Power of Pre-Processing: Production Scheduling with Variable Energy Pricing and Power-Saving States

Ondřej Benedikt¹,², István Módos¹,², and Zdeněk Hanzálek³

¹ Czech Institute of Informatics, Robotics and Cybernetics, Czech Technical University in Prague, Czech Republic
² Faculty of Electrical Engineering, Czech Technical University in Prague, Czech Republic
³ {ondrej.benedikt,istvan.modos,zdenek.hanzalek}@cvut.cz

Abstract. This paper addresses a single machine scheduling problem with non-preemptive jobs to minimize the total electricity cost. Two latest trends in the area of the energy-aware scheduling are considered, namely the variable energy pricing and the power-saving states of a machine. Scheduling of the jobs and the machine states are considered jointly to achieve the highest possible savings. Although this problem has been previously addressed in the literature, the reported results of the state-of-the-art method show that the optimal solutions can be found only for instances with up to 35 jobs and 209 intervals within 3 hours of computation. We propose an elegant pre-processing technique called SPACES for computing the optimal switching of the machine states with respect to the energy costs. The optimal switchings are associated with the shortest paths in an interval-state graph that describes all possible transitions between the machine states in time. This idea allows us to implement efficient integer linear programming and constraint programming models of the problem while preserving the optimality. The efficiency of the models lies in the simplification of the optimal switching representation. The results of the experiments show that our approach outperforms the existing state-of-the-art exact method. On a set of benchmark instances with varying sizes and different state transition graphs, the proposed approach finds the optimal solutions even for the large instances with up to 190 jobs and 1277 intervals within an hour of computation.

Keywords: Single machine production scheduling · Machine states · Variable energy costs · Total energy cost minimization.

1 Introduction

Energy-efficient scheduling has been attracting a considerable amount of attention lately, as reported in both [5] and [6]. The trend is most likely to continue in the future since the energy-efficient scheduling helps to achieve sustainability
2 Problem Statement

Let \(\mathcal{I} = \{I_1, I_2, \ldots, I_h\} \) be a set of intervals, which partition the scheduling horizon. The energy costs for the intervals are given by the vector \(\mathbf{c} = (c_1, c_2, \ldots, c_h) \), where \(c_i \in \mathbb{Z}_{\geq 0} \) is the energy (electricity) cost associated with interval \(I_i \). It is assumed, that every interval is one time unit long, i.e., \(I_1 = [0, 1), I_2 = [1, 2), \ldots, I_h = [h-1, h) \).
...,$I_h = [h - 1, h)$. Note that the physical representation of the time unit length can be different depending on the required granularity of the scheduling horizon.

Let $J = \{J_1, J_2, \ldots, J_n\}$ be a set of jobs, which must be scheduled on a single machine, that is available throughout the whole scheduling horizon; we assume that $n \geq 1$. Each job J_j is characterized by its processing time $p_j \in \mathbb{Z}_{>0}$, given in the number of intervals. Scheduling of the jobs is non-preemptive, and the machine can process at most one job at the time. All the jobs are available at the beginning of the scheduling horizon.

During each interval, the machine is operating in one of its states $s \in S$ or transits from one state to another. Let us denote the transition time function by $T : S \times S \rightarrow \mathbb{Z}_{\geq 0} \cup \{\infty\}$, and the transition power function by $P : S \times S \rightarrow \mathbb{Z}_{\geq 0} \cup \{\infty\}$. The transition from state s to state s' lasts $T(s, s')$ intervals and has power consumption $P(s, s')$, which is the constant rate of the consumed energy at every time unit. The value ∞ means that the direct transition does not exist. We assume that $P(s, s)$ denotes the power consumption of the machine while staying in state s for the duration of one interval.

Note that the transition time/power functions are general enough to represent many kinds of machines, e.g., those studied in [1,3,11,12].

During the first and the last interval, the machine is assumed to be in off state $\text{off} \in S$. Besides, the machine has a single processing state, $\text{proc} \in S$, which must be active during the processing of the jobs. Due to the transition from/to the initial/last off state, the machine cannot be in proc state during the early/late intervals. Hence, we denote the earliest and the latest interval during which the machine can be in proc state by I_{earl} and I_{late}, respectively.

A solution is a pair (σ, Ω), where $\sigma = (\sigma_1, \sigma_2, \ldots, \sigma_n) \in \mathbb{Z}_{\geq 0}^n$ is the vector denoting the start time of the jobs, and $\Omega = (\Omega_1, \Omega_2, \ldots, \Omega_h) \in (S \times S)^h$ represents the active state or transition in each interval. The solution is feasible if the following four conditions are satisfied.

1. the machine processes at most one job at a time;
2. the jobs are processed when the machine is in proc state, i.e.,
 \[\forall J_j \in \mathcal{J} \forall i \in \{\sigma_j + 1, \ldots, \sigma_j + p_j\} : \Omega_i = (\text{proc, proc}) \]
 where $\{a, \ldots, b\}$ is $\{a, a + 1, \ldots, b\}$;
3. the machine is in off state during the first and the last interval, i.e.,
 \[\Omega_1 = (\text{off, off}), \text{ and } \Omega_h = (\text{off, off}) \]
4. all transitions are valid with respect to the transition time function.

The total energy cost (TEC) of solution (σ, Ω) is

\[\sum_{i \in I} c_i \cdot P(\Omega_i), \quad (1) \]

where $P(\Omega_i)$ represents $P(s, s')$ for $\Omega_i = (s, s')$. The goal of the scheduling problem is to find a feasible solution minimizing the total energy cost $[1]$.

The above-defined problem was introduced in [12] and is denoted in standard Graham’s notation as $1\text{TOU}|\text{states}|\text{TEC}$. The problem was shown to be strongly \mathcal{NP}-hard, see [2].
Example: Here, we present a small example to illustrate the proposed notation. Let us consider a scheduling horizon consisting of 16 intervals, \(I = \{I_1, \ldots, I_{16}\} \), and the associated energy costs \(c = (2, 1, 2, 1, 8, 16, 14, 3, 2, 5, 3, 10, 3, 2, 1, 2) \). Let us have three jobs, \(J = \{J_1, J_2, J_3\} \) with processing times \(p_1 = 2 \), \(p_2 = 1 \), and \(p_3 = 2 \). Considering the machine states, we assume \(S = \{\text{proc, off, idle}\} \). The values of the transition time function and the transition power function are given in Fig. 1. For the given transition time function, we have \(I_{\text{earl}} = I_4 \) and \(I_{\text{late}} = I_{14} \). Note that the same machine states and transitions were originally proposed in [12].

![Fig. 1. Parameters of the transition power function \(P(s, s') \) and transition time function \(T(s, s') \), and the corresponding transition graph, where every edge from \(s \) to \(s' \) is labeled by \(T(s, s')/P(s, s') \).](image)

The optimal solution to the given instance is depicted in Fig. 2 where

\[
\sigma = (9, 3, 12), \quad \text{and} \quad \Omega = (\text{off, off}), (\text{off, proc}), (\text{off, proc}), (\text{proc, proc}), (\text{proc, off}), (\text{off, off}), (\text{off, off}), (\text{off, proc}), (\text{off, proc}), (\text{proc, proc}), (\text{proc, proc}), (\text{idle, idle}), (\text{proc, proc}), (\text{proc, proc}), (\text{proc, off}), (\text{off, off})).
\]

The TEC of the optimal solution is equal to 177.

3 Solution Approach

In this section, we first describe how to pre-compute the optimal switching behavior of the machine and the corresponding costs. Afterward, we design efficient ILP and CP models (called ILP-SPACES and CP-SPACES) that integrate the pre-computed optimal switching costs.

3.1 Instance Pre-processing: Computation of the Optimal Switching

Given two states \(s, s' \) in which the machine is during two intervals \(I_i, I_{i'} \) such that \(i < i' \), the pre-processing computes the optimal transitions from \((s, I_i) \) to...
Fig. 2. The optimal schedule for the example instance. Each cell, corresponding to interval \(I_i \) and a state/transition, contains the value \(c_i \cdot P(\Omega_i) \). The sum over all these values gives the TEC equal to 177.

\[
\min_{\Omega_{i+1}, \Omega_{i+2}, \ldots, \Omega_{i'}-1} \sum_{i''=i+1}^{i'-1} c_{i''} \cdot P(\Omega_{i''}).
\]

such that \(((s, s), \Omega_{i+1}, \Omega_{i+2}, \ldots, \Omega_{i'-1}, (s', s'))\) are valid transitions w.r.t. to the transition time function. We call this an optimal switching problem. As an illustration, the cost of the optimal switching in Fig. 2 from \((\text{proc}, I_4)\) to \((\text{proc}, I_{10})\) equals 48. Interestingly, the optimal switching problem can be solved in polynomial time by finding the shortest path in an interval-state graph, which is explained in the rest of this section.

The interval-state graph is defined by a triplet \((V, E, w)\), where \(V\) is the set of vertices, \(E\) is the set of edges and \(w : E \rightarrow \mathbb{Z}_{\geq 0}\) are the weights of the edges. The set of the vertices and edges of this graph are defined as follows:

\[
V = \{v_{1, \text{off}}\} \cup \{v_{i,s} : I_i \in \mathcal{I} \setminus \{I_1\}, s \in \mathcal{S}\} \cup \{v_{h+1,\text{off}}\},
\]

\[
E = \{(v_{1,\text{off}}, v_{2,\text{off}})\}
\cup \{(v_{i,s}, v_{i+T(s,s'),s'}) : s, s' \in \mathcal{S}, I_i \in \mathcal{I} \setminus \{I_1\},
T(s, s') \neq \infty, (i - 1) + T(s, s') \leq h - 1\}
\cup \{(v_{h,\text{off}}, v_{h+1,\text{off}})\}.
\]

Informally, each vertex \(v_{i,s} \in V\) represents that at the beginning of interval \(I_i\) the machine is in state \(s\). Each edge \((v_{i,s}, v_{i',s'}) \in E\) corresponds to the direct transition from state \(s\) to state \(s'\) that lasts \(T(s, s') = (i' - i)\) intervals. The condition \((i - 1) + T(s, s') \leq h - 1\) ensures, that only transitions completing at most at the beginning of interval \(I_h\) are present in the interval-state graph.

The edges are weighted by the total energy cost of the corresponding transition w.r.t. the costs of energy in intervals, i.e., weight of edge \((v_{i,s}, v_{i',s'}) \in E\) is
and the first of intervals: (i) between two consecutive intervals with the optimal switchings need to be resolved only in the ‘space’, i.e., the sequence of state changes between testing. Since all the jobs need to be scheduled in the O using the Floyd-Warshall algorithm in \(O(n^3 \cdot |S|^3)\) time.

However, for the scheduling decisions, only some of the switchings are interesting. Since all the jobs need to be scheduled in the proc state of the machine, the optimal switchings need to be resolved only in the ‘space’, i.e., the sequence of intervals: (i) between two consecutive intervals with proc; (ii) between the first off and the first proc; and (iii) the last proc and the last off. The cost of the switchings between \(s, s' \in \{\text{off}, \text{proc}\}\) are recorded by function \(c^* : \mathcal{I}^2 \rightarrow \mathbb{Z}_{\geq 0}\) defined as

\[
\begin{align*}
 c^*(i, i') &= \begin{cases}
 l(v_{i+1, \text{proc}}, v_{i', \text{proc}}) & i > 1, i' < h \quad \text{case (i)} \\
 l(v_{2, \text{off}}, v_{i', \text{proc}}) & i = 1, i' < h \quad \text{case (ii)} \\
 l(v_{i+1, \text{proc}}, v_{h, \text{off}}) & i > 1, i' = h \quad \text{case (iii)}
 \end{cases}
\end{align*}
\]

for each \(i < i'\). The vector of states corresponding to \(c^*(i, i')\), i.e., the optimal switching behavior of the machine between \(i\) and \(i'\), is denoted by \(\Omega^*(i, i')\). As an example, see the Fig. 2 where intervals \(\{I_5, I_6, \ldots, I_9\}\) represent the space between two consecutive jobs \(J_2, J_1\) with cost \(c^*(4, 10) = 48\).

Values of \(c^*\) can be computed efficiently using an algorithm that we call the Shortest Path Algorithm for Cost Efficient Switchings (SPACES). In every iteration \(I_i \in \mathcal{I} \setminus \{I_h\}\), SPACES computes all values \(c^*(i, i+1), c^*(i, i+2), \ldots, c^*(i, h)\) by finding the shortest paths from \(v_{i+1, \text{proc}}\) (or \(v_{2, \text{off}}\) if \(i = 1\)) to all other vertices in the interval-state graph. The shortest paths are obtained with Dijkstra’s algorithm that runs in \(O(|E| + |V| \cdot \log |V|)\) if implemented using the priority queues. Since the Dijkstra algorithm is started \(h\) times, the complexity of SPACES is

\[
\mathcal{O}(h \cdot (|E| + |V| \cdot \log |V|)) = \mathcal{O}(h^2 \cdot |S| \cdot (|S| + \log h \cdot |S|)).
\]

Moreover, to increase the performance further, iterations \(i\) can be computed in parallel since they are independent of each other.

Example (continued): Continuing the Example, Fig. 2 shows the whole interval-state graph for the given instance. The green dashed path shows the optimal switching behavior of the machine assuming that the machine is in proc state during intervals \(I_4\) and \(I_{10}\); at first the machine is turned off (during \(I_5\), then it remains off (during intervals \(I_6\) and \(I_7\)), and is turned on afterward (intervals \(I_8, I_9\)). The optimal switching cost \(c^*(4, 10)\) is, in this case, 48. The optimal switching behavior is

\[
\Omega^*(4, 10) = (\text{proc, off}), (\text{off, off}), (\text{off, off}), (\text{off, proc}), (\text{off, proc}).
\]
3.2 Integer Linear Programming Model ILP-SPACES

In the ILP model proposed in [1], the state transition functions are explicitly encoded. In contrast, our ILP-SPACES model works only with the optimal switching costs pre-computed by the SPACES algorithm, thus encoding the transitions implicitly without sacrificing the optimality. The only task of the ILP solver is then to schedule the jobs, and select appropriate spaces in between, such that the TEC is minimized. Thus, the structure of our model is greatly simplified, with positive impact on its performance.

Formally, the variables used in the ILP-SPACES model are

- job start time $s_{j,i} \in \{0,1\}$: equals 1 if job J_j starts at the beginning of interval I_i, otherwise 0;
space activation $x_{i,i'} \in \{0, 1\}$: equals 1 if the machine undergoes the optimal switching defined by $\Omega^*(i,i')$, otherwise 0.

The complete model follows.

$$\min \sum_{I_i, I_{i'} \in \mathcal{I}} x_{i,i'} \cdot c^*(i,i') + \sum_{J_j \in \mathcal{J}} s_{j,i} \cdot c^{(\text{job})}_{j,i},$$

$$\sum_{I_i \in \mathcal{I}} s_{j,i} = 1, \forall J_j \in \mathcal{J},$$

$$s_{j,i} = 0, \forall J_j \in \mathcal{J}, \forall i \in \{1, \ldots, \text{earl} - 1\} \cup \{\text{late} - p_j + 2, \ldots, h\},$$

$$\sum_{J_j \in \mathcal{J}, i' = \max\{i, i' - p_j + 1\}} s_{j,i'} + \sum_{i' = i + 1}^{i - 1} \sum_{i'' = i + 1}^{h} x_{i',i''} = 1, \forall I_i \in \{I_2, I_3, \ldots, I_{h-1}\}.$$ (12)

The objective (9) minimizes the total energy cost, consisting of the optimal switching cost of active spaces, and the cost of jobs processing, where

$$c^{(\text{job})}_{j,i} = \sum_{i' = i}^{i + p_j - 1} c_{i'} \cdot P(\text{proc}, \text{proc})$$

for job $J_j \in \mathcal{J}$ and $i \in \{\text{earl}, \ldots, \text{late} - p_j + 1\}$.

Constraint (10) forces every job to be scheduled exactly once, and constraint (11) forbids the job to be scheduled before I_{earl} and after I_{late}. Finally, the last constraints (12) force the machine to be processing a job or to be undergoing some transition during every interval and forbid overlaps between them.

Search Space Reduction Various methods can be employed to reduce the search space without sacrificing the optimality. One of such methods is pruning of the spaces variables that lead to infeasible solutions if activated.

The pruning works as follows. For each $I_i, I_{i'}$ such that $i < i'$, the available time for processing the jobs is computed for both left (before I_i) and right (after $I_{i'}$) part of the scheduling horizon, i.e., $i - \text{earl} + 1$ and late $- i' + 1$, respectively. Then, activating the switching behavior $\Omega^*(i,i')$ leads to an infeasible solution if one of the following pruning conditions holds

PC.1: The largest job can be fitted in neither part, i.e.,

$$\max_{J_j \in \mathcal{J}} p_j > i - \text{earl} + 1 \land \max_{J_j \in \mathcal{J}} p_j > \text{late} - i' + 1.$$ (14)

PC.2: The total available time for processing is less than the sum of all the processing times, i.e.,

$$(i - \text{earl} + 1) + (\text{late} - i' + 1) < \sum_{J_j \in \mathcal{J}} p_j.$$ (15)

If any of these conditions holds, the corresponding space variable $x_{i,i'}$ is not created in ILP-SPACES.
3.3 Constraint Programming Model CP-SPACES

The idea of the CP-SPACES model is similar to the ILP-SPACES, with the exception that the spaces are not fixed – they are allowed to ‘float’ within the scheduling horizon. In consequence, the spaces do not have fixed costs because the cost depends on the position of the space in the horizon and its length. In our CP-SPACES model, costs are formulated with an Element expression, which is integrated in the objective. To describe the CP-SPACES model, we use the IBM CP formalism [9].

Variables: Three types of interval variables are used in the CP model.

To represent the jobs, we use optional interval variables $s_{j,i}, \forall J_j \in \mathcal{J}, i \in \{\text{earl}, \ldots, \text{late} - p_j + 1\}$, which model whether job J_j starts at the beginning of the interval I_i. Only one such variable, represented by interval variable $s_{j,i}$, will be present in the schedule for each job. Length of $s_{j,i}$ is fixed to p_j, and its start is fixed to $i - 1$.

Finally, the optional interval variables $x_{\ell,k}$ represent the ‘floating’ spaces of fixed length. For each possible length $\ell \in \{1, 2, \ldots, h - 2 - \sum_{J_j \in \mathcal{J}} p_j\}$, we create $K(\ell) = \left\lfloor \frac{h - 2 - \sum_{J_j \in \mathcal{J}} p_j}{\ell} \right\rfloor$ variables that are indexed by $k \in \{1, 2, \ldots, K(\ell)\}$. Note that the number $K(\ell)$ gives the upper bound on the number of the spaces of length ℓ that may appear in a feasible schedule, while $\ell_{\text{max}} = h - 2 - \sum_{J_j \in \mathcal{J}} p_j$ gives an upper bound on the space length.

Constraints: Since the machine is assumed to be in off state during I_1 and I_h, the earliest and the latest interval during which a switching might occur is I_2 and I_{h-1}, respectively. Hence, starts (ends) of the spaces are restricted by

\[
\begin{align*}
\text{StartOf}(x_{\ell,k}) & \geq 1 \\
\text{EndOf}(x_{\ell,k}) & \leq h - 1 \\
\end{align*} \forall \ell \in \{1, \ldots, \ell_{\text{max}}\}, k \in \{1, \ldots, K(\ell)\}.
\]

As mentioned previously, the spaces have fixed lengths, i.e.,

\[
\text{LengthOf}(x_{\ell,k}) = \ell, \forall \ell \in \{1, \ldots, \ell_{\text{max}}\}, k \in \{1, \ldots, K(\ell)\}.
\]

Relationship between variables s_j and $s_{j,i}$ is given by

\[
\text{Alternative}(s_j, \{s_{j,i} : i \in \{\text{earl}, \ldots, \text{late} - p_j + 1\}\}), \forall J_j \in \mathcal{J},
\]

To ensure that jobs and spaces are not overlapping, we use the NoOverlap constraint,

\[
\text{NoOverlap}(\{x_{\ell,k} : \ell \in \{1, \ldots, \ell_{\text{max}}\}, k \in \{1, \ldots, K(\ell)\}\} \cup \{s_j : J_j \in \mathcal{J}\}).
\]

The lengths of the spaces are constrained by

\[
\sum_{\ell=1}^{\ell_{\text{max}}} \sum_{k=1}^{K(\ell)} \text{LengthOf}(x_{\ell,k}) = \ell_{\text{max}},
\]
to ensure that the whole scheduling horizon is filled.

Finally, to eliminate some symmetries in the model, space variables \(x_{\ell,k} \) are constrained such that space with index \(k \) can be present in the solution only if all the spaces \(x_{\ell,k'} \) of the same length with \(k' < k \) are present, i.e.,

\[
\text{PresenceOf}(x_{\ell,k}) \geq \text{PresenceOf}(x_{\ell,k+1}), \quad \forall \ell \in \{1, \ldots, \ell_{\text{max}}\}, k \in \{1, \ldots, K(\ell) - 1\}.
\]

(21)

Objective: The objective is to minimize the TEC, here expressed as

\[
\sum_{\ell=1}^{\ell_{\text{max}}} \sum_{k=1}^{K(\ell)} \text{Element}(c_{\ell}^*, \text{StartOf}(x_{\ell,k})) + \sum_{J,j \in \mathcal{J}}^{\text{late}} \sum_{i=\text{earl}} \text{PresenceOf}(s_{j,i}) \cdot c_{j,i}^{(\text{job})},
\]

(22)

where the first part corresponds to the cost for optimal switchings between the job processings, and the second part corresponds to the cost for job processing. To compute the cost of the present spaces, vector

\[
c_{\ell}^* = (c^*(1, 1 + \ell + 1), c^*(2, 2 + \ell + 1), \ldots, c^*(h - \ell - 1, h))
\]

(23)

is used to represent the optimal switching costs for the given \(\ell \) addressed by the start of space \(x_{\ell,k} \) (indexed from 1).

Remark 1. Note that there are many different ways of implementing the CP model. For example, each possible space might be fixed in time, similarly as in ILP-SPACES. Then, the objective would simplify to a sum of spaces presences multiplied by their costs. Another alternative would be to have ‘floating’ spaces with variable lengths. In that case, the number of the interval variables needed to represent the spaces would decrease to \(n - 1 \), but the element expression in the objective would need to be indexed by both the start time and the length of each space. Also, the element expressions could be replaced by overlap expressions, etc. We have tried multiple different alternatives; however, the performances of the models on preliminary benchmark instances were more or less similar. The described CP model was slightly better than the others; therefore, we use it for the experiments in Section 4.

Remark 2. We can use a similar idea to reduce the search space as applied to ILP-SPACES. However, in the case of CP-SPACES, the spaces variables cannot be pruned since they are not fixed in time. Instead, we can enforce the corresponding cost of this space to a large number, which effectively deactivates it.

4 Experiments

This section evaluates how ILP-SPACES and CP-SPACES models perform in comparison to the ILP-REF model proposed in [1]. The comparison is made on
a set of randomly generated instances with varying sizes and different machine transition graphs; see Section 4.1 for the description of the generated dataset. The results are presented in Section 4.2.

All experiments were executed on 2x Intel(R) Xeon(R) Silver 4110 CPU 2.10 GHz with 188 GB of RAM (16 cores in total). For solving the ILP and CP models, we used Gurobi 8 and IBM CP Optimizer 12.9, respectively. Except for the time-limit and search phases in CP-SPACES, which branched on jobs first, all the solver parameters were set to default values.

The generated instances and their solutions are publicly available at https://github.com/CTU-IIG/EnergyStatesAndCostsSchedulingDatasets.

4.1 Instances

The instances in the dataset can be divided according to

1. a number of jobs:
 (a) MEDIUM: medium instances with $n \in \{30, 60, 90\}$;
 (b) LARGE: large instances with $n \in \{150, 170, 190\}$;
2. a machine transition graph:
 (a) NOSBY: a simple model with no standby state used by [12][1], see Fig. 1 for its description;
 (b) TWOSBY: a model with two standby states shown in Fig. 4.

For fixed n and a machine transition graph, 12 random instances are generated in the following way (48 instances in the whole dataset). The processing times of the jobs are randomly sampled from discrete uniform distribution $\mathcal{U}\{1, 5\}$. The number of intervals in each instance is obtained as a multiple of the total processing time plus the required number of intervals to turn the machine on and off, where the multiple is taken from set the $\{1.3, 1.6, 1.9, 2.2\}$. The energy cost in each interval is randomly sampled from $\mathcal{U}\{1, 10\}$. For instances differing only in the number of intervals, the energy costs are sampled gradually, i.e., the energy costs of all the intervals in an instance with a shorter horizon are the same as for the corresponding intervals in an instance with a longer horizon.

Note that the distributions for sampling the processing times and the energy costs of the intervals are the same as proposed in [12][1].

4.2 Results

All the presented Tables 1, 2, 3, and 4 have the same structure: each row represents one instance characterized by the number of the jobs n and the number of intervals h. The objective value ub of the found feasible solution, lower bound lb and the running time t are given for each tested model. If the objective value or the lower bound is in bold font, the corresponding value is known to be optimal. Therefore, if both objective and the lower bound are in bold, the solver was able to prove the solution optimality within the time-limit. If the solver reached its given time-limit on an instance without proving the optimality of a solution, the value in the corresponding cell in t column is TLR.
Additionally, we report the pre-processing time $P-P$ for the large instances. For medium-size instances, the pre-processing time is negligible with the average time 0.69 s and maximum time 2.93 s.

The last rows in each table show the average running time on each model and the average optimality gap. The average time is computed over all instances; if the solver time-outed on some instance, the specified time-limit is taken as the running time on that instance. The optimality gap on each instance is defined as

$$\frac{ub - lb_{\text{best}}}{ub} \cdot 100 \,[\%],$$

where lb_{best} is the best lower bound obtained over all models on that instance.

Results for Medium Instances The results of the experiment with medium-size instances for NOSBY and TWOSBY transition graphs are shown in Table 1 and Table 2, respectively. In these tables we can see that ILP-SPACES finds the optimal solutions and proves their optimality for all instances. On the other hand, the model ILP-REF proposed in [1] finds the optimal solution and proves the optimality only for 11 instances out of 24 within the time-limit (600 s). Moreover, some of the non-optimal solutions found by ILP-REF are far from the optimum, for example, the objective of the solution found for $n = 90, h = 621$ on TWOSBY is more than twice the objective of the optimal one found by ILP-SPACES.

Unfortunately, CP-SPACES is not able to prove the optimality of any instance within the time-limit. However, the average optimality gaps (3.40% for NOSBY and 1.79% for TWOSBY) reveals that it can find near-optimal solutions. The performance of both CP-SPACES and ILP-SPACES is slightly influenced by a more complex transition graph, whereas the performance of ILP-REF deteriorates significantly (average optimality gap 2.14% for NOSBY increased to 29.59% for TWOSBY).
Table 1. MEDIUM+NOSBY: Comparison of found upper bound ub, lower bound lb and runtime t between the models. Time-limit is 600 s and TLR stands for time-limit reached.

Instance	ILP-REF [1]	CP-SPACES	ILP-SPACES								
	n	h	ub [-]	lb [-]	t [s]	ub [-]	lb [-]	t [s]	ub [-]	lb [-]	t [s]
30	104	1	1426	1426	3.7	1448	496	TLR	1426	1426	1.3
30	127	1	1394	1394	4.9	1412	488	TLR	1394	1394	1.7
30	150	1	1394	1394	5.7	1414	484	TLR	1394	1394	2.4
30	173	1	1394	1394	7.0	1458	484	TLR	1394	1394	3.1
60	258	1	4290	4290	88.5	4379	1724	TLR	4290	4290	7.7
60	316	1	3994	3994	344.7	4117	1584	TLR	3994	3994	29.0
60	374	1	3836	3826	TLR	3952	1424	TLR	3836	3836	29.0
60	432	1	3956	3800	TLR	3972	1380	TLR	3833	3833	46.9
90	363	1	6044	5839	TLR	6004	2328	TLR	5920	5920	7.0
90	445	1	5778	5567	TLR	5760	2232	TLR	5686	5686	166.0
90	528	1	5916	4695	TLR	5916	2168	TLR	5431	5431	64.5
90	610	1	5901	4514	TLR	5829	1828	TLR	5373	5373	147.1

Average time [s]: 337.9 >600 42.1
Average optimality gap [%]: 2.14 3.40 0.00

Table 2. MEDIUM+TWOSBY: Comparison of found upper bound ub, lower bound lb and runtime t between the models. Time-limit is 600 s and TLR stands for time-limit reached.

Instance	ILP-REF [1]	CP-SPACES	ILP-SPACES								
	n	h	ub [-]	lb [-]	t [s]	ub [-]	lb [-]	t [s]	ub [-]	lb [-]	t [s]
30	106	1	3815	3815	29.4	3815	1240	TLR	3815	3815	1.4
30	129	1	3804	3804	30.7	3815	1220	TLR	3804	3804	2.3
30	152	1	3804	3804	42.0	3815	1210	TLR	3804	3804	7.0
30	175	1	3804	3804	61.4	3815	1210	TLR	3804	3804	9.5
60	254	1	10863	10863	588.1	11058	4190	TLR	10863	10863	2.0
60	311	1	10289	10087	TLR	10574	3860	TLR	10248	10248	43.3
60	368	1	9917	9696	TLR	10163	3470	TLR	9917	9917	82.1
60	426	1	20346	9133	TLR	10055	3340	TLR	9874	9874	233.9
90	370	1	17179	14818	TLR	15470	5900	TLR	15379	15379	140.2
90	454	1	22808	12951	TLR	15156	5680	TLR	14923	14923	138.6
90	538	1	25992	11868	TLR	15107	5590	TLR	14548	14548	403.8
90	621	1	29558	11466	TLR	15152	4620	TLR	14392	14392	225.8

Average time [s]: 412.6 >600 107.5
Average optimality gap [%]: 29.59 1.79 0.00
Results for Large Instances The results of the experiment with large instances for NOSBY and TWOSBY transition graphs are shown in Table 3 and Table 4, respectively. The results for CP-SPACES are not included, since we were unable to obtain solutions to all the instances from the IBM CP Optimizer. We observed that the solver used all the available RAM and swap memory (188 GB + 191 GB), which indicates internal issues of the solver. However, for three instances where the CP solver was able to find the solutions, the objective was better than for ILP-REF.

Looking at the results of ILP-SPACES, we can see that it found the optimal solutions and proved their optimality for all 24 instances. On the other hand, ILP-REF was able to find the optimal solutions for only two smallest instances, but was not able to prove their optimality within the specified time-limit (3600 s). Comparing the average optimality gaps, ILP-REF achieved 8.39 % on NOSBY transition graph and 61.33 % on TWOSBY, whereas ILP-SPACES achieved 0 % optimality gap on both transition graphs. This shows that ILP-SPACES scales even to large instances.

Table 3. LARGE+NOSBY: Comparison of found upper bound ub, lower bound lb and runtime t between the models. Time-limit is 3600 s and TLR stands for time-limit reached.

Instance	ILP-REF Π	ILP-SPACES	P-P					
n	h	ub [s]	lb [s]	t [s]	ub [s]	lb [s]	t [s]	t [s]
150	527	8 582	8 567	TLR	8 582	8 582	187	1.0
150	647	8 726	8 240	TLR	8 409	8 409	277	2.9
150	767	8 557	7 787	TLR	8 132	8 132	624	5.5
150	888	8 976	6 780	TLR	8 078	8 078	511	9.1
170	650	10 596	9 628	TLR	10 068	10 068	290	2.3
170	799	10 794	8 832	TLR	9 820	9 820	1 087	4.6
170	948	10 940	8 343	TLR	9 637	9 637	806	9.3
170	1097	11 189	8 124	TLR	9 620	9 620	1 345	13.4
190	757	12 555	11 206	TLR	12 008	12 008	246	3.9
190	930	12 882	10 521	TLR	11 758	11 758	942	6.9
190	1104	12 791	9 949	TLR	11 611	11 611	3 147	13.3
190	1277	12 757	0	TLR	11 465	11 465	1 348	22.7

Average time [s]: >3600 901 7.9
Average optimality gap [%]: 8.39 0.00
Table 4. LARGE+TWOSBY: Comparison of found upper bound ub, lower bound lb and runtime t between the models. Time-limit is 3 600 s and TLR stands for time-limit reached.

Instance	ILP-REF	ILP-SPACES	P-P						
	n	h	ub	lb	t	ub	lb	t	t
150	529	21 910	21 562	TLR	21 910	21 910	130	1.1	
150	649	29 425	20 685	TLR	21 821	21 821	702	3.1	
150	769	37 764	18 140	TLR	21 353	21 353	949	5.2	
150	890	43 929	16 799	TLR	21 266	21 266	701	8.5	
170	651	28 425	24 983	TLR	25 807	25 807	809	2.6	
170	799	39 095	21 981	TLR	25 518	25 518	1 244	5.0	
170	948	46 083	20 709	TLR	25 279	25 279	2 922	8.5	
170	1 096	53 177	20 091	TLR	25 279	25 279	2 162	14.1	
190	756	38 471	27 984	TLR	30 563	30 563	797	4.2	
190	929	46 319	26 166	TLR	30 224	30 224	1 069	7.5	
190	1 102	53 751	24 630	TLR	30 224	30 224	2 069	13.6	
190	1 275	61 547	0	TLR	30 071	30 071	2 572	23.7	

Average time [s]: >3600 1344 8.1
Average optimality gap [%]: 61.33 0.00

5 Conclusions

Continuing on the recent research of the single-machine scheduling problem with the variable energy costs and power-saving machine states, we propose a pre-processing algorithm SPACES, which pre-computes the optimal switching behavior of the machine for all possible spaces in the schedule. The pre-processing can be done in polynomial time and works well even for large instances of the problem, e.g., it takes 23 s to pre-process our largest benchmark instance with 190 jobs and 1277 intervals. The pre-computed switching costs are successfully integrated into novel CP and ILP models, which are compared to the state-of-the-art exact ILP model on a set of benchmark instances. Results show that our approach outperforms the existing methods considering all aspects – the runtime, the provided lower bounds and the upper bounds. Using our models, we obtain the optimal solutions even for the large instances with up to 190 jobs and 1277 intervals, which have been previously tackled only heuristically \[\text{[1]}\].
References

1. Aghelinejad, M., Ouazene, Y., Yalaoui, A.: Production scheduling optimization with machine state and time-dependent energy costs. International Journal of Production Research 56(16), 5558–5575 (2018). https://doi.org/10.1080/00207543.2017.1414969

2. Aghelinejad, M., Ouazene, Y., Yalaoui, A.: Complexity analysis of energy-efficient single machine scheduling problems. Operations Research Perspectives 6, 100105 (2019). https://doi.org/10.1016/j.orp.2019.100105

3. Benedikt, O., Súcha, P., Módos, I., Vlk, M., Hanzálek, Z.: Energy-aware production scheduling with power-saving modes. In: van Hoeve, W.J. (ed.) Integration of Constraint Programming, Artificial Intelligence, and Operations Research. pp. 72–81. Springer International Publishing, Cham (2018)

4. Fang, K., Uhan, N.A., Zhao, F., Sutherland, J.W.: Scheduling on a single machine under time-of-use electricity tariffs. Annals of Operations Research 238(1), 199–227 (Mar 2016)

5. Gahm, C., Denz, F., Dirr, M., Tuma, A.: Energy-efficient scheduling in manufacturing companies: A review and research framework. European Journal of Operational Research 248(3), 744 – 757 (2016). https://doi.org/10.1016/j.ejor.2015.07.017

6. Gao, K., Huang, Y., Sadollah, A., Wang, L.: A review of energy-efficient scheduling in intelligent production systems. Complex & Intelligent Systems (2019)

7. Gong, X., Pessemier, T.D., Martens, L., Joseph, W.: Energy- and labor-aware flexible job shop scheduling under dynamic electricity pricing: A many-objective optimization investigation. Journal of Cleaner Production 209, 1078 – 1094 (2019). https://doi.org/10.1016/j.jclepro.2018.10.289

8. Hadera, H., Harjunkoski, I., Sand, G., Grossmann, I.E., Engell, S.: Optimization of steel production scheduling with complex time-sensitive electricity cost. Computers & Chemical Engineering 76, 117 – 136 (2015). https://doi.org/10.1016/j.compchemeng.2015.02.004

9. Laborie, P., Rogerie, J., Shaw, P., Vilím, P.: IBM ILOG CP optimizer for scheduling. Constraints 23(2), 210–250 (Apr 2018). https://doi.org/10.1007/s10601-018-9281-x

10. Merkert, L., Harjunkoski, I., Isaksson, A., Säynevirta, S., Saarela, A., Sand, G.: Scheduling and energy – industrial challenges and opportunities. Computers & Chemical Engineering 72, 183 – 198 (2015). https://doi.org/10.1016/j.compchemeng.2014.05.024, a Tribute to Ignacio E. Grossmann

11. Mouzon, G., Yıldırım, M.B., Twomey, J.: Operational methods for minimization of energy consumption of manufacturing equipment. International Journal of Production Research 45(18–19), 4247–4271 (2007). https://doi.org/10.1080/00207540701450013

12. Shrouf, F., Ordieres-Meré, J., García-Sánchez, A., Ortega-Mier, M.: Optimizing the production scheduling of a single machine to minimize total energy consumption costs. Journal of Cleaner Production 67, 197 – 207 (2014). https://doi.org/10.1016/j.jclepro.2013.12.024