Neutrino mass spectrum and lepton mixing

A. Yu. Smirnov

International Center for Theoretical Physics, Strada Costiera 11, 34100 Trieste, Italy

The program of reconstruction of the neutrino mass and flavor spectrum is outlined and the present status of research is summarized. We describe the role of future solar and atmospheric neutrino experiments, detection of the Galactic supernovae and double beta decay searches in accomplishing this program. The LSND result and four neutrino mass spectra are considered in connection with recent searches for the sterile components in the solar and atmospheric neutrino fluxes.

1. INTRODUCTION.

1.1. Two remarks.

There is a hope that detailed information on the neutrino mass spectrum and lepton mixing may eventually shed the light on

- the origin of the neutrino mass,
- quark-lepton symmetry, unification of quarks and leptons, Grand Unification,
- fermion mass problem,
- physics beyond the standard model in general.

“Detailed information” are the key words: just knowledge that masses are small is not enough to clarify the points.

Results on atmospheric neutrinos show that the simplest possibility – hierarchical mass spectrum with small flavor mixing has not been realized. The guideline from the quark sector is lost. In this connection we should consider without prejudice all possible mass and mixing spectra which do not contradict experiment.

1.2. The present status.

There are three leptonic flavors: ν_α, $\alpha = e, \mu, \tau$ and at least three neutrino mass eigenstates ν_i with eigenvalues m_i ($i = 1, 2, 3$). The program of reconstruction of the spectrum consists of the determination of

- number of mass eigenstates,
- masses m_i,
- distribution of the flavor in the mass eigenstates described by the mixing matrix $U_{\alpha i}$,
- complex phases of $U_{\alpha i}$ and m_i.

What is the present status?

The atmospheric neutrino data provide us with the most reliable information. With high confidence level we can say that the data imply the ν_μ oscillations with maximal or near maximal depth. Moreover, the oscillations are driven by non-zero Δm^2. From this interpretation we can infer that

(i) There is at least one mass eigenstate with

$$m_a \geq \sqrt{|\Delta m^2_{atm}|} \sim (4 - 6) \cdot 10^{-2} \text{ eV.} \quad (1)$$

Further implications depend on assumptions about the number of mass eigenstates and the type of mass hierarchy. In the case of 3ν-spectrum with normal mass hierarchy (fig.1), $m_3 \gg m_2, m_1$, the heaviest state ν_3 has the mass

If the spectrum has the inverted mass hierarchy, ν_3 is the lightest state, $m_3 \ll m_a$, and ν_1, ν_2 form a system of degenerate neutrinos with $m_2 \approx m_1 \approx m_a$. In the case of completely degenerate spectrum one has $m_3 \approx m_2 \approx m_1 \gg m_a$.

(ii) The admixture of the ν_μ flavor in the ν_3 mass eigenstate is

$$|U_{\mu 3}|^2 = 0.3 - 0.7 \quad (90\% \ CL). \quad (2)$$

(iii) The admixture of the electron neutrino in the third state is zero or small:

$$|U_{e 3}|^2 \leq 0.015 - 0.05. \quad (3)$$

Talk given at the XIX International Conference on Neutrino Physics and Astrophysics, Neutrino-2000, Sudbury, Canada, 16 - 21 June 2000 (transparencies are available at http://nu2000.sno.laurentian.ca).
Thus, ν_μ is mixed almost maximally with ν_τ or ν_s.

(iv) The $\nu_\mu - \nu_\tau$ channel gives better description of the data than $\nu_\mu - \nu_e$ one: the latter is disfavored at 3 σ level. Substantial contribution of the sterile channel is however possible already at 2σ level.

(v) We assume that ν_1 and ν_2 are responsible for the solution of the solar neutrino problem. The best fit values of the oscillation parameters from all solution regions (LMA, SMA, LOW, VO) satisfy inequality

$$\Delta m^2_\odot < \Delta m^2_{\text{atm}}.$$

That is, the hierarchy of the Δm^2 exists.

(vi) The distribution of the electron flavor depends on the solution of the ν_\odot-problem.

Clearly, with this information we are just in the beginning of realization of the program. In what follows I will consider the next steps.

2. U_{e3}, HIERARCHY, DEGENERACY.

2.1. U_{e3}.

Future long-baseline experiments MINOS and CERN-GS will be able to mildly improve present CHOOZ bound. An estimated sensitivity is at most $|U_{e3}|^2 \approx 5 \cdot 10^{-3}$ at $\Delta m^2_{\text{atm}} = 3 \cdot 10^{-3}$ eV2. Further improvements of the reactor bound are rather difficult (see [5]). Signatures of non-zero $|U_{e3}|^2$ exist in the atmospheric neutrinos. In fact, best fit value of $|U_{e3}|^2$ from the atmospheric neutrinos differs from zero, although the deviation is statistically insignificant. However, it is difficult to improve the situation with present experiments and the possibilities of future atmospheric neutrino detectors deserve special study.

Registration of the neutrino bursts from the Galactic supernova by existing detectors SK, SNO (several thousands events) will give information about $|U_{e3}|^2$ down to $10^{-5} - 10^{-4}$.

Even better sensitivity $|U_{e3}|^2 > 3 \cdot 10^{-5}$ may be achieved at the neutrino factories.

Intuitively, it is difficult to expect very small $|U_{e3}|^2$ if mixing between the second and the third generation is almost maximal and the mixing of the electron neutrinos is also maximal or large (unless some special arrangements are done). This has been quantified recently in terms of the neutrino mass matrices which lead to the solutions of the solar and atmospheric neutrino problems. In the assumption that there is no special fine tuning of the matrix elements problems. In the assumption that there is no special fine tuning of the matrix elements problems. In the assumption that there is no special fine tuning of the matrix elements problems. In the assumption that there is no special fine tuning of the matrix elements problems. In the assumption that there is no special fine tuning of the matrix elements problems. In the assumption that there is no special fine tuning of the matrix elements problems. In the assumption that there is no special fine tuning of the matrix elements problems. In the assumption that there is no special fine tuning of the matrix elements problems. In the assumption that there is no special fine tuning of the matrix elements problems. In the assumption that there is no special fine tuning of

$$U_{e3}^2 \approx \frac{1}{4} \frac{\tan^2 2\theta_{\odot}}{1 + \tan^2 2\theta_{\odot}} \frac{\Delta m^2_{\odot}}{\Delta m^2_{\text{atm}}}.$$

For parameters from the LMA region we get values $|U_{e3}|^2 = 0.003 - 0.02$, where the upper edge is the present experimental bound.

2.2. Hierarchy and Degeneracy.

Phenomenology of schemes with normal and inverted mass hierarchy is different. The hierarchy can be identified by studies of (i) the neutrinoless double beta decay, (ii) Earth matter effect on 1 - 3 mixing in the atmospheric neutrinos and in the long baseline experiments, (iii) neutrino burst from supernovae.

In the scheme with inverted hierarchy the contribution of neutrinos to the energy density of the Universe can be two times larger than that in the scheme with normal hierarchy: $\Omega_\nu \geq 2 \sqrt{\Delta m^2_{\text{atm}} n_\nu}$ (n_ν is the concentration of one neutrino species). The scheme with normal mass hierarchy (or in general, the scheme with ν_3 being the heaviest state) may have partial
degeneracy when $m_2 - m_1 \ll m_2$. In this case for a given oscillation pattern both Ω_e and m_{ee} can be larger than in the hierarchical case.

3. IDENTIFYING SOLUTION OF THE ν_\odot-PROBLEM.

Identification of the solution is one of the major steps in the reconstruction of the spectrum which will significantly determine further strategy of the research. It will allow us to: (i) measure which will significantly determine further strategy and (ii) find or restrict the presence of the sterile neutrinos, (iii) estimate a possibility to measure the CP-violation and to discover the neutrinoless beta decay.

Let us describe some recent results.

2.1. Flux during the night.

The zenith angle (θ_Z) distributions of events during the nights differ for different solutions and therefore precise measurements of the distribution can be used to discriminate among the solutions.

The LMA solution predicts rather flat distribution of events with slightly lower rate in the first night bin N1 ($\cos \theta_Z = 0 - 0.2$). The reason is that the oscillation length is small and substantial averaging of oscillations occurs in all the bins [10].

For the LOW solution, the maximal rate is expected in the second night bin N2 ($\cos \theta_Z = 0.2 - 0.4$) [11]. Indeed, for parameters from the LOW region, the oscillation length in matter is determined basically by the refraction length, $l_m \approx l_0$, and it depends weakly on $E/\Delta m^2$ and mixing. No averaging occurs. It turns out that the average length of the neutrino trajectories in the N2 bin equals half of the refraction length, so that the oscillation effect is maximal. The length of the trajectory is about l_0 in the N3 bin, where minimum of the rate is expected. The height of the peak in N2 bin decreases with Δm^2.

In the case of SMA solution maximal rate is expected in the N5 (core) bin [12], where the parametric enhancement of oscillations can take place. The peak decreases with mixing angle and at $\sin^2 2\theta \sim 3 \cdot 10^{-3}$ it transforms to the deep.

No enhancement of the night rate should be seen for VO solution.

Thus, using information on integrated day-night asymmetry and signals in N2 and N5 bins one can identify the solution.

Notice that the zenith distribution observed by SK does not fit any of expected distributions: maximal rate is in the N1 bin, and there is no enhancement of rate neither in N2 nor in N5 bins. In the SNO the expected zenith angle distributions have similar character, however absolute value of the regeneration effect is larger due to absence of damping related to ν_μ and ν_τ contribution to the SK signal.

3.2. Correlations of observables.

Present searches for the “smoking guns” of certain solutions of the ν_\odot-problem give just $(1 - 2)\sigma$ indications. To enhance the identification power of the analysis we suggest to study correlations of various observables [13]. Indeed, correlations of observables appear for different solution of the ν_\odot-problem and they can be considered as signatures of corresponding solutions.

The observables (denote them by X, Y) include rates of events at different detectors, characteristics of spectrum distortion (e.g., shift of the first moment of the spectrum) and parameters of the time variations of signals (day-night asymmetry, seasonal asymmetry, etc.). To find the correlations we have performed the mapping of the solution regions in the $\Delta m^2 - \sin^2 2\theta$ plane onto the plane of observables X and Y. If $\Delta m^2 - \sin^2 2\theta$ region projects onto the line in the $X - Y$ the correlations is very strong. In general, the criterion for strong correlation is that the area of the projected region, S_{XY}, is much smaller than the product $\Delta X \times \Delta Y$, where ΔX and ΔY are allowed intervals of X and Y when they are treated independently.

In fig.2 we show, as an example, mapping of the $\Delta m^2 - \sin^2 2\theta$ regions of solutions onto the plane of the SNO observables [CC] and A_{DN}, where $[CC] \equiv N_{obs}/N_{SSM}$ is the reduced rate of the charged current events and $A_{DN} \equiv 2(N - D)/(N + D)$ is the day-night asymmetry of the charged current events.
3.3. Large or Maximal?

The three among five solutions of the solar neutrino problem require large mixing angle of the electron neutrino. Moreover, the LMA solution gives the best global fit of the data. The best fit of the atmospheric neutrino data corresponds to maximal mixing. Is large (or maximal) mixing the generic property of leptons? What is a deviation from maximal mixing?

These questions are important for theory. The deviation from maximal mixing can be related to small parameter $\lambda \sim 0.22$ which characterizes the fermion mass hierarchy and appears in the theories with flavor symmetry. We describe the deviation by $\epsilon \equiv \cos 2\theta$, ($\epsilon = 0$ at the maximal mixing). Depending on model one can get $\epsilon = \lambda^n$, where usually $n = 1$ or 2, or $\epsilon \sim \sqrt{m_e/m_\mu} = 0.07$, or $\epsilon \sim m_e/m_\mu = 0.005$, etc..

In contrast with theory, maximal mixing is not a special point for phenomenology. Nothing dramatic happens when ϵ changes the sign: no divergencies or discontinuities appear, all observables depend on ϵ rather smoothly.

Performing a global fit of all available solar neutrino data we find that maximal mixing is allowed in the LMA region at 99.9 % CL, and in LOW region at 99 % CL. For $\epsilon = 0.07$ the interval $\Delta m^2 = (2 - 30) \cdot 10^{-5}$ eV2 (LMA) is accepted at 99 % CL, etc..

Future perspectives of measurement of the deviation depend significantly on the range of Δm^2. Observables depend linearly on ϵ in the range of the MSW conversion (LMA, LOW). In particular, the survival probability is proportional to $(1 - \epsilon)$, the day-night asymmetry $\propto (1 + \epsilon)$, the distortion of spectrum $\propto \epsilon$. In contrast, in the VO regions the dependence of observables on ϵ is quadratic: $\propto (1 + \epsilon^2)$ in the average oscillation case and $\propto (1 - \epsilon^2)$ in the non-averaged case.

Thus, for small ϵ the sensitivity of measurements of the deviation is much higher in the MSW regions of Δm^2. The most precise determination of ϵ will be possible with the SNO results. Simultaneous measurements of the double ratio [NC]/[CC] (of the neutral to charged current reduced rates) and the day-night asymmetry of the CC events will allow to determine ϵ with accuracy $\Delta \epsilon \sim 0.07$ (1σ).

4. MORE INFORMATION.

4.1. Double beta decay and test equalities.

Remarks:

For any oscillation pattern (values of Δm^2 and $|U_{\alpha i}|^2$) the effective Majorana mass of the electron neutrino relevant for the $\beta\beta_0\nu$ decay, m_{ee}, can take any value from zero to experimental upper bound for the normal mass hierarchy and $|m_{ee}|$ has non-zero minimum value for the inverted hierarchy provided that $|U_{e1}|^2 > 1/2$.

If the neutrinoless double beta decay will be discovered and the rate will give m_{ee}, then under assumption that the Majorana masses are the only source of the decay, we can say that at least one mass should satisfy inequality $m_j > m_{ee}/n$, where n is the number of mass eigenstates.

Definite predictions for m_{ee} can be given in the context of certain neutrino mass spectra (see...
17 and references therein): \(m_{ee} \) can be related (especially in the cases when dominant contribution comes from one mass eigenstate) with the oscillation parameters. Therefore coincidence of the measured value \(m_{ee} \) with some combination of the oscillation parameters will testify for certain neutrino mass spectrum. We can call these relations the test equalities.

Let us give examples of the test equalities:

1. In the case of normal mass hierarchy, and SMA, LOW or VO solutions of the solar neutrino problem the dominant contribution comes from \(\nu_3 \):

\[
m_{ee} \approx \left| \Delta m^2_{atm} |U_{\mu 3}|^2 \right|.
\]

2. For normal mass hierarchy, LMA solution and small \(|U_{e3}|^2 \) one gets

\[
m_{ee} \approx \sin^2 \theta_\odot \sqrt{\Delta m^2_\odot} \leq 5 \cdot 10^{-3} \text{eV}
\] (5)

which can be tested by the 10 ton version of GENIUS experiment.

3. In the case of inverted mass hierarchy, SMA or LMA solutions with equal phases of the mass eigenvalues \(m_1 \) and \(m_2 \), one gets \[17,16]\]

\[
m_{ee} \approx \sqrt{\Delta m^2_{atm}} = (5 - 7) \cdot 10^{-2} \text{eV}
\] (6)

which can be achieved already in the next generation of the double beta decay experiments.

4. For inverted mass hierarchy and large mixing solutions with relative phase of the degenerate states \(\phi_1 - \phi_2 = \pi \) (which holds for the pseudo Dirac system) we find

\[
m_{ee} \approx \cos 2\theta_\odot \sqrt{\Delta m^2_{atm}}.
\]

As follows from the above analysis, the bound \(m_{ee} < 3 \cdot 10^{-3} \text{eV} \) will testify for the normal hierarchy, whereas values \(m_{ee} > 10^{-2} \text{eV} \) are the signature of the inverted mass hierarchy provided that \(\sin^2 2\theta_\odot \leq 0.9 \). Predictions overlap in the case of partial or complete degeneracy of spectra.

4.2. Supernova neutrinos.

In the three neutrino scheme there are two relevant resonances: high (density) resonance at \(\rho_h \sim 10^4 \text{g/cm}^3 \) the low resonance at \(\rho_l \sim 10 - 100 \text{g/cm}^3 \) related to \(\Delta m^2_{atm} \) and \(\Delta m^2_\odot \) correspondingly. Since at the production point \(\rho \gg \rho_h, \rho_l \), the supernova neutrinos probe whole neutrino mass spectrum. Moreover, mixings associated with both \(\Delta m^2 \) can be matter enhanced.

In spite of uncertainties related to the density profile and, especially, to parameters of the original spectra, some observables are largely supernova model independent which opens the possibility to get reliable information on neutrino mass spectrum. In particular, inequalities of the average energies:

\[
E(\nu_\tau) < E(\bar{\nu}_e) < E(\nu_\mu)
\] (7)

are SN model independent. Violation of these inequalities will testify for the neutrino conversion. It is expected that spectra emitted during short time intervals \(\Delta t \ll 10 \text{s} \) are “pinched”. Observation of wide spectra will testify for its compositeness which appears as a result of conversion.

Another SN model independent possibility is to study the Earth matter effects on the neutrino fluxes from supernovae. The oscillations of the SN neutrinos in the matter of the Earth can induce irregular structures in the otherwise smooth energy spectra. These oscillations will lead also to different signals at different detectors (for which neutrino trajectories in the Earth are different).

The observable effects are the result of the interplay of neutrino conversion inside the star and oscillations inside the Earth. The level crossing schemes are different for normal and inverted mass hierarchies. The high resonance is in the neutrino channel if the hierarchy is normal and it is in the antineutrino channel for the inverted mass hierarchy. This can lead to completely different patterns of conversion.

If \(|U_{e3}|^2 > 10^{-3} \), the conversion in the high resonance is completely adiabatic. Taking into account also that original \(\nu_\mu \) and \(\nu_\tau \) fluxes are practically identical one gets that in the normal hierarchy case: (i) \(\nu_\tau \) converts completely to \(\nu_\mu/\nu_\tau \), (ii) at the Earth \(\nu_\tau \) should have hard spectrum of the original \(\nu_\mu \) and (iii) the Earth matter effect does not influence this flux. In contrast, the oscillation effect in the matter of the Earth can be observed in the \(\bar{\nu}_e \)-spectrum.

In the case of inverted mass hierarchy \(\nu_\tau \) and
$\bar{\nu}_e$ interchange the roles: (i) $\bar{\nu}_e$ transforms in the star into $\bar{\nu}_\mu/\bar{\nu}_\tau$, (ii) at the surface of the Earth $\bar{\nu}_e$-flux will have a hard spectrum, (iii) the Earth matter effect should not be seen in the $\bar{\nu}_e$ signal but it can be observed in the ν_e-signal.

Thus, the fact of observation of the Earth matter effect in the $\bar{\nu}_e$ flux, but not in ν_e, will testify for the normal hierarchy. An opposite situation: the Earth matter effect in ν_e channel and an absence of the effect in $\bar{\nu}_e$ will be an evidence of the inverted mass hierarchy. Substantial matter effect is possible for the LMA parameters only.

If $|U_{e3}|^2 \ll 10^{-3}$ the high resonance is inefficient and significant matter effect can be observed both in $\bar{\nu}_e$ and ν_e spectra.

5. ν_\odot, ν_{atm} and LSND.

It is widely accepted that simultaneous explanation of the solar, atmospheric and LSND results in terms of oscillations requires an existence of the sterile neutrino (see e.g. [19]). Less appreciated fact is that the explanation requires the sterile neutrino to be a dominant component in oscillations of solar or atmospheric neutrinos. That is, either $\nu_e \rightarrow \nu_s$ is the dominant channel of the solar neutrino conversion, or $\nu_\mu \rightarrow \nu_s$ is the dominant oscillation mode for the atmospheric neutrinos. The extreme situation is when sterile channels contribute 1/2 both in the solar and the atmospheric neutrino transformations.

This statement holds for the so called (2 + 2) scheme of the neutrino mass in which two pairs of the mass eigenstates with mass splitting Δm^2_{\odot} and Δm^2_{atm} are separated by the mass gap related to Δm^2_{LSND}. In these schemes one easily gets the depth of $\bar{\nu}_\mu - \bar{\nu}_e$ oscillations required by the LSND. It is claimed [19] that the (2 + 2) scheme is the only possibility and the alternative schemes give too small mixing for the LSND. Situation, however, may change:

1. Recent atmospheric neutrino data disfavor $\nu_\mu \rightarrow \nu_s$ as a dominant mode of oscillations. Although up to 0.5 contribution of the sterile channel still gives a good fit [20].
2. The mode $\nu_e \to \nu_\mu$ although accepted, does not give the best fit of the solar neutrino data. The $\nu_e \to \nu_s$ solution can be identified soon by (i) equality of the reduced charged current rate at SNO and electron scattering rate at SK: $|CC| \approx R_{SK}$; (ii) small Day-Night asymmetry ($< 2\%$) in SK and SNO; (iii) unchanged double ratio $|NC|/|CC| \approx 1$ (see [3]).

If it will be proven that both in the solar and atmospheric neutrinos the contribution of the sterile component is smaller than 1/2, the $(2 + 2)$ scheme should be rejected, and the oscillation interpretation of the LSND will be questioned.

In this connection we have reconsidered the $(3 + 1)$ scheme (see fig.3) in which three mass eigenstates with splittings Δm^2_{atm} and Δm^2_3 form the flavor block with small admixtures of sterile neutrino and the fourth state (predominantly sterile) is isolated from the flavor block by the mass gap Δm^2_{LSND} [24]. Both solar and atmospheric neutrinos transform into active ones.

The effective mixing parameter for $\bar{\nu}_\mu - \bar{\nu}_e$ oscillations driven by Δm^2_{LSND} equals

$$\sin^2 2\theta_{\text{LSND}} = 4U^2_{e4}U^2_{\mu4},$$

where U^2_{e4} and $U^2_{\mu4}$ are the admixtures of the ν_e and ν_μ in the fourth mass eigenstate. U^2_{e4} and $U^2_{\mu4}$ determine the $\nu_e - \nu_\mu$ disappearance in oscillations driven by Δm^2_{LSND} and are restricted by the results of BUGEY [23] and CDHS [24] experiments correspondingly. For low values of Δm^2 better limit on $U^2_{\mu4}$ follows from the atmospheric neutrinos [19]. In fig.4 we reproduce the bound on $\sin^2 2\theta_{\text{LSND}}$ obtained in [11] using Eq. (8) and the 90 \% CL bounds from BUGEY and CDHS. The bound excludes whole allowed LSND region which led to conclusion that $(3 + 1)$ scheme can not reproduce the LSND result. However, the question is: which confidence level should be prescribed to this bound?

For several values of Δm^2 we have found the 95 \% CL and 99 \% CL bounds on $\sin^2 2\theta_{\text{LSND}}$ in assumption that distributions of the U^2_{e4} ($\alpha = e, \mu$) implied by the experiments are Gaussian (see fig. 4). We used central values of U^2_{e4} and 90 \% CL bounds published in the papers [23,24] to restore parameters of the Gaussian distributions.

As follows from the fig.4, in the range $\Delta m^2 \sim 1$ eV2, the product of the 90\% CL bounds corresponds to $\sim 95\%$ CL. The CL decreases with increase of Δm^2. At 99% CL the LSND region at $\Delta m^2 / \sim 1$ eV2 becomes acceptable. Moreover, new analysis [24] shifts the allowed LSND region to smaller $\sin^2 2\theta$, so that now some part of the region is acceptable even at 95% CL.

The $(3 + 1)$ scheme leads to a number of the phenomenological consequences which can be checked in the forthcoming experiments. It has also interesting astrophysical and cosmological consequences [22].

6. CONCLUSIONS.

What are perspectives of the reconstruction of the neutrino mass and flavor spectrum?

1. Identification of the dominant mode of the atmospheric neutrino oscillations has a good chance with further studies at SK and LBL experiments. The bound on the presence of sterile neutrinos will be better than $|U_{e3}|^2 < 1/2$, which has important implications for theory.

2. Distribution of the electron flavor $(|U_{e1}|^2, |U_{e2}|^2$ as well as Δm^2_3 will be determined together with identification of the solution of the ν_τ-problem. Sooner or later (depending on our luck) this will be done by future measurement at SK, SNO, GNO, SAGE, BOREXINO. Studies of correlations of observables will allow us to enhance an identification power of analysis. Ironically, the solution of the ν_τ problem can be found without solar neutrinos – in KAMLAND experiment. Important bound will be obtained on presence of ν_τ.

There is some chance to measure $|U_{e3}|^2$ in the forthcoming LBL experiments.

3. Determination of the type of mass hierarchy, the level of spectrum degeneracy, the CP-violating phase and the absolute scale on the neutrino mass will require much more serious efforts. Progress will be related to the oscillation experiments with very long base lines and probably with direct measurements of the neutrino mass. Identification of the type of mass hierarchy and important bounds on value $|U_{e3}|^2$ can be obtained by the detection of the neutrino burst from the Galactic supernova. Observation of the $\beta\beta_{0\nu}$-
decay means the discovery of the lepton number violation and the Majorana nature of neutrinos. Measurements of the effective mass m_{ee} will allow to check “test equalities" which relate m_{ee} and oscillation parameters in the context of certain schemes of neutrino mass. In this way we will be probably able to identify the scheme and to get information on the absolute scale of neutrino mass.

REFERENCES

1. Y. Fukuda et al., Phys. Rev. Lett. 81:1562-1567, 1998, H. Sobel, these Proceedings.
2. M. Apollonio, et al., Phys. Lett. B466:415, 1999; F. Boehm et al., hep-ex/0003022.
3. S. Fukuda et al., hep-ex/0009001.
4. S. Wojcicki, these Proceedings.
5. A. Rubbia, these Proceedings.
6. L. Mikaelyan, hep-ex/9910042, hep-ex/0008046, hep-ex/0008063.
7. see A. S. Dighe, A. Yu. Smirnov, Phys. Rev. D62 033007, 2000 hep-ph/9907423 and references therein.
8. C. Albright et al., hep-ex/0008064.
9. E.K. Akhmedov, G.C. Branco, M.N. Rebelo, Phys. Rev. Lett. 84 3535, 2000.
10. J.N. Bahcall, P.I. Krastev, A.Yu. Smirnov, Phys. Rev. D60 093001, 1999.
11. M. C. Gonzalez-Garcia, C. Pena-Garay, Y. Nir, A. Yu. Smirnov, hep-ph/0007227.
12. A.J. Baltz, J. Weneser, Phys. Rev. D50:5971, 1994, J.M. Gelb, W.-K. Kwong, S.P. Rosen Phys. Rev. Lett. 78:2296, 1997, Q. Y. Liu, M. Maris, S.T. Petcov, Phys. Rev. D56:5991, 1997.
13. J.N. Bahcall, P.I. Krastev, A.Yu. Smirnov, hep-ph/0006078.
14. Y. Nir, JHEP 0006:039, 2000.
15. G.L. Fogli, E. Lisi, and D. Montanino, Phys. Rev. D54: 2048, 1996, A.H. Guth, L. Randall, M. Serna, JHEP 9908:018,1999 hep-ph/9903464, A. de Gouvea, A. Friedland, H. Murayama, Phys. Lett. B490:125, 2000, G. Fogli, E.Lisi, D. Montanino, and A.Palazzo, Phys. Rev D62: 013002, 2000.
16. H. V. Klapdor-Kleingrothaus, H. Pas, A. Y. Smirnov, hep-ph/0003214.
17. S.M. Bilenkii, C. Giunti, W. Grimus, B. Kayser, S.T. Petcov, Phys. Lett. B465:193, 1999.
18. C. Athanassopoulos et al., Phys. Rev. Lett. 81:1774, 1998.
19. S.M. Bilenkii, C. Giunti, W. Grimus, Prog. Part. Nucl. Phys. 43:1, 1999, hep-ph/9812360; S.M. Bilenkii et al., Phys. Rev. D60:073007, 1999.
20. E. Lisi, these Proceedings,
21. C. Giunti, M.C. Gonzalez-Garcia, C. Pena-Garay, Phys. Rev. D62:013005, 2000.
22. O.L.G. Peres, A.Yu. Smirnov, in preparation.
23. B. Achkar et al., Nucl. Phys. B434:503, 1995.
24. F. Dydk et al., Phys. Lett. B134:281, 1984.
25. G. Mills, these Proceedings.