University of São Paulo
“Luiz de Queiroz” College of Agriculture

Dynamics and pest and natural enemies dispersion in cowpea and colored cotton in sole or intercropping systems

Francisco Sales Fernandes

Thesis presented to obtain the degree of Doctor in Science. Area: Entomology

Piracicaba
2018
Francisco Sales Fernandes  
Undergraduate in Agrarian Sciences

Dynamics and pest and natural enemies dispersion in cowpea and colored cotton in sole or intercropping systems

versão revisada de acordo com a resolução CoPGr 6018 de 2011

Advisor:  
Prof. Dr. WESLEY AUGUSTO CONDE GODOY

Thesis presented to obtain the degree of Doctor in Science. Area: Entomology

Piracicaba  
2018
DEDICATION

This thesis is dedicated to my father Antonio Fernandes da Silva “in memorian” and all my family that has been fundamental in my life.
ACKNOWLEDGEMENTS

First, I would like to thank God who has been the reason of my existence. To Professor Wesley Augusto Conde Godoy and Dr. Francisco de Sousa Ramalho for all the guidance granted to me so that I could finish my doctorate course.

To Dr. François Régis Goebel, Dr. Ana López Llandres, Dr. Oriol Verdeny Vilalta, Dr. Pierre Silvie, Dr. Jean-Noel Aubertot and Dr. Jean-Paul Gourlot for giving me the opportunity to discuss our data set and analysis during my stay at AIDA/CIRAD (Montpellier – France).

To the Graduate Program in Entomology of Escola Superior de Agricultura “Luiz de Queiroz” (ESALQ/USP) for giving me the opportunity to study and travel abroad.

To CAPES for scholarship both in Brazil (CAPES: PROEX - 0487 – n. 1367745) and in France (CAPES: PDSE 19/2016 – n. 88881.135703/2016-01).

To Koppert Biological Systems for supplying me eggs of *Ephestia kuehniella* that were essential for ladybirds rearing.

To Laboratorio de Fontes Proteicas (UNICAMP/FEA) for all amino acids analysis that was fundamental for our study.

To my family Alaíde Anália Fernandes, José Marcio Fernandes, Jossandra Fernandes and Jocélia Fernandes for their help during my academic career and for their friendship. It has been very important in my life.

To Aline Cristina, Bárbara Davis, Carlos Trajano, Jessica Karina Pachú, Thiele Carvalho, Ana Lúcia, Joseni Ferreira, Sebastião Lima and José Bruno Malaquias for the contribution with experimental support during my stay at EMBRAPA Algodão (Campina Grande – Paraíba – Brazil).

To all specialists to help identify my species from field experiments. It was fundamental to develop our mathematical model.

To Bruna Almeida, Thaís Crivellari, Adriano Gomes Garcia, Abraão Taveira and Rafael Moral for their help and partnership.

To Audberb Alves de Carvalho and Dalvinete Sifronio to help me during my previous courses.

To all the team at Laboratório de Entomologia Florestal e Ecologia de Insetos (ESALQ/USP): Débora Canuto, Carina Silva, Aline Rocha, Vitor Botteon, Isabele Bueno, Mayara Araújo, Cydney, Murilo Gaspar, Walter Mesquita Filho, Ana Paula, Juliana Neves, Maria Ono, João Gorá and Elisangela Lopes.
To all professors from Entomology Department for giving me the entomological approach and contribution for my academic and professional formation.

To Andredy Murilo, Angelica, Alex Velasquez, Evelyne Defort, Joscelyne Sallin, Aurelia, Melissa, Esteban, Valeana, Victoria Rossetti, Beatriz Fernandes, Fernando, Jhonathan, Lalaine, Esma, Aina, Thatiana, Tatiana, Radar, Randi and Bastien for friendship.

To all employees of ESALQ that gave me technical support, information and documents necessary for my thesis.

For all people that indirect and directly contributed with my experimentation I would like to say: thank you very much and may God bless you!!!!
EPIGRAPH

«L'Éternel est mon berger:
Je ne manquerai de rien».

Psaumes 23:1
RESUMO

Dinâmica e dispersão de pragas e inimigos naturais em feijão-macassar e algodão colorido nos sistemas de cultivo solteiros e consorciados

Consórcios são importantes práticas culturais comumente utilizadas no manejo de pragas. Baseiam-se no princípio de que a redução de populações de insetos-praga nos cultivos pode ocorrer devido ao aumento na diversidade do agroecossistema. O estudo foi conduzido objetivando avaliar o impacto que o consórcio entre algodão com fibra colorida e o caupi pode causar nas populações dos pulgões *Aphis gossypii* Glover, 1877, *Aphis craccivora* Koch, 1854 (Hemiptera: Aphididae) e seus predadores, especialmente *Cycloneda sanguinea* (Linnaeus, 1763) (Coleoptera: Coccinellidae). Objetivou-se também avaliar a produção de biomassa e comportamentos de dispersão dos pulgões e seus inimigos naturais nos cultivos. Experimentos foram conduzidos em condições laboratoriais, casa de vegetação e campo. Realizaram-se extrações de aminoácidos oriundos de plantas de algodão e feijão. Em casa de vegetação, ápteros de duas espécies de pulgões (*A. gossypii* e *A. craccivora*) e um predador (*C. sanguinea*) foram utilizados para avaliar a dispersão, preferência pelo hospedeiro bem como o estabelecimento da progênie do predador. A influência de fatores abióticos (temperatura e umidade relativa) na dinâmica dos pulgões também foi analisada. Em condições de campo, avaliou-se a ocorrência de artrópodes encontrados no algodoeiro e caupi solteiros e consorciados. Modelos matemáticos foram desenvolvidos para avaliar a dinâmica de pulgões ao longo do tempo e modelos estatísticos foram utilizados para comparar produtividade em plantas, dispersão, progênie e sucesso reprodutivo do predador. Simulações computacionais foram utilizadas para comparar a ocorrência de insetos e avaliar o melhor sistema de consórcio que reduza a população de pragas, aumentando a população de inimigos naturais e produtividade do cultivo. O aminoácido asparagina (ASP) foi predominante na maioria das amostras. Correlações positivas foram encontradas entre pulgões e temperatura. Correlações negativas foram encontradas entre pulgões e umidade relativa. Modelos matemáticos descreveram o comportamento dinâmico dos pulgões nos arranjos estudados. Em todos os esquemas de cultivos foi observado um crescimento assintótico, com picos populacionais e decrescimos na população dos pulgões. Em casa de vegetação, os cultivos solteiros propiciaram números de pulgões maiores do que os arranjos de cultivos consorciados. A dispersão do inimigo natural foi similar nos sistemas de cultivos solteiros e consorciados. Entretanto, a abundância de sua progênie e produtividade de algodão foi maior no tratamento 1 (Consórcio delineado com plantas de algodão : plantas de feijão, cada linha iniciou e terminou com plantas de algodão). Simulações baseadas nos experimentos em condições de campo e literatura demonstram que alguns sistemas de cultivos propiciaram dinâmica temporal estável nos artrópodes estudados. Porém, *Toxomerus watsoni* (Curran, 1930) (Diptera: Syrphidae) apresentou dinâmica temporal instável e menor abundância nos arranjos de algodão solteiro orgânico ou no consórcio de algodão e feijão 1, que recebeu inseticida para controle das pragas sugadoras. Simulações computacionais confirmaram que a produção de biomassa foi maior em alguns consórcios de algodão com caupi do que em cultivos solteiros.

Palavras-chave: *Aphis craccivora*; *Aphis gossypii*; Predadores; Consórcio; Pragas agrícolas
ABSTRACT

Dynamics and pest and natural enemies dispersion in cowpea and colored cotton in sole or intercropping systems

Intercropping is an important cultural practice commonly used in pest management. It is based on the principle that the reduction of insect pest populations in the crop may occur due to the increase of agro-ecosystem diversity. The study was carried out aiming to assess the impact of colored fiber cotton-cowpea intercropping on both *Aphis gossypii* Glover, 1877 and *Aphis craccivora* Koch, 1854 (Hemiptera: Aphididae) aphid populations and their predators, especially *Cycloneda sanguinea* (Linnaeus, 1763) (Coleoptera: Coccinellidae). The study also aimed to evaluate the biomass production and the dispersion behavior of the aphids and their predators in this context. Experiments were carried out in laboratory, greenhouse and field conditions. Amino acids were extracted from cotton and cowpea plants. Under greenhouse conditions two wingless aphid species (*A. gossypii* and *A. craccivora*) and one predator species (*C. sanguinea*) were used to evaluate the dispersion, crop preference as well as predator progeny establishment. The influence of abiotic factors (temperature and relative humidity) in aphid dynamics was also analyzed. In field conditions the occurrence of arthropods found in sole or cotton and cowpea intercropped was evaluated. Mathematical models were developed to evaluate the aphid dynamics over time and statistical models were used to compare productivity in plants, dispersion, progeny and reproductive success of predator. Computational simulations were performed to compare the insect occurrence and to evaluate the best cropping system to pest reduction, natural enemy increase and plant productivity. Amino acid asparagine (ASP) was the most detected in the samples. Positive correlations were found between aphids and temperature. Negative correlations were found between aphids and relative humidity. Mathematical models described the dynamics behavior of aphids in arrangements studied. In all cropping systems an asymptotic growth was observed, with population peak and decrease in aphid population. Under greenhouse conditions, the sole cropping exhibited higher number of aphids than intercropping systems. The natural enemy dispersion was similar in both cropping system. However, the progeny abundance and cotton productivity were higher in treatment t₁ (intercropping designed with cotton plants : cowpea plants in a row, started and ended with cotton plants). Simulations based in field experiments and literature showed that some cropping arrangements provided temporal dynamics stable in arthropods. However, *Toxomerus watsoni* (Curran, 1930) (Diptera: Syrphidae) exhibited temporal dynamics unstable and less abundance in arrangements of sole organic cotton or cotton-cowpea intercropping t₁ that received insecticide for sucking pest control. Computational simulations confirmed that biomass production was higher in some cotton-cowpea intercropped than in sole cropping systems.

Keywords: *Aphis craccivora*; *Aphis gossypii*; Predators; Intercropping systems; Agricultural pest
1. INTRODUCTION

The cowpea (*Vigna unguiculata* Linnaeus Walp.) is a vegetable cultivated in tropical and subtropical regions, being an important food source (Adati et al. 2008; Oyewale & Bamaiyi 2013; Tiroesele, Thomas, & Seketeme 2015). Its utilization has different functions (Oyewale & Bamaiyi 2013), such as green source, soil nitrogen fixation (Konlan, Abdulai, & Birteeb 2016), etc. It is also a protein supplement (Carvalho et al. 2017), being considered a very important food source to the Brazilian population (Frota, Soares, & Arêas 2008). Cotton crops (*Gossypium hirsutum* L. *r. latifolium* Hutch) have been a fundamental cash crop to countries such as India, China, United States, Pakistan and Brazil (USDA 2018). Various cotton fibers made worldwide are white (Carvalho et al. 2014). In Brazil the cotton with white fibers was planted in large quantity in many states, but with the introduction of some insect pests in different places (Cavalcanti 2012), nowadays, this kind of crop is principally planted in Bahia and Mato Grosso (USDA 2018). Therefore, trying to invigorate the agribusiness of cotton in our country, many cotton cultivars with colored colors have been developed (Cavalcanti 2012; Carvalho et al. 2014). This was possible because the heritage of coloration is relatively simple and the heritability characteristics are high to make some change in the fiber color (Carvalho et al. 2014). Among the cotton with colored fibers, the BRS Safira is one of the most important cultivars developed to aggregate value to the farms of rural producers, reducing costs with water and colorants in the industrial process to obtain the final product. The genetic characteristic was obtained crossing herbaceous cotton from United States of America (brown-colored cotton) with CNPA 87-33 cultivar (cotton with white fiber) from Brazil, that provides tender leaves to the cultivar which could affect negatively the sucking insect in agroecosystems (Ramalho et al. 2012b).

Arthropods occurrence is expressive in both cotton and cowpea plants. Their abundance can be dangerous or beneficial to the plants. Abundance is dangerous since it can reduce photosynthetic activity in leaves and transmit virus to plants (Baloch et al. 2016). In cotton, the species considered pest can reduce the quality of the plant, open boll and seed production (Ramalho 1994). *Bemisia tabaci* biotype B (Gennadius, 1889) (Hemiptera: Aleyrodidae), and aphids are the most important pests that can cause loss production in these crops. The species *Aphis gossypii* Glover, 1877 (Hemiptera: Aphididae) is a polyphagous pest, frequently found in all cotton crops systems, as well as in many plant families worldwide (Wrona et al. 1996; Luo et al. 2016; Wang et al. 2016). The critical period of occurrence of this species in cotton plants can take place early (few days after plant sprouting), and the
estimated loss vary from 24 to 44% (sole crops), with 71% of infested plants (Ramalho 1994). *Aphis craccivora* Koch, 1854 (Hemiptera: Aphididae) is considered one of the most abundant insects in Leguminosae plants (Kamphuis, Gao & Singh 2012; Wongsa et al. 2016) since it can reduce the quality of the host plant (Meradsi & Laamari 2016). Although there is no information about the critical period for the occurrence of *A. craccivora* in cowpea (BRS Itaim cultivar) in Brazil, the production loss caused by this species and other phytophagous insects in sole crops is evident, and it can vary from 24 to 69% (Karungi et al. 2000). It is also known that for *B. tabaci* the critical feeding period is closely related with the attainment of any critical weight of insects and the pest can be most abundant in the field when there are climatic conditions favorable for its activity (Gelman & Hu 2007; Kataria et al. 2017).

Both cotton and cowpea can also be fundamental for the attractiveness to natural enemies (Manjula & Lakshmi 2014). Coccinellidae family (Manjula & Lakshmi 2014; Ali et al. 2016; Vinod et al. 2016), predator Aracnidae, parasitoids (Prasad & Malathi 2016; Ali et al. 2016), Neuroptera (*Chrysoperla* sp.), Diptera, as well as *Allograpta* sp. (Colmenárez et al. 2016) are among the most frequent arthropods found in these plants. The arthropods previously mentioned are important due to their generalist predatory activity, which can act in different agroecosystems. However, one of the factors affecting pests and populations of natural enemies is non-selective pesticide utilization, which can reduce both populations of pest and natural enemies (Ahmad et al. 2016). The evolution of natural agroecosystems is controlled by high biodiversity levels (Malézieux et al. 2009). Landscape simplification often reduces the natural control of pests by the action of natural enemies (Rusch et al. 2016) since it does not contribute with the reproduction and multiplication of beneficial arthropods in the agroecosystem. There is experimental evidence showing that intercropping systems of cotton-cowpea may contribute to the reduction of non-selective pesticide use, contributing to the decrease in the population of aphids and the increase in the diversity of natural enemies (Ramalho et al. 2012a; Fernandes et al. 2015). However, information from this nature is incipient, especially taking into account any expected effect of cotton with colored fiber and cowpea on natural enemies.

As in intercropping systems, two or more crops can be planted in the same area (Tung et al. 2016), maintaining the biodiversity of floral and feeding resources for natural enemies, thus contributing to the reduction of pest population in cotton (Fernandes et al. 2012; Rao et al. 2012), causing impact on insect dynamics in intercropping systems (Altieri & Letourneau 1982). Several studies have shown that agroecosystem diversification can reduce pest infestation (Jankowska & Wojciechowicz-Żytko 2016). The understanding of diversity plant
effect on herbivorous control is relevant for the understanding of agricultural sustainability (Dassou & Tixier 2016). It is believed that the ecological model of cotton-cowpea intercropping systems include an essential step in the development of algorithms as a scenario with intercropping, sucking insect, as well as natural enemies.

Mathematical and statistical models may be used to describe biological dynamics systems, with dependent sensitivity of mathematical functions inserted in algebraic equations (Bolker 2007). Analytical tools can be used to describe and interpret dynamics including predator and prey, by incorporating different variety and sensitive parameters to measure the action of insects in crops (Ogal et al. 2016). On the other hand, the knowledge of biological patterns, quality and quantity of practice used by rural producers, and the evaluation of the relationship between intercropping systems and impacts on agricultural systems over time and space is recommended to make some models applicable to agroecosystems (Silvie et al. 2010).

The research was carried out with the general aim to assess the impact of colored fiber cotton-cowpea intercropping on both A. gossypii, A. craccivora aphid populations, their predators, especially Cycloneda sanguinea (Linnaeus, 1763) (Coleoptera: Coccinellidae), as well as their dispersion behavior and biomass production. It was hypothesized that a) cotton intercropped with cowpea reduces A. gossypii population in cotton crop, and b) cotton intercropped with cowpea increases C. sanguinea ladybug population in cotton crop.

1.1. Polyphenism in aphids

Polyphenism is the occurrence of phenotype within a species whose development is affected by environmental conditions (Chapman 1969). In agroecosystem, a single genotype can produce distinct phenotypes (Braendle et al. 2005). In various insect groups, the species exhibit a type that affects the flight of individuals (Harrison 1980). Commonly, the development of wing by individual can be different according to population size, resource competition, nutritional condition of plant, geographical area, environmental change, food quality, predators, photoperiod, temperature, reduction of ecdysone signaling, or seasonality of species (Müller, Williams & Hardie 2001; Niva & Tekeda 2003; Brisson 2010; Vellichirammal et al. 2017). Many aphid species in Brazil reproduce by parthenogenesis. Parthenogenetic aphids are viviparous, in which individuals are developed in female ovarioles before the eclosion of nymphs. The adults of aphids can be winged or wingless, which depends on the influence of many factors as mentioned previously (Brisson 2010; Ogawa & Miura 2014). In general, aphid mothers that perceive a crowded habitat transmit the
information to the daughter embryos, and then the progeny tends to be winged (Müller, Williams & Hardie 2001; Brisson 2010). On the other hand, if the habitat has sufficient food resource, the wingless individuals can reproduce and their progeny can also be wingless (Dixon 1998). In the present study, polyphenism was indirectly studied by the measurement of the effect of temperature, relative humidity, and amino acids profile on the number of wingless and winged aphid within different cropping arrangement. The knowledge of these factors is essential for the development of a model that explains the population growth of aphids within cotton and cowpea in sole or intercropping systems over time.

1.2. Biological and cultural pest control

Biological control is the utilization of individuals (natural enemies) for pest control. On the other hand, cultural control is the utilization of agronomics practices and multiple cropping to reduce insect population and increase the population of natural enemies in agroecosystem (Mahr & Dittl 1986; Parra 2014; Oaya et al. 2017). The natural enemies usually used in agriculture are predators, parasitoids and pathogenic agents (Parra et al. 2002). Although the biological control of insects by predator is an important practice used in many countries worldwide, its use is still limited in Brazil (Parra 2014). Intercropping design in any cultural practice is commonly found in this country, but it has been used only in small production scale by family agriculture or experimentation in Northeast region (Ramalho et al. 2012b; Fernandes et al. 2015). Both cultural and biological control can be optimal elements for the development of any analytical tool useful to evaluate the effect of cropping diversification on pest-beneficial insect dynamics over time, allowing the prediction of demographics process within, between, and among arthropods population dynamics (Lima, Pereira & Godoy 2009; Hatt et al. 2018; Xia et al. 2018).

1.3. Radiation and biomass production

Radiation is an essential component to crop growth, insect communication by visual cues, and biomass production (Kropff & Laar 1993; Gallo et al. 2002; Chimonyo, Modi & Mabhaudhi 2016a). In field condition, the radiation use efficiency of plants changes over the day, and also according to nitrogen and water limitation, cropping systems association, shading intensity, and geographic locations due to differences in environmental or constitutive parameters of each plant as secondary metabolites, temperature, accumulation of photosynthetic pigments, and vapor pressure deficit (Gonias, Oosterhuis & Bibi et al. 2012;
Chakwizira et al. 2018; Alam et al. 2018). The utilization of optimal intercropping system provides increase in land productivity, and consequently in plant biomass since it improve soil nutrients, water use and solar radiation, which are necessary for the crop growth during its vegetative and reproductive development (Tsubo, Walker & Mukhala 2001; Zhang et al. 2007; Umesh, Chittapur & Jagadeesha 2017). Radiation and intercropping systems also enhance plant defense against pests (Dillon et al. 2017). Population of aphids can be slowly affected by the incidence of ultra violet radiation since they are very dependent on this kind of radiation to host selection in the agroecosystem (Dáder et al. 2017; El-Aal, Rizk & Mousa 2018). Infra-red radiation is another component that can affect the communication in some groups of insects in the landscape (Gallo et al. 2002). In this sense, this type of information is essential so that the ecologist can choose the best cropping system and predict real plant productivity as well as insect communication providing implementation of integrated pest management in the field.

1.4. Review of the main models found in literature and their applications

This topic was written with the objective to show the models used to evaluate the plants of sole cotton, sole cowpea, intercropping systems, as well as the pest and natural enemies’ dynamics, aiming at the development of various models in order to explain the scenario in Brazil. In mathematical modeling there are crucial steps to be observed by modelers, which can be viewed in Figure 1.

![Figure 1. Step necessary to construct a model. Modified from Bassanezi (2013)](link)

In table 1, a summary of statistical and mathematical models used to study sole crops, intercropping systems and insects’ dynamics around the world is shown. These models are
interesting as basis for the development of our proposition allowing us to explain the relationships within and among various scenarios.

Table 1. Summary of the main models found in literature and their applications

| Model       | Cotton | Cowpea | Intercropping | Pest | Natural enemy | References                                      |
|-------------|--------|--------|----------------|------|--------------|------------------------------------------------|
| GOSSYM      | Yes    |        |                |      |              | Thorp et al. 2014                               |
| Cotton2K    | Yes    |        |                |      |              | Thorp et al. 2014                               |
| COTCO2      | Yes    |        |                |      |              | Thorp et al. 2014                               |
| OZCOT       | Yes    |        |                |      |              | Thorp et al. 2014                               |
| CROPGRO     | Yes    | Yes    |                |      |              | Thorp et al. 2014                               |
| EPIC        | Yes    | Yes    |                |      |              | Thorp et al. 2014                               |
| WOFOST      | Yes    |        |                |      |              | Thorp et al. 2014                               |
| SUCROS      | Yes    |        |                |      |              | Zhang et al. 2008; Thorp et al. 2014             |
| GRAMI       | Yes    |        |                |      |              | Thorp et al. 2014                               |
| GD          | Yes    |        |                |      |              | Antonini et al. 2011                            |
| CROPSYST    | Yes    |        |                |      |              | Thorp et al. 2014                               |
| AquaCrop    | Yes    |        |                |      |              | Thorp et al. 2014                               |
| APSIM       | Yes    | Yes    |                |      |              | Gaydon et al. 2017                              |
| FSPM – CottonXL | Yes   |        |                |      |              | Gu et al. 2014                                  |
| COTTON      | Yes    |        |                |      |              | Jallas et al. 1999                              |
| AMAPpara    | Yes    |        |                |      |              | Reifüe et al. 1999                              |
| DSSAT       | CSM-   |        |                |      |              | Loison et al. 2017                              |
| CROPGRO     |        |        |                |      |              |                                                 |
| Hanks (H-2) | Yes    |        |                |      |              | Adekalu & Okunade 2008                           |
| Stewart (S-2)| Yes  |        |                |      |              | Adekalu & Okunade 2008                           |
| Butcher (H-B)| Yes  |        |                |      |              | Adekalu & Okunade 2008                           |
| NIR         | Yes    |        |                |      |              | Ishikawa et al. 2017                            |
| PRECIS      | Yes    |        |                |      |              | Cavalcante Júnior et al. 2016                    |
| STICS       |        |        |                |      |              | Brisson et al. 2004; Kollas et al. 2015          |
| DAISY       | Yes    |        |                |      |              | Kollas et al. 2015                              |
| FASSET      | Yes    |        |                |      |              | Kollas et al. 2015                              |
| HERMES      | Yes    |        |                |      |              | Kollas et al. 2015                              |
| MONICA      | Yes    |        |                |      |              | Kollas et al. 2015                              |
| LIN-TUL     | Yes    |        |                |      |              | Kollas et al. 2015                              |
| SODCOM      | Yes    |        |                |      |              | O’Callaghan, Maende & Wyseure 1994               |
| NextGen     |        |        |                |      |              | Antle et al. 2017                               |
| Differential equations | Yes  | Yes    |                | Yes  | Yes          | Matis et al. 2005; Patil & Mytri 2013; Wang, Cao, Huang 2013 |
| APHISim     | Yes    |        |                |      |              | Piyaratne et al. 2014                           |
| GPDM        | Yes    |        |                |      |              | Kyogoku & Sota 2017                             |
| Lyapunov    | Yes    |        |                |      |              | Ngalya & Kuznetsov 2017                         |
| LaSalle's   | Yes    |        |                |      |              | Ngalya & Kuznetsov 2017                         |
| CLIMEX      | Yes    |        |                |      |              | Poulsma et al. 2008                             |
| Holling     | Yes    |        |                |      |              | Papanikolau et al. 2016                         |
| Crowley-Martin | Yes  |        |                |      |              | Papanikolau et al. 2016                         |
| Beddington- | Yes    |        |                |      |              | Papanikolau et al. 2016                         |
| DeAngelis   | Yes    |        |                |      |              |                                                 |
| Hassell-Varley | Yes  |        |                |      |              | Papanikolau et al. 2016                         |
| Lotka and Voltera | Yes |        |                |      |              | Hadžiabdić, Mehulić & Bektešević 2017           |
| MPP         | Yes    |        |                |      |              | Rafikov & Ballhazar 2005                         |
| DP          | Yes    |        |                |      |              | Rafikov & Ballhazar 2005                         |
| GMM-based   | Yes    |        |                |      |              | Wang, Cao, Huang 2013                           |
| KPM-based   | Yes    |        |                |      |              | Wang, Cao, Huang 2013                           |
| Fuzzy model | Yes    | Yes    |                |      |              | Peixoto, Bassnezi & Fernandes 2015               |
| SEM         | Yes    |        |                |      |              | Alyokhin et al. 2011                            |
| AMOS        | Yes    |        |                |      |              | Alyokhin et al. 2011                            |

Which: GOSSYM = Simulator of Cotton Crop Growth and Yield, EPIC = Environmental Policy Integrated Climate, WOFOST = World Food Studies, SUCROS = Simple and Universal Crop Growth
1.4.1. Cotton models

History of cotton simulation models, applications, opportunities for improvement, use in scientific research, and decision support were revised (Thorpe et al. 2014). It was observed that SUCROS-cotton model can be useful to evaluate cotton productivity taking into account many factors as the range in temperature, incoming radiation, crop management practices, types of cultivars for different agroecological conditions, and resource-use efficient cropping systems (Zhang et al. 2008). Empirical statistical models were interesting to study different agrosystems since they allowed the analysis of fuel wood needs during dry and wet season as well as the constancy of food grain need (Youl et al. 2008). Some models provided theoretical insights that can contribute to the improvement of water use efficiency in cotton cultivation and the identification of optimal application rates of soil conditions necessary for the development and productivity of plants (Su, Wang & Shan 2015). A mathematical model was developed and validated to estimate the duration of cotton cycle in the State of Goiás, Brazil (Antonini et al. 2011). It was found that the models performed very well when they were compared with statistical models. In a study with APSIM, it was found that the model simulated the cropping system performance very well in Asia, and it can be applied in many types of crops, varieties and environments as well as in various management practices around the world (Gaydon et al. 2017).

FSPM model was useful to evaluate the effects of agronomic practices in the study of cotton plant structure (Gu et al. 2014). GOSSYM model was interesting to study climatic-cotton interactions (Liang et al. 2012). COTONS model was used to provide predictions at a more regional level, which could then be coupled with databases for soil, climate, etc. (Jallas et al. 1999). AMAPpara model evaluated plant growth and for this, the authors took into account its physiological functioning and its architectural development (Reffye et al. 1999). DSSAT, CSM-CROPGRO-cotton were used to identify the best cultivars for Northern Cameroon (Loison et al. 2017). It was found that: 1) cultivars which grow in the predicted
area will be unsuitable in the future; 2) there is an optimized cultivar for each criterion tested, but none to optimize more than one satisfactorily, and 3) optimized cultivars are interesting in the systems because they can increase photosynthetic rate, and consequently, productivity (Loison et al. 2017). All revised models to sole cotton showed that their application can be interesting to analyze loss due to distinct abiotic factors over time.

1.4.2. Cowpea models

To analyze cowpea, other models were developed in order to observe different aspects of the cropping systems. Hanks (H-2), Stewart (S-2) and the Butcher (H-B) models that evaluate the performance of crop water efficiency were used by Adekalu & Okunade (2008) who found that H-2 was the most water-efficient model, since it provides greater yield for cowpea during the growth stage. It was concluded that the CROPGRO-cowpea model is useful to simulate the growth and development of cowpea in Brazil (Lima Filho, Coelho Filho, & Heinemann 2013a). It was also important to analyze the existence of limitations to seeding the crop under water deficit conditions in Recôncavo in Bahia State, and to evaluate the sensitivity for the climatic variations in plants intra year (Lima Filho, Coelho Filho, & Heinemann 2013a; Lima Filho, Coelho Filho, & Heinemann 2013b).

EPIC models were useful in simulation of K dynamic in the soil under regional scale (Barros, Williams & Gaiser 2004). On the other hand, Imaging Model Analysis Program used to perform NIR, showed that it was also possible to analyze grain quality as well as the amount of nitrogen present in the seeds of cowpea genotypes (Ishikawa et al. 2017). PRECIS model predicted that climate changes had no direct influence on some cowpea cultivars, but evapotranspiration could be reduced in approximately 5%, temperature could be increased over the limit tolerated by the crop, causing negative effects in its development (Cavalcante Júnior et al. 2016). As revised to cotton, the models studied here showed that the applications can be similar to estimate plant biomass, allowing the evaluation of the loss in productivity caused by abiotic factors.

1.4.3. The intercropping systems models

Intercropping models generally have considerable variation in complexity and functionality, ranging from a dynamic global vegetation model to agroecosystem models designed for field-scale application. In general, crop simulation models should be applied to the analysis of many cropping combinations in order to evaluate systems diversity accurately.
The following models: DAISY, FASSET, HERMES, MONICA, STICS, LIN-TUL and CROPSYST, have been applied to study rotation and single crops (Kollas et al. 2015). The results obtained using SODCOM model indicated that intercropping systems improve productivity in locations where the land has little resources (O’Callaghan, Maende & Wyseure 1994). Estimates using geometrical radiation transmission model demonstrated that it is possible to evaluate spatial and temporal variability of radiation in strip intercropping systems, whose finding may be helpful for modeling plant growth dynamics in many intercropping systems (Wang et al. 2017). Next-generation crop models explained the response of complex cropping systems under different sustainable intensification management strategies (Antle, Jones & Rosenzweig 2017).

Both APSIM crop models at field level as APSIM model to simulate systems design at regional level can predict productivity and stability of intercropping systems under conditions with abiotic constraints (Li-li et al. 2015). It was also observed that APSIM model can be used to make some simulations allowing the evaluation of intercropping systems under different water regimes, as well as changes in plant phenology, biomass, yield, best management practices, and crop water use over time (Chimonyo, Modi & Mabhaudhi 2016a; Chimonyo, Modi & Mabhaudhi 2016b). Simulations with STICS model showed that it is possible to analyze many combinations of crops as arable crops, forage and perennial crops. It could also be a useful tool to predict many other agronomic strategies as intercropping systems that can be applied in the farm (Brisson et al. 2004). The models revised for intercropping systems were also important because they can be useful to compare different factors that can affect loss in the productivity of the plant over time.

1.4.4. Pest models

Several models have been developed to study pest dynamics in sole crops or intercropping systems (Matis et al. 2005; Patil & Mytri 2013; Tonnang et al. 2017). Integro-differential equations (IDEs) and mechanistic models can be used as a powerful tool since they performed the insect dynamics in the same proportion as the classical nonlinear regression (Wang, Cao & Huang 2013). Stochastic population size model showed that it is possible to use differential equations to predict the peak aphid count and final cumulative count, helping ecologists understand the size of the peak and its implications to pest management. On the other hand, the stochastic model can be useful to estimate the variability in the peak of aphid when cumulative counts are studied (Matis et al. 2005). Intelligent systems for effectual prediction of pest population dynamics of sucking insects on cotton were
important since it allowed the comparison of the fluctuation of pest over weeks in different crops, being the model applied to evaluate *Thrips tabaci* in cotton and the best to explain its dynamics (Patil & Mytri 2013).

The results of a computer program based on Factor Analysis integrated into APHISim model suggest that overall weather effect was more suitable for catastrophe theory applications in population dynamics. It was also observed that it improves a stand along program, including no similar types of study object that could be useful to compare effects on subjected phenomena and weather factors as catastrophe on population dynamics of aphids (Piyaratne et al. 2014). On the other hand, GPDM showed that range in density of pests can affect their reproductive interference (Kyogoku & Sota 2017). A mathematical model to study the impact of *B. tabaci* in dynamics of *Tomato yellow leaf curl virus* predicted that the disease dynamic can range according to basic reproductive number (R_0). If R_0 = 1, the dynamics is globally stable, if R_0 > 1, the dynamics is globally asymptotically stable and if R_0 < 1, the dynamic is unstable (Ngalya & Kuznetsov 2017). The revised models here can be useful to perform a model to evaluate the dynamics of insects in different cropping systems, as well as to predict the loss caused by pest and diseases over time.

1.4.5. The natural enemies’ models

To simulate the dynamics, dispersal, behavior and predation rate of ladybirds, distinct models were developed around the world. As temperature-dependent development influences production rates of arthropods (Quinn 2017), CLIMEX model was used to evaluate the distribution of the *Harmonia axyridis* (Poutsma et al. 2008). It was observed that the predator can be found in many places of Mediterranean Europe, South America, Africa, Australia and New Zealand (Poutsma et al. 2008). SEM model was used to analyze the influence of natural enemies and weather on population growth of aphids (Alyokhin et al. 2011). The sample size of population was estimated with the software AMOS. The results explained the coexistence of different aphids’ species in the same host plant. On the other hand, the model predicted that weather factors and natural enemies can contribute to the regulation of pest populations. Mathematical simulation models showed that the increase of the invasive alien species can affect the native species; however, aphids and ladybirds dynamics can be closely correlated within their habitat (Kindlmann, Honêk & Martinková 2017).

Houdková & Kindlmann (2006) observed the influence of metapopulation level in population dynamics of aphidophagous predator–aphid system. They considered a fixed number of patches to construct their model. The patches simulated can be applied to a single
shoot, a plant, or a patch, according to the mobility of the individuals considered by the researcher. To construct the model, differential equations considering changes in the cumulative density of prey, changes in prey density as well as reduction in predator density due to cannibalism were used. It was found that, if predators arrive early, they decrease the density of malefic insects in agroecosystem. They can also affect the amplitude and oscillations of pest number over time.

Holling type II, Crowley-Martin, Beddington-de Angelis and Hassell-Varley models were used to evaluate data and compare probabilities of the density of prey only attacked and prey consumed (Papanikolaou et al. 2016). They found that the feeding rates of coccinellid insects are not affected by mutual interference competition when a high number of prey is offered. MPP and DP models used to evaluate the population control problem described by the set of differential equations documented that the optimal pest control problem can be well formulated and resolved using two control functions and pest control accomplishing computational experiments to predict real scenarios with only natural enemies (Rafikov & Balthazar 2005). Prey-predator mathematical model, taking into account diseases, insecticide and two-stage infection in prey population, was used by Nandi et al. (2015), who reported that interactions between some susceptible pest and predator can remain stable for much time of their survival. They also observed the persistence of susceptible pest population for a long period in absence of insecticide in their habitat.

A fuzzy model was used to describe the interaction between *Aphis glycines* and its predator. The model developed included biotic and abiotic factors. It was found that it can be a powerful tool to predict the time and number of predators that could be released in the agroecosystems aiming biological control of aphids (Peixoto, Bassanezi & Fernandes 2013). Lotka-Volterra model with two predators and their prey was used to analyze population dynamics. It was found that the model simulated the dynamics of individuals in different points of equilibrium, in which, some points can be unstable, and others can be non-hyperbolic points, not allowing analysis of their stability (Hadžiabdić, Mehuljić & Bektešević 2017). The models revised in this topic were interesting because they promoted the understanding of different applications as well as the premise to the development of a model that can be applied to explain behavior of populations of natural enemies, and their relationship with the main pest studied within sole cotton, sole cowpea, and intercropping systems.
References

Adati, T., Tamò, M., Yusuf, S. R., Downham, M. C. A., Singh, B. B., & Hammond, W. (2008). Integrated pest management for cowpea–cereal cropping systems in the West African savannah. *International Journal of Tropical Insect Science*, 27(3/4), 123–137. http://doi.org/10.1017/S1742758407883172.

Adekalu, K. O., & Okunade, D. A. (2008). Evaluation of crop yield models for cowpea in Nigeria. *Irrigation Science*, 26, 385-393. https://doi.org/10.1007/s00271-008-0103-6.

Ahmad, T., Waqar, M., Moazzam, H., & Iqbal, J. (2016). Population dynamics of aphids (Hemiptera: Aphididae) on wheat varieties (*Triticum aestivum* L.) as affected by abiotic conditions in Bahawalpur, Pakistan. *Pakistan Journal of Zoology*, 48(4), 1039–1044. Retrieved from http://zsp.com.pk/pdf48/1039-1044%20(19)%20PIJZ-2025-14%202016%20Manuscript%20%20Corrected%20version%20%20%20(%201).pdf.

Alam, B., Singh, R., Uthappa, A. R., Chaturvedi, M., Singh, A. K., Newaj, R., Handa, A. K. & Chaturvedi, O. P. (2018). Different genotypes of *Dalbergia sissoo* trees modified microclimate dynamics differently on understory crop cowpea (*Vigna unguiculata*) as assessed through ecophysiological and spectral traits in agroforestry system. *Agricultural and Forest Meteorology*, 249, 138-148. https://doi.org/10.1016/j.agrformet.2017.11.031.

Ali, A., Desneux, N., Lu, Y., Liu, B., & Wu, K. (2016). Characterization of the natural enemy community attacking cotton aphid in the Bt cotton ecosystem in Northern China. *Scientific Reports*, 6, 24273. http://doi.org/10.1038/srep24273.

Alyokhin, A., Drummond, F. A., Sewell, G., Storch, R. H. Differential effects of weather and natural enemies on coexisting aphid populations (2011). *Environmental Entomology*, 40(3), 570-580. https://doi.org/10.1603/EN10176.

Altieri, M. A., & Letourneau, D. K. (1982). Vegetation management and biological control in agroecosystems. *Crop Protection*, 1(4), 405–430. http://doi.org/10.1016/0261-2194(82)90023-0.

Anguelov, R., Dufourd, C., & Dumont, Y. (2017). Mathematical model for pest-insect control using mating disruption and trapping. *Applied Mathematical Modelling*, 52, 437–457. http://doi.org/10.1016/j.apm.2017.07.060.

Antle, J. M., Jones, J. W., & Rosenzweig, C. (2017). Towards a new generation of agricultural system models, data, and knowledge products: Design and improvement. *Agricultural Systems*, 155, 255–268. http://dx.doi.org/10.1016/j.agsy.2016.10.002.

Antonini, J. C. D. A., Silva, E. M. D. A., Griebeler, N. P., & Sano, E. E. (2011). Spatio-temporal modelling of the duration of the cotton cycle in the state of Goiás, Brazil. *Engeharia Agrícola*, 31(4), 652–662. http://dx.doi.org/10.1590/S0100-69162011000400004.

Baloch, T. A., Mari, J. M., Jatoi, G. H., Soomro, S., Soomro, M., & Soomro, M.-R. (2016). Study on pest and predators population in chilli agro-ecosystem by using different trap crops. *American Research Thoughts*, 2(5), 3726–3736. Retrieved from www.researchthoughts.us.

Barros, I. de, Williams, J. R., & Gaiser, T. (2005). Modeling soil nutrient limitations to crop production in semiarid NE of Brazil with a modified EPIC version: II: Field test of the model. *Ecological Modelling*, 181(4), 567–580. http://doi.org/10.1016/j.ecolmodel.2004.03.018.
Bassanezi, R. C. (2013). *Ensino-aprendizagem com modelagem matemática: Uma nova estratégia*. 3 ed. São Paulo: Contexto, 389p.

Bolker, B. M. (2007). *Ecological models and data in R*. Princeton: Princeton University Press. Retrieved from http://books.google.com/books?hl=en&lr=&id=7ZdtfhGHoz8C&oi=fnd&pg=PP2&dq=Ecological+Models+and+Data+in+R&ots=aZwx8lkksC&sig=r7LiufBdrW_0t06xtTjy2JMeWU.

Braendle, C., Friebe, I., Caillaud, M. C., & Stern, D. L. (2005). Genetic variation for an aphid wing polyphenism is genetically linked to a naturally occurring wing polymorphism. *Proceedings of the Royal Society B*, 272, 657-664. http://doi.org/10.1098/rspb.2004.2995.

Brisson, N., Bussière, F., Ozier-Lafontaine, H., Tournebize, R., & Sinoquet, H. (2004). Adaptation of the crop model STICS to intercropping. Theoretical basis and parameterisation. *Agronomie*, 24, 409–421. https://doi.org/10.1051/agro:2004031.

Brisson, J. A. (2010). Aphid wing dimorphisms: linking environmental and genetic control of trait variation. *Philosophical transactions of the Royal Society B*, 365, 605-616. https://doi.org/10.1098/rstb.2009.0255.

Carvalho, L. P. de, José, F., Farias, C., Magalhães, M., Lima, D. A., & Isabela, J. (2014). Inheritance of different fiber colors in cotton (*Gossypium barbadense* L.). *Crop Breeding and Applied Biotechnology*, 14, 256–260. http://dx.doi.org/10.1590/1984-70332014v14n4n40.

Carvalho, M., Lino-Neto, T., Rosa, E., & Carnide, V. (2017). Cowpea: a legume crop for a challenging environment. *Journal of the Science of Food and Agriculture*, 97(13), 4273–4284. https://doi.org/10.1002/jsfa.8250.

Cavalcante Júnior, E. G., Medeiros, J. F. de, Espínola Sobrinho, J., Figueirêdo, V. B., Costa, J. P. N. da, & Santos, W. de O. (2016). Development and water requirements of cowpea under climate change conditions in the Brazilian semi-arid region. *Revista Brasileira de Engenharia Agrícola e Ambiental*, 20(9), 783–788. http://doi.org/10.1590/1807-1929/agriambi.v20n9p783-788.

Cavalcanti, V. M. (2012). Conhecimento como produto social: O desenvolvimento do algodão naturalmente colorido na Paraíba. *Raízes*, 32(2), 87-108. Retrieved from http://revistas.ufcg.edu.br/raizes/artigos/Artigo_295.pdf.

Chapman, R. F. (1969). *The Insects: Structure and Function*. 4. ed. United Kingdom: Edward Arnold, 770p.

Chakwizira, E., Teixeira, E., Meenken, E., Michel, A. J., & Maley, S. (2018). Radiation use efficiency and biomass partitioning to storage roots in fodder beet crops. *European Journal of Agronomy*, 92, 63-71. https://doi.org/10.1016/j.eja.2017.10.002.

Chimonyo, V. G. P., Modi, A. T., & Mabhaudhi, T. (2015). Perspective on crop modelling in the management of intercropping systems. *Archives of Agronomy and Soil Science*, 2015, 1–19. http://doi.org/10.1080/03650340.2015.1017816.

Chimonyo, V. G. P., Modi, A. T., & Mabhaudhi, T. (2016a). Simulating yield and water use of a sorghum – cowpea intercrop using APSIM. *Agricultural Water Management*, 177, 317–328. http://doi.org/10.1016/j.agwat.2016.08.021.
Chimonyo, V. G. P., Modi, A. T., & Mabhaudhi, T. (2016b). Water use and productivity of a sorghum–cowpea–bottle gourd intercrop system. *Agricultural Water Management, 165*, 82–96. http://doi.org/10.1016/j.agwat.2015.11.014.

Colmenárez, Y., Gibbs, I. H., Ciomperlik, M., & Vásquez, C. (2016). Biological control agents of cotton pests in Barbados. *Entomotropica, 31*(18), 146–154. Retrieved from http://saber.ucv.ve/ojs/index.php/rev_ento/article/view/11818.

Dillon, F. M., Tejedor, M. D., Ilina, N., Chludil, H. D., Mithöfer, A., Pagano, E. A., & Zavala, J. A. (2017). Solar UV-B radiation and ethylene play a key role in modulating effective defenses against *Anticarsia gemmatalis* larvae in field-grown soybean. *Plant Cell Environment, 41*, 383-394. http://doi.org/10.1111/pce.13104.

Dáder, B., Moreno, A., Jones, D. G., Winters, A., Fereres, A. (2017). Aphid orientation and performance in glasshouses under different UV-A/UV-B radiation regimes. *Entomologia Experimentalis et Applicata, 163*(3), 344-353. https://doi.org/10.1111/eea.12583.

Dassou, A. G., & Tixier, P. (2016). Response of pest control by generalist predators to local-scale plant diversity: A meta-analysis. *Ecology and Evolution, 6*(4), 1143–1153. http://doi.org/10.1002/ece3.1917. https://doi.org/10.1002/ece3.1917Free PMC Article.

Dixon, A. F. G. (1998). *Aphid ecology: An optimization approach.* 2 ed. London: Chapman & Hall, 300p.

El-Aal, H. A. A., Rizk, A. M., & Mousa, I. E. (2018). Evaluation of new greenhouse covers with modified light regime to control cotton aphid and cucumber (*Cucumis sativus* L.) productivity. Crop Protection, 107, 64-70. https://doi.org/10.1016/j.cropro.2018.01.011.

Fernandes, F. S., Ramalho, F. S, Nascimento, A. R., Malaquias, J. B., Silva, C. A. D. & Zanuncio, J. C. (2012). Within-plant distribution of cotton aphid (Hemiptera: Aphididae), in cotton with colored fibers and cotton-fennel intercropping system. *Annals of the Entomological Society of America, 105*, 599–607. https://doi.org/10.1603/AN12018.

Fernandes, F. S., Ramalho, F. S., Malaquias, J. B., Godoy, W. A. C., & Santos, B. D. B. (2015). Interspecific associations between *Cycloneda sanguinea* and two aphid species (*Aphis gossypii* and *Hyadaphis foeniculi*) in sole-crop and fennel-cotton intercropping systems. *Plos One, 10*(8), 1–10. http://doi.org/10.1371/journal.pone.0131449.

Frota, K. de M. G., Soares, R. A. M., & Arêas, J. A. G. (2008). Composição química do feijão caupi (*Vigna unguiculata* L. Walp), cultivar BRS-Milênio. *Ciencia e Tecnologia de Alimentos, 28*(2), 470–476. http://doi.org/10.1590/S0101-20612008000200031.

Gaydon, D. S., Balwinder-Singh, Wang, E., Poulton, P. L., Ahmad, B., Ahmed, F., Akhter, S., Ali, I., Amarasingha, R., Chaki, A. K., Chen, C., Choudhury, B. U., Darai, R., Das, A., Hochman, Z., Horan, H., Hosang, E. Y., Kumar, P. V., Khan, A. S. M. M. R., Laing, A. M., Liu, L., Malaviachichi, M.A.P.W.K., Mohapatra, K. P., Muttaeleb, M. A., Power, B., Radanielson, A. M., Rai, G. S., Rashid, M. H., Rathanayake, W. M. U. K., Sarker, M.M.R., Sena, D. R., Shamim, M., Subash, N., Suriadi, A., Suriyagoda, L. D. B., Wang, G., Wang, J., Yadav, R. K. & Roth, C. H. (2017). Evaluation of the APSIM model in cropping systems of Asia. *Field Crops Research, 204*, 52–75. http://doi.org/10.1016/j.fcr.2016.12.015.
Gelman, D. B. & Hu, J. S. (2007). Critical feeding periods for last instar nymphal and pharate adults of the whiteflies, *Trialeurodes vaporariorum* and *Bemisia tabaci*. *Journal of Insect Science*, 7(33), 1536-2442. http://doi.org/10.1673/031.007.3301.

Gonias, E. D., Oosterhuis, D. M., & Bibi, A. C. (2012). Cotton radiation use efficiency response to plant growth regulators. *The Journal of Agricultural Science*, 150, 595–602. https://doi.org/10.1017/S0021859611000803.

Gu, S., Evers, J. B., Zhang, L., Mao, L., Zhang, S., Zhao, X., Liu, S., van der Werf, W. & Li, Z. (2014). Modelling the structural response of cotton plants to mepipquat chloride and population density. *Annals of Botany*, 114(4), 877–887. http://doi.org/10.1093/aob/mct309.

Hadžiabdić, V., Mehuljić, M., & Bektešević, J. (2017). Lotka-volterra model with two predators and their prey. *Tem Journal*, 6(1), 132–136. https://dx.doi.org/10.18421/TEM61-19.

Harrison, R. G. Dispersal polymorphisms in insects (1980). *Annual Review of Ecological and System*, 11, 95-118. https://doi.org/10.1146/annurev.es.11.110180.000523.

Hatt, S., Boeraeve, F., Artru, S., Dufrêne, M., & Francis, F. (2018). Spatial diversification of agroecosystems to enhance biological control and other regulating services: An agroecological perspective. *Science of the Total Environment*, 621, 600-611. https://doi.org/10.1016/j.scitotenv.2017.11.296.

Houdková, K., & Kindlmann, P. (2006). Scaling up population dynamic processes in a ladybird–aphid system. *Population Ecology*, 48, 323–332. https://doi.org/10.1007/s10144-006-0007-3.

Ishikawa, H., Boukar, O., Fatokun, C., Shono, M., & Muranaka, S. (2017). *Journal of Near Infrared Spectroscopy*, 25(3), 211-214. https://doi.org/10.1177/0967033517712129.

Jallas, E., Gretenet, M., Sequeira, R., Martin, P., Jean, J., & Cloudel, P. (1999). COTONS, une nouvelle génération de modèles de simulation des cultures. *Agriculture et Développement*, 22, 35-46. Retrieved from http://agritrop.cirad.fr/263898/.

Jankowska, B., & Wojciechowicz-żytyko, E. (2016). Effect of intercropping carrot (*Daucus carota L.*) with two aromatic plants , coriander (*Coriandrum sativum L.*) and summer savory (*Satureja hortensis L.*), on the population density of select carrot pests. *Folia Horticulture*, 28(1), 13–18. http://doi.org/10.1515/fhort-2016-0002.

Kamphuis, L. G., Gao, L., & Singh, K. B. (2012). Identification and characterization of resistance to cowpea aphid (*Aphis craccivora Koch*) in *Medicago truncatula*. *BMC Plant Biology*, 12, 101. http://doi.org/10.1186/1471-2229-12-101.

Karungi, J., Adipala, E., Ogenga-Latigo, M. W., Kyamanywa, S., & Oyobo, N. (2000). Pest management in cowpea. Part 1. Influence of planting time and plant density on cowpea field pests infestation in Eastern Uganda. *Crop Protection*, 19(4), 231–236. http://doi.org/10.1016/S0261-2194(00)00013-2.

Kindlmann, P., Honêk, A., & Martinková, Z. (2017). Spreading of alien species and diversity of communities. *Bio Control*, 62, 397–407. http://doi.org/10.1007/s10526-017-9787-y.
Kollas, C., Kersebaum, K. C., Nendel, C., Manevski, K., Müller, C., Palosuo, T., Armas-Herrera, C. M., Beaudoin, N., Bindi, M., Charfeddine, M., Conradt, T., Constantin, J., Eitzinger, J., Bindi, M., Charfeddine, M., Conradt, T., Constantin, J., Eitzinger, J., Ewert, F., Ferrière, R., Gaiser, T., Cortazar-Atauri. I. G., Giglio, L., Hlavinka, P., Hoffmann, H., Hoffmann, M. P., Launay, M., Manderscheid, R., Mary, B., Mirschel, W., Moriondo, M., Olesen, J. E., Öztürk, I., Pacholski, A., Ripoche-Wachter, D., Roggero, P. P., Roncossek, S., Rötter, R. P., Ruget, F., Sharif, B., Trnka, M., Ventrella, D., Waha, K., Wegehenkel, M., Weigel, H. J. & Wu, L. (2015). Crop rotation modelling-A European model intercomparison. European Journal of Agronomy, 70, 98–111. http://doi.org/10.1016/j.eja.2015.06.007.

Konlan, S., Abudulai, M., & Birtbee, P. (2016). Effect of lambda-cyhalothrin agro-chemical spray for insect pests control on yield and fodder quality of cowpea-preliminary findings. International Journal of Livestock Research, 6(5), 1. http://doi.org/10.5455/ijlr.20160427090139.

Kropff, M. J., Laar, H. H. (1993). Modelling crop-weed interactions. Great Britain: International Rice Research Institute, 274p.

Kyogoku, D., & Sota, T. (2017). A generalized population dynamics model for reproductive interference with absolute density dependence. Scientific Reports, 7(1), http://doi.org/10.1038/s41598-017-02238-6.

Li-li, M., Li-zhen, Z., Si-ping, Z., Evers, J. B. E., van der Werf, W., Jing-Jing, W., Hong-Quan, S., Zhi-Cheng, S. & Spiertz, H. (2015). Resource use efficiency, ecological intensification and sustainability of intercropping systems. Journal of Integrative Agriculture, 14(8), 1542–1550. http://doi.org/10.1016/S2095-3119(15)61039-5.

Liang, X. Z., Xu, M., Gao, W., Raja Reddy, K., Kunkel, K., Schmoldt, D. L., & Samel, A. N. (2012). A distributed cotton growth model developed from GOSSYM and its parameter determination. Agronomy Journal, 104(3), 661–674. http://doi.org/10.2134/agronj2011.0250.

Lima Filho, A. F., Coelho Filho, M. A., & Heinemann, A. B. (2013a). Calibração e avaliação do modelo CROPGRRO para a cultura do feijão caupi no Recôncavo Baiano. Revista Brasileira de Engenharia Agrícola e Ambiental, 17(12), 1286–1293. http://doi.org/10.1590/S1415-43662013001200006.

Lima Filho, A. F., Coelho Filho, M. A., & Heinemann, A. B. (2013b). Determinação de épocas de semeadura do feijão caupi no Recôncavo Baiano através do modelo CROPGRRO. Revista Brasileira de Engenharia Agrícola e Ambiental, 17(12), 1294–1300. http://doi.org/10.1590/S1415-43662013001200007.

Lima, E. A. B., Ferreira, C. P., & Godoy, W. A. C. (2009). Ecological modeling and pest population management: A possible and necessary connection in a changing world. Neotropical Entomology, 38(6), 699-707. http://dx.doi.org/10.1590/S1519-566X2009000600001.

Loison, R., Audebert, A., Debaeke, P., Hoogenboom, G., Leroux, L., Oumarou, P., & Gérardieux, E. (2017). Designing cotton ideotypes for the future: Reducing risk of crop failure for low input rainfed conditions in Northern Cameroon. European Journal of Agronomy, 90, Accepted. http://doi.org/10.1016/j.eja.2017.08.003.
Luo, J.-Y., Zhang, S., Wang, L., Lv, L.-M., Wang, C.-Y., Li, C.-H., Zhu, X. Z., Zhou, Z. G., & Cui, J.-J. (2016). The distribution and host shifts of cotton-melon aphids in Northern China. Plos One, 11(3), e0152103. http://doi.org/10.1371/journal.pone.0152103.

Mahr, D. L., & Dittl, T. G. (1986). Chemical, natural, and cultural control of Hyadaphis tataricae (Homoptera: Aphididae) on honeysuckle. The Great Lakes Entomologist, 19(2), 91-100. https://scholar.valpo.edu/tgle/vol19/iss2/9.

Malézieux, E., Crozat, Y., Dupraz, C., Laurans, M., Makowski, D., Ozier-Lafontaine, H., Rapidel, B., Tourdonnet, S., & Valantin-Morison, M. (2009). Mixing plant species in cropping systems: concepts, tools and models. A review. Agronomy for Sustainable Development, 29(1), 43–62. https://doi.org/10.1051/agro:2007057.

Manjula, K., & Lakshmi, R. P. (2014). Positive influence of intercrops on coccinellid and spider fauna in groundnut. International Journal of Plant, Animal and Environmental Sciences, 4(4), 207–211. Retrieved from www.ijpaes.com.

Matis, J. H., Kiffe, T. R., Matis, T. I., & Stevenson, D. E. (2005). Nonlinear stochastic modeling of aphid population growth. Mathematical Biosciences, 198(2), 148–168. http://doi.org/10.1016/j.mbs.2005.07.009.

Meradsi, F., & Laamari, M. (2016). Genetic resource of the resistance of Vicia faba L. against the black bean aphid, Aphis fabae Scopoli. Journal of Agricultural Studies, 4(2), 107. http://doi.org/10.5296/jas.v4i2.9333.

Muller, C. B., Williams, I. S., & Hardie, J. (2001). The role of nutrition, crowding and interspecific interactions in the development of winged aphids. Ecological Entomology, 26, 330-340. https://doi.org/10.1046/j.1365-2311.2001.00321.x.

Nandi, S. K., Mondal, P. K., Jana, S., Haldar, P., & Kar, T. K. (2015). Prey-predator model with two-stage infection in prey: concerning pest control. Journal of Nonlinear Dynamics, 2015, 1–13. http://dx.doi.org/10.1155/2015/948728.

Niva, C. C. & Takeda, M. (2003). Effect of photoperiod, temperature, and melatonin on nymphal development, polymorphism and reproduction in Halyomorpha halys (Heteroptera: Pentatomidae). Zoological Science, 20, 963-970. https://doi.org/10.2108/zsj.20.963.

Ngalya, C., & Kuznetsov, D. (2017). Modelling the impact of Bemisia tabaci in dynamics of tomato yellow leaf curl virus. Asian Journal of Mathematics and Applications, 2017, 1–15. Retrieved from http://scienceasia.asia.

Oaya, C. S., MALGWI, A. M., Umar, I., Mohammed, A. (2017). Insecticidal deterrence of wild spikenard (Hyptis suaveolens L. Poit) on adult mortality and female oviposition of groundnut bruchid, Caryedon serratus Olivier on Stored groundnut seeds and tamarind pods. Recent Research in Science and Technology, 9, 25-29. http://doi.org/doi: 10.25081/rrst.2017.9.3369.

O’Callaghan, J. R., Maende, C., & Wyseure, G. C. L. (1994). Modelling the intercropping of maize and beans in Kenya. Computers and Electronics in Agriculture, 11, 351-365. https://doi.org/10.1016/0168-1699(94)90026-4.

Ogal, J. J. E. J., Okelo, N. B., Kiogora, R., & Onyango, T. (2016). Numerical solutions of mathematical model on effects of biological control on cereal aphid population dynamics. International Journal of Modern Science and Technology, 1(4), 138–143. Retrieved from http://www.ijmst.co/vol.-1.-issue-4---july-2016---paper-5.html.
Ogawa, K., & Miura, T. (2014). Aphid polyphenisms: trans-generational developmental regulation through viviparity. *Frontier in Physiology, 5*, 1-11. http://doi.org/10.3389/fphys.2014.00001.

Oyewale, R. O., & Bamaiyi, L. J. (2013). Management of cowpea insect pests. *Scholars Academic Journal of Biosciences, 1*(5), 217–226. Retrieved from www.saspublisher.com.

Papanikolaou, N. E., Demiris, N., Milonas, P. G., Preston, S., & Kypraios, T. (2016). Does mutual interference affect the feeding rate of aphidophagous coccinellids? A modeling perspective. *Plos One, 11*(1), 1–10. http://doi.org/10.1371/journal.pone.0146168.

Parra, J. R. P., Botelho, P. S. M., Corrêa-Ferreira, B. S., & Bento, J. M. S. (2002) *Controle biológico no Brasil: Parasitoides e predadores*. Barueri: Manole, 587p.

Parra, J. R. P. (2014). Biological control in Brazil: An overview. *Scientia Agricola, 71*(5), 345-355. http://dx.doi.org/10.1590/0103-9016-2014-0167.

Patil, J., & Mytri, V. D. (2013). A prediction model for population dynamics of cotton pest using multilayer perception neural network. *International Journal of Computer Applications, 67*(4), 8. http://doi.org/10.5120/11384-6663.

Peixoto, M. S., Barros, L. C., Bassanezi, R. C., & Fernandes, O. A. (2015). An approach via fuzzy sets theory for the dynamics of the soybean aphid and its predator. *Biomatemática, 25*, 185–196. doi:10.2991/ifsas-eusflat-15.2015.183.

Piyaratne, M. K. D. K., Zhao, H., Hu, Z., Hu, X., Wang, Y., & Wang, B. (2014). A model to analyze weather impact on aphid population dynamics: an application on swallowtail catastrophe model. *European Scientific Journal, 10*, 1857–7431. Retrieved from https://eujournal.org/index.php/esj/article/viewFile/3599/3371.

Prasad, B. R., & Malathi, S. (2016). Evaluation of integrated pest management in bollgard cotton. *International Journal of Plant, Animal and Environmental Sciences, 6*(1), 133–138. Retrieved from www.ijpaes.com.

Quinn, B. K. (2017). A critical review of the use and performance of different function types for modeling temperature-dependent development of arthropod larvae. *Journal of Thermal Biology, 63*, 65–77. http://doi.org/10.1016/j.jtherbio.2016.11.013.

Rafikov, M., & Balthazar, J. M. (2005). Optimal pest control problem in population dynamics. *Computational & Applied Mathematics, 24*(1), 65–81. Retrieved from www.scielo.br/cam.

Ramalho, F. de S. (1994). Cotton pest management: Part 4. A Brazilian perspective. *Annual Review of Entomology, 39*, 563–578. https://doi.org/10.1146/annurev.en.39.010194.003023.

Ramalho, F. S., Fernandes, F. S., Nascimento, A. R. B., Nascimento Júnior, J. L., Malaquias, J. B. & Silva, C. A. D. (2012a). Feeding damage from cotton aphids, *Aphis gossypii* Glover (Hemiptera: Heteroptera: Aphididae), in cotton with colored fiber intercropped with fennel. *Annals of the Entomological Society of America, 105*(1), 20–27. http://dx.doi.org/10.1603/AN11122.
Ramalho, F. S., Fernandes, F. S., Nascimento, A. R. B., Nascimento Júnior, J. L., Malaquias, J. B., & Silva, C. A. D. (2012b). Assessment of fennel aphids (Hemiptera: Aphididae) and their predators in fennel intercropped with cotton with colored fibers. *Journal of Economic Entomology, 105*(1), 113–119. https://doi.org/10.1603/EC11219.

Rao, M. S., Rama Rao, C. A., Srinivas, K., Pratibha, G., Vidya Sekhar, S. M., Sree Vani, G., & Venkateswarlu, B. (2012). Intercropping for management of insect pests of castor, *Ricinus communis*, in the semi–arid tropics of India. *Journal of Insect Science, 12*(14), 1–10. http://doi.org/10.1673/031.012.1401.

Reffye, P. de, Blaisea, F., Chemouny, S., Jauel, S., Fourcaud, T., & Houllier, F. (1999). Calibration of a hydraulic architecture-based growth model of cotton plants. *Agronomie, 19*, 265–280. https://doi.org/10.1051/agro:19990307.

Rusch, A., Chaplin-Kramer, R., Gardiner, M. M., Hawro, V., Holland, J., Landis, D., Thies, C., Tscharntke, T., Weisser, W. W., Winqvist, C., Woltz, M., & Bommarco, R. (2016). Agricultural landscape simplification reduces natural pest control: A quantitative synthesis. *Agriculture, Ecosystems & Environment, 221*, 198–204. http://doi.org/10.1016/j.agee.2016.01.039.

Silvie, P., Martin, J., Debru, J., & Vaissayre, M. (2010). Le coton biologique au Paraguay. 2. Production et contraintes agronomiques. *Biotechnology, Agronomy and Society and Environment, 14*(2), 311–320. https://popups.uliege.be:443/1780-4507/index.php?id=5417.

Sutherland, O. R. W. (1969). The role of crowding in the production of winged forms by two strains of the pea aphid, *Acyrthosiphon pisum*. *Journal of Insect Physiology, 15*, 1385 -1410. https://doi.org/10.1016/0022-1910(69)90199-1.

Su, L., Wang, Q., Wang, C., & Shan, Y. (2015). Simulation models of leaf area index and yield for cotton grown with different soil conditioners. *Plos One, 10*(11), 1–19. http://doi.org/10.1371/journal.pone.0141835.

Thorp, K. R., Bange, M. P. S. A., Barnes, E. M., Hoogenboom, G., Lascano, R. J., McCarthy, A. C., Nair, S., Paz, J. O., Rajan, N., Reddy, K. R., Wall, G. W. & White, J. W. (2014). Development and application of process-based simulation models for cotton production: A review of past, present, and future directions. *The Journal of Cotton Science, 18*, 10–47. Retrieved from http://journal.cotton.org.

Tiroesele, B., Thomas, K., & Seketeme, S. (2015). Control of cowpea weevil, *Callosobruchus maculatus* (F.)(Coleoptera: Bruchidae), using natural plant products. *Insects, 6*(1), 77–84. http://doi.org/10.3390/insects6010077.

Tonnang, H. E. Z., Hervé, B. D. B., Biber-Freudenberger, L., Salifu, D., Subramanian, S., Ngow, V. B., Guimapi, R. Y. A., Anani, B., Kakmeni, F. M. M., Affognon, H., Niassy, S., Landmann, T., Ndjomatchoua, F. T., Pedro, S. A., Johansson, T., Tanga, C. M., Nana, P., Fiaboe, K. M., Mohamed, S. F., Maniania, N. K., Nedorezov, L. V., Ekesi, S. & Borgemeister, C. (2017). Advances in crop insect modelling methods — towards a whole system approach. *Ecological Modelling, 354*(June), 88–103. http://doi.org/10.1016/j.ecolmodel.2017.03.015.

Tung, S. A., Shahzad, M. R., Wahid, M. A., Yang, G., Saleem, M. F., Shah, A. N., Khan, A. & Aziz, O. (2016). Competitive dynamic effects of wheat- Brassica intercropping: A review. *International Journal of Biosciences, 8*(2), 159–176. http://doi.org/10.12692/ijb/8.2.159-176.
Tsubo, M., Walker, S., & Mukhala, E. (2001). Comparisons of radiation use efficiency of mono-/inter-cropping systems with different row orientations. *Field Crops Research, 71*(1), 17–29. https://doi.org/10.1016/S0378-4290(01)00142-3.

Umesh, M. R., Chittapur, B. M. & Jagadeesha, N. (2017). Solar radiation utilization efficiency in cereal-legume intercropping systems: A review. *Agricultural Reviews, 38*(1), 72-75. https://doi.org/10.18805/ag.v0iOF.7310.

USDA (2018). Brazil cotton: Production estimates up on higher area. *In: World agricultural production. Circular Series, 2-18, 31p.*

Vellichirammal, N. N., Gupta, P., Hall, T. A., & Brisson, J. A. (2017). Ecdysone signaling underlies the pea aphid transgenerational wing polyphenism. *Pnas, 114*(6), 1419-1423. www.pnas.org/cgi/doi/10.1073/pnas.1617640114.

Vinod, M., Natikar, P. K., Mallapur, C. P., & Balikai, R. A. (2016). Influence of organic and conventional farming systems on the incidence of natural enemies on different. *Journal of Experimental Zoology India, 19*(1), 465–469. http://www.connectjournals.com/jez.

Xia, J. Y., Wang, J., Cui, J. J., Leffelaar, P. A., Rabbinge, R., & Werf, W. var der. (2018). Development of a stage-structured process-based predator–prey model to analyse biological control of cotton aphid, *Aphis gossypii*, by the sevenspot ladybeetle, *Coccinella septempunctata*, in cotton. *Ecological Complexity, 33*, 11-30. http://dx.doi.org/10.1016/j.ecocom.2017.09.003.

Wang, X., Cao, J., & Huang, J. Z. (2013). Analysis of variance of integro-differential equations with application to population dynamics of cotton aphids. *Journal of Agricultural, Biological, and Environmental Statistics, 18*(4), 475–491. http://doi.org/10.1007/s13253-013-0135-0.

Wang, L., Zhang, S., Luo, J. Y., Wang, C. Y., Lv, L. M., Zhu, X. Z., Li, C. H., & Cui, J. J. (2016). Identification of *Aphis gossypii* Glover (Hemiptera: Aphididae) biotypes from different host plants in North China. *Plos One, 11*(1), 1-15. e0146345.doi:10.137/journal.pone.0146345.

Wang, Z., Zhao, X., Wu, P., Gao, Y., Yang, Q., & Shen, Y. (2017). Border row effects on light interception in wheat/maize strip intercropping systems. *Field Crops Research, 214*(August), 1–13. http://doi.org/10.1016/j.fcr.2017.08.017.

Wongsa, K., Jeratthitikul, E., Sangthongpraow, B., Poolprasert, P., & Rattanawannee, A. (2016). Genetic variation among the geographic populations of cowpea aphid, *Aphis craccivora* Koch (Hemiptera: Aphididae), in Thailand inferred from COI gene sequences. In *The 5th Burapha University International Conference 2016* (pp. 132–141). Bangsaen: Burapha University. Retrieved from www.buuconference.buu.ac.th.

Wrona, A. F., Carter, F., Diehl, J., Ellsworth, P., Hake, K., Hardee, D., Herzog, G., Layton, B., Leonard, B. R., Leser, J., McCarty, W., Nichols, B., Silvertooth, J., Snodgrass, G. & Watson, T. (1996). Cotton and resistant insects. *Cotton Physiology Today, 7*(4), 13–19. Retrieved from https://www.cotton.org/tech/physiology/cpt/pest/upload/CPT-May96-REPOP.pdf.
Youl, S., Barbier, B., Moulin, C., Manlay, R. J., Botoni, E., Masse, D., Hien, V. & Feller, C. (2008). Modélisation empirique des principaux déterminants socio-économiques de la gestion des exploitations agricoles au Sud-Ouest du Burkina Faso. *Biotechnology, Agronomy Society and Environment*, 12(1), 9–21. Retrieved from https://popups.uliege.be/bao/mkh2p/index.php?upd=1392970786&url=http://popups.ulg.ac.be%2F1780-4507%2Findex.php%3Fid%3D1924%26format%3Dpdf.

Zhang, S., Fu, W., Zhang, Z., Fan, Y., & Liu, T. (2017). Effects of elevated CO\textsubscript{2} concentration and temperature on some physiological characteristics of cotton (*Gossypium hirsutum* L.) leaves. *Environmental and Experimental Botany*, 133, 108–117. https://doi.org/10.1016/j.envexpbot.2016.10.001.

Zhang, L., Werf, W. Van Der, Cao, W., Li, B., Pan, X., & Spiertz, J. H. J. (2008). Development and validation of SUCROS-Cotton: a potential crop growth simulation model for cotton. *NJAS - Wageningen Journal of Life Sciences*, 56(1–2), 59–83. http://doi.org/10.1016/S1573-5214(08)80017-6.
2. AMINO ACIDS PROFILE AND IMPACT OF ABIOTIC FACTORS IN APHIDS DYNAMICS IN SOLE COTTON, SOLE COWPEA AND COTTON-COWPEA INTERCROPPING SYSTEMS

Abstract

Aphids can cause direct and indirect damage to cotton and cowpea plants. Some cropping design can contribute with aphid reduction. However, the influence of amino acids and abiotic factors in aphid dynamics in sole or intercropping systems of cotton and cowpea has been little studied. Our aim with this experiment was to study the amino acids profile and the influence of abiotic factors in aphid dynamics in plants of sole crops or cotton-cowpea intercropping systems. Fourth instar nymphs of Aphis gossypii Glover, 1877 were released in one plant of sole (t1) or in one plant of intercropped cotton (t2 = one row of cotton and one row of cowpea alternate, t3 = one plant of cowpea and one plant of cotton alternate in the same row and t4 = one column of cotton and one column of cowpea alternate). Similarly, fourth instar nymphs of Aphis craccivora Koch, 1854 were released in one plant of sole (t5) or in one plant of intercropped cowpea (t1, t2 and t3). The measurement of aphids, temperature (ºC) and relative humidity (%) were recorded at 7, 14, 21, 28, 35, 42 and 49 days after the plants were first infested. Forty - five days after plants sprouted, three apical leaves of sole or intercropping systems of each cotton and cowpea were washed for amino acids extraction. Positive correlations were found when temperature was analyzed in winged A. gossypii, wingless A. craccivora, and winged A. craccivora. On the other hand, negative correlations were found analyzing winged A. gossypii and wingless A. craccivora concerning relative humidity. Asparagine (ASN) was the most present amino acid in plants of cotton from intercropping systems and sole cropping. The amino acids profile in plants of cowpea was different among treatments. The amino acids found in cowpea intercropping systems t1 were asparagine (ASN), aspartic acid (ASP), glutamic acid (GLU) and serine (SER). Independently of spatial configuration, the amino acid composition, temperature (ºC) and relative humidity (%) were important factors in winged A. gossypii and wingless A. craccivora on cotton or cowpea and cotton-cowpea intercropping systems.

Keywords: Cotton; Cowpea; Amino acids; Intercropping; Temperature; Relative humidity
3. MATHEMATICAL MODELS APPLIED TO POPULATION DYNAMICS OF *Aphis gossypii* GLOVER AND *Aphis craccivora* KOCH (HEMIPTERA: APHIDIDAE): SOLE AND INTERCROPPI NG SYSTEMS OF COTTON AND COWPEA STUDY

Abstract

Population dynamics of aphids have been studied on sole and intercropping systems. These studies have required the use of more precise analytical tools in order to better understand patterns in quantitative data. Mathematical models are among the most important tools to explain the dynamics of insect populations. This study investigated the population dynamics of aphids *Aphis gossypii* Glover, 1877 and *Aphis craccivora* Koch, 1854 (Hemiptera: Aphididae) over time, using mathematical models composed of a set of differential equations as a helpful analytical tool to understand the population dynamics of aphids in arrangements of cotton and cowpea. The treatments were sole cotton (t₄), sole cowpea (t₅), and three arrangements of cotton intercropped with cowpea (t₁, t₂ and t₃). Mathematical models were used to fit the population dynamics of two aphid species. The model considered that plants were infested with two aphid species and were evaluated at 7, 14, 21, 28, 35, 42, and 49 days after the infestations. There were good fits for aphid dynamics by the mathematical model over time. The highest population peak of both species *A. gossypii* and *A. craccivora* was found in the sole crops, and the lowest population peak was found in crop system t₂ (alternated crops). These results are important for integrated management programs of aphids in cotton and cowpea.

Keywords: Mathematical models; Dispersion; Intercropping systems

---

¹ Chapter published in Annals of the Brazilian Academy of Sciences
4. COTTON-COWPEA INTERCROPPING DESIGN INCREASE

*Cycloneda sanguinea* (COLEOPTERA: COCCINELLIDAE)

ESTABLISHMENT AND PLANT PRODUCTIVITY

Abstract

Adults of *Cycloneda sanguinea* (Linnaeus, 1763) (Coleoptera: Coccinellidae) may disperse on cotton and cowpea plants, where they can be fed and reproduce. This study was carried out with the objective to evaluate the impact of cropping systems on *C. sanguinea* establishment and on plant productivity, aiming at any optimal arrangement for predator conservation and multiplication, contributing to implementation of cotton and cowpea integrated pest management. Cotton plants with colored fibers (BRS Safira cultivar) and cowpea (BRS Itaim cultivar: upright) were cultivated in greenhouse conditions. Cotton and cowpea were infested with *Aphis gossypii* Glover, 1877 and *Aphis craccivora* Koch, 1854 (Hemiptera: Aphididae), respectively. Ladybug predators were marked and released on the crops. Their dispersal on sole colored cotton (t₄) and cowpea (t₅) systems and on colored cotton-cowpea intercropped systems (t₁, t₂, and t₃) was evaluated. All ladybirds were recaptured, counted and discarded. The eggs deposited by females during the movement experiment were considered. The aphids as well as the predator progenies remained on the plants. Other predators were released during the reproductive phase of the plants. Predator progenies and eggs, as well the wingless and winged aphids were respectively quantified on plants per plot. It was found that the abundance of ladybird progeny and cotton productivity was higher in intercropping t₁. The results can be useful to predict the impact of intercropping systems on *C. sanguinea* progeny establishment.

Keyword: *Cycloneda sanguinea*; Progeny; Productivity; Movement; Flowers; Preference
5. SIMULATION OF PLANT BIOMASS AND ARTHROPODS RELATIONSHIP IN CROPPING SYSTEMS OF COTTON AND COWPEA

Abstract

Cotton-cowpea intercropping system can be one of the most important practices for the increase of natural enemies and the reduction of pest numbers. This chapter was written aiming at the analysis of intercropping biomass, as well as arthropods relationship. Initially, a wide review was performed to give support to the development model in order to explain the biomass and the relationship between pest and natural enemies in sole or intercropping systems of cotton and cowpea. It was observed that several previously developed models as well as the model here proposed suggest that the increase in plant biomass and natural enemies depend on the pest number and cropping systems arrangement.

Keywords: Arthropods; simulations; biomass; stability
6. CONCLUDING REMARKS

After considering all results we can extract the following conclusions:

- The results of this study suggest that cotton-cowpea intercropping can significantly impact pest and natural enemies.
- The results found in the current study can be useful to predict relationships among arthropods in greenhouse or field condition.
- The design proposed in this study makes possible to know how to optimize plant productivity and also to investigate biomass production and radiation.
- Sensitivity analysis was important to show parameters with potential to make significant changes in aphids’ dynamics.
- *Cycloneda sanguinea* was capable of reproducing over successive generations, establishing its progeny in a specific arrangement within a habitat protected by a cage. These results can be useful to indicate to the grower what the right time to release the predator in cropping systems.
- The platform X-PEST was useful to make important predictions giving support to decision-making in crop protection.
- The results obtained from amino acid profile highlights the importance of also to investigate the amino acid profile from other parts of plants.
- The use of cultural control as well as biological and chemical control by selective insecticide was successful in the current study.