Characterization and Exploitation of CRISPR Loci in *Bifidobacterium longum*

Claudio Hidalgo-Cantabrana 1,2, Alexandra B. Crawley 1, Borja Sanchez 2 and Rodolphe Barrangou 1*

1 Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, United States, 2 Department of Microbiology and Biochemistry of Dairy Products, Dairy Research Institute of Asturias, IPLA-CSIC, Villaviciosa, Spain

Diverse CRISPR-Cas systems provide adaptive immunity in many bacteria and most archaea, via a DNA-encoded, RNA-mediated, nucleic-acid targeting mechanism. Over time, CRISPR loci expand via iterative uptake of invasive DNA sequences into the CRISPR array during the adaptation process. These genetic vaccination cards thus provide insights into the exposure of strains to phages and plasmids in space and time, revealing the historical predatory exposure of a strain. These genetic loci thus constitute a unique basis for genotyping of strains, with potential of resolution at the strain-level. Here, we investigate the occurrence and diversity of CRISPR-Cas systems in the genomes of various *Bifidobacterium longum* strains across three sub-species. Specifically, we analyzed the genomic content of 66 genomes belonging to *B. longum* subsp. *longum*, *B. longum* subsp. *infantis* and *B. longum* subsp. *suis*, and identified 25 strains that carry 29 total CRISPR-Cas systems. We identify various Type I and Type II CRISPR-Cas systems that are widespread in this species, notably I-C, I-E, and II-C. Noteworthy, Type I-C systems showed extended CRISPR arrays, with extensive spacer diversity. We show how these hypervariable loci can be used to gain insights into strain origin, evolution and phylogeny, and can provide discriminatory sequences to distinguish even clonal isolates. By investigating CRISPR spacer sequences, we reveal their origin and implicate phages and prophages as drivers of CRISPR immunity expansion in this species, with redundant targeting of select prophages. Analysis of CRISPR spacer origin also revealed novel PAM sequences. Our results suggest that CRISPR-Cas immune systems are instrumental in mounting diversified viral resistance in *B. longum*, and show that these sequences are useful for typing across three subspecies.

Keywords: CRISPR-Cas systems, genotyping, probiotics, *Bifidobacterium longum*

INTRODUCTION

Bifidobacteria are one of the first commensal microorganisms that colonize the human gut, making them the dominant intestinal bacteria in infants and one of the main inhabitants in healthy adults (Arboleya et al., 2016). The alteration in the populations of bifidobacteria present in the human microbiome has been correlated with several intestinal and immunological disorders like irritable bowel syndrome, inflammatory bowel disease (IBD), obesity, and allergy, among others (Tojo et al., 2014). The health-promoting effects of bifidobacteria consumption has shown promising results in
several clinical trials for the prevention of diarrhea, reducing ulcerative colitis and IBS symptoms, and preventing necrotizing enterocolitis (Tojo et al., 2014). Among bifidobacteria, *Bifidobacterium longum* is the species most prevalence in healthy adults and widely commercialized in probiotic products. Probiotics were originally defined as “live microorganisms that, when administered in adequate amounts, confer a health benefit on the host,” (FAO/WHO., 2002; Hill et al., 2014) though a new guidance has been recently published for health claims (EFSA, 2016). Despite new regulations for health claims of probiotics, many products still misidentify the taxonomic classification of their strains based on 16S sequencing or are manufactured with low amounts of the stated microorganisms (Lewis et al., 2016; Morovic et al., 2016). In this regard, new methodologies should be applied for correct taxonomy together with internal quality control. Recently, the use of high-throughput sequencing has been suggested as a reliable methodology for correct identification (Morovic et al., 2016) as well as the use of glycolysis genes for correct taxonomy (Brandt and Barrangou, 2016).

One of the main challenges for probiotic strains is to survive the stress conditions present in the gastrointestinal tract, regarding physiological conditions (pH, bile salts, and motility) but also countering virus infections. The human gut constitutes a natural reservoir of phages (Stern et al., 2012), representing a huge environmental challenge for commensal and probiotic bacteria, where the need to survive constant attack has led to the need for protection against invasive DNA. One strategy that has evolved in the bacterial evolutionary arms race against foreign DNA is Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR), together with CRISPR associated (cas) genes, that constitute the adaptive immune systems in bacteria and archaea (Barrangou et al., 2007). CRISPR-Cas systems are present in bacteria and archaea and comprise effective DNA-targeting machinery against the foreign nucleic acids (DNA and RNA) of phages and plasmids (Barrangou and Doudna, 2016). CRISPR-Cas immune systems have been widely studied and characterized during the last 10 years (Barrangou and Horvath, 2017) and, to date, two different class, different types and numerous subtypes has been described (Makarova et al., 2011, 2015; Koonin et al., 2017; Shmakov et al., 2017). CRISPR-Cas systems are present in a wide range of microorganisms and different ecological niches, from soil to food microbes, including human commensal bacteria and also pathogens, reflecting the relevance and diversity of these immune systems.

While CRISPR technology, mainly based on CRISPR-Cas9, has been used as a genetic engineering tool with incredible popularity in eukaryotes, CRISPR has tremendous potential applications in microbiology, especially engineering food microbes, starter cultures, and probiotics (Briner and Barrangou, 2016; Hidalgo-Cantabrana et al., 2017). Moreover, the repeat-spacer arrays in CRISPR loci represent a hypervariable region that can be used for genotyping and phylogenetic studies, as well as provide insights into the immunity challenges suffered by the bacteria.

In this work, we analyzed the occurrence and diversity of CRISPR-Cas systems in *B. longum* genomes to characterize the genetic architecture of the CRISPR loci and demonstrate the potential of CRISPR-Cas systems for genotyping in this widely used probiotic species.

MATERIALS AND METHODS

CRISPR Detection and Identification

The 66 *B. longum* genomes (Table 1) in the GenBank database (NCBI) as of December 2016 were used to characterize the occurrence and diversity of CRISPR-Cas systems in *B. longum* strains. The CRISPR *in silico* analyses were performed as follows: the CRISPR Recognition Tool (CRT; Bland et al., 2007) implemented in Geneious 10.0.6 software (Kearse et al., 2012) was used to find the repeats sequences. Then, the Cas proteins (Cas 1, Cas 3, Cas 9) previously identified in other bifidobacteria species (Briner et al., 2015) were used as template to find the Cas proteins in the query *B. longum* strains using BLAST algorithm (Altschul et al., 1997). Afterwards, manual curation was performed to identify and annotate the correct CRISPR-Cas systems for each strain. The CRISPR subtypes designation was performed based on the signature Cas proteins and associated ones as previously reported (Makarova et al., 2011, 2015; Koonin et al., 2017).

Phylogenetic Analyses

Phylogenetic analyses were performed based on the amino acid sequence of Cas1, Cas2, Cas3, and Cas9 proteins, and the nucleotide sequence of the CRISPR repeats. The alignments were performed using MUSCLE algorithm (Edgar, 2004) and the trees were generated with UPGMA method (Sneath and Sokal, 1973) and 500 bootstrap replications.

Spacers Analyses

CRISPR spacers were analyzed using a custom Excel Macro tool (Horvath et al., 2008) to identify similarity between strains and their divergent evolution under DNA selective pressure. Additional studies were carried out to detect similarity between the CRISPR spacers detected in *B. longum* and prophages sequences present in bifidobacterial chromosomes, using BLASTn analyses against 190 *Bifidobacterium* genomes available at GenBank database (NCBI). Protospacers and protospacer adjacent motifs (PAM; Deveau et al., 2008; Horvath et al., 2008; Mojica et al., 2009) were defined based on these analyses, and WebLogo server was used to represent the PAM sequence based on a frequency chart were the height of each nucleotide represents the conservation of that nucleotide at each position (Crooks et al., 2004). R statistics (R Development Core Team, 2008) was used to depict the heatmaps using the “ComplexHeatmap” package (Gu et al., 2016).

RESULTS

Occurrence and Diversity of CRISPR in *B. longum*

The 66 *B. longum* strains in GenBank were analyzed for the occurrence and diversity of CRISPR-Cas systems through *in silico* analyses. Initially, the presence of the universal Cas1 protein was
Strain	Type-subtype	Repeat sequence	Repeat length	No. repeats	cas1	cas3	cas9
longum	7	I-C	GTCGCACCCCACTGGGGTGCTGGATGAAAT	32	159	Y	Y
	9	I-C	GTCGCACCCCACTGGGGTGCTGGATGAAAT	32	159	Y	Y
	379	I-C	GTCGCACCCCACTGGGGTGCTGGATGAAAT	32	1	Y	Y
	35624	I-C	GTCGCACCCCACTGGGGTGCTGGATGAAAT	32	164	Y	Y
	105-A	II-C	CAAAGTTATCAAGAAGGGTGAAATGCTAATTTCCAGC	36	34	Y	Y
	1-5B	None	None	None	None	None	None
	1-6B	II-C	CAAAGTTATCAAGAAGGGTGAAATGCTAATTTCCAGC	36	7	Y	Y
	2nd locus	I-E	GTTTATCCCCCGCCTGGCTGGGGGATGAT	28	21	Y	
	17-1B	I-U	GTTGCATACGCTAAACAGTATGCACTTCATCGAGA	36	44	Y	Y
	2-2B	II-C	CAAAGTTATCAAGAAGGGTGAAATGCTAATTTCCAGC	36	8	Y	Y
	2nd locus	I-E	ACCTACCCCGACGGCCGGGGATAAA	26	11	Y	
	35B	II-C	CAAAGTTATCAAGAAGGGTGAAATGCTAATTTCCAGC	36	12	Y	Y
	44B	II-C	CAAAGTTATCAAGAAGGGTGAAATGCTAATTTCCAGC	36	18	Y	Y
	2nd locus	I-E	GTTTATCCCCCGCCTGGCTGGGGGATGAT	28	25	Y	
	7-1B	II-C	CAAAGTTATCAAGAAGGGTGAAATGCTAATTTCCAGC	36	34	Y	Y
	72B	None	None	None	None	None	None
	AH1206	None	None	None	None	None	None
	ATCC55813	None	None	None	None	None	None
	BBMN68	I-E	GTTGGCCGCCGCATGCCGGGGATGATCCG +	29	10	Y	Y
	BG7	II-C	CAAAGTTATCAAGAAGGGTGAAATGCTAATTTCCAGC	36	34	Y	Y
	BLO12	II-C	CAAAGTTATCAAGAAGGGTGAAATGCTAATTTCCAGC	36	19	Y	Y
	BXY01	None	None	None	None	None	None
	CCLU30698	None	None	None	None	None	None
	CECT 7347	II-C	CAAAGTTATCAAGAAGGGTGAAATGCTAATTTCCAGC	36	38	Y	Y
	CMCC P0001	None	None	None	None	None	None
	CMW7750	None	None	None	None	None	None
	D2957	None	None	None	None	None	None
	DUO10A	II-C	CAAAGTTATCAAGAAGGGTGAAATGCTAATTTCCAGC	36	43	Y	Y
	DSM 20219	None	None	None	None	None	None
	E18	None	None	None	None	None	None
	EK13	None	None	None	None	None	None
	EK5	None	None	None	None	None	None
	F8	None	None	None	None	None	None
	GT15	None	None	None	None	None	None
	JCM 1217	None	None	None	None	None	None
	JDM 301	None	None	None	None	None	None
	KACC 91563	II-C	CAAAGTTATCAAGAAGGGTGAAATGCTAATTTCCAGC	36	33	Y	Y
	LMG 13197	None	None	None	None	None	None
	LO-06	None	None	None	None	None	None
	LO-10	None	None	None	None	None	None
	LO-21	None	None	None	None	None	None
	LO-C29	None	None	None	None	None	None
	LO-K29a	None	None	None	None	None	None
	LO-K29b	None	None	None	None	None	None
	MC-42	I-E	GTTGGCCCCGCCATGCCGGGGATGATCCG	29	136	Y	Y
	NCC2705	None	None	None	None	None	None
	NCTM8809	None	None	None	None	None	None
	VMKB44	II-C	CAAAGTTATCAAGAAGGGTGAAATGCTAATTTCCAGC	36	52	Y	Y
investigated to determine the presence or absence of CRISPR-Cas systems, as Cas1 is a core protein widespread across the two main classes and six main types of CRISPR-Cas systems. Over 38% of the B. longum strains (25/66) harbored cas1 genes in their genome (Table 1, Figure 1A) which is close to the 46% estimated prevalence of CRISPR in bacteria (Grissa et al., 2007). However, the occurrence of cas1 genes in bifidobacteria species was previously described to be up to 77% (Briner et al., 2015), showing a clear difference between the genus overall and the B. longum species in particular. Interestingly, the strains B. longum 1-6B, 2-2B, 44B, and B. longum subsp. infantis EK3 encoded two cas1 genes in a different region of the genome, representing a second CRISPR locus, a phenomenon that has been also described for other bifidobacteria strains like B. longum, B. animalis, other bifidobacteria like B. longum, B. tsurimiense JCM13495 (Briner et al., 2015). Overall, 29 CRISPR loci where identified in 25 strains among the three subspecies investigated, namely: B. longum subsp. longum, B. longum subsp. infantis, and B. longum subsp. suis (Figure 1A).

The CRISPR subtypes designation was performed based on the signature cas genes (cas3 for Type I and cas9 for Type II) and associated ones as previously reported for CRISPR-Cas systems classification (Makarova et al., 2011, 2015; Koonin et al., 2017). The signature cas3 and cas9 genes were identified in B. longum strains using BLAST. Overall, 12 Type II-C systems, 9 Type I-C systems, 7 Type I-E systems, and 1 Type I-U system were identified (Figure 1A). While Type I systems were detected in all three subspecies, the Type II-C selectively occurred in the B. longum subsp. longum. Moreover, CRISPR-Cas systems occurrence and diversity in B. longum highly differed from the distribution in Bifidobacterium genera (Figure 1B). Type I CRISPR-Cas systems are found in 25.7% of B. longum genomes whereas they were found in 60% of bifidobacteria at the genus level (Figure 1B). In contrast, Type II systems are represented in 18.2% of B. longum strains, while they were only detected in 14% of the entire Bifidobacterium genus.

Regarding Type I systems, subtypes I-C, I-E, and I-U were identified in B. longum. The subtypes I-C and I-E CRISPR-Cas systems are present in the three subspecies although subtype I-C is the most common in B. longum subsp. infantis, while subtype I-E is the most prevalence in B. longum subsp. longum (Figure 1A). The CRISPR subtype I-U was only detected in B. longum 17-1B, and it is also present in other bifidobacteria like B. animalis subsp. lactis DSM10140, B. pullorum LMG21816, and B. tsurimiense JCM13495 (Briner et al., 2015). Interestingly, subtype I-U in bifidobacteria does not match the consensus previously described for CRISPR subtype I-U in other genera (Koonin et al., 2017), lacking cas8, but this genetic feature is consistent among Bifidobacterium genus.

Regarding Type II system, the subtype II-C is the only subtype present in B. longum strains, neither subtype II-A nor II-B were detected, although they are present in other bifidobacteria species (Briner et al., 2015). Noteworthy, subtype II-C was found
only in the strains belonging to *B. longum* subsp. *longum*, not in subspecies *infantis* or *suis*. Indeed, subtype II-C systems are not widespread in bifidobacteria (Figure 1B) but it displayed high rate of occurrence in *B. longum* subsp. *longum* strains (Figure 1A).

The phylogenetic analyses performed with Cas1 proteins of *B. longum* and other bifidobacteria species showed the divergence of the five different CRISPR subtypes present in *Bifidobacterium* genus grouped in four major branches (Figure 1C). Type II systems (II-A, II-C) evolved from the same branch and are phylogenetically closer to subtype I-E than subtype I-C, whereas subtype I-U is more divergent. The phylogenetic analyses based on Cas1 proteins from only *B. longum* strains showed three major branches encompassing the four CRISPR subtypes detected in this species (Figure 2A), with the poorly characterized subtype I-U system segregating into its own cluster. Consistently, this clustering was also obtained for Cas2 proteins (Supplementary Figure 1), Cas9, Cas3 (Figures 2B,C) and the repeats sequence (Figure 2D), confirming the co-evolutionary trends observed in CRISPR immune systems that the components of these systems co-evolve (Makarova et al., 2011; Chylinski et al., 2014).

CRISPR Loci Characterization

The 29 CRISPR loci present in the 25 *B. longum* strains were annotated after manual curation and depicted in Figure 3. Four strains harbored two different *cas1* genes: *B. longum* 1-6B, 2-2B, 44B, and *B. longum* subsp. *infantis* EK3 (Table 1, Figure 3). In these four strains, the second *cas1* gene is located in a different region of the genome, together with CRISPR repeats associated *cas* genes, constituting a second putative CRISPR locus (Figure 3). However, signature *cas* genes were absent from these second loci and the type of the locus was assigned through phylogenetic clustering of the Cas1 proteins, allowing them to be subtyped by which phylogenetic clade they belonged to (Figure 2A). When multiple loci appear in the same genome,
it was observed that the CRISPR subtype I-E co-occurs with the subtype II-C in the strains *B. longum* 1-6B, 2-2B, and 44B, while subtype I-C co-occurs with subtype I-E in *B. longum* subsp. *infantis* EK3. The presence of two different types of CRISPR-Cas system in the same strain has been previously described for other species like *B. dentium* LMG11045 (subtypes II-C and I-C) and *B. tsurumiense* JCM13495T (subtypes II-C and I-U; Briner et al., 2015). These incomplete CRISPR loci could be the consequence of (i) a genetic reorganization, (ii) the loss of activity of these CRISPR loci toward the acquisition of the other CRISPR loci, or (iii) incomplete assemblies indicated by the draft genomes of these strains. Moreover, the strain *B. longum* 379 displayed a truncated CRISPR locus without accessory *cas* genes, neither spacers and only one repeat (Figure 3), possibly due to genome annotation troubleshooting, thereof, this strain was excluded for the next analysis.

Regarding the size of *B. longum* CRISPR loci, subtypes I-C, and I-E varies from 12 to 18 Kb due to the genetic architecture involving several *cas* genes (multi-subunit complex Cascade) and high number of repeats (Figure 3A). Subtype II-C are the shortest loci (8 Kb), as they encompass fewer accessory *cas* genes and generally have a lower number of repeats (Figure 3B).

Considering the repeat-spacer array size, subtype I-C varies from 61 repeats in *B. longum* subsp. *infantis* BT1 to 164 in *B. longum* 35624 (Figure 4A), with the exception of *B. longum* subsp. *infantis* EK3 displaying only 8 repeats which is likely to be related with sequencing or assembly of the locus, as the cluster appears truncated (Figure 3A). The CRISPR-Cas systems from subtype I-E presents high variability in length, ranging from 25 repeats in *B. longum* subsp. *suis* AGR2137 to 136 repeats in *B. longum* MC-42. Subtype II-C ranges from 7 repeats in the strain *B. longum* 1-6B to 52 in *B. longum* VMKB44; and the unique subtype I-U, present in *B. longum* 17-1B, contains 44 repeats (Figure 4A). Interestingly the number of repeats in subtype I-C is subspecies-dependent, with incredibly higher numbers of repeats in *B. longum* subsp. *longum* and lower in *B. longum* subsp. *infantis* and subsp. *suis* (Figure 4B).

The length of the repeats sequence is 32 nucleotides for subtype I-C, 29 nucleotides in subtype I-E, and 36 nucleotides for both subtype II-C and I-U. The repeat sequences are conserved within each CRISPR-Cas subtype in the same species, however the repeats of subtype I-C in *B. longum* subsp. *infantis* strains displayed 3 nucleotide polymorphisms (grey shadow in Table 1) compared to the consensus repeat sequence of subtype I-C in *B. longum* subsp. *longum* and *B. longum* subsp. *suis* (Table 1).

Noteworthy, transposases were found in the CRISPR loci at different locations: (i) interrupting the repeats-spacer array of subtype I-C (*B. longum* subsp. *infantis* IN-07) and subtype I-E...
(B. longum subsp. longum BBMN68 and MC42); (ii) between the universal cas2 gene and the repeat-spacer array in subtype II-C (B. longum KACC91563). Transposases are responsible for the horizontal gene transfer that frequently occurs among prokaryotes, having an enormous impact in bacterial genomic evolution (Boto, 2010). The presence of transposases in CRISPR-Cas systems may reflect the acquisition of these genetic architectures as an evolutionary advantage to survive in a complex ecological niche like the human gut. In this regard, the GC content of the CRISPR loci was analyzed for each strain and compared to the GC content of the whole genome (Table 2). While Bifidobacterium spp. genomes present a high GC content, 60% average, CRISPR loci present a GC content of 50% in CRISPR subtypes I-U and II-C (all B. longum strains), between 54 and 58% in subtype I-E and 49 and 56% in subtype I-C (Figure 4C).

Genotyping B. longum Strains through CRISPR Spacers Analyses

The CRISPR spacers present in B. longum were analyzed to study the similarity and divergence among the strains based on their immunity background and their evolution under selective pressure from invasive DNA. The CRISPR spacers representation was performed based on the length and nucleotide sequence of each spacer using a "macro tool," each unique color combination is a unique spacer sequence while the internal shape indicates the length of the spacer (Horvath et al., 2008). The CRISPR-spacer content showed diversity across and within subspecies (Figures 5, 6). For instance, analysis of the spacers from subtype II-C systems in B. longum subsp. longum revealed a common origin for the 12 strains and also reflected divergent evolution into four distinct clusters based on iterative spacer acquisition events (Figure 5B). Noteworthy, cluster i includes two closely
is represented by three closely related \textit{B. longum} strains isolated from another Russian infant (child 2) at different times over 11 years, \textit{B. longum} 35B, 2-2B, and 7-1B (2 year old infant, 7 years and after 11 years, respectively; Shkporov et al., 2013; Chaplin et al., 2015). These strains showed spacer conservation over the sequenced portion of the array. Furthermore, the ancestral spacers appear conserved in other strains, suggesting common ancestry, despite the individual, spatial, and temporal differences in sampling, illustrating how stable these loci are. For instance, though \textit{B. longum} BLO12 was isolated from an infant in Italy (Milani et al., 2015), \textit{B. longum} KACC91563 and BG7 were isolated from Korean infants (Ham et al., 2011; Kwon et al., 2015), \textit{B. longum} 105-A from Japanese infants, \textit{B. longum} VMKB44 also from a Russian child from independent studies (Chaplin et al., 2015), while \textit{B. longum} DJO10A was isolated from a healthy adult in the USA (Lee et al., 2008; Table 2).

Analyses of the spacer content in subtype I-C (Figure 6A) revealed 100% identical spacers content for the strains \textit{B. longum} 7 and \textit{B. longum} 9 suggesting that are the same strain, or at least share the same immunity background. Also, these two strains likely evolved from the strain \textit{B. longum} 35624 after an internal deletion of four spacers (Figure 6A). No spacer homology was found between \textit{B. longum} subsp. \textit{infantis} and \textit{B. longum} subsp. \textit{suis} strains harboring the CRISPR subtype I-C (Figure 6A). Again, this is another example of CRISPR spacer conservation, with subtype I-E spacers (Figure 6B) shared across strains 1-6B and 44B, which were isolated form the same infant over 6 years (Chaplin et al., 2015).

\textbf{CRISPR Spacers Homology to Prophage Sequences in \textit{Bifidobacterium}}

Investigating the origin of the spacers elucidated information about the immunity record of each strain, documenting the challenges suffered and overcome against invasive DNA. The comparative analyses between the spacers present in the 29 CRISPR-Cas systems detected in \textit{B. longum} against 190 bifidobacteria genomes revealed homology to prophages present in bifidobacterial chromosomes (Figure 7), indicating \textit{B. longum} strains acquired immunity against prophages infecting other species, or possibly against lytic variants thereof. Interestingly, prophages in \textit{Bifidobacterium} species were only targeted by spacers from \textit{B. longum} CRISPR Type I systems (Figure 7A), where prophages in \textit{B. longum} genomes where targeted by \textit{B. longum} spacers from both Type I and Type II systems (Figure 7B).

From the 25 \textit{B. longum} strains harboring CRISPR-Cas systems, 14 strains presented at least one spacer targeting a prophage in \textit{Bifidobacterium} genomes (Figures 7, 8). The CRISPR-Cas systems of the strains \textit{B. longum} 35624, 7 and 9 contain the higher number of spacers targeting prophages in \textit{Bifidobacterium} spp. genomes being \textit{Bifidobacterium adolescentis}, \textit{Bifidobacterium bifidum}, and \textit{Bifidobacterium breve} the species most frequently targeted by CRISPR spacers of \textit{B. longum} (Figure 7A). Moreover the strains \textit{B. longum} 35624, 7 and 9 present also the higher number of spacers that match other \textit{B. longum} genomes (Figure 7B) with \textit{B. longum} subsp. \textit{infantis}.
TABLE 2 | Bifidobacterium longum strains harboring CRISPR-Cas immune systems.

B. longum	Strain	CRISPR subtype	CRISPR locus GC%	Whole genome GC%	Origin	References
longum	7	I-C	49.03	60	Commercial	Lewis et al., 2016
	9	I-C	49.03	60	Commercial	Lewis et al., 2016
	379	I-C	50.5	60.20	Human gut	Averina et al., 2012
	35624	I-C	49.03	60	Human gut	Attmann et al., 2016
	106-A	II-C	49.56	60.10	Infant feces	Kanesaki et al., 2014
	1-6B	II-C	49.6	59.6	Infant feces	Shkoporov et al., 2013
	17-1B	I-U	50.1	60.20	Infant feces	Chaplin et al., 2015
	2-2B	II-C	49.5	59.70	Infant feces	Shkoporov et al., 2013
	35B	II-C	49.5	60.10	Infant feces	Shkoporov et al., 2013
	44B	II-C	49.5	59.7	Infant feces	Shkoporov et al., 2013
	7-1B	II-C	49.53	59.80	Infant feces	Chaplin et al., 2015
	BBMN68	I-E	55.1	59.90	Human feces	Hao et al., 2011
	BG7	II-C	49.56	60.01	Infant feces	Kwon et al., 2015
	BLO12	II-C	49.6	60.00	Infant feces	Milani et al., 2015
	CECT 7347	II-C	49.6	60	Commercial	Chenelli et al., 2013
	DJO10A	II-C	49.55	60.11	Adult feces	Lee et al., 2008
	KACC 91563	II-C	49.7	59.81	Neonates feces	Ham et al., 2011
	MC-42	I-E	55.13	59.80	Infant feces	Tupkin et al., 2016
	VMK644	II-C	49.6	60.30	Infant feces	Chaplin et al., 2015
infantis	BT1	I-C	49.3	59.4	Infant feces	Chung, 2017
	EK3	I-E	54.6	59.4	Infant feces	Chaplin et al., 2015
	IN-07	I-C	55.6	59.7	Infant feces	Matsuoka et al., 2016
	IN-F29	I-C	56.6	59.90	Infant feces	Matsuoka et al., 2016
suis	AGR2137	I-E	54.6	59.90	Calf feces	Kelly et al., 2016
	BSM11-5	I-C	55.8	59.90	Infant feces	Bunesova et al., 2016

CCUG4286, CECT7210, B. longum subsp. longum 2-2B and 1-6B the strains most targeted (Figure 7B).

Regarding the diversity of the species matched by B. longum spacers, B. longum subsp. longum targeted prophages in up to nine different bifidobacteria species, B. longum subsp. infantis spacers targeted up to 10, whereas B. longum subsp. suis targeted only four different species (Figures 7, 8). The three B. longum subspecies matched prophages present in B. adolescentis, B. breve, and B. longum and differed in the other bifidobacterial species targeted (Figure 7A).

The strain B. bifidum LMG11583 present the most targeted prophage by B. longum spacers, with a total of 22 matched from nine unique spacers, from six different strains belonging to B. longum and B. longum subsp. infantis (Figure 8). Noteworthy, the strains B. longum 7, 9, 35624 present the same six spacers matching the prophage in relatively close regions of the major capsid protein and in the DNA packaging machinery components, like the portal protein and the HNH endonuclease. The portal protein plays a critical role in head assembly, genome packaging, tail attachment, and genome injection (Sun L. et al, 2015) whereas the NHN is a crucial component of the terminase packaging reaction, which is involved in packaging double-stranded DNA bacteriophage into a prohead protein (Kala et al., 2014). Thereof, the cleavage of these prophage vital components through CRISPR immune systems will prevent prophage replication and the bacteria will survive.

The analysis of the protospacers, the spacer sequence in the targeted DNA, together with the upstream (5′-end) and downstream (3′-end) region allowed us to define the protospacers adjacent motif (PAM; Deveau et al., 2008; Horvath et al., 2008; Mojica et al., 2009), that is absolutely necessary for DNA binding through CRISPR-Cas systems (Sternberg et al., 2014). The PAM is located immediately adjacent to the protospacer, typically at the 5′-end for Type I systems, and at the 3′-end for Type II systems, and represents a signature nucleotide sequence associated with each cas nuclease or effector complex. In this regard, different PAM sequences were identified for each CRISPR subtypes present in B. longum (Figure 9). The PAM for subtypes I-C was defined as 5′-TTC-3′, whereas the PAM for subtypes I-E was defined as 5′-NAAG-3′, and the PAM for subtype I-U was
FIGURE 5 | CRISPR subtype II-C spacers comparison in *B. longum*. The CRISPR spacers of CRISPR subtype II-C were represented using an Excel Macro tool. The spacers are represented by a square and each unique spacer sequence is indicated as a unique color and a geometric figure. Squares containing an “X” represent deleted or missing spacers (A). The last spacer acquired is represented on the left side while the first spacer is on the right side. The spacers schematic representation showed a common origin (right side) for the strains and the evolution trend in four different clusters numbered from i to iv (B).

FIGURE 6 | CRISPR spacers array comparison in *B. longum* for CRISPR Type I. The CRISPR spacers of CRISPR subtypes I-C (A), subtype I-E (B), and subtype I-U (C) were represented using an Excel Macro tool. The spacers are represented by a square and each unique spacer sequence is indicated as a unique color and geometric figure. Squares containing an “X” represent deleted or missing spacers. The last spacer acquired is represented on the left side while the first spacer is on the right side. Numbers on top of the spacers array indicates the first and last spacer showing the size of the array. The long arrays were reduced for a better representation and are indicated with a double line break.

5′-TAN-3′. Type II systems are only represented by subtype II-C in *B. longum* and the identified PAM was 5′-GCN-3′. The Cas9 identified in the twelve *B. longum* strains are 99% identical (data not shown), and therefore predicted to recognize the same PAM sequence (Figure 9). The highly conserved sequence for Cas9 in *B. longum* is also in concordance with the common origin defined for the 12 strains based on the spacers genotyping (Figure 5), and it also may reflect that these CRISPR-Cas systems are still active. The PAM identified for *B. longum* subtype II-C systems highly differs from the PAM defined for subtype II-C in *B. bombi*,
5′-NNG-3′, and from subtype II-A in *B. merycicum* 5′-NGG-3′ reflecting that Cas9 is not conserved among the different species and neither is the PAM it recognizes. Altogether, this is the first time that the CRISPR loci and the PAM has been identified for the probiotic species *B. longum*, opening new avenues for repurposing the endogenous CRISPR-Cas systems, possibly for genome editing to enhance probiotic features of these bacteria, to promote human health (Hidalgo-Cantabrana et al., 2017).

DISCUSSION

B. longum genomes showcase extensive diversity in their CRISPR-Cas systems, with variability among the three investigated subspecies (*longum*, *infantis*, and *suis*). Four different subtypes, belonging to Type I and Type II were detected in *B. longum* strains. Interestingly, Type I systems are present in the subspecies *B. longum* subsp. *longum*, *B. longum* subsp. *infantis*, and *B. longum* subsp. *suis*, although the Type II system was only detected in *B. longum* subsp. *longum* and only represented by subtype II-C. The presence of subtype II-C in *B. longum* was previously described for the strain DJO10A (Horvath et al., 2009) although it was not found in a large data set with other species of bifidobacteria (Briner et al., 2015), mainly due to the use of a unique strain as a representative of each species. Type II systems are the least common systems in nature (Makarova et al., 2015) and also in bifidobacteria (Briner et al., 2015), but it represents the highest occurrence in *B. longum* strains, although is a strain dependent characteristic and not a general feature. Noteworthy, this report showed that in bifidobacteria some of the CRISPR characteristics might be subspecies dependent, like the number of repeats and the repeat sequence, as they were different in *B. longum* subsp. *infantis* strains. A low number of repeats-spacers may reflect lower bacterial challenges against invasive DNA. The lower number of spacers detected in the CRISPR subtype I-C of *B. longum* subsp. *infantis* strains, isolated from infant feces, and high number of spacers in *B. longum* subsp. *longum* strains isolated from adult feces (*Table 2*), represent timing associated bacterial challenges and spacers acquisition.

The CRISPR spacer analysis of *B. longum* strains harboring the CRISPR subtype II-C allowed genotyping and evolutionary studies. The repeat-spacer array provided a hyper-variable region that could be used for genotyping purpose. The spacers displayed a common origin for all the strains suggesting they evolve from the same ancestor into four different clusters under selective pressure of invasive DNA. The spacers sequences present in the CRISPR-Cas systems of *B. longum* can be used as a genetic bar code for genotyping, showing a powerful mechanism for traceability of probiotics. The correct identification of each strains is instrumental to track select strains, to avoid
misidentification, as well as to monitor and deter the potential use by competitors. This is indeed a convenient and powerful tool for the food industry to monitor and track the use and distribution of starter cultures and probiotics. Furthermore, spacer conservation in strains isolated in differences instances across individuals, location and time provides a basis for tracking genotypes with high-resolution and accuracy.

Regarding *B. longum* strains, the correct identification and taxonomy has been a problem given the genetic similarity between and within the subspecies *B. longum* subsp. *longum* and *B. longum* subsp. *infantis* (Lugli et al., 2014; Milani et al., 2014). In this regard, new genetic approaches have been proposed for high-resolution strain identification of closely related species of bifidobacteria, based on multiplex PCR primers targeting the core and variable genes (Ferrario et al., 2015) or based on terminal restriction fragment length polymorphism (Lewis et al., 2017). Recently, Lewis and co-workers showed that 15 of 16 commercial probiotic products present a bacterial composition that differ from the ingredient list, sometimes at a subspecies level (Lewis et al., 2016). Similarly, in an independent study, Morovic and co-workers showed that 42% of the commercial dietary supplements contained incorrect labeled microorganisms regarding taxonomy, and 33% were below the CFU level claim (Morovic et al., 2016). Thus, alternative methodologies for genotyping and correct identification should be used in addition to traditional tools. CRISPR-Cas systems have been used for identifying: (i) industrial microbes, including: *Streptococcus thermophilus*, *Lactobacillus casei*, and *Lactobacillus paracasei* (Horvath et al., 2008; Broadbent et al., 2012; Smokvina et al., 2013), (ii) food pathogens: *Lactobacillus buchneri* (Briner and Barrangou, 2014) and (iii) human pathogens: *Campilobacter jejuni* (Kovanen et al., 2014), *Clostridium difficile* (Andersen et al., 2016), *Mycobacterium tuberculosis* (Sola et al., 2015; Freidlín et al., 2017), *Salmonella enterica* (Shariat et al., 2013, 2015; Bachmann et al., 2014; Almeida et al., 2017; Xie et al., 2017), *Vibrio parahaemolyticus* (Sun H. et al., 2015), *Yersinia pestis* (Barros et al., 2014; Xu et al., 2017) and *Yersinia pseudotuberculosis* (Koskela et al., 2015), among others. However, genotyping through CRISPR technologies has been seldom applied to probiotics, with few exceptions in *Lactobacillus rhamnosus* (Douillard et al., 2013) and *Lactobacillus gasseri* (Sanozky-Dawes et al., 2015). Thus, we suggest the use of CRISPR spacers as a genetic tool for genotyping *B. longum*, the most widely used probiotic species for human consumption, especially for evolutionary studies in closely related strains. However, the use of CRISPR spacers for genotyping is limited to the strains that harbor CRISPR-Cas systems in their genome.

CRISPR spacers represent the immunity record of the strain and the environmental challenges suffered with invasive DNA. In this report, we showed that *B. longum* strains displayed CRISPR spacers targeting prophages present in the genome of several bifidobacterial species. These findings are in accordance with previous reported data of prophages in the genus *Bifidobacterium* (Ventura et al., 2009; Briner et al., 2015; Lugli et al., 2016).
recently named as bifidophages (Duranti et al., 2017). The high number of spacers matching prophages integrated in other bifidobacterial strains suggest that those species inhabit the same ecological niche where a co-evolution between CRISPR immune systems and prophage has occurred. The presence of CRISPR spacers in B. longum against certain Bifidobacterium spp. showed evidence of CRISPR to cause speciation, whereas the spacers matching prophages in other B. longum strains displayed evidence of prophage specificity. In addition, the presence of a high number of spacers in B. longum strains reinforce that the human gut, the main B. longum ecological niche, is a phage rich environment. In this sense, the human gut microbiome has been reported as a natural phage reservoir (Stern et al., 2012) where CRISPR-Cas immune systems has been detected across the human microbiome metagenomics data (Gogleva et al., 2014) and also in the oral microbiome (Wang et al., 2016). In this regard, CRISPR-Cas systems will confer an evolutionary advantage as a defense system to survive, avoiding predation by prophages and invasive DNA. Because of this, B. longum strains harboring CRISPR-Cas systems will be suitable probiotic candidates due to their survival capability against virus challenges based on CRISPR-Cas immune systems, ensuring their viability in the human gut and their traceability based on the spacer sequences.

Upon the characterization of CRISPR-Cas immune systems in B. longum, together with PAM identification, new avenues for genome engineering of next-generation probiotics are open. CRISPR technologies have led to a wide range of applications in a wide variety of organisms, although prokaryotes genome editing through CRISPR has been arguably poorly exploited to date (Hidalgo-Cantabrana et al., 2017). Genome engineering can be performed by delivering the precise, programmable and portable Cas9 nuclease in a plasmid (exogenous system) together with a single guide RNA (Jinek et al., 2012) or by repurposing the endogenous CRISPR systems of the bacteria that encode active systems, delivering self-targeting templates with a guide RNA or a CRISPR array. Briner and co-workers suggest that the CRISPR immune systems of bifidobacteria are likely active, based on preliminary transcriptomic data and complete functional CRISPR loci (Briner et al., 2015). Thus, repurposing the endogenous CRISPR-Cas systems of bifidobacteria in general, and B. longum in particular, provides an excellent opportunity to carry out genome editing in recalcitrant strains that are otherwise cumbersome to genetically manipulate with classical
methods. Nonetheless, CRISPR technologies open new avenues to perfect probiotic bacteria and food microbes, to enhance their probiotic features, to improve their survival capability under stress conditions, or to increase their ability to modulate host immune response and impact human health.

CONCLUSIONS

B. longum encode a diversity of CRISPR-Cas immune systems, belonging to four different subtypes, with large and diverse repeat-spacer arrays, indicating that these systems are likely active and protective against invasive DNA. Analysis of CRISPR spacer origin suggests adaption of this probiotic species to the human gut phage environment. Furthermore, CRISPR locus diversity shows potential for precise genotyping. The characterization of CRISPR-Cas immune systems in *B. longum* provides opportunities to develop genome editing tools using the endogenous systems for the development of next-generation probiotic bacteria.

AUTHOR CONTRIBUTIONS

CH designed the study, performed analyses and wrote the manuscript. CH and AC performed bioinformatics analyses. RB and BS participated, coordinated, and supervised the study. All authors approved the final manuscript.

FUNDING

This study was funded by start-up funds from North Carolina State University and the North Carolina Ag Foundation.

ACKNOWLEDGMENTS

The authors would like to thank their colleagues and support from NC State University. CH thanks to FEMS and EMBO for the Research Grants.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: http://journal.frontiersin.org/article/10.3389/fmicb.2017.01851/full#supplementary-material

Supplementary Figure 1 | Phylogenetic tree based on the Cas2 protein of *B. longum* strains. Alignments were performed with MUSCLE algorithm and the tree was depicted with UPGMA using 500 bootstrap replicates. Bootstrap values are recorded on the nodes. The CRISPR-Cas subtypes are written on the right and groups are colored for each subtype.

REFERENCES

Almeida, F., Medeiros, M. I., Rodrigues, D. D., Allard, M. W., and Falcao, J. P. (2017). Molecular characterization of Salmonella typhimurium isolated in Brazil by CRISPR-MVLST. *J. Microbiol. Methods* 133, 55–61. doi: 10.1016/j.mimet.2016.12.020

Altman, F., Kosma, P., O’Callaghan, A., Leaby, S., Bottacini, F., Molley, E., et al. (2016). Genome analysis and characterisation of the Exopolysaccharide produced by *Bifidobacterium longum* subsp. longum 35624. *PLoS ONE* 11:e0162983. doi: 10.1371/journal.pone.0162983

Altshul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W., et al. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. *Nucleic Acids Res.* 25, 3389–3402. doi: 10.1093/nar/25.17.3389

Andersen, J. M., Shoup, M., Robinson, C., Britton, R., Olsen, K. E., and Barrangou, R. (2016). CRISPR diversity and microevolution in *Clostridium difficile*. *Genome Biol. Evol.* 8, 2841–2855. doi: 10.1093/gbe/evw203

Arboleya, S., Watkins, C., Stanton, C., and Ross, R. P. (2016). Gut Bifidobacteria populations in human health and aging. *Front. Microbiol.* 7:1204. doi: 10.3389/fmicb.2016.01204

Averina, O. V., Nezamedinova, V. Z., Alekseeva, M. G., and Danilenko, V. N. (2012). Genetic instability of probiotic characteristics in the *Bifidobacterium longum* subsp. longum B379M strain during cultivation and maintenance. *Russian J. Genet.* 48, 1103–1111. doi: 10.1134/S1022795412110026

Bachmann, N. L., Petty, N. K., Ben Zakour, N. L., Szubert, J. M., Savill, J., and Beatson, S. A. (2014). Genome analysis and CRISPR typing of *Salmonella enterica* serovar Virchow. *BMC Genomics* 15:389. doi: 10.1186/1471-2164-15-389

Barrangou, R., and Doudna, J. A. (2016). Applications of CRISPR technologies in research and beyond. *Nat. Biotechnol.* 34, 933–941. doi: 10.1038/nbt.3659

Barrangou, R., and Horvath, P. (2017). A decade of discovery: CRISPR functions and applications. *Nat. Microbiol.* 2, 17092. doi: 10.1038/nmribio.2017.92

Barrangou, R., Fremaux, C., Deveau, H., Richards, M., Boyaval, P., Moineau, S., et al. (2007). CRISPR provides acquired resistance against viruses in prokaryotes. *Science* 315, 1709–1712. doi: 10.1126/science.1138140

Barros, M. P., Franca, C. T., Lins, R. H., Santos, M. D., Silva, E. J., Oliveira, M. B., et al. (2014). Dynamics of CRISPR loci in microevolutionary process of *Versinia pestis* strains. *PLoS ONE* 9:e108353. doi: 10.1371/journal.pone.0108353

Bland, C., Ramsey, T. L., Sabree, F., Lowe, M., Brown, K., Kyrpides, N. C., et al. (2007). CRISPR recognition tool (CRT): a tool for automatic detection of clustered regularly interspaced palindromic repeats. *BMC Bioinformatics* 8:209. doi: 10.1186/1471-2105-8-209

Boto, L. (2010). Horizontal gene transfer in evolution: facts and challenges. *Proc. Biol. Sci.* 277, 819–827. doi: 10.1098/rspb.2009.1679

Brandt, K., and Barrangou, R. (2016). Phylogenetic analysis of the Bifidobacterium genus using glycolysis enzyme sequences. *Front. Microbiol.* 7:657. doi: 10.3389/fmicb.2016.00657

Briner, A. E., and Barrangou, R. (2014). *Lactobacillus buchneri* genotyping on the basis of clustered regularly interspaced short palindromic repeat (CRISPR) locus diversity. *Appl. Environ. Microbiol.* 80, 994–1001. doi: 10.1128/AEM.03015-13

Briner, A. E., and Barrangou, R. (2016). Deciphering and shaping bacterial diversity through CRISPR. *Curr. Opin. Microbiol.* 31, 101–108. doi: 10.1016/j.mib.2016.03.006

Briner, A. E., Lugli, G. A., Milani, C., Duranti, S., Turroni, F., Guemione, M., et al. (2015). Occurrence and diversity of CRISPR-cas systems in the genus *Bifidobacterium*. *PLoS ONE* 10:e0133661. doi: 10.1371/journal.pone.0133661

Bresolin, M., et al. (2013). Genomic sequence and pre-clinical safety assessment of *CECT 7347*, a probiotic able to reduce the toxicity of *Clostridium difficile*. *BMC Microbiol.* 13:533. doi: 10.1186/1471-2164-13-533

Buresova, V., Lacroix, C., and Schwab, C. (2016). Fucosyllactose and L-fucose utilization of infant *Bifidobacterium longum* and *Bifidobacterium kashiwanohense*. *BMC Microbiol.* 16, 248. doi: 10.1186/s12866-016-0867-4

Chaplin, A. V., Efimov, B. A., Smelianov, V. V., Kafarskaia, L. I., Pikina, A. P., and Shkoporov, A. N. (2015). Intraspecies genomic diversity and long-term persistence of *Bifidobacterium longum*. *PLoS ONE* 10:e0135658. doi: 10.1371/journal.pone.0135658

Chenoll, E. C. F., Silva, A., Ibáñez, A., Martinez-Blanch, J. F., Bollati-Fogolin, M., Crispo, M., et al. (2013). Genomic sequence and pre-clinical safety assessment of *Bifidobacterium longum* CECT 7347, a probiotic able to reduce the toxicity
Milani, C., Mancabelli, L., Lugli, G. A., Duranti, S., Turroni, F., Ferrario, C., et al. (2015). Exploring vertical transmission of Bifidobacteria from mother to child. Appl. Environ. Microbiol. 81, 7078–7087. doi: 10.1128/AEM.0307-15

Mojica, F. J., Diez-Villanueva, C., Garcia-Martinez, J., and Almendros, C. (2009). Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology 155(Pt 3), 733–740. doi: 10.1099/mic.0.023960-0

Morovic, W., Hibberd, A. A., Zabel, B., Barrangou, R., and Stahl, B. (2016). Genotyping by PCR and high-throughput sequencing of commercial probiotic products reveals composition biases. Front. Microbiol. 7:747. doi: 10.3389/fmicb.2016.01747

Sanozky-Dawes, R., Selle, K., O’Flaherty, S., Klaenhammer, T., and Barrangou, R. (2013). Natural variation and diversity of CRISPR-Cas systems in Lactobacillus gasseri. Microbiology 161, 1752–1761. doi: 10.1099/mic.0.057916-0

Shariat, N., Sandt, C. H., DiMarzio, M. J., Barrangou, R., and Dudley, E. G. (2013). CRISPR-MVLST subtyping of Salmonella enterica subsp. enterica serovars Typhimurium and Heidelberg and application in identifying outbreak isolates. BMC Microbiol. 13:254. doi: 10.1186/1471-2180-13-254

Shariat, N., Timme, R. E., Pettengill, J. B., Barrangou, R., and Dudley, E. G. (2015). Characterization and evolution of Salmonella CRISPR-Cas systems. Microbiology 161, 374–386. doi: 10.1099/mic.0.000005

Shkoporov, A. N., Efimov, B. A., Khokhlova, E. V., Chaplin, A. V., Kafarskaya, L. I., Durkin, A. S., et al. (2013). Draft genome sequences of two pairs of human intestinal Bifidobacterium longum subsp. longum strains, 48B and 1-6B and 35B and 2-2B, consecutively isolated from two children after a 5-Year time period. Genome Announc. 1:e00234-13. doi: 10.1128/genomeA.00234-13

Shmakov, S., Smargon, A., Scott, D., Cox, D., Pyzocha, N., Yan, W., et al. (2017). Diversity and evolution of class 2 CRISPR-Cas systems. Nat. Rev. Microbiol. 15, 169–182. doi: 10.1038/nrmicro2016.184

Smokvina, T., Wels, M., Polka, J., Chervaux, C., Brisse, S., Boekhorst, J., et al. (2013). Lactobacillus paracasei comparative genomics: towards species pan-genome definition and exploitation of diversity. PLoS ONE 8:e68731. doi: 10.1371/journal.pone.0068731

Sneath, P. H., and Sokal, R. R. (1973). Numerical Taxonomy. San Francisco, CA: W.H. Freeman and Company.

Sola, C., Abadía, E., Le Hello, S., and Weill, F. X. (2015). High-throughput CRISPR typing of Mycobacterium tuberculosis complex and Salmonella enterica Serotype Typhimurium. Methods Mol. Biol. 1311, 91–109. doi: 10.1007/978-1-4939-2687-9_6

Stern, A., Mick, E., Tirosh, I., Sagi, O., and Sorek, R. (2012). CRISPR targeting reveals a reservoir of common phages associated with the human gut microbiome. Genome Res. 22, 1985–1994. doi: 10.1101/gr.138297.111

Stemberg, S. H., Redding, S., Jinke, M., Greene, E. C., and Doudna, J. A. (2014). DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature 507, 62–67. doi: 10.1038/nature13011

Sun, H., Li, Y., Shi, X., Lin, Y., Qiu, Y., Zhang, J., et al. (2015). Association of CRISPR/Cas evolution with Vibrio parahaemolyticus virulence factors and genotypes. Foodborne Pathog. Dis. 12, 68–73. doi: 10.1089/fpd.2014.1792

Sun, L., Zhang, X., Gao, S., Rao, P. A., Padilla-Sanchez, V., Chen, Z., et al. (2015). Cryo-EM structure of the bacteriophage T4 portal protein assembly at near-atomic resolution. Nat. Commun. 6, 7548. doi: 10.1038/ncomms8548

Xie, X., Hu, Y., Xu, Y., Yin, K., Li, Y., Chen, Y., et al. (2017). Genetic analysis of Salmonella enterica serovar Gallinarum biovar Pullorum based on characterization and evolution of CRISPR sequence. Vet. Microbiol. 203, 81–87. doi: 10.1016/j.vetmic.2017.02.010

Xu, X. Q., Xin, Y. Q., Li, X., Zhang, Q. W., Yang, X. Y., Jin, Y., et al. (2017). Genotyping by CRISPR and regional distribution of Yersinia pestis in Qinghai plateau from 1954 to 2011. Zhonghua Yu Fang Yi Xue Za Zhi 51, 237–242. doi: 10.3760/cma.j.issn.0253-9624.2017.03.009

Conflict of Interest Statement: RB and AC are co-inventors on several patents related to CRISPR-Cas systems and their uses. RB is a co-founder and SAB member of Intella Therapeutics and Locus Biosciences. CH and BS are on the scientific advisory board and co-founder of Microviable Therapeutics. The other author declares that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2017 Hidalgo-Cantabrana, Crawford, Sanchez and Barrangou. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.