Abstract

Initiated by Mizutani and Ito’s work in 1987, Kawamura and Allen recently showed that certain self-similar sets generalized by two similar contractions have a natural complex power series representation, which is parametrized by past-dependent revolving sequences.

In this paper, we generalize the work of Kawamura and Allen to include a wider collection of self-similar sets. We show that certain self-similar sets consisting of more than two similar contractions also have a natural complex power series representation, which is parametrized by Δ-revolving sequences. This result applies to several other famous self-similar sets such as the Heighway dragon, Twindragon, and Fudgeflake.

Keywords. Revolving sequences, Tiling dragons, Self-similar sets
MSC (2022). Primary: 28A80; Secondary: 37B10.

1 Introduction

The history of systematic mathematical research on self-similar fractals dates back to 1981, when Hutchinson proved the following celebrated theorem [5]:

\[\text{ } \]
For any finite family of similar contractions \(\{\psi_0, \psi_1, \ldots, \psi_{m-1}\} \) on \(\mathbb{C} \), which is called an iterated function system or IFS, there exists a unique non-empty compact solution \(E \) of the set equation:

\[
E = \bigcup_{i=0}^{m-1} \psi_i(E).
\]

We call \(E \) an attractor or a self-similar set for the IFS.

It is well known that any point of \(E \) can be represented by at least one coding sequence \((x_i)_{i=1}^{\infty}\) such that

\[
E = \left\{ \lim_{n \to \infty} \psi_{x_1} \circ \psi_{x_2} \circ \cdots \psi_{x_n}(0) : (x_i)_{i=1}^{\infty} \in \{0, 1, 2, \ldots, m-1\}^\mathbb{N} \right\}. \quad (1.1)
\]

For more details, see Falconer’s book [3].

Eleven years prior to Hutchinson’s paper [5], C. Davis and D. E. Knuth [1] in 1970 introduced the idea that some tiling fractals are associated with the complex number system. This idea was further discussed by Gilbert [4]. In [1], Davis and Knuth introduced the concept of revolving sequences to represent Gaussian integers: for any \(z = x + iy \) with \(x, y \in \mathbb{Z} \), there exists a finite revolving sequence with length \(N \): \((\delta_0, \delta_1, \ldots, \delta_N)\) such that

\[
z = \sum_{n=0}^{N} \delta_{N-n}(1 + i)^n,
\]

where \(\delta_j \in \{0, 1, -1, i, -i\} \) with the restriction that the non-zero values must follow the cyclic pattern from left to right:

\[
\cdots \rightarrow 1 \rightarrow (-i) \rightarrow (-1) \rightarrow i \rightarrow 1 \rightarrow \cdots.
\]

Notice that a revolving sequence is created by a cycle of 90 degree clockwise rotation on the unit circle.

Let \(W \) be the set of all revolving sequences. M. Mizutani and S. Ito in 1987 [10] considered the following set of points in the complex plane:

\[
X := \left\{ \sum_{n=1}^{\infty} \delta_n(1 + i)^{-n} : (\delta_1, \delta_2, \ldots) \in W \right\}. \quad (1.2)
\]

Using techniques from symbolic dynamics, they proved that \(X \) (which they called Tetradragon) is tiled by four rotated paper-folding dragons. Paper-folding dragon is generated by the IFS:

\[
\begin{align*}
\psi_0(z) &= (\frac{1-i}{2})z, \\
\psi_1(z) &= (\frac{-1-i}{2})z + \frac{1-i}{2}.
\end{align*} \quad (1.3)
\]
Observe that revolving sequences \((\delta_n)_{n=1}^{\infty}\) are past-dependent sequences.

In the same paper, they mentioned an interesting conjecture: suppose \(\delta_n\) moves on the unit circle counterclockwise instead of clockwise, then

\[
X^R := \left\{ \sum_{n=1}^{\infty} \delta_n (1 + i)^{-n} : (\delta_1, \delta_2, \ldots) \in W \right\}
\]

is a union of four Lévy’s dragon curves. Lévy’s dragon is a well-known continuous curve with positive area. Mizutani and Ito’s computer simulation of \(X^R\) empirically confirmed the conjecture; however, they could not give a mathematical proof. Kawamura in 2002 [6] proved that their conjecture is correct using a different approach from the viewpoint of functional equations.

These two concrete examples indicate that not only tiling fractals but more generally some self-similar attractors can be parametrized by past-dependent sequences.

Recently, Kawamura and Allen [7] defined Generalized Revolving Sequences (GRS), where the 90 degree angle of rotation is replaced with a more general angle \(|\theta| = \frac{2\pi q}{p} \leq \pi\). In other words, \(\delta_k \in \{0, 1, e^{i\theta}, e^{2i\theta}, \ldots, e^{(p-1)i\theta}\}\) with the restriction that the non-zero values must follow the following cyclic pattern from left to right:

\[
\cdots \rightarrow 1 \rightarrow e^{i\theta} \rightarrow e^{2i\theta} \rightarrow e^{3i\theta} \rightarrow \cdots
\]

Define \(W_\theta\) to be the set of all generalized infinite revolving sequences with parameter \(\theta\). Kawamura and Allen considered the following set.

\[
X_{\alpha,\theta} := \left\{ \sum_{n=1}^{\infty} \delta_n \alpha^n : (\delta_1, \delta_2, \ldots) \in W_\theta \right\}.
\]

(1.4)

where \(\alpha \in \mathbb{C}\) such that \(|\alpha| < 1\) and \(|\theta| = \frac{2\pi q}{p} \leq \pi\). Note that generalized revolving sequences are past-dependent.

Kawamura and Allen proved that \(X_{\alpha,\theta}\) is a union of \(p\) rotated copies of the self-similar attractor \(M_{\alpha,\theta}\) of an IFS consisting of two similarities with the same scale factor, one of which involves a rotation through an angle \(\theta\):

\[
\begin{align*}
\psi_0(z) &= \alpha z, \\
\psi_1(z) &= (\alpha e^{i\theta})z + \alpha.
\end{align*}
\]

(1.5)

Figure 1 shows two examples of \(X_{\alpha,\theta}\). Observe that this is a generalization of Mizutani-Ito’s and Kawamura’s results: if \(\alpha = (1 - i)/2\) and \(\theta = -\pi/2\)
then $X_{\alpha,\theta}$ is a union of four paper-folding dragons \cite{10}. If $\alpha = (1 - i)/2$ and $\theta = \pi/2$ then $X_{\alpha,\theta}$ is a union of four Lévy dragon curves.

In this paper, we continue building on the work initiated by Mizutani and Ito to include a wider collection of self-similar sets. In particular, the following questions are discussed.

1. Does replacing the constant term α in (1.5) by an arbitrary constant give any major influence to the property of generalized revolving sequences in (1.4)?

2. Consider self-similar sets generated by the IFS consisting of more than two similar contractions. Can we find a complex power series representation, which is parametrized by past-dependent sequences? How does the number of contractions influence the properties of generalized revolving sequences?

In section 2, we introduce Δ-revolving sequences allowing revolutions on the unit circle by more than one angle, while keeping the current-dependency. We illustrate the difference between generalized revolving sequences and Δ-revolving sequences with examples.

In section 3 we show that certain self-similar attractors of IFSs consisting of $m \geq 2$ similar contractions have a natural complex power series representation, which is parametrized by Δ-revolving sequences. This main theorem applies to several other famous self-similar sets such as the Heighway dragon, Twindragon, and Fudgeflake.

Lastly in section 4 we introduce a slight modification of Δ-revolving sequences called Δ_0-revolving sequences. Δ_0-revolving sequences are a more
natural extension of the notion of generalized revolving sequences than \(\Delta\)-revolving sequences. As a corollary of the main theorem, we give a condition when certain self-similar attractors can also be parametrized by \(\Delta_0\)-revolving sequences.

\section{\(\Delta\)-Revolving Sequences}

First, we review some notations and a result from [7].

\textbf{Definition 2.1 (Revolving Angle).} We say \(\theta \in (-\pi, \pi]\) is a \textit{revolving angle} if \(\theta\) is a nonzero rational multiple of \(2\pi\), that is, \(|\theta| = (2\pi q)/p\) where \(p \in \mathbb{N}, q \in \mathbb{N}_0\).

\textbf{Definition 2.2 (Generalized Revolving Sequence).} Define

\[
\Delta_\theta := \{0, 1, e^{i\theta}, e^{2i\theta}, \ldots, e^{(p-1)i\theta}\},
\]

where \(\theta\) is a revolving angle. We say that a sequence \((\delta_n) \in \Delta^\mathbb{N}_\theta\) satisfies the Generalized Revolving Condition (GRC), if

1. \(\delta_1\) is free to choose.
2. If \(\delta_1 = \delta_2 = \cdots = \delta_n = 0\), then \(\delta_{n+1}\) is free to choose.
3. Otherwise, \(\delta_{n+1} = 0 \text{ or } \delta_{n+1} = \delta_{j_0(n)}e^{i\theta}\), where \(j_0(n) = \max\{j \leq n : \delta_j \neq 0\}\).

\textbf{Example 2.3.} If \(\theta = \pi/3\), \(\Delta_\theta := \{0, 1, e^{i\pi/3}, e^{2i\pi/3}, e^{i\pi}, e^{4i\pi/3}, e^{5i\pi/3}\}\).

\[
(\delta_n) = (0, 1, e^{i(\pi/3)}, 0, e^{i(2\pi/3)}, 0, 0, e^{i\pi}, e^{i(4\pi/3)}, 0, \ldots)
\] (2.1)

is a generalized revolving sequence.

Define \(W_\theta\) as the set of all generalized revolving sequences with parameter \(\theta\):

\[
W_\theta := \{(\delta_1, \delta_2, \cdots) \in \Delta^\mathbb{N}_\theta : (\delta_1, \delta_2, \cdots) \text{ satisfies the GRC}\}.
\]

Observe that \(\delta_n\) moves on the unit circle counterclockwise if \(\theta > 0\), and clockwise if \(\theta < 0\). Roughly speaking, \(j_0(n)\) is the last time before \(n\) that \(\delta_j\) is on the unit circle. Therefore, generalized revolving sequences are past-dependent.
Theorem 2.4 (Kawamura-Allen, 2020). For a given $\alpha \in \mathbb{C}$ such that $|\alpha| < 1$ and θ is a revolving angle, define

$$X_{\alpha,\theta} := \left\{ \sum_{n=1}^{\infty} \delta_n \alpha^n : (\delta_n) \in W_\theta \right\}.$$

Then $X_{\alpha,\theta}$ is a union of p rotated copies of $M_{\alpha,\theta}$:

$$X_{\alpha,\theta} = \bigcup_{l=0}^{p-1} (e^{i\theta})^l M_{\alpha,\theta},$$

where $M_{\alpha,\theta} = \psi_0(M_{\alpha,\theta}) \cup \psi_1(M_{\alpha,\theta})$ is the self-similar set generated by the IFS

$$\begin{cases}
\psi_0(z) = \alpha z, \\
\psi_1(z) = (\alpha e^{i\theta}) z + \alpha.
\end{cases}$$

Next, we loosen the restriction of a generalized revolving sequence, allowing revolutions on the unit circle by more than one angle.

Definition 2.5 (Generator Set). Let $S := \{\theta_0, \theta_1, \ldots, \theta_{m-1}\}$ where $\theta_0, \theta_1, \ldots, \theta_{m-1}$ are distinct angles and $\theta_0 = 0$. Its elements can be written as $\theta_j = \frac{2\pi q_j}{p_j}$. We refer to the set S as a generator set.

Definition 2.6 (Revolving Group Generated by S). Let $S = \{\theta_0, \theta_1, \ldots, \theta_{m-1}\}$ be a generator set. Define

$$\Delta := \left\{ e^{i\sum_{n=1}^{m-1} k_n \theta_n} : k_n \in \{0, 1, \ldots, p_n - 1\} \right\}.$$

Example 2.7. If $S = \{0, \pi, \frac{2\pi}{3}\}$, then

$$\Delta = \{1, e^{i\pi}, e^{i\frac{2\pi}{3}}, e^{i\frac{4\pi}{3}}, e^{i(\pi+\frac{2\pi}{3})}, e^{i(\pi+\frac{4\pi}{3})}\}.$$

From this example, it is clear that Δ is a group, which we call the revolving group generated by S. Notice that Δ does not contain 0, and $|\Delta| = \text{lcm}(|p_1|, \ldots, |p_{m-1}|)$.

Definition 2.8 (\(\Delta\)-Revolving Sequence). We say that a sequence $(\gamma_n) \in \Delta^\mathbb{N}$ satisfies the \(\Delta\)-Revolving Condition (DRC), if

1. γ_1 is free to choose in Δ,

2. For $k \geq 1$, $\gamma_{k+1} = \gamma_k e^{i\theta_j}$ for some $\theta_j \in S$.

Figure 2: Cayley Digraph for generator set $S = \{0, \frac{2\pi}{3}, \pi\}$

If (γ_n) satisfies the DRC, we call (γ_n) a Δ-Revolving Sequence.

Example 2.9. If $S = \{0, \pi, \frac{2\pi}{3}\}$, $\Delta = \{1, e^{i(\pi)}, e^{i(\frac{2\pi}{3})}, e^{i(\pi + \frac{2\pi}{3})}, e^{i(\pi + \frac{4\pi}{3})}\}$. And, for examples,

$$(\gamma_n) = (1, e^{i\pi}, e^{i(\pi + \frac{2\pi}{3})}, e^{i(\pi + \frac{4\pi}{3})}, e^{i(\frac{2\pi}{3})}, \ldots) \quad (2.2)$$

is a Δ-revolving sequence.

Define W^Δ as the set of all Δ-revolving sequences with generator set S and W_1^Δ be the subset of W^Δ with the restriction: $\gamma_1 = 1$.

Compare examples: (2.1) and (2.2). It is clear that the generalized revolving condition is associated with a single angle of rotation on the unit circle, while the Δ-revolving condition is associated with multiple angles of rotation on the unit circle. Observe also that generalized revolving sequences allow that δ_n goes back to the origin and stays there as long as it wants, while Δ-revolving sequences do not allow that γ_n goes back to the origin; however, they allow "staying in place". Informally, each digit γ_n can choose freely either to stay ($\theta_0 = 0$) or move ($\theta_j \in S \setminus \{\theta_0\}$). However, the next digit γ_{k+1} is determined based on the current position γ_k. Therefore, Δ-revolving sequences are current-dependent, while the generalized revolving sequences are past-dependent.

Alternatively, due to the group structure of Δ, a Δ-Revolving Sequence can be thought of as an infinite walk on the Cayley Digraph of the group Δ generated by the set with elements corresponding to S.
3 Main results

Lemma 3.1. Consider a standard IFS \(\{\psi_0, \psi_1, \ldots, \psi_{m-1}\}\) given by

\[
\psi_k(z) = \alpha_k z + c_k, \tag{3.1}
\]

where \(\alpha_k \in \mathbb{C}\) such that \(|\alpha_k| < 1\) and \(c_k \in \mathbb{C}\) for \(k = 0, 1, \ldots, m - 1\).

Then the self-similar set \(E = \bigcup_{i=0}^{m-1} \psi_i(E)\) generated by (3.1) has the following natural series representation:

\[
E = \left\{ \sum_{n=1}^{\infty} c_{x_n} \prod_{k=0}^{m-1} \alpha_k^{I_k(x,n-1)} : x = (x_n) \in \{0, 1, \ldots, m - 1\}^\mathbb{N} \right\}, \tag{3.2}
\]

where \(I_k(x,n) := \#\{j \leq n : x_j = k\}\) for \(k = 0, 1, \ldots, m - 1\) and \(n \in \mathbb{N}\).

Notice that \(I_k(x,n)\) is the number of \(k\)'s occurring in the first \(n\) digits of the sequence \((x_n)\).

Proof. From (1.1), it follows that every point in \(E\) can be represented by at least one coding sequence \((x_n)\) given in (3.2). Vice versa, the set on the right of (3.2) satisfies the set equation \(E = \bigcup_{i=0}^{m-1} \psi_i(E)\). Let \(M := \{0, 1, \ldots, m - 1\}^\mathbb{N}\). It is well known that \(M\) is compact in the product topology. Define the function \(f : M \to \mathbb{C}\) by

\[
f(x) = \sum_{n=1}^{\infty} c_{x_n} \prod_{k=0}^{m-1} \alpha_k^{I_k(x,n-1)}.\]

Since it is easily seen that \(f\) is continuous and \(f(M) = E\), it follows that \(E\) is compact so it is closed. \(\square\)

Before presenting the main theorem, let us define one more notation.

Definition 3.2 (Constant Sequence of \((\gamma_n)\)). Let \(S = \{\theta_0, \theta_1, \ldots, \theta_{m-1}\}\) be a generator set and \(\Delta\) be the revolving group generated by \(S\).

For \(\Sigma := (\gamma_n) \in W^\Delta\) and \(c_k \in \mathbb{C}\) for \(k = 0, 1, \ldots, m - 1\), define the function \(s_{\Sigma} : \mathbb{N} \to \{c_0, c_1, \ldots, c_{m-1}\}\) by

\[
s_{\Sigma}(n) = c_k, \text{ if } \gamma_{n+1} = \gamma_n e^{i\theta_k}.\]

We say that the sequence \((s_n)\) given by \(s_n = s_{\Sigma}(n)\) is the constant sequence of \((\gamma_n)\). Notice that we allow \(c_l = c_k\) for \(l \neq k\).
Theorem 3.3. Let $S = \{\theta_0, \theta_1, \ldots, \theta_{m-1}\}$ be a generator set and Δ be the revolving group generated by S. For $\alpha \in \mathbb{C}$ with $|\alpha| < 1$ and $c_0, c_1, \ldots, c_{m-1} \in \mathbb{C}$, define $X_{\alpha, S}$ as follows.

$$X_{\alpha, S} = \left\{ \sum_{n=1}^{\infty} \alpha^{n-1} s_n \gamma_n : \Sigma = (\gamma_n) \in W^\Delta, s_n = s_{\Sigma(n)} \right\}. \quad (3.3)$$

Then $X_{\alpha, S}$ is the union of $|\Delta|$ many rotated copies of the self-similar attractor $T_{\alpha, S}$:

$$X_{\alpha, S} = \bigcup_{\gamma \in \Delta} \gamma \cdot T_{\alpha, S},$$

where $T_{\alpha, S}$ is generated by the IFS:

$$\begin{align*}
\psi_0(z) &= \alpha z + c_0, \\
\psi_k(z) &= (\alpha e^{i\theta_k}) z + c_k, \quad k = 1, 2, \ldots, m - 1.
\end{align*}$$

Proof.

For a given generator set $S = \{\theta_0, \theta_1, \ldots, \theta_{m-1}\}$, set $\alpha_k = \alpha e^{i\theta_k}$ for $k = 0, 1, \ldots, m - 1$ in Lemma 3.1. Note that $\alpha_0 = \alpha$ since $\theta_0 = 0$. Then it follows from (3.2) that the self-similar set $T_{\alpha, S}$ has the following representation.

$$T_{\alpha, S} = \left\{ \sum_{n=1}^{\infty} c_{x_n} \prod_{k=0}^{m-1} (\alpha e^{i\theta_k}) I_k(x, n-1) : x = (x_n) \in \{0, 1, \ldots, m-1\}^\mathbb{N} \right\}. \quad (3.4)$$

Observe that $\sum_{k=0}^{m-1} I_k(x, n-1) = n - 1$ and

$$\prod_{k=0}^{m-1} e^{i\theta_k \cdot I_k(x, n-1)} = e^{i \sum_{k=0}^{m-1} I_k(x, n-1) \cdot \theta_k} = e^{i \sum_{j=1}^{n-1} \theta x_j},$$

Thus,

$$T_{\alpha, S} = \left\{ \sum_{n=1}^{\infty} \alpha^{n-1} c_{x_n} e^{i \sum_{j=1}^{n-1} \theta x_j} : (x_n) \in \{0, 1, \ldots, m-1\}^\mathbb{N} \right\}. \quad (3.4)$$

Define $X_{1, \alpha, S}$ given by:

$$X_{1, \alpha, S} = \left\{ \sum_{n=1}^{\infty} \alpha^{n-1} s_n \gamma_n : \Sigma = (\gamma_n) \in W^\Delta, \gamma_1 = 1, s_n = s_{\Sigma(n)} \right\}.$$
We prove that $X_{1,\alpha,S} = T_{\alpha,S}$. Let
\[
\gamma_{n} = e^{i \sum_{j=1}^{n-1} \theta_{j}}.
\]
Then it is clear that there exists a coding:
\[
\gamma_{1} = 1, \quad \gamma_{n+1} = \gamma_{n} \cdot e^{i \theta_{n}}
\]
for $n = 1, 2, \ldots$. Therefore, (γ_{n}) satisfies the DRC with the restriction that the first term is 1.

Let $s_{n} = c_{x_{n}}$. It is clear that (s_{n}) is the constant sequence of (γ_{n}).

Conversely, take a point $z \in X_{1,\alpha,S}$, which is generated by a sequence $(\gamma_{n})_{n \in \mathbb{N}}$. Construct a sequence $(x_{n}) \in \{0, 1, \ldots, m-1\}^{\mathbb{N}}$ by
\[
x_{n} = k, \quad \text{if } \gamma_{n+1} = \gamma_{n} e^{i \theta_{k}},
\]
for $k = 0, 1, 2, \ldots (m-1)$. Notice that θ_{k} is a unique revolving angle for each k so that (x_{n}) is determined uniquely by (γ_{n}).

Recall that for a given generator set S, the revolving group generated by S has lcm$(|p_{1}|, \ldots, |p_{m-1}|)$ many elements where p_{i} is the denominator of θ_{i} in reduced form. Thus,
\[
X_{\alpha,S} = \bigcup_{\gamma \in \Delta} \gamma \cdot X_{1,\alpha,S} = \bigcup_{\gamma \in \Delta} \gamma \cdot T_{\alpha,S}.
\]

Example 3.4. Mandelbrot introduced a tiling fractal, known as the fudge-flake in his classic book (see page 72 in [8]). The fudgeflake is a self-similar attractor generated by three similar contractions:
\[
\begin{cases}
\psi_{1}(z) = \alpha z, \\
\psi_{2}(z) = (\alpha e^{i \theta_{1}})z + \alpha, \\
\psi_{3}(z) = (\alpha e^{i \theta_{2}})z + \bar{\alpha},
\end{cases}
\tag{3.5}
\]
where $\alpha = \frac{1}{2} - \frac{\sqrt{3}}{6} i$, $\theta_{1} = \pi/3$ and $\theta_{2} = -2\pi/3$. For more details, see page 22-23 in Edger’s book [2].

It is clear that Theorem 3.3 includes this particular case. Figure 3 shows several examples of $X_{\alpha,S}$; in particular, the self-similar attractors of (3.5).

Terdragon is another famous tiling self-similar attractor generated by (3.5) if $\alpha = \frac{1}{2} - \frac{\sqrt{3}}{6} i$, $\theta_{1} = 2\pi/3$ and $\theta_{2} = 0$. (See page 163 in [2]). However, notice that Theorem 3.3 excludes this case since $\theta_{2} = 0$.
Figure 3: Examples of $X_{\alpha,S}$: $(m, c_0, c_1, c_2, \alpha) = (3, 0, \alpha, \bar{\alpha}, \frac{1}{2} - \frac{\sqrt{3}i}{3})$. $(\theta_1, \theta_2) = (\pi/3, -2\pi/3)$: a union of 3 fudgeflake (top), $(\theta_1, \theta_2) = (\pi/2, -\pi/2)$: (bottom left), $(\theta_1, \theta_2) = (\pi/3, -\pi/3)$: (bottom right).
Example 3.5. The Heighway dragon and the Twindragon are famous self-similar attractors, not generated by (1.5) but by a slightly different pair of two similar contractions:

$$\begin{align*}
\phi_0(z) &= \alpha z, \\
\phi_1(z) &= (\alpha e^{i\theta})z + 1.
\end{align*}$$

(3.6)

In particular, if $\alpha = (1 + i)/2$ and $\theta = \pi/2$, then the IFS generates the Heighway dragon. If $\alpha = (1 + i)/2$ and $\theta = \pi$, then the Twindragon is generated [2].

Let $S = \{0, \theta\}$, $c_0 = 0$ and $c_1 = 1$ in Theorem 3.3. Since

$$s_n = s_\Sigma(n) = \begin{cases}
0, & \text{if } \gamma_{n+1} = \gamma_n, \\
1, & \text{if } \gamma_{n+1} = \gamma_ne^{i\theta},
\end{cases}$$

$X_{\alpha,S}$ can also be parametrized by generalized revolving sequences (δ_n).

$$X_{\alpha,S} = \left\{ \sum_{n=0}^{\infty} \delta_n \alpha^n : (\delta_n) \in W_\theta \right\}. \quad (3.7)$$

Note that the only difference between (3.7) and (1.4) is whether the sum begins from $n = 0$ or $n = 1$. It is not surprising. Let $H_{\alpha,\theta} = \phi_0(H_{\alpha,\theta}) \cup \phi_1(H_{\alpha,\theta})$ be the self-similar set generated by the IFS (3.6). Notice that $\psi_0(z) = \alpha \phi_0(z/\alpha)$ and $\psi_1(z) = \alpha \phi_1(z/\alpha)$ in (1.5) and (3.6). Thus, it is easy to see that $H_{\alpha,\theta} = M_{\alpha,\theta}/\alpha$.

Remark 3.6. Theorem 2.4 is a special case of Theorem 3.3. Let $S = \{0, \theta_1\}$, $c_0 = 0$ and $c_1 = \alpha$ so that

$$s_n = \begin{cases}
0, & \text{if } \gamma_{n+1} = \gamma_n, \\
\alpha, & \text{if } \gamma_{n+1} = \gamma_ne^{i\theta_1}.
\end{cases}$$

Observe that $\delta_n = \alpha^{-1} \gamma_n s_n$ since (i) $\delta_n = 0$ if $\gamma_{n+1} = \gamma_n$ and (ii) $\delta_n = \gamma_n$ if $\gamma_{n+1} = \gamma_ne^{i\theta_1}$. Therefore,

$$\left\{ \sum_{n=1}^{\infty} \alpha^{-1} \gamma_n s_n : \Sigma = (\gamma_n) \in W^\Delta, \ s_n = s_\Sigma(n) \right\} = \left\{ \sum_{n=1}^{\infty} \delta_n \alpha^n : (\delta_n) \in W_\theta \right\},$$

where W^Δ is the set of all Δ-revolving sequences, and W_θ is the set of all generalized revolving sequences.
4 Remark

First, we define a slight modification of Δ-revolving sequences as follows.

Definition 4.1 (Δ_0-Revolving Sequence). Let $\Delta_0 := \Delta \cup \{0\}$. We say that a sequence $(\delta_n) \in \Delta_0^N$ satisfies the Δ_0-Revolving Condition (DZRC) if

1. δ_1 is free to choose in Δ_0
2. If $\delta_1 = \delta_2 = \cdots = \delta_n = 0$, then δ_{n+1} is free to choose in Δ_0.
3. Otherwise, $\delta_{n+1} = 0$ or $\delta_{n+1} = \delta_{j_0(n)} e^{i\theta_k}$ for some $\theta_k \in S \backslash \{0\}$,

where $j_0(n) = \max\{j \leq n : \delta_j \neq 0\}$.

Example 4.2. If $S = \{0, \pi, \frac{2\pi}{3}\}$, $\Delta_0 = \{0, 1, e^{i\pi}, e^{i(\frac{2\pi}{3})}, e^{i(\frac{4\pi}{3})}, e^{i(\pi + \frac{2\pi}{3})}, e^{i(\pi + \frac{4\pi}{3})}\}$, and, for examples,

$$ (\delta_n) = (1, e^{i\pi}, 0, e^{i(\pi + \frac{2\pi}{3})}, 0, 0, e^{i(\frac{2\pi}{3})}, \cdots) \quad (4.1) $$

is a Δ_0-revolving sequence.

We denote the set of all Δ_0-revolving sequences with generator set S by W_{Δ_0}.

Compare examples: (2.2) and (4.1). Observe that Δ_0-revolving sequences are a more natural extension of the notation of generalized revolving sequences than Δ-revolving sequences. In fact, Δ_0-revolving sequences are past-dependent.
Now, a question arises naturally: for a given $\alpha \in \mathbb{C}$ such that $|\alpha| < 1$ and a generator set S, define

$$X^*_{\alpha,S} := \left\{ \sum_{n=1}^{\infty} \delta_n \alpha^n : (\delta_n) \in W^{\Delta_0} \right\}.$$

It is not hard to imagine that $X^*_{\alpha,S}$ is a union of self-similar sets; however, it is not immediately clear which IFS generates these self-similar sets.

Corollary 4.3. $X^*_{\alpha,S}$ is the union of $|\Delta|$ many rotated copies of the self-similar attractor $T^*_{\alpha,S}$:

$$X^*_{\alpha,S} = \bigcup_{\gamma \in \Delta} \gamma \cdot T^*_{\alpha,S},$$

where $T^*_{\alpha,S}$ is generated by the IFS:

$$\begin{align*}
\psi_0(z) &= \alpha z, \\
\psi_k(z) &= (\alpha e^{i\theta_k}) z + \alpha, \quad k = 1, 2, \ldots, m - 1.
\end{align*}$$

Remark 4.4. In general, self-similar attractors generated by

$$\begin{align*}
\psi_0(z) &= \alpha z, \\
\psi_k(z) &= (\alpha e^{i\theta_k}) z + c_k, \quad k = 1, 2, \ldots, m - 1.
\end{align*}$$

cannot be parametrized by Δ_0-revolving sequences. Consider (3.4) in the proof of Theorem 3.3. Since $c_0 = 0$, let $\delta_n = I(x_n) e^{i \sum_{j=1}^{n-1} \theta_{x_j}}$, where

$$I(x_n) = \begin{cases}
0, & \text{if } x_n = 0, \\
1, & \text{if } x_n \neq 0.
\end{cases}$$

Then it is clear that there exists a Δ_0-revolving sequence (δ_n) given by

$$\delta_n = \begin{cases}
0, & \text{if } x_n = 0, \\
\delta_{j_0(n-1)} e^{i \theta_{x_{j_0(n-1)}}}, & \text{if } j_0(n-1) \text{ exists}, \\
1, & \text{if } j_0(n-1) \text{ does not exist},
\end{cases}$$

where $j_0(n) = \max\{j \leq n : x_j \neq 0\}$. However, notice that there is an issue to define (x_n) from (δ_n), if (δ_n) is a sequence whose terms are eventually all 0.
Acknowledgment

The first author would like to express her gratitude to the late Prof. S. Ito, who introduced one of his results in [10]. He inspired and encouraged many female mathematicians to study problems related to fractal geometry and number theory. Lastly, We greatly appreciate Prof. P. Allaart for his helpful comments and suggestions in preparing this paper.

References

[1] C. Davis and D. E. Knuth, *Number representations and dragon curves I, II*, *J. Recreational Math.*, 3, pp. 66-81 (Part I), pp. 133-149 (Part II) (1970).

[2] G. Edgar, *Measure, Topology, and Fractal Geometry*, Springer-Verlag, (1990)

[3] K. J. Falconer, *Fractal Geometry. Mathematical Foundations and Applications*, 3rd Edition, Wiley (2014)

[4] W. J. Gilbert, *Fractal geometry derived from complex bases*, *Math. Intelligencer*, 4, pp. 78-86 (1982).

[5] J. E. Hutchinson, *Fractals and self-similarity*, *Indiana Univ. Math. J.*, 30, pp. 713-747 (1981).

[6] K. Kawamura, *On the classification of self-similar sets determined by two contractions on the plane*, *J. Math. Kyoto Univ.*, 42, pp. 255-286 (2002).

[7] K. Kawamura and A. Allen, *Revolving Fractals*, *J. Fractal Geom.*, 8, pp. 289-304 (2021)

[8] B. Mandelbrot, *The Fractal Geometry of Nature*, W. H. Freeman and Company, (1982)

[9] T. Mathis and K. Kawamura, *Revolving sequences and Terdragon*, Preprint (2021) https://arxiv.org/abs/2106.10549

[10] M. Mizutani and S. Ito, *Dynamical Systems on Dragon Domains*, *Japan J. Appl. Math.*, 4, pp. 23-46 (1987).