FSSP to SCOP and CATH (F2CS) Prediction Server

Gad Getz¹, Alina Starovolsky² and Eytan Domany¹
¹Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel
²Computer Science Department, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel

February 9, 2008

ABSTRACT

Summary: The F2CS server provides access to the software, F2CS2.00, that implements an automated prediction method of SCOP and CATH classifications of proteins, based on their FSSP Z-scores (Getz et al., 2002),
Availability: Free, at http://www.weizmann.ac.il/physics/complex/compphys/f2cs/.
Contact: eytan.domany@weizmann.ac.il
Supplementary information: The site contains links to additional figures and tables.

Since during evolution protein structures are much more conserved than sequences and even functions [Holm & Sander, 1996], proteins are usually classified first by their structural similarity. Newly solved structures of proteins are regularly stored in the Protein Data Bank (PDB) [Bernstein et al., 1977]. Many research groups study the diversity of protein structures and maintain web-accessible hierarchical classifications of them. Three widely used databases are FSSP [Holm & Sander, 1997], CATH [Orengo et al., 1997] and SCOP [Conte et al., 2000]; although each has its own way to compare and classify proteins, the resulting classification schemes are, largely, consistent with each other [Getz et al., 2002, Getz, 1998, Hadley & Jones, 1999].

The major difference between these three classification schemes, relevant to this work, is their degree of automation. FSSP is based on a fully automated structure comparison algorithm, DALI [Holm & Sander, 1994, Dietmann et al., 2001], that calculates a structural similarity measure (represented in terms of Z-scores) between pairs of structures of protein chains taken from the PDB. FSSP first selects a subset of representative structures from the PDB and then applies the DALI algorithm to calculate the Z scores for all pairs of representatives. Next, they calculate the Z scores between each representative and the PDB structures it represents. Being fully automated, FSSP can be updated fairly often. FSSP was recently extended by a new database, called Dali [Holm, 2003], which contains all-against-all Z-scores between chains and domains of a larger representative set, PDB90 [Hubbard et al., 1999], in which no two chains are more than 90% sequence identical. In contrast, CATH and SCOP use manual classification at certain levels of their hierarchy, which slows down the classification process and makes it more subjective and error-prone.

CATH arranges protein domains in a four-level hierarchy according to their Class (secondary structure composition), Architecture (shape formed by the secondary structures), Topology (connectivity order of the secondary structures) and Homologous superfamily (structural and functional similarity). Classification of Architecture is done by visual inspection; hence CATH is partially manual.

The top level (Class) of the SCOP database also describes the secondary structure content of a protein domain. The next level (Fold) groups together structurally similar domains. The lower two levels (superfamily and family) describe near and distant evolutionary relationships [Levitt & Chothia, 1976]. "Fold" largely corresponds to CATH's topology level [Getz et al., 2002]. SCOP is constructed manually, based on visual examination and comparison of structures, sequences and functions.

We present here a web-based server, available at http://www.weizmann.ac.il/physics/complex/compphys/f2cs/, whose aim is to predict, without human intervention, using a protein’s FSSP (or DALI) Z-scores, it’s full SCOP and CATH classifications. This can help classify proteins of known structure that were not yet processed by SCOP or CATH (whose new releases are provided about every 6 months), and call attention to yet unseen structural classes.

If a protein appears in FSSP, the server returns our prediction. If it is not in FSSP, the user can submit the new structure to the DALI server, insert the resulting Z-scores into our server and obtain its predicted classification. In both cases F2CS outputs a table showing the prediction, along with its confidence level.
THE SERVER

The current predictions are based on the latest versions of the databases; FSSP (Jun 16, 2002 update), combined with the Dali database (preliminary version, May 2003); CATH version 2.5 (Jul 2003) and SCOP 1.63 release (May 2003). The FSSP database contains 27182 chains, 2860 out of which are representatives. We superimposed on these the Z-scores from the Dali database, which were calculated for 6433 PDB90 chains; we refer to the combined database as FSSP/DD. Only significant Z-scores are reported (≥ 2) and used; all other Z-scores are assumed to be zero.

The server implements our method [Getz et al., 2002], Classification by Optimization (CO), an optimization procedure that searches for that class assignment of proteins (that were not yet processed by CATH or SCOP), which attains a minimal cost. The cost of an assignment is the sum of Z-scores between all pairs of proteins that were not assigned to the same class. This is a "partially supervised" algorithm, since it utilizes for its prediction the labels of the proteins with known classification and also the Z scores among the training and predicted sets. We can not classify "isolated" proteins, which are not connected by a path of neighboring chains (i.e. $Z \geq 2$) to a chain of known classification.

We generate a prediction database of chains which appear in FSSP/DD but not in SCOP or CATH by applying our algorithm for each classification scheme. The FSSP/DD version we are using contains 4014 chains which do not appear in CATH v2.5 (we supply a prediction for 3170 of these) and 511 of which are not in SCOP 1.63 (for 403 of these we have a prediction); 272 chains appear in neither CATH nor SCOP. Since CATH and SCOP handle protein domains whereas FSSP/DD entries are protein chains (consisting of one or more domains$^1$), we use as a training set the single domain chains that are of known classification. Note that SCOP and CATH do not always agree on their separation of proteins into domains.

Our prediction’s success rate was estimated using a blind test in which we hid the assignments of 3605 proteins from CATH and 4570 proteins from SCOP and tested our predictions against the known classifications. The success rate was tested for each class separately (see website for details). Due to larger number of training examples and more stringent criteria for attempted classification, the success rate has improved over our previous work.

Table 1: Results obtained by submitting “1dowb” to the F2CS server. This protein was classified by neither CATH v2.5 nor SCOP 1.63 (indicated by -1 in the ”number of domains” columns). We predict the following classifications: 1.20.5 for CATH and 8.1 for SCOP, both at 100% confidence level.

| Chain id | CATH v2.5 | CATH Prediction | SCOP 1.63 | SCOP Prediction |
|----------|------------|----------------|-----------|----------------|
|          | # C A T    |                | # C A T   |                |
| 1dowb    | -1         | 1 20 5         | -1        | 8 1            |
| Success% |            | 100 99 100     |           | 97 100         |

USAGE

In order to retrieve our prediction for CATH’s class, architecture and topology or SCOP’s class and fold of a protein, enter the protein chain’s identifier in the search box and submit the query. If the protein appears in our database, a table will be returned containing both the known and the predicted SCOP and CATH classifications. For example, submission of the chain identifier “1dowb”, which was classified neither by CATH v2.5 nor SCOP v1.63, returns Table 1. We predict CATH classification 1.20.5 and SCOP 8.1, both near 100% confidence level. The “Success%” link points to a table with the exact numbers by which the success rates were estimated.

In case the queried protein is not in our database, the user can obtain its predicted classification by following these two steps: (a) submit the protein’s PDB file to the DALI server (the engine behind FSSP) which calculates its structural similarity to the FSSP representatives and returns a list of the representatives and Z-scores for which $Z \geq 2$. (b) Paste DALI’s reply in the appropriate query box in our server.

ACKNOWLEDGEMENTS

We thank L. Holm for directing us to her new Dali database, and M. Vendruscolo for his advice and active involvement in the initial stages of this project, which was partially supported by the German-Israel Science Foundation (GIF). G.G. is supported by the Sir Charles Clore Doctoral Scholarship.

REFERENCES

[Bernstein et al., 1977] Bernstein, F., Koetzle, T., Williams, G., Meyer, E. J., Brice, M., Rodgers, J., Kennard, O., Shimomouchi, T. & Tasumi, M. (1977) The protein data bank: A computer-based archival file for macromolecular structures. J. Mol. Biol., 112, 535–542.

[Conte et al., 2000] Conte, L. L., Ailey, B., Hubbard, T. J. P., Brenner, S. E., Murzin, A. G. & Chothia, C. (2000) SCOP: a structural classification of proteins database . Nucleic Acids Res., 28, 257–259.

[Dietmann et al., 2001] Dietmann, S., Park, J., Notredame, C., Heger, A., Lappe, M. & Holm, L. (2001) A fully automatic evolutionary classification of protein folds: Dali Domain Dictionary version 3 . Nucleic Acids Res., 29, 55–57.

[Getz, 1998] Getz, G. (1998) Clustering and Classification of Protein Structures. M. Sc. Thesis, Tel-Aviv University.

[Getz et al., 2002] Getz, G., Vendruscolo, M., Sachs, D. & Domany, E. (2002) Automated assignment of scop and cath protein structure classifications from fssp scores. Proteins, 46, 405–415.

$^1$We do not classify the few cases, when a single domain contains several different chains or a combination of their parts.
[Hadley & Jones, 1999] Hadley, C. & Jones, D. T. (1999) A systematic comparison of protein structure classifications: SCOP, CATH and FSSP. *Structure*, 7, 1099–1112.

[Holm & Sander, 1994] Holm, L. & Sander, C. (1994) The FSSP database of structurally aligned protein fold families. *Nucleic Acids Res.*, 22, 3600–3609.

[Holm & Sander, 1996] Holm, L. & Sander, C. (1996) Mapping the protein universe. *Science*, 273, 595–602.

[Holm & Sander, 1997] Holm, L. & Sander, C. (1997) Dali/FSSP classification of three-dimensional protein folds. *Nucleic Acids Res.*, 25, 231–234.

[Holm, 2003] Holm, L. (2003) Dali database at http://www.bioinfo.biocenter.helsinki.fi:8080/dali, private communication.

[Hubbard et al., 1999] Hubbard, T. J., Ailey, B., Brenner, S. E., Murzin, A. G., Chothia, C. (1999) SCOP: a structural classification of protein database. *Nucleic Acids Res.*, 27, 254–256.

[Levitt & Chothia, 1976] Levitt, M. & Chothia, C. (1976) Structural patterns in globular proteins. *Nature*, 261, 552–558.

[Orengo et al., 1997] Orengo, C. A., Michie, A. D., Jones, S., Jones, D. T., Swindells, M. B. & Thornton, J. M. (1997) CATH - a hierarchical classification of protein domain structures. *Structure*, 5, 1093–1108.