Non-autonomous regulation of germline stem cell proliferation by somatic MPK-1/MAPK activity in C. elegans

Authors
Sarah Robinson-Thiewes, Benjamin Dufour, Pier-Olivier Martel, ..., Yunqing Chen, Judith Kimble, Patrick Narbonne

Correspondence
patrick.narbonne@uqtr.ca

In brief
The prevailing paradigm is that ERK/MAPK functions autonomously to promote cell proliferation upon mitogen stimulation. Robinson-Thiewes et al. now demonstrate that C. elegans ERK/MAPK acts within somatic tissues to non-autonomously promote the proliferation of germline stem cells. Germline ERK/MAPK is thus dispensable for germline stem cell proliferation.

Highlights
- Germline MPK-1B is dispensable for proliferation of germline stem cells
- Germline MPK-1B is essential for gametogenesis and fertility
- Somatic MPK-1A is required for a high rate of GSC proliferation
- Somatic MPK-1A promotes germline proliferation from the gut or somatic gonad
Non-autonomous regulation of germline stem cell proliferation by somatic MPK-1/MAPK activity in C. elegans

Sarah Robinson-Thiewes,1,4 Benjamin Dufour,2,4 Pier-Olivier Martel,2,4 Xavier Lechasseur,2 Amani Ange Danielle Brou,2 Vincent Roy,2,3 Yunqing Chen,2 Judith Kimble,1 and Patrick Narbonne2,3,5,*

1Department of Genetics, University of Wisconsin-Madison, Madison, WI 53706-1580, USA
2Département de Biologie Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, QC G9A 5H7, Canada
3Département de Biologie Moléculaire, de Biochimie Médicale et de pathologie, Faculté de Médecine, Université Laval, QC G1R 3S3, Canada
4These authors contributed equally
5Lead contact
*Correspondence: patrick.narbonne@uqtr.ca
https://doi.org/10.1016/j.celrep.2021.109162

SUMMARY

Extracellular-signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) is a major positive regulator of cell proliferation, which is often upregulated in cancer. However, few studies have addressed ERK/MAPK regulation of proliferation within a complete organism. The Caenorhabditis elegans ERK/MAPK ortholog MPK-1 is best known for its control of somatic organogenesis and germline differentiation, but it also stimulates germline stem cell proliferation. Here, we show that the germline-specific MPK-1B isoform promotes germline differentiation but has no apparent role in germline stem cell proliferation. By contrast, the soma-specific MPK-1A isoform promotes germline stem cell proliferation non-autonomously. Indeed, MPK-1A functions in the intestine or somatic gonad to promote germline proliferation independent of its other known roles. We propose that a non-autonomous role of ERK/MAPK in stem cell proliferation may be conserved across species and various tissue types, with major clinical implications for cancer and other diseases.

INTRODUCTION

The extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) is the downstream effector of a conserved pathway that is often upregulated in cancer (Davoli et al., 2013; Schneider et al., 2017; Shain et al., 2018). The prevailing paradigm is that activated ERK/MAPK functions cell autonomously, responding to growth factors in cells where it promotes proliferation (Meng et al., 2018; Shaul and Seger, 2007). However, the role of ERK/MAPK in stem cells (SCs) has been perplexing. Most data indicate that ERK/MAPK is dispensable for SC proliferation but required for differentiation (Burdon et al., 1999; Lu et al., 2008; Tee et al., 2014; Ying et al., 2008). Although loss of ERK1/2 in mammalian embryonic SCs reduces proliferation in culture, that effect may be secondary (Chen et al., 2015; Göke et al., 2013; Thomson et al., 1998). The effect of ERK/MAPK on SC proliferation in an organism remains largely unexplored.

We investigated how ERK/MAPK affects SC proliferation in Caenorhabditis elegans. The C. elegans genome encodes a single ortholog of mammalian ERK1/2 MAPKs, MPK-1. In mpk-1(ø) null mutants, several somatic organs fail to develop properly (e.g., vulva) (Sundaram, 2013; Lackner and Kim, 1998; Lackner et al., 1994), and the germline fails to progress through the meiotic cell cycle, which causes sterility (Church et al., 1995; Lee et al., 2007a, 2007b). Germline SC (GSC) proliferation is also reduced, but not arrested, in mpk-1(ø) mutants (Narbonne et al., 2017; Lee et al., 2007b). Therefore, as in other species and SC types, nematode ERK/MAPK is essential for differentiation but not for proliferation.

The C. elegans hermaphrodite gonad houses two U-shaped gonadal arms (Figure 1A, left), and germ cell maturation occurs along their distal-proximal axis (Figure 1A, right). A pool of proliferative GSCs is maintained at the distal end within a somatic niche; as GSC daughters leave the niche, they begin differentiation and progressively mature into gametes at the proximal end (Hubbard and Schedl, 2019; Lee et al., 2016; Shin et al., 2017; Haupt et al., 2019; Morrison and Kimble, 2006). GSCs, together with their proliferating progeny, span a region termed the progenitor zone (PZ) (Figure 1A, right). The GSC proliferation rate is inferred from the mitotic index (MI) across the PZ (Narbonne et al., 2015, 2017; Hubbard and Schedl, 2019, Crittenden et al., 2006). In adults, GSC proliferation affects distal-to-proximal germ cell flow and is linked to oocyte production (Nadarajan et al., 2009). Once germ cells leave the PZ, they undergo meiotic prophase and gametogenesis, making sperm in larvae and oocytes in adults.

C. elegans GSC proliferation rates are controlled jointly by ERK/MAPK (see above) and insulin/IGF-1 signaling (IIS)
IIS promotes proliferation downstream of nutrient uptake (Figure 1B), a regulation conserved in worms, flies, and likely, mammals (Drummond-Barbosa and Spradling, 2001; Michaelson et al., 2010; Narbonne and Roy, 2006; Shim et al., 2013). Most relevant here, downstream IIS effectors act autonomously within the germline (Michaelson et al., 2010; Narbonne et al., 2017). In parallel, but through an unknown mechanism, MPK-1 combines with IIS to promote high proliferation typical of young adult hermaphrodites (Figure 1B) (Narbonne et al., 2017).

One aspect of the MPK-1 role in germline proliferation was clarified in studies of homeostatic regulation. GSC proliferation plummets in well-fed hermaphrodites that accumulate unfertilized oocytes because of a lack of sperm (Narbonne et al., 2015, 2017; Cinquin et al., 2016; Morgan et al., 2010). This homeostatic lowering of proliferation occurs even though IIS remains active but requires inhibition of MPK-1 signaling (Narbonne et al., 2015). In contrast, MPK-1 activity is lost from the PZ in mpk-1(ø), lin-3(ø), and let-60(gf) but not fog-1(ø) mutants. For simplicity, nKTR(AAA) data are shown only for WT (see Figure S1 for raw ratios).

RESULTS

MPK-1 has low, but significant, kinase activity in wild-type GSCs

MPK-1 promotes a high rate of GSC proliferation in young adult hermaphrodites (Narbonne et al., 2017). Although MPK-1 protein is present in GSCs, its catalytically active form, diphosphorylated MPK-1 (dpMPK-1), has been reported only in meiotic germ cells and oocytes (Lee et al., 2007a, 2007b; Miller et al., 2010). An outstanding question remains how ERK/MAPK controls SC proliferation in vivo. The primary focus of this work is to understand how C. elegans MPK-1 promotes GSC proliferation.

(A) Left, schematic of an adult C. elegans hermaphrodite with posterior gonadal arm boxed. Right, gonadal arm labeled with regions relevant to this work.

(B) GSC proliferation rate is regulated by both insulin/IGF-1 signaling and MPK-1 signaling, which act in parallel with additive effects (Narbonne et al., 2017).

(C) Schematic of in vivo assay for MPK-1 activity. Sensor GFP is present in the nucleus when MPK-1 activity is absent (left) but becomes cytoplasmic upon phosphorylation by MPK-1/ERK (right). The MPK-1 index refers to the ratio of cytoplasmic to nuclear GFP, normalized to the ERK-nKTR(AAA) baseline control. An index >1 indicates MPK-1 kinase activity.

(D) Proliferating germ cells in the PZ include a pool of GSCs within the niche (gray) and GSC daughters that have launched the differentiation program but not yet begun overt differentiation. Numbers mark positions along the germline axis in germ cell diameters (gcd) from the distal end.

(E) MPK-1 activity is significant and similar across the PZ. Sample sizes are 25 animals each for nKTR and nKTR(AAA), scoring five PZ cells per animal (see Method details).

(F) MPK-1 activity is lost from the PZ in mpk-1(ø), lin-3(ø), and let-60(gf) but not fog-1(ø) mutants. For simplicity, nKTR(AAA) data are shown only for WT (see Figure S1 for raw ratios).
A

- **mpk-1b** deletion
- **mpk-1b(Δ)**

B

- α-ERK
- α-Ollas
- α-V5
- DAPI

C

- WT
- mpk-1(DT)

D

- mpk-1(Δ)

E

- Wild-type
- PZ
- Pachytene region

F

- Disorganized pachytene region
- No gametes

G

- Disorganized pachytene region
- Aberrant gametes

G'

- Sperm

G''

- Oocyte

G'''

- DNA

H

- **x10^2**
- Normalized volume (um^3)
- MPK-1(DT)
- MPK-1(Δ)
- MPK-1b(Δ)

I

- **x10^2**
- Number of nuclei
- MPK-1(DT)
- MPK-1(Δ)
- MPK-1b(Δ)

(legend on next page)
The apparent lack of active MPK-1 in GSCs led us to ask how MPK-1 affects germline proliferation. We first used a sensitive in vivo ERK nuclear kinase translocation reporter (ERK-nKTR) to reassess MPK-1 activity in GSCs (de la Gova et al., 2017). This GFP-tagged sensor harbors three MPK-1-specific phosphorylation sites that control its subcellular localization. An unphosphorylated GFP reporter is retained in the nucleus but is exported to the cytoplasm when phosphorylated (Figure 1C). The ratio of cytoplasmic to nuclear GFP, thus, provides an index of MPK-1 activity. A control reporter lacking MPK-1 sites, ERK-nKTR(ΔAA), established the baseline ratio of cytoplasmic to nuclear GFP. Ratios above the baseline were scored as the MPK-1 activity index (see Method details).

We first assessed MPK-1 activity in wild-type (WT) adult hermaphrodites. Specifically, MPK-1 activity index was determined in PZ cells binned by distance from the distal end (Figure 1D). MPK-1 indices were higher than baseline throughout the PZ (Figures 1E and S1). Our assay also detected higher activity in pachytene and oocytes (Figure S1) (Lee et al., 2007a, 2007b; Miller et al., 2001). The sensor specifically reports MPK-1 activity as indices were below baseline in mpk-1(Δa) germlines (Figures 1F and S1). The discovery of MPK-1 activity in GSCs, although low, raised the possibility that MPK-1 acts autonomously to promote GSC proliferation.

We used three mutants to ask whether GSC MPK-1 activity corresponds with proliferation. The lin-3(α) and fog-1(α) mutants have lowered rates of GSC proliferation because of homeostatic feedback: lin-3(α) accumulates endomitotic oocytes, whereas fog-1(α) mutants accumulate unfertilized oocytes (Figure S2) (Morgan et al., 2013; Narbonne et al., 2015; Clandinin et al., 1996). The MI was very low in both mutants (Figure 1G). PZ MPK-1 activity was undetectable in lin-3(α) but similar to WT in fog-1(α) (Figure 1F). Moreover, a gain-of-function (gf) mutant in let-60/Ras, expected to increase MPK-1 activity (Church et al., 1995; Lackner et al., 1994), had undetectable MPK-1 activity in the PZ (Figure 1F), although proliferation was about the same as that of WT hermaphrodites (Figure 1G). Therefore, MPK-1 activity in the PZ is not coupled to GSC proliferation. We next asked whether MPK-1 might promote proliferation from pachytene or oocyte regions. MPK-1 activity levels in pachytene and oocytes corresponded with GSC MIIs (Figures 1G, S1M, and S1N), making possible a non-autonomous action from one germline region to another (although see below). Regardless, we conclude that MPK-1 activity levels in GSCs are unrelated to proliferation and unlikely to be causative.

MPK-1B autonomously promotes germline differentiation

To explore how MPK-1 promotes GSC proliferation, we assessed the expression and function of its two isoforms. The mpk-1 locus encodes two transcripts: mpk-1b is longer and possesses a unique first exon, whereas mpk-1a shares all other exons with mpk-1b (Figure 2A) (Lee et al., 2007a; Lackner and Kim, 1998; Lackner et al., 1994). Previous work showed that mpk-1b is the main germline isoform but did not address isoform-specific expression or germline function (Lee et al., 2007a). We first inserted epitope tags into the endogenous mpk-1 locus using CRISPR-Cas9 gene editing (Paix et al., 2015). A V5 tag inserted into the mpk-1b-specific exon labeled MPK-1B protein specifically, and two OLLAS tags inserted into the shared C terminus labeled both MPK-1A and MPK-1B (Figure 2A). We dub this dual-tagged locus mpk-1(ΔT). We next created an mpk-1b-specific deletion, called mpk-1b(Δa), and a 2,221-bp, in-frame deletion of regions common to the two isoforms, called mpk-1b(Δ) (Figure 2A). These alleles allowed unambiguous determination of where each isoform is expressed and their respective biological roles.

We assayed MPK-1A and B expression in dissected gonads, which include the entire germline tissue plus several somatic gonadal cells, including 10 sheath cells. Some samples included extruded gut. We used α-ERK to recognize all MPK-1, with or without epitope tags (Lee et al., 2007a, 2007b), and α-V5 and α-OLLAS to recognize tagged MPK-1. WT gonads stained robustly with α-ERK, as previously reported (Lee et al., 2007a, 2007b), but not with α-V5 or α-OLLAS (Figures 2B and S3A). The mpk-1(ΔT) gonads stained robustly with all three antibodies (Figures 2C, S3B, and S3C). Intense germline staining in WT and mpk-1(ΔT) precluded visualization of staining in the somatic gonad. However, the mpk-1(ΔT) gut had strong α-ERK and α-OLLAS staining but no α-V5 (Figure S3C). We next stained mpk-1b(Δa) gonads, which have OLLAS-tagged MPK-1A but no MPK-1B or V5. α-ERK, α-OLLAS, and α-V5 signals were undetectable in mpk-1b(Δa) germlines (Figure 2D), whereas α-ERK and α-OLLAS became visible in the somatic sheath (Figure 2D, orange arrowheads). Thus, MPK-1A is the somatic isoform (expressed in the gut and somatic gonad, whereas MPK-1B is the germline-specific isoform that promotes GSC proliferation.

Figure 2. MPK-1B is germline-specific and promotes germline differentiation

(A) The two mpk-1 isoforms. Purple boxes, coding exons; gray boxes, UTRs; lines connecting exons, introns; red line, V5 tag; yellow line, 2XOLLAS tags. Dual tagged mpk-1(ΔT) harbors a V5 tag in the mpk-1b specific exon that marks MPK-1B protein specifically, and C-terminal 2XOLLAS tags that mark both MPK-1A and B proteins. The mpk-1b(Δa) deletion removes most of the mpk-1 specific exon and shifts the reading frame to eliminate MPK-1B. The mpk-1b(Δ) deletion removes most of the shared exons and introns to eliminate MPK-1A and B (see Method details). The mpk-1(α177) is considered a null (Lee et al., 2007b) and shown here as mpk-1(αa).

(B–G) Representative maximal projections of dissected and stained adult gonads. (B–D) Acquisition parameters were optimized for the PZ region (see Figures S3E–S3G for quantification). When a stain does not distinguish between MPK-1A and MPK-1B, it is noted as MPK-1A/B. Anti-OLLAS staining, yellow; anti-V5 staining, red; anti-ERK staining, green; DAPI staining, cyan. White dashed line, boundaries of germline tissue; orange dashed line, boundaries of somatic tissue. Orange arrowheads, gonadal sheath nuclei. Pink outline, zygote. (E–G) Sperm and oocytes were stained with sp56 and RME-2 antibodies, respectively. Dashed yellow box, region magnified in D–D‴ and D–D‴. Sperm and oocyte markers shown individually and merged.

(H and I) Boxplots of gonad volume and germ cell number for mpk-1(ΔT), mpk-1(Δa), and mpk-1b(Δa). Gonad volume was calculated using Imaris (see Method details). Germ cells were counted manually using Fiji. Dots mark averages. Sample sizes (left to right): 10, 6, 7. Red asterisk, statistical significance versus all other samples (p < 0.01, ANOVA followed by Tukey); ns, not significant.
but not germline), whereas MPK-1B is the germline isoform (expressed in germline, but not the gut).

To learn the function of the two isoforms, we first scored fertility and vulva formation. WT and mpk-1(DT) animals were fertile, had a normal vulva, and were indistinguishable (Figure S3H). Thus, the tags do not affect MPK-1 function. By contrast, mpk-1(D) and mpk-1b(D) mutants were sterile, and mpk-1(D) mutants were vulvaless (Figure S3H). The mpk-1(D) defects match those of mpk-1(a) mutants (Lackner and Kim, 1998), but mpk-1b(D) do not. Together, these data indicate that germ-line-specific MPK-1B functions autonomously to promote fertility because its removal results in sterility and that MPK-1A promotes vulva development in mpk-1b(D) mutants.

Intriguingly, mpk-1(D) and mpk-1b(D) germlines were different. To understand those differences, we stained them with DNA, sperm, and oocyte markers. The WT germlines were large with organized germ cells in the pachytene region, a row of oocytes proximally, and sperm in the spermatheca (Figure 2E; Table S1). By contrast, mpk-1(D) germlines were smaller, had a disordered pachytene region, and failed to produce gametes (Figure 2F; Table S1), as in mpk-1(a) mutants (Lee et al., 2007a, 2007b). The mpk-1b(D) germlines had a disorganized pachytene region, indicating a defect in pachytene progression (Figure 2G; Table S1). However, mpk-1b(D) germlines were similar in size to WT germlines. In addition, most mpk-1b(D) germlines began gamete formation, with 95% of germlines staining positive for a sperm marker and 66% also staining for an oocyte marker (Figure 2G; Table S1). However, sperm and oocytes were not arranged normally: sperm were intermingled with cells staining with the oocyte marker (Figures 2G–2G′′′). We draw two conclusions. First, MPK-1B is required for organization of the pachytene region but dispensable for pachytene exit and initiation of gametogenesis. Second, MPK-1A can initiate gametogenesis in mpk-1b(D) mutants, although gametes are aberrant. Because MPK-1A is not expressed in the germline, those effects must be non-autonomous.

We were struck that some mpk-1b(D) gonad arms seemed larger than WT gonad arms (compare Figure 2G to Figure 2E). We, therefore, calculated gonad arm volumes and counted germ nuclei in WT, mpk-1(D), and mpk-1b(D). The mpk-1(D) arms were smaller than those of WT by both volume and number of nuclei. The mpk-1b(D) gonadal arm, on the other hand, had a volume similar to a WT arm (Figure 2H), but nuclei number was reduced by ~25% (Figure 2I). Therefore, mpk-1b(D) mutants make a germ-line of comparable size to WT but with fewer nuclei. Because mpk-1b(D) retains activity of the MPK-1A isoform, we infer that somatic MPK-1A promotes germ-line growth, both in terms of volume and germ-cell number.

Germline MPK-1B does not promote germ-line proliferation

We next tested the roles of MPK-1A and -B in GSC proliferation. Using a single-copy transgene driven by a germline-specific promoter (Dickinson et al., 2013; Frejkaer-Jensen et al., 2008), we expressed GFP::MPK-1B in mpk-1(a) mutants (henceforth, germline::MPK-1B). This strain is effectively a null mutant for MPK-1A: it has MPK-1B activity in the germline but lacks MPK-1A in the soma. MPK-1B rescued mpk-1(a) sterility but not its vulva defects. Animals made progeny, but without a vulva, embryos hatched inside their mother (Figures 3A–3D). The vulva defect confirms its lack of somatic MPK-1 activity. The germline::MPK-1B and mpk-1b(D) results are thus complementary and together show that MPK-1B is sufficient for meiotic progression and formation of gametes. MPK-1B is also necessary for formation of functional gametes. We conclude that MPK-1B acts autonomously to promote meiotic progression and gametogenesis.

The GSC MI is lower in mpk-1(a) mutants than it is in WT (Figure 3E) (Narbonne et al., 2017). PZ cell number is also reduced (Figure 3F). Because germline MPK-1B was sufficient to restore fertility in mpk-1(a), we asked whether it also restored GSC MI and PZ cell number. However, germline MPK-1B did not restore either (Figures 3E and 3F). The simple explanation was that MPK-1A acts in the soma to influence both GSC MI and PZ size. To test that idea, we scored mpk-1b(D) mutants for those two traits and found that GSC MI and PZ cell number were normal (Figures 3E and 3F). We draw three conclusions. First, somatic MPK-1A is required for normal PZ cell number. Second, germline MPK-1B does not promote high GSC proliferation rate; the reduction in total germ cell number in mpk-1b(D) germlines likely reflects problems in meiotic progression. Third and most important, somatic MPK-1A acts non-autonomously to promote the high GSC proliferation typical of young adult hermaphrodites, whereas germline MPK-1B is dispensable.

MPK-1A promotes germ-line proliferation non-autonomously from the soma

To learn where MPK-1A acts in the soma to promote GSC proliferation, we turned to transgenic arrays driving GFP::MPK-1A expression in somatic tissues in an mpk-1(a) mutant. Because arrays are silenced in the germline (Mello et al., 1991; Kelly and Fire, 1998), expression was limited to somatic tissues. To follow the presence of arrays, we used muscle-expressed mCherry (henceforth, muscle::mCherry) as a co-transformation marker, which also provided vulva muscle landmarks (Figures 4A–4I, yellow arrowheads: normal). Our negative control expressed muscle::mCherry alone in mpk-1(a) mutants and had no rescuing effect (Figure 4B). Our positive control carried muscle-expressed mCherry plus GFP::MPK-1A expressed in all somatic cells under control of the sur-5 promoter (henceforth, soma::MPK-1A (Gu et al., 1998)). The sur-5 promoter drove strong GFP::MPK-1A expression in the gut and lower levels in all other somatic cell types (Figure 4C). The soma::MPK-1A rescued vulva formation, albeit not in all animals, likely because of mosaicism (Figures 5A–5C and S4; Table S2). Importantly, soma::MPK-1A restored the GSC MI (Figure 4J). However, soma::MPK-1A did not rescue fertility (Figures 4A–4C; Table S3), confirming that germline MPK-1B is essential for germ-line function. When soma::MPK-1A and germline::MPK-1B were combined in mpk-1(a) mutants, fertility and vulva development were both rescued (Figure 4D; Table S3). Surprisingly, PZ cell counts remained lower than in controls in both soma::MPK-1A and soma::MPK-1A; germline::MPK-1B animals (Figure 4K). We do not understand why PZ size was not restored by ubiquitous somatic MPK-1A expression because it was normal in mpk-1b(D) animals (Figure 3F), which only possess somatic...
MPK-1A. However, we suspect that transgenic mis-expression had a role because somatic::MPK-1A sometimes induced a multi-vulva (Table S2), a sign of MPK-1 hyperactivity (Lackner and Kim, 1998). Furthermore, the PZ size in soma::MPK-1A; germ-line::MPK-1B was significantly greater than in soma::MPK-1A (Figure 4K). The array transgene rescuing somatic MPK-1A may, thus, have undergone rapid stabilizing selection after the strain became fertile. We re-analyzed the PZ size of soma::MPK-1A; germ-line::MPK-1B after about a year of laboratory culture, and it was then fully restored (Figure 4K). This progressive PZ size rescue argues that it may be the result of transgenic expression being stabilized or fine-tuned over time by selective pressure. Interestingly, the GSC MI-specific rescue that occurred in soma::MPK-1A animals shows that GSC proliferation rates can be altered without affecting the PZ size and that the two parameters may be regulated independently by somatic MPK-1A. Regardless, we conclude that somatic MPK-1A is sufficient to drive the high GSC proliferation typical of young adult hermaphrodites and, therefore, acts non-autonomously.

We next used tissue-specific promoters to drive MPK-1A in individual somatic tissues of mpk-1(ø) animals. Specifically, we used rgef-1, dpy-7, elt-7, myo-3, and ckb-3 promoters to drive expression in the nervous system, hypodermis, gut, non-pharyngeal muscles, and somatic gonad, respectively (Stefanakis et al., 2015; Gilleard et al., 1997; Sommermann et al., 2010; Ahnn and Fire, 1994; Tenen and Greenwald, 2019). We achieved high GFP::MPK-1A expression in the nervous system and non-pharyngeal muscles, intermediate levels in hypodermis and gut, and lower levels in somatic gonad (Figures 4E–4I). Tissue-specific expression of MPK-1A in either gut or somatic gonad fully rescued the GSC MI of mpk-1(ø) mutants (Figure 4J). By contrast, expression in the nervous system, non-pharyngeal muscles or hypodermis did not affect the MI (Figure 4J). As seen in soma::MPK-1A animals, none of the tissue-specific promoters rescued PZ size (Figure 4K). We conclude that MPK-1A acts either in the gut or in the somatic gonad to non-autonomously support the high GSC proliferation that is observed in young adult hermaphrodites.
DISCUSSION

Before this work, evidence for MPK-1 regulation of germline proliferation was paradoxical. MPK-1 promoted GSC proliferation, as deduced from mpk-1(ø) mutants (Lee et al., 2007b; Narbonne et al., 2017), but active MPK-1 was not seen in proliferating germ cells, instead, being restricted to meiotic germ cells. To address this paradox, we used a highly sensitive reporter to identify low MPK-1 activity in proliferating germ cells. However, we showed that MPK-1 activity levels in proliferating germ cells did not correlate with their proliferation rate; perhaps, MPK-1 activity plays some other role within GSCs, possibly in genomic integrity (Chen et al., 2015).

The paradox was solved by identifying the individual functions of the two ERK/MAPK isoforms, one expressed in the germline and the other in the soma. We created animals that express somatic MPK-1A but not germline MPK-1B, and vice versa. Remarkably, germline proliferation was normal in MPK-1A-only animals but not in MPK-1B-only animals. Therefore, somatic MPK-1A is the key driver of germline proliferation and must act non-autonomously. However, either somatic MPK-1A or germline MPK-1B can promote more-extensive germline differentiation than seen in mpk-1(ø) mutants. Germline MPK-1B is sufficient to ensure formation of fully functional gametes, whereas somatic MPK-1A provides a non-autonomous boost to differentiation (Figure 5). In the absence of MPK-1B, that MPK-1A boost is sufficient for pachytene exit and initiation of gametogenesis but gametes are not functional.

The non-autonomous effect of *C. elegans* ERK/MAPK on germline proliferation relies on expression in the gut or somatic gonad (Figure 5). Intriguingly, gap junctions interconnect gut and somatic gonad as well as somatic gonad and germ cells; or muscles restored the wandering behavior, whereas gut, neuron, and hypodermis MPK-1A, or germline MPK-1B, had no effect (Figure S5A). For body length, MPK-1A expression in any somatic tissue (except for the gut) prevented excessive elongation, whereas germline MPK-1B had no effect (Figure S5B). Overall, both defects were rescued without concurrent rescue of GSC proliferation, and conversely, GSC proliferation could be rescued without concurrent rescue of the wandering or body length defects (Figures 4J, 5, and S5). We conclude that MPK-1A activity in the gut or somatic gonad promotes GSC proliferation independent of these other defects.
moreover, those gap junctions are essential for germline proliferation (Starich et al., 2014). Although speculative, an attractive idea is that somatic MPK-1A activity uses gap junctions to stimulate germline proliferation. In mice, ERK/MAPK phosphorylation of connexins modulates gap junction opening during epidermal wound healing (Lastwika et al., 2019; Solan and Lampe, 2014). By analogy, MPK-1A could modulate gap junctions to allow unidentified proliferation-stimulatory small molecules entry into the germline. Alternatively, or in addition, MPK-1A could modulate the generation of such small molecules. Although their identity is unknown, one possibility is uridine or thymidine. That idea emerges from a study showing that cytidine deaminases (ccd), enzymes that make uridine and thymidine from cytidine, are required for normal germline proliferation; remarkably, the defective germline proliferation in ccd mutants is rescued by expression of cytidine deaminase in the gut or somatic gonad (Chi et al., 2016), solidifying the gut-gonad-germline axis of proliferation control. However, a direct relationship between MPK-1A activity and germline uridine/thymidine levels remains highly speculative.

Discovery of a non-autonomous role for ERK/MAPK in germline proliferation has implications for the homeostatic regulation of germline proliferation. That regulation requires MPK-1 inhibition locally within the affected gonadal arm, which has both somatic and germ cells. We suggest that homeostatic inhibition of MPK-1 may occur in the gut or somatic gonad, given that MPK-1A functions there to promote proliferation (this work). We favor the somatic gonad as the likely site for MPK-1 inhibition during homeostasis because each gonadal arm is embraced independently by somatic sheath cells. By contrast, the gut runs the length of the body cavity and neighbors both gonadal arms. Because homeostatic control of proliferation occurs broadly in the animal kingdom and because regulators of SC proliferation and homeostasis are highly conserved (ERK/MAPK and IIS, see Introduction), these regulators may similarly orchestrate proliferation rates in diverse SC populations. Consistent with that, GSC proliferation in Drosophila is stimulated by nutrient uptake via IIS signaling (LaFever and Drummond-Barbosa, 2005), whereas homeostatic regulation of intestinal SCs occurs through ERK/MAPK regulation (Zhang et al., 2019).

The non-autonomous action of ERK/MAPK in the regulation of germline proliferation has major implications for understanding, and perhaps treating, cancer. ERK/MAPK is upregulated in many human cancers (Burotto et al., 2014; Davoli et al., 2013; Schneider et al., 2017; Shain et al., 2018), although its primary role in embryonic SCs is differentiation (Burdon et al., 1999; Lu et al., 2008; Tee et al., 2014; Ying et al., 2008). Importantly, tumors are heterogeneous, and only cancer SCs generate a new tumor upon transplantation (Tan et al., 2006; Scott et al., 2019). The bulk of the tumor, therefore, likely consists of the progeny of cancer SCs, which are in various states of differentiation. Cancer SCs are thought to develop from non-cancerous SCs as a result of replication errors (Tomasetti and Vogelstein, 2015) and thus retain the SC character. As such, cancer SCs may depend on ERK/MAPK activity in neighboring tissues or cells to promote their proliferation—similar to C. elegans somatic MPK-1A ensuring high GSC proliferation. If that is the case, chemotherapy that lowers ERK/MAPK activity might either promote quiescence in cancer SCs non-autonomously and/or suppress tumor growth by autonomously inhibiting the differentiated progeny of cancer SCs.

STAR METHODS

Detailed methods are provided in the online version of this paper and include the following:

- **KEY RESOURCES TABLE**
- **RESOURCE AVAILABILITY**
 - Lead contact
 - Materials availability
 - Data and code availability
- **EXPERIMENTAL MODEL AND SUBJECT DETAILS**
 - C. elegans genetics
- **METHOD DETAILS**
 - Plasmids, transgenics and genome editing
 - Quantification of germline MPK-1 activity
 - Progenitor zone and mitotic index evaluation
 - Immunostaining and fluorescence
 - Image acquisition
 - Gonad volume and germ cell quantification
 - MPK-1 protein quantification
 - E. coli attraction
 - Body length measurements
- **QUANTIFICATION AND STATISTICAL ANALYSIS**

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.celrep.2021.109162.

ACKNOWLEDGMENTS

We thank Shaolin Li for reagents and precious advice; Claire de la Cova, Iva Greenwald, and Alex Hajnal for strains; and WormBase for its essential role in C. elegans research. The Narbonne laboratory is funded by grants from the Fondation UQTR, FRQ-NT (2018-NC-205752), FRQ-S (265445), NSERC (RGPIN-2019-06863, RGPAS-2019-00017, and DQECR-2019-00326), CIHR (PJT-169138), and CFI (36916) to P.N. P.N. is a Junior 1 Bursary Scholar (252405) of FRQ-S and holds a UQTR research chair. S.R.-T. was supported by an NSF graduate fellowship (DGE-1256259) and an NIH predoctoral training grant in genetics (ST32GM007133). J.K. was an HHMI Investigator and is now supported by NIH R01 GM134119. Some strains were provided by the CGC, which is funded by NIH Office of Research Infrastructure Programs (P40 OD010440).

AUTHOR CONTRIBUTIONS

S.R.-T. contributed Figures 1A, 1C, 1D, 2, and S3 and Tables S1 and S6, including all related strains, participated in study design, manuscript drafting, and editing; B.D. provided Figures 1E, 1F, S1, and S2; P.-O.M. constructed pPOMS-9 and provided Figures S4 and S5 and Table S3; X.L. constructed pX2A; A.A.D.B. provided Figure 1G (fog-1, let-60 gf); V.R. provided Figure 1G (lin-3); Y.C. helped with aspects of Figure S5 and Table S3; J.K. provided manuscript drafting and editing; and P.N. provided Figures 1B, 3, 4 (with help from P.-O.M. for Figures 4A–4I), and 5 (with help from V.R.) and Tables S2, S4, and S5, general study design, coordination, plasmid design, and manuscript drafting and editing. All authors approved the manuscript’s final version.
DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: August 31, 2020
Revised: February 17, 2021
Accepted: April 30, 2021
Published: May 25, 2021

REFERENCES

Ahnn, J., and Fire, A. (1994). A screen for genetic loci required for body-wall muscle development during embryogenesis in Caenorhabditis elegans. Genetics 137, 493–498.

Brenner, S. (1974). The genetics of Caenorhabditis elegans. Genetics 77, 71–94.

Burdon, T., Stracey, C., Chambers, I., Nichols, J., and Smith, A. (1999). Suppression of SHP-2 and ERK signalling promotes self-renewal of mouse embryonic stem cells. Dev. Biol. 210, 30–43.

Burotto, M., Chiou, V.L., Lee, J.M., and Kohn, E.C. (2014). The MAPK pathway across different malignancies: a new perspective. Cancer 120, 3446–3456.

Chen, H., Guo, R., Zhang, Q., Guo, H., Yang, M., Wu, Z., Gao, S., Liu, L., and Chen, L. (2015). Erk signaling is indispensable for genomic stability and self-renewal of mouse embryonic stem cells. Proc. Natl. Acad. Sci. USA 112, E5936–E5943.

Chi, C., Ronai, D., Than, M.T., Walker, C.J., Sewell, A.K., and Han, M. (2016). Nucleotide levels regulate germline proliferation through modulating GLP-1/Notch signaling in C. elegans. Genetics Dev. 30, 307–320.

Church, D.L., Guan, K.L., and Lambie, E.J. (1995). Three genes of the MAP kinase cascade, mek-2, mpk-1/sur-1 and let-60 ras, are required for meiotic cell cycle progression in Caenorhabditis elegans. Development 121, 2525–2535.

Cinquin, A., Chiang, M., Paz, A., Hallman, S., Yuan, O., Vysniauskaitė, I., Fowiaks, C.C., and Cinquin, O. (2016). Intermittent stem cell stem cycling balances self-renewal and senescence of the C. elegans germ line. PLoS Genet. 12, e1005885.

Clellandin, T.R., DeModena, J.A., and Sternberg, P.W.H. (1998). Insolot trisphosphate mediates a RAS-independent response to LET-23 receptor tyrosine kinase activation in C. elegans. Cell 92, 523–533.

Crittenden, S.L., Leonhard, K.A., Byrd, D.T., and Kimble, J. (2006). Cellular analyses of the mitotic region in the Caenorhabditis elegans adult germ line. Mol. Biol. Cell 17, 3051–3061.

Crittenden, S.L., Lee, C., Mohanty, I., Battula, S., Knotel, K., and Kimble, J. (2019). Sexual dimorphism of niche architecture and regulation of the Caenorhabditis elegans germline stem cell pool. Mol. Biol. Cell 30, 1757–1769.

Davoli, T., Xu, A.W., Mengwasser, K.E., Sack, L.M., Yoon, J.C., Park, P.J., and Elledge, S.J. (2013). Cumulative haploinsufficiency and trisposenility drive aneuploidy patterns and shape the cancer genome. Cell 155, 948–962.

de la Cova, C., Townley, R., Regot, S., and Greenwald, I. (2017). A real-time biosensor for ERK activity reveals signaling dynamics during C. elegans cell fate specification. Dev. Cell 42, 542–553.e4.

Dernburg, A.F., Zalevsky, J., Colaiacovo, M.P., and Villeneuve, A.M. (2000). Transgene-mediated cosuppression in the C. elegans germ line. Genes Dev. 14, 1578–1583.

Dickinson, D.J., Ward, J.D., Reiner, D.J., and Goldstein, B. (2013). Engineering the Caenorhabditis elegans genome using Cas9-triggered homologous recombinant. Nat. Methods 10, 1028–1034.

Dokshin, G.A., Ghanta, K.S., Piscopo, K.M., and Mello, C.C. (2018). Robust genome editing with short single-stranded and long, partially single-stranded DNA donors in Caenorhabditis elegans. Genetics 210, 781–787.

Drummond-Barbosa, D., and Spradling, A.C. (2001). Stem cells and their progeny respond to nutritional changes during Drosophila oogenesis. Dev. Biol. 231, 265–278.

Frojka-Jensen, C., Davis, M.W., Hopkins, C.E., Newman, B.J., Thunnell, J.M., Olesen, S.P., Grunnet, M., and Jorgensen, E.M. (2008). Single-copy insertion of transgenes in Caenorhabditis elegans. Nat. Genet. 40, 1375–1383.

Gibson, D.G., Young, L., Chuang, R.Y., Venter, J.C., Hutchison, C.A., 111, and Smith, H.O. (2009). Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 6, 343–345.

Gilbert, J.S., Barry, J.D., and Johnstone, I.L. (1997). cis regulatory requirements for hypodermal cell-specific expression of the Caenorhabditis elegans cuticle collagen gene dpy-7. Mol. Cell. Biol. 17, 2301–2311.

Göke, J., Chan, Y.S., Yan, J., Vingron, M., and Ng, H.H. (2013). Genome-wide kinase-chromatin interactions reveal the regulatory network of ERK signaling in human embryonic stem cells. Mol. Cell 50, 844–855.

Gu, T., Orta, S., and Han, M. (1998). Caenorhabditis elegans SUR-5, but a novel conserved protein, negatively regulates LET-60 Ras activity during vulval induction. Mol. Cell. Biol. 18, 4556–4564.

Hau, K.A., Enright, A.L., Ferdous, A.S., Kershner, A.M., Shin, H., Wickens, M., and Kimble, J. (2019). The molecular basis of LST-1 self-renewal activity and its control of stem cell pool size. Development 146, dev181644.

Hirotsu, T., Saeki, S., Yamamoto, M., and Ino, Y. (2000). The Ras-MAPK pathway is important for olfaction in Caenorhabditis elegans. Nature 404, 289–293.

Hsu, Y.C., Li, L., and Fuchs, E. (2014). Transit-amplifying cells orchestrate stem cell activity and tissue regeneration. Cell 157, 935–949.

Hubbard, E.J.A., and Schedi, T. (2019). Biology of the Caenorhabditis elegans germline stem cell system. Genetics 213, 1145–1188.

Jiang, H., Patel, P.H., Kohlmaier, A., Grenley, M.O., McEwen, D.G., and Edgar, B.A. (2009). Cytokine/Jak/Stat signaling mediates regeneration and homeostasis in the Drosophila midgut. Cell 137, 1343–1355.

Kelly, W.G., and Fire, A. (1998). Chromatin silencing and the maintenance of a functional germline in Caenorhabditis elegans. Development 125, 2451–2456.

Lackner, M.R., and Kim, S.K. (1998). Genetic analysis of the Caenorhabditis elegans MAP kinase gene mpk-1. Genetics 150, 103–117.

Lackner, M.R., Konfeld, K., Miller, L.M., Horvitz, H.R., and Kim, S.K. (1994). A MAP kinase homolog, mpk-1, is involved in ras-mediated induction of vulval cell fates in Caenorhabditis elegans. Genes Dev. 8, 162–173.

LaFever, L., and Drummond-Barbosa, D. (2005). Direct control of germline stem cell division and cyst growth by neural insulin in Drosophila. Science 309, 1071–1073.

Lastwika, K.J., Dunn, C.A., Solan, J.L., and Lampe, P.D. (2019). Phosphorylation of connexin 43 at MAPK, PKC or CK1 sites each distinctly alter the kinetics of epidermal wound repair. J. Cell Sci. 132, jcs234633.

Lee, M.H., Hook, B., Pan, G., Kershner, A.M., Merritt, C., Seydoux, G., Thompson, J.A., Wickens, M., and Kimble, J. (2007a). Conserved regulation of MAP kinase expression by PUF RNA-binding proteins. PLoS Genet. 3, e233.

Lee, M.H., Ohmachi, M., Arur, S., Nayak, S., Francis, R., Church, D., Lambie, E., and Schedi, T. (2007b). Multiple functions and dynamic activation of MPK-1 extracellular signal-regulated kinase signaling in Caenorhabditis elegans germline development. Genetics 177, 2039–2062.

Lee, C., Sorensen, E.B., Lynch, T.R., and Kimble, J. (2016). C. elegans GLP-1/Notch activates transcription in a probability gradient across the germline stem cell pool. eLife 5, e18370.

Lu, C.W., Yabuuchi, A., Chen, L., Viswanathan, S., Kim, K., and Daley, G.Q. (2008). Ras-MAPK signaling promotes trophoderm formation from embryonic stem cells and mouse embryos. Nat. Genet. 40, 921–926.

Mello, C.C., Kramer, J.M., Stinchcomb, D., and Ambros, V. (1991). Efficient gene transfer in C. elegans: extrachromosomal maintenance and integration of transforming sequences. EMBO J. 10, 3959–3970.

Meng, D., Frank, A.R., and Jewell, J.L. (2018). mTOR signaling in stem and progenitor cells. Development 145, dev152595.

Michaelson, D., Korta, D.Z., Capua, Y., and Hubbard, E.J. (2010). Insulin signaling promotes germline proliferation in C. elegans. Development 137, 671–680.
Miller, M.A., Nguyen, V.O., Lee, M.H., Kosinski, M., Schedl, T., Caprioli, R.M., and Greenstein, D. (2001). A sperm cytoskeletal protein that signals oocyte meiotic maturation and ovulation. Science 291, 2144–2147.

Mondal, B.C., Mukherjee, T., Mandal, L., Evans, C.J., Sinenko, S.A., Martinez-Agosto, J.A., and Banerjee, U. (2011). Interaction between differentiating cell- and niche-derived signals in hematopoietic progenitor maintenance. Cell 147, 1589–1600.

Morgan, D.E., Crittenden, S.L., and Kimble, J. (2010). The C. elegans adult male germline: stem cells and sexual dimorphism. Dev. Biol. 346, 204–214.

Morgan, C.T., Noble, D., and Kimble, J. (2013). Mitosis-meiosis and sperm-oocyte fate decisions are separable regulatory events. Proc. Natl. Acad. Sci. USA 110, 3411–3416.

Morrison, S.J., and Kimble, J. (2006). Asymmetric and symmetric stem-cell divisions in development and cancer. Nature 441, 1068–1074.

Nadarajan, S., Govindan, J.A., McGovern, M., Hubbard, E.J., and Greenstein, D. (2009). MSP and GLP-1/Notch signaling coordinately regulate actomyosin-dependent cytoplasmic streaming and oocyte growth in Caenorhabditis elegans. Development 136, 2223–2234.

Narbonne, P., and Roy, R. (2006). Regulation of germline stem cell proliferation downstream of nutrient sensing. Cell Div. 1, 29.

Narbonne, P., Maddox, P.S., and Labbé, J.C. (2015). DAF-18/PTEN locally antagonizes insulin signaling to couple germline stem cell proliferation to oocyte needs in C. elegans. Development 142, 4230–4241.

Narbonne, P., Maddox, P.S., and Labbé, J.C. (2017). DAF-18/PTEN signals through AKT-1/AMPK to inhibit MPK-1/MAPK in feedback control of germline stem cell proliferation. PLoS Genet. 13, e1006738.

Paix, A., Wang, Y., Smith, H.E., Lee, C.Y., Calidas, D., Lu, T., Smith, J., Schmidt, H., Krause, M.W., and Seydoux, G. (2014). Scalable and versatile genome editing using linear DNAs with microhomology to Cas9 Sites in Caenorhabditis elegans. Genetics 198, 1347–1356.

Paix, A., Folkmann, A., Rasoloson, D., and Seydoux, G. (2015). High efficiency, homology-directed genome editing in Caenorhabditis elegans using CRISPR-Cas9 ribonucleoprotein complexes. Genetics 201, 47–54.

Schneider, G., Schmidt-Supprian, M., Rad, R., and Saur, D. (2017). Tissue-specific tumorigenesis: context matters. Nat. Rev. Cancer 17, 239–253.

Scott, J.G., Dhawan, A., Hjemlemand, A., Lathia, J., Chumakova, A., Hitomi, M., Fletcher, A.G., Maini, P.K., and Anderson, A.R.A. (2019). Recasting the cancer stem cell hypothesis: unification using a continuum model of microenvironmental forces. Curr. Stem Cell Rep. 5, 22–30.

Seydoux, G., Savage, C., and Greenwald, I. (1993). Isolation and characterization of mutations causing abnormal eversion of the vulva in Caenorhabditis elegans. Dev. Biol. 157, 423–436.

Shain, A.H., Joseph, N.M., Yu, R., Benhamida, J., Liu, S., Prow, T., Ruben, B., North, J., Pincus, L., Yeh, I., et al. (2018). Genomic and transcriptomic analysis reveals incremental disruption of key signaling pathways during melanoma evolution. Cancer Cell 34, 45–55.e4.

Shaul, Y.D., and Seger, R. (2007). The MEK/ERK cascade: from signaling specificity to diverse functions. Biochem. Biophys. Acta 1773, 1213–1226.

Shim, J., Gururaj-Rao, S., and Banerjee, U. (2013). Nutritional regulation of stem and progenitor cells in Drosophila. Development 140, 4647–4656.

Shin, H., Haupt, K.A., Kershner, A.M., Kroll-Conner, P., Wickers, M., and Kimble, J. (2017). SYGL-1 and LST-1 link niche signaling to PUF RNA repression for stem cell maintenance in Caenorhabditis elegans. PLoS Genet. 13, e1007121.

Solanki, J.L., and Lampe, P.D. (2014). Specific Cx43 phosphorylation events regulate gap junction turnover in vivo. FEBS Lett. 588, 1423–1429.

Sommermann, E.M., Strohmaier, K.R., Maduro, M.F., and Rothman, J.H. (2010). Endoderm development in Caenorhabditis elegans: the synergistic action of ELT-2 and -7 mediates the specification—differentiation transition. Dev. Biol. 347, 154–166.

Starch, T.A., Hall, D.H., and Greenstein, D. (2014). Two classes of gap junction channels mediate soma-germline interactions essential for germline proliferation and gametogenesis in Caenorhabditis elegans. Genetics 198, 1127–1153.

Stefanakis, N., Carrera, I., and Hobert, O. (2015). Regulatory logic of pan-neuronal gene expression in C. elegans. Neuron 87, 733–750.

Sundaram, M.V. (2013). Canonical RTK-Ras-ERK signaling and related alternative pathways. WormBook, 1–38.

Tan, B.T., Park, C.Y., Alles, L.E., and Weissman, I.L. (2006). The cancer stem cell hypothesis: a work in progress. Lab. Invest. 86, 1203–1207.

Tee, W.W., Shen, S.S., Oksuz, O., Narendra, V., and Reimerb, D. (2014). Erk1/2 activity promotes chromatin features and RNAPII phosphorylation at developmental promoters in mouse ESCs. Cell 156, 678–690.

Tenen, C.C., and Greenwald, I. (2019). Cell non-autonomous function of daf-18/PTEN in the somatic gonad coordinates somatic gonad and germline development in C. elegans dauer larvae. Curr. Biol. 29, 1064–1072.e6.

Tomasetti, C., and Vogelstein, B. (2015). Cancer etiology: variation in cancer risk among tissues can be explained by the number of stem cell divisions. Science 347, 78–81.

Ying, Q.L., Wray, J., Nichols, J., Battle-Morera, L., Doble, B., Woodgett, J., Cohen, P., and Smith, A. (2008). The ground state of embryonic stem cell self-renewal. Nature 453, 519–523.

Zhang, P., Holowatyj, A.N., Roy, T., Pronovost, S.M., Marchetti, M., Liu, H., Ulrich, C.M., and Edgar, B.A. (2019). An SH3PX1-dependent endocytosis-autophagy network restrains intestinal stem cell proliferation by counteracting EGFR-ERK signaling. Dev. Cell 49, 574–589.e5.
STAR METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Antibodies		
Mouse anti-SP56	Susan Strome (University of California Santa Cruz)	N/A
Rabbit anti-RME-2	Barth Grant (Columbia)	N/A
A647-conjugated donkey anti-mouse	Invitrogen	Cat# A32787; RRID:AB_2762830
A555-conjugated goat anti-rabbit	Invitrogen	Cat# A32732; RRID:AB_2633281
Rabbit anti-ERK	Santa Cruz Biotechnologies	SCc94
Mouse anti-V5	Bio-Rad	Cat# MCA1360; RRID:AB_322378
Rat anti-OLLAS	Novis	Cat# NBP1-06713; RRID:AB_1625979
A555-conjugated donkey anti-mouse	Invitrogen	Cat# A32773; RRID:AB_2762848
A647-conjugated donkey anti-rat	Jackson ImmunoResearch	Cat# 712-605-153; RRID:AB_2340694
A488-conjugated goat anti-rabbit	Invitrogen	Cat# A32731; RRID:AB_2633280
Mouse monoclonal anti-pH3	Cell Signaling	Cat# 9706; RRID:AB_331748
Rabbit polyclonal anti-HIM-3	Monique Zetka (McGill)	N/A
A488-conjugated goat anti-mouse	Invitrogen	Cat# A-11029; RRID:AB_138404
A546-conjugated goat anti-rabbit	Invitrogen	Cat# A-11035; RRID:AB_143051

Experimental models: Organisms/strains

| C. elegans strains | See Table S4 | N/A |

Oligonucleotides

| Oligonucleotides | See Tables S5 and S6 | N/A |

Software and algorithms

Software and algorithms	Zeiss.com	N/A
ImageJ	Imagej.nih.gov	N/A
Imaris	Imaris.oxinst.com	N/A

RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Patrick Narbonne (patrick.narbonne@uqtr.ca).

Materials availability
Key strains generated for this study will be made available through the Caenorhabditis Genetics Center (CGC).

Data and code availability
This study did not generate large datasets or codes, but raw data/images are available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

C. elegans genetics
Animals were maintained on standard NGM plates seeded with E. coli (OP50) and the Bristol isolate (N2) was used as WT throughout (Brenner, 1974). Only hermaphrodites were scored, as young adults, and with the following specifics. For Figures 1, 3, 4, S1, and S2, animals were maintained at 15 °C, synchronized by picking late L4 stage larvae to a new plate (Seydoux et al., 1993), and upshifted to 25 °C for 24 hours (unless otherwise specified) before they were harvested for assaying. For Figures 3 and S3, animals were maintained at 20 °C and were analyzed at L4 + 24 hours. For Figures S4 and S5, animals were raised at 25 °C from the L1 stage. All strains, alleles, transgenes and rearrangements used are listed in Table S4.
METHOD DETAILS

Plasmids, transgenics and genome editing

We used the Gibson et al. (2009) method for all plasmid assembly, except for pUMP5, which was generated by T/A cloning of an RT-PCR product into pMR377, a modified pkSII-based vector, after opening it with XcmI to generate T-overhangs (a kind gift from Shao-lin Li). The source DNA and primers that were used to generate all plasmids, as well as their microinjection concentrations, are found in Table S5. Extra-chromosomal arrays were generated by regular microinjections at a total concentration of 150-200 ng/μL, using pkSII as a filler DNA and pCFJ104[Pmyo-3::mCherry] (5 ng/μL) as a co-injection marker (Mello et al., 1991, Frokjaer-Jensen et al., 2008). For the lines harboring pPOM5-9 altogether, each plasmid was injected at 15 ng/μL, in a single mix.

For single-copy insertion (i.e., narSi2), pNAR3 was co-injected with pDD122 in unc-119(ed3) animals for CRISPR/Cas9-mediated integration at ttiTi6050 on LG II (+0.77) (Dickinson et al., 2013). A single line was obtained from > 200 microinjections.

For editing the mpk-1 locus, CRISPR/Cas9 was used according to previously described methods (Dokshin et al., 2018; Paix et al., 2014). Repair templates and crRNAs are listed in Table S6. To create the mpk-1(DT), an intermediate VS-tagged strain was first generated. The 2xOILLAS tag was subsequently inserted into the V5-tagged strain to create mpk-1(DT). The mpk-1(DT) strain was used as the starting point to generate mpk-1b(Δ), but the V5-tagged strain was used to generate mpk-1(Δ). All CRISPR created mpk-1 strains were outcrossed to N2 two times. The mpk-1b(Δ) and mpk-1(Δ) alleles were maintained over the qC1[qIs26] balancer. Full genotypes are listed in Table S4.

Quantification of germline MPK-1 activity

Following bleach synchronization, all worms were grown at 25°C until L4 + 24 hours (A1). Animals were collected and paralysed in 4.15 mM (0.1%) Tetramisole in M9 buffer on a coverslip that was flipped onto a 3% agarose pad and sealed using VALAP (1:1:1 Vaseline, lanolin and paraffin). A Leica confocal microscope TCS SP8 (Leica Microsystems) with a HC PL APO CS2 40x/1.30 numerical aperture oil objective was used for image collection. Bidirectional scanning at 400 Hz, in sequential mode, combined with a 0.8 μm Z stack step was used to image each gonad. Only the anterior gonad arm of each worm was acquired. ERK-nKTR::GFP was acquired using a 488 nm solid-state laser at 10% intensity, for all strains, except fog-1(ο), which was at 15% intensity. PMT gate was set at 673 gain and at 559.5 ± 21.5 nm for all strains. H2B::mCherry was acquired using a 552 nm solid-state laser at 5% intensity using a HyD gate at 50% gain and at 610 ± 21 nm.

Image processing and data analysis were done with Fiji. For the PZ, cells were grouped based on distance from the distal tip (1-5, 6-10, 11-15, and 1-15). Five cells were analyzed per gonad, distributed one per three cell diameter regions. For the pachytene region, five cells per gonad were randomly chosen, but evenly distributed across the region. For oocytes, five cells per gonad were analyzed starting from the –2 oocyte to avoid sperm-activated oocytes. Variability in the H2B::mCherry intensities between germ cells and across germline regions (see Figure S1) prevented us from using the previously published quantification method, developed for vulva precursor cells (de la Cova et al., 2017). Thus, for all germ cells, the mean GFP fluorescence signal intensity was measured for three randomly-chosen circular cytoplasmic areas (0.5 μm for GSCs and pachyten; 4 μm for oocytes) and for the whole nucleus. Cell selection and cytoplasmic area selections were made using the mCherry channel to avoid introducing any user-bias after seeing the GFP channel. The three cytoplasmic GFP mean intensity measures were averaged and divided by the single mean nuclear intensity measurement to obtain an MPK-1 activity index for each cell. Five cells of each type were averaged for all strains. For each genotype, the ERK-nKTR activity index for each region was first normalized to its ERK-nKTR(AAA) control, then to the WT ERK-nKTR(AAA) control for comparison across different genotypes. As germline autofluorescence accounted for less than 1% of the GFP signal for all samples, background subtractions were omitted.

Progenitor zone and mitotic index evaluation

PZ size and MIs of young adult (L4 + 24 hours at 25°C) hermaphrodites were evaluated as previously described (Narbonne et al., 2015, 2017). Briefly, animals were picked and quickly dissected on a coverslip in a drop of PBS, the coverslip was flipped onto a poly-L-lysine coated slide, submitted to a standard protocol at 20°C, and then post-fixed with 3.7% paraformaldehyde for 30 minutes. Gonads were then washed (2x 10 minutes) with PBST (1xPBS + 0.1% Tween 20) and blocked in PBST+3% BSA, incubated overnight at 4°C with primary mouse anti-p[Ser10]H3 (1:250) and rabbit anti-HIM-3 (1:500) antibodies, diluted in PSBT+1% BSA. Gonads were then washed (3x 10 minutes) with PBST and incubated with secondary A488-coupled goat anti-mouse and A546-coupled goat anti-rabbit antibodies (1:500 each) for 1 hour at room temperature (RT). Finally, slides were washed 3 more times with PBST, briefly stained with DAPI between washes 2 and 3, before Vectashield was added and the coverslip was sealed with nail polish. Slides were kept at −20°C until analyzed. For every genotype for which we had previously published an A1 MI result (N2, fog-1(ο), and mpk-1(ο)) (Narbonne et al., 2015, 2017), we did not detect a significant difference between the newer and older datasets (p > 0.05; Kruskal-Wallis).

Immunostaining and fluorescence

Sperm/oocyte staining

Briefly, worms raised at 20°C were picked as mid-L4s to a fresh plate, 24 hours prior to staining. Hermaphrodites were anesthetised in 0.25 μM levamisole in PBST. Gonads were collected and fixed in 3.7% formaldehyde in PBST for 15 minutes while rocking at RT.
After washing in 1 mL PBST, gonads were permeabilized in PBST+0.1% Triton-X and incubated for 10 minutes, rocking at RT. Gonads were washed 3x 10 minutes in PBST and blocked in PBST+0.5% BSA (block) for 1 hour. After the block was removed, samples were incubated overnight at 4°C with primary antibodies diluted in the block solution, 1:200 sperm marker mouse α-sp56 and 1:500 oocyte marker rabbit α-RME-2. Primary antibodies were removed and gonads were washed 3x 10 minutes in PBST. 100 µL of block containing DAPI (1 µg/mL), α-mouse alexa647 and α-rabbit alexa555 secondary antibody (1:1000 each) was added and gonads incubated in the dark, rotating for 2 hours at RT. Gonads were washed 3x 10 minutes in PBST in the dark at RT. Gonads were mounted in 18 µL Prolong Glass antifade (ThermoFisher, P36984) and sealed with VALAP. Samples were kept at −20°C until imaged.

MPK-1 staining

Hermaphrodites were staged, anesthetized and dissected as described for sperm/oocyte staining. Gonads were fixed in 2% para-formaldehyde (PFA) in 100 nM pH 7.2 K2PO4 for 30 minutes, rocking at RT. Gonads were washed 2x in PBST: first wash quick and second wash for 5 minutes at RT. Gonads were fixed in methanol for 30 minutes at −20°C. Gonads were washed 2x, following the same procedure as after the PFA fix. Gonads were blocked for 1 hour, rocking at RT. Primary antibodies—mouse α-V5 (Bio-Rad), rat α-Ollas (Novis, NBPI-06713), rabbit α-ERK (Santa Cruz Biotechnology, Sc94)—were diluted 1:1000, 1:200, 1:1000 in blocking solution, respectively. Gonads incubated with primary antibodies overnight at 4°C. Gonads were then washed 2x PBST quickly and 2x PBST for 10 minutes. Secondary α-mouse alexa555, α-rat alexa647, and α-rabbit alexa488 antibodies, and DAPI (1 µg/mL) were all diluted 1:1000 in block solution and incubated for 2 hours, rocking in the dark at RT. Secondary antibodies were removed and gonads were washed 4x in PBST=2x quickly and 2x for 10 minutes in the dark. Gonads were mounted in 18 µL Prolong Glass antifade, sealed with VALAP, and stored at −20°C until imaged.

DAPI staining

Staged L4+24 hr hermaphrodites were dissected in PBST+0.25 µM levamisole. Gonads were collected and fixed in 2% pFA for 10 minutes, rocking at RT. The fixation solution was removed; samples were washed once with PBST. The gonads were permeabilized in PBST+0.5%BSA+0.1% Triton-X for 10 minutes, rocking at RT. The permeabilization solution was removed and gonads were incubated with DAPI (1 µg/mL) in PBST for 30 minutes, rocking in the dark at RT. Gonads were washed 3x in PBST for 10 minutes in the dark at RT. After the washes, gonads were mounted in 10 µL Vectorshield (Vector laboratories) and sealed with VALAP. Samples were kept at 4°C until imaged.

Image acquisition

For Figures 2 and S3, all images were taken using a Leica SP8 confocal microscope using a 40x oil objective (NA 1.3) with 1.5 zoom and 0.30 µm z-step. For fluorescence quantification (Figures S3E–S3G), images of the distal gonad were taken first (PZ through mid-pachytene region). Fluorophores alexa 488, alexa 555, alexa 647, and DAPI were excited at 488 nm, 561 nm, 633 nm, and 425-490 nm respectively; emissions were collected at 510-540 nm, 562-600 nm, 650-700 nm, and 425-490 nm, respectively.

The mosaic merge function of the Leica Lightening software package was used to generate Figures 2 images. For all tile scanned germlines, a custom region of interest was drawn around every other z plane throughout the stack. Afterward, the “create surface” tool made a volume representation based on the manually drawn outlines. Then the volume was calculated in the detailed statistics tab in the surfaces menu. The same images were used to calculate both gonad volume germ cell numbers. Using the multipoint tool in FIJI, germ cells were manually counted from the distal end to the loop.

MPK-1 protein quantification

Fluorescence intensity was measured in FIJI using previously described methods (Crittenden et al., 2019; Haupt et al., 2019). OLLS and V5 intensities were normalized to the N2 background. ERK intensity was normalized to the mpk-1b(D) background because mpk-1b was previously shown to be the main germline isoform (Lee et al., 2007a). Intensity plots were generated by importing FIJI data into MATLAB using the shadedErrorBar function (Rob Campbell, https://www.GitHub.com, 2020).

E. coli attraction

Animals were raised at 25°C until the late L4 stage and picked, in cohorts of 20-30 individuals, to the center of a 6mm NGM dish, preseeded with a 40 µl drop of E. coli (OP50) overnight culture. Plates were imaged every half-hour during hours 22-24 post-L4 (until A1). The percentage of worms on food were counted at each time point and averaged over all time points for each plate. This assay was repeated at least 4 times for each genotype.
Body length measurements
Animals were raised at 25°C until they reached A1, paralysed with tetramizole in M9 buffer, and mounted on a 3% agarose pad. Whole animals were acquired using a 10X objective and measured using ImageJ.

QUANTIFICATION AND STATISTICAL ANALYSIS

For parametric datasets, the one-way ANOVA was used, and followed by Tukey multiple comparisons. For non-parametric datasets, the Kruskal-Wallis test was used, and followed by Dunn multiple comparisons, adjusted according to the family-wide error rate procedure of Holm, and then by the false discovery rate procedure of Benjamini-Hochberg. Statistical details of experiments can be found in the figure legends.