Unlocking the potential of metagenomics through replicated experimental design

Rob Knight1, Janet Janssont–4, Dawn Field5, Noah Fierer6, Narayan Desai7, Jed A Fuhrman8, Phil Hugenholtz9, Daniel van der Lelie10, Folker Meyer7,11, Rick Stevens7,11, Mark J Bailey5, Jeffrey I Gordon12, George A Kowalchuk13,14 & Jack A Gilbert7,15

Metagenomics holds enormous promise for discovering novel enzymes and organisms that are biomarkers or drivers of processes relevant to disease, industry and the environment. In the past two years, we have seen a paradigm shift in metagenomics to the application of cross-sectional and longitudinal studies enabled by advances in DNA sequencing and high-performance computing. These technologies now make it possible to broadly assess microbial diversity and function, allowing systematic investigation of the largely unexplored frontier of microbial life. To achieve this aim, the global scientific community must collaborate and agree upon common objectives and data standards to enable comparative research across the Earth’s microbiome. Improvements in comparability of data will facilitate the study of biotechnologically relevant processes, such as bioprospecting for new glycoside hydrolases or identifying novel energy sources.

The Earth hosts >1038 microbial cells1, a figure that exceeds the number of known stars in the universe by nine orders of magnitude. This richness of single-celled life, the first life to evolve on the planet, still accounts for the vast majority of functional drivers of our planet’s ecosystems2. Yet the diversity and interdependencies of these microscopic organisms remain largely unknown. Likewise, our understanding of the functional potential of individual microbial taxa residing within any ecosystem is extremely limited and generally restricted to measurements of gross enzymatic processes of the community. Moreover, sequenced metagenomic data sets have, to date, played only a small role in biotechnological research, with the majority of novel developments occurring through heterologous expression of enzymes.

Our knowledge of microbial diversity on Earth will be advanced by the development of new technologies that permit us to ‘see’ the who, what, when, where, why and how of microbial communities. Most recently, high-throughput sequencing methods have facilitated the investigation of functional and evolutionary processes in microbial ecosystems. Concomitant with these technological strides has been increased cooperation between scientific disciplines and the development of standards for the acquisition of experimental and sample contextual metadata, which are essential for downstream interpretation (D.F., J.A.G., R.K., F.M. and collaborators)3.

Here, we discuss how advances in DNA sequencing, the handling of contextual data and improvements in study design can unlock the potential of metagenomics. We discuss the need for robust experimental design4 (e.g., replication and improved ecosystem characterization) and highlight the need for an Earth Microbiome Project that will rely on metagenomics to explore Earth’s microbial dark matter across temporal and spatial scales and simultaneously facilitate novel gene discovery. Through standardized data-generation approaches and metadata collection, we stand poised to make rapid progress toward advancing biotechnological goals.

Changing the paradigm in metagenomic experimental design

For >80 years, it has been recognized that the majority of microbial life cannot be easily cultured in the laboratory. This has constrained our understanding of microbial ecosystems and impeded our ability to discover and use new beneficial functions derived from microorganisms (e.g., enzymes to drive biotechnological reactions, processes to enhance bioremediation, and biomarkers for disease diagnosis and therapeutic targets). Current biotech is still based on a small stable of ‘domesticated’ species, yet technical improvements in molecular microbial ecology and synthetic biology offer the potential for the discovery and exploitation of novel enzymes from previously inaccessible branches of the tree of life. However, in this age of exploration and discovery, as we test the capability and limits of new tools, it is not surprising that the majority of studies have failed to live up to expectations.
This has created a paradox, in that funding agencies are not providing the resources required to undertake metagenomic sequencing and analysis of the large and sufficiently replicated sample sets needed to produce scientifically valid investigations. Financial constraints should not compromise the need for scientific rigor. A genuine concern exists that such constraints have led some journals and reviewers to accept the argument that proper experimental design and true replication is logistically infeasible and therefore should not be required for publication of the observations made. Yet, as research endeavors move from the description of apparent diversity to the study of complexity and function, this is no longer acceptable or desirable.

It is possible that metagenomics has failed to deliver what it promised—a fast, cheap and comprehensive method to explore functional biochemistry in the natural world. We feel that it is too early to reach this conclusion, but several deficits in the research support it, including underestimation of the complexity of microbial diversity, limited data concerning the source of each sample and the identity of many genes, difficulties in integrating and comparing results obtained with different technologies in different laboratories, mismatched experimental designs that sought to generate understanding of ecological patterns with those who were excited to test the limits of new technology, and the lack of agreed upon data standards. For example, a study aiming to discover enzymes, such as glycoside hydrolases (J.A.G. et al.)² (important for biomass breakdown) should record metadata on the type of biomass, biological or physicochemical pretreatment (e.g., grinding of biomass by wood-feeding insects), redox conditions, pH and temperature. Having a database of these metadata, which can be thought of as ‘environmental data checklists’, for many sample sets will greatly assist in finding genes relevant to a target biotechnology application.

National and global cooperation will be needed to adopt minimum standards in experimental design and to convince funding agencies to make the appropriate levels of investment. Initial advances toward novel gene discovery using metagenomics relied on direct cloning and sequencing of DNA fragments extracted from uncultured microbial communities. Although an important step forward, these methods were also time consuming and expensive. For example, the generation of metagenomic data during the first leg of the Global Ocean Sampling expedition was estimated to cost >$10 million, and although costly, the data set is limited by today’s standards (http://www.jvci.org/cms/fileadmin/site/research/projects/gos/Beyster-Life-factsheet3b.pdf).

Since the introduction of the first wave of next-generation highly parallel DNA sequencers in 2006, there has been an explosion in gigabase- to terabase-scale metagenomic sequencing projects (J.J.)⁶. An illustrative, though not exhaustive, list includes the continued Global Ocean Survey (GOS), International Census of Marine Microbes, MetaHIT, the Human Microbiome Project (HMP), TARA Oceans, DeepSoil, MetaSoil, Genomic Observatories (D.F. and collaborators)², the JGI Great Prairie pilot study and the National Ecological Observatory Network (NEON).

Pioneering metagenomic studies of microbial community composition and function in different environments (e.g., acid mine drainage (P.H. and collaborators)⁹, soil/permafrost (J.K. and colleagues)⁹ and F.M., J.A.G. and collaborators)¹⁰, marine GOS¹¹, Hawaiian ocean time series¹², Western Channel Observatory L4 (J.A.G., D.F. et al.)¹³, termite hindgut (P.H. and collaborators)¹⁴, cow rumen¹⁵, human gastrointestinal tract (J.I.G. and collaborators)¹⁶ and mouse gastrointestinal tract (J.I.G and collaborators)¹⁷ provided a first glimpse into the potential of this approach to uncover previously unknown functional genes, phylogenetic types and interactions among community members. Indeed, comparative metagenomic analyses have yielded considerable insight into the distribution of gene families across different ecosystems and the role of specific functional attributes in adapting to physical and chemical conditions¹⁸–²⁰. However, these initial studies were limited by their status as pilot studies, often undertaken as such owing to the high cost of sequencing and the need to develop and prove the technologies. Therefore, most of these studies were observational and did not collect sufficient numbers of replicated experimental samples to allow statistically rigorous analyses²¹ of the biological variation.

Now that sequencing costs have declined as throughput has increased, we expect, except for reasonable exceptions, that rigorous experimental design will be applied to future metagenomics experiments. Moreover, we must take full advantage of this brave new world of rigorous metagenomic study design by thinking like cartographers to create a map that can be used to navigate the uncharted regions of the microbial universe. One example of this map could be a catalog of all known proteins and the environments (including comprehensive metadata) in which they were found. To do this, it will be necessary to better characterize individual ecosystems with prolonged and in-depth investigations; comprehensive physical, chemical and biological contextual data; appropriate statistical design; and improved interpretation of functional and taxonomic characteristics (Box 1 and Table 1). Just as standard formats facilitate the comparison of maps, standardization efforts in metagenomics will make it easier to uncover what features are common to multiple systems or specific to each system and to determine the distribution of these elements across time and space, thereby improving our understanding of microbial dynamics across planet Earth.

Defining the playing field through shallow and deep sequencing

Ultradeep sequencing of taxonomic or functional marker genes, such as the small subunit ribosomal RNA gene nifH, has enabled comprehensive cataloging of the inhabitants of a variety of microbial ecosystems²²–²⁶. Deep sequencing of a few samples can provide information about rare taxa and rare genes, but without analyzing larger numbers of samples, limitations arise: the statistical significance of observed patterns cannot be determined, the patterns of co-occurrence between genes and taxa are difficult to assess, and the dominant biotic or abiotic factors structuring communities across time and space remain undetermined. As an analogy, if naturalists in the nineteenth century had focused only on plant and animal diversity in a few, isolated plots instead of exploring ecosystems across broad swaths of the globe, the fields of botany and zoology would have come to a standstill, and the global patterns of biogeography, which were crucial to forming our modern understanding of ecology and evolution, would have remained unknown. Thus, for microbial biogeography, many samples from related or contrasting communities must be studied in parallel.

We recognize the recent advances that have been made by the deep sequencing of a few samples (e.g., generating billions or trillions of base pairs from a single sample). Even here, broad, shallow sequencing from many thousands of samples is essential for directing which samples should be chosen for deeper sequencing, thus allowing data analyses that may lead to better interpretation of the biological information in both shallow- and deep-sequenced samples. Deep sequencing of random shotgun DNA, for example, is essential to obtain enough information to reliably assemble specific genomic fragments (using currently available sequencing technologies). Recent work on rumen samples obtained from two cows illustrates this point. Hess et al.¹⁵ assembled 15 nearly complete bacterial genomes from short-read-length shotgun sequencing data. However, improved genome coverage is still impractical to attain for many samples, although it may help to
Box 1 Designing a metagenomic pipeline

Several key decisions in the metagenomic pipeline affect the utility of the data and ability to leverage existing and future studies in its interpretation. Table 1 describes these decisions, the potential drawbacks associated with them and their consequences.

Challenge	Decision	Pitfall	Consequence
Biological and technical replicates are expensive and time-consuming	Whether to perform replication, or gamble that a single sample in each group is informative with sufficiently well-described ecosystem parameters	Often nonreplicated designs are not interpretable, or are overinterpreted (e.g., attributing differences in a single healthy versus single diseased person to the disease)	Conclusions cannot be replicated by other researchers, and may not be generalizable beyond the specific samples analyzed
A fixed sequencing budget must be divided among some number of samples (e.g., by multiplexing at some level)	Whether to sequence few samples deeply, or many samples more shallowly	The appropriate number of samples and sequencing depth are unknown	Few samples may be uninformative and may preclude informative analysis of variation in the system and/or replication; shallow sequencing may miss rare but important taxa or functions
Experimental challenges due to low yield of DNA and/or high community diversity	Whether to adopt new protocols for improved DNA extraction, amplification and/or assembly	DNA extraction and manipulation steps all introduce biases that may make it difficult to compare between studies	For unique or rare samples that require special treatment, it is essential that all steps in the treatment are considered if comparing results to those from other studies
Defining the dimensions of variation that matter in a given system is challenging, and often is the purpose of the study itself	Which scales and parameters to select, and how much variation to cover	‘Extremes’ of variation in the system being studied are expensive and difficult to obtain (tail of distribution) and may not even be extreme from the microbes’ perspective; relevant variation often unknown	Conclusions from one population or study site inappropriately generalized to other populations or study sites; relevant variation in system undiscovered; extreme efforts to obtain exotic samples are unrewarded
Must choose a sequencing platform	Trade-off between read length and number of sequences; must decide when to adopt new technology	All sequencing technologies and processing pipelines have drawbacks, not all of which are widely advertised; technology changes rapidly	Sequences may be too short, too few or too error-prone to interpret or too passé to publish
Interpretation of sequence data	Must decide whether to use reference-based or de novo methods for assembly, taxonomy and functional assignment, and if so which reference to use	Different reference databases give different results; de novo is unbiased but far less powerful when appropriate references exist; analyses differ as reference databases update rapidly, limiting comparisons between studies. Current assembly algorithms are insufficient for highly complex metagenome data.	Incorrect and/or hard-to-reconcile functional and taxonomic assignments
Metadata collection	Must decide what metadata (that is, sample or site data) to collect and associate with sample	Too complex to be implemented; fields inconsistent with previous studies due to lack of standards compliance; data model can’t accommodate	Chaos!
Centralization	Whether to centralize sample collection, metadata curation, DNA extraction, sequencing, data storage and data analysis	Decentralization can lead to inconsistencies that make data difficult to interpret; centralization can lead to delays while funding is acquired or capacity is built, and can limit creativity	Either the data set may be vast but too inconsistent to interpret, or it may be extremely consistent but limited in scope and/or interpretation. Specific considerations apply to each stage; the EMP currently favors decentralized sample collection and centralization of other steps on a case-by-case basis.

Focus biological questions: for example, using a rough calculation of 4 megabase pairs per genome and a billion cells per gram, a single gram of soil could contain up to 3 petabase pairs of genetic data. Recently, Mackelprang et al. used deep sequencing to successfully assemble a draft genome of a novel methanogen from highly diverse permafrost soil. Although soil is one of the most challenging ecosystems for metagenomics because of its high diversity, advances in new assembly algorithms show great promise for genome reassembly from deep sequence studies (N.D., J.A.G., F.M. and collaborators)

The decision whether to sequence a few samples deeply or many samples shallowly depends on the question to be answered. Deep sequencing is required to observe rare members of microbial communities. Regardless of the habitat in question, rare members of the community can have key functional roles, such as nutrient cycling (e.g., methanogenesis or nitrogen fixation), pathogenesis, stimulation of the immune system and metabolite production (e.g., butyrate in the gut or antibiotics). Moreover, microbes that are rare in one sample may be common in another. For example, in the European Meta-HIT project, metagenome sequences from fecal samples were obtained from 124 individuals, and the occurrence of human gut microbes identified as being shared between individuals varied 8- to 1,500-fold among different hosts.

Shallow sequencing, in contrast, enables the exploration of microbial community-structure dynamics, which is fundamental to building a predictive understanding of an ecosystem (D.F., J.A.G. and colleague). Recent evidence suggests that some ecosystems maintain...
a temporally persistent but vast microbial ‘seed bank’ (D.F., R.K., J.A.G. and colleagues)33, suggesting that taxa identified by shallow surveys are merely indicative of the abundant taxa selected by the chemical, physical and biological processes leading up to and present at the time of sampling. However, one likely hypothesis states that the dominant microorganisms in a sample are those that play the most important functional roles under normal conditions. Thus, if one is interested in the ecology of more abundant processes or taxa, ultradeep metagenomic sequencing is not essential; data from relatively small fractions of the genetic diversity contained within samples can reveal ecological patterns that help define ecosystem structure13.

The potential for reliance on shallow sequence data (either amplicon or shotgun) for some studies is supported by a study of gnotobiotic mice harboring a defined microbe consortium where the complete genome sequence of every community member was known. In that study, it was possible to obtain accurate descriptions of the microbial community’s meta-transcriptome and meta-proteome based on short sequence reads (J.I.G. and colleagues)32.

Creating a highly detailed picture of an individual or environmental sample under specific conditions at one instant in time creates a static view of that sample that can be useful. However, far more is gained from complementing one snapshot with others; even if those others are taken at lower resolution, because such a data set permits more accurate reconstruction of temporal dynamics or variability among individuals or habitats. All these snapshots must be well organized, as it is of little value to have them unsorted in a pile that prohibits retrieval of the series of the data sets or images necessary to reconstruct a view of a specific phenomenon under study.

To determine dynamic processes, one must apply broad sampling (both in time and space) at an appropriate resolution to determine the frequency of the dynamics. With most studies, an increase in the number of samples analyzed has an important impact on analytical power (Tables 2–5). One of us (J.A.G.) and colleagues33 generated a 12-sample survey of the annual changes in the microbiota of surface waters in the English Channel, and found evidence for seasonal succession driven by temperature and nutrient availability. However, when the researchers augmented this with 60 more samples, making a contiguous 72-sample time series over 6 years22, the patterns were substantially refined, with the seasonality being extremely robust, and day-length being identified as the key driver of richness in the community (Fig. 1 and Table 2). Additionally, Arumugam et al.34 have used metagenomic sequencing from 22 individuals to show that human gut microbiota could be classified into three enterotypes, which showed no correlation to diet or ethnicity. However, another study involving one of us (R.K. and collaborators)35 performed the same analysis on 98 individuals and demonstrated that the increased analytical power found distinct correlations with diet (Table 3). Other examples of the power of sampling breadth can be routinely found in the literature (Tables 2–5), and they demonstrate that using statistically relevant experimental design is vital to generating accurate analyses.

Defining the effect size and the power of a study is a particularly important challenge in the design of clinical trials of various microorganisms (e.g., those of probiotics, prebiotics, antibiotics and stool transplants) or the natural or man-made disturbance in any terrestrial or oceanic ecosystem. A recent attempt to define effect sizes in studies of the human microbiome (N.F., J.I.G., R.K. and colleagues)36 founded owing to an inability to compare data and methodologies for taxon detection and assignment. Such effect sizes can be determined only with sufficiently large sample sizes of normal versus altered states, studied over sufficiently large temporal and spatial scales to reveal variation. The dilemma, especially for human studies, is that large samples are required to determine effect size, but such studies cannot

![Figure 1](https://example.com/figure.png) Conceptual diagram of why replicated samples, especially across a gradient or along a time series, are critical for interpretation of results. Structure that is externally imposed by study design greatly improves our ability to recover biologically meaningful relationships rather than simply finding statistical differences between samples (especially important because every pair of biological samples will be different if sequenced deeply enough). In this case, we show the L4 Western English Channel ocean time series samples (Graph reprinted from Gilbert et al.22). Sampling only during the summer, highlighted by blue shading, would only reveal the tip of the iceberg of variability in this ecosystem, which is driven by seasonal change. Similar principles apply in other ecosystems that have other major drivers of variation that, when overlooked, can influence the results in ways that are puzzling, or give a misleading picture of variation.

Table 2 Metagenomic profiling of marine samples

Number of samples	Sequencing target	Key results	Reference
12 monthly marine samples	16S rRNA V6	Evidence of seasonally structured community diversity and for seasonal succession, significantly correlated to a combination of temperature, phosphate and silicate concentrations.	33
72 monthly marine samples	16S rRNA V6	Community had strong repeatable seasonal patterns, with winter peaks in diversity. Change in day length explained 65% of the diversity variance. The results suggested that seasonal changes in environmental variables are more important than trophic interactions. Relationships between bacteria were stronger than with eukaryotes or environment. Relative to prior work33, the increase in temporal sampling increased the capability to explore community relationships.	22
509 marine samples	16S rRNA	High variability of bacterial community composition specific to vent and coastal ecosystems. Both pelagic and benthic bacterial community distributions correlate with surface water productivity. Also, differences in physical mixing may play a fundamental role in the distribution patterns of marine bacteria, as benthic communities showed a higher dissimilarity with increasing distance than pelagic communities did.	(J.F. and collaborators)49

Studies with more samples have a higher impact and clearer biological interpretations than studies with comparable amounts of sequencing that are spread over fewer samples: the reason is the ability to correlate information with biological or clinical parameters of the system (e.g., compare ref. 33 and ref. 22).
gained institutional review board approval because the effect size, and therefore the correct number of subjects required to achieve statistical power, is unknown.

Toward an Earth Microbiome Project

In recognition of the value of a multi-environmental survey of microbial diversity, we have launched an initiative called the Earth Microbiome Project (EMP; http://www.earthmicrobiome.org/). The EMP seeks to systematically characterize microbial taxonomic and functional biodiversity across global ecosystems and to organize international environmental microbiology research by standardizing the protocols used to generate and analyze the data between studies. The EMP constitutes a restructuring and refocusing of microbial ecology. Individual projects are grouped (by the single principal investigator or consortium) into overarching scientific questions ensuring that the right researchers are able to work on the most relevant topics.

Additionally, the EMP framework facilitates multidisciplinary cooperation across funding agencies and scientific research areas.

Table 3 Metagenomic profiling of human gut samples

Number of samples	Sequencing target	Key results	Reference
22 human fecal samples	Metagenome	Identification of three clusters (enterotypes) that are not specific to a nation or continent. Certain genes or functional groups do show correlation to certain host factors.	34
51 mammalian fecal samples	16S rRNA, metagenome	Fecal DNA from 33 mammalian species and 18 humans who kept detailed diet records. We found that the adaptation of the microbiota to diet is similar across different mammalian lineages.	(R.K., J.I.G.)50
98 human fecal samples	16S rRNA, metagenome	Enterotypes were strongly associated with long-term diets, particularly protein and animal fat (Bacteroides) versus carbohydrates (Prevotella). This study did not support a smaller-scale study34; the increased breadth of the study improved the analytical capability.	(R.K.)35
124 human fecal samples	Metagenome	Over 99% of the genes are bacterial, most found in every sample, and that the entire cohort harbors ~1,000 prevalent bacterial species. Each individual has at least 160 species, which are also largely shared.	29
170 fecal samples	16S rRNA	The fecal microbiota of the elderly shows temporal stability over limited time in the majority of subjects but is characterized by unusual phylum proportions and extreme variability.	51
190 human gut samples	16S rRNA	Statistically significant differences between the microbiotas of Crohn’s Disease (CD) and ulcerative colitis (UC) patients and those of non-IBD controls. Notably, the results indicated that a subset of CD and UC samples contained abnormal gut microbiotas.	52
154 human fecal samples	16S rRNA, metagenome	Identifies a core microbiome at the gene function but not the organismal lineage level; identifies systematic differences in diversity between lean and obese. Follow up work34 supported the obesity alpha diversity result, the observation that obese subjects had less diverse microbial communities.	(R.K., J.I.G.)53
36 human fecal samples	16S rRNA, viruses, metagenome	Shows high levels of variability over 1 year between individuals, magnitude of viral diversity, and absence of “kill-the-winner” dynamics.	(J.I.G.)54

See Table 2 legend (compare ref. 34 with refs. 50 and 35). IBD, inflammatory bowel disease.

Table 4 Metagenomic profiling of human skin samples

Number of samples	Sequencing target	Key results	Reference
27 body sites in 9 individuals	16S rRNA	Community composition was determined primarily by body habitat. Within habitats, interpersonal variability was high, whereas individuals exhibited minimal temporal variability. Several skin locations harbored more diverse communities than the gut and mouth, and skin locations differed in their community assembly patterns.	46
90 keyboard keys	16S rRNA	Structure of microbial communities can be used to differentiate objects handled by different individuals, even if those objects have been left untouched for up to two weeks at room temperature.	48
30 phalange skin	16S rRNA	Despite stable differences between body sites and individuals, there is variability in an individual’s microbiota across time. Only a small fraction of taxa are temporally persistent, hence no core temporal microbiome exists at high abundance. Strikingly, this study confirmed the results of a previous study46 with a massive increase in data.	24
396 time points for four body sites	16S rRNA	Patterns were associated with the diagnosis of bacterial vaginosis. The inherent differences within and between women in different ethnic groups strongly argues for a more refined definition of bacterial communities normally found in healthy women.	55

See Table 2 legend (compare ref. 46 with ref. 24).
Stand-alone projects are mapped onto larger research themes, and these fit into overarching questions, yielding multiple layers and scales of inquiry. This focus on multidisciplinary activity brings new dimensions to microbial investigation, through renewed interest in data processing, requirements for large-scale computational infrastructure, modeling community dynamics and functional capability, and linking the analyzed data and generated models to climate-modeling informatics programs. It also merges aspects of biogeochemistry, microbiology, protein-enzyme interaction and transcriptional feedback, as we move from molecular-scale processes to processes and dynamics on other scales. These range from cellular interaction to community ecology on local, regional, national, continental and global scales. Such a broad knowledge base will be critical for developing a predictive understanding of genes and organisms of biotechnological interest.

Of course, for large-scale sequencing efforts such as the EMP to be focused and coordinated, the community must avoid the sequence-everything approach, simply because it is possible. Hypotheses must guide our selection of the most appropriate samples to sequence. To a large extent, these will be sample sets that have rich metadata and samples that have the potential to provide fundamental new knowledge.

Figure 2 Importance of metadata-enabled studies. Matched-pair diagrams showing visualizations from recently published, high-impact studies. Standard clustering of the data (left) is contrasted with the same diagram in which each data point is colored according to metadata (right). (a) Principal coordinate analysis plot of UniFrac distances between human body habitat-associated communities reveals that microbes cluster by habitat type (Reprinted by permission of AAAS from Costello et al. (N.F., J.I.G., R.K. and colleagues)46). (b) A bipartite network diagram shows that mammalian fecal communities mainly cluster by diet (Reprinted by permission of AAAS from Ley et al. (R.K., J.I.G. and colleagues)47). (c) A nonmetric multidimensional scaling plot of UniFrac distances between soil communities shows that the main factor driving variation in these communities is pH (Reprinted by permission of PNAS from Fierer et al. (N.F., R.K. and colleagues)48). These relationships are immediately and intuitively obvious when the right metadata are applied, but would be essentially impossible to see otherwise.

The role of metadata acquisition in improved experimental design

Initiatives like the EMP are saved from becoming simple natural history exercises in data collection by requiring the acquisition and appropriate organization of the metadata that accompany every sequence data set generated. These environmental and experimental metadata are the primary data of many multidisciplinary research groups, who already work together to generate a comprehensive understanding of a particular environment (e.g., a marine sampling field expedition or a temporal exploration of soil and ecosystem dynamics in one location). Such environmental parameters put the origin of the sequence data in context, and are useful for generating interpretative analyses (Fig. 2). The parameters may include...
temperature, latitude and longitude, altitude, moisture content, nutrient concentrations, and standard ontologies for geolocators and ecosystem descriptors. These must also be accompanied by experimental metadata that appropriately describe the methods used to create the sequence data, such as sample handling, nucleic acid extraction, PCR amplification method, sequence protocol and bioinformatic analysis. These metadata are essential to the EMP because they provide ecological grounding to analyses of the taxonomic and functional capacity of the sequenced microbial community. Thus, this robust framework for routine collection of metadata and reliable standards will enable comparison between studies.

A suite of standard languages, called the Minimum Information about any (x) Sequence checklists (MiXSeD, D.F., R.K., J.A.G., N.F., J.E., J.L.G., P.H., J.J., F.M. and collaborators), provide formats for recording environmental and experimental data. These include MIGS (Minimum Information about a Genome Sequence) and MIMS (Minimum Information about a Metagenome Sequence) checklists, MIMARKS (Minimum Information about a MARKer Sequence), the latest checklist, builds on the foundation of MIGS and MIMS by the rich contextual information about each environmental sample. What is recorded depends on where the sample comes from. For example, human samples can be annotated with fields such as the age, weight and health status of the subject, whereas seawater samples can be annotated with fields, such as pH, salinity, depth and temperature. Additionally, detailed technical information such as the sequencing platform, and the genes and regions targeted are also required, making meta-analyses of many studies much easier to perform and interpret, because outliers can be traced back to technical differences or to biological differences automatically, rather than requiring the researcher to read scores of papers as is necessary for meta-analyses today (R.K. and colleague). This integration is especially important for finding enzymes that participate in processes that are potentially industrially useful but where the origin is irrelevant to the industrial application except for improving the possibility that the enzyme will work under the necessary conditions.

We believe that the MiXSeD standard will play a key role for three reasons. First, it will enable large-scale projects to collect massive data sets according to standard protocols at multiple sites and to share these data to facilitate global understanding. Second, it will enable integration of each laboratory’s individual projects into this universe of sequences, facilitating community-level comparisons, exploration of the diversity and distribution of life, detection and exclusion of contaminated samples, and the analysis of gene or taxon co-occurrence patterns. These features are especially crucial for accessing and integrating data from every clinic or every field site. Third, it will provide a framework for large-scale integration of efforts, especially predictive modeling. As mathematician Stanislaw Ulam remarked, “Great scientists see analogies between theorems or theories. The very best ones see analogies between analogies.” Providing a method of integrating both the systematically collected results of large-scale projects (e.g., the EMP) and the highly distributed efforts of smaller groups (e.g., standards such as MiXSeD) will enable a future in which analogies across spatial scales, temporal scales and even theories are not only possible but routine.

As the cost of sequencing continues to decline, there has been a rapid adoption of the MiXSeD standard and of sound sampling principles. For example, such tools as QiIME (N.F., J.L.G., R.K. and colleagues) and MG-RAST (F.M., R.S. et al.) are already MiXSeD-compliant and provide ways of viewing and analyzing MiXSeD-compliant data. The International Nucleotide Sequence Database Collaboration has committed itself to incorporating a MiXSeD keyword as a standard, and large projects, such as the HMP (https://commonfund.nih.gov/hmp/), NEON (http://www.neoninc.org/), the EMP, the Bio Weather Map (http://bioweathermap.org/) and the Personal Genome Project (http://www.personalgenomes.org/) have already pledged to support the standard. This rapid response is timely. As sequencing and computational methods co-evolve in a dynamic race that spurs their mutual growth and progress, so too must data standards co-evolve.

International activities, such as the EMP, provide test beds to help the community to agree on standards for exchange of data products that go well beyond the trading of consensus sequences and annotations (e.g., GenBank). Even given the expected advances in cloud computing and the predicted decrease in computation costs according to Moore’s law, one main driver of innovation will be the need to provide analyses of data sets that are orders of magnitude larger without the corresponding need for vast increases in the bioinformatics budget. Investments in data reuse and usable data standards are critical. Even so, it is easier to create standards than it is to successfully promote their use. The Genomic Standards Consortium has conducted pioneering work on minimum information checklists that have enabled provenance standards, and it is now taking on the much more complicated task of defining standards for computed data products. In this regard, journals can play a role by adopting such standards as a requirement for accepting and publishing manuscripts.

The role of data generation in the discovery of novel enzymes and phylogenetic structure in microbial biodiversity must be complemented by improved functional and taxonomic databases that more appropriately represent the full breadth of microbial diversity. One critical aspect of this development will be mapping of metagenomic reads against reference genomes. The Earth Microbiome Project is partnered with the Genomic Encyclopedia of Bacteria and Archaea (P.H. and collaborators) that aim to improve the phylogenetic representation of sequenced genomes. These efforts combined with improved gene and protein database curation (e.g., IMG and IMG/M) will aid with metagenomic data interpretation, facilitating more efficient biodiversity.

Conclusions

Metagenomics is in a time of transition. Sequencing technologies that used to be deployed centrally by large organizations and departments are now available to individual laboratories and perhaps soon to individuals, perhaps even in a handheld format. Standard protocols are necessary to integrate the information and to allow easy communication across studies; after all, the role played by the internet in today’s world is possible only because computers everywhere can communicate with a set of standard, open protocols. Although currently these initiatives are focused on DNA sequencing (amplicon sequencing and metagenomics), it will be necessary to integrate metabolomics, proteomics and single-cell genomics into these efforts to improve community characterization and more appropriate ecological inferences. The omics ratio (ratio of applied techniques, e.g., genomics/transcriptomics/proteomics/metabolomics) should always be determined by the hypothesis. We believe and hope that MiXSeD and the EMP will enable the same type of functionality for ecologists, allowing us to construct not just a catalog of organisms on Earth but also to understand and exploit the critical processes they perform in the environment over a vast range of spatial and temporal scales.

ACKNOWLEDGMENTS

We wish to thank J. Eisen for his constant support of the Earth Microbiome Project and his help with writing this work. This work was in part supported by the US Department of Energy under contracts DE-AC02-06CH11357 and DE-AC02-05CH11231, the US National Institutes of Health, the Natural
PERSPECTIVE

Environment Research Council, UK, the Crohn's and Colitis Foundation of America, and the Howard Hughes Medical Institute. We thank J. Reeder, J. Stombaugh, C. Lozupone, D. McDonald, J. Kuczynski and J. Metcalf for comments on drafts.

COMPETING FINANCIAL INTERESTS

The authors declare no competing financial interests.

Published online at http://www.nature.com/doifinder/10.1038/nbt.2235.

Reprints and permissions information is available online at http://www.nature.com/reprints/index.html.

1. Whitman, W.B., Coleman, D.C. & Wiebe, W.J. Prokaryotes: the unseen majority. Proc. Natl. Acad. Sci. USA 95, 6578–6583 (1998).
2. Falkowski, P.G., Fenchel, T. & Delong, E.F. The microbial engines that drive Earth's biogeochemical cycles. Science 320, 1034–1039 (2008).
3. Field, D. et al. The Genomic Standards Consortium. PLoS Biol. 9, e1001088 (2011).
4. Fisher, R.A. The Design of Experiments (Macmillan, 1935).
5. Gilbert, J.A. et al. Bioprospecting metagenomics for new glycoside hydrolases. in Methods in Molecular Biology vol. 908, Biomass Conversion. (ed. Himmel, M.E.) (Parsons, R.J., Breitbart, M., Lomas, M.W. & Carlson, C.A. Ocean time-series reveals recurring seasonal patterns of virioplankton dynamics in the northwestern Sargasso Sea. Environ. Microbiol. 11, 3132–3139 (2009).
6. Jansson, J. Towards “Tera-Terra”: Terabase Sequencing of Terrestrial Metagenomes. Nature 473, 174–180 (2011).
7. Qin, J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59–65 (2010).
8. Larsen, P., Field, D. & Gilbert, J.A. Predicting bacterial community assemblages using an artificial neural network approach. Nat. Methods advance online publication, doi:10.1038/nmeth.1975 (15 April 2012).
9. Caporaso, J.G., Paszkielczak, K., Field, D., Knight, R. & Gilbert, J.A. The Western English Channel contains a persistent microbial seed bank. ISME J. 6, 1089–1093 (2012).
10. Mahowald, M.A. et al. Characterizing a model human gut microbiota composed of members of its two dominant bacterial phyla. Proc. Natl. Acad. Sci. USA 106, 5859–5864 (2009).
11. Caporaso, J.G., Paszkielczak, K., Field, D., Knight, R. & Gilbert, J.A. The Western English Channel contains a persistent microbial seed bank. ISME J. 6, 1089–1093 (2012).
12. Markowitz, V.M. et al. IMG: the Integrated Microbial Genomes database and comparative analysis system. Nucleic Acids Res. 40, D115–D122 (2012).
13. Markowitz, V.M. et al. IMG/M: the integrated metagenome data management and comparative analysis system. Nucleic Acids Res. 40, D123–D129 (2012).
14. Costello, E.K. et al. Bacterial community variation in human body habitats across space and time. Science 326, 1694–1697 (2009).
15. Ley, R.E. et al. Evolution of mammals and their gut microbiomes. Science 320, 1647–1651 (2008).
16. Fierer, N. et al. Forensic identification using skin bacterial communities. Proc. Natl. Acad. Sci. USA 107, 6477–6481 (2010).
17. Zinger, L. et al. Global patterns of bacterial beta-diversity in seafloor and seawater ecosystems. PLoS ONE 6, e24570 (2011).
18. Muegge, B.D. et al. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science 327, 970–974 (2011).
19. Dawson, M.I. et al. Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc. Natl. Acad. Sci. USA 108 (suppl. 1), 4586–4591 (2011).
20. Frank, D.N. et al. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc. Natl. Acad. Sci. USA 104, 13780–13785 (2007).
21. Turnbaugh, P.J. et al. A core gut microbiome in obese and lean twins. Nature 457, 480–484 (2009).
22. Ravel, J. et al. Viruses in the faecal microbiota of monozygotic twins and their mothers. Nature 466, 334–338 (2010).
23. Ravel, J. et al. Vaginal microbiome of reproductive-age women. Proc. Natl. Acad. Sci. USA 108 (suppl. 1), 4680–4687 (2011).