The modification of murashige and skoog media for efficient cultivation of gizella-5 and vsl-2 rootstocks in vitro

Ibragim Bamatov¹, Elina Butsaeva², Magomed Arsanov³ and Dzhamalai Bamatov⁴

Chechen State University, 17 Dudaev Boulevard ave., Grozny, 366007, Chechen Republic, Russia

E-mail: Ibragim-1991@mail.ru, Elinabio@mail.ru, Arsanov.magomed@mail.ru, Bamatovdzhamalay@mail.ru

Abstract. This paper reports the effect of modified nutrient media on biotechnologically growing rootstock plants (Gizella – 5 and VSL – 2) at the stages of introduction and grafting. Murashige and Skoog medium was modified by adding 25 mg/l Chelate-Fe and 500 mg/l of Ca(NO)₃ to the basic nutrient at the stage of introduction of the plant. At the grafting stage 0.1 mg of 6-Benzylaminopurine (6-BAP) was added to Murashige and Skoog, where the effect of regeneration was 2 times higher than in experimental control. The results obtained prove that modified Murashige and Skoog medium is to be the best nutrient media for root-plant introduction and regeneration processes in Vitro followed by Chelate-Fe, Ca(NO)₃ and 6-BAP respectively.

1. Introduction

The intensive technology of producing fruit crops at the present time is impossible without successfully cultivating a planting material, the production of which is based on biotechnological (virus – free) features. The allocation of agricultural gardening to a virus-free basis is dictated by the rules for international trade and the exchange only of virus-free planting material for cultivated plants according to particular certificates. Consequently, the development of biotechnology definite that non-virus planting material will ensure a significant increase in its quality, which leads the increase an economical profitability and intensity of the industry. In the conditions of present time gardening, microclonal reproduction of fruit crop roots plays a special role and frequently modern stocks propagate exclusively invitro. An example of this is the clone stocks of VSL-2 and Gisela-5.

“It is known fact that during microclonal propagation, propagated plants exhibit a type-specific response to cultivation conditions, especially to the mineral composition of the nutrient medium and the complex of vitamins and phytohormones that make it up” [8]. Therefore, optimisation of the process of microclonal propagation of the rootstocks of Gisela-5 and VSL-2 are relevant.

Based on literature data [11], [9], it can be concluded that the mineral composition of artificial nutrient media has not been relatively determined. The most widely used medium is based on mineral salts from Murashige and Skoog (1962), enriched with vitamins, amino acids, phytohormones and sugars. The most widely used nutrient medium is based on mineral salts from Murashige and Skoog, enriched with vitamins, amino acids, phytohormones and sugars. Often, researchers modify the composition of the medium Murashige and Skoog. Reducing the concentration of mineral salts by two
times shows affectivity by introducing into the crop of apple rootstock M 7 [6], and during the reproduction of Valeriana officinalis in vitro [7]. T. Cheng used the same nutrient medium for propagation of apple and pear rootstocks [4].

Scientists differ on the optimal ratio of the ammonium and nitrate forms of nitrogen in the nutrient medium. According to I. N. Pronina reducing the concentration of ammonium nitrogen by 2 times at the stage of rhizogenesis of apple rootstocks 54-118 and 3-17-38 accelerates the process of root formation by 2 weeks’ time [13]. An ultimate fact was also established that a decrease in the concentration of the mineral composition of the Murashige and Skoog medium by 2–4 times at the stage of rhizogenesis improves a root development. Moreover, N.V. Solovykh and co-worker S.A. Muratova using an environment with a 2-fold increase in the concentration of NO₃ at the stage of proliferation of raspberries, blackberries and raspberry-blackberry hybrids have received an increased number of developed adventive shoots [16].

Therefore, researchers have not come to a common opinion about the optimal composition of the nutrient medium. In the same time, the study for the optimal mineral structure (salts, vitamins and etc.) of the nutrient medium for exact genotypes of propagated plants still needs to be founded.

2. Materials and methods
The study was carried out in the laboratory of biotechnology Scientific Production Firm (SPF) LLC "Sady Chechni". Objects of the study were clonal rootstocks of VSL - 2 and Gizella - 5 stone fruit crops (rootstocks).

3. Preparation of Murashige and Skoog nutrient medium
The basic Murashige and Skoog nutrient media was obtained by following the methodical recommendations from E.N. Dzhigadlo [5], U.G. Popov [12] and V.N. Podorozhnii, N.N. Kovalenko [18]. The Murashige and Skoog was modified by adding 25 mg/l Chelate-Fe and 500 mg/l of Ca(NO)₃ to the basic solution, where the obtained product was used as a nutrient media for the research. On the modified nutrient media, a clonal rootstock of Gizella-5 and VSL-2 stone fruit crops were inducted (planted) and this step was called a (plant introduction) stage.

At the second stage “plant grafting” the basic nutrient Murashige and Skoog prepared by the same way as at the previous stage and was modified by adding 6-Benzylaminopurine (6BAP), where the grown plant from “plant introduction” stage was grafted into a new modified Murashige and Skoog nutrient media.

4. Results and Discussion
To compare the effectiveness of the nutrient medium, a series of experiments using a modified and initial Murashige and Skoog media were used. The graphical illustration was plotted where the explant development of Gisella – 5 and VSL -2 on basic and modified Murashige and Skoog were shown by grades from 0 (very bad) to 5 (excellent).

Note: the final score is the sum of both a developmental score (from 1 to 3) and a score for color intensity (from 1 to 2).

This research showed that, the growth and development of explants (VSL – 2 and Gizella – 5) of stone seed cultures in initial based Murashige and Skoog were considerably worse than in the modified nutrient medium. Consequently, this statement was expressed in the deficiency of green pigment in microshoots on initial-based Murashige and Skoog medium in the conglomerate and the growth of callus tissue, from which during following observation the development of single fascinated shoots, which were promoted. This phenomenon was categorized as a phenotypic in the cultivated plant.
Modified Murashige and Skoog is much better than after cultivation on initial basic medium. The use of modified Murashige and Skoog nutrient medium with breeding in vitro stock of Gizella -5 also shows excellent results. Micro-shoot measurements at the proliferation stage, show an increase in shoot growth by 0.4-0.5 cm per passage (figure 2 and figure 3).

From the figures above figure 2 and figure 3 the influence of Chelate-Fe, Ca(NO)$_3$ and 6-BAP can be noticed, as in both cases the growth of plant shoots are significantly notable. However, the study of use modified Murashige and Skoog nutrient medium in the process of microclonal propagation of the clone stock of Gizella-5 and VSL – 2 is further requires more thorough analysis of its influence on the growth and development of micro-shoots at the proliferation stage. However, received data shows that
a modified nutrient medium needs to be used for wider in the process of studying and optimizing the technology for growing virus – free planting material of the basic category.

5. Conclusion
To sum up, a significant plant growth can be noticed on Gizella – 5 and VSL -2 fruit crops, where the results were experimentally obtained by applying a modified Murashige and Skoog with 25 mg/l Chelate-Fe and 500 mg/l of Ca(NO)₃ at the stage of “plant induction” and 0.1 mg of 6 Benzylaminopurine at the “grafting stage”. All the results show that a modified Murashige and Skoog nutrient medium suits promisingly well for steps “plant introduction” and “grafting stage”, consequently, the fact must be clearly stated that, an experimental work must be carried out for further detailed demonstration, for example, at the final step “rooting stage” of Gizella – 5 and VSL -2 fruit crops.

Acknowledgement
The work was done with the financial support of the Ministry of Science and Education of the Russian Federation and experimental developments in the framework of the implementation of the Federal Targeted Program “Research and Development in Priority Areas of the Scientific and Technological Complex of Russia for 2014-2020”. (Agreement No. 14.577.21.0292 of 04.12.2018) With a unique project identifier RFMEFI57718X0292.

Reference
[1] Bamaton I M et al. 2018 Coating of Sodium Aluminosilicate with Sodium Sulphate and Sodium Carbonate in V-Star Reactor Advances in Engineering Research 177 146-51
[2] Bamaton I 2017 Development of the chemical reactor V-STAR for continuous flow reactions Journal of the Chechen State University 6(2) 205-7
[3] Carpy A 2003 Chemical Reactions Available from www.visionlearning.com: https://www.visionlearning.com/en/library/Chemistry/1/Chemical-Reactions/54
[4] Cheng T Y 1980 Micropropagation of fruit tree rootstocks – Proc of the conference on Nursery Production of fruit plants through tussie culture Applicat and Feasibility 11 53-60
[5] Dzhigadlo E 2006 Methodical recommendations on the use of biotechnological methods in working with fruit, and ornamental crops GNU VNIISPK 51-6
[6] Werner E 1980 In vitro propagation of Malling 7 apple rootstock Hort. Science 15(4) 509-10
[7] Zayova E 2010 Micropropagation of Valerianofficinalis by tissue culture Report of Bulgarian Science Academy 63(12) 1749-56
[8] Bamaton I M 2018 The use of the driver-kuniyuki nutrient medium for micropropagation of rootstocks of LC-52 (Cerasus vulgaris x Cerasus fruticose) and gizela 6 (Peisica vulgaris x Cerasus canescens) stone fruit crops Journal of Experimental Biology and Agricultural Sciences, 6(3) 623-7
[9] Kostyuk M A 2017 Sterilization of explants in the production technology of a healthy home plum planting material Fruit growing and viticulture of the South of Russia 44(02) 186-94
[10] Mohd Nazri Mohd Fuad M A 2015 Computer Aided Chemical Engineering Elsevier 869-74
[11] Medvedeva N I 2014 Clonal micro-breeding of stone fruit crops and their rootstocks: scientific and methodical recommendations Krymskaya OSS SKZNIIcIV pp 23-9
[12] Popov U G 1979 Improvement and reproduction of fruit and berry plants by the method of culture of meristematic tips: Methodical instructions Biotechnology Sci 29-37
[13] Pronin I N 2008 Optimization of the process of rhizogenesis of rootstocks and varieties of apple and pear invitro Cand. Science 21 158-63
[14] Rashidov A 2018 msd.com.ua Available from https://msd.com.ua/osnovy-proektirovaniya-ximicheskix-proizvodstv/osnovnye-tipy-ximicheskix-reactorov/
[15] Salnikov I E 1967 Stability chemical perfect mixing reactor with automatic process management Chemistry and Chemical Technology 4 266-72
[16] Solovyh, N V (2010). Induction of morphogenesis from somatic tissues of plants of the genus Rubus *Vestn MichSAU* pp 104-10

[17] Technology A 2015 www.amtechuk.com Available from www.amtechuk.com/products.aspx

[18] Podorojniy V N 2014 Clonal Micro-reproduction of stone fruit crops and their rootstocks: scientific and methodological recommendations *FGBNKrymskaya OSS SKZNIIAlV* 23-37

[19] Zolkaffly M 2014 Reactor Technology Assessment and Selection Utilizing Systems Engineering Approach *AIP Conference Proceedings* **1584** pp 22-31