Search for pair production of a new quark that decays to a Z boson and a bottom quark with the ATLAS detector

The ATLAS Collaboration

Abstract

A search is reported for the pair production of a new quark, b', with at least one b' decaying to a Z boson and a bottom quark. The data, corresponding to 2.0 fb$^{-1}$ of integrated luminosity, were collected from pp collisions at $\sqrt{s} = 7$ TeV with the ATLAS detector at the CERN Large Hadron Collider. Using events with a b-tagged jet and a Z boson reconstructed from opposite-charge electrons, the mass distribution of large transverse momentum b' candidates is tested for an enhancement. No evidence for a b' signal is detected in the observed mass distribution, resulting in the exclusion at 95% confidence level of b' quarks with masses $m_{b'} < 400$ GeV that decay entirely via $b' \rightarrow Z + b$. In the case of a vector-like singlet b' mixing solely with the third Standard Model generation, masses $m_{b'} < 358$ GeV are excluded.
Search for pair production of a new quark that decays to a Z boson and a bottom quark with the ATLAS detector

The ATLAS Collaboration

A search is reported for the pair production of a new quark, b', with at least one b' decaying to a Z boson and a bottom quark. The data, corresponding to 2.0 fb$^{-1}$ of integrated luminosity, were collected from pp collisions at $\sqrt{s} = 7$ TeV with the ATLAS detector at the CERN Large Hadron Collider. Using events with a b-tagged jet and a Z boson reconstructed from opposite-charge electrons, the mass distribution of large transverse momentum b' candidates is tested for an enhancement. No evidence for a b' signal is detected in the observed mass distribution, resulting in the exclusion at 95% confidence level of b' quarks with masses $m_{b'} < 400$ GeV that decay entirely via $b' \rightarrow Z + b$. In the case of a vector-like singlet b' mixing solely with the third Standard Model generation, masses $m_{b'} < 358$ GeV are excluded.

PACS numbers: 14.65.Fy, 14.65.Jk, 12.60.-i

The matter sector of the Standard Model (SM) consists of three generations of chiral fermions, with each generation containing a quark doublet and a lepton doublet. A natural question is whether quarks and leptons exist beyond the third generation [1]. In this Letter we present a search for the pair production of a new quark with electric charge $-1/3$, denoted b', using data collected by the ATLAS experiment at the Large Hadron Collider. New quarks appear in a variety of models that address shortcomings of the SM [1–5]. In addition to signaling a richer matter content at high energy, their existence would impact lower-scale physics, such as altering Higgs boson (H) phenomenology [6], and providing new sources of CP violation potentially sufficient to generate the baryon asymmetry in the universe [7].

Several collaborations have previously searched for a chiral b'. A search by D0 [8] for the decay $b' \rightarrow \gamma + b$ excludes b' quarks with masses below $m_Z + m_b = 96$ GeV. CDF [9] searches for the decay $b' \rightarrow Z + b$ exclude masses below $m_W + m_b = 256$ GeV. These limits apply to prompt b' decays. CDF and D0 have also searched for non-prompt $b' \rightarrow Z + b$ decays [10], excluding, for example, b' masses below 180 GeV for $c|t| = 20$ cm [11]. More recently, CDF [12], CMS [13], and ATLAS [14] have searched for the prompt charged-current decay $b' \rightarrow W + t$. This decay mode is dominant for a chiral b' with mass in excess of $m_W + m_t$, as the neutral-current modes only occur through loop diagrams [11]. The ATLAS result excludes chiral b' quarks with masses below 480 GeV.

Extensions to the SM often propose new quarks transforming as vector-like representations of the electroweak gauge groups [2–5]. The decay of a vector-like b' to a Z boson and a bottom quark is a tree-level process with a branching ratio comparable to that of the decay $b' \rightarrow W + t$. In particular, the branching ratios $Wt : Zb : Hb$ approach the proportion $2 : 1 : 1$ in the limit of large b' mass as a consequence of the Goldstone boson equivalence theorem [2–5]. Furthermore, if a signal were observed in the $WtWt$ final state, a search for a resonant $Z + b$ signal would aid in establishing the charge of the new quark. In light of these observations, this search explores the $Z + b$-jet final state for the presence of a b' quark.

The ATLAS detector [15] consists of particle-tracking detectors, electromagnetic and hadronic calorimeters, and a muon spectrometer. At small radii transverse to the beamline, the inner tracking system utilizes fine-granularity pixel and microstrip detectors designed to provide precision track impact parameter and secondary vertex measurements. These silicon-based detectors cover the pseudorapidity range $|\eta| < 2.5$. A gas-filled straw tube tracker complements the silicon tracker at larger radii. The tracking detectors are immersed in a 2 T magnetic field produced by a thin superconducting solenoid located in the same cryostat as the barrel electromagnetic (EM) calorimeter. The EM calorimeters employ lead absorbers and utilize liquid argon as the active medium. The barrel EM calorimeter covers $|\eta| < 1.5$, and the end-cap EM calorimeters $1.4 < |\eta| < 3.2$. Hadronic calorimetry in the region $|\eta| < 1.7$ is achieved using steel absorbers and scintillating tiles as the active medium. Liquid argon calorimetry with copper absorbers is employed in the hadronic end-cap calorimeters, which cover the region $1.5 < |\eta| < 3.2$.

The search for the decay $b' \rightarrow Z + b$ is performed in the final state with the Z boson decaying to an electron-positron pair (e^+e^-) using a dataset collected in 2011 corresponding to an integrated luminosity of 1.98 ± 0.07 fb$^{-1}$ [17]. The selected events were recorded with a single-electron trigger that is over 95% efficient for reconstructed electrons [18] with momentum transverse to the beam direction, p_T, exceeding 25 GeV. At least two opposite-charge electron candidates are required, each satisfying $p_T > 25$ GeV and reconstructed in the pseudorapidity region $|\eta| < 2.47$, excluding the barrel to end-cap calorimeter transition region, $1.37 < |\eta| < 1.52$. In addition, the electron candidates satisfy medium quality requirements [18] on the reconstructed track and properties of the electromagnetic shower. The two opposite-charge electron candidates yielding an invariant mass, m_{ee}, that satisfies $|m_{ee} - m_Z| < 15$ GeV and is closest to the Z boson mass define the Z candidate. Approximately 475,000 events pass the $Z \rightarrow e^+e^-$ selection criteria.

Jets are reconstructed using the anti-k_t clustering algorithm [19] with a distance parameter of 0.4. The inputs to the algorithm are three-dimensional clusters formed from calorimeter energy deposits. Jets are calibrated us-
ing p_T- and η-dependent factors determined from simulation and validated with data [20]. Jets are rejected if they do not satisfy quality criteria to suppress noise and non-collision backgrounds, as are jets whose axis is within $\Delta R = \sqrt{\Delta\eta^2 + \Delta\phi^2} = 0.5$ of a reconstructed electron associated with the Z candidate. A requirement is made to ensure at least 75% of the total p_T of all tracks associated with the jet be attributed to tracks also associated with the selected pp collision vertex [21]. Lastly, jets in this analysis are restricted to the region covered by the tracking detectors, $|\eta| < 2.5$, and satisfy $p_T > 25$ GeV. Approximately 81,000 events pass the $Z \rightarrow e^+e^-$ candidate selection and contain at least one selected jet.

The SM production of Z bosons in association with jets accounts for most events passing the $Z+1$ jet selection. Two leading-order Monte Carlo (MC) generators, ALPGEN [22] and SHERPA [23], are used to assess the background arising from this process, with ALPGEN providing the baseline prediction. A description of the generation of these samples, in particular in regard to differences between ALPGEN and SHERPA in the modeling of Z boson production in association with b-jets, is detailed in Ref. [24]. The predictions of both are normalized such that the inclusive Z boson cross section is equal to a next-to-next-to-leading-order (NNLO) calculation [25]. All MC samples fully simulate the ATLAS detector [26] and are reconstructed with the same algorithms as those applied to data. The $Z+$bottom background category comprises simulated $Z+$jet(s) events in which a generated $p_T > 5$ GeV bottom quark is matched to a selected reconstructed jet. Similarly, events with a jet matched to a charm quark, but not a bottom quark, constitute the $Z+$charm category. In the $Z+$light category, none of the selected jets are matched to a bottom or charm quark.

Additional SM backgrounds modeled with MC events include top quark pair production ($t\bar{t}$), single top production, heavy vector boson pair (diboson) production, $Z(\rightarrow \tau\tau)+$jet(s) events, and $W(\rightarrow e\nu)+$jet(s) events. Processes with a top quark are simulated with MC@NLO [27,28]. The $t\bar{t}$ cross section used is the HATHOR [29] approximate NNLO value, while MC@NLO [28] values are used for the single top processes. HERWIG [30] models the contribution of diboson events, with the cross sections set by the MCFM [31] NLO predictions. The remaining $W/Z+$jet(s) backgrounds are simulated with ALPGEN, and normalized using single vector boson production NNLO cross sections [25]. The multi-jet background is estimated using a data sample with both electron candidates passing loose criteria [18] but failing the slightly tighter medium criteria. This sample is normalized to the difference in the inclusive Z sample between the data and all other backgrounds in the region $50 < m_{ee} < 65$ GeV. The small single top, diboson, $Z \rightarrow \tau\tau$, $W \rightarrow e\nu$, and multi-jet contributions are combined and denoted Other SM.

Figure 1 presents the e^+e^- invariant mass distribution for events passing the $Z+1$ jet selection, before imposing the $|m_{ee} - m_Z| < 15$ GeV requirement. The predicted contributions of the SM background sources are shown stacked. The lower panel shows the ratio of the data to the SM prediction, and the solid yellow band denotes the systematic uncertainty on the SM prediction.

![Figure 1: e^+e^- invariant mass distribution for events passing the $Z+1$ jet selection, before imposing the $|m_{ee} - m_Z| < 15$ GeV requirement.](image1)

FIG. 1: e^+e^- invariant mass distribution for events passing the $Z+1$ jet selection, before imposing the $|m_{ee} - m_Z| < 15$ GeV requirement. The predicted contributions of the SM background sources are shown stacked. The lower panel shows the ratio of the data to the SM prediction, and the solid yellow band denotes the systematic uncertainty on the SM prediction.

![Figure 2: e^+e^- invariant mass distribution for events passing the $Z+1$ jet selection, before imposing the $|m_{ee} - m_Z| < 15$ GeV requirement.](image2)

FIG. 2: e^+e^- invariant mass distribution for events passing the $Z+1$ jet selection, before imposing the $|m_{ee} - m_Z| < 15$ GeV requirement. The predicted contributions of the SM background sources are shown stacked. The lower panel shows the ratio of the data to the SM prediction, and the solid yellow band denotes the systematic uncertainty on the SM prediction.
longitudinal and transverse track impact parameters, while the second utilizes properties of a reconstructed secondary vertex. In a simulated $t\bar{t}$ sample, the requirement on the discriminant defining a b-jet is 60% efficient for jets with a b-hadron, and yields a light flavor jet rejection rate of 300 \cite{32}.

A total of 3,466 events satisfy the $Z^+ \geq 1$ b-jet selection. Figure \ref{fig:1} presents the e^+e^- invariant mass distribution in this sample and the SM prediction, before imposing the $|m_{ee} - m_Z| < 15$ GeV requirement. The accurate modeling of the mass distribution for values beyond the Z boson mass supports the prediction of $t\bar{t}$ and Other SM background events. Within the window around the Z boson mass, ALPGEN and SHERPA agree to within 1% and 7% in the prediction of the number of Z-light and Z-charm events, respectively. However, ALPGEN and SHERPA disagree in the prediction of the Z-bottom contribution, a fact previously reported in an ATLAS cross section measurement of Z bosons produced in association with b-jets using a smaller dataset \cite{24}. The ALPGEN and SHERPA Z-bottom predictions are scaled to account for the difference between data and all other predicted backgrounds in a subsample of the $Z^+ \geq 1$ b-jet sample that contains events failing the requirement discussed below on the transverse momentum of the b' candidate. The scale factors are consistent with those measured in Ref. \cite{24}, and the invariant mass distribution of secondary vertex tracks is used to confirm the validity of the resulting prediction for the flavor composition in the $Z^+ \geq 1$ b-jet sample \cite{24}.

Simulated $b\bar{b}'$ events are generated for a range of b' masses using MADGRAPH \cite{33} with the G4LHC extension \cite{6}. PYTHIA \cite{34} performs fragmentation and hadronization of the parton-level events. The signal cross sections are obtained with HATHOR \cite{29}, and vary from 80 pb to 30 fb over the range $m_{b'} = 200$ - 700 GeV. In each sample, one b' decays in the mode $b' \to Z + b$, with the Z boson decaying via $Z \to e^+e^-$. Two separate samples are produced for each mass value, with the other b' decaying either via $b' \to Z + b$ or $b' \to W + t$, and with all decay modes of the Z and W bosons allowed. The factor $\beta = 2 \times BR(b' \to Zb) - BR(b' \to Zb)^2$ characterizes the fraction of signal events with at least one $b' \to Z + b$ decay as a function of the branching ratio. The case $\beta = 1$ is equivalent to previous measurements \cite{9} which assumed $BR(b' \to Zb) = 1$. The case of a vector-like singlet (VLS) mixing solely with the third SM generation is also considered by computing β as a function of b' mass \cite{5}. Over the range $m_{b'} = 200$ - 700 GeV, β varies from 0.9 to 0.5. A SM Higgs of mass 125 GeV is assumed.

The b' candidate is formed from the e^+e^- pair and the highest p_T b-jet. The mass of the b' candidate, $m(Bb)$, is the discriminant distinguishing the background-only and signal-plus-background hypotheses. In b' pair production, the new quarks are typically produced with large transverse momentum, $p_T(Zb)$. Therefore, a $p_T(Zb) > 150$ GeV requirement is applied to increase the signal sensitivity. Figure \ref{fig:2} presents the $p_T(Zb)$ distribution for data and the predicted SM backgrounds. Additionally, the signal distribution is overlaid for a b' mass of 350 GeV, assuming the VLS scenario value $\beta = 0.63$, and for a mass of 450 GeV, assuming $\beta = 1$.

TABLE I: Number of predicted and observed events at three stages in the event selection. The contributions from SM backgrounds are shown individually, as well as combined into the total SM prediction. The uncertainties on the predicted number of events combine all sources of uncertainty. The number of expected signal events is also listed for two representative b' masses in the case where $BR(b' \to Zb) = 1$.

Source	$Z^+ \geq 1$ jet	$Z^+ \geq 1$ b-jet	$p_T(Zb) > 150$ GeV
Z+light	74400 \pm 7300	590 \pm 140	19 \pm 7
Z+charm	5340 \pm 520	870 \pm 210	18 \pm 7
Z+bottom	2540 \pm 250	1710 \pm 270	52 \pm 17
$t\bar{t}$	320 \pm 40	220 \pm 40	20 \pm 4
Other SM	1010 \pm 280	70 \pm 20	1.6 \pm 0.4
Total SM	83600 \pm 8100	3460 \pm 580	110 \pm 30
Data	80519	3466	100
$m_{b'} = 350$ GeV	110 \pm 12	93 \pm 11	55 \pm 7
$m_{b'} = 450$ GeV	27 \pm 3	20 \pm 2	14 \pm 2

FIG. 3: Transverse momentum distribution of the b' candidate in events passing the $Z^+ \geq 1$ b-jet selection. The predicted contributions of the SM background sources are stacked, while the distributions for the two signal scenarios described in the text are overlaid.
The fraction of signal events passing all requirements varies from 7% to 43% between $m_{Y} = 200 - 700$ GeV, assuming $\beta = 1$, with the efficiency to pass the minimum $p_{T}(Zb)$ requirement contributing most to the degree of variation. The requirement $p_{T}(Zb) > 150$ GeV was determined by assessing the signal sensitivity for different minimum $p_{T}(Zb)$ values, as quantified by the expected cross section exclusion limit. The limit is computed using a binned Poisson likelihood ratio test \cite{35} of the $m(Zb)$ distribution for different m_{Y} hypotheses. Pseudo-experiments are generated according to the background-only and signal-plus-background hypotheses, and incorporate the impact of systematic uncertainties. The cross section limit is evaluated using the CL$_{s}$ modified frequentist approach \cite{35}.

The impact of each systematic uncertainty on the normalization and shape of the $m(Zb)$ distribution is assessed for each SM background source and the expected b' signal. The fractional uncertainty on the total number of background events passing the $p_{T}(Zb) > 150$ GeV requirement is 27%. Significant contributions arise from uncertainties in the $p_{T}(Zb)$ distribution shape in $Z + \text{jet(s)}$ events. Such sources of uncertainty include the renormalization and factorization scale choice (14%, evaluated using MCFM \cite{33}, shape differences observed between ALPGEN and SHERPA (12%), and variations in the degree of initial and final state QCD radiation (9%). The uncertainty in the efficiency of the b-tagging requirement contributes an additional 12%. Other sources of uncertainty contributing at the level of 6% or less include the jet energy scale \cite{20}, parton distribution functions (PDF), MC sample sizes, electron identification efficiency, Z boson cross section, luminosity, b-jet mis-tag rate, $t\bar{t}$ cross section, jet energy resolution, trigger efficiency, and the Other SM event yield. Most of the above uncertainties, with the notable exception of the $p_{T}(Zb)$ modeling uncertainties in $Z + \text{jet(s)}$ events, contribute to the total uncertainty on the signal normalization, which varies between 11% and 14% depending on the b' mass.

Figure 4 presents the b' candidate mass distribution after requiring $p_{T}(Zb) > 150$ GeV and the predicted SM background. The distributions for the signal scenarios depicted in Fig. 3 are shown overlaid. The data are in agreement with the SM prediction over the full range of $m(Zb)$ values. In the absence of evidence of an enhancement, 95% confidence level (C.L.) cross section exclusion limits are derived. Figure 5 presents the expected and observed 95% C.L. cross section limits as a function of m_{Y}, computed under the assumption $\beta = 1$. The expected cross section limit was checked to be stable to within 15% over the full mass range considered using the signal samples in which one b' quark decays via $b'\rightarrow Z + b$ and the other decays via $b'\rightarrow W + t$. The approximate NNLO $b'b'$ cross section prediction is shown multiplied by $\beta = 1$, as well as by the VLS β value, with the shaded region representing the total uncertainty arising from PDF uncertainties and the factorization and renormalization scale choice. From the intersection of the observed cross section limit and the theoretical prediction, b' quarks with masses $m_{Y} < 400$ GeV decaying entirely via $b'\rightarrow Z + b$ are excluded at 95% C.L., representing a significant improvement with respect to the previous best limit of 268 GeV \cite{9}. In the case of a vector-like singlet b' mixing solely with the third SM generation, masses $m_{Y} < 358$ GeV are excluded.

In conclusion, a search with 2.0 fb$^{-1}$ of ATLAS data is presented for b' quark pair production, with at least one b' decaying to a Z boson and a bottom quark. This decay mode is particularly relevant in the context of vector-like quarks and is an essential complement to searches in the mode with both b' decaying to a W boson and a top quark. No evidence for a b' is observed in the $Z + b$-jet final state, and new limits are

![FIG. 4: Mass distribution of the b' candidate in events passing the $Z + \geq 1$ b-jet selection and satisfying $p_{T}(Zb) > 150$ GeV. The highest mass bin also includes the data and prediction for $m(Zb) > 1$ TeV.](image)

![FIG. 5: The expected and observed 95% C.L. cross section limits as a function of b' mass. The signal cross section is shown with uncertainties arising from PDFs and renormalization and factorization scale choice. The prediction is also multiplied by the β factors described in the text.](image)
derived on the mass of a b' quark decaying via $b' \to Z + b$.

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET and ERC, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERSYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

[1] P.H. Frampton, P.Q. Hung, and M. Sher, Phys. Rep. 330, 263 (2000).
[2] S.P. Martin, Phys. Rev. D 81, 035004 (2010).
[3] D. Choudhury, T.M.P. Tait, C.E.M. Wagner, Phys. Rev. D 65, 053002 (2002); K. Kumar et al., JHEP 08, 052 (2010).
[4] S. Sultansoy and G. Unel, Phys. Lett. B 609, 39 (2008).
[5] J.A. Aguilar-Saavedra, JHEP 11, 030 (2009).
[6] G.D. Kribs et al., Phys. Rev. D 76, 075016 (2007).
[7] W.-S. Hou, Chin. J. Phys. 47, 134 (2009).
[8] D0 Collaboration, Phys. Rev. Lett. 78, 3818 (1997).
[9] CDF Collaboration, Phys. Rev. D 76, 072006 (2007); CDF Collaboration, Phys. Rev. Lett. 84, 835 (2000).
[10] P.H. Frampton and P.Q. Hung, Phys. Rev. D 58, 057704 (1998).
[11] D0 Collaboration, Phys. Rev. Lett. 101, 111802 (2008).
[12] CDF Collaboration, Phys. Rev. Lett. 106, 141803 (2011); CDF Collaboration, Phys. Rev. Lett. 104, 091801 (2010).
[13] CMS Collaboration, Phys. Lett. B 701, 204 (2011).
[14] ATLAS Collaboration, arXiv:1202.6540 [hep-ex], submitted to Phys. Rev. Lett; ATLAS Collaboration, JHEP 10, 107 (2011).
[15] ATLAS Collaboration, JINST 3, S08003 (2008).
[16] ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the center of the detector as (x, y, z); the z-axis coincides with the axis of the beam pipe. The x-axis points from the IP to the center of the LHC ring, and the y-axis points upward. Cylindrical coordinates (r, ϕ) used in the transverse plane, ϕ being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the polar angle, θ, as $\eta = -\ln \tan(\theta/2)$.
[17] ATLAS Collaboration, Eur. Phys. J. C 71, 1630 (2011); ATLAS Collaboration, ATLAS-CONF-2011-116. [http://cdsweb.cern.ch/record/1376384] (2011).
[18] ATLAS Collaboration, Eur. Phys. J. C 72, 1909 (2012).
[19] M. Cacciari, G. Salam, G. Soyez, JHEP 04, 063 (2008); M. Cacciari and G. Salam, Phys. Lett. B 641, 57 (2006).
[20] ATLAS Collaboration, arXiv:1111.6426 [hep-ex], submitted to Eur. Phys. J. C.
[21] ATLAS Collaboration, Phys. Rev. D 85, 092002 (2012).
[22] M. Mangano et al., JHEP 07, 001 (2003).
[23] T. Gleisberg et al., JHEP 02, 007 (2009).
[24] ATLAS Collaboration, Phys. Lett. B 706, 295 (2012).
[25] C. Anastasiou et al., Phys. Rev. D 69, 094008 (2004).
[26] ATLAS Collaboration, Eur. Phys. J. C 70, 823 (2010).
[27] S. Frixione and B. Webber, JHEP 06, 029 (2002).
[28] S. Frixione et al., JHEP 03, 092 (2006); S. Frixione et al., JHEP 07, 029 (2008).
[29] M. Aliev et al., Comput. Phys. Commun. 182, 1034 (2011).
[30] G. Corcella et al., JHEP 01, 010 (2001).
[31] J.M. Campbell and R.K. Ellis, Phys. Rev. D 60, 113006 (1999).
[32] ATLAS Collaboration, ATLAS-CONF-2011-102. [https://cdsweb.cern.ch/record/1369219].
[33] J. Alwall et al., JHEP 09, 028 (2007).
[34] T. Sjostrand et al., JHEP 05, 026 (2006).
[35] T. Junk, Nucl. Instrum. Methods A 434, 435 (1999); W. Fisher, FERMILAB-TM-2386-E (2006).
[36] J. M. Campbell et al., Phys. Rev. D 69, 074021 (2004).
A. A. Carter, J. R. Carter, J. C. Carvalho, D. Casadei, M. P. Casado, M. Cascella, L. Cavasinni, F. Ceradini, A. C. Cerqueira, M. Cerri, C. C. Chen, H. C. Cheng, R. Cherkaoui El Moursli, D. Chromek-Burckhart, R. K. Daya-Ishmukhametova, J. G. Cogan, A. S. Chisholm, K. Cranmer, R. Davidson, A. Di Girolamo, R. Di Sipio, M. Delmastro, A. Chafaq, G. A. Chelkov, J. Chudoba, E. Eisenhandler, X. Espinal Curull, J. E. Derkaoui, M. D’Onofrio, M. Cooke, J. T. Childers, D. Ferrere, W. Fiascaris, P. J. Clark, G. P. Coadou, T. Dai, Y. Coadou, A. S. Cerqueira, M. P. Casado, M. P. Casado, M. P. Casado, M. P. Casado.
Z. Zajacova29, L. Zanello13a,13b, A. Zaytsev108, C. Zeitnitz176, M. Zeller177, M. Zeman126, A. Zemla38, C. Zendler20, O. Zenin129, T. Ženiš145a, Z. Zinonos123a,123b, S. Zenz14, D. Zerwas16; G. Zevi della Porta57, Z. Zhan32d, D. Zhang32b,ag, H. Zhang89, J. Zhang3, X. Zhang32d, Z. Zhang116, L. Zhao109, T. Zhao139, Z. Zhao32b, A. Zhemchugov65, S. Zheng12a, J. Zhong19, B. Zhou88, N. Zhou164, Y. Zhou32c, C. G. Zhu32d, H. Zhu41, J. Zhu88, Y. Zhu32b, X. Zhuang99, V. Zhuravlov100, D. Ziemińska61, R. Zimmermann20, S. Zimmermann20, S. Zimmermann48, M. Ziolkowski142, R. Zitoun8, L. Živković34, V. V. Zmouchko29a,29b, G. Zobernig174, A. Zoccoli19a,19b, M. zur Nedden15, V. Zutshi107, L. Zwaliński20.

1 University at Albany, Albany NY, United States of America
2 Department of Physics, University of Alberta, Edmonton AB, Canada
3 (a) Department of Physics, Ankara University, Ankara; (b) Department of Physics, Dumlupinar University, Kutahya;
4 (c) Department of Physics, Gazi University, Ankara; (d) Division of Physics, TOBB University of Economics and Technology, Ankara; (e) Turkish Atomic Energy Authority, Ankara, Turkey
5 LAPP, CNRS/IN2P3 and Université de Savoie, Annecy-le-Vieux, France
6 High Energy Physics Division, Argonne National Laboratory, Argonne IL, United States of America
7 Department of Physics, University of Arizona, Tucson AZ, United States of America
8 Department of Physics, The University of Texas at Arlington, Arlington TX, United States of America
9 Physics Department, University of Athens, Athens, Greece
10 Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
11 Institut de Física d’Altes Energies and Departament de Física de la Universitat Autònoma de Barcelona and ICREA, Barcelona, Spain
12 (a) Institute of Physics, University of Belgrade, Belgrade; (b) Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
13 Department for Physics and Technology, University of Bergen, Bergen, Norway
14 Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley CA, United States of America
15 Department of Physics, Humboldt University, Berlin, Germany
16 Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
17 School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
18 (a) Department of Physics, Bogazici University, Istanbul; (b) Division of Physics, Dogus University, Istanbul; (c) Department of Physics Engineering, Gaziantep University, Gaziantep; (d) Department of Physics, Istanbul Technical University, Istanbul, Turkey
19 (a) INFN Sezione di Bologna; (b) Dipartimento di Fisica, Università di Bologna, Bologna, Italy
20 Physikalisches Institut, Universität Bonn, Bonn, Germany
21 Department of Physics, Boston University, Boston MA, United States of America
22 Department of Physics, Brandeis University, Waltham MA, United States of America
23 (a) Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro; (b) Federal University of Juiz de Fora (UFJF), Juiz de Fora; (c) Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei; (d) Instituto de Física, Universidade de Sao Paulo, Sao Paulo, Brazil
24 Physics Department, Brookhaven National Laboratory, Upton NY, United States of America
25 (a) National Institute of Physics and Nuclear Engineering, Bucharest; (b) University Politehnica Bucharest, Bucharest; (c) West University in Timisoara, Timisoara, Romania
26 Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
27 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
28 Department of Physics, Carleton University, Ottawa ON, Canada
29 CERN, Geneva, Switzerland
30 Enrico Fermi Institute, University of Chicago, Chicago IL, United States of America
31 (a) Departamento de Física, Pontificia Universidad Católica de Chile, Santiago; (b) Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile
32 (a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b) Department of Modern Physics, University of Science and Technology of China, Anhui; (c) Department of Physics, Nanjing University, Jiangsu; (d) School of Physics, Shandong University, Shandong, China
33 Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Aubiere Cedex, France
34 Nevis Laboratory, Columbia University, Irvington NY, United States of America
Niels Bohr Institute, University of Copenhagen, København, Denmark
INFN Gruppo Collegato di Cosenza; (b) Dipartimento di Fisica, Università della Calabria, Arcavata di Rende, Italy
AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland
The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
Physics Department, Southern Methodist University, Dallas TX, United States of America
Physics Department, University of Texas at Dallas, Richardson TX, United States of America
DESY, Hamburg and Zeuthen, Germany
Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Germany
Department of Physics, Duke University, Durham NC, United States of America
SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
Fachhochschule Wiener Neustadt, Johannes Gutenbergstrasse 3 2700 Wiener Neustadt, Austria
INFN Laboratori Nazionali di Frascati, Frascati, Italy
Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg i.Br., Germany
Section de Physique, Université de Genève, Geneva, Switzerland
INFN Sezione di Genova; (b) Dipartimento di Fisica, Università di Genova, Genova, Italy
E.Andronikashvili Institute of Physics, Tbilisi State University, Tbilisi; (b) High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia
II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany
SUPA - School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany
Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier and CNRS/IN2P3 and Institut National Polytechnique de Grenoble, Grenoble, France
Department of Physics, Hampton University, Hampton VA, United States of America
Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge MA, United States of America
Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (b) Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (c) ZITI Institut für technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany
Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan
Department of Physics, Indiana University, Bloomington IN, United States of America
Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria
University of Iowa, Iowa City IA, United States of America
Department of Physics and Astronomy, Iowa State University, Ames IA, United States of America
Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia
KEK, High Energy Accelerator Research Organization, Tsukuba, Japan
Graduate School of Science, Kobe University, Kobe, Japan
Faculty of Science, Kyoto University, Kyoto, Japan
Kyoto University of Education, Kyoto, Japan
Department of Physics, Kyushu University, Fukuoka, Japan
Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
Physics Department, Lancaster University, Lancaster, United Kingdom
Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
Department of Physics, Jožef Stefan Institute and University of Ljubljana, Ljubljana, Slovenia
School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom
Department of Physics, Royal Holloway University of London, Surrey, United Kingdom
Department of Physics and Astronomy, University College London, London, United Kingdom
Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France
Fysiska institutionen, Lunds universitet, Lund, Sweden
Departamento de Fisica Teorica C-15, Universidad Autonoma de Madrid, Madrid, Spain
Institut für Physik, Universität Mainz, Mainz, Germany
School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
Department of Physics, University of Massachusetts, Amherst MA, United States of America
Atomique), Gif-sur-Yvette, France

138 Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz CA, United States of America

139 Department of Physics, University of Washington, Seattle WA, United States of America

140 Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom

141 Department of Physics, Shinshu University, Nagano, Japan

142 Fachbereich Physik, Universität Siegen, Siegen, Germany

143 Department of Physics, Simon Fraser University, Burnaby BC, Canada

144 SLAC National Accelerator Laboratory, Stanford CA, United States of America

145 (a) Faculty of Mathematics, Physics & Informatics, Comenius University, Bratislava; (b) Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic

146 (a) Department of Physics, University of Johannesburg, Johannesburg; (b) School of Physics, University of the Witwatersrand, Johannesburg, South Africa

147 (a) Department of Physics, Stockholm University; (b) The Oskar Klein Centre, Stockholm, Sweden

148 Physics Department, Royal Institute of Technology, Stockholm, Sweden

149 Departments of Physics & Astronomy and Chemistry, Stony Brook University, Stony Brook NY, United States of America

150 Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom

151 School of Physics, University of Sydney, Sydney, Australia

152 Institute of Physics, Academia Sinica, Taipei, Taiwan

153 Department of Physics, Technion: Israel Inst. of Technology, Haifa, Israel

154 Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel

155 Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece

156 International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan

157 Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan

158 Department of Physics, Tokyo Institute of Technology, Tokyo, Japan

159 Department of Physics, University of Toronto, Toronto ON, Canada

160 (a) TRIUMF, Vancouver BC; (b) Department of Physics and Astronomy, York University, Toronto ON, Canada

161 Institute of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan

162 Science and Technology Center, Tufts University, Medford MA, United States of America

163 Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia

164 Department of Physics and Astronomy, University of California Irvine, Irvine CA, United States of America

165 (a) INFN Gruppo Collegato di Udine; (b) ICTP, Trieste; (c) Dipartimento di Chimica, Fisica e Ambiente, Università di Udine, Udine, Italy

166 Department of Physics, University of Illinois, Urbana IL, United States of America

167 Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden

168 Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica, Molecular y Nuclear and Departamento de Ingeniería Electrónica and Instituto de Microelectrónica de Barcelona (IMB-CNM), University of Valencia and CSIC, Valencia, Spain

169 Department of Physics, University of British Columbia, Vancouver BC, Canada

170 Department of Physics and Astronomy, University of Victoria, Victoria BC, Canada

171 Department of Physics, University of Warwick, Coventry, United Kingdom

172 Waseda University, Tokyo, Japan

173 Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel

174 Department of Physics, University of Wisconsin, Madison WI, United States of America

175 Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany

176 Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany

177 Department of Physics, Yale University, New Haven CT, United States of America

178 Yerevan Physics Institute, Yerevan, Armenia

179 Domaine scientifique de la Doua, Centre de Calcul CNRS/IN2P3, Villeurbanne Cedex, France

a Also at Laboratorio de Instrumentacão e Física Experimental de Partículas - LIP, Lisboa, Portugal

b Also at Faculdade de Ciencias and CFNUL, Universidade de Lisboa, Lisboa, Portugal

c Also at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom

d Also at TRIUMF, Vancouver BC, Canada

e Also at Department of Physics, California State University, Fresno CA, United States of America

f Also at Novosibirsk State University, Novosibirsk, Russia

g Also at Fermilab, Batavia IL, United States of America

h Also at Department of Physics, University of Coimbra, Coimbra, Portugal
Also at Università di Napoli Parthenope, Napoli, Italy
Also at Institute of Particle Physics (IPP), Canada
Also at Department of Physics, Middle East Technical University, Ankara, Turkey
Also at Louisiana Tech University, Ruston LA, United States of America
Also at Department of Physics and Astronomy, University College London, London, United Kingdom
Also at Group of Particle Physics, University of Montreal, Montreal QC, Canada
Also at Department of Physics, University of Cape Town, Cape Town, South Africa
Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany
Also at Manhattan College, New York NY, United States of America
Also at School of Physics, Shandong University, Shandong, China
Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
Also at School of Physics and Engineering, Sun Yat-sen University, Guanzhou, China
Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan
Also at DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat a l’Energie Atomique), Gif-sur-Yvette, France
Also at Section de Physique, Université de Genève, Geneva, Switzerland
Also at Departamento de Física, Universidade de Minho, Braga, Portugal
Also at Department of Physics and Astronomy, University of South Carolina, Columbia SC, United States of America
Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary
Also at California Institute of Technology, Pasadena CA, United States of America
Also at Institute of Physics, Jagiellonian University, Krakow, Poland
Also at LAL, Univ. Paris-Sud and CNRS/IN2P3, Orsay, France
Also at Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
Also at Department of Physics, Oxford University, Oxford, United Kingdom
Also at Institute of Physics, Academia Sinica, Taipei, Taiwan
Also at Department of Physics, The University of Michigan, Ann Arbor MI, United States of America
* Deceased