Local Well-Posedness of the Cauchy Problem for a p-Adic Nagumo-Type Equation

L. F. Chacón-Cortés*1, C. A. Garcia-Bibiano2**, and W. A. Zúñiga-Galindo3***

1Pontificia Universidad Javeriana, Departamento de Matemáticas, Cra. 7 N. 40–62, Bogotá D.C., Colombia
2Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Departamento de Matemáticas, Unidad Querétaro, Libramiento Norponiente #2000, Fracc. Real de Juriquilla, Santiago de Querétaro, Qro. 76230, México
3University of Texas Rio Grande Valley, School of Mathematical & Statistical Sciences, One West University Blvd. Brownsville, TX 78520, United States

Received April 26, 2022; in final form, May 29, 2022; accepted May 29, 2022

Abstract—We introduce a new family of p-adic nonlinear evolution equations. We establish the local well-posedness of the Cauchy problem for these equations in Sobolev-type spaces. For a certain subfamily, we show that the blow-up phenomenon occurs and provide numerical simulations showing this phenomenon.

DOI: 10.1134/S2070046622040021

Key words: p-adic analysis, pseudo-differential operators, Sobolev-type spaces, blow-up phenomenon.

1. INTRODUCTION

Nowadays, the theory of linear partial pseudo-differential equations for complex-valued functions over p-adic fields is a well-established branch of mathematical analysis, see e.g. [1–6, 12–16, 22–25, 27–33], and references therein. Meanwhile very little is known about nonlinear p-adic equations. We can mention some semilinear evolution equations solved using p-adic wavelets [1, 24], a kind of equations of reaction-diffusion type and Turing patterns studied in [31, 33], a p-adic analog of one of the porous medium equation [17, 22], the blow-up phenomenon studied in [4], and non-linear integro-differential equations connected with p-adic cellular networks [30].

In this article we introduce a new family of nonlinear evolution equations that we have named as p-adic Nagumo-type equations:

$$u_t = -\gamma D_x^\alpha u - u^3 + (\beta + 1) u^2 - \beta u + P(D_x)(u^m), x \in \mathbb{Q}_p^n, t \in [0, T],$$

where $\gamma > 0$, $\beta \geq 0$, D_x^α, $\alpha > 0$, is the Taibleson operator, m is a positive integer and $P(D_x)$ is an operator of degree δ of the form $P(D) = \sum_{j=0}^{k} C_j D^{\delta_j}$, where the $C_j \in \mathbb{R}$ and $\delta_k = \delta$. We establish the local well-posedness of the Cauchy problem for these equations in Sobolev-type spaces, see Theorem 4.1. For a certain subfamily, we show that the blow-up phenomenon occurs, see Theorem 5.1, and we also provide numerical simulations showing this phenomenon.

The theory of Sobolev-type spaces use here was developed in [34], see also [18, 25]. This theory is based in the theory of countably Hilbert spaces of Gel’fand–Vilenkin [8]. Some generalizations are
presented in [9, 10]. We use classical techniques of operator semigroups, see e.g. [3, 20]. The family of evolution equations studied here contains as a particular case, equations of the form
\[u_t = -\gamma D_x^\alpha u - u^3 + (\beta + 1) u^2 - \beta u, \tag{1.1} \]
where \(x \in \mathbb{Q}_p^n \), \(t \in [0, T] \), \(D_x^\alpha \) is the Taibleson operator, that resemble the classical Nagumo-type equations, see e.g. [21].

In [7], the authors study the equations
\[u_t = D_{xx} - u (u - \kappa) (u - 1) - \varepsilon u_m^\alpha, \tag{1.2} \]
where \(D > 0 \), \(\kappa \in (0, \frac{1}{2}) \), \(\varepsilon > 0 \), \(x \in \mathbb{R}, t > 0 \). They establish the local well-posedness of the Cauchy problem for these equations in standard Sobolev spaces. There are several crucial differences between (1.1) and (1.2). The operators \(u_{xx}, u_m^\alpha \) are local while the operators \(D_x^\alpha, P(D_x)^m \) are non-local. The \(p \)-adic heat equation \(u_t = -\gamma D_x^\alpha u \) has an arbitrary order of pseudo-differentiability \(\alpha > 0 \) in the spatial variable, while in the classical fractional heat equation \(u_t = D_{xx} - u \), the degree of pseudo-differentiability \(\mu \in (0, 2) \). This implies that the Markov processes attached to \(u_t = -\gamma D_x^\alpha u \) are completely different to the ones attached to \(u_t = D_{xx} \). In other words, the diffusion mechanisms in (1.1) and (1.2) are completely different. Notice that our nonlinear term involves pseudo-derivatives of arbitrary order \(P(D_x)^m \), while in [7] only of first order \(u_m^\alpha \). Of course, the \(p \)-adic Sobolev spaces behave completely different from their real counterparts, but the semigroup techniques are the same in both cases, since time is a non-negative real variable.

The article is organized as follows. In section 2, we review some basic aspects of the \(p \)-adic analysis and fix the notation. In section 3, we present some technical results about Sobolev-type spaces and \(p \)-adic pseudo-differential operators. In section 4, we show the local well-posedness of the \(p \)-adic Nagumo-type equations, see Theorem 4.1. In section 5, we show a subfamily of \(p \)-adic Nagumo-type equations whose solutions blow-up in infinite time, see Theorem 5.1. In section 6, we present a numerical simulation showing the blow-up phenomenon.

2. \(p \)-ADIC ANALYSIS: ESSENTIAL IDEAS

In this section, we collect some basic results on \(p \)-adic analysis that we use through the article. For a detailed exposition the reader may consult [1, 14, 26, 29].

2.1. The Field of \(p \)-Adic Numbers

Along this article \(p \) will denote a prime number. The field of \(p \)-adic numbers \(\mathbb{Q}_p \) is defined as the completion of the field of rational numbers \(\mathbb{Q} \) with respect to the \(p \)-adic norm \(| \cdot |_p \), which is defined as
\[|x|_p = \begin{cases} 0 & \text{if } x = 0 \\ p^{-\gamma} & \text{if } x = p^\gamma a \end{cases}, \]
where \(a \) and \(b \) are integers coprime with \(p \). The integer \(\gamma := ord(x) \), with \(ord(0) := +\infty \), is called the \(p \)-adic order of \(x \).

Any \(p \)-adic number \(x \neq 0 \) has a unique expansion of the form
\[x = p^{ord(x)} \sum_{j=0}^{\infty} x_j p^j, \]
where \(x_j \in \{0, \ldots, p-1\} \) and \(x_0 \neq 0 \). By using this expansion, we define the fractional part of \(x \in \mathbb{Q}_p \), denoted \(\{x\}_p \), as the rational number
\[\{x\}_p = \begin{cases} 0 & \text{if } x = 0 \text{ or } ord(x) \geq 0 \\ p^{ord(x)} \sum_{j=0}^{-ord(x)-1} x_j p^j & \text{if } ord(x) < 0. \end{cases} \]
2.2. Topology of \mathbb{Q}_p^n

For $r \in \mathbb{Z}$, denote by $B^n_r(a) = \{x \in \mathbb{Q}_p^n; ||x - a||_p \leq p^r\}$ the ball of radius p^r with center at $a = (a_1, \ldots, a_n) \in \mathbb{Q}_p^n$, and take $B^n_r(0) := B^n_r$. Note that $B^n_r(a) = B_r(a_1) \times \cdots \times B_r(a_n)$, where $B_r(a_i) := \{x_i \in \mathbb{Q}_p; ||x_i - a_i||_p \leq p^r\}$ is the one-dimensional ball of radius p^r with center at $a_i \in \mathbb{Q}_p$. The ball B^n_r equals the product of n copies of $B_0 = \mathbb{Z}_p$, the ring of p-adic integers. We also denote by $S^n_r(a) = \{x \in \mathbb{Q}_p^n; ||x - a||_p = p^r\}$ the sphere of radius p^r with center at $a = (a_1, \ldots, a_n) \in \mathbb{Q}_p^n$, and take $S^n_r(0) := S^n_r$. We notice that $S^n_1 = \mathbb{Z}_p^\times$ (the group of units of \mathbb{Z}_p), but $(\mathbb{Z}_p^\times)^n \subsetneq S^n_0$. The balls and spheres are both open and closed subsets in \mathbb{Q}_p^n. In addition, two balls in \mathbb{Q}_p^n are either disjoint or one is contained in the other.

As a topological space $(\mathbb{Q}_p^n, || \cdot ||_p)$ is totally disconnected, i.e. the only connected subsets of \mathbb{Q}_p^n are the empty set and the points. A subset of \mathbb{Q}_p^n is compact if and only if it is closed and bounded in \mathbb{Q}_p^n, see e.g. [29, Section 1.3], or [1, Section 1.8]. The balls and spheres are compact subsets. Thus $(\mathbb{Q}_p^n, || \cdot ||_p)$ is a locally compact topological space.

Since $(\mathbb{Q}_p^n, +)$ is a locally compact topological group, there exists a Haar measure d^nx, which is invariant under translations, i.e. $d^nx(x + a) = d^nx$. If we normalize this measure by the condition $\int_{\mathbb{Z}_p} dx = 1$, then d^nx is unique.

Notation 1. We will use $\Omega(p^{-r}||x - a||_p)$ to denote the characteristic function of the ball $B^n_r(a)$. For more general sets, we will use the notation 1_A for the characteristic function of a set A.

2.3. The Bruhat-Schwartz Space

A complex-valued function φ defined on \mathbb{Q}_p^n is called locally constant if for any $x \in \mathbb{Q}_p^n$ there exist an integer $l(x) \in \mathbb{Z}$ such that

$$\varphi(x + x') = \varphi(x) \quad \text{for any } x' \in B^n_{l(x)}. \tag{2.1}$$

A function $\varphi : \mathbb{Q}_p^n \to \mathbb{C}$ is called a Bruhat-Schwartz function (or a test function) if it is locally constant with compact support. Any test function can be represented as a linear combination, with complex coefficients, of characteristic functions of balls. The \mathbb{C}-vector space of Bruhat-Schwartz functions is denoted by $\mathcal{D}(\mathbb{Q}_p^n) := \mathcal{D}$. We denote by $\mathcal{D}_R(\mathbb{Q}_p^n) := \mathcal{D}_R$ the \mathbb{R}-vector space of Bruhat-Schwartz functions. For $\varphi \in \mathcal{D}(\mathbb{Q}_p^n)$, the largest number $l = l(\varphi)$ satisfying (2.1) is called the exponent of local constancy (or the parameter of constancy) of φ.

We denote by $\mathcal{D}_R^m(\mathbb{Q}_p^n)$ the finite-dimensional space of test functions from $\mathcal{D}(\mathbb{Q}_p^n)$ having supports in the ball B^m_n and with parameters of constancy $\geq l$. We now define a topology on \mathcal{D} as follows. We say that a sequence $\{\varphi_j\}_{j \in \mathbb{N}}$ of functions in \mathcal{D} converges to zero, if the two following conditions hold:

1. There are two fixed integers k_0 and m_0 such that each $\varphi_j \in \mathcal{D}_{k_0}^{m_0}$;
2. $\varphi_j \to 0$ uniformly.

\mathcal{D} endowed with the above topology becomes a topological vector space.

2.4. L^p Spaces

Given $p \in [1, \infty)$, we denote by $L^p := L^p(\mathbb{Q}_p^n) := L^p(\mathbb{Q}_p^n, d^nx)$, the \mathbb{C}-vector space of all the complex-valued functions g satisfying

$$\int_{\mathbb{Q}_p^n} |g(x)|^p d^nx < \infty.$$

The corresponding \mathbb{R}-vector spaces are denoted as $L^p_\mathbb{R} := L^p(\mathbb{Q}_p^n) = L^p(\mathbb{Q}_p^n, d^nx)$, $1 \leq p < \infty$.

p-ADIC NUMBERS, ULTRAMETRIC ANALYSIS AND APPLICATIONS Vol. 14 No. 4 2022
If U is an open subset of \mathbb{Q}_p^n, $\mathcal{D}(U)$ denotes the space of test functions with supports contained in U, then $\mathcal{D}(U)$ is dense in

$$L^\rho(U) = \left\{ \varphi : U \to \mathbb{C}; \| \varphi \|_\rho = \left\{ \int_U |\varphi(x)|^\rho d^n x \right\}^{\frac{1}{\rho}} < \infty \right\},$$

where $d^n x$ is the normalized Haar measure on $(\mathbb{Q}_p^n, +)$, for $1 \leq \rho < \infty$, see e.g. [1, Section 4.3]. We denote by $L_\mathbb{R}^\rho(U)$ the real counterpart of $L^\rho(U)$.

2.5. The Fourier Transform

Set $\chi_p(y) = \exp(2\pi i \{y\}_p)$ for $y \in \mathbb{Q}_p$. The map $\chi_p(\cdot)$ is an additive character on \mathbb{Q}_p, i.e. a continuous map from $(\mathbb{Q}_p, +)$ into S (the unit circle considered as multiplicative group) satisfying $\chi_p(x_0 + x_1) = \chi_p(x_0)\chi_p(x_1)$, $x_0, x_1 \in \mathbb{Q}_p$. The additive characters of \mathbb{Q}_p form an Abelian group which is isomorphic to $(\mathbb{Q}_p, +)$. The isomorphism is given by $\kappa \to \chi_p(\kappa x)$, see e.g. [1, Section 2.3].

Given $\xi = (\xi_1, \ldots, \xi_n)$ and $y = (x_1, \ldots, x_n) \in \mathbb{Q}_p^n$, we set $\xi \cdot x := \sum_{j=1}^n \xi_j x_j$. The Fourier transform of $\varphi \in \mathcal{D}(\mathbb{Q}_p^n)$ is defined as

$$(\mathcal{F}\varphi)(\xi) = \int_{\mathbb{Q}_p^n} \chi_p(\xi \cdot x)\varphi(x)d^n x \quad \text{for} \quad \xi \in \mathbb{Q}_p^n,$$

where $d^n x$ is the normalized Haar measure on \mathbb{Q}_p^n. The Fourier transform is a linear isomorphism from $\mathcal{D}(\mathbb{Q}_p^n)$ onto itself satisfying

$$(\mathcal{F}(\mathcal{F}\varphi))(\xi) = \varphi(-\xi),
(2.2)$$

see e.g. [1, Section 4.8]. We will also use the notation $\mathcal{F}_{\xi} \varphi$ and $\hat{\varphi}$ for the Fourier transform of φ.

The Fourier transform extends to L^2. If $f \in L^2$, its Fourier transform is defined as

$$(\mathcal{F}f)(\xi) = \lim_{k \to \infty} \int_{|x|_p \leq p^k} \chi_p(\xi \cdot x)f(x)d^n x, \quad \text{for} \quad \xi \in \mathbb{Q}_p^n$$

where the limit is taken in L^2. We recall that the Fourier transform is unitary on L^2, i.e. $\|f\|_2 = \|\mathcal{F}f\|_2$ for $f \in L^2$ and that (2.2) is also valid in L^2, see e.g. [26, Chapter III, Section 2].

2.6. Distributions

The \mathbb{C}-vector space $\mathcal{D}'(\mathbb{Q}_p^n) := \mathcal{D}'$ of all continuous linear functionals on $\mathcal{D}(\mathbb{Q}_p^n)$ is called the Bruhat–Schwartz space of distributions. Every linear functional on \mathcal{D} is continuous, i.e. \mathcal{D}' agrees with the algebraic dual of \mathcal{D}, see e.g. [29, Chapter 1, VI.3, Lemma]. We denote by $\mathcal{D}'_\mathbb{R}(\mathbb{Q}_p^n) := \mathcal{D}_\mathbb{R}$ the dual space of $\mathcal{D}_\mathbb{R}$.

We endow \mathcal{D}' with the weak topology, i.e. a sequence $\{T_j\}_{j \in \kappa}$ in \mathcal{D}' converges to T if $\lim_{j \to \infty} T_j(\varphi) = T(\varphi)$ for any $\varphi \in \mathcal{D}$. The map

$$\mathcal{D}' \times \mathcal{D} \to \mathbb{C}
(T, \varphi) \to T(\varphi)$$

is a bilinear form which is continuous in T and φ separately. We call this map the pairing between \mathcal{D}' and \mathcal{D}. From now on we will use (T, φ) instead of $T(\varphi)$.

Every f in L^1_{loc} defines a distribution $f \in \mathcal{D}'(\mathbb{Q}_p^n)$ by the formula

$$(f, \varphi) = \int_{\mathbb{Q}_p^n} f(x)\varphi(x)d^n x.$$

Such distributions are called regular distributions. Notice that for $f \in L^2_{\mathbb{R}}, (f, \varphi) = \langle f, \varphi \rangle$, where $\langle \cdot, \cdot \rangle$ denotes the scalar product in $L^2_{\mathbb{R}}$.

p-ADIC NUMBERS, ULTRAMETRIC ANALYSIS AND APPLICATIONS Vol. 14 No. 4 2022
2.7. The Fourier Transform of a Distribution

The Fourier transform \(\mathcal{F}[T] \) of a distribution \(T \in \mathcal{D}'(\mathbb{Q}_p^n) \) is defined by

\[
(\mathcal{F}[T], \varphi) = (T, \mathcal{F}[\varphi]) \quad \text{for all } \varphi \in \mathcal{D}(\mathbb{Q}_p^n).
\]

The Fourier transform \(T \rightarrow \mathcal{F}[T] \) is a linear (and continuous) isomorphism from \(\mathcal{D}'(\mathbb{Q}_p^n) \) onto \(\mathcal{D}'(\mathbb{Q}_p^n) \).
Furthermore, \(T = \mathcal{F}[\mathcal{F}[T](-\xi)] \).

3. SOBOLEV-TYPE SPACES

The Sobolev-type spaces used here were introduce in [25, 34]. We follow here closely the presentation given in [18, Sections 10.1, 10.2].

We set \([\xi]_p := \max \left\{ 1, \|\xi\|_p \right\} \) for \(\xi = (\xi_1, \ldots, \xi_n) \in \mathbb{Q}_p^n \). Given \(\varphi, \varrho \in \mathcal{D}(\mathbb{Q}_p^n) \) and \(s \in \mathbb{R} \), we define the scalar product:

\[
\langle \varphi, \varrho \rangle_s = \int_{\mathbb{Q}_p^n} [\xi]_p^s \overline{\hat{\varphi}(\xi)} \varrho(\xi) d^n\xi,
\]

where the bar denotes the complex conjugate. We also set \(\|\varphi\|_s^2 = \langle \varphi, \varphi \rangle_s \), and denote by \(\mathcal{H}_s := \mathcal{H}_s(\mathbb{Q}_p^n, \mathbb{C}) = \mathcal{H}_s(\mathbb{C}) \) the completion of \(\mathcal{D}(\mathbb{Q}_p^n) \) with respect to \(\langle \cdot, \cdot \rangle_s \). Notice that if \(r, s \in \mathbb{R} \), with \(r \leq s \), then \(\|\cdot\|_r \leq \|\cdot\|_s \) and \(\mathcal{H}_s \hookrightarrow \mathcal{H}_r \) (continuous embedding). In particular,

\[
\cdots \supset \mathcal{H}_{-1} \supset \mathcal{H}_0 \supset \mathcal{H}_1 \supset \mathcal{H}_2 \cdots,
\]

where \(\mathcal{H}_0 = L^2 \). We set

\[
\mathcal{H}_\infty(\mathbb{Q}_p^n, \mathbb{C}) = \mathcal{H}_\infty := \bigcap_{s \in \mathbb{N}} \mathcal{H}_s.
\]

Since \(\mathcal{H}_{[s]+1} \subseteq \mathcal{H}_s \subseteq \mathcal{H}_{[s]} \) for \(s \in \mathbb{R}_+ \), where \([\cdot]\) is the integer part function, then \(\mathcal{H}_\infty = \bigcap_{s \in \mathbb{R}_+} \mathcal{H}_s \). With the topology induced by the family of seminorms \(\{\|\cdot\|_t\}_{t \in \mathbb{N}} \), \(\mathcal{H}_\infty \) becomes a locally convex space, which is metrizable. Indeed,

\[
d(f, g) := \max_{i \in \mathbb{N}} \left\{ 2^{-i} \| f - g \|_i \right\}, \text{ with } f, g \in \mathcal{H}_\infty,
\]

is a metric for the topology of \(\mathcal{H}_\infty \) considered as a convex topological space. The metric space \((\mathcal{H}_\infty, d) \) is the completion of the metric space \((\mathcal{D}(\mathbb{Q}_p^n), \| \cdot \|) \), cf. [18, Lemma 10.4]. Furthermore, \(\mathcal{H}_\infty \subset L^\infty \cap C_{unif} \cap L^1 \cap L^2 \), and \(\mathcal{H}_\infty(\mathbb{Q}_p^n, \mathbb{C}) \) is continuously embedded in \(C_0(\mathbb{Q}_p^n, \mathbb{C}) \). This is the non-Archimedean analog of the Sobolev embedding theorem, cf. [18, Theorem 10.15].

Lemma 3.1. If \(s_1 \leq s \leq s_2 \), with \(s = \theta s_1 + (1 - \theta) s_2 \), \(0 \leq \theta \leq 1 \), then \(\| f \|_s \leq \| f \|_{s_1}^{\theta} \| f \|_{s_2}^{(1-\theta)} \).

Proof. Take \(f \in \mathcal{H}_s \), then by using the Hölder inequality for the exponents \(\frac{1}{q} = \theta, \frac{1}{q'} = 1 - \theta \),

\[
\| f \|_s^2 = \int_{\mathbb{Q}_p^n} [\xi]_p^s |\hat{f}(\xi)|^2 d^n\xi = \int_{\mathbb{Q}_p^n} [\xi]_p^{\theta s_1 + (1-\theta) s_2} |\hat{f}(\xi)|^{2(\theta + (1-\theta))} d^n\xi
\]

\[
= \int_{\mathbb{Q}_p^n} \left([\xi]_p^{s_1} |\hat{f}(\xi)|^2 \right)^\theta \left([\xi]_p^{s_2} |\hat{f}(\xi)|^2 \right)^{1-\theta} d^n\xi
\]

\[
\leq \left(\int_{\mathbb{Q}_p^n} [\xi]_p^{s_1} |\hat{f}(\xi)|^2 d^n\xi \right)^\theta \left(\int_{\mathbb{Q}_p^n} [\xi]_p^{s_2} |\hat{f}(\xi)|^2 d^n\xi \right)^{1-\theta} d^n\xi.
\]

}\]
The following characterization of the spaces \mathcal{H}_s and \mathcal{H}_∞ is useful:

Lemma 3.2 ([18, Lemma 10.8]). (i) $\mathcal{H}_s = \{ f \in L^2; \| f \|_s < \infty \} = \{ T' \in \mathcal{D}; \| T' \|_s < \infty \}$, (ii) $\mathcal{H}_\infty = \{ f \in L^2; \| f \|_\infty < \infty \text{ for any } s \in \mathbb{R}_+ \} = \{ T' \in \mathcal{D}; \| T' \|_s < \infty \text{ for any } s \in \mathbb{R}_+ \}$. The equalities in (i)-(ii) are in the sense of vector spaces.

Proposition 3.3. If $s > n/2$, then \mathcal{H}_s is a Banach algebra with respect to the product of functions. That is, if $f, g \in \mathcal{H}_s$, then $fg \in \mathcal{H}_s$ and $\| fg \|_s \leq C(n,s) \| f \|_s \| g \|_s$, where $C(n,s)$ is a positive constant.

Proof. By the ultrametric property of $\| \cdot \|_p$, $\| \xi \|_p, \| \eta \|_p \leq \max \left\{ \| \xi - \eta \|_p, \| \eta \|_p \right\}$ for $\xi, \eta \in \mathbb{Q}_p^n$, we have

$$\max \left\{ 1, \| \xi \|_p \right\} \leq \max \left\{ 1, \| \xi - \eta \|_p, \| \eta \|_p \right\},$$

which implies that

$$\left[\max \left\{ 1, \| \xi \|_p \right\} \right]^s \leq \max \left\{ 1, \| \xi - \eta \|_p^s, \| \eta \|_p^s \right\} = \max \left\{ 1, \| \xi - \eta \|_p, \| \eta \|_p \right\}^s$$

for $s > 0$. Therefore

$$\| \xi \|^s \leq \| \xi - \eta \|^s + \| \eta \|^s.$$ \hspace{1cm} (3.1)

Now, for $f, g \in L^2$, by using (3.1),

$$\| \xi \|_p^d \| g (\xi) \| = \| \xi \|_p^d \int_{\mathbb{Q}_p^2} \| \xi - \eta \|_p^d \| g (\eta) \| d^n \eta \leq \int_{\mathbb{Q}_p^2} \| \xi - \eta \|_p^d \| g (\eta) \| d^n \eta + \int_{\mathbb{Q}_p^2} \| \eta \|_p^d \| g (\eta) \| d^n \eta \leq \| \xi \|_p^d \| g (\xi) \| + \| \xi \|_p^d \| g (\xi) \|.$$ \hspace{1cm} (3.2)

Then

$$\| fg \|_s \leq \left\| \| \xi \|_p^d \| \xi \|_p^d \| g (\xi) \| + \| g (\xi) \| \| \xi \|_p^d \| \xi \|_p^d \| \right\|_2 \leq \left\| \| \xi \|_p^d \| \xi \|_p^d \| g (\xi) \| \right\|_2 + \left\| \| g (\xi) \| \| \xi \|_p^d \| \right\|_2.$$

Since $\| \xi \|_p^d \| \xi \|_p^d \| g (\xi) \|, \| \xi \|_p^d \| g (\xi) \| \in L^2$, by using the Cauchy-Schwarz inequality with $s > n/2$, we have

$$\| g (\xi) \|_1 \leq A(n,s) \| g \|_s \| f \|_s, \| g (\xi) \|_1 \leq A(n,s) \| f \|_s, \| f (\xi) \|_1 \leq A(n,s) \| f \|_s \| g \|_s.$$ \hspace{1cm} (3.3)

Now, by a Young-type inequality, see [26, Chap. II, Theorem 1.7], we obtain that

$$\| fg \|_s \leq \| f \|_s \| g \|_1 + \| g \|_s \| f \|_1 \leq 2A(n,s) \| f \|_s \| g \|_s.$$ \hspace{1cm} (3.4)

\[\square \]

3.1. The Taibleson Operator

Let $\alpha > 0$, the Taibleson operator is defined as

$$(D^\alpha \varphi)(x) = \mathcal{F}_{\xi \rightarrow x}^{-1} (\| \xi \|_p^\alpha (\mathcal{F}_{x \rightarrow \xi} \varphi)),$$

for $\varphi \in \mathcal{D}(\mathbb{Q}_p^n)$. This operator admits the extension

$$(D^\alpha f)(x) = \frac{1 - p^{-\alpha n}}{1 - p^{-\alpha n}} \int_{\mathbb{Q}_p^n} \| y \|_p^{-\alpha n} \{ f(x - y) - f(x) \} d^n y$$
to locally constant functions satisfying
\[
\int_{\|x\|_p > 1} \|x\|^{-\alpha - n} \|f(x)\| d^n x < \infty.
\]

The Taibleson operator \(D^\alpha \) is the \(p \)-adic analog of the fractional derivative. If \(n = 1 \), \(D^\alpha \) agrees with the Vladimirov operator. The operator \(D^\alpha \) does not satisfy the chain rule neither Leibniz formula. We also use the notation \(D^\alpha_x \), when the Taibleson operator acts on functions depending on the variables \(x \in \mathbb{Q}_p^n \) and \(t \geq 0 \).

Given \(0 = \delta_0 < \delta_1 < \cdots < \delta_{k-1} < \delta_k = \delta \), we define
\[
P(D) = \sum_{j=0}^{k} C_j D^{\delta_j}, \text{ where the } C_j \in \mathbb{R}.
\]

Lemma 3.4 ([18, Lemma 10.13 and Theorem 10.15]). For \(s \in \mathbb{R}_+ \), the mapping \(P(D) : \mathcal{H}_{s+2\delta} \rightarrow \mathcal{H}_s \) is a well-defined continuous mapping between Banach spaces.

Lemma 3.5. Take \(s - 2\delta > n/2 \) and \(f, g \in \mathcal{H}_{s+2\delta} \). Then
\[
\|P(D)(fg)\|_s \leq C(n, s, \delta) \|f\|_{s+2\delta} \|g\|_{s+2\delta},
\]
where \(C(n, s, \delta) \) is a positive constant that depends on \(n, s \) and \(\delta \).

Proof. Since \(s > n/2 \) and \(f, g \in \mathcal{H}_{s+2\delta} \), by Proposition 3.3, \(fg \in \mathcal{H}_{s+2\delta} \), and by Lemma 3.4, \(P(D)(fg) \in \mathcal{H}_s \). Now by using Proposition 3.3,
\[
\|P(D)(fg)\|_s \leq \sum_{j=0}^{k} |C_j| \left\| D^{\delta_j} (fg) \right\|_s
\]
\[
= \sum_{j=0}^{k} |C_j| \left(\int_{\mathbb{Q}_p^n} \left| \xi \right|^s \left\| D^{\delta_j} (\tilde{fg}(\xi)) \right\|^2 d^n \xi \right)^{\frac{1}{2}} \leq \sum_{j=0}^{k} |C_j| \left(\int_{\mathbb{Q}_p^n} \left| \xi \right|^{s+2\delta_j} \left\| \tilde{fg}(\xi) \right\|^2 d^n \xi \right)^{\frac{1}{2}}
\]
\[
= \sum_{j=0}^{k} |C_j| \left\| fg \right\|_{s+2\delta_j} \leq \sum_{j=0}^{k} |C_j| C(n, s, \delta_j) \left\| f \right\|_{s+2\delta_j} \left\| g \right\|_{s+2\delta_j}
\]
\[
\leq \left(\sum_{j=0}^{k} |C_j| C(n, s, \delta_j) \right) \|f\|_{s+2\delta} \|g\|_{s+2\delta}.
\]

\(\square \)

4. LOCAL WELL-POSEDNESS OF THE \(p \)-ADIC NAGUMO-TYPE EQUATIONS

4.1. Some Technical Remarks

Let \(X, Y \) Banach spaces, \(T_0 \in (0, \infty) \) and let \(F : [0, T_0] \times Y \rightarrow X \) a continuous function. The Cauchy problem
\[
\begin{cases}
\partial_t u(t) = F(t, u(t)) \\
u(0) = \phi \in Y
\end{cases}
\]
(4.1)
is locally well-posed in \(Y \), if the following conditions are satisfied.
(i) There is \(T \in (0, T_0] \) and a function \(u \in C([0, T]; Y) \), with \(u(0) = \phi \), satisfying the differential equation in the following sense:

\[
\lim_{h \to 0} \left\| \frac{u(t + h) - u(t)}{h} - F(t, u(t)) \right\|_X = 0,
\]

where the derivatives at \(t = 0 \) and \(t = T \) are calculated from the right and left, respectively.

(ii) The initial value problem (4.1) has at most one solution in \(C([0, T]; Y) \).

(iii) The function \(\phi \to u \) is continuous. That is, let \(\{ \phi_n \} \) be a sequence in \(Y \) such that \(\phi_n \to \phi_\infty \) in \(Y \) and let \(u_n \in C \left([0, T_n]; Y \right) \), resp. \(u_\infty \in C \left([0, T_\infty]; Y \right) \), be the corresponding solutions. Let \(T \in (0, T_\infty) \), then the solutions \(u_n \) are defined in \([0, T]\) for all \(n \) big enough and

\[
\lim_{n \to \infty} \sup_{t \in [0, T]} \| u_n(t) - u_\infty(t) \|_Y = 0.
\]

4.2. Main Result

Consider the following Cauchy problem:

\[
\begin{cases}
 u \in C \left([0, T], \mathcal{H}_\alpha \right) \cap C^1 \left([0, T], \mathcal{H}_\alpha \right); \\
 u_t = -\gamma D^\alpha u - u^3 + (\beta + 1) u^2 - \beta u + P(D_x) (u^m), \; x \in \mathbb{Q}_p^n, \; t \in [0, T]; \\
 u(0) = f_0 \in \mathcal{H}_\alpha,
\end{cases}
\]

where \(T, \gamma, \alpha, \beta > 0 \), and \(m \) is a positive integer. The main result of this work is the following:

Theorem 4.1. For \(s > n/2 + 2\delta \), the Cauchy problem (4.2) is locally well-posed in \(\mathcal{H}_\alpha \).

4.3. Preliminary Results

We denote by \(V(t) = e^{-(\gamma D^\alpha + \beta I)t}, \; t \geq 0 \), the semigroup in \(L^2 \) generated by the operator \(A = -\gamma D^\alpha - \beta I \), that is,

\[
V(t)f(x) = \mathcal{F}_{\xi \to x}^{-1} \left(e^{-(\gamma \| \xi \|_2^2 + \beta) t} \mathcal{F}_{x \to \xi} f \right), \; \text{for } f \in L^2, \; t \geq 0.
\]

Lemma 4.2. \(\{ V(t) \}_{t \geq 0} \) is a \(C^0 \)-semigroup of contractions in \(\mathcal{H}_\alpha, \; s \in \mathbb{R}, \) satisfying \(\| V(t) \|_s \leq e^{-\beta t} \) for \(t \geq 0 \). Moreover, \(u(x, t) = V(t)f_0(x) \) is the unique solution to the following Cauchy problem:

\[
\begin{cases}
 u \in C \left([0, T], \mathcal{H}_\alpha \right) \cap C^1 \left([0, T], \mathcal{H}_\alpha \right); \\
 u_t = -\gamma D^\alpha u - \beta u, \; t \in [0, T]; \\
 u(x, 0) = f_0(x) \in \mathcal{H}_\alpha,
\end{cases}
\]

where \(T \) is an arbitrary positive number.

Proof. We just verify the strongly continuity of the semigroup. Since

\[
\left\| \mathcal{F}_{\xi \to x}^{-1} \left(e^{-(\gamma \| \xi \|_2^2 + \beta) t} \mathcal{F}_{x \to \xi} f \right) - f(x) \right\|_s^2
\]
it follows from the dominated convergence theorem that
\[
\lim_{t \to 0^+} \| V(t) f - f \|_s = 0.
\]

The existence and uniqueness of a solution for the Cauchy problem (4.3) follows from a well-known result, see e.g. \[20, \text{Theorem 4.3.1}\]. \(\square\)

Lemma 4.3. Let \(f_0 \in \mathcal{H}_s, s \in \mathbb{R}, \lambda \geq 0 \). Then, there exists a positive constant \(C(\lambda, \alpha) \) that depends of \(\lambda \) and \(\alpha \) such that
\[
\| V(t) f_0 \|_{s + \lambda} \leq e^{-\beta t} \left(1 + C(\lambda, \alpha) \left(\frac{\lambda}{2\alpha \gamma} \right)^{\frac{1}{\alpha}} \right) \| f_0 \|_s \quad \text{for } t > 0.
\]

Proof. We first notice that
\[
\| V(t) f_0 \|_{s + \lambda}^2 = \int_{Q^d_p} \left| e^{x + \lambda \xi^2} e^{-2\gamma \| \xi \|^p_\alpha} t \right| f_0(\xi) \| f_0 \|_s^2 \leq e^{-2\beta t} \left(1 + \sup_{\xi \in Q^d_p, \xi^2 \neq 0} \| \xi \|_p^\lambda e^{-2\gamma \| \xi \|^p_\alpha} t \right) \| f_0 \|_s^2.
\]

We now set \(y = \| \xi \|_p \) and \(h(y) = y^\lambda e^{-2\gamma y^\alpha t} \). By using the fact that \(h(y) \) reaches its maximum at \(y_{\text{max}} = \left(\frac{\lambda}{2\alpha \gamma t} \right)^{\frac{1}{\alpha}} \), we conclude that
\[
\sup_{\xi \in Q^d_p} \| \xi \|_p^\lambda e^{-2\gamma \| \xi \|^p_\alpha} t \leq \left(\frac{\lambda}{2\alpha \gamma t} \right)^{\frac{1}{\alpha}} e^{-\frac{\lambda}{\alpha}} \leq C(\lambda, \alpha) \left(\frac{\lambda}{2\alpha \gamma t} \right)^{\frac{1}{\alpha}}.
\]

Proposition 4.4. Let \(s > n/2 + 2\delta \) and \(F(u) = (\beta + 1)u^2 - u^3 + P(D)(u^m) \). Then \(F : \mathcal{H}_s \rightarrow \mathcal{H}_{s - 2\delta} \) is a continuous function satisfying
\[
\| F(u) - F(w) \|_{s - 2\delta} \leq L(\| u \|_s, \| w \|_s) \| u - w \|_s,
\]
for \(u, w \in \mathcal{H}_s \), here \(L(\cdot, \cdot) \) is a continuous function, which is not decreasing with respect to each of their arguments. In particular,
\[
\| F(u) \|_{s - 2\delta} \leq L(\| u \|_s, 0) \| u \|_s.
\]

Proof. We first notice that
\[
F(u) - F(w) = (\beta + 1)(u^2 - w^2) - (u^3 - w^3) + P(D)(u^m - w^m)
\]
\[
= (\beta + 1)(u - w)(u + w) - (u - w)(u^2 + uw + w^2) + P(D)((u - w)q(u, w)),
\]
where \(q(u, w) = \sum_{k=0}^{m-1} u^k w^{m-1-k} \). By using Proposition 3.3 and Lemma 3.5, the condition \(s > n/2 \) implies that if \(u, w \in \mathcal{H}_s \), then any polynomial function in \(u, w \) belongs to \(\mathcal{H}_s \), and
\[
\| F(u) - F(w) \|_{s - 2\delta} \leq C \left\{ (\beta + 1)\| u - w \|_{s - 2\delta} \| u + w \|_{s - 2\delta} + \| u - w \|_{s - 2\delta}^2 + uw + w^2 \|_{s - 2\delta} + \| u - w \|_s \| q(u, w) \|_s \right\},
\]
where $C = C(n, s, \delta)$. Then
\[
\|F(u) - F(w)\|_{s-2\delta} \leq A(\|u\|_s, \|w\|_s)\|u - w\|_s,
\]
where
\[
A(\|u\|_s, \|w\|_s) = C\left\{ (\beta + 1)\|u + w\|_s + \|u^2 + uw + w^2\|_s + \|q(u, w)\|_s \right\}
\leq C \left\{ (\beta + 1)\|u\|_s + (\beta + 1)\|w\|_s + \|u^2\|_s + \|uw\|_s + \|w^2\|_s + \sum_{k=0}^{m-1} \|u^k w^{m-1-k}\|_s \right\}
\leq C(\beta + 1)\|u\|_s + C(\beta + 1)\|w\|_s + C^2\|u\|_s^2 + C^2\|u\|_s\|w\|_s + C^2\|w\|_s^2 +
C^{m+1} \sum_{k=0}^{m-1} \|u\|_s^k \|w\|_s^{m-1-k} =: L(\|u\|_s, \|w\|_s).
\]

\[\square\]

For $M, T > 0$ and $f_0 \in \mathcal{H}_s$, we set
\[
\mathcal{X}(M, T, f_0) := \left\{ u(t) \in C([0, T]; \mathcal{H}_s) ; \sup_{t \in [0, T]} \|u(t) - V(t)f_0\|_s \leq M \right\}.
\]
We endow $\mathcal{X}(M, T, f_0)$ with the metric $d(u(t), v(t)) = \sup_{t \in [0, T]} \|u(t) - v(t)\|_s$. The resulting metric space is complete.

Proposition 4.5. Take $f_0 \in \mathcal{H}_s$ with $s > n/2 + 2\delta, \delta > 0$. Then, there exists $T = T(\|f_0\|_s, M) > 0$ and a unique function $u \in C([0, T]; \mathcal{H}_s)$ satisfying the integral equation
\[
u(t) = V(t)f_0 + \int_0^t V(t - \tau)F(u(\tau))d\tau, \tag{4.7}
\]
such that $u(0) = f_0$. Here $F(u) = (\beta + 1)u^2 - u^3 + P(D)(u^m)$ as before.

Remark 4.6. Since $F(u)$ is not a locally Lipschitz function because inequality (4.6) involves two different norms, the existence of mild solutions of type (4.7) does not follow directly from standard results in semigroup theory, see e.g. [20, Theorem 5.2.2].

Proof. Given $u \in \mathcal{X}(M, T, f_0)$, we set
\[
\mathbf{N}u(t) = V(t)f_0 + \int_0^t V(t - \tau)F(u(\tau))d\tau.
\]

Claim 1. $\mathbf{N} : \mathcal{X}(M, T, f_0) \rightarrow C([0, T]; \mathcal{H}_s)$.

Take $u \in \mathcal{X}(M, T, f_0)$, then
\[
\|\mathbf{N}u(t_1) - \mathbf{N}u(t_2)\|_s \leq \left\| (V(t_1) - V(t_2))f_0 \right\|_s + \left\| \int_0^{t_1} V(t_1 - \tau)F(u(\tau))d\tau - \int_0^{t_2} V(t_2 - \tau)F(u(\tau))d\tau \right\|_s. \tag{4.8}
\]

Since $\{V(t)\}_{t \geq 0}$ is a C_0-semigroup in \mathcal{H}_s, cf. Lemma 4.2, the first term on the right-hand side of the inequality (4.8) tends to zero when $t_2 \rightarrow t_1$. To study the second term, we assume without loss of generality that $0 < t_1 < t_2 < T$. Then
\[
\left\| \int_0^{t_1} V(t_1 - \tau)F(u(\tau))d\tau - \int_0^{t_2} V(t_2 - \tau)F(u(\tau))d\tau \right\|_s
\leq \int_0^{t_1} \|\{V(t_1 - \tau) - V(t_2 - \tau)\}F(u(\tau))\|_s d\tau + \int_{t_1}^{t_2} \|V(t_2 - \tau)F(u(\tau))\|_s d\tau.
\]
By using Lemma 4.3 with \(\lambda = \alpha \) and Proposition 4.4,
\[
\| (V(t_1 - \tau) - V(t_2 - \tau)) F(u(\tau)) \|_s \\
\leq \| V(t_1 - \tau) F(u(\tau)) \|_s + \| V(t_2 - \tau) F(u(\tau)) \|_s \\
\leq \left\{ 2 + C_0 \left(\frac{1}{2\gamma(t_1 - \tau)} \right)^\frac{1}{2} \right\} \| F(u(\tau)) \|_{s-\alpha} \\
\leq 2 \left\{ 1 + C_0 \left(\frac{1}{2\gamma(t_1 - \tau)} \right)^\frac{1}{2} \right\} \sup_{\tau \in [0,T]} \| F(u(\tau)) \|_{s-\alpha} \\
= A(T, s, \alpha) \left\{ 1 + C_0 \left(\frac{1}{2\gamma(t_1 - \tau)} \right)^\frac{1}{2} \right\} \in L^1([0, t_1]).
\]

Now, by applying the dominated convergence theorem,
\[
\lim_{t_2 \to t_1} \int_{t_0}^{t_1} \| (V(t_1 - \tau) - V(t_2 - \tau)) F(u(\tau)) \|_s d\tau = 0.
\]

By a similar argument, one shows that
\[
\| V(t_2 - \tau) F(u(\tau)) \|_{s-2d} \leq 1 + C_0 \left(\frac{1}{2\gamma(t_2 - \tau)} \right)^\frac{1}{2} L(\| u(\tau) \|_s, 0) \| u(\tau) \|_s,
\]
and since
\[
\| u(\tau) \|_s \leq \| u(\tau) - V(\tau)f_0 \|_s + \| V(\tau)f_0 \|_s \leq M + \| f_0 \|_s, \text{ for all } \tau \in [0, T],
\]
we have
\[
\int_{t_0}^{t_2} \| V(t_2 - \tau) F(u(\tau)) \|_s d\tau
\]
\[
\leq L(M + \| f_0 \|_s, 0)(M + \| f_0 \|_s) \left(\int_{t_1}^{t_2} \left(1 + C_0 \left(\frac{1}{2\gamma(t_2 - \tau)} \right)^\frac{1}{2} \right) d\tau \right)
\]
\[
= L(M + \| f_0 \|_s, 0)(M + \| f_0(\cdot) \|_s)(t_2 - t_1) + C_0 \left(\frac{2(t_2 - t_1)}{\gamma} \right),
\]
and consequently, by applying the dominated convergence theorem,
\[
\lim_{t_2 \to t_1} \int_{t_1}^{t_2} \| V(t_2 - \tau) F(u(\tau)) \|_s d\tau = 0.
\]

Claim 2. There exists \(T_0 \) such that \(N(\mathcal{X}(M, T_0, f_0)) \subseteq \mathcal{X}(M, T_0, f_0) \).

By using a reasoning similar to the one used to established inequality (4.10), one gets
\[
\| (Nu)(t) - V(t)f_0 \|_s \leq \int_{0}^{t} \| V(t - \tau) F(u(\tau)) \|_s d\tau
\]
\[
\leq L(M + \| f_0 \|_s, 0)(M + \| f_0 \|_s) \left(\int_{0}^{t} \left(1 + C_0 \left(\frac{1}{2\gamma(t - \tau)} \right)^\frac{1}{2} \right) d\tau \right)
\]
\[
\leq L(M + \| f_0 \|_s, 0)(M + \| f_0 \|_s) \left(T + C_0 \left(\frac{2T}{\gamma} \right) \right).
\]

Now taking \(T_0 \) such that
\[
L(M + \| f_0 \|_s, 0)(M + \| f_0 \|_s) \left(T_0 + C_0 \left(\frac{2T_0}{\gamma} \right) \right) \leq M,
\]
(4.11)
we conclude that \(N u \in \mathcal{X}(M, T_0, f_0) \), for all \(u(t) \in \mathcal{X}(M, T_0, f_0) \).

Claim 3. There exists \(T_0' \) such that \(N \) is a contraction on \(\mathcal{X}(M, T_0', f_0) \).

Given \(u(t), v(t) \in \mathcal{X}(M, T_0, f_0) \), by using Proposition 4.4, with
\[
C_0' = L (M + \|f_0\|_s, M + \|f_0\|_s),
\]
see (4.9), we have
\[
\|N u(t) - N v(t)\|_s \leq \int_0^t \|V(t - \tau)[F(u(\tau)) - F(v(\tau))]\|_s d\tau
\]
\[
\leq \int_0^t \left(1 + C_0 \left(\frac{1}{2\gamma(t - \tau)} \right)^\frac{1}{2} \right) \|F(u(\tau)) - F(v(\tau))\|_s d\tau
\]
\[
\leq C_0' \int_0^t \left(1 + C_0 \left(\frac{1}{2\gamma(t - \tau)} \right)^\frac{1}{2} \right) \|u(\tau) - v(\tau)\|_s d\tau
\]
\[
\leq C_0' \left(\sup_{\tau \in [0, T_0]} \|u(\tau) - v(\tau)\|_s \right) \int_0^t \left(1 + C_0 \left(\frac{1}{2\gamma(t - \tau)} \right)^\frac{1}{2} \right) d\tau
\]
\[
\leq C_0' \left(T_0 + C_0 \left(\frac{\sqrt{2T_0}}{\gamma} \right) \right) d(u(t), v(t)).
\]

Thus, taking \(T_0' \) such that
\[
C := C_0' \left(T_0' + C_0 \left(\frac{\sqrt{2T_0}}{\gamma} \right) \right) < 1,
\]
we obtain that \(d(N u(t), N v(t)) \leq C d(u(t), v(t)) \), that is, \(N \) is a strict contraction in \(\mathcal{X}(M, T_0', f_0) \). We pick \(T \) such that the inequalities (4.11) and (4.11) hold true, and apply the Banach Fixed Point Theorem to get \(u(t) \in \mathcal{X}(M, T, f_0) \) a unique fixed point of \(N \), which satisfies the integral equation (4.7), where
\[
T = T(\|f_0\|_s, M) > 0.
\]

Remark 4.7. Let \(\mathcal{X} \) be a Banach space and let \(A : Dom(A) \to \mathcal{X} \) be an operator with dense domain such that \(A \) is the infinitesimal generator of a contraction semigroup \((S_t)_{t \geq 0} \). Fix \(T > 0 \) and let \(f : [0, T] \to \mathcal{X} \) be a continuous function. Consider the Cauchy problem:
\[
\begin{align*}
&\begin{cases}
 u \in C([0, T], Dom(A)) \cap C^1([0, T], \mathcal{X}); \\
 u_t = A u + f(t), \ t \in [0, T]; \\
 u(0) = u_0 \in \mathcal{X}.
\end{cases}
\end{align*}
\]

Then
\[
u(t) = S(t)u_0 + \int_0^t S(t - \tau)f(\tau)d\tau,
\]
for \(t \in [0, T] \), see e.g. [3, Lemma 4.1.1]. Conversely, if \(u_0 \in Dom(A) \), \(f \in C([0, T], \mathcal{X}) \),
\[
\int_{(0,T)} \|f(\tau)\|_\mathcal{X} d\tau < \infty,
\]
then a solution of (4.14) is a solution of the Cauchy problem (4.13), see e.g. [3, Proposition 4.1.6].
Proposition 4.8. The problem (4.2) is equivalent to the integral equation (4.7). More precisely, if $s > n/2 + 2\delta$, and $u(t) \in C([0, T]; \mathcal{H}_s) \cap C^1((0, T]; \mathcal{H}_{s-2\delta})$ is a solution of (4.2), then $u(t)$ satisfies the integral equation (4.7). Conversely, if $s > n/2 + 2\delta$, and $u(t) \in C([0, T]; \mathcal{H}_s)$ is a solution of (4.7), then $u(t) \in C^1([0, T]; \mathcal{H}_{s-2\delta})$ and it satisfies (4.2).

Proof. It follows from Remark 4.7, Propositions 4.5, 4.4, by taking $A = -\gamma D_x^\alpha - \beta I$, $\text{Dom}(A) = \mathcal{H}_s$, $X = \mathcal{H}_{s-2\delta}$, $f(t) = F(u(t))$. We first recall that $\mathcal{D} \hookrightarrow \mathcal{H}_s \hookrightarrow \mathcal{H}_{s-2\delta}$, where \hookrightarrow means continuous embedding, and that \mathcal{D} is dense in $\mathcal{H}_{s-2\delta}$. If $u(t)$ is a solution of (4.2), then, since $F(u(t)) \in C([0, T]; \mathcal{H}_{s-2\delta})$, by Proposition 4.4, $u(t)$ is a solution of (4.7). Conversely, if $u(t)$ is a solution of (4.7), since

$$
\int_{(0, T)} \|F(u(\tau))\|_{s-2\delta} d\tau < \infty,
$$

by Proposition 4.4, $u(t)$ is a solution of (4.2).

Lemma 4.9 ([20, Theorem 5.1.1]). If $h \in L^1(0, T)$, with $T > 0$, is real-valued function such that. If

$$
h(t) \leq a + b \int_0^t h(s)ds,
$$

for $t \in (0, T)$ a.e., where $a \in \mathbb{R}$ and $b \in [0, \infty)$ then $h(t) \leq ae^{bt}$ for almost all t in $(0, T)$.

Proposition 4.10. Let $f_0, f_1 \in \mathcal{H}_s$ and $u(t), v(t) \in C([0, T]; \mathcal{H}_s)$ be the corresponding solutions of equation (4.7) with initial conditions $u(0) = f_0$ and $v(0) = f_1$, respectively. If $s > n/2 + 2\delta$, then

$$
\|u(t) - v(t)\|_s \leq e^{L(W, W)}\|f_0 - f_1\|_s,
$$

where L is given in Proposition 3.3 and

$$
W := \max \left\{ \sup_{t \in [0, T]} \|u(t)\|_s, \sup_{t \in [0, T]} \|v(t)\|_s \right\}.
$$

Proof. By using (4.7), we have

$$
u(t) - v(t) = V(t)(f_0 - f_1) + \int_0^t V(t - \tau)\{F(u(\tau)) - F(v(\tau))\}d\tau.
$$

By using Proposition 3.3, we get

$$
\|u(t) - v(t)\|_s \leq \|f_0 - f_1\|_s + \int_0^t \|V(t - \tau)\{F(u(\tau)) - F(v(\tau))\}\|_{s-\alpha} d\tau
$$

$$
\leq \|f_0 - f_1\|_s + \int_0^t \|F(u(\tau)) - F(v(\tau))\|_{s-\alpha} d\tau
$$

$$
\leq \|f_0 - f_1\|_s + L(W, W)\int_0^t \|u(\tau) - v(\tau)\|_{s} d\tau.
$$

Now the result follow from Lemma 4.9, by taking $h(t) = \|u(t) - v(t)\|_s$, $a = \|f_0 - f_1\|_s$, $b = L(W, W)$.

Proposition 4.11. Let $s > n/2 + 2\delta$ and $\delta \geq 0$. Then, the map $f \mapsto u(t)$ is continuous in the following sense: if $f_0^{(n)} \to f_0$ in \mathcal{H}_s and $u_n(t) \in C([0, T_n]; \mathcal{H}_s)$, with $T_n = T \left(\left\| f_0^{(n)} \right\|_s, \sqrt{M} \right) > 0$, are the corresponding solutions to the Cauchy problem (4.2) with $u_n(0) = f_0^{(n)}$. Then, there exist $T > 0$ and a positive integer $N = N(\gamma, f_0, T)$ such that $T_n \geq T$ for all $n \geq N$ and

$$
\lim_{n \to \infty} \sup_{t \in [0, T]} \|u_n(t) - u(t)\|_s = 0. \tag{4.15}
$$
Given \(T \) and by applying Lemma 4.9, which in turns implies (4.15).

Therefore, all the \(u_n(t) \) are defined on \([0, T]\), furthermore, \(u \in \mathcal{X}(M, T, f_0^{(n)}) \) for all \(n \), and

\[
\|u_n(t)\|_s \leq \|f_0^{(n)}\|_s + M \leq \delta + M,
\]

where \(\delta = \sup_{n \in \mathbb{N}} \|f_0^{(n)}\|_s \). Now

\[
\sup_{t \in [0, T]} \|u_n(t)\|_s \leq \delta + M \quad \text{for all} \ n, \ \text{and} \ \sup_{t \in [0, T]} \|u(t)\|_s \leq \delta + M.
\]

On the other hand, by reasoning as in the proof of Proposition 4.10, we have

\[
\|u_n(t) - u(t)\|_s \leq \|f_0^{(n)} - f_0\|_s + L(\delta + M, \delta + M) \int_0^t \|u_n(\tau) - u(\tau)\|_s d\tau,
\]

and by applying Lemma 4.9

\[
\|u_n(t) - u(t)\|_s \leq e^{TL(\delta + M, \delta + M)} \|f_0^{(n)} - f_0\|_s,
\]

which in turns implies (4.15).

\[\square \]

4.4. Proof of the Main Result

The local well-posedness of the Cauchy problem (4.2) in \(\mathcal{H}_s, s > n/2 + 2\delta \), follows from Propositions 4.5, 4.10, 4.11.

5. THE BLOW-UP PHENOMENON

In this section, we study the blow-up phenomenon for the solution of the equation

\[
\begin{cases}
 u_t = -\gamma D_x^\alpha u + F(u) + D_x^{\gammab} u^3, \ x \in \mathbb{Q}_p^n, \ t \in [0, T] ; \\
 u(0) = f_0 \in \mathcal{H}_\infty,
\end{cases}
\]

(5.1)

where \(F(u) = -u^3 + (\beta + 1) u^2 - \beta u \). We will say that a non-negative solution \(u(x, t) \geq 0 \) of (5.1) blow-up in a finite time \(T > 0 \), if \(\lim_{t \to T^-} \sup_{x \in \mathbb{Q}_p^n} u(x, t) = +\infty \). This limit makes sense since \(\mathcal{H}_\infty(\mathbb{Q}_p^n, \mathbb{C}) \) is continuously embedded in \(C_0(\mathbb{Q}_p^n, \mathbb{C}) \), [18, Theorem 10.15].

5.1. \(p \)-Adic Wavelets and Pseudo-Differential Operators

We denote by \(C(\mathbb{Q}_p, \mathbb{C}) \) the \(\mathbb{C} \)-vector space of continuous \(\mathbb{C} \)-valued functions defined on \(\mathbb{Q}_p \).

We fix a function \(a : \mathbb{R}_+ \to \mathbb{R}_+ \) and define the pseudo-differential operator

\[
\mathcal{D} \to C(\mathbb{Q}_p, \mathbb{C}) \cap L^2
\]

\[
\varphi \to A\varphi,
\]

where \((A\varphi)(x) = \mathcal{F}_x^{-1} \left\{ a \left(|\xi|_p \right) \mathcal{F}_x \right\} \).
The set of functions $\{\Psi_{rnj}\}$ defined as
\[
\Psi_{rnj}(x) = p^{-r}x_\alpha \left[p^{-1}j \left(p^r x - n\right)\right] \Omega \left[|p^r x - n|_p\right] ,
\]
(5.2)
where $r \in \mathbb{Z}$, $j \in \{1, \cdots, p-1\}$, and n runs through a fixed set of representatives of $\mathbb{Q}_p/\mathbb{Z}_p$, is an orthonormal basis of $L^2(\mathbb{Q}_p)$ consisting of eigenvectors of operator A:
\[
 A \Psi_{rnj} = a(p^{1-r}) \Psi_{rnj} \text{ for any } r, n, j ,
\]
(5.3)
see e.g. [18, Theorem 3.29], [1, Theorem 9.4.2]. Notice that
\[
\hat{\Psi}_{rnj}(\xi) = p^{-r}x_\alpha \left[p^{-r}n\xi\right] \Omega \left[|p^{-r}\xi + p^{-1}j|_p\right] ,
\]
and then
\[
a \left(|\xi|_p\right) \hat{\Psi}_{rnj}(\xi) = a(p^{1-r}) \hat{\Psi}_{rnj}(\xi) .
\]
In particular, $D^\alpha_x \Psi_{rnj} = p^{(1-r)\alpha} \Psi_{rnj}$, for any r, n, j and $\alpha > 0$, and since $p^{(1-r)\alpha}$,
\[
 D^\alpha_x \text{Re} \left(\Psi_{rnj}\right) = p^{(1-r)\alpha} \text{Re} \left(\Psi_{rnj}\right) ,
\]
\[
 D^\alpha_x \text{Im} \left(\Psi_{rnj}\right) = p^{(1-r)\alpha} \text{Im} \left(\Psi_{rnj}\right) .
\]
And,
\[
\{\Psi_{rn1}(x)\}^2 = p^{-r}x_\alpha \left[2p^{-1}(p^r x - n)\right] \Omega \left[|p^r x - n|_p\right] = p^{-r}x_\alpha \Psi_{rn2}(x) ,
\]
then
\[
 D^\alpha_x \text{Re} \left(\{\Psi_{rn1}(x)\}^2\right) = p^{-r}x_\alpha p^{(1-r)\alpha} \text{Re} \left(\Psi_{rn2}(x)\right) = p^{(1-r)\alpha} \text{Re} \left(\{\Psi_{rn1}(x)\}^2\right) .
\]

5.2. The Blow-up

In this section, we assume that $u(x,t)$ is real-valued non-negative solution of the Cauchy problem (4.2) in \mathcal{H}_∞. We set $w(x) := \text{Re} \left(\{\Psi_{rn1}(x)\}^2\right)$, so $D^\alpha_x w(x) = p^{(1-r)\alpha} w(x)$. Thus $w(x)dx$ defines a (positive) measure. We also set $G(t) := \int_{\mathbb{Q}_p} u(x,t) w(x)dx$, where $u(x,t)$ is a positive solution of (5.1), then
\[
 G'(t) = \int_{\mathbb{Q}_p} u(t,x)w(x)dx = -\gamma \int_{\mathbb{Q}_p} (D^\alpha_x u)(x,t)w(x)dx
\]
\[
+ \int_{\mathbb{Q}_p} F(u(x,t))w(x)dx + \int_{\mathbb{Q}_p} (D^\alpha_x u^3)(x,t)w(x)dx.
\]
(5.4)
Now, by using that $D^\alpha_x u(\cdot, t)$, $w \in L^2$, and $F(u(\cdot, t))$, $D^\alpha_x u^3(\cdot, t) \in L^2$ since for $s > n/2$, \mathcal{H}_s is a Banach algebra contained in L^2 cf. Proposition 3.3, and applying the Parseval-Steklov theorem, we get (5.4) can be rewritten as
\[
 G'(t) = \int_{\mathbb{Q}_p} \left(-\gamma p^{(1-r)\alpha} u(x,t) + F(u(x,t)) + p^{(1-r)\alpha} u^3(t,x)\right)w(x)dx.
\]
Since the function $H(y) = -\gamma p^{(1-r)\alpha} y + F(y) + p^{(1-r)\alpha} y^3$ is convex because
\[
 H''(y) = -6y + 2(\beta + 1) + p^{(1-r)\alpha} 6y = 6y \left[p^{(1-r)\alpha} 6 \right] + 2(\beta + 1) \geq 0,
\]
for $y \geq 0$, and $r \leq 0$, we can use the Jensen’s inequality to get $G'(t) \geq H(G(t))$, then the function $G(t)$ can not remain finite for every $t \in [0, \infty)$. Then there exists $T \in (0, \infty)$ such that $\lim_{t \to T^-} G(t) = +\infty$, hence $u(x,t)$ blow up at the time T. Then we have established the following result:

Theorem 5.1. Let $u(x,t)$ be a positive solution of (5.1). Then there $T \in (0, +\infty)$ depending on the initial datum such that $\lim_{t \to T^-} \sup_{x \in \mathbb{Q}_p} u(x,t) = +\infty$.

p-ADIC NUMBERS, ULTRAMETRIC ANALYSIS AND APPLICATIONS Vol. 14 No. 4 2022
6. NUMERICAL SIMULATIONS

In this section, we present two numerical simulations for the solution of problem (5.1) (in dimension one) for a suitable initial datum. We solve and visualize (using a heat map) the radial profiles of the solution of (5.1). We consider equation (5.1) for radial functions $u(x, \cdot)$. In [15], Kochubei obtained a formula for $D_2^\alpha u(x, t)$ as an absolutely convergent real series, we truncate this series and then we apply the classic Euler Forward Method (see e.g. [23]) to find the values of $u(p^{-\text{ord}}(x), t)$, when $-20 \leq \text{ord}(x) \leq 20$ (vertical axis) and when $t = \{t_k : t_k = 1/k, k = 1, \ldots, 300\}$ (horizontal axis). In Figure 1, on the left side of the Figure 1, we observe that the solution u grows rapidly towards infinity ($\text{ord}(x)$), the reactive term $-u^3(x, t)$, the heat map of the numerical solution of the homogeneous equation $u_t(x, t) = -D_2^\alpha u(x, t)$ with initial data $u(x, 0) = 4e^{-p^{\text{ord}}(x)/100}$ (Gaussian bell type), and parameters $p = 3, \alpha = 0.2, \gamma = 1$. On the right side, we have the numerical solution of the equation $u_t(x, t) = -D_2^\alpha u(x, t) - u^3(x, t) + (\beta + 1)u^2(x, t) - \beta u(x, t) + D_2^{\alpha_1}u^3(x, t)$, with $p = 3, \alpha = 0.2, \alpha_1 = 0.1$, and $\beta = 0.7$.

![Fig. 1. A numerical simulation of the blowup phenomena.](image)

On the left side of the Figure 1, we observe that the solution u is uniformly decreasing with respect to the variable t. This behavior is typical for solutions of diffusion equations. These equations have been extensively studied, see e.g. [18, 35] and the references therein.

On the right side of Figure 1, we see that the evolution of $u(x, t)$ is controlled by the diffusion term $-D_2^\alpha u(x, t)$, up to a time T (blow-up time), this behavior is similar to that described above. When $t > T$, the reactive term $-u^3(x, t) + (\beta + 1)u^2(x, t) - \beta u(x, t) + D_2^{\alpha_1}u^3(x, t)$ takes over and $u(x, t)$ grows rapidly towards infinity.

The method converges quite fast, but still lacks a mathematical formalism to support it, for this reason we refer to it as a numerical simulation of the solution.

FUNDING

The third author was partially supported by the Lokenath Debnath Endowed Professorship, UTRGV.

REFERENCES

1. S. Albeverio, A. Yu. Khrennikov and V. M. Shelkovich, *Theory of p-Adic Distributions: Linear and Nonlinear Models*, London Mathematical Society Lecture Note Series 370 (Cambridge University Press, Cambridge, 2010).
2. S. Albeverio, A. Yu. Khrennikov and V. M. Shelkovich, “The Cauchy problems for evolutionary pseudo-differential equations over p-adic field and the wavelet theory,” J. Math. Anal. Appl. 375 (1), 82–98 (2011).
3. T. Cazenave and A. Haraux, *An Introduction to Semilinear Evolution Equations* (Oxford University Press, 1998).
4. L. F. Chacón-Cortés, I. Gutiérrez-García, A. Torresblanca-Badillo and A. Vargas, “Finite time blow-up for a p-adic nonlocal semilinear ultradiffusion equation,” J. Math. Anal. Appl. 494 (2), 124599 (2021).
5. L. F. Chacón-Cortés and W. A. Zúñiga-Galindo, “Non-local operators, non-Archimedean parabolic-type equations with variable coefficients and Markov processes,” Publ. Res. Inst. Math. Sci. 51 (2), 289–317 (2015).
6. L. F. Chacón-Cortés and W. A. Zúñiga-Galindo, “Nonlocal operators, parabolic-type equations, and ultrametric random walks,” J. Math. Phys. 54 (11), 113503 (2013).
7. R. De la Cruz and V. Lizarazo, “Local well-posedness to the Cauchy problem for an equation of Nagumo type,” Preprint 2019.
8. I. M. Gel’fand and N. Y. Vilenkin, Generalized Functions. Applications of Harmonic Analysis 4 (Academic Press, New York, 1964).
9. P. Górka, T. Kostrzewa and G. Reyes Enrique, “Sobolev spaces on locally compact abelian groups: compact embeddings and local spaces,” J. Funct. Spaces 2014, 404738 (2014).
10. P. Górka and T. Kostrzewa, “Sobolev spaces on metrizable groups,” Ann. Acad. Sci. Fenn. Math. 40 (2), 837–849 (2015).
11. P. R. Halmos, Measure Theory (Van Nostrand Co., Inc., New York, N.Y., 1950).
12. S. Haran, “Quantizations and symbolic calculus over the p-adic numbers,” Ann. Inst. Fourier 43 (4), 997–1053 (1993).
13. H. Kaneko, “Besov space and trace theorem on a local field and its application,” Math. Nachr. 285 (8–9), 981–996 (2012).
14. A. N. Kochubei, Pseudo-Differential Equations and Stochastics over Non-Archimedean Fields (Marcel Dekker, New York, 2001).
15. A. N. Kochubei, “Radial solutions of non-Archimedean pseudodifferential equations,” Pacific J. Math. 269 (2), 355–369 (2014).
16. A. N. Kochubei, “A non-Archimedean wave equation,” Pacific J. Math. 235 (2), 245–261 (2008).
17. A. Yu. Khrennikov and A. N. Kochubei, “p-Adic analogue of the porous medium equation,” J. Fourier Anal. Appl. 24, 1401–1424 (2018).
18. A. Yu. Khrennikov, S. V. Kozyrev and W. A. Zúñiga-Galindo, Ultrametric Pseudodifferential Equations and Applications, Encyclopedia of Mathematics and its Applications 168 (Cambridge University Press, Cambridge, 2018).
19. A. Khrennikov, K. Oleschko, C. López and M. de Jesús, “Application of p-adic wavelets to model reaction-diffusion dynamics in random porous media,” J. Fourier Anal. Appl. 22 (4), 809–822 (2016).
20. M. Miklavčič, Applied Functional Analysis and Partial Differential Equations (World Scientific Publishing Co., Inc., River Edge, N.J., 1998).
21. J. Nagumo, S. Yoshizawa and S. Arimoto, “Bistable transmission lines,” IEEE Trans. Circ. Theory 12 (3), 400–412 (1965).
22. K. Oleschko and A. Khrennikov, “Transport through a network of capillaries from ultrametric diffusion equation with quadratic nonlinearity,” Russ. J. Math. Phys. 24 (4), 505–516 (2017).
23. W. H. Press, B. P. Flannery, S. A. Teukolsky and W. T. Vetterling, Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed. (Cambridge University Press, p. 710, 1992).
24. E. Pourhadi, A. Yu. Khrennikov, K. Oleschko and M. de Jesús Correa Lopez, “Solving nonlinear p-adic pseudo-differential equations: combining the wavelet basis with the Schauder fixed point theorem,” J. Fourier Anal. Appl. 26 (4), 70 (2020).
25. J. J. Rodríguez-Vega and W. A. Zúñiga-Galindo, “Elliptic pseudodifferential equations and Sobolev spaces over p-adic fields,” Pacific J. Math. 246 (2), 407–420 (2010).
26. M. H. Taibleson, Fourier Analysis on Local Fields (Princeton University Press, Princeton, 1975).
27. A. Torresblanca-Badillo and W. A. Zúñiga-Galindo, “Ultrametric diffusion, exponential landscapes, and the first passage time problem,” Acta Appl. Math. 157, 93–116 (2018).
28. A. Torresblanca-Badillo and W. A. Zúñiga-Galindo, “Non-Archimedean pseudodifferential operators and Feller semigroups,” p-Adic Num. Ultrametr. Anal. Appl. 10 (1), 57–73 (2018).
29. V. S. Vladimirov, I. V. Volovich and E. I. Zelenov, p-Adic Analysis and Mathematical Physics (World Scientific, 1994).
30. B. Zambrano-Luna and W. A. Zúñiga-Galindo, “p-Adic cellular neural networks,” https://arxiv.org/abs/2107.07980.
31. W. A. Zúñiga-Galindo, “Reaction-diffusion equations on complex networks and Turing patterns, via p-adic analysis,” J. Math. Anal. Appl. 491 (1), 124239 (2020).
32. W. A. Zúñiga-Galindo, “Non-archimedean replicator dynamics and Eigen’s paradox,” J. Phys. A 51 (50), 505601 (2018).
33. W. A. Zúñiga-Galindo, “Non-Archimedean reaction-ultradiffusion equations and complex hierarchic systems,” Nonlinearity 31 (6), 2590–2616 (2018).
34. W. A. Zúñiga-Galindo, “Non-Archimedean white noise, pseudodifferential stochastic equations, and massive Euclidean fields,” J. Fourier Anal. Appl. 23 (2), 288–323 (2017).
35. W. A. Zúñiga-Galindo, *Pseudodifferential Equations over non-Archimedean Spaces*, Lecture Notes in Mathematics **2174** (Springer, Cham, 2016).
36. W. A. Zúñiga-Galindo, “The Cauchy problem for non-Archimedean pseudodifferential equations of Klein-Gordon type,” *J. Math. Anal. Appl.* **420** (2), 1033–1050 (2014).
37. W. A. Zúñiga-Galindo, “Parabolic equations and Markov processes over p-adic fields,” *Potent. Anal.* **28** (2), 185–200 (2008).
38. W. A. Zumiga-Galindo, “Fundamental solutions of pseudo-differential operators over p-adic fields,” *Rend. Sem. Mat. Univ. Padova* **109**, 241–245 (2003).