Antibiotic sensitivity of *Mycobacterium tuberculosis* isolates; a retrospective study from a Saudi tertiary hospital

Mohammed M. Aljeldah, PhD

Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hafr Al Batin, Hafr Al Batin, KSA

Received 23 November 2019; revised 13 January 2020; accepted 14 January 2020; Available online 14 February 2020

Abstract

Objectives: This study aims to examine the antibiotic sensitivity of *Mycobacterium tuberculosis* isolates and its drug resistance. We also evaluated the relationship between demographic characteristics and tuberculosis (TB) drug susceptibilities.

Methods: A retrospective study was conducted to analyse the antibiotic sensitivity of *M. tuberculosis* isolates and its resistance to first-line anti-TB drugs. During the period 2008–2013, the medical records of 191 patients from the TB ward and the Out-Patient Department in an Eastern KSA tertiary hospital were reviewed.

Results: We classified the specimens into two categories: extra-pulmonary and pulmonary TB. Among the extra-pulmonary TB specimens, 36.5% were from body fluids, 29.2% from tissue cultures and 5.2% from body abscesses. In case of pulmonary TB, sputum samples accounted for the highest proportion of the specimens (28.6%), followed by bronchial aspirates and pleural fluid (13.2% and 5.7%, respectively). Clinical isolates from women showed higher resistance to ethambutol compared to those from men. Isoniazid showed the highest resistance pattern among all antibiotics tested (17%). Meanwhile, tissue cultures had higher resistance to Isoniazid antibiotic compared to the other specimens.

Conclusion: Resistance to first-line TB drugs is higher in extra-pulmonary TB isolates than pulmonary isolates. Nearly one-fourth of all *M. tuberculosis* clinical strains were resistant to the antibiotics tested in mono-resistant or multi-resistant manners. Women had greater resistance to TB drug ethambutol as compared to men. Meanwhile, extra-pulmonary TB specimens, specifically
Introduction

Tuberculosis (TB) is a communicable disease caused by Mycobacterium tuberculosis (M. tuberculosis) which spreads into the lymphatic system, brain, spine, and lungs. It is estimated that nearly 25% of the global population is infected with this bacterium. Several countries have been recorded as endemic areas of TB and these include Bangladesh, Indonesia, China, Philippines, India, Pakistan, and Nigeria. In spite of the high TB rates, it is a treatable disease. TB treatment utilizes four anti-TB drugs (ethambutol, isoniazid, rifampin, and streptomycin), coupled with close support from health care professionals, and treatment adherence.

From 2008 to 2018, 58 million people were saved through TB medication treatment. Currently, several TB antibiotics including rifampicin, isoniazid, ethambutol, pyrazinamide, and streptomycin, are administered to patients based on drug potency. Notwithstanding the improvements in TB treatment regimens due to the potency of TB drugs, it remains one of the most critical public health issues owing to the rapidly increasing antibiotic resistance. Antibiotic resistance is associated with inappropriate treatment regimens, patient non-compliance, incorrect prescriptions by physicians, poor drug quality, and the premature cessation of treatment by patients.

In KSA, higher TB incidence and TB drug resistance remain despite extensive government campaigns to eradicate this disease. Several reasons contributing to this situation include an increase in expatriate workers coming from TB-endemic regions such as countries in Asia and Africa. Furthermore, KSA is a pilgrimage centre to the Two Holy Mosques (in Makkah and Al-Madinah). The millions of pilgrims who arrive annually from regions stricken with high TB occurrence, hamper efforts to decrease the incidence of this infectious disease. Increasingly, TB drug-resistant cases are reported in KSA because of patient non-compliance and interruption in drug regimens. These further hinder the government’s goal to eradicate TB. This growing health concern highlights the importance of implementing effective disease control measures, revision of disease transmission dynamics, and the development of proper diagnostics and logistics. Despite some empirical data pertaining to drug resistance in the country, there is still a limited understanding of antibiotic sensitivity and resistance of M. tuberculosis. Information regarding TB drug-resistance is scarce; very few studies have examined TB drug sensitivity and associated clinical factors.

Therefore, this study aims to investigate the antibiotic susceptibility of M. tuberculosis isolates to the first-line anti-TB regimen using a retrospective approach. It also assesses the association between demographic characteristics and TB susceptibility in the Eastern Province of KSA. The findings presented herein could aid in increasing the understanding of the extent of TB resistance and suggest more appropriate therapeutic and preventative procedures to control the disease.

Materials and Methods

Design

Retrospective analysis was used to analyse the antibiotic sensitivity of M. tuberculosis isolates to the first-line treatment regimen for TB disease — ethambutol, isoniazid, streptomycin, and rifampin.

Data and inclusion criteria

This retrospective analysis studied patient records, from 2008 to 2013, at the tuberculosis ward/OPD of a single tertiary hospital (King Fahd University Hospital, Alkhobar) in Eastern KSA. Ethical approval was obtained from the hospital Clinical Laboratories Directorate and confidentiality was ensured by using only code numbers to identify patients. Laboratory-confirmed TB patients who had test results on the antibiogram pattern of their M. tuberculosis isolates were included in the study. A record-based study for TB patients from the Eastern Province of KSA the period (2008–2013) was conducted and resistance to the first-line TB antibiotics (ethambutol, isoniazid, rifampin, and streptomycin) was determined.

Data analysis

SPSS version 24 software was utilized for data analysis. Descriptive statistics such as frequency, percentage, mean, and standard deviation were used to determine the respondents’ demographic characteristics. ANOVA was used to determine the differences in specimen type to culture-positive TB drug sensitivity and TB drug resistance. t-test was used to compare the culture-positive TB drug sensitivity and TB drug resistance between genders. Pearson product-moment correlation was used to examine the relationship between age, TB drug effectiveness, and TB drug resistance. A p-value of less than 0.05 was considered significant.

Results

The respondents’ characteristics are shown in Table 1. The results showed that the majority of clinical isolates were from females (52.4%). The specimen could be classified based on their origins: extra-pulmonary TB (52.3%) and pulmonary TB (47.6%). In extra-pulmonary TB, body fluids such as cerebrospinal fluid and mid-stream catch urine clinical specimens (24.1%) were also examined. Among the other specimens, 20.4% were from tissue biopsies and swabs and 5.2% were from body abscesses. Regarding the specimens of pulmonary origin, sputum specimens accounted for the highest percentage (28.6%), followed by...
bronchial aspirates and pleural fluid (13.2% and 5.7%, respectively).

Figure 1A illustrates the prevalence of antibiotic resistance among M. tuberculosis strains included in the study. Overall, 73% of all TB isolates were sensitive to first-line anti-tuberculosis drugs whereas 27% of the isolates showed resistance to at least one of the drugs. Of the 27% that showed resistance (Figure 1B), 62% of them were resistant to only one antibiotic (mono-resistant) and 38% of the resistant strains were multi-resistant (resistant to more than one antibiotic).

Table 2 and Figure 2 show the susceptibility to all the tested antibiotics along with any resistance to TB drugs from 2008 to 2013. For ethambutol, the majority of the clinical isolates (89%) were sensitive; ~10% were fully resistant while only 1% of the isolates showed heteroresistance. As for isoniazid, most of the clinical isolates (82%) were susceptible to the highest resistance

Table 1: Patient demographic characteristics. 2008–2013 (Number of samples = 191).

Specimen type	Frequency	Percentage (%)
Male	89	46.6
Female	102	53.4
Extra-pulmonary TB (52.4%)		
Body fluids	46	24.1
Tissue swabs & biopsies	39	20.4
Body abscess	15	7.9
Pulmonary TB (47.6%)		
Sputum	55	28.6
Bronchial wash & aspirates	25	13.2
Pleural fluid	11	5.7
Mean	35.49	15.69

Figure 1: The overall sensitivity of clinical M. tuberculosis isolates to antibiotics (A), and pattern of resistance of resistant clinical isolates (B).

Figure 2: Sensitivity and resistance of TB clinical isolate to each antibiotic studied.
Table 2: Susceptibility of M. tuberculosis to antibiotics; 2008–2013 (N = 191).

Drug	Frequency	Percentage (%)
Ethambutol		
Resistant	19	9.9
Susceptible	170	89.0
Hetero-resistant	2	1.0
Isoniazid		
Resistant	34	17.8
Susceptible	157	82.2
Hetero-resistant	—	—
Rifampin		
Resistant	4	2.1
Susceptible	186	97.4
Hetero-resistant	1	0.5
Streptomycin		
Resistant	21	11.0
Susceptible	169	88.5
Hetero-resistant	1	0.5

Discussion

This is a retrospective study investigating the susceptibility of M. tuberculosis to the anti-TB drugs. The associations between demographic profiles, culture-positivity of clinical specimens, and antibiotic sensitivity were shown. The findings revealed that resistance to TB drugs was higher in extra-pulmonary TB isolates than pulmonary isolates. This is in concordance with recent studies. In this study, the proportion of confirmed extra-pulmonary cases is high (52.3%) compared to other available national or international data. A previous survey conducted in KSA showed that the rate of the recorded occurrence of extra-pulmonary TB isolates reached between 25% and 31%. This is greater than that in European countries. However, caution was advised in interpreting these previous findings because the technique used, smear microscopy, not sensitive enough and failed to identify 43% of TB patients. Moreover, smear microscopy cannot differentiate drug-susceptible from drug-resistant strains. Thus, treatment is frequently given empirically using clinical criteria, leading to wrong patient diagnosis, excessive expenses, toxicities, late response, and poor treatment outcomes. Nevertheless, patients with extra-pulmonary manifestations need specialized clinical investigations; the diagnosis is usually based upon clinical, radiographic or histopathological findings, rather than bacteriologic evidence. Therefore, further studies are warranted. These findings highlight the susceptibility of M. tuberculosis to all the test drugs along with TB drug resistance. The findings revealed that almost all of the clinical isolates were resistant to TB drugs (ethambutol, isoniazid, rifampin, and streptomycin). This is worth noting since resistance to TB drugs usually results from non-compliance to medication because of poor TB management. This observation is similar to studies in India, Brazil, and Canada. According to these previous studies, drug resistance is due to poor compliance, improper prescriptions, suboptimal dosage, and drug storage and quality. These significantly contribute to the emergence of drug resistance. Caution is however needed in the interpretation of these findings as this

Table 3: Association between demographic profile with the culture-positivity and drug sensitivity of TB isolates collected from years 2008–2013 (N = 191).

Demographic characteristics	Statistical test (p-value)				
	Ethambutol	Isoniazid	Rifampin	Streptomycin	
Gender	Frequency (%)	-0.557* (0.05)	-0.437* (663)	0.882* (0.379)	-1.467* (0.144)
Male	46.6				
Female	53.4				
Age	r = 0.018b (0.805)	-1.101b (0.163)	-0.063b (0.383)	-0.075b (0.303)	
Specimen type					
Tissue swabs and cultures	F = 0.238c (0.626)	F = 0.191c (0.05)*	F = 0.238(0.626)	F = 0.238 (0.465)	
Body fluid secretion	F = 2.596c (0.054)	F = 0.707c (0.549)	F = 1.894c (0.132)	F = 1.466c (0.225)	
Sputum	F = 0.213c (0.074)	F = 0.431c (0.360)	F = 0.238c (0.565)	F = 0.238c (0.112)	
Body abscess	F = 0.463c (0.833)	F = 0.321c (0.379)	F = 0.187 (0.816)	F = 0.146c (0.638)	

Note: T test*, Pearson-r correlationb, Anova*.
*Statistically significant at 0.05 level.
study does not discuss the reasons for the higher resistance of TB drugs among clinical isolates. Nevertheless, training and patient education on how to avoid TB drug resistance could effectively alleviate the problem.

According to data generated in this study, the prevalence of M. tuberculosis resistance to first-line anti-TB drugs (ethambutol, isoniazid, rifampin, and streptomycin) is estimated to be 27% among all isolated strains. Among all clinical isolates of the organism, multi-drug resistant strains represent about 10.3%. Based on a limited number of studies previously conducted in KSA, it was estimated that the proportion of drug-resistant M. tuberculosis ranged between 14% and 29% in different geographical regions of the country. Isoniazid and rifampin are two principle antibiotics of the anti-TB regimen. In this study, the resistance to these drugs was 17.8% and 2.6%, respectively. These figures contradict previous reports implying that the epidemiology and resistance pattern of M. tuberculosis vary greatly from one region to another within the country.

Female clinical isolates had higher resistance to ethambutol compared to male clinical isolates. This is congruent with previous studies that identified a higher prevalence of acquired resistance to ethambutol among female patients. A study conducted in South Africa found that women were 38% more likely to experience TB drug-resistance than men. Likewise, another study from India noted that females were more vulnerable to TB than males between the ages of 18—29 years. In an analysis by Liu et al., researchers noted that although TB patients had different drug resistance risks because of differences in access to health care services, females were more likely to have TB resistance than males. There is no clear explanation for this scenario. This might be because women tend to be primary caregivers in a family and may thus devote more time to caring for TB-resistant drug patients than men. In addition, male and female patients might have different care levels and providers might be unwilling to refer female patients with less complex infections to health care settings. According to Surkova et al., during their initial reproductive years, women might have higher infection rates of TB. Ascertaining TB-resistant drug risk in the different genders could provide valuable insight into direct measures and improved TB treatment management.

Limitations

Several limitations need to be considered in the interpretation of this study. The study used secondary data from a tertiary hospital which limits the generalization. The use of the retrospective study methodology cannot determine the causes of TB. Other risk factors affecting TB susceptibility and resistance were also not measured. The data was collected from 2008 to 2013. The lack of recent reliable data limits the analysis scope and sample size. Therefore, further research into the latest TB trend is warranted in the Eastern Province of KSA.

Recommendations

There has been a rise in antibiotic resistance in KSA hospitals, as well as worldwide, due to the increased use of antibiotics. There is thus a need for a more rational approach to using antibiotics based on microbial prevalence and antibiotic susceptibility. The results of this retrospective record-based study illustrate the significance of national efforts to the improvement of treatment and control of drug-resistant TB in the country by executing evidence-based actions monitoring TB treatment and diagnosis. Since women are more likely to experience resistance to TB drugs, increasing efforts to develop gender-dependent protocols from diagnosis to TB treatment, will contribute to the prevention of drug resistance. Further investigation using a representative survey of drug-resistance among all culture-positive TB-resistant and susceptible patients in the country, with a follow-up of their treatment outcomes, is recommended.

Source of funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Conflict of interest

There is no conflict of interest.

Ethical approval

This study was directed after receiving approval from the Ethics Review Committee of the University hospital institution.

Acknowledgment

A deep gratitude is paid for King Fahd University Hospital, particularly the Directorate of Clinical Laboratories for granting permission to utilise patients’ records in order to generate this study.

References

1. World Health Organization. Tuberculosis; 2019 https://www.who.int/news-room/fact-sheets/detail/tuberculosis. [Accessed 14 November 2019].
2. World Health Organization. Global tuberculosis report 2018; 2019 https://www.who.int/tb/publications/global_report/gtb2018_main_text_28Feb_2019.pdf. [Accessed 8 November 2019].
3. Sotgiu G, Centis R, D’Ambrosio L, Migliori GB. Tuberculosis treatment and drug regimens. *Cold Spring Harb Perspect Med* 2015; 5(5):a017822.

4. Hamusse SD, Demissie M, Teshome D, Lindtjorn B. Fifteen-year trend in treatment outcomes among patients with pulmonary smear-positive tuberculosis and its determinants in Arsi zone, Central Ethiopia. *Glob Health Action* 2014; 7(1): 25382.

5. Gaifer Z, Babiker A, Rizavi D. Epidemiology of drug-resistant tuberculosis in a tertiary care center in Oman, 2006-2015. *Oman Med J* 2017; 32(1): 36–40.

6. Ayukekbong JA, Ntemgwa M, Atabe AN. The threat of antimicrobial resistance in developing countries: causes and control strategies. *Antimicrob Resist Infect Contr* 2017; 6: 47.

7. Javaid A, Ullah I, Masud H, Basit A, Ahmad W, Butt Z, et al. Predictors of poor treatment outcomes in multidrug-resistant tuberculosis patients: a retrospective cohort study. *Clin Microbiol Infect* 2018; 24(6): 612–617.

8. Al-Hajoj S, Varghese B. Tuberculosis in Saudi Arabia: the journey across time. *J Infect Dev Ctries* 2015; 9(3): 222–231. https://doi.org/10.3855/jidc.5296

9. Abouzeid MS, Al RF, Memish ZA. Mortality among tuberculosis patients in Saudi Arabia (2001-2010). *Ann Saudi Med* 2013; 33(3): 247–252. https://doi.org/10.5144/0256-4947.2013.247.

10. AlSahafi AJ, Shah H, AlSayali MM, Mandoura N, Assiri M, Almohammad E, et al. High non-compliance rate with anti-tuberculosis treatment: a need to shift facility-based directly observed therapy short course (DOTS) to community mobile outreach team supervision in Saudi Arabia. *BMJ Publ Health* 2019; 19(1): 1168. https://doi.org/10.1186/s12889-019-7520-8.

11. Alqahtani S, Kashkary M, Asiri A, Kamal H, Binongo J, Castro K, et al. Impact of mobile teams on tuberculosis treatment outcomes, Riyadh region, Kingdom of Saudi Arabia, 2013-2015. *J Epidemiol Global Health* 2017; 7: S29–S33.

12. Dusthuckeer A, Sekar G, Chidambaram S, Kumar V, Mehta P, Swaminathan S. Drug resistance among extrapulmonary TB patients: six years experience from a supranational reference laboratory. *Indian J Med Res* 2015; 142(5): 568–574. https://doi.org/10.4103/0971-5916.171284.

13. Pang Y, An J, Shu W, Huo F, Chu N, Gao M, et al. Epidemiology of extrapulmonary tuberculosis among inpatients, China, 2008-2017. *Emerg Infect Dis* 2019; 25(3): 457–464.

14. Ministry of Health Saudi Arabia. *Statistical year book-1437H*. 2017. https://www.moh.gov.sa/en/Ministry/Statistics/book/Pages/default.aspx. [Accessed 18 August 2018].

15. Sandgren A, Hollo V, Werf M. Extrapulmonary tuberculosis in the European Union and European economic area, 2002 to 2011. *Euro Surveill* 2013; 18(12): 20431.

16. Boehme CC, Nabet P, Hillemann D, Nicol MP, Shenai S, Krapp F, et al. Rapid molecular detection of tuberculosis and rifampin resistance. *N Engl J Med* 2010; 363(11): 1005–1015. https://doi.org/10.1056/NEJMoa0907847.

17. Prasad R, Gupta N, Banka A. Multidrug-resistant tuberculosis/ rifampicin-resistant tuberculosis: principles of management. *Lung India* 2018; 35(1): 78–81.

18. Saldanha N, Runwal K, Ghanekar C, Gaikwad S, Sane S, Pujari S. High prevalence of multi drug resistant tuberculosis in people living with HIV in Western India. *BMC Infect Dis* 2019; 19(1).

19. Viana P, Redner P, Ramos J. Fatores associados ao abandono e ao óbito de casos de tuberculose drogarresistente (TBDR) atendidos em um centro de referência no Rio de Janeiro, Brasil. *Cads Saúde Pública* 2018; 34(5).

20. Long R, Langlois-Klassen D. Increase in multidrug-resistant tuberculosis (MDR-TB) in Alberta among foreign-born persons: implications for tuberculosis management. *Can J Public Health* 2013; 104(1): e22–e27.

21. Ahmed-Abakur EH, Saad Alnour TM. Detection of multidrug resistant Mycobacterium tuberculosis in Tabuk, Saudi Arabia, using genotype MTBDRplus. *Int J Mycobacteriol* 2019; 8: 25–28.

22. Sinha P, Srivastava GN, Gupta A, Anupurba S. Association of risk factors and drug resistance pattern in tuberculosis patients in North India. *J Global Infect Dis* 2017; 9(4): 139–145.

23. Pradip IS, van’t Boveneind-Vrubleuskaya N, Akkerman OW, Alffenaar J, Hak E. Treatment outcomes of drug-resistant tuberculosis in The Netherlands, 2005-2015. *Antimicrob Resist Infect Contr* 2019; 8: 1–12.

24. O’Donnell MR, Zelnick L, Werner L, Master I, Loveday M, Horsburgh CR, et al. Extensively drug-resistant tuberculosis in women, KwaZulu-Natal, South Africa. *Emerg Infect Dis* 2011; 17(10): 1942–1945.

25. Balaji V, Daley P, Anand AA, Sudarsanam T, Michael JS, Sahni RD, et al. Risk factors for MDR and XDR-TB in a tertiary referral hospital in India. *PloS One* 2010; 5(3):e9527.

26. Liu Q, Zhu L, Shao Y, Song H, Li G, Zhou Y, et al. Rates and risk factors for drug resistance tuberculosis in Northeastern China. *BMJ Publ Health* 2013; 13(1).

27. Surkova L, Horevich H, Titov L, Sahalchyk E, Arjomandzadegan M, Alinejad S, et al. A study on demographic characteristics of drug resistant Mycobacterium tuberculosis isolates in Belarus. *Int J Mycobacteriol* 2012; 1(2): 75–81. https://doi.org/10.1016/j.ijmyco.2012.04.001.

How to cite this article: Aljeldah MM. Antibiotic sensitivity of *Mycobacterium tuberculosis* isolates; a retrospective study from a Saudi tertiary hospital. J Taibah Univ Med Sc 2020;15(2):142–147.