Ocena przydatności badania USG z zastosowaniem głowic wysokiej częstotliwości w diagnoście neuropatii uciskowych

Assessment of the utility of ultrasonography with high-frequency transducers in the diagnosis of entrapment neuropathies

Berta Kowalska

Private Specialist Practice Berta Kowalska, Cracow, Poland
Correspondence: Berta Kowalska, MD, PhD, Słomczyńskiego 12/8, 31-234 Cracow, Poland, e-mail: berta.kowalska@gmail.com
DOI: 10.15557/JoU.2014.0039

Streszczenie
Podstawowym celem pracy była ocena przydatności badania ultrasonograficznego z zastosowaniem głowic wysokiej częstotliwości w kwalifikowaniu do leczenia operacyjnego albo zachowawczego neuropatii obwodowych o charakterze uciskowym. Materiał pracy stanowiła grupa 55 osób w wieku 7–83 lata (średnia wieku 43,6 roku), w tym 28 mężczyzn i 27 kobiet, kierowanych w latach 2009–2011 na badanie ultrasonograficzne z klinicznym podejrzeniem neuropatii uciskowych, na potrzeby analizy podzielonych na cztery grupy: zespół kanału nadgarstka (1), zespół ucisku nerwu łokciowego (2) (ucisk na poziomie rowka nerwu łokciowego oraz ucisk na poziomie kanału Guyona), zespół ucisku nerwu mięśnia łokciowego (3), inne neuropatie uciskowe (4). Z analizowanej grupy wyłączono przypadki izolowanego idiopatycznego zespołu kanału nadgarstka. U wszystkich pacjentów przeprowadzono badanie podmiotowe, przedmiotowe oraz badanie ultrasonograficzne. Badania ultrasonograficzne przeprowadzono aparatami Esaote MyLab 50 oraz MyLab 60 z zastosowaniem szerokopasmowych głowic liniowych o wysokich częstotliwościach: 6–18 MHz. U 67% pacjentów (37 osób) wykonano badanie neurofizjologiczne. U wszystkich pacjentów oceniana echostruktura nerwu i jego przekrивание oraz określano pole powierzchni przekroju nerwu albo – w przypadku drobnych nerwów – średnicę. Dodatkowo w grupie 1 oceniano objaw wcięcia, w grupie 2 – niesamowity nerw w dynamicznym badaniu ultrasonograficznym, w grupie 3 – zaginanie kątowe nerwu w dynamicznym badaniu ultrasonograficznym oraz tkliwość w czasie ucisku nerwu w miejscu uwidoczniionej patologii. Analizy zebranych materiału dokonano za pomocą statystyki opisowej. W odniesieniu do weryfikacji klinicznej i operacyjnej zgodność z rozpoznaniem ultrasonograficznym osiągnięto w 96,4% przypadków. Uzyskane wyniki wskazują, że badanie ultrasonograficzne z zastosowaniem głowic wysokiej częstotliwości jest cenną metodą w kwalifikowaniu do rodzaju leczenia neuropatii obwodowych o charakterze uciskowym.
Key words
ultrasonography, peripheral nerves, neuropathies, carpal tunnel syndrome, ulnar nerve entrapment

Wstęp

Pierwsze doniesienia na temat zastosowania ultrasonografii (USG) do oceny nerwów obwodowych pojawiły się w latach 90. i dotyczyły zespołu cieśni kanału nadgarstka, czyli neuropatii uciskowej nerwu pośrodkowego (1,2). W ostatnim dziesięcioleciu, wraz z wprowadzeniem głovic ultradźwiękowych o wysokich częstotliwościach, badanie USG stało się integralnym elementem oceny pacjentów z podejrzeniem neuropatii obwodowych, stanowiąc uzupełnienie rutynowo wykonywanych badań diagnostycznych, tj. badania klinicznego i elektromiografii (EMG) (3–7). Ze względu na możliwość oceny jedynie krótkich odcinków nerwów obwodowych, niższą rozdzielczość (w porównaniu z badaniem USG), ograniczoną dostępność, a także wysoką cenę rezonansowych wysoko- połowych urządzeń, USG stanowiło wprawdzie w diagnozie neuropatii obwodowych (8–11). Wśród neuropatii obwodowych można wymienić: neuropatie uciskowe, pourozowe, guzy nerwów obwodowych oraz neuropatie pooperacyjne.

Neuropatie uciskowe są wynikiem przewlekłego ucisku na nieść nerwu obwodowego, najczęściej przez pasma włókniaste i więzadla na poziomie kanałów kostno-włóknistych, w których przebiega nerw. Przyczyną tej grupy neuropatii mogą być również guzy tkanki miękkiej (tłuszczak, włókniak), zmiany naczyniowe (tętniak, warianty anatomiczne przebiegu naczyń) albo kostne, wyrosła. W wyniku ucisku dochodzi do zaburzeń ukrwienia i związanymi z tym procesów o charakterze obrzęku, a później degeneracji tkanki nerwowej. Dalszą konsekwencją jest zaburzenie funkcji, a więc przewodzenia impulsów dystalnie od miejsca ucisku.

Celem badania USG było określenie poziomu i przyczyny ucisku oraz ocena obrazu pnia nerwowego na odcinku objętym patologią.

Abstract

The primary aim of this paper was to assess the relevance of high-frequency ultrasound examination in qualifying patients for either surgical or conservative treatment of peripheral entrapment neuropathies. The study was conducted in a group of 55 patients aged 7–83 (mean age 43.6), including 28 males and 27 females, who in 2009–2011 were referred to an ultrasound examination due to a clinical suspicion of entrapment neuropathies. For the purposes of the analysis, the patients were divided into four groups: carpal tunnel syndrome (1), ulnar nerve entrapment (2) (cubital tunnel syndrome and Guyon’s canal syndrome), posterior interosseous nerve syndrome (3) and other entrapment neuropathies (4). The cases of isolated idiopathic carpal tunnel syndrome were excluded from the analysis. All patients underwent the interview, physical examination and ultrasound examination. Ultrasound examinations were performed with Esaote MyLab 50 and MyLab 60 systems using high-frequency broadband linear transducers: 6–18 MHz. Sixty-seven percent of patients (37 persons) underwent a neurophysiological test. Nerve echostructure, its hyperemia as well as nerve cross-sectional area or, in the case of small nerves, diameter were assessed in all patients. Furthermore, the following were assessed in individual groups: notch sign in group 1, nerve instability in a dynamic ultrasound examination in group 2, nerve angulation in a dynamic ultrasound examination at the site of the visualized pathology in group 3. The analyses of the collected material were performed by means of descriptive statistics. The results of clinical and surgical verification were consistent with ultrasound findings in 96.4%. The results indicate that high-frequency ultrasonography is a valuable method in qualifying patients for various types of treatment of peripheral neuropathies resulting from compression.

Introduction

The first reports on the application of ultrasonography in peripheral nerve assessment appeared in the 1990s and concerned carpal tunnel syndrome, i.e. compression of the median nerve (1,2). In the past decade, following the introduction of high-frequency transducers, ultrasonography has become an integral element in assessing patients with suspected peripheral neuropathies thus complementing routine diagnostic tests, such as clinical examination and electromyography (EMG) (3–7). Due to the possibility to assess only short fragments of peripheral nerves, lower resolution (compared to a US examination), limited availability and high cost, high-field magnetic resonance is rarely used (8–11). Peripheral neuropathies include those resulting from entrapment, trauma, peripheral nerve tumors and surgeries.

Entrapment neuropathies result from chronic compression of a peripheral nerve trunk, usually by fibrous bands and ligaments at the level of osseous and fibrous canals where the nerve runs. Another cause of these neuropathies may be soft tissue tumors (lipoma or fibroma), vascular changes (aneurysm, anatomic variants) or osseous changes, bony spurs. Compression may cause perfusion disorders and edema-like processes, and subsequently lead to the degeneration of the nerve trunk. A later consequence is function impairment, i.e. disorder in impulse conduction distally to the compression site.

The aim of the US examinations was to determine the level and cause of compression and assess the nerve trunk image at the site of pathology.
Material and methods

The study was conducted in a group of 55 patients aged 7–83 (mean age 43.6) who in 2009–2011 were referred to ultrasound examinations due to a clinical suspicion of peripheral entrapment neuropathies. The group consisted of 28 females and 27 males. Patients were referred to a US examination by orthopedists, neurologists and physiotherapists. All patients gave a written consent to the participation in the study. The examinations were conducted in two health care facilities in Cracow: Intermed and TLK Med.

The US examinations were performed with Esaote MyLab 50 and MyLab 60 systems using high-frequency broadband linear transducers: 6–18 MHz (mainly of 12–18 MHz).

The US images were analyzed with respect to clinical signs (all patients) and EMG results (37 patients).

The analyses of the collected material were performed by means of descriptive statistics. Mean values of cross-sectional areas and diameters for individual pathology groups were calculated. The ultrasound features of the peripheral nerves evaluated in the study, such as echostucture, notch sign and hyperemia, were divided into subgroups to determine the most common features of a US image of the nerves analyzed in the individual groups. Moreover, the frequency of occurrence of pain on compression with a transducer and instability of the ulnar nerve as well as angulation of the posterior interosseous nerve in a dynamic examination was calculated. The consistency of the US examinations with EMG tests, clinical examination and surgical verification was also checked. The values obtained were presented in the figures.
W analizowanej grupie pacjentów z objawami neuropatii uciskowych w badaniu USG rozpoznano 55 patologii nerwów obwodowych, które podzielono na cztery grupy:

1. zespół kanału nadgarstka (carpal tunnel syndrome, CTS) – 19 osób;
2. zespół ucisku nerwu łokciowego (ucisk na poziomie rowka nerwu łokciowego – cubital tunnel syndrome, CubTS) oraz ucisk na poziomie kanału Guyona) – 19 osób;
3. zespół ucisku nerwu miężdykostnego tylnego – 11 osób;
4. inne neuropatie uciskowe – 6 osób.

W przypadku neuropatii uciskowych CTS z analizowanej grupy wyłączone przypadki izolowanego idiopatycznego CTS, które poświęcono w literaturze wiele publikacji(1,4,12–26). Analizie poddano rzadkie przypadki CTS wywołane złamaniami kończyn przedramieniowych (3 pacjentów), przypadki obustronnego CTS u 7-letniego chłopca, przypadki ostrego zespołu obustronnych objawów CTS oraz CTS wywołany zakrzepem przetwartej tętnicy pośrodowkowej. W badaniu uwzględniono również przypadki CTS towarzyszące innym patologiom, które zostały zoperowane jednocześnie (12 pacjentów).

Średnia wieku pacjentów w poszczególnych typach neuropatii wyniosła: w grupie 1 (CTS) – 49 lat, 2 (CubTS) – 39,4 roku, 3 (neuropatia uciskowa PIN) – 37,5 roku, 4 (pozostałe neuropatie uciskowe) – 51 lat (ryc. 1).

Analizowane cechy ultrasonograficzne badanych neuropatii nerwów

1. Echosztruktura nerwów obwodowych

Dla potrzeb analizy wyników badania nerwy zmienione patologicznie podzielono pod względem echostruktury na cztery grupy:

- nerwy o prawidłowej echostrukturze, tzn. z zachowanym rysunkiem pęczkowym, w tym z widoczną warstwą onerwia poszczególnych pęczków oraz nanerwia pnia nerwu obwodowego (ryc. 2 A, B);
- nerwy o zaburzonej (zatartej) echostrukturze, tj. z widocznymi pęczkami, ale o zatartym zarysie onerwia (ryc. 3 A, B);
- nerwy o częściowo zniesionej echostrukturze – obok prawidłowego rysunku pęczkowego widoczna była tkanka patologiczna (ryc. 4 A, B);
- nerwy o całkowicie zniesionej echostrukturze pęczkowej – w grupie znalazły się zaawansowane, długo trwające neuropatie uciskowe (ryc. 5 A, B).

2. Unaczynienie nerwów obwodowych

Prawidłowe nerwy nie wykazywały cech obecności unaczynienia w badaniu dopplerem mocy. Obecność unaczynienia traktowano jako czuły wskaźnik neuropatii. Naczynia były widoczne w obrębie onerwia lub w obrębie nanerwia (ryc. 6).

Results

In the patients with symptoms of entrapment neuropathies, 55 pathologies were diagnosed in a US examination, which were then divided into four groups:

1. carpal tunnel syndrome (CTS) – 19 patients;
2. ulnar nerve entrapment (cubital tunnel syndrome – CubTS and Guyon’s canal syndrome) – 19 patients;
3. posterior interosseous nerve syndrome – 11 patients;
4. other entrapment neuropathies – 6 patients.

The cases of isolated idiopathic CTS were excluded from analysis due to the fact that there are numerous papers devoted to this type of neuropathy(1,4,12–26). Only rare cases of CTS were included, such as CTS caused by a fracture of a forearm bone (3 patients), a case of bilateral CTS in a 7-year-old boy, a case of acute bilateral CTS symptoms and CTS caused by a thrombus in the persistent median artery. Moreover, the study also included the cases of CTS that accompanied other pathologies which were operated simultaneously (12 patients).

The mean age of patients in the groups was: 49 in Group 1 (CTS), 39.4 in Group 2 (CubTS), 37.5 in Group 3 (posterior interosseous nerve syndrome) and 51 in Group 4 (other entrapment neuropathies) (fig. 1).

Analyzed ultrasound features of the investigated neuropathies

1. Echostucture of the peripheral nerves

For the purposes of the analysis, the pathologically altered nerves were divided into four groups in terms of their echostucture:

- nerves with normal echostucture, i.e. with retained bundle structure, visible perineurium layer of individual bundles and epineurium of the nerve trunk (fig. 2 A, B);
- nerves with disordered (blurred) echostucture, i.e. with visible bundles but blurred perineurium outline (fig. 3 A, B);
- nerves with partially absent echostucture – next to normal bundle structure, pathological tissue is visible (fig. 4 A, B);
- nerves with completely absent bundle echostucture – advanced, long-lasting entrapment neuropathies (fig. 5 A, B).

2. Vascularization of the peripheral nerves

Normal nerves showed no signs of vascularization in a power Doppler examination. The presence of vessels was considered a sensitive indicator of neuropathy. Blood vessels were visible within the perineurium or epineurium (fig. 6).
Assessment of the utility of ultrasonography with high-frequency transducers in the diagnosis of entrapment neuropathies

3. Measurements

In large nerve trunks, the cross-sectional area was measured with the use of the manual contour tracing method. When examining small nerves, the diameters of their cross-sections were measured. Due to the risk of errors resulting from trembling hands, three measurements were taken and the mean value was determined. The measurement lines were each time drawn at the level of the epineurium.

4. Notch sign in the nerve

The presence of an hourglass-like narrowing in the nerve trunk was seen in certain patients from Group 1, 2 and 3. This sign was visible when the transducer’s footprint was applied longitudinally and when the nerve trunk was modelled by a fibrous structure running transversely to the nerve, i.e. transverse carpal ligament (fig. 7), arcuate...
kanalu nadgarstka (ryc. 7), wiązadło łukowate na poziomie wejścia nerwu łokciowego pomiędzy głowy zginacza łokciowego nadgarstka (ryc. 8) albo arkadę Frohsego (ryc. 9).

5. Tkliwość palpacyjna

W analizowanych grupach 3 i 4 po uwidocznieniu patologii wykonywano ucisk głowicą na zmieniony odcinek nerwu, obserwując, czy wywołuje on ból lub parestezje. W wielu przypadkach miejsca te korespondowały z punktami wykorzystywanymi przez klinicystów w diagnostyce neuropatii, analogicznie jak w teście Tinela.

6. Stabilność nerwu łokciowego na poziomie rowka nerwu na kości ramiennej

W czasie badania dynamicznego, polegającego na zginięciu i prostowaniu ręki w stawie łokciowym, obserwowano, czy nerw łokciowy jest stabilny i pozostaje w rowku, czy też wykazuje cechy niestabilności, ulegając przemieszczaniu na przednią powierzchnię nadkłykcia przyśrodkowego kości ramiennej (zwinięcie nerwu) albo nie dalej niż na szczyt nadkłykcia (podwichanie). Obie te sytuacje traktowano jako wyraz niestabilności. Do badania wykorzystywano przyłożenie podłużne czola głowicy na poziomie bruzdy nerwu łokciowego.

5. Tenderness on palpation

When pathologies have been visualized in Groups 3 and 4, a compression with a transducer was applied to the altered nerve segment to see whether it provoked pain or paresthesia. In multiple cases, these sites were consistent with the points used by clinicians in neuropathy diagnosis, analogously to the Tinel sign.

6. Stability of the ulnar nerve at the level of the humeral groove

During a dynamic examination, which consisted in flexion and extension of the arm at the elbow joint, it was observed whether the ulnar nerve was stable and remained in the groove, or whether it manifested features of instability by e.g. dislocation to the anterior surface of the medial epicondyle of the humerus (nerve dislocation) or no further than to the apex of the epicondyle (subluxation). Both these conditions were treated as a manifestation of instability. The examination involved transverse footprint application at the level of the ulnar nerve groove.
Na podstawie wyniku badania klinicznego i USG pacjentów kwalifikowano do leczenia operacyjnego bądź zachowawczego. Zoperowano 52 chorych, zachowawczo leczono 3 osoby.

W przypadku przewlekłych neuropatii uciskowych w badaniu USG najczęściej obserwowano obrzęk i przekrświenie nerwu proksymalnie od miejsca kompresji. Na przekroju rurga diagnostyczne były oceniane pod kątem ewentualnych patologii oddziałujących na nerw poprzez „efekt masy”, takich jak wewnętrzno-stawowy wysięgęś. Było zaznaczane obniżenie echogeniczności stanowisko kostne (osteofitoza). W sytuacjach wątpliwych dokonywano oceny porównawczej z nerwem w kończynie przeciwnej, pod warunkiem braku patologii w okolicy referencyjnej. Pośrednią wartość stanowiły czas odniknięcia zmian w USG. W badaniu klinicznym ocenia się często również nośność obrzęku w obrębie kompresji wraz z obniżeniem aktywności (hypersensoryczność, zmęczenie, ból).

Porównanie wyników badania EMG oraz USG

U 67% pacjentów wykonano badanie EMG. Najwięcej badań przeprowadzono w grupie 2 (100%), najmniej w grupie 3 – przewlekłych neuropatii uciskowych PIN (36,36%) oraz w grupie 4 – przewlekłych neuropatii uciskowych (16,6%).

Badanie EMG w 20% przypadków (11 osób) nie potwierdziło cech neuropatii stwierdzonych w USG. Największą liczbę pomyłek EMG notowano w grupie CubTS (27,27%).

Omówienie wyników

Neuropatie uciskowe nerwów obwodowych stanowią liczną grupę patologii z pogorzańczego neurologii oraz ortopedii i traumatologii narządu ruchu. Pacjenci z tymi schorzeniami zgłaszają się również do gabinetów rehabilitacyjnych. Przez wiele lat podstawową metodą diagnostyczną neuropatii obwodowych o charakterze uciskowym była ocena kliniczna. W latach 40. ubiegłego wieku diagnostykę neuropatii nerwów obwodowych poszerzono o czynnościowe badanie ekrantograficzne[27–29]. Od 90. obserwuje się coraz większą popularność ultrasonografii w diagnostyce neuropatii obwodowych – badanie to w ostatnim dziesięcioleciu stało się wiodącą metodą rozpoznawania i monitorowania leczenia tych patologii.

Based on clinical and US examinations, patients were qualified for either surgical or conservative treatment. Fifty-two patients were operated on, and 3 received conservative treatment.

In the case of chronic entrapment neuropathies, US images usually revealed edema and hyperemia of the nerve proximally to the compression site. In the longitudinal view, an hourglass-like narrowing of the nerve was observed, and in the transverse view, a so-called “lift technique,” a segmental change of shape was observed – from oval to round, loss of echogenicity corresponding to this site and blurred bundle structure, which attested to the presence of edema. The tissues adjacent to the nerve were assessed in terms of possible pathologies that affected the nerve by so-called “mass effect,” e.g. joint effusion, benign proliferative lesions or bony spurs (osteophytes). In situations of doubt, a contralateral extremity was scanned for comparison provided that there were no pathologies in the reference area. Certain indirect information on the condition of the nerve was also obtained by scanning the muscles innervated by this nerve.

Comparison of EMG and US findings

Sixty-seven percent of patients underwent an EMG examination. The greatest number of such tests was conducted in Group 2 (100%), and the lowest number – in Group 3 (chronic posterior interosseous nerve entrapment, 36.36%) and in Group 4 (chronic entrapment neuropathies, 16.6%).

A small number of examinations of the posterior and anterior interosseous nerves was a result of technical difficulties and a large number of false negative results in assessing less advanced changes. The RSNR was not assessed in the EMG test due to a too unambiguous clinical assessment (the nerve is purely sensory, and clinical and US examinations were diagnostic for the surgeon).

The EMG examination did not confirm the features of neuropathy detected in ultrasonography in 20% of cases (11 patients). The greatest number of errors in EMG was noted in the CubTS group (27.27%).

Discussion

Entrapment neuropathies of the peripheral nerves are a numerous group of pathologies bordering neurology, orthopedics and traumatology. Patients with such conditions also report to rehabilitation clinics. For many years, the clinical assessment was the basis for diagnosing entrapment neuropathies of the peripheral nerves. In the 1940s, the diagnosis of peripheral nerve pathologies was expanded to include functional electromyographic tests[27–29]. Since the 1990s, ultrasonography has been gaining popularity. In the past decade, this examination has become the leading method for diagnosis of these pathologies and monitoring of their treatment.
W badaniach własnych nerw pośredkowy w przebiegu CTS wykazywał następujące cechy ultrasonograficzne (tab. 1):

Zespół kanału nadgarstka (19 pacjentów)

- średnia wartość pola powierzchni nerwu CSAc – 13,7 mm², CSAp – 8,6 mm²

U 14 osób z tej grupy wykonano badanie EMG, które korelowało z wynikiem badania USG jedynie u 11 pacjentów, co stanowi 57,9%. U 3 osób wynik badania EMG nie wykazał odchyżeń od normy, przy obecnych zmianach w ocenie ultrasonograficznej, potwierdzonych śródoperacyjnie. U 5 osób nie przeprowadzono badania neurofizjologicznego.

W literaturze światowej najczęstszym kryterium diagnostycznym CTS jest pomiar pola powierzchni przekroju poprzecznego nerwu pośredkowego na dwóch poziomach, tj. na poziomie wejścia do kanału nadgarstka (CSAc) oraz na poziomie dystalnej części mięśnia nawrotnego czworobocznego (CSAp). Ewentualnie pomiar jego wymiarów poprzecznych na poziomie kanału nadgarstka [1,18–22,24–26,30–32]. Badacze posługują się również oceną echogeniczności oraz unaczynienia nerwu na poziomie proksymalnym w stosunku do widocznej poprzecznej nadgarstka [4,12,16,18,23]. Niektórzy wskazują na przydatność pomiaru grubości tego więzadła [23] albo oceny kształtu nerwu na przekroju poprzecznym [14].

W pracy własnej głównym kryterium diagnostycznym była różnica pól powierzchni przekroju nerwu CSAc oraz CSAp – zostało ono spełnione dla wszystkich badanych nerwów. Tę metodę oceny nerwu pośredkowego wprowadził Klauser i wsp. w 2009 roku [30]. Zbadali oni 68 pacjentów

In the author’s own study, the median nerve manifested the following ultrasound features in the course of CTS (tab. 1):

Carpal tunnel syndrome (19 patients)

- the mean value of the nerve cross-sectional area CSAc – 13.7 mm², CSAp – 8.6 mm²

An EMG examination was conducted in 14 patients and correlated with the US findings only in 11 cases, which is 57.9%. In 3 patients, the EMG result showed no abnormalities while the US revealed changes verified intraoperatively. Five patients did not undergo a neurophysiological examination.

In the world literature, the most common diagnostic criterion of CTS is the measurement of the cross-sectional area of the median nerve at two levels: at the site where it enters the carpal tunnel (CSAc) and at the level of the distal aspect of the pronator quadratus muscle (CSAp), or the measurement of its transverse dimensions at the level of the carpal tunnel [1,18–22,24–26,30–32]. Investigators also mention nerve echogenicity and vascularity assessment at the proximal level of the transverse carpal ligament [4,12,16,18,23]. Some authors indicate the usefulness of measuring the thickness of this ligament [23] or assessment of the nerve shape in the transverse plane [14].

In the author’s own study, the main diagnostic criterion was the difference inbetween CSAc and CSAp values – this criterion was fulfilled by all the nerves examined. This median nerve assessment method was introduced by Klauser et al. in 2009 [30]. They examined 68 patients with CTS symptoms (100 wrists) and 58 healthy volunteers.

Parameter	Średnia	Odch. stand.	Min.	Me	Maks.
Różnica pól powierzchni (mm²)	5,6	2,7	1	6	10

Tab. 1. Częstość występowania poszczególnych analizowanych elementów ultrasonograficznych u pacjentów z objawami CTS

Tab. 1. Frequency in which individual ultrasound elements occurred in patients with CTS symptoms
z objawami CTS (100 nadgarstków) oraz 58 zdrowych ochotników. U osób z CTS średnia wartość CSAc wynosiła 16,8 mm², a z CSAp – 9,5 mm². Za diagnostyczną dla CTS wartość różnicy pół powierzchni na tych poziomach autory uznały 2 mm². Stosując to kryterium, rozpoznaли CTS z czułością 99% i swoistością 100%. Uzyskane wyniki są zbliżone do własnych, przy czym różnica pół powierzchni CSAp i CSAc była jedynym parametrem analizowanym przez Klauser i wsp., podczas gdy w badaniach własnych posługiwało się również pozostałymi kryteriami, wymienionymi powyżej.

Dwa lata później ukazał się kolejny artykuł Klausera i wsp., dotyczący kryteriów diagnostycznych neuropatii nerwu pośrodkowego dwudzielnego(30,31). W tych przypadkach za diagnostyczną dla neuropatii różnicę pomiędzy CSAp a sumaryczną wartościa pół powierzchni obydwu odbić nerwu w miejscu wejścia do kanału nadgarstka autorzy uznaли 4 mm². Dla tej wartości czułość i swoistość badania USG w rozpoznawaniu CTS wynosiły odpowiednio 92,5% i 94,6%.

W pracy własnej nerw dwudzienny występował u 4 pacjentów, przy czym u 3 wykazywał cechy zmian neuropatycznych, zaś u 1 obraz ultrasonograficzny nerwu był prawidłowy. Różnice pomiędzy CSAp i sumą CSAc w obu odnogach u 3 pacjentów wynosiły odpowiednio 4 mm², 5 mm² i 8 mm².

Uzyskane wartości różnicy CSAp i CSAc grupy 1a (CTS) były zbliżone do wyników badań Klausera i wsp.(30,31) i w badaniach własnych wynosiły odpowiednio 8,6 mm² oraz 13,7 mm². W materiale Klausera i wsp. u pacjentów z niewielkim zaawansowaniem zmian (41% badań) CSAp wynosiło 9,1 mm², a CSAc – 14,4 mm², natomiast u pacjentów z dużym zaawansowaniem zmian (59%) CSAp sięgało 9,7 mm², a CSAc – 18,5 mm². W pracy własnej jedynie u 6 spośród 19 badanych objawy kliniczne oraz wynik badania EMG wskazywały na duży stopień zaawansowania neuropatii (31,7%).

Do czasu opublikowania obydwu prac Klausera i wsp.(30,31) wiodącym kryterium diagnostycznym CTS był pomiar jedynie CSAc, którego wartości wahały się w granicach 9–14 mm², a czułość i swoistość wynosiły odpowiednio 82–94% i 65–97%(18–23). W badaniach polskiego ośrodka, opublikowanych w 2013 roku, wartość CSAp wynosiła aż 17,6 mm²(228). Wcześniej publikowanych pracach również uzyskiwano bardzo różne wyniki.

Pionierskie doniesienia na temat diagnozy ultrasonograficznej CTS pojawiły się w 1992 roku(30). Austriacy autorzy przedstawili wyniki badań USG z użyciem głowicy liniowej o częstotliwości 7 MHz (w badaniach własnych 18 MHz) u 18 osób z objawami CTS. Mierzyli dwa wymiary poprzeczne obwodu nerwu oraz jego pole powierzchni na trzech poziomach: na wysokości stawu DRUJ (distal radioulnar joint; obecnie w literaturze i w badaniach własnych określany jako CSAp), kości grochowatej (CSAc) oraz haczyka kości haczykowatej. Rozpoznanie ustalano na podstawie trzech kryteriów:

In patients with CTS, the mean CSAc was 16.8 mm² and CSAp – 9.5 mm². The authors assumed that a 2 mm² difference in the cross-sectional values at these levels was diagnostic for CTS. Using this criterion, they diagnosed CTS with the sensitivity of 99% and specificity of 100%. The results obtained by the aforementioned investigators are similar to the findings of the author in her own study. However, the CSAp and CSAc difference was the only parameter tested by Klauser et al., whereas the author of this study also included other criteria, as mentioned above.

Two years later, another article by Klauser et al. appeared regarding diagnostic criteria of the bifid median nerve neuropathies(30,31). In such cases, the authors decided that a diagnostic difference between CSAp and a total of the cross-sectional areas of both branches of the nerve as they entered the carpal tunnel was 4 mm². The sensitivity and specificity of the US examination in identifying CTS for this value was 92.5% and 94.6% respectively.

In the author’s own study, the bifid nerve was observed in 4 patients: in 3 persons, it manifested features of neuropathy, and in 1 – the ultrasound image was normal. The differences between CSAp and the sum of CSAc of both branches of the nerve measured in the 3 patients were 4 mm², 5 mm² and 8 mm² respectively.

The difference values of CSAp and CSAc in Group 1a (CTS) were similar to those obtained by Klauser et al.(30,31), and in the author’s own study amounted to 8.6 mm² and 13.7 mm². In the material of Klauser et al., CSAp of patients with less advanced changes (41% of examinations) amounted to 9.1 mm² and CSAc was 14.4 mm²; in those with highly advanced changes (59%), CSAp was 9.7 mm² and CSAc – 18.5 mm². In the author’s own study, only 6 of 19 patients manifested clinical signs and had EMG results that could indicate considerable advancement of neuropathy (31.7%).

Until Klauser et al. published their two papers(30,31), the leading CTS diagnostic criterion was the measurement of CSAc only, the values of which ranged from 9–14 mm² and the sensitivity and specificity ranges were 82–94% and 65–97% respectively(18–23). In the studies conducted in the Polish center, published in 2013, the CSAc values amounted to 17.6 mm²(228). In the papers published earlier, the results varied considerably as well.

The pioneer reports regarding ultrasonography in CTS diagnosis appeared in 1992(30). The Austrian authors presented the results of US examinations performed with the use of 7 MHz transducers in 18 patients with CTS symptoms (in the author’s own study the transducer frequency was 18 MHz). They measured two transverse dimensions of the nerve trunk and its cross-sectional areas at three levels: at the DRUJ joint (distal radioulnar joint which is currently referred to as CSAp both in the literature and in the author’s own study), the pisiform bone (CSAc) and the hook of the hamate bone. The diagnosis was made on
zwiększenia pola powierzchni nerwu pośrodkowego na jednym z trzech poziomów, spłaszczenia pnia nerwu w przekroju podłużnym oraz obecności dłoniowego uwypuklenia więzadła poprzecznego kanału nadgarstka. Średnie pole powierzchni nerwu pośrodkowego na poziomie kości grochowatej w pracy autorów wynosiło 8,1 mm² (a więc mniej niż w badaniach własnych i w prezentowanych pracach współczesnych), spłaszczenie nerwu – 2:7 (jako stosunek wymiaru AP do wymiaru bocznego), z kolei uwypuklenie troczka przekraczało 2,1 mm. Dwa ostatnie kryteria nie są obecnie wykorzystywane ze względu na ich bardzo niską czułość i swoistość.

W kolejnym badaniu z lat 90. uzyskano odmienne wyniki od cytowanych powyżej(21). Duncan i wsp. w badaniach przeprowadzonych wśród 68 osób z objawami neuropatii nerwu pośrodkowego za diagnostyczną wartość CSAc przyjęto 9 mm². Pomiaru dokonywali na poziomie kości grochowatej, a do badania używali głowic o częstotliwościach 7–10 MHz.

W tym samym roku (1999) Lee i wsp. za diagnostyczną wartość CSAc uznaли 15 mm² (a więc porównywalną z używanymi w pracy własnej oraz przez Klausera i wsp.)(20). Przyczyną różnic uzyskanych wartości w badaniach cytowanych autorów, poza aspektami technicznymi (niska czułość, potwierdzono w porównaniu z aktualnymi badaniami), mogła być inna metoda pomiarów. Jedynie nie liczne publikacje wskazują, że obrys nerwu powinien obejmować linię nerwierwa (czyli nie obrys po jego wewnętrznej czy zewnętrznej stronie)(30).

W 2000 roku Sarría i wsp. (32) jako diagnostyczną dla CTS wartość CSAc wyznaczyli 11 mm². Ocenili ultrasonograficznie 64 nadgarstki z objawami ucisku na nerw pośrodkowy, potwierdzonego w badaniach neurofizjologicznych. Czułość tego kryterium wyniosła zaledwie 60%. Podobnie niska była czułość kryterium uwypuklenia troczka zginaczy powyżej 2,5 mm (69,2%). Hiszpańscy autorzy nie potwierdzili ponadto wartości diagnostycznej kryterium spłaszczenia nerwu. Ponieważ wniosek ten pokrywa się z własnymi obserwacjami, tego elementu obrazu USG nerwu pośrodkowego nie stosowano w badaniach.

W 2004 roku Altinok i wsp., na podstawie badań USG u 26 osób z objawami CTS, w tym 14 z objawami obustronnymi, za wartość diagnostyczną pola przekroju poprzecznego nerwu pośrodkowego uznał 9 mm² – zominanieni dla CTS(25), a więc podobnie jak kilka lat wcześniej Duncan i wsp. (21). Autorzy oceniali pole powierzchni nerwu pośrodkowego na trzech poziomach (DRUJ, kość grochowata oraz haczyk kości haczykowatej), dodatkowo analizowali uwypuklenie więzadła poprzecznego oraz spłaszczenie nerwu w przekroju podłużnym. Najczęszym parametrem diagnostycznym CTS (czułość 72,5%) był obrzeg nerwu, liczony jako stosunek pola powierzchni przekroju poprzecznego na poziomie dystalnym do proksymalnego (DRUJ a poziom haczyka kości haczykowatej). Czułość parametru pola powierzchni przekroju poprzecznego nerwu powyżej 9 mm² mierzonego na poziomie kości grochowatej wyniosła 65%, natomiast uwypuklenia więzadła the basis of three criteria: increase in the cross-sectional area of the median nerve at one of the three levels, flattening of the nerve trunk in the longitudinal section and the presence of palmar bulge of the transverse carpal ligament. The mean cross-sectional area of the median nerve at the level of the pisiform bone was 8.1 mm² (it was lower than in the author’s own study and in the contemporary articles presented above), nerve flattening – 2:7 (the ratio of the AP dimension to the lateral one), and palmar bulge exceeded 2.1 mm. The last two criteria are not currently used due to their low sensitivity and specificity.

Another study conducted in the 1990s resulted in different outcomes than those mentioned above(21). Duncan et al., in their study conducted in a group of 68 patients with median nerve neuropathy symptoms, assumed that CSAc diagnostic value was 9 mm². The measurements were made at the level of the pisiform bone, and the examinations were conducted with probes with the frequency of 7–10 MHz.

In the same year (1999), Lee et al. decided that CSAc of 15 mm² should be considered a diagnostic value (this value is comparable with the one used in this study and by Klauzer et al.).(29) The reason for such discrepancies between the values obtained in the aforementioned studies could, apart from technical aspects (low frequency of the probe compared to contemporary studies), lie in a different method of taking the measurements. Only few publications indicate that the nerve contour tracing should encompass the line of the epineurium (i.e. not its internal or external aspects)(30).

In 2000, Sarría et al. assumed that CSAc of 11 mm² should be the diagnostic value of CTS.(32) They conducted ultrasound examinations of 64 wrists with symptoms of the median nerve compression confirmed in neurophysiological tests. The sensitivity of this criterion reached only 60%. The sensitivity of the flexor retinaculum bulging above 2.5 mm was also low (69,2%). Moreover, the Spanish authors failed to confirm the diagnostic value of nerve flattening. Since such a conclusion is consistent with the author’s own observations, this element of the US median nerve image was not used in this study.

In 2004, Altinok et al. decided that the diagnostic value of the median nerve cross-sectional area which is a reliable indicator of CTS should be 9 mm². This was based on US examinations conducted in 26 patients with CTS symptoms, including 14 bilateral cases. The value assumed by the authors was similar to the one proposed several years before by Duncan et al.(21) The authors measured the median nerve cross-sectional area at three levels (DRUJ, pisiform bone and the hook of the hamate bone). Moreover, they also analyzed the transverse carpal ligament bulging and flattening of the nerve in the longitudinal section. The most sensitive diagnostic parameter for CTS (sensitivity of 72,5%) was nerve edema calculated as the ratio of the cross-sectional area at the distal level to the proximal one (DRUJ and the hook of the hamate bone). The sensitivity of the cross-sectional area exceeding 9 mm² measured at
Assessment of the utility of ultrasonography with high-frequency transducers in the diagnosis of entrapment neuropathies

powyżej 2.5 mm – 62.5%. Choć autorzy nie przedstawili dokładnie metodyki pomiaru tego kryterium, jedynym wytłumaczeniem niskiej czułości przyjętego kryterium pola powierzchni nerwu może być niewłaściwa metoda pomiaru (po wewnętrzny zarysie nanerwia).

W 2004 roku ukazała się polska publikacja oparta na analizie 52 chorych oraz 44 osób z grupy kontrolnej[12]. Oceniano pole powierzchni oraz echogeniczność nerwu pośrodkowego na poziomie kości grochowatej. Dla wartości pola powierzchni nerwu powyżej 9.3 mm² czułość badania USG w diagnostyce CTS wyniosła 92,1%, czułość parametru redukcji grubości pnia nerwowego w projekcji podłużnej – 92,1%. W badaniach własnych pole przekroju poprzecznego nerwu było większe i wynosiło 13,7 mm². W tym przypadku przyczyną różnictwa wyników była najpewniej niższa częstotliwość głowicy, jaką posługiwali się autorzy – 6–11 MHz. Obniżenie echogeniczności w cytowanej pracy wykazano u 82,9% chorych, co stanowi zbliżoną wartość do uzyskanej w badaniach własnych (78,9%).

Różnica wyników między wynikami kolejnej pracy a własnymi także należy tłumaczyć niższą częstotliwością głowicy USG. Koyuncuoglu i wsp. w 2005 roku na podstawie badań 221 osób (319 nadgarstków) za wartości diagnostyczną CSAc uznali 8,83 mm² (czułość 89,5%, swoistość 94,7%)[13]. Autorzy posługiwali się głowicami o częstotliwościach 5–12 MHz, dokonując pomiaru nerwu na poziomie kości grochowatej.

Niezbyt wyszą wartość pola powierzchni przekroju poprzecznego nerwu pośrodkowego, ale nadal niższą od uzyskanych w badaniach własnych oraz Klauser[14], uzyskali autorzy polscy w 2009 roku[13]. Pole powierzchni nerwu pośrodkowego świadczące o CTS wynosiło powyżej 10 mm² (CSAc) (czułość 74,5%, specyficzność 88%). Po raz pierwszy w literaturze zwrócono ponadto uwagę na „zeszłąść” nerwu w kierunku promieniowym, występujący u 68% badanych. Objaw ten nie został potwierdzony w badaniach innych autorów ani w badaniach własnych.

W pracy innego polskiego zespołu z 2011 roku autorzy analizowali wyniki 139 badań przeprowadzonych u 76 pacjentów z potwierdzonymi w badaniach elektrofizjologicznych cechami CTS oraz 25 badań u 14 zdrowych ochotników[14]. Badacz oceniali parametr nieuwzględniony w badaniach własnych, tj. kształt przekroju poprzecznego nerwu na poziomie kanalu nadgarstka. U pacjentów z nieprawidłowym wynikiem badania elektrodiagnostycznego trójkątny kształt przekroju poprzecznego uwidoczniono w 13 na 118 przypadków (11%), podczas gdy u osób z prawidłowym wynikiem badania elektrodiagnostycznego – zarzedwie w 2 na 21 przypadków (9,5%). Nie obserwowano takiej deformacji u żadnego ze zdrowych ochotników. W opinii własnej oraz innych autorów wartość tego kryterium wydaje się wątpliwa, gdyż kształt nerwu pośrodkowego na poziomie kanalu nadgarstka ulega naturalnej zmianie w zależności od kąta zgłębia całego palca (zarówno w stawach śródrożeczno-paliczkowych, jak i międzypaliczkowych bliższych oraz międmypaliczkowych dalszych), the level of the pisiform bone was 65%, and the sensitivity of bulging above 2.5 mm – 62.5%. Although the authors did not present the measuring methods of this criterion in detail, the only explanation of such a low sensitivity of the cross-sectional area may be inadequate measuring method (along the internal outline of the epineurium).

In 2004, a Polish publication based on 52 patients and 44 controls appeared[12]. The cross-sectional area and echogenicity of the median nerve were assessed at the level of the pisiform bone. For the cross-sectional area above 9.3 mm², the sensitivity of ultrasonography in CTS diagnosis was 92.1%, and the sensitivity of the parameter associated with nerve trunk thickness reduction in the longitudinal projection was 92.1% as well. In the author’s own studies, the cross-sectional area was larger and amounted to 13.7 mm². In this case, the reason for the differences was probably the lower frequency of the transducer used by the authors – 6–11 MHz. Lower echogenicity was demonstrated in 82.9% of patients, which is similar to the percentage obtained in the author’s own study (78.9%).

Furthermore, the discrepancies between the results of the next paper and author’s own outcomes should be also explained with the lower frequency of the US probe used. Having analyzed 221 patients (319 wrists) in 2005, Koyuncuoglu et al. assumed that CSAc value of 8.83 mm² is the diagnostic value (sensitivity 89%, specificity 94.7%)[13]. The authors used the transducers with the frequency of 5–12 MHz, and the measurements were taken at the level of the pisiform bone.

In 2009, Polish authors[13] obtained a slightly higher value of the median nerve cross-sectional area, but it was still lower than the one obtained in the author’s own and Klauser’s studies[14]. The median nerve cross-sectional area that indicated CTS was higher than 10 mm² (CSAc) (sensitivity 74.5%, specificity 88%). Furthermore, the authors, as the first ones in the literature, drew attention to radial “sliding” of the nerve, which was observed in 68% of patients. This sign was neither observed by other investigators nor in the author’s own study.

In 2011, another Polish team analyzed the results obtained in 139 examinations conducted in 76 patients with features of CTS confirmed in electrophysiological tests and in 25 examinations conducted in 14 healthy volunteers[14]. The authors evaluated the parameter that was not included in the author’s own study, i.e. the shape of the cross-section of the nerve at the level of the carpal tunnel. In patients with abnormal results of electodiagnostic tests, a triangular cross-section was visualized in 13 of 118 cases (11%), whereas in patients with normal electodiagnostic result, such a shape was observed in only 2 of 21 cases (9.5%). Such a deformation was not observed in any of the healthy volunteers. In the author’s own opinion and according to other investigators, the relevance of this criterion seems dubious since the shape of the median nerve at the level of the carpal tunnel undergoes natural changes depending on the flexion angle of each finger (in metacarpophalangeal joints as well as proximal and distal interphalangeal joints).
jak również od kąta zgięcia w stawie nadgarstkowym, od stopnia supinacji, a nawet od kąta zgięcia w stawie lokcio-
nym (poprzez wpływ na ciśnienie w kanale nadgarstka). Wystandaryzowanie ułożenia całej kończyny górnej do badania wydaje się więc problematyczne i mało powta-
rzalne. Ponadto ocena kształtu nerwu jest subiektywna, zaś odróżnienie kształtu owalnego od trójkątnego często okazuje się niemożliwe.

W 2013 roku krakowscy badacze przedstawiли pracę poglą-
dową na temat oceny ultrasonograficznej nerwu pośrodko-
wego – opisali kryteria oceny zarówno przed-, jak i poope-
racyjnej, analizując te same parametry obrazu co w pracy
wszech(26,34–35). W tym samym roku w badaniach zespołu szcze-
cińskich badaczy przeprowadzonych u 113 pacjentów śred-
nia wartość pola powierzchni nerwu pośrodkowego na
wyższości przedramienia wynosiła 9,9 mm², a na pozió-
mie wejścia do kanalu nadgarstka – 17,8 mm², a więc była
podobna do uzyskanej w badaniach własnych(28). Badacze
zwrócić uwagę, że wartość badania USG jest wyso-
ce zależna od badającego oraz od częstotliwości głowy
ich kryteriów diagnostycznych (poziom i metoda
pomiarów oraz wartości przyjęte jako graniczne).

Materiale własnym 14 pacjentów (73,4% spośród wszyst-
kich z grupy 1a) zgłosiło się na badanie USG z wynikiem
wykonanego badania EMG. W 11 przypadkach nieprawi-
dłowy wynik badania czynnosciowego korelował z obrazem
USG oraz śródroznicowym, co stanowi 57,9% pacjentów
badanych metodą EMG, natomiast u 3 osób (15,8%) wynik
badania EMG był prawidłowy pomimo objawów klinicz-
nych i objawów ultrasonograficznych, a także obrazu śró-
drożnecowym. Podobną analizę porównawczą przeprowa-
dzili Altinok i wsp., którzy jednak wykazali, że w przypadku
badania korelacja czynnościowej obraz ultrasonograficzny był
nieprawidłowy aż u 85–100% pacjentów, natomiast w przy-
padku prawidłowego zapisu EMG – u 30–55%, a więc czę-
szczyśniej niż w badaniach własnych(25).

Wysoką korelację wyników badania EMG i ultrasonogra-
ficznego w przypadku CTS udowodnili również inni auto-
rzy(26,34–35), z zastrzeżeniami(30), że nie można na podstawie
USG wnioskować o stopniu zaawansowania zmian. Rok
wczesniej badający z innego ośrodka podważali wartość
USG nie tylko w korelacjach z badaniami elektrofizjologicz-
nymi, ale w ogóle w diagnostyce CTS(30).

W bardzo ciekawej pracy z 2005 roku tureccy badacze
analizowali grupę 221 pacjentów (319 nadgarstków) z kli-
icznymi objawami zespołu kanalu nadgarstka(33). Chociaż
30–55% spośród nich w badaniu USG stwierdzono cechy CTS. Badacze
wnioskowali, iż we wczesnych stadiach CTS przy prawi-
dłowych wynikach badań EMG ultrasonografia jest warto-
ściową metodą diagnostyczną. Różnica między wynikami
innymi a cytowalnym powyżej może wiązać się ze zbyt
małą grupą pacjentów we wczesniej fazie choroby w pracy
wszech (jedynie 3 osoby). Ponadto rozbieżne opinie na
temat korelacji USG i EMG można znaleźć w kilku pol-
skich pracach(14,28).

In 2013, the authors from Cracow, Poland, published
a review on the ultrasound assessment of the median
nerve(17). They presented criteria for pre- and postope-
racyjne, analizując te same parametry obrazu co w pracy
wszech(26,34–35). W tym samym roku w badaniach zespołu szcze-
cińskich badaczy przeprowadzonych u 113 pacjentów śred-
nia wartość pola powierzchni nerwu pośrodkowego na
wyższości przedramienia wynosiła 9,9 mm², a na pozió-
mie wejścia do kanalu nadgarstka – 17,8 mm², a więc była
podobna do uzyskanej w badaniach własnych(28). Badacze
zwrócić uwagę, że wartość badania USG jest wyso-
ce zależna od badającego oraz od częstotliwości głowy
ich kryteriów diagnostycznych (poziom i metoda
pomiarów oraz wartości przyjęte jako graniczne).

In the author’s own material, 14 patients (73.4% of all
patients from the Group 1a) reported for a US examina-
tion with a result of a previously conducted EMG test. In
11 cases, the abnormal result of the functional examination
correlated with the US image and intraoperative picture,
which constitutes 57.9% of all patients who underwent
the EMG examination. In 3 persons (15.8%), however, the
EMG result was normal despite the presence of clinical
symptoms, ultrasound signs and intraoperative picture.
A similar comparative analysis was conducted by Altinok
et al. and demonstrated that the ultrasound image was
abnormal in as many as 85–100% of patients with conduc-
tion disorders, and in the case of normal EMG reading – in
30–55% of cases, i.e. more frequently than in the author’s
own study(25).

A high correlation of EMG and US examinations in the
context of CTS was also proven by other authors(26,34–35) who
noted(35), however, that ultrasonography does not allow con-
cclusions about advancement of changes to be drawn. A year
before, the authors from a different center questioned the re-
levance of ultrasonography, not only in correlation with elect-
rophysiological testing, but also as a diagnostic tool in CTS(36).

Furthermore, in a very interesting article published in
2005, Turkish authors analyzed a group of 221 patients
(319 wrists) with clinical symptoms of carpal tunnel syn-
drome(33). Although the neurophysiological tests were nor-
mal in 49 patients (59 wrists, 22.2%), almost 30% manifested
CTS signs in a US examination. The authors concluded that
in early stages of CTS when EMG results are normal,
ultrasonography is a valuable diagnostic tool. A difference
between the author’s own results and those quoted above
may be associated with too few patients in the early stage of
the disease (only 3 cases) in the author’s own study. Moreover, discrepant opinions on the correlation of US and
EMG can be also found in several Polish publications(14,28).
W badaniach własnych u jednej osoby wynik USG byłalsa wjełnym. Pacjent ten zgłaszał złożone objawy bólowe oraz zaburzenia czucia związane z przebytem urazem śródręczca spowodowanym piłą mechaniczną. W wyniku urazu dozło do uszkodzenia nerwów palcowych, ściegienia oraz do złamania kości śródręczca. Pomimo przebytej pięciu naprawczych i rewizyjnych zabiegów operacyjnych dolegliwości nasiliły się. Na podstawie obrazu ultrasonograficznego pacjenta zakwalifikowano do operacyjnego zaopatrzenia nerwiaków nerwów palcowych. W badaniu USG określono lokalizację i wielkość nerwiaków, co zostało potwierdzone śródoperacyjnie. Jeden z nerwiaków był przemieszczony na powierzchnię promieniową mięśnia glistowatego; wynik badania USG stanowił istotną wskaźówkę dla operatora. Nerw pośrodkowy w badaniu USG był prawidłowy, natomiast śródoperacyjnie chirurg stwierdził jego ucisk na poziomie kanału nadgarstka i dokonał plastiki więzadła poprzecznego. Po zabiegu dolegliwości czasowo ustąpiły, a następnie nawróciły. Trudno wnioskować, czy był to efekt zabiegu operacyjnego na nerwiakach czy na kanał nadgarstka.

W jednym przypadku stwierdzono ostry zakrzep przetrawnej tętnicy pośrodkowej jako przyczynę CTS. Nerw w USG był porąbkały, miał zatarłą ekostrukturę pęczkową, wykazywał cechy przekrzenia oraz modelowania przez więzadło poprzecznego kanału nadgarstka. Nie uwidoczniło przełomu w przetrawnej tętnicy pośrodkowej. Przyjęto postawę wyczejkującą, włączono do leczenia heparynę drobnocząsteczkową, leki przeciwczapalne oraz przeciwbórkowce. Nie uzyskano pełnej rekanalizacji tętnicy, jednak dolegliwości neuropatyczne po 3 miesiącach ustąpiły, a obraz USG nerwu pośrodkowego poprawił się. Podobny przypadek opisują inni autorzy(15).

Zespoły uciskowe nerwu łokciowego (19 pacjentów)

W grupie analizowanych neuropatii uciskowych przewlekły ucisk na nerw łokciowy dotyczył 19 osób: w 14 przypadkach wykazano ucisk na poziomie wąskału łukowego, w 2 – ucisk na poziomie przegrody międzyśmięśniowej, u kolejnych 2 osób – obecność dodatkowego mięśnia łokciowo-nadbłędzkiego, a u 1 – dodatkowy mięsień odwodniczka palca małego i ucisk na nerw na poziomie kanału Guyona. U 4 spośród 19 badanych wykazano niestabilność nerwu w rowku nerwu łokciowego w czasie dynamicznego badania USG.

U jednego pacjenta patologia miała charakter dwupoziomowy, tj. ucisk występował na poziomie rowka nerwu łokciowego na kości ramiennej oraz na poziomie kanału Guyona. Na obu poziomach przyczyną była obecność dodatkowych mięśni (łokciowo-nadbłędzkiego oraz dodatkowego odwodniczka palca małego). W wykonanym wcześniej badaniu EMG nieprawidłowy zapis uzyskano jedynie na poziomie rowka.

W jednym przypadku obrzęku nerwu łokciowego na poziomie rowka kości ramiennej na zlecenie lekarza kierującego

In this study, the result of the US examination was false negative in one patient. The patient reported complex pain symptoms and sensation disorders associated with the metacarpus injury sustained in the past with a power saw. The injury resulted in damage to the digital nerves, tendons and metacarpal bone fracture. Despite five repair and revision surgeries, the symptoms exacerbated. Based on US findings, the patient was qualified for a procedure to manage neuromas of the digital nerves. A US examination determined the localization and size of the neuromas, which was confirmed intraoperatively. One of the neuromas was dislocated to the radial surface of the first lumbrical muscle. The result of the US examination provided important information for the operator. The median nerve was normal in the US image, but intraoperatively the surgeon detected compression at the level of the carpal tunnel and performed transverse carpal ligament reconstruction. After the procedure, pain symptoms subsided temporarily but subsequently recurred. It is hard to assess whether this was the result of the surgical procedure of the neuromas or of the carpal tunnel.

In one case, an acute thrombus of the persistent median artery was identified as the cause of CTS. During the US examination, the nerve was thickened, presented a blurred bundle ekostructure, showed features of hyperemia and modelling by the transverse carpal ligament. No flow was seen in the persistent median artery. A wait-and-see attitude was assumed, and the treatment with low-molecular-weight heparin, anti-inflammatory drugs and anti-edema medications was instituted. A complete recanalization of the artery was not achieved, but neuropathic symptoms subsided after 3 months of treatment, and a US image of the median nerve improved. A similar case was also reported in the literature(15).

Ulnar nerve compression syndromes (19 patients)

In the group of analyzed entrapment neuropathies, chronic compression of the ulnar nerve was observed in 19 patients: in 14 cases the compression occurred at the level of the arcade ligament, in 2 patients – at the level of the intermuscular septum, in further 2 patients the accessory anconeus muscle was found, and in 1 patient the accessory abductor digiti minimi was observed and compression at the Guyon’s canal was identified. Of 19 cases, 4 patients manifested instability of the nerve at the ulnar groove on dynamic US examination.

In one patient, the pathology occurred at two levels, i.e. compression occurred at the level of the humeral groove and at the Guyon’s canal. The cause of entrapment at both levels was the presence of accessory muscles (accessory anconeus muscle and accessory abductor digiti minimi). The EMG test revealed abnormality only at the level of the groove.

In one case of ulnar nerve edema at the level of the humeral groove, the referring physician decided about

J Ultrason 2014; 14: 371-392
In the ultrasound assessment, the mean cross-sectional area of the ulnar nerve at the level of the groove amounted to 12.6 mm² (range: 6–22 mm²), and hyperemia at the site of the visualized thickening was present in 15 patients (78.9%). Disordered bundle echostructure, as a sign of edema and degenerative changes of the bundles, was observed in 17 patients (89.5%), and its absence was identified in 2 cases (10.5%) (tab. 2).

EMG tests were conducted in all patients. In 15 cases, the tests confirmed the pathology (78.9%), and in 4 cases, EMG revealed normal conduction (21.1%) despite the presence of clinical symptoms and abnormal US image. The US image was verified intraoperatively in each case.

In one of the first studies on this syndrome (14 symptomatic patients and 10 controls) published in 1988, the normal cross-sectional area of the ulnar nerve at the level of the groove was 6.8 mm², and proximally (at the forearm) – 5.4 mm². The criterion for CubTS diagnosis was the value of 7.5 mm² (measured at the level of the groove) – it was much lower than the value used in the author’s own study. Perhaps, the reason for such discrepancies was the lower frequency of the probe used by the authors of the study (7.5 MHz). Nonetheless, the authors drew attention to the presence of physiological dilation of the nerve outlines at the level of the groove.
Również w kolejnej pracy, z 2004 roku, średnia wartość pola powierzchni przekroju prawidłowego nerwu lókiowego na poziomie kłycia kości ramiennej była mniejsza niż w pracy własnej i wyniosła 7,9 ± 3,1 mm²[338]. Badający dodatkowo zwrócili uwagę na różnicę pół powierzchni zależnej od płci, zwłaszcza w przedziale wieku 20–40 lat. W ocenie własnej u 13 mężczyzn średnia wartość pola powierzchni wyniosła 12,5 mm², natomiast w grupie 6 kobiet była nieznacznie wyższa i wyniosła 12,8 mm².

Wiesler i wsp. w badaniu opublikowanym w 2006 roku na materiale 14 osób (15 stawów łokciowych) z objawową neuropatją nerwu łokciowego na poziomie rowka oraz 60 osób bezobjawowych wykazali, że u pacjentów bezobjawowych wartość pola powierzchni przekroju nerwu wynosiła 6,5 mm², a u objawowych – 19 mm²[339]. Wartość patologiczna uzyskana w pracy autorów mieści się w górnym zakresie wartości uzyskanych w badaniach wadliwych (zakres 6–22 mm²), co mogło wynikać z większego zaawansowania neuropatii. Jako wartość graniczną pola powierzchni przekroju poprzecznego nerwu badacze przyjęli 10 mm² – jej czułość w rozpoznawaniu CubTS wyniosła 93%, a swoistość – 98%.

Dwa lata później Yoon i wsp. dokonali oceny 26 pacjentów i 30-osobowej grupy kontrolnej[40]. Wyznaczyli stosunek pola powierzchni przekroju poprzecznego nerwu łokciowego na poziomie rowka do pola mierzonego proksymalnie od rowka. Za nieprawidłową, diagnostyczną dla CubTS wartość uznał stosunek 1,5/1 i pole przekroju poprzecznego nerwu na poziomie rowka wynoszące 8,3 mm² (czułość 100%). Średnia wartość pola powierzchni nerwu na poziomie kłycia przyśrodkowego kości ramiennej wynosiła 18,6 mm², co znacznie przekracza wartość oznaczoną w badaniu własnym. Podobnie jak w przypadku poprzedniego doniesienia mogło to wynikać z faktu, że 50% pacjentów Yoona i wsp. stanowiły osoby z zauważaną neuropatią (w pracy własnej jedynie 31,6%).

W 2009 roku włoscy badacze, stosując do badania głowie o częstotliwości 12 MHz, wykazali, że wartość pola powierzchni 11,1 mm² stanowi podstawę do rozpoznania łagodnej postaci neuropatii (u 36% pacjentów), 15,8 mm² – miernie zaawansowanej neuropatii (u 38% pacjentów), natomiast 18,3 mm² – zaawansowanej neuropatii (u 26% pacjentów)[40]. Czułość i swoistość USG w diagnostyce CubTS w badaniach autorów wyniosły 88%. Wyniki te pokrywają się z uzyskanymi w pracy własnej i mogą wskazywać, że poza specyfiką badanej grupy (zaawansowaniem choroby) istotny wpływ na rezultaty miała częstotliwość dostępnych w ubiegłych latach głowie USG.

Częstość występowania dodatkowego mięśnia łokciowo-nadbloczkowego w populacji wynosi według różnych źródeł 3–28%[42]. Opinie dotyczące wpływu tego mięśnia na objawy CubTS na poziomie rowka są rozbite. Dominuje pogląd, że jego obecność jedynie usposabia, a nie warunkuje neuropatii. Pojedyncze przypadki zespołów uciśgowych związanych z obecnością omawianego mięśnia

Moreover, in another paper published in 2004, the mean cross-sectional area of the normal ulnar nerve at the level of the condyle of the humerus was lower than in the author’s own study and amounted to 7.9 ± 3.1 mm²[338]. The investigators also drew attention to sex-related differences in cross-sectional areas, particularly in 20–40 age range. In the author’s own assessment, the mean cross-sectional area in 13 men was 12.5 mm² and in the group of 6 women, it was slightly higher and amounted to 12.8 mm².

Wiesler et al., in the study published in 2006 and conducted in the group of 14 patients (15 elbow joints) with symptomatic ulnar nerve neuropathy at the level of the groove and 60 asymptomatic individuals, demonstrated that the cross-sectional area was 6.5 mm² in the asymptomatic group and 19 mm² in the symptomatic group[339]. The pathological value obtained by the authors places itself in the upper range of the values obtained in the author’s own study (range 6–22 mm²), which could result from more advanced neuropathy. According to the authors, the limit value for a cross-sectional area was 10 mm²; the sensitivity in CubTS diagnosis was 93%, and specificity – 98%.

Two years later, Yoon et al. evaluated 26 patients and 30 controls[40]. They determined the ratio of the cross-sectional area of the ulnar nerve at the level of the groove to the area measured proximally to the groove. An abnormal value, that diagnosed CubTS, was 1.5/1 ratio and cross-sectional area of the ulnar nerve at the level of the groove of 8.3 mm² (sensitivity 100%). The mean cross-sectional area of the ulnar nerve at the level of the medial condyle of the humerus was 18.6 mm², which considerably exceeded the value determined in the author’s own study. As with the previous report, this could result from the fact that 50% of Yoon’s et al. patients were in an advanced stadium of the neuropathy (in the author’s own paper this percentage was only 31.6%).

In 2009, Italian investigators demonstrated that the cross-sectional area of 11.1 mm² was the basis to diagnose mild neuropathy (in 36% of patients), 15.8 mm² – to diagnose moderate neuropathy (38% of patients) and 18.3 mm² – to identify advanced neuropathy (26% of patients)[40]. They used transducers with the frequency of 12 MHz. The sensitivity and specificity of ultrasonography in CubTS diagnosis were 88%. These results are consistent with those obtained in the author’s own study and may indicate that, apart from the specificity of the examined group (stadium of the disease), the frequency of the US transducers, available in the past several years, had a significant influence on the results.

The prevalence of the accessory anconeus muscle in the population varies from 3 to 28% depending on the source[42]. The opinions concerning the influence of this muscle on CubTS symptoms at the level of the groove are divergent. It is generally believed that its presence does not condition neuropathy but merely predisposes to it. Single cases of compression syndromes associated with
zostały opublikowane w 2012 i 2013 roku43,44. W pracy własnej stwierdzono dwa przypadki obecności dodatkowego mięśnia łokciowo-nadbłoczkowego. U jednego pacjenta brnięcie tego mięśnia było znacznie pogrubiały, a nerw łokciowy na poziomie brzusznej wykazywał cechy obrzęku, przekrwienia oraz zaburzonej echostruktury. Ponadto stwierdzono jednoczesne występowanie dodatkowego mięśnia odwodziciela palca małego na poziomie kanału Guyona.

Niestabilność nerwu łokciowego w badaniach własnych stwierdzono w 22,2\% przypadków (u 4 spośród 19 badanych osób). Nie różnicowano dla potrzeb analizy wyników stopnia zwychania (tzn. podwichania od pełnego zwychania), wychodząc z założenia, że w obu sytuacjach drażnienie nerwu wystarczy do rozwinięcia się neuropatii. W literaturze światowej jedna z pierwszych prac na ten temat, przedstawiająca obraz dynamicznego badania USG u dwóch pacjentów z podwichaniem nerwu łokciowego, ukazała się w 2003 roku45. Siedem lat później szersze opracowanie przedstawił Filippou i wsp.46 Swoje wnioski oparli na materiale 91 pacjentów z objawami neuropatii nerwu łokciowego na poziomie łokcia. Wykazali m.in., że u 18,7\% badanych występowało podwichnięcie nerwu łokciowego, u 9,9\% – zwinięcie na przednią powierzchnię nadkłucia, a u 8,8\% zaobserwowano miejsca dodatkowego. Starannego różnicowania ze zwinięciem nerwu wymaga przeszkakiwanie głów przyśrodkowej mięśnia trójgłowego na krawędzi nadkłucia. Klinicznie obie sytuacje wygląda podobnie – dochodzi do wyczuwalnego przemieszczania struktury w przedziale przyśrodkowym stawu łokciowego w czasie jego zginania. Na niestabilność nerwu łokciowego w kontekście snapping elbow („lokcie trzaskający”) zwracali uwagę Okamoto i wsp. w 2000 oraz Jacobson i wsp. w 200147,48. W pierwszej z wymienionych prac w badaniach USG 200 łokci zdrożnych ochotników autorzy w 27\% przypadków stwierdzili podwichanie nerwu (przemieszczanie w kierunku szczycu nadkłucia), a u 20\% – pełne zwinięcie (przemieszczanie na przednią powierzchnię nadkłucia). Wyniki te są znanym różnice od obserwacji własnych oraz innych badaczy, co może wynikać z różnicy demograficznych wśród populacji japońskich pacjentów. Wydaje się mniej prawdopodobne, że różnica wiąże się z niższą częstotliwością głowy użytej do badań USG (7,5 MHz).

Jacobson opisał trzy przypadki „lokcia trzaskającego” rozpoznanego w badaniu USG. W badaniach własnych w określonym analizą nie stwierdzono przypadku snapping elbow – każdy pacjent z niestabilnością nerwu łokciowego na poziomie łokcia był analizowany również pod kątem tej patologii.

Zespół uciskowy nerwu międzykościowego tylnego (11 pacjentów)

Do grupy pacjentów z neuropatją uciskową nerwu międzykościowego tylnego włączono 11 przypadków, w tym 7 osób, u których ucisk na nerw powodowało pasmo powięziowe, oraz 4 przypadki, w których przyczyną ucisku był krzyżujący pęczek naczyniowy.

Instability of the ulnar nerve was found in 22.2\% of cases (in 4 of 19 patients). The degree of luxation (i.e., subluxation to complete dislocation) was not differentiated since it was assumed that in both situations the irritation of the nerve was sufficient for a neuropathy to develop. One of the first papers in the world literature concerning dynamic US examination conducted in two patients with ulnar nerve subluxation appeared in 200343,45. Seven years later, a broader review was presented by Filippou et al.46 Their results were based on 91 patients with symptoms of ulnar nerve neuropathy at the elbow joint. They demonstrated that ulnar nerve subluxation must be carefully differentiated from snapping of the medial head of the triceps over the epicondyly. Clinically, both conditions are similar – there is a palpable dislocation of the structure in the medial cubital compartment on its flexion. The instability of the ulnar nerve in the “snapping elbow” context was discussed by Okamoto et al. in 2000 and Jacobson et al. in 200147,48. In the former paper, the authors performed US examinations of 200 elbows of healthy volunteers and found that nerve subluxation (dislocation towards the apex of the epicondyly) occurred in 27\% of cases, and a full dislocation (towards the anterior surface of the epicondyly) occurred in 20\% of cases. These results are considerably different from the author’s own observations and investigations of other authors, which may result from demographic differences in the Japanese population. It seems less likely that the difference could be associated with the lower frequency of the transducer used in the US examinations (7.5 MHz).

Jacobson reported three cases of “snapping elbow” identified in a US examination. In the author’s own study, there were no cases of this condition – each patient with ulnar nerve instability at the cubital level was also evaluated for the presence of this pathology.

Posterior interosseous nerve syndrome (11 patients)

The group of patients with posterior interosseous nerve entrapment consisted of 11 patients, including 7 cases in which compression was caused by the bands of fascia and 4 cases in which entrapment was caused by the crossing vascular bundle.
Assessment of the utility of ultrasonography with high-frequency transducers in the diagnosis of entrapment neuropathies

Parametr	Średnia	Odch. stand.	Min.	Me	Maks.
Średnica (mm)	2,0	0,5	1,2	1,8	2,7

Tab. 3. Częstość występowania poszczególnych analizowanych elementów ultrasonograficznych u pacjentów z objawami przewlekłej neuropatii PIN

Tab. 3. Frequency in which individual ultrasound elements occurred in patients with symptoms of chronic PIN neuropathy

Badania EMG wykonano u czterech pacjentów – potwierdzenie rozpoznania USG uzyskano zaledwie w jednym przypadku, w pozostałych zapisy EMG był prawidłowy. U wszystkich badanych ucisk głowicą USG miejsca uwidocznionej patologii wywoływał charakterystyczny silny ból. Średnica nerwu na poziomie wejścia do mięśnia odwracacza przedramienia wahała się od 1,2 do 2,7 mm (średnia 2,0 mm) (tab. 3). Ze względu na niewielki rozmiar nerwu ocena pola powierzchni jego przekroju oraz unaczyńienia nerwu nie była miarodajna.

W ostatnich latach zespół uciskowy nerwu międzykożysto tynowego był tematem kilku publikacji. Jedną z pierwszych prac na ten temat opublikowali Bodner i wsp. w 2002 roku(49). Porównując obraz USG 4 pacjentów z objawami PIN i 10 zdrowych ochotników, wykazali powiększenie średnicy nerwu do około 3,3 mm (wymiar przednio-tylny) u osób z objawami neuropatii uciskowej, w porównaniu z 1,3 mm w grupie zdrowych ochotników. Wszystkie przypadki neuropatii PIN zaobserwowane w USG potwierdzono w badaniach neurofizjologicznych oraz śródoperacyjnie. W kolejnych latach pojawiały się pojedyncze prace, które potwierdzały skuteczność ultrasonografii w ocenie przedoperacyjnej PIN(50,51).

W pracy własnej grupa pacjentów z neuropatią PIN była większa od podawanych w dotychczasowych doniesieniach. Średnica nerwu w badaniach własnych wyniosła średnio 2,0 mm. Dziesięciu chorych zostało zoperowanych i obraz śródoperacyjny potwierdził patologię uwidocznioną w badaniu USG. Jednego pacjenta skierowano na rehabilitację z dobrym końcowym wynikiem leczenia.

Zauważalna różnica między średnią ocenianych nerwów w badaniach własnych a niektórych cytowanych powyżej

EMG tests were conducted in four patients, but the US findings were confirmed in merely one case; in the remaining cases the EMG was normal. In all patients, compression applied with the US transducer at the site of the visualized pathology induced characteristic severe pain. The diameter of the nerve at its entry to the supinator muscle ranged from 1.2 to 2.7 mm (mean 2.0 mm) (tab. 3). Due to the small size of the nerve, the assessment of its cross-sectional area and vascularity was not reliable.

In the past years, posterior interosseous nerve entrapment has been discussed in several publications. One of the first papers was prepared by Bodner et al. in 2002(49). Having compared the US images of 4 patients with PIN symptoms and 10 healthy volunteers, the authors demonstrated an increase in the diameter of the nerve to approximately 3.3 mm (anteroposterior diameter) in patients with the symptoms of a entrapment neuropathy, whereas the diameter in healthy individuals amounted to 1.3 mm. All cases of PIN neuropathy observed in US examinations were verified intraoperatively and in neurophysiological tests. In the subsequent years, single reports appeared that confirmed the effectiveness of ultrasonography in preoperative PIN assessment(50,51).

In the author’s own paper, a group of patients with PIN neuropathy was larger compared to previous reports. The mean diameter of the nerve was 2.0 mm. Ten patients were operated, and the intraoperative picture verified the pathology visualized in the US examination. Rehabilitation was recommended in one case, with a good final outcome.

An evident difference between the diameters of the nerves measured in the author’s own study and in certain papers
autorów może wynikać z faktu, że według własnej metodyki pomiarów dokonywano na poziomie linii nerwieri, podczas gdy w pracach pozostałych badaczy ten element metodyki nie został sprecyzowany. Nie można wykluczyć, że pomiaru dokonywano, zaznaczając kursorem zewnętrznzy zarys nerwieria. Ponadto autorzy wykonywali badania głównie o częstotliwości do 12 MHz, natomiast w pracy własnej stosowano głowice o wysokiej rozdzielczości – 18 MHz – co ma szczególne znaczenie w przypadku drobnych struktur, takich jak PIN.

W 2010 roku Amerykanie zwrócili uwagę na zjawisko fizjologicznej zmiany kształtu nerwu w miejscu wejścia do mięśnia odwrotniczy(52). Opisali 50 lokci u 47 bezobjawowych pacjentów, stwierdzając, iż pomimo spłaszczenia nerwu w miejscu jego wejścia do mięśnia odwrotnicza przedramienia nie zmienia się znamienicie jego pole powierzchni. W ocenie własnej pomiar pola powierzchni jest obarczony ryzykiem dużego bladu statystycznego ze względu na bardzo małe rozmiary tego nerwu.

W 2013 roku została opublikowana praca oparta na analizie 13 osób z objawami neuropatii uciskowej PIN(53). Wyniki porównano do grupy 20 zdrowych ochotników. Uzyskane wartości średnie nerwu w miejscu wejścia pod krawędź mięśnia odwrotnicza przedramienia były zgodne z uzyskanymi w pracy własnej (osoby objawowe 2 mm vs zdrowi ochotnicy 1,1 mm).

W badaniach własnych do oceny neuropatii PIN obok statycznej oceny USG nerwu stosowano element badania dynamicznego. Ocena dynamiczna tej neuropatii (wykorzystywana standardowo do badania zmian podczasowych i w kontrolach pooperacyjnych nerwierw) w diagnozie przedoperacyjnej neuropatii uciskowej była elementem nowatorskim na tle dotychczasowych doniesień. W czasie ruchów pronacji i supinacji obserwowano w USG kątowe zginanie nerwu na poziomie wejścia lub wyjścia z mięśnia odwrotnicza lub na poziomie pęczka naczyniowo-nerwowego. Kątowe zginanie stwierdzono u 7 pacjentów (67,6%). Jak dotąd jedynie Martinoli i wsp. w 2004 roku zwrócili uwagę na zależność kształtu tego nerwu od pozycji przedramienia, w jakiej oceniany jest nerw(52).

Ponadto u każdego pacjenta wykonano próbę wywołania objawów bólowych poprzez precyzyjną palpację kontrolowaną ultrasonograficznie. Ten element oceny również był pomijany w dotychczasowych publikacjach, mimo że w opinii własnej wpływala na poprawę pewności diagnozy statycznej (wszystkie stwierdzone neuropatie potwierdzono śródoperacyjnie).

Neuropatia nerwu międzykożnego przedniego (AIN)

Neuropatię uciskową AIN stwierdzono w jednym przypadku – u 37-letniej kobiety, którą na podstawie badania USG zakwalifikowano do dwupoziomowego odwarczenia – nerwu pośrodkowego na poziomie kanału nadgarstka oraz AIN w początkowym odcinku. Wykonane przed zabiegiem quoted above may result from the fact that in the author’s own study the measurements were performed along the epineurium line whereas in the remaining papers, this element of the methods was not specified. The fact that the measurements were made by marking the outer outline of the epineurium cannot be excluded. Moreover, the investigators conducted US examinations with the use of 12 MHz probes, whereas in the author’s own study high-frequency probes were used (18 MHz), which is of particular significance in the case of slight structures, such as the PIN.

W 2010 roku Amerykanie zwrócili uwagę na zjawisko fizjologicznego zmiany kształtu nerwu w miejscu wejścia do mięśnia odwrotniczy(52). Opisali 50 lokci u 47 bezobjawowych pacjentów, stwierdzając, iż pomimo spłaszczenia nerwu w miejscu jego wejścia do mięśnia odwrotnicza przedramienia nie zmienia się znamienicie jego pole powierzchni. W ocenie własnej pomiar pola powierzchni jest obarczony ryzykiem dużego bladu statystycznego ze względu na bardzo małe rozmiary tego nerwu.

W 2013 roku została opublikowana praca oparta na analizie 13 osób z objawami neuropatii uciskowej PIN(53). Wyniki porównano do grupy 20 zdrowych ochotników. Uzyskane wartości średnie nerwu w miejscu wejścia pod krawędź mięśnia odwrotnicza przedramienia były zgodne z uzyskanymi w pracy własnej (osoby objawowe 2 mm vs zdrowi ochotnicy 1,1 mm).

W badaniach własnych do oceny neuropatii PIN obok statycznej oceny USG nerwu stosowano element badania dynamicznego. Ocena dynamiczna tej neuropatii (wykorzystywana standardowo do badania zmian podczasowych i w kontrolach pooperacyjnych nerwierw) w diagnozie przedoperacyjnej neuropatii uciskowej była elementem nowatorskim na tle dotychczasowych doniesień. W czasie ruchów pronacji i supinacji obserwowano w USG kątowe zginanie nerwu na poziomie wejścia lub wyjścia z mięśnia odwrotnicza lub na poziomie pęczka naczyniowo-nerwowego. Kątowe zginanie stwierdzono u 7 pacjentów (67,6%). Jak dotąd jedynie Martinoli i wsp. w 2004 roku zwrócili uwagę na zależność kształtu tego nerwu od pozycji przedramienia, w jakiej oceniany jest nerw(52).

Ponadto u każdego pacjenta wykonano próbę wywołania objawów bólowych poprzez precyzyjną palpację kontrolowaną ultrasonograficznie. Ten element oceny również był pomijany w dotychczasowych publikacjach, mimo że w opinii własnej wpływala na poprawę pewności diagnozy statycznej (wszystkie stwierdzone neuropatie potwierdzono śródoperacyjnie).

Neuropatia nerwu międzykożnego przedniego (AIN)

Neuropatię uciskową AIN stwierdzono w jednym przypadku – u 37-letniej kobiety, którą na podstawie badania USG zakwalifikowano do dwupoziomowego odwarczenia – nerwu pośrodkowego na poziomie kanału nadgarstka oraz AIN w początkowym odcinku. Wykonane przed zabiegiem

Anterior interosseous nerve (AIN) syndrome

AIN entrapment neuropathy was identified in one case – in a 37-year-old woman who, based on US findings, was qualified to a two-level decompression procedure: of the median nerve at the carpal tunnel and the AIN in its initial segment. EMG tests conducted prior to the procedure indicated only the median nerve compression

J Ultrason 2014; 14: 371-392
Assessment of the utility of ultrasonography with high-frequency transducers in the diagnosis of entrapment neuropathies

badanie EMG wykazało ucisk jedynie na nerw pośrodkowy na poziomie nadgarstka. Śródoperacyjnie potwierdzono wynik badania USG.

Problem diagnostyki ultrasonograficznej zespołu uciskowego AIN został poruszony zaledwie w kilku publikacjach. Pierwsza ukazała się w 1999 roku(54). Autorzy przedstawili przypadek 44-letniej kobiety, u której przeprowadzono badanie USG oraz MR. W opinii autorów podstawowym kryterium diagnostycznym była masa i echogeniczność unerwianych przez ten nerw mięśni (zginacza długiego kciuka, mięśnia nawrotnego czworobocznego oraz zginacza głębokiego dla palca III), porównywana w obu kończynach. Na wagę tego kryterium wskazują także inni autorzy(5,7). Kolejnym interesującym aspektem omawianej pracy była ocena unacznienia mięśni w opcji doplerowskiej w spoczynku oraz po wysiłku(54). W spoczynku widoczne były pojedyncze naczyń, natomiast po wysiłku autorzy wykazali brak unacznienia w objawowej kończynie i przekrwienie w kontralateralnej. Porównując wyniki badania USG z MR, zwrócili uwagę na obiektywny charakter oceny morfologii unerwianych mięśni w MR w porównaniu z USG. Z kolei badanie USG pozwalało w prosty i nieinwazyjny sposób ocenić czynnościowo (tj. w spoczynku i po wysiłku) stopień unacznienia mięśni. W badaniach własnych nie dokonywano oceny unacznienia mięśni, nie-mniej parametr ten wydaje się cennym kryterium diagnostycznym, które poszerzy metodę przyszłych badań własnych. Autorzy wykluczili możliwość bezpośredniej oceny pnia nerwu, co wynikało najpewniej z braku w ówczesnym okresie głowic o wysokich częstotliwościach. Podobnie postąpiono w innej publikacji(7). Dzięki stosowaniu głowicy o wysokiej częstotliwości ocena morfologii nerwu była jednym z kryteriów jego oceny w badaniach własnych oraz autorów aktualnych prac(5).

Neuropatia gałąz powierzchownej nerwu promieniowego (RSNR)

Cechy zespołu Wartenberga, tj. neuropatii RSNR na poziomie skrzyżowaniu z I przedziałem prostowników, stwierdzono u trzech pacjentów. U jednej osoby był ganglion troczka tego przedziału, u pozostałych dóch – pogrubiały troczek w przebiegu choroby de Quervaina.

W jednym przypadku w badaniu USG uzyskano wynik fałszywie ujemny. Nie stwierdzono patologii nerwu, ale wobec miejscowych objawów klinicznych i nieskuteczności dotychczasowego leczenia zachowawczego pacjentka została zoperowana. Śródoperacyjnie ujawniono cechy zmian neuropatycznych RSNR. Po zabiegu dolegliwości u pacjentki wciąż występowały, a chirurg najpewniej błędnie zinterpretował pogrubienie nerwu jako patologię, a nie wariant anatomiczny. Po 11 miesiącach w kontrolnym badaniu USG obraz ultrasonograficzny RSNR nie uległ zmianie w stosunku do obrazu badania przedoperacyjnego.

W ocenie własnej wykonywano pomiar średnicy nerwu, a nie pola powierzchni, biorąc pod uwagę zbyt duże ryzyko błędu przy ręcznym zakresleaniu pola (podobnie jak at the carpal tunnel. The US findings were verified intraoperatively.

The problem of ultrasound diagnosis of AIN entrapment syndrome was discussed in merely several publications. The first one appeared in 1999(54). The authors presented a case of a 44-year-old female who underwent a US and MRI examinations. In the authors’ opinion, the major diagnostic criterion was the mass and echogenicity of the muscles innervated by this nerve (flexor pollicis longus, pronator quadratus and flexor digitorum profundus of the second digit), compared in two extremities. The relevance of this criterion is also indicated by other authors(5,7).

Another interesting aspect of this paper was the assessment of muscle vascularity with the use of the Doppler mode while resting and following physical exertion(54). While resting, single vessels were visible whereas the examination conducted after physical exertion showed the absence of flow in the symptomatic extremity and hyperemia in the contralateral one. When comparing US findings with MRI results, the authors drew attention to an objective character of morphology assessment of the innervated muscles in MRI. Ultrasonography, in turn, enabled a simple and non-invasive functional assessment of muscle perfusion degree (i.e. while resting and after physical exertion). In the author’s own study, vascularity of the muscles was not assessed. Nevertheless, this parameter seems to be an important diagnostic criterion which will broaden the author’s methods in the future. The investigators decided that the direct assessment of the nerve trunk was not possible, which probably resulted from the unavailability of high-frequency transducers at that period. A similar situation occurred in another study(7). Thanks to using high-frequency transducers, the nerve morphology assessment was one of the criteria for its evaluation in the author’s own study and in other contemporary studies(5).

Neuropathy of the superficial branch of the radial nerve (RSNR)

The features of Wartenberg’s syndrome, i.e. RSNR neuropathy at the level where it crosses the first extensor compartment, was found in three patients. In one case, it was caused by a ganglion of the retinaculum of this compartment, and in two patients – by a thickened retinaculum in the course of de Quervain’s disease.

In one case, the US result was false negative. No nerve pathology was observed, but the patient was operated due to local clinical signs and ineffectiveness of the previous conservative treatment. Intraoperatively, features of RSNR neuropathy were observed. Following the procedure, the symptoms did not subside, and the surgeon had probably misinterpreted the nerve thickening as pathology and not as an anatomic variant. After 11 months, a follow-up US examination showed no change of the RSNR compared to the preoperative image.

In the author’s own study, the diameter of the nerve was measured instead of the cross-sectional area since the
w przypadku PIN). U pacjentów z zespołem Wartenberga średnica RSNR wynosiła średnio 2,5 mm (0,7–4 mm). Dodatkowo u wszystkich pacjentów z neuropatią RSNR obserwowano wyraźną tkwiość w czasie kompresji nerwu głowicą.

Na temat obrazu USG gałęzi powierzchownej nerwu prominenceowego ukazało się niewiele publikacji. Jedną z pierwszych była analiza 20 bezobjawowych pacjentów, u których dokonywano pomiaru pola powierzchni przekroju nerwu(55). U dwóch badanych stwierdzono zmiany patologiczne (nerwiaka i schwannoma). Największe liczbie opracowania na temat RSNR przedstawili badacze indyjscy w 2010 roku(56) – zbadali 60 świecich przedramion zwłok, dokonując oceny ultrasonograficznej, a następnie dysekcjiowej i histologicznej. Przy pomocy USG mierzono pole powierzchowni nerwów, liczbę pęczków, unaczynienie tkanki tłuszczowej oraz powierzchnię powierzchni poszczególnych pęczków. W ocenie histologicznej liczba pęczków widocznych w badaniu USG pokrywa się ze stanem rzeczywistym, a następnie wynosiła 6–12. Autorzy zwrócili uwagę, że ilość tkanki tłuszczowej w nerwie była większa u osób starszych i w odcinkach proksymalnych nerwu. Ocena pola powierzchowni tkanki tłuszczowej oraz pól powierzchni poszczególnych pęczków okazała się niewiarygodna. W badaniach osób starszych ani nie mierzano unaczynienia, ani nie oceniano budowy pęczkowej nerwu, z uwagi na małe wymiary nerwu i ryzyko błędu.

Wnioski

Badanie USG z zastosowaniem głowic wysokiej częstotliwości jest cenną metodą w kwalifikowaniu do leczenia operacyjnego albo zachowawczego neuropatii obwodowych o charakterze uciskowym.

1. Cechami ultrasonograficznymi uszkodzeń nerwów obwodowych, które w badaniach własnych okazały się najbardziej istotne pod kątem kwalifikacji do leczenia operacyjnego albo zachowawczego neuropatii, były:
 • średnica albo pole powierzchni przekroju poprzecznego nerwu w miejscu uwidocznionej patologii;
 • echostruktura nerwu, przekroju nerwu;
 • obecność niestabilności w dynamicznej ocenie USG;
 • dolegliwości bólowe prowokowane uciskiem nerwu głowicą.

2. W odniesieniu do weryfikacji klinicznej i operacyjnej zgodność z rozpoznaniem USG uzyskano w 98,6% przypadków. Niezgodność stwierdzono u 2 pacjentów.

Konflikt interesów

Autorka nie zgłasza żadnych finansowych ani osobistych powiązań z innymi osobami lub organizacjami, które mogłyby negatywnie wpłynąć na treść publikacji oraz rościć sobie prawo do tej publikacji.

Conclusions

High-frequency ultrasonography is a valuable modality in qualifying patients to surgical procedures or conservative treatment of entrapment neuropathies of the peripheral nerves.

1. The ultrasound features of peripheral nerve defects which in the author’s own study occurred to be the most relevant in terms of qualifying patients for surgical or conservative neuropathy treatment were:
 • diameter or cross-sectional area of the nerve at the site of the visualized pathology;
 • nerve echostructure, hyperemia;
 • presence of instability in a dynamic US examination;
 • pain reaction to nerve compression with the transducer.

2. The results of clinical and surgical verification were consistent with the ultrasound findings in 98.6%. Inconsistency was observed in 2 patients.

Conflict of interests

The author does not report any financial or personal links with other persons or organizations, which might negatively affect the content of this publication and claim authorship rights to this publication.
Assessment of the utility of ultrasonography with high-frequency transducers in the diagnosis of entrapment neuropathies

Piśmiennictwo / References

1. Buchberger W, Judmaier W, Birbamer G, Lener M, Schmidauer C: Carpal tunnel syndrome: diagnosis with high-resolution sonography. AJR Am J Roentgenol 1992; 159: 793–798.

2. Silvestri E, Martinoli C, Derchi LE, Bertolotto M, Chiaromondia M, Rosenberg I: Echotexture of peripheral nerves: correlation between US and histologic findings and criteria to differentiate tendons. Radiology 1995; 197: 291–296.

3. Martinoli C: Imaging of the peripheral nerves. Semin Musculoskelet Radiol 2010; 14: 461–462.

4. Bianchi S, Martinoli C: Ultrasonography of carpal tunnel syndrome: diagnosis with high-resolution sonography. J Hand Surg Am 2006; 31: 726–732.

5. Altinok T, Baysal O, Karakas HM, Sigirci A, Alkan A, Kayhan A et al.: Ultrasonographic assessment of mild and moderate idiopathic carpal tunnel syndrome. Clin Radiol 2004; 59: 916–925.

6. Pastare D, Theriadsamy AK, Lee E, Wilder-Smith EP: Sonography versus nerve conduction studies in patients referred with a clinical diagnosis of carpal tunnel syndrome. J Clin Ultrasound 2009; 37: 389–393.

7. Zyluk A, Wasalsek I, Szlowsker Z: No correlation between sonographic and electrophysiological parameters in carpal tunnel syndrome. J Hand Surg Eur Vol 2014; 39: 161–166.

8. Lee D, van Holsbeek MT, Janevski PK, Ganos DL, Dittmars DM, Darian VB: Diagnosis of carpal tunnel syndrome. Ultrasound versus electromyography. Radiol Clin North Am 1999; 37: 859–872.

9. Klauser AS, Halpern EJ, De Zordo T, Feuchtner GM, Arora R, Gruber J et al.: Carpal tunnel syndrome assessment with US: value of additional cross-sectional area measurement of the median nerve in patients versus healthy volunteers. Radiology 2009; 250: 171–177.

10. Klauser AS, Halpern JP, Faschingbauer R, Guerra F, Martinoli C, Gabl MF et al.: Bifid median nerve in carpal tunnel syndrome: assessment with US cross-sectional area measurement. Radiology 2011; 259: 808–815.

11. Sarvia L, Cabada T, Cazzolliuera R, Martiènez-Berganza T, Garcia S: Carpal tunnel syndrome: usefulness of sonography. Eur Radiol 2010; 10: 1920–1925.

12. Koyuncuoglu HR, Kutluhan S, Sengul N, Koyuncuoglu HR, Oyar O, Guler K, Ozden A: The value of ultrasonographic measurement in carpal tunnel syndrome in patients with negative electrodiagnostic tests. Eur J Radiol 2005; 56: 365–369.

13. Visser LH, Smidt MH, Lee ML: High-resolution sonography versus EMG in the diagnosis of carpal tunnel syndrome. J Neurol Neurosurg Psychiatry 2008; 79: 63–67.

14. Moran L, Perez M, Esteban A, Bellon J, Arranz B, del Cerro M: Sonographic measurement of the median nerve in carpal tunnel syndrome: correlation with nerve conduction studies. J Clin Ultrasound 2009; 37: 125–131.

15. Pinilla I, Martin-Hervas C, Sordo G, Santiago S: The usefulness of ultrasonography in the diagnosis of carpal tunnel syndrome. J Hand Surg Eur Vol 2008; 33: 435–439.

16. Chios HJ, Chou YH, Cheng SP, Hsu CC, Chan RC, Tiu CM et al.: Cubital tunnel syndrome: diagnosis by high-resolution ultrasonography. J Ultrasound Med 1998; 17: 643–648.

17. Jacob D, Creteur V, Courtialiac C, Bargain R, Sassus B, Baeuc C et al.: Sonoanatomy of the ulnar nerve in the cubital tunnel: a multicentre study by the GEL. Eur Radiol 2004; 14: 1770–1773.

18. Wiesler ER, Chlorsor GD, Cartwright MS, Smith BP, Rushing J, Walker FO: The use of diagnostic ultrasound in carpal tunnel syndrome. J Hand Surg Am 2006; 31: 726–732.

19. Altinok T, Baysal O, Karakas HM, Sigirci A, Alkan A, Kayhan A et al.: Ultrasonographic assessment of mild and moderate idiopathic carpal tunnel syndrome. Clin Radiol 2004; 59: 916–925.

20. Pastare D, Theriadsamy AK, Lee E, Wilder-Smith EP: Sonography versus nerve conduction studies in patients referred with a clinical diagnosis of carpal tunnel syndrome. J Clin Ultrasound 2009; 37: 389–393.

21. Banach M, Bogucki A (ed.): Zespoły z ucisku – diagnostyka i leczenie. Medycyna Praktyczna, Kraków 2003.

22. Molinari C, Bianchi S, Pugliese F, Bacigalupo L, Gauglio C, Valle M et al.: Sonography in the diagnosis of carpal tunnel syndrome. AJR Am J Roentgenol 1999; 173: 681–684.

23. Hammer HB, Hovden IA, Haavardsdahl EM, Kvien TK: Ultrasonography shows increased cross-sectional area of the median nerve in patients with arthritis and carpal tunnel syndrome. Rheumatology (Oxford) 2006; 45: 584–588.

24. Sernik RA, Abicalaf CA, Pimentel BF, Braga-Baiak A, Braga L, Cerri-GG: Ultrasonographic features of carpal tunnel syndrome: a prospective case-control study. Skeletal Radiol 2008; 37: 49–53.

25. Wolpe A, Rossato G, Bottanelli M, Marchetta A, Caramaschi P, Benassi LM et al.: Ultrasound evaluation of ulnar neuropathy at the elbow: correlation with electrophysiological studies. Rheumatology (Oxford) 2009; 48: 1098–1101.

26. O’Driscoll SW, Horii E, Carmichael SW, Morrey BF: The cubital tunnel and ulnar neuropathy. J Bone Joint Surg Br 1991; 73: 613–617.

27. Yalcin E, Demir SO, Dizdar D, Buyukural S, Akuyz M: Hypertrophic anecous epicondylaritis muscle as a cause of ulnar neuropathy at elbow. J Back Musculoskelet Rehabil 2013; 26: 155–157.

28. Dekelver I, Van Glabbeek F, Dijs H, Stassijn G: Bilateral ulnar nerve entrapment by the M. anconaeus epicondylaritis. A case report and literature review. Clin Rheumatol 2012; 31: 1139–1142.
45. Grechenig W, Mayr J, Peicha G, Boldin C: Subluxation of the ulnar nerve in the elbow region – ultrasonographic evaluation. Acta Radiol 2003; 44: 662–664.

46. Filippou G, Mondelli M, Greco G, Bertoldi I, Frediani B, Galeazzi M et al.: Ulnar neuropathy at the elbow: how frequent is the idiopathic form? An ultrasonographic study in a cohort of patients. Clin Exp Rheumatol 2010; 28: 63–67.

47. Okamoto M, Abe M, Shirai H, Ueda N: Morphology and dynamics of the ulnar nerve in the cubital tunnel: observation by ultrasonography. J Hand Surg Eur Vol 2000; 25: 85–89.

48. Jacobson JA, Jebson PJL, Jeffers AW, Fessell DP, Hayes CW: Ulnar nerve dislocation and snapping triceps syndrome: diagnosis with dynamic sonography – report of three cases. Radiology 2001; 220: 601–605.

49. Bodner G, Harpf C, Meirer R, Gardetto A, Kovacs P, Gruber H: Ultrasonographic appearance of supinator syndrome. J Ultrasound Med 2002; 21: 1289–1293.

50. Chien AJ, Jamadar DA, Jacobson JA, Hayes CW, Louis DS: Sonography and MR imaging of posterior interosseous nerve syndrome with surgical correlation. AJR Am J Roentgenol 2003; 181: 219–221.

51. Nakamichi K, Tachibana S: Ultrasonographic findings in isolated neuritis of the posterior interosseous nerve: comparison with normal findings. J Ultrasound Med 2007; 26: 683–687.

52. Dong Q, Jamadar DA, Robertson BL, Jacobson JA, Caoli EM, Gest T et al.: Posterior interosseous nerve of the elbow: normal appearances simulating entrapment. J Ultrasound Med 2010; 29: 691–696.

53. Djurdjevic T, Loizides A, Löscher W, Gruber H, Plaikner M, Peer S: High resolution ultrasound in posterior interosseous nerve syndrome. Muscle Nerve 2014; 49: 35–39.

54. Hide IG, Grainger AJ, Naisby GP, Campbell RS: Sonographic findings in the anterior interosseous nerve syndrome. J Clin Ultrasound 1999; 27: 459–464.

55. Visser LH: High-resolution sonography of the superficial radial nerve with two case reports. Muscle Nerve 2009; 39: 392–395.

56. Marx SC, Kumar P, S D, Marx CA, Babu MS, Bhat KM: Histological and ultrasonographical study of the human superficial branch of the radial nerve at distal forearm and its clinical implications. Rom J Morphol Embryol 2010; 51: 751–758.