Pharmacology of tetrandrine and its therapeutic use in digestive diseases

Ding-Guo Li, Zhi-Rong Wang and Han-Ming Lu

Department of Gastroenterology, Xinhua Hospital, Shanghai Second Medical University, Shanghai 200092, China

Correspondence to: Dr. Ding Guo Li, Department of Gastroenterology, Xinhua Hospital, Shanghai Second Medical University, Shanghai 200092, China

Received 2001-05-12 Accepted 2001-05-16

Subjected heading Tetrandrine/pharmacology; digestive system diseases/drug therapy

LI DG, Wang ZR, Lu HM. Pharmacology of tetrandrine and its therapeutic use in digestive diseases. World J Gastroenterol, 2001; 7(5):627-629

INTRODUCTION

Tetrandrine (Tet) is a dibenzylisoquinoline alkaloid isolated from Stephania tetrandra S. Moore, a Chinese herbal medicine. In the past decade, lots of studies demonstrated that Tet has multiple bioactivities. It is promising to use Tet as an antifibrogenetic in liver or lung fibrosis with or without portal or pulmonary hypertension, as well as an immunomodulating and anticarcinoma drug.

PHARMACOLOGY

Ca²⁺ channel blocking activity

Abnormal Ca²⁺ signaling and elevated concentration of intracellular free Ca²⁺ are the basic pathophysiological events involved in various diseases. As a Ca²⁺ antagonist, Tet can inhibit extracellular Ca²⁺ entry, int erneuron in the distribution of intracellular Ca²⁺, maintain intracellular Ca²⁺ homeostasis, and then disrupt the pathological processes. As shown in whole cell patch-clamp recordings, Tet blocked bovine chromaffin cells voltage-operated Ca²⁺ channel current in a time- and concentration-dependently manner. In rat phaeochromocytoma PC 12 cells, 100 μmol·L⁻¹ Tet abolished high K⁺(30 mmol·L⁻¹) - induced sustained increase in cytoplasmic Ca²⁺ concentration, inhibit bombesin-induced inositol triphosphate accumulation in NIH/3T3 fibroblast and abolish Ca²⁺ entry(9). In rat glioma C6 cells, studied with fluorometric ratio method, Tet did not affect the resting cytoplasmic Ca²⁺ concentration, but it inhibited IP3 accumulation and the sustained and peak elevation of cytoplasmic Ca²⁺ concentration induced by bombesin and thapsigargin, a microsomal Ca²⁺-ATPase inhibitor, in a dose-dependent manner. The dose of Tet needed to abolish the sustained and peak elevation of cytoplasmic Ca²⁺ concentration induced by bombesin and thapsigargin was 30 μmol·L⁻¹(10). Bickmeyer et al (9) demonstrated that NG108-15 cells treated with 100 μM Tet for seven minutes could block voltage-dependent Ca²⁺ entry induced by depolarization with 50 mM KCl. Tet could block non-voltage-operated Ca²⁺ entry activated by intracellular Ca²⁺ store depletion induced by thapsigargin and could release intracellular Ca²⁺ in HL-60 cells, and could therefore increase concentration of intracellular free Ca²⁺, elicit therapeutic effects. We have previously demonstrated that Tet could concentration-dependently block extracellular Ca²⁺ entry into hepatocytes, promote mitochondria Ca²⁺-uptake, and inhibit Ca²⁺-mobilizing from mitochondria. However, the blockade of Ca²⁺ channel played the most important role in maintaining Ca²⁺ homeostasis, but not intracellular Ca²⁺ distribution.

In the presence of extracellular Ca²⁺ (1.3 μmol·L⁻¹), glutamate, serotonin and histamine significantly increased the intracellular Ca²⁺ concentration in a dose-dependent manner. 30mol·L⁻¹ Tet significantly inhibited the increase in intracellular Ca²⁺ concentration induced by glutamate, serotonin and histamine by 28.0%, 46.8% and 29.0%. In Ca²⁺ free Hanks’ solution, Tet did not produce a significant inhibitory effect on the increase in intracellular Ca²⁺ concentration caused by serotonin and histamine. These results indicate that Tet conducted blocking of Ca²⁺ influx from the extracellular site via NMDA, 5-HT; and histamine type I receptor-operated Ca²⁺ channels and has no obvious effect on the Ca²⁺ release from intracellular Ca²⁺ stores(11). In addition, Tet also inhibited extracellular Ca²⁺ entry and intracellular Ca²⁺ mobilization induced by norepinephrine and angiotonin II via corresponding receptor respectively(12). Taking together, in different tissues and different kinds of cells, Tet may block the Ca²⁺ channel through different mechanisms. It can block the voltage- and/or receptor-operated Ca²⁺ channel. Nevertheless, in some kind of carcinoma cells, Tet does not affect Ca²⁺ channel, but promote Ca²⁺ release from intracellular stores and elevate the cytosolic free Ca²⁺ concentration.

Immunomodulating activity

Clinically, Stephania tetrandra S. Moore has been thought to be effective in treating autoimmune diseases such as rheumatoid arthritis and systemic lupus erythe matosus. Tet, the active ingredient isolated from Stephania tetrandra S. Moore, has potential immunomodulating and anti-inflammatory effects. T-lymphocytes play a critical role as autoactive and pathogenic population in autoimmune and inflammatory diseases. Some experimental data showed that, through down-regulating the protein kinase C (PKC) signaling, interleukin-2 secretion and the expression of the T cell activation antigen (CD71), Tet inhibited phobol 12-myristate 13-acetate (PMA)+ionomycin-induced T cell proliferation dependent on interleukin-2 receptor alpha chain and CD69, such an action was unrelated to Ca²⁺ channel blockade(10). Tet (0.1-10 μmol·L⁻¹) significantly inhibited neutrophil-monocyte chemotactic factor-1 upregulation and adhesion to fibrinogen induced by N-formyl-methionyl-leucyl-phenylalanine and PMA. Tet at 0.1-100 μmol·L⁻¹ caused dose- and time-dependent loss of cell viability of mouse peritoneal macrophages, guinea-pig alveolar macrophages and mouse macrophage-like J774 cells, reduced production of oxygen free radical oxygen, down-regulated synthesis and
release of some pro-inflammatory cytokines[7,8]. Nuclear transcription factor kappa B (NF-kappa B) is a multiprotein complex which regulates a variety of genes concerned with immunity and inflammation. For the alveolar macrophages, Tet could inhibit the activation of their NF-kappa B and NF-kappa B-dependent reporter gene expression induced by endotoxin, PMA, and silica in a dose-dependent manner. Western blot analysis suggested that the inhibitory effects of tetrane on NF-kappa B activation could be attributed to its ability to suppress signal-induced degradation of I kappa B alpha, a cytoplasmic inhibitor of the NF-kappa B transcription factor[7,9].

Conducting tumor cell apoptosis
To induce tumor cell apoptosis is one of the important chemotherapeutic strategies for malignant tumors. Tet inhibited both proliferation and clonogenicity of human leukemic U937 cells at an optimal concentration of 2.5 mg L⁻¹. The characteristic morphological changes of apoptosis were observed under light microscopy and DNA fragmentation was noted by gel electrophoresis in these cells. Moreover, flow-cytometric detection of surface phosphatidyl serine expression of cells after treatment with Tet confirmed the induction of apoptosis in these cells[10]. Tet concentration-dependently inhibited the proli feration of human leukemic HL-60 cells. Morphological observation and DNA analysis revealed that Tet caused cell shrinkage with the formation of apoptotic bodies, and showed clear evidence of DNA fragmentation[11]. Tet was found to induce pronounced morphological changes characteristic of apoptosis and extensive DNA fragmentation in the human BM13674 cell line 8 h after treatment[12]. The induction of apoptosis by Tet was much more rapid in CEM-C7 cells (4 h) than in the same cells treated with glucocorticoids (40 h), and did not require de novo protein synthesis[13]. These results indicate that Tet may have value as an anti-neoplastic agent.

Reversing multidrug resistance (MDR)
The occurrence of MDR to chemotherapeutic drugs is a major problem for successful cancer treatment. The overexpression of cell membrane P-glycoprotein (P-gp) is one of the major mechanisms of MDR. P-gp pumps antitumor drugs out of tumor cells, causing drug resistance. Tet (3 µmol L⁻¹) reduced the paclitaxel concentration required to achieve 50% inhibition of cell growth (EC50) of HCT15 (P-gp-positive) cells about 3100-fold, and also reduced the EC50 value of actinomycin D about 36.0-fold in the cells. Meanwhile, Tet had no effect on the cytotoxicity of the drugs to SK-OV-3 (P-gp-negative) cells[14]. The non-cytotoxic concentrations of Tet potentiated the growth-inhibitory actions of doxorubicin (Dox) in the Har-resistant HL60 cells. The colony formation efficiencies were reduced from 60% by Dox to 0.2% by Tet + Dox. Retardation of the G2M phase cells was increased. But Tet did not potentiate Dox cytotoxicity in the sensitive HL60 cells. Dox accumulation in the harringtonine-resistant HL60 cells treated by with was increased. These results indicated that Tet enhanced the cytotoxicity of MDR-related drugs via modulation of P-gp[15]. In addition, Tet could also inhibit platelet-activating factor-induced human platelet aggregation and decrease thromboxane B2 production and thrombus formation[16].

Therapeutic Use in Digestive System Diseases
Protective effects on hepatocyte injury
Hepatocyte lesions are common and very important clinically[16-21]. Chen et al[22] observed the effects of Tet on hepatocytic injury induc by CCl4. The result showed that, compared with control group, Tet (1-1000 nmol L⁻¹) increased viability of liver cell (from 71% to 72%-89%), reduced lactate dehydrogenase, release, and malondialdehyde (MDA) formation. Tet prevented the increase of the intracellular Ca²⁺ concentration and the attenuation of the membrane microflow of liver cells. Tet (30 mg kg⁻¹d⁻¹ via gavage for two wk) could markedly reduce the elevation of serum alanine aminotransferase, alkaline phosphatase and MDA induced by azathioprine. The level of reductive glutathione and SOD were not different from the normal control group. Histological changes in the Tet-treated group were slight[23]. The protective effect on CCL₄- or azathioprine-injured hepatocytes may be elicited by inhibiting the lipid peroxidation, improving the membrane microflow, and lessening the Ca²⁺ concentration. With flow-cytometric technique, we demonstrated that 10-60 mg L⁻¹ Tet could concentration-dependently accelerate the G1 phase cells transforming to S phase cells, and increase the level of DNA in the S phase and protein in the G1, G2 phase cells significantly. Further study indicated that the effect of Tet in promoting hepatocytes proliferation was not related to blockade of Ca²⁺ influx[24].

Anti-hepatofibrogenetic activity
Tet could significantly reduce the degree of experimental hepatic fibrogenesis induced by CCl4, in rats; the levels of serum hyaluronic acid and procollagen peptide were decreased, and the liver dysfunction was ameliorated. Tet could also obviously inhibit extracellular matrix formation and collagen deposition. In the liver tissue of rats treated with Tet, hepatic stellate cell (HSC) activation, proliferation, and transformation were down-regulated; the number of desmin-positive cells were reduced significantly. The anti-fibrotic effect of Tet had no significant difference from that of colchicine[25]. HSC activation, proliferation, and transforming into fibroblast are the putative events in hepatic fibrogenesis. Tet could significantly inhibit conventional cultured HSC activation and type I and type III collagen mRNA expressions and protein synthesis were down-regulated. Tet could block HSC proliferation colla gen synthesis induced by platelet-derived growth factor (PDGF), reduce the level of PDGF, PDGF receptor (PDGF-R beta1), transforming growth factor beta1 (TGF beta1) and alpha-smooth muscle actin mRNA, and also down-regulate the au tocrine of PDGF, PDGF-R beta1, TGF beta1. These data suggest that Tet may block hepatic fibrogenesis directly and/or through inhibiting cytokine express ions[26,27]. After taking Tet orally for three months, liver functions of the patients with cirrhosis were obviously improved. Administrat ion Tet for six to eighteen months, serum levels of PIIIP and HA of the patients were markedly reduced. Histological examination showed that, compared with pretreatment or placebo, inflammatory cell infiltration was reduced, and even abolished, and that the deposition of ECM, type I and type III collagen were decreased significantly[28].

Anti-portal hypertension
Portal hypertension is one of important manifestations of the patients with cirrhosis. Upper gastrointestinal hemorrhage caused by portal hypertension commonly led to the patient’s death. After injecting Tet intravenously (2.0, 6.0 and 20.0 mg kg⁻¹), portal venous pressure and mean arterial pressure were assessed in cirrhotic rats induced by CCl4. The results
demonstrated that Tet induced dose-dependent decreases in portal venous pressure and mean arterial pressure. The maximum percentage reductions of portal venous pressure after Tet in the three different dosages were 5.4±1.0%, 9.2±0.8%, and 23.7±1.2% of baseline, respectively. Total peripheral resistance was also reduced by Tet[29,30]. In portal hypertensive rats induced by partial portal vein ligation, Tet (4, 8, 16 and 24 mg·kg⁻¹) induced dose-dependent decreases of portal venous pressure and mean arterial pressure after intravenous infusion. Tet (16 mg·kg⁻¹) caused the portal venous pressure decreasing from a baseline of 12.5 mmHg to 10.0 mmHg, and the mean arterial pressure from a baseline of 90 mmHg to 80 mmHg. At 24 mg·kg⁻¹, Tet reduced portal venous pressure and mean arterial pressure to 20.3±2.4% and 28.4±1.4% of baseline, respectively[31]. The effects of Tet on portal hypertension may be attributed to its actions of blocking voltage- and receptor-operated Ca²⁺ channels in vascular smooth muscle cells, inhibiting intracellular Ca²⁺ mobilization and dilating peripheral blood vessels. We had previously observed its clinical therapeutic effects on portal hypertension. Taking Tet orally for 2 consecutive years, the esophageal variceal pressure and the portal blood flow in cirrhotic patients with portal hypertension were significantly reduced. The proportion of patients with no recurrent gastrointestinal bleeding during 2 years’ medication of tetraniode was 87.9%. It is suggested that Tet would be effective for cirrhotic patients with portal hypertension in preventing recurrent variceal bleeding[32].

Therapeutic effect on portal hypertensive gastropathy

Portal hypertensive gastropathy is caused by dysfunction of submucosal circulation and gastric mucosal barrier damage. Recent studies found that Tet increased prostaglandin E2, GMGE, and GAM secretion, reduced the degree of gastric mucosa injury, and lowered the portal pressure. This result indicates that Tet may be useful in portal hypertensive gastropathy.

Preventing pancreatic islet beta cells from toxic injury

Pancreatic islet beta cells could be damaged by alloxan (50 mg·kg⁻¹ i.v.) in rats, and diabetic animal models were thus prepared. Pancreatic islet beta cells density in experimental groups pretreated with Tet (100 mg·kg⁻¹ via gavage) at 1.5 hours prior to alloxan injection increased from the control group of 300-400 μm² to 600-800 μm², indicating that Tet may be useful in portal hypertensive gastropathy.

REFERENCES

1. Takekura H, Imoto K, Ohshika H, Kwan CY. Tetraniode as a calcium antagonist. Clin Exp Pharmacol Physiol, 1996;23:751-753
2. Imoto K, Takekura H, Kwan CY, Sakano S, Kaneko M, Ohshika H. Inhibitory effects of tetraniode and hederanide on Cao²⁺ mobilization in rat glioma C6 cells. Res Commun Mol Pathol Pharmacol, 1997;95:129-146
3. Bickmeyer U, Hare MF, Atchison WD. Tetraniode blocks voltage-dependent calcium entry and inhibits the bradykinin-induced elevation of intracellular calcium in NG108-15 cells. Neurotoxicology, 1996;17:335-341
4. Xuan B, Liu F, Zhang MY, Xiao JG. Inhibitory effects of tetraniode on intracellular free Ca²⁺ increase induced by glutamate, serotonin and histamine in dissociated retina cells. J Oral Pathol Med, 1996;25:311-316
5. Wong KK. Differential effect of tetraniode on aortic relaxation and chronotropic activity in rat isolated aorta and atria. Planta Med, 1998;64:663-665
6. Ho LJ, Chang DM, Lee TC, Chang ML, Lai JH. Plant alkaloid tetraniode downregulates NFκB pathway. J Cell Physiol, 1999;139:50-58
7. Shen YC, Chen CF, Wang SY, Sung YJ. Impediment to calcium influx and reactive oxygen production accounts for the inhibition of neutrophil Mac-1. J Immunopharmacol, 1999;25:80-89
8. Wang MR, Le LZ, Xu JZ, He CL. Establishment and application of experimental model of human fetal hepatocytes: protective effects of silybin and polypropus umbellalus polysaccharides on human fetal hepatocytes. Chin J Natl New Gastroenterol, 1997;3:228-230
9. Wang HL, Lu HM, Li DG, Jiang ZM, Qi F. Effects of tetraniode and hederanide on Ca²⁺ mobilization of rat hepatocytes. Zhonghua Yaoli xe Tongbao, 1998;9:663-665
10. Lai YL, Chen CY, Wu Y, Wang CH, Chen ML. Induction of apoptosis in human leukaemic U937 cells by tetraniode. Anticancer Drugs, 1998;9:77-81
11. Dong Y, Yang MM, Chen KW, Kwan CY. In vitro inhibition of proliferation of HL-60 cells by tetraniode and coronovisior peptide derived from Chinese medicinal herbs. Life Sci, 1997;60:135-140
12. Song Q, Baster BD, Kawaas EM, Findik D, Lavin MF. Inhibition of apoptosis in human tumour cells by okadaic acid. J Cell Physiol, 1992;153:556-556
13. Teh BS, Chen P, Lavin MF, Seow WK, Thong YH. Demonstration of the inducetion of apoptosis (programmed cell death) by tetraniode, a novel anti-inflammatory agent. Int J Immunopharmacol, 1993;15:1117-1126
14. Cipti SU, Park SH, Kim JS, Lee DH, Park KY, Zheng YH, Kim HS, Jung NP, Lee KO. The bisbenzisulquionine alkaloids, tetraniode and hederanide, enhance the cytotoxicity of multidrug resistance-related drugs via modulation of P-glycoprotein. Anticancer Drugs, 1998;9:255-261
15. He QY, Meng FH, Zhang HQ. Reduction of doxorubicin resistance by tetra niode and dauricine in harringtonine-resistant human leukaemic (HL60) cells. J Ethnopharmacol, 1996;52:179-181
16. Kim HS, Zhang YH, Fang LH, Yun YP, Lee HK. Effects of tetraniode and hederanide on pancreatic platelet aggregation and thromboxane B₂ formation. J Ethnopharmacol, 1996;56:241-246
17. Wang MR, Le LZ, Xu JZ, He CL. Establishment and application of experimental model of human fetal hepatocytes: protective effects of silybin and polypropus umbellalus polysaccharides on human fetal hepatocytes. Chin J Natl New Gastroenterol, 1997;3:228-230
18. Huang ZS, Wang ZW, Liu MP, Zheng SQ, Li QM, Rong XL. Protective effects of polyclatin against CCI₁-induced injury to primarily cultured rat hepatocytes. World J Gastroenterol, 2000;6:326-329
19. Hu YL, Liu CH, Wang RP, Liu C, Liu P, Zhu DY. Protective actions of salvinol acid A on hepatocyte injured by peroxidation in vitro. World J Gastroenterol, 2000;6:402-404
20. Zhang GQ, Zhou XQ, Hu H, Xie Q, Zhao GM, Wang B, Guo Q, Xiang YQ, Liao D. Effect of hepatocyte apoptosis induced by TNF-α or acute severe hepatitis in mouse models. World J Gastroenterol, 2000;6:88-91
21. Chen XH, Hu YM, Liao YQ. Protective effects of tetraniode on CCI₁-injured hepatocytes. J Pharmacologica Sinica, 1996;17:348-350
22. Hao JW, Sun CC, Zhang L, Zhang X, Wang JY. Protective effects of tet aniode on Azathioprine-injured hepatocytes. Zhongguo Xinjiang YBulletin Zhongguo, 1997;2:180-182
23. Liu YL, Li DG, Hu LM, Xu QF. Effects of tetraniode on hepatocyte proliferation. Shanghai Diabetes Res, 1995;5:212-215
24. Sun ZQ, Wang YJ, Quan QZ, Zhang ZJ. Comparative studies of tetraniode and colchicine anti-fibrogeneses. Zhongguo Yuxue Tongbao, 1996;12:345-347
25. Tian ZB, Liu SL, Li DG, Lu HM. Tetraniode blocked cell proliferation -induced by platelet derived growth factor. Zhonghua Yixue Zazhi, 1997;57:50-54
26. Liu HL, Lu HM, Li DG, Jiang ZM, Qi F. Effects of tetraniode and chlorpromazine on synthesis of collagen and hyaluronic acid in cultured human lung fibroblasts. Acta Pharmacologica Sinica, 1996;17:348-350
27. Li DG, Lu HM, Xia WX. Significance of serum collagen type III peptide in antifibrogeneses with Ca²⁺ channel blockers. Zhongguo Yuxue Zazhi, 1990;29:453-456
28. Huay CT, Cheng YR, Lai JH, Chen CY, Hong CY. Haemodynamic effects of chronic tetraniode treatment in portal hypertensive rats. J Gastroenterol Hepatol, 1997;12:585-589
29. Huay CT, Cheng YR, Lai JH, Chen CY, Hong CY. Haemodynamic effects of chronic octreotide and tetraniode administration in portal hypertensive rats. J Gastroenterol Hepatol, 1998;13:266-272
30. Huang YT, Liu YB, Lin HC, Chen CY. Hemodynamic effects of chronic tetraniode and propranolol administration on portal hypertensive rats. J Gastroenterol Hepatol, 1999;14:228-231
31. Li D, Lu H, Li X, Quan QZ, Lu W. Calcium channel blockers in cirrhotic patients with portal hypertension. Clin Med, 1995;108:803-808
32. Sun GR, Qi Y, Fan Q. Quantitative analysis of tetraniode protecting the pancreatic islet beta cell. Zhonghua Yixue Zazhi, 1997;27:260-263

Edited by Lu HM