Review

Customer Privacy Concerns as a Barrier to Sharing Data about Energy Use in Smart Local Energy Systems: A Rapid Realist Review

Carol Vigurs 1*, Chris Maidment 2, Michael Fell 2 and David Shipworth 2

1 EPPI-Centre, Social Research Institute, UCL—University College London, London WC1H 0NR
2 UCL Energy Institute, Bartlett School of Environment, Energy and Resources, UCL—University College London, London WC1E 6BT, UK;
c.maidment@ucl.ac.uk (C.M.);
michael.fell@ucl.ac.uk (M.F.); D.shipworth@ucl.ac.uk (D.S.)
* Correspondence: c.vigurs@ucl.ac.uk; Tel.: +44-7859955570

Table S1. Abbreviations

Abbreviation	Definition
EnergyREV	The EnergyREV (Energy Revolution) consortium has been formed to help drive forward research and innovation in smart local energy systems. EnergyREV is one of the three key components of the UK Industrial Strategy Challenge Fund’s Prospering from the Energy Revolution (PFER) programme.
EPPI-Centre	Evidence for Policy and Practice Information Coordinating Centre. A research centre specializing in systematic reviews for policy and practice. Based in the Institute for Social Research, UCL.
GDPR	General Data Protection Regulation. The European Union data protection regulations that came into force (2018). All entities that process personal data must comply with seven accountability and transparency principles: (1) lawfulness, fairness, and transparency; (2) purpose limitation; (3) data
minimization; (4) accuracy; (5) storage limitation; (6) integrity and confidentiality; (7) accountability.

PFER	Prosporing from the energy revolution. An investment by the UK government’s Industrial Strategy Challenge Fund (ISCF).
SLES	Smart Local Energy Systems. Future energy systems characterised by decentralized energy, requiring detailed customer energy use data to understand system performance in increasingly finer detail for grid balancing.

Table S2. Search terms for energy sharing data studies in bibliographic databases

1. Terms for Privacy	2. Near Terms for Data	3. Terms of Data Sharing and Privacy Behaviours
Privacy	Data	Behavior
Private	Information	attitude
personal		Calculus
sensitive		concern
secure		“tradeoff”
security		trade-off
Anony* Intention
confidential preserv*
intimate issue*
safety Anxiet*
Data privacy Incentiv*
"risk perception"
Caution
Paradox
Trust
Barrier
Percept*
Perceived
"data sharing"
"willingness to disclose"
Table S3. Hypothesised contexts, mechanisms and outcomes for Guiding principle 1.

Context	Mechanism	Outcomes
Individual, Micro and meso system.	Communication of a complete and relevant knowledge of risks and benefits to data sharing through usable privacy notices. Knowledge increases, and there is greater understanding and desire for benefits of sharing data	Active and sustained participation of customers in sharing data and involvement in active energy use behaviours
Meso system	Recognition and communication of interdependence and mutual benefit. Partnership working with community groups, individuals, and business.	Customer achieve their benefits and SLES System achieves balance and resilience through real time data collection and responsive energy use behaviours of customers’
Meso to micro	Resource. Outreach: Active and ongoing support, education and training	Inclusion of all customers, including those that may be at risk of exclusion.

Guiding principle 1. Recognize the mutual benefits of data sharing for smart local energy systems and work with customers as partners.
Table S4. Hypothesised contexts, mechanisms and outcomes for Guiding principle 2.

Context	Mechanism	Outcomes
Individual; and Micro system	Individual sense of autonomy, choice and control, self-efficacy, locus of control.	Active or passive resistance or active and continued use
	Active involvement in the design increases sense of control	Trusted devices and technologies are adopted and used
	Tailoring of technologies or service to meet personal goals:	Devices and technologies perceived to be compatible with personal values are adopted and used
	whether saving money, or “going green”	
Meso system	Ease of integration, into existing technologies and ways of living.	Devices and technologies perceived to be useful are adopted and used

Guiding principle 2. Involve people in the design of data sharing technologies from the start.
Table S5. Hypothesised contexts, mechanisms and outcomes for Guiding principle 3.

Context	Mechanism	Outcomes
Micro through to meso systems	Existing familiarity of privacy choices and controls.	Sharing or not sharing data can depend on existing knowledge, and how similar or different the privacy notices are compared to what people have already experienced.
	Usable privacy is accessible and relevant	
Micro systems	Having a choice over which third parties to share data with creates trust	Blocking sharing data can be a default position, where the third parties are unknown

Guiding principle 3. Give people a say on the third parties that they are happy to share data with

Table S6. Hypothesised contexts, mechanisms and outcomes for Guiding principle 4

Context	Mechanism	Outcomes
Individual and Micro through to macro	Privacy is relational and contextual. Control over information settings should allow for the setting of boundaries around what is acceptable or not acceptable for each context and time.	Empowerment over the control flow of information.

Guiding principle 4. Empower people to set the boundaries around the flow of information about themselves
Table S7. Hypothesised contexts, mechanisms and outcomes for Guiding principle 5

Context	Mechanism	Outcomes
Micro to meso	Ambivalence that people will see any real benefit to themselves	Lack of trust in the extent and purpose of data collection inhibits take up
Micro system	Anticipating benefits or unanticipated consequences of being “flexible”	Resistance or disappointment to unanticipated perceived intrusions into daily life
Micro system	Understanding and knowledge of privacy conditions	Withdrawal of consent as a default safety mechanism

Guiding principle 5. Ensure that the purpose and value of the data collected is transparent and fair

Table S8. Hypothesised contexts, mechanisms and outcomes for Guiding principle 6

Context	Mechanism	Outcomes
Meso system	Resource: Methods of accounting and billing allows for multiple account holders.	People who affected by energy use monitoring give their informed consent to the extent and depth of energy data collection.
Individual, Micro and Meso system	Values and beliefs of the household, differing priorities of members of the household, assumptions made about the use of monitoring technology. Assumptions of service providers about capacity of customers to receive and understand information about technology and services.	Over-monitoring, energy use data used as a vector of control.
		Including or excluding groups of people from decision making around the benefits of data sharing, including financial benefits and efficiencies, or other “off label” benefits.
Meso and macro systems

- Principle: gent problem over investment and benefit. Resource: Incentives for investments and ongoing support
- People affected by data sharing are excluded from decision making leading to passive resistance and use of technology is not sustained.
- SLES access to data is limited and declines over time.

Guiding principle 6. Ensure that everyone that is affected by sharing of data is involved in giving their informed consent.

Table S9. Hypothesised contexts, mechanisms and outcomes for Guiding principle 7.

Context	Mechanism	Outcomes
Micro and meso systems	Balance of power in a household. The visibility revealed by the use of energy monitoring data can shift this balance. Peer pressure to monitor behaviors. Resource: Methods of accounting and billing allows for multiple account holders and permissions to change granularity of data granted to those on the account.	Over monitoring, energy use data used as a vector of control. Multiple account holders should reduce the potential for the use of energy data to be used for gaslighting, or coercive control.
Meso and macro systems	Ethical design principles. Innovative use of detailed energy use data by household may generate unintended consequences.	Minimise the impact of unintended consequences.

Guiding principle 7. Recognize that technologies for revealing and monitoring behaviours in the home can be used in unexpected and unwanted ways.
Table S10. Hypothesised contexts, mechanisms and outcomes for Guiding principle 8.

Context	Mechanism	Outcomes
From micro to macro systems	Open channels of communication	Swiftly address the impact of unintended consequences
	Resources: outreach for stakeholder identification and involvement to include different perspectives into ethical design principles	Establish an ongoing process of evaluation

Guiding principle 8. Ensure there are channels of feedback and ongoing communication to continuously improve service delivery.

Table S11. Data sharing technologies and systems in each domain.

Data sharing technologies in the individual domain	These are usually operated by one person at a time, or one person has sole responsibility, they are usually password protection. Smart devices, Electric vehicles, personal computers, Apps.
Data sharing technologies in the Micro domain	These are technologies that are in the home. Users interact with sensors, Internet of things, Home networks, smart meters, smart appliances, smart home
Data sharing technologies in the Meso domain	These are technologies related to the local energy system and community based services. EV charging, Smart grid, Data storage servers, Smart local energy systems, Community based energy.
Data sharing technologies in the macro domain	These technologies at this level tend to be outside of the individual control and influence. This includes, internet, Cellular communications, powerline communications. Data protection policies, cloud storage.

Type of data sharing technologies in each domain.
Short Title	Country	Type of study	Number of participants	Type of intervention	Components of intervention	Aim of intervention	Users of data
S1. Bailey (2015)	Canada	Observational	1470 CPEVS survey \(n = 530 \) in discrete choice experiments	Smart charging of PEVs	• Alternative energy source		
• Budget information	To allow load management, reduce system costs, subsidize PEV market, increase use of renewables	• Energy provider					
S2. Begier (2014)	Poland	Observational	4 focus groups, 302 interview participants total: 963 persons)	Smart meters	• Communication		
• Email information							
• Home computer							
• In home displays							
• Information							
• Internet access							
• Personal visit by representative							
• Variable rates	Main technical purposes of smart metering, like energy saving, reducing total energy consumption, especially reducing peak demand of energy	• Criminals					
• Energy provider							
S3. BEIS (2018)	Great Britain	Review	NA	Regulation Regulatory framework	• Communication		
• Smart meter							
smart metering Data Access and Privacy Framework.	The Framework establishes sector-specific provisions relating to the processing of energy consumption data, which are designed to complement, but not replace, wider data protection legislation [e.g. GDPR]	• Consumers					
• Energy network operator							
• Energy provider							
• Third party organizations							
S4. Choe (2012)	USA	Observational	11 couple households	In Home sensors	• Diary		
• Home computer							
• Sensor lights							
• Technology education session	Sensors can help make decisions about energy efficiency.						
Study Reference	Location	Study Design	Data Collection Method	Key Findings	Study Objectives	Methodological Notes	
---	---	---	---	---	---	---	---
55. Citizens Advice Bureau (2019) ++/++	Great Britain	Observational	Survey, process evaluation	3008 online interviews, 213 face to face interviews, Smart appliances, Smart meters, Smart meter	Smart meters and smart devices aim in part to facilitate a more flexible electricity system	Corporations, Energy provider	
56. Da Silva (2012) +/-	Multiple locations	Observational	Survey	Not clear end prosumers of electricity in the residential sector	Real time information	Energy provider “retailer”	
57. Delmas (2014) +/-	USA	Experimental	Quasi	66 rooms, 102 participants	Email information, home energy monitoring device, In home displays, Information posters, Real time information	(To) test the efficacy of detailed private and public information on electricity conservation.	Not stated
58. Fell (2015) +/-	Great Britain	Observational	Survey	2159/2302 people full omnibus study	Electric heating	Demand side response (DSR) Simply defined as “change in electricity consumption patterns in response to a signal” (Element Energy 2012, 9), DSR offers the ability to sculpt demand for electricity to fit the available supply.	Not stated
59. Giordano (2011) +/-	Europe	Observational	Survey	Not clear	Authentication, Authorization, Certification, Encryption	(to). foster greater consumption awareness taking advantage of Smart Metering systems and improved customer information, in order to allow consumers to	Criminals, Market analysts, Insurance companies
Study Code	Country	Study Design	Sample Size	Energy System Components	Findings		
------------	---------	--------------	-------------	--------------------------	----------		
S10. Guerreiro (2015)	Portugal	Observational	515 residents in the city of Évora	Smart meters	Ensures integrity and confidentiality; modifies their behavior according to price and load signals and related information.		
S11. Hansen (2017)	Denmark	Observational	20 households	Smart grid, Electric vehicles (n = 17), Geothermal Heat pump, Hybrid air/water HP, Home energy monitoring device, Internet access, Photovoltaics PVs, Real time information, Sensors, Smart meter, Sun Wells	Smart meters permit smart grids, including by giving people feedback on their energy use so they can alter consumption patterns.		
S12. Hess (2014)	Canada, USA	Observational	75 organizations or information sites	Smart meters	Smart meters can help achieve “more resilient and sustainable electricity consumption”.		
S13. Hmielowski (2019)	USA	Observational	1035	Smart meters	To support/inform the installation of smart meters to increase energy efficiency, reduce costs and greenhouse gases.		
Study ID	Authors	Year	Location	Methodology	Case Study	Observational	National
----------	---------	------	----------	-------------	------------	---------------	---------
S14.	Hoenkamp	2012	The Netherlands	Case study	National	Smart meters	Compulsory roll out, In home displays, Real time information, Smart meter
S15.	Horne	2015	USA	Survey	Study 1 (S1) 353 Study 2 (S2) 355	Smart meters	Real time information, Smart meter
S16.	Huang	2016	Not stated	Model	Mixed strategy Nash Equilibrium game	NA	Incentives
S17.	Jakobi	2017	Germany	Observational	Focus group, Interviews	K3	Smart thermostats
Study (Year)	Country	Type	Methods	Findings	Participants	Incentives	Impact
------------	---------	------	---------	----------	-------------	-----------	-------
Jakobi (2019)	Germany	Observational ethnographic case study	survey: 34/200 App: 205	Smart meters - An App for Android, Customer choice of level of disclosure, Information, Internet access, Smart meter	(smart) meters are designed to collect information on power consumption and send it to third parties.		
Kapade (2017)	Not stated	Model	1000 modelled households.	Incentives - Area networks, Smart meter	To incentivize consumers via a credit-based system to share power consumption data that is beneficial to industries.		Data Collectors, Third party organizations, Unethical individuals
Melville (2017)	United Kingdom	Observational	1st interview (prior to installation): 12 respondents. 2nd interview (after intervention period): 7 of these 12 respondents. Subsequent focus group: 5 of these 7 respondents.	Community demand response (DR) - Consumption data, Feedback, Incentives	To influence individual consumption behavior through community accountability, (not just price signals), in an electricity demand response scheme.		Peers
Moere (2011)	Australia	Experimental Quasi experimental study	Intervention 6 - Control 5	Smart meters - Feedback, Internet access, Outside home display, Sensors, Wireless network	Providing comparative feedback may have a positive effect on behavior change by triggering feelings of competition, social comparison or social pressure [26].		Consumers
Naus (2015)	The Netherlands	Observational	Focus Group - 12, Survey = 171	Smart grid - Consumption, Domestic production, Energy meter	Government bodies at different levels have formulated targets to promote a transition to a low-carbon economy. Households are increasingly positioned as		Energy provider
Study	Country	Methodology	Sample Size	Data Collection	Data Analysis	Findings	
-------	---------	-------------	-------------	----------------	--------------	----------	
+/++	Great Britain	Observational	62 in four groups	Half-hourly settlement	Smart meter	Half-hourly settlement uses more fine-grained electricity consumption data from smart meters. It could allow more innovative energy products to be commercialized.	
S23. Ofgem Year 9 (2018)	Great Britain	Deliberative workshops	62 in four groups	Half-hourly settlement	Smart meter	Half-hourly settlement uses more fine-grained electricity consumption data from smart meters. It could allow more innovative energy products to be commercialized.	
S24. Pournara (2016)	Germany	Model	data on 6000 participants	Incentives	Authorization	A Smart Grid project that studies the impact on electricity consumption of residential and enterprise consumers in Ireland.	
S25. Sexton (2018)	England	Observational	5 in Energy case study interviews	Energy governance	Consumption data	Consumption data sharing, linking and re-use (secondary use) of government administrative data	
S26. Snow (2014)	Australia	Observational	23 households s235 households	Smart meters	Feedback	The emerging standard of visible and sharable electricity consumption information empowers families with multiple avenues to measure, share, discuss and learn how to better manage and reduce their usage	
+/-	+/-	+/-	+/-	+/-	+/-	+/-	

- Real time information
- Variable rates
- active participants with a responsibility to act as 'change agents'
| Study Reference | Country | Study Type | Sample Size | Data Sources | Findings | Users of data |
|-----------------|---------|------------|-------------|--------------|----------|--------------|
| S27. Horne (2019) | USA | Observational - Experimental vignette survey | S1 - 100 per condition, n = 300; S2 300 per condition, n = 1200 | Smart meters | An App | In its transition to a sustainable, reliable, efficient ‘smart grid,’ the system is integrating increasing amounts of ICT. |
| S28 Toft (2015) | Denmark | Observational - Interviews | 24 households | Smart grid | Geothermal Heat pump | One of the key elements of the Smart Grid is that electricity consumers make some of their consumption available as flexible capacity to balance the grid. Consumers’ flexible capacity is only available to the grid if the consumers adopt Smart Grid technology (SGT) that establishes the link between the electric system and the consumer. |
| S29. Valor (2019) | Multiple locations | Review - Exhaustive review | k = 100+ | Interactive feedback (via displays, apps, web portals etc.) | An App; In home displays; Web Portal | To design domestic energy/eco feedback displays that are "more effective in creating the desired household behavioral change to maximize energy conservation." |
| S30. Van Aubel (2019) | The Netherlands | Observational - Case study | National | Smart meters | Central administration; home energy monitoring device; In home displays | To discuss the how and why certain choices have been made in the Netherlands, in relation to roll out of smart meters |
| S31. Vermont Trasco LLC (2014) | USA | Observational - Case study | Reliant 600,000; ENO 150,000; SVE 21,000; CMP 600,000 | Smart grid | Advertising; Community outreach; Critical peak rebate; Customer training; Day ahead; Email information; Incentives; In home displays | Smart Grid Investment Grant projects (aim to) modernize the electric grid, strengthen cybersecurity, improve interoperability, and collect data on smart grid and customer operations. |
| Dataset | Methodology | Study Region | Key Findings | Examples |
|---------|-------------|--------------|--------------|----------|
| S32. Walter (2018) | Review, Multiple locations, Germany | • Partnerships with local organizations • Programmable Communicating Thermostat • Phone calls • Public meetings • Smart meter • SMS Messaging • Social Media • Software tools • trained customer • Variable rates • Web Portal | • Partnerships with local organizations • Programmable Communicating Thermostat • Phone calls • Public meetings • Smart meter • SMS Messaging • Social Media • Software tools • trained customer • Variable rates • Web Portal | Enabled by numerous connected sensors, new cars offer new functionalities, provide higher security levels and promise to enhance the comfort of travelling. |
| S33. Winter (2015) | Observational, Multiple locations, USA | • Event data recorder (EDR) • Informative intelligent speed adaption (ISA) | • Event data recorder (EDR) • Informative intelligent speed adaption (ISA) | Smart meters allow a utility to send commands to the meter, such as turning off the power due to nonpayment of tariffs or reducing the amount of energy consumed. |
| | Survey | | | | Ambulance. • App providers • Breakdown service • Car manufacturer • Family • Garage • Police • Hotels • Insurance companies • Traffic control center • Third party organizations |

Dataset	Methodology	Study Region	Key Findings	Examples	
S32. Walter (2018)	Review, Multiple locations, Germany	• Partnerships with local organizations • Programmable Communicating Thermostat • Phone calls • Public meetings • Smart meter • SMS Messaging • Social Media • Software tools • trained customer • Variable rates • Web Portal	• Partnerships with local organizations • Programmable Communicating Thermostat • Phone calls • Public meetings • Smart meter • SMS Messaging • Social Media • Software tools • trained customer • Variable rates • Web Portal	Enabled by numerous connected sensors, new cars offer new functionalities, provide higher security levels and promise to enhance the comfort of travelling.	
S33. Winter (2015)	Observational, Multiple locations, USA	• Event data recorder (EDR) • Informative intelligent speed adaption (ISA)	• Event data recorder (EDR) • Informative intelligent speed adaption (ISA)	Smart meters allow a utility to send commands to the meter, such as turning off the power due to nonpayment of tariffs or reducing the amount of energy consumed.	
	Survey				Ambulance. • App providers • Breakdown service • Car manufacturer • Family • Garage • Police • Hotels • Insurance companies • Traffic control center • Third party organizations

- **Dataset**: Reference to the study or dataset.
- **Methodology**: Method used in the study.
- **Study Region**: Region where the study was conducted.
- **Key Findings**: Main findings or results.
- **Examples**: Examples of findings or applications.
| Study characteristics of included primary studies. |
|---|

Reference	Country	Study Type	Sample Size	Key Features	Objectives	
S34. Yao (2019)	USA	Observational Action research	25	Smart homes • An App • Co-design • Hardware devices • Policy / regulation • Sensors • System modes	To create smart home designs that address users’ privacy concerns.	• Car manufacturers • Third party organizations
						• Unethical individuals