Supporting Information

Construction of 3D carbon networks with well-dispersed SiO_\text{x} nanodomains from gelable building blocks for lithium-ion batteries

Zhitaoc Lu, Ruliang Liu, Junlong Huang, Zirun Chen, Luyi Chen, Dingcai Wu, Ruowen Fu*

Materials Science Institute, PCFM Lab and GDHPPC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China.
E-mail: cesfrw@mail.sysu.edu.cn
Fig. S1 Schematic representation of the process of introduction of Br-containing surface ATRP initiation sites for CNT.

Fig. S2 TGA curves of CNT-NH$_2$ and CNT-Br in N$_2$ flow.
Fig. S3 TEM images of CNT-g-xPTEPM.

Fig. S4 TGA curves of CNT-g-xPTEPM and xPTEPM in O$_2$ flow.

Fig. S5 High-resolution TEM image of CNT@SiO$_x$-C.
Fig. S6 SEM images of CNT-g-xPTEPM with different polymerization time of (a) 12 h, (b) 24 h, (c) 48 h and CNT@SiO$_x$-C with different polymerization time of (d) 12 h, (e) 24 h, (f) 48 h, respectively.

Fig. S7 TGA curves of synthesized CNT@SiO$_x$-C with different polymerization time.
Fig. S8 Cyclic voltammograms of a half-cell composed of (a) SiO$_x$-C and (b) CNT vs. Li/Li$^+$ at a scan rate of 0.5 mV s$^{-1}$ during the first 3 cycles.

Fig. S9 TGA curves of CNT@SiO$_x$-C and SiO$_x$-C in O$_2$ flow.
Fig. S10 SEM images of (a) xPTEPM and (b) SiOₓ-C.

Fig. S11 SEM images of CNT@SiOₓ-C electrode (a) before cycling and (b) after 50 cycles.

Fig. S12 Cycling performance of CNT@SiOₓ-C at the current of 1 A g⁻¹.
Fig. S13 Nyquist plots of CNT@SiO$_x$-C, SiO$_x$-C and CNT after different cycles in the frequency range between 100 kHz and 0.01 Hz.

Fig. S14 (a) Cycling performance and (b) rate performance of CNT@SiO$_x$-C with different polymerization time in synthesis.
Supplementary Table 1. Electrochemical performance comparison of SiOx/C-based anode in high-energy rechargeable lithium battery reported by different research groups.

Materials	Content of SiOx (%)	Current density (mA g\(^{-1}\))	Initial discharge capacity (mAh g\(^{-1}\))	Reversible capacity (mAh g\(^{-1}\))	Cycling number	Capacity retention (%)	References
CNT@SiO\(_x\)-C	10.0	0.2	1307	631	150	48.3	This work
		0.5	813	467	400	89	
		1	805.5	509	200	63.2	
				258	400	54	
SiO\(_x\)/C	30.0	0.065	\(~780\)	645	500	82.7	1
SiO\(_x\)/C/CNTs	67.8	1	\(~450\)	315.7	1000	70.2	2
		0.05	1267.2	826.1	100	65.2	
MPSiO\(_x\)@rGO	91.4	0.1	3765	580	200	15.4	3
C/SiO\(_x\)	15	0.2	383	290	100	75.7	4
SiO\(_x\)/C/G	80.5	0.2	601	541	600	90.0	5
SiO/G/CNTs	/	0.23	790	487	130	61.6	6
SiO\(_x\)/C	61.6	0.1	\(~990\)	563	400	56.9	7
		0.05	1160	630	150	54.3	
SiO\(_x\)-C	/	0.1	\(~1210\)	674.8	100	55.8	8
		0.5	\(~1060\)	485	100	45.8	
MWCNT@Si/SiO\(_x\)@C	55	0.4	1011	450	500	44.5	9
SiO\(_x\)/C-2	98.8	0.1	1296.3	843.5	200	65.1	10
SiO\(_x\)/C	68.6	0.1	2223.6	800	50	36.0	11
SiO\(_x\)/C nanorods	/	0.1	1324	720	350	54.4	12
S-1300	73.8	0.1	\(~960\)	810	100	84.4	13
SiO\(_x\)/C	/	0.1	\(~1380\)	780	350	56.5	14
SiO\(_x\)	100	0.5	\(~850\)	\(~640\)	50	75.3	15
		0.2	\(~1150\)	\(~700\)	50	60.9	
		0.1	\(~1290\)	\(~855\)	50	66.3	
SiO\(_x\)/SiO\(_y\) Bilayer	100	0.5	\(~2300\)	\(~570\)	150	\(~24.8\)	16
References

1. Q. Xu, J. K. Sun, Y. X. Yin and Y. G. Guo, *Advanced Functional Materials*, 2018, **28**, 1705235.
2. S. Q. Wang, N. Q. Zhao, C. S. Shi, E. Z. Liu, C. N. He, F. He and L. Y. Ma, *Applied Surface Science*, 2018, **433**, 428-436.
3. D. Liu, C. R. Chen, Y. Y. Hu, J. Wu, D. Zheng, Z. Z. Xie, G. W. Wang, D. Y. Qu, J. S. Li and D. Y. Qu, *Electrochimica Acta*, 2018, **273**, 26-33.
4. T. Izawa, A. F. Arif, S. Taniguchi, K. Kamikubo, H. Iwasaki and T. Ogi, *Materials Research Bulletin*, 2019, **112**, 16-21.
5. Q. Xu, J. K. Sun, G. Li, J. Y. Li, Y. X. Yin and Y. G. Guo, *Chemical Communications*, 2017, **53**, 12080-12083.
6. Y. R. Ren, J. N. Ding, N. Y. Yuan, S. Y. Jia, M. Z. Qu and Z. L. Yu, *Journal Of Solid State Electrochemistry*, 2012, **16**, 1453-1460.
7. M. Q. Li, Y. Zeng, Y. R. Ren, C. M. Zeng, J. W. Gu, X. F. Feng and H. Y. He, *Journal of Power Sources*, 2015, **288**, 53-61.
8. W. J. Wu, J. Shi, Y. H. Liang, F. Liu, Y. Peng and H. B. Yang, *Physical Chemistry Chemical Physics*, 2015, **17**, 13451-13456.
9. Y. F. Chen, Q. A. Mao, L. Bao, T. Yang, X. X. Lu, N. Du, Y. G. Zhang and Z. G. Ji, *Ceramics International*, 2018, **44**, 16660-16667.
10. J. Y. Zhang, X. M. Zhang, C. Q. Zhang, Z. Liu, J. Zheng, Y. H. Zuo, C. L. Xue, C. B. Li and B. W. Cheng, *Energy & Fuels*, 2017, **31**, 8758-8763.
11. J. Wang, H. L. Zhao, J. C. He, C. M. Wang and J. Wang, *Journal of Power Sources*, 2011, **196**, 4811-4815.
12. Y. R. Ren and M. Q. Li, *Journal of Power Sources*, 2016, **306**, 459-466.
13. P. P. Lv, H. L. Zhao, C. H. Gao, Z. H. Du, J. Wang and X. Liu, *Journal of Power Sources*, 2015, **274**, 542-550.
14. C. H. Gao, H. L. Zhao, P. P. Lv, C. M. Wang, J. Wang, T. H. Zhang and Q. Xia, *Journal Of the Electrochemical Society*, 2014, **161**, A2216-A2221.
15. H. Guo, R. Mao, X. J. Yang and J. Chen, *Electrochimica Acta*, 2012, **74**, 271-274.
16. L. Zhang, J. W. Deng, L. F. Liu, W. P. Si, S. Oswald, L. X. Xi, M. Kundu, G. Z. Ma, T. Gemming, S. Baunack, F. Ding, C. L. Yan and O. G. Schmidt, *Advanced Materials*, 2014, **26**, 4527-4532.