Fourth Generation Leptons and Muon $g - 2$

George Wei-Shu Hou, Fei-Fan Lee, and Chien-Yi Ma

Department of Physics, National Taiwan University, Taipei, Taiwan 10617, R.O.C.

We consider the contributions to $g - \mu^2$ from fourth generation neutral and charged leptons, N and E, at the one-loop level. Diagnostically, there are two types of contributions: boson-boson-N, and E-E-boson in the loop diagram. In general, from the Standard Model to the Two-Higgs Doublet Models, the effect from N is suppressed by off-diagonal lepton mixing element $V_{N\mu}$. With contribution from E, we consider flavor changing neutral couplings.

1. MOTIVATION

It was recently pointed out [1] that the existence of a 4th generation could have great implications on the baryon asymmetry of the Universe (BAU). By shifting the Jarlskog invariant product [2] for CP violation (CPV) of the 3 generation Standard Model (SM3) by one generation, i.e. from 1-2-3 to 2-3-4 quarks, one gains by more than 10^{13} in effective CPV, and may be sufficient for BAU! On the other hand, with renewed interest in the existence of a sequential 4th generation for CPV studies in B decays (see the references in [1]), and with experimental discovery or refutation expected at the LHC in due time, we turn to the lepton sector.

The difference between the experimental value of muon $g - 2$ and the SM3 prediction has been around for some time now [3], i.e.

$$a_{\mu}^{\exp} - a_{\mu}^{SM} = 295(88) \times 10^{-11},$$

where $a_{\mu} = (g_{\mu} - 2)/2$. The difference is over 3.4σ, which has aroused a lot of interest. On the other hand, we have very stringent bounds on lepton flavor violating (LFV) rare decays, such as [4]

$$B(\mu \rightarrow e\gamma) < 1.2 \times 10^{-11},$$

at 90% C.L. These limits could be improved further in the near future. However, the calculations of a_{μ} and $B(\mu \rightarrow e\gamma)$ are intimately related, coming from similar diagram, Fig. 1(a), hence giving the similar structures,

$$\epsilon_{\lambda q_e} e^{\lambda\mu}(C_L L + C_R R).$$

2. EFFECTS FROM NEUTRAL LEPTON N AND CHARGED LEPTON E

2.1. SM + N

The contribution from a fourth generation lepton N, Fig. 1(b), has been considered before [5, 6]. We find

$$a_{\mu}^{SM}(W^+W^- N) \sim 233 \times 10^{-11} |V_{N\mu}|^2 F(x),$$

where $x = m_N^2/M_W^2$ and $V_{N\mu}$ is the lepton mixing matrix element. We depict $F(x)$ versus x in Fig. 1(e). We see that $F(x)$ is a well-behaved function and bounded. From $m_N \gtrsim 90$ GeV [4], we see that $|V_{N\mu}|$ needs to be 0.7 or higher to reach within 2σ of Eq. 1. Considering the stringent constraint from Eq. 2, however, this is clearly unrealistic. We conclude that the difference of Eq. 1 cannot come from the addition of a 4th neutral lepton N.

2.2. 2HDM-II + N

Going beyond SM, we turn to 2HDM-II (which occurs for MSSM), where up and down type quarks receive masses from different Higgs doublets. We find (see Fig. 1(c))

$$a_{\mu}^{2HDM-II}(H^+H^- N) \sim -233 \times 10^{-11} |V_{N\mu}|^2 [f_H(x) + g_H(x) \cot^2 \beta + x_\mu q_H(x) \tan^2 \beta],$$

where
where $x = m_N^2/M_{H^+}^2$, and $x_\mu = m_\mu^2/M_{H^+}^2$. We plot $f_{H^+}(x)$, $g_{H^+}(x)$ and $q_{H^+}(x)$ in Fig. 1(e). Because N has isospin $+1/2$, large cot β could lead to enhancement. If we take $|V_{N\mu}\cot\beta|^2 \sim 1$ in the large cot β limit, and if m_N is large compared to m_{H^+}, it could generate a finite, but unfortunately negative contribution to Δa_μ.

2.3. 2HDM-I + N

For 2HDM-I, where all quarks receive masses from the same Higgs doublet, we find
\[a_{H^+}^{2\text{HDM-I}}(H^+H^-N) \sim 233 \times 10^{-11} |V_{N\mu}|^2 \tan^2 \beta [h_{H^+}(x) - x_\mu q_{H^+}(x)], \tag{6} \]
with $x = m_N^2/M_{H^+}^2$. Here we use $v_1 = v \cos \beta$ to generate all particle masses. However, in the 2HDM-I, the $t\bar{t}H^0(h^0)$ coupling relative to its SM value, m_t/v, is given by $\cos \alpha/\cos \beta (\sin \alpha/\cos \beta)$. Large tan β will make the coupling strength $|g_{t\bar{t}H^0}| \gg 1$ or $|g_{t\bar{t}h^0}| \gg 1$, and becomes nonperturbative, which leads us to reject this possibility.

2.4. 2HDM-III + E

In the 2HDM-III, FCNCs are allowed because there exist two matrices $\eta^{(e)}$ and $\xi^{(e)}$ simultaneously for each lepton type. To regulate the FCNC in face of stringent constraints, there is the ansatz suggested by Cheng and Sher [7] for the quark sector, i.e. all $q_i q_j h^0/H^0/A^0$ couplings have the same form
\[\Delta_{ij} \sqrt{m_i m_j} v, \tag{7} \]
where Δ_{ij} is $O(1)$. Note that CP-even Higgs H^0, h^0 give positive contributions to a_μ but negative for A^0. Considering the positivity of Eq. 1, we assume A^0 is very heavy and its effect can be neglected. For sake of illustration, we set h^0 to be the lightest neutral Higgs, and assume no mixing between H^0 and h^0, Fig. 1(d). Then we find
\[\Delta a_\mu^{2\text{HDM-III}} (H^\pm e^-) \sim 233 \times 10^{-11} F_{h^0}(x), \tag{8} \]
where $x = m_E^2/M_{h^0}^2$, and $F_{h^0}(x)$ is given in Fig. 1(e). However, the LFV decay rate in Eq. 2 gives a very stringent constraint. Note that because a_μ and $B(\mu \rightarrow e\gamma)$ come from similar structure of loop diagrams, their formulas are very closely related. After some organization, we have
\[B^{2\text{HDM-III}}(\mu \rightarrow e\gamma) \sim 1.7 \times 10^{-5} |F_{h^0}(x)|^2. \tag{9} \]
Consider the case of τ in the loop, which is the leading contribution with 3 generations. Allowing a factor of 2 uncertainty in Eq. 9, we still need $M_{h^0} > 138$ GeV in order to survive Eq. 2. The MEG experiment will soon push the bound to 530 GeV. Let us now consider 4 generations. Comparing Eq. 1 with Eq. 8, we can have $F_{h^0}(x) \sim 1$. However, Eq. 2 and Eq. 9 give $F_{h^0}(x) \sim 10^{-3}$, which requires $m_E \ll M_{h^0}$, which is unlikely. If a 4th generation is found, the Cheng-Sher ansatz does not seem applicable to the lepton sector.

2.5. MSSM + N + E

Simply put, MSSM doubles the diagrams of SM. The corresponding loops to $W^+W^-\nu_\mu$ and $\mu\mu Z$ are chargino-chargino-$\tilde{\nu}_\mu$ and $\tilde{\mu}-\tilde{\mu}$-neutralino respectively. In the mass degeneracy limit for superparticles, $m_{\text{Higgsino}} = m_{Wino} = M_{\tilde{\nu}_\mu} = M_{\text{SUSY}}$, and with large $\tan\beta$ (to compensate the extra heaviness of M_{SUSY}) [8], we can get a sufficient contribution to Eq. 1, as has been elucidated in the literature [3].

3. Summary

We have discussed some models with 4th generation leptons, and calculated their impact on a_μ. In the SM, 2HDM-I and II, it seems that the 4th generation is irrelevant to the Δa_μ puzzle because of the smallness of $|V_{N\nu_\mu}|$. However, this off-diagonal factor also protects these models from the stringent $B(\mu \rightarrow e\gamma)$ and $B(\tau \rightarrow \mu\gamma)$ constraints. For 2HDM-III, there exists a strong conflict with $B(\mu \rightarrow e\gamma)$ under the Cheng-Sher ansatz with the 4th generation. Hence, if a 4th generation is found, the Cheng-Sher ansatz cannot hold for the lepton sector. In this sense, SUSY is favored. Enhancement of a_μ (diagonal contribution) and suppression of $B(\mu \rightarrow e\gamma)$ (off-diagonal contribution) in the MSSM are both similar to the SM. Since large $\tan\beta$ suppresses the negative contribution from H^+H^-N, MSSM and 4th generation can coexist.

Acknowledgments

This work is supported in part by the National Science Council of R.O.C. under grant numbers NSC96-2739-M-002-005, NSC96-2811-M-002-042, and NSC96-2811-M-002-097.

References

[1] W.S. Hou, arXiv:0803.1234 [hep-ph].
[2] C. Jarlskog, Phys. Rev. Lett. 55, 1039 (1985); Z. Phys. C 29, 491 (1985).
[3] For a recent review, see e.g. D. Stöckinger, J. Phys. G 34, R45 (2007).
[4] C. Amsler et al. [Particle Data Group], Phys. Lett. B 667, 1 (2008).
[5] W. Huo and T.F. Feng, arXiv:hep-ph/0301153.
[6] K.R. Lynch, arXiv:hep-ph/0108081.
[7] T.P. Cheng and M. Sher, Phys. Rev. D 35, 3484 (1987); D 44, 1461 (1991).
[8] T. Moroi, Phys. Rev. D 53 (1996); Erratum-ibid. D 56 (1997).