Monoacylglycerol Lipase Inhibition in Tourette Syndrome: A 12-Week, Randomized, Controlled Study

Kirsten R. Müller-Vahl, MD, *1,1* Carolin Fremer, MSc, † Chan Beals, MD, ‡ Jelena Ivkovic, MD, § Henrik Loft, MSc, PhD, ¶ and Christoph Schindler, MD 6

1 Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany; 2 Abide Therapeutics, San Diego, California, USA; 3 H. Lundbeck A/S, Valby, Denmark; 4 Clinical Research Center Core Facility, Hannover Medical School, Hannover, Germany

ABSTRACT: Background: Modulation of the endocannabinoid system via monoacylglycerol lipase inhibition with Lu AG06466 (formerly known as ABX-1431) has previously been shown to reduce tics in patients with Tourette syndrome.

Objective: The aim of this study was to evaluate the efficacy and safety of Lu AG06466 in reducing tics, premonitory urges, and comorbidities in patients with Tourette syndrome.

Methods: This was a 12-week, multicenter, randomized, placebo-controlled, double-blind clinical trial of Lu AG06466 given at two dose levels in 49 adults with Tourette syndrome.

Results: Both treatment groups showed improvement on the Total Tic Score of the Yale Global Tic Severity Scale; the mean (95% CI) treatment difference at week 8 of 3.0 (0.1, 5.9) (P = 0.043) favored placebo. No significant differences were seen for other endpoints assessing changes in tic severity, premonitory urges, quality of life, and common psychiatric comorbidities. Treatment with Lu-AG06466 was generally safe.

Conclusions: There was no evidence that Lu AG06466 has efficacy in suppressing tics. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society

Key Words: tics; Tourette syndrome; Lu AG06466; ABX-1431; endocannabinoid modulator

Tourette syndrome (TS) is a chronic, childhood-onset neurodevelopmental disorder characterized by motor and vocal tics often associated with a spectrum of psychiatric disorders. Although the neurobiological basis of TS remains unclear, most evidence supports an involvement of cortico-striato-thalamo-cortical circuits.1 In addition to dopaminergic dysfunction,2,3 several other neurotransmitters are likely involved, including the endocannabinoid system,4 which, in turn, has a complex functional interaction with the dopaminergic system.5 Hitherto, the role of the endocannabinoid system in TS has been supported by accumulating clinical evidence suggesting that cannabis-based medicines, including Δ9-tetrahydrocannabinol (THC), act as agonists at central cannabinoid CB1 receptors6 to reduce tics and comorbid symptoms.7-11 In addition, alterations of cerebrospinal fluid levels of the endogenous ligands (endocannabinoids) have been found.12

We have previously reported the results of a single-dose phase 1b study that indicated that the monoacylglycerol lipase (MAGL) inhibitor Lu AG06466 (previously known as ABX-1431) reduces tics and premonitory urges in adults with TS.13 MAGL inhibitors act by reducing the catabolism of the endocannabinoid 2-arachidonoylglycerol (2-AG) into arachidonic acid and glycerol, which further enhances endocannabinoid signaling by activation of cannabinoid receptors. This phase 2 study aimed to further evaluate the efficacy and safety of Lu AG06466 in reducing tics, premonitory urges, and comorbidities in patients with TS.

Patients and Methods

Study Design and Patients

This was a multicenter (n = 8 centers), phase 2 study (ClinicalTrials.gov: NCT03625453) consisting of an 8-week, double-blind, randomized, placebo-controlled phase at two target dose levels followed by an optional 4-week, open-label safety extension to determine the effects of Lu AG06466 in patients (18–64 years) with TS with moderate to severe tics as indicated by a Yale Global Tic Severity Scale14—Total Tic Score (YGTSS-
TSS) ≥ 22. The patient’s treatment for tics and comorbidities must have been stable for ≥30 days before entering the study. Cannabis-based medicines (including recreational cannabis) had to be discontinued ≥14 days before randomization. Behavioral intervention for tics had to be completed ≥30 days before entering the study. Patients with a history of psychotic disorders and any substance abuse disorder within the prior year were excluded.

The study was conducted between October 2018 and January 2020 in accordance with the Declaration of Helsinki; study protocols were approved by the ethics committee at each site, and all patients provided written informed consent.

TREATMENTS

In the double-blind phase, patients were randomized (1:1) using a computer-generated sequence (blocks of four) to receive 8 weeks of double-blind treatment with Lu AG06466 in escalating daily doses or matching placebo. Patients randomized to active treatment received 10 mg for the first 3 days, 20 mg on days 4–28, 30 mg on days 29–35, before the target dose of 40 mg was reached for 21 days until day 56. Dose escalation could be adjusted based on the investigator’s judgment of tolerability, but it should have been stable between days 14–28 and 42–56. After completing the double-blind phase, all patients could continue to the 4-week, open-label safety extension, in which all patients started at a Lu AG06466 dose of 10 mg and increased to the target dose of 20 mg after 3 days (4 weeks was considered too short to titrate patients previously randomly assigned to placebo to a higher target dose). An overview of the dosing schedule is provided in Appendix S1 (Fig. e1).

ASSESSMENTS

Data were collected at baseline; at weeks 2, 4, 6, and 8 of the double-blind phase; and at weeks 10 and 12 (open-label extension). The primary efficacy assessment was the change from baseline in YGTSS-TTS. Other efficacy measures included the clinician-rated Clinical Global Impression for Improvement (CGI-I) and Severity (CGI-S),15 self-rated Adult Tic Questionnaire (ATQ),16 Premoritory Urge for Tic Scale (PUTS, items 1–9),17 and Gilles de la Tourette Syndrome–Quality of Life Scale (GTS-QoL),18 and for psychiatric comorbidities, Yale Brown Obsessive Compulsive Scale,19 Conners’ Adult Attention Deficit and Hyperactivity Rating Scale (CAARS),20 Beck Anxiety Inventory (BAI),21 and Beck Depression Inventory (BDI-II).22 Safety and tolerability assessments included treatment-emergent adverse events (TEAEs), vital signs, laboratory tests, electrocardiogram, physical examinations, and Columbia-Suicide Severity Rating Scale (C-SSRS).23 Cognition was assessed using the Cogstate neuropsychological test battery.24

Statistical Analyses

Based on recent randomized controlled trials of THC in TS,10,11 a sample size of 48 patients was estimated to provide 80% power to declare significance at 5% alpha level for a one-sided test, assuming a standardized effect size of 0.73 on the YGTSS-TTS.

Efficacy endpoints were analyzed using a restricted maximum likelihood-based mixed model for repeated measurements, including treatment, visit, and site as covariates; baseline score as a continuous variable; and interaction terms for baseline score by visit and treatment by visit. To account for multiplicity, we applied a closed testing procedure to the double-blind phase, testing first the mean treatment difference at week 8, then at week 4, provided the former comparison favored the active treatment over placebo at a one-sided alpha level of 0.025. If not, all P values were considered nominal. CAARS data were analyzed only in patients with comorbid attention deficit hyperactivity disorder (ADHD). Open-label data are presented descriptively. Data were analyzed using SAS, Version 9.4.

RESULTS

Of 53 patients screened, 49 (93%) were randomized to double-blind treatment (Appendix S1, Fig. e2). Overall, 19 of 23 patients (83%) randomized to the Lu AG64066 group, and 25 of 26 (96%) patients randomized to the placebo group completed the double-blind phase; 41 patients (84%) were male, and the median (range) age was 31.0 (19–58) years; a total of 18 patients (37%) had comorbid ADHD and/or obsessive-compulsive disorder. Treatment groups were generally comparable, except the placebo group included a higher proportion of patients with obsessive-compulsive disorder (46% vs. 26%) and used concomitant central nervous system–active medications more often (73% vs. 52%) than the active group (Appendix S1, Table e1).

Efficacy

During the double-blind phase, YGTSS-TTS scores (mean ± SD) improved in both groups, from 30.4 ± 8.3 at baseline to 27.9 ± 7.8 at week 4 and 27.5 ± 8.8 at week 8 in the Lu AG64066 group and from 29.9 ± 7.2 at baseline to 26.7 ± 8.4 at week 4 and 24.0 ± 8.1 at week 8 in the placebo group (Appendix S1, Fig. e3). The mean (95% CI) treatment difference at week 8 of 3.0 (0.1, 5.9) (P = 0.043) favored placebo (Table 1), and thus the study did not meet its primary endpoint, and subsequent P values are considered nominal. At week 4, the mean (95% CI) treatment difference in YGTSS-TTS was 0.4 (−2.0, 2.7) (P = 0.746).
	Lu AG06466 (n = 23)	Placebo (n = 26)	Lu AG06466 vs. Placebo, *P* Value
YGTSS-TTS (range, 0–50)			
Baseline (mean ± SD)	30.4 ± 8.3	29.9 ± 7.2	
CFB at week 4	−2.5 (−4.2, −0.7)	−2.9 (−4.5, −1.2)	0.75
CFB at week 8	−2.7 (−4.9, −0.6)	−5.7 (−7.7, −3.7)	0.04
YGTSS–Impairment (range, 0–50)			
Baseline (mean ± SD)	22.6 ± 11.4	25.8 ± 11.7	
CFB at week 4	−3.4 (−7.9, 1.1)	−5.0 (−9.2, −0.9)	0.59
CFB at week 8	−4.4 (−8.6, −0.3)	−5.6 (−9.4, −1.8)	0.67
YGTSS–Global Score (range, 0–100)			
Baseline (mean ± SD)	30.4 ± 8.3	29.9 ± 7.2	
CFB at week 4	−5.3 (−10.8, 0.1)	−8.2 (−13.3, −3.1)	0.44
CFB at week 8	−7.7 (−13.1, −2.3)	−11.6 (−16.5, −6.6)	0.29
ATQ			
Baseline (mean ± SD)	7.7 ± 2.3	7.2 ± 3.3	
CFB at week 4	−0.6 (−1.2, 0.0)	−0.7 (−1.4, −0.1)	0.73
CFB at week 8	−1.0 (−1.8, −0.3)	−1.3 (−2.0, −0.6)	0.68
PUTS			
Baseline (mean ± SD)	23.6 ± 5.7	21.5 ± 5.7	
CFB at week 4	0.2 (−1.8, 2.2)	−0.7 (−2.6, 1.2)	0.50
CFB at week 8	−1.1 (−3.1, 0.8)	−0.6 (−2.4, 1.2)	0.67
GTS-QoL			
Baseline (mean ± SD)	23.9 ± 19.8	24.4 ± 15.8	
CFB at week 8	−2.7 (−9.4, 4.0)	−3.1 (−9.2, 2.9)	0.45
CGI-S			
Baseline (mean ± SD)	4.5 ± 0.7	4.5 ± 0.8	
CFB at week 4	−0.0 (−0.2, 0.2)	−0.1 (−0.3, 0.1)	0.62
CFB at week 8	−0.3 (−0.6, 0.0)	−0.4 (−0.6, −0.1)	0.59
CGI-I			
Week 4	3.6 (3.1, 4.0)	3.6 (3.2, 3.9)	0.70
Week 8	3.5 (3.0, 3.9)	3.4 (2.9, 3.8)	0.79
Y-BOCS			
Baseline (mean ± SD)	8.2 ± 9.9	7.8 ± 7.6	
CFB at week 4	−0.3 (−2.2, 1.5)	−2.0 (−3.7, −0.3)	0.19
CFB at week 8	−1.5 (−23.3, 0.4)	−2.4 (−4.1, −0.7)	0.44
BDI-II			
Baseline (mean ± SD)	8.7 ± 11.0	7.9 ± 8.0	
CFB at week 4	−0.2 (−2.8, 2.4)	−0.2 (−2.6, 2.2)	1.0
CFB at week 8	−0.5 (−3.2, 2.1)	0.4 (−2.0, 2.8)	0.59

(Continues)
No significant differences were noted between groups at weeks 4 and 8 for YGTSS impairment and global scores, ATQ, PUTS, GTS-QoL, CGI-I, and CGI-S. Although numerical differences on the CAARS were apparent for patients with ADHD (n = 5) (Appendix S1, Fig. e4), statistical significance was not reached. No significant differences were observed for any other scale assessing psychiatric comorbidities (Table 2). During the open-label extension period, YGTSS-TTS further decreased, with a mean ± SD change from the beginning of the open-label phase (week 8) to week 12 of −4.7 ± 13.1 points.

Safety

During the double-blind phase, all patients treated with Lu AG06466 reported a TEAE, compared with 92.3% in the placebo group (Table 2). TEAEs that were more commonly reported with Lu AG06466 than placebo were mild to moderate in severity and comprised fatigue, attention disturbance, nasopharyngitis, paresthesia, dizziness, vertigo, dry mouth, and hyperhidrosis. During the open-label extension, 29 patients (82.9%) reported TEAEs with Lu AG06466 treatment. Three patients in the Lu AG06466 group and none in the placebo group discontinued the double-blind phase because of a TEAE. Changes in dose as a result of TEAEs were required in 17 (74%) patients in the Lu AG06466 group versus 6 (23%) in the placebo group during the double-blind phase and in 12 (34%) patients during the open-label extension. Three patients reported four severe TEAEs (chills, confusional state, renal colic, and meniscus injury) with open-label treatment. There were no deaths or fatal events.

Discussion

In this phase 2 study, no effect on tics was seen with Lu AG06466 versus placebo at week 8 as assessed using the YGTSS-TTS, and hence the study did not meet its primary endpoint. We also could not demonstrate positive results for other endpoints assessing changes in tic severity, premonitory urges, global impairment, and quality of life, as well as common psychiatric comorbidities. Treatment with Lu AG06466 was generally safe, and there were no relevant safety signals.
Table 2: Summary of TEAEs During the Double-Blind and Open-Label Phases

	Double-Blind, n (%)	Placebo (n = 26)	Open-Label, n (%)
Patients with TEAEs	23 (100)	24 (92.3)	29 (82.9)
Patients discontinuing because of AEs	3 (13)	1 (3.8)	3 (8.6)
Patients with AEs leading to dose reduction	14 (60.9)	3 (11.5)	

TEAEs occurring in >10% in either group

- Fatigue: 8 (34.8), 4 (15.4), 5 (14.3)
- Disturbance in attention: 6 (26.1), 3 (11.5), 5 (14.3)
- Nasopharyngitis: 6 (26.1), 4 (15.4), 5 (14.3)
- Paresthesia: 5 (21.7), 0 (0), 2 (5.7)
- Dizziness: 4 (17.4), 2 (7.7), 6 (17.1)
- Feeling abnormal: 4 (17.4), 5 (19.2), 3 (8.6)
- Vertigo: 4 (17.4), 4 (15.4), 3 (8.6)
- Headache: 3 (13.0), 8 (30.8), 4 (11.4)
- Dry mouth: 3 (13.0), 0 (0), 0 (0)
- Hyperhidrosis: 3 (13.0), 0 (0), 0 (0)
- Diarrhea: 2 (8.7), 3 (11.5), 0 (0)
- Somnolence: 2 (8.7), 4 (15.4), 6 (17.1)
- Tourette’s syndrome: 2 (8.7), 3 (11.5), 3 (8.6)
- Sleep disorder: 1 (4.3), 4 (15.4), 2 (5.7)
- Pain in extremity: 0 (0), 3 (11.5), 0 (0)

AEs leading to discontinuation

- Disturbance in attention: 1 (4.3), 1 (3.8), 0 (0)
- Erythema: 1 (4.3), 0 (0), 0 (0)
- Fatigue: 1 (4.3), 0 (0), 0 (0)
- Reading disorder: 1 (4.3), 0 (0), 0 (0)
- Tachycardia: 1 (4.3), 0 (0), 0 (0)
- Headache: 0 (0), 1 (3.8), 0 (0)
- Palpitations: 0 (0), 0 (0), 1 (2.9)
- Chills: 0 (0), 0 (0), 1 (2.9)
- Dizziness: 0 (0), 0 (0), 1 (2.9)
- Somnolence: 0 (0), 0 (0), 1 (2.9)

No serious AEs or deaths occurred during the study.

TEAE, treatment-emergent adverse event; AE, adverse event.

Effect at 8 weeks favored placebo. Indeed, the mean reduction in YGTSS-TTS of 5.7 points in the placebo group was approaching current definitions of clinical relevance.26,27 Placebo effects of this magnitude are not uncommon in TS28 and, as in other movement disorders, have been attributed to expectation or bias regarding the putative effect of the therapy under scrutiny.29 Interestingly, only recently, other compounds such as deutetrabenazine and valbenazine have also shown positive results in small phase 1 studies30,31 but have failed in larger follow-up randomized controlled trials,32,33 showing the difficulties of scaling from exploratory studies conducted in expert sites to larger and possibly more heterogenous populations.

Finally, despite the lack of statistical significance because of the very small sample size, the apparently beneficial effect of Lu AG06466 on ADHD symptoms...
is promising, because there is also evidence that cannabis-based medicine may improve ADHD.34

Acknowledgments: This study was supported by Abide Therapeutics. We thank all participants in the study, as well as the investigators and sites involved in conducting the trial. Medical writing support was provided by Hanne-Lise F. Eriksen (employee of H. Lundbeck A/S) and Anita Chadha-Patel (ACP Clinical Communications funded by H. Lundbeck A/S).

Data Sharing
The protocol and data are available upon reasonable request from the corresponding author.

References
1. Ganos C. Tics and Tourette’s: update on pathophysiology and tic control. Curr Opin Neurol 2016;29;513–518.
2. Budman CL. The role of atypical antipsychotics for treatment of Tourette’s syndrome: an overview. Drugs 2014;74;1177–1193.
3. Maia TV, Conceição VA. The Roles of phasic and tonic dopamine in tic learning and expression. Biol Psychiatry 2017;82;401–412.
4. Augustin F, Singer HS. Merging the pathophysiology and pharmacotherapy of tics. Tremor Other Hyperkinet Mov (N Y) 2018;8:595.
5. Morera-Herreras T, Miguelez C, Aristieta A, Ruiz-Ortega JA, Ugedo L. Endocannabinoid modulation of dopaminergic motor circuits. Front Pharmacol 2012;3;110–110.
6. Howlett AC. The cannabinoid receptors. Prostaglandins Other Lipid Mediat 2002;68–69;619–631.
7. Müller-Vahl KR, Kolbe H, Schneider U, Emrich HM. Cannabinoids: possible role in pathophysiology and therapy of Gilles de la Tourette syndrome. Acta Psychiatr Scand 1998;98;502–506.
8. Abi-Jaoude E, Chen L, Cheung P, Bhikram T, Sandor P. Preliminary findings from a three multisite studies with adolescents and adults. Am J Psychiatry 2011;168;1266–1277.
9. Thaler A, Arad S, Schleider LB, et al. Single center experience with Delta 9-tetrahydrocannabinol (THC): a randomized crossover trial. Pharmacopsychiatry 2002;35(2);57–61.
10. Müller-Vahl KR, Schneider U, Prevedel H, et al. Delta 9-tetrahydrocannabinol (THC) is effective in the treatment of tics in Tourette syndrome: a 6-week randomized trial. J Clin Psychiatry 2003;64;459–465.
11. Muller-Vahl KR, Bindila L, Lutz B, et al. Cerebrospinal fluid endocannabinoid levels in Gilles de la Tourette syndrome. Neuropsychopharmacology 2020;45;1323–1329.
12. Mueller-Vahl K. ABX-1431, a first-in-class endocannabinoid modulator, improves tics in adult patients with Tourette syndrome. Neurology 2018;90;e2182–e2183.
13. Leckman JF, Riddle MA, Hardin MT, et al. The Yale global tic severity scale: initial testing of a clinician-rated scale of tic severity. J Am Acad Child Adolesc Psychiatry 1989;28;566–573.
14. Leckman JF, Towbin KE, Olt SI, Cohen DJ. Clinical assessment of tic disorders severity. In: Cohen DJ, Bruin RD, Leckman JF, eds. Tourette’s Syndrome and Tic Disorders: Clinical Understanding and Treatment. New York: John Wiley & Sons; 1988.
15. Abramovitch A, Reese H, Woods DW, et al. Psychometric properties of a self-report instrument for the assessment of tic severity in adults with tic disorders. Behav Ther 2013;46;786–796.
17. McGuire JF, McBride N, Piccentini J, et al. The premonitory urge revisited: an individualized premonitory urge for tics scale. J Psychiatr Res 2016;83;176–183.
18. Cavanna AE, Schrag A, Morley D, et al. The Gilles de la Tourette syndrome-quality of life scale (GTS-QOL): development and validation. Neurology 2008;71;1410–1416.
19. Goodman WK, Price LH, Rasmussen SA, et al. The Yale-Brown obsessive compulsive scale. I. Development, use, and reliability. Arch Gen Psychiatry 1989;46;1006–1011.
20. Wands BD, Wallace ER, Brothers SL, Berry DTR. Utility of the Conners’ adult ADHD rating scale validity scales in identifying simulated attention-deficit hyperactivity disorder and random responding. Psychol Assess 2017;29;1437–1446.
21. Beck AT, Epstein N, Brown G, Steer RA. An inventory for measuring clinical anxiety: psychometric properties. J Consult Clin Psychol 1988;56;893–897.
22. Beck A, Steer RA, Gregory K. BDI-II, Beck depression inventory: manual. San Antonio, TX, Psychological Corp. 1196.
23. Posner K, Brown GK, Stanley B, et al. The Columbia-suicide severity rating scale: initial validity and internal consistency findings from three multisite studies with adolescents and adults. Am J Psychiatry 2011;168;1266–1277.
24. Collie A, Maruff P, Darby DG, McStephen M. The effects of practice on the cognitive test performance of neuropsychologically normal individuals assessed at brief test-retest intervals. J Int Neuropsychol Soc 2003;9;419–428.
25. Smith-Hicks CL, Bridges DD, Paynter NP, Singer HS. A double blind randomized placebo control trial of levetiracetam in Tourette syndrome. Mov Disord 2007;22;1764–1770.
26. Jeon S, Walkup JT, Woods DW, et al. Detecting a clinically meaningful change in tic severity in Tourette syndrome: a comparison of three methods. Contemp Clin Trials 2013;36;414–420.
27. Storch EA, De Nadai AS, Lewin AB, et al. Defining treatment response in pediatric tic disorders: a signal detection analysis of the Yale global tic severity scale. J Child Adolesc Psychopharmacol 2011;21;621–627.
28. Kurlan R, Crespi G, Coffey B, et al. A multcenter randomized placebo-controlled clinical trial of pramipexole for Tourette’s syndrome. Mov Disord 2012;27;775–778.
29. Cubo E, Gonzalez M, Singer H, et al. Impact of placebo assignment in clinical trials of tic disorders. Mov Disord 2013;28;1288–1292.
30. Jankovic J, Jimenez-Shahed J, Budman C, et al. Deutetrabenazine in tics associated with Tourette syndrome. Tremor Other Hyperkinet Mov (N Y) 2016;6;422.
31. Farber RH, Angelov A, Kim K, Carmack T, Thai-Guato D, Roberts E. Clinical development of valbenazine for tics associated with Tourette syndrome. Expert Rev Neurother 2021;21(4);393–404. https://doi.org/10.1080/14737140.2021.1898948. Epub 2021 Apr 1. PMID: 33682568.
32. Teva Announces Registration Trials of Deutetrabenazine in Pediatric Patients with Tourette Syndrome Did Not Meet the Primary Endpoint [press release].Tel Aviv, Israel: Teva; Published February 19, 2020. businesswire.com/news/home/20200219005903/ en. Accessed April 2021.
33. Fletcher J, Martino D, Pingheim T. Novel pharmacological approaches for Tourette Syndrome. Curr Dev Disord Rep 2020;7(4);270–276.
34. Cooper RE, Williams E, Seegobin S, Tye C, Kuntsi J, Asherson P. Cannabinoids in attention-deficit/hyperactivity disorder: a randomised-controlled trial. Eur Neuropsychopharmacol 2017;27;795–808.

Supporting Data
Additional Supporting Information may be found in the online version of this article at the publisher’s web-site.