[SHORT COMMUNICATION]

Parasitism of water mites (Acari: Hydrachnidiae) on caddisflies (Insecta: Trichoptera) in Hokkaido, Niigata, and Yamanashi Prefectures in Japan

Hiroshi ABÉ* and Tomiko ITO

1Biological laboratory, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
2Hokkaido Aquatic Biology, Hakuyo-cho, 3-3-5, Eniwa, Hokkaido 061-1434, Japan

(Received 11 June 2021; Accepted 27 July 2021)

Key words: Hydryphantidae, Protzia, larval mite, host insects, Trichoptera

INTRODUCTION

In most cases, during the larval stage of their life cycle, prostigmatic aquatic mites parasitize the body surface of aquatic insects (Smith, 1988). Studies on water mites’ parasitism on aquatic insects in Japan primarily began as studies of biological control against malaria (e.g., Miyazaki, 1933). Therefore, most studies on water mite parasitism in Japan focus on dipteran hosts (Yamada, 1918; Miyazaki, 1933, 1935, 1936, 1945, 1947; Uchida and Miyazaki, 1935; Imamura, 1950c, 1951b, 1951d, 1952a; Hirabayashi and Fukunaga, 2007). Studies on parasitism on other insect taxa are rather limited: Hemiptera (Masuda, 1934, 1942; Imamura, 1952b; Nagasawa et al., 2008; Morimoto, 2012; Abé et al., 2015, 2017), Coleoptera (Masuda, 1934, 1935a, 1935b, 1942), Odonata (Miyazaki, 1936; Imamura, 1950a, 1951a, 1951c; Imamura and Mitchell, 1967; Kobayashi and Toda, 2005), Trichoptera (Nagasawa and Abé, 2015), and Plecoptera (Imamura, 1950b; Nagasawa and Abé, 2015). Recently, the authors had an opportunity to examine several water mite larvae attached to adult caddisflies collected in Hokkaido, Niigata, and Yamanashi Prefectures. Accordingly, this paper aims to obtain knowledge concerning the host–parasite correspondence and parasitic nature between water mites and caddisflies in these three districts.

MATERIALS AND METHODS

Imaginal caddisflies were collected by hand with a sweep net and by using a light trap in the seven study areas shown in Fig.1 during 1999 and 2018. Among caddisflies collected in the study area, eight individuals infested with water mite larvae were preserved in a glass vial filled with 70% ethanol. Caddisflies were identified by species, and their sexes were determined, referring to

* Corresponding author: abe.hiroshi@nihon-u.ac.jp
DOI: 10.2300/acari.30.31
Tanida et al. (2018).

In the laboratory, the parasitic mites on each part of the body (Fig. 2), the head (including antenna), fore wing, hind wing, prothorax (including neck), mesothorax, metathorax, abdomen, fore leg, mid leg, and hind leg, were counted under a stereoscopic microscope. The mites that happened to fall from the host’s body during preservation were also counted. Then, one or two mite larvae on each host individual were used for taxonomic investigation. The genus of each mite was identified under a phase-contrast microscope based on morphological features as referred to by Prasad and Cook (1972) and Martin (2000, 2003, 2006).

In the present study, only host–parasite correspondence and parasitic nature of mites on host body parts are examined without statistical processing on account of small sample size (n=8). Due to the lack of data on background local populations including infested and non-infested host individuals, the preferences of mites regarding host species, host body size, and host sex are not analyzed here.
RESULTS AND DISCUSSION

During the survey, eight infested caddisflies of the seven species in three genera were collected from seven nearby lotic waters in three prefectures (Table 1). Parasitic mites were all in the larval stage and the morphological features of all of the examined mite larvae accorded well with the larval generic diagnosis of *Protzia* (Martin 2000, 2003, 2006). The diagnostic characteristics of the obtained larval mites were mentioned below based on a representative specimen attached to *Lepidostoma crassicorne* (Fig. 3) collected at Eniwa, Hokkaido.

Idiosoma somewhat long, globular in shape (Fig. 4A). Dorsal plate not clearly delimitated. Dorsal setae mostly serrated, except for mediopropodosomal setae. Eyes two pairs; each eye capsulated; frontal organ distinct (Fig. 4B). First coxal plate furnished with two setae, second and third coxal plates with one seta for each. Urostigma distinct between the first and second coxae. Excretory pore plate (provisional genital plate) nearly triangular in shape (Fig. 4C), with an excretory pore and 2 pairs of insertions of excretory plate setae. Gnathosoma nearly pentagonal in shape. Palp five segmented (Fig. 4D); attached laterally to gnathosoma base; second segment furnished with one seta; third segment furnished with two setae; fourth segment furnished with three setae and claw-like structure; fifth segment conical, bearing seven fine setae. Chelicera with nearly straight claw (Fig. 4E). Legs three pairs, six segmented, with many serrated setae; tarsus...
longer than the other segments. Empodial claw falciform (Fig. 4F); lateral claws curved (Fig. 4F).

This is the first notation of the larval morphology of Protzia outside of Europe. It is quite difficult to make an exact species identification based only on the larval stage. All obtained larval mites had quite similar diagnostic morphological features. However, we cannot rule out the possibility that these larval mites include several species. Therefore, larval mites attached to the obtained caddisflies are provisionally recorded as Protzia spp.

Parasitic mites were found on the head, prothorax, mesothorax, metathorax, and abdomen of the caddisfly, and no mites were found on the legs and wings (Table 2). From this result, even after taking the mite larvae’s falling off of the host body into consideration, it is probable that the Protzia larvae generally do not settle on legs and wings of the caddisfly. Böttger (1972) reported that larvae of Protzia eximia attached mainly on the neck and prothorax and partly on the abdomen of caddisflies. Ullrich (1978) also observed that larvae of P. eximia clung to the leg of the host at the beginning and finally settled on the prothorax of the host for engorgement. Martin (2000) noted that larvae of P. eximia attached variably to the wings, thorax, and abdomen of caddisflies. As mentioned in a review of parasitic associations of water mite larvae with host insects by Smith and Oliver (1986), Protzia larvae tend to parasitize to the thorax and abdomen of caddisfly hosts. In contrast, their parasitism to wings of caddisflies (Martin, 2000) would probably be quite rare, and there is no record of their parasitism to legs of caddisflies. This
Table 1. Caddisflies collected during the present survey.

Family	Species	No. of inds.	Stage	Sex	Collecting date (mm.dd.yyyy)	Collecting area	Area No. in Fig.1	Collector
Lepidostomatidae	*Lepidostoma speculiferum*	1	Adult	♂	07. 27. 1999	Ibeshibetsu River, Akan, Hokkaido	1	Ito, T. & Ohkawa, A.
	L. crassicorn	1	Adult	♂	06. 11. 2004	Yukanboshi River, Einiwa, Hokkaido	2	Ito, T.
	L. stellatum	2	Adult	♂	06. 11. 2004	Yukanboshi River, Einiwa, Hokkaido	3	Ito, T.
	L. japonicum	1	Adult	♂	09. 21. 2004	Oo River, Yamakita, Niigata	4	Ito, T.
	L. bipertitum	1	Adult	♀	09. 26. 2003	Aimata River, Minobu, Yamanashi	5	Hattori, T.
Glossosomatidae	*Glossosoma ussuricum*	1	Adult	♂	09. 03. 2005	Rarumanai River, Einiwa, Hokkaido	6	Ito, T.
Rhyacophilidae	*Rhyacophila transqua*	1	Adult	♂	05. 28. 2018	Abira River, Abira, Hokkaido	7	Ito, T.

Table 2. Number of individuals of *Protzia* spp. parasitic on caddisfly hosts.

Host species	Attachment sites on the host	Detached									
	Head	Prothorax	Mesothorax	Metathorax	Fore leg	Mid leg	Hind leg	Fore wing	Hind wing	Abdomen	
Lepidostoma speculiferum	0	0	1	0	0	0	0	0	0	0	1
L. crassicorn	0	9	7	7	0	0	0	0	0	0	10
L. stellatum (1)	0	1	0	0	0	0	0	0	0	0	1
L. stellatum (2)	0	1	0	0	0	0	0	0	0	0	0
L. japonicum	0	0	0	1	0	0	0	0	0	0	0
L. bipertitum	1	0	0	0	0	0	0	0	0	0	0
Glossosoma ussuricum	0	2	0	0	0	0	0	0	0	0	6
Rhyacophila transqua	0	1	0	0	0	0	0	0	0	0	0
Fig. 4. Protzia sp. attached on Lepidostoma crassicorne: A. dorsal aspect; B. dorsal aspect of the anterior part of idiosoma; C. the genital region (phase-contrast image); D. lateral aspect of the palp; E. lateral aspect of the chelicera; F. lateral aspect of the tarsus of the second leg. Scale bars: 50 μm in A and B, 10 μm in C–F.
property is rather reasonable, because the wings and legs are considered to be inadequate for settlement and engorgement for the water mite larvae, due to the unstable environment created by the physical activities of host insects.

Up to now, imaginal caddisflies in 15 families have been known as hosts for larval water mites from around the world (Table 3). Among them, 15 genera in 13 families have been recorded as water mite hosts in Japan (Abé and Ohba, 2016), and 11 caddisflies in 10 genera were identified to species. In the present study, seven caddisfly species were recorded as being hosts for Protzia spp., and five of them – *Lepidostoma crassicorne* (Ulmer, 1907), *L. stellatum* (Ito, 1984), *L. japonicum* (Tsuda, 1936), *L. bipertitum* (Kobayashi, 1955), and *Glossosoma ussuricum* (Martynov, 1934) – were newly recorded hosts in Japan. Host insects for Protzia larvae are limited to caddisflies in Japan (Abé and Ohba, 2016). In other countries, however, several dipterans (e.g., Psychodidae, Simuliidae, Empididae, and Chironomidae) are also known as hosts for Protzia (Jones, 1967; Ulrich, 1978; Smith and Oliver, 1986; Martin, 2000). Therefore, it is possible that dipteran hosts for Protzia may also be found in Japan.

Table 3. Caddisfly hosts and attachment sites recorded for *Protzia*.

Family of Trichoptera (*incl. record in Japan*)	Attachment sites on host	References
Apataniidae	–	Böttger (1972), Ulrich (1978), Di Statino et al. (2010)
Brachycentridae	Thorax and abdomen	Smith and Oliver (1986)
Glossosomatidae*	Wing, thorax, and abdomen	Böttger (1972), Ulrich (1978), Smith and Oliver (1986), Martin (2000), Nagasawa and Abé (2015), Present study
Hydrobiosidae*	–	Nagasawa and Abé (2015)
Hydroptilidae*	Wing, thorax, and abdomen	Martin (2000), Nagasawa and Abé (2015)
Hydroptilidae*	–	Nagasawa and Abé (2015)
Lepidostomatidae*	Head, thorax, and abdomen	Smith and Oliver (1986), Nagasawa and Abé (2015), Present study
Limnephilidae*	Thorax and abdomen	Ulrich (1978), Smith and Oliver (1986)
Odontoceridae*	–	Nagasawa and Abé (2015)
Philopotamidae*	Thorax and abdomen	Smith and Oliver (1986), Nagasawa and Abé (2015)
Phryganopsychidae*	–	Nagasawa and Abé (2015)
Polycentropodidae*	Thorax and abdomen	Ulrich (1978), Smith and Oliver (1986), Nagasawa and Abé (2015)
Psychomyiidae*	Wing, thorax, and abdomen	Ulrich (1978), Smith and Oliver (1986), Martin (2000), Nagasawa and Abé (2015)
Rhyacophilidae*	Thorax and abdomen	Ulrich (1978), Smith and Oliver (1986), Nagasawa and Abé (2015), Present study
Sericostomatidae*	Thorax and abdomen	Ulrich (1978), Smith and Oliver (1986)
ACKNOWLEDGEMENTS

We are grateful to Mr. Gyo Yoshinari (Environmental Ecology Group, Idea Co. Ltd.) for forwarding the caddisfly specimens to the first author. We are also thankful to the late Mr. Toshio Hattori for his kind gift of a valuable specimen.

REFERENCES

Abé, H. and S. Ohba (2016) Water mites (Acari: Hydrachnidiae and Stygothrombidae) parasitic on aquatic animals in Japan. Journal of the Acarological Society of Japan, 25: 1–35.

Abé, H., Y. Ohtsuka and S. Ohba (2015) Water mites (Acari: Hydrachnidiae) parasitic on aquatic hemipterans in Japan, with reference to host preferences and selection sites. International Journal of Acarology, 41: 494–506.

Abé, H., Y. Kojima, M. Imura and Y. Tanaka (2017) Parasitism of water mites (Acari: Hydrachnidiae) on Appasus japonicus in a paddy field in Sagamihara City, Kanagawa Prefecture, Japan. Journal of the Acarological Society of Japan, 26: 1–11.

Böttger, K. (1972) Parasitologische Beziehungen zwischen Wassermilben und Trichopteren. Zoologischer Anzeiger, 188: 154–156.

Di Sabatino, A., R. Gerecke, T. Gledhill and H. Smit (2010) Superfamily Hydryphantoidea Piersig, 1896. In: Chelicerata: Acari II Süßwasserfauna von Mitteleuropa, 7/2-2 (ed., Gerecke, R.), pp. 1–74, Spektrum Akademischer Verlag, Heidelberg.

Hirabayashi, K. and Y. Fukunaga (2007) Parasite infestation of Antocha (Antocha) bisfida Alexander, 1924 (Diptera: Tipulidae) by water mite larvae (Sperchon plumifer Thor, 1902) in the middle reaches of the Shinano river. International Review of Hydrobiology, 92: 543–553.

Imamura, T. (1950a) Studies on a water mite Pionopsis lutescens japonensis found in Asahigawa. Gakugei, 2: 188–191. (In Japanese)

Imamura, T. (1950b) Studies on the life history of the water mite, Arrenurus (Arrenurus) daisetsuensis Imamura, from Mt. Daisetsu. Transactions of the Sapporo Natural History Society, 19: 1–6. (In Japanese)

Imamura, T. (1950c) On the life-history of a water mite, Neumania uchidai, a water mite parasitic on stone-flies. Annotationes Zoologicae Japonenses, 24: 54–58.

Imamura, T. (1951a) Studies on the water mite Hydrophantes sp. parasitic on the mosquito Aedes (Ochlerotatus) excrucianus. Kagaku, 21: 250–251. (In Japanese)

Imamura, T. (1951b) Studies on three water-mites from Hokkaido parasitic on midges. Journal of the Faculty of Science, Hokkaido Imperial University, Series VI, Zoology, 10: 274–288.

Imamura, T. (1951c) Studies on the water mite parasitic on a dragon-fly from Ozegahara, Nikko. Eisei Dobutsu, 2: 5–8. (In Japanese)

Imamura, T. (1952a) On the life-history of a water mite, Neumania uchidai, parasitic on midges. Eisei Dobutsu, 3: 46–47. (In Japanese)

Imamura, T. (1952b) A new water mite, Arrenurus daisetsuensis n. sp., with a note on its life-history. Journal of the Faculty of Science, Hokkaido Imperial University, Series VI, Zoology, 10: 116–112.

Imamura, T. (1952c) On the life-history of a water mite, Neumania uchidai, parasitic on midges. Eisei Dobutsu, 3: 46–47. (In Japanese)

Imamura, T. (1967) The water mites parasitic on the damselfly, Cercion hieroglyphicum Brauer 1. Systematics and life history. Annotationes Zoologicae Japonenses, 40: 28–36.

Jones R. K. H. (1967) Descriptions of the larvae of Aturus scaber Kramer, Protzia eximia Protz and Piona uncata Koenike with notes on the life-histories of the latter two. [Hydracarina. Annales de Limnologie, 3: 231–247.

Kobayashi, H. and H. Toda (2005) Life history of a water mite (Piona carneae) in Lake Shirakoma. Research Report of the Research and Education Center for Inlandwater Environment Shinshu University, 4: 11–15.
Parasitism of water mites on caddisflies

Martin P. (2000) Larval morphology and host-parasite associations of some stream living water mites (Hydrachnidia, Acari). Archiv für Hydrobiologie, Supplement 121: 269–320.

Martin P. (2003) Larval morphology of spring-living water mites (Hydrachnidia, Acari) from the Alps. Annales de Limnologie, 39: 363-393.

Martin P. (2006) On the morphology and classification of larval water mites (Hydrachnidia, Acari) from springs in Luxembourg. Zoosan, 113: 1–44.

Masuda, Y. (1934) Notes on the life-history of Hydrachna (Schizohydrachna) nova Marshall. Journal of Science of the Hiroshima University, Series B, Division 1, 3(4): 1–43.

Masuda, Y. (1935a) On the life history of a freshwater mite, Hydrophantes uchidai Kishida (?). Dobutsugaku Zassi, 47: 412–420. (In Japanese)

Masuda, Y. (1935b) On the life history of a Eylais species. Syokubutu Oyobi Dobutsu, 3: 43–54. (In Japanese)

Masuda, Y. (1942) The life-history of some species of water-mites from Osaka and its vicinity. Hiroshima Bunrikadaigaku Hakubitsugaku Zassi, 10: 35–36. (In Japanese)

Miyazaki, I. (1933) On a parasite on Anopheles. Kyudai Iho, 7(6): 1–6. (In Japanese)

Miyazaki, I. (1935a) On a watermite species parasitic on Anopheles species. Syokubutsu Oyobi Dobutsu, 9: 725–729. (In Japanese)

Miyazaki, I. (1936) Über das Saugorgan von zwei Arten Wassermilbenlarven. Annotationes Zoologicae Japonenses, 15: 306–311.

Miyazaki, I. (1945) Studies on watermite parasitic on Anopheles sinensis (VII). Kagoshima Igaku Senmongakko Gakujutsu Houkoku, 1: 55–60. (In Japanese)

Miyazaki, I. (1947) Notes on parasitic animals observed in southern part of Kyushu. Kyushu Igakukai Tokubetsu Koen Betsuzuri, 47: 90–107. (In Japanese)

Morimoto, S. (2012) Living jewelry under water. Kyousei-no-Hiroba, 7: 85–87. (In Japanese)

Nagasawa, T. and H. Abé (2015) Host insects infested with aquatic mites (Acari: Hydrachnidiae and Stygothrombiae) in Kanagawa and Shizuoka prefectures in Japan. Acta Arachnologica, 64: 71–73.

Nagasawa, T., H. Abé and J. Takahashi (2008) Notes on the parasitism of water mite Hydrachna sp. on Appasus japonicus. Mizube-no-Wa, 26: 13–14. (In Japanese)

Prasad, V. and D. R. Cook (1972) The taxonomy of water mite larvae. Memoirs of the American Entomological Institute, 18: 1–326.

Smith, B. P. (1988) Host-parasite interaction and impact of larval water mites on insects. Annual Review of Entomology, 33: 487–507.

Smith, I. M. and D. R. Oliver (1986) Review of parasitic associations of larval water mites (Acari: Parasitengona: Hydrachnida) with insect hosts. Canadian Entomologist, 118: 407–472.

Tanida, K., T. Nozaki, T. Ito, T. Hattori and N. Kuhara (2018) Trichoptera. In: Aquatic Insects of Japan: Manual with Keys and Illustrations, the second edition (eds., Kawai, T. and K. Tanida), pp. 449–687, Tokai University Press, Hiratsuka. (In Japanese)

Uchida, T. and I. Miyazaki (1935) Life-history of a water-mite parasitic on Anopheles. The Proceedings of the Imperial Academy, 11: 73–76.

Ullrich F. (1978) Biologisch-ökologische Studien an den Larven rheophilier Wassermilben (Hydrachnellae, Acari), Schlitzer Produktionsbiologische Studien 29. Archiv für Hydrobiologie, Supplement, 54: 189–255.

Yamada, S. (1918) On the utilization of destructive organisms for an extermination of mosquitos. Dobutsu-gaku Zasshi, 30: 256–261. (In Japanese)