Reconstruction in ALICE and calibration of TPC space-charge distortions in Run 3

Ernst Hellbär (GSI) for the ALICE collaboration

The Ninth Annual Conference on Large Hadron Collider Physics (LHCP2021)
June 7, 2021
ALICE Time Projection Chamber (TPC)

Insertion of the TPC after the upgrade during LS2

Fri plenary talk:
Upgrades for ALICE by C. Lippmann
Goals and challenges

Record large Pb-Pb minimum bias sample

Continuous readout at 50 kHz interaction rate in Pb-Pb collisions

- No triggers or event rejection
- Processing of time frames (TF, 10 - 20 ms) instead of events
- Events overlapping in TPC

GPU processing and data compression

- 50 times more events and data to be processed and stored

TPC calibration and tracking

- Calibration of space-charge distortions
- Tracking with continuous readout and space-charge distortions

Talks by D. Rohr: LHCP2020, vCHEP2021

TPC tracks of overlapping events (different colors)
Time frame of 2 ms at 50 kHz Pb-Pb collisions
Data processing in Run 3

First Level Processors (FLPs)
- Calibration, processing and collection of data from detectors

Event Processing Nodes (EPNs)
- **Synchronous processing** during beam and data recording
 - TPC tracking (~99 % of computing time) fully running on GPUs
- **Asynchronous processing** when EPN resources are available, e.g. no beam, pp collisions
 - TPC processing, ITS and TRD tracking on GPUs (~80 % of processing)
 - Goal to perform full barrel tracking on GPUs (~95 % of the total processing) in the future
TPC calibration

Pedestal, Noise, Pulser

Gain and dE/dx

- Pad-wise gain calibration
- p, T, high-voltage dependence
- Track topology
- Track-based residual calibration

Electron drift velocity

Distortions due to space charge and other effects

- Average space-charge distortion correction
- Correction of space-charge distortion fluctuations
- Static distortions and distortions due to charge-up effects
TPC upgrade

Readout chambers based on GEMs replaced MWPCs + gating grid

No dedicated mechanism to prevent ion backflow (IBF)

- Suppression to below 1% by a combination of four GEMs and optimized high-voltage settings

Continuous readout at 50 kHz Pb-Pb

- Gating grid implied rate limitation to ~3 kHz

Significant amount of space charge piling up inside the drift volume

- Non-uniform space-charge density ρ_{sc}
 - Large space-charge distortions (dr, $dr\phi$, dz) of measured space points
 - Space-charge density and distortion fluctuations

Simulation Pb-Pb 50 kHz
Integral over ϕ

Simulation Pb-Pb 50 kHz
ϕ average

Integral over z
Space-charge density and distortion fluctuations

Dependencies of the space-charge density

- Ion backflow x gain = ε
- Number of ion pile-up events within one full ion drift time
- Particle flux (primary, secondary particles) from collisions
- Ionization deposited by single particles

Relative space-charge density fluctuations σ_{SC}/μ_{SC} of ~2 % at 50 kHz Pb-Pb

- Distortion fluctuations of O(mm - cm) in r and $r\phi$
- Relevant time scales: 5 - 10 ms

$$\frac{\sigma_{SC}}{\mu_{SC}} = \frac{1}{\sqrt{N_{\text{ion pileup}}}} \sqrt{1 + \left(\frac{\sigma_{N_{\text{mult,prim}}}}{\mu_{N_{\text{mult,prim}}}} \right)^2 + \left(\frac{\sigma_{N_{\text{mult,sec}}}}{\mu_{N_{\text{mult,sec}}}} \right)^2}$$

1D fluctuations

3D fluctuations
Space-charge distortion calibration

Synchronous reconstruction	**Asynchronous reconstruction**
Correction of average distortions	**Correction of average distortions**
• Stored correction maps from previous calibration intervals	• Correction map extracted from data itself
1D→3D distortion-fluctuation correction	**Distortion-fluctuation correction**
	• 1D→3D for pp
	• 3D→3D for Pb-Pb
Precision: O(mm)	**Precision: 200 μm**
• Tracking	• Intrinsic track resolution of the TPC
• Track matching to external detectors	
Correction of average space-charge distortions

Distorted TPC track fitted with relaxed tolerances

Matching to ITS and TRD+TOF track segments

Residuals between distorted TPC clusters and ITS-TRD-TOF track refit

- TPC volume divided into small voxels

Statistics / calibration interval length for required precision ($O(50 \, \mu m)$) depending on voxel size

- $O(\text{min})$
- Space-charge distortion fluctuations relevant on much shorter time scales

Calibration of other effects like static E-field distortions, ExB, electron drift velocity and misalignment included
Correction of space-charge distortion fluctuations

Update interval of 5 - 10 ms for distortion-fluctuation correction

- Insufficient statistics for ITS-TRD-TOF reference method
 ➔ Data-driven machine learning (ML) algorithms and convolutional neural networks (CNN)
 - Space-charge density ➔ 3D fluctuation corrections

Dependencies of distortion fluctuations

- Space-charge density fluctuations
 ➔ Integrated digital currents (IDCs)
- Mean space-charge density
 ➔ Derivative of average corrections w.r.t. IDCs
Integrated digital currents (IDCs)

Estimator for the space-charge density fluctuations $\rho_{SC} - <\rho_{SC}>$

Charge (ADCs) on each pad integrated over ~1 ms

- Relation to the space-charge density
 - Local ε
 - Drift-field distortions for ions
 - Ion drift time

3D IDCs (r, φ, t)

- 3-dimensional (r, φ, z) information about space-charge density fluctuations

1D IDCs (t)

- Information about fluctuations in time (z) direction
Estimators of mean space-charge density

Average space-charge corrections

• Contributions affecting the space-charge density
 - Local ε variations
 - Ion drift distortions
 - Ion drift velocity

• Additional contributions from other sources
 - Static distortions
 - Charge-up effects

→ Non-linear system

Derivative of average corrections w.r.t IDCs

• Single dependence on the change of the space-charge density
• Challenge: extraction for calibration intervals using ITS-TRD-TOF method
 - Fourier transform of 1D IDC fluctuations for time windows ~ ion drift time O(200 ms)
 - Distributions of Fourier coefficients c_k
 - Extraction of average corrections for percentiles P_i defined by c_k intervals
 - Numerical derivative using average corrections from 2 or more percentiles
Data-driven ML algorithms and CNNs

1D→3D distortion-fluctuation correction

- 1D IDCs (Fourier coefficients) + derivative of avg. corr. → 3D corrections
- Boosted Decision Trees (BDTs) or simple dense networks
- Correction of
 - 1D distortion fluctuations
 - Global properties of distortion fluctuations
- Precision expected to be sufficient for pp collisions

3D→3D distortion-fluctuation correction

- 3D IDCs + derivative of avg. corr. → 3D corrections
- Convolutional neural network: U-Net
- Correction of 3D distortion fluctuations
- Preliminary studies
 - Predictions dominated by global properties instead of local properties of space-charge distortion fluctuations
 - 1D→3D correction as pre-filter

\[
\text{RMSE and } \mu \text{ (cm)}
\]

\[
dr_{\text{pred}} - dr_{\text{true}} \text{ (cm) of trained models (U-Net)}
\]

\[
0.05 < \int_{r, \psi, z} \frac{<d\rho>_{SC} - \rho_{SC}}{<d\rho>_{SC}} < 0.07
\]

\[
0.00 < z < 5.00 \text{ cm, 20 epochs}
\]
Summary

Continuous readout at 50 kHz of Pb-Pb collisions

- Synchronous and asynchronous processing on the EPN farm
 - Utilization of GPUs for dominant part of the processing

TPC space-charge distortion calibration

- Most challenging calibration task
- Average distortion correction using ITS-TRD-TOF reference track method in time intervals $O(\text{min})$
- Correction of space-charge distortion fluctuations in time intervals $O(5-10 \text{ ms})$
 - IDCs as proxy for space-charge density fluctuations
 - Derivative of average corrections w.r.t. IDCs extracted from data
 - Data-driven ML algorithms and CNNs
 - 1D\rightarrow3D correction using BDTs or simple dense networks
 - 3D\rightarrow3D correction using a CNN
Backup
ALICE detectors in Run 3

Central barrel tracking
- **ITS** (7 layers)
- **TPC** (152 pad rows)
- **TRD** (6 layers)
- **TOF** (1 layer)

Calorimeters
- **EMCal**, **PHOS**, **DCal**

Forward detectors
- **MFT**, **MCH**, **MID**, **ZDC**

Fast Interaction Trigger (FIT)
- **FT0**, **FV0**, **FDD**

Others
- **HMPID**
Space-charge density and distortion fluctuations

Dependencies of the space-charge density

- Ion backflow x gain = ε
- Number of ion pile-up events within one full ion drift time
- Particle flux (primary, secondary particles) from collisions
- Ionization deposited by single particles

Relative space-charge density fluctuations σ_{SC}/μ_{SC} of ~2 % at 50 kHz Pb-Pb

- Distortion fluctuations of O(mm - cm) in r and $r\phi$
- Relevant time scales: 5 - 10 ms

$$\frac{\sigma_{SC}}{\mu_{SC}} = \frac{1}{\sqrt{N_{\text{ion pileup}}}} \sqrt{\left(\frac{\sigma_{N_{\text{mult,prim}}}}{\mu_{N_{\text{mult,prim}}}} \right)^2 + \left(\frac{\sigma_{N_{\text{mult,relsec}}}}{\mu_{N_{\text{mult,relsec}}}} \right)^2 + \left(\frac{1}{F_{\text{prim}}(r) \cdot \mu_{N_{\text{mult,prim}}} + F_{\text{sec}}(r) \cdot \mu_{N_{\text{mult,sec}}}} \right)^2}$$

1D fluctuations

3D fluctuations
Data-driven approach

Fourier transform of 1D IDCs for time windows ~ ion drift time $O(200\ ms)$
- Set of Fourier coefficients c_k for each window
 - Assumption: Gaussian white noise vectors
 - Gaussian distributions with same finite width

Numerical derivative of average corrections w.r.t. IDCs
- Collection of windows with coefficients (e.g. 0th) within defined percentiles
 - Similar space-charge density fluctuations
 - Combined statistics from several windows
- ITS-TRD-TOF method to extract average corrections for given percentiles
- Numerical derivative using two or more average correction maps

Extended fully data-driven approach
- Linear decomposition of corrections
 - Derivatives of corrections for n frequencies
 - n Fourier coefficients

\[
I(t) = \langle I(t) \rangle + \Delta I(t)
\]
\[
I(t) = \langle I(t) \rangle + \sum_{k=0}^{N} c_k \Phi_k(t)
\]
\[
\frac{\partial \Delta_k}{\partial c_k} = \langle \Delta \rangle_{k,Q=0.8} - \langle \Delta \rangle_{k,Q=0.2}
\]
\[
\frac{\langle c_k \rangle_{Q=0.8} - \langle c_k \rangle_{Q=0.2}}{Q}
\]
\[
\Delta(t) = \sum_{k} c_k \frac{\partial \Delta_k(t)}{\partial c_k} \Phi_k(t)
\]
1D→3D distortion-fluctuation correction

Boosted Decision Trees (BDTs) or simple dense networks

- **Feature variables**
 - Position r, φ, z
 - n Fourier coefficients of 1D IDC fluctuations
 - Significantly less parameters than independent raw 1D IDC values
 - Importance of frequencies k expected to decrease with 1/k as IDC fluctuations are integrated over the drift length
 - Derivative of average corrections

- **Output variables**
 - dr, dφ, dz

Correction of:

- **1D fluctuations**
- **global properties of fluctuations imposed by boundary conditions**
 - Fixed TPC boundaries
 - Asymmetric profile of space-charge density

Precision expected to be sufficient for pp collisions

- Smaller space-charge distortions or much higher interaction rates (200 kHz to 1 MHz) than in Pb-Pb
3D→3D distortion-fluctuation correction

Convolutional Neural Network: U-Net

- Classification of each pixel
- Propagation of local information and context

Prediction of full fluctuation corrections (dr, $d\phi$, dz) using 3D IDC fluctuations and derivative of average corrections as input

Preliminary studies performed using space-charge density fluctuations and average space-charge density from simulation

- Systematic dependence of the mean and RMS of the predictions on the distance to the TPC boundaries
- Predictions of local fluctuations dominated by global properties imposed by boundary conditions
 - Network focused on learning boundary conditions instead of local fluctuations
 ➔ 1D→3D correction required as pre-filter to reduce the magnitude of global effects
Preliminary results

Evaluation

- Mean (μ) and RMSE of the difference between predicted and true distortion fluctuations ($dr_{\text{pred}} - dr_{\text{true}}$)
- Multi-dimensional analysis in TPC phase space
 - r, φ, z, relative density fluctuations, ...

Variation of

- grid size: 90 x 17 x 17, 180 x 33 x 33
- number of training samples: 5k, 10k, 18k

Different training statistics required for different grid sizes

- Increasing number of training samples from 10k to 18k
 - Indications of overtraining for 90 x 17 x 17
 - Network still undertrained for 180 x 33 x 33

Systematic dependence of the predicted results on the TPC radius

- Effect of space-charge density fluctuations on the distortion fluctuations strongly depends on the distance from the TPC boundaries
Interpretation of the preliminary U-Net performance

Unit test

- Response of the U-Net to a local space-charge density fluctuation
- Narrow line charge fluctuation at fixed r, ϕ

Scale and shape of the prediction dominated by global (long range) dependencies

- Training time spent on learning broken assumptions of the U-Net instead of local effects
 - Asymmetric boundary conditions
 - Continuity along ϕ-direction
 - Broken translational invariance
- Inability to predict local fluctuations at the current stage of the development
Boundary and charge-up effects

Sources

- Finite granularity of field cage strips
- Dead zones between ROCs and GEM stacks
- Misalignment, e.g. between ROCs and CE
- Local charge-up effects

Consequences

- Sharp gradients of distortions close to the boundaries
 - Smeared out by average distortions and fluctuations
- Kinematic and QA variables affected by residual miscalibration

Calibration

- Analytical model or data driven templates
- Partial rescaling to account for time dependent changes (e.g. IR)
- Model based on local distortions / corrections
 - Commutativity of distortions from different effects only valid locally
Calibration of the ion drift time

Ion drift time a priori unknown

- Function of gas composition, p, T, E
- Microscopic ion movement in a gas substantially different from electrons
 - Velocity and direction after collisions with gas atoms
 - Drifting ion species not well-defined
 - Y. Kalkan et al 2015 JINST 10 P07004
 ➔ Separate calibration required on time scales $O(h)$
- Unavailable from hardware measurements

Possible calibration procedure using space-charge distortion calibration data

- Robust tracking variable after average distortion correction
 - DCA fluctuations as a function of η, ϕ, q/p_T
- Correlation of DCA fluctuations to 0D IDC fluctuations
 - Variation of the 0D IDC integration time
 - Ion drift time $\pm \Delta t$ around the nominal value
 - Biggest correlation and smallest dispersion expected for the correct ion drift time