HIGH-ENERGY GAMMA-RAY OBSERVATIONS OF W COMAE WITH STACEE

R. A. Scalzo,1 L. M. Boone,2,10 D. Bramel,3 J. Carson,4 C. E. Covault,5 P. Fortin,6 G. Gauthier,6 D. M. Gingrich,7,8 D. Hanna,8 A. Jarvis,8 J. Kildea,5 T. Lindner,9 C. Mueller,5 R. Mukherjee,3 R. A. Ong,6 K. J. Ragan,6 D. A. Williams,6 and J. Zweerink4
(The STACEE Collaboration)

ABSTRACT

We report on observations of the blazar W Comae (ON+231) with the Solar Tower Atmospheric Cherenkov Effect Experiment (STACEE), a wavefront-sampling atmospheric Cherenkov telescope, in the spring of 2003. In a data set comprising 10.5 hours of ON-source observing time, we detect no significant emission from W Comae. We discuss the implications of our results in the context of the composition of the relativistic jet in W Comae, examining both leptonic and hadronic models for the jet. We derive 95% confidence level upper limits on the flux at the level of 1.5–3.5 × 10^{-10} cm^{-2} s^{-1} above 100 GeV for the leptonic models, or 0.5–1.1 × 10^{-10} cm^{-2} s^{-1} above 150 GeV for the hadronic models.

Subject headings: gamma-rays: observations — BL Lacertae objects: individual (W Comae) — galaxies: active

1. INTRODUCTION

The current catalog of extragalactic TeV gamma-ray sources consists of blazars, which are among the brightest and most rapidly variable objects in the sky. The unusual observational properties of blazars are usually explained in terms of relativistic bulk motion of the emitting region in a jet parallel to the line of sight (Urry & Padovani 1995). The continuum emission of blazars is typically nonthermal and contains two broad peaks, one at lower energies (radio to X-ray) and one at higher energies (keV to TeV). Although the low-energy peak is generally assumed to result from synchrotron radiation, and subsequently upscatter the synchrotron photons to gamma-ray energies (Bloom & Marscher 1996), the high-energy peak is attributed to photomass (Mannheim 1995; Aharonian 2000; Aharonian 2001), so the intrinsic emission spectrum of W Comae should be directly observable at energies lower than this.

In “leptonic” jet models, the high-energy radiation is produced by inverse Compton scattering of low-energy photons from an axis of electrons and/or positrons; these models are favored for the well-studied blazars Mrk 421 and 501 (Coppi & Aharonian 1999; Konopelko et al. 2003). In the synchrotron self-Compton model (SSC), a single population of electrons and/or positrons produce the target photon field via synchrotron radiation, and subsequently upscatter the synchrotron photons to gamma-ray energies (Bloom & Marscher 1996). There may also be an external Compton (EC) component of target photons from the accretion disk or ambient medium (Dermer, Schlickeiser, & Mastichiadis 1992; Sikora, Begelman, & Rees 1994). Alternatively, in “hadronic” jet models, protons play a central role. In hadronic models the high-energy radiation is attributed to photomass processes (Mannheim 1993) or synchrotron radiation from protons or muons, as in the synchrotron proton blazar (SPB) model (Mücke & Protheroe 2000; Aharonian 2006). Mücke et al. 2003. The study of hadronic models was originally motivated by the hypothesis that the highest-energy cosmic rays are produced in blazar jets (Mannheim 1995).

The BL Lac object W Comae (ON+231) may provide an excellent test case for hadronic jet models (Boettcher, Mukherjee, & Reimer 2002). The transition between the low-energy and high-energy peaks in the continuum of W Comae appears clearly in X-ray data taken by the BeppoSAX satellite (Tagliaferri et al. 2000). These high-quality observations of the transition region place tight constraints on leptonic models, requiring the predicted gamma-ray emission to fall off sharply above 100 GeV. In contrast, hadronic models may allow for significant emission above 100 GeV. Observations by the EGRET detector aboard the Compton Gamma Ray Observatory show a hard power law spectrum (photon spectral index $\alpha = 1.73 \pm 0.18$) extending up to about 10 GeV with no sign of any cutoff (Hartman et al. 1999). Yet the object has not been detected at energies above 300 GeV, despite repeated observation by the Whipple 10-m instrument (Hoban et al. 2003). At a redshift of 0.1, absorption of gamma rays in this energy range by pair production $\gamma\gamma \rightarrow e^+e^-$ against the extragalactic background light (EBL) may be significant, but only at energies above about 500 GeV (Primack et al. 1999; 2001; Malkan & Stecker 2001; Aharonian 2001), so the intrinsic emission spectrum of W Comae should be directly observable at energies lower than this.
2. THE STACEE DETECTOR

STACEE is an atmospheric Cherenkov telescope which uses as its primary optic an array of solar mirrors (heliostats) at the National Solar Thermal Test Facility (NSTTF) in Albuquerque, NM. STACEE uses the independently steerable heliostats to collect Cherenkov light from extensive air showers initiated by astrophysical gamma rays. Secondary mirrors are used to image the heliostat field onto a camera of photomultiplier tubes (PMTs), producing a one-to-one mapping between heliostats and PMTs. Optical concentrators based on the DTIRC design [Ning, Winston, & O’Gallagher 1987] widen the aperture of each PMT from 5 cm to 11 cm and restrict its field of view to reduce the number of night sky background (NSB) photons detected. High-speed electronics measure the charge and relative arrival times of the PMT pulses, and impose a coincidence trigger. The STACEE detector is thus a wavefront-sampling detector, measuring the intensity and arrival time of the narrow wavefront of Cherenkov light at different spots on the ground. These measurements enable the offline reconstruction of the primary energy and shower arrival direction.

STACEE achieves a low energy threshold (∼ 100 GeV) for the detection of gamma rays (compared with contemporary single-dish imaging Cherenkov telescopes) primarily because of the extremely large available mirror area (A ∼ 10^3 m^2); the energy threshold scales approximately as A^{-1/2} [Weekes 1988]. Other instruments using a similar solar tower design include the Cherenkov Low Energy Sampling and Timing Experiment (CELESTE) in Themis, France [de Naurois et al. 2002], and the Solar Two detector in Barstow, CA [Tripathi 2002]. These are the only experiments currently operating in the Northern Hemisphere which have their peak sensitivity to gamma rays below 300 GeV.

STACEE has undergone a series of upgrades and improvements over its lifetime. The prototype experiment, called STACEE-32, used 32 heliostats with a total mirror area of 1200 m^2 [Hanna et al. 2003], and successfully detected gamma-ray emission from the Crab Nebula at a peak energy of 190 GeV [Oser et al. 2001]. An upgraded detector called STACEE-48 used an additional 16 heliostats (for a total of 48) and employed improved high-speed programmable delay and trigger electronics [Martin & Ragan 2000]; it detected gamma-ray emission from Mrk 421 during a period of intense flaring activity [Boone et al. 2002], as part of a multi-wavelength variability study. The final stage of construction, called STACEE-64, was completed in the summer of 2001. An additional 16 heliostats were instrumented, for a total of 64 heliostats with over 2300 m^2 of mirror area, filling in the geographical front and center of the heliostat field. The charge-integrating ADCs used by prior versions of STACEE were also removed, and replaced with waveform digitizers or “flash ADCs” (FADCs). A brief overview of these improvements follows; additional detail is available elsewhere [Scalzo 2004].

2.1. Optics upgrades

Figure 1 shows the NSTTF heliostat field, with the STACEE heliostats indicated. The heliostats are chosen to provide the most uniform ground coverage possible, subject to constraints imposed by the crowding of heliostat images (and PMT apertures) in the focal plane of each secondary mirror. In addition to the three secondaries (1.9 m diameter) used by STACEE-48, two additional secondaries (1.1 m diameter) were built for STACEE-64 to allow use of additional heliostats at the front of the field. A set of 16 additional camera elements (PMT + DTIRC + housing) were instrumented for the new heliostats. All 64 camera elements were carefully calibrated in the lab and redistributed among the cameras according to measured differences in quantum efficiencies, in order to equalize the optical throughput on all detector channels.

Improved understanding of the heliostat optics via Monte Carlo simulations and measurements of the heliostat point-spread function using a CCD camera prompted adjustments to the optical elements. Each STACEE heliostat has 25 mirror facets which can be independently focused and aligned [Hanna et al. 2002]; the point spread function is periodically evaluated and adjustments made, if necessary, using a laser look-back method. Prior to the W Comae observing campaign, the facets on many heliostats were re-adjusted to fix the overall optical axis within the heliostat body frame to a standard position, thereby improving pointing accuracy. The absolute pointing of each heliostat was calibrated to an accuracy of 0.05° using drift scans of bright stars.

2.2. Trigger

STACEE uses a two-level coincidence trigger described in detail in [Martin & Ragan 2000]. PMT camera elements are grouped into subclusters of eight PMTs each. The signal from each PMT is AC-coupled, amplified, and discriminated before entering the subcluster trigger electronics. The coincidence trigger accounts for channel-to-channel delays among the discriminated PMT signals, which arise from the geometry of the shower wavefront and the differences in propagation times from different parts of the heliostat field; the programmed delays are accurate to 1 ns. A coincidence test among delayed PMT signals is then made at the subcluster level, and a further coincidence among subclusters is required to trigger event readout. The number of coincident PMTs in a subclus-
ter, and the number of coincident subclusters, are chosen to optimize the quality factor for the rejection of hadronic air showers according to Monte Carlo simulations. The discriminator threshold is then set at a level which makes the overall event trigger rate from chance coincidences of pulses due to fluctuations of NSB photons negligible (less than 0.2 min\(^{-1}\)).

The STACEE-64 trigger topology is shown in Figure[1] For the W Comae observations, the discriminator threshold was set to 140 mV (about 5.5 photoelectrons); five out of eight PMTs in a subcluster were required to cross threshold within a narrow coincidence window to generate a subcluster trigger. The precise width of this coincidence window as applied to a given series of pulses varies between 8 and 24 ns due to the implementation of the trigger logic (see [Martin & Ragan 2000]; the mean width for a two-channel coincidence is 16 ns. Five out of eight subcluster triggers within a window of 16 ns were necessary to trigger event readout.

2.3. FADCs

The FADCs represent a major upgrade to the STACEE experiment. Access to the full digitized PMT waveform allows not only more accurate measurements of the timing and intensity of the wavefront, but also measurement of charge-timing correlations, such as the distribution of Cherenkov photon arrival times at each heliostat. Various new methods which use FADC data to reject hadronic events are currently under study by the STACEE collaboration [Scalzo et al. 2003; Zweerink et al. 2003]. The FADCs are also routinely used to calibrate and monitor the gains of the STACEE PMTs using a custom-designed laser calibration system [Hanna & Mukherjee 2001].

The FADCs used by STACEE-64 are a commercial system produced by Acqiris, Inc. The system comes in modular pieces, with four channels per board. Up to six boards (24 channels) fit into a special crate, which runs the Linux operating system. A real-time Linux driver for the system was developed by our group. Each FADC channel samples at 1 GS/s with a dynamic range of 1 V during normal astronomical observations. A sampled PMT signal from an actual Cherenkov event is shown in Figure[2]. The zero points of the FADC inputs are calibrated to a precision of 1 mV RMS, and the channel-to-channel gains of the system are equalized to within 0.5%.

In the 2001–2002 observing season, 32 FADC channels were instrumented, each sample the PMT from two PMTs, chosen so that the incoming Cherenkov signals would be well-separated in time. By the 2002-2003 observing season, 64 FADC channels were instrumented so that each FADC sampled the signal from exactly one PMT.

3. OBSERVATIONS AND QUALITY CUTS

STACEE-64 was used to observe W Comae in the spring of 2003, from late March to early June. To maximize sensitivity and robustness to systematic effects, STACEE operates in an “ON-OFF” integration mode [Oser et al. 2001]. In ON-OFF observation, each gamma-ray source is assigned another region of the sky at the same declination which contains no known gamma-ray source. The two regions are usually separated by 30 minutes in right ascension. STACEE then tracks the OFF region immediately before or after the ON region, so that the same range of azimuth and elevation are observed, and the detection sensitivity (which depends on azimuth and elevation) is matched in both halves of the pair. Thirty-four ON-OFF pairs were taken on W Comae, for a total of 13.5 hours of ON-source observing time.

Several quality cuts were then imposed on the data set, as described below. These quality cuts are to be understood as “pairwise time cuts”, in the sense that if data in a certain time interval during one run are flagged and removed from the data set, then data in the corresponding time interval in the other run of the pair (i.e., spanning the same local horizon coordinates) are also removed.

The control system for the NSTTF heliostats continually records status information which can be used to pinpoint malfunctions on particular heliostats. This status information is logged nightly and merged with the regular STACEE data product. Portions of runs during which any heliostat malfunctioned were flagged and removed from the data set.

As observed in [Boone et al. 2002], the subcluster trigger rates are very sensitive to fluctuations in sky conditions, since they vary as a high power of the discriminator rates on PMTs within the cluster, which in turn are dominated by fluctuations of NSB photons. Large deviations of the subcluster trigger rates from a smooth linear trend have been seen to correlate strongly with unstable weather conditions. After heliostat cuts, an iterative procedure was used to identify and flag affected portions of the data. Each pair was divided into 30-s time bins, and a least-squares fit to the time-averaged subcluster rates performed repeatedly, excluding outliers beyond a certain tolerance at each iteration. In order for a bin to merit exclusion from the data set, deviations in the rates had to appear for at least four out of eight subclusters. After undergoing this process, if a pair of data had less than a minute of data remaining, this pair was simply excluded from further analysis.

Additionally, some data were removed because of malfunctions in the data acquisition program resulting in the loss or corruption of FADC data, which is needed for the final analysis (see below). About 2% of the original data set was removed for this reason.

Finally, even though the pairwise time cuts equalize the observing times in the ON-source and OFF-source data sets, a livetime correction is necessary. The time required for the data acquisition software to read out each triggered event cre-
ates dead time within the observing intervals, which is rate-dependent and measured electronically by the detector as the data are acquired.

After all quality cuts, a total of 10.5 hours of ON-source observing time remained, distributed among 32 ON-OFF pairs (see Table I). Using the Li & Ma (1983) expression for the significance gives a (raw) positive significance of 4.6 standard deviations, at a livetime-corrected excess event rate of 4.8 ± 1.1 min⁻¹.

4. SKY BRIGHTNESS CORRECTIONS

Before deriving an integral flux or upper limit, it is very important to correct the raw trigger rate for any differences in NSB fluctuations between the ON-source and OFF-source fields. NSB photons entering the detector frequently promote sub-threshold hadronic air showers above the detection threshold, even under the best conditions. The promotion rate increases as the sky brightness increases, so that if the ON-source field is slightly brighter than the OFF-source field, either due to stars or to subtle variations in atmospheric conditions, the resulting excess in the hadronic trigger rate can mimic a gamma-ray excess. Similarly, if the OFF-source field is brighter than the ON-source field, an existing gamma-ray excess may be masked; a net deficit may even appear. An accurate measurement of the true gamma-ray rate therefore requires a correction for the promotion effect.

We have developed three independent methods to correct for the effects of varying levels of NSB light on the coincidence trigger. We find that the excess we see from W Comae is consistent with the promotion of events representing only hadronic showers, with no additional gamma-ray component.

4.1. Direct measurement of the hadronic promotion trend

One method of correcting for field brightness effects was demonstrated by the analysis of the STACEE-48 observations of Mrk 421 (Boone et al. 2002). The excess brightness in the STACEE ON-source field for Mrk 421 was due mainly to a single bright star, HD 95934 (magnitude 6.16 in the B-band). No FADC data were available at that time, but the promotion rate was estimated simply by taking ON-OFF pairs on another star, HIP 80460, with a similar B-band magnitude. The measured promotion rate was then subtracted from the total excess to give the gamma-ray excess.

Similar observations have been made for STACEE-64 and are depicted in Figure 3. Three stars of different magnitudes and suitable declinations (21 Com, ι CrB, and HIP 89279) were selected and observed as if they were gamma-ray sources. The excess rate is plotted as a function of a weighted average current difference,

\[\Delta I = \frac{\sum_{j=1}^{64} w_j \Delta I_j}{\sum_{j=1}^{64} w_j}, \]

where \(\Delta I_j \) is the ON-OFF difference in anode current on PMT \(j \), \(w_j \) is the measured fraction of triggered events in which PMT \(j \) crossed threshold, and the angle brackets denote time-averaging over the entire data set. The promotion trend is well fit \((\chi^2/d.o.f. = 1.04)\) by a straight line with slope \(3.7 \pm 0.3 \text{ min}^{-1} \mu A^{-1}\); it represents a zero-signal baseline for gamma-ray sources observed by STACEE.

The raw rate measurement for W Comae is also shown on the plot, and it is consistent with the promotion trend. Subtracting the expected number of promotion events from the W Comae excess based on its characteristic current leaves a net excess of \(0.2 \pm 1.2 \text{ min}^{-1} \).

The direct measurement of the promotion trend is intuitive and straightforward, and can be used to quickly assess how much of an observed excess is due to promotion. However, the promotion trend as measured reflects the observing season on average, and in particular observing conditions during the star runs, rather than conditions which might pertain for individual runs in the data set for a particular gamma-ray source. An event-by-event, channel-by-channel treatment is therefore more desirable when deriving scientific results such as fluxes or upper limits. A sizable data set of star observations proved quite valuable for testing such brightness correction techniques.

4.2. Software padding using waveform libraries

Another technique, commonly referred to as padding, has been in use in some form by atmospheric Cherenkov telescopes since their inception. For example, in the early days of the Whipple 10-m imaging telescope, NSB conditions were equalized in hardware by using a small LED on the face of each PMT in a feedback loop (Weekes et al. 1983). Later, the equalization was done in software, by adding random Gaussian deviates to the recorded ADC values to mimic fluctuations from increased NSB levels (Cawley 1993), and by then re-imposing an additional selection criterion similar to the hardware trigger. For STACEE, the trigger depends not only on charge distributions but also on relative timing, since the light from an air shower reaches different parts of the detector at different times. Knowledge of the PMT waveforms as provided by the FADCs is therefore necessary to do software padding.

A software padding scheme has been implemented and tested by STACEE as follows: FADC waveforms corresponding to varying NSB levels were sampled from 16 of the PMTs in situ under controlled conditions. The waveforms were characterized by their RMS fluctuations and stored in a library.

Figure 3. Excess event trigger rates as a function of the characteristic current difference for sources observed in 2002-2003 by STACEE-64. Squares: star observations; circle: W Comae. Filled symbols show the raw excess, and open symbols show the excess after the dynamic threshold brightness correction. The lines show the best-fit linear trend constrained to go through the origin (solid) with 68% confidence errors on the slope (dashed), and the zero-rate baseline (dotted).
to be used in padding. In the padding analysis, these library waveforms were added to the waveforms in the observation data set so as to equalize the RMS fluctuations in both runs of a pair, as measured by the 400-ns section of the waveform immediately preceding the event trigger. An offline reimposition of the trigger required five out of eight PMTs in a subcluster, and five out of eight subclusters, to fire within a coincidence window of width 16 ns.

When reimposing the trigger in software, the analysis threshold at which the FADC waveforms are discriminated must be increased over the nominal hardware discrimination threshold. Adding background noise to waveforms from recorded events in a low-noise run equalizes only the probability that an event will pass additional offline cuts relative to an event in the corresponding high-noise run. It is impossible to recover events which would have appeared in the low-noise data set if the additional noise had been physically present at the outset. A subset of the ON-OFF data for ι CrB were used to optimize the offline analysis threshold (see Figure 4). The analysis threshold was set to 150 mV for all FADC channels based on the results of this optimization.

The results of the library padding brightness correction procedure are shown in Table 1. For all three stars and for W Comae, the ON-OFF difference drops from a significant excess in the uncorrected data to an insignificant difference in the corrected data. In particular, the significance drops from 4.6 to 0.9 standard deviations for W Comae.

4.3. Dynamic thresholds

Although software padding has clearly been successful in eliminating the promotion excess, it has the drawback that the software discriminator threshold used to analyze FADC waveforms, and hence the energy threshold for the analysis, must be raised significantly. The desire to maintain a low discriminator threshold in the offline analysis of FADC data formed the motivation for investigating what we call the dynamic thresholds technique.

In the absence of NSB fluctuations, the distribution of pulse heights for pulses within the trigger coincidence window on each channel would depend only on the intensity of Cherenkov light from air showers. The presence of NSB fluctuations on a channel has two effects on the pulse height spectrum. First, the linear superposition of fluctuating background traces upon the underlying pulses from Cherenkov photons produces an additional statistical uncertainty in the pulse height measurement for each event, by changing the pedestal from which the pulse height is measured. NSB fluctuations therefore smear out the underlying air shower pulse height distribution. Second, NSB fluctuations occasionally cross the discriminator threshold within the coincidence window even when no signal pulse is present, resulting in a second component to the pulse height distribution.

The dynamic thresholds technique models both of these effects quantitatively to predict changes in the analysis thresholds. When comparing the ON-source and OFF-source runs of a pair, the run with larger fluctuations in the baseline trace will have a higher promotion rate, and therefore a lower effective discriminator threshold. To compensate for promotion, for each channel the threshold in the noisier run is raised so that the rate of background pulses (NSB plus hadronic Cherenkov light) within the coincidence window, and with pulse height above the analysis threshold, is the same in both halves of the pair. When a coincidence condition among pulses is imposed offline, this prescription should remove a number of events equal to the expected number of promoted hadronic shower events, while retaining sensitivity to any possible gamma-ray excess.

For the OFF-source run, only hadronic air showers and NSB photons contribute to the pulse height distribution, so that the rate of pulses above the analysis threshold can be directly measured. The pulse height distribution for the ON-source run, however, may also contain Cherenkov pulses from gamma-ray air showers. Thus, the form of the ON-source pulse height spectrum without the gamma-ray contribution must be predicted from the measured OFF-source pulse height spectrum and measurements of the NSB fluctuations.

We used a semi-analytic approach to predict the form of the ON-source pulse height spectrum (for details, see Scalzo 2004). Histograms of individual waveform samples were accumulated using the part of each waveform immediately preceding the event trigger. These histograms characterized the distribution of fluctuations, denoted $s_{\text{ON}}(V)$ and $s_{\text{OFF}}(V)$, in the waveform baseline (and hence in the effective discriminator threshold) due to NSB fluctuations in each run. The pulse height distribution for all pulses within the coincidence trigger window for the OFF-source run, denoted $R_{\text{OFF}}(V)$, was also measured. We predicted the form of the ON-source pulse height spectrum $R_{\text{ON}}(V)$ as follows:

1. Fit $s_{\text{OFF}}(V)$, $s_{\text{ON}}(V)$ and $R_{\text{OFF}}(V)$ with smooth analytic forms to interpolate between thresholds.
2. Normalize $s_{\text{OFF}}(V)$ with respect to $R_{\text{OFF}}(V)$ using the measured OFF-source PMT rate (which is dominated by NSB fluctuations) and subtract it from $R_{\text{OFF}}(V)$ to obtain a pulse height spectrum representing only pulses due to hadronic air showers.
3. Deconvolve this hadronic pulse height spectrum by $s_{\text{OFF}}(V)$ to obtain $R_0(V)$, the expected hadronic air shower pulse height spectrum in the absence of NSB fluctuations.
4. Convolve $R_0(V)$ by $s_{\text{ON}}(V)$ to account for the NSB fluctuations in the ON-source run.
5. Normalize $s_{\text{ON}}(V)$ using the measured PMT rate ON-source and add it to the convolution of $R_0(V)$ and $s_{\text{OFF}}(V)$.
\(x_{ON}(V) \) to obtain the predicted form of \(R_{ON}(V) \).

Figure 5 shows an example of the results of this procedure for one STACEE channel in the data set for the star \(\iota \) CrB. A visual inspection of Figure 5 indicates that the threshold on this channel must be increased by 15 mV. This figure represents the worst-case scenario, corresponding to conditions on one of the noisiest channels during observations of the brightest of the three padding stars. For the W Comae observations, the mean increase in the software discriminator threshold is approximately 2 mV, considerably smaller than the 10 mV adjustment on \(\iota \) CrB. A visual inspection of Figure 5 indicates that the threshold on this channel must be increased by 15 mV. This figure represents the worst-case scenario, corresponding to conditions on one of the noisiest channels during observations of the brightest of the three padding stars. For the W Comae observations, the mean increase in the software discriminator threshold is approximately 2 mV, considerably smaller than the 10 mV adjustment on all channels necessary for software padding.

The dynamic thresholds for a run were always calculated after quality cuts to eliminate systematics due to rapidly fluctuating sky conditions. To improve robustness against slow drifts in sky conditions, each 28-minute run was partitioned into three equal segments 560 seconds in length. The statistics within each segment were sufficient to establish the form of the sampled distributions, except in cases where time cuts had already removed most of the segment. If statistics within a segment did not permit a reliable prediction of the threshold adjustments, the segment and its counterpart in the other half of the pair were removed from the data set. Less than 3% of the quality-cut data set was removed in this way; the remaining data set comprised 10.3 hours of ON-source observing.

The results of the dynamic threshold analysis for W Comae, and for the three stars observed by STACEE for promotion studies, are shown in Table 1. As with library padding, no statistically significant excess remains on any of the stars, or on W Comae, after the dynamic threshold technique is applied to the raw data sets.

5. FLUX LIMIT DETERMINATION

To calculate an upper limit on the flux of gamma rays from W Comae, two main ingredients are necessary: an assumption about the shape of the spectrum, and knowledge of the detector response. The latter was produced from Monte Carlo simulations. We use the CORSIKA simulation package (Heck et al. 1999) to model both hadronic and gamma-ray air showers. The detector was modeled using software written by the collaboration, including a full ray-trace of the detector optics and detailed simulations of the discriminators, the delay and trigger systems, and the FADCs. The full simulation chain successfully reproduces important detector-related quantities, such as the discriminator rate on each PMT, the trigger rate of cosmic-ray air shower triggers at zenith, and the increase in the hadronic trigger rate resulting from NSB fluctuations.

The response of the STACEE detector is characterized by the effective area, defined as a function of energy by

\[
A(E) = \int_G P(x, y, E) \, dx \, dy
\]

where \(P(x, y, E) \) is the probability that a gamma-ray air shower with shower core landing at position \((x, y)\) produces an event trigger, and \(G\) is a region on the ground (the \(xy\)-plane) containing all \((x, y)\) for which \(P(x, y, E) \neq 0\). The functional form of the effective area used to obtain the integral flux limits in this paper is an average of the results of simulations done in different regions of the sky, at a declination of \(+28.23^\circ\) spaced in \(10^\circ\) increments in hour angle, each weighted by its exposure in the 2003 data set. The sensitivity to very low-energy air showers is highest for a source at transit. However, about 80% of the 2003 W Comae data were taken between hour angles of \(+20^\circ\) and \(+40^\circ\) (zenith angles between \(10^\circ\) and \(26^\circ\)). The large zenith angles result in a loss of sensitivity for low-energy air showers with respect to that expected for the source at transit. First, the Cherenkov photon density of the shower decreases, and the area of the Cherenkov light pool increases, with increasing zenith angle. Second, off-axis aberrations in the heliostat optics broaden the heliostat point spread function for sky locations far from transit, decreasing the overall optical throughput.

The effective area must also account for any energy dependence introduced by the offline trigger cut used in the analysis. Of the three analysis methods available to correct for field brightness differences, the dynamic threshold technique

Table 1. Results of field brightness corrections

Source	\(t_{ON} \) (s)	\(t_{OFF} \) (s)	\(N_{ON} \)	\(N_{OFF} \)	Sig. (\(\sigma \))
\(\iota \) CrB	11777.4	12064.9	75505	73060	+10.99
21 Com	6053.2	6148.7	32354	31299	+46.16
HIP 89729	19087.2	19191.8	74823	73292	+5.03
W Comae	37767.0	37955.5	219031	217085	+4.60
Library padding:					
\(\iota \) CrB	11777.4	12064.9	52423	53367	+1.02
21 Com	6053.2	6148.7	22859	23269	-0.23
HIP 89729	19087.2	19191.8	53463	53678	+0.24
W Comae	37767.0	37955.5	155722	156006	+0.88
Dynamic thresholds:					
\(\iota \) CrB	11234.1	11508.5	58566	60556	-1.60
21 Com	5522.8	5613.9	25172	25305	+1.25
HIP 89729	18731.9	18853.5	61990	62064	+0.76
W Comae	36982.9	37169.5	182433	182942	+0.67

Note. — Results of field brightness corrections for three stars of varying magnitude, and for W Comae. The live times and raw excesses of events in the ON and OFF runs, and the corresponding significance, are shown for each technique.

\(a \) Integrated live time after quality cuts and dead time correction. Note that these represent equal amounts of actual observing time in the ON and OFF runs, but that differences in the trigger rate may lead to differences in the detector dead time between the ON and OFF runs.

\(b \) Significance in standard deviations (\(\sigma \)). Calculated according to (E & M 1983).
maintains the best sensitivity at low energies, and we use this technique to establish our upper limit.

In previous STACEE publications (Oser et al. 2001; Boone et al. 2002), the energy threshold has been quoted as the energy at which the differential gamma-ray trigger rate (effective area times expected photon flux from the assumed model) reaches a maximum. We continue to do so in this paper, quoting an energy threshold for each assumed model accordingly. We assume that the errors in the absolute throughput calibration of the independent elements (heliosat optics, PMT quantum efficiency, etc.) of the STACEE detector are Gaussian and uncorrelated. These errors may then be added in quadrature to obtain the systematic uncertainty in the absolute energy scale calibration, which we estimate to be 20%. The systematic errors on the energy threshold are determined by rescaling the energy scale at which the effective area is evaluated by ±20%, and calculating the resulting shift in the maximum of the differential gamma-ray trigger rate.

Figure 6 demonstrates the calculation of the energy threshold for an extrapolation of the EGRET power law spectrum for W Comae (α = 1.73 ± 0.18), using the exposure-averaged effective area. Curves representing the low and high values for the spectral index within the EGRET experimental errors (α = 1.55 or 1.91) are also shown, normalized to the same integral flux above 50 GeV. At transit, at a zenith angle of 6.73°, the energy threshold is about 120 GeV for α = 1.73. The energy threshold using the exposure-averaged effective area curve is 170 GeV. For the α = 1.73 model, therefore, we quote our result at an energy threshold of 170 ± 40 GeV. This threshold changes by about 20 GeV if the low or high value of α (1.55 or 1.91) is used instead.

Tables 2, 3 and 4 show upper limits from STACEE observations for selected models of the gamma ray emission from W Comae (Boettcher, Mukherjee & Reimer 2002). In each case the optical depth for pair production against the EBL has been taken into account. The models are based on the semi-analytic approaches of Primack et al. (1999) and Primack et al. (2001), which use a top-down, hierarchical treatment of structure formation as tuned to fit recent EBL measurements. The qualifiers “low” and “high” refer to the extreme low (LCDM-Salpeter; Primack et al. 1999) and high (Kennicutt; Primack et al. 2001) predictions for the optical depth to pair production at z = 0.102 from specific instances of these semi-analytic models, as detailed in Aharonian (2001).

Table 2. Integral flux upper limits for power law spectra

Emission Model	$\tau_{\gamma\gamma}$	E_{thresh}	95% CL	$\Phi(>E_{\text{thresh}})$
α = 1.55	low	191_{-44}^{+41}	0.48	7.28
α = 1.55	high	186_{-35}^{+32}	0.52	3.87
α = 1.73	low	186_{-35}^{+32}	0.49	2.23
α = 1.73	high	170_{-26}^{+25}	0.60	1.49
α = 1.91	low	168_{-23}^{+21}	0.56	0.73
α = 1.91	high	160_{-23}^{+21}	0.65	0.52

Note. — Upper limits on the integral flux of gamma rays from W Comae, assuming that the differential flux of photons follows a power law ($\Phi(E) \propto E^{-\alpha}$). Power laws were extrapolated from the Third EGRET Catalog (Hartman et al. 1999) and corrected for EBL absorption. The model spectral index $\alpha = 1.73$ is used, as well as low and high values consistent with the errors on the power-law fit to the EGRET data.

Table 3. Integral flux upper limits for leptonic models

Emission Model	E_{thresh}	95% CL	$\Phi(>E_{\text{thresh}})$
SSC fit 1	113_{-29}^{+31}	1.35	0.0278
SSC fit 2	112_{-29}^{+31}	1.39	0.0603
SSC fit 3	108_{-28}^{+30}	1.55	0.0876
SSC fit 4	97_{-26}^{+28}	2.12	0.139
SSC fit 5	86_{-24}^{+26}	3.49	0.17
SSC fit 6	95_{-23}^{+25}	2.36	0.0276
SSC fit 7	100_{-25}^{+27}	1.94	0.331
SSC+EC fit 8	112_{-28}^{+30}	1.37	0.0303
SSC+EC fit 9	110_{-28}^{+30}	1.41	0.0344
SSC+EC fit 10	108_{-28}^{+30}	1.44	0.0467

Note. — Upper limits on the integral flux of gamma rays from W Comae, according to various leptonic (SSC, SSC+EC) models of the relativistic jet described in Boettcher, Mukherjee & Reimer (2002), denoted BMR02 above. Due to the sharp cutoff in the expected gamma-ray emission spectra above ~ 100 GeV, EBL absorption should be negligible for the leptonic models. The table column headings are defined in the notes to Table 2.

Table 4. Integral flux upper limits for hadronic models

Emission Model	E_{thresh}	95% CL	$\Phi(>E_{\text{thresh}})$	
SPB fit 1	low	127_{-15}^{+16}	0.93	0.87
SPB fit 2	high	126_{-13}^{+15}	1.05	0.66
SPB fit 3	low	150_{-18}^{+20}	0.72	2.48
SPB fit 3	high	146_{-14}^{+16}	0.77	1.91
SPB fit 3	high	157_{-23}^{+25}	0.67	0.26
SPB fit 4	low	161_{-23}^{+25}	0.59	0.44
SPB fit 4	high	156_{-23}^{+25}	0.69	0.30
SPB fit 5	high	160_{-23}^{+25}	0.60	0.46
SPB fit 5	high	141_{-23}^{+25}	0.82	0.36

Note. — Upper limits on the integral flux of gamma rays from W Comae, according to various hadronic (SPB) models of the relativistic jet described in Boettcher, Mukherjee & Reimer (2002), denoted BMR02 above. The table column headings are defined in the notes to Table 2.
and high EBL optical depth are shown, along with STACEE upper limits for the EGRET power law (Hartman et al. 1999). Model predictions for both low and high EBL optical depth are shown, along with STACEE upper limits for mean EBL optical depth. Upper limits from observations with the Whipple 10-meter telescope (Horan et al. 2003) are shown.

It is apparent that, even when EBL absorption is taken into account, the STACEE results place strong constraints on the extrapolation of the EGRET power law to higher energies. A steeper value of the spectral index, within the uncertainties, is favored. As noted by Boettcher, Mukherjee & Reimer (2002), however, the EGRET data were not taken simultaneously with any other atmospheric Cherenkov telescope has yet attained for W Comae. STACEE detects no significant emission from W Comae, resulting in 95% CL upper limits on the integral flux above this threshold in various hadronic emission models at the level of $10^{-10}\,\text{cm}^{-2}\,\text{s}^{-1}$.

The STACEE-64 observations in the spring of 2003 were made at a lower energy threshold than any other atmospheric Cherenkov telescope has yet attained for W Comae. STACEE detects no significant emission from W Comae, resulting in 95% CL upper limits on the integral flux above this threshold in various hadronic emission models at the level of $10^{-10}\,\text{cm}^{-2}\,\text{s}^{-1}$. While leptonic models predict a flux which falls below this level, extrapolations of the best-fit EGRET power law, and some synchrotron-proton hadronic models, predict an integral gamma-ray flux above the energy threshold close to, or exceeding, the upper limit from STACEE observations. Additional STACEE observations planned for the spring of 2004 ought either to exclude these models at a significantly higher confidence level, or to detect gamma-ray emission from W Comae if these models provide an adequate description of the source.

6. CONCLUSIONS

The STACEE-64 observations in the spring of 2003 were made at a lower energy threshold than any other atmospheric Cherenkov telescope has yet attained for W Comae. STACEE detects no significant emission from W Comae, resulting in 95% CL upper limits on the integral flux above this threshold in various hadronic emission models at the level of $10^{-10}\,\text{cm}^{-2}\,\text{s}^{-1}$. While leptonic models predict a flux which falls below this level, extrapolations of the best-fit EGRET power law, and some synchrotron-proton hadronic models, predict an integral gamma-ray flux above the energy threshold close to, or exceeding, the upper limit from STACEE observations. Additional STACEE observations planned for the spring of 2004 ought either to exclude these models at a significantly higher confidence level, or to detect gamma-ray emission from W Comae if these models provide an adequate description of the source.

We are grateful to the staff at the National Solar Thermal Test Facility, who continue to support our science with enthusiasm and professionalism. Thanks to Markus Boettcher and Anita Reimer for providing gamma-ray spectra predicted by their leptonic and hadronic emission models of W Comae. Thanks also to Teresa Spreitzer, Audry Alabiso, Joshua Boehm, Nathan Kundtz, Dan Schuette, and Claude Théoret. This work was supported in part by the National Science Foundation, NSERC (the Natural Science and Engineering Research Council of Canada), FQRNT (Fonds Québécois de la Recherche sur la Nature et les Technologies), the Research Corporation, and the California Space Institute.

REFERENCES

Aharonian, F. A. 2000, New Astronomy, 5, 377
Aharonian, F. A. 2001, in Proc. 27th International Cosmic Ray Conference (Hamburg, Germany)
