Approximate Association via Dissociation

Jie You†‡ Jianxin Wang† Yixin Cao†

Abstract

A vertex set X of a graph G is an association set if each component of $G - X$ is a clique, or a dissociation set if each component of $G - X$ is a single vertex or a single edge. Interestingly, $G - X$ is then precisely a graph containing no induced P_3’s or containing no P_3’s, respectively. We observe some special structures and show that if none of them exists, then the minimum association set problem can be reduced to the minimum (weighted) dissociation set problem. This yields the first nontrivial approximation algorithm for association set, and its approximation ratio is 2.5, matching the best result of the closely related cluster editing problem. The reduction is based on a combinatorial study of modular decomposition of graphs free of these special structures. Further, a novel algorithmic use of modular decomposition enables us to implement this approach in $O(mn + n^2)$ time.

Keywords: approximation algorithm, association set (cluster vertex deletion), dissociation set, cluster graph, modular decomposition, triangle-free graph.

1 Introduction

A cluster graph comprises a family of disjoint cliques, each an association. Cluster graphs have been an important model in the study of clustering objects based on their pairwise similarities, particularly in computational biology and machine learning [3]. If we represent each object with a vertex, and add an edge between two objects that are similar, we would expect a cluster graph. If this fails, a natural problem is then to find and exclude a minimum number of vertices such that the rest forms a cluster graph; this is the association set problem. This problem has recently received significant interest from the community of parameterized computation, where it is more commonly called cluster vertex deletion [14, 4]. The cardinality of a minimum association set of a graph is also known as its distance to clusters. It is one of the few structural parameters for dense graphs [10, 9], in contrast with a multitude of structural parameters for sparse graphs, thereby providing another motivation for this line of research. For example, Bruhn et al. [5] recently showed that the boxicity problem (of deciding the minimum d such that a graph G can be represented as an intersection graph of axis-aligned boxes in the d-dimension Euclidean space) is fixed-parameter tractable in the vertex cover number.

The association set problem belongs to the family of vertex deletion problems studied by Yannakakis [15, 17]. The purpose of these problems is to delete the minimum number of vertices from a graph so that the remaining subgraph satisfies a hereditary property (i.e., a graph property closed under taking induced subgraphs) [15]. It is known that a hereditary property can be characterized by a (possibly infinite) set of forbidden induced subgraphs. In our case, the property is “being a cluster graph,” and the forbidden induced subgraphs are P_3’s (i.e., paths on three vertices). A trivial approximation algorithm of ratio 3 can be derived as follows. We search for induced P_3’s, and if find one, delete all the three vertices. This trivial upper bound is hitherto the best known. Indeed, this is a simple application of Lund and Yannakakis’s observation [17], which applies to all graph classes with finite forbidden induced subgraphs.

Closely related is the cluster editing problem, which allows us to use, instead of vertex deletions, both edge additions and deletions [3]. Approximation algorithms of the cluster editing problem have been intensively studied, and the current best approximation ratio is 2.5 [2, 8, 1]. Our main result is the first nontrivial approximation algorithm for the association set problem, with a ratio matching the best ratio of the closely related cluster editing problem. As usual, n and m denote the numbers of vertices and edges respectively in the input graph. Without loss of generality, we assume throughout the paper that the input graph contains no isolated vertices (vertices of degree 0), hence $n = O(m)$.

*Supported in part by the National Natural Science Foundation of China (NSFC) under grants 61232001, 61472449, 61572414, and 61420106009, and the Hong Kong Research Grants Council (RGC) under grant PolyU 252026/15E.
†School of Information Science and Engineering, Central South University, Changsha, China.
‡Department of Computing, Hong Kong Polytechnic University, Hong Kong, China.
Theorem 1.1. There is an \(O(mn) \)-time approximation algorithm of ratio 2.5 for the association set problem.

Our approach is to reduce the association set problem to the weighted dissociation set problem. Given a vertex-weighted graph, the weighted dissociation set problem asks for a set of vertices with the minimum weight such that its deletion breaks all \(P_3 \)'s, thereby leaving a graph of maximum degree 1 or 0. This problem was first studied by Yannakakis [24], who proved that its unweighted version is already NP-hard on bipartite graphs. Note that a \(P_3 \) that is not induced must be in a triangle. Thus, in triangle-free graphs, the weighted version of the association set problem is equivalent to the weighted dissociation set problem. It is easy to observe that for the association set problem, vertices in a twin class (i.e., whose vertices have the same closed neighborhood) are either fully contained in or disjoint from a minimum solution. This observation inspires us to transform the input graph \(G \) into a vertex-weighted graph \(Q \) by identifying each twin class of \(G \) with a vertex of \(Q \) whose weight is the size of the corresponding twin class. We further observe that there are five small graphs such that if \(G \) has none of them as an induced subgraph, then \(Q \) either has a simple structure, hence trivially solvable, or is triangle-free, and can be solved using the ratio-2 approximation algorithm for the weighted dissociation set problem [21, 20]. From the obtained solution for \(Q \) we can easily retrieve a solution for the original graph \(G \). Since each of these five graphs has at most five vertices and at least two of them need to be deleted to make it \(P_3 \)-free, the approximation ratio 2.5 follows.

The main idea of this paper appears in the argument justifying the reduction from the (unweighted) association set problem to the weighted dissociation set problem. Indeed, we are able to provide a stronger algorithmic result that implies the aforementioned combinatorial result. We develop an efficient algorithm that detects one of the five graphs in \(G \), solves the problem completely, or determines that \(Q \) is already triangle-free. Our principal tool is modular decomposition. A similar use of modular decomposition was recently invented by the authors [16] in parameterized algorithms. It is worth noting that the basic observation on vertex deletion problems to graph properties with finite forbidden induced subgraphs has been used on both approximation and parameterized algorithms, by Lund and Yannakakis [17] and by Cai [6] respectively.

As a final remark, cluster editing has a 2-vertex kernel [7], while it remains an open problem to find a linear-vertex kernel for the association set (cluster vertex deletion) problem.

2 Preliminaries

This paper will be only concerned with undirected and simple graphs. The vertex set and edge set of a graph \(G \) are denoted by \(V(G) \) and \(E(G) \) respectively. For \(\ell \geq 3 \), let \(P_\ell \) and \(C_\ell \) denote respectively an induced path and an induced cycle on \(\ell \) vertices. A \(C_3 \) is also called a triangle. For a given set \(\mathcal{F} \) of graphs, a graph \(G \) is \(\mathcal{F} \)-free if it contains no graph in \(\mathcal{F} \) as an induced subgraph. When \(\mathcal{F} \) consists of a single graph \(F \), we use also \(F \)-free for short. For each vertex \(v \) in \(V(G) \), its neighborhood and closed neighborhood are denoted by \(N_G(v) \) and \(\bar{N}_G(v) \) respectively.

A subset \(M \) of vertices forms a module of \(G \) if all vertices in \(M \) have the same neighborhood outside \(M \). In other words, for every pair of vertices \(u, v \in M \), a vertex \(x \notin M \) is adjacent to \(u \) if and only if it is adjacent to \(v \) as well. The set \(V(G) \) and all singleton vertex sets are modules, called trivial. A graph on at least four vertices is prime if it contains only trivial modules, e.g., a \(P_4 \) and a \(C_5 \). Given any partition \(\{M_1, \ldots, M_p\} \) of \(V(G) \) such that for any pair of distinct \(i, j \) with \(1 \leq i < j \leq p \), the \(i \)th and \(j \)th vertices of \(Q \) are adjacent if and only if \(M_i \) and \(M_j \) are adjacent in \(G \) (every vertex in \(M_i \) is adjacent to every vertex in \(M_j \)). One should be noted that a single-vertex graph and \(G \) itself are both trivial quotient graphs of \(G \), defined by the trivial module partitions \(\{V(G)\} \) and \(\{\{v_1\}, \ldots, \{v_n\}\} \) respectively.

A module \(M \) is strong if for every other module \(M' \) that intersects \(M \), one of \(M \) and \(M' \) is a proper subset of the other. All trivial modules are clearly strong. We say that a strong module \(M \) different from \(V(G) \) is maximal if the only strong module properly containing \(M \) is \(V(G) \). (It can be contained by non-maximal modules, e.g., in a graph that is a clique, the maximal strong modules are simply the singletons, while every subset of vertices is a module.) The set of maximal strong modules of \(G \) partitions \(V(G) \), and defines a special quotient graph of \(G \), denoted by \(\bar{G} \). The reader who is unfamiliar with modular decomposition is referred to the survey of Habib and Paul [12] for more information. The following proposition will be crucial for our algorithm.

1. If \(G \) is a clique or independent set, then \(\bar{Q}(G) \) is isomorphic to \(G \) and is the largest quotient graph of \(G \); if \(\bar{Q}(G) \) is prime, then it is the smallest non-trivial quotient graph of \(G \), both cardinality-wise and inclusion-wise (see Lemma 4.1). Otherwise, there can be other quotient graph larger or smaller than \(\bar{Q}(G) \).
Proposition 2.1. \([11, 19]\) If a graph \(G\) is connected, then \(\tilde{Q}(G)\) is either a clique or prime. Any prime graph contains an induced \(P_4\).

Let \(Q\) be a quotient graph of \(G\), and let \(M\) be a module of \(G\) in the module partition defining \(Q\). By abuse of notation, we will also use \(M\) to denote the corresponding node of \(Q\); hence \(M \in V(Q)\) and \(M \subseteq V(G)\), and its meaning will be clear from context. Accordingly, by \(N_G(M)\) we mean those vertices of \(G\) adjacent to \(M\) in \(G\), and by \(N_Q(M)\) we mean those nodes of \(Q\) adjacent to \(M\) in \(Q\)—note that the union of those vertices of \(G\) represented by \(N_Q(M)\) is exactly \(N_G(M)\). Sets \(N_G[M]\) and \(N_Q[M]\) are understood analogously.

The weighted versions of the associated set problem and the dissociation set problem are formally defined as follows.

Associated set
\[
\text{Input: } \text{A vertex-weighted graph } G. \\
\text{Task: } \text{find a subset } X \subseteq V(G) \text{ of the minimum weight such that every component of } G - X \text{ is a clique.}
\]

Dissociation set
\[
\text{Input: } \text{A vertex-weighted graph } G. \\
\text{Task: } \text{find a subset } X \subseteq V(G) \text{ of the minimum weight such that every component of } G - X \text{ is a single vertex or a single edge.}
\]

Let \(\text{asso}(G)\) and \(\text{diss}(G)\) denote respectively the weights of minimum association sets and minimum dissociation sets of a weighted graph \(G\). It is routine to verify that \(\text{asso}(G) \leq \text{diss}(G)\). Their gap can be arbitrarily large, e.g., if \(G\) is a clique on \(n\) vertices, then \(\text{asso}(G) = 0\) and \(\text{diss}(G) = n - 2\). A vertex set \(X\) is an association set or a dissociation set of a graph \(G\) if and only if \(G - X\) contains no \(P_3\) as an induced subgraph or as a subgraph, respectively. The following proposition follows from the fact that every \(P_3\) in a \(C_3\)-free graph is induced.

Proposition 2.2. If a graph \(G\) is \(C_3\)-free, then \(\text{asso}(G) = \text{diss}(G)\).

Theorem 2.3 \(([20, 21])\). There is an \(O(mn)\)-time approximation algorithm of ratio 2 for the weighted dissociation set problem.

Note that an unweighted graph can be treated as a special weighted graph where every vertex receives a unit weight. In this case, \(\text{asso}(G)\) is the same as the cardinality of the minimum association set of \(G\).

A \(\{C_4, P_4\}\)-free graph is called a trivially perfect graph. A vertex is universal if it is adjacent to all other vertices in this graph, i.e., has degree \(n - 1\).

Proposition 2.4 \(([22, 23, 13])\). Every connected trivially perfect graph has a universal vertex. One can in \(O(m)\)-time either decide that a graph is a trivially perfect graph, or detect an induced \(P_4\) or \(C_4\).

3 The approximation algorithm

The association set problem admits a naive 3-approximation algorithm \([17]\). It finds an induced \(P_3\) and deletes from \(G\) all the three vertices in this \(P_3\), and repeats. Since any minimum association set has to contain some of the three vertices, the approximation ratio is at most 3. A \(P_3\) can be found in linear time, while the process can be repeated at most \(n/3\) times, and thus the algorithm can be implemented in time \(O(mn)\). We present here a very simple 2.5-approximation algorithm, which runs in a high-order polynomial time, and we will show in the next section how to implement it in an efficient way to achieve the running time claimed in Theorem 1.1.

Let \(\mathcal{F}\) denote the set of five small graphs depicted in Fig. 1, i.e., \{\(C_4\), bull, dart, fox, gem\}. A quick glance of Fig. 1 convinces us that from each induced subgraph in \(\mathcal{F}\), at least two vertices need to be deleted to make it \(P_3\)-free.

Proposition 3.1. Let \(X \subseteq V(G)\). If \(G[X] \in \mathcal{F}\), then \(\text{asso}(G - X) \leq \text{asso}(G) - 2\).

In polynomial time we can decide whether \(G\) contains an induced subgraph in \(\mathcal{F}\), and find one if it exists. We delete all its vertices if it is found. If \(G\) is not connected, then we work on its components.
one by one. In the rest of this section we may focus on connected \mathcal{F}-free graphs. In such a graph, every nontrivial module M induces a (C_4, P_4)-free subgraph: A P_4 in $G[M]$, together with any $v \in N_G(M)$ (it exists because G is connected and M is nontrivial), makes a gem.

One may use the definition of modular decomposition to derive the following combinatorial properties of \mathcal{F}-free graphs. But as we will present a stronger result in the next section that implies this lemma, its proof is omitted here.

Lemma 3.2. Let G be an \mathcal{F}-free graph that is not a clique, and let $Q = \bar{Q}(G)$. Either G consists of a set of universal vertices and two disjoint cliques, or Q is C_3-free and the following hold for every maximal strong module M of G:

1. The subgraph $G[M]$ is a cluster graph. If it is not a clique, then $|N_G(M)| = 1$.
2. If $|N_Q(M)| > 2$, then the module M is trivial (consisting of a single vertex of G).

In the first case, G has simply two intersecting cliques C_1 and C_2, and the problem is trivial: We delete either $C_1 \cap C_2$ (i.e., all universal vertices), or one of $C_1 \setminus C_2$ and $C_1 \setminus C_2$, whichever the smaller. Therefore, we focus on the other case where $\bar{Q}(G)$ is C_3-free. On the other hand, if some maximal strong module M does not induce a clique in a connected \mathcal{F}-free graph G, then we can delete the unique neighbor of M and consider the smaller graph $G - N_G[M]$. Now that G is not a clique but every maximal strong module M of G is, we can define a vertex-weighted graph Q isomorphic to the quotient graph $\bar{Q}(G)$, where the weight of each vertex in Q is the number of vertices in the corresponding module, i.e., $|M|$. We apply the algorithm of Tu and Zhou [20] to find a dissociation set of this weighted graph Q. Since Q is C_3-free, by Proposition 2.2 and Theorem 2.3, the total weight of the obtained dissociation set is at most $2\text{asso}(Q) = 2\text{asso}(Q) = 2\text{asso}(G)$. Putting together these steps, an approximation algorithm with ratio 2.5 follows (see Fig. 2).

Algorithm APPROX-ASSO(G)

INPUT: a graph G.

OUTPUT: a set X of vertices such that $G - X$ is a cluster.

1. if G is a cluster graph return \emptyset;
2. if G is not connected then
 return $\bigcup\{\text{APPROX-ASSO}(C); C$ is a component of $G\}$;
3. if there exists X such that $G[X] \in \mathcal{F}$ then
 return APPROX-ASSO($G - X \cup X$);
4. if G consists of two intersecting maximal cliques C_1 and C_2 then
 return the smaller of $C_1 \cap C_2$, $C_1 \setminus C_2$, and $C_1 \setminus C_2$;
5. find all maximal strong modules of G and build $Q(G)$;
6. if a maximal strong module M is not a clique then
 return APPROX-ASSO($G - N_G[M] \cup N_G[M]$);
7. define a weighted graph Q, and call the algorithm of [20] with it;
 return vertices of G corresponding to its output.

Theorem 3.3. The output of algorithm APPROX-ASSO(G) is an association set of the input graph G and its size is at most $2.5\text{asso}(G)$.

Figure 2: Outline of the approximation algorithm for association set.
Proof. We show that the output is an association set of \(G \), and for each recursive call that puts \(X \) into the solution, it holds
\[
|X| \leq 2.5(asso(G) - asso(G - X)).
\]
Steps 1 and 2 are straightforward. Step 3 follows from Proposition 3.1, and step 4 is easy to verify. Now that \(G \) is \(\mathcal{F} \)-free, the second case of Lemma 3.2 applies to \(\tilde{Q}(G) \) built in step 5. In particular, the situations dealt by step 6 is stated in Lemma 3.2(1), where \(M \) has a single neighbor \(v \) in \(G \). On the one hand, together with \(v \), any association set of \(G - N_G[M] \) makes an association set of \(G \). Hence,
\[
asso(G) \leq asso(G - N_G[M]) + 1.
\]
On the other hand, suppose there is a minimum association set \(X \) of \(G \) that does not contain \(v \), then \(X \cap M \) is nonempty (recalling that \(M \) is not a clique). Since \(X \setminus M \) is an association set of \(G - M \), we have
\[
asso(G) = |X| \geq asso(G - M) + 1 \geq asso(G - N_G[M]) + 1.
\]
Therefore, the equality must hold, which justifies step 6.

After the algorithm has passed step 6, (1) the graph \(G \) is not a clique but every maximal strong module of it is a clique; (2) the weighted graph \(Q \) defined in step 7, which is isomorphic to \(\tilde{Q}(G) \), is \(C_3 \)-free. Therefore, the output of the algorithm of [20] is both a dissociation set and an association set of \(Q \), and its total weight is at most \(2\text{dis}(Q) = 2asso(Q) \). It is easy to verify that for each clique module of \(G \), a minimum association set contains either all or none of its vertices. Therefore, from the association set of \(Q \) we can retrieve an association set of \(G \) with the same size, which is at most \(2asso(Q) = 2asso(G) \). This concludes the proof.

\(\square \)

4 An efficient implementation

We now discuss the implementation issues that lead to the claimed running time. A simpleminded implementation of the algorithm given in Fig. 2 takes \(O(n^5) \) time, which is decided by the disposal of induced subgraphs in \(\mathcal{F} \) (step 3). It is unclear to us how to detect them in a more efficient way than the \(O(n^5) \)-time enumeration. But we observe that what we need are no more than the conditions stipulated in Lemma 3.2, for which being \(\mathcal{F} \)-free is sufficient but not necessary. The following relaxation is sufficient for our algorithmic purpose: We either detect an induced subgraph in \(\mathcal{F} \) or determine that \(G \) has already satisfied these conditions. Once a subgraph is found, we can delete all its vertices and repeat the process. In summary, we are after an \(O(mn) \)-time procedure that finds a set of subgraphs in \(\mathcal{F} \) such that its deletion leaves a graph satisfying the conditions of Lemma 3.2.

Toward this end a particular obstacle is the \(C_3 \)-free condition in the second case of Lemma 3.2. Indeed, the detection of triangles in linear time is a notorious open problem that we are not able to solve. Therefore, we may have to abandon the simple “search and remove” approach. The first idea here is that we may dispose of all triangles of \(\tilde{Q}(G) \) in \(O(mn) \) time. This is, however, still not sufficient, because after deleting a set \(X \) of some vertices, its maximal strong modules change, and more importantly, \(\tilde{Q}(G - X) \) may not be an (induced) subgraph of \(\tilde{Q}(G) \). Our observation is that \(\tilde{Q}(G - X) \) is either a clique, an independent set, or an induced subgraph of \(\tilde{Q}(G[M]) \) for some (not necessarily maximal) strong module \(M \) of \(G \).

We start from recalling some simple facts about modular decomposition. For each maximal strong module \(M \) of \(G \), we can further take the maximal strong modules and the quotient graph \(\tilde{Q}(G[M]) \). This process can be recursively applied until every module consists of a single vertex. If we represent each module used in this process as a node, and add edges connecting every \(M \) with all maximal strong modules of \(G[M] \), we obtain a tree rooted at \(V(G) \), called the modular decomposition tree of \(G \). The nodes of the modular decomposition tree are precisely all strong modules of \(G \), where the leaves are all singleton vertex sets, and for every non-leaf node \(M \), its children are the maximal strong modules of \(G[M] \) [11]. It is known that the modular decomposition tree can be constructed in linear time [18].

Proposition 4.1. If \(\tilde{Q}(G) \) is prime, then every nontrivial quotient graph of \(G \) contains \(\tilde{Q}(G) \) as an induced subgraph.

Proof. We argue first that the only module that contains a maximal strong module of \(G \) is \(V(G) \). Suppose for contradiction that there are a maximal strong module \(M_1 \) and another module \(M' \) such that \(M_1 \subset M' \subset V(G) \). By definition, any maximal strong module of \(G \) intersecting \(M' \) must be a proper subset
of \(M' \). Therefore, the module \(M' \) contains at least two but not all the maximal strong modules of \(G \). However, then the vertices of \(\tilde{Q}(G) \) corresponding to those modules make a nontrivial module of the graph \(\tilde{Q}(G) \), contradicting that it is prime. Now let \(P \) be any nontrivial module partition of \(G \) and let \(Q \) be the quotient graph defined by it. Every module in \(P \) must be a subset of a maximal strong module, and thus by taking a module in \(P \) for each maximal strong module, we end with \(\tilde{Q}(G) \) as an induced subgraph of \(Q \).

On the one hand, since \(V(G) \) itself is a strong module of \(G \), every vertex set \(U \subseteq V(G) \) is contained in some strong module. On the other hand, since two strong modules are either disjoint or one containing the other, there is a unique one that is inclusion-wise minimal of all strong modules containing \(U \).

Theorem 4.2. Let \(U \subseteq V(G) \) be a subset of vertices of \(G \), and let \(M \) be the inclusion-wise minimal strong module of \(G \) that contains \(U \). If \(\tilde{Q}(G[|U|]) \) is prime, then it is a subgraph of \(\tilde{Q}(G[M]) \) induced by those maximal strong modules of \(G[M] \) that intersect \(U \).

Proof. Let \(\{M_1, M_2, \ldots, M_p\} \) be the maximal strong modules of the subgraph \(G[M] \) that intersect \(U \). By definition, for every \(1 \leq i \leq p \), the set \(U \cap M_i \) is a nonempty module of \(G[|U|] \). Therefore, \(\{U \cap M_1, U \cap M_2, \ldots, U \cap M_p\} \) gives a module partition of \(U \). By Proposition 4.1, \(\tilde{Q}(G[|U|]) \) is an induced subgraph of the quotient graph of \(G[|U|] \) defined by this partition.

We remark that if \(\tilde{Q}(G[|U|]) \) is a clique or independent set, then it is not necessarily an induced subgraph of \(\tilde{Q}(G[M]) \); see, e.g., Fig. 3.

![Figure 3](image-url)

(a) For \(U = \{v_2, v_3, v_4, v_5\} \), \(\tilde{Q}(G[|U|]) \) is a clique, while \(\tilde{Q}(G) \) is an edge.

(b) For \(U = \{v_1, v_2, v_5, v_6\} \), \(\tilde{Q}(G[|U|]) \) is an independent set, while \(\tilde{Q}(G) \) is a \(P_4 \).

We are now ready to present the efficient implementation for the first phase, which would replace the first three steps of algorithm APPROX-ASSO (Fig. 2).

Lemma 4.3. In \(O(\min\{n, m\}) \) time we can find a set \(\mathcal{H} \) of disjoint induced subgraphs of \(G \) such that each \(H \in \mathcal{H} \) is in \(\mathcal{F} \) and \(G - \bigcup_{H \in \mathcal{H}} V(H) \) satisfies the conditions of Lemma 3.2.

Proof. We use the procedure described in Fig. 4. Step 0 is trivial. Step 1 uses the algorithm of McConnell and Spinrad [18], and step 2 uses simple enumeration. This leads us to the disposal of triangles in step 3. During its progress, a maximal strong module \(M \) of the input graph \(G \) may not remain a maximal strong module of the current graph (i.e., \(G - X \)). But if \(M \) is not completely deleted (i.e., \(M \not\subseteq X \)), then its remnant (i.e., \(M \setminus X \)) is always a module of \(G - X \).

Note that the three modules in each triangle must have the same parent in the modular decomposition tree. For each triangle \(\{M_1, M_2, M_3\} \), we focus on their parent \(M \) (in the modular decomposition tree) and the subgraph \(G[M] \) (step 3.1). All the modules mentioned in steps 3.2–3.7 are maximal strong modules of subgraph \(G[M] \); they correspond to \(V(Q) \).

If either of the conditions of steps 3.2 and 3.3 is true, then the triangle has been disposed of and we can continue to the next one. If the deletion of vertices in previous iterations has made \(N_Q[M_i] = N_Q[M_j] \) for some \(1 \leq i < j \leq 3 \), then \(M_i \cup M_j \) is a module of \(G[M \setminus X] \). Note that after they are merged, both \(M_i \) and \(M_j \) refer to the new module. Now that the procedure has passed steps 3.2–3.4, for each \(1 \leq i < j \leq 3 \), we can find a module adjacent to only one of \(M_i \) and \(M_j \). This justifies step 3.5, and we may assume without loss of generality that the module \(M' \) is adjacent to \(M_2 \) but not \(M_1 \); the other case can be dealt with a symmetric way, which is omitted. In step 3.6, depending on the adjacency between \(M'' \) and \(M_1, M' \), we are in one of the following three cases: • if \(M'' \) is adjacent to neither of \(M_1, M' \), then there is a dart; • if \(M'' \) is adjacent to precisely one of \(M_1, M' \), then there is a gem; or • otherwise
Procedure REDUCE(G)

INPUT: a graph G.

OUTPUT: a set of vertices specified in Lemma 4.3.

0. $X \leftarrow \emptyset$; if G is a clique then return \emptyset;
1. build the modular decomposition tree of G;
2. find all triangles \mathcal{C} of $Q(G[M])$ for all strong modules of G;
3. while \mathcal{C} is nonempty do
 3.1. let M be the parent of $\{M_1, M_2, M_3\}$ and let $Q = \tilde{Q}(G[M])$;
 3.2. if there is $1 \leq i \leq 3$ such that $M_i \subseteq X$ then
 delete $\{M_1, M_2, M_3\}$ from \mathcal{C}; continue;
 3.3. if there are $1 \leq i < j \leq 3$ such that M_i, M_j were merged then
 delete $\{M_1, M_2, M_3\}$ from \mathcal{C}; continue;
 3.4. if there are $1 \leq i < j \leq 3$ such that $N_Q[M_i] = N_Q[M_j]$ then
 merge M_i and M_i into a single module;
 delete $\{M_1, M_2, M_3\}$ from \mathcal{C}; continue;
 3.5. find $M' \in V(Q)$ that is adjacent to only one of M_1 and M_2;
 \(\text{Assume that M' is adjacent to M_2 but not M_1.}\)
 3.6. if M' is adjacent to M_3 then
 find $M'' \in V(Q)$ adjacent to only one of M_2 and M_3;
 find gems or darts or C_4 and move their vertices to X;
 3.7. else
 find $M'' \in V(Q)$ adjacent to only one of M_1 and M_3;
 find darts or bulls or C_4 or gem and move their vertices to X;
4. repeat until X is unchanged do
 4.0. $G \leftarrow G - X$; \(\text{All modules below are maximal strong modules of G.}\)
 4.1. if G is not connected then
 return \(\bigcup \{\text{REDUCE}(C): C \text{ is a component of G}\} \cup X\);
 4.2. if G is a clique or consists of two intersecting cliques then return X;
 4.3. let Q denote $\tilde{Q}(G)$; \(\text{Q is a clique or C}_3\)-free.
 4.4. if two non-clique modules are adjacent in Q then
 find a C_4 of G and move its vertices to X;
 4.5. else if Q is a clique but not an edge then
 4.5.0. let M be the only nontrivial module; \(\text{It exists because G is not a clique.}\)
 4.5.1. if $G[M]$ has a P_4 or C_4 then
 find a gem or C_4 of G and move its vertices to X;
 4.5.2. else if $G[M]$ has two components then
 find a dart of G and move its vertices to X;
 4.5.3. else find a fox of G and move its vertices to X;
 4.6. else if a module M is not a cluster then
 4.6.1. if $G[M]$ has a P_4 or C_4 then
 find a gem or C_4 of G and move its vertices to X;
 4.6.2. else if $G[M]$ is not connected then
 find a dart of G and move its vertices to X;
 4.6.3. else find a dart of G and add its vertices to X;
 4.7. else if a non-clique module M has two neighbors M_1, M_2 then
 find a C_4 of G and move its vertices to X;
 4.8. else if a nontrivial module M has neighbors M_1, M_2, M_3 then
 find a fox of G and move its vertices to X;
5. return X.

Figure 4: Procedure for the first phase.

(M'' is adjacent to both of M_1, M'), there is a C_4; This forbidden subgraph can be constructed by taking one vertex from each of M_1, M_2, M_3, M', and M''. We can actually find $\min(|M_1|, |M_2|, |M_3|, |M'|, |M''|)$ number of gems or darts, or $\min(|M_1|, |M_3|, |M'|, |M''|)$ number of C_4’s, which we all move into X. It is similar for step 3.7.

After step 3, G might become disconnected. Then we work on its components one by one. Steps 4.1
and 4.2 are simple. The fact that the quotient graph Q built in step 4.3 is either a clique or is C_3-free can be argued using Theorem 4.2. Suppose for contradiction that Q is prime but contains a C_3. Then by Theorem 4.2, it is a subgraph of $\tilde{Q}(G[M])$ for some strong module M of G. Let $\{M_1, M_2, M_3\}$ be the triangle of $\tilde{Q}(G[M])$ corresponding a triangle in Q. But in step 3, either one of $\{M_1, M_2, M_3\}$ has been completely put into X, or two of them have been merged (then unless Q is a clique or an independent set, they will always be in the same maximal strong module). Therefore, Q must be C_3-free if it is not a clique.

Note that the algorithm enters at most one of steps 4.4–4.8. The correctness of step 4.4 is clear. If Q is a clique and it passes step 4.4, then all but one maximal strong module are trivial. (Note that each universal vertex is a maximal strong module.) A P_4 of M together with a vertex in $N_G(M)$ makes a gem (4.5.1). Now that $G[M]$ is $\{P_4, C_4\}$-free, and has no universal vertex (a universal vertex of $G[M]$ is a universal vertex of G as well), according to Proposition 2.4, $G[M]$ is disconnected. Since step 4.2 does not apply, in step 4.5.2, at least one component is not a clique, and has a P_3, which, together with a vertex $u \in N_G(M)$ and any vertex from another component of $G[M]$, makes a dart. Otherwise (step 4.5.3), $G[M]$ has at least three components, and we can find a fox by taking three vertices from different components of $G[M]$ and two vertices from $N_G(M)$ (recall that when it enters step 4.5, G must have at least two universal vertices). Step 4.6 can be argued similar as step 4.5, where one should note that if there are only two modules then $G[M]$ cannot have universal vertices. After them, Q is always C_3-free. Therefore, modules M_1, M_2 in step 4.7 and modules M_1, M_2, M_3 in step 4.8 are (pairwise) nonadjacent.

If G consists of two intersecting cliques, the procedure returns at step 4.2. Hence we may assume that it is not the case. The quotient graph $\tilde{Q}(G)$ is C_3-free because Theorem 4.2 and the algorithm has passed step 4.5. Conditions (1) and (2) of Lemma 3.2 follow from the correctness argument for steps 4.6–4.8. We now calculate the running time of the procedure. Note that the total number of edges has passed step 4.5. Conditions (1) and (2) of Lemma 3.2 follow from the correctness argument for

References

[1] Nir Ailon, Moses Charikar, and Alantha Newman. Aggregating inconsistent information: Ranking and clustering. *Journal of the ACM*, 55(5):(Article 23) 1–27, 2008. A preliminary version appeared in STOC 2005. doi:10.1145/1411509.1411513.

[2] Nikhil Bansal, Avrim Blum, and Shuchi Chawla. Correlation clustering. *Machine Learning*, 56(1):89–113, 2004. A preliminary version appeared in FOCS 2002. doi:10.1023/B:MACH.0000033116.57574.95.

[3] Amir Ben-Dor, Ron Shamir, and Zohar Yakhini. Clustering gene expression patterns. *Journal of Computational Biology*, 6(3/4):281–297, 1999. doi:10.1089/1066527993182747.

[4] Anudhyan Boral, Marek Cygan, Tomasz Kociumaka, and Marcin Pilipczuk. A fast branching algorithm for cluster vertex deletion. In Edward A. Hirsch, Sergei O. Kuznetsov, Jean-Éric Pin, and Nikolay K. Vereshchagin, editors, *Computer Science - Theory and Applications (CSR)*, volume 8476 of *LNCS*, pages 117–128. Springer, 2014. doi:10.1007/978-3-319-06686-8_9.

[5] Henning Bruhn, Morgan Chopin, Felix Joos, and Oliver Schaudt. Structural parameterizations for boxicity. In Dieter Kratsch and Ioan Todinca, editors, *Graph-Theoretic Concepts in Computer Science (WG)*, volume 8747 of *LNCS*, pages 117–128. Springer, 2014. doi:10.1007/978-3-319-12340-0_10.

[6] Leizhen Cai. Fixed-parameter tractability of graph modification problems for hereditary properties. *Information Processing Letters*, 58(4):171–176, 1996. doi:10.1016/0020-0190(96)00050-6.

[7] Yixin Cao and Jianer Chen. Cluster editing: Kernelization based on edge cuts. *Algorithmica*, 64(1):152–169, 2012. doi:10.1007/s00453-011-9595-1.

[8] Moses Charikar, Venkatesan Guruswami, and Anthony Wirth. Clustering with qualitative information. *Journal of Computer and System Sciences*, 71(3):360–383, 2005. A preliminary version appeared in FOCS 2003. doi:10.1016/j.jcss.2004.10.012.

[9] Morgan Chopin, André Nichterlein, Rolf Niedermeier, and Mathias Weller. Constant thresholds can make target set selection tractable. *Theory of Computing Systems*, 55(1):61–83, 2014. doi:10.1007/s00224-013-9499-3.
[10] Martin Doucha and Jan Kratochvíl. Cluster vertex deletion: A parameterization between vertex cover and clique-width. In Branislav Rovan, Vladimiro Sassone, and Peter Widmayer, editors, Mathematical Foundations of Computer Science (MFCS), volume 7464 of LNCS, pages 348–359. Springer, 2012. doi:10.1007/978-3-642-32589-2_32.

[11] Tibor Gallai. Transitiv orientierbare graphen. Acta Mathematica Academiae Scientiarum Hungaricae, 18:25–66, 1967. Translated by Frédéric Maffray and Myriam Preissmann as in Perfect Graphs, Jorge L. Ramírez-Alfonsín and Bruce A. Reed, Eds., Wiley, 2001, pp.25-66. doi:10.1007/BF02020961.

[12] Michel Habib and Christophe Paul. A survey of the algorithmic aspects of modular decomposition. Computer Science Review, 4(1):41–59, 2010. doi:10.1016/j.cosrev.2010.01.001.

[13] Pinar Heggernes and Dieter Kratsch. Linear-time certifying recognition algorithms and forbidden induced subgraphs. Nordic Journal of Computing, 14(1-2):87–108, 2007.

[14] Falk Hüffner, Christian Komusiewicz, Hannes Moser, and Rolf Niedermeier. Fixed-parameter algorithms for cluster vertex deletion. Theory of Computing Systems, 47(1):196–217, 2010. doi:10.1007/s00224-008-9150-x.

[15] John M. Lewis and Mihalis Yannakakis. The node-deletion problem for hereditary properties is NP-complete. Journal of Computer and System Sciences, 20(2):219–230, 1980. Preliminary versions independently presented in STOC 1978. doi:10.1016/0022-0000(80)90060-4.

[16] Yunlong Liu, Jianxin Wang, Jie You, Jianer Chen, and Yixin Cao. Edge deletion problems: Branching facilitated by modular decomposition. Theoretical Computer Science, 573:63–70, 2015. doi:10.1016/j.tcs.2015.01.049.

[17] Carsten Lund and Mihalis Yannakakis. The approximation of maximum subgraph problems. In Andrzej Lingas, Rolf G. Karlsson, and Svante Carlsson, editors, Automata, Languages and Programming (ICALP), volume 700 of LNCS, pages 40–51. Springer, 1993. doi:10.1007/3-540-56939-1_60.

[18] Ross M. McConnell and Jeremy P. Spinrad. Modular decomposition and transitive orientation. Discrete Mathematics, 201(1-3):189–241, 1999. Preliminary versions appeared in SODA 1994 and SODA 1997. doi:10.1016/S0012-365X(98)00319-7.

[19] David P. Sumner. Graphs indecomposable with respect to the X-join. Discrete Mathematics, 6(3):281–298, 1973. doi:10.1016/0012-365X(73)90100-3.

[20] Jianhua Tu and Wenli Zhou. A factor 2 approximation algorithm for the vertex cover P_3 problem. Information Processing Letters, 111(14):683–686, 2011. doi:10.1016/j.ipl.2011.04.009.

[21] Jianhua Tu and Wenli Zhou. A primal-dual approximation algorithm for the vertex cover P_3 problem. Theoretical Computer Science, 412(50):7044–7048, 2011. doi:10.1016/j.tcs.2011.09.013.

[22] E. S. Wolk. The comparability graph of a tree. Proceedings of the American Mathematical Society, 13:789–795, 1962. doi:10.1090/S0002-9939-1962-0172273-0.

[23] Jing-Ho Yan, Jer-Jeong Chen, and Gerard J. Chang. Quasi-threshold graphs. Discrete Applied Mathematics, 69(3):247–255, 1996. doi:10.1016/0166-218X(96)00094-7.

[24] Mihalis Yannakakis. Node-deletion problems on bipartite graphs. SIAM Journal on Computing, 10(2):310–327, 1981. doi:10.1137/0210022.