Sepsis biomarkers: a review
Charalampos Pierrakos, Jean-Louis Vincent

Abstract

Introduction: Biomarkers can be useful for identifying or ruling out sepsis, identifying patients who may benefit from specific therapies or assessing the response to therapy.

Methods: We used an electronic search of the PubMed database using the key words “sepsis” and “biomarker” to identify clinical and experimental studies which evaluated a biomarker in sepsis.

Results: The search retrieved 3370 references covering 178 different biomarkers.

Conclusions: Many biomarkers have been evaluated for use in sepsis. Most of the biomarkers had been tested clinically, primarily as prognostic markers in sepsis; relatively few have been used for diagnosis. None has sufficient specificity or sensitivity to be routinely employed in clinical practice. PCT and CRP have been most widely used, but even these have limited ability to distinguish sepsis from other inflammatory conditions or to predict outcome.

Introduction

Sepsis is a leading cause of death in critically ill patients despite the use of modern antibiotics and resuscitation therapies [1]. The septic response is an extremely complex chain of events involving inflammatory and anti-inflammatory processes, humoral and cellular reactions and circulatory abnormalities [2,3]. The diagnosis of sepsis and evaluation of its severity is complicated by the highly variable and non-specific nature of the signs and symptoms of sepsis [4]. However, the early diagnosis and stratification of the severity of sepsis is very important, increasing the possibility of starting timely and specific treatment [5,6].

Biomarkers can have an important place in this process because they can indicate the presence or absence or severity of sepsis [7,8], and can differentiate bacterial from viral and fungal infection, and systemic sepsis from local infection. Other potential uses of biomarkers include roles in prognostication, guiding antibiotic therapy, evaluating the response to therapy and recovery from sepsis, differentiating Gram-positive from Gram-negative microorganisms as the cause of sepsis, predicting sepsis complications and the development of organ dysfunction (heart, kidneys, liver or multiple organ dysfunction). However, the exact role of biomarkers in the management of septic patients remains undefined [9].

C-reactive protein (CRP) has been used for many years [10,11] but its specificity has been challenged [12]. Procalcitonin (PCT) has been proposed as a more specific [13] and better prognostic [14] marker than CRP, although its value has also been challenged [15]. It remains difficult to differentiate sepsis from other non-infectious causes of systemic inflammatory response syndrome [16], and there is a continuous search for better biomarkers of sepsis.

With this background in mind, we reviewed the literature on sepsis biomarkers that have been used in clinical or experimental studies to help better evaluate their utility.

Materials and methods

The entire Medline database was searched in February 2009 using the key words ‘sepsis’ and ‘biomarker’. All studies, both clinical and experimental, which evaluated a biomarker were included. For each identified biomarker, the Medline database was searched again using the biomarker name and the key word ‘biomarker’.

Results

A total of 3370 studies that assessed a biomarker in sepsis were retrieved; 178 different biomarkers were evaluated in the 3370 studies. The retrieved biomarkers and the major findings from key studies using these biomarkers are listed in Tables 1, 2, 3, 4, 5, 6, 7, 8 and 9. Of the 178 biomarkers, 18 had been evaluated in...
experimental studies only, 58 in both experimental and clinical studies, and 101 in clinical studies only. Thirty-four biomarkers were identified that have been assessed for use specifically in the diagnosis of sepsis (Table 10); of these just five reported sensitivity and specificity values greater than 90%.

Discussion

A multitude of biomarkers has been proposed in the field of sepsis, many more than in other disease processes; for example, a study of patients with myocardial infarction revealed 14 biomarkers suitable for diagnosis and determination of prognosis [17] and in patients with Alzheimer’s disease, just 8 biomarkers were identified [18]. This large difference in the numbers of biomarkers for sepsis is likely to be related to the very complex pathophysiology of sepsis, which involves many mediators of inflammation [19], but also other pathophysiological mechanisms. Coagulation, complement, contact system activation, inflammation, and apoptosis are all involved in the sepsis process, and separate markers for each (part of each) system have been proposed (Tables 1 to 9). Additionally, the systemic nature of sepsis and the large numbers of cell types, tissues and organs involved expand the number of potential biomarker candidates, compared with disease processes that involve individual organs or are more localized.

It is interesting to note that most of the biomarkers we identified have been tested clinically and not experimentally. This is likely to be in part related to difficulties creating an experimental model that accurately reflects all aspects of human sepsis, problems with species differences, and problems in determining end-points in animal studies. Additionally, as the sepsis response varies with time, the exact time period during which any specific biomarker may be useful varies, and this is difficult to assess reliably in experimental models. Moreover, as there is no ‘gold standard’ for the diagnosis of

Table 1 Cytokine/chemokine biomarkers identified in the literature search (with some selected references)

Sepsis marker	Evaluated in experimental studies	Evaluated in clinical studies	Evaluated as a prognostic factor	Comment
GRO-alpha [49,50]	✓ (m)		✓	Higher in septic shock than in sepsis
High mobility group-box 1 protein (HMGB-1) [51,52]	✓		✓	No difference between survivors and non-survivors at 28 days
IL-1 receptor antagonist [53-55]	✓ A		✓	Correlation with SOFA score
IL-1β [56,57]	✓ A		✓	Increased in septic compared with non-septic individuals
IL-2 [58]	✓ B		✓	Increased in parallel with disease severity
IL-4 [59]	✓ C (s)		✓	Increased levels associated with development of sepsis
IL-6 [48,60]	✓ B		✓*	Distinguished between survivors and non-survivors at 28 days
IL-8 [61,62]	✓ B		✓***	Prediction of MOF, DIC
IL-10 [63-65]	✓ B		✓**	Higher in septic shock than sepsan, distinguished between survivors and non-survivors at 28 days
IL-12 [66,67]	✓ C		✓	Predictive of lethal outcome from postoperative sepsis
IL-13 [68,69]	✓ B		✓	Higher in septic shock than sepsis
IL-18 [37,70]	✓ B(s)		✓	Distinguished between survivors and non-survivors at 28 days
Macrophage inflammatory protein (MIP)-1 and-2 [71,72]	✓ A		✓	Increased in sepsis compared with healthy controls
Macrophage migration inhibitory factor (MIF) [42,73]	✓ A		✓**	Distinguished between survivors and non-survivors at 28 days
Monocyte chemotactic protein (MCP)-1 and 2 [42,74]	✓ B		✓*	Distinguished between survivors and non-survivors at 28 days
Osteopontin [75]	✓ B		✓	Increased in sepsis compared with healthy controls
RANTES [76,77]	✓ B		✓	Increased in sepsis compared with healthy controls
TNF [78,79]	✓ C		✓	Distinguished between survivors and non-survivors at 28 days in patients with septic shock

*sensitivity and specificity of less than 90%; **sensitivity of more than 90% but specificity of less than 90%; ***sensitivity and specificity more than 90%; A, Clinical study with less than 20 patients; B, Clinical study with 20 to 50 patients; C, Clinical study with more than 50 patients; (s), surgical patients only; (m), medical patients only.

DIC: disseminated intravascular coagulopathy; MOF: multiple organ failure; SOFA: sequential organ failure assessment.
sepsis, the effectiveness of a biomarker needs to be compared with current methods used to diagnose and monitor sepsis in everyday clinical practice, i.e., by the combination of clinical signs and available laboratory variables [20]; experimental models cannot be used for this purpose.

Our study revealed that there are many more potential biomarkers for sepsis than are currently used in clinical studies. Some of these markers may require considerable time, effort and costs to measure. Some are already routinely used for other purposes and easily obtained, such as coagulation tests or cholesterol concentrations. In many cases, the reliability and validity of the proposed biomarker have not been tested properly [8]. Of the many proposed markers for sepsis, acute phase proteins have perhaps been most widely assessed. PCT has been used particularly extensively in recent years. The specificity and sensitivity of PCT for the diagnosis of sepsis is relatively low (typically below 90%), regardless of the cut-off value [21,22]. Raised PCT levels have also been reported in other conditions associated with inflammatory response, such as trauma [23], major surgery [24] and cardiac surgery [25]. Although CRP is often reported as inferior compared with PCT in terms of sepsis diagnosis, it is frequently used in clinical practice because of its greater availability. Elevated concentrations of serum CRP are correlated with an increased risk of organ failure and death [26], and the study of its time course may be helpful to evaluate the response to therapy in septic patients [11].

Another group of compounds that has been widely assessed as potential biomarkers are the cytokines. These are important mediators in the pathophysiology of sepsis, and most are produced fairly rapidly after sepsis onset. In a clinical study, levels of TNF and IL-10 were increased within the first 24 hours after admission of the patient [27]. However, blood cytokine concentrations are rather erratic and their time course is not clearly in concert with the course of sepsis [27,28], making interpretation difficult.

The diagnosis of sepsis is a challenge. Clinical and standard laboratory tests are not very helpful because most critically ill patients develop some degree of inflammatory response, whether or not they have sepsis. Even microbiological assessment is unreliable because many culture samples do not yield microorganisms in these patients. However, biomarkers have also not been shown to be a great asset in the diagnosis of sepsis. Indeed, relatively few biomarkers have been evaluated as diagnostic markers (Table 10). Our search retrieved only 10 biomarkers that have been assessed for their ability to distinguish septic patients from non-septic patients with systemic immune response syndrome. However, none of these biomarkers has been tested for both sensitivity and specificity, and there is therefore no biomarker clearly identified as being able to differentiate sepsis from other conditions.

Table 2 Cell marker biomarkers identified in the literature search (with some selected references)

Sepsis Marker	Evaluated in experimental studies	Evaluated in clinical studies	Evaluated as a prognostic factor	Comment
CD10 [80,81]	√	A		Decreased in septic shock compared with healthy controls
CD11b [82,83]	√	B(s)	√	Correlation with SOFA score
CD11c [84]		A		Decreased in septic shock compared with healthy controls
CD14 (cellular and soluble) [85]		C	√	Distinguished between survivors and non-survivors at 28 days
CD18 [86]	√			
CD25 (cellular and soluble) [87]		A		Distinguished between survivors and non-survivors at 28 days
CD28 (soluble) [88]		B	√	Distinguished between survivors and non-survivors at 28 days
CD40 (cellular and soluble) [89]		B	√	Distinguished between survivors and non-survivors at 28 days
CD48 [90]	B	A		Increased in sepsis compared with healthy controls
CD64 [91]	B	A		Correlation with APACHE II and SOFA scores
CD69 [92]	A	B	√	Increased in sepsis compared with healthy controls
CD80 [88]	B		√	Predicted development of septic shock
CD163 (soluble) [93]		C	√	Distinguished between survivors and non-survivors at 28 days
mHLA-DR (soluble) [94]		C	√*	Distinguished between survivors and non-survivors at 28 days in patients with septic shock

*Sensitivity and specificity of less than 90%; A, Clinical study with less than 20 patients; B, Clinical study with 20 to 50 patients; C, Clinical study with more than 50 patients; (s), surgical patients only. APACHE: acute physiology and chronic health evaluation; SOFA: sequential organ failure assessment.
Table 3 Receptor biomarkers identified in the literature search (with some selected references)

Sepsis marker	Evaluated in experimental studies	Evaluated in clinical studies	Evaluated as a prognostic factor	Comment
CC chemokine receptor (CCR) 2 [95]	√			
CCR 3 [96]		C	√	Distinguished between survivors and non-survivors at 28 days
CSL2 [97]	√		B	Predicted development of MOF
CRTh2 [98]		C	√	Distinguished between survivors and non-survivors at 28 days
Fas receptor (soluble) [99]	B(m)		√	Predicted development of MOF
Fc-gamma RII [100]		A	√	Increased in sepsis compared with healthy controls, correlated with APACHE II score
FLT-1 (soluble) [101,102]	√	C	√	Correlated with APACHE II score
GP130 [103]		A	√	Increased in sepsis compared with healthy controls
IL-2 receptor (soluble) [104]		C	√	Predicted development of septic shock
Group II phospholipase A2 (PLA2-II) (soluble) [105,106]	√	B	√	Distinguished between survivors and non-survivors at 28 days
RAGE (soluble) [107]	B	√		Distinguished between survivors and non-survivors at 28 days
ST2 (soluble, IL-1 receptor) [108]	A(s)		√	Increased in sepsis compared with healthy controls
Toll-like receptor (TLR) 2 and 4 [109]	√	B	√	Increased in septic compared with non-septic critically ill patients
Transient receptor potential vanilloid (TRPV1) [110]	√			
TREM-1 (soluble) [111,112]	√	C	√	Distinguished between survivors and non-survivors at 28 days
TNF-receptor (soluble) [113]		B		Predicted development of MOF
Urokinase-type plasminogen activator receptor (uPAR) (soluble) [114]	√	C	C(m)	Distinguished between survivors and non-survivors at 28 days

*Sensitivity and specificity of less than 90%; A, Clinical study with less than 20 patients; B, Clinical study with 20 to 50 patients; C, Clinical study with more than 50 patients; (s), surgical patients only; (m), medical patients only.

APACHE: acute physiology and chronic health evaluation; MOF: multiple organ failure; TREM: triggering receptor expressed on myeloid cells; RAGE: receptor for advanced glycation end-products.

Table 4 Coagulation biomarkers identified in the literature search (with some selected references)

Sepsis marker	Evaluated in experimental studies	Evaluated in clinical studies	Evaluated as a prognostic factor	Comment
Antithrombin [115]	√		B	Distinguished between survivors and non-survivors at 28 days
Activated partial thromboplastin time (aPTT) [35]		C	√	Correlated with MOF score in patients with sepsis and DIC, high negative predictive value
D-dimers, TAT, F1.2, PT [116]		C	√	Distinguished between survivors and non-survivors at 28 days, correlated with APACHE II score
Fibrin [36]		C	√	Increased in patients with Gram-negative bacteremia
PF4 [117]		A	√	Predicted response to therapy
Plasminogen activator inhibitor (PAI) I [118,119]		B	√	Distinguished between survivors and non-survivors at 28 days, predicted development of MOF
Protein C and S [120,121]	√	C	√*	Distinguished between survivors and non-survivors at 28 days
Thrombomodulin [122,123]	√	C	√	Predicted development of MOF, DIC, and response to therapy

*Sensitivity and specificity of less than 90%; **Sensitivity of more than 90% but specificity of less than 90%; A, Clinical study with less than 20 patients; B, Clinical study with 20 to 50 patients; C, Clinical study with more than 50 patients.

APACHE: acute physiology and chronic health evaluation; DIC: disseminated intravascular coagulopathy; MOF: multiple organ failure; PT: prothrombin time; PF: platelet factor; TAT: thrombin-antithrombin complex.
Table 5 Biomarkers related to vascular endothelial damage identified in the literature search (with some selected references)

Sepsis marker	Evaluated in experimental studies	Evaluated in clinical studies	Evaluated as a prognostic factor	Comment
ADAMTS-13 [124,125]	√	B	√	Decreased in septic patients with DIC compared with no DIC
Angiopoietin (1 and 2) [126]		B	√	Distinguished between survivors and non-survivors at 28 days
Endocan [127,128]	√	B	√	Predicted development of septic shock
Endothelial leukocyte adhesion molecule (ELAM)-1 (cellular and soluble) [129,130]	√	B(s)	√*	Distinguished between survivors and non-survivors at 28 days
Endothelial progenitor cells (cEPC) [131]		B	√	Distinguished between survivors and non-survivors at 28 days
Intracellular adhesion molecule (ICAM)-1 (soluble) [38]	√	B(m)	√	
Laminin [132]		A		Increased in sepsis compared with non-infected controls
Neopterin [133,134]	√	C	√*	Distinguished between survivors and non-survivors at 28 days
Platelet-derived growth factor (PDGF)-BB [135]		B	√	Distinguished between survivors and non-survivors at 28 days in patients with severe sepsis
E-Selectin (cellular and soluble) [123,136]	√	C	√	Predicted development of MOF, correlated with SAPS score
L-Selectin (soluble) [137]		C	√*	Distinguished between survivors and non-survivors at 28 days
P-Selectin [138]		C		Predicted development of MOF
Vascular cell adhesion molecule (VCAM)-1 [139,140]		C		
Vascular endothelial growth factor (VEGF) [141,142]	√	A	√	Distinguished between survivors and non-survivors at 28 days, predicted development of MOF
von Willebrand factor and antigen [143,144]		B(m)	√	Distinguished between survivors and non-survivors at 28 days, predicted development of acute lung injury

*sensitivity and specificity of less than 90%; A, Clinical study with less than 20 patients; B, Clinical study with 20 to 50 patients; C, Clinical study with more than 50 patients; (s), surgical patients only; (m), medical patients only.

DIC: disseminated intravascular coagulopathy; MOF: multiple organ failure; SAPS: simplified acute physiology score.

Table 6 Biomarkers related to vasodilation identified in the literature search (with some selected references)

Sepsis marker	Evaluated in experimental studies	Evaluated in clinical studies	Evaluated as a prognostic factor	Comment	
Adrenomedullin and proadrenomedullin [145,146]		B	√*	Predicted development of septic shock	
Anandamide [147]		A		Increased in sepsis compared with healthy controls	
Angiotensin converting enzyme (ACE) (activity and serum) [148,149]		B		Increased in sepsis compared with healthy controls	
2-arachidonoylglycerol [150]		A			
Copeptin [151]		C(m)	√*	Distinguished between survivors and non-survivors at 28 days, correlated with APACHE II score	
C-type natriuretic peptide (CNP) [152]		A		Increased in patients with septic shock compared with healthy controls	
Cycling nucleotides [153,154]	√	A(m)	√	Distinguished between survivors and non-survivors at 28 days	
Elastin [155]		B		Decreased in sepsis compared with healthy controls	
cGRP [156,157]	√	C(s)	√	Distinguished between survivors and non-survivors at 28 days, correlated with APACHE II score	
Biomarker	Evaluated in experimental studies	Evaluated in clinical studies	Evaluated as a prognostic factor	Comment	
-----------	----------------------------------	-----------------------------	----------------------------------	---------	
47 kD HK	B(m)		Correlated with severity of sepsis		
Neuropeptide Y [159,160]	√	A	Increased in sepsis compared with healthy controls		
Nitric oxide (NO), nitrate, nitrite [161,162]	√	B	√	Predicted development of septic shock	
Substance P [156,163]	√	C(s)	√	Distinguished between survivors and non-survivors at 28 days (predictive only in the late phase of sepsis, 2 days before death)	
Tetrahydrobiopterin [164,165]	A	Increased in sepsis compared with non-septic critically ill patients			
Vasoactive intestinal peptide (VIP) [166,167]	√	A	Increased in tissue samples from patients with peritonitis compared with no peritonitis		

*sensitivity and specificity of less than 90%; A, Clinical study with less than 20 patients; B, Clinical study with 20 to 50 patients; C, Clinical study with more than 50 patients; (s), surgical patients only; (m), medical patients only.

APACHE: acute physiology and chronic health evaluation; cGRP: calcitonin gene-related peptide; HK: high-molecular-weight kininogen.

Table 7 Biomarkers of organ dysfunction identified in the literature search (with some selected references)

Sepsis marker	Evaluated in experimental studies	Evaluated in clinical studies	Evaluated as a prognostic factor	Comment	
Atrial natriuretic peptide (ANP) [168,169]	C	√*	Distinguished between survivors and non-survivors at 28 days		
Brain natriuretic peptide (BNP) [170-172]	B	√**	Distinguished between survivors and non-survivors at 28 days, correlated to APACHE II score		
Carbomyl phosphate synthase (CPS)-1 [173]	√	B	√	Distinguished between survivors and non-survivors at 28 days, correlated with SOFA score	
Endothelin-1 and pro-endothelin-1 [174-177]	√	B	√	Distinguished between survivors and non-survivors at 28 days, correlated with SOFA score	
Filterable cardiodepressant substance (FCS) [178]	√	C(s)	Predicted development of MOF		
Gc-globulin [179]	B	√	Increased in septic shock compared with healthy controls		
Gliafibrillary acidic protein (GFAP) [180]	√	C(m)	Predicted response to therapy		
alpha glutathione S-transferase (GST) [181]	√	A	√	Correlated with SAPS II score	
Hepatocyte growth factor (HGF) (cellular and soluble) [182,183]	√	C(m)	Predicted response to therapy		
MEGX test [184,185]	A	√	Correlated with SAPS II score		
Myocardial angiotensin II [186]	√	B	√	Correlated with SOFA scores	
Pancreatitis-associated protein-I [188]	√	A	Increased in sepsis compared with healthy controls		
Pre B cell colony-enhancing factor (PBEF) [189]	√	B	√	Distinguished between survivors and non-survivors at 28 days, correlated with SOFA score	
Protein S-100b [187,190]	√	A	Increased in sepsis compared with healthy controls		
Surfactant protein (A, B, C, D) [191,192]	√	B	√	Distinguished between survivors and non-survivors at 28 days, correlated with APACHE II score	

*sensitivity and specificity of less than 90%; **sensitivity of more than 90% but specificity of less than 90%; A, Clinical study with less than 20 patients; B, Clinical study with 20 to 50 patients; C, Clinical study with more than 50 patients; (s), surgical patients only; (m), medical patients only.

APACHE: acute physiology and chronic health evaluation; MEGX: monoethylglycinexylidide; MOF: multiple organ failure; NSE: neuron-specific enolase; SAPS: simplified acute physiology score; SOFA: sequential organ failure assessment.
Early diagnosis of sepsis is also an important issue as early institution of appropriate therapy, including antibiotics, is associated with improved outcomes. We identified 16 factors that have been evaluated specifically for the early diagnosis of sepsis; five of these had reported sensitivity and specificity of more than 90%. IL-12 was measured in newborns at the time when sepsis was first suspected clinically and was higher in patients with sepsis than in those without [29]. Interferon-induced protein 10 (IP-10) was higher in neonates with sepsis and necrotizing enterocolitis than in neonates who had only necrotizing enterocolitis [30]. These two biomarkers have not been evaluated for this purpose in adults. Group II phospholipase 2 (PLA2-II) was reported to have high sensitivity and specificity for the diagnosis of bacteremia in critically ill adult patients within 24 hours after admission [31]. CD64 had high sensitivity and specificity for the early diagnosis of sepsis in adults, but could not reliably distinguish viral from bacterial infections, or local infection from systemic sepsis [32]. Neutrophil CD11b could distinguish septic pediatric patients from those with possible infection with good sensitivity and specificity [33]. The sensitivity and specificity of the other 11 biomarkers used to diagnose early sepsis were not reported or were less than 90%.

Biomarkers can be more useful to rule out sepsis than to rule it in. We identified three biomarkers with high negative predictive value to rule out sepsis: PCT (99% at a cut-off value of 0.2 ng/ml) [34]; activated partial thromboplastin time (aPTT) waveform (96%) [35]; and fibrin degradation products (100% for Gram-negative sepsis by ELISA assay) [36]. It is important to emphasize that culture-positive sepsis was generally used as the gold standard in all these studies, although cultures may remain negative in many patients with sepsis.

The majority of the biomarkers that we identified in our search were assessed for their ability to differentiate patients likely to survive from those likely to die. Indeed, any biomarker is expected to have some prognostic value and sepsis biomarkers are no exception; however, this is not an absolute rule because some sepsis biomarkers failed to have prognostic value [37-39]. Moreover, sensitivity and specificity were tested in only some of the proposed prognostic markers, and none had sufficient (more than 90%) sensitivity and specificity to predict which patients were at greater risk of dying due to sepsis. Other biomarkers were assessed for their ability to predict the development of multiple organ failure and to evaluate response to therapy. It is known that the extent of infection and the severity of organ failure has a significant impact on the prognosis of patients with sepsis. Additionally, the response to therapy varies among patients. Recently, the PIRO model has been proposed as a way of stratifying septic patients according to their PreDisposing condition, the severity of Infection, the Response to therapy and the degree of Organ dysfunction [20]. In the future, sepsis biomarkers may contribute to this model of classification rather than just being used as prognostic markers.
Sepsis marker	Evaluated in experimental studies	Evaluated in clinical studies	Evaluated as a prognostic factor	Comment
Alpha2 macroglobulin	√			
[196,208]				
Albumin	√			
Anti-endotoxin core antibodies (EndoCab) [210]	A	√		Distinguished between survivors and non-survivors at 28 days
Apolipoprotein C1 [211-213]	C	√		Distinguished between survivors and non-survivors at 28 days
Bcl-2 [214]	A	√		Distinguished between survivors and non-survivors at 28 days
Beta-thromboglobulin [215]	B	√		Predicted response to therapy
Caspase-1 [216]	A	√		Increased in septic shock compared with healthy controls
Ceramide [217]	B	√	**	Predicted development of MOF
Cholesterol [218]	C	√		Distinguished between survivors and non-survivors at 28 days in patients with severe sepsis
Complement (C3, C4, C5a levels) [219,220]	B(m)	√		Distinguished between survivors and non-survivors at 28 days
Terminal complement complex [221]	√			
Dendritic cell [222,2223]	B	√		Distinguished between survivors and non-survivors at 28 days, correlated with SOFA score
Dipeptidylpeptidase [224]	B			Decreased in sepsis compared with healthy controls
Diodotyrosine (DIT) [225]	C	√		Increased in sepsis compared with non-septic critically ill
Eicosanoid [226,2227]	A(s)	√		Correlated with SAPS score, predicted response to therapy
Elastase [228,229]	C	√		Predicted response to therapy in patients with joint infections
Elastase-a1-antitrypsin complex [230,231]	C	√		Predicted response to therapy
Erythropoietin [232]	A	√		Distinguished between survivors and non-survivors at 28 days in patients with septic shock, correlated with lactate levels
F2 isoprostanes [233]	B(m)	√		Increased in infected diabetic patients compared with non-infected diabetics
Fatty acid amide hydrolase [234]	A	√		Decreased in sepsis compared with healthy controls
Free DNA [235]	B	√		Distinguished between survivors and non-survivors at 28 days
G-CSF and GM-CSF [236,237]	B	√	**	Distinguished between survivors and non-survivors at 28 days
Gelsolin [238]				
Ghrelin [239,240]	B	√		Distinguished between survivors and non-survivors at 28 days
Growth arrest specific protein (Gas) 6 [241]	B	√		Correlated with APACHE II score in patients with severe sepsis
Heat shock protein (HSP)70, 72, 73, 90 and 32 [242-245]	√	C(s)		Increased in sepsis compared with healthy controls
HDL cholesterol	C	√	**	Distinguished between survivors and non-survivors at 28 days, predicted prolonged ICU length of stay
HLA-G5 protein (soluble) [246]	C(m)	√	**	Distinguished between survivors and non-survivors at 28 days in patients with septic shock
H2S [247]				
Hyaluronan [248,249]	B			
Hydrolytic IgG antibodies [250]	B			Distinguished between survivors and non-survivors at 28 days in patients with septic shock
Inter-alpha inhibitor proteins (talpahlp) [251]	C			Predicted development of MOF
Intracellular nitric oxide in leukocyte [252]	B			Negatively correlated with SOFA score
IP-10 [30]	C			Increased in sepsis compared with healthy controls
Lactate [253,254]	C			Distinguished between survivors and non-survivors at 28 days, predicted response to therapy
No biomarker has, therefore, established itself sufficiently to be of great help to clinicians in everyday clinical practice. As each biomarker has limited sensitivity and specificity, it may be interesting to combine several biomarkers [40,41]; however, this hypothesis requires further study. A clinical study showed that the combination of aPTT waveform with PCT increased the specificity of the aPTT waveform in the diagnosis of sepsis [35]. Studies using panels of sepsis biomarkers have also provided encouraging results [42-44]. The cost-effectiveness of all these methods must also be evaluated.

In this study, we tried to categorize the sepsis biomarkers according to their pathophysiological role in sepsis.
Table 10 Biomarkers that have been assessed for use in the diagnosis of sepsis

Sepsis biomarker	Clinical study	Type of measurement	Outcome
1 aPTT** [35]	C	c	High negative predictive value
2 CD11b*** [33]	B	s	Higher values in neonates with sepsis than in those with possible infection
3 CD25 [87]	A	s	Distinguished between sepsis and SIRS
4 CD64*** [32,287]	C	s	Low sensitivity and specificity to distinguish between viral and bacterial infections
5 Complement (C3, C4, C5a) [219]	B	s	Distinguished between sepsis and SIRS
6 EA complex [230]	C	s	Diagnosis of sepsis, increased earlier than CRP
7 ELAM-1 (cellular and soluble)	C(s)	c	Increased in trauma patients with sepsis compared with no sepsis
8 Endocan [127]	B	s	Distinguished between sepsis and SIRS
9 E-Selectin (cellular and soluble) [136]	B	s	Distinguished between sepsis and SIRS
10 Fibrin degradation products [36]	B	s	Higher values in patients with severe sepsis compared with patients with organ failure but no sepsis
11 Gas6 [241]	B	s	Distinguished between sepsis and SIRS
12 G-CSF [237]	C	s	Distinguished between sepsis and SIRS
13 Gelsolin [238]	B(s)	c	Higher in septic patients compared with patients without sepsis
14 IL-1 receptor antagonist [55]	C	s	Early diagnosis of sepsis before symptoms in newborns
15 IL-8* [61]	C	s	Higher in septic neutropenic patients compared with febrile neutropenic patients without sepsis
16 IL-10 [65]	A	s	Higher in septic shock compared with cardiogenic shock
17 IL-12*** [29]	C	s	Diagnosis of sepsis in pediatric patients
18 IL-18 [70]	B(s)	s	Distinguished between Gram-positive and Gram-negative sepsis. Higher in trauma patients with sepsis than in those without
19 IP-10*** [30]	C	s	Early diagnosis of sepsis in newborns
20 Laminin [38]	A	s	Distinguished between Candida sepsis and bacterial sepsis
21 LBP [204]	C	s	Distinguished between Gram-positive sepsis and Gram-negative
22 MCP-1 [61]	C	s	Distinguished between sepsis and SIRS in neutropenic pediatric patients
23 NO, nitrate, nitrite [161]	B	s	Higher in septic shock compared with cardiogenic shock
24 Osteopontin [75]	B	s	Distinguished between sepsis and SIRS
25 PAI-1 [118]	B	s	Higher in patients with sepsis and DIC compared with no-septic patients with DIC
26 Pentraxin 3 [207]	C	s	Distinguished between septic shock and SIRS
27 Peptidoglycan [262]	B(s)	c	Higher in postoperative patients with infection compared with no-infected postoperative patients
28 pFN [270]	B	s	Distinguished between sepsis and SIRS
29 PLA2-II (soluble)*** [31]	B	s	Distinguished between bacteremic and non-bacteremic infections
30 Serum lysozyme (enzyme activity) [258]	B	s	Distinguished between sepsis and organ rejection in transplanted patients
31 ST2 (soluble) [108]	A	s	Higher in septic patients compared with those with no sepsis
32 Surfactant protein (A, B, C, D) [192]	B	s	Early diagnosis of ARDS in septic patients
33 TREM-1 (soluble) [288,289]	C	s	Distinguished between sepsis and SIRS, diagnosed pneumonia
34 Troponin [193]	B	s	Diagnosis of myocardial dysfunction in septic patients

*sensitivity and specificity of less than 90%; **sensitivity of more than 90% but specificity of less than 90%; ***sensitivity and specificity more than 90%; A, Clinical study with less than 20 patients; B, Clinical study with 20 to 50 patients; C, Clinical study with more than 50 patients; (s), surgical patients only; (m), medical patients only; s, single value; c, values over time.
aPTT: activated partial thromboplastin time; ARDS: acute respiratory distress syndrome; CRP: C-reactive protein; DIC: disseminated intravascular coagulopathy; EA: elastase alpha 1-proteinase inhibitor; ELAM: endothelial leukocyte adhesion molecule; G-CSF: granulocyte colony-stimulating factor; IF: interferon-induced protein; LBP: lipopolysaccharide-binding protein; MCP: monocyte chemotactic protein; NO: nitric oxide; PAI: plasminogen activator inhibitor; pFN: plasma fibronectin; PLA2: phospholipase A2; SIRS: systemic inflammatory response syndrome; TREM: triggering receptor expressed on myeloid cells.
A useful sepsis marker must not only help to identify or rule out sepsis, but it should also be able to be used to guide therapy. It has been shown that using PCT levels to guide therapy reduces antibiotic use and may be associated with improved outcomes [45,46]. The use of novel therapies that modify the pathophysiological process of sepsis may also be guided by biomarkers [47,48]. A study is underway to evaluate the value of protein C levels to guide the administration of activated protein C (clinicaltrials.gov identifier NCT00386425). In the future, sepsis biomarkers may help us administer these therapies to the right patient at the right time.

Conclusions

Our literature review indicates that there are many biomarkers that can be used in sepsis, but none has sufficient specificity or sensitivity to be routinely employed in clinical practice. PCT and CRP have been most widely used, but even these have limited abilities to distinguish sepsis from other inflammatory conditions or to predict outcome. In view of the complexity of the sepsis response, it is unlikely that a single ideal biomarker will ever be found. A combination of several sepsis biomarkers may be more effective, but this requires further evaluation.

Key messages

- More than 170 different biomarkers have been assessed for potential use in sepsis, more for prognosis than for diagnosis.
- None has sufficient specificity or sensitivity to be routinely employed in clinical practice.
- Combinations of several biomarkers may be more effective than single biomarkers, but this requires further evaluation.

References

1. Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J,insky MR. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med 2001, 29:1303-1310.

2. Hotchkiss RS, Karl IE. The pathophysiology and treatment of sepsis. N Engl J Med 2003, 348:138-150.

3. Gullo A, Bianco N, Berlot G. Management of severe sepsis and septic shock: challenges and recommendations. Crit Care Clin 2008, 24:489-501.

4. Levy A, Mackerer J. Sepsis: definition, epidemiology, and diagnosis. BMJ 2007, 335:879-883.

5. Kumar A, Roberts D, Wood KE, Light B, Parrillo JE, Sharma S, Suppes R, Feinstein D, Zanotti S, Taiberg L, Gurka D, Kumar A, Cheung M. Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit Care Med 2006, 34:1589-1596.

6. Zambon M, Ceola M, Almeida-de-Castro R, Gulo A, Vincent JL. Implementation of the Surviving Sepsis Campaign guidelines for severe sepsis and septic shock: we could go faster. J Crit Care 2008, 23:455-460.

7. Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther 2001, 69:89-95.

8. Marshall JC, Reinhart K. Biomarkers of sepsis. Crit Care Med 2009, 37:2290-2298.

9. Dellinger RP, Levy MM, Carlet JM, Bion J, Parker MM, Jaeschke R, Reinhart K, Angus DC, Brun-Buisson C, Beale R, Calandra T, Dhainaut JF, Gertler H, Harvey M, Mannix JJ, Marshall J, Ranieri M, Ramsay G, Sevransky J, Thompson BT, Townsend S, Vender JS, Zimmerman J, Vincent JL. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2008. Crit Care Med 2008, 36:296-327.

10. Povoa P, Coelho L, Almeida E, Fernandes A, Mehalia R, Moreira P, Sabino H. C-reactive protein as a marker of infection in critically ill patients. Clin Microbiol Infect 2005, 11:101-108.

11. Schmit X, Vincent JL. The time course of blood C-reactive protein concentrations in relation to the response to initial antimicrobial therapy in patients with sepsis. Infection 2008, 36:213-219.

12. Clyne B, Olshaker JS. The C-reactive protein. J Emerg Med 1999, 17:1019-1025.

13. Nakamura A, Wada H, Ikejiri M, Hatada T, Sakurai H, Matsushima Y, Nishioka J, Maruyama K, Ijii S, Takeda T, Nobiiri T. Efficacy of procalcitonin in the early diagnosis of bacterial infections in a critical care unit. Shock 2009, 31:591.

14. Luzzani A, Polati E, Donzelli R, Rungatscher A, Pavan R, Merlini A: Comparison of procalcitonin and C-reactive protein as markers of sepsis. Crit Care Med 2003, 31:1737-1741.

15. Tang BM, Elick GD, Craig JC, McLean AS. Accuracy of procalcitonin for sepsis diagnosis in critically ill patients: systematic review and meta-analysis. Lancet Infect Dis 2007, 7:210-217.

16. Giamarellos-Bourboulis EJ, Giannopoulou P, Grecka P, Voros D, Mandragos K, Giamarellou H. Should procalcitonin be introduced in the diagnostic criteria for the systemic inflammatory response syndrome and sepsis? J Crit Care 2004, 19:152-157.

17. Penttila I, Penttila K, Rantanen T. Laboratory diagnosis of patients with acute chest pain. Clin Chem Lab Med 2009, 38:187-197.

18. Tang BL, Kumar R. Biomarkers of mild cognitive impairment and Alzheimer's disease. Ann Acad Med Singapore 2008, 37:406-410.

19. Marshall JC, Vincent JL, Fink MP, Cook DJ, Rubinfeld G, Foster D, Fisher CJ Jr, Faist E, Reinhart K. Measures, markers, and mediators: toward a staging system for clinical sepsis. A report of the Fifth Toronto Sepsis Roundtable, Toronto, Ontario, Canada, October 25-26, 2000. Crit Care Med 2003, 31:1560-1567.

20. Levy MM, Fink MP, Marshall JC, Abraham E, Angus D, Cook D, Cohen J, Opal SM, Vincent A, Ramsay G. 2001 SCSM/ESCIM/ACCP/ATS/SIS International Sepsis Definitions Conference. Crit Care Med 2003, 31:1250-1256.

21. Ugarte H, Silva E, Mercan D, de Mendonca A, Vincent JL. Procalcitonin used as a marker of infection in the intensive care unit. Crit Care Med 1999, 27:498-504.

22. Supriyanto E, Caozouk A, Le Tulzo Y, Loyveau S, Feuillu A, Thomas R. Procalcitonin: a valuable indicator of infection in a medical ICU? J Intern Med 2000, 246:123-128.

23. Mimoz O, Benoist JF, Edoard AR, Assicot M, Bohuon C, Samii K. Procalcitonin and C-reactive protein during the early posttraumatic systemic inflammatory response syndrome. Intensive Care Med 1998, 24:185-188.
24. Meisner M, Tschilakiowski K, Hutzler A, Schick C, Schuttler J: Postoperative plasma concentrations of procalcitonin after different types of surgery. Intensive Care Med 1998, 24:680-684.

25. Hensel M, Volk T, Docke WD, Kemf F, Tschima D, Geger K, Kerner W, Kox WJ: Hyperprocalcitoninemia in patients with noninfectious SIRS and pulmonary dysfunction associated with cardiopulmonary bypass. Anesthesiology 1998, 89:103-104.

26. Lobo SM, Lobo FR, Bota DP, Lopes-Ferreira F, Salimian HM, Melot C, Vincent JL: C-reactive protein levels correlate with mortality and organ failure in critically ill patients. Chest 2003, 123:2043-2049.

27. Persky MR, Vincent JL, Deviere J, Ageroe M, Kahn RJ, Dupont E: Serum cytokine levels in human septic shock. Relation to multiple-system organ failure and mortality. Chest 1993, 103:565-575.

28. Wu HP, Chen CK, Chung K, Tseng JC, Hua CC, LiuYC, Chuang DY, Yang CH: Diagnostic markers for neonatal sepsis. Inflamm Res 2008, 57:351-358.

29. Shevren C, Broadbent R, Young S, Worth J, McCaffrey F, Medicott NJ, Reith D: Utility of interleukin-12 and interleukin-10 in comparison with other cytokines and acute-phase reactants in the diagnosis of neonatal sepsis. Am J Perinatol 2005, 22:629-636.

30. Ng PC, Li K, Chui KM, Leung TF, Wong RP, Chu WC, Wong E, Fok TF: IL-10 is an early diagnostic marker for identification of late-onset bacterial infection in preterm infants. Pediatr Res 2007, 61:93-98.

31. Rentala EM, Portenier J, Laine S, Nevaleinen TJ, Nikosekleinen J: Early identification of bacteremia by biochemical markers of systemic inflammation. Scand J Clin Lab Invest 2001, 61:523-530.

32. Nuutila J, Hohenhutz U, Laitinen I, Kotilainen P, Rajamaki A, Nikosekleinen J, Lilius EM: Simultaneous quantitative analysis of FcgammaRI (CD64) expression on neutrophils and monocytes: a new, improved way to identify of bacteremia by biochemical markers of systemic inflammation. Scand J Clin Lab Invest 2001, 61:523-530.

33. Li P, Li K, Chui KM, Leung TF, Wong RP, Chu WC, Wong E, Fok TF: IL-10 is an early diagnostic marker for identification of late-onset bacterial infection in preterm infants. Pediatr Res 2007, 61:93-98.

34. Li P, Li K, Chui KM, Leung TF, Wong RP, Chu WC, Wong E, Fok TF: IL-10 is an early diagnostic marker for identification of late-onset bacterial infection in preterm infants. Pediatr Res 2007, 61:93-98.

35. Li P, Li K, Chui KM, Leung TF, Wong RP, Chu WC, Wong E, Fok TF: IL-10 is an early diagnostic marker for identification of late-onset bacterial infection in preterm infants. Pediatr Res 2007, 61:93-98.

36. Li P, Li K, Chui KM, Leung TF, Wong RP, Chu WC, Wong E, Fok TF: IL-10 is an early diagnostic marker for identification of late-onset bacterial infection in preterm infants. Pediatr Res 2007, 61:93-98.

37. Li P, Li K, Chui KM, Leung TF, Wong RP, Chu WC, Wong E, Fok TF: IL-10 is an early diagnostic marker for identification of late-onset bacterial infection in preterm infants. Pediatr Res 2007, 61:93-98.

38. Li P, Li K, Chui KM, Leung TF, Wong RP, Chu WC, Wong E, Fok TF: IL-10 is an early diagnostic marker for identification of late-onset bacterial infection in preterm infants. Pediatr Res 2007, 61:93-98.

39. Li P, Li K, Chui KM, Leung TF, Wong RP, Chu WC, Wong E, Fok TF: IL-10 is an early diagnostic marker for identification of late-onset bacterial infection in preterm infants. Pediatr Res 2007, 61:93-98.

40. Li P, Li K, Chui KM, Leung TF, Wong RP, Chu WC, Wong E, Fok TF: IL-10 is an early diagnostic marker for identification of late-onset bacterial infection in preterm infants. Pediatr Res 2007, 61:93-98.

41. Li P, Li K, Chui KM, Leung TF, Wong RP, Chu WC, Wong E, Fok TF: IL-10 is an early diagnostic marker for identification of late-onset bacterial infection in preterm infants. Pediatr Res 2007, 61:93-98.

42. Li P, Li K, Chui KM, Leung TF, Wong RP, Chu WC, Wong E, Fok TF: IL-10 is an early diagnostic marker for identification of late-onset bacterial infection in preterm infants. Pediatr Res 2007, 61:93-98.

43. Li P, Li K, Chui KM, Leung TF, Wong RP, Chu WC, Wong E, Fok TF: IL-10 is an early diagnostic marker for identification of late-onset bacterial infection in preterm infants. Pediatr Res 2007, 61:93-98.

44. Li P, Li K, Chui KM, Leung TF, Wong RP, Chu WC, Wong E, Fok TF: IL-10 is an early diagnostic marker for identification of late-onset bacterial infection in preterm infants. Pediatr Res 2007, 61:93-98.

45. Li P, Li K, Chui KM, Leung TF, Wong RP, Chu WC, Wong E, Fok TF: IL-10 is an early diagnostic marker for identification of late-onset bacterial infection in preterm infants. Pediatr Res 2007, 61:93-98.

46. Li P, Li K, Chui KM, Leung TF, Wong RP, Chu WC, Wong E, Fok TF: IL-10 is an early diagnostic marker for identification of late-onset bacterial infection in preterm infants. Pediatr Res 2007, 61:93-98.

47. Li P, Li K, Chui KM, Leung TF, Wong RP, Chu WC, Wong E, Fok TF: IL-10 is an early diagnostic marker for identification of late-onset bacterial infection in preterm infants. Pediatr Res 2007, 61:93-98.

48. Li P, Li K, Chui KM, Leung TF, Wong RP, Chu WC, Wong E, Fok TF: IL-10 is an early diagnostic marker for identification of late-onset bacterial infection in preterm infants. Pediatr Res 2007, 61:93-98.

49. Li P, Li K, Chui KM, Leung TF, Wong RP, Chu WC, Wong E, Fok TF: IL-10 is an early diagnostic marker for identification of late-onset bacterial infection in preterm infants. Pediatr Res 2007, 61:93-98.

50. Li P, Li K, Chui KM, Leung TF, Wong RP, Chu WC, Wong E, Fok TF: IL-10 is an early diagnostic marker for identification of late-onset bacterial infection in preterm infants. Pediatr Res 2007, 61:93-98.

51. Li P, Li K, Chui KM, Leung TF, Wong RP, Chu WC, Wong E, Fok TF: IL-10 is an early diagnostic marker for identification of late-onset bacterial infection in preterm infants. Pediatr Res 2007, 61:93-98.
severe sepsis, and septic shock. Eur J Clin Microbiol Infect Dis 2006, 25:481-491.

64. Wang CH, Gey MJ, Yang C, Su YC. A new model for outcome prediction in intra-abdominal sepsis by the linear discriminant function analysis of IL-6 and IL-10 at different heart rates. J Surg Res 2006, 132:46-51.

65. Marchant A, Alegre ML, Haim A, Piergard G, Marecax G, Friedman G, De Groote D, Kahn RJ, Vincent JL, Goldman M. Clinical and biological significance of interleukin-10 plasma levels in patients with septic shock. J Clin Immunol 1995, 15:266-273.

66. Castellheim A, Thorsen EB, Hellund BC, Pharo A, Johansen HT, Brostad G, Gautaud F, Brun H, Hosa F, Tonniesen T, Nielsen EW. Novel biomarkers in an acute model of live Escherichia coli-induced sepsis in pigs. Scand J Immunol 2008, 68:75-84.

67. Weighardt H, Heidecke CD, Westerholt A, Emmanuilidis K, Holzmann B. Impaired monocyte IL-12 production before surgery as a predictive factor for the lethal outcome of postoperative sepsis. Ann Surg 2002, 235:560-567.

68. Collignon N, Gannouidis PV, Kouseraki O, Perry SL, Guillou PJ, Bellamy NC. Interleukin 13 and inflammatory markers in human sepsis. Br J Surg 2004, 91:762-768.

69. Matsukawa A, Hogaboam CM, Lukacs NW, Lincoln PM, Evanoff H, Strieker RM, Kunkel SL. Expression and contribution of endogenous IL-13 in an experimental model of sepsis. J Immunol 2000, 164:2738-2744.

70. Oberhofer A, Stockholzer U, Kurimoto M, Trentz O, Ertel W. Interleukin-18 plasma levels are increased in patients with sepsis compared to severely injured patients. Shock 2001, 16:411-414.

71. Tsujimoto H, Ono S, Majima T, Kawaiabashy N, Takayama E, Kinoshita M, Weighardt H, Heidecke CD, Westerholt A, Holmzmann B. Impaired monocyte IL-12 production before surgery as a predictive factor for the lethal outcome of postoperative sepsis. Ann Surg 2002, 235:560-567.

72. Collignon N, Gannouidis PV, Kouseraki O, Perry SL, Guillou PJ, Bellamy NC. Interleukin 13 and inflammatory markers in human sepsis. Br J Surg 2004, 91:762-768.

73. Matsukawa A, Hogaboam CM, Lukacs NW, Lincoln PM, Evanoff H, Strieker RM, Kunkel SL. Expression and contribution of endogenous IL-13 in an experimental model of sepsis. J Immunol 2000, 164:2738-2744.

74. Oberhofer A, Stockholzer U, Kurimoto M, Trentz O, Ertel W. Interleukin-18 plasma levels are increased in patients with sepsis compared to severely injured patients. Shock 2001, 16:411-414.

75. Vaschetto R, Nicola S, Olivieri C, Boggio E, Piccolella F, Mesturini R, Tsujimoto H, Ono S, Majima T, Kawarabayashi N, Takayama E, Kinoshita M, Weighardt H, Heidecke CD, Westerholt A, Emmanuilidis K, Holzmann B. Impaired monocyte IL-12 production before surgery as a predictive factor for the lethal outcome of postoperative sepsis. Ann Surg 2002, 235:560-567.

76. Collignon N, Gannouidis PV, Kouseraki O, Perry SL, Guillou PJ, Bellamy NC. Interleukin 13 and inflammatory markers in human sepsis. Br J Surg 2004, 91:762-768.

77. Vaschetto R, Nicola S, Olivieri C, Boggio E, Piccolella F, Mesturini R, Tsujimoto H, Ono S, Majima T, Kawarabayashi N, Takayama E, Kinoshita M, Weighardt H, Heidecke CD, Westerholt A, Emmanuilidis K, Holzmann B. Impaired monocyte IL-12 production before surgery as a predictive factor for the lethal outcome of postoperative sepsis. Ann Surg 2002, 235:560-567.

78. Collignon N, Gannouidis PV, Kouseraki O, Perry SL, Guillou PJ, Bellamy NC. Interleukin 13 and inflammatory markers in human sepsis. Br J Surg 2004, 91:762-768.

79. Matsukawa A, Hogaboam CM, Lukacs NW, Lincoln PM, Evanoff H, Strieker RM, Kunkel SL. Expression and contribution of endogenous IL-13 in an experimental model of sepsis. J Immunol 2000, 164:2738-2744.

80. Oberhofer A, Stockholzer U, Kurimoto M, Trentz O, Ertel W. Interleukin-18 plasma levels are increased in patients with sepsis compared to severely injured patients. Shock 2001, 16:411-414.
103. Marsik C, Halama T, Cardona F, Schillie I, Mittermayer F, Jilma B: Endotoxemia enhances expression of the signaling receptor (GP130) on protein and molecular level. Clin Immunol 2005, 114:293-298.

104. Delogu G, Casula MA, Marconi P, Telcan G, Signore L: Serum neutrophin and soluble interleukin-2 receptor for prediction of a shock state in gram-negative sepsis. J Clin Infect Dis 1995, 10:64-71.

105. Yokota Y, Ikeda M, Higashino K, Nakano K, Fuji N, Arita H, Hanasaki K: Enhanced tissue expression and elevated circulating level of phospholipase A2 receptor during murine endotoxemic shock. Arch Biochem Biophys 2000, 379:7-17.

106. Endo S, Wada K, Nakao K, Takakawa Y, Yamada Y, Suzuki T, Taniguchi S, Yoshida M, Ogawa M, Teraoka H: Plasma levels of type II phospholipase A2 and cytokines in patients with sepsis. Res Commun Mol Pathol Pharmacol 1995, 90:413-421.

107. Bopp C, Hofer S, Weitz J, Bierhaus A, Nawroth PP, Martin E, Bucher MW, Weigand MA: SRAGE is elevated in septic patients and associated with patients outcome. J Surg Res 2008, 147:79-83.

108. Brunner M, Krenn C, Roth G, Moser B, Dworschak M, Jensen-Jarolim E: Modulation of tissue Toll-like receptor 2 and 4 during the early phases of polymicrobial sepsis correlates with mortality. Crit Care Med 2003, 31:1808-1818.

109. Orliac ML, Peroni RN, AbramoTT, Neuman I, Podesta EJ, Adler-Williams DL, Ha T, Li C, Kalbfleisch JH, Schweitzer J, Vogt W, Browder IW: Elevated soluble ST2 protein and IgG1 production in patients with sepsis and trauma. Intensive Care Med 2004, 30:1468-1473.

110. Williams DL, Ha T, Li C, Kalbfleisch JH, Schwetter J, Vogt W, Browder MW: Soluble triggering receptor expressed on myeloid cells (sTREM)-1 expression patterns in murine sepsis. Crit Care Med 2005, 33:1787-1793.

111. Spittler A, Sautner T, Bonaros N, Wolner E, Boltz-Nitulescu G, Ankersmit HJ: Time-course of sTREM (soluble triggering receptor expressed on myeloid cells-1) content during endotoxemia in rats. Shock 2006, 31:352-357.

112. Bode J, Muller M, Kuhn D, Heiermann M: Circulating adhesion molecules in the critically ill: a comparison between trauma and sepsis patients. Intensive Care Med 1996, 22:122-128.

113._tCreda H, Dinges HP, Buurman WA, Linden van der FJ, Schulte J, Brade J, Zijlstra JG, Soulieres D, Vulliez C, Neviere R: Calpain inhibitors improve myocardial dysfunction and inflammation induced by endotoxin in rats. Shock 2004, 21:352-357.

114. Schepereel A, Deprinete F, Grognard E, Casteletti B, Tiscopoulos A, Gentina T, Jourdain M, Pujin J, Tonnel AB, Lassalle P: Endocan, a new endothelial marker in human sepsis. Crit Care Med 2006, 34:532-537.

115. Tissier S, Lancel S, Marechal X, Mordon S, Depontieu F, Schepereel A, Chopin C, Neviere R: Calpain inhibitors improve myocardial dysfunction and inflammation induced by endotoxin in rats. Shock 2004, 21:352-357.

116. Schepereel A, Depontee F, Gregorin E, Casteletti B, Tiscopoulos A, Gentina T, Jourdain M, Pujin J, Tonnel AB, Lassalle P: Endocan, a new endothelial marker in human sepsis. Crit Care Med 2006, 34:532-537.

117. Lorenz R, Brauer M: Platelet factor 4 (PF4) in septicemia. Infection 1988, 16:273-276.

118. Madoiwa S, Nunomiya S, Ono T, Shintani Y, Ohmori T, Mimuro J, Sakata Y: Plasminogen activator inhibitor 1 promotes a poor prognosis in sepsis. Crit Care Med 2002, 30:792-796.

119. Spittler A, Sautner T, Bonaros N, Wolner E, Boltz-Nitulescu G, Ankersmit HJ: Surface and soluble triggering receptor expressed on myeloid cells-1 expression patterns in murine sepsis. Crit Care Med 2005, 33:1787-1793.

120. Ware LB, Weil MH, Matthay MA, Persichetti F, Pepe PE, Levy B: Time-course of sTREM (soluble triggering receptor expressed on myeloid cells-1) concentrations during sepsis. Crit Care Med 2005, 33:792-796.

121. Lorenz R, Brauer M: Platelet factor 4 (PF4) in septicemia. Infection 1988, 16:273-276.

122. Pierrakos and Vincent 2010, 14:1858-1864.
antigen is an early plasma predictor of acute lung injury in nonpulmonary sepsis syndrome. J Clin Invest 1990, 86:474-480.

114. Novotny MJ, Turrentine MA, Johnson GS, Adams HR: Experimental endotoxemia increases plasma von Willebrand factor antigen concentrations in dogs with and without free-radarve scavenger therapy. Circ Shock 1987, 23:205-213.

115. Christ-Crain M, Morgenther NG, Struck J, Harbarth S, Bergmann A, Muller B: Mid-regional pro-adrenomedullin as a prognostic marker in sepsis: an observational study. Crit Care 2005, 9:R6-829.

116. Jiang W, Jiang HF, Cai DY, Pan CS, Qi YF, Pang YZ, Tang CS: Relationship between contents of adrenomedullin and distributions of neutral endopeptidase in blood and tissues of rats in septic shock. Regul Pept 2004, 118:199-208.

117. Maccarone M, De Petrocellis L, Bari M, Fezza F, Salvati S, Di MV, Finazzi-Agro A: Lipopolysaccharide downregulates fatty acid amide hydrolase expression and increases anandamide levels in human peripheral lymphocytes. Arch Biochem Biophys 2001, 393:321-328.

118. Deitz DM, Swartz KR, Wright M, Murphy E, Connell RS, Harrison MW: Effects of E. coli endotoxin on rat plasma angiotensin converting enzyme activity in vitro and in vivo. Circ Shock 1987, 21:23-29.

119. Casey L, Krieger B, Kohler J, Rice C, Oparil S, Szidon P: Detection of C-type natriuretic peptide in human plasma and serum. J Am Coll Cardiol 1995, 25:245-251.

120. Jiang W, Jiang HF, Cai DY, Pan CS, Qi YF, Pang YZ, Tang CS: Procalcitonin concentrations: comparisons in patients with septic shock, cardiogenic shock, and bacterial pneumonia. Crit Care Med 1997, 25:607-613.

121. van Amsterdam JG, Berg van den C, Zuidema J, den Biezebedek JD, Rokos H: Effect of septicemia on the plasma levels of biotinidase and nitric oxide metabolites in rats and rabbits. Biochem Pharmacol 1996, 52:1447-1451.

122. Zanetti O, Hasselgren PO, Hagiwarguchi T, Frederick JA, Fischer JE: Effect of sepsis or cytokine administration on release of gut peptides. Am J Surg 1992, 163:181-184.

123. Galley HF, Le Ces AE, Yassen K, Grant IS, Webster NR: Circulating tetrahydrobiopterin concentrations in patients with septic shock. Br J Anaesth 2001, 86:78-80.

124. Hatton Y, Nakanishi K, Nakai K, Murakami Y, Shimoda S: Tetrahydrobiopterin and GTP cyclohydrolase I in a rat model of endotox shock: relation to nitric oxide synthesis. Exp Physiol 1996, 81:665-671.

125. Jacob P, Mueller MH, Hahn J, Wolk I, Mayer P, Nagele U, Hennenlotter J, Sterzel A, Konigsaenniger A, Glatsie J: Alterations of neuropeptides in the human gut during peritonitis. Langenbecks Arch Surg 2007, 392:267-271.

126. Brandtschke P, Okedola O, Kierulf P, Optata P: Elevated VIP and endotoxin plasma levels in human gram-negative septic shock. Regul Pept 1987, 24:37-44.

127. Morgenther NG, Struck J, Christ-Crain M, Bergmann A, Muller B: Pro-atrial natriuretic peptide is a prognostic marker in sepsis, similar to the APACHE II score: an observational study. Crit Care Med 2005, 33:R77-R85.

128. Hartemink RJ, Groenewold AB, de Groot MC, Strack van Schijndel RJ, van Kamp G, Thijss LG: Alpha-atrial natriuretic peptide, cyclic guanosine monophosphate, and endothelin in plasma as markers of myocardial depression in human septic shock. Crit Care Med 2001, 29:80-87.

129. Post F, Weilemann LS, Messow CM, Sinning C, Munzel T: B-type natriuretic peptide as a marker for sepsis-induced myocardial depression in intensive care patients. Crit Care Med 2006, 34:3030-3037.

130. Kantel J, Burack J, Sivas A, Rabinowitz H, Schwartzman A, Zenilman ME, Buth MH: B-type natriuretic peptide: a biomarker for the diagnosis and risk stratification of patients with septic shock. Arch Surg 2008, 143:242-246.

131. Rivers EP, McCord J, Otero R, Jacobsen G, Loomba M: Clinical utility of B-type natriuretic peptide in early-severe sepsis and septic shock. J Intensive Care Med 2007, 22:181-184.

132. Struck J, Uhlem M, Morgenther NG, Forst W, Hoffich C, Bahrami S, Bergmann A, Volk HD, Redl H: Release of the mitochondrial enzyme carbamoyl phosphate synthase under septic conditions. Shock 2005, 23:533-538.

133. Pichota M, Banach M, Izmaninski R, Barylak M, Piechota-Urbanska M, Kowalski J, Pawlicki L: Plasma endothelin-1 levels in septic patients. J Intensive Care Med 2007, 22:232-239.

134. Nakamura T, Kasi K, Sekiguchi Y, Banba N, Takahashi K, Emoto T, Hattori Y, Shimoda S: Plasma procalcitonin as an acute phase reactant in patients with septic shock. Crit Care Med 2001, 29:78-82.

135. Braunier JS, Rohde LE, Casswell N: Circulating endothelin-1 and tumor necrosis factor-alpha: early predictors of mortality in patients with septic shock. Intensive Care Med 2000, 26:305-313.

136. Schuetz P, Stolz D, Mueller B, Morgenther NG, Struck J, Mueller C, Bingisser R, Tam M, Christ-Crain M: Endothelin-1 precursor peptides correlate with severity of disease and outcome in patients with community-acquired pneumonia. BMC Infect Dis 2008, 8:22.

137. Jha P, Jacobs H, Rose D, Wang B, Wang J, Light RB, Mink S: Effects of E. coli sepsis and myocardial depressant factor on interval-force relations in dog ventricle. Am J Physiol 1993, 264:H1402-H1410.

138. Dahl B, Schiott FV, Ott P, Wians F, Lee WM, Balko J, Okeefe GE: Plasma concentration of G-glutathione is associated with organ dysfunction and sepsis after injury. Crit Care Med 2003, 31:152-156.

139. Hsu AA, Fenton K, Weinstein S, Carpenter J, Dalton H, Bell MJ: Neurological injury markers in children with septic shock. Pediatr Crit Care Med 2008, 9:245-251.

140. Koo DJ, Zhou M, Chaudry IH, Wang P: Plasma alpha-gluthione S-transferase: a sensitive indicator of hepatocellular damage during polymicrobial sepsis. Arch Surg 2000, 135:198-203.

141. Nayeri F, Nilsson I, Brudin L, Frenell A, Soderstrom C, Forsberg P: High serum hepatococyte growth factor levels in the acute stage of community-acquired infectious diseases. Scand J Infect Dis 2002, 34:127-130.

142. Masson S, Daveau M, Francois A, Bodenat C, Hiron M, Teniere P, Salier JP, Scorte M: Up-regulated expression of HGF in rat liver cells after...
experimental endotoxemia: a potential pathway for enhancement of liver regeneration. *Growth Factors* 2001, 18:237-250.

184. Igonin AA, Armstrong VW, Skvortsova M, Kukes VG, Oellerich M: The mononuclearphagocytic system (MOECS) test as a marker of hepatic dysfunction in septic patients with pneumonia. *Clin Lab Hematol Med* 2000, 38:1125-1128.

185. McKinley DS, Chichester C, Raymond R: Effect of endotoxin shock on the clearance of lidocaine and indocyanine green in the perfused rat liver. *Shock* 1999, 12:468-472.

186. Ji Y, Ren X, Zhao Y, Dong L, Wu L, Su J: Role of intracardiac angiostatin in *Cicard Med J* (Engl 1996), 199:108-967.

187. Nguyen DN, Spanen H, Su F, Schiettcatte J, Shi L, Hachimi-Idrissi S, Hyughens L: Elevated serum levels of S-100beta protein and neuron-specific enolase are associated with brain injury in patients with severe sepsis and septic shock. *Crit Care Med* 2006, 34:1697-1974.

188. Tribi B, Filipo D, Bodeker H, Yu P, Hammermuller I, McKee C, Keim V, Sibbald WJ: Pseudomonas pneumonia-mediated sepsis induces expression of pancreatitis-associated protein 1 in rat pancreas. *Pancreas* 2004, 29:33-40.

189. Ye SQ, Simon BA, Maloney JP, Zambelli-Weiner A, Gao L, Grant A, Easley RE, McVerry BJ, Tudor RM, Standford T, Brower KG, Barnes KC, Garcia JG: Pre-B-cell colony-enhancing factor as a potential novel biomarker in acute lung injury. *Am J Respir Crit Care Med* 2005, 171:361-370.

190. Larsson A, Lipciyev S, Spliijn J, Hannoons LO, Eriksson MB: Slight increase of serum S-100B during porcine endotoxemic shock may indicate blood-brain barrier damage. *Anesth Analg* 2005, 111:1463-1469.

191. Lewsa JF, Veldhuizen P, Possmayer F, Sibbald W, Whitsott J, Qianar R, McCaig L: Altered alveolar surfactant is an early marker of acute lung injury in septic adult sheep. *Am J Respir Crit Care Med* 1994, 150:125-130.

192. Endo S, Yano H, Yamada Y, Makabe H, Abe H, Imay M, Wakahiyashi G, Inada K, Sato S: Serum S-100B during porcine endotoxemic shock may indicate blood-brain barrier damage. *Anesth Analg* 2004, 109:13-17.

193. Cireccelle DD, Viesse JA, Bensou GG: Comparison of C-reactive protein and serum amyloid A protein in septic shock patients. *Mediators Inflamm* 2008, 2008:651414.

194. Ora T, Sankani S, Pudal T, Oksana S, Soen T: Acute phase response in reindeer after challenge with Escherichia coli endotoxin. *Comp Immunol Microbiol Infect Dis* 2004, 27:413-422.

195. Chiarla C, Giovannini I, Siegel JH: Patterns of correlation of plasma ceruloplasmin in sepsis. *J Surg Res* 2008, 144:107-110.

196. Surh Y, Sharma VR, Thiruvaruvan S: Evaluation of ceruloplasmin in neonatal sepsis. *Indian Pediatr* 1991, 28:489-493.

197. Couto RC, Barbosa JA, Pedrada TM, Bisgione F: C-reactive protein-guided approach may shorten duration of antimicrobial treatment of culture-positive sepsis. *J Crit Care* 2004, 19:93-137.

198. Gabinski C, Moreau JF, Blanco P: Slight increase of C-reactive protein-guided antibiotic treatment of culture-positive sepsis. *J Crit Care* 2008, 23:490-497.

199. Areva V, Chandrasekhar Y, Reddy CS, Varadarajan S, Prasad H, Mahesh K: High C-reactive protein and low cholesterol levels are prognostic markers of survival in severe sepsis. *J Crit Care* 2007, 22:245-247.

200. Meris D, Goury O, Taidogon D, Sut N, Kurt I, Ture M, Karamanlioglu B: High C-reactive protein and low cholesterol levels are prognostic markers of survival in sepsis patients: decrease in plasma levels of soluble P-selectin, platelet factor 4 and beta-thromboglobulin. *Inflamm Res* 1999, 48:171-175.

201. Delougou G, Falarou G, Tellini G, Marandola M, Antonucci A, Signore M, Marcellin S, Moretti S: Lymphocyte apoptosis, caspase activation and inflammatory response in septic shock. *Intensive Care Med* 2008, 34:907-911.

202. Adria S, Bachelet M, Vayssier-Tausat M, Russo-Marie F, Bouchara J, Addib-Coujey M, Barjaion JM, Pinsky MR, Dhaunat, JF, Ponsa A: Mitochondrial membrane potential and apoptosis peripheral blood monocytes in severe human sepsis. *Am J Respir Crit Care Med* 2001, 164:389-395.

203. Nakamura T, Ebihara I, Shoji H, Ushiyama C, Suzuki S: Koidie H: Treatment with polymyxin B-immobilized fiber reduces platelet activation in septic shock patients: decrease in plasma levels of soluble P-selectin, platelet factor 4 and beta-thromboglobulin. *Inflamm Res* 1999, 48:171-175.

204. Schippers EF, Berbee JF, van Disselholm BM, Steenstra J, van Heemst D, Remsen PC, Westendorp RG: Plasma apolipoprotein C1 protects against mortality from infection in old age. *J Gerontol A Biol Sci Med* 2008, 63:122-126.

205. Berbee JF, Mooijaart SP, de Graen AJ, van Heemst D, Remsen PC, Westendorp RG: Plasma apolipoprotein C1 correlates with increased survival in patients with severe sepsis. *Intensive Care Med* 2008, 34:907-911.

206. Francisco C, Bachelet M, Vayssier-Tausat M, Russo-Marie F, Bouchard J, Addib-Coujey M, Cavaillon JM, Pinsky MR, Dhaunat JF, Ponsa AS: Mitochondrial membrane potential and apoptosis peripheral blood monocytes in severe human sepsis. *Am J Respir Crit Care Med* 2001, 164:389-395.

207. Delougou G, Falarou G, Tellini G, Marandola M, Antonucci A, Signore M, Marcellin S, Moretti S: Lymphocyte apoptosis, caspase activation and inflammatory response in septic shock. *Intensive Care Med* 2008, 34:907-911.
224. Bergmann A, Bohouc C: Decrease of serum dipetylpeptidase activity in severe sepsis patients: relationship to procalcitonin. Clin Chim Acta 2002, 321:125-126.

225. Meinhold H, Gramm HJ, Meissner W, Zimmermann J, Schwander J, Dennybarger R, Voigt K: Elevated serum diiodotyrosine (DIT) in severe infections and sepsis: DIT, a possible new marker of leukocyte activity. J Clin Endocrinol Metab 1991, 72:945-953.

226. Morlion BJ, Torwestern E, Kuhn KS, Puchstein C, Funst P: Cysteinyll-leukotriene generation as a biomarker for survival in the critically ill. Crit Care Med 2000, 28:3655-3658.

227. Uozumi N, K rentals, T. Modulation of lipid and protein mediators of inflammation by cytosolic phospholipase A2-alpha during experimental sepsis. J Immunol 2008, 181:3558-3566.

228. Peters KM, Koberg K, Rosenstiel T, Haubeck HD: Pseudomonas elastase in bone and joint infections. Int Orthop 1994, 18:352-355.

229. Genger R, Sokal S, Trefz G, Siebeck M, Hoffmann H: PMN elastase and leukocyte neutral proteinase inhibitor (LNPI) from granulocytes as inflammation markers in experimental septicemia. Adv Exp Med Biol 1988, 240:465-471.

230. Tegtmeier FK, Horn C, Richter A, van Wees J: Elastase alpha 1 proteinase inhibitor complex, granulocyte count, ratio of immature to total granulocyte count, and C-reactive protein in neonatal sepsis. Eur J Pediatr 2000, 162:151-156.

231. Duuswald KH, Jochum M, Schramm W, Fritz H: Released granulocyte elastase: an indicator of pathobichemical alterations in septicemia after abdominal surgery. Surgery 1985, 98:892-899.

232. Tamson F, Cam-Duchet V, Menard JP, Girault C, Coquerel A, Bommardch G: Serum erythropoietin levels in septic shock. Eur J Intensive Care 2006, 33:578-594.

233. Puthucheary SD, Nathan SA: Comparison of serum F2 isoprostane levels in diabetic patients and diabetic patients infected with Burkholderia pseudomallei. Singapore Med J 2000, 41:379-386.

234. Tanaka M, Yanagihara I, Takahashi H, Hamaguchi M, Nakahira K, Sakata I: The mRNA expression of fatty acid amide hydrolase in human whole blood correlates with sepsis. J Endotoxin Res 2007, 13:35-38.

235. Rhodes A, Wort SJ, Thomas H, Collinson P, Bennett ED: Plasma DNA concentration as a predictor of mortality and sepsis in critically ill patients. Crit Care 2006, 10:R60.

236. Perry SE, Mostafa SM, Wenstone R, McGaughon PJ: Low plasma granulocyte-macrophage colony stimulating factor is an indicator of poor prognosis in sepsis. Intensive Care Med 2002, 28:981-984.

237. Keren N, Overturf G, Bessman S, Kuhn KS, Krentz A, Brann B: Granulocyte colony-stimulating factor as a marker for bacterial infection in neonates. J Pediatr 1996, 128:765-769.

238. Wang H, Cheng B, Chen Q, Wu S, Lv C, Xie G, Jin Y, Fang X: Time course of plasma gelsolin concentrations during severe sepsis in critically ill surgical patients. Crit Care 2006, 10:R6.

239. Hataya Y, Akamizu T, Hosoda H, Kanamoto N, Moriyama K, Kagaaya K, Takaya K, Nakao K: Alterations of plasma gplin levels in rats with lipopolysaccharide-induced wasting syndrome and effects of gplin treatment on the syndrome. Endocrinology 2003, 144:3653-3671.

240. Yilmaz Z, Ilcik YD, Ulus IH: Endotoxin increases plasma leptin and gplin levels in dogs. Crit Care Med 2008, 36:S28-33.

241. Borgel D, Clausen S, Bornstein C, Beche E, biosy A, Removes V, Fagon JY, Aiach M, Dehl JL: Elevated growth-arrest-specific protein 6 plasma levels in patients with severe sepsis. Crit Care Med 2006, 34:219-222.

242. Olfenstein JP, Heidemann S, Juett-Wilstermann A, Sarnak A: Expression of stress proteins HSP 72 & HSP 32 in response to endotoxemia. Ann Clin Lab Sci 2000, 33:352-356.

243. Delougo G, Lo BL, Marandola M, Famulario G, Lenti L, Ippoliti F, Signore L: Heat shock protein (HSP70) expression in septic patients. J Crit Care 1997, 12:188-192.

244. Weiss YG, Bouwman A, Gehan B, Scheen G, Raj N, Deutschman CS: Cecal ligation and double puncture impairs heat shock protein 70 (HSP-70) expression in the lungs of rats. Shock 2003, 13:19-23.

245. Ramaglia V, Harapa GM, White N, Buck LT: Bacterial infection and tissue-specific Hsp72,-73 and -90 expression in western painted turtles. Comp Biochem Physiol C Toxicol Pharmacol 2004, 138:139-148.

246. Monneret G, Vorrin N, Krawie-Radanne J, Bofe J, Lapape A, Rouas-Freiss N, Carosella ED: Soluble human leukocyte antigen-G3 in septic shock: marked and persisting elevation as a predictor of survival. Crit Care Med 2007, 35:1942-1947.

247. Li L, Bhatta M, Zhu YZ, Zhu YC, Ramnath RD, Wang ZJ, Anuar FB, Whiteman M, Salto-Tellez M, Moore PK: Hydrogen sulfide is a novel mediator of lipopolysaccharide-induced inflammation in the mouse. FASEB J 2005, 19:1196-1198.

248. Berg S, Brodin B, Hesselvik F, Laurent TC, Maller R: Elevated levels of plasma hyaluronan in septicemia. Scand J Clin Lab Invest 1988, 48:727-732.

249. Berg S, Jansson I, Hesselvik FJ, Laurent TC, Lennquist S, Walther S: Hyaluronan: relationship to hemodynamics and survival in porcine injury and sepsis. Crit Care Med 1992, 20:1315-1321.

250. Lacroix-Desmazes S, Bayry J, Kaveri SV, Hayon-Sonsino D, Thorenoor N, Charpentier J, Luyt CE, Mira JP, Nagaraja V, Kazatchkine MD, Dhaif L, Mallet YO: High levels of catalytic antibodies correlate with favorable outcome in sepsis. Proc Natl Acad Sci USA 2005, 102:4109-4113.

251. Opal SM, Lim YP, Syropom E, Moldawer LL, Pribble JP, Palardy JE, Souza S: Longitudinal studies of inter-alpha inhibitor proteins in severely septic patients: a potential clinical marker and mediator of severe sepsis. Crit Care Med 2007, 35:387-392.

252. Soriano AO, Jy W, Chirinos JA, Valdivias HS, Jimenez JJ, Horstman LLI, Mert DH, Schein RM, Atn YS: Levels of endothelial and platelet microparticles and their interactions with leukocytes negatively correlate with organ dysfunction and predict mortality in severe sepsis. Crit Care Med 2005, 33:2540-2546.

253. Nguyen HB, Rivers EP, Kroblick BP, Jacobsen G, Muzzin A, Ressler JA, Tomlanovich MC: Early lactate clearance is associated with improved outcome in severe sepsis and septic shock. Crit Care Med 2004, 32:1637-1642.

254. Haji-Michael PG, Ladiere L, Sener A, Vincent JL: Malariae Weil. Leukocyte glycolysis and lactate output in animal sepsis and ex vivo human blood. Metabolism 1999, 48:779-785.

255. Gutteberg TJ, Roeki O, Jorgensen T, Andersen O: Lactoferrin as an indicator of septicemia and endotoxemia in pigs. Scand J Infect Dis 1988, 20:659-666.

256. Soderqvist B, Sundqvist KG, Jones I, Holmberg H, Vikerfors T: Interleukin-6, C-reactive protein, lactoferrin and white blood cell count in patients with S. aureus septicemia. Scand J Infect Dis 1995, 27:375-380.

257. Tanemel M, Orfandos SE, Tirantakonoki M, Kotanidou A, Sotropoloupolou C, Christophoraki M, Vassiladi D, Thallasinos NC, Roussos C: Lactin alterations in the course of sepsis in humans. In Vivo 2006, 20:565-570.

258. Jones NW, Jr. Su S, Jones MB, Henfold BT, Mcintyre K, Granger DK: Serum lysosome activity can differentiate infection from rejection in organ transplant recipients. J Surg Res 1999, 84:134-137.

259. Hoffmann U, Bertsch T, Dvorska E, Liebetrut C, Lang S, Liebe V, Huhe H, Borggrefe M, Buecmann M: Matrix-metalloproteinases and their inhibitors are elevated in severe sepsis: prognostic value of TIMP-1 in severe sepsis. Scand J Infect Dis 2006, 38:867-872.

260. Piliponsky AM, Chen CC, Nishimura T, Metz M, Rios Ed, Dobner PR, Wada E, Wada K, Zacharias S, Mohanasundaram U, Faix J, Adbirig M, Pejler G, Pear P, Tsai M, Galli SJ: Neutrosetins increases mortality and mast cells reduce neurosetins levels in a mouse model of sepsis. Nat Med 2008, 14:293-298.

261. Oudkonijn HM, Klaassen HL, Lapse JR, Weerkamp AH, Van der MR: Biochemical and tissue-based markers of postoperative infection following gastrointestinal surgery. Crit Care Med 2003, 31:1288-1295.
Endotoxemia during supraceliac aortic crossclamping is associated with an increased risk of multisystem organ failure and death. J Exp Med 2006, 203:1447-1458.

Chiarla C, Giovannini I, Segel JH, Boldrini G, Castagneto M: The relationship between plasma taurine and other amino acid levels in human sepsis. J Nutr 2000, 130:2222-2227.

Poeze M, Luiking YC, Breedveld P, Manders S, Deutz NE: Decreased plasma glutamate in early phases of septic shock with acute liver dysfunction is an independent predictor of survival. Clin Nutr 2008, 27:523-530.

Basler T, Meier-Hellmann A, Bredle D, Reinhart K: Amino acid imbalance early in septic encephalopathy. Intensive Care Med 2002, 28:293-298.

Ruiz Martin G, Prieto PJ, Veiga dC, Gomez LL, Barberan J, Gonzalez Landa JM, Fernandez C: Plasma fibronectin as a marker of sepsis. Int J Infect Dis 2004, 8:236-243.

Mavrommatis AC, Theodoridis T, Economou M, Kotanidou A, El Ali M, Christopoulos-Kokkinou V, Zakynthinos SG: Activation of the fibrinolytic system and utilization of the coagulation inhibitors in sepsis: comparison with severe sepsis and septic shock. Intensive Care Med 2001, 27:1853-1859.

Tamson F, Cam-Duchez V, Menard JF, Girault C, Coquerel A, Bonmarchand G: Erythropoietin and renin as biological markers in critically ill patients. Crit Care Med 2004, 32:R28-R33S.

Sunden-Cullberg J, Nystrom T, Lee ML, Mullins GE, Tokics L, Andersson J, Tamion F, Cam-Duchez V, Menard JF, Girault C, Coquerel A, Christopoulos-Kokkinou V, Zakynthinos SG: Activation of the fibrinolytic system and utilization of the coagulation inhibitors in sepsis: comparison with severe sepsis and septic shock. Intensive Care Med 2001, 27:1853-1859.

Hafez HM, Berwanger CS, Lintott P, Delis K, Wolfe JH, Mansfield AO, Hafez HM, Berwanger CS, Lintott P, Delis K, Wolfe JH, Mansfield AO: New assay for the measurement of selenoprotein P as a biomarker of oxidative stress correlating with outcome in critically septic patients. J Trace Elem Med Biol 2008, 22:297-304.

Cardelli P, Ferrarotti M, Amodeo R, Tabacco F, De Blasi RA, Nicoletti M, Reinhart K: Evaluation of neutrophil CD64 expression and procalcitonin as useful markers in early diagnosis of sepsis. Int J Immunopathol Pharmacol 2008, 21:43-49.

Gibot S, Cravoisy A, Levy B, Bene MC, Faure G, Bollaert PE: Soluble triggering receptor expressed on myeloid cells and the diagnosis of pneumonia. N Engl J Med 2004, 350:451-458.

Gibot S, Kolopp-Sarda MN, Bene MC, Cravoisy A, Levy B, Faure GC, Bollaert PE: Plasma level of a triggering receptor expressed on myeloid cells-1: its diagnostic accuracy in patients with suspected sepsis. Ann Intern Med 2004, 141:9-15.