Properties of Carathéodory measure hyperbolic universal covers of compact Kähler manifolds

Ngai-fung Ng

Abstract

This article explores some properties of universal covers of compact Kähler manifolds, under the assumption of Carathéodory measure hyperbolicity. In particular, by comparing invariant volume forms, an inequality is established between the volume of canonical bundle of a compact Kähler manifolds and the Carathéodory measure of its universal cover (similar result as in [Kikuta 10]). Using similar method, an inequality is established between the restricted volume of canonical bundle of a compact Kähler manifolds and the restricted Carathéodory measure of its covering, solving a conjecture in [Kikuta 13].

1 Introduction

It is interesting to study non-compact complex manifolds with the assumption that there exits bounded holomorphic functions on it, since they include the examples of bounded domains and in particular, Hermitian symmetric spaces of non-compact type. In this article, we shall study properties of universal covers of compact Kähler manifolds, under the assumption of Carathéodory measure hyperbolicity. In this case, there are abundant supplies of holomorphic functions, leading to interesting properties. In [Kikuta 10], it was established that the volume of the canonical line bundle of a compact Kähler manifold is bounded from below by a constant multiple of its Carathéodory measure. It is natural to ask the same question regarding restricted volumes and measures. It was stated as a conjecture in [Kikuta 13] that the restricted volume of the canonical line bundle of a compact Kähler
manifold is also bounded from below by a constant multiple of its restricted Carathéodory measure. Inspired by the work of [Yeung], which established uniform estimates among invariant metrics, the author obtains uniform estimates among invariant volumes forms and the conjecture follows as an easy consequence.

2 Invariant Volume Forms

Let $\mu^d_r$ be the Poincaré volume form for $\mathbb{B}^d_r$, the complex $d$-ball of radius $r$, i.e.,

$$
\mu^d_r = \frac{r^2}{(r^2 - \|z\|^2)^{d+1}} \cdot \frac{\sqrt{-1}}{2} dz^1 \wedge dz^2 \wedge \cdots \wedge \frac{\sqrt{-1}}{2} dz^d \wedge d\bar{z}^d
$$

For the unit ball $\mathbb{B}^n_1$, we write $\mu^d_1$ simply as $\mu^d$.

Let $M$ be an $n$-dimensional complex manifold:

The **Bergman pseudo-volume form** $v^B_M$ is defined by, for any $p \in M$,

$$
v^B_M(p) := \sum_i (\varphi_i \wedge \bar{\varphi}_i)(p)
$$

where $\{\varphi_i\}$ is an orthonormal basis for $L^2(M, K_M)$.

From [Hahn], we have

$$
v^B_M(p) = \varphi_p \wedge \bar{\varphi}_p
$$

where $\varphi_p$ maximizes $(\varphi \wedge \bar{\varphi})(p)$ over the unit ball of $L^2(M, K_M)$.

The **Carathéodory pseudo-volume form** $v^C_M$ is defined by ([Eisenman] page 57), for any $p \in M$,

$$
v^C_M(p) := \sup \{(f^* \mu^n)(p); \ f : M \to \mathbb{B}^n_1 \text{ holomorphic}, f(p) = 0\}
$$

$$
= \sup \{|Jac(f)(0)|^2; \ f : M \to \mathbb{B}^d_1 \text{ holomorphic}, f(p) = 0\}
$$

The **Kobayashi pseudo-volume form** $v^K_M$ is defined by ([Eisenman] page 57), for any $p \in M$,

$$
v^K_M(p) := \inf \{|Jac(f)(0)|^{-2}; \ f : \mathbb{B}^n_1 \to M \text{ holomorphic}, f(0) = p\}
$$

2
Next let us consider the case when there is a $d$-dimensional subvariety $Z$ of $M$, in an analogous manner to the above, we may have the following definitions:

The **restricted Carathéodory pseudo-volume form** $v^C_{M|Z}$ on the regular locus $Z_{reg}$ of $Z$ is defined by, for any $p \in Z_{reg}$,

$$v^C_{M|Z}(p) := \sup \{|\text{Jac}(f|_Z)(p)|^2; \ f : M \to \mathbb{B}_1^d \text{ holomorphic}, f(p) = 0\}$$

The **restricted Kobayashi pseudo-volume form** $v^K_{M|Z}$ on the regular locus $Z_{reg}$ of $Z$ is defined by, for any $p \in Z_{reg}$,

$$v^K_{M|Z}(p) := \inf \{|\text{Jac}(i_Z \circ f)(0)|^{-2}; \ f : \mathbb{B}_1^d \to M \text{ holomorphic}, f(0) = p\}$$

where $i_Z : M \to Z$ is the restriction map.

### 3 Basic Properties

The following are the volume decreasing properties of the corresponding volume forms, which are included here for the convenience of the readers.

**Proposition 3.1 (Volume decreasing property for Carathéodory measure).** Let $N$ be an $n$-dimensional complex manifold. Then, for all $\varphi \in \text{Hol}(M, N)$,

$$\varphi^*(v^C_N) \leq v^C_M$$

*Proof.* Any map from $N$ to $\mathbb{B}_1^n$ induces a map from $M$ to $\mathbb{B}_1^n$. \ 

**Proposition 3.2 (Volume decreasing property for Kobayashi measure).** Let $N$ be an $n$-dimensional complex manifold. Then, for all $\varphi \in \text{Hol}(M, N)$,

$$\varphi^*(v^K_N) \leq v^K_M$$

*Proof.* Any map from $\mathbb{B}_1^n$ to $M$ induces a map from $\mathbb{B}_1^n$ to $N$. \ 

Similarly, we have the following:

**Proposition 3.3 (Volume decreasing property for restricted Carathéodory measure).** Let $Y$ be an $n$-dimensional complex manifold and $W$ its $d$-dimensional complex subvariety. Then, for all $\varphi \in \text{Hol}(X,Y)$, such that $\varphi(Z) \subset W$,

$$(\varphi|_Z)^*(v^C_{Y|W}) \leq v^C_{X|Z}$$
Proposition 3.4 (Volume decreasing property for restricted Kobayashi measure). Let $Y$ be an $n$-dimensional complex manifold and $W$ its $d$-dimensional complex subvariety. Then, for all $\varphi \in \text{Hol}(X, Y)$, such that $\varphi(Z) \subset W$, 

$$(\varphi|_Z)^*(v_{Y|W}^K) \leq v_{X|Z}^K$$

We also have continuity for Carathéodory volume form.

Proposition 3.5. $v_M^C$ is locally Lipschitz.

Proof. Let $o \in M$, choose a local coordinate system $U$ at $o$. Let $B^n_r$ be the coordinate ball centered at $o$. Let $p, q \in B^{n/2}_r$ and suppose

$$v_M^C(p) \geq v_M^C(q)$$

then

$$v_M^C(p) - v_M^C(q) = \sup |\text{Jac}(f)(p)|^2 - \sup \frac{|\text{Jac}(f)(q)|^2}{(1 - \|f(q)\|^2)^{n+1}}$$

$$\leq \sup \{|\text{Jac}(f)(p)|^2 - |\text{Jac}(f)(q)|^2\}$$

$$\leq \sup \{(|\text{Jac}(f)(p) - \text{Jac}(f)(q)|)(|\text{Jac}(f)(p)| + |\text{Jac}(f)(q)|)\}$$

$$\leq \frac{n^{3/2}2^{n+2}n!}{r^{n+1}} \cdot \|p - q\| \cdot \frac{2^{n+1}n!}{r^n}$$

$$= \frac{n^{3/2}2^{n+3}(n!)^2}{r^{2n+1}} \cdot \|p - q\|$$

where the supremum is taken over the set $\{f : M \to B^n_1, f(p) = 0\}$. The last inequality above follows from Cauchy estimates. 

Now let $X$ be an $n$-dimensional compact Kähler manifold, $\tilde{X}$ be its universal cover. The next result is a key property of Carathéodory measure hyperbolic universal cover.

Proposition 3.6 ([Kikuta 10]). Suppose $\tilde{X}$ is Carathéodory measure hyperbolic (i.e. $v_{\tilde{X}}^C > 0$ at every point), then we have $c_1(K_X) > 0$.

Proof. By the Arzela-Ascoli theorem, for any $p \in \tilde{X}$, there is a map $f_p : \tilde{X} \to B^n_1$ such that $v_{\tilde{X}}^C(p) = (f_p^*\mu^*)(p) = |\text{Jac}(f_p)|^2(p)$.
For \( f : \tilde{X} \to \mathbb{B}^n_1 \) and \( \zeta \in \mathbb{C}^n \), consider
\[
(\sqrt{-1}\partial\bar{\partial} \log(f^*\mu^n))(\zeta, \bar{\zeta})
\]
\[
= (n + 1) \sum_{i,j,k,l} \left( \frac{(1 - \|f\|^2)^2}{2} \delta_{ij} + f_j f_l \right) \frac{\partial f_i}{\partial z_k} \frac{\partial f_j}{\partial z_l} \zeta^k \bar{\zeta}^l
\]
\[
= (n + 1) \left( \sum_{i,k,l} \frac{1}{1 - \|f\|^2} \frac{\partial f_i}{\partial z_k} \frac{\partial f_i}{\partial z_l} \zeta^k \bar{\zeta}^l + \left| \sum_{i,k} \frac{\partial f_i}{\partial z_k} f_k \right|^2 \right)
\]
\[
\geq (n + 1) \cdot \frac{1}{1 - \|f\|^2} \sum_{i,k,l} \frac{\partial f_i}{\partial z_k} \frac{\partial f_i}{\partial z_l} \zeta^k \bar{\zeta}^l
\]
\[
= (n + 1) \cdot \frac{1}{1 - \|f\|^2} \cdot \zeta^*(Jac(f))^* \cdot Jac(f) \zeta
\]

Now, for any \( p \in \tilde{X} \), \( |Jac(f_p)|^2(p) > 0 \). Hence there is a neighborhood \( K \) of \( p \) and constants \( c, \epsilon > 0 \) such that
\[
1 - \|f_p(q)\|^2 \geq c > 0
\]
and
\[
\zeta^*(Jac(f_p))^*(q) \cdot Jac(f_p)(q) \zeta \geq \epsilon |\zeta|^2
\]
for all \( q \in K \). Notice that \( v^C_X \) is continuous and therefore
\[
\log(v^C_X) = \sup_{p \in \tilde{X}}(f_p^*\mu^n)
\]
is strictly plurisubharmonic.

Interpret \( v^C_X \) as a volume form over \( X \) with \( \log(v^C_X) \) being strictly plurisubharmonic. By [Richberg], \( v^C_X \) can be approximated uniformly over \( X \) by a smooth volume form whose logarithm is strictly plurisubharmonic. Hence, \( c_1(K_X) > 0 \).

In the case that the covering is a bounded domain in \( \mathbb{C}^n \), we have the following extra geometric property.

**Proposition 3.7 (Uniform Squeezing Property for \( \tilde{X} \)).** Suppose \( \tilde{X} \) is a bounded domain in \( \mathbb{C}^n \) which covers a compact Kähler manifold \( X \), then there exists \( a, b \) satisfying \( 0 < a < b < \infty \) such that for any \( x \in \tilde{X} \), there exists an embedding \( \varphi_x : \tilde{X} \to \mathbb{C}^n \) with \( \varphi_x(x) = 0 \) and \( \mathbb{B}^n_a \subset \varphi_x(\tilde{X}) \subset \mathbb{B}^n_b \).
Proof. Let $A$ be any fundamental domain of $X$ in $\tilde{X}$. For any $x \in A$, take $r_x = \inf_{y \in \partial\tilde{X}} |x - y| > 0$, $R_x = \sup_{y \in \partial\tilde{X}} |x - y| < \infty$ so that we have $B^n_{r_x}(x) \subset \tilde{X} \subset B^n_{R_x}(x)$.

Now since $A$ is relatively compact in $\tilde{X}$, and $r_x, R_x$ are Lipschitz continuous in $x$, we have $\inf_A r_x := a > 0$ and $\sup_A R_x := b < \infty$.

For any $x \in \tilde{X} - A$, there is an automorphism of $\tilde{X}$ which brings $x$ to a point in $A$. And hence for all points in $\tilde{X}$, we have an embedding $\varphi_x$ such that $\varphi_x(x) = 0$ and $B^n_a \subset \varphi_x(\tilde{X}) \subset B^n_b$.

Finally we include the statement of two Schwarz lemmas and a result on $L^2$-estimate for the $\bar{\partial}$-equation that will be used.

**Proposition 3.8** (Schwarz lemma of [Mok-Yau]). Let $M$ be a complete Hermitian manifold with scalar curvature bounded from below by $-K_1$ and let $N$ be a complex manifold of the same dimension with a volume form $V_N$ (i.e., positive $(n,n)$ form, $n = \dim N$) such that the Ricci form is negative definite and $(\sqrt{-1} \partial \bar{\partial} \log V_N)^n \geq K_2 V_N$. Suppose $f : M \to N$ is a holomorphic map and the Jacobian is nonvanishing at one point. Then $K_1 > 0$ and
\[
\sup \frac{f^* V_N}{V_M} \leq \frac{K_1^n}{n^n K_2}
\]

**Proposition 3.9** (Schwarz lemma of [Royden]). Let $(M,g)$ be a complete Kähler manifold with Ricci curvature bounded from below by $k \leq 0$, and $(N,h)$ a Kähler manifold with holomorphic sectional curvature bounded from above by $K < 0$. Then for any holomorphic map $f : M \to N$ we have
\[
\sum_{\alpha,\beta,i,j} g^{\alpha\beta} f^* h_{\alpha i} f^* h_{\beta j} \leq \frac{2\nu}{\nu + 1} \frac{k}{K}
\]
where $\nu$ is the maximal rank of $df$.

**Proposition 3.10** ([Hörmander]). Let $M$ be a complete Kähler manifold and let $\varphi$ be a smooth strictly psh function on $M$. Then for any $v \in L^2_{n,1}(M, \partial\bar{\partial}\varphi, \varphi)$ with $\bar{\partial}v = 0$, there is an $(n,0)$-form $u$ on $M$ such that $\bar{\partial}u = v$ and
\[
\left| \int_M u \wedge \bar{\partial}e^{-\varphi} \right| \leq \int_M |v|^2_{\partial\bar{\partial}\varphi} e^{-\varphi}
\]
4 Uniform Estimates among Invariant Volumes

Theorem 4.1. Let $X$ be an $n$-dimensional compact Kähler manifold, $\tilde{X}$ be its universal cover. Then we have, at any $p \in \tilde{X}$,

(a) \[ v_C^\tilde{X} \leq v^K_{\tilde{X}} \]

(b) \[ v_C^\tilde{X} \leq \frac{1}{n!} \cdot v^{KE}_{\tilde{X}} \]
\[ v^{KE}_{\tilde{X}} \leq \frac{1}{n!} \cdot v_K^\tilde{X} \]
\[ c_1 \cdot v_C^\tilde{X} \leq v_B^\tilde{X} \leq c_2 \cdot v_C^\tilde{X} \]
if we assume $\tilde{X}$ is Carathéodory measure hyperbolic, where $c_1 = c_1(X) > 0$ and $c_2 = c_2(X) < \infty$.

(c) \[ v^K_{\tilde{X}} \leq \frac{b^{2n}}{a^{2n}} \cdot v_C^\tilde{X} \]
if we assume $\tilde{X}$ is a bounded domain in $\mathbb{C}^n$, where $a = a(X) > 0, b = b(X) < \infty$ are as in Proposition (3.7).

Proof.

(a) $v_C^\tilde{X} \leq v^K_{\tilde{X}}$:

Fix $\epsilon > 0, p \in \tilde{X}$. Let $f : \mathbb{B}^n_1 \to \tilde{X}$ and $g : \tilde{X} \to \mathbb{B}^n_1$ be any holomorphic maps with $f(0) = p$ and $g(p) = 0$ respectively and such that they satisfy
\[ 0 < |\text{Jac}(f)(0)|^{-2} < v^K_{\tilde{X}} + \epsilon \]
and
\[ |\text{Jac}(g)(p)|^2 > v_C^\tilde{X} - \epsilon \]

Consider the composition $\mathbb{B}^n_1 \xrightarrow{f} \tilde{X} \xrightarrow{g} \mathbb{B}^n_1$.
Applying Ahlfors-Schwarz lemma gives
\[ (g \circ f)^* \mu^n \leq \mu^n \]
Expressed in terms of $f$ and $g$ gives

$$|Jac(g)(p)|^2 \leq |Jac(f)(0)|^{-2}$$

and hence

$$v_C^X - \epsilon \leq v_{\tilde{X}}^{KE} + \epsilon$$

We are done since $\epsilon$ is arbitrary.

(b) $v_C^X \leq \frac{1}{n!} \cdot v_{\tilde{X}}^{KE}$:

By Proposition (3.6), we know that $c_1(K_X) > 0$.

By the Calabi-Yau theorem, there is a unique Kähler-Einstein metric $g_{X}^{KE}$ on $X$ such that

$$Ric(g_{X}^{KE}) = -2(n + 1) \cdot \omega_{X}^{KE}$$

Pull back the metric by $\pi$ so that we have, on $\tilde{X}$, the complete metric $g_{\tilde{X}}^{KE}$ satisfying

$$Ric(g_{\tilde{X}}^{KE}) = -2(n + 1) \cdot \omega_{\tilde{X}}^{KE}$$

Hence the scalar curvature of $\tilde{X}$ w.r.t this metric is $-n(n + 1)$.

On $\mathbb{B}_1^n$, we can construct a Kähler-Einstein metric $g_{\mathbb{B}_1^n}^{KE}$ such that

$$Ric(g_{\mathbb{B}_1^n}^{KE}) = -2(n + 1) \cdot \omega_{\mathbb{B}_1^n}^{KE}$$

Hence

$$\left(\frac{\sqrt{-1}}{2} \partial \bar{\partial} \log V_{\mathbb{B}_1^n}\right)^n = (n + 1)^n n! V_{\mathbb{B}_1^n}$$

For any map $f : \tilde{X} \to \mathbb{B}_1^n$, applying the Schwarz lemma of [Mok-Yau] yields

$$f^* \mu^n \leq \frac{(n(n + 1))^n}{n^n (n + 1)^{n n!}} \cdot v_{\tilde{X}}^{KE} = \frac{1}{n!} \cdot v_{\tilde{X}}^{KE}$$

Hence we have

$$v_C^X \leq \frac{1}{n!} \cdot v_{\tilde{X}}^{KE}$$
(b) $v_{\bar{X}}^{KE} \leq \frac{1}{n!} \cdot v_{\bar{X}}^{K}$:

For any $p \in \bar{X}$, consider any map $f : \mathbb{B}^n_1 \to \bar{X}$ with $f(0) = p$ and $(f^{-1})^*$ well-defined at $p$. Applying the Schwarz lemma of [Mok-Yau] yields

$$f^*v_{\bar{X}}^{KE} \leq \frac{(n(n+1))^n}{n^n(n+1)^n} \cdot \mu_n$$

Hence we have

$$v_{\bar{X}}^{KE} \leq \frac{1}{n!} (f^{-1})^* \mu_n$$

Therefore

$$v_{\bar{X}}^{KE} \leq \frac{1}{n!} \cdot v_{\bar{X}}^{K}$$

(b) $c_1 \cdot v_{\bar{X}}^{C} \leq v_{\bar{X}}^{B} \leq c_2 \cdot v_{\bar{X}}^{C}$:

For any $p \in \bar{X}$, there is an $f_p : \bar{X} \to \mathbb{B}^n_1$ such that $f_p(p) = 0$ and $v_{\bar{X}}^{C} = |\text{Jac}(f_p)|^2 > 0$. Let $\lambda$ be a $C^\infty$ real smooth cut off function that is $\equiv 1$ in a neighborhood of $p$. Let $\{x_i\}$ be a countable dense subset of $\bar{X}$, set $\psi := \log \left(1 + \sum_i \frac{1}{2^n} \|f_{x_i}\|^2\right)$. A direct computation shows that $\psi$ is strictly plurisubharmonic ([Kikuta 10]) and clearly $\psi$ is bounded. Choose $k > 0$ such that $\varphi := k\psi + \lambda(n+1) \log |z|^2$ is strictly psh on $\bar{X}\backslash\{p\}$. By Proposition (3.10), we can solve the equation $\bar{\partial}u = \bar{\partial}(\lambda \text{Jac}(f_p))$ on $\bar{X}\backslash\{p\}$ with estimate

$$\left|\int_{\bar{X}\backslash\{p\}} u \wedge \bar{u} e^{-\varphi}\right| \leq \int_{\bar{X}\backslash\{p\}} |\bar{\partial}(\lambda \text{Jac}(f_p))|^2_{\partial\bar{\partial}\varphi} e^{-\varphi} \leq C$$

This implies that the $L^2$ holomorphic $n$-form $u$ satisfies

$$u(p) = \text{Jac}(f_p)(p) \neq 0$$

Hence, $v_{\bar{X}}^{B}(p) > 0$. Consider the ratio $v_{\bar{X}}^{B}/v_{\bar{X}}^{C}$, being continuous and invariant under automorphisms of $\bar{X}$, let $A$ be a fundamental domain of $X$ in $\bar{X}$, we have

$$\inf_{\bar{X}} v_{\bar{X}}^{B}/v_{\bar{X}}^{C} = \inf_{A} v_{\bar{X}}^{B}/v_{\bar{X}}^{C} := c_1(X) > 0$$

and

$$\sup_{\bar{X}} v_{\bar{X}}^{B}/v_{\bar{X}}^{C} = \sup_{A} v_{\bar{X}}^{B}/v_{\bar{X}}^{C} := c_2(X) < \infty$$
Realize $\tilde{X}$ as $\mathbb{B}_a^n \subset \tilde{X} \subset \mathbb{B}_b^n$ with $p = (0, ..., 0)$. Consider the composition $\mathbb{B}_1^n \rightarrow \mathbb{B}_a^n \hookrightarrow \tilde{X} \hookrightarrow \mathbb{B}_b^n \rightarrow \mathbb{B}_1^n$ in which the first and last maps are given, respectively, by

$$(w_1, ..., w_n) \mapsto (aw_1, ..., aw_n)$$

and

$$(z_1, ..., z_n) \mapsto (z_1/b, ..., z_n/b)$$

Hence,

$$v_C^{\tilde{X}}(p) \geq \frac{1}{b^{2n}} \frac{\sqrt{-1}}{2} dz^1 \wedge \overline{dz^1} \wedge \cdots \wedge \frac{\sqrt{-1}}{2} dz^n \wedge \overline{dz^n}$$

and

$$v^K_X (p) \leq \frac{1}{a^{2n}} \frac{\sqrt{-1}}{2} dz^1 \wedge \overline{dz^1} \wedge \cdots \wedge \frac{\sqrt{-1}}{2} dz^n \wedge \overline{dz^n}$$

We know that the Carathéodory pseudo-volume form is invariant under biholomorphic map. Hence, the Carathéodory measure $\mu_C^{\tilde{X}}(X)$ of $X$ can thus be defined to be

$$\mu_C^{\tilde{X}}(X) := \int_A v_C^{\tilde{X}}$$

where $A$ can be any fundamental domain of $X$ in $\tilde{X}$.

Next, let $L$ be a holomorphic line bundle over $X$, the volume $\text{vol}_X(L)$ of $L$ is defined as

$$\text{vol}_X(L) := \lim \sup_{m \rightarrow \infty} \frac{\dim H^0(X, \mathcal{O}(mL))}{m^n/n!}$$

The following result will be needed to estimate the volume of $K_X$.

**Proposition 4.2 ([Boucksom]).** Let $X$ be an $n$-dimensional compact Kähler manifold, and let $L$ be a holomorphic line bundle over $X$. Then

$$\text{vol}_X(L) = \sup_T \left\{ \int_X (T_{ac})^n \right\}$$

10
where $T$ is semi-positive $(1,1)$-current in $c_1(L)$ and $T_{ac}$ is the absolutely continuous part of $T$ in its Lebesgue decomposition $T = T_{ac} + T_{sg}$. $T_{ac}$ is considered as a $(1,1)$-form with $L^1_{loc}$ coefficients, so that $(T_{ac})^n$ is meant pointwise.

**Corollary 4.3.** Let $X$ be an $n$-dimensional compact Kähler manifold such that $X$ is Carathéodory measure hyperbolic, then we have

$$\frac{(n!)^2(n+1)^n}{(\pi)^n} \cdot \mu_X^c(X) \leq vol_X(K_X)$$

**Proof.** From

$$n! \cdot v_X^c \leq v^KE_X = \frac{1}{n!} (\omega_X^{KE})^n = \frac{1}{n! (2(n+1))^n} \left(-Ric(g^{KE}_X)\right)^n$$

we have

$$\frac{(n!)^2(n+1)^n}{(\pi)^n} \cdot v_X^c \leq \left(-\frac{1}{2\pi} Ric(g^{KE}_X)\right)^n$$

Let $A$ be a fundamental domain of $X$ in $\tilde{X}$. Integrate the above inequality over $A$, we have

$$\frac{(n!)^2(n+1)^n}{(\pi)^n} \int_A v_X^c \leq \int_A \left(-\frac{1}{2\pi} Ric(g^{KE}_X)\right)^n$$

Apply Proposition (4.2), we get

$$\frac{(n!)^2(n+1)^n}{(\pi)^n} \cdot \mu_X^c(X) \leq vol_X(K_X)$$

Similar estimate is obtained in [Kikuta 10] by using a different method.

## 5 Uniform Estimates among Restricted Invariant Volumes

Similar to the treatment of last section, we have the following:

**Theorem 5.1.** Let $X$ be an $n$-dimensional compact Kähler manifold, $\pi : \tilde{X} \to X$ be its universal cover, $Z$ be a $d$-dimensional subvariety of $X$, $\tilde{Z}_{reg}$ is the regular part of the subvariety $\tilde{Z} := \pi^{-1}(Z)$. Then we have, at any $p \in \tilde{Z}_{reg},$
(a) \[ v^C_{\tilde{X}|\tilde{Z}} \leq v^K_{\tilde{X}|\tilde{Z}} \]

(b) \[ v^C_{\tilde{X}|\tilde{Z}} \leq \frac{d^d(n+1)^d}{(d+1)^d} \cdot v^{KE}_{\tilde{X}|\tilde{Z}} \]

if we assume \( \tilde{X} \) is Carathéodory measure hyperbolic.

(c) \[ v^K_{\tilde{X}|\tilde{Z}} \leq \frac{v^{2d}}{a^{2d}} \cdot v^C_{\tilde{X}|\tilde{Z}} \]

if we assume \( \tilde{X} \) is a bounded domain in \( \mathbb{C}^n \), where \( a = a(X) \), \( b = b(X) \) are as in Proposition (3.7).

Proof.

(a) \( v^C_{\tilde{X}|\tilde{Z}} \leq v^K_{\tilde{X}|\tilde{Z}} \):

Fix \( \epsilon > 0 \), \( p \in \tilde{Z}_{\text{reg}} \). Let \( f : \mathbb{B}_1^d \to \tilde{X} \) and \( g : \tilde{X} \to \mathbb{B}_1^d \) be any holomorphic maps with \( f(0) = p \) and \( g(p) = 0 \) respectively and such that they satisfy

\[ 0 < |\text{Jac}(i_{\tilde{Z}_{\text{reg}}} \circ f)(0)|^{-2} < v^K_{\tilde{X}|\tilde{Z}} + \epsilon \]

and

\[ |\text{Jac}(g|_{\tilde{Z}_{\text{reg}}})(p)|^2 > v^C_{\tilde{X}|\tilde{Z}} - \epsilon \]

Consider the composition \( \mathbb{B}_1^d \xrightarrow{f} \tilde{X} \xrightarrow{i_{\tilde{Z}_{\text{reg}}}} \tilde{Z}_{\text{reg}} \xrightarrow{g|_{\tilde{Z}_{\text{reg}}}} \mathbb{B}_1^d \).

Applying Ahlfors-Schwarz lemma gives

\[ (g \circ f)^* \mu^d \leq \mu^d \]

Expressed in terms of \( i_{\tilde{Z}_{\text{reg}}} \circ f \) and \( g|_{\tilde{Z}_{\text{reg}}} \) gives

\[ |\text{Jac}(g|_{\tilde{Z}_{\text{reg}}})(p)|^2 \leq |\text{Jac}(i_{\tilde{Z}_{\text{reg}}} \circ f)(0)|^{-2} \]

and hence

\[ v^C_{\tilde{X}|\tilde{Z}} - \epsilon \leq v^K_{\tilde{X}|\tilde{Z}} + \epsilon \]

We are done since \( \epsilon \) is arbitrary.
(b) \( v^C_{\tilde{X}|\tilde{Z}} \leq \frac{d^d(n+1)^d}{(d+1)^d} \cdot v^{KE}_{\tilde{X}|\tilde{Z}} \).

By Proposition (3.6), we know that \( c_1(K_{\tilde{X}}) > 0. \)

By the Calabi-Yau theorem ([Yau]), there is a unique Kähler-Einstein metric \( g^{KE}_{\tilde{X}} \) on \( X \) such that

\[
Ric(g^{KE}_{\tilde{X}}) = -2(n + 1) \cdot \omega^{KE}_{\tilde{X}}
\]

Pull back the metric by \( \pi \) so that we have, on \( \tilde{X} \), the complete metric \( g^{KE}_{\tilde{X}} \) satisfying

\[
Ric(g^{KE}_{\tilde{X}}) = -2(n + 1) \cdot \omega^{KE}_{\tilde{X}}
\]

On \( \mathbb{B}^d_1 \), we can construct a Kähler-Einstein metric \( g^{KE}_{\mathbb{B}^d_1} \) such that

\[
Ric(g^{KE}_{\mathbb{B}^d_1}) = -2(d + 1) \cdot \omega^{KE}_{\mathbb{B}^d_1}
\]

For any map \( f : \tilde{X} \to \mathbb{B}^d_1 \), applying the Schwarz lemma of [Royden] yields

\[
f^* \omega^{KE}_{\mathbb{B}^d_1} \leq \frac{2d}{d+1} \cdot \omega^{KE}_{\tilde{X}}
\]

Taking \( d \)-th power on both sides yields

\[
f^* \mu^d \leq \frac{d^d(n+1)^d}{(d+1)^d} \cdot \frac{(\omega^{KE}_{\tilde{X}})^d}{d!}
\]

Restricting to \( \tilde{Z}_{reg} \) gives

\[
v^C_{\tilde{X}|\tilde{Z}} \leq \frac{d^d(n+1)^d}{(d+1)^d} \cdot v^{KE}_{\tilde{X}|\tilde{Z}}
\]

(c) \( v^K_{\tilde{X}|\tilde{Z}} \leq \frac{b^{2d}}{a^{2d}} \cdot v^C_{\tilde{X}|\tilde{Z}} \).

Realize \( \tilde{X} \) as \( \mathbb{B}^n_a \subset \tilde{X} \subset \mathbb{B}^n_b \) with \( p = (0, ..., 0) \) and locally at \( p \), \( \tilde{Z} \) is given by \( z_{d+1} = ... = z_n = 0 \). Consider the composition

\[
\mathbb{B}^d_1 \to \mathbb{B}^n_a \leftarrow \tilde{X} \leftarrow \mathbb{B}^n_b \to \mathbb{B}^d_1
\]
in which the first and last maps are given, respectively, by

\[(w_1, ..., w_d) \mapsto (aw_1, ..., aw_d, 0, ..., 0)\]

and

\[(z_1, ..., z_n) \mapsto (z_1/b, ..., z_d/b)\]

Hence,

\[v^C_{X|\tilde{Z}}(p) \geq \frac{1}{b^{2d}} \frac{\sqrt{-1}}{2} dz^1 \wedge d\bar{z}^1 \wedge \cdots \wedge \frac{\sqrt{-1}}{2} dz^d \wedge d\bar{z}^d\]

and

\[v^K_{X|\tilde{Z}}(p) \leq \frac{1}{a^{2d}} \frac{\sqrt{-1}}{2} dz^1 \wedge d\bar{z}^1 \wedge \cdots \wedge \frac{\sqrt{-1}}{2} dz^d \wedge d\bar{z}^d\]

We know that the restricted Carathéodory pseudo-volume form is invariant under biholomorphic map preserving \(Z\). Hence, the restricted Carathéodory measure \(\mu^C_{X|\tilde{Z}}(Z)\) of \(Z\) can thus be defined to be

\[\mu^C_{X|\tilde{Z}}(Z) := \int_{A \cap \tilde{Z}_{reg}} v^C_{X|\tilde{Z}}\]

where \(A\) can be any fundamental domain of \(X\) in the covering \(\pi : \tilde{X} \to X\) and \(\tilde{Z}_{reg}\) is the regular part of the subvariety \(\tilde{Z} := \pi^{-1}(Z)\).

Next, let \(L\) be a holomorphic line bundle over \(X\), the restricted volume \(\text{vol}_{X|Z}(L)\) of \(L\) along \(Z\) is defined as

\[\text{vol}_{X|Z}(L) := \limsup_{m \to \infty} \dim H^0(X|Z, O(mL)) / m^d / d!\]

The following result will be needed to estimate the restricted volume of \(K_X\).

**Proposition 5.2** ([Boucksom],[Hisamoto],[Matsumura]). *Let \(X\) be an \(n\)-dimensional projective manifold, \(L\) is a big line bundle over \(X\), and \(Z\) is an irreducible \(d\)-dimensional subvariety of \(X\). Furthermore, suppose that \(Z \not\subset \mathbb{B}_+(L)\). Then*

\[v_{X|Z}(L) = \sup_T \left\{ \int_{Z_{reg}} (T|_{Z_{reg}})^d / ac \right\} \]
where $T$ is semi-positive $(1,1)$-current in $c_1(L)$ that have small unbounded loci and whose unbounded loci do not contain $Z$. Here we denote $T|_{Z_{\text{reg}}}$ the restriction of $T$ to the regular locus of $Z$ and $(T|_{Z_{\text{reg}}})_{\text{ac}}$ its absolutely continuous part.

Here we arrive at our promised result, settling a conjecture in [Kikuta 13].

**Corollary 5.3.** Let $X$ be an $n$-dimensional compact Kähler manifold such that $\tilde{X}$ is Carathéodory measure hyperbolic, $Z$ be a $d$-dimensional subvariety of $X$, then we have

$$
\frac{d! (d+1)^d}{\pi^d d^d} \cdot \mu_{\tilde{X}|\tilde{Z}}^C(Z) \leq \text{vol}_{X|Z}(K_X)
$$

**Proof.** From

$$
\frac{(d+1)^d}{d!(n+1)^d} \cdot v^C_{\tilde{X}|\tilde{Z}} \leq v^{K_E}_{\tilde{X}|\tilde{Z}} = \frac{1}{d!} (|\omega^{K_E}_{\tilde{X}}|_{\tilde{Z}_{\text{reg}}})^d = \frac{1}{d!(2(n+1))^d} \left(-\text{Ric}(g^{K_E}_{\tilde{X}})|_{\tilde{Z}_{\text{reg}}})^d
\right)
$$

we have

$$
\frac{d! (d+1)^d}{\pi^d d^d} \cdot v^C_{\tilde{X}|\tilde{Z}} \leq \left(-\frac{1}{2\pi} \text{Ric}(g^{K_E}_{\tilde{X}})|_{\tilde{Z}_{\text{reg}}})^d
\right)
$$

Let $A$ be a fundamental domain of $X$ in $\tilde{X}$. Integrate the above inequality over $A \cap \tilde{Z}_{\text{reg}}$ gives

$$
\frac{d! (d+1)^d}{\pi^d d^d} \int_{A \cap \tilde{Z}_{\text{reg}}} v^C_{\tilde{X}|\tilde{Z}} \leq \int_{A \cap \tilde{Z}_{\text{reg}}} \left(-\frac{1}{2\pi} \text{Ric}(g^{K_E}_{\tilde{X}})|_{\tilde{Z}}\right)^d
$$

Apply Proposition (5.2), we get

$$
\frac{d! (d+1)^d}{\pi^d d^d} \cdot \mu_{\tilde{X}|\tilde{Z}}^C(Z) \leq \text{vol}_{X|Z}(K_X)
$$

$\square$

## 6 Completeness of Bergman Metric

Suppose that $v^B_M > 0$ at every point, the **Bergman pseudometric** $g^B_M$ on $M$ is defined by

$$(g^B_M)_{ij} := \frac{\partial^2 \log(v^B_M)}{\partial z_i \partial \overline{z}_j}$$
From [Hahn], we have
\[ g_B^M(p, v) = \frac{\partial_v g_{p,v} \wedge \overline{\partial_v g_{p,v}}}{\varphi_p \wedge \overline{\varphi_p}} \]
where \( \varphi_p \) maximizes \((\varphi \wedge \overline{\varphi})(p)\) and \( g_{p,v} \) maximizes \((\partial_v g \wedge \overline{\partial_v g})(p)\) with \( g(p) = 0 \) over the unit ball of \( L^2(M, K_M) \).

**Theorem 6.1.** Let \( X \) be an \( n \)-dimensional compact Kähler manifold such that \( \tilde{X} \) is Carathéodory measure hyperbolic, then \( g_B^\tilde{X} \) is complete.

**Proof.** By Theorem (4.1), we know that \( v_B^\tilde{X} > 0 \) at every point, so \( g_B^\tilde{X} \) is well-defined. By Proposition (3.6), we know that \( c_1(K_X) > 0 \), hence there exists a complete Kähler-Einstein metric on \( \tilde{X} \). By Proposition 2.3 of [Chen], to show that the Bergman metric is positive definite, it suffices to construct a bounded smooth strictly plurisubharmonic function \( \psi \) on \( \tilde{X} \). Let \( \{x_i\} \) be a countable dense subset of \( \tilde{X} \), set \( \psi := \log \left(1 + \sum_i \frac{1}{2} \|f_{x_i}\|^2\right) \). A direct computation shows that \( \psi \) is strictly plurisubharmonic ([Kikuta 10]) and clearly \( \psi \) is bounded.

Now let \( \{y_i\} \) be a Cauchy sequence in \( \tilde{X} \) w.r.t. \( g_B^\tilde{X} \). As \( g_B^\tilde{X} \) is an invariant metric, the push-forward of \( g_B^\tilde{X} \) by \( \pi : \tilde{X} \rightarrow X \) onto \( X \) is a well-defined, positive definite metric, denoted by \( g_X \). Hence, \( \{\pi(y_i)\} \) is Cauchy w.r.t. \( g_X \) on the compact manifold \( X \). Hence, \( \{\pi(y_i)\} \) converges to, say, \( z \in X \). Let \( \pi^{-1}\{z\} = \{x_i\}_{i \in I} \). By the discreteness of the action of deck transformations on \( \{x_i\}_{i \in I} \), there exists \( \epsilon \)-neighborhoods of the \( x_i \)'s that are mutually non-intersecting, hence, there exists \( x_{i_0} \) in \( \{x_i\}_{i \in I} \) that is the limit of convergence of \( \{y_i\} \). \( \square \)
References

[Boucksom] S. Boucksom, *On the volume of a line bundle*, Internat. J. Math. 13 (2002), 1043-1063.

[Chen] B.-Y. Chen, *The Bergman metric on complete Kähler manifolds*, Math. Ann. 327 (2003), no. 2, 339-349.

[Eisenman] D. A. Eisenman, *Intrinsic measures on complex manifolds and holomorphic mappings*, Memoirs of the American Math. Soc. No. 96 (1970).

[Ein-Lazarsfeld-Mustata-Nakamaye-Popa] L. Ein, R. Lazarsfeld, M. Mustata, M. Nakamaye, M. Popa, *Restricted Volumes and Base Loci of Linear Series*, American Journal of Mathematics 131 (2009), 607-651.

[Hahn] K. T. Hahn, *Inequality between the Bergman metric and Carathéodory differential metric*, Proceedings of Amer. Math. Soc., Volume 68, Number 2 (1978), 193-194.

[Hisamoto] T. Hisamoto, *Restricted Bergman kernel asymptotics*, Trans. Amer. Math. Soc. 364 (2012), 3585-3607.

[Hörmander] L. Hörmander, *$L^2$ estimates and existence theorems for the $\bar{\partial}$ operator*, Acta Math. 113 (1965), 89-152

[Kikuta 10] S. Kikuta, *Carathéodory Measure Hyperbolicity and Positivity of Canonical Bundles*, Proceedings of the American Mathematical Society, Volume 139, Number 4, April 2011, Pages 1411-1420. Electronically Published on September 1, 2010.

[Kikuta 13] S. Kikuta, *Restricted Carathéodory Measure and Restricted Volume of the Canonical Bundle*, Michigan Math. J. 62 (2013), 259-292.

[Kobayashi 59] S. Kobayashi, *Geometry of Bounded Domains*, Trans. Amer. Math. Soc. 92 (1959), 267-290.

[Kobayashi 98] S. Kobayashi, *Hyperbolic Complex Spaces*, Springer Verlag (1998).
[Liu-Sun-Yau] K. Liu, X. Sun, and S-T Yau, *Canonical metrics on the moduli space of Riemann Surfaces I*, J. Differential Geom. Volume 68, Number 3 (2004), 571-637.

[Matsumura] S. Matsumura, *Restricted volumes and divisorial Zariski decompositions*, Amer. J. Math. (Impact Factor: 1.18). 05/2010; 135(3).

[Mok-Yau] N. Mok, S.-T. Yau, *Completeness of the Kähler-Einstein metric on bounded domains and the characterization of domains of holomorphy by curvature conditions*, in: The Mathematical Heritage of Henri Poincaré, part 1, Bloomington, IN, 1980, in: Proc. Sympos. Pure Math., vol. 39, Amer. Math. Soc., Providence, RI, 1983, pp. 41-59.

[Richberg] R. Richberg, *Stetie streng pseudokonvexe Funktionen*, Math. Ann., 175 (1968), 257-286.

[Royden] H. L. Royden, *The Ahlfors-Schwarz lemma in several complex variables*, Comment. Math. Helvetici 55 (1980), 547-558.

[Yau] S.-T. Yau, *On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I*, Communications on Pure and Applied Mathematics 31 (3): 339-411 (1978), doi:10.1002/cpa.3160310304, MR 480350

[Yeung] S.-K. Yeung, *Geometry of domains with the uniform squeezing property*, Advances in Mathematics 221 (2009), 547-569.