On the near-threshold incoherent ϕ photoproduction on the deuteron: Any trace of a resonance?

MIN16, Kyoto University

July 2016

Alvin Stanza Kiswandhi1,2

In collaboration with:
Shin Nan Yang2 and Yu Bing Dong3

1 Surya School of Education, Tangerang 15810, Indonesia
2 Center for Theoretical Sciences and Department of Physics, National Taiwan University, Taipei 10617, Taiwan
3 Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
Motivation

• Presence of a local peak near threshold at $E_\gamma \sim 2.0$ GeV in the differential cross-section (DCS) of $\gamma p \rightarrow \phi p$ at forward angle by Mibe and Chang, et al. [PRL 95 182001 (2005)] from the LEPS Collaboration.

→ Observed also recently by JLAB: B. Dey et al. [PRC 89 055208 (2014)], and Seraydaryan et al. [PRC 89 055206 (2014)].

• Conventional model of Pomeron plus π and η exchanges usually can only give rise to a monotonically-increasing behavior.

• We would like to see whether this local peak can be explained as a resonance.

• In order to check this assumption, we apply the results on $\gamma p \rightarrow \phi p$ to $\gamma d \rightarrow \phi pn$ to see if we can describe the latter.

1
Reaction model for $\gamma p \rightarrow \phi p$

- Here are the tree-level diagrams calculated in our model in an effective Lagrangian approach.

N^* is the postulated resonance.

- p_i is the 4-momentum of the proton in the initial state,
- k is the 4-momentum of the photon in the initial state,
- p_f is the 4-momentum of the proton in the final state,
- q is the 4-momentum of the ϕ in the final state.
• **Pomeron exchange**
 We follow the work of Donnachie, Landshoff, and Nachtmann
 \[\rightarrow\] **Pomeron-isoscalar-photon** analogy

• **π and η exchanges**
 For \(t\)-channel exchange involving \(π\) and \(η\), we use effective Lagrangian approach.

• **Resonances**
 Only spin 1/2 or 3/2 because the **resonance is close to the threshold**.
 \[\rightarrow\] **Effective Lagrangian approach** for the **vertices**, and **Breit-Wigner** form for the **propagators**.

3
Fitting to $\gamma p \rightarrow \phi p$ experimental data

- We include only one resonance at a time.
- We fit only masses, widths, and coupling constants of the resonances to the experimental data, while other parameters are fixed during fitting.
- Experimental data to fit
 - Differential cross sections (DCS) at forward angle
 - DCS as a function of t at eight incoming photon energy bins
 - Nine spin-density matrix elements (SDME) at three incoming photon energy bins
Results for $\gamma p \rightarrow \phi p$

- Both $J^P = 1/2^\pm$ resonances cannot fit the data.

- DCS at forward angle and as a function of t are markedly improved by the inclusion of the $J^P = 3/2^\pm$ resonances.

- In general, SDME are also improved by both $J^P = 3/2^\pm$ resonances.

- Decay angular distributions, not used in the fitting procedure, can also be explained well.

- We study the effect of the resonance to the DCS of $\gamma p \rightarrow \omega p$. The resonance seems to have a considerable amount of strangeness content.
\[
J^P = \frac{3}{2}^+ \\
\\
\begin{array}{|c|cc|}
\hline
M_{N^*}(\text{GeV}) & 2.08 \pm 0.04 & 2.08 \pm 0.04 \\
\Gamma_{N^*}(\text{GeV}) & 0.501 \pm 0.117 & 0.570 \pm 0.159 \\
\hline
\end{array}
\]

\[
J^P = \frac{3}{2}^- \\
\\
\begin{array}{|c|cc|}
\hline
M_{N^*}(\text{GeV}) & 2.08 \pm 0.04 & 2.08 \pm 0.04 \\
\Gamma_{N^*}(\text{GeV}) & 0.501 \pm 0.117 & 0.570 \pm 0.159 \\
\hline
\end{array}
\]

- The ratio \(A_{1/2}/A_{3/2} = 1.05 \) for the \(J^P = 3/2^- \) resonance.
- The ratio \(A_{1/2}/A_{3/2} = 0.89 \) for the \(J^P = 3/2^+ \) resonance.
We calculate only (a) and (b), as (c), (d), and (e) are estimated to be small.

We want to know if the resonance would manifest itself in different reaction.
• **Fermi motion** of the proton and neutron inside the deuteron is included using **deuteron wave function** calculated by Machleidt in PRC 63 024001 (2001).

• **Final-state interactions (FSI) of** pn **system is included using Nijmegen** pn **scattering amplitude.**

• **On- and off-shell** parts of the **pn propagator** are included.

$$\frac{1}{E_p+E_n-E_1'-E_2'+i\epsilon} = \frac{P}{E_p+E_n-E_1'-E_2} - i\pi\delta(E_p + E_n - E_1' - E_2)$$
• The **same model** for the amplitude of $\gamma p \rightarrow \phi p$.
 \[\rightarrow \text{Realistic model}\]
 \[\rightarrow \text{Correct spin structure} \text{ is maintained}\]

• A $J^P = 3/2^-$ **resonance** is also present in the $\gamma n \rightarrow \phi n$ amplitude

 – For ϕnn^* vertex, ϕp and ϕn cases are the same since ϕ is an $I = 0$ particle.

 – For γnn^* vertex, we assume that the **resonance** would have the same properties, including its coupling to γn, as a CQM state with the same isospin, J^P, and similar value of $A_{1/2}/A_{3/2}$ for the γp decay

 \[\rightarrow N_{3/2}^3(2095)[D_{13}]_5 \text{ in Capstick’s work in PRD 46, 2864 (1992), the only one with positive value of } A_{1/2}/A_{3/2} \text{ for } \gamma p \text{ in the energy region.} \]
Results for $\gamma d \rightarrow \phi pn$

- Notice that no fitting is performed to the LEPS data on DCS [PLB 684 6-10 (2010)] and SDME [PRC 82 015205 (2010)] of $\gamma d \rightarrow \phi pn$ from Chang et al.
 We use directly the parameters resulting from $\gamma p \rightarrow \phi p$.

- We found a fair agreement with the LEPS experimental data on both observables.

- Resonance, Fermi motion, and pn FSI effects are found to be large.
 Without them, the DCS data cannot be described.
DCS of $\gamma d \rightarrow \phi pn$

Not fitted

$$d\sigma_d/dt_\phi (\mu b GeV^{-2})$$

- $1.57 < E_\gamma < 1.67$ GeV
- $1.67 < E_\gamma < 1.77$ GeV
- $1.77 < E_\gamma < 1.87$ GeV
- $1.87 < E_\gamma < 1.97$ GeV

$t_\phi - t_{max} \text{(proton)} \text{ (GeV}^2\text{)}$
DCS of $\gamma d \rightarrow \phi pn$

Not fitted

$$d\sigma_d/dt_\phi (\mu b \text{ GeV}^{-2})$$

$t_\phi - t_{\text{max}}$(proton) (GeV2)
DCS of $\gamma d \rightarrow \phi pn$

Not fitted
DCS of $\gamma d \rightarrow \phi pn$

Not fitted
DCS of $\gamma d \rightarrow \phi pn$

Not fitted

$1.65 < E_\gamma < 1.75$ GeV

$\frac{d\sigma}{d t_\phi}$ (µb GeV$^{-2}$) vs. $t_\phi - t_{\text{max}}$ (proton) (GeV2)
DCS of $\gamma d \rightarrow \phi pn$ and its ratio to twice DCS of $\gamma p \rightarrow \phi p$ at forward angle

Not fitted

$$t_\phi = t_{\text{max}} \text{(proton)}$$

(a)

(b)
SDME of $\gamma d \rightarrow \phi pn$ as a function of t

Not fitted

$1.77 < E_\gamma < 1.97$ GeV

Spin-density matrix elements

ρ_{00}^0 ρ_{10}^0 ρ_{1-1}^0

ρ_{11}^1 ρ_{00}^1 ρ_{10}^1

ρ_{1-1}^1 ρ_{1-1}^1

$\text{Im} \rho_{2-1}^1$

$\text{Im} \rho_{10}^2$

$|t_\phi - t_{\text{max}}(\text{proton})|$ (GeV2)
SDME of $\gamma d \rightarrow \phi pn$ as a function of t

Not fitted

$1.97 < E_\gamma < 2.17$ GeV

Spin-density matrix elements

$|t_\phi - t_{\text{max}}(\text{proton})|$ (GeV2)

18
SDME of $\gamma d \rightarrow \phi pn$ as a function of t

Not fitted

$2.17 < E_\gamma < 2.37$ GeV

Spin-density matrix elements

$|t_\phi - t_{max} \text{(proton)}| \ (\text{GeV}^2)$

19
Summary and conclusions

- Inclusion of a resonance is needed to explain the non-monotonic behavior in the DCS $\gamma p \rightarrow \phi p$ near threshold.

- Resonance with $J = 3/2$ of either parity is preferred for $\gamma p \rightarrow \phi p$, while $J^P = 1/2^\pm$ cannot fit the data.

- The resonance seems to have a considerable amount of strangeness content.

- Based on a separate study on its effect on $\gamma p \rightarrow \omega p$.

- Agreement to the experimental data on the DCS and SDME of $\gamma d \rightarrow \phi pn$ is only quite reasonable using $J^P = 3/2^-$ resonance.

- Fermi motion, final-state interaction of pn, and resonance effects are found to be large and important to describe the data.
THANK YOU!
Pomeron exchange

We follow the work of Donnachie, Landshoff, and Nachtmann

\[i\mathcal{M} = i\bar{u}_f(p_f)\epsilon^*_\phi M_{\mu\nu} u_i(p_i)\epsilon^\nu \]

\[M_{\mu\nu} = \Gamma_{\mu\nu} M(s, t) \]

with

\[\Gamma_{\mu\nu} = k^\mu \left(g_{\mu\nu} - \frac{q_\mu q_\nu}{q^2}\right) - \gamma_\nu \left(k_\mu - q_\mu \frac{k \cdot q}{q^2}\right) \]

\[- \left(q_\nu - \bar{p}_\nu \frac{k \cdot q}{p \cdot k}\right) \left(\gamma_\mu - q_\mu \frac{q_\mu}{q^2}\right) \]

\[\bar{p} = \frac{1}{2}(p_f + p_i) \]

where \(\Gamma^{\mu\nu} \) is chosen to maintain gauge invariance, and

A1
\[M(s, t) = C_P F_1(t) F_2(t) \frac{1}{s} \left(\frac{s - s_{th}}{4} \right)^{\alpha_P(t)} \exp \left[-i\pi \alpha_P(t)/2 \right] \]

in which

\[F_1(t) = \frac{4m_N^2 - 2.8t}{(4m_N^2 - t)(1 - t/0.7)^2} \]

\[F_2(t) = \frac{2\mu_0^2}{(1 - t/M_\phi^2)(2\mu_0^2 + M_\phi^2 - t)}; \quad \mu_0^2 = 1.1 \text{ GeV}^2 \]

\(F_1(t) \rightarrow \text{isoscalar EM form-factor of the nucleon} \)
\(F_2(t) \rightarrow \text{form-factor for the } \phi-\gamma\text{-Pomeron coupling} \)
\(\text{Pomeron trajectory } \alpha_P = 1.08 + 0.25t. \)

- The strength factor \(C_P = 3.65 \) is chosen to fit the total cross sections data at high energy.
- The threshold factor \(s_{th} = 1.3 \text{ GeV}^2 \) is chosen to match the forward differential cross sections data at around \(E_\gamma = 6 \text{ GeV} \).
Effects on $\gamma p \rightarrow \omega p$

- From the $\phi - \omega$ mixing, we expect the resonance to also contribute to ω photoproduction.
- The coupling constants $g_{\phi NN^*}$ and $g_{\omega NN^*}$ are related, and in our study we choose to use the so-called "minimal" parametrization,

$$g_{\phi NN^*} = -x_{OZI} \tan \Delta \theta_V g_{\omega NN^*}$$

where $x_{OZI} = 1$ is the ordinary $\phi - \omega$ mixing.
- By using $x_{OZI} = 12$ for the $JP = 3/2^-$ resonance and $x_{OZI} = 9$ for the $JP = 3/2^+$ resonance, we found that we can explain quite well the DCS of ω photoproduction.
- The large value of x_{OZI} indicates that the resonance has a considerable amount of strangeness content.
DCS of $\gamma p \rightarrow \omega p$ as a function of t

Data from M. Williams, PRC 80, 065209 (2009)