On the graph of partial orders

Dr. Khalid Shea Khairalla Aljabri
University of Al-Qadisiyah\College of Education
Khalid.aljabrimath@qu.edu.iq

Abstract:

Any binary relation $\sigma \subseteq X$ (where X is an arbitrary set) generates a characteristic function on the set X^2: If $(x, y) \in \sigma$, then $\sigma(x, y) = 1$, otherwise $\sigma(x, y) = 0$. In terms of characteristic functions on the set of all binary relations of the set X we introduced the concept of a binary of reflexive relation of adjacency and determined the algebraic system consisting of all binary relations of a set X and all unordered pairs of various adjacent binary relations. If X is a finite set then this algebraic system is a graph “a graph of graphs” in this work we investigated some features of the structures of the graph $G(X)$ of partial orders.

1. Adjacency of binary relations

Definition 1.1 Let $B = \{0, 1\}$ –Boolean set, X – arbitrary set, and $X^2 = X \times X$ – a direct product. The function $X^2 \rightarrow B$, will be called characteristic. Any subset $\sigma \subseteq X^2$, called a binary relation (or relation) on the set X, generates characteristic function

$$\chi_r : X^2 \rightarrow B, \quad \chi_r(x, y) = \begin{cases} 1, & \text{if } (x, y) \in R, \\ 0, & \text{if } (x, y) \notin R. \end{cases}$$

Next, the function $\chi_r(\cdot, \cdot) = R(x, y)$. On the other hand, any characteristic function $\chi : X^2 \rightarrow B$ generates a binary relation $R_\chi \subseteq X^2$ such that $(x, y) \in R_\chi$ if $\chi(x, y) = 1$. Obviously, the map
$R \rightarrow R(\cdot, \cdot)$ is a bijection between the set of binary relations and the set of characteristic functions.

On the set of 2^X all sets of binary relations on the set X we introduce a binary reflexive adjacency.

Definition 1.2 Let $X = Y \cup Z$ – the disjoint union of two subsets (allowed, that either $Y = \emptyset$ or $Z = \emptyset$). Suppose that the relation $\sigma \subseteq X^2$ such that $\sigma(x, y) = 0$ for all $(x, y) \in Y \times Z$. It generates the relation $\tau \subseteq X^2$ such that

1) $\tau(x, y) = 1 - \sigma(y, x)$ for all $(x, y) \in Y \times Z$, \hspace{1cm} (1)

2) $\tau(x, y) = 0$ for all $(x, y) \in Z \times Y$, \hspace{1cm} (2)

3) $\tau(x, y) = \sigma(x, y)$ for all $(x, y) \in Y^2 \cup Z^2$. \hspace{1cm} (3)

The relation τ is called adjacent with a relation σ.

Remark 1.3 From the definition it follows that if the relation τ adjacent with a relation σ, then σ adjacent with a relation τ, and this fact we write in the form of a diagram $\sigma \leftrightarrow_{Y \times Z} \tau$:

![Diagram](image-url)
Here and elsewhere in the diagrams we mark for the value of the characteristic functions at those points which are known a priori. For example, in the block $Y \times Z$ for the relation σ we write $\sigma_{\text{generalized}} = 0$, and this means that

$$\sigma(x, y) = 0 \text{ for all } (x, y) \in Y \times Z,$$

And in the same block for the relation τ we write $1 - \sigma(x, y)$ for all $(x, y) \in Y \times Z$.

For example, $X = \{1, \ldots, 6\}$, $Y = \{1, 2\}$, $Z = \{3, 4, 5, 6\}$,

2. Adjacency of the partial orders

Let $V(X)$ is the collection of all partial orders set define on the set X. In the other words, the relation $\sigma \subseteq X^2$ belongs in the set $V(X)$, if satisfies the following axioms:

1) reflexivity: $(x, x) \in \sigma$;

2) transitivity: if $(x, y) \in \sigma$, $(y, z) \in \sigma$, then $(x, z) \in \sigma$;

3) antisymmetry: if $(x, y) \in \sigma$, $(y, x) \in \sigma$, then $x = y$.

In the terms of the characteristic we have: $\sigma \in V(X)$ if and only if
1) \(\sigma(x,x) = 1 \) for all \(x \in X \); (4)

2) \(\sigma(x,y) \sigma(y,z) \leq \sigma(x,z) \) for all \(x, y, z \in X \); (5)

3) \(\sigma(x,y) \sigma(y,x) = \delta_{xy} \) for all \(x,y \in X \) (where \(\delta_{xy} \) – Kronecker symbol). (6)

Theorem 2.1 Let \(\sigma \) and \(\tau \) – are adjacent relations (i.e. \(\sigma \leftarrow y \times z \rightarrow \tau \)). Inclusion \(\sigma \in V(X) \) hold if and only if \(\tau \in V(X) \).

Proof. By symmetry, it suffices to prove this implication \(\sigma \in V(X) \Rightarrow \tau \in V(X) \).

Let \(\sigma \in V(X) \).

1. Since \(\tau(x,x) = \sigma(x,x) = 1 \), then the reflexivity relation \(\tau \) obviously.

2. Its clear that, \(\tau(x,y) \tau(y,x) = \sigma(x,y) \sigma(y,x) \) for any \(x, y \in X \), which proves that antisymmetry relations \(\tau \).

3. Transitivity. Let \(x,z,y \in X \) such that \(\tau(x,y) = \tau(y,z) = 1 \), in the first suppose that \(y \in Y \). Since \(\tau(\zeta,y) = 0 \) for all \(\zeta \in Z \), then \(x \in Y \). If \(z \in Y \), then \(\sigma(x,y) = \tau(x,y) = 1 \) and \(\sigma(y,z) = \tau(y,z) = 1 \), and since \(\sigma \in V(X) \), then \(\sigma(x,z) = 1 \), therefore \(\tau(x,z) = 1 \). If \(z \in Z \), then \(\sigma(x,y) = \tau(x,y) = 1 \) and \(\sigma(z,y) = 1 - \tau(y,z) = 0 \), and since \(\sigma \in V(X) \), then by (5) \(\sigma(z,x) = \sigma(z,x) \sigma(x,y) \leq \sigma(z,y) = 0 \), hence, \(\sigma(z,x) = 0 \), and therefore \(\tau(x,z) = 1 \).

Now suppose that \(y \in Z \). \(\tau(y,\eta) = 0 \) \(\eta \in Y \), then \(z \in Z \). If \(x \in Z \), then \(\sigma(x,y) = \tau(x,y) = 1 \) \(\sigma(y,z) = \tau(y,z) = 1 \), \(\sigma \in V(X) \), then \(\sigma(x,z) = 1 \), and since \(\sigma \in V(X) \), then by (5)
\(\sigma(z, x) = \sigma(y, z) \sigma(z, x) \leq \sigma(y, x) = 0 \), hence, \(\sigma(z, x) = 0 \), and therefore \(\tau(x, z) = 1 \). In all cases, we have the equality \(\tau(x, z) = 1 \).

Thus, the set \(X \) generates a pair \(\langle V(X), E(X) \rangle \), where \(V(X) \) is a set of vertices, consist of all partial orders of the set \(X \) and \(E(X) \) is a set of edges, consist of all unordered distinct pairs of adjacent partial orders of the set \(X \). The pair \(G(X) = \langle V(X), E(X) \rangle \) will be called (undirected) graph of partial orders of the set \(X \).

Definition 2.2 The partial orders \(\sigma \) and \(\tau \) belong to the same connected component of the graph \(G(X) \), if there is a finite sequence of partial orders \(\sigma = \sigma_1, \sigma_2, \ldots, \sigma_m = \tau \), in which the relations \(\sigma_{k-1} \) and \(\sigma_k \) are adjacent for all \(k = 2, \ldots, m \). Let \(G_{\sigma}(X) \) is the connected component of the graph \(G(X) \), which contains the partial order \(\sigma \).

3- On the features of the structure of the graph of partial orders.

We fix the partial order \(\sigma \in V(X) \) and an element \(x \in X \). For \(\sigma \) we have the representation:

\[
\begin{array}{ccc}
I_x & K_x & J_x \\
I_x & | & 0 \\
\vdots & | & \vdots \\
\vdots & | & \vdots \\
J_x & | & 0 \\
\end{array}
\]

\[\sigma = \begin{array}{cccc}
& 1 & & \\
1 & & 0 & \ldots \\
& \vdots & & \vdots \\
0 & \ldots & 1 & 0 \\
\end{array} \]

\[x \uparrow \]

1451
Lemma 3.1 The following statements holds:

1) \(\sigma(y, z) = 1 \) for all \((y, z) \in J_x \times I_x \);

2) \(\sigma(y, z) = 0 \) for all \((y, z) \in I_x \times (K_x \cup J_x) \);

3) \(\sigma(y, z) = 0 \) for all \((y, z) \in (K_x \cup I_x) \times J_x \).

Proof: Obviously, \(K_x = \{ y \in X : \sigma(x, y) = \sigma(y, x) = \delta_{xy} \} \),

\[J_x = \{ y \in X : \sigma(x, y) = 0, \ \sigma(y, x) = 1 \}, \]
\[I_x = \{ y \in X : \sigma(x, y) = 1, \ \sigma(y, x) = 0 \}. \]

1. Since \(y \in J_x \), then \(\sigma(y, x) = 1 \), and since \(z \in I_x \), then \(\sigma(x, z) = 1 \), therefore \(\sigma(y, z) = 1 \). In particular, \((y, z) \in I_x \times J_x \) we have the equality \(\sigma(z, y) = 0 \).

2. Let \((y, z) \in I_x \times K_x \).

If \(z = x \), then \(\sigma(y, z) = \sigma(y, x) = 0 \) (since \(y \in I_x \)).

Let \(z \neq x \), and \(z \in K_x \), \(\sigma(x, z) = 0 \). Since \(y \in I_x \), then \(\sigma(x, y) = 1 \), and then by (5) \(\sigma(y, z) = \sigma(x, y) \sigma(y, z) \leq \sigma(x, z) = 0 \) and therefore \(\sigma(y, z) = 0 \) for all \((y, z) \in I_x \times K_x \).

3. Let \((y, z) \in K_x \times J_x \).

If \(y = x \), then \(\sigma(y, z) = \sigma(x, z) = 0 \) (since \(z \in J_x \)).
Let \(y \neq x \), and \(y \in K_x \), then \(\sigma(y, x) = 0 \). Since \(z \in J_x \), then \(\sigma(z, x) = 1 \), and by (5), \(\sigma(y, z) = \sigma(z, x) \sigma(z, x) \leq \sigma(y, x) = 0 \) therefore \(\sigma(y, z) = 0 \) for all \((y, z) \in K_x \times J_x\)

Hence we can construct a sequence of adjacent of partial orders :

\[
\sigma \leftarrow I_x \times (K_x \cup J_x) \rightarrow \sigma' \leftarrow (K_x \cup J_x) \times J_x \rightarrow \sigma^x, \quad \ldots (7)
\]

Which leads us to the partial order \(\sigma^x \in V(X) \), that \(\sigma^x(x, y) = \sigma^x(y, x) = \delta_{xy} \) for all \(y \in X \) (in other words, if we interpret the partial order as relation \(\leq \), then \(x \) is both a maximum and minimum element of a partial order \(\sigma^x \)).

Thus, for a fixed partial order \(\sigma \in V(X) \) defined a map \(X \rightarrow G_\sigma(X) \), associates to an element \(x \in X \) the partial order \(\sigma^x \in G_\sigma(X) \)(it may be that \(\sigma^x = \sigma^y \) at \(x \neq y \)). We also note that this map is uniquely defined in the algorithm (7) are used uniquely defined sets \(I_x(\sigma), K_x(\sigma), J_x(\sigma) \).
Lemma 3.2 Suppose that the partial orders $\sigma, \tau \in V(X)$ belong to the same connected component of the graph $G(X)$, Then $\sigma^x = \tau^x$ for any $x \in X$.

Proof. We can assume that σ and τ – adjacent partial orders, then there is a disjoint union $I \cup J = X$ such that $\sigma \leftarrow I \times J \rightarrow \tau$.

Without loss of generality, we can also assume that $x \in J$ (if $x \in I$ in the calculations presented below the relation σ and τ changing places. For σ have the representation

\[
\begin{array}{c|cc|cc|cc}
I_1 & I_2 & J_1 & J_2 & J_3 \\
\hline
I_1 & & & & \\
I_2 & & & & \\
J_1 & & & & \\
J_2 & & & & \\
J_3 & \cdots & 0 & \cdots & 1 & \cdots & 1 & \cdots & 0 & \cdots & 0 & \cdots & 0 & \cdots & 0 & \rightarrow x \\
\end{array}
\]

\[x \uparrow\]
\[I_1 \subseteq \{ y \in I : \sigma(x,y) = 0 \}, \]
\[I_2 \subseteq \{ y \in I : \sigma(x,y) = 1 \}, \]
\[J_1 \subseteq \{ y \in J : \sigma(x,y) = 1, \sigma(y,x) = 0 \}, \]
\[J_2 \subseteq \{ y \in J : \sigma(x,y) = 0, \sigma(y,x) = 1 \}, \]
\[J_3 \subseteq \{ y \in J : \sigma(x,y) = \delta_{xy} \}. \]

It's clearly that \(x \in J_3 \).

1. We fix \(y \in I_2 \cup J_1 \), then \(\sigma(x,y) = 1 \), since \(z \in I_1 \), then \(\sigma(x,z) = 0 \) then by (5) we have \(\sigma(y,z) = \sigma(x,y) \sigma(y,z) \leq \sigma(x,z) = 0 \). Thus \(\sigma(y,z) = 0 \) for all \((y,z) \in (I_2 \cup J_1) \times I_1 \).

2. Let \((y,z) \in J_2 \times (I_2 \cup J_1) \). And since \(y \in J_2 \), then \(\sigma(y,x) = 1 \), and since \(z \in I_2 \cup J_1 \), then \(\sigma(x,z) = 1 \), therefore \(\sigma(y,z) = 1 \). Thus, \(\sigma(y,z) = 1 \) for all \((y,z) \in J_2 \times (I_2 \cup J_1) \).

3. Due to the antisymmetry \(\sigma \) for all \((y,z) \in J_1 \times J_2 \) have the equality \(\sigma(y,z) = 0 \).

4. Let \((y,z) \in J_1 \times J_3 \). If \(z = x \), then \(\sigma(y,z) = \sigma(y,x) = 0 \) (since \(z \in J_3 \)).

Let \(z \neq x \), and \(z \in J_3 \) then \(\sigma(x,z) = 0 \). Since \(y \in J_1 \), then \(\sigma(x,y) = 1 \), then from (5) \(\sigma(y,z) = \sigma(x,y) \sigma(y,z) \leq \sigma(x,z) = 0 \). Thus \(\sigma(y,z) = 0 \) for all \((y,z) \in J_1 \times J_3 \).

5. Let \((y,z) \in J_3 \times J_2 \). If \(y = x \), then \(\sigma(y,z) = \sigma(x,z) = 0 \) (since \(z \in J_2 \)).

Let \(y \neq x \), and \(y \in J_3 \), to \(\sigma(y,x) = 0 \). Since \(z \in J_2 \), then \(\sigma(z,x) = 1 \), then from (5), \(\sigma(y,z) = \sigma(y,z) \sigma(z,x) \leq \sigma(y,x) = 0 \) therefore \(\sigma(y,z) = 0 \) thus \(\sigma(y,z) = 0 \) for all \((y,z) \in J_3 \times J_2 \).
Thus, for the adjacent of partial orders σ and τ we have the representation:

$$
\begin{array}{c|ccc|ccc|c}
& I^1 & I^2 & J^1 & J^2 & J^3 & \vdots \\
\hline
I^1 & * & 0 & 0 & 0 & 0 & \\
I^2 & 0 & 0 & 0 & 0 & 0 & \\
J^1 & 0 & * & 0 & 0 & 0 & \\
J^2 & * & 1 & 1 & & & \\
J^3 & \cdots & \cdots & 1 & 1 & \cdots & 0 & \\
\end{array}
$$
We construct a sequence of two adjacent of partial orders:

\[
\sigma \leftarrow \frac{I_2 \times (J_1 \cup J_2)}{J_1 \cup J_2} \rightarrow \sigma', \quad \sigma' \leftarrow \frac{J_1 \cup J_2}{J_1 \cup J_2} \rightarrow \sigma^x, \\
\tau \leftarrow \frac{J_1 \times (I_2 \cup J_2)}{I_2 \cup J_2} \rightarrow \tau', \quad \tau' \leftarrow \frac{J_1 \times (I_2 \cup J_2)}{I_2 \cup J_2} \rightarrow \tau^x.
\]
	I_1	I_2	J_1	J_2	J_3
I_1	*	0	0	0	0
I_2	0	0	0	0	0
J_1	0	*	0	0	0
J_2	*	1	1		
J_3					0

\[\sigma = \begin{pmatrix} I_1 & I_2 & J_1 & J_2 & J_3 \\ I & I_2 & J_1 & J_2 & J_3 \\ J & J_1 & J_2 & J_3 \end{pmatrix} \]

\[x \uparrow \]

\[x \leftarrow \]
\[\sigma' = \begin{array}{c|ccc|c|c}
\hline
 & I_1 & I_2 & J_1 & J_2 & J_3 \\
\hline
I_1 & 0 & 0 & 0 & 0 & 0 \\
I_2 & \begin{array}{c}
1 \star \ \\
0 & 0 \\
\end{array} & 0 & 0 & \vdots & 0 \\
J_1 & 1 & * & 0 & \vdots & 0 \\
J_2 & * & 0 & 0 & \vdots & \vdots \\
J_3 & \ldots \circ \ldots & 0 & 0 & 0 & \ldots \circ \ldots \\
\hline
\end{array} \]

\[x \leftarrow x \uparrow \]
\[\sigma^x = \begin{bmatrix}
I_1 & I_2 & J_1 & J_2 & J_3 \\
0 & 0 & 1^* & 0 & \\
1^* & 0 & 1 & \vdots & \\
1^* & \vdots & \vdots & \vdots & \\
0 & 0 & 0 & 0 & \\
J_3 & \vdots & \vdots & \vdots & \vdots \\
\end{bmatrix} \]

\[x \leftarrow \]

\[\sigma^x = \begin{bmatrix}
0 & 0 & 0 & \vdots & \\
0 & 0 & 0 & \vdots & \\
0 & 0 & 0 & \vdots & \\
\end{bmatrix} \]
\[\tau = \begin{array}{ccc|ccc}
I & J & 1 \\
\hline
I_1 & * & 1 & 1-* \\
I_2 & 0 & 1-* & 0 \\
J_1 & 0 & 0 & 0 \\
J_2 & 0 & 0 & 1 \\
J_3 & 0 & 0 & 0 \\
\end{array} \]
	1	2	3	
1	0	0	0	0
2	0	0	0	*
3	0	0	0	0

\[\tau = I - \star \]

\[j = 1 \]

\[k = 1 \]

\[l = 1 \]
Visual comparison σ^x and τ^x shows their equality.

Corollary 3.3. In each connected component $G_\sigma(X)$ of the graph $G(X)$ for any $x \in X$ there exists a unique $\sigma^x \in V(X)$, having the property, that $\sigma^x(x, y) = \sigma^x(y, x) = \delta_{xy}$ for all $y \in X$.

Remark 3.4 We fix $x \in X$.

$G_\sigma(X)$ there unique partial order σ^x such that $\sigma^x(x, y) = \sigma^x(y, x) = \delta_{xy}$ for all $y \in X$ therefore the component $G_\sigma(X)$
tial order \(\sigma_x \), define on the set \(X \setminus \{x\} \), such that \(\sigma_x(y,x) = \sigma^y(x) \) for all \(y, z \in X \setminus \{x\} \).

Remark 3.5 If \(\text{card } X < \infty \) then there exist a one-to-one between the set \(V_0(X) \) and the set of all labeled of transitive graph define on the set \(X \) (see example [1, p28]) and there exist a one-to-one between these set and the set of \(T_0 \)-topology define on the set \(X \) (see example [2, p256]) and the number of these topology denoted by \(T_0(n) \) and in the particular \(\text{card } V_0(X) = T_0(n) \)

Definition 3.6 For a partial order \(\sigma \in V(X) \).

The set \(S(\sigma) \equiv \{y \in X : \sigma(y,x) = \delta_{xy} \text{ for all } x \in X\} \) is called (support of partial order) \(\sigma \) (or support set) a fact that we write in the form.

\[
\begin{array}{c|c|c|c}
S(\sigma) & 0 & 1 \\
\hline
I & 0 & 0 \\
J & 0 & 0
\end{array}
\]
\[S(G_\sigma) = \{ S(\tau) \subseteq X : \tau \in G_\sigma(X) \} \] the set of support of the partial order belong to the component \(G_\sigma(X) \) then:

1- \(\emptyset \notin S(G_\sigma) \).

2- if \(\emptyset \neq \alpha \subseteq \beta \subseteq X \) and \(\beta \in S(G_\sigma) \), then \(\alpha \in S(G_\sigma) \).

3- if \(\alpha \subseteq X \) and \(|\alpha| \leq 2 \), then \(\alpha \in S(G_\sigma) \).

Remark 3.8 Suppose that \(\text{card} \ X = n \) then:

1- \(nT_0(n - 1) \) different support sets of partial orders which contain one element.

2- \(\frac{1}{2} n(n - 1)T_0(n - 1) \) different support sets of partial orders which contain two element.

The proof of the following theorem in \([3,4]\)

Theorem 3.9 For any \(n \geq 2 \) then

\[T_0(n) = \frac{1}{2} n(n + 1)T_0(n - 1) + \text{card} \{ \sigma \in V(\{1, \ldots, n\}) : |S(\sigma)| \geq 3 \}. \]

Example 3.10 In the graph \(G(\{1,2\}) \) which have unique component which contains the partial order:

\[
\begin{array}{c|c|c}
1 & 1 & 1 \\
0 & 1 & 1 \\
\end{array}
\]

\[
\begin{array}{c|c|c}
1 & 0 & 1 \\
0 & 1 & 1 \\
\end{array}
\]
We denote the graphs of the components K_1, K_2, and K_3. It is clear that the component K_2 and K_3 are isomorphic if applied, for example, substitution \[
\begin{pmatrix}
1 & 2 & 3 \\
2 & 1 & 3
\end{pmatrix}
\] to the elements of the component K_2 we get the component K_3.

$G\{1,2,3\}$ contains 19 partial order $T_0(2) = 3$, and $T_0(3) = 19$:

We denote the graphs of the components K_1, K_2 and K_3. It is clear that the component K_2 and K_3 are isomorphic if applied, for example, substitution

\[
\begin{pmatrix}
1 & 2 & 3 \\
2 & 1 & 3
\end{pmatrix}
\]

to the elements of the component K_2 we get the component K_3.

$G\{1,2,3\}$ contains 19 partial order $T_0(2) = 3$, and $T_0(3) = 19$:

We denote the graphs of the components K_1, K_2 and K_3. It is clear that the component K_2 and K_3 are isomorphic if applied, for example, substitution

\[
\begin{pmatrix}
1 & 2 & 3 \\
2 & 1 & 3
\end{pmatrix}
\]

to the elements of the component K_2 we get the component K_3.

$G\{1,2,3\}$ contains 19 partial order $T_0(2) = 3$, and $T_0(3) = 19$:

We denote the graphs of the components K_1, K_2 and K_3. It is clear that the component K_2 and K_3 are isomorphic if applied, for example, substitution

\[
\begin{pmatrix}
1 & 2 & 3 \\
2 & 1 & 3
\end{pmatrix}
\]

$G\{1,2,3\}$ contains 19 partial order $T_0(2) = 3$, and $T_0(3) = 19$:

We denote the graphs of the components K_1, K_2 and K_3. It is clear that the component K_2 and K_3 are isomorphic if applied, for example, substitution

\[
\begin{pmatrix}
1 & 2 & 3 \\
2 & 1 & 3
\end{pmatrix}
\]
and $S(K_1) = \{1, 2, 3\}$, $S(K_2) = \{\{1, 2\}, \{1, 3\}, \{2, 3\}\}$, in the graph there is only one partial order, which $|S(\sigma)| \geq 3$.
Reference

[1] Ore O. Theory of graphs, Providence. Amer. Math.Soc. Colloq. Publ. 1962, Vol.18,270p.

[2] Harary F. Palmmer E. Graphical enumeration, New York-London: Academic press , 1973, 272p.

[3] Rodionov V.I. A relation in finite topologies, Journal of soviet mathematics 1984, Vol.24,pp. 458-460.

[4] Erne M. On the cardinalities of finite topologies and the number of anti-chins in partially ordered sets. Discrete mathematics 1981, Vol.35, pp.119-133.