PD-1/PD-L1 inhibitor plus chemotherapy versus bevacizumab plus chemotherapy in first-line treatment for non-squamous non-small-cell lung cancer

Hui Yu,1,2,3 Ping Chen,1,2,3 Liangping Xia,1,2,3 Sha Fu,4 Chen Chen,1,2,5 Xuanye Zhang,1,2,6 Lina He,1,2,6 Bei Zhang,1,2,6 Yixin Zhou,1,2,3 Shaodong Hong1,2,6

ABSTRACT
Anti-PD-1/programmed death-ligand 1 (PD-L1) antibody plus platinum-based chemotherapy (PBC) has replaced PBC as first-line treatment for patients with non-squamous (sq) non-small cell lung cancer (NSCLC) lacking targetable driver mutations. However, few studies have directly compared immune checkpoint inhibitor (ICI) plus chemotherapy with bevacizumab plus chemotherapy (beva +chemo) in this setting. Herein, we conducted an indirect comparison for anti-PD-1/PD-L1 antibody plus chemotherapy (ICI +chemo) versus beva +chemo in non-sq NSCLC using the frequentist methods. The main outcomes analyzed include progression-free survival (PFS), overall survival (OS), and objective response rate (ORR). Data were subtracted from randomized trials comparing ICI +chemo or beva +chemo against PBC. Fourteen trials involving 6165 patients were included. Direct meta-analyses showed that both ICI +chemo (PFS: HR 0.58, OS: HR 0.73, ORR: relative risk (RR) 1.66) and beva +chemo (PFS: HR 0.74, OS: HR 0.89, ORR: RR 1.62) improved clinical outcomes compared with PBC. Indirect comparison showed that ICI +chemo reduced the risk of disease progression (HR 0.78, 95% CI 0.60 to 1.00) and death (HR 0.82, 95% CI 0.71 to 0.94) compared with beva +chemo. The PFS benefits with ICI +chemo over beva +chemo were non-significant in those with negative PD-L1 expression and non-smokers. In conclusion, ICI +chemo is superior to beva +chemo in first-line treatment for non-sq NSCLC.

INTRODUCTION
Lung cancer is the leading cause of cancer-related mortality worldwide.1 For decades, platinum-based chemotherapy (PBC) had been the standard-of-care first-line treatment for patients with advanced non-squamous (sq) non-small cell lung cancer (NSCLC) before the era of immune checkpoint inhibitor (ICI) therapies. The addition of bevacizumab to PBC (bevacizumab plus chemotherapy (beva +chemo)) further improved patients’ survival relative to PBC in non-sq NSCLC.2–4 For patients lacking sensitizing mutations, the combination of antiprogrammed cell death 1 (PD-1) or antiprogrammed cell death-ligand 1 (PD-L1) antibody with PBC (ICI +chemo) has significantly prolonged overall survival (OS) and progression-free survival (PFS) compared with PBC alone.5 However, since the control group of these trials was PBC alone rather than beva +chemo, it remains unknown whether ICI +chemo is superior to beva +chemo for non-sq NSCLC or whether we should retain ICI as second-line treatment following beva +chemo.

Indirect treatment comparison has been demonstrated to provide useful evidence in the absence of randomized controlled trials involving a direct comparison.6 Due to the lack of direct comparison, we conducted this indirect meta-analysis to investigate the magnitude of treatment benefit of ICI+chemo over beva +chemo in non-sq NSCLC.

METHODS
Data sources and searches
PubMed, Embase, Cochrane Library, and major oncology conferences were searched for relevant studies. We used main subject terms including PD-1, PD-L1, bevacizumab, non-small cell lung carcinoma, and randomized controlled trials, etc (online supplemental additional methods).

Data extraction
The following outcomes were extracted from the included trial: PFS, OS, objective response rate (ORR) and treatment-related adverse events (AEs). Other details such as the acronym of the trial, treatment, and
Assessment of study quality
Trial quality was assessed by using Cochrane Risk of Bias Tool.7

Statistical analysis
We first performed direct meta-analyses comparing ICI+chemo with chemotherapy, and beva+chemo with chemotherapy, respectively. We calculated the pooled HR for PFS and OS by applying the generic inverse-variance methods model and the pooled relative risks (RRs) for ORR and AEs by using the Mantel-Haenszel method. Heterogeneity was evaluated using Cochrans Q test; a p value of <0.1 and I² of ≥50% represented statistical heterogeneity, and a random effect model was used; otherwise, a fixed effect model was used.

Linked by arm C (chemotherapy), indirect comparisons between arm A (ICI+chemo) and arm B (beva+chemo) were further performed, applying the frequentist methods with the following formula8: log HR(AB) = log HR(A|C) + log HR(B|C), and its SE for the log HR was SE(logHR(AB)) = \sqrt{SE(logHR(A|C))^2 + SE(logHR(B|C))^2}. RR was calculated in the same way.

All statistical analyses were conducted using Stata software V.16.0. A two-sided p value of <0.05 defined statistical significance.

RESULTS
Eligible studies and patient characteristics
A total of 14 studies were included (online supplemental additional figure S1), 6 of which investigated the efficacy of beva+chemo (n=1264) versus chemotherapy (n=1219), while the other 8 trials explored ICI+chemo (n=2177) versus chemotherapy (n=1505). Detailed characteristics of the included trials are summarized in table 1 and online supplemental additional table S1.

Direct comparisons between ICI+Chemo or Beva+Chemo and chemotherapy
The pooled results showed that ICI+chemo led to significant improvements in PFS (HRICI+chemo/chemo 0.58, 95% CI 0.54 to 0.63), OS (HRICI+chemo/chemo 0.73, 95% CI 0.66 to 0.81), and ORR (RRICI+chemo/chemo 1.66, 95% CI 1.46 to 1.88) compared with PBC. Likewise, treatment benefits were found with the addition of bevacizumab to PBC in terms of PFS (HRbeva+chemo/chemo 0.74, 95% CI 0.58 to 0.94), OS (HRbeva+chemo/chemo 0.89, 95% CI 0.80 to 0.97), and ORR (RRbeva+chemo/chemo 1.62, 95% CI 1.29 to 2.03) (figure 1A–C). Nevertheless, the two combinatorial treatments increased the risk of ≥3 AEs (RRICI+chemo/chemo 1.20, 95% CI 1.09 to 1.32; RRbeva+chemo/chemo 1.46, 0.99 to 2.14; figure 1D).

Indirect comparisons between ICI+Chemo and Beva+Chemo
In indirect analyses, ICI+chemo has a trend to reduce the risk of disease progression or death (HRICI+chemo/beva+chemo 0.78, 95% CI 0.60 to 1.00; p=0.059) compared with beva+chemo, and is superior to beva+chemo in reducing the risk of death (HRICI+chemo/beva+chemo 0.82, 95% CI 0.71 to 0.94; p<0.01) (figure 1E). However, the two regimens were similar in terms of ORR (RRICI+chemo/beva+chemo 1.02, 95% CI 0.79 to 1.33; p=0.85) (figure 1E).

In subgroup analyses by PD-L1 expression level, when compared with beva+chemo, ICI+chemo led to a significantly longer PFS for patients with PD-L1 tumor proportion score (TPS) of ≥50% (HRICI+chemo/beva+chemo 0.51, 95% CI 0.37 to 0.70; p=0.01) but not for patients with PD-L1 TPS of 1%–49% (HRICI+chemo/beva+chemo 0.81, 95% CI 0.60 to 1.10; p=0.17), or PD-L1 TPS of <1% (HRICI+chemo/beva+chemo 0.92, 95% CI 0.69 to 1.23; p=0.56) (figure 1F). In most of the other subgroups, there was a consistent trend towards improved PFS with ICI+chemo versus beva+chemo, except that in non-smokers, the HR for PFS was near 1 (0.95, 95% CI 0.63 to 1.42).

For safety profiles, the frequency of grade 3 or more severe AEs was similar between ICI+chemo and beva+chemo (RRICI+chemo/beva+chemo 0.82, 95% CI 0.55 to 1.22; p=0.33). However, treatment-related deaths occurred less for those receiving ICI+chemo than for those treated with beva+chemo (RRICI+chemo/beva+chemo 0.56, 95% CI 0.32 to 0.97; p=0.02) (online supplemental additional figure S2).

DISCUSSION
In this indirect meta-analysis, ICI +chemo was found to prolong both PFS and OS without increasing toxicity when compared with beva+chemo in the first-line treatment for advanced non-sq NSCLC. The PFS benefit was more obvious in patients with PD-L1 TPS of ≥50%. These findings consolidate the role of ICI in front-line treatment of patients with NSCLC, especially for those with high PD-L1 expression.

In updated analysis from IMpower150 study, atezolizumab plus carboplatin plus paclitaxel failed to prolong PFS (HR 0.91, 95% CI 0.78 to 1.06) or OS (HR 0.85, 95% CI 0.71 to 1.03) compared with bevacizumab plus carboplatin plus paclitaxel.9 This raised growing concern about whether ICI should be placed in first-line setting. This concern is relevant because few studies have used beva+chemo as control arm despite the fact that this regimen is more efficacious than chemotherapy alone. In our study with more patients analyzed, ICI +chemo and beva+chemo yielded similar ORR (RR 1.02, 95% CI 0.79 to 1.33). However, ICI +chemo was associated with a 22% reduction in the risk of disease progression or death (HR 0.78, 95% CI 0.60 to 1.00) and a 18% reduction in the risk of death (HR 0.82, 95% CI 0.71 to 0.94) compared with beva+chemo. One important reason for the discrepancies among ORR, PFS and OS benefit is the longer duration of response for patients treated with ICI +chemo than with beva+chemo (median 8.4–36.3 months vs 6.1–8.0 months, table 1). Another important finding was that the magnitude of survival benefit with ICI +chemo was reduced when the control group shifted from

Yu H, et al. J Immunother Cancer 2021;9:e003431. doi:10.1136/jitc-2021-003431

Open access
Table 1 Characteristics of included trials

Trial name*	Arm	N	Age	Male (%)	ECOG 1 (%)	Smoke (%)	ORR (%)	OS (months)	PFS (months)	DOR (months)	HR PFS (95% CI)	HR OS (95% CI)
ECOG4599, 2006	TC +bevacizumab	417	56.0	50.4	60.0	NR	35.0	12.3	6.2	NR	0.66 (0.57 to 0.77)	0.79 (0.67 to 0.92)
	TC	433	58.0	58.4	60.0	NR	15.0	10.3	4.5	NR	Ref	Ref
JO19907, 2010	TC +bevacizumab	121	61.0	63.6	49.0	69.0	60.7	22.8	6.9	6.9	0.61 (0.42 to 0.89)	0.99 (0.65 to 1.50)
	TC	59	60.0	64.4	51.0	68.0	31.0	23.4	5.9	5.6	Ref	Ref
AVAIL, 2010	GP +bevacizumab	351	59.0	62.4	59.0	NR	34.6	13.4	6.5	6.1	0.85 (0.73 to 1.00)	1.03 (0.86 to 1.23)
	GP	347	59.0	64.3	59.0	NR	21.6	13.1	6.1	4.7	Ref	Ref
PRONOUNCE, 2015	AC	182	66.0	57.5	52.7	90.1	23.6	10.5	4.4	NR	1.06 (0.84 to 1.35)	1.07 (0.83 to 1.36)
	TC +bevacizumab	179	65.0	58.1	53.1	96.1	27.4	11.7	5.5	NR	Ref	Ref
ERACLE, 2015	AP	60	60.0	70.0	22.0	70.0	40.0	14.0	8.1	NR	0.79 (0.53 to 1.17)	0.93 (0.60 to 1.42)
	TC +bevacizumab	58	62.0	77.6	21.0	60.0	51.7	14.4	8.3	NR	Ref	Ref
BEYOND, 2015	TC +bevacizumab	138	57.0	54.3	75.0	50.0	54.0	24.3	9.2	8.0	0.40 (0.29 to 0.54)	0.68 (0.50 to 0.93)
	GC	138	56.0	55.8	80.0	44.0	26.0	17.7	6.5	5.3	Ref	Ref
KEYNOTE-189, 2020	AC/P+pembrolizumab	410	65.0	62.0	53.9	88.3	48.0	22.0	9.0	11.2	0.48 (0.40 to 0.58)	0.56 (0.45 to 0.70)
	AC	206	63.5	52.9	60.7	87.9	19.4	10.7	4.9	7.8	Ref	Ref
KEYNOTE-021, 2020	AC +pembrolizumab	60	62.5	37.0	58.0	75.0	58.0	34.5	24.5	36.3	0.54 (0.35 to 0.83)	0.71 (0.45 to 1.12)
	AC	63	63.2	41.0	54.0	86.0	33.0	21.1	9.9	22.8	Ref	Ref
IMpower130, 2019	Nab-TG +atezolizumab	451	64.0	59.0	58.0	89.0	49.2	18.6	7.0	8.4	0.64 (0.54 to 0.77)	0.79 (0.64 to 0.98)
	Nab-TG	228	65.0	59.0	60.0	92.0	31.9	13.9	5.5	6.1	Ref	Ref
IMpower132, 2020	AC/p+atezolizumab	292	64.0	65.8	56.8	NR	47.0	18.1	7.6	10.1	0.60 (0.49 to 0.72)	0.81 (0.64 to 1.03)
	AC/P	286	63.0	67.1	59.9	NR	32.0	13.6	5.2	7.2	Ref	Ref
CheckMate 227, 2020	AC/P+nivolumab	270	63.0	36.0	61.0	82.0	NR	18.8	8.7	NR	0.67 (0.55 to 0.82)	0.86 (0.69 to 1.08)
	AC/P	273	63.0	36.0	69.0	75.0	NR	15.5	5.8	6.2	Ref	Ref
CAMEL, 2019	AC +camrelizumab	205	59.0	71.2	76.6	NR	60.0	11.3	17.6	0.60 (0.45 to 0.79)	0.72 (0.52 to 1.01)	
	AC	207	61.0	72.0	82.5	NR	39.1	20.9	8.3	9.9	Ref	Ref
RATIONALE 304, 2020	AC/P+tislelizumab	223	60.0	75.3	75.8	65.9	57.4	9.7	8.5	Ref	0.65 (0.46 to 0.90)	Ref
	AC/P	111	61.0	71.2	78.4	59.5	36.9	7.6	6.0	Ref	NR	NR
ORIENT 11, 2020	AC/P+sintilimab	266	61.0	76.7	71.4	64.3	51.9	8.9	NR	0.48 (0.36 to 0.64)	0.61 (0.40 to 0.93)	
	AC/P	131	61.0	75.6	74.0	66.4	29.8	9.0	5.5	Ref	NR	NR

*The references for the enrolled trials are listed in online supplemental additional table S1.
AC, paclitaxel + carboplatin; ADP, paclitaxel + carboplatin + cisplatin; AP, paclitaxel + cisplatin; CI, confidence interval; DOR, duration of response; ECOG1, Eastern Cooperative Oncology Group 1; GP, gemcitabine + cisplatin; Nab-TG, nanoparticle albumin-bound paclitaxel + carboplatin; NR, not reported; ORR, objective response rate; OS, overall survival; PFS, progression-free survival; Ref, reference; TC, paclitaxel + carboplatin.
Figure 1 Direct and indirect comparisons among ICI+chemo, beva +chemo and chemotherapy, and subgroup analyses for PFS between ICI+chemo and beva +chemo. (A–D) Forest plot of HR and RR directly comparing PFS, OS, ORR and AE between ICI+chemo or beva +chemo with chemotherapy. The horizontal line crossing the square represents the 95% CI. (E) Solid lines represent the existence of direct comparisons between the treatments, whereas dashed line represents the indirect comparison between ICI+chemo versus beva +chemo. The size of the circle corresponds to the number of enrolled patients. (F) Forest plot of HR indirectly comparing PFS according to patient characteristics at baseline. All statistical tests were two-sided. AE, adverse event; beva, bevacizumab; chemo, chemotherapy; ECOG, Eastern Cooperative Oncology Group; ICI, immune checkpoint inhibitor; ORR, objective response rate; OS, overall survival; PFS, progression-free survival; RR, risk ratio; PD-1, programmed cell death 1; PD-L1, programmed cell death-ligand 1; TPS, tumor proportion score.
chemotherapy to beva+chemo (our previous pooled analysis showed that ICI+chemo was associated with 38% and 32% reduction in the risk of disease progression/death and death compared with chemotherapy alone, respectively). This implied that the delayed application of bevacizumab in most ICI+chemo trials may be detrimental for patients in the control group. One open question is whether combing ICI, bevacizumab and chemotherapy together in a first-line setting will further improve survival benefit. This is partially addressed in the IMpower1509 and LUN 17-139 studies, both of which showed that ICI plus beva+chemo (ICI+beva+chemo) prolongs PFS compared with beva+chemo, but at the expense of more toxicities. However, whether ICI+beva+chemo outperforms ICI+chemo remains a question to be answered with randomized studies in the future. Interestingly, subgroup analysis from IMpower150 indicates that ICI+beva+chemo may provide survival benefit in patients who are less likely to respond to ICI, such as those with liver metastasis or epidermal growth factor receptor (EGFR) mutation.

The PD-L1 expression was an established biomarker for anti-PD-1/PD-L1 monotherapy in NSCLC and remains a suitable biomarker to predict the PFS benefit with ICI+chemo versus beva+chemo in this study. PD-L1 TPS of ≥50% was associated with significantly longer PFS (HR 0.51, 95% CI 0.37 to 0.70) with ICI+chemo versus beva+chemo, while patients with PD-L1 of less than 1% had comparable PFS when treated with ICI+chemo or beva+chemo (HR 0.92, 95% CI 0.69 to 1.23). ICI+chemo also did not produce PFS benefit in non-smokers. Further studies were warranted to explore predictive biomarker to differentiate beneficiary from ICI+chemo versus beva+chemo.

In terms of toxicity, ICI+chemo and beva+chemo were comparable for AEs of ≥grade 3 (HR 0.82, 95% CI 0.55 to 1.22), but the risk of AEs leading to death was significantly lower with ICI+chemo versus beva+chemo (HR 0.56, 95% CI 0.32 to 0.97). However, since the profiles of AEs for ICI and bevacizumab were different, the risk of AEs should be assessed individually. For example, patients with hypertension or high bleeding risk might suffer greater risk from bevacizumab, while patients with autoimmune disease might suffer greater risk from ICI.

Based on our observation, we cautiously postulate the following recommendations: for patients with PD-L1 TPS of at least 50% and without contraindications for immunotherapy, ICI+chemo should be preferred compared with beva+chemo; for patients with PD-L1 TPS of less than 50%, ICI+chemo is recommended, but beva+chemo could serve as an alternative, especially for those with PD-L1 TPS of less than 1% or/and with high risk of developing immune-related AEs or hyperprogression disease.

The high quality of the enrolled trials and the low heterogeneity between trials make this analysis reliable. Nevertheless, several limitations should be noted. First, this is an indirect analysis and due to the different inclusion and exclusion criteria between the ICI+chemo trials and beva+chemo trials, the patients’ characteristics might not be well balanced between the two groups. Thus, the result should be interpreted with extra caution. However, considering that a prospective trial that compares ICI+chemo with beva+chemo is unlikely to be conducted, this analysis would meet current clinical needs. Second, the results regarding OS should be further investigated in prospective trials, since patients who received beva+chemo in this study did not cross over to immunotherapy in later-line treatments.

In conclusion, ICI+chemo was associated with significantly longer PFS and OS and comparable risk of AEs compared with beva+chemo. PD-L1 expression might be a predictive biomarker of PFS benefit with ICI+chemo versus beva+chemo.

Author affiliations
1State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, China
2Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
3Department of VIP Region, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
4Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Pathology Department, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, China
5Department of Radiotherapy, Sun Yat-sen University Cancer Center, Guangzhou, China
6Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China

Twitter Liangping Xia @lno

Contributors HY, PC, and LX contributed to data acquisition, data interpretation, statistical analysis, and drafting of the manuscript. CC, XZ, and LH contributed to data acquisition, data interpretation, and statistical analysis. BZ, YZ, and SH contributed to the study design, data acquisition, data interpretation, and statistical analysis. All the authors contributed to the critical revision of the manuscript.

Funding This study was funded by the National Natural Science Funds of China (grants 81903176, 81972898, and 8217102281); the National Science Foundation of Guangdong Province (grants 2019A1515011596, and 2019A1515011090); and the Medical Scientific Research Foundation of Guangdong Province (grant CZ2019110).

Disclaimer The funding sources had no role in the design, and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

Competing interests None declared.

Patient consent for publication Not applicable.

Provenance and peer review Not commissioned; externally peer reviewed.

Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution 4.0 Unported (CC BY 4.0) license, which permits others to copy, redistribute, remix, transform and build upon this work for any purpose, provided the original work is properly cited, a link to the licence is given, and indication of whether changes were made. See https://creativecommons.org/licenses/by/4.0/.
REFERENCES

1. Spira A, Ettinger DS. Multidisciplinary management of lung cancer. N Engl J Med 2004;350:379–92.

2. Reck M, von Pawel J, Zatloukal P, et al. Phase III trial of cisplatin plus gemcitabine with either placebo or bevacizumab as first-line therapy for nonsquamous non-small-cell lung cancer: AVAiLi. J Clin Oncol 2009;27:1227–34.

3. Zhou C, Wu Y-L, Chen G, et al. Beyond: a randomized, double-blind, placebo-controlled, multicenter, phase III study of first-line Carboplatin/Paclitaxel plus bevacizumab or placebo in Chinese patients with advanced or recurrent Nonsquamous non-small-cell lung cancer. J Clin Oncol 2015;33:2197–204.

4. Sandler A, Gray R, Perry MC, et al. Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med 2006;355:2542–50.

5. Zhou Y, Chen C, Zhang X, et al. Immune-checkpoint inhibitor plus chemotherapy versus conventional chemotherapy for first-line treatment in advanced non-small cell lung carcinoma: a systematic review and meta-analysis. J Immunother Cancer 2018;6:155.

6. Jansen JP, Fleurence R, Devine B, et al. Interpreting indirect treatment comparisons and network meta-analysis for healthcare decision making: report of the ISPOR Task force on indirect treatment comparisons good research practices: Part 1. Value Health 2011;14:417–28.

7. Higgins JPT, Altman DG, Gotzsche PC, et al. The Cochrane collaboration’s tool for assessing risk of bias in randomised trials. BMJ 2011;343:d5928.

8. Bucher HC, Guyatt GH, Griffith LE, et al. The results of direct and indirect treatment comparisons in meta-analysis of randomized controlled trials. J Clin Epidemiol 1997;50:683–91.

9. Reck M, Mok TSK, Nishio M, et al. Atezolizumab plus bevacizumab and chemotherapy in non-small-cell lung cancer (IMpower150): key subgroup analyses of patients with EGFR mutations or baseline liver metastases in a randomised, open-label phase 3 trial. Lancet Respir Med 2019;7:387–401.

10. Ardeshir-Larijani F, Althouse SK, Leal T, et al. Phase II trial of atezolizumab (a) + carboplatin (C) + pemetrexed (P) + bevacizumab (B) in PTS with stage IV non-squamous non-small cell lung cancer (NSq-NSCLC): big ten cancer research Consortium study LUN 17-139. J Clin Oncol 2021;39:9034.

11. Hommes JW, Verheijden RJ, Suijkerbuijk KPM, et al. Biomarkers of checkpoint inhibitor induced immune-related adverse Events-A comprehensive review. Front Oncol 2020;10:585311.
Additional file 1 Supplemental Methods

Search strategies for PubMed, EMBASE, and Cochrane database

PubMed: 1040 results (2000-2020)

("pembrolizumab" [Supplementary Concept] OR "lambrolizumab" [Title/Abstract] OR "Keytruda" [Title/Abstract] OR "MK-3475" [Title/Abstract] OR "nivolumab" [Supplementary Concept] OR "MDX-1106" [Title/Abstract] OR "ONO-4538" [Title/Abstract] OR "BMS-936558" [Title/Abstract] OR "Opdivo" [Title/Abstract] OR "atezolizumab" [Supplementary Concept] OR "MPDL3280A" [Title/Abstract] OR "Tecentriq" [Title/Abstract] OR "RG7446" [Title/Abstract] OR "RG-7446" [Title/Abstract] OR "Durvalumab" [Title/Abstract] OR "Imfinzi" [Title/Abstract] OR "MEDI4736" [Title/Abstract] OR "Camrelizumab" [Title/Abstract] OR "SHR-1210" [Title/Abstract] OR "Tislelizumab" [Title/Abstract] OR "Sintilimab" [Title/Abstract] OR "IBI 308" [Title/Abstract] OR "anti-PDL1" [Title/Abstract] OR "anti-PD1" [Title/Abstract] OR "PD-L1" [Title/Abstract] OR "Programmed Death 1" [Title/Abstract] OR "Programmed Cell Death 1 Receptor" [Title/Abstract] OR "Programmed Death-Ligand 1" [Title/Abstract] OR "programmed cell death 1 ligand 1 protein" [Title/Abstract] OR "immune checkpoint inhibitor" [Title/Abstract] OR "immune therapy" [Title/Abstract] OR "immunotherapy" [Title/Abstract]) OR (("Bevacizumab" [Title/Abstract] OR "Avastin" [Title/Abstract]) AND (("non-squamous" [Title/Abstract]) AND "lung cancer" [Title/Abstract]) AND ((("NSCLC" [Title/Abstract]) OR "Non Small Cell" [Title/Abstract]) OR "Non-Small-Cell" [Title/Abstract]) OR "Non-Small-Cell" [Title/Abstract]) OR "Carcinoma, Non-Small-Cell Lung" [MeSH]) AND (("clinical trials as topic" [MeSH Terms] OR "phase I trial" [Title/Abstract])

EMBASE: 1238 results (2000-2020)

("pembrolizumab"/exp OR "lambrolizumab":ab,ti OR ‘Keytruda’:ab,ti OR ‘MK-3475’:ab,ti OR ‘nivolumab’/exp OR ‘MDX-1106’:ab,ti OR ‘ONO-4538’:ab,ti OR ‘BMS-936558’:ab,ti OR ‘Opdivo’:ab,ti OR ‘atezolizumab’/exp OR ‘MPDL3280A’:ab,ti OR ‘Tecentriq’:ab,ti OR ‘RG7446’:ab,ti OR ‘RG-7446’:ab,ti OR ‘Durvalumab’:ab,ti OR ‘Imfinzi’:ab,ti OR ‘MEDI4736’:ab,ti OR ‘Camrelizumab’/exp OR ‘SHR-1210’:ab,ti OR ‘Tislelizumab’/exp OR ‘Sintilimab’/exp OR ‘IBI 308’:ab,ti OR ‘anti-PDL1’:ab,ti OR ‘anti-PD1’:ab,ti OR ‘PD-L1’:ab,ti OR ‘PD-L1’/ab,ti OR ‘Programmed Death 1’:ab,ti OR ‘Programmed Cell Death 1 Receptor’:ab,ti OR ‘RG7446’:ab,ti OR ‘RG-7446’:ab,ti OR ‘programmed cell death 1 ligand 1 protein’:ab,ti OR ‘immune checkpoint inhibitor’:ab,ti OR ‘immune therapy’:ab,ti OR ‘immunotherapy’:ab,ti OR ‘Bevacizumab’/exp OR ‘Avastin’:ab,ti) AND ((‘non small cell lung cancer’/exp OR ‘lung’:ab,ti AND ‘NSCLC’:ab,ti OR ‘non small cell’:ab,ti OR ‘non-small-cell’:ab,ti OR ‘non-small cell’:ab,ti)) AND ((‘randomized controlled trial’/exp)

Cochrane: 699 results (699 trials) (2000-2020)

#1 MeSH descriptor: [Carcinoma, Non-Small-Cell Lung] explode all trees
#2 'lung' AND ("Non Small Cell" OR "Non-Small Cell" OR "Non-Small-Cell") OR "NSCLC"

#3 non-squamous: ti, ab, kw

#4 (#1 OR #2) AND #3

#5 (pembrolizumab OR lambrolizumab OR Keytruda OR MK-3475 OR nivolumab OR MDX-1106 OR ONO-4538 OR BMS-936558 OR Opdivo OR atezolizumab OR MPDL3280A OR Tecentriq OR RG7446 OR RG-7446 OR Durvalumab OR Imfinzi OR MEDI4736 OR Camrelizumab OR SHR-1210 OR Tislelizumab OR Sintilimab OR 'IBI 308' OR 'anti-PDL1' OR 'anti-PD1' OR 'PD-1' OR PD-L1 OR 'Programmed Death 1' OR 'Programmed Cell Death 1 Receptor' OR 'Programmed Death-Ligand 1' OR 'programmed cell death 1 ligand 1 protein' OR 'immune checkpoint inhibitor' OR 'immune therapy' OR immunotherapy): ti, ab, kw

#6 (Bevacizumab OR Avastin): ti, ab, kw

#7 #5 OR #6

#8 #4 AND #7
Additional file 2 Figure S1

2984 Studies identified in search
1040 From Pubmed
1238 From Embase
699 From Cochrane
7 From Conference

934 Duplicates removed

2050 Titles and abstracts reviewed

1872 Studies Excluded
1243 Irrelevant study
354 Retrospective study
267 Review or meta-analysis
8 Case report

178 Potentially relevant studies

164 Studies Excluded
115 Not first-line treatment
36 Study design
13 Insufficient data

14 Studies included in meta-analysis
Additional file 3 Table S1. Quality assessment by Cochrane Collaboration’s tool.

Trial	Sequence generation	Allocation concealment	Blinding	Incomplete outcome data	Selective reporting	Other source of bias
ECOG4599[1]	Adequate	Not clear	Adequate	Adequate	Adequate	Adequate
JO19907[2]	Adequate	Not clear	Adequate	Adequate	Adequate	Adequate
AVAiL[3]	Adequate	Adequate (Central allocation)	Adequate	Adequate	Adequate	Adequate
PRONOUNCE[4]	Adequate	Not clear	Adequate	Adequate	Adequate	Adequate
ERACLE[5]	Adequate	Adequate (Central allocation)	Adequate	Adequate	Adequate	Adequate
BEYOND[6]	Adequate	Adequate (Central allocation)	Adequate	Adequate	Adequate	Adequate
KEYNOTE-189[7]	Adequate	Adequate (Central allocation)	Adequate	Adequate	Adequate	Adequate
KEYNOTE-021[8]	Adequate	Adequate (Central allocation)	Adequate	Adequate	Adequate	Adequate
IMpower130[9]	Adequate	Adequate (Central allocation)	Adequate	Adequate	Adequate	Adequate
IMpower132[10]	Adequate	Not clear	Adequate	Adequate	Adequate	Adequate
CheckMtae 227[11]	Adequate	Adequate (Central allocation)	Adequate	Adequate	Adequate	Adequate
CAMEL[12]	Adequate	Not clear	Adequate	Adequate	Adequate	Adequate
RATIONALE 304[13]	Adequate	Adequate (Central allocation)	Adequate	Inadequate	Adequate	Adequate
ORIENT 11[14]	Adequate	Adequate (Central allocation)	Adequate	Adequate	Adequate	Adequate

a: The sponsor, investigator and subject were aware of the treatment administration but the response to treatment was assessed by means of blinded, independent, central radiologic review.

b: Absence of data of OS.

Reference

1. Sandler A, Gray R, Perry M, Brahmer J, Schiller J, Dowlati A, Lilienbaum R, Johnson D: Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. The New England journal of medicine 2006, 355(24):2542-2550.
2. Niho S, Kunitoh H, Nokihara H, Horai T, Ichinose Y, Hida T, Yamamoto N, Kawahara M, Shinkai T, Nakagawa K et al: Randomized phase II study of first-line carboplatin-paclitaxel with or without bevacizumab in Japanese patients with advanced non-squamous non-small-cell lung cancer. Lung cancer (Amsterdam, Netherlands) 2012, 76(3):362-367.
3. Reck M, von Pawel J, Zatloukal P, Ramla R, Gorbonova V, Hirsh V, Leighl N, Mezger J, Archer V, Moore N et al: Phase III trial of cisplatin plus gemcitabine with either placebo or bevacizumab as first-line therapy for nonsquamous non-small-cell lung cancer: AVAiII. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 2009, 27(8):1227-1234.
4. Zinner R, Obasaju C, Spigel D, Weaver R, Beck J, Waterhouse D, Modiano M, Hrinzencko B, Nikolnakos P, Liu J et al: PRONOUNCE: randomized, open-label, phase III study of first-line pemetrexed + carboplatin followed by maintenance pemetrexed versus paclitaxel + carboplatin + bevacizumab followed by maintenance bevacizumab in patients ith advanced nonsquamous non-small-cell lung cancer. Journal of thoracic oncology : official publication of the
5. Galetta D, Cinieri S, Pisconti S, Gebbia V, Morabito A, Borsellino N, Maiello E, Febbraro A, Catino A, Rizzo P et al: Cisplatin/Pemetrexed Followed by Maintenance Pemetrexed Versus Carboplatin/Paclitaxel/Bevacizumab Followed by Maintenance Bevacizumab in Advanced Nonsquamous Lung Cancer: The GOIM (Gruppo Oncologico Italia Meridionale) ERACLE Phase III Randomized Trial. Clinical lung cancer 2015, 16(4):262-273.

6. Zhou C, Wu Y, Chen G, Liu X, Zhu Y, Lu S, Feng J, He J, Han B, Wang J et al: BEYOND: A Randomized, Double-Blind, Placebo-Controlled, Multicenter, Phase III Study of First-Line Carboplatin/Paclitaxel Plus Bevacizumab or Placebo in Chinese Patients With Advanced or Recurrent Nonsquamous Non-Small-Cell Lung Cancer. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 2015, 33(19):2197-2204.

7. Gandhi L, Rodriguez-Abreu D, Gadgeel S, Esteban E, Felip E, De Angelis F, Domíne C, Clingan P, Hochmair M, Powell S et al: Pembrolizumab plus Chemotherapy in Metastatic Non-Small-Cell Lung Cancer. The New England journal of medicine 2018, 378(22):2078-2092.

8. Langer C, Gadgeel S, Borghaei H, Papadimitrakopoulou V, Patnaik A, Powell S, Gentzler R, Martins R, Stevenson J, Jalal S et al: Carboplatin and pemetrexed with or without pembrolizumab for advanced, non-squamous non-small-cell lung cancer: a randomised, phase 2 cohort of the open-label KEYNOTE-021 study. The Lancet Oncology 2016, 17(11):1497-1508.

9. West H, McCleod M, Hussein M, Morabito A, Rittmeyer A, Conter H, Kopf H, Daniel D, McCune S, Mekhail T et al: Atezolizumab in combination with carboplatin plus nab-paclitaxel chemotherapy compared with chemotherapy alone as first-line treatment for metastatic non-squamous non-small-cell lung cancer (IMpower130): a multicentre, randomised, open-label, phase 3 trial. The Lancet Oncology 2019, 20(7):924-937.

10. Nishio M, Barlesi F, West H, Ball S, Bordoni R, Cobo M, Longear SD, Goldschmidt J, Jr., Novello S, Orlandi F et al: Atezolizumab Plus Chemotherapy for First-Line Treatment of Non-Squamous NSCLC: Results From the Randomized Phase 3 IMpower132 Trial. J Thorac Oncol 2021, 16(4):653-664.

11. Hellmann M, Paz-Ares L, Bernabe Caro R, Zarawski B, Kim S, Carcereny Costa E, Park K, Alexandru A, Lupinacci L, de la Mora Jimenez E et al: Nivolumab plus Iplilumab in Advanced Non-Small-Cell Lung Cancer. The New England journal of medicine 2019, 381(21):2020-2031.

12. Zhou C, Chen G, Huang Y, Zhou J, Lin L, Feng J, Wang Z, Shu Y, Shi J, Hu Y et al: Camreliuzumab plus carboplatin and pemetrexed versus chemotherapy alone in chemotherapy-naive patients with non-squamous non-small-cell lung cancer (CameL): a randomised, open-label, multicentre, phase 3 trial. The Lancet Respiratory medicine 2021, 9(3):305-314.

13. Lu S, Wang J, Yu Y, Yu X, Hu Y, Ai X, Ma Z, Li X, Zhuang W, Liu Y et al: Tislelizumab Plus Chemotherapy as First-Line Treatment for Locally Advanced or Metastatic Nonsquamous NSCLC (RATIONALE 304): A Randomized Phase 3 Trial. Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer 2021.

14. Yang Y, Wang Z, Fang J, Yu Q, Han B, Cang S, Chen G, Mei X, Yang Z, Ma R et al: Efficacy and Safety of Sintilimab Plus Pemetrexed and Platinum as First-Line Treatment for Locally Advanced or Metastatic Nonsquamous NSCLC: a Randomized, Double-Blind, Phase 3 Study (Oncology pRogram by InnovENT anti-PD-1-11). J Thorac Oncol 2020, 15(10):1636-1646.
Additional file 4 Figure S2

Subgroup for AE	RR (95% CI)	P value
Grade 3−5	0.82 (0.55–1.22)	0.333
Led to death	**0.56 (0.32–0.97)**	**0.02**
Discontinuation	1.45 (0.97, 2.10)	0.073

BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance on the information supplied which has been supplied by the author(s).

Yu H, *et al.* *J Immunother Cancer* 2021; 9:e003431. doi: 10.1136/jitc-2021-003431