Active and passive in-plane wall fluctuations in turbulent channel flows

Jozsa, Tamas

http://hdl.handle.net/10026.1/17683

10.1017/jfm.2019.145
Journal of Fluid Mechanics
Cambridge University Press (CUP)

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.
Supplementing materials
Active and passive in-plane wall fluctuations
in turbulent channel flows

T. I. Józsa1,2†, E. Balaras3, M. Kashtalyan4, A. G. L. Borthwick5,
and I. M. Viola2

1Department of Engineering Science, Institute of Biomedical Engineering,
University of Oxford, Oxford OX1 3PJ, UK
2School of Engineering, Institute for Energy Systems, University of Edinburgh,
Edinburgh EH9 3FB, UK
3Department of Mechanical and Aerospace Engineering, The George Washington University,
Washington DC 20052, USA
4School of Engineering, Centre for Micro- and Nanomechanics (CEMINACS),
University of Aberdeen, Aberdeen AB24 3UE, UK
5School of Engineering, Institute for Infrastructure and Environment, University of Edinburgh,
Edinburgh EH9 3FB, UK

(Received xx; revised xx; accepted xx)

\begin{tabular}{llllll}
\hline
\multicolumn{6}{c}{Drag reduction (DR) [%]} \\
\multicolumn{3}{c}{$u'_{1,a}$-control} & \multicolumn{3}{c}{$u'_{3,a}$-control} \\
\hline
\hline
$\frac{x}{c}$ & $Re_{\tau} \approx 180$ & $Re_{\tau} \approx 1000$ & $Re_{\tau} \approx 180$ & $Re_{\tau} \approx 1000$ \\
\hline
1 & 3.48 & 4.02 & 4.78 & 4.38 \\
2 & 4.19 & \textendash & 8.95 & \textendash \\
3 & 5.23 & \textendash & 12.20 & \textendash \\
5 & 6.51 & 6.65 & 17.18 & \textendash \\
7 & 7.84 & \textendash & \textendash & \textendash \\
8 & 7.97 & 7.03 & \textendash & 19.30 \\
9 & 7.73 & \textendash & 23.06 & \textendash \\
10 & 6.87 & \textendash & 23.85 & \textendash \\
11 & \textendash & \textendash & 24.15 & \textendash \\
12 & \textendash & 3.57 & 24.29 & 18.16 \\
13 & \textendash & \textendash & 23.90 & \textendash \\
15 & 0.63 & \textendash & 21.91 & 13.22 \\
\hline
\end{tabular}

Table 1: Drag reduction measured with active streamwise ($u'_{1,a}$) and spanwise ($u'_{3,a}$) controls.

† Email address for correspondence: tamas.jozsa@eng.ox.ac.uk
#	Re_r	A_m	A_d	A_s	DR [%]	Comment
1	\approx 180	4	0.0	0.0625	2.87	
2	\approx 180	4	0.0	0.125	2.25	
3	\approx 180	4	0.0	0.25	3.39	
4	\approx 180	4	0.0	0.50	3.11	
5	\approx 180	4	0.0	1.00	3.68	Lo0Lo, max drag reduction
6	\approx 180	4	0.0	2.00	3.41	
7	\approx 180	4	0.0	4.00	3.33	
8	\approx 180	4	0.0	8.00	2.56	
9	\approx 180	4	0.0	16.00	1.80	
10	\approx 180	4	0.0	32.00	1.28	
11	\approx 180	4	0.0	64.00	0.61	
12	\approx 180	4	0.0	96.59	0.86	Lo0Hi, optimised for max $RC\{\tau_{i,rms}'\}$
13	\approx 180	4	0.0	128.00	0.66	
14	\approx 180	4	0.0	256.00	0.16	
15	\approx 180	4	0.0	512.00	-0.07	
16	\approx 180	4	0.0	1024.00	-0.17	
17	\approx 180	16	0.0	1.00	2.87	
18	\approx 180	64	0.0	1.00	1.77	
19	\approx 180	256	0.0	1.00	0.36	
20	\approx 180	1024	0.0	1.00	0.06	
21	\approx 180	4	1.0	1.00	3.54	
22	\approx 180	4	4.0	1.00	3.19	
23	\approx 180	4	16.0	1.00	2.47	
24	\approx 180	4	64.0	1.00	1.78	
25	\approx 180	4	256.0	1.00	0.66	
26	\approx 180	8	1.0	1.00	3.32	
27	\approx 180	16	1.0	1.00	2.71	
28	\approx 180	32	1.0	1.00	2.21	
29	\approx 180	8	2.0	2.00	3.08	
30	\approx 180	8	4.0	2.00	2.89	
31	\approx 180	8	8.0	2.00	2.87	
32	\approx 180	8	16.0	2.00	2.52	
33	\approx 180	8	32.0	2.00	1.95	LoHiLo
34	\approx 180	8	4.0	0.25	2.66	
35	\approx 180	8	4.0	0.50	2.92	
36	\approx 180	8	4.0	1.00	3.18	
37	\approx 180	8	4.0	2.00	2.89	
38	\approx 180	8	4.0	4.00	2.64	
39	\approx 180	4	0.1	0.10	3.16	
40	\approx 180	4	1.0	0.50	3.61	LoLoLo, same as #44
Active and passive in-plane wall fluctuations in turbulent channel flows

#	Re_{τ}	A_m	A_d	A_s	DR [%]	Comment
41	≈ 180	4	1.0	2.00	3.47	
42	≈ 180	4	0.5	1.00	3.45	
43	≈ 180	4	2.0	1.00	3.23	
44	≈ 1000	28	7.0	3.50	1.47	LoHiLo, same as #40
45	≈ 1000	8	1.0	1.00	2.35	LoLoLo, max drag reduction
46	≈ 1000	8	0.0	0.10	-0.64	max drag increase
47	≈ 1000	8	0.0	1.00	2.04	
48	≈ 1000	8	0.0	10.00	1.62	
49	≈ 1000	8	0.0	100.00	2.29	
50	≈ 1000	8	0.0	1000.00	0.18	

Table 2: Drag reduction measured with passive streamwise wall fluctuations ($u'_{1,p}$).

#	Re_{τ}	A_m	A_d	A_s	DR [%]	Comment
51	≈ 180	4	1.0	1.00	-58.77	max drag increase
52	≈ 180	8	1.0	1.00	-55.12	
53	≈ 180	16	1.0	1.00	-49.00	LoLoLo
54	≈ 180	32	1.0	1.00	-40.52	
55	≈ 180	16	1.0	2.00	-48.52	
56	≈ 180	16	1.0	4.00	-47.88	
57	≈ 180	16	1.0	8.00	-46.76	
58	≈ 180	16	1.0	16.00	-43.63	
59	≈ 180	16	64.0	16.00	-17.65	
60	≈ 180	16	64.0	64.00	-13.37	
61	≈ 180	16	64.0	128.00	-10.26	
62	≈ 180	16	128.00	128.00	-7.18	
63	≈ 180	4	0.0	646.93	-3.67	Lo0Hi, optimised for max $RC\{\tau'_{3,rms}\}$
64	≈ 180	4	0.0	1024.00	-1.77	min drag increase

Table 3: Drag reduction measured with passive spanwise wall fluctuations ($u'_{3,p}$).
The Pearson Correlation Coefficient (PCC) between two variables with zero mean value (q_1 and q_2) based on spatial averaging is

$$\text{PCC}\{q_1, q_2\} = \frac{\langle q_1 q_2 \rangle_s}{\sqrt{\langle q_1^2 \rangle_s \langle q_2^2 \rangle_s}}.$$ (0.1)