REGULARITY OF CAPILLARITY DROPLETS WITH OBSTACLE

GUIDO DE PHILIPPIS, NICOLA FUSCO, AND MASSIMILIANO MORINI

ABSTRACT. In this paper we study the regularity properties of Λ-minimizers of the capillarity energy in a half space with the wet part constrained to be confined inside a given planar region. Applications to a model for nanowire growth are also provided.

CONTENTS

1. Introduction 1
1.1. Setting of the problem and main results 2
1.2. Applications to a model for nanowire growth 4
2. Density estimates and compactness 5
3. ε-regularity 11
3.1. Partial Harnack inequality 11
3.2. Flatness improvement and ε-regularity 22
4. A monotonicity formula and proof of the main results 34
5. Appendix 39
References 43

1. INTRODUCTION

Capillarity phenomena occur whenever two or more fluids are situated adjacent each other and do not mix. The separating interface is usually referred to as a capillary surface. Since the pioneering works by Young and Laplace (see Finn’s book [7] for an historical introduction) these phenomena have been the subject of countless studies in the mathematical and interdisciplinary literature. A modern treatment of the problem is based on Gauss’ idea of describing equilibrium configurations as critical points or (local) minimizers of a free energy accounting for the area of the surface separating the fluids and the surrounding media, for the area of the wet region due to the adhesion between the fluids and the walls of the container, and for the possible presence of external fields acting on the system (such as gravity). The existence of minimizing configurations is easily obtained in the framework of sets of finite perimeter. While the regularity inside the container of such configurations reduces to the more classical study of minimal surfaces, a more specific question is related to the regularity of the contact line between the container and the fluid, see [18] for the physically relevant three dimensional case and [3] for a wide extension to more general anisotropic energies and to higher dimensions.

In this paper we study the regularity of the contact line for a capillarity problem where the ‘container’ is a half space H and the wet region is constrained to be confined inside

Acknowledgments. The work of G.D.P is partially supported by the NSF grant DMS 2055686 and by the Simons Foundation. The work of N.F. is supported by the PRIN project 2017TEXA3H. M.M. is supported by the University of Parma FIL grant “Regularity, non-linear potential theory and related topics”. Part of this work has been carried out during various visits to the authors institutions, whose support is greatly acknowledged.
a given planar domain \(O \subset \partial H \). The motivation for this problem comes from the study of a mathematical model of vapor-liquid-solid (VLS) nanowire growth considered in the physical literature. We recall that during VLS growth a nanoscale liquid drop of catalyst deposited on the flat tip of the solid cylindrical nanowire feeds its vertical growth. In the experiments it is observed that the sharp edge of the nanowire produces a pinning effect and forces the wet part to remain confined inside the top face of the cylinder and the liquid drop to be contained in the upper half space, see Figure 1.

1.1. Setting of the problem and main results. Let us start by fixing some notations: We will work in \(\mathbb{R}^N \) and we set

\[
H = \{ x \in \mathbb{R}^N : x_1 > 0 \}.
\]

Given \(\sigma \in (-1,1) \) we consider for a set of finite perimeter \(E \subset H \) and an open set \(A \) (not necessarily contained in \(H \)) the capillarity energy

\[
F_\sigma(E; A) = P(E; H \cap A) + \sigma P(E; \partial H \cap A)
= \mathcal{H}^{N-1}(\partial^* E \cap H \cap A) + \sigma \mathcal{H}^{N-1}(\partial^* E \cap \partial H \cap A)
\]

where \(\partial^* E \) is the reduced boundary of \(E \), \(P(E;G) \) is the perimeter of \(E \) in \(G \) (see the definitions at the beginning of Section 2) and \(\mathcal{H}^{N-1} \) stands for the \((N-1)\)-dimensional Hausdorff measure. In case \(A = \mathbb{R}^N \) we will simply write \(F_\sigma(E) \).

We aim to impose a constraint on the wet region \(\partial^* E \cap \partial H \) of \(E \). To this end we consider a relatively open set \(O \subset \partial H \) and we denote by

\[
C_O = \{ E \subset H \text{ sets of locally finite perimeter such that } \partial^* E \cap \partial H \subset \overline{O} \}
\]

the class of admissible competitors. We aim at studying the regularity properties of (local) minimizers of the variational problem

\[
\min \{ F_\sigma(E) : E \in C_O, |E| = m \}.
\]

Note that classical variational arguments imply that if one assumes that \(M := \partial E \cap H \) is a smooth manifold with boundary, then any minimizer satisfies the following Euler-Lagrange conditions:

(i) \(\text{(Constant mean curvature)} \) There exists \(\lambda > 0 \) such that \(H_M = \lambda \) in \(M \cap H \), where \(H_M \) is the sum of the principle curvatures of \(M \) and more precisely coincides with the tangential divergence of the outer unit normal field \(\nu_E \) to the boundary of \(E \);
(ii) \(\text{(Young’s inequality)} \) \(\nu_E \cdot \nu_H \geq \sigma \) on \(M \cap \partial H \);
(iii) \(\text{(Young’s law inside } O) \) \(\nu_E \cdot \nu_H = \sigma \) on \((M \cap \partial H) \setminus \partial H \cap \overline{O} \).

\footnote{1}{Here and in the sequel for a set \(U \subset \partial H \) we will denote by \(\partial_H U \) its relative boundary in \(\partial H \).}
Note that (iii) above is the classical Young’s law which holds true outside the thin obstacle \(\partial_{\partial H} O \), while (ii) is a global inequality which should hold true on the whole free boundary \(M \cap \partial H \).

As it is customary in Geometric Measure Theory, we will remove volume type constraints and we will deal with some perturbed minimality conditions. Note that this allows to treat several problems at once (volume constraints, potential terms, etc.). Concerning the regularity of the obstacle we introduce the following class of open subsets of \(\partial H \) satisfying a uniform inner and outer ball condition at every point of the (relative) boundary. More precisely, we give the following definition.

Definition 1.1. Let \(R \in (0, +\infty) \). We denote by \(B_R \) the family of all relatively open subsets \(O \) of \(\partial H \) such that for every \(x \in \partial_{\partial H} O \) there exist two \((N - 1)\)-dimensional relatively open balls \(B', B'' \subset \partial H \) of radius \(R \) such that \(B' \subset O, B'' \subset \partial H \setminus O \), and \(\partial_{\partial H} B' \cap \partial_{\partial H} B'' = \{x\} \).

Moreover, we set \(B_\infty = \cap_{R > 0} B_R \). Note that \(B_\infty \) is made up of all relatively open half-spaces of \(\partial H \) and of \(\partial H \) itself.

Remark 1.2. Note that if \(O \in B_R \), then \(O \) is of class \(C^{1,1} \) with principal curvatures bounded by \(\frac{1}{R} \), see [13] [2]. Therefore, if \(O_\alpha \) is a sequence in \(B_{R_\alpha} \) with \(R_\alpha \to R \in (0, +\infty] \), then there exists a (not relabelled) subsequence such that \(O_\alpha \to \overline{O} \) in the Kuratowski sense, where \(O \in B_R \). Moreover, for all \(\alpha \in (0, 1) \) \(O_\alpha \to O \) in \(C^{1,\alpha}_{\text{loc}} \) in the following sense: given \(x \in \partial_{\partial H} O \), there exist a \((N - 1)\)-dimensional ball \(B \) centered at \(x \), \(\psi_h, \psi \in C^{1,1}(\mathbb{R}^{N-2}) \) such that, up to a rotation in \(\partial H \), \(\partial_{\partial H} O_h \cap B \) coincides with the graph of \(\psi_h \) in \(B \), \(\partial_{\partial H} O \cap B \) coincides with the graph of \(\psi \) in \(B \), and \(\psi_h \to \psi \) locally in \(C^{1,\alpha}(\mathbb{R}^{N-2}) \).

Definition 1.3. Given \(\Lambda \geq 0, r_0 > 0, \) and \(O \subset \partial H \) a relatively open set, we say that \(E \in C_O \) is a \((\Lambda, r_0)\)-minimizer of \(F_\sigma \) with obstacle \(O \) if

\[
F_\sigma(E; B_{r_0}(x_0)) \leq F_\sigma(F; B_{r_0}(x_0)) + \Lambda|E\Delta F|
\]

for all \(F \in C_O \) such that \(E\Delta F \in B_{r_0}(x_0) \).

When \(E \) is a \((\Lambda, r_0)\)-minimizer (with obstacle \(O \)) for every \(r_0 > 0 \) we will simply say that \(E \subset H \) is a \((\Lambda, +\infty)\)-minimizer (with obstacle \(O \)) or simply a \(\Lambda \)-minimizer (with obstacle \(O \)) of \(F_\sigma \).

We are in a position to state the main result of the paper, which establishes full regularity in three dimensions and partial regularity in any dimension, with an estimate on the Hausdorff dimension \(\text{dim}_H \) of the singular set.

Theorem 1.4. Let \(O \subset \partial H \) be a relatively open set of class \(C^{1,1} \) and let \(E \in C_O \) a \((\Lambda, r_0)\)-minimizer with obstacle \(O \) of \(F_\sigma \). Then, the following conclusions hold true:

(i) if \(N = 3 \), then \(\partial E \cap \overline{H} \) is a surface with boundary of class \(C^{1,\tau} \) for all \(\tau \in (0, \frac{1}{2}) \).

(ii) if \(N \geq 4 \), there exists a closed set \(\Sigma \subset \partial E \cap \overline{H} \cap \partial H \), with \(\text{dim}_H(\Sigma) \leq N - 4 \), such that \(\partial E \cap \overline{H} \setminus \Sigma \) is (locally) a \(C^{1,\tau} \) hypersurface with boundary for all \(\tau \in (0, \frac{1}{2}) \).

Moreover,

\[
\nu_E \cdot \nu_H \geq \sigma \quad \text{on} \quad M \cap \partial H;
\]

\[
\nu_E \cdot \nu_H = \sigma \quad \text{on} \quad (M \cap \partial H) \setminus \partial_{\partial H} O,
\]

where we set \(M := \partial E \cap \overline{H} \setminus \Sigma \).

The main new point of the above result is the regularity at the points of the free-boundary \(\partial E \cap \overline{H} \cap \partial H \) lying on the thin obstacle \(\partial_{\partial H} O \). Indeed the full regularity at the boundary points \(\partial E \cap \overline{H} \cap O \) for \(N = 3 \) follows from the classical result of [18], while
the partial regularity for $N \geq 4$ from the more recent paper \[3\]. The idea the proof of Theorem \[1.4\] is based on the following dichotomy, inspired by the work of Fernández-Real and Serra, \[6\], where a thin obstacle problem for the area functional is studied, see also the work of Focardi and Spadaro \[8\] for the non parametric case. If in a r-neighborhood of $x \in \partial E \cap H \cap \partial H O$ the boundary $\partial E \cap H$ is contained in a sufficiently thin strip with a slope sufficiently larger than the slope $\alpha(\sigma)$ given by the Young’s law, then we show by a barrier argument that at scale $r/2$ the free boundary fully coincides with the thin obstacle $\partial H O$. If instead the slope of the strip is sufficiently close to $\alpha(\sigma)$, then a linearization procedure allows us to reduce to a Signorini type problem and to deduce from the decay estimates available for the latter a flatness improvement result at a smaller scale. Iterating this dichotomy argument leads to a boundary ε-regularity result, see Theorem \[3.21\] which, combined with a suitable monotonicity formula, finally yields the proof of Theorem \[1.4\]. Since the barrier argument requires closeness in the “uniform norm”, in order to make the dichotomy effective, we need to establish a decay of the excess in the same norm. For this step we follow the ideas introduced by Savin in \[10\] to deal with interior regularity of minimal surfaces and we rely on a partial Harnack inequality which is obtained by a nontrivial extension to the boundary of these ideas. The connection with the Signorini problem also explains why we cannot expect better regularity than $C^{1,1/2}$, see for instance \[15\].

1.2. Applications to a model for nanowire growth. As anticipated at the beginning of this introduction, we conclude by applying the above regularity theory to a model of vapor-liquid-solid (VLS) nanowire growth considered in the physical literature and studied in \[9\].

Following the work of several authors, see the references in \[9\], we consider a continuum framework for nanowire VLS growth. We model the nanowire as a semi-infinite cylinder $C = \omega \times (-\infty, 0]$, where $\omega \subset \mathbb{R}^2$ is a bounded sufficiently regular domain, and the liquid drop as a set $E \subset \mathbb{R}^3 \setminus C$ of finite perimeter. Typically the observed nanowires have either a regular or a polygonal section. Given $\sigma \in (-1, 1)$ we consider the free energy

$$J_{\sigma, \omega}(E) := \mathcal{H}^2(\partial^* E \setminus C) + \sigma \mathcal{H}^2(\partial^* E \cap C).$$
The shape of the liquid drop is then described by (local) minimizers of $J_{\sigma,\omega}$ under a volume constraint. To this aim we say that $E \subset \mathbb{R}^3 \setminus C$ is a volume constrained local minimizer of $J_{\sigma,\omega}$ if there exists $\varepsilon > 0$ such that $J_{\sigma,\omega}(E) \leq J_{\sigma,\omega}(F)$ for all $F \subset \mathbb{R}^3 \setminus C$ with $|F| = |E|$ and $|E \Delta F| < \varepsilon$. Here we study local minimizing configurations corresponding to liquid drops sitting on the top $C_{\text{top}} := \omega \times \{0\}$ of the cylinder and contained in the upper half space $\mathcal{H} := \{x_3 > 0\}$.

In the case where ω is a $C^{1,1}$ domain we prove the following regularity result.

Theorem 1.5. Let $\omega \subset \mathbb{R}^2$ be a bounded domain of class $C^{1,1}$ and let $E \subset \mathcal{H}$ be a volume constrained local minimizer of $J_{\sigma,\omega}$. Then $\partial E \cap \mathcal{H}$ is a surface with boundary of class $C^{1,\tau}$ for all $\tau \in (0, \frac{1}{2})$.

In the experiments it is observed that for nanowires with a polygonal section, see for instance [11], the liquid drop never wets the corners of the polygon as illustrated in Figure 1.2. Here we give a rigorous proof of this fact when $\sigma < 0$ and, for a general σ, under the additional assumption that the contact between the liquid drop and $\gamma := \partial \omega \times \{0\}$ is nontangential (see Definition 4.6).

Theorem 1.6. Let $\omega \subset \mathbb{R}^2$ be a convex polygon and let $E \subset \mathcal{H}$ be a volume constrained local minimizer of $J_{\sigma,\omega}$. If $\sigma < 0$, then $\partial E \cap \mathcal{H}$ is a surface with boundary of class $C^{1,\tau}$ for all $\tau \in (0, \frac{1}{2})$ and the contact line $\partial E \cap \mathcal{H} \cap C_{\text{top}}$ does not contain any vertex of the polygon. If $\sigma \geq 0$ the same conclusion holds provided that E has a nontangential contact at all points of $\partial E \cap \mathcal{H} \cap \gamma$.

2. Density estimates and compactness

Given a Lebesgue measurable set $E \subset \mathbb{R}^N$, we say that E is of locally finite perimeter if there exists a \mathbb{R}^N-valued Radon measure μ_E such that

$$
\int_E \nabla \varphi \, dx = \int_{\mathbb{R}^N} \varphi \, d\mu_E \quad \text{for all } \varphi \in C^1_c(\mathbb{R}^N; \mathbb{R}^N).
$$

If $G \subset \mathbb{R}^N$ is a Borel set we denote by $P(E; G) = |\mu_E|(G)$ the perimeter of E in G. For all relevant definitions and properties of sets of finite perimeter we shall refer to the book [12]. In the following we denote by $\partial^* E$ the reduced boundary of a set of finite perimeter and by ∂E the essential boundary, which is defined as

$$
\partial^* E := \mathbb{R}^N \setminus (E^{(0)} \cup E^{(1)}),
$$

where $E^{(0)}$ and $E^{(1)}$ are the sets of points where the density of E is 0 and 1, respectively. Since the perimeter measure coincides with the \mathcal{H}^{N-1} measure restricted to the reduced boundary $\partial^* E$, we will often write $\mathcal{H}^{N-1}(\partial^* E \cap \Omega)$ instead of $P(E; \Omega)$. Note that if $E \subset H$ the characteristic function of $\partial^* E \cap \partial H$ is the trace of 1_E intended as a BV function (for the definition of trace see [11 Th. 3.87]).

In the following, when dealing with a set of locally finite perimeter E, we will always assume that E coincides with a precise representative that satisfies the property $\partial E = \overline{\partial^* E}$, see [12] Remark 16.11. A possible choice is given by $E^{(1)}$, for which one may check that

$$
\partial E^{(1)} = \overline{\partial^* E}.
$$

Given a set E we denote by $E_{x,r}$ the set $E_{x,r} := (E - x)/r$. A ball centered in x and of radius r is denoted by $B_r(x)$, if the center is 0 we simply set B_r. Note that if E is (Λ, r_0)-minimizer of F_σ with obstacle $O \in B_R$ and $x \in \partial H$, $r > 0$ then $E_{x,r}$ is a $(\Lambda r, r_0/r)$
minimizer of \mathcal{F}_σ with obstacle $O_{x,r} \in \mathcal{B}_R$. Hence we can assume without loss of generality that E is $(\Lambda, 1)$-minimizer with obstacle $O \in \mathcal{B}_R$, where

$$\Lambda + \frac{1}{R} \leq c_0 \leq 1,$$

with c_0 is a small constant, depending on σ and N (to be chosen later). We will say, with a slight abuse of language, that a constant is universal if it only depends on Λ, σ and on the dimension.

We start by observing that the constraint on the wet part can be replaced by a suitable penalization. To this end we introduce the following functional

$$\mathcal{F}_\sigma^O(F; A) := P(F; A \setminus \overline{O}) + \sigma P(F; O \cap A),$$

where $A \subset \mathbb{R}^N$ is an open set and $F \subset H$ is a set of finite perimeter. If $A = \mathbb{R}^N$ we simply write $\mathcal{F}_\sigma^O(F)$. We also denote by C_O the semi-infinite cylinder constructed over O, that is,

$$C_O := \{ x = (x_1, \ldots, x_N) \in \mathbb{R}^N : x_1 > 0 \text{ and } (x_2, \ldots, x_N) \in O \}.$$

Lemma 2.1. Assume that $E \subset H$ is a (Λ, r_0)-minimizer for \mathcal{F}_σ in the sense of Definition 1.3. Then, E is a (Λ, r_0)-minimizer for \mathcal{F}_σ^O without obstacle, that is,

$$\mathcal{F}_\sigma^O(E; B_{r_0}(x_0)) \leq \mathcal{F}_\sigma^O(F; B_{r_0}(x_0)) + \Lambda |E\Delta F|$$

for all $F \subset H$ such that $E \Delta F \subset B_{r_0}(x_0)$.

Proof. Since the argument is local we may assume without loss of generality that E is a set of finite perimeter.

Let F be as in the statement and let B be an open ball of radius r_0 such that $E \Delta F \subset B$ and $\mathcal{H}^{N-1}(\partial^* F \cap \partial B) = 0$, and set $B^+ = B \cap H$. For every $\varepsilon > 0$ (sufficiently small) we set

$$F_\varepsilon := [(F \cap \{ x_1 > \varepsilon \} \cap B^+) \setminus C_O] \cup (F \cap C_O) \cup (F \setminus B^+).$$

Note that F_ε is an admissible competitor in the sense of Definition 1.3 and thus

$$\mathcal{F}_\sigma(E) \leq \mathcal{F}_\sigma(F_\varepsilon) + \Lambda |F_\varepsilon \Delta E|.$$

Note that for a.e. ε

$$\mathcal{F}_\sigma(F_\varepsilon) \leq P(F; (B^+ \cap \{ x_1 > \varepsilon \}) \setminus \overline{C_O}) + \mathcal{H}^{N-1}((F^{(1)} \cap B^+ \cap \{ x_1 = \varepsilon \}) \setminus \overline{C_O})$$

$$+ P(F; B^+ \cap \overline{C_O}) + P(F; H \setminus B^+) + \sigma P(F; O)$$

$$+ \mathcal{H}^{N-1}(F^{(1)} \cap B^+ \cap \partial C_O \cap \{ x_1 \leq \varepsilon \}) + \mathcal{H}^{N-1}(\partial B \cap F^{(1)} \cap \{ x_1 \leq \varepsilon \}) .$$

By the continuity of the trace with respect to strict convergence in BV (see [1] Th. 3.88) we have that

$$\mathcal{H}^{N-1}((F^{(1)} \cap B^+ \cap \{ x_1 = \varepsilon_n \}) \setminus \overline{C_O}) \rightarrow P(F; \partial H \setminus O)$$

for a sequence $\varepsilon_n \rightarrow 0^+$. Thus,

$$\liminf_{\varepsilon \rightarrow 0} \mathcal{F}_\sigma(F_\varepsilon) \leq P(F; B^+ \setminus \overline{C_O}) + P(F; \partial H \setminus O) + P(F; B^+ \cap \overline{C_O})$$

$$+ P(F; H \setminus \overline{B^+}) + \sigma P(F; O) = \mathcal{F}_\sigma^O(F).$$

Then conclusion follows recalling (2.3). \qed

Remark 2.2. Observe that $\mathcal{F}_\sigma(\cdot, A)$ is lower semicontinuous with respect to the L^1_{loc} convergence in C_O, see [12] Prop. 19.1. The same proposition can be applied to show that also $\mathcal{F}_\sigma^O(\cdot, A)$ is lower semicontinuous with respect to L^1_{loc} in H. To this aim it is enough to observe that it is possible to construct an open set U of class $C^{1,1}$ contained in $\mathbb{R}^N \setminus \overline{H}$ such that $\partial U \cap \partial H = \overline{O}$ and then to apply [12] Prop. 19.1 and Prop. 1.3 to $\mathbb{R}^N \setminus \overline{U}$.

We now prove some useful volume and perimeter density estimates.

Proposition 2.3. Let $\sigma \in (-1, 1)$, let E be a $(\Lambda, 1)$-minimizer of \mathcal{F}_σ with obstacle $O \in \mathcal{B}_R$ and assume that (2.2) is in force. Then there are universal positive constants c_1 and C_1 such that

(i) for all $x \in H$
$$P(E; B_r(x)) \leq C_1 r^{N-1};$$

(ii) for all $x \in \partial E$
$$|E \cap B_r(x)| \geq c_1 |B_r(x) \cap H|;$$

(iii) for all $x \in \partial E \cap H$
$$P(E; B_r(x) \cap H) \geq C_1 r^{N-1};$$

(iv) if $x \in \partial (H \setminus E)$ and $B_{2r}(x) \cap \partial H \subset O$, then
$$|B_r(x) \setminus E| \geq c_1 |B_r(x) \cap H|$$

for every $r \leq 1$. Finally, E is equivalent to an open set, still denoted by E, such that $\partial E = \partial^* E$, hence $\mathcal{H}^{N-1}(\partial E \setminus \partial^* E) = 0$.

Proof. The proof of this proposition follows the lines of [3, Lemma 2.8]; however, some modifications are needed. Given $x \in H$ and $r < 1$, we set $m(r) := |E \cap B_r(x)|$. Recall that for a.e. such r we have $m'(r) = \mathcal{H}^{N-1}(E^{(1)} \cap \partial B_r(x))$ and $\mathcal{H}^{N-1}(\partial^* E \cap \partial B_r(x)) = 0$. For any such r we set $F := E \setminus B_r(x)$. Then, using Definition 1.3, we have

$$P(E; B_r(x) \cap H) \leq \mathcal{H}^{N-1}(\partial B_r(x) \cap E^{(1)}) + \Lambda |E \cap B_r(x)| + |\sigma| P(E; \partial H \cap B_r(x))$$

(2.4)

for a suitable universal constant C_1. Observe now that by an easy application of the divergence theorem we have

$$P(E; \partial H \cap B_r(x)) = P(E \cap B_r(x); \partial H) \leq P(E \cap B_r(x); H).$$

Thus, using also (2.4), we have

$$P(E \cap B_r(x)) = P(E \cap B_r(x); H) + P(E \cap B_r(x); \partial H)$$

(2.5)

$$\leq 2P(E \cap B_r(x); H) = 2P(E; B_r(x) \cap H) + 2m'(r)$$

$$\leq 4m'(r) + 2\Lambda m(r) + 2|\sigma| P(E; \partial H \cap B_r(x))$$

$$\leq 4m'(r) + 2\Lambda m(r) + 2|\sigma| P(E \cap B_r(x); H).$$

Comparing the first term in the second line with the fourth line of the previous chain of inequalities we have in particular that

$$P(E \cap B_r(x); H) \leq \frac{1}{1 - |\sigma|} (2m'(r) + \Lambda m(r)).$$

In turn, inserting the above estimate in (2.5) and using the isoperimetric inequality we get

$$N \omega^\frac{1}{N} m(r)^\frac{N-1}{N} \leq P(E \cap B_r(x)) \leq \frac{2}{1 - |\sigma|} (2m'(r) + \Lambda m(r))$$

$$\leq \frac{2}{1 - |\sigma|} (2m'(r) + \Lambda r \omega^\frac{1}{N} m(r)^\frac{N-1}{N})$$

$$\leq \frac{2}{1 - |\sigma|} (2m'(r) + c_0 \omega^\frac{1}{N} m(r)^\frac{N-1}{N}),$$

which concludes the proof.
where in the last inequality we used (2.2). Now if \(\frac{2c_0}{1 - |\sigma|} \leq 1 \), then from the previous inequality we get

\[
(N - 1) \omega_N^{\frac{1}{N}} m(r)^{\frac{N-1}{N}} \leq \frac{4}{1 - |\sigma|} m'(r).
\]

Observe now that if in addition \(x \in \partial^s E \), then \(m(r) > 0 \) for all \(r \) as above. Thus, we may divide the previous inequality by \(m(r)^{\frac{N-1}{N}} \), and integrate the resulting differential inequality thus getting

\[
|E \cap B_r(x)| \geq c_1 |B_r(x) \cap H|,
\]

for a suitable positive constant \(c_1 \) depending only on \(N \) and \(|\sigma| \).

To get the lower density estimate on the perimeter, let \(x \in \partial^s E \cap H \) and \(r < 1 \). If \(\text{dist}(x, \partial H \cap O) > \frac{r}{2} \), then either \(B_\rho(x) \cap \partial H \subset \partial H \setminus O \) for all \(\rho \in (0, \frac{r}{2}) \) or \(B_\rho(x) \cap \partial H \subset O \) for all \(\rho \in (0, \frac{r}{2}) \).

In the first case, \(E \) is a \((\Lambda, r/2)\)-minimizer of the standard perimeter in \(B_\frac{r}{2}(x) \) under the constraint \(E \subset H \). Then an easy truncation argument implies that \(E \) is also an unconstrained \((\Lambda, r/2)\)-minimizer of the perimeter in the same ball. Then, the lower density estimate on the perimeter follows from classical results (see [12] Th. 21.11).

In the second case, it follows that \(H \setminus E \) is a \((\Lambda, r/2)\)-minimizer of \(F_{\sigma, \theta} \) in \(B_\frac{r}{2}(x) \) and thus, arguing as above, we get

\[
|E \cap B_\frac{r}{2}(x)| \leq (1 - c_1) |B_\frac{r}{2}(x) \cap H|
\]

and, in turn, by the relative isoperimetric inequality, setting for every \(\tau \in (\frac{1}{2}, 1) \)

\[
\kappa(\tau) := \inf_{t \geq 0} \inf \left\{ \frac{P(F; B_1(te_1) \cap H)}{|F|^{\frac{N-1}{N}}} : F \subset B_1(te_1) \cap H, |F| \leq \tau |B_1(te_1) \cap H| \right\}
\]

we obtain

\[
P(E; B_\frac{r}{2}(x) \cap H) \geq \kappa(1 - c_1) |E \cap B_\frac{r}{2}(x)|^{\frac{N-1}{N}} \geq c_1 \kappa(1 - c_1) |B_\frac{r}{2}(x) \cap H|^{\frac{N-1}{N}}.
\]

Assume now that \(\text{dist}(x, \partial H \cap O) \leq \frac{r}{2} \). Then, there exists \(y = (0, y') \in \partial H \cap O \) such that the ball \(B_{\frac{r}{2}}(y) \cap H \) is contained in \(B_\frac{r}{2}(x) \cap H \). Assume that \(|E \cap B_{\frac{r}{2}}(y)| \leq (1 - \gamma) |B_{\frac{r}{2}}(y) \cap H| \) for some small \(\gamma \in (0, \frac{1}{2}) \) to be chosen later. By the relative isoperimetric inequality we get

\[
P(E; B_\frac{r}{2}(x) \cap H) \geq \kappa_N \min\{|E \cap B_\frac{r}{2}(x)|, |(H \setminus E) \cap B_\frac{r}{2}(x)|\}^{\frac{N-1}{N}}.
\]

If \(\min\{|E \cap B_\frac{r}{2}(x)|, |(H \setminus E) \cap B_\frac{r}{2}(x)|\} = |E \cap B_\frac{r}{2}(x)| \), then (iii) follows from (ii). Otherwise

\[
P(E; B_\frac{r}{2}(x) \cap H) \geq \kappa_N \min\{|(H \setminus E) \cap B_\frac{r}{2}(y)|^{\frac{N-1}{N}}, |E \cap B_\frac{r}{2}(x)|^{\frac{N-1}{N}}\}
\]

\[
\geq \kappa_N \min\{|(H \setminus E) \cap B_{\frac{r}{2}}(y)|^{\frac{N-1}{N}}, |E \cap B_\frac{r}{2}(x)|^{\frac{N-1}{N}}\} \geq \kappa_N \left(\frac{\gamma \omega \omega_{N-1}}{2^{N+1}} \right)^{\frac{N-1}{N}} r^{N-1}.
\]

If instead

\[
(2.6) \quad |E \cap B_{\frac{r}{2}}(y)| > (1 - \gamma) |B_{\frac{r}{2}}(y) \cap H|,
\]

then we denote by \(\Pi \) the orthogonal projection on \(\partial H \) of \(\partial^s E \cap B_{\frac{r}{2}}(y) \cap H \). Set \(D := \{(0, z') : |z' - y'| < \frac{r}{4}\} \setminus O \) and observe that

\[
\mathcal{H}^{N-1}(D) \geq \tilde{c} \omega_{N-1} \left(\frac{r}{4} \right)^{N-1},
\]

for a universal constant \(\tilde{c} > 0 \). Note that in the above inequality we are using the assumption that \(O \in B_R \), with \(\frac{1}{R} \leq c_0 \) (see [2.2]). Assume first that \(\mathcal{H}^{N-1}(\Pi \cap D) \geq
\(\gamma \omega_{N-1}\left(\frac{t}{4}\right)^{N-1} \). In this case, we have

\[
(2.7) \quad P(E; B_{\frac{r}{2}}(y) \cap H) \geq \gamma \omega_{N-1}\left(\frac{t}{4}\right)^{N-1}.
\]

If instead \(\mathcal{H}^{N-1}(\Pi \cap D) < \gamma \omega_{N-1}\left(\frac{t}{4}\right)^{N-1} \), then

\[
|(H \setminus E) \cap B_{\frac{r}{2}}(y)| \geq \frac{r}{4} \mathcal{H}^{N-1}(D \setminus \Pi) \geq (\tilde{c} - \gamma) \omega_{N-1}\left(\frac{r}{4}\right)^{N}.
\]

The last inequality contradicts (2.6) if \(\gamma \) is sufficiently small. This contradiction shows that (2.7) holds under the assumption (2.6). This completes the proof of (iii).

Property (iv) follows from the volume estimate (ii) recalling that \(H \setminus E \) is a \((\Lambda, r_0)\)-minimizer for \(\mathcal{F}_{-\sigma} \) in \(B_{2\delta}(x) \).

In order to show that \(\partial E = \partial^{\ast} E \) it is enough to prove that \(\partial E \subset \partial^{\ast} E \). To this aim fix \(x \in \partial E \). If \(x \in H \), from the density estimates (ii) and (iv) we have at once that \(x \notin E^{(0)} \cup E^{(1)} \), that is \(x \notin \partial^{\ast} E \). On the other hand, if \(x \in \partial H \), then \(|B(x, r) \cap E| \geq \frac{1}{2} |B(x, r)| \) and again, recalling (ii), we have that \(x \notin \partial^{\ast} E \). Hence \(\mathcal{H}^{N-1}(\partial E \setminus \partial^{\ast} E) = \mathcal{H}^{N-1}(\partial^{\ast} E \setminus \partial E) = 0 \), where the last equality follows from Theorem 16.2 in [12].

Finally, since, see (2.1), \(\partial E^{(1)} = \partial E = \partial^{\ast} E \), we have that \(E^{(1)} \cap \partial E^{(1)} = \emptyset \), hence \(E^{(1)} \) is an open set.

We are now ready to prove the following compactness theorem for almost minimizers.

Theorem 2.4. Let \(\Lambda_h \geq 0 \), \(r_h, R_h \in [1, +\infty] \) satisfying

\[
\Lambda_h + \frac{1}{R_h} \leq c_0,
\]

and

\[
\Lambda_h \to \Lambda_0 \in [0, +\infty), \quad r_h \to r_0 \in [1, +\infty], \quad R_h \to R_0 \in [1, +\infty],
\]

with \(c_0 \) as in (2.2). Let \(E_h \) be a \((\Lambda_h, r_h)\)-minimizer of \(\mathcal{F}_{-\sigma} \) with obstacle \(O_h \in \mathcal{B}_{R_h} \). Then there exist a (not relabelled) subsequence, a set \(O \in \mathcal{B}_{R_0} \), and a set \(E \) of locally finite perimeter, such that \(E_h \to E \) in \(L^1_{loc}(\mathbb{R}^N) \), \(O_h \to O \) in \(C^{1,\alpha}_{loc} \) for all \(\alpha \in (0, 1) \), with the property that \(E \) is a \((\Lambda_0, r_0)\)-minimizer of \(\mathcal{F}_{-\sigma}^{\ast} \). Moreover,

\[
\mu_{E_h} \weakstar \mu_E, \quad |\mu_{E_h}| \weakstar |\mu_E|,
\]

as Radon measures. In addition, the following Kuratowski convergence type properties hold:

(i) for every \(x \in \partial E \) there exists \(x_h \in \partial E_h \) such that \(x_h \to x \);

(ii) if \(x_h \in \overline{H \cap \partial E_h} \) and \(x_h \to x \), then \(x \in \overline{H \cap \partial E} \).

Finally, if \(\Lambda_0 = 0 \) and \(\partial H \setminus \overline{O} \) is connected, then either \(\partial E \cap (\partial H \setminus \overline{O}) = \partial H \setminus \overline{O} \) or \(\partial E \cap \partial H \subset \overline{O} \). In the latter case, we have that \(E \) is a \((0, r_0)\)-minimizer with obstacle \(O \),

\[
|\mu_{E_h}| \ll H \weakstar |\mu_E| \ll H
\]

as Radon measures in \(\mathbb{R}^N \), and

\[
\partial E_h \cap \partial H \to \partial E \cap \partial H \quad \text{in } L^1_{loc}(\partial H).
\]

Proof. The proof goes along the lines of the proof of [3 Th. 2.9], with some nontrivial modifications that we explain here. First of all the existence of a non relabelled sequence \(E_h \) converging in \(L^1_{loc}(\mathbb{R}^N) \) to some set \(E \) of locally finite perimeter and such that \(\mu_{E_h} \weakstar \mu_E \) as Radon measures follows at once since the sets \(E_h \) have locally equibounded perimeters, thanks to Proposition 2.3 (i). The convergence, up to a subsequence, of \(O_h \) to \(O \in \mathcal{B}_{R_0} \) in \(C^{1,\alpha}_{loc} \) follows from Remark 1.2.
We may assume without loss of generality that $r_0 < +\infty$. We now want to show that E is a (Λ_0, r_0)-minimizer of \mathcal{F}_σ^O. To this end, let us fix a ball $B_{r_0}(x)$, and consider a competitor F for E such that $E\Delta F \Subset B_{r_0}(x)$. Note that for a.e. $r < r_0$ such that $E\Delta F \Subset B_r(x)$, we have $\mathcal{H}^{N-1}(\partial^* E \cap \partial B_r(x)) = \mathcal{H}^{N-1}(\partial^* E_h \cap \partial B_r(x)) = 0$ for all h and $\mathcal{H}^{N-1}((E\Delta E_h) \cap \partial B_r(x)) \rightarrow 0$. Choose any such r and set $F_h := (F \cap B_r(x)) \cup (E_h \setminus B_r(x))$.

Denoting by $O^\delta := \{x \in \partial H : d_0(x) < -\delta \text{ sign } \} \cap \partial H$ and recalling that E_h is a (Λ_h, r_h)-minimizer of $\mathcal{F}_{\sigma h}$, we have by Remark 2.2 if $\sigma \leq 0$

$$\mathcal{F}_\sigma^O(E; B_r(x)) \leq \liminf_{h} \mathcal{F}_\sigma^O(E_h; B_r(x)) \leq \liminf_{h} \mathcal{F}_{\sigma h}^O(E_h; B_r(x)) \leq \limsup_{h} \mathcal{F}_{\sigma h}^O(F_h; B_{r_0}(x)) + \Lambda_h|F_h \Delta E_h|$$

where we used the fact that $O_h \subset O^\delta$ for h sufficiently large. Instead, if $\sigma > 0$,

$$\mathcal{F}_\sigma^O(E; B_r(x)) \leq \liminf_{h} \mathcal{F}_\sigma^O(E_h; B_r(x)) \leq \liminf_{h} \left(\mathcal{F}_{\sigma h}^O(E_h; B_r(x)) + \mathcal{H}^{N-1}(\partial^* E_h \cap \partial B_r(x)) \right)$$

$$\leq \limsup_{h} \mathcal{F}_{\sigma h}^O(E_h; B_{r_0}(x)) + \Lambda_h|F_h \Delta E_h|$$

$$= \mathcal{F}_\sigma^O(F; B_{r_0}(x)) + \mathcal{H}^{N-1}(\partial^* E \cap \partial B_r(x)) + \Lambda_0|F \Delta E|.$$

Letting $\delta \rightarrow 0^+$ we have in both cases that

$$\mathcal{F}_\sigma^O(E; B_{r_0}(x)) \leq \liminf_{h} \mathcal{F}_{\sigma h}^O(E_h; B_{r_0}(x)) \leq \limsup_{h} \mathcal{F}_{\sigma h}^O(E_h; B_{r_0}(x)) \leq \mathcal{F}_\sigma^O(F; B_{r_0}(x)) + \Lambda_0|F \Delta E|.$$

Thus, we have proved that E is a (Λ_0, r_0)-minimizer of \mathcal{F}_σ^O. Choosing $F = E$ in the previous inequality, we obtain

$$\mathcal{F}_{\sigma h}^O(E_h; B_{r_0}(x)) \rightarrow \mathcal{F}_\sigma^O(E; B_{r_0}(x)).$$

Assume now that $\sigma \leq 0$ and observe that by the lower semicontinuity of perimeter we get

$$P(E; B_{r_0}(x) \setminus \overline{O^\delta}) \leq \liminf_{h} P(E_h; B_{r_0}(x) \setminus \overline{O^\delta})$$

$$\leq \liminf_{h} P(E_h; B_{r_0}(x) \setminus \overline{O_h}) = \liminf_{h} P(E_h; H \cap B_{r_0}(x)).$$

Hence, letting $\delta \rightarrow 0^+$ we have

$$P(E; B_{r_0}(x) \setminus \overline{O}) \leq \liminf_{h} P(E_h; H \cap B_{r_0}(x)).$$

On the other hand, by similar arguments

$$\limsup_{h} P(E_h; O_h \cap B_{r_0}(x)) = \limsup_{h} P(E_h; \overline{O_h} \cap B_{r_0}(x))$$

$$\leq P(E; \overline{O} \cap B_{r_0}(x)) = P(E; O \cap B_{r_0}(x)).$$

From the above inequalities and (2.8) and the fact that $\sigma \leq 0$ we deduce that

$$P(E_h; B_{r_0}(x)) \rightarrow P(E; B_{r_0}(x)).$$

From this inequality we deduce that $|\mu_{E_h}| \overset{*}{\rightharpoonup} |\mu_E|$ as Radon measures in \mathbb{R}^N. If $\sigma > 0$, we observe that

$$\sigma P(E_h; O_h \cap B_{r_0}(x)) = \sigma H^{N-1}(O_h \cap B_{r_0}(x)) - \sigma P(H \setminus E_h; O_h \cap B_{r_0}(x)).$$

Therefore, arguing as in the proof of (2.10) and recalling (2.9) we conclude that (2.11) holds also in this case. The properties (i) and (ii) then follow by standard arguments using also the perimeter density estimate stated in Proposition 2.3 (iii), see also Step 4 of the proof of Theorem 2.9 in [12].

Let us now prove the last part of the statement, and thus assume $\Lambda_0 = 0$ and that $\partial H \setminus \overline{O}$ is connected. Assume that there exists $x \in \partial E \cap (\partial H \setminus \overline{O})$. Since E is $(0, r_0)$-minimizer of the standard perimeter in $\mathbb{R}^N \setminus \overline{O}$ and E lies on one side of ∂H, we have that x is a regular point of ∂E. Indeed every blow-up is a minimizing cone contained in a half space and thus is a half space (see for instance [4, Lemma 3] for a proof of this well known fact). In turn this implies the local regularity. Then the strong maximum principle for the mean curvature equation implies that ∂E coincides with ∂H in the connected component of $\partial H \setminus \overline{O}$ containing x, that is, in the whole $\partial H \setminus \overline{O}$.

To conclude the proof observe now that if $\partial E \cap \partial H \subset \overline{O}$, then from (2.8) and (2.10), arguing as above, we conclude that

$$P(E_h; B_r(x) \cap H) \rightarrow P(E; B_r(x) \cap H)$$

and, in turn, $|\mu_{E_h}| \rightharpoonup |\mu_E|$ as Radon measures in \mathbb{R}^N. Now the very last part of the statement follows from [1], Th. 3.88.\square

3. ε-regularity

This section is devoted to the proof of the ε-regularity Theorem 3.21 for free boundary points lying on the thin obstacle $\partial \Omega$. Such a proof will split into two subsections.

3.1. Partial Harnack inequality. In the following for any $a < b$ and $\alpha \in \mathbb{R}$ we set

$$S_{a,b}^\alpha := \left\{ x \in \mathbb{R}^N : a < x_N - \alpha x_1 < b \right\}.$$

When $\alpha = \frac{\sigma}{\sqrt{1 - \sigma^2}}$ we shall simply write

$$S_{a,b} := \left\{ x \in \mathbb{R}^N : a < x_N - \frac{\sigma x_1}{\sqrt{1 - \sigma^2}} < b \right\}.$$

In the following we shall write a generic point $x \in \mathbb{R}^N$ as (x', x_N) with $x' = (x_1, \ldots, x_{N-1})$. With a slight abuse of notation we will also denote by x' the generic point of $\{x_N = 0\} \simeq \mathbb{R}^{N-1}$.

For $R > 0$, $x' \in \mathbb{R}^{N-1}$ we set $D_R(x') = \{ y' \in \mathbb{R}^{N-1} : |x' - y'| < R \}$ and $\mathcal{C}_R(x') := D_R(x') \times \mathbb{R}$, $\mathcal{C}_R^+(x') = D_R(x') \cap \{x_1 > 0\}$, $\mathcal{C}_R^+(x') = \mathcal{C}_R(x') \cap H$. When $x' = 0$ we will omit the center.

Lemma 3.1. There exist two universal constants $\varepsilon_0, \eta_0 \in (0, 1/2)$, with the following properties: If $E \subset H$ is a $(\Lambda, 1)$-minimizer of \mathcal{F}_σ in \mathbb{R}^N with obstacle $O \in \mathcal{B}_R$, such that for $0 < r \leq 1$

(3.1) \quad $\partial E \cap \mathcal{C}_2^+ \subset S_{a,b}$ with $(b - a) \leq \varepsilon_0 r$,

(3.2) \quad $\left\{ x_N < \frac{\sigma x_1}{\sqrt{1 - \sigma^2}} + a \right\} \cap \mathcal{C}_2^r \subset E$,

(3.3) \quad $\Lambda r^2 < \eta_0 (b - a)$ and

$$\frac{r^2}{R} \leq \eta_0 (b - a).$$
Ω satisfies the Neumann boundary

then there exist \(a' \geq a, \ b' \leq b \) with
\[
b' - a' \leq (1 - \eta_0)(b - a)
\]
such that
\[
\partial E \cap C^+_2 \subset S_{a', b'}.
\]
The same conclusion holds if assumption (3.3) is replaced by
\[
(3.5) \quad \partial_{DH} \Omega \cap C_{a,b} = \emptyset.
\]

Remark 3.2. We start noticing that if \(E \subset H \) is a \((\Lambda,1)\)-minimizer of \(\mathcal{F}_\sigma \) in \(\mathbb{R}^N \) with obstacle \(O \in \mathcal{B}_{\mathcal{R}} \) such that, for \(0 < r \leq 1 \), \((3.1) \) and \((3.2) \) hold, then
\[
(3.6) \quad \{ x_N < \frac{\sigma x_1}{\sqrt{1 - \sigma^2}} + a \} \cap C^+_2 \subset E \cap C^+_2 \subset \{ x_N < \frac{\sigma x_1}{\sqrt{1 - \sigma^2}} + b \} \cap C^+_2.
\]
provided \(\varepsilon_0 \) is small enough. Indeed if the above inequalities were not true then \(E \cap C^+_2 \) would be contained in \(S_{a,b} \) thus violating the volume density estimates in Proposition 2.3.

We will investigate the consequences of the flatness condition:
\[
\partial E \cap C^+_2 \subset S_{-r, r}.
\]
Thanks to Remark 3.2 we may define two functions \(u^\pm : D^+_2 \to \mathbb{R} \) as
\[
\begin{align*}
u^+(x') &= \max \{ x_N : (x', x_N) \in \partial E \} \\
u^-(x') &= \min \{ x_N : (x', x_N) \in \partial E \}.
\end{align*}
\]
Note that \(u^+ \) is upper semicontinuous and \(u^- \) is lower semicontinuous. In particular we may define for every \(x' \in D^+_2 \cap \{ x_1 = 0 \} \)
\[
u^-(x') = \inf \{ \liminf_{h \to -\infty} u^- (x'_h) : x'_h \in D^+_2, x'_h \to x' \}
\]
and, similarly, \(u^+(x') = \sup \{ \limsup_{h \to \infty} u^- (x'_h) : x'_h \in D^+_2, x'_h \to x' \} \). Observe that \(\{ (x', x_N) : x' \in D^+_2, x_N < u^-(x') \} \subset E \) and thus from the above definition it follows that for
\[
\{ (x', x_N) : x' \in D^+_2 \cap \{ x_1 = 0 \}, x_N < u^-(x') \} \subset \partial E \cap \partial H.
\]
In the following we recall the notions of viscosity super- and subsolutions.

Definition 3.3. Let \(\Omega \subset \mathbb{R}^d \) be an open set and let \(v : \Omega \to \mathbb{R} \) be a lower (upper) semicontinuous function. Given \(\xi_0 \in \mathbb{R}^d \), a constant \(\gamma \in \mathbb{R} \) we say that \(v \) satisfies the inequality
\[
(3.7) \quad \operatorname{div}\left(\frac{\nabla v + \xi_0}{\sqrt{1 + |\nabla v + \xi_0|^2}} \right) \leq \gamma \quad (\geq \gamma)
\]
in the viscosity sense if for any function \(\varphi \in C^2(\Omega) \) such that \(\varphi \leq v \) (\(\varphi \geq v \)) in a neighborhood of a point \(x_0 \in \Omega \), \(\varphi(x_0) = v(x_0) \) one has
\[
(3.8) \quad \operatorname{div}\left(\frac{\nabla \varphi + \xi_0}{\sqrt{1 + |\nabla \varphi + \xi_0|^2}} \right)(x_0) \leq \gamma \quad (\geq \gamma).
\]
Moreover, a lower (upper) semicontinuous function \(v \) in \(\overline{\Omega} \) satisfies the Neumann boundary condition
\[
\frac{\nabla v \cdot n}{\sqrt{1 + |\nabla v|^2}} \leq \gamma \quad (\geq \gamma), \quad \text{on } \Gamma
\]
in the viscosity sense, where Γ is a subset of $\partial \Omega$ and n stands for the inner normal to $\partial \Omega$, if for every $\varphi \in C^2(\mathbb{R}^d)$ such that $\varphi \leq v$ ($\varphi \geq v$) in a neighborhood of a point $x_0 \in \Gamma$, $\varphi(x_0) = v(x_0)$, one has that
\[
\frac{\nabla \varphi(x_0) \cdot n}{\sqrt{1 + |\nabla \varphi(x_0)|^2}} \leq \gamma \ (\geq \gamma).
\]

In the following we also need the following restricted notions of viscosity super- and subsolutions.

Definition 3.4. Let $v : \Omega \to \mathbb{R}$ be a lower (upper) semicontinuous function, $\xi_0 \in \mathbb{R}^d$ and $\gamma \in \mathbb{R}$. Given $\kappa > 0$, we say that v satisfies the inequality (3.7) in the κ-viscosity sense if (3.8) holds for any function $\varphi \in C^2(\Omega)$ such that $\varphi \leq v$ ($\varphi \geq v$) in a neighborhood of a point $x_0 \in \Omega$, $\varphi(x_0) = v(x_0)$ and $|\nabla \varphi(x_0)| \leq \kappa$.

We now recall a crucial result, which is essentially contained in [16].

Proposition 3.5. Let $\xi \in \mathbb{R}^d$ with $|\xi| \leq M$. There exist two constants $C_0 > 1$ and $\mu_0 \in (0, 1)$, depending only on M and d, with the following properties: Let k be a positive integer and $\nu > 0$ such that $C_0^k \nu \leq 1$ and let $v : B_2 \to (0, \infty)$ be a lower semicontinuous function, bounded from above, satisfying
\[
(3.9) \quad \text{div} \left(\frac{\nabla u + \xi}{\sqrt{1 + |\nabla u + \xi|^2}} \right) \leq \nu
\]
in the $(C_0^k \nu)$-viscosity sense. If there exists a point $x_0 \in B_{1/2}$ such that $v(x_0) \leq \nu$, then
\[
|\{v \leq C_0^k \nu\} \cap B_1| \geq (1 - \mu_0^k)\|B_1\|.
\]

Note that in [16] condition (3.9) is assumed to hold in the usual viscosity sense and not in the $(C_0^k \nu)$-viscosity sense considered here. However the proof of [16] extends to our framework without significant changes, see the Appendix where we provide the details for the reader’s convenience.

We now prove a comparison lemma which is a variant of Lemma 2.12 in [3]. To this aim, in the following, given $0 < a < r$ we set
\[
D_{r,a} := D_r \cap \{|x_1| < a\} \quad \text{and} \quad D^+_{r,a} := D^+_r \cap \{x_1 < a\}.
\]

Lemma 3.6. Let $E \subset H$ be a 0-minimizer of $\mathcal{F}_-\sigma$ with obstacle $O \in \mathcal{B}_R$ for some $R > 0$, let $0 < \eta < r$ and let $u_0 \in C^2(\overline{D^+_{r,\eta}})$ be such that
\[
(3.10) \quad \text{div} \left(\frac{\nabla u_0}{\sqrt{1 + |\nabla u_0|^2}} \right) \geq 0 \quad \text{in} \ D^+_{r,\eta},
\]
\[
\frac{\partial_1 u_0}{\sqrt{1 + |\nabla u_0|^2}} \geq \sigma \quad \text{on} \ D^+_{r,\eta} \cap \{x_1 = 0\}.
\]
Assume also that E is bounded from below,
\[
(3.11) \quad E \cap \{(\partial D^+_{r,\eta} \cap \{x_1 > 0\}) \times \mathbb{R}\} \subset \{(x', x_N) \in (\partial D^+_{r,\eta} \cap \{x_1 > 0\}) \times \mathbb{R} : x_N \geq u_0(x')\}
\]
and that
\[
(3.12) \quad \mathcal{H}^{N-1}(\partial E \cap \{(\partial D^+_{r,\eta} \cap \{x_1 > 0\}) \times \mathbb{R}\}) = 0.
\]
Then,
\[
E \cap (D^+_{r,\eta} \times \mathbb{R}) \subset \{(x', x_N) \in D^+_{r,\eta} \times \mathbb{R} : x_N \geq u_0(x')\}.
\]
Proof. We adapt the argument of [3, Lemma 2.12]. Denote
\[C := D^{+}_{r,H} \times \mathbb{R} \]
and set
\[F^\pm := \{(x', x_N) \in C : x_N \geq u_0(x')\} \]
Consider the competitor given by
\[G := (E \setminus C) \cup (E \cap F^+) \]
which is an admissible compact perturbation of \(E \) since \(E \) is bounded from below. From the minimality of \(E \) we then obtain
\[
\mathcal{H}^{N-1}(\partial E \cap F^-) + \mathcal{H}^{N-1}(\partial E \cap \partial F^- \cap C \cap \{\nu_E = \nu_{F^-}\}) \\
- \sigma \mathcal{H}^{N-1}(\partial E \cap \partial F^- \cap \partial H) \\
\leq \mathcal{H}^{N-1}(E \cap \partial F^- \cap C).
\] (3.13)
Denote
\[X(x) := \frac{1}{\sqrt{1 + |\nabla u_0(x')|^2}}(\nabla u_0(x'), -1), \]
and observe that \(\text{div} \ X \geq 0 \) in \(C \), thanks to the first assumption in (3.10). Then by the Divergence Theorem we obtain
\[
0 \leq \int_{E \cap F^-} \text{div} \ X \, dx = \int_{\partial E \cap F^-} X \cdot \nu_E \, d\mathcal{H}^{N-1} + \int_{\partial F^- \cap E \cap C} X \cdot \nu_{F^-} \, d\mathcal{H}^{N-1} \\
+ \int_{\partial E \cap \partial F^- \cap C \cap \{\nu_E = \nu_{F^-}\}} X \cdot \nu_E \, d\mathcal{H}^{N-1} - \int_{\partial E \cap \partial F^- \cap \partial H} X \cdot \nu_{F^-} \, d\mathcal{H}^{N-1},
\]
Observing that \(X \cdot \nu_{F^-} = -1 \) on \(\partial F^- \cap C \), from the previous inequality, we get, thanks to the second assumption in (3.10),
\[
\sigma \mathcal{H}^{N-1}(\partial E \cap \partial F^- \cap \partial H) \leq \int_{\partial E \cap \partial F^- \cap \partial H} \frac{\partial_1 u_0}{\sqrt{1 + |\nabla u_0|^2}} \, d\mathcal{H}^{N-1} \\
\leq \int_{\partial E \cap F^-} X \cdot \nu_E \, d\mathcal{H}^{N-1} + \int_{\partial E \cap \partial F^- \cap C \cap \{\nu_E = \nu_{F^-}\}} X \cdot \nu_E \, d\mathcal{H}^{N-1} \\
- \mathcal{H}^{N-1}(\partial F^- \cap E \cap C) \\
\leq \mathcal{H}^{N-1}(\partial E \cap F^-) + \mathcal{H}^{N-1}(\partial E \cap \partial F^- \cap C \cap \{\nu_E = \nu_{F^-}\}) \\
- \mathcal{H}^{N-1}(\partial F^- \cap E \cap C) \\
\leq \sigma \mathcal{H}^{N-1}(\partial E \cap \partial F^- \cap \partial H),
\]
where the last inequality follows from (3.13). Thus all the inequalities above are equalities and, in turn, \(X \cdot \nu_{F^-} = 1 \) on \(\partial E \cap F^- \). We now conclude by applying the Divergence Theorem in \(E \cap F^- \) to the vector field \(Y(x') := (x', x' \cdot \nabla u_0(x')) \). Since \(Y \cdot \nu_{E \cap F^-} = 0 \) \(\mathcal{H}^{N-1} \)-a.e. on \(\partial E \cap F^- \) and on \(\partial F^- \cap C \), recalling (3.11) and (3.12), we obtain
\[
(N - 1)|E \cap F^-| = \int_{E \cap F^-} \text{div} \ Y \, dx = 0,
\]
and the conclusion follows.
\[\square \]
Lemma 3.7. Let $E \subset H$ be a $(\Lambda,1)$-minimizer of F_σ in \mathbb{R}^N with obstacle $O \in \mathcal{B}_R$. Assume also that (3.6) holds for some a,b and with $\sqrt{\frac{\sigma}{1-\sigma}}$ replaced by α for some $\alpha \in \mathbb{R}$, with $r = 1$, so that the functions u^\pm are well defined on D_2^\pm. Then the functions u^+, u^- satisfy

\begin{equation}
\frac{\nabla u^+}{\sqrt{1 + |\nabla u^+|^2}} \geq -\Lambda \quad \text{in } D_2^+,
\end{equation}
\begin{equation}
\frac{\nabla u^-}{\sqrt{1 + |\nabla u^-|^2}} \leq \Lambda \quad \text{in } D_2^+,
\end{equation}
\begin{equation}
\frac{\partial_1 u^+}{\sqrt{1 + |\nabla u^+|^2}} \geq \sigma \quad \text{on } \Gamma,
\end{equation}
\begin{equation}
\frac{\partial_1 u^-}{\sqrt{1 + |\nabla u^-|^2}} \leq \sigma \quad \text{on } \Gamma \cap \{x': (x', u^-(x')) \in O\},
\end{equation}

in the viscosity sense, where $\Gamma := D_2 \cap \{x_1 = 0\}$.

Proof. Step 1. We prove the statement first for u^-. We fix $x'_0 \in D_2^+$ and take a function $\varphi \in C^2(D_2^+)$ such that x'_0 is a strict minimum point for $u^- - \varphi$ in D_2^+ and $u^-(x_0') = \varphi(x'_0)$. Assume by contradiction that

\begin{equation}
\frac{\nabla \varphi}{\sqrt{1 + |\nabla \varphi|^2}} > \Lambda
\end{equation}

in a neighborhood of x'_0. For $\eta > 0$ set

$E_\eta := E \cup \{x \in E^c : x_N < \varphi(x') + \eta\}$

and note that if η is sufficiently small is an admissible competitor for E. Note that by Λ-minimality, for all but countably many such η,

\begin{equation}
F_\sigma(E; C_2) - F_\sigma(E_\eta; C_2)
\end{equation}

\begin{equation}
= H^{N-1}(\partial E \cap \{x_N < \varphi(x') + \eta\}) - H^{N-1}(E^c \cap \{x_N = \varphi(x') + \eta\}) \leq \Lambda |E_\eta \setminus E|.
\end{equation}

On the other hand, setting

$X := \left(\frac{\nabla \varphi}{\sqrt{1 + |\nabla \varphi|^2}}, -\frac{1}{\sqrt{1 + |\nabla \varphi|^2}}\right)$,

by (3.15) and (3.16) we have, if η is small enough,

$\Lambda |E_\eta \setminus E| < \int_{E_\eta \setminus E} \text{div } X \, dx$

\begin{align*}
&= -\int_{\partial E \cap \{x_N < \varphi(x') + \eta\}} X \cdot \nu_E \, dH^{N-1} + \int_{E^c \cap \{x_N = \varphi(x') + \eta\}} X \cdot \nu_{E_\eta} \, dH^{N-1} \\
&\leq H^{N-1}(\partial E \cap \{x_N < \varphi(x') + \eta\}) - H^{N-1}(E^c \cap \{x_N = \varphi(x') + \eta\}) \leq \Lambda |E_\eta \setminus E|,
\end{align*}

which yields a contradiction.

Step 2. Let $\varphi \in C^2(D_2)$ such that $\varphi \leq u^-$ in a neighborhood of $x'_0 \in D_2 \cap \{x_1 = 0\}$ in D_2^+, $\varphi(x'_0) = u^- (x'_0)$ and $(x'_0, u^- (x'_0)) \in O$ and thus it lies strictly below the boundary of the obstacle. We claim that

\begin{equation}
\frac{\partial_1 \varphi (x'_0)}{\sqrt{1 + |\nabla \varphi (x'_0)|^2}} \leq \sigma.
\end{equation}
We argue by contradiction assuming that
\begin{equation}
\frac{\partial_1 \varphi(x'_0)}{\sqrt{1 + |\nabla \varphi(x'_0)|^2}} > \sigma.
\end{equation}
In this case we set
\[E_n := n \left(E - (x'_0, u^-(x'_0)) \right), \quad \varphi_n(x') := n \left[\varphi \left(x'_0 + \frac{x'}{n} \right) - \varphi(x'_0) \right], \quad O_n := n \left(O - (x'_0, u^-(x'_0)) \right). \]
Observe that \(E_n \) is a \((\Lambda/n, n) \)-minimizer of \(\mathcal{F}_\sigma \) with obstacle \(O_n \). By Theorem 2.4 we may assume that up to a not relabelled subsequence \(E_n \to E_\infty \) in \(L^1_{loc}(\mathbb{R}^N) \), where \(E_\infty \) is a 0-minimizer of \(\mathcal{F}_\sigma \) (with obstacle \(\partial H \)). Moreover, from property (ii) of Theorem 2.4 we have that
\begin{equation}
0 \in \partial E_\infty \cap H.
\end{equation}
Note also that \(\varphi_n \to \varphi_\infty \) locally uniformly, where \(\varphi_\infty(x') := \nabla \varphi(x'_0) \cdot x' \), and that
\begin{equation}
E_\infty \supset \{(x', x_N) \in H : x_N < \varphi_\infty(x')\}.
\end{equation}
Set now for \(\varepsilon > 0 \) small (to be chosen)
\[\psi_\varepsilon(x') := \varphi_\infty(x') - \varepsilon x_1 - \frac{\varepsilon^2}{2} |x'|^2 + \frac{\varepsilon}{2} x_1^2. \]
A direct calculation shows that
\[\frac{1}{\varepsilon} \text{div} \left(\frac{\nabla \psi_\varepsilon}{\sqrt{1 + |\nabla \psi_\varepsilon|^2}} \right) \to \frac{1 + |\nabla \varphi(x'_0)|^2 - |\partial_1 \varphi(x'_0)|^2}{(1 + |\nabla \varphi(x'_0)|^2)^{3/2}} > 0, \]
locally uniformly. Therefore, we may fix \(\varepsilon > 0 \) so small that
\begin{equation}
\text{div} \left(\frac{\nabla \psi_\varepsilon}{\sqrt{1 + |\nabla \psi_\varepsilon|^2}} \right) > 0 \quad \text{in } D^+_1
\end{equation}
and that, recalling (3.18),
\begin{equation}
\frac{\partial_1 \psi_\varepsilon}{\sqrt{1 + |\nabla \psi_\varepsilon|^2}} > \sigma \quad \text{on } \partial D^+_1 \cap \{x_1 = 0\}.
\end{equation}
Observe that we may now choose \(\eta, r \in (0, 1) \) such that
\begin{equation}
\psi_\varepsilon < \varphi_\infty \quad \text{on } \partial D^+_{r, \eta} \quad \text{and} \quad \mathcal{H}^{N-1}(\partial E_\infty \cap [\partial D^+_{r, \eta} \cap \{x_1 > 0\} \times \mathbb{R}]) = 0.
\end{equation}
Finally, let \(w \in C^\infty_c(D_{r, \eta}) \), with \(w(0) > 0 \), and note that by (3.21) and (3.22) we may choose \(\delta \in (0, 1) \) so small that, setting \(\psi_{\varepsilon, \delta} := \psi_\varepsilon + \delta w \), we have
\begin{equation}
\text{div} \left(\frac{\nabla \psi_{\varepsilon, \delta}}{\sqrt{1 + |\nabla \psi_{\varepsilon, \delta}|^2}} \right) > 0 \quad \text{in } D^+_1,
\end{equation}
\begin{equation}
\frac{\partial_1 \psi_{\varepsilon, \delta}}{\sqrt{1 + |\nabla \psi_{\varepsilon, \delta}|^2}} > \sigma \quad \text{on } \partial D^+_{r, \eta} \cap \{x_1 = 0\}.
\end{equation}
Recall that \(H \setminus E_\infty \) is a 0-minimizer of \(\mathcal{F}_{-\sigma} \). Note that this minimality property is a consequence of the fact that \(E_\infty \) is a 0-minimizer of \(\mathcal{F}_\sigma \), which in turn follows from the assumption that \((x'_0, u^-(x'_0)) \) does not touch the boundary of \(O \). Moreover, by (3.20) and (3.23), we have
\begin{equation}
(H \setminus E_\infty) \cap \{(x'_0, u^-) \times \mathbb{R} \} \subset \{(x', x_N) \in (\partial D^+_{r, \eta} \cap \{x_1 > 0\}) \times \mathbb{R} : x_N \geq \psi_{\varepsilon, \delta}(x')\}.
\end{equation}
Therefore, taking into account also (3.24), we can apply Lemma 3.6 with \(E, u_0 \) replaced by \(H \setminus E_\infty, \psi_{\varepsilon, \delta} \), respectively, to conclude that
\begin{equation}
(H \setminus E_\infty) \cap (D^+_{r, \eta} \times \mathbb{R}) \subset \{(x', x_N) \in D^+_{r, \eta} \times \mathbb{R} : x_N \geq \psi_{\varepsilon, \delta}(x')\}.
\end{equation}
In particular, since $\psi_{\varepsilon,\delta}(0) > 0$ the latter inclusion contradicts (3.19). This concludes the proof of (3.17).

Step 3. Concerning the proof of the statement for u^+, the case where $x'_0 \in D^+_2$ is proved with the same argument used in Step 1. Instead, when $x'_0 \in D_2 \cap \{x_1 = 0\}$ we argue as in Step 2, replacing E by $\tilde{E} := \{(x',-x_N) : (x',x_N) \in E\}$ with the only difference that at the end of the proof we apply Lemma 3.6 to \tilde{E}_∞ instead of $H \backslash \tilde{E}_\infty$.

In the following for $x' \in D^+_2$, we set

$$u^+_\sigma(x') := u^+(x') - \frac{\sigma x_1}{\sqrt{1 - \sigma^2}}.$$

Lemma 3.8. There exist two universal constants $C_1 > 1$, $\mu_1 \in (0,1)$ with the following property: Let $E \subset H$ be a $(\Lambda,1)$-minimizer of F_σ in \mathbb{R}^N with obstacle $O \in B_R$. Assume that (3.6) holds for $a = -\varepsilon, b = \varepsilon, \varepsilon \in (0,1)$, $r = 1$, so that the functions u^\pm are well defined on D^+_2. Assume also that $\Lambda < \eta \varepsilon$ with $\eta \in (0,1)$ and

$$O \cap S_{-\varepsilon,\varepsilon} \cap C_2 = \{x \in S_{-\varepsilon,\varepsilon} : x_1 = 0, x_N < (\psi(x_2,\ldots,x_{N-1})) \cap C_2,$$

where $\psi \in C^{1,1}(\partial H \cap D_2)$ with

$$\text{div}\left(\frac{\nabla \psi + \xi_0}{\sqrt{1 + |\nabla \psi + \xi_0|^2}}\right) \leq \eta \varepsilon,$$

$$\xi_0 := \frac{\sigma}{\sqrt{1 - \sigma^2}} \varepsilon_1.$$

Then the following holds:

(i) If there exists $\tilde{x}' \in D^+_{1/2}$ such that $u^+_\sigma(\tilde{x}') \geq (1 - \eta) \varepsilon$, then

$$\mathcal{H}^{N-1}(\{x' \in D^+_1 : u^+_\sigma(x') \geq (1 - C_1^k \eta) \varepsilon\}) \geq (1 - \mu_1^k) \mathcal{H}^{N-1}(D^+_1)$$

for all $k \geq 1$ such that $C_1^k \sqrt{\eta \varepsilon} \leq 1$.

(ii) If there exists $\tilde{x}' \in D^+_{1/2}$ such that $u^-_\sigma(\tilde{x}') \leq -(1 - \eta) \varepsilon$, then

$$\mathcal{H}^{N-1}(\{x' \in D^+_1 : \min\{u^-_\sigma(x'), \psi(x')\} \leq -(1 - C_1^k \eta) \varepsilon\}) \geq (1 - \mu_1^k) \mathcal{H}^{N-1}(D^+_1)$$

for all $k \geq 1$ such that $C_1^k \sqrt{\eta \varepsilon} \leq 1$.

where we have set $\psi(x') = \psi(x_2,\ldots,x_{N-1})$ when $x_1 > 0$.

Proof. We start by proving (ii). To this aim we split the proof in three steps.

Step 1. Set $w^-(x') = \min\{u^-(x'), \psi(x') + \xi_0 \cdot x'\} = \min\{u^-(x'), \psi(x') + \frac{\sigma x_1}{\sqrt{1 - \sigma^2}}\}$. We claim that w^- satisfies

$$\text{div}\left(\frac{\nabla w^-}{\sqrt{1 + |\nabla w^-|^2}}\right) \leq \eta \varepsilon \quad \text{in } D^+_2$$

in the viscosity sense. To this aim assume that $x'_0 \in D^+_2$ is a strict minimum point for $w^- - \varphi$ in D^+_2, with $\varphi \in C^2(D^+_2)$ and $w^-(x'_0) = \varphi(x'_0)$. If $w^-(x'_0) = \psi(x'_0) + \xi_0 \cdot x'_0$, then clearly we also have that x'_0 is a minimum point of $x' \to \psi(x') + \xi_0 \cdot x' - \varphi(x')$ and thus

$$\text{div}\left(\frac{\nabla \varphi}{\sqrt{1 + |\nabla \varphi|^2}}\right)(x'_0) \leq \text{div}\left(\frac{\nabla \psi + \xi_0}{\sqrt{1 + |\nabla \psi + \xi_0|^2}}\right)(x'_0) \leq \eta \varepsilon.$$

If otherwise $w^-(x'_0) = u^-(x'_0)$ the claim follows from Lemma 3.7 since $\Lambda < \eta \varepsilon$.

Step 2. We now denote by w^-_σ the function defined on D_2 obtained by even reflection of

$$\min\{u^-_\sigma, \psi\} - L_k x_1, \quad L_k := \left(\frac{\sigma^+}{2\sqrt{1 - \sigma^2}} + 1\right)C^2_1 \eta^2 \varepsilon^2,$$
with respect to \(\partial H \), where \(C_1 > 1 \) will be chosen later and \(k \) is an integer such that \(C_1^k \sqrt{\eta} \leq 1 \). We claim that \(w_\sigma^- \) satisfies the inequality

\[
\text{div} \left(\frac{\nabla w_\sigma^- + \xi_0 + L_k e_1}{\sqrt{1 + |\nabla w_\sigma^- + \xi_0 + L_k e_1|^2}} \right) \leq \eta \varepsilon \quad \text{in } D_2
\]

in the \((C_1^k \eta)\)-viscosity sense, see Definition 3.4. To this aim let \(\varphi \in C^2(D_2) \) such that \(w_\sigma^- - \varphi \) has a minimum at \(x'_0 \in D_2 \) and \(|\nabla \varphi(x'_0)| \leq C_1^k \eta \varepsilon \). We first show that \(x'_0 \not\in \partial H \).

Indeed, assume by contradiction the opposite and assume in addition that \(u_\sigma^- (x'_0) < \varphi(x'_0) \), that is \(u^- (x'_0) < \psi(x'_0) \). Then, by Lemma 3.7 using as a test function \(\varphi + \left(\frac{\sigma}{\sqrt{1 - \sigma^2}} + L_k \right) x_1 \), we infer that

\[
\frac{\partial_1 \varphi(x'_0)}{\sqrt{1 + (\partial_1 \varphi(x'_0) + A_k)^2 + |\nabla' \varphi(x'_0)|^2}} \leq \sigma,
\]

where we set \(A_k := \frac{\sigma}{\sqrt{1 - \sigma^2}} + L_k \) and \(\nabla' \varphi = \nabla \varphi - (\partial_1 \varphi)e_1 \). From this inequality, using that \(|\nabla' \varphi| \leq C_1^k \eta \varepsilon \), we easily get

\[
\partial_1 \varphi(x'_0) + A_k \leq \frac{\sigma}{\sqrt{1 - \sigma^2}} + \frac{\sigma^+ C_1^k \eta \varepsilon}{2}.
\]

In turn, the last inequality implies that \(\partial_1 \varphi(x'_0) < 0 \).

On the other hand the symmetric argument in \(D_2^- \) shows that \(\partial_1 \varphi(x'_0) > 0 \), thus leading to a contradiction. If instead \(u^- (x'_0) = \psi(x'_0) \), i.e., \(u_\sigma^- (x'_0) = \psi(x'_0) \) then \(x'_0 \) is a minimum for \(\psi - L_k x_1 - \varphi \) in \(D_2^- \) and thus, in particular,

\[
\partial_1 \varphi(x'_0) \leq \partial_1 \psi(x'_0) - L_k = -L_k < 0.
\]

Arguing symmetrically in \(D_2^- \) we also get \(\partial_1 \varphi(x'_0) > 0 \), which is again a contradiction.

Thus, \(x'_0 \in D_2^+ \cup D_2^- \) and the fact that \(w_\sigma^- \) satisfies (3.25) in the viscosity sense now follows easily from Step 1, since on \(D_2^+ \) we have \(w_\sigma^- (x') = w^-(x') - \left(\frac{\sigma}{\sqrt{1 - \sigma^2}} + L_k \right) x_1 \).

Step 3. Observe that from our assumptions we have that \(-\varepsilon \leq \min \{ u_\sigma^-, \psi \} \leq \varepsilon \). Thus, \(0 < w_\sigma^- + \varepsilon + 2L_k \) in \(D_2^- \). Moreover, by assumption we have

\[
w_\sigma^- (x') + \varepsilon + 2L_k \leq \left(1 + \frac{\sigma^+}{\sqrt{1 - \sigma^2}} + 2 \right) C_1^k \eta \varepsilon \leq \left(3 + \frac{\sigma^+}{\sqrt{1 - \sigma^2}} \right) \eta \varepsilon := \nu.
\]

Therefore from Step 2 and by Proposition 3.5 applied with \(d = N - 1 \), we have that

\[
\mathcal{H}^{N-1}(\{ w_\sigma^- + \varepsilon + 2L_k \leq C_1^k \nu \} \cap D_1) \geq (1 - \mu_0^k) \mathcal{H}^{N-1}(D_1),
\]

provided that \(C_1^k \nu \leq C_1^k \eta \varepsilon \leq 1 \), where \(\mu_0 \) and \(C_0 \) are the constants provided by Proposition 3.5 corresponding to \(M = \frac{\sigma}{\sqrt{1 - \sigma^2}} + \frac{\sigma^+}{\sqrt{2(1 - \sigma^2)}} + 1 \). Note that the inequality \(C_1^k \nu \leq C_1^k \eta \varepsilon \) is satisfied if we take \(C_1 \geq C_0 (3 + \sigma^+ (1 - \sigma^2)^{-1/2}) \). Thus we finally have

\[
\mathcal{H}^{N-1}(\{ \min \{ u_\sigma^-, \psi \} \leq -\varepsilon + L_k x_1 - 2L_k + C_0^k \nu \} \cap D_1^+) \geq (1 - \mu_0^k) \mathcal{H}^{N-1}(D_1^+),
\]

from which the conclusion (ii) follows since \(L_k x_1 - 2L_k + C_0^k \nu \leq C_1^k \eta \varepsilon \) in \(D_1^+ \).

Concerning the proof of (i) we argue as in the previous steps with \(w^- \) replaced by \(-u^+ \) and \(w_\sigma^- \) replaced by the even reflection of \(-u_\sigma^+ - L_k x_1 \).

Remark 3.9. Note that if \(\partial_\partial H \cap C_2 \cap S_{-\varepsilon, \varepsilon} = \emptyset \) the conclusion of Lemma 3.8 holds with \(\min \{ u_\sigma^-, \psi \} \) replaced by \(u_\sigma^- \). \(\square \)
Remark 3.10. Observe that the following interior version of the previous lemma holds:
Let κ be a positive number. There exist a constant $C_1 > 1$ and $\mu_1 \in (0, 1)$ depending only on κ with the following property: if $E \subset H$ is a $(\Lambda, 1)$-minimizer of the perimeter in \mathbb{R}^N such that
\[
\partial E \cap C_2(y') \subset S_{\epsilon, \varepsilon}^\alpha, \subset E,
\]
for some $y' = (y_1, \ldots, y_{N-1})$ with $y_1 \geq 2$, $\alpha \in [-\kappa, \kappa]$, $\varepsilon \in (0, 1)$, $\Lambda < \varepsilon \eta$ with $\eta \in (0, 1)$, then the following holds:
(i) If there exists $\bar{x}' \in D_{1/2}(y')$ such that $u^+(\bar{x}') - \alpha \bar{x}_1 \geq (1 - \eta)\varepsilon$, then
\[
\mathcal{H}^{N-1}(\{x' \in D_1(y') : u^+(x') - \alpha x_1 \geq (1 - C_1^\delta)\eta\varepsilon\}) \geq (1 - \mu_1^k)\mathcal{H}^{N-1}(D_1^+),
\]
for all $k \geq 1$ such that $C_1^k \sqrt{\eta\varepsilon} \leq 1$.
(ii) If there exists $\bar{x}' \in D_{1/2}(y')$ such that $u^-(\bar{x}') - \alpha \bar{x}_1 \leq -(1 - \eta)\varepsilon$, then
\[
\mathcal{H}^{N-1}(\{x' \in D_1(y') : u^-(x') - \alpha x_1 \leq -(1 - C_1^\kappa)\eta\varepsilon\}) \geq (1 - \mu_1^k)\mathcal{H}^{N-1}(D_1^+)
\]
for all $k \geq 1$ such that $C_1^k \sqrt{\eta\varepsilon} \leq 1$.

This clearly follows from the interior version of the previous arguments. We only remark that the uniformity of the estimates with respect to α varying in a bounded interval relies on the estimates provided by Proposition 3.5 which are uniform with respect to ξ varying in a bounded set.

We need also the following lemma which relies on the classical interior regularity theory for (Λ, r_1)-minimizers of the perimeter.

Lemma 3.11. For every $\delta \in (0, 1)$, $\kappa > 0$, there exists $\varepsilon > 0$ such that if E is a $(\Lambda, 1)$-minimizer of the perimeter in C_2^+ with $\Lambda \leq 1$ such that
\[
\partial E \cap C_2^+ \subset S_{\varepsilon, \epsilon}^\alpha,
\]
with $\alpha \in [-\kappa, \kappa]$, then the corresponding functions u^+ and u^- coincide in D_1^+ outside a set of measure less than δ.

Proof. It is enough to observe that given $\delta' \in (0, 1)$, a sequence $\varepsilon_n > 0$ converging to zero and a sequence E_n of (Λ_n, r_n)-minimizers, with $\Lambda_n + \frac{1}{r_n} \leq 2$ and $\partial E_n \cap C_2^+ \subset S_{\varepsilon_n, \epsilon}^\alpha$, with $\alpha_n \in [-\kappa, \kappa]$, $\alpha_n \to \alpha$, then from classical regularity results we have that $\partial E_n \cap C_1^+ \cap \{x_1 > \delta'\}$ converge in C^1 to the plane $\{x_N - \alpha x_1 = 0\}$.

Lemma 3.12. For every $\delta > 0$ there exists $\eta = \eta(\delta) \in (0, 1/2)$ with the following property: Let $O \in B_R$ be such that
\[
(3.26) \quad \partial H \cap \{x_N = -\varepsilon r\} \cap C_{2r} \subset \overline{O},
\]
for some $\varepsilon \in (0, 1]$, and for some $r > 0$ with $\frac{\varepsilon}{R} \leq \eta(\delta)\varepsilon$. Assume also that there exists a point $x' \in \partial \partial H \cap C_r \cap \{(-\varepsilon r \leq x_N \leq \varepsilon r\}$. Then the connected component of $\partial \partial H \cap C_2$ containing x' is the graph of a function $\psi \in C^{1,1}(\partial H \cap D_2)$ such that
\[
\|D^2\psi\|_{L^\infty(\partial H \cap D_2)} \leq \delta \varepsilon.
\]

Proof. By rescaling it is enough to prove the statement with $r = 1$.

Observe that, under our assumptions, if $\eta(\delta)$ is sufficiently small, hence R is large, then the connected component of $\partial \partial H \cap C_2$ containing x' is the graph of a $C^{1,1}(\partial H \cap D_2)$ function. We argue by contradiction assuming that there exist a sequence $\varepsilon_n \in (0, 1]$, a
sequence $O_h \in B_{R_h}$, with $\frac{1}{R_h} \leq \frac{\varepsilon_h}{h}$ such that $\partial H \cap \{x_N = -\varepsilon_h\} \cap C_2 \subset \tilde{O}_h$ for all h and that there exist $x'_h \in \partial H \cap \{x_N \leq \varepsilon_h\}$ such that

$$
\|D\psi_h\|_{L^\infty(\partial H \cap D_2)} > \varepsilon_h \quad \text{or} \quad \|D^2\psi_h\|_{L^\infty(\partial H \cap D_2)} > \varepsilon_h \delta,
$$

where the graph of $\psi_h \in C^{1,1}(\partial H \cap D_2)$ describes the connected component of $\partial H \cap C_2$.

We now set $\tilde{O}_h = \Phi_h(O_h)$ where $\Phi_h(x) = (x_1, \ldots, x_{N-1}, \varepsilon_h^{1-h} x_N)$. Since Φ_h maps balls of radius 1 into ellipsoids with maximal semiaxis of length $\frac{1}{\varepsilon_h} - \varepsilon$, it is easy to check that $\tilde{O}_h \in B_{R_h}$. Without loss of generality we may assume that $\Phi_h(x'_h)$ converges to a point $\bar{x}' \in \partial H \cap C_1$ with $-1 \leq \bar{x}' \leq 1$. Then, recalling that $\varepsilon_h R_h \to +\infty$ and thus the uniform inner and outer ball condition for \tilde{O}_h hold for larger and larger radii, by a compactness argument we have that the connected components of $\partial H \tilde{O}_h$ containing x'_h converge locally (up to a subsequence) in the Hausdorff sense to a $(N - 2)$-dimensional plane π passing through \bar{x}' and such that $\pi \cap C_2 \subset \{x_N \geq -1\}$. Note that the latter inclusion follows from (3.26) applied to \tilde{O}_h and $\varepsilon = 1$. Note also that this inclusion together with the fact that $x'_N \leq 1$ yields that the slope of π is strictly less than 1. Hence the functions $\frac{\psi_h}{\varepsilon_h}$ converge locally uniformly (actually in $C^{1,1}$) to an affine function whose gradient has norm strictly less than 1. This contradicts (3.27) for h sufficiently large.

Proof of Lemma 3.1. By a simple rescaling argument it is enough to prove the statement for $r = 1$. Up to renaming the coordinates we can assume that $a + b = 0$, so that if we set $\varepsilon = (b - a)/2$ our assumption becomes

$$
\partial E \cap C_2^+ \subset S_{-\varepsilon, \varepsilon}.
$$

Let $0 < \eta_0 < 1$ to be fixed in an universal way. If $\sup D^1_{1/2} u_\sigma^+ \leq \varepsilon - \eta_0 \varepsilon$ (resp. if $\inf D^1_{1/2} u_\sigma^- \geq -\varepsilon + \eta_0 \varepsilon$) we are done by choosing $a' = a = -\varepsilon$ and $b' = \varepsilon - \eta_0 \varepsilon = b - \eta_0 (b - a)/2$ (resp. $b' = b = \varepsilon$ and $a' = -\varepsilon + \eta_0 \varepsilon = a + \eta_0 (b - a)/2$).

Hence we can assume by contradiction that there are $x', \bar{x}' \in D^1_{1/2}$ such that

$$
u_\sigma^+(x') > -\varepsilon \eta_0 \varepsilon \quad \text{and} \quad u_\sigma^-(\bar{x}') < \varepsilon - \eta_0 \varepsilon.
$$

Assume that (3.34) holds. Then there exists $y' \in \partial H \cap C_1 \cap \{\varepsilon < y_N < \varepsilon\}$. Then, we may apply Lemma 3.12 to conclude that the connected component of $\partial H \cap C_2$ containing y' is the graph of a function $\psi \in C^{1,1}(\partial H \cap D_2)$, where $\|D^2\psi\|_{L^\infty(\partial H \cap D_2)} \leq \delta \varepsilon$ with $\delta = \delta(\sigma)$ so small that

$$
\text{div} \left(\frac{-\sqrt{\varepsilon \tan \theta} + \xi_0}{\sqrt{1 + \varepsilon \tan \theta + \xi_0^2}} \right) \leq \eta_0 \varepsilon.
$$

This is certainly true provided that $O \in B_R$ with $\frac{1}{R} \leq \eta(\delta(\sigma)) \varepsilon$. Thus we can apply Lemma 3.8 with k_0 large to infer that

$$
\mathcal{H}^{N-1}(\{x' \in D^1_1 : u_\sigma^+(x') \geq (1 - C^{k_0}_{1, k_0} \eta_0) \varepsilon\}) \geq (1 - \mu_{k_0}^{k_0}) \mathcal{H}^{N-1}(D^1_1) \geq \frac{3}{4} \mathcal{H}^{N-1}(D^1_1)
$$

and

$$
\mathcal{H}^{N-1}(\{x' \in D^1_1 : \min\{u_\sigma^- \psi, \psi\} \leq -(1 - C^{k_0}_{1, k_0} \eta_0) \varepsilon\}) \geq (1 - \mu_{k_0}^{k_0}) \mathcal{H}^{N-1}(D^1_1) \geq \frac{3}{4} \mathcal{H}^{N-1}(D^1_1),
$$

provided that $C^{k_0}_{1, k_0} \sqrt{\eta_0} \leq 1$. If $\psi \leq -(1 - C^{k_0}_{1, k_0} \eta_0) \varepsilon$ in $D_1 \cap \partial H$ we are done since from Lemma 3.11 we may assume that $\mathcal{H}^{N-1}(\{u^+ \neq u^\pm\}) < \mathcal{H}^{N-1}(D^1_1)/4$ and therefore from the two previous inequalities we get

$$
\mathcal{H}^{N-1}(\{x' \in D^1_1 : u_\sigma^+(x') \geq (1 - C^{k_0}_{1, k_0} \eta_0) \varepsilon\} \cap \{u^+ = u^\pm\}) > \frac{1}{2} \mathcal{H}^{N-1}(D^1_1).
$$
and
\[\mathcal{H}^{N-1}(\{x' \in D_1^+ : \min\{u_{\sigma}, \psi\} \leq -(1 - C_{k_0} \eta_0)\varepsilon\} \cap \{u_+ = u_-\}) > \frac{1}{2} \mathcal{H}^{N-1}(D_1^+) \]
which is impossible.

Hence we only have to deal with the case where there exists a point in \(D_1 \cap \partial H\) at which \(\psi \leq -(1 - C_{k_0} \eta_0)\varepsilon \leq -3\varepsilon/4\) (provided \(\eta_0\) is small). Thus, up to replacing \(O\) with \(O + \frac{3\varepsilon}{4} \mathbb{E}_N\), we may apply Lemma 3.12 in \(C_2\) with \(\varepsilon\) replaced by \(\varepsilon/4\) (and taking \(\eta(\delta)\) smaller if needed) to conclude that \(\|\nabla \psi\|_{L^\infty(D_2)} \leq \frac{C}{\varepsilon}\). In turn this estimate implies that \(\psi \leq 0\) in \(D_2 \cap \partial H\).

Let \(\Omega \subset \mathbb{R}^{N-1}\) be a smooth set such that \(D^+_{4/3} \subset \Omega \subset D^+_{5/2}\) and consider the solution to the following problem:
\[
\begin{aligned}
\Delta w_\mu(1 + |\xi|^2) - D_{11} w_\mu|\xi|^2 &= -\mu & \text{in } \Omega, \\
w_\mu &= \varphi & \text{on } \partial \Omega,
\end{aligned}
\]
where \(\varphi\) is a smooth function such that \(\varphi \equiv 1\) on \(\partial \Omega \cap H\) and \(\varphi \equiv 1/4\) on \(D_1 \cap \partial H\), and \(\varphi \geq 1/4\) elsewhere on \(\partial \Omega\) and \(\mu > 0\) is to be chosen. Note that \(w_\mu\) is smooth on \(\overline{\Omega}\) and that it converges in \(C^2(\overline{\Omega})\), as \(\mu \to 0\), to the function \(w_0\) such that \(w_0 = \varphi\) on \(\partial \Omega\) and
\[\Delta w_0(1 + |\xi|^2) - D_{11} w_0|\xi|^2 = 0 \quad \text{in } \Omega, \]
By the maximum principle there exists \(\tau \in (0, 1/2)\) such that \(\max_{\partial D_1^+} w_0 \leq 1 - 2\tau\). Therefore there exists \(\mu_0 > 0\) such that
\[\max_{\partial \Omega} w_{\mu_0} \leq 1 - \tau. \]
We now claim that for \(\varepsilon \leq \varepsilon_0\), with \(\varepsilon_0\) depending only on \(w_0\), the function \(v_\varepsilon := \varepsilon w_{\mu_0}\) satisfies
\[
\text{div} \left(\frac{\nabla v_\varepsilon + \xi_0}{\sqrt{1 + |\nabla v_\varepsilon + \xi_0|^2}} \right)
= \frac{\varepsilon}{(1 + |\varepsilon \nabla w_{\mu_0} + \xi_0|^2)^{3/2}} \left[\Delta w_{\mu_0}(1 + |\varepsilon \nabla w_{\mu_0} + \xi_0|^2) - D^2 w_{\mu_0} \left(\varepsilon \nabla w_{\mu_0} + \xi_0 \right) (\varepsilon \nabla w_{\mu_0} + \xi_0) \right]
\leq \varepsilon \left(-\mu_0 + C\varepsilon \left(1 + \|w_0\|_{C^2(\overline{\Omega})}^3 \right) \right) < -\frac{\varepsilon \mu_0}{2} < -2\eta_0 \varepsilon,
\]
with \(C > 0\) universal, provided \(\varepsilon_0\) and \(\eta_0\) are chosen small enough.

By our assumptions, \(u_{\sigma}^- \leq v_\varepsilon\) on \(\partial \Omega\). Thus, recalling the first inequality in (3.14) and the assumption on \(\Lambda\), we get that
\[\text{div} \left(\frac{\nabla u_{\sigma}^+ + \xi_0}{\sqrt{1 + |\nabla u_{\sigma}^+ + \xi_0|^2}} \right) \geq -2\eta_0 \varepsilon \]
in the viscosity sense. By the comparison principle we conclude that \(u_{\sigma}^+ \leq v_\varepsilon\) in \(\Omega\). In turn, recalling (3.29), we infer
\[\sup_{D_1^+} u_{\sigma}^+ \leq \sup_{D_1^+} v_\varepsilon \leq (1 - \tau) \varepsilon. \]
This is in contradiction with (3.28) if \(\eta_0 < \tau\).

Finally, if (3.5) holds, we may argue as before taking \(\psi = \varepsilon\).

Lemma 3.13. There exist \(\varepsilon_1, \eta_1 \in (0, 1/2)\) universal with the following property: if \(E \subset H\) is a \((\Lambda, 1)\)-minimizer of \(\mathcal{F}_\sigma\) in \(\mathbb{R}^N\) with obstacle \(O \in \mathcal{B}_R\), such that
\[\partial E \cap C^+_{2r}(x') \subset S_{a,b} \quad \text{with } b - a \leq \varepsilon_1 r, \]
There exist universal constants \(\epsilon_2, M_0 > 0 \) with the following property. Assume that \(E \subset H \) is a \((\Lambda,1)\)-minimizer of \(F_\sigma \) in \(\mathbb{R}^N \) with obstacle \(O \in \mathcal{B}_R \). Assume also that
\[
\partial E \cap H \cap C_{2r} \subset \{ x_N - \alpha x_1 < \epsilon r \}, \quad \{ x_N < \alpha x_1 - \epsilon r \} \cap C_{2r}^+ \subset E, \n\]
for some \(0 < \epsilon \leq \epsilon_2, 0 < r \leq 1 \) with \(\Lambda r \leq \epsilon \) and \(\frac{r}{R} \leq \eta(1)\epsilon \) (where \(\eta(1) \) is as in Lemma \ref{lem:3.12}), and for some \(\alpha \geq M_0\epsilon \frac{\sigma}{\sqrt{1-\sigma^2}} \). Then
\[
\partial E \cap H \cap \partial H \cap C_{r/2} = \partial \Omega H \cap \mathcal{C}_{r/2} \cap \{ |x_N| < \epsilon r \}.
\]
Proof. Without loss of generality, by a rescaling argument, we may assume \(r = 1 \).

We start by assuming that there exists \(y' \in \partial_0 H \cap C_1 \cap S_{-\epsilon, \epsilon} \). From the assumption on \(O \) we get, thanks to Lemma \[3.12\] that the connected component of \(\partial_0 H \cap C_2 \) containing \(y' \) is a graph of a \(C^{1,1} \) function \(\psi \) such that \(\|D\psi\|_{L^{\infty}(\partial_0 H \cap D_2)} \leq \epsilon \), \(\|D^2\psi\|_{L^{\infty}(\partial_0 H \cap D_2)} \leq \epsilon \).

In particular

\[
\|\psi\|_{L^{\infty}(\partial_0 H \cap D_1)} \leq 3\epsilon.
\]

As said, the proof is obtained via a barrier construction. To this end we fix \(z' \in (0, z_2, \ldots, z_{N-1}) \) with \(|z'| \leq 1/2 \) and assume by contradiction that \(u^-(z') < \psi(z') \). We define for \(x' \in \mathbb{R}^{N-1} \)

\[
w(x') = \beta x_1 + \gamma \varepsilon (L x_1^2 - |x' - z'|^2) + \psi(z') + \nabla \psi(z') \cdot (x' - z') + c
\]

where

\[
\beta = \frac{M_0 \varepsilon}{2} + \frac{\sigma}{\sqrt{1 - \sigma^2}},
\]

\(L \) and \(\gamma \) are positive constants to be chosen and \(c \) is the first constant such that the function \(w \) touches from below \(u^- \) in \(\overline{D}_1(z') \). Observe that \(c \leq 0 \), since \(w(z') = \psi(z') + c \leq u^-(z') \leq \psi(z') \), and that

\[
\frac{1}{\varepsilon} \text{div} \left(\frac{\nabla w}{\sqrt{1 + |\nabla w|^2}} \right) \rightarrow 2\gamma \frac{(L - N + 1)(1 + |\xi_0|^2) - (L - 1)|\xi_0|^2}{(1 + |\xi_0|^2)^{3/2}}
\]

uniformly in \(D_2 \) as \(\varepsilon \to 0 \), where \(\xi_0 = \sigma \varepsilon_1 / \sqrt{1 - \sigma^2} \). Therefore, if \(L \) is chosen so large that the right hand side of (3.34) is bigger than 2, there exists \(\varepsilon_2 \) depending on \(M_0 \) such that if \(0 < \varepsilon < \varepsilon_2 \) then

\[
\frac{1}{\varepsilon} \text{div} \left(\frac{\nabla w}{\sqrt{1 + |\nabla w|^2}} \right) > \varepsilon.
\]

Observe that if \(x' \in \partial D_{1/2}(z') \cap \{ x_1 \geq 0 \} \), then

\[
w(x') \leq \beta x_1 + \frac{\gamma L \varepsilon}{2} x_1 - \frac{\gamma}{4} \varepsilon + \psi(z') + \nabla \psi(z') \cdot (x' - z') < \alpha x_1 - \varepsilon \leq u^-(x'),
\]

provided \(M_0 > \gamma L \) and \(\gamma \geq 18 \), where in the last inequality we used (3.33). We claim that \(w \) does not touch \(u^- \) at a point \(x_0 \in \overline{D}_1(z') \). Indeed if this is the case, by Lemma \[3.7\] recalling that \(\Lambda \) by assumption is smaller than \(\varepsilon \) we would get that

\[
\frac{1}{\varepsilon} \text{div} \left(\frac{\nabla w}{\sqrt{1 + |\nabla w|^2}} \right)(x_0) \leq \varepsilon
\]

a contradiction to (3.35). Thus we may conclude that \(w \) touches \(u^- \) at a point \(x' \in \{ x_1 = 0 \} \cap \partial D_1(z') \). Assume by contradiction that \(u^-(x') < \psi(x') \), then from the last inequality in (3.14), observing that

\[
|\nabla w(x') - \partial_1 w(x') e_1| \leq C \varepsilon,
\]

for a constant depending only on \(N \), we have

\[
\partial_1 w(x') \leq \frac{\sigma}{\sqrt{1 - \sigma^2}} + \frac{\sigma^+ C^2 \varepsilon^2}{2}.
\]

which is impossible, provided that \(M_0 \) is sufficiently large, since

\[
\partial_1 w(x') = \frac{M_0 \varepsilon}{2} + \frac{\sigma}{\sqrt{1 - \sigma^2}}.
\]

Therefore, at the touching point we have

\[
0 = u^-(x') - w(x') = \psi(x') - w(x'),
\]

and we are concluded.
hence
\[\psi(\vec{x}') = \psi(z') + \nabla \psi(z') \cdot (\vec{x}' - z') + c - \gamma \varepsilon|\vec{x}' - z'|^2. \]

On the other hand, recalling that |\nabla^2 \psi| \leq \varepsilon, we have
\[\psi(\vec{x}') \geq \psi(z') + \nabla \psi(z') \cdot (\vec{x}' - z') - \varepsilon|\vec{x}' - z'|^2. \]

Combining the two inequalities we get that \(0 \geq c \geq (\gamma - 1)\varepsilon|\vec{x}' - z'|^2. \) Therefore \(\vec{x}' = z' \)

hence \(\psi(z') = u^-(z'). \)

If instead \(\partial_{\partial H} O \cap C_1 \cap S_{-\varepsilon, \varepsilon} = \emptyset, \) we may repeat the same argument as before with \(\psi \) replaced by \(\psi \equiv \varepsilon, \) obtaining that \(u^\pm = \psi = \varepsilon \) in \(\partial H \cap C_{1/2} \) which is impossible by assumption. \(\square \)

Remark 3.16. Note that the assumptions of the previous lemma force the obstacle \(\psi \) to satisfy the inequality \(|\psi| < \varepsilon r \) in \(\partial H \cap C_{r/2}. \)

Lemma 3.17. For all \(\tau \in (0, 1/2), \) \(M > 0, \) there exist constants \(\lambda_0 = \lambda_0(M, \tau) > 0, \)
\(C_2 = C_2(M, \tau) > 0 \) such that for all \(\lambda \in (0, \lambda_0) \) one can find \(\varepsilon_3 = \varepsilon_3(M, \tau, \lambda) > 0, \)
\(\eta_2 = \eta_2(M, \tau, \lambda) > 0 \) with the following property: Assume \(E \subset H \) is a \((\Lambda, 1) \)-minimizer of \(F_\sigma \) in \(\mathbb{R}^N \) with obstacle \(O \in B_R. \) Assume also that \(0 \in \partial E \cap H \) and
\[\partial E \cap H \cap C_r \subset \{ |x_N - \alpha x_1| < \varepsilon r \} \cap C_r \subset E, \]
for some \(0 < \varepsilon \leq \varepsilon_3, \) \(0 < r \leq 1 \) with \(\Lambda \varepsilon \leq \eta_2 \varepsilon \) and \(\frac{r}{\varepsilon} \leq \eta_2 \varepsilon, \) and for some \(\frac{\sigma}{\sqrt{1 - \sigma^2}} \leq \alpha \leq M \varepsilon + \frac{\sigma}{\sqrt{1 - \sigma^2}}. \) Then there exist \(\bar{\alpha} \geq \frac{\sigma}{\sqrt{1 - \sigma^2}}, \) a rotation \(R \) about the \(x_1 \) axis, with
\[\|R - \text{Id}\| \leq C_2 \varepsilon, \]
\[|\bar{\alpha} - \alpha| \leq C_2 \varepsilon, \]
such that
\[R(\partial E \cap H) \cap C_{2r} \subset \{ |x_N - \bar{\alpha} x_1| < \lambda^{1 + r} \varepsilon r \}. \]

Proof. By rescaling it is enough to show the statement for \(r = 1. \) We argue by contradiction and we assume that there exist \(\tau \) and \(M \) and sequences \(\varepsilon_n \to 0, \)
\[\frac{\sigma}{\sqrt{1 - \sigma^2}} \leq \alpha_n \leq M \varepsilon_n + \frac{\sigma}{\sqrt{1 - \sigma^2}}, \]
\((\Lambda_n, 1) \)-minimizers \(E_n \) with \(0 \in \partial E_n \cap H, \)
\[\partial E_n \cap H \cap C_1 \subset \{ |x_N - \alpha_n x_1| < \varepsilon_n \} \]
and \(\{ x_N < \alpha_n x_1 - \varepsilon r \} \cap C_r \subset E, \) \(\Lambda_n \subset B_{R_n}, \) such that \(\Lambda_n \leq \frac{\varepsilon_n}{n}, \)
\[\frac{1}{R_n} \leq \frac{\varepsilon_n}{n}, \]
for which the conclusion fails for all \(\bar{\alpha}, R \) with \(|\bar{\alpha} - \alpha_n| \leq C_2 \varepsilon_n, \)
\[\|R - \text{Id}\| \leq C_2 \varepsilon_n, \]
and for a certain \(\lambda \leq \lambda_0. \) We will show that for a suitable choice of \(C_2 \) and \(\lambda_0 \) depending only on \(M, \tau \) and the dimension this will lead to a contradiction.

We claim that there exist universal constants \(C > 0, \) \(\beta \in (0, 1] \) and \(\gamma_n \geq \gamma_0, \) \(\gamma_n \to 0, \)
such that for all \(x', y' \in D_{1/2}^+, \) with \(|x' - y'| \geq \gamma_n, \)
\[|u_{n,\sigma}^+(x') - u_{n,\sigma}^-(y')| \leq C \varepsilon_n |x - y|^\beta, \]
\[|u_{n,\sigma}^+(x') - u_{n,\sigma}^-(y')| \leq C \varepsilon_n |x - y|^\beta, \]
where \(u_{n,\sigma}^\pm \) are the functions defined as \(u_{n,\sigma}^\pm \) with \(E \) replaced by \(E_n. \)

To prove the claim we fix \(x' \in D_{1/2}^+. \) Note that our assumptions imply that if \(0 < \varrho \leq \frac{1}{12} \)
\[\partial E_n \cap H \cap C_{\varrho} \subset S_{a, b}, \]
with \(b - a = 2(1 + M) \varepsilon_n. \) We now apply Lemma 3.13 to conclude that for all \(y' \in D_{1/2}^+(x') \)
\[|u_{n,\sigma}^+(x') - u_{n,\sigma}^-(y')| < 2(1 + M)(1 - \eta_1) \varepsilon_n, \]
\[|u_{n,\sigma}^-(x') - u_{n,\sigma}^+(y')| < 2(1 + M)(1 - \eta_1) \varepsilon_n, \]
provided that
\[\gamma_n \leq 8 \eta_1 (1 + M). \]

Thus, inequalities (3.37) hold for \(n \) sufficiently large. Note that (3.37) implies that
\[\partial E_n \cap H \cap C_{\varrho} \subset S_{b', a}, \]
with \(b' - a' \leq 2(1 + M)(1 - \eta_1) \varepsilon_n. \)
Therefore, by applying Lemma 3.13 \(m_n - 1\) more times we conclude that for all \(y' \in \overline{D_{\frac{1}{64^{m_n}}}}^+(x'), j = 0, 1, \ldots, m_n - 1,\)

\[
|u_{n,\sigma}^+(x') - u_{n,\sigma}^+(y')| < 2(1 + M)(1 - \eta_1)^{j+1}\epsilon_n, \\
|u_{n,\sigma}^-(x') - u_{n,\sigma}^-(y')| < 2(1 + M)(1 - \eta_1)^{j+1}\epsilon_n,
\]

provided that

\[
4 \cdot 64^j(1 + M)(1 - \eta_1)^{j}\epsilon_n \leq \epsilon_1 \rho, \\
\frac{\rho^2}{64^{2m_n}} \leq 8\eta_1(1 - \eta_1)^{j}(1 + M).
\]

Note that the last inequality follows from the second one in (3.38), since \(\eta_1 < \frac{1}{2}\), while the first holds provided \(m_n\) is the largest integer for which

\[
4 \cdot 64^{m_n-1}(1 + M)(1 - \eta_1)^{m_n-1}\epsilon_n \leq \epsilon_1 \rho.
\]

In particular, taking \(\rho = \frac{1}{2}\) and applying (3.39) with \(y' \in \overline{D_{\frac{1}{64^n}}^+(x')} \setminus D_{\frac{1}{64^n}}^+(x')\) and \(j = 1, \ldots, m_n - 1\) we easily get that if \(y' \in \overline{D_{\frac{1}{128}}}^+(x') \setminus D_{\gamma_n}^+(x')\), with \(\gamma_n = \frac{1}{2}\sqrt{64^{m_n}}\), then

\[
|u_{n,\sigma}^+(x') - u_{n,\sigma}^+(y')| \leq C\epsilon_n|x' - y'|^\beta, \\
|u_{n,\sigma}^-(x') - u_{n,\sigma}^-(y')| \leq C\epsilon_n|x' - y'|^\beta,
\]

for a constant \(C\) depending only on \(M\) and \(\beta = \frac{-\log(1-\eta_1)}{\log 64}\). This proves (3.36) when \(x' \in \overline{D_{\frac{1}{2}}}^+\) and \(y' \in \overline{D_{\frac{1}{128}}}^+(x')\), with \(|x' - y'| \geq \gamma_n\). Clearly, \(\gamma_n \to 0\), since \(m_n \to \infty\).

In particular if we consider the functions

\[
v_{n,\sigma}(x') = \frac{u_{n,\sigma}^+(x') - \left(\alpha_n - \frac{\sigma}{\sqrt{1-\sigma^2}}\right)\epsilon_n}{\epsilon_n} = \frac{u_{n,\sigma}^+(x') - \alpha_n x_1}{\epsilon_n},
\]

they converge (up to a subsequence) to the same Hölder continuous function \(v\) defined on \(D_{1/2}^+\) (note that \(\alpha_n - \frac{\sigma}{\sqrt{1-\sigma^2}} \leq M\epsilon_n\)). Furthermore \(\|v\|_\infty \leq 1\) and \(v(0) = 0\), since the assumption \(0 \in \overline{D_{\frac{1}{64^n}}^+} \cap H\) implies that \(u_{n,\sigma}^-(0) \leq 0 \leq u_{n,\sigma}^+(0)\). We also assume that (up to further subsequence),

\[
\frac{1}{\epsilon_n} \left(\alpha_n - \frac{\sigma}{\sqrt{1-\sigma^2}}\right) \to \gamma \in [0, M].
\]

We now consider two possible cases. Let us assume first that for all \(n\) there exists \(y_n' \in \partial_0 O_n \cap C_{\frac{1}{2}} \cap \{-\epsilon_n < x_N < \epsilon_n\}\). Then by Lemma 3.12 we have that for \(n\) large the connected component of \(\partial_0 O_n \cap C_1\) containing \(y_n'\) is a graph of a \(C^{1,1}\) function \(\psi_n\) such that

\[
\|D\psi_n\|_{L^\infty(\partial_0 H \cap D_1)} \leq 2\epsilon_n, \\
\|D^2\psi_n\|_{L^\infty(\partial_0 H \cap D_1)} \leq \delta_n\epsilon_n
\]

for a suitable sequence \(\delta_n\) converging to zero. Recall that

\[
\frac{\psi_n(y_n')}{\epsilon_n} \in (-1, 1).
\]

Therefore we may assume that, up to a subsequence,

\[
\frac{\psi_n(x')}{\epsilon_n} \to \psi_\infty + \omega \cdot x' \quad \text{uniformly with respect to} \quad x' \in D_1 \cap \partial H
\]

for some \(\psi_\infty \in [-2, 2]\) and \(\omega \in \mathbb{R}^{N-1}\) of the form \((0, \omega_2, \ldots, \omega_{N-1})\) with \(|\omega| \leq 2\).
We now claim that \(v - \omega \cdot x' \) satisfies
\[
Lw := \Delta w(1 + |\xi_0|^2) - D_{11} w|\xi_0|^2 = 0 \quad \text{in } D_{1/2}^+ \\
w \leq \psi_\infty \quad \text{on } D_{1/2} \cap \{x_1 = 0\} \\
\partial_1 w \geq -\gamma \quad \text{on } D_{1/2} \cap \{x_1 = 0\} \\
(\psi_\infty - w)(\partial_1 w + \gamma) = 0 \quad \text{on } D_{1/2} \cap \{x_1 = 0\}
\]
in the viscosity sense. To this aim observe that the functions \(u_{n}^\pm \), are subsolutions, respectively supersolutions, of
\[
\text{div} \left(\frac{\nabla w}{\sqrt{1 + |\nabla w|^2}} \right) = \mp \frac{\epsilon_n}{n}
\]
thanks to Lemma 3.7 Therefore \(v_n^- \) and \(v_n^+ \) are supersolutions, respectively subsolutions, of
\[
L_n w := \Delta w - \frac{D^2 w(\alpha_n e_1 + \epsilon_n \nabla w)(\alpha_n e_1 + \epsilon_n \nabla w)}{1 + |\alpha_n e_1 + \epsilon_n \nabla w|^2} = \pm \frac{1}{n} \sqrt{1 + |\alpha_n e_1 + \epsilon_n \nabla w|^2}.
\]
Passing to the limit in the previous equation, recalling that \(v_n^\pm \) converge to \(v \) uniformly in \(D_{1/2}^+ \) and using the stability of viscosity super- and subsolutions, we get that \(v \), hence \(v - \omega \cdot x' \), is a viscosity solution of the first equation in (3.41). Recalling that \(v_n^\pm \leq \frac{\bar{\psi}_n}{\epsilon_n} \) on \(D_{1/2} \cap \partial H \), we get that \(v(x') \leq \psi_\infty + \omega \cdot x' \) for all \(x' \in D_{1/2} \cap \partial H \), hence the second inequality in (3.41) follows for \(v = \langle \omega, \cdot \rangle \).

To prove the third inequality we take a \(C^2 \) test function \(\varphi \) touching \(v \) from above in \(D_{1/2}^+ \) at a point \(\vec{x}' \in D_{3/2} \cap \{x_1 = 0\} \). Without loss of generality we may assume that \(\vec{x}' \) is the unique touching point. We argue by contradiction assuming that \(\partial_1 \varphi(\vec{x}') < -\gamma \). If this is the case the function
\[
\tilde{\varphi}(x') = -\tilde{\gamma} x_1 - b x_1^2 + \varphi(0, x_2, \ldots, x_{N-1}) \quad \text{with } \tilde{\gamma} \in (\gamma, -\partial_1 \varphi(\vec{x}'))
\]
and \(b > 0 \) to be chosen, stays above \(\varphi \) and hence above \(v \) in a neighborhood of \(\vec{x}' \). In particular \(\vec{x}' \) is the unique touching point between \(\tilde{\varphi} \) and \(v \) in such a neighborhood. Therefore there exists a sequence \(x_n' \in D_{1/2}^+ \) converging to \(\vec{x}' \) such that \(x_n' \) is a local maximizer of \(v_n^+ = \tilde{\varphi} \). If \(x_n' \in D_{1/2}^+ \) for infinitely many \(n \), thus recalling the subsolution property of \(v_n^+ \) we have
\[
L_n \tilde{\varphi}(x_n') \geq \frac{1}{n} \sqrt{1 + |\alpha_n e_1 + \epsilon_n \nabla \tilde{\varphi}(x_n')|^2}.
\]
Thus, passing to the limit, \(L \tilde{\varphi}(\vec{x}') \geq 0 \) which is impossible if we choose \(b \) so large that \(L \tilde{\varphi}(\vec{x}') < 0 \). Otherwise, \(x_n' \in D_{1/2} \cap \{x_1 = 0\} \) for infinitely many \(n \). In particular for all such \(n \) the function \(u_n^+ - (\epsilon_n \tilde{\varphi} + \alpha_n x_1) \) has a local maximum in \(x_n' \). Hence by the third inequality in (3.14) we have
\[
\epsilon_n \partial_1 \tilde{\varphi}(x_n') + \alpha_n \geq \frac{\sigma}{\sqrt{1 - \sigma^2}} - \frac{\sigma - \epsilon_n \| \nabla \tilde{\varphi} \|^2_{L^\infty(D_{1/2}^+)} \sqrt{1 - \sigma^2}}{2}.
\]
Dividing the previous inequality by \(\epsilon_n \) and recalling the definition of \(\gamma \) we have
\[
-\tilde{\gamma} + \gamma \geq 0,
\]
which is a contradiction to (3.42). This shows the third inequality in (3.41).

To show the last equality we take a test function \(\varphi \) such that \(v - \langle \omega, \cdot \rangle - \varphi \) has a strict local minimum at a point \(\vec{x}' \in D_{1/2} \cap \{x_1 = 0\} \) such that \(v(\vec{x}') - \omega \cdot \vec{x}' < \psi_\infty \). Then, arguing by contradiction as before and using \(u_n^+ \) and the fourth inequality in (3.14) in place of \(u_n^+ \)
and the third inequality in (3.14) we infer that \(\partial_1 \varphi(x') \leq -\gamma \), thus getting also the last equality in (3.41) in the viscosity sense.

Thus, the function \(\bar{w}(x') := \psi_x - v(x') + \omega \cdot x' - \gamma x_1 \) solves the following Signorini type problem

\[
\begin{cases}
\Delta \bar{w}(1 + |\xi_0|^2) - D_{11}\bar{w} |\xi_0|^2 = 0 & \text{in } D_+^{1/2} \\
\bar{w} \geq 0 & \text{on } D_{1/2}^{1/2} \cap \{ x_1 = 0 \} \\
\partial_1 \bar{w} \leq 0 & \text{on } D_{1/2}^{1/2} \cap \{ x_1 = 0 \} \\
\bar{w} \partial_1 \bar{w} = 0 & \text{on } D_{1/2} \cap \{ x_1 = 0 \}
\end{cases}
\]

in the viscosity sense. In particular by the regularity estimates proved in [13] (see also [10]) we infer that there exist a universal constant \(C \), such that for all \(\lambda < 1/4 \)

\[
\sup_{D_+^1 \lambda} |v(x') - \nabla v(0) \cdot x'| = \sup_{D_+^1 \lambda} |\bar{w}(x') - \bar{w}(0) - \nabla \bar{w}(0) \cdot x'| \leq C \lambda^{3/2} \| \bar{w} \|_{L^\infty(D_+^{1/2})} \leq C(1 + M) \lambda^{3/2}
\]

and

\[
|\nabla v(0)| \leq C \| w \|_{L^\infty(D_+^{1/2})} \leq C(1 + M).
\]

We first choose \(\lambda_0 \) so that \(C(1 + M) \lambda^{3/2} < \frac{1}{4} \lambda^{1+\tau} \) for all \(\lambda \leq \lambda_0 \). Therefore, by the above estimate and uniform convergence of \(v_n \) to \(v \) we get for \(n \) large, recalling that \(v(0) = 0 \),

\[
(\epsilon_n \partial_1 v(0) + \alpha_n)x_1 + \epsilon_n(\nabla v(0) - \partial_1 v(0)e_1) \cdot x' - \frac{1}{4} \lambda^{1+\tau} \epsilon_n
\]

\[
< u_n(x') \leq u_n^+(x') < (\epsilon_n \partial_1 v(0) + \alpha_n)x_1 + \epsilon_n(\nabla v(0) - \partial_1 v(0)e_1) \cdot x' + \frac{1}{4} \lambda^{1+\tau} \epsilon_n.
\]

In particular, setting

\[
\bar{\alpha}_n = \epsilon_n \left(\partial_1 v(0) + \frac{\lambda^{1+\tau}}{4} \right) + \alpha_n
\]

and

\[
v_n = \epsilon_n(\nabla v(0) - \partial_1 v(0)e_1)
\]

\(\partial E_n \cap C_\lambda \) is contained in the strip

\[
S_n := \left\{ |x_N - \bar{\alpha}_nx_1 - v_n \cdot x'| < \frac{1}{2} \lambda^{1+\tau} \epsilon_n \right\}.
\]

Note that, since by (3.41) \(\partial_1 v(0) \geq -\gamma \), recalling (3.40), we have that for \(n \) sufficiently large \(\alpha_n > \frac{\alpha}{\sqrt{1 - \sigma^2}} \). Hence, if \(R_n \) is the rotation around \(x_1 \) which maps the vector

\[
\frac{e_N - v_n}{|e_N - v_n|}
\]

in \(e_N \), we conclude that

\[
R_n(\partial E_n \cap H) \cap C_\lambda \subset \left\{ |x_N - \bar{\alpha}_nx_1| < \lambda^{1+\tau} \epsilon_n \right\},
\]

thus giving a contradiction in this case.

If instead for infinitely many \(n \) we have that \(\partial_{\partial H} O_n \cap C_\lambda \cap \{ -\epsilon_n < x_N < \epsilon_n \} = \emptyset \), then reasoning as above we may infer that the function \(\tilde{w}(x') := v(x') + \gamma x_1 \) solves the Neumann problem

\[
\begin{cases}
\Delta \tilde{w}(1 + |\xi_0|^2) - D_{11}\tilde{w} |\xi_0|^2 = 0 & \text{in } D_+^{1/2} \\
\partial_1 \tilde{w} = 0 & \text{on } D_{1/2} \cap \{ x_1 = 0 \}
\end{cases}
\]

The same argument, now using the more standard elliptic estimates for the Neumann problem, leads to a contradiction also in this case. \(\square \)
Next Lemma is the interior case of the above estimate and the proof follows from the interior version of the previous arguments taking into account Remark 3.14.

Lemma 3.18. For all $\tau \in (0, 1)$, $\kappa > 0$ there exist constants $\lambda_1 = \lambda_1(\tau, \kappa) > 0$, $C_3 = C_3(\tau, \kappa) > 0$ such that for all $\lambda \in (0, \lambda_1)$ there exist $\varepsilon_4 = \varepsilon_4(\tau, \kappa, \lambda) > 0$, $\eta_3 = \eta_3(\tau, \kappa, \lambda) > 0$ with the following property. If $E \subset H$ is a $(\Lambda, 1)$-minimizer of \mathcal{F}_σ in \mathbb{R}^N with obstacle O such that if $x \in \partial E$, $D_r(x') \subset \{x_1 > 0\}$, $0 < r \leq 1$,
\[
\partial(E - x) \cap C_r \subset \{|x_N - \alpha x_1| < \varepsilon r\},
\]
with $\varepsilon \leq \varepsilon_4$, for some $\alpha \in [-\kappa, \kappa]$, $\lambda r < \eta_3 \varepsilon$, then there exist $\bar{\alpha} \in \mathbb{R}$, a rotation R about the x_1 axis, with $|R - \text{Id}| \leq C_3 \varepsilon$, $|\bar{\alpha} - \alpha| \leq C_3 \varepsilon$, such that
\[
\partial R(E - x) \cap C_{\tau r} \subset \{|x_N - \bar{\alpha} x_1| < \lambda^{1+\tau} \varepsilon r\}.
\]

Next Lemma deals with the case when $\partial_{\partial H} E$ fully coincides with the obstacle and it is a simple application of the boundary regularity result. This would be needed for the situations where Lemma 3.15 applies.

Lemma 3.19. For all $\tau \in (0, 1)$, $\kappa > 0$, there exist constants $\lambda_2 = \lambda_2(\tau, \kappa) > 0$, $C_4 = C_4(\kappa) > 0$ such that for all $\lambda \in (0, \lambda_2)$ one can find $\varepsilon_5 = \varepsilon_5(\tau, \kappa, \lambda) > 0$, with the following property: Assume that $E \subset H$ is a $(\Lambda, 1)$-minimizer of \mathcal{F}_σ in \mathbb{R}^N with obstacle $O \in B_R$. Assume also that $\bar{x} \in \partial H \cap \partial E \cap H$ and
\[
(\partial E - \bar{x}) \cap C^+ \subset \{|x_N - \alpha x_1| < \varepsilon r\}, \quad \{x_N < \alpha x_1 - \varepsilon r\} \cap C^+ \subset E - \bar{x},
\]
for some $\varepsilon \leq \varepsilon_5$, $0 < r \leq 1$ with $\lambda r < \varepsilon$ and $\frac{\varepsilon}{R} < \eta(1) \varepsilon$ (where $\eta(1)$ is the constant provided in Lemma 3.12), and for some $\alpha \in [-\kappa, \kappa]$. Finally assume that
\[
\partial H \cap (\partial E - \bar{x}) \cap H \cap C_\tau = \partial_{\partial H}(O - \bar{x}) \cap C_\tau \cap \{-\varepsilon r < x_N < \varepsilon r\}.
\]

Then there exist $\bar{\alpha} \geq \frac{\alpha}{\sqrt{1 - \sigma^2}}$, a rotation R about the x_1 axis, with $|R - \text{Id}| \leq C_4 \varepsilon$, $|\bar{\alpha} - \alpha| \leq C_4 \varepsilon$, such that
\[
R(\partial E - \bar{x}) \cap C^+ \subset \{|x_N - \bar{\alpha} x_1| < \lambda^{1+\tau} \varepsilon r\}.
\]

Proof. By rescaling and translating we may assume $r = 1$ and $\bar{x} = 0$. Denote by E the cylindrical excess
\[
\mathcal{E}(E; r) = \frac{1}{r^{N-1}} \int_{\partial E \cap C^+_r} |\nu_E(x) - \nu_\alpha|^2 d\mathcal{H}^{N-1}(x),
\]
where ν_α is the normal to the hyperplane $\{x_N - \alpha x_1 = 0\}$ pointing upward. Fix $\delta \in (0, 1)$. We claim that there exists ε_5 such that if the assumptions are satisfied for $r = 1$ then
\[
(3.43) \quad \mathcal{E}(E; \frac{1}{2}) \leq \delta.
\]

To prove this claim we observe that if E_n is a sequence of $(\Lambda_n, 1)$-minimizers satisfying the assumptions with $\varepsilon = \varepsilon_n \to 0$, then by Theorem 2.3 we have that, up to subsequence, $|(E_n \Delta F) \cap C^+_{\frac{1}{2}}| \to 0$, $|\mu_{E_n}| \mathcal{L} C^+_{\frac{1}{2}} \leq |\mu_F| \mathcal{L} C^+_{\frac{1}{2}}$, where $F = \{x_N - \alpha x_1 \leq 0\}$. Thus,
\[
\mathcal{E}(E_n; \frac{1}{2}) \to \mathcal{E}(F; \frac{1}{2}) = 0.
\]

Hence (3.43) follows by a compactness argument.

We recall that, thanks to Lemma 3.12, there exists $\eta(1) > 0$ such that if $1 < R < \eta(1) \varepsilon$, $\partial_{\partial H} \cap C_1$ is the graph of a function $\psi \in C^{1,1}(D_1)$ such that
\[
|\nabla \psi|_{L^\infty(\partial H \cap D_1)} \leq 2 \varepsilon, \quad |D^2 \psi|_{L^\infty(\partial H \cap D_1)} \leq 2 \varepsilon.
\]
Observe that, there exists $\mu(\kappa) \in (0, 1)$ such that if $\Sigma \subset C^+_{\frac{1}{4}}$ can be described as a graph over $\{x_N - \alpha x_1 = 0\}$ of a C^1 function g such that $\|\nabla g\|_\infty \leq \mu(\kappa)$, then Σ can be also written as a graph over $D_{\frac{1}{4}}^+$ of a C^1 function f with $\|\nabla f\|_\infty \leq 2\kappa$.

By [5, Theorem 6.1] we have that there exists $\tilde{\delta} = \tilde{\delta}(\kappa)$ such that if
\[
E\left(\frac{1}{2}\right) + \Lambda + \|D^2\psi\|_\infty \leq \tilde{\delta},
\]
then $\partial E \cap C^+_{\frac{1}{4}}$ is a graph with respect to the hyperplane $\{x_N - \alpha x_1 = 0\}$ of a $C^{1, \gamma}$ function g with $\|\nabla g\|_{C^{0, \gamma}} \leq \mu(\kappa)$, for some universal $\gamma > 0$. In particular $\partial E \cap C^+_{\frac{1}{4}}$ is the graph over $D_{\frac{1}{4}}^+$ of a $C^{1, \gamma}$ function f with $\|\nabla f\|_{C^{0, \gamma}} \leq C(\kappa)$. Then, observing that the function $f(x') - \alpha x_1$ is a solution of
\[
\text{div}\left(\frac{\nabla w + \alpha \epsilon_1}{\sqrt{1 + |\nabla w + \alpha \epsilon_1|^2}}\right) = h
\]
with $|h| \leq \Lambda$, standard regularity estimates for solutions of the mean curvature equation imply that for all $s \in (0, 1)$ there exists a constant $C_{s, \kappa}$, depending only on s and κ such that
\[
\|f - \alpha x_1\|_{C^{1, \gamma}(D_{\frac{1}{4}}^+)} \leq C_{s, \kappa}(\|f - \alpha x_1\|_{L^\infty(D_{\frac{1}{4}}^+)} + \|\psi\|_{C^{1, \gamma}(D_{\frac{1}{4}}^+)}) \leq C'_{s, \kappa} \varepsilon,
\]
where the last inequality follows from the fact that $\|\psi\|_{C^{1, \gamma}(D_{\frac{1}{4}}^+)} \leq C(\|D^2\psi\|_{L^\infty(D_{\frac{1}{4}}^+)} + \|\psi\|_{L^\infty(D_{\frac{1}{4}}^+)})$ for a universal constant C. Let us fix $\tau \in (0, 1)$ and take $s = (1 + \tau)/2$. From the previous estimate we have that for all $\lambda < 1/8$, since $f(0) = 0,$
\[
\sup_{D_{\frac{1}{4}}^+} |f(x') - \nabla f(0) \cdot x'| \leq C'_{s, \kappa} \lambda^{1+s} \varepsilon < \frac{1}{4} \lambda^{1+\tau} \varepsilon,
\]
provided that $\lambda < \lambda_2(\tau, \kappa)$. We take
\[
\tilde{\alpha} = \partial_1 f(0)
\]
and
\[
v = \nabla f(0) - \partial_1 f(0) e_1 = \nabla \psi(0),
\]
where the last equality follows from the fact that by assumption $f = \psi$ on $\partial H \cap C_1$. Thus $R(\partial E) \cap C^+_{\tilde{\alpha}}$ is contained in the strip
\[
S := \{x_N - \tilde{\alpha} x_1 < \frac{1}{2} \lambda^{1+\tau} \varepsilon\},
\]
where R is the rotation around x_1 which maps the vector
\[
\frac{e_N - v}{|e_N - v|}
\]
in e_N, provided ε, hence ε_5, is sufficiently small, depending on λ. Note that, recalling that $|v| = |\nabla \psi(0)| \leq C \varepsilon$, the choice of $\tilde{\alpha}$ and [3.44], we have
\[
\|R - \text{Id}\| \leq C_4 \varepsilon, \quad |\tilde{\alpha} - \alpha| \leq C_4 \varepsilon,
\]
for a sufficiently large C_4 depending only on κ.

2Theorem 6.1 in [3] is stated and proved for almost minimizing currents. However it is well known to the experts that the methods of the proof extend without significant changes also to the framework of almost minimizing sets of finite perimeter.
Moreover, we may assume

$$ \alpha \rho < \rho $$

for some ρ. Then there exist a sequence of rotations $R_k = R_k(y)$, $R_0 = I$, a sequence $\alpha_k = \alpha_k(y) \in \mathbb{R}$, $\alpha_0 = \alpha$, such that, setting $\varrho_k = \frac{\lambda^{k+1} \rho}{16}$,

$$\|R_k\| = C \lambda^k \varrho, \quad |\alpha_{k+1} - \alpha_k| \leq C \lambda^k \varrho \quad \text{and}$$

$$R_k(\partial E \cap H - y) \cap C_{\varrho_k} \subset \{ |x_N - \alpha_k x| < \lambda^{k+1} \varrho \}.$$

Moreover $\alpha_k(y) \geq \frac{\sigma}{1-\sigma^2}$ whenever $0 \leq y < \frac{\lambda^2 \rho}{16}$.

Proof. By rescaling we may assume $y = 1$. We fix $\tau \in (0, 1/2)$.

Step 1. We first assume that $y \in \partial H$ and that $\alpha \leq \frac{\sigma}{\sqrt{1-\sigma^2}} + M_0 \varepsilon$, where M_0 is the constant in Lemma 3.15, $\varepsilon \leq \bar{\varepsilon}$. Thus we may apply Lemma 3.17 taking $\lambda = \lambda_0(M_0, \tau)$ assuming that $\bar{\varepsilon} \leq \varepsilon_3$ and $\bar{\eta} \leq \eta_2$. We recall that both these constants depend on M_0, τ and λ. Then we get a rotation R_1 and $\alpha_1 = \frac{\sigma}{\sqrt{1-\alpha^2}}$ satisfying

$$\|R_1 - I\| \leq C_2 \varepsilon, \quad |\alpha_1 - \alpha| \leq C_2 \varepsilon,$$

$$R_1(\partial E \cap H - y) \cap C_{\lambda} \subset \{ |x_N - \alpha_1 x| < \lambda^{1+\tau} \varepsilon \}.$$

If $\alpha_1 \leq \frac{\sigma}{\sqrt{1-\alpha^2}} + M_0 \lambda^2 \varepsilon$, we can apply Lemma 3.17 again, with $r = \lambda$ and ε replaced by $\lambda^\tau \varepsilon$, to get a rotation \tilde{R} such that $\|\tilde{R} - I\| \leq C_2 \lambda^\tau \varepsilon$ and $\alpha_2 \geq \frac{\sigma}{\sqrt{1-\alpha^2}}$ such that, setting $R_2 = \tilde{R} \circ R_1$, $\|R_2 - R_1\| \leq C_2 \lambda^\tau \varepsilon$, $|\alpha_2 - \alpha_1| \leq C_2 \lambda^\tau \varepsilon$ and

$$R_2(\partial E \cap H - y) \cap C_{\lambda^2} \subset \{ |x_N - \alpha_2 x| < \lambda^{2(1+\tau)} \varepsilon \}.$$

From the fact that E is a $(\Lambda, 1)$-minimizer of F_σ in $C_1^+ \cap C_0^1$ up to the boundary via a standard first variation argument, see also Lemma 3.17, we get that

$$\frac{\partial f(0)}{\sqrt{1 + |\nabla f(0)|^2}} \geq \sigma.$$

From this inequality we get

$$\alpha = \partial f(0) \geq \frac{\sigma}{\sqrt{1-\sigma^2}} - \frac{\sigma - \sigma^- |\nabla f(0)|^2}{2},$$

since $|\nabla f(0) - \alpha e_1| = |\nabla f(0)| \leq 2\varepsilon$. From the last inequality, setting $\alpha = \max \{ \alpha, \frac{\sigma}{\sqrt{1-\sigma^2}} \}$, we finally get

$$R(\partial E) \cap C_1^+ \subset S \cap C_1^+ \subset \{ |x_N - \alpha x| < \frac{1}{2} \lambda^{1+\tau} \varepsilon + \frac{2\sigma^2}{\sqrt{1-\sigma^2}} \} \subset \{ |x_N - \alpha x| < \lambda^{1+\tau} \varepsilon \},$$

provided ε_5 is chosen sufficiently small. \hfill \Box
We may now iterate this procedure and get a sequence of rotations R_k and a sequence $\alpha_k \geq \frac{\sigma}{\sqrt{1-\sigma^2}}$ such that
\[
\|R_{k+1} - R_k\| \leq C_2 \lambda^{k\tau} \varepsilon, \quad |\alpha_{k+1} - \alpha_k| \leq C_2 \lambda^{k\tau} \varepsilon
\]
and
\[
R_{k+1}(\partial E \cap H - y) \cap C_{\lambda^{k+1}} \subset \{|x_N - \alpha_{k+1}x_1| < \lambda^{(k+1)(1+r)} \varepsilon\}.
\]
hold as long as $\alpha_k \leq \frac{\sigma}{\sqrt{1-\sigma^2}} + M_0 \lambda^{k\tau} \varepsilon$. If the latter inequality is satisfied for every k, we get the conclusion with $\bar{\lambda}$ replaced by C_2 and with ρ_k replaced by λ^{k+1} and thus also by $\lambda^{k+1}/16$.

Otherwise let $k \in \mathbb{N} \cup \{0\}$ be the first integer such that $\alpha_k \geq \frac{\sigma}{\sqrt{1-\sigma^2}} + M_0 \lambda^{k\tau} \varepsilon$. In this case assuming that $\varepsilon \leq \varepsilon_2$, Lemma 3.19 yields that
\[
R_k(\partial E \cap H - y) \cap \partial H \cap C_{\bar{\lambda}} = \partial_D O \cap C_{\bar{\lambda}} \cap \{|x_N| < \lambda^{k(1+r)} \varepsilon\},
\]
provided that we also enforce $\bar{\eta} \leq \eta(1)$. Observe that from the previous iteration argument we know in particular that
\[
R_k(\partial E \cap H - y) \cap C_{\bar{\lambda}} \subset \{|x_N - \alpha_k x_1| < \lambda^{k(1+r)} \varepsilon\}.
\]
We may now use Lemma 3.19 with $\bar{\varepsilon} = 4\lambda^{k\tau} \varepsilon$ and $r = \lambda^k/4$, provided that $4\varepsilon \leq \varepsilon_5$ and that we have chosen from the beginning $\lambda \leq \lambda_2(\tau, \kappa)$, where $\kappa := \frac{|\sigma|}{\sqrt{1-\sigma^2}} + 2$. Indeed, since $\alpha \leq \frac{|\sigma|}{\sqrt{1-\sigma^2}} + 1$, we have that $\alpha_k \in [-\kappa, \kappa]$, since
\[
|\alpha_k - \alpha| \leq C_2 \bar{\varepsilon} \sum_{n=0}^{\infty} \lambda^{\tau_n} < 1
\]
by taking $\bar{\varepsilon}$ smaller if needed. So we get there exist a rotation R_{k+1} with $\|R_{k+1} - R_k\| \leq 4C_4 \lambda^{k\tau} \varepsilon$, $|\alpha_{k+1} - \alpha_k| \leq 4C_4 \lambda^{k\tau} \varepsilon$, $\alpha_{k+1} \geq \frac{\sigma}{\sqrt{1-\sigma^2}}$, such that
\[
R_{k+1}(\partial E \cap H - y) \cap C_{\lambda^{k+1}} \subset \{|x_N - \alpha x_1| < \lambda^{(k+1)(1+r)} \varepsilon\}.
\]
At this point we keep iterating the previous argument by applying Lemma 3.19 to get for all $k > \hat{k}$ a sequence R_k and a sequence $\alpha_k \geq \frac{\sigma}{\sqrt{1-\sigma^2}}$ satisfying (3.46) (even with ρ_k replaced by $\lambda^k/4$ and $C_{\bar{\lambda}}$ replaced by $4C_4$). Note that, arguing as for (3.47), we may ensure that during this iteration process $\alpha_k \in [-\kappa, \kappa]$ provided that we choose $\hat{\varepsilon}$ smaller if needed, depending on λ and κ.

Step 2. Let us now assume that $y \in \partial E \cap H$. If $y_1 \geq \frac{\lambda}{16}$, since by assumption we have
\[
\partial(E - y) \cap C_{\frac{\lambda}{16}} \subset \{|x_N - \alpha x_1| < \varepsilon\},
\]
we may apply iteratively Lemma 3.18 choosing $\lambda < \lambda_1(\tau, \kappa)$, with κ as above, taking $\varepsilon \leq \frac{\lambda}{16} \varepsilon_4$ and $\bar{\eta} \leq \eta_3$, where we recall that the constants η_3, ε_4 depend on τ, κ and λ. In this way we get the conclusion $\rho_k = \frac{\lambda^{k+1}}{16}$ and with a sequence of rotations R_k, and a sequence α_k such that $\|R_{k+1} - R_k\| \leq \frac{\lambda^{k+1}}{16} C_3 \lambda^{k\tau} \varepsilon$, $|\alpha_{k+1} - \alpha_k| \leq \frac{\lambda^{k+1}}{16} C_3 \lambda^{k\tau} \varepsilon$. Note that, arguing as above, choosing $\bar{\varepsilon}$ smaller if needed, we may ensure that all the α_k remain in the interval $[-\kappa, \kappa]$.

Step 3. If $y_1 < \frac{\lambda}{16}$, we denote by \hat{k} the last integer such that $y_1 < \frac{\lambda^k}{16}$. We denote by \bar{y} the point $\bar{y} = (0, y_2, \ldots, y_{N-1}, y_N - \alpha y_1)$. Observe that by assumption this point satisfies
\[
(\partial E \cap H - \bar{y}) \cap C_{\frac{\lambda}{4}} \subset S_{\alpha, \varepsilon}.\]
Hence from Step 1 we have that for all \(k = 0, 1, \ldots, \hat{k} \) there exist a radius \(r_k \in \{ \frac{3}{10} \lambda_k, \frac{3}{4} \lambda_k \} \), a rotation \(R_k \) and a number \(\alpha_k \), such that
\[
\| R_{k+1} - R_k \| \leq \frac{4}{3} C \lambda^{k+1} \varepsilon, \quad | \alpha_{k+1} - \alpha_k | \leq \frac{4}{3} \tilde{C} \lambda^{k+1} \varepsilon,
\]
with \(\tilde{C} = \max\{ C_2, 4C_4 \} \), and
\[
R_k(\partial E \cap \tilde{H} - \tilde{y}) \cap C_{r_k} \subset \{ |x_N - \alpha_k x_1| < \lambda^{k+1} \varepsilon \}.
\]
In particular we have that that for \(k = 1, \ldots, \hat{k} \)
\[
R_k(\partial E \cap \tilde{H} - y) \cap C_{r_k} \subset \{ |x_N - \alpha_k x_1| < \lambda^{k+1} \varepsilon \}.
\]
In particular we have that
\[
\lambda_{k+1} \subset \{ \alpha x_1 < \frac{\sigma x_1}{\sqrt{1 - \sigma^2}} - \varepsilon \beta r \} \cap C_{r_k}^\circ \subset E - \tilde{x},
\]
where \(0 < r \leq 1 \), \(\Lambda r < \tilde{e}, \frac{\tilde{e}}{r} \leq \tilde{e}, \) then \(M := \partial E \cap \tilde{H} \cap C_{r_k}^\circ \) is a hypersurface (with boundary) of class \(C^{1, \tau} \) for all \(\tau \in (0, \frac{1}{2}) \). Moreover,
\[
\nu_{E \cap \tilde{H}} \cdot \nu_H \geq \sigma \text{ on } M \cap \partial H;
\]
\[
\nu_{E \cap \tilde{H}} \cdot \nu_H = \sigma \text{ on } (M \cap \partial H) \setminus \partial_{\partial H} O,
\]
\textbf{Proof.} We may assume \(\tilde{e} = 0 \).

Step 1. We claim that given \(\tau \) there exists \(\tilde{e} = \tilde{e}(\tau) \) such that if the assumptions are satisfied for such \(\tilde{e} \) then \(\partial E \) is of class \(C^{1, \tau} \) in \(C_{r_k}^\circ \) uniformly up to \(\partial H \).

To this aim we may assume without loss of generality that \(r = 1 \). We fix \(\tau \in (0, 1/2) \) and let \(\lambda \) and \(\tilde{C} \) as in Lemma 3.20. Fix \(\lambda \in (0, \tilde{\lambda}) \). Let \(\varepsilon \) and \(\tilde{\eta} \) be the corresponding constants provided once again by Lemma 3.20 and set \(\tilde{e} = \frac{1}{2} \tilde{\eta} \varepsilon \), with \(\tilde{e} \leq \varepsilon \) to be chosen.

We fix \(y \in \partial E \cap \tilde{H} \cap C_{r_k}^\circ, y = (y', y_N) \) and observe that
\[
(\partial E \cap \tilde{H} - y) \cap C_{r_k}^\circ \subset S_{\tilde{e}, \varepsilon} \subset S_{\frac{1}{2} \tilde{e}, \varepsilon}
\]
and that \(\frac{1}{2} \Lambda < \tilde{\eta} \varepsilon, \frac{1}{2r} \leq \tilde{\eta} \varepsilon \). Therefore, from (3.45) and (3.46) we have that there exist a sequence of rotations \(R_k(y) \) converging to \(R(y) \) and a sequence \(\alpha_k(y) \) converging to \(\alpha(y) \), for suitable \(R(y) \) and \(\alpha(y) \) such that
\[
\| R_k(y) - R(y) \| \leq C(\lambda, \tau) \lambda^{k+1} \varepsilon, \quad | \alpha_k(y) - \alpha(y) | \leq C(\lambda, \tau) \lambda^{k+1} \varepsilon,
\]
with \(C(\lambda, \tau) = \frac{1}{\lambda^{1-\tau}} \) and
\[
R_k(y)(\partial E \cap \tilde{H} - y) \cap C_{r_k} \subset \{ |x_N - \alpha_k(y) x_1| < \lambda^{k+1} \varepsilon \}.
\]
with \(\varrho_k = \frac{\lambda^{k+1}}{32} \). Note now that by the classical interior regularity results \(\partial E \cap H \) is a locally \(C^{1,\gamma} \)-hypersurface for all \(\gamma \in (0, 1) \), provided \(\varepsilon \) is sufficiently small. Therefore the hyperplane

\[
y + R(y)^{-1}\{\{x_N - \alpha(y)x_1 = 0\}\}
\]

coinsides with the tangent plane to \(\partial E \) at \(y \).

Let now \(y, z \in \partial E \cap H \cap C_{\frac{1}{2}} \) with \(0 < |y - z| < \frac{1}{32} \) and let \(h \) an integer \(h \geq 0 \) such that
\[
\frac{\varrho_k}{2} \leq |y - z| < \frac{\varrho_k}{2}.
\]

Assume that \(0 < y_1 \leq z_1 \). Since \(C_{\varphi_k}(z') \subset C_{\varphi_h}(y') \), we have
\[
R_h(y)(\partial E \cap H - z) \cap C_{\varphi_k} \subset \{ |x_N - \alpha_h(y)x_1| < \lambda^{h(1+\tau)}\varepsilon \}.
\]

Thus we may apply Lemma 3.20 with \(\varrho = \frac{\varrho_k}{2} \), \(\varepsilon = 64\lambda^{a} \frac{\varrho_k}{\lambda} \leq \varepsilon \) provided we have chosen \(\varepsilon \) sufficiently small. Thus we get for \(k \geq h \) a sequence of radii \(r_k = \frac{\lambda^{k-h+1} \varrho_k}{32} = \frac{\lambda^{k+2}}{32^2} \), a sequence of rotations \(S_k(z) \) converging to \(S(z) \) and a sequence \(\beta_k(z) \) converging to \(\beta(z) \) such that
\[
S_k(z)(\partial E \cap H - z) \cap C_{r_k} \subset \{ |x_N - \beta_k(z)x_1| < \lambda^{k(1+\tau)}\varepsilon \}.
\]

Clearly \(S(z) = R(z) \) and \(\beta(z) = \alpha(z) \) by the uniqueness of the tangent plane. Note also that, arguing as for (3.48), we have
\[
\|S_k(z) - R(z)\| \leq C(\lambda, \tau)\lambda^{kt}\varepsilon, \quad \|\beta_k(z) - \alpha(z)\| \leq C(\lambda, \tau)\lambda^{kt}\varepsilon,
\]

for a possibly larger constant \(C(\lambda, \tau) \). Therefore, since \(R_h(y) = S_h(z) \), and since \(\frac{\lambda^{k+2}}{64} \leq |y - z| \) by our choice of \(h \), we have
\[
\|R(y) - R(z)\| \leq \|R(y) - R_h(y)\| + \|S_h(z) - R(z)\| \leq 2C(\lambda, \tau)\lambda^{kt}\varepsilon \leq \tilde{C}(\lambda, \tau)\varepsilon|y - z|^\tau.
\]

A similar estimate holds also for \(|\alpha(y) - \alpha(z)| \), showing that both the maps \(\alpha \) and \(R \) are \(\tau \)-Hölder continuous uniformly up to \(\partial H \). This proves that \(\partial E \) is of class \(C^{1,\tau} \) up to \(\partial H \), where \(\tau \) is the exponent fixed at the beginning of Step 1.

Finally observe that if \(y \in \partial E \cap H \cap \partial H \), we may choose a sequence \(y_k \in \partial E \cap H \) converging to \(y \) and such that \(y_k \cdot e_1 < \frac{\lambda^h}{32} \). Then, from Lemma 3.20 we have that \(\alpha_k(y_k) \geq \frac{\sigma}{\sqrt{1-\sigma^2}} \) and in turn using (3.48) and passing to the limit we get that also
\[
(3.49) \quad \alpha(y) \geq \frac{\sigma}{\sqrt{1-\sigma^2}}.
\]

Step 2. Let us now show that if \(\partial E \cap H \) is of class \(C^{1,\tau} \) in \(C_{\frac{1}{2}} \) for some \(\tau \in (0, \frac{1}{2}) \), then it is also of class \(C^{1,\gamma} \) for all \(\gamma \in (0, 1/2) \). To this aim we take a point \(y \in \partial E \cap H \cap \partial H \cap C_{\frac{1}{2}} \) and consider two cases.

Assume first that \(\alpha(y) > \frac{\sigma}{\sqrt{1-\sigma^2}} \). Exploiting the \(C^1 \) regularity of \(\partial E \cap H \) up to \(\partial H \) we may find \(\varepsilon < \varepsilon_2 \) and \(\rho \) so small that \(\alpha(y) > \frac{\sigma}{\sqrt{1-\sigma^2}} + M_0\varepsilon \), where \(M_0 \) and \(\varepsilon_2 \) are the constants of Lemma 3.15 and that
\[
(\partial E - y) \cap C_{\rho} \subset \{ |x_N - \alpha x_1| < \varepsilon \rho \}.
\]

Then we have that \((\partial E - y) \cap H \cap \partial H \cap C_{\rho/2} = \partial \cap C_{\rho/2} \cap \{ |x_N| < \varepsilon \rho \} \). Therefore, see for instance [9], we may conclude that \(\partial E \cap H \) is of class \(C^{1,\gamma} \) in \(C_{\rho/2}(y') \) for all \(\gamma \in (0, 1) \).

Otherwise, recalling (3.49), we have \(\alpha(y) = \frac{\sigma}{\sqrt{1-\sigma^2}} \). In this case, given \(\gamma \in (0, 1/2) \), we may choose \(\rho \) so small that the assumptions of the claim in Step 1 are satisfied in \(C_{\rho}(y') \) with \(\varepsilon(\tau) \) replaced by \(\varepsilon(\gamma) \) and the conclusion follows from Step 1. \(\square \)
4. A MONOTONICITY FORMULA AND PROOF OF THE MAIN RESULTS

In this section, in view of the applications to the model for nanowire growth discussed in Subsection 1.2, we consider also the case of convex polyhedral obstacles. Thus, in order to deal at the same time with convex and smooth obstacles, we introduce the following definition where we identify O as a subset of \mathbb{R}^{N-1}.

Definition 4.1. Let $O \subset \partial H \approx \mathbb{R}^{N-1}$, we say that O is locally semi-convex at scale $\bar{r} > 0$ and with constant $C \geq 0$ such that, with if for all $\bar{x} \in \partial_{\bar{r}} O$ there exists a radius C-semiconvex function $\psi : \mathbb{R}^{N-2} \to \mathbb{R}$ with $\psi(0) = 0$ such that, up to a change of coordinates:

$$O \cap \partial H \cap B_{\bar{r}}(\bar{x}) = \left(\bar{x} + \{(0, x'', x_N) : x_N \geq \psi(x'')\} \right) \cap B_{\bar{r}}(\bar{x}).$$

Recall that a function $\psi : \mathbb{R}^{N-2} \to \mathbb{R}$ is said to be C-semiconvex if the function $\psi(x'') + C|\bar{x}|^2/2$ is convex. In particular the sub-differential of $\partial \psi(x'')$ for all x'' is non-empty, where

$$\partial \psi(x'') = \left\{ p \in \mathbb{R}^{N-2} : \psi(y'') \geq \psi(x'') + p \cdot (y'' - x'') - \frac{C|\bar{x}|^2}{2} \text{ for all } y'' \in \mathbb{R}^{N-2} \right\}.$$

Note in particular that if $\psi(0) = 0$ and $p \in \partial \psi(x'')$ then

$$0 \geq \psi(x'') - p \cdot x'' - \frac{C|\bar{x}|^2}{2}.$$

By taking O as above we define for $x = (0, x'', x_N) \in \partial_{\bar{r}} O$ the normal and the tangent cones at x in ∂H as

$$N_x O = \{ \lambda(0, p, -1) : p \in \partial \psi(x''), \lambda \in [0, +\infty) \}$$

and

$$T_x O = \{ \nu \in \mathbb{R}^N : \nu \cdot e_1 = 0, \nu \cdot \nu \leq 0 \text{ for all } \nu \in N_x O \}.$$

It is well known that for $x = (0, x'', x_N) \in \partial_{\bar{r}} O$, the sets

$$O_{x, r} = \frac{O - x}{r} \to T_x O$$

as $r \to 0$ where the convergence is the Kuratowski sense. We start with the following technical lemma.

Lemma 4.2. Let $O \subset \partial H$ be such that (4.1) is satisfied. Then there exist a smooth vector field $X : \mathbb{R}^N \to \mathbb{R}^N$ such that

(i) $X(x) \cdot e_1 = 0$ for all $x \in \partial H$

(ii) $X(x) \cdot \nu \geq 0$ for all $x \in \partial_{\bar{r}} O \cap B_{\bar{r}}(\bar{x})$ and all $\nu \in N_x O$

(iii) For all $x \in B_{\bar{r}}(\bar{x})$ it holds:

$$X(x) = x + O(|x|^2),$$

$$\nabla X(x) = \text{Id} + O(|x|).$$

Proof. We may assume that $\bar{x} = 0$ and we define

$$X(x) = \left(x_1, x'', x_N - \frac{C|\bar{x}|^2}{2}\right)$$

where C is the semiconvexity constant of ψ. Clearly (i) and (iii) are satisfied. To check (ii), note that if $\nu \in N_x O$ then

$$\nu = \lambda(0, p, -1)$$

for some λ and p. Then

$$X(x) \cdot \nu = \lambda(0, p, -1) \cdot \left(x_1, x'', x_N - \frac{C|\bar{x}|^2}{2}\right) = \lambda(0, p, -1) \cdot \left(x_1, x'', x_N - \frac{C|\bar{x}|^2}{2}\right).$$
for \(p \in \partial \psi(x') \) and \(\lambda \geq 0 \) so that
\[
X(x) \cdot \nu = \lambda \left(p \cdot x' - \psi(x') + \frac{C|x'|^2}{2} \right) \geq 0
\]
by (4.2).

We can now state the desired monotonicity formula for \((\Lambda, r_0)\) minimizers.

Theorem 4.3. Let \(E \subset H \) be a \((\Lambda, r_0)\)-minimizer of \(\mathcal{F}_c^O \) with obstacle \(O \). Assume that \(\bar{x} \in \partial \mathcal{H} O \) and that (4.1) is satisfied with \(0 < \bar{r} \leq r_0 \) and a \(C \)-semiconvex function \(\psi \) with \(\psi(0) = 0 \). Then there exists a constant \(c_0 = c_0(\Lambda, \Lambda, N) \) such that for all \(0 < s < r \), with \(r < \bar{r} \) sufficiently small,
\[
(4.5) \quad c_0 r \frac{\mathcal{F}_c^O(E, B_r(\bar{x}))}{r^{N-1}} - c_0 s \frac{\mathcal{F}_c^O(E, B_s(\bar{x}))}{s^{N-1}} \geq \frac{1}{2} \int_s^r \left(1 - N c_0 t \frac{d}{dt} \left(\int_{\partial E \cap H \cap B_t(\bar{x})} \frac{(x \cdot \nu_E)^2}{|x|^2} \right) \right) dt.
\]

Proof. In this proof by \(O(r) \) we mean any function bounded by \(c r \) for \(r \) small, where the constant \(c \) depends only on \(\Lambda, N \) and the semiconvexity constant \(C \).

We assume that \(\bar{x} = 0 \) and we let \(\phi \in C^\infty_c([0, 1]; [0, 1]) \) be a smooth decreasing function with \(\phi(0) = 1 \) and we consider for \(r \leq \bar{r}/2 \) the vector field \(T : \mathbb{R}^N \to \mathbb{R}^N \) defined as
\[
T(x) = -\phi \left(\frac{|x|}{r} \right) X(x),
\]
where \(X \) is as in Lemma 4.2. By (i) and (ii) of the lemma, if we let \(\varphi_t \) be the flow generated by \(T \), then for all \(t > 0 \)
\[
\varphi_t(\partial H) = \partial H, \quad \varphi_t(O) \subset O \quad \text{and} \quad \varphi_t(x) = x \quad \text{for} \quad x \notin B_r.
\]
In particular \(\varphi_t(E) \Delta E \subset B_r \) and thus the set \(\varphi_t(E) \) is a competitor for the \((\Lambda, r_0)\)-minimality of \(E \). Hence
\[
(4.6) \quad \mathcal{F}_c^O(E; B_r) \leq \mathcal{F}_c^O(\varphi_t(E); B_r) + \Lambda |\varphi_t(E) \Delta E| \leq P(\varphi_t(\partial E \setminus O)) + \sigma P(\varphi_t(\partial E \cap O)) + \Lambda |\varphi_t(E) \Delta E|
\]
for all \(t > 0 \). By using the coarea formula and recalling that \(|X(x)| = O(r) \) on \(\text{spt} T \), it is easy to check that for \(t > 0 \) small enough
\[
|\varphi_t(E) \Delta E| = t \int_{\partial E \cap H} |T(x) \cdot \nu_E(x)| \ dH^{N-1} + o(t) \leq t O(r) \int_{\partial E \cap H} \phi \left(\frac{|x|}{r} \right) dH^{N-1}.
\]
Therefore, differentiating the inequality in (4.6) we get
\[
(4.7) \quad O(r) \int_{\partial E \cap H} \phi \left(\frac{|x|}{r} \right) H^{N-1} \leq \int_{\partial E \cap O} \text{div}_T T dH^{N-1} + \sigma \int_{\partial E \cap O} \text{div}_T T dH^{N-1},
\]
where
\[
\text{div}_T T = \text{div} T - \nabla T [\nu_E] \cdot \nu_E
\]
is the tangential divergence of \(T \). Since
\[
\nabla T = -\phi \left(\frac{|x|}{r} \right) \nabla X(x) - \phi' \left(\frac{|x|}{r} \right) \frac{|x|}{|x|} \otimes X(x)
\]
by exploiting (4.3), (4.4) we have
\[
\text{div}_T T = -\phi \left(\frac{|x|}{r} \right) (N - 1) - \phi' \left(\frac{|x|}{r} \right) \frac{|x|}{|x|} \otimes X(x) + \phi' \left(\frac{|x|}{r} \right) \frac{|x|}{|x|} \left(\frac{x \cdot \nu_E}{|x|^2} \right)^2 + O(r) \phi \left(\frac{|x|}{r} \right) + O(r) \phi' \left(\frac{|x|}{r} \right) \frac{|x|}{r}.
\]
which can be written as
\[
\text{div}_r T = (1 + O(r)) r^{-N} \frac{d}{dr} \left(r^{1-N} \phi \left(\frac{|x|}{r} \right) \right) \\
+ \phi' \left(\frac{|x|}{r} \right) \frac{|x|}{r} \left((x \cdot \nu_E)^2 \right) + O(r) \phi \left(\frac{|x|}{r} \right)
\]
Combining the above inequality with (4.7) we infer, after easy computations,
\[
(1 + O(r)) \frac{d}{dr} \left(r^{1-N} \int_{\partial E \setminus O} \phi \left(\frac{|x|}{r} \right) d\mathcal{H}^{N-1} \right) \geq -c \left(r^{1-N} \int_{\partial E \setminus O} \phi \left(\frac{|x|}{r} \right) d\mathcal{H}^{N-1} \right) \\
- r^{-N} \int_{\partial E \setminus O} \phi' \left(\frac{|x|}{r} \right) \frac{|x|}{r} \left((x \cdot \nu_E)^2 \right) - \sigma r^{-N} \int_{\partial E \setminus O} \phi' \left(\frac{|x|}{r} \right) \frac{|x|}{r} \left((x \cdot \nu_E)^2 \right).
\]
In turn, noticing that
\[
\int_{\partial E \cap H} \phi' \left(\frac{|x|}{r} \right) \frac{|x|}{r} \left((x \cdot \nu_E)^2 \right) = 0,
\]
setting
\[
h(r) = r^{1-N} \int_{\partial E \setminus O} \phi \left(\frac{|x|}{r} \right) d\mathcal{H}^{N-1} + \sigma r^{1-N} \int_{\partial E \setminus O} \phi \left(\frac{|x|}{r} \right) d\mathcal{H}^{N-1},
\]
\[
k(r) = -r^{-N} \int_{\partial E \setminus O} \phi' \left(\frac{|x|}{r} \right) \frac{|x|}{r} \left((x \cdot \nu_E)^2 \right) - \sigma r^{-N} \int_{\partial E \setminus O} \phi' \left(\frac{|x|}{r} \right) \frac{|x|}{r} \left((x \cdot \nu_E)^2 \right)
\]
\[
= r^{1-N} \frac{d}{dr} \left[\int_{\partial E \cap H} \phi \left(\frac{|x|}{r} \right) \frac{(x \cdot \nu_E)^2}{|x|^2} d\mathcal{H}^{N-1} \right],
\]
the inequality above implies that
\[
h'(r) \geq -c_0 h(r) + \frac{1}{2} k(r)
\]
provided that \(2 \geq 1 + O(r) \geq 1/2\), where \(c_0\) is a constant depending only on \(\Lambda, N\) and \(C\). Note also that \(k(r) \geq 0\). Multiplying both sides of this inequality by \(e^{c_0 r}\) and integrating in \((s, r)\), we have
\[
h(r) e^{c_0 r} - h(s) e^{c_0 s} \geq \frac{1}{2} \int_s^r e^{c_0 t} k(t) \, dt.
\]
Then we conclude by letting \(\phi \to 1\). \(\square\)

By classical argument, the above monotonicity formula allows for the study of blow-ups of \(\Lambda\)-minimizers. To this aim we preliminary observe that the following compactness property for blow-ups in the case of convex polyhedral domains holds.

Theorem 4.4. Let \(E \subset H\) be a \((\Lambda, r_0)\)-minimizer of \(\mathcal{F}_\tau\) with obstacle \(O\), where \(O\) is a convex polyhedron. Let \(\bar{x} \in \partial H \cap \partial E\) and set
\[
E_h = \frac{E - \bar{x}}{r_h},
\]
where $r_h \to 0^+$. Then there exist a (not relabelled) subsequence and a set E_∞ of locally finite perimeter, such that $E_h \to E_\infty$ in $L^1_{\text{loc}}(\mathbb{R}^N)$ with the property that E_∞ is a 0-minimizer of \mathcal{F}_σ^O, where $\tilde{O} = T_3 O$. Moreover,

$$\mu_{E_h} \rightharpoonup \mu_E, \quad |\mu_{E_h}| \rightharpoonup |\mu_E|,$$

as Radon measures. In addition, the following Kuratowski convergence type properties hold:

(i) for every $x \in \partial E_\infty$ there exists $x_h \in \partial E_h$ such that $x_h \to x$;

(ii) if $x_h \in \partial E_h \cap \overline{H}$ and $x_h \to x$, then $x \in \partial E_\infty \cap \overline{H}$.

Finally, either $\partial E_\infty \cap (\partial H \setminus \tilde{O}) = \partial H \setminus \tilde{O}$ or $\partial E_\infty \cap \partial H \subset \tilde{O}$.

The proof of this theorem follows as in the proof of Theorem 2.4 observing that the density estimates proved in Proposition 2.3 still hold when O is a convex polyhedron.

Proposition 4.5. Let $E \subset H$ be a (Λ, r_0)-minimizer of \mathcal{F}_σ with obstacle O, where O is either of class $C^{1,1}$ or a convex polyhedron. If $\bar{x} \in \partial H \cap \partial E$ then the sets $E_{\bar{x},r} = E - \bar{x}/r$ are pre-compact in L^1 and every limit point E_∞ as $r \to 0$ is a conical minimizer of \mathcal{F}_σ^O with obstacle $\tilde{O} = T_3 O$. Moreover if $N = 3$ either $\partial E_\infty = \partial H$ or, after a rotation of coordinates in ∂H,

$$\partial E_\infty \cap \partial H = \{x : x_N = \alpha x_1\} \cap H$$

with

$$\alpha \geq \frac{\sigma}{\sqrt{1 - \sigma^2}}$$

and \tilde{O} is a half space.

Proof. Let E_∞ be a limit point of of $E_{\bar{x},r}$ as $r \to 0$. By Theorem 2.4 or Theorem 4.4 E_∞ is a 0-minimizer of \mathcal{F}_σ^O. Observe that by Theorem 4.3 there exists

$$\lim_{r \to 0} \frac{\mathcal{F}_\sigma(E, B_r(\bar{x}))}{r^{N-1}}$$

and it is finite. From this a standard argument, see for instance the proof of Theorem 28.6 in [12], shows that

$$\frac{\mathcal{F}_\sigma(E_\infty, B_r(\bar{x}))}{r^{N-1}}$$

is constant with respect to r. Thus, the right-hand side of (4.5) with E_∞ in place of E is zero. This immediately implies that $x \cdot v_{E_\infty}(x) = 0$ for \mathcal{H}^{N-1}-a.e. x, hence, see [12, Prop. 28.8], E_∞ is a cone.

Note that if $N = 3$ the only cones with zero mean curvature are planes and this forces ∂E_∞ to be a union of planes. These planes can not intersect in H by the interior regularity theory. In particular since $0 \in \partial E_\infty$ (which holds true since $\bar{x} \in \partial E$), either $\partial E_\infty = \partial H$ or, after a rotation in the hyperplane H,

$$\partial E_\infty \cap H = \bigcup_{i=1}^k \{x : x_1 = \alpha_i x_N\} \cap H.$$

Minimality forces $k = 1$ and $\partial E_\infty \cap \partial H = \tilde{O}$ and thus \tilde{O} is a half space.

We are now in a position to prove Theorem 1.4.
Proof of Theorem 1.4. We start by proving part (i). In view of the result [3, Theorem 1.2] it is enough to prove the regularity in a neighborhood of a point $\bar{x} \in \partial E \cap \partial H O$. Given such a point, by Proposition 4.5, we know that there exists a sequence $E_{r_h} = E_{\bar{x}, r_h} = \frac{E - \bar{x}}{r_h}$, $r_h \to 0$, of blow-ups of E converging in L^1 to a 0-minimizer E_∞ of F_σ, where $\bar{O} = T_\frac{1}{2} O$. Moreover, either $\partial E_\infty = \partial H$ or, after a rotation of coordinates in ∂H, $\partial E_\infty \cap H = \{ x : x_1 = \alpha x_N \} \cap H$ with $\alpha \geq \frac{\sigma}{\sqrt{1 - \sigma^2}}$. Note that if $E_\infty = \partial H$ or if $\alpha > \frac{\sigma}{\sqrt{1 - \sigma^2}}$ by conclusion (ii) of Theorem 2.4 we get that $\partial E_{r_h} \cap H$ satisfies the assumptions of Lemma 3.15 in a neighborhood of \bar{x} and thus $\partial E \cap H \cap \partial H$ coincides with $\partial \partial H O$ in such a neighborhood. In turn, the conclusion follows by [5, Theorem 6.1]. If instead $\alpha = \frac{\sigma}{\sqrt{1 - \sigma^2}}$, using again (ii) of Theorem 2.4 we have that for E_∞ satisfies the assumptions of Theorem 3.21 for h sufficiently large. Hence the conclusion follows also in this case.

Now the proof of part (ii) follows combining (i) with the classical Federer’s dimension reduction argument, see for instance [17, Appendix A] or [12, Sections 28.4-28.5]. We leave the details to the reader. \square

We conclude the section by proving Theorems 1.5 and 1.6. In the following we make use of the notation introduced in Subsection 1.2.

Proof of Theorem 1.5. We start by recalling that by a standard argument, see for instance Example 21.3 in [12], there exists $\Lambda, r_0 > 0$ such that

$$J_{\sigma, \omega}(E) \leq J_{\sigma, \omega}(F) + \Lambda ||E|| - ||F||$$

for all $F \subset \mathbb{R}^3 \setminus C$ with $\text{diam}(E \Delta F) < r_0$. It easily follows that E is a (Λ, r_0)-minimizer of $J_{\sigma, \omega}$ with obstacle ω in the sense introduced in the previous sections. Thus the conclusion follows from Theorem 1.4. \square

Before proving Theorem 1.6 we set the following definition.

Definition 4.6. We say that $E \subset \mathbb{R}^3 \setminus C$ has a nontangential contact with C_{top} at a point $\bar{x} \in \partial E \cap \mathcal{H} \cap \gamma$ if for any subsequence $E_{\bar{x}, r_h}$ of blow-ups of E with $r_h \to 0$, converging to E_∞, we have that ∂E_∞ does not contain the plane $\{ x_3 = 0 \}$.

Proof of Theorem 1.6. We start by observing that, arguing as in the proof of Theorem 1.5 we have that E is (Λ, r_0)-minimizer of $J_{\sigma, \omega}$ with obstacle ω.

Assume first that E has a nontangential contact at all points of $\partial E \cap \mathcal{H} \cap \gamma$. Fix a point $\bar{x} \in \partial E \cap \mathcal{H} \cap \gamma$ and consider a sequence $E_{\bar{x}, r_h}$ of blow-ups of E with $r_h \to 0$, converging to some set E_∞ of locally finite perimeter. By Proposition 4.5 it follows that E_∞ is a 0-minimizer of $J_{\tau, \omega}$ with obstacle $T_{\frac{1}{2}} \omega$, that after a rotation in the plane $\{ x_3 = 0 \}$

$$\partial E_\infty \cap \{ x_3 > 0 \} = \{ x : x_1 = \alpha x_3 \} \cap \{ x_3 > 0 \},$$

with $\alpha \geq \frac{\sigma}{\sqrt{1 - \sigma^2}}$ and thus $\partial E_\infty \cap \{ x_3 = 0 \}$ is a half plane. In turn $T_{\frac{1}{2}} \omega$ is a half plane and thus it cannot be a vertex of the polygon. Hence, thanks to Theorem 1.4 $\partial E \cap \mathcal{H}$ is of class $C^{1,\gamma}$ for all $\gamma \in (0, \frac{1}{2})$ in a neighborhood of \bar{x}.

Finally, we claim that if $\sigma < 0$ then E has a nontangential contact at all points of $\partial E \cap \mathcal{H} \cap \gamma$. Indeed assume by contradiction that $E_\infty = \{ x_3 > 0 \}$ for some point $\bar{x} \in \partial E \cap \mathcal{H} \cap \gamma$ and some sequence of blow-ups $E_{\bar{x}, r_h}$ with $r_h \to 0$. Then, arguing similarly as for Theorem 4.4 see also [3, Theorem 2.9], we get that E_∞ is a 0-minimizer of $J_{\sigma, T_{\frac{1}{2}} \omega}$, that is

$$J_{\sigma, T_{\frac{1}{2}} \omega}(E_\infty) \leq J_{\sigma, T_{\frac{1}{2}} \omega}(F)$$

for all $F \subset \mathbb{R}^3 \setminus (T_{\frac{1}{2}} \omega \times (-\infty, 0])$ with $E_\infty \Delta F$ bounded. From this it easily follows that $F_\infty := (\mathbb{R}^3 \setminus (T_{\frac{1}{2}} \omega \times (-\infty, 0])) \setminus E_\infty$ is a 0-minimizer of $J_{\sigma, T_{\frac{1}{2}} \omega}$. By a rotation in the plane $\{ x_3 = 0 \}$ we may assume without loss of generality that the half line $\ell = \{ (0, x_2, 0) : x_2 >$
0} is contained in ∂T_ω \times \{0\} and that F_\infty (locally around each point of \ell) is contained in the half space H = \{x_1 > 0\}. Hence, locally around any point y \in \ell, F_\infty is a 0 minimizer of F_{-\sigma} with obstacle O = \{x_3 < 0\} \cap \partial H. Thus, by the third inequality in (3.14) (with \sigma replaced by −\sigma) it follows that \partial F_\infty must form with the vertical plane \partial H an angle which is strictly larger then \pi/2, thus leading to a contradiction. □

5. Appendix

Here we give the proof of Proposition 3.5. We shall closely follow the proofs of Lemmas 2.1 and 2.2 and of Theorem 1.1 in [16] with the necessary changes.

We denote by \mathbb{M}^{d \times d}_{sym} the space of symmetric \(d \times d\) matrices and by Tr(\(A\)) the trace of \(A\). Let \(F: \mathbb{M}^{d \times d}_{sym} \times \mathbb{R}^d \rightarrow \mathbb{R}\) be the function

\[
F(A, p) := \frac{\text{Tr}(A)}{(1 + |p + \xi|^2)^{1/2}} - \sum_{i,j=1}^{d} \frac{A_{ij}(p_i + \xi_i)(p_j + \xi_j)}{(1 + |p + \xi|^2)^{3/2}},
\]

where \(\xi \in \mathbb{R}^d\) is a vector, with \(|\xi| \leq M\). Observe that there exist two positive constants \(\lambda, \lambda > 0\), depending only on \(M\) and \(d\) such that if \(|p| \leq 1\), \(A \in \mathbb{M}^{d \times d}_{sym}\) and \(A \geq 0\), then

\[
\lambda \|A\| \geq F(A, p) \geq \lambda \|A\|
\]

where \(\|A\| := \sqrt{\sum_{i,j} A_{ij}^2}\). Since throughout this section \(M\) will be fixed, in the following with a slight abuse of language we will say that a constant is universal if it depends only on \(d\) and \(M\). The next result is essentially as [16, Lemma 2.1].

Lemma 5.1. Let \(r \in (0, 1)\) and \(a \in (0, 1/2)\). Let \(v : B_1 \rightarrow (0, \infty)\) be a viscosity (2\(a\))-supersolution of the equation

\[
\text{div} \left(\frac{\nabla u + \xi}{\sqrt{1 + |\nabla u + \xi|^2}} \right) = a,
\]

bounded from above. There exists a universal constant \(c_0\) with the following property: Let \(\overline{B}_r(x_0) \subset B_1\) and let \(B \subset \overline{B}_1\) be a closed set. For every \(y \in B\) consider the paraboloid

\[
-a \frac{|x - y|^2}{2} + c_y
\]

staying below \(v\) in \(\overline{B}_r(x_0)\) and touching \(v\) in \(\overline{B}_r(x_0)\). Assume that the set \(A\) of all such touching points for \(y \in B\) is contained in \(B_r(x_0)\). Then \(|A| \geq c_0|B|\).

Proof. Observe that since \(v\) is a bounded lower semicontinuous function, then \(A\) is a closed set.

Assume that \(v\) is semi-concave in \(B_r(x_0)\), that is there exists \(b > 0\) such that \(v - b|x|^2\) is concave in \(B_r(x_0)\). Note that this implies in particular that \(v\) is differentiable at all touching points \(z \in A\). Moreover it is not difficult to show that \(Dv\) is Lipschitz in \(A\) with a Lipschitz constant depending only on \(a\) and \(b\). By assumption if \(z \in A\) there exists a paraboloid of vertex \(y \in B\) and opening \(a\) as in (5.2) touching \(v\) at \(z\) from below. Moreover,

\[
y = z + \frac{1}{a} Dv(z).
\]

Let us denote by \(Z\) the set of points in \(B_r(x_0)\) such that \(v\) is twice differentiable at \(z\). By Alexandrov theorem \(|B_r(x_0) \setminus Z| = 0\). Fix \(z \in Z\). For all \(x \in B_r(x_0)\) we have

\[
v(x) = P(x; z) + o(|x - z|^2) = v(z) + Dv(z) \cdot (x - z) + \frac{1}{2} (x - z)^T D^2v(z) (x - z) + o(|x - z|^2).
\]

We claim that there exists a universal constant \(C > 0\) such that

\[-aI \leq D^2v(z) \leq CaI \quad \text{for all} \ z \in A \cap Z.\]
The left inequality follows from the fact that the paraboloid in (5.2) touches v from below. To prove the second inequality assume that there exists a unit vector e such that

$$D^2v(z) \geq Cae \otimes e - aI.$$

We will prove that if C is sufficiently large this leads to a contradiction.

Consider now the test function $\varphi(x) = P(x; z) - \frac{\varepsilon}{2}|x - z|^2$, with $\varepsilon > 0$. Note that φ lies below v in a neighborhood of z and touches v at z and that by (5.3) $|D\varphi(z)| = |Dv(z)| = a|y - z| \leq 2a$. Therefore φ is an admissible test function and we have

$$a \geq F(D^2\varphi(z), D\varphi(z)) = F(D^2v(z) - \varepsilon I, D\varphi(z)) \geq F(Cae \otimes e - (a + \varepsilon)I, D\varphi(z))$$

$$= F(Cae \otimes e, D\varphi(z)) - (a + \varepsilon)F(I, D\varphi(z)) \geq Ca\lambda - (a + \varepsilon)\lambda\sqrt{n}$$

which is a contradiction if $C > (\lambda\sqrt{n} + 1)/\lambda$ and ε is sufficiently small.

Now, from the area formula, using (5.3) we obtain

$$|B| \leq \int_A \left| \det \left(I + \frac{1}{a}D^2v(x) \right) \right| dx \leq C|A|,$$

where C is another universal constant.

If v is not semi-concave for $\varepsilon > 0$ we define the inf-convolution, setting for $x \in \overline{B}_r(x_0)$

$$v_\varepsilon(x) = \inf_{y \in \overline{B}_r(x_0)} \left\{ v(y) + \frac{1}{\varepsilon}|y - x|^2 \right\}.$$

It is easily checked that v_ε is semi-concave: Since v is lower semicontinuous and bounded we have also that v_ε converges pointwise to v in $\overline{B}_r(x_0)$. Moreover each v_ε is a viscosity (2a)-supersolution of the equation (5.1) in $B_r(x_0)$. In fact, if $\varphi \in C^2(B_r(x_0))$ lies below v_ε in a neighborhood of $\bar{\imath} \in B_r(x_0)$ and touches v_ε at $\bar{\imath}$, let \bar{y} the point in $\overline{B}_r(x_0)$ such that

$$\inf_{y \in \overline{B}_r(x_0)} \left\{ v(y) + \frac{1}{\varepsilon}|y - \bar{\imath}|^2 \right\} = v(\bar{y}) + \frac{1}{\varepsilon}|\bar{y} - \bar{\imath}|^2.$$

Then the function

$$\varphi(x + \bar{\imath} - \bar{y}) + v(\bar{y}) - \varphi(\bar{\imath})$$

touches v from below at \bar{y} and thus

$$F(D^2\varphi(\bar{\imath}), D\varphi(\bar{\imath})) \leq a.$$

Observe that for ε small enough the contact set A_ε of v_ε is contained in $B_r(x_0)$. Indeed if this is not true there exist a sequence ε_n converging to 0 and points $x_n \in A_\varepsilon$, the contact set of v_ε, such that $x_n \in \partial B_r(x_0)$. Therefore there exist $y_n \in B$ and $c_n \in \mathbb{R}$ such that

$$\frac{-a}{2}|x - y_n|^2 + c_n \leq v_{\varepsilon_n}(x) \forall x \in \overline{B}_r(x_0), \quad \frac{-a}{2}|x_n - y_n|^2 + c_n = v_{\varepsilon_n}(x_n).$$

Since B is closed and the v_{ε_n} are equibounded we may assume that $y_n \to \bar{y} \in B$, $c_n \to \bar{c}$ and $x_n \to \bar{x} \in \partial B_r(x_0)$. Thus, from the first inequality above we have that the paraboloid $-\frac{a}{2}|x - \bar{y}|^2 + \bar{c}$ stays below v in $B_r(x_0)$. Moreover, by lower semicontinuity we have

$$\frac{-a}{2}|\bar{x} - \bar{y}|^2 + \bar{c} = \lim_{n \to \infty} v_{\varepsilon_n}(x_n)$$

$$= \lim_{n \to \infty} \left(v(z_n) + \frac{1}{\varepsilon_n}|z_n - x_n|^2 \right) \geq \lim_{z \to \bar{x}} \inf v(z) \geq v(\bar{x}).$$

Hence $\bar{x} \in A \cap \partial B_r(x_0)$ which is impossible by assumption. In particular we may assume that (5.4) holds with A replaced by A_ε for ε sufficiently small.
Using the fact that B is closed and the pointwise convergence of v_ε to v, a similar argument shows

$$\bigcup_{h=1}^\infty \bigcup_{k=h}^\infty A_{1/k} \subseteq A.$$

From the above inclusion and (5.4) we then conclude that $|B| \leq C|A|$.

Let $v : \overline{B}_1 \to (0, \infty)$ be a lower semicontinuous function. If $a > 0$ we denote by A_a the set of points where v can be touched from below by a paraboloid of opening a and vertex in \overline{B}_1 and where the value of v is also smaller than a.

$$A_a := \left\{ x \in \overline{B}_1 : v(x) \leq a \text{ and there exists } y \in \overline{B}_1 \text{ such that } \min_{z \in \overline{B}_1} \left(v(z) + \frac{a}{2} |z - y|^2 \right) = v(x) + \frac{a}{2} |x - y|^2 \right\}.$$

Lemma 5.2. There exist two constants $c_1 > 0$, $C_1 > 1$, with the following properties: Let $0 < a < 1/C_1$ and let $v : \overline{B}_1 \to (0, \infty)$ be a viscosity $(C_1 a)$-supercone of the equation (5.1), bounded from above. If

$$\overline{B}_r(x_0) \subseteq B_1, \quad A_a \cap \overline{B}_r(x_0) \neq \emptyset,$$

then

$$|A_{C_1a} \cap B_{r/8}(x_0)| \geq c_1 |B_r|.$$

Proof. Up to replace r with $r + \varepsilon$ and then letting $\varepsilon \to 0^+$ we may assume that there exists

$$x_1 \in A_a \cap B_r(x_0).$$

Thus there exists $y_1 \in \overline{B}_1$ such that the paraboloid

$$P(x; y_1) = v(x_1) + \frac{a}{2} |x_1 - y_1|^2 - \frac{a}{2} |x - y_1|^2$$

touches v in x_1 from below. We claim that there exists a universal constant C such that there exists a point $z \in \overline{B}_{r/16}(x_0)$ such that

$$v(z) \leq P(z; y_1) + C a r^2. \tag{5.5}$$

If $x_1 \in \overline{B}_{r/16}(x_0)$ then we may take trivially $z = x_1$. Otherwise, we consider the function

$$\varphi(x) = \begin{cases} \alpha^{-1}(|x|^{-\alpha} - 1) & \text{if } \frac{1}{16} \leq |x| \leq 1, \\ \alpha^{-1}(16^{-\alpha} - 1) & \text{if } |x| \leq \frac{1}{16}, \end{cases}$$

with $\alpha > 0$, universal, to be chosen. Then, for $x \in B_r(x_0)$, we set

$$\psi(x) = P(x; y_1) + a r^2 \varphi\left(\frac{x - x_0}{r} \right).$$

Note that $|D\psi| \leq a (16^\alpha + 2) \leq 1$ if a is small enough and that in the annulus $B_r(x_0) \setminus \overline{B}_{r/16}(x_0)$ we have

$$F(D^2\psi, D\psi) = a F\left(D^2\varphi\left(\frac{x - x_0}{r} \right), D\psi \right) - a F(I, D\psi) \geq a \lambda (\alpha + 1) - a \lambda \sqrt{n} > a,$$

provided $\alpha > 0$ is chosen large enough.

Let us now denote by z a minimum point of $v - \psi$ in $\overline{B}_r(x_0)$. Since $v(x_1) - \psi(x_1) = -a r^2 \varphi(\frac{x_1 - x_0}{r}) < 0$, the minimum of $v - \psi$ is strictly negative. Therefore $z \notin \partial B_r(x_0)$ since $v - \psi \geq 0$ on $\partial B_r(x_0)$. On the other hand, if $r/16 < |z - x_0| < r$, observing that $|D\psi| \leq a (16^\alpha + 2) \leq C_1 a$, if we choose C_1 large enough, we would have that ψ is an
admissible test function for v in a neighborhood of z satisfying (5.6), which is impossible. Therefore $z \in \overline{B}_{r/16}(x_0)$ and we have

$$v(z) \leq \psi(z) = P(z; y_1) + ar^2a^{-1}(16^a - 1),$$

thus proving (5.5).

To conclude the proof, consider for every $y \in \overline{B}_{r/64}(z)$ the paraboloid

$$P(x; y_1) - C'\frac{a}{2}|x - y|^2 + cy,$$

where C' is a universal constant to be chosen and c_y is such that the above paraboloid touches v from below. Note that the above paraboloid has opening $(C' + 1)a$ and vertex at

$$\frac{y_1}{C' + 1} + \frac{C'y}{C' + 1}.$$

Observe that

$$P(z; y_1) - C'\frac{a}{2}|z - y|^2 + c_y \leq v(z) \leq P(z; y_1) + Car^2,$$

hence $c_y \leq Car^2 + \frac{C'a}{2}(\frac{r}{64})^2$. On the other hand, if $|x - z| \geq \frac{r}{16}$, we have

$$P(x; y_1) - C'\frac{a}{2}|x - y|^2 + c_y \leq P(x; y_1) - C'\frac{a}{2}\left(\frac{3r}{64}\right)^2 + Car^2 + \frac{C'a}{2}\left(\frac{r}{64}\right)^2,$$

$$< P(x; y_1) \leq v(x),$$

provided that we choose C' large enough independently of a and r. Thus the contact point x_y belongs to the ball $B_{r/16}(z) \subset B_{r/8}(x_0)$. Note that for $y \in \overline{B}_{r/64}(z)$ the vertex

$$\frac{y_1}{C' + 1} + \frac{C'y}{C' + 1}$$

spans the ball with center $\frac{y_1}{C' + 1} + \frac{C'y}{C' + 1}$ and radius $C'r/64(C' + 1)$, which is contained in B_1, provided that C' is large enough. Moreover, the gradient of the function

$$x \mapsto P(x; y_1) - C'\frac{a}{2}|x - y|^2 + c_y$$

is smaller than $2(C' + 1)a$ and

$$v(x_y) = P(x_y; y_1) - C'\frac{a}{2}|x_y - y|^2 + c_y \leq a + 2a + c_y \leq C''a$$

for a sufficiently large, universal, constant $C'' > 2(C' + 1)a$. Therefore, by applying Lemma 5.1 with $B_r(x_0)$ and B replaced respectively by $B_{r/8}(x_0)$ and the ball of radius $C'r/64(C' + 1)$ and center $\frac{y_1}{C' + 1} + \frac{C'y}{C' + 1}$, with a replaced by $C''a$, we have that, if $3C''a \leq 1$

$$|A_{C''a} \cap B_{r/8}(x_0)| \geq c_0 \left(\frac{C'}{C' + 1}\right)^n |B_{r/64}|,$$

from which (5.2) follows with

$$C_1 = 3 \max\{C'', 16^{a+1} + 2\}. \quad \square$$

We can now give the

Proof of Proposition 3.5. Let $x_0 \in B_{1/2}$ be a point where $v(x_0) \leq \nu$. Then the function $u(x) = v(x_0 + x)$ is a positive viscosity $(C_0^a \nu)$-supersolution of (3.9) in \overline{B}_1 with $u(0) \leq \nu$. Consider the paraboloid with vertex at the origin and opening 20ν touching u from below and observe that since u is positive this paraboloid touches u in $B_{1/3}$. Therefore $A_{20\nu} \cap \overline{B}_{1/3} \neq \emptyset$. Moreover, setting $D_0 = A_{20\nu} \cap \overline{B}_{1/3}$, from Lemma 5.2 we know that if $B_r(x) \subset B_1$, $B_{r/8}(x) \subset B_{1/3}$ and $D_0 \cap B_r(x) \neq \emptyset$, then

$$|(A_{20C_1\nu} \cap \overline{B}_{1/3}) \cap B_{r/8}(x)| = |A_{20C_1\nu} \cap B_{r/8}(x)| \geq c_1 |B_r|,$$

provided $20C_1\nu \leq 1$ and ν, hence u, is a viscosity $(20C_1\nu)$-supersolution. By applying the same lemma to $D_1 = A_{20C_1\nu} \cap \overline{B}_{1/3}$ and proceeding by induction, we have that the sets
Lemma 2.3 in [16] and setting C provided \(20 \) property that if $B \subset D_{1/3}$, where $D_i = A_{20C^k_i \nu} \cap \overline{B}_{1/3}$ for $i = 1, \ldots, k$, have all the property that if $B_i(x) \subset B_1$, $B_{r/8}(x) \subset B_{1/3}$ and $D_i \cap B_i(x) \neq \emptyset$, for $i \leq k$, then

\[
|D_{i+1} \cap B_{r/8}(x)| \geq c_1 |B_r|,
\]

provided $20C^k_i \nu \leq 1$ and v, hence u, is a viscosity $(20C^k_i \nu)$-supersolution. Then, using Lemma 2.3 in [16] and setting $C_2 = 20C_1$, it follow that for a suitable μ depending only on c_1, hence universal,

\[
|\{ x \in B_{1/3}(x_0) : v(x) \leq C^k_2 \nu \}| \leq (1 - \mu^k) |B_{1/3}|.
\]

From this inequality the conclusion then follows by a standard rescaling and covering argument. \hfill \Box

\section*{References}

[1] L. Ambrosio, N. Fusco, and D. Pallara, \textit{Functions of bounded variation and free discontinuity problems}, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 2000.

[2] J. Dalphin, \textit{Uniform ball property and existence of optimal shapes for a wide class of geometric functionals}, Interfaces Free Bound., 20 (2018), pp. 211–260.

[3] G. De Philippis and F. Maggi, \textit{Regularity of free boundaries in anisotropic capillarity problems and the validity of Young’s law}, Arch. Ration. Mech. Anal., 216 (2015), pp. 473–568.

[4] M. G. Delgadino and F. Maggi, \textit{Alexandrov’s theorem revisited}, Anal. PDE, 12 (2019), pp. 1613–1642.

[5] F. Duzaar and K. Steffen, \textit{Optimal interior and boundary regularity for almost minimizers to elliptic variational integrals}, J. reine angew. Math., 564 (2002), pp. 73–138.

[6] X. Fernández-Real and J. Serra, \textit{Regularity of minimal surfaces with lower-dimensional obstacles}, J. Reine Angew. Math., 767 (2020), pp. 37–75.

[7] R. Finn, \textit{Equilibrium capillary surfaces}, vol. 284 of Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, New York, 1986.

[8] M. Focardi and E. Spadaro, \textit{How a minimal surface leaves a thin obstacle}, Ann. Inst. H. Poincaré Anal. Non Linéaire, 37 (2020), pp. 1017–1046.

[9] I. Fonseca, N. Fusco, G. Leoni, and M. Morini, \textit{Global and local energy minimizers for a nanowire growth model}, Ann. Inst. H. Poincaré Anal. Non Linéaire, 32 (2007), pp. 557–578.

[10] N. Guillen, \textit{Optimal regularity for the Signorini problem}, Calc. Var. Partial Differential Equations, 36 (2009), pp. 533–546.

[11] P. Krogstrup, S. Cirolietto, E. Johnson, M. Aagesen, J. Nygård, and D. Chatain, \textit{Impact of the liquid phase shape on the structure of iii-v nanowires}, Physical Review Letters, 106 (2011), 125505.

[12] F. Maggi, \textit{Sets of finite perimeter and geometric variational problems: an introduction to Geometric Measure Theory}, vol. 284 of Grundlehren der mathematischen Wissenschaften, Cambridge University Press, 2012.

[13] E. Milakis and L. Silvestre, \textit{Regularity for the nonlinear Signorini problem}, Adv. Math., 217 (2008), pp. 1301–1312.

[14] M. G. Mora and M. Morini, \textit{Functionals depending on curvatures with constraints}, Rend. Sem. Mat. Univ. Padova, 104 (2000), pp. 173–199.

[15] D. J. A. Richardson, \textit{Variational problems with thin obstacles}, ProQuest LLC, Ann Arbor, MI, 1978. Thesis (Ph.D.)–The University of British Columbia (Canada).

[16] O. Savin, \textit{Small perturbation solutions for elliptic equations}, Comm. Partial Differential Equations, 32 (2007), pp. 557–578.

[17] L. Simon, \textit{Lectures on geometric measure theory}, vol. 3 of Proceedings of the Centre for Mathematical Analysis, Australian National University, Australian National University Centre for Mathematical Analysis, Canberra, 1983.

[18] J. E. Taylor, \textit{Boundary regularity for solutions to various capillarity and free boundary problems}, Comm. Partial Differential Equations, 2 (1977), pp. 323–357.
