Genetically determined hypoalbuminemia as a risk factor for hypertension: instrumental variable analysis

Jong Wook Choi1, Joon-Sung Park2,* & Chang Hwa Lee2,*

Hypoalbuminemia is associated with vascular endothelial dysfunction and the development of chronic cardiovascular diseases. However, the relationship between serum albumin concentration and blood pressure changes remains controversial. Community-based longitudinal cohort data collected from Korean Genome and Epidemiology Study were used in this study. Hypoalbuminemia was defined as a serum albumin concentration of ≤ 4.0 g/dL. A total of 4325 participants were categorized into control (n = 3157) and hypoalbuminemia (n = 1168) groups. Serum albumin had a non-linear relationship with the risk of hypertension development. A genome-wide association study revealed 71 susceptibility loci associated with hypoalbuminemia. Among susceptibility loci, genetic variations at rs2894536 in LOC107986598 and rs10972486 in ATP8B5P were related to elevated blood pressure. Serum albumin (HR = 0.654, 95% CI 0.521–0.820) and polymorphisms of rs2894536 (HR = 1.176, 95% CI 1.015–1.361) and rs10972486 (HR = 1.152, 95% CI 1.009–1.316) were significant predictors of hypertension development. Increased albumin concentration instrumented by 2 hypoalbuminemia-associated SNPs (rs2894536 and rs10972486) was associated with decreased HRs for hypertension development (HR = 0.762, 95% CI 0.659–0.882 and HR = 0.759, 95% CI 0.656–0.878). Our study demonstrated that genetically determined hypoalbuminemia is a significant predictor of incipient hypertension.

Albumin, one of the major serum proteins, has multiple important physiological functions involving stabilization of plasma colloid osmotic pressure, transportation of diverse substances, and significant antioxidant activity, and its concentration is finely regulated by various systems in the physiologic state. Hypoalbuminemia is strongly related to unfavorable health outcomes in various pathologic conditions, including hospitalized patients, surgical patients, and those with heart failure, chronic liver disease, chronic kidney disease, or end-stage renal disease. Furthermore, recent epidemiologic studies have shown that low serum albumin concentration is a reliable clinical biomarker of vascular endothelial dysfunction and is an important predictor of future cardiovascular diseases and all-cause mortality in the general population.

Hypertension is a well-known modifiable risk factor in the development and progression of chronic CVDs. The vascular endothelium is the primary site of systemic hemodynamic dysfunction in various metabolic and vascular diseases. Vascular endothelial dysfunction is mainly characterized by the induction of a pro-inflammatory or pro-thrombotic state and impairment in endothelium-dependent relaxation of blood vessels, which may play critical roles in the pathogenesis of hypertension. However, the pathophysiologic connection between hypoalbuminemia and hypertension has not yet been clarified.

There has been inconsistent evidence on the relationship between serum albumin concentration and the risk of hypertension. Previously, Hu et al. and Hostmark et al. showed that a rise in serum albumin levels was associated with elevated systolic blood pressure (SBP) and diastolic blood pressure (DBP) in a Caucasian population. Recently, Oda et al. demonstrated that a decreased serum albumin level was also a significant predictor of hypertension in a Japanese health population. Such findings may indicate that possible confounders, such as differences across racial groups and selection bias, could alter the impact of serum albumin levels on the development of hypertension. Instrumental variables can be used to help address the effect of unobserved confounders by operating as a randomization process when evaluating the association between environmental exposures and outcomes of interest. Thus, we performed a genome-wide association study (GWAS) to identify...
genetic variants associated with hypoalbuminemia and instrumental variable analysis to establish robust causal relationships between genetically determined hypoalbuminemia and the development of hypertension in a community-based cohort population.

Results

Baseline characteristics. The participants (n = 4325) comprised 1959 men and 2366 women, with a mean age of 49.5 ± 8.2 years. They were categorized into two groups according to their serum albumin levels. Participants with hypoalbuminemia were older and more likely to have elevated DBP, decreased hemoglobin, increased eGFR, and poor lipid profiles; there were more female subjects than male subjects with hypoalbuminemia. Participants with normal serum albumin levels had increased white blood counts, fasting glucose, and postprandial glucose. Other demographic data and clinical characteristics are presented in Table 1.

Relationship between hypoalbuminemia and blood pressure. We performed linear regression analysis using age, sex, and smoking history as covariates and found that serum albumin levels were closely related with DBP, hemoglobin, platelet, total protein, calcium, fasting glucose, postprandial glucose, eGFR, total bilirubin, γ-glutamyl transferase, HDL-cholesterol, LDL-cholesterol, and C-reactive protein levels (Table 2). However, our restricted cubic spline regression analysis showed that there may be a non-linear relationship between serum albumin concentration and changes in blood pressure (Fig. 1).

De novo GWAS for hypoalbuminemia. We examined genetic data from 1168 participants with hypoalbuminemia (case) and 3157 participants with non-hypoalbuminemia (control) from the Ansan-Anseong cohort of the Korean Genome and Epidemiology Study (KoGES). After a standard quality control procedure, we obtained genotyping results for 519,364 SNPs and generated a quantile–quantile plot (Supplementary Fig. S1). The genomic inflation factor λ was 1.0206 in the quantile-quantile plot and the observed p-values show an early

Variable	Albumin (g/dL)	P	
	> 4 (n = 3157)	≤ 4 (n = 1168)	
Age (year)	48.9 ± 7.9	51.1 ± 8.7	< 0.0001
Sex (male, %)	1625 (51.5)	334 (28.6)	< 0.0001
Smoker (n, %)	889 (28.2)	226 (19.3)	< 0.0001
Body mass index (kg/m²)	24.0 ± 3.1	23.9 ± 2.9	0.6863
Waist circumference (cm)	80.5 ± 8.6	79.9 ± 8.2	0.1709
Systolic BP (mmHg)	113.4 ± 10.8	113.2 ± 11.1	0.4836
Diastolic BP (mmHg)	76.0 ± 7.3	74.7 ± 7.5	< 0.0001
White blood cell (10⁹/L)	6.4 ± 1.7	6.3 ± 1.9	0.0113
Hemoglobin (g/dL)	13.6 ± 1.5	12.8 ± 1.5	< 0.0001
Platelet (10⁵/μL)	263.1 ± 61.5	259.9 ± 61.7	0.5100
Total protein (g/dL)	7.4 ± 0.4	6.9 ± 0.3	< 0.0001
Albumin (g/dL)	4.4 ± 0.3	3.9 ± 0.1	< 0.0001
Calcium (mg/dL)	9.3 ± 0.6	9.5 ± 0.4	< 0.0001
Fasting glucose (mg/dL)	82.9 ± 8.4	79.5 ± 6.9	< 0.0001
Hemoglobin A1c (%)	5.50 ± 0.34	5.51 ± 0.34	0.3316
eGFR (ml/min/1.73 m²)	93.2 ± 13.7	97.7 ± 11.3	< 0.0001
Total bilirubin (mg/dL)	0.7 ± 0.3	0.5 ± 0.2	< 0.0001
Aspartate aminotransferase (IU/L)	28.2 ± 13.5	28.5 ± 19.4	< 0.0001
Alanine aminotransferase (IU/L)	26.2 ± 20.6	24.3 ± 22.8	< 0.0001
γ-Glutamyl transferase (IU/L)	28.3 ± 34.4	26.1 ± 71.9	< 0.0001
Triglyceride (mg/dL)	135.9 ± 86.0	146.0 ± 90.1	< 0.0001
HDL-cholesterol (mg/dL)	45.7 ± 10.1	44.0 ± 9.7	< 0.0001
LDL-cholesterol (mg/dL)	101.5 ± 27.8	118.0 ± 31.2	< 0.0001
C-reactive protein (mg/dL)	0.19 ± 0.39	0.23 ± 0.55	0.2859
UACR (mg/g Cr)	10.1 ± 6.2	9.7 ± 6.7	0.3833

Table 1. Baseline characteristics grouped by serum albumin concentration. Results are expressed as the mean ± standard deviation or as frequencies (and proportions). BP, blood pressure; eGFR, estimated glomerular filtration rate; HDL, high-density lipoprotein; LDL, low-density lipoprotein; UACR, urine albumin/creatinine ratio; Cr, creatinine. *Estimated using the Chronic Kidney Disease Epidemiology Collaboration equation.
deviation from expectation, which may be indicative of the inflation in test statistics caused by polygenic effect and Korean population structure.

We performed a logistic regression analysis for slightly decreased serum albumin concentration, using age and sex as covariates, and subsequently calculated the minimum P-value for three genetic models (additive, recessive, and dominant, Supplementary Table S1). Our association analysis revealed that a total of 71 SNPs from 28 distinct genomic regions were significantly associated with hypoalbuminemia (PG WAS ranging from 9.9 × 10−5

Parameter	Crude Parameter β	Crude Parameter P	Model I Parameter β	Model I Parameter P
Age (year)	−0.0070	<0.0001	−0.0070	<0.0001
Sex (vs male)	0.2021	<0.0001	0.2021	<0.0001
Smoking history (vs never smoker)	−0.0707	<0.0001	−0.0707	<0.0001
Systolic BP (mmHg)	−0.0001	0.9211	−0.0001	0.9211
Diastolic BP (mmHg)	−0.0047	<0.0001	−0.0005	<0.0001
Body mass index (kg/m²)	−0.0031	0.4377	−0.0031	0.4377
Waist circumference (cm)	−0.0005	0.4193	−0.0005	0.4193
White blood cell (10⁷/L)	0.0104	0.0002	0.029	0.2720
Hemoglobin (g/dL)	0.0647	<0.0001	0.0391	<0.0001
Platelet (10⁹/μL)	0.0006	0.0006	0.0004	<0.0001
Total protein (g/dL)	0.5119	<0.0001	0.4824	<0.0001
Calcium (mg/dL)	−0.2856	<0.0001	−0.2686	<0.0001
Fasting glucose (mg/dL)	0.0141	<0.0001	0.0117	<0.0001
Post-prandial glucose (mg/dL)	0.0011	<0.0001	0.0016	<0.0001
Hemoglobin A1c (%)	−0.0284	0.0517	−0.0284	0.0517
eGFR (mL/min/1.73 m²)	−0.0093	<0.0001	−0.0077	<0.0001
Total bilirubin (mg/dL)	0.3306	<0.0001	0.2403	<0.0001
Aspartate aminotransferase (IU/L)	−0.0001	0.8388	−0.0001	0.8388
Alanine aminotransferase (IU/L)	0.0008	0.0006	0.0003	0.1320
γ-Glutamyl transferase (IU/L)	0.0003	0.0001	0.0002	0.0219
Triglyceride (mg/dL)	−0.0002	0.0001	−0.0001	0.5488
HDL-cholesterol (mg/dL)	0.0051	<0.0001	0.0037	<0.0001
LDL-cholesterol (mg/dL)	−0.0037	<0.0001	−0.0037	<0.0001
C-reactive protein (mg/dL)	−0.0385	<0.0001	−0.0300	0.0075
UACR (mg/g Cr)	0.0008	0.2875	−0.0002	−0.0300

Table 2. Multiple linear regression analysis for serum albumin. Model I: adjusted for age, sex, and smoking history.

Figure 1. Relationship of serum albumin levels with the change in (A) systolic blood pressure (ΔSBP) and (B) diastolic blood pressure (ΔDBP) compared with the chosen reference albumin (g/dL) of 4.0. The solid line represents the change in BP during the follow-up period, and dashed lines represent 95% confidential intervals. *Calculated by restricted cubic spline regression using age, sex, and smoking history as covariates.
to 6.5 × 10⁻⁶, Supplementary Fig. S2). Among the loci found in this study, only one genetic locus, \textit{GCKR}, was revealed in other GWAS of populations of eastern Asian ancestry15. Because the SNPs of interest were located in a genomic region encoding \textit{VEGFA}, \textit{LOC107986598}, \textit{LOC100132354}, \textit{UNC13B}, \textit{ATP8B5P}, and \textit{RUSC2}, among others, we performed imputation analysis to characterize these loci. The regional association plots using genotyped and imputed data showed that rs2894536 was confined to regions around the \textit{LOC107986598} gene and rs10972486, the \textit{ATP8B5P} gene (Supplementary Fig. S3).

Hypoalbuminemia, hypoalbuminemia-related SNPs, and the risk of hypertension development.

To avoid bias from the endogeneity in conventional linear regression analysis, we performed two-stage least squares estimation analysis using genetic variant(s) explaining the change in serum albumin concentration as instrument variables, including rs2894536 in \textit{LOC107986598} and rs10972486 in \textit{ATP8B5P} (Table 3 and Supplementary Table S2). In ordinary least square linear regression, SBP and DBP decreased with increasing serum albumin levels (ΔSBP, \(\beta = -0.043\) mmHg/month, \(P = 0.0017\); ΔDBP, \(\beta = -0.103\) mmHg/month, \(P < 0.0001\)). Our two-stage least squares estimation analysis revealed a possible causal role of hypoalbuminemia in determining SBP change (rs2894536: \(F = 16.56, P_{\text{DWH}} = 0.0009\); rs10972486: \(F = 16.69, P_{\text{DWH}} = 0.0008\)), but not DBP.

Our multiple Cox-proportional hazards model demonstrated that serum albumin concentration and hypoalbuminemia-related SNPs were deeply associated with an increased risk of hypertension development (albumin, HR = 0.654, 95% CI 0.521–0.820; rs2894536, HR = 1.164, 95% CI 1.022–1.325; rs10972486, HR = 1.158, 95% CI 1.017–1.319) after adjustment for age, sex, smoking history, systolic BP, diastolic BP, body mass index, waist circumference, hemoglobin, platelet, hemoglobin A1c, alanine aminotransferase, γ-glutamyl transferase, triglyceride, and HDL-cholesterol levels. HR, hazard ratio; CI, confidence interval. *Defined as BP ≥ 140/90 mmHg and/or antihypertensive drug therapy during the follow-up period.

Table 3. Relationship of serum albumin (endogenous variable) with the change in (A) systolic blood pressure (ΔSBP) and diastolic blood pressure (ΔDBP) as tested both by ordinary least square linear regression and the application of two-stage least squares regression analysis using candidate genetic polymorphisms as an instrument variable. Regression results were adjusted for age and sex. SE, standard error. *Estimated using the Durbin-Wu-Hausman test, which examines the difference between the estimates from ordinary least squares linear regression and instrumental variable analysis.

Instrumental variable	ΔSBP (mmHg/month)	ΔDBP (mmHg/month)								
	\(\beta\)	SE	P	F	P_{\text{DWH}}*	\(\beta\)	SE	P	F	P_{\text{DWH}}*
Ordinary least square linear regression										
Albumin (g/dL)	-0.043	0.014	0.0017	-0.103	0.017	<0.0001				
Two-stage least squares regression analysis										
rs2894536 (vs. GG)	-0.050	0.007	<0.0001	16.56	0.0009	0.001	0.008	0.9921	5.06	0.1675
rs10972486 (vs. TT)	-0.051	0.007	<0.0001	16.69	0.0008	-0.001	0.008	0.9043	4.97	0.1737

Table 4. Multiple Cox proportional hazard model for hypertension (HTN)* development. Model I: adjusted for age, sex, and smoking history. Model II: adjusted for age, sex, smoking history, systolic BP, diastolic BP, body mass index, waist circumference, hemoglobin, platelet, hemoglobin A1c, alanine aminotransferase, γ-glutamyl transferase, triglyceride, and HDL-cholesterol levels. Model III: adjusted for age, sex, smoking history, systolic BP, diastolic BP, body mass index, waist circumference, hemoglobin, platelet, albumin, hemoglobin A1c, alanine aminotransferase, γ-glutamyl transferase, triglyceride, and HDL-cholesterol levels. HR, hazard ratio; CI, confidence interval. *Defined as BP ≥ 140/90 mmHg and/or antihypertensive drug therapy during the follow-up period.

Variable	Model I	Model II	Model III			
	HR	95% CI	HR	95% CI	HR	95% CI
Albumin (g/dL)	0.599	0.484–0.741	0.654	0.521–0.820		
rs2894536						
Additive model	1.164	1.022–1.325	1.158	1.017–1.319	1.141	1.003–1.299
Dominant model	1.188	1.026–1.376	1.185	1.024–1.371	1.176	1.015–1.361
Recessive model	1.225	0.777–1.931				
rs10972486						
Additive model	1.090	0.990–1.201				
Dominant model	1.160	1.015–1.325	1.153	1.008–1.317	1.152	1.009–1.316
Recessive model	1.047	0.854–1.282				
We performed restricted cubic spline regression analysis to evaluate the linearity of the relationship between serum albumin concentration and the risk of hypertension development and found that there was a non-linear relationship between them (Fig. 3). The inverse relation of serum albumin with the risk of hypertension development was attenuated in the condition of low serum albumin level (below 4 g/dL), suggesting that other confounding factor(s) may change the effect of serum albumin level on arterial blood pressure. To draw causal inferences about the effects of candidate genetic variation on hypoalbuminemia-related hypertension while controlling for unobserved confounding effects, we performed a two-stage residual inclusion analysis and found that genetically determined hypoalbuminemia was deeply related to an increased risk of incident hypertension (rs2894536, HR = 0.762, 95% CI 0.659–0.882; rs10972486, HR = 0.759, 95% CI 0.656–0.878; Table 5).

Discussion

This study provides comprehensive information on the association between genetic variations, hypoalbuminemia, and the risk of hypertension, showing that genetically determined hypoalbuminemia played a causal role in the development of incipient hypertension. To the best of our knowledge, this is the first instrumental variable study to demonstrate that the vascular protective effect of serum albumin may attenuate the risk of hypertension development.

In this study, we found that there was a reverse relationship between serum albumin and the risk of incipient hypertension. Previous epidemiologic and experimental studies demonstrated that serum albumin with anti-inflammatory and antioxidant properties plays homeostatic regulatory roles in various physiological processes, and hypoalbuminemia is strongly associated with systemic inflammatory responses, vascular endothelial injury, and development of chronic vascular diseases\(^\text{16-19}\). However, other clinical studies showed very inconsistent association between serum albumin level and arterial blood pressure\(^\text{12-14}\). Such findings seem to be the result of not only the limitations of study design, problems of small sample size, or differences in race and ethnicity, but also the hidden effects of confounding variable(s). To overcome the limitations of previous studies and to assess more robust associations between exposure variables and outcome variables, we performed an instrumental variable analysis based on a community-based longitudinal study with a large sample size and demonstrated that a low serum albumin concentration could be a factor for predicting the development of hypertension in the general population.

Our study results revealed that potential genetic variations could be related to changes in the function of vascular endothelial cells and the development of hypertension, showing that two candidate loci, rs2894536 in the *LOC107986598* region and rs10972486 in the *ATP8B5P* region, were deeply associated with hypoalbuminemia.
LOC107986598 is an uncharacterized non-coding ribonucleic acid (ncRNA) gene located near vascular endothelial growth factor A (VEGF-A). Previous basic research demonstrated that ncRNA can exert more widespread effects on gene regulation; VEGF-A is one of the critical molecules for endothelial maintenance and exerts pleiotropic actions to facilitate migration, proliferation, and survival of vascular endothelial cells; and anti-VEGF-A therapies are strongly related to the development of proteinuria and increased blood pressure20–22. Such findings suggested that the regulatory function of **LOC107986598** may be important for maintaining physiological vascular endothelial function. Meanwhile, there is limited evidence supporting the relationship between ATP8B5P and hypoalbuminemia. ATP8B5P, a human gene related to ATP8B1, is a typical pseudogene predominantly expressed in the testes. Although the transcript of ATP8B5P does not contain fully functional reading frames, several recent experimental studies demonstrated that the ATP8B1 protein belongs to the family IV of P-type adenosine triphosphatase, which is one of the membrane proteins that are responsible for the generation and maintenance of phospholipid asymmetry in the lipid bilayer; ATP8B1 protein was enriched in cerebral micro-vessels; and some pseudogenes appear to harbor the potential to regulate their protein-coding cousins23–26. These findings suggest that the VEGF-A–or ATP8B1-related pathways may play a role in the development of hypoalbuminemia and initiation of blood pressure elevation. There is a need to further investigate the specific gene regulatory pathway, which will provide target genes for future drug development endeavors.

There was a difference between conventional linear regression analysis and two-stage least squares estimation analysis results: serum albumin level was strongly related with only DBP in conventional linear regression analysis, but it was related to both SBP and DBP in the two-stage least squares estimation analysis. A possible explanation for this discrepancy may be the limitations of observational epidemiology (confounding, reverse

Figure 3. Non-linear relationship between serum albumin levels and the hazard ratio of hypertension development compared with the chosen reference albumin (g/dL) of 4.0. The solid line represents the hazard ratio of hypertension during the follow-up period, and dashed lines represent 95% confidential intervals. *Calculated using restricted cubic spline regression using age, sex, smoking history, systolic BP, diastolic BP, body mass index, waist circumference, hemoglobin, platelet, hemoglobin A1c, alanine aminotransferase, γ-glutamyl transferase, triglyceride, and HDL-cholesterol level as covariates.

Table 5. Control function instrument variable estimator of the casual HR for the effect of serum albumin levels on HTN development. *Calculated using a two-stage residual inclusion method.
causality, or regression dilution bias) for making causal inferences. These findings indicated that caution is needed when drawing conclusions from conventional observational epidemiologic studies, and instrumental variable methods can make more accurate causal relationships between the exposure to the candidate risk factors and clinical outcomes.

There are some limitations to this study. First, statistical methods of causal inference, namely instrumental variable analyses, could not completely remove confounding and selection bias. To avoid a possible current limitation of the instrumental variable analysis, we had strict inclusion criteria and extensive exclusion criteria. Second, either the determination of serum albumin concentration or the development of hypertension might be influenced by a wide variety of factors promoting vascular endothelial dysfunction. Because this community-based cohort study did not contain data on 24-h urine collection, ambulatory BP monitoring, vascular flowmetry, thyroid function test, abdominal ultrasonography, or echocardiography, we could not assess the exact association of genetic variation, hypoalbuminemia, vascular endothelial dysfunction, and hypertension. In addition, sex differences in albumin levels may have been attributed to hormonal basis for the differences between males and females or other factors such as oral contraceptives and menopause, but it is believed that the adjustment for sex would have reduced the error resulting from them in this study. The Third, a social desirability bias could not be ruled out because medical history, use of medication, and consumption of tobacco or alcohol were all self-reported by subjects. This could have contributed to conflicting results with other studies. Finally, this GWAS could not reached a stringent genome-wide significance threshold (e.g. 10^{-8}) and we could not perform a replication study owing to limited sample sizes of the cohort data and the lack of another independent cohort with similar phenotype. Moreover, the limited sample size of the hypoalbuminemia group could lead to bias in the nonlinear relationship between serum albumin and hypertension. This lack of sample size in this study is one of the major limitations and it raises the need for large-scale follow-up research. Because GWAS generally diminishes the ability to detect variants of small effects, a replication study is required to avoid false positives and to correctly assess the effect size of the SNP. As a result, large genotyping studies and robust replication studies are required in the future to confirm the associations and to find detailed relationships among the genotypic variants.

In conclusion, this study demonstrated that there was a causal relationship between hypoalbuminemia and the risk of future hypertension in the general population. The current findings may provide an opportunity to determine the underlying mechanisms of the effects of hypoalbuminemia on the increased risk of hypertension. Further replication studies and experimental studies are needed to clarify the causal mechanisms between hypoalbuminemia and incipient hypertension.

Methods
Study design and population. The present study used Ansan-Anseong cohort data from KoGES, in which biannual repeated surveys were collected between 2001 and 2014. The comprehensive profile and methods regarding the development of the KoGES have been presented previously. Ansan-Anseong cohort data were developed to find the potential effect of candidate genetic variation on various chronic illnesses, which are from a medium-sized city (Ansan) and a rural area (Anseong) near Seoul, Korea. All participants underwent serial health examinations biannually including laboratory tests, electrocardiograms, chest X-rays, and health questionnaires. The use of antihypertensive therapy was assessed using an interviewer-administered questionnaire at baseline and every visit. All participants were enrolled voluntarily and provided written informed consent. All participants’ records, apart from the survey date and home region, were anonymized before analysis. This study was carried out in accordance with the Declaration of Helsinki and was approved by the Institutional Review Board (IRB) of Konkuk University Medical Center (IRB protocol: KUCH 2019-02-007). After the exclusion of subjects with missing data and those with hypertension, diabetes mellitus, chronic kidney disease, cardiovascular disease, and malignancy in KoGES, a total of 4325 eligible participants were categorized into two groups based on their serum albumin results (Supplementary Fig. S4).

Anthropometric and clinical measurements. Anthropometric measurements were performed by well-trained examiners. Participants wore a lightweight gown or underwear. Height (Ht) was measured to the nearest 0.1 cm using a portable stadiometer (SECA 225, SECA, Hamburg Germany). Weight was measured to the nearest 0.1 kg on a calibrated balance-beam scale (GL-60000-20, CAS Korea, Seoul, Korea). Waist circumference was measured using a flexible tape at the narrowest point between the lowest border of the rib cage and the uppermost lateral border of the iliac crest at the end of normal expiration.

Trained examiners measured blood pressure (BP) according to a standardized protocol using an appropriately-sized cuff and a mercury sphygmomanometer at baseline and biannual follow-up visits. The first and fifth phases of Korotkoff sounds were used for SBP and DBP. BP measurements were repeated after 30-s intervals and were recorded to the nearest 2 mmHg. SBP and DBP were determined as the average of the right and left arm readings obtained three times between 7:00 a.m. and 9:00 a.m. after a minimum of 5 min of rest in a seated position; there were 5 min of rest between each measurement. Average rate of blood pressure change was calculated as the difference between blood pressure at baseline and last measurement just before the diagnosis of hypertension divided by the length of the period.

Laboratory tests. Venous blood samples were collected after 8 h of overnight fasting. Fasting plasma concentrations of glucose, triglyceride (TG), high-density lipoprotein (HDL)-cholesterol, and low-density lipoprotein (LDL)-cholesterol were determined using a Hitachi Automatic Analyzer 7600 (Hitachi, Tokyo, Japan). Glycated hemoglobin (HbA1c) levels were determined by high-performance liquid chromatography (Variant II; BioRad Laboratories, Hercules, CA, USA). Serum creatinine levels were measured colorimetrically (Hitachi Automatic Analyzer 7600), and estimated glomerular filtration rate (eGFR) was calculated using the Chronic

In conclusion, this study demonstrated that there was a causal relationship between hypoalbuminemia and the risk of future hypertension in the general population. The current findings may provide an opportunity to determine the underlying mechanisms of the effects of hypoalbuminemia on the increased risk of hypertension. Further replication studies and experimental studies are needed to clarify the causal mechanisms between hypoalbuminemia and incipient hypertension.

Methods
Study design and population. The present study used Ansan-Anseong cohort data from KoGES, in which biannual repeated surveys were collected between 2001 and 2014. The comprehensive profile and methods regarding the development of the KoGES have been presented previously. Ansan-Anseong cohort data were developed to find the potential effect of candidate genetic variation on various chronic illnesses, which are from a medium-sized city (Ansan) and a rural area (Anseong) near Seoul, Korea. All participants underwent serial health examinations biannually including laboratory tests, electrocardiograms, chest X-rays, and health questionnaires. The use of antihypertensive therapy was assessed using an interviewer-administered questionnaire at baseline and every visit. All participants were enrolled voluntarily and provided written informed consent. All participants’ records, apart from the survey date and home region, were anonymized before analysis. This study was carried out in accordance with the Declaration of Helsinki and was approved by the Institutional Review Board (IRB) of Konkuk University Medical Center (IRB protocol: KUCH 2019-02-007). After the exclusion of subjects with missing data and those with hypertension, diabetes mellitus, chronic kidney disease, cardiovascular disease, and malignancy in KoGES, a total of 4325 eligible participants were categorized into two groups based on their serum albumin results (Supplementary Fig. S4).

Anthropometric and clinical measurements. Anthropometric measurements were performed by well-trained examiners. Participants wore a lightweight gown or underwear. Height (Ht) was measured to the nearest 0.1 cm using a portable stadiometer (SECA 225, SECA, Hamburg Germany). Weight was measured to the nearest 0.1 kg on a calibrated balance-beam scale (GL-60000-20, CAS Korea, Seoul, Korea). Waist circumference was measured using a flexible tape at the narrowest point between the lowest border of the rib cage and the uppermost lateral border of the iliac crest at the end of normal expiration.

Trained examiners measured blood pressure (BP) according to a standardized protocol using an appropriately-sized cuff and a mercury sphygmomanometer at baseline and biannual follow-up visits. The first and fifth phases of Korotkoff sounds were used for SBP and DBP. BP measurements were repeated after 30-s intervals and were recorded to the nearest 2 mmHg. SBP and DBP were determined as the average of the right and left arm readings obtained three times between 7:00 a.m. and 9:00 a.m. after a minimum of 5 min of rest in a seated position; there were 5 min of rest between each measurement. Average rate of blood pressure change was calculated as the difference between blood pressure at baseline and last measurement just before the diagnosis of hypertension divided by the length of the period.

Laboratory tests. Venous blood samples were collected after 8 h of overnight fasting. Fasting plasma concentrations of glucose, triglyceride (TG), high-density lipoprotein (HDL)-cholesterol, and low-density lipoprotein (LDL)-cholesterol were determined using a Hitachi Automatic Analyzer 7600 (Hitachi, Tokyo, Japan). Glycated hemoglobin (HbA1c) levels were determined by high-performance liquid chromatography (Variant II; BioRad Laboratories, Hercules, CA, USA). Serum creatinine levels were measured colorimetrically (Hitachi Automatic Analyzer 7600), and estimated glomerular filtration rate (eGFR) was calculated using the Chronic
Kidney Disease Epidemiology Collaboration equation. To obtain the urine albumin/creatinine ratio (UACR), urinary albumin was measured in spot urine using the immunoturbidimetric method, and urinary creatinine was measured using the colorimetric method.

Genotyping. We analyzed the data on single nucleotide polymorphisms (SNPs) in the whole genome available to the research community through the Korean Association Resource (KARE) project from KoGES and used the Affymetrix Genome-Wide Human SNP Array 5.0 (Affymetrix Inc., Santa Clara, CA, USA) to genotype the samples from the Ansan-Anseong cohorts. The Bayesian Robust Linear Model with the Mahalanobis distance algorithm was used to determine the genotypes at SNP of Affymetrix 5.0. SNPs were excluded if any of the following criteria were met: (1) a call rate lower than 95%, (2) a minor allele frequency below 0.05, or (3) a significant deviation from the Hardy–Weinberg equilibrium below 0.001. Among the SNPs filtered by these criteria, only tagging SNPs were used for analysis in this study.

Definition. According to previous epidemiologic studies, we defined hypoalbuminemia as a serum albumin concentration of ≤ 4.0 g/dL. According to the Joint National Committee 7/8 guidelines, hypertension was defined as either the use of antihypertensive therapy, SBP above 140 mmHg, or DBP above 90 mmHg.

Statistical analysis. All data, including socio-demographic information, medical conditions, anthropometric and clinical measurements, and laboratory results, were presented as mean ± standard deviation or frequencies (and proportions). The normality of the distribution of parameters was analyzed using the Kolmogorov–Smirnov test. If the original data did not follow a Gaussian distribution, logarithmic transformation was applied to make the distribution more normal. Quantitative variables were compared using the Mann–Whitney U test, and categorical variables by the chi-square and Fisher's exact tests. The relationship between serum albumin and potential risk factors for chronic CVD was assessed by linear regression analysis. Hazard ratios (HRs) with 95% confidence intervals (CIs) were calculated by multiple Cox-proportional hazards models according to the development of hypertension (case vs. control). In order to compare hypertension-free survival between the groups, Kaplan–Meier analysis with the log-rank test was used. We used Supremum tests to evaluate proportional hazards assumptions.

Restricted cubic spline regression analysis was used to determine the possible non-linear dependency of the relation between candidate risk factor(s) and the risk of the dependent variable.

Quantile–quantile plots and Manhattan plots were performed to visualize the results of the genome-wide association study, confirming the existence of relevant SNPs. We generated a regional association analysis using a web-based tool for the identification and annotation of proxy SNPs using HapMap (locuszoom.sph.umich.edu/locuszoom).

Because of the potential limitations of conventional statistical methods, an instrumental variable analysis (also known as Mendelian randomization) was applied to obtain causal inferences on the effect of an exposure on a clinically relevant outcome from observational data controlling for threats to its internal validity, including confounding variables, measurement error, spuriousness, simultaneity, and reverse causality. In the two-stage least squares regression, the effect estimates from the second stage of the instrumental variable analysis and ordinary least square analysis were compared using the Durbin-Wu-Hausman test. Because conventional two-stage least squares regression analysis may have insufficient statistical power to assess the pathogenic relevance when there is a non-linear relationship between the exposure and outcome, further two-stage residual inclusion analysis was performed to draw inferences on the causal effects of candidate genetic variant(s) on the association between hypoalbuminemia and interesting phenotype (hypertension) while controlling for potential confounding factors.

All statistical analyses were performed using PLINK version 1.09 (http://pngu.mgh.harvard.edu/~purcell/plink), R Statistical package software 3.2.2 (http://www.r-project.org), or Statistical Analysis Software (version 9.4; SAS Institute Inc., Cary, NC, USA).

Received: 20 January 2021; Accepted: 28 April 2021
Published online: 28 May 2021

References

1. Levitt, D. G. & Levitt, M. D. Human serum albumin homeostasis: A new look at the roles of synthesis, catabolism, renal and gastrointestinal excretion, and the clinical value of serum albumin measurements. *Int. J. Gen. Med.* 9, 229–255 (2016).
2. Herrmann, F. R., Safran, C., Levkoff, S. E. & Minaker, K. L. Serum albumin level on admission as a predictor of death, length of stay, and readmission. *Arch. Intern. Med.* 152, 125–130 (1992).
3. Owen, W. F. Jr., Lew, N. L., Liu, Y., Lowrie, E. G. & Lazarus, J. M. The urea reduction ratio and serum albumin concentration as predictors of mortality in patients undergoing hemodialysis. *N. Engl. J. Med.* 329, 1001–1006 (1993).
4. Uthamalingam, S. *et al.* Serum albumin and mortality in acutely decompensated heart failure. *Am. Heart J.* 160, 1149–1155 (2010).
5. Klonoff-Cohen, H., Barrett-Connor, E. L. & Edelstein, S. L. Albumin levels as a predictor of mortality in the healthy elderly. *J. Clin. Epidemiol.* 45, 207–212 (1992).
6. Goldwasser, P. & Feldman, J. Association of serum albumin and mortality risk. *J. Clin. Epidemiol.* 50, 693–703 (1997).
7. Dussé, L., Rothman, K. J., Culples, L. A., Levy, D. & Ellison, R. C. Serum albumin and risk of myocardial infarction and all-cause mortality in the Framingham Offspring Study. *Circulation* 106, 2919–2924 (2002).
8. Arques, S. Human serum albumin in cardiovascular diseases. *Eur J. Intern. Med.* 52, 8–12 (2018).
9. Stanaway, J. D. *et al.* Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. *Lancet* 392, 121–159 (2018).
10. Man, A. W. C., Li, H. & Xia, N. Impact of lifestyles (diet and exercise) on vascular health: Oxidative stress and endothelial function. *Oxid. Med. Cell Longev.* 2020, 1496462 (2020).

11. Rajendran, P. et al. The vascular endothelium and human diseases. *Int. J. Biol. Sci.* 9, 1057–1069 (2013).

12. Hu, H., Sparrow, D. & Weiss, S. Association of serum albumin with blood pressure in the normative aging study. *Am. J. Epidemiol.* 136, 1465–1473 (1992).

13. Hestmark, A. T., Tomten, S. E. & Berg, J. E. Serum albumin and blood pressure: A population-based, cross-sectional study. *J. Hypertens.* 23, 723–730 (2005).

14. Oda, E. Decreased serum albumin predicts hypertension in a Japanese health screening population. *Intern. Med.* 53, 655–660 (2014).

15. Kamatani, Y. et al. Genome-wide association study of hematological and biochemical traits in a Japanese population. *Nat. Genet.* 42, 210–215 (2010).

16. Chien, S. C., Chen, C. Y., Lin, C. F. & Yeh, H. I. Critical appraisal of the role of serum albumin in cardiovascular disease. *Biomark. Res.* 5, 31 (2017).

17. Yu, Z., Tan, B. K., Dainty, S., Mathey, D. L. & Davies, S. J. Hypoalbuminaemia, systemic albumin leak and endothelial dysfunction in periportal dialysis patients. *Nephrol. Dial. Transplant.* 27, 4437–4445 (2012).

18. Magal, F. et al. In-vivo oxidized albumin— a pro-inflammatory agent in hypoalbuminemia. *PLoS ONE* 12, e0177799 (2017).

19. Shah, N. R. & Dumler, F. Hypoalbuminemia—a marker of cardiovascular disease in patients with chronic kidney disease stages II-IV. *Int. J. Med. Sci.* 5, 366–370 (2008).

20. Vance, K. W. & Ponting, C. P. Transcriptional regulatory functions of nuclear long noncoding RNAs. *Trends Genet.* 30, 348–355 (2014).

21. Weddell, J. C., Chen, S. & Imoukhuede, P. I. VEGFR1 promotes cell migration and proliferation through PLCγ and PI3K pathways. *NPI Syst. Biol. Appl.* 4, 1 (2018).

22. Sugimoto, H. Critical appraisal of the role of serum albumin in cardiovascular disease. *J. Biol. Chem.* 289, 31–40 (2014).

23. Xu, P. et al. Identification of a novel mouse P4-ATPase family member highly expressed during spermatogenesis. *J. Cell Sci.* 122, 2866–2876 (2009).

24. Haas, M. J., Shah, G. N., Onstead-Haas, L. M. & Mooradian, A. D. Identification of ATP8B1 as a blood–brain barrier-enriched protein. *Cell Mol. Neurobiol.* 34, 473–478 (2014).

25. Pink, R. C. et al. Pseudogenes: Pseudo-functional or key regulators in health and disease? *RNA* 17, 792–798 (2011).

26. Hirotsume, S. et al. An expressed pseudogene regulates the messenger-RNA stability of its homologous coding gene. *Nature* 423, 91–96 (2003).

27. Ogbuanu, I. U., Zhang, H. & Karmaus, W. Can we apply the Mendelian randomization methodology without considering epigenetic reporting? *Emerg. Themes Epidemiol.* 6, 3 (2009).

28. McPherson, K., Healy, M. J., Flynn, F. V., Piper, K. A. & Garcia-Webb, P. The effect of age, sex and other factors on blood chemistry in health. *Clin. Chim. Acta.* 91–96 (2003).

29. Kim, Y. & Han, B. G. Cohort Profile: The Korean Genome and Epidemiology Study (KoGES) Consortium. *Am. J. Epidemiol.* 1465–1473 (1992).

30. Levey, A. S. & Stevens, L. A. Estimating GFR using the CKD Epidemiology Collaboration (CKD-EPI) creatinine equation: More accurate GFR estimates, lower CKD prevalence estimates, and better risk predictions. *Am. J. Kidney Dis.* 55, 622–627 (2010).

31. Phillips, A., Shaper, A. G. & Whincup, P. H. Association between serum albumin and mortality from cardiovascular disease, cancer, and other causes. *Lancet* 2, 1434–1436 (1989).

32. Kopple, J. D. et al. Clinical practice guidelines for nutrition in chronic renal failure. K/DOQI, National kidney foundation. *Am. J. Kidney Dis.* 35, S1–140 (2000).

33. Chang, C. P. et al. Diagnostic performance of initial serum albumin level for predicting in-hospital mortality among necrotizing fasciitis patients. *J. Clin. Med.* 7, 435 (2018).

34. Chobanian, A. V. et al. The seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure: The JNC 7 report. *JAMA* 289, 2560–2572 (2003).

35. James, P. A. et al. 2014 evidence-based guideline for the management of high blood pressure in adults: Report from the panel members appointed to the Eighth Joint National Committee (JNC 8). *JAMA* 311, 507–520 (2014).

36. Desquilleb, L. & Mariotti, F. Dose-response analyses using restricted cubic spline functions in public health research. *Stat. Med.* 29, 1037–1057 (2010).

37. Burgess, S., Small, D. S. & Thompson, S. G. A review of instrumental variable estimators for Mendelian randomization. *Stat. Methods Med. Res.* 26, 2333–2355 (2017).

38. Boef, A. G., Dekkers, O. M. & le Cessie, S. Mendelian randomization studies: A review of the approaches used and the quality of reporting. *Int. J. Epidemiol.* 44, 496–511 (2015).

39. Sekula, P., Del Greco, M. F., Pattaro, C. & Köttgen, A. Mendelian randomization as an approach to assess causality using observational data. *J. Am. Soc. Nephrol.* 27, 3253–3263 (2016).

40. Zheng, J. et al. Recent developments in Mendelian randomization studies. *Curr. Epidemiol. Rep.* 4, 330–345 (2017).

41. Terza, J. V., Basu, A. & Rathouz, P. J. Two-stage residual inclusion estimation: Addressing endogeneity in health econometric modeling. *J. Health Econ.* 27, 531–543 (2008).

42. Terza, J. V. Two-stage residual inclusion estimation in health services research and health economics. *Health Serv. Res.* 53, 1890–1899 (2018).

43. Wu, H. Y. et al. Effects of higher quality of care on initiation of long-term dialysis in patients with CKD and diabetes. *Am. J. Kidney Dis.* 70, 666–674 (2017).

44. Porcu, E. et al. Mendelian randomization integrating GWAS and eQTL data reveals genetic determinants of complex and clinical traits. *Nat. Commun.* 10, 3300 (2019).

Acknowledgements

The authors thank the staff and participants of the Korean Genome and Epidemiology Study (KoGES) for their important contributions.

Author contributions

J.W.C. and J-S.P conceived and designed the study; J.W.C., C.H.L., and J-S.P. analyzed and summarized all the results; and J.W.C., C.H.L., and J-S.P. wrote the manuscript.

Competing interests

The authors declare no competing interests.
