Hopf Pairings and (Co)induction Functors over Commutative Rings

Jawad Y. Abuhlail
Mathematics Department
Birzeit University
P.O.Box 14, Birzeit - Palestine

Abstract

(Co)induction functors appear in several areas of Algebra in different forms. Interesting examples are the so called induction functors in the Theory of Affine Algebraic Groups. In this paper we investigate Hopf pairings (bialgebra pairings) and use them to study (co)induction functors for affine group schemes over arbitrary commutative ground rings. We present also a special type of Hopf pairings (bialgebra pairings) satisfying the so called α-condition. For those pairings the coinduction functor is studied and nice descriptions of it are obtained. Along the paper several interesting results are generalized from the case of base fields to the case of arbitrary commutative (Noetherian) ground rings.

Introduction

Hopf pairings (respectively bialgebra pairings) were presented by M. Takeuchi [35, Page 15] (respectively S. Majid [26, 1.4]). With the help of these, several authors studied affine group schemes and quantum groups over arbitrary commutative ground rings (e.g. [16], [33], [31]). In this paper we study the category of Hopf pairings $\mathcal{P}_{\text{Hopf}}$ and the category of bialgebra pairings \mathcal{P}_{Big} over an arbitrary commutative base ring. In the case of Noetherian base rings we present the full subcategories $\mathcal{P}_{\text{Hopf}}^\alpha \subset \mathcal{P}_{\text{Hopf}}$ (respectively $\mathcal{P}_{\text{Big}}^\alpha \subset \mathcal{P}_{\text{Big}}$) of Hopf pairings (respectively bialgebra pairings) satisfying the so called α-condition, see 1.4. For those a coinduction functor is presented and an interesting description of it is obtained.

The paper is divided into seven sections. The first section includes some preliminaries about the so called measuring α-pairings, rational modules and dual coalgebras. In the...
second section we consider the cotensor functor and prove some properties of it that will be used in later sections. In the third section we introduce the coinduction functor in the category of measuring α-pairings and prove mainly that it can be obtained as a special case of a more general coinduction functor between categories of type $\sigma[M]$. Hopf pairings (bialgebra pairings) are presented in the fourth section, where an algebraically topological approach is used and several duality theorems are proved. In the fifth section we consider the category of Hopf α-pairings (bialgebra α-pairings) and generalize known results on admissible Hopf pairings over Dedekind domains to the case of quasi admissible bialgebra α-pairings and Hopf α-pairings over arbitrary commutative Noetherian ground rings. There the coinduction functor is also studied and different forms of it that appear in the literature are shown to be equivalent. The classical duality between groups and commutative Hopf algebras (e.g. [28], [30]) is the subject of the sixth section. In the seventh and last section we apply results obtained in the previous sections to affine group schemes over arbitrary commutative rings.

Throughout this paper R denotes a commutative ring with $1_R \neq 0_R$. We consider R as a left (and a right) linear topological ring with the discrete topology. All R-modules are assumed to be unital and category of R-(bi)modules will be denoted by \mathcal{M}_R. With umadorned Hom($-,-$) and $- \otimes -$ we mean $\text{Hom}_R(-,-)$ and $- \otimes_R -$ respectively. For an R-module M we call an R-submodule $K \subset M$ pure (in the sense of Cohn), if the canonical mapping $\iota_K \otimes_R \text{id}_N : K \otimes_R N \to M \otimes_R N$ is injective for every R-module N. For an R-module M and subsets $X \subset M$ (respectively $Y \subset M^*$) we set $\text{An}(X) := \{ f \in M^* : f(X) = 0 \}$ (respectively $\text{Ke}(Y) := \{ m \in M : f(m) = 0 \ \forall f \in Y \}$).

Let A be an R-algebra (not necessarily with unity). A left A-module is said to be faithful, if $\text{An}(\underline{A}M) := \{ a \in A : aM = 0 \} = (0_A)$. We define a left A-module M to be A-faithful (respectively unital), if the canonical map $\rho : M \to \text{Hom}_R(A,M)$ is injective (respectively, if $AM = M$). With $\underline{A} \mathcal{M}$ (respectively $\underline{A} \mathcal{M}$) we denote the category of A-faithful (respectively unital) left A-modules and left A-linear maps. The categories of A-faithful (respectively unital) right A-modules $\underline{A} \mathcal{M}_R$ (respectively $\underline{A} \mathcal{M}_A$) are analogously defined. If A has unity, then obviously every unital left (or right) A-module is A-faithful. For an R-algebra A and an A-module M, an A-submodule $N \subset M$ will be called R-cofinite, if M/N is finitely generated in \mathcal{M}_R. Unless otherwise explicitly mentioned, we assume that all R-algebras have unities respected by R-algebra morphisms and that all modules of R-algebras are unital.

We assume the reader is familiar with the theory and notation of Hopf Algebras. For any needed definitions the reader may refer to any of the classical books on the subject (e.g. [1], [28], [30]) or to the recent monograph [12] for the theory of coalgebras over arbitrary base rings. For an R-coalgebra C, we call a right (respectively a left) C-comodule (M, g_M) counital if its structure map g_M is injective, compare [13, Lemma 1.1.]. For an R-coalgebra C we denote with \mathcal{M}^C (respectively \mathcal{M}^C) the category of counital right (respectively left) C-comodules. For an R-coalgebra $(C, \Delta_C, \varepsilon_C)$ and an R-algebra (A, μ_A, η_A) we consider $\text{Hom}_R(C,A)$ as an R-algebra with multiplication the so called convolution product $(f \ast g)(c) := \sum f(c_1)g(c_2)$ and unity $\eta_A \circ \varepsilon_C$.

1 Preliminaries

In this section we present some definitions and lemmas to be referred to later in the paper.

1.1. Subgenerators. Let A be an R-algebra (not necessarily with unity) and K be a left A-module. We say a left A-module N is K-subgenerated, if N is isomorphic to a submodule of a K-generated left A-module (equivalently, if N is kernel of a morphism between K-generated left A-modules). The full subcategory of \mathcal{AM}, whose objects are the K-subgenerated left A-modules is denoted by $\sigma[K_A]$. In fact $\sigma[K_A] \subseteq \mathcal{AM}$ is the smallest Grothendieck full subcategory that contains K. If M is a left A-module, then

$$\text{Sp}(\sigma[K_A], M) := \sum \{ f(N) \mid f \in \text{Hom}_A(N, M), \ N \in \sigma[K_A] \}$$

is the largest A-submodule of M that belongs to $\sigma[K_A]$. The subcategory $\sigma[K_A] \subseteq \mathcal{AM}$ can also be seen as the category of discrete left A-modules, where A is considered as a left linear topological R-algebra with the K-adic topology (e.g. [10]). The reader is referred to [38] and [37] for the well developed theory of categories of this type.

An important result to which we will often refer is

Lemma 1.2. ([38, 15.8], [12, 42.2]) Let A be a ring, K be a faithful left A-module and $B \subseteq A$ be a subring. Then $\sigma[K_B] = \sigma[K_A]$ if and only if $B \subseteq A$ is K-dense.

Remark 1.3. Let C be an R-algebra. Then C^* becomes two (left) linear topologies, the C-adic topology induced by C-C and the finite topology induced by the embedding $C^* \hookrightarrow R^C$. By [4, Lemma 2.2.4] the two topologies coincide.

1.4. The α-condition. With an R-pairing $P = (V, W)$ we mean R-modules V, W with an R-linear map $\kappa_P : V \to W^*$ (equivalently $\chi_P : W \to V^*$). For R-pairings (V, W) and (V', W') a morphism $(\xi, \theta) : (V', W') \to (V, W)$ consists of R-linear mappings $\xi : V \to V'$ and $\theta : W \to W'$, such that the induced R-bilinear map

$$V \times W \to R, (v, w) \mapsto <v, w> := \kappa_P(v)(w) = \chi_P(w)(v)$$

has the property

$$<\xi(v), w'> = <v, \theta(w')> \text{ for all } v \in V \text{ and } w' \in W'.$$

We say an R-pairing $P = (V, W)$ satisfies the α-condition (or P is an α-pairing), if for every R-module M the following mapping is injective:

$$\alpha^P_M : M \otimes_R W \to \text{Hom}_R(V, M), \sum m_i \otimes w_i \mapsto [v \mapsto \sum m_i <v, w_i>] \quad (1)$$

We say an R-module W satisfies the α-condition, if (W^*, W) satisfies the α-condition (equivalently, if rW is locally projective in the sense of Zimmermann-Huisgen [39, Theorem 2.1], [17, Theorem 3.2]). With \mathcal{P} we denote the category of R-pairing with morphisms of pairings described above and with $\mathcal{P}^\alpha \subseteq \mathcal{P}$ the full subcategory of R-pairings satisfying the α-condition.
Remark 1.5. ([2, Remark 2.2]) Let $P = (V, W)$ be an α-pairing. Then $R W$ is flat and R-cogenerated. If moreover $R W$ is finitely presented or R is perfect, then $R W$ turns to be projective.

Lemma 1.6. ([2, Lemma 2.3]) Let $P = (V, W) \in P^\alpha$. For every R-module M and every R-submodule $N \subset M$ we have for $\sum m_i \otimes w_i \in M \otimes_R W$:

$$\sum m_i \otimes w_i \in N \otimes_R W \Leftrightarrow \sum m_i < v, w_i > \in N \text{ for all } v \in V.$$ \hspace{1cm} (2)

1.7. Measuring R-pairings. For an R-coalgebra C and an R-algebra A (not necessarily with unity) we call an R-pairing $P = (A, C)$ a measuring R-pairing, if the induced mapping $\kappa_P : A \to C^*$ is an R-algebra morphism. In this case C is an A-bimodule through the left and the right A-actions

$$a \mapsto c := \sum c_1 < a, c_2 > \quad \text{and} \quad c \mapsto a := \sum < a, c_1 > c_2 \text{ for all } a \in A, \, c \in C.$$ \hspace{1cm} (3)

Let (A, C) and (B, D) be measuring R-pairings (A and B not necessarily with unities). Then we say an R-pairings morphism $(\xi, \theta) : (B, D) \to (A, C)$ is a morphism of measuring R-pairings, if $\xi : A \to B$ is an R-algebra morphism and $\theta : D \to C$ is an R-coalgebra morphism. The category of measuring R-pairings and morphisms described above will be denoted by P_m. If $P = (A, C)$ is a measuring R-pairing, $D \subset C$ is a (pure) R-subcoalgebra and $I \triangleleft A$ is an ideal with $< I, D > = 0$, then $Q := (A/I, D)$ is a measuring R-pairing, $(\pi_I, \nu_D) : (A/I, D) \to (A, C)$ is a morphism in P_m and we call $Q \subset P$ a (pure) measuring R-subpairing. With $P_m^\alpha \subset P_m$ we denote the full subcategory of measuring R-pairings satisfying the α-condition. Obviously $P_m^\alpha \subset P_m$ is closed under pure measuring R-subpairings.

Rational modules

1.8. Let $P = (A, C)$ be a measuring α-pairing (A not necessarily with unity). Let M be an A-faithful left A-module and consider the injective canonical A-linear mapping $\rho_M : M \to \text{Hom}_R(A, M)$. We put $\text{Rat}^C(A M) := \rho_M^{-1}(M \otimes_R C)$. If $\text{Rat}^C(A M) = M$, then M is said to be C-rational and we define

$$\varrho_M := (\alpha_M^p)^{-1} \circ \rho_M : M \to M \otimes_R C.$$ \hspace{1cm}

For $m \in \text{Rat}^C(A M)$ with $\varrho_M(m) = \sum m_i \otimes c_i$ we call $\{(m_i, c_i)\}_{i=1}^k \subset M \times C$ a rational system for m. With $\text{Rat}^C(A \widehat{M}) \subseteq A \widehat{M}$ we denote the full subcategory of C-rational left A-modules. The full subcategory of C-rational right A-modules $C \text{Rat}(\widehat{M}_A) \subseteq \widehat{M}_A$ is analogously defined (we will show in Theorem 1.14 that every C-rational left, respectively right, A-module is unital).

As a preparation for the proof of the main results in this section (Theorems 1.14 and 1.15) and to make the paper more self-contained we begin with some technical lemmas.
Lemma 1.9. Let \(P = (A, C) \) be a measuring \(\alpha \)-pairing (\(A \) not necessarily with unity). For every \(A \)-faithful left \(A \)-module \(M \) we have:

1. \(\text{Rat}^C(A M) \subseteq M \) is an \(A \)-submodule.
2. For every \(A \)-submodule \(N \subset M \) we have \(\text{Rat}^C(A N) = N \cap \text{Rat}^C(A M) \).
3. \(\text{Rat}^C(\text{Rat}^C(A M)) = \text{Rat}^C(A M) \).
4. For every \(L \in \widehat{A M} \) and \(f \in \text{Hom}_{A^*}(M, L) \) we have \(f(\text{Rat}^C(A M)) \subseteq \text{Rat}^C(A L) \).

Proof. 1. Let \(b \in A \) and \(m \in \text{Rat}^C(A M) \) with rational system \(\{(m_i, c_i)\}_{i=1}^k \subset M \times C \). Then we have for arbitrary \(a \in A \):
\[
a(bm) = (ab)m = \sum_{i=1}^k m_i < ab, c_i > = \sum_{i=1}^k m_i < a, bc_i >
\]
and so \(bm \in \text{Rat}^C(A M) \) with rational system \(\{(m_i, bc_i)\}_{i=1}^k \subset M \times C \).

2. Clearly \(\text{Rat}^C(A N) \subseteq N \cap \text{Rat}^C(A M) \). On the other hand take \(n \in N \cap \text{Rat}^C(A M) \) with rational system \(\{(m_i, c_i)\}_{i=1}^k \subset M \times C \). Then for arbitrary \(a \in A \) we have
\[
\sum_{i=1}^k m_i < a, c_i > = an \in N \text{ and so } n \in \text{Rat}^C(A N) \text{ by Lemma 1.6.}
\]

3. Follows from 1. and 2.

4. Let \(f : M \to L \) be a morphism of \(A \)-faithful left \(A \)-modules and take \(m \in \text{Rat}^C(A M) \) with rational system \(\{(m_i, c_i)\}_{i=1}^k \subset M \times C \). Then for arbitrary \(a \in A \) we have
\[
a f(m) = f(am) = f(\sum_{i=1}^k m_i < a, c_i >) = \sum_{i=1}^k f(m_i) < a, c_i >,
\]
i.e. \(f(m) \in \text{Rat}^C(A L) \) with rational system \(\{(f(m_i), c_i)\}_{i=1}^k \subset L \times C \).■

Lemma 1.10. Let \(P = (A, C) \in \mathcal{P}_m \) (\(A \) not necessarily with unity).

1. If \((M, \varrho_M) \) is a right \(C \)-comodule, then \(M \) is a left \(A \)-module through
\[
\rho_M : M \xrightarrow{\alpha_M \varrho_M} \text{Hom}_R(A, M) \quad (4)
\]
If \(M \) is counital and \(A \) has unity, then \(A M \) is unital (and \(A \)-faithful).

2. Let \((M, \varrho_M), (N, \varrho_N) \) be right \(C \)-comodules and consider the induced left \(A \)-module structures \((M, \rho_M), (N, \rho_N) \) as in (4). If \(f : M \to N \) is \(C \)-colinear, then \(f \) is \(A \)-linear.
3. Let \(N \) be a right \(C \)-comodule, \(K \subset N \) be a right \(C \)-subcomodule and consider the induced left \(A \)-module structures \((N, \rho_N), (K, \rho_K)\) as in (4). Then \(K \subset N \) is an \(A \)-submodule.

Proof.

1. Set \(P \otimes P := (A \otimes R A, C \otimes R C) \) and consider the following diagram with commutative trapezoids (where \(\zeta_l \) the isomorphism given by \(\zeta_l(\delta(a \otimes b)) := \delta(b)(a) \)):

\[
\begin{array}{ccc}
M & \xrightarrow{\rho_M} & \text{Hom}_R(A, M) \\
\downarrow & & \downarrow \\
M & \xrightarrow{\rho_M} & \text{Hom}_R(A, M) \\
\downarrow & & \downarrow \\
M \otimes_R C & \xrightarrow{\alpha_M^P} & M \otimes_R C \\
\downarrow & & \downarrow \\
M \otimes_R C & \xrightarrow{\alpha_M^P} & M \otimes_R C \\
\downarrow & & \downarrow \\
\text{Hom}_R(A, M) & \xrightarrow{(A, \rho_M)} & \text{Hom}_R(A, \text{Hom}_R(A, M)) \\
\downarrow & & \downarrow \\
\text{Hom}_R(A \otimes_R A, M) & \xrightarrow{\zeta_l} & \text{Hom}_R(A \otimes_R A, M)
\end{array}
\]

By assumption the internal rectangle is commutative and consequently the outer rectangle is commutative, i.e. \((M, \rho_M)\) is a left \(A \)-module.

If \(M \) is counital and \(A \) has unity, then for every \(m \in M \):

\[1_A m = \epsilon_C m = \sum_{m_{<0>}} \epsilon_C(m_{<1>}) = m,\]

i.e. \(A M \) is unital \((\text{and } A\text{-faithful}).\)

2. Consider the diagram

\[
\begin{array}{ccc}
M & \xrightarrow{f} & N \\
\downarrow & & \downarrow \\
\text{Hom}_R(A, M) & \xrightarrow{(A, f)} & \text{Hom}_R(A, N) \\
\downarrow & & \downarrow \\
M \otimes_R C & \xrightarrow{f \otimes id_C} & N \otimes_R C \\
\downarrow & & \downarrow \\
\text{Hom}_R(A, M) & \xrightarrow{(A, f)} & \text{Hom}_R(A, N)
\end{array}
\]

The lower trapezoid is obviously commutative. Moreover both triangles are commutative by the definition of \(\rho_M \) and \(\rho_N \) (4). If \(f \) is \(C \)-colinear, then the outer rectangle is commutative and consequently the upper trapezoid is commutative, i.e. \(f \) is \(A \)-linear.

3. Trivial. ■

Lemma 1.11. Let \(P = (A, C) \in \mathcal{P}_m^\alpha \) \((A \not\text{ necessarily with unity}).\)
1. If \((M, \rho_M) \in \widetilde{\mathcal{M}}\) is \(C\)-rational, then \(M\) is a counital right \(C\)-comodule through
\[
\varrho_M : M \xrightarrow{(\alpha_M^{-1}) \circ \rho_M} M \otimes_R C
\] (7)

2. Let \((M, \rho_M), (N, \rho_N) \in \widetilde{\mathcal{M}}\) be \(C\)-rational and consider the induced right \(C\)-comodule structures \((M, \varrho_M), (N, \varrho_N)\) as in (7). Then \(\text{Hom}^C(M, N) = \text{Hom}_{\mathcal{A}-}(M, N)\).

3. Let \((N, \rho_N) \in \widetilde{\mathcal{M}}\) be \(C\)-rational and consider the induced right \(C\)-comodule structure \((N, \varrho_N)\) as in (7). If \(K \subset N\) is an \(\mathcal{A}\)-submodule, then \(K\) is a counital right \(C\)-subcomodule and moreover \(\varrho_K = (\varrho_N)_{|K}\).

Proof. 1. If \((M, \rho_M)\) is \(C\)-rational, then \(\rho_M(M) \subset \alpha_M^P(M \otimes_R C)\) (by definition). Moreover \(\alpha_M^P\) is injective, hence \(\varrho_M := (\alpha_M^{-1}) \circ \rho_M : M \to M \otimes_R C\) is well defined and we have the commutative diagram

\[
\begin{array}{ccc}
\text{Hom}_R(A, M) & \xrightarrow{\rho_M} & M \\
\downarrow{\alpha_M} & & \downarrow{\varrho_M} \\
M & \xrightarrow{\varrho_M} & M \otimes_R C
\end{array}
\]

The right trapezoid in diagram (5) is obviously commutative and by definition of \(\varrho_M\) (7) all other trapezoids are commutative. By assumption \(M\) is a left \(\mathcal{A}\)-module and so the outer rectangle is also commutative. By [2, Lemma 2.8] \(\alpha_M^P\) is injective and consequently the internal rectangle is commutative, i.e. \((M, \varrho_M)\) is a right \(C\)-comodule. Moreover, \(\rho_M\) and \(\alpha_M^P\) are by assumption injective and so \(\varrho_M := \alpha_M^P \circ \rho_M\) is injective, i.e. \(M\) is counital.

2. Let \(M, N \in \text{Rat}^C(\mathcal{A}\mathcal{M})\) and \(f : M \to N\) be \(\mathcal{A}\)-linear. The lower trapezoid in diagram (6) is obviously commutative and by definition of \(\varrho_M, \varrho_N\) all triangles are commutative. If \(f\) is \(\mathcal{A}\)-linear then, by the injectivity of \(\alpha_M^P\), the upper trapezoid is commutative and consequently the outer triangle is commutative, i.e. \(f\) is \(C\)-colinear. So \(\text{Hom}_{\mathcal{A}-}(M, N) \subset \text{Hom}^C(M, N)\) and the equality follows from Lemma 1.10 (2).

3. Let \((N, \rho_N)\) be a \(C\)-rational left \(\mathcal{A}\)-module. If \(K \subset N\) is an \(\mathcal{A}\)-submodule, then by Lemma 1.9 (2) \(\text{Rat}^C(K) = K \cap \text{Rat}^C(M) = K\), i.e. \(K\) is a \(C\)-rational left \(\mathcal{A}\)-module. By (1) it follows that \(K\) is a counital right \(C\)-comodule through some \(R\)-linear map \(\varrho_K : K \to K \otimes_R C\). Moreover \(K \xrightarrow{|K}\) \(N\) is by assumption \(\mathcal{A}\)-linear and so \(C\)-colinear (by 2.), i.e. \(K \subset N\) is a \(C\)-subcomodule. By remark 1.5 \(\mathcal{R}\) is flat and so \(\varrho_K = (\varrho_N)_{|K}\). \(\blacksquare\)

Remark 1.12. Let \(C\) be an \(R\)-coalgebra and \((N, \varrho_N)\) be an arbitrary right \(C\)-comodule. Let \(R^\mathcal{A} \xrightarrow{\pi} N \xrightarrow{} 0\) be a free representation of \(N\) in \(\mathcal{M}_R\). Then
\[
\text{C}^\mathcal{A} \simeq R^\mathcal{A} \otimes_R C \xrightarrow{\pi \otimes \text{id}} N \otimes_R C \xrightarrow{} 0
\]
is an epimorphism in \mathcal{M}^C. Moreover the injective comodule structure map $\varrho_N : N \to N \otimes_R C$ is C-colinear, i.e. N is a C-subcomodule of the C-generated C-comodule $N \otimes_R C$ and so C-subgenerated. Since $N \in \mathcal{M}^C$ is arbitrary, we conclude that C is a subgenerator in \mathcal{M}^C.

1.13. For every R-coalgebra C we have an R-algebra isomorphism:

$$\Psi : (C^*, \ast) \to (\text{End}^C(C, C)^{op}, \circ), \ f \mapsto [c \mapsto \sum f(c_1)c_2]$$

with inverse $\Phi : g \mapsto \varepsilon \circ g$. Analogously $(\text{End}(C, C), \circ) \simeq (C^*, \ast)$ as R-algebras. If $P = (A, C) \in \mathcal{P}_m^a$, then we have isomorphisms of R-algebras:

$$C^* \simeq \text{End}(C) = \text{End}(C_{\text{End}(C)^{op}}) = \text{End}(C_{\text{End}(A)^{op}}) := \text{Biend}(A)C$$

and

$$C^* \simeq \text{End}^C(C)^{op} = \text{End}(C_{C^*})^{op} = \text{End}(C_{\text{End}(C)^{op}})^{op} = \text{End}(C_{\text{End}(A)^{op}})^{op} := \text{Biend}(C_{A})$$

where $\text{Biend}(A)C$ and $\text{Biend}(C_{A})$ are the biendomorphism rings of A-C and C_{A}, respectively (compare [38, 6.4]).

We are now ready to prove the main result in this section:

Theorem 1.14. Let $P = (A, C) \in \mathcal{P}_m^a$. A not necessarily with unity. If R^C is locally projective and $\kappa_P(A) \subseteq C^*$ is dense with respect to the finite topology on $C^* \to C^C$, then every right (respectively left) C-comodule is a unital left (respectively right) A-module and we have category isomorphisms

$$\mathcal{M}^C \simeq \text{Rat}^C(\widetilde{A}\widetilde{M}) = \text{Rat}^C(\widetilde{A}\mathcal{M}) = \sigma[A]$$

$$\simeq \text{Rat}^C(C_{\ast} \widetilde{M}) = \text{Rat}^C(C_{\ast} \mathcal{M}) = \sigma[C_{\ast}]$$

and

$$C\mathcal{M} \simeq C\text{Rat}(\widetilde{M_A}) = C\text{Rat}(\mathcal{M_A}) = \sigma[C_A]$$

$$\simeq C\text{Rat}(\widetilde{M_{C^*}}) = C\text{Rat}(\mathcal{M_{C^*}}) = \sigma[C_{C^*}]$$

Proof. We prove the category isomorphisms (8). The isomorphisms of categories (9) follow by symmetry.

Step 1. $\mathcal{M}^C \simeq \text{Rat}^C(\widetilde{A}\mathcal{M})$.

Since R^C satisfies the α-condition and $\kappa_P(A) \subseteq C^*$ is dense, it follows by [2, Proposition 2.4 (2)] that $P \in \mathcal{P}_m^a$. For every counital $(M, \varrho_M) \in \mathcal{M}^C$ we conclude that $\rho_M := \alpha_M \circ \varrho_M$ is injective, i.e. the induced left A-module is A-faithful. By Lemmas 1.10 and 1.11 we have covariant functors

$$A(-) : \mathcal{M}^C \to \text{Rat}^C(\widetilde{A}\mathcal{M}), \quad (\ast) : \text{Rat}^C(\widetilde{A}\mathcal{M}) \to \mathcal{M}^C,$$

$$\rho_M \mapsto (M, \alpha_M \circ \varrho_M), \quad (M, \rho_M) \mapsto (M, (\alpha_M)^{-1} \circ \rho_M),$$

$$\sigma(A) \mapsto \sigma[\alpha_M], \quad \sigma[\alpha_M] \mapsto \sigma[\alpha_M]$$

for $M \in \mathcal{M}^C$.
acting as the identity on morphisms. Obviously

\((-)^C \circ A(-) \simeq \text{id}_{\mathcal{M}^C} \text{ and } A(-) \circ (-)^C \simeq \text{id}_{\text{Rat}^C(\mathcal{A}, \mathcal{M})},\)

i.e. \(\mathcal{M}^C \simeq \text{Rat}^C(\mathcal{A}, \mathcal{M}).\)

Step 2. \(\text{Rat}^C(\mathcal{A}, \mathcal{M}) = \text{Rat}^C(\mathcal{A}, \mathcal{M}).\)

Let \((\mathcal{N}, \rho_\mathcal{N}) \in \text{Rat}^C(\mathcal{A}, \mathcal{M})\) and \(n \in \mathcal{N}\) with \(\varrho_\mathcal{N}(n) = \sum_{i=1}^k n_i \otimes c_i.\) By assumption \(\kappa_P(A) \subseteq C^\ast\) is dense and so there exists some \(a \in A,\) so that \(\kappa_P(a)(c_i) = \varepsilon(c_i)\) for \(i = 1, \ldots, k.\) Hence

\[n = \sum_{i=1}^k n_i \varepsilon(c_i) = \sum_{i=1}^k n_i <a, c_i> = an \in \mathcal{N} \text{ (i.e. } \mathcal{A} \mathcal{N} \text{ is unital).}\]

Step 3. \(\mathcal{M}^C = \sigma[\mathcal{A}, C].\)

By Remark 1.5 \(\mathcal{R}_C\) is flat and so \(\mathcal{M}^C\) is a Grothendieck category (e.g. [12, 3.13]). Moreover by the previous lemmas and Remark 1.12 \(\mathcal{M}^C \subseteq \sigma[\mathcal{A}, C]\) is a full subcategory of \(\mathcal{A}, \mathcal{M}\). The equality follows now by the fact that \(\sigma[\mathcal{A}, C] \subseteq \mathcal{A}, \mathcal{M}\) is the smallest Grothendieck full subcategory of \(\mathcal{A}, \mathcal{M}\) that contains \(C.\)

Step 4. \(C^\ast\) has unity \(\varepsilon_C\) and by assumption \((C^\ast, C) \in \mathcal{P}\alpha_m,\) so the proof above can be repeated to get

\[\mathcal{M}^C \simeq \text{Rat}^C(\mathcal{C}^\ast, \mathcal{M}) = \text{Rat}^C(\mathcal{C}^\ast, \mathcal{M}) = \sigma[\mathcal{C}^\ast, C].\]

Theorem 1.15. For a measuring \(R\)-pairing \(P = (A, C)\) (\(A\) not necessarily with unity), the following are equivalent:

1. \(P\) satisfies the \(\alpha\)-condition;
2. \(\mathcal{M}^C \simeq \sigma[\mathcal{A}, C] = \sigma[\mathcal{C}^\ast, C];\)
3. \(\mathcal{R}_C\) is locally projective and \(\kappa_P(A) \subseteq C^\ast\) is dense;
4. \(\mathcal{C}^\ast = \sigma[\mathcal{C}^\ast, A] = \sigma[\mathcal{C}^\ast, C].\)

Proof. 1. \(\Rightarrow\) 2. Follows from Theorem 1.14.
2. \(\Rightarrow\) 3. By assumption we have

\[\sigma[\mathcal{A}, C] = \sigma[\mathcal{C}^\ast, C] = \sigma[\text{Blend}(\mathcal{A}, C)C]\]

and the density of \(\kappa_P(A) \subseteq C^\ast\) follows by Lemma 1.2. The proof of "\(\mathcal{M}^C = \sigma[\mathcal{C}^\ast, C] \Rightarrow \mathcal{R}_C\) locally projective" follows from [36, 3.5] (which appeared also as [12, 4.3]).
3. \(\Rightarrow\) 1. Follows from general theory of dual pairings over rings (e.g. [2, Proposition 2.4 (2)]).
1. \(\Leftrightarrow\) 4. Follows by symmetry.\(\blacksquare\)

Example 1.16. An interesting example for a measuring pairing for which Theorem 1.15 applies is \(P := (C^\square, C),\) where \(C\) is a locally projective \(R\)-coalgebra and \(C^\square := \text{Rat}^C(\mathcal{C}^\ast, C).\)
Dual coalgebras

Definition 1.17. Let A be an R-algebra and consider the class of R-cofinite A-ideals \mathcal{K}_A. For every class \mathcal{F} of R-cofinite A-ideals we define the set

$$A_\mathcal{F}^\circ := \{ f \in A^* | f(I) = 0 \text{ for some } I \in \mathcal{F} \}. \tag{11}$$

1. A filter $\mathfrak{F} = \{ I_\lambda \}_\Lambda$ consisting of R-cofinite A-ideals will be called

 - an α-filter, if the R-pairing $(A, A_\mathfrak{F}^\circ)$ satisfies the α-condition;

 - cofinitary, if for every $I_\lambda \in \mathfrak{F}$ there exists $I_\varkappa \subset I_\lambda$ for some $\varkappa \in \Lambda$, such that A/I_\varkappa is finitely generated and projective in \mathcal{M}_R;

 - cofinitely R-cogenerated, if A/I is R-cogenerated for every $I \in \mathfrak{F}$.

2. We call A:

 - an α-algebra, if \mathcal{K}_A is an α-filter;

 - cofinitary, if \mathcal{K}_A is a cofinitary filter;

 - cofinitely R-cogenerated, if A/I is R-cogenerated for every $I \in \mathcal{K}_A$.

Notation. With Cog_R (respectively Big_R, Hopf_R) denote the category of R-coalgebras (respectively R-bialgebras, Hopf R-algebras) and with CAlg_R (respectively CCog_R) the category of commutative R-algebras (respectively cocommutative R-coalgebras). With CBig_R (respectively CCBig_R) we denote the category of commutative (respectively co-commutative) R-bialgebras and with CHopf_R (respectively CCHopf_R) the category of commutative (respectively cocommutative) Hopf R-algebras.

For two R-coalgebras C, D we denote with $\text{Cog}_R(C,D)$ the set of all R-coalgebra morphisms from C to D. For two R-algebras (respectively R-bialgebras, Hopf R-algebras) H, K we denote with $\text{Alg}_R(H,K)$ (respectively $\text{Big}_R(H,K)$, $\text{Hopf}_R(H,K)$) the set of all R-algebra morphisms (respectively R-bialgebra morphisms, Hopf R-morphisms) from H to K.

Remark 1.18. We make the convention that an R-bialgebra (respectively a Hopf R-algebra) is an α-bialgebra (respectively a Hopf α-algebra), is cofinitary or is cofinitely R-cogenerated, if it is so as an R-algebra. With $\text{Big}_R^\alpha \subset \text{Big}_R$ (respectively $\text{Hopf}_R^\alpha \subset \text{Hopf}_R$) we denote the full subcategory of α-bialgebras (respectively Hopf α-algebras).

Lemma 1.19. ([6, Proposition 2.6]) Let R be Noetherian and A be an R-algebra. Then

$$A^\circ := \{ f \in A^* | f(I) = 0 \text{ for some } R\text{-cofinite ideal } I \lhd A \};$$

$$= \{ f \in A^* | f(I) = 0 \text{ for some } R\text{-cofinite left (right) } A\text{-ideal} \};$$

$$= \{ f \in A^* | Af(fA) \text{ is f.g. in } \mathcal{M}_R \}$$

$$= \{ f \in A^* | AfA \text{ is f.g. in } \mathcal{M}_R \}. $$
Theorem 1.20. ([3, Theorem 3.3.]) Let R be Noetherian, A be an R-algebra and consider $A^\circ \subseteq A^*$ as an A-bimodule under the left and the right regular A-actions
\[(af)(\tilde{a}) = f(\tilde{a}a) \quad \text{and} \quad (fa)(\tilde{a}) = f(a\tilde{a}) \] for all $a, \tilde{a} \in A$ and $f \in A^*$.
(12)

For an A-subbimodule $C \subseteq A^\circ$ and $P := (A, C)$ the following are equivalent:

1. RC is locally projective and $\kappa_P(A) \subseteq C^*$ is dense;
2. RC satisfies the α-condition and $\kappa_P(A) \subseteq C^*$ is dense;
3. (A, C) is an α-pairing;
4. $C \subseteq RA$ is pure;
5. C is an R-coalgebra and $(A, C) \in P_m^\alpha$.

If R is a QF Ring, then these are moreover equivalent to

6. RC is projective.

Corollary 1.21. ([3, Corollary 3.16]) Let A be an R-algebra and \mathfrak{F} be a filter consisting of R-cofinite A-ideals. If R is Noetherian and \mathfrak{F} is an α-filter, or if \mathfrak{F} is cofinitary then we have isomorphisms of categories
\[
\mathcal{M}^{A^\circ}_{\mathfrak{F}} \cong \text{Rat}_{A^\circ}(A\mathcal{M}) = \sigma[A^\circ A^\circ] & \cong A^\circ \text{Rat}(\mathcal{M}_A) = \sigma[A^\circ A^\circ]
\]

2 The cotensor functor

Dual to the tensor product of modules, J. Milnor and J. Moore introduced in [27] the cotensor product of comodules. For a closer look on the properties of the cotensor product over arbitrary (commutative) base rings the interested reader may refer to [20] (and [7]).

2.1. Let C be an R-coalgebra, $(M, \varrho_M) \in \mathcal{M}^C$, $(N, \varrho_N) \in C\mathcal{M}$ and consider the R-linear mapping
\[
\varrho_{M,N} := \varrho_M \otimes id_N - id_M \otimes \varrho_N : M \otimes_R N \to M \otimes_R C \otimes_R N.
\]
The cotensor product of M and N (denoted with $M \square_C N$) is defined through the exactness of the following sequence in \mathcal{M}_R:
\[
0 \to M \square_C N \to M \otimes_R N \xrightarrow{\varrho_{M,N}} M \otimes_R C \otimes_R N.
\]

For $M, M' \in \mathcal{M}^C$ and $N, N' \in C\mathcal{M}$, the cotensor product of $f \in \text{Hom}^C(M, M')$ and $g \in C\text{Hom}(N, N')$ is defined as the R-linear mapping
\[
f \square_C g : M \square_C N \to M' \square_C N',
\]
that completes the following diagram commutatively

\[
\begin{array}{c}
0 \to M \square_C N \to M \otimes_R N \xrightarrow{\varphi_{M,N}} M \otimes_R C \otimes_R N \\
\downarrow f \square_C g \quad \downarrow f \otimes g \quad \downarrow f \otimes \text{id}_C \otimes g \\
0 \to M' \square_C N' \to M' \otimes_R N' \xrightarrow{\varphi'_{M',N'}} M' \otimes_R C \otimes_R N'
\end{array}
\] (13)

In this way we get the cotensor functor

\[M \square_C \cdot : \mathcal{C}M \to \mathcal{M}_R \quad \text{(respectively} \quad - \square_C N : \mathcal{M}^C \to \mathcal{M}_R), \]

which is left exact if \(R_C \) and \(M_R \) (respectively \(R_C \) and \(R_N \)) are flat.

Definition 2.2. Let \(C \) be a flat \(R \)-coalgebra (hence \(\mathcal{M}^C \) and \(^C\mathcal{M} \) are abelian categories). A right (respectively a left) \(C \)-comodule \(M \) is called coflat, if the functor \(M \square_C \cdot : \mathcal{C}M \to \mathcal{M}_R \) (respectively \(- \square_C M : \mathcal{M}^C \to \mathcal{M}_R \)) is exact.

Lemma 2.3. (Compare [29, Page 127], [12, 10.6]) Let \(C \) be an \(R \)-coalgebra and \(M \in \mathcal{M}^C \), \(N \in \mathcal{C}M \). If \(W_R \) is flat, then there are isomorphisms of \(R \)-modules

\[W \otimes_R (M \square_C N) \simeq (W \otimes_R M) \square_C N \quad \text{and} \quad (M \square_C N) \otimes_R W \simeq M \square_C (N \otimes_R W). \] (14)

The following result can easily be derived with the help of Lemma 2.3:

Corollary 2.4. Let \(C, D \) be \(R \)-coalgebras and \((M, \varrho_M^C, \varrho_M^D) \in \mathcal{C}M^D \).

1. Assume \(C_R \) to be flat. For every \(N \in \mathcal{D}M \), \(M \square_D N \) is a left \(C \)-comodule through

\[\varrho_M^C \square_D \text{id}_N : M \square_D N \to (C \otimes_R M) \square_D N \simeq C \otimes_R (M \square_D N). \]

2. Assume \(R_D \) to be flat. For every \(L \in \mathcal{M}^C \), \(L \square_C M \) is a right \(D \)-comodule through

\[\text{id}_L \square_C \varrho_M^D : L \square_C M \mapsto L \square_C (M \otimes_R D) \simeq (L \square_C M) \otimes_R D. \]

Remark 2.5. ([7, Lemma II.2.5, Folgerung II.2.6]) Let \(C \) be a flat \(R \)-coalgebra. For every \(M \in \mathcal{M}^C \), the mapping \(\varrho_M : M \to M \square_C C \) is an isomorphism in \(\mathcal{M}^C \) with inverse \(\lambda_M : m \otimes c \mapsto m \varepsilon(c) \) and moreover we have

\[M \otimes_R \cdot \simeq M \square_C (C \otimes_R \cdot) : \mathcal{M}_R \to \mathcal{M}_Z. \]

If \(M \) is coflat in \(\mathcal{M}^C \), then \(M_R \) is flat.

The Associativity of the cotensor products is not valid in general (see [18]). However we have it in special cases, e.g.:
Lemma 2.6. ([7, Folgerung II.3.4.]) Let C, D be flat R-coalgebras, $N \in \overline{D}M$, $M \in C\overline{M}D$ and $L \in \overline{M}C$. If $L \in \overline{M}C$ (or $N \in \overline{D}M$) is coflat, then we have an isomorphism of R-modules

$$(L \square_C M) \square_D N \simeq L \square_C (M \square_D N).$$

(15)

Notation. For an R-algebra A we denote with $A^e := A \otimes_R A^{op}$ the *enveloping* R-algebra of A.

Lemma 2.7. Let A be an R-algebra, $M, N \in A\overline{M}$ and consider A, $\text{Hom}_R(N, M)$ with the canonical left A^e-module structures. Then we have a functorial isomorphism

$$\text{Hom}_{A^e} (A, \text{Hom}_R(N, M)) \simeq \text{Hom}_{A^e} (N, M).$$

Proof. The isomorphism is given by

$$\Phi_{N,M} : \text{Hom}_{A^e} (A, \text{Hom}_R(N, M)) \to \text{Hom}_{A^e} (N, M), \ f \mapsto f(1_A)$$

with inverse $\Psi_{N,M} : g \mapsto [a \mapsto ag(-)]$. One can easily show that $\Phi_{N,M}$ and $\Psi_{N,M}$ are functorial in M and N.\qed

In the case of a base field, the cotensor functor is equivalent to a suitable Hom-functor (e.g. [9, Proposition 3.1]). Over arbitrary ground rings we have

Proposition 2.8. Let $P = (A, C) \in \mathcal{P}_m$, $(M, \varrho_M) \in \mathcal{M}^C$, $(N, \varrho_N) \in C\mathcal{M}$ and consider A, $M \otimes_R N$ with the canonical left A^e-module structures.

1. If $\alpha^P_{M\otimes_R N}$ is injective, then we have for $\sum m_i \otimes n_i \in M \otimes_R N$:

$$\sum m_i \otimes n_i \in M \square_C N \iff \sum am_i \otimes n_i = \sum m_i \otimes n_i a \text{ for all } a \in A.$$

2. If $P \in \mathcal{P}^\alpha_m$, then we have a functorial isomorphism

$$M \square_C N \simeq \text{Hom}_{A^e} (A, M \otimes_R N).$$

Proof. 1. Let $\alpha^P_{M\otimes_R N}$ be injective and set $\psi := \alpha^P_{M\otimes_R N} \circ \tau(23)$. Then

$$\sum m_i \otimes n_i \in M \square_C N \iff \sum m_{i<0} \otimes m_{i<1} \otimes n_i = \sum m_i \otimes n_{i<1> \otimes n_{i<0>}},$$

$$\iff \psi(\sum m_{i<0} \otimes m_{i<1} \otimes n_i)(a) = \psi(\sum m_i \otimes n_{i<1> \otimes n_{i<0>}})(a), \forall \ a \in A$$

$$\iff \sum m_{i<0} < a, m_{i<1} > \otimes n_i = \sum m_i \otimes < a, n_{i<1>} > n_{i<0>}, \forall \ a \in A$$

$$\iff \sum am_i \otimes n_i = \sum m_i \otimes n_i a, \forall \ a \in A.$$

2. The isomorphism is given through

$$\gamma_{M,N} : M \square_C N \to \text{Hom}_{A^e} (A, M \otimes_R N), \ m \otimes n \mapsto [a \mapsto am \otimes n (= m \otimes na)]$$

with inverse $\beta_{M,N} : f \mapsto f(1_A)$. It is easy to see that $\gamma_{M,N}$ and $\beta_{M,N}$ are functorial in M and N.\qed
Let A be an R-algebra, K, K' be left A-modules, L be an R-module and consider the R-linear mapping
\[v : \text{Hom}_A(K, K') \otimes_R L \to \text{Hom}_A(K, K' \otimes_R L), \quad h \otimes l \mapsto h(-) \otimes l. \tag{16} \]

1. If RL is flat and AK is finitely generated (respectively finitely presented), then v is injective (respectively bijective).
2. If AK be K'-projective and AK is finitely generated, then v is bijective.
3. If AK be K'-projective and RL is finitely presented, then v is bijective.
4. If RL is projective (respectively finitely generated projective), then v is injective (respectively bijective).

Let R^C be a flat R-coalgebra. Let M be a left C-comodule and consider the R-linear mapping
\[\gamma : M^* \to \text{Hom}_R(M, C), \quad f \mapsto [m \mapsto \sum f(m_{<i>})m_{<0>}] . \tag{17} \]

If RM is finitely presented, then $\text{Hom}_R(M, C) \simeq M^* \otimes_R C$ (see Lemma 2.9) and M^* is a right C-comodule through
\[\varrho_{M^*} : M^* \xrightarrow{\gamma} \text{Hom}_R(M, C) \simeq M^* \otimes_R C. \tag{18} \]

If M is a right C-comodule and MR is finitely presented, then M^* becomes analogously a left C-comodule.

With the help of Lemmas 2.7 and 2.9, the following result can be derived directly from Proposition 2.8:

Corollary 2.11. Let $P = (A, C) \in \mathcal{P}_m^\alpha$.

1. Let $M, N \in \mathcal{M}_C$. If MR is flat and RN is finitely presented, or NR is finitely generated projective, then we have functorial isomorphisms
\[
\begin{align*}
M \triangleleft_C N^* & \simeq \text{Hom}_{A^e}(A, M \otimes_R N^*) \simeq \text{Hom}_{A^e}(A, \text{Hom}_R(N, M)) \\
& \simeq \text{Hom}_{A^e}(N, M) = \text{Hom}^C(N, M).
\end{align*}
\]

2. Let $M \in \mathcal{M}_C$, N be a C-bicomodule and consider N with the induced left A^e-module structure. Then we have isomorphisms of R-modules
\[
M \triangleleft_C N \simeq \text{Hom}_{A^e}(A, M \otimes_R N) \simeq M \otimes_R \text{Hom}_{A^e}(A, N),
\]
if any one of the following conditions is satisfied:

(a) MR is flat and A^eA is finitely presented (e.g. A is an affine R-algebra [37, 23.6]);
(b) \(A e A \) is \(N \)-projective and finitely generated;
(c) \(A e A \) is \(N \)-projective and \(M_R \) is finitely presented;
(d) \(M_R \) is finitely generated projective.

3. Let \(N \in C_M, M \) be a \(C \)-bicomodule and consider \(M \) with the induced left \(A^e \)-module structure. Then we have an isomorphism of \(R \)-modules

\[M \square_C N \simeq \text{Hom}_{A^e} (A, M \otimes_R N) \simeq \text{Hom}_{A^e} (A, M) \otimes_R N, \]

if any one of the following conditions is satisfied:

(a) \(R N \) is flat and \(A e A \) is finitely presented (e.g. \(A \) is an affine \(R \)-algebra [37, 23.6]);
(b) \(A e A \) is \(M \)-projective and finitely generated;
(c) \(A e A \) is \(M \)-projective and \(R N \) is finitely presented;
(d) \(R N \) is finitely generated projective.

Injective comodules

For \(P = (A, C) \in \mathcal{P}_m^\alpha \) we get from [38, 16.3] the following characterizations of the injective objects in \(\mathcal{M}^C \simeq \text{Rat}^C (A \mathcal{M}) = \sigma [A C] : \)

Lemma 2.12. Let \(P = (A, C) \in \mathcal{P}_m^\alpha \). For every \(U \in \text{Rat}^C (A \mathcal{M}) \) the following are equivalent:

1. \(U \) is injective in \(\text{Rat}^C (A \mathcal{M}) \);
2. \(\text{Hom}^C (-, U) \simeq \text{Hom}_{A^e} (-, U) : \text{Rat}^C (A \mathcal{M}) \to \mathcal{M}_R \) is exact;
3. \(U \) is \(C \)-injective in \(\text{Rat}^C (A \mathcal{M}) \);
4. \(U \) is \(K \)-injective for every (finitely generated, cyclic) left \(A \)-submodule \(K \subset C \);
5. every exact sequence \(0 \to U \to L \to N \to 0 \) in \(\text{Rat}^C (A \mathcal{M}) \) splits.
6. every exact sequence \(0 \to U \to L \to N \to 0 \) in \(\text{Rat}^C (A \mathcal{M}) \), in which \(N \) is a factor module of \(C \) (or \(A \)) splits.

The following Lemma plays an important role in the study of injective objects in the category \(\text{Rat}^C (A \mathcal{M}) \), where \((A, C) \in \mathcal{P}_m^\alpha : \)

Lemma 2.13. Let \((A, C) \in \mathcal{P}_m^\alpha \). If \(R \) is a QF ring then a \(C \)-rational left \(A \)-module \(M \), with \(R M \) flat, is injective in \(\text{Rat}^C (A \mathcal{M}) \) if and only if \(M \) is coflat in \(\mathcal{M}^C \).
Proof. By Theorem 1.15 we have the isomorphism of categories

\[\sigma[\mathcal{A}C] = \text{Rat}^C(\mathcal{A}\mathcal{M}) \simeq \mathcal{M}^C \]

and we get the result by [12, 10.12].

Lemma 2.14. If \(P = (A, C) \in \mathcal{P}_m^\alpha \), then \(- \otimes_R C : \mathcal{M}_R \rightarrow \text{Rat}^C(\mathcal{A}\mathcal{M})\) respects injective objects.

Proof. By Theorem 1.15 \(\mathcal{M}^C \simeq \text{Rat}^C(\mathcal{A}\mathcal{M}) = \sigma[\mathcal{A}C], \) i.e. \(\text{Rat}^C(\mathcal{A}\mathcal{M}) \subset \mathcal{A}\mathcal{M} \) is a closed subcategory. The exact forgetful functor \(\mathcal{F} : \mathcal{M}^C \rightarrow \mathcal{M}_R \) is left adjoint to \(- \otimes_R C : \mathcal{M}_R \rightarrow \mathcal{M}^C\) and the result follows then by [38, 45.6].

Proposition 2.15. Let \((A, C) \in \mathcal{P}_m^\alpha \) and \(M \in \text{Rat}^C(\mathcal{A}\mathcal{M})\).

1. \(M \) is an \(A \)-submodule of an injective \(C \)-rational left \(A \)-module.
2. Every injective object in \(\text{Rat}^C(\mathcal{A}\mathcal{M}) \) is \(C \)-generated.
3. \(M \) is injective in \(\text{Rat}^C(\mathcal{A}\mathcal{M}) \) if and only if there exists an injective \(R \)-module \(X \) for which \(A\mathcal{M} \) is a direct summand of \(X \otimes_R C \).
4. Let \(M \) be injective in \(\mathcal{M}_R \). Then \(M \) is injective in \(\text{Rat}^C(\mathcal{A}\mathcal{M}) \) if and only if \(\varrho_M : M \rightarrow M \otimes_R C \) splits in \(\mathcal{A}\mathcal{M} \).
5. Let \(R \) be Noetherian. Then \(M \) is injective in \(\text{Rat}^C(\mathcal{A}\mathcal{M}) \) if and only if \(M^{(\Lambda)} \) is injective in \(\text{Rat}^C(\mathcal{A}\mathcal{M}) \) for every index set \(\Lambda \). Moreover, direct limits of injectives in \(\text{Rat}^C(\mathcal{A}\mathcal{M}) \) are injective.
6. Let \(A \) be separable (i.e. \(AeA \) is projective). Then \(M \in \mathcal{M}^C \) is coflat if and only if \(M_R \) is flat.

Proof. 1. Let \(M \in \text{Rat}^C(\mathcal{A}\mathcal{M}) \) and denote with \(E(M) \) the injective hull of \(M \) in \(\mathcal{M}_R \). By Lemma 2.14 \(E(M) \otimes_R C \) is injective in \(\text{Rat}^C(\mathcal{A}\mathcal{M}) \). Obviously \((\iota_M \otimes_R id_C) \circ \varrho_M : M \hookrightarrow E(M) \otimes_R C \) is \(A \)-linear and the result follows.

2. Let \((M, \varrho_M) \in \text{Rat}^C(\mathcal{A}\mathcal{M}) \) be injective. By Lemma 2.12, there exists an epimorphism of left \(A \)-modules \(\beta : M \otimes_R C \twoheadrightarrow M \), such that \(\beta \circ \varrho_M = id_M \). If \(R^{(\Lambda)} \xrightarrow{\pi} M \rightarrow 0 \) is a free representation of \(M \) in \(\mathcal{M}_R \), then we get the following exact sequence in \(\text{Rat}^C(\mathcal{A}\mathcal{M}) \):

\[
C^{(\Lambda)} \simeq R^{(\Lambda)} \otimes_R C \xrightarrow{\beta \circ (\pi \otimes id_C)} M \rightarrow 0 .
\]

3. Let \(X \) be an injective \(R \)-module, such that \(A\mathcal{M} \) is a direct summand of \(X \otimes_R C \). By Lemma 2.14 \(X \otimes_R C \) is injective in \(\text{Rat}^C(\mathcal{A}\mathcal{M}) \) and consequently \(M \) is injective in \(\text{Rat}^C(\mathcal{A}\mathcal{M}) \). On the other hand, let \(M \) be injective in \(\text{Rat}^C(\mathcal{A}\mathcal{M}) \) and denote with \(E(M) \) the injective hull of \(M \) in \(\mathcal{M}_R \). Then we get an exact sequence in \(\text{Rat}^C(\mathcal{A}\mathcal{M}) \)

\[
0 \rightarrow M \xrightarrow{(\iota \otimes id_C) \circ \varrho_M} E(M) \otimes_R C . \tag{19}
\]

Now (19) splits in \(\text{Rat}^C(\mathcal{A}\mathcal{M}) \) by Lemma 2.12 and the result follows.
4. Follows from Lemmata 2.12 and 2.14.

5. By [4, Folgerung 2.2.24] $A \mathcal{C}$ is locally Noetherian. The result follows then from the isomorphism of categories $\text{Rat}^C(A \mathcal{M}) \simeq \sigma[A \mathcal{C}]$ and [38, 27.3].

6. If $M \in \mathcal{M}^C$ is coflat, then M_R is flat (by Remark 2.5). Assume now that $A^e A$ is projective. If M_R is flat, then by Proposition 2.8

$$M \square_C - \simeq \text{Hom}_{A^e -}(A, -) \circ (M \otimes_R -)$$

is exact, i.e. M is coflat. ■

Corollary 2.16. Let $(A, C) \in \mathcal{P}_m^\alpha$. If R is semisimple (e.g. a field), then:

1. $M \in \text{Rat}^C(A \mathcal{M})$ is injective if and only if $A \mathcal{M}$ is a direct summand of $A^C(\Lambda)$ for some index set Λ.

2. If A is separable, then C is right semisimple (i.e. every right C-comodules is injective).

3 Coinduction Functors in \mathcal{P}_m^α

By his study of the induced representations of quantum groups, Z. Lin ([24, 3.2], [23]) considered induction functors for admissible Hopf R-pairings over Dedekind rings. His aspect was inspired by the induction functors in the theory of affine algebraic groups and quantum groups. We generalize his results to the coinduction functor for the category of measuring α-pairings $\mathcal{P}_m^\alpha \subset \mathcal{P}_m$ and show that it is isomorphic to a coinduction functor between categories of Type $\sigma[M]$. Moreover we get as nice description of it as a composition of a suitable Hom-functor and a Trace-functor.

3.1. Let A,B be R-algebras and $\xi : A \to B$ be an R-algebra morphism. Then every left B-module becomes a left A-module in a canonical way and we get the so called restriction functor $(-)_{\xi} : B \mathcal{M} \to A \mathcal{M}$. Considering B with the canonical A-bimodule structure, we have the functor $\text{Hom}_{A^e-}(B, -) : A \mathcal{M} \to B \mathcal{M}$. Moreover $((-)_{\xi}, \text{Hom}_{A^e-}(B, -))$ is an adjoint pair of covariant functors through the functorial canonical isomorphisms

$$\text{Hom}_{A^e-}(M_{\xi}, N) \simeq \text{Hom}_{A^e-}(B \otimes_B M, N) \simeq \text{Hom}_{B^e-}(M, \text{Hom}_{A^e-}(B, N)).$$

If we consider the induction functor $B \otimes_A - : A \mathcal{M} \to B \mathcal{M}$, then $B \otimes_A - , (-)_{\xi}$ is an adjoint pair of covariant functors through the functorial canonical isomorphisms

$$\text{Hom}_{B^e-}(B \otimes_A N, M) \simeq \text{Hom}_{A^e-}(N, \text{Hom}_{B^e-}(B, M)) \simeq \text{Hom}_{A^e-}(N, M_{\xi}).$$
3.2. The general coinduction functor. Let A, B be R-Algebras and $\xi : A \to B$ be an R-algebra morphism. If L is a left B-module, then we get the covariant functor

$$
\text{HOM}_{A-}(B, -) := \text{Sp}(\sigma_B[L], \text{Hom}_{A-}(B, -)) : A\mathcal{M} \to \sigma_B[L]. \quad (20)
$$

For every left A-module K (20) restricts to the covariant coinduction functor

$$
\text{Coind}^L_K(-) := \text{Sp}(\sigma_B[L], \text{Hom}_{A-}(B, -)) : \sigma_A[K] \to \sigma_B[L], \quad (21)
$$

i.e. $\text{Coind}^L_K(-)$ is defined through the commutativity of the following diagram:

\[
\begin{array}{ccc}
A\mathcal{M} & \xrightarrow{\text{HOM}_{A-}(B,-)} & B\mathcal{M} \\
\downarrow & & \downarrow \\
\sigma_A[K] & \xrightarrow{\text{Coind}^L_K(-)} & \sigma_B[L]
\end{array}
\]

If $(L)_\xi$ is K-subgenerated as a left A-module, then $(-)_\xi : B\mathcal{M} \to A\mathcal{M}$ restricts to $(-)_\xi : \sigma_B[L] \to \sigma_A[K]$ and $((-)_\xi, \text{Coind}^L_K(-))$ turns to be an adjoint pair of covariant functors.

3.3. The ad-corestriction functor. Let C, D be R-coalgebras and $\theta : D \to C$ be an R-coalgebra morphism. Then we get the covariant corestriction functor

$$
(-)^\theta : \mathcal{M}^D \to \mathcal{M}^C, \ (M, \varrho_M) \mapsto (M, (id_M \otimes \theta) \circ \varrho_M). \quad (22)
$$

On the other hand, consider D as a left C-comodule through

$$
\varrho^C_D : D \xrightarrow{\Delta_D} D \otimes_R D \xrightarrow{\theta \otimes \text{id}} C \otimes_R D.
$$

If $R D$ is flat, then for every $M \in \mathcal{M}^C$ the cotensor product $M \square_C D$ becomes a right D-comodule through

$$
M \square_C D \xrightarrow{id \square_C \Delta_D} M \square_C(D \otimes_R D) \simeq (M \square_C D) \otimes_R D
$$

and we get the ad-corestriction functor

$$
\square_C D : \mathcal{M}^C \to \mathcal{M}^D, \ M \mapsto M \square_C D.
$$

3.4. Let $Q = (B, D) \in \mathcal{P}^a_m$. For every R-algebra A with R-algebra morphism $\xi : A \to B$ we have the covariant functor

$$
\text{HOM}_{A-}(B, -) := \text{Rat}^D(-) \circ \text{Hom}_{A-}(B, -) : _A\mathcal{M} \to \text{Rat}^D(B, \mathcal{M}).
$$

If $P = (A, C) \in \mathcal{P}^a_m$, then $\text{HOM}_{A-}(B, -)$ restricts to the coinduction functor from P to Q

$$
\text{Coind}^Q_P(-) : \text{Rat}^C(_A\mathcal{M}) \to \text{Rat}^D(B, \mathcal{M}), \ M \mapsto \text{Rat}^D(\text{Hom}_{A-}(B, M)),
$$

18
i.e. \(\text{Coind}_Q^P(\cdot) \) is defined through the commutativity of the following diagram:

\[
\begin{array}{ccc}
\text{A}\mathcal{M} & \xrightarrow{\text{Hom}_{A^-}(B,\cdot)} & \text{B}\mathcal{M} \\
\downarrow & & \downarrow \\
\text{Rat}^C(\text{A}\mathcal{M}) & \xrightarrow{\text{Coind}_Q^P(\cdot)} & \text{Rat}^D(\text{B}\mathcal{M})
\end{array}
\]

Proposition 3.5. Let \(P = (A, C), Q = (B, D) \in \mathcal{P}_m \) and \((\xi, \theta) : (B, D) \to (A, C)\) be a morphism in \(\mathcal{P}_m \).

1. If \(R_D \) is flat, then \((-)^{\theta}, -\square_C D\) is an adjoint pair of covariant functors.

2. If \(P, Q \in \mathcal{P}_m^\alpha \) and \(B \) is commutative, then we have for every \(N \in \text{A}\mathcal{M} \):

\[
\text{HOM}_{A^-}(B, N) = \text{HOM}_{A^-}(B, \text{Rat}^C(\text{A}\mathcal{N})).
\]

Proof.
1. One can show easily that the mapping

\[
\Phi_{N,L} : \text{Hom}_D^D(N, L\square_C D) \to \text{Hom}_C^C(N^{\theta}, L), \ f \mapsto (id_L\square_C \theta) \circ f
\]

is an isomorphism with inverse \(g \mapsto (g\square_C id_D) \circ g_N \) and moreover that it is functorial in \(N \in \mathcal{M}^D \) and \(L \in \mathcal{M}^C \).

2. If \(g \in \text{HOM}_{A^-}(B, N) \), then we have for all \(a \in A \) and \(b \in B \):

\[
\begin{align*}
a(g(b)) &= g(a \to b) = g(\xi(a)b) \\
&= g(b\xi(a)) = (\xi(a)g)(b) \\
&= \sum g_{<0>}(b) <\xi(a), g_{<1>}> = \sum g_{<0>}(b) <a, \theta(g_{<1>})>.
\end{align*}
\]

Consequently \(g(B) \subseteq \text{Rat}^C(\text{A}\mathcal{N}) \) and the result follows.

3.6. Let \(P = (A, C), Q = (B, D) \in \mathcal{P}_m^\alpha \), \((\xi, \theta) : (B, D) \to (A, C)\) be a morphism in \(\mathcal{P}_m^\alpha \) and denote the restriction of \((-)_{\xi} : \text{B}\mathcal{M} \to \text{A}\mathcal{M} \) on \(\text{Rat}^D_B(\text{B}\mathcal{M}) = \sigma_{[B]D} \) also with \((-)_{\xi} \). Through the isomorphism of categories \(\mathcal{M}^C \cong \text{Rat}^C(\text{A}\mathcal{M}) = \sigma_{[A]C} \) and \(\mathcal{M}^D \cong \text{Rat}^D_B(\text{B}\mathcal{M}) = \sigma_{[B]D} \) (compare Theorem 1.15) we get an equivalence of functors \((-)^{\theta} \approx (-)_{\xi} \). Considering the covariant functors (10) we get a commutative diagram of pairwise
adjoint covariant functors

\[
\begin{array}{cccccc}
\mathcal{M}^D & \xrightarrow{(-)^D} & \text{Rat}^D(\mathcal{B}\mathcal{M}) & \xrightarrow{\sigma_{\mathcal{B}\mathcal{D}}^\mathcal{C}} & \mathcal{B}\mathcal{M} \\
\mathcal{M}^C & \xrightarrow{A(-)} & \text{Rat}^C(\mathcal{A}\mathcal{M}) & \xrightarrow{\sigma_{\mathcal{A}\mathcal{D}}^\mathcal{C}} & \mathcal{A}\mathcal{M} \\
\end{array}
\]

\[
\begin{array}{cccccc}
\mathcal{M}^D & \xrightarrow{\iota_D} & \mathcal{B}\mathcal{M} \\
\mathcal{M}^C & \xrightarrow{\iota_C} & \mathcal{A}\mathcal{M} \\
\end{array}
\]

(23)

Theorem 3.7. Let \(P = (A, C), Q = (B, D) \) \(\in \mathcal{P}_m^\alpha \) (so that in particular \(R_C \) and \(R_D \) are flat) and \((\xi, \theta) : (B, D) \to (A, C)\) be a morphism in \(\mathcal{P}_m^\alpha \). Through the isomorphisms of categories \(\mathcal{M}^C \simeq \text{Rat}^C(\mathcal{A}\mathcal{M}) = \sigma_{\mathcal{A}\mathcal{C}} \) and \(\mathcal{M}^D \simeq \text{Rat}^D(\mathcal{B}\mathcal{M}) = \sigma_{\mathcal{B}\mathcal{D}} \) (compare Theorem 1.14) the following functors are equivalent

\[
\begin{array}{ll}
\mathcal{M}^C & \xrightarrow{\iota_C} \mathcal{A}\mathcal{M} \\
\mathcal{M}^D & \xrightarrow{\iota_D} \mathcal{B}\mathcal{M} \\
\end{array}
\]

Proof. Consider for every \(N \in \mathcal{M}^C \) the injective \(R \)-linear mapping

\[
\gamma_N := (\alpha_N^Q)|_{N \boxtimes_C D} : N \boxtimes C D \to \text{Hom}_R(B, N), \quad \sum n_i \otimes d_i \mapsto [b \mapsto \sum n_i < b, d_i >].
\]

Then we have for all \(a \in A \) and \(b \in B \):

\[
\begin{align*}
\gamma_N(\sum n_i \otimes d_i)(a \to b) &= \sum n_i < a \to b, d_i > \\
&= \sum n_i < b, d_i \leftarrow a > \\
&= \gamma_N(\sum n_i \otimes d_i \leftarrow a)(b) \\
&= \sum an_i < b, d_i > \\
&= a(\gamma_N(\sum n_i \otimes d_i)(b)),
\end{align*}
\]

i.e. \(\gamma_N(N \boxtimes_C D) \subset \text{Hom}_{A-}(B, N) \). Moreover we have for arbitrary \(\sum n_i \otimes d_i \in N \boxtimes_C D \) and \(b, \bar{b} \in B \):

\[
\begin{align*}
\gamma_N(\bar{b}(\sum n_i \otimes d_i))(b) &= \sum n_i < b, \bar{b} \to d_i > \\
&= \sum n_i < \bar{b}d_i > \\
&= (\bar{b}\gamma_N(\sum n_i \otimes d_i))(b),
\end{align*}
\]

20
Moreover, we have for all $f \in M$ i.e. $\sum (f <0>(1_B) \otimes f <1>)$. Notice that $\gamma_Q \in M$ equivalences Coind $\gamma_Q \in M$. Theorem 1.15 and Proposition 2.8 (2), respectively. \square

Theorem 1.15 and Proposition 2.8 (2), respectively. \square

For all $f \in \text{HOM}_{\mathcal{A}}(B, N), a \in A$ and $b \in B$ we have

$$
\gamma_N(\sum a(f <0>(1_B)) \otimes f <1>)(b) = \sum a(f <0>(1_B)) < b, f <1> > = \sum f <0>(a \rightarrow 1_B) < b, f <1> > = \sum f <0>(\xi(a)) < b, f <1> > = \sum f <0>(\xi(a)f <0>)(1_B) < b, f <1> > = \sum f <0>(\xi(a), f <0><1> < b, f <1> > = \sum f <0>(1_B) < \xi(a)b, f <1> > = \sum f <0>(1_B) < a \rightarrow b, f <1> > = \sum f <0>(1_B) < b, f <1> \leftarrow a > = \gamma_N(\sum f <0>(1_B) \otimes f <1> \leftarrow a)(b),
$$

i.e. $\sum a(f <0>(1_B)) \otimes f <1> = \sum f <0>(1_B) \otimes f <1> \leftarrow a$ (since γ_N is injective). It follows then by Proposition 2.8 (1) that $\sum f <0>(1_B) \otimes f <1> \in N \square_C D$, i.e. β_N is well defined. Moreover, we have for all $f \in \text{HOM}_{\mathcal{A}}(B, N)$ and $b \in B$:

$$
(\gamma_N \circ \beta_N)(f)(b) = \gamma_N(\sum f <0>(1_B) \otimes f <1>)(b) = \sum f <0>(1_B) < b, f <1> > = (bf)(1_B) = f(b),
$$

hence $\gamma_N \circ \beta_N = id$. Obviously $\beta_N \circ \gamma_N = id$. Consequently γ_N and β_N are isomorphisms. It is easy to show that γ_N and β_N are functorial in N, hence $- \square_C D \approx \text{Coind}_P^Q(-)$. The equivalences $\text{Coind}_P^Q(-) \approx \text{Coind}_C^D(-)$ and $- \square_C D \approx \text{Hom}_{\mathcal{A}}(A, - \otimes_R D)$ follow now by Theorem 1.15 and Proposition 2.8 (2), respectively.

3.8. Let $Q = (B, D) \in \mathcal{P}_m^\alpha$ and consider the trivial R-pairing $P = (R, R) \in \mathcal{P}_m^\alpha$ with the morphism of measuring R-pairings $(\eta_B, \varepsilon_D) : (B, D) \rightarrow (R, R)$. Then we have for every $M \in \mathcal{M}^R \simeq \mathcal{M}_R$

$$
\text{Coind}_P^Q(-) := \text{HOM}_R(B, -) \simeq - \otimes_R D.
$$

Notice that $F \simeq (-) : \mathcal{M}^D \rightarrow \mathcal{M}_R$, where F is the forgetful functor, hence $(F, \text{Coind}_P^Q(-))$ is an adjoint pair of covariant functors.

3.9. Universal Property. Let $P = (A, C), Q = (B, D) \in \mathcal{P}_m^\alpha$ and $(\xi, \theta) : (B, D) \rightarrow (A, C)$ be a morphism in \mathcal{P}_m^α. Then $\text{Coind}_P^Q(-)$ has the following universal property: if $N \in \mathcal{M}^D, M \in \mathcal{M}^C$ and $\phi \in \text{Hom}_C(N^\theta, M)$, then there exists a unique $\tilde{\phi} \in \text{Hom}_D(N, \text{Coind}_P^Q(M))$ such that $\phi(n) = \tilde{\phi}(n)(1_B)$ for every $n \in N$.

In what follows we list some properties of the coinduction functor:
3.10. Let $P = (A, C), Q = (B, D) \in \mathcal{P}_m^\alpha$ and $(\xi, \theta) : (B, D) \to (A, C)$ be a morphism in \mathcal{P}_m^α.

1. Coind$^Q_P(-)$ respects direct limits: if \(\{N_\lambda\}_\Lambda \) is a directed system in $\text{Rat}^C(A, \mathcal{M})$, then
 \[\text{Coind}^Q_P(\lim_{\to} N_\lambda) \simeq \lim_{\to} N_\lambda \square_C D \simeq \lim_{\to} (N_\lambda \square_C D) = \lim_{\to} \text{Coind}^Q_P(N_\lambda). \]

2. $\text{Rat}^D(-) \& \text{Hom}_{A-}(B, -)$ are left-exact, hence $\text{Coind}^Q_P(-) := \text{Rat}^D(-) \circ \text{Hom}_{A-}(B, -)$ is left-exact. If moreover $A^\alpha B$ is projective (hence $\text{Hom}_{A-}(B, -)$ is exact) and $\text{Rat}^D(-)$ is exact, then $\text{Coind}^Q_P(-)$ is exact.

3. Coind$^Q_P(-)$ is exact if and only if D is coflat in $C\mathcal{M}$. If R is a QF ring, then $\text{Coind}^Q_P(-)$ is exact if and only if D is injective in $C\text{Rat}(\mathcal{M}_A)$.

4. By Lemma 3.5 (1) $((-)^\theta, - \square_C D)$ is an adjoint pair of covariant functors, hence $\text{Coind}^Q_P(-) \simeq - \square_C D$ respects inverse Limit, i.e. direct products, kernels and injective objects (since $(-)^\theta : \mathcal{M}^D \to \mathcal{M}^C$ is exact). In particular, if C is injective in $\text{Rat}^C(A, \mathcal{M})$, then $D \simeq C \square_C D \simeq \text{Coind}^Q_P(C)$ is injective in $\text{Rat}^D(B, \mathcal{M})$.

5. Let A be separable. Then $- \square_C D \simeq \text{Coind}^Q_P(-) \simeq \text{Hom}_{A^\alpha-}(A, - \otimes_R D)$ is exact, i.e. D is coflat in $C\mathcal{M}$. If moreover R is a QF ring, then D is injective in $C\mathcal{M}$.

A version of the following result was obtained by Y. Doi [14, Proposition 5] in the case of a base field:

Proposition 3.11. Let $P = (A, C), Q = (B, D) \in \mathcal{P}_m^\alpha$ and $(\xi, \theta) : (B, D) \to (A, C)$ be a morphism in \mathcal{P}_m^α. If R is a QF ring, then the following are equivalent:

1. The functor $\text{Coind}^Q_P(-) : \text{Rat}^C(A, \mathcal{M}) \to \text{Rat}^D(B, \mathcal{M})$ is exact;
2. D is coflat in $C\mathcal{M}$;
3. D is injective in $C\text{Rat}(\mathcal{M}_A)$;
4. M is an injective left D-comodule that is flat in \mathcal{M}_R, then M is injective in $C\text{Rat}(\mathcal{M}_A)$.

Proof. (1) \Leftrightarrow (2) Follows from the isomorphism of functors $\text{Coind}^Q_P(-) \simeq - \square_C D : \mathcal{M}^C \to \mathcal{M}^D$.

(2) \Leftrightarrow (3) By Remark 1.5 $R^D D$ is flat, so the equivalence follows from Lemma 2.13.

(2) \Rightarrow (4) Let M be a left D-comodule and assume that M is injective in $D\text{Rat}(\mathcal{M}_B)$ and flat in \mathcal{M}_R. Then M is coflat in $D\mathcal{M}$ (by Lemma 2.13) and we have (by Lemma 2.6) an isomorphism of functors
\[- \square_C M \simeq (- \square_C D) \square_D M : \mathcal{M}^C \to \mathcal{M}_R \]
4.2. The category morphism of bialgebra called a bi-ideal.

Definition 4.1. Let Hopf morphisms. With previously Hopf \(P \subset P \). It follows then from the assumption that \(D \) is injective in \(^C \text{Rat}(\mathcal{M}_A) \).

As a consequence of Theorem 1.15 and [3, Proposition 3.23] we get:

Corollary 3.12. Let \(R \) be Noetherian, \(A, B \) be \(R \)-algebras and \(\xi : A \to B \) be an \(R \)-algebra morphism.

1. Let \(A, B \) be cofinitely \(R \)-cogenerated \(\alpha \)-algebras, \(P := (A, A^\alpha) \), \(Q := (B, B^\alpha) \) and consider the morphism of measuring \(\alpha \)-pairings \((\xi, \xi^\alpha) : (B, B^\alpha) \to (A, A^\alpha) \). Then we have for every right \(A^\alpha \)-comodule \(N \):

\[
\text{Coind}^Q_P(N) = \{ f \in \text{Hom}_{A^\alpha}(B, N) | Bf \text{ is finitely generated in } \mathcal{M}_R \}.
\]

2. Let \(\mathfrak{F}_A, \mathfrak{F}_B \) be cofinitely \(R \)-cogenerated \(\alpha \)-filters of \(R \)-cofinite \(A \)-ideals, \(B \)-ideals respectively and consider \(A, B \) as a left linear topological \(R \)-algebra with the induced left linear topologies \(\mathfrak{F}(\mathfrak{F}_A), \mathfrak{F}(\mathfrak{F}_B) \) respectively. If \(\xi : A \to B \) be an \(R \)-algebra morphism that is continuous with respect to \((\mathfrak{F}(\mathfrak{F}_A), \mathfrak{F}(\mathfrak{F}_B)), P := (A, A^\alpha\mathfrak{F}_A) \) and \(Q := (B, B^\alpha\mathfrak{F}_B) \), then we have for every \(N \in \mathcal{M}^A_{\mathfrak{F}_A} : \)

\[
\text{Coind}^Q_P(N) = \{ f \in \text{Hom}_{A^\alpha}(B, N) | (0 : f) \supset \bar{I} \text{ for some } \bar{I} \in \mathfrak{F}_B \}.
\]

4 Hopf \(R \)-pairings

Definition 4.1. Let \(H \) be an \(R \)-bialgebra. An \(H \)-ideal, which is also an \(H \)-coideal, is called a bi-ideal. If \(H \) is a Hopf \(R \)-algebra with antipode \(S_H \) and \(J \subset H \) is an \(H \)-bi-ideal with \(S_H(J) \subset J \), then \(J \) is called a Hopf ideal.

4.2. The category \(\mathcal{P}_{\text{Big}} \). A bialgebra \(R \)-pairing is an \(R \)-pairing \(P = (H, K) \), where \(H, K \) are \(R \)-bialgebras and \(\kappa_P : H \to K^*, \chi_P : K \to H^* \) are \(R \)-algebra morphisms. For bialgebra \(R \)-pairings \((H, K), (Y, K) \) a morphism of \(R \)-pairings \((\xi, \theta) : (Y, Z) \to (H, K) \) is said to be a morphism of bialgebra \(R \)-pairings, if \(\xi : H \to Y \) and \(\theta : Z \to K \) are \(R \)-bialgebra morphisms. With \(\mathcal{P}_{\text{Big}} \subset \mathcal{P}_m \) we denote the subcategory of bialgebra \(R \)-pairings and with \(\mathcal{P}_{\text{Big}}^\alpha \subset \mathcal{P}_{\text{Big}} \) the full subcategory, whose objects satisfy the \(\alpha \)-condition.

If \(P = (H, K) \in \mathcal{P}_{\text{Big}}, Z \subset K \) is a (pure) \(R \)-subbialgebra and \(J \subset H \) is an \(H \)-bi-ideal with \(\langle J, Z \rangle = 0 \), then \(Q = (H/J, Z) \) is a bialgebra \(R \)-pairing, \((\pi_J, \iota_Z) : (H/J, Z) \to (H, K) \) is a morphism in \(\mathcal{P}_{\text{Big}} \) and \(Q \subset P \) is called a (pure) bialgebra \(R \)-subpairing. Obviously \(\mathcal{P}_{\text{Big}}^\alpha \subset \mathcal{P}_{\text{Big}} \) is closed under pure bialgebra \(R \)-subpairings.

4.3. The category \(\mathcal{P}_{\text{Hopf}} \). A Hopf \(R \)-pairing \(P = (H, K) \) is a bialgebra \(R \)-pairing with \(H, K \) Hopf \(R \)-algebras. With \(\mathcal{P}_{\text{Hopf}} \subset \mathcal{P}_{\text{Big}} \) we denote the full subcategory of Hopf
R-pairings and with \(P_{\text{Hopf}}^\alpha \subset P_{\text{Hopf}} \) the full subcategory, whose objects satisfy the \(\alpha \)-condition. If \(P = (H,K) \) is a Hopf R-pairing, \(Z \subset K \) a (pure) Hopf R-subalgebra and \(J \subset H \) a Hopf ideal with \(< J, Z > = 0 \), then \(Q := (H/J,Z) \) is a Hopf R-pairing, \((\pi_J, \iota_Z) : (H/J,Z) \to (H,K)\) is a morphism in \(P_{\text{Hopf}} \) and \(Q \subset P \) is called a (pure) Hopf R-subpairing. Obviously \(P_{\text{Hopf}}^\alpha \subset P_{\text{Hopf}} \) is closed under pure Hopf R-subpairings.

Example 4.4. Let \(R \) be Noetherian and \(H \) be an \(\alpha \)-bialgebra (respectively a Hopf \(\alpha \)-algebra). Then \(H^\circ \) is by ([6, Theorem 2.8]) an R-bialgebra (respectively a Hopf R-algebra). Moreover it is easy to see that \((H,H^\circ)\) is a bialgebra \(\alpha \)-pairing (respectively a Hopf \(\alpha \)-pairing).

Remarks 4.5.

1. (Compare [33]) If \(P = (H,K) \) is a Hopf R-pairing, then
\[
< S_H(h), k >=< h, S_K(k) > \quad \text{for all } h \in H \text{ and } k \in K.
\]

2. Let \(R \) be Noetherian. If \(P = (H,K) \) is a bialgebra R-pairing (respectively a Hopf R-pairing), then \(\kappa_P(H) \subset K^\circ \) and \(\chi_P(K) \subset H^\circ\). If \((H,K) \in P_{\text{Big}} \) and \(H \in \text{Big}_R^\alpha \) (respectively \(K \in \text{Big}_R^\alpha \)), then \(\chi_P : K \to H^\circ \) (respectively \(\kappa_P : H \to K^\circ\)) is an R-bialgebra morphism.

Quasi-Admissible filters.

By the study of induced representations of quantum groups, Z. Lin [24] and M. Takeuchi [32] studied the so called admissible filters of ideals of a Hopf R-algebra over arbitrary (Dedekind) rings. In what follows we introduce what we call the quasi-admissible filters and generalize some of their results to the class of (not necessarily cofinite) quasi-admissible \(\alpha \)-filters.

4.6. Let \(A, B \) be R-algebras and \(\mathfrak{F}_A, \mathfrak{F}_B \) be filters consisting of R-cofinite \(A \)-ideals, \(B \)-ideals respectively. Then the filter basis
\[
\mathfrak{F}_A \times \mathfrak{F}_B := \{ \text{Im}(\iota_I \otimes id_B) + \text{Im}(id_A \otimes \iota_J) | I \in \mathfrak{F}_A, J \in \mathfrak{F}_B \}
\]
induces on \(A \otimes_R B \) a topology \(\mathfrak{I}(\mathfrak{F}_A \times \mathfrak{F}_B) \), such that \((A \otimes_R B, \mathfrak{I}(\mathfrak{F}_A \times \mathfrak{F}_B))\) is a linear topological R-algebra and \(\mathfrak{F}_A \times \mathfrak{F}_B \) is a neighbourhood basis of \(0_{A \otimes_R B} \).

4.7. Let \(H \) be an R-bialgebra (that is not a Hopf R-algebra), \(\mathfrak{F} \subset \mathcal{K}_H \) be a filter and consider the induced linear topological R-algebras \((H, \mathfrak{I}(\mathfrak{F}))\) and \((H \otimes_R H, \mathfrak{I}(\mathfrak{F} \times \mathfrak{F}))\). We call \(\mathfrak{F} \) quasi-admissible, if \(\Delta_H : H \to H \otimes_R H\) and \(\epsilon_H : H \to R\) are continuous, i.e. if \(\mathfrak{F}\) satisfies the following axioms:

\[
(A1) \quad \forall \ I, J \in \mathfrak{F} \text{ there exists } L \in \mathfrak{F}, \text{ such that } \Delta_H(L) \subseteq \text{Im}(\iota_I \otimes id_H) + \text{Im}(id_H \otimes \iota_J)
\]
and
\[
(A2) \quad \exists \ I \in \mathfrak{F}, \text{ such that } \text{Ker}(\epsilon_H) \supset I.
\]
If \(H \) is a Hopf \(R \)-algebra, then we call a filter \(\mathfrak{F} \subset \mathcal{K}_H \) quasi-admissible, if it satisfies (A1), (A2) as well as

\[
(A3) \quad \text{for every} \ I \in \mathfrak{F} \text{ there exists} \ J \in \mathfrak{F}, \text{ such that} \ S_H(J) \subseteq I
\]

(i.e. if \(\Delta_H, \varepsilon_H \) and \(S_H \) are continuous). In [24] and [32], a cofinitary quasi-admissible filter of \(R \)-cofinite \(H \)-ideals (for a Hopf \(R \)-algebra \(H \)) is called admissible.

Definition 4.8. We call an \(R \)-bialgebra (respectively Hopf \(R \)-algebra) \(H \) a quasi-admissible \(R \)-bialgebra (respectively a quasi-admissible Hopf \(R \)-algebra), if the class of \(R \)-cofinite \(H \)-ideals \(\mathcal{K}_H \) is a quasi-admissible filter.

Lemma 4.9. If the ground ring \(R \) is Noetherian, then every \(R \)-bialgebra (Hopf \(R \)-algebra) is quasi-admissible.

Proof. Let \(H \) be an \(R \)-bialgebra. Since \(R \) is Noetherian, \(\mathcal{K}_H \) is a filter. Moreover, \(H \simeq R \oplus \ker(\varepsilon_H) \), hence \(\ker(\varepsilon_H) \in \mathcal{K}_H \). Let \(I, J \in \mathcal{K}_H \) and set \(L := \text{Im}(\iota_I \otimes id_H) + \text{Im}(id_H \otimes \iota_J) \). Notice that \((H \otimes_R H)/L \simeq H/I \otimes_R H/J \) (e.g. [11, II-3.6, III-4.2]), hence \(L \in \mathcal{K}_H \otimes_R H \). By definition \(\Delta : H \to H \otimes_R H \) is an \(R \)-algebra morphism and it follows, by the assumption \(R \) is Noetherian, that \(\Delta^{-1}(L) \triangleleft H \) is an \(R \)-cofinite ideal. Consequently \(H \) is a quasi-admissible \(R \)-bialgebra.

If \(H \) is moreover a Hopf \(R \)-algebra, then \(S_H : H \to H \) is an \(R \)-algebra antimorphism and it follows, from the assumption \(R \) is Noetherian, that for every \(R \)-cofinite ideal \(I \triangleleft H \) the \(H \)-ideal \(S_H^{-1}(I) \triangleleft H \) is \(R \)-cofinite. Consequently \(H \) is a quasi-admissible Hopf \(R \)-algebra.

Definition 4.10. ([34]) An \(R \)-coalgebra \(C \) is called infinitesimal flat, if \(C = \lim_{\to} C_\lambda \) for a directed system of finitely generated projective \(R \)-subcoalgebras \(\{C_\lambda\}_\Lambda \).

Proposition 4.11. Let \(H \) be an \(R \)-bialgebra (respectively a Hopf \(R \)-algebra) and \(\mathfrak{F} \subset \mathcal{K}_H \) be a quasi-admissible filter.

1. If \(R \) is Noetherian and \(\mathfrak{F} \) is an \(\alpha \)-filter, then \(H_\mathfrak{F}^\circ \) is an \(R \)-bialgebra (respectively a Hopf \(R \)-algebra) and \((H, H_\mathfrak{F}^\circ) \) is a bialgebra \(\alpha \)-pairing (respectively a Hopf \(\alpha \)-pairing).

2. If \(\mathfrak{F} \) is moreover cofinitary, then \(H_\mathfrak{F}^\circ \) is an infinitesimal flat \(R \)-bialgebra (Hopf \(R \)-algebra) and \((H, H_\mathfrak{F}^\circ) \) is a bialgebra \(\alpha \)-pairing (a Hopf \(\alpha \)-pairing).

Proof.

1. Let \(H \) be an \(R \)-bialgebra. Obviously \(H_\mathfrak{F}^\circ \subset H^\circ \) is an \(H \)-subbimodule under the regular left and the right \(H \)-actions (12) and so an \(R \)-coalgebra by Theorem 1.20. If \(f(I) = 0 \) and \(g(J) = 0 \) for \(I, J \in \mathfrak{F} \), then there exists by (25) some \(L \in \mathfrak{F} \), such that \(\Delta(L) \subset \text{Im}(\iota_I \otimes id_H) + \text{Im}(id_H \otimes \iota_J) \). Consequently \(\Delta^\circ(f \otimes g)(L) = (f \otimes g)(\Delta(L)) = 0 \), i.e. \(f \star g \in \text{An}(L) \subset H_\mathfrak{F}^\circ \). By (26) \(\varepsilon_H \in H_\mathfrak{F}^\circ \) and so \(H_\mathfrak{F}^\circ \subset H^* \) is an \(R \)-subcoalgebra. It is easy to see that \(\Delta^\circ : H_\mathfrak{F}^\circ \otimes_R H_\mathfrak{F}^\circ \to H_\mathfrak{F}^\circ \) and \(\varepsilon^\circ : R \to H_\mathfrak{F}^\circ \) are coalgebra morphisms, i.e. \(H_\mathfrak{F}^\circ \) is an \(R \)-bialgebra. If \(H \) is a Hopf \(R \)-algebra with Antipode \(S \), then it follows from (27) that \(S^\circ(H_\mathfrak{F}^\circ) \subseteq H_\mathfrak{F}^\circ \), hence \(H_\mathfrak{F}^\circ \) is a Hopf \(R \)-algebra with antipode \(S^\circ \).
2. See [32].

As a consequence of Lemma 4.9 and Proposition 4.11 we get

Corollary 4.12. Let R be Noetherian. If H is an α-bialgebra (respectively a Hopf α-algebra), then H° is an R-bialgebra (respectively a Hopf R-algebra). If H is cofinitary, then H° is an infinitesimal flat R-bialgebra (respectively Hopf R-algebra).

Proposition 4.13. Let H be an R-bialgebra, F be a quasi-admissible filter of R-cofinite H-ideals and consider H as a left linear topological R-algebra with the induced left linear topology $\Sigma(F)$. If R is an injective cogenerator, then the following are equivalent:

1. $\Sigma(F)$ is Hausdorff;
2. the canonical R-linear mapping $\lambda : H \to H^\circ_F$ is injective;
3. $H^\circ_F \subset H^*$ is dense;
4. $\sigma_{H^\circ_F} = \sigma_{H^*} = \sigma_{H^*}$.

Proof. By assumption H/I is R-cogenerated for every $I \in F$ (hence $I = \text{KeAn}(I)$ by [38, 28.1]) and so

$$0_A := \bigcap_{I \in F} I = \bigcap_{I \in F} \text{KeAn}(I) = \text{Ke}(\sum_{I \in F} \text{An}(I)) = \text{Ke}(H^\circ_F) = \text{Ker}(\lambda).$$

Since R is an injective cogenerator, the equivalence (2) \Leftrightarrow (3) follows from [2, Theorem 1.8 (2)]. By assumption \exists is quasi-admissible, hence $H^\circ_F \subset H^*$ is an R-subalgebra and the equivalence (3) \Leftrightarrow (4) follows by Lemma 1.2.

The proof of the following Proposition is along the lines of the proof of [5, Theorem 4.10]:

Proposition 4.14. Let H, K be R-bialgebras (Hopf R-algebras) with quasi-admissible filters $\mathfrak{F}_H, \mathfrak{F}_K$ and consider the canonical R-linear mapping $\delta : H^* \otimes_R K^* \to (H \otimes_R K)^*$ and the filter \mathfrak{F} of R-cofinite $H \otimes_R K$-ideals generated by $\mathfrak{F}_H \times \mathfrak{F}_K$.

1. If \mathfrak{F}_H and \mathfrak{F}_K are moreover cofinitary (i.e. admissible filters), then $(H \otimes_R K)^\circ_\mathfrak{F}$ is an R-bialgebra (respectively a Hopf R-algebra). If R is Noetherian, then δ induces an isomorphism of R-bialgebras (respectively Hopf R-algebras) $H^\circ_{\mathfrak{F}_H} \otimes_R K^\circ_{\mathfrak{F}_K} \simeq (H \otimes_R K)^\circ_\mathfrak{F}$.

2. Let R be Noetherian. If \mathfrak{F}_K is an α-filter and \mathfrak{F}_H is cofinitary, then $(H \otimes_R K)^\circ_\mathfrak{F}$ is an R-bialgebra (a Hopf R-algebra) and δ induces an isomorphism of R-bialgebras (Hopf R-algebras) $H^\circ_{\mathfrak{F}_H} \otimes_R K^\circ_{\mathfrak{F}_K} \simeq (H \otimes_R K)^\circ_\mathfrak{F}$.

Definition 4.15. The ring R is called hereditary, if every ideal $I \triangleleft R$ is projective.
Theorem 4.16. Let R be Noetherian.

1. If H is an α-bialgebra (respectively a Hopf α-algebra), then $(H, H^\circ) \in \mathcal{P}_\text{Big}^\alpha$ (respectively $(H, H^\circ) \in \mathcal{P}_{\text{Hopf}}^\alpha$). If moreover H is commutative (cocommutative), then H° is cocommutative (commutative).

2. If R is hereditary, then there are self-adjoint contravariant functors

\[
\begin{align*}
(-)\circ &: \mathbf{Big}_R \to \mathbf{Big}_R, \\
&: \mathbf{Big}_R \to \mathbf{CC} \mathbf{Big}_R, \\
&: \mathbf{CC} \mathbf{Big}_R \to \mathbf{Big}_R,
\end{align*}
\]

Proof. 1. If H is an α-bialgebra (a Hopf α-algebra), then H° is by corollary 4.12 an R-bialgebra (a Hopf R-algebra) and $(H, H^\circ) \in \mathcal{P}_\text{Big}^\alpha$ (respectively $(H, H^\circ) \in \mathcal{P}_{\text{Hopf}}^\alpha$). The duality between the commutativity and the cocommutativity follows now from [3, Lemma 2.2].

2. Let R be hereditary. Then for every R-bialgebra (respectively Hopf R-algebra) H the continuous dual R-module $H^\circ \subset R^H$ is pure, [6, Proposition 2.11], hence every R-bialgebra (respectively Hopf R-algebra) is an α-bialgebra (respectively a Hopf α-algebra) and H° is an R-bialgebra (respectively a Hopf R-algebra). Moreover

$$\Upsilon_{H,K} : \mathbf{Big}_R(H, K^\circ) \to \mathbf{Big}_R(K, H^\circ), \ f \mapsto [k \mapsto f(-)(k)]$$

is an isomorphism with inverse

$$\Psi_{H,K} : \mathbf{Big}_R(K, H^\circ) \to \mathbf{Big}_R(H, K^\circ), \ g \mapsto [h \mapsto g(-)(h)].$$

It is easy to show that $\Upsilon_{H,K}$ and $\Psi_{H,K}$ are functorial in H and K.■

5 Coinduction functors in $\mathcal{P}_{\text{Hopf}}^\alpha$

In this section we consider the coinduction functors for the category of Hopf α-pairings respectively bialgebra α-pairings that unify several important situations (e.g. [15], [8], [24, 3.2]).

Definition 5.1. Let H be an R-bialgebra. For every left H-module M we call the R-submodule

$$M^H := \{ m \in M \mid hm = \varepsilon(h)m \text{ for all } h \in H \}$$

the submodule of H-invariants of M. For every right H-comodule M we call

$$M^{coH} := \{ m \in M \mid \varrho_M(m) = m \otimes 1_H \}$$

the submodule of H-coinvariants of M. 27
5.2. Let H be an R-bialgebra. If M, N are right (respectively left) H-modules, then $M \otimes R N$ is a right (respectively a left) H-module with the canonical H-module structure

$$(m \otimes n)h := \sum mh_1 \otimes nh_2 \quad \text{(respectively $h(m \otimes n) := \sum h_1m \otimes h_2n$).} \quad (28)$$

In particular the ground ring R is an H-bimodule through

$h \mapsto r := \varepsilon(h)r = r \mapsto h$ for all $h \in H$ and $r \in R$.

5.3. Let K be an R-bialgebra. If M, N are right (respectively left) K-comodules, then $M \otimes R N$ is a right (respectively a left) K-comodule through the canonical right (respectively left) K-comodule structure

$m \otimes n \mapsto \sum m_{<0>} \otimes n_{<0>} \otimes m_{<1>} n_{<1>}$ (resp. $m \otimes n \mapsto \sum m_{<-1>} n_{<-1>} \otimes m_{<0>} n_{<0>}$). \quad (29)

In particular the ground ring R is a K-bicomodule throughout

$R \to R \otimes R K, \ r \mapsto r \otimes 1_K$ and $R \to K \otimes R R, \ r \mapsto 1_K \otimes r$.

Lemma 5.4. Let $P = (H, K) \in \mathcal{P}_{\text{Big}}, (M, \varrho_M)$ be a right K-comodule and consider M with the induced left H-module structure. If $\alpha^P_M : M \otimes R K \to \text{Hom}_R(H, M)$ is injective, then $M^H = M^{\text{co}K}$.

Proof. We have for all $m \in M^{\text{co}K}$ and $h \in H$:

$$hm = m \prec h, 1_K \succ = m \varepsilon_H(h) \text{ for every } h \in H,$$

i.e. $m \in M^H$. On the other hand, we have for all $m \in M^H$ and $h \in H$:

$$\alpha^P_M(\sum m_{<0>} \otimes m_{<1>})(h) = \sum m_{<0>} \prec h, m_{<1>} \succ = hm = m \varepsilon_H(h) = m \prec h, 1_K \succ = \alpha^P_M(m \otimes 1_K)(h).$$

If α^P_M is injective, then $\varrho_M(m) = \sum m_{<0>} \otimes m_{<1>} = m \otimes 1_K$, i.e. $m \in M^{\text{co}K}$ and consequently $M^H = M^{\text{co}K}$. \blacksquare

Lemma 5.5. Let H be a Hopf R-algebra and $M, N \in M$. Then $\text{Hom}_R(M, N)$ is a left H-module through

$$(hf)(m) = \sum h_1 f(S_H(h_2)m) \text{ for all } h \in H, m \in M \text{ and } f \in \text{Hom}_R(M, N). \quad (30)$$

Moreover $\text{Hom}_R(M, N) = \text{Hom}_R(M, N)^H$. 28
Proof. For all \(h, \tilde{h} \in H, f \in \text{Hom}_R(M, N) \) and \(m \in M \) we have

\[
((h\tilde{h})f)(m) := \sum (h\tilde{h})_1 f(S_H((h\tilde{h})_2)m) = \sum h\tilde{h}_1 f(S_H(h_2\tilde{h}_2)m) = \sum h\tilde{h}_1 f(S_H(h_2)m) = \sum h((\tilde{h}f)(S_H(h_2)m))
\]

i.e. \(\text{Hom}_R(M, N) \) is a left \(H \)-module with the left \(H \)-action (30).

For all \(f \in \text{Hom}_{H^-}(M, N) \), \(h \in H \) and \(m \in M \) we have

\[
(hf)(m) := \sum h_1 f(S_H(h_2)m) = \sum h_1 S_H(h_2)f(m) = (\varepsilon(h)1_H)f(m) = (\varepsilon(h)f)(m),
\]

i.e. \(f \in \text{Hom}_R(M, N)^H \). On the other hand, if \(g \in \text{Hom}_R(M, N)^H \), then we have for all \(h \in H \) and \(m \in M \):

\[
g(hm) = g(\sum \varepsilon(h_1)h_{2m}) = \sum \varepsilon(h_1)g(h_{2m}) = \sum h_{11}(g(S_H(h_{12})h_{2m})) = \sum h_1 g(\varepsilon(h_2)1_Hm) = (\sum h_1 \varepsilon(h_2))g(m) = hg(m),
\]

i.e. \(g \in \text{Hom}_{H^-}(M, N) \).\[\blacksquare\]

The following lemma generalizes the corresponding results [24, Page 165] and [23, Page 103]:

Lemma 5.6. Let \(P = (H, K), Q = (Y, Z) \in \mathcal{P}_{H}^{n}_{\text{Hopf}}, (\xi, \theta) : (Y, Z) \to (H, K) \) be a morphism in \(\mathcal{P}_{R}^{n}_{\text{Hopf}} \) and \(N \in H \text{M} \).

1. \(\text{Hom}_R(Y, N) \) is a left \(H \)-module through

\[
(hf)(y) = \sum h_1 f(S_Y(\xi(h_2)y)) \text{ for all } h, f \in \text{Hom}_R(Y, N) \text{ and } y \in Y. \quad (31)
\]

2. If we consider \(\text{Hom}_R(Y, N) \) with the canonical left \(Y \)-module structure, then

\[
h(yf) = y(hf) \text{ for all } h \in H, y \in Y \text{ and } f \in \text{Hom}_R(Y, N).
\]

So \(\text{Hom}_R(Y, N)^H \subseteq \text{Hom}_R(Y, N) \) is a left \(Y \)-submodule.

3. If \(_HN \) is \(K \)-rational, then \(N \otimes_R Z \) is a right \(K \)-comodule through

\[
\psi : N \otimes_R Z \to N \otimes_R Z \otimes_R K, \quad n \otimes z \mapsto \sum n_{<0>} \otimes z_2 \otimes n_{<1>} S_K(\theta(z_1)). \quad (32)
\]

Proof. 1. By assumption \(\xi : H \to Y \) is a Hopf \(R \)-algebra morphism and so \(\xi(S_H(h)) = S_Y(\xi(h)) \) for every \(h \in H \). If we consider the left \(H \)-module \(Y_\xi \), then the left \(H \)-action on \(\text{Hom}_R(Y_\xi, N) \) in (30) coincides with that in (31), hence \(\text{Hom}_R(Y, N) \) is a left \(H \)-module by Lemma 5.5.
2. Trivial.

3. Z is obviously a right K-comodule through

$$\varrho_Z : Z \to Z \otimes_R K, \ z \mapsto \sum z_2 \otimes S_K(\theta(z_1))$$

for every $z \in Z$.

By assumption and Theorem 1.14 N is a right K-comodule and so $(N \otimes_R Z, \psi)$ is, by 5.3, a right K-comodule.\blacksquare

5.7. Let $P = (H, K), Q = (Z, Y) \in \mathcal{P}_{\text{Hopf}}^\alpha$ and $(\xi, \theta) : (Y, Z) \to (H, K)$ be a morphism in $\mathcal{P}_{\text{Hopf}}^\alpha$. For every $N \in \text{Rat}^K(H, \mathcal{M})$ consider $N \otimes_R Z$ with the right K-comodule structure (32). If we consider the coinduction functor

$$\text{Coind}_P^Q(-) : \text{Rat}^K(H, \mathcal{M}) \to \text{Rat}^Z(Y, \mathcal{M}), \ N \mapsto \text{HOM}_{H \rightarrow}(Y, N) := \text{Rat}^Z(Y(\text{Hom}_{H \rightarrow}(Y, N)))$$

then we have functorial isomorphisms

$$(N \otimes_R Z)^{coK} \simeq (N \otimes_R Z)^H \quad \text{(Lemma 5.4)};$$

$$\simeq \text{HOM}_{R}(Y, N)^H \quad \text{(3.8)};$$

$$= \text{Rat}^Z(Y(\text{Hom}_{R}(Y, N)^H))$$

$$= \text{HOM}_{H \rightarrow}(Y, N) := \text{Coind}_P^Q(N) \quad \text{(Lemma 5.5)};$$

$$\simeq N \square_K Z \quad \text{(Theorem 3.7)};$$

$$\simeq \text{Hom}_{H \rightarrow}(H, N \otimes_R Z). \quad \text{(Proposition 2.8)}.$$

Corollary 5.8. Let $P = (H, K), Q = (Y, Z) \in \mathcal{P}_{\text{Hopf}}^\alpha$ and $(\xi, \theta) : (Y, Z) \to (H, K)$ be a morphism in $\mathcal{P}_{\text{Hopf}}^\alpha$. Let $M \in \mathcal{M}^Z, N \in \mathcal{M}^K$ and consider $M^\theta \otimes_R N$ with the canonical right K-comodule structure. If M_R is flat, then there is an isomorphism of Z-comodules

$$\text{Coind}_P^Q(M^\theta \otimes_R N) \simeq (M^\theta \otimes_R N) \square_K Z \simeq M \otimes_R (N \square_K Z) \simeq M \otimes_R \text{Coind}_P^Q(N).$$

6 Classical Duality

Over a commutative base field one has a duality between the groups and the commutative Hopf algebras (e.g. [28, 9.3], [30]). In this section we show that such a duality is valid over hereditary Noetherian ground rings.

Definition 6.1. Let (C, Δ, ε) be an R-coalgebra. With

$$\mathcal{G}(C) := \{0 \neq x \in C | \Delta(x) = x \otimes x \text{ and } \varepsilon(x) = 1_R\}$$

we denote the set of group-like elements of C. If $x, y \in \mathcal{G}(C)$, then we denote with

$$P_{(x,y)}(c) := \{c \in C | \Delta(c) = x \otimes c + c \otimes y\}$$

the set of (x, y)-primitive elements in C. For an R-bialgebra B we call the $(1_B, 1_B)$-primitive elements of B primitive elements.
The following result is easy to prove

Lemma 6.2. Let C be an R-coalgebra.

1. If D is an R-coalgebra and $f : D \to C$ is an R-coalgebra morphism, then $f(\mathcal{G}(D)) \subseteq \mathcal{G}(C)$.

2. If $\{0_R, 1_R\}$ are the only idempotents in R (e.g. R is a domain) and $\Delta_C(x) = x \otimes x$ for some $0 \neq x \in C$, then $\varepsilon_C(x) = 1_R$, i.e. $x \in \mathcal{G}(C)$.

3. If $x, y \in \mathcal{G}(C)$ and $c \in P_{(x,y)}(C)$, then $\varepsilon_C(c) = 0$.

4. For every R-coalgebra C we have a bijection

$$\text{Cog}_{R,R}(R,C) \leftrightarrow \mathcal{G}(C), f \mapsto f(1_R) \text{ and } x \mapsto [1_R \mapsto x] \forall f \in \text{Cog}_{R,R}(R,C), x \in \mathcal{G}(C).$$

5. If R is Noetherian and A is an α-algebra, then $\text{Alg}_{R,R}(A,R) = \mathcal{G}(A^\circ) = \text{Cog}_{R,R}(R,A^\circ)$.

6.3. For every set G the free R-module RG becomes a cocommutative R-coalgebra $K(G) := (RG, \Delta_g, \varepsilon_g)$, where the comultiplication Δ_g and the counit ε_g are given by the linear extension of their images on the elements of G:

$$\Delta_g(x) = x \otimes x \text{ and } \varepsilon_g(x) = 1 \text{ for every } x \in G.$$

If (G, μ_G, e_G) is a monoid, then μ_G respectively e_G induce on RG a multiplication μ respectively a unity η, such that $\mathcal{K}(G) = (RG, \mu, \eta, \Delta_g, \varepsilon_g)$ is an R-bialgebra. If G is moreover a group, then RG is a Hopf R-algebra with antipode defined on the basis elements as $S_g : RG \to RG, x \mapsto x^{-1}$ for every $x \in G$. On the other hand, let H be an R-bialgebra. Then $\Delta_H(1_H) = 1_H \otimes 1_H$ and we have for all $x, y \in \mathcal{G}(H)$:

$$\Delta_H(xy) = \Delta_H(x)\Delta_H(y) = (x \otimes x)(y \otimes y) = xy \otimes xy,$$

i.e. xy is a group-like element in H and $\mathcal{G}(H)$ is a monoid. If H is moreover a Hopf R-algebra and $x \in \mathcal{G}(H)$, then $x^{-1} := S_H(x) \in \mathcal{G}(H)$, i.e. $\mathcal{G}(H)$ is a group.

Proposition 6.4. ([19]) Denote with Ens, Mon and Gr the categories of sets, monoids and groups respectively. Then we have adjoint pairs of covariant functors $(\mathcal{K}(\cdot), \mathcal{G}(\cdot))$:

$$\begin{align*}
\mathcal{K}(-) : & \quad \text{Ens} \to \text{CCog}_{R}, & \mathcal{G}(-) : & \quad \text{CCog}_{R} \to \text{Ens} \\
: & \quad \text{Mon} \to \text{CCBialg}_{R}, & : & \quad \text{CCBialg}_{R} \to \text{Mon} \\
: & \quad \text{Gr} \to \text{CCHopf}_{R}, & : & \quad \text{CCHopf}_{R} \to \text{Gr}.
\end{align*}$$

If R is moreover an integral domain, then we have a natural isomorphism $\mathcal{G}(\cdot) \circ \mathcal{K}(\cdot) \simeq \text{id}$.

31
Representative mappings

6.5. Let R be Noetherian, (G, μ, e) be a monoid (respectively a group) and denote with

$$\mathcal{R}(G) := \{ f \in R^G \mid GfG \text{ is finitely generated in } M_R \} \cong (RG)^\circ$$

the set of representative mappings on G. We call G an α-monoid (respectively an α-group), if $(RG, \mathcal{R}(G))$ is an α-pairing, or equivalently if $\mathcal{R}(G) \subset R^G$ is pure.

As a consequence of Lemma 1.19 and Corollary 4.12 we get

Corollary 6.6. Let R be Noetherian. If G is an α-monoid, then $\mathcal{R}(G)$ is an R-bialgebra. If G is moreover an α-group, then $\mathcal{R}(G)$ is a Hopf R-algebra with antipode

$$S: \mathcal{R}(G) \to \mathcal{R}(G), \quad S(f)(x) = f(x^{-1}) \text{ for } f \in \mathcal{R}(G) \text{ and } x \in G.$$

Notation. Let G be a monoid. The category of unital left (respectively right) G-modules is denoted by $G\mathcal{M}$ (respectively \mathcal{M}_G).

As a consequence of Theorem 1.20 we get

Corollary 6.7. Let R be Noetherian, G be a monoid and $C \subseteq \mathcal{R}(G)$ be a G-subbimodule. If $P = (RG, C)$ is an α-pairing, then C is an R-coalgebra and we have category isomorphisms

$$\mathcal{M}^C \cong \text{Rat}^C(G\mathcal{M}) = \sigma[RG, C] \quad \& \quad \mathcal{M}_C \cong \text{Rat}(\mathcal{M}_G) = \sigma[RG, C].$$

6.8. Let G be a monoid. A left (respectively right) G-module will be called locally finite, if $(RG)m$ (respectively $m(RG)$) is finitely generated in M_R for every $m \in M$. For every monoid G denote with $\text{Loc}(G\mathcal{M}) \subseteq G\mathcal{M}$ (respectively $\text{Loc}(\mathcal{M}_G) \subseteq \mathcal{M}_G$) the full subcategory of locally finite left (respectively right) G-modules.

As a consequence of [3, Proposition 3.23] we get

Proposition 6.9. Let R be Noetherian and G be a monoid.

1. Every $\mathcal{R}(G)$-subgenerated left (respectively right) G-module is locally finite.

2. If RG is cofinitely R-cogenerated, then $\sigma[G\mathcal{R}(G)] = \text{Loc}(G\mathcal{M})$ and $\sigma[\mathcal{R}(G)_G] = \text{Loc}(\mathcal{M}_G)$. If G is moreover an α-monoid, then we have category isomorphisms

$$\mathcal{M}^{\mathcal{R}(G)} \cong \text{Rat}^{\mathcal{R}(G)}(G\mathcal{M}) = \sigma[G\mathcal{R}(G)] = \text{Loc}(G\mathcal{M}),$$

$$\mathcal{M}^{\mathcal{R}(G)} \mathcal{M} \cong \text{Rat}^{\mathcal{R}(G)}(\mathcal{M}_G) = \sigma[\mathcal{R}(G)_G] = \text{Loc}(\mathcal{M}_G).$$

The following result generalizes the classical duality between monoids (groups) and commutative R-bialgebras (Hopf R-algebras), e.g. [28, 9.3], from the case of base fields to the case of arbitrary hereditary Noetherian rings.
Theorem 6.10. If R is Noetherian and hereditary, then there is a duality between monoids (respectively groups) and commutative R-bialgebras (respectively Hopf R-algebras) through the right-adjoint contravariant functors

$$
\mathcal{R}(-) : \text{Mon} \to \text{CBig}_R, \quad \text{AlgL}_R(-, R) : \text{CBig}_R \to \text{Mon},
$$

$$
: \text{Gr} \to \text{CHopf}_R, \quad \text{CHopf}_R \to \text{Gr}.
$$

Proof. Let R be Noetherian and hereditary. Then for every R-algebra A, the character module $A^\circ \subset R^A$ is pure (e.g. [6, Proposition 2.11]). If G is a monoid (respectively a group), then $K(G) = (RG, \mu, \eta, \Delta_g, \varepsilon_g)$ is by 6.3 a cocommutative R-bialgebra (respectively Hopf R-algebra) and so $\mathcal{R}(G) = (RG)^\circ$ is by Theorem 4.16 a commutative R-bialgebra (respectively Hopf R-algebra). If H is an R-bialgebra (respectively a Hopf R-algebra), then H° is by Theorem 4.16 an R-bialgebra (respectively a Hopf R-algebra), hence $\text{AlgL}_R(H, R) = G(H^\circ)$ is a monoid (respectively a group). It is easy to see that we have isomorphisms of functors

$$
\mathcal{R}(-) \simeq (-)^\circ \circ K(-) \text{ and } \text{AlgL}_R(-, R) \simeq G(-) \circ (-)^\circ.
$$

The result follows now from Theorems 4.16 and 6.4. ■

7 Affine group schemes

Affine groups schemes over arbitrary commutative ground rings were presented by J. Jantzen [21]. If \mathfrak{G} is an affine group scheme with coordinate ring $R(\mathfrak{G})$, then the category of left \mathfrak{G}-modules $\mathfrak{g}_*\mathcal{M}$ and the category of right $R(\mathfrak{G})$-comodules $\mathcal{M}^{\mathfrak{g}}(\mathfrak{G})$ are equivalent. If H is an R-bialgebra (respectively a Hopf R-algebra), then H° is by Theorem 4.16 an R-bialgebra (respectively a Hopf R-algebra), hence $\text{AlgL}_R(H, R) = G(H^\circ)$ is a monoid (respectively a group). It is easy to see that we have isomorphisms of functors

$$
\mathcal{R}(-) \simeq (-)^\circ \circ K(-) \text{ and } \text{AlgL}_R(-, R) \simeq G(-) \circ (-)^\circ.
$$

The result follows now from Theorems 4.16 and 6.4. ■

7.1. With an R-functor (respectively a monoid R-functor, a group R-functor) we understand a functor from the category of commutative R-algebras CAlg_R to Ens (respectively to Mon, Gr). An affine scheme (respectively an affine monoid scheme, an affine group scheme) over R is a representable R-functor (respectively monoid R-functor, group R-functor)

$$
\mathfrak{G} = \text{AlgL}_R(H, -) : \text{CAlg}_R \to \text{Ens},
$$

$$
: \text{CBig}_R \to \text{Mon}, \quad \text{CHopf}_R \to \text{Gr}.
$$

The commutative R-algebra H is called the coordinate ring of \mathfrak{G} and is denoted with $R(\mathfrak{G})$. With Aff_R (respectively AffMon_R, AffGr_R) we denote the category of affine schemes (respectively affine monoid schemes, affine group schemes) with morphisms the natural transformations.
7.2. **G-modules.** ([21, 2.7]) Let $G = \text{Alg}_R(H, -)$ be an affine group scheme. An R-module M is said to be a left (respectively a right) G-module, if there is a $G(A)$ module structure on $M \otimes_R A$ (respectively on $A \otimes_R M$), functorial in A, for every commutative R-algebra A. The category of left (respectively right) G-modules and G-linear mappings will be denoted by $\mathcal{G}M$ (respectively by \mathcal{M}_G).

7.3. **Yoneda Lemma.** ([38, 44.3]) Let \mathcal{C} be a category, $F : \mathcal{C} \to \text{Ens}$ be a covariant functor and denote for $A \in \mathcal{C}$ the class of functorial morphisms between $\text{Mor}_\mathcal{C}(A, -)$ and F with $\textbf{Nat}((\text{Mor}_\mathcal{C}(A, -), F))$. Then the following **Yoneda-mapping** is bijective:

$$\text{Nat}((\text{Mor}_\mathcal{C}(A, -), F)) \to F(A), \phi \mapsto \phi_A(id_A).$$

With the help of Yoneda-Lemma (Compare [21, Chapter 2]) one obtains:

Proposition 7.4. Let R be an arbitrary commutative ring.

1. If $G = \text{Alg}_R(H, -)$ is an affine monoid scheme (respectively an affine group scheme), then the coordinate ring $H = R(G)$ is an R-bialgebra (respectively a Hopf R-algebra) and we have equivalences of categories

$$\textbf{AffMon}_R \approx (\text{CBig}_R)^{\text{op}} \quad \text{and} \quad \textbf{AffGr}_R \approx (\text{CHopf}_R)^{\text{op}}.$$

2. For every affine group scheme G with coordinate ring $R(G)$, the category of left G-modules $\mathcal{G}M$ and the category of right $R(G)$-comodules $\mathcal{M}_{R(G)}$ are equivalent.

7.5. Let G be an affine group scheme with coordinate ring $R(G)$, $\omega := \text{Ker}(\varepsilon_R(G))$, $\mathfrak{T}_\omega := \{\omega^n | n \geq 1\}$ and consider $R(G)^*$ with the finite topology and $R(G)$ with the induced left linear topology $\Sigma(\mathfrak{T}_\omega)$. By [21, 7.7]

$$hy(G) := \{f \in R(G)^* | f(\omega^n) = 0 \text{ for some } n \geq 1\}$$

is an R-subalgebra of $R(G)^*$, the so called **hyperalgebra** of G, and we get a measuring R-pairing $(hy(G), R(G))$. If $hy(G) \subset R(G)^*$ is dense, then we call G connected. If $R(G)/\omega^n$ is finitely generated projective in \mathcal{M}_R for every $n \geq 1$, then G is called **infinitesimal flat**.

We say G satisfies the α-condition (or G is an affine α-group scheme), if $(hy(G), R(G))$ satisfies the α-condition. We call G **locally projective**, if $R(G)$ is locally projective as an R-module.

Theorem 7.6. Let G be an affine group scheme with coordinate ring $R(G)$.

1. If G is locally projective, then there are equivalences of categories

$$\mathcal{G}M \approx \mathcal{M}_{R(G)} \approx \text{Rat}_{R(G)}(\mathcal{M}) = \sigma[R(G), R(G)].$$
2. G is an affine α-group scheme if and only if G is locally projective and connected. If these equivalent conditions are satisfied, then we have equivalences of categories

$$e_M \cong M^{R(G)} \cong \text{Rat}^{R(G)}(R^{\ast}(G)) = \sigma[R(G), R(G)]$$

$$\cong \text{Rat}^{R(G)}(hy(G), M) = \sigma[hy(G), R(G)].$$

3. The following are equivalent:

(i) G is connected (i.e. $hy(G) \subset R(G)^\ast$ is dense);

(ii) $\sigma[hy(G), R(G)] = \sigma[R(G), R(G)].$

If R is an injective cogenerator, then (i), (ii) are moreover equivalent to:

(iii) $R(G) \hookrightarrow hy(G)^\ast$;

(iv) $\mathcal{T}(G_{\omega})$ is Hausdorff.

Proof. 1. The equivalence $e_M \cong M^{R(G)}$ follows from Proposition 7.4. The remaining category isomorphisms follow from Theorem 1.14.

2. Follows from Theorem 1.14.

3. $hy(G) \subset R(G)^\ast$ is an R-subalgebra and so the equivalence (i) \Leftrightarrow (ii) follows by Lemma 1.2.

Let R be an injective cogenerator.

The equivalence (i) \Leftrightarrow (iii) follows from [2, Theorem 1.8 (2)]. Consider now the measuring R-pairings $G := (hy(G), R(G)).$ Then we have

$$0_{R(G)} = \bigcap_{n=1}^{\infty} \omega^n = \bigcap_{n=1}^{\infty} \text{KeAn}(\omega^n) = \text{Ke}(\sum_{n=1}^{\infty} \text{An}(\omega^n)) = \text{Ke}(hy(G)) = \text{Ker}(\chi_G).$$

Consequently $\mathcal{T}(G_{\omega})$ is Hausdorff if and only if $R(G)^\ast \hookrightarrow hy(G)^\ast$ and we are done.\[\blacksquare\]

Coinduction functors for affine α-schemes

7.7. Let G, \mathfrak{H} be affine α-group schemes and $\varphi : \mathfrak{H} \to G$ be a morphism in $\text{AffGr}_R.$ Then φ induces a Hopf R-algebra morphism $\varphi^\# : R(G) \to R(\mathfrak{H})$ (called a comorphism) and we get a morphism in \mathcal{P}_m \mathcal{P}_m

$$(\varphi^\#, \varphi^\#) : (R(G)^\ast, R(G)) \to (R(\mathfrak{H})^\ast, R(\mathfrak{H})).$$

By Theorem 7.6 $\mathcal{G}_{\mathfrak{H}} \cong \sigma[R(\mathfrak{H})^\ast, R(\mathfrak{H})], e_M \cong \sigma[R(G), R(G)]$ and so we have the coinduction functor

$$\text{Coind}_{\mathfrak{H}}^G(-) := \text{Rat}^{R(G)}(\text{Hom}_{R(\mathfrak{H})}\ast(-, R(G)^\ast, -) : \mathcal{G}_{\mathfrak{H}} \to e_M.$$
Lemma 7.8. ([30, Lemma 6.1.1, Corollary 6.1.2]) Let $I \triangleleft A$ be an ideal. If $A I$ (respectively $I A$) is finitely generated, then $A I^n$ (respectively $I^n A$) is finitely generated for every $n \geq 1$. If moreover $I \subset A$ is R-cofinite, then $I^n \subset A$ is R-cofinite.

Corollary 7.9. Let \mathfrak{G} be an affine monoid scheme (respectively an affine group scheme) with coordinate ring $R(\mathfrak{G})$.

1. If R is Noetherian, $R(\mathfrak{G})_\omega$ is finitely generated and $hy(\mathfrak{G}) \subset R^{R(\mathfrak{G})}$ is pure, then $hy(\mathfrak{G})$ is an R-bialgebra (respectively a Hopf R-algebra) and $(R(\mathfrak{G}), hy(\mathfrak{G})) \in \mathcal{P}_\text{Big}$ (respectively $(R(\mathfrak{G}), hy(\mathfrak{G})) \in \mathcal{P}_\text{Hopf}$).

2. If \mathfrak{G} is infinitesimal flat, then $hy(\mathfrak{G})$ is an infinitesimal flat R-bialgebra (respectively Hopf R-algebra) and $(R(\mathfrak{G}), hy(\mathfrak{G})) \in \mathcal{P}_\text{Big}$ (respectively $(R(\mathfrak{G}), hy(\mathfrak{G})) \in \mathcal{P}_\text{Hopf}$).

Proof. 1. If $R(\mathfrak{G})_\omega$ is finitely generated, then $\mathfrak{G}_\omega \subset K_{R(\mathfrak{G})}$ by Lemma 7.8 and so $hy(\mathfrak{G}) \subset R(\mathfrak{G})_\omega$ is an $R(\mathfrak{G})$-submodule. The result follows then from Proposition 4.11 (1).

2. The result follows from [28, Lemma 9.2.1] and Proposition 4.11 (2). □

Acknowledgment. This paper (up to a few changes) includes parts of my doctoral thesis at the Heinrich-Heine Universität, Düsseldorf (Germany). I am so grateful to my advisor Prof. Robert Wisbauer for his wonderful supervision and the continuous encouragement and support. The author thanks also the referee for his or her useful suggestions.

References

[1] E. Abe, Hopf Algebras, Cambridge Tracts in Mathematics 74, Cambridge University Press (1980).

[2] J.Y. Abuhlail, On the linear weak topology and dual pairings over rings, preprint: math.RA/0306356.

[3] J.Y. Abuhlail, On coreflexive coalgebras and comodules over commutative rings, in press, to appear in J. Pure Appl. Algebra.

[4] J.Y. Abuhlail, Dualitätstheoreme für Hopf-Algebren über Ringen, Ph.D. Dissertation, Heinrich-Heine Universität, Düsseldorf-Germany (2001). http://www.ulb.uni-duesseldorf.de/diss/mathnat/2001/abuhlail.html

[5] J.Y. Abuhlail, J. Gómez-Torrecillas and F. Lobillo, Duality and rational modules in Hopf algebras over commutative rings, J. Algebra 240, 165-184 (2001).

[6] J.Y. Abuhlail, J. Gómez-Torrecillas and R. Wisbauer, Dual coalgebras of algebras over commutative rings, J. Pure Appl. Algebra 153(2), 107-120 (2000).
[7] K. Al-Takhman, Äquivalenzen zwischen Komodul-Kategorien von Koalgebren über Ringen, Dissertation, Heinrich-Heine Universität, Düsseldorf-Germany (1999).

[8] H. Andersen, P. Polo and K. Wen, Representation of quantum algebras, Invent. Math. 104, 1-59 (1991).

[9] L. Abrams and C. Weibel, Cotensor products for modules, Trans. Am. Math. Soc. 354(6), 2173-2185 (2002).

[10] J. Berning, Beziehungen zwischen links-linearen Topologien und Modulkategorien, Dissertation, Heinrich-Heine Universität, Düsseldorf - Germany (1994).

[11] N. Bourbaki, Elements of Mathematics, Algebra I, Chapters 1-3, Hermann (1974).

[12] T. Brzeziński and R. Wisbauer, Corings and Comodules, Lond. Math. Soc. Lec. Not. Ser. 309, Cambridge University Press (2003).

[13] C. Cai and H. Chen, Coactions, Smash products and Hopf modules, J. Algebra 167, 85-89 (1994).

[14] Y. Doi, Homological coalgebra, J. Math. Soc. Japan 33, 31-50 (1981).

[15] S. Donkin, Hopf complements and injective comodules for algebraic groups. Tensor products and filtrations, Proc. Lond. Math. Soc. (3) 40, 298-319 (1980).

[16] N. Reshetikhin, L. Takhtadzhyan and L. Faddeev, Quantization of Lie groups and Lie algebras. Leningrad Math. J. 1, 193-225 (1990).

[17] G. Garfinkel, Universally torsionless and trace modules, J. Amer. Math. Soc. 215, 119-144 (1976).

[18] L. Grünenfelder and R. Paré, Families parametrized by coalgebras, J. Algebra 107, 316-375 (1987).

[19] L. Grünenfelder, Über die Struktur von Hopf-Algebren, Dissertation, Eidgenössische Technische Hochschule, Zürich (1969).

[20] F. Guzman, Cointegration and relative cohomology for comodules, Dissertation, Syracuse University USA (1985).

[21] J. Jantzen, Representations of algebraic groups, Pure and Applied Mathematics 131, Boston: Academic Press (1987).

[22] R. Larson, Topological Hopf algebras and braided monoidal categories, Appl. Categ. Struct. 6, 139-150 (1998).

[23] Z. Lin, A Mackey decomposition theorem and cohomology for quantum groups at roots of 1, J. Algebra 166, 100-129 (1994).
[24] Z. Lin, Coinduced representations of Hopf algebras: applications to quantum groups at roots of 1, J. Algebra 154, 152-187 (1993).

[25] S. Majid, Quantum groups, Cambridge University Press (1995).

[26] S. Majid, More examples of bicrossproduct and double cross product Hopf algebras, Isr. J. Math. 72, 133-148 (1990).

[27] J. Milnor and J. Moore, On the structure of Hopf algebras, Ann. Math. 81, 211-264 (1965).

[28] S. Montgomery, Hopf algebras and their coactions on rings, Reg. Conf. Series in Math. 82, AMS (1993).

[29] H.-J. Schneider, Principal homogenous spaces for arbitrary Hopf algebras, Isr. J. Math., 72, 167-195 (1990).

[30] M. Sweedler, Hopf Algebras, Benjamin, New York (1969).

[31] M. Takeuchi, q-Representations of quantum groups, Canad. Math. Soc., Conf. Proc. 16, 347-385 (1995).

[32] M. Takeuchi, The quantum hyperalgebras of Sl_q(2), Algebraic groups and their generalizations: quantum and infinite-dimensional methods, W. Haboush et al. (ed.), Providence, RI: AMS. Proc. Symp. Pure Math. 56(II), 121-134 (1994).

[33] M. Takeuchi, Some topics in GL_q(n), J. Algebra 147, 379-410 (1992).

[34] M. Takeuchi, Matched pairs of groups and bismash products of Hopf algebras, Commun. Algebra 9, 841-882 (1981).

[35] M. Takeuchi, The #-product of group extensions applied to Long’s theory of dimodule algebras, Algebra Berichte 34 (1977).

[36] R. Wisbauer, On the category of comodules over corings, S. Elaydi et al. (ed.), Proceedings of the 3rd international Palestinian conference on mathematics and mathematics education, Bethlehem, Palestine, August 9-12, 2000. Singapore: World Scientific. 325-336 (2002).

[37] R. Wisbauer, Modules and Algebras : Bimodule Structure and Group Action on Algebras, Pitman Monographs and Surveys in Pure and Applied Mathematics 81, Addison Wesely Longman Limited (1996).

[38] R. Wisbauer, Foundations of Module and ring Theory, Gordon and Breach, Reading (1991).

[39] B. Zimmermann-Huisgen, Pure submodules of direct products of free modules, Math. Ann. 224, 233-245 (1976).