AN INTRODUCTION TO A GENERAL RECORDS THEORY BOTH FOR DEPENDENT DATA AND HIGH DIMENSIONS, REVISITED

GANE SAMB LO AND MOHAMMAD AHSANULLAH

ABSTRACT. The probabilistic investigation on record values and record times of a sequence of random variables defined on the same probability space has received much attention from 1952 to now. A great deal of such theory focused on independent real-valued random variables. There exists a few results for real-valued dependent random variables. Some papers deal also with multivariate random variables. But a large theory regarding vectors and dependent data has yet to be done. In preparation of that, the probability laws of records are investigated here, without any assumption on the dependence structure. The results are extended sequences with values in partially ordered spaces whose order is compatible with measurability. The general characterizations are checked in known cases mostly for independent sequences. The frame is ready for undertaking a vast study of records theory in high dimensions and for types of dependence.

† Gane Samb Lo.
LERSTAD, Gaston Berger University, Saint-Louis, Sénégal (main affiliation).
LSTA, Pierre and Marie Curie University, Paris VI, France.
AUST - African University of Sciences and Technology, Abuja, Nigeria.
gane-samb.lo@edu.ugb.sn, gslo@aust.edu.ng, ganesamblo@ganesamblo.net
Permanent address: 1178 Evanston Dr NW T3P 0J9, Calgary, Alberta, Canada.

†† Mohammad Ahsanullah
Department of Management Sciences. Rider University. Lawrenceville, New Jersey, USA.
Email: ahsan@rider.edu

Keywords. partially ordered spaces, record values, record times, probability law, characterization of probability law.

AMS 2010 Mathematics Subject Classification: 60Exx; 62G30
Contents

1. Introduction 3
2. General setting 4
 2.1. Basic definitions about records on \mathbb{R} 4
 2.2. Random records and general formulas 7
 2.3. General Joint Cumulative Distribution Functions 9
 2.4. Finiteness or Infiniteness of the total number of records 11
 2.5. Probability law of the sequence of increments of the record times 15
 2.6. Probability Law of the sequence of the record times 20
3. Probability laws of strong records from iid sequences 21
 3.1. General Joint Cumulative Distribution Functions 21
 3.2. Probability laws of strong records from absolutely continuous random variable 22
 3.3. Examples of distributions of records 32
 3.4. Probability laws of strong records from a discrete random variable 34
4. Records in ordered spaces 40
 4.1. Totally ordered spaces 40
 4.2. Partially ordered spaces 40
5. Conclusion 43
References 48
Résumé. L’investigation probabiliste des records d’une suite de variables aléatoires a reçu une grande attention depuis 1952 jusqu’à nos jours. Une grande partie de cette théorie a concerné les suites de variables aléatoires indépendantes, identiquement distribuées ou non, à valeurs réelles. Il existe quelques résultats pour les variables aléatoires dépendantes à valeurs réelles. Certains articles traitent également de variables aléatoires multivariées. Cependant, une théorie majeure relative aux données dépendantes ou multivariées est encore à faire. En préparation de cela, les lois de probabilité des records sont étudiées ici, sans aucune hypothèse sur la structure de dépendance des variables. Les résultats sont étendus aux suite de variables à valeurs dans un espace partiellement ordonné sur lequel l’ordre est compatible avec la mesurabilité. Les caractérisations générales sont testées sur les résultats connus portant principalement sur les suites iid. Le cadre est prêt pour passer à la théorie en haute dimension et pour différents types de dépendance.

1. Introduction

The theory of records both dealing with record values and record times for a sequence of random variables \((X_n)_{n \geq 1}\), defined on the same probability space \((\Omega, \mathcal{A}, \mathbb{P})\) and taking their values in some measurable space \(E\) endowed with a partial order \((\leq)\) is a relatively recent sub-discipline of Probability Theory and Statistics. That theory goes back to Chandler (1952) and back to Feller (1966) who applied it to gambling problems.

By now, the theory has had extraordinary developments in a great variety of directions including characterization of distributions or of stochastic processes, statistical estimations. A few number of attempts beyond the scheme of independent and identically distributed (iid) sequences are available.

A stochastic process view has led to the extremal process (see Dwass (1964)) which has helped to solve many problems in Extreme Value Theory (see Resnick (1987)).

Especially, in the iid case, that theory is tremendously developed in a number of papers and more than a dozen of books (as quoted by Ahsanullah (2015)) has been reported. To cite a few, we have the following books: Ahsanullah (2008), Ahsanullah (1988), Ahsanullah (1995), Ahsanullah (2004), Ahsanullah (2006), Arnold et al. (1998), Gulatis and Padgett (2003),...
Nevzorev (2001), Resnick (1987) (partially).

Although several departures from the real-valued sequences frame, from the iid case and even from the independent assumption, it seems that there does not exist a complete review on the results of such generalizations, including the ones related to partial order relations, for examples in finite dimensional spaces like \(\mathbb{R}^d, d > 1 \).

The aim of this paper is two-fold. First, we wish to propose a general frame for the theory of records values and record times in an arbitrary partially or totally ordered space, including random fields and to find out the finite-dimensional probability laws for the records values and times. Such a general frame would be an appropriate place to summarize available generalizations and to be the basis to get new extensions.

It is expected that this presentations and the general formulas therein will quick off new trends of innovative research works from the readers.

2. General setting

2.1. Basic definitions about records on \(\mathbb{R} \). We are going to introduce all the needed definitions on a sequence of real numbers \(x = (x_n)_{n \geq 1} \).

(A) - Strong record times and strong upper records.

Let us define them by induction. The first record time, in general, is set to one, and we write \(u(1) = 1 \) and the first record is defined by

\[
x^{(1)} = x_{u(1)} =: x_1.
\]

Next, we search

\[
u(2) = \begin{cases}
\inf \{j > u(1), x_j > x_{u(1)}\} = \inf A_2 \quad &\text{if } A_2 \neq \emptyset \\
+\infty \quad &\text{otherwise}
\end{cases}
\]

If \(u(2) < +\infty \), we call \(u(2) \) the second strong record time and the strong record value is given by

\[
x^{(2)} = x_{u(2)}.
\]

Given that the \(n \)-th strong record time exists, we may define
\[
\begin{align*}
\{ u(n+1) = \begin{cases}
\inf\{j > u(n), x_j > x_{u(n)}\} \equiv A_n & \text{if } A_n \neq \emptyset \\
+\infty & \text{otherwise}
\end{cases} \}
\end{align*}
\]

And, as previously, \(u(n+1) \) is the \((n+1)\)th strong record time if \(u(n+1) < +\infty \), and
\[
\begin{align*}
x^{(n+1)} = x_{u(n+1)}
\end{align*}
\]
is the \((n + 1)\)th strong record value.

Either we may proceed indefinitely and the sequence of record times \((u(n))_{n \geq 1}\) is unbounded or we stop the first time we have \(u(n) = +\infty \) and in such a case, the sequence \(x \) has only \((n - 1)\) record values where \(n \) is necessarily greater than one.

(B) - Weak records times and weak upper record values.

We may define weak versions of record times and values by allowing repetitions of the record values. The first weak record time set to one, and we write \(u^{(w)}(1) = 1 \) and the weak first record value is defined by
\[
\begin{align*}
x^{(1,w)} = x_{u^{(w)}(1)} =: x_1.
\end{align*}
\]

Next we define
\[
\begin{align*}
u(2) = \begin{cases}
\inf\{j > u^{(w)}(1), x_j \geq x_{u(1)}\} \equiv \inf A_2 & \text{if } A_{n-1} \neq \emptyset \\
+\infty & \text{otherwise}
\end{cases}
\end{align*}
\]

If \(u^{(w)}(2) < +\infty \), we call \(u^{(w)}(2) \) the second weak record time and the weak record value is given by
\[
\begin{align*}
x^{(2,w)} = x_{u^{(w)}(2)}.
\end{align*}
\]

Given that the \(n \)-th weak record time exists, we may define the
\[
\begin{align*}
u^{(w)}(n+1) = \begin{cases}
\inf\{j > u^{(w)}(n), x_j \geq x_{u(n)}\} = \inf A_n & \text{if } A_n \neq \emptyset \\
+\infty & \text{otherwise}
\end{cases}
\end{align*}
\]
Next we have, as previously, that if $u^{(w)}(n+1)$ is the $(n+1)$-th weak record time if $u^{(w)}(n+1) < +\infty$, we may define

$$x^{(n+1, w)} = x_{u^{(w)}(n+1)}$$

is the $(n+1)$-th weak strong record value.

C - Lower records.

Generally we set the first record time to one for any kind of record value. The strong lower record times $(\ell(n))_{n \geq 1}$ and lower record values $(x_{\ell(n)})_{n \geq 1}$ are similarly defined by setting $\ell(1) = 1$ and $x(1) = x_{\ell(1)} = 1$ and next by induction, if $\ell(n)$ is finite, by

$$\ell(n + 1) = \begin{cases} \inf\{j > \ell(n), x_j < x_{\ell(n)}\} \equiv A_n & \text{if } A_2 \neq \emptyset \\ +\infty & \text{otherwise} \end{cases}$$

and $\ell(n + 1)$ is the $(n + 1)$-th strong lower record time if it is finite and the $(n + 1)$-th is given by

$$x_{(n+1)} = x_{\ell(n+1)}.$$

As well, the weak lower record times $(\ell^{(w)}(n))_{n \geq 1}$ and lower record value $(x_{\ell^{(w)}(n)})_{n \geq 1}$ are similarly defined by setting $\ell^{(w)}(1) = 1$ and $y_{(n,w)} = x_{\ell^{(w)}(1)} = 1$ and next by induction, if $\ell^{(w)}(n)$ is finite, by

$$\ell^{(w)}(n + 1) = \begin{cases} +\infty & \text{if } \{j > \ell^{(w)}(n), x_j \leq x_{\ell^{(w)}(n)}\} = \emptyset \\ \inf\{j > \ell^{(w)}(n), x_j \leq x_{\ell^{(w)}(n)}\} & \text{otherwise} \end{cases} ,$$

and $\ell^{(w)}(n + 1)$ is the $(n + 1)$-th weak lower record time if it is finite and the $(n + 1)$-th lower record value is given by

$$x^{(n+1, w)} = x_{\ell^{(w)}(n+1)}.$$
2.2. **Random records and general formulas.** We are going to move from statistic records to random ones.

(I) - **Introduction.**

To make short, we call *record values* by *records* simply and *records*, without any further precision, are *strong upper records*.

In this section, we consider now a sequence of random real random variables

\[X_1, X_2, \ldots \]

defined on the same probability space \((\Omega, A, \mathbb{P})\). We then define the random records associated to this sequence. The records times and records become random variables defined by capital letters as follows

\[
U(n), \ L(n), \ U^{(w)}(n), \ L^{(w)}(n), \\
X^{(n)} = X_{U(n)}, \ Y^{(n)} = X_{L(n)}, \\
X^{(n,w)} = X_{U^{(w)}(n)}, \\
X_{(n,w)} = X_{L^{(w)}(n)}
\]

We are going to give a series of general facts on the laws of the record values and record times. We may focus only of the upper records, since we are able to derive the results on lower records from those on upper records by using the transform

\[(X_1, X_2, \ldots) \mapsto (-X_1, -X_2, \ldots)\]

or, if the \(X_i\)'s are a.s. positive, by using the transform

\[(X_1, X_2, \ldots) \mapsto (1/X_1, 1/X_2, \ldots).\]

Hence, we are going to study mainly the strong records in this paper.

First of all, we are going to see that the records times and the record values are Markovian.

(II) - **Markovian properties of the records and the record times.**

We have the following fact concerning the strong record times.
Proposition 1. The sequence \((U(n))_{n \geq 1}\) of strong record times is a Markovian chain with transition probabilities

\[
p_{t,n}(k, j) = \begin{cases}
\mathbb{P}(X_j > X_k, \max_{k < h < j} X_h \leq X_k) & \text{if } j > k, \\
0 & \text{otherwise.}
\end{cases}
\]

Proof. Let us assume that \(n \geq 2\). Let \(j \geq n + 1, 1 = k_1 < k_2 < \ldots < k_n\). Conditionally on \((U(1) = k_1, \ldots, U(n-1) = k_{n-1}, U(n) = k_n)\), the event \((U(n + 1) = j)\) depends only on the observations \(X_h, k_n < h \leq j\) and reduces to

\[
(X_{k_n+1} \leq X_{k_n}, X_{k_n+2} \leq X_{k_n}, \ldots X_{j-1} \leq X_{k_n}, X_j > X_{k_n}),
\]

Thus we have

\[
\mathbb{P}(U(n + 1) = j)/(U(1) = k_1, \ldots, U(n-1) = k_{n-1}, U(n) = k_n)
= \mathbb{P}(X_{k_n+1} \leq X_{k_n}, X_{k_n+2} \leq X_{k_n}, \ldots X_{j-1} \leq X_{k_n}, X_j > X_{k_n}),
\]

which proves that behavior of \(U(n)\) depends only on the most recent past \(k_n\), and by the way, provides the probability transition.

Let us move to the record values. We have

Proposition 2. The sequence \((X^{(n)})_{n \geq 1}\) of strong records is a Markovian chain with transition probability

\[
p_{r,n}(x, A) = \sum_{k=n}^{+\infty} \mathbb{P}\left((X_{\min(j>k, x_j>x_n)} \in A) / (X^{(n)} = x) \right).
\]

where \(x\) is a real number and \(A\) a Borel set of \(\mathbb{R}\).

Proof. Let \(n \geq 2\). Let \(x_1 < x_2 < \ldots < x_n < x\). Conditionally on the intersection \(B = (X^{(1)} = x_1, \ldots, X^{(n-1)} = x_{n-1}, X^{(n)} = x_n)\), the record \(X^{(n+1)}\) is defined on \((U(n) = k)\) with \(k \geq n\) by

\[
X^{(n+1)} = X_{\min(j>k, x_j>x_n)}
\]

so that

\[
\mathbb{P}(X^{(n+1)} \in A) \cap (U(n) = k) / B = \mathbb{P}\left((X_{\min(j>k, x_j>x_n)} \in A) \cap (U(n) = k) / (X^{(n)} = x) \right).
\]
We get
\[
\mathbb{P}(X^{(n+1)} \in A)/B = \sum_{k=n}^{+\infty} \mathbb{P}((X_{\min(j>k, X_j>x_n)} \in A) \cap (U(n) = k)/(X^{(n)} = x_n)),
\]
which concludes the proof.

Now let us face the general probability laws of the sequences of record values \((X^{(n)})_{n \geq 1}\), of record times \((U(n))_{n \geq 1}\), of inter-record times \((\Delta(n))_{n \geq 1} = (\Delta_n)_{n \geq 1}\), of the number of record values in a sample \((N(n)+n)_{n \geq 1}\).

In each case, we give a general probability law regardless to the dependence between the \(X_j\)'s. Next, we adapt the results to the situation where the \(X_j\)'s are independent.

Finally, we give detailed results for the iid case. In the last case, we apply the previous results but compare our outcomes with formulas with those available in the literature, in particular in books of Ahsanullah.

2.3. General Joint Cumulative Distribution Functions. We are going to provide the most general expression, so that we will be able to refine it if we know more about the structure of the dependence of the finite-distributions.

Theorem 1. For each \(n \geq 1\), we have:

(a) The joint cdf of the vector of records \(X = (X^{(1)}, X^{(2)}, \ldots, X^{(n)})^T\) is given, for any \(y = (y_1, \ldots, y_n) \in \mathbb{R}^n\),
\[
\mathbb{P}(X^{(1)} \leq y_1, \ldots, X^{(n)} \leq y_n) = \int \mathbb{P} \left(\bigcap_{j=1}^{n} \left(\frac{\max_{z_{j-1}+1 \leq h \leq z_j} X_h}{y_j^*} \right) \right) d\mathbb{P}(U(1), \ldots, U(n))(z_1, \ldots, z_n),
\]
where \(y_j^* = \bigwedge_{j=1}^{n} y_j = \min(y_i, \ldots, y_n), i \in \{1, \ldots, n\}\).

(b) For \(k\)-tuple \((n_1, \ldots, n_k = n), 1 \leq k \leq n\) with \(n_0 = 0 < 1 \leq n_1 < \cdots < n_k\), for any \(y = (y_1, \ldots, y_k) \in \mathbb{R}^k\), we have
\[\mathbb{P}(X^{(n_1)} \leq y_1, \ldots, X^{(n_k)} \leq y_k) \quad (FD2) \]
\[= \int \mathbb{P} \left(\bigcap_{j=1}^{k} \left(\max_{z_{j-1}+1 \leq h \leq z_j} X_h \leq y_j^* \right) \right) d\mathbb{P}(U(n_1), \ldots, U(n_k))(z_1, \ldots, z_k). \]

Proof. Let us prove Formula (b). Let us consider an increasing sequence \((x_j)_{j \geq 1}\). For \(1 \leq h \leq \ell \leq n\), we define by \(A(h, \ell, y)\) the assertion:

\[
\left(\text{All observations } x_j, h \leq j \leq \ell \text{ is or are less or equal to } y \right).
\]

Let us see simple cases. It is not hard to see that for \(1 \leq n_1 < n_2 < \cdots\). We easily see that

\[
(x_1 \leq x, x_{n_1} \leq y) = (A(1, 1, x) \text{ and } A(1, n_1, y)) = (A(1, 1, \min(x, y)) \text{ and } A(2, n_1, y))
\]

and

\[
(x_{n_1} \leq x, x_{n_2} \leq y) = (A(1, n_1, x) \text{ and } A(1, n_2, y)) = (A(1, n_1, \min(x, y))
\text{ and } A(n_1 + 1, n_2, y))
\]

If we understand the two previous examples, we can see that

\[
(x_{n_1} \leq x_1, x_{n_2} \leq x_2, \ldots, x_{n_k} \leq x_k)
\]

\[
= \left(A(1, n_1, \min(x_1, \cdots, x_k)) \text{ and } A(n_1 + 1, n_2, \min(x_2, \cdots, x_k))
\text{ and } A(n_2 + 1, n_3, \min(x_3, \cdots, x_k)),
\cdots,
A(n_{k-1} + 1, n_k, x_k) \right).
\]

By Applying this simple rule, we have that the event \((Y^{(n_1)} \leq x_1, Y^{(n_2)} \leq x_2, \cdots, Y^{(n_k)} \leq x_k)\) given the event

\[
(U(n_1) = z_1, \cdots, U(n_k) = z_k)
\]
(with $U(0) = 0$ and $z_0 = 0$) is equivalent to that all the observations in the block of observations from X_{z_i+1} to X_{z_i} are less or equal to $y_i^* = \lor_{j=1}^n y_j$ for $1 \leq i \leq n$. We get that $\mathbb{P}(X^{(n_1)} \leq y_1, \cdots, X^{(n_k)} \leq y_k)$ is equal to

$$
\int \mathbb{P} \left(\bigcap_{j=1}^k \left(\max_{z_{j-1}+1 \leq h \leq z_j} X_h \leq y_j^* \right) \right) \, d\mathbb{P}(U(n_1), \cdots, U(n_k))(z_1, \cdots, z_k),
$$

which is Formula (FD2) of which (FD1) is a particular form.

We have the following corollary.

Corollary 1. We have:

(a) If the random variables X_j's are independent, then for k-tuple $(n_1, \cdots, n_k = n)$, $1 \leq k \leq n$ with $n_0 = 0 < 1 \leq n_1 < \cdots < n_k$, for any $y = (y_1, \ldots, y_k) \in \mathbb{R}^k$, we have

$$
\mathbb{P}(X^{(n_1)} \leq y_1, \cdots, X^{(n_k)} \leq y_k) = \int \prod_{j=1}^k \prod_{z_{j-1}+1 \leq h \leq z_j} F_{X_h}(y_j^*) \, d\mathbb{P}(U(n_1), \cdots, U(n_k))(z_1, \cdots, z_k).
$$

(b) If the random variables X_j's are iid with common cdf F, then for a k-tuple $(n_1, \cdots, n_k = n)$, $1 \leq k \leq n$ with $n_0 = 0 < 1 \leq n_1 < \cdots < n_k$, for any $y = (y_1, \ldots, y_k) \in \mathbb{R}^k$, we have

$$
\mathbb{P}(X^{(n_1)} \leq y_1, \cdots, X^{(n_k)} \leq y_k) = \int \prod_{j=1}^k F_{z_j-z_{j-1}}(y_j^*) \, d\mathbb{P}(U(n_1), \cdots, U(n_k))(z_1, \cdots, z_k). \, \Box
$$

2.4. Finiteness or Infiniteness of the total number of records

Let us begin by a general law.

Proposition 3. For each $k \geq 1$, set

$$
X_k^* = \sup_{h > k} X_h.
$$

and denote

\[D_- = \{(x, y) \in \mathbb{R}^2, \ x \leq y\}. \]

We have for any \(n \geq 2 \),

\[\mathbb{P}(U(n + 1) = +\infty, U(n) < \infty) = \sum_{k \geq n} \mathbb{P}(X_k^*, X_k)(D_-) \mathbb{P}(U(n) = k). \]

Proof. Conditioning on \((U(n) = k), (U(n + 1) = +\infty)\) means that all the \(X_h, h > k \), are less than \(X_k \). The proof is ended by the remark

\[\mathbb{P}(\max_{h > k} X_h \leq X_k) = \mathbb{P}(X_k^* \leq X_k) = \mathbb{P}((X_k^*, X_k) \in D_-) = \mathbb{P}(X_k^*, X_k)(D_-). \]

Let us give an application of Proposition 3 in the independent case.

Proposition 4. Suppose that \(X_1, X_2, \ldots \) are independent random variables with respective cumulative distribution functions (cdf) \(F_j, j \geq 1 \). Then, whenever \(U(n) \) is finite, we have

\[\mathbb{P}(U(n + 1) = +\infty, U(n) < \infty) = \sum_{k \geq n} \left(\int \left(\prod_{j > k} F_j(x) \right) d\mathbb{P}_{X_k}(x) \right) \mathbb{P}(U(n) = k). \]

Proof. Here \(X_k^* \) and \(X_k \) are independent and we have

\[\mathbb{P}(U(n + 1) = +\infty, U(n) < \infty) = \sum_{k \geq n} \mathbb{P}_{X_k^*} \otimes \mathbb{P}_{X_k}(D_-) \mathbb{P}(U(n) = k). \]

Let us use Fubini’s theorem to have

\[
\mathbb{P}_{X_k^*} \otimes \mathbb{P}_{X_k}(D_-)
= \int_{\mathbb{R}} d\mathbb{P}_{X_k}(x) \int_{\mathbb{R}} 1_{D_-}(x, y) d\mathbb{P}_{X_k^*}(x)
= \int_{\mathbb{R}} \mathbb{P}(X_k^* \leq x) d\mathbb{P}_{X_k}(x)
= \int_{\mathbb{R}} \left(\prod_{j > k} F_j(x) \right) d\mathbb{P}_{X_k}(x).
\]
We get the announced result by combining the above lines.

Now let us see what happens if the sequence is stationary, that is $F_j = F$ for all $j \geq 1$. Define the lower and the upper endpoints ($\underline{e p}$ and $\overline{e p}$) of F by

$$\underline{e p}(F) = \inf\{x \in \mathbb{R}, F(x) > 1\}$$

and

$$\overline{e p}(F) = \sup\{x \in \mathbb{R}, F(x) < 1\}.$$

We have

$$\int_{\mathbb{R}} \left(\prod_{j > k} F_j(x) \right) d\mathbb{P}_{X_k}(x) = \int_{-\infty}^{\underline{e p}(F)} F(x) dF(x).$$

But $F(x)^{+\infty} = 0$ unless $x = \overline{e p}(F)$. This gives

$$\int_{\mathbb{R}} \left(\prod_{j > k} F_j(x) \right) d\mathbb{P}_{X_k}(x) = \int_{-\infty}^{\underline{e p}(F)} 1_{\{\overline{e p}(F)\}} dF(x) = \mathbb{P}(X = \overline{e p}(F)).$$

We conclude that

$$\mathbb{P}(U(n+1) = +\infty, U(n) < \infty) = \sum_{k \geq n} \mathbb{P}(X = \overline{e p}(F)) \mathbb{P}(U(n) = k) = \mathbb{P}(X = \overline{e p}(F))$$

which leads to the simple result:

Proposition 5. Suppose that X_1, X_2, \ldots are independent and identically distributed random variables with common cdf F and let $\overline{e p}(F)$ denote the upper endpoint of F. Then

$$\mathbb{P}(U(n+1) = +\infty, U(n) < \infty) = \mathbb{P}(X = \overline{e p}(F)).$$

As a consequence, the sequence of record values (and of record times) is finite if and only if $\overline{e p}(F)$ is finite and is an atom of F, that is $\mathbb{P}_X(\overline{e p}(F)) > 0$.

Consequences. The number of time records a.s. is infinite in the following cases.

(1) $\overline{e p}(F) = +\infty.$
(2) $uep(F) < +\infty$ but $P(X = uep(F)) = 0$. Example: $X \sim U(0, 1)$.

The number of time records may be finite in the following cases.

(1) X is discrete and takes a finite number of points.

(2) X is discrete, takes an infinite number of values such the strict values set \mathcal{V}_X of X has a maximum value. We mean by strict values set, the set of points taken by X with a non-zero probability.
2.5. **Probability law of the sequence of increments of the record times.** We make the convention that $U(0) = 0$. Let $n \geq 2$. If $U(n)$ is finite, we define $\Delta_n = U(n) - U(n-1)$. We have:

Proposition 6. *If $U(n)$ is finite, then the joint probability law of $(\Delta_1, \cdots, \Delta_n)$ is given by*

$$
\mathbb{P}(\Delta_2 = k_2, \cdots, \Delta_n = k_n) = \int_{(x_1 < x_2 < \cdots < x_n)} \mathbb{P}\left(\left(\bigcap_{1 \leq j \leq n-1} \max_{1+k_j \leq h \leq k_{j+1}-1} X_h \leq x_j \right) \right) d\mathbb{P}(X_{k_1}, \cdots, X_{k_n})(x_1, \cdots, x_n),
$$

with $k_1 = 1$, $k_j \geq 1$ for $j \in \{2, \cdots, n\}$ and $\bar{k}_j = k_1 + \cdots + k_j$ for $1 \leq j \leq n$.

Proof. It is clear that $\Delta_1 = k_1$ is possible only for $k_1 = 1$. So in the sequel, we fix $k_1 = 1$. Let us find the probability law of $(\Delta_2, \cdots, \Delta_n)$ through its discrete probability density

$$(\Delta_2 = k_2, \cdots, \Delta_n = k_n).$$

for $k_j \geq 1$, for $2 \leq j \leq n$, $k_1 = 1$. Let us define

$$C_j = \left(\max_{1+k_j \leq h \leq k_{j+1}-1} X_h \leq X_{\bar{k}_j}, X_{\bar{k}_{j+1}} > X_{\bar{k}_j} \right), \quad j = 1, \cdots, n-1$$

and

$$D_j^*(t) = \left(\max_{1+k_j \leq h \leq k_{j+1}-1} X_h \leq t, \quad X_{\bar{k}_{j+1}} > t \right), \quad t \in \mathbb{R}, \quad j = 1, \cdots, n-1$$

We have

$$(2.2) \quad (\Delta_2 = k_2, \cdots, \Delta_n = k_n) = \bigcap_{1 \leq j \leq n-1} C_j.$$

So, by conditioning by

$$Z = (X_{\bar{k}_1}, \cdots, X_{\bar{k}_n}) = (x_1, \cdots, x_n),$$
we get
\[
\mathbb{P}(\Delta_2 = k_2, \ldots, \Delta_n = k_n) = \int_{(x_1 < x_2 < \cdots < x_n)} \mathbb{P} \left(\bigcap_{1 \leq j \leq n-1} D_j^*(x_j) \right) \, d\mathbb{P}(X_{k_1}, \ldots, X_{k_n})(x_1, \ldots, x_n). \]
\]

But conditioning by \(Z = (X_{k_1}, \ldots, X_{k_n}) = (x_1, \ldots, x_n)\), with \(x_1 < x_2 < \cdots < x_n\), we have
\[
D_j^*(x_j) = \left(\max_{1+\bar{k}_j \leq h \leq \bar{k}_{j+1}-1} X_h \leq x_j \right) =: D_j(x_j), \quad j = 1, \ldots, n-1,
\]
since each inequality \(X_{\bar{k}_{j+1}} > x_j\) are realized by \((x_{j+1} > x_j)\) and this is taken into account in the integration domain. So
\[
\mathbb{P}(\Delta_2 = k_2, \ldots, \Delta_n = k_n) = \int_{(x_1 < x_2 < \cdots < x_n)} \mathbb{P} \left(\bigcap_{1 \leq j \leq n-1} D_j^*(x_j) \right) \, d\mathbb{P}(X_{k_1}, \ldots, X_{k_n})(x_1, \ldots, x_n). \]

We have the following corollary in the independent and in the iid cases.

Proposition 7. Let \(k_1 = 1\), \(k_j \geq 1\) for \(j \in \{2, \ldots, n\}\) and \(\bar{k}_j = k_1 + \cdots + k_j\) for \(1 \leq j \leq n\). Suppose that \(U(n)\) is finite.

(a) If the \(X_j\)'s are independent, we have
\[
\mathbb{P}(\Delta_2 = k_2, \ldots, \Delta_n = k_n) = \int_{(x_1 < x_2 < \cdots < x_n)} \prod_{1 \leq j \leq n-1} \left(\prod_{1+\bar{k}_j \leq h \leq \bar{k}_{j+1}-1} F_{X_h}(x_j) \right) \, d\mathbb{P}(X_{k_1}, \ldots, X_{k_n})(x_1, \ldots, x_n). \]

(b) (See Ahsanullah (2001), page 32) If the \(X_j\)'s are iid with common cdf \(F\), we have for \(\bar{k}_j = k_2 + \cdots + k_j\),
Before we give the proof, let us introduce the following lemma.

Lemma 1. Let us define, for an arbitrary cdf F of measure of Lebesgue-Stieltjes \mathbb{L} and $k_j \in \mathbb{N} \setminus \{0\}$, for $n \geq 1$,

\[
\gamma(F, n, k_1, k_2, \ldots, k_n) = \int_{(\text{lep}(F) \leq x_1 < x_2 < \cdots < x_n \leq \text{uep}(F))} \prod_{1 \leq j \leq n} F(x_j)^{k_j - 1} \, d\mathbb{L}^\otimes_n (x_j).
\]

Then

\[
\gamma(F, n, k_1, k_2, \ldots, k_n) = \left(\prod_{1 \leq j \leq n} k_j \right)^{-1}.
\]

Proof of Lemma 1. Let us proceed by induction. For $n = 1$ and $k \geq 2$, $(k_1 = 1, k_2 = k)$, we clearly have

\[
\gamma(F, n, k) = \int_{x < y} F(y)^{k-1} \, d\mathbb{L}^\otimes_2 (x, y) = \int \left(\int_{y > x} F(x)^{k-1} \, dF(y) \right) \, dF(x) = \int \left(\left[F(y)^k / k \right]_{x}^{\text{uep}(F)} \right) \, dF(x) = \frac{1}{k} \int \left(1 - F(x)^k \right) \, dF(x) = \frac{1}{k} \left(1 - \frac{1}{k + 1} \right) = \frac{1}{k + 1} = \frac{1}{k_1} \times \frac{1}{k_2}.
\]

So, Formula (1) holds for $n = 1$. Now, suppose that it holds for $n \geq 1$. Let us prove it for $n + 1$. We have
\[\gamma(F, n + 1, k_1, \cdots, k_{n+1}) \]
\[
= \int_{\text{lep}(F) \leq x_1 < x_2 < \ldots < x_{n+1} \leq \text{uep}(F)} \prod_{1 \leq j \leq n+1} F(x_j)^{k_j-1} d \otimes_1^{n+1} \mathbb{L}(x_j)
\]
\[
= \int_{\text{lep}(F) \leq x_1 < x_2 < \ldots < x_n \leq \text{uep}(F)} \prod_{1 \leq j \leq n} F(x_j)^{k_j-1} d \otimes_1^n \mathbb{L}(x_j)
\]
\[
\times \left(\int_{x_n \leq x_{n+1} \leq \text{uep}(F)} F(x_{n+1})^{k_{n+1}-1} d\mathbb{L}(x_{n+1}) \right)
\]
\[
= \frac{1}{k_{n+1}} \int_{\text{lep}(F) \leq x_1 < x_2 < \ldots < x_n \leq \text{uep}(F)} \prod_{1 \leq j \leq n-1} F(x_j)^{k_j-1} \left(1 - F(x_n)^{k_{n+1}}\right) d \otimes_1^n \mathbb{L}(x_j)
\]
\[
= \frac{1}{k_{n+1}} \left(\gamma(F, n, k_1, \ldots, k_{n-1}, k_n) - \gamma(F, n + 1, k_1, \ldots, k_{n-1}, k_n + k_{n+1} + 1) \right)
\]
\[
= \frac{1}{k_{n+1}} \left(\prod_{j=1}^{n-1} k_j \right)^{-1} \left(\frac{1}{k_n} - \frac{1}{k_n + k_{n+1}} \right)
\]
\[
= \left(\prod_{j=1}^{n+1} k_j \right)^{-1}.
\]

The proof of Lemma 1 is complete. \(\blacksquare\)

Proof of Proposition of 7. The first is a translation of the result in Proposition 6 when the \(X_j\)'s are independent. If the \(X_j\) are \(iid\) and if \(F\) is continuous, we get, for \(k_j = k_2 + \cdots + k_j, j \geq 2,\)
\[P(\Delta_2 = k_2, \ldots, \Delta_n = k_n) \]
\[= \int_{(x_1 < x_2 < \cdots < x_{n-1})} \left(\prod_{1 \leq j \leq n-1} F(x_j)^{k_j+1} \right) dP \otimes_{n-1} X \left(x_j \right) \int_{x_n > x_{n-1}} dF(x_n) \]
\[+ \int_{(x_1 < x_2 < \cdots < x_{n-1})} \left(\prod_{1 \leq j \leq n-1} F(x_j)^{k_j+1} \right) \left(1 - F(x_{n-1}) \right) dP \otimes_{n-1} X \left(x_j \right) \]
\[= \gamma(F, n, k_2, \ldots, k_n) - \gamma(F, n, k_2, \ldots, k_{n-1}, k_n + 1) \]
\[= \left(\prod_{j=1}^{n-1} k_j \right)^{-1} \left(\frac{1}{k_n} - \frac{1}{k_n + 1} \right) \]
\[= \left(k_n + 1 \right) \left(\prod_{j=1}^{n} k_j \right). \]

\[\blacksquare. \]

Applications. For \(n = 2 \), we have

\[(2.4) \quad P(\Delta_2 = k) = \frac{1}{k(k+1)}; \]

for \(n = 3 \), we get

\[(2.5) \quad P(\Delta_2 = k, \Delta_3 = \ell) = \frac{1}{k(k+\ell)(k+\ell+1)}. \]

2.6. Probability Law of the sequence of the record times. Since we know the probability law of the sequence of the inter-record times, we may get that of the record times by the general formula, with \(\ell_1 = 1 < \ell_2 < \cdots < \ell_n \),

\[(2.6) \quad P(U(2) = \ell_2, \ldots, U(n) = \ell_n) = P(\Delta_2 = \ell_2 - \ell_1, \ldots, \Delta_n = \ell_n - \ell_{n-1}) \]

Now, we may derive the law of \((U(2), \cdots, U(n))\), \(n \geq 2 \). Since we have, for \(\ell_2 < \ell_3 < \cdots < \ell_n \),
\((2.7) \quad P(U(2) = \ell_2, \ldots, U(n) = \ell_n) = P(\Delta_2 = \ell_2 - 1, \ldots, \Delta_n = \ell_n - \ell_{n-1}). \)

By applying Point (b) in proposition 7, we get

Theorem 2. *(See Ahsanullah (2001), page 33)* If the \(X_j \)'s are real-valued iid random variables, the joint probability law of the record times

\[(U(2), \ldots, U(n)), \]

for \(n \geq 2 \), is given by

\[(2.8) \quad P(U(2) = \ell_2, \ldots, U(n) = \ell_n) = \ell_n^{-1} \prod_{2 \leq j \leq n} (\ell_j - 1)^{-1} 1_{(2 \leq \ell_2 < \ldots < \ell_n)}. \]

3. **Probability laws of strong records from iid sequences**

Here, we are going to give the probability laws of the sequence of record values for independent and identically distributed random variables with common probability law \(P_X \). First, we give the joint cumulative distribution. Secondly, we treat the case where \(P_X \) is absolutely continuous with respect to the Lebesgue measure and finally, the case where \(P_X \) is a discrete probability.

Let us suppose that \(X, X_1, X_2, \ldots \) is a sequence of independent and identically distributed real-valued random variables, defined on the same probability space \((\Omega, A, P) \), with a common cdf \(F \) and common pdf \(f \).

3.1. **General Joint Cumulative Distribution Functions.** Before we treat records, let us focus on the sequences of the maxima: \(M_n = \max_{1 \leq j \leq n} X_j, \) \(n \geq 1 \). We have

Theorem 3. For each \(n \geq 1 \), we have:

(a) The joint cdf of the vector of records \((M_1, M_2, \ldots, M_n)^T \) is given, for any \(y = (y_1, \ldots, y_n) \in \mathbb{R}^n \), by

\[P(M_1 \leq y_1, \ldots, M_n \leq y_n) = \prod_{i} F \left(\bigwedge_{j=1}^{n} y_j \right). \text{ (PEX1)} \]
where $y_i^* = \wedge_{j=1}^n y_j = \min(y_i, \ldots, y_n), 1 \leq i \leq n.$

(b) For a k-tuple $(n_1, \ldots, n_k = n), 1 \leq k \leq n$ with $n_0 = 0 < 1 \leq n_1 < \cdots < n_k, for any$ \(y = (y_1, \ldots, y_k) \in \mathbb{R}^k, we have \)

$$
\mathbb{P}(M_{n_1} \leq y_1, \ldots, M_{n_k} \leq y_k) = \prod_{j=1}^k F^{(n_j-n_j-1)} \left(\bigwedge_{i=j}^k y_i \right). \quad (PEX2)
$$

Proof. We repeat the proof of Theorem 1 to get (a) by applying the principle described in (2.1) (Page 10). The formula in (b) represents a marginal cdf in (PEX1). □.

To link this with record values, we notice that $(X^{(1)}, \ldots, X^{(n)}) = (MU^{(1)}, \ldots, MU^{(n)}),$ for $n \geq 1.$ We find again the joint cdf for records values as given in Theorem 1 in the iid case, that is: given $(U^{(1)} = k_1, \ldots, U^{(n)} = k_n),$ we have

$$(X^{(1)}, \ldots, X^{(n)}) = (M_{k_1}, \ldots, M_{k_n})$$

and applying (b) in Theorem 3 allows us to get the conditional law. So we have:

Theorem 4. Let $n \geq 1.$ Define

$$
\Gamma_n = \{(\ell_1, \ldots, \ell_n) \in (\mathbb{N} \setminus \{0\})^n, \ell_1 = 1 < \ell_2 < \cdots < \ell_n\}.
$$

(a) The joint cdf of the vector of records $(X^{(1)}, X^{(2)}, \ldots, X^{(n)})^T$ is given, for any \(y = (y_1, \ldots, y_n) \in \mathbb{R}^n, by \)

$$
\mathbb{P}(X^{(1)} \leq y_1, \ldots, X^{(n)} \leq y_n)
= \sum_{(\ell_1, \ldots, \ell_n) \in \Gamma_n} \prod_{j=1}^k F^{(n_j-n_j-1)} \left(\bigwedge_{i=j}^k y_i \right) \mathbb{P}(U^{(1)} = \ell_1, \ldots, U^{(n)} = \ell_n).
$$

3.2. **Probability laws of strong records from absolutely continuous random variable.**

We are going to give the finite distributional probability laws of the sequence of strong records, the individual marginal distributions and different marginal laws involving two or more individual margins.
But before we begin, we wish to explain a general method which will be systematically used. All the computations below which are related to the n-th record $X^{(n)}$, $n \geq 2$, are based on conditioning on the past record $X^{(n-1)}$. For this, the reader is supposed to know the general formulas below. Let A be a measurable set of (Ω, \mathcal{A}), S and T be two real valued variables defined on the probability space $(\Omega, \mathcal{A}, \mathbb{P})$. If T has an absolute probability density function f_T with respect to the Lebesgue measure and supported by \mathcal{V}_X, we have

$$\mathbb{E}(S) = \int_{\mathcal{V}_X} \mathbb{E}(S|(T = t))f_T(t)dt$$

and

$$\mathbb{P}(A) = \int_{\mathcal{V}_X} \mathbb{P}(A|(T = t))f_T(t)dt.$$

If T is discrete with values set $\mathcal{V}_X = \{x_j, j \in J\}$, $J \subset \mathbb{N}$, we have

$$\mathbb{E}(S) = \sum_{j\mathcal{V}_X} \mathbb{E}(S|(T = x_j))\mathbb{P}(T = x_j)$$

and

$$\mathbb{P}(A) = \sum_{j\mathcal{V}_X} \mathbb{P}(A|(T = x_j))\mathbb{P}(T = x_j).$$

For advanced readers, we may use the counting measure ν on the discrete set \mathcal{V}_X and the pdf $f_T(x) = \mathbb{P}(T = x)$, $x \in \mathcal{V}_X$, with respect to the counting measure to unify both formulas in

$$\mathbb{E}(S) = \int_{\mathcal{V}_X} \mathbb{E}(S|(T = t))f_T(t)d\mu(t)$$

and

$$\mathbb{P}(A) = \int_{\mathcal{V}_X} \mathbb{P}(A|(T = t))f_T(t)d\mu(t).$$
where μ is the Lebesgue measure ($\mu = \lambda$). If T has a pdf f_T with respect to the Lebesgue measure and supported by V_X, then is the counting measure ($\mu = \nu$) on the discrete values set V_T if T takes at most countable values.

In order to be in a better position for handling the conditioning on the immediate past $X^{(n-1)}$, we introduce the random variable

$$N(n-1, n) = \text{Number of observations with time strictly between } U(n-1) \text{ and } U(n).$$

In the sequel, f, V_X and F denote the pdf of X, its support and its cdf, respectively, in the case of stationary sequences. We also denote

$$R(x) = -\log(1 - F(x)) \text{ and } r(x) = \frac{f(x)}{1 - F(x)}, \quad x \in V_X, \; F(x) < 1.$$

where $r(.)$ is the hazard function of X, with the obvious relation:

$$r(x) \, dx = dR(x), \quad x \in V_X, \; F(x) < 1.$$

Let us give at once the joint absolutely probability law from which marginal probabilities will follow.

Theorem 5. (a) The joint probability law of $(X^{(1)}, X^{(2)}, \ldots, X^{(n)})^T, \; n \geq 1$, is absolutely continuous to the Lebesgue measure $\lambda^n \otimes \lambda^n$ on \mathbb{R}^n with joint pdf, for $y = (y_1, \ldots, y_n)$,

$$f^{(1,2,\cdots,n)}(y) = \left(\prod_{i=1}^{n-1} r(y_j)\right) f(y_n) 1_{(y_1 < y_2 < \cdots < y_n) \cap V_X^n}(y). \quad (ADR1)$$

(b) Moreover for any k-tuple $(n_1, \ldots, n_k), \; 1 \leq k \leq n$ with $1 < n_1 < \cdots < n_k$, the joint pdf with respect to $\lambda^k \otimes \lambda^k$ with support V_X^k is given by

$$f^{(n_1,n_2,\cdots,n_k)}(y_1, \ldots, y_k) = \left(\prod_{j=1}^{k-1} r(y_j)\right) \left(\prod_{j=1}^{k} \frac{(R(y_j) - R(y_{j-1}))^{n_j-n_{j-1}-1}}{\Gamma(n_j - n_{j-1})}\right) f(y_k)$$

$$\times 1_{(y_1 < \cdots < y_k) \cap V_X^k}(y_1, \ldots, y_k). \quad (ADR2)$$
with \(n_0 = 0 \) and \(R(y_0) = 0 \).

c) Each \(X^{(n)}, n \geq 1 \), is absolutely continuous with pdf

\[
f^{(n)}(x) = \frac{R(x)^{n-1}}{\Gamma(n)} f(x) 1_{\mathcal{X}}(x). \quad (ADR3)
\]

Remark. The strict inequality in the domain \((y_1 < \cdots < y_k)\) is due to the fact that for an absolutely continuous random vector, the event of the equality of some components is a null-event. We may also say that ii comes from the fact that the \(y_j \)'s are strong records. Actually in the case where the iid sequence is associated with an absolutely continuous pdf, there are strong records only.

Proofs. Let us organize the proofs into points.

Direct Proof of (c). This part might be proved as a consequence of (b). But we need to learn how to use the Markov property in a simple case. So, we give a direct proof. Let us begin by the two first cases \(n = 1 \) and \(n = 2 \) and next, we proceed by induction. For \(n = 1 \), we have that \(X^{(1)} = X_1 \) and the pdf \(f \) of \(X_1 \) is given by Point (c). For \(n = 2 \), we may use the conditioning formula (3.6) to have

\[
\begin{align*}
\mathbb{P}(X^{(2)} \in [y - dy/2, y + dy/2]) &= \int_{-\infty}^{y} \mathbb{P}(X^{(2)} \in [y - dy/2, y + dy/2] | X_1 = x) f(x) dx \\
&= \int_{-\infty}^{y} \left(\sum_{j=0}^{\infty} \mathbb{P}(X^{(2)} \in [y - dx/2, y + dy/2], |N(1,2) = j))|X_1 = x)) f(x) \right) dx.
\end{align*}
\]

The following reasoning will be quoted in the sequel as:

ARG The event

\[
((X^{(2)} \in [y - dx/2, y + dy/2], N(1,2) = j))|X_1 = x))
\]
means exactly that \(X_1 \) is given and we have \(j \) independent random variables \(X_h \) less than \(x \) and the following random variable (in the enumeration) is in \([y - dx/2, y + dy/2]\). The bounds of the integral come from the fact that the second record in \([y - dy/2, y + dy/2]\) should be greater than \(x \) and the fact that no point falls in \([y - dy/2, y + dy/2]\) except the second record based on the continuity assumption. So, the probability of this event is still

\[
F(x) j f(y) \, dy \, (1 + o(1)).
\]

Then we have, for \(0 < F(x) < 1 \)

\[
\mathbb{P}(X^{(2)} \in [y - dy/2, y + dy/2])
= (1 + o(1)) \int_{-\infty}^{y} \sum_{j=0}^{\infty} F(x)^j f(y) f(x) \, dx \, dy
= (1 + o(1)) f(y) \, dy \int_{-\infty}^{y} \frac{f(x)}{1 - F(x)} \, dx
= f(y) \, dy \, (1 + o(1)) \int_{-\infty}^{y} r(x) \, dx = f(y) \, dy \, (1 + o(1)) \int_{-\infty}^{y} dR(x)
= R(y) f(y) \, dy \, (1 + o(1))
\]

and then

\[
\frac{\mathbb{P}(X^{(2)} \in [y - dy/2, y + dy/2])}{dy} = R(y) f(y) \, (1 + o(1)).
\]

We get the pdf of \(X^{(2)} \) by letting \(dy \to 0 \) and find again Formula \((ADR3)\) for \(n = 2 \). Now for the general iteration, we proceed by induction by assuming that \((ADR3)\) holds for \(n \geq 1 \). Let us find the pdf for \(X^{(n+1)} \). We repeat the same method used for \(n = 2 \) to get
\[P(X^{(n+1)} \in [y - dy/2, y + dy/2]) \]
\[= \int_{-\infty}^{y} \mathbb{P}\left(X^{(n+1)} \in [y - dy/2, y + dy/2] \left| X^{(n)} = x \right. \right) f^{(n)}(x) dx \]
\[= \int_{-\infty}^{y} \left(\sum_{j=0}^{-\infty} \mathbb{P}\left(\left\{ X^{(n+1)} \in [y - dy/2, y + dy/2], \ N(n, n+1) = j \right\} \left| X^{(n)} = x \right. \right) \times f^{(n)}(x) \right) dx. \]
By using the argument \textbf{(ARG)} (page 25), we see that the probability of the event

\[\left\{ \left. X^{(n+1)} \in [y - dy/2, y + dy/2], \ N(n+1, n) = j \right| X^{(n)} = x \right\} \]

is

\[F(x)^j f(y) dy \ (1 + o(1)). \]

Next, we have

\[
\mathbb{P}(X^{(n+1)} \in [y - dy/2, y + dy/2]) = \\
\int_{-\infty}^{y - dy/2} \sum_{j=0}^{\infty} F(x)^j f(y) dy \ (1 + o(1)) f^{(n)}(x) dx \\
= f(y) dy \ (1 + o(1)) \int_{-\infty}^{y - dy/2} \frac{f^{(n)}(x)}{1 - F(x)} dx \\
= f(y) dy \ (1 + o(1)) \int_{-\infty}^{y - dy/2} \frac{r(x)R(x)^{n-1}}{\Gamma(n)} dx \\
= (1 + o(1)) f(y) dy \int_{-\infty}^{y - dy/2} \frac{d(R(x)^n)}{n\Gamma(n)} \\
= \frac{R(y)^n}{\Gamma(n+1)} f(y) dy \ (1 + o(1)).
\]

We get the \textit{pdf} of $X^{(n+1)}$ and find again Formula (ADR3) for $n+1$. The proof of (c) by induction is finished. \square

Next we have:

\textbf{Proof of (a) : The finite distributional probability law.}

Let us begin by proving the result for $n = 2$. We have, for x fixed such that $0 \leq F(x) < 1$ and $y > x$,

\[
\mathbb{P}(X^{(2)} \in [y - dy/2, y + dy/2]) = \\
\int_{-\infty}^{y - dy/2} \sum_{j=0}^{1} F(x)^j f(y) dy \ (1 + o(1)) f^{(n)}(x) dx \\
= f(y) dy \ (1 + o(1)) \int_{-\infty}^{y - dy/2} \frac{f^{(n)}(x)}{1 - F(x)} dx \\
= f(y) dy \ (1 + o(1)) \int_{-\infty}^{y - dy/2} \frac{r(x)R(x)^{n-1}}{\Gamma(n)} dx \\
= (1 + o(1)) f(y) dy \int_{-\infty}^{y - dy/2} \frac{d(R(x)^n)}{n\Gamma(n)} \\
= \frac{R(y)^n}{\Gamma(n+1)} f(y) dy \ (1 + o(1)).
\]
\[\mathbb{P}(X^{(1)} \in [x - dx/2, x + dx/2], X^{(2)} \in [y - dy/2, y + dy/2]) \\
= \mathbb{P}((X^{(2)} \in [y - dy/2, y + dy/2]) | (X^{(1)} \in [x - dx/2, x + dx/2])) \\
\times \mathbb{P}(X^{(1)} \in [x - dx/2, x + dx/2]) \\
= \mathbb{P}((X^{(2)} \in [y - dy/2, y + dy/2]) | (X^{(1)} \in [x - dx/2, x + dx/2])) \\
\times f(x)dx \ (1 + o(1)), \]

since \(f \) is the pdf of \(X^{(1)} \). Using the argument (ARG) (page 25) above, the following set

\[\left(X^{(2)} \in [y - dy/2, y + dy/2] \mid X^{(1)} \in [x - dx/2, x + dx/2] \right), \]

when decomposed over the events \(N(1, 2) = j \), leads to

\[\sum_{j=0}^{\infty} \mathbb{P}(X^{(1)} \in [x - dx/2, x + dx/2], X^{(2)} \in [y - dy/2, y + dy/2]) \\
= \sum_{j=0}^{\infty} \mathbb{P}\left(X^{(2)} \in [y - dy/2, y + dy/2], N(1, 2) = j \mid X^{(1)} \in [x - dx/2, x + dx/2] \right) \\
\times f(x)dx \ (1 + o(1)) \\
= \sum_{j=0}^{\infty} F(x - dx/2)^j f(y)dy f(x)dx \ (1 + o(1)) \\
= \frac{f(x)f(y)}{1 - F(x + dx/2)} dxdy \ (1 + o(1)). \]

As \(dx \) and \(dy \) go to zero, we exploit the continuity of \(F \) at \(x \), to have

\[f^{(1,2)} = r(x)f(y)1_{(x<y)\cap \mathcal{V}_X^2}, \]

which proves (b) for \(n = 2 \). Suppose it is true for \(n \geq 2 \). Let us prove it for \(n + 1 \). Let us fix \(x_1 < \ldots x_n < x_{n+1} \), all of them in \(\mathcal{V}_X \) and let us write, for short, \([x_i - dx_i/2, x_i + dx_i/2] = x_i \pm dx_i/2, \ i = 1, \ldots, n \). We have
By the Markov property of the records, we have

\[
\mathbb{P}(X^{(1)} \in x_1 \pm dx_1/2, \ldots, X^{(n)} \in x_n \pm dx_n/2, X^{(n+1)} \in x_{n+1} \pm dx_{n+1}/2)
= \mathbb{P}
\left(X^{(n+1)} \in x_{n+1} \pm dx_{n+1}/2 \mid X^{(1)} \in x_1 \pm dx_1/2, \ldots, X^{(n)} \in x_n \pm dx_n/2\right)
\times \mathbb{P}(X^{(1)} \in x_1 \pm dx_1/2, \ldots, X^{(n)} \in x_n \pm dx_n/2)
= \mathbb{P}
\left(X^{(n+1)} \in x_{n+1} \pm dx_{n+1}/2 \mid X^{(1)} \in x_1 \pm dx_1/2, \ldots, X^{(n)} \in x_n \pm dx_n/2\right)
\times f^{(1, \ldots, n)}(x_1 \ldots, x_n) \, dx_1 \ldots dx_n (1 + o(1)).
\]

By the Markov property of the records, we have

\[
\mathbb{P}
\left(X^{(n+1)} \in x_{n+1} \pm dx_{n+1}/2 \mid X^{(1)} \in x_1 \pm dx_1/2, \ldots, X^{(n)} \in x_n \pm dx_n/2\right)
= \mathbb{P}
\left(X^{(n+1)} \in x_{n+1} \pm dx_{n+1}/2 \mid X^{(n)} \in x_n \pm dx_n/2\right).
\]

By using the argument (ARG) (page 25), we obtain

\[
\mathbb{P}(X^{(1)} \in x_1 \pm dx_1/2, \ldots, X^{(n)} \in x_n \pm dx_n/2, X^{(n+1)} \in x_{n+1} \pm dx_{n+1}/2)
= \sum_{j=0}^{+\infty} \mathbb{P}
\left(X^{(n+1)} \in x_{n+1} \pm dx_{n+1}/2, N(n, n+1) = j \mid X^{(n)} \in x_n \pm dx_n/2\right)
\times f^{(1, \ldots, n)}(x_1, \ldots, x_n) \, dx_1 \ldots dx_n (1 + o(1))
= \frac{1 + o(1)}{1 - F(x_n - dx_n/2)} f(x_{n+1}) f^{(1, \ldots, n)}(x_1, \ldots, x_n) \, dx_1 \ldots dx_n dx_{n+1}.
\]

The induction hypothesis gives

\[
\mathbb{P}(X^{(1)} \in x_1 \pm dx_1/2, \ldots, X^{(n)} \in x_n \pm dx_n/2, X^{(n+1)} \in x_{n+1} \pm dx_{n+1}/2)
= r(x_1) \cdots r(x_{n-1}) \frac{f(x_n) \, (1 + o(1))}{1 - F(x_n - dx_n/2)} f(x_{n+1}) \, dx_1 \cdots dx_{n+1}.
\]

We get (a) for \(n + 1 \) by letting all the \(dx_i \) go to zero for \(i = 1, \ldots, n \).

The combination of Points (a) and (c) allows to have for \(y \in \mathcal{N}_X \).
Indeed, the marginal pdf \(f^{(n)}\) of \(X^{(n)}\) is obtained from the joint pdf \(f^{(1,\ldots,n)}\) by

\[
f^{(n)}(y) = \int_{(x_1<\ldots<x_{n-1}<y)} \left(\prod_{j=1}^{n-1} r(x_i) \right) f(y) dx_1 \ldots dx_n
= f(y) \int_{(+\infty<x_1<\ldots<x_{n-1}<y)} \left(\prod_{j=1}^{n-1} r(x_i) \right) dx_1 \ldots dx_n.
\]

From Point (c), we make an identification and get Formula (3.7). We may replace \(-\infty\) by \(z \in \mathcal{V}_X, z < y\) and expect to have

\[
\int_{(z<x_1<\ldots<x_{n-1}<y)} \left(\prod_{j=1}^{n-1} r(x_i) \right) dx_1 \ldots dx_{n-1} = \frac{(R(y) - R(z))^{n-1}}{\Gamma(n)}.
\]

This is proved in the Appendix Part 2. □

Proof of (b) : Distribution of the sub-vector of \((X^{(1)}, X^{(2)}, \ldots, X^{(n)})^T, n \geq 1.\)

From Point (a), we may find the pdf \((X^{(n_1)}, X^{(n_2)}, \ldots, X^{(n_k)})\), denoted \(f^{(n_1,n_2,\ldots,n_k)}\) for \(1 \leq n_1 < n_2 < \ldots < n_k\). Indeed, we have to integrate the joint pdf \(f^{(1,\ldots,n_k)}\) with respect to \(dx_i\),

\[
i \in \{1, \ldots, n\} \setminus \{n_1, \ldots, n_k\},
\]

that is, for \(x_{n_1} < x_{n_2} < \ldots < x_{n_{k-1}} < x_{n_k}\),
By applying Formulas (3.7) and (3.8), we get, for $x_{n_0} = \text{lep}(F)$,

\[
f^{(n_1, n_2, \ldots, n_k)}(x_{n_1}, x_{n_2}, \ldots, x_{n_{k-1}}, x_{n_k}) = f(x_{n_k}) \prod_{j=1}^{k-1} r(x_{n_j}) \prod_{j=1}^{k} \frac{(R(x_{n_j}) - R(x_{n_{j-1}}))^{n_j - n_{j-1} - 1}}{\Gamma(n_j - n_{j-1})}.
\]

3.3. Examples of distributions of records

A few examples could be useful for studying all the strong records for instance because of the

(A) Re-scaling property. For any sequence $(x_j)_{1 \leq j \leq n}$ of n real numbers, $n \geq 2$, and for any increasing function $h : \mathbb{R} \to \mathbb{R}$, the record values of $(h(x_j))_{1 \leq j \leq n}$ are the images by h of the record values of $(x_j)_{1 \leq j \leq n}$ according to the same order and the record times are the same for $(x_j)_{1 \leq j \leq n}$ and $(h(x_j))_{1 \leq j \leq n}$.

Another interesting rule is the following representation.
B) The Renyi representation. Let X and Y two real-valued random variables defined on $(\Omega, \mathcal{A}, \mathbb{P})$ with cdf’s F and G where G is invertible. Then

$$X =_{d} F^{-1}(G(Y)),$$

where \(F^{-1}(u) = \inf \{ x \in [\text{lep}(F), \text{u ep}(F)], \, F(x) \geq u \}, \, u \in]0, 1[\), is the generalized inverse of F and

$$\text{lep}(F) = \inf \{ x \in \mathbb{R}, \, F(x) > 0 \}, \, \text{u ep}(F) = \sup \{ x \in \mathbb{R}, \, F(x) < 1 \}.$$

By applying Point (A) above to random variable we have:

Proposition 8. Let us consider an iid sequence of random variables \((X_j)_{1 \leq j \leq n}\) with common cdf F, defined on the same probability space $(\Omega, \mathcal{A}, \mathbb{P})$. Let us suppose that F is strictly increasing. Then for any iid sequence of random variables \((Y_j)_{1 \leq j \leq n}\) with common cdf G, we have the following equalities in distribution of the two sequences

\[
\{X_1, \cdots, X_n\} =_{d} \{Y_1, \cdots, Y_n\},
\]

and $(U(H,j)$ is the j-th record time from the cdf $H)$,

\[
\{U(F,1), \cdots, U(F,n)\} =_{d} \{U(G,1), \cdots, U(G,n)\},
\]

and finally by the re-scaling property for the record values,

\[
\{X^{(1)}, \cdots, X^{(n)}\} =_{d} \{F^{-1}(G(Y^{(1)})), \cdots, F^{-1}(G(Y^{(n)}))\}.
\]

An important example concerns the case where G is the standard exponential cdf: $F(x) = 1 - \exp(-x), \, x \geq 0$. We get

Proposition 9. Let us consider sequence iid sequence of random variables \((X_j)_{1 \leq j \leq n}\) with common cdf F, defined on the same probability space $(\Omega, \mathcal{A}, \mathbb{P})$. Let us suppose that F is strictly increasing and G is invertible. Then for any iid sequence of iid standard exponential random variables \((E_j)_{1 \leq j \leq n}\), we have the equality in distribution of the record times of both sequences

\[
\{U(F,1), \cdots, U(F,n)\} =_{d} \{U(E,1), \cdots, U(F,n)\},
\]
and the re-scaling property

\[
\{X^{(1)}, \ldots, X^{(n)}\} = \{F^{-1}(1 - \exp(-E^{(1)})), \ldots, F^{-1}(1 - \exp(-E^{(n)})\}\.
\]

Through Formula (3.13), a huge number of problems on records are studied and the Records theory becomes a theoretical study on functions \(F^{-1}\) and on exponential random variables.

Now, two interesting and useful examples are given, one for absolutely continuous random variables and one for the discrete random variables: the exponential records (that we are giving right now) and the geometric records to be stated on Page 38 after the discrete records are presented.

\textbf{(C) Exponential records.} Let us consider a sequence of independent standard exponential random variables \((X_j)_{1 \leq j \leq n}, n \geq 2,\) of intensity \(\theta > 0,\) defined on the same probability space \((\Omega, \mathcal{A}, \mathbb{P})\), By Theorem 5 (page 24) and Formula (ADR) therein, we have

\[
f_{(X^{(1)}, \ldots, X^{(n)})}(x_1, \ldots, x_n) = \theta^n e^{-\theta x_n} 1_{(0 \leq x_1 \leq \ldots \leq x_n)}.
\]

We see that \((X^{(1)}, \ldots, X^{(n)})\) are the arrival times of a Poisson stochastic process of intensity \(\lambda\) and hence inter-arrival times (for \(X^{(0)} = 0\))

\[X^{(j)} - X^{(j-1)}, \ j \in \{1, \ldots, n\},\]

are independent and identically distributed following \(\theta\)-exponential law.

\[3.4. \textbf{Probability laws of strong records from a discrete random variable.} \ \textbf{(A) General formula in the iid case.}\]

Here, we suppose that \(X, X_1, X_2, \ldots\) is a sequence of independent and identically distributed real-valued random variables, defined on the same probability space \((\Omega, \mathcal{A}, \mathbb{P})\), with a common \textit{discrete pdf} \(f\) given on the strict discrete support \(\mathcal{V}_X = \{x_j, \ j \in J\} \subset \mathbb{R}, \ J \subset \mathbb{N},\) by

\[
f(x) = \mathbb{P}(X = x) 1_{\mathcal{V}_X}(x), \ x \in \mathbb{R},
\]
with the condition
\[(\forall x \in \mathcal{V}_X, \; f(x) > 0), \; (\forall x \notin \mathcal{V}_X, \; f(x) = 0) \; \text{and} \; \left(\sum_{x \in \mathcal{V}_X} f(x) = 1 \right).\]

Similarly to the absolutely continuous case, we define for all \(x \in \mathbb{R}\),

\[
F(x) = \sum_{j \in J, \; x_j \leq x} f(x_j) \\
1 - F(x) = \sum_{j \in J, \; x_j > x} f(x_j) \\
= R(x) = \frac{f(x)}{1 - F(x)}, \quad \text{for} \; x \in \mathcal{V}_X \; \text{and} \; F(x) < 1.
\]

Actually, we mainly use the integration methods, here with respect to the counting measure \(\mu\) supported by \(\mathcal{V}_X\) and defined by

\[
\mu = \sum_{j \in J} \delta_{x_j},
\]

(where \(\delta_{x_j}\) is the Dirac measure concentrated on \(x_j\) with mass one), with respect to which the probability law \(\mathbb{P}_X\) has the Radon-Nikodym derivative \(f\), that is

\[
d\mathbb{P}_X = f \; d\mu.
\]

Let us introduce a notation that will replace \(R(x) = -\log(1 - F(x))\) in the discrete case. We denote for \(x < y\),

\[
J(x, y) = \lfloor x, y \rfloor \cap \mathcal{V}_X \quad \text{and} \quad \#J(x, y) = d(x, y).
\]

For two integers \(r < s\), we set

\[
J_0(r, s, x, y) = \{(t_1, \ldots, t_{r-s-1}) \in J(x, y)^{r-s-1}, \; t_1 < \cdots < t_{r-s-1}\}
\]

We define \(R(x, y) = 1\) if \(d(x, y) = 0\) or \(r - s - 1 = 0\). Otherwise, we set
\[R(r, s, x, y) = \sum_{(t_1, \ldots, t_{r-s-1}) \in Jo(r, s, x, y)} \prod_{h=1}^{r-s-1} r(t_h). \]

In general, similar rules based only on integration with respect to a measure apply. We get the same formulas but the pdf's are with respect to counting measures. But for pedagogical purposes, redoing the proofs using discrete integration has its own merit. By taking the discrete form of the pdf's in Proposition 5, we have

Proposition 10. (a) The joint probability law of \((X^{(1)}, X^{(2)}, \ldots, X^{(n)})^T, n \geq 1\), has pdf with respect to \(\mu^\otimes n\) with support \(V^n_X\) with discrete pdf

\[f^{(n)}(y_1, y_2, \ldots, y_n) = \left(\prod_{i=1}^{n-1} r(y_j) \right) f(y_n), 1_{(y_1 < y_2 < \ldots < y_n)}(y^n_X)(y). \quad (DDR_2) \]

(b) Moreover for any \(k\)-tuple \((n_1, \ldots, n_k), 1 \leq k \leq n\) with \(1 < n_1 < \ldots < n_k\), the joint discrete pdf with respect to \(\mu^\otimes k\) with support \(V^k_X\) is given by:

\[f^{(n_1, n_2, \ldots, n_k)}(y_1, \ldots, y_k) = f(y_n) \prod_{j=1}^{k-1} r(y_{n_j}) \prod_{j=1}^{k} R(n_{j-1}, n_j, y_{n_{j-1}}, y_{n_j}). \]

(c) For each \(n \geq 1\), the pdf with respect to the counting measure supported by \(V^n_X\) is given by

\[f^{(n)}(y) = R(0, n, y_0, y) f(y) 1_{V^n_X}(y). \quad (DDR_3) \]

Remark. Here, the strict inequality in the domain \((y_1 < \ldots < y_k)\) is due to the fact that the \(y_j\)'s are strong records. Here we have to distinguish between strong and weak records.

Proof. Let us begin by the joint distribution of \((X^{(1)}, X^{(2)}, \ldots, X^{(n)})^T, n \geq 1\). For \(y_1 < y_2 < \ldots < y_n\), we set

\[U(j, j+1) \] as the number of observations strictly between the \(j\)-th record \(X_{U(j)}\) and the \((j+1)\)-th record \(X_{U(j+1)}\).

The event
\[A = (X^{(1)} = y_1, \ldots, X^{(n)} = y_n) \]

can be decomposed as

\[A = \sum_{0 \leq p_2 < +\infty, \ldots, 0 \leq p_{n-1} < +\infty} A \cap (U(j, j+1) = p_j, \ 2 \leq j \leq n-1). \]

Let us consider the cumulative forms of the \(p_j \)'s: \(p^*_2 = p_2, p^*_j = p_2 + \cdots + p_j, \ 2 \leq j \leq n-1 \). The event

\[A \cap (U(j, j+1) = p_j, \ 2 \leq j \leq n-1) \]

exactly means that the first observation is equal to \(y_1 \), the \(p_2 \) next observations are less that \(y_1 \), the \((p^*_2 + 2) \)-th observation is equal to \(y_2 \), the next \(p_3 \) observations are less than \(y_2 \), the \((p^*_3 + 3) \)-th, \(\ldots \), the \((p^*_n-2 + (n-2)) \)-th is equal to \(y_{n-2} \), the \(p_{n-1} \) next observations are less than \(y_{n-1} \) and finally the \((p^*_n-1 + (n-1)) \)-th (the \(n \)-th) observation is equal to \(y_n \). So we have

\[\mathbb{P}(A \cap (U(j, j+1) = p_j, \ 2 \leq j \leq n-1)) = f(y_1)F(y_1)^{p_2} f(y_2)F(y_2)^{p_3} \cdots f(y_{n-1})F(y_{n-1})^{p_{n-1}} f(y_n). \]

By summing over the \(p_j \)'s, we get

\[\mathbb{P}(A) = \left(\frac{f(y_1)}{1 - F(f(y_1))} \frac{f(y_2)}{1 - F(f(y_2))} \cdots \frac{f(y_{n-1})}{1 - F(f(y_{n-1}))} \right) f(y_n). \]

This finishes the proof of Point (1) of the theorem. □

Proof of Point (2). Let \((n_1, \ldots, n_k), \ 1 \leq k \leq n \) with \(1 < n_1 < \cdots < n_k \), be a \(k \)-tuple and let

\[1 \leq x_{n_1} < y_{n_2} < \cdots < y_{n_{k-1}} < y_{n_k} \]

such that \((y_{n_1}, \ldots, y_{n_k}) \in Y^k_X\). For

\[A = (X^{(n_1)} = x_{n_1}, \ldots, X^{(n_k)} = x_{n_k}), \]

The marginal distribution of \((X^{(n_1)}, \ldots, X^{(n_k)})\) is given, for \(n_0 = 0, y_0 = lep(F) \), by
\[P(A) = \sum_{y_j, j \notin \{n_1, \ldots, n_k\}} \prod_{j=1}^{k-1} r(y_j) f(y_n) \times 1_{(y_1 < \cdots < y_{n-1} < y_n)} \]

\[= f(y_n) \prod_{j=1}^k r(y_{n_j}) \prod_{j=1}^k \sum_{y_{n_{j-1}+1} < y_{n_j} - 1} r(y_{n_{j-1}+1}) \cdots y_{n_j-1} \]

\[\times 1_{(y_{n_{j-1}} < y_{n_{j-1}+1} < \cdots < y_{n_j-1} < y_{n_j})} \]

\[= f(y_n) \prod_{j=1}^k r(y_{n_j}) \prod_{j=1}^k R(n_{j-1}, n_j, y_{n_{j-1}}, y_{n_j}). \]

\[\square \]

Proof of Point (3). Let \(n \geq 1 \). The distribution of \(X^{(n)} \) is the \(n \)-th marginal of the joint distribution \((X^{(1)}, X^{(2)}, \ldots, X^{(n)})^T \). So for \(n_0 = 0, y_0 = lep(F) \) and for \(y \in \mathcal{V}_X \), we have

\[P(X^{(n)} = y) = \sum_{y_j, 1 \leq j \leq n-1 \notin \{n_1, \ldots, n_k\}} \prod_{j=1}^{k-1} r(y_j) f(y) \times 1_{(y_1 < \cdots < y_{n-1} < y)} \]

\[= R(0, n, y_0, y) f(y). \]

(B) Application to geometric records. Let us consider a sequence of iid geometric random variables \((X_j)_{1 \leq j \leq n}, n \geq 2 \), with probability \(p = 1 - q \in]0, 1[\), defined on the same probability space \((\Omega, \mathcal{A}, P) \). Let us recall that each \(X_j \) follows the probability law of the number of trials which is necessary to have one success in a Bernoulli trial. Hence the common mass discrete *pdf* \(f \) is defined by \(f(k) = P(X_1 = k) = q^{k-1}p, k \geq 1 \). Hence for all \(k \geq 1 \),

\[1 - F(k) = \sum_{k>h} f(k) = p \sum_{h=k+1}^{+\infty} q^{h-1} = q^k \]

and

\[r(k) = \frac{f(k)}{1 - F(k)} = p/q. \]
Now by applying Theorem 10 (Page 36) and Formula (DDR2) therein, we get for $1 \leq k_1 < \cdots < k_n$

$$f_{X^{(1)}, \ldots, X^{(n)}}(k_1, \cdots, k_n) = (p/q)^{n-1}q^{k_n-1}p = (p/q)^{n}q^{k_n}$$

and thus we have for $1 \leq k_1 < \cdots < k_n$,

$$f_{X^{(1)}, \ldots, X^{(n)}}(k_1, \cdots, k_n) = (p/q)q^{k_n}1_{1 \leq k_1 < \cdots < k_n}. \tag{3.17}$$

We also see that $(X^{(1)}, \ldots, X^{(n)})$ are the arrival times of a Bernoulli stochastic process of intensity λ and hence inter-arrival times(for $X^{(0)} = 0$)

$$X^{(j)} - X^{(j-1)}, \; j \in \{1, \cdots, n\},$$

are independent and identically distributed following p-geometric laws.
4. Records in ordered spaces

Let us suppose that we have an ordered probability space \((E, B, \leq)\). The order relation is denoted by \(\mathbb{R}\) or by \((\leq)\) and by \(x \nleq y\), we mean that \(x\) and \(y\) are not comparable. As well, by ordered probability space, we mean that the \(\sigma\)-algebra \(B\) is compatible with the partial order relation \((\leq)\) in the following sense: the subsets of \((E, B)\) or \((E^k, B^2, k \geq 1)\), are measurable:

\[
x \in B, x \in E \\
\] \(\leftarrow, x\} = \{y \in E, x \leq y\} \in B, x \in E \\
\] \(\rightarrow, x\} = \{y \in E, y = x\} \in B, x \in E \\
N_x = \{y \in E, y x\} \in B, x \in E \\
N = \{(x, y) \in E^2, x \nleq y\} \in B^2 \\
etc.
\]

For example, this holds with \(E = \mathbb{R}^d, d \geq 1\), endowed with partial order:

\[
\left(\mathbb{R}^d \ni (x_1, \cdots, x_d) \leq (y_1, \cdots, y_d) \in \mathbb{R}^d\right) \Leftrightarrow \left(\forall i \in \{1, \cdots, d\}, x_i \leq y_i\right).
\]

As previously, we work with a sequence of random variables \((Z_n)_{n \geq 1}\) defined on some probability space \((\Omega, \mathcal{A}, P)\) with values in \(E\).

4.1. **Totally ordered spaces.** The general characterizations of the probability laws for the record values and the record times in Propositions 1, 2 and 6 (on pages 8, 8 and 15 respectively) remain valid.

4.2. **Partially ordered spaces.** The definition of record times and record values does not change. But the events based on them will not be as simple as less or greater, since the non comparability will count.

New proofs will not be done again. The results are adapted following the following principles. In a totally ordered space, on \((U(n) = k and U(n + 1) = k + \ell), \ell \geq 1\), we have

\[
\forall h \in [k + 1, k + \ell - 1], Z_h \leq Z_k and Z_{k+\ell} > Z_k.
\]
But for a partial order, (4.1) becomes

\[(4.2) \quad \forall h \in [k + 1, k + \ell - 1], \quad (Z_h \leq Z_k) \cup (Z_h \not\sim R Z_k) \text{ and } Z_{k+\ell} > Z_k,\]

where the intersection over \(h \in [k + 1, k + \ell - 1] \) is the empty set for \(\ell = 1 \). And we denote

\[(4.3) \quad C_{k,\ell} = k + \ell \bigcap \bigcap_{j=k+1}^{k+\ell} \left((Z_h \leq Z_k) \cup (Z_h \not\sim R Z_k) \right) \bigcap (Z_{k+\ell} > Z_k).\]

In that regard, Proposition 1 becomes:

Proposition 11. The sequence \((U(n))_{n \geq 1}\) of strong record times is a Markovian chain with non-homogeneous transition probabilities

\[p_{t,n}(k, j) = \begin{cases} P \left((Z_j > X_k) \bigcap \bigcap_{k+1 \leq h \leq j-1} ((Z_h \leq Z_k) \cup (Z_h \not\sim R X_k)) \right) & \text{if } j > k, \\ 0 & \text{otherwise}. \end{cases}\]

The proposition 2 remains valid as

Proposition 12. The sequence \((Z^{(n)})_{n \geq 1}\) of strong records is a Markovian chain with transition probabilities

\[p_{r,n}(x, A) = \sum_{k=\max}^{+\infty} P \left((Z_{\min(j > k, Z_j > x_n)} \in A) / (Z^{(n)} = x) \right),\]

where \(x \) is a real number and \(A \) a Borel set of \(\mathbb{R} \).

The only concern is related to the computations

\[(4.4) \quad P \left((Z_{\min(j > k, Z_j > x_n)} \in A) / (Z^{(n)} = x) \right) = \sum_{\ell=1}^{+\infty} P \left((Z_{k+\ell} \in A) \bigcap \bigcap_{1 \leq \ell-1} (Z_{k+\ell} \leq Z_k) \bigcup (Z_{k+\ell} \not\sim R Z_k) \right) / (Z^{(n)} = x),\]

with the convention that: for \(\ell = 1 \) or \(\ell = 2 \), for a collection of sets \(C_\ell \).
Remark. Following Goldie and Resnick (1989), the notation

\[(Z_h > Z_k)^c = \left((Z_h \leq Z_k) \bigcup (Z_h \not\sim X_k) \right), \quad h \geq 1\]

can be used.

Proposition 6 is now

Proposition 13. If \(U(n) \) is finite, then the joint probability law of

\((\Delta_1, \ldots, \Delta_n) \)

is given by

\[
\mathbb{P}(\Delta_2 = k_2, \ldots, \Delta_n = k_n)
= \int\mathbb{P}\left(\bigcap_{1 \leq j \leq n-1} \bigcap_{k_{j+1} \leq h \leq k_j-1} (Z_h \leq Z_k) \bigcup (Z_h \not\sim Z_k) \right) d\mathbb{P}(X_{\bar{k}_1}, \ldots, X_{\bar{k}_n})(x_1, \ldots, x_n),
\]

with \(k_1 = 1 \), \(k_j \geq 1 \) for \(j \in \{2, \ldots, n\} \) and \(\bar{k}_j = k_1 + \cdots + k_j \) for \(1 \leq j \leq n \).

In such a general case, we cannot go further without knowing the topology of \(E \). But the three results will lead to more precise characterizations and more fine description once that topology holds. The first step to take will concern \(E = \mathbb{R}^d, \quad d > 1 \).
5. Conclusion

This presentation offers a full context of general characterization of the main questions about the probabilistic study of the records and their occurrence times of the sequence of random variables with values in an ordered and measurable space E. The literature has a great deal of fine tune results on records on \mathbb{R}. We have checked that our record values and record times characterizations remain valid for their counter-parts on \mathbb{R}, mostly for independent random variables and iid ones. The basis of further and more general results is set. The step to take should concern $E = \mathbb{R}^d$, $d > 1$, on the steps of the pioneering works of Goldie and Resnick (1989).
Annexe.

1. Direct proof of Formula 3.7.

\[I_n = \int_{\mathbb{R}^n} \prod_{i=1}^{n} r(x_i)1_{(x_1<\ldots<x_n<y)}dx_1 \ldots dx_n = \frac{(-\log(1-F(y))^n}{\Gamma(n+1)}, \]

where \(R(x) = -\log(1-F(x)), \ x \in \mathbb{R}, \) and \(\Gamma(n) = (n-1)!, \ n \geq 1. \)

Let us show it for \(n = 1, 2, 3. \) The case \(n = 1 \) is immediate since

\[I_1 = \int_{\mathbb{R}} r(x)1_{(x<y)}dx = \int_{-\infty}^{y} dR(x) = [R(x)]_{-\infty}^{y} = R(y). \] (5.1)

For \(n = 2, \) we have

\[I_2 = \int_{-\infty<x_1<x_2<y} r(x_1) \left(\int_{x_1}^{y} r(x_2)dx_2 \right) dx_1 \]

\[= \int_{-\infty<x_1<y} r(x_1) \left(\int_{x_1}^{y} dR(x_2) \right) dx_1 \]

\[= \int_{-\infty<x_1<y} r(x_1)(R(y) - R(x_1))dx_1 \] \((L2) \]

\[= R(y) \int_{-\infty<x_1<y} r(x_1)dx_1 - \int_{-\infty<x_1<y} r(x_1)R(x_1)dx_1 \]

\[= R(y) \int_{-\infty<x_1<y} dR(x_1) - \frac{1}{2} \int_{-\infty<x_1<y} d(R(x_1)^2) \]

\[= R(y)^2 - R(y)^2/2 = (1/2)R(y)^2. \]

For \(n = 3, \) we use the results in Formula (5.1) and Line \((L2) \) of the last blocs of formulas above to get
\[I_2 = \int_{-\infty < x_1 < x_2 < y} r(x_1)r(x_2) (R(y) - R(x_2)) \, dx_1 \, dx_2 \]

\[= \int_{-\infty < x_1 < y} r(x_1) \left(\int_{x_1}^y R(y)r(x_2) - r(x_2)R(x_2) \right) \, dx_1 \]

\[= \int_{-\infty < x_1 < y} r(x_1) \left(\int_{x_1}^y (R(y)^2 - R(y)R(x_1) - (R(y)^2 - R(x_1)^2)) \, dx_1 \right) \]
\[\begin{align*}
&= \int_{-\infty}^{y} \int_{x_1}^{y} (R(y)^2 r(x_1) - R(y) r(x_1) R(x_1) - (R(y)^2 r(x_1) - r(x_1) R(x_1)^2)) \, dx_1 \\
&= \int_{-\infty}^{y} \int_{x_1}^{y} (R(y)^2 dR(x_1) - R(y) d(R(x_1)^2))/2 - (R(y)^2 dR(x_1) - dR(x_1)^3)/3 \\
&= R(y)^3 - (R(y)^3))/2 - R(y)^3 + R(y)^3)/3 = (1/6)R(y)^3.
\end{align*} \]

From there, the induction is clear.

2. Direct proof of Formula (3.8) [see page 31].

We have to prove that
\[\int_{z<x_1<\ldots<x_{n-1}<y} \left(\prod_{j=1}^{n-1} r(x_j) \right) \, dx_1 \ldots dx_{n-1} = \frac{(R(y) - R(z))^{n-1}}{\Gamma(n)}. \]

Let us begin with \(n = 2 \), which corresponds to the formula
\[\int_{z<x<y} r(x) \, dx = (R(y) - R(z)), \]

which is obvious since \(r(x) = dR(x)/dx \). Suppose it is true for \(n \geq 2 \). Let us prove it for \(n + 1 \). We have
\[\begin{align*}
&= \int_{z<x_1<\ldots<x_{n-1}<x_n<y} \left(\prod_{j=1}^{n} r(x_j) \right) \, dx_1 \ldots dx_{n-1} \, dx_n \\
&= \int_{z<x_2<\ldots<x_{n-1}<x_n<y} \left(\prod_{j=2}^{n} r(x_j) \right) \, dx_2 \ldots dx_n.
\end{align*} \]

The induction hypothesis gives
\[\int_{x_1<x_2<\ldots<x_n<y} \left(\prod_{j=2}^{n} r(x_i) \right) \, dx_2 \ldots dx_n = \frac{(R(y) - R(x_1))^{n-1}}{\Gamma(n)}, \]
and we get

\[\int_{z < x_1 < \ldots < x_{n-1} < x_n < y} \left(\prod_{j=1}^{n} r(x_i) \right) dx_1 \ldots dx_{n-1} dx_n \]

\[= \int_{z < x_1 < y} r(x_1) \frac{r(x_1)(R(y) - R(x_1))^{n-1}}{\Gamma(n)} dx_1. \]

\[\int_{z < x_1 < y} r(x_1) \frac{-(R(y) - R(x_1))^n}{n \Gamma(n)} = \frac{(R(y) - R(z))^n}{n \Gamma(n + 1)}. \]

The proof of Formula (3.8) is complete.

Direct proof of Formula (ADR1) in Theorem 5, page 24.

We define \(U(j, j+1) \), for \(2 \leq j \leq n-1 \), as the number of observations strictly between the \(j \)-th record \(X_{U(j)} \) and the \((j+1) \)-th record \(X_{U(j+1)} \). The event

\[A = (Y^{(1)} \in y_1 \pm dy_1/2, \ldots, Y^{(n)} \in y_n \pm dy_n/2) \]

can be decomposed as

\[A = \sum_{0 \leq p_2 < +\infty, \ldots, 0 \leq p_{n-1} < +\infty} A \cap (U(j, j+1) = p_j, 2 \leq j \leq n-1). \]

Let us accumulate the \(p_j \)'s as \(p_2^* = p_2, p_j^* = p_2 + \cdots + p_j, 2 \leq j \leq n-1 \). Since the data are continuous, implying that the equality of observations has probability zero, we may and do suppose that each interval \(y_j \pm dy_j/2 \) contains one observation. So the event

\[A \cap (U(j, j+1) = p_j, 2 \leq j \leq n-1) \]

exactly means that the first observation is equal to \(y_1 \), the \(p_2 \) next observations are less than \(y_1 \), the \((p_2^* + 2)\)-th observation is in \(y_1 \pm dy_1/2 \), the next \(p_3 \) are less than \(y_2 \), the \((p_3^* + 3)\)-th, \(\cdots \), the \((p_{n-2}^* + (n-2))\)-th is in \(y_2 \pm dy_2/2 \), the \(p_{n-1} \) next observations are less than \(y_{n-1} \) and finally the \((p_{n-1}^* + (n-1))\)-th (the \(n \)-th) is in \(y_n \pm dy_n/2 \). So we have
\[P(A \cap (U(j, j + 1) = p_j, \ 2 \leq j \leq n - 1)) \\
= P(Y^{(1)} \in y_1 \pm dy_1/2)F(y_1)^{p_1}P(Y^{(2)} \in y_2 \pm dy_2/2)F(y_2)^{p_2} \\
\cdots \ P(Y^{(n-1)} \in y_{n-1} \pm dy_{n-1}/2)F(y_{n-1})^{p_{n-1}} f(y_n)P(Y^{(n)} \in y_1 \pm dy_n/2). \]

By summing over the \(p_j \)'s first, next by dividing by \((dy_1 \cdots dy_n)\) and finally by letting each \(dy_j \to 0 \), we get

\[P(A) = \left(\frac{f(y_1)}{1 - F(f(y_1))} \frac{f(y_2)}{1 - F(f(y_2))} \cdots \frac{f(y_{n-1})}{1 - F(f(y_{n-1}))} \right) f(y_n). \]

References

Ahsanullah M. (1995). Record Statistics. Nova Science Publishers Inc.
Ahsanullah M. and Nevzorov B.V. (2001). Ordered Random variables. Nova Publishers.
Ahsanullah M. (2001). Record Values Theory and Applications, University Press of America Inc.
Ahsanullah M., Nevzorov B.V. and Shakil X. (2013) An Introduction to Order Statistics. Atlantis
Ahsanullah M. and Nevzorov B.V. (2015) Records via Probability Theory. Atlantis Press.
Extreme Value Distributions (2016). Atlantis Press., 2016.
Ahsanullah, M. (2015). An introductory course to records. Gaston Berger of Saint-Louis. Senegal
Ahsanullah, M. (1988). Introduction to Record Statistics, Ginn Press, Needham Heights, MA,USA
Ahsanullah, M. (1995). Record Statistics. Nova Science Publishers Inc, New York, NY, USA.
Ahsanullah, M. (2004). Record Values - Theory and Applications. University Press of America, Lanham,MD,USA.
Ahsanullah, M. and Raqab, M.Z. (2006). Bounds and Characterizations of Records. Nova Science Publishers Inc, New York, NY, USA.
Ahsanullah, M. and Yanev, G.P. (2008). Records and Branching Processes. Nova Science Publishers Inc, New York, NY, USA.
Arnold, B. C., Balakrishnan, N., and Nagaraja, H. N. (1998). Records. John Wiley & Sons Inc. New York, NY, USA.
Chandler, K. N. (1952). The Distribution and Frequency of Record Values. J. R. Statist. Soc. B 14, 220-228.
Dwass, M. (1964). Extremal Processes. Ann. Math. Statist. 35, 1718-1725.
Feller, W. (1966). An Introduction to Probability Theory and its Applications. Vol. II, Wiley, New York.
Gulati, S. and Padgett, W. (2003). Parametric and nonparametric inference from record breaking data. Springer Verlag, New York, USA.
Nevzorov, V. B. (2001). Records: Mathematical Theory. Translation of Mathematical Monographs, Volume 194. American Mathematical Society, Providence, RI, USA.
Resnick, S.I. (1987). Extreme Values, Regular Variation and Point Processes. Springer-Verlag, New-York. (MR0900810)
Goldie C. M. and Resnick S.I. (1989). Records in Partially Ordered sets. Ann. probab., Vol 17 (2), pp. 678-699 (MR0985384)