Mudskipper diversity and its relationship to an environmental condition in estuary

S Elviana1, S Sunarni1, M R Maturbongs1, Sajriawati1 and S Fakhriyyah2

1Department of Aquatic Resources Management, Universitas Musamus, Merauke, Indonesia
2Faculty of Fisheries and Marine Sciences, Universitas Hasanuddin, Makassar, Indonesia

E-mail: siscaelviana@unmus.ac.id

Abstract. Mudskipper is a species of fish that mostly found in the estuaries and coastal areas with mud substrates. This fish can adapt to wet conditions and change temperatures by hiding in the holes around the mangrove. The purpose of this study was to identify the diversity of mudskipper fish according to the environmental conditions of estuary in Merauke district. The study was conducted in April-June 2018, with two observation stations. These stations were based on the characteristic differences in the estuary waters of Merauke district. This study used purposive sampling method. Data analysis used an ecological index (diversity index, uniformity, and dominance). The results showed that the diversity index was a moderate category (1.5858-1.5845). The distribution of species and individuals were spread evenly in each community while the environmental parameters were temperature (23-30\textdegree C), salinity (20-30 ppt), pH (7, 1-8,1), Do (1.55-2.16), BOD (0.42-0.89), BOT (11.14-29.39. The clay (muddy) substrates strongly supported mudskipper live in the estuary.

1. Introduction

Diversity of organisms in water can be used as a benchmark of stability or balance of the organisms in a community. Species diversity is one of the characteristics of the level of a community based on its biological organisms so that one can be distinguished from one another. The mangrove ecosystem has a very high diversity in each biota that lives in it. Mudskipper is one of the biotas that can live in mangrove conditions which are wet and dry due to tidal influences. Mudskipper habitats always change according to the wetness and temperature in the region, and in order to adapt, they spend time out of the water [1].

The previous researches on mudskipper fish, namely about morphological studies of mudskipper fish (Gobiidae: Oxudercinae) studied the characteristics of the local biodiversity of Tarakan Island in 2016 [2]. Also, Murniati and Hasan researched the population of the godder fish (\textit{Periophthalmus modestus}) in the mangrove forest area Kualo West West Ring Bengkulu and the fecundity of the mudskippers, \textit{Boleophthalmus boddarti} (Pallas, 1770) on Brebes Beach [3].

According to who have conducted preliminary research, which found 6 types of mudskipper at the mouth of the Maro River in Merauke Regency, Papua Province, Indonesia, namely \textit{Boleophthalmus boddarti}, \textit{B. pectiniostris}, \textit{Oxuderces dentatus}, \textit{Periophthalmus argentilineaus}, \textit{P. takita} and \textit{Scartelaos histophorus}, so this study needs to be done as a continuation of the research [4].
2. Methods

The study was conducted in April-June 2018 on the estuary coast of Merauke district. The research station consists of 2 stations based on differences in environmental characteristics in the two different waters. Station 1 was at the mouth of Sungai Maro, and station 2 was at the mangrove area of Payumb Beach. Tools and materials used include traps, Global Positioning System (GPS), plastic samples, sample bottles, stationery, label paper, tracing paper, rod thermometers, pH meters, hand refractometers, rulers and calipers, styrofoams, cold boxes, fish samples, 40% formalin, 70% alcohol, and H2O. Fishing was done at low tide using traps and caught using both hands. The fish caught were then analyzed at the Musamus Merauke University Aquatic Resources Management laboratory.

2.1 Data Analysis

a. Species Diversity Index used [5]

\[H' = - \sum_{i=1}^{s} P_i \ln P_i \text{ where } P_i = \frac{n_i}{N} \]

Where:
H '; Diversity Index
n_i; Number of individual species i,
N; Total number of individuals,
Ln; Natural logarithm.

Diversity index criteria H '<1; Low diversity, 1 <H '<3; Medium diversity, H '> 3; High diversity.

b. The Uniformity Index of individuals caught between species (equitability) was calculated with the equation [6]:

\[E = \frac{H'}{\ln S_k} \]

Where:
E; Uniformity Index,
H '; Diversity Index
S_k; Total number of individuals at the k-th station.

The uniformity index criteria (E) is close to 1, so the distribution of individuals between species is relatively evenly distributed. But if the value (E) is close to 0, then there are certain species which are relatively abundant in number from other types.

c. Dominance index was used to determine whether there was a dominance, then Simpson dominance index was used [7] namely:

\[C = \sum \left[\frac{n_i}{N} \right]^2 \]

Where:
C; Simpson Dominance Index,
n_i; Number of individual species i,
N; The number of individuals of all species.

Dominance index criteria if C approaches 0, it can be said that there is no dominant type and a high level of uniformity.
3. Results and discussions

3.1 Type of diversity
According to the results of research of 3 months in the estuary waters of Merauke Regency, the study found 4 mudskipper types in station I while in station II there were 6 mudskipper types (table 1).

No	Species Names	Station I (S.Maro)	Station II (P. Payum)
1	Boleophthalmus boddarti	√	√
2	Boleophthalmus pectinirostis	_	√
3	Periophthalmus takita	√	√
4	Periophthalmus argenteineaus	_	√
5	Scarletelaos histophorus.	√	√
6	Oxuderces dentatus,	√	√

At station II more mudskipper types found because at that station there are a lot of mangroves along the coast. Meanwhile, the station I is a river estuary where saltwater and freshwater converge so that water flow occurs. Different habitat conditions will affect the adaptation patterns and structure of different fins in the Mudskipper. Water areas are affected by the presence of water pressure while in the mainland areas are affected by gravity.

Mangrove is utilized by mudskipper as a place to find food, breed, and other activities by using the roots of mangroves. The existence of mangroves as breeding grounds supports a large number of species found in the area. Genisa (2003) and Nontji (1987) in Endrawati H (2012) [8], carnivorous fishes have swift movements in shallow water and utilize mangroves as a place to look for food.

3.2 Diversity, homogeneity, and dominance

Index categories	The station I (S.Maro)	The Station II (P.Payumb)
Diversity	1,5845	1,5858
Homogeneity	0,2124	0,1986
Dominance	0,3736	0,3689

Based on the results of the analysis, the diversity index of the mudskippers at the two stations gained slightly different an average value of diversity index, namely at the station I with a percentage of 1.5845 while at station II a percentage of 1.5858. The percentage value of the two stations is qualified with the medium criteria according to the Shannon-Wiener index value criteria [9], i.e. if H 'that is less than one has a low diversity index, if the value of H' is more than one and less than three has a moderate diversity index and if the value H 'is more than three have a high diversity index. This is because of the similarity in the substrate of the two stations, namely clay (mud). This is consistent with statements [10] about mudskipper behavior, where fish live on the mud surface, particularly around mangroves.

The homogeneity index of the fish species at the station I obtained a percentage of 0.2124 while at the station II a percentage of 0.1986, it means the level of uniformity of the fish at the station I and the station II is in the high criteria. This is probably caused by the general condition of the two stations is same so that they are homogeneity. The dominance index of the mudskippers at the station I was 0.3736 while at the station II it was 0.3689. From these results, it appears that no type of mudskippers dominated at the two stations. If the dominance index value is close to 0, then it is categorized as low
so that it can be said that there is no one type that dominates, otherwise, if the dominance index is 1, it can be said that there are one species that dominates [11].

3.3. Environmental parameters
According to the results of measurements of environmental parameters in the estuary waters of Merauke Regency, it can be seen in the following table.

Table 3. Value of environmental parameters

Environmental Parameters	Station I (S.Maro)	Station II (P.Payumb)
Temperature	26,5	27,5
Salinity	24	28
Water pH	7,6	7,6
Do	1,85	1,82
BOD	1,02	0,59
BOT	17,76	21,01
Substrate	Clay (Mud)	Clay (Mud)

3.4. Mudskipper Diversity According to Environmental Conditions in the Estuary Waters of Merauke Regency.
Environmental parameters can influence the diversity of an organism as support of aquatic biota life. Mudskipper is an organism that has an overall tolerance level so that it can survive on fickle conditions.

The mudskipper diversity index in the estuary waters of Merauke Regency was in the medium category. Moderate diversity indicates that the aquatic environment in the area is in good condition. In general, the condition of the aquatic environment based on observations in the estuarine waters of Merauke Regency was in good condition. Environmental parameters become one of the supporting factors that can affect the survival of organisms that exist in seawater ecosystems is environmental quality.

Generally, environmental parameters of the estuarine waters of Merauke Regency waters still support mudskipper life. Panjaitan (2013) stated that the temperature of the waters suitable for mudskipper is 290C, so it can be said the temperature at both stations is still ideal for mudskipper life. Animals that live in the tidal zone, such as the shoddy fish at certain times experience drought have an enormous tolerance to temperature changes. Also (Kordi. et al. 2007) argued that temperature is very influential on the life and growth of aquatic biota. The appropriate pH value for mudskipper is 8.2 [4]. While the ideal pH value is 7 [7]. The perfect salinity for mudskipper life is 8 ppt [4]. While the perfect salinity for 30 ppt mudskipper [7]. Brackish waters have very diverse salinity values because they are influenced by the presence or absence of freshwater and seawater.

The mudskippers prefer clear water environment with a muddy sand base which is used as a spawning ground and other activities. Mudskipper can survive in the tidal area with muddy substrate because it has adapted to breathe through the skin of the body and mucous membranes in the mouth and esophagus [12].

4. Conclusion
Based on the results of the study, it can be concluded that there are various species diversity of mudskippers found in the estuarine waters of Merauke Regency. The study also indicates that species diversity can be varied according to the type of habitat. The perfect habitat for mudskippers here is determined by the particular temperature, salinity, water pH, Do, BoD, Bot, and land substrate.
References

[1] Rake and Sullivan J 2015 Mudskippers and Other Extreme Fish Adaptations (Minnesota: Capstone Press)

[2] Nugroho E D, Rahayu D A and Rupa D 2016 Studi morfologi ikan mudskippers (gobiidae: oxudercinae) sebagai upaya karakterisasi biodiversitas lokal Pulau Tarakan J. Harpodon Borneo 9

[3] Setyobudi E and Rudiansyah 2017 Fekunditas ikan gelodok, Boleophthalmus boddarti (Pallas 1770) di Pantai Brebes [Fecundity of Boddart’s goggle-eyed goby, Boleophthalmus boddarti (Pallas 1770) in Brebes Coast] J. Iktiologi Indones. 12 59–71

[4] Maturbongs M R, Elviana S, Sunarni S and deFretes D 2018 Studi keanekaragaman ikan gelodok (Famili: Gobiidae) pada muara Sungai Maro dan Kawasan Mangrove Pantai Kembari, Merauke DEPIK J. Ilmu-Ilmu Perairan, Pesisir dan Perikan. 7 177–86

[5] Effendie M I 1997 Biologi Perikanan (Yogyakarta: Yayasan Pustaka Nusantara)

[6] Brower J E, Zar J H and Ende C N V 1990 Field and laboratory methods for general ecology. “3rd ed” (Lowa: Wm. C. Brown Publishers)

[7] Odum E P 1993 Dasar-Dasar Ekologi (Yogyakarta: Universitas Gadjah Mada)

[8] Endrawati H and Irvani I 2012 Komposisi dan Kelimpahan Ichtyofauna di Perairan Morosari, Kecamatan Sayung, Kabupaten Demak Bul. Oceanografi Mar. 1 34–40

[9] Odum E P 1994 Dasar-Dasar Ekologi (Yogyakarta: Universitas Gadjah Mada Press)

[10] Krebs C J 1972 The experimental analysis of distribution and abundance (New York: Harper and Row)

[11] Ardani B and Organsastra 2009 Struktur komunitas ikan di danau Bagamat Petuk Bukit J. Trop. Fish. 4 356–67

[12] Al-Behbehani B E and Ebrahim H M A 2010 Environmental studies on the mudskippers in the intertidal zone of Kuwait Bay Nat. Sci. 8 79–89