Insights into Reaction Conditions for Selective Catalytic Reduction of NO\textsubscript{x} with a MnAl Oxide Catalyst at Low Temperatures

Hongjian Zhu1,2, Luming Qiu1, Rui Wang1,2*

1 School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
2 Shenzhen Research Institute of Shandong University, Shenzhen 518057, China

ABSTRACT

MnO\textsubscript{x} catalysts have been proven to have superior activity at low temperatures (LT) for selective catalytic reduction (SCR) of NO\textsubscript{x}. In this study, spherical mesoporous MnAl\textsubscript{x} catalysts with different molar ratios were prepared using a simple precipitation method. In addition, their NO\textsubscript{x} catalytic performance, along with relevant main factors (reaction temperature, molar ratio, particle size, space velocity, and O\textsubscript{2} content), was investigated in a simulated fixed bed reactor. The relationship between the main factors and DeNO\textsubscript{x} efficiency was evaluated by analyzing two parameters: the NO\textsubscript{x} conversion rate and N\textsubscript{2} selectivity. The results showed that the MnAl\textsubscript{x} catalyst had the optimal low temperature DeNO\textsubscript{x} performance and had a relatively stable NO\textsubscript{x} conversion rate of more than 92\% in a space velocity range of 14331 h-1 to 23885 h-1, where smaller catalyst particle size led to higher NO\textsubscript{x} conversion rate and N\textsubscript{2} selectivity as high as 100\%. In addition, the appropriate oxygen concentration was found to increase NO\textsubscript{x} conversion and N\textsubscript{2} selectivity. This work would be beneficial to further optimization of LT SCR catalyst systems for practical applications.

Keywords: NO\textsubscript{x}, SCR, Low temperature, MnAl, oxide, Spherical mesoporous

1 INTRODUCTION

Nitrogen oxides (NO\textsubscript{x}) as air pollutants are primarily emitted from coal-fired power plants and automobiles and are regarded as the major source of many environmental and health problems, including photochemical smog, acid rain, greenhouse gases, and PM\textsubscript{2.5} (Paolucci et al., 2017; Han et al., 2019). In response to environmental protection requirements, stricter emission standards have been adopted by governments around the world to control NO\textsubscript{x} emissions. Alternative post-combustion NO\textsubscript{x} reduction techniques, including selective catalytic reduction and selective non-catalytic reduction (SNCR), have been used for NO\textsubscript{x} elimination. Among them, the SCR process using NH\textsubscript{3} as the reductant is the most widely applied in post-NO\textsubscript{x} abatement and has been shown to have high NO\textsubscript{x} removal efficiency (Forzatti et al., 2009; Imanaka and Masui, 2012). Although commercial vanadium (V)-based oxide catalysts have been widely studied and used, the main drawbacks (narrow temperature window and the toxicity of V components) limit their usage (Brandenberger et al., 2008; Kang et al., 2018). Also, V-based catalysts are not suitable for glass, cement, and steel plants due to the low-temperature flue gas (< 250°C). Recently, a great deal of effort has been made to explore LT V-free SCR high efficient catalysts.

MnO\textsubscript{x} catalysts exhibit excellent activity at low temperature owing to their excellent redox properties and variable valence states. However, poor SO\textsubscript{2} tolerance and low N\textsubscript{2} selectivity relatively restrict their practical applications. Mixing or doping MnO\textsubscript{x} with other metal oxides to obtain polymetal composites with various excellent properties is an effective method to overcome these shortcomings. A great deal of effort has been devoted to constructing bimetallic Mn-based...
catalysts, including MnCe, MnCo, MnFe, MnNb, and MnNi, due to the synergistic effects resulting from their complementary advantages (Liu et al., 2013; Lei et al., 2014; Lian et al., 2014; Wan et al., 2014; Fan et al., 2017). Catalysts with high catalytic performance have also been obtained by adjusting the morphology and pore structure of the catalysts and promoting the dispersion of active components. \(\text{Al}_2\text{O}_3 \) is widely used in SCR catalysts because of its high thermal stability, moderate acidity, and high specific surface area, which can prevent the catalyst from sintering and improve the adsorption of \(\text{NO}_x \) (Wang and Lin 1998; Liu et al., 2016). Zhao et al. (2014) found that Al\(\text{O}_3 \) modified Ce\(\text{O}_2/\text{TiO}_2 \) can improve the acidity of the catalyst, thereby reducing \(\text{SO}_2 \) adsorption. Mejía-Centeno et al. (2015) reported that Al\(\text{O}_3 \) doped TANs enhances activity at high temperatures due to the Lewis acidity and the multivalved morphology of the TNTs.

Since Mn-based bimetal oxide catalysts are more active and selective than other alternatives, \(\text{Al}_2\text{O}_3 \)-supported Mn-based oxide catalysts have been intensively reported. Singoredjo et al. (1992) first prepared \(\text{MnO}_x/\text{Al}_2\text{O}_3 \) as SCR catalysts, and the results showed that Mn induced better dispersion on an \(\text{Al}_2\text{O}_3 \) support, resulting in higher catalyst activity. Kapteijn et al. (1994) studied the surface acidity of an \(\text{MnO}_x/\text{Al}_2\text{O}_3 \) catalyst and the adsorption capacity of \(\text{NO}_x \) and \(\text{NH}_3 \) on a surface. Cao et al. (2014, 2015) found that the high surface area of \(\text{Al}_2\text{O}_3 \) was the key to increasing the number of active catalytic sites by modifying \(\text{MnO}_x/\text{Al}_2\text{O}_3 \) with well-dispersed Fe, Ag, and Zr. The appropriate introduction of \(\text{Al}_2\text{O}_3 \) into \(\text{MnO}_x \) can reduce the thermal stability of the adsorbed \(\text{SO}_2 \) species and facilitate the decomposition of \(\text{NH}_4\text{HSO}_3 \) (Fan et al., 2020). Kijlstra et al. (1997) proposed that the Lewis acid center is Mn\(^{3+} \) dispersed on the surface of \(\text{MnO}_x/\text{Al}_2\text{O}_3 \), where NO or an activated nitrite intermediate adsorbed on the surface reacts with \(\text{NH}_2^- \) on these acid centers, namely, two types of mechanisms (E-R and L-H) work together.

Previous reports have shown that Mn-based catalysts have high \(\text{NO}_x \) conversion rates, but the working conditions of catalysts are complex and changeable, which creates more requirements for these catalysts in practical application. Thus, in this study, we prepared a novel spherical mesoporous MnAl\(_x \) catalyst and aimed to explore the effects of various technological conditions on the \(\text{NO}_x \) conversion performance of the catalysts. MnAl\(_x \) oxide catalysts with different molar ratios were prepared using a simple precipitation method, and their \(\text{NO}_x \) catalytic performance was investigated in the simulated fixed bed reactor, along with relevant main factors (reaction temperature, molar ratios, particle sizes, space velocity, and \(\text{O}_2 \) content). The relationship between the main factors and De\(\text{NO}_x \) efficiency was evaluated by analyzing the \(\text{NO}_x \) conversion rate and \(\text{N}_2 \) selectivity. This work should be beneficial to the further optimization of LT SCR catalyst systems developed for practical applications.

2 EXPERIMENTAL PROCEDURE

2.1 Preparation of Catalysts

The MnAl\(_x \) mixed oxides were synthesized using a simple precipitation method. A specific amount of \(\text{Mn(NO}_3)_2 \) and \(\text{Al(NO}_3)_3\cdot9\text{H}_2\text{O} \) at a total mole amount of 5 mmol was dissolved in 30 mL deionized water under magnetic stirring. After that, an aqueous (\(\text{NH}_4\text{)CO}_3 \) solution containing solute of over-stoichiometric ratio to the above metal ions were added dropwise and stirred for 4 h. The obtained flocculent precipitate was subsequently washed with water and ethanol three times and dried at 120°C overnight, calcined in a tube furnace at 300°C for 1 h, and then heated to 500°C for 6 h to obtain MnAl\(_x \) oxides (\(x = 0.1, 0.3, 0.5, 0.7 \) and 0.9, where \(x \) is the mole ratio of \(\text{Al}/(\text{Mn} + \text{Al}) \)).

2.2 Catalyst Characterization

X-ray diffraction (XRD) was carried out with a BRUKER-AXS D8 Advanced X-ray Diffractometer with Cu Ka radiation at a scanning angle (2\(\theta \)) ranging from 10°~90° and a scan rate of 8° min\(^{-1} \). Scanning electron microscopy (SEM) and corresponding energy dispersive spectroscopy (EDS) mapping analyses were carried out using a JEOL SU8200 microscope at an acceleration voltage of 200 kV. The surface properties (BET specific surface area and pore size) of the samples were measured with a Micromeritics ASAP 2020 surface area analyzer. Temperature-programmed reduction (H\(_2\)-TPR) tests were performed on a gas chromatograph (SP-6800, Shandong Lunan Ruihong, China) with a thermal conductivity detector (TCD) under a 5% H\(_2\)/N\(_2\) gas flow (50 mL min\(^{-1} \)).
at a rate of 10°C min⁻¹ up to 800°C. Temperature-programmed desorption of NH₃ (NH₃-TPD) was carried out using the same instrument as that used for the H₂-TPR. 100 mg of the sample saturated with adsorbed NH₃ was monitored at temperatures ranging from 20–700°C in a He flow.

2.3 Activity Measurement

The catalytic activity measurement was performed in a fixed-bed quartz tube reactor with an internal diameter of 8 mm. The catalyst was placed in the reactor and pretreated at 200°C for 1 h in an N₂ atmosphere. The feed gas mixture contained NO, NH₃, and O₂, with He as the balance. When the reaction reached a stable state at each temperature, the concentrations of NO and NO₂ were continually monitored with the TH-990S NO and NO₂ analyzers, and N₂O in the outlet gas was detected with an Antaris™ IGS Gas Analyzer from Thermo Fisher Scientific Inc. The N₂ concentration was analyzed using a thermal conductivity detection method. The NOx conversion rate and N₂ selectivity were calculated as follows:

\[
\text{NOx conversion (％)} = 1 - \frac{[\text{NOx}]_{\text{in}}}{[\text{NOx}]_{\text{out}}} \times 100\%
\]

(1)

\[
\text{N₂ selectivity (％)} = 1 - \frac{2[\text{N₂O}]_{\text{out}}}{[\text{NH₃}]_{\text{in}} + [\text{NOx}]_{\text{in}} - [\text{NOx}]_{\text{out}} - [\text{NH₃}]_{\text{out}}} \times 100\%
\]

(2)

where the subscripts “in” and “out” refer to the inlet concentration and outlet concentration at steady state, respectively.

3 RESULTS AND DISCUSSION

3.1 XRD

In order to obtain the crystal structure information for the MnAlₓ catalysts, XRD measurements were carried out, for which the results are shown in Fig. 1. It can be observed that the MnAl₀.1 oxide mainly exhibited the characteristic peaks of Mn₂O₃ (JCPDS PDF: 73-1826). The main diffraction peak located at 32.9° was ascribed to the reflection of (222) plane in Mn₂O₃. Furthermore, the reflection peaks at 23.1°, 55.1°, and 65.8°, corresponded to the (211), (440) and (662) planes of the Mn₂O₃ phase, respectively. The characteristic Bragg reflections at 18.1°, 21.6°, 28.7°, 36.9°, 47.8°, 49.1° and some weak peaks ascribed to the Mn₅O₈ planes (JCPDS PDF: 39-1218) were also detected on the MnAl₀.1. The intensity of the Bragg reflections decreased with increases in the

![Fig. 1. XRD patterns of MnAl₀.1, MnAl₀.3, MnAl₀.5, MnAl₀.7, and MnAl₀.9.](image-url)
Al doping amount, which could be obviously observed in the MnAl0.5 sample. In addition, when the Al doping amount reached 0.7, the peak generated at 36.9° attributed to Mn₅O₈ became the main diffraction peak. These results showed that the amount of Al doping adjusted the crystal growth due to the synergistic interaction between Mn oxide and Al oxide. It should also be noted that no clear Al₂O₃ crystalline peaks appeared in the XRD patterns of these catalysts even with Al doping amounts as high as 0.9, indicating that the doped Al oxide may have selectively interacted with the MnOₓ in the mixed oxides, where the amorphous Al₂O₃ acted as a carrier to stabilize and disperse the Mn active sites (Li et al., 2016).

3.2 SEM Analysis

The microstructure of the representative catalyst was further evaluated using SEM. Fig. 2 shows the morphologies of the MnAl₀.₁. The SEM images (Figs. 2(a–c)) revealed that the MnAl₀.₁ oxide exhibited a regular, spherical morphology. The diameters of the spherical particles in the MnAl₀.₁ sample were ca. 500–1000 nm. As can be seen in EDS elemental mapping images (Fig. 2(d)) of single spherical particle, the spherical particles were mainly composed of Mn and O species. The Al elements were highly dispersed in the MnAl₀.₁ at the same locations, demonstrating that the Al species were incorporated into the MnOₓ, corresponding with the results of the XRD patterns. In addition, the highly amorphous Al species also distributed homogeneously around the microsphere, which confirmed that Al₂O₃ can act as a carrier to stabilize the Mn active sites.

3.3 Pore Structure and Surface Area

The N₂ adsorption-desorption isotherms of the MnAl₀.₁, MnAl₀.₃, and MnAl₀.₅ catalysts are plotted in Fig. 3. Table 1 summarizes the corresponding results for the textural properties. As shown in Fig. 3(a), the isotherms of the catalysts were displayed as type IV isotherms with H₂-type hysteresis loops based on the IUPAC classification, indicating the existence of a mesoporous structure (Arandiyan et al., 2013; Aziz et al., 2014). This was confirmed by the pore size distribution centered at 4–10 nm shown in Fig. 3(b). There was an interesting phenomenon where MnAl₀.₁ exhibited a specific surface area similar to that of MnAl₀.₅. However, their pore volumes obviously increased from 0.292 cm³ g⁻¹ (MnAl₀.₁) to 0.549 cm³ g⁻¹ (MnAl₀.₅), and the corresponding pore diameter decreased from 6.5 nm to 3.8 nm. This demonstrated that the increase in Al doping may have the contribution to generating a greater number of small-diameter mesopores in the catalysts.

![Fig. 2. (a–c) SEM images and (d) EDS mapping images of MnAl₀.₁.](image-url)
Fig. 3. (a) N₂ adsorption–desorption isotherm, (b) Pore size distribution of the MnAl₀.₁, MnAl₀.₃ and MnAl₀.₅ catalysts.

Table 1. Parameters of the porous structure of the catalysts.

Samples	\(S_{\text{BET}}\) (m² g⁻¹)ᵃ	\(V_\text{p}\) (cm³ g⁻¹)ᵇ	\(D_p\) (nm)ᶜ
MnAl₀.₁	124.5	0.292	6.5
MnAl₀.₃	126.1	0.431	5.6
MnAl₀.₅	125.4	0.549	3.8

ᵃ BET specific surface area. ᵇ Total pore volume. ᶜ Average pore diameter.

In general, for gas-solid heterogeneous catalysis, a high surface area and developed pore structure can facilitate easy access of a reactant gas to the active sites and the diffusion of products from the catalyst (Yu et al., 2006), which is favorable for catalytic activity. Summarizing the analyses discussed above, the as-prepared MnAl composite oxide showed a regular micro-sphere morphology with a mesoporous structure.

3.4 H₂-TPR

Reducibility is an important factor by which to evaluate the activity of SCR catalysts. To better understand the effect of Al elements on catalytic activity, H₂-TPR of the prepared MnAlₓ catalysts with different molar ratios was carried out. As can be seen in Fig. 4, MnAl₀.₁ exhibited two successive reduction peaks at 320°C and 450°C, which were believed to be associated with the two-step reductions of Mn⁴⁺ via Mn³⁺ to Mn²⁺, concurring with previous literature suggesting that the reduction of MnO₂ and/or Mn₂O₃ occur via a well-defined two-step reduction profile (Trawczyński et al., 2005; Wan et al., 2014). It can be seen that the reduction peaks obviously shifted to lower temperature region with an increase in Al from 0.1 to 0.3. Meanwhile, the intensities of the two-step reduction peak gradually increased, which could be observed on the MnAl₀.₅, indicating an improvement in the redox ability. This promoted reducible nature of MnAlₓ was attributed to the interaction between manganese species and carriers brought about by the doping of Al cations. It should be noted that the reduction peaks shifted to a higher temperature, and the corresponding peak intensity continually decreased when the Al doping content exceeded 0.7. Specifically, MnAl₀.₉ exhibited a very weak peak at about 470°C. This result indicates that Al species are not active substances, where the introduction of excessive Al inhibits the synergistic interaction between manganese species and Al species, thereby weakening the reducibility.

3.5 NH₃-TPD

It is known that the surface acidity of a catalyst is an important index of the SCR activity because it is responsible for the adsorption and activation of NH₃ (Ali et al., 2018; Wu et al., 2021). NH₃-TPD was carried out to explore the surface acid properties of the prepared catalysts. As shown in Fig. 5,
two distinct desorption processes were exhibited in the NH$_3$ desorption profiles. The peaks at low temperatures (100–200°C) originated from weak acid sites, and the peaks at higher temperatures (> 500°C) were due to strong acid sites (Fan et al., 2017). It is widely believed that the thermal stability of NH$_3$ adsorbed at Brønsted acid sites is lower than that of the NH$_3$ molecules coordinated on Lewis acid sites (Kang et al., 2019). Thus, the peaks at temperatures above 300°C were attributed to desorption of NH$_3$ coordinated at the Lewis acid sites, and the peaks at low temperatures were attributed to desorption of the NH$_3^+$ ion from the Brønsted acid sites. All of the MnAl$_x$ micro-spheres showed that the intensity of the NH$_3$ desorption peak centered at low temperatures were much stronger than those at high temperature, indicating that Brønsted acid could be the main acid species. The Brønsted acid sites of the catalysts increased to various degrees, and the Lewis acid sites increased first and then decreased with increases in the Al doping amount. This result confirmed that Al plays a positive role in regulating acidic sites on the mixed oxide.

3.6 The Effect of Reaction Temperature

The catalytic activity of Mn-Al$_{0.3}$ at different temperatures was tested. As shown in Fig. 6(a), the catalytic activity curve changed slightly over time. To obtain accurate experimental data for
the stable catalyst, the activity experiment was carried out for 180 min at each corresponding reaction temperature. As shown in Fig. 6(b), the DeNOx activity increased with increases in the temperature. When the bed reaction temperatures were 80°C, 100°C, 120°C, and 150°C, the corresponding NOx conversion rates were 78.1%, 89.2%, 98.2% and 99.5%, respectively. However, the N2 selectivity showed a trend toward a sudden change, for which the values were 58.1%, 69.5%, 85.9% and 56.8%, respectively, with increasing temperatures. The selective catalytic reduction efficiency of this catalyst was the highest at 120°C. Although the NOx conversion rate was as high as 99.5% at 150°C, the N2 selectivity decreased to 56.8%, which was due to the fact that the oxidation reaction of NH3 was promoted with increases in the reaction temperature, causing the DeNOx efficiency to decrease. Madia et al. (2002) suggested that at low temperatures, N2O formation is probably derived from nitroamine or ammonium nitrate intermediate species. They showed that the thermal decomposition of the generated ammonium nitrate may form either N2O + 2H2O or HNO3 + NH3 at fast heating rates, and the absence of H2O could favor the formation of N2O. Also, Tang et al. (2010) reported that NH3 can be changed into adsorbed N species on β-MnO2, which reacted with gaseous NO to form N2O. It can be seen that the MnAl0.3 catalyst had good LT catalytic activity, but the N2 selectivity requires improvement.

3.7 The Effect of Mole Ratios

In order to determine the effects of the Al doping amount on the LT activity, the catalytic activity of the MnAlx catalysts at different molar ratios was investigated at 80°C, as shown in Fig. 7(a). Fig. 7(b) shows that increases in the Al doping amounts cause the catalytic activity to develop a wave-like trend, where the NOx conversion rates were 97.4%, 72.3%, 78.1%, 79.5% and 50.9% for MnAl0.1, MnAl0.3, MnAl0.5, MnAl0.7, and MnAl0.9, respectively, and where the selectivity of N2 was 64.2%, 58.1%, 57.9%, 72%, and 47.7%, respectively. Interestingly, the N2 selectivity also exhibited variations similar to those in the NOx conversion rate. This may have been due to the fact that although Al oxides with moderate acidity increase the number of acid sites in a catalyst, where more Mn active sites can disperse easily on Al oxides, the Al oxides were the non-catalytic active species, thereby leading to a decrease in catalytic activity. It should be noted that MnAl0.1 showed the highest NOx conversion rate among these catalysts. Combined with the previous H2-TPR and NH3-TPD results, an increase in the Al doping led to the redox performance and acidity first increasing and then decreasing. These results indicated that the active sites played a decisive role in the low-temperature SCR reaction for the obtained catalysts, and the other properties played a certain regulatory role.

3.8 The Effect of Space Velocity

In practical applications, space velocity is the ratio of the volumetric flue gas flow to the reference volume of catalysts (He et al., 2015), which is an important factor for NOx removal.
Fig. 7. The catalytic activity of the MnAl\textsubscript{x} catalysts at different molar ratios. Reaction conditions: C\textsubscript{NO} = 1000 ppm, SV = 17914 h–1, T = 80°C, O\textsubscript{2} = 8%.

Fig. 8. Catalytic activity of MnAl\textsubscript{0.1} under different space velocities. Reaction conditions: C\textsubscript{NO} = 1000 ppm, T = 80°C, O\textsubscript{2} = 8%.

Fig. 8 displays the DeNO\textsubscript{x} performance of the MnAl\textsubscript{0.1} catalyst at different space velocities. As the space velocity was increased from 14331 h–1 to 23885 h–1, the DeNO\textsubscript{x} rate only dropped slightly from 95.3% to 92.1%. When the space velocity was increased to 35828 h–1, the catalytic activity drastically dropped to 56.8%. This may have been due to the fact that as the space velocity increases, the external diffusion resistance decreases, which facilitates NO\textsubscript{x} adsorption. However, in the meantime, the residence time of the gas on the surface of the catalyst becomes shorter, and the adsorbed NO\textsubscript{x} cannot fully react with NH\textsubscript{3}, resulting in a lower DeNO\textsubscript{x} rate. Increases in the space velocity led to decreases in the N\textsubscript{2} selectivity. When the space velocity was 14331 h–1, 17914 h–1, 23885 h–1, and 35828 h–1, the corresponding N\textsubscript{2} selectivity was 76.13%, 64.2%, 60.5%, and 43.5%, respectively. The space velocity showed a similar trend of influence on the NO\textsubscript{x} conversion rate, supporting the conclusions discussed above.

3.9 The Effect of Particle Size

The size of the catalyst particles affects the catalytic performance, so the catalyst was sieved into particles of different sizes to study its denitrization performance. Fig. 9(a) shows the NO\textsubscript{x} conversion curve as a function of time. As the catalyst particles became smaller, the NO\textsubscript{x} removal rate increased. When the catalyst particles were 20–40 mesh, 40–60 mesh, and 60–100 mesh,
the corresponding removal efficiencies were 56.7%, 71.2%, 86.4%, respectively, and the N₂ selectivities were 43.5%, 93.1%, and 100%, respectively. In the case of a gas-solid heterogeneous reaction, after the catalyst particles are reduced to a certain degree, due to an increase in residence time and exposure to more reaction sites, the reaction gas can be more efficiently adsorbed onto the surface active sites of the catalyst, resulting in more NOₓ being fully reduced by NH₃ instead of directly escaping or generating by-products from an incomplete reaction. As shown in Fig. 9, a smaller catalyst particle size led to a higher NOₓ conversion rate and higher N₂ selectivity. In turn, in practical applications, a catalyst with a small particle size will increase the gas flow resistance and easily cause blockage of the gas path, thereby affecting the continuous, effective progress of subsequent reactions.

3.10 The Effect of O₂ Concentration

Fig. 10 shows the relationship between the O₂ content and the catalytic activity of the MnAl₀.₁ catalyst. It can be seen that the MnAl₀.₁ catalyst exhibited poor catalytic activity with a NOₓ conversion rate of 26.0% in the absence of O₂. The NOₓ conversion rate changed significantly in the presence of 4% O₂, and when the O₂ concentration was further increased to 8%, the conversion
rate increased slightly to 87.6%. With the further increase in the O₂ content, the catalytic activity remained basically unchanged. In the absence of O₂, the reaction had almost no N₂ selectivity. As the O₂ content was increased, the N₂ selectivity first increased and then stabilized at about 90.1%. Based on the “Standard SCR” reaction mechanism combined with the “Fast SCR” proposed by Arnarson et al. (2017), two cycles, including an NO activation cycle and a “Fast SCR” cycle, were suggested, which shared the same reduction cycle. Thus, the oxidation reaction of NO to NO₂ does not easily occur in the absence of O₂, where only isolate NO could react slowly with NH₃. NO₂ has been proven to be a more effective oxidant than O₂ and NO (Zhu et al., 2017). In the presence of O₂, more NO₂ is generated and participates in the reduction reaction, resulting in a “Fast SCR.” However, when the O₂ content is further increased to 12%, no more NO₂ can be produced because the oxidation reaction is also limited by the reaction temperature. It is worth noting that the N₂ selectivity increased and tended to be stable with increases in the O₂ concentration, indicating that a “Fast SCR” reaction is beneficial for NOₓ to be more fully reduced by NH₃.

3.11 In situ DRIFTS

In situ DRIFTS were carried out to further explore the SCR reaction mechanism by clarifying the adsorbed species and intermediates over the MnAl₀.₁ catalyst surface and the results were shown in Fig. 11.

![Fig. 11. DRIFT spectra of (a) NH₃ adsorption (b) NO + O₂ adsorption (c) the reaction of pre-adsorbed NH₃ with NO + O₂ and (d) the reaction of preadsorbed NO + O₂ with NH₃ on the MnAl₀.₁ catalyst at 150°C. The reactant gases contained 500 ppm NH₃, N₂ balance (a, d) and a 500 ppm NO + 5% O₂, N₂ balance in (b, c).](image-url)
The DRIFT results for NH\textsubscript{3} adsorption on the MnAl\textsubscript{0.1} catalyst recorded at 150 °C over time are illustrated in Fig. 11(a). In the range of 1000–1650 and 3200–3700 cm-1, several bands were observed after introducing NH\textsubscript{3}. With increases in adsorption time, these bands became more prominent, resulting from the generating of more adsorbed NH\textsubscript{3} species. The bands at 1609 cm-1 and 1192 cm-1 were ascribed to the asymmetric and symmetric NH\textsubscript{3} stretching mode adsorbed on the Lewis acid sites, respectively (Ramis et al., 1995; Zhan et al., 2014). The bands at 1547 and 1515 cm-1 were ascribed to the -NH\textsubscript{3} originating from the deprotonation of ammonia via partial oxidation of NH\textsubscript{3} (Fan et al., 2017; Ma et al., 2018), and the bands at 1429 cm-1 were ascribed to the ionic NH\textsubscript{4}+ formed on the Brønsted acid sites (Liu et al., 2012; Liu et al., 2014). The bands at 3361 and 3260 cm-1 were attributed to the N-H stretching vibration of coordinated NH\textsubscript{3} on the Lewis acid sites, and the negative bands around 3624 were regarded as the hydroxyl consumption by NH\textsubscript{3} (Wu et al., 2007; Ding et al., 2016).

Fig. 11(b) shows the DRIFT results of NO + O\textsubscript{2} co-adsorption on the catalyst. Two strong bands centered at 1565 and 1283 cm-1 were observed for the MnAl\textsubscript{0.1} catalyst after the NO adsorbed, which were attributed to bridging nitrate and monodentate nitrate species (Ramis et al., 1990; Larrubia et al., 2001; Ma et al., 2018). In addition, these two nitrate species had similar peak areas, and the adsorption capacity increased with time.

The reaction between the preadsorbed NH\textsubscript{3} and NO + O\textsubscript{2} species on MnAl\textsubscript{0.1} was performed at 150 °C is shown in Fig. 11(c). Compared with the spectra obtained for the NH\textsubscript{3} adsorption, similar spectra were observed while the band intensity was slightly reduced after N\textsubscript{2} purging. After NO + O\textsubscript{2} was introduced, the bands at 1609, 1547, and 1515 cm-1 still existed, but the peak area was further decreased. The bands at 1429 and 1192 cm-1 ascribed to NH\textsubscript{3} adsorbed on the Lewis acid sites and the ionic NH\textsubscript{4}+ formed on the Brønsted acid sites disappeared, implying that these adsorbed species could be the significantly reactive intermediate species participating in the SCR reaction. Meanwhile, a new band at 1320 cm-1 appeared and increased over time, which was attributed to monodentate nitrate species. This indicates that NH\textsubscript{3} first adsorbed on both the Brønsted and Lewis acid sites and subsequently reacted with gas-phase NO following an Eley-Rideal (E-R) mechanism.

Fig. 11(d) shows the reaction between the preadsorbed NO + O\textsubscript{2} species and NH\textsubscript{3} on MnAl\textsubscript{0.1} catalyst. After introducing NH\textsubscript{3} into the IR cell, the bridging nitrate at 1565 cm-1 quickly disappeared, and the band at 1283 cm-1 assigned to monodentate nitrate species barely changed, meaning that the bridging nitrate was more active than the monodentate nitrate. The peak at 1600 cm-1 became more prominent, and a round peak appeared at 1192 cm-1, which indicated that the asymmetric and symmetric stretching modes of NH\textsubscript{3} were adsorbed on the Lewis acid sites. In addition, the N-H stretching vibrations of coordinated NH\textsubscript{3} appeared at 3361 and 3260 cm-1. The negative bands around 3624 cm-1 ascribed to the hydroxyl consumption were also found. These results indicated that the adsorbed NO\textsubscript{3} species were reduced by the adsorbed NH\textsubscript{3} species to N\textsubscript{2} and H\textsubscript{2}O following a Langmuir-Hinshelwood (L-H) mechanism.

Based on the above analysis and catalytic activity results, it was deduced that the SCR reaction could simultaneously follow the E-R and L-H mechanisms. Both NO + O\textsubscript{2} and reduc tant NH\textsubscript{3} can be adsorbed on the surface of MnAl\textsubscript{x} oxide catalysts. Gaseous NH\textsubscript{3} can be adsorbed on the surface of MnAl\textsubscript{0.1} oxide catalysts or react with hydroxyl species to form NH\textsubscript{4}+, which can react with gaseous NO\textsubscript{x} to produce N\textsubscript{2}. On the other hand, NO can react with O\textsubscript{2} to form NO\textsubscript{2}, and the adsorbed NO\textsubscript{2} can be further converted into various nitrate and nitrite species, which can easily react with the adsorbed NH\textsubscript{3} species to generate N\textsubscript{2}.

4 CONCLUSIONS

In this study, spherical mesoporous MnAl\textsubscript{x} catalysts with different molar ratios were prepared using a simple precipitation method. Their NO\textsubscript{x} catalytic reduction performance and relevant main factors were investigated in a simulated fixed bed reactor. The MnAl\textsubscript{0.1} catalyst exhibited the optimal low temperature DeNO\textsubscript{x} performance, where the highest catalytic efficiency was obtained at a temperature of 120 °C. The MnAl\textsubscript{0.1} catalyst had a relatively stable NO\textsubscript{x} conversion rate of more than 92% at a space velocity range of 14331 h-1 to 23885 h-1. A smaller catalyst particle size led to a higher NO\textsubscript{x} conversion rate, with N\textsubscript{2} selectivity as high as 100%. The appropriate oxygen...
concentration is beneficial to increasing NO\textsubscript{x} conversion and N\textsubscript{2} selectivity. The NH\textsubscript{3}-SCR process carried out on the MnAl\textsubscript{2} oxide reflected both the E-R and LH mechanisms. This work should be beneficial to the further optimization of LT SCR catalytic system developed for practical applications.

ACKNOWLEDGEMENTS

This work was supported by the National Natural Science Foundation of China [No. 22078176] and the Scientific Innovation program of Shenzhen city, China, under basic research program (JCYJ20170818102915033).

REFERENCES

Ali, S., Chen, L., Li, Z., Zhang, T., Li, R., Bakhtiar, S.U.H., Leng, X., Yuan, F., Niu, X., Zhu, Y. (2018). Cu\textsubscript{x}Nb\textsubscript{1-x} (x=0.45, 0.35, 0.25, 0.15) bimetal oxides catalysts for the low temperature selective catalytic reduction of NO with NH\textsubscript{3}. Appl. Catal., B 236, 25–35. https://doi.org/10.1016/j.apcatab.2018.05.014

Arandiyan, H., Dai, H., Deng, J., Liu, Y., Bai, B., Wang, Y., Li, X., Xie, S., Li, J. (2013). Three-dimensionally ordered macroporous \textit{La}_{0.8}\textit{Sr}_{0.2}\textit{MnO}_{3} with high surface areas: Active catalysts for the combustion of methane. J. Catal. 307, 327–339. https://doi.org/10.1016/j.jcat.2013.07.013

Arnarson, L., Falsig, H., Rasmussen, S.R.B., Lauritsen, J.V., Moses, P.G. (2017). A complete reaction mechanism for standard and fast selective catalytic reduction of nitrogen oxides on low coverage VO\textsubscript{x}/TiO\textsubscript{2}(001) catalysts. J. Catal. 346, 188–197. https://doi.org/10.1016/j.jcat.2016.12.017

Aziz, M.A.A., Jalil, A.A., Triwahyono, S., Mukti, R.R., Taufiq-Yap, H.Y. (2014). Highly active Ni-promoted mesostructured silica nanoparticles for CO\textsubscript{2} methanation. Appl. Catal., B 147, 359–368. https://doi.org/10.1016/j.apcatab.2013.09.015

Brandenberger, S., Kröcher, O., Tissler, A., Althoff R. (2008). The state of the art in selective catalytic reduction of NO\textsubscript{x} by ammonia using metal-exchanged zeolite catalysts. Chem. Rev. 50, 492–531. https://doi.org/10.1080/0161490802480122

Cao, F., Xiang, J., Su, S., Wang, P., Sun, L., Hu, S., Lei, S. (2014). The activity and characterization of MnO\textsubscript{x}/CeO\textsubscript{2}/ZrO\textsubscript{2}/γ-Al\textsubscript{2}O\textsubscript{3} catalysts for low temperature selective catalytic reduction of NO with NH\textsubscript{3}. Chem. Eng. J. 243, 347–354. https://doi.org/10.1016/j.cej.2014.01.034

Cao, F., Su, S., Xiang, J., Wang, P., Hu, S., Sun, L., Zhang, A. (2015). The activity and mechanism study of Fe-Mn/γ-Al\textsubscript{2}O\textsubscript{3} catalyst for low temperature selective catalytic reduction of NO with NH\textsubscript{3}. Fuel 139, 232–239. https://doi.org/10.1016/j.fuel.2014.08.060

Ding, S., Liu, F., Shi, X., He, H. (2016). Promotional effect of NO additive on the activity and hydrothermal stability for the selective catalytic reduction of NO\textsubscript{x} with NH\textsubscript{3} over CeZrO\textsubscript{2} catalyst. Appl. Catal., B 180, 766–774. https://doi.org/10.1016/j.apcatab.2015.06.055

Fan, Z., Shi, J., Gao, C., Gao, G., Wang, B., Niu, C. (2017). Rationally designed porous MnO\textsubscript{x}/FeO\textsubscript{2} nanoneedles for low-temperature selective catalytic reduction of NO\textsubscript{x} by NH\textsubscript{3}. ACS Appl. Mater. Interfaces 9, 16117–16127. https://doi.org/10.1021/acsami.7b00739

Fan, Z., Shi, J., Niu, C., Wang, B., Cheng, Y. (2020). The insight into the role of Al\textsubscript{2}O\textsubscript{3} in promoting the SO\textsubscript{2} tolerance of MnO\textsubscript{2} for low-temperature selective catalytic reduction of NO\textsubscript{x} with NH\textsubscript{3}. Chem. Eng. J. 398, 125572. https://doi.org/10.1016/j.cej.2020.125572

Forzatti, P., Nova, I., Tronconi, E. (2009). Enhanced NH\textsubscript{3} selective catalytic reduction for NO\textsubscript{x} abatement. Angew. Chem. Int. Edit. 48, 8366–8368. https://doi.org/10.1002/anie.200903857

Han, L., Cai, S., Gao, M., Hasegawa, J., Wang, P., Zhang, J., Shi, L., Zhang, D. (2019). Selective catalytic reduction of NO\textsubscript{x} with NH\textsubscript{3} by using novel catalysts: State of the art and future prospects. Chem. Rev. 119, 10916–10976. https://doi.org/10.1021/acs.chemrev.9b00202

He, C., Li, J., Ma, Z., Tan, J., Zhao, L. (2015). High NO\textsubscript{2}/NO\textsubscript{x} emissions downstream of the catalytic diesel particulate filter: An influencing factor study. J. Environ. Sci. 35, 55–61. https://doi.org/10.1016/j.jes.2015.02.009

Imanaka, N., Masui, T. (2012). Advances in direct NO\textsubscript{x} decomposition catalysts. Appl. Catal., A 431–432, 1–8. https://doi.org/10.1016/j.apcata.2012.02.047
Kang, L., Han, L., He, J., Li, H., Yan, T., Chen, G., Zhang, J., Shi, L., Zhang, D. (2018). Improved NO\textsubscript{x} reduction in the presence of SO\textsubscript{2} by Using Fe\textsubscript{2}O\textsubscript{3}-promoted halloysite-supported CeO\textsubscript{2}-WO\textsubscript{3} catalysts. Environ. Sci. Technol. 53, 938–945. https://doi.org/10.1021/acs.est.8b05637

Kapteijn, F., Singoredoj, L., Vandriel, M., Andreini, A., Moulijn, J.A., Ramis, G., Busca, G. (1994). Alumina-supported manganese oxide catalysts: II. Surface characterization and adsorption of ammonia and nitric oxide. J. Catal. 150, 105–116. https://doi.org/10.1006/jcat.1994.1326

Kijstra, W.S., Brands, D.S., Smit, H.I., Poels, E.K., Blik, A. (1997). Mechanism of selective catalytic reduction of NO with NH\textsubscript{3} over MnO\textsubscript{x}/Al\textsubscript{2}O\textsubscript{3}: I. Adsorption and desorption of the single reaction components. J. Catal. 171, 208–218. https://doi.org/10.1006/jcat.1997.1788

Larrubia, M.A., Ramis, G., Busca, G. (2001). An FT-IR study of the adsorption and oxidation of N-containing compounds over Fe\textsubscript{2}O\textsubscript{3}-TiO\textsubscript{2} SCR catalysts. Appl. Catal., B 30, 101–110. https://doi.org/10.1016/S0926-3373(00)00220-4

Lei, Z., Shi, L., Lei, H., Zhang, J., Gao, R., Zhang, D. (2014). Rational design of high-performance deNO\textsubscript{x} catalysts based on Mn\textsubscript{3}Co\textsubscript{2-O} nanocages derived from metal–organic frameworks. ACS Catal. 4, 1753–1763. https://doi.org/10.1021/cs401185c

Li, S., Mo, S., Li, J., Liu, H., Chen, Y. (2016). Promoted VOC oxidation over homogeneous porous CoxNiAlO composite oxides derived from hydrotalcites: Effect of preparation method and doping. RSC Adv. 6, 56874–56884. https://doi.org/10.1039/C6RA08394C

Lian, Z., Liu, F., He, H., Shi, X., Mo, J., Wu, Z. (2014). Manganese-niobium mixed oxide catalyst for the selective catalytic reduction of NO\textsubscript{3} with NH\textsubscript{3} at low temperatures. Chem. Eng. J. 250, 390–398. https://doi.org/10.1016/j.cej.2014.03.065

Liu, C., Shi, J., Gao, C., Niu, C. (2016). Manganese oxide-based catalysts for low-temperature selective catalytic reduction of NO\textsubscript{3} with NH\textsubscript{3}: A review. Appl. Catal., A 522, 54–69. https://doi.org/10.1016/j.apcata.2016.04.023

Liu, Y., Gu, T., Weng, X., Wang, Y., Wu, Z., Wang, H. (2012). DRIFT studies on the selectivity promotion mechanism of Ca-modified Ce-Mn/TiO\textsubscript{2} catalysts for low-temperature NO reduction with NH\textsubscript{3}. J. Phys. Chem. C 116, 16582–16592. https://doi.org/10.1021/jp304390e

Liu, Z., Yi, Y., Zhang, S., Zhu, T., Wang, J. (2013). Selective catalytic reduction of NO\textsubscript{3} with NH\textsubscript{3} over Mn-Ce mixed oxide catalyst at low temperatures. Catal. Today 216, 76–81. https://doi.org/10.1016/j.cattod.2013.06.009

Liu, Z., Zhang, S., Li, J., Ma, L. (2014). Promoting effect of MoO\textsubscript{3} on the NO\textsubscript{3} reduction by NH\textsubscript{3} over CeO\textsubscript{2}/TiO\textsubscript{2} catalyst studied with in situ DRIFTS. Appl. Catal., B 144, 90–95. https://doi.org/10.1016/j.apcatab.2013.06.036

Ma, L., Seo, C.Y., Nahata, M., Chen, X., Li, J., Schwank, J.W. (2018). Shape dependence and sulfate promotion of CeO\textsubscript{2} for selective catalytic reduction of NO\textsubscript{3} with NH\textsubscript{3}. Appl. Catal., B 232, 246–259. https://doi.org/10.1016/j.apcatab.2018.03.065

Medina, G., Koebel, M., Elsener, M., Wokaun, A. (2002). Side reactions in the selective catalytic reduction of NO\textsubscript{3} with various NO\textsubscript{2} fractions. Ind. Eng. Chem. Res. 41, 4008–4015. https://doi.org/10.1021/ie020054c

Mejía-Centeno, I., Castillo, S., Camposeco, R., Marín, J., García, L.A., Fuentes, G.A. (2015). Activity and selectivity of V\textsubscript{2}O\textsubscript{5}/H\textsubscript{2}Ti\textsubscript{5}O\textsubscript{17}, V\textsubscript{2}O\textsubscript{3}-WO\textsubscript{3}/H\textsubscript{2}Ti\textsubscript{5}O\textsubscript{17} and Al\textsubscript{2}O\textsubscript{3}/H\textsubscript{2}Ti\textsubscript{5}O\textsubscript{17} model catalysts during the SCR-NO with NH\textsubscript{3}. Chem. Eng. J. 264, 873–885. https://doi.org/10.1016/j.cej.2014.12.009

Paolucci, C., Khurana, I., Parekh, A.A., Li, S., Shih, A.J., Li, H., Di Iorio, J.R., Albarracín-Caballero, J.D., Yezersits, A., Miller, J.T., Delgass, W. N., Ribeiro, F.H., Schneider, W.F., Gounder, R. (2017). Dynamic multinuclear sites formed by mobilized copper ions in NO\textsubscript{3} selective catalytic reduction. Science 357, 898–903. https://doi.org/10.1126/science.aaa5630

Ramis, G., Busca, G., Bregani, F., Forzatti, P. (1990). Fourier transform infrared study of the adsorption and coadsorption of nitric oxide, nitrogen dioxide and ammonia on TiO\textsubscript{2} anatase. Appl. Catal. 64, 243–257. https://doi.org/10.1016/S0166-9334(00)81564-X

Ramis, G., Yi, L., Busca, G., Turco, M., Kotur, E., Willey, R.J. (1995). Adsorption, activation, and oxidation of ammonia over SCR catalysts. J. Catal. 157, 523–535. https://doi.org/10.1006/jcat.1995.1316

Singoredoj, L., Korver, R., Kapteijn, F., Moulijn, J. (1992). Alumina-supported manganese oxides for the low-temperature selective catalytic reduction of nitric oxide with ammonia. Appl. Catal., B 1, 297–316. https://doi.org/10.1016/0926-3373(92)80055-5

Tang, X., Li, J., Sun, L., Hao, J. (2010). Origination of N\textsubscript{2}O from NO reduction by NH\textsubscript{3} over beta-
MnO$_2$ and alpha-Mn$_2$O$_3$. Appl. Catal., B 99, 156–162. https://doi.org/10.1016/j.apcatb.2010.06.012

Trawczyński, J., Bielak, B., Miśta, W. (2005). Oxidation of ethanol over supported manganese catalysts-effect of the carrier. Appl. Catal., B 55, 277–285. https://doi.org/10.1016/j.apcatb.2004.09.005

Wan, Y., Zhao, W., Tang, Y., Li, L., Wang, H., Cui, Y., Gu, J., Li, Y., Shi, J. (2014). Ni-Mn bi-metal oxide catalysts for the low temperature SCR removal of NO with NH$_3$. Appl. Catal., B 148, 114–122. https://doi.org/10.1016/j.apcatb.2013.10.049

Wang, Z., Lin, Y. (1998). Sol-gel synthesis of pure and copper oxide coated mesoporous alumina granular particles. J. Catal. 174, 43–51. https://doi.org/10.1006/jcat.1997.1913

Wu, J., Jin, S., Wei, X., Gu, F., Han, Q., Lan, Y., Qian, C., Li, J., Wang, X., Zhang, R., Qiao, W., Ling, L., Jin, M. (2021). Enhanced sulfur resistance of H$_3$PW$_{12}$O$_{40}$-modified Fe$_2$O$_3$ catalyst for NH$_3$-SCR: Synergistic effect of surface acidity and oxidation ability. Chem. Eng. J. 412, 128712. https://doi.org/10.1016/j.cej.2021.128712

Wu, Z., Jiang, B., Liu, Y., Wang, H., Jin, R. (2007). DRIFT study of manganese/titania-based catalysts for low-temperature selective catalytic reduction of NO with NH$_3$. Environ. Sci. Technol. 41, 5812–5817. https://doi.org/10.1021/es0700350

Yu, J., Jiang, Z., Ling, Z., Hao, Z., Xu, Z. (2006). Adsorption/desorption studies of NO$_x$ on well-mixed oxides derived from Co-Mg/Al Hydrotalcite-like compounds. J. Phys. Chem. B 110, 4291–4300. https://doi.org/10.1021/jp056473f

Zhan, S., Qiu, M, Zhu, D., Yu, H., Li, Y. (2014). Facile preparation of MnO$_2$ doped Fe$_2$O$_3$ hollow nanofibers for low temperature SCR of NO with NH$_3$. J. Mater. Chem. A 2, 20486–20493. https://doi.org/10.1039/C4TA04807E

Zhao, W., Tang, Y., Wan, Y., Li, L., Yao, S., Li, X., Gu, J., Li, Y., Shi, J. (2014). Promotion effects of SiO$_2$ or/and Al$_2$O$_3$ doped CeO$_2$/TiO$_2$ catalysts for selective catalytic reduction of NO by NH$_3$. J. Hazard. Mater. 278, 350–359. https://doi.org/10.1016/j.jhazmat.2014.05.071

Zhu, H., Xu, J., Yichuan, Y., Wang, Z., Gao, Y., Liu, W., Yin, H. (2017). Catalytic oxidation of soot on mesoporous ceria-based mixed oxides with cetyltrimethyl ammonium bromide (CTAB)-assisted synthesis. J. Colloid Interf. Sci. 508, 1–13. https://doi.org/10.1016/j.jcis.2017.07.114