1. Introduction

Let \(K \) be a number field of degree \(n \) over \(\mathbb{Q} \) and \(\alpha \in K \) a generator, i.e. \(K = \mathbb{Q}(\alpha) \), with minimal polynomial \(f = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0 \) and \(a_i \in \mathbb{Z} \), \(\gcd(a_0, \ldots, a_n) = 1 \). We call \(H(\alpha) = H(f) = \max(|a_0|, \ldots, |a_n|) \) the height of \(\alpha \). Our question is now: How large are small generators \(\alpha \) of \(K \) (where our measure is the height \(H(\alpha) \))?

A bound from below is given in the following Proposition 1.

For every \(n \in \mathbb{N} \) there is a real number \(c_n > 0 \) such that if \(\alpha \) generates a number field \(K \) of degree \(n \) and discriminant \(D_K \) then
\[
H(\alpha) \geq c_n |D_K|^{\frac{1}{2n-2}}.
\]

One can take \(c_n = \frac{1}{n \sqrt{n}} \).

Proof: Let \(f = a_n x^n + \cdots + a_0 \) be the minimal polynomial of \(\alpha \). According to [Cohen, p.216, exercise 15 (H. W. Lenstra)] the \(\mathbb{Z} \)-module
\[
R = \mathbb{Z} + (a_n \alpha) \mathbb{Z} + (a_n \alpha^2 + a_{n-1} \alpha) \mathbb{Z} + (a_n \alpha^3 + a_{n-1} \alpha^2 + a_{n-2} \alpha) \mathbb{Z} + \cdots + (a_n \alpha^{n-2} + \cdots + a_3 \alpha) \mathbb{Z} + (a_n \alpha^{n-1} + \cdots + a_2 \alpha) \mathbb{Z}
\]
is an order in \(K = \mathbb{Q}(\alpha) \) with discriminant \(D(f) \), the discriminant of the polynomial \(f \). So there is an \(m \in \mathbb{N} \) with \(D(f) = m^2 D_K \). On the other hand \(D(f) \) is homogeneous in \(a_0, \ldots, a_n \) of degree \(2n-2 \) and there is a constant \(e_n > 0 \) such that
\[
|D(f)| \leq e_n H(f)^{2n-2}.
\]
This gives \(|D_K| \leq e_n H(\alpha)^{2n-2} \) and therefore
\[
H(\alpha) \geq e_n^{-\frac{1}{2n-2}} |D_K|^{\frac{1}{2n-2}}.
\]
Using the determinant representation of the discriminant one sees that one can take \(e_n = (n \sqrt{n})^{2n-2} \), which gives the desired explicit inequality.

A natural question is now:

Question 1. Is there a number \(d_n \) such that every number field \(K \) of degree \(n \) over \(\mathbb{Q} \) has a generator \(\alpha \) with
\[
H(\alpha) \leq d_n |D_K|^{\frac{1}{2n-2}}?
\]

The answer will be ‘yes’ for quadratic fields. We do not know what’s going on in general. We conclude with two examples.

version of December 3, 1996.
2. Imaginary Quadratic Fields

If \(K = \mathbb{Q}(\alpha) \) is imaginary quadratic with discriminant \(D \) and \(f = ax^2 + bx + c \) the minimal polynomial of \(\alpha \) then there is an \(m \in \mathbb{N} \) with \(b^2 - 4ac = D(f) = m^2 \cdot D \) and therefore \(4H(\alpha)^2 \geq 4ac = b^2 - m^2D = b^2 + m^2|D| \geq |D| \), so

\[
H(\alpha) \geq \frac{1}{2} \sqrt{|D|}.
\]

Is is easy to write down examples which show that the inequality is best possible:

Example: Assume that \(m \in \mathbb{N} \) and \(4m^2 - 1 = (2m - 1)(2m + 1) \) is square-free. Then \(D = 1 - 4m^2 \) is the discriminant of \(K = \mathbb{Q}(\sqrt{D}) \) and is generated by an element \(\alpha \) with minimal polynomial \(f = mx^2 + x + m \). So we get

\[
H(\alpha) = \frac{m}{\sqrt{4m^2 - 1}}
\]

which tends to \(\frac{1}{2} \) as \(m \) goes to \(\infty \).

To get an estimate in the other direction we look first at small integral elements. The result is given in the following lemma:

Lemma 1. Let \(d \) be a square-free integer \(< 0 \). The smallest integral generators of \(\mathbb{Q}(\sqrt{d}) \) have minimal polynomial

\[
x^2 - d \quad \text{for} \quad d \equiv 2, 3 \mod 4
\]

\[
x^2 \pm x + \frac{1 - d}{4} \quad \text{for} \quad d \equiv 1 \mod 4.
\]

The lemma is easy to prove. It shows that the height of integral generators is always \(\geq \frac{1}{4}|D| \) and is far away from what we are looking for.

For a quadratic number field with discriminant \(D \) let \(H_{\text{min}}(D) \) be the height of a generator of minimal height. The following table gives the discriminant \(D \) where \(\frac{H_{\text{min}}(D)}{\sqrt{|D|}} \) is maximal in the specified range. \(ax^2 + bx + c \) is the minimal polynomial of a minimal generator of \(\mathbb{Q}(\sqrt{D}) \).

| \(D \) | \((a, b, c) \) | \(\frac{H_{\text{min}}(D)}{\sqrt{|D|}} \) |
|-------|-------------|------------------|
| \(0 \geq D \geq -10000 \) | -163 | (1,1,41) | 3.2114 |
| \(-10000 \geq D \geq -20000 \) | -17467 | (47,39,101) | 0.7642 |
| \(-20000 \geq D \geq -30000 \) | -21379 | (55,29,101) | 0.6908 |
| \(-30000 \geq D \geq -40000 \) | -36523 | (73,59,137) | 0.7169 |
| \(-40000 \geq D \geq -50000 \) | -47947 | (83,39,149) | 0.6805 |
| \(-50000 \geq D \geq -60000 \) | -50395 | (89,35,145) | 0.6459 |
| \(-60000 \geq D \geq -70000 \) | -68707 | (127,127,167) | 0.6371 |
| \(-70000 \geq D \geq -80000 \) | -73747 | (109,41,173) | 0.6372 |
| \(-80000 \geq D \geq -90000 \) | -81859 | (121,93,187) | 0.6536 |
| \(-90000 \geq D \geq -100000 \) | -91795 | (127,91,197) | 0.6502 |

The table and some further hints suggest the following

Conjecture 1. If \(K \) is an imaginary quadratic field with discriminant \(D \) then there is \(\alpha \) with \(K = \mathbb{Q}(\alpha) \) and

\[
H(\alpha) \leq 3.22 \sqrt{|D|}.
\]
We have the following asymptotic result:

Theorem 1.

\[
\lim_{D \to -\infty} \frac{H_{\min}(D)}{\sqrt{|D|}} = \frac{1}{2}
\]

where \(D\) runs through the discriminants of imaginary quadratic fields.

The proof depends heavily on a result of Duke [Duke] which we shortly recall\(^1\):

Let
\[F = \{z \in \mathbb{C} : \text{Im} z > 0, -\frac{1}{2} < \text{Re} z \leq \frac{1}{2}, |z| \geq 1 \text{ and } |z| > 1 \text{ if } \text{Re} z < 0\}\]

be the standard fundamental domain of \(\text{PSL}_2(\mathbb{Z})\) in the upper half plane \(\{z : \text{Im} z > 0\}\). Using the measure \(d\mu = \frac{3}{\pi} \frac{dx dy}{y^2}\) gives \(\mu(F) = 1\). Define for a discriminant \(D\)
\[\Lambda_D = \{z = \frac{b + \sqrt{D}}{2a} : a^2 - 4ac = D, z \in F, a, b, c \in \mathbb{Z}\}\].

If \(\Omega \subseteq F\) is convex (in the non-Euclidean sense) with a piece-wise smooth boundary then by [Duke, Theorem 1]
\[\lim_{D \to -\infty} \frac{\#\Lambda_D \cap \Omega}{\#\Lambda_D} = \mu(\Omega)\]
where \(D\) runs through the discriminants of imaginary quadratic fields. Now we are ready to prove the theorem:

Proof of Theorem 1: Let \(0 < \epsilon \leq 1\) be given and choose a convex set \(\Omega\) with piece-wise smooth boundary, \(\mu(\Omega) > 0\) and
\[\Omega \subseteq \{z \in F : 0 \leq \text{Re} z \leq \frac{1}{2}, 1 \leq \text{Im} z \leq 1 + \frac{1}{2}\epsilon\}\].

By the just mentioned result we find \(D_\epsilon\) such that \(\#\Lambda_D \cap \Omega \geq 1\) whenever \(D < D_\epsilon\).

Take \(D < D_\epsilon\) then we get an \(\alpha \in \Lambda_D \cap \Omega\), i.e. \(\alpha = \frac{b + \sqrt{D}}{2a}\) with \(a, b, c \in \mathbb{Z}\) and \(D = b^2 - 4ac\) such that
\[a > 0, \quad 0 \leq \frac{b}{2a} \leq \frac{1}{2} \epsilon, \quad 1 \leq \frac{\sqrt{|D|}}{2a} \leq 1 + \frac{1}{2} \epsilon\].

We see at once
\[|a| = a \leq \frac{1}{2} \sqrt{|D|} \quad \text{and} \quad |b| = b \leq a \epsilon \leq a \leq \frac{1}{2} \sqrt{|D|}\].

Finally
\[|c| = c = \frac{b^2 + |D|}{4a} \leq \frac{a^2 \epsilon^2 + |D|}{4a} = \frac{a^2 \epsilon^2 + \frac{1}{2} \sqrt{|D|}|D|}{2a} \leq \frac{1}{2} \sqrt{|D|}\epsilon^2 + \frac{1}{2} |D| \left(1 + \frac{1}{2} \epsilon^2\right) = \frac{1}{2} \sqrt{|D|}\left(1 + \frac{\epsilon^2}{4}\right) \leq \frac{1}{2} \sqrt{|D|}(1 + \epsilon)\].

As \(\alpha\) has minimal polynomial \(ax^2 - bx + c\) and generates \(\mathbb{Q}(\sqrt{D})\) we get (with the trivial estimate)
\[\frac{1}{2} \leq \frac{H_{\min}(D)}{\sqrt{|D|}} \leq \frac{H(\alpha)}{\sqrt{|D|}} \leq \frac{1}{2}(1 + \epsilon)\]

\(^1\) I would like to thank H.W.Lenstra who gave me the hint to Duke's paper.
which proves our claim. ■

It would be nice to have an effective version of Duke’s theorem in order to prove a statement like Conjecture 1.

3. REAL QUADRATIC FIELDS

Let \(K \) be a real quadratic field with discriminant \(D \) and \(\alpha \) a generator of \(K \) with minimal polynomial \(f = ax^2 + bx + c \). Then there is an \(m \in \mathbb{N} \) with \(b^2 - 4ac = m^2 D \) so that we obtain \(0 < D \leq m^2 D = b^2 - 4ac \leq b^2 + 4|a||c| \leq 5H(\alpha)^2 \) and therefore

\[
H(\alpha) \geq \frac{1}{\sqrt{5}} \sqrt{D} = 0.4472\ldots \sqrt{D}.
\]

The following example shows that the estimate is best possible:

Example: Let \(m \in \mathbb{N} \) such that \(5m^2 - 2m + 1 \) is square-free. Then an element \(\alpha \) with minimal polynomial \(f = mx^2 + (m - 1)x - m \) generates a real quadratic number field \(K \) with discriminant \(D = 5m^2 - 2m + 1 \) and

\[
H(\alpha) \leq \frac{m}{\sqrt{5m^2 - 2m + 1}}
\]
tends to \(\frac{1}{\sqrt{5}} \) as \(m \) goes to \(\infty \).

To get an estimate in the other direction the situation is much easier than in the imaginary quadratic case as we find small integral generators:

Proposition 2. If \(K \) is a real quadratic field with discriminant \(D \) there is an (integral) \(\alpha \in K \) with \(K = \mathbb{Q}(\alpha) \) and

\[
H(\alpha) < \sqrt{D}.
\]

Proof: Let \(m = \lceil \sqrt{D} \rceil \) and choose \(a = m \) or \(a = m - 1 \) such that \(a^2 \equiv D \mod 4 \). Take \(b \) with \(a^2 - 4b = D \). It is clear that \(b < 0 \). The assumption \(|b| \geq m \) would imply

\[
D = a^2 + 4|b| \geq (m - 1)^2 + 4m = m^2 + 2m + 1 = (m + 1)^2,
\]

so \(\sqrt{D} \geq m + 1 \), which contradicts the definition of \(m \). Therefore an element \(\alpha \) with minimal polynomial \(f = x^2 + ax + b \) has height \(< \sqrt{D} \) and proves the proposition. ■

Proposition 2 answers Question 1 for real quadratic fields in an effective way. For the rest of this section we want to study the asymptotic behavior of \(\frac{H_{\text{min}}(D)}{\sqrt{D}} \).

We know already

\[
\frac{1}{\sqrt{5}} \leq \frac{H_{\text{min}}(D)}{\sqrt{D}} < 1 \quad \text{and} \quad \liminf_{D \to \infty} \frac{H_{\text{min}}(D)}{\sqrt{D}} = \frac{1}{\sqrt{5}}.
\]

The following table lists discriminants \(D \) where \(\frac{H_{\text{min}}(D)}{\sqrt{D}} \) is maximal in the specified range. \(ax^2 + bx + c \) is the minimal polynomial of a minimal generator.
We will study \(\limsup_{D \to \infty} \frac{H_{\min}(D)}{\sqrt{D}} \) in two ways each of which depends on certain conjectures.

3.1. **Assuming the existence of primes with certain properties.** Let \(M_\varepsilon \) be the set of all discriminants \(D \) of real quadratic fields \(\mathbb{Q}(\sqrt{D}) \) such that there is an odd prime \(p \) with \(\left(\frac{D}{p} \right) = 1 \) and \(\frac{1}{2} \sqrt{D} \leq p \leq \left(\frac{1}{2} + \varepsilon \right) \sqrt{D} \).

Then we get the

Lemma 2. If \(D \in M_\varepsilon \) and \(0 < \varepsilon \leq \frac{1}{2} \) the real quadratic field \(\mathbb{Q}(\sqrt{D}) \) has a generator \(\alpha \) with

\[
H(\alpha) \leq \left(\frac{1}{2} + \varepsilon \right) \sqrt{D}.
\]

Proof: By definition there is an odd prime \(p \) with

\[
\left(\frac{D}{p} \right) = 1 \quad \text{and} \quad \frac{1}{2} \sqrt{D} \leq p \leq \left(\frac{1}{2} + \varepsilon \right) \sqrt{D}.
\]

Choose \(b \in \mathbb{Z} \) with \(0 \leq b \leq p \) and \(b^2 \equiv D \mod p \). The number \(p - b \) satisfies the same conditions so that we can assume \(b^2 \equiv D \mod 2p \) which implies \(b^2 \equiv D \mod 4p \) as \(D \equiv 0, 1 \mod 4 \). Define \(c \in \mathbb{Z} \) as \(c = \frac{b^2 - D}{4p} \). As \(b^2 < D \) we have \(c < 0 \). It follows

\[
|c| = -c = \frac{D - b^2}{4p} \leq \frac{D}{4p} \leq \frac{1}{2} \sqrt{D}.
\]

The element \(\alpha \) with minimal polynomial \(f = px^2 + bx + c \) generates \(\mathbb{Q}(\sqrt{D}) \) and satisfies

\[
H(\alpha) \leq \left(\frac{1}{2} + \varepsilon \right) \sqrt{D}
\]

which proves the lemma.

If \(\varepsilon > 0 \) is fixed and \(D \) is large there are many primes \(p \) with \(\frac{1}{2} \sqrt{D} \leq p \leq \left(\frac{1}{2} + \varepsilon \right) \sqrt{D} \). As \(\left(\frac{D}{p} \right) \) is a quadratic character the following conjecture seems plausible:

Conjecture 2. For every \(\varepsilon > 0 \) there is a \(D_\varepsilon \) such that \(D > D_\varepsilon \) implies \(D \in M_\varepsilon \) if \(D \) is a real quadratic discriminant.

After some computations we conjecture e.g. \(D > 981913 \Rightarrow D \in M_{0.1} \).

I do not know how to attack conjecture 2. A natural question seems to be:
Question 2. Can conjecture 2 be deduced from ERH (extended Riemann hypothesis)?

An immediate consequence of Lemma 2 is

Corollary 1. If conjecture 2 holds then

$$\limsup_{D \to \infty} \frac{H_{\min}(D)}{\sqrt{D}} \leq \frac{1}{2}$$

where D runs through the discriminants of real quadratic fields.

3.2. **Assuming the existence of reduced elements with certain properties.**

Let D be the discriminant of a real quadratic field and define the set of reduced elements by

$$\Lambda_D = \{ \alpha = \frac{b + \sqrt{D}}{2a} : b^2 - 4ac = D, \alpha > 1, -1 < \alpha' < 0, a, b, c \in \mathbb{Z} \}$$

(where α' is the conjugate of α and $\sqrt{D} > 0$). The map $\alpha \mapsto \frac{1}{\alpha - |\alpha|}$ induces a decomposition of Λ_D in $h(D)$ cycles where $h(D)$ is the class number of $\mathbb{Q}(\sqrt{D})$ [Cohen, p.260]. It is also known that $\lim_{D \to \infty} \log |\Lambda_D| \log \sqrt{D} = 1$ [Lachaud] so the elements of Λ_D play a similar role as the elements of Λ_D in the imaginary quadratic case.

The smallest generators of a field need not be reduced as the following example shows:

Example: The real quadratic field $K = \mathbb{Q}(\sqrt{635})$ with discriminant $D = 2540$ has as a smallest generator $\alpha = \frac{15 + \sqrt{635}}{10}$ with minimal polynomial $10x^2 - 30x - 41$ and height $H(\alpha) = 41$. Among the reduced elements $\beta = \frac{25 + \sqrt{635}}{10}$ (with minimal polynomial $x^2 - 50x - 10$) has the smallest height $H(\beta) = 50$.

Nevertheless we have the following lemma:

Lemma 3. If α generates K with discriminant D and $H(\alpha) \leq 0.48\sqrt{D}$ then one of the elements $\alpha, \alpha', -\alpha, -\alpha'$ is reduced.

Proof: Let $ax^2 - bx + c$ be the minimal polynomial of α with $a > 0$. Changing from α to $-\alpha$ we can assume $b \geq 0$. Then we have is $f \in \mathbb{N}$ with $b^2 - 4ac = Df^2$. As $a, b, |c| \leq 0.48\sqrt{D}$ we get $Df^2 \leq 5 \cdot 0.48^2 D$ and therefore $f = 1$. So we have without restriction

$$\alpha = \frac{b + \sqrt{D}}{2a} \quad \text{and} \quad \alpha' = \frac{b - \sqrt{D}}{2a}.$$

As $D = b^2 - 4ac \leq b^2 + 4 \cdot 0.48^2 D$ we get $b \geq 0.28\sqrt{D}$ and $D \leq 0.48^2 D + 4 \cdot 0.48\sqrt{D} \cdot a$ gives $a \geq 0.40\sqrt{D}$. Therefore

$$\alpha = \frac{b + \sqrt{D}}{2a} \geq \frac{0.28\sqrt{D} + \sqrt{D}}{2 \cdot 0.48\sqrt{D}} \geq 1.33 > 1$$

and

$$0 > \alpha' = \frac{b - \sqrt{D}}{2a} \geq \frac{0.28\sqrt{D} - \sqrt{D}}{2a} = -\frac{0.72\sqrt{D}}{2a} \geq -\frac{0.72\sqrt{D}}{2 \cdot 0.40\sqrt{D}} > -1$$

which shows that α is reduced. \blacksquare
Lemma 4. Let K be a real quadratic field with discriminant D. If $\alpha \in \Lambda_D$ then
\[
\frac{H(\alpha)}{\sqrt{D}} = \max\left(\frac{1}{\alpha - \alpha'}, \frac{\alpha + \alpha'}{\alpha - \alpha'}, \frac{\alpha(-\alpha')}{\alpha - \alpha'}\right).
\]

Proof: If the minimal polynomial of α is $ax^2 - bx + c$ then
\[
|a| = a = \sqrt{D} \cdot \frac{1}{\alpha - \alpha'}, \quad |b| = b = \sqrt{D} \cdot \frac{\alpha + \alpha'}{\alpha - \alpha'}, \quad |c| = -c = \sqrt{D} \cdot \frac{\alpha(-\alpha')}{\alpha - \alpha'},
\]
which gives the result. \[\Box\]

Let $G = \{(x, y) \in \mathbb{R}^2 : x > 1, -1 < y < 0\}$ and $\tilde{\Lambda}_D = \{(\alpha, \alpha') : \alpha \in \Lambda_D\}$, then $\tilde{\Lambda}_D \subseteq G$. Define for $0 < h < 1$ the set
\[
G_h = \{(x, y) \in G : \frac{1}{x - y} \leq h, \ \frac{x + y}{x - y} \leq h, \ \frac{x(-y)}{x - y} \leq h\},
\]
which can be written as
\[
G_h = \{(x, y) \in G : y \leq x - \frac{1}{h}, \ y \leq -\frac{1 - h}{1 + h} x, \ y \geq -\frac{hx}{x - h}\}.
\]
If $(\alpha, \alpha') \in \tilde{\Lambda}_D \cap G_h$ then the lemma gives $H(\alpha) \leq h\sqrt{D}$. It is not difficult to see that $G_h = \emptyset$ for $h < \frac{1}{\sqrt{5}}$. $G\frac{1}{\sqrt{5}} = \{\left(\frac{1 + \sqrt{5}}{2}, \frac{1 - \sqrt{5}}{2}\right)\}$ and G_h is the closure of an open non empty set for $h > \frac{1}{\sqrt{5}}$.

Now we formulate a conjecture for reduced real quadratic numbers:

Conjecture 3. If U is an open non empty subset of G then there is a c_U such that $U \cap \tilde{\Lambda}_D \neq \emptyset$ for all $D > c_U$.

It would be interesting to know if Conjecture 3 can be deduced from Duke’s results for real quadratic fields [Duke].

Corollary 2. Assuming Conjecture 3 we get
\[
\lim_{D \to \infty} \frac{H_{\text{min}}(D)}{\sqrt{D}} = \frac{1}{\sqrt{5}},
\]
where D runs through the discriminants of real quadratic fields.

Proof: Let $\epsilon > 0$ be sufficiently small. Then there is a d_ϵ such that $G\frac{1}{\sqrt{5}} + \epsilon \cap \tilde{\Lambda}_D \neq \emptyset$ for all discriminant $D > d_\epsilon$. For $D > d_\epsilon$ take $\alpha \in \Lambda_D$ with $(\alpha, \alpha') \in \tilde{\Lambda}_D \cap G\frac{1}{\sqrt{5}} + \epsilon$. Then
\[
\frac{1}{\sqrt{5}} \leq \frac{H(\alpha)}{\sqrt{D}} \leq \frac{1}{\sqrt{5}} + \epsilon,
\]
which implies at once our statement. \[\Box\]

We conclude this section with numerical examples. Let $H_{\text{min, red}}(D)$ be the minimal height of all elements in Λ_D. The following table gives the discriminant D where $\frac{H_{\text{min, red}}(D)}{\sqrt{D}}$ is maximal in the specified range. $ax^2 - bx + c$ is the minimal
polynomial of a corresponding element of Λ_D. Finally *average* gives the average value of all $\frac{H_{min,red}(D)}{\sqrt{D}}$ in the given range.

D	(a, b, c)	$\frac{H_{min,red}(D)}{\sqrt{D}}$	average
$1 \leq D \leq 10000$	908	(1.30,-2)	0.9956
$10000 \leq D \leq 20000$	14693	(19.109,-37)	0.8992
$20000 \leq D \leq 30000$	24173	(23.115,-119)	0.7654
$30000 \leq D \leq 40000$	37532	(38.122,-149)	0.7691
$40000 \leq D \leq 50000$	49013	(37.153,-173)	0.7814
$50000 \leq D \leq 60000$	54053	(47.153,-163)	0.7011
$60000 \leq D \leq 70000$	69893	(97.173,-103)	0.6544
$70000 \leq D \leq 80000$	79805	(95.105,-181)	0.6407
$80000 \leq D \leq 90000$	87533	(79.159,-197)	0.6659
$90000 \leq D \leq 100000$	95672	(106.128,-187)	0.6046
$10^6 \leq D \leq 10^6 + 10000$	104093	(83.195,-199)	0.6168
$10^6 \leq D \leq 10^6 + 10000$	1006232	(463.194,-523)	0.5214
$10^7 \leq D \leq 10^7 + 10000$	10000973	(1423.1029,-1571)	0.4968

4. Concluding Remarks

The following example shows that for every n there are infinitely many number fields of degree n such that an estimate as in question 1 holds.

Example: Let n be an integer ≥ 2 and p, q primes with $p < q < 2p$. Let α be a zero of $f = px^n + q$ and $K = \mathbb{Q}(\alpha)$. Then K has degree n over \mathbb{Q} and the primes p and q are totally ramified in K, so p^{n-1} and q^{n-1} divide D_K. Therefore we get the estimate

$$H(\alpha) = q < \sqrt{2pq} = \sqrt{2(p^{n-1}q^{n-1})^{\frac{1}{2n-2}}} \leq \sqrt{2} |D_K|^{\frac{1}{2n-2}}.$$

In the next example ‘small’ (integral) generators are constructed with Minkowski’s theorem.

Example: Let K be a totally real number field of prime degree n, $\alpha_1, \ldots, \alpha_n$ an integral basis of K and $\sigma_1, \ldots, \sigma_n$ the different embeddings $K \rightarrow \mathbb{R}$. As $|\det(\sigma_j, \alpha_j)| = \sqrt{|D_K|}$ there is $(x_1, \ldots, x_n) \in \mathbb{Z}^n \setminus \{0\}$ by Minkowski’s linear forms theorem [Hua, p.540] such that $\alpha = x_1\alpha_1 + \cdots + x_n\alpha_n$ satisfies

$$|\sigma_1\alpha| < 1 \quad \text{and} \quad |\sigma_2\alpha|, \ldots, |\sigma_n\alpha| \leq |D_K|^{\frac{1}{2n-2}}.$$

The condition $|\sigma_1\alpha| < 1$ implies $\alpha \notin \mathbb{Z}$, so $K = \mathbb{Q}(\alpha)$. Let $f = x^n + a_1x^{n-1} + \cdots + a_n$ be the minimal polynomial of α. Then for $1 \leq j \leq n - 1$ we get $|a_j| \leq \binom{n}{j} |D_K|^{\frac{1}{2n-2}} \leq 2^n |D_K|^{\frac{1}{2n-2}}$ and $|a_n| \leq \sqrt{|D_K|}$, therefore

$$H(\alpha) \leq 2^n |D_K|.$$

In case $n \geq 3$ this is far away from what we would like to have.
REFERENCES

[Cohen] H. Cohen, A Course in Computational Algebraic Number Theory, GTM 138, Springer-Verlag 1993.

[Duke] W. Duke, Hyperbolic distribution problems and half-integral weight Maass forms, Invent. math. 92 (1988), 73-90.

[Hua] Hua Loo Keng, Introduction to Number Theory, Springer-Verlag 1982.

[Lachaud] G. Lachaud, On Real Quadratic Fields, Bull. of the AMS (N.S.) 17 (1987), 307-311.

Mathematisches Institut, Universität Erlangen-Nürnberg, Bismarckstraße 1 1/2, D-91054 Erlangen, Germany

E-mail address: ruppert@mi.uni-erlangen.de