Construction design and structural analyse of transfer system

L Jakubovičová¹, P Kopas¹, M Handrik¹, M Vaško¹, R Grega² and P Šulka¹

¹ Department of Applied Mechanics, Faculty of Mechanical Engineering, University of Zilina, Univerzitná 8215/1, Zilina 010 26, Slovakia
² Department of KaDI, Faculty of Mechanical Engineering, Technical university of Košice, Letná 9, 04001 Košice, Slovakia

E-mail: lenka.jakubovicova@fstroj.uniza.sk

Abstract. Modern transfer system device is used in industrial automatization and it ensures a smooth transfer of material along the tracks. The transfer system model was created in CAD system. Finite-element and modal analysis was created in Ansys Workbench software. The system consists of aluminium profiles from Bosh Rexroth firm, and it contains electric, pneumatic and control elements.

1. Introduction

The project was realized in cooperation with MTS comp. Ltd. (hereinafter referred to as MTS). Since its inception, MTS has been a contractual partner of the German concern Robert Bosch GmbH, later Bosch Rexroth AG and Schmidt Technology Gmbh for the Slovak Republic. This partnership represents a significant step forward in terms of quality and quantity of the offered range. MTS was established in 1996 and its operation follows the tradition of construction of single-purpose machines and equipment, which is typical for the area of Slovakia where the headquarters and operation of the company is located. The range of products manufactured by the company is mainly focused on the electrical and automotive industries (figure 1). Part of the company is a strong and experienced team of mechanical and electrical designers, programmers and skilled assembly technicians [1].

In cooperation with MTS Ltd., a modern transfer system was developed. The company provided us with the necessary material for the implementation of the project and allowed us to incorporate into the project the elements they use in production.

Figure 1. Part of MTS Ltd. product range [1].
2. Construction of the transfer system

A modular aluminum profile system from Bosh Rexroth was used, which has become a worldwide standard in the production of transfer system and similar equipment such as: frames, jigs, protective walls, workbenches [2–4]. This modular profile system is one of the largest in the world with more than 100 different types of profiles [5]. Aluminum profiles are further subdivided according to the slots. Here are three types of slots that slot width is 5.5 mm, 7.3 mm or 10 mm and the tensile force in the slot is from 3 000 N to 17 000 N. With such a large range of strength aluminum profiles, we can create different types of products such as lightweight covers, racks, frames, or heavy-duty workbenches and equipment [6, 7].

2.1. Transfer system frame

The supporting part of the transfer system frame structure is a modular system from Bosh Rexroth made of aluminum alloy with dimensions 45×45 mm (figure 2), 45×60 mm (figure 2) and 40×80 mm (figure 3) with a stable 10 mm slot. This is a transfer system that will have to bear higher loads on both tracks, such as electric motors, pallets with material and ending transfer stations [8, 9].

![Figure 2. 45×60 mm and 45×45 mm aluminum profile section.](image)

![Figure 3. Aluminum profile section 40×80 mm.](image)

When assembling the structure, it was necessary to secure the electrical switchboard of the dimensions 600×600 mm from Rittal, which is located between the supporting components of the transfer system in the frame of the transfer system. This fixation was provided by two profiles of 45×45 mm type with a stable slot width 10 mm, which are fastened by supporting struts between the supporting structure of the transfer system. These two profiles serve as reinforcement elements of the whole structure and help overall stability and load-bearing capacity of the frame construction.
The best option from the economic and practical point of view was to create an additional construction using aluminum profiles of 40×80 mm (figure 4).
Transfer surface consists of a sheet of dimensions 250×360×5 mm of PVC material, because of its excellent resistance to chemicals, wear, low resistance to pallet transfer and its low weight. The supporting frame made of 45×45 mm type profiles serves as a holder for pneumatic cylinders (figure 5).

Figure 4. Construction of the transfer station.
Figure 5. Final version of the transfer station.

3. Construction design of modern transfer system in CAD system

For the design of the transfer system we decided to use Inventor software, which is computer software (CAD) developed by Autodesk. It uses the concept of parametric design, which is mainly used to create technical drawings for mechanical purposes. It is found in many areas such as automotive, architecture, construction, etc. Autodesk was created in 1982 by John Walker with 12 partners. It publishes several software packages including AutoCAD, 3ds Max and Alias [4].

We obtained all models of used components from manufacturers, especially from Bosh Rexroth. Model is shown in figure 6.

Figure 6. Transfer system model in Inventor.

The electrical part consists of several main parts:
- electric switch cabinet,
- electric motor,
- sensors,
- Siemens S-1200 PLC control and Siemens SIMATIC HMI control panel.
3.1. Construction of transfer system model and profiles in ANSYS program
The simple construction of the transfer system consists of profiles of various dimensions (figure 1). The entire structure was created in the Ansys Workbench using Line Bodies (figure 7). Each line has been assigned a corresponding profile type using the Cross Section. It is necessary to pay attention to the orientation of individual profiles.

Figure 7. Transfer system frame in Ansys.

3.2. Boundary conditions, load and material
The transfer system is firmly anchored to the floor of the workplace (figure 8), displacement in direction X, Y, Z is equal to null (4× point A). In point B, D the electric motors act with their weight \(m = 15 \) kg. Electronical distributor weight is setup in C. Palette weight together with Transfer support weight is setup in G, H.

The material properties of the aluminum profiles given by the manufacturer precisely define the characteristics of the profiles and the permissible values of the different loads (table 1).

Table 1. Aluminum alloy material constants.

Parameter	Values
Density	2770 (kg m\(^{-3}\))
Tensile yield strength	710 000 (MPa)
Compressive yield strength	280 (MPa)
Tensile ultimate strength	310 (MPa)

Figure 8. Boundary conditions.
3.3. Static Analysis

Figure 9 shows the total deformation of the transfer system. The maximum deformation value is 0.69 mm. It is the end of the free hanging part of the transfer system, which is not under the load and the bending moment is equal to zero. Therefore, it is not necessary to put so much emphasis on evaluating the deformation of the transfer system, but it is more important to focus on the analysis of the bending moment (figure 10) [10].

![Figure 9. Total deformation of transfer system.](image)

![Figure 10. Total bending moment.](image)

The maximum bending moment value is read from figure 10, \(M_0 = 179.92 \text{ N.m} \). The bending modulus of section \(W_0 = 15.9 \text{ cm}^3 = 0.0000159 \text{ m}^3 \) is given by the manufacturer for the 45×80 mm profile from Bosh Rexroth [2]:

\[
\sigma_{OMAX} = \frac{M_0}{W_0} = \frac{179.92 \text{ (N.m)}}{0.0000159 \text{ (m}^3)} = 11.315 \text{ MPa}
\]

(1)

The maximum value of bending moment at the most loaded track of profile is \(\sigma_{OMAX} = 11.315 \text{ MPa} \). The maximum permissible bending moment given by the manufacturer is \(\sigma = 200 \text{ N mm}^{-2} \) (Aluminum Framing Bosh Rexroth 2011).

The safety rate of the designed structure \(k = 200 \text{ MPa} / 11.315 \text{ MPa} = 17.67 \). In common practice, the safety level is used for this type of construction equipment \(k = 1.5 \) to 2, \(\Rightarrow \) the design meets all safety requirements [11, 12].

3.4. Eigenvalue Buckling

Eigenvalue Buckling analysis is used to identify the maximum load that can cause loss of stability and damage the analyzed structure [13, 14]. In practical terms, the loss of stability for the first condition is most likely to occur. The load applied to the transfer system frame would have to increase 73 times (figure 12). The individual load factor values for loss of stability are shown in figure 11 [15–18].

![Figure 11. Load multiple values of eigenvalue buckling analysis for loss of stability.](image)
4. Conclusion

The modern transfer system was constructed using Bosh Rexroth aluminium profiles – figure 13 [2, 3]. Material transport is provided by two transfer tracks, which are driven by electric motors. The main control unit ensuring correct operation of the transfer system is an electrical switchboard. Operation of this control unit is provided by a fully touch control panel with appropriate control switches. The presence of the pallet in the working positions is ensured by inductive sensors. The position of the pneumatic pistons is evaluated by magnetic sensors. Pneumatic cylinders ensure the pallet passes smoothly across the plate of the transfer station. Pneumatic stops stop the pallet in the working position. The transfer system model was designed in Inventor CAD system. Ansys Workbench was used for the finite element analysis, and a simplified frame construction of the transfer system using Lines-Bodies was created. Subsequently, the types of aluminum profiles with different cross-sectional characteristics are assigned to the individual construction lines. The cross-section of the profiles was created in the Cross-Section program environment. Modal analysis was used to check model compatibility. Enough mesh density of 0.01 m was determined by sensitivity analysis. The critical points of the transfer system frame have been identified by static analysis [19–21]. Eigenvalue Buckling analysis was used to control the loss of stability [22].

The maximum bending stress at the connection point of the transfer system tracks with the conveyor structure is $\sigma_{\text{MAX}} = 11.315$ MPa, which fulfills the safety level $k = 17.67$. In the case of $73\times$ higher load, the stability of the frame would be lost [23, 24].

Designed and constructed unique modern transfer system is fully functional. All modules used are fully functional. The load-bearing capacity and robustness of the aluminum profiles used are sufficient and the frame of the structure will not be damaged or damaged under the given operating conditions.
5. References

[1] MTS modern technology systems Available: https://www.mts.sk/
[2] Bosh Rexroth AG 2014 Transfer system TS2plus, Version 6.0
[3] Siemens 2019 Aventics 2019 Available: https://www.aventics.com/de/
[4] Autodesk 2019 Available: https://autodesk.com
[5] Kuric I 2011 New methods and trends in product development and planning Ist International Conference on Quality and Innovation in Engineering and Management (QIEM) Cluj Napoca pp 453–456
[6] Tomaszewski T and Sempruch J 2017 Fatigue life prediction of aluminium profiles for mechanical engineering Journal of Theoretical and Applied Mechanics 55 497–507
[7] Macko M and Flizikowski J 2010 The method of the selection of comminution design for non-brittle materials Conference Proceedings AIChE 2010 Annual Meeting, Salt Lake City
[8] Piekarśka W, Kubia M and Žmindák M 2017 Issues in numerical modeling of phase transformations in welded joint Procedia Engineering 177 141–148
[9] Kopas P, Blatnický M, Sága M and Vaško M 2017 Identification of mechanical properties of weld joints of AlMgsi7.25 aluminium alloy Metalurgija 56 99–102
[10] Mei RB, Bao L, Li CS, Wang JK and Liu XH 2015 FE analysis of 6063 aluminium profiles with complex cross-section during online quenching processes Mechanika 21 99–106
[11] Saga M, Dudinsky M and Pechac P 2012 Implementation of discrete fully stressing into structural optimization Scientific journal of Silesian University of Technology – Series Transport 76 105–12
[12] Zavodská D, Tilova E, Guagliano M, Kucharikova L and Chalupo M 2017 Fatigue resistance of self-hardening aluminium cast alloy Materials Today - Proceedings 4 6001–6006
[13] Sága M, Bednár R and Vaško M 2011 Contribution to modal and spectral interval finite element analysis Vibration Problems ICOVP 2011, Proceedings in Physics 139 269–274
[14] Sapietová A, Dekýš V, Sapieta M and Pecháč P 2014 Application of computational and design approaches to improve carrier stability Procedia Eng. 96 410–418
[15] Halama R, Markopoulos A, Fojtik F, Fusek M, Poruba Z and Famfulík J 2017 Effect of stress amplitude on uniaxial ratcheting of aluminum alloy 2124-T851 Materialwissenschaft und Werkstofftechnik 48 814–819
[16] Gerlici J and Lack T 2014 Modified HHT Method for vehicle vibration analysis in time domain utilisation Applied Mechanics and Materials 486 396–405
[17] Krajňak J Homišin J Grega R and Urbanský M 2016 The analysis of the impact of vibrations on noisiness of the mechanical system Mechanika 17 21–26
[18] Grega R, Krajnak J, Zulova L, Fedorko G and Molnar V 2017 Failure analysis of driveshaft of truck body caused by vibrations Engineering Failure Analysis 79 208–215
[19] Wojtkowiak D, Talaška K, Maluďa I and Domek G 2018 Analysis of the influence of the cutting edge geometry on parameters of the perforation process for conveyor and transmission belts MATEC Web of Conferences 157 01022
[20] Domek G, Kołodziej A, Wilczyński M and Krawiec P 2017 The problem of cooperation of a flat belts with elements of mechatronic systems 55th International Scientific Conference on Experimental Stress Analysis (EAN 2017) pp 706–711
[21] Grega R, Krajňák J and Baran P 2014 The reduction of vibrations in a car - The principle of pneumatic dual mass flywheel Sci. J. Sil. Univ. Technol. – Ser. Transp. 84 21–28
[22] Homisin J, Grega R, Kassay P, Fedorko G and Molnar V 2019 Removal of systematic failure of belt conveyor drive by reducing vibrations Engineering Failure Analysis 99 192–202
[23] Turygin Y, Božek P, Abramov I V and Nikitin Y R 2018 Reliability determination and diagnostics of a mechatronic system Adv. in Sci. and Technol. Research J. 12 274–290
[24] Domek G, Kołodziej A, Dudziak M and Wozniak T 2017 Identification of the quality of timing belt pulleys Proc. Engineering 177 275–280

Acknowledgments
This work was supported by grant agencies – project KEQA 015ŽU-4/2017 and project VEGA 1/0073/19.