Improved electrical properties in Nb/Fe co-modified CaBi$_4$Ti$_4$O$_{15}$ high-temperature piezoceramics

Yang Liu1, Peiming Huang1, Yuhaow Zhang1, Juan Du1, Wangfeng Bai1, Lili Li1, Fei Wen1, Peng Zheng1, Wei Wu1, Liang Zheng2 and Yang Zhang2

1 Lab for Nanoelectronics and NanoDevices, Department of Electronics Science and Technology, Hangzhou Dianzi University, Hangzhou 310018, People’s Republic of China
2 School of Materials Sciences and Engineering, Liaocheng University, Liaocheng 252059, People’s Republic of China
3 College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, People’s Republic of China

E-mail: zhengpeng@hdu.edu.cn

Keywords: CaBi$_4$Ti$_4$O$_{15}$, microstructure, piezoelectric properties, thermal stability

Abstract

Nb/Fe co-doped CaBi$_{4-x}$(Nb$_{1/2}$Fe$_{1/2}$)$_x$Ti$_4$O$_{15}$ (CBT) ($x = 0, 0.01, 0.02, 0.025, 0.05, 0.075$, and 0.1) high-temperature piezoceramics were synthesized using conventional solid-state reaction method. The effects of Nb/Fe doping level on the structure, dielectric, ferroelectric and piezoelectric properties were investigated in detail. It was found that Nb/Fe co-doping effectively improved the electrical performances of CBT ceramic. Significant enhancement of piezoelectric coefficient (d_{33}) was acquired at $x = 0.02$ with a d_{33} value of 21.6 pC/N, accompanied by a high Curie temperature (T_C) of 793 °C and a low dielectric loss (tanδ) of 5.9% at 400 °C. Moreover, the ceramic showed a good thermal stability with a d_{33} value of 19.3 pC/N after being annealed at 700 °C for 2 h, keeping 89.4% of its initial value at room temperature. These results indicated great potentials of the Nb/Fe co-doped CBT ceramics for high-temperature piezoelectric applications.

1. Introduction

Bismuth layer-structured ferroelectrics (BLSFs) were originally proposed by Aurivillius [1]. This family contains many potential materials used in piezoelectric devices such as sensors and filters under high temperature [2, 3], due to their outstanding Curie temperature, low dielectric loss, good thermal stability, and strong anisotropy [2–4]. CaBi$_4$Ti$_4$O$_{15}$, a well-known member belonging to the BLSFs family with $m = 4$ (the number of TiO$_6$ octahedra), is considered to be a potential candidate for high-temperature piezoelectric applications, owing to its high T_C of 790 °C and good aging performance [5–7]. However, compared to other studied BLSFs ceramics, such as Na$_{2}$B$_2$I$_6$O$_{20}$ ($m = 2$, $T_C = 788$ °C, $d_{33} = 16$ pC/N) [8], K$_{0.5}$Bi$_4$Ti$_4$O$_{15}$ ($m = 4$, $T_C = 555$ °C, $d_{33} = 21.2$ pC/N) and Na$_{0.5}$Bi$_4$Ti$_4$O$_{15}$ ($m = 4$, $T_C = 657$ °C, $d_{33} = 16$ pC/N) [9, 10], pristine CBT possesses a relative lower piezoelectric coefficient ($d_{33} < 8$ pC/N) according to previous reports [11–13], which greatly restricts its practical applications.

Lots of researches have been focused on improving piezoelectric performance of CBT ceramic and some impressive improvements have been made in the past several decades by using templated grain growth method, spark plasma, cations substitution and so on [12, 14, 15]. Among these methods, cations substitution method has been proved to be a feasible way to enhance piezoelectric properties of BLSFs. For instance, Peng et al reported Li/Ge co-doped CaBi$_4$Ti$_4$O$_{15}$ ceramics at Ca-site and got a great enhancement of d_{33} value from 10 pC/N to 18.5 pC/N [16]. In addition, Sheng et al fabricated Nd/Co co-doped CaBi$_4$Ti$_4$O$_{15}$ ceramics at Bi-site and obtained a remarkable d_{33} value of 19 pC/N [17]. Ti-site doping has also been explored to optimize the piezoelectric behaviour of CBT ceramics. However, the piezoelectric activities obtained in single ion doped CBT ceramics are rather limited [18]. Recently, a remarkable d_{33} value of 27 pC/N was reported by Shen et al using Nb/Mn co-substituted at Ti-site [19], which exceeds most of the values previously reported in CBT-based...
ceramics and shows that ions co-doping at Ti-site exhibits great potentials for improving the piezoelectric activity of CBT ceramic.

Herein, Nb/Fe co-modified CaBi4Ti4-x(Nb1/2Fe1/2)3O15 ceramics at Ti-site were synthesized by the conventional solid-state sintering method. Doping effects of Nb/Fe on the microstructure and electrical properties of Nb/Fe co-modified ceramics were discussed detailedly. Optimized piezoelectric performances with $d_{33} = 21.6$ pC/N and $T_C = 793$ °C were obtained at $x = 0.02$. In addition, excellent thermal stability was also acquired, demonstrating great potentials of the Nb/Fe co-doped CBT ceramics for high temperature piezoelectric applications.

2. Experimental

CaBi4Ti4−x(Nb1/2Fe1/2)3O15 (CNF-x), with $x = 0, 0.01, 0.02, 0.05, 0.075$ and 0.1 ceramics were synthesized via the solid-state reaction method. CaCO3 (99.99%), Bi2O3 (99.99%), TiO2 (99.8%), Nb2O5 (99.5%) and Fe2O3 (99.5%) were used as the raw materials and mixed for 12 h. The dried mixtures were then calcined at 825 °C for 4 h and then remilled under the same conditions. After drying, the mixtures were pressed into discs. The discs were sintered at temperatures within the range of 1000 °C–1100 °C for 1 h.

The phase structure was investigated by x-ray diffraction (XRD, Ultima IV). Surface of ceramics was revealed by scanning electron microscopy (SEM, JEOL JSM6460-LV). Ferroelectric performances were analyzed with a ferroelectric analyzer (TF2000). Dielectric properties were measured with an impedance analyzer (Keysight E4990A). The ceramics were polarized in silicone oil at 160 °C by applying an electric field of 14 kV mm$^{-1}$. After that, the piezoelectric coefficients (d_{33}) were tested with a piezo-d_{33} meter (ZJ-3AN) at room temperature.

3. Results and discussion

XRD patterns of the CNF-x ceramics are shown in figure 1(a). All the CNF-x ceramics have a single phase (PDF #52-1640) and no impurity phase could be detected, indicating the doped Nb and Fe have successfully diffused into CBT lattice. The most intense peak of the samples corresponds to the (119) plane, which consists with the fact that the highest diffraction peak of BLSFs occurs for the (112 m + 1) plane [20, 21]. Furthermore, figure 1(b) gives the enlarged XRD patterns for diffraction peak (119). One can see that the diffraction peaks shift to lower angle direction with an increase in the doping level, implying the emergence of lattice expansion. To further evaluate the structural evolution induced by the introduction of Nb/Fe, figure 1(c) shows the lattice parameters (a), (b) and (c) and the unit cell volume as a function of x. As can be seen, all the lattice parameters increase continuously with an increase in the Nb/Fe doping level, giving rise to a continuously increased unit cell volume. Based on these results, the lattice expansion after the co-doping of Nb/Fe can be confirmed. This evolution may be attributed to the larger cation sizes of Nb$^{5+}$ (~0.64 Å) and Fe$^{3+}$ (~0.645 Å) compared with Ti$^{4+}$ (~0.605 Å) [22–24]. Additionally, to assess the degree of lattice distortion of pseudo-perovskites after doping, the related a/b ratio data is provided in figure 1(d). As shown, a/b ratio firstly increases and then decreases with the increasing doping level. It is worth noting that the a/b ratio of CNF-0.02 ceramic is closer to 1 than other samples, indicating a low anisotropy in the a/b direction, which may be beneficial to the polarization switching in the a-b plane and give rise to better ferroelectric and piezoelectric properties [25].

The SEM images of the CNF-x ceramics are displayed in figure 2. The grain growth shows greatly anisotropic behavior, which is the representative characteristic of Aurivillius type compounds. Apparently, no obvious change could be detected in grain size after the co-doping of Nb/Fe ions. However, all the Nb/Fe co-doped ceramics exhibit more dense microstructures and higher density than the pristine CBT ceramic, implying that the doping of Nb/Fe is beneficial to the grain-boundary diffusion and leads to a grain densification.

In order to verify the element distribution after Nb/Fe co-doping, the elemental mappings (Ca, Bi, Ti, O, Nb and Fe) of the CNF-0.02 ceramic are shown in figure 3. As can be seen, all the elements exhibit uniform distribution in the ceramic sample. These results further confirm that the diffusion of Nb/Fe ions into the CBT lattice.

Figure 4(a) presents the temperature dependence of dielectric permittivity (ε_r) for all CNF-x ceramics measured at 1 MHz. One could see that all the samples present a similar dielectric-temperature spectrum with a single dielectric peak, which corresponds to the ferro-paraelectric phase transition. The corresponding Curie temperature (T_C) of all samples are exhibited in figure 4(b). As shown, the Curie temperatures of all ceramics are pretty close which locate in a range of 792 °C ~ 794 °C, indicating the introduction of Nb/Fe has no significant impact on T_C. The nearly unaffected T_C is very comforting. Generally, the transition temperature (T_C) from ferroelectric to paraelectric phase of BLSFs is considered to be closely related to the tolerance factor and the electronic configuration of B-site cations [26, 27]. The tolerance factor can be given by the following formula:
where r_A, r_B, and r_O are the ionic radii of the A-site cations, B-site (Ti-site) cations, and oxygen ions, respectively. Normally, smaller tolerance factor and lower nd0 electronic configuration of B-site cations lead to a higher T_C.

In this study, substitutions of Ti$^{4+}$ (\sim0.605 Å) with larger cation Nb$^{5+}$ (\sim0.64 Å) and Fe$^{3+}$ (\sim0.645 Å) would lead to a decrease in tolerance factor and then give rise to an increase in T_C. Conversely, Nb$^{5+}$ (4d) possesses a higher nd0 electronic configuration than Ti$^{4+}$ (3d) which would make the bond more covalent and leads to a decrease.

$$t = \frac{(r_A + r_O)}{\sqrt{2 (r_B + r_O)}} \quad (1)$$

Figure 1. (a) XRD patterns of the CNF-x ceramics, (b) the zoomed diffraction peak (119), (c) lattice parameters a, b, c and unit cell volume of CNF-x ceramics, (d) a/b values of CNF-x ceramics.

Figure 2. SEM images for CNF-x ceramics: (a) $x = 0$, (b) $x = 0.01$, (c) $x = 0.02$, (d) $x = 0.025$, (e) $x = 0.05$, (f) $x = 0.075$ and (g) $x = 0.1$.
in T_C.[28]. Therefore, the nearly unaffected T_C may be ascribed to the combined action of these factors. Besides, the relative small doping amount may be another reason responsible for it. Figure 4(c) displays dielectric loss ($\tan\delta$) of all ceramics varied with temperature. As shown, the loss of the undoped sample increases more sharply in high temperature range, while the variation of doped ceramics is relatively flattened. The $\tan\delta$ obtained at room temperature and 400 °C of all ceramics are displayed in figures 4(d) and (e). At room temperature, the $\tan\delta$ decreases continuously with an increase in the doping level. While at 400 °C, the $\tan\delta$ firstly drops at the 0.01 composition and then rises. Still, all the doped ceramics show lower $\tan\delta$ than the pristine one, which will benefit to its applications at high temperature field. It has been revealed that the dielectric loss of BLSFs is mainly dominated by oxygen vacancies, which are produced by the unavoidable bismuth volatilization during the high-temperature sintering of ceramics [11]. The substitution of Ti$^{4+}$ with Nb$^{5+}$ will reduce the oxygen vacancies, which might be responsible for the decreased $\tan\delta$ after doping [18]. However, the electron hoping conduction between Fe$^{2+}$ and Fe$^{3+}$ thermally activated at high temperature may be accounted for the increase of $\tan\delta$ in the composition with $x > 0.01$ at 400 °C, giving rise to a loss tangent value drop at the 0.01 composition [29].

Figure 5(a) displays the d_{33} value of all samples measured at room temperature. The d_{33} value first increases and then decreases with the increasing Nb/Fe contents. At $x = 0.02$, a remarkable d_{33} value of 21.6 pC/N is achieved, which is about 2 times higher than that of pristine CBT (10 pC/N). A statistical comparison of T_C and d_{33} of CBT-based ceramics reported in published articles along with those obtained in this work (red star) is shown in figure 5(b) [5, 7, 11, 12, 16, 30–35]. As can be seen, most of the reported results locate in the yellow belt for CBT-based ceramics. Apparently, a high T_C together with a remarkable d_{33} is obtained in this work, demonstrating that Nb/Fe co-doped CBT ceramics have great potential to be applied in high-temperature environment. In order to obtain an integrated assessment, the relevant thermal stability of CNF-x ceramics are
Figure 5. (a) The d_{33} value of CNF-x ceramics, (b) literature statistics about the relation between T_c and d_{33}, (c) thermal stability of d_{33}, (d) literature statistics about the relation of $d_{33 RT}$ and $d_{33 RT} / d_{33 T}$ (the ratio of d_{33} at 700 °C and room temperature), (e) the P-E loops of pure CBT and CNF-0.02 ceramics, (f) the I-E curves, (g) the comparison of P_r and I_{max}, (h) bidirectional strain curves.
estimated and shown in figure 5(c). The d_{33} values are recorded at room temperature after annealing for 2 h at different temperatures. It could be seen that all the ceramics possess a relatively stable d_{33} value with the increasing annealing temperature. The CNF-0.02 ceramic still kept about 89.4 percent (19.3 pC/N) of its original value (21.6 pC/N) after annealing at 700 °C. Figure 5(d) compares the d_{33RT} values and d_{33ST}/d_{33RT} (the ratio of d_{33} at 700 °C and room temperature) of CNF-0.02 and previously reported CBT-based ceramics [5, 7, 35–39]. Obviously, the CNF-0.02 ceramic possesses a great thermal stability compared to other works, which is beneficial to its practical applications.

To explore the reasons for the improvement of piezoelectric properties, relevant ferroelectric properties were measured. Figure 5(e) shows the polarization hysteresis loops (obtained at 1 Hz and 100 °C) of pure CBT and CNF-0.02 ceramics measured at the electric field of 170 kV cm$^{-1}$ and the corresponding I-E loops are exhibited in figure 5(f). The polarization hysteresis loops of both ceramics tend to be saturated with two current peaks aligned symmetrically before the maximum electric field was applied, implying a physical nature of electric fields yielded domain switching behavior [26, 40]. However, the obtained P_c increases from 3.45 μC cm$^{-2}$ to 6.18 μC cm$^{-2}$ and the flip current (I_{max}) increases from 0.01857 mA to 0.03677 mA after the introduction of Nb/Fe (figure 5(g)), demonstrating a better ferroelectric property. Based on the crystal structure evolution discussed in the XRD analysis, a higher a/b ratio may be responsible for it [41, 42]. Although the related mechanism is still unclear, the enhancement of ferroelectricity might be part of the reasons for the enhancement in piezoelectricity. Furthermore, the bipolar S-E loops of pristine CBT and CNF-0.02 ceramics are exhibited in figure 5(h). Both ceramics have a typical butterfly-shaped curve. The maximum bipolar strain of CNF-0.02 ceramic is 0.037%, which is more than three times larger than that of the pure CBT ceramic (0.01%).

Corresponding results prove that the introduction of Nb/Fe at Ti-site could effectively enhance the piezoelectric activities of CBT ceramics.

4. Conclusions

In summary, CaBi$_4$Ti$_{4-x}$(Nb$_{1/2}$Fe$_{1/2}$)$_x$O$_{15}$ ceramics were produced by a conventional solid-state reaction process. Microstructures, dielectric properties, piezoelectric properties and ferroelectric properties were analyzed. The doping of Nb/Fe into the CBT-based ceramics lead to a lattice expansion and grain densification, and got an improvement of piezoelectric, ferroelectric properties. It was found that the CNF-0.02 ceramic displayed a high d_{33} of 21.6 pC/N, high T_c of 793 °C, a low dielectric loss of 5.9% at 400 °C and a large field-induced strain of 0.037%. More importantly, the ceramic also possessed a great thermal stability (reserved 89.3% of initial d_{33} value even after annealing 700 °C). All these properties make the Nb/Fe co-modified CBT ceramics have a superior prospect for high-temperature piezoelectric applications.

Acknowledgments

This work was supported by the Key research and development projects of Zhejiang Province (2017C01056).

ORCID iDs

Peng Zheng @ https://orcid.org/0000-0003-4327-2308
Yang Zhang @ https://orcid.org/0000-0002-2337-0683

References

[1] Takenaka T and Sakata K 1984 Grain orientation effects on electrical properties of bismuth layer-structured ferroelectric Pb$_{1-x}$Na$_x$Bi$_4$Ti$_4$O$_{15}$ solid solution J. Appl. Phys. 55 1092–9
[2] Zhang S and Yu F 2011 Piezoelectric materials for high temperature sensors J. Am. Ceram. Soc. 94 3153–70
[3] Rödel J, Webber K G, Dittmer R, Jo W, Kimura M and Damjanovic D 2015 Transferring lead-free piezoelectric ceramics into application J. Eur. Ceram. Soc. 35 1659–81
[4] Frit B and Mercurio J P 1992 The crystal chemistry and dielectric properties of the Aurivillius family of complex bismuth oxides with perovskite-like layered structures J. Alloys Compd. 188 27–35
[5] Shen Z, Sun H, Tang Y, Li Y and Zhang S 2015 Enhanced piezoelectric properties of Nb and Mn co-doped CaBi$_4$Ti$_4$O$_{15}$ high temperature piezoceramics, Mater. Res. Bull. 63 129–33
[6] Korzunova L 1992 Piezoelectric ceramics for high-temperature transducers Ferroelectr. 134 175–80
[7] Zhao T, Wang C, Wang C, Wang Y and Dong S 2015 Enhanced piezoelectric properties and excellent thermal stabilities of cobalt-modified Aurivillius-type calcium bismuth titanate (CaBi$_4$Ti$_4$O$_{15}$) Mater. Sci. Eng. B 201 51–6
[8] Long C, Fan H and Li M 2013 High temperature Aurivillius piezoelectric: the effect of (Li, Ln) modification on the structure and properties of (Li, Ln)$_2$Na$_{2-x}$Bi$_{4-x}$Nb$_2$O$_{8}$ (Ln = Ce, Nd, La and Y), Dalton Trans. 42 3561–70
[9] Wang C M and Wang J F 2010 Aurivillius Phase Potassium Bismuth Titanate: K$_3$Bi$_4$Ti$_4$O$_{13}$ J. Am. Ceram. Soc. 91 918–23
[10] Wang C M, Zhao L, Wang J F, Zhang S and Shrou T R 2009 Enhanced piezoelectric properties of sodium bismuth titanate (Na4, Bi5, Ti3O15) ceramics with B-site cobalt modification, Phys. Status Solidi RRL - Rapid Res. Lett. 37–9

[11] Zeng, J, Li Y, Wang D and Yin Q 2005 Electrical properties of neodymium doped CaBi5Ti4O15 ceramics Solid State Commun. 133 553–7

[12] Chen H, Shen B, Xu J and Zhai J 2012 Textured Ca5x(1−x)Bi1.55+3Bi1.535+3Bi1.5Ti4O15 ceramics for high temperature piezoelectric applications Mater. Res. Bull. 47 2530–4

[13] Fu B, Hou Y L, Li T and Fu X H 2013 Effects of Sr and Mn-doping on the electrical properties of CaBi5Ti4O15-based ceramics Key Eng. Mater. 575–5 76 194–8

[14] Zhang H, Ke H, Luo H, Guo P, Yang B, Jia D and Zhou Y 2018 Effects of spark plasma sintering on ferroelectricity of 0.88Bi4Ti3O12–0.2CoFe2O4 composite ceramic J. Eur. Ceram. Soc. 38 2533–9

[15] Chen Y, Liang D, Wang Q and Zhu J 2014 Microstructure, dielectric, and piezoelectric properties of W/Cr co-doped Bi5Ti4O12 ceramics J. Appl. Phys. 116 074108

[16] Peng Z, Huang F, Chen Q, Bao S, Wang Y, Xiao D and Zhu J 2013 Effects of (Li,Ce) on the dielectric, piezoelectric and impedance properties of CaBi5Ti4O15 piezoceramics Ferroelectr. 447 69–77

[17] Sheng L, Du X, Chao Q, Zheng P, Bai W, Li L, Wen F, Wu W and Zheng L 2018 Enhanced electrical properties in Nd and Ce co-doped CaBi5Ti4O15 high temperature piezoceramics J. Mater. Sci. 54 18316–21

[18] He X, Wang B, Fu X and Chen Z 2014 Structural and piezoelectric properties of V-, Nb- and W-substituted CaBi5Ti4O15 ceramics J. Mater. Sci. - Mater. Electron. 25 3396–402

[19] Shen Z, LUO W, Q Zhang and Y Chen 2016 Microstructure and electrical properties of Nb and Mn co-doped CaBi5Ti4O15 ceramics obtained by two-step sintering Ceram. Int. 42 7868–72

[20] Du X 1998 Chen I-Wei ferroelectric thin films of bismuth-containing layered perovskites: part I, Bi5Ti3O12 J. Am. Ceram. Soc. 81 3253–9

[21] Yan H, Zhang Z, Zhu W, He L, Yu Y, Li C and Zhou J 2004 The effect of (Li,Ce) and (K,Ce) doping in Aurivillius phase material CaBi5Ti4O15 Mater. Res. Bull. 39 1237–46

[22] Lavado C and Stachiotti M G 2018 Fe+ in Nb5+ co-doping effects on the properties of Aurivillius Bi5Ti4O12 ceramics J. Alloys Compd. 731 914–9

[23] Xing X, Cao F, Peng Z and Xiang Y 2018 The effects of oxygen vacancies on the electrical properties of W, Ti-doped CaBi5Nb2O9 piezoceramics Curr. Appl. Phys. 18 1149–57

[24] Shi L, Zhang B, Liao Q, Zhu L, Zhao L, Zhang D and Guo D 2014 Piezoelectric properties of Fe2O3 doped BiYbO3-PbCrO3 composite ceramics Mater. Res. Bull. 49 1145–91

[25] Shrivastava V, Jah A K and Mendiratta R G 2006 Dielectric studies of La and Pb doped SrBi2Nb2O9 ferroelectric ceramic, Mater. Lett. 60 1459–62

[26] Chen Z, Sheng L, Li X, Zheng P, BAI W, Li L, Wen F, Wu W, Zheng L and Cui J 2019 Enhanced piezoelectric properties and electrical resistivity in W/Cr co-doped CaBi5Nb2O9 high-temperature piezoelectric ceramics Int. J. Electroceram. 45 6004–11

[27] Peng Z, Chen Q, Chen Y, Xiao D and Zhu J 2014 Microstructure and electrical properties in W/Nb co-doped Aurivillius phase Bi5Ti4O12 piezoceramics Mater. Res. Bull. 59 125–30

[28] Peng Z, Chen Y, Chen Q, Li N, Zhao X, Chuang K, Xiao D and Zhu J 2014 Correlation between lattice distortion and electrical properties on Bi5Ti4O12 ceramics with W/Ni modifications J. Alloys Compd. 590 210–4

[29] Madolapapa S, Kundu S, Bhimireddi R and Varma K B R 2016 Improved electrical characteristics of Pr-doped BiFeO3 ceramicsprepared by sol–gel route Mater. Res. Express 3 065009

[30] Yan H, Li C, Zhou J, Zhu W, He L and Song Y 2000 A-Site (MO4) Substitution Effects on the Structures and Properties of CaBi5Ti4O15 Ceramics Jpn. J. Appl. Phys. 39 6339–42

[31] Moore C, Casciano L, Tartaj J and Duran P 2003 Electrical behaviour of Fe3Bi4Ti3O12 and its solid solutions with CaBi5Ti4O15 Ceram. Int. 29 91–7

[32] Zeng J, Li Y, Yang Q and Yin Q 2005 Ferroelectric and piezoelectric properties of vanadium-doped CaBi5Ti4O15 ceramics Mater. Sci. Eng. B 117 241–5

[33] Zhang S, Kim N, Shrou T R, Kimura M and Ando A 2006 High temperature properties of manganese modified CaBi5Ti4O15 ferroelectric ceramics Solid State Commun. 140 154–8

[34] Yan H, Li C, Zhou J, Zhu W, He L, Song Y and Yu Y 2001 Effects of A-Site (NaCe) Substitution with Na-Deficiency on Structures and Properties of CaBi5Ti4O15-Based High-Curie-Temperature Ceramics Jpn. J. Appl. Phys. 40 6501–5

[35] Xiao P, Guo Y, Tian M, Zheng Q, Jiang N, Wu X, Xia Z and Lin D 2013 Improved ferroelectric/piezoelectric properties and bright green/UC red emission in (Li,Ho) co-doped CaBi5Ti4O15 multifunctional ceramics with excellent temperature stability and superior water-resistance performance Dalton Trans. 44 17366–80

[36] Xin D, Chen Q, Wu J, Bao S, Zhang W, Xiao D and Zhu J 2016 Crystal structure, piezoelectric and dielectric properties of (Li,Ce)++, Nb5+ and Mn4+ co-doped CaBi5Ti4O15 high-temperature ceramics J. Electron. Mater. 45 5397–602

[37] Cai K, Huang C and Guo D 2017 Significantly enhanced piezoelectricity in low-temperature sintered Aurivillius-type ceramics with ultrahigh Curie temperature of 800 °C J. Phys. D: Appl. Phys. 50 155302

[38] Cho S Y, Choi G P and Bu S D 2017 Comparison between the electrical properties of bismuth layer-structured and intergrowth bismuth layer-structured ferroelectric ceramics J. Korean Phys. Soc. 70 954–8

[39] Hussain A, Qaser M A, Zhang J, Zhang S, Wang Y, Yang Y, Liu Z and Yuan G 2017 High-temperature piezoelectric properties of 0–3 type CaBi5Ti4O15–ωwt%BiFeO3 composites J. Am. Ceram. Soc. 100 3522–9

[40] Yan H, Inam F, Viola G, Ning H, Zhang H, Jiang Q, Zeng T, Gao Z and Reece M 2011 The contribution of electrical conductivity, dielectric permittivity and domain switching in ferroelectric hysteresis loops J. Adv. Dielec. 81 107–18

[41] Liu G, Wang D, Wu C, Wu J and Chen Q 2019 A realization of excellent piezoelectricity and good thermal stability in CaBi5Nb2O9:C Pseudo phase boundary J. Am. Ceram. Soc. 102 1794–804

[42] Yan H, Zhang H, Ubic R, Reece M J, Liu J, Shen Z and Zhang Z 2005 A lead-free high-curie-point ferroelectric ceramic, CaBi5Nb2O9 Adv. Mater. 17 1261–5