Metalens for polarization conversion and focusing of laser light

S S Stafeev¹,², A G Nalimov¹,² and V V Kotlyar¹,²

¹Samara National Research University, Moskovskoe Shosse 34A, Samara, Russia, 443086
²Image Processing Systems Institute of RAS - Branch of the FSRC "Crystallography and Photonics“ RAS, Molodogvardejskaya street 151, Samara, Russia, 443001

e-mail: sergey.stafeev@gmail.com

Abstract. We investigated 16-sector metalens that converts linearly polarized laser light to azimuthally polarized optical vortex and focuses the beam. It was shown that the metalens produces a focal spot with subwavelength diameters: FWHMₓ = 0.32λ and FWHMᵧ = 0.51λ (experiment) and FWHMₓ=0.37λ и FWHMᵧ=0.49λ (FDTD-simulation).

1. Introduction
A significant number of scientific papers is currently devoted to the investigation of metasurfaces – thin optical elements that simultaneously control amplitude, phase and polarization of propagated light [1-6]. Previously, we have investigated metalens, based on the subwavelength gratings and developed for generation cylindrical vector beams – beams with the direction of polarization having a radial symmetry [7]. Recently, the authors obtained theoretically an interesting optical effect – a backward flow of light energy in a tight focus [8-13]. This effect could be experimentally verified using metalenses.

This paper continues our investigations from [14,15]. In this work we have investigated a 16-sector metalens consisting of subwavelength gratings. The metalens converts linearly polarized light to an azimuthally polarized optical vortex and focuses it. Experimentally using scanning near-field optical microscope it was shown that the metalens forms a focal spot with diameters smaller than the diffraction limit: FWHMₓ = 0.32λ and FWHMᵧ = 0.51λ. The experimentally obtained values are close to the results of the numerical simulation (FDTD-method) of the manufactured metalens: FWHMₓ = 0.37λ and FWHMᵧ = 0.49λ.

2. Design of the metalens
The investigated metalens (Fig. 1) is a combination of a spiral Fresnel zone plate with a topological charge m = 1 and a sectorial subwavelength grating acting as a halfwaveplate. The lens consists from 16 radial sectors. Each sector rotates the polarization of incident light to produce the azimuthal polarization. Each sector is divided into sub-areas in the shape of a circular arc. The angle of the relief in neighboring areas within one sector is chosen so that the polarization of the light passing through them differs by π. Incident linearly polarized light transforms to focused azimuthally polarized optical vortex.
Period of the grating is equal to 220 nm, the depth of the relief is equal to 120 nm. The grating was designed to focus length with wavelength $\lambda=633\text{nm}$.

An electron microscope image of the manufactured metalens is shown in Fig. 2.

![Template of the metalens](image1.png)

![An electron microscope image of a spiral metalens in an a-Si film.](image2.png)

3. Experiment

The focusing by the fabricated metalens was investigated experimentally using scanning near-field optical microscope. In the experiment, a light beam from a He-Ne laser (wavelength 633 nm) illuminates the metalens. The intensity in the focal spot was measured using a hollow metallized pyramid-shaped probe having a 100-nm hole in the vertex. Fig 3 shows the experimentally measured intensity in the focal spot. Focal spot diameters were equal to $\text{FWHM}_x = 0.32\lambda$ and $\text{FWHM}_y = 0.51\lambda$.

![Experimentally measured intensity in the focal spot (a) and its sections along x-axis (b) and y-axis (c).](image3.png)

4. Numerical simulation

Numerical simulation was carried out using FDTD method implemented in the FullWave software. The simulations parameters were the follows: the wavelength was $\lambda=633\text{nm}$, the size of the simulated area was $8\times8\times2\ \mu\text{m}$, the simulation mesh step was $\lambda/30$. The index of refraction of metalens is $n=4.352+0.486\text{i}$ (amorphous silicon). Propagation of light through the manufactured relief shown on Fig. 2 was investigated. Focal length measured in the experiment was equal to 633 nm. Fig. 4 shows an intensity distribution in focal spot.

![An intensity distribution in focal spot.](image4.png)
The manufactured metalens forms elliptical focal spot with diameters of the focal spot smaller than the diffraction limit: \(\text{FWHM}_x = 0.37\lambda \) and \(\text{FWHM}_y = 0.49\lambda \).

Figure 4. Calculated intensity in the focal spot (a) and its sections along \(x \)-axis (b) and \(y \)-axis (c).

5. Conclusions

We have investigated 16-sector metalens that converts linearly polarized laser light to azimuthally polarized optical vortex and focuses the beam. It was shown that the metalens produces a focal spot with subwavelength diameters: \(\text{FWHM}_x = 0.32\lambda \) and \(\text{FWHM}_y = 0.51\lambda \) (experiment by SNOM) and \(\text{FWHM}_x = 0.37\lambda \) and \(\text{FWHM}_y = 0.49\lambda \) (FDTD-simulation).

6. References

[1] Yu N, Capasso F 2014 Flat optics with designer metasurfaces *Nat. Mater.* 13(2) 139-150
[2] He Q, Sun S, Xiao S and Zhou L 2018 High-Efficiency Metasurfaces: Principles, Realizations, and Applications *Advanced Optical Materials* 6 1800415
[3] Arbabi A, Horie Y, Bagheri M and Faraon A 2015 Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission *Nature Nanotechnology* 10(11) 937
[4] Ni X, Ishii S, Kildishev A V and Shalaev V M 2013 Ultra-thin, planar, Babinet-inverted plasmonic metalenses *Light: Science & Application* 2(4) e72
[5] West P R, Stewart J L, Kildishev A V, Shkunov V V, Strohkind F, Zakharenkov Y A, Dodds R K and Byren R 2014 All-dielectric subwavelength metasurface focusing lens *Optics Express* 22(21) 26212-26221
[6] Lin D, Fan P, Hasman E and Brongersma M L 2014 Dielectric gradient metasurface optical elements *Science* 345(6194) 298
[7] Zhan Q 2009 Cylindrical vector beams: from mathematical concepts to applications *Adv. Opt. Photon.* 1 1-57
[8] Kotlyar V V, Kovalev A A and Nalimov A G 2018 Energy density and energy flux in the focus of an optical vortex: reverse flux of light energy *Optics Letters* 43(12) 2921-2924
[9] Kotlyar V V, Nalimov A G and Stafeev S S 2018 The near-axis backflow of energy in a tightly focused optical vortex with circular polarization Computer Optics 42(3) 392-400 DOI: 10.18287/2412-6179-2018-42-3-392-400

[10] Kotlyar V V, Stafeev S S and Nalimov A G 2019 Energy backflow in the focus of a light beam with phase or polarization singularity Physical Review A 99 33840

[11] Stafeev S S, Kotlyar V V, Nalimov A G and Kozlova E S 2019 The non-vortex inverse propagation of energy in a tightly focused high-order cylindrical vector beam IEEE Photonics Journal 11(4) 4500810

[12] Stafeev S S, Kotlyar V V 2019 Elongation of the area of energy backflow through the use of ring apertures Optics Communications 450 67-71

[13] Kotlyar V V, Stafeev S S and Kovalev A A 2019 Reverse and toroidal flux of light fields with both phase and polarization higher-order singularities in the sharp focus area Optics Express 27(12) 16689-16702

[14] Nalimov A G, Kotlyar V V 2018 Design of a sector-variant high-numerical-aperture micrometalens Optik 159 9-13

[15] Kotlyar V V, Nalimov A G 2017 A vector optical vortex generated and focused using a metalens Computer Optics 41(5) 645-654 DOI: 10.18287/2412-6179-2017-41-5-645-654

Acknowledgments
This work was supported by the Russian Foundation for Basic Research under grants Nos. 18-07-01122, 18-07-01380, and 18-29-20003 (in the section “Design of the metalens”) by the Russian Science Foundation under grant #18-19-00595 (in the section “Experiment”), and by Ministry of Science and Higher Education within the State assignment FSRC “Crystallography and Photonics” RAS under Agreement 007-Г3/Ч3363/26 (in the section “Numerical simulation”).