A Look at COVID-19 Global Health Situation, 1-Year Post Declaration of the Pandemic

Adekunle Sanyaolu¹, Aleksandra Marinkovic², Stephanie Prakash², Abu Fahad Abbasi³, Risha Patidar², Martina Williams², Anne Zhao⁴, Gideon Dzando⁵, Chuku Okorie⁶ and Ricardo Izurieta⁷

¹Federal Ministry of Health, Abuja, Nigeria. ²Saint James School of Medicine, Anguilla, BWI. ³Loyola University Medical Center, Maywood, IL, USA. ⁴Stanford Health Care, Palo Alto, CA, USA.
⁵Flinders University, Adelaide, Australia. ⁶Union County College, Plainfield Campus, NJ, USA.
⁷Global Communicable Diseases, College of Public Health, University of South Florida, Tampa, USA.

ABSTRACT: The new coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was declared a pandemic on 11 March 2020 by the World Health Organization (WHO). The impacts of COVID-19 have changed over the past year globally. There were 116 million confirmed cases of COVID-19 in more than 220 countries, including 2.5 million deaths, as reported at the end of the first week of March 2021. Throughout this time, different variants of SARS-CoV-2 have emerged. In early March, the United States of America (USA) led both confirmed cases and casualties, while India followed in the number of confirmed cases and Brazil in the number of deaths. Vaccines are available in the USA and worldwide to help combat COVID-19. The level of preparedness among multisectoral communities played a role in transmission rates; therefore, lessons learned from past outbreaks, alongside this pandemic, are crucial in establishing policies and regulations to reduce and/or prevent the spread. This narrative literature review provides an update on the global spread of the COVID-19 outbreak, and the current impact of the pandemic 1-year after the declaration, preparedness, and mitigation efforts since the outbreak.

KEYWORDS: COVID-19, SARS-CoV-2 variants, Global Health, pandemic, disease outbreak

Introduction

When China reported 44 cases of pneumonia to the World Health Organization (WHO) between December 31, 2019, and January 3, 2020, the causal organism was unknown.¹ A novel coronavirus (2019-nCoV) was later identified as the agent responsible for the outbreak that evolved into a global pandemic. Coronavirus (CoV) are single-stranded positive-sense RNA viruses that belong to the Coronaviridae family. They infect a wide range of hosts, affect multiple organ systems, and cause diseases in humans extending from the common cold to more serious respiratory diseases such as severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), and the current coronavirus disease 2019 (COVID-19).² When comparing the genome of 2019-nCoV with SARS-CoV, the International Committee on Taxonomy of Viruses (ICTV) found that both strains are related, hence the new name of 2019-nCoV, severe acute respiratory syndrome 2 (SARS-CoV-2). SARS-CoV, MERS-CoV, and SARS-CoV-2 belong to the same genus Betacoronavirus which originates from bats.² Even though these viruses belong to the same lineage, they are genetically distinct. SARS-CoV-2 is 79% similar to SARS-CoV and 50% like MERS-CoV.² Structural analysis of SARS-CoV-2 demonstrates that while it uses the same cell entry receptor, angiotensin-converting enzyme 2 (ACE2), as SARS-CoV, it has a higher binding affinity.³ This may explain why SARS-CoV-2 is more infectious.

The first mode of transmission of SARS-CoV-2 was assumed to be animal-to-human with supplemental human-to-human propagation. This was evident in the ever-changing epicenter of the pandemic. Initially, China was the epicenter of the SARS-CoV-2 pandemic with burdensome morbidity and mortality from the disease. The virus then made its way to Europe, where Italy was severely affected by the pandemic. One-year after the declaration, the United States of America (USA) had the highest number of cases and deaths.² Through March 7, 2021, there were a total of 116,166,652 confirmed cases of COVID-19 and 2,582,528 deaths across more than 220 countries.² The number infected with the virus continues to rise each day. The recently estimated reproductive number (R⁰) of 2.24 to 3.58 was higher than the initial WHO R⁰ estimate of 1.4 to 2.5, demonstrating that the dynamics of disease transmission are complex.² This could be attributed to the fact that asymptomatic individuals secrete viral loads similar to those who are symptomatic.² Furthermore, there have been increasing reports of SARS-CoV-2 in sewage and wastewater, raising concerns about fecal–oral transmission.² Vertical transmission may also be a possibility, as there have been reports of high levels of SARS-CoV-2 IgM antibodies in newborns born to mothers with COVID-19; viral RNA detected in the breast milk of lactating mothers, and a newborn tested positive for SARS-CoV-2 36 hours after being born to a mother with COVID-19.⁵ ⁶ Reports of virus variants have also raised concerns about changes in transmissibility. By June 2020, a new
variant of SARS-CoV-2 with a mutation D614G had become the dominant strain due to its increased infectivity and transmission.7 December 14, 2020, the United Kingdom (UK) reported a variant referred to as SARS-CoV-2 VOC 202012/01 (Variant of Concern, the year 2020, month 12, variant 01), and on 18 December 2020, South Africa announced a new variant named 501Y.V2, because of an N501Y mutation.7 Preliminary findings suggest that both variants are associated with increased transmissibility.

The world population is committed to physical separation, the use of appropriate personal protective equipment (PPE), frequent handwashing, proper cough etiquette, and standard cleaning and disinfecting procedures to prevent the transmission of infectious respiratory droplets. To help mitigate exportation, importation, and further transmission of SARS-CoV-2, the Centers for Disease Control and Prevention (CDC)8 has ordered that all international air passengers arriving in the USA are tested 3 days or earlier before flight departure and documentation must be presented before boarding, effective January 26, 2021. Efforts, such as vaccinations, to combat COVID-19 are in place by administering Johnson and Johnson, Pfizer-BioNTech, and Moderna, among citizens of the USA and those abroad.9 Both Pfizer-BioNTech and Moderna employ mRNA technology to express the SARS-CoV-2 spike protein. The mRNA vaccines are more than 90% effective and protect against variants from the UK and South African.9 USA-authorized vaccines, including Janssen’s viral vector technology, remain effective among circulating strains of COVID-19.9 Additional vaccines from other pharmaceutical companies are expected to be approved as soon as possible. As of early March 2021, the USA has administered over 93.6 million total doses.10,11 While this is encouraging, vaccine equity is an issue. Despite mitigation methods and vaccination programs, healthcare services around the world have been overrun and are not prepared for a pandemic of this magnitude and its subsequent surges.12,13 In this narrative review, the global spread of COVID-19 is detailed and an update on the current impact 1-year after the declaration of the pandemic, preparedness, and mitigation efforts.

Methodology

An electronic literature search was performed on PubMed, Google Scholar, and MedLine Plus. The search was limited to peer-reviewed articles published from January 1, 2020, through a 1-year post-declaration of the pandemic. The articles were selected if they included keywords such as coronavirus, COVID-19, SARS-CoV-2, global outbreak, pandemic, variants, mutations, and transmissibility. The articles were then reviewed and included according to their applicability to the topic, to provide information on the global efforts made for the preparedness and mitigation of the COVID-19 pandemic aimed at combating the spread of the disease.

Global Spread, Preparedness, and Response

The upward trend of disease infectivity and mortality in 1-year demonstrates that more than 116 million people have been infected with the virus and more than 2 million casualties due to the continuous evolution of COVID-19.4,14,15 According to the global situation report, the countries with the highest cumulative cases are the following: the USA with 28,602,211, accounting for 25% of the world’s infected population (total 116,166,652 cases); India with 11,210,799 cases (10%); and Brazil with 10,869,227 cases (9%), as depicted in Figure 1.4,14,15 Furthermore, the countries with the highest number of deaths resulting from COVID-19 are the USA with 519,075 casualties, accounting for 20% of the total number of deaths worldwide associated with the disease (total 2,582,528 deaths); followed by Brazil with 262,770 deaths (10%); and Mexico with 189,578 deaths (7%), as depicted in Figure 2.4,14,15

Several factors should be considered when addressing concerns about the spread and progression of the virus and how the disease can be managed.16 These factors consist of but are not limited to transmission types (ie, clusters of cases vs sporadic), population distributions in specific age groups, degrees of social distancing interventions, and implementation of work resumption.17 Also, measures such as early testing and detection, social distancing, isolation practices, and healthcare responses play crucial roles in achieving the desired outcome.8,16,18-20 Personal protective measures such as the use of face masks and hand hygiene have also been included in public health guidelines.21,22 Although hand hygiene does not directly affect the transmission of the virus by respiratory droplets or aerosols, face masks have been shown to be effective in protecting others, particularly healthcare workers, from symptomatic individuals.21-23

Rampant disease transmission depends on the characteristics of the virus, the ability to spread from human to human, its severity in resulting illness, and other measures available to mitigate the impact of its destruction.17 These additional measures may include the accessibility and effectiveness of vaccines or medications to combat the illness.13

Italy was the first European country to be heavily hit during the first wave of this unprecedented crisis.24 Notably, critical care treatment was severely affected in northern Italy due to a shortage of intensive care beds.25 The failure of preparedness and effectiveness in emergency response led the Italian response team to re-evaluate the crisis from the first wave (March-May 2020) to relative stability, just before the second outbreak Italy experienced in October 2020.24 Experiences gained from healthcare providers in this region during the pandemic can be used in establishing a response plan.25 A study by Carenzo et al25 suggested the following 3 interventions: (1) dedicate intensive care units (ICUs) for critically ill patients with COVID-19, (2) allocate a pre-triage facility to diagnose and isolate suspected and confirmed cases, and (3) provide adequate skills and knowledge to medical teams in managing ICU,
patient management, the appropriate usage of PPE, and to be prepared to update protocols and procedures based on any disruptions that may arise.

Similarly, Daegu citizens of South Korea, experienced a large-scale outbreak during the first wave of the pandemic, particularly impacting patients who experience out-of-hospital cardiac arrest. Each of these heart patients was treated as suspected or confirmed COVID-19 cases, irrespective of their symptoms. In response to the isolation of resuscitation units and the complete or partial closures of emergency centers, the number of medical personnel requiring self-isolation decreased and improved favorable outcomes for the patients.

Hospital preparedness, initial disease management, and surveillance of healthcare workers were explored in Tokyo, Japan.

![Figure 1. Global cumulative cases of COVID-19, through the end of the first week of March 2021. Source: Data recreated using the number of confirmed cases reported by WHO.](image1)

![Figure 2. Global cumulative casualties of COVID-19, through the end of the first week of March 2021. Source: Data recreated using the number of confirmed deaths reported by WHO.](image2)
Kaito et al. reported that each hospital should develop an incident management system for COVID-19, based on patient symptoms and/or risk history, which is then confirmed with diagnostic testing. Thus, disease management is carefully selected based on the patient's needs. The authors suggest further that contact tracking and quarantining those who have encountered COVID-19 can reduce clusters of new cases.

Like many other nations, Ecuador's health system was severely overwhelmed by this pandemic and its main cause was due to limited emergency health planning responses. Officials from Ecuador's public health system learned early that it was necessary to mitigate the epidemic in the country and reduce mortality in the most vulnerable at-risk population; hence, the implementation of the WHO's operational guideline in the strategic preparedness and response plan to COVID-19 served as a reference point in combating the outbreak. It was noted that a country's legislative capacity and government authority had control in addressing the social, economic, and health consequences related to the COVID-19 outbreak, as seen in the response to the pandemic.

The challenges faced by sub-Saharan African countries (SSA) to control the spread of COVID-19 waves of infection include the lack of adequate resources and technology to effectively follow contact tracing, the dilemma of implementing lockdowns, and the impact of fake news. Other challenges are technical and capacity elements of testing, treatment, and the development and access to vaccines. Lagos State in central Nigeria was the epicenter of the 2014 Ebola outbreak, as well as the main location for the COVID-19 epidemic. Hence, the emergency preparedness lessons learned from the Ebola outbreak were used to guide COVID-19 from vastly spreading. It is important to take note that public health interventions implemented in several African countries to lessen the gaps and control disease outbreaks, such as Ebola, may have strengthened the response in containing the current pandemic. Zhang et al. explored the association between health care preparedness and the government response during the first and second COVID-19 waves that rolled through the African region. Initial cases were first detected in countries with urban populations, greater international travel, and among those with the prevalence of human immunodeficiency virus (HIV). Overall, African countries were reported to have seen lower infection and mortality rates than most countries in the Americas Europe, and Asia due to factors such as low rate of testing, poor documentation of the cause of death, younger age population, good vitamin D status from exposure to sunlight, cross-immunity from other viruses including coronaviruses, and lessons learned from other infectious diseases such as HIV and Ebola. Thus, having a strategic guide to emergency preparedness and response is crucial for an improved outcome, as depicted in Table 1.

The common goal among the global population is to reduce the spread and the burden of COVID-19, and aid in the protection of those at high risk for severe illness; therefore, continuous efforts are needed with an emphasis on public education.

Discussion
Since December 2019, there have been multiple global initiatives to slow the spread of COVID-19. The rate of transmission, the containment methods, the number of infected individuals, and the death rates varied and fluctuated between different countries. Due to the initial outbreak and the surge of infected individuals in affected countries, initial approaches to slowing the spread of the coronavirus were aimed at maintaining or decreasing the demand for hospital and critical care beds. Also, some institutions, like the USA government, have included free testing and employment rights as part of their policy, requiring that potentially exposed individuals stay at home for at least 14 days, with possible paid sick leave.

Although, at the beginning of the pandemic, the WHO did not recommend the use of travel bans to control SARS-CoV-2 based on considerations under the 2005 International Health Regulations (IHR) which has thus resulted in the slow response of some countries at the onset of the outbreak. However, countries like New Zealand, Australia, and Taiwan, which do not have porous land borders, have been able to use travel restrictions to slow incoming cases and enable quarantine and contact tracing. Therefore, allowing them to approach the elimination of the disease repeatedly.

The WHO has identified multiple variants of SARS-CoV-2 as a concern. In late January 2020, a variant of SARS-CoV-2 with a substitution for D614G emerged and replaced the initial strain that was identified in China. Although this strain has not been shown to cause severe illness or have any effect on diagnostics, therapeutics, drug therapies, and public health preventive measures compared to the initial strain, it has demonstrated increased infectivity and transmission. In December 2020, another variant with 23 nucleotide substitutions was identified in the UK, known as VOC 202012/01 or B.1.1.7. Preliminary clinical findings also suggested that the strain B.1.1.7 has increased transmissibility; however, the analysis also indicated that there was no change in disease severity or recurrence of infection between the groups of CoVs that share an inherited set of distinctive mutations known as a variant. Furthermore, an increase in the number of deaths in January 2021 is associated with the B.1.1.7 variant.

Another worrying variant of SARS-CoV-2 was detected in South Africa and has spread rapidly to 3 provinces, known as
Since November 2020, the USA Food and Drug Administration (FDA) approved Moderna mRNA-1273 and Pfizer/BioNTech BNT162 vaccines for emergency use authorization (EUA). The vaccines are lipid nanoparticle-encapsulated mRNA and encode the perfusion-stabilized spike protein of the SARS-CoV-2. Due to the similarities in the spike proteins of the SARS-CoV-2 variants, the efficacy of the vaccines remain unaffected, and will also target these variants. Johnson and Johnson’s AD26/Janssen COVID-19 viral vector vaccine was granted EUA on 27 February 2021, as the third manufacturer available in the USA with more than 66% effectiveness in combating COVID-19. Likewise, since the declaration of the
pandemic, several therapeutic agents, including antivirals that could potentially be repurposed or developed into effective interventions for COVID-19 infection, have undergone trials and some are still undergoing trial.45,46 Thus, physicians have more treatment options for patients hospitalized for COVID-19 1-year after the declaration of the pandemic with drugs that can speed up the recovery process and few that can improve survival.

The response to the COVID-19 pandemic is constantly evolving and many nations have been exposed to severe limitations in managing such an outbreak of this magnitude.47 The WHO and the IHR Committee have fundamentally revised and will continue to update their protocols to minimize the gaps in global governance.47 Moreover, most countries still do not yet have an IHR core health system capacity to detect and alert the global community about novel outbreaks.47 Correspondingly, a country’s success in controlling the COVID-19 pandemic varies based on political and economic status, cultural and social needs, demographic and geographic resources, and the nation's policy orientation.48 In SSA, where the poverty rate is high and many people live in overcrowded slums, African cultural norms and daily social life activities hinder the control of Covid-19 in addition to the difficulty in implementing behavioral practices that are required to manage COVID-19, such as maintaining a social distance of at least 1 m and frequent handwashing.29 Furthermore, government strategies as well as law and order, have been demonstrated in Sweden to have an impact on the spread of the pandemic.49

An urgent need to guide communities is necessary to recover from this unprecedented outbreak.50 Of utter significance, providing support and celebrating success, developing clear guidelines, preparing for future emergencies, reevaluating priorities, maximizing performance, sustaining learning and communication, and periodic consultation with public health officials and leaders across all platforms is crucial to provide integrated care during an outbreak.50 For SSA countries, international coordination is critical to strengthening the health system and coordinated intra African collaboration.38

Addressing advanced care planning and engaging in communication with patients’ families proved to be a struggle during these unprecedented times.51 Digital interventions through remote monitoring and training could offer many opportunities to strengthen the health care system; in addition, offering home diagnostic and screening equipment to minimize the spread of this communicable disease.52

In some countries, long-term care facilities, nursing homes, and home health care agencies experienced a higher incidence of cases of COVID-19, of which these residents were more likely to be hospitalized and die.53-55 More than half of the nursing homes across the USA had separate plans to combat this disaster, but all plans focused on training staff, restricting visitors and outside consultants, implementing policies regarding sick employees, and guidance on this evolutionary outbreak.54 Most facilities even had policies to identify visitors and maintaining a clear line of communication and relationship with local hospitals and public health officials.54 Data reproduced by Quigley et al54 identified that 66% or two-thirds of nursing homes reported having access to COVID-19 tests, 100% of those tests allocated for patients and 53% for employees. However, 72% or three-fourths reported inadequate supplies (ie, N-95 respirators, alcohol-based sanitizer, gowns, face guards, surgical masks, and gloves).54 Furthermore, 83% or five-sixths expected employee shortages.54 The consensus among nursing home management teams was their concern for lack of supplies (43%), staff shortage (34%), and the safety of their patients (14%), indicating that emergency preparedness strategies need to be continuously refined.54 Similarly, home health care agencies across the USA faced challenges caring for the vulnerable patient population during this pandemic.55 The majority of these agencies had their emergency preparedness plan (76%); allocating an employee in charge of outbreak preparedness (84%) and providing employees with continuous education and training as the disease evolved (97%).55

Conclusion

Globally, nations have faced many challenges to respond to the pandemic, due to shortages of PPE and disinfectants; as well as the general public’s lack of perception of the risks posed by communicable diseases, such as COVID-19. Lessons learned from past and present outbreaks should be shared globally to help nations identify best practices to combat such resilient disease(s). Changes in PPE strategies and the introduction of isolated resuscitation units narrowed the gap between infection and mortality rates. Implementing policies and regulations have helped reduce and/or prevent the spread of the pathogen among communities and health care facilities. In addition, appropriate education for all communities, particularly those that suffer from inequalities, is a strategy to promote appropriate behavioral changes and improve risk management. Furthermore, it is crucial to stay ahead of this ever-changing communicable disease by using diagnostics quickly, keeping track of variants of concern, and administering management and therapeutic approaches to those at risk.

Author Contributions

All authors contributed substantially to the conception, drafting, and final approval of the manuscript.

ORCID iD

Gideon Dzando https://orcid.org/0000-0001-8852-7680

REFERENCES

1. Hasoñuszu M, Kılıç S, Saraç F. Coronavirus and SARS-COV-2. Turk J Med Sci. 2020;50:549-556.
