJ, Willett WC (1995) Physical activity, obesity, and risk for colon cancer and adenoma in men. Ann Intern Med 122: 327 – 334

Giovannucci E, Colditz GA, Stampfer MJ, Willett WC (1996) Physical activity, obesity, and risk of colorectal adenoma in women (United States). Cancer Causes Control 7: 253 – 263

Hauret KG, Bostick RM, Matthews CE, Hussey JR, Fina MF, Geisinger KR, Colbert LH, Lanza E, Ballard-Barbash R, Slattery ML, Tangrea JA, Caan B, Paskett ED, Iber F, Kikendall W, Lance P, Shike M, Schoen RE, Daston G, Schatzkin A (2002) Adenomatous polyp recurrence and physical activity in the Polyp Prevention Trial (United States). Cancer Causes Control 13: 445 – 453

Cooper H, Hedges LV (1994) The Handbook of Research Synthesis: Part VI: Statistically Analyzing Effect Size. Newbury Park, CA: Russell Sage Foundation

Enger SM, Longnecker MP, Lee ER, Frankl HD, Haile RW (1997) Recent past and present physical activity and prevalence of colorectal adenomas. Br J Cancer 75: 740 – 745

Giovannucci E, Ascherio A, Rimm EB, Colditz GA, Stampfer MJ, Willett WC (1995) Physical activity, obesity, and risk for colon cancer and adenoma in men. Ann Intern Med 122: 327 – 334

Giovannucci E, Colditz GA, Stampfer MJ, Willett WC (1996) Physical activity, obesity, and risk of colorectal adenoma in women (United States). Cancer Causes Control 7: 253 – 263

Hauret KG, Bostick RM, Matthews CE, Hussey JR, Fina MF, Geisinger KR, Roufail WM (2004) Physical activity and reduced risk of incident sporadic colorectal adenomas: observational support for mechanisms involving energy balance and inflammation modulation. Am J Epidemiol 159: 983 – 992

Herrmann S, Rohrmann S, Linseisen J (2009) Lifestyle factors, obesity and the risk of colorectal adenomas in EPIC-Heidelberg. Cancer Causes Control 20: 1397 – 1408

International Agency for Research on Cancer WHO (2002) IARC Handbooks of Cancer Prevention: Weight Control and Physical Activity, Volume 6. International Agency for Research on Cancer: Lyon, France

Kahn HS, Tatham LM, Thun MJ, Heath Jr CW (1998) Risk factors for self-reported colon polyps. J Gen Intern Med 13: 303 – 310

Kono S, Handa K, Hayabuchi H, Kiyohara C, Inoue H, Marugame T, Shinoiyma S, Hamada H, Onuma K, Koga H (1999) Obesity, weight gain and risk of colon adenomas in Japanese men. Jpn J Cancer Res 90: 805 – 811

Kono S, Shinich K, Ikeda N, Yanai F, Imanishi K (1991) Physical activity, dietary habits and adenomatous polyps of the sigmoid colon: a study of self-defense officials in Japan. J Clin Epidemiol 44: 1255 – 1261

Larsen IK, Grotmol T, Almendingen K, Hoff G (2006) Lifestyle as a predictor for colonic neoplasm in asymptomatic individuals. BMC Gastroenterol 6: 5

Lee IM, Oguma Y (2006) Physical activity. In Cancer Epidemiology and Prevention, Third Edition, Schottenfeld D, Fraumeni JF, Jr (eds). pp 449 – 467. Oxford University Press: New York

Lieberman DA, Prindiville S, Weiss DG, Willett W (2003) Risk factors for advanced colonic neoplasia and hyperplastic polyps in asymptomatic individuals. JAMA 290: 2959 – 2967

Little J, Logan RF, Hawtin PG, Hardcastle JD, Turner ID (1993) Colorectal adenomas and energy intake, body size and physical activity: a case-control study of subjects participating in the Nottingham faecal occult blood screening programme. Br J Cancer 67: 172 – 176

Lubin F, Rozen P, Arbeli B, Farbstein M, Knaani Y, Bat L, Farbstein H (1997) Nutritional and lifestyle habits and water-fiber interaction in colorectal adenoma etiology. Cancer Epidemiol Biomarkers Prev 6: 79 – 85

Mosteller F, Colditz GA (1996) Understanding research synthesis (meta-analysis). Annu Rev Public Health 17: 1 – 23

Neugut AI, Terry MB, Hocking G, Mosla, Garbowsk GC, Forde KA, Treat MR, Waye J (1996) Leisure and occupational physical activity and risk of colorectal adenomatous polyps. Int J Canc 68: 744 – 748

Rosenberg L, Boggs D, Wise LA, Palmer JR, Roltsch MH, Makambi KH, Adams-Campbell LL (2006) A follow-up study of physical activity and incidence of colorectal adenomas in African-American women. Cancer Epidemiol Biomarkers Prev 15: 1438 – 1442

Samad AK, Taylor RS, Marshall T, Chapman MA (2005) A meta-analysis of the association of physical activity with reduced risk of colorectal cancer. Colorectal Dis 7: 204 – 213

Sandler RS, Pritchard ML, Bangdiwala SI (1995) Physical activity and the risk of colorectal adenomas. Epidemiology 6: 602 – 606

Shinchi K, Kono S, Honjo S, Todoroki I, Sakurai Y, Imanishi K, Nishikawa H, Ogawa S, Katsurada M, Hirohata T (1994) Obesity and adenomatous polyps of the sigmoid colon. Jpn J Cancer Res 85: 479 – 484

Tiemersma EW, Wark PA, Ocke MC, Bunschoten A, Otten MH, Kok FJ, Kampman E (2003) Alcohol consumption, alcohol dehydrogenase 3 polymorphism, and colorectal adenomas. Cancer Epidemiol Biomarkers Prev 12: 419 – 425

Wallace K, Baron JA, Karagas MR, Cole BF, Byers T, Beach MA, Pearl HS, Burke CA, Silverman WB, Sandler RS (2005) The association of physical activity and body mass index with the risk of large bowel polyps. Cancer Epidemiol Biomarkers Prev 14: 2082 – 2086

Wei EK, Colditz GA, Giovannucci EL, Fuchs CS, Rosner BA (2009) Cumulative risk of colon cancer up to age 70 years by risk factor status using data from the Nurses’ Health Study. Am J Epidemiol 170: 863 – 872

Wei EK, Ma J, Pollak MN, Rifai N, Fuchs CS, Hankinson SE, Giovannucci E (2006) C-peptide, insulin-like growth factor binding protein-1, glyco-sylated hemoglobin, and the risk of distal colorectal adenoma in women. Cancer Epidemiol Biomarkers Prev 15: 750 – 755

Wolin KY, Yan Y, Colditz GA, Lee IM (2009) Physical activity and colon cancer prevention: a meta-analysis. Br J Cancer 100: 611 – 616

World Cancer Research Fund/American Institute for Cancer Research (2007a) The associations between food, nutrition and physical activity and the risk of colorectal polyps and underlying mechanisms. In Food, Nutrition, Physical Activity and the Prevention of Cancer: a Global Perspective- Systematic Literature Review – Support Resource, World Cancer Research Fund/American Institute for Cancer Research (ed). AICR: Washington, DC

World Cancer Research Fund/American Institute for Cancer Research (2007b) Food, Nutrition, Physical Activity and the Prevention of Cancer: a Global Perspective. AICR: Washington DC