Prefix reversals on binary and ternary strings

Citation for published version (APA):
Hurkens, C. A. J., Iersel, van, L. J. J., Keijsper, J. C. M., Kelk, S. M., Stougie, L., & Tromp, J. T. (2007). Prefix reversals on binary and ternary strings. SIAM Journal on Discrete Mathematics, 21(3), 592-611. https://doi.org/10.1137/060664252

DOI:
10.1137/060664252

Document status and date:
Published: 01/01/2007

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
PREFIX REVERSALS ON BINARY AND TERNARY STRINGS

COR HURKENS, LEO VAN IERSEL, JUDITH KEIJSPER, STEVEN KELK, LEEN STOUGIE, AND JOHN TROMP

Abstract. Given a permutation \(\pi \), the application of prefix reversal \(f^{(i)} \) to \(\pi \) reverses the order of the first \(i \) elements of \(\pi \). The problem of sorting by prefix reversals (also known as pancake flipping), made famous by Gates and Papadimitriou (Discrete Math., 27 (1979), pp. 47–57), asks for the minimum number of prefix reversals required to sort the elements of a given permutation. In this paper we study a variant of this problem where the prefix reversals act not on permutations but on strings over a fixed size alphabet. We determine the minimum number of prefix reversals required to sort binary and ternary strings, with polynomial-time algorithms for these sorting problems as a result; demonstrate that computing the minimum prefix reversal distance between two binary strings is NP-hard; give an exact expression for the prefix reversal diameter of binary strings; and give bounds on the prefix reversal diameter of ternary strings. We also consider a weaker form of sorting called grouping (of identical symbols) and give polynomial-time algorithms for optimally grouping binary and ternary strings. A number of intriguing open problems are also discussed.

Key words. algorithms, genome comparison, pancake flipping, prefix reversals, sorting, strings

AMS subject classification. 68R05, 68R15, 68Q17, 92D20

DOI. 10.1137/060664252

1. Introduction. For a permutation \(\pi = \pi(0)\pi(1)\ldots\pi(n-1) \) the application of prefix reversal \(f^{(i)} \), which we call flip for short, to \(\pi \) reverses the order of the first \(i \) elements:
\[
 f^{(i)}(\pi) = \pi(i-1)\ldots\pi(0)\pi(i)\ldots\pi(n-1).
\]
The problem of sorting by prefix reversals (MIN-SBPR), brought to popularity by Gates and Papadimitriou [7] and often referred to as the pancake flipping problem, is defined as follows: given a permutation \(\pi \) of \{0, 1, \ldots, n-1\}, determine its sorting distance, i.e., the smallest number of flips required to transform \(\pi \) into the identity permutation 01\ldots(n-1).

MIN-SBPR has practical relevance in the area of efficient network design [9, 10], and arises in the context of computational biology when seeking to explain the genetic difference between two given species by the most parsimonious (i.e., shortest) sequence of gene rearrangements. The computational complexity of MIN-SBPR remains open.

A recent 2-approximation algorithm [5] is currently the best-known approximation result. Indeed, most studies to date have focused not on the computational complexity of MIN-SBPR but rather on determining the worst-case sorting distance \(wc(n) \) over all length-\(n \) permutations, i.e., the “worst case scenario” for length-\(n \) permutations.

From [7] and [9] we know that
\[
(15/14)n \leq wc(n) \leq (5n + 5)/3.
\]

A natural variant of MIN-SBPR is to consider the action of flips not on permutations but on strings over fixed size alphabets. The shift from permutations to strings alters the problem universe somewhat. With permutations, for example, the distance

*Received by the editors July 4, 2006; accepted for publication (in revised form) January 5, 2007. Part of this research has been funded by the Dutch BSIK/BRICKS project.
http://www.siam.org/journals/sidma/21-3/66425.html
†Technische Universiteit Eindhoven (TU/e), Den Dolech 2, 5612 AX Eindhoven, The Netherlands (wscor@win.tue.nl, l.j.j.iersel@tue.nl, j.c.m.keijsper@tue.nl).
‡Centrum voor Wiskunde en Informatica (CWI), Kruislaan 413, 1098 SJ Amsterdam, The Netherlands (S.M.Kelk@cwi.nl, Leen.Stougie@cwi.nl, John.Tromp@cwi.nl).
1We adopt the convention of numbering from 0 rather than from 1.
2Although not explicitly described as such, the algorithm provided ten years earlier in [3] is a 2-approximation algorithm for the signed version of the problem.
problem—i.e., given two permutations \(\pi_1 \) and \(\pi_2 \), determine the smallest number of flips required to transform \(\pi_1 \) into \(\pi_2 \)—is equivalent to sorting, because the symbols can simply be relabeled to make either permutation equal to the identity permutation. For strings like 101, such a relabeling is not possible. Thus, the distance problem on string pairs appears to be strictly more general than the sorting problem on strings, naturally defined as putting all elements in non-descending order.

Indeed, papers by Christie and Irving [2] and Radcliffe, Scott, and Wilmer [11] explore the consequences of switching from permutations to strings; they both consider arbitrary (substring) reversals and transpositions (where two adjacent substrings are swapped). It has been noted that, viewed as a whole, such rearrangement operations on strings have bearing on the study of orthologous gene assignment [1], especially where the level of symbol repetition in the strings is low. There is also a somewhat surprising link with the relatively unexplored family of string partitioning problems [8]. To put our work in context, we briefly describe the most relevant (for this paper) results from [2] and [11].

The earlier paper [2] gives, in the case of both reversals and transpositions, polynomial-time algorithms for computing the minimum number of operations to sort a given binary string, as well as exact constructive diameter results on binary strings. Additionally, their proof that computing the reversal distance between strings is NP-hard supports the intuition that distance problems are harder than sorting problems on strings. They present upper and lower bounds for computing reversal and transposition distance on binary strings.

The more recent paper [11] gives refined and generalized reversal diameter results for non–fixed size alphabets. It also gives a polynomial-time algorithm for optimally sorting a ternary (3-letter alphabet) string with reversals. The authors refer to the prefix reversal counterparts of these (and other) results as interesting open problems. They further provide an alternative proof of Christie and Irving’s NP-hardness result for reversals, and sketch a proof that computing the transposition distance between binary strings is NP-hard. As we later note, this proof can also be used to obtain a specific reducibility result for prefix reversals. They also have some first results on approximation (giving a PTAS—a polynomial-time approximation scheme—for computing the distance between dense instances) and on the distance between random strings, both of which apply to prefix reversals as well.

In this paper we supplement results of [2] and [11] by their counterparts on prefix reversals. In section 3 (grouping) we introduce a weaker form of sorting where identical symbols need only be grouped together, while the groups can be in any order. For grouping on binary and ternary strings we give a complete characterization of the minimum number of flips required to group a string, and provide polynomial-time algorithms for computing such an optimal sequence of flips. (The complexity of grouping over larger fixed size alphabets remains open, but as an intermediate result we describe how a PTAS can be constructed for each such problem.) Grouping aids in developing a deeper understanding of sorting, which is why we tackle it first. It was also mentioned as a problem of interest in its own right by Eriksson et al. [4]. Then, in section 4 (sorting), we give polynomial-time algorithms (again based on a complete characterization) for optimally sorting binary and ternary strings with flips. (The complexity of sorting also remains open for larger fixed size alphabets. As with grouping we thus provide, as an intermediate result, a PTAS for each such problem.) In section 5 we show that the flip diameter on binary strings is \(n - 1 \), and on ternary strings (for \(n > 3 \)) lies somewhere between \(n - 1 \) and \((4/3)n \), with empirical support.
for the former. In section 6 we show that the flip distance problem on binary strings is NP-hard, and point out that a reduction in [11] also applies to prefix reversals, showing that the flip distance problem on arbitrary strings is polynomial-time reducible (in an approximation-preserving sense) to the binary problem. We conclude in section 7 with a discussion of some of the intriguing open problems that have emerged during this work. Indeed, our initial exploration has identified many basic (yet surprisingly difficult) combinatorial problems that deserve further analysis.

2. Preliminaries. Let \([k]\) denote the first \(k\) nonnegative integers \(\{0, 1, \ldots, k - 1\}\). A \(k\)-ary string is a string over the alphabet \([k]\), while a string \(s\) is said to be fully \(k\)-ary, or to have arity \(k\), if the set of symbols occurring in it is \([k]\).

We index the symbols in a string \(s\) of length \(n\) from 1 through \(n\): \(s = s_1s_2\ldots s_n\). Two strings are compatible if they have the same symbol frequencies (and hence the same length); e.g., 0012 and 1002 are compatible but 0012 and 0112 are not. For a given string \(s\), let \(I(s)\) be the string obtained by sorting the symbols of \(s\) in non-descending order, e.g., \(I(1022011) = 0011122\). The prefix reversal (flip for short) \(f^{(i)}(s)\) reverses the length \(i\) prefix of its argument, which should have length at least \(i\). Alternatively, we denote application of \(f^{(i)}(s)\) by underlining the length \(i\) prefix. Thus, \(f^{(2)}(2012) = 2012 = 0212\) and \(f^{(3)}(2012) = 2012 = 1022\). The flip distance \(d(s, s')\) between two strings \(s\) and \(s'\) is defined as the smallest number of flips required to transform \(s\) into \(s'\) if they are compatible, and \(\infty\) otherwise. Since a flip is its own inverse, flip distance is symmetric.

The flip sorting distance \(d_{\text{fs}}(s) = d(s, I(s))\) of a string \(s\) is defined as the number of flips of an optimal sorting sequence needed to transform \(s\) into \(I(s)\). An algorithm sorts \(s\) optimally if it computes an optimal sorting sequence for \(s\).

In the next two sections we consider strings to be equivalent if one can be transformed into the other by repeatedly duplicating symbols and eliminating one of two adjacent identical symbols. As representatives of the equivalence classes we take the shortest string in each class. These are exactly the strings in which adjacent symbols always differ. We express all flip operations in terms of these normalized strings. For example, we write \(f^{(3)}(2012) = 2012 = 102\). A flip that brings two identical symbols together, thereby shortening the string by 1, is called a 1-flip, while all others, which leave the string length invariant, are called 0-flips.

We follow the standard notation for regular expressions: superindex \(\cdot\) on a sub-string denotes the number of repetitions of the substring, with \(^*\) and \(+\) denoting 0-or-more and 1-or-more repetitions, respectively; \(\epsilon\) denotes the empty string; brackets of the form \(\{\}\) are used to denote that a symbol can be exactly one of the elements within the brackets; and the product sign \(\prod\) denotes concatenation of an indexed series. For example, \(\prod_{i=1}^{3}(10^i2) = 102100210002\), and \(\{1, 01\}_*\{\epsilon, 0\}\) denotes the set of binary strings with no 00 substring.

3. Grouping. The task of sorting a string can be broken down into two sub-problems: grouping identical symbols together and putting the groups of identical symbols in the right order. Notice that first grouping and then ordering may not be the most efficient way to sort strings. Although grouping appears to be slightly easier than the sorting problem, essentially the same questions remain open as in sorting. Grouping binary strings is trivial, and in section 3.1 we give the grouping distances of all ternary strings. As a result we give polynomial time algorithms for binary and ternary grouping. For larger alphabets the grouping problem remains open; as an intermediate result we describe in section 3.2 a PTAS for each such problem. While the
problems of grouping and sorting are closely related for strings on small alphabets, the
problems diverge when alphabet size approaches the string length, with permutations
being the limit.

Recall that we consider only normalized strings, as representatives of equivalence
classes. The flip grouping distance \(d_g(s) \) of a fully \(k \)-ary string \(s \) is defined as the
minimum number of flips required to reduce the string to one of length \(k \).

3.1. Grouping binary and ternary strings.

Lemma 1. \(d_g(s) \geq n - k \) for any fully \(k \)-ary string \(s \) of length \(n \).

Proof. The proof follows from the observations that, after grouping, fully \(k \)-ary
string \(s \) has length \(k \) and that each flip can shorten \(s \) by at most 1.

Lemma 2. \(d_g(s) \leq n - 2 \) for any fully \(k \)-ary string \(s \) of length \(n \).

Proof. Consider the following simple algorithm. If the leading symbol occurs
elsewhere, then a 1-flip bringing them together exists, so perform this 1-flip. If not,
then we use a 0-flip to put this symbol in front of a suffix in which we accumulate
uniquely appearing symbols. Repeat until the string is grouped.

Clearly no more than \(n - k \) 1-flips will be necessary. Also, no more than \(k - 2 \)
0-flips will ever be necessary, because after \(k - 2 \) 0-flips the prefix of the string will
consist of only two types of symbol, and the algorithm will never perform a 0-move
on such a string. Thus at most \((n - k) + (k - 2) = n - 2\) flips in total will be
needed.

As a corollary we obtain the grouping distance of binary strings.

Theorem 1. \(d_g(s) = n - 2 \) for any fully binary string \(s \) of length \(n \).

We will now define a class of bad ternary strings and prove that these are the
only ternary strings that need \(n - 2 \) rather than \(n - 3 \) flips to be grouped.

Definition 1. We define bad strings as all fully ternary strings of one of the
following types, up to relabeling:

1. strings of length greater than 3, in which the leading symbol appears only once:
 \(0(12)^{2+} \) and \(02(12)^{+} \);
2. strings having identical symbols at every other position, starting from the last:
 \((0,1)^{2+} \) and \((2,0,1)^{+2} \);
3. odd length strings whose leading symbol appears exactly once more, at an even
 position, and both occurrences are followed by the same symbol:
 \(0(21)^+02(12)^* \);
4. the following strings: \(X_1 = 210212, X_2 = 021012, X_3 = 0120212, X_4 = 1201212, X_5 = 02101212, X_6 = 201201212, X_7 = 020210212, X_8 = 12010212 \).

All other fully ternary strings are good. Strings of type I, II, and III, shortly I-, II-, and
III-strings, respectively, are called generically bad, or \(g \)-bad for short.

Lemma 3. \(d_g(s) = n - 2 \) if ternary string \(s \) of length \(n \) is bad.

Proof. Because of Lemmas 1 and 2, it suffices to show that in each case a 0-flip
is necessary: I-strings admit only 0-flips. A 1-flip on a II-string leads to a II-string
and eventually to a I-string. Any III-string admits only one 1-flip leading to a I-
string. For IV-strings, Table 1 shows that each possible 1-flip leads either to a shorter
IV-string or to a I-, II-, or III-string.

Lemma 4. \(d_g(s) = n - 3 \) if ternary string \(s \) of length \(n \) is good.

Proof. The proof is by induction on \(n \). The induction basis for \(n = 3 \) is trivial.
We show the statement for strings of length \(n + 1 \) by showing that if a bad string \(s' \)
of length \(n \) can be obtained through a 1-flip from a good (parent) string \(s \) of length
\(n + 1 \), then \(s \) admits another 1-flip which leads to a good string. Note that a 1-flip
\(f^{(i)}(s) = s' \) brings symbols \(s_1 \) and \(s_{i+1} \) together; hence \(s_1 = s_{i+1} \neq s_1 = s_{i+1} \), which
shows that the symbol deleted from parent \(s \) differs from the leading symbol of child

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
Table 1

Type IV strings and all their 1-flips.

X_1	X_2	X_3	X_4	X_5	X_6
210212	210212	20210212	20210212	02101212	02101212
021012	12012	01201212	01201212	12012	12012
1201212	1201212	210212	210212	20210212	20210212

Table 2

Type IV strings, their parents, and for each good parent, a 1-flip to a good string.

X_1	Parents	X_4	Parents	X_7	Parents
210212	12012012	210212	020210212	020210212	202010212
012012	12012012	210212	020210212	202010212	202010212
1201212	01201212	210212	020210212	202010212	202010212

s'. We enumerate all possible bad child strings s' and distinguish cases based on the leading symbol of good parent s.

For IV-strings, Table 2 lists all parents with, for each good parent, a 1-flip to a good string. It remains to prove that for each g-bad string all parents are either bad or have a g-1-flip, defined as a 1-flip resulting in a string that is not g-bad (i.e., either good or of type IV).

Type I, odd: $0(12)^{\geq 2}$ has possible parents starting with:
1. $1(21)^{i}012(12)^j$ with $i + j > 0$.
 - If $i > 0$, there is a g-1-flip $12(21)^{i-1}012(12)^j = (21)^i012(12)^j$;
 - If $i = 0$ and $j > 0$, there is a g-1-flip $1012(12)^j = 210(12)^j$;
2. $21(21)^{i}02(12)^j$ with $i + j > 0$.
 - If $i > 0$, there is a g-1-flip $21(21)^{i}02(12)^j = 1(21)^i02(12)^j$;
 - If $i = 0$ and $j > 1$, there is a g-1-flip $210212(12)^{j-1} = 120(12)^j$;
 - If $i = 0$ and $j = 1$, the parent is $210212 = X_1$.

Type I, even: these strings are also of type II; see below.

Type II, odd: $2\{0,1\}^{\geq 2}$ has only parents of type II.

Type II, even: $02\{0,1\}^*$ has possible parents starting with:
1. $2\{0,1\}^*012(0,1)^*$ with three cases for a possible third 1:
None: parent is \(12(02)^*012(02)^*\), which is of type III;

Before 01: then there is a g-1-flip
\[
12((0,1)^2)^*12((0,1)^2)^*012((0,1)^2)^* = 2((0,1)^2)^*12((0,1)^2)^*012((0,1)^2)^*.
\]

After 01: then there is a g-1-flip
\[
12((0,1)^2)^*012((0,1)^2)^*12((0,1)^2)^* = 2((0,1)^2)^*012((0,1)^2)^*12((0,1)^2)^*.
\]

Type III: \(0(21)^*02(12)^*\) has possible parents starting with:
1: \((12)^i01(21)^j02(12)^k\) with \(i > 0\).

If \(i > 1\), there is a g-1-flip
\[
12((12)^i)^{-1}01(21)^j02(12)^k = 2(12)^i^{-1}01(21)^j02(12)^k;
\]

If \(i = 1, j > 0\), there is a g-1-flip
\[
120121(21)^j02(12)^k = 21021(21)^j02(12)^k;
\]

If \(i = 1, j = 0, k > 0\), there is a g-1-flip 120102(12)^k = 20102(12)^k;

If \(i = 1, j = k = 0\), then the parent is 120102 = \(X_2\) (relabelled);

1: \((12)^i0(12)^i0(12)^j^*\): there is a g-1-flip
\[
(12)^i0(12)^i0(12)^j^* = 0(21)^i+j0(21)^j^*;
\]

2: \(2(12)^i0(21)^j02(12)^k\): there is a g-1-flip
\[
2(12)^i0(21)^j02(12)^k = 0(12)^i+j0(21)^j^*2;
\]

2: \((21)^j)02(12)^k\) with \(j > 0\).

If \(i = 0, j = 1\), then the parent is \(210212 = X_1\);

If \(i + j > 1\), then \((21)^j)20102(12)^k = 201(12)^i+j02(12)^k\) is a
g-1-flip.

The following theorem results directly from Lemmas 3 and 4.

Theorem 2. \(d_g(s) = n−2\) if and only if fully ternary string \(s\) of length \(n\) is bad and \(d_g(s) = n−3\) otherwise. Moreover, there exists a polynomial-time algorithm for
grouping ternary strings with a minimum number of flips.

Proof. The first statement is direct from Lemmas 3 and 4. In case string \(s\) is bad, which by Definition 1 can be decided in polynomial time, the algorithm implicit in
the proof of Lemma 2 shows how to group \(s\) optimally in polynomial time. Otherwise, we repeatedly find a 1-flip to a good string, as guaranteed by Lemma 4. The time complexity is \(O(n^3)\), since grouping distance, number of choices for a 1-flip, and time to perform a flip and test whether its result is good are all \(O(n)\).

3.2. Grouping strings over larger alphabets. Lemmas 1 and 2 say that
\(n−k \leq d_g(s) \leq n−2\) for any fully \(k\)-ary string \(s\). For any \(k\) there are fully \(k\)-ary strings that have flip grouping distance equal to \(n−2\). For example, the length \(n = 2(k−1)\)
string \(1020\ldots(k−1)0\) requires that every 1-flip bring a 0 to the front first, and hence we need as many 0-flips as 1-flips, and \(d_g(1020\ldots(k−1)0) \geq 2(k−2) = 2k−4 = n−2\).

Computer calculations suggest that for \(k = 4\) and \(k = 5\), for \(n\) large enough, the strings with grouping distance \(n−2\) are precisely those having identical symbols at
every other position, starting from the last (i.e., type II of Definition 1). Proving
(or disproving) this statement remains open, as well as finding a polynomial-time
algorithm for grouping \(k\)-ary strings for any fixed \(k > 3\). We do, however, have the
following intermediate result.

Theorem 3. For every fixed \(k\) there is a PTAS for grouping \(k\)-ary strings.

Proof. We show that, for every fixed \(k\) and for every fixed \(\epsilon > 0\) there is a
polynomial-time algorithm that, given any \(k\)-ary string \(s\) of length \(n\), computes a
sequence of flips which groups \(s\) in at most \((1 + \epsilon)d_g(s)\) flips. We assume \(k \geq 4\)
because for \(k = 2\) and \(k = 3\) the exact algorithms suffice. Let \(N = (k−2)/\epsilon + k\). We
distinguish two cases.

Case 1. If \(n \geq N \), we use the simple “greedy” algorithm described in the proof of Lemma 2. This will group \(s \) in \(d_g^G(s) \) flips with \(d_g^G \leq n - 2 \) steps. This together with the lower bound of \(n - k \) on \(d_g(s) \) from Lemma 1 gives \(d_g^G(s) \leq d_g(s) + (k - 2) \leq (1 + \epsilon)d_g(s) \).

Case 2. If \(n < N \), we compute \(d_g(s) \) by a brute force algorithm which simply chooses the best among all possible flip sequences of length \(n - 2 \); there are \(n^{n-2} \) of these. This yields the optimal solution since \(d_g(s) \leq n - 2 \) (Lemma 2). The running time in this case is bounded by a constant. \(\square \)

Clearly, there is a strong relationship between grouping and sorting. Understanding grouping may help us to understand sorting and lead to improved bounds (especially as the length of strings becomes large relative to their arity), because for a \(k \)-ary string \(s \), we have \(d_g(s) \leq d_s(s) \leq d_g(s) + wc(k) \), with \(wc(k) \) the flip diameter on permutations with \(k \) elements, as defined before.

Also \(d_g(s) = \min\{d_s(t) : t \text{ a relabeling of } s\} \), which gives (for fixed \(k \)) a polynomial-time reduction from grouping to sorting. Thus every polynomial-time algorithm for sorting by prefix reversals directly gives a polynomial-time algorithm for the grouping problem (for fixed \(k \)).

4. Sorting. In this section we present results on sorting similar to those on grouping in the previous section. Also flip sorting distance remains open for strings over alphabets of size larger than 3. As an intermediate result we thus provide at the end of this section a PTAS for each such problem.

Again a 1-flip brings identical symbols together and thus shortens the representative of the equivalence class under symbol duplication. But since symbol order matters for sorting, relabeled strings are no longer equivalent. As in grouping, sorting of binary strings is straightforward, as seen in the following.

Theorem 4. \(d_g(s) = n - 2 \) for every fully binary string \(s \) of length \(n \) with \(s_n = 1 \), and \(d_g(s) = n - 1 \) otherwise.

Proof. Exactly \(n - 2 \) 1-flips suffice and are necessary to arrive at length 2 string 01 or 10. If the last symbol is 0, an additional 0-flip is necessary, putting a 1 at the end. All these flips can be \(f(2) \).

From Lemma 1 we know that \(d_g(s) \geq n - 3 \) and hence \(d_g(s) \geq n - 3 \) for every ternary string \(s \) of length \(n \). In the upper bound on \(d_g(s) \) that we derive below we focus on strings \(s \) ending in a 2 (\(s_n = 2 \)), since sorting distance is invariant under appending a 2 to a string. It turns out that, when sorting a ternary string ending in a 2, one needs at most one 0-flip, except for the string 0212.

Lemma 5. \(d_g(s) \leq n - 2 \) for every fully ternary string \(s \) of length \(n \) with \(s_n = 2 \), except 0212.

Proof. It is easy to check that 0212 requires three flips to be sorted. By induction on \(n \) we prove the rest of the lemma. The basis case of \(n = 3 \) is trivial. For a string \(s \) of length \(n > 3 \) we distinguish three cases:

- \(s_{n-1} = 0 \): If \(s = 20102 \), it is sorted in three flips: 20102 \(\rightarrow \) 0102 \(\rightarrow \) 102 \(\rightarrow \) 012.

- Otherwise, by induction and relabeling 0 \(\rightarrow \) 2, the string \(s_1 \ldots s_{n-1} \) can be reduced to 210 in \(n - 3 \) flips (to 20 or 10 by Theorem 4 if \(s_1 \ldots s_{n-1} \) has only two symbols), and one more flip sorts \(s \) to 012.

- \(s_{n-1} = 1 \), \(s_1 = 0 \) and appears only once: Thus \(s = 0(12)^{\geq 2} \) or \(s = 02(12)^{\geq 2} \). Then \(s \) can be sorted with only one 0-flip: 0(12)+12 \(\rightarrow \) 1(21)+02 \(\rightarrow \) \(\ldots \) \(\rightarrow \) 2102 \(\rightarrow \) 012 or, respectively, 02(12)^{\geq 2} \(\rightarrow \) 20(12)^{\geq 2} \(\rightarrow \) (12)^{\geq 2} + 02 \(\rightarrow \) \(\ldots \) \(\rightarrow \) 2102 \(\rightarrow \) 012.
Table 3
Type IX strings.

Y₁ = 201212	Y₂ = 20121012	Y₃ = 21021212	Y₄ = 021210212	Y₅ = 0212012012	Y₆ = 0210212012
Y₇ = 1021012	Y₈ = 10212012	Y₉ = 21201212	Y₁₀ = 212010212	Y₁₁ = 212012012	Y₁₂ = 212012012
Y₁₃ = 0212012	Y₁₄ = 01201212	Y₁₅ = 012010212	Y₁₆ = 012012012	Y₁₇ = 012012012	Y₁₈ = 2101212
Y₁₉ = 0210212	Y₂₀ = 02102012	Y₂₁ = 10212012	Y₂₂ = 10212012	Y₂₃ = 10212012	Y₂₄ = 10212012

- sₙ₋₁ = 1, s₁ not unique: If s = 12012, then three flips suffice: 12012 → 21012 → 1012 → 012. Otherwise, since the other two parents of 0212 can flip to 1202, there is a 1-flip to a string ≠ 0212, to which we can apply the induction hypothesis.

As in section 3, we characterize the strings ending in a 2 that need n − 2 rather than n − 3 flips to sort.

Definition 2. We define bad strings as all fully ternary strings ending in a 2 of the following types:

I. 0(12)²,
II. ((0,1)²)+ and 2{(0,1)²}⁺,
III. ((1,2)²)+ 2 and 0{(1,2)²}⁺,
IV. ((1,2)²)+ 012 with at least two 2’s,
V. 0(01)+0212 and (10)+212,
VI. 1(20)+1(20)+2 and 0(21)+0(21)+2,
VII. 1(02)+1(02)+,
VIII. 1(02)²+12,
IX. 77 strings of length at most 11, shown in Table 3.

All other fully ternary strings ending in a 2 are good strings. Strings of type I–VIII (I-strings... VIII-strings, for short) are called generically bad, or g-bad for short.

This definition makes 0212 a bad string as well. From Lemma 5 we know that 0212 is the only ternary string ending in a 2 with sorting distance n − 1.

Theorem 5. String 0212 has sorting distance 3. Any other fully ternary string s of length n with sₙ = 2 has prefix reversal sorting distance n − 2 if it is bad and n − 3 if it is good. A fully ternary string s ending in a 0 or 1 has the same sorting distance as s₂.

Proof. The proof follows directly from Lemmas 6 and 7 below. Note that every sorting sequence for s sorts s as well, while every sorting sequence for s₂ can be modified to avoid flipping the whole string and thus works for s as well.

Lemma 6. dₙ(s) = n − 2 for every bad ternary string s ≠ 0212 of length n.

Proof. Since dₙ(s) ≥ n − 3 and any 1-flip decreases the length of the string by 1,
Lemma 5 says it suffices to show that for each type in Definition 2 a 0-flip is necessary:

- For I-strings only 0-flips are possible.
- A 1-flip on a II- or III-string leads to a string of the same type, so that eventually no 1-flip is possible.
- A 1-flip on a IV-string leads either again to a IV-string or (when destroying the 12 suffix) to a III-string.
- A 1-flip on a V-string leads either again to a V-string or (when destroying the suffix with a ...0212 flip) to a IV-string. Flips ...0212 and ...0212 are not possible for lack of more 2's.
- For strings of VI-, VII- and VIII-strings only one 1-flip is possible, leading to II-, III- and IV-strings respectively.
- For IX-strings, Table 4 lists all possible 1-flips, ultimately leading to a string of type I–VIII.

\[\text{Lemma 7. } d_+(s) = n - 3 \text{ for every good ternary string } s \text{ of length } n.\]

Proof. The proof is by induction on \(n\) and is similar to the proof of Lemma 4. The induction basis for \(n = 3\) is again trivial. We prove that for each g-bad string of length \(n\) all parents (of length \(n + 1\)) either are bad or have a 1-flip to a string that is not g-bad (i.e., either good or of type IX). Remember that such a flip is called a g-1-flip. That for each IX-string all parents either are bad or have a 1-flip to a good string is proved by case checking in Table 4. Together this proves that every good string of length \(n + 1\) has a 1-flip to a good string of length \(n\), and therefore the lemma is proved.

Type I: \(0(12)^+\) has possible parents starting with:

1: \(1(21)^0(12)^j\) with \(j \geq 0\).

- If \(i > 0\), there is a g-1-flip \(121((21)^{i-1}0(12)^j) = (21)^i0(12)^j\);
- If \(i = 0, j > 1\), there is a g-1-flip \(1012(12)^{j-1} = 210(12)^{j-1}\);
- If \(i = 0, j = 1\), there is a g-1-flip \(1012 = 012\);

2: \(2(21)^0(12)^j\) with \(i > 0\).

- If \(i > 1\), there is a g-1-flip \(2121((21)^{i-2}02(12)^j) = 1(21)^{i-1}02(12)^j\);
- If \(i = 1, j > 0\), there is a g-1-flip \(210212(12)^{j-1} = 120(12)^{j-1}\);
- If \(i = 1, j = 0\), there is a g-1-flip \(2102 = 012\).

Type II, even: \((\{0,1\}2)^+\) has possible parents starting with:

0: \((2(0,1))^*2102((\{0,1\}2)^*\), with three cases for a possible third 0:

- **None:** the parent is of type VI;

 Before 2102: there is a g-1-flip
 \[02((0,1))^*20(2(0,1))^*2102((\{0,1\}2)^* = 2((0,1))^*0(2(0,1))^*2102((\{0,1\}2)^*;\]

 After 2102: there is a g-1-flip
 \[02((0,1))^*2102((\{0,1\}2)^*02((0,1))^* = (2(0,1))^*0212((\{0,1\}2)^*02((0,1))^*;\]

1: \((2(0,1))^*2102((\{0,1\}2)^*\), with three cases for a possible third 1:

- **None:** the parent is of type VI;

 Before 2102: there is a g-1-flip
 \[12((0,1))^*21(2(0,1))^*2102((\{0,1\}2)^* = 2((0,1))^*1(2(0,1))^*2102((\{0,1\}2)^*;\]

 After 2102: there is a g-1-flip
 \[12((0,1))^*2102((\{0,1\}2)^*12((0,1))^* = (2(0,1))^*2102((\{0,1\}2)^*12((0,1))^*;\]

2: \((2(0,1))^*2(0,1)((\{0,1\}2)^*\) is of type II.
All strings of type IX (first column). For each string all parents and all 1-flips are listed. Either each parent is bad, or a 1-flip to a good string is given. For each string of type IX is also shown that each 1-flip leads to a bad string. Here P_i denotes the parent you get by doubling the ith symbol and applying $p(i)$, and Ci denotes the string you get by applying the 1-flip $p(i-1)$. Note that if the ith symbol is not equal to the first symbol, there is a parent P_i, and if the ith symbol is equal to the first symbol, there is a 1-flip possible, leading to C_i.

P_0	P_1	C_1	C_2	C_3	C_4	C_5	C_6
P_0	P_1	P_2	P_3	P_4	P_5	P_6	

Type II, odd: $2((0,1])^+\ast$ has possible parents starting with:
0: $(0(1,2]^{02})^+(0,1,2])^\ast$ is of type II;
1: $1((0,1])^{21}(0,1,2])^\ast$ is of type II.

Type III, even: $0((1,2])^+2$ has possible parents starting with:
1: $0((1,2])^+010((1,2])^2$ is of type III;
2: $2((0,1,2])^020((1,2])^2$ is of type III;
2: $2((0,1,2])^0202((1,2])^2$ is of type III.

Type III, odd: $(1,2])^+2$ has possible parents starting with:
0: $0((1,2]^{0(1,2])}(1,2])^2$ is of type III;
1: $1((0,1,2])^2010((1,2])^2$, there are three cases for a possible third 1:

None: the parent is of type VII;
Table 4

Continued.

Y_{33} = 12120102	Y_{34} = 1201012	$C_3 = Y_9$	P_4 = 211201012	P_5 = 021210112	C_6 is of type VI
Y_{35} = 12010202	Y_{36} = 02120102	$C_3 = Y_9$	P_4 = 02120102	P_5 = 021210112	Y_6 is of type VI
Y_{37} = 02120102	Y_{38} = 02120102	$C_3 = Y_9$	P_4 = 02120102	P_5 = 021210112	Y_6 is of type VI
Y_{39} = 02120102	Y_{40} = 02120102	$C_3 = Y_9$	P_4 = 02120102	P_5 = 021210112	Y_6 is of type VI
Y_{41} = 02120102	Y_{42} = 02120102	$C_3 = Y_9$	P_4 = 02120102	P_5 = 021210112	Y_6 is of type VI
Y_{43} = 02120102	Y_{44} = 02120102	$C_3 = Y_9$	P_4 = 02120102	P_5 = 021210112	Y_6 is of type VI
Y_{45} = 02120102	Y_{46} = 02120102	$C_3 = Y_9$	P_4 = 02120102	P_5 = 021210112	Y_6 is of type VI
Y_{47} = 02120102	Y_{48} = 02120102	$C_3 = Y_9$	P_4 = 02120102	P_5 = 021210112	Y_6 is of type VI
Y_{49} = 02120102	Y_{50} = 02120102	$C_3 = Y_9$	P_4 = 02120102	P_5 = 021210112	Y_6 is of type VI
Y_{51} = 02120102	Y_{52} = 02120102	$C_3 = Y_9$	P_4 = 02120102	P_5 = 021210112	Y_6 is of type VI
Y_{53} = 02120102	Y_{54} = 02120102	$C_3 = Y_9$	P_4 = 02120102	P_5 = 021210112	Y_6 is of type VI
Y_{55} = 02120102	Y_{56} = 02120102	$C_3 = Y_9$	P_4 = 02120102	P_5 = 021210112	Y_6 is of type VI
Y_{57} = 02120102	Y_{58} = 02120102	$C_3 = Y_9$	P_4 = 02120102	P_5 = 021210112	Y_6 is of type VI
Y_{59} = 02120102	Y_{60} = 02120102	$C_3 = Y_9$	P_4 = 02120102	P_5 = 021210112	Y_6 is of type VI
Y_{61} = 02120102	Y_{62} = 02120102	$C_3 = Y_9$	P_4 = 02120102	P_5 = 021210112	Y_6 is of type VI

Before 0210: there is a g-1-flip

$1(0(1,2)^{12}) + 12 = 0((1,2)0)^{12}$

After 0210: there is a g-1-flip

$1(0(1,2)^{12}) + 12 = 0((1,2)0)^{12}$

2: $2(0(1,2)^{12}) + 12 = 0((1,2)0)^{12}$ is a g-1-flip unless this last string is 0210 (type VI), but then the parent is 20102 = Y_5;

Type IV, even: $(1,2)0^{12}$ with a second 2 has possible parents starting with:

0: $0(1,2)^{12}$, with a second 2, is of type IV;

1: $1(0(1,2)^{12}) + 12 = 0((1,2)0)^{12}$ is a g-1-flip;

1: $1(0(1,2)^{12}) + 12$, with three cases:

No third 2: the parent is of type V;
$y_62 = 102102012$	$P_2 : 01012012$	$P_3 : 2012102012$	$C_4 = Y_{58}$	$P_5 = Y_{10}$	$P_6 = Y_{74}$
$y_63 = 102101012$	$P_2 : 0101201012$	$P_3 : 2012102012$	$C_4 = Y_{50}$	$P_5 : 2102120102$	$P_{10} : 2102012012$
$y_64 = 1020210212$	$P_2 : 0102021012$	$P_3 : 2012102102$	$C_4 = Y_{50}$	$P_5 : 2012120102$	$P_{10} : 2102012012$
$y_65 = 1010210202$	$P_2 : 010201202$	$P_3 : 201210202$	$C_4 = Y_{50}$	$P_5 : 2012120102$	$P_{10} : 2102012012$
$y_66 = 0202010212$	$P_2 : 2020201212$	C_7 is of type VIII	$C_4 = Y_{50}$	$P_5 : 2012120102$	$P_{10} : 2102012012$
$y_67 = 2120202012$	$P_2 : 2120202012$		C_4 is of type VI	$P_5 : 2120120202$	$P_{10} : 2102012012$
$y_68 = 2120102102$	$P_2 : 2120102102$		C_4 is of type VI		$P_{10} : 2102012012$
$y_69 = 2021021202$	$P_2 : 2120102012$		C_4 is of type VI		
$y_70 = 2012012012$	$P_2 : 2120102102$		C_4 is of type VI		
$y_71 = 2102120202$	$P_2 : 2120102202$		C_4 is of type VI		
$y_72 = 2120102202$	$P_2 : 2120102202$		C_4 is of type VI		
$y_73 = 1020201012$	$P_2 : 010202012$		C_4 is of type VI		
$y_74 = 02120102012$	$P_2 : 010202012$		C_4 is of type VI		
$y_75 = 0202120202$	$P_2 : 010201202$		C_4 is of type VI		
$y_76 = 2120202012$	$P_2 : 2120102202$		C_4 is of type VI		
$y_77 = 2120202012$	$P_2 : 2120102202$		C_4 is of type VI		
No third 1: the parent is of type VIII;
Otherwise: 1(0(1, 2))∗01(0(1, 2))∗0212 = 0(1(2)0)∗1(0(1, 2))∗0212
(with a third 2) is a g-1-flip;
2: 2(0(1, 2))∗0120(1, 2)0)∗12, with four cases:
A fourth 2 before 0120: there is a g-1-flip 2(0(1, 2))∗02(0(1, 2))∗
0120((1, 2)0)∗12 = 0((1, 2)0)∗120((1, 2)0)∗12;
A fourth 2 after 0120: there is a g-1-flip
2(0(1, 2))∗0120((1, 2)0)∗20((1, 2)0)∗12 = (0(1, 2))∗
0210((1, 2)0)∗12;
A third 1: 2(0(1, 2))∗0120((1, 2)0)∗12 = 1(0(1, 2))∗
0210((1, 2)0)∗2 is a g-1-flip;
Otherwise: 2012012 = Y4;
2: 21(0(1, 2))∗02(0(1, 2))∗012 = 0((1, 2)0)∗120((1, 2)0)∗012 is a g-1-flip.

Type IV, odd: 0(10)∗12 with a second 2, has possible parents starting with:
1: 1(0(1, 2))∗12, with a second 2, is of type IV;
2: 2(0(1, 2))∗012 is of type IV;
2: 21(0(1, 2))∗02(0(1, 2))∗02 = 0((1, 2)0)∗12(0(1, 2))∗02 is a g-1-flip.

Type V, even: 0(10)∗12 (0212 is also of type I), has possible parents starting with:
1: (10)∗12 is of type V;
1: 12(01)∗012 = 021(01)∗012 is a g-1-flip;
2: 2(01)∗0212 = 12(10)∗2 is a g-1-flip;
2: 21(01)∗02 = 12(01)∗02 is a g-1-flip.

Type V, odd: (10)∗121, has possible parents starting with:
0: (01)∗0212 is of type V;
2: 2(01)∗1212 = 12(10)∗2 is a g-1-flip;
2: 21(01)∗2 = 12(01)∗2 is a g-1-flip unless i = 1, but then the parent is 212012 = Y5.

Type VI, 1(20)∗+1(20)∗2: has possible parents starting with:
0: (02)∗10(20)∗12(20)∗2 with i > 0.
If i > 1, 0202(02)−i−210(20)∗1(20)∗2 = 2(02)−i−110(20)∗1(20)∗2 is a
g-1-flip;
If i = 1, j > 0, 021020(20)−j−11(20)∗2 = 201(20)∗1(20)∗2 is a g-1-flip;
If i = 1, j = 0, k > 0, 021020(20)−k−12 = 210(20)∗2 is a g-1-flip;
If i = 1, j = k = 0, 021012 = Y2;
0: (02)∗1(02)∗1(20)∗2 = (02)∗1(02)∗1(20)∗2 is a g-1-flip unless this last
string is 10212 (type V) or 0210212 (type VI), but then the parent is
212012 = Y3 or 21201202 = Y28 respectively;
2: 2(02)∗1(20)∗+1(20)∗2 = (02)∗1(02)∗1(20)∗2 is a g-1-flip;
2: 2(02)∗1020(02)∗2 = 01(20)∗212 is a g-1-flip unless there is no second 0,
but then the parent is 210212 = Y4.

Type VI, 0(21)∗+0(21)∗2: has possible parents starting with:
1: (12)∗01(21)∗0(21)k2 with i > 0.
If i > 1, 1212(12)−i−201(21)∗0(21)−k2 = 2(12)−i−101(21)∗0(21)k2 is a
g-1-flip;
If i = 1, j > 0, 1201(21)−j−10(21)−k2 = 210(21)∗0(21)k2 is a g-1-flip;
If i = 1, j = 0, k > 0, 1201021(21)−k−12 = 210(21)k2 is a g-1-flip;
If i = 1, j = k = 0, 120102 = Y4.
1: \((12)^*0(12)^+0(12)^+ = 0(21)^+20(12)^+\) is a g-1-flip;
2: \(2(12)^*0(21) + 0(21)^* = (12)^*0(12)^+0(21)^*2\) is a g-1-flip unless this last string is 1201202 (type VI), but then the parent is 20210212 = \(Y_2\);
2: \(2(12)^*0(12)^+0(21)^+2 = (12)^*0(21)^+0(21)^*2\) is a g-1-flip;
2: \(2(12)^*0(12)^*0(21)^*0(21)^* = 10(21)^*202\) is a g-1-flip unless this last string is 10202 (type III), but then the parent is 201202 = \(Y_2\).

Type VII: \((102)^+1(02)^+\) has possible parents starting with:

- 0: \(0(20)^+1(02)^+1(02)^+ = 1(20)^+1(02)^+\) is a g-1-flip;
- 0: \(0(20)^+120(20)^*1(02)^+ = 210(20)^*1(02)^+\) is a g-1-flip;
- 2: \((20)^+12(02)^*102(02)^* = 01(20)^*21(02)^+\) is a g-1-flip;
- 2: \((20)^+12(02)^*102(02)^* = 1(02)^+012(02)^*\) is a g-1-flip.

Type VIII: \((102)^+12\) has possible parents starting with:

- 0: \((20)^+1(02)^*12\) with \(j > 0\).
 - If \(i > 0\), \(020(20)^{-1}(02)^{j-1}12 = (20)^+1(02)^*12\) is a g-1-flip;
 - If \(i = 0\), \(j > 1\), \(0102(02)^{j-1}12 = 201(02)^{-1}12\) is a g-1-flip;
 - If \(i = 0\), \(j = 1\), \(010212\) is of type V;
- 2: \((20)^+12(02)^*12 = 1(20)^*21(02)^+\) is a g-1-flip;
- 2: \(21(20)^*12\) with \(i > 0\).
 - If \(i = 1\), \(210212 = Y_3\);
 - If \(i > 1\), \(2102(20)^{-1}12 = 021(20)^{-1}12\) is a g-1-flip.

Theorem 6. There exists a polynomial-time algorithm for optimally sorting ternary strings.

Proof. This follows rather easily from Theorem 5.

Finally, in light of the fact that the complexity of the sorting problem on quaternary (and higher) strings remains open, the following serves as an intermediate result.

Theorem 7. For every fixed \(k\) there is a PTAS for sorting \(k\)-ary strings.

Proof. The proof is very similar to the proof of Theorem 3. We assume that \(k \geq 4\). Let \(N = (3k - 2)/\epsilon + k\). Let \(s\), the string that we wish to sort, be of length \(n\). We distinguish two cases. (In both cases it is useful to note that \(d_s(s) \leq 2n\) because we can always bring the greatest symbol not yet in its final position to the front and then to its correct position.)

Case 1. If \(n \geq N\), we first group the string using the “greedy” algorithm from the proof of Lemma 2, which yields a permutation on \(k\) symbols. This permutation can then be easily sorted with at most \(2k\) flips. Thus the total number of flips, denoted by \(d^G_s(s)\), is at most \((n - 2) + 2k\). This, together with the grouping lower bound of Lemma 1 of \(n - k\) on \(d^G_s(s)\), yields \(d^G_s(s) \leq d_s(s) + (3k - 2) \leq (1 + \epsilon)d_s(s)\).

Case 2. If \(n < N\), we apply brute force by selecting the shortest sorting sequence from among all length-\(2n\) sequences of flips; there are at most \(n^{2n}\) such sequences. Given that \(d_s(s) \leq 2n\), this is guaranteed to give an optimal solution. The running time in this case is bounded by a constant.

5. Prefix reversal diameter. Let \(S(n, k)\) be the set of fully \(k\)-ary strings of length \(n\). We define \(\delta(n, k)\) as the largest value of \(d(s, t)\) ranging over all compatible \(s, t \in S(n, k)\).

Theorem 8. For all \(n \geq 2\), \(\delta(n, 2) = n - 1\).

Proof. To prove \(\delta(n, 2) \geq n - 1\), consider compatible \(s, t \in S(n, 2)\) with \(s = (10)^{n/2}\) in case \(n\) even and \(s = 0(10)^{(n-1)/2}\) in case \(n\) odd and in both cases \(t = I(s)\); i.e., \(t\) is the sorted version of \(s\). By Theorem 4, \(d(s, t) \geq n - 1\).
The proof that $\delta(n,2) \leq n - 1$ for all $n \geq 2$ is by induction on n. The lemma is trivially true for $n = 2$. Consider two compatible binary strings of length n: $s = s_1s_2 \ldots s_n$ and $t = t_1t_2 \ldots t_n$. If $s_n = t_n$, then by induction $d(s,t) \leq n - 2$. Thus, suppose (without loss of generality) $s_n = 0$ and $t_n = 1$. If $t_1 = 0$, then $f^{(n)}t$ and s both end with a 0, and using induction and symmetry $d(s,t) \leq 1 + d(f^{(n)}t,s) \leq n - 2 + 1 = n - 1$. An analogous argument holds if $s_1 = 1$.

There remains the case $s_1 = s_n = 0$ and $t_1 = t_n = 1$. First, suppose $t_{n-1} = 0$. Since s and t are compatible, there must exist an index i such that $s_i = 0$ and $s_{i+1} = 1$. Hence, $f^{(i)}f^{(i+1)}(s)$ ends with 01 like t, and by induction $d(s,t) \leq 2 + d(f^{(i)}f^{(i+1)}(s),t) = 2 + n - 3$. Analogously, we resolve the case $s_{n-1} = 1$.

Finally, suppose $s = 0 \ldots 00$ and $t = 1 \ldots 11$. If s contains 11 as a substring, then flipping that 11 (in the same manner as above) to the end of s using two flips gives two strings that both end in 11. Alternatively, if s does not contain 11 as a substring, then s has at least two more 0’s than 1’s, which implies that t must contain 00 as a substring. In that case two prefix reversals on t suffice to create two strings that both end with 00. In both cases, the induction hypothesis gives the required bound.

Note that, trivially, $d(s,t) \leq 2n$ for all compatible $s,t \in S(n,k)$, for all k, because two prefix reversals always suffice to increase the maximal common suffix between s and t by at least 1. The following tighter bound gives the best bound known on the diameter of ternary strings.

Lemma 8. For any two compatible $s,t \in S(n,k)$, for any k, let a be the most frequent symbol in s and α its multiplicity. Then $d(s,t) \leq 2(n - \alpha)$.

Proof. We prove the lemma by induction on n. The lemma is trivially true for $n = 2$. Consider $s,t \in S(n,k)$. If $s_n = t_n = a$, then $s_1s_2 \ldots s_{n-1}$ and $t_1t_2 \ldots t_{n-1}$ are compatible length-$(n - 1)$ strings where the most frequent symbol occurs at least $\alpha - 1$ times. Thus, by induction $d(s,t) \leq 2((n - 1) - (\alpha - 1)) = 2(n - \alpha)$. In case $s_n = t_n \neq a$ induction even gives $d(s,t) \leq 2((n - 1) - (\alpha - 1)) = 2(n - \alpha) - 2$. Thus, suppose $s_n \neq t_n$ implying without loss of generality that $t_n = b \neq a$. Suppose $s_i = b$; after two flips $s' = f^{(n)}f^{(i)}(s)$ has b at the end; $s'_n = t_n$. Moreover, the length $n - 1$ suffixes of s' and t still contain a's. Hence by induction, $d(s,t) \leq 2 + d(s',t) \leq 2 + 2((n - 1) - \alpha) = 2(n - \alpha)$.

Lemma 9. For all $n \geq 3$, $n - 1 \leq \delta(n,3) \leq (4/3)n$.

Proof. Since in any ternary case $\alpha \geq \lceil n/3 \rceil$, Lemma 8 implies $\delta(n,3) \leq (4/3)n$. To prove $\delta(n,3) \geq n - 1$ we distinguish between n odd and n even. For odd $n = 2h + 1$, let s be $2(01)^{h}$, and for even $n = 2h$ let $s = 01(21)^{h-1}$. In both cases we let $t = I(s)$. We observe that, in the even and in the odd case, $s2$ is a bad I-string and a bad IV-string, respectively, in the sense of Definition 2. Thus, by Theorem 5 we have that $d(s,t) = d(s2,t2) = (n + 1) - 2 = n - 1$. (Here $s2$ (respectively, $t2$) refers to the concatenation of s (respectively, t) with an extra 2 symbol.)

Brute force enumeration has shown that, for $4 \leq n \leq 13$, $\delta(n,3) = n - 1$. (Note that $\delta(3,3) = 3$ because $d(021,012) = 3$.) Proving or disproving the conjecture that $\delta(n,3) = n - 1$ for $n > 3$ remains an intriguing open problem.3

6. Prefix reversal distance. We show that computing flip distance is NP-hard on binary strings. We also point out, using a result from [11], that computing flip distance on arbitrary strings is polynomial-time reducible (in an approximation-preserving sense) to computing it on binary strings.

3Interestingly, initial experiments with brute force enumeration have also shown that, for $4 \leq n \leq 10$, $\delta(n,4) = n$, and for $5 \leq n \leq 9$, $\delta(n,5) = n$.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
Theorem 9. The problem of computing the prefix reversal distance of binary strings is NP-hard.

We prove NP-completeness of the corresponding decision problem:

Name: binary-PD (abbreviated 2PD).

Input: Two compatible strings $s, t \in S(n, 2)$, and a bound $B \in \mathbb{Z}^+$.

Question: Is $d(s, t) \leq B$?

2PD is in NP, since a certificate for a positive answer consists of at most B flips.\(^4\)

To show completeness we use a reduction from 3-PARTITION [6] (cf. [2] and [11]).

Name: 3-PARTITION (abbreviated 3P).

Input: A set $A = \{a_1, a_2, \ldots, a_{3k}\}$ and a number $N \in \mathbb{Z}^+$. Element a_i has size $r(a_i) \in \mathbb{Z}^+$ satisfying $N/4 < r(a_i) < N/2$, $i = 1, \ldots, 3k$, and $\sum_{i=1}^{3k} r(a_i) = kN$.

Question: Can A be partitioned into k disjoint triplet sets A_1, A_2, \ldots, A_k such that $\sum_{a \in A_j} r(a) = N$, $j = 1, \ldots, k$?

Given instance $I = (A, N, r)$ of 3P, we create an instance of 2PD by setting $B = 6k$ and building two compatible binary strings s and t:

$$s = \left(\prod_{1 \leq i \leq 3k} 0001^{r(a_i)} \right) 000, \quad t = 0^{3(3k+1)-k}(01^N)^k.$$

This construction is clearly polynomial in a unary encoding of the 3P instance; we use the strong NP-hardness of 3P [6]. We claim that $I = (A, N, r)$ is a positive instance of $3P \Leftrightarrow d(s, t) \leq 6k$.

\Rightarrow Let a_{ij} denote the jth element from triples A_i (in arbitrary order), $j = 1, 2, 3$, $i = 1, \ldots, k$, and let us abuse its name also to denote the corresponding 1-block of length $r(a_{ij})$ in s.

That s can be transformed to t in $6k$ flips follows directly from the correctness of the following claim for $h = k$.

Claim. For $0 < h \leq k$, s can be transformed into a string $\psi_h = \alpha_h \omega_h$ in h phases, each consisting of six flips, where ψ_h has the following specific properties:

(a) The suffix (i.e., ω_h) is equal to $(01^N)^h$ and contains all $3h$ 1-blocks corresponding to the elements in $\bigcup_{j=1}^h A_j$.

(b) The prefix (i.e., α_h) contains the remaining $3(k - h)$ 1-blocks, each of them flanked by 0-blocks of length at least 3, except possibly a 0-block of length 2 at its right end. (Given that $\psi_h = \alpha_h \omega_h$, it follows that, in ψ_h, all these remaining 1-blocks are flanked by 0-blocks of length at least 3.)

Proof. The proof is by induction. First we transform s into ψ_1 in six flips: flips 1 and 2 bring a_{11} to the back, flips 3 and 4 bring a_{12} to the back (just in front of a_{11}), and flips 5 and 6 bring a_{13} to the back (just in front of a_{12}). No 0-blocks are cut in this process, and only 1-blocks $a_{11}, a_{12},$ and a_{13} are affected (i.e., concatenated into a single length-N 1-block).

Now, suppose by induction that after $6(h - 1)$ flips we have created ψ_{h-1}. The next six flips (which form phase h) work exclusively on α_{h-1}. Flips 1 and 2 bring a_{h1} to the front and then to the back of α_{h-1}; flips 3 and 4 bring a_{h2} to the front and then to the back just in front of a_{h1}; flips 5 and 6 bring a_{h3} to the front and then to the back just in front of a_{h2}. These six flips (which do not cut any 0-blocks within α_{h-1})\(^5\) thus transform α_{h-1} into a string with 01^N at the suffix, which, appended to ω_{h-1},

\(^4\)Recall that, for all compatible strings $s, t \in S(n, 2)$, trivially $d(s, t) \leq 2n$.

\(^5\)Observe that, in terms of its action on the overall string, flip 2 of phase h does cut a 0-block, cutting α_{h-1} from ω_{h-1}, creating the singleton 0-block in between two length-N 1-blocks.
gives a suffix equal to \(\omega_h \). The only question is whether the resulting overall string satisfies condition (b). The only obstacle to this is the possible length-2 0-block at the end of \(\alpha_{h-1} \). However, this block is not flipped in flip 1 of phase \(h \); it is brought to the front in flip 2 and concatenated to another 0-block in flip 3, leaving the prefix string without a length-2 0-block. This completes the proof of the claim.

\[\Longleftarrow \) Suppose that \(I \) is a negative instance of 3P. We show that \(d(s, t) > 6k \). Notice that if \(I \) is not a positive instance, then in any sequence of flips taking \(s \) to \(t \) some flip must split a 1-block, i.e., \(\ldots 11 \ldots \). Below we add this to a list of tasks that any sequence of flips taking \(s \) to \(t \) must complete:

1. split at least one 1-block;
2. reduce the number of 1-blocks by \(2k \);
3. bring a 1 symbol to the end of the string (because \(t \) ends with a 1, but \(s \) does not);
4. increase the number of singleton 0-blocks by \(k - 1 \);
5. reduce the number of \textit{big} (i.e., of length at least 3) 0-blocks by \(3k \).

To prove that at least \(6k + 1 \) flips are needed to complete tasks (0)–(4), we show that flips which make progress towards completing one of the tasks cannot effectively be used to make progress on another task. From this (and other intermediate observations shown below) it will follow that at least \(1 + 2k + 1 + (k - 1) + 3k = 6k + 1 \) flips will be needed.

It is immediately clear that task (2), requiring a flip of a whole string, cannot be combined with any of the other tasks in one flip. Notice that any task(0)-flip (which is of the form \(1 \ldots 1 \ldots \) or of the form \(0 \ldots 11 \ldots \)) does not decrease the number of 1-blocks, while 0-blocks remain unaffected. So such flips do not contribute to tasks (1)–(4). Nor can any task(1)-flip (which is always of the form \(1 \ldots 0 \ldots 1 \ldots \)) contribute to any of the other tasks from the list. It is also not too difficult to verify that it is not possible to reduce the number of big blocks by 2 or more in one flip. However, some types of task(3)-flip can at the same time also contribute to task (4), and some other types of task(3)-flip can increase the number of singleton 0-blocks by two, effectively contributing twice to task (3). Such flips we call (34)- and (33)-flips, respectively. We will show that all (34)- and (33)-flips necessarily have to be succeeded by at least one flip that does not, in an overall sense, help us with the completion of the tasks.

Any (33)-flip is of the type

- (33.1) 1\ldots 00\ldots (where the 0s form a complete block).

Any (34)-flip is of the type

- (34.1) 1\ldots 000\ldots (where the 0s form a complete block),
- (34.2) 1\ldots 000\ldots (where the 0s form a complete block),
- (34.3) 000\ldots 100\ldots .

We emphasize here that 00 is not considered to be a big 0-block.

After a flip of type (33.1), (34.1), or (34.3) we have a single 0 at the front. In such a situation a task(1)- or task(2)-flip is not possible. We cannot perform a task(3)-flip because flips of the form \(01\ldots 0 \ldots \) will destroy the initial singleton 0, and flips of the form \(01\ldots 1 \ldots \) cannot create new singleton 0's. The only task(4)-flip possible is \(01\ldots 000\ldots \) (where the second group of 0's forms a complete block), but this also reduces the number of singleton 0-blocks by 1, meaning that an extra task(3)-flip would then be needed. Termination is not an option (because \(t \) does not begin with 01). A task(0)-flip of the form \(01\ldots 11 \ldots \) is potentially possible, but, as noted, this increases the number of required task(1)-flips.

After a flip of type (34.2) we are left with 001 at the front. Again, a task(1)- or
task(2)-flip is not possible in this situation, and neither is termination. A task(3)-flip is potentially possible, but this brings a single 0 to the front, which (by the earlier argument) cannot be followed by any useful flip. A task(4)-flip is not possible because, when the string begins with 001, a task(4)-flip must necessarily split a 00-adjacency in some big 0-block, but this simply creates a different big 0-block. □

For studying problems on arbitrary strings, let \(X \) and \(Y \) be two compatible, length-\(n \) strings, where we assume (without loss of generality) that each of the symbols from \(X \) and \(Y \) are drawn from \(\{0, 1, \ldots, n-1\} \). We define \(D(X, Y) \) as the smallest number of flips required to transform \(X \) to \(Y \). The arity of the strings \(X \) and \(Y \) does not need to be fixed, and symbols may be repeated. Hence, sorting a permutation by flips (MIN-SBPR) and the flip distance problem over fixed arity strings are both special cases of computing \(D \). Given that computing \(D \) is a generalization of computing distance \(d \) of binary strings, this immediately implies that it is NP-hard. However, an approximation-preserving reduction in the other direction is possible, meaning that inapproximability results for one of the problems will be automatically inherited by the other.

Theorem 10. Given two compatible strings \(X \) and \(Y \) of length \(n \) with each symbol from \(X \) and \(Y \) drawn from \(\{0, 1, \ldots, n-1\} \), it is possible to compute in time polynomial in \(n \) two binary strings \(x \) and \(y \) of length polynomial in \(n \) such that \(D(X, Y) = d(x, y) \).

As demonstrated shortly, the above result follows directly from work by Radcliffe, Scott, and Wilmer. A little background is necessary to understand the context. In Theorem 8 of [11] it is shown that sorting permutations by reversals is directly reducible to the reversal distance problem on binary strings. It is later argued (in Theorem 11 of [11]) that the same reduction technique can be used to reduce the transposition distance problem on a 4-ary alphabet to the transposition distance problem on a binary alphabet. The proof of Theorem 11 lacks detail, but personal communication with the authors [12] has since clarified that the result is correct. Furthermore, the reduction technique underpinning Theorems 8 and 11 from [11] can be directly applied to prove the present theorem. We show this by reproducing the reduction technique (complete with clarification) in the context of prefix reversals. We also use this opportunity to clarify the correctness of Theorem 11 from [11]. The following should thus be considered attributed to Radcliffe, Scott, and Wilmer.

Proof. The strings \(x \) and \(y \) are constructed as follows:

\[
\begin{align*}
x &= (10^{X_1+1}1)^{2n+1} \cdots (10^{X_n+1}1)^{2n+1}, \\
y &= (10^{Y_1+1}1)^{2n+1} \cdots (10^{Y_n+1}1)^{2n+1}.
\end{align*}
\]

In the above encoding, each symbol \(X_i \) is thus encoded as the fragment \((10^{X_i+1}1)^{2n+1} \), each fragment consisting of \(2n + 1 \) subfragments. (This also holds for each symbol in \(Y \).) Note that a fragment is reversal-invariant. To see that \(d(x, y) \leq D(X, Y) \), observe that—by mapping to prefix reversals that cut at the boundaries between fragments—any sequence of \(m \) prefix reversals taking \(X \) to \(Y \) can be trivially mapped to \(m \) prefix reversals which take \(x \) to \(y \).

The proof that \(D(X, Y) \leq d(x, y) \) is more involved. Combining \(d(x, y) \leq D(X, Y) \) with the trivial fact that \(D(X, Y) \leq 2n \) yields \(d(x, y) \leq 2n \). Now, consider any shortest sequence of prefix reversals taking \(x \) to \(y \). This sequence of prefix reversals will cut the string \(x \) in at most \(2n \) places. A subfragment within \(x \) is said to **survive** if and only if it is not cut by any of these prefix reversals. Now, construct a bipartite graph with vertex set \(\{e_1, e_2, \ldots, e_n\} \cup \{f_1, f_2, \ldots, f_n\} \) and add an edge \((e_i, f_j) \) if and only if some subfragment of the fragment corresponding to \(X_i \) survives and ends up in
the fragment corresponding to Y_j. Observe that within any set of m fragments from x, strictly more than $(m-1)(2n+1)$ subfragments will survive, and hence at least m fragments from y will be required to absorb these surviving subfragments. Thus, by Hall’s theorem, the graph has a perfect matching. For each edge (e_i, f_j) of the perfect matching, pick a subfragment from the fragment corresponding to X_i that survives and ends up in the fragment corresponding to Y_j. Considering the action of the flips only on these n subfragments, we see that there exists a sequence of $d(x, y)$ prefix reversals transforming the sequence of symbols in X into the sequence of symbols in Y, and thus $D(X, Y) \leq d(x, y)$.

The correctness of Theorem 11 from [11] follows by using the same reduction but encoding each fragment as $3n$ subfragments rather than $2n + 1$ subfragments. (The transposition distance between two compatible length-n strings is strictly less than n, and a transposition cuts a string in at most 3 places.) Indeed, it is easy to see that the reduction works for a whole family of string rearrangement operators, by ensuring that the number of subfragments per fragment is sufficiently large. For example, consider a rearrangement operator op, and let u be some upper bound on the number of places an op-operation can cut a string. Let v be any upper bound on the maximum value of $d_{op}(X, Y)$ ranging over all compatible length-n strings X, Y. Encoding each fragment with $uv + 1$ subfragments is sufficient to generalize the above reduction.

7. Open problems. In this study we have unearthed many rich (and surprisingly difficult) combinatorial questions which deserve further analysis. We discuss some of them here. The main unifying “umbrella” suggestion is that, to go beyond ad hoc (and case-based) proof techniques, it will be necessary to develop deeper, more structural insights into the action of flips on strings over fixed-size alphabets.

Grouping and sorting on higher arity alphabets. We have shown how to group and sort optimally binary and ternary strings, but characterizations and algorithms for quaternary (and higher) alphabets have so far eluded us. As observed in section 3.2, it seems that for $k = 4, 5$ and for sufficiently long strings, the strings with grouping distance $n - 2$ settle into some kind of pattern, but this has not yet offered enough insights to allow the development either of a characterization or of an algorithm. Related problems include: for all fixed k, are there polynomial algorithms to optimally sort (optimally group) k-ary strings? Is grouping strictly easier than sorting, in a complexity sense? How does grouping function under other operators, e.g., reversals, transpositions? An upper bound on the grouping transposition distance has been presented in [4].

Diameter questions. Proving or disproving that $\delta(n, 3) = n - 1$ for $n > 3$ remains the obvious open diameter question. Beyond that, diameter results for quaternary and higher arity alphabets are needed. How does the diameter $\delta(n, k)$ grow for increasing k? (At this point we conjecture that, for sufficiently long strings, the diameter of 3-ary, 4-ary, and 5-ary strings is $n - 1$, n, and n, respectively.)

The suspicion also exists that, for all k and for all sufficiently long n, there exists a length-n fully k-ary string s such that $d(s, I(s)) = \delta(n, k)$. In other words, the set of all pairs of strings that are $\delta(n, k)$ flips apart includes some instances of the sorting problem. It should be noted, however, that, following empirical testing, it is apparent that there are also very many pairs of strings s, t with $s \neq I(t)$ and $t \neq I(s)$ that are $\delta(n, k)$ flips apart.

It also seems important to develop diameter results for subclasses of strings, perhaps (as in [11]) characterized by the frequency of their most frequent symbol. It
may be that such refined diameter results for k-ary alphabets provide information that is important in determining $\delta(n, k + 1)$.

Note finally that the diameter of strings over fixed size alphabets, i.e., $\delta(n, k)$, is always bounded from above by the diameter of permutations, $wc(n)$. This is because the distance problem on two length-n fixed size alphabet strings s, t can easily be rewritten as a sorting problem on a length-n permutation π such that a sequence of prefix reversals sorting the permutation also suffices to transform s into t. Indeed, because of this relabeling property, the flip distance between two fixed size alphabet strings can be viewed as being equal to the minimum permutation sorting distance, ranging over all such relabelings into a permutation π. Can this relationship between the fixed size alphabet and permutation world be further specified and exploited?

Signed strings. The problem of sorting signed permutations by flips (the burnt pancake flipping problem) is well known [3, 7, 9], but in this paper we have not yet attempted to analyze the action of flips on signed fixed size alphabet strings. Obviously, analogues of all the problems described in this paper exist for signed strings.

Complexity/approximation. In the presence of hardness results (e.g., Theorem 9) it is interesting to explore the complexity of restricted instances and to develop algorithms with guaranteed approximation bounds. For example, [11] gives a PTAS for dense instances. The development of approximation algorithms is also a useful intermediate strategy where the complexity of a problem remains elusive. In particular, this requires the development of improved lower bounds.

Acknowledgment. We thank Alex Scott for useful remarks made during the writing of this paper.

REFERENCES

[1] X. Chen, J. Zheng, Z. Fu, P. Nan, Y. Zhong, S. Lonardi, and T. Jiang, Assignment of orthologous genes via genome rearrangement, IEEE/ACM Trans. Comput. Biol. Bioinform., 2 (2005), pp. 302–315.
[2] D. A. Christie and R. W. Irving, Sorting strings by reversals and by transpositions, SIAM J. Discrete Math., 14 (2001), pp. 193–206.
[3] D. S. Cohen and M. Blum, On the problem of sorting burnt pancakes, Discrete Appl. Math., 61 (1995), pp. 105–120.
[4] H. Eriksson, K. Eriksson, J. Karlander, L. Svensson, and J. Wastlund, Sorting a bridge hand, Discrete Math., 241 (2001), pp. 289–300.
[5] J. Fischer and S. W. Ginzinger, A 2-approximation algorithm for sorting by prefix reversals, in Proceedings of ESA 2005: 13th Annual European Symposium, Lecture Notes in Comput. Sci. 3669, Springer, New York, 2005, pp. 415–425.
[6] M. H. Garey and D. S. Johnson, Computers And Intractability: A Guide To The Theory Of NP-completeness, W. H. Freeman, San Francisco, CA, 1979.
[7] W. H. Gates and C. H. Papadimitriou, Bounds for sorting by prefix reversal, Discrete Math., 27 (1979), pp. 47–57.
[8] A. Goldstein, P. Kolman, and J. Zheng, Minimum common string partition problem: Hardness and approximations, Electron. J. Combin., 12 (2005), #R50.
[9] M. H. Heydari and I. H. Sudborough, On the diameter of the pancake network, J. Algorithms, 25 (1997), pp. 67–94.
[10] L. Morales and I. H. Sudborough, Comparing star and pancake networks, in The Essence of Computation: Complexity, Analysis, Transformation, T. Mogensen, D. Schmidt, and I. H. Sudborough, eds., Lecture Notes in Comput. Sci. 2566, Springer, New York, 2002, pp. 18–36.
[11] A. J. Radcliffe, A. D. Scott, and E. L. Wilmer, Reversals and transpositions over finite alphabets, SIAM J. Discrete Math., 19 (2005), pp. 224–244.
[12] A. D. Scott, personal communication, Merton College, Oxford, 2006.