This article can be cited before page numbers have been issued, to do this please use: L. Dang, X. Gao, Y. Lin and G. Jin, Chem. Sci., 2020, DOI: 10.1039/C9SC05796J.

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
s-Block Metal Ions Induce Structural Transformations Between Figure-Eight and Double Trefoil Knots

Li-Long Dang, Xiang Gao, Yue-Jian Lin, and Guo-Xin Jin*

The formation of two types of heterobimetallic molecular knots, double trefoil (+3, −3) and trefoil knots, induced by s-block metal ions, is presented. Coordination of K⁺, Ca²⁺, Sr²⁺ or Ba²⁺ ions with amide groups plays a crucial role in the formation of these molecular knots. Remarkably, the reversible topological transformation between a figure-eight knot and double trefoil or trefoil knots can be induced by coordination of s-block metal ions to amide groups. X-ray crystallographic data and NMR experiments support the structural assignments.

Introduction

Molecular knots, a nontrivial form of chemical topology, are ubiquitously found in proteins and DNA, and have attracted increasing attention of chemists owing to their fascinating aesthetics and the biomimetic properties of synthetic molecular knots. A variety of small-molecule knots with different crossings have now been synthesised, either by designed methods or serendipitous discovery. Recent reports of the synthesis of 8, 3#, 3+, and 3# knots and granny knots have marked considerable progress in the synthesis of molecular knots. Moreover, a range of structural transformations of molecular knots to other topologically interesting compounds, such as solomon links or monocyclic ring, have also been observed recently. However, there are very few reports of transformations from one type of molecular knot to another. Thus, the adjustment of the spatial arrangements of ligands in order to achieve a reversible transformation between two types of molecular knot remains a formidable challenge.

Figure-eight knot, as its name implies, will take on the shape of "8" through the connections of building blocks utilizing coordination and/or covalent bonds, ultimately forming a closed loop, which has four alternating crossings in the reduced representation. Thus, it is also called 4₁ knot. We recently reported that both figure-eight (4₁) and trefoil knot species could be prepared by treating amide and ester derivatives with [Cp*M]-based (M = Ir, Rh) connecting units under identical reaction conditions. By comparing these knot topologies, we hypothesised that the presence or absence of intramolecular hydrogen bond interactions likely determines the different outcomes of the reactions (Fig. 1).

Pioneering work in this area has proven that amide oxygen atoms are good coordination sites, and a series of interlocked [2]-, [3]catenanes and molecular knots have been formed depending on the coordination between amide groups and metal ions. A typical example is the fact that three 2,6-pyridinedicarboxamide ligands entwining a lanthanide(III) ion provide a molecular trefoil knot by ring-closing olefin metathesis. Thus, this behaviour of amide oxygen atoms coordinated to metal ions may be used to change the self-assembly mechanism of figure-eight knot by fixing the spatial arrangement of an amide ligand and with secondary metal ions in the synthesis of trefoil knot. Intriguingly, when the secondary metal ions are removed, the system could potentially transform into a molecular figure-eight knot.

Herein, we present the synthesis of two types of molecular knots, double trefoil and trefoil knots, obtained by introducing...
secondary metal ions (K+, Ca2+, Sr2+ or Ba2+ ions) into the self-assembly process of amide ligand \(L \) with Cp*Rh edge unit \(E \) (\(L + E = \text{Figure-Eight knot} \)). X-ray crystallographic data show that the central K+ ion bridges trefoil tangles of opposite handedness by coordination with six amide oxygen atoms, leading to the realisation of a novel double trefoil knot 1. In contrast, alkaline earth metal cations induce the formation of a series of trefoil knots due to the coordination with three amide groups, and small molecules or OTf– ions. Of particular note is that all the amide oxygen atoms of trefoil knot 4 were found to be coordinated to two Ba2+ cations, which results in an octanuclear configuration (Fig. 2). In addition, the \(^1H \) NMR spectra demonstrate that the addition of secondary metal ions into a solution of figure-eight knot in CD\textsubscript{3}OD induces the formation of heterometallic trefoil knots. However, removal of K+, Ca2+, Sr2+ and Ba2+ ions from these knots by adding 18-crown-6 promoted transformations to figure-eight knot.

![Diagram of molecular structures](image)

Fig. 2 Synthesis of double trefoil knot 1, trefoil knots 2, 3 and 4; structural transformation between figure-eight knot and 1, 2, 3, 4 can be observed by introduction and/or removal of K+, Ca2+, Sr2+, Ba2+ ions.

Results and discussion

Self-assembly of a double-trefoil knot (1) based on complete coordination of K+ ions with amide groups.

Our initial hypothesis was that the coordination of K+ ions with amide sites could take place in a self-assembly process, thereby hindering the generation of intramolecular N–H...O hydrogen bonds and finally resulting in new reaction products. We carried out an experiment involving the addition of K+ ions prior to self-assembly: the yellow solid 1 (yield: 86.4%) was obtained by treating \(E \) with ligand \(L \) and 2.0 equiv. of KNO\textsubscript{3} in methanol after 6 h of stirring under ambient conditions. The structure of 1 was confirmed by NMR spectroscopy, electrospray ionization mass spectrometry (ESI-MS), and single-crystal X-ray diffraction analysis.

NMR spectroscopic experiments were carried out to explore the behaviour of 1 in CD\textsubscript{3}OD. The simpler \(^1H \) NMR spectrum obtained (relative to that expected for figure-eight knot) clearly supported the formation of a new topological structure (Fig. S7, ESI†). The \(^1H \) NMR signals show two doublets at \(\delta \) 8.60, 7.14 ppm and one singlet at \(\delta \) 1.73 ppm for the protons of pyridinyl and Cp* groups, and the protons of two 2,2′-bisbenzimidazole (BiBzlm) appear as two sets of multiplets at \(\delta \) 8.15-8.12 and 7.70-7.48 ppm. However, the signals of the phenyl groups show large upfield shifts to 1.0–4.5 ppm, which might be due to the tight \(\pi-\pi \) stacking of phenyl groups (Fig. S8, ESI†).

The \(^1H \) DOSY NMR spectrum of 1 shows that the aromatic and Cp* signals are associated with a single diffusion constant \((D = 2.6 \times 10^{-10} \text{ m}^2\text{s}^{-1}) \), suggesting that only one stoichiometry of assembly is formed (Fig. S10, ESI†).

Single crystals of 1 were obtained by slow diffusion of diethyl ether vapor into a solution of 1 in methanol. Its solid-state structure indicated that complex 1 contains twelve Cp*Rh vertexes and two potassium ions, denoted K1+ and K2+ in Fig. 2. The two potassium ions are in different positions in the
framework and play specific roles in the formation of 1. The central K$^+$ ion acts as a bridge to connect two trefoil tangles (+3_1 and −3_1) by coordination with six amide oxygen atoms, forming a double trefoil knot. The K$^2+$ ion is bound to another three amide oxygen atoms from the +3_2 or −3_2 trefoil tangle, with one OTF$^−$ anion and two CH$_3$OH molecules. However, there exist three possible connection forms between two trefoil knots in solution (+3_1 connecting with +3_2; −3_1 connecting with −3_2; +3_1 connecting with −3_2). In the solid state, +3_1 and −3_2 trefoil knots being connected can be caused by appropriate stacking of 1 (Fig. 3). Furthermore, ESI-MS data of 1 in methanol showed peaks at m/z 2680.66 assigned to [1 − 2CH$_3$OH − 3OTf$^−$]$^−$ 34, further confirming the structure of 1 as a double trefoil knot and indicating that complex 1 exhibits remarkable stability in solution (Fig. S31, ESI†). The formation of double trefoil knot 1 verifies that intramolecular N–H–O hydrogen bond interactions play a crucial role in the stabilisation of figure-eight knot. The coordination of the K$^+$ ions with the amide groups is likely the main reason for the synthesis of structure 1 by virtue of hindering the formation of intramolecular N–H–O hydrogen bonds. This result provides a new concept for the construction of increasingly complex topological structures and studying the conversion between amide-containing supramolecular compounds.

We next sought to investigate whether NO$_3^−$ anions have an influence on the formation of double trefoil knot 1. Thereby a self-assembly experiment by using KOTf instead of KNO$_3$ was carried out under the same reaction conditions. Structure 1 was again obtained, thereby demonstrating that NO$_3^−$ anions had no significant effect on the formation of the complex 1.

The double trefoil knot 1 includes two K$^+$ ions in different chemical environments. However, the 1H NMR spectrum shows the same signal pattern as that of a trefoil knot, most likely due to that the weak coordination interactions between K$^+$ ion and C=O groups.37,38

We continued our investigation of the ability of K$^+$ ions to destroy intramolecular N–H–O hydrogen bonds by attempting the K$^+$-mediated structural unlinking of figure-eight knot (Fig. 2) to the double trefoil knot 1. Thus, 1H NMR spectroscopic experiments were carried out to explore the behaviour of K$^+$ ions in a methanol solution of figure-eight knot. Upon addition of a slight excess of KNO$_3$ into a CD$_3$OD solution of figure-eight knot in 1.5 mM, a new set of signals appeared that was consistent with the signals of compound 1. However, the conversion was very low and reached only 26.1% after 24 h stirring under ambient conditions. This demonstrates that once the N–H–O hydrogen bonds of figure-eight knot are formed, destroying them and forming a double trefoil knot is difficult (Fig. 4).

As outlined above, we speculated that the coordination between K$^+$ ions and amide sites hinders the formation of intramolecular N–H–O hydrogen bonds in the self-assembly process resulting in the double trefoil knot 1. However, this conjecture might be invalidated if the trefoil monomers of 1 can exist as a stable entity when the K$^+$ ions are removed. In an attempt to obtain trefoil monomers without K$^+$ ions, we sought to remove the K$^+$ ions of the double trefoil knot by using the known K$^+$ scavenger 18-crown-6.39,40 However, attempts to remove the K$^+$ ions by adding 18-crown-6 to a CD$_3$OD solution of 1 while maintaining the trefoil monomer topology proved unsuccessful. We observed that the 1H NMR signals of complex 1 decreased, while those of complex figure-eight knot increased over time, when a slight excess of 18-crown-6 was added to a previously prepared solution of 1 in CD$_3$OD (4.0 mM with respect to Cp*Rh), indicating a gradual structural unraveling of 1 to figure-eight knot (Fig. 5). The conversion reached 86.2% after 24 h of reaction time. This result further proves that in the absence of secondary K$^+$ ions, figure-eight knot has a higher stability than the trefoil knot structure in methanol solution. Furthermore, density functional theory (DFT) calculation also supports this result.41 (Figs. S34, 35, ESI†).
Self-assembly of trefoil knots 2, 3, and 4 based on partial coordination of \(\text{Ca}^{2+} \), \(\text{Sr}^{2+} \) and \(\text{Ba}^{2+} \) cations with amide groups.

The high charge density, large ionic radii and higher coordination numbers (6–10) of alkaline earth metal ions \(\text{Ca}^{2+} \), \(\text{Sr}^{2+} \) and \(\text{Ba}^{2+} \) has led to their use in the construction of metal-organic frameworks with good thermal stability. In order to explore the effects of \(\text{Ca}^{2+} \), \(\text{Sr}^{2+} \) and \(\text{Ba}^{2+} \) cations on the self-assembly of E and L in a methanol solution, identical reactions of E and L were performed under ambient conditions with addition of \(\text{Ca(NO}_3\text{)}_2 \cdot 4\text{H}_2\text{O} \), \(\text{Sr(NO}_3\text{)}_2 \) or \(\text{Ba(NO}_3\text{)}_2 \) instead of \(\text{KNO}_3 \). Accordingly, complexes 2, 3 and 4 were obtained in yields of 87.3%, 82.3% and 84.0%. The structures of 2, 3 and 4 were confirmed by NMR spectroscopy, electrospray ionization mass spectrometry (ESI-MS), and single-crystal X-ray diffraction analysis.

The \(^1\)H NMR spectrum of 2 in CD\(_2\)OD exhibits one sharp singlet at \(\delta = 1.73 \) ppm corresponding to a single \(\text{Cp}^*\text{R} \) environment, in marked contrast to the spectrum of figure-eight knot, suggesting a new topology (Fig. S13, ESI†). The \(^1\)H DOSY NMR spectrum of 2 showed that the aromatic and \(\text{Cp}^* \) proton signals were associated with a single diffusion constant, suggesting that only one stoichiometry of assembly was formed (Fig. S15, ESI†).

Assembly 2 was crystallised by diffusion of diethyl ether into its methanol solution and its trefoil knot structure was elucidated by single-crystal X-ray crystallography. Similarly to figure-eight knot, the unit E and amide ligand L combine with assistance from r–r and CH–r interactions. The single \(\text{Ca}^{2+} \) cation was found to be bound to three L amide oxygen atoms and three OTf\(^-\) ions in a \(\kappa^6 \) fashion. The environment around the \(\text{Ca}^{2+} \) cation is best described as slightly distorted octahedral. The \(\text{Ca-O}_{\text{amide}} \) (2.2956(6)-2.2956(11) Å) and \(\text{Ca-O}_{\text{OTf}} \) (2.3323(6)-2.3323(11) Å) distances are comparable to those found in previous work. In addition, the remaining three amide groups form stable N–H–O intermolecular hydrogen bond interactions with a OTf\(^-\) anion (2.92 Å) (Fig. 6a,b). ESI-MS data also indicated that the prominent peaks at m/z = 2048.23 ([2–2OTf\(^-\) \(\kappa^5 \)]) in good agreement with their theoretical distribution (Fig. S32, ESI†), suggesting that the structure remains intact in solution.

The \(\text{Sr}^{2+} \) cation is slightly larger than the \(\text{Ca}^{2+} \) cation, thus we speculated that \(\text{Sr}^{2+} \) could similarly coordinate with amide oxygen atoms and hinder the formation of intramolecular N–H–O hydrogen bonds, ultimately inducing formation of a new topological structure. The \(^1\)H NMR and \(^1\)H DOSY NMR (D=2.7×10\(^{-10}\) m\(^2\) s\(^{-1}\)) spectra of 3 were recorded in CD\(_2\)OD. As expected, the \(^1\)H NMR spectra of 3 show clear differences with those of figure-eight knot (Fig. S19, ESI†). The \(^1\)H DOSY NMR showed a single diffusion coefficient (D=2.7×10\(^{-10}\) m\(^2\) s\(^{-1}\)), suggesting a single structure in solution (Fig. S21, ESI†). Single crystals were obtained by slow diffusion of diethyl ether into a methanol solution and the solid-state structure of 3 was determined to also be a trefoil knot by X-ray diffraction analysis. In addition, two isomers, 3a and 3b, are present in the solid state.

The single-crystal X-ray diffraction analysis of 3a and 3b reveals that both are topological enantiomers with the same \(P6_5 \) point group, with either positive or negative crossings in the unit cells of 3a or 3b, respectively, in the solid state (Fig. 7), consistent with reported structures. The \(\text{Sr}^{2+} \) cation is coordinated in a \(\kappa^2 \) fashion with a single-capped octahedron geometry. The metal ion is coordinated to three amide oxygen atoms, three triflate anions, and one \(\text{H}_2\text{O} \) molecule. In addition, another triflate anion forms N–H–O intermolecular hydrogen bonds with the remaining three amide groups. The coordination of \(\text{Ca}^{2+} \) or \(\text{Sr}^{2+} \) cations with amide groups thus effectively hinders the formation of intramolecular N–H–O hydrogen bonds and leads to the generation of trefoil knots. Additionally, ESI-MS data of 3 in methanol shows a peak at m/z 2072.21 assigned to ([3–H\(_2\text{O}-2\text{OTf}^- \kappa^5]) \), which further confirms the structure of 3 as a trefoil knot.
and indicates that complex 3 exhibits remarkable stability in solution (Fig. S33, ESI†).

A closer look at the trefoil topologies induced by K⁺, Ca²⁺ and Sr²⁺ ions showed that some amide groups are not involved in the coordination, which form intermolecular N–H–O hydrogen bonds with a OTf⁻ ion. We hypothesised that a more strongly-binding metal ion may achieve complete coordination of the six amide groups of a single trefoil knot. The Ba²⁺ cation was selected to test this hypothesis.⁵¹ As expected, the octanuclear trefoil knot 4 was formed by the introduction of Ba(NO₃)₂, in which the six amide groups coordinate to two Ba²⁺ cations.

The ¹H NMR spectrum of 4 in CD₂OD showed all of the expected signals corresponding to the protons of a trefoil knot (Fig. S25, ESI†), and a single diffusion coefficient (D=2.4×10⁻¹⁰ m² s⁻¹) was observed in a ¹H DOSY NMR experiment (Fig. S27, ESI†). These observations clearly demonstrate that trefoil knot 4 is the unique species in solution.

Fig. 7. Skeleton representation of the right-handed trefoil knot (+3₁) of 3a (left); Skeleton representation of the left-handed trefoil knot (−3₁) of 3b (right).

Fig. 8 Molecular structure of trefoil knot 4. Top view (a) and side view (b). Counteranions and hydrogen atoms are omitted for clarity. All hydrogen atoms, anions, and solvent molecules are omitted for clarity except for coordination solvent molecules or anions. Rh Teal; Ba Pink; N blue; C gray; O red; S yellow; F bright green.

Structural transformations between figure-eight knot and trefoil knots induced by Ca²⁺, Sr²⁺ and Ba²⁺ cations.

Trefoil knots being induced by Ca²⁺, Sr²⁺ and Ba²⁺ cations encourages us to explore the effects of these cations on the transformation of figure-eight to trefoil knots in methanol solution. Compared to K⁺ cation, Ca²⁺ cation, due to higher valence state and smaller ionic radius, may have greater binding energy and result in higher transformation efficiency of figure-eight to trefoil knots. In addition, previous work⁵³, ⁵⁴ has reported that the binding energies of metal-oxygen increase with decreasing metal ions size (Ba²⁺ < Sr²⁺ < Ca²⁺ ions). Thus, transformation efficiency of figure-eight to trefoil knots may also increase (TE(Ba²⁺) < TE(Sr²⁺) < TE(Ca²⁺)) as the cation radius decreases (r(Ba²⁺) > r(Sr²⁺) > r(Ca²⁺)). Three ¹H NMR monitoring experiments were performed in methanol solution over a period of 24 h. We observed the slow transformations of figure-eight knot to trefoil knots upon respective addition of calcium, strontium or barium salts to CD₂OD solutions of figure-eight knot. After 24 h, the conversion to the corresponding trefoil knot species was 44.7% for Ca²⁺, 40.1% for Sr²⁺ and 27.2% for Ba²⁺ (Figs. S17, S23, S29, ESI†). The experimental data are consistent with the expected reactivity based on ionic radii for these alkali earth metal cations, which also indicate that Ca²⁺, Sr²⁺, Ba²⁺ cations have greater capacity to destroy the intramolecular N–H–O hydrogen bonds of figure-eight knot to induce their unravelling and formation of trefoil knots than K⁺ ions (Transformation efficiency: 26.1%) (Fig. 9).
The heavier alkaline-earth cations Ca$^{2+}$, Sr$^{2+}$, and Ba$^{2+}$ are also known to form stable complexes with 18-crown-6.5,5 Thus, addition of 18-crown-6 to trefoil knots 2, 3 and 4 resulted in their structural unlinking and formation of figure-eight knot. NMR spectroscopic data clearly show the gradual transformation of the trefoil knots to figure-eight knot upon addition of a slight excess of 18-crown-6 to CD$_3$OD solutions of complexes 2-4 (Figs. S18, S24, S30, ESI†). After 24 h, all of these transformations had reached conversions above 85.0% by NMR spectroscopy, further indicating that Ca$^{2+}$, Sr$^{2+}$ and Ba$^{2+}$ cations play a critical role in the formation and stabilisation of the respective heterometallic trefoil knots.

Conclusions

In conclusion, s-block metal cations can induce structural transformations between figure-eight knot and double or single trefoil knots by adding or removing K$^+$, Ca$^{2+}$, Sr$^{2+}$ or Ba$^{2+}$ ions. These double or single trefoil knots can also be obtained by employing the corresponding metal salts in the self-assembly process (E+L). Interestingly, in the case of K$^+$, these ions bridge two trefoil monomers of opposite handedness, resulting in the synthesis of a double trefoil knot. In contrast, Ca$^{2+}$, Sr$^{2+}$ or Ba$^{2+}$ cations facilitate the construction of single trefoil knots. Additionally, 18-crown-6 can trigger topological unlinking of double and single trefoil knots to figure-eight knot by removing the s-block metal ions. The destruction and formation of N-H-O intramolecular hydrogen bonds is determined to be the main cause of the observed structural transformations between these molecular knots. We believe that a deeper understanding of the topological transformations in amide-containing assemblies induced by the presence or absence of s-block metal ions will be helpful in the future construction of bespoke architectures and responsive supramolecular systems, opening up new vistas in the field of functional molecules and materials.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This work was supported by the National Science Foundation of China (21531002, 21720102004) and the Shanghai Science Technology Committee (13JC1400600).

Notes and references

1. L. F. Liu, R. E. Depew and J. C. Wang, *J. Mol. Biol.*, 1976, **106**, 439–452.
2. F. Ziegler, N. C. H. Lim, B. Pelz, W. P. Ng, M. Schlierf, S. E. Jackson and M. Rief, *Proc Natl Acad Sci USA*, 2016, **113**, 7533–7538.
3. J. S. Richardson, *Nature*, 1977, **268**, 495–500.
4. J. E. Beves, B. A. Blight, C. J. Campbell, D. A. Leigh and R. T. McBurney, *Angew. Chem., Int. Ed.*, 2011, **50**, 9260–9327.
5. S. D. P. Fielden, D. A. Leigh and S. L. Woltering, *Angew. Chem., Int. Ed.*, 2017, **56**, 11166–11194.
6. H. N. Zhang, W. X. Gao, Y. J. Lin and G. X. Jin, *J. Am. Chem. Soc.*, 2019, **141**, 16057–16063.
7. O. Safarowsky, M. Nierger, R. Fröhlich and F. Vögtle, *Angew. Chem., Int. Ed.*, 2000, **39**, 1616–1618.
8. J. F. Ayne, G. Gil-Ramírez, D. A. Leigh, J. F. Levernois, A. Markevicius, C. A. Muryn and Z. Zhang, *J. Am. Chem. Soc.*, 2014, **136**, 13142–13145.
9. B. B. Guo, Y. J. Lin and G. X. Jin, *Chem.-Eur. J.*, 2019, **25**, 9721–9729.
10. V. Marcos, A. J. Stephens, J. Jaramillo-Garcia, A. L. Nussbaumer, S. L. Woltering, A. Valero, J. F. Levernois, I. J. Vitorica-Yrezabal and D. A. Leigh, *Science*, 2016, **352**, 1555–1559.
11. L. Zhang, A. J. Stephens, A. L. Nussbaumer, J. F. L. Levernois, P. Jurček, I. J. Vitorica-Yrezabal and D. A. Leigh, *Nat. Chem.*, 2018, **10**, 1083–1088.
12. T. Prakasam, et al, *Angew. Chem., Int. Ed.*, 2013, **52**, 9956–9960.
13. R. S. Forgan, J.-P. Sauvage and J. F. Stoddart, *Chem. Rev.*, 2011, **111**, 5434–5464.
14. J. Guo, P. C. Mayer, G. A. Breault and C. A. Hunter, *Nat. Chem.*, 2010, **2**, 218–222.
15. N. Ponnuwamy, F. B. L. Cougnon, J. M. Clough, G. D. Panos, L. K. M. Sanders, *Science*, 2012, **338**, 783–785.
16. M. Feigel, R. Ladberg, S. Engels, Y. Herbst-Irmer and R. Fröhlich, *Angew. Chem., Int. Ed.*, 2006, **45**, 5698–5702.
17. J. F. Ayne, J. E. Beves, D. A. Leigh, R. T. McBurney, K. Rissanen and D. Schultz, *Nat. Chem.*, 2012, **4**, 15–20.
18. L. Zhang, A. J. Stephens, J. F. Levernois, L. Pirvu, I. J. Vitorica-Yrezabal, C. J. Robinson and D. A. Leigh, *J. Am. Chem. Soc.*, 2019, **141**, 3952–3958.
19. V. Marcos, A. J. Stephens, J. Jaramillo-Garcia, A. L. Nussbaumer, S. L. Woltering, A. Valero, J. F. Levernois, I. J. Vitorica-Yrezabal and D. A. Leigh, *Science*, 2016, **352**, 1555–1559.
20. C. O. Dietrich-Buchecker and J.-P. Sauvage, *Angew. Chem., Int. Ed.*, 1989, **28**, 189–192.
21. D. H. Busch, *J. Inclusion Phenom. Mol. Recognit. Chem.*, 1992, **12**, 389–395.
22. P. E. Barran, H. L. Cole, S. M. Goldup, D. A. Leigh, P. R. McGonigal, M. D. Symes, J. Wu and M. Zengerle, *Angew. Chem., Int. Ed.*, 2011, **50**, 12280–12284.
23. D. H. Busch, *Science*, 1971, **171**, 241–248.
24. J. F. Ayne, J. E. Beves, C. J. Campbell and D. A. Leigh, *Chem. Soc. Rev.*, 2013, **42**, 1700–1712.
25. C. Lincheneau, B. Jean-Denis and T. Gunlaunch, *Chem. Commun.*, 2014, **50**, 2857–2860.
26. D. M. Engelhard, S. Freye, K. Grohe, M. John and G. H. Clever, *Angew. Chem., Int. Ed.*, 2012, **51**, 4747–4750.
27. J.-P. Sauvage, *Angew. Chem., Int. Ed.*, 2017, **56**, 11080–11093.
28. Y. Segawa, M. Kuwayama, Y. Hijioka, M. Fushimi, T. Nishihara, P. Pirullo, J. Shirasaki, N. Kubota and K. Itami, *Science*, 2019, **365**, 272–276.
29. J. J. Danon, A. Krüger, D. A. Leigh, J. F. Levernois, A. J. Stephens, I. J. Vitorica-Yrezabal and S. L. Woltering, *Science*, 2017, **355**, 159–162.
30. J. J. Danon, D. A. Leigh, S. Pisano, A. Valero and I. J. Vitorica-Yrezabal, *Angew. Chem., Int. Ed.*, 2018, **130**, 14029–14033.
31. N. Ponnuswamy, F. B. L. Cougnon, G. D. Pantoș and J. K. M. Sanders, *J. Am. Chem. Soc.*, 2014, **136**, 8243–8251.

32. L. L. Dang, Z. B. Sun, W. L. Shan, Y. J. Lin, Z. H. Li and G. X. Jin, *Not. Commun.*, 2019, **10**, 2057.

33. E. A. Neal and S. M. Goldup, *Chem. Commun.*, 2014, **50**, 5128–5142.

34. F. Zapata, O. A. Blackburn, M. J. Langton, S. Faulkner, P. D. Beer, *Chem. Commun.*, 2013, **49**, 8157–8159.

35. M. J. Langton, O. A. Blackburn, T. Lang, S. Faulkner and P. D. Beer, *Angew. Chem., Int. Ed.*, 2014, **53**, 11463–11466.

36. G. Zhang, G. Gil-Ramírez, A. Markevicius, C. Browne, I. J. Vitorica-Yrezabal and D. A. Leigh, *J. Am. Chem. Soc.*, 2015, **137**, 10437–10442.

37. Y. Inokuchi, T. Ebata, T. R. Rizzo and O. V. Boyarkin, *J. Am. Chem. Soc.*, 2014, **136**, 1815−1824.

38. K. Tsubaki, D. Tanima, Y. Kuroda, K. Fuji and T. Kawabata, *Org. Lett.*, 2006, **8**, 5797−5800.

39. T. Dudev and C. Lim, *J. Am. Chem. Soc.*, 2009, **131**, 8092–8101.

40. A. Torvisco and K. Ruhlandt-Senge, *Inorg. Chem.*, 2011, **50**, 12223–12240.

41. L. L. Gong, D. T. Zhang, C. Y. Lin, L. P. Zhang and Z. H. Xia, *Adv. Energy Mater.*, 2019, 10.1002/aenm.201902625.

42. D. Banerjee and J. B. Parise, *Cryst. Growth Des.*, 2011, **11**, 4704–4720.

43. S. L. Cai, S. R. Zheng, Z. Z. Wen, J. Fan and W. G. Zhang, *Cryst. Growth Des.*, 2012, **12**, 3575–3582.

44. M. L. Foo, S. Horike and S. Kitagawa, *Inorg. Chem.*, 2011, **50**, 11853−11855.

45. J. A. Dolyniuk, H. He, A. S. Ivanov, A. I. Boldyrev, S. Bobev and K. Kovnir, *Inorg. Chem.*, 2015, **54**, 8608–8616.

46. X. G. Yang, L. F. Ma and D. P. Yan, *Chem. Sci.*, 2019, **10**, 4567−4572.

47. Z. Gao, Z. W. Yu, F. Q. Liu, X. F. Feng and F. Luo, *Inorg. Chem.*, 2019, **58**, 11500−11507.

48. X. G. Yang, X. M. Lu, Z. M. Zhai, Y. Zhao, X. Y. Liu, L. F. Ma and S. Q. Zang, *Chem. Commun.*, 2019, **55**, 11099−11102.

49. Y. Sarazin, B. Liu, T. Roisnel, L. Maron and J. F. Carpentier, *J. Am. Chem. Soc.*, 2011, **133**, 9069–9087.

50. K. E. Horner, M. A. Miller, J. W. Steed, P. M. Sutcliffe, *Chem. Soc. Rev.*, 2016, **45**, 6432-6448.

51. D. W. Fu, Y. Zhang, H. L. Cai, H. M. Zhu, X. Y. Chen and R. G. Xiong, *J. Mater. Chem.*, 2012, **22**, 17525−17530.

52. L. Zhang, D. P. August, J. K. Zhong, G. F. S. Whitehead, I. J. Vitorica-Yrezabal and D. A. Leigh, *J. Am. Chem. Soc.*, 2018, **140**, 4982–4985.

53. S. E. Rodriguez-Cruz, R. A. Jockusch and E. R. Williams, *J. Am. Chem. Soc.*, 1999, **121**, 1986–1987.

54. E. D. Glendening and D. Feller, *J. Phys. Chem.* 1996, **100**, 4790–4797.

55. Y. Tatematsu, S. Kato, N. Nakata, M. Ebihara, O. Niyomura, K. Sugamata, M. Yukimoto and M. Minoura, *Dalton Trans.*, 2018, **47**, 9787–9794.
The presence or absence of s-block metal ions induces reversible structural transformation of molecular knots.