The automorphisms of endomorphism semigroups of free Burnside groups

V. S. Atabekyan

April 17, 2015

Abstract
In this paper we describe the automorphism groups of the endomorphism semigroups of free Burnside groups $B(m,n)$ for odd exponents $n \geq 1003$. We prove, that the groups $\text{Aut}(\text{End}(B(m,n)))$ and $\text{Aut}(B(m,n))$ are canonically isomorphic. In particular, if the groups $\text{Aut}(\text{End}(B(m,n)))$ and $\text{Aut}(\text{End}(B(k,n)))$ are isomorphic, then $m = k$.

1
The free Burnside group $B(m,n)$ is the free group of rank m of the variety B_n of all groups satisfying the identity $x^n = 1$. The group $B(m,n)$ is isomorphic to the quotient group of the absolutely free group F_m of rank m by normal subgroup F^m_m generated by all n-th powers of its elements. It is well known (see [1, Theorem 2.15]) that for all odd $n \geq 665$ and rank $m > 1$ the group $B(m,n)$ is infinite (and even has exponential growth). According to one other theorem of S.I. Adyan (see [1, Theorem 3.21]) for $m > 1$ and odd periods $n \geq 665$ the center of $B(m,n)$ is trivial and hence, $B(m,n)$ is isomorphic to the inner automorphism subgroup $\text{Inn}(B(m,n))$ of the automorphism group $\text{Aut}(B(m,n))$. Other results on automorphisms and monomorphisms of the groups $B(m,n)$ appeared relatively recently in [2]-[10]. In this paper we describe the automorphism groups of the endomorphism semigroups of $B(m,n)$ for odd exponents $n \geq 1003$. In particular, we prove, that the groups $\text{Aut}(\text{End}(B(m,n)))$ and $\text{Aut}(\text{End}(B(k,n)))$ are isomorphic if and only if $m = k$. This is a particular problem about $\text{End}(A)$, for A a free algebra in a certain variety, was raised by B.I. Plotkin in [14]. Analogous problems for $\text{End}(F)$ with F a finitely generated free group or free monoid were solved by Formanek in [12] and Mashevitzky and Schein in [13] respectively.
For an arbitrary group G consider a natural homomorphism

$$\tau_G : \text{Aut}(\text{End}(G)) \to \text{Aut}(\text{Aut}(G))$$

taking each automorphism from the endomorphism semigroup of the group G to its restriction on the subgroup of all invertible elements $\text{Aut}(G)$ of this semigroup. Obviously, any inner automorphism of $\text{Aut}(G)$ extends to an automorphism of the semigroup $\text{End}(G)$ in the natural way. Therefore, if all automorphisms of a group $\text{Aut}(G)$ are inner, then τ_G is surjective homomorphism. In particular, this is true for complete groups $\text{Aut}(G)$. Recall, that a group is called complete, if its center is trivial and all its automorphisms are inner.

Moreover, if $\phi : \text{Inn}(G) \to \text{Inn}(G)$ is an automorphism of the inner automorphism group of G and $\phi(i_g) = i_{\alpha(g)}$, then it is not hard to check that $\alpha : G \to G$ is an automorphism of G. By virtue of the relation $\alpha \circ i_g \circ \alpha^{-1} = i_{\alpha(g)}$ we get that the automorphism ϕ extends to the automorphism i_α of the semigroup $\text{End}(G)$. The subgroup $\text{Inn}(G)$ is characteristic in $\text{Aut}(G)$ for a complete groups G by the criterion of Burnside. Hence, for any complete group G the homomorphism

$$\iota_G : \text{Aut}(\text{End}(G)) \to \text{Aut}(\text{Inn}(G))$$

taking each automorphism from $\text{Aut}(\text{End}(G))$ to its restriction on the subgroup $\text{Inn}(G)$ also is surjective.

J. Dyer and E. Formanek in [11] proved that the automorphism group $\text{Aut}(F)$ is complete for any finitely generated non-abelian free group F. Therefore, we have an isomorphism $\text{Aut}(\text{Aut}(F)) \simeq \text{Aut}(F)$. Later on Formanek in [12] showed that the equality $\text{Ker}(\tau_F) = 1$ holds for the same free groups F. Thus, the groups $\text{Aut}(\text{End}(F))$ and $\text{Aut}(\text{Aut}(F))$ also are isomorphic and we have $\text{Aut}(\text{End}(F)) \simeq \text{Aut}(\text{Aut}(F)) \simeq \text{Aut}(F)$.

In [6] we have proved that for any $m > 1$ and odd $n \geq 1003$ the inner automorphism group $\text{Inn}(B(m, n))$ is the unique normal subgroup of $\text{Aut}(B(m, n))$ among all its subgroups, which is isomorphic to a free Burnside group $B(s, n)$ of some rank $s \geq 1$. From this it follows that $\text{Inn}(B(m, n))$ is a characteristic subgroup in $\text{Aut}(B(m, n))$ and hence, the group $\text{Aut}(B(m, n))$ is complete. As was noted above, the restriction of every automorphism of the endomorphism semigroup $\text{End}(B(m, n))$ on the subgroup $\text{Inn}(B(m, n))$ induces an automorphism, because $\text{Inn}(B(m, n))$ is a characteristic subgroup in $\text{Aut}(B(m, n))$.

The aim of this paper is to prove the following

Theorem 1. Let us Φ and Ψ be arbitrary automorphisms of the endomorphism semigroup $\text{End}(B(m, n))$ of the free Burnside group $B(m, n)$ of odd period $n \geq 1003$ and rank $m > 1$. \[2\]
Then $\Phi = \Psi$ if and only if the restrictions of the automorphisms Φ and Ψ on the subgroup $\text{Inn}(B(m,n))$ coincide, that is

$$\Phi \big|_{\text{Inn}(B(m,n))} = \Psi \big|_{\text{Inn}(B(m,n))}.$$

From Theorem \[\ref{thm:main} \] immediately follows

Corollary 1. The maps

$$\tau_{B(m,n)} : \text{Aut}(\text{End}(B(m,n))) \to \text{Aut}(\text{Aut}(B(m,n)))$$

and

$$\iota_{B(m,n)} : \text{Aut}(\text{End}(B(m,n))) \to \text{Aut}(\text{Inn}(B(m,n)))$$

are isomorphisms for any rank $m > 1$ and odd period $n \geq 1003$.

Taking into account that the groups $\text{Aut}(B(m,n))$ are complete for ranks $m > 1$ and odd periods $n \geq 1003$ we get

Corollary 2. For any automorphism $\Phi \in \text{Aut}(\text{End}(B(m,n)))$ there exists an automorphism $\alpha \in \text{Aut}(B(m,n))$ such that $\Phi(\varepsilon) = \alpha \circ \varepsilon \circ \alpha^{-1}$ for each endomorphism $\varepsilon \in \text{End}(B(m,n))$.

Corollary 3. For any odd $n \geq 1003$ the groups $\text{Aut}(\text{End}(B(m,n)))$ and $\text{Aut}(\text{End}(B(k,n)))$ are isomorphic if and only if $m = k$.

Proof. It follows from Corollary\[\ref{cor:tau} \] that $\text{Aut}(\text{End}(B(m,n)))$ is isomorphic to $\text{Aut}(B(m,n))$. By Theorem 1.3 from \[\cite{6} \] the automorphism groups $\text{Aut}(B(m,n))$ and $\text{Aut}(B(k,n))$ are isomorphic if and only if $m = k$. \qed

2 The proof of the main result

Obviously, to prove Theorem\[\ref{thm:main} \] it suffices to show that if the restriction of an automorphism Φ from $\text{End}(B(m,n))$ on the subgroup $\text{Inn}(B(m,n))$ is the identity automorphism, that is

$$\Phi \big|_{\text{Inn}(B(m,n))} = 1_{\text{Inn}(B(m,n))}, \quad (1)$$

then Φ is the identity automorphism of the semigroup $\text{End}(B(m,n))$.

Suppose that the equality (1) holds. We will prove that

$$\Phi = 1_{\text{End}(B(m,n))}$$
or equivalently we will prove that $\Phi(\varepsilon) = \varepsilon$ holds for each $\varepsilon \in \text{End}(B(m, n))$. More precisely we will show that the equality

$$\varepsilon(a)^{-1} \cdot \Phi(\varepsilon)(a) = 1$$

holds for any $a \in B(m, n)$ and $\varepsilon \in \text{End}(B(m, n))$.

The inner automorphism of $B(m, n)$ induced by element $a \in B(m, n)$ is denoted by i_a. Consider an arbitrary endomorphism $\varepsilon \in \text{End}(B(m, n))$ and apply the product of endomorphisms $\varepsilon \circ i_a$ to an element $x \in B(m, n)$. By definition we have

$$(\varepsilon \circ i_a)(x) = \varepsilon(i_a(x)) = \varepsilon(a)\varepsilon(x)\varepsilon(a)^{-1} = (i_{\varepsilon(a)} \circ \varepsilon)(x).$$

Hence, the equality

$$\varepsilon \circ i_a = i_{\varepsilon(a)} \circ \varepsilon$$

holds.

To both sides of the equality (3) applying the automorphism Φ and taking into account (1) we get the equality

$$\Phi(\varepsilon) \circ i_a = i_{\varepsilon(a)} \circ \Phi(\varepsilon).$$

Now the both sides of the equality (4) applying to an arbitrary element $x \in B(m, n)$ we obtain

$$\Phi(\varepsilon)(a) \cdot \Phi(\varepsilon)(x) \cdot \Phi(\varepsilon)(a)^{-1} = \varepsilon(a) \cdot \Phi(\varepsilon)(x) \cdot \varepsilon(a)^{-1}.$$
we have $\varepsilon = \varepsilon \circ \sigma$ and hence, $\Phi(\varepsilon) = \Phi(\varepsilon \circ \sigma) = \Phi(\varepsilon) \circ \sigma$, because $\Phi(\sigma) = \sigma$. On the other hand we have $(\Phi(\varepsilon) \circ \sigma)(b_j) = b^{-1} \neq b = \Phi(\varepsilon)(b_j)$, because $b^2 \neq 1$ provided n is odd. This contradiction shows that the image of the trivial endomorphism is the trivial endomorphism.

Now suppose that $\varepsilon(b_i) = a^{k_i}$ for some element $a \in B(m, n)$ and for each $i \in I$, where $k_i \in \mathbb{Z}$. We assume also that $\varepsilon(b_j) \neq 1$ for some $j \in I$.

Let d be a generator for the cyclic subgroup of additive group \mathbb{Z} of integers generated by the set of the numbers $\{k_i\}_{i \in I}$. Obviously, applying some elementary transformations to the sequence of numbers $\{k_i\}_{i \in I}$ we can obtain a new sequence $\{s_i\}_{i \in I}$ such that $s_1 = d$ and $s_i = 0$ for $i \neq 1$. Note that to any Nielsen transformation of system of generators $\{b_i\}_{i \in I}$ corresponds a Nielsen transformation of the system $\{\varepsilon(b_i)\}_{i \in I}$. The Nielsen transformations of the system $\{\varepsilon(b_i)\}_{i \in I}$ lead to the corresponding elementary transformations of the exponents $\{k_i\}_{i \in I}$ and vise versa. Consequently, there exist such Nielsen transformations of the system of free generators $\{b_i\}_{i \in I}$ which lied to the system of new free generators $\{y_i\}_{i \in I}$ of $B(m, n)$ satisfying to the conditions $\varepsilon(y_1) = a^d$ and $\varepsilon(y_i) = 1$ for $i \neq 1$.

Case 1. Let the period n of the group $B(m, n)$ is a prim number. Consider the endomorphism α given by the relations $\alpha(y_1) = y_1$ and $\alpha(y_i) = 1$ for $i \neq 1$. Then $\Phi(\alpha)$ is a non-trivial endomorphism, because α is non-trivial. According to (5) the element $\alpha(y_1)^{-1} \cdot \Phi(\alpha)(y_1)$ belongs to the centralizer of $\Phi(\alpha)(y_1)$ for all $i \in I$. The centralizer of $\Phi(\alpha)(y_1)$ is a cyclic group of order n. Therefor, the elements $\alpha(y_1)^{-1}$ and $\Phi(\alpha)(y_1)$ belongs to the centralizer of $\Phi(\alpha)(y_1)$ for each i. Consequently, for any $i \in I$ there is an integer t_i such that the equality $\Phi(\alpha)(y_1) = y_1^{t_i}$ holds. Evidently, the equality $\alpha \circ \alpha = \alpha$ also holds. Hence, $\Phi(\alpha) \circ \Phi(\alpha) = \Phi(\alpha)$. So, we have $t_1 t_i \equiv t_i (mod n)$ for all $i \in I$. The integers t_1 and $t_1 - 1$ are relatively prime and n is a prim number. Therefor, from $t_1^2 \equiv t_1 (mod n)$ it follows that $t_1 \equiv 0(mod n)$ or $t_1 \equiv 1(mod n)$. Since $\Phi(\alpha)$ is a non-trivial endomorphism, we obtain that the congruence $t_1 \equiv 1(mod n)$ holds. Now for any $j \neq 1$, $j \in I$ consider the Nielsen automorphism λ_j given by equalities $\lambda_j(y_1) = y_1 y_j$ and $\lambda_j(y_i) = y_i$ for $i \neq 1$. It is easy to check that $\alpha \circ \lambda_j = \alpha$. Hence, we obtain $\Phi(\alpha \circ \lambda_j) = \Phi(\alpha) \circ \lambda_j = \Phi(\alpha)$ by virtu $\Phi(\lambda_j) = \lambda_j$. Therefor, $\Phi(\alpha)(\lambda_j(y_1)) = \Phi(\alpha)(y_1)$, that is $y_1^{t_1 + t_j} = y_1^{t_1}$ for $j \neq 1$. This means that $t_j \equiv 0(mod n)$ for $j \neq 1$. Thus, $\Phi(\alpha)(y_1) = y_1^{t_i}$, where $t_1 \equiv 1(mod n)$ and $t_i \equiv 0(mod n)$ for $i \neq 1$. So, we get $\Phi(\alpha) = \alpha$.

Now let b be an arbitrary non-commuting with a element of the group $B(m, n)$ and γ be an endomorphism of $B(m, n)$ given on the free generators by the formulae $\gamma(y_1) = a^d$ and $\gamma(y_i) = b$ for $i \neq 1$. It is easy to verify that $\varepsilon = \gamma \circ \alpha$. Since $\text{Im}(\gamma)$ is a non-cyclic subgroup, then $\Phi(\gamma) = \gamma$. Therefor, $\Phi(\varepsilon) = \Phi(\gamma) \circ \Phi(\alpha) = \gamma \circ \alpha = \varepsilon$. In the Case 1 the
equality (2) proved.

Case 2. Let the period n of $B(m, n)$ be a composite number and $n = n_1 n_2$, where $1 < n_1, n_2 < n$. Consider the endomorphism $\delta_1 : B(m, n) \to B(m, n)$ given on the generators by the equalities

$$\delta_1(y_1) = a^d \quad \text{and} \quad \delta_1(y_j) = y_k^{n_1} \quad \text{for} \quad j \neq 1,$$

where y_k is a fixed and non-commuting with a^d generator of $B(m, n)$. Consider also the endomorphism $\delta_2 : B(m, n) \to B(m, n)$ defined by the equalities

$$\delta_2(y_1) = y_1 \quad \text{and} \quad \delta_2(y_j) = y_j^{n_2} \quad \text{for} \quad j \neq 1.$$

Since the images of the endomorphisms δ_1, δ_2 are not cyclic, then $\Phi(\delta_i) = \delta_i, i = 1, 2$. From the definitions of endomorphisms δ_i immediately follows that $\delta_1 \circ \delta_2 = \varepsilon$. Therefore, we get $\Phi(\varepsilon) = \varepsilon$. Theorem 1 is proved.

References

[1] S. I. Adian, *The Burnside Problem and Identities in Groups*, Ergebnisse der Mathematik und ihrer Grenzgebiete, 95 (Springer-Verlag, Berlin, 1979).

[2] V. S. Atabekian, On subgroups of free Burnside groups of odd period $n \geq 1003$. (in Russian) *Izv. Ross. Akad. Nauk Ser. Mat.* 73(5) (2009) 3–36; *Izv. Math.* 73(5) (2009) 861–892 (in English).

[3] V. S. Atabekian, Monomorphisms of Free Burnside Groups, *Mat. Zametki* 86(4) (2009) 483–490 (in Russian); *Math. Notes* 86(4) (2009) 457–462 (in English).

[4] V. S. Atabekian, Normal automorphisms of free Burnside groups. *Izv. RAN. Ser. Mat.* 75(2) (2011) 3–18 (in Russian); *Izv. Math.* 75(2) (2011) 223–237 (in English).

[5] V. S. Atabekian, Splitting automorphisms of free Burnside groups. *Mat. Sb.* 204(2) (2013) 31–38 (in Russian); *Sbornik: Mathematics* 204(2) (2013) 182–189 (in English).

[6] V. S. Atabekian, The groups of automorphisms are complete for free Burnside groups of odd exponents $n \geq 1003$, *Int. J. Algebra Comput.* 23 (2013) 1485–1496.

[7] V. S. Atabekian, Splitting automorphisms of order p^k of free Burnside groups are inner, *Mat. Zametki* 95(5) (2014) 651–655 (in Russian); *Mathematical Notes* 95(5) (2014) 586589 (in English).
[8] E. A. Cherepanov. Free semigroup in the group of automorphisms of the free Burnside group. *Comm. Algebra* **33**(2) (2005) 539–547.

[9] E. A. Cherepanov, Normal automorphisms of free Burnside groups of large odd exponents, *Internat. J. Algebra Comput* **16**(5) (2006) 839–847.

[10] R. Coulon, Outer automorphisms of the free Burnside group, *Commentarii Mathematici Helvetici* **88** (2013), 789–811.

[11] J. Dyer, E. Formanek, The automorphism group of a free group is complete. *J. London Math. Soc.* **11**(2) (1975) 181–190.

[12] E. Formanek, A question of B. Plotkin about the semigroup of endomorphisms of a free group, *Proc. Amer. Math. Soc.* **130** (2002) 935–937.

[13] G. Mashevitzky, B. Schein, Automorphisms of the endomorphism semigroup of a free monoid or a free semigroup, *Proceedings of the American Mathematical Society* **131**(6) (2003) 1655–1660.

[14] B. I. Plotkin, *Seven Lectures on the Universal Algebraic Geometry*, Preprint, Institute of Mathematics, Hebrew University, (2000).