HALL POLYNOMIALS FOR REPRESENTATION-FINITE
CLUSTER-TILTED ALGEBRAS

CHANGJIAN FU

ABSTRACT. We show the existence of Hall polynomials for representation-finite cluster-
tilted algebras.

1. INTRODUCTION

1.1. Let k be a finite field and Λ a locally bounded k-algebra, that is, Λ is an associative algebra and Λ has a set of primitive orthogonal idempotents $\{e_i\}_{I}$ such that $\Lambda = \bigoplus_{i,j \in I} e_i \Lambda e_j$, and both $\dim_k e_i \Lambda$ and $\dim_k e_i$ are finite for all $i \in I$. Let $\text{mod} \Lambda$ be the category of right Λ-modules with finite length. For $L, M, N \in \text{mod} \Lambda$, we denote by $F^{M}_{N,L}$ the number of submodules U of M such that $U \cong L$ and $M/U \cong N$.

Let E be a field extension of k. For any k-space V, we denote by V^E the E-space $V \otimes_k E$. Clearly, Λ^E naturally becomes an E-algebra. The field E is called conservative [12] for Λ if for any indecomposable $M \in \text{mod} \Lambda$, $(\text{End}_E M/\text{rad End}_E M)^E$ is a field. Set

$$\Omega = \{E|E \text{ is a finite field extension of } k \text{ which is conservative for } \Lambda\}.$$

For a given Λ with Ω infinite, the algebra Λ has Hall polynomials provided that for any $L, M, N \in \text{mod} \Lambda$, there exists a polynomial $\phi^{M}_{N,L} \in \mathbb{Z}[T]$ such that for any conservative finite field extension E of k for Λ,

$$\phi^{M}_{N,L}(|E|) = F^{M}_{N,E,L}.$$

We call $\phi^{M}_{N,L}$ the Hall polynomial associated to $L, M, N \in \text{mod} \Lambda$. Note that if Λ is representation-finite, then Ω is an infinite set.

It has been conjectured by Ringel [12] that any representation-finite algebra has Hall polynomials. This conjecture has been verified for representation-directed algebras by Ringel [12], cyclic serial algebras by Guo [6] and Ringel [13] and some other classes of algebras (cf. eg. [7]).

1.2. Let A be a finite-dimensional hereditary algebra over a field k. Let $\text{mod} A$ be the finitely generated right A-modules and $D^{b}(\text{mod} A)$ the bounded derived category with suspension functor Σ. The cluster category $\mathcal{C}(A)$ associated with A was introduced in [4] (independently in [5] for A_n case) as the orbit category $D^{b}(\text{mod} A)/\tau^{-1} \circ \Sigma$, where τ is the Auslander-Reiten translation of $D^{b}(\text{mod} A)$. A cluster-tilting object T in $\mathcal{C}(A)$ is an object such that $\text{Ext}^{1}_{\mathcal{C}(A)}(T, T) = 0$ and it is maximal with this property. The endomorphism algebra $\text{End}_{\mathcal{C}(A)}(T)$ of a cluster-tilting object T is called the cluster-tilted algebra of T, which were first introduced by Buan, Marsh and Reiten in [3]. Among others, they showed that cluster-tilted algebras are Gorenstein of dimension 1. This has been further generalized to a more general setting by Keller-Reiten [9] and König-Zhu [10]. Moreover, Keller and
Reiten [9] proved that the stable Cohen-Macaulay category of a given cluster-tilted algebra (more generally, 2-Calabi-Yau tilted algebra) is 3-Calabi-Yau. A direct consequence of the stably Calabi-Yau property is that the Auslander-Reiten conjecture holds true for cluster-tilted algebras. Namely, let B be a cluster-tilted algebra over a field k, if M is a finitely generated right B-module such that $\text{Ext}^i_{\text{mod} \ B}(M, M \oplus B) = 0$ for all $i \geq 1$, then M is a projective B-module.

In [14], Zhu has introduced certain Galois coverings for cluster categories and cluster-tilted algebras (cf. also [1]), called repetitive cluster categories and repetitive cluster-tilted algebras respectively (for the precisely definition, cf. Section 2). We refer to [2] for the notions of (Galois) covering functors. The aim of this note is to show that Ringel’s conjecture holds true for representation-finite repetitive cluster-tilted algebras. In particular, representation-finite cluster-tilted algebras have Hall polynomials.

Theorem 1.1. Let Λ be a representation-finite repetitive cluster-tilted algebra over a finite field k. Then Λ has Hall polynomials.

Let us mention here that a variant proof of this theorem may be applied to generalized cluster-tilted algebras of higher cluster categories of type ADE. In order to make this note concise, we restrict ourselves to the case of cluster-tilted algebras. After recall some basic definitions and properties of repetitive cluster-tilted algebras in Section 2, we will give the proof of Theorem 1.1 in Section 3.

2. **Repetitive cluster categories and repetitive cluster-tilted algebras**

2.1. Let D be a k-linear triangulated category with suspension functor Σ and \mathcal{T} a functorially finite subcategory of D. The subcategory \mathcal{T} is called a **cluster-tilting subcategory**, if the followings are equivalent:

- $X \in \mathcal{T}$;
- $\text{Ext}^1_D(X, \mathcal{T}) = 0$;
- $\text{Ext}^1_D(\mathcal{T}, X) = 0$.

An object $T \in D$ is a **cluster-tilting object** if and only if $\text{add} T$ is a cluster-tilting subcategory. A cluster-tilting object $T \in D$ is called basic provided that $T = \bigoplus_{i=1}^n T_i$, where $T_i, i = 1, \ldots, n$ are indecomposable and $T_i \not\cong T_j$ whenever $i \neq j$.

Let \mathcal{T} be a cluster-tilting subcategory of D and $\text{mod} \mathcal{T}$ the category of finitely presented right \mathcal{T}-modules. It has been proved by König and Zhu in [10] (cf. also [9]) that the functor $\text{Hom}_D(\mathcal{T}, -) : D \to \text{mod} \mathcal{T}$ induces an equivalence $D/\text{add} \Sigma \mathcal{T} \cong \text{mod} \mathcal{T}$. Moreover, if D has Auslander-Reiten triangles, then the Auslander-Reiten sequences of $\text{mod} \mathcal{T}$ is induced from the Auslander-Reiten triangles of D. In this case, we have $\tau^{-1} \Sigma \mathcal{T} = \mathcal{T}$, where τ is the Auslander-Reiten translation of D.

2.2. Let A be a finite-dimensional hereditary algebra over a field k. Let $\text{mod} A$ be the category of finitely generated right A-modules and $D^b(\text{mod} A)$ the bounded derived category with suspension functor Σ. Let τ be the Auslander-Reiten translation of $D^b(\text{mod} A)$. In the following, we fix a positive integer m and set $F := \tau^{-1} \circ \Sigma$. The **repetitive cluster category** $C_{F^m}(A)$ introduced by Zhu [14] is the orbit category of $D^b(\text{mod} A)/ < F^m >$, which is by definition a k-linear category whose objects are the same as $D^b(\text{mod} A)$, and whose morphisms are given by

$$C_{F^m}(A)(X, Y) := \bigoplus_{i \in \mathbb{Z}} \text{Hom}_{D^b(\text{mod} A)}(X, F^m Y),$$

where $X, Y \in D^b(\text{mod} A)$.

When \(m = 1 \), we get the cluster category \(\mathcal{C}(A) \). By the main theorem of Keller [8], we know that \(\mathcal{C}_{\text{FM}}(A) \) admits a canonical triangle structure such that the canonical projection functor \(\pi_m : \mathcal{D}^b(\text{mod} \ A) \to \mathcal{C}_{\text{FM}}(A) \) is a triangle functor. Moreover, by the universal property of the orbit category \(\mathcal{C}_{\text{FM}}(A) \), we have a triangle functor \(\rho_m : \mathcal{C}_{\text{FM}}(A) \to \mathcal{C}(A) \) such that \(\pi_A = \rho_m \circ \pi_m \), where \(\pi_A \) is the canonical projection functor.

It has been shown in [14] that there exists bijections between the following three sets: the set of cluster-tilting subcategory of \(\mathcal{D}^b(\text{mod} \ A) \), the set of cluster-tilting subcategories of \(\mathcal{C}_{\text{FM}}(A) \) and the set of cluster-tilting subcategories of \(\mathcal{C}(A) \), via the triangle functors: \(\pi_m : \mathcal{D}^b(\text{mod} \ A) \to \mathcal{C}_{\text{FM}}(A) \) and \(\rho_m : \mathcal{C}_{\text{FM}}(A) \to \mathcal{C}(A) \). In particular, the repetitive cluster categories have cluster-tilting objects.

Let \(\tilde{T} \) be a basic cluster-tilting object in the repetitive cluster category \(\mathcal{C}_{\text{FM}}(A) \), the endomorphism algebra \(\text{End}_{\mathcal{C}_{\text{FM}}(A)}(\tilde{T}) \) is called the repetitive cluster-tilted algebra of \(T \). We have the following main results of [14] (cf. Theorem 3.7 and Theorem 3.8 in [14]).

Theorem 2.1. Let \(T \) be a basic cluster-tilting object in \(\mathcal{C}(A) \) and \(A = \text{End}_{\mathcal{C}(A)}(\tilde{T}) \) the cluster-tilted algebra of \(T \). Let \(\tilde{T} \) be the corresponding basic cluster-tilting object in \(\mathcal{C}_{\text{FM}}(A) \) of \(T \) via the triangle functor \(\rho_m \) and \(\tilde{A} = \text{End}_{\mathcal{C}_{\text{FM}}(A)}(\tilde{T}) \) the associated repetitive cluster-tilted algebra. Then we have the followings:

1. the restriction of \(\pi_m : \mathcal{D}^b(\text{mod} \ A) \to \mathcal{C}_{\text{FM}}(A) \) induces a Galois covering \(\pi_m : \pi_A^{-1}(\text{add} \ T) \to \text{add} \tilde{T} \) of \(\tilde{A} \). Moreover, the projection functor \(\pi_m : \mathcal{D}^b(\text{mod} \ A) \to \mathcal{C}_{\text{FM}}(A) \) induces a push-down functor \(\tilde{\pi}_m : \mathcal{D}^b(\text{mod} \ A)/\pi_A^{-1}(\text{add} \Sigma T) \to \text{mod} \tilde{A} \);
2. the functor \(\rho_m : \mathcal{C}_{\text{FM}}(A) \to \mathcal{C}(A) \) restricted to the cluster-tilting subcategory \(\text{add} \tilde{\pi}_m \) is a Galois covering of \(A \). Moreover, the functor \(\rho_m \) also induces a push-down functor \(\tilde{\rho}_m : \text{mod} \tilde{A} \to \text{mod} A \).

Remark 2.2. Set \(\mathcal{T} = \pi_A^{-1}(\text{add} \ T) \) and let \(\text{ind} \mathcal{T} \) be a set of representatives of the isoclasses of all indecomposable objects in \(\mathcal{T} \). Set

\[
\text{End}(\mathcal{T}) := \bigoplus_{T_i, T_j \in \text{ind} \mathcal{T}} \text{Hom}_{\mathcal{D}^b(\text{mod} \ A)}(T_i, T_j),
\]

which is an associative algebra without units. It is not hard to see that \(\text{End}(\mathcal{T}) \) is locally bounded. On the other hand, the finitely presented \(\mathcal{T} \)-modules coincides with \(\text{End}(\mathcal{T}) \)-modules of finite length. Hence, we have an equivalence of categories

\[
\text{mod} \text{End}(\mathcal{T}) \cong \mathcal{D}^b(\text{mod} \ A)/\Sigma \mathcal{T}
\]

by [10], which implies that \(\text{End}(\mathcal{T}) \) is directed.

Remark 2.3. One can verify that the functor \(\tilde{\pi}_m \) coincides with the restriction of the push-down functor induced by the Galois covering \(\pi_m : \pi_A^{-1}(\text{add} \ T) \to \text{add} \tilde{T} \). Hence, \(\tilde{\pi}_m \) is an exact functor. On the other hand, any exact sequence of \(\mathcal{D}^b(\text{mod} \ A)/\Sigma \mathcal{T} \) can be lifted to a triangle in \(\mathcal{D}^b(\text{mod} \ A) \) (cf. Lemma 8 of [11]). Then one can also prove the exactness directly in this setting.

Note that a Galois covering functor will not induce a Galois covering for the corresponding categories of modules in general. However, for the Galois coverings in the above theorem, we have the following observation.

Proposition 2.4. Keep the notations in Theorem 2.1, we have the followings:

1. the push-down functor \(\tilde{\pi}_m : \mathcal{D}^b(\text{mod} \ A)/\pi_A^{-1}(\text{add} \Sigma T) \to \text{mod} \tilde{A} \) is a Galois covering of \(\text{mod} \tilde{A} \);
2. the push-down functor \(\tilde{\rho}_m : \text{mod} \tilde{A} \to \text{mod} A \) is a Galois covering of \(\text{mod} A \).
Proof. We will only prove the first statement and the second one follows similarly.

Let $\mathcal{T} = \pi_{A}^{-1}(\text{add } T)$. Since $\Sigma \mathcal{T}$ is also a cluster-tilting subcategory of $\mathcal{D}^b(\text{mod } A)$, we have $F \Sigma \mathcal{T} = \Sigma \mathcal{T}$. One shows that $F^m : \mathcal{D}^b(\text{mod } A) \to \mathcal{D}^b(\text{mod } A)$ induces a k-linear equivalence $F^m : \mathcal{D}^b(\text{mod } A) / \Sigma \mathcal{T} \to \mathcal{D}^b(\text{mod } A) / \Sigma \mathcal{T}$. Let G be the infinite cyclic group generated by F^m which is acting freely on the objects of $\mathcal{D}^b(\text{mod } A) / \Sigma \mathcal{T}$. Note that by Proposition 2.4, we have the following commutative diagram

$$\mathcal{D}^b(\text{mod } A) \xrightarrow{\pi_m} \mathcal{C}_{F^m}(A)$$

$$\xrightarrow{Q_1} \mathcal{D}^b(\text{mod } A) / \Sigma \mathcal{T} \xrightarrow{\pi_m} \mathcal{C}_{F^m}(A) / \Sigma \mathcal{T} = \text{mod } \tilde{A}$$

where Q_1 and Q_2 are natural quotient functors. Then for any indecomposable objects X, Y in $\mathcal{D}^b(\text{mod } A) / \Sigma \mathcal{T}$, one can show that $\pi_m(X) \cong \pi_m(Y)$ if and only if there exists $i \in \mathbb{Z}$ such that $Y \cong F^m X$ in $\mathcal{D}^b(\text{mod } A) / \Sigma \mathcal{T}$. On the other hand, for any objects M, N in $\text{mod } \tilde{A}$ with preimages \tilde{M}, \tilde{N} in $\mathcal{D}^b(\text{mod } A) / \Sigma \mathcal{T}$ respectively. We clearly have

$$\text{Hom}_{\text{mod } \tilde{A}}(M, N) = \bigoplus_{i \in \mathbb{Z}} \text{Hom}_{\mathcal{D}^b(\text{mod } A) / \Sigma \mathcal{T}}(\tilde{M}, (F^m)^i \tilde{N}) = \bigoplus_{i \in \mathbb{Z}} \text{Hom}_{\mathcal{D}^b(\text{mod } A) / \Sigma \mathcal{T}}((F^m)^i \tilde{M}, \tilde{N}).$$

This particular implies that $\text{mod } \tilde{A}$ identifies the orbit category of $\mathcal{D}^b(\text{mod } A) / \Sigma \mathcal{T}$ by G. It is easy to see that the functor π_m coincides with the quotient functor. □

3. PROOF OF THE MAIN THEOREM

To prove our main result, we need the following result of Guo and Peng [7], which gives a sufficient condition for the existence of Hall polynomials.

Lemma 3.1. Let k be a finite field. Let Λ be a finite-dimensional k-algebra of representation-finite type and there is a locally bounded k-algebra R which is directed, such that there exists a covering functor $F : \text{mod } R \to \text{mod } \Lambda$, and for any $M, N \in \text{mod } \Lambda$, there exist $X, Y \in \text{mod } R$ with $F X = M$ and $F Y = N$ such that F induces the k-isomorphism

$$\text{Ext}^1_R(X, Y) \cong \text{Ext}^1_\Lambda(M, N).$$

Then Λ has Hall polynomials.

Remark 3.2. According to Theorem 5.1 of [7], the last condition in Lemma 3.1 can be weakened to the following: for any $M, N \in \text{mod } \Lambda$ with N indecomposable, there exist $X_i, Y_i \in \text{mod } R, i = 1, 2$ with $F X_i \cong M$ and $F Y_i \cong N$ such that F induces the k-isomorphisms

$$\text{Ext}_R(X_1, Y_1) \cong \text{Ext}^1_\Lambda(M, N) \text{ and } \text{Ext}_R(X_2, Y_2) \cong \text{Ext}^1_\Lambda(N, M).$$

Now we are in a position to prove the main theorem of this note.

Proof of Theorem 3.1. By the definition of repetitive cluster-tilted algebras, there is a finite-dimensional hereditary algebra A such that Λ is the endomorphism algebra of a basic cluster-tilting object \tilde{T} in a repetitive cluster category $\mathcal{C}_{F^m}(A)$ of A. Note that we have an equivalence of categories $\text{Hom}_{\mathcal{C}_{F^m}(A)}(\tilde{T}, -) : \mathcal{C}_{F^m}(A) / \Sigma \tilde{T} \to \text{mod } \Lambda$. Hence, Λ is representation-finite implies that A is representation-finite. Let $\mathcal{T} = \pi_{m}^{-1}(\text{add } \tilde{T})$, by Remark 2.2, we know that $\text{End}(\mathcal{T})$ is locally bounded and directed. By part (1) of Proposition 2.4, we deduce that

$$\tilde{\pi}_m : \text{mod } \text{End}(\mathcal{T}) \to \text{mod } \Lambda$$

is a directed Galois covering of $\text{mod } \Lambda$.

According to Lemma \[3.1\] and Remark \[3.2\] it suffices to show that for any $M, N \in \text{mod } \Lambda$ with N indecomposable, there exist $X_i, Y_i \in \text{mod } \text{End}(T)$, $i = 1, 2$ with $FX_i \cong M$ and $FY_i \cong N$ such that F induces the k-isomorphisms

$$\text{Ext}^1_{\text{End}(T)}(X_1, Y_1) \cong \text{Ext}^1_A(M, N) \quad \text{and} \quad \text{Ext}^1_{\text{End}(T)}(Y_2, X_2) \cong \text{Ext}^1_A(N, M).$$

We will only prove the existence for the first isomorphism, where the second one follows similarly. We may and we will assume that M is also indecomposable and $\text{Ext}^1_A(M, N) \neq 0$.

Recall that we have the following commutative diagram

$$
\begin{array}{ccc}
D^b(\text{mod } A) & \xrightarrow{\pi_m} & C_{Fm}(A) \\
\text{mod } \text{End}(T) & \cong & \text{mod } D^b(\text{mod } A)/\Sigma T \\
\downarrow Q_1 & & \downarrow Q_2 \\
\text{mod } \text{End}(T) & \cong & C_{Fm}(A)/\Sigma\hat{T} \cong \text{mod } \Lambda
\end{array}
$$

where Q_1 and Q_2 are natural quotient functors. Since π_m is a Galois covering, there exists $\hat{M}, \hat{N} \in \text{mod } \text{End}(T)$ such that $\pi_m(\hat{M}) = M$ and $\pi_m(\hat{N}) = N$. Moreover, $\{F^i m \hat{M} | i \in \mathbb{Z}\}$ forms a complete set of preimages of M in $\text{mod } \text{End}(T)$. For simplicity, we set $\hat{M}_i = F^i m \hat{M}$ in the following. By abuse of notations, we still denote by $\hat{M}_i, \hat{N} \in D^b(\text{mod } A)$ the unique indecomposable preimages of \hat{M}_i and \hat{N} respectively. Without loss generality, we may assume that $\hat{N} \in \text{mod } A$. By the definition of covering functor and the fact that π_m is an exact functor preserving projectivity, we have the following k-isomorphism

$$\bigoplus_{i \in \mathbb{Z}} \text{Ext}^1_{\text{End}(T)}(\hat{M}_i, \hat{N}) \cong \text{Ext}^1_A(M, N).$$

Since $0 \neq \dim_k \text{Ext}^1_A(M, N) < \infty$, the vector space $\text{Ext}^1_{\text{End}(T)}(\hat{M}_i, \hat{N})$ vanishes for all but finitely many i. Let $t \in \mathbb{Z}$ such that $\text{Ext}^1_{\text{End}(T)}(\hat{M}_i, \hat{N}) \neq 0$ and $\text{Ext}^1_{\text{End}(T)}(\hat{M}_j, \hat{N}) = 0$ for $j > t$.

We claim that $\text{Ext}^1_{\text{End}(T)}(\hat{M}_i, \hat{N}) \cong \text{Ext}^1_A(M, N)$. It suffices to show that $\text{Ext}^1_{\text{End}(T)}(\hat{M}_i, \hat{N}) = 0$ for $i < t$. By the Auslander-Reiten translation formula, we have

$$\text{Ext}^1_{\text{End}(T)}(\hat{M}_i, \hat{N}) \cong D\text{Hom}^1_{\text{End}(T)}(\hat{N}, \tau \hat{M}_i),$$

where τ is the Auslander-Reiten translation of $\text{mod } \text{End}(T)$ which is induced by the Auslander-Reiten translation of $D^b(\text{mod } A)$. On the other hand, we have

$$D\text{Hom}^1_{\text{End}(T)}(\hat{N}, \tau \hat{M}_i) = \frac{\text{Hom}^{D^b(\text{mod } A)}(\hat{N}, \tau \hat{M}_i)}{\{f : \hat{N} \to \tau \hat{M}_i \text{ factoring through add } \Sigma T \text{ or add } \Sigma^2 T\}}.$$

Note that $\text{Ext}^1_{\text{End}(T)}(\hat{M}_i, \hat{N}) \neq 0$ implies that $\text{Hom}^{D^b(\text{mod } A)}(\hat{N}, \tau \hat{M}_i) \neq 0$. Since $\hat{N} \in \text{mod } A$, we deduce that $\tau \hat{M}_i \in \text{mod } A$ or $\tau \hat{M}_i \in \Sigma \text{mod } A$. Recall that $\hat{M}_i = F^i m \hat{M}$ if $\tau \hat{M}_i \in \text{mod } A$, then we have

$$\text{Hom}^{D^b(\text{mod } A)}(\hat{N}, \tau \hat{M}_i) = \text{Hom}^{D^b(\text{mod } A)}(\hat{N}, F^{(i-t)m} \tau \hat{M}_i) = 0 \text{ for } i < t.$$

Now assume that $\tau \hat{M}_i \in \Sigma \text{mod } A$ and let $\tau \hat{M}_i = \Sigma L$, where $L \in \text{mod } A$. From

$$0 \neq \text{Hom}^{D^b(\text{mod } A)}(\hat{N}, \tau \hat{M}_i) = \text{Hom}^{D^b(\text{mod } A)}(\hat{N}, \Sigma L),$$
we deduce that \(L \) is a predecessor of \(\widehat{N} \) in \(D^b(\text{mod } A) \). In this case, we have

\[
\text{Hom}_{D^b(\text{mod } A)}(\widehat{N}, \tau \widehat{M}_t) = \begin{cases}
\text{Hom}_{D^b(\text{mod } A)}(\widehat{N}, F^{(i-t)m}\tau \widehat{M}_t)
& \text{if } i < t - 1; \\
\text{Hom}_{D^b(\text{mod } A)}(\widehat{N}, \tau^{m\Sigma^{1-m}L}) & \text{if } i = t - 1.
\end{cases}
\]

It is clear that \(\text{Hom}_{D^b(\text{mod } A)}(\widehat{N}, \tau^{m\Sigma^{1-m}L}) = 0 \) if \(m \geq 2 \). Now suppose that \(m = 1 \) and \(\text{Hom}_{D^b(\text{mod } A)}(\widehat{N}, \tau L) \neq 0 \), then \(\widehat{N} \) is a predecessor of \(\tau L \) and hence a predecessor of \(L \), which contradicts to the fact that \(D^b(\text{mod } A) \) is directed. We have proved that \(\text{Hom}_{D^b(\text{mod } A)}(\widehat{N}, \tau \widehat{M}_t) = 0 \) for \(i \neq t \) and hence \(\text{Ext}^1_{\text{End}(\mathcal{T})}(\widehat{M}_t, \widehat{N}) = 0 \) for \(i \neq t \), which completes the proof.

References

[1] I. Assem, T. Brüstle and R. Schiffler, On the Galois coverings of a cluster-tilted algebra, J. Pure and App. Algebra 213(2009), no. 7, 1450-1463.
[2] K. Bongartz and P. Gabriel, Covering spaces in representation theory, Invent. Math. 65(1982), 331-378.
[3] A. Buan, R. Marsh and I. Reiten, Cluster-tilted algebras, Trans. Amer. Math. Soc. 459(2007), no. 1, 323-332.
[4] A. Buan, R. Marsh, M. Reineke, I. Reiten and G. Todorov, Tilting theory and cluster combinatorics, Advances in Math. 204(2006), 572-618.
[5] P. Caldero, F. Chapoton and R. Schiffler, Quivers with relations arising from clusters (A_n case), Trans. Aer. Math.Soc. 358(2006), 1347-1364.
[6] J. Guo, The calculation of the Hall polynomials for a cyclic quiver, Comm. Algebra 23(1995), No. 2, 743-751.
[7] J. Guo and L. Peng, Universal PBW-Basis of Hall-Ringel algebras and Hall polynomials, J. Algebra 198(1997), 339-351.
[8] B. Keller, On triangulated orbit categories, Document Math. 10(2005), 551-581.
[9] B. Keller and I. Reiten, Cluster-tilted algebras are Gorenstein and stably Calabi-Yau, Advances in Math. 211(2007), 123-151.
[10] S. König and B. Zhu, From triangulated categories to abelian categories: cluster tilting in a general framework, Math. Zeit. 258(2008), 143-160.
[11] Y. Palu, Cluster characters for 2-Calabi-Yau triangulated categories, Ann. Inst. Fourier 58(2008), no. 6, 2221-2248.
[12] C.M. Ringel, Lie algebras arising in representation theory, in, "London Math. Soc. Lecture Note Ser.," Vol.168, pp. 284-291, Cambridge Univ. Press, Cambridge, UK, 1992.
[13] C.M. Ringel, The composition algebra of a cyclic quiver-Towards an explicit description of the quantum group of type \(\tilde{A}_n \), Proc. London Math. Soc.(3)166(1993), 507-537.
[14] B. Zhu, Cluster-tilted algebras and their intermediate coverings, Comm. Algebra 39(2011), 2437-2448.

Department of Mathematics, SiChuan University, 610064 Chengdu, P.R.China
E-mail address: changjianfu@scu.edu.cn