Parametrizing growth in dark energy and modified gravity models

Miguel Aparicio Resco1,† and Antonio L. Maroto1

1Departamento de Física Teórica, Universidad Complutense de Madrid, 28040 Madrid, Spain

It is well-known that an extremely accurate parametrization of the growth function of matter density perturbations in ΛCDM cosmology, with errors below 0.25%, is given by $f(a) = \Omega_m(a)$ with $\gamma \approx 0.55$. In this work, we show that a simple modification of this expression also provides a good description of growth in modified gravity theories. We consider the model-independent approach to modified gravity in terms of an effective Newton constant written as $\mu(a, k) = G_{\text{eff}}/G$ and show that $f(a) = \beta(a)\Omega_m(a)$ provides fits to the numerical solutions with similar accuracy to that of ΛCDM. In the time-independent case with $\mu = \mu(k)$, simple analytic expressions for $\beta(\mu)$ and $\gamma(\mu)$ are presented. In the time-dependent (but scale-independent) case $\mu = \mu(a)$, we show that $\beta(a)$ has the same time dependence as $\mu(a)$. As an example, explicit formulae are provided in the DGP model. In the general case, for theories with $\mu(a, k)$, we obtain a perturbative expansion for $\beta(\mu)$ around the General Relativity case $\mu = 1$ which, for $f(R)$ theories, reaches an accuracy below 1%. Finally, as an example we apply the obtained fitting functions in order to forecast the precision with which future galaxy surveys will be able to measure the μ parameter.

PACS numbers: 04.50.Kd, 98.80.-k

I. INTRODUCTION

One of the most important open problems in cosmology is to understand the physics behind cosmic acceleration [1–4]. Most of the models proposed to date can be classified in two major categories, namely, dark energy and modified gravity. The former refers to a new component which acts as a source of gravity within the framework of General Relativity (GR), the simplest example being a cosmological constant. By modified gravity we understand extensions of GR which include new degrees of freedom that mediate the gravitational interaction. Well-known examples of these theories are the $f(R)$ models [5, 6] or the Dvali, Gabadadze y Porrati model (DGP) [7].

The main source of observational information about cosmic acceleration comes from distance measurements which can map the expansion history of the universe. However, this kind of observations alone are not able to completely discriminate between the different theoretical approaches. In recent years the construction of large galaxy catalogues has opened the possibility of mapping not only the expansion but also the growth history of large-scale structures. In general, modified gravity theories change the relation between the density perturbations and the gravitational potentials, thus modifying the amplitude of matter density perturbations as a function of time (growth function). They also modify the equations determining the form of the gravitational potential entering in the photon propagation equation (lensing potential). Thus, observations of clustering and lensing at different redshifts provide a way to break the degeneracy between different acceleration models.

For the sake of concreteness, we will consider scalar perturbations around a flat FLRW background in the longitudinal gauge [8],

$$ds^2 = -(1 + 2\Phi)dt^2 + a^2(t)(1 + 2\Phi)dx^2$$

At the background level, the model is characterized by its Hubble function $H(a) = \dot{a}/a$ which allows to determine the cosmological distances.

At the perturbation level, the modified Einstein equations in a wide range of gravity theories, for sub-Hubble scales and in the quasi-static approximation lead to a modified Poisson equation that in Fourier space reads

$$k^2\Psi \simeq -4\pi G_{\text{eff}} a^2 \rho_m \delta_m$$

where $\delta_m = \delta \rho_m/\rho_m$ is the matter density contrast which is related to the galaxy density contrast δ_g by the bias factor b as $\delta_g = b \delta_m$. Here G_{eff} is the effective gravitational coupling which will differ in general from the bare gravitational constant $G = 1/(8\pi M_\odot^2)$. The growth equation reads

$$\delta_m'' + \left(2 + \frac{H'}{H}\right)\delta_m' - \frac{3}{2} \mu(a, k) \Omega_m(a) \delta_m \simeq 0$$

where prime denotes derivative with respect to $\ln a$ and $\Omega_m(a)$ is the matter density parameter $\Omega_m(a) = \Omega_m a^{-3} \frac{H^2}{P^2_{\text{eff}}(a)}$.

On the other hand, the lensing potential satisfies

$$\frac{\Psi - \Phi}{2} \simeq \frac{3G_{\text{eff}}}{2G} \left(\frac{aH}{k}\right)^2 \Omega_m(a) \delta_m$$

These modifications of Einstein equations are parametrized by two free functions:

$$\mu(a, k) = \frac{G_{\text{eff}}}{G}$$

and

$$\eta(a, k) = \frac{\Phi}{\Psi}.$$

arXiv:1707.08964v2 [astro-ph.CO] 19 Feb 2018
we consider the growth function is defined as,

\[\gamma = \frac{\Omega_m \alpha}{\Omega_m \beta} \]

In the case of ΛCDM of \(\gamma \) is known as the growth index which has a value \(\gamma \approx 0.55 \) for \(\gamma \) in \(\Omega_m \beta \). Thus, deviations from \(\gamma = 1 \) signal a breakdown of standard GR.

Once the evolution of perturbations have been solved, the growth function is defined as,

\[f(a) = \frac{d \ln(\delta_m)}{d \ln(a)} \]

In the case of ΛCDM, a good approximation for the growth function is given by,

\[f(a) = \Omega_m \gamma(a) \]

where \(\gamma \) is known as the growth index which has a value in ΛCDM of \(\gamma \approx 0.55 \). This expression provides accuracies better than 0.25%, and accordingly could be useful in the data analysis of present and future surveys such as J-PAS [12], DESI [13] or Euclid [14] which will be able to measure \(f(z) \) with precisions around 1% - 3%.

In the modified gravity case, (10) does not necessarily provide a good fit and different alternatives have been considered in the literature, mainly focused on the modification of the growth index. Such alternative expressions have been obtained on a case by case basis and to the best of our knowledge no model-independent analysis has been performed so far. Thus the aim of this work is to fill this gap and determine accurate fitting functions for the modified growth function in terms of the \(\mu \) parameter in a model-independent way.

The paper is organized as follows: in section II we analyze the case in which \(\mu (a, k) \) does not depend on redshift, and we find an approximate analytic expression for the growth function. In section III we consider the time-dependent but scale-independent case and apply our results to the DGP model. In IV, we propose a perturbative parametrization for the general case \(\mu (a, k) \) and consider \(f(R) \) theories as an example. In section V, we make use of the obtained fitting functions in order to forecast the precision with which future galaxy surveys will be able to measure the \(\mu \) parameter in the redshift-independent case. Finally in section VI we briefly discuss the results and conclusions.

II. TIME-INDEPENDENT CASE \(\mu = \mu(k) \)

We start by studying the simplest case in which functions \(p_i(a) = p_i \) in (7) are constant so that \(\mu (a, k) = \mu (k) \) does not depend on the scale factor. Although in general for modified gravities with extra scalar or vector degrees of freedom we expect both time and scale dependence of the \(\mu \) factor, the time-independent case can be used for phenomenological parametrizations of the effective Newton constant at different length scales. It can also be applied in scalar-tensor models as [15] in which \(G_{eff} \) rapidly tends to a constant at high redshift.

In this simple case, we can develop an analytical study. Making the change of variable from \(\delta_m \) to \(f \) in equation (9), we can express

\[f(a) = \Omega_m \gamma(a) \]

where \(\gamma \) is the growth index.
where for each Fourier mode, or modified gravity extra components. The Hubble parameter in ΛCDM reads,

$$H(a) = H_0 \sqrt{\Omega_m(a)^{-3} + \Omega_\Lambda},$$

with this expression and taking into account the definition of $\Omega_m(a)$ in function of H, we obtain,

$$\frac{H'}{H} = -\frac{3}{2} \Omega_m(a),$$

and

$$\Omega_m'(a) = -3 \Omega_m(a) (1 - \Omega_m(a)).$$

Inspecting the numerical solutions of (11), we can see that a parametrization that provides a good fit is of the form,

$$f(a, k) = \beta(k) \Omega_m^{\gamma(k)}(a),$$

where for each Fourier mode, $\beta(k)$ and $\gamma(k)$ are in general the constants to adjust. This parametrization type was considered in [16] for the particular case of a scalar-tensor theories. Using equations (13) and (14) in equation (11) we have,

$$(2 - 3\gamma) \Omega_m^{\gamma-1}(a) + \left(3\gamma - \frac{3}{2} \right) \Omega_m^\gamma(a)$$

$$+ \beta \Omega_m^{2\gamma-1}(a) - \frac{3}{2} \frac{\mu}{\beta} = 0.$$

(16)

Although this expression can be satisfied exactly only in the case in which $\Omega_m(a) = \Omega_m$, is a constant, as commented before, it is possible to obtain approximate solutions in the general case. Thus, for example, substituting $\mu = \beta = 1$, we recover the case of ΛCDM so that for $\gamma = \gamma_*$ equation (16) is satisfied so that,

$$(2 - 3\gamma_*) \Omega_m^{\gamma_*-1}(a) + (3\gamma_* - 3/2) \Omega_m^{\gamma_*}(a)$$

$$+ \Omega_m^{2\gamma_*-1}(a) - \frac{3}{2} \simeq 0.$$

(17)

Thus, if we take $\gamma = \gamma_*$ in the case with μ and β different from one, we get from (16) and (17)

$$3 \left(1 - \frac{\mu}{\beta} \right) + 2(\beta - 1) \Omega_m^{2\gamma_*-1}(a) \simeq 0.$$

(18)

We consider a final approximation. Since $\gamma_* \simeq 1/2$, we assume that $\Omega_m^{2\gamma_*-1}(a) \simeq 1$. Thus we are able to find a relationship between μ and β,

$$\beta = \frac{1}{4} \left[\sqrt{1 + 24\mu - 1} \right].$$

(19)

Therefore, we have an analytic expression which is an approximate solution of equation (11) for redshift-independent $\mu(k)$

$$f(a, k) = \frac{1}{4} \left[\sqrt{1 + 24\mu(k)} - 1 \right] \Omega_m^\gamma(a).$$

(20)

The error of this approximation generally depends on the scale factor and reaches a maximum at $a = 1$ as discussed below. In Fig. 1, we plot the maximum error as a function of μ for $\Omega_m = 0.271$. We have taken this particular value in order to compare with previous works although we have checked that the results remain unchanged in the range $\Omega_m = 0.27 - 0.31$ which includes the latest Planck value [17]. The error corresponds to the difference between the fitting function and the numerical
solution of (11) divided by their average value. We can see that the error is always below 2%. Notice that we have considered a wide range of μ values, although relatively small deviations from $\mu = 1$ could generate a large integrated Sachs-Wolfe effect.

It is however possible to improve the fit if we allow also the growth index γ to depend on μ. In this case, it is possible to find a good agreement with

$$\gamma(\mu) = \frac{1}{2} + \frac{0.161}{1.967 + \beta(\mu)},$$

(21)

with $\beta(\mu)$ given in (19). In Fig. 1 we plot this relation together with the error corresponding to the improved growth function

$$f(a, k) = \frac{1}{4} \left[\sqrt{1 + 24 \mu(k)} - 1 \right] \Omega_m^{\gamma(\mu(k))}(a).$$

(22)

We can see that in this case, the maximum error can be below 0.25%. Also, we see that for GR ($\mu = 1$), we obtain $\gamma_s = 0.554$ as the value for the best fit, which is slightly different from that quoted in [10] ($\gamma_s = 0.550$). In order to understand the difference, we analyze the error in three different functions, $f(z)$, $\delta_m(z)$ and $f(z)\delta_m(z)$ (see also [18]). As we can see in Fig. 2, the error in $f(z)$ is larger for low redshift than the error in $\delta_m(z)$, but in general the errors for the three functions are of the same order. Notice that the value $\gamma_s = 0.554$ mimizes the error in $f(z)$, however, the error in $\delta_m(z)$ is minimized by $\gamma_s = 0.550$ [10]. This value also mimizes the error both in $f(z)$ and $f(z)\delta_m(z)$ for $z > 0.4$. Since the error in the observable $f(z)\sigma_8(z)$ is dominated by the error in $f(z)$ we have taken $\gamma_s = 0.554$ as our reference value in this work.

On the other hand, at early times, in the matter dominated era, $\Omega_m(a) \simeq 1$ and equation (11) can be solved exactly

$$f(a, k) = \frac{1}{4} \left[\sqrt{1 + 24 \mu(k)} - 1 \right],$$

(23)

therefore $f(a, k)$ is just constant in time. The fitting function (20) exactly agrees with this result for $\Omega_m(a) = 1$ and this is the reason why the error increases as we move away from the matter era. Thus for matter domination the density contrast grows as

$$\delta_m(a, k) \propto a^{\frac{1}{2}} \left[\sqrt{1 + 24 \mu(k)} - 1 \right],$$

(24)

in agreement with [15, 19]. This implies that if we want to preserve the growth of density contrast proportional to the scale factor in the matter era, μ should depend on the scale factor and tend to unity at early times.

A. Beyond the ΛCDM background

We now consider modifications of the background expansion. In order to keep the approach model-independent, we will parametrize them with an extra component $\Omega_{DE}(a)$ with arbitrary equation of state $\omega_{DE}(a)$. This extra component could correspond directly to dark energy or to the effective fluid description of the modified gravity. At late times, i.e. neglecting the radiation contribution, we can write

$$H(a) = H_0 \sqrt{\Omega_m a^{-3} + \Omega_{DE}(a)},$$

(25)

with

$$\Omega_{DE}(a) = \Omega_{DE} \exp \left(\int_0^a \frac{3(1 + \omega_{DE}(\dot{a}))}{\dot{a}} da \right).$$

(26)

Using (25) to obtain $\Omega_m(a)$, we get the expressions that replace (13) and (14),

$$\frac{H'}{H} = -\frac{3}{2} \Omega_m(a) + \frac{2 \Omega_m(a)}{a^3} \omega_{DE}(a),$$

(27)

and

$$\omega_{DE}(a) = -3 \Omega_m(a) (1 - \Omega_m(a)) - \frac{\Omega_m^2(a)}{\Omega_m} a^3 \omega_{DE}'(a).$$

(28)

Following the same procedure as above, we obtain the analogous equation to (16) with an extra term,

$$(2 - 3\gamma) \Omega_m^{-1}(a) + \frac{3}{2} \frac{\gamma}{\beta} \Omega_m(a)$$

$$+ \beta \Omega_m^{-1}(a) - \frac{3}{2} \frac{\mu}{\beta}$$

$$+ \left(\frac{1}{2} - \gamma \right) \frac{\Omega_{DE}'(a)}{\Omega_m} a^3 \Omega_m(a) = 0.$$

(29)

We see that the new term is proportional to $\left(\frac{1}{2} - \gamma\right)$, so it is expected that it does not increase the errors in an important manner. Thus, considering the fitting function with $\gamma = \gamma_s$ in (20), we can see, that the errors increase in comparison with those for the ΛCDM background up to 3%.

As we did in the ΛCDM case, we can obtain better fits by modifying the expressions for $\beta(k)$ and $\gamma(k)$. Thus, the analysis shows that $\beta(k)$ is not sensitive to $\omega_{DE}(a)$ and therefore (19) provides a good approximation also in this case. The expression for γ is however modified.

For example for the effective equation of state given by [20, 21],

$$\omega_{DE}(a) = \omega_0 + \omega_1 (1 - a).$$

(30)

with ω_0 and ω_1 constants, we find

$$\gamma(\mu, \omega_0, \omega_1) = \frac{1}{2} + \frac{0.161}{\beta(\mu) - 1.967\omega_0 - 0.4789\omega_1}.$$

(31)

Thus, the growth function reads in this case

$$f(a, k) = \frac{1}{4} \left[\sqrt{1 + 24 \mu(k)} - 1 \right] \Omega_m^{\gamma(\mu(k), \omega_0, \omega_1)}(a).$$

(32)

In Fig. 3 and Fig. 4 we can see that the error can be reduced to 0.5% with this parametrization.
FIG. 3. From left to right, functions $\gamma(\mu)$ (31), $\beta(\mu)$ (19) and growth function relative error, for time-independent μ for different values of ω_0 with $\omega_1 = 0$. We have assumed that $\Omega_m = 0.271$.

FIG. 4. From left to right, functions $\gamma(\mu)$ (31), $\beta(\mu)$ (19) and growth function relative error, for time-independent μ for different values of ω_1 with $\omega_0 = -1$. We have assumed that $\Omega_m = 0.271$.

III. SCALE-INDEPENDENT CASE $\mu = \mu(a)$

We have just seen that in the time-independent μ case, an ansatz of the form,

$$f(a) = \beta \Omega_m^\gamma(a),$$ \hspace{1cm} (33)

provides a good fit to the numerical solutions. Let us now consider the case in which $\mu = \mu(a; p_1, ..., p_n)$ where $[p_1, ..., p_n]$ are the set of n cosmological parameters that μ depends on, i.e. μ can depend on redshift(time) but not on the scale k. We will explore a similar ansatz for the growth function,

$$f(a) = \beta(a; p_1^*, ..., p_n^*) \Omega_m^\gamma(a),$$ \hspace{1cm} (34)

where, in general, $p_i^* = p_i^*(p_1, ..., p_n)$, $\gamma = \gamma(p_1, ..., p_n)$ and let us assume that the β function has the same a-dependence as the μ function (see [22, 23] for similar proposals in particular models).

Thus, let us consider a simple example. For instance if $\mu(a) = 1 + b a$ being b dimensionless constant, then we consider $\beta = 1 + b^* a$, with $b^* = b^*(b)$.

In Fig. 5 we show the fit error for different values of b. In Fig. 6 we can see the growth functions for the corresponding values of b. A ΛCDM background with $\Omega_m = 0.271$ has been assumed. It can be seen how it grows with redshift reaching values larger than one and then decreases tending to one when matter starts dominating. We can see that in this simple example, the parametrization (34) provides fitting errors below 0.5% in the whole redshift range, but they are even below 0.2% for $z > 0.1$.

After we have studied this simple model, and checked the usefulness of parametrization (34), we will apply it to more realistic models of modified gravity, such as DGP and certain phenomenological parametrizations of $\mu(a)$.
As we see, the maximum error is reached at \(z = 0 \).

![Graph](image1.png)

FIG. 5. Relative difference between the numerical solution and the fitting function (34) for the model \(\mu (a) = 1 + ba \). As we see, the maximum error is reached at \(z = 0 \).

![Graph](image2.png)

FIG. 6. Numerical solutions in the model \(\mu (a) = 1 + ba \) for different values of \(b \). The fit according to the equation (34) is not represented because it differs in less than 0.6\% with respect to the numerical solution.

A. DGP Model

In the DGP model [7], the background evolution differs from ΛCDM so that

\[
\Omega_m(a) = \frac{\Omega_0 a^{-3}}{(1 - \Omega_0)/2 + \sqrt{\Omega_0 a^{-3} + (1 - \Omega_0)^2/4}}.
\] (35)

and

\[
\frac{H'}{H} = -\frac{3 \Omega_m(a)}{1 + \Omega_m(a)}.
\] (36)

being \(\Omega_0 = \Omega_m(a = 1) \) the only free parameter at the background level. The modified gravity parameters in this case read [24]

\[
\mu(a) = \frac{2(1 + 2 \Omega^2_m(a))}{3(1 + \Omega^2_m(a))}
\] (37)

and

\[
\eta(a) = \frac{2 + \Omega^2_m(a)}{1 + 2 \Omega^2_m(a)}.
\] (38)

which are both \(k \)-independent, so that we try the parametrization in (34).

Thus, using (35), (36) and (37) in equation (3), solving numerically and fitting to (34), we get

\[
f(a) = \frac{2(1 + 2 \Omega^2_m(a; \Omega_0^*))}{3(1 + \Omega^2_m(a; \Omega_0^*))} \Omega^*(\Omega_0)(a),
\] (39)

where \(\Omega_m(a; \Omega_0^*) \) follows equation (35) replacing \(\Omega_0 \) by \(\Omega_0^* \). So we have two parameters to fit \(\Omega_0^* (\Omega_0) \) and \(\gamma (\Omega_0) \), which are given by the following expressions

\[
\Omega_0^*(\Omega_0) = 0.8 \Omega_0^{0.536}
\] (40)

and

\[
\gamma(\Omega_0) = 0.52 - 0.47 \Omega_0 + \Omega_0^2 - 1.2 \Omega_0^3
\] (41)

In Fig. 7 we plot the maximum error for \(f(z) \) which is always reached at \(z = 0 \) as a function of \(\Omega_0 \). We see that for typical values of \(\Omega_0 \simeq 0.3 \), the maximum error is below 0.5\%.

Other procedure used to parametrize growth in DGP is to assume that the growth index depends on redshift. Thus, for example, from equation (11), \(\gamma(z) \) has been obtained to first order in \((1 - \Omega_m(a)) \) in [25]. Another possibility is to use a parametrization like

\[
\gamma(z) = \gamma_0 + \gamma_1 \frac{z}{1 + z}.
\] (42)

Adding more terms, and therefore more fixing constants, a reduced error was obtained in [26]. See also [27], for a different parametrization. In the best cases, these methods reach errors similar to those obtained in the present work.

B. Phenomenological parametrizations

As a second example, we will study the parametrization for \(\mu(a) \) introduced in [28] and also considered in [29],

\[
\mu(a) = 1 + (\mu_0 - 1) \frac{1 - \Omega_m(a)}{1 - \Omega_m}.
\] (43)

Let us consider once more the effective equation of state (30), thus,

\[
\Omega_m(a) = \frac{\Omega_m}{\Omega_m + (1 - \Omega_m) a^{-3(\omega_0 + \omega_1)} e^{-3\omega_1 (1 - a)}}.
\] (44)
FIG. 7. From left to right, the functions $\gamma(\Omega_0)$, Ω_0^* (Ω_0) and the relative error of the growth function for the DGP model. The error decreases as we increase the value of Ω_0. The maximum error is less than 0.5% for typical values of Ω_0.

FIG. 8. From left to right, the functions $\gamma(\mu_0)$, μ_0^* (μ_0) and relative error of the growth function for the phenomenological model (43) for different values of ω_0, setting $\omega_1 = 0$. The case with $\omega_0 = -1$ is parametrized in (46) and (47).

FIG. 9. From left to right, the functions $\gamma(\mu_0)$, μ_0^* (μ_0) and relative error of the growth function for the phenomenological model (43) for different values of ω_1, setting $\omega_0 = -1$. The case with $\omega_1 = 0$ is parametrized in (46) and (47).
where we have fixed $\Omega_m = 0.271$. Thus following (34), the growth function becomes,

$$f(a) = \left(1 + (\mu_0^* - 1 \frac{1 - \Omega_m(a)}{1 - \Omega_m})\right) \Omega_m(a),$$ \hfill (45)

In this case, we only need to fit the parameters $\gamma = \gamma(\mu_0)$ and $\mu_0^* = \mu_0(\mu_0)$. We plot in Fig. 8 functions $\mu_0^*(\mu_0)$, $\gamma(\mu_0)$ along with errors in $f(a)$, for different values of ω_0, setting $\omega_1 = 0$. In Fig. 9 the same functions are shown, in this case varying ω_1 with $\omega_0 = -1$. In the $\omega_0 = -1$ and $\omega_1 = 0$ case, i.e. ΛCDM background, the fitting functions read

$$\mu_0^* = 0.961 - 0.132 \mu_0 + 0.245 \mu_0^2 - 0.066 \mu_0^3 + 0.0065 \mu_0^4$$ \hfill (46)

and

$$\gamma = 0.456 + 0.012 \mu_0 + 0.403 e^{-1.37 \mu_0}.$$ \hfill (47)

We can see that the error is less than 0.25% even changing the effective equation of state. In this case, a fit of the form (42) does not reproduce well the numerical results.

IV. GENERAL CASE: PERTURBATIVE ANALYSIS

Let us consider the general case in which $\mu = \mu(a, k)$. In order to get closed expressions for the growth function, we will restrict ourselves to small perturbations around the GR case $\mu = 1$. Thus, we start with equation (11) and write

$$\mu(a, k) = 1 + \alpha(a, k)$$ \hfill (48)

being $|\alpha| \ll 1$. Let us now write the perturbed growth function in the following form,

$$f(a, k) = [1 + \epsilon(a, k)] f_0(a),$$ \hfill (49)

with $|\epsilon| \ll 1$ and $f_0(a) = \Omega_m^*(a)$ the growth function in ΛCDM. We insert (49) into (11) and using that f_0 satisfies equation (11) with $\mu = 1$, we obtain,

$$\epsilon' + \left[\frac{3}{2} \Omega_m^{-\gamma} + \Omega_m^*\right] \epsilon = \frac{3}{2} \Omega_m^{-\gamma} \alpha,$$ \hfill (50)

where again, prime denotes derivative with respect to $\ln a$. We can solve this equation analytically for a given initial condition at $a = a_i$ well inside the matter era where $\alpha(a_i, k) \approx 0$ and $\epsilon(a_i, k) \approx 0$, so that

$$\epsilon(a, k) = \frac{3}{2} e^{-g(a)} \int_{a_i}^a \Omega_m^{-\gamma} (a') \alpha(a', k) e^{g(a')} a' \frac{da'}{a'}.$$ \hfill (51)

being,

$$g(a) = \int_{a_i}^a \left[\frac{3}{2} \Omega_m^{-\gamma} (a') + \Omega_m^* (a')\right] \frac{da'}{a'}.$$ \hfill (52)

The result does not depend on the particular value chosen (for concreteness, we took $a_i = 10^{-2}$).

If we consider as a hard approximation that $\Omega_m \approx 1$ then we can simplify equation (51) as,

$$\epsilon(a, k) = \frac{3}{2} a^{-\frac{\gamma}{2}} \int_{a_i}^a \alpha(a', k) a'^{\frac{\gamma}{2}} da',$$ \hfill (53)

and we can integrate by parts obtaining,

$$\epsilon(a, k) = \frac{3}{5} \sum_{n=0}^\infty \left(-\frac{2}{5}\right)^n \alpha^{(n)}(a, k),$$ \hfill (54)

where $\alpha^{(n)}$ is the n-th derivative with respect to $\ln a$. Then, if we take α as a constant in a, $\epsilon(a, k) = \frac{2}{5} \alpha(k)$ and we recover the time-independent case that we analyzed above in (23).

In the following, we apply these results to different examples of modified gravity theories.

A. $f(R)$ Model

Let us consider the $f(R)$ models [30–34]. The growth function in this kind of models has been studied in several works [35–38]. In particular, we will consider here the Hu-Sawicki model [31] written in the simple form,

$$f(R) = R - \frac{2\Lambda}{1 + 4\Lambda a},$$ \hfill (55)

which, for $b = 0$, reduces to the standard ΛCDM model with a cosmological constant Λ. The corresponding μ function reads [34]

$$\mu(a, k) = \frac{1 + 4(f_{,RR}(R_0)/f_{,R}(R_0))(k/a)^2}{1 + 3(f_{,RR}(R_0)/f_{,R}(R_0))(k/a)^2},$$ \hfill (56)

where $f_{,R}$ and $f_{,RR}$ denote the first and second derivatives with respect to R and R_0 is the scalar curvature assuming that the background agrees with that of ΛCDM

$$R_0(a) = 3 H_0^3 [\Omega_m a^{-3} + 4 (1 - \Omega_m)].$$ \hfill (57)

For small enough b, we can approximate,

$$\frac{f_{,RR}(R_0)}{f_{,R}(R_0)} \left(\frac{k}{a}\right)^2 \approx \frac{4 b (1 - \Omega_m)^2}{3 a^2 r^2(a)} H_0^2,$$ \hfill (58)

where $r(a) = R_0(a)/3H_0^2$. Also, using that for small x,

$$\frac{1 + 4 x}{1 + 3 x} \approx 1 + 0.44 x^{0.77},$$ \hfill (59)

we can finally approximate (56) by

$$\mu(a, k) \approx 1 + 0.44 \left[\frac{4 b (1 - \Omega_m)^2}{3 a^2 r^2(a)} H_0^2\right]^{0.77},$$ \hfill (60)
which allows to extract the explicit b and k/H_0 dependence from the integral in equation (51). We compare in the left panel of Fig. 10 this approximation with the exact expression. We see that it provides an excellent fit for $b(k/H_0)^2 < 10$. Then, using (51) we get

$$\epsilon(a, k) = \left[b \left(\frac{k}{H_0} \right)^2 \right]^{-0.77} F(a),$$

being,

$$F(a) = 0.8236 \left(1 - \Omega_m \right)^{1.54} e^{-g(a)} \int_{a_i}^a \frac{\Omega_m^{1-\gamma}(a')}{r^{2.31}(a') a^{2.54}} e^{g(a')} \, da'.$$

The fitting functions for $F(a)$ in terms of $\Omega_m(a)$ can be easily obtained and reads

$$F(a) = 0.140 \Omega_m(a) - 0.545 \Omega_m^2(a) + 0.994 \Omega_m^3(a) - 0.905 \Omega_m^4(a) + 0.315 \Omega_m^5(a).$$

On the right panel of Fig. 10, we plot the growth function errors as a function of $b(k/H_0)^2$ using the expressions above. We see that the agreement with the numerical solution is better than 1% when $|\mu - 1| < 0.12$. Since these fits have been obtained for a ΛCDM background, using the above expressions with different backgrounds would increase the errors up to 2%.

B. Phenomenological parametrization

Let us consider the limit $|\mu_0 - 1| \ll 1$ in the parametrization given in (43). Using equation (51) we find that,

$$\epsilon(a) = \frac{3}{2} (\mu_0 - 1) e^{-g(a)} \int_{a_i}^a \frac{\Omega_m^{1-\gamma}(a')}{1 - \Omega_m} e^{g(a')} \, da'.$$

and we can fit this expression as follows,

$$\epsilon(a) = (\mu_0 - 1) (0.505 - 0.646 \Omega_m(a) + 0.141 \Omega_m(a)^2).$$

In this case, as we can see in Fig. 11, the error in the growth function is below 1% for $|\mu_0 - 1| < 1$. Since, as in the $f(R)$ case, these fits have been obtained for a ΛCDM background, using the above expressions with different backgrounds would increase the errors up to 2%.

V. FISHER MATRIX AND FORECASTS

The fitting functions for f in terms of the μ parameter that have been obtained in previous sections can be helpful to assess the capability of future galaxy surveys to constrain modified gravity theories in a model independent way. Let us consider the simplest possibility in which we assume that for the range of redshifts and scales covered by the survey, the μ factor can be considered as constant. In such a case (22) provides an accurate approximation for the growth function.

The galaxy power spectrum in redshift space, $P(k_r, \vec{\mu}_r, z)$, is given by [39]

$$P(k_r, \vec{\mu}_r, z) = \frac{D^2 A^2 E(z)}{D_A^2 E_r(z)} (b + f \vec{\mu}_r^2) D^2 P(k) e^{-k_z^2 \sigma_z^2},$$

FIG. 10. Left panel: $\mu(a, k)$ with $a = 1$ as a function of $b(k/H_0)^2$ for the $f(R)$ theory in (55). We compare the exact expression in (56) with the approximation in equation (60). Right panel: the growth function relative error for the approximation (60) for the ΛCDM background.
where, $\hat{\mu}$ is the angle between \vec{k} and the line of sight, $H(z) = H_0 E(z)$, $D(z) = \delta_m(z)/\delta_m(0)$ is the growth factor, b is the bias and f is the growth function given by (22) in terms of μ. The sub-index r denotes that the quantity is evaluated for the fiducial model. $\sigma_r = \delta z (1 + z)/H(z)$ with $\delta z(1 + z)$ the photometric redshift error and D_A is the angular distance, which, in a flat Universe reads $D_A(z) = (1 + z)^{-1} \chi(z)$, where $\chi(z)$ is the comoving radial distance,

$$\chi(z) = H_0^{-1} \int_0^z \frac{dz'}{E(z')}.$$

We consider a simple model in which we have only two free parameters μ and Ω_m with a fiducial ΛCDM cosmology with $\Omega_c h^2 = 0.121$, $\Omega_b h^2 = 0.0226$, $\Omega_v h^2 = 0.00064$, $n_s = 0.96$, $h = 0.68$, $H_0^{-1} = 2997.9\,\text{Mpc}/h$, $\Omega_k = 0$ and $\sigma_8 = 0.82$. In this case

$$E(z) = \sqrt{\Omega_m (1 + z)^3 + (1 - \Omega_m)}.$$

For the bias we write $b(z) = \sqrt{1 + z}$.

Denoting the free model parameters as $p_\alpha = (\Omega_m, \mu)$ the corresponding Fisher matrix for clustering at a given redshift bin centered at z is [39],

$$F_{\alpha\beta} = \frac{1}{8\pi^2} \int_{-1}^1 d\hat{\mu}_r \int_{k_{\text{min}}}^{k_{\text{max}}} k_{\text{eff}}^2 V_{\text{eff}} \left| \frac{\partial \ln(P(k_r, \hat{\mu}_r, z))}{\partial p_\alpha} \right|_r \left| \frac{\partial \ln(P(k_r, \hat{\mu}_r, z))}{\partial p_\beta} \right|_r dk_r,$$

with a unique bin centered at $z = 1.3$ with $z_{\text{min}} = 0.5$, $z_{\text{max}} = 2.1$, $f_{\text{sky}} = 0.375$ which correspond to 15500 deg2, $\delta z = 0.001$ and $n(z) = 1.12 \times 10^{-3} \, (\text{h/Mpc})^3$. Inverting the Fisher matrix, the marginalized error for the p_α parameter is $\sqrt{F_{\alpha\alpha}}$. Thus for μ and Ω_m we find: $\Delta \Omega_m = 8.76 \times 10^{-4}$, $\Delta \mu = 0.0026$, which corresponds to $\Delta \Omega_m/\Omega_m(\%) = 0.28\%$, $\Delta \mu/\mu(\%) = 0.26\%$. In Fig. 12 we plot the 1-\2σ contours for (Ω_m, μ) assuming that the probability distribution function is Gaussian.

VI. DISCUSSION OF RESULTS AND CONCLUSIONS

In this work we aimed at obtaining fitting formulae for the growth function of matter density perturbations in modified gravity theories in a model-independent

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig11.png}
\caption{Errors in $f(z)$ for the phenomenological parametrization (63) for the ΛCDM background.}
\end{figure}
modified backgrounds, yielding accuracies better than 0.5%.

In the time-dependent but scale-independent $\mu(a)$ case, it is not possible to obtain explicit formulæ for β and γ, however, it is shown that a constant γ and a $\beta(a)$ function with the same scale factor dependence as $\mu(a)$ provides errors which again can be in the range of 0.5%.

Finally, in the general case $\mu(a, k)$, it is possible to obtain explicit generic expressions in the perturbative regime $|1 - \mu| \ll 1$. As an example, for the Hu-Sawicki $f(R)$ model, accuracies below 1% are obtained.

The general perturbative expressions derived in this work exhibit explicit dependence both on the wavenumber k and on the model parameters which could be useful in the forecast analysis of modified gravity parameters or in the analysis of growth data of present and future galaxy surveys. A simple Fisher analysis for a future Euclid-like survey has been presented as example. Work is in progress in this direction.

Acknowledgements: We would like to thank M. Quentin for useful comments that motivated this work and Eric V. Linder for helpful comments. M.A.R acknowledges support from UCM predoctoral grant. This work has been supported by the MINECO (Spain) projects FIS2014-52837-P, FIS2016-78859-P(AEI/FEDER, UE), and Consolider-Ingenio MULTIDARK CSD2009-00064.

[1] A. G. Riess et al. [Supernova Search Team Collaboration], Astron. J. 116 (1998) 1009 doi:10.1086/300499 [astro-ph/9805201].
[2] S. Perlmutter et al. [Supernova Cosmology Project Collaboration], Astrophys. J. 517 (1999) 565 doi:10.1086/307221 [astro-ph/9812133].
[3] D. J. Eisenstein et al. [SDSS Collaboration], Astrophys. J. 633 (2005) 560 doi:10.1086/466512 [astro-ph/0501171].
[4] W. J. Percival, S. Cole, D. J. Eisenstein, R. C. Nichol, J. A. Peacock, A. C. Pope and A. S. Szalay, Mon. Not. Roy. Astron. Soc. 381 (2007) 1053 doi:10.1111/j.1365-2966.2007.12268.x [arXiv:0705.3323 [astro-ph]].
[5] S. Nojiri and S. D. Odintsov, Phys. Rev. D 68 (2003) 123512 doi:10.1103/PhysRevD.68.123512 [hep-th/0307288].
[6] S. Capozziello, S. Carloni and A. Troisi, Recent Res. Dev. Astron. Astrophys. 1 (2003) 625 [astro-ph/0303041].
[7] G. R. Dvali, G. Gabadadze and M. Porrati, Phys. Lett. B 485 (2000) 208 doi:10.1016/S0370-2693(00)00669-9 [hep-th/0005016].
[8] S. Tsujikawa, A. De Felice and J. Alcaniz, JCAP 1301 (2013) 030 doi:10.1088/1475-7516/2013/01/030 [arXiv:1210.4230 [astro-ph.CO]].
[9] A. Silvestri, L. Pogosian and R. V. Buniy, Phys. Rev. D 87 (2013) no.10, 104015 doi:10.1103/PhysRevD.87.104015 [arXiv:1302.1193 [astro-ph.CO]].
[10] E. V. Linder, Phys. Rev. D 72 (2005) 043529 doi:10.1103/PhysRevD.72.043529 [astro-ph/0507263].
[11] E. V. Linder and R. N. Cahn, Astropart. Phys. 28 (2007) 481 doi:10.1016/j.astropartphys.2007.09.003 [astro-ph/0701317].
[12] N. Benitez et al. [J-PAS Collaboration], arXiv:1403.5237 [astro-ph.CO].
[13] M. Levi et al. [DESI Collaboration], arXiv:1308.0847 [astro-ph.CO].
[14] L. Amendola et al. [Euclid Theory Working Group], Living Rev. Rel. 16 (2013) 6 doi:10.12942/lrr-2013-6 [arXiv:1206.1225 [astro-ph.CO]].
[15] R. Gannouji and D. Polarski, JCAP 0805 (2008) 018 doi:10.1088/1475-7516/2008/05/018 [arXiv:0802.4196 [astro-ph]].
[16] C. Di Porto and L. Amendola, Phys. Rev. D 77 (2008) 083508 doi:10.1103/PhysRevD.77.083508 [arXiv:0707.2686 [astro-ph]].
[17] P. A. R. Ade et al. [Planck Collaboration], Astron. Astrophys. 594 (2016) A13 doi:10.1051/0004-6361/20152830 [arXiv:1502.01589 [astro-ph.CO]].
[18] E. V. Linder, JCAP 1304 (2013) 031 doi:10.1088/1475-7516/2013/04/031 [arXiv:1302.4754 [astro-ph.CO]].
[19] J. N. Fry, Phys. Lett. 158B (1985) 211. doi:10.1016/0370-2693(85)90957-8.
[20] M. Chevallier and D. Polarski, Int. J. Mod. Phys. D 10 (2001) 213 doi:10.1142/S0218271801000822 [gr-qc/0009008].
[21] E. V. Linder, Phys. Rev. Lett. 90 (2003) 091301 doi:10.1103/PhysRevLett.90.091301 [astro-ph/0208512].
