Therapeutic role and ligands of medium- to long-chain fatty acid receptors

Takafumi Hara*†, Atsuhiko Ichimura2 and Akira Hirasawa1

1 Department of Pharmacogenomics, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
2 Department of Molecular Medicine and Therapy, Tohoku University Graduate School of Medicine, Sendai, Japan

INTRODUCTION
Free fatty acids (FFAs) are known to act as the critical energy source in the whole body. In addition, FFAs also act as signal molecules in various physiological reactions (1, 2). As one of these mechanisms, G-protein-coupled receptors (GPCRs) activated by FFAs designated as free fatty acid receptors (FFAR) family have played important role especially in energy metabolism (3). Among FFAR family, FFA1 (known as GPR40) and FFA4 (known as GPR120) are classified as medium- to long-chain fatty acid-activated receptors (4, 5). On the other hand, FFA2 and FFA3 are classified as short-chain fatty acid-activated receptors (refer to each topic) (6, 7). In terms of natural ligands for FFA1 and FFA4, medium- and long-chain fatty acids that showed various physiological functions generally and contained 6–12 and more than 12 carbon chains are mainly provided by food digestion and lipolysis in adipose tissues. As unsaturated fatty acids that include double bond are not supplied by food digestion and lipolysis in adipose tissues. As unsaturated fatty acids that include double bond are not supplied by food digestion and lipolysis in adipose tissues. The expression profile is different in several tissues (4, 5). The physiological functions of FFA1 and FFA4 related to the energy metabolism regulation are as follows.

FFA1
Free fatty acid 1 expressed in pancreatic β-cell and intestine has been considered to have therapeutic utility. FFA-induced glucose-stimulated insulin secretion (GSIS) in β-cells via FFA1 has been reported by Itoh et al. (4). Using FFA1 KO and TG mice, FFA1 exhibited protective effect against chronic and/or excess stimulation of glucose-induced toxic effect on β-cells (8–10). In addition, depolymerization of F-actin and the activation of protein kinase D1 (PKD1) are contributed to the FFA1-mediated insulin secretion from β-cells (11). Further, Flodgren et al. reported that not only in β-cells but also α-cells also expressed FFA1 and contributed to glucagon secretion (12). In intestine, FFA1 expression was also confirmed in the gastric inhibitory polypeptide (GIP) and glucagon like peptide-1 (GLP-1) incretin hormones secreting cells such as the intestinal K and L cells (13, 14). In addition, intestinal I cells that express cholecystokinin (CCK) also expressed FFA1 were reported by Liou et al. (15). Therefore, FFA1 might regulate insulin secretion not only in direct but also in indirect mechanism.

FFA4
Free fatty acid 4 expressed in intestine, adipose tissue, and taste buds is considered as therapeutic target for metabolic disorders. Similar to FFA1 expression in intestine, FFA4 is expressed in intestinal L-cell that can secrete GLP-1 (3). In adipose tissue,
As described in previous section, the physiological and pharmacological properties of these two receptors have been increasingly revealed. The synthetic ligands that showed the usefulness not only for in vitro but also for in vivo study have been also increased. However, to proceed these findings to develop the pharmaceutical agents, we should answer the several questions about the molecular mechanisms of these receptors. The signal transduction mechanisms of these two receptors have been reported that FFA1 coupled to G_q protein but not the $G_{i/o}$ or G_α, and FFA4 coupled to G_q family and β-arrestin pathways (4, 5, 17, 32). However, the precise mechanism that connects a signal pathway and a specific physiological function has not been well-understood yet. The dimerization of receptors has been reported to regulate the affinity of the ligand, signaling pathway, and related physiological functions (33). Since FFARs including short-chain fatty acid receptors are expressed in the same tissues such as pancreatic β-cells, intestine and immune cells, the dimerization of these receptors might be formed in cell surface, and the physiological functions of each receptor might be regulated. On the other hand, the protein expression profile should be examined more precisely because several studies reported that the receptor expression is controversial. Although the receptor expression in the tissues is evaluated by mRNA levels in some studies, mRNA levels do not always reflect the protein level. Various commercial antibodies for FFA1 and FFA4 are available, however, we should carefully validate these antibodies in terms of selectivity since the antibodies for GPCR sometimes lack its selectivity (34). Further, the specific agonist that shows the selectivity for specific signaling pathway such as biased ligand could be useful not only for the pharmacological tool but also for the therapeutic candidates. The adequate screening system for each signal pathway and structure–activity relationships of FFA1 and FFA4 ligand might be useful to develop these compounds. Further using this information, we could discriminate the beneficial effects of the FFA1 and FFA4 ligands from its adverse effects.

FFA4 has been contributed to regulate adipose differentiation and GLUT-4 translocation that regulates glucose incorporation (16, 17). The effect of FFA4 on energy metabolism was showed in GPR120 KO mice study (18). Further, FFA4 expressed in macrophages was reported to regulate inflammatory responses (17). On the other hand, in taste buds, FFA4 expression was confirmed in type 1 and 2 taste bud cells (19, 20). Since the FFA stimulation of these cells activated taste nerve response, fat preferences might be regulated via FFA4. These findings provided us the possibility for the therapeutic utility of FFA1 and FFA4.

SYNTHETIC LIGANDS AND ITS THERAPEUTIC UTILITY

FFA1

To regulate these physiological functions, more selective ligands are expected to be developed for therapeutic candidates. For FFA1, a number of selective agonists have been reported. The expected pharmacological property of the compound is the selectivity compared to other FFARs, the potency compared to natural ligands, and efficacy not only in *in vitro* but also in *in vivo* experiments. NCG75, GW9508, and TAK-875 have been reported as selective and potent agonists. However, these compounds showed similar effect on insulin secretion compared to the endogenous FFA ligands in insulin-secreting cell line such as INS-1 and MIN6 cells (21–23). Recently, TAK-875 has been reported to be failed in clinical trial owing to the side effect such as liver toxicity. Therefore, unknown signaling mechanisms might contribute to regulate the physiological functions. To obtain the beneficial effect of FFA1, we need to understand more precise mechanisms in cell line levels.

FFA4

For FFA4, we identified a partial agonist among the natural compounds derived from fruiting bodies of *Albatrellus ovinus* (24). Further, we also identified a series of synthesized compounds based on PPARγ-agonist thiazolidinediones. Among these compounds, a selective agonist NCG21 showed selectivity for FFA4 compared to FFA1 (25, 26). TUG-891 developed by Hudson et al. showed the most potent agonistic activity that activated not only in G-protein but also in β-arrestin-dependent pathways (27, 28). Metabolix was developed as selective agonist for FFA4 and the pharmacological properties were examined not only in cultured cells but also in animal models (29).

In addition, isoindolin-1-one series and phenyl-isoxazol-3-ol series developed by Banyu Pharmaceutical Co. Ltd. showed potent selectivity for FFA4 compared to FFA1 with nanomolar order potency (30, 31).

FURTHER CHALLENGE OF THE FFA1 AND FFA4 RESEARCH FOR THERAPEUTIC APPLICATION

As described in previous section, the physiological and pharmacological functions of these two receptors have been increasingly revealed. The synthetic ligands that showed the usefulness not only for *in vitro* but also for *in vivo* study have been also increased. However, to proceed these findings to develop the pharmaceutical agents, we should answer the several questions about the molecular mechanisms of these receptors. The signal transduction mechanisms of these receptors have been reported that FFA1 coupled to G_q protein but not the $G_{i/o}$ or G_α, and FFA4 coupled to G_q family and β-arrestin pathways (4, 5, 17, 32). However, the precise mechanism that connects a signal pathway and a specific physiological function has not been well-understood yet. The dimerization of receptors has been reported to regulate the affinity of the ligand, signaling pathway, and related physiological functions (33). Since FFARs including short-chain fatty acid receptors are expressed in the same tissues such as pancreatic β-cells, intestine and immune cells, the dimerization of these receptors might be formed in cell surface, and the physiological functions of each receptor might be regulated. On the other hand, the protein expression profile should be examined more precisely because several studies reported that the receptor expression is controversial. Although the receptor expression in the tissues is evaluated by mRNA levels in some studies, mRNA levels do not always reflect the protein level. Various commercial antibodies for FFA1 and FFA4 are available, however, we should carefully validate these antibodies in terms of selectivity since the antibodies for GPCR sometimes lack its selectivity (34). Further, the specific agonist that shows the selectivity for specific signaling pathway such as biased ligand could be useful not only for the pharmacological tool but also for the therapeutic candidates. The adequate screening system for each signal pathway and structure–activity relationships of FFA1 and FFA4 ligand might be useful to develop these compounds. Further using this information, we could discriminate the beneficial effects of the FFA1 and FFA4 ligands from its adverse effects.
CONCLUSION

FFA1 and FFA4 regulate the energy metabolic mechanism by acting as sensors for FFAs mainly provided by foods and lipolysis. A great number of reports showed that FFA1 and FFA4 are regulated by various physiological processes and the possibility for the therapeutic utility for metabolic disorders (Figure 1). However, we should reveal more precise molecular mechanisms underlying metabolic diseases regulated by these receptors. In addition, the synthetic ligands, which can show selectivity not only among these receptors but also for the specific signals in each receptor, are expected to be developed in the future. Therefore, FFA1 and FFA4 may represent a promising therapeutic utility for the treatment of metabolic syndromes, such as obesity and diabetes.

REFERENCES

1. Nuñez EA. Biological complexity is under the "strange attraction" of non-esterified fatty acids. Prostaglandins Leukot Essent Fatty Acids (1997) 57:107–10. doi:10.1016/S0952-3278(97)90500-7
2. Haber EP, Ximenes HM, Procópio J, Carvalho CR, Curi R, Carpinielli AR. Pleiotropic effects of fatty acids on pancreatic beta-cells. J Cell Physiol (2003) 194:1–12. doi:10.1002/jcp.10187
3. Harau T, Kimura I, Inoue D, Ichimura A, Hirasaawa A. Free fatty acid receptors and their role in regulation of energy metabolism. Rev Physiol Biochem Pharmacol (2013) 164:77–116. doi:10.1007/112_2013_13
4. Itoh T, Kawamata Y, Harada M, Kobayashi M, Fuji R, Fukusumi S. Free fatty acids regulate insulin secretion from pancreatic beta cells through GPR40. Nature (2003) 422:6928:173–6. doi:10.1038/11478
5. Hirasaawa A, Tsunayama K, Arai T, Katsumoto S, Adachi T, Yamada M, et al. Free fatty acids regulate gut incretin glucagon-like peptide-1 secretion through GPR120. Nat Med (2005) 11:90–4. doi:10.1038/nm1168
6. Le Poul E, Loison C, Struyf S, Springael J-Y, Lannoy V, Decobecq M-E, et al. Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. J Biol Chem (2003) 278:25481–9. doi:10.1074/jbc.M301305200
7. Brown AJ, Goldsworthy SM, Barnes AA, Eilert MM, Tcheang L, Daniels D, et al. The orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J Biol Chem (2011) 386:11321–2. doi:10.1074/jbc.M111.312112
8. Mancini AD, Poitout V. The fatty acid receptor FFA1/GPR40 a decade later: how much do we know? Trends Endocrinol Metab (2013) 24:398–407. doi:10.1016/j.tem.2013.03.003
9. Nagasumi K, Esaki R, Iwachidow K, Yasuhara Y, Ogi K, Tanaka H, et al. Overexpression of GPR120 in pancreatic beta-cells augments glucose-stimulated insulin secretion and improves glucose tolerance in normal and diabetic mice. Diabetes (2009) 58:1067–73. doi:10.2337/db08-0037
10. Meidute-Abaraviciene S, Muhammed SJ, Amisten S, Lundquist I, Salehi A. GPR40 is expressed in glucagon producing cells and affects glucagon secretion in mouse islets is mediated by protein kinase D1. Biochem Biophys Res Commun (2013) 435:2682–92. doi:10.1016/j.bbrc.2007.01.028
11. Liou AP, Lu X, Sei Y, Zhao X, Pechhold S, Carrero RJ, et al. The G-protein-coupled receptor GPR40 directly mediates long-chain fatty acid-induced secretion of cholecystokinin. Gastroenterology (2011) 140:903–12. doi:10.1053/j.gastro.2010.01.012
12. Gotot C, Hong YH, Iga T, Hishikawa D, Suzuki Y, Song SH, et al. The regulation of adipogenesis through GPR120. Biochem Biophys Res Commun (2007) 354(2):591–7. doi:10.1016/j.bbrc.2007.01.028
13. Oh DY, Talukdar S, Bae EJ, Imamura T, Morinaga H, Fan W, et al. GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell (2010) 142(5):687–98. doi:10.1016/j.cell.2010.07.041
14. Ichimura A, Hirasaawa A, Poulain-Godefroy O, Bonnefon A, Harau T, Teng L, et al. Dysfunction of lipid sensor GPR120 leads to obesity in both mouse and human. Nature (2012) 473(734):350–4. doi:10.1038/nature10798
15. Matsunara S, Eguchi A, Mizushige T, Kitabayashi N, Tsuzuki S, Inoue K, et al. Colocalization of GPR120 with phospholipase-Cbeta2 and alpha-gustducin in the taste bud cells in mice. Neurosci Lett (2009) 450(2):186–90. doi:10.1016/j.neulet.2008.11.056
16. Cartron C, Yasumatsu K, Ohkuri T, Shigemura N, Yoshida R, Godinot N, et al. Taste preference for fatty acids is mediated by GPR40 and GPR120. J Neurosci (2010) 30(25):8367–82. doi:10.1523/JNEUROSCI.0496-10.2010
17. Briscoe CP, Peat AJ, McKeown SC, Corbett DE, Goetz AS, Littleton TR, et al. Pharmacological regulation of insulin secretion in MIN6 cells through the fatty acid receptor GPR40: identification of agonist and antagonist small molecules. Br J Pharmacol (2006) 148:S19–28. doi:10.1038/bjp.2006.770
18. Takeuchi M, Hirasaawa A, Harau T, Kimura I, Hirano T, Suzuki T, et al. FFA1-selective agonistic activity based on docking simulation using FFA1 and GPR120 homology models. Br J Pharmacol (2013) 168:1570–83. doi:10.1111/j.1476-5381.2012.02052.x
19. Tsuchiha Y, Ito R, Suzuki M, Harada A, Negro N, Yamasu T, et al. TAK-875, an orally available G protein-coupled receptor 40/free fatty acid receptor 1 agonist, enhances glucose-dependent insulin secretion and improves both postprandial and fasting hyperglycemia in type 2 diabetic rats. J Pharmacol Exp Ther (2011) 339:228–37. doi:10.1124/jpet.111.183772
20. Harau T, Hirasaawa A, Sun Q, Sadakane K, Itsubo C, Iga T, et al. Novel selective ligands for free fatty acid receptors GPR120 and GPR40. Naunyn Schmiedebergs Arch Pharmacol (2009) 379:247–55. doi:10.1007/s00210-009-0425-9
21. Sun Q, Hirasaawa A, Harau T, Kimura I, Adachi T, Arai T, et al. Structure–activity relationships of GPR120 agonists based on a docking simulation. Mol Pharmacol (2010) 78:804–10. doi:10.1124/mol.110.066324
22. Suzuki T, Igar S-I, Hirasaawa A, Hata M, Ishiguro M, Fujieda H, et al. Identification of G protein-coupled receptor 120-selective agonists derived from PPAgamma agonists. J Med Chem (2008) 51:7640–4. doi:10.1021/jm800979b
23. Hudson BD, Shimpekude B, Mackenzie AE, Butcher AJ, Pediani JD, Christiansen E, et al. The pharmacology of TUG-891, a potent and selective agonist of the free fatty acid receptor 4 (FFA/GPR120), demonstrates both potential opportunity and possible challenges to therapeutic agonism. Mol Pharmacol (2013) 84:710–25. doi:10.1124/mol.113.078783
24. Shimpekude B, Hudson BD, Hovgaard CK, Møløgård G, Ulven T. Discovery of a potent and selective GPR120 agonist. J Med Chem (2012) 55:4511–5. doi:10.1021/jm300215x
25. Ma J, Novack A, Nathashibi I, Pham P, Rabbat CJ, Song J, et al. Aryl GPR120 Receptor Agonists and Uses Thereof. WO2010/048207, Metabolex Inc. (2010).
26. Hashimoto N, Sasaki Y, Nakama C, Ishikawa H, Shimamura T. Novel GPR120 Agonist for the Treatment of Metabolic Syndromes, such as Obesity and Diabetes. J Med Chem (2010) 53:207–15. doi:10.1002/jmc.201013003
27. Angers S, Salahpour A, Bovier M. Dimerization: an emerging concept for G protein-coupled receptor ontogeny and function. Annu Rev Pharmacol Toxicol (2002) 42:409–35. doi:10.1146/annurev.pharmtox.42.091701.082314
28. Michel MC, Wieland T, Tuijimo G. How reliable are G-protein-coupled receptor Agonists and Uses Thereof. WO/2010/048207, Metabolex Inc. (2010).

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 25 April 2014; accepted: 18 May 2014; published online: 02 June 2014.

This article was submitted to Diabetes, a section of the journal Frontiers in Endocrinology.

Citation: Hara T, Ichimura A and Hirasawa A (2014) Therapeutic role and ligands of medium- to long-chain fatty acid receptors. Front. Endocrinol. 5:83. doi: 10.3389/fendo.2014.00083