The r-mean curvature and rigidity of compact hypersurfaces in the Euclidean space

Wagner Oliveira Costa-Filho

Received: 15 December 2020 / Accepted: 15 September 2021 / Published online: 28 September 2021
© The Author(s), under exclusive licence to Springer Nature B.V. 2021

Abstract
In this paper, we characterize round spheres in the Euclidean space under some suitable conditions on the r-mean curvature.

Keywords Isometric immersions · Higher-order mean curvature · Self-shrinkers · λ-hypersurfaces · Minkowski integral formulas

Mathematics Subject Classification Primary 53C42 · Secondary 53C24 · 53C44

1 Introduction

Let $x: M^n \to \mathbb{R}^{n+1}$ be an isometric immersion of an orientable Riemannian manifold M^n in the Euclidean space \mathbb{R}^{n+1}. Denote by A the second fundamental form of the hypersurface with respect to an unit normal vector field N globally defined on M. The r-mean curvature of M is defined by

$$H_r = \left(\begin{array}{c} n \\ r \end{array}\right)^{-1} S_r,$$

where S_r is the r-elementary symmetric function of the eigenvalues of A, for $r = 1, \ldots, n$, and $S_0 = 1$.

The Newton transformations P_r related to the immersion x are the linear maps defined recursively by $P_0 = I$ and $P_r = S_r I - A P_{r-1}$, when $1 \leq r \leq n$. Associated with each P_r, we have the linear differential operators of second order L_r given by

$$L_r(u) = \text{tr}(P_r \nabla^2 u).$$

In the right-hand side of this equation, $\nabla^2 u$ stands for the Hessian operator of a smooth function u on M. It is well known that the operators L_r are elliptic if and only if the corresponding Newton transformations P_r are positively defined. Moreover,
\[L_r(u) = \text{div}(P_r(\nabla u)) , \]

where \(\nabla u \) is the gradient of \(u \) and \(\text{div} \) denotes the divergent operator of a vector field on \(M \). Classically, the operators \(P_r \) and \(L_r \) come from the variational aspects related to the problem of minimizing certain \(r \)-area functionals of the immersion \(x \). For more details, see the seminal paper of Rosenberg [14].

A still challenging topic in differential geometry is the rigidity of hypersurfaces \(M^n \) in the Euclidean space under some natural conditions on the topology and under suitable analytical assumptions on \(H_r \) or \(L_r \), for some \(r = 0, \ldots, n \). In this context, it is expected to prove that the immersion is in fact totally umbilical. We point out that there exists a vast literature on this subject, exploring the cases where \(x \) is an embedding or just an immersion. For instance, the celebrated work of Aleksandrov [1] claims that a closed (compact and with empty boundary) embedded hypersurface with constant mean curvature is a round sphere. This result was generalized by Ros [13] in the case that some higher-order mean curvature is constant. In the case that \(x \) is an immersion and \(M \) is a topological 2-sphere in \(\mathbb{R}^3 \) with constant mean curvature, the also celebrated work of Hopf [9] shows that \(M \) a round sphere. It is well known that for any integer \(g \geq 1 \) there are constant mean curvature surfaces with genus \(g \) in \(\mathbb{R}^3 \) (see [17] for \(g = 1 \) and [11, 12] for \(g \geq 2 \)). In higher dimensions, Hsiang, Teng and Yu [10] proved the existence of topological spheres in \(\mathbb{R}^{2n} \) with constant mean curvature that are not round.

The aim of this work is to present new characterizations of the Euclidean sphere in terms of the behavior of the \(r \)-mean curvature \(H_r \) when \(x \) is an immersion.

To state our first results, we denote by \(\rho \) the support function of \(x \), that is, \(\rho : M \to \mathbb{R}, \rho = \langle x, N \rangle \). Geometrically, \(\rho(p) \) is the distance with sign from the origin \(0 \in \mathbb{R}^{n+1} \) to the hyperplane tangent to \(x(M) \) at \(x(p) \). Assuming that \(\rho \) is non-negative, Deshmukh [7] proved that the mean curvature \(H \) of \(M \) is a solution to the Poisson equation \(\Delta u = 1 + H_1 \rho \) if and only if, \(M \) is isometric to a round sphere. Our first theorem extends this result for the operators \(L_r \).

Theorem 1.1 Let \(x : M^n \to \mathbb{R}^{n+1} \) be a closed hypersurface with non-negative support function such that operator \(P_r \) is positively definite. Then, the mean curvature \(H_1 \) satisfies the equation \(L_r u = 1 + H_1 \rho \) if and only if \(M \) is isometric to a round sphere.

Assuming that \(H_r \) is constant, we obtain that

Theorem 1.2 Let \(x : M^n \to \mathbb{R}^{n+1} \) be a closed hypersurface with non-negative support function. Assume that, for some \(1 \leq r \leq n-2 \), the operator \(P_r \) is positively defined and \(H_r \) is constant. Then, the mean curvature \(H_{r+1} \) satisfies the equation \(L_r u = H_r + H_{r+1} \rho \) if and only if \(M \) is isometric to a round sphere.

The positivity of the operator \(P_r \) is a natural analytical condition, which is automatically verified when \(r = 0 \). It is an interesting problem to prove Theorem 1.2 when \(H_r \) is not constant.

The techniques used to prove the theorems above can be applied to self-shrinkers of the Euclidean space. We recall that \(M^n \subset \mathbb{R}^{n+1} \) is a self-shrinker if the equation is satisfied

\[H = -\frac{\rho}{2}, \quad (1) \]

where \(H \) is the non-normalized mean curvature of \(M \).
Self-shrinkers form an important class of solutions for the mean curvature flow and stand out in the study of the so-called type I singularities. See, for example, Colding and Minicozzi [5].

Some basic examples of self-shrinkers are hyperplanes passing through the origin, minimal cones, round spheres $\mathbb{S}^n(\sqrt{2n})$ and cylinders $\mathbb{S}^k(\sqrt{2k}) \times \mathbb{R}^{n-k}$, for $k = 1, ..., n - 1$.

In [8], Guo obtained some gap theorems for closed self-shrinkers and concluded that if the scalar curvature of such hypersurfaces is constant, then they are isometric to a round sphere. In the following, we present a direct and more general result.

Theorem 1.3 Let $x : M^n \to \mathbb{R}^{n+1}$ be a closed self-shrinker with H_{r+1} constant for some $1 \leq r \leq n - 1$. Then, $M = \mathbb{S}^n(\sqrt{2n})$.

As a natural extension of self-shrinkers, we say that M is a λ-hypersurface if the following equation is satisfied

$$H = -\frac{\rho}{2} + \lambda, \tag{2}$$

where λ is a constant. For example, the sphere $\mathbb{S}^n(r)$ with radius r is a λ-hypersurface in \mathbb{R}^{n+1} for $\lambda = n/r - r/2$.

This concept was introduced by Cheng and Wei in [4] where they studied mean curvature flow that preserves a weighted volume. The authors show, among other facts, that a compact λ-hypersurface is isometric to a round sphere if $H - \lambda \geq 0$ and $\lambda(A - |A|^2) \geq 0$, where $|A|^2 = \sum_i h_{ij}^2$ is the square of the norm of the second fundamental form and $f = \sum_i h_{ij} h_{jk} h_{ki}$.

Applying the same approach as in the proof of Theorem 1.3, we obtain a simple proof of the following theorem due to Ross [15].

Theorem 1.4 Let $x : M^n \to \mathbb{R}^{n+1}$ be a closed λ-hypersurface with $H \geq \lambda$. If $|A|^2 \leq 1/2$, then M is a round sphere.

2 Preliminaries

In order to obtain our rigidity results, we need the following propositions, which, besides being important in themselves, have several other applications in problems involving higher-order mean curvatures of hypersurfaces. We emphasize that such propositions are valid in space forms.

Proposition 2.1 Let $x : M^n \to \mathbb{R}^{n+1}$ be an orientable hypersurface of the Euclidean space. If $\rho : M \to \mathbb{R}$ is the support function of x, then

$$L_{\rho}(\rho) = -(r + 1)S_{r+1} - (S_1 S_{r+1} - (r + 2)S_{r+2})\rho - \langle \nabla S_{r+1}, x^T \rangle, \tag{3}$$

where x^T indicates the component of x tangent to M.

Proof See Alencar and Colares [2], page 209. \qed
Corollary 2.2 Let $x : M^n \to \mathbb{R}^{n+1}$ be an orientable hypersurface of the Euclidean space. If $\rho : M \to \mathbb{R}$ is the support function of x, then
\[
\Delta \rho = -nH_1 - |A|^2 \rho - n\langle \nabla H_1, x^T \rangle.
\] (4)

Proof Take $r = 0$ in equation (3) and use the identity $|A|^2 + 2S_2 = S_1^2$. \qed

The so-called Garding and Newton inequalities are used to prove the following result:

Proposition 2.3 Let $x : M^n \to \mathbb{R}^{n+1}$ be a closed orientable hypersurface. If H_{r+1} is positive on M, then for every i, with $1 \leq i \leq r$, we have:

(a) Each H_i is positive.
(b) $H_i H_{i+2} - H_{i+1} \geq 0$.

Moreover, equality in (b) occurs for some i if, and only if M is a round sphere.

Proof See Silva et al. [6], page 297. \qed

In the next result, we present the classical Minkowski integral formula. For the sake of completeness, we present a concise demonstration following ideas ofAlias and Malacarne in [3].

Proposition 2.4 Let $x : M^n \to \mathbb{R}^{n+1}$ be a closed hypersurface. Then, for every r, with $0 \leq r \leq n - 1$, we have
\[
\int_M (H_r + H_{r+1})dM = 0.
\]

Proof Consider the function $g : M^n \to \mathbb{R}$ defined by $g = (1/2)|x|^2$. We know that $\nabla g = x^T$, where $x^T = x - \rho N$. Then, for each tangent vector field X on M we have
\[
(\nabla^2 g)(X) = \nabla_X (\nabla g) = X + \rho A(X).
\]

Therefore,
\[
L_r(g) = tr(P_r \nabla^2 g) = tr(P_r) + tr(AP_r) \rho = c_r H_r + c_r H_{r+1} \rho = c_r (H_r + H_{r+1} \rho),
\]
with $c_r = (n - r) \binom{n}{r}$ and the traces are determined in [14], page 13. By the divergence theorem, it follows that
\[
\int_M (H_r + H_{r+1})dM = 0,
\]
finalizing the proof. \qed

To conclude this section, we present two identities that will be useful for our purposes. First, a directly computation yields
\[
\Delta |x|^2 = 2n(1 + H_1 \rho).
\] (5)
The next identity is a consequence of the divergence theorem.

$$\int_M u L_r(v) dM = - \int_M \langle P_r(\nabla u), \nabla v \rangle dM,$$

whenever u and v are smooth functions on M.

3 Proof of Theorems

In this section, we present the proofs of our theorems. For the reader’s convenience, we state the theorems again.

Theorem 3.1 Let $x : M^n \to \mathbb{R}^{n+1}$ be a closed hypersurface with non-negative support function such that operator P_r is positively definite. Then, the mean curvature H_1 satisfies the equation $L_r u = 1 + H_1 \rho$ if and only if M is isometric to a round sphere.

Proof If H_1 is a solution to the equation, we have $H_1 L_r H_1 = H_1 + H_1^2 \rho$. So, applying identity (6) we get

$$-n \int_M \langle P_r(\nabla H_1), \nabla H_1 \rangle dM = n \int_M H_1 dM + n \int_M H_1^2 \rho dM.$$

On the other hand, using formula (4)

$$n \int_M H_1 dM = - \int_M |A|^2 \rho dM + \frac{n}{2} \int_M H_1 \Delta |x|^2 dM.$$

From (5) and the hypothesis about H_1, we rewrite this last equality as

$$n \int_M H_1 dM = - \int_M |A|^2 \rho dM - n^2 \int_M \langle P_r(\nabla H_1), \nabla H_1 \rangle dM.$$

Therefore,

$$(n^2 - n) \int_M \langle P_r(\nabla H_1), \nabla H_1 \rangle dM + \int_M (|A|^2 - nH_1^2) \rho dM = 0.$$

Since P_r is positively definite and $\rho \geq 0$, it follows that H_1 and ρ are constant. Furthermore, we conclude that M is totally umbilical and therefore a round sphere. \hfill \Box

We now recall the following algebraic inequality related to rth mean curvature. For each $1 \leq r \leq n-1$, it holds

$$H_r^2 \geq H_{r-1} H_{r+1},$$

and equality occurs only at umbilical points of M. See, for example, Steele [16], page 178.

Theorem 3.2 Let $x : M^n \to \mathbb{R}^{n+1}$ be a closed hypersurface with non-negative support function. Assume that, for some $1 \leq r \leq n-2$, the operator P_r is positively defined and H_r is constant. Then, the mean curvature H_{r+1} satisfies the equation $L_r u = H_r + H_{r+1} \rho$ if and only if M is isometric to a round sphere.
Proof As before, if \(H_{r+1} \) is a solution to that equation, we get

\[- \int_M \langle P_r(\nabla H_{r+1}), \nabla H_{r+1} \rangle dM = \int_M H_r H_{r+1} dM + \int_M H_{r+1}^2 \rho dM.\]

Since \(H_{r+1}^2 \rho \geq H_r H_{r+2} \rho \), and using our hypotheses on \(P_r, H_r \) and the Minkowski formula, we obtain

\[0 \geq - \int_M \langle P_r(\nabla H_{r+1}), \nabla H_{r+1} \rangle dM \geq H_r \int_M (H_{r+1} + H_{r+2} \rho) dM = 0,\]

It follows that \(H_{r+1} \) is constant and so all inequalities above are equalities. It means that \(H_r^2 = H_{r-1} H_{r+1} \) on \(M \), and we conclude that \(M \) is a round sphere. \(\square \)

Now we prove our theorems on self-shrinkers.

Theorem 3.3 Let \(x : M^n \to \mathbb{R}^{n+1} \) be a closed self-shrinker with \(H_{r+1} \) constant for some \(1 \leq r \leq n-1 \). Then, \(M = \mathbb{S}^n(\sqrt{2n}) \).

Proof Since \(H_{r+1} \) is constant, we obtain by integrating identity (3)

\[0 = -(r+1) \binom{n}{r+1} \int_M H_{r+1} dM - \int_M \left[n \binom{n}{r+1} H_1 H_{r+1} - (r+2) \binom{n}{r+2} H_{r+2} \right] \rho dM = -(r+1) \binom{n}{r+1} \int_M H_{r+1} dM - \int_M \left[n \binom{n}{r+1} H_1 H_{r+1} - (n-(r+1)) \binom{n}{r+1} H_{r+2} \right] \rho dM\]

and organizing the terms,

\[-(r+1) \int_M (H_{r+1} + H_{r+2} \rho) dM - n \int_M (H_1 H_{r+1} - H_{r+2}) \rho dM = 0.\]

Therefore, from Proposition 2.4 and by the equation of a self-shrinker we have,

\[\int_M (H_1 H_{r+1} - H_{r+2}) H dM = 0.\]

Choosing the orientation such that \(H_{r+2} \rho > 0 \), we conclude by Proposition 2.3 that \(M \) is totally umbilical. Therefore, \(M = \mathbb{S}^n(\sqrt{2n}) \). \(\square \)

Finally, we will show that

Theorem 3.4 Let \(x : M^n \to \mathbb{R}^{n+1} \) be a closed \(\lambda \)-hypersurface with \(H \geq \lambda \). If \(|A|^2 \leq 1/2 \), then \(M \) is a round sphere.

Proof First, let us consider the case \(\lambda \leq 0 \). Since \(\rho = 2(\lambda - H) \leq 0 \), we can use identity (4) to obtain
It follows from the strong maximum principle that ρ is constant and thus H is also constant. Now we can use Minkowski formula and identity (4) to conclude that $n|A|^2 = H^2$, and so M is totally umbilical.

Now, let us assume that $\lambda \geq 0$. Since $H = nH_1$ and $\rho = 2(\lambda - H)$, we use identity (4) to get

$$0 = \int_M HdM + \int_M 2(\lambda - H)|A|^2 dM + \frac{1}{2} \int_M \langle \nabla H, \nabla |x|^2 \rangle dM$$

$$= \int_M HdM + \int_M 2(\lambda - H)|A|^2 dM - \frac{1}{2} \int_M H|\nabla x|^2 dM$$

$$= \int_M HdM + \int_M 2(\lambda - H)|A|^2 dM - \int_M (n + 2(\lambda - H)H) dM,$$

where we use formula (5) in the last equality. Organizing the terms, we obtain

$$\int_M [(n-1)H + 2(H - \lambda)(|A|^2 - H^2)] dM = 0. \tag{7}$$

Now, using that $H^2 \leq n|A|^2 \leq n/2$ we conclude that

$$(n-1)H + 2(H - \lambda)(|A|^2 - H^2) \geq (n-1)H - 2(H - \lambda)(n-1)|A|^2$$

$$\geq (n-1)H - (n-1)(H - \lambda)$$

$$= (n-1)\lambda \geq 0.$$

In view of identity (7), we conclude that all inequalities above are in fact identities. In particular, M is a round sphere. \square

Acknowledgements The author would like to express his gratitude to Prof. Marcos P. Cavalcante for suggestions and much encouragement.

References

1. Aleksandrov, A. D.: Uniqueness theorems for surfaces in the large. I. Vestnik Leningrad. Univ. 11(19), 5–17 (1956)
2. Alencar, H., Colares, A.G.: Integral formulas for the r-mean curvature linearized operator of a hypersurface. Ann. Global Anal. Geom. 16(3), 203–220 (1998)
3. Alías, L.J., Malacarne, J.M.: On the first eigenvalue of the linearized operator of the higher order mean curvature for closed hypersurfaces in space forms. Ill. J. Math. 48(1), 219–240 (2004)
4. Cheng, Q.-M., Wei, G.: Complete λ-hypersurfaces of weighted volume-preserving mean curvature flow. Calc. Var. Partial Differ. Equ. 57(2), 1–21 (2018)
5. Colding, T.H., Minicozzi, W., William, P.: Generic mean curvature flow I: generic singularities. Ann. Math. 175(2), 755–833 (2012)
6. da Silva, J.F., de Lima, H.F., Velásquez, M.A.L.: The stability of hypersurfaces revisited. Monatsh. Math. 179(2), 293–303 (2016)
7. Deshmukh, S.: A note on hypersurfaces of a Euclidean space. C. R. Math. Acad. Sci. Paris 351(15–16), 631–634 (2013)
8. Guo, Z.: Scalar curvature of self-shrinker. J. Math. Soc. Jpn. 70(3), 1103–1110 (2018)
9. Hopf, H.: *Differential geometry in the large*, second ed., Lecture Notes in Mathematics, vol. 1000, Springer-Verlag, Berlin, Notes taken by Peter Lax and John W. Gray, With a preface by S. S. Chern, With a preface by K. Voss (1989)

10. Hsiang, W., Teng, Z.H., Yu, W.C.: New examples of constant mean curvature immersions of $(2k - 1)$-spheres into Euclidean $2k$-space. Ann. Math. **117**(3), 609–625 (1983)

11. Kapouleas, N.: Compact constant mean curvature surfaces in Euclidean three-space. J. Differ. Geom. **33**(3), 683–715 (1991)

12. Kapouleas, N.: Constant mean curvature surfaces constructed by fusing Wente tori. Invent. Math. **119**(3), 443–518 (1995)

13. Ros, A.: Compact hypersurfaces with constant higher order mean curvatures. Rev. Mat. Iberoam. **3**(3–4), 447–453 (1987)

14. Rosenberg, H.: Hypersurfaces of constant curvature in space forms. Bull. Sci. Math. **117**(2), 211–239 (1993)

15. Ross, J. D.: *Rigidity results of lambda-hypersurfaces*, Ph.D. thesis, Johns Hopkins University, (2015)

16. Steele, J. M.: *The Cauchy-Schwarz master class*, MAA Problem books series, Mathematical Association of America, Washington, DC; Cambridge University Press, Cambridge, An introduction to the art of mathematical inequalities (2004)

17. Wente, H.C.: Counterexample to a conjecture of H. Hopf. Pac. J. Math. **121**(1), 193–243 (1986)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.