INVESTIGATING CONTRIBUTIONS OF GASES, METEOROLOGICAL PARAMETERS, AND AEROSOLS TOWARDS TROPOSPHERIC OZONE VARIABILITIES OVER MEGACITY LAHORE (PAKISTAN)

PARVEZ, S. – RANA, A. D. – UL-HAQ, Z.* – BATOOL, S. A. – ALI, M. – TARIQ, S. – MAHMOOD, K. – BANO, S.

GIS and Remote Sensing Group, Department of Space Science, University of the Punjab Lahore, Pakistan

*Corresponding author
e-mail: zia.spsc@yahoo.com

(Received 19th Mar 2019; accepted 4th Jul 2019)

Abstract. We investigated contributions of some tropospheric gases, meteorological parameters, and aerosol burden measured as aerosol optical depth (AOD) towards Tropospheric Ozone (TropoO₃) variabilities over Lahore by developing a stepwise multiple linear regression model. The tropospheric gases include; Methane (CH₄), Carbon Monoxide (CO), Carbon Dioxide (CO₂), and Sulphur Dioxide (SO₂), whereas the meteorological parameters include; cloud fraction (CLF), outgoing long-wave radiation (OLR), relative humidity (RH), temperature (Temp), and surface wind-speed (WS). Data products of these parameters have been retrieved from various satellite sensors during October 2004 – September 2015. Time series distributions of both observed and modeled TropoO₃ concentrations show similar increasing trends except for few months. Moreover, monthly-means of these observed and modeled TropoO₃ concentrations indicate similar decreasing trends with maximum during spring and summer (monsoon) seasons. Based upon weighted contributions of standardized regression coefficients, modeled TropoO₃ concentration was found dependent upon OLR[0.458], WS[0.262], CLF[0.256] TropoSO₂[-0.097], TropoCO[-0.231], and RH[-0.320] out of all parameters used in this study. Modeled TropoO₃ concentrations were validated against an independent source of TropoO₃ concentrations retrieved from original subtracted product of OMI-MLS over Lahore and the results were found in good agreement. The study is unique and would be helpful for further research investigations.

Keywords: regression modeling, atmospheric outlook of Lahore, ozone contributors, ecology, atmospheric remote sensing

Introduction

TropoO₃ is one of the short-lived but major atmospheric pollutants that plays a key role towards climate change (UNEP and WMO, 2011) by modifying the chemical composition of the troposphere and its oxidation capacity (Gauss et al., 2003). It is considered as a primary precursor for the production of hydroxyl radical (OH), that acts as an oxidizing agent severely disturbing the occurrence of tropospheric trace gases (Seinfeld and Pandis, 2016). TropoO₃ absorbs short-wave solar radiations and after attenuation re-radiates it in the form of long-wave radiations (Shan et al., 2008; Pal, 2010; Tan et al., 2014). TropoO₃ has harmful effects on human health, vegetation health & yield, and sensitive ecosystems (EPA, 2003; The Royal Society, 2008; Avnery et al., 2011; Burney and Ramanathan, 2014). Also, TropoO₃ is one of the major anthropogenic greenhouse gases, which is responsible for global warming (IPCC, 2013). Ozone in troposphere is either produced from chemical reactions of NOₓ, CH₄, CO, and volatile organic compounds (VOCs) through non-linear, complex, and feedback-regulated processes in the presence of solar radiations (El-Fadel et al., 2002; Pulikesi et al., 2006;
Stevenson et al., 2006; Young, 2013; Seinfeld and Pandis, 2016) or transported directly from the stratosphere (Hsu and Prather, 2009). From an ecological point of view, both increased emission and destruction of VOCs by TropoO$_3$ may affect several of their multiple functions (Lerdau and Slobodkin, 2002; Holopainen, 2004; Van, 2009; Yuan et al., 2009). There are a number of anthropogenic and natural sources of these TropoO$_3$ precursors e.g.; crop-residue burning, biomass burning, fossil fuel combustion, enhancement of volatile organic compounds through convections of CO and aerosols, vehicular emissions, industrial processing, energy production activities, waste management, lightning NO$_3$, and soil emissions (Jaeglé et al., 2004; Satheesh and Moorthy, 2005; Stevenson et al., 2006; Aghedo et al., 2007; Wang et al., 2012; Ganesan et al., 2013; Ul-Haq et al., 2014). Anthropogenic activities pose numerous threats to the functioning, structural growth and diversity of natural and semi-natural ecosystems (Bobbink, 1989). Globally, an increase of 36% in TropoO$_3$ burden has been reported since 1850 (Cooper et al., 2014). TropoO$_3$ has strong effects on ecological interactions based on VOC signaling (Pinto et al., 2010).

Various natural, meteorological and anthropogenic factors are responsible for TropoO$_3$ concentration variability. Natural factors include; seasons, Earth-Sun distance, and location (altitude, latitude, and longitude), meteorological factors include; temperature, precipitation, humidity, soar flux, and wind speed, while anthropogenic factors include; emissions from precursor pollutants, biomass burning, vehicular emissions, and industrial processing (Ahmad and Aziz, 2013; Iqbal et al., 2014). Aerosols decrease TropoO$_3$ formation in polluted areas (Satheesh and Moorthy, 2005; Xing et al., 2017) and also decline its concentration after reacting with tropospheric gases (Sahoo et al., 2005). The primary objective of this study is to investigate the potential contributions of major tropospheric gases, meteorological parameters, and aerosol burden towards TropoO$_3$ variability over Lahore. TropoO$_3$ monitoring is being carried out either by onboard satellite sensors (Cooper et al., 2014; Ziemke et al., 2014) or via ground-based stations (Fioletov et al., 2008). Remote sensing techniques provide cost-effective, synoptic and repetitive coverages for spatio-temporal monitoring of tropospheric gases, meteorological parameters, and aerosol burden either at large or small scales. Whereas, data acquisition via ground-based stations is expensive, time-consuming, and almost impossible for inaccessible areas. The present study is carried out by retrieving datasets from onboard satellite sensors including; AIRS, AMSU-A, MODIS, MOPITT, OMI, and TRMM, as well as GLDAS model. To the best of our knowledge, no detailed study has so far been published for assessing TropoO$_3$ variability as functions of remotely sensed major tropospheric gases, meteorological parameters, and aerosol burden over Lahore.

Material and Methods

Location and description of the study area

Metropolitan corporation Lahore (31.5204°N, 74.3587°E) is the capital city of the Punjab province in Pakistan. As per 6th Population Census 2017 results, Lahore is the second-most populous city and financial hub of Pakistan after Karachi having population over 11 million and an area of 1,172 km2 (*Figure 1*). Lahore is bounded by Sheikhupura District on the north and west bifurcated by Ravi River, Kasur District on its south, and Wagah Border along Indian province Punjab on the east. Lahore is the 16th largest and rapidly growing city in the world (CMF, 2018). Being financial hub, Lahore contains all types of Industrial, manufacturing, construction, business, and IT related activities.
including but not limited to; pharmaceutical and chemical factories, steel mills, construction materials, power generation, manufacturing of motor vehicles, home appliance, electronics, leather goods, and paper products (Alam et al., 2012; Ali et al., 2014). Major air pollution sources in Lahore include automobile emissions, road dust, and biomass burning along with air pollutants transported from nearby regions (Alam et al., 2010, 2014). The Indian states of Punjab, Haryana, and Uttar Pradesh (shown in Figure 1) are reported to be the well-known air-pollutant emission sources from large scale rice and wheat crops generated residue burning and periodically transported to Lahore (Sidhu and Beri, 2008; Badarinath et al., 2009; Mishra and Shibata, 2012). Lahore falls under hot semi-arid and wet category based on the Köppen climate classification system with highly hot and wet summers (heavy monsoon rainfalls with frequent dust storms during June to September), while dry and cold winters (from December to February). Spring (March to May) and autumn (September to November with extensive crop residue burning in the surrounding regions) seasons are also observed in Lahore (Ali et al., 2014).

Figure 1. Map showing the geographical location of Lahore (31.5204°N, 74.3587°E). (Source: https://www.statsilk.com/maps/download-free-shapefile-maps)

Datasets

Host of satellite borne sensors have been providing online data products for monitoring and analyzing atmospheric gases, meteorological parameters, and aerosol burden measured as aerosol optical depth (AOD). For current study, we retrieved monthly-mean data products of TropoCH₄, TropoCO₂, CLF, and OLR, while daily datasets of RH, and surface temperature over Lahore from Atmospheric Infrared Sounder (AIRS, Pagano et al., 2003; Abed, 2017) and the Advanced Microwave Sounding Unit-A (AMSU-A, Aumann et al., 2003) onboard AURA satellite operational since 2002. The combined use of AIRS and AMSU-A data products basically offers new as well as improved measurements (Susskind et al., 2003). Data products of TropoNO₂ (daily), TropoO₃ (monthly-mean), and planetary boundary layer SO₂ (monthly-mean) were acquired from NASA’s EOS Ozone Monitoring Instrument (OMI) onboard Aura satellite launched in a sun-synchronous polar orbit on July 15, 2004 at an altitude of 705 km and inclination of
98.2° (Levelt et al., 2006a; Ziemke et al., 2011). OMI provides almost global coverage daily with a resolution of 13×24 km² at nadir while 13×100 km² at off-nadir (Boersma et al., 2006). It consists of hyperspectral imaging sensors to record radiances in the range of 270–500 nm (Levelt et al., 2006a,b). Additionally, monthly-mean data of TropoCO was retrieved from MOPITT onboard Terra, whereas, AOD from MODIS onboard Aqua deep blue. The datasets of surface level precipitation rate and near surface wind speed over Lahore were obtained from Tropical Rainfall Measuring Mission (TRMM, Liu et al., 2012) and Global Land Data Assimilation System (GLDAS, Fang et al., 2009), respectively. For validation of our resultant modeled, the original TropoO₃ data product of subtracted monthly-means of Total Column Ozone retrievable from OMI and Stratospheric Column Ozone retrievable from MSL onboard Aura satellite was utilized (Ziemke et al., 2006). Details about all the data products of major tropospheric gases, meteorological parameters, and aerosols used for this study are given in Table 1.

Methodology

We developed a bivariate correlation matrix representing tropospheric gases (CH₄, CO, CO₂, NO₂, O₃, and SO₂), meteorological parameters (CLF, OLR, PR, RH, Temp, and WS), and aerosol burden over Lahore using monthly-mean remotely sensed data during October 2004 – September 2015 (shown in Table 2). Each parameter mentioned in Table 2 has either positive value (shown in blue colored bar) or negative value (shown in red colored bar), which indicates the type of correlation between the respective parameters. Longer the length of colored bars (either blue or red), stronger would be the correlation (either positive or inverse, respectively) between the corresponding parameters. Whereas, colored bars having smaller lengths (smaller values either positive or negative) indicate weaker correlations. In Table 2, correlation values written in bold text are significant at the 0.01 level (2-tailed), whereas, in italic text are significant at the 0.05 level (2-tailed). Respective statistical significance values, against each correlations of Table 2, are mentioned in Table 3. The highest statistical significance values at the 0.01 level (2-tailed) are highlighted in bold text, whereas, the statistical significance values at the 0.05 level (2-tailed) are mentioned in italic text in Table 3. The values written in regular text indicate least significance values. The highest correlation value [0.73] with 99% significance at 0.00 level (2-tailed) indicates that PR & CLF (meteorological parameters) are found to be positively highly correlated with each other in the study area during the observation period. Other higher positive correlations significant at 0.00 level (2-tailed) are: RH & CLF [0.70], RH & PR [0.69], Temp & AOD [0.69], and Temp & OLR [0.66]. Next equally higher but opposite correlations significant at 0.00 level (2-tailed) are: OLR & TropoO₃ [0.61], and TropoO₃ & TropoCO [−0.61]. Remaining relatively higher correlations significant at 0.00 level (2-tailed) are: WS & TropoO₃ [0.57], TropoCO₂ & TropoCH₄ [0.54], RH & TropoCH₄ [0.54], WS & TropoCO [−0.54], and RH & OLR [−0.52]. The parameters used in this study having weaker correlations with each other significant at 0.00 level (2-tailed) are (in descending order): OLR & CLF [−0.48], RH & TropoO₃ [−0.46], PR & AOD [0.45], PR & TropoCH₄ [0.45], RH & AOD [0.41], WS & TropoCO₂ [0.40], Temp & TropoCH₄ [0.39], AOD & TropoCH₄ [0.34], Temp & PR [0.33], OLR & TropoCO [−0.31], Temp & TropoO₃ [0.28], TropoNO₂ & TropoCO₂ [0.28], CLF & TropoCH₄ [0.27], WS & CLF [0.25], TropoCO₂ & TropoCO [−0.23], WS & TropoNO₂ & TropoO₃ [−0.23], and TropoO₃ & TropoCO [−0.23]. Out of all the tropospheric gases used in this study, TropoO₃ and TropoCO are found to be highly but inversely correlated with each other, whereas, TropoCO₂ and TropoCH₄ are next highly
and positively correlated gases significant at 0.01 level (2-tailed). Other tropospheric gases with weaker correlations including positive as well as inverse significant at 0.00 level (2-tailed) are; TropoNO₂ & TropoCO₂ [0.28], TropoCO₂ & TropoCO [−0.23], and TropoSO₂ & TropoO₃ [−0.23]. Only one correlation (least and positive) significant at 0.05 level (2-tailed) was found between TropoSO₂ & TropoNO₂ [0.18]. Positive as well as inverse correlations with 95% significance at 0.05 level (2-tailed) observed from this study are; OLR & AOD [0.22], CLF & TropoSO₂ [−0.22], AOD & TropoCO [−0.21], CLF & AOD [0.19], WS & RH [−0.19], and TropoSO₂ & TropoNO₂ [0.18]. All these correlations are also comparatively weaker ones.

Table 1. Metadata of data retrieved from different satellite sensors (level-3 products) and models used in this study

Product Name/Version	Sensor/Model	Units	Spatial Resolution	Temporal Resolution	Observation Period	Description	
a) Tropospheric Gases	TropoCH₄ – Tropospheric Methane (AIR3STM_VMR_A_700hPa v006)	AIRS/AMSU-A	ppbv	0.25°x0.25°	Daily	2002 – current	Tropospheric
TropoCO – Tropospheric Carbon Monoxide (MOP03JM v007)	MOPITT	ppbv	1° x 1°	Daily	2000 – current	Tropospheric	
TropoCO₂ – Tropospheric Carbon Dioxide (AIR3C2M mole fraction v005)	AIRS/AMSU-A	ppm	1° x 1°	Daily	2002 – current	Tropospheric	
TropoNO₂ – Tropospheric Nitrogen Dioxide (OMN02d v003)	OMI	x10¹⁵ molecules cm⁻²	0.25°x0.25°	Daily	2004 – current	Tropospheric	
TropoO₃ – Tropospheric Ozone (AIR3STM_VMR_A_700hPa v006)	AIRS/AMSU-A	ppbv	0.25°x0.25°	Daily	2002 – current	Tropospheric	
TropoSO₂ – Tropospheric Sulphur Dioxide (OMSO2e_PBL v003)	OMI	DU	0.25°x0.25°	Daily	2004 – current	Planetary boundary layer	
b) Meteorological Parameters	CLF – Cloud Fraction (AIRX3STM v006)	AIRS/AMSU-A	Unit less	1° x 1°	Daily	2002 – current	Total column
OLR – Outgoing Long-wave Radiation (AIRX3STM v006)	AIRS/AMSU-A	W m⁻²	1° x 1°	Daily	2002 – current	Top of the atmosphere	
PR – Precipitation Rate (TMPA/3B43 v007)	TRMM	mm month⁻¹	0.25°x0.25°	Monthly	1998 – current	Surface level	
RH – Relative Humidity (AIRX3STD v006)	AIRS/AMSU-A	%	1° x 1°	Daily	2002 – current	925 hPa	
Temp – Air Temperature (AIRX3STD v006)	AIRS/AMSU-A	Kelvin	1° x 1°	Daily	2002 – current	925 hPa	
WS – Wind Speed (GLDAS_NOAH025_M v2.1)	GLDAS Model	m s⁻¹	0.25°x0.25°	Monthly	2000 – current	Near surface level	
c) Aerosols	AOD – Aerosol burden measured as Aerosol Optical Depth (MOD08_M3_550 v006)	MODIS	Unit less	1° x 1°	1–2 days	2002 – current	Total column
d) Independent data product of TropoO₃ for Model Validation	TropoO₃ – Tropospheric Ozone OMI/MLS tropospheric ozone (original product)	OMI-MLS	ppbv	1° x 1.25°	Monthly-mean	2004 – current	Tropospheric
Table 2. Bivariate correlation matrix representing monthly-mean data of tropospheric gases including TropoCH\(_4\) (ppbv), TropoCO (ppbv), TropoCO\(_2\) (ppm), TropoNO\(_2\) (\(\times 10^{15}\) molecules cm\(^{-2}\)) and TropoSO\(_2\) (DU); major meteorological parameters including cloud fraction (CLF, unit less), outgoing long-wave radiation (OLR, W m\(^{-2}\)), precipitation rate (PR, mm month\(^{-1}\)), relative humidity (RH, %), temperature at 925 hPa (Temp, K) and surface wind speed (WS, m s\(^{-1}\)); and aerosol burden measured as aerosol optical depth (AOD, unit less) over Lahore during October 2004 – September 2015

Parameters	TropoCH\(_4\)	TropoCO	TropoCO\(_2\)	TropoNO\(_2\)	TropoO\(_3\)	TropoSO\(_2\)	AOD	CLF	OLR	PR	RH	Temp
TropoCO	-0.14											
TropoCO\(_2\)	0.04											
TropoNO\(_2\)	-0.15											
TropoO\(_3\)	-0.07	-0.61	0.14	-0.06								
TropoSO\(_2\)	-0.02	-0.13	0.08	-0.18	-0.23							
AOD	-0.34	-0.21	-0.01	0.07	0.09	0.01						
CLF	-0.27	-0.17	-0.01	0.09	-0.09	-0.22	-0.19					
OLR	0.07	-0.31	-0.06	-0.15	0.03	-0.05	0.19	0.48				
PR	0.25	0.16	0.02	-0.15	0.00	-0.12	0.45	0.33				
RH	0.24	0.12	0.03	-0.15	-0.46	-0.03	0.24	0.70	0.52			
Temp	0.09	0.16	0.11	-0.14	0.28	0.01	0.68	0.19	0.09	0.66		
WS	0.12	0.54	0.00	0.23	0.37	-0.13	0.04	0.35	0.10	0.14	0.19	-0.11

Correlations in bold text are significant at the 0.01 level (2-tailed). Correlations in italic are significant at the 0.05 level (2-tailed). Blue color indicates positive correlations, and red color indicates negative/inverse correlations. Longer the length of colored bars (either blue or red), stronger would be the correlation (either positive or inverse, respectively) between the corresponding parameters.

Table 3. Based upon correlation matrix discussed in Table 2 above, matrix showing statistical significance values of tropospheric gases including TropoCH\(_4\) (ppbv), TropoCO (ppbv), TropoCO\(_2\) (ppm), TropoNO\(_2\) (\(\times 10^{15}\) molecules cm\(^{-2}\)) and TropoSO\(_2\) (DU); major meteorological parameters including cloud fraction (CLF, unit less), outgoing long-wave radiation (OLR, W m\(^{-2}\)), precipitation rate (PR, mm month\(^{-1}\)), relative humidity (RH, %), temperature at 925 hPa (Temp, K) and surface wind speed (WS, m s\(^{-1}\)); and aerosol burden measured as aerosol optical depth (AOD, unit less) over Lahore during October 2004 – September 2015

Parameter	Tropo CH\(_4\)	Tropo CO	Tropo CO\(_2\)	Tropo NO\(_2\)	Tropo O\(_3\)	Tropo SO\(_2\)	AOD	CLF	OLR	PR	RH	Temp
TropoCO	0.11											
TropoCO\(_2\)	0.00	0.01										
TropoNO\(_2\)	0.08	0.94	0.00									
TropoO\(_3\)	0.39	0.00	0.12	0.50								
TropoSO\(_2\)	0.77	0.13	0.36	0.03	0.01							
AOD	0.00	0.02	0.95	0.41	0.31	0.89						
CLF	0.00	0.06	0.91	0.30	0.44	0.01	0.03					
OLR	0.41	0.00	0.51	0.09	0.00	0.58	0.01	0.00				
PR	0.00	0.06	0.83	0.09	0.97	0.17	0.00	0.00	0.26			
RH	0.00	0.18	0.76	0.08	0.00	0.68	0.00	0.00	0.00	0.00		
Temp	0.00	0.07	0.22	0.11	0.00	0.97	0.00	0.29	0.00	0.00	0.22	
WS	0.15	0.00	0.00	0.01	0.00	0.13	0.63	0.00	0.27	0.12	0.03	0.22

The numbers written in bold text are statistical significance values for significant correlations at the 0.01 level (2-tailed). The numbers written in italic text are statistical significance values for significant correlations at the 0.05 level (2-tailed).

Annual trends (slopes and y-intercepts), overall changes (%), and R\(^2\) of tropospheric gases, meteorological parameters, and aerosol optical depth over Lahore using their annual-means from October 2004 to September 2015 are tabulated in Table 4. All tropospheric gases except TropoCO indicate an increasing trend. Maximum positive
Results and Discussion

Parametric out-look of Lahore

Tropospheric gases

Concentrations of major tropospheric gases have been compared with those of TropoO₃ over Lahore during October 2004 – September 2015 and are shown in Figure 2. Large variations have been observed in TropoCH₄, TropoCO, and TropoNO₂, whereas, TropoCO₂ and TropoSO₂ show comparatively little variations. We also noticed that all tropospheric gases indicate increasing trends except TropoCO. Gradual increasing trend in TropoCH₄ indicates gradual increasing activities responsible for Methane production (Paddy crops, animals, industrial activities, and vehicular emissions etc.) in the study area

Table 4. Annual trends (linear equation showing slopes and y-intercepts), overall change (%), and R^2 based on annual-means of tropospheric gases including TropoCH₄, TropoCO, TropoCO₂, TropoNO₂ and TropoSO₂; major meteorological parameters including cloud fraction (CLF), outgoing long-wave radiation (OLR), precipitation rate (PR), relative humidity (RH), temperature (Temp) and surface wind speed (WS); and aerosol burden measured as aerosol optical depth (AOD) over Lahore during October 2004 – September 2015

Parameter	Annual Trend Line	Overall Change (%)	R^2
TropoCH₄ (ppbv)	$y = (4.93±0.18)x + (1799.10±1.35)$	2.92	0.99
TropoCO (ppbv)	$y = -(3.48±0.54)x + (202.36±3.94)$	-23.80	0.81
TropoCO₂ (ppm)	$y = (1.97±0.04)x + (377.07±0.27)$	5.40	1.00
TropoNO₂ ($×10^{15}$ molecules cm⁻²)	$y = (0.06±0.02)x + (2.23±0.17)$	21.62	0.40
TropoO₃ (ppbv)	$y = (0.29±0.08)x + (47.91±0.62)$	6.18	0.54
TropoSO₂ (DU)	$y = (0.00±0.00)x + (0.06±0.02)$	13.27	0.01
CLF (unit less)	$y = (0.00±0.00)x + (0.19±0.02)$	21.47	0.29
OLR (W m⁻²)	$y = -(0.05±0.21)x + (302.66±1.52)$	-0.18	0.01
PR (mm month⁻¹)	$y = (3.21±1.08)x + (32.62±7.97)$	49.61	0.47
RH (%)	$y = (0.41±0.15)x + (40.71±1.13)$	9.94	0.42
Temp (K at 925 hPa)	$y = -(0.10±0.04)x + (300.50±0.30)$	-0.37	0.38
WS (m s⁻¹)	$y = (0.05±0.01)x + (1.86±0.08)$	21.43	0.66
AOD (unit less)	$y = (0.01±0.00)x + 0.62±0.02$	10.69	0.39

The slope of $4.93±0.18$ with $R^2=0.99$ observed for TropoCH₄ (having high correlations [0.54] significant at 0.01 level with TropoCO₂ and RH) indicates a maximum increasing trend than other gases used for this study. Similarly, slopes of PR ($3.21±1.08$) with maximum change of 49.61% (having strong correlation with CLF), and TropoCO₂ ($1.97±0.04$, having high correlation with TropoCH₄) show relatively increasing trends during the study period. However, a relatively large negative slope of TropoCO ($-3.48±0.54$) shows a decreasing trend over Lahore, which may be due to an overall decrease in TropoCO (-23.8%) during the entire study period. Moreover, TropoCO has inverse but high correlations significant at 0.01 level with TropoO₃ and WS. Relatively higher positive slopes (~21%) have been noticed for TropoNO₂, CLF, and WS, whereas little negative slopes have been observed for OLR (-0.05±0.21) and temperature (-0.10±0.04). It is worth mentioning here that the monthly-mean temperature values over Lahore during October 2004 – September 2015 show a little increasing trend (Figure 3 refers).

Parvez et al.: Investigating contributions of gases, meteorological parameters, and aerosols towards tropospheric ozone variabilities over megacity Lahore (Pakistan) - 13539 -

APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH 17(6):13533-13553.
http://www.aloki.hu ● ISSN 1589 1623 (Print) ● ISSN 1785 0037 (Online)
DOI: http://dx.doi.org/10.15666/aeeer/1706_1353313553
© 2019, ALÖKI Kft., Budapest, Hungary
during the study period. Similarly, gradual increasing trend in TropoCO$_2$ is an indication of increased activities causing carbon dioxide to increase (Agricultural activities, population, animals, industrial activities, and vehicular emissions etc.) in Lahore. Whereas, slopes of TropoNO$_2$ and TropoSO$_2$ are quite gentle showing little increase similar to that of TropoO$_3$.

Figure 2. Time series monthly-mean variations of major tropospheric gases over Lahore during October 2004 – September 2015. Dotted lines correspond to respective trend lines.
Meteorological parameters

Monthly-mean data products of major meteorological parameters as well as aerosol burden measured as Aerosol Optical Depth (AOD) have been compared with TropoO3 concentrations over Lahore during October 2004 – September 2015 and are shown in Figure 3. Large variations have been observed in all parameters similar to that of TropoO3 during the entire study period. Positive slopes of all parameters including TropoO3, except OLR, indicate increasing trends during the study period. Comparatively larger slope value of PR indicates a gradual increase in precipitation in the study area.

TropoO3

Maximum concentration of TropoO3 has been reported during spring and summer seasons across the globe (e.g., Cooper et al., 2014). Accordingly, maximum concentrations have been observed in TropoO3 over Lahore during spring and summer (monsoon) seasons (March to July) in Pakistan shown in Figure 4. Major causes of this increased TropoO3 concentration over Lahore are mainly due to increased ozone precursor gas emissions, enhanced biomass burning activities, biogenic emissions, polluted air-masses migrated from nearby regions, removal of NO2 concentration due to increased OH radicalization (Yienger and Levy, 1995), photolysis of water vapors which reduces NO2 concentration during high rainfall in monsoon (Jacob, 2003; Ghude et al., 2009; Seinfeld and Pandis, 2016), and enhanced intrusion of O3 from stratosphere (Noreen et al., 2018). An overall decreasing trend has been observed in the monthly-mean values of observed TropoO3 concentration over Lahore (slope= -0.4303, y-intercept=52.786, and R²=0.1614) during the study period.

Modeling TropoO3 concentration over Lahore

In order to investigate TropoO3 dependencies, monthly-mean values of major tropospheric gases, meteorological parameters, and aerosol burden over Lahore during October 2004 – September 2015 have been incorporated in multiple linear regression model (e.g., Engel-Cox et al., 2004; Lin et al., 2012), mentioned in Equation (1);

Objective or Dependent Variable = a₀ + ∑(bₙ × wₙ) + ε (Eq.1)

where a₀ is an intercept, b₁, b₂, b₃,......n are regular (unstandardized) regression coefficients, w₁, w₂,......n are regressors or independent variables, and ε is an error term associated with the regression analysis. The resultant multiple linear regression model used in this study to model TropoO3 (Objective/Dependent Variable) as functions of tropospheric gases, meteorological parameters, and aerosol burden (regressors or independent variables) is mentioned in Equation (2) below;

TropoO3 (monthly mean) = a₀ + b₁ × TropoCH₄
+ b₂ × TropoCO
+ b₃ × TropoCO₂ +
+ b₄ × TropoNO₂ + b₅ × TropoSO₂ + b₆ × CLF
+ b₇ × OLR +
b₈ × PR + b₉ × RH + b₁₀ × Temp + b₁₁ × WS
+ b₁₂ × AOD + ε (Eq.2)
where a_0 is an intercept, b_1, b_2, b_3,……b_{12} are regular (unstandardized) regression coefficients; TropoCH$_4$, TropoCO, TropoCO$_2$, TropoNO$_2$, TropoSO$_2$, CLF, OLR, PR, RH, Temp, WS, and AOD are the monthly-mean regressors or independent variables; and ϵ is an error term associated with the regression analysis. The multiple linear regression model mentioned in Equation (2) closely measures the intrinsic relationships of TropoO$_3$ with all regressors, separately. Therefore, this model offers better predictability of TropoO$_3$ based on relative impacts with all regressors than by simple linear model which is based only upon single regressor.

To improve the results of Equation (2), stepwise multiple linear regression procedure (Lin et al., 2012) was adopted. Resultant stepwise multiple linear regression model shown in Table 5 was generated. The model provides statistical information for modeling TropoO$_3$ concentrations based upon weighted contributions from its regressors. This procedure simultaneously regresses multiple variables (gases, meteorological parameters, and aerosol burden) and removes un-important parameter(s) from the model. Table 5 shows that the modeled TropoO$_3$ is mainly dependent upon OLR, WS, CLF, TropoSO$_2$, TropoCO, and RH out of all regressors mentioned in Equation (2). The standardized regression coefficients (β) obtained from the stepwise multiple linear regression model show weight-wise dependence of TropoO$_3$ upon OLR [$\beta=0.458$] with the highest contribution, followed by nearly equivalent contributions from WS [$\beta=0.262$] and CLF [$\beta=0.256$], whereas, the least contribution has been observed from RH [$\beta=-0.320$]. This model also reveals that TropoSO$_2$ [$\beta=-0.097$] and TropoCO [$\beta=-0.231$] are negatively contributing against TropoO$_3$ concentration over Lahore during the study period. The values of multiple error ($r=0.85$) and standard error (2.14) for this TropoO$_3$ model appear to be reasonable.

A subsequent bivariate correlation matrix representing observed TropoO$_3$, modeled TropoO$_3$, and the parameters which contributed in the modeled TropoO$_3$ concentration (OLR, WS, CLF, TropoSO$_2$, TropoCO, and RH) as mentioned in Table 5 above was generated and is shown in Table 6 below. Blue color indicates positive correlations, while red color indicates negative/inverse correlations. Longer the length of colored bars (either blue or red), stronger would be the correlation (either positive or inverse, respectively) between the corresponding parameters. In Table 6, correlation values written in bold text are significant at the 0.01 level (2-tailed), whereas, in italic text are significant at the 0.05 level (2-tailed). Respective statistical significance values, against each correlations of Table 6, are written in Table 7. The highest statistical significance values at the 0.01 level (2-tailed) are highlighted in bold text, whereas, the statistical significance values at the 0.05 level (2-tailed) are mentioned in italic text in Table 7. The values written in regular text indicate least significance values. All correlations shown in Table 6 exhibit the same corresponding values as mentioned in Table 2 above along with additive correlation values against modeled TropoO$_3$. All bivariate correlations with the modeled TropoO$_3$ concentration are significant at 0.01 level (2-tailed) except for CLF. The highest correlation value [0.85] with 99% significance at 0.00 level (2-tailed) between modeled and observed TropoO$_3$ concentrations over Lahore during the study period reveals the high suitability of the modeled developed in this study mentioned in Table 5 above. Out of two tropospheric gases used in this model, modeled TropoO$_3$ is found to be highly but inversely correlated with TropoCO [−0.72], whereas, OLR [0.71] and WS [0.68] are the next highly and positively correlated meteorological parameters significant at 0.01 level (2-tailed).
Figure 3. Time series monthly-mean variations of Tropo\textsubscript{O\textsubscript{3}} and major meteorological parameters over Lahore during October 2004 – September 2015. Dotted lines correspond to respective trend lines.
Figure 4. Monthly-means of Observed TropoO$_3$ concentration (ppbv) over Lahore during October 2004 – September 2015. Dotted line corresponds to the trend line

Table 5. Stepwise multiple linear regression model developed to model TropoO$_3$ (ppbv) variations based upon weighted contributions of monthly-mean data of OLR (W m$^{-2}$), WS (m s$^{-1}$), CLF (unit less), TropoSO$_2$ (DU), TropoCO (ppbv), and RH (%) over Lahore during October 2004 – September 2015

Parameters	Observed TropoO$_3$	OLR	WS	CLF	TropoSO$_2$	TropoCO	RH
OLR	0.61						
WS	0.57	0.10					
CLF	-0.07	-0.48	-0.25				
TropoSO$_2$	-0.23	-0.05	-0.13	-0.22			
TropoCO	-0.61	-0.31	-0.54	-0.17	0.13		
RH	-0.46	-0.52	0.19	0.70	-0.03	0.12	
Modeled TropoO$_3$	0.85	0.71	0.68	-0.07	-0.27	-0.72	-0.53

The values in parentheses are Standardized Regression Coefficients (Beta, β) representing regressor’s relative weightage on modeled TropoO$_3$ concentrations in descending order, although these coefficients do not take part in calculations.

Table 6. Bivariate correlation matrix representing monthly-mean data of observed TropoO$_3$, OLR (W m$^{-2}$), WS (m s$^{-1}$), CLF (unit less), TropoSO$_2$ (DU), TropoCO (ppbv), and RH (%) as well as modeled TropoO$_3$ concentrations over Lahore during October 2004 – September 2015

Correlations in bold text are significant at the 0.01 level (2-tailed). Correlations in Italic are significant at the 0.05 level (2-tailed). Blue color indicates positive correlations, and red color indicates negative/inverse correlations. Longer the length of colored bars (either blue or red), stronger would be the correlation (either positive or inverse, respectively) between the corresponding parameters.
Table 7. Based upon correlation matrix discussed in Table 6 above, matrix showing statistical significance values of observed TropoO$_3$, OLR (W m$^{-2}$), WS (m s$^{-1}$), CLF (unit less), TropoSO$_2$ (DU), TropoCO (ppbv), and RH (%) as well as modeled TropoO$_3$ concentrations over Lahore during October 2004 – September 2015

Parameters	Observed TropoO$_3$	OLR	WS	CLF	TropoSO$_2$	TropoCO	RH
OLR	0.00						
WS	0.00	0.27					
CLF	0.44	0.00	0.00				
TropoSO$_2$	0.01	0.58	0.13	0.01			
TropoCO	0.00	0.00	0.00		0.06	0.13	
RH	0.00	0.00	0.03	0.00	0.68	0.18	
Modeled TropoO$_3$	0.00	0.00	0.00	0.42	0.00	0.00	0.00

The numbers written in bold text are statistical significance values for significant correlations at the 0.01 level (2-tailed). The numbers written in italic text are statistical significance values for significant correlations at the 0.05 level (2-tailed).

Other inverse correlations of the modeled TropoO$_3$ significant at 0.00 level (2-tailed) are noticed against RH [–0.53] and TropoSO$_2$ [–0.27]. The least and inverse correlation having 95% significance at 0.05 level (2-tailed) is against CLF [–0.07].

The observed TropoO$_3$ datasets retrieved directly from the AIRS/AMSU-A sensor over Lahore during October 2004 – September 2015 and the modeled TropoO$_3$ concentration values obtained from of the resultant step-wise multiple linear regression model (discussed in Table 5 above) have been plotted in Figure 5.

![Observed versus Modeled Tropospheric Ozone over Lahore](image)

Figure 5. Comparison of observed versus modeled time-series TropoO$_3$ (ppbv) concentrations over Lahore during October 2004 – September 2015. Dotted lines correspond to respective trend lines

Time series distributions of these observed and modeled TropoO$_3$ concentrations show similar increasing and consistent trends except during the months of May 2005, Feb 2006, May 2007, Dec 2008, Nov 2011, Dec 2012, May 2014, and Nov 2014. The highest value in the modeled TropoO$_3$ concentration has been notice for the month of May 2013.
Monthly-mean data analysis of modeled TropoO₃ concentration indicate a similar pattern as that of the observed TropoO₃ concentration over Lahore during the study period as shown in Figure 6(a). We find higher concentrations of both modeled and observed TropoO₃ during spring and summer (monsoon) seasons, whereas, minima during the winter season. A similar observation about TropoO₃ variation was reported by Ahmad and Aziz, 2013. Our modeled TropoO₃ variation attributes a similar decreasing trend (slope=−0.3254, y-intercept=52.192, and \(R^2 = 0.12 \)) over Lahore during the study period. Scatter plot drawn between observed and modeled TropoO₃ indicates a linear positive trend having a slope 0.732 and y-intercept 13.469 with \(R^2 = 0.73 \) as shown in Figure 6(b).

![Figure 6](image-url)

Figure 6. (a) Monthly-means of observed TropoO₃ (used as dependent variable) and modeled TropoO₃ concentrations (all data in ppbv) over Lahore during October 2004 – September 2015. (b) Scatter plot of observed versus modeled TropoO₃ concentrations (ppbv). Dotted lines correspond to respective trend lines.

Annual trends, overall change (%), and \(R^2 \) based on annual-means of observed and modeled TropoO₃ concentrations over Lahore during October 2004 – September 2015 were calculated and are mentioned in Table 8.
Overall similar increasing concentrations of both observed (6.18%, $R^2 = 0.54$), and modeled (4.89%, $R^2 = 0.62$) Tropo$_3$ indicate good agreement of resultant model devised in this study. The slope of observed Tropo$_3$ [0.29±0.08] is little larger than that of the observed Tropo$_3$ [0.23±0.06], however, the values of y-intercepts of both concentrations are nearly similar. The increase in Tropo$_3$ concentration observed in Lahore and adjoining areas during the study period is possibly due to increased anthropogenic activities including; population and traffic densities, industrial activities, infrastructure development activities, and biomass burning etc. These results are almost in agreement with those obtained by Noreen et al 2018 for ozone column over Lahore. Some other studies had also discussed about the Tropo$_3$ concentrations, and production of its precursors through different anthropogenic activities (e.g., Kulkarni et al., 2010; Lal et al., 2012; Ahmad and Aziz, 2013).

Table 8. Annual trends (slopes and y-intercepts), overall change (%), and R^2 based on annual-means of observed and modeled Tropo$_3$ concentrations over Lahore during October 2004 – September 2015

Parameter	Annual Trend Line	Overall Change (%)	R^2
Observed Tropo$_3$ (ppbv)	$y = (0.29±0.08)x + (47.91±0.62)$	6.18	0.54
Modeled Tropo$_3$ (ppbv)	$y = (0.23±0.06)x + (48.48±0.42)$	4.89	0.62

Model validation

Modeled Tropo$_3$ concentrations were crossed checked against an independent source of Tropo$_3$ concentrations. For this purpose, original Tropo$_3$ data product of subtracted monthly-means of Total Column Ozone retrievable from OMI and Stratospheric Column Ozone retrievable from MSL onboard Aura satellite was utilized (available at https://acd-ext.gsfc.nasa.gov/Data_services/cloud_slice/new_data.html). Tropo$_3$ product calculated by mean volume mixing ratio (in ppbv) formatted in 1-degree (latitude) by 1.25-degree (longitude) resolution was extracted for Lahore during October 2004 – September 2015. Our modeled as well as the observed Tropo$_3$ (used as dependent variable) concentrations have been plotted in Figure 7 against these independently available product of OMI-MLS Tropo$_3$ concentrations (ppbv) over Lahore during the study period.

The results show similar seasonality patterns as well as trends in all three datasets with good agreements in their slopes and error values mentioned in Figure 7. These promising results validate our resultant model. OMI-MLS Tropo$_3$ concentrations have been plotted against secondary axis due to its wider data range. OMI/MLS data measurements have some anomalies especially during 2007 and 2009 (Ziemke et al., 2006).

To further investigate this validation process, monthly-mean data of OMI-MLS Tropo$_3$ (independent data) was compared with modeled as well as observed Tropo$_3$ concentrations over Lahore during October 2004 – September 2015 (shown in Figure 8). Monthly-mean graphical patterns, slopes, and trends in all three datasets are similar with higher concentrations during the spring and summer (monsoon) seasons, whereas, minima during the winter season shown in Figure 8(a). Comparison of scatter plots drawn between OMI-MLS Tropo$_3$ (independent data), and observed Tropo$_3$ (used as
dependent variable) against modeled TropoO$_3$ concentrations shown in Figure 8(b) indicates similar linear positive trends.

![Graph showing validation of modeled and observed TropoO$_3$.](image)

Figure 7. Validation of modeled and observed (used as dependent variable) TropoO$_3$ (ppbv) against an independent source of TropoO$_3$ concentrations (ppbv) retrieved from OMI-MLS data product over Lahore during October 2004 – September 2015. Dotted lines correspond to respective trend lines.

Conclusions

The proposed step-wise multiple linear regression model reveals weighted contributions of major factors OLR, WS, and CLF, TropoSO$_2$, TropoCO, and RH (based on standardized regression coefficient, β) against TropoO$_3$ variability over Lahore during September 2004 – October 2015. Stepwise multiple linear regression modelling technique opted to model TropoO$_3$ concentrations over Lahore has shown highly consistent results as compared with the TropoO$_3$ observations retrieved directly from OMI satellite sensor. The trend-line of scatter plot drawn between observed and modeled TropoO$_3$ provides a steady linear increase analogous correlation with an overall increase of 6.18% in observed TropoO$_3$, while 4.89% in modeled TropoO$_3$ over Lahore during the study period. Based on the resultant value of multiple correlation coefficient ($r=0.854$) it can confidently be asserted that the stepwise multiple linear regression model opted to predict TropoO$_3$ over Lahore is quite reasonable. The modeled TropoO$_3$ concentrations were validated against an independent source of TropoO$_3$ concentrations retrieved from original subtracted product of OMI-MLS over Lahore for the study period and the results were found in good agreement. This study of modeling TropoO$_3$ variation as functions of satellite observations of major tropospheric gases, meteorological parameters, and aerosol burden over Lahore acquired during October 2004 – September 2015 using stepwise multiple regression approach would be further useful for air quality and environmental monitoring over Lahore.
linear regression modelling technique is quite unique. The study would be helpful for further research investigations in this domain as well as provide useful information for policy/decision makers in Lahore, Pakistan.

Figure 8. (a) Monthly-means of OMI-MLS TropoO$_3$ (independent data), observed TropoO$_3$ (used as dependent variable) and modeled TropoO$_3$ concentrations (all data in ppbv) over Lahore during October 2004 – September 2015. (b) Scatter plot of OMI-MLS TropoO$_3$ (independent data), and observed TropoO$_3$ (used as dependent variable) against modeled TropoO$_3$ concentrations (all data in ppbv). Dotted lines correspond to respective trend lines.

Acknowledgements. Authors gratefully acknowledge the project teams of AIRS/AMSU-A, GLDAS_NOAH, MODIS, OMI, and TRMM for online provision of related datasets and necessary information about error analyses.

REFERENCES

[1] Abed, F. G., Al-Salihi, A., Jasim, M. R. (2017): Space-borne observation of methane from atmospheric infrared sounder: data analysis and distribution over Iraq. – Journal of Applied and Advanced Research 2(4): 256-264. Doi:10.21839/jaar.2017.v2i4.100.
Aghedo, A. M., Schultz, M. G., Rast, S. (2007): The influence of African air pollution on regional and global tropospheric ozone. – Atmos. Chem. Phys. 7(5): 1193-1212. Doi:10.5194/acp-7-1193-2007.

Ahmad, S. S., Aziz, N. (2013): Spatial and Temporal Analysis of Ground Level Ozone and Nitrogen Dioxide Concentration across the Twin Cities of Pakistan. – Environmental Monitoring and Assessment 185: 3133-3147. Doi:10.1007/s10661-012-2778-7.

Alam, K., Iqbul, M. J., Blaschke, T., Qureshi, S., Khan, G. (2010): Monitoring spatiotemporal variations in aerosols and aerosol-cloud interactions over Pakistan using MODIS data. – Adv. Space Res. 46: 1162-1176. Doi:10.1016/j.asr.2010.06.025.

Alam, K., Trautmann, T., Blaschke, T., Majid, H. (2012): Aerosol optical and radiative properties during summer and winter season over Lahore and Karachi. – Atmos. Environ. 50: 234-245. Doi:10.1016/j.atmosenv.2011.12.027.

Alam, K., Trautmann, T., Blaschke, T., Subhan, F. (2014): Changes in aerosol optical properties due to dust storms in the Middle East and Southwest Asia. – Remote Sens. Environ. 143: 216-227. Doi:10.1016/j.rse.2013.12.021.

Ali, M., Tariq, S., Mahmood, K., Daud, A., Batool, A., ul-Haq, Z. (2014): A study of aerosol properties over Lahore Pakistan by using AERONET data. – Asia-Pacific J Atmos Sci. 50(2): 153-162. Doi: 10.1007/s13143-014-0004-y.

Aumann, H. H., Chahine, M. T., Gautier, C., Goldberg, M. D., Kalnay, E., McMillin, L. M., Revercomb, H., Rosenkranz, P. W., Smith, W. L., Staelin, D. H., Strow, L. L., Susskind, J. (2003): AIRS/AMSU/HSB on the aqua mission: design, science objectives, data products, and processing systems. – IEEE Trans. Geosci. Rem. Sens. 41: 253-264. Doi: 10.1109/TGRS.2002.808356.

Avnery, S., Mauzerall, D. L., Liu, J., Horowitz, L. W. (2011): Global crop yield reductions due to surface ozone exposure: 2. Year 2030 potential crop production losses and economic damage under two scenarios of O₃ pollution. – Atmos. Environ. 45(13): 2297-2309. Doi:10.1016/j.atmosenv.2011.01.002.

Badarinath, K. V. S., Shailesh, K. K., Anu, R. S., Krishna, V. P. (2009): Analysis of aerosol and carbon monoxide characteristics over Arabian Sea during crop residue burning period in the Indo-Gangetic plains using multi-satellite remote sensing datasets. – J. Atmos. Sol. Terr. Phys. 71: 1267-1276. Doi:10.1016/j.jastp.2009.04.004.

Bobbink, R. (1989): Impacts of tropospheric ozone and airborne nitrogenous pollutants on natural and semi-natural ecosystems: A commentary. – New Phytologist 139(1): 161-168. Doi:10.1046/j.1469-8137.1998.00175.x.

Boersma, K., Eskes, H., Veeinkind, J., Brinksm, E., Sneep, M., van der Oord, G., Levelt, P., Stamnes, P., Gleuson, J., Bucsela, E. (2006): Near-real time retrieval of tropospheric NO₂ from OMI. – Atmos. Chem. Phys. Dis. 6(6): 12301-12345. Doi:10.5194/acpd-6-12301-2006.

Burney, J., Ramanathan, V. (2014): Recent climate and air pollution impacts on Indian agriculture. – Proc. Natl. Acad. Sci. 111(46): 16319-16324.

CMF (2018): City Mayors Foundation, UK. – www.citymayors.com (accessed on 11 July 2018).

Cooper, O. R., Parrish, D. D., Ziemke, J., Balashov, N. V., Cupeiro, M., Galbally, I. E., Gilge, S., Horowitz, L., Jensen, N. R., Lamarque, J.-F., Naik, V., Oltmans, S. J., Schwab, J., Shindell, D. T., Thompson, A. M., Thouret, V., Wang, Y., Zbenden, R. M. (2014): Global distribution and trends of tropospheric ozone: An observation-based review. – Elem Sci Anth 2: 29. Doi:10.12952/journal.elementa.000029.

El-Fadel, M., Zein, M., Nuwayhid, I., Jamali, D., Sadek, S. (2002): Environmental Management of Ozone in Beirut Urban Areas. – Environmental Management and Health 13: 471-494. Doi:10.1108/09566160210441780.

Engel-Cox, J. A., Holloman, C. H., Coutsant, B. W., Hoff, R. M. (2004): Qualitative and quantitative evaluation of MODIS satellite sensor data for regional and urban scale air quality. – Atmos. Environ. 38(16): 2495-2509. Doi:10.1016/j.atmosenv.2004.01.039.
[18] EPA (2003): National air quality and emissions trends report, Special Studies Edition. – Environmental Protection Agency, US EPA. EPA/454/R-03-005. North Carolina.

[19] Fang, H., Beaudoin, H. K., Rodell, M., Teng, W. L., Vollmer, B. E. (2009): Global Land Data Assimilation System (GLDAS) Products, Services and Application from NASA Hydrology Data and Information Services Center (HIDISC). – ASPRS 2009 Annual Conference; 8-31 March 2009; Baltimore, MD US.

[20] Fioletov, V., Labow, G., Evans, R., Hare, E., Köhler, U., McElroy, C., Miyagawa, K., Redondas, A., Savastiouk, V., Shalamyansky, A. (2008): Performance of the ground-based total ozone network assessed using satellite data. – J. Geophys. Res. Atmos. 113(D14): 313. Doi:10.1029/2008JD009809.

[21] Ganesan, A. L., Chatterjee, A., Prinn, R. G., Harth, C. M., Salameh, P. K., Manning, A. J., Hall, B. D., Mühle, J., Meredith, L. K., Weiss, R. F., O’Doherty, S., Young, D. (2013): The variability of methane, nitrous oxide and sulfur hexafluoride in Northeast India. – Atmospheric Chemistry and Physics 13: 10633-10644. Doi:10.5194/acp-13-10633-2013.

[22] Gauss, M., Myhre, G., Pitari, G., Prather, M. J., Isaksen, I. S. A., Berntsen, T. K., Brasseur, G. P., Dentener, F. J., Derwent, R. G., Hauglustaine, D. A., Horowitz, L. W., Jacob, D. J., Johnson, M., Law, K. S., Mickley, L. J., Müller, J. -F., Planteven, P. -H., Pyle, J. A., Rogers, H. L., Stevenson, D. S., Sundet, J. K., van Weele, M., Wild, O. (2003): Radiative forcing in the 21st century due to ozone changes in the troposphere and the lower stratosphere. – J. Geophys. Res. 108(D9): 4292. Doi:10.1029/2002JD002624.

[23] Ghude, S. D., der Arj, V., Beig, G., Fadnavis, S., Polade, S. D. (2009): Satellite derived trends in NO2 over the major global hotspot regions during the past decade and their inter-comparison. – Environ. Pollut. 157(6): 1873-1878. Doi:10.1016/j.envpol.2009.01.013.

[24] Holopainen, J. K. (2004): Multiple functions of inducible plant volatiles. – Trends Plant Sci. 9: 529-533.

[25] Hsu, J., Prather, M. J. (2009): Stratospheric variability and tropospheric ozone. – J. Geophys. Res. Atmos. 114:D6. http://dx.doi.org/10.1029/2008JD010942 retrieved from https://escholarship.org/uc/item/09q010cs.

[26] IPCC (2013): Climate Change 2013: The Physical Science Basis. – In: Stocker, T. F., Qin, D., Plattner, G. K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P. M. (eds.). Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp.

[27] Iqbal, M. A., Kim, K. -H., Shon, Z. -H., Sohn, J. -R., Jeon, E. -C., Kim, Y. -S., Oh, J. -M. (2014): Comparison of Ozone Pollution Levels at Various Sites in Seoul, a Megacity in Northeast Asia. – Atmospheric Research 138: 330-345. Doi:10.1016/j.atmosres.2013.12.003.

[28] Jacob, D. J. (2003): The oxidizing power of the atmosphere. – In: Potter, T. D., Colman, B. (eds.). Handbook of weather, climate and water. John Wiley & Sons. pp 1-1020. ISBN: 978-0-471-21489-2.

[29] Jaeglé, L., Martin, R., Chance, K., Steinberger, L., Kurosu, T., Jacob, D. J., Modi, A., Yoboué, V., Sigheh-Nkamdjou, L., Galy-Lacaux, C. (2004): Satellite mapping of rain-induced nitric oxide emissions from soils. – J. Geophys. Res. Atmos. 109:D21. Doi:10.1029/2003JD004331.

[30] Kulkarni, P. S., Ghude, S. D., Bortoli, D. (2010): Tropospheric ozone trend over three major inland Indian cities: Delhi, Hyderabad and Bangalore. – Anna. Geophys. 28(10): 1879-1885. Doi:10.5194/angeo-28-1879-2010.

[31] Lal, D., Ghude, S. D., Patil, S., Kulkarni, S. H., Jena, C., Tiwari, S., Srivastava, M. K. (2012): Tropospheric ozone and aerosol long-term trends over the Indo-Gangetic plain (IGP), India. – Atmos. Res. 116: 82-92. Doi:10.1016/j.atmosres.2012.02.014.

[32] Lerdau, M., Slobodkin, L. (2002): Trace gas emissions and species-dependent ecosystem services. – Trends Ecol. Evol. 17: 309-312. Doi:10.1016/S0169-5347(02)02535-1.
[33] Levelt, P. F., van den Oord, G. H. J., Dobber, M. R., Malkki, A., Visser, H., de Vries, J., Stammes, P., Lundell, J. O. V., Saari, H. (2006a): The Ozone Monitoring Instrument. – IEEE Transactions on Geoscience and Remote Sensing 44: 1093-1101. Doi:10.1109/TGRS.2006.872333.

[34] Levelt, P. F., Hilsenrath, E., Leppelmeier, G. W., van den Oord, G. B. J., Bhartia, P. K., Tamminen, J., de Haan, J. F., Veefkind, J. P. (2006b): Science objectives of the Ozone Monitoring Instrument. – IEEE Transactions on Geoscience and Remote Sensing 44(5): 1199-1208. Doi:10.1109/TGRS.2006.872336.

[35] Lin, M., Tao, J., Chan, C.-Y., Cao, J.-J., Zhang, Z.-S., Zhu, L.-H., Zhang, R.-J. (2012): Regression analyses between recent air quality and visibility changes in megacities at four haze regions in China. – Aerosol Air Qual. Res. 12: 1049-1061. Doi:10.4209/aaqr.2011.11.0220.

[36] Liu, S. N., Zhou, T., Wei, L. Y., Shu, Y. (2012): The spatial distribution of forest carbon sinks and sources in China. – Chin. Sci. Bull. 57: 1699-1707. Doi:10.1007/s11434-012-4998-1.

[37] Mishra, A. K., Shibata, T. (2012): Synergistic analyses of optical and microphysical properties of agricultural crop residue burning aerosols over the Indo-Gangetic Basin (IGB). – Atmos. Environ. 57: 205-218. Doi:10.1016/j.atmosenv.2012.04.025.

[38] Noreen, A., Khokhar, M. F., Zeb, N., Yasin, N., Hakeem, K. R. (2018): Spatio-temporal assessment and seasonal variation of tropospheric ozone in Pakistan during the last decade. – Environ. Sci. Pollut. Res. 25(9): 8441-8454. Doi:10.1007/s11356-017-1010-2.

[39] Pagano, T. S., Aumann, H. H., Hagan, D. E., Overoye, K. (2003): Prelaunch and in-flight radiometric calibration of the atmospheric infrared sounder (AIRS). – IEEE Trans. Geosci. Rem. Sens. 41(2): 265-273. Doi:10.1109/TGRS.2002.808324.

[40] Pal, C. (2010): Variability of Total Ozone over India and Its Adjoining Regions during 1997-2008. – Atmospheric Environment 44: 1927-1936. Doi:10.1016/j.atmosenv.2010.01.028.

[41] Pinto, D. M., Blande, J. D., Souza, S. R., Nerg, A. M., Holopainen, J. K. (2010): Plant Volatile Organic Compounds (VOCs) in Ozone (O3) Polluted Atmospheres: The Ecological Effects. – J Chem Ecol 36(1): 22-34. Doi:10.1007/s10886-009-9732-3.

[42] Pulikesi, M., Baskaralingam, P., Rayudu, V. N., Elango, D., Ramamurthi, V., Sivanesan, S. (2006): Surface ozone measurements at urban coastal site Chennai, in India. – Journal of Hazardous Materials 137: 1554-1559. Doi:10.1016/j.jhazmat.2006.04.040.

[43] Sahoo, A., Sarkar, S., Singh, R. P., Kafatos, M., Summers, M. E. (2005): Declining Trend of Total Ozone Column over the Northern Parts of India. – International Journal of Remote Sensing 26: 3433-3440. Doi:10.1080/01431160500076467.

[44] Satheesh, S. K., Moorthy, K. K. (2005): Radiative effects of natural aerosols: A review. – Atmos. Environ. 39(11): 2089-2110. Doi:10.1016/j.atmosenv.2004.12.029.

[45] Seinfeld, J. H., Pandis, S. N. (2016): Atmospheric Chemistry and Physics: from air pollution to climate change. 3rd Edt. – John Wiley & Sons. ISBN-13: 978-1-118-94740-1.

[46] Shan, W. P., Yin, Y. Q., Zhang, J. D., Ding, Y. P. (2008): Observational Study of Surface Ozone at an Urban Site in East China. – Atmospheric Research 89: 252-261. Doi:10.1016/j.atmosres.2008.02.014.

[47] Sidhu, B. S., Beri, V. (2008): Rice residue management: farmer’s perspective. – Indian Journal of Air Pollution Control VIII(I): 61-67.

[48] Stevenson, D., Dentener, F., Schultz, M., Ellingsen, K., Van Noije, T., Wild, O., Zeng, G., Aman, M., Atherton, C., Bell, N. (2006): Multimodel ensemble simulations of present-day and near-future tropospheric ozone. – J. Geophys. Res. Atmos. 111(D8): D08301. Doi:10.1029/2005JD006338.

[49] Streets, D. G., Canty, T., Carmichael, G. R., Defo, B., Dickerson, R. R., Duncan, B. N., Edwards, D. P., Haynes, J. A., Henze, D. K., Houyoux, M. R., Jacob, D. J., Krotkov, N. A., Lamsal, L. N., Liu, Y., Lu, Z., Martin, R. V., Pfister, G. G., Pinder, R. W., Salawitch, R. J., Wecht, K. J. (2013): Emissions Estimation from Satellite Retrievals: A Review of
Current Capability. – Atmospheric Environment 77: 1011-1042. Doi:10.1016/j.atmosenv.2013.05.051.

[50] Susskind, J., Barnet, C. D., Blaisdell, J. M. (2003): Retrieval of atmospheric and surface parameters from AIRS/AMSU/HSB data in the presence of clouds. – IEEE Trans. Geosci. Rem. Sens. 41: 390-409. Doi: 10.1109/TGRS.2002.808236.

[51] Tan, K. C., Lim, H. S., MatJafri, M. Z. (2014): Analysis of Total Column Ozone in Peninsular Malaysia Retrieved from SCIAMACHY. – Atmospheric Pollution Research 5: 42-51. Doi:10.5094/APR.2014.006.

[52] The Royal Society (2008): Ground-level Ozone in the 21st Century: Future Trends, Impacts and Policy Implications. – The Royal Society, London. Science policy report 15/08. ISBN: 978-0-85403-713-1.

[53] Ul-Haq, Z., Tariq, S., Ali, M., Mahmood, K., Batool, S. A., Rana, A. D. (2014): A Study of Tropospheric NO2 Variability over Pakistan Using OMI Data. – Atmospheric Pollution Research 5: 709-720. Doi:10.5094/APR.2014.080.

[54] UNEP and WMO (2011): Integrated assessment of black carbon and tropospheric ozone. – United Nations Environment Programme, Nairobi.

[55] Van Dingenen, R., Dentener, F. J., Raes, F., Krol, M. C., Emberson, L., Cofala, J. (2009): The global impact of ozone on agricultural crop yields under current and future air quality legislation. – Atmos. Environ. 43(3): 604-618. Doi:10.1016/j.atmosenv.2008.10.033.

[56] Wang, L., Emmerich, J. S., Persily, A. K., Lina, C. C. (2012): Carbon Monoxide Generation, Dispersion and Exposure from Indoor Operation of Gasoline-Powered Electric Generators under Actual Weather Conditions. – Building and Environment 56: 283-290. Doi:10.1016/j.buildenv.2012.03.016.

[57] Xing, J., Wang, J., Mathur, R., Wang, S., Sarwar, G., Pleim, J., Hogrefe, C., Zhang, Y., Jiang, J., Wong, D.-C., Hao, J. (2017): Impacts of aerosol direct effects on tropospheric ozone through changes in atmospheric dynamics and photolysis rates. – Atmospheric Chemistry and Physics. Copernicus Publications, Katlenburg-Lindau, Germany 17: 9869-9883. Doi:10.5194/acp-17-9869-2017.

[58] Yienger, J. J., Levy, H. (1995): Empirical Model of Global Soil-Biogenic NOx Emissions. – Journal of Geophysical Research 100 (D6): 11447-11464. Doi:10.1029/95JD00370.

[59] Young, P., Archibald, A., Bowman, K., Lamarque, J.-F., Naik, V., Stevenson, D., Tilmes, S., Voulgarakis, A., Wild, O., Bergmann, D. (2013): Pre-industrial to end 21st century projections of tropospheric ozone from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). – Atmos. Chem. Phys. 13(4): 2063-2090. Doi:10.5194/acp-13-2063-2013.

[60] Yuan, J. S., Himanen, S., Holopainen, J. K., Chen, F., Stewart, C. N. Jr. (2009): Smelling global climate change: mitigation of function for plant volatile organic compounds. – Trends Ecol. Evol. 24: 323-331. Doi: 10.1016/j.tree.2009.01.012.

[61] Ziemke, J., Chandra, S., Labow, G., Bhartia, P., Froidevaux, L., Witte, J. (2011): A global climatology of tropospheric and stratospheric ozone derived from Aura OMI and MLS measurements. – Atmos Chem Phys 11(17): 9237-9251. Doi:10.5194/acp-11-9237-2011.

[62] Ziemke, J., Olsen, M., Witte, J., Douglass, A., Strahan, S., Wargan, K., Liu, X., Schoeberl, M., Yang, K., Kaplan, T. (2014): Assessment and applications of NASA ozone data products derived from Aura OMI/MLS satellite measurements in context of the GMI chemical transport model. – J. Geophys. Res. Atmos. 119(9): 5671-5699. Doi:10.1002/2013JD020914.