Benefits of Statistical Molecular Design, Covariance Analysis, and Reference Models in QSAR: a Case Study on Acetylcholinesterase

C. David Andersson, J. Mikael Hillgren, Cecilia Lindgren, Weixing Qian, Christine Akfur, Lotta Berg, Fredrik Ekström, and Anna Linusson.

1 Department of Chemistry, Umeå University, SE-90187 Umeå, Sweden. 2 Current address: Department of Chemistry & Molecular Biology - Medicinal Chemistry, University of Gothenburg SE-41296 Göteborg, Sweden. 3 Laboratories for Chemical Biology Umeå, Umeå University, SE-90187 Umeå, Sweden. 4 Swedish Defense Research Agency, CBRN Defense and Security, SE-90621 Umeå, Sweden.

Table of Contents

S1 Contents
S2 Statistical molecular design
S3-S12 Synthetic chemistry: methods and results
S13 AChE inhibition assay
S14 QSAR PLS permutation tests
S15-S17 Test sets Set1, Set2, and Set3 molecules, inhibition data and nearest neighbors
S18 Reference model regressions for logP, TPSA and vdw area
S19 Statistical analysis of QSAR model and reference models
S20 References
Statistical molecular design

SMD [1] may be performed by using a statistical selection method such as D-optimal design, which is especially suitable for molecule selection compared to, for example, factorial designs [1]. Imagine a set of molecules spanning a property space of \(x \) dimension, where \(x \) corresponds to some descriptors or structural features giving the multidimensional matrix \(X \). Molecule property spaces are often irregular in shape, which is a problem for factorial designs but less so for D-optimal selections. A subset of molecules selected for D-optimality would span the multidimensional space with a volume as large as possible (showing in a high \(\log(\text{determinant } X^t X) \)) and with a spherical geometry (shown by a low condition number). Hence, a D-optimal selection would span an irregular space equally well as a spherical space, but it would show in a higher condition number. The SMD included a selection of a subset of 18 compounds by applying a D-optimal design [2] on a matrix of qualitative descriptors generated for the 144 possible combinations of the structural fragments at positions pIa, pIb, pII and pIII.
Synthetic chemistry: methods and results

Chemicals were purchased from Aldrich Chemical Co. and used without further purification. Reactions were conducted under a nitrogen atmosphere, in dried glassware, using anhydrous solvents unless stated otherwise. Reagent grade CH₂Cl₂ was distilled from calcium hydride. Reagent grade dimethylformamide was distilled under reduced pressure and stored over 4 Å molecular sieves. Column chromatography was performed on silica gel (Merck, 60 Å, 40-63 μm) or using a Biotage SNAP cartridge KP-Sil (10 g) on a Biotage Isolera system. Preparative reverse-phase HPLC for compounds AL017, AL021, AL022, AL053-AL055, AL048 and AL129 was performed on a Gilson GX-271 instrument fitted with a Machery-Nagel C₁₈ HTEC, 5 μm particle size column, using a water/acetonitrile eluent system with a flow rate of 20 mL/min. Analytical reverse phase HPLC for compounds AL005-AL009, AL011-AL015, and AL017-AL022 was performed with a flowrate of 1 mL/min, a Gilson® 172 diode array detector (detection at 210-360 nm), a Sedere Sedex 85 low-temperature evaporative light-scattering detector (ELSD), and an EC 150/4.6 Nucleodor (C₁₈ HTEc, 5 μm) column using a water/acetonitrile/formic acid eluent system. Analytical reversed-phased HPLC for compounds AL010, AL016, AL053-AL055, AL058, AL129, AL137-AL140, AL142, AL150 and AL152 was performed on a Shimadzu® LC-30AD pump (flowrate 1 mL/min) with a Shimadzu SPD-M20A diode array detector (detection at 210-360 nm) an EC 150/4.6 Nucleodor C₁₈ HTeC, 5 μm column using a water/acetonitrile/formic acid eluent system. ¹H NMR and ¹³C NMR spectra were recorded on a Bruker DRX-400 at 298 K with chemical shift values (δ) being reported in ppm relative to residual protic solvent (CHCl₃, δH 7.26 ppm, δC 77.16 ppm; CD₃OH, δH 3.31 ppm, δC 49.00 ppm; CDCl₂, δH 5.32 ppm, δC 53.84 ppm). All intermediates were characterized with ¹H NMR, and final products were characterized with ¹H and ¹³C NMR and purity of final products was determined from HPLC UV traces.

General procedure 1: formation of amides and sulfonamides. The amine coupling partner (1.2 equiv) followed by triethylamine (1.2 equiv) was added slowly to the relevant acid chloride or sulfonyl chloride (0.45–1.59 mmol, 1 equiv) in CH₂Cl₂ (10 mL) cooled to 0 °C. The solution was stirred at rt for 17 h before being concentrated under reduced pressure. The residue was dissolved in ethyl acetate (15 mL), washed with sat. aq. NaHCO₃ (3×2 mL) and brine (2 mL), dried (Na₂SO₄) and concentrated under reduced pressure. The resulting crude material was purified either by precipitation of the hydrochloride salt from a solution of the material in a mixture of CH₂Cl₂, diethyl ether and HCl (1 M in diethyl ether), or by chromatography on silica gel eluting first with 1:9 ethyl acetate/heptane with 0.5% triethylamine added, then with 1:99 MeOH:CH₂Cl₂ with 0.5% triethylamine. In the cases where the acid chloride was not commercially available it was pre-generated as follows: Oxalyl chloride (10 equiv) and a few drops of dimethylformamide were added to the corresponding carboxylic acid (1 equiv) dissolved in CH₂Cl₂ (10 mL) cooled to 0
℃. The resulting mixture was stirred for 40 min before being evaporated to dryness under reduced pressure and used immediately as described above without purification.

General procedure 2: reaction of amines and alkyl halides. K$_2$CO$_3$ (2.50 equiv) was added to a solution of the relevant amine (2.50-2.60 mmol, 1.00 equiv) and alkyl halide (1.05 equiv) in acetonitrile (10 mL) and the resulting suspension was refluxed for 24 h. After being allowed to attain rt, sat. aq. NaHCO$_3$ (5 mL) was added to the mixture, the layers were separated, and the water phase was extracted with CH$_2$Cl$_2$ (2×10 mL). The combined organic phases were dried (Na$_2$SO$_4$) and concentrated under reduced pressure. The crude residue was purified by column chromatography on silica gel (EtOAc:MeOH 5:1).

General procedure 3: removal of Boc groups.
A HCl solution (4.0 M in diethyl ether, 6 ml) was added to the relevant carbamate (0.22-0.40 mmol, 1 equiv) dissolved in EtOH (4 mL). The mixture was stirred at rt for 10 h before being made basic by addition of sat. aq. NaHCO$_3$, and extracted with CHCl$_3$ (3×10 mL). The combined organic layers were dried (Na$_2$SO$_4$) and concentrated under reduced pressure. The residue was dissolved in MeOH, adjusted to pH 5 using 10% aqueous HCl solution, and the resulting solution was purified by preparative HPLC (MeCN/water 10 → 60%, 20 mL/min over 30 min).
1-(4-Chloro-phenyl)-N-[2-(diethylamino)-ethyl]-methanesulfonamide (1, AL011): using general procedure 1; yield 40%; 1H NMR (CDCl$_3$): δ 7.33 (appt. s, 4H), 4.21 (s, 2H), 2.95 (t, $J = 5.8$ Hz, 2H), 2.50-2.42 (m, 6H), 0.95 (t, $J = 7.1$ Hz, 6H); 13C NMR (CDCl$_3$): δ 134.9, 132.0, 129.0, 128.2, 58.1, 52.0, 46.5, 40.9, 11.7.

1-(4-Chloro-phenyl)-N-[3-(piperidin-1-yl)-propyl]-methanesulfonamide (2, AL013): using general procedure 1; yield 44%; 1H NMR (CDCl$_3$): δ 7.35 (appt. s, 4H), 4.18 (s, 2H), 3.11 (t, $J = 5.6$ Hz, 2H), 2.39 (t, $J = 5.6$ Hz, 2H), 2.32-2.22 (m, 4H), 1.64 (tt, $J = 5.6, 5.6$ Hz, 2H), 1.41 -1.34 (m, 6H); 13C NMR (CDCl$_3$): δ 134.8, 132.0, 129.0, 128.8, 58.9, 57.3, 54.5, 44.9, 25.8, 24.4, 24.2.

2-(4-Chloro-phenyl)-N-[3-(morpholino-4-yl)-propyl]-acetamide (3, AL012): using general procedure 1; yield 99%; 1H NMR (CDCl$_3$): δ 7.30 (d, $J = 8.4$ Hz, 2H), 7.20 (d, $J = 8.4$ Hz, 2H), 6.57 (br s, 1H), 3.63 (t, $J = 5.1$ Hz, 2H), 3.48 (s, 2H), 3.31 (q, $J = 6.3$ Hz, 2H), 2.40-2.36 (m, 6H), 1.64 (tt, $J = 6.3, 6.3$ Hz, 2H); 13C NMR (CDCl$_3$): δ 170.4, 133.8, 133.3, 130.7, 129.1, 66.9, 57.4, 53.7, 43.3, 25.0.

N-(3-[Dimethylamino]-ethyl)-4-methyl-3-nitrobenzamide hydrochloride (4, AL007): using general procedure 1; yield 65%; 1H NMR (CD$_3$OD): δ 8.42 (d, $J = 1.7$ Hz, 1H), 8.07 (dd, $J = 8.1, 1.7$ Hz, 1H), 7.72 (d, $J = 8.1$ Hz, 1H), 3.35-3.25 (m, 4H), 2.96 (s, 6H), 2.65 (s, 3H); 13C NMR (CD$_3$OD): δ 150.7, 139.9, 139.8, 135.4, 132.0, 124.4, 57.8, 43.8, 39.1, 20.2.

4-Methyl-3-nitro-N-[3-(piperidin-1-yl)-propyl]-benzenesulfonamide (5, AL008): using general procedure 1; yield 40%; 1H NMR (CDCl$_3$): δ 8.39 (d, $J = 1.8$ Hz, 1H), 7.95 (dd, $J = 8.0, 1.8$ Hz, 1H), 7.51 (d, $J = 8.0$ Hz, 1H), 3.07 (t, $J = 5.6$ Hz, 2H), 2.66 (s, 3H), 2.42-2.31 (m, 4H), 2.39 (t, $J = 5.6$ Hz, 2H), 1.65-1.59 (m, 6H), 1.49-1.42 (m, 2H); 13C NMR (CD$_3$OD): δ 149.2, 140.1, 137.9, 133.8, 130.9, 123.3, 59.1, 54.5, 44.8, 26.1, 24.2, 23.4, 20.6.

N-(3-[Diethylamino]-propyl)-4-methyl-3-nitrobenzamide hydrochloride (6, AL006): using general procedure 1; yield 74%; 1H NMR (CD$_3$OD): δ 8.44 (d, $J = 1.9$ Hz, 1H), 8.06 (dd, $J = 8.0, 1.9$ Hz, 1H), 7.57 (d, $J = 8.0$ Hz, 1H), 3.52 (t, $J = 6.6$ Hz, 2H), 3.31-3.21 (m, 6H), 2.61 (s, 3H), 2.10-2.03 (m, 2H), 1.34 (t, $J = 7.3$ Hz, 6H); 13C NMR (CD$_3$OD): δ 168.0, 150.7, 138.1, 134.3, 132.4, 124.5, 50.8, 48.4, 38.0, 25.4, 20.1, 9.1.

2-Methoxy-N-[2-(morpholin-4-yl)-ethyl]-5-(1-oxo-1,3-dihydro-isoindol-2-yl)-benzenesulfonamide (7, AL015): using general procedure 1; yield 94%; 1H NMR (CDCl$_3$): δ 8.53 (dd, $J = 7.5, 2.8$ Hz, 1H), 7.92 (d, $J = 2.8$ Hz, 1H), 7.90 (d, $J = 7.5$ Hz, 1H), 7.64-7.58 (m, 1H), 7.60-7.47 (m, 2H), 7.10 (d, $J = 9.1$ Hz, 1H), 5.71 (t, $J = 5.1$ Hz, 1H), 4.87 (s, 2H), 4.00 (s, 3H), 3.74-3.59 (m, 4H), 3.05-2.98 (m, 2H), 2.46 (t, $J = 5.6$ Hz, 2H), 2.40-2.33 (4H, m); 13C NMR (CDCl$_3$): δ 167.7, 152.9, 140.1, 133.1, 132.8, 132.5, 128.7, 127.4, 126.5, 124.3, 122.9, 120.7, 113.2, 66.9, 56.9, 56.6, 53.2, 51.0, 39.6.

N-(3-[Dimethylamino]-propyl)-2-methoxy-5-(1-oxo-1,3-dihydro-isoindol-2-yl)-benzenesulfonamide (8, AL016): using general procedure 1; yield 90%; 1H NMR (CDCl$_3$): δ 8.56 (dd, $J = 7.5, 2.8$ Hz, 1H), 7.91 (d, $J = 7.5$ Hz, 1H), 7.88
(d, J = 2.8 Hz, 1H), 7.65-7.57 (m, 2H), 7.55-7.47 (m, 2H), 1.72-1.64 (m, 2H), 7.11 (d, J = 9.1 Hz, 2H), 6.59 (br s, 1H), 4.88 (s, 2H), 4.00 (s, 3H), 2.99 (t, J = 6.0 Hz, 2H), 2.35 (t, J = 6.1 Hz, 2H), 2.22 (s, 6H); 13C NMR (CDCl3): δ 167.7, 153.1, 140.2, 132.88, 132.86, 132.5, 128.6, 127.7, 126.5, 124.3, 120.8, 113.2, 58.9, 56.9, 51.1, 45.6, 43.8, 26.0.

3-Chloro-benzo[b]thiophene-2-N-(3-dimethylamino-propyl)-carboxamide hydrochloride (9, AL005): using general procedure 1; yield 56%; 1H NMR (CD3OD): δ 7.96-7.89 (m, 2H), 7.57-7.53 (m, 2H), 3.57 (t, J = 6.7 Hz, 2H), 3.27-3.23 (m, 2H), 2.93 (s, 6H), 2.11 (m, 2H); 13C NMR (CD3OD): δ 163.9, 139.1, 138.0, 132.7, 129.0, 127.0, 124.2, 124.1, 121.7, 56.9, 43.8, 38.0, 26.2.

N-[2-(Piperidin-1-yl)-ethyl]-2-(4-trifluoromethyl-phenyl)-acetamide (10, AL014): using general procedure 1; yield 92%; 1H NMR (CDCl3): δ 7.59 (d, J = 8.0 Hz, 2H), 7.39 (d, J = 8.0 Hz, 2H), 6.25 (br s, 1H), 3.61 (s, 2H), 3.26 (td, J = 6.1, 4.7 Hz, 2H), 2.35 (t, J = 6.1 Hz, 2H), 2.28-2.23 (m, 4H), 1.41-1.36 (m, 6H); 13C NMR (CDCl3): δ 169.9, 139.4, 129.9, 129.6 (q, J = 32.4 Hz), 125.8 (q, J = 3.7 Hz), 124.2 (q, J = 272.1 Hz), 56.5, 43.6, 36.2, 26.0, 24.3.

5-(4-Chlorophenyl)-N-(2-morpholinoethyl)furan-2-carboxamide (11, AL009): using general procedure 1; yield 28%; 1H NMR (CD3OD): δ 7.80 (d, J = 8.6 Hz, 2H), 7.41 (d, J = 8.6 Hz, 2H), 6.16 (d, J = 3.6 Hz, 1H), 3.71-3.69 (m, 4H), 3.54 (t, J = 6.6 Hz, 2H), 2.60 (t, J = 6.8 Hz, 2H), 2.55-2.53 (m, 4H); 13C NMR (CD3OD): δ 163.8, 139.0, 137.9, 132.6, 128.8, 126.9, 124.01, 123.99, 121.5, 56.7, 43.6, 37.9, 26.1.

5-(4-Chloro-phenyl)-furan-2-N-[3-(diethylamino)-propyl]-carboxamide hydrochloride (12, AL010): using general procedure 1; yield 50%; 1H NMR (CD3OD): δ 7.86 (d, J = 8.6 Hz, 2H), 7.43 (d, J = 8.6 Hz, 2H), 7.2 (d, J = 3.7 Hz, 1H), 6.95 (d, J = 3.7 Hz, 1H), 3.52 (t, J = 6.6 Hz, 2H), 3.28-3.20 (m, 6H), 2.11-2.04 (m, 2H), 1.33 (t, J = 7.3 Hz, 6H); 13C NMR (CD3OD): δ 161.1, 156.3, 147.8, 135.4, 130.1, 129.6, 127.1, 117.7, 108.8, 50.8, 49.9, 49.6, 48.4, 37.2, 25.5, 9.2.

1-(2-[2-(4-Chloro-phenyl)-acetylamino]-ethyl)-pyridinium bromide (13, AL017): Pyridine (16 mg, 0.20 mmol) was added to a solution of 21 (50 mg, 0.18 mmol) in MeCN (1.5 mL) and the resulting mixture heated at 80 °C for 12 h, at which point LCMS analysis indicated complete consumption of the starting material. The mixture was purified by preparative HPLC (acetonitrile/water 10-50%, 20 mL/min over 30 min) to give the salt 13 (27 mg, 42%) as a colourless powder; 1H NMR (CD3OD): δ 8.87 (dd, J = 6.7, 1.1 Hz, 2H), 8.50 (tt, J = 7.8, 1.3 Hz, 1H), 7.93 (t, J = 6.7 Hz, 2H), 7.36-7.28 (m, 2H), 7.26-7.16 (m, 2H), 4.74 (t, J = 5.6 Hz, 2H), 3.80 (t, J = 5.6 Hz, 2H), 3.44 (s, 2H); 13C NMR (CD3OD): δ 174.2, 147.0, 146.3, 135.4, 133.9, 131.9, 129.7, 129.2, 62.3, 42.8, 40.7.

1-(3-[3-Chloro-benzo[b]thiophen-2-carbonyl-amino]-propyl)-pyridinium chloride (14, AL021): Alkyl halide 22 (88 mg, 0.30 mmol) was dissolved in pyridine (0.5 mL) and heated at 120 °C for 3 days, at which point LCMS analysis indicated complete consumption of the starting material. Excess pyridine was removed under reduced pressure and the crude residue purified by preparative HPLC (MeCN/water 10-30%, 20 mL/min over 30 min) to give the salt 14 (93 mg, 83%) as a colourless powder; 1H NMR (CD3OD): δ 9.17-9.09 (m, 2H), 8.64-8.56 (m, 1H), 8.18-8.09 (m, 2H), 7.96-7.89
(m, 1H), 7.89-7.84 (m, 1H), 7.58-7.49 (m, 2H), 4.80 (t, 1H, J = 7.3 Hz, 2H), 3.59 (t, 1H, J = 6.5 Hz, 2H), 2.50-2.36 (m, 2H); \(^{13}\)C NMR (CD\(_3\)OD): \(\delta\) 163.4, 147.0, 138.9, 137.8, 132.7, 129.5, 128.8, 126.9, 124.0, 123.9, 121.4, 60.9, 37.8, 32.3.

1-(3-[((4-Trifluoromethyl-phenyl)-methanesulfonylamino]-propyl)-pyridinium bromide (15, AL022): Alkyl halide 23 (60 mg, 0.17 mmol) was dissolved in pyridine (99 mg, 1.2 mmol) and acetonitrile (2 mL). The mixture was stirred at 90 °C for 16 h, at which point LCMS analysis indicated complete consumption of the starting material. Solvents were removed under reduced pressure and the crude residue was purified by preparative HPLC (McCN/water 10-40%, 20 mL/min over 30 min) to give the salt 15 (51 mg, 70%) as a colorless solid; \(^1\)H NMR (CD\(_3\)OD): \(\delta\) 9.05-8.99 (m, 2H), 8.60 (tt, 1H, J = 7.8, 1.2 Hz, 1H), 8.17-8.08 (m, 2H), 7.69 (s, 1H, J = 8.3 Hz, 2H), 7.64 (d, 1H, J = 8.3 Hz, 2H), 4.75 (t, 1H, J = 7.2 Hz, 2H), 4.48 (s, 2H), 3.14 (t, 1H, J = 6.1 Hz, 2H), 2.30-2.19 (m, 2H); \(^{13}\)C NMR (CD\(_3\)OD): \(\delta\) 147.0, 146.2, 135.8 (q, 1H, J = 1.4 Hz), 132.7, 131.5 (q, 1H, J = 3.3 Hz), 129.5, 126.5 (q, 1H, J = 3.7 Hz), 125.6 (q, 1H, J = 269.7 Hz), 60.3, 58.2, 40.9, 32.6.

3-Chloro-benzo[b]thiophene-2-N-[2-(piperazin-1-yl)-ethyl]-carboxamide hydrochloride (16, AL018): starting from 24 using general procedure 3; yield 87%; \(^1\)H NMR (CD\(_3\)OD): \(\delta\) 7.93-7.88 (m, 1H), 7.88-7.82 (m, 1H), 7.55-7.47 (m, 2H), 3.59 (t, 1H, J = 6.2 Hz, 3H), 3.28-3.21 (m, 4H), 2.86-2.78 (m, 4H), 2.71 (t, 1H, J = 6.2 Hz, 3H); \(^{13}\)C NMR (CD\(_3\)OD): \(\delta\) 162.9, 138.9, 137.9, 133.2, 128.7, 126.8, 124.0, 123.9, 120.8, 57.3, 50.6, 45.0, 38.0.

\(\text{N-[3-(Piperazin-1-yl)-propyl]-C-(4-trifluoromethyl-phenyl)-methanesulfonamide hydrochloride (17, AL020):}\) starting from 25 using general procedure 3; yield 28%; \(^1\)H NMR (CD\(_3\)OD): \(\delta\) 7.70 (d, 1H, J = 8.3 Hz, 2H), 7.64 (d, 1H, J = 8.3 Hz, 2H), 4.46 (s, 2H), 3.29-3.18 (m, 4H), 3.09 (t, 1H, J = 7.0 Hz, 2H), 2.79 (br s, 4H), 2.58 (t, 1H, J = 7.0 Hz, 2H), 1.79-1.66 (m, 2H); \(^{13}\)C NMR (CD\(_3\)OD): \(\delta\) 136.1, 132.7, 131.4 (q, 1H, J = 3.8 Hz), 126.4 (q, 1H, J = 3.8 Hz), 125.6 (q, 1H, J = 271.7 Hz), 58.3, 56.0, 50.6, 44.5, 42.3, 27.9.

5-(4-Chloro-phenyl)-furan-2-N-[3-(piperazin-1-yl)-propyl)-carboxamide hydrochloride (18, AL019): starting from 26 using general procedure 3; yield 60%; \(^1\)H NMR (CD\(_3\)OD): \(\delta\) 8.54 (br s, 1H), 7.94-7.72 (m, 2H), 7.52-7.32 (m, 2H), 7.17 (d, 1H, J = 3.7 Hz, 1H), 6.92 (d, 1H, J = 3.7 Hz, 1H), 3.45 (t, 1H, J = 7.0 Hz, 2H), 3.28-3.09 (m, 4H), 2.82-2.63 (m, 4H), 2.53 (t, 1H, J = 7.1 Hz, 2H), 1.83 (tt, 1H, J = 7.1, 7.0 Hz, 2H); \(^{13}\)C NMR (CD\(_3\)OD): \(\delta\) 160.7, 156.1, 148.3, 135.4, 130.1, 129.7, 127.1, 117.2, 108.7, 56.5, 51.0, 44.8, 38.3, 27.5.

\(\text{N-(2-Bromo-ethyl)-2-(4-chloro-phenyl)-acetamide (21):}\) using general procedure 1; yield 87%; \(^1\)H NMR (CDCl\(_3\)): \(\delta\) 7.36-7.29 (m, 2H), 7.24-7.17 (m, 2H), 5.97 (br s, 1H), 3.61 (dt, 1H, J = 5.9, 5.8 Hz, 2H), 3.54 (s, 2H), 3.43 (t, 1H, J = 5.8 Hz, 2H).

3-Chloro-benzo[b]thiophene-2-N-(3-chloro-propyl)-carboxamide (22): using general procedure 1; yield 61%; \(^1\)H NMR (CDCl\(_3\)) \(\delta\) 7.85-7.76 (m, 2H), 7.50-7.41 (m, 2H), 7.31 (br s, 1H), 3.74-3.61 (m, 4H), 2.20-2.09 (m, 2H).
N-(3-Bromo-propyl)-C-(4-trifluoromethyl-phenyl)-methanesulfonamide (23): using general procedure 1; yield 40%;

^1H NMR (CDCl3): δ 7.66 (d, J = 8.2 Hz, 2H), 7.53 (d, J = 8.2 Hz, 2H), 4.46 (t, J = 6.2 Hz, 1H), 4.31 (s, 2H), 3.42 (t, J = 6.2 Hz, 2H), 3.25-3.15 (m, 2H), 1.98-2.09 (2H, m).

tert-Butyl-4-[2-(3-chloro-benzo[b]thiophene-2-carboxamido)-ethyl]-piperazine-1-carboxylate (24): using general procedure 1 (the amine coupling partner, (4-(2-aminoethyl)piperazine)carboxylic acid 1,1-dimethylether 20i was prepared according to literature procedures) [3]; yield 49%;

^1H NMR (CDCl3): δ 7.84 (br s, 1H) 7.82-7.70 (m, 2H), 7.49-7.38 (m, 2H), 3.57 (dt, J = 5.7, 5.4 Hz, 2H), 3.54-3.51 (m, 4H), 2.61 (t, J = 5.7 Hz, 2H), 2.56-2.37 (m, 4H), 1.44 (s, 9H).

tert-Butyl-4-(3-[5-(4-chloro-phenyl)-furan-2-carboxamido]-propyl)-piperazine-1-carboxylate (26): using general procedure 1 (the amine coupling partner, (4-(2-aminopropyl)piperazine)carboxylic acid 1,1-dimethylether 20j was prepared according to literature procedures) [3]; yield 81%;

^1H NMR (CDCl3): δ 7.56 (d, J = 8.6 Hz, 2H), 7.51 (br s, 1H), 7.32 (d, J = 8.6 Hz, 2H), 7.13 (d, J = 3.6 Hz, 1H), 6.68 (d, J = 3.6 Hz, 1H), 3.61-3.52 (m, 2H), 3.50-3.40 (m, 4H), 2.50 (t, J = 6.2 Hz, 2H), 2.45-2.35 (m, 4H), 1.81-1.75 (m, 2H), 1.42 (s, 9H).

1-[3-(4-Methyl-3-nitro-benzoylamino)-propyl]-pyridinium bromide (27, AL053): pyridine (37 mg, 0.46 mmol) was added to a solution of 32 (140 mg, 0.46 mmol) in MeCN (25 µL) and the resulting mixture heated at 80 °C for 6 h, at which point LCMS indicated complete consumption of the starting material. The mixture was purified by preparative HPLC (MeCN/water 10-50%, 20 mL/min over 30 min) to give the salt 27 (27 mg, 42%) as a white powder;

^1H NMR (CD3OD): δ 9.13 (d, J = 5.9 Hz, 2H), 8.61 (t, J = 8.0 Hz, 1H), 8.43 (d, J = 1.8 Hz, 1H), 8.15 (t, J = 7.9 Hz, 2H), 8.08-8.04 (m, 1H), 7.56 (d, J = 8.0 Hz, 1H), 4.84-4.75 (m, 2H), 3.54 (t, J = 6.6 Hz, 2H), 2.61 (s, 3H), 2.4 (m, J = 6.8 Hz, 2H);

^13C NMR (CD3OD): δ 167.9, 150.7, 147.1, 146.3, 138.2, 134.5, 134.4, 132.6, 129.7, 124.7, 61.0, 37.7, 32.4, 20.3.

1-[2-(4-Methyl-3-nitro-benzoylamino)-ethyl]-pyridinium bromide (28, AL054): 4-methyl-3-nitrobenzoyl chloride (0.19 g, 0.95 mmol), 33 (0.19 g, 0.95 mmol) was dissolved in CH2Cl2 (2.0 mL) and the solution was stirred at rt for 6 h, at which point LCMS analysis indicated consumption of the starting material. The solvent was removed under reduced pressure. The residue was dissolved in MeOH and purified by preparative HPLC (MeCN:water 1:9, isocratic) which gave 28 (62 mg, 18%) as a white solid after lyophilisation;

^1H NMR (CD2OD): δ 9.06 (d, J = 5.5 Hz, 2H),8.62 (t, J = 7.7
Hz, 1H), 8.32 (s, 1H), 8.16-8.08 (m, 2H), 7.99-7.92 (m, 1H), 7.58-7.50 (m, 1H), 4.93-4.86 (m, 2H), 4.07-4.98 (m, 2H), 2.59 (s, 3H); 13C NMR (CD3OD): δ 168.1, 150.8, 147.5, 146.6, 138.5, 134.5, 133.8, 132.5, 129.6, 124.7, 62.6, 41.7, 20.3.

Dimethyl-[3-(4-methyl-3-nitro-benzoylamino)-propyl]-ammonium chloride (29, AL055): 3-(dimethylamino)-1-propylamine (0.10 g, 0.50 mmol) was dissolved in CH2Cl2 (2.0 mL) and cooled to 0 °C. 4-Methyl-3-nitrobenzoyl chloride (51 mg, 0.5 mmol) was added slowly and the mixture was stirred at rt for 2 h, at which point LCMS analysis indicated consumption of the starting material. The organic phase was washed with sat. aq. NaHCO3 (2 mL), dried (Na2SO4) and concentrated under reduced pressure. The residue was dissolved in MeOH, adjusted to pH 5 (using HCl, 1 M) and purified by preparative HPLC (MeCN/water 10→50%, over 30 min) to yield 29 (68 mg, 45%) as a white solid after lyophilisation; 1H NMR (CD3OD): δ 8.46-8.43 (m, 1H), 8.09-8.03 (m, 1H), 7.58-7.53 (m, 1H), 3.55-3.49 (m, 2H), 3.26-3.20 (m, 2H), 2.93 (br s, 6H), 2.61 (br s, 3H); 13C NMR (CD3OD): δ 168.0, 150.7, 138.0, 134.3, 132.5, 124.5, 56.7, 43.6, 37.7, 26.1, 20.1.

3-[2-(2-Nitro-benzenesulfonylamino)-ethyl]-thiazol-3-ium bromide (30, AL058): 34 (15 mg, 0.05 mmol) was mixed with thiazole (8.5 mg, 0.10 mmol) in a microwave tube and heated to 130 °C for 60 min in a microwave reactor [4]. The solid formed was dissolved in CH3OH and LCMS analysis indicated that the desired product had been formed. The product was purified by preparative HPLC (MeCN/water, 10→50% over 30 min), which gave 30 (15 mg, 76%) as a white solid after lyophilisation; 1H NMR (CD3OD): δ 8.46-8.43 (m, 1H), 8.09-8.03 (m, 1H), 7.58-7.53 (m, 1H), 3.55-3.49 (m, 2H), 3.26-3.20 (m, 2H), 2.93 (br s, 6H), 2.61 (br s, 3H); 13C NMR (CDCl3): δ 160.9, 149.4, 138.8, 135.5, 134.0, 133.9, 131.5, 127.3, 126.2, 56.5, 44.0.

3-(2-[5-Nitro-benzo[b]thiophene-2-carbonyl]-amino)-ethyl-thiazol-3-ium bromide (31, AL129): 35 (17 mg, 0.05 mmol) was mixed with thiazole (17 mg, 0.20 mmol) in a microwave tube and heated at 130 °C for 70 min in a microwave reactor [4]. The formed solid was dissolved in MeOH and LCMS analysis indicated that two main products had been formed. The products were separated by HPLC (MeCN/water, 10→50% over 30 min) to yield 31 (12 mg, 58%) as a white solid after lyophilization; 1H NMR ((CD3)2SO): δ 10.28-10.22 (m, 1H), 9.24 (t, J = 5.8 Hz, 1H), 8.86 (d, J = 2.0 Hz, 1H), 8.66-8.62 (m, 1H), 8.37-8.33 (m, 1H), 8.32-8.21 (m, 3H), 4.83-4.77 (m, 2H), 3.88-3.80 (m, 2H); 13C NMR ((CD3)2SO): δ 161.4, 160.0, 145.9, 145.4, 142.7, 138.9, 137.5, 126.8, 126.0, 124.3, 120.9, 120.1, 54.2.

N-(3-Bromo-propyl)-4-methyl-3-nitro-benzamide (32): using general procedure 1; yield 93%; 1H NMR (CDCl3): 8.31 (d, J = 2.0 Hz, 1H), 7.93-7.87 (m, 1H), 7.48-7.39 (m, 1H), 7.35-7.29 (m, 1H), 3.55 (q, J = 6.3 Hz, 2H), 3.43 (t, J = 6.5 Hz, 2H), 2.54 (s, 3H), 2.15 (m, J = 6.6 Hz, 2H).

2-(Pyridinium-1-yl)-ethylamine bromide (33): 2-bromoethylamine hydrobromide (225 mg, 1.1 mmol) was added to pyridine (0.5 mL) and the solution was refluxed for 24 h. Pyridine was removed under reduced pressure and the pH was adjusted to 8 using base (NaOH, 1 M). The water was removed under reduced pressure and the solid residue was
dissolved in MeOH/CH$_2$Cl$_2$ 1:1. Undissolved material was removed by filtration. Solvents were removed under reduced pressure resulting 33 (193 mg, 86%) as a yellow solid, which were used without further purification; 1H NMR (CD$_3$OD): 9.21-9.13 (m, 2H), 8.75-8.65 (m, 1H), 8.29-8.15 (m, 2H), 4.94-4.81 (m, 2H) 4.74-4.60 (m, 4H) 3.44-3.29 (m, 2H).

N-(3-Bromo-propyl)-2-nitro-benzenesulfonamide (34): 2-bromoethyamine hydrobromide (0.12 g, 0.60 mmol) was dissolved in CH$_2$Cl$_2$ (3 mL) and cooled to 0 °C. Triethylamine (0.10 g, 1.0 mmol) was added and the mixture was stirred for 5 mins after which 2-nitro-benzenesulfonyl chloride (0.11 g, 0.50 mmol) was added slowly. The mixture was stirred at rt for 2 h, at which point LCMS analysis indicated consumption of the starting material. The organic phase was washed with sat. aq. NaHCO$_3$ (1×1 mL), dried (Na$_2$SO$_4$) and CH$_2$Cl$_2$ was removed under reduced pressure. The residue was purified by column chromatography (EtOAc) to offer 34 (99 mg, 64%) as a white solid; 1H NMR (CDCl$_3$): δ 8.15-8.07 (m, 1H), 7.91-7.84 (m, 1H), 7.78-7.69 (2H), 5.90-5.76 (m, 1H), 3.56-3.48 (m, 2H), 3.47-3.39 (m, 2H).

5-Nitro-benzo[b]thiophene-2-N-(2-bromo-ethyl)-carboxamide (35): adjusted from reference [5]. 5-nitro-benzo[b]thiophene-2-carboxylic acid (0.11 g, 0.50 mmol) was mixed with thionyl chloride (0.30 g, 2.52 mmol) and refluxed for 2 h. The acid chloride (pale yellow solid) was obtained after distillation to remove excess thionyl chloride.

2-Bromoethylamine hydrobromide (0.10 g, 0.5 mmol) was dissolved in CH$_2$Cl$_2$ (0.03 mL) and cooled to 0 °C. Triethylamine (0.05 g, 0.50 mmol) was added and the mixture was stirred for 5 min, after which the acid chloride was added slowly. The mixture was stirred at rt for 2 h, at which point LCMS analysis indicated complete consumption of the starting material. The organic phase was washed with sat. aq. NaHCO$_3$ (1×1 mL), dried (Na$_2$SO$_4$) and CH$_2$Cl$_2$ was removed under reduced pressure. The residue was purified by column chromatography (EtOAc/petrol ether, 1:1) to offer 35 (129 mg, 78%) as a white solid; 1H NMR ((CD$_3$)$_2$SO): δ 9.32-9.21 (m, 1H), 8.96-8.88 (m, 1H), 8.35-8.20 (m, 3H), 7.09-5.06 (m, 4H).

2-(2,4-Dichlorophenoxy)-N-(4-(piperidin-1-ylmethyl)phenyl)acetamide (36, AL137): purchased from Chembridge; 1H NMR (CD$_3$OD): δ 7.57 (d, $J = 8.7$ Hz, 2H), 7.57 (d, $J = 2.5$ Hz, 1H), 7.31 (d, $J = 8.7$ Hz, 2H), 7.3 (dd, $J = 8.7$, 2.5 Hz, 1 H), 7.1 (d, $J = 8.7$ Hz, 1 H), 4.76 (s, 2H), 3.48 (s, 2H), 2.42 (bs, 4H), 1.60 (p, $J = 5.7$ Hz, 4H), 1.49-1.45 (m, 2H); 13C NMR (CD$_3$OD): δ 186.2, 154.0, 138.1, 134.6, 131.5, 131.0, 129.1, 128.1, 125.1, 121.2, 116.8, 69.8, 64.1, 55.2, 26.4, 25.2.

2-(4-Chlorophenoxy)-N-(4-(piperidin-1-ylmethyl)phenyl)acetamide (37, AL138): purchased from Chembridge; 1H NMR (CD$_2$Cl$_2$): δ 8.21 (bs, 1H), 7.52 (d, $J = 8.4$ Hz, 2H), 7.34-7.29 (m, 4H), 7.00-6.96 (m, 2H), 4.57 (s, 2H), 3.43 (bs, 2H), 2.36 (bs, 4H), 1.58-1.53 (m, 4H), 1.46-1.41 (m, 2H); 13C NMR (CD$_2$Cl$_2$): δ 166.0, 156.2, 136.2, 130.1, 130.1, 127.5, 120.2, 120.1, 116.6, 68.3, 63.4, 54.8, 26.4, 24.8.

2-(2-Chloro-4,6-dimethylphenoxy)-N-(4-(piperidin-1-ylmethyl)phenyl)acetamide (38, AL139): purchased from Chembridge; 1H NMR (CD$_3$OD): δ 7.56 (d, $J = 8.5$ Hz, 2H), 7.35 (d, $J = 8.5$ Hz, 2H), 7.1 (d, $J = 1.7$ Hz, 1 H), 7.0 (d, $J =$
1.7 Hz), 4.52 (s, 2H), 3.61 (s, 2H), 2.56 (bs, 4H), 2.34 (s, 3 H), 2.27 (s, 3H), 1.64 (p, J = 5.7, 4 H), 1.50 (p, J = 5.7, 2H); 13C NMR (CD3OD): δ 169.1, 151.3, 138.4, 137.0, 134.1, 133.5, 131.7, 131.7, 129.4, 127.9, 121.8, 72.2, 63.8, 55.0, 26.4, 24.8, 20.6, 16.5

2-Phenoxy-N-(4-(piperidin-1-ylmethyl)phenyl)acetamide (39, AL140): purchased from Chembridge; 1H NMR (CD3OD): δ 7.58 (d, J = 8.6 Hz, 2H), 7.34-7.29 (m, 4H), 7.05 (d, J = 8.6 Hz, 2 H), 7.00 (t, J = 7.3 Hz, 1 H), 4.66 (s, 2H), 3.48 (s, 2 H), 2.43 (bs, 4 H), 1.63-1.57 (m, 4H), 1.46 (p, J = 6.4 Hz, 2 H) 13C NMR (CD3OD): δ 169.4, 159.3, 138.1, 134.6, 131.4, 130.7, 122.9, 121.7, 115.9, 68.6, 64.1, 55.2, 26.4, 25.2

2-(2-Chlorophenoxy)-N-(4-(piperidin-1-ylmethyl)phenyl)acetamide (40, AL142): purchased from Chembridge; 1H NMR (CD3OD): δ 7.58 (d, J = 8.5 Hz, 2 H), 7.43 (dd, J = 7.8, 1.6 Hz, 1 H), 7.32 (d, J = 8.5 Hz, 2 H), 7.31-7.27 (m, 1H), 7.12 (dd, J = 8.4, 1.3 Hz, 1 H), 7.01-7.00 (m, 1 H), 4.75 (s, 2H), 3.48 (s, 2H), 2.43 (bs, 4 H), 1.63-1.57 (m, 4H), 1.46 (p, J = 6.1 Hz, 2H); 13C NMR (CD3OD): δ 168.5, 154.9, 138.1, 134.7, 131.5, 131.4, 129.3, 124.2, 124.0, 121.2, 115.9, 69.7, 64.1, 55.2, 26.4, 25.1

N-(4-((Diethylamino)methyl)phenyl)-2-(2,5-dimethylphenoxy)acetamide (41, AL150): 4-nitrobenzyl bromide (200 mg, 0.94 mmol) and diethylamine (0.28 mL, 2.71 mmol) were dissolved in toluene (1 mL) and refluxed for 1 h. The resulting mixture was washed with H2O (3×4 mL). The organic phase was extracted with HCl (3 M, 0.8 mL) and H2O (0.8 mL), the water phases were pooled and cooled in an ice bath. After addition of NaOH (2 M) the precipitated product was filtered off and washed with ice cold water to yield 181 mg (0.87 mmol, 92%). The crude compound (206 mg, 0.99 mmol) was dissolved in EtOAc (10 mL). SnCl2 (1.14 g, 6.01 mmol) was added and the reaction was stirred overnight, filtered and diluted with aqueous NaHCO3 (60 mL). The mixture was extracted with CH2Cl2 (3×20 mL) and the combined organic phase was dried with MgSO4, filtered and concentrated to a yellow oil (70 mg, 40%). The crude amine (70 mg, 0.39 mmol) was dissolved in glacial acetic acid (1.5 mL) and saturated NaOAc (2.2 mL). Chloroacetyl chloride (0.06 mL, 0.75 mmol) was added over 2 h. The reaction mixture was washed with water (4 mL) and Na2CO3 was added to pH 9. The water phase was extracted with CH2Cl2 (4×30 mL), dried with MgSO4, filtered and concentrated to a yellow solid (60 mg, 60%). The resulting crude product (52 mg, 0.20 mmol), dimethylphenol (30 mg, 0.25 mmol) and K2CO3 (58 mg, 0.42 mmol) were dissolved in acetone (5 mL). KI (16 mg, 0.10 mmol) was added and the reaction mixture was refluxed for 48 h, cooled to room temperature, filtered and concentrated. Purification was performed with flash column chromatography (Heptane:EtOAc 2:1→1:1, with 1% triethylamine) to yield 41 (20 mg, 33%); 1H NMR (CD3OD): δ 7.77 (d, J = 8.5, 2H), 7.51 (d, J = 8.5, 2 H), 7.04 (d, J = 7.6 Hz, 1 H), 6.73 (d, J = 7.6, 1 H), 6.72 (s, 1H), 4.68 (s, 2H), 4.31 (s, 2 H), 3.20 (q, J = 7.3 Hz, 4 H), 2.30 (s, 6H), 1.35 (t, J = 7.3 Hz, 6 H); 13C NMR (CD3OD): δ 170.0, 157.3, 140.8, 138.0, 132.8, 131.8, 126.6, 125.0, 123.3, 122.0, 113.8, 69.1, 56.7, 47.8, 21.3, 16.0, 9.1
3-(2,4-Dichlorophenyl)-N-(4-(piperidin-1-ylmethyl)phenyl)propanamide (42, AL152): 4-nitrobenzyl bromide (500 mg, 2.31 mmol) and piperidine (0.69 mL, 6.94 mmol) were dissolved in toluene (20 mL) and refluxed for 2 h. The resulting mixture was washed with H_2O (3×50 mL). The organic phase was extracted with HCl (2 M, 20 mL) and H_2O (20 mL), and the combined water phases were cooled in an ice bath. After addition of NaOH (2 M) to pH 9 the water phase was extracted with CH_2Cl_2 three times. The combined organic phases were pooled, dried over MgSO_4, filtered and concentrated to give the alkylated amine (456 mg, 90%) which was further used without purification. The crude compound (220.3 mg, 1.00 mmol) was dissolved in EtOAc (25 mL). SnCl_2 (2.75 g, 0.01 mmol) was added and the reaction was stirred overnight. Aqueous NaHCO_3 (50 mL) was added to pH 8 and the water phase was extracted with CH_2Cl_2 (3×50 mL). The organic phases were pooled, dried with MgSO_4, filtered and concentrated to give the reduced compound (165 mg, 87%). 3-(2,4-Dichlorophenyl)propanoic acid (46 mg, 0.21 mmol) was dissolved in CH_2Cl_2 (5 mL) and cooled in an ice bath. Oxalyl chloride (180 µL, 2.13 mmol) was carefully added followed by three drops of dimethylformamide. The reaction mixture was stirred for 1 h and thereafter concentrated. The resulting acid chloride (50 mg, 0.21 mmol) was dissolved in CH_2Cl_2 (4 mL), the prepared amine (48 mg, 0.25 mmol) was added together with triethylamine (100 µL, 0.72 mmol) and the reaction mixture was stirred overnight at room temperature. The mixture was washed with aq. NaHCO_3 (2×2 mL) and the combined organic phases were dried with MgSO_4, filtered, concentrated and purified with flash column chromatography (EtOAc:MeOH 5:1) to yield 42 (18 mg, 57%) as a pale yellow powder. ¹H NMR (CD_3OD): δ 7.66 (d, J = 8.5 Hz, 2 H), 7.45 (d, J = 8.5 Hz, 2 H), 7.44 (d, J = 2.3, 1H), 7.33 (d, J = 8.4 Hz, 1H), 7.24 (dd, J = 8.4, 2.3 Hz, 1 H), 4.24 (s, 2H), 3.43 (d, J = 12.8 Hz, 2H), 3.12 (t, J = 7.6 Hz, 2H), 2.94 (td, J = 12.8, 2.5 Hz, 2H), 2.71 (t, J = 7.6 Hz, 2H), 1.94 (d, J = 14.4 Hz, 2 H), 1.85 – 1.69 (m, 3H), 1.56 – 1.45 (m, 1H); ¹³C NMR (CD_3OD): δ 173.0, 141.6, 138.5, 135.7, 133.9, 133.0, 132.9, 130.1, 128.4, 125.5, 121.4, 61.3, 53.8, 37.3, 29.7, 24.1, 22.7.
AChE inhibition assay

Recombinant Homo sapiens AChE was expressed according to previously described methods [6,7]. The enzymatic activity was measured using the Ellman assay [8] adapted to a 96-well format. The final assay volume was 200 µL and all measurements were performed in 0.2 mM 5,5’-Dithiobis(2-nitrobenzoic acid) and 1 mM acetylthiocholine iodide in 0.1 M phosphate buffer pH 8.0. All measurements were performed in triplicates and the data was fitted to a (log)inhibitor vs. response four parameters equation using GraphPad Prism (5.0). The obtained IC₅₀-values were recalculated to pIC₅₀ according to pIC₅₀=-log(IC₅₀) in molar (M) concentration.
Permutation tests

Figure S14 a) Permutation test from the qualitative PLS-based SAR model

Figure S14 b) Permutation test of quantitative PLS-based QSAR-model
Table S15. Test Set1, Set2, and Set3 [9] names, molecules and AChE inhibition data

ID	Name	Test Set	Structure	IC₅₀ (μM)	Nearest Neighbor in training set
27	AL053	1	![Structure](image1)	4.9	6
28	AL054	1	![Structure](image2)	10	6
29	AL055	1	![Structure](image3)	19	6
30	AL058	1	![Structure](image4)	12	4
31	AL129	1	![Structure](image5)	2.6	14
36	AL137	2	![Structure](image6)	0.3	12
37	AL138	2	![Structure](image7)	0.6	18
38	AL139	2	![Structure](image8)	1.3	18
39	AL140	2	![Structure](image9)	1.3	18
40	AL142	2	![Structure](image10)	0.6	18
41	AL150	2	![Structure](image11)	8.1	12
ID	Name	Test Set	Structure	IC₅₀ (μM)	Nearest Neighbor in training set
----	-------	----------	-----------	-----------	----------------------------------
42	AL152	2	![Structure](structure1.png)	0.7	18
43	AL023	3	![Structure](structure2.png)	51	4
44	AL024	3	![Structure](structure3.png)	19	1
45	AL025	3	![Structure](structure4.png)	135	4
46	AL026	3	![Structure](structure5.png)	162	4
47	AL027	3	![Structure](structure6.png)	118	1
48	AL028	3	![Structure](structure7.png)	91	4
49	AL029	3	![Structure](structure8.png)	134	1
50	AL030	3	![Structure](structure9.png)	94	4
51	AL031	3	![Structure](structure10.png)	6.8	1
52	AL032	3	![Structure](structure11.png)	51	1
53	AL033	3	![Structure](structure12.png)	65	4
ID	Name	Test Set	Structure	IC₅₀ (μM)	Nearest Neighbor in training set⁹
----	------	----------	-----------	----------	----------------------------------
54	AL034	3	![Structure](image1.png)	42	4
55	AL036	3	![Structure](image2.png)	42	1
56	AL037	3	![Structure](image3.png)	17	17
57	AL038	3	![Structure](image4.png)	11	1
58	AL039	3	![Structure](image5.png)	33	1
59	AL040	3	![Structure](image6.png)	24	4
60	AL041	3	![Structure](image7.png)	10	1
61	AL144	3	![Structure](image8.png)	38	4
62	AL151	3	![Structure](image9.png)	0.7	8

⁹ Nearest neighbor in the training set selected by chemists
Reference model regressions for logP, TPSA and vdW area

Figure S18. Reference model regressions for a) logP, b) vdW area, and c) TPSA.
Statistical analysis of QSAR model and reference models

Table S19. Statistics test including, Anderson-Darling, F-test, t-test, Kolmogorov-Smirnov and Mann-Whitney, comparing the predicted pIC50 values from corresponding model to the measured pIC50.

Test/Model	Set1	Set2	Set3	Set4			
	AD norm.	F norm.	t norm.	KS norm.	AD norm.	KS norm.	MW norm.
QSAR	Yes	1.87	1.71		No	0.518	0.330
LogP	Yes	2.22	11.53	Yes	No	0.000	0.000
vdW	Yes	69.90	-		No	0.000	0.000
TPSA	Yes	3.08	6.29		No	0.007	0.013
PLS	Yes	1.26	2.84		No	0.000	0.000
Nearest Neighbor	No	-	-		No	0.000	0.000

The predicted pIC50 resulting of all four test sets from the QSAR model and reference models were tested for the probability that they were drawn from a normal distribution using the Anderson-Darling (AD) test [10] at a confidence limit of 95% (p=0.05) implemented in Excel [11,12]. Average and median pIC50 values were obviously not normally distributed and was excluded from the significance testing. The AD-test result are given in the table above and show that the predicted pIC50 for Set1-2 resulting from the QSAR model and reference models LogP, vdW and PLS were normally distributed. So were the predictions for Set3 from the QSAR and LogP models, but no predictions for Set4. Predicted pIC50 were compared to measured pIC50 values via a one-tailed F-test (comparing variances) and a paired students t-test (comparing means) and critical values based on prediction molecules minus one (n-1) degrees of freedom. If F < Fₐₙₙ or t < tₐₙₙ there is a no difference between the models’ predictions and the measured pIC50 in terms of variance and median, respectively. The conclusion regarding pIC50 based on both F- and t-tests was that the QSAR-models’ predictions was generally statistically not different from the measured pIC50 (calculated F or t smaller critical value), while the reference models were significantly different from measured pIC50 (calculated F or t was larger critical value). Non-parametric Kolmogorov-Smirnov (KS) [13,14] and Mann-Whitney (MW) U-test [15,16] tests were performed on Set3-4 (Set1 and Set2 contained too few data points), which generally had non-normally distributed predictions and the results showed that the only significant similarity was between the QSAR models’ prediction and the measured pIC50 for Set3-4 and for Nearest neighbor for Set3. The reference models average and median was tested with the KS and MW tests and resulted in a p of 0.000, indicating that average and median are insufficient predictors of pIC50.
References

1. Linusson A, Elofsson M, Andersson IE, Dahlgren MK (2010) Statistical molecular design of balanced compound libraries for QSAR modeling. Curr Med Chem 17: 2001-2016
2. St. John RC, Draper NR (1975) D-Optimality for regression designs: a review. Technometrics 17: 15-23
3. Wang Y-X, Zhao J, Sun X-Q, Wang C-J (2006) Synthesis, interaction with DNA and bioactivity of N-piperazinoalkylamide. Youji Huaxue 26: 1066-1072
4. Deetlefs M, Seddon KR (2003) Improved preparations of ionic liquids using microwave irradiation. Green Chem 5: 181-186
5. Lewis JJ, Martin-Smith M, Muir TC, Nanjappa SN, Reid ST (1963) Benzo[b]Thiophene derivatives. IV. The preparation and pharmacological activity of compounds related to serotonin and gramine. J Med Chem 6: 711-716
6. Ekström F, Pang YP, Boman M, Artursson E, Akfir C, Börjegren S (2006) Crystal structures of acetylcholinesterase in complex with HI-6, Ortho-7 and obidoxime: Structural basis for differences in the ability to reactivate tabun conjugates. Biochem Pharmacol 72: 597-607
7. Artursson E, Akfir C, Hörnberg A, Worek F, Ekström F (2009) Reactivation of tabun-hAChE investigated by structurally analogous oximes and mutagenesis. Toxicology 265: 108-114
8. Ellman GL, Courtney KD, Andres V, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharm 7: 88-95
9. Andersson CD, Forsgren N, Akfir C, Allgardsson A, Berg L, Engdahl C, Qian WX, Ekström F, Linusson A (2013) Divergent structure-activity relationships of structurally similar acetylcholinesterase inhibitors. J Med Chem 56: 7615-7624
10. Anderson TW, Darling DA (1952) Asymptotic theory of certain goodness of fit criteria based on stochastic processes. Ann Math Stat 23: 193-212
11. Excel (2013) Microsoft Excel Microsoft Corporation, Redmond, Washington, US.
12. Otto KN (2005) Normality Test Calculator.xls. http://www.kevinotto.com/RSS/templates/Anderson-Darling. Accessed 2014
13. Massey FJ (1951) The Kolmogorov-Smirnov test for goodness of fit. J Am Stat Assoc 46: 68-78
14. Kirkman TW (2014) Statistics to Use. http://www.physics.csbsju.edu/stats/. Accessed 28 Jan 2014
15. Mann HB, Whitney DR (1947) On a test of whether one of 2 random variables is stochastically larger than the other. Ann Math Stat 18: 50-60
16. Stangroom J (2014) Social Science Statistics. http://www.socsciostatistics.com. Accessed 27 Jan 2014
