Picard-Lefschetz Monodromy Groups of Quadratic Hypersurfaces

Daodao Yang

Abstract

We study the topology of the space of affine hyperplanes $L \subset \mathbb{C}^n$ which are in general position with respect to a given generic quadratic hypersurface A, and calculate the monodromy action of the fundamental group of this space on the relative homology groups $H_\ast(\mathbb{C}^n, A \cup L)$ associated with such hyperplanes.

1 The statement of the problem and the relative homology group

A is an non-degenerate quadratic hypersurface in \mathbb{C}^n.

For instance, A could be the set \{(z_1, z_2, ... z_n) \in \mathbb{C}^n \mid z_1^2 + z_2^2 + ... + z_n^2 = 1\}.

L is a complex hyperplane in \mathbb{C}^n.

By \mathbb{CP}_∞^n we denote the “infinitely distant” part $\mathbb{CP}^n \setminus \mathbb{C}^n$ of the projective closure of \mathbb{C}^n.

\overline{A} is the closure of A in \mathbb{CP}^n. Non-degeneracy of A implies that \overline{A} is smooth in \mathbb{CP}^n and intersects \mathbb{CP}_∞^n transversally, and so $\overline{A} \cap \mathbb{CP}_\infty^n$ is a non-degenerate quadric hypersurface in \mathbb{CP}_∞^n.

Let \mathbb{CP}^n be the space of all hyperplanes in \mathbb{CP}^n.

Definition 1. L is asymptotic for $A \subset \mathbb{C}^n$ if $\overline{L} \cap \mathbb{CP}_\infty^n$ is tangent to $\overline{A} \cap \mathbb{CP}_\infty^n$.

L is not in general position with respect to A if either it is tangent to A at some point in \mathbb{C}^n, or it is asymptotic for A.

1
In other words, \(L \) is in general position with respect to \(A \) if and only if its closure \(\overline{L} \subset \mathbb{CP}^n \) is transversal to the (stratified) algebraic set \(A \cup \mathbb{CP}^{n-1}_\infty \).

Notation. Denote by \(\overset{\vee}{A} \) and \(\overset{*}{A} \) the subsets in \(\overset{\vee}{\mathbb{CP}^n} \) consisting of all tangent and asymptotic hyperplanes of \(A \), respectively; in addition, the point in \(\overset{\vee}{\mathbb{CP}^n} \) corresponding to the “infinitely distant” hyperplane also is by definition included into \(\overset{*}{A} \).

By the Thom’s isotopy lemma (see [2], [5]) the pairs of spaces \((\mathbb{CP}^n, A \cup L \cup \mathbb{CP}^{n-1}_\infty)\) form a locally trivial fiber bundle over the space \(\overset{\vee}{\mathbb{CP}^n} \setminus (\overset{\vee}{A} \cup \overset{*}{A}) \) of planes \(L \) which are in general position with respect to \(A \). Therefore the fundamental group of the latter space acts on all homology groups related with spaces \((\mathbb{CP}^n, A \cup L)\). The explicit calculation of this action is the main goal of this work; this is a sample result for a large family of similar problems concerning the hypersurfaces of higher degrees and/or non-generic ones.

This action is important in the problems of integral geometry, when the integration contour is represented by a relative chain in \(\mathbb{C}^n \) with boundary at \(A \cup L \), and integration \(n \)-form is holomorphic and has singularity at the infinity; see e.g. [5], Chapter III.

We always assume that \(n \geq 2 \), because otherwise the problem is trivial.

1.1 The representation space

Proposition 1. If \(L \) is in general position with respect to \(A \), then

\[
H_n(\mathbb{C}^n, A \cup L) \cong H_{n-1}(A \cup L) \cong \mathbb{Z}^2,
\]

and \(H_i(\mathbb{C}^n, A \cup L) \cong \tilde{H}_{i-1}(A \cup L) \cong 0 \) for all \(i \neq n \) (here \(\tilde{H} \) means homology group reduced modulo a point).

Proof. First, we have the long exact sequence for the pair \((\mathbb{C}^n, A \cup L)\):

\[
\ldots \rightarrow H_i(\mathbb{C}^n) \rightarrow H_i(\mathbb{C}^n, A \cup L) \rightarrow H_{i-1}(A \cup L) \rightarrow H_{i-1}(\mathbb{C}^n) \rightarrow \ldots
\]

(1)
The homology groups of \mathbb{C}^n coincide with those of a point. So $H_i(\mathbb{C}^n, A \cup L) \cong \tilde{H}_{i-1}(A \cup L)$ for any i.

Second, Milnor theorem shows that A is homotopy equivalent to S^{n-1}, and $A \cap L$ is homotopy equivalent to S^{n-2}. Thus $H_k(A) = \begin{cases} 0 & \text{for others;} \\
\mathbb{Z} & \text{for } k = 0 \text{ or } n - 1, \end{cases}$

L is homeomorphic to \mathbb{C}^{n-1}, so $H_k(L) = 0$ for $k \geq 1$.

Third, we have the Mayer-Vietoris sequence for A and L:

$$\cdots \to H_{n-1}(A \cap L) \to H_{n-1}(A) \oplus H_{n-1}(L) \to H_{n-1}(A \cup L) \to H_{n-2}(A \cap L) \to H_{n-2}(A) \oplus H_{n-2}(L) \to \cdots$$

which in the case $n > 2$ is as follows:

$$\cdots \to 0 \to \mathbb{Z} \oplus 0 \to H_{n-1}(A \cup L) \to \mathbb{Z} \to 0 \oplus 0 \to \cdots$$

Therefore $H_{n-1}(A \cup L) \cong \mathbb{Z}^2$.

The case $n = 2$ is obvious.

The same arguments with n replaced by any other dimension show that all groups $\tilde{H}_i(A \cup L)$ with $i \neq n - 1$ are trivial.

\[\square \]

2 The fundamental group of the space of generic hyperplanes

In this section we calculate the fundamental group $\pi_1(\mathbb{CP}^n \setminus (\mathbb{V} \cup \mathbb{A}))$, and in the next one we describe its action on $H_{n-1}(A \cup L)$.

Theorem 1. If $n \geq 3$ then the group $\pi_1(\mathbb{CP}^n \setminus (\mathbb{V} \cup \mathbb{A}))$ is generated by three elements α, β, κ with relations $\kappa \alpha = \beta \kappa$, $\kappa^2 = 1$.

Remark 1. Obviously, this presentation of the group can be reduced to one with only two generators α, κ with the single relation $\kappa^2 = 1$. However, the previous more symmetric presentation is more convenient for us.

Denote by $P^* \mathbb{A}$ the set of all hyperplanes in \mathbb{CP}^{n-1}, which are tangent to the hypersurface $\partial \mathbb{A} \equiv \mathbb{A} \setminus A$ of “infinitely distant” points of \mathbb{A}.
Thus $P^*A = (\overline{A \setminus A})$.

Associating with any affine hyperplane in \mathbb{C}^n its infinitely distant part, we obtain the down-left arrow in the commutative diagram of maps:

$$
\begin{array}{ccc}
\mathbb{C}P^n \setminus (\mathbb{C} \cup ^* A) & \xrightarrow{\text{inclusion}} & \mathbb{C}P^n \setminus ^* A \\
\downarrow & & \downarrow \\
\mathbb{C}P^{n-1} \setminus ^* P^\infty A & \xrightarrow{} & \mathbb{C}P^{n-1} \setminus P^\infty
\end{array}
$$

Indeed, an affine hyperplane belongs to $^* A$ if and only if its image under this map belongs to $P^* A$. On the other hand, the fiber of this map over any point of $\mathbb{C}P^{n-1} \setminus P^\infty$ consists of a pencil of affine hyperplanes parallel to one another, so it is a line bundle. Any such fiber \mathbb{C}^1 intersects the set $^\infty A$ at exactly two points: indeed, for any non-asymptotic hyperplane there are exactly two hyperplanes parallel to it and tangent to A.

Considering the fiber bundle represented by the left-hand part of the diagram (2),

$$
E \\
\downarrow F \\
B
$$

let $F = \mathbb{C}^1 \setminus \{2 \text{ points}\}, E = \mathbb{C}P^n \setminus (\mathbb{C} \cup ^* A), B = \mathbb{C}P^{n-1} \setminus P^* A$.

We have the exact sequence for the fiber bundle.

$$
... \rightarrow \pi_2(E) \rightarrow \pi_2(B) \rightarrow \pi_1(F) \rightarrow \pi_1(E) \rightarrow \pi_1(B) \rightarrow \pi_0(F)...
$$

(3)

F is connected, so the rightmost arrow is trivial.

Lemma 1. If $n > 2$ then $\pi_1(B) = \mathbb{Z}_2$; if $n = 2$ then $\pi_1(B) = \mathbb{Z}$.

Proof. The statement for $n = 2$ is obvious: in this case B is the complex projective line less two points. For $n = 3$ this statement follows by the Zariski
theorem (using the case \(n = 2 \) as the base), see e.g. \([4]\), Chapter 6, §3. Finally, for \(n > 3 \) it follows from the case \(n = 3 \) by the strong Lefschetz theorem, see \([2]\).

\[\begin{align*}
\textbf{Lemma 2.} \quad \text{Let } C \text{ be a smooth quadratic hypersurface in } \mathbb{CP}^{n-1}. \text{ If } n \neq 3 \text{ then } \pi_2(\mathbb{CP}^{n-1} \setminus C) \text{ is trivial. } \\
\pi_2(\mathbb{CP}^2 \setminus C) \cong \mathbb{Z}.
\end{align*}\]

In particular, this is true for the base of our fiber bundle \((3)\).

\begin{proof}
Let \([C] \subset \mathbb{C}^n\) be the union of lines corresponding to the points of \(C\). We have a fiber bundle

\[
\begin{array}{c}
\mathbb{C}^n \setminus [C] \\
\downarrow \\
\mathbb{C}^* \\
\mathbb{CP}^{n-1} \setminus C
\end{array}
\]

This fiber bundle is trivial because it is a restriction of the tautological bundle of \(\mathbb{CP}^{n-1}\) on the complement of a non-trivial divisor, so its first Chern class is equal to 0.

Therefore \(\pi_2(\mathbb{C}^n \setminus [C]) = \pi_2(\mathbb{CP}^{n-1} \setminus C) \oplus \pi_2(\mathbb{C}^*) = \pi_2(\mathbb{CP}^{n-1} \setminus C)\).

Let \(\varphi : \mathbb{C}^n \to \mathbb{C}\) be the quadratic polynomial defining the sets \([C]\) and \(C\). It defines the Milnor fibration \(\varphi : \mathbb{C}^n \setminus [C] \to \mathbb{C}^*\).

Let \(E' = \mathbb{C}^n \setminus [C], B' = \mathbb{C}^*, F' = V_\lambda\). In this notation, \(\pi_2(B) = \pi_2(\mathbb{CP}^{n-1} \setminus C) = \pi_2(\mathbb{C}^n \setminus [C]) = \pi_2(E')\).

We have the exact sequence for the fiber bundle.

\[
\ldots \pi_3(B') \to \pi_2(F') \to \pi_2(E') \to \pi_2(B') \to \pi_1(F') \to \pi_1(E') \to \pi_1(B') \ldots
\]

The base \(B'\) is homotopy equivalent to \(S^1\), in particular the groups \(\pi_3(B')\) and \(\pi_2(B')\) are trivial.

Also, according to the Milnor theorem, \(F'\) is homotopy equivalent to \(S^{n-1}\).
Thus $\pi_2(B) = \pi_2(E') = \pi_2(F') = \pi_2(S^{n-1}) = \begin{cases} 0 & \text{for } n \neq 3; \\ \mathbb{Z} & \text{for } n = 3. \end{cases}$

So for $n \neq 3$ the interesting fragment of the exact sequence (3) reduces to

$$1 \to \pi_1(F) \to \pi_1(E) \to \pi_1(B) \to 1.$$ (4)

Lemma 3. In the case $n = 3$ the map $\pi_2(E) \to \pi_2(B)$ in (3) is epimorphic.

Proof. By the construction of the generator of the group $\pi_2(B) \sim \mathbb{Z}$ in this case, this generator can be realised by the sphere consisting of complexifications of all oriented planes through the origin in \mathbb{R}^3. All these planes do not meet the set $\hat{A} \cup \hat{A}$, and hence define a 2-spheroid in E. □

So, the map $\pi_2(B) \to \pi_1(F)$ in (3) is trivial, and we can use the exact sequence (4) also in the case $n = 3$.

$$\pi_1(F) = \mathbb{Z} \ast \mathbb{Z}, \pi_1(B) = \mathbb{Z}_2$$

Thus $\pi_1(E)$ has three generators α, β, κ, where α and β are two free generators of $\pi_1(F)$, and κ is an element of the coset $\pi_1(E) \setminus \pi_1(F)$.

We can realize these elements as follows. Choose the linear coordinates in \mathbb{C}^n in which A is given by the equation $z_1^2 + \cdots + z_n^2 = 1$. Take for the base point in $\mathbb{CP}^n \setminus (\hat{A} \cup \hat{A})$ the hyperplane $\{z_1 = 0\}$. The fiber F containing this point consists of all complex hyperplanes $\{z_1 = \text{const}\}$ parallel to this one, they are characterized by the corresponding value of z_1. The exceptional points of intersection with \hat{A} in this fiber correspond to the values 1 and -1.

Then for α and β we take the classes of two simplest loops in \mathbb{C}^1 going along line intervals from 0 to the points $1 - \varepsilon$ (respectively, $-1 + \varepsilon$), $\varepsilon > 0$ very small, then turning counterclockwise around the point 1 (respectively, -1) along a circle of radius ε, and coming back to 0.

For κ we take the 1-parameter family of planes given by the equation $(\cos \tau)z_1 + (\sin \tau)z_2 = 0$, $\tau \in [0, \pi]$.

6
Lemma 4. The element κ thus defined does not belong to the image of $\pi_1(F)$ in $\pi_1(E)$ under the second map in (4), i.e. its further map to $\pi_1(B)$ defines a generator of the latter group.

Indeed, it is easy to check this in the case $n = 2$, which provides (via the Zariski theorem) the generator of the latter group.

The loop κ defines also a loop in the base of our fiber bundle. Moving the fibers over it and watching the corresponding movement of two exceptional points, we get that κ acts on $\pi_1(F)$ by permuting α and β.

Theorem 1 is proved.

3 Monodromy representation

We know that

$$H_n(\mathbb{C}^n, A \cup L) = \mathbb{Z}^2,$$

see Proposition 1.

Proposition 2. For any n, the monodromy action of the group $\pi_1(\mathbb{C}P^n \setminus (\hat{A} \cup \hat{A}))$ on $H_n(\mathbb{C}^n, A \cup L)$ has a 1-dimensional invariant subspace.

Proof. This subspace is the image of the group $H_n(\mathbb{C}^n, A) \cong \mathbb{Z}$ under the obvious map $H_n(\mathbb{C}^n, A) \to H_n(\mathbb{C}^n, A \cup L)$; it corresponds via the boundary isomorphism $H_n(\mathbb{C}^n, A \cup L) \to H_{n-1}(A \cup L)$ in (1) to the image of the map $H_{n-1}(A) \to H_{n-1}(A \cup L)$. Indeed, this image does not depend on L.

It is convenient to fix the generators of this group (5) as follows. Suppose again that A is given by the equation

$$z_1^2 + \cdots + z_n^2 = 1,$$

and the basepoint L_0 in the space of planes is given by $z_1 = 0$. Then we have two relative cycles in \mathbb{C}^n (and even in \mathbb{R}^n) modulo $A \cup L_0$: they are given by the two half-balls bounded by the the surface (6) and (the real part of) the hyperplane L_0; we supply these half-balls with the orientations induced from a fixed orientation of \mathbb{R}^n. It follows immediately from the proof of Proposition 1 that these two chains indeed generate the group $H_n(\mathbb{C}^n, A \cup L) = \mathbb{Z}^2$.

7
Denote these two generators by a and b. Namely, a (respectively, b) is the part placed in the half-space where $z_1 > 0$ (respectively, $z_1 < 0$). The invariant subspace of the monodromy action is then generated by the sum of these two elements: indeed, it is a relative cycle mod A only.

Let we study the action of loops α, β, and κ on a and b.

Proposition 3. For any n, $\kappa(a) = b$, $\kappa(b) = a$.

Proof. This follows immediately from the construction of both cycles a and b and of the loop κ: when the hyperplane L_τ moves along this loop, the parts of the space \mathbb{R}^n bounded by the sphere $\{6\}$ and real parts of these hyperplanes move correspondingly and permute at the end of this movement. \(\square\)

Proposition 4. If n is odd, then the action of both loops α and β is trivial. If n is even, then $\alpha(a) = -a$, $\alpha(b) = 2a + b$, $\beta(b) = -b$, $\beta(a) = 2b + a$.

Proof. Both these statements follow immediately from the Picard–Lefschetz formula, see Chapter III in [5]. \(\square\)

So, in the case of odd n the monodromy action reduces to that of the group \mathbb{Z}_2. In the case of even n the monodromy group is infinite: for instance the orbit of any generating element a or b consists of all points of the integer lattice \mathbb{Z}^2 satisfying the conditions $u - v = 1$ or $u - v = -1$.

8
References

[1] V.I. Arnold, A.N. Varchenko, S.M. Gusein-Zade. Singularities of Differentiable Maps. Vol. II Monodromy and Asymptotic Integrals. Birkhäuser 1988.

[2] M. Goresky, R. MacPherson. Stratified Morse Theory. Springer, 1988.

[3] F. Pham, Introduction à l’Etude Topologique des Singularités de Landau. 1967.

[4] V. Prasolov, Elements of combinatorial and Differential Topology, AMS, 2006.

[5] V.A. Vassiliev. Applied Picard-Lefschetz Theory. American Mathematical Society, 2002.

Daodao Yang, Faculty of Mathematics, Higher School of Economics, Russia
Address: 33/1 Studencheskaya, 121165, Moscow

E-mail: dyang@edu.hse.ru