IL-6 combined with CD8+ T cell count early predict in-hospital mortality for patients with COVID-19

Miao Luo, … , Huiguo Liu, Shuang Wei

JCI Insight. 2020. https://doi.org/10.1172/jci.insight.139024.

BACKGROUND. The numbers of fatal cases of Coronavirus Disease 2019 (COVID-19) continue to increase rapidly around the world. We aim to retrospectively investigate potential roles of factors, mainly immunologic parameters, in early predicting outcomes of patients with COVID-19.

METHODS. A total of 1,018 patients confirmed COVID-19 were enrolled in our retrospective study from two centers. The data of clinical features, laboratory tests, immunological tests, radiological findings, and outcomes were collected. Univariate and multivariable logistic regression analysis were performed to evaluate factors associated with in-hospital mortality. Receiver operator characteristic (ROC) curves and survival curves were plotted to evaluate the clinical usefulness.

RESULTS. Compared to the survival patients, the counts of all T lymphocytes subsets were markedly lower in non-survivors ("P < 0.001), especially in CD8+ T cells (96.89 vs 203.98 cells/μl, "P < 0.001). Among all tested cytokines, IL-6 elevated most significantly with an upward trend of more than ten times (56.16 vs 5.36 pg/mL, "P < 0.001). By a multivariable logistic regression analysis, two immunological indicators were found to be associated with in-hospital mortality, including IL-6 > 20 pg/mL (OR = 9.781; 95%CI, 6.304–15.174; "P < 0.001) and CD8+ T [...]

Find the latest version:

https://jci.me/139024/pdf
Interleukin-6 combined with CD8+ T cell counts, an early predictor of in-hospital mortality of COVID-19 patients

Miao Luo, MD1; Jing Liu, MD2; Weiling Jiang, MD1; Shuang Yue, MD1; Huiguou Liu, MD1.#; Shuang Wei, MD1,#

Author Affiliations:1Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan 430030, China; 2Department of Radiology, Wuhan Pulmonary Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.

Corresponding Author: Shuang Wei, MD, Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan 430030, Hubei, China (Email: wsdavid2001@163.com; Tel: +86-18062087116) or Huiguou Liu, MD, Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan 430030, Hubei, China (Email: huiguool@163.com; Tel: +86-13871014148).

Conflict of interest statement
The authors have declared that no conflict of interest exists.

Abstract

Background
Fatal cases of COVID-19 are increasing globally. We retrospectively investigated the potential of immunologic parameters as early predictors of COVID-19.

Methods
A total of 1,018 patients with confirmed COVID-19 were enrolled in our two-center retrospective study. Data on clinical features, laboratory tests, immunological tests, radiological findings, and outcomes were collected. Univariate and multivariable logistic regression analyses were performed to evaluate factors associated with in-hospital mortality. Receiver operator characteristic (ROC) curves and survival curves were plotted to evaluate their clinical utility.

Results
The counts of all T lymphocyte subsets were markedly lower in non-survivors than in survivors, especially CD8+ T cells. Among all tested cytokines, IL-6 was elevated most significantly, with an upward trend of >10 times. Using multivariate logistic regression analysis, IL-6 >20 pg/mL and CD8+ T cell counts <165 cells/μL, were found to be associated with in-hospital mortality after adjusting for confounding factors. Groups with IL-6 >20 pg/mL and CD8+T cell count <165 cells/μL had a higher percentage of older and male patients as well as a higher proportion of patients with comorbidities, ventilation, intensive care unit admission, shock, and death. Furthermore, the receiver operating curve of the model combining IL-6 (>20 pg/mL) and CD8+T cell counts (<165 cells/μL) displayed a more favorable discrimination than that of the CURB-65 score. The Hosmer-Lemeshow test showed a good fit of the model, with no statistical significance.

Conclusions

IL-6 (>20 pg/mL) and CD8+T cell counts (<165 cells/μL) are two reliable prognostic indicators that accurately stratify patients into risk categories and predict COVID-19 mortality.
Introduction

In the past three months, Coronavirus Disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has quickly spread around the world. By April 9, 2020, there have been 1,436,198 confirmed cases of COVID-19 and 85,522 deaths globally. With the global epidemic worsening, additional fatalities will occur. An initial study of 41 confirmed COVID-19 cases indicated that 63% of patients had decreased lymphocytes, and various cytokines could be associated with disease severity(1). Chen et al. described the immunologic features of severe and moderate COVID-19 and found that SARS-CoV-2 infection might affect CD4+ T and CD8+ T cell numbers(2). Our previous and other studies showed that severe COVID-19 cases had high levels of IL-2R, IL-6, IL-10, and TNF-α compared to moderate cases (2, 3). A recent multicenter retrospective study of 150 confirmed COVID-19 cases in Wuhan, China, confirmed that IL-6 is significantly increased in non-survivors(4). Wan et al. discovered a positive relationship between CD4+ T cells and CD8+ T cells, IL-6, and IL-10 in a mild group, but not in a group of patients with severe COVID-19 (5). We recruited a larger cohort to further explore the association between immunologic features (including cytokines and lymphocyte subsets) and in-hospital mortality of patients with COVID-19. In this study, we aimed to conduct a two-center retrospective study to systematically investigate the potential prognostic roles of immunological parameters in patients with COVID-19.
Results

T lymphocyte subset counts and serum levels of cytokines in survival and non-survival patients with COVID-19

Socio-demographic and clinical characteristics of COVID-19 patients in this cohort are shown in Table 1. We detected T lymphocyte subsets and plasma cytokine levels in enrolled patients. The counts of all T lymphocyte subgroups were markedly lower in the non-survivor group than in the survivor group (P<0.001), especially in CD8\(^+\) T cells with less than half the count (96.89 vs. 203.98 cells/\(\mu\)L, P<0.001) (Table 2). The serum levels of all tested cytokines on admission, including IL-2R, IL-6, IL-8, IL-10, and TNF-\(\alpha\), were significantly higher in the non-survivor group (P<0.001). Among them, IL-6 was elevated most significantly, with an upward trend of more than ten times (56.16 vs. 5.36 pg/mL, P<0.001). As shown in Figure 1A, the area under curve (AUC) derived from CD8\(^+\) T cells was much larger than that derived from CD3\(^+\) cells or CD4\(^+\) cells (AUC\(_{CD8^+}\)=0.832[0.804-0.861] vs. AUC\(_{CD3^+}\)= 0.758[0.726-0.791] or AUC\(_{CD4^+}\)= 0.721[0.686-0.755], P<0.001).

As shown in Figure 1B, the AUC of IL-6 (0.899[0.878-0.920]) was larger than that of other cytokines tested (P<0.001), such as IL-2R(0.848[0.816-0.879]), IL-8(0.820[0.787-0.854]), IL-10(0.748[0.704-0.791]), and TNF-\(\alpha\)(0.763[0.723-0.804]). Therefore, we assumed that CD8\(^+\) T cell counts and IL-6 are the two most important indicators associated with in-hospital mortality among all the tested immunologic parameters, including T cell subsets and cytokines. Additionally, we also investigated the correlation between CD8\(^+\) T cell counts and inflammatory status. Our results showed that plasma IL-6 levels in patients with COVID-19 were positively correlated with plasma C-reactive protein (CRP); (R\(^2\) = 0.424, \(P < 0.001\)); (Figure 2A). A significant negative correlation was found between CD8\(^+\) T
cell counts and IL-6 levels ($R^2 = 0.255$, $P < 0.001$); (Figure 2B). The plasma CRP levels in patients with COVID-19 were negatively correlated with CD8$^+$ T cell counts ($R^2 = 0.294$, $P < 0.001$); (Figure 2C). These findings showed that CD8$^+$ T cell counts were negatively correlated with the inflammatory indicators of CRP and IL-6.

IL-6 elevation and CD8$^+$ T-cell count reduction were correlated with in-hospital mortality in COVID-19

Univariate logistic regression analysis was performed to investigate the risk factors associated with in-hospital mortality in patients with COVID-19. On the basis of the ROC curve for CD8$^+$ T cells, the cutoff value was defined from Youden’s index as 165 cells/μL. The count of CD8$^+$ T cells below 165 cells/μL was regarded as low. We defined a high concentration of IL-6 to be more than 20 pg/mL, according to a previous study (6). Then, by multivariable logistic regression analysis, two indicators were identified to be independent risk factors associated with in-hospital mortality, including IL-6 >20 pg/mL (OR=9.781; 95% CI, 6.304–15.174; $P<0.001$) and CD8$^+$ T cell counts <165 cells/μL (OR=5.930; 95% CI, 3.677–9.562; $P<0.001$), after adjusting for confounding factors including age, sex, and underlying diseases (hypertension, coronary heart disease, diabetes mellitus, and underlying pulmonary diseases) (Table 3).

Clinical features and outcomes of COVID-19 patients with IL-6>20 pg/mL and CD8$^+$ T cell counts <165 cells/μL

We divided the enrolled patients into four groups: group I (IL-6 ≤ 20 pg/mL and CD8$^+$ T cells ≥ 165 cells/μL, n=487), group II (IL-6 > 20 pg/mL and CD8$^+$ T cells ≥ 165 cells/μL,
Table 4 shows socio-demographic data, comorbidities, clinical features, and outcomes of patients among the four groups. The median age (IQR) of patients from group I to group IV was 56.00 (43.00-65.00), 61.00 (50.75-70.00), 62.00 (53.00-69.00), and 68.00 (62.00-77.00), respectively. The proportion of older patients (age ≥ 60 years) in group IV exceeded 79.6%. In each group, 216 (44.4%), 55 (56.1%), 96 (47.3%), and 154 (67.0%) participants were male. Group IV had more comorbidities, including hypertension, coronary heart disease, diabetes, and underlying pulmonary diseases, with 122 (53.0%), 28 (12.2%), 49 (21.3%), and 18 (7.8%) patients, respectively. More importantly, more patients from group IV required ventilation (122 [53.0%]), including noninvasive positive pressure ventilation (NPPV) and 94 (40.9%) with invasive mechanical ventilation (IMV). In group IV, 121 (52.6%) patients were admitted to the intensive care unit (ICU) for more intensive monitoring and treatment. In groups I to IV, the proportion of patients with shock was 6 (1.2%), 20 (20.4%), 21 (10.3%), and 116 (50.4%), respectively. The number of deaths among the four groups were 6 (1.2%), 22 (22.4%), 29 (14.3%), and 144 (62.6%) in sequence. However, we observed that the hospitalization time of group IV was not extended more significantly than that of group II or III as the majority of individuals in group IV were non-survivors with shorter survival times.

In addition, in group IV, the white blood cell and neutrophil counts as well as the levels of d-dimer, blood urea nitrogen (BUN), lactate dehydrogenase (LDH), procalcitonin (PCT), and C-reactive protein (CRP) were markedly elevated, while the counts of lymphocytes and platelets were lower (Table 5). There was no significant difference in the concentration
of hemoglobin among the four groups ($P=0.335$). In the four groups, the vast majority of patients had bilateral lung lesions, with proportions of 88.1% (429 to 487), 96.9% (95 to 98), 98.0% (199 to 203), and 99.1% (228 to 230), respectively.

Early in-hospital mortality prediction of IL-6 combined with CD8$^+$ T cell count in patients with COVID-19

Kaplan–Meier survival curves indicated that groups I to IV had different survival times (Figure 3). Compared to group I, the patients from the other three groups had worse survival times ($P<0.001$). More importantly, the patients from group IV had a much shorter survival time than those from groups II or III ($P<0.001$). There was no statistical difference between groups II and III ($P=0.205$) (Figure 3). Moreover, the ROC curve of the model combining IL-6 elevation and CD8$^+$T cell count reduction had a larger area under the curve (AUC=0.907[0.886–0.928] vs. 0.843[0.810–0.877], $P<0.001$) (Figure 4). The Hosmer-Lemeshow test showed a good fit of the model with no statistical significance ($P=0.581$), indicating that no statistically significant difference existed between the observed and expected values. Therefore, reduced CD8$^+$ T cell counts combined with elevated IL-6 had a good ability to predict in-hospital mortality in patients with COVID-19.
Discussion

A series of previous studies have summarized the clinical features of COVID-19 patients.\(^1, 7-9\) However, studies on the association between immunologic indexes and outcomes of COVID-19 are lacking. This study is the first investigation to discover the role of these two indicators, IL-6 elevation and CD8+ T cell count reduction, in contributing to the outcome of COVID-19. We also attempted to stratify patients into more accurate prognostic groups. It is very important for clinicians to better understand immunologic dysregulations in fatal cases and provide potential target interventions.

Flow cytometry analysis indicated that CD3+, CD4+, and CD8+ T cell counts were significantly lower in non-survivors than in survivors. The absolute count of CD8+ T cells was below 100 cells/µL in non-survivors, which is less than half of the total number of surviving cells. Furthermore, an interesting finding in our study is that the AUC of the CD8+ T cell subset was larger than that of the CD3+ or CD4+ T cell subset. These findings indicated a more obvious change in CD8+ T cells in non-survivors with COVID-19. Multivariable analysis indicated that lower CD8+ T cell counts were an independent mortality related risk factor in COVID-19 patients after adjusting for confounding factors including age, sex, and underlying diseases (hypertension, coronary heart disease, diabetes mellitus, and underlying pulmonary diseases). Therefore, it is reasonable to consider that CD8+ T cell counts is a more important risk factor for predicting mortality than CD4+ T cells or total CD3+ T cells in patients with COVID-19. These results also support the need for lymphocyte classification tests and suggest that CD8+ T cells are more vulnerable to the effects of SARS-CoV-2 infectious patients. Similarly, the reduction of CD8+ T cell counts in our cohort was in agreement with other studies that have examined these markers.
Chen et al. described the immunologic features in severe and moderate COVID-19, and found that SARS-CoV-2 infection might affect CD4⁺ T and CD8⁺ T cell numbers as well as IFN-γ production (2). A study also indicated that both helper T cells and suppressor T cell numbers were significantly decreased in severe COVID-19 patients, while the percentage of naïve helper T cells was increased (10). Previous studies have found MERS-CoV-specific CD8⁺ T cell responses in most infectious individuals, and the level of T cell response in patients with MERS was related to disease severity (11, 12). In addition, another team discovered a similar phenomenon where depletion of CD8⁺ T cells facilitated hosts at risk of MERS-CoV-induced infection (13) Our results may provide a potential strategy for later therapy targeting CD8⁺ T cell activation in COVID-19 patients.

Studies have shown that the main cause of death of critical viral pneumonia is the excessive inflammatory response triggered by the virus infection (cytokine release syndrome), leading to disease progression, multiple organ dysfunction, and finally death(14-16). Zhang et al. clarified the pathogenic mechanism of the inflammatory storm in severe COVID-19 patients. Pathogenic T helper (Th1) cells were found to form and produce Human granulocyte-macrophage colony stimulating factor (GM-CSF) after SARS-CoV-2 infection, to construct a cytokine microenvironment, which leads to IL-6 overexpression by inflammatory monocytes. Through a positive feedback mechanism, huge abnormal pathogenic Th1 cells and inflammatory monocytes may enter the pulmonary circulation and play an important role in immune injury, resulting in loss of lung function(17). Consistent with the results of a previous study(3), the levels of IL-2R and IL-6 in the non-survivors were statistically higher than those in survivors. The same trend also occurred in TNF-α, IL-8, and IL-10 in our study. This result was documented in
another study, which showed that severe COVID-19 cases had higher levels of IL-2R, IL-6, IL-10, and TNF-α than moderate cases (2, 3). Although both IL-8 and IL-10 showed a significant increase, the values did not exceed the upper limit, suggesting their limited value. Our results showed that the AUC of IL-6 was larger than that of IL-2R, IL-8, IL-10, or TNF-α. Furthermore, multivariate analysis indicated that increased levels of IL-6 were an independent risk factor that contributed to mortality in patients. Therefore, IL-6 was another outstanding indicator for predicting mortality in COVID-19 patients. Recently, Zhang et al. documented a case in order to prove that humanized anti–IL-6 receptor antibody (tocilizumab) was effective in the treatment of COVID-19 in multiple myeloma with obvious clinical recovery (18). Another intervention study found that tocilizumab can effectively improve the condition of severe patients with COVID-19. Within five days of tocilizumab treatment, 75.0% (15/20) of patients had reduced oxygen intake, and CT results of 90.5% (19/20) patients showed significant absorption of lung lesions. The percentage of peripheral blood lymphocytes was decreased in 85.0% (17/20) patients before treatment and returned to normal in 52.6% (10/19) on the fifth day. A total of 90.5% (19/20) patients were discharged at an average of 13.5 days after treatment with tocilizumab, and the remainder are recovering well (19). Jacobs et al. retrospectively analyzed 32 patients with COVID-19 treated by extracorporeal membrane oxygenation (ECMO) and found that two of the five survivors had received anti-IL-6-receptor monoclonal antibodies (tocilizumab or sarilumab) (20). In the future, targeting IL-6 or IL-6 receptors may be a promising therapy option for critically ill patients with COVID-19.

In this cohort, individuals were divided into four groups according to the level of IL-6 and CD8+ T cell counts. Median age in different sections, comorbidities (hypertension
and diabetes mellitus, and vital signs (T, HR, and RR) were significantly different among the four groups. The patients from group IV had higher white blood cell, neutrophil, d-dimer, LDH, and SOFA scores as well as lower lymphocytes and platelets. These indicators were confirmed to be associated with the death of patients with COVID-19 in recent studies (9, 21). The proportion of patients who had ventilation (NPPV and IMV), ICU admission, shock, and death in group IV was significantly higher than those in any other group. The time of hospital stay or time of onset to discharge or death in group IV was not shown to be longer than that of any other group. More importantly, the patients from group IV had much worse survival than those in the other groups. Based on the evidence above, IL-6 elevation combined with CD8\(^+\) T cell count reduction was found to be associated with poor outcomes in patients with COVID-19. Through univariate and multivariate logistic regression analysis of mortality related risks in patients with COVID-19, we confirmed that IL-6 (>20 pg/mL) and CD8\(^+\) T cell counts (<165 cells/μL) were two vital mortality-related risk factors. Therefore, we further incorporated them to build a model in order to predict death risk. By ROC analysis, we found that our new model had a better ability to predict in-hospital mortality earlier in comparison to the commonly used CURB-65 score (age 65 years, respiratory rate, confusion, urea, blood pressure)(22). Therefore, we emphasize the necessity of observing lymphocyte T subsets and cytokines in clinical laboratory examinations. This facilitates an early discrimination of fatal cases and provides opportunities for effective interventions.

This study has several limitations. First, this retrospective design may cause an unavoidable and inherent selection bias in enrolling diagnosed participants. Second, this research has limited generalizability as all the patients enrolled in our study were Chinese.
The clinical features of patients might be different in other countries or areas. Additionally, there may be some inherent biases by using this study format. Our results should be further validated by a multiple-center, prospective study.

In conclusion, via this two-center retrospective study of patients diagnosed with COVID-19 in Wuhan, we first identified two reliable prognostic indicators, IL-6 (>20 pg/mL) and CD8+T cell counts (<165 cells/μL), which can accurately stratify patients into risk categories and effectively predict mortality of patients with COVID-19. These two indicators may serve as a guide to clinicians to evaluate patient prognoses, make appropriate decisions, and optimize medical resources.
Methods

Study Design and Participants

We retrospectively analyzed 1,018 patients who were discharged or died between Jan 9, 2020 and March 31, 2020 from Wuhan Pulmonary Hospital and Tongji Hospital affiliated to Huazhong University of Science and Technology in Wuhan. These are designated hospitals to treat patients with SARS-CoV-2 pneumonia. All patients were diagnosed with SARS-CoV-2 pneumonia according to the WHO interim guidelines (23). The study was conducted with strict and reasonable inclusion and exclusion criteria. The inclusion criteria were as follows: 1. Adults (aged over 18), who understood and agreed to participate in this experiment; 2. PCR test was positive for virus nucleic acid of SARS-COV-2. The exclusion criteria were as follows: 1. The cause of death in patients could not be explained by COVID-19, 2. Patients with blood system diseases, such as leukemia, which has a great influence on hematological examinations, 3. Patients who were critically ill and died before routine hematologic examinations could be conducted, 4. Children and adolescents younger than 18 years of age and pregnant and lactating women, 5. Patients who were transferred out of the hospital, and we were unable to follow up on the outcome. According to clinical guidelines, the diagnosed patients can be divided into the following four types: mild clinical symptoms and no pneumonia manifestations on imaging, normal: cases with fever and respiratory tract symptoms as well as pneumonia that could be seen on imaging, severe: in addition to the above symptoms, meet any of the following: 1) shortness of breath (≥30 breaths/min), 2) oxygen saturation ≤93% at rest, 3) arterial partial pressure of oxygen (PaO₂)/fraction of inspired oxygen (FiO₂) ≤ 300 mmHg (1 mmHg=0.133 kPa), 4) chest imaging that showed obvious lesion progression within 24–48 hours >50%, critical: in
addition to the above symptoms, meets one of the following conditions: 1) respiratory failure and required mechanical ventilation; 2) cases with shock; 3) cases with other organ failure and required ICU monitoring treatment.

Data Collection

The data were collected from the hospital's electronic medical record system, which included socio demographic information, comorbidities, clinical symptoms, routine laboratory tests, immunological tests, computed tomography (CT) results, clinical interventions, and outcomes. For early prediction of mortality, the results of laboratory examinations and computed tomography (CT) on the conducted within the first three days of hospitalization were collected for analysis. The CURB-65 predictive model is available to evaluate the prognosis of pneumonia and includes the following clinical indicators: 1. Disturbance of consciousness, 2. BUN> 7 mmol / L, 3. Respiratory rate≥ 30 times/min, 4. Systolic blood pressure <90 mmHg or diastolic blood pressure ≤ 60 mmHg, and/or 5. Age ≥65 years old (24). The CURB-65 score of each patient was calculated. The entry and calculation of all relevant data were verified by two experienced clinical researchers. The clinical outcomes of patients included in this clinical study were observed until April 4, 2020.

Cytokines measurement

According to the operating instructions given by the manufacturer, the principle of chemiluminescence immunoassay (CLIA) was used to detect the concentrations of relevant cytokines in the blood samples of patients, including IL-2R, IL-6, IL-8, IL-10, and TNF-α. The entire process was completed using a fully automated analyzer (Immulite 1000, DiaSorin Liaison, Italy, or Cobas e602, Roche Diagnostics, Germany). The IL-2R kit
(#LKIP1), IL-8 kit (#LK8P1), IL-10 kit (#LKP1), and TNF-α kit (#LKNF1) were purchased from DiaSorin (Vercelli, Italy). The IL-6 kit (#05109442 190) was purchased from Roche Diagnostics, Germany.

Measurement of T lymphocyte subsets

Various immune cells have different labels on their surfaces, which can be combined with their specific fluorescent staining or labeled antibodies to achieve cell separation using a BD FACS Canto II Flow Cytometry System. The following antibodies were used: anti-CD8 (RPA-T8, PE-Cy7, #557746), anti-CD3 (SK7, APC-Cy7, #557832), and anti-CD4 (RPA-T4, V450, #560345). All reagents were purchased from Becton, Dickinson, and Company (BD, Franklin Lakes, USA). The results of flow sorting were further analyzed with the BD FACS Diva software.

Statistical Analysis

The percentages of missing values of variables in our cohort were < 50%. The multiple imputation (MI) method was used to impute missing data in our cohort with guidance from a previous study (25). Continuous variables were expressed as median (interquartile range, IQR) and compared with the Mann-Whitney U test if between two groups while compared with the Kruskal-Wallis H test if between four groups; categorical variables were expressed as a number (%) and compared using the χ² test or Fisher's exact test. All tests were considered statistically significant when the two-sided P value was less than 0.05. For mortality predictive model establishment, continuous variables were categorized by a cutoff point or clinical reference threshold. The cutoff value was confirmed from Youden's index of the receiver operator characteristic (ROC) curve. Survival analysis was also performed by Kaplan-Meier analysis between the four groups.
Statistical analysis was conducted using the Statistical Package for the Social Sciences (SPSS) 24.0 and R software 3.5.0.

Study approval

The Ethics Commission of Tongji Hospital and Wuhan Pulmonary Hospital approved this study. The informed consent was obtained from patients involved before enrolment when data were collected retrospectively.

Author contributions

Drs S. Wei and HG. Liu had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. Drs S. Wei and HG. Liu contributed equally to this manuscript. Concept and design: S. Wei, HG. Liu, M. Luo. Acquisition, analysis, or interpretation of data: M. Luo and J. Liu. Drafting of the manuscript: M. Luo and S. Wei. Critical revision of the manuscript for important intellectual content: M. Luo, S. Wei, and HG. Liu. Statistical analysis: M. Luo. Administrative, technical, or material support: J. Liu, WL. Jiang, and S.Yue.

Acknowledgments

We thank all the patients who enrolled in this study as well as their families.

Reference

1. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497-506.
2. Chen G, Wu D, Guo W, Cao Y, Huang D, Wang H, et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J Clin Invest. 2020;130(5):2620-9.
3. Chen L, Liu HG, Liu W, Liu J, Liu K, Shang J, et al. [Analysis of clinical features of 29 patients with 2019 novel coronavirus pneumonia]. Zhonghua Jie He He Hu Xi Za Zhi. 2020;43(3):203-8.
4. Ruan Q, Yang K, Wang W, Jiang L, and Song J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020;46(5):846-8.
5. Wan S, Yi Q, Fan S, Lv J, Zhang X, Guo L, et al. Relationships among lymphocyte subsets, cytokines, and the pulmonary inflammation index in coronavirus (COVID-19) infected patients. Br J Haematol.
52. Charles PG, Davis JS, and Grayson ML. Rocket science and the Infectious Diseases Society of America/American Thoracic Society (IDSA/ATS) guidelines for severe community-acquired pneumonia. *Clin Infect Dis.* 2009;48(12):1796; author reply -7.

53. World Health O. Geneva: World Health Organization; 2020.

54. Lim WS, van der Eerden MM, Laing R, Boerma WG, Karalus N, Town GI, et al. Defining community acquired pneumonia severity on presentation to hospital: an international derivation and validation study. *Thorax.* 2003;58(5):377-82.

55. Sterne JA, White IR, Carlin JB, Spratt M, Royston P, Kenward MG, et al. Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls. *BMJ.* 2009;338:b2393.
Figure Legends

Figure 1. ROC curves of T lymphocyte subsets and cytokines (A) ROC curve of each category of T lymphocyte subgroup (B) ROC curve for each category of serum cytokines. AUC, area under the ROC curve; ROC, receiver operating characteristic.
Figure 2. Correlation analysis of indicators of patients with COVID-19 (A) Correlation analysis between plasma IL-6 and CRP levels, $R^2 = 0.424$, $P < 0.001$. (B) Correlation analysis between plasma IL-6 levels and CD$^8^+$ T cell counts, $R^2 = 0.255$, $P < 0.001$. (C) Correlation analysis between plasma CRP levels and CD$^8^+$ T cell counts, $R^2 = 0.294$, $P < 0.001$. Interleukin-6 (IL-6), C-reactive protein (CRP), and CD$^8^+$ T-cell counts collected on admission.
Figure 3. Kaplan-Meier survival curves in four groups of patients with COVID-19.

From groups I to IV, the survival rates were 98.8% (481 of 487), 77.6% (76 of 98), 85.7% (174 of 203), and 37.4% (86 of 230) at the observed endpoint during hospitalization. Compared to group I, the patients from the other three groups had worse survival rates (P<0.001). The patients from group IV had a much shorter survival time than those from groups II or III (P<0.001). However, there was no statistical difference between groups II and III (P=0.205).

Group I: IL-6 ≤ 20 pg/mL and CD8+ T cells ≥ 165 cells/μL, n=487
Group II: IL-6 > 20 pg/mL and CD8+ T cells ≥ 165 cells/μL, n=98
Group III: IL-6 ≤ 20 pg/mL and CD8+ T cells < 165 cells/μL, n=203
Group IV: IL-6 > 20 pg/mL and CD8+ T cells < 165 cells/μL, n=230
Figure 4. ROC curve analysis to predict in-hospital mortality in patients with COVID-19. ROC curves derived from the model combined elevated IL-6 and reduced CD8+ T cell counts and CURB-65 scores in our cohort. The ROC curve of this predictive model showed a better performance than that of the CURB-65 score ($P<$0.001).
Data are characterized by median (IQR). IQR= inter quartile range
Abbreviations: COVID patients with COVID
Table 2. The
†Table 1.
Underlying pulmonary diseases†
Vital signs and score
Types of COVID-19
Outcomes
NPPV
IMV
ICU
Shock
Hospital stay time (days)
Time of onset to discharge or death (days)

Data are presented as medians (interquartile ranges, IQR) or n (%).
†underlying PD includes chronic obstructive pulmonary disease, asthma, bronchiectasis and tuberculosis etc.

Table 2. The comparisons of T cell subset count and cytokines levels between survival and non-survival patients with COVID-19.

Variables	normal range	survivors(n=817)	non-survivors(n=201)	P value
T cell subset counts				
CD3+, cells/μL	690-2540	611.01(420.12-858.10)	391.20(262.95-504.46)	< 0.001
CD4+, cells/μL	410-1590	367.99(242.39-543.00)	245.00(161.64-317.64)	< 0.001
CD8+, cells/μL	190-1140	203.98(142.54-313.05)	96.89(60.65-140.08)	< 0.001
CD4+ / CD8+ ratio	0.71-2.78	1.70(1.30-2.21)	2.37(1.77-3.36)	< 0.001
Cytokines				
IL-2R, U/mL	223-710	464.60(294.90-673.04)	1063.00(726.62-1483.00)	< 0.001
IL6, pg/mL	<7.0	5.36(2.32-15.85)	56.16(25.53-136.75)	< 0.001
IL8, pg/mL	<62	12.31(8.10-18.80)	29.90(17.90-57.53)	< 0.001
IL10, pg/mL	<9.1	5.25(5.00-6.80)	9.10(5.79-16.00)	< 0.001
TNF-α, pg/mL	<8.1	6.90(5.68-8.43)	10.30(7.34-17.35)	< 0.001

Abbreviations: COVID-19, Coronavirus Disease 2019, IQR, interquartile range; IL, Interleukin; TNF-α, tumor necrosis factor-α.
Data are characterized by median (IQR). IQR= inter quartile range
P values derived from Mann-Whitney U test.
Data are characterized by n (%) or median (IQR).Table 3. Univariable and multivariable logistic regression analysis of mortality related risks in patients with COVID-19.

Variables	β	OR	CI	P value	β	OR	CI	P value
IL6>20 pg/mL	2.954	19.176	12.815-28.696	<0.001	2.280	9.781	6.304-15.174	<0.001
CD8<165 cells/μL	2.583	13.326	8.649-20.257	<0.001	1.780	5.930	3.677-9.562	<0.001

* In adjusting for age, gender, and underlying diseases including hypertension, coronary heart disease, diabetes mellitus and underlying pulmonary diseases

Table 4. Demographic data, clinical features and outcomes of patients with COVID-19 among four groups.

Variables	Group I (n=487)	Group II (n=98)	Group III (n=203)	Group IV (n=230)	P value*
Increased IL-6	-	+	-	+	
Reduced CD8+ T cells	-	-	+	+	

Socio-demographic data

Variables	Group I (n=487)	Group II (n=98)	Group III (n=203)	Group IV (n=230)	P value*
Age, years	56.00(43.00-65.00)	61.00(50.75-70.00)	62.00(53.00-69.00)	68.00(62.00-77.00)	<0.001#
Heart rate, bpm	87.00(79.00-100.00)	94.00(82.00-107.25)	94.00(82.00-106.00)	90.00(82.00-104.00)	<0.001#
RR, breaths/min	20.00(20.00-22.00)	20.00(20.00-22.00)	20.00(20.00-24.00)	20.00(20.00-24.00)	<0.001#
MAP, mmHg	96.67(89.33-105.00)	96.50(88.58-103.42)	96.67(86.67-102.00)	96.17(88.58-104.33)	0.116#
SOFA score	0.00(0.00-1.00)	1.00(0.00-3.00)	0.00(0.00-2.00)	3.00(1.00-4.00)	<0.001#
Outcomes					
NPPV, n(%)	32(6.6)	31(31.6)	43(21.2)	122(53.0)	<0.001
IMV, n (%)	3(0.6)	14(14.3)	19(9.4)	94(40.9)	<0.001
ICU, n (%)	8(1.6)	19(19.4)	25(12.3)	121(52.6)	<0.001
Shock, n (%)	6(1.2)	20(20.4)	21(10.3)	116(50.4)	<0.001
Death, n (%)	6(1.2)	22(22.4)	29(14.3)	144(62.6)	<0.001
Hospital stay time (days)	12.00(7.00-20.00)	20.00(12.00-29.00)	15.00(10.00-22.00)	15.00(8.75-22.00)	<0.001#
Time of onset to discharge or death (days)	31.00(21.00-38.00)	30.00(22.00-36.40)	27.00(21.00-36.00)	26.00(18.00-34.00)	<0.001†

Abbreviations: PD, pulmonary diseases; RR, Respiratory rate; MAP, mean arterial pressure; NPPV, non-invasive positive pressure ventilation; IMV, invasive mechanical ventilation; ICU, Intensive Care Unit.

Data are characterized by n (%) or median (IQR).

**P values derived from χ² test, unless otherwise specified.

#P values derived from Kruskal-Wallis test.

†P values derived from Fisher's exact test.

‡P values derived from log-rank test.

** underlying PD includes chronic obstructive pulmonary disease, asthma, bronchiectasis and tuberculosis etc.
Table 5. Laboratory results and radiological findings of patients with COVID-19 among four groups.

Variables	Normal range	Group I (n=487)	Group II (n=98)	Group III (n=203)	Group IV (n=230)	P value^a
Increased IL-6	-	+	+	+	+	<0.001
Reduced CD8⁺ T cells	-	+		+		
Laboratory results						
White blood cell count, ×10³/L	3.50-9.50	5.50 (4.29-9.60)	6.73 (4.96-9.69)	5.66 (4.20-7.78)	8.24 (5.07-11.74)	<0.001
Neutrophil count, ×10³/L	1.80-6.30	3.37 (2.47-5.53)	5.11 (3.80-7.94)	4.20 (2.29-6.30)	7.28 (3.92-10.74)	<0.001
Lymphocyte count, ×10³/L	1.10-3.20	1.38 (1.00-1.87)	0.91 (0.61-1.21)	0.80 (0.57-1.14)	0.64 (0.44-0.83)	<0.001
Red blood cell count, ×10¹²/L	4.30-5.80	4.25 (3.89-4.63)	4.24 (3.81-4.57)	4.17 (3.80-4.55)	4.10 (3.65-4.50)	0.010
Hemoglobin, g/L	130.00-175.00	128.00 (118.00-142.00)	132.00 (118.00-140.00)	126.40 (115.00-138.00)	127.50 (115.75-139.25)	0.355
Platelet count, ×10⁹/L	125.00-350.00	216.00 (168.00-272.00)	196.00 (142.75-266.25)	205.00 (152.00-262.00)	161.00 (120.00-208.00)	<0.001
APTT, seconds	29.00-42.00	37.00 (34.26-40.46)	41.70 (37.77-44.90)	36.60 (33.00-40.32)	40.05 (35.95-45.63)	<0.001
PT, seconds	14.00-19.00	13.00 (12.00-14.00)	13.90 (13.20-15.03)	13.50 (12.80-14.30)	14.80 (13.70-16.63)	<0.001
D-dimer, mg/L	≤0.50	0.36 (0.22-0.72)	0.82 (0.43-2.61)	0.66 (0.31-1.73)	1.79 (0.68-12.28)	<0.001
ALT, U/L	≤40.00	20.00 (13.00-34.00)	27.00 (18.75-49.25)	24.00 (15.00-39.00)	28.00 (17.00-44.00)	<0.001
AST, U/L	≤40.00	21.00 (17.00-29.00)	37.00 (23.75-58.23)	27.00 (19.00-42.00)	36.50 (25.75-58.00)	<0.001
TP, g/L	64.00-83.00	66.40 (61.70-71.30)	67.35 (62.08-73.05)	64.30 (58.90-69.90)	63.75 (58.05-69.60)	<0.001
ALB, g/L	35.00-52.00	39.30 (36.50-42.20)	33.70 (31.45-36.63)	35.20 (32.50-38.30)	31.60 (28.58-34.70)	<0.001
TBil, μmol/L	≤26.00	8.39 (6.20-11.54)	10.35 (6.59-15.15)	9.05 (6.60-11.80)	11.7 (6.60-17.83)	<0.001
BUN, mmol/L	3.60-9.50	4.31 (3.31-5.30)	4.87 (3.50-6.31)	5.23 (3.80-6.97)	7.25 (4.80-10.85)	<0.001
SCR, μmol/L	59.00-104.00	64.00 (53.00-77.00)	72.00 (56.00-89.00)	68.00 (55.00-86.00)	81.50 (64.00-104.25)	<0.001
LDH, U/L	135.00-225.00	201.00 (170.00-262.00)	320.50 (282.25-456.75)	291.00 (261.00-387.00)	415.00 (302.00-591.05)	<0.001
PCT, mg/mL	0.02-0.05	0.04 (0.03-0.04)	0.08 (0.04-0.18)	0.04 (0.04-0.10)	0.16 (0.07-0.68)	<0.001
CRP, mg/L	≤1	3.40 (0.90-18.79)	67.30 (36.35-104.98)	32.30 (10.40-71.10)	85.63 (54.75-124.93)	<0.001
K+, mmol/L	3.50-5.10	4.02 (3.76-4.34)	4.29 (3.75-4.57)	3.97 (3.62-4.42)	4.05 (3.69-4.56)	0.023
CT scans, n (%)						
Unilateral lesions						
Bilateral lesions						
Abbreviations: COVID-19, Coronavirus Disease 2019; APTT, activated partial thromboplastin time; PT, Prothrombin time; ALT, alanine aminotransferase; AST, aspartate aminotransferase; TP, Total Protein; ALB, albumin; TBil, Total bilirubin; BUN, blood urea nitrogen; SCr, serum creatinine; LDH, lactate dehydrogenase; K+, serum potassium; PCT, procalcitonin; CRP, C-reactive protein; IQR, interquartile range.						

Data are characterized by n (%) or median (IQR).^a

#P values derived from Kruskal-Wallis test, unless otherwise specified.

*P values derived from χ² test.