Differential bicistronic gene translation mediated by the internal ribosome entry site element of encephalomyocarditis virus

Chia-Rui Shen \(^{a,b,c,**}\), Ya-Shan Chen \(^{a,b}\), Yih-Shiou Hwang \(^{c,d}\), Hsi-Jien Chen \(^{e}\), Chao-Lin Liu \(^{f,g,*}\)

\(^{a}\) Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
\(^{b}\) Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
\(^{c}\) Department of Ophthalmology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
\(^{d}\) Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
\(^{e}\) Department of Safety, Health and Environmental Engineering, Ming Chi University of Technology, New Taipei City, Taiwan
\(^{f}\) Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan
\(^{g}\) Department of Chemical and Materials Engineering, College of Engineering, Chang Gung University, Taoyuan, Taiwan

Article info

Article history:
Received 11 November 2019
Accepted 16 June 2020
Available online 24 June 2020

Keywords:
Bicistronic vector
EMCV IRES
Gene therapy
Mammalian cells
Protein expression

Abstract

Background: Internal ribosome entry sites (IRESs) allow the translation of a transcript independent of its cap structure. They are distributed in some viruses and cellular RNA. The element is applied in dual gene expression in a single vector. Although it appears the lower efficiency of IRES-mediated translation than that of cap-dependent translation, it is with the crucial needs to know the precise differences in translational efficacy between upstream cistrons (cap-dependent) and downstream cistrons (IRES-mEDIATE, cap-independent) before applying the bicistronic vector in biomedical applications.

Methods: This study aimed to provide real examples and showed the precise differences for translational efficiency dependent upon target gene locations. We generated various bicistronic constructs with quantifiable reporter genes as upstream and downstream cistrons of the encephalomyocarditis virus (EMCV) IRES to precisely evaluate the efficacy of IRES-mediated translation in mammalian cells.

Results: There was no significant difference in protein production when the reporter gene was cloned as an upstream cistron. However, lower levels of protein production were obtained when the reporter gene was located downstream of the IRES. Moreover, in the presence of an upstream cistron, a markedly reduced level of protein production was observed.

* Corresponding author. Department of Chemical Engineering, Ming Chi University of Technology, 84, Gungjuan Rd., Taishan, New Taipei City 243, Taiwan.
** Corresponding author. Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, 259 Wenhu 1st Rd., Gueishan, Taoyuan 333, Taiwan.
E-mail addresses: crshen@mail.cgu.edu.tw (C.-R. Shen), f2402002@ms16.hinet.net (C.-L. Liu).
Peer review under responsibility of Chang Gung University.
https://doi.org/10.1016/j.bj.2020.06.006
2319-4170/© 2020 Chang Gung University. Publishing services by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Gene therapy has been widely applied to treat tumors as well as inherited and infectious diseases [1–3]. The acquisition of an expression vector that efficiently produces the target protein is an essential requirement in the development of gene therapy [4]. Furthermore, the ability to express different genes from a single vector can greatly enhance the efficiency and versatility of gene therapy applications. One approach is to express different genes via separate expression cassettes in a single vector. However, this strategy may be problematic due to promoter attenuation [5]. Additionally, the size of the clone can sometimes become very large, causing increased handling difficulty. Another alternative approach is the utilization of bicistronic vectors, in which the genes are linked to each other by an internal ribosome entry site (IRES), allowing cotranslational expression of both cistrons [5–7]. In fact, this bicistronic approach may offer a high degree of flexibility in the regulation of gene expression [8,9].

The IRES is a cis-acting RNA sequence that has been shown to mediate internal entry of the 40S ribosomal subunit into mRNA, which results in the initiation of mRNA translation [10,11]. This cap-independent translation mode was first identified in picornavirus [12,13]. The picornavirus genome is a positive-strand RNA molecule with a single, long open reading frame encoding a polyprotein. During virus infection, cap-dependent host cell translation is markedly inhibited, and viral protein expression continues via a cap-independent mechanism that is mediated by IRES elements [14,15]. It has been shown that IRES-mediated protein expression is not unique to picornavirus. Many IRES elements have also been identified in other viruses (for example, hepatitis C virus and retroviruses) [11,16–18] and in higher organisms such as mammals [19–23]. In fact, IRES elements have been successfully utilized in a wide variety of biotechnological applications, including heterologous protein expression, the production of transgenic animals, and gene therapy [24–26].

On the other hand, the advantage of utilizing a viral IRES element is the ability to sustain protein synthesis in a broad range of cell types. The tissue tropism displayed by certain types of cellular IRES elements could be useful for targeting specific organs [7,27]. Among the various IRES elements, the IRES element of encephalomyocarditis virus (EMCV) is the most commonly used for constructing bicistronic expression vectors [5]. However, compared with the cap-dependent translation of the upstream cistron, EMCV IRES-mediated translation of downstream cistrons appears less efficient [17,28]. To date, little is known about the precise differences in translational efficacy between upstream cistrons (cap-dependent) and downstream cistrons (IRESmediate, cap-independent), which may be because the bicistronic vector pRF, which was used in firefly and Renilla luciferase-based bicistronic assays, was found to generate spliced transcripts [29,30]. Therefore, the aim of the current study was to utilize another quantifiable reporter to evaluate the efficacy of EMCV IRES-mediated translation in mammalian cells. In the current work, we generated a series of bicistronic reporter constructs composed of enhanced green fluorescent protein (EGFP), Renilla luciferase (Rluc), firefly luciferase (Fluc), interleukin-2 (IL-2), or interleukin-4 (IL-4) gene coding sequences as the upstream or the downstream cistron in a commonly used pIRES vector. The expression level of reporter proteins such as Rluc, Fluc, IL-2, and IL-4 can be accurately measured by dual-luciferase assay or enzyme-linked immunosorbent assay (ELISA). Our results indicated that the IRES elements resulted in lower levels of gene translation. Furthermore, we also demonstrated a significant reduction in the level of protein translation mediated by IRES in constructs in which the cap mediating another reporter expression.

Conclusion: Our findings demonstrate the version of the EMCV IRES that is provided in many commercial vectors is relatively less efficient than cap-dependent translation and provide valuable information regarding the utilization of IRES to facilitate the expression of more than one protein from a transcript.
Materials and methods

Generation of bicistronic reporter constructs

pRES (Clontech, Mountain View, CA, USA), a parental eukaryotic expression vector used for hybrid construction, served as a control plasmid in this study. To generate the mono- or bicistronic reporter constructs pEGFPpRES0, poIRESEGFP, pRlucpRES0, poIRESRluc, pRlucpRESFluc, pFlucpRESRluc, pIL2pRES0, poIRESiIL2, pIL2pRESiIL4, and pIL4pRESiIL2, the EGFp, Rluc, Fluc, IL-2, and IL-4 reporter gene coding regions were cloned into the pRES vector using the appropriate restriction enzyme sites. In the nomination of constructs, the symbol, φ, indicates the multiple cloning sites without gene inserted. The pRES used in this study is a “crippled” IRES in order to reduce IRES expression and increase expression of the upstream cistron using an inverted fluorescence microscope (Nikon, Tokyo, Japan). One μg plasmid DNA was used for transfection.

Cell culture

The 3T3 mouse embryonic fibroblast cell line was maintained in RPMI medium containing penicillin, streptomycin, and 10% (v/v) heat-inactivated fetal bovine serum (FBS) (Invitrogen, Carlsbad, CA, USA) and cultured under 5% CO2-95% air at 37 °C.

Transient transfection

One day before transfection, 3T3 cells (1–3 x 10⁵ cells/well) were seeded in a 6-well plate in 3 mL of growth medium. For each transfection sample, appropriate quantities (1 μg, in most experiments) of DNA and Lipofectamine™ 2000 (Invitrogen) were diluted in 100 μL of Opti-MEM (Invitrogen) and incubated for 5 min at room temperature. Next, both materials were mixed gently (200 μL total volume) and incubated at room temperature for 30 min. Then, the DNA-Lipofectamine mixture was added to the cells. After 800 μL of Opti-MEM was added to each well, the cells were then incubated at 37 °C under 5% CO2-95% air for 6 h. An additional 3 mL of RPMI-1640-10% (v/v) FBS was added to each well, and the transfected cells were cultured at 37 °C in a CO2 incubator for a further 48 h to allow transgene expression.

Fluorescence microscopy analysis

EGFP fluorescence images of transfected cells were obtained using an inverted fluorescence microscope (Nikon, Tokyo, Japan).

Real-time PCR analysis

Transgene expression (EGFP) was also analyzed by real-time PCR. At 48 h after transfection, the cells were harvested by trypsinization, washed, and resuspended in PBS. RNA was isolated using the TRIzol method (Invitrogen) according to the manufacturer's instructions. Total RNA (5 μg) was reverse transcribed using random primers in a final volume of 75 μL (Reverse Transcription System; Promega, Madison, WI). Real-time PCR was then performed, and the sequences of the primers used were 5'- CGACGCACAATCAAGA and 3'-TCTATCATGGCCGACAAAG. The mRNAs encoding β-actin or GAPDH were served as internal controls, and their sequences of the primers used were listed as followings: β-Actin 5'-GAA ATC GTG CGT GAC ATT AAG, 3'-CTA GAA GCT TTT TGC GCG TGG ACG ATG GAG GGG CC; GAPDH: 5'- AAG GTC GGT GTG AAC GGA TT, 3'-TGG TGG TGC AGG ATG CAT TG.

Measurement of Rluc and Fluc production by dual-luciferase assays

On the indicated day of culture, the growth medium was removed from the cultured cells, and a sufficient volume of 1x PBS was applied to wash the surface of the culture vessel. Passive lysis buffer was dispersed into each culture well (0.5 mL/well), and the culture plates were placed on a platform with gentle rocking at room temperature for 15 min. The lysate was transferred into an Eppendorf tube to determine the firefly and Renilla luciferase activities with the dual luciferase assay system (Promega). The cell lysate was transferred into a luminescence tube containing LAR II and mixed by pipetting two or three times. The tubes were placed in the luminometer (GloMax 20/20 single-tube luminometer; Promega, the linear dynamic range more than 8 logs), and reading was initiated. Then, the Stop & Glo® reagent was added into the same luminometer tube, pipetted two or three times to mix, and a second reading was obtained.

Measurement of IL-2 and IL-4 production by ELISA

The method has been described in detail elsewhere [34,35]. Briefly, on the indicated day of culture, cell-free supernatants were harvested and immediately assayed for IL-2 using an ELISA detection system. The microtiter plates (Maxisorb, Nunc, Denmark) were first coated with an anti-IL-2 (or IL-4) capture mAb (Pharmingen, San Diego, CA, USA) at a concentration of 2 μg/mL in bicarbonate buffer (0.79 g Na2CO3 and 1.46 g NaHCO3 in 500 mL distilled water, pH 9.6) and incubated overnight at 4 °C. After washing with washing buffer (PBS with 0.1% [v/v] Tween 20), the plates were blocked with 1% bovine serum albumin (BSA) in PBS for 1 h at 37 °C. Next, standards (at initial concentrations of 5 ng/mL in 1% [w/v] BSA in PBS), were doubly diluted in a plate (Maxisorb, Nunc, Denmark), and the samples (i.e., cell culture supernatants) were added to these dilutions. The mixtures were then incubated at room temperature for 2 h. After this step, and before all subsequent steps, the washing steps were performed with a minimum of four changes of washing buffer. Bound IL-2 (or IL-4) was detected by incubation with a biotinylated monoclonal antibody (Pharmingen) (0.5 μg/mL in 1% [w/v] BSA in PBS) for 1 h at room temperature followed by incubation with a 1:200 dilution of avidin peroxidase (R&D Systems Inc., Minneapolis, MN, USA) for 30 min at room temperature. The reaction was developed by the addition of an enzyme substrate solution.
consisting of 10 µg/mL 3,3′,5,5′-tetramethyl-benzidine (TMB) (Biosource, Carlsbad, CA, USA) in phosphate/citrate buffer (0.92 g Na₂HPO₄·2H₂O and 0.51 g citric acid in 100 mL dH₂O, pH 5.0) containing 0.3–30% (v/v) hydrogen peroxide (H₂O₂) (Pharmingen, San Diego, CA) for 5–20 min. The reaction was terminated after 10–20 min by the addition of 2 M sulfuric acid (H₂SO₄) (Sigma, St. Louis, MO, USA). The absorbance was measured at 450 nm using a 96-well plate reader (Molecular Devices, Sunnyvale, CA). The levels of cytokines were estimated by regression analysis from standard curves constructed using recombinant cytokines; the measurements were performed in duplicate. Less than 10% difference between duplicates was noted.

Statistics and presentation of results

Statistically significant differences between groups were determined using an unpaired Student’s t-test. In all cases, the confidence level was set at 5%; thus, a p-value of less than 0.05 was considered to represent a significant difference.
Results

The attenuated EMCV IRES in commercial vectors has been frequently used to co-express dual proteins from a single transcript. However, the translational efficiency of cistron downstream of the EMCV IRES element in mammalian cells has not been clearly determined. Here, we show that gene positioning downstream of the commonly used EMCV IRES could result in a major difference in protein production. To precisely evaluate the efficacy of IRES-mediated translation in mammalian cells, we generated several mono- and bicistronic reporter constructs in which single genes (EGFP, Rluc, or IL-2 mRNA only) or dual genes (Rluc and Fluc as well as IL-2 and IL-4) were placed under transcriptional control of the cytomegalovirus (CMV) promoter. In general, the translation of the upstream cistron or the downstream cistron was controlled by either cap-dependent or IRES-mediated machinery, respectively.

Initially, to determine whether EMCV IRES-mediated translation from an attenuated EMCV IRES is less efficient than cap-dependent translation, we designed two reporter constructs in which the EGFP gene was either cloned upstream (pEGFPIRES_φ) or downstream (pφIRESEGFP) of the IRES. These two constructs were transfected into 3T3 mouse embryonic fibroblast cells. The cells were harvested at 48 h post-transfection, and EGFP expression was analyzed. [Fig. 2] shows that many cells displayed strong EGFP fluorescence after transfection with pEGFPIRES_φ, whereas only a small amount of weakly fluorescent cells could be identified in the pφIRESEGFP-transfected group. RT-PCR analysis was carried out to determine the efficiency difference between transfection and transcription. As shown in [Fig. 3], only small differences were observed in the EGFP mRNA levels. Similar results were obtained with two additional mammalian cell lines, CT26 murine colon cancer cells and P815 murine mastocytoma cells (data not shown), indicating that the difference was not due to tissue tropism. These results suggest that IRES-mediated EGFP translation (pφIRESEGFP) is less efficient than cap-dependent translation (pEGFPIRES_φ).

To precisely quantify the translational efficacy mediated by the IRES element, we first performed systematic comparisons between 3T3 cells transfected with several other mono- and bi-cistronic reporter constructs, including pFlucIRESE_φ, pφIRESEFluc, pFlucIRESRluc, and pFlucIRESFLuc, as the production of Fluc or Rluc could be quantitatively measured by dual luciferase assay analysis. At 48 h post-transfection with the indicated constructs, the cells were harvested for dual luciferase assays. Significantly lower levels of Fluc were obtained when the Fluc gene was cloned downstream of the IRES (pφIRESEFluc) versus upstream of the IRES (pFlucIRESE_φ) [Fig. 4A]. The mean difference in Fluc production between pFlucIRESE_φand pφIRESEFluc was 4.2-fold (n = 3, [Fig. 4B]). In contrast, the mean difference in Fluc production between pφIRESEFluc and pRlucIRESEFluc was approximately 0.5 fold (n = 3, [Fig. 4C]), suggesting that IRES-mediated translation from an attenuated EMCV IRES is less efficient than cap-dependent translation.
Next, the IL-2 and IL-4 genes were utilized for efficacy quantification. Several other mono- and bicistronic reporter constructs were developed, including p<i>IL2</i>IRES<i>IL4</i>, p<i>4</i>IRES<i>IL2</i>, p<i>IL2</i>IRES<i>IL4</i>, and p<i>IL4</i>IRES<i>IL2</i>. Systematic comparisons were conducted as described above. At 48 h post-transfection with the indicated constructs, the cell culture supernatants were harvested, and the production of the IL-2 or IL-4 cytokines was quantitatively measured by ELISA [Fig. 5]. Significantly lower levels of IL2 were obtained when the IL2 gene was cloned downstream of the IRES (p<i>4</i>IRES<i>IL2</i>) versus upstream of the IRES (p<i>IL2</i>IRES<i>4</i>) [Fig. 5A]. The mean difference in IL2 production between p<i>4</i>IRES<i>IL2</i> and p<i>IL2</i>IRES<i>4</i> was 36.7-fold (n = 5, [Fig. 5B]). The mean difference in IL2 production between p<i>IL2</i>IRES<i>4</i> and p<i>IL2</i>IRES<i>IL4</i> was approximately 1 (n = 4, [Fig. 5A]). Taken together, the difference of IRES-mediated translation by cytokines as reporter genes was 36.7-fold, while the difference by luciferases was 14.2-fold, revealing that the sensitivity of cytokines could be 2.5-fold greater than that of luciferase. It suggests that IRES-mediated translation from an attenuated EMCV IRES is less efficient than cap-dependent translation.

![Fig. 4](image1.png)

Fig. 4 Comparison of Rluc protein expression from different constructs in mammalian cells. 3T3 cells were transfected with the indicated mono- and bi-cistronic constructs by the liposome method. (A) Fluorescence activity generated in p<i>Rluc</i>IRES<i>4</i>, p<i>Rluc</i>IRES<i>Fluc</i>, p<i>4</i>IRES<i>Rluc</i>, p<i>Rluc</i>IRES<i>Fluc</i>, and p<i>Fluc</i>IRES<i>Rluc</i>. (B) Ratios of Rluc expression by p<i>Rluc</i>IRES<i>4</i>, p<i>Rluc</i>IRES<i>Fluc</i>, and p<i>Fluc</i>IRES<i>Rluc</i>. (C) Ratios of Rluc expression by p<i>4</i>IRES<i>Rluc</i> and p<i>Fluc</i>IRES<i>Rluc</i> The cells from cultures were harvested at 48 h post-transfection, and Rluc was measured by dual luciferase assay. (*: p < 0.05, **: p < 0.01, ***: p < 0.001).

![Fig. 5](image2.png)

Fig. 5 Comparison of IL-2 protein expression from different constructs in mammalian cells. 3T3 cells were transfected with the indicated mono- and bi-cistronic constructs by the liposome method. (A) IL2 generated in p<i>Rluc</i>IRES<i>4</i>, p<i>IL2</i>IRES<i>4</i>, p<i>4</i>IRES<i>IL2</i>, p<i>IL2</i>IRES<i>IL4</i>, and p<i>IL4</i>IRES<i>IL2</i>. (B) Ratios of IL-2 expression by p<i>IL2</i>IRES<i>4</i>, p<i>4</i>IRES<i>IL2</i>, and p<i>IL2</i>IRES<i>IL4</i>. The cell culture media were harvested at 48 h post-transfection, and IL-2 was measured in the supernatants by ELISA. (*: p < 0.05, **: p < 0.01).
It was also noted that as compared with the pGIRESIL2 construct, a markedly reduced level of IL-2 production was observed when the IL-2 gene was cloned downstream of the IRES and the upstream cistron was the IL-4 gene (pIL4IRESil2). The mean difference was approximately 3,002-fold (n = 4). Moreover, when the level of IL-2 produced from pIL4IRESil2 was compared to the level produced from pIL2IRESil2, the mean difference was tremendously increased to more than 30,000-fold (n = 4), indicating that IRES-mediated protein translation may still be affected by cap-dependent translation.

It may be arguable that the translational efficacy of low molecular weight proteins was investigated in current study. Thus, we also examined the translational efficacy of various mono- and bi-cistronic reporter constructs encoding the ~103-kDa Band 3 protein (the erythrocyte anion channel protein) [36] and/or the ~30-kDa Fms-like tyrosine kinase 3 ligand protein (Flt3L). The constructs of Flt3L located upstream of the IRES were also tested in 3T3 cells, and the Flt3L expression is higher in the vector without gene located downstream of the IRES. The results were highly coincident [Fig. 6].

Discussion

Zhou and colleagues [37] utilized various fluorescent reporter proteins as the downstream cistron and the target gene as the upstream cistron to screen for activities of various IRES elements in mammalian cells. However, this system was limited by the fact that the translation efficiency mediated by individual IRES elements was relatively low, leading to inaccurate evaluation. To circumvent this problem, these authors utilized a positive feedback vector expressing a bicistronic mRNA with a reporter protein as the first cistron [37]. Additionally, there were studies utilized bicistronic retroviral vectors, in which IRES elements were used to facilitate co-expression of the dominant drug-selectable marker together with the therapeutic gene in a single bicistronic mRNA [38]. Their results also revealed a substantial reduction (1–1.5 log) of gene expression with the co-expression construct in the retroviral infected cells. Presumably, such reduction was due to the low level of IRES-mediated target gene translation.

Our current study was mainly designed to provide real examples and show the precise differences (such as 30 or 300-fold lower) for translational efficiency dependent upon target gene locations in the commonly available bicistronic expression vector containing EMCV IRES. Besides the dual-luciferase reporters, we had also utilized the low molecular weight proteins IL-2 and IL-4, which can be easily qualified precisely by immunoassays. Indeed, using this system, if the upstream cistron was absent, we found lower levels of protein production were obtained when the reporter gene was cloned into the downstream locus of EMCV IRES (~36.7-fold for IL-2 reporter). Surprisingly, a markedly reduced level of protein production was observed when the reporter gene was cloned downstream locus of EMCV IRES while the upstream cistron was present (~3002-fold for IL-2 reporter) suggesting EMCV IRES-mediated translation is relatively less efficient. Such extremely huge differences might directly affect the outcome when we apply the bicistronic vectors for gene therapy or other biomedical applications.

It may be argued why bother to use the above IL-2 and IL-4 but not only the commonly available duo-luciferase reporter system. In fact, more than two groups have published the lower translational efficiency of IRES-mediated translation as we mentioned earlier. However, people also noted and might question that the Fluc reading appeared to be usually higher than that of Rluc in the experiments, which was also found in our results. Indeed, a group had already addressed the question [39]. They consider that the firefly luciferase might have its own defect due to the fact that it is localized in small vesicular structures called peroxisomes in vivo such as in yeast, mammalian, and plant cells as in the firefly lantern [40]. Due to the presence of a peroxisomal translocation, signal is located at the C-terminal domain of the molecule and such peroxisomal localization appear to form as an additional membrane barrier.

In summary, here we provide the evidence that the gene expression of the commonly available vectors containing the EMCV IRES is relatively less efficient than cap-dependent translation, and 1.5-fold–3000-fold differences may occur if the locations of target genes vary. The data demonstrated from the study would be with great value regarding the utilization of IRES to facilitate the expression of more than one protein from a transcript, and appear to be beneficial for the applications of the bicistronic expression vectors.

Conclusion

Internal ribosome entry site (IRES) elements have been widely used to allow coexpressing more than one protein from a single transcript which offers a high degree of flexibility in gene therapy applications. However, compared with cap-dependent translation of the upstream cistron, IRES-mediated translation of the downstream cistron appears less efficient. In the current study, we generated various bicistronic reporter constructs which allow quantitatively evaluating the efficacy of IRES-mediated translation in mammalian cells. The study provide real examples and valuable
information for the utilization of IRES to facilitate the efficiency and versatility of gene therapy applications.

Conflicts of interest

The authors have declared no conflicts of interest.

Acknowledgements

This study was financially supported by the Chang Gung Memorial Hospital Grants [CMRPD1HO621, BMRP440] and Ministry of Science and Technology [MOST 105-2221-E-131-035]. We gratefully acknowledge the support from Instrument Center of Chang Gung University, and the technical and editing assistance of Ms. Yi-Jing Lin, Tzu-Ying Liu and Lilian Chung.

REFERENCES

[1] Voltz E, Gronemeyer H. A new era of cancer therapy: cancer cell targeted therapies are coming of age. Int J Biochem Cell Biol 2008;40:1–8.
[2] Fischer A, Cavazzana-Calvo M. Gene therapy of inherited diseases. Lancet 2008;371:2044–7.
[3] Edelstein ML, Abedi MR, Wixon J, Edelstein RM. Gene therapy clinical trials worldwide 1989-2004-an overview. J Gene Med 2004;6:597–602.
[4] Thomas CE, Ehhardt A, Kay MA. Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet 2003;4:346–58.
[5] Martinez-Salas E. Internal ribosome entry site biology and its use in expression vectors. Curr Opin Biotechnol 1999;10:458–64.
[6] Delluc-Claviéres A, Le Bec CL, Berghé LD, Conte C, Allo V, Danos O, et al. Efficient gene transfer in skeletal muscle with AAV-derived bicistronic vector using the FGF-1 IRES. Gene Ther 2008;15:1090–8.
[7] Scheidemann F, Therrien JP, Pfützner W. Selectable bicistronic vectors in skin gene therapy. Arch Dermatol Res 2008;300:415–23.
[8] Gray NK, Wickens M. Control of translation initiation in animals. Annu Rev Cell Dev Biol 1998;14:399–458.
[9] Fussenegger M, Moser S, Mazur X, Bailey JE. Autoregulated multicistronic expression vectors provide one-step cloning of regulated product gene expression in mammalian cells. Biotechnol Prog 1997;13:733–40.
[10] Vagner S, Galy B, Pyronnet S, Irresistible IRES. Attracting the translation machinery to internal ribosome entry sites. EMBO Rep 2001;2:893–8.
[11] Hellen CU, Sarnow P. Internal ribosome entry sites in eukaryotic mRNA molecules. Genes Dev 2001;15:1593–612.
[12] Jackson RJ. RNA translation. Picornaviruses break the rules. Nature 1988;334:292–3.
[13] Jang SK, Krausslich HG, Nicklin MJ, Duke GM, Palmenberg AC, Wimmer E. A segment of the S' nontranslated region of encephalomyocarditis virus RNA directs internal entry of ribosomes during in vitro translation. J Virol 1988;62:2636–43.
[14] Bedard KM, Semler BL. Regulation of picornavirus gene expression. Microb Infect 2004;6:702–13.
[15] Pestova TV, KuloProbe VG, Lomakin IB, Filipenko EV, Shatsky IN. Agol VI, et al. Molecular mechanisms of translation initiation in eukaryotes. Proc Natl Acad Sci U S A 2001;98:7029–36.
[16] Tsukiyama-Kohara K, Iizuka N, Kohara M, Nomoto A. Internal ribosome entry site within hepatitis C virus RNA. J Virol 1992;66:1476–83.
[17] Zhou Y, Aran J, Gottesman MM, Pastan I. Co-expression of human adenosine deaminase and multidrug resistance using a bicistronic retroviral vector. Hum Gene Ther 1998;9:287–93.
[18] Brasey A, Lopez-Laterra M, Ohlmann T, Beeren N, Berkhout B, Darlix JL, et al. The leader of human immunodeficiency virus type 1 genomic RNA harbors an internal ribosome entry segment that is active during the G2/M phase of the cell cycle. J Virol 2003;77:3939–49.
[19] Macejak DG, Sarnow P. Internal initiation of translation mediated by the 5V leader of a cellular mRNA. Nature 1991;353:90–4.
[20] Allera-Moreau C, Delluc-Claviéres A, Castano C, Van den Berghé L, Golzio M, Moreau M, et al. Long term expression of bicistronic vector driven by the FGF-1 IRES in mouse muscle. BMC Biotechnol 2007;7:74.
[21] Creancier L, Morello D, Mercier P, Prats AC. Fibroblast growth factor 2 internal ribosome entry site (IRES) activity ex vivo and in transgenic mice reveals a stringent tissue-specific regulation. J Cell Biol 2000;150:275–81.
[22] Spriggs KA, Bushell M, Mitchell SA, Willis AE. Internal ribosome entry segment-mediated translation during apoptosis: the role of IRES-trans-acting factors. Cell Death Differ 2005;12:585–91.
[23] Komar AA, Hatzoglou M. Internal ribosome entry sites in cellular mRNAs: mystery of their existence. J Biol Chem 2005;280:23425–8.
[24] Moser S, Rimann M, Fux C, Schlatter S, Bailey JE, Fussenegger M. Dual-regulated expression technology: a new era in the adjustment of heterologous gene expression in mammalian cells. J Gene Med 2001;3:529–49.
[25] Rao W, Klimstra DS, Fisher GH, Varmus HE. Use of avian retroviral vectors to introduce transcriptional regulators into mammalian cells for analyses of tumor maintenance. Proc Natl Acad Sci U S A 2003;100:8764–9.
[26] Weber W, Fussenegger M. Artificial mammalian gene regulation networks-novel approaches for gene therapy and bioengineering. J Biotechnol 2002;98:161–87.
[27] Créancier L, Mercier P, Prats AC, Morello D. c-myc Internal ribosome entry site activity is developmentally controlled and subjected to a strong translational repression in adult transgenic mice. Mol Cell Biol 2001;21:1833–40.
[28] Hennescke M, Kwissa M, Metzger K, Oumard A, Kröger A, Schirmeck R, et al. Composition and arrangement of genes define the strength of IRES-driven translation in bicistronic mRNAs. Nucleic Acids Res 2001;29:3327–34.
[29] Baranick BT, Lemp NA, Nagashima J, Ohlmann T, Beerens N, Pao W, Klimstra DS, Fisher GH, Varmus HE. Use of avian retroviral vectors to introduce transcriptional regulators into mammalian cells for analyses of tumor maintenance. Proc Natl Acad Sci U S A 2003;100:8764–9.
[30] Weber W, Fussenegger M. Artificial mammalian gene regulation networks-novel approaches for gene therapy and bioengineering. J Biotechnol 2002;98:161–87.
[31] Créancier L, Mercier P, Prats AC, Morello D. c-myc Internal ribosome entry site activity is developmentally controlled and subjected to a strong translational repression in adult transgenic mice. Mol Cell Biol 2001;21:1833–40.
[32] Hennescke M, Kwissa M, Metzger K, Oumard A, Körger A, Schirmeck R, et al. Composition and arrangement of genes define the strength of IRES-driven translation in bicistronic mRNAs. Nucleic Acids Res 2001;29:3327–34.
[33] Baranick BT, Lemp NA, Nagashima J, Hiraoka K, Kasahara N, Macejak DG, Sarnow P. Internal ribosome entry site activity is developmentally controlled and subjected to a strong translational repression in adult transgenic mice. Mol Cell Biol 2001;21:1833–40.
[34] Hennescke M, Kwissa M, Metzger K, Oumard A, Körger A, Schirmeck R, et al. Composition and arrangement of genes define the strength of IRES-driven translation in bicistronic mRNAs. Nucleic Acids Res 2001;29:3327–34.
[35] Baranick BT, Lemp NA, Nagashima J, Hiraoka K, Kasahara N, Macejak DG, Sarnow P. Internal ribosome entry site activity is developmentally controlled and subjected to a strong translational repression in adult transgenic mice. Mol Cell Biol 2001;21:1833–40.
[36] Hennescke M, Kwissa M, Metzger K, Oumard A, Körger A, Schirmeck R, et al. Composition and arrangement of genes define the strength of IRES-driven translation in bicistronic mRNAs. Nucleic Acids Res 2001;29:3327–34.
[37] Baranick BT, Lemp NA, Nagashima J, Hiraoka K, Kasahara N, Macejak DG, Sarnow P. Internal ribosome entry site activity is developmentally controlled and subjected to a strong translational repression in adult transgenic mice. Mol Cell Biol 2001;21:1833–40.
[38] Hennescke M, Kwissa M, Metzger K, Oumard A, Körger A, Schirmeck R, et al. Composition and arrangement of genes define the strength of IRES-driven translation in bicistronic mRNAs. Nucleic Acids Res 2001;29:3327–34.
[39] Baranick BT, Lemp NA, Nagashima J, Hiraoka K, Kasahara N, Macejak DG, Sarnow P. Internal ribosome entry site activity is developmentally controlled and subjected to a strong translational repression in adult transgenic mice. Mol Cell Biol 2001;21:1833–40.
[34] Shen CR, Youssef AR, Devine A, Bowie L, Hall AM, Wraith DC, et al. Peptides containing a dominant T-cell epitope from red cell Band 3 have in vivo immunomodulatory properties in NZB mice with autoimmune hemolytic anemia. Blood 2003;102:3800–6.

[35] Shen CR, Mazza G, Perry FE, Beech JT, Thompson SJ, Corato A, et al. T-helper 1 dominated responses to erythrocyte Band 3 in NZB mice. Immunology 1996;89:195–9.

[36] Hall AM, Ward FJ, Shen CR, Rowe C, Bowie L, Devine A, et al. Deletion of the dominant autoantigen in NZB mice with autoimmune hemolytic anemia: effects on autoantibody and T-helper responses. Blood 2007;110:4511–7.

[37] Zhou W, Edelman GM, Mauro VP. A positive feedback vector for identification of nucleotide sequences that enhance translation. Proc Natl Acad Sci USA 2005;102:6273–8.

[38] Sugimoto Y, Aksentijevich I, Murray GJ, Brady RO, Pastan I, Gottesman MM. Retroviral coexpression of a multidrug resistance gene (MDR1) and human alpha-galactosidase A for gene therapy of Fabry disease. Hum Gene Ther 1995;6:905–15.

[39] Eun HM. Marker/reporter enzymes In: Eun HM. Enzymology Primer for Recombinant DNA Technology, Burlington: Elsevier; 1996, p. 567–645.

[40] Keller GA, Gould S, Deluca M, Subramani S. Firefly luciferase is targeted to peroxisomes in mammalian cells. Proc Natl Acad Sci USA 1987;84:3264–8.