FANO MANIFOLDS WITH LEFSCHETZ DEFECT 3

C. CASAGRANDE, E. A. ROMANO, AND S. A. SECCI

Abstract. Let X be a smooth, complex Fano variety, and δ_X its Lefschetz defect. By [Cas12], if $\delta_X \geq 4$, then $X \cong S \times T$, where $\dim T = \dim X - 2$. In this paper we prove a structure theorem for the case where $\delta_X = 3$. We show that there exists a smooth Fano variety T with $\dim T = \dim X - 2$ such that X is obtained from T with two possible explicit constructions; in both cases there is a \mathbb{P}^2-bundle Z over T such that X is the blow-up of Z along three pairwise disjoint smooth, irreducible, codimension 2 subvarieties. Then we apply the structure theorem to Fano 4-folds, to the case where X has Picard number 5, and to Fano varieties having an elementary divisorial contraction sending a divisor to a curve. In particular we complete the classification of Fano 4-folds with $\delta_X = 3$, started in [CR22].

This version of the paper incorporates the published article with its corrigendum [CRS22], where a missing case in Prop. 7.1 is added.

1. Introduction

Let X be a smooth, complex Fano variety. The Lefschetz defect δ_X is an invariant of X which depends on the Picard number of prime divisors in X. More precisely, consider the vector space $N_1(X)$ of 1-cycles in X, with real coefficients, up to numerical equivalence; its dimension is the Picard number ρ_X of X. Given a prime divisor D in X, we consider the pushforward $\iota_*: N_1(D) \to N_1(X)$ induced by the inclusion $\iota: D \hookrightarrow X$, and set $N_1(D, X) := \iota_*(N_1(D)) \subseteq N_1(X)$; finally:

$$\delta_X := \max\{\text{codim} N_1(D, X) \mid D \text{ a prime divisor in } X\}.$$

The main property of the Lefschetz defect is the following.

Theorem 1.1 ([Cas12], Th. 3.3). Let X be a smooth Fano variety with $\delta_X \geq 4$. Then $X \cong S \times T$, where S is a del Pezzo surface with $\rho_S = \delta_X + 1$.

In this paper we consider Fano varieties X with $\delta_X = 3$. Even if such X does not need to be a product, it turns out that it still has a very rigid and explicit structure. More precisely, we show that there exist a smooth Fano variety T with $\dim T = \dim X - 2$, $\rho_T = \rho_X - 4$, and $\delta_T \leq 3$, and a \mathbb{P}^2-bundle Z over T, such that X is obtained by blowing-up Z along three pairwise disjoint smooth, irreducible, codimension 2 subvarieties S_1, S_2, S_3. The \mathbb{P}^2-bundle $\varphi: Z \to T$ is the projectivization of a suitable decomposable vector bundle on T, and S_2 and S_3 are sections of φ. Instead $\varphi|_{S_1}: S_1 \to T$ is finite of degree 1 or 2.

To state our results, we first describe two explicit ways to obtain X from T; the two constructions differ in the degree of S_1 over T. Then we prove (Th. 1.4) that every

Date: December 14, 2022.

2020 Mathematics Subject Classification. 14J45.

1
Fano variety X with Lefschetz defect 3 is obtained by one of these two constructions; this is our main result.

Proposition 1.2 (Construction A). Let T be a smooth Fano variety with $\delta_T \leq 3$, and D_1, D_2, D_3 divisors on T such that $-K_T + D_i - D_j$ is ample for every $i, j \in \{1, 2, 3\}$. Set

$$Z := \mathbb{P}_T(\mathcal{O}(D_1) \oplus \mathcal{O}(D_2) \oplus \mathcal{O}(D_3)) \xrightarrow{\varphi} T,$$

and let $S_i \subset Z$ be the section of φ corresponding to the projection onto the summand $\mathcal{O}_T(D_i)$, for $i = 1, 2, 3$. Finally let $h: X \to Z$ be the blow-up of S_1, S_2, S_3, and $\sigma := \varphi \circ h: X \to T$.

Then X is a smooth Fano variety with $\delta_X = 3$, $\dim X = \dim T + 2$, and $\rho_X = \rho_T + 4$.

Proposition 1.3 (Construction B). Let T be a smooth Fano variety with $\delta_T \leq 3$, and N a divisor on T such that $N \not\equiv 0$ and both $-K_T + N$ and $-K_T - N$ are ample. Set

$$Z := \mathbb{P}_T(\mathcal{O}(N) \oplus \mathcal{O} \oplus \mathcal{O}) \xrightarrow{\varphi} T,$$

and let $S_2, S_3 \subset Z$ be the sections of φ corresponding to the projections onto the summands \mathcal{O}. Let H be a tautological divisor of Z, and assume that there exists a smooth, codimension 2 subvariety $S_1 \subset Z$ which is a complete intersection of general elements in the linear systems $|H|$ and $|2H|$. Finally let $h: X \to Z$ be the blow-up of S_1, S_2, S_3, and $\sigma := \varphi \circ h: X \to T$.

Then X is a smooth Fano variety with $\delta_X = 3$, $\dim X = \dim T + 2$, and $\rho_X = \rho_T + 4$.

Let us note that Constructions A and B give new, explicit ways to construct Fano varieties of any dimension.

Theorem 1.4 (Structure theorem). Every smooth Fano variety X with $\delta_X = 3$ is obtained with Construction A or B.

When $\dim X = 4$ and $\rho_X = 5$, Th. [1.4] is proved in [CR22], and used to obtain the classification of Fano 4-folds with $\delta_X = 3$ and $\rho_X = 5$. To treat the general case, we apply the same strategy as in [CR22], adapting the proof step by step. Our starting point is the existence of a fibration in del Pezzo surfaces $\sigma: X \to T$ after [Cas12, Th. 3.3]. We give an outline of the proof at the end of the Introduction.

In particular, given a Fano variety X of dimension n with $\delta_X = 3$, by Th. [1.4] there exist a smooth Fano variety T with $\dim T = n - 2$, $\rho_T = \rho_X - 4$, and $\delta_T \leq 3$, and a morphism $\sigma: X \to T$, such that σ realizes X as a blow-up of a \mathbb{P}^2-bundle Z over T, as in Construction A or B. We will denote X by X_A in the former case, and by X_B in the latter.

Let us now describe some applications of the structure theorem.

Fano 4-folds. In dimension 4, we complete the classification of Fano 4-folds with Lefschetz defect 3, started in [CR22]; note that all of them are rational, see [MR21 Cor. 1.3]. We treat the last case left open, that is $\delta_X = 3$ and $\rho_X = 6$, in which we show that there are 11 families, among which 8 are toric; we refer the reader to Section 7 for more details and for the description of the three non-toric families and their invariants. Note that the toric case is simpler, as toric Fano 4-folds have been classified by Batyrev [Bat99, Sat00]. The final classification is as follows.

Proposition 1.5. Let X be a Fano 4-fold with $\delta_X = 3$. Then $5 \leq \rho_X \leq 8$ and there are 19 families for X, among which 14 are toric. More precisely:
- if $\rho_X = 8$, then $X \cong F \times F$, F the blow-up of \mathbb{P}^2 at 3 non-collinear points;
- if $\rho_X = 7$, then $X \cong F \times F'$, F' the blow-up of \mathbb{P}^2 at 2 points;
- if $\rho_X = 6$, there are 11 families for X, among which 8 are toric;
- if $\rho_X = 5$, there are 6 families for X, among which 4 are toric.

We also apply our results to the study of conic bundles $\eta: X \to Y$ where X is a Fano 4-fold and $\rho_X - \rho_Y \geq 3$, see Cor. 7.2.

The case $\rho_X = 5$. The second case that we consider in detail is that of Fano varieties with Lefschetz defect 3 and Picard number 5, the minimal one, in Section 8. After Th. 1.1 there are a smooth Fano variety T with $\rho_T = 1$ and a morphism $\sigma: X \to T$ that realizes X as a blow-up of a \mathbb{P}^2-bundle over T as in Construction A or B. We show that in this case T and σ are uniquely determined, and we list explicitly the different X that are obtained from a given T. To state the result, let us fix some notation for the case $\rho_T = 1$: $\mathcal{O}_T(1)$ is the ample generator of $\text{Pic}(T) \cong \mathbb{Z}$, and $\mathcal{O}_T(a) := \mathcal{O}_T(1)^\otimes a$ for every $a \in \mathbb{Z}$. Moreover $\mathcal{O}_T(-K_T) \cong \mathcal{O}_T(i_T)$, where i_T is the index of T.

Proposition 1.6. Let X be a smooth Fano variety with $\delta_X = 3$ and $\rho_X = 5$. Then T and the morphism $\sigma: X \to T$ as in Construction A or B are uniquely determined; we have $X = X_A$ if σ is smooth, and $X = X_B$ if σ is not smooth.

Let $X = X_A$. Then there are uniquely determined integers a, b with
\[b \leq 0, \quad |b| \leq \frac{i_T - 1}{2}, \quad \text{and} \quad |b| \leq a \leq i_T - 1 - |b|, \]
such that X is obtained with Construction A from T with $Z = \mathbb{P}_T(\mathcal{O}(a) \oplus \mathcal{O} \oplus \mathcal{O}(b))$.

Let $X = X_B$. Then there is a uniquely determined integer a with $1 \leq a \leq i_T - 1$ such that X is obtained with Construction B from T with $Z = \mathbb{P}_T(\mathcal{O}(a) \oplus \mathcal{O} \oplus \mathcal{O})$.

Fano varieties containing a divisor with Picard number 2. We note that the assumptions $\rho_X = 5$ and $\delta_X = 3$ imply that X contains a prime divisor D with $\dim N_1(D, X) = 2$; in fact it is easy to see that all the varieties as in Prop. 1.6 also contain a prime divisor D' with $\rho_{D'} = 2$. We obtain the following application to Fano varieties containing a prime divisor with $\rho = 2$; an analogous result for the case of a prime divisor with $\rho = 1$ is given in [CD15, Th. 3.8].

Corollary 1.7. Let X be a smooth Fano variety containing a prime divisor D with $\rho_D = 2$, or more generally with $\dim N_1(D, X) = 2$. Then either $X \cong S \times T$ where S is a del Pezzo surface and $\rho_T = 1$, or $\rho_X \leq 5$. Moreover, $\rho_X = 5$ if and only if X is as in Prop. 1.6.

Elementary divisorial contractions. Corollary 1.7 is also related to the study of Fano varieties having an elementary divisorial contraction $\tau: X \to X'$ where $\tau(\text{Exc}(\tau))$ is a curve, because then automatically $\dim N_1(\text{Exc}(\tau), X) = 2$. It follows from Th. 1.1 that $\rho_X \leq 5$, and Tsukikawa [13su10] has classified the case $\rho_X = 5$ when τ is the blow-up of a smooth curve in a smooth variety. We generalize this classification to an arbitrary elementary divisorial contraction τ such that $\dim \tau(\text{Exc}(\tau)) = 1$, as follows.

Theorem 1.8. Let X be a smooth Fano variety of dimension $n \geq 4$ with $\rho_X = 5$. Then the following are equivalent:
(i) there is an elementary divisorial contraction \(\tau : X \to X' \) such that \(\tau(\text{Exc}(\tau)) \) is a curve;

(ii) \(X \) is obtained with Construction \(A \) or \(B \) from a smooth Fano variety \(T \) such that
\[
\dim T = n - 2, \quad \rho_T = 1, \quad i_T > 1,
\]
with \(Z = \mathbb{P}_T(\mathcal{O}(a) \oplus \mathcal{O} \oplus \mathcal{O}) \) and \(a \in \{1, \ldots, i_T - 1\} \).

If these conditions hold we have \(\text{Exc}(\tau) \cong \mathbb{P}^1 \times T, \mathcal{N}_{\text{Exc}(\tau)/X} \cong \pi_{T}^* \mathcal{O}(-1) \otimes \pi_T^* \mathcal{O}(-a), \) and \(\tau(\text{Exc}(\tau)) \cong \mathbb{P}^1 \).

When \(\dim X = 4 \), Cor. 1.7 and Th. 1.8 are already proved in [CR22].

Strategy of the proof of Theorem 1.4. Our starting point is the existence, from [Cas12, Th. 3.3], of a flat fibration \(\sigma : X \to T \), where \(T \) is a smooth Fano variety with \(\dim T = \dim X - 2 \) and \(\rho_T = \rho_X - 4 \); moreover \(\sigma \) factors as \(X \to Y \to T \), where the first map is a conic bundle, and the second one is smooth with fiber \(\mathbb{P}^1 \). We collect the properties of \(\sigma \) in Th. 5.3.

We show that the fibration \(\sigma : X \to T \) has a different factorization as \(X \to Z \xrightarrow{\varphi} T \), where \(\varphi \) is a \(\mathbb{P}^2 \)-bundle, and \(X \to Z \) is the blow-up of three pairwise disjoint smooth, irreducible subvarieties \(S_i \subset Z \) of codimension 2, horizontal for \(\varphi \).

Then we prove that \(S_2 \) and \(S_3 \) are always sections of \(\varphi \). When \(S_1 \) is a section as well, we show that \(\sigma : X \to T \) is as in Construction \(A \).

Otherwise, we study the degree \(d > 1 \) of \(S_1 \) and \(T \). Fiberwise, for \(t \in T \) general, we have \(Z_t := \varphi^{-1}(t) \cong \mathbb{P}^2 \), \(X_t := \sigma^{-1}(t) \) a smooth del Pezzo surface, and \(X_t \to Z_t \) the blow-up of the \(d + 2 \) points \((S_1 \cup S_2 \cup S_3) \cap Z_t \). This is the hardest part of the proof; we restrict to a general curve \(C \subset T \), and construct \(Z := \varphi^{-1}(C) \) a divisor \(D \) which is a \(\mathbb{P}^1 \)-bundle over \(C \) and contains \(S_1 \cap Z \). Therefore, for \(t \in C \) general, the \(d \) points \(S_1 \cap Z_t \) are aligned; since \(X_t \) is del Pezzo, this implies that \(d = 2 \). Finally we show that \(\sigma : X \to T \) is as in Construction \(B \).

Structure of the paper. In Section 2 we fix the notation and prove some preliminary results. In Sections 3 and 4 we present Constructions \(A \) and \(B \) respectively, and prove Propositions 1.2 and 1.3 while in Section 5 we prove Th. 1.4.

In the second part of the paper we consider the applications of the structure theorem. In Section 6 we study the del Pezzo fibration \(\sigma : X \to T \); we describe its fibers, the relative cone \(\text{NE}(\sigma) \), the relative contractions, and the different factorizations of \(\sigma \). We also give some conditions on \(T \) in order to perform Constructions \(A \) and \(B \) to obtain Fano varieties \(X \) different from the product \(F \times T \), \(F \) the blow-up of \(\mathbb{P}^2 \) at three non-collinear points. Finally in Section 7 we give the applications to Fano 4-folds, and in Section 8 the applications to Fano varieties with \(\rho_X = 5 \).

2. Notation and preliminaries

We work over the field of complex numbers. Let \(X \) be a smooth projective variety of arbitrary dimension.

\(\mathcal{N}_1(X) \) (respectively, \(\mathcal{N}^1(X) \)) is the real vector space of one-cycles (respectively, Cartier divisors) with real coefficients, modulo numerical equivalence, and \(\dim \mathcal{N}_1(X) = \dim \mathcal{N}^1(X) = \rho_X \) is the Picard number of \(X \).

Let \(C \) be a one-cycle of \(X \), and \(D \) a divisor of \(X \). We denote by \([C]\) (respectively, \([D]\)) the numerical equivalence class in \(\mathcal{N}_1(X) \) (respectively, \(\mathcal{N}^1(X) \)). We also denote by \(C \perp \subset \mathcal{N}^1(X) \) (respectively \(D \perp \subset \mathcal{N}_1(X) \)) the orthogonal hyperplanes.
The symbol \(\equiv \) stands for numerical equivalence (for both one-cycles and divisors), and \(\sim \) stands for linear equivalence of divisors.

NE(\(X \)) \(\subset \mathcal{N}_1(\(X \)) \) is the convex cone generated by classes of effective curves. An extremal ray \(R \) is a one-dimensional face of NE(\(X \)). When \(X \) is Fano, the length of \(R \) is \(l(R) = \min \{ -K_X \cdot C | C \text{ a rational curve in } X \} \).

A facet of a convex polyhedral cone \(\mathcal{C} \) is a face of codimension one; moreover \(\mathcal{C} \) is simplicial when it can be generated by linearly independent elements. We denote by \(\varphi \) Notation as in Rem. 2.1 with Lemma 2.2.

When \(Z \) is normal and projective. The corresponding to the two summands of \(\oplus \rho \) \(\mathcal{N}(\(X \)) \) is relatively ample. A contraction is elementary if \(\rho X - \rho Y = 1 \).

A conic bundle \(X \to Y \) is a contraction of fiber type where every fiber is one-dimensional and \(-K_X\) is relatively ample.

We gather here some preliminary results that we need in the sequel.

Remark 2.1. Let \(T \) be a smooth projective variety and \(D_1, \ldots, D_r \) divisors on \(T \). Set \(Z := \mathbb{P}(\mathcal{O}(D_1) \oplus \cdots \oplus \mathcal{O}(D_r)) \to T \) and let \(H \) be the tautological divisor. For every \(i = 1, \ldots, r \) set

\[
F_i := \mathbb{P}(\oplus_{j \neq i} \mathcal{O}(D_j)) \hookrightarrow Z
\]

with the embedding given by the projection \(\oplus_j \mathcal{O}(D_j) \to \oplus_{j \neq i} \mathcal{O}(D_j) \). Then:

\[
F_i \sim H - \varphi^* (D_i) \quad \text{for every } i = 1, \ldots, r, \quad \text{and} \quad K_Z - \varphi^* K_T \sim -F_1 - \cdots - F_r.
\]

Lemma 2.2. Notation as in Rem. 2.1 with \(r = 3 \). Let \(S_3 \subset Z \) be the section of \(\varphi \) corresponding to the projection \(\mathcal{O}(D_1) \oplus \mathcal{O}(D_2) \oplus \mathcal{O}(D_3) \to \mathcal{O}(D_3) \), and let \(h: X \to Z \) be the blow-up of \(S_3 \), with exceptional divisor \(E_3 \subset X \).

Then \(E_3 \equiv \mathbb{P}(\mathcal{O}(-K_T + D_3 - D_1) \oplus \mathcal{O}(-K_T + D_3 - D_2)) \) and \((-K_X)|_{E_3} \) is the tautological line bundle.

Proof. We have \(\mathcal{N}_{S_3/Z} \cong \mathcal{O}(D_1 - D_3) \oplus \mathcal{O}(D_2 - D_3) \), \(E_3 \equiv \mathbb{P}(\mathcal{N}_{S_3/Z}) \), and \(\mathcal{O}_X(-E_3)|_{E_3} \) is the tautological line bundle.

Let \(E'_i \subset X \) be the transform of \(F_i \subset Z \), for \(i = 1, 2, 3 \); note that \(S_3 = F_1 \cap F_2 \) and \(S_3 \cap F_3 = \emptyset \). Set \(\sigma := \varphi \circ h: X \to T \) and \(\sigma_3 := \sigma|_{E_3}: E_3 \to T \). By Rem. 2.1 we have

\[
-K_Z \sim \varphi^*(-K_T) + F_1 + F_2 + F_3,
\]

so that

\[
-K_X \sim h^*(-K_Z) - E_3 \sim \sigma^*(-K_T) + E'_1 + E'_2 + E'_3 + E_3.
\]

and \(\mathcal{O}_X(-K_X)|_{E_3} \cong \mathcal{O}_{E_3}(\sigma_3^*(-K_T) + G_1 + G_2) \otimes \mathcal{O}_X(E_3)|_{E_3} \)

where \(G_i := E'_i \cap E_3 \) for \(i = 1, 2 \). Note that \(G_1 \) and \(G_2 \) are the sections of \(\sigma_3 \) corresponding to the two summands of \(\mathcal{O}(D_1 - D_3) \oplus \mathcal{O}(D_2 - D_3) \), so by Rem. 2.1 we have \(\mathcal{O}_{E_3}(G_1 + G_2) \cong \mathcal{O}_X(-2E_3 + \sigma^*(2D_3 - D_1 - D_2))|_{E_3} \). Finally we get

\[
\mathcal{O}_X(-K_X)|_{E_3} \cong \mathcal{O}_X(-E_3)|_{E_3} \otimes \mathcal{O}_{E_3}(\sigma_3^*(-K_T + 2D_3 - D_1 - D_2))
\]

which yields the statement.

In a similar way one shows the following.
Remark 2.4. Let t be a tautological line bundle.

Lemma 2.3. Let $h: X \to Z$ be the blow-up of S_2 and S_3. Let $E'_1 \subset X$ be the transform of $F_1 \subset Z$.

Then $E'_1 \cong \mathbb{P}_T(O(-K_T + D_2 - D_1) \oplus O(-K_T + D_3 - D_1))$ and $(-K_X)|_{E'_1}$ is the tautological line bundle.

We will also need the following properties.

Remark 2.4. Let X be a smooth projective variety. Then $N_1(X)$ is generated, as a vector space, by classes of complete intersections of very ample divisors.

Proof. Let n be the dimension of X and H a very ample divisor. By the hard Lefschetz theorem, the linear map

$$N^1(X) \to N^1(X)$$

$$[D] \mapsto [D \cdot H^{n-2}]$$

is an isomorphism. Since the ample cone has maximal dimension in $N^1(X)$, we can choose very ample divisors H_1, \ldots, H_{n-1} on X such that their classes generate $N^1(X)$; then their images $[H_1 \cdot H^{n-2}], \ldots, [H_{n-1} \cdot H^{n-2}]$ generate $N_1(X)$. ■

Lemma 2.5. Let Y be a smooth Fano variety and $\xi: Y \to T$ a smooth morphism with fiber \mathbb{P}^1. Let $A_1, A_2 \subset Y$ be disjoint prime divisors such that ξ is finite on A_i for $i = 1, 2$. Then at least one among A_1, A_2 is a section of ξ.

Proof. We first show the following claim:

If $[A_1]$ and $[A_2]$ are multiples in $N^1(Y)$, then $Y \cong \mathbb{P}^1 \times T$ and $A_1 = \{pt\} \times T$.

Let $\lambda \in \mathbb{Q}_{>0}$ be such that $A_1 \equiv \lambda A_2$. If $C \subset A_1$ is a curve, then $A_1 \cdot C = \lambda A_2 \cdot C = 0$ because $A_1 \cap A_2 = \emptyset$. This shows that A_1 is nef; let $\alpha: Y \to Y_0$ be the contraction such that $NE(\alpha) = A_1^\perp \cap NE(Y)$.

We note that $\alpha(A_1)$ is a point because $\alpha(C) = \{pt\}$ for every curve $C \subset A_1$; on the other hand $[A_1] \in \alpha^*N^1(Y_0)$, so that $\dim Y_0 = 1$ and $Y_0 \cong \mathbb{P}^1$. Moreover α is finite on the fibers of $\xi: Y \to T$, because ξ is finite on A_1, hence $A_1 \cdot F > 0$. Then $Y \cong T \times \mathbb{P}^1$ and α is the projection, by Cas09 [Lemma 4.9]. This yields the claim.

Set $d_i := \deg \xi|_{A_i}$ for $i = 1, 2$, so that $d_2 A_1 - d_1 A_2 \equiv \xi^*(N_0)$ for some divisor N_0 on T.

If $N_0 \equiv 0$, then $d_2 A_1 \equiv d_1 A_2$ and we can apply the claim.

If $N_0 \neq 0$, then $N_0^\perp \subset N_1(T)$ is a hyperplane, and by Rem. 2.4 there exists a curve $C \subset T$, complete intersection of very ample divisors H_1, \ldots, H_{n-3}, such that $N_0 \cdot C \neq 0$. We choose H_i general in their linear system.

Set $S := \xi^{-1}(C) \subset Y$ and $C_i := A_i|_S$ for $i = 1, 2$; then $C_1 \cap C_2 = \emptyset$ and by Bertini C_1, C_2 are smooth irreducible curves, and S is a smooth ruled surface.

Suppose that $N_0 \cdot C > 0$. Then

$$d_1(C_2)^2 = d_1 A_2 \cdot C_2 = (d_2 A_1 - \xi^*(N_0)) \cdot C_2 = -\xi^*(N_0) \cdot C_2 = -d_2 N_0 \cdot C,$$

so that $(C_2)^2 < 0$. We deduce that C_2 is the negative section of the ruled surface S, hence $d_2 = 1$. Since $\xi|_{A_2}$ is finite, A_2 is a section of ξ.

In the case $N_0 \cdot C < 0$, we conclude in a similar way that A_1 is a section. ■
Let $n \in \mathbb{Z}_{\geq 2}$ and T a smooth Fano variety of dimension $n - 2$. We consider three divisors D_1, D_2, D_3 in T and set

$$Z := \mathbb{P}_T(O(D_1) \oplus O(D_2) \oplus O(D_3)) \rightarrow T,$$

so that Z is a smooth projective variety of dimension n with $\rho_Z = \rho_T + 1$. Let $S_i \subset Z$ be the section of φ corresponding to the projection $O_T(D_1) \oplus O_T(D_2) \oplus O_T(D_3) \rightarrow O_T(D_i)$, for $i = 1, 2, 3$. Finally let $h : X \rightarrow Z$ be the blow-up of S_1, S_2, S_3, so that X is a smooth projective variety of dimension n with $\rho_X = \rho_T + 4$, and set $\sigma := \varphi \circ h : X \rightarrow T$.

Lemma 3.1. The following are equivalent:

(i) X is Fano;

(ii) $-K_T + D_i - D_j$ is ample for every $i, j \in \{1, 2, 3\}$.

Proof. For $i = 1, 2, 3$ let $E_i \subset X$ be the exceptional divisor over S_i, $F_i \subset Z$ as in Rem. 2.1, and $E'_i \subset X$ its transform.

The implication (i) \Rightarrow (ii) follows directly from Lemma 2.2.

Let us show the converse (ii) \Rightarrow (i). We first show that $-K_X$ is strictly nef, namely that $-K_X \cdot \Gamma > 0$ for every irreducible curve $\Gamma \subset X$.

Again, it follows directly from Lemmas 2.2 and 2.3 that $(-K_X)|E_i$ and $(-K_X)|E'_i$ are ample divisors respectively on E_i and E'_i, for every $i = 1, 2, 3$. Therefore if Γ is contained in one of these divisors, we have $-K_X \cdot \Gamma > 0$.

Assume that $\sigma(\Gamma)$ is a point. By construction, the sections S_i of φ are fibrewise in general linear position, so that every fiber $X_t := \sigma^{-1}(t)$ is a smooth del Pezzo surface. We have $\Gamma \subset X_t$ for some $t \in T$, therefore $-K_X \cdot \Gamma = -K_{X_t} \cdot \Gamma > 0$.

Now assume that $\sigma(\Gamma)$ is not contracted by σ, and that $\Gamma \not\subset E_i, E'_i$ for $i = 1, 2, 3$. It follows from Rem. 2.1 that:

$$-K_X \sim \sigma^*(-K_T) + \sum_{i=1}^{3} (E_i + E'_i).$$

Then $\sigma(\Gamma)$ is an irreducible curve in T, and $-K_X \cdot \Gamma = -K_T \cdot \sigma_*(\Gamma) + \sum_{i=1}^{3} (E_i + E'_i) \cdot \Gamma > 0$.

Now we show that $-K_X$ is big. Consider the divisor $A_Z := F_1 + \varphi^*(-K_T)$. By Rem. 2.1, $F_1 + \varphi^*(D_1)$ is a tautological divisor for $\mathbb{P}_T(O(D_1) \oplus O(D_2) \oplus O(D_3))$, therefore $A_Z = F_1 + \varphi^*(D_1) + \varphi^*(-K_T - D_1)$ is a tautological divisor for $\mathbb{P}_T(O(-K_T) \oplus O(-K_T + D_2 - D_1) \oplus O(-K_T + D_3 - D_1))$, hence A_Z is ample on Z.

Therefore there exist non-negative integers m, c_i such that the divisor

$$A_X := mh^*(A_Z) - \sum_{i=1}^{3} c_i E_i$$

$$= m(E'_1 + E_2 + E_3 + \sigma^*(-K_T)) - \sum_{i=1}^{3} c_i E_i$$

$$= m\sigma^*(-K_T) + mE'_1 - c_1 E_1 + (m - c_2)E_2 + (m - c_3)E_3$$
is ample on \(X\). Then
\[
-mK_X \sim m\sigma^*(-K_T) + m\sum_{i=1}^{3}(E_i + E'_i)
\]
\[
= A_X + (c_1 + m)E_1 + c_2E_2 + c_3E_3 + mE'_2 + mE'_3.
\]
We have written a multiple of \(-K_X\) as the sum of an ample divisor and an effective divisor, which implies that \(-K_X\) is big.

Finally, as \(-K_X\) is strictly nef and big, it is ample by the base point free theorem.

Lemma 3.2. Suppose that \(X\) is Fano. Then \(\delta_X \geq 3\), and \(\delta_X = 3\) if and only if \(\delta_T \leq 3\).

Proof. The divisor \(E_1 \subset X\) is a \(\mathbb{P}^1\)-bundle over \(T\), so that \(\dim \mathcal{N}_1(E_1, X) \leq \rho_{E_1} = \rho_T + 1 = \rho_X - 3\), which implies that \(\delta_X \geq 3\).

If \(\delta_X = 3\), then \(\delta_T \leq \delta_X = 3\) by [Cas12] Rem. 3.3.18. If instead \(\delta_X \geq 4\), then by Th. [1.1] we have \(X \cong S \times X'\) where \(S\) is a del Pezzo surface with \(\rho_S = \delta_X + 1 \geq 5\); moreover \(\sigma\) must be a product morphism (see [Rom19] Lemma 2.10). Since the fiber of \(\sigma\) is a del Pezzo surface with \(\rho = 4\), we must have \(T \cong S \times T'\). Then \(\delta_T \geq \delta_S\) again by [Cas12] Rem. 3.3.18; on the other hand since \(S\) is a surface, it is easy to see that \(\delta_S = \rho_S - 1 = \delta_X\), hence \(\delta_T \geq \delta_X \geq 4\).

Prop. [1.2] follows from Lemmas [3.1] and [3.2]

4. **Construction B**

Let \(n \in \mathbb{Z}_{\geq 2}, T\) a smooth Fano variety of dimension \(n - 2\), and \(N\) a divisor in \(T\) such that \(N \neq 0\). Set
\[
Z := \mathbb{P}_T(\mathcal{O}(N) \otimes \mathcal{O} \otimes \mathcal{O}) \rightarrow T
\]
and let \(H\) be a tautological divisor of \(Z\). Note that \(h^0(Z, H) = h^0(T, \mathcal{O}(N) \otimes \mathcal{O} \otimes \mathcal{O}) \geq 2\), and in fact the constant surjections \(\mathcal{O} \otimes \mathcal{O} \rightarrow \mathcal{O}\) yield a pencil of divisors \(\mathbb{P}_T(\mathcal{O}(N) \otimes \mathcal{O}) \rightarrow Z\) in the linear system \(|H|\) (see Rem. [2.1]).

We assume that a complete intersection of general elements in the linear systems \(|H|\) and \(|2H|\) is smooth, and we fix such a complete intersection \(S_1 \subset Z\).

We also consider the divisor \(D := \mathbb{P}_T(\mathcal{O} \otimes \mathcal{O}) \rightarrow Z\) given by the projection \(\mathcal{O}(N) \otimes \mathcal{O} \otimes \mathcal{O} \rightarrow \mathcal{O} \otimes \mathcal{O}\), so that \(D \cong \mathbb{P}^1 \times T\) with \(\mathcal{N}_{D/Z} \cong \pi^*_{\mathcal{O}_T(1)} \otimes \pi^*_{\mathcal{O}_T(-N)}\), and the two sections \(S_2, S_3 \subset D, S_i \equiv \{pt\} \times T \subset D\), again corresponding to the two projections \(\mathcal{O} \otimes \mathcal{O} \rightarrow \mathcal{O}\).

Remark 4.1. There exists a unique divisor \(H_0\) in \(|H|\) that contains \(S_1\); \(H_0\) is smooth, \(H_0 \cong \mathbb{P}_T(\mathcal{O}(N) \otimes \mathcal{O}), H|_{H_0}\) is a tautological divisor, and \(S_1 \sim 2H|_{H_0}\).

Proof. Since \(|H|\) contains smooth members, and \(S_1\) is a general complete intersection, there exists \(H_0 \in |H|\) smooth containing \(S_1\), and \(\varphi|_{H_0} : H_0 \rightarrow T\) is a \(\mathbb{P}^1\)-bundle. For general \(t \in T\), \((H_0)|_{Z_t}\) is a line, and \(S_1 \subset 2H|_{H_0}\), so that \(S_1 \cap Z_t\) yields two points which determine uniquely the line \((H_0)|_{Z_t}\).

We note that \(H_0\) must intersect \(D\) in a section \(S_0\) of \(\varphi\), given by a surjection \(\lambda : \mathcal{O} \otimes \mathcal{O} \rightarrow \mathcal{O}\), so that \(H_0 \cong \mathbb{P}_T(\mathcal{E})\) where \(\mathcal{E}\) is a rank 2 vector bundle on \(T\). We have
commutative diagrams:

\[
\begin{array}{ccc}
Z & \hookrightarrow & H_0 \\
\downarrow & & \downarrow \\
D & \hookrightarrow & S_0
\end{array}
\quad
\begin{array}{ccc}
\mathcal{O}(N) \oplus \mathcal{O} \oplus \mathcal{O} & \twoheadrightarrow & \mathcal{E} \\
\pi & & \sigma \\
\mathcal{O} \oplus \mathcal{O} & \overset{\lambda}{\twoheadrightarrow} & \mathcal{O}
\end{array}
\]

Since λ and π have a section, this yields a section of σ, which implies that $\mathcal{E} \cong \mathcal{O}(N) \oplus \mathcal{O}$ and gives the rest of the statement. \hfill \blacksquare

Remark 4.2. We have $H_0 \cap S_2 = H_0 \cap S_3 = D \cap S_1 = \emptyset$; in particular S_1, S_2, S_3 are pairwise disjoint.

Proof. Every divisor in $|H|$ intersects D in $\{pt\} \times T$, and so it follows that H_0 is disjoint from S_2 and S_3 by generality.

Furthermore, the section $H_0 \cap D$ of H_0 has normal bundle $N_{H_0 \cap D/H_0} \cong \mathcal{O}_T(-N)$, and is given by a surjection $\mathcal{O}(N) \oplus \mathcal{O} \twoheadrightarrow \mathcal{O}$.

Note that S_1 does not intersect any section of H_0 with normal bundle $\mathcal{O}_T(-N)$, and it follows that S_1 is disjoint from D. \hfill \blacksquare

Remark 4.3. S_1 is irreducible and $\varphi_{|S_1}: S_1 \to T$ is finite of degree 2; moreover $2N$ is linearly equivalent to the branch divisor $\Delta \subset T$, $h^0(T, 2N) > 0$, and $H_{|S_1} \sim (\varphi_{|S_1})^*(N) \sim R$ where $R \subset S_1$ is the ramification divisor.

Proof. The restriction $\varphi_{|S_1}: S_1 \to T$ is finite of degree 2, because if $\dim(S_1 \cap Z_t) > 0$ for some $t \in T$, we should have $S_1 \cap D \neq \emptyset$, contradicting Rem. 4.2. Let $R \subset S_1$ be the ramification divisor and $\Delta \subset T$ the branch divisor. By adjunction

\[-K_{S_1} = (-K_Z - 3H)_{|S_1} = (\varphi_{|S_1})^*\mathcal{O}_T(-K_T - N),\]

so by the Hurwitz formula $(\varphi_{|S_1})^*(N) \sim R$ and $2N \sim \Delta$. In particular $\varphi_{|S_1}$ is not étale because $N \neq 0$, and we deduce that S_1 is irreducible. We also note that $h^0(T, 2N) > 0$ and that S_1 is Fano if and only if $-K_T - N$ is ample. Finally we have $D \sim H - \varphi^*(N)$ (see Rem. 2.1) and $D \cap S_1 = \emptyset$ by Rem. 4.2, thus $H_{|S_1} \sim \varphi_{|S_1}^*(N)$. \hfill \blacksquare

Let $h: X \to Z$ be the blow-up of S_1, S_2, S_3, so that X is a smooth projective variety with $\rho_X = \rho_T + 4$, and set $\sigma := \varphi \circ h: X \to T$.

Lemma 4.4. The following are equivalent:

(i) X is Fano;

(ii) $-K_T \pm N$ is ample on T.

Proof. Let $E_i \subset X$ be the exceptional divisor over S_i, and let \tilde{H}_0 and \tilde{D} be the transforms of H_0 and D.

We show $(i) \Rightarrow (ii)$. If X is Fano, by restricting $-K_X$ to E_2 (or E_3) and using Lemma 2.2 we see that $-K_T - N$ is ample. Then restricting $-K_X$ to \tilde{D} and using Lemma 2.3 we see that $-K_T + N$ is ample.

Let us show the converse $(ii) \Rightarrow (i)$. Again, it follows directly from Lemmas 2.2 and 2.3 that $(-K_X)_{|E_i}$ for $i = 2, 3$ and $(-K_X)_{|\tilde{D}}$ are ample divisors respectively on E_i and \tilde{D}.

We show that \((-K_X)_{\tilde{H}_0}\) is ample on \(\tilde{H}_0\). Since \(\tilde{H}_0 = h^*H_0 - E_1\) by Rem. 4.1 and 4.2, we have \(\mathcal{O}_X(\tilde{H}_0)_{\tilde{H}_0} \cong \mathcal{O}_Z(H_0)_{H_0} \otimes \mathcal{O}_{\tilde{H}_0}(-S_1) \cong \mathcal{O}_{\tilde{H}_0}(-H_0H_{\tilde{H}_0})\) under the isomorphism \(\tilde{H}_0 \cong H_0\). Set \(\varphi_0 := \varphi_{H_0}: H_0 \to T\). Using Rem. 4.1 we get:

\[
\mathcal{O}_X(-K_X)_{\tilde{H}_0} \cong \mathcal{O}_{\tilde{H}_0}(-K_{\tilde{H}_0}) \otimes \mathcal{O}_X(\tilde{H}_0)_{\tilde{H}_0} \cong \mathcal{O}_{\tilde{H}_0}(-K_{\tilde{H}_0} - H_{\tilde{H}_0})
\]

which is the tautological line bundle of \(\mathbb{P}_T(\mathcal{O}(-K_T) \oplus \mathcal{O}(-K_T - N))\), and hence it is ample.

We show that \(-K_X \cdot \Gamma > 0\) for every irreducible curve \(\Gamma \subset X\). If \(\Gamma\) is contained in one of the divisors \(E_2, E_3, \tilde{D}, \tilde{H}_0\), then \(-K_X \cdot \Gamma > 0\) by what precedes.

Now assume that \(\Gamma \not\subset E_2, E_3, \tilde{H}_0, \tilde{D}\). We have \(D \sim H_0 - \varphi^*(N)\) (see Rem. 2.1) and \(-K_Z \sim \varphi^*(-K_T - N) + 3H_0 \sim \varphi^*(-K_T + N) + H_0 + 2\tilde{D}\). Then it follows from Rem. 4.2 that:

\[-K_X \sim h^*(-K_Z) - E_1 - E_2 - E_3 \sim \sigma^*(-K_T + N) + \tilde{H}_0 + 2\tilde{D} + E_2 + E_3.\]

If \(\Gamma\) is not contracted by \(\sigma\), then \(\sigma(\Gamma)\) is an irreducible curve in \(T\), and \(-K_X \cdot \Gamma = (-K_T + N) \cdot \sigma(\Gamma) + (E_2 + E_3 + \tilde{H}_0 + 2\tilde{D}) \cdot \Gamma > 0\).

If instead \(\sigma(\Gamma)\) is a point, then either \(\Gamma\) is a fiber of \(h\), and so \(-K_X \cdot \Gamma = 1\), or \(h(\Gamma)\) is an irreducible curve in a fiber \(Z_t\) of \(\varphi\), for some \(t \in T\). Assume the latter: then \(-K_X \cdot \Gamma = (\tilde{H}_0 + \tilde{D} + h^*(D)) \cdot \Gamma \geq h^*(D) \cdot \Gamma = D \cdot h_0(\Gamma) > 0\), because \(D)_{Z_t}\) is a line in \(Z_t \cong \mathbb{P}^2\).

Now we show that \(-K_X\) is big. Consider the divisor \(A_Z := H_0 + \varphi^*(-K_T)\), which is a tautological divisor for \(\mathbb{P}_T(\mathcal{O}(-K_T + N) \oplus \mathcal{O}(-K_T) \oplus \mathcal{O}(-K_T))\), and hence it is ample on \(Z\). Therefore there exist non-negative integers \(m, c_i\) such that the divisor

\[
A_X := mh^*(A_Z) - \sum_{i=1}^{3} c_i E_i
\]

is ample on \(X\). Finally

\[
-mK_X \sim m(\sigma^*(-K_T) + E_1 + 2\tilde{H}_0 + \tilde{D}) = A_X + m\tilde{H}_0 + m\tilde{D} + \sum_{i=1}^{3} c_i E_i
\]

which implies that \(-K_X\) is big and then ample, as in the proof of Lemma 3.1.

The proof of the following lemma is very similar to the one of Lemma 3.2, thus we omit it.

Lemma 4.5. Suppose that \(X\) is Fano. Then \(\delta_X \geq 3\), and \(\delta_X = 3\) if and only if \(\delta_T \leq 3\).

Prop. 1.3 follows from Lemmas 4.4 and 4.5.
5. Proof of Theorem 1.4

We follow [CR22 proof of Th. 1.1], where the case \(\dim X = 4, \rho_X = 5, \) and \(T \cong \mathbb{P}^2 \) is considered, generalizing the proof step by step. We begin by recalling a result on the structure of Fano varieties \(X \) with \(\delta_X = 3. \)

Theorem 5.1. Set \(n := \dim X. \) There exists a diagram:

\[
X \xrightarrow{f} X_2 \xrightarrow{\psi} Y \xrightarrow{\xi} T
\]

with the following properties:

(a) all varieties are smooth and projective;
(b) \(Y \) is Fano of dimension \(n - 1 \) and \(T \) is Fano of dimension \(n - 2; \)
(c) \(\psi \) and \(\xi \) are smooth morphisms with fiber \(\mathbb{P}^1; \)
(d) \(\sigma: X \to T \) is a flat contraction of relative dimension 2;
(e) \(\psi \circ f: X \to Y \) is a conic bundle;
(f) \(f \) is the blow-up of two disjoint smooth, irreducible subvarieties \(B_1, B_2 \subset X_2 \) of codimension 2;
(g) for \(i = 1, 2 \) set \(A_i := \psi(B_i) \subset Y \) and \(W_i := \psi^{-1}(A_i) \subset X_2; \) \(A_1 \) and \(A_2 \) are disjoint smooth divisors in \(Y \), and \(B_i \) is a section of \(\psi|_{W_i}: W_i \to A_i \), for \(i = 1, 2; \)
(h) \(\xi \) is finite on \(A_i \) for \(i = 1, 2. \)

Proof. See [Cas12, Prop. 3.3.1 and its proof, in particular paragraphs 3.3.15-3.3.17; see also [Rom19, Prop. 3.4 and 3.5] for (g)]. ■

We keep the same notation as in Th. 5.1

Step 5.2. By Lemma 2.5, up to switching \(A_1 \) and \(A_2 \), we can assume that \(A_2 \) is a section of \(\xi: Y \to T. \)

Step 5.3. We can assume that there exists a commutative diagram:

\[
\begin{array}{ccc}
X_2 & \xrightarrow{\psi} & Y \\
\downarrow{g} & & \downarrow{\xi} \\
Z & \xrightarrow{\varphi} & T
\end{array}
\]

where \(\varphi \) is a \(\mathbb{P}^2 \)-bundle, \(\psi \) and \(\xi \) are \(\mathbb{P}^1 \)-bundles, \(g \) is the blow-up along a section \(S_3 \subset Z \) of \(\varphi \), \(E := \text{Exc}(g) \) is a section of \(\psi \), and \(E \cap (B_1 \cup B_2) = \emptyset. \)

Proof. Consider the natural factorization of \(f \) as a sequence of two blow-ups (see Th. 5.1(f)):

\[
X \xrightarrow{f_1} X_1 \xrightarrow{f_2} X_2
\]

where \(f_2 \) is the blow-up of \(B_2 \) and \(f_1 \) is the blow-up of the transform of \(B_1. \)

Let us consider the morphism \(\zeta := \xi \circ \psi \circ f_2: X_1 \to T. \) Since both \(\psi \) and \(\xi \) are smooth by Th. 5.1(g), the composition \(\xi \circ \psi: X_2 \to T \) is smooth. Moreover, since \(A_2 \subset Y \) is a section of \(\xi \) by Step 5.2 and the center \(B_2 \) of the blow-up \(f_2: X_1 \to X_2 \) is a section over
A_2 (see Th. 5.1[6]), we conclude that B_2 is a section of \(\xi \circ \psi : X_2 \to T \). This implies that \(\zeta : X_1 \to T \) is a smooth contraction of relative Picard number 3.

As in [CR22] proof of Step 2.3 one shows that \(-K_{X_1}\) is \(\zeta \)-ample; every fiber of \(\zeta \) is isomorphic to the blow-up \(F \) of \(\mathbb{P}^2 \) in two points. Moreover, again as in [CR22] proof of Step 2.3 we see that every contraction of the fiber \(F \) extends to a global contraction of \(X_1 \) over \(T \). Therefore the sequence of elementary contractions:

\[
\begin{array}{ccc}
F & \longrightarrow & \mathbb{P}^1 \\
| & & | \\
\mathbb{P}^2 & \longrightarrow & \{ \text{pt} \}
\end{array}
\]

yields a corresponding factorization of \(\zeta \):

\[
\begin{array}{ccc}
X_1 & \xrightarrow{f_2} & X'_2 & \xrightarrow{\psi'} & Y' \\
g & & & \downarrow \varepsilon' \\
Z & \xrightarrow{\varphi} & T
\end{array}
\]

We have:

- \(\xi' : Y' \to T \) and \(\psi' : X'_2 \to Y' \) are smooth with fiber \(\mathbb{P}^1 \), and \(\varphi : Z \to T \) is smooth with fiber \(\mathbb{P}^2 \);
- \(g \) is the blow-up of a smooth irreducible subvariety \(S_3 \subset Z \) of codimension 2, which is a section of \(\varphi \);
- \(f'_2 \) is the blow-up of a smooth irreducible subvariety \(B'_2 \subset X'_2 \) of codimension 2, which is a section of \(\varphi \circ g : X'_2 \to T \), and is disjoint from \(E := \text{Exc}(g); \)
- \(A'_2 := \psi'(B'_2) \) is a section of \(\xi' \);
- \(E \) is a section of \(\psi' : X'_2 \to Y' \);
- since \(\varphi, \xi', \) and \(\psi' \) all have a section, they are projectivizations of vector bundles.

Notice that \(\zeta \) is finite on \(f_1(\text{Exc}(f_1)) \), because \(f_2 \) is an isomorphism on it, \(\psi \) is finite on \(B_1 \), and \(\xi \) is finite on \(A_1 \) (see Th. 5.1[6],[8],[11]). In particular \(f_1(\text{Exc}(f_1)) \) cannot contain any \((-1)\)-curve in the fiber \(F \), therefore it cannot meet any such curve, otherwise \(X \) would not be Fano. Hence \(B'_1 := f'_2(f_1(\text{Exc}(f_1))) \) is disjoint from \(B'_2 \) and from \(E \).

We show that properties of Th. 5.1 still hold, so that we can replace the original factorization of \(\zeta \) with the new one. Properties [a],[c],[f] are clear. Since \(\zeta \) is finite on \(f_1(\text{Exc}(f_1)), \xi' \) is finite on \(A'_1 := \psi'(B'_1) \), and we have [h].

The composition \(\psi' \circ f'_2 \circ f_1 : X \to Y' \) is a fiber type contraction with one-dimensional fibers, hence a conic bundle, which yields [e] and [d]. Moreover this conic bundle has only reduced fibers; this implies that \(Y' \) is Fano by [Wis91a Prop. 4.3], and we have [i]. Finally [g] follows from [Rom19 Prop. 3.4 and 3.5].

Set \(S_i := g(B_i) \subset Z \) for \(i = 1, 2 \). Then \(S_1, S_2, \) and \(S_3 \) are pairwise disjoint smooth irreducible subvarieties of codimension 2, and \(X \) is the blow-up of \(Z \) along \(S_1 \cup S_2 \cup S_3 \). We set \(Z_i := \varphi^{-1}(t) \) for every \(t \in T \). Moreover we denote by \(d \) the degree of the finite morphism \(\xi|_{A_1} : A_1 \to T \) (see Th. 5.1[6]).

Step 5.4. \(S_2 \) is a section of \(\varphi \), and \(\varphi|_{S_1} : S_1 \to T \) is finite of degree \(d \).
Proof. For \(i = 1, 2 \), since \(B_i \) is a section over \(A_i \) by Th. 5.1, the degree of \(S_i \) over \(T \) is equal to the degree of \(A_i \) over \(T \); in particular \(S_2 \) is a section of \(\varphi \) by Step 5.2. \(\blacksquare \)

Step 5.5. For every \(t \in T \) and for every line \(\ell \subset Z_t \cong \mathbb{P}^2 \), the scheme-theoretic intersection \(\ell \cap (S_1 \cup S_2 \cup S_3) \) has length \(\leq 2 \).

In particular, the points \((S_1 \cup S_2 \cup S_3) \cap Z_t \) (with the reduced structure) are in general linear position in \(Z_t \).

Proof. Let \(a \) be the length of scheme-theoretic intersection \(\ell \cap (S_1 \cup S_2 \cup S_3) \), and let \(\tilde{\ell} \subset X \) be the transform of \(\ell \). Then \(1 \leq -K_X \cdot \tilde{\ell} = 3 - a \), thus \(a \leq 2 \). \(\blacksquare \)

Step 5.6. If \(d = 1 \), then \(X \to Z \overset{\varphi}{\to} T \) is as in Construction A (Prop. 1.2).

Proof. If \(d = 1 \), then \(\varphi \colon Z \to T \) has three pairwise disjoint sections \(S_i \), which are fiberwise in general linear position, by Steps 5.3, 5.4, and 5.5. This implies that \(Z \cong \mathbb{P}_T(\mathcal{O}(D_1) \oplus \mathcal{O}(D_2) \oplus \mathcal{O}(D_3)) \) in such a way that the three sections \(S_i \) correspond to the projections onto the summands \(\mathcal{O}(D_i) \). Moreover \(-K_T + D_i - D_j \) is ample for every \(i, j \in \{1, 2, 3\} \) by Lemma 3.1 and \(\delta_T \leq 3 \) by Lemma 3.2. \(\blacksquare \)

From now on we assume that \(d \geq 2 \).

For \(q_1, q_2 \in Z_t \) distinct points, we denote by \(\overline{q_1q_2} \subset Z_t \) the line spanned by \(q_1 \) and \(q_2 \).

Step 5.7. Let \(H_0 \subset Z \) be the relative secant variety of \(S_1 \) in \(Z \), namely the closure in \(Z \) of the set:

\[
\bigcup_{q_1, q_2 \in S_1 \cap Z_t, q_1 \neq q_2, t \in T} \overline{q_1q_2}.
\]

Then \(H_0 \) has pure dimension \(n - 1 \), and for every \(t \in T \), \(H_0 \cap Z_t \) is a union of lines \(\ell \) such that the scheme-theoretic intersection \(\ell \cap S_1 \) has length \(\geq 2 \).

Proof. For \(t \) general we have \(|S_1 \cap Z_t| = d \geq 2 \), so that \(H_0 \) is non-empty.

We first consider the fiber product:

\[
\begin{array}{ccc}
S_1 \times_T S_1 & \longrightarrow & S_1 \\
\downarrow & & \downarrow \\
S_1 & \longrightarrow & T
\end{array}
\]

Since the morphism \(S_1 \to T \) is finite between smooth varieties, it is flat. Therefore also \(S_1 \times_T S_1 \to T \) is finite and flat, so that \(S_1 \times_T S_1 \) has pure dimension \(n - 2 \) and every irreducible component dominates \(T \).

We also note that the morphism \(S_1 \times_T S_1 \to S_1 \) has a natural section, whose image is the diagonal \(\Delta \), which is an irreducible component of the fiber product. We denote by \((S_1 \times_T S_1)_0\) the union of the remaining irreducible components of the fiber product, so that \((S_1 \times_T S_1)_0 \setminus \Delta\) is a dense open subset in \((S_1 \times_T S_1)_0\).

Now we consider the dual projective bundle \(Z^* \to T \). We have a morphism over \(T \):

\[
\alpha \colon (S_1 \times_T S_1)_0 \setminus \Delta \longrightarrow Z^*
\]

given by \(\alpha(q_1, q_2) = [q_1q_2] \). If \([\ell] \in \text{Im}(\alpha) \), then \(\ell \cap S_1 \) is finite, hence \(\alpha^{-1}([\ell]) \) is finite. Moreover

\[
\text{Im}(\alpha) = \{[q_1q_2] \in Z^*_t \mid q_1, q_2 \in S_1 \cap Z_t, q_1 \neq q_2, t \in T\}.
\]
Let $S \subset Z^*$ be the closure of $\text{Im}(\alpha)$. If K is an irreducible component of $(S_1 \times_T S_1)_0$, set $S_K := \frac{\alpha(K \setminus \Delta)}{\alpha}$. Then $\alpha: K \setminus \Delta \to S_K$ is a dominant morphism between irreducible varieties, hence its image $\alpha(K \setminus \Delta)$ contains an open subset of S_K; moreover $\dim S_K = \dim K = n - 2$ and S_K dominates T, because K does.

We note that S is the union of S_K when K varies among the finitely many irreducible components of $(S_1 \times_T S_1)_0$, therefore all the irreducible components of S are of type S_K.

We conclude that S has pure dimension $n - 2$ and every irreducible component dominates T. Moreover every irreducible component of S contains an open subset contained in $\text{Im}(\alpha)$. We also note that, for every $[\ell] \in S$, the scheme-theoretical intersection $\ell \cap S_1$ has length ≥ 2.

Now we consider the universal family over T:

$$
\xymatrix{ U
\ar[rr]^\pi
\ar[dr] & & Z
\ar[dl]_\pi
}
$$

where $U = \{([\ell], p) \in Z^* \times_T Z \mid p \in \ell\}$.

The inverse image $\hat{\mathcal{S}}$ of S in U has pure dimension $n - 1$; moreover every irreducible component of $\hat{\mathcal{S}}$ is the inverse image of an irreducible component of S, and contains an open subset contained in the inverse image $\hat{\mathcal{S}}_0$ of $\text{Im}(\alpha)$. In particular $\hat{\mathcal{S}}_0$ is dense in $\hat{\mathcal{S}}$.

Finally we consider the images $\pi(\hat{\mathcal{S}}_0)$ and $\pi(\hat{\mathcal{S}})$ in Z; note that $\pi(\hat{\mathcal{S}}_0)$ is dense in $\pi(\hat{\mathcal{S}})$. By construction we have

$$
\pi(\hat{\mathcal{S}}_0) = \bigcup_{q_1,q_2 \in S_1 \cap Z, q_1 \neq q_2, t \in T} q_1q_2 \subset Z,
$$

so that $H_0 = \overline{\pi(\hat{\mathcal{S}}_0)} = \pi(\hat{\mathcal{S}})$.

Let W be an irreducible component of $\hat{\mathcal{S}}$, and let W_0 be an open subset of W contained in $\hat{\mathcal{S}}_0$. Then $\overline{\pi(W_0)} = \overline{\pi(W)}$, so that $\pi_0: W_0 \to \overline{\pi(W)}$ is a dominant morphism between irreducible varieties, and its image contains an open subset U of $\overline{\pi(W)}$. It is clear that $\pi_0^{-1}(p)$ is finite for every $p \in U$, so that $\dim \overline{\pi(W)} = \dim W = n - 1$. This shows that H_0 has pure dimension $n - 1$.

Moreover, since H_0 is the locus of lines parametrized by S, we also have that for every $t \in T$, $H_0 \cap Z_t$ is a union of finitely many lines ℓ, and the scheme-theoretical intersection $\ell \cap S_1$ has length ≥ 2.

Step 5.8. We have $H_0 \cap (S_2 \cup S_3) = \emptyset$.

Proof. Let ℓ be a line in $H_0 \cap Z_t$ for some $t \in T$; then $\ell \cap (S_2 \cup S_3) = \emptyset$ by Steps 5.5 and 5.7. Therefore $H_0 \cap (S_2 \cup S_3) = \emptyset$. ◼

Recall that $W_2 = \psi^{-1}(A_2) \subset X_2$ and that $E = \text{Exc}(g) \subset X_2$ (see Th. 5.1 and Step 5.3).

Step 5.9. Set $D := g(W_2) \subset Z$. Then $W_2 \cong D \cong \P^1 \times T$, and $D \cap Z_t$ is a line in Z_t for every $t \in T$. Moreover D contains S_2 and S_3 (as $\{pt\} \times T$), while $D \cap S_1 = \emptyset$.
Proof. We have a commutative diagram:

\[
\begin{array}{ccc}
W_2 & \xrightarrow{\psi_{W_2}} & A_2 \\
\downarrow{g|_{W_2}} & & \downarrow{\xi_{A_2}} \\
D & \xrightarrow{\varphi_D} & T
\end{array}
\]

where the vertical maps are isomorphisms by Steps [5.2 and 5.3] and the horizontal maps are \(\mathbb{P}^1\)-bundles.

We also have \(S_3 = g(E \cap W_2) \subseteq D\); moreover \(B_2 \subseteq W_2\) (see Th. [5.1]), hence \(S_2 = g(B_2) \subseteq D\). By Steps [5.3] and [5.4], \(S_2\) and \(S_3\) are disjoint sections of the \(\mathbb{P}^1\)-bundle \(\varphi_D: D \to T\). Thus we can assume that \(D \cong \mathbb{P}_T(O \oplus M)\) for some \(M \in \text{Pic}(T)\), such that the section \(S_2\) corresponds to the projection \(O \oplus M \to O\), so that \(N_{S_2/D}^Y \cong M\).

Now we have \(H_0 \cap D \neq \emptyset\), because both contain a line in \(Z_t\), so that \(H_0 \cap D\) yields a non-zero effective divisor in \(D\). On the other hand, this divisor is disjoint from both sections \(S_2\) and \(S_3\) by Step [5.8]. Write \(O_D(H_0 \cap D) \cong O_D(mS_2 + (\varphi_D)^*G)\), with \(m \in \mathbb{Z}\) and \(G\) divisor on \(T\).

We have \(O_{S_2} \cong O_D(H_0 \cap D)|_{S_2} \cong O_D((\varphi_D)^*G)|_{S_2}\), which gives \(G \sim 0\) and \(O_D(H_0 \cap D) \cong O_D(mS_2)\). Note that \(m \neq 0\) because \(H_0 \cap D\) is non-zero.

Then \(O_{S_2} \cong O_D(H_0 \cap D)|_{S_2} \cong O_D(mS_2)|_{S_2} \cong M^\otimes (-m)\), thus \(M^\otimes m \cong O_T\). Since \(T\) is a Fano variety, \(\text{Pic}(T)\) is finitely generated and free, so that \(M \cong O_T\) and \(D \cong \mathbb{P}^1 \times T\).

Finally, we note that for every \(t \in T\), \(D \cap Z_t\) is the line spanned by the points \(S_2 \cap Z_t\) and \(S_3 \cap Z_t\), so that \(D \cap S_1 = \emptyset\) by Step [5.5].

Recall from Steps [5.2 and 5.3] that \(\xi: Y \to T\) is a \(\mathbb{P}^1\)-bundle and \(A_2 \subset Y\) is a section. Let \(\mathcal{E}\) be a rank 2 vector bundle on \(T\) such that \(Y = \mathbb{P}_T(\mathcal{E})\); up to tensoring \(\mathcal{E}\) with a line bundle, we can assume that the section \(A_2\) corresponds to a surjection \(\mathcal{E} \to O_T\), and we denote by \(L \in \text{Pic}(Y)\) the tautological line bundle, so that \(L|_{A_2} \cong O_{A_2}\). Moreover let \(N\) be a divisor on \(T\) such that \(O_T(N) \cong N_{A_2/Y}^\vee\) under the isomorphism \(T \cong A_2\), so that we have an exact sequence on \(T\):

\[
0 \to O_T(N) \to \mathcal{E} \to O_T \to 0.
\]

Step 5.10. We have \(O_Y(A_1) \cong L^\otimes d\), \(O_Y(A_2 + \xi^*(N)) \cong L\), and \(H^1(Y, L) = 0\).

Proof. Both \(L\) and \(O_Y(A_1)\) belong to the kernel of the restriction \(r: N^1(Y) \to N^1(A_2)\); moreover \(r\) is surjective, because for \(G \in \text{Pic}(A_2)\) the line bundle \(\xi^*(((\xi|_{A_2})^{-1})^*G)\) restricts to \(G\), and \(\rho_{A_2} = \rho_T = ry - 1\), so that \(\dim ker r = 1\) and the classes of \(L\) and \(A_1\) must be proportional in \(N^1(Y)\); intersecting with a fiber of \(\xi\) we deduce that \(O_Y(A_1) \cong L^\otimes d\).

Similarly, we have \(O_Y(A_2 + \xi^*(N))|_{A_2} \cong O_{A_2}\), and again intersecting with a fiber we get \(O_Y(A_2 + \xi^*(N)) \cong L\).

Finally we have

\[
-K_Y + L \equiv -K_Y + \frac{1}{d}A_1
\]

where \(-K_Y\) is ample, \(1/d < 1\), and \(A_1\) is a smooth divisor, therefore \(H^1(Y, L) = 0\) by Kawamata-Viehweg vanishing (see [Laz04b, Th. 9.1.18]).
Step 5.11. We have $X_2 \cong \mathbb{P}_Y(\mathcal{O} \oplus L)$, and E corresponds (as a section of ψ) to the projection $\mathcal{O} \oplus L \to \mathcal{O}$. Moreover $\mathcal{N}_{E/X_2}^\vee \cong L$ and $\mathcal{N}_{S_3/Z}^\vee \cong E$.

Proof. By Step 5.3 we have a commutative diagram:

\[
\begin{array}{ccc}
E & \xrightarrow{\psi_E} & Y \\
\downarrow & & \downarrow \\
S_3 & \xrightarrow{\psi_{S_3}} & T
\end{array}
\]

where the horizontal maps are isomorphisms, and the vertical maps are \mathbb{P}^1-bundles. Since $\psi: X_2 \to Z$ is the blow-up of S_3, we get:

\[
\mathbb{P}_{S_3}(\mathcal{N}_{S_3/Z}^\vee) \cong E \cong Y \cong \mathbb{P}_T(\mathcal{E}),
\]

therefore $\mathcal{N}_{S_3/Z}^\vee \cong \mathcal{E} \otimes M$ with $M \in \text{Pic}(T)$. Moreover \mathcal{N}_{E/X_2}^\vee is the tautological line bundle of $\mathbb{P}_T(\mathcal{E} \otimes M)$, which gives $\mathcal{N}_{E/X_2}^\vee \cong L \otimes \xi^*(M)$.

Recall from Step 5.3 that $E \subset X_2$ is a section of the \mathbb{P}^1-bundle $\psi: X_2 \to Y$. Let \mathcal{F} be a rank 2 vector bundle on Y such that $X_2 = \mathbb{P}_Y(\mathcal{F})$; up to tensoring \mathcal{F} with a line bundle, we can assume that the section E corresponds to a surjection $\sigma: \mathcal{F} \to \mathcal{O}_Y$, so that $\ker \sigma \cong \mathcal{N}_{E/X_2}^\vee \cong L \otimes \xi^*(M)$. We obtain the following exact sequence over Y:

\[
0 \to \ker \sigma \to \mathcal{F} \to \mathcal{O}_Y \to 0.
\]

Now let us consider $A_2 \subset Y$: we have $\ker \sigma|_{A_2} \cong L|_{A_2} \otimes \xi^*(M)|_{A_2} \cong M$, so by restricting to A_2 the above exact sequence we get:

\[
0 \to M \to \mathcal{F}|_{A_2} \to \mathcal{O} \to 0.
\]

On the other hand $\mathbb{P}_{A_2}(\mathcal{F}|_{A_2}) = W_2 \cong \mathbb{P}^1 \times T$ by Step 5.3, and we deduce that $M = \mathcal{O}_T$ and $\ker \sigma \cong L$.

Now we have $\text{Ext}^1(\mathcal{O}_Y, \ker \sigma) \cong H^1(Y, L) = 0$ by Step 5.10, hence the sequence \[5.2\] splits, so that $\mathcal{F} \cong \mathcal{O}_Y \oplus L$.

Step 5.12. We have $-K_T + N$ ample on T, $H^1(T, N) = 0$, $H^0(T, d(d-1)N) \neq 0$, $N \neq 0$, $\mathcal{E} \cong \mathcal{O}_T(T) \oplus \mathcal{O}_T$, and $Y \cong \mathbb{P}_T(\mathcal{O}(N) \oplus \mathcal{O})$.

Proof. Set $\xi_1 := \xi|_{A_1}: A_1 \to T$, so that ξ_1 is finite of degree d. By Step 5.10 we have $L \cong \mathcal{O}_Y(A_2 + \xi^*(N))$ and $\mathcal{O}_Y(A_1) \cong L^\otimes d$, so that $L|_{A_1} \cong \mathcal{O}_{A_1}(\xi_1^*(N))$ and $\mathcal{O}_Y(A_1)|_{A_1} \cong \mathcal{O}_{A_1}(\xi_1^*(dN))$. We have $\det(\mathcal{E}) \cong \mathcal{O}_T(N)$ by \[5.1\], therefore $\mathcal{O}_Y(K_Y) \cong \mathcal{O}_Y(\xi^*(K_T + N)) \otimes L^\otimes (-2)$ and

\[
-K_{Y|_{A_1}} \sim \xi_1^*(-K_T + N).
\]

Since Y is Fano and ξ_1 is finite, we deduce that $-K_T + N$ is ample on T, so that $H^1(T, N) = H^1(T, K_T - K_T + N) = 0$ by Kodaira vanishing. Moreover we have $\text{Ext}^1(\mathcal{O}_T, \mathcal{O}_T(N)) = 0$, so that the sequence \[5.1\] splits.

Finally:

\[
K_{A_1} \sim (K_Y + A_1)|_{A_1} \sim \xi_1^*(K_T + (d-1)N).
\]

This shows that the ramification divisor R of ξ_1 is linearly equivalent to $(d-1)\xi_1^*(N)$; by taking the pushforward we get $(\xi_1)_*(R) \sim d(d-1)N$. On the other hand R is effective and non-zero (because T is simply connected), therefore $H^0(T, d(d-1)N) \neq 0$ and $N \neq 0$.■
Recall from Step 5.9 that $D \cong \mathbb{P}^1 \times T$ and $S_2, S_3 \cong \{\text{pt}\} \times T$.

Step 5.13. We have $Z \cong \mathbb{P}_T(O(N) \oplus O \oplus O)$ with the two sections S_2, S_3 corresponding to the projections onto the trivial summands; moreover $(N_{D/Z})_{\{\text{pt}\} \times T} \cong \mathcal{O}_T(-N)$.

Proof. We know by Steps 5.3, 5.11 and 5.12 that S_3 is a section of $\varphi: Z \to T$ with conormal bundle $\mathcal{E} \cong \mathcal{O}_T(N) \oplus \mathcal{O}_T$. As in the proof of Step 5.11, using that $H^1(T, \mathcal{O}_T) = 0$ by Step 5.12, one shows that $Z \cong \mathbb{P}_T(O(N) \oplus O \oplus O)$, with the section S_3 corresponding to the projection p_3 onto the last summand.

The inclusions $S_2, S_3 \hookrightarrow D \hookrightarrow Z$ yield a diagram:

\[
\begin{array}{ccc}
\mathcal{O}_T(N) \oplus \mathcal{O}_T \oplus \mathcal{O}_T & \xrightarrow{\alpha} & \mathcal{O}_T \oplus \mathcal{O}_T \\
\downarrow{\pi_2} & & \downarrow{\pi_1} \\
\mathcal{O}_T & & \\
\end{array}
\]

where π_i are the projections, π_1 corresponds to $S_2 \subset D$, π_2 corresponds to $S_3 \subset D$, and $\pi_2 \circ \alpha = p_3$.

By Step 5.12 we have $H^0(T, -N) = 0$, thus $\text{Hom} (\mathcal{O}_T(N), \mathcal{O}_T) = 0$ and α factors through the projection p_2: $\mathcal{O}_T(N) \oplus \mathcal{O}_T \oplus \mathcal{O}_T \to \mathcal{O}_T \oplus \mathcal{O}_T$. Then up to changing the isomorphism $Z \cong \mathbb{P}_T(O(N) \oplus O \oplus O)$ we can assume that $\alpha = p_{23}$ and $S_2 \subset Z$ corresponds to the projection p_2 onto the second summand.

Since $N \not\equiv 0$ by Step 5.12, as in the proof of Lemma 2.5 we see that there exists a curve $C \subset T$ which is a complete intersection of very ample divisors (general in their linear system) and such that $N \cdot C \neq 0$. Set $S := \xi^{-1}(C) \subset Y$ and $C_1 := A_1|_S$.

Step 5.14. We have $\mathcal{O}_S(C_1) = (L|_S)^{\otimes d}$, $\deg(L|_C) > 0$, and $L|_S$ is nef and big in S.

Proof. Recall that $\mathcal{O}_Y(A_1) \cong L^{\otimes d} \cong \mathcal{O}_Y(d(A_2 + \xi^*(N)))$ by Step 5.10 in particular $\mathcal{O}_S(C_1) = (L|_S)^{\otimes d}$. We have

\[
(C_1)^2 = A_1 \cdot C_1 = d(A_2 + \xi^*(N)) \cdot C_1 = d\xi^*(N) \cdot C_1 = d^2N \cdot C \neq 0.
\]

If $(C_1)^2 < 0$, C_1 should be the negative section of the ruled surface S, which is impossible because $\xi|_{C_1}$ has degree $d \geq 2$; therefore $(C_1)^2 > 0$, C_1 is nef and big in S, and $L|_S$ too. Moreover $\deg(L|_C) = C_1 \cdot L|_S > 0$.

Set $\overline{X}_2 := \psi^{-1}(S) \subset X_2$, $\overline{Z} := \varphi^{-1}(C) \subset Z$, and let $\overline{\xi}, \overline{\psi}, \overline{\varphi}, \overline{\eta}$ be the respective restricted morphisms, so that we have a diagram:

\[
\begin{array}{ccc}
\overline{X}_2 & \xrightarrow{\overline{\varphi}} & S \\
\downarrow{\overline{\pi}} & & \downarrow{\overline{\xi}} \\
\overline{Z} & \xrightarrow{\overline{\varphi}} & C
\end{array}
\]

where all varieties are smooth and projective, and $\dim \overline{X}_2 = \dim \overline{Z} = 3$. We also set $\overline{W}_1 := \overline{\psi}^{-1}(C_1) = W_1 \cap \overline{X}_2 \subset \overline{X}_2$ and $\overline{B}_1 := B_1 \cap X_2$, so that \overline{B}_1 is a section of $\overline{\psi}|_{\overline{W}_1}: \overline{W}_1 \to C_1$ (see Th. 5.1(g)).

Step 5.15. There exists a section K of $\overline{\psi}: \overline{X}_2 \to S$ containing \overline{B}_1 and disjoint from E.
We deduce that $\overline{W}_1 = \mathbb{P}_1(\mathcal{O}_{\mathbb{C}_1} \oplus L_{|\mathbb{C}_1})$. Moreover by Steps 5.3 and 5.11 we deduce that $\overline{W}_1 \cap E$ is a section of \overline{W}_1, disjoint from \overline{B}_1, and corresponding to the projection $\mathcal{O}_{\mathbb{C}_1} \oplus L_{|\mathbb{C}_1} \to \mathcal{O}_{\mathbb{C}_1}$. Then it is not difficult to see that \overline{B}_1 corresponds, as a section, to a surjection $\mathcal{O}_{\mathbb{C}_1} \oplus L_{|\mathbb{C}_1} \to L_{|\mathbb{C}_1}$.

Let us consider the restriction $r: \text{Hom}(\mathcal{O}_{\mathbb{S}} \oplus L_{|\mathbb{S}}, L_{|\mathbb{S}}) \to \text{Hom}(\mathcal{O}_{\mathbb{C}_1} \oplus L_{|\mathbb{C}_1}, L_{|\mathbb{C}_1})$. We have

$$\text{Hom}(\mathcal{O}_{\mathbb{C}_1} \oplus L_{|\mathbb{C}_1}, L_{|\mathbb{C}_1}) \cong \text{Hom}(L_{|\mathbb{C}_1} \oplus \mathcal{O}_{\mathbb{C}_1}, \mathcal{O}_{\mathbb{C}_1}) \cong H^0(\mathbb{C}_1, L_{|\mathbb{C}_1}) \oplus H^0(\mathbb{C}_1, \mathcal{O}_{\mathbb{C}_1}),$$
and similarly $\text{Hom}(\mathcal{O}_{\mathbb{S}} \oplus L_{|\mathbb{S}}, L_{|\mathbb{S}}) \cong H^0(\mathbb{S}, L_{|\mathbb{S}}) \oplus H^0(\mathbb{S}, \mathcal{O}_{\mathbb{S}})$. Since the restriction $H^0(\mathbb{S}, \mathcal{O}_{\mathbb{S}}) \to H^0(\mathbb{C}_1, \mathcal{O}_{\mathbb{C}_1})$ is an isomorphism, r is surjective if the restriction $H^0(\mathbb{S}, L_{|\mathbb{S}}) \to H^0(\mathbb{C}_1, L_{|\mathbb{C}_1})$ is.

We have an exact sequence of sheaves on \mathbb{S}:

$$0 \to L_{|\mathbb{S}} \otimes \mathcal{O}_{\mathbb{S}}(-C_1) \to L_{|\mathbb{S}} \to L_{|\mathbb{C}_1} \to 0.$$ Using Step 5.14, Serre duality and Kawamata-Viehweg vanishing:

$$H^1(\mathbb{S}, L_{|\mathbb{S}} \otimes \mathcal{O}_{\mathbb{S}}(-C_1)) = H^1(\mathbb{S}, L_{|\mathbb{S}}^{(1-d)}) = H^1(\mathbb{S}, K_{\mathbb{S}} \otimes L_{|\mathbb{S}}^{(d-1)}) = 0$$

because $d \geq 2$.

We conclude that r is surjective, so that τ extends to a morphism $\tau_\mathbb{S}: \mathcal{O}_{\mathbb{S}} \oplus L_{|\mathbb{S}} \to L_{|\mathbb{S}}$.

We show that $\tau_\mathbb{S}$ is surjective. Under the isomorphism $\text{Hom}(\mathcal{O}_{\mathbb{S}} \oplus L_{|\mathbb{S}}, L_{|\mathbb{S}}) \cong \text{Hom}(\mathcal{O}_{\mathbb{S}}, L_{|\mathbb{S}}) \oplus \mathbb{C}$, $\tau_\mathbb{S}$ corresponds to (α, λ).

If $\lambda = 0$, then $\tau_\mathbb{S}$ factors through the projection $\mathcal{O}_{\mathbb{S}} \oplus L_{|\mathbb{S}} \to \mathcal{O}_{\mathbb{S}}$, and the same happens by restricting to C_1. This is impossible, because $\tau: \mathcal{O}_{\mathbb{C}_1} \oplus L_{|\mathbb{C}_1} \to L_{|\mathbb{C}_1}$ is surjective, and $\deg(L_{|\mathbb{C}_1}) > 0$ by Step 5.14.

We conclude that $\lambda \neq 0$ and $\tau_\mathbb{S}$ is surjective, so it yields a section $K \subset X_2$ extending \overline{B}_1.

We show that $K \cap E = \emptyset$. Let us consider the projection $\mathcal{O}_{\mathbb{S}} \oplus L_{|\mathbb{S}} \to L_{|\mathbb{S}}$ and the corresponding section $\tilde{K} \subset X_2$. Since $E \cap X_2$ is a section corresponding to the projection onto the other summand, we have $K \cap E = \emptyset$. On the other hand, it is easy to check that $K \sim \tilde{K}$ in X_2, hence for every curve $C \subset E \cap X_2$ we have $K \cdot C = 0$. Since $K \neq E \cap X_2$, this implies that $K \cap E = \emptyset$. $lacksquare$

Step 5.16. We have $d = 2$.

Proof. Recall that $K \cap E = \emptyset$ and $K \supset \overline{B}_1$ by Step 5.15. Consider $\overline{g}(K) \subset Z$, so that $K \cong \overline{g}(K)$ and $\overline{g}(K) \supset S_1 \cap Z$. If $t \in C$ is general, then $g^{-1}(Z_t) \cong \mathbb{P}_1$, and $K \cap g^{-1}(Z_t)$ is a section of $\mathbb{P}_1 \to \mathbb{P}_1$, disjoint from the (-1)-curve $E \cap g^{-1}(Z_t)$. Thus $\overline{g}(K) \cap Z_t$ is a line in $Z_t \cong \mathbb{P}^2$, and this line contains the d points $S_t \cap Z_t$. Since these points are in general linear position (see Step 5.5), we conclude that $d = 2$. $lacksquare$

Step 5.17. The divisor H_0 is a tautological divisor for $Z = \mathbb{P}_T(\mathcal{O}(N) \oplus \mathcal{O} \oplus \mathcal{O})$.

Proof. Since $d = 2$ by Step 5.16, for a general fiber Z_t of φ the restriction $(H_0)|_{Z_t}$ is a line (see Step 5.7), therefore \overline{H} is a tautological divisor, we have $H_0 \sim H + \varphi^*(G)$, G a divisor on T. Restricting to S_3 we have $H_0 \cap S_3 = \emptyset$ by Step 5.8 and $\mathcal{O}_Z(H)|_{S_3} \cong \mathcal{O}_{S_3}$ by Step 5.13, thus $G \sim 0$ and $H_0 \sim H$. $lacksquare$

Step 5.18. We have $H^1(Z, H_0) = 0$.

Proof. By Step 5.18, the divisor $A := \varphi^*(-K_T) + H_0$ is the tautological divisor for $\mathbb{P}_T(\mathcal{O}(-K_T + N) \oplus O(-K_T) \oplus O(K_T))$, hence it is ample by Th. 5.1 and Step 5.12.

Consider the divisors $H'_0, H''_0 \subset Z$ corresponding to the two projections $\mathcal{O}_T(N) \oplus \mathcal{O}_T \to \mathcal{O}_T(N) \oplus \mathcal{O}_T$, such that $H'_0 \cap D = S_2$ and $H''_0 \cap D = S_3$ (see Step 5.13); we note that the divisor $H'_0 + H''_0 + D$ is simple normal crossing in Z.

By Step 5.17 and Rem. 2.1 we have $H'_0 \sim H''_0 \sim H_0$ and $D \sim H_0 - \varphi^*(N)$, hence $H'_0 + H''_0 + D \sim 3H_0 - \varphi^*(N)$. Moreover $-K_Z \sim \varphi^*(-K_T - N) + 3H_0$ and $-K_Z + H_0 \sim \varphi^*(-K_T - N) + 4H_0 \sim A + H'_0 + H''_0 + D$.

By Norimatsu’s Lemma [Laz04a, Lemma 4.3.5] we get $H^1(Z, H_0) = H^1(Z, K_Z - K_Z + H_0) = 0$.

Step 5.19. S_1 is a complete intersection of H_0 and a divisor in $|2H_0|$.

Proof. We note first of all that H_0 is a smooth \mathbb{P}^1-bundle over T. Indeed, since $d = 2$ by Step 5.16 for every $t \in T$ we have $\mathcal{O}_Z(H_0)|_{Z_t} \cong \mathcal{O}_{\mathbb{P}^1}(1)$ (see Step 5.7). Note that no fiber Z_t can be contained in H_0, because $H_0 \cap S_2 = \emptyset$ by Step 5.8; therefore $(H_0)|_{Z_t}$ is a line for every $t \in T$, and $\varphi|_{H_0} : H_0 \to T$ is a \mathbb{P}^1-bundle.

Now we show that $\mathcal{O}_{H_0}(S_1) \cong \mathcal{O}_Z(2H_0)|_{H_0}$. We consider the divisor H'_0 as in the proof of Step 5.18 so that $H'_0 \sim H_0$ and $H'_0 \cap D = S_2$.

We have that $D \cap H_0$ is $\{pt\} \times T$ in $D \cong \mathbb{P}^1 \times T$, hence $D \cap H_0 \subset H_0$ is a section of φ, disjoint from both S_1 and H'_0, because $D \cap S_1 = \emptyset$ and $D \cap H'_0 \cap H_0 = S_2 \cap H_0 = \emptyset$ (see Steps 5.8 and 5.9). Since S_1 has degree 2 over T, in H_0 we have

$$S_1 \sim H_0 \cdot 2(H'_0)|_{H_0} + (\varphi|_{H_0})^*(G),$$

where G is a divisor in T. By restricting to the section $D \cap H_0$, we get $G \sim 0$ and $\mathcal{O}_{H_0}(S_1) \cong \mathcal{O}_Z(2H_0)|_{H_0}$.

Finally we consider the exact sequence in Z:

$$0 \to \mathcal{O}_Z(H_0) \to \mathcal{O}_Z(2H_0) \to \mathcal{O}_Z(2H_0)|_{H_0} \to 0.$$

By Step 5.18 we have a surjection $H^0(Z, \mathcal{O}_Z(2H_0)) \to H^0(H_0, \mathcal{O}_Z(2H_0)|_{H_0})$, and this yields the statement.

Step 5.20. $X \to Z \xrightarrow{\sigma} T$ is as in Construction B (Prop. 1.3).

Proof. We just note that $-K_T \pm N$ is ample by Lemma 4.4 and $\delta_T \leq 3$ by Lemma 4.5.

6. **Geometry of the del Pezzo fibration $\sigma : X \to T$**

Let X be a smooth Fano variety with $\delta_X = 3$. By Th. 1.4 there are a smooth Fano variety T, and a morphism $\sigma : X \to T$, as in Construction A or B; let us denote X by X_A in the former case, and by X_B in the latter.

In this section we study the geometry of the fibration in del Pezzo surfaces σ, starting with the description of its fibers in §6.1. Then, in §6.2 and §6.3 we describe the 4-dimensional cone $\text{NE}(\sigma)$ and the associated relative contractions, respectively for X_A and X_B. In particular this allows to determine whether the same $\sigma : X \to T$ can be obtained with Construction A or B in different ways, or for different choices of divisors on T.
Finally in §6.4 we show that, if \(X \neq F \times T \) (\(F \) the blow-up of \(\mathbb{P}^2 \) at 3 non-collinear points), then \(T \) must satisfy some non-trivial condition.

We keep the same notation as in Sections 3 and 4; in particular we recall that \(\sigma \) factors as \(X \xrightarrow{h} Z \xrightarrow{\varphi} T \), where \(\varphi \) is a \(\mathbb{P}^2 \)-bundle, and \(h \) is the blow-up along 3 horizontal, pairwise disjoint, codimension 2 smooth subvarieties \(S_1, S_2, S_3 \subset Z \).

6.1. **Fibers of \(\sigma \).** Let \(X \) be as above, and \(X_t \) the fiber of \(\sigma \) over \(t \in T \).

For \(X_A \), the morphism \(\sigma \) is smooth, and \(X_t \) is isomorphic to the blow-up of \(\mathbb{P}^2 \) at non-collinear 3 points for every \(t \in T \).

For \(X_B \), recall that \(\varphi|_{S_1} : S_1 \to T \) is a finite cover of degree 2; let \(\Delta \subset T \) be the branch divisor (note that \(\Delta \neq \emptyset \)). Then \(\sigma \) is smooth over \(T \setminus \Delta \), where \(X_t \) is isomorphic to the blow-up of \(\mathbb{P}^2 \) at 4 points in general linear position. Instead, for \(t \in \Delta \), \(X_t \) is singular and isomorphic to the blow-up of \(\mathbb{P}^2 \) at 3 non-collinear points, one of which is a double point contained in a line (see Rem. 4.1); thus \(X_t \) is irreducible and has one rational double point of type \(A_1 \) (see for instance [EH00, §IV.2.3]).

Remark 6.1. Let \(X \) be a smooth Fano variety with \(\delta_X = 3 \). Then \(X \) is toric if and only if \(X \) is obtained using Construction A from a toric Fano variety \(T \).

Indeed, if \(X \) is toric, then \(\sigma : X \to T \) is smooth (so that \(X = X_A \)) and \(T \) is toric.

Conversely, if we apply Construction A to a toric Fano variety \(T \), then \(Z \) is toric, and the three sections \(S_1, S_2, S_3 \subset Z \) are invariant for the torus action, so that \(X \) is toric too.

6.2. **The cone \(\text{NE}(\sigma) \) and relative contractions for \(X_A \).**

Remark 6.2. Consider \(X = X_A \), let \(X_t \) be a fiber of \(\sigma \), and \(\iota : X_t \hookrightarrow X \) the inclusion. Since \(\sigma \) is smooth, it follows from [W1891, Prop. 1.3] that the pushforward \(\iota_* : \mathcal{N}_1(X_t) \to \mathcal{N}_1(X) \) yields an isomorphism among \(\mathcal{N}_1(X_t) \) and \(\ker \sigma_* \), and among the cones \(\text{NE}(X_t) \) and \(\text{NE}(\sigma) \). Moreover every relative elementary contraction of \(X/T \) restricts to an elementary contraction of \(X_t \), and viceversa.

Since \(X_t \) is the blow-up of \(\mathbb{P}^2 \) at 3 non-collinear points \(p_1, p_2, p_3 \), the cone \(\text{NE}(X_t) \) is generated by the classes of the six \((-1)\)-curves of \(X_t \), given by the exceptional curve \(e_i \) over \(p_i \), and the transform \(e'_i \) of the line \(p_j p_k \). In \(X \) we have \(e_i = E_i \cap X_t \) and \(e'_i = E'_i \cap X_t \); the exceptional divisors \(E_i, E'_i \) are \(\mathbb{P}^1 \)-bundles over \(T \).

Figure 6.1 shows the 3-dimensional polytope obtained as a hyperplane section of the 4-dimensional cone \(\text{NE}(\sigma) \).

Lemma 6.3. Let \(X = X_A \). Then there is a commutative diagram:

\[
\begin{array}{ccc}
X & \xrightarrow{\hat{h}} & \hat{Z} = \mathbb{P}_T(\mathcal{O}(-D_1) \oplus \mathcal{O}(-D_2) \oplus \mathcal{O}(-D_3)) \\
\downarrow h & & \downarrow \hat{\varphi} \\
Z & \xrightarrow{\varphi} & T
\end{array}
\]

where \(\text{Exc}(\hat{h}) = E'_1 \cup E'_2 \cup E'_3 \), so that performing Construction A from \(T \) with divisors \(D_1, D_2, D_3 \), or with divisors \(-D_1, -D_2, -D_3 \), yields the same Fano variety \(X \).

Proof. By Rem. 6.2, the face of \(\text{NE}(\sigma) \) spanned by the classes of \(e'_1, e'_2, e'_3 \) yields a contraction \(h : X \to \hat{Z} \) such that \(\hat{\varphi} : \hat{Z} \to T \) is a \(\mathbb{P}^2 \)-fibration, and \(\hat{h} \) is the blow-up of three sections that are fibrewise in general linear position. Moreover by Lemmas 2.2
and we have $E_i \cong \mathbb{P}_T(\mathcal{O}(-D_j) \oplus \mathcal{O}(-D_k))$ and $E'_i \cong \mathbb{P}_T(\mathcal{O}(D_j) \oplus \mathcal{O}(D_k))$ for every i, j, k with $\{i, j, k\} = \{1, 2, 3\}$; this implies the statement.

Observe that the birational contractions h and \hat{h} correspond to the two simplicial facets of $\text{NE}(\sigma)$, see Fig. 6.1. Instead the three non-simplicial facets yield conic bundles $X \rightarrow Y$, where Y is a \mathbb{P}^1-bundle over T.

6.3. The cone $\text{NE}(\sigma)$ and relative contractions for X_B.

Lemma 6.4. Let $X = X_B$, X_{t_0} a smooth fiber of σ, and $i: X_{t_0} \hookrightarrow X$ the inclusion. Then every relative elementary contraction of X/T restricts to a non-trivial contraction of X_{t_0}, and $i^* \text{NE}(X_{t_0}) = \text{NE}(\sigma)$.

Proof. Clearly $i^* \text{NE}(X_{t_0}) \subseteq \text{NE}(\sigma)$. For the converse, let R be an extremal ray of $\text{NE}(\sigma)$, and $c_R: X \rightarrow X_R$ the associated elementary contraction of X. We show that X_{t_0} must contain some curve contracted by c_R: this implies that R is in the image of $\text{NE}(X_{t_0})$ via i^*, so that $i^* \text{NE}(X_{t_0}) = \text{NE}(\sigma)$.

The statement is clear if c_R is of fiber type, so let us assume that c_R is birational. Every fiber X_t of σ is irreducible (see §6.1), and $c_R(X_t) \subset X_R$ is the fiber of $X_R \rightarrow t$ over t. Since $\dim X_R = n$, we have $\dim c_R(X_t) = 2$ and hence $X_t \not\subseteq \text{Exc}(c_R)$.

On the other hand every fiber of c_R has dimension ≤ 1. By [Wis91a, Thm. 1.2] we have $\dim \text{Exc}(c_R) = n-1$, therefore $\dim (\text{Exc}(c_R)) = n-2$, $\sigma(\text{Exc}(c_R)) = T$, and $\text{Exc}(c_R)$ meets every fiber X_t.

Remark 6.5. Let $X = X_B$; we use Lemma 6.4 to describe the cone $\text{NE}(\sigma)$.

Let X_t be a smooth fiber of σ and $\{p_1, p'_1, p_2, p_3\} \in Z_t$ be the points blown-up by $h|_{X_t}: X_t \rightarrow Z_t$, where $p_i = S_i \cap Z_t$ for $i = 2, 3$, and $\{p_1, p'_1\} = S_1 \cap Z_t$. The 5-dimensional cone $\text{NE}(X_t)$ is generated by the classes of the ten (-1)-curves in X_t, given by the exceptional curves and the transforms of the lines through two blown-up points. We denote by e_i (respectively e'_i) the exceptional curve over p_i (respectively p'_i), and $\ell_{i,j}$ (respectively $\ell_{1,1}$, $\ell_{1',i}$ for $i = 2, 3$) the transform of the line $p_ip'_j$ (respectively $p_1p'_1$, p'_1p_i for $i = 2, 3$).
Consider as above $ι_1 : X_t \hookrightarrow X$ and $ι_* : \mathcal{N}_1(X_t) \to \ker σ_*$. The kernel of $ι_*$ has dimension 1, and is generated by the numerical class in $\mathcal{N}_1(X_t)$ of the 1-cycle $(e_1 - e'_1)$. By looking at the numerical relations in $\mathcal{N}_1(X_t)$, we provide a complete description of the cone $\text{NE}(σ)$: Figure 6.2 shows the 3-dimensional polytope obtained as a hyperplane section of the 4-dimensional cone $\text{NE}(σ)$. We see that $\text{NE}(σ)$ has 7 extremal rays, and the figure shows their generators.

It follows from [Wiś91a, Thm. 1.2] that every relative elementary contraction of $\text{NE}(σ)$ is the blow-up of a smooth variety along a smooth codimension 2 subvariety. The contraction corresponding to $[e_1] = [e'_1]$ (respectively $[e_2], [e_3]$) is the blow-down of E_1 (respectively E_2, E_3), while the contractions corresponding to $[ℓ_{1,1'}]$ and $[ℓ_{2,3}]$ have respectively exceptional divisors H_0 and D (the strict transforms of H_0 and D from Z). Lastly, for $i = 2, 3$ we denote by G_i the exceptional divisor of the contraction corresponding to $[ℓ_{1,i}] = [ℓ_{1',i}]$.

Observe that $\text{NE}(σ)$ has 4 simplicial facets and 3 non-simplicial facets; $\text{NE}(h)$ is the facet generated by $[e_1], [e_2], [e_3]$.

Proposition 6.6. Let $X = X_B$, and consider the facet $⟨[ℓ_{1,2}], [ℓ_{1,1'}], [e_3]⟩$ (respectively $⟨[ℓ_{1,3}], [ℓ_{1,1'}], [e_2]⟩$) of $\text{NE}(σ)$. The associated contraction \hat{h} yields a commutative diagram:

![Diagram](image)

where $\text{Exc}(\hat{h}) = G_2 \cup \tilde{H}_0 \cup E_3$ (respectively $G_3 \cup \tilde{H}_0 \cup E_2$), and $X \xrightarrow{\hat{h}} Z \xrightarrow{\varphi} T$ is as described in Construction B.
Proof. We consider the face $\langle [\ell_{1,2}], [\ell_{1,1'}], [\epsilon_3]\rangle$, the other case being analogous. Let $\hat{h}: X \to \tilde{Z}$ be the associated contraction, and $\tilde{\varphi}: \tilde{Z} \to T$ the map over T, so that $\tilde{\varphi}$ is an elementary contraction and $\sigma = \tilde{\varphi} \circ \hat{h}$.

By Rem. 6.5 \tilde{Z} is smooth and \hat{h} is the blow-up of three pairwise disjoint smooth, codimension 2, irreducible subvarieties, with $\text{Exc}(\hat{h}) = G_2 \cup \tilde{H}_0 \cup E_3$.

We show that $\tilde{\varphi}: \tilde{Z} \to T$ is a \mathbb{P}^2-bundle. First note that all the fibers \tilde{Z}_t of $\tilde{\varphi}$ are surfaces, and the general one is isomorphic to \mathbb{P}^2. Let $A := \hat{h}(E_2)$, and \tilde{Z}_t be general, so that $\mathcal{O}_{\tilde{Z}_t}(A)|_{\tilde{Z}_t} \cong \mathcal{O}_{\mathbb{P}^2}(1)$ and $A \cdot \ell = 1$ for a line $\ell \subset \tilde{Z}_t$. Since $\text{NE}(\tilde{\varphi})$ has dimension 1, the relative Kleiman’s criterion implies that A is $\tilde{\varphi}$-ample, thus there exists an ample divisor M on T such that $A' := A + m\tilde{\varphi}^*(M)$ is ample on \tilde{Z} for $m \gg 0$. Note that $\mathcal{O}_{\tilde{Z}_t}(A'|_{\tilde{Z}_t}) \cong \mathcal{O}_{\mathbb{P}^2}(1)$, so we apply [BS95, Prop. 3.2.1] and deduce that $\tilde{Z} = \mathbb{P}_T(\mathcal{G})$ for some rank 3 vector bundle \mathcal{G} on T.

By construction $\hat{S}_3 := \hat{h}(E_3)$ is a section of $\tilde{\varphi}$, and moreover $\mathcal{N}_{\hat{S}_3/\tilde{Z}}^\vee \cong \mathcal{N}_{\hat{S}_3/Z}^\vee \cong \mathcal{O}(N) \oplus \mathcal{O}$. Up to tensoring with some line bundle on T, we may assume that the section \hat{S}_3 gives an exact sequence on T:

$$0 \to \mathcal{O}(N) \oplus \mathcal{O} \to \mathcal{G} \to \mathcal{O} \to 0.$$

Since $-K_T + N$ is ample (see Lemma 4.4), we have $h^1(T, N) = 0$ and the above sequence splits, hence $\tilde{Z} \cong \mathbb{P}_T(\mathcal{O}(N) \oplus \mathcal{O} \oplus \mathcal{O}) = Z$.

Finally it is not difficult to see that $\hat{h}(\tilde{H}_0)$ is a section of φ corresponding to the projection onto \mathcal{O}_T, and that $\hat{h}(G_2)$ is a complete intersection of elements in $|H|$ and $|2H|$.

\[\text{Remark 6.7.} \] Let $X = X_B$, and consider the facet $\langle [\epsilon_2], [\epsilon_3], [\ell_{1,1'}]\rangle$ of $\text{NE}(\sigma)$ (see Fig. 6.2). The associated contraction h' yields a commutative diagram

\[
\begin{array}{ccc}
X & \xrightarrow{h'} & W \\
\downarrow h & & \downarrow \alpha \\
Z & \xrightarrow{\varphi} & T
\end{array}
\]

where $\text{Exc}(h') = E_2 \cup E_3 \cup \tilde{H}_0$, W is smooth, and $\alpha: W \to T$ is a quadric bundle, singular over $\Delta \subset T$.

Instead the three non-simplicial facets of $\text{NE}(\sigma)$ yield conic bundles $X \to Y$, where Y is a \mathbb{P}^1-bundle over T.

We also note that, among the seven exceptional divisors associated to the extremal rays of $\text{NE}(\sigma)$, E_2, E_3, \tilde{H}_0, and \tilde{D} are \mathbb{P}^1-bundles over T, while E_1, G_2, and G_3 are \mathbb{P}^1-bundles over S_1, the double cover of T ramified along Δ.

6.4. Conditions on T. Given a smooth Fano variety T, Constructions A and B give algorithms to construct from T a smooth Fano variety X with $\dim X = \dim T + 2$ and $\rho_X = \rho_T + 4$. For every T one can get $X_A = F \times T$, where F is the blow-up of \mathbb{P}^2 at 3 non-collinear points, and $\sigma: X \to T$ the projection; this corresponds to the choice $D_1 \sim D_2 \sim D_3$. In order to get an X different from $F \times T$, the variety T must satisfy some conditions, as follows.
Lemma 6.8. Let T be a smooth Fano variety. Suppose that there exists a Fano variety X obtained from T as in Construction A or B, and such that $\sigma: X \to T$ is not isomorphic to the projection $F \times T \to T$.

Then there exists a hyperplane $\Lambda \subset N_1(T)$ containing all the classes $\{C\}$ where $C \subset T$ is a curve with $-K_T \cdot C = 1$.

In particular, every extremal ray of length 1 of $NE(T)$ is contained in Λ, and $NE(T)$ has at least one extremal ray R with length $\ell(R) \geq 2$.

Proof. Let $C \subset T$ be a curve with $-K_T \cdot C = 1$. Suppose first that $X = X_A$. By Lemma 3.1, for every $i, j = 1, 2, 3$ we have $1 \leq (-K_T + D_i - D_j) \cdot C = 1 + (D_i - D_j) \cdot C$, so that $D_i \cdot C = D_j \cdot C$. We exclude by assumption the case $D_i \sim D_2 \sim D_3$, hence for some $i \neq j$ we must have $D_i \neq D_j$; set $\Lambda := (D_i - D_j) \perp$, so that Λ is a hyperplane in $N_1(T)$, and contains $\{C\}$.

The case where $X = X_B$ is similar, we set $\Lambda := N_1 \perp$. ■

In the next section we apply these conditions to the case where T is a del Pezzo surface.

7. The case of dimension 4

Let X be a Fano 4-fold with $\delta_X = 3$. By Th. 1.4, X is obtained with Construction A or B from a del Pezzo surface T with $\rho_X - \rho_T = 4$ and $\delta_T \leq 3$. Since T is a surface, it is easy to see that $\delta_T = \rho_T - 1$, thus $\rho_T \in \{1, 2, 3, 4\}$ and $\rho_X \in \{5, 6, 7, 8\}$.

If $\rho_T \geq 3$, then $NE(T)$ is generated by classes of (-1)-curves, in particular there are no extremal rays of length ≥ 1. Then it follows from Lemma 6.8 that $X \cong F \times T$, where F is the blow-up of \mathbb{P}^2 in 3 non-collinear points.

If instead $\rho_T = 1$, then $\rho_X = 5$; this case is completely classified in [CR22, Th. 1.1], and there are 6 families.

Finally suppose that $\rho_T = 2$, so that $\rho_X = 6$. If X is toric, after the classification of toric Fano 4-folds by Batyrev [Bat99, Sat00], we see that X has combinatorial type U (in the notation of [Bat99]), and there are 8 possibilities for X. More precisely, we have $T \cong \mathbb{F}_1$ in the two cases U_2 and $U_4 \cong F \times \mathbb{F}_1$, and $T \cong \mathbb{P}_1 \times \mathbb{P}_1$ in the remaining six cases, including $U_5 \cong F \times \mathbb{P}_1 \times \mathbb{P}_1$.

In the non-toric case we get the following result, that together with the previous discussion implies Prop. 1.5.

Proposition 7.1. There are three families of non-toric Fano 4-folds X with $\delta_X = 3$ and $\rho_X = 6$.

Proof. By Th. 1.4 and Rem. 6.1, X is obtained with Construction B from a del Pezzo surface T with $\rho_T = \rho_X - 4 = 2$, namely $T \cong \mathbb{P}_1 \times \mathbb{P}_1$ or $T \cong \mathbb{F}_1$. The divisor N on T is such that the class of N is effective and non-zero, and $-K_T \pm N$ is ample.

It is not difficult to see that there are three choices of N satisfying these conditions: $N \in |\mathcal{O}_{\mathbb{F}_1 \times \mathbb{P}_1}(0, 1)|$, $N \in |\mathcal{O}_{\mathbb{F}_1 \times \mathbb{P}_1}(1, 1)|$, and N the pullback of a general line in \mathbb{P}^2 in the case of \mathbb{F}_1.

In all cases N is nef, hence the tautological divisor H of $Z = \mathbb{P}_T(\mathcal{O}(N) \oplus \mathcal{O} \oplus \mathcal{O})$ is nef. On the other hand Z is toric, thus H is globally generated: we conclude that the general complete intersection of elements in $|H|$ and $|2H|$ is smooth, and we can apply Construction B. Finally we get three families of Fano 4-folds, respectively X_{B_0}, X_{B_1}, and X_{B_2}. ■
Description of X_{B_0}. We have $X_{B_0} \cong \mathbb{P}^1 \times Y$, where Y is the Fano 3-fold obtained by blowing-up \mathbb{P}^3 along a line, a conic disjoint from the line, and two non-trivial fibers of the blow-up of the line. In fact Y is obtained with Construction B from $T_Y = \mathbb{P}^1$ with $N_Y \in |\mathcal{O}_{\mathbb{P}^1}(1)|$.

Description of X_{B_1}. Set $Z := \mathbb{P}^1 \times \mathbb{P}^1 \langle \mathcal{O}(1, 1) \oplus \mathcal{O} \rangle \to \mathbb{P}^1 \times \mathbb{P}^1$; the 4-fold X_{B_1} is the blow-up of Z along three pairwise disjoint smooth surfaces S_1, S_2, S_3. The surfaces S_2 and S_3 are sections of φ, they are isomorphic to $\mathbb{P}^1 \times \mathbb{P}^1$ and have normal bundle $\mathcal{O}(−1, −1) \oplus \mathcal{O}$. The blow-up X_1 of Z along S_2 and S_3 is a toric Fano 4-fold of combinatorial type Q_4, following [Bat99].

On the other hand the surface S_1 is a double cover of $\mathbb{P}^1 \times \mathbb{P}^1$ with $−K_{S_1} = \varphi^*\mathcal{O}_{\mathbb{P}^1 \times \mathbb{P}^1}(1, 1)|_{S_1}$ (see Rem. 4.3), so that S_1 is a del Pezzo surface of degree 4.

Description of X_{B_2}. Here $T = F_1$ and N is the pullback of a general line in \mathbb{P}^2. Then Z is a \mathbb{P}^2-bundle over F_1, and S_2, S_3 are two sections; the blow-up X_1 of Z along S_2 and S_3 is a toric Fano 4-fold of combinatorial type Q_2, following [Bat99]. Moreover $\varphi[S_1] : S_1 \to F_1$ is a double cover with $−K_{S_1} = \varphi^*\mathcal{O}(2N − E)$, where $E \subset F_1$ is the exceptional curve, so that S_1 is a del Pezzo surface of degree 6, the blow-up of \mathbb{P}^2 at 3 points.

We give in Table 7.1 some numerical invariants of the Fano 4-folds X_{B_0}, X_{B_1}, and X_{B_2}; they are computed using standard methods, see [CR22] Lemmas 3.2 and 3.3. In the last column T denotes the tangent bundle.

Table 7.1. Numerical invariants

4-fold	b_3	$h^{2,2}$	$h^{1,3}$	K^4	$K^2 \cdot c_2$	$h^0(-K)$	$\chi(T)$
X_{B_0}	0	10	0	224	152	51	4
X_{B_1}	0	14	0	222	156	51	−2
X_{B_2}	0	12	0	223	154	51	1

Finally we apply our results to the study of conic bundles on Fano 4-folds.

Let X be a Fano 4-fold and $\eta : X \to Y$ a conic bundle such that $\rho_X - \rho_Y \geq 3$. Let us denote by $\Delta := \{ y \in Y | \eta^{-1}(y) \text{ is singular} \}$ the discriminant divisor.

If $X \cong S \times T$ is a product of two del Pezzo surfaces, then it follows easily that $Y \cong \mathbb{P}^1 \times T$ and η is induced by a conic bundle $S \to \mathbb{P}^1$ (see for instance [Rom19] Lemma 2.10); in particular all the connected components of Δ are isomorphic to T.

Let us assume that X is not a product of surfaces. Then we have $\rho_X - \rho_Y = \delta_X = 3$ by [Rom19] Th. 4.2(1) and [MR21] Th. 1.1, and $\rho_X \in \{5, 6\}$ by Prop. 1.5, so that the possible X are classified. The case where $\rho_X = 5$ has been studied in [CR22] Cor. 2.18.

As an application of our results, we describe the case $\rho_X = 6$.

Corollary 7.2. Let $\eta : X \to Y$ be a conic bundle, where X is a Fano 4-fold with $\rho_X = 6$, and $\rho_X - \rho_Y = 3$. Let Δ be the discriminant divisor. Then one of the following hold:

(i) $\Delta \cong \mathbb{F}_1 \cup \mathbb{F}_1$ and either $X \cong U_2$ or $X \cong U_4$.

We show the uniqueness of Proof of Prop. 1.6.

(i) $\Delta \cong \mathbb{P}^1 \times \mathbb{P}^1 \sqcup \mathbb{P}^1 \times \mathbb{P}^1$ and X is isomorphic to one of the following varieties: U_1, U_3, U_5, U_6, U_7, U_8, X_{B_0}.

(ii) $\Delta \cong \mathbb{P}^1 \times \mathbb{P}^1 \sqcup S_1$ with S_1 a del Pezzo surface of degree 4 and $X \cong X_{B_1}$.

(iii) $\Delta \cong \mathbb{P}^1 \times \mathbb{P}^1 \sqcup S_1$ with S_1 a del Pezzo surface of degree 6 and $X \cong X_{B_2}$.

Proof. If X is a product of two del Pezzo surfaces, the statement is easy, so let us assume this is not the case; then we have $\delta_X = 3$ by [MR21, Th. 1.1].

Now, replacing $\psi \circ f$ by η in Th. 5.1, we check that all the properties $(a)-(h)$ are satisfied. Indeed, by [Rom19 Prop. 3.5 (1)], η factors as a composition $X \to X_2 \to Y$ where the first map satisfies (f); and in view of [Rom19 Th. 4.2 (2)] also (a), (b), (c), (d) hold. Finally, (g) follows by the proof of [Rom19 Prop. 3.4], while (h) is shown in Step 2 of the proof of [Rom19 Th. 4.2 (2)]. Therefore, we may run the arguments of the proof of Th. 5.2 with η instead of $\psi \circ f$. We keep the notation as in that theorem.

Then $\Delta = A_1 \sqcup A_2$, and by Step 5.3 it follows that $A_i \cong B_i \cong S_i$ for $i = 1, 2$. Moreover, using Step 5.2, we know that $A_2 \cong T$, where in our case either $T \cong \mathbb{P}^1 \times \mathbb{P}^1$ or $T \cong \mathbb{F}_1$. If A_1 is a section of $\xi: Y \to T$ then using Steps 5.4 and 5.6 we get (i) or (ii). Otherwise, by Step 5.20 we deduce that X is obtained as in Construction B, and finally that X is isomorphic to X_{B_0}, X_{B_1}, or X_{B_2}, following the proof of Prop. 7.1.

Remark 7.3. Let X be a Fano 4-fold with $\delta_X = 3$. By Th. 5.1, we know that $\psi \circ f: X \to Y$ is a conic bundle with $\rho_X - \rho_Y = 3$. All the possible targets Y have been classified in [MR21], but in [MR21 Prop. 1.2(b)] there is a missing case, that is $Y \cong \mathbb{P}^1(\mathcal{O} \oplus \mathcal{O}(N))$, with N being the pullback of a general line through the blow-up $\mathbb{F}_1 \to \mathbb{P}^2$. In this case, Construction A gives $X = U_2$; while performing Construction B we obtain the non-toric Fano family X_{B_2}.

8. The case $\rho_X = 5$

In this section we consider Fano varieties with $\delta_X = 3$ and $\rho_X = 5$, the minimal Picard number, and prove Prop. 1.6. Cor. 1.7, and Th. 1.8.

By Th. 1.4 X is obtained as in Construction A or B from a smooth Fano variety T with $\rho_T = 1$. We denote by $\mathcal{O}_T(1)$ the ample generator of $\text{Pic}(T) \cong \mathbb{Z}$, and $\mathcal{O}_T(a) := \mathcal{O}_T(1)^\otimes a$ for every $a \in \mathbb{Z}$. Recall that $\mathcal{O}_T(-K_T) \cong \mathcal{O}_T(i_T)$, where i_T is the index of T.

Proof of Prop. 1.6. We show the uniqueness of $\sigma: X \to T$. Let us assume that there exists another $\tilde{\sigma}: X \to \overline{T}$ as in Construction A or B. We show that σ and $\tilde{\sigma}$ coincide up to an isomorphism $T \cong \overline{T}$.

Let R be an extremal ray of the cone $\text{NE}(\sigma)$. By Remarks 6.2, 6.5, and 6.7 the contraction associated to R is the blow-up of a smooth subvariety S which is an irreducible codimension 2 complete intersection, and either $S \cong T$ or $S \cong S_1$. Let $E \subset X$ be the exceptional divisor: since the normal bundle of S is decomposable, we have $E \cong \mathbb{P}_S(\mathcal{O} \oplus L)$ with $L \in \text{Pic}(S)$.

We first assume that $n \geq 5$, where $n := \dim X$. Recall that S_1 is a ramified double cover of T, and $\rho_T = 1$, so that the ramification divisor is ample; since $\dim S_1 = n - 2 > 2$, [Cor81] yields $\rho_{S_1} = 1$. Therefore in any case we have $\rho_S = 1$ and $\rho_E = 2$.

Since $\rho_E = 2$, E has at most two elementary contractions, one being the \mathbb{P}^1-bundle $E \to S$. If $L \cong \mathcal{O}_S$, then $E \cong \mathbb{P}^1 \times S$, and the second elementary contraction is $E \to \mathbb{P}^1$. Otherwise we can assume that L is ample; in this case E has an elementary divisorial contraction sending a divisor to a point (see for instance [CD15, p. 10768]).

Consider now the restriction $\tilde{\sigma}|_E : E \to \tilde{\sigma}(E) \subseteq \tilde{T}$. The Stein factorization gives

$$E \xrightarrow{\psi} B \xrightarrow{\nu} \tilde{\sigma}(E),$$

where ψ is a contraction of E, and ν is finite. Thus $\dim B = \dim \tilde{\sigma}(E) \leq \dim \tilde{T} = n - 2$; on the other hand every fiber of $\tilde{\sigma}$ is a surface, thus $\dim B \geq \dim E - 2 = n - 3 \geq 2$. By the previous observation on the possible contractions of E, we deduce that $B \cong S$ and ψ is the \mathbb{P}^1-bundle $E \to S$, so that $\tilde{\sigma}$ contracts the fibers of $E \to S$ and $R \subset \text{NE}(\tilde{\sigma})$.

This holds for every extremal ray R of $\text{NE}(\sigma)$, so that $\text{NE}(\sigma) \subset \text{NE}(\tilde{\sigma})$. Since these two cones are both 4-dimensional faces of $\text{NE}(X)$, we conclude that they are the same, and by [Deb01] Prop. 1.14 σ and $\tilde{\sigma}$ coincide up to an isomorphism $T \cong \tilde{T}$.

Suppose now that $n = 4$, so that $T \cong \tilde{T} \cong \mathbb{P}^2$. We repeat the same argument as above with an extremal ray R such that E is a \mathbb{P}^1-bundle over T. We still have $\dim B \geq \dim E - 2 = 1$, and if $\dim B = 1$, then $E \cong \mathbb{P}^1 \times \mathbb{P}^1$ and ψ the projection onto \mathbb{P}^1. Thus the general fiber of $\tilde{\sigma}$ over $\tilde{\sigma}(E)$ is isomorphic to \mathbb{P}^2, which is impossible by the description of the fibers in §6.1. We conclude that $\dim B \geq 2$, and as before that $R \subset \text{NE}(\tilde{\sigma})$. If $X = X_A$ we get $\text{NE}(\sigma) \subset \text{NE}(\tilde{\sigma})$ and hence $\text{NE}(\sigma) = \text{NE}(\tilde{\sigma})$. If $X = X_B$, we see from Rem. 6.5 and Fig. 6.2 that the extremal rays R of $\text{NE}(\sigma)$ such that E is a \mathbb{P}^1-bundle over T generate a 4-dimensional cone. We conclude that $\dim(\text{NE}(\sigma) \cap \text{NE}(\tilde{\sigma})) = 4 = \dim \text{NE}(\sigma) = \dim \text{NE}(\tilde{\sigma})$, so that again the two cones coincide.

Finally suppose that $n = 3$, so that $T \cong \tilde{T} \cong \mathbb{P}^1$, and repeat the same argument as above. We conclude that either $R \subset \text{NE}(\tilde{\sigma})$, or E has two different \mathbb{P}^1-bundle structures, hence $E \cong \mathbb{P}^1 \times \mathbb{P}^1$ with normal bundle $O(-1, -1)$. It is not difficult to see that there is at most one extremal ray R with this property, so we conclude that $\text{NE}(\sigma) = \text{NE}(\tilde{\sigma})$ as in the case $n = 4$.

Let $X = X_A$. By Rem. 6.2 and Lemma 6.3 $\sigma : X \to T$ has exactly two different factorizations as in Construction A, through $\mathbb{P}_T(O(D_1) \oplus O(D_2) \oplus O(D_3))$ and $\mathbb{P}_T(O(-D_1) \oplus O(-D_2) \oplus O(-D_3))$. Moreover $O_T(D_1), O_T(D_2), O_T(D_3)$ are determined up to reordering and tensoring with a line bundle.

We may assume that $O_T(D_1) \cong O_T(a), O_T(D_2) \cong O_T(b), O_T(D_3) \cong O_T(b)$, with $a, b \in \mathbb{Z}$. By Lemma 3.1 we see that (a, b) must satisfy the following conditions:

$$(8.1) \quad |a|, |b|, |a - b| \leq i_T - 1.$$

We say that two pairs of integers (a, b) and (a', b') are equivalent (denoted by \sim) if they satisfy (8.1) and give isomorphic X_A’s. By the previous discussion, we see that all the pairs equivalent to (a, b) can be obtained by the following relations:

$$(a, b) \sim (b, a), (-b, a - b), (-a, -b).$$

Hence up to equivalence we can subsequently assume:

- $a \geq 0$: indeed if $a < 0$, we replace (a, b) with $(-a, -b)$;
- $a \geq b$: if $a < b$, we replace (a, b) with (b, a);
- $b \leq 0$: if $b > 0$, we replace (a, b) with $(a - b, -b)$.
\[a \geq -b: \text{ if } a < -b, \text{ we replace } (a, b) \text{ with } (-b, -a), \]

so that in the end: \(b \leq 0 \) and \(a \geq |b| \). These conditions, together with (8.1), are equivalent to the conditions in the statement:

\[
(8.2) \quad b \leq 0, \quad |b| \leq \frac{it - 1}{2}, \quad \text{and} \quad |b| \leq a \leq it - 1 - |b|.
\]

Finally it is not difficult to see that if \((a, b), (a', b') \) satisfy (8.2) and \((a, b) \sim (a', b') \), then \(a = a' \) and \(b = b' \).

Let \(X = X_B \). By Rem. 6.3, Prop. 6.6, and Rem. 6.7, \(\sigma: X \rightarrow T \) has exactly three different factorizations as in Construction B, all through \(Z = \mathbb{P}_T(\mathcal{O}(N) \oplus \mathcal{O} \oplus \mathcal{O}) \), where \(N \neq 0 \) and \(2N \) is effective. Therefore \(\mathcal{O}_T(N) \) is ample and isomorphic to \(\mathcal{O}_T(a) \) for some integer \(a \geq 1 \). By Lemma 4.7, we see that a must satisfy \(a \leq it - 1 \).

Proof of Cor. 1.7. We have \(\delta_X \geq \operatorname{codim} \mathcal{N}_1(D, X) = \rho_X - 2 \). If \(\rho_X \geq 6 \), then \(\delta_X \geq 4 \), so that by Th. 1.1 we have \(X \cong S \times T \) where \(S \) is a del Pezzo surface with \(\rho_S = \delta_X + 1 \geq 5 \). If \(D_T \subset T \) is a prime divisor then \(\dim \mathcal{N}_1(S \times D_T, X) \geq \rho_S \), therefore \(D \) must dominate \(T \) under the projection \(\pi_T: S \times T \rightarrow T \). Moreover \(\pi_T \) is not finite on \(D \), so that we consider the pushforward \((\pi_T)_* : \mathcal{N}_1(S \times T) \rightarrow \mathcal{N}_1(T) \), we have \(\ker(\pi_T)_* \cap \mathcal{N}_1(D, X) \neq \{0\} \), and we conclude that \(\rho_T = 1 \).

Suppose that \(\rho_X = 5 \), and note that the assumptions imply that \(\dim X \geq 3 \). If \(\delta_X > \rho_X - 2 \), then \(\delta_X = \rho_X - 1 \), which means that \(X \) contains a prime divisor \(D' \) with \(\dim \mathcal{N}_1(D', X) = 1 \). By [CD15, Lemma 3.1] this would imply that \(\rho_X \leq 3 \), a contradiction. Therefore \(\delta_X = \rho_X - 2 = 3 \), and \(X \) is as in Prop. 1.6.

Proof of Th. 1.8 (ii) \Rightarrow (i) In \(Z = \mathbb{P}_T(\mathcal{O}(a) \oplus \mathcal{O} \oplus \mathcal{O}) \) let \(S_2, S_3 \) be the sections of \(Z \rightarrow T \) corresponding to the trivial summands, and \(F_1 := \mathbb{P}_T(\mathcal{O} \oplus \mathcal{O}) \rightarrow Z \) given by the projection \(\mathcal{O}(a) \oplus \mathcal{O} \oplus \mathcal{O} \rightarrow \mathcal{O} \oplus \mathcal{O} \) (this is \(D \) in the notation of Construction B), so that \(S_2, S_3 \subset F_1 \). Then, in both Constructions A and B, \(X \) is the blow-up of \(Z \) along \(S_2, S_3 \), and a third subvariety \(S_1 \) disjoint from \(F_1 \).

If \(E'_1 \subset X \) is the transform of \(F_1 \), we have \(E'_1 \cong \mathbb{P}^1 \times T \) with normal bundle \(\mathcal{N}_{E'_1/X} \cong \pi^{-1}_{E'_1} \mathcal{O}(-1) \oplus \pi^{-1}_T \mathcal{O}(-a) \). Let \(\Gamma_0 \subset T \) be a curve, and let \(\Gamma \subset E'_1 \) be the curve corresponding to \(\{pt\} \times \Gamma_0 \). We show that [\(\Gamma \)] generates an extremal ray of \(\operatorname{NE}(X) \): the associated contraction \(\tau: X \rightarrow X' \) is elementary divisorial with \(\operatorname{Exc}(\tau) = E'_1 \) and \(\tau(\operatorname{Exc}(\tau)) \cong \mathbb{P}^1 \).

Set \(c := \mathcal{O}_T(1) \cdot \Gamma_0 \), and consider \(e'_1 \subset E'_1 \) corresponding to \(\mathbb{P}^1 \times \{\text{pt}\} \). We have:

\[
E'_1 \cdot e'_1 = -1, \quad -K_X \cdot e'_1 = 1, \quad E'_1 \cdot \Gamma = -ac, \quad -K_X \cdot \Gamma = c(it - a).
\]

If \(2a > it \), consider \(H := a(-K_X) + (it - a)E'_1 \). Then \(H \cdot C \geq 0 \) for every curve \(C \subset X \) not contained in \(E'_1 \). Moreover \(H \cdot e'_1 = 2a - it > 0 \) and \(H \cdot \Gamma = 0 \), so that \(H \) is nef and \(H^\perp \cap \operatorname{NE}(X) = \mathbb{R}_{\geq 0}[\Gamma] \).

If instead \(2a \leq it \), consider the exceptional divisor \(E_2 \cong \mathbb{P}_T(\mathcal{O} \oplus \mathcal{O}(a)) \) over \(S_2 \), and \(e_2 \subset E_2 \) a fiber of the \(\mathbb{P}^1 \)-bundle \(E_2 \rightarrow T \). We have:

\[
E_2 \cdot e_2 = -1, \quad E_2 \cdot e'_1 = 1, \quad E_2 \cdot \Gamma = 0, \quad -K_X \cdot e_2 = 1, \quad E'_1 \cdot e_2 = 1,
\]

and \(E_2 \cdot R \geq 0 \) for every extremal ray \(R \) of \(\operatorname{NE}(X) \) not containing \([e_2]\). Consider \(H' := a(-K_X) + (it - a)E'_1 + (it - 2a + 1)E_2 \). We have \(H' \cdot e'_1 = 1, \quad H' \cdot \Gamma = 0, \quad H' \cdot e_2 = 2a - 1 > 0 \), and \(H' \cdot R > 0 \) for every extremal ray of \(\operatorname{NE}(X) \) not containing \([e'_1], [\Gamma], [e_2]\). We conclude that \(H' \) is nef and \((H')^\perp \cap \operatorname{NE}(X) = \mathbb{R}_{\geq 0}[\Gamma] \).
(i) ⇒ (ii) If \(n = 4 \) the statement is shown in [CR22, Cor. 1.4], so that we can assume \(n \geq 5 \).

Consider the pushforward \(\tau_*: \mathcal{N}_1(X) \to \mathcal{N}_1(X') \). We have \(\tau_* (\mathcal{N}_1(\text{Exc}(\tau), X)) = \mathbb{R} [\tau(\text{Exc}(\tau))] \), thus \(\dim \mathcal{N}_1(\text{Exc}(\tau), X) = 2 \), and it follows from Cor. 1.7 that \(X \) is as described in Prop. 1.6. We note first of all that \(X \neq F \times T \) (\(F \) the blow-up of \(\mathbb{P}^2 \) at three non-collinear points), as \(F \times T \) has no elementary divisorial contraction sending a divisor to a curve, hence the case \(X = X_A \) with \(a = b = 0 \) is excluded, and \(i_T > 1 \).

Let \(\Gamma \subset X \) be a curve contracted by \(\tau \). We show that at least one of the exceptional divisors of the extremal rays of \(\text{NE}(\sigma) \) has non-zero intersection with \(\Gamma \). We keep the same notation as in Rem. 2.1 and Sections 3 and 4.

By contradiction, suppose otherwise: then the classes of these divisors in \(\mathcal{N}^1(X) \) all belong to the hyperplane \(\Gamma^\perp \). This in turn implies in \(\mathcal{N}^1(Z) \) that, if \(X = X_A \) (respectively \(X = X_B \)), the linear span of the classes of \(F_1, F_3, F_3 \) (respectively the classes of \(D \) and \(H_0 \)) has dimension 1. This is possible only if \(X = X_A \) and \(a = b = 0 \), that we have already excluded.

Hence there exists some extremal ray of \(\text{NE}(\sigma) \) such that the associated exceptional divisor \(E \) satisfies \(E \cdot \Gamma \neq 0 \). We show that \(E = \text{Exc}(\tau) \).

With the same notation as in the proof of Prop. 1.6 \(E \) is a \(\mathbb{P}^1 \)-bundle over \(S \), where \(S \cong T \) or \(S \cong S_1 \), and \(\rho_S = 1 \). If \(T_0 \subset \text{Exc}(\tau) \) is a non-trivial fiber of \(\tau \), we have \(E \cap T_0 \neq \emptyset \) and hence \(\dim(E \cap T_0) \geq n - 3 > 0 \), and the Stein factorization of \(\tau |_E \) induces a non-trivial contraction \(\psi: E \to B \). Since \(E \) meets every non-trivial fiber \(T_0 \) of \(\tau \), \(\psi(\text{Exc}(\psi)) \) is a curve, and by the analysis of the elementary contractions of \(E \) in the proof of Prop. 1.6 we conclude that \(E \cong \mathbb{P}^1 \times S \) and \(\psi \) is the projection onto \(\mathbb{P}^1 \), in the proof of Prop. 1.6 we conclude that \(E \cong \mathbb{P}^1 \times S \) and \(\psi \) is the projection onto \(\mathbb{P}^1 \).

This means that \(\dim \tau(E) = 1 \), hence \(E = \text{Exc}(\tau) \).

If \(X = X_A \), it is not difficult to check that \(\mathbb{P}^1 \times T \) appears among the divisors \(E_1, E_2, E_3, E_1', E_2', E_3' \) if and only if \(b = 0 \), so that \(Z = \mathbb{P}_T(\mathcal{O}(a) \oplus \mathcal{O} \oplus \mathcal{O}) \). Then we have \(E_1 \cong E_1' \cong \mathbb{P}^1 \times T \) with normal bundles \(\mathcal{N}_{E_1/X} \cong \mathcal{O}(-1) \otimes \mathcal{O}(a) \) and \(\mathcal{N}_{E_1'/X} \cong \mathcal{O}(-1) \otimes \mathcal{O}(a) \). Since \(a > 0 \), we have \(\text{Exc}(\tau) = E_1', \) and we get the statement.

If \(X = X_B \), we show that \(S \cong T \). Indeed, if \(S \cong S_1 \), \(E \) should be one of the divisors \(E_1, G_2, G_3 \) (see Rem. 6.5), and by Prop. 6.6 we have \(E_1 \cong G_2 \cong G_3 \cong \mathbb{P}_S(\mathcal{O}(H S_1)) \).

On the other hand \(H | S_1 \) is linearly equivalent to the ramification divisor of the non-trivial double cover \(\varphi_{| S_1} : S_1 \to T \) by Rem. 1.3 so that \(H | S_1 \neq 0 \). Therefore we get \(S \cong T \), and it is not difficult to check that \(\text{Exc}(\tau) = D \).
[Cor81] M. Cornalba, *Una osservazione sulla topologia dei rivestimenti ciclici di varietà algebriche*, Boll. U.M.I. **18-A** (1981), no. 5, 323–328.

[CR22] C. Casagrande and E.A. Romano, *Classification of Fano 4-folds with Lefschetz defect 3 and Picard number 5*, J. Pure Appl. Algebra **226** (2022), no. 3, 13 pp., paper no. 106864.

[CRS22] C. Casagrande, E.A. Romano, and S.A. Secci, *Fano manifolds with Lefschetz defect 3*, J. Math. Pures Appl. **163** (2022), 625–653, Corrigendum: **168** (2022), 108–109.

[Deb01] O. Debarre, *Higher-dimensional algebraic geometry*, Universitext, Springer-Verlag, 2001.

[EH00] D. Eisenbud and J. Harris, *The geometry of schemes*, Graduate Texts in Mathematics, vol. 197, Springer-Verlag, New York, 2000.

[Laz04a] R. Lazarsfeld, *Positivity in algebraic geometry I*, Springer-Verlag, 2004.

[Laz04b] ______, *Positivity in algebraic geometry II*, Springer-Verlag, 2004.

[MR21] P. Montero and E.A. Romano, *A characterization of some Fano 4-folds through conic fibrations*, Int. Math. Res. Not. **2021** (2021), 12009–12036.

[Rom19] E.A. Romano, *Non-elementary Fano conic bundles*, Collectanea Mathematica **70** (2019), 33–50.

[Sat00] H. Sato, *Toward the classification of higher-dimensional toric Fano varieties*, Tôhoku Math. J. **52** (2000), 383–413.

[Tsu10] T. Tsukioka, *Fano manifolds obtained by blowing up along curves with maximal Picard number*, Manuscripta Math. **132** (2010), 247–255.

[Wis91a] J.A. Wiśniewski, *On contractions of extremal rays of Fano manifolds*, J. Reine Angew. Math. **417** (1991), 141–157.

[Wis91b] ______, *On deformation of nef values*, Duke Math. J. **64** (1991), 325–332.

CINZIA CASAGRANDE: UNIVERSITÀ DI TORINO, DIPARTIMENTO DI MATEMATICA, VIA CARLO ALBERTO 10, 10123 TORINO - ITALY
Email address: cinzia.casagrande@unito.it

ELEONORA A. ROMANO: UNIVERSITÀ DI GENOVA, DIPARTIMENTO DI MATEMATICA, VIA DODECANESCO 35, 16146 GENOVA - ITALY
Email address: eleonoraanna.romano@unige.it

SAVERIO A. SECCI: UNIVERSITÀ DI TORINO, DIPARTIMENTO DI MATEMATICA, VIA CARLO ALBERTO 10, 10123 TORINO - ITALY
Email address: saverioandrea.secci@unito.it