Abstract. Wang, Jiang and Cao have obtained a generalized version of the Jørgensen inequality in Proc. Indian Acad. Sci. Math. Sci., 123(2):245–251, 2013, for two generator subgroups of $\text{SL}(2, \mathbb{C})$ where one of the generators is loxodromic. We prove that their inequality is strict.

1. Introduction

The Jørgensen inequality is a classical result that provides necessary condition of discreteness for a two generator subgroup of $\text{SL}(2, \mathbb{C})$, see [4]. Extremality of the Jørgensen inequality has been investigated in [5]. In the literature there are several generalizations of the Jørgensen inequality, and extremalities of some of those inequalities have also been investigated, e.g. [2], [3], [6], [7]. In this note we investigate extremality of one such generalized Jørgensen inequality.

In [8], Wang, Jiang and Cao have obtained a generalized version of the Jørgensen inequality for two generator subgroups of $\text{SL}(2, \mathbb{C})$ where one of the generators is loxodromic. We recall their result.

Theorem WJC. [8] Let g, h are elements in $\text{SL}(2, \mathbb{C})$ such that g is loxodromic. Suppose that g, h are of the form: for $|\lambda| > 1$,

\begin{equation}
(1.1) \quad g = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda^{-1} \end{pmatrix}, \quad h = \begin{pmatrix} a & b \\ c & d \end{pmatrix}.
\end{equation}

Let g be such that $M_g < 1$, where

\[M_g = |\lambda - 1| + |\lambda^{-1} - 1|.
\]

If $\langle g, h \rangle$ is discrete and non-elementary, then

\begin{equation}
(1.2) \quad |abcd|^{\frac{1}{2}} \geq \frac{1 - M_g}{M_g^2}.
\end{equation}

We prove that the above inequality is strict, see Theorem 2.1 below. Further, we note down a few generalized Jørgensen type inequalities which are also strict.

2. Proof of Strictness of the Inequality

Theorem 2.1. Under the hypothesis of the above theorem, equality does not hold in (1.2).

Date: September 20, 2018.

2000 Mathematics Subject Classification. Primary 20H10; Secondary 51M10.

Key words and phrases. Jørgensen inequality, discreteness.

Gongopadhyay acknowledges partial support from SERB MATRICS grant MTR/2017/000355. Tiwari is supported by NBHM-SRF.
Proof. If possible suppose equality holds in (1.2). Let $h_1 = hgh^{-1}$. Then

$$h_1 = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} \lambda & 0 \\ 0 & \lambda^{-1} \end{pmatrix} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

$$= \begin{pmatrix} ad\lambda - bc\lambda^{-1} & -(\lambda - \lambda^{-1})ab \\ (\lambda - \lambda^{-1})cd & ad\lambda^{-1} - bc\lambda \end{pmatrix}$$

$$= \begin{pmatrix} a_1 & b_1 \\ c_1 & d_1 \end{pmatrix}.$$

Note that

$$b_1c_1 = -(\lambda - \lambda^{-1})^2abcd = -(\lambda - \lambda^{-1})^2bc(1 + bc).$$

$$|a_1d_1| = |1 + (\lambda - \lambda^{-1})^2abcd|$$

$$\leq 1 + |\lambda - 1 + 1 - \lambda^{-1}||abcd|$$

$$\leq 1 + \frac{(1 - M_g)^2}{M_g^2}$$

$$\leq \frac{(M_g + 1 - M_g)^2}{M_g^2}.$$

Thus we have

$$(2.1) \quad |a_1d_1|^\frac{1}{2} \leq \frac{1}{M_g}.$$

Also, we have $|b_1| \leq M_g|ab|$, $|c_1| \leq M_g|cd|$. Hence

$$(2.2) \quad |b_1c_1|^\frac{1}{2} \leq \frac{1 - M_g}{M_g}.$$

In particular,

$$(2.3) \quad M_g(1 + |b_1c_1|^\frac{1}{2}) < 1.$$

Now note that $\langle g, h_1 \rangle$ is discrete and non-elementary. Discreteness of $\langle g, h_1 \rangle$ is obvious, and if it was elementary, that would have implied that g and h had a common fixed point and hence, would have contradicted the assumption that $\langle g, h \rangle$ is non-elementary. So, applying Theorem WJC to $\langle g, h_1 \rangle$, we have

$$\frac{1 - M_g}{M_g^2} \leq |a_1b_1c_1d_1|^{\frac{1}{2}} \leq |a_1d_1|^\frac{1}{2}|b_1c_1|^\frac{1}{2}$$

$$\leq \frac{1 - M_g}{M_g^2}, \quad \text{by (2.1) and (2.2)}.$$

This implies,

$$|a_1b_1c_1d_1|^\frac{1}{2} = \frac{1 - M_g}{M_g^2}.$$
Next we observe that
\[
\left(\frac{1 - M_g}{M_g^2} \right)^2 \leq |a_1 b_1 c_1 d_1| \\
\leq |1 + b_1 c_1||b_1 c_1| \\
\leq |1 + |b_1 c_1|((\lambda - \lambda^{-1})^2|b_0 c_0||a_0 d_0| \\
\leq (\lambda - \lambda^{-1})^2(1 + |b_1 c_1|)\left(\frac{1 - M_g}{M_g^2} \right)^2 \\
\leq M_g^2(1 + |b_1 c_1| + 2|b_1 c_1|^{1/2})\left(\frac{1 - M_g}{M_g^2} \right)^2 \\
\leq (M_g(1 + |b_1 c_1|^{1/2})^2\left(\frac{1 - M_g}{M_g^2} \right)^2 \\
\leq \left(\frac{1 - M_g}{M_g^2} \right)^2, \text{ by } (2.3).
\]

Hence we have
\[
(\lambda - \lambda^{-1})^2(1 + |b_1 c_1|) = 1.
\]

Noting that
\[
tr^2(g) - 4 = (\lambda - \lambda^{-1})^2, \text{ and } tr[g, h_1] - 2 = -(\lambda - \lambda^{-1})^2b_1 c_1,
\]
the above equality implies that \((g, h_1)\) satisfies equality in the classical Jørgensen inequality. By a theorem of Jørgensen and Kiikka, see [5, Theorem 2], this implies that \(g\) is either elliptic or parabolic, which is a contradiction. Hence equality can not hold in (1.2).

Combining Theorem WJC and Theorem 2.1, we can rephrase the generalized Jørgensen inequality as follows.

Theorem 2.2. Let \(g, h\) are elements in \(SL(2, \mathbb{C})\) such that \(g\) is loxodromic. Suppose that \(g, h\) are of the form (1.1). Let \(g\) be such that \(M_g < 1\). If
\[
(\lambda - \lambda^{-1})^2(1 + |b_1 c_1|) = 1.
\]
then \((g, h)\) is either elementary or non-discrete.

2.1. Some more inequalities. The main idea in [8] was to embed \(SL(2, \mathbb{C})\) into the isometry group \(Sp(1, 1)\) of the one dimensional quaternionic hyperbolic space \(H^1_{\mathbb{H}}\), and then use quaternionic Jørgensen inequality of Cao and Parker, see [1, Theorem 1.1]. In view of the above theorem, following arguments as used in the proof of [1, Corollary 1.2], we note the following.

Corollary 2.3. Let \(g, h\) are elements in \(SL(2, \mathbb{C})\) such that \(g\) is loxodromic. Suppose that \(g, h\) are of the form (1.1). Let \(g\) be such that \(M_g < 1\). If \((g, h)\) is discrete and non-elementary, then each of the following strict inequalities holds.
\[
(2.6) \quad |bc|^{1/2} > \frac{1 - M_g}{M_g}.
\]
\[
(2.7) \quad |1 + bc|^{1/2} > \frac{1 - M_g}{M_g}.
\]
(2.8) \[|1 + bc| + |bc| > \frac{2(1 - M_g)}{M_g^2}. \]

Proof. If possible, suppose \(|bc| \leq \frac{1 - M_g}{M_g} \). Then

\[|ad| \leq (1 + |bc|)|bc| \leq \frac{1 - M_g}{M_g^2}. \]

Using Theorem 2.2, \(\langle g, h \rangle \) is either discrete or non-elementary.

If possible suppose \(|1 + bc| \leq \frac{1 - M_g}{M_g} \). Then it follows similarly as above noting that \(|bc| \leq 1 + |ad| \) and \(ad - bc = 1 \).

Finally, if \(|1 + bc| + |bc| \leq \frac{2(1 - M_g)}{M_g^2} \), then

\[|ad| \leq \frac{1 - M_g}{M_g^2}, \]

and the result follows from Theorem 2.2.

This completes the proof. \(\square \)

In view of the results noted in this communication, the following question is natural to ask.

Question 1. What are sharp bounds for the inequalities (1.2) and (2.6) – (2.8)?

References

[1] Wensheng Cao and John R. Parker. Jørgensen’s inequality and collars in n-dimensional quaternionic hyperbolic space. *Q. J. Math.*, 62(3):523–543, 2011.

[2] Krishnendu Gongopadhyay. On Jørgensen inequality in infinite dimension *New York J. Math.*, to appear. arXiv:1808.06756.

[3] Krishnendu Gongopadhyay and Abhishek Mukherjee. Extremality of quaternionic Jørgensen inequality. *Hiroshima Math. J.*, 47(2):113–137, 2017.

[4] Troels Jørgensen. On discrete groups of Möbius transformations. *Amer. J. Math.*, 98(3):739–749, 1976.

[5] Troels Jørgensen and Maire Kiikka. Some extreme discrete groups. *Ann. Acad. Sci. Fenn. Ser. A I Math.*, 1(2):245–248, 1975.

[6] A. V. Maslei. On the Gehring-Martin-Tan numbers and Tan numbers of the elementary subgroups of \(\text{PSL}(2, \mathbb{C}) \). *Mat. Zametki* 102(2): 255–269, 2017. translation in *Math. Notes* 102(1-2): 219–231, 2017.

[7] Dušan Repovš and Andrei Vesnin, On Gehring-Martin-Tan groups with an elliptic generator. *Bull. Aust. Math. Soc.* 94(2): 326–336, 2016.

[8] Hua Wang, Yueping Jiang, and Wensheng Cao. Notes on discrete subgroups of Möbius transformations. *Proc. Indian Acad. Sci. Math. Sci.*, 123(2):245–251, 2013.

Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Punjab 140306, India

E-mail address: krishnendu@iisermohali.ac.in, krishnendug@gmail.com

Department of Mathematics, Hansraj College, University of Delhi, Delhi 110007, India

E-mail address: mukund.math@gmail.com

Department of Mathematics, University of Delhi, Delhi 110007, India

E-mail address: devendra9.dev@gmail.com