Cooling Delays from Iron Sedimentation and Iron Inner Cores in White Dwarfs

M. E. Caplan1, I. F. Freeman1, C. J. Horowitz2, A. Cumming3, and E. P. Bellinger4
1 Illinois State University, Department of Physics, Normal, IL 61790, USA; mcap11@ilstu.edu
2 Center for Exploration of Energy and Matter and Department of Physics, Indiana University, Bloomington, IN 47405, USA
3 Department of Physics and McGill Space Institute, McGill University, Montreal, QC H3A 2T8, Canada
4 Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, Aarhus, Denmark

Received 2021 July 15; revised 2021 August 18; accepted 2021 August 19; published 2021 September 23

Abstract

Do white dwarfs have inner cores made of iron? Neutron-rich nuclei like 56Fe experience a net gravitational force and sediment toward the core. Using new phase diagrams and molecular dynamics simulations, we show that 56Fe should separate into mesoscopic Fe-rich crystallites due to its large charge relative to the background. At solar abundances, these crystallites rapidly precipitate and form an inner core of order 100 km and 10^{-3}M_\odot, that may be detectable with asteroseismology. Associated cooling delays could be up to a Gyr for low-mass white dwarfs but are only ~0.1 Gyr for massive white dwarfs, so while this mechanism may contribute to the Q-branch the heating is insufficient to fully explain it.

Unified Astronomy Thesaurus concepts: Degenerate matter (367); Stellar interiors (1606); N-body simulations (1083); White dwarf stars (1799)

Supporting material: animations

1. Introduction

Recent observations of Galactic white dwarfs (WDs) with Gaia, such as those resolving the latent heat released by core crystallization and the discovery of the Q-branch, have renewed interest in the physics of core crystallization and sedimentation of neutron-rich nuclei (Cheng et al. 2019; Tremblay et al. 2019). While 22Ne (mass fraction X_{22Ne} \approx 0.02) is the dominant sedimentary heat source, 56Fe (X_{56Fe} \approx 10^{-3}) may be important at early times, as the greater neutron excess gives twice the heating per nucleus and a faster sedimentation timescale (Isern et al. 1991; Bildsten & Hall 2001).

At a fixed electron density, nuclei with higher charges experience stronger Coulomb interactions and thus generally separate and crystallize first in a mixture. For example, Horowitz & Caplan (2021) argue that actinides may separate into microgram-scale crystallites in the cores of WDs at roughly twice the C/O crystallization temperature. Consider the coupling parameter \(\Gamma_i = e^2Z_i^2/a_i k_B T \) as an effective temperature (nuclear charge \(eZ_i \), Wigner-Seitz radius \(a_i = (3Z_i^2/4\pi n_e)^1/3 \) with electron number density \(n_e \), and temperature \(k_BT \)). Iron, with \(\Gamma_{Fe}/\Gamma_{C} = (26/6)^{2/3} = 11.5 \) will be strongly supercooled in the C/O background long before the onset of C/O crystallization. Recently, Bauer et al. (2020) showed that single-particle diffusion of 22Ne is insufficient to produce the observed Q-branch heating assuming solar metallicity, but 22Ne “clusters” of 10^{-10} nuclei can enhance the sedimentation rate to appropriate timescales. However, Caplan et al. (2020) showed that 22Ne does not strongly separate from the C/O background, as only nuclei with a larger charge (relative to the background) can strongly separate due to the entropy of mixing. Recent work has also suggested larger 22Ne abundances (Camisassa et al. 2021) or distillation (Blouin et al. 2021) as possible solutions. Nevertheless, Bauer et al. (2020) laid the framework to seriously consider precipitates and their sizes in WDs, which we are motivated to consider in more detail in this work.

Existing phase diagrams suggest that strong eutectic separation occurs in binary mixtures with charges \(Z_2/Z_1 \gtrsim 2 \), with two solid phases available: (1) a nearly pure phase of Z_2 nuclei, and (2) an alloy of Z_1 and Z_2 nuclei that is enhanced in Z_2 nuclei relative to the background (Ogata et al. 1993; Segretain & Chabrier 1993; Medin & Cumming 2010, 2011). As \(Z_{Fe}/Z_C = 4.3 \), it is clear that we should expect Fe to separate despite its low number abundance. Crystallites, once formed, grow quickly as Fe nuclei from the background adsorb onto the surface. While such crystallites have enhanced sedimentation (Bauer et al. 2020), they may also encounter each other and combine to form aggregations that rapidly precipitate to the core. Thus, sedimentation may proceed quickly after the onset of crystallization.

Xu & van Horn (1992) suggested that iron sedimentation could produce significant cooling delays, and some attention to Fe was also given in Segretain & Chabrier (1993) and Bildsten & Hall (2001), which now motivates work studying Fe in multicomponent mixtures. The sedimentation of even a fraction of the 10^{-3}M_\odot 56Fe (assuming solar abundances) in a 1M_\odot WD can produce heating of order 10^{-4}–10^{-7}L_\odot for 1 Gyr, depending on the exact sedimentation timescale, and must be included to accurately model the cooling delay.

In this work we consider the precipitation of 56Fe crystals, and show that they will reach mesoscopic sizes, collecting in the center of the star to form an Fe core of order 100 km and 10^{-3}M_\odot, with broad implications for cosmochronology (from the cooling delay from sedimentary heating) and asteroseismology (from the stratification of the WD).

While we consider only the separation of Fe from C/O mixtures, given the large charge ratio the discussion generalizes to higher-mass O/Ne/Mg WDs. In Section 2 we present the ternary C/O/Fe phase diagram that we verify with molecular dynamics in Section 3. We discuss the implications for WD structure in Sections 4 and 5.

2. C/O/Fe Phase Diagram

We begin by calculating a ternary phase diagram to determine what Fe alloys coexist with a C/O liquid. We use

\[n_e = \frac{e^2Z_i^2}{a_i k_B T} \]
For a realistic WD with $x_C/x_O \sim 1$ and trace Fe, this suggests that two Fe-enhanced solid phases can form in equilibrium with the liquid in the core well before the background begins to crystallize: (1) a pure Fe solid and (2) a 15% Fe alloy. This is in stark contrast with 23Ne, which does not strongly separate from C/O when $x_{Ne} \lesssim 0.30$ (Caplan et al. 2020).

The phase diagrams are agnostic about which of these two phases may nucleate as the fluid cools. It is not obvious which is more likely; nucleation of crystals in mixtures is an interesting question and should be explored in future work. While the C/O/Fe alloy has abundant C and O to draw from the liquid, their higher mobility at such low $\Gamma_{C,O}$ may inhibit growth. Furthermore, the C/O/Fe may need to form a more complicated lattice structure than a simple body-centered cubic (bcc) and may favor very specific ratios of components; e.g., Engstrom et al. (2016) predicts a hexagonal FeO$_3$C$_2$ crystal is stable. For the pure Fe phase to nucleate it may require a rare thermal fluctuation where a large number of Fe come together, though this number may be small given the high Γ_{Fe}. In either case, the solid phase has a neutron excess relative to the background and will sink. While the discussion that follows focuses on the pure Fe, a C/O/Fe alloy with an equivalent number of Fe nuclei would be roughly twice as massive but produce the same sedimentary heating.

Due to the large charge ratios and low Fe abundances, some free energies used to compute Figure 1 are extrapolated beyond the range they were originally fit. In the next section we use molecular dynamics (MD) simulations to verify the phase separation and the stability of pure Fe solids in a C/O background.

3. Molecular Dynamics

Our MD method is the same as in Caplan et al. (2018). Nuclei are point particles with separation r_{ij} in a periodic cubic volume interacting through a Coulomb potential $V_{ij}(r_{ij}) = (e^2 Z_i Z_j / r_{ij}) e^{-r_{ij} / \lambda}$ with electron screening length $\lambda^{-1} = 2 \alpha^{1/2} (3 \pi^2 n_i) ^{1/3} / \pi^{1/2}$ evolved using velocity Verlet.

We report on MD simulations with $x_{Fe} = 0.015$ (with $N = 16384$ nuclei) and $x_{Fe} = 0.0013$ ($N = 65536$). As nucleation can take a long time, we begin with all of the Fe in a bcc lattice surrounded by equal amounts of C and O, as in Caplan et al. (2018) and Figure 2. When evolved, nuclei desorb from the crystal into the gas until equilibrium concentrations are found. As MD runtimes scale with N^2 it is difficult to run simulations with realistic Fe abundances ($x_{Fe} \approx 10^{-4}$) for a sufficient number of time steps to reliably equilibrate.
Simulations were evolved at constant temperature until either the crystal melted (indicating \(T > T_{\text{melt}} \)), or until the size of the crystal remained constant for 10⁷ MD time steps (indicating equilibrium). The size of the crystal was determined with a cluster algorithm, and the ratio of the number of Fe in the crystal to the total number of Fe in the simulation allows us to estimate the fraction that precipitates \(f_p \). The cluster size fluctuates due to stochastic adsorption and desorption: \(f_p \) has about ±0.02 uncertainty. Animations of these simulations are available with Figures 4 and 5. Table 1 summarizes our results.

Our MD finds fair quantitative agreement with the phase diagram above. Simulations at \(\Gamma_C \lesssim 140 \) find that the crystal melts rapidly while \(150 \lesssim \Gamma_C \lesssim 200 \) reach an equilibrium with coexistence. While runs 3 (\(\Gamma_C = 152 \)) and 4 (\(\Gamma_C = 141 \)) do melt, the crystal survived for many millions of MD time steps as nuclei slowly desorbed from the surface; this metastability suggests these systems were only weakly superheated and only slightly above the melting temperature. The melting here could also be a consequence of finite size effects, and larger simulations with greater \(N_{\text{Fe}} \) may be stable.

Simulations at constant \(\Gamma_C \) varying \(x_C/x_O \) also allow us to probe the robustness of this separation with respect to the background. While the Fe solid persists at \(x_C \approx 0.25, x_O \approx 0.75 \) (run 10) it melts quickly in a background of \(x_C \approx 0.75, x_O \approx 0.25 \) (run 9). Equivalent runs were also performed using an enhanced \(x_{\text{Fe}} \approx 0.023 \) with the same results. This is consistent with the prediction from the phase diagram that at high \(x_C \) the C/Fe alloy does not coexist with the pure Fe.

In summary, the MD finds some sensitivity to the exact \(\Gamma_C \), \(x_{\text{Fe}} \), and \(x_C/x_O \), which should be explored in future work. Nevertheless, these simulations show that the phase diagram above is qualitatively accurate and that solids strongly enhanced in Fe may form before conventional C/O crystallization begins.

Table 1

ID	\(x = (x_C, x_O, x_{\text{Fe}}) \)	\(\Gamma_C \)	\(f_p \)
1	(0.499, 0.499, 0.001)	183	0.63
2	(0.499, 0.499, 0.001)	166	0.62
3	(0.499, 0.499, 0.001)	152	0.00
4	(0.499, 0.499, 0.001)	141	0.00
5	(0.492, 0.492, 0.015)	185	0.77
6	(0.492, 0.492, 0.015)	168	0.63
7	(0.492, 0.492, 0.015)	154	0.59
8	(0.492, 0.492, 0.015)	143	0.00
9	(0.738, 0.246, 0.015)	143	0.00
10	(0.246, 0.738, 0.015)	143	0.63

Note. Composition \(x \), Inverse Temperature \(\Gamma_C \), and the Precipitation Fraction \(f_p \) which is a ratio of Fe Nuclei in the Crystal to Total Fe.

4. Discussion

Crystallite growth. We now calculate the characteristic size of the Fe crystallites. Once nucleated, crystals grow through adsorption of Fe diffusing in the background. For simplicity we again consider the pure Fe solid. If nucleation is slow, Fe undergoing Brownian motion in the background encounters the cluster and adsorbs on a diffusive timescale given by \(D_{\text{Fe}} \approx r^2/t \), where \(D_{\text{Fe}} \) is the single-particle Fe diffusion coefficient, \(r \) the size of the volume the Fe is taken from, and \(t \) the growth time. Growth ceases when the cluster falls out of the fluid on a sedimentation timescale \(v_{cl} = h/t \) given by the cluster sedimentation velocity \(v_{cl} \) and the height it falls (e.g., the WD radius):

\[
v_{cl} = 4m_{\text{Fe}}g \langle N \rangle \frac{D_{\text{Fe}}}{k_B T},
\]

with \(4m_{\text{Fe}}g \) being the net gravitational force, \(D_{\text{Fe}} = D_{\text{Fe}}/\langle N \rangle^{1/3} \) the cluster diffusion coefficient, and \(k_B T \) the temperature (Bauer et al. 2020). Equating timescales, we find the cluster size is independent of \(D_{\text{Fe}} \) and the crystallites fall out with a characteristic number of Fe nuclei:

\[
\langle N \rangle_{\text{sp}} = 1.3 \times 10^{21} \left(\frac{h}{6000 \text{ km}} \right)^{3/4} \left(\frac{\rho}{10^8 \text{ g cm}^{-3}} \right)^{3/4} \left(\frac{\Gamma_C}{140} \right),
\]

\[
\langle N \rangle_{\text{ag}} = 7.9 \times 10^{16} \left(\frac{h}{6000 \text{ km}} \right)^{3/5} \left(\frac{\rho}{10^8 \text{ g cm}^{-3}} \right)^{4/5} \left(\frac{\Gamma_C}{140} \right)^{-3/5}.
\]

If the timescales for nucleation and precipitation are comparable, we may expect clusters with between \(10^{16} \) and \(10^{21} \) nuclei that deplete their surroundings of Fe through single-particle diffusion at early times and aggregate later.

These are only rough order-of-magnitude scales. Regardless, it is clear that growth proceeds quickly and mesoscopic clusters with masses between \(10^{-3} \) and \(10^{-2} \) g that sink with speeds between a few cm s⁻¹ and a few m s⁻¹ are typical. This precipitation timescale is fast; while single-particle sedimentation takes order gigayears, precipitation is faster by \((N)^{1/3} \) and has timescales of days to years, depending on cluster sizes. These clusters accumulate in the core forming an inner core of Fe or a C/O/Fe alloy.

Core mass and radius. We can estimate the size of this inner core by determining what volume of the star will have precipitated its iron when traditional C/O crystallization begins. This will depend on the exact C/O ratio; using the Blouin et al. (2020) C/O phase diagram, we can expect a \(x_C = x_O \) mixture to begin crystallizing at \(\Gamma_C \approx 1.1 \Gamma_{\text{crit}} \approx 190 \).

Given that Fe precipitation occurs at \(\Gamma_C \approx 140 \), a core density of \(\rho_c = 10^6 \text{ g cm}^{-3} \) at \(\Gamma_C \approx 190 \) (assuming an isothermal WD) suggests that precipitation has occurred out to densities of \(4 \times 10^7 \text{ g cm}^{-3} \). This density is found 1450 km above the core in an \(M = 1.17M_\odot \) WD, coincidentally at one-third the radius of the star and containing one-third of the mass of the star.

Assuming solar metallicity (\(m_{\text{Fe}} \approx 10^{-3}M_\odot \)) and precipitation fraction \(f_p \approx 0.5 \), we find an inner core mass of \(2 \times 10^{-4}M_\odot \), if pure Fe precipitates. At average densities of \(\rho_c \), this inner core is approximately 150 km in diameter. If an alloy of 15%–20% Fe...
Fe forms, we may expect an inner core 2 to 3 times more massive, depending on the exact composition.

This estimate may be a lower limit as other processes may transport more Fe into the region where it precipitates before the background freezes and stalls the growth of the inner core. For example, as Γ_C increases f_p may increase, so clusters may continue to grow while falling through partially depleted regions. Single-particle sedimentation from the upper layers of the star will also enhance the core Fe abundance, which should be possible to model with stellar evolution codes such as MESA. The Fe-depleted fluid, having a higher γ_c, may also be buoyant and mix with the outer layers, which could maintain a homogeneous liquid composition throughout the star (Xu & van Horn 1992).

This may further enhance the abundance of 56Fe in the core, as well as 22Ne, which might be expected to form a shell as a sort of “outer core” when it begins to crystallize (Figure 3).

The onset of C/O crystallization around the Fe core (or, more likely, a Ne-alloy shell), does not necessarily stop the sedimentation process, as Fe precipitation will proceed above. For the purposes of estimating total heating, one should consider the entire Fe content of the star. These crystallites may produce mesoscopic inclusions in whatever crystal surrounds the Fe inner core. It is traditionally assumed that the composition is frozen in once crystallization occurs, but Hughto et al. (2011) find single-particle diffusion coefficients are only two to three orders of magnitude lower in crystals at $\Gamma \approx 200$ than in the strongly coupled liquid. Even though diffusion in the lattice is exponentially suppressed with temperature, given the fast timescales for sedimentation calculated above it is possible that some of these inclusions could migrate through the shell to reach the Fe core before this process is quenched. Viscoelastic creep and diffusion at crystal grain boundaries is an interesting question that could be studied with MD. Though beyond the scope of this work, assumptions about the behavior of solid phases in WDs should be revisited (see also McKinven et al. 2016, Section 3.1).

Cooling delay. Precipitation may release of order 10^{36} erg, as in Xu & van Horn (1992), while forming an inner core of $M \lesssim 10^{-3} M_\odot$. This is obviously sensitive to the metallicity and mass of the WD, so we consider this a rough energy scale. Latent heat from freezing may be comparable to the sedimentation energy and scales with the crystallized mass, and thus is larger for alloys.

We estimate the cooling delay from the luminosity of the WD at the onset of precipitation. The $M = 0.52 M_\odot, (Z = 0.01)$ cooling model of Renedo et al. (2010) reaches core $\Gamma_C = 140$ at $\log_{10}(L/L_\odot) = -3.9$ after 3.3 Gyr. At this luminosity we expect a delay of order 1 Gyr from Fe precipitation prior to traditional C/O crystallization; the luminosity does not change significantly over the course of precipitation ($\log_{10}(L/L_\odot) = -4.1$ at core $\Gamma_C = 200$). Their $M = 0.93 M_\odot, (Z = 0.01)$ cooling model reaches core $\Gamma_C = 140$ at $\log_{10}(L/L_\odot) = -2.9$ in 0.9 Gyr and may produce an order 0.1 Gyr cooling delay. Though perhaps an order of magnitude smaller than the 22Ne delay, this mechanism is rapid and the heat release is large at early times and may be important to include for precision cosmochronology.

5. Summary

Mesoscopic crystallites of Fe should precipitate to the center of WDs to form a macroscopic Fe inner core. This precipitation is a natural consequence of the high charge of Fe relative to C/O, which causes it to separate. Solids with high Fe concentrations relative to the background form at temperatures above the C/O crystallization point. This inner core may be either a nearly pure Fe crystal or a C/O/Fe alloy, depending on the exact composition of the star and the nucleation physics. Because this mechanism is efficient, rapidly transporting approximately half the Fe in the star to the core, it is a powerful source of gravitational potential energy to delay cooling and should be modeled with stellar evolution codes like MESA (Paxton et al. 2019; Bauer et al. 2020).

An Fe core could be detectable with asteroseismology. WDs have been observed for decades to pulsate with internal gravity waves (g modes) of low radial order that are roughly evenly spaced in period (see, e.g., Córsico 2020, for a review). Precise measurements of these periods have been used to estimate their mass, including the mass of their crystal cores, as well as their internal composition profiles (e.g., Metcalfe et al. 2004; Giannichele et al. 2018; Timmes et al. 2018; Córsico et al. 2019). Montgomery & Winget (1999) studied the effect of core crystallization on WD pulsations, and found that g modes are unable to penetrate the crystal core. Consequently, the inner boundary of the oscillations moves outward as the crystal core grows, causing an increased mean period spacing with increasing crystal mass fraction. Therefore, at the same luminosity and effective temperature, a WD with a crystal Fe core would exhibit a markedly different oscillation spectrum than one without. In a similar vein, Chidester et al. (2021) recently showed that the g-mode pulsations of low-mass WDs are measurably different when a constant profile of 2% 22Ne is included due to the sensitivity of the equation of state to the electron fraction Y_e. A similar (but weaker) effect could be expected with the inclusion of Fe, which is traditionally neglected in WD models. Finally, transitions in the abundances between the noncrystallized zones are well known to cause “bumps” in the Brunt–Väisälä profile, which causes modulation of g-mode periods (e.g., Montgomery & Winget 1999; Chidester et al. 2021). It may even be possible to determine the composition of the background: greater background charges will decrease the Fe precipitation fraction and also the equilibrium concentrations of Fe in an alloy, and requires future work on phase diagrams of mixtures such as O/Ne/Fe. This motivates including sedimentation, precipitation, and modern phase diagrams in evolutionary models in order to study the core structure of these WDs.

Fe inner cores, if present, may impact the ignition of supernova. As pure Fe does not burn, the ignition would be off-center. A C/O/Fe alloy meanwhile may have abundant C/O available for burning at slightly higher matter densities (and screening) due to the presence of Fe and burning could easily
be explored in 2D supernova codes. Similarly, precipitation increases the core density and electron Fermi energy; the most massive WDs may explode in supernova if this effect is large enough to initiate electron capture reactions (Caplan 2020; Caiazzo et al. 2021).

This mechanism also generalizes to other high-Z nuclei. Despite their low abundance, some high-Z nuclei may separate and precipitate (such as the actinide crystallites considered in Horowitz & Caplan 2021). Though 56Fe and 22Ne are dominant, there may be several smaller concentric shells ordered radially by decreasing charge.

C.H.’s research was supported in part by US Department of Energy Office of Science grants DE-FG02-87ER40365 and DE-SC0018083. The authors acknowledge the Indiana University Pervasive Technology Institute for providing supercomputing and database, storage resources that have contributed to the research results reported within this Letter. This research was supported in part by Lilly Endowment, Inc., through its support for the Indiana University Pervasive Technology Institute. A.C. is supported by an NSERC Discovery Grant, and is a member of the Centre de recherche en astrophysique du Québec (CRAQ). Funding for the Stellar Astrophysics Centre is provided by The Danish National Research Foundation (grant agreement No. DNRF106).

Appendix
Supplemental Materials

Here we present two animations of our MD simulations. Still frames taken from these animations are shown in Figures 4 and 5 along with descriptive captions. Animations are available on the journal website.

Figure 4. The animation of this figure (7.6 MB) begins by showing the initial conditions of run 3, with a crystal of pure iron (yellow) surrounded by a background fluid of carbon and oxygen (white). The background fades out to more clearly show the body-centered crystal lattice structure of the iron, and then fades back in before the simulation begins. When the simulation is evolved in time nuclei can be observed melting off the surface of the crystal and mixing into the background. Iron nuclei collide with carbon and oxygen in the background and undertake a random walk. The Brownian motion can be observed for both the single-particle iron nuclei in the gas and for the cluster, though diffusion of the cluster is suppressed due to its larger size. Near the end of the animation the carbon and oxygen background is again removed for clarity. This simulation contains 65,536 particles in a cubic volume with periodic boundary conditions; only 91 of them are iron, for an iron number abundance of 0.14%. The initial conditions have the iron localized to a pure crystal, as simulating nucleation starting from diffuse Fe in a C/O background is more computationally intensive than simulating a crystal melting. In either case, we expect the equilibrium abundances in the crystal and the background to be same. The real-time duration of the animation is 27 s. (An animation of this figure is available.)
Figure 5. The animation of this figure (1.7 MB) shows two simulations, run 3 (top) and run 1 (bottom), and the evolution of the size of their iron clusters over time. These simulations begin from identical initial conditions but have different temperatures, allowing us to study the temperature dependence of the iron phase separation in a white dwarf. We animate the simulations as in SM1, showing only the iron nuclei for clarity. Iron nuclei that the cluster algorithm identifies as members of the crystal are recolored red. In run 3 (top, \(\Gamma_C = 153 \)) we observe that the crystal melts in approximately two million time steps after a brief period of metastability, so although this simulation is clearly above the melting temperature it is likely very close to it. In run 1 (bottom, \(\Gamma_C = 183 \)) we see that nuclei desorb from the surface of the cluster one at a time over the first few million time steps, but the cluster size stabilizes and finds an equilibrium iron concentration in the solid and liquid. This simulation was run for an additional 10 million time steps to verify the stability. It is also interesting to observe the slower diffusion in the colder simulation (bottom), and that during the latter half of the animation nuclei can be seen in equilibrium adsorbing and desorbing from the crystal. This gives us a percent-level uncertainty in the equilibrium iron concentrations. The real-time duration of the animation is 50 s.

(An animation of this figure is available.)

References

Bauer, E. B., Schwab, J., Bildsten, L., & Cheng, S. 2020, ApJ, 902, 93
Bildsten, L., & Hall, D. M. 2001, ApJL, 549, L219
Blouin, S., Daligault, J., & Saumon, D. 2021, ApJL, 911, L5
Blouin, S., Daligault, J., Saumon, D., Bédard, A., & Brassard, P. 2020, A&A, 640, L11
Caiazzo, I., Burdge, K. B., Fuller, J., et al. 2021, Natur, 595, 39
Camisassa, M. E., Althaus, L. G., Torres, S., et al. 2021, A&A, 649, L7
Caplan, M. 2020, MNRAS, 497, 4357
Caplan, M. E., Cumming, A., Berry, D. K., Horowitz, C. J., & Mckinven, R. 2018, ApJ, 860, 148
Caplan, M. E., Horowitz, C. J., & Cumming, A. 2020, ApJL, 902, L44
Cheng, S., Cummings, J. D., & Ménard, B. 2019, ApJ, 886, 100
Chidester, M. T., Timmes, F. X., Schwab, J., et al. 2021, ApJ, 910, 24
Córnsico, A. H. 2020, FrASS, 7, 47
Córnsico, A. H., De Gerónimo, F. C., Camisassa, M. E., & Althaus, L. G. 2019, A&A, 632, A119
Engstrom, T. A., Yoder, N. C., & Crespi, V. H. 2016, ApJ, 818, 183
Giammichele, N., Charpinet, S., Fontaine, G., et al. 2018, Natur, 554, 73
Horowitz, C. J., & Caplan, M. E. 2021, PhRvL, 126, 131101
Hughto, J., Schneider, A. S., Horowitz, C. J., & Berry, D. K. 2011, PhRvE, 84, 016401
Isern, J., Hernanz, M., Mochkovitch, R., & García-Berro, E. 1991, A&A, 241, L29
Mckinven, R., Cumming, A., Medin, Z., & Scharz, H. 2016, ApJ, 823, 117
Medin, Z., & Cumming, A. 2010, PhRvE, 81, 036107
Medin, Z., & Cumming, A. 2011, ApJ, 730, 97
Metcalfe, T. S., Montgomery, M. H., & Kanaan, A. 2004, ApJL, 605, L133
Montgomery, M. H., & Winget, D. E. 1999, ApJ, 526, 976
Ogata, S., Iyetomi, H., Ichimaru, S., & van Horn, H. M. 1993, PhRvE, 48, 1344
Paxton, B., Smolec, R., Schwab, J., et al. 2019, ApJS, 243, 10
Renedo, I., Althaus, L. G., Miller Bertolami, M. M., et al. 2010, ApJ, 717, 183
Segretain, L., & Chabrier, G. 1993, A&A, 271, L13
Timmes, F. X., Townsend, R. H. D., Bauer, E. B., et al. 2018, ApJL, 867, L30
Tremblay, P.-E., Fontaine, G., Fusillo, N. P. G., et al. 2019, Natur, 565, 202
Xu, Z. W., & van Horn, H. M. 1992, ApJ, 397, 662