Activation of Intracellular Calcium by Multiple Wnt Ligands and Translocation of β-Catenin into the Nucleus

A CONVERGENT MODEL OF Wnt/Ca2⁺ AND Wnt/β-CATENIN PATHWAYS

Christopher Thrasivoulou¹, Michael Millar², and Aamir Ahmed³

From the ¹Research Department of Cell and Developmental Biology, The Centre for Cell and Molecular Dynamics, Rockefeller Building, University Street, University College London, London WC1E 6JJ, United Kingdom, the ²MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, United Kingdom, and the ³Prostate Cancer Research Centre, Division of Surgery, 3rd Floor Laboratories, Charles Bell House, 67 Riding House Street, University College London, London W1W 7EJ, United Kingdom

Background: Cellular transducers of Wnt signaling, β-catenin and Ca²⁺, are considered to act via independent canonical and non-canonical pathways.

Results: Six Wnt ligands activated cytosolic and intranuclear Ca²⁺ and nuclear translocation of β-catenin.

Conclusion: Wnt β-catenin and Ca²⁺ signaling are coupled in mammalian cells.

Significance: A coupled model of Wnt/Ca²⁺ and β-catenin signaling that challenges the canonical and non-canonical categorization is proposed.

Ca²⁺ and β-catenin, a 92-kDa negatively charged transcription factor, transduce Wnt signaling via the non-canonical, Wnt/Ca²⁺ and canonical, Wnt/β-catenin pathways independently. The nuclear envelope is a barrier to large protein entry, and this process is regulated by intracellular calcium [Ca²⁺] and trans-nuclear potential. How β-catenin traverses the nuclear envelope is not well known. We hypothesized that Wnt/Ca²⁺ and Wnt/β-catenin pathways act in a coordinated manner and that [Ca²⁺], release facilitates β-catenin entry into the nucleus in mammalian cells. In a live assay using calcium dyes in PC3 prostate cancer cells, six Wnt peptides (3A, 4, 5A, 7A, 9B, and 10B) mobilized [Ca²⁺], but Wnt11 did not. Based upon dwell time (range = 15–30 s) of the calcium waveform, these Wnts could be classified into three classes: short, 3A and 5A; long, 7A and 10B; and very long, 4 and 9B. Wnt-activated [Ca²⁺] release was followed by an increase in intranuclear calcium and the depolarization of both the cell and nuclear membranes, determined by FM4-64. In cells treated with Wnts 5A, 9B, and 10B, paradigm substrates for each Wnt class, increased [Ca²⁺], was followed by β-catenin translocation into the nucleus in PC3, MCF7, and 253J, prostate, breast, and bladder cancer cell lines; both the increase in Wnt 5A, 9B, and 10B induced [Ca²⁺], release and β-catenin translocation are suppressed by thapsigargin in PC3 cell line. We propose a convergent model of Wnt signaling network where Ca²⁺ and β-catenin pathways may act in a coordinated, interdependent, rather than independent, manner.

Wnt (1) binding to its plasma membrane receptors (Frizzled or FZDs (2)) can activate multiple intracellular transducers (3–6), including the two major transducers β-catenin and Ca²⁺ via the canonical or non-canonical signaling pathways, respectively (7). Activation of gene transcription via canonical, Wnt/β-catenin signaling is the most studied Wnt pathway (7) and is known to play a key role in development and disease (8). Canonical signaling pathway leads to desequesteration of β-catenin from a multiprotein complex (9) followed by activation of transcription of LEF/TCF responsive genes. However, events downstream of receptor activation are dependent upon translocation of desequestered cytosolic β-catenin, a negatively charged 92-kDa protein, traversing the nuclear envelope (NE)(2) to enter the nucleoplasm (10). Activation of the non-canonical, β-catenin-independent, Wnt/Ca²⁺ pathway results in the mobilization of free intracellular calcium [Ca²⁺], (11) that regulates many cellular processes (12, 13), including cytoskeleton and cell motility of prostate cancer cells (14). The so-called canonical and the non-canonical pathways are considered to operate independently (15) or antagonistically (16–18). Such binary distinctions of Wnt signaling have come under scrutiny recently (19) (20), but this interpretation has been challenged rarely and only for one ligand of the 19 Wnt ligands, namely, Wnt5A (21, 22).

The NE acts as a barrier that limits ion and macromolecular exchange into the nucleoplasm. NE consists of an inner nuclear membrane facing the nuclear lamina, separated by a cisterna from the outer membrane that is contiguous with the endoplasmic reticulum. Invaginations of the supramolecular nuclear pore complex (NPC) provide the only route for the exchange of matter (with an upper limit of ~90–100 kDa) between the cell cytoplasm and nucleoplasm (23). Macromolecular transport across the NE is a complex process requiring protein recogni-

*This work was supported by the Prostate Cancer Research Centre Charity (UK Charity 802545).

¹To whom correspondence should be addressed: Prostate Cancer Research Centre, Division of Surgery, 3rd Floor Laboratories, Charles Bell House, 67 Riding House St., University College London, London W1W 7EJ, UK. Tel.: 44-20776799579; E-mail: aamir.ahmed@ucl.ac.uk.

The abbreviations used are: NE, nuclear envelope; DT, dwell time; NPC, nuclear pore complex.
A New, Convergent Model of Wnt Signaling in Mammalian Cells

...tation by specific amino acid motifs (e.g. nuclear localization signal sequence or the Armadillo domain repeat sequences) on the imported protein, first binding to the outer membrane of the NE and then traversing through the NPC by an energy expenditure mechanism such as GTPase Ran/transport receptor pathways (24). The 92-kDa β-catenin, unlike small macromolecules (<10 kDa, (25)) is at the upper limit for macromolecule entry through the NPC into the nucleoplasm and does not involve simple diffusion (9) or the Ran GTPase pathway (26–28), suggesting that β-catenin may encounter a considerable hurdle to traverse the NE.

The NE is also an ion-selective membrane with a dynamic trans-NE electrical potential that is responsive to changes in Ca\(^{2+}\) and K\(^{+}\) concentrations (reviewed by Mazzanti et al. (23)). Cytosolic [Ca\(^{2+}\)]\(_i\) regulates nuclear Ca\(^{2+}\) concentration (29); an increase in nucleoplasmic Ca\(^{2+}\) facilitates transport of large macromolecules (>10 kDa) across the NE (25, 30, 31), whereas a decrease in nucleoplasmic Ca\(^{2+}\) inhibits trans-NE macromolecular transport (25, 32–34). The cell nucleus has been termed a “negatively charged sink” (23) consisting largely of negatively charged DNA and regions of nucleosome core proteins (35). In HEK cells, the trans-NE potential has been measured at ~43 mV with an estimated electrical pore diameter of 11 μm (23, 36). In addition to its bulk, the ß-catenin protein has an overall negative charge (~20.8 at pH 7.0). Thus, the NE presents a physical as well as an electrical barrier for ß-catenin entry into the nucleoplasm, indicating a physicoelectrochemical mechanism for ß-catenin translocation across the NE.

We hypothesized that a Wnt-mediated increase in [Ca\(^{2+}\)]\(_i\), leads to an increase in the nucleoplasmic calcium and depolarization of NE that facilitates the passage of ß-catenin across the NE. Identity of Wnts that can activate [Ca\(^{2+}\)]\(_i\), release in mammalian cells is not well characterized. In prostate cancer cells, Wnt5A induces a large increase in [Ca\(^{2+}\)]\(_i\), (14), but it is not known whether this causes an increased nucleoplasmic Ca\(^{2+}\) and depolarization of the NE, and if there is subsequent translocation of ß-catenin to the nucleoplasm. To test our hypothesis, we first determined (i) whether Wnts other than Wnt5A also increase in [Ca\(^{2+}\)]\(_i\); (ii) that increase in [Ca\(^{2+}\)]\(_i\), due to Wnt/ Ca\(^{2+}\) signaling activation results in depolarization of nuclear membranes; (iii) that in cells, activated by multiple Wnt ligands, ß-catenin is translocated into the nucleus. By using a live fluorochrome assay and subsequent assessment of ß-catenin translocation to nucleoplasm in Wnt ligand-activated mammalian cancer cell lines (PC3, prostate, MCF7, breast, and 253J bladder cell lines), we demonstrate that a number of Wnt ligands increase intracellular and intranuclear Ca\(^{2+}\), with distinct kinetics, depolarization of the NE and translocation of ß-catenin to the nucleus; both the increase in Wnt induced [Ca\(^{2+}\)]\(_i\), release and ß-catenin translocation are suppressed by thapsigargin, an inhibitor of microsomal Ca\(^{2+}\)-ATPase (37). A model in which Wnt/Ca\(^{2+}\) and Wnt/ß-catenin pathways are coupled rather than independent, as thought previously, is proposed.

EXPERIMENTAL PROCEDURES

*Cell Lines—*All cell lines (PC3, prostate cancer, MCF7, breast cancer, 253J bladder cancer, and Cos 7 simian kidney) were obtained from ATCC via John R. W. Masters, University College London and cultured in RPMI 1640 (Invitrogen) medium containing 5 mM l-glutamine and FBS.

*Wnt Peptides—*Recombinant Wnt (3A, 4, 5A, 7A, 9B, 10B, and 11) peptides were purchased from R&D Systems (Minneapolis, MN). Wnt-peptide stock solutions were prepared in PBS.

*Ca\(^{2+}\)\(_i\), and Membrane Potential Imaging—*The imaging protocol was developed in our laboratory and has been described in detail elsewhere (14). Briefly, 10,000-20,000 PC3, MCF7, 253J, or Cos7 cells were plated on 35-mm FluoroDish (World Precision Instruments) and grown for 48 h; calcium indicators Fluo-4 (Invitrogen) and FuraRed (Invitrogen) at 1 ng/ml were added to FluoroDish containing only 1 ml of culture medium and incubated for 15–20 min at 37 °C. The culture medium was removed and washed (2×) and replaced with 1 ml of PBS (GIBCO). Live cell calcium imaging was performed on an Olympus Fluoview FV 1000 confocal microscope (Olympus KeyMed) equipped with a 20× dry objective (numerical aperture = 0.75). Calcium indicators were excited with an argon laser line (488 nm), and emissions were recorded in the green channel (500–560 nm) for Fluo-4 and red channel (600–700 nm) for FuraRed after addition of vehicle control (PBS) or Wnt X (30–600 ng/ml). Images were acquired every 1.1 or 2.2 s for up to 600–800 s; image and data acquisition was performed using Fluoview 1000 software (Olympos). Fluorescent intensity was measured and data exported as a tab delimited file for further analysis using a spreadsheet. All imaging experiments were performed in duplicate; intracellular calcium was measured in at least 3–12 different passages (passage numbers 25 to 37) of cell line for each Wnt ligand at 100 ng/ml. Wnt 11 was tested in at least five different passages at three different concentrations. To test whether the Wnt-activated calcium release was from [Ca\(^{2+}\)]\(_i\), stores, in some cases PC3 cells, loaded with calcium dyes, were incubated with 1–5 μM of thapsigargin (Sigma), resuspended in dimethyl sulfoxide, for 20 min at 37 °C, prior to addition of Wnt ligand and live calcium imaging (as described above).

Experiments with the membrane potential sensitive dye FM4-64 (Invitrogen) and Fluo4 were performed in exactly the same manner as for the Fluo4/FuraRed but with different emission spectra detection for the FM4-64 indicator, i.e. excitation with 488 nm for both indicators and emission detection at 500–560 nm for Fluo4 and 650–800 nm for FM4-64. All other imaging/data acquisition conditions were the same as above.

The experiments were performed using a 35-mm, glass-bottomed FluoroDish containing 1 ml of PBS at 37 °C to which ligands were added at desired concentration. In a static, non-superfusing assay system, there is a lag time before the start of a response, in this case, an increase in the intensity of the Fluo4 signal due to the release of free calcium. To measure the diffusion constant under these conditions, we used pontamine sky blue (Sigma), which fluoresces in the red spectrum with an excitation of 488 nm, using the standard practice for adding ligands; the diffusion constant was measured to be 23.3 ± 2.1 μm/s (means ± S.E., n = 8). The calcium wave (supplemental Movies), in response to Wnt ligands, traveled across the FluoroDish.
Data Analysis—After image acquisition, regions of interest were drawn over individual PC3 cells (up to 25) in a single frame, and calcium intensity measurements were made using FluoView 1000 software (Olympus). The measurements were exported as a tab-delimited file into a spreadsheet for further analysis, and Fluo4/Fura Red ratios were calculated. The waveform, a product of the ratio of Fluo4 and FuraRed over the period of measurement was used to measure the kinetics of the activation of [Ca2+]i release in PC3 cells in response to different Wnt ligands. The time constants (rise, dwell, and fall times) were calculated by first fitting the Fluo4/FuraRed ratio to a single Gaussian function (OriginLab Corp.); a lower (10%) and upper (90%) amplitude thresholding method was then used to calculate the time constants (s). Statistical significance was calculated using Mann-Whitney U test.

Immunocytochemistry of Mammalian Cell Lines—Immunostaining was performed in two different laboratories, independently, with the experimenters blind to the identity of the treatment. Either cells used in FluoroDish, post [Ca2+]i, experiments using dyes (see above), or grown in eight-well chamber glass slides (Lab Tek II, Nunc) were used. For Wnt ligand treatment, the culture medium replaced with PBS (without calcium) at 37 °C. The experiments were replicated for Wnt ligand or vehicle control as described for [Ca2+]i, measurements. Briefly, Wnt ligands were added and chamber slides incubated at 37 °C for up to 20 min. Chamber wells were washed 3× with 0.5 ml of PBS, and cells were fixed with 0.5 ml of 4% formalin for 30 min at 4 °C. Cells were washed 3× with ice-cold PBS and stored in 0.5 ml of PBS at 4 °C for immunostaining. In some experiments, PC3 cells were treated with thapsigargin as described above. For immunostaining, cells were washed twice for 5 min in TBST (20 mM Tris, pH 7.4, 0.9% NaCl, 0.1% Tween 20; Sigma). Cells were then incubated in 20% normal goat serum/TBST for 30 min at room temperature, the chambers were drained, and cells were incubated with mouse anti-β-catenin (ab22656, Abcam) at 1:500 dilution in normal goat serum/TBST overnight at 4 °C. Following two further 5-min washes in TBST, sections were incubated in goat anti-mouse peroxidase Fab (Abcam) at 1:500 dilution for 30 min at room temperature. Following a further two 5-min washes in TBST, cells were incubated with tyramide Cy3 (PerkinElmer Life Science) for 10 min at room temperature. Sections were washed twice for 5 min in TBST before nuclear counterstaining with DAPI. After a final two 5-min washes, the chambers were removed, and a coverslip was placed on slides using Permafluor (Thermo Shandon).

Imaging and Quantitation for β-Catenin Expression and Nuclear Co-localization Analysis—Fluorescence immunocytochemical staining for β-catenin expression in cell lines was imaged using Olympus Fluoview 1000 confocal system (Olympus KeyMed) mounted on an Olympus IX81 inverted microscope using a 20 × 0.7 numerical aperture or 40 × 1.0 numerical aperture dry objective with a zoom of 3×. DAPI (nuclear counterstain) was excited at 405 nm with an emission of 415–500 nm; Cy3 (β-catenin-labeled) signal was excited at 561 nm with an emission spectrum between 570–670 nm. Laser power, gain, and off-set settings for the photomultiplier tubes were kept similar for comparable samples. Z-stacks of at least three fields per sample were imaged and saved in Olympus FV (OIF or OIB) file format.

Nuclear co-localization of β-catenin was calculated by importing FV files for untreated, control, or treated cells, into colocalization plug-in of Fiji software (38) for Cy3 (β-catenin) and DAPI (nuclear) signals. Pearson co-relaction of colocalization were tabulated for 25–90 cells (from two to five different passages of cells) using regions of interest analysis. Statistical significance between untreated and treated cells was calculated using a Mann-Whitney U test.

Western Blotting—Cell membrane fraction from control untreated and Wnt-treated PC3 and MCF7 cells was isolated by differential centrifugation. Protein was quantified using a BCA protein assay and 10 μg/lane was loaded onto a 10% SDS-PAGE gel. Samples were treated with protease and phosphatase inhibitors (Roche Applied Science). The resolved protein was transferred onto a PVDF membrane and that was cut into strips of 250 to 75 and 70–35 kDa as visualized by using Rainbow molecular weight markers (Invitrogen). The two PVDF membrane strips were probed with the following antibodies: anti-phospho-LRP-6 (Ser-1490) that detects human LRP-6 when phosphorylated at Ser-1490 in Western blots (200 kDa, R&D Systems, AF6649, 2.5 μg/ml) and β-actin (42 kDa, Abcam, ab6276, 1:5000 (diluted)). Following incubation with appropriate secondary antibodies and ECL detection, the blots were exposed on Kodak BioMax light film (Carestream Health) in an autoradiography cassette.

Scratch Wound Assay—PC3 cells were grown in 24-well ImageLock plates (Essen Bioscience) to confluency and scratched using a wound maker device (Essen Bioscience). Imaging (at 2h intervals) and quantitation of wound width was performed as described previously (14) using Incucyte (Essen Bioscience). The rate of wound closure (± Wnts and thapsigargin) was calculated by fitting the line using linear regression function in Origin software (OriginLab, Corp.). Statistical significance of difference between the slopes for untreated and treated samples was calculated using F-test.

RESULTS

We have shown previously that Wnt/Ca2+ signaling is a key regulator of cytoskeleton and motility in PC3 cells with a 2.5-fold increase in [Ca2+]i, (14). Little is known about the ability of Wnts to induce [Ca2+]i release in mammalian cells, except that Wnt5A induces intracellular Ca2+ release in prostate cells. The first question we sought to answer was which other Wnts induce [Ca2+]i release in PC3 cell lines?

[Ca2+]i, Release in Response to Wnt Ligands—Addition of all Wnt ligands tested, with the exception of Wnt11, caused a change in ratio of Fluo4/Fura Red in PC 3 cells (supplemental Movies SM1–SM8). The ratio of Fluo4/FuraRed was plotted as a function of time (Fig. 1, representative trace for all Wnts tested), and the waveform was used to measure the kinetics of the activation of [Ca2+]i, in PC3 cells in response to different Wnt ligands. Parameters such as the amplitude and time constants (rise, dwell, and fall times) were calculated by first fitting the Fluo4/FuraRed ratio to a single Gaussian function. We then used a lower (10%) and upper (90%) amplitude thresholding method to calculate the timing parameters. The amplitude for
[Ca2+], release in response to Wnt ligands represents the peak of the calcium waveform. The amplitude of calcium release was Wnt ligand concentration-dependent (supplemental Fig. S1). A number of Wnt ligands (e.g. 5A, 9B, and 10B) also activated [Ca2+], release (39). The increase in [Ca2+], in response to Wnt ligands tested (5A, 9B, and 10B) was abolished after treatment of PC3 prostate cancer cell line. The x axis is time (s), and the y axis is the ratio of Fluo4/FuraRed (see the supplemental Movie for each ligand). The waveform for each ligand was used to calculate time constants (rise, dwell, and fall time) of calcium release.

Wnt3A, Wnt4, and Wnt5A; blue, Wnt9B; brown, Wnt10B; violet, Wnt11; yellow, vehicle control. All of the Wnts tested, except for Wnt11, induce intracellular calcium mobilization in PC3 prostate cancer cell line. The x axis is time (s), and the y axis is the ratio of Fluo4/FuraRed (see the supplemental Movie for each ligand). The waveform for each ligand was used to calculate time constants (rise, dwell, and fall time) of calcium release.

FIGURE 1. Representative trace of intracellular calcium release in PC3 cells in response to addition of 100 ng/ml Wnt ligand peptide (gray, Wnt3A; red, Wnt4; green, Wnt5A; pink, Wnt7A; blue, Wnt9B; brown, Wnt10B; violet, Wnt11; yellow, vehicle control). All of the Wnts tested, except for Wnt11, induce intracellular calcium mobilization in PC3 prostate cancer cell line. The x axis is time (s), and the y axis is the ratio of Fluo4/FuraRed. A representative trace of a calcium transient (cyan) evoked after the addition of thapsigargin is shown. The calcium signal (ratio of Fluo4/FuraRed) declined after an initial rise to reach the baseline within 120 s. In PC3 cells incubated with thapsigargin (5 µM) for 15 min, addition of Wnt5A (100 ng/ml, green), Wnt9B (200 ng/ml, blue), or Wnt 10B (200 ng/ml, brown) did not evoke an increase in [Ca2+], as seen in untreated PC3 cells (Fig. 1).

Calcium is a key regulator of the electrical activity in the nucleus (23). Intranuclear calcium and altered electrical activity are given in Fig. 4. Wnt5A was the only [Ca2+], activating Wnt ligand that follows the classical Michaelis-Menten kinetics, with a half-maximal concentration of 67 ng/ml. These results provide the first evidence of negative cooperativity of binding of Wnts (3A, 4, 9B, and 10B) to their receptor and show, also for the first time, that the molecular dynamics of [Ca2+], release, via receptor/ligand interaction by different Wnts, could provide critical regulatory mechanisms of Wnt/Ca2+ signaling.

FIGURE 2. [Ca2+], measurements were made as described under “Experimental Procedures” using Fluo4 and FuraRed dyes. Thapsigargin (at 5 µM final concentration) was added at the time indicated (arrow). A representative trace of a calcium transient (cyan) evoked after the addition of thapsigargin is shown. The calcium signal (ratio of Fluo4/FuraRed) declined after an initial rise to reach the baseline within 120 s. In PC3 cells incubated with thapsigargin (5 µM) for 15 min, addition of Wnt5A (100 ng/ml, green), Wnt9B (200 ng/ml, blue), or Wnt 10B (200 ng/ml, brown) did not evoke an increase in [Ca2+], as seen in untreated PC3 cells (Fig. 1).

Wnt Ligands Activate Calcium by a Negative Cooperative Mechanism—The kinetics of [Ca2+], release was further analyzed by using three different concentrations for each Wnt ligand. Box-whisker plots for the rise, dwell, and fall time as a function of low, medium, and high concentrations of each Wnt ligand is given in supplemental Figs. S2–S7). Time constants were significantly different between at least two different concentrations for Wnts 3A, 4, 5A, 9B, and 10B (supplemental Figs. S2–S4, S6, and S7), but no difference in these time constants was observed for Wnt7A (supplemental Fig. S5). We compared the DT constants for Wnts 3A, 4, 5A, 9B, and 10B in more detail to elucidate the mechanisms of [Ca2+], release by fitting the DT data to calculate the reaction-rate expression for a first-order reaction (Fig. 4). Strikingly, Wnts 3A, 4, 9B, and 10B show negative cooperativity but not Wnt5A. Negative cooperativity indicates a decrease in function (DT) as the ligand concentration increases; the rate constants for Wnts showing negative cooperativity are given in Fig. 4. Wnt5A was the only [Ca2+], activating Wnt ligand that follows the classical Michaelis-Menten kinetics, with a half-maximal concentration of 67 ng/ml. These results provide the first evidence of negative cooperativity of binding of Wnts (3A, 4, 9B, and 10B) to their receptor and show, also for the first time, that the molecular dynamics of [Ca2+], release, via receptor/ligand interaction by different Wnts, could provide critical regulatory mechanisms of Wnt/Ca2+ signaling.

Calcium release was further analyzed by using three different concentrations for each Wnt ligand.
membrane, as expected (Fig. 5). There was also an increase in the intensity of FM4-64 around the nucleus, indicating a depolarization of the transnuclear envelope potential in PC3 cells (Fig. 5; and for MCF7 cells, supplemental Fig. S8).

Wnt/Ca\(^{2+}\) Signaling and Cell Motility—One functional consequence of inhibition of downstream Wnt/Ca\(^{2+}\) signaling is a decrease in cell motility (14). To test whether inhibition of Wnt/Ca\(^{2+}\) signaling by Wnt/canonical signaling ligands such as Wnt9B and 10B, we used the wound scratch assay in which Wnt-induced [Ca\(^{2+}\)]\(_i\) release was inhibited by thapsigargin (supplemental Fig. S9). The rate of wound closure in wounded PC3 cells in the presence of Wnt 5A or 9B was similar to that of control untreated cells (supplemental Fig. S9). However, there

FIGURE 3. Box plot for time constants of the Wnt-induced calcium waveform. The time constants (A, rise; B, dwell; and C, fall times) were calculated from calcium waveform generated by the addition of each Wnt ligand (100 ng/ml) to PC3 cells. Significance of difference was calculated using a Mann-Whitney U test. All time constants were compared with Wnt3A, primarily; subsequent comparisons (e.g., Wnt4 to Wnt5A, Wnt4 to Wnt7A etc) are listed in descending order on top of box plots for each subsequent Wnt. ns, difference was not statistically significant.

FIGURE 4. Wnts that activate [Ca\(^{2+}\)]\(_i\) release show negative cooperativity. Wnts 3A (gray), 4 (red), 9B (blue), and 10B (dark blue) showed decreasing and significant difference between at least two incremental increasing concentrations for the dwell time for [Ca\(^{2+}\)]\(_i\) release. The dwell time constant at increasing Wnt concentration are fitted to a first-order reaction equation \(y_0 + A_1 \exp(-x/t_1)\), where \(y_0\) is \(Y \) offset, \(A_1\) is amplitude; and \(t_1\) is decay constant. The rate constant for the reaction \((k)\) is given in brackets for each Wnt ligand. No significant difference was found in the dwell times for different concentration for Wnt7A, and therefore, the data is not considered for this analysis. Wnt5A (green) showed a classic Michaelis-Menten kinetics with an estimated \(K_{1/2}\) of 67 ng/ml.

FIGURE 5. [Ca\(^{2+}\)]\(_i\) release results in an increase in intranuclear Ca\(^{2+}\) concentration. Snapshots of three time points (A–C) at \(t = 20, 110,\) and 250 s (A–C) in PC3 cells loaded with Fluo4 (green) and FM4 (red) are shown and treated with Wnt5A (100 ng/ml). Quantitative expression of the increase in cytosolic (red line, [Ca\(^{2+}\)]\(_i\)) and intranuclear Ca\(^{2+}\) (violet line) is given in D. At \(t = 20\) (A), steady state, base-line [Ca\(^{2+}\)]\(_i\), as a function of Fluo4 intensity is shown that shows an increase at \(t = 110\) s (B), subsequent to the addition of Wnt5A (black arrow), increase in [Ca\(^{2+}\)]\(_i\) is initiated (red arrow) with an increase in intranuclear Ca\(^{2+}\) following shortly \((\sim 33\) s) later (violet arrow). At \(t = 250\) s (C), there is an increase in the FM4 signal in the cell and nuclear membranes (brown arrows). A representative from three independent measurements is shown. Imaging was performed on Leica SP2 confocal and DMRB microscope with 20 × 0.8 numerical aperture water dipping objective and 12-bit gray depth using similar conditions to the FV1000.
A New, Convergent Model of Wnt Signaling in Mammalian Cells

FIGURE 6. β-Catenin (red) translocation to the nucleus (counterstained with DAPI, blue) in response to activation by Wnt ligands (100 ng/ml) in in PC3 prostate cancer cell line, control (A) or after activation with Wnt5A (B), Wnt 9B (C), and Wnt 10B (D). Cells were grown in eight-well chamber slides, treated with Wnt ligands, fixed, and stained for β-catenin using protocols described under “Experimental Procedures.” Z-stacks obtained using an Olympus confocal system are shown. Representative images of three individual experiments are shown. Scale bar, 10 μm.

We also used the paradigm ligands of the Wnt classes (as categorized in Fig. 3) in two other cell lines to determine that an increase in [Ca2+]\textsubscript{i}, release was followed by translocation of β-catenin to the nucleus. The data for MCF7 and 253J cells, with β-catenin expression visible in the cell nucleus after treatment with Wnt ligands, are shown in supplemental Fig. S13. These results indicate that increase in [Ca2+]\textsubscript{i}, in response to a variety of Wnt ligands leads to a depolarization of the nuclear envelope and β-catenin translocation from the cytosol to the nucleus.

DISCUSSION

Wnt signaling is categorized into independent, canonical, and non-canonical pathways, with β-catenin as a key transducer of the former and Ca2+\textsubscript{i} as a major effector molecule for the latter (other non-canonical pathways include the planar cell polarity (42, 43) and cGMP/phosphodiesterase pathways (44)). The Wnt/β-catenin pathway is used as a synonym for the canonical pathway (45–47). The categorization is not absolute as recent examples show some cross-talk (21, 22); however, the distinction of β-catenin-dependent and -independent pathways to describe Wnt signaling remains unresolved (7). In this report, we have addressed two key questions regarding Wnt signaling in mammalian cells: 1) which and how many Wnt ligands can mobilize intracellular calcium and 2) what are the mechanisms of β-catenin entry into the nucleus? Our data show for the first time that in mammalian cells, six of the seven Wnts tested in a direct calcium measurement assay mobilize [Ca2+]\textsubscript{i}, including Wnt ligands previously thought to act only via β-catenin pathway (e.g. Wnt 9A and 10B) (Fig. 1 and supplemental Movies SM1–SM7). A discharge of Ca2+\textsubscript{i} from the endoplasmic reticulum and inhibition of microsomal Ca2+-ATPase by incubation of cells with thapsigargin abolished the increase in Wnt-induced [Ca2+]\textsubscript{i}, release (Fig. 2) and reduced β-catenin translocation to the nucleus (supplemental Fig. S11). Thapsigargin is resuspended in dimethyl sulfoxide. Dimethyl sulfoxide induces Ca2+ spikes in a variety of cells (48); our results in PC3 cells concur with previous observations (supplemental Fig. S14). Thapsigargin also induced Ca2+ transient, which declined to reach the base line within 120 s (Fig. 2). How-
ever, a 15-min incubation with dimethyl sulfoxide had no effect on Wnt-induced increase in \([\text{Ca}^{2+}]\), (supplementary Fig. S14), unlike thapsigargin treatment, which abolished Wnt-induced \([\text{Ca}^{2+}]\), release (Fig. 2), indicating that Wnt activates store-operated \([\text{Ca}^{2+}]\) release.

The results presented here provide first evidence that key transducers of canonical and non-canonical pathways converge to activate Wnt signaling in mammalian cells. A new convergent model of Wnt signaling network is proposed (Fig. 8), in which multiple Wnt ligands in a variety of mammalian cell lines, increase free intracellular and nucleoplasmic \([\text{Ca}^{2+}]\), depolarize the NE, and increase the translocation of \(\beta\)-catenin to the nucleoplasm, suggesting a coupled rather than independent Wnt/\([\text{Ca}^{2+}]\) and \(\beta\)-catenin pathway.

Categorization of Wnt Ligands and Distinction into Canonical and Non-canonical Pathways—The classification of Wnt ligands mediated signaling via the \(\beta\)-catenin or calcium pathways is largely based upon their ability to induce a secondary axis in *Xenopus* embryos (49) or their ability to transform C57 mg cells (50). Ecotopic expression of Wnts such as Wnt1, 3A, 8, and 8B was found to induce a secondary axis in *Xenopus* embryo and stabilize \(\beta\)-catenin and other Wnts such as Wnt5A and 11 did not (12). Members of the Wnt1 class include Wnt1, Wnt2, Wnt3, Wnt3A, Wnt8, Wnt8B, and Wnt10B (Wnt1 shares 96% identity in amino acid sequence to Wnt10B and overlap in function (51)) and induce secondary body axis in *Xenopus* and activates the canonical Wnt/\(\beta\)-catenin pathway. The Wnt5A class cannot induce secondary body axis formation in *Xenopus* and includes Wnt4, Wnt5A, Wnt5B, Wnt6, Wnt7A, and Wnt11 (see Ref. 52 for a review). Studies in zebrafish embryos indicate that Wnt5A and Wnt11 but not Wnt8 over-expression induce calcium release (11). However, little is known about the ability of Wnts, other than Wnt5A, to induce \([\text{Ca}^{2+}]\), release in prostate or other mammalian cells.

However, these distinctions have been blurred when it was shown that Wnts associated with the so-called non-canonical pathway are capable of transforming cells in culture (13, 53, 54). In addition, the ligands of Wnt family are likely to share the cell membrane receptor, and most cells are exposed to a variety of Wnt ligands simultaneously. A balance of these signals and the pathways they might activate (e.g. Wnt/\(\beta\)-catenin or Wnt/\([\text{Ca}^{2+}]\) or both) could determine, for example, cell fate of a stem cell or whether cancer cells metastasize (e.g. by acquiring increased capacity for motility). Wnt 11 is the only ligand tested in our study that did not mobilize \([\text{Ca}^{2+}]\), (supplemental Movie SM8).

A possible explanation for this may reside in primary amino acids that deviates from the consensus Wnt sequence in five amino acid residues, in close proximity to RWNC motif (supplementary Fig. S15).

\(\beta\)-Catenin Translocation into Nucleus Subsequent to Increase Nucleoplasmic \([\text{Ca}^{2+}]\) and Depolarization of the NE—Macromolecular transport across the NE is comprised of a variety of independent and interdependent biochemical and electrochemical processes (23, 24). These may involve a nuclear localization signal binding of proteins intended for the nucleus with other cytosolic proteins to facilitate their entry requiring energy-dependent mechanisms or phosphorylation of specific proteins (55). Although \(\beta\)-catenin does not contain nuclear localization signal, by using in *vitro*, biochemical experiments, Sharma and colleagues (56) have shown that this recognition may occur by the interaction of the Arm domain of \(\beta\)-catenin with NPC component proteins. Upon reaching the outer NE in response Wnt signaling, \(\beta\)-catenin faces considerable barriers to entry into the nucleoplasm. Sharma *et al.* (56) describe the targeting of \(\beta\)-catenin to the outer NE, but their experiments do not explain how \(\beta\)-catenin may overcome significant biophysical hurdles (a molecular mass of 92 kDa and an overall negative charge of \(-20.8\) at pH 7.0) to traverse the NE.

Other mechanisms involve silencing of NPC channel activity for transport of medium-sized (~40 kDa) transcription factors (such as NFkB or SP1) (57). \([\text{Ca}^{2+}]\) ions also play a role in the trans-NE transport of macromolecules (31), and it has been proposed that depletion of intranuclear \([\text{Ca}^{2+}]\) can inhibit macromolecular transport of particularly intermediate size (70 kDa) but also small (<10 kDa) macromolecules across NE (25). Translocation of \(\beta\)-catenin, a 92-kDa transcription factor, from the cytosol to the nucleus is a key event in the so-called canon-
A New, Convergent Model of Wnt Signaling in Mammalian Cells

Acknowledgments—We are grateful to Jane Pendjiky for help with Fig. 8 and John Masters for discussions and support.

REFERENCES

1. Nusse, R., and Varmus, H. E. (1982) Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell 31, 99–109
2. Bhanoit, P., Brink, M., Samos, C. H., Hsieh, J. C., Wang, Y., Macke, J. P., Andrew, D., Nathans, J., and Nusse, R. (1996) A new member of the frizzled family from Drosophila functions as a Wingless receptor. Nature 382, 225–230
3. Rauch, G. J., Hammerschmidt, M., Bader, P., Schauerte, H. E., Strähle, U., Ingham, P. W., McMahon, A. P., and Haefter, P. (1997) Wnt5 is required for tail formation in the zebrafish embryo. Cold Spring Harb. Symp. Quant. Biol. 62, 227–234
4. Sliusarski, D. C., Corces, V. G., and Moon, R. T. (1997) Interaction of Wnt and a Frizzled homologue triggers G-protein-linked phosphatidylinositol signalling. Nature 390, 410–413
5. Peifer, M., Berg, S., and Reynolds, A. B. (1994) A repeating amino acid motif shared by proteins with diverse cellular roles. Cell 76, 789–791
6. Peifer, M., Rauskolb, C., Williams, M., Riggelman, B., and Wieschaus, E. (1993) The segment polarity gene armadillo interacts with the wingless signalling pathway in both embryonic and adult pattern formation. Development 111, 1029–1043
7. Nusse, R. (2012) Wnt signalling. Cold Spring Harb. Perspect. Biol. 4, a011163
8. Clevers, H. (2006) Wnt/beta-catenin signalling in development and disease. Cell 127, 469–480
9. Suh, E. K., and Gumbiner, B. M. (2003) Translocation of beta-catenin into the nucleus independent of interactions with FG-rich nuclearoporins. Exp. Cell Res. 290, 447–456
10. Moon, R. T., Kohn, A. D., De Ferrari, G. V., and Kaykas, A. (2004) WNT and beta-catenin signalling: diseases and therapies. Nat. Rev. Genet. 5, 691–701
11. Sliusarski, D. C., Yang-Snyder, J., Busa, W. B., and Moon, R. T. (1997) Modulation of embryonic intracellular Ca2+ signaling by Wnt-5A. Dev. Biol. 182, 114–120
12. Kühn, M., Sheldahl, L. C., Park, M., Miller, J. R., and Moon, R. T. (2000) The Wnt/Ca2+ pathway: a new vertebrate Wnt signaling pathway takes shape. Trends Genet. 16, 279–283
13. Klaus, A., and Birchmeier, W. (2008) Wnt signalling and its impact on development and cancer. Nat. Rev. Cancer 8, 387–398
14. Wang, Q., Symes, A. J., Kane, C. A., Freeman, A., Nariculan, J., Munson, P., Thrasivoulou, C., Masters, J. R., and Ahmed, A. (2010) A novel role for Wnt/Ca2+ signaling in actin cytoskeleton remodeling and cell motility in prostate cancer. PLoS One 5, e10456
15. Kohn, A. D., and Moon, R. T. (2005) Wnt and calcium signaling: beta-catenin-independent pathways. Cell Calcium 38, 439–446
16. Kühn, M., Geis, K., Sheldahl, L. C., Pukrop, T., Moon, R. T., and Wedlich, D. (2001) Antagonistic regulation of convergent extension movements in Xenopus by Wnt/beta-catenin and Wnt/Ca2+ signaling. Mech. Dev. 106, 61–76
17. Topol, L., Jiang, X., Choi, H., Garrett-Beal, L., Carolan, P. J., and Yang, Y. (2003) Wnt-5a inhibits the canonical Wnt pathway by promoting GSK-3-independent beta-catenin degradation. J. Cell Biol. 162, 899–908
18. Nemeth, M. I., Topol, L., Anderson, S. M., Yang, Y., and Bodine, D. M. (2007) Wnt5a inhibits canonical Wnt signaling in hematopoietic stem cells and enhances repopulation. Proc. Natl. Acad. Sci. U.S.A. 104, 15436–15441
19. van Amerongen, R., and Nusse, R. (2009) Towards an integrated view of Wnt signaling in development. Development 136, 3205–3214
20. Mikels, A. J., and Nusse, R. (2006) Purified Wnt5a protein activates or inhibits beta-catenin-TCF signalling depending on receptor context. PLoS Biol. 4, e115
21. van Amerongen, R., Fuerer, C., Mizutani, M., and Nusse, R. (2012) Wnt5a can both activate and repress Wnt/beta-catenin signaling during mouse embryonic development. Dev. Biol. 369, 101–114
22. He, X., Saint-Jeannet, J. P., Wang, Y., Nathans, J., Dawid, I., and Varmus, H. (1997) A member of the Frizzled protein family mediating axis induction by Wnt-5a. Science 275, 1652–1654
23. Mazzanti, M., Bustamante, J. O., and Oberleithner, H. (2001) Electrical dimension of the nuclear envelope. Physiol. Rev. 81, 1–19
24. Roat, M. P., and Aitchison, J. D. (2001) The nuclear pore complex as a transport machine. J. Biol. Chem. 276, 16593–16596
25. Stehno-Bittel, L., Perez-Terzic, C., and Clapham, D. E. (1995) Diffusion across the nuclear envelope inhibited by depletion of the nuclear Ca2+ store. Science 270, 1835–1838
26. Elefteriou, A., Yoshida, M., and Henderson, B. R. (2001) Nuclear export of human beta-catenin can occur independent of CRM1 and the adenomato-sous polyposis coli tumor suppressor. J. Biol. Chem. 276, 25883–25888
27. Yokoya, F., Imamoto, N., Tachibana, T., and Yoneda, Y. (1997) Beta-catenin can be transported into the nucleus in a Ran-unassisted manner. Mol. Biol. Cell 10, 1119–1131
28. Fagotto, F., Glück, U., and Gumbiner, B. M. (1998) Nuclear localization signal-independent and importin/karyopherin-independent nuclear import of beta-catenin. Curr. Biol. 8, 181–190
29. Allbritton, N. L., Oancea, E., Kuhn, M. A., and Meyer, T. (1994) Source of nuclear calcium signals. Proc. Natl. Acad. Sci. U.S.A. 91, 12458–12462
30. Perez-Terzic, C., Gacy, A. M., Bortolon, R., Dzeja, P. P., Puceat, M., Jacini, M., Prendergast, F. G., and Terzic, A. (1999) Structural plasticity of the cardiac nuclear pore complex in response to regulators of nuclear import. Circ. Res. 84, 1292–1301
31. Sarma, A., and Yang, W. (2011) Calcium regulation of nucleocytoplasmic transport. Protein Cell 2, 291–302
32. Wang, H., and Clapham, D. E. (1999) Conformational changes of the in situ nuclear pore complex. Biophys. J. 77, 241–247
33. Greber, U. F., and Gerace, L. (1995) Depletion of calcium from the lumen of endoplasmic reticulum reversibly inhibits passive diffusion and signal-mediated transport into the nucleus. J. Cell Biol. 128, 5–14
34. Perez-Terzic, C., Pyle, J., Jacini, M., Stehno-Bittel, L., and Clapham, D. E. (1996) Conformational states of the nuclear pore complex induced by depletion of nuclear Ca2+ stores. Science 273, 1875–1877
35. Luger, K., Mader, A. W., Richmond, R. K., Sargent, D. F., and Richmond,
A New, Convergent Model of Wnt Signaling in Mammalian Cells

T. J. (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389, 251–260
36. Giulian, D., and Diacumakos, E. G. (1977) The electrophysiological mapping of compartments within a mammalian cell. J. Cell Biol. 72, 86–103
37. Thastrapu, O., Cullen, P. J., Drabak, B. K., Hanley, M. R., and Dawson, A. P. (1990) Thapsigargin, a tumor promoter, discharges intracellular Ca2+ stores by specific inhibition of the endoplasmic reticulum Ca2+-ATPase. Proc. Natl. Acad. Sci. U.S.A. 87, 2466–2470
38. Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J. Y., White, D. J., Hartenstein, V., Eliceiri, K., Tomancak, P., and Cardona, A. (2012) Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682
39. Jan, C. R., Ho, C. M., Wu, S. N., and Tseng, C. J. (1999) Mechanism of rise and decay of thapsigargin-evoked calcium signals in MDCK cells. Life Sci. 64, 259–267
40. Cong, F., Schweizer, L., and Varmus, H. (2004) Wnts across the plasma membrane to activate the β-catenin pathway by forming oligomers containing its receptors, Frizzled and LRP. Development 131, 5103–5115
41. He, X., Semenov, M., Tamai, K., and Zeng, X. (2004) LDL receptor-related proteins 5 and 6 in Wnt/β-catenin signaling: arrows point the way. Development 131, 1663–1677
42. Gubb, D., and García-Bellido, A. (1982) A genetic analysis of the determination of cuticular polarity during development in Drosophila melanogaster. J. Embryol. Exp. Morphol. 68, 37–57
43. Hammerschmidt, M., Pelegri, F., Mullins, M. C., Kane, D. A., Brand, M., van Eeden, F. J., Furutani-Seiki, M., Granato, M., Haftter, P., Heisenberg, C. P., Jiang, Y. J., Kelsh, R. N., Odenthal, J., Warga, R. M., and Nüsslein-Volhard, C. (1996) Mutations affecting morphogenesis during gastrulation and tail formation in the zebrafish, Danio rerio. Development 123, 143–151
44. Ahumada, A., Slusarski, D. C., Liu, X., Moon, R. T., Malbon, C. C., and Wang, H. Y. (2002) Signaling of rat Frizzled-2 through phosphodiesterase and cyclic GMP. Science 298, 2006–2010
45. Huelsken, J., and Behrens, J. (2002) The Wnt signalling pathway. J. Cell Sci. 115, 3977–3978
46. Veeman, M. T., Axelrod, J. D., and Moon, R. T. (2003) A second canon. Functions and mechanisms of β-catenin-independent Wnt signaling. Dev. Cell 5, 367–377
47. Ke, J., Zhang, C., Hari Kumar, K. G., Zylastra-Diegel, C. R., Wang, L., Mowry, L. E., Miller, L. J., Williams, B. O., and Xu, H. E. (2012) Modulation of β-catenin signaling by glucagon receptor activation. PloS One 7, e33676
48. Morley, P., and Whitfield, J. F. (1993) The differentiation inducer, dimethyl sulfoxide, transiently increases the intracellular calcium ion concentration in various cell types. J. Cell Physiol. 156, 219–225
49. Torres, M. A., Yang-Snyder, J. A., Purcell, S. M., DeMarais, A. A., McGrew, L. L., and Moon, R. T. (1996) Activities of the Wnt-1 class of secreted signaling factors are antagonized by the Wnt-5A class and by a dominant negative cadherin in early Xenopus development. J. Cell Biol. 133, 1123–1137
50. Wong, G. T., Gavin, B. J., and McMahon, A. P. (1994) Differential transformation of mammary epithelial cells by Wnt genes. Mol. Cell Biol. 14, 6278–6286
51. Lekven, A. C., Buckles, G. R., Kostakis, N., and Moon, R. T. (2003) Wnt1 and wnt10b function redundantly at the zebrafish midbrain-hindbrain boundary. Dev. Biol. 254, 172–187
52. Westendorf, J. J., Kahler, R. A., and Schroeder, T. M. (2004) Wnt signaling in osteoblasts and bone diseases. Gene 341, 19–39
53. Weeraratna, A. T., Jiang, Y., Hostetter, G., Rosenblatt, K., Duray, P., Bittner, M., and Trent, J. M. (2002) Wnt5a signaling directly affects cell motility and invasion of metastatic melanoma. Cancer Cell 1, 279–288
54. Oko, L., Ziegler, T. R., Gu, L. H., Eisenberg, L. M., and Yang, V. W. (2004) Wnt11 signaling promotes proliferation, transformation, and migration of IEC6 intestinal epithelial cells. J. Biol. Chem. 279, 26707–26715
55. Moroianu, I., Hijioka, M., Blobel, G., and Radu, A. (1995) Mammalian karyopherin α18 and α2β heterodimers: α1 or α2 subunit binds nuclear localization signal and β subunit interacts with peptide repeat-containing nucleoporins. Proc. Natl. Acad. Sci. U.S.A. 92, 6532–6536
56. Sharma, M., Jamieson, C., Johnson, M., Molloy, M. P., and Henderson, B. R. (2012) Specific armadillo repeat sequences facilitate β-catenin nuclear transport in live cells via direct binding to nucleoporins Nup62, Nup153, and RanBP2/Nup358. J. Biol. Chem. 287, 819–831
57. Bustamante, J. O., Oberleithner, H., Hanover, J. A., and Liepins, A. (1995) Patch clamp detection of transcription factor translocation along the nuclear pore complex channel. J. Membr. Biol. 146, 253–261