Meta-Analyses of Manganese Superoxide Dismutase Activity, Gene Ala-9Val Polymorphism, and the Risk of Schizophrenia

Dong-Fang Wang, MD, Bing Cao, MD, Mei-Yan Xu, MM, Ya-Qiong Liu, MB, Lai-Lai Yan, MD, Rong Liu, MD, Jing-Yu Wang, PhD, and Qing-Bin Lu, MD

Abstract: Schizophrenia is a complex and disabling psychiatric disorder, and tardive dyskinesia (TD) is a severe adverse drug effect occurring in 20% to 40% of schizophrenic patients chronically treated with typical neuroleptics. Previous studies suggested that the manganese superoxide dismutase (MnSOD) activity was associated with the development of schizophrenia. Ala-9Val polymorphism, a functional polymorphism of MnSOD gene, has been reported to be related to the risk of schizophrenia and TD. However, these studies did not lead to consistent results. We performed meta-analyses aiming to assess the association between MnSOD activity and schizophrenia, as well as the association of MnSOD Ala-9Val polymorphism with schizophrenia and TD in schizophrenic patients.

We search for the literature on MnSOD and schizophrenia in English or Chinese published up to May 1, 2015 on PubMed, EMBASE, the Cochrane Databases, Chinese National Knowledge Infrastructure, China Biology Medical and Wanfang databases. Two investigators independently reviewed retrieved literature and evaluated eligibility. Discrepancy was resolved by consensus with a third reviewer. Data were pooled using fixed-effect or random-effect models. The standardized mean difference (SMD) and 95% confidence interval (CI) were calculated for Ala-9Val genotype and allele frequencies.

There were 6, 6, and 10 studies entering 3 parts of meta-analyses, respectively. The MnSOD activity of patients was significantly lower than that of controls (SMD = −0.94; 95% CI: −1.76, −0.12; P = 0.025). No significant associations of Ala-9Val genotypes (OR = 1.14; 95% CI: 0.97, 1.33; P = 0.109) and alleles (OR = 1.06; 95% CI: 0.94, 1.20; P = 0.361) with the risk of schizophrenia were observed. We also did not reveal significant associations of the genotypes (OR = 0.82; 95% CI: 0.66, 1.02; P = 0.075) and alleles (OR = 0.90; 95% CI: 0.76, 1.06; P = 0.215) with the risk of TD in schizophrenia.

The decreased MnSOD activity may be associated with the risk of chronic schizophrenia in Chinese population, while MnSOD Ala-9Val polymorphism may not play a significant role in the development of schizophrenia and TD. Longitudinal studies with larger sample sizes and different ethnicities are needed to confirm the association of the MnSOD Ala-9Val variants with schizophrenia and TD.

INTRODUCTION

Schizophrenia is a complex and disabling psychiatric disorder characterized by psychopathology, cognition, and neurobiological abnormality abnormalities, with deficits in perception, emotion, and social behavior.1,2 Although the pathogenesis of schizophrenia is not fully understood, the alteration of the oxidative stress, an imbalance between free radical metabolism and the antioxidant defense system, has been suggested to be associated with the development of schizophrenia.3

The superoxide dismutases (SODs) are 1 group of the key antioxidant defense enzymes playing a crucial role in preventing cell oxidative damage from free radicals.4 Among 3 isoforms of SODs, the manganese superoxide dismutase (MnSOD), the intramitochondrial SOD, is the main antioxidant enzyme playing a critical role in the detoxification of superoxide radicals.5,6 Although it has been demonstrated that altered total SOD activity existed in schizophrenic patients, the studies on the association between MnSOD activity and schizophrenia were limited and conflicting.7–12

The MnSOD gene known as a candidate region for linkage with schizophrenia is located in chromosome 6q25.13 Among known functional polymorphisms of the MnSOD gene, the Ala-9Val polymorphism in exon 2 is the most widely investigated
SNP, with the Ala-to-Val substitution possibly leading to the alteration of MnSOD activity in human mitochondria.13,14 Studies on the association between Ala-9Val polymorphism and schizophrenia generated inconsistent results in different ethnic groups.10,11,15–18

Tardive dyskinesia (TD) is a severe adverse drug effect occurring in 20% to 40% of schizophrenic patients chronically treated with typical neuroleptics, characterized by the delayed manifestation of involuntary movements.19,20 Several studies investigated the genetic association between the MnSOD Ala-9Val variants and TD, but the results were inconsistent.10,15,17,21–23 Recently, a meta-analysis performed by Zai et al12 did not reveal a significant association of Ala-9Val alleles or genotypes with the risk of TD in schizophrenic patients. However, this study neither included entire references nor found the sources of high heterogeneity.

Therefore, we carried out this meta-analyses to further assess the association between MnSOD Ala-9Val polymorphism and TD in schizophrenic patients, and also to evaluate the association between MnSOD activity, MnSOD Ala-9Val polymorphism, and schizophrenia.

METHODS

Ethical Review

Meta-analysis does not involve ethical review.

Search Strategy

We conducted literature search on MnSOD and schizophrenia in English or Chinese published up to May 1, 2015. PubMed, EMBASE, the Cochrane Databases, Chinese National Knowledge Infrastructure, and China Biology Medical and Wanfang databases were searched by 2 researchers independently. The following terms were used: “manganese superoxide dismutase OR superoxide dismutase 2 OR SOD2 OR MnSOD” AND “schizophrenia OR psychotic disorders OR psychosis.” We also searched the reference lists of the retrieved articles and reviews for additional articles.

Criteria for Inclusion and Exclusion

Studies were included if they met the following criteria: a case–control study (schizophrenia patients vs healthy controls or patients with TD vs ones without TD) or cohort study was performed; the diagnosis of schizophrenia was conducted according to Diagnostic and Statistical Manual of Mental Disorders (DSM) criteria or Chinese Classification of Mental Disorders (CCMD); the presence of TD was assessed using the Hillside Simpson Dyskinesia Scale (HSDS); data on MnSOD activity or the modified Abnormal Involuntary Movement Scale (AIMS) or the modified Discom Any Involuntary Movement Scale (CAIMS) were presented; and the sample size was at least 100 cases. The exclusion criteria were: the studies were not related to MnSOD activity and schizophrenia; the studies did not provide sufficient information about MnSOD activity or MnSOD Ala-9Val genotype and allele frequencies; the genotypic distributions of MnSOD Ala-9Val gene in healthy controls were inconsistent with Hardy–Weinberg equilibrium (HWE) in the meta-analysis of the association between MnSOD Ala-9Val polymorphism and schizophrenia; the references used overlapping datasets with the included studies.

We used the Newcastle–Ottawa Quality Assessment Scale to assess the quality of studies included in the meta-analysis.

Data Extraction

Data were extracted from the included studies using a standardized data extraction form by 2 reviewers independently, and any discrepancy was discussed and resolved by consensus with a third reviewer. The extracted information included the followings: the first author, the publication year, country, geographic location, the mean age and gender ratio (female/male), diagnostic criteria, specimen, assay method of MnSOD activity, genotyping method, duration of illness (years), sample size, mean, and standard deviation (SD) of MnSOD activity (U/mL) of the case and control groups, Ala-9Val genotype and allele frequencies of cases with TD and without TD as well as the control group.

Outcomes Measures

We performed separate meta-analyses comparing: MnSOD activity between schizophrenic patients and healthy controls; MnSOD Ala-9Val genotype and allele distribution between schizophrenic patients and healthy controls; MnSOD Ala-9Val genotype and allele distribution between schizophrenic patients with TD and without TD.

Statistical Analysis

The meta-analysis on the association between the MnSOD activity and schizophrenia was carried out by pooled standardized mean differences (SMD) with 95% confidence interval (95% CI). The meta-analyses on the association of the MnSOD Ala-9Val polymorphism with schizophrenia and TD were performed using recessive genetic model (Ala/Ala and Ala/Val vs Val/Val) and allele frequency (Ala vs Val), and the pooled odds ratio (OR) and 95% CI were calculated. Heterogeneity among studies was estimated using the Cochran Q and I2 statistic. For the Q statistic, \(P < 0.10 \) indicates statistically significant heterogeneity. For the \(I^2 \) statistic, \(I^2 > 50\% \) indicates a large heterogeneity. A fixed-effect model with Mantel–Haenszel method was used if \(Q \) statistic (\(P < 0.10 \)) or \(I^2 < 50\% \). Otherwise, a random-effect model was used. In case of heterogeneity, meta-regression analysis or subgroup analysis was conducted. Sensitivity analysis was performed to strengthen the result of the meta-analysis. Publication bias was assessed using the Begg’s and Egger’s tests. All data analyses were performed using Stata 12.0 (Stata Corp LP, College Station, TX).

RESULTS

Basic Information of the Included Studies

The process of identifying eligible articles was summarized in Figure 1. The meta-analysis of the association between MnSOD activity and schizophrenia included 6 studies involving 1541 (61.1%) schizophrenic patients and 981 (38.9%) healthy controls which were all Chinese subjects (Table 1). For the meta-analysis of the association between Ala-9Val polymorphism and schizophrenia, 6 studies were included and most of them were from Asia (66.7%, 4/6), with a total of 1976 (56.5%) patients and 1520 (43.5%) controls (Table 2). Table 3 showed the information of 10 included studies for the meta-analysis of the association between Ala-9Val polymorphism and TD in schizophrenic patients. Totally, there were 676 (32.1%) patients with TD and 1427 (67.9%) ones without TD. Most of the studies...
were from Asia (70.0%, 7/10). All studies received a score of ≥6, indicating good qualities.

The MnSOD Activity and Schizophrenia Risk

The random-effect model showed that the MnSOD activity of patients was significantly lower than that of controls (SMD $= -0.94; 95\% \text{ CI: } -1.76, -0.12; P = 0.025$) with significant heterogeneity among studies ($I^2 = 98.4\%, P < 0.001$) (Figure 2).

We performed subgroup analysis to analyze the sources of heterogeneity (Figure S1, http://links.lww.com/MD/A410). Five factors were used for subgroup analysis, including mean age of the case group (>50 years), gender ratio (female/male >1), sample type (serum/plasma), published year (before 2010/after 2010), and duration of illness (>30 years) (Figure S1, http://links.lww.com/MD/A410). However, the heterogeneity still kept high ($>90\%$) in all the subgroups.

No evidence of publication bias were observed in the included studies ($P_{\text{Egger}} = 0.357$ and $P_{\text{Begg}} = 0.851$) (Figure S2, http://links.lww.com/MD/A410).

The Association Between MnSOD Ala-9Val Polymorphism and Schizophrenia Risk

The genotypic as well as allelic analysis using the fixed-effect model, did not show significant associations of Ala-9Val genotypes (OR $= 1.14; 95\% \text{ CI: } 0.97, 1.33; P = 0.109$) and alleles (OR $= 1.06; 95\% \text{ CI: } 0.94, 1.20; P = 0.361$) with the risk of schizophrenia (Figure 3). There were no evidence for heterogeneity among the studies for both genotypes ($I^2 = 0.0\%, P = 0.696$) and alleles ($I^2 = 0.0\%, P = 0.579$).

In the sensitivity analyses, each included study was removed one by one to determine the effect of an individual

![Flow diagram of the studies selection process for the present meta-analysis.](http://links.lww.com/MD/A410)

FIGURE 1. Flow diagram of the studies selection process for the present meta-analysis.

TABLE 1. Basic Information of Included Studies on Association Between Manganese Superoxide Dismutase Activity and Schizophrenia
First Author

Hong
Zhang
Zhang
Wu
Zhang

$\text{AP} = \text{antipsychotics; } \text{CCMD} = \text{Chinese Classification of Mental Disorders; } \text{DSM} = \text{Diagnostic and Statistical Manual; } \text{F/M} = \text{females/males; } \text{HA} = \text{hydroxylamine method; } \text{NA} = \text{no data in the reference; } \text{SD} = \text{standard deviation.}$
TABLE 2. Basic Information of Included Studies on the Association Between Manganese Superoxide Dismutase Ala-9Val Polymorphism and Schizophrenia

First Author	Published Year	Country	Geographic Location	Age\(^{\#1}\), yr (Mean ± SD)	Gender\(^{\#1}\), F/M	Genotyping Method	Sample Size, Case/Control	Case Genotypes, n (%)	Control Genotypes, n (%)	Case Alleles	Control Alleles	HWE, P\(^{\#2}\)	Quality Score
Hori	2000	Japan	Asia	55.6 ± 9.1	97/95	PCR	192/141	42 (21.9)	150 (78.1)	45 (11.7)	339 (88.3)	0.799	7
Zhang	2002	China	Asia	55.3 ± 8.5	0/101	PCR	101/50	33 (32.7)	68 (67.3)	33 (16.3)	169 (83.7)	0.148	8
Ventriglia	2006	Italy	Europe	42.4 ± 12.1	81/131	PCR	212/257	166 (78.3)	46 (21.7)	193 (75.1)	64 (24.9)	0.181	7
Hitzeroth	2007	South Africa	Africa	34.1 ± 10.7	52/206	PCR	286/243	194 (67.8)	92 (32.2)	163 (67.1)	80 (32.9)	0.781	8
Zhang	2007	Korea	Asia	44.7 ± 9.7	84/178	PCR	262/265	49 (18.7)	213 (81.3)	54 (20.5)	209 (79.5)	0.063	8
Zhang	2014	China	Asia	48.1 ± 9.6	152/771	PCR	923/566	249 (27.0)	674 (73.0)	125 (22.1)	441 (77.9)	0.063	9

\(^{\#1}\) The age and gender of patients.

\(^{\#2}\) The quality score was evaluated by the Cochrane’s Newcastle–Ottawa Scale evaluation standard for case–control study.

TABLE 3. Basic Information of Included Studies on the Association Between Manganese Superoxide Dismutase Ala-9Val Polymorphism and TD in Schizophrenic Patients

First Author	Published Year	Country	Geographic Location	Age\(^{\#1}\), yr (Mean ± SD)	Gender\(^{\#1}\), F/M	Genotyping Method	Sample Size, TD/Non-TD	TD Genotypes, n (%)	Non-TD Genotypes, n (%)	TD Alleles	Non-TD Alleles	HWE, P\(^{\#2}\)	Quality Score
Hori	2000	Japan	Asia	55.6 ± 9.1	97/95	PCR	39/153	3 (7.7)	36 (92.3)	39 (25.5)	114 (74.5)	0.781	7
Zhang	2002	China	Asia	55.3 ± 8.5	0/101	PCR	42/59	12 (28.6)	30 (71.4)	21 (35.6)	38 (64.4)	0.181	8
Zhang	2003	China	Asia	55.6 ± 8.8	0/94	PCR	94/52	31 (33.0)	63 (67.0)	19 (36.5)	33 (63.5)	0.781	8
Akyol	2005	Turkey	Europe	37.6 ± 10.8	59/94	PCR	23/130	14 (60.9)	9 (39.1)	106 (81.5)	24 (18.5)	0.781	7
Thelma	2007	India	Asia	32.0 ± 10.9	135/164	PCR	88/211	67 (76.1)	21 (23.8)	161 (76.3)	24 (23.7)	0.781	8
Pae	2007	Korea	Asia	44.4 ± 9.7	84/178	PCR	44/218	12 (27.3)	32 (72.7)	37 (17.0)	181 (83.0)	0.781	6
Kang	2008	Korea	Asia	45.2 ± 9.6	99/110	PCR	87/126	17 (20.5)	66 (79.5)	20 (15.9)	106 (84.1)	0.781	8
Liu	2010	China	Asia	49.5 ± 11.1	170/352	PCR	174/360	45 (25.6)	131 (74.4)	103 (29.8)	245 (70.2)	0.781	9
Zai\(^{\#2}\)	2010	America	America	37.7 ± 10.1	64/129	PCR	76/114	52 (68.4)	24 (31.6)	90 (78.9)	24 (21.1)	0.781	10
Zai\(^{\#2}\)	2010	America	America	32.5 ± 10.9	9/21	PCR	11/18	7 (63.6)	4 (36.4)	11 (61.1)	7 (38.9)	0.781	8

\(^{\#1}\) The age and gender of patients.

\(^{\#2}\) The quality score was evaluated by the Cochrane’s Newcastle–Ottawa Scale evaluation standard for case–control study.

F/M = females/males; HWE = Hardy–Weinberg equilibrium; PCR = polymerase chain reaction; SD = standard deviation.
dataset to the pooled ORs. The results were consistent in all of the research models except the study by Pae et al17 for genotypes and the study by Zhang et al11 for alleles (Figure S3, http://links.lww.com/MD/A410). No publication biases were observed for the associations between Ala-9Val genotypes, alleles, and schizophrenia (genotypes: $P_{\text{Egger}} = 0.104$ and $P_{\text{Begg}} = 0.707$; alleles: $P_{\text{Egger}} = 0.469$ and $P_{\text{Begg}} = 0.707$) (Figure S4, http://links.lww.com/MD/A410).

The Association Between MnSOD Ala-9Val Polymorphism and TD in Schizophrenia Patients

The random-effect model did not show the significant association between Ala-9Val genotypes and the risk of TD in schizophrenia (OR $= 0.82$; 95% CI: 0.66, 1.02; $P = 0.075$) with a heterogeneity of $I^2 = 39.5\%$ ($P = 0.095$) among studies (Figure 4A). There was no significant association between Ala-9Val alleles and TD (OR $= 0.90$; 95% CI: 0.76, 1.06; $P = 0.215$) with no heterogeneity among studies ($I^2 = 23.6\%$, $P = 0.226$) by the fixed-effect model (Figure 4B).

Meta-regression was performed further to explore the possible sources of the heterogeneity for genotypes results. We put 4 factors into the meta-regression model. As shown in Table 4, none of these factors had any significant influence on the genotypes results ($P > 0.05$). We further conducted subgroup analysis, observing a light decrease of heterogeneity in the subgroups of geographic location (Figure S5B, http://links.lww.com/MD/A410).

The sensitivity analysis indicated stability and reliability of results for the associations of MnSOD Ala-9Val genotypes and alleles with TD (Figure S6, http://links.lww.com/MD/A410). No publication biases were observed for the pooled ORs (genotypes: $P_{\text{Egger}} = 0.904$ and $P_{\text{Begg}} = 0.858$; alleles: $P_{\text{Egger}} = 0.770$ and $P_{\text{Begg}} = 0.721$) (Figure S7, http://links.lww.com/MD/A410).

DISCUSSION

In our meta-analyses, the significant association was observed between MnSOD activity and chronic schizophrenia in Chinese population. However, no statistically significant associations were observed between MnSOD Ala-9Val polymorphism and schizophrenia as well as TD.

It has been reported that the SOD activity was decreased in chronic schizophrenic patients while increased in first-episode...
TABLE 4. Meta-Regression Analysis of the Potential Factors Affecting the Heterogeneity

Factor	Coefficient	SE	95% CI	t	P
Year	−0.14	0.86	−2.35, 2.07	−0.16	0.876
Geographic location	0.12	0.78	−1.88, 2.12	0.15	0.885
Age	0.04	1.25	−3.17, 3.25	0.03	0.977
Gender ratio	−0.15	0.39	−1.15, 0.84	−0.4	0.705
Constant	0.76	1.05	−1.95, 3.47	0.72	0.503

CI = confidence interval; P = P value; SE = standard error; t = t value.

FIGURE 4. Forest plot of the studies on the association between manganese superoxide dismutase Ala-9Val polymorphism and tardive dyskinesia in schizophrenia patients by meta-analysis. (A) Ala-9Val genotypes by the random-effect analysis and (B) Ala-9Val alleles by the fixed-effect analysis. OR = odds ratio.

In summary, our meta-analyses indicated that the decreased MnSOD activity may be associated with the risk of chronic schizophrenia in Chinese population, while the MnSOD Ala-9Val polymorphism may not play a significant role in the development of schizophrenia and TD. Longitudinal studies with larger sample sizes and different ethnicities are needed, and interaction between multiple genetic and environmental factors should be considered to confirm the association of the MnSOD Ala-9Val variants with schizophrenia and TD.
ACKNOWLEDGMENTS

Thanks to the researchers of the original studies included in our meta-analysis. The authors alone are responsible for the content and writing of the paper. We thank team members for their supports and contributions to this study.

REFERENCES

1. Addington J, Addington D. Neurocognitive and social functioning in schizophrenia. Schizophr Bull. 1999;25:173–182.
2. Gonzalez-Liencres C, Tas C, Brown EC, et al. Oxidative stress in schizophrenia: a case–control study on the effects on social cognition and neurocognition. BMC Psychiatry. 2014;14:268.
3. Yao JK, Keshaven MS. Antioxidants, redox signaling, and pathophysiology in schizophrenia: an integrative view. Antioxid Redox Signal. 2011;15:2011–2035.
4. Finkel T. Oxidant signals and oxidative stress. Curr Opin Cell Biol. 2003;15:247–254.
5. Robinson BH. The role of manganese superoxide dismutase in health and disease. J Inherit Metab Dis. 1998;21:598–603.
6. Shimoda-Matsubayashi S, Matsumine H, Kobayashi T, et al. Structural dimorphism in the mitochondrial targeting sequence in the human manganese superoxide dismutase gene. A predictive evidence for conformational change to influence mitochondrial transport and a study of allelic association in Parkinson’s disease. Biochem Biophys Res Commun. 1996;226:561–565.
7. Wu JQ, Chen da C, Tan YL, et al. Cognition impairment in schizophrenia patients with tardive dyskinesia: association with plasma superoxide dismutase activity. Schizophr Res. 2014;152:210–216.
8. Wu JQ, Chen da C, Tan YL, et al. Mn-superoxide dismutase activity is associated with orofacial involuntary movements in schizophrenia patients with tardive dyskinesia. Hum Psychopharmacol. 2015;30:57–63.
9. Zhang XY, Chen da C, Xiu MH, et al. Clinical symptoms and cognitive impairment associated with male schizophrenia relate to plasma manganese superoxide dismutase activity: a case–control study. J Psychiatr Res. 2013;47:1049–1053.
10. Zhang Z, Zhang X, Hou G, et al. The increased activity of plasma manganese superoxide dismutase in tardive dyskinesia is unrelated to the Ala-9Val polymorphism. J Psychiatr Res. 2002;36:317–324.
11. Zhang XY, Chen da C, Xiu MH, et al. Cognitive function, plasma MnSOD activity, and MnSOD Ala-9Val polymorphism in patients with schizophrenia and normal controls. Schizophr Bull. 2014;40:592–601.
12. Hong H, Lei LF, Lei AM. Serum superoxide dismutase (SOD) in schizophrenia. J Clin Psychol Med. 2000;10:58.
13. Lindholm E, Ekholm B, Shaw S, et al. A schizophrenia-susceptibility locus at 6q25, in one of the world’s largest reported pedigrees. Am J Hum Genet. 2001;69:96–105.
14. Shimoda-Matsubayashi S, Hattori T, Matsumine H, et al. Mn SOD activity and protein in a patient with chromosome 6-linked autosomal recessive parkinsonism in comparison with Parkinson’s disease and control. Neurology. 1997;49:1257–1262.
15. Hori H, Ohmori O, Shinkai T, et al. Manganese superoxide dismutase gene polymorphism and schizophrenia: relation to tardive dyskinesia. Neuropsychopharmacology. 2000;23:170–177.
16. Ventriglia M, Scassellati C, Bonvicini C, et al. No association between Ala9Val functional polymorphism of MnSOD gene and schizophrenia in a representative Italian sample. Neurosci Lett. 2006;410:208–211.
17. Pae CU, Kim TS, Park AA, et al. Manganese superoxide dismutase (MnSOD: Ala-9Val) gene polymorphism may not be associated with schizophrenia and tardive dyskinesia. Psychiatry Res. 2007;153:77–81.
18. Hitzeroth A, Niehaus DJ, Koen L, et al. Association between the MnSOD Ala-9Val polymorphism and development of schizophrenia and abnormal involuntary movements in the Xhosa population. Prog Neuropsychopharmacol Biol Psychiatry. 2007;31:664–672.
19. Yassa R, Jeste DV. Gender differences in tardive dyskinesia: a critical review of the literature. Schizophr Bull. 1992;18:701–715.
20. Glazer WM. Review of incidence studies of tardive dyskinesia associated with typical antipsychotics. J Clin Psychiatry. 2000;61(Suppl 4):15–20.
21. Zhang ZJ, Zhang XB, Hou G, et al. Interaction between polymorphisms of the dopamine D3 receptor and manganese superoxide dismutase genes in susceptibility to tardive dyskinesia. Psychiatr Genet. 2003;13:187–192.
22. Akyol O, Yanik M, Elyas H, et al. Association between Ala-9Val polymorphism of Mn-SOD gene and schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 2005;29:123–131.
23. Thelma BK, Tiwari AK, Deshpande SN, et al. Genetic susceptibility to tardive dyskinesia in chronic schizophrenia subjects: role of oxidative stress pathway genes. Schizophr Res. 2007;92:278–279.
24. Kang SG, Choi JE, An H, et al. Manganese superoxide dismutase gene Ala-9Val polymorphism might be related to the severity of abnormal involuntary movements in Korean schizophrenic patients. Prog Neuropsychopharmacol Biol Psychiatry. 2008;32:1844–1847.
25. Liu H, Wang C, Chen PH, et al. Association of the manganese superoxide dismutase gene Ala-9Val polymorphism with clinical phenotypes and tardive dyskinesia in schizophrenic patients. Prog Neuropsychopharmacol Biol Psychiatry. 2010;34:692–696.
26. Zai CC, Tiwari AK, Basile V, et al. Oxidative stress in tardive dyskinesia: genetic association study and meta-analysis of NADPH quinone oxidoreductase 1 (NQO1) and Superoxide dismutase 2 (SOD2, MnSOD) genes. Prog Neuropsychopharmacol Biol Psychiatry. 2010;34:50–56.
27. Flattow J, Buckley P, Miller BJ. Meta-analysis of oxidative stress in schizophrenia. Biol Psychiatry. 2013;74:400–409.
28. Wu JQ, Kosten TR, Zhang XY. Free radicals, antioxidant defense systems, and schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 2013;46:200–206.
29. Rosenblum JS, Gilula NB, Lerner RA. On signal sequence polymorphisms and diseases of distribution. Prog Natl Acad Sci USA. 1996;93:4471–4473.