Sensing of Replication Stress and Mec1 Activation Act through Two Independent Pathways Involving the 9-1-1 Complex and DNA Polymerase ε

Fabio Puddu, Gabriele Piergiovanni, Paolo Plevani, Marco Muzi-Falconi

Department of Biomolecular Sciences and Biotechnology, Università degli Studi di Milano, Milano, Italy

Abstract

Following DNA damage or replication stress, budding yeast cells activate the Rad53 checkpoint kinase, promoting genome stability in these challenging conditions. The DNA damage and replication checkpoint pathways are partially overlapping, sharing several factors, but are also differentiated at various levels. The upstream kinase Mec1 is required to activate both signaling cascades together with the 9-1-1 PCNA-like complex and the Dpb11 (H53BP1) protein. After DNA damage, Dpb11 is also needed to recruit the adaptor protein Rad9 (h53BP1). Here we analyzed the mechanisms leading to Mec1 activation in vivo after DNA damage and replication stress. We found that a ddc1Δdpb11Δ-1 double mutant strain displays a synthetic defect in Rad53 and H2A phosphorylation and is extremely sensitive to hydroxyurea (HU), indicating that Dpb11 and the 9-1-1 complex independently promote Mec1 activation. A similar phenotype is observed when both the 9-1-1 complex and the Dpb4 non-essential subunit of DNA polymerase ε (Polε) are contemporarily absent, indicating that checkpoint activation in response to replication stress is achieved through two independent pathways, requiring the 9-1-1 complex and Polε.

Introduction

The DNA replication machinery can experience various types of stress during S phase. This can happen when the replisome encounters DNA lesions that hinder its progression, while traversing slow replication zones corresponding to genomic regions difficult to replicate [1] or when encountering replication fork barriers [2]. Replication stress can also be induced by inhibiting ribonucleotide reductase (RNR) with hydroxyurea, which causes a global replication arrest by reducing the dNTPs pools [3].

Under replication stress conditions, eukaryotic cells trigger a signaling cascade, known as the replication checkpoint, which, in budding yeast, culminates with the phosphorylation of Rad53 [4]. This protein kinase is essential for the activation of the molecular mechanisms required to cope with replication arrest: it promotes stabilization of stalled replication forks and allows DNA replication re-start after removal of the blocking agent [5,6,7,8]. Rad53 is also responsible for inducing the transcription of RNR genes by inhibiting the transcriptional repressor Ctr1 and promoting the degradation of the RNR inhibitor Smn1 [9,10]. Finally, Rad53 prevents the firing of late replication origins [11] and restraints spindle elongation thus preventing mitosis [12,13,14].

The DNA damage and replication checkpoints are genetically distinct pathways; however, they are partially overlapping since they share several of the factors involved. In fact, replication stress activates Mec1, the same apical kinase triggered by DNA damage, which is recruited to RPA-covered ssDNA by its binding partner Ddc2 [15]. After damage, Mec1 phosphorylates the Rad9 adaptor protein, which has been loaded onto DNA via chromatin-dependent and -independent pathways: the former requiring methylation of H3-K79 and the latter depending on the 9-1-1 complex and Dpb11 [16,17,18,19,20]. Phosphorylated Rad9, in turn, recruits Rad53, which becomes hyperphosphorylated in a Mec1-dependent manner. Differently, in the case of HU-induced checkpoint activation, the Rad9 adaptor protein is dispensable and its function is performed by Mrc1, a constitutive member of the replisome complex [21,22].

It is now clear that following genotoxic treatments, primary lesions are generally recognized by specific repair factors that process them to generate ssDNA regions, which elicit the DNA damage response. On the other hand, the actual mechanism acting in the activation of the replication stress response is poorly understood. In budding yeast, it has been suggested that replication proteins may be involved in sensing blocks of the replication fork. Indeed, in addition to Dpb11, the initiation factor Sld2/Drc1 and Polε itself are required for efficient checkpoint activation in response to HU treatment, although the corresponding mutants are only mildly sensitive to the drug [23,24,25].

Sld2 is an essential CDK1 target required for initiation of DNA replication. Its phosphorylation and subsequent interaction with Dpb11 is essential for the loading of Polε and the firing of
Author Summary

The maintenance of genome stability is an essential process which needs a careful control. Indeed, the checkpoints are surveillance mechanisms sensing alterations in the integrity of the genome and preventing the replication and segregation of defective DNA molecules. The DNA integrity checkpoint is a signal transduction cascade conserved from yeast to man, and the apical factors in the pathway are protein kinases, called Mec1/Tel1 in Saccharomyces cerevisiae and ATR/ATM in mammals. DNA integrity can be challenged by lesions caused by a variety of chemical/physical agents, or by replication stress caused by special DNA structures, or by a limited supply of deoxyribonucleotides (dNTPs). The mechanisms leading to checkpoint activation in response to DNA damage are better understood compared to the processes leading to activation as a consequence of replication stress. We investigated the mechanisms required for Mec1 activation in response to dNTPs depletion caused by hydroxyurea treatment. We found that Mec1 activation occurs through two independent pathways: one acting through the PCNA-like 9-1-1 complex and the second through Dpb11 and DNA polymerase ε. The existence of these two pathways suggest a model possibly reflecting a DNA strand specificity in the detection of replication stress.

pathways is necessary to efficiently activate Mec1 and to allow cell growth in the presence of HU. Finally, we provide evidence that the DNA polymerase ε complex and Sld2 are required to establish the 9-1-1 independent branch of Mec1 activation and we suggest that this could reflect strand-specificity in detecting replication stress.

Results

UV-induced Mec1 activation requires 9-1-1 and the C-terminal tail of Dpb11

We have previously shown that, in M phase, Dpb11 is required to recruit the Rad9 adaptor protein to UV-damaged DNA in a pathway that is parallel to that controlled by histone modifications [16,29]. Dpb11 was also found to stimulate Mec1 kinase activity in vitro and this function appears to be modulated by its interaction with the 9-1-1 complex [41,42]. To dissect the Mec1-activation role of Dpb11 in vivo and to determine the relative contribution of Dpb11 and 9-1-1 to this mechanism in different cell cycle phases, we analyzed histone H2A phosphorylation as an assay for Mec1 activity. After UV damage H2A is phosphorylated directly on serine 129 (γH2A) by Mec1 kinase; indeed mec1-1 mutant cells fail to phosphorylate H2A after DNA damage and a strain deleted in TEL1, coding for a second sensor-kinase, does not show any significant reduction in γH2A levels (Figure S1A and S1B).

We used a yeast strain carrying a C-terminal deletion of Dpb11 (ΔPPL3 Δsld4) encoded by the dpb11-1 allele, which removes almost entirely the ATR Activation Domain (AAD) and a strain carrying the deletion of DDC1, the gene encoding the 9-1-1 subunit involved in Mec1 activation [40]. WT, dpb11-1, dia1A and dia1Adpb11-1 cells were arrested in G1 with α-factor and in M phase with nocodazole and UV irradiated. As it is shown in Figure 1A, histone H2A is extensively phosphorylated after UV treatment in G1 and this damage-dependent modification requires the presence of a functional 9-1-1 complex, while the contribution of the AAD domain of Dpb11 is only minor. The quantification of the signal (shown in the lower panel of Figure 1A), indicates that the level of phosphorylated histone H2A (γH2A) in dpb11-1 is ~50% of that found in WT cells.

In M phase cells the basal level of phosphorylated H2A-S129 is much higher (Figure S1C), and this likely influences the magnitude of the increase measured after UV-irradiation. In these conditions, Dpb11 plays a minimal role, if any, in H2A phosphorylation and also DDC1 deletion reduces γH2A only partially (~50%) (Figure 1B). However, the residual H2A phosphorylation observed in a dia1A mutant strain is lost when TEL1 is deleted, (Figure 1C). On the other hand, deletion of TEL1 in the dpb11-1 background does not significantly influence H2A phosphorylation (Figure S1D)

9-1-1 and Dpb11 act independently in signaling replication stress to the Mec1 kinase

To further elucidate the balancing between 9-1-1-dependent and Dpb11-dependent Mec1 activation in S phase, we decided to analyze this process after replication stress induced by HU. This allowed us also to minimize the side effects due to the involvement of Dpb11 in Rad9 recruitment because, during HU treatment, Rad9 does not become hyperphosphorylated and is not expected to play any role in checkpoint activation [22]. WT, dpb11-1, dia1A and dia1Adpb11-1 cells were synchronized in G1, released into fresh medium supplemented with 200 mM HU, and checkpoint activity was monitored by measuring Rad53 phosphorylation (Figure 2A). Differently from what found in G1 and G2 cells, strains lacking either a functional 9-1-1 complex or the Dpb11 C-terminal region were fully able to phosphorylate Rad53. In these
Mec1 activation differently from what previously reported [39]. In addition, the double mutant strain showed synthetic lethality on HU plates (Figure 2B and [43]). To confirm that the dbp11-1 and ddc1A mutations directly affect Mec1 activity, we monitored γH2A levels in the same conditions. As shown in Figure 2C, the ddc1A and dbp11-1 mutations showed a synthetic defect in the ability to phosphorylate H2A-S129 (Figure 2D).

Although displaying a severe defect in Rad53 phosphorylation, ddc1Adbp11-1 still displays a residual low level of phosphorylated Rad53, which may depend upon a residual Mec1 activity. However, Figure 2E and Figure S2A show that the residual Rad53 phosphorylation in the double mutant is instead due to Tel1. Indeed, an additional mutation eliminating Tel1 function completely abolishes Rad53 phosphorylation in a dbp11-1 ddc1A strain and strongly sensitizes cells to HU treatment, as shown in Figure S2B. These findings further support the hypothesis that Mec1 cannot become activated in response to replication stress in the absence of both Ddc1 and Dpb11-AAD.

To verify the possibility that in dbp11-1 mutant cells an unscheduled, Ddc1-dependent, DNA damage response is triggered as a consequence of the inability to properly activate the replication stress response, similarly to what happens in an mrc1A strain [22], we monitored DNA damage checkpoint activation looking at Rad9 hyperphosphorylation. As shown in Figure 2F, differently from what found in the mrc1A control strain, no Rad9 hyperphosphorylation was detectable in ddc1A, dbp11-1 single or double mutant strains. Consistently, rad9Adbp11-1 double mutant cells are far less sensitive than the ddc1Adbp11-1 strain to HU treatment (Figure 2B and [43]).

Low levels of Rad53 activity are sufficient to prevent replication fork breakdown and premature entry into mitosis

Rad53 kinase activity is required to stabilize stalled replication forks [7]. To verify whether the increased HU sensitivity of ddc1Adbp11-1 double mutant cells was due to their inability to fully activate Rad53 and thus to stabilize the replisomes, we performed a recovery assay. Briefly, WT, dbp11-1, ddc1A, ddc1Adbp11-1 and mrc1-1sml1 mutant strains were blocked in G1, released and exposed to HU for 90 minutes; cells were then washed and shifted into fresh medium lacking HU and allowed to recover. As shown in the control strain mrc1-1 sml1, when Rad53 activity is impaired, cells transiently exposed to HU lose the ability to resume DNA synthesis and complete DNA replication once the drug has been removed [6] and Figure 3A). Unexpectedly, we found that not only dbp11-1 and ddc1A single mutant cells, but also the double mutant strain, which has a severe Rad53 hyperphosphorylation defect, were able to recover from the HU treatment with a WT kinetics (Figure 3A). Moreover, with lower HU concentrations, ddc1A dbp11-1 cells were capable of completing a round of DNA replication, as demonstrated by the re-entering of the replicated chromosomes in a pulsed-field gel system (Figure 3B).

Another marker of checkpoint activation by HU is the arrest of cell cycle, preventing mitosis. When exposed to HU, checkpoint mutants fail to delay the onset of mitosis and display elongated spindles [14]. To address the hypothesis that ddc1A dbp11-1 cells may die as a consequence of a premature mitosis, we measured spindle length 90 minutes after HU addition. ddc1A dbp11-1 double mutant cells prevent spindle elongation in the presence of HU, a process which is clearly defective in a mrc1-1 mutant strain (Figure S3A), suggesting that the replication checkpoint can delay mitotic entry in the double mutant [10].

In agreement with all these data, the HU sensitivity of ddc1A dbp11-1 double mutant cells can be observed only to chronic

Figure 1. UV-induced Mec1 activation requires the 9-1-1 complex and the Dpb11 C-terminus. (A) K699 (WT), YFP20 (dbp11-1), YAN21/Bd (ddc1A), YFP62/1d (ddc1A/dbp11-1) and YMICS3 (mec1-1) strains were grown to mid-log phase, arrested in G1 with α-factor and subjected to UV irradiation. At the indicated time-points, protein extracts were prepared and separated by SDS-PAGE. Mec1 activation was assayed by western blotting monitoring γH2A. (B) Strains K699 (WT), YFP20 (dbp11-1), YFP62/1d (ddc1A/dbp11-1) and YMICS3 (mec1-1) strains were grown to mid-log phase, arrested in G1 with α-factor and subjected to UV irradiation. At the indicated time-points, protein extracts were prepared and separated by SDS-PAGE. Mec1 activation was assayed by western blotting monitoring γH2A. (C) Strains K699 (WT) and YFP23 (ddc1A tel1A) were arrested in M phase with nocodazole and UV irradiated. At the indicated time-points Mec1 activation was assayed by western blotting monitoring γH2A. A quantification of the signal corresponding to H2A-S129 is shown in the lower panel. The values indicate the fold increase respect to the WT untreated sample. The mec1-1 mutation is functionally equivalent to a null mutation (B) The strains in panel A were arrested in M phase with nocodazole and subjected to the same treatment. Analysis and quantification of H2A phosphorylation was carried out as described above. (C) Strains K699 (WT) and YFP23 (ddc1A tel1A) were arrested in M phase with nocodazole and UV irradiated. At the indicated time-points Mec1 activation was assayed by western blotting monitoring γH2A. A quantification of the signal corresponding to H2A-S129 is shown in the lower panel. The values indicate the fold increase respect to the WT untreated sample.

doi:10.1371/journal.pgen.1002022.g001

Sensing Replication Stress
exposure to the drug, while it is virtually undetectable if cells are transiently exposed to HU (Figure 3C).

The inability to fully activate Rad53 causes defects in the control of RNR induction

Jack1A dpb11-1 mutant cells exhibit extremely low levels of Mec1 and Rad53 activation and, despite being sensitive to exposure to even low concentrations of HU (Figure 2B), they do not show some of the most common phenotypes observed in replication checkpoint defective cells. To better characterize the sensitivity to the drug, we monitored cell growth in the presence of 100 mM HU. The indicated time-points, protein extracts were prepared and separated by SDS-PAGE. Rad53 activation was assayed as the phosphorylation-dependent shift of the protein. (B) 10^3–10^4 cells from overnight cultures of the strains analyzed in panel A and YFP74 (rad9Δ) and YFP161/5C (rad9Δ dpb11-1) were spotted on YPD plates supplemented with HU at the indicated concentrations. Cell survival was assayed after 2–7 days. (C) The same filter in panel A was probed for Mec1 activation by analyzing the level of histone H2A phosphorylation. (D) Quantification of yH2A in the experiment shown in panel C, using α-Rad53 cross-reacting band as loading control. The values indicate the fold increase respect to the WT G1 sample. (E) Strains K699 (WT), YMIC6C3 (tel1Δ), YFP62/1d (ddc1Δ dpb11-1) and YFP230 (ddc1Δ dpb11-1 tel1Δ) were synchronized in G1 and released into fresh medium supplemented with 200 mM HU. At the indicated time-points Rad53 and H2A phosphorylation were assayed by western blotting. A quantification of the signal is shown in the lower panel, using α-Rad53 cross-reacting band as loading control. The numbers indicate the fold increase respect to the WT G1 sample. (F) The same extracts of panel A were probed with α-Rad9 antibodies to determine the extent of Rad9 hyperphosphorylation. In all the relevant panels the loading control is indicated by an asterisk.

doi:10.1371/journal.pgen.1002022.g002

Figure 2. Dpb11 and 9-1-1 independently activate Mec1 after replication stress. (A) K699 (WT), YFP20 (dpb11-1), YAN21/8d (ddc1Δ), YFP62/1d (ddc1Δ dpb11-1), YFP12S/6d (mec1Δ) and YMIC5A3 (mec1Δ) strains were grown to mid-log phase, synchronized in G1 with α-factor and released into fresh medium supplemented with 200 mM HU. At the indicated time-points, protein extracts were prepared and separated by SDS-PAGE. Rad53 activation was assayed as the phosphorylation-dependent shift of the protein. (B) 10^3–10^4 cells from overnight cultures of the strains analyzed in panel A and YFP74 (rad9Δ) and YFP161/5C (rad9Δ dpb11-1) were spotted on YPD plates supplemented with HU at the indicated concentrations. Cell survival was assayed after 2–7 days. (C) The same filter in panel A was probed for Mec1 activation by analyzing the level of histone H2A phosphorylation. (D) Quantification of yH2A in the experiment shown in panel C, using α-Rad53 cross-reacting band as loading control. The values indicate the fold increase respect to the WT G1 sample. (E) Strains K699 (WT), YMIC6C3 (tel1Δ), YFP62/1d (ddc1Δ dpb11-1) and YFP230 (ddc1Δ dpb11-1 tel1Δ) were synchronized in G1 and released into fresh medium supplemented with 200 mM HU. At the indicated time-points Rad53 and H2A phosphorylation were assayed by western blotting. A quantification of the signal is shown in the lower panel, using α-Rad53 cross-reacting band as loading control. The numbers indicate the fold increase respect to the WT G1 sample. (F) The same extracts of panel A were probed with α-Rad9 antibodies to determine the extent of Rad9 hyperphosphorylation. In all the relevant panels the loading control is indicated by an asterisk.

doi:10.1371/journal.pgen.1002022.g002

The inability to fully activate Rad53 causes defects in the control of RNR induction

ddc1Δ dpb11-1 mutant cells exhibit extremely low levels of Mec1 and Rad53 activation and, despite being sensitive to exposure to even low concentrations of HU (Figure 2B), they do not show some of the most common phenotypes observed in replication checkpoint defective cells. To better characterize the sensitivity to the drug, we monitored cell growth in the presence of 100 mM HU. The single and double mutant ddc1Δ dpb11-1 yeast strains were synchronized in G1, released into fresh medium supplemented with HU and cell cycle progression followed by FACS analysis. The double mutant ddc1Δ dpb11-1 showed a small delay in progressing through S-phase in the presence of HU, compared to WT and single mutant cells. Significantly, at late times (20 hours) after the release, a large fraction of double mutant cells appeared to be arrested at different stages of S-phase, while WT and single mutant cells had regained a FACS profile with 1C and 2C peaks (Figure 4A). Consistently, PFGE analysis of genomic DNA prepared from the various strains 20 hours after release from HU showed that in ddc1Δ dpb11-1 double mutant cells most of the DNA failed to enter the gel, suggesting the presence of branched intermediates (Figure 4B, 4C). It is important to note that, differently from what found in a mec1Δ strain, the ddc1Δ dpb11-1 strain did not accumulate cells with α<1G DNA content, or low molecular weight DNA fragments (Figure 4A–4C) indicating a
Figure 3. Low levels of Rad53 activity are sufficient to prevent replication fork breakdown. (A) HU recovery assay. K699 (WT), YFP20 (dpb11-1), YAN21/8d (ddc1-1), YFP62/1d (ddc1-1dpb11-1) and YMICS53 (mecl-1) were synchronized in G1 with α-factor and released into fresh medium supplemented with 200 mM HU. 90 min later cells were transferred to fresh YPD + nocodazole and allowed to resume DNA replication. Progression into S phase was monitored by FACS analysis. (B) The indicated strains were synchronized in G1 with α-factor and released into 100 mM HU + nocodazole. 3 and 5 hours later cells were harvested and total DNA was analyzed by Pulse Field Gel Electrophoresis (PFGE). (C) The strains in panel A were synchronized in G1 and released in YPD supplemented with 200 mM HU. 90 min later 10-fold serial dilution were prepared and spotted onto YPD plates. The same was done with the G1-synchronized cultures as control. doi:10.1371/journal.pgen.1002022.g003

Discussion

Apical checkpoint kinases (Mec1/tel1 in budding yeast, ATR/ATM in humans) convert a structural signal coming from damaged DNA to a phosphorylation-based signaling cascade, and a large amount of work has been devoted to clarify the underlying mechanisms. Initially, the attention was focused on the recruitment of these kinases to damaged DNA [15], based on the assumption that binding to damaged chromatin sites would lead to their activation. More recently, the finding that Dpb11/TopBP1 stimulates Mec1 activity suggests a more complex scenario [40,41,42].

In vitro data obtained in Xenopus egg and mammalian cell extracts demonstrate the ability of TopBP1 to increase Mec1 kinase activity [35,38]. The significance of this TopBP1 function does not appear to be specific for multicellular eukaryotes, since an interaction between Rad4/Cut5 and the checkpoint sensor kinase Rad3-Rad26 has also been found in S. pombe [46,47]. More recently, in S. cerevisiae cells, Dpb11 has been demonstrated to contain an ATR activation domain (AAD), which is sufficient to promote Mec1 activation in vitro [41,42]. These findings apparently contradict a previous observation that Mec1 can normally phosphorylate Ddc2 in a dpb11-1 mutant, lacking part of the AAD, after UV damage in M phase [16], while in our hands DDC1 deletion prevents Ddc2 phosphorylation (unpublished observation). Two explanations can be envisaged: in dpb11-1 mutant cells, Mec1 activity may be sufficient to phosphorylate Ddc2, while being defective towards other substrates; alternatively, Dpb11 may play only a marginal role in response to UV irradiation in M phase. We favored the second hypothesis because dpb11-1/mec1 mutant cells are mildly sensitive to UV irradiation and are proficient in the G2/M checkpoint; moreover, the 9-1-1 complex participates in the Dpb11 signaling branch via its minor subunits, we deleted DDC1 in combination with the DDC1 deletion. Figure 5C shows that Rad53 phosphorylation is severely impaired in the double mutant dpb11-1ddc1-4A, closely resembling the phenotype of a dpb11-1ddc1-1 mutant. The same effect is measured by testing H2A phosphorylation in HU-treated samples (Figure 5D). The signals obtained for each time-point are quantified with respect to the signal detected in G1-arrested cells, in order to compensate for the higher basal level of γH2A observed in dpb11-1ddc1-4A double mutant cells in the absence of any treatment. Moreover, no unscheduled DNA damage checkpoint activation occurs, since no Rad9 phosphorylation is detected in dpb11-1ddc1-1 cells treated with HU (Figure 5E). Finally, the dpb11-1ddc1-1 strain shows an HU sensitivity similar to that found in dpb11-1ddc1-1 cells (Figure 5E).
To better understand the process of Mec1 activation in vivo after DNA damage or replication stress, we analyzed the relative functions of the two putative Mec1 activators: Dpb11 and the 9-1-1 complex. We extended our previous analysis by monitoring, in different cell cycle phases, a direct target of Mec1 kinase (histone H2A) as marker of Mec1 activity. We found that, both in G1 and in M phase, the 9-1-1 complex is absolutely required for Mec1 activation in response to UV treatment, while the contribution of Dpb11 AAD is only partial (50%) and restricted to G1. These in vivo findings are in agreement with the current activation model inferred from in vitro biochemical data [39], indicating that 9-1-1 can stimulate Mec1 through both Dpb11-dependent and -independent pathways in G1 (Figure 6, left). Differently, in M phase, the ATR activation domain of Dpb11 is dispensable for full Mec1 activation, which relies mainly on the presence of 9-1-1 (Figure 6, right). In fact, the residual UV-induced H2A phosphorylation detectable in the ddc1Δ strain, is dependent upon the Tel1 kinase (Figure 1). Different requirements for Mec1 activation in G1 and in M phase may reflect differences in CDK-controlled processing of DNA filament ends to generate the substrate detected by checkpoint factors [48,49].

To complete studying of the pathways leading to Mec1 activation in different cell cycle stages, we analyzed the contribution of Dpb11 and Ddc1 to Mec1 activation in S phase cells challenged with replication stress. HU decreases the cellular concentration of dNTPs available for DNA synthesis and yeast cells respond by activating the replication checkpoint. In vivo analysis of the phosphorylation state of two Mec1 substrates, H2A and Rad53, indicates that Dpb11 and 9-1-1 participate in Mec1 activation in response to HU treatment independently of each other in two parallel pathways. The possibility that dpb11-1 may cause problems to the replication process triggering a DNA damage response mediated by the 9-1-1 complex, similarly to what happens in mrc1Δ cells [22], seems unlikely. In fact, the Rad9 DNA damage-specific adaptor does not become hyperphosphorylated in both dpb11-1 and ddc1Δ single mutants. In agreement with such observation, rad9Δdpb11-1 cells are much less sensitive to HU than ddc1Δ dpb11-1 cells (Figure 2 and [43]).

We report that the HU sensitivity of ddc1Δ dpb11-1 strain is not due to replication fork collapse or premature elongation of the mitotic spindle (Figure 3 and Figure S2), two phenotypes characteristic of mutants defective in the replication checkpoint.
observation suggests that another Rad53 function activated by the replication checkpoint, and different from that responding to temporary fork arrest, is essential for sustaining growth in the constant presence of hydroxyurea. Indeed, \textit{ddc1}A \textit{dpb11}-1 double mutant cells grown in the presence of HU show defects in completing replication and accumulate replication intermediates. Moreover, \textit{ddc1}A \textit{dpb11}-1 cells are unable to counteract the effect of HU by upregulating ribonucleotide reductase. Interestingly, \textit{CRT1} deletion partially suppresses HU sensitivity of the double mutant strain (Figure 4E).

To obtain more insights on the pathways leading to Ddc1-dependent and Dpb11-dependent activation of replication checkpoint and to identify possible mechanisms specific for lagging or leading strand fork arrest, we analyzed mutants in the genes coding for proteins that are known to be involved in leading strand replication. During initiation of DNA replication, Dpb11 interacts with both Sld2 and Sld3 in a phosphorylation-dependent manner, a process that is required for origin firing [26,27]. Moreover, temperature sensitive \textit{drc1}-1, cells, mutated in Sld2, display the same checkpoint-deficient phenotype of \textit{dpb11}-1 cells, when treated with HU at the non-permissive temperature, (Figure 5 and [25]). We tested whether Sld2 functions with Dpb11 in the same 9-1-1-independent pathway for Mec1 activation. Combining the \textit{drc1}-1 allele with the \textit{DDC1} deletion, we found that \textit{ddc1}A \textit{drc1}-1 double mutant cells display the same Rad53 phosphorylation defect and the same HU sensitivity of a \textit{ddc1}A \textit{dpb11}-1 strain, indicating that Mec1 activation by Dpb11 also requires Sld2 (Figure 5).

Mutants in the Pol2 C-terminus, the enzyme replicating the leading strand [50], are defective in the establishment of the replication checkpoint [24,50] and this protein region of Pol2 was suggested to be involved in its interaction with other three Pol3 subunits: the essential Dpb2 protein and the non-essential Dpb3 and Dpb4 subunits [31,45,51]. Disruption of the \textit{DPB4} gene in a \textit{ddc1}A background leads to identical phenotypes to the one observed in \textit{ddc1}A \textit{dpb11}-1 and \textit{ddc1}A \textit{drc1}-1, strongly suggesting that the 9-1-1-independent pathway involves leading strand replication factors. The observations that Dpb11 acts directly on Mec1 activity [41,42] and that, in the \textit{dpb11}-1 mutant, Pol2 seems to be normally loaded onto replication origins [52], strongly suggest that Dpb4, and possibly Sld2, function upstream of Dpb11 during checkpoint signaling. Unfortunately, it is impossible to perform a complete formal epistatic analysis as the \textit{dpb11}-1 mutation also affects replication initiation and deletion of \textit{CRT1} partially suppresses HU sensitivity of the double mutant strain (Figure 4E).

In conclusion our data suggest that during exposure to hydroxyurea, two independent pathways sense replication stress and signal for Mec1 activation. The first pathway depends on 9-1-1, which is known to be loaded at the 5’ of primer-template junctions, when RPA covers ssDNA ahead of the primer [34]. During unchallenged DNA replication these structures are normally formed on the lagging strand as a consequence of discontinuous DNA synthesis, and rapidly removed by refilling polymerase activity. Inhibition of DNA polymerization by HU likely stabilizes the 5’ DNA end providing the structure required for 9-1-1 loading. On the other hand, the higher processivity of leading strand factors Dpb11, Dpb11 and Sld2 becomes relevant to induce Mec1 activation [Figure 6, center]. The hypothesis that Pol2, Sld2

Figure 5. Pol2 associated proteins are involved in the 9-1-1-independent checkpoint signaling branch. (A) Strains K699 (WT), Y799 (\textit{drc1}-1), YAN21/8d (\textit{ddc1}A), YFP218/1a (\textit{ddc1}A\textit{drc1}-1) and YFP62/1d (\textit{ddc1}A\textit{drc1}B11) were cultured to mid-log phase, synchronized in G1 with \alpha-factor and released into fresh medium supplemented with 200 mM HU. At the indicated time-points Rad53 phosphorylation was assayed by SDS-PAGE and Western blotting. (B) Ten-fold serial dilutions of overnight cultures of the strains in panel A were spotted on YPD plates supplemented with HU at the indicated concentration. Survival was assayed by monitoring cell growth after 6 days. (C) Strains K699 (WT), YFP67/1a (\textit{dpb4}A1), YAN21/8d (\textit{ddc1}A), YFP206/1a (\textit{ddc1}A\textit{drc1}B4) and YFP62/1d (\textit{ddc1}A\textit{drc1}B11) were cultured to mid-log phase, synchronized in G1 with \alpha-factor and released into fresh medium supplemented with 200 mM HU. At the indicated time-points, protein extracts were prepared and separated by SDS-PAGE. Rad53 phosphorylation was assayed by Western blotting. (D) The same filter was probed for Mec1 activity by testing histone H2A phosphorylation. A quantification of \gammaH2A, using \alpha-Rad53 cross reacting band as loading control is shown in the lower panel. The values indicate the fold increase respect to the WT G1 sample. (E) Ten-fold serial dilutions of overnight cultures of the strains in panel C were spotted on YPD plates supplemented with HU at the indicated concentration. Cell survival was assayed monitoring cell growth after 6 days. In all the relevant panels the loading control is indicated by an asterisk.

doi:10.1371/journal.pgen.1002022.s005

[7,12]. Accordingly, the HU sensitivity of \textit{ddc1}A\textit{dpb11}-1 double mutant cells, differently from that of a \textit{mec1}-1\textit{sml1} strain, is not detectable in the case of transient HU treatment. This
and Dpb11 work together in sensing replication stress is supported by the recent finding that an unstable complex containing Dpb11, Slg2, Polε and GINS is formed at the beginning of S-phase [44]. Moreover, the demonstration that under unstressed conditions Polε acts on the leading strand while Polδ works on the lagging strand [50,54] supports the hypothesis that Polε and its interacting subunits may function in sensing replication stress on the leading strand, while the 9-1-1 complex may be more important to detect lagging strand fork arrest. Additional work will be needed to confirm this model and to identify the mechanisms leading to Dpb11 recruitment at the sites of replication fork stalling, since Dpb11 appears to co-localize with Polε during initiation of DNA replication, but not during elongation [52].

Materials and Methods

Yeast strains

All of the strains used in this work are derivatives of W303 (K699 [MATa ade2-1 trp1-1 can1-100 leu2-3,12 his3-11,15 ura3]) and are listed in Table 1. Deletion strains were generated by using the one-step PCR system [55] or by genetic crossing.

Cell cycle synchronization and HU treatment

Cells were grown overnight at 25°C to a concentration of 5 × 10^6 cells/ml and arrested with nocodazole or α-factor (20 μg/ml). 50 ml of cultures were spun, resuspended in 500 ml of sterile water, and plated on a Petri dish (14 cm diameter). Rapidly, a 15 ml untreated sample was taken. Plates were irradiated at 75 J/m² and cells were resuspended in 50 ml of YPD + nocodazole or α-factor. Three 15 ml samples were taken every 10 minutes after irradiation.

SDS page, western blot, and quantification

Trichloroacetic acid protein extracts [56] were separated by SDS-PAGE; for the analysis of Rad9 phosphorylation, NuPAGE Tris-Acetate 3–8% gels (Invitrogen) were used following the manufacturer’s instructions. Western blotting was performed with anti-Rad53, anti-H2A-S129 (Abcam #15083), anti-Actin (Sigma #A2066), anti-Sml1 and anti-Rad9 antibodies, using standard techniques. Values of phospho-H2A levels were obtained by quantifying the signal in the corresponding lanes using Quantity

Figure 6. A model for 9-1-1 and Dpb11 function in Mec1 activation. After UV irradiation in G1, Mec1 is activated by the 9-1-1 complex both directly and through the Dpb11 C-terminus (right); in M phase Mec1 activation is achieved mainly through the 9-1-1 complex, independently of Dpb11 (left). In S phase Dpb11 and the 9-1-1 complex signal replication stress to Mec1 independently from each other, likely because the detection of replication stress occurs independently on the leading and lagging strands. 9-1-1 complex could signal replication stress on the lagging strand, where the 5’ ends necessary for its loading are generated as the result of discontinuous replication. Dpb11, instead, could signal replication stress on the leading strand together with the interacting Polε.

doi:10.1371/journal.pgen.1002022.g006
the same solution. Spheroplasts were prepared using 5 mM (YOL1/34, Seralab) diluted 1:100 in PBS-5%BSA.

...slides which were incubated overnight with the same solution and used to prepare multi-well immunofluorescence.

10 mg/ml Zymolyase at 37 0C. The suspensions were spotted on HU plates, which were incubated at 25 0C for 6 days.

Pulsed field gel electrophoresis

Agarose plugs containing yeast chromosomes were prepared as described previously [57]. These were incubated overnight at 37°C in 0.5 ml/plug TE containing 1 mg/ml RNaseA. After extensive washes with Wash Buffer (10 mM Tris-HCl pH 7.5 50 mM EDTA), plugs were loaded on 1% agarose gel and sealed in the wells with a solution of 1% LMP agarose in TBE 0.5X. Gels were run at 4°C for 24 h at 165 V, with 60 seconds pulses for 12 h and 90 second pulses for 12 h, using an Amersham Gene Navigator system.

Table 1. Strains used in this work.

Name	Relevant Genotype	Reference
K699	MATa ade2-1 trp1-1 leu2-3,112 his3-11,15 ura3-1, can1-100	K.Nasmyth
YAN21/8d	(K699) ddc1::kanMX6	A. Nespoli
YFP20	(K699) dpb11-1	Puddu, 2008
YFP62/1d	(K699) ddc1::kanMX6 dpb11-1	Puddu, 2008
YMIC5A3	(K699) mec1-1 smi1	M. Giannattasio
YFP125/6d	(K699) mrc1::HIS3	This Work
YFP167/1a	(K699) dpb4::HIS5	This Work
YFP206/1a	(K699) ddc1::kanMX6 dpb4::HIS3	This Work
Y799	(K699) ddc1::HIS5	Wang & Elledge, 1999
YFP218/1a	(K699) ddc1::ka MX6 drc1::HIS5	This Work
YFP74	(K699) rad9::HIS3	This Work
YFP161/SC	(K699) rad9::HIS3 dpb11::HIS3	This Work
YFP328	(K699) crr1::HIS3	This Work
YFP330	(K699) ddc1::kanMX6 crr1::HIS3 dpb11::HIS3	This Work
YMIC6C3	(K699) tel1::kanMX6	M. Giannattasio
YFP223	(K699) ddc1::kanMX6 tel1::HIS3	This Work
YFP225	(K699) dpb11-1 tel1::HIS3	This Work
YFP230	(K699) ddc1::kanMX6 dpb11-1 tel1::HIS3	This Work

Supporting Information

Figure S1 H2A is phosphorylated during the cell cycle. (A) Strains K699 (WT) and YMIC5A3 (mec1-1 smi1) were arrested in G1 with α-factor and UV irradiated. At the indicated time-points Mec1 activation was assayed by western blotting monitoring γH2A, using actin as loading control. (B) Strains K699 (WT) and YMIC6C3 (tel1ΔA) were arrested in M phase with nocodazole and UV irradiated. At the indicated time-points Mec1 activation was assayed by western blotting monitoring γH2A and using actin as loading control. (C) K699 (WT) was synchronized in G1 with α-factor and released into fresh medium. Every 10 min samples of the culture were withdrawn and progression into the cell cycle was monitored by FACS analysis. H2A phosphorylation was monitored by western blotting. (D) Strains K699 (WT), YMIC6C3 (tel1ΔA), YFP20 (dpb11-1) and YFP225 (tel1ΔAdpb11-1) were processed as in B.

Figure S2 Tel1 contributes minimally to Rad53 phosphorylation in the absence of either Ddc1 or Dpb11-AAD. (A) Strains K699 (WT), YAN21/8d (ddc1ΔA), YFP20 (dpb11-1), YMIC6C3 (tel1ΔA), YFP225 (tel1ΔAddc1ΔA), YFP225 (tel1ΔAdpb11-1) were synchronized in G1 with α-factor and released in fresh medium supplemented with 200 mM HU. At the indicated time-points Rad53 phosphorylation was assayed by SDS-PAGE and western blotting. (B) Ten fold serial dilutions of overnight cultures of strains K699 (WT), YMIC6C3 (tel1ΔA), YFP62/1d (ddc1ΔAdpb11-1), YMIC5A3 (mec1-1) and YFP230 (ddc1ΔAdpb11-1 tel1ΔA) were spotted on YPD plates supplemented with HU at the indicated concentration. Survival was assayed by monitoring cell growth after 6 days.

Figure S3 Low levels of Mec1 activity are sufficient to delay mitosis following S-phase arrest. (A) K699 (WT), YFP20 (dpb11-1),
YAN21/8d (ddc1-1), YFP62/1d (ddc1-1dpb11-1) and YMIC5A3 (mic1-1) were synchronized in G1 with α-factor and released into fresh medium supplemented with 200 mM HU. 90 min later precocious entry into mitosis was monitored measuring spindle elongation by indirect immunofluorescence. Representative pictures are shown (blue = DNA; red = tubulin). Spindle length of 200 cells for each sample was measured and the frequencies of the different spindle length classes are shown in the lower panel. (TIF)

Figure S4 Hydroxyurea does not elicit a DNA damage response in the ddc1-1 and dpb4-4 mutants. (A) Strains K699 (WT), Y799 (ddc1-1), YAN21/8d (ddc1-1), YFP218/1a (ddc1-1dpb11-1) and YFP62/1d (ddc1-1dpb11-1) were grown to mid-log phase, synchronized in G1 with α-factor and released into fresh medium supplemented with 200 mM HU. After 90 min Rad9 phosphorylation was assayed by SDS-PAGE and western blotting. (B) Strains K699 (WT), YFP167/1a (dpb4-4), YAN21/8d (ddc1-1), YFP206/1a (ddc1-1dpb4-4) and YFP62/1d (ddc1-1dpb11-1) were grown to mid-log phase, synchronized in G1 with α-factor and released into fresh medium supplemented with 200 mM HU. 90 minutes later protein extracts were prepared and separated by SDS-PAGE. Rad9 phosphorylation was assayed by SDS-PAGE and western blotting. (TIF)

Acknowledgments

We thank H. Araki and S. Elledge for providing strains and plasmids; C. Santocanale, D. Stern, and R. Rothstein for the kind gift of antibodies. All the members of the lab are thanked for helpful discussions.

Author Contributions

Conceived and designed the experiments: FP PP MM-F. Performed the experiments: FP GP. Analyzed the data: FP GP PP MM-F. Wrote the paper: FP PP MM-F.

References

1. Cha RS, Kleckner N (2002) ATR homolog Mec1 promotes fork progression, thus averting breaks in replication slows zones. Science 297: 602–606.
2. Brewer BJ, Fangman WL (1988) A replication fork barrier at the 3’ end of yeast ribosomal RNA genes. Cell 53: 637–643.
3. Kradoff IH, Brown NC, Reichard P (1969) Inhibition of ribonucleoside diphosphate reductase by hydroxyurea. Cancer Res 29: 1559–1565.
4. Branner D, Foiani M (2009) The checkpoint response to replication stress. DNA Repair (Amst) 8: 1038–1046.
5. Sogo JM, Lopes M, Foiani M (2002) Fork reversal and ssDNA accumulation at stalled replication forks owing to checkpoint defects. Science 297: 599–602.
6. Desany BA, Alcasabas AA, Bachant JB, Elledge SJ (1998) Recovery from DNA replication stress is the essential function of the S-phase checkpoint pathway. Genes Dev 12: 2953–2970.
7. Lopes M, Cotta-Ramusino C, Pellicioli A, Liberi G, Pavani P, et al. (2001) The DNA replication checkpoint response stabilizes stalled replication forks. Nature 412: 557–618.
8. Lucca C, Vanoli F, Cotta-Ramusino C, Liberi G, Plevani P, et al. (2004)Checkpoint-mediated control of replication fork association and signalling in response to replication pausing. Oncogene 23: 1206–1213.
9. Huang M, Zhou Z, Elledge SJ (1998) The DNA replication and damage checkpoint pathways induce transcription by inhibition of the Crt1 repressor. Cell 94: 595–605.
10. Zhao X, Chabes A, Domkin V, Thelander L, Rothstein R (2001) The ribonucleoside reductase inhibitor Snf1 is a new target of the Mec1/Rad53 kinase cascade during growth and in response to DNA damage. EMBO J 20: 3544–3553.
11. Santocanale C, Diffley JF (1998) A Mec1- and Rad53-dependent checkpoint controls late-firing origins of DNA replication. Nature 393: 615–618.
12. Allen JR, Zhong Y, Scriabine W,Friedberg EC, Elledge SJ (1999) The SAD1/dpb4-4 protein kinase controls multiple checkpoints and DNA damage-induced transcription in yeast. Genes Dev 8: 2401–2413.
13. Bachant J, Jessen SR, Kavanagh SE, Fielding CS (2005) The Yeast S-phase checkpoint enables replicating chromosomes to bi-orient and restrain spindle extension during S phase distress. J Cell Biol 168: 999–1012.
14. Weintert TA, Kiser GL, Harnwell LH (1994) Mitotic checkpoint genes in budding yeast and the dependence of mitosis on DNA replication and repair. Genes Dev 8: 652–665.
15. Zou L, Elledge SJ (2003) Sensing DNA damage through ATRIP recognition of 5'-DNA junctions. J Biol Chem 278: 4782–4793.
16. Huyen Y, Zgeib O, Ditullio RA, Gorgoulis VG, Zarachatos P, et al. (2004) Methylated histone H3 targets 53BP1 to DNA double-strand breaks. Nature 432: 406–411.
17. Giannattasio M, Lazzaro F, Plevani P, Muzi-Falconi M (2005) The DNA damage checkpoint response requires histone H2B ubiquitination by Rad6b-Bre1 and H3 methylation by Dot1. J Biol Chem 280: 9079–9086.
18. Do L-L, Nakamura TM, Russell P (2006) Histone modification-dependent and independent pathways for recruitment of checkpoint protein Cez2 to double-strand breaks. Genes Dev 20: 1583–1596.
19. Granata M, Lazzaro F, Novarina D, Panigada D, Puddu F, et al. (2010) Dynamics of Rad9 chromatin Binding and Checkpoint Function are Mediated by its Dimerization and are Cell Cycle-Regulated by CDK1 Activity. PLoS Genet 6: e1001047. doi:10.1371/journal.pgen.1001047.
40. Majka J, Niedziela-Majka A, Burgers PMJ (2006) The Checkpoint Clamp Activates Mecl Kinase during Initiation of the DNA Damage Checkpoint. Mol Cell 24: 891–901.
41. Mordes DA, Nam EA, Cortez D (2008) Dpb11 activates the Mecl-Ddc2 complex. Proc Natl Acad Sci U S A 105: 10734–10739.
42. Navadgi-Patil VM, Burgers PM (2008) Yeast DNA replication protein Dpb11 activates the Mecl/ATR checkpoint kinase. J Biol Chem 283: 35853–35859.
43. Wang H, Elledge SJ (2002) Genetic and physical interactions between Dpb11 and Ddc1 in the yeast DNA damage response pathway. Genetics 160: 1295–1304.
44. Muramatsu S, Hirai K, Tak Y-S, Kamimura Y, Araki H (2010) CDK-dependent complex formation between replication proteins Dpb11, Sld2, Pol epsilon, and GINS in budding yeast. Genes Dev 24: 662–672.
45. Edwards S, Li CM, Levy DL, Brown J, Snow PM, et al. (2003) Saccharomyces cerevisiae DNA polymerase epsilon and polymerase sigma interact physically and functionally, suggesting a role for polymerase epsilon in sister chromatid cohesion. Mol Cell Biol 23: 2733–2746.
46. Furuya K, Poietea M, Guo L, Caspari T, Carr AM (2004) Chkl activation requires Rad9 S/TQ-site phosphorylation to promote association with C-terminal BRCT domains of Rad7/TopBP1. Genes Dev 18: 1154–1164.
47. Taricani L, Wang TSF (2006) Rad7/TopBP1, a scaffold protein, plays separate roles in DNA damage and replication checkpoints and DNA replication. Mol Biol Cell 17: 3456–3468.
48. Ira G, Pellicioni A, Balija A, Wang X, Fiorani S, et al. (2004) DNA end resection, homologous recombination and DNA damage checkpoint activation require CDK1. Nature 431: 1011–1017.
49. Aylon Y, Liefshitz B, Kupiec M (2004) The CDK regulates repair of double-strand breaks by homologous recombination during the cell cycle. EMBO J 23: 4868–4875.
50. McElhinny SAN, Gordenin DA, Sinth CM, Burgers PMJ, Kunkel TA (2006) Division of labor at the eukaryotic replication fork. Mol Cell 30: 137–144.
51. Dua R, Levy DL, Campbell JL (1998) Role of the putative zinc finger domain of Saccharomyces cerevisiae DNA polymerase epsilon in DNA replication and the S/M checkpoint pathway. J Biol Chem 273: 30046–30055.
52. Masumoto H, Sugino A, Araki H (2000) Dpb11 controls the association between DNA polymerases alpha and epsilon and the autonomously replicating sequence region of budding yeast. Mol Cell Biol 20: 2809–2817.
53. Kamimura Y, Masumoto H, Sugino A, Araki H (1998) Sld2, which interacts with Dpb11 in Saccharomyces cerevisiae, is required for chromosomal DNA replication. Mol Cell Biol 18: 6102–6109.
54. Burgers PM (2008) Polymerase dynamics at the eukaryotic DNA replication fork. J Biol Chem 284: 4041–4045.
55. Longtine MS, McKenzie A, Demarini DJ, Shah NG, Wach A, et al. (1998) Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14: 953–961.
56. Falconi MM, Piori A, Ferrari M, Laschini G, Plevani P, et al. (1993) De novo synthesis of budding yeast DNA polymerase alpha and POL1 transcription at the G1/S boundary are not required for entrance into S phase. Proc Natl Acad Sci U S A 90: 10519–10523.
57. Lengronne A, Pasero P, Bensimon A, Schwob E (2001) Monitoring S phase progression globally and locally using BrdU incorporation in TK(+) yeast strains. Nucleic Acids Res 29: 1433–1442.