Circulating matrix metalloproteinases are associated with arterial stiffness in patients with type 1 diabetes
Peeters, Stijn A; Engelen, Lian; Buijs, Jacqueline; Chaturvedi, Nish; Fuller, John H; Jorsal, Anders; Parving, Hans-Henrik; Tarnow, Lise; Theilade, Simone; Rossing, Peter; Schalkwijk, Casper G; Stehouwer, Coen D A
Published in:
Cardiovascular Diabetology

DOI:
10.1186/s12933-017-0620-9

Publication date:
2017

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (APA):
Peeters, S. A., Engelen, L., Buijs, J., Chaturvedi, N., Fuller, J. H., Jorsal, A., ... Stehouwer, C. D. A. (2017). Circulating matrix metalloproteinases are associated with arterial stiffness in patients with type 1 diabetes: pooled analysis of three cohort studies. DOI: 10.1186/s12933-017-0620-9
Circulating matrix metalloproteinases are associated with arterial stiffness in patients with type 1 diabetes: pooled analysis of three cohort studies

Stijn A. Peeters1,2, Lian Engelen1,3, Jacqueline Buijs2, Nish Chaturvedi4, John H. Fuller5, Anders Jorsal6,7,8, Hans-Henrik Parving9, Lise Tarnow6,10, Simone Theilade6, Peter Rossing6,11, Casper G. Schalkwijk1,12 and Coen D. A. Stehouwer1,12*

Abstract

Background: Altered regulation of extracellular matrix (ECM) composition by matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinase (TIMPs) may contribute to arterial stiffening. We investigated associations between circulating MMP-1, -2, -3, -9, -10 and TIMP-1, and carotid-femoral pulse wave velocity (cfPWV) and pulse pressure (PP), as markers of arterial stiffness in type 1 diabetic patients.

Methods: Individuals with type 1 diabetes from three different cohorts were included in this study: EURODIAB Prospective Complications study (n = 509), LEACE (n = 370) and PROFIL (n = 638). Linear regression analyses were used to investigate cross-sectional associations between circulating levels of MMP-1, -2, -3, -9, -10, and TIMP-1 and cfPWV (n = 614) as well as office PP (n = 1517). Data on 24-h brachial and 24-h central PP were available in 638 individuals from PROFIL. Analyses were adjusted for age, sex, duration of diabetes, HbA1c, mean arterial pressure (MAP), and eGFR, and additionally for other cardiovascular risk factors and presence of vascular complications.

Results: After adjustment for potential confounders and presence of vascular complications, circulating MMP-3 was associated with cfPWV (β per 1 SD higher lnMMP3 0.29 m/s (0.02; 0.55)). In addition, brachial and central 24-h PP measurements in PROFIL were significantly associated with MMP-2 ([1.40 (0.47;2.33) and 1.43 (0.63;2.23)]. Pooled data analysis showed significant associations of circulating levels of MMP-1 and MMP-2 with office PP (β per 1 SD higher lnMMP-1 and lnMMP-2 = −0.83 mmHg (95% CI −1.50; −0.16) and = 1.33 mmHg (0.55; 2.10), respectively).

Conclusions: MMPs-1, -2, and -3 are independently associated with markers of arterial stiffening in patients with type 1 diabetes and may become therapeutic targets.

Keywords: Type 1 diabetes, Matrix metalloproteinase, Tissue inhibitor of metalloproteinase, Pulse pressure, Arterial stiffness, Carotid-femoral pulse wave velocity

Background

Arterial stiffening is an important pathway through which diabetes causes cardiovascular disease [1]. The current gold standard to quantify arterial stiffness [2] is carotid-femoral pulse wave velocity (cfPWV) measurements, which have shown to be significantly higher in type 1 diabetic patients with previous CVD compared to patients without CVD after multivariable adjustment [3]. In addition, previous studies in individuals with type 1 diabetes have shown independent associations between higher pulse pressure (PP), another and older marker of arterial stiffness, and incident cardiovascular disease (CVD) [4, 5] and all-cause mortality [4].
Although the pathogenic mechanism leading to greater arterial stiffness in type 1 diabetes has not been fully elucidated, extracellular matrix (ECM) remodelling, by matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinases (TIMPs), is thought to contribute to alterations in vascular collagen and/or elastin content, proliferation and migration of vascular smooth muscle cells, and plaque instability, potentially leading to greater arterial stiffness, hypertension and subsequent micro- and macrovascular complications [6–10].

So far, studies reporting on associations between circulating levels of MMPs and TIMP on the one hand and arterial stiffness on the other have been inconsistent. cfPWV has been positively associated with (pro)MMP-1 [11–13], MMP-2 [14–16], MMP-9 [14] and TIMP-1 [17], whereas null associations between circulating levels of MMP-9 [15, 17, 18] and TIMP-1 [15, 18] and cfPWV have also been published. Only one study showed a positive association between MMP-2 and PP [19]. Most studies were relatively small and addressed only a limited number of MMPs, and none focused specifically on individuals with type 1 diabetes.

Therefore, the aim of our study was to investigate associations between circulating levels of MMP-1, -2, -3, -9, and -10 and of TIMP-1 with markers of arterial stiffness, i.e. cfPWV and PP in individuals with type 1 diabetes.

Methods

Study population

To study possible associations between circulating markers of ECM remodelling and cfPWV, the current gold standard for arterial stiffness, we used the PROFIL study [3], which is a cross-sectional study that was conducted at the Steno Diabetes Center in Denmark, between 2009 and 2011, and included 676 individuals with type 1 diabetes. In the diabetes group, 316 patients were normoalbuminuric, 169 had microalbuminuria and 191 had macroalbuminuria (by design).

Further evaluation of arterial stiffness in individuals with type 1 diabetes, as expressed by PP, was performed by combining data from the PROFIL study with data from the EURODIAB Prospective Complications Study [20–22] and the LEACE study [23]. We added these analyses in multiple studies to investigate external validity and reproducibility, as cfPWV was only present in 1 study. In brief, the cross-sectional EURODIAB nested case–control study, which was performed as follow-up from the EURODIAB Prospective Complications Study, included 543 individuals with type 1 diabetes. Selected cases (n = 348) were those with one or more vascular complications, whereas controls (n = 195) were those without any evidence of vascular complications. The LEACE study is a prospective cohort study conducted at the Steno Diabetes Center in Denmark, with baseline measurements performed in 1993 when 391 individuals with type 1 diabetes were included. In this study group, 199 had diabetic nephropathy and 192 had normoalbuminuria (by design).

Individuals with missing data on MMPs or TIMP-1 (n = 25), office PP (n = 15) or potential confounders (n = 53) were excluded from the present analyses, resulting in a total study population of 1517 individuals (509 from EURODIAB, 370 from LEACE and 638 from PROFIL). The local Ethics Committees approved the studies and all patients gave informed consent.

Main determinants

Concentrations of MMP-1, MMP-2, MMP-3, MMP-9, MMP-10 and TIMP-1 were determined in EDTA plasma (for LEACE) or serum samples (for EURODIAB and PROFIL) that were stored at −80 °C until analyses. Circulating levels of MMPs and TIMP-1 were measured using a commercially available multi-array enzyme-linked immunosorbent assay (ELISA) kit [Human MMP-3-Plex Kit (for MMP-1, -3 and -9), Human MMP-2-Plex Kit (for MMP-2 and -10) and Human TIMP-1 Kit, MSD, Rockville, United States of America] according to the manufacturer’s protocol. The MMPs were detected in both a pro- and an active form. TIMP-1 was detected only in the active form. The intra- and inter-assay coefficients of variation were < 10% for MMP-1, -2, -3, -9, and -10 and TIMP-1 in all studies, except for the inter-assay coefficient of variation of MMP-1 in PROFIL (10.4%), the inter-assay coefficients of variation in all studies for MMP-3 (10.8–14.1%) and the inter-assay coefficient of variation for MMP-9 in LEACE (13.7%).

Main outcomes

cfPWV and/or PP were studied as markers of arterial stiffness. cfPWV measurements were performed in the PROFIL study and were available in 614 of the 638 participants. Trained laboratory technicians performed the measurements with the SphygmoCor device (AtCor Medical, Sydney, Australia) in participants in a supine position after a resting period of 15 min. Three cfPWV measurements were recorded and the two measurements closest to each other were averaged and used in the analyses.

In the EURODIAB and the LEACE studies, a random zero sphygmomanometer (Hawksley, Lancing, UK) with the appropriate cuff size was used to measure arterial blood pressure. In the EURODIAB study, measurements were performed in a seated position after resting for 5 min [24], whereas in the LEACE study measurements were performed after at least 10 min of rest in supine position [25]. In the PROFIL study, brachial
blood pressure was determined after resting for 15 min in supine position (A&D Medical, Tokyo, Japan) using an appropriate cuff size [26]. PP (mmHg) was calculated by subtracting diastolic blood pressure from systolic blood pressure. Besides PP, in 638 patients from the PROFIL study, data on 24-h ambulatory blood pressure measurements (ABPM) were available. A validated tonometric watch-like device (BPro, HealthStats, Singapore) was used to record these 24-h ABPM. This device captured radial pulse wave reflections and calculated ABPM [27, 28]. The device was calibrated to brachial blood pressure and calculated central blood pressure. Blood pressure was measured every 15 min. ABPM data were considered adequate when at least 14 and 7 measurements were performed during the day (07.00 a.m.–11.00 p.m.) and night (11.00 p.m.–07.00 a.m.), respectively, according to current guidelines [29]. A mean ± SD of 45 ± 7 successful measurements were recorded during the day and 18 ± 4 during the night.

Potential confounders
Demographic data, information about medication, smoking history, duration of diabetes and use of antihypertensive medication were collected using questionnaires and patient records. Mean arterial pressure (MAP) was calculated as: [systolic blood pressure + (2 * diastolic blood pressure)]/3. Body weight and height were measured to calculate the body mass index (BMI). Blood samples were taken for measurements of total cholesterol, glycated hemoglobin (HbA1c) and creatinine. We estimated the glomerular filtration rate (eGFR) using the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation [30].

Vascular complications
Vascular complications were defined as presence of macro- and/or microvascular complications, i.e. CVD, albuminuria or retinopathy. CVD was defined, in all studies, as a cardiovascular event in a patient’s medical history, including myocardial infarction, coronary intervention or stroke [3, 23, 31] and this definition is applicable to 96% of CVD in our total study population. In the EURODIAB study, angina and ischemic changes on ECG were also included in the definition of CVD [31]. In addition, (intervention for) peripheral arterial disease was additionally included in LEACE and PROFIL [3, 23].

Albumin excretion rates were measured in 24-h urine collections. Microalbuminuria was defined as albumin excretion rate (AER) between 20 and 200 µg/min or between 30 and 300 mg/24 h. Macroalbuminuria was defined as AER above 200 µg/min or 300 mg/24 h.

Retinopathy was assessed by retinal photography in all studies. Individuals were classified as no retinopathy, non-proliferative retinopathy, or proliferative retinopathy. In the PROFIL study blindness was also classified. Classification was conducted according to local protocols [3, 23, 32].

Statistical analyses
All analyses were performed using the Statistical Package for Social Sciences (SPSS), version 20 (IBM Corporation, Armonk, NY, USA). Log-transformation was performed for variables with a skewed distribution (i.e. MMP-1, MMP-2, MMP-3, MMP-9, MMP-10 and TIMP-1).

One-way ANOVA and Chi square tests were performed for comparison of baseline characteristics between the tertiles of cfPWV and of office PP. Linear regression analyses were applied to examine associations between circulating levels of MMP-1, MMP-2, MMP-3, MMP-9, MMP-10 and TIMP-1 on the one hand and cfPWV (n = 614), office PP (n = 1517), or 24-h PP (n = 638) measurements on the other. Analyses of these associations were adjusted for age, sex, duration of diabetes, HbA1c, eGFR, MAP, cohort and double inclusion (model 1). One hundred and thirty four patients were included in both the LEACE and the PROFIL study. However, inclusion in PROFIL was more than 15 years later than in LEACE. Therefore we decided to adjust for this instead of deleting these cases, which could lead to selection bias. The latter two adjustments in model 1 were only performed in case of office PP analysis. Further adjustments were made for total cholesterol, BMI, smoking status, use of antihypertensive medication and presence of any vascular complication (model 2). Results of these analyses are presented as m/s higher cfPWV or mmHg higher PP per 1 SD higher level of circulating lnMMP or lnTIMP-1. For this purpose, the MMP and TIMP-1 Z-scores were calculated cohort-specifically as absolute values may not be comparable due to sample preparation (i.e., plasma in LEACE vs. serum in EURODIAB and PROFIL). Furthermore, analyses of the associations between MMP-1, -2, -3, -9, and -10 and the outcomes were adjusted for the MMP inhibitor TIMP-1, as an indication of MMP activity.

We additionally tested for interaction by variables that may modify the associations between MMPs and TIMP-1 on the one hand and cfPWV or PP on the other (i.e. sex or, in the case of analyses with office PP, cohort) by adding product terms between these variables and MMPs and TIMP-1 to the fully adjusted models. We stratified our analyses whenever significant interactions (p for interaction < 0.05) were found.

Results
Patient characteristics
Table 1 shows patient characteristics according to tertiles of cfPWV (n = 614). Higher cfPWV was significantly
associated with higher age, male gender, higher BMI, longer duration of diabetes, higher systolic blood pressure, higher mean arterial pressure, higher PP and lower eGFR. In addition, higher cfPWV was positively associated with a higher prevalence of CVD, a higher degree of albuminuria and a higher degree of retinopathy. Circulating levels of MMP-1, MMP-2, MMP-3, MMP-9, MMP-10 and TIMP-1 were also significantly higher with higher cfPWV.

Associations between MMPs, TIMP-1 and cfPWV
Table 2 shows the results of the analyses of the associations between MMPs, TIMP-1 and cfPWV in 614 participants from the PROFIL study. Circulating MMP-3 levels showed an independent association with cfPWV [0.29 m/s (0.02; 0.55)] after full adjustment for potential confounders and presence of vascular complications. Circulating levels of MMP-1, MMP-2, MMP-9, MMP-10 and TIMP-1 were not independently associated with cfPWV. As both age and duration of diabetes are significantly associated, and can thus lead to overadjustment, we reanalyzed the data without adjustment for diabetes duration. Results showed an independent association between MMP-2 and cfPWV, with an increase in cfPWV of 0.24 m/s (0.02; 0.46) per 1 SD higher lnMMP-2, after adjustment for the other potential confounders and presence of vascular complications. In addition, the association between MMP-3 and cfPWV became stronger in the fully adjusted model [0.38 (0.11; 0.46)]. The associations between MMP-1, MMP-9, MMP-10, and TIMP-1 with cfPWV did not materially change after adjustment for age instead of age and diabetes duration.

Associations between MMPs, TIMP-1 and PP
Additional file 1: Table S1 and S2 show the patient characteristics of the three studies separately and according to tertiles of PP, respectively. Table 3 shows the results of the pooled data analysis of associations between MMPs, TIMP-1 and office brachial PP. After adjustment for potential confounders, 1 SD higher MMP-1 was inversely

Table 1 Patient characteristics according to tertiles of cfPWV (n = 614)

	First tertile	Second tertile	Third tertile	p value for linearity
	4.5–8.5 m/s	8.6–11.3 m/s	11.4–23.4 mmHg	
	(n = 204)	(n = 205)	(n = 205)	
Age (years)	45.2 (12.3)	54.9 (9.4)	63.0 (8.6)	< 0.001
Sex (male/female, %)	51/49	53/47	62/38	0.047
BMI (kg/m²)	24.5 (3.5)	25.0 (4.2)	25.9 (4.0)	0.001
HbA1c (%)	7.9 (1.2)	8.2 (1.2)	8.0 (1.0)	0.054
HbA1c (mmol/mol)	63 (13.2)	66 (13.3)	64 (10.5)	0.054
Duration of diabetes (years)	20.9 (14.4)	33.8 (12.6)	42.5 (12.5)	< 0.001
Total cholesterol (mmol/l)	4.69 (0.78)	4.64 (0.90)	4.75 (0.88)	0.454
Smoking at baseline (%)	20.1	24.4	15.1	0.183
Systolic blood pressure (mmHg)	123 (12)	131 (16)	143 (18)	< 0.001
Diastolic blood pressure (mmHg)	74 (9)	76 (10)	74 (9)	0.145
Mean arterial pressure (mmHg)	90 (9)	94 (11)	97 (11)	< 0.001
Pulse pressure (mmHg)	49 (10)	55 (12)	69 (15)	< 0.001
cfPWV (m/s)	7.4 [6.5–7.8]	9.8 [9.1–10.5]	13.6 [12.3–15.5]	–
Antihypertensive medication (%)	43.1	77.6	89.8	< 0.001
eGFR (ml/min/1.73 m²)	100 [85–108]	89 [63–99]	74 [53–91]	< 0.001
Cardiovascular disease (%)	7.4	20.0	31.2	< 0.001
Albuminuria (normo-/micro-/macro-, %)	69/18/13	45/26/29	32/25/43	< 0.001
Retinopathy (no/non-proliferative/proliferative/blind, %)	44/41/15/0	14/52/32/2	5/34/56/5	< 0.001
Z-score lnMMP-1	– 0.23 (0.95)	0.11 (1.03)	0.08 (0.90)	< 0.001
Z-score lnMMP-2	– 0.47 (0.95)	0.02 (0.89)	0.43 (0.95)	< 0.001
Z-score lnMMP-3	– 0.37 (0.91)	0.00 (1.00)	0.38 (0.84)	< 0.001
Z-score lnMMP-9	– 0.18 (0.92)	0.11 (0.95)	0.07 (0.98)	0.004
Z-score lnMMP-10	– 0.27 (0.98)	0.07 (1.06)	0.18 (0.93)	< 0.001
Z-score lnTIMP-1	– 0.26 (0.74)	0.00 (1.28)	0.20 (0.85)	< 0.001

Data are presented as means (standard deviation), median [inter-quartile range], or percentages, as appropriate.

BMI: body mass index, HbA1c: glycated hemoglobin, eGFR: estimated glomerular filtration rate by CKD-EPI formula, MMP: matrix metalloproteinase, TIMP-1: tissue inhibitor of metalloproteinase-1.
whereas MMP-2 and MMP-3 were positively associated (Table 3, model 3). MMP-9 was only associated with PP after adjustment for TIMP-1 were not independently associated with PP MMP-1, respectively. MMP-3, MMP-9, MMP-10 and (Table 3, model 3) or mutual adjustment for MMP-2 or material change after additional adjustment for TIMP-1 2.10) (Table 3, model 2). These associations did not MMP-2 was positively associated with PP [1.33 (0.55; 2.10)] (Table 3, model 2). These associations did not when included in the analysis with all MMPs and TIMP-1 together.

Table 2 Associations between serum levels of MMP-1, -2, -3, -9, and -10 and cPWWV (n = 614)

	Model	β	95% CI	p value
MMP-1	1	−0.11	−0.31; 0.08	0.241
2	−0.11	−0.30; 0.08	0.263	
3	−0.17	−0.38; 0.03	0.098	
MMP-2	1	0.05	−0.16; 0.26	0.653
2	0.06	−0.16; 0.27	0.598	
3	0.07	−0.15; 0.28	0.533	
MMP-3	1	0.28	0.01; 0.54	0.041
2	0.29	0.02; 0.55	0.037	
3	0.27	0.00; 0.54	0.047	
MMP-9	1	−0.09	−0.10; 0.28	0.345
2	−0.09	−0.11; 0.28	0.397	
3	−0.06	−0.14; 0.26	0.556	
MMP-10	1	−0.17	−0.26; 0.13	0.493
2	−0.14	−0.25; 0.16	0.673	
3	−0.16	−0.26; 0.14	0.568	
TIMP-1	1	−0.06	−0.07; 0.32	0.211
2	−0.12	−0.07; 0.32	0.212	

β, standardized regression coefficient: indicates increase in cfPWV (in m/s) per 1 SD increase in lnMMPs and lnTIMP-1

CI confidence interval

Model 1: age, sex, duration of diabetes, HbA1c, eGFR, MAP Model 2: model 1 + total cholesterol, BMI, smoking, use of antihypertensive medication, and presence of vascular complications Model 3: model 2 + TIMP-1

associated with PP [−0.83 (−1.50; −0.16)], whereas MMP-2 was positively associated with PP [1.33 (0.55; 2.10)] (Table 3, model 2). These associations did not materially change after additional adjustment for TIMP-1 (Table 3, model 3) or mutual adjustment for MMP-2 or MMP-1, respectively. MMP-3, MMP-9, MMP-10 and TIMP-1 were not independently associated with PP (Table 3). MMP-9 was only associated with PP after additional adjustment for TIMP-1 [−0.71 (−1.40; −0.01)] (Table 3, model 3).

As brachial BP measurement may overestimate central SBP and PP more in younger individuals, we re-analyzed the data in individuals above 40 years of age (n = 974, pooled data) as arterial stiffness is higher at a younger age compared to non-diabetic individuals. After full adjustment for potential confounders, 1 SD higher MMP-1 was inversely associated with PP [−1.53 (−2.45; −0.61)], whereas MMP-2 and MMP-3 were positively associated with PP [1.40 (0.45; 2.35)] and [1.59 (0.48; 2.70)], respectively. In addition, these three markers of ECM remodeling all remained independently associated with office PP when included in the analysis with all MMPs and TIMP-1 together.

In the PROFIL study only, in which data on 24-h brachial and 24-h central PP were available, only MMP-2 was significantly associated with 24-h brachial PP [1.40 (0.47; 2.33)] and 24-h central PP [1.43 (0.63; 2.23)] (Additional file 1: Table S3). MMP-2 remained significantly associated with 24-h PP measurement when only individuals above 40 were analyzed (data not shown).

Additional analyses

Adjustment for CVD, albuminuria and retinopathy as separate variables, instead of combined into presence of any vascular complication, did not materially change the results (data not shown). Adjustment for ACE-inhibitors/angiotensin II receptor antagonists instead of antihypertensive therapy did also not materially change the results (data not shown). Additional adjustment, in individuals from the PROFIL study, for use of statins and heart rate did not materially change the associations either between MMPs and cPWV/office PP or between MMP-2 and 24-h blood pressure measurements (data not shown).
The association between MMP-1 and PP in LEACE differed significantly from those in the other studies (p for interaction 0.015). MMP-1 was inversely associated with PP in EUROWIDAB [−1.41 (−2.59; −0.23)] and non-significantly inversely in PROFIL [−0.73 (−1.64; 0.19)], whereas a non-significant positive association was observed in LEACE [0.20 (−1.41; 1.81)] (Additional file 1: Table S4). No other significant interaction between MMPs/TIMP-1 and cohort was present with regard to the associations between MMPs, TIMP-1 and PP.

No significant sex-associated differences were observed in the associations between MMPs, TIMP-1 and cfPWV or PP (p for interaction, all > 0.05).

Discussion
In the present study in individuals with type 1 diabetes, we showed that serum levels of MMP-3 were positively associated with cfPWV. In addition, circulating levels of MMP-1 were inversely, and of MMP-2 positively, associated with PP. These associations persisted after adjustment for potential confounders. Circulating levels of MMP-9, MMP-10, and TIMP-1 did not show associations with markers of arterial stiffening.

Our study is the first to show an independent association between serum MMP-3 and cfPWV in individuals with type 1 diabetes, after (extensive) adjustment for potential confounders. To the best of our knowledge, only two studies, in patients without type 1 diabetes, have investigated circulating MMP-3 levels and markers of arterial stiffness [33, 34]. Although none of these studies reported independent associations between circulating MMP-3 and cfPWV, 1-year treatment with perindopril, compared to placebo, was associated with a significant reduction in cfPWV as well as in plasma MMP-2 and plasma MMP-3 in 17 patients with Marfan Syndrome [33]. In addition, Sasamura et al. [34] observed a non-significant positive association between circulating MMP-3 and brachial ankle PWV (baPWV) in a small study of non-diabetic hypertensive patients.

MMP-3 may contribute to arterial stiffness by cleaving matrix collagens (type II, IV, IX, X), elastin, laminin and nidogen, leading to increased collagen turnover and decreased elastin content. MMP-3, similar to MMP-2, can also induce fibroblast-mediated matrix production by cleaving extracellular decorin and releasing TGF-β from the extracellular matrix [35]. In contrast to cfPWV, circulating levels of MMP-3 were not associated with office PP (pooled data) nor with 24-h PP measurements. This could be caused by the fact that MMP-3 mediated ECM remodeling might mainly be performed in descending part of the aorta and that its intrinsic actions in the ascending aorta and aortic arch might be limited due the difference in aortic tissue composition [36]. This could explain the different findings in the associations between MMP-3 on the one hand and cfPWV and PP measurements on the other. However, as office PP may overestimate central PP more in younger (healthy) individuals, as indicated by Laurent et al. [2], we showed that MMP-3 was also associated with office PP in individuals with type 1 diabetes above the age of 40, which is in line with the association between MMP-3 and cfPWV. In addition, Rönnback et al. [37] showed that similar PP levels were observed 15–20 years earlier in individuals with type 1 diabetes compared to non-diabetic controls. Moreover, in a prospective study in individuals with type 1 diabetes with a mean age of 39 years, brachial PP was positively associated with incident CVD [5].

Serum MMP-2 levels and cfPWV were not independently associated in our study, whereas circulating MMP-2 was associated with both office PP (pooled data) as well as 24-h PP measurements. Our result differs from studies performed in non-diabetic individuals, in whom positive associations between circulating levels of MMP-2 and cfPWV were observed [14–16]. However, our study is in accordance with the study by Coutinho et al. [19], in which a positive association between plasma MMP-2 and PP was observed in normotensive and hypertensive African-Americans in the GENOA study. These results were also supported by studies at tissue level [8, 38, 39]. Arteries of dialedyzed chronic kidney disease patients compared to those of non-dialedyzed chronic kidney disease patients and kidney donors [38] showed higher MMP-2 activity, which was associated with lower elastic fiber content and greater arterial stiffness. In addition, renal transplant recipients with diabetes had stiffer arteries compared to recipients without diabetes and controls, and this was significantly associated with higher MMP-2 and MMP-9 activity in the arterial wall [8]. Next, in aortic tissue of aging rats with higher systolic blood pressure, higher intimal and medial MMP-2 levels and MMP-2/TIMP-2 ratios were observed [39]. These increases were accompanied by greater vascular intima and media thickness as well as higher medial type III collagen and lower elastin content [39]. MMP-2 has the ability to release transforming growth factor β (TGF-β) from the ECM [35]. A TGF-β-induced increase in fibroblast-mediated ECM production thus may be a plausible mechanism to explain the strong association between MMP-2 and arterial stiffening [40].

Duration of diabetes appeared to be the major confounder in the association between MMP-2 and cfPWV and was significantly correlated with age. If duration of diabetes would not be taken into account, a positive association was in fact observed, which is in line with the association between MMP-2 and office PP as well as 24-h PP measurements. Therefore, the model with adjustment
for both age and diabetes duration may have been over-
adjusted and our results are consistent with an important
role for MMP-2 in pathophysiological vascular remodel-
ing. However, we cannot exclude that both age and
diabetes duration of diabetes were the major confounders in
the association between MMP-2 and cfPWV.

We also showed that serum MMP-1 was border-
line significantly inversely associated with cfPWV after
adjustment for potential confounders and TIMP-1 lev-
evels and this is in contrast to two studies in non-diabetic
hypertensive patients in whom (pro)MMP-1 was signif-
ificantly and positively associated with cfPWV [11,
12]. Patients with diabetes were excluded in both stud-
ies and this may explain the different results. However,
the inverse association between MMP-1 and cfPWV is
in fact consistent with the inverse association between
MMP-1 and PP (pooled data) that we observed. The dif-
ference in the associations between MMP-1 on the one
hand and cfPWV and PP on the other might be caused
by the differences in vascular wall content in the various
parts of the aorta [36]. Circulating levels of MMP-1 were
inversely associated with PP. To our knowledge, correla-
tions between circulating (pro)MMP-1 and PP have only
been published in studies that did not include individuals
with type 1 diabetes [12, 41], and were not adjusted for
potential confounders. In our crude analysis, 1SD higher
lnMMP-1 was associated with a higher PP [1.36 (0.49;
2.23)]. However the association inverted after adjust-
ment for potential confounders, with MAP being the
most influential confounder. The fact that higher tissue
MMP-1 levels have been associated with thoracic aortic
aneurysm and thoracic aortic dissection [42] also indi-
cates that higher MMP-1 levels may result in decreased
thoracic aortic collagen content and/or concentration
leading to decreased arterial stiffness. Nonetheless, evi-
dence so far on the role of MMP-1 in collagen degra-
dation and/or turnover and arterial stiffness is scarce and
should be further investigated.

Published data on MMP-9 and PWV are contradic-
tory. The lack of association between MMP-9 and cfPWV
in the present study was in agreement with studies in
patients with essential hypertension [17], coronary heart
disease [18] and bicuspid aortic valves [15]. In contrast,
Yasmin et al. [14] observed a positive and independent
association between MMP-9 and cfPWV in both hyper-
tensive patients and healthy individuals. In addition,
serum MMP-9, but also MMP-3 and TIMP-1, was corre-
lated with invasive aortic PWV measurements in patients
with aortic stenosis [43]. However, the latter correla-
tions were unadjusted for potential confounders. In con-
trast to all previous studies, an inverse association was
observed serum MMP-9 and cfPWV in healthy subjects
[44]. In accordance with our result, Coutinho et al. did
also not observe an association between MMP-9, as well
as TIMP-1, and PP [19]. Therefore, the role of MMP-9 in
arterial stiffness remains unclear and warrants further
investigation.

Our finding of a lack of association between TIMP-1
levels and cfPWV is supported by various other studies
[15, 18, 34]. Only the study by Tan et al. [17] observed
an independent association between TIMP-1 and cfPWV
in hypertensive patients, but patients with macrovascular
complications, diabetes and possible inflammatory dis-
ases were excluded from this study.

Various studies investigated associations between cir-
culating MMP-1 [45], MMP-2 [46, 47], MMP-3 [45],
MMP-9 [46–49], MMP-10 [45], and TIMP-1 [46] with
other markers of arterial stiffness in both type 1 [48] and
type 2 [45–47, 49] diabetic individuals, but did not find
significant associations.

Limitations
Several limitations are applicable to our study. First,
we used PP as marker of arterial stiffness, but this only
presents indirect information on arterial stiffness and
it was measured under different circumstances in the
different studies. However, it has been shown to be
an independent predictor of cardiovascular events and
all-cause mortality in type 1 diabetic patients [1, 4, 5].
Second, although our study also included cfPWV meas-
urements, the current gold standard for arterial stiffness,
these were only available in one of the three included
studies. Thirdly, we used circulating levels of MMPs and
TIMP-1, because these can easily be obtained, but we
do not know whether or not plasma levels truly reflect
tissue levels or if they originate from one or more spe-
cific tissues. Finally, we cannot draw conclusions on the
pathophysiological mechanism regarding the develop-
ment of arterial stiffness, because of the cross-sectional
design of our studies. In addition, the significant differ-
ence, between the LEACE and the other two studies, in
the association between MMP-1 and PP may have been
caused by the play of chance. Despite these limitations,
our results showed largely consistent results throughout
the three different studies with regard to the associations
between MMP-1, MMP-2 and PP in individuals with type
1 diabetes.

Conclusions
In individuals with type 1 diabetes, MMP-1 (inversely)
and MMP-2 and -3 (both positively) were associated
with markers of arterial stiffening (PP and cfPWV). The
results suggest that better understanding of altered ECM
remodeling in patients with type 1 diabetes could pro-
vide a potential therapeutic target, which could lead to
decreased arterial stiffness and improved outcomes.
Additional file

Additional file 1: Table S1. Baseline characteristics of the three studies.
Table S2. Patient characteristics according to tertiles of PP (n=1517).
Table S3. Associations between circulating levels of MMP-1, -2, -3, -9, and -10 and TIMP-1 and 24-h PP measurements in PROFIL. Table S4. Associations between circulating levels of MMP-1, -2, -3, -9, and -10 and TIMP-1 and PP per study.

Abbreviations
CVD: cardiovascular disease, eGFR: estimated glomerular filtration rate, HbA1c: glycated hemoglobin A1c, MMP: matrix metalloproteinase, PP: pulse pressure, cPWV: carotid-femoral pulse wave velocity, TIMP: tissue inhibitor of metalloproteinase.

Authors’ contributions
SP and LE did the analyses and drafted the article, SP, LE, CGS and CDS wrote the manuscript. JB, NC, AJ, HHP, LT, ST, and PR reviewed and edited the manuscript for important intellectual content. CGS and CDS had equal contributions, contributed to the discussion and reviewed and edited the manuscript for important intellectual content. All authors read and approved the final manuscript.

Author details
1 Department of Internal Medicine, Maastricht University Medical Centre, PO Box 5800, 6202 AZ Maastricht, The Netherlands. 2 Department of Internal Medicine, Zuyderland hospital, Heerlen, The Netherlands. 3 Centraal Bureau voor de Statistiek, Heerlen, The Netherlands. 4 Institute of Cardiovascular Sciences, University College London, London, UK. 5 Department of Epidemiology and Public Health, University College London, London, UK. 6 Steno Diabetes Center Copenhagen, Gentofte, Denmark. 7 Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark. 8 Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark. 9 Department of Medical Endocrinology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.
10 Faculty of Health, Aarhus University, Aarhus, Denmark. 11 University of Copenhagen, Copenhagen, Denmark. 12 CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Maastricht, The Netherlands.

Acknowledgements
We would like to thank all the participants who took part in the study.

Competing interests
The authors declare that they have no competing interests.

Availability of data and materials
The dataset used during the current study is available from the corresponding author on reasonable request.

Consent for publication
Not applicable.

Ethics approval and consent to participate
The studies were approved by the local ethics committees, in accordance with the Helsinki Declaration, and all patients gave their written informed consent.

Funding
The EURODIAB Prospective Complications Study was supported by grants from the Wellcome Trust, the European Community and Diabetes UK. LEACE was part of the European Rational Approach for the Genetics of Diabetic Complications (EURAGEDIC) project supported by European Commission (Contract QLG2-CT-2001-01669) and PROFIL was supported by European Commission FP 7 Grant SYSKID HEALTH–F2–2009–241544.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References
1. Stehouwer CD, Henry RM, Ferreira I. Arterial stiffness in diabetes and the metabolic syndrome: a pathway to cardiovascular disease. Diabetologia. 2008;51(4):527–39.
2. Laurent S, Cockcroft J, Van Bertelt L, Boutouyrie P, Giannattasio C, Hayoz D, Pannier B, Vlachopoulos C, Wilkinson I, Struijker-Boudier H. Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur Heart J. 2006;27(21):2588–605.
3. Theilade S, Lajer M, Persson F, Joergensen C, Rossing P. Arterial stiffness is associated with cardiovascular, renal, retinal, and autonomic disease in type 1 diabetes. Diabetes Care. 2013;36(3):715–21.
4. Theilade S, Lajer M, Jorsal A, Tarnow L, Parving HH, Rossing P. Arterial stiffness and endothelial dysfunction independently and synergistically predict cardiovascular and renal outcome in patients with type 1 diabetes. Diabet Med. 2012;29(8):990–4.
5. Gordin D, Waden J, Fonsblom C, Thorl N, Rosengard-Burlund M, Tolonen N, Sahrsmemo M, Harjusaalo V, Groop PH. Pulse pressure predicts incident cardiovascular disease but not diabetic nephropathy in patients with type 1 diabetes (The FinnDiabe Sytudy). Diabetes Care. 2011;34(4):886–91.
6. Galis ZS, Khati JJ. Matrix metalloproteinases in vascular remodeling and atherogenesis: the good, the bad, and the ugly. Circ Res. 2002;90(3):251–62.
7. Fontana V, Silva PS, Gerlach RF, Tanus-Santos JE. Circulating matrix metalloproteinases and their inhibitors in hypertension. Clin Chim Acta. 2012;413(7–8):656–62.
8. Chung AW, Yang HH, Signist MK, Brin G, Chum E, Gourlay WA, Levin A. Matrix metalloprotease-2 and -9 exacerbate arterial stiffening and angiogenesis in diabetes and chronic kidney disease. Cardiovasc Res. 2009;84(3):494–504.
9. Peeters SA, Engelen L, Buijs J, Chaturvedi N, Fuller JH, Schalkwijk CG, Stehouwer CD. Plasma levels of matrix metalloproteinase-2, -3, -10, and tissue inhibitor of metalloproteinase-1 are associated with vascular complications in patients with type 1 diabetes: the EURODIAB Prospective Complications Study. Cardiovasc Diabetol. 2015;14:31.
10. Peeters SA, Engelen L, Buijs J, Jorsal A, Parving HH, Tarnow L, Rossing P, Schalkwijk CG, Stehouwer CDA. Plasma matrix metalloproteinases are associated with incident cardiovascular disease and all-cause mortality in patients with type 1 diabetes: a 12-year follow-up study. Cardiovasc Diabetol. 2017;16(1):55.
11. McNulty M, Mahmoud A, Spiers P, Feely J. Collagen type-I degradation is related to arterial stiffness in hypertensive and normotensive subjects. J Hum Hypertens. 2006;20(11):867–73.
12. Stakos DA, Tsakas DN, Chalikias GK, Mitrousi K, Tsigalou C, Boudoulas H. Associations between collagen synthesis and degradation and aortic function in arterial hypertension. Am J Hypertens. 2010;23(5):488–94.
13. Donley DA, Fournier SB, Regier BL, De Vaillance E, Bonner DE, Oliff IM, Frisbee JC, Chantler PD. Aerobic exercise training reduces arterial stiffness in metabolic syndrome. J Appl Physiol. 2014;116(1):396–404.
14. Yasmin, McEniery CM, Wallace S, Dalharm Z, Pulsalkar P, Maki-Petaja K, Ashby MJ, Cockcroft JR, Wilkinson IB. Matrix metalloproteinase-9 (MMP-9), MMP-2, and serum elastase activity are associated with systolic hypertension and arterial stiffness. Atherosclerosis. 2011;213(2):372.
15. Tzemos N, Lyseggen E, Silversides C, Jamorski M, Tong JH, Harvey P, Floras JS, Siu S. Endothelial function, carotid-femoral stiffness, and plasma matrix metalloproteinase-2 in men with bicuspid aortic valve and dilated aorta. J Am Coll Cardiol. 2010;55(7):660–8.
16. Smith ER, Tomlinson LA, Ford ML, McMahon LP, Rajkumar C, Holt SG. Elastin degradation is associated with progressive aortic stiffening and all-cause mortality in predialysis chronic kidney disease. Hypertension. 2012;59(5):973–8.
17. Tan J, Hua Q, Xing X, Wen J, Liu R, Yang Z. Impact of the matrixmetalloproteinease-9/tissue inhibitor of metalloproteinase-1 system on large arterial stiffness in patients with essential hypertension. Hypertens Res. 2007;30(10):959–63.
18. Zureik M, Beaudieux JL, Courbon D, Benetos A, Ducimetiere P. Serum tissue inhibitors of metalloproteinases 1 (TIMP-1) and carotid atherosclerosis and aortic arterial stiffness. J Hypertens. 2005;23(12):2263–8.

19. Coutinho T, Turner ST, Mosley TH, Kullo U. Biomarkers associated with pulse pressure in African-Americans and non-Hispanic whites. Am J Hypertens. 2012;25(2):145–51.

20. Chaturvedi N, Spelck AE, Porta M, Aldington SJ, Fuller JH, Songini M, Kohner EM. Markers of insulin resistance are strong risk factors for retinopathy incidence in type 1 diabetes. Diabetes Care. 2001;24(2):284–9.

21. Chaturvedi N, Bandellini S, Mangili R, Pennino G, Rottiers RE, Fuller JH. Microalbuminuria in type 1 diabetes: rates, risk factors and glycosylated hemoglobin. Kidney Int. 2001;60(1):219–27.

22. Schram MT, Chaturvedi N, Schalkwijk C, Giorgino F, Ebeling P, Fuller JH, Stehouwer CD. Vascular risk factors and markers of endothelial function as determinants of inflammatory markers in type 1 diabetes: the EURODIAB Prospective Complications Study. Diabetes Care. 2003;26(7):2165–73.

23. Astrup AS, Tarnow L, Rossing P, Pietrzak L, Riis Hansen P, Parving HH. Improved prognosis in type 1 diabetic patients with nephropathy: a prospective follow-up study. Kidney Int. 2005;68(3):1250–7.

24. Schram MT, Chaturvedi N, Fuller JH, Stehouwer CD, Group EPCS. Pulse pressure is associated with age and cardiovascular disease in type 1 diabetes: the Eurodiab Prospective Complications Study. J Hypertens. 2003;21(11):2035–44.

25. Tarnow L, Cambien F, Rossing P, Nielsen FS, Hansen BV, Lecerf L, Poirier O, Danilov S, Parving HH. Lack of relationship between an insertion/deletion polymorphism in the angiotensin I-converting enzyme gene and diabetic nephropathy and proliferative retinopathy in IDDM patients. Diabetes. 1995;44(3):489–94.

26. Theilade S, Lyngbaek S, Hansen TW, Eugen-Olsen J, Fenger M, Rossing P. Ambulatory tonometry and aortic root diameter in patients with Marfan syndrome: a randomized controlled trial. JAMA. 2007;298(13):1539–47.

27. Nair D, Tan SY, Gan HW, Lim SF, Tan J, Zhu M, Gao H, Chua NH, Peh WL, Tentolouris N. Plasma levels of MMP-2, MMP-9 and TIMP-1 are not associated with arterial stiffness in subjects with type 2 diabetes. Arterioscler Thromb Vasc Biol. 2015;35(7):1723–31.

28. Papazafiropoulou A, Perrea D, Moyssakis I, Katsilambros N, Edsfeldt A, Duner P, Fredrikson GN, Bjorkbacka H, et al. Elevated plasma levels of MMP-12 are associated with atherosclerotic burden and symptomatic cardiovascular disease in subjects with type 2 diabetes. Arterioscler Thromb Vasc Biol. 2015;35(7):1723–31.

29. Goncalves I, Bengtsson E, Colhoun HM, Shore AC, Palombo C, Krawiec JT, Vorp DA. Effect of perindopril on large artery stiffness and aortic root diameter in patients with Marfan syndrome: a randomized controlled trial. JAMA. 2007;298(13):1539–47.

30. Tsamis A, Krawiec JT, Vorp DA. Elastic and collagen fibre microstructure of the human aorta in ageing and disease: a review. J R Soc Interface. 2013;10(83):20121004.

31. Ronnback M, Fagerudd J, Forsblom C, Pettersson-Fernholm K, Reunanen A, Groop PH, Finnish Diabetic Nephropathy Study G. Altered age-related blood pressure pattern in type 1 diabetes. Circulation. 2004;110(9):1076–82.

32. Chung AW, Yang HH, Kim JM, Sigrist MK, Chum E, Gourlay WA, Levin A. Upregulation of matrix metalloproteinase-2 in the arterial vasculature contributes to stiffening and vasomotor dysfunction in patients with chronic kidney disease. Circulation. 2009;120(9):792–801.

33. Imai K, Hiramatsu A, Fukushima D, Pierschbacher MD, Okada Y. Degradation of decorin by matrix metalloproteinases: identification of the cleavage sites, kinetic analyses and transforming growth factor-beta1 release. Biochem J. 1997;322(Pt 3):809–14.

34. Ahimastos AA, Aggarwal A, D’Orsa KM, Formosa MF, White AJ, Savarirayan R, Baran I, Tuncel E, et al. Effect of rosiglitazone, metformin and metsimizole on arterial stiffness and markers of extracellular matrix metabolism in patients with type 2 diabetes mellitus. J Exp Clin Hypertens. 2006;28(5):511–20.

35. Wang M, Lakatta EG. Altered regulation of matrix metalloproteinase-2 in aortic remodeling during aging. Hypertension. 2002;39(4):865–73.

36. Ruiz-Ortega M, Rodriguez-Vita J, Sanchez-Lopez E, Carvajal G, Egido J. TGF-beta signaling in vascular fibrosis. Cardiovasc Diabetol. 2017;16:139.

37. Ronnback M, Fagerudd J, Forsblom C, Pettersson-Fernholm K, Reunanen A, Groop PH, Finnish Diabetic Nephropathy Study G. Altered age-related blood pressure pattern in type 1 diabetes. Circulation. 2004;110(9):1076–82.

38. Chung AW, Yang HH, Kim JM, Sigrist MK, Chum E, Gourlay WA, Levin A. Upregulation of matrix metalloproteinase-2 in the arterial vasculature contributes to stiffening and vasomotor dysfunction in patients with chronic kidney disease. Circulation. 2009;120(9):792–801.

39. Wang M, Lakatta EG. Altered regulation of matrix metalloproteinase-2 in aortic remodeling during aging. Hypertension. 2002;39(4):865–73.

40. Vlachopoulos C, Aznouauridis K, Dima I, Ioakeimidis N, Vasiladou C, Zervoudaki A, Galerniots T, Stefanadis C. Negative association between serum levels of matrix metalloproteinases-2 and -9 and aortic stiffness in healthy adults. Int J Cardiol. 2007;122(3):232–8.