The Gastrointestinal Tract Is a Major Source of Echinocandin Drug Resistance in a Murine Model of Candida glabrata Colonization and Systemic Dissemination

Kelley R. Healey, Yoji Nagasaki, Matthew Zimmerman, Milena Kordalewska, Steven Park, Yanan Zhao, David S. Perlin

Public Health Research Institute, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, New Jersey, USA

ABSTRACT Candida species are a part of the human microbiome and can cause systemic infection upon immune suppression. Candida glabrata infections are increasing and have greater rates of antifungal resistance than other species. Here, we present a C. glabrata gastrointestinal (GI) colonization model to explore whether colonized yeast exposed to caspofungin, an echinocandin antifungal, develop characteristic resistance mutations and, upon immunosuppression, breakthrough causing systemic infection. Daily therapeutic dosing (5 mg/kg of body weight) of caspofungin resulted in no reduction in fecal burdens, organ breakthrough rates similar to control groups, and resistance rates (0 to 10%) similar to those reported clinically. Treatment with 20 mg/kg caspofungin initially reduced burdens, but a rebound following 5 to 9 days of treatment was accompanied by high levels of resistance (FKS1/FKS2 mutants). Although breakthrough rates decreased in this group, the same FKS mutants were recovered from organs. In an attempt to negate drug tolerance that is critical for resistance development, we cotreated mice with daily caspofungin and the chitin synthase inhibitor nikkomycin Z. The largest reduction (3 log) in GI burdens was obtained within 3 to 5 days of 20 mg/kg caspofungin plus nikkomycin treatment. Yet, echinocandin resistance, characterized by a novel Fks1-L630R substitution, was identified following 5 to 7 days of treatment. Therapeutic caspofungin plus nikkomycin treatment left GI burdens unchanged but significantly reduced or- gan breakthrough rates (20%; P < 0.05). Single-dose pharmacokinetics demonstrated low levels of drug penetration into the GI lumen posttreatment with caspofungin. Overall, we show that C. glabrata echinocandin resistance can arise within the GI tract and that resistant mutants can readily disseminate upon immunosuppression.

KEYWORDS Candida glabrata, antifungal resistance, echinocandin, intestinal colonization, nikkomycin, systemic dissemination

While many pathogenic fungi, such as Aspergillus and Cryptococcus spp., are acquired from the environment, Candida is a natural human commensal living in the gastrointestinal (GI) tract. Most infections are endogenous and occur in immuno-compromised patients, such as those undergoing solid-organ or hematopoietic stem cell transplantation or specific cancer treatments. Candida species are a leading cause of fungus-associated morbidity and mortality in these patients (1). Therefore, patients considered at high risk for the development of an invasive fungal infection are commonly placed on antifungal therapy with either triazoles (which target ergosterol biosynthesis) or echinocandins (which target cell wall biosynthesis). C. albicans is the most frequently isolated Candida species, but C. glabrata has emerged as the most common cause of invasive infections in specific subsets of patients, such as hema-
poietic stem cell transplant recipients, who are commonly placed on prophylactic antifungal regimens (2–4). Additionally, recent reports have described multidrug-resistant (MDR) *C. glabrata* isolates in the United States (5–7). MDR isolates demonstrate resistance to two or more classes (triazoles/echinocandins/polyenes) of antifungal drugs.

Administration of an echinocandin is now recommended as the first-line treatment of invasive candidiasis (8). Echinocandins (caspofungin, micafungin, and anidulafungin) target the synthesis of beta-1,3-glucan, a polymer required for cell wall synthesis, and resistance arises through mutations that occur within “hot spot” regions of the catalytic subunits (FKS1/FKS2) of glucan synthase (9). Multiple mechanisms, including gain-of-fitness mutations (10–12), chromosomal rearrangements (13–15), cell wall fortification through chitin production (16, 17), and heteroresistance (18), have been described as factors contributing to the ability of *C. glabrata* to survive multiple host and drug pressures. Additionally, our lab recently reported that over half of all *C. glabrata* clinical strains collected from clinics around the world exhibit a partial mutator phenotype as a result of loss-of-function mutations within the DNA mismatch repair gene *MSH2* (19).

The high rate of *MSH2* mutations may be related to the unusually high percentages (20 to 30%) of acquired triazole resistance and emerging MDR associated with *C. glabrata* infections.

The GI tract serves as a primary site of *Candida* colonization and upon host immunosuppression can be a source for systemic disease (20–22). The GI tract is also proposed to be a main reservoir of antimicrobial resistance and a potential origin of drug-resistant mutants (21, 23). Therefore, resistant isolates recovered from patient blood or other internal organs may originate from the gut, and insufficient drug exposure might play a role. We have developed a murine model of *C. glabrata* gastrointestinal colonization and systemic breakthrough in order to better understand how antifungal therapy influences (i) yeast burden levels in the GI tract, (ii) the emergence of drug resistance within the GI tract, and (iii) breakthrough causing systemic dissemination following immunosuppression. This study is a proof of principle that antifungal drug exposure in the GI tract can lead to resistance among colonizing organisms.

RESULTS

High-dose echinocandin treatment decreases GI burdens and selects for resistance. Effective high-burden colonization of mice with *C. glabrata* required bacterial eradication with daily application of piperacillin-tazobactam (PTZ); removal of the antibiotic decreased the total burden of fungal colonization, as previously demonstrated (19). To assess the effect of echinocandin treatment on GI burden, immuno-competent mice were effectively colonized (10^7 to 10^8 CFU/g of stool) with a laboratory-derived mutator strain (∆*msh2*) on day 0 and then treated intraperitoneally (i.p.) with daily doses of 0.5, 5, or 20 mg/kg of body weight caspofungin beginning on day 3. The vehicle control group was treated with phosphate-buffered saline (PBS) i.p. An approximate 2.5-log decrease in average burden was observed following 5 days of high-dose (20 mg/kg) treatment (Fig. 1, top). However, burdens returned to baseline (~1 × 10^8 CFU/g of stool) by day 11. This “rebound” in burden levels was accompanied by the emergence of caspofungin-resistant fecal colonies (Fig. 1, bottom) and the identification of a characteristic echinocandin-resistant Fks2 hot spot substitution, Fks2-S663P, in yeast recovered from all mice (10/10) in that group. The burdens of the 0.5 and 5 mg/kg groups were unchanged (Fig. 1), and *FKS* mutants (Fks2-S663P and Fks2-P667T) were recovered from only one mouse (10%) in the 5 mg/kg treatment group. Of note, the 5 mg/kg dose of caspofungin is considered the equivalent humanized (therapeutic) dose based on previous pharmacodynamics studies (24, 25), and the low echinocandin resistance rate observed following therapeutic dosing is in alignment with clinical resistance rates (3 to 12%) reported from U.S. clinics (5, 6). However, multiple clinics have begun to study the safety and efficacy of high-dose caspofungin (2 to 3 times therapeutic levels) in specific patient subsets (26, 27).
To determine if clinical strains also colonize and respond in a similar fashion to drug exposure, mice were colonized with a range of clinical strains containing differing Msh2 profiles (see Fig. S1 in the supplemental material) and then treated daily with high-dose (20 mg/kg) caspofungin. A 1.5- to 2.5-log decrease in average burden between days 5 and 9 was observed for each group (Fig. S1), and like the Δmsh2 mutant strain, the burden levels returned to baseline by day 11, as in the previous experiment (Fig. 1). Therefore, clinical strains of *C. glabrata* colonize and respond to high-dose caspofungin similarly to the Δmsh2 mutant strain, which was used for subsequent experiments. Further analysis of resistance and breakthrough following colonization with multiple strain backgrounds will be addressed in a future study.

Because of the dose-dependent differences on GI burdens and resistance emergence, we measured the pharmacokinetics of caspofungin within the GI tract following a single-dose administration of 5 or 20 mg/kg. Importantly, the intestinal walls were excluded from the analysis, allowing us to understand the amount of systemically administered drug that successfully traversed into the intestinal lumen. Overall, caspofungin enters the GI tract in a delayed manner and at a reduced level relative to plasma (Fig. 2). For both doses, the maximum concentrations of drug in serum (C_{max}) of caspofungin were observed at 2, 4, and 8 h postdose for plasma, the small intestine, and the large intestine, respectively (Fig. 2). As expected, treatment with high-dose (20 mg/kg) caspofungin caused greater drug penetration into the GI tract than that with the therapeutic dose (5 mg/kg) (large intestine mean C_{max} 36.2 versus 3.8 μg/ml, respectively; small intestine mean C_{max} 22.2 versus 9.1 μg/ml, respectively), although the GI drug concentrations were significantly lower than the plasma levels (Fig. 2). In mice treated with the high-dose drug, GI burden levels decreased by 16 h and then returned to original baseline levels by 48 h (Fig. 2). GI burdens in the low-dose injection group exhibited a minimal decrease and faster recovery to baseline (Fig. 2). As expected, GI burden levels were inversely related to the antifungal drug levels within the large intestine (Fig. 2). From these data, we conclude that daily administration of
high-dose (20 mg/kg) caspofungin resulted in significantly reduced GI burdens, but drug levels within the GI tract were not maintained at a high level for a sufficiently long time, potentially creating a niche to allow drug adaptation of *C. glabrata* for regrowth and priming cells for potential resistance acquisition.

Systemic dissemination from GI colonization upon immunosuppression. In order to recapitulate the natural progression from colonizer to pathogen, we administered an immunosuppressive regimen following antifungal treatment. This treatment simulates the antifungal prophylaxis or empirical therapy that high-risk transplantation patients receive prior to or during immunosuppression (8, 28). Fecal burdens and resistance rates were tracked throughout the experiment as described above and as shown in Fig. 3A. Colonization was established throughout the GI tract but was concentrated within the mouse cecum and colon (Fig. 3B), as previously described for *C. albicans* colonization (29). Following 4 days of 20 mg/kg caspofungin treatment, colonization levels decreased throughout the GI tract by an average of 2.7 log, and this decrease was mirrored by a 2.8-log decrease in fecal burden (Fig. 3B). Four days of high-dose treatment preceded any observed rebound in fecal burden or emergence of resistance (Fig. 1).

To induce immunosuppression, the corticosteroid dexamethasone (DMX) was administered twice daily from days 12 to 14 prior to euthanasia (day 15; Fig. 3A). Blood, kidneys, liver, and spleen were collected on day 15 and plated to determine CFU levels. Bloodstream infections were identified in 50% of mice (5/10) from the vehicle control group, while no isolates were recovered from the blood of any mouse treated with 5 or 20 mg/kg caspofungin (Fig. 3C). Yeast were recovered from at least one organ in 70%, 60%, and 30% of vehicle, 5 mg/kg CSF-treated, and 20 mg/kg CSF-treated mice,
respectively (Fig. 3C). All yeast recovered from the blood and organs of vehicle and 5 mg/kg CSF-treated mice contained wild-type sequences for FKS1 and FKS2 hot spots, while yeast recovered from the organs of 20 mg/kg CSF-treated mice exhibited an Fks2 amino acid substitution (Tables 1 and 2). Mutations were determined by melt curve analyses using allele-specific molecular beacons designed to the hot spot regions of FKS1 and FKS2 (Fig. S2).

Discontinuation of antifungal treatment during immunosuppression resulted in higher breakthrough rates, including bloodstream infections (Fig. S3); however, we decided to maintain antifungal treatment throughout immunosuppression to better mimic the clinical situation. Immunosuppression with cyclophosphamide failed to result in systemic dissemination (data not shown), as previously described (30). Collectively, the inclusion of a DMX immunosuppressive regimen following colonization

TABLE 1 Fks1 and Fks2 hot spot 1 amino acid substitutions identified in yeast recovered from feces, blood, and organs

Treatment group	Fks amino acid substitution (no. of mice)								
	Feces	Blood	Organs						
	Day 7	Day 9	Day 11	Day 13	Day 15	Day 9	Day 11	Day 13	Day 15
CSF 5	WT (2)								
CSF 5 + Nz	WT (4)								
CSF 20	WT (2)								
	P667T (1)								
	F659Y (2)								
	L630R (1)								
	L630R (4)								

630 is present in Fks1, and P667 and F659 are present in Fks2. Substitutions identified in prior experiment (e.g., S663P) are described in the text.
results in successful breakthrough of GI colonizers, and treatment with caspofungin decreases these dissemination rates.

Combination treatment of caspofungin and nikkomycin decreases systemic dissemination but not resistance. Echinocandin action on yeast cells is well established to induce compensatory responses involving enhanced chitin biosynthesis (17). Nikkomycin Z is a chitin synthase inhibitor that demonstrates in vitro synergy when combined with echinocandins toward C. albicans (31), and increased chitin content in C. glabrata leads to incomplete killing by caspofungin (16, 32). Additionally, we found that pretreating our Δmsh2 mutant cells with nikkomycin reduced the frequency of caspofungin-resistant mutants (Fig. 4A) and increased the killing ability of caspofungin across a range of concentrations for both wild-type and Δmsh2 cells grown in the presence of nikkomycin (Fig. 4B). Therefore, we utilized our colonization model to assess the effects of nikkomycin on gut burdens, resistance, and dissemination. Mice treated with both nikkomycin (100 mg/kg, oral) and high-dose caspofungin (20 mg/kg, i.p.) exhibited a faster (after 3 days of treatment) and greater (3-log) reduction in GI burden than with high-dose caspofungin treatment alone (Fig. 5, top). However, this combination treatment group also resulted in a burden rebound by day 7 (Fig. 5, top) that correlated with the emergence of resistance (Fig. 5, bottom) and a novel Fks1-L630R amino acid substitution (Table 1 and Fig. S2). To our knowledge, this is a previously undescribed substitution encoded by a T1889G mutation that lies within the hot spot 1 area of FKS1. Measurement of glucan synthase inhibition confirmed that this amino acid change confers enzymatic resistance to echinocandins (Fig. S4).

In this experiment, the high-dose caspofungin group (without nikkomycin cotreatment) also demonstrated an initial decrease in burden and subsequent rebound back to baseline colonization (Fig. 5) as observed in the previous experiment (Fig. 1); however, we noticed a lack of colonies on our resistance plates. Molecular beacon analysis demonstrated that FKS mutations were present, explaining the burden rebound, but the identified amino acid substitutions (Fks2-P667T and Fks2-F659Y) yielded weaker phenotypes and insufficient growth on the 2 μg/ml caspofungin plates. Inter-

TABLE 2

Mixed populations recovered from the GI tract of a 20 mg/kg CSF-treated mouse at day 15

Fks amino acid substitution	Duodenum	Jejunum	Ileum	Cecum	Colon	Rectum
P667T	2	4	2	3	2	3
WT	2	2	1	2	1	

FIG 4 Nikkomycin reduces C. glabrata caspofungin resistance and tolerance formation in vitro. (A) Caspofungin-resistant colony frequencies following selection on agar plates containing 2 μg/ml caspofungin. Cells were incubated with the indicated concentrations of nikkomycin Z (Nz) and increasing concentrations of caspofungin. The mean counts from three independent biological experiments ± standard deviations are shown.
Interestingly, we found a mixed FKS genotype population within mice from this treatment group in the feces, throughout the GI tract, and in organs following immunosuppression (Tables 1 and 2). No bloodstream isolates were identified in any mouse treated with caspofungin (Fig. 6A). Mice that were treated with high-dose caspofungin with or without nikkomycin yielded 33% (3/9 mice) and 30% (3/10 mice) organ dissemination rates, respectively, compared to the 70% observed in the vehicle control group (Fig. 6A), although these yeast contained the same FKS mutations that were identified in the fecal matter (Table 1). The nikkomycin plus therapeutic caspofungin (5 mg/kg) treatment produced no change in burden levels (Fig. 5) but significant decreases in systemic breakthrough rates (Fig. 6A and B). Additionally, these breakthroughs contained wild-type FKS sequences (Fig. 6A and Table 1). However, the Fks1-L630R substitution was discovered in the feces of mice from this group beginning on day 13 (Table 1), indicating that if immunosuppression began any later, the FKS mutants may have disseminated.

These experiments demonstrated that combination treatment with high-dose (20 mg/kg) caspofungin and the chitin synthase inhibitor nikkomycin Z further reduces GI burdens, but the breakthrough and in vivo resistance rates were similar to those with high-dose caspofungin treatment alone. Alternatively, treatment with the therapeutic dose of caspofungin (5 mg/kg) plus nikkomycin yielded no change in burden but did significantly reduce breakthrough rates. However, yeast containing a novel FKS1 mutation arose in mice from both combination treatment groups.

DISCUSSION

The GI tract is a main reservoir of *Candida* colonization and has been suggested to be a primary site of resistance development in patients undergoing antifungal prophylaxis and treatment. To address this critical issue, we have established a GI colonization and systemic dissemination model for *Candida glabrata* that includes measurements of GI burden levels, resistance frequencies, and systemic breakthrough rates. Our studies demonstrate that the gut is a reservoir where robust resistance can develop, and upon
immunosuppression, these mutants have the ability to disseminate, or break through, to other parts of the body. The humanized dose (5 mg/kg) of caspofungin yielded little resistance (0 to 10%), although it should be noted that treatment for longer periods of time (10 to 13 days of treatment) may increase the rates of acquired resistance to caspofungin (19). Additionally, these low resistance rates mirror the currently reported echinocandin resistance rates (3 to 12%) reported in the clinic setting (5,6), supporting the model’s clinical significance. To reduce GI burdens and subsequent dissemination, mice were treated with a high dose of echinocandin (20 mg/kg; 4-fold greater than the equivalent humanized dose). An initial burden decline was followed by a rebound to the original colonization levels characterized by a high level of resistant yeast (Fig. 1 and 5). The increased drug pressure led to a more robust adaptation response from the gut population. In a previous C. albicans colonization study (33), treatment of mice with echinocandins at near-humanized doses led to a sustained decrease in GI colonization, indicating an inherent difference between the species in terms of colonization fitness in mice (see reference 34) and response to drug pressure and/or technical differences between models. For example, our model requires a daily antibiotic regimen to maintain high levels (10⁷ to 10⁸ CFU/g of stool) of colonization, while the C. albicans study established a low level (10⁴ CFU/g of stool) of colonization in the absence of antibiotics. Repopulation of the murine GI tract with natural bacterial colonizers following an initial decrease in yeast burdens may affect the ability of the yeast to reestablish colonization in the absence of antibiotics.

One of the major determinants of systemic dissemination of C. glabrata gut colonizers upon immunosuppression is the genetic composition of the yeast population present within the GI tract. We found that the FKS genotypes present in the GI tract at the beginning of immunosuppression were also found in the blood and organs,
confirming that colonizing strains can become infecting strains. Of note, bloodstream isolates were only isolated from caspofungin-treated mice if we ceased antifungal treatment during immunosuppression (Fig. 6 and S3). We also found that mixed genotypes could arise in the gut (Tables 1 and 2), particularly if a phenotype (i.e., Fks2-P667T) that leads to low-level resistance (<2 μg/ml) develops. This finding is consistent with clinical studies involving serial isolates from patients with recurrent bloodstream infections that show breakthrough isolates with different FKS alleles (35, 36). Most of our studies included colonization with the Δmsh2 mutator strain. Although we have identified that over half of all *C. glabrata* clinical isolates contain a partial loss-of-function MSH2 mutation (19), mutational rates of clinical strains are not as high as that of the Δmsh2 mutant (data not shown). However, the use of the mutator strain aided in our goal to determine if resistance can arise in the gut and if those resistant mutants have the ability to disseminate. Various clinical strains of *C. glabrata* can effectively colonize the GI tract in this model (Fig. S1), and we plan to test if additional antifungal tolerance mechanisms or other genetic factors (e.g., *PDR1* mutations) influence GI colonization, resistance, and breakthrough.

Another key determinant of systemic breakthrough is plasma and tissue drug levels. Fungal burden levels and resistance rates depended on levels of drug in the GI tract: the lower therapeutic dose (5 mg/kg) of caspofungin had no effect on burden and resulted in low resistance rates, while the high caspofungin dose (20 mg/kg) resulted in a reduction in burden levels but high resistance rates. Insufficient issue penetration of antifungals is a source of concern when treating specific cases of candidiasis (37). Following a single therapeutic dose of the systemically administered caspofungin drug, our pharmacokinetics (PK) studies demonstrated a mean \(C_{\text{max}} \) of 3.8 μg/ml within the large intestine, while a 20 mg/kg dose led to a mean \(C_{\text{max}} \) of 36.2 μg/ml in the same intestinal compartment. The largest decreases in burden corresponded to peak drug levels within the large intestine, indicating a primary reservoir of colonization, as supported by our data (Fig. 3B). The potential gut reservoir of *C. glabrata* should be taken into consideration during antifungal treatment, particularly in patients with previous azole or echinocandin exposure where *C. glabrata* may have been preselected over other more susceptible strains, such as *C. albicans*. A caveat of *C. glabrata* gastrointestinal colonization mouse models includes the necessary administration of antibiotics (e.g., piperacillin-tazobactam [PTZ]) to attain high levels of colonization (38). Changes in the normal bacterial flora of mice may influence *Candida* and allow sufficient biofilm formation. However, this may also properly reflect the patient population most at risk for *C. glabrata* infections. In fact, a study found that treatment with either vancomycin or PTZ antibiotics was a significant risk factor for developing *C. glabrata* candidemia at a U.S. hospital (39); again, this points to the importance of the *Candida* reservoir within the GI tract of humans. Overall, the elevated drug treatments led to lower breakthrough rates, likely due to greater drug exposure in these tissues; however, because resistance had already developed in the gut, yeast that were recovered from organs of high-dose treatment groups contained the same FKS mutations (Tables 1 and 2).

Multiple factors, including penetration of drug, anatomical complexity of the GI tract, and the capacity of *C. glabrata* to survive and adapt to these drug concentrations *in vivo*, likely contributed to the inability of caspofungin to completely decolonize or sterilize the gut. To this end, we attempted to use a combinatorial treatment that showed promise against *C. glabrata* persistence and mutant formation *in vitro* (Fig. 4). As expected, treatment with the chitin synthase inhibitor nikkomycin Z resulted in an even greater reduction of GI burden when combined with high-dose daily caspofungin (20 mg/kg); however, resistance (FKS mutations) arose quickly (within 5 days of treatment) (Fig. 5 and Table 1). Nikkomycin treatment combined with the therapeutic dose (5 mg/kg) of caspofungin did not affect burden levels but did significantly decrease organ breakthrough rates (Fig. 6). Additionally, yeast that were recovered from organs of mice in this group were FKS wild type (Table 1). However, caution must be taken in the interpretation of these results, since we did identify fks1 mutant alleles from the
feces of mice in this group, albeit late in the experiment (day 13) after immunosuppression was started (Table 1). Interestingly, a novel Fks1 substitution (L630R) was isolated from mice in the nikkomycin plus caspofungin treatment groups and may reflect the dual pressure of these drugs. More studies must be done to determine the in vivo effects of combination treatment of C. glabrata infection and colonization. The marked ability of C. glabrata populations to tolerate or adapt to various antifungals, and other compounds should be considered when attempting to develop treatments that target tolerance pathways within this organism.

The experiments presented here were performed with caspofungin, and although we plan to determine the effects upon treatment with other echinocandins, including micafungin and anidulafungin, it is worth noting that the FKS mutations identified within our mouse model have also been identified within patient isolates following treatment failure with any echinocandin (5, 40). In summary, we have demonstrated the dual pressure of these drugs. More studies must be done to determine the effects of combination treatment of C. glabrata infection and colonization. The marked ability of C. glabrata populations to tolerate or adapt to various antifungals, and other compounds should be considered when attempting to develop treatments that target tolerance pathways within this organism.

MATERIALS AND METHODS

Ethics statement. Mice were housed in the Public Health Research Institute’s Animal Biosafety Level-2 Research Animal Facility (ICPH RAF), a center of the New Jersey Medical School, Rutgers University (NJMS-Rutgers). The animal facility follows the Public Health Service and National Institute of Health Policy of Humane Care and Use of Laboratory Animals guide. All experimental protocols were approved by the Rutgers Institutional Animal Care and Use Committee (IACUC).

Gastrointestinal C. glabrata colonization mouse model. Six-week-old female outbred CF-1 immunocompetent mice (Charles River Laboratories) were treated (subcutaneously [s.c.]) with 320 mg/kg of piperacillin-tazobactam (PTZ; 8:1 ratio) beginning on day 12 to 2 to clear native intestinal bacterial flora. Daily PTZ treatment was maintained throughout the experiment (see Fig. 3A). On day 0, mice were inoculated via oral gavage with approximately 1.5 × 10⁶ CFU of C. glabrata in 100 μl of saline. Mice were colonized with ATCC 2001 (CBS 138), clinical strains from the Perlin Laboratory collection, or mutator strain 2001 Δmsh2 (19). Fresh fecal samples were collected throughout the experiment to assess fungal burden in the GI tract. Daily administration of caspofungin (0.5, 5, or 20 mg/kg, i.p.), nikkomycin Z (100 mg/kg, oral) (Sigma), or saline (100 μl i.p.) was initiated on day 3 postinoculation and continued through sacrifice day (typically day 15). Caspofungin-resistant colony frequencies were determined through selection of fecal samples on yeast extract-peptone-dextrose (YPD) plates supplemented with caspofungin (2 μg/ml), PTZ (16 μg/ml), and chloramphenicol (20 μg/ml). The corticosteroid dexamethasone (DMX) was administered twice daily (100 mg/kg, i.p.) for 3 days (days 12 to 14) prior to euthanization (day 15; Fig. 3A). Blood, kidneys, liver, spleen, and the gastrointestinal tract components were collected on day 15 (or earlier where indicated), homogenized, and plated onto YPD plates supplemented with chloramphenicol (75 μg/ml) and ampicillin (50 μg/ml) to determine CFU levels.

Rapid detection of FKS mutations. Colonies obtained from feces, blood, and organs were screened for FKS-associated echinocandin resistance by allele-discriminating real-time PCR, as described in reference 41. Briefly, two sets of asymmetric PCR primers were used to amplify the hot spot 1 (HS1) regions of FKS1 and FKS2 via colony PCR. Two molecular beacon probes were designed to complement the wild-type (WT) (ATCC 2001) genotype in the target region (FKS1 HS1 or FKS2 HS1) but possess various binding energies to non-WT sequences. Immediately after amplification, melting curve analysis was performed with a Mic quantitative PCR (qPCR) cycler (Biorad) at 95°C for 3 min and then 40°C for 30 s, after which it was melted from 50°C to 70°C with a ramp rate of 0.025°C/s. Due to the stability difference of the probe-target hybrids, characteristic profiles are produced for different FKS genotypes in the subsequent melting curve analysis (see Fig. S2). Any colonies that generated questionable melt curves were subjected to traditional PCR amplification and sequencing to confirm FKS genotype.

Pharmacokinetics. Mice were colonized with ATCC 2001 and then treated (i.p.) once with 5 or 20 mg/kg caspofungin at time zero (2 days postinoculation). Three mice from each treatment group were sacrificed at each time point (0, 1, 2, 4, 8, 16, 24, and 48 h), and blood and small and large intestinal lumen contents (without intestinal walls) were collected. Fecal pellets were also collected from mice at 0, 4, 16, 24, and 48 h prior to sacrifice. Caspofungin levels in plasma and GI compartments were measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS) in electrospray positive-ionization mode (ESI+) on an AB Sciex QTrap 4000 triple-quadrupole mass spectrometer combined with an Agilent 1260 high-performance liquid chromatograph (HPLC) using the Analyst software and multiple-reaction monitoring (MRM) of precursor/product transitions. The MRM transitions used were 547.50/538.40 for caspofungin and 455.4/165.2 for the internal standard verapamil. Chromatography was performed with an Agilent Zorbax SB-C8 column (2.1 by 30 mm; particle size, 3.5 μm) using a reverse-phase gradient elution. One-tenth percent formic acid in Milli-Q deionized water was used for the aqueous mobile phase and 0.1% formic acid in acetonitrile (ACN) for the organic mobile phase. Small and large intestinal contents were homogenized prior to extraction by combining 3 parts PBS buffer to 1 part GI tract contents. One milligram per milliliter dimethyl sulfoxide (DMSO) stock was serially diluted in 50/50
ACN-water to create standard curves and quality control spiking solutions. Twenty microliters of neat spiking solutions was added to 20 μl of drug-free mouse K₁EDTA plasma (Bioreclamation) or GI tract homogenate, and extraction was performed by adding 200 μl of acetonitrile-methanol 50/50 protein precipitation solvent containing 10 ng/ml verapamil (Sigma). Extracts were vortexed for 5 min and centrifuged at 4,000 rpm for 5 min. The supernatants were analyzed by LC-MS. Sample analysis was accepted if the concentrations of the quality control samples were within 20% of the nominal concentration.

In vitro killing assay. Fresh 1-ml RPMI cultures (plus necessary amino acids) of C. glabrata (1 × 10⁷ cells) were incubated at 37°C while shaking (165 rpm) for 24 h in 2-fold increasing concentrations (0.016 to 32 μg/ml) of caspofungin and in the presence (128 μg/ml) or absence of nikkomycin Z. After 24 h, 100 μl of the appropriate dilutions for each culture was plated onto YPD plates. CFU were counted 24 h after plating and data represented as the CFU per milliliter that survived at each concentration of drug.

Supplemental material

Supplemental material for this article may be found at https://doi.org/10.1128/AAC.01412-17.

Supplemental file 1, PDF file, 0.5 MB.

Acknowledgments

We thank members of the D.S.P. laboratory and the PHRI animal staff, especially George Rasic, Enriko Dolgov, and Min Hee Lee, for their assistance.

This research was supported by the NIH grant AI109025 to D.S.P. and by an Arnold O. Beckman postdoctoral fellowship from the Arnold and Mabel Beckman Foundation to K.R.H.

D.S.P. has received research support and/or serves on scientific advisory boards for Merck, Astellas, Cidara, Amplyx, Matinas, and Synexis. D.S.P. also has an issued patent to K.R.H.

References

1. Pfaller MA, Diekema DJ. 2007. Epidemiology of invasive candidiasis: a persistent public health problem. Clin Microbiol Rev 20:133–163. https://doi.org/10.1128/CMR.00029-06.
2. Lockhart SR, Wagner D, Isqbal N, Pappas PG, Andes DR, Kaufman CA, Brumble LM, Hadley S, Walker R, Ito JL, Baddley JW, Chiller T, Park BJ. 2011. Comparison of in vitro susceptibility characteristics of Candida species from cases of invasive candidiasis in solid organ and stem cell transplant recipients: Transplant-Associated Infections Surveillance Network (TRANSNET), 2001 to 2006. J Clin Microbiol 49:2404–2410. https://doi.org/10.1128/JCM.02474-10.
3. Pfaller M, Neofytos D, Diekema D, Azie N, Meier-Kriesche HU, Quan SP, Horn D. 2012. Epidemiology and outcomes of candidemia in 3648 patients: data from the Prospective Antifungal Therapy (PATH Alliance) registry, 2004–2008. Diagn Microbiol Infect Dis 74:323–331. https://doi.org/10.1016/j.diagmicrobio.2010.10.003.
4. Hachem R, Hanna H, Kontoyiannis D, Jiang Y, Raad I. 2008. The changing epidemiology of invasive candidiasis: Candida glabrata and Candida kruzei as the leading causes of candidemia in hematologic malignancy. Glucan synthase assay. https://doi.org/10.1001/jcmh.2008.1172.
5. Alexander BD, Johnson MD, Pfefler CD, Jimenez-Ortigosa C, Catania J, Booker R, Castanheira M, Messer SA, Pfaller DS, Pfaller MA. 2013. Increasing echinocandin resistance in Candida glabrata: clinical failure correlates with presence of FKS mutations and elevated minimum inhibitory concentrations. Clin Infect Dis 56:1724–1732. https://doi.org/10.1093/cid/cit136.
6. Pfaller MA, Castanheira M, Lockhart SR, Ahlquist AM, Messer SA, Jones RN. 2012. Frequency of decreased susceptibility and resistance to echinocandins among fluconazole-resistant bloodstream isolates of Candida glabrata. J Clin Microbiol 50:1199–1203. https://doi.org/10.1128/JCM.06112-11.
7. Farmakiotis D, Tarrand JJ, Kontoyiannis DP. 2014. Drug-resistant Candida glabrata infection in cancer patients. Emerg Infect Dis 20:1833–1840. https://doi.org/10.3291/eid2011.140685.
8. Pappas PG, Kaufman CA, Andes DR, Clancy CJ, Marr KA, Ostrosky-Zeichner L, Reboli AC, Schuster MG, Vazquez JA, Walsh TJ, Zaoutis TE, Sobel JD. 2016. Clinical practice guideline for the management of candidiasis: 2016 update by the Infectious Diseases Society of America. Clin Infect Dis 62:e1–e50. https://doi.org/10.1093/cid/civ1194.
9. Perlin DS. 2013. Mechanisms of echinocandin antifungal drug resistance. Ann N Y Acad Sci 1354:1–11. https://doi.org/10.1111/nyas.12831.
10. Ferrari S, Sanguinetti M, Torelli R, Postorero B, Sanglard D. 2011. Contributions of GPD1-regulated genes in enhanced virulence of azole-resistant C. glabrata. J Clin Microbiol 49:2404–2410. https://doi.org/10.1128/JCM.02474-10.
resistant Candida glabrata. PLoS One 6:e17589. https://doi.org/10.1371/journal.pone.0017589.

11. Vale-Silva L, Ischer F, Leibundgut-Landmann S, Sanglard D. 2013. Gain-of-function mutations in PDR1, a regulator of antifungal drug resistance in Candida glabrata, control adherence to host cells. Infect Immun 81:1709–1720. https://doi.org/10.1128/IAI.00074-13.

12. Vale-Silva LA, Moecik B, Torelli R, Posteroaro B, Sanguinetti M, Sanglard D. 2016. Upregulation of the adenine gene EPA1 mediated by PDR1 in Candida glabrata leads to enhanced host colonisation. mSphere 1(2): e00065-15. https://doi.org/10.1128/mSphere.00065-15.

13. Healey KR, Jimenez-Ortigosa C, Shor E, Perlin DS. 2016. Genetic drivers of multidrug resistance in Candida glabrata. FrontMicrobiol7:1795. https://doi.org/10.3389/fmicb.2016.01995.

14. Muller H, Thierry A, Coppee JY, Gouyette C, Hennequin C, Sismeiro O, Taill E, Dujon B, Fairhead C. 2009. Genomic polymorphism in the population of Candida glabrata: gene copy-number variation and chromosomal translocations. Fungal Genet Biol 46:264–276. https://doi.org/10.1016/j.fgb.2008.11.006.

15. Polaková S, Blume C, Zarate JA, Mentel M, Jorc-k-Ramberg D, Stenderup J, Piskur J. 2009. Formation of new chromosomes as a virulence mechanism in yeast Candida glabrata. Proc Natl Acad Sci U S A 106:2693. https://doi.org/10.1073/pnas.0809793106.

16. Cota JM, Grabinski JL, Talbert RL, Burgess DS, Rodgers PD, Edlind TD, Wiederhold NP. 2008. Increases in SLT2 expression and chitin content are associated with incomplete killing of Candida glabrata by caspofungin. Antimicrob Agents Chemother 52:1144–1146. https://doi.org/10.1128/AAC.01542-07.

17. Walker LA, Gow NA, Munro CA. 2013. Elevated chitin content reduces the susceptibility of Candida species to caspofungin. Antimicrob Agents Chemother 57:146–154. https://doi.org/10.1128/AAC.01486-12.

18. Ben-Ami R, Zimmerman O, Finn T, Amit S, Novikov A, Wertheimer N, Lurie-Weinberger M, Berman J. 2016. Heteroresistance to fluconazole is a continuously distributed phenotype among Candida glabrata clinical strains with in vivo persistence. mBio 7(e4):e00655-16. https://doi.org/10.1128/mBio.00655-16.

19. Healey KR, Zhao Y, Perez WB, Lockhart SR, Sobel JD, Farmakiotis D, Poláková S, Blume C, Zarate JA, Mentel M, Jorck-Ramberg D, Stenderup J, Ischer F, Leibundgut-Landmann S, Sanglard D. 2013. Gain-of-function mutations in Candida glabrata colonizes but does not often disseminate from the mouse caecum. J MedMicrobiol 56:688–693. https://doi.org/10.1099/jmm.0.07409-0.

20. Sandovsky-Losica H, Shwartzman R, Lahat Y, Segal E. 2008. Antifungal activity against Candida albicans of nikkomycin Z in combination with caspofungin, voriconazole or amphotericin B. J Antimicrob Chemother 63:637. https://doi.org/10.1093/jac/dkn216.

21. Miyazaki T, Inamine T, Yamauchi S, Nagayoshi Y, Saito T, Izumikawa K, Seki M, Kayeka H, Yamamoto Y, Yanagihara K, Miyazaki Y, Kohno S. 2010. Role of the ST2 mitogen-activated protein kinase pathway in cell wall integrity and virulence in Candida glabrata. FEMS Yeast Res 10:343–352. https://doi.org/10.1111/j.1567-1364.2010.00611.x.

22. Maraki S, Hamilos G, Dimopoulos A, Andrianaki AM, Karageorgiadis AS, Kouniakakis A, Lionakis S, Dev D, Samonis G. 2015. Study on the comparative activity of echinocandins on murine gut colonization by Candida albicans. Med Mycol 53:597–602. https://doi.org/10.1093/mycolpathj/myv028.

23. Sem X, Le GT, Tan AS, Tso G, Yurieva M, Liao WW, Lum J, Sinirangan VK, Poidinger M, Zolezzi F, Pavella N. 2016. β-1,3-Glucan exposure on the fungal cell wall tightly correlates with competitive fitness of Candida species in the human gut. Front Cell Infect Microbiol 6:136. https://doi.org/10.3389/fcimb.2016.00062.

24. Cho EJ, Shin JH, Kim SH, Kim HK, Park JS, Sung H, Kim MN, Im HJ. 2015. Emergence of multiple resistance profiles involving azoles, echinocandins and amphotericin B in Candida glabrata isolates from a neutropenia patient with prolonged fungaemia. J Antimicrob Chemother 70:1268–1270.

25. Imbert S, Castain L, Pons A, Jacob S, Meyer I, Palous M, Venezit C, Langeron O, Hennequin C, Monsel A, Pekkar H. 2016. Discontinuation of echinocandin and azole treatments led to the disappearance of an FKS alteration but not azole resistance during clonal Candida glabrata persistent candidaemia. Clin Microbiol Infect 22:891.e5–891.e8. https://doi.org/10.1016/j.cmi.2016.07.025.

26. Felton T, Troke PF, Hope WW. 2014. Tissue penetration of antifungal agents. Clin Microbiol Rev 27:58–88. https://doi.org/10.1128/CMR.00046-13.

27. Pultz NJ, Stiefel U, Ghanounou M, Helfand MS, Donskey CJ. 2005. Effect of prior antifungal prophylaxis and treatment on establishment of intestinal colonisation by Candida glabrata in adult mice. Antimicrob Agents Chemother 49:438–440. https://doi.org/10.1128/AAC.49.1.438-440.2005.

28. Park S, Kelly R, Kahn JN, Robles J, Hsu MJ, Register E, Li W, Vyas V, Fan H, Abruzzo G, Flattery A, Gill C, Chrebet G, Parent SA, Kurtz M, Teppler H, Echols SG. 2005. Prior antimicrobial therapy and risk for hospital-acquired candidaemia and Candida glabrata and Candida krusei fungemia: a case-control study. Antimicrob Agents Chemother 49:4555–4560. https://doi.org/10.1128/AAC.49.11.4555-4560.2005.

29. Zimbeck AJ, Iqbal N, Ahlquist AM, Farley MM, Harrison LH, Chiller T, Lockhart SR. 2010. FKS mutations and elevated echinocandin MIC values among Candida glabrata isolates from U.S. population-based surveillance. Antimicrob Agents Chemother 54:5042–5047. https://doi.org/10.1128/AAC.00836-10.

30. Zhao Y, Nagasaki Y, Kordaleswski MM, Press EG, Shields RK, Nguyen MH, Clancy CJ, Perlin DS. 2016. Rapid detection of resistance-associated echinocandin and azole treatments led to the disappearance of an FKS alteration but not azole resistance during clonal Candida glabrata persistent candidaemia. Front Cell Infect Microbiol 6:136. https://doi.org/10.3389/fcimb.2016.00062.

31. Garcia-Effron G, Lee S, Park S, Cleary JD, Perlin DS. 2009. Effect of Candida glabrata FKS1 and FKS2 mutations on echinocandin sensitivity and kinetics of 1,3-beta-D-glucan synthase: implication for the existing susceptibility breakpoint. Antimicrob Agents Chemother 53:3690–3699. https://doi.org/10.1128/AAC.01543-09.

32. Park S, Kelly R, Kahn JN, Robles J, Hsu MJ, Register E, Li W, Vyas V, Fan H, Abruzzo G, Flattery A, Gill C, Chrebet G, Parent SA, Kurtz M, Teppeller H, Douglas CM, Perlin DS. 2005. Specific substitutions in the echinocandin target Fks1p account for reduced susceptibility of rare laboratory and clinical Candida sp. isolates. Antimicrob Agents Chemother 49:3264–3273. https://doi.org/10.1128/AAC.49.12.3264-3273.2005.