Trial watch

Peptide vaccines in cancer therapy

Erika Vacchelli,1,2,3† Isabelle Martins,1,2,3† Alexander Eggermont,2 Wolf Hervé Fridman,4,5,6,7 Jerome Galon,4,5,6,7,8 Catherine Sautès-Fridman,4,6,8 Eric Tartour,2,7,8 Laurence Zitvogel,2,7,9 Guido Kroemer1,4,6,7,11,‡, and Lorenzo Galluzzi1,4,‡,* and Lorenzo Galluzzi; 1Institut Gustave Roussy; Villejuif, France; 2Université Paris-Sud/Paris XI; Le Kremlin-Bicêtre, France; 3INSERM, U848; Villejuif, France; 4Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France; 5INSERM, U872; Paris, France; 6Centre de Recherche des Cordeliers; Paris, France; 7Pôle de Biologie; Hôpital Européen Georges Pompidou; AP-HP; Paris, France; 8Université Pierre et Marie Curie/Paris VI; Paris, France; 9INSERM, U970; Paris, France; 10INSERM, U1015; CICBT507; Villejuif, France; 11Metabolomics Platform; Institut Gustave Roussy; Villejuif, France

†These authors contributed equally to this work.

‡These authors share senior co-authorship.

Keywords: EGFR, MAGE-A3, NY-ESO-1, p53, RAS, WT1

Prophylactic vaccination constitutes one of the most prominent medical achievements of history. This concept was first demonstrated by the pioneer work of Edward Jenner, dating back to the late 1790s, after which an array of preparations that confer life-long protective immunity against several infectious agents has been developed. The ensuing implementation of nation-wide vaccination programs has de facto abated the incidence of dreadful diseases including rabies, typhoid, cholera and many others. Among all, the most impressive result of vaccination campaigns is surely represented by the eradication of natural smallpox infection, which was definitively certified by the WHO in 1980. The idea of employing vaccines as anticancer interventions was first theorized in the 1890s by Paul Ehrlich and William Coley. However, it soon became clear that while vaccination could be efficiently employed as a preventive measure against infectious agents, anticancer vaccines would have to (1) operate as therapeutic, rather than preventive, interventions (at least in the vast majority of settings), and (2) circumvent the fact that tumor cells often fail to elicit immune responses. During the past 30 years, along with the recognition that the immune system is not irresponsive to tumors (as it was initially thought) and that malignant cells express tumor-associated antigens whereby they can be discriminated from normal cells, considerable efforts have been dedicated to the development of anticancer vaccines. Some of these approaches, encompassing cell-based, DNA-based and purified component-based preparations, have already been shown to exert conspicuous anticancer effects in cohorts of patients affected by both hematological and solid malignancies. In this Trial Watch, we will summarize the results of recent clinical trials that have evaluated/are evaluating purified peptides or full-length proteins as therapeutic interventions against cancer.
Introduction

Jenner’s pioneering observations. Edward Anthony Jenner (1749–1823) was an English physician nowadays considered by many as the father of modern immunology. In the 1790s, Jenner, who beyond medicine cultivated various interests spanning from natural history to air balloons, was practicing as a family doctor and surgeon in Berkeley (Gloucestershire), the small town he was born in some 40 y earlier. In that period, Jenner was particularly intrigued by the observation that milkmaids were generally immune to smallpox, and he postulated that such a protection would be conferred by the pus contained in blisters that milkmaids developed along with cowpox (a disease similar to, yet much less virulent than, smallpox). In 1796, to test his hypothesis, Jenner inoculated 8 year old James Phipps with pus that he had scraped from the blisters of a cowpox-affected milkmaid. Sometimes later, Jenner challenged James Phipps with variolous material, i.e., material obtained from a smallpox pustule of a selected mild case (supposedly affected by the relatively less virulent Variola minor smallpox virus). The boy developed no signs of disease, nor did he after a further similar inoculation performed a few weeks later. Jenner pursued his investigations on additional 22 cases and then reported his findings to the Royal Society, which accepted to publish them only after consistent revisions. The term “vaccination” (from the Latin adjective “vaccinae,” which literally means “pertaining to cows, from cow”) was coined by Jenner himself for the technique he had devised to prevent smallpox, and only more than 50 years later it was attributed a more general meaning by the French microbiologist Louis Pasteur, another pioneer in the history of vaccination.

When Jenner first inoculated James Phipps, variolation, i.e., the inoculation of variolous material into healthy subjects as a prophylactic measure against smallpox, was a well known procedure (it had been imported in 1721 from Turkey by Lady Mary Wortley Montagu), yet was associated with a very high incidence of (often lethal) smallpox cases. Thus, Jenner was not the first to realize that a sublethal smallpox or cowpox infection can confer protection to subsequent, potentially lethal, challenges. Similarly, he was not the first who de facto inoculated cowpox-derived material as a prophylaxis against smallpox, since at least six investigators from the UK and Germany, including the farmer Benjamin Jesty, had done so (with variable success) earlier. Still, it is thanks to Jenner’s observations that the British government eventually banned variolation and decided to provide cowpox-based vaccination free of charge (but optional) nation-wide (Vaccination Act, 1840). This constituted the first large-scale vaccination campaign of history, paving the way to a series of similar measures taken worldwide and culminating with the eradication of natural smallpox sources, as first certified by a committee of experts in 1979 and confirmed by WHO one year later. Since then, the development of efficient vaccines and their widespread administration has strikingly abated the incidence of life-threatening infectious diseases including (but not limited to) rabies, typhoid, cholera, measles, plague, chickenpox, mumps, poliomyelitis and hepatitis B. Such an extraordinary medical achievement has been possible also thanks to the critical contribution of Pasteur, who in the last decades of the 19th century demonstrated for the first time that the rationale behind smallpox vaccination could be extended to several other infectious diseases.

Ehrlich and Coley’s hypotheses. The hypothesis that—similar to infectious diseases—cancer could be treated with active immunotherapy first arose nearly one century after Jenner’s investigations, along with the work of the German physician Paul Ehrlich and the American surgeon William Bradley Coley. On one hand, driven by the findings made a few years earlier by Pasteur, Ehrlich (who is best known for the vaccination-unrelated concept of a “magic bullet” that would specifically kill cancer cells while sparing their normal counterparts) attempted to generate immunity against cancer by injecting weakened tumor cells, with no success. On the other hand, inspired by multiple sporadic cases of cancer patients who underwent complete (and often long-lasting) regression following acute streptococcal fevers, Coley became convinced that he could efficiently use bacteria to cure tumors. To this aim, Coley developed a mixture of heat-killed Streptococcus pyogenes and Serratia marcescens bacteria (best known as the Coley toxin), which he began to test in cancer patients as early as in 1896. This preparation de facto operates as an adjuvant, facilitating the maturation of dendritic cells (DCs) via Toll-like receptor (TLR)-transduced signals, rather than as a bona fide tumor-specific vaccine. However, similar to other relatively unspecific immunotherapeutic approaches such as the administration of high-dose interleukin (IL)-2 to melanoma and renal cell carcinoma (RCC) patients, Coley’s toxin soon turned out to mediate potent antitumor effects. Of note, the use of the Coley toxin has been suspended in the early 1960s, owing to concerns following the thalidomide case (this antiemetic was withdrawn 11 years after its approval by FDA as it was found to be highly teratogenic, leading to more than 10,000 children born with deformities worldwide). Still, both Coley and Ehrlich represent true pioneers of modern oncoimmunology, theorizing concepts that have been disregarded for nearly one century and have received renovated interest only recently.

The “self/non-self” dichotomy and the “danger theory”. One of the major impediments against the rapid development of tumor immunology as a self-standing discipline directly stemmed from one of the most central concepts in immunology: the “self/non-self” dichotomy, as first theorized by the Australian virologist Sir Frank Macfarlane Burnet in 1949. This model has surely been instrumental for the understanding of phenomena that underpin graft rejection and several other disorders involving an immune component. However, it has also promoted the (incorrect) view that tumors, de facto being self tissues, must be non-immunogenic and (as a corollary) insensitive to immunotherapeutic interventions. The self/non-self model was first questioned in the late 1980s, when the cellular circuitries behind the activation of T cells, and notably the requirement for antigen presentation, began to be elucidated. A few years later, the American scientist Polly Matzinger proposed a revolutionary theory according to which the immune system would not simply react to non-self (while sparing self) constituents, but would rather respond to situations of danger, irrespective of their origin. The first
corollary of such a “danger theory” was that trauma, cancer and other conditions that had long been viewed as immunologically silent de facto are capable of activating the immune system, a notion that nowadays is widely accepted. Approximately in the same period, van der Bruggen and colleagues from the Ludwig Institute for Cancer Research (Brussels, Belgium) were the first to clone the gene coding for MZ2-E, a protein expressed by multiple distinct melanoma cell lines as well as by tumors of unrelated histological origin, but not by a panel of normal tissues. Moreover, cytotoxic T lymphocytes (CTLs) that specifically reacted against malignant cells in vitro were being found in patients affected by a variety of hematological and solid neoplasms. Thus, in line with by Polly Matzinger’s model, it appeared that the adult T-cell repertoire preserves the ability to react against self antigens, at least in specific circumstances.

Tumor-associated antigens. Nowadays, MZ2-E, best known as melanoma-associated antigen (MAGE)-A1, is considered as the “founder” of the large family of tumor-associated antigens (TAAs), i.e., antigens that, at least in some settings, are capable of eliciting a tumor-specific immune response manifesting with the expansion of TAA-specific CTLs. Unfortunately, TAA-directed immune responses are most often incapable of mediating sizeable antineoplastic effects, owing to multiple reasons (see below). Still, the findings by van der Bruggen and colleagues generated an intense wave of investigation worldwide, not only leading to the identification of dozens, if not hundreds, of additional TAAs, but also providing additional insights into the mechanisms whereby TAAs, in selected circumstances, are capable to break self-tolerance and elicit an immune response. So far, four distinct classes of TAAs have been described: (1) truly exogenous, non-self TAAs; (2) unique, mutated TAAs; (3) idiotypic TAAs and (4) shared TAAs.

Exogenous TAAs. Bona fide non-self TAAs are specifically expressed by neoplasms that develop as a result of (or concomitant with) viral infections. According to WHO, the viruses that are currently known to be associated with human malignancies are limited to the Epstein-Barr virus (EBV), which is linked to lymphomas and nasopharyngeal cancer, hepatitis B virus (HBV) and hepatitis C virus (HCV), both of which are associated with hepatocellular carcinoma, human papillomaviruses (HPV), in particular HPV-16 and HPV-18, which are associated with head and neck, cervical and anal carcinomas, human T lymphotropic virus Type 1 (HTLV-1) and Type 2 (HTLV-2), which are linked to adult T-cell leukemia and hairy-cell leukemia, respectively, and human herpesvirus 8 (HHV-8), which is associated with Kaposi’s sarcoma. The possibility to develop recombinant vaccines against these viruses has been extensively investigated in the last decade, and multiple clinical trials have been concluded with encouraging results.

In this context, a special mention goes to Cervarix® and Gardasil® , two multivalent, recombinant anti-HPV vaccines that have been approved by FDA in 2009 as preventive measures against HPV infection and the consequent development of cervical carcinoma. The success of Cervarix® and Gardasil® as compared with other vaccination strategies against viral cancers that have not yet moved from the bench to the bedside, depends—at least in part—on the fact that both these vaccines were developed as fully preventive measures, aimed at blocking de novo HPV infection, rather than as at therapeutic strategy against established cervical carcinoma. Indeed, both Cervarix® and Gardasil® induce high levels of neutralizing antibodies and result in the generation of HPV-specific long-lasting memory B cells, which efficiently prevent infection, yet are less efficient in promoting T-cell responses that may be beneficial for cervical carcinoma patients. In line with thin notion, official documents report that Cervarix® is not efficient against histopathological endpoints in HPV-infected women (source: http://www.fda.gov).

Idiotypic TAAs. One particular class of unique TAAs is constituted by idiotypic TAAs. Hematological malignancies arising from B cells that have functionally rearranged immunoglobulin (Ig)-coding genes are characterized by the cell surface expression of a clonal B-cell receptor (BCR). Such a BCR is de facto a self protein, yet contains a unique variable region that defines its specificity (idiotype), to which the immune system has never been exposed, and hence that is potentially immunogenic. In line with this notion, anti-idiotypic antibodies arise naturally in the course of humoral immune responses (when high levels of clonal lgs are produced by plasma cells), which they contribute to
terminate. In 1972, Lynch et al. were the first to demonstrate that peptides corresponding to idiotypic regions of the BCR exposed by myeloma cells are capable of eliciting an efficient immune response, de facto providing the rationale for the development of idiotypic anticancer vaccination. In practical terms, this can be achieved not only by injecting purified peptides that correspond to the idiotype expressed by malignant cells, but also by means of anti-idiotype antibodies. The latter constitute bona fide structural mimics of TAAs (which in this specific case—but not in many other settings—are represented by the idiotype), owing to the fact that antigens and the corresponding antibodies exhibit a consistent degree of complementarity. In general, anti-idiotype antibodies are advantageous as compared with purified peptides as they can be easily and cost-effectively produced in high amounts by immunizing laboratory animals with TAA-targeting antibodies. Irrespective of how they are elicited, anti-idiotype immune responses are patient- and tumor-specific, implying (1) that the development of idiotypic anticancer vaccines requires the precise characterization of neoplastic cells on a per patient basis, and (2) that the efficacy of this approach can be fully compromised by the arial of a new malignant cell clone as well as by processes of somatic (hyper)mutation, which normally affect the idiotype. Still, following the pioneer work by Lynch and colleagues, the fact that idiotypes constitute a meaningful target for the therapy of B-cell neoplasms has been validated in multiple preclinical and clinical settings.

Shared TAAs. Obviously, cancer cells express (and sometimes overexpress) a majority of self antigens, which they share with the normal tissue they originated from. According to the “self/non-self” theory, these antigens should not elicit an immune response, due to central and/or peripheral tolerance mechanisms that are in place to prevent autoimmune reactions. This prediction is actually inaccurate, as (1) both antibodies and CD8+ T cells recognizing shared TAAs (e.g., wild type epidermal growth factor receptor, EGFR and p53) appear to be enriched in the circulation of cancer patients as compared with healthy subjects; and (2) a consistent fraction of paraneoplastic syndromes derives from tumor-elicited autoimmune reactions targeting normal tissues. Thus, as postulated by the “danger theory,” self-shared TAAs are capable of eliciting an immune response, most likely because they are presented to the immune system in the context of appropriate activation signals. Such an immune response is frequently held in check by local immunosuppressive mechanisms (see below), and hence does not exert antitumor effects, yet it may be functional at distant sites, thus underlying life-threatening paraneoplastic syndromes. During the last two decades, great efforts have been dedicated at understanding whether and based on which strategies shared TAAs would constitute meaningful targets for the elicitation of antitumor immune responses. Promising results have been obtained in both preclinical and clinical models. Of note, although so-called “cancer-testis” antigens (CTAs) are expressed not only by a variety of malignant cells but also by germline cells, they are most often considered as unique, rather than shared, TAAs, mostly due to the fact that testes represent an immune privileged site and are de facto spared by most, if not all, autoimmune reactions.

Considerations on the development of anticancer vaccines. Along with the recognition that the immune system is not completely responsive to tumors (as it was initially thought to be) and that malignant cells express antigens that are capable of eliciting a tumor-specific immune response, great efforts have been dedicated to the development of anticancer vaccines. Thus, several approaches have been evaluated for their potential to elicit efficient, tumor-specific immune responses, including (but not limited to): recombinant TAAs, in the form of short synthetic epitopes (expected to directly bind, and hence be presented to T cells on, MHC molecules); recombinant full-length proteins (whose presentation requires the uptake and processing by antigen-presenting cells, APCs) or tumor cell-purified preparations (containing TAAs alone or in complex with chaperon proteins), administered as such or via multiple delivery systems (e.g., nanoparticles, DC-derived exosomes, DC-targeting vectors); TAA-encoding vectors; and DC preparations. The results of such an intense wave of investigation/vaccine development have been encouraging. Still, exception made for Cervarix and Gardasil (which are approved for prophylactic use, see above), only one product is currently commercialized as a therapeutic antitumor vaccine, namely, sipuleucel-T (also known as Provenge), a cellular preparation for the treatment of asymptomatic or minimally symptomatic metastatic hormone-refractory prostate cancer. This is in strict contrast with the large array of vaccines that have been developed against infectious agents during the last century. Indeed, there are at least three major obstacles that complicate the development of anticancer vaccines as compared with prophylactic vaccines against infectious diseases. First: the antigenic properties of cancer cells. Although a number of specific and potentially immunogenic TAAs have been identified (see above), only a few of them operate as bona fide tumor rejection antigens (TRAs) as they elicit an immune response that leads to tumor eradication. Of note, it has recently been shown that TRAs not necessarily correspond to TAAs that arise as a result of driver mutations, indicating (1) that there is no direct correlation between the oncogenic potential of mutations and their immunogenicity, and (2) that passenger mutations might generate therapeutically useful targets for immunotherapy. Second: the fact that anticancer vaccines must operate, in the vast majority of cases, as therapeutic interventions. Conventional prophylactic vaccines against infectious agents elicit strong humoral responses and promote the establishment of long-term B-cell memory. While this results in an efficient protection against invading pathogens (including HPV strains associated with cervical carcinoma, see above), it has limited (if any) efficacy against established tumors. Indeed, the rejection of established neoplastic lesions requires the activation of robust cell-mediated immune responses, which can be achieved only by specific vaccination strategies. In particular, the elicitation of cell-mediated immunity requires TAAs to be conveniently processed by APCs, mainly DCs, and presented to T cells in vivo in the context of appropriate stimulatory signals. This is a critical point and explains why vaccines are invariably administered in the presence of adjuvants (encompassing classical agents such as alum, montanide and incomplete Freund’s adjuvant as well as recently developed TLR agonists like monophosphoryl
lipid A, MPLA and imiquimod). Indeed, in the absence of activation signals, immature DCs present TAAAs to T cells in the context of inhibitory interactions, hence promoting the establishment of tolerance via multiple mechanisms. Third, the existence of distinct immunosuppressive pathways that are elicited by tumor cells, both locally and systemically. Cancer cells not only co-opt the stromal components of the neoplastic lesion to serve their metabolic and structural needs, but also secrete a wide array of mediators that (1) stimulate the bone marrow to release specific subsets of (relatively immature) myeloid cells into the bloodstream; (2) attract such cells and others to the tumor microenvironment and promote their expansion; (3) condition the differentiation program and/or functional behavior of tumor-infiltrating leukocytes. Overall, this results not only in the establishment of a potently immunosuppressive tumor microenvironment but also in some extent of systemic immunosuppression, and explains, at least in part, why natural TAA-directed immune responses are near-to-always unable to exert antitumor effects.

Along the lines of our Trial Watch series, here we will discuss recently published and ongoing clinical trials that have investigated/are investigating the safety and efficacy of purified peptides or full-length proteins as therapeutic interventions against cancer.

Hematological Malignancies

During the past 15 years, the safety and efficacy of recombinant peptides/proteins employed as therapeutic vaccines against hematological neoplasms have been evaluated in a few clinical trials. Peptides derived from Wilms’ tumor 1 (WT1), a transcription factor that is overexpressed by several neoplasms, have been tested (most often combined with the carrier keyhole limpet hemocyanin, KLH) in CML patients (n = 1) acute myeloid leukemia (AML) patients (n = 10 and n = 10), as well as in a mixed cohort of AML and myelodysplastic syndrome (MDS) patients (n = 19). A peptide derived from receptor for hyaluronic acid-mediated motility (RHAMM, a hyaluronate-binding protein that influences cell motility) has been evaluated in AML, MDS and multiple myeloma (MM) patients (n = 10 and n = 9). Idiotype vaccines have been investigated in cohorts of myeloma (n = 5 and n = 6) and lymphoma (n = 20, n = 16 and n = 177) patients. Finally, two clinical trials have investigated the therapeutic potential of autologous, tumor-derived heat-shock protein (HSP)-complexed antigens in CML (n = 20) and non-Hodgkin’s lymphoma (n = 20) patients. Altogether, these studies demonstrated that recombinant TAA-derived peptides are well tolerated by patients bearing hematological malignancies. These vaccines elicited TAA-specific immune responses in a variable fraction of patients, some of whom also exhibited partial or complete clinical responses.

Nowadays, official sources list 13 recent, ongoing, Phase I-III clinical trials investigating the safety profile and efficacy of TAA-derived vaccines as therapeutic interventions against hematological neoplasms (Table 1). Six of these studies involve GBM patients, 4 glioma patients, 1 astrocytoma patients, 1 neuroblastoma patients and 1 individuals bearing not-better specified brain tumors. In four trials, a peptide corresponding to the EGFR in-frame deletion mutant EGFRvIII (rindopepimut, also known as CDX-110) is employed, either as a single agent or in combination with GM-CSF or radiotherapy. Alternatively, patients are administered with glioma-associated antigens (GAAs), frequently associated to the TLR3 activator polyriboinosinic-polyribocytidylic acid stabilized with poly-L-lysine in carboxymethylcellulose (polyICLC), with survivin-derived peptides, with peptides corresponding to mutated regions of RAS (n = 18). Taken together, these studies demonstrated that the administration of TAA-derived peptides to patients affected by neurological or pulmonary malignancies is safe and has the potential of inducing—a in fraction of cases—immunological and clinical responses.

Neurological and Pulmonary Cancers

To the best of our knowledge, the first clinical trials investigating the safety and therapeutic potential of TAA-derived peptides in brain and lung cancer patients have been completed in the mid 2000s, followed by a few additional studies addressing the same question. In particular, a personalized multi-peptide preparation combined with a mineral oil-based adjuvant (Montanide ISA51) has been tested in glioma patients (n = 25), tumor-derived peptides complexed with HSPs have been evaluated in astrogloma, oligodendrocytoma and meningioma patients (n = 5) and a WT1-derived 9mer has been tested in individuals affected by glioblastoma multiforme (GBM) (n = 21). Moreover, in addition, cohorts of non-small cell lung carcinoma (NSCLC) patients have been treated with peptides derived from ERBB2/HER2 (a member of the epidermal growth factor receptor family frequently overexpressed in lung and breast cancer patients), in combination with GM-CSF (n = 2 and n = 1), with hTERT-derived peptides, combined with either GM-CSF or radiotherapy (n = 26 and n = 23) and with peptides corresponding to mutated regions of RAS (n = 18). Taken together, these studies demonstrated that the administration of TAA-derived peptides to patients affected by neurological or pulmonary malignancies is safe and has the potential of inducing—a in fraction of cases—immunological and clinical responses.

Today (September 2012), official sources list 13 recent, ongoing, Phase I-III clinical trials investigating the safety profile and efficacy of TAA-derived vaccines as therapeutic interventions against hematological neoplasms (Table 2). Six of these studies involve GBM patients, 4 glioma patients, 1 astrocytoma patients, 1 neuroblastoma patients and 1 individuals bearing not-better specified brain tumors. In four trials, a peptide corresponding to the EGFR in-frame deletion mutant EGFRvIII (rindopepimut, also known as CDX-110) is employed, either as a single agent or in combination with GM-CSF, temozolomide or radiotherapy. Alternatively, patients are administered with glioma-associated antigens (GAAs), frequently associated to the TLR3 activator polyriboinosinic-polyribocytidylic acid stabilized with poly-L-lysine in carboxymethylcellulose (polyICLC), with survivin-derived peptides, with HSP-TAA complexes or with a multi-peptide vaccine containing 11 distinct TAAAs (IMA950) (source www.clinicaltrials.gov).
at least one of the) largest clinical study(ies) ever commenced to evaluate the efficacy of an immunotherapeutic intervention against lung cancer.128 Another particularly intriguing approach in this context is represented by trial NCT00655161, in which NSCLC patients receive an inactivated strain of Saccharomyces cerevisiae that has been engineered for the expression of mutant RAS (GI-4000) (source www.clinicaltrials.gov).

Breast, Ovarian and Prostate Carcinoma

During the last two decades, the potential of recombinant vaccines employed as therapeutic interventions against breast, ovarian and prostate carcinoma patients has been extensively investigated. Thus, cohorts of breast carcinoma patients have been administered with HER2-derived peptides in combination with GM-CSF (n = 31, n = 9, n = 9 and n = 195), 115–117,129 with peptides derived from a specific splicing variant of survivin (n = 14),130 with a broad panel of peptides naturally presented by ovarian cancer cells in combination with GM-CSF (n = 7), 131 with full-length CA15–3, CA125 and carcinoembryonic antigen (CEA), three circulating markers of breast cancer recurrence,132 in addition, official sources list 17 recent, ongoing, Phase I-III clinical trials investigating the potential of TAA-derived peptides for the treatment of lung cancer, mainly NSCLC, patients (Table 2). These studies involve a variety of recombinant vaccines, including (but not limited to) peptides derived from MUC1, MAGE-A3, hTERT, kinesin family member 20A (KIF20A), cell division cycle-associated 1 (CDCA1), vascular endothelial growth factor receptor 1 and 2 (VEGFR1 and VEGFR2) and CTAs (such as NY-ESO-1 and upregulated in lung cancer 10, URLC10). 74 In the majority of cases, peptides or full-length proteins are administered as standalone adjuvanted agents, with the exceptions of trial NCT01579188, in which hTERT-derived peptides are combined with GM-CSF, trials NCT00409188 and NCT01015443, in which MUC1-derived peptides are administered after a single dose of cyclophosphamide, and trial NCT00455572, in which recombinant full-length MAGE-A3 is combined with radiotherapy, cisplatin (a DNA-damaging agent) or vinorelbine (a semi-synthetic vinca alkaloid). Importantly, trial NCT00480025, in which advanced NSCLC patients are treated with adjuvanted full-length MAGE-A3 upon tumor resection, constitutes the (or at least one of the) largest clinical study(ies) ever commenced to evaluate the efficacy of an immunotherapeutic intervention against lung cancer.128 Another particularly intriguing approach in this context is represented by trial NCT00655161, in which NSCLC patients receive an inactivated strain of Saccharomyces cerevisiae that has been engineered for the expression of mutant RAS (GI-4000) (source www.clinicaltrials.gov).

Breast, Ovarian and Prostate Carcinoma

During the last two decades, the potential of recombinant vaccines employed as therapeutic interventions against breast, ovarian and prostate carcinoma patients has been extensively investigated. Thus, cohorts of breast carcinoma patients have been administered with HER2-derived peptides in combination with GM-CSF (n = 31, n = 9, n = 9 and n = 195), 115–117,129 with peptides derived from a specific splicing variant of survivin (n = 14),130 with a broad panel of peptides naturally presented by ovarian cancer cells in combination with GM-CSF (n = 7),131 with full-length CA15–3, CA125 and carcinoembryonic antigen (CEA), three circulating markers of breast cancer recurrence,132

Table 1. Clinical trials testing TAA-derived peptides as therapeutic interventions in patients affected by hematological neoplasms*

Tumor type	Trials	Phase	Status	Type	TAA(s)	Co-therapy	Ref.
Hematological malignancies	I	Recruiting	Peptide	WT1	Combined with GM-CSF	NCT00672152	
Multiple myeloma	5	I-II	Recruiting	MUC1	As single AA	NCT01423760	
				MAGE-A3	As single AA	NCT01380145	
				CMV hTERT Survivin	Combined with GM-CSF and PCV	NCT00834665	
				MUC1	Combined with GM-CSF	NCT01232712	
				MAGE-A3	Combined with ASCT, lenalidomide, and immunostimulants	NCT01245673	

AA, adjuvanted agent; ALL, acute lymphocytic leukemia; AML, acute myeloid leukemia, ASCT, autologous stem cell transplantation; CMV, cytomegalovirus N495 peptide; GM-CSF, granulocyte macrophage colony-stimulating factor; hTERT, human telomerase reverse transcriptase; MAGE-A3, melanoma-associated antigen A3; MDS, myelodysplastic syndrome; MUC1, mucin 1; n.a., not available; PCV, pneumococcal conjugate vaccine; poly ICLC, polyriboinosinic-polyribocytidylic acid stabilized with poly-L-lysine in carboxymethylcellulose; TAA, tumor associated antigen; Treg, FOXP3⁺ regulatory T cells; WT1, Wilms’ tumor 1. *started after January, 1st 2008 and not withdrawn, terminated or completed at the day of submission.
combined with autologous breast cancer cells, allogeneic breast cancer MCF-7 cells, GM-CSF and recombinant IL-2 (n = 42),133 and with Sialyl-Tn (a MUC1-associated carbohydrate) chemically coupled to KLH (n = 33).134 Some of these approaches have alongside been tested in ovarian cancer patients,135,136,138,139 owing to the fact that breast and ovarian carcinomas share a relatively consistent number of TAAs.135 Moreover, ovarian carcinoma patients have been treated with a synthetic form of an immunodominant disaccharide of the Thomsen-Friedenreich antigen conjugated to KLH (n = 10),136 with not better specified pre-designated or evidence-based peptides (n = 5),137 with a p53-derived synthetic long peptide (SLP) coupled to immunostimulatory doses of cyclophosphamide (n = 10),138 and with multiple courses of recombinant poxviruses encoding full-length NY-ESO-1 (n = 22).139 Finally, prostate carcinoma patients have received HER2-derived peptides, as such or in the form of hybrids with a moiety of the MHC Class II-associated invariant chain, plus GM-CSF (n = 40 and n = 32),140,141 prostate-specific antigen (PSA)-derived peptides, as a single adjuvanted agent (n = 5) or combined with GM-CSF (n = 28),142,143 full-length NY-ESO-1 complexed with cholesterol-bearing hydrophobized pullulan (CHP) (n = 4, n = 4 and n = 2),144,146 an adjuvanted globo H hexasaccharide-KLH fusion (n = 20),147 and a number of multi- peptide preparations often, but not always, including PSA- and squamous cell carcinoma antigen recognized by T cells (SART)-derived peptides and combined with GM-CSF or estramustine phosphate, an alkylating estradiol derivative (n = 13, n = 10, n = 16, n = 19 and n = 23).148–153 Altogether, these studies demonstrated that the administration of recombinant peptides or full length proteins to breast, ovarian and prostate carcinoma patients is generally safe and can induce, in a fraction of cases, immunological and clinical responses.

Nowadays (September 2012), official sources list 16 recent, ongoing Phase I-III clinical trials assessing the safety and efficacy of recombinant peptides in breast carcinoma patients (Table 3).

Tumor type	Trials	Phase	Status	Type	TAAs	Co-therapy	Ref.
Astrocytoma	1	0	Active, not recruiting	Peptide	GAA	Combined with poly ICLC	NCT00795457
Brain cancer	1	I	Active, not recruiting	Peptide	TAAs	As single AA	NCT00935545
Glioblastoma multiforme	I	Recruiting	IMA950	Combined with various immunostimulants	NCT01403285		
II	Active, not recruiting	EGFRVIII	Combined with GM-CSF and radiotherapy	NCT01222221			
III	Recruiting	Peptide	EGFRVIII	Combined with GM-CSF and temozolomide	NCT01480479		
Glioma	n.a.	Recruiting	GAA	Combined with poly ICLC	NCT01130077		
Lung cancer	1	I-II	Recruiting	Peptide	NY-ESO-1	As single AA	NCT01584115

AA, adjuvanted agent; EGFR, epidermal growth factor receptor; GAA, glioma-associated antigen; GM-CSF, granulocyte macrophage colony-stimulating factor; HSP, heat-shock protein; HSPPC96, HSP-peptide vaccine 96; n.a., not available; poly ICLC, polyriboinosinic-polyribocytidylic acid stabilized with poly-L-lysine in carboxymethylcellulose; TAA, tumor associated antigen; *started after January, 1st 2008 and not withdrawn, terminated or completed at the day of submission.
In addition, official sources list 8 recent, ongoing, Phase I-II clinical trials investigating TAA-derived peptides for the therapeutic vaccination of ovarian (3 studies) and prostate (5 studies) carcinoma patients (Table 3). The trials enrolling ovarian carcinoma patients involve the administration a p53-derived SLP combined with pegylated interferon (IFN), full-length NY-ESO-1 adjuvanted with MPLA or a peptide derived from folate-binding protein (FBP, which is often overexpressed by ovarian neoplasms)\(^\text{114}\) in association with GM-CSF. The studies recruiting prostate carcinoma patients are based on peptides derived from T-cell receptor gamma chain alternate reading frame protein (TARP, a nuclear protein overexpressed in a large proportion of prostate carcinomas),\(^\text{155,156}\) administered either as a single agent or combined with ex vivo TARP peptide-pulsed DCs, peptides derived from prostate membrane-specific antigen (PMSA, a glycoprotein specifically expressed by normal and malignant prostate cells), CDCA1-derived epitopes, a synthetic peptide derived corresponding to amino acids 22–31 of mouse gonadotropin releasing hormone (GnRH).
(GnRH), or full-length NY-ESO-1, all given as standalone adjuvanted interventions (source www.clinicaltrials.gov).

Melanoma

Together with RCC, melanoma constitutes by far the clinical setting in which immunotherapeutic interventions have been most extensively investigated, at least in part due to the fact that both these neoplasms naturally generate immune responses and appear to be very sensitive to immunostimulatory interventions, even as unspecific as the systemic administration of high-dose IL-2.\(^9\),\(^{10}\)

This intense research effort has lead not only to an improved understanding of the biology of melanoma cells, but also to the detailed characterization of a wide panel of melanocyte differentiantion antigens (MDAs), underpinning the development of potential anticancer vaccines.\(^{157}\) The safety and therapeutic profiles of many of such vaccination strategies have been tested in clinical trials starting from the late 1990s. These studies involved peptides derived from MDAs including, but not limited to: the Type I transmembrane glycoprotein gp100 (\(n = 22, n = 15, n = 26, n = 12, n = 60, n = 25, n = 24, n = 8, n = 11, n = 51, n = 12, n = 121, n = 197 and n = 185\)),\(^{158\text{–}173}\) the 18 KDa transmembrane protein melan A (also known as melanoma antigen recognized by T cells 1, MART-1) (\(n = 1, n = 3, n = 15, n = 28, n = 12, n = 60, n = 25, n = 6, n = 24, n = 8, n = 11, n = 12, n = 17, n = 18 and n = 15\)),\(^{159\text{–}163,166,168\text{–}172,177\text{–}179}\) several members of the MAGE-A protein family such as MAGE-A1, MAGE-A3 and MAGE-A10 (\(n = 24, n = 51, n = 121 and n = 197\)),\(^{164\text{–}167,169,170}\) tyrosinase, an enzyme required for melanin synthesis (\(n = 18, n = 43, n = 15, n = 26, n = 60, n = 25, n = 24, n = 11, n = 51, n = 121, n = 197 and n = 18\)),\(^{153\text{–}162,164\text{–}166,167,169,170,177\text{–}179,180}\) In addition, clinical trials enrolling melanoma patients have been performed to assess the safety profile and therapeutic potential of NY-ESO-1-derived peptides (\(n = 37, n = 8, n = 13\) and \(n = 121\)),\(^{160\text{–}183}\) hTERT-derived peptides (\(n = 25\)),\(^{184}\) full-length recombinant NY-ESO-1 (\(n = \text{not available}, n = 51, n = 1, n = 11\) and \(n = 18\)),\(^{144\text{,}145,185\text{–}187}\) HSP-complexed antigens (\(n = \text{not available}\)),\(^{188}\) and subsequent courses of recombinant poxviruses encoding full-length NY-ESO-1 (\(n = 25\)).\(^{189}\) Most often, MDA- and/or TAA-derived peptides were administered as part of multi-peptide preparations and combined with immunostimulatory interventions including conventional adjuvants, GM-CSF, IL-2 and cyclophosphamide. In line with the high sensitivity of melanoma cells to immunostimulatory approaches, the vast majority of these clinical trials reported no significant side effects and satisfactory rates of durable clinical responses.

Today (September 2012), official sources list 25 recent, ongoing Phase I-II clinical trials investigating the safety and efficacy of recombinant peptides/proteins in esophageal cancer (5 trials), gastric cancer (1 trial), pancreatic cancer (5 trials) and CRC (4 trials) patients (Table 4). Most of these studies are based on various MDA- or TAA-derived peptides, given either as single adjuvanted agents or combined with additional immunostimulatory interventions including, but not limited to, IL-2, IL-12, pegylated IFNα, IFNγ, GM-CSF, TLR agonists (e.g., polyICLC, imiquimod, resiquimod, lipopolysaccharide) and monoclonal antibodies targeting CD40 or PDI. In this setting, particularly interesting strategies are being undertaken by trial NCT01331915, investigating the safety and anticancer profile of a recombinant, detoxified toxin from _Bordetella pertussis_ coupled to a tyrosinase epitope,\(^{189}\) and by trial NCT00706992, testing the clinical potential of a replication-defective recombinant canarypox virus encoding a melan A-derived epitope coupled to T cells genetically engineered to express a melan A-targeting T-cell receptor (TCR)\(^{190}\) (source www.clinicaltrials.gov).

Gastrointestinal, Pancreatic and Colorectal Tumors

The results of the first clinical trials investigating the safety and efficacy of TAA-derived peptides or proteins as therapeutic interventions in cohort of patients affected by gastrointestinal, pancreatic and colorectal neoplasms have been published no earlier than in 2004.\(^{190\text{–}192}\) Since then, the following therapeutic and clinical settings have been investigated: survivin-derived peptides, given to colorectal carcinoma (CRC) (\(n = 15\)) or pancreatic cancer (\(n = 1\)) patients as a single adjuvanted agent,\(^{192\text{,}193}\) a multi-peptide vaccine including epitopes from distinct SART proteins administered to CRC patients as a standalone adjuvanted intervention (\(n = 10\)),\(^{191}\) a personalized, peptide-based vaccine, given to CRC patients in combination with uracil, tegafur and calcium folinate (\(n = 8\)),\(^{194}\) a personalized combination of maximum 4 peptides derived from 16 distinct TAAAs including (but not limited to) HER2, CEA, PAP, PSA, SART2 and SART3, given to advanced gastric carcinoma or CRC patients in combination with a 5-fluorouracil derivative (\(n = 11\)),\(^{195}\) full-length NY-ESO-1, administered as a CHP complex to esophageal cancer patients (\(n = 4, n = 8, n = 4\) and \(n = 8\)),\(^{144\text{–}146,196}\) an artificially synthesized helper/killer-hybrid epitope long peptide derived from MAGE-A4, given as a dually adjuvanted standalone intervention to a patient with CRC pulmonary metastasis,\(^{197}\) and three peptides derived from the protein kinase TTK, lymphocyte antigen 6 complex locus K (LY6K), and insulin-like growth factor II mRNA-binding protein 3 (IMP3), administered in incomplete Freund’s adjuvant to esophageal cancer patients (\(n = 10\) and \(n = 60\)).\(^{198,199}\) In all these settings, vaccination with TAA-peptides was well tolerated and, in multiple instances, it also elicited immunological and clinical responses.

Nowadays (September 2012), official sources list 9 recent, ongoing Phase I-II clinical trials investigating the safety and efficacy of recombinant peptides/proteins in esophageal cancer (5 trials), gastric cancer (1 trial), pancreatic carcinoma (5 trials) and CRC (4 trials) patients (Table 5). CHP-complexed full-length NY-ESO-1 as a single agent as well as peptides derived from common TAAAs such as CDCA1, TTK, URLC10, VEGFR1 and VEGFR2, either as standalone interventions or combined with TLR9 agonists, are being tested in esophageal cancer patients. The safety and therapeutic profile of VEGFR1-derived peptides, as single agents, is being investigated in gastric carcinoma patients. CRC patients are being enrolled in trials involving MUC1-derived peptides combined with either chemoradiation therapy plus cyclophosphamide or polyICLC, peptides derived from the CTA RNF43, given as standalone agents, as well as GI-4000 (an inactivated strain of _S. cerevisiae_ engineered for the expression of mutant RAS, see above), in combination with conventional
Table 3. Clinical trials testing TAA-derived peptides and/or full length proteins as therapeutic interventions in patients affected by breast, ovarian and prostate carcinoma

Tumor type	Trials	Phase	Status	Type	TAAs	Co-therapy	Ref.
Breast cancer	16	I	Recruiting	Peptide	HER2, MUC1	Combined with CpG ODNs and/or GM-CSF	NCT00640861
					CEA	As single AA	NCT00892567
					CTAs, HER2	Combined with poly ICLC and tetanus toxoid peptide	NCT01532960
					CMV, hTERT, Survivin	Combined with basiliximab, GM-CSF and prevnar	NCT01660529
					MUC1	Combined with poly ICLC	NCT00986609
					CDCA1, DEPDC1, KIF20A, MPHOSPH1, URLC10	As single AA	NCT01259505
			Recruiting	Peptide	HER2	Combined with cyclophosphamide	NCT01060241
					HER2	As single AA	NCT01632332
					HER2	Combined with lapatinib	NCT00952692
				FL, full length	FL, full length	Combined with GM-CSF	NCT00843999
					FL, full length	Combined with cyclophosphamide and poly ICLC	NCT00854789
			Recruiting	HER2	Combined with GM-CSF and rintatolimod and/or GM-CSF	NCT00791037	
		II	Not yet recruiting	Peptide	WT1, HER2	Combined with anti-HER2 mAb and GM-CSF	NCT01570036
		III	Recruiting	Peptide	NYT1	As single agent	NCT01220128
					NY-ESO-1, TARP	Combined with GM-CSF	NCT01479244
					p53, PSMA, TARP, LAGE1, NY-ESO-1	Combined with gemcitabine and pegylated IFN-2b	NCT01580696
					PSMA, TARP, LAGE1, NY-ESO-1	Combined with ex vivo TARP peptide-pulsed DCs	NCT00694551
					TARP	Combined with GM-CSF	NCT00972309
					CDA1	Combined with GM-CSF	NCT01225471
					GnRH	Combined with ex vivo TARP peptide-pulsed DCs	NCT00895466

AA, adjuvanted agent; CDCA1, cell division cycle-associated 1; CEA, carcinoembryonic antigen; CMV, cytomegalovirus pp65 peptide; CTA, cancer-testis antigen; DC, dendritic cell; DEPDC1, DEP domain containing 1; FBP, folate binding protein; FL, full length; FR, folate receptor; GM-CSF, granulocyte macrophage colony-stimulating factor; GnRH, gonadotropin releasing hormone; hTERT, human telomerase reverse transcriptase; IFN, interferon; KIF20A, kinesin family member 20A; mAb, monoclonal antibody; MPHOSPH1, M-phase phosphoprotein 1; MUC1, mucin 1; n.a., not available; poly ICLC, polyribosinepolyribocytidylic acid stabilized with poly-L-lysine in carboxymethylcellulose; PMSA, prostate membrane-specific antigen; ODN, oligodeoxynucleotide; TAA, tumor associated antigen; TARP, T-cell receptor gamma chain alternate reading frame protein; URLC10, upregulated in lung cancer 10; WT1, Wilms’ tumor 1. *started after January, 1st 2008 and not withdrawn, terminated or completed at the day of submission.
Tumor type	Trials	Phase	Status	Type	TAAs	Co-therapy	Ref.
Melanoma	25		Recruiting	Peptide	Class I-restricted peptides	Combined with IFN-γ	NCT00977145
			Recruiting	Peptide	MAGE-A3	As single AA	NCT01264731
			Recruiting	gp100, MART-1, NY-ESO-1	Combined with poly ICLC ± anti-CD40-mAb	NCT01008527	
			Recruiting	gp100	Combined with pegylated IFNα-2b	NCT00861406	
			Recruiting	MAGE-A3	Combined with dacarbazine	NCT00849875	
			Recruiting	gp100, MART-1, NY-ESO-1, PRAME	Combined with LPS or poly ICLC	NCT00114934	
			Recruiting	MAGE-3.A1 NA17.A2	Combined with GM-CSF, IFN-α, IL-2 and imiquimod	NCT00119103	
			Recruiting	MAGE-3.A3	As single AA	NCT00896480	
			Recruiting	MART-1	Combined with anti-MART-1TCR-expressing PBLs ± IL-2	NCT00706992	
			Recruiting	gp100, MAGE-3	Combined with daclizumab ± IL-12	NCT00706992	
			Recruiting	gp100, MAGE-3.1, MART-1, NA17-A2	Combined with GM-CSF and a tetanus helper peptide	NCT00938223	
			Recruiting	IDO, survivin	Combined with GM-CSF, imiquimod and temozolomide	NCT00938223	
			Recruiting	MAGE-A3	As single AA ± resiquimod	NCT00960752	
			Recruiting	MAGE-A3	As single AA	NCT00942162	
			Recruiting	MAGE-A3	As single AA	NCT00942162	
			Recruiting	MAGE-A3	As single AA	NCT00942162	
			Recruiting	MAGE-A3	As single AA	NCT00942162	
			Recruiting	MAGE-A3	As single AA	NCT00942162	
			Recruiting	MAGE-A3	As single AA	NCT00942162	

AA, adjuvanted agent; FL, full-length; GM-CSF, granulocyte macrophage colony-stimulating factor; gp100, glycoprotein 100; IDO, indoleamine 2, 3-dioxygenase; IFN, interferon; IL, interleukin; LAG3, lymphocyte-activation gene 3; LPS, lipopolysaccharide; mAb, monoclonal antibody; MAGE, melanoma-associated antigen; MART-1, melanoma antigen recognized by T-cells 1; n.a., not available; PBL, peripheral blood lymphocyte; poly ILC, polyriboinosinic-polyriboxcytidylic acid stabilized with poly-L-lysine in carboxymethylcellulose; PRAME, preferentially expressed antigen in melanoma; TAA, tumor associated antigen; TCR, T-cell receptor. *started after January 1st 2008 and not withdrawn, terminated or completed at the day of submission.
chemotherapy or bevacizumab (a VEGF-targeting monoclonal antibody). Finally, peptides derived from hTERT and VEGFR1/2 are being tested in pancreatic carcinoma patients, in combination with GM-CSF plus tadalafl (a phosphodiesterase Type 5 inhibitor currently approved for the therapy of erectile dysfunction and commercialized under the label of Cialis®) and/or gemcitabine (a nucleoside analog) (source www.clinicaltrials.gov).

Renal, Bladder and Reproductive Tract Tumors

So far, a few clinical studies have investigated the profile of TAA-derived peptides or proteins employed as therapeutic interventions in cohort of patients affected by RCC and distinct malignancies of the reproductive tract, including cervical carcinoma, endometrial cancer, uterine sarcoma and vulvar intraepithelial neoplasia. In particular, multi-peptide vaccination strategies involving up to six peptides derived from a broad panel of RCC-associated antigens have been tested, invariably in combination with immunostimulatory interventions (including IL-2, IFNα, GM-CSF and low-dose cyclophosphamide), in RCC patients (n = 10 and n = 96). In addition, the efficacy of peptides corresponding to distinct regions of the HPV-16 protein E7 has been evaluated in patients affected by cervical carcinoma or vulvar intraepithelial neoplasia. Finally, not better specified pre-designated or evidence-based peptides have been tested in a cohort of patients affected by cervical carcinoma or various other neoplasms of the reproductive tract (n = 9). The administration of recombinant peptides combined to immunostimulatory

Tumor type	Trials	Phase	Status	Type	TAAs	Co-therapy	Ref.
Colorectal carcinoma	4	I	Unknown	Peptide	RNF43	As single AA	NCT00641615
		II	Recruiting	Peptide	GI-4000	Combined with bevacizumab and/or FOLOFOX	NCT01322815
					MUC1	Combined with chemoradio-therapy and cyclophosphamide	NCT01507103
					NY-ESO-1	As single AA complexed with CHP	NCT01003808
			Active, not recruiting	FL protein	IMP3, LIY6K, TTK, KOC1, TTK, URLC10, VEGFR1/2	Combined with cisplatin and 5-FU	NCT00682227
					TTK, URLC10, CDC1, KOC1, URLC10	Combined with CpG ODNs	NCT00669292
		I-II	Recruiting	Peptide	VEGFR1	As single AA	NCT01227772
Esophageal carcinoma	5	I	Unknown	Peptide	IMP3, LIY6K, TTK, KOC1, URLC10, VEGFR1/2	Combined with cisplatin and 5-FU	NCT00632333
		II	Recruiting	Peptide	TTK, URLC10, CDC1, KOC1, URLC10	Combined with CpG ODNs	NCT00669292
					VEGFR1	As single AA	NCT00655785
Gastric cancer	1	I-II	Recruiting	Peptide	VEGFR1	As single AA	NCT00663011
Pancreatic carcinoma	5	I	Active, not recruiting	Peptide	VEGFR1/2	Combined with gemcitabine	NCT01342224
		I	Unknown	Peptide	VEGFR1	As single AA	NCT01266720
		I-II	Recruiting	Peptide	VEGFR1/2	Combined with gemcitabine	NCT00639925

5-FU, 5-fluorouracil; AA, adjuvanted agent; CDCA1, cell division cycle-associated 1; CHP, cholesterol-bearing hydrophobized pullulan; FL, full-length; FOLOFOX, folinic acid, 5-FU, irinotecan; FOLFOX, folinic acid, 5-FU, oxaliplatin; GM-CSF, granulocyte macrophage colony-stimulating factor; hTERT, human telomerase reverse transcriptase; IMP3, insulin-like growth factor II mRNA-binding factor 3; KOC1, K homology domain containing protein overexpressed in cancer; LIY6K, lymphocyte antigen 6 complex locus K; MUC1, mucin 1; ODN, oligodeoxynucleotide; poly ICLC, polyriboinosinic-polyribocytidylic acid stabilized with poly-L-lysine in carboxymethylcellulose; TAA, tumor associated antigen; URLC10, upregulated in lung cancer 10; VEGFR, vascular endothelial growth factor receptor. *started after January, 1st 2008 and not withdrawn, terminated or completed at the day of submission.
interventions was well tolerated by RCC patients and yielded immunological responses that, at least in some cases, were associated with improved patient survival.203,204 Conversely, E7-derived peptides induced potent immune responses that, in one trial, led to viral clearance from cervical scrapings by the fourth vaccine course,200 yet were unable to promote efficient antitumor immunity137,200–202. These results are in line with the fact—that according to official sources—preventive anti-HPV vaccines (i.e., Cervarix® and Gardasil®) are not efficient against histopathological endpoints when used as therapeutic agents in HPV-infected women (source http://www.fda.gov).

Today (September 2012), official sources list 10 recent, ongoing Phase I-II clinical trials investigating the safety and efficacy of recombinant peptides/proteins in bladder carcinoma (3 trials) and reproductive tract cancer (7 trials) patients (Table 6). In the former clinical setting, MAGE-A3-derived peptides, recombinant full-length MAGE-A3 or epitopes derived from DEP domain containing 1 (DEPDC1) and M phase phosphoprotein 1 (MPHOSPH1) are being tested, either as standalone adjuvanted agents or in combination with the bacillus Calmette-Guérin (BCG), an attenuated strain of Mycobacterium bovis that is currently employed against superficial bladder carcinoma.205 In the latter clinical setting, 2 studies involve full-length NY-ESO-1 combined with GM-CSF, the demethylating agents decitabine and doxorubicine (an anthracycline that has recently been shown to promote the immunogenic death of tumor cells),20,206,207 two studies involve a lyophilized liposomal preparation containing either seven different TAA-derived peptides (DPX-0907, given as a standalone adjuvanted agent) or survivin-derived epitopes (administered in combination with cyclophosphamide), one study involves the administration of folate receptor α-derived peptides plus cyclophosphamide, one study involves FBP-derived epitopes given together with GM-CSF and one study is based on a replication-defective NY-ESO-1-coding canarypox virus combined with GM-CSF and the mammalian target or rapamycin (mTOR) inhibitor sirolimus (source www.clinicaltrials.gov).

Additional Neoplasms and Mixed Clinical Cohorts

Recombinant TAA-derived peptides and full-length proteins have been tested in a few additional clinical settings, encompassing oral and urothelial cancer patients208,209 as well as rather heterogeneous cohorts including subjects affected by wide arrays of solid neoplasms.101,210–219 Thus, oral and urothelial cancer patients (n = 11 and n = 9, respectively) have been treated with a survivin-derived 9-mer, either as a subcutaneous or as intratumoral adjuvanted injection.208,209 In addition, WT1-derived 9-mers, HER2-derived short epitopes or long peptides complexed with CHP, and not better indicated peptides recognized by circulating T cells have been tested, as adjuvanted standalone interventions, in cohort of patients affected by not better specified solid tumors (n = 5, n = 10, n = 9, n = 24 and n = 14).101,210–212,215 NY-ESO-1-derived peptides have been evaluated in patients bearing metastatic NY-ESO-1-expressing cancers (n = 12),213 and epitopes corresponding to mutated regions of RAS, CEA-derived peptides, complex multi-peptide preparations as well as HSP-complexed antigens have been used to vaccinate patients affected by distinct types of carcinoma or advanced neoplasms (n = 8, n = 10, n = not available, n = 113 and n = 16).214–218 In general, the administration of purified peptides/proteins to
provided by Polly Matzinger’s danger theory, has been paralleled by the development of multiple strategies for anticancer vaccination. These approaches, involving the use of recombinant proteins, TAA-encoding vectors or DC preparations, have generated encouraging results in both preclinical and clinical settings. However, only a few trials assessing the efficacy of TAA-derived peptides and/or full length proteins have reported consistent rates of objective, long-term clinical responses. In line with this notion, no more than three anticancer vaccines are currently approved by FDA for use in humans: Provenge® , employed as a therapeutic intervention in a limited subset of prostate carcinoma patients; Cervarix® and Gardasil®, both given as prophylactic agents against HPV infection (and hence against HPV-associated cervical carcinoma). At least in part, this is due to the fact that the eradication of established malignant lesions requires a robust tumor-specific, cell-mediated immune response that is relatively difficult to obtain, owing to multiple reasons (see above). Moreover, it appears that several TAA-derived peptides and/or full length proteins exhibit (at least some degree of) clinical activity when administered as adjuvant therapy or to patients with minimal residual disease, yet fail to provide any clinical benefit to individuals bearing advanced and/or metastatic lesions. We believe that (1) the discovery of novel bona fide TRAs, (2) the optimization of adjuvant strategies that potently activate DCs in vivo, (3) the rational combination of anticancer vaccines with immunomodulatory agents (such as these patients was well tolerated and promoted—in a few cases—immunological and clinical responses.

Today (September 2012), official sources list 12 recent, ongoing Phase I-II clinical trials investigating the safety and efficacy of recombinant peptides/proteins in patients affected by various tumor types encompassing head and neck carcinoma (1 trial), hepatocellular carcinoma (1 trial), mesothelioma (2 trials), bile duct cancer (1 trial), as well as in relatively heterogeneous patient cohorts (7 trials) (Table 7). The vast majority of these studies involves the administration of TAA-derived peptides, either as standalone adjuvanted agents or combined with immunostimulatory compounds such as GM-CSF, TLR agonists or low doses of cyclophosphamide. Two notable exceptions are constituted by NCT01569919, testing a recombinant modified vaccinia Ankara viral vector encoding the 5T4 fetal oncoprotein in mesothelioma patients and NCT01526473, evaluating a non-infective variant of the Venezuelan equine encephalitis virus encoding the extracellular domain and transmembrane region of HER2 in patients affected by not better specific HER2+ neoplasms (www.clinicaltrials.gov).

Concluding Remarks

During the last two decades, the molecular and cellular circuitries whereby malignant cells and the immune system mutually interact have been the subject of in-depth investigation. Such a renovated interest, stemming within the conceptual framework provided by Polly Matzinger’s danger theory, has been paralleled by the development of multiple strategies for anticancer vaccination. These approaches, involving the use of recombinant proteins, TAA-encoding vectors or DC preparations, have generated encouraging results in both preclinical and clinical settings. However, only a few trials assessing the efficacy of TAA-derived peptides and/or full length proteins have reported consistent rates of objective, long-term clinical responses. In line with this notion, no more than three anticancer vaccines are currently approved by FDA for use in humans: Provenge®, employed as a therapeutic intervention in a limited subset of prostate carcinoma patients; Cervarix® and Gardasil®, both given as prophylactic agents against HPV infection (and hence against HPV-associated cervical carcinoma). At least in part, this is due to the fact that the eradication of established malignant lesions requires a robust tumor-specific, cell-mediated immune response that is relatively difficult to obtain, owing to multiple reasons (see above). Moreover, it appears that several TAA-derived peptides and/or full length proteins exhibit (at least some degree of) clinical activity when administered as adjuvant therapy or to patients with minimal residual disease, yet fail to provide any clinical benefit to individuals bearing advanced and/or metastatic lesions. We believe that (1) the discovery of novel bona fide TRAs, (2) the optimization of adjuvant strategies that potently activate DCs in vivo, (3) the rational combination of anticancer vaccines with immunomodulatory agents (such as...
References

1. Riedl S. Edward Jenner and the history of smallpox and vaccination. Proc (Biol Univ Med Cent) 2005; 19:21-5; PMID:16260144.
2. Smith KA. Edward jenner and the small pox vaccine. Front Immunol 2011; 2:21; PMID:22566811; http://dx.doi.org/10.3389/fimmu.2011.00021.
3. Waldmann TA. Immunotherapy: past, present and future. Nat Med 2003; 9:269-77; PMID:12612576; http://dx.doi.org/10.1097/01.NM.0000063344.20499.27.
4. Ito T, Ando H, Suzuki T, Ogura T, Hotta K, Imamura T, et al. Anti-CTLA4 and anti-PD1 antibodies, (4) the precise identification of the subsets of patients that are likely to respond to vaccination with robust immune responses and (5) the establishment of standardized protocols to evaluate the nature, breadth and quality of antigen-specific T-cell responses, an objective recently proposed by the MIATA (Minimal Information About T Cell Assays) project,19-22 are the keys toward the development of new, efficient and (perhaps) clinically useful anticancer vaccines.

Acknowledgments

Authors are supported by the Ligue contre le Cancer (équipes labellisées), AXA Chair for Longevity Research, Cancéropôle Ile-de-France, Institut National du Cancer (INCa), Fondation Bettencourt-Schueller, Fondation de France, Fondation pour la Recherche Médicale, Agence National de la Recherche, the European Commission (Apo-Sys, ArtForce, ChemRes. Death-Train) and the LabEx Immuno-Oncology.

10. Rosenberg SA, Yang JC, Topalian SL, Schwartzentruber JD, Hodi FS, Warrick D, et al. Ipilimumab: a new model: a renewed sense of self. Science 2002; 296:301-5; PMID:11951032; http://dx.doi.org/10.1126/science.1071059.
11. Galluzzi L, Senovilla L, Zitvogel L, Kroemer G. The secret ally: immunostimulation by anticancer drugs. Nat Rev Drug Discov 2012; 11:215-33; PMID:22301798; http://dx.doi.org/10.1038/nrd3626.
12. Plett PC. [Peter Plett and other discoverers of cowpox virus and vaccination before Edward Jenner]. Sudhoffs Arch Psychiatr Neurol 1984; 128:1-24; PMID:6764616; http://dx.doi.org/10.1056/NEJM198401053300508.
13. Janeway C. Immunogenicity signals 1,2,3 ... and 0. Science 1983; 219:1263-4; PMID:6809962; http://dx.doi.org/10.1126/science.6809962.
14. Finn OJ. Tumor immunology at the service of cancer immunotherapy. Curr Opin Immunol 2004; 16:127-9; PMID:15023402; http://dx.doi.org/10.1016/j.coi.2004.02.006.
15. Burgio GR. Commentary on the biological self: Toward a "Biological Ego". From Garrod’s “chemical individuality” to Burnet’s “self”. Thymus 1990; 16:99-117; PMID:2256127.
134. Sandmaier BM, Oparin DV, Longenecker BM. Evidence of a cellular immune response against sialyl-Tn in breast and ovarian cancer patients after high-dose chemotherapy, stem cell rescue, and immunization with Theratope STx-1K17 vaccine. J Immunother 1999; 22:54-66; PMID:9924700; http://dx.doi.org/10.1097/00002371-199901000-00008.

135. Ghadersohi A, Chitta K, Greco WR, Harvey S, Winston J, Slocum H, et al. Tumor antigens and metastatic progression in breast and ovarian cancers. J Immunother 2002; 25:48-57; PMID:11815284; http://dx.doi.org/10.1002/jti.1078.

136. MacLean GD, Bowen-Yacyshyn MB, Samuel J, Meikle A, Suetsugu N, et al. Immunological monitoring during combination of patient-oriented peptide vaccination and extrastimine phosphate in patients with metastatic hormone refractory prostate cancer. Prostate 2004; 60:32-45; PMID:15129427; http://dx.doi.org/10.1002/pro.20001.

137. Odunsi K, Matsukawa J, Karbach J, Neumann A, Mhawech-Fauceglia P, Miller A, et al. Efficacy of vaccination with recombinant vaccine and fowlpox vectors expressing NY-ESO-1 antigen in ovarian cancer and melanoma patients. Proc Natl Acad Sci U S A 2010; 107:5797-802; PMID:22454499; http://dx.doi.org/10.1073/pnas.1107280109.

138. Perez JD, Carmichael MG, Benavides LC, Holmes JP, Huenan MT, Wells MM, et al. Longterm follow-up assessment of a HER2/neu peptide (E75) vaccine for prevention of recurrence in high-risk prostate cancer patients. J Am Coll Surg 2009; 208:193-201; PMID:19328530; http://dx.doi.org/10.1016/j.jamcollsurg.2008.10.018.

139. Pereira SA, Kallinerts NI, Buxio S, Tsonis PK, Georgakopoulou N, Varla-Leftherioti M, et al. Results of a phase I clinical study of the novel li-key/HER-2/neu(776-790) hybrid peptide vaccine in patients with prostate cancer. Clin Cancer Res 2010; 16:3495-506; PMID:20946887; http://dx.doi.org/10.1158/1078-0432.CCR-09-2585.

140. Koutsiakosha DV, Berard CA, Datena E, Hussain A, Dawson N, Klyuhsevokna EN, et al. Vaccination with agonist peptide PSA: 154-163 (155L) derived from prostate specific antigen induced CD8 T-cell response to the native peptide PSA: 154-163 but failed to induce the reactivity against tumor targets expressing PSA: a phase 2 study in patients with recurrent prostate cancer. J Immunother 2009; 32:65-75; PMID:19483644; http://dx.doi.org/10.1097/JIT.0b013e3181a0be6d.

141. Permanandou AP, Hallmeier S, Reddy S, Mahomed N, Brederio L, Collesterbro P, et al. Induction of specific T cell immunity in patients with prostate cancer by vaccination with PSA46-154 peptide. Cancer Immunol Immunother 2006; 55:1033-42; PMID:16283303; http://dx.doi.org/10.1007/s00262-005-0090-x.

142. Uenaka A, Wada H, Isobe M, Saika T, Tsuchi K, Sato E, et al. T cell immunomonitoring and tumor responses in patients immunized with a complex of cholesterol-bearing hydroxyethylpolyl carbol (PHP) and NSI-01 peptide vaccine. Cancer Immunol Immunother 2007; 56:729-35; PMID:17446176.

143. Uenaka A, Wada H, Isobe M, Saika T, Sato E, Uenaka A, et al. Antibody response against NY-ESO-1 in patients with NY-ESO-1 vaccinated patients. Int J Cancer 2007; 120:2178-84; PMID:17278093; http://dx.doi.org/10.1002/ijc.23283.

144. Kawada J, Wada H, Isobe M, Gujat S, Ishikawa H, Jungbluth AA, et al. Heterocetic serological response in esophageal and prostate cancer patients after NY-ESO-1 protein vaccination. Int J Cancer 2012; 136:584-92; PMID:21413033; http://dx.doi.org/10.1002/ijc.26074.

145. Slovín SR, Ragupathi G, Adlum S, Ungers G, Terry K, Kim S, et al. Carbohydrate vaccines in cancer: immunogenicity of a fully synthetic globo H hexasaccharide conjugate in man. Proc Natl Acad Sci U S A 1998; 95:9615-20; PMID:10181489; http://dx.doi.org/10.1073/pnas.95.18.9615.

146. Kawada J, Wada H, Isobe M, Gujat S, Ishikawa H, Jungbluth AA, et al. Heterocetic serological response in esophageal and prostate cancer patients after NY-ESO-1 protein vaccination. Int J Cancer 2012; 136:584-92; PMID:21413033; http://dx.doi.org/10.1002/ijc.26074.

147. Georgakopoulou N, Varla-Leftherioti M, et al. T cell immunomonitoring and tumor responses in patients immunized with a complex of cholesterol-bearing hydroxyethylpolyl carbol (PHP) and NSI-01 peptide vaccine. Cancer Immunol Immunother 2007; 56:729-35; PMID:17446176.

148. Kawabata R, Wada H, Isobe M, Saika T, Sato E, Uenaka A, et al. Antibody response against NY-ESO-1 in patients with NY-ESO-1 vaccinated patients. Int J Cancer 2007; 120:2178-84; PMID:17278093; http://dx.doi.org/10.1002/ijc.23283.
Ayyoub M, Zippelius A, Pittet MJ, Rimoldi D, Valmori D, Schwartzentruber DJ, Lawson DH, Richards JM, Slingluff CL, Petroni GR, Smolkin ME, Chianese-of HLA-A*0201 and/or HLA-DPbeta1*04 Mavroukakis SA, White DE, et al. Immunization with tyrosinase peptides. Int J Cancer 2003; 104:188-

Effects of granulocyte-macrophage colony-stimulating factor in vaccination with tyrosinase peptides and granulo-

Cytotoxic T lymphocyte responses against HLA*0201-

Hattori T, Okuno K, Yoshida K, et al. Vaccination with multiple pep-

Muderspach L, Wilczynski S, Tanaka H, Hayashi N, Uchikado Y, et al. Multicenter, Phase II clinical trial of cancer vaccination for advanced esophageal cancer with three peptides derived from novel cancer-testis antigens. J Transl Med 2012; 10:141; PMID:22776426; http://dx.doi.org/10.1186/1479-5876-10-141.

Kono K, Muziky, Daigo Y, Takano A, Masuda K, Yoshida K, et al. Vaccination with multiple pep-

tides derived from novel cancer-testis antigens can induce specific T-cell responses and clinical responses in advanced esophageal cancer. Cancer Sci 2009; 100:1502-9; PMID:19458950; http://dx.doi.org/10.1111/j.1349-7006.2009.01200.x.

Muderspach L, Wilczynski S, Roman L, Bode L, Felix J, et al. Phase 1 trial of a human papillomavir-

us (HPV) peptide vaccine for women with high-grade cervical and vulvar intraepithelial neoplasia who are HPV 16 positive. Clin Cancer Res 2006; 12:3406-16; PMID:16997972.

Ressing ME, van Driel WJ, Brandt RM, Kenter GG, de Jong JH, Bauknecht T, et al. Detection of T helper responses, but not of human papillomavirus-
specific cytotoxic T lymphocyte responses, after pep-
teptide vaccination of patients with advanced cervical cancer: clinical evaluation of a phase I-II trial. Eur J Cancer 1999; 35:946-52; PMID:10533477; http://dx.doi.org/10.1016/S0959-8049(99)00048-9.

Suzuki S, Nishitani M, Noguchi M, Komoroya Y, Kobukui T, Naitoh M, et al. Phase I trial of per-

sonalized peptide vaccination for cykline-refractory metastatic renal cell carcinoma patients. Cancer Sci 2007; 98:1965-8; PMID:17919310; http://dx.doi.org/10.1111/j.1349-7006.2007.00904.x.

Walter S, Weinschenk T, Stendel A, Zdrojewy R, et al. TLR-targeted therapeutics. Nat Rev Drug Discov 2012; 11:669-82; PMID:22529822; http://dx.doi.org/10.1038/nrd3709.

Harttori T, Okuno K, Yoshida K, Kobukui T, Mine T, Yamada R, et al. [A phase I study of combination-therapy using personalized peptide vaccine and UFT/UEZEL for advanced or recurrent colorectal cancer]. Gan To Kagaku Ryoho 2006; 33:1745-7; PMID:17212094.

Sato Y, Fujitawa T, Mine T, Shomura H, Honma S, Maeda Y, et al. Immunological evaluation of per-

sonalized peptide vaccination in combination with a 5-fluorouracil derivative (TS-1) for advanced gas-
tric or colorectal carcinoma patients. Cancer Sci 2007; 98:1113-9; PMID:17540963; http://dx.doi.org/10.1111/j.1349-7006.2007.00498.x.

Wada H, Sato E, Uenaka A, Iobe M, Kaburata K, Nakamura Y, et al. Analysis of peripheral and local anti-
tumor immune response in esophageal cancer patients after NY-ESO-1 protein vaccination. J Cancer 2008; 12:236-29; PMID:18729190; http://dx.doi.org/10.1010/j.1023810.

Takahashi N, Ohkuri T, Homma S, Ohtake J, Wakiita D, Togashi Y, et al. First clinical trial of cancer vac-
cine therapy with artificial synthesized helper/killer-
hybrid epitope long peptide ofMage-A4 cancer anti-
gen. Cancer Sci 2012; 103:150-3; PMID:22221328; http://dx.doi.org/10.1111/j.1349-7006.2011.02106.x.

Kono K, Inuma H, Akutsu Y, Tanaka H, Hayashi N, Uchikado Y, et al. Memory CD4+ T cells after vaccination with antigenic
cancer-testis antigens can be induced in a patient vaccinated with full-length NY-ESO-1
gen. Cancer Sci 2008; 99:607-70; PMID:18550634; http://dx.doi.org/10.1111/j.1349-7006.2008.00497.x.

Nagorsen D, Hofmann U, Servetopoulou F, et al. Single cell analysis of a stepwise in vitro model of immune reactions to vaccination with antigenic
cancer-testis antigens. Cancer Sci 2012; 103:150-3; PMID:22776426; http://dx.doi.org/10.1007/s10597-012-0141-y.

Bullock KA, Smith K, Murphy C, et al. Immunogenicity of a multi-epitope personalized vaccine and UFT/UEZEL

using personalized peptide vaccine and UFT/UEZEL for advanced or recurrent colorectal cancer]. Gan To Kagaku Ryoho 2006; 33:1745-7; PMID:17212094.

Sato Y, Fujitawa T, Mine T, Shomura H, Honma S, Maeda Y, et al. Immunological evaluation of per-

sonalized peptide vaccination in combination with a 5-fluorouracil derivative (TS-1) for advanced gas-
tric or colorectal carcinoma patients. Cancer Sci 2007; 98:1113-9; PMID:17540963; http://dx.doi.org/10.1111/j.1349-7006.2007.00498.x.
206. Kepp O, Galluzzi L, Martins I, Schlemmer F, Adjemian S, Michaud M, et al. Molecular determinants of immunogenic cell death elicited by anticancer chemotherapy. Cancer Metastasis Rev 2011; 30:61-9; PMID:21249425; http://dx.doi.org/10.1007/s10555-011-9273-4.

207. Michaud M, Martini N, Sukkurwala AQ, Adjemian S, Ma Y, Pellegatti P, et al. Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science 2011; 334:1573-7; PMID:22214255; http://dx.doi.org/10.1126/science.1208347.

208. Nonna I, Kitamura H, Torigoe T, Takahashi A, Tanaka T, Sato E, et al. Phase I clinical study of antipotosis protein survivin-derived peptide vaccination for patients with advanced or recurrent urothelial cancer. Cancer Immunol Immunother 2009; 58:1801-7; PMID:19294381; http://dx.doi.org/10.1007/s00262-009-0691-x.

209. Miyazaki A, Kobayashi J, Torigoe T, Hirohashi Y, Yamamoto T, Yamaguchi A, et al. Phase I clinical trial of survivin-derived peptide vaccine therapy for patients with advanced or recurrent oral cancer. Cancer Sci 2011; 102:324-9; PMID:21143701; http://dx.doi.org/10.1111/j.1349-7006.2010.01789.x.

210. Morita S, Oka Y, Rosenhauer V, Locsh H, Lewis JJ, Sivastava PK. Immunization of cancer patients with autologous cancer-derived heat shock protein gp96 preparations: a pilot study. Int J Cancer 2000; 88:232-8; PMID:11004674; http://dx.doi.org/10.1002/1097-0215(20001015)88:2<232::AID-IJC14>3.0.CO;2-8.

211. Abrams SL, Klislef SN, Bergmann-Leitner ES, Kantor JA, Chung Y, Hamilton JM, et al. Generation of stable CD4+ and CD8+ T cell lines from patients immunized with ras oncogene-derived peptides reflecting codon 12 mutations. Cell Immunol 1997; 182:157-51; PMID:9514698; http://dx.doi.org/10.1006/cimm.1997.1224.

212. Mine T, Sato Y, Noguchi M, Sasatomi T, Gouhara R, Tsuda N, et al. Humoral responses to peptides correlate with overall survival in advanced cancer patients vaccinated with peptides based on pre-existing, peptide-specific cellular responses. Clin Cancer Res 2004; 10:929-37; PMID:14871969; http://dx.doi.org/10.1158/1078-0432.CCR-03-1173.3.

213. Klislef SN, Abrams SI, Hamilton JM, Bergmann-Leitner E, Chen A, Bastian A, et al. Phase I vaccine trial with peptides reflecting ras oncogene mutations of solid tumors. J Immunother 1999; 22:155-65; PMID:10093040; http://dx.doi.org/10.1007/10002371-19990300-00007.

214. Janetzki S, Britten CM, Kalos M, Levitsky HI, Maecker HT, Melief CJ, et al. “MIATA”: minimal information about T cell assays: the process of reaching the community of T cell immunologists in cancer and beyond. Cancer Immunol Immunother 2011; 60:15-22; PMID:21080166; http://dx.doi.org/10.1007/s00262-010-0940-z.

215. Jäger E, Gnjatic S, Nagata Y, Stockert E, Jäger D, Karbach J, et al. Induction of primary NY-ESO-1 immunity: CD8+ T lymphocyte and antibody responses in peptide-vaccinated patients with NY-ESO-1+ cancers. Proc Natl Acad Sci U S A 2000; 97:12198-203; PMID:11027314; http://dx.doi.org/10.1073/pnas.220413497.

216. Abrams SI, Khleif SN, Bergmann-Leitner ES, Kantor JA, Chung Y, Hamilton JM, et al. A phase I/II trial of a WT1 (Wilms' tumor gene) peptide vaccine in patients with melanoma and/or other types of cancer based on pre-existing peptide-specific cytotoxic T lymphocyte precursors in the periphery. J Immunother 2005; 28:557-66; PMID:15843798; http://dx.doi.org/10.1097/00002371-200507000-00008.

217. Mine T, Sato Y, Noguchi M, Sasatomi T, Gouhara R, Azuma K, et al. Peptide vaccination for patients with melanoma and other types of cancer based on pre-existing peptide-specific cytotoxic T lymphocyte precursors in the periphery. J Immunother 2003; 26:557-66; PMID:12843798; http://dx.doi.org/10.1097/00002371-200307000-00008.

218. Janetzki S, Britten CM, Kalos M, Levitsky HI, Maecker HT, Melief CJ, et al. “MIATA”: minimal information about T cell assays. Immunity 2009; 31:527-8; PMID:19833080; http://dx.doi.org/10.1016/j.immu.2009.09.007.

219. Tanaka S, Harada M, Mine T, Noguchi M, Gohara R, Azuma K, et al. Cancer immunotherapy against melanoma and renal cell cancer using autologous CD4+ T cells targeted to NY-ESO-1 and survivin. J Immunother 2008; 31:165-78; PMID:18647966; http://dx.doi.org/10.1095/annonc/mdn430.

220. Levy A, Massard C, Gross-Goupil M, Fizazi K. Carcinomas of an unknown primary site: a curable disease? Ann Oncol 2008; 19:1657-8; PMID:18647966; http://dx.doi.org/10.1093/annonc/mdn430.

221. Hale DW, Clifton GT, Sears AK, Vreeland TJ, Shumway N, Peoples GE, et al. Cancer vaccines: should we be targeting patients with less aggressive disease? Expert Rev Vaccines 2012; 11:721-31; PMID:22873128; http://dx.doi.org/10.1586/erv.12.39.

222. Levy A, Massard C, Gross-Goupil M, Fizazi K. Carcinomas of an unknown primary site: a curable disease? Ann Oncol 2008; 19:1657-8; PMID:18647966; http://dx.doi.org/10.1093/annonc/mdn430.

223. Britten CM, Janetzki S, Butterfield LH, Ferrari G, Gouttefangeas C, Huber C, et al. T cell assays and MIATA: the essential minimum for maximum impact. Immunity 2012; 37:1-2; PMID:22840835; http://dx.doi.org/10.1016/j.immuni.2012.07.010.

224. Britten CM, Janetzki S, van der Burg SH, Huber C, Kalos M, Levitsky HI, et al. Minimal information about T cell assays: the process of reaching the community of T cell immunologists in cancer and beyond. Cancer Immunol Immunother 2011; 60:15-22; PMID:21080166; http://dx.doi.org/10.1007/s00262-010-0940-z.

225. Janetzki S, Britten CM, Kalos M, Levitsky HI, Mackler HT, Melief CJ, et al. “MIATA”: minimal information about T cell assays. Immunity 2009; 31:527-8; PMID:19833080; http://dx.doi.org/10.1016/j.immu.2009.09.007.