An epigenome atlas of neural progenitors within the embryonic mouse forebrain

Christopher T. Rhodes1, Joyce J. Thompson2, Apratim Mitra3, Dhanya Asokumar1,2, Dongjin R. Lee1, Daniel J. Lee1,2, Yajun Zhang1, Eva Jason3, Ryan K. Dale3, Pedro P. Rocha2,4 & Timothy J. Petros1

A comprehensive characterization of epigenomic organization in the embryonic mouse forebrain will enhance our understanding of neurodevelopment and provide insight into mechanisms of neurological disease. Here we collected single-cell chromatin accessibility profiles from four distinct neurogenic regions of the embryonic mouse forebrain using single nuclei ATAC-Seq (snATAC-Seq). We identified thousands of differentially accessible peaks, many restricted to distinct progenitor cell types or brain regions. We integrated snATAC-Seq and single cell transcriptome data to characterize changes of chromatin accessibility at enhancers and promoters with associated transcript abundance. Multi-modal integration of histone modifications (CUT&Tag and CUT&RUN), promoter-enhancer interactions (Capture-C) and high-order chromatin structure (Hi-C) extended these initial observations. This dataset reveals a diverse chromatin landscape with region-specific regulatory mechanisms and genomic interactions in distinct neurogenic regions of the embryonic mouse brain and represents an extensive public resource of a ‘ground truth’ epigenomic landscape at this critical stage of neurogenesis.

1 Unit on Cellular and Molecular Neurodevelopment, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892, USA. 2 Unit on Genome Structure and Regulation, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892, USA. 3 Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892, USA. 4 National Cancer Institute (NCI), NIH, Bethesda, MD 20982, USA. *Email: tim.petros@nih.gov
Hibitory GABAergic interneurons are a heterogeneous cell population that can be classified based on electrophysiological properties, morphologies, synaptic connectivity, neurochemical markers, and transcriptomes. In the forebrain, GABAergic neurons are born from transient embryonic structures in the ventral telencephalon known as the medial, caudal, and lateral ganglionic eminences (MGE, CGE, and LGE, respectively), whereas glutamatergic projection neurons arise from the dorsal telencephalon. The MGE and CGE (and adjacent preoptic area) generate nearly all cortical and hippocampal interneurons, with each region generating almost entirely distinct, non-overlapping interneuron subtypes.

The embryonic brain contains two primary classes of neural progenitors: multipotent self-renewing apical progenitors (APs, also known as radial glia cells) located in the ventricular zone (VZ) and basal progenitors (BPs) that undergo neurogenic divisions within the subventricular zone (SVZ). Both APs and BPs give rise to postmitotic immature neurons (Ns) within the GEs that migrate tangentially to populate the telencephalon. Recent evidence demonstrates that initial interneuron subtype fate is specified within the GEs as interneuron progenitors exit the cell cycle. It is well established that changes in a cell’s epigenetic landscape alter cell fate decisions throughout normal development and can be associated with neurodevelopmental disorders. In mice and immature interneurons, many neurological and psychiatric disease-associated genes are expressed during embryonic development and are enriched specifically in APs and immature interneurons. Furthermore, many neurodevelopmental disorders have been linked directly to polymorphisms in enhancer regions, and GWAS indicates that >90% of disease-associated single nucleotide polymorphisms (SNPs) are located outside of coding regions. Thus, a thorough characterization of the epigenomic landscape during neurogenesis is necessary to understand normal development and potential disease etiologies.

Using a single nuclei assay for transposable accessible chromatin followed by sequencing (snATAC-Seq), we characterized the chromatin accessibility of cells during the transition from progenitors to lineage-restricted neurons within the GEs and dorsal telencephalon of the embryonic mouse brain. We identified differentially accessible peaks (DA peaks) enriched in specific brain regions and/or distinct progenitor cell types. Among chromatin accessibility profiles, individual loci smoothly transition from open to closed chromatin (or vice versa) during the initial stages of neurogenesis. We validated our snATAC-Seq and single-cell RNA sequencing (scRNA-Seq) observations with orthogonal epigenomic methods. Genome-wide histone modification profiles associated with promoters (H3K4me3), active enhancers (H3K27ac), and gene repression (H3K27me3) were highly concordant with our snATAC-Seq profiles showing spatially restricted enrichment patterns. Our single-cell derived gene-enhancer models largely agreed with direct observations of promoter–enhancer interactions by Capture-C and higher-order chromatin domains by Hi-C. These data are available as a UCSC Genome Browser track hub, providing an important new resource for the field to explore spatial differences in the chromatin landscape of distinct neuronal progenitors within the embryonic mouse forebrain.

Results

Identifying chromatin accessibility profiles in the embryonic mouse forebrain. To ascertain the chromatin accessibility landscape of differentiating neurons, we dissected the MGE, CGE, LGE, and cortex from wild-type mice at embryonic day 12.5 (E12.5) when cells in the GEs are undergoing neurogenesis and processed single nuclei on the 10X Genomics platform (Fig. 1a). Since cortical neurogenesis occurs later, we also harvested E14.5 dorsal cortex to compare both temporally (E12.5 GEs vs. E12.5 cortex) and neurogenically (E12.5 GEs vs. E14.5 cortex) matched dorsal and ventral forebrain. Sequencing libraries contained 39,253 single nuclei, with 10,310 from MGE, 8543 from CGE, 11,346 from LGE, and 9054 from the cortex. Libraries were aggregated, downsampled to equal numbers of median fragments per nuclei, and normalized by latent semantic analysis (LSA) before peak calling, construction of cell-by-peak count matrices, and integration of different samples (Supplementary Fig. 1a–h).

Using uniform manifold approximation and projection (UMAP), nuclei were segregated largely by tissue region (Fig. 1b). The smart local moving (SLM) algorithm detected 27 clusters, of which three non-neuronal clusters were removed to retain 96.8% of nuclei in 24 clusters (Fig. 1c). Cell types were assigned by inspecting promoter accessibility (PA) (defined as the sum of reads mapping within ~2000 bp of a TSS) of canonical cell type markers and were further refined by transferring cell type assignments from droplet-based scRNA-Seq data of E12.5 embryos (Fig. 1d and Supplementary Fig. 1i–n) to the snATAC-seq dataset. PA for markers of interneuron and excitatory glutamatergic pyramidal cell maturation segregated clusters into mitotic APs and BPs, and postmitotic Ns (Fig. 1d and Supplementary Fig. 1o–q). MGE and most CGE and LGE nuclei displayed accessible chromatin at GABAergic neuron markers, while virtually all cortical nuclei have accessible chromatin at markers of glutamatergic neurons (Supplementary Figs. 1o, 2). A group of LGE and CGE nuclei displayed accessibility profiles more similar to glutamatergic neuron markers and were labeled as a “mixed” neuron population (Supplementary Figs. 1o, 2). This was likely contamination from the pallial-subpallial boundary (PSB), a region that gives rise to cells located in the piriform cortex, claustrum, and amygdala.

To quantify temporal differentiation programs, a minimum spanning tree was constructed in Monocle (Fig. 1e). The progression along pseudotime largely recapitulated known maturation markers, from Nes+ and Cnd2+ cycling progenitors to Dcx+ and Rhf3+ postmitotic neurons (Fig. If–i). Additionally, region-restricted genes such as Nkx2-1 and Lhx6 in the MGE, and Neurod6 in the cortex displayed open accessibility profiles restricted to these regions (Fig. If–m). We examined pseudobulk ATAC read pileups within each cluster for regionally restricted genes for the MGE (Nkx2-1) and cortex (Neurod6) (Fig. 1n, o) and for two pan-neuronal maturation markers for APs (Nes) and BPs/Ns (Dcx) (Fig. 1p, q). High signal strength for Nkx2-1 and Neurod6 reads were restricted to the MGE and cortex/mixed clusters, respectively. As expected, Nes reads were enriched in AP clusters with diminished signals in BP and N clusters, whereas Dcx displayed the inverse low-AP to high-N accessibility profile. Notably, strong accessibility was detected in the second intron of Nes which contains a known enhancer (Fig. 1p). These observations were in agreement with ENCODE H3K4me3 ChIP-Seq data from E12.5 mouse forebrain (Fig. 1n–q).

Differentially accessible peak profiles during neurogenesis in the embryonic mouse forebrain. When comparing differentially accessible (DA) peaks among all possible peaks (intergenic peaks and those in promoters/gene bodies), we sought to detect cluster and cell type-specific markers, detecting a total of 30,046 DA peaks (FDR ≤ 0.05, average log(fold change) > 0) across all clusters (Fig. 2a, Supplementary Fig. 3a, and Supplementary Data 1). These DA peaks represent accessible genomic loci that are potentially unique to specific cell types. To characterize DA peak profiles across clusters, we asked whether the genomic coordinates bounding DA peaks of one cluster had reads in any
Fig. 1 Chromatin accessibility in the mouse embryonic forebrain is cell type and state-specific. a Schematic of snATAC-Seq workflow and neurogenic cell types: apical progenitors (APs), basal progenitors (BPs), and postmitotic neurons (Ns). b–e UMAP visualization of single nuclei clustered by brain region (b), SLM (c), neurogenic cell type (d), and pseudotime (e). In d, promoter accessibility (PA) representing reads mapping within 2 kb upstream of TSSs. f–m PA scores for genes enriched in specific neurogenic cell types (f–i) or distinct brain regions (j–m). n–q Aggregated reads per SLM cluster. Nkx2-1 (MGE), Neurod6 (cortex), Nes (APs), and Dcx (BPs/Ns), arranged by either brain region (n, o) or neurogenic cell type (p, q). The y-axis range for chromatin accessibility tracks are normalized to the maximum reads per gene. Peaks: differentially accessible peak coordinates, H3K4me3: H3K4me3 signal from E12.5 forebrain ENCODE ChIP-Seq data.
other cluster. If there were reads in a DA peak from one cluster in another cluster, this peak was considered overlapping between the clusters. No minimum threshold for overlapping peak counts was used before calculating the percentage of overlapping DA peaks from one cluster compared to all peaks from the same cluster (Fig. 2a, "% Overlap"). We also counted the number of DA peaks from each cluster to assess if there were differences in the number of DA peaks per cluster (Fig. 2a, "Peak counts").

Unsupervised hierarchical clustering (HC) of DA peak profiles created a dendrogram that segregated clusters initially by maturation state (AP, BP, and N) and secondarily by tissue origin. Since the overall profiles of LGE and CGE nuclei were very similar, these two regions were labeled 'LGE/CGE' for this analysis. The 'mixed' neuron population (Supplementary Fig. 1o) was also left as an individual group for this analysis. The dendrogram generated by HC is very similar to cluster relationships in LSA/UMAP space, which is encouraging since different features were used in each analysis (HC: DA peaks in cluster pairs, LSA: all peaks across libraries). As expected, dot plot positions containing both high DA peaks counts and high percent overlap were almost exclusively grouped along the diagonal, while positions with limited numbers of DA peaks or low between-cluster peak overlap populated the off-diagonals, indicating high specificity of DA peaks to specific clusters (Fig. 2a).

We also visualized binarized peak signals (i.e., "open" or "closed" regions) per cluster using a heatmap and again observed high peak signals primarily along the diagonal (Supplementary Fig. 3a). Intriguingly, the mean number of DA peaks decreased as maturation progressed, with a significant decrease in DA peaks in relationships in LSA/UMAP space, which is encouraging since different features were used in each analysis (HC: DA peaks in cluster pairs, LSA: all peaks across libraries). As expected, dot plot positions containing both high DA peaks counts and high percent overlap were almost exclusively grouped along the diagonal, while positions with limited numbers of DA peaks or low between-cluster peak overlap populated the off-diagonals, indicating high specificity of DA peaks to specific clusters (Fig. 2a).

We also visualized binarized peak signals (i.e., "open" or "closed" regions) per cluster using a heatmap and again observed high peak signals primarily along the diagonal (Supplementary Fig. 3a). Intriguingly, the mean number of DA peaks decreased as maturation progressed, with a significant decrease in DA peaks in relationships in LSA/UMAP space, which is encouraging since different features were used in each analysis (HC: DA peaks in cluster pairs, LSA: all peaks across libraries). As expected, dot plot positions containing both high DA peaks counts and high percent overlap were almost exclusively grouped along the diagonal, while positions with limited numbers of DA peaks or low between-cluster peak overlap populated the off-diagonals, indicating high specificity of DA peaks to specific clusters (Fig. 2a). The cell type- and brain region-specific DA peak profiles are consistent with previous models of chromatin reorganization during cellular differentiation.

We also visualized binarized peak signals (i.e., "open" or "closed" regions) per cluster using a heatmap and again observed high peak signals primarily along the diagonal (Supplementary Fig. 3a). Intriguingly, the mean number of DA peaks decreased as maturation progressed, with a significant decrease in DA peaks in relationships in LSA/UMAP space, which is encouraging since different features were used in each analysis (HC: DA peaks in cluster pairs, LSA: all peaks across libraries). As expected, dot plot positions containing both high DA peaks counts and high percent overlap were almost exclusively grouped along the diagonal, while positions with limited numbers of DA peaks or low between-cluster peak overlap populated the off-diagonals, indicating high specificity of DA peaks to specific clusters (Fig. 2a). The cell type- and brain region-specific DA peak profiles are consistent with previous models of chromatin reorganization during cellular differentiation.
BP and N nuclei compared to APs in each tissue (Supplementary Fig. 3c–d). Despite this decrease, DA peak profiles became more distinct as maturation progressed, as indicated by the low between-cluster peak overlap along the dot plot off-diagonal (Fig. 2a and Supplementary Fig. 3a). The decrease in global accessibility over time is consistent with previous observations during cellular differentiation31. We observed a greater number of DA peaks in all maturation stages in the cortex compared to GEs (Supplementary Fig. 3e–f).

Regions of accessible chromatin are enriched for transcription factor (TF) binding motifs that often play essential roles in driving cell specification. To characterize region-enriched TF motifs, we performed motif analysis on DNA sequences within DA peaks using the JASPAR CORE 24 vertebrates collection. Motif analysis detected TF motifs that have lineage- and tissue-specific roles during interneuron neurogenesis (Fig. 2a, Supplementary Fig. 3b, and Supplementary Data 2). Further, among motifs enriched in specific clusters that also had a corresponding differentially accessible promoter, the top five matches contain one or more TF motifs with known spatial or temporal expression profiles correlating with the cell cluster (Fig. 2b and Supplementary Data 3). For example, UMAP visualization of motif enrichment by chromVAR 35 for NR2F1 (MGE and CEG-specific) 36, ASCL1 (GABAergic BP-enriched), EMX1 (cortical progenitor AP/BP-specific), and NEUROD2 (cortical postmitotic N-specific) motifs demonstrated the expected neuronal lineage progression and/or region-restricted patterns (Fig. 2b–c). We further quantified genome-wide DA peak distributions within annotated gene regions and found the majority of DA peaks were constrained to the promoter and intronic regions of gene bodies, and distal intergenic loci (Supplementary Fig. 3g). These findings indicate that DA peaks are specific to brain region and cell-state, and importantly, that DA peaks contain lineage-specific TF motifs that may regulate cell fate decisions differentiation.

Candidate cis-regulatory elements are dynamic and cell state-dependent in the embryonic mouse forebrain. The global decrease of DA peak numbers from cycling neural progenitors to postmitotic immature neurons prompted us to examine changes to DA peaks during maturation and lineage commitment. For this and all future analyses, we removed the ‘mixed’ population to characterize only LGE and CGE-derived GABAergic cells. The Monocle3 extension Cicero 37 detects interactions or ‘connections’ between any two genomic loci and then assigns a co-accessibility score between the two sites, thereby calculating the proportion of nuclei containing a given co-accessibility interaction within a population. We quantified such interactions within all nuclei and detected 92,414 connections that had a co-accessibility score equal to or greater than 0.25, meaning a given locus-locus interaction is detectable in >25% of all nuclei in the defined population (henceforth “Cicero connections”).

To explore co-accessibility changes during neurogenesis, we used a heatmap to visualize Cicero connections in which at least one of the two interacting loci was a DA peak, representing potential interactions between DA peaks and putative cis-regulatory elements (cREs). Nuclei were divided into 10 bins of equal pseudotime intervals along the Y-axis, with individual DA peaks grouped via hierarchical clustering along the X-axis. The heatmap color represents the proportion of nuclei with a given DA peak (interacting via a Cicero connection) with a co-accessibility score >0.25 (Fig. 3a). Nearly half of these Cicero connections were enriched in AP nuclei, which is consistent with an overall decrease in accessibility as development progresses (Supplementary Fig. 3c–d). As chromatin regions with dynamic accessibility are associated with gene regulation during neural stem cell activation32, we hypothesized that Cicero connections enriched in immature neurons encode lineage-specific cREs that may play a role in neuronal lineage commitment.

To identify candidate cREs at specific genes, we examined Cicero connections within 0.5 Mb windows of gene TSSs after filtering for co-accessibility scores >0.25. We identified Cicero connections in which only one of the two interacting loci overlapped a TSS, representing potential interactions between a TSS and putative cREs (henceforth ‘TSS-cRE connections’). All Cicero connections within this 0.5 Mb window were visualized as orange arcs whereas TSS-cRE connections for a selected gene are highlighted in purple (Fig. 3b, c). To characterize Cicero connections that were spatially restricted, we downsampled tissues to equal nuclei numbers and detected 91,904, 76,858, 89,366, and 148,942 Cicero connections with co-accessibility scores >0.25 in MGE, LGE, CGE, and cortex, respectively. Lhx6 and Neurod6 Cicero connections are restricted to the MGE and cortex, respectively, and TSS-cRE connections for Lhx6 and Neurod6 are virtually exclusive to these regions (Fig. 3b). Nr2f2 (CoupTF-II) is a marker for APs in the VZ of the CGE and caudal MGE38 whereas Sp8 is a marker for LGE progenitors that is excluded from the MGE39. Both genes displayed highest co-accessibility scores and TSS-cRE connections counts in the expected regions (Fig. 3b). Overall, tissue-specific TSS-cRE connectivity patterns were similar to regionally restricted gene expression patterns that are critical to neuronal development.

To characterize Cicero connections that varied between neurogenic cell types, we downsampled to equal nuclei numbers and detected 89,312, 88,980, and 110,362 Cicero connections with co-accessibility scores >0.25 in AP, BP, and N nuclei, respectively. Among these Cicero connections, postmitotic genes Lhx6 and Neurod6 had their highest co-accessibility scores and TSS-cRE connections in BP and N nuclei (Fig. 3c). Progenitor-enriched genes Nr2f2 and Sp8 had their highest co-accessibility scores and TSS-cRE connections in APs, with decreased connections and co-accessibility scores in Ns. The pan-AP marker nestin (Nes) had its highest co-accessibility scores and TSS-cRE connections in APs throughout all regions compared to BPs and Ns. Conversely, the postmitotic GABAergic marker Gad1 had its highest co-accessibility scores and connection counts in BPs and Ns. As with the regional specificity of TSS-cRE connections, the temporal connection patterns largely recapitulate known gene expression patterns as neurons mature. In sum, cREs likely interact with DA peaks and TSSs to regulate genes in regionally and temporally restricted patterns, and the co-accessibility patterns of TSS-cREs connections closely resemble known spatial and temporal expression patterns in the embryonic forebrain.

Integrative analysis of chromatin accessibility and gene expression profiles in the embryonic mouse forebrain. To enhance our understanding of the relationship between chromatin accessibility and gene expression during neurogenesis, we combined chromatin accessibility profiles from snATAC-Seq data with age and region-matched scRNA-Seq data. Integrating ATAC and RNA data involves quantifying ATAC reads in or near gene bodies by a Gene Activity Score (GAS) as a proxy for transcript abundance. After testing multiple GAS metrics for snATAC-Seq/scRNA-Seq integration, we defined GAS as the sum of all ATAC reads mapping to the promoter, first exon, and presumptive enhancers of a given gene because this GAS metric produced the highest concordance between ATAC and RNA assays (Supplementary Fig. 4). Following integration, the clustering of snATAC-Seq and scRNA-Seq cells were highly concordant, with the MGE and cortex integrated cells formed distinct clusters whereas the LGE and CGE cells were largely overlapping (Fig. 4a, b). The
The Louvain algorithm detected 26 clusters (Fig. 4c) and Monocle3 assigned pseudotime (Fig. 4d) which largely recapitulated temporal and spatially restricted expression patterns expected in embryonic forebrain neurogenic regions (Fig. 4e–j and Supplementary Fig. 5).

Prior to integration, we refined our cRE predictions to detect presumptive enhancers by combining our Cicero TSS-cRE analysis with TSS-cRE predictions from the SnapATAC algorithm (Supplementary Data 4). SnapATAC predictions link distal regulatory elements to target genes based on the transcript count of a gene and chromatin accessibility at peaks flanking the gene using gene expression as an input variable to predict the binarized chromatin state at peaks. Our rationale for using multiple algorithms was that TSS-cREs connections common to both methods likely improve cRE predictions. After combining TSS-cRE connections from both methods, we retained common cREs to generate a list of all detectable presumptive enhancers (Supplementary Fig. 6). We took the intersection of these loci and ENCODE H3K27ac ChIP-Seq peaks from E12.5 and E14.5 forebrain, resulting in a set of 'high-confidence'
enhancer candidates (henceforth “presumptive enhancers”) (Supplementary Data 5). We detected previously validated VISTA enhancers interacting with genes in the MGE (hs704 and hs1538 regulating Nkx2-1), cortex (hs627 regulating Neurod2), GABAergic progenitors (hs967, hs998, hs1114, hs1354, and hs1540 regulating Ascl1) and glutamatergic progenitors (hs1025 regulating Emx1) (Fig. 4k–n and Supplementary Data 6).

To characterize the temporal expression and chromatin accessibility profiles during neurogenesis, we utilized a hierarchical clustering-based approach from the DEGReport package to group RNA, GAS, and enhancer counts from our integrated scRNA-Seq/snATAC-Seq data (Fig. 5a–r). As not all genes had detectable snATAC-based GAS and/or enhancer counts, we selected ~300 of the most differentially expressed genes (DEGs)
(from scRNA) among APs, BPs, andNs that had corresponding GAS and enhancer counts. DEGReports hierarchical clustering uncovered five groups containing at least six genes (Supplementary Fig. 7a, b), of which over 85% of the genes fell into two categories: one cluster is consistent with high expression and accessibility profiles within progenitors (APs and BPs) that are downregulated in postmitotic neurons (156 DEGs, Fig. 5a), and another cluster with the complimentary profile (90 DEGs, Fig. 5b). Genes within these clusters displayed similar patterns of expression and chromatin accessibility over pseudotime. Visualization of representative early-expressed genes Hes1 (Fig. 5c–f) and Lmo1 (Fig. 5g–i) and later-expressed genes Myt1l1 (Fig. 5k–n) and Lhx6 (Fig. 5o–r) demonstrate consistent trends for transcript, GAS, and enhancer counts over pseudotime. We quantified the number of high-confidence enhancers associated with upregulated DEGs as maturation progressed and identified 200 enhancers associated with DEGs that had a positive fold change from APs-to-BPs, 175 enhancers for BPs-to-Ns, and 269 enhancers from APs-to-Ns (Supplementary Fig. 7c). Likewise, we found 188 enhancers associated with DEGs that had a negative fold change from APs-to-BPs, 179 enhancers for BPs-to-Ns, and 320 enhancers from APs-to-Ns (Supplementary Fig. 7c). There is a gradual decrease in the ratio of the number of enhancers being activated versus the number being decommissioned as maturation progressed (Supplementary Fig. 7d), suggesting that a greater number of genes and associated enhancers are repressed as progenitors exit the cell cycle. Taken together, DEGs and associated enhancers exhibit reorganization during the transition from progenitors to lineage-committed postmitotic immature neurons.

We characterized the differentiation processes by visualizing matched heatmaps for RNA, GAS, and presumptive enhancer counts of highly variable genes (Fig. 5s–u). We selected transcript counts and corresponding GAS and enhancer counts for the top 500 most variable genes from the E12.5 integrated dataset, of which 210 had corresponding GAS and enhancer counts (Supplementary Fig. 57e–g). RNA, GAS, and enhancer count matrices for these genes were co-clustered using hierarchical clustering with a correlation distance metric and average linkage and visualized in matched heatmaps (Fig. 5s–u). Partitioning early, transitional and late expressing gene profiles with respect to pseudotime largely followed a continuous progression as cells matured from APs through Ns. Overall, there was a high similarity between (1) early and late gene expression patterns detected by degPatterns (Fig. 5a, b and Supplementary Fig. 7a, b) and (2) early and late expressing genes visualized in heatmaps (Fig. 5s–u), indicating distinct, dynamic expression and chromatin accessibility in APs, BPs, and Ns. By integrating multiple single-cell modalities, we characterized the chromatin accessibility and gene expression profile of distinct forebrain regions during neurogenesis.

Fig. 4 Integrative analysis of snATAC-Seq and scRNA-Seq from embryonic mouse forebrain. a Workflow depicting integration of embryonic snATAC-Seq (top left) and scRNA-Seq (top right) data. Bottom, UMAP plot showing integrated snATAC-Seq nuclei and scRNA-Seq cells colored by tissue. b–d UMAP visualization of integrated snATAC-Seq/scRNA-Seq data colored by assay (b), Louvain cluster (c), and pseudotime (d). e–j UMAP visualization of integrated scRNA-Seq cells and snATAC-sec nuclei colored by transcript counts or GAS for Nes (e, f), Nkx2-1 (g, h), and Neurod2 (i, j). Gray dots in the background represent cells/nuclei from other assays. k–m Genome browser tracks displaying enhancer predictions regulating Nkx2-1 (k), Neurod2 (l), Ascl1 (m), and En1 (n). Peak–Gene interactions are visualized in blue arcs, arc heights indicate the relative interaction scores between gene TSS (red line) and peaks. snATAC-Seq Peaks: displays co-accessible coordinates, H3K27ac ENCODE: Forebrain E12.5 H3K27ac peaks from ENCODE project, VISTA: enhancers from the VISTA Genome Browser project. enormous potential for mapping regulatory elements in heterogeneous cell populations. To validate some of these predictions, we carried out two additional sets of experiments. First, we performed CUT&RUN and CUT&Tag on E12.5 MGE, LGE, CGE, and cortex to detect histone modifications associated with active/poised promoters (H3K4me3), active enhancers (H3K27ac), and repressed genes (H3K27me3). Most genes with spatially restricted mRNA and promoter accessibility profiles contained corresponding H3K4me3 peaks whereas spatially repressed genes were enriched with H3K27me3 (Fig. 6a). More globally, we observed that ~70% of ATAC peaks at promoters overlapped with H3K4me3 marks in all brain regions (Fig. 6b).

To further identify candidate enhancers, we combined our Cicero analysis with H3K27ac enrichment. There was less overlap between ATAC peaks and H3K27ac marks (29.2–45.1%), as expected due to the weaker correlation between accessibility and H3K27ac marks throughout the genome. However, if we restricted analysis to ATAC peaks with a Cicero connection to a promoter (indicative of possible enhancers), then the percent overlap of ATAC peaks with H3K27ac marks increased considerably (54.9–68.1%) (Fig. 6b).

We observed region-specific colocalization between ATAC peaks, Cicero connections, and H3K27ac marks at many genes, some of which represent candidate enhancers. For example, there are VISTA enhancers downstream of the GE-enriched Ascl1, with one site (hs1540) showing co-accessibility in nearly all nuclei (Fig. 6c). However, none of these VISTA reporters displayed the expected GE-restricted Ascl1 expression pattern (https://enhancer.lbl.gov) nor contained GE-enriched H3K27ac marks (Fig. 6c). Instead, we identified two other regions with Cicero interactions with GE-enriched H3K27ac marks compared to the cortex (Fig. 6c, gray bars). We identified similar loci near Lhx6 and Neurog2 with enriched H3K27ac marks specifically in the MGE and cortex, respectively, representing potentially unexplored cREs (Fig. 6d, e).

We performed Hi-C to characterize chromatin structure genome-wide (Fig. 7a) and Capture-C to directly quantify promoter interactions at ~50 genes with tissue-specific expression patterns (Fig. 7b and Supplementary Data 7). At the Nkx2-1 locus, Hi-C data revealed the formation of an MGE-specific chromatin domain compared to other brain regions (Fig. 7a). Capture-C confirmed these distinct interactions, with the Nkx2-1 promoter interacting directly with a region near the Mbp gene specifically in the MGE (Fig. 7b). Notably, Mbp expression is also restricted to the MGE during development. Conversely, interactions between the Nkx2-1 promoter and the Nkx2-9 and Pax9 loci (genes not expressed in the embryonic forebrain) were specifically detected in the LGE, CGE, and cortex (Fig. 7b). While the exact nature of these interactions is unclear (promoter–enhancer, promoter–promoter, etc.), the formation of region-specific chromatin domains is not observable from the other assays, as the snATAC and histone modifications at the Mbp, Nkx2-9, and Pax9 locus are quite similar between the different brain regions (Fig. 7c).

Both Hi-C and Capture-C data identified a direct interaction between the Nr2f1 promoter and an intron within 2210408121Rik
specific to the CGE and MGE, where Nr2f1 is expressed\(^3\) (Fig. 7d, e). This locus also contains a stronger K27ac signal in the CGE and MGE (Fig. 7f), providing additional evidence for the formation of region-specific promoter–enhancer interactions. Similarly, we observe cortex-enriched interactions of the Lhx2 promoter with two putative enhancers within Dennd1a introns, with both loci displaying stronger H3K27ac signals in the cortex compared to other regions (Fig. 7g–i).

Thus, the combination of single-cell accessibility and transcriptomes with histone modifications and higher-order chromatin interactions represents a comprehensive epigenomic “ground truth” of distinct neurogenic regions of the embryonic...
Mouse brain that give rise to specific neuronal subtypes. These data are publicly available and searchable as a UCSC Genome Browser track hub (https://www.genome.ucsc.edu/). We characterized the single-cell chromatin accessibility and transcriptomic profiles, activator modifications, and higher-order chromatin organization in four distinct neurogenic regions of the mouse embryonic forebrain. While recent studies performed single-cell sequencing experiments to characterize chromatin accessibility in the mouse and human forebrain31,50–52, our dataset represents the most comprehensive analysis of the chromatin landscape in the developing brain to date. With this combinatorial approach, we characterized the variation and dynamic reconfiguration of mRNA, gene accessibility, and active enhancers during neurogenesis and across different neurogenic cell types. We identified numerous candidate enhancers for genes involved in well-characterized neuronal subtypes, many with region-specific direct genomic interactions verified by Hi-C and Capture-C. These data are publicly available in an easily searchable platform on the UCSC genome browser (See Data Availability section; https://www.genome.ucsc.edu/). This dataset will be an important resource for the field leading to a greater understanding of the genetic and epigenetic mechanisms regulating initial neuronal fate decisions in the embryonic forebrain.

Gene expression and DA peaks were strongly correlated with H3K4me3 and H3K27me3 peaks at active and repressed promoters, respectively, in specific brain regions. There was also a high correlation between ATAC peaks with Cicero connections to gene promoters and H3K27ac marks at these ATAC peaks (Fig. 6b), indicative of likely active enhancers. However, there were genomic loci where not all modalities were in agreement. For example, the promoter of Nrx2j2 is accessible in all four brain regions despite mRNA and the H3K4me3 active promoter mark being restricted to the CGE (Fig. 6b). Thus, the multimodal approach led to a more complete, accurate picture of gene expression and epigenome state compared to looking at one modality alone.

By performing Hi-C and Capture-C on dissected MGE, LGE, CGE, and cortex, we characterized region-specific chromatin domains and enhancer–promoter interactions in vivo that were not previously identifiable in ENCODE or other studies that do not distinguish between different forebrain regions. For example, the Nkx2-2 chromatin domain is markedly different between the MGE (where Nkx2-1 directly contacts the Mtbp locus) and non-MGE (where Nkx2-1 directly contacts the Nkx2-9 and Pax9 locus) (Fig. 7). Perturbing these types of interactions could reveal important insights into how chromatin organization affects promoter–enhancer interactions and gene function in a region-specific manner. As we only examined ~50 genes with Capture-C, the realm of region-specific interactions between genes and cREs in the developing forebrain is only beginning to be explored. Previous comparative analyses of chromatin structure have described organ and cell type-specific spatial configurations but have focused mostly on adult tissues53,54. Analysis of cell populations representing earlier stages of differentiation trajectories have been mostly restricted to the immune system55,56, limb differentiation57 and other organisms58,59 and have revealed lower variation of chromatin structure between different cell types. In contrast, our data show that spatially adjacent cells representing early neuronal specification processes can present vastly heterogeneous 3D chromatin structures.

We note several additional intriguing observations from our data. First, the chromatin accessibility profiles reveal significant diversity in AP clusters from the GEs, much more so than cortical APs which have greater similarity between each other compared to other clusters (Fig. 2). Much of the reported transcriptional diversity within the GEs has been restricted to postmitotic cells5,9, so our data suggests that there may be greater transcriptional and chromatin state diversity in GE APs than previously appreciated60. Second, there was a lag for chromatin at genes and enhancers to become inaccessible compared to RNA downregulation, both at the individual gene level (Fig. 5c–r) and global level (Fig. 5s–u). This observation implies that some repressive mechanisms (e.g., repressor TFs, DNA methylation, etc.) likely precede repressive histone modifications and decreased chromatin accessibility at cREs. We observed numerous instances where accessibility of promoters, gene body and/or enhancers preceded transcript upregulation (e.g., Nkx2-1 in Fig. 4g, h and Myt1l and Lhx6 in Fig. 5k–r), which is in agreement with several recent reports51,61. Future multicomponent studies that can simultaneously capture the epigenome and transcriptome within single cells during development should provide significant insight into this relationship.

Third, the number and score of global Cicero connections near a particular gene (orange arcs from Fig. 3b, c) are only loosely correlated to TSS-cRE connections. In some instances, the number of global Cicero connections at certain genomic loci appear to be tissue-specific (greater co-accessibility in regions flanking Neurod6 restricted to cortex and Lhx6 restricted to MGE), while global Cicero connections near other genes appear more similar between tissues (similar co-accessibility for all brain regions flanking Sp8 and Nr2f2). This may suggest a role of Cisco-accessibility Networks (CCANs)37, modules of connection sites that are highly co-accessible with one another in specific brain regions during neuronal fate determination.

Fourth, the population of “mixed” cells that were collected with the LGE and CGE tissue expressed markers for both GABAergic and glutamatergic cells yet formed a distinct cluster from the cortex and GE populations (Fig. 2 and Supplementary Fig. 2). These “mixed” cells likely reside at the PSB as they were not detected in the MGE population. The diversity of cells arising from the lateral/ventral pallium remains poorly characterized, but this region appears to give rise to glutamatergic cells of the insular...
Fig. 6 Histone modifications within mouse embryonic neural progenitors.

a Tracks of scRNA-Seq, snATAC-Seq, and histone modifications correlated with active promoters (H3K4me3), repressed genes (H3K27me3), and active enhancers (H3K27ac) in MGE, LGE, CGE, and cortex (CTX); pan-GE Dlx2, MGE-restricted Nkx2-1, CGE-enriched Nr2f2, and cortex-restricted Emx1.

b Venn diagrams comparing ATAC peaks at promoter regions vs. H3K4me3 peaks at promoters (left); ATAC peaks outside promoters vs. H3K27ac peaks outside promoters (middle); and ATAC peaks with Cicero connections to a gene promoter vs. H3K27ac peaks outside promoters. Percentages represent % of ATAC peaks overlapping with histone marks per brain region. Circle size represents the relative number of peaks in each group.

c-e Top, Integration of gene-enhancer predictions using Cicero/SnapATAC interactions as in Supplementary Fig. 6. Arc height of Cicero/SnapATAC interactions track indicates relative interaction scores between gene TSS and predicted cis-regulatory elements. Middle, tissue-specific Cicero connections with snATAC peaks. Cicero connections were filtered to retain scores >0.25, and connections were dropped if one anchor intersects a gene TSS while the second anchor does not intersect promoter regions of any genes. Bottom, H3K27ac tracks with VISTA hits for Ascl1 (c), Lhx6 (d), and Neurog2 (e). Vertical light blue line denotes TSS for each gene, gray-shaded rectangles indicate loci of interest related to TSS. VISTA hits near genes are depicted with dark blue bars. Black scale bars above Cicero/SnapATAC tracks = 50 kb.
cortex, piriform cortex, claustrum, and pallial amygdala. A recent scRNA-seq study may shed light on the heterogeneity of this PSB region, but further work is needed to better characterize this cell population.

In sum, the single-cell chromatin accessibility and transcript profiles, histone modifications, and higher-order chromatin structure define the epigenetic “ground truth” of distinct forebrain regions during initial neuronal fate decisions. This resource will aid our understanding of normal development and neurological disease as many disease-associated genes are enriched in neural progenitors and immature neurons, and many disease-associated SNPs are located in non-coding enhancer regions.

Methods

Animals. All experimental procedures were conducted in accordance with the National Institutes of Health guidelines and were approved by the Eunice Kennedy Shriver NICHD Animal Care and Use Committee (protocol #20-047).
following mouse lines were used in this study: C57BL/6J (JAX#000664). For timed matings, noon on the day a vaginal plug was observed was denoted E0.5. For each experiment, tissue was dissected from single embryos (±4) were pooled together prior to single-cell dissociations. Both male and female embryonic mice were used without bias for all experiments. Housing conditions: 12/12 light/dark cycle, humidity between 30–50%, temperature 72 °C.

Tissue dissociation. To recover embryonic tissue, dams were anesthetized with isoflurane and then euthanized by cervical dislocation. Embryos were removed from the uterus and kept in chilled artificial cerebrospinal fluid (ACSF; in mM: 87 NaCl, 26 NaHCO3, 2.5 KCl, 0.5 CaCl2, 7 MgCl2, 10 glucose, 75 sucrose, saturated with 95% O2, 5% CO2, pH 7.4). Brains were extracted from E12.5 and E14.5 embryos, hemisected, microdissected to obtain the MGE, LG, CGE, and somatosensory cortex, and kept in ACSF.

Nuclei extraction for single nuclei ATAC-seq, CUT&Tag, and CUT&RUN. Nuclei isolation followed the 10X Genomics ATAC nuclei isolation protocol with several modifications. All steps were performed on ice. For each brain region, tissue was transferred to a Dounce homogenizer containing 1 mL ATAC lysis buffer (10 mM Tris-HCL, pH 7.4, 10 mM NaCl, 3 mM MgCl2, 0.1% Tween-20, 0.1% IGEpal, 2% BSA). Samples were dounced with ten strokes pestle A and ten strokes pestle B. Lysate was strained through a 40-μm filter pre-wetted with ATAC wash buffer (10 mM Tris-HCL, pH 7.4, 10 mM NaCl, 3 mM MgCl2, 0.1% Tween-20, 2% BSA) and neutralized with 2 mL wash buffer.

For snATAC-Seq, lysates were centrifuged 500 × g for 5 min at 4 °C, the supernatant was removed, the nuclei pellet washed once with 1 mL wash buffer, and centrifuged 500 × g for 3 min. A diluted aliquot of nuclei solution was mixed with Trypan Blue (1:1) and counted on a hemocytometer. For each snATAC experiment, we prepared 3000 nuclei/μL samples for snATAC-seq reactions, with 5 μL (~15,000 nuclei) used for each snATAC reaction.

For CUT&Tag/CUT&RUN, tissue was homogenized as described above. Single nuclei suspensions were centrifuged 500 × g for 3 min at 4 °C, the supernatant removed, and washed once with 1 mL wash buffer, centrifuged 500 × g for 5 min, and washed a final time with 1 mL ICUT&Tag wash buffer (from CUT&Tag IT Assay Kit, Active Motif, #53610) or 1 mL CUT&RUN 1X wash buffer (1 mL HEPES pH 7.5, 1.5 m 5 M NaCl, 12.5 ul 2 M spermidine and 47.5 mL dH2O with 1 Roche Complete Protease Inhibitor EDTA-Free tablet). A diluted aliquot of nuclei solution was mixed with Trypan Blue (1:1) and counted on a hemocytometer. Equal numbers of MGE, CGE, LG, and cortex nuclei were pooled and diluted to a final concentration of 1000 nuclei/μL wash buffer, with 100 μL (~100,000 nuclei) used for each CUT&Tag/CUT&RUN reaction.

Cell dissociation for single-cell RNA-Seq, Hi-C, and Capture-C. Embryonic tissue was dissected as described above. To collect whole cells, embryonic MGE, LG, CGE, and cortex tissue was incubated in 1 mg/mL Pronase (Roche #1015922001) in ACSF for 20 min at RT. Pronase solution was removed and 2 mL of reconstitution solution (1% fetal bovine serum + DNase (1:10,000, Roche #4716728001)) in oxygenated ACSF was added. For Hi-C and Capture-C preparations, DNase was not included in the reconstitution solution. Cells were triturated and embedded in 0.1% Triton-X100, 0.5% sodium deoxycholate, 1% sodium dodecyl sulfate (SDS), and 10% fetal bovine serum (FBS) and filtered through a 70-μm cell strainer. The cell suspension was filtered through a 70-μm cell strainer and incubated on a nutating platform at 4 °C for 30 minutes. The cell suspension was centrifuged at 300 × g and resuspended in wash buffer. Aqueous layers were discarded, and cell suspensions were filtered through a 40-μm filter pre-wetted with wash buffer and washed with 1 mL wash buffer, centrifuged 500 × g for 5 min, and washed a final time with 1 mL wash buffer. The wash buffer was centrifuged 500 × g for 5 min, and the final cell suspension was transferred to a Dounce homogenizer containing 1 mL ATAC lysis buffer and then processed with the Active Motif CUT&Tag IT Assay Kit (Active Motif 39193, 1.5%, rabbit anti-H3K27me3 (Active Motif 10836, 1:2000) for 1 h, 0.1% Tween-20, 2% BSA) and neutralized with 2 mL wash buffer.

For CUT&Tag/CUT&RUN, nuclei were resuspended in 1.5 mL 1× Wash Buffer and then processed with the Active Motif CUT&Tag IT Assay Kit (CUT&Tag Replicate 1: 13,660,104; H3K27me3 Replicate 2: 47,136,470; H3K4me3 Replicate 1: 50,541,513; H3K4me3 Replicate 2: 25,035,394; CTX: H3K27me3 Replicate 1: 13,640,752; H3K27me3 Replicate 2: 36,097,462; H3K4me3 Replicate 1: 18,353,546; H3K4me3 Replicate 2: 30,114,008; LG: H3K27me3 Replicate 1: 13,539,614; H3K27me3 Replicate 2: 30,458,988; CGE: H3K27me3 Replicate 1: 14,760,336; H3K4me3 Replicate 2: 17,211,681; MGE: H3K27me3 Replicate 1: 17,214,723; H3K27me3 Replicate 2: 16,336,430; H3K4me3 Replicate 1: 5,518,769; H3K4me3 Replicate 2: 14,720,921.

CUT&RUN library preparation and sequencing. Embryonic tissue was homogenized as described above. Single nuclei suspensions were centrifuged 500 × g for 3 min at 4 °C, the supernatant removed, and washed with 1 mL 1× Wash Buffer (10 mM HEPES pH 7.5, 1.5 m 5 M NaCl, 12.5 ul 2 M spermidine and 47.5 mL dH2O with 1 Roche Complete Protease Inhibitor EDTA-Free tablet). A diluted aliquot of nuclei solution was mixed with Trypan Blue (1:1) and counted on a hemocytometer. Equal numbers of MGE, CGE, LG, and cortex nuclei were pooled and diluted to a final concentration of 1000 nuclei/μL wash buffer, with 100 μL (~100,000 nuclei) used for each CUT&Tag/CUT&RUN reaction.

snATAC library preparation and sequencing. snATAC reaction was carried out following 10X Genomics ATAC User Guide (revision C), libraries were prepared following 10X Genomics and Illumina guidelines, and sequenced on an Illumina HiSeq2500. Sequencing metrics were as follows: CGE: Replicate 1: Read pairs: 649,280,227; Estimated number of cells: 4013; Median fragments per cell: 11,082; Fraction of fragments in peaks: 80.3%, Fraction of transposition events in peaks: 67.4%. CGE: Replicate 1: Read pairs: 429,523,963; Estimated number of cells: 4530; Median fragments per cell: 11,082; Fraction of fragments in peaks: 80.3%, Fraction of transposition events in peaks: 67.4%.

scRNA library preparation and sequencing. CDNA libraries were prepared using 10X Genomics 3’ RNA v3 chemistry. Library preparation was carried out following the 10X Genomics RNA User Guide (rev C) and sequenced following 10X Genomics and Illumina guidelines. Samples were sequenced to the following depths: CGE: Reads: 15,416,000; Median reads per cell: 50,459; Median genes per cell: 2877. LG: Reads: 180,580,970; Estimated number of cells: 6843; Median reads per cell: 26,389; Median genes per cell: 2726. Cortex (E12.5): Reads: 176,542,667; Estimated number of cells: 7453; Median reads per cell: 23,687; Median genes per cell: 2318.
Illumina-compatible indexed primer (5 µl) were added. Library amplification was performed using the following conditions: 72 °C for 3 min; 85 °C for 2 min; 98 °C for 10 s (denaturation) followed by 24 cycles of 98 °C for 10 s, 62 °C for 20 s, 72 °C for 30 s (addition of indexes); 14 cycles of 98 °C for 20 s, 72 °C for 10 s (library amplification). Post-PCR clean-up involved SPRIselect bead 0.6X left/1x right double size selection then washed twice gently in 80% ethanol and eluted in 10-12 µl 10 mM Tris pH 8.0. A 1:5 dilution of the primary antibody was used. Following library amplification, library quality was characterized with an Agilent Tapestation. Libraries were balanced for DNA content and pooled before performing a final SPRIselect bead 1x left size selection and paired-end sequenced (50 × 50 bp) on an Illumina NovaSeq. CGHE: H3k27ac Replicate 1: 68,704,235; Replicate 2: 67,904,486; H3k27ac Capture-C Replicate 1: 45,275,996; H3k27ac Capture-C Replicate 2: 73,924,447; LGE: H3k27ac Capture-C Replicate 1: 46,933,225; H3k27ac Capture-C Replicate 2: 55,438,848; MGE: H3k27ac Capture-C Replicate 1: 55,871,849; H3k27ac Capture-C Replicate 2: 77,034,587.

Hi-C and Capture-C library preparation and sequencing. Hi-C and Capture-C were performed and analyzed as described previously. Embryonic tissue was then added, and cells were incubated for 15 min at room temperature followed by 15 min on ice. Fixed cells were then washed once with ice-cold PBS. After spinning cells at 2500g 4 °C for 5 min, the pellet was flash-frozen in liquid nitrogen and stored at 80 °C. To perform Hi-C and Capture-C, pellets were first thawed on ice and then incubated with 1 ml lysis buffer (10 mM Tris-HCL, pH 8, 10 µg/ml Proteinase K, 0.5 M NaCl, 1% SDS) while shaking at 1400 rpm at 65 °C. Following pre-processing, peak-by-barcode matrices were processed as instructed by Sigur:FindTopFeatures() and peak-by-barcode matrices normalized by Term Frequency-Inverse Document Frequency (TF-IDF) method by Signac::RunTfidf().

scRNA-seq analysis. Cellranger: The Cellranger (v3.0.0) pipeline was used to process single cell/nuclei RNA-seq libraries, all steps used default parameters unless otherwise noted. Cellranger-extracted RNA-seq libraries were aggregated and downsampled to equal numbers of median fragments per nucleus by Cellranger-batch agg. Integrated reads were de-duplicated, filtered for valid cell barcodes, and used to construct gene-by-barcode matrices.

Enter
from the Seurat object (i.e., cicero::make_cicero cds() data, reduced_coordinates = seurat.object(reductionsSumup(cell.by.beddings))).

SnapATAC reads were processed using SnapATAC (v1.10) independently of Seurat/Signac/Cicero workflows following user documentation (https://github.com/r3fang/SnapATAC) with default parameters unless otherwise specified. FASTQ reads were converted into snap files using Snaptools (v1.4.1) and Python 2.7 and ATAC and ATAC-accessible regions were binned into 5000 kb windows and counted to create cell-by-bin matrices. SnapATAC reads were further filtered by removing pairs where FDR > 0.05.

Enhancer Prediction. The greatest SnapATAC −log10(adjusted p value) value was multiplied by 2 as an upper limit, and all −log10(adjusted p values) were percentile ranked per gene. Similarly, Cicero co-accessibility scores were percentile ranked for each gene. Peaks detected by SnapATAC or Cicero that did not overlap gene TSSs were extended 500 bp upstream and downstream before merging overlapping peaks using the GenomicRanges (v1.42.0) Bioconductor package with GenomicRanges::intersect(). To detect H3K27ac presumptive enhancers, concatenated peaks were further filtered by retaining only peaks that intersected forebrain H3K27ac ChIP-Seq peaks for age E12.5 (UCSC Database: mm10, Primary Table: encode3;R;forebrain_H3K27ac.E12, Big Bed file: gbed/mm10/encode3/hists/ENCFF957YEE.bigBed) or E14.5 (UCSC Database: mm10, Primary Table: encode3;R;forebrain_H3K27ac.E14, Big Bed file: gbed/mm10/encode3/hists/ENCFF088LWR.bigBed) by GenomicRanges::SubsetByOverlaps().

cRNA-seq and snATAC-seq integration. scRNA-Seq snapATAC-seq Integration: For each data type, barcodes were filtered to remove far-out outliers, as previously described by Tukey’s fence method. Prior to integrating data, for snATAC-seq barcodes, gene activity score (GAS) was calculated by counting reads that mapped to the promoter regions (2 kb upstream of TSSs), the exon of each transcript, and (if detected) presumptive enhancer loci associated to each gene. Integration of scRNA-seq and snATAC-seq datasets was performed using the Seurat workflow. GAS (scRNA-Seq) and RNA (scRNA-Seq) count matrices were normalized with Seurat::NormalizeData(), highly variable genes detected with Seurat::FindTransferAnchors() and Seurat::TransferData() as described in SnapATAC documentation. Cluster specific peaks were detected using MACS2 by SnapATAC::runMACS(macs.options = “–nomodel –shift 100 –ext 200 –qval 5e-2 –SPMR”). Gene-enhancer pairs were predicted by SnapATAC::predictGenePeakPair() for every TSS that had no nonzero peak count across all barcodes. The gene-enhancer pairs list was filtered by removing pairs where FDR > 0.05.

To generate a more stringent list of enhancers for snATAC-seq/scRNA-Seq integration, the intersection SnapATAC and Cicero peaks was taken by GenomicRanges::intersect(). To detect H3K27ac presumptive enhancers, concatenated peaks were further filtered by retaining only peaks that intersected forebrain H3K27ac ChIP-Seq peaks for age E12.5 (UCSC Database: mm10, Primary Table: encode3;R;forebrain_H3K27ac.E12, Big Bed file: gbed/mm10/encode3/hists/ENCFF957YEE.bigBed) or E14.5 (UCSC Database: mm10, Primary Table: encode3;R;forebrain_H3K27ac.E14, Big Bed file: gbed/mm10/encode3/hists/ENCFF088LWR.bigBed) by GenomicRanges::SubsetByOverlaps().

Average linkage metrics. Following clustering, the concatenated matrix was re-split into RNA, GAS, and enhancer gene-by-barcode matrices. Matrices were centered and scaled to each gene proportion in the Red Sea scRNAs and the gene dendrograms were constructed using the distances calculated with the concatenated matrix. Manually annotated color bars were based on gene cohorts detected by degPatterns(), whereby the horizontal line in each box represents the median, the bottom and top edges represent the first and third quartiles, and the upper and lower whiskers extend from the edges of the box to no further than 1.5x of the inter-quartile range.

CUT&Tag analysis. Reads were aligned to the mouse genome (GRCm38/mm10 build) with the Bowtie2 aligner with the following parameters (% 40 -N1 --very-sensitive-local --no-unal --no-mixed --no-discardant --phred33 -i 10 -x 700), aligned reads mapping to blacklisted regions were removed, and PCR duplicates were removed with PICARD. Quality control for replicates was assessed using deepTools plot Heatmap and plotProfile, and reproducibility was assessed by peak calling per replicate with MACS and calculating pair-wise consensus peak counts with bedtools intersect using the parameter (-b 0.50). Replicates were merged with samtools merge, de-duplicated with PICARD, and peaks called with MACS with the parameter (−broad). To generate signal tracks for visualization, the merged bam files were converted to normalized bigWig files using deepTools bamCoverage with the following parameters (−normalizeUsing RPKM -p 10 --binSize 5 –minFragmentLength 150).

Hi-C and capture-C analysis. Hi-C and Capture-C libraries were sequenced from paired-end reads of 51 nucleotides. Data were processed using the Hi-C-Pro pipeline to produce a list of valid interaction pairs. This list was converted into cool and mcool files for visualization with higlass64. For Capture-C data, the mask points Hicpro script was used to obtain individual Capture-C bigwig files for each replicate of each viewpoint with 2 kb-sized bins and excluding 500 bp surrounding the DpnII fragment where probes hybridize. For visualization, averages from replicates were used.

Statistics and reproducibility. No statistical method was used to predetermine sample size. For the snATAC-seq experiments, we wanted a minimum of 5000 sequenced nuclei/cells per brain region from at least two replicates, which was likely sufficient to identify nearly all different cell types from each region. This goal required ~10–15,000 nuclei for each snATAC reaction (with the expectation of recovering ~30–60% of nuclei/cells for each reaction). For each timepoint and brain region, we pooled tissue from four to seven embryos, which was the amount of animals needed based on our preliminary experiments to obtain the desired amount of nuclei. Viable nuclei that passed quality control ranging from 3456–6845 nuclei/reaction (see above). For the scRNA-seq experiments, there are already several datasets in the literature we could use for comparison. Thus we were confident that one replicate of ~4500 cells would be sufficient (see above). Our scRNA-seq data was in agreement with previous studies and know gene expression patterns. Per standard single-cell sequencing protocols, cells/nuclei that did not pass stringent QC measurements (% mitochondrial reads, sufficient reads/cell, etc.) in the snATAC-seq and scRNA-seq datasets were considered outliers and excluded from analysis (as detailed in Supplementary Fig. 1). As stated in the Results section, we removed a ‘mixed cell’ population for analysis after Fig. 2. For the CUT&RUN/CUT&Tag experiments, we used 100,000 nuclei for each replicate as this amount of cells was previously optimized in our hands for these reactions. For Hi-C/Capture-C experiment, we collected 1 million cells/brain region. All computational and statistical analysis are discussed in detail above and/or in the legends of the relevant figures and tables. All attempts at replication were successful.

General data processing. Microsoft Excel (16.47.1) was used for data analysis and figures were generated using either Adobe Photoshop CC (20.0.9) or Adobe Illustrator CC (23.1.1).

Reporting summary. Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability. All sequencing data (raw and processed files) generated in this study has been deposited in the Gene Expression Omnibus (GEO) database with the following accession numbers: GSE167047 (snATAC-Seq), GSE167013 (scRNA-Seq), GSE201487 (H3K4me3 CUT&Tag), GSE201488 (H3K27me3 CUT&Tag), GSE201490 (H3K27ac CUT&RUN), GSE201494 (All CUT&Tag and CUT&RUN data), GSE201186 (Hi-C), and GSE201317 (Capture-C). A searchable platform with all single-cell accessibility and transcriptionomic, CUT&RUN, CUT&Tag, Hi-C, and Capture-C data can be found on the UCSC Genome Browser: https://www.ncbi.nlm.nih.gov/research/atNCICD/Investigators/petros/epigenome-atlas. E12.5 and E14.5 mouse forebrain H3K27ac ChIP data used in this study was obtained from the ENCODE project (https://www.encodeproject.org), accession numbers.
References

1. DeFelipe, J. et al. New insights into the classification and nomenclature of cortical GABAergic interneurons. Nat. Rev. Neurosci. 14, 202–216 (2013).

2. Gouwens, N. W. et al. Integrated morphoelectric and transcriptomic classification of cortical GABAergic cells. Cell 183, 935–953.e919 (2020).

3. Tesic, B. et al. Stereotyped and distinct transcriptional cell types across neocortical areas. Nature 563, 72–78 (2018).

4. Bandler, R. C., Mayer, C. & Fishell, G. Cortical interneuron specification: the juncture of genes, time and geometry. Curr. Opin. Neurobiol. 42, 17–24 (2017).

5. Pelkey, K. A. et al. Hippocampal GABAergic inhibitory interneurons. Physiol. Rev. 97, 1619–1747 (2017).

6. Miyoshi, G. Elucidating the developmental trajectories of GABAergic cortical interneuron subtypes. Neurosci. Rev. 138, 32–66 (2019).

7. Lui, J. H., Hansen, D. V. & Kriegstein, A. R. Development and evolution of the human neocortex. Cell 146, 18–36 (2011).

8. Mayer, C. et al. Developmental diversification of cortical inhibitory interneurons. Nature 555, 457–462 (2018).

9. Mi, D. et al. Emergence of cortical interneuron diversity in the mouse embryo. Science 360, 81–85 (2018).

10. Fishell, G. & Kepes, A. Interneuron types as actors and controllers. Annu. Rev. Neurosci. 43, 1–30 (2020).

11. Bandler, R. C. et al. Single-cell delineation of lineage and genetic identity in the mouse brain. Nature https://doi.org/10.1038/s41586-021-04237-0 (2021).

12. Podobinska, M. et al. Epigenetic modulation of stem cells in neurodevelopment: the role of methylation and acetylation. Front. Cell Neurosci. 11, 23 (2017).

13. Sokpor, G., Castro-Hernandez, R., Rosenbusch, J., Staiger, J. F. & Tuoc, T. ATP-dependent chromatin remodeling during cortical neurogenesis. Front. Neurosci. 12, 226 (2018).

14. Dall’Aglio, L. et al. The role of epigenetic modifications in neurodevelopmental disorders: a systematic review. Neurosci. Biobehav. Rev. 94, 17–30 (2018).

15. Sokpor, G., Xie, Y., Rosenbusch, J. & Tuoc, T. Chromatin remodeling RAF (SWI/SNF) complexes in neural development and disorders. Front. Mol. Neurosci. 10, 243 (2017).

16. Wang, D. et al. Comprehensive functional genomic resource and integrative model for the human brain. Science https://doi.org/10.1126/science.aat4846 (2018).

17. Cross-Disorder Group of the Psychiatric Genomics Consortium, C. Genomic relationships, novel loci, and pleiotropic mechanisms across eight psychiatric disorders. Cell 179, 1469–1482.e1411 (2019).

18. Grove, J. et al. Identification of common genetic risk variants for autism spectrum disorder. Nat. Genet. 51, 431–444 (2019).

19. Schork, A. J. et al. A genome-wide association study of shared risk across the spectrum disorder. Nat. Commun. 10, 1930 (2019).

20. Hughes, A. L., Kelley, J. R. & Klose, R. J. Understanding the interplay between CpG island-associated gene promoters and H3K4 methylation. Biochim. Biophys. Acta 1863, 194567 (2020).

21. Calo, E. & Wysocka, J. Modification of enhancer chromatin: what, how, and why? Mol. Cell 49, 825–837 (2013).

22. Schuettengruber, B., Bourbon, H. M., Di Croce, L. & Cavalli, G. Genome regulation by polycomb and trithorax: 70 years and counting. J. Neurosci. 37, 13591 (2017).

23. Tucker, E. S. et al. Molecular specification and patterning of progenitor cells in the lateral and medial ganglionic eminences. J. Comp. Neurol. 525, 1509–1513 (2017).

24. Moreau, M. X., Saillour, Y., Cvetich, A. W., Pierani, A. & Causenet, F. Single-cell transcriptomics of the early developing mouse cerebral cortex disentangle the spatial and temporal components of neuronal fate acquisition. Development https://doi.org/10.1242/dev.197962 (2021).
Acknowledgements

We thank S. Henikoff for pA-Tn5 transposome; S. Coon, J. Iben, T. Li, and other members of the NICHD Molecular Genomic Core; M. Sohn for help submitting sequencing samples to the GEO database; C. J. McBain, K. Pelkey, J. A. Kassis, and members of the Petros Lab for helpful discussions. Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Timothy J. Petros (tim.petros@nih.gov). This work was supported by Eunice Kennedy Shriver NICHD Intramural Awards to T.J.P., P.P.R., and R.K.D. and an NICHD Scientific Director’s Award to T.J.P. and P.P.R.

Author contributions

C.T.R and T.J.P. designed the study and wrote the paper. C.T.R., Y.Z., and T.J.P. extracted and purified nuclei. D.R.L. and T.J.P. extracted and purified embryonic cells. Y.Z. prepared single-cell sequencing libraries. C.T.R., A.M., D.R.L., and R.K.D. analyzed single-cell data. D.J.L., D.A., J.J.T., C.T.R., and P.P.R. performed and analyzed CUT&Tag and CUT&RUN experiments. J.J.T. and P.P.R. performed and analyzed Hi-C and Capture-C experiments. E.J. prepared the UCSC browser page. P.P.R., R.K.D., and T.J.P. supervised the project.

Funding

Open Access funding provided by the National Institutes of Health (NIH).

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41467-022-31793-4.

Peer review information Nature Communications thanks the anonymous reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2022