A note about irreducibility of a resultant

Beata Hejmej

October 11, 2018

Abstract

We present a theorem about irreducibility of a polynomial that is the resultant of two others polynomials. The proof of this fact is based on the field theory. We also consider the converse theorem and some examples.

Keywords: Galois theory, separable extension, embedding, polynomial, irreducibility, resultant.

AMS Subject Classification: 12F10, 12E05, 13P15

1 Preliminaries

At the beginning, we recall some basic definitions and facts from the field theory.

Every nonzero homomorphism of fields is called an embedding. For a field extension $F < E$ and an embedding $\sigma : F \hookrightarrow L$, an embedding $\bar{\sigma} : E \hookrightarrow L$ such that $\bar{\sigma}|_F = \sigma$ is called an extension of σ. An extension of the identity map $F \hookrightarrow F < L$ is called an F–embedding.

If $\sigma : F \hookrightarrow E$ is an embedding and $f = a_nX^n + \cdots + a_0 \in F[X]$, then we set $f^\sigma := \sigma(a_n)X^n + \cdots + \sigma(a_0) \in E[X]$.

We say that E is a splitting field over F of a family $\mathcal{F} \subset F[X]$ if every polynomial $f \in \mathcal{F}$ splits over E and $E = F(S)$, where S is the set of all roots of polynomials from the family \mathcal{F} (we assume that $S \subset \bar{F}$, the algebraic closure of F).

An algebraic extension $F < E$, where $E < \bar{F}$, is said to be normal if E is a splitting field of some family $\mathcal{F} \subset F[X]$. In this situation we also say that E is normal over F.

Consider a field extension $F < E$. The set $\text{Gal}(E/F)$ of all F–automorphisms of E is a group under the composition of mappings, which we call the Galois group of the extension $F < E$.

Let f be a polynomial over a field F. We define the Galois group of the polynomial f as the Galois group of the extension $F < L_f$, where L_f is the splitting field of f. We denote this group by $\text{Gal}(f)$. It acts on the set Z_f of all roots of f by an obvious way.

The following theorem collects some well known properties of extension of fields, all of which can be found in [3].

Theorem 1.1. Assume that $F < E$ is an algebraic field extension and L is an algebraically closed field. Then:

\[\Box\]
(i) Let $\alpha \in E$ and $m_{\alpha,F}$ be the minimal polynomial of α over F. If $\sigma: F \hookrightarrow L$ is an embedding and $\beta \in L$ is a root of $m_{\alpha,F}^\sigma$, then σ can be extended to an embedding $\bar{\sigma}: E \hookrightarrow L$ such that $\bar{\sigma}(\alpha) = \beta$.

(ii) If $E < \bar{F}$, then $F < E$ is normal if and only if every F–embedding $E \hookrightarrow \bar{F}$ is an automorphism of E.

We need a slight generalization of a well known property of the Galois group.

Theorem 1.2. Let f be a monic polynomial over a field F, $\deg f > 0$. Then $\text{Gal}(f)$ acts transitively on the set of all roots of the polynomial f if and only if f is a power of some monic irreducible polynomial.

Proof. Assume that $\text{Gal}(f)$ acts transitively on the set Z_f of all roots of the polynomial f. Let $f_1, \ldots, f_s \in F[X]$ be all distinct irreducible factors of f (all of them are monic). Take $r_1 \in \bar{Z}_{f_1}, r_j \in \bar{Z}_{f_j}$. Then $r_i, r_j \in Z_f$ and according to our assumption there exists an automorphism $\sigma \in \text{Gal}(f)$ such that $\sigma(r_i) = r_j$. Thus $0 = \sigma(f_i(r_i)) = f_j(r_j)$. It follows that $f_j|f_i$, so $f_i = f_j$. This implies that f is a power of a monic irreducible polynomial.

Conversely, assume that f is a power of a monic irreducible polynomial $g \in F[X]$. Then $Z_f = Z_g$ and g is the minimal polynomial of every element of Z_f. Take $r_i, r_j \in Z_f$. Since the extension $F < L_f$ is algebraic, the identity $F \hookrightarrow \bar{F}$ can be extended to an F–embedding $\sigma: L_f \hookrightarrow \bar{F}$ such that $\sigma(r_i) = r_j$ (Theorem 1.1(i)). According to the normality of the extension $F < L_f$, the F–embedding σ must be an element of the group $\text{Gal}(f)$ (Theorem 1.1(ii)). Therefore $\text{Gal}(f)$ acts transitively on the set Z_f. \qed

2 Main theorem

Let k be a field and $\text{Res}_Y(f, g)$ denote the resultant of polynomials $f, g \in k[Y,T]$ with respect to the variable Y.

Theorem 2.1. Let $f, g \in k[Y]$ be monic. If g is irreducible in the ring $k[Y]$ then the polynomial $h = (-1)^{\deg g} \text{Res}_Y(f, g - T) \in k[T]$ is a power of some irreducible polynomial.

Proof. Let $Z_g = \{y_1, \ldots, y_m\}$. Observe that $h = \prod_{i=1}^m (T - f(y_i))$, so $Z_h = \{f(y_i) : i = 1, \ldots, m\}$. Let $L_f := k(y_1, \ldots, y_m)$ and $L_h := k(f(y_1), \ldots, f(y_m))$. It is obvious that $k \subset L_h \subset L_g \subset k$. Take $i, j \in \{1, \ldots, m\}$. Since the polynomial g is irreducible, Theorem 1.2 implies that the action of $\text{Gal}(g)$ on the set Z_g is transitive. It follows that $\sigma(y_i) = y_j$ for some $\sigma \in \text{Gal}(g)$. Therefore $\sigma|_{L_h}: L_h \hookrightarrow \bar{k}$ is a k–embedding. The extension $k < L_h$ is normal, so according to Theorem 1.1(ii), we have that $\sigma|_{L_h}$ is a k–automorphism of L_h. Thus $\tau := \sigma|_{L_h} \in \text{Gal}(h)$ and $\tau(f(y_i)) = \sigma(f(y_i)) = f(\sigma(y_i)) = f(y_j)$. It means that $\text{Gal}(h)$ acts transitively on the set Z_h and by Theorem 1.2 the statement follows. \qed

Now, we present some examples connected with the converse theorem.

The first example shows that, in general, the converse to Theorem 2.1 does not hold.

Example 2.2. Let $f = Y^2 - X^3 \in \mathbb{C}((X))[Y]$ and $g = (Y^2 - X^3)^2 - X^7 \in \mathbb{C}((X))[Y]$. Then $h = (T^2 - X^7)^2 \in \mathbb{C}((X))[T]$ is the square of the irreducible polynomial, but g has two irreducible factors in $\mathbb{C}((X))[Y]$ (see 1). (Here $\mathbb{C}((X))$ denotes the quotient field of the ring $\mathbb{C}[[X]]$ of formal power series.)
If we assume that \(h \) is irreducible, then the converse to Theorem 2.1 holds.

Corollary 2.3. Let \(f, g \in k[Y] \) be monic. If \(h = (-1)^{\deg g} \text{Res}_Y(g, f - T) \in k[T] \) is irreducible, then \(g \) is also irreducible.

Proof. Assume that \(g = g_1 \cdots g_s \), where \(k > 1 \) and \(g_1, \ldots, g_s \in k[Y] \) are monic and irreducible. Then

\[
h = (-1)^{\deg g} \text{Res}_Y(g_1, f - T) \cdots \text{Res}_Y(g_s, f - T).
\]

Since \(g_1, \ldots, g_s \) are monic and irreducible over \(k \), Theorem 2.1 implies that each \(\text{Res}_Y(g_i, f - T) \) is a power of some irreducible polynomial. This means that \(h \) is reducible in \(k[T] \).

Consider the following example.

Example 2.4. Let \(f = Y^2 - X^3 \) and \(g = (Y^2 - X^3)^2 - X^5Y \) be polynomials over the field \(\mathbb{C}((X)) \). Let \(w(i, j) := 4i + 13j \) be a weight. Then the initial quasi-homogeneous part of \(h = T^4 - X^{10}T - X^{13} \in \mathbb{C}[[X, T]] \) is equal to \(T^4 - X^{13} \). Since the integers 4 and 13 are coprime, the polynomial \(T^4 - X^{13} \) is irreducible in the ring \(\mathbb{C}[X, T] \). Therefore Hensel’s Lemma (see \([2\), Lemma A1]) implies that \(h \) is irreducible in the ring \(\mathbb{C}((X))[T] \). By Corollary 2.3, the polynomial \(g \) is irreducible over \(\mathbb{C}((X)) \).

Remark 2.5. Polynomials \(g_1 = (Y^2 - X^3)^2 - X^7 \) and \(g_2 = (Y^2 - X^3)^2 - X^5Y \) are taken from \([1\). Both were proposed by Tzee-Char Kuo.

Acknowledgements. The author would like to thank Professors Evelia Rosa García Barroso, Janusz Gwoździewicz and Kamil Rusek for useful comments and helpful suggestions concerning this paper.

References

[1] S. S. Abhyankar, *Irreducibility criterion for germs of analytic functions of two complex variables*, Adv. Math. 74 (1989), 190–257.

[2] E. Artal Bartolo, I. Luengo, A. Melle-Hernández, *High-school algebra of the theory of dicritical divisors: atypical fibers for special pencils and polynomials*, J. Algebra Appl. 14 (2015), no. 9, 1–26 p.

[3] S. Roman, *Field Theory*, Springer, New York, 2005.