Classification of binary self-dual $[76, 38, 14]$ codes with an automorphism of order 9

Nikolay Yankov, Radka Russeva and Emine Karatash *

Abstract

Using the method for constructing binary self-dual codes with an automorphism of order square of a prime number we have classified all binary self-dual codes with length 76 having minimum distance $d = 14$ and automorphism of order 9. Up to equivalence, there are six self-dual $[76, 38, 14]$ codes with an automorphism of type $9-(8, 0, 4)$. All codes obtained have new values of the parameter in their weight enumerator thus more than doubling the number of known values.

Keywords: automorphism; classification; extremal codes; self-dual codes;

1 Introduction

In this paper, we are interested in the classification of the extremal binary self-dual $[76, 38, 14]$ codes with an automorphism of order 9. It was motivated by the following reasons.

Firstly, there are only three known extremal binary self-dual $[76, 38, 14]$ codes, constructed by Dontcheva and Yorgov via an automorphism of order 19 [6]. These three codes are not only shadow optimal but also shortest known self-dual code with minimal distance 14. One of these three codes was the first ever found in the literature and it was discovered by Baartmans and Yorgov [1].

Secondly, Bouyuklieva, et al [4] presented a method for constructing binary self-dual codes with an automorphism of order p^2 and classified all optimal binary self-dual codes $[76, 38, 14]$ codes of lengths $44 \leq n \leq 54$ having an automorphism of order 9. The case for the length of an optimal binary self-dual code with

*Faculty of Mathematics and Informatics, Konstantin Preslavski University of Shumen, Shumen, 9712, Bulgaria.
automorphism of such order was considered by Yankov in [10] where it was proved that a doubly-even self-dual [72, 36, 16] codes with an automorphism of order 9 does not exists.

A linear $[n, k]$ code C is a k-dimensional subspace of the vector space \mathbb{F}_q, where \mathbb{F}_q is the finite field of q elements. The elements of C are called codewords, and the (Hamming) weight of a codeword $v \in C$ is the number of the non-zero coordinates of v. We use $\text{wt}(v)$ to denote the weight of a codeword. The minimum weight d of C is the smallest weight among all its non-zero codewords, and C is called an $[n, k, d]$ code. A matrix whose rows form a basis of C is called a generator matrix of this code and we denote this by $\text{gen}(C)$. Every code satisfies the Singleton bound $d \leq n - k + 1$. A code is maximum distance separable or MDS if $d = n - k + 1$, and near MDS or NMDS if $d = n - k$.

For every $u = (u_1, \ldots, u_n)$ and $v = (v_1, \ldots, v_n)$ from \mathbb{F}_2^n, $u.v = \sum_{i=1}^{n} u_i v_i$ defines the inner product in \mathbb{F}_2^n. The dual code of C is $C^\perp = \{ v \in \mathbb{F}_2^n \mid u.v = 0, \forall u \in C \}$. If $C \subset C^\perp$, C is called self-orthogonal, and if $C = C^\perp$, we say that C is self-dual. We call a binary code self-complementary if it contains the all-ones vector. Every binary self-dual code is self-complementary.

A self-dual code is doubly even if all codewords have weight divisible by four, and singly even if there is at least one nonzero codeword v of weight $\text{wt}(v) \equiv 2(\text{mod } 4)$. Self-dual doubly even codes exist only if n is a multiple of eight.

The Hermitian inner product on \mathbb{F}_4^n is given by $u.v = \sum_{i=1}^{n} u_i v_i^2$ and we denote by C^\perp_H the dual of C under Hermitian inner product. C is Hermitian self-dual if $C = C^\perp_H$.

The weight enumerator $W(y)$ of a code C is defined as $W(y) = \sum_{i=0}^{n} A_i y^i$, where A_i is the number of codewords of weight i in C. Following [8] we say that two linear codes C and C' are permutation equivalent if there is a permutation of coordinates which sends C to C'. The set of coordinate permutations that maps a code C to itself forms a group denoted by $\text{PAut}(C)$. Two codes C and C' of the same length over \mathbb{F}_q are equivalent provided there is a monomial matrix M and an automorphism γ of the field such that $C = C'M^\gamma$. The field \mathbb{F}_4 has an automorphism γ given by $\gamma(x) = x^2$.

The set of monomial matrices that maps C to itself forms the group $\text{MAut}(C)$ called the monomial automorphism group of C. The set of maps of the form M^γ, where M is a monomial matrix and γ is a field automorphism, that sends C to itself, forms the group $\text{GAut}(C)$, called the automorphism group of C. In the binary case all three groups are identical. In general, $\text{PAut}(C) \subseteq \text{MAut}(C) \subseteq \text{GAut}(C)$.

An automorphism $\sigma \in S_n$, $|\sigma| = p^2$ is of type $p^2-(c,t,f)$ if when decomposed to independent cycles it has c cycles of length p^2, t cycles of length p, and f fixed
points. Obviously, \(n = cp^2 + tp + f \).

This paper is organized in the following way. First in Section 2 we introduce to the reader the main results about the method we use. Section 3 shows the application of the method and the construction of six new binary self-dual [76, 38, 14] codes.

2 Construction Method

In [4] a method for constructing binary self-dual codes having an automorphism of order \(p^2 \), where \(p \) is an odd prime, was presented. We consider the case \(p = 3 \).

Let \(C \) be a self-dual [76, 38, 14] code having an automorphism \(\sigma \) of type \(9-(c, t, f) \). In [3] (Lemma 6) it is proved that \(\sigma \) is of type \(9-(8, 0, 4) \), i.e. \(c = 8 \), \(t = 0 \) and \(f = 4 \). Thus we have

\[
\sigma = (1, 2, \ldots, 9)(10, 11, \ldots, 18) \ldots (64, 65, \ldots, 72)(73) \ldots (76).
\]

(1)

Denote by \(\Omega_i \), \(i = 1, \ldots, 12 \) the cycles in \(\sigma \). Define

\[
F_{\sigma}(C) = \{ v \in C \mid v\sigma = v \},
\]

\[
E_{\sigma}(C) = \{ v \in C \mid \text{wt}(v|\Omega_i) \equiv 0 \pmod{2} \},
\]

where \(v|\Omega_i \) denotes the restriction of \(v \) to \(\Omega_i \). Clearly \(v \in F_{\sigma}(C) \) iff \(v \in C \) is constant on each cycle. Denote \(\pi : F_{\sigma}(C) \rightarrow F_2^{12} \) the projection map where if \(v \in F_{\sigma}(C) \), \((\pi(v))_i = v_j \) for some \(j \in \Omega_i \), \(i = 1, \ldots, 12 \). Then the following lemma holds.

Lemma 1. [4] \(C = F_{\sigma}(C) \oplus E_{\sigma}(C) \). \(C_{\pi} = \pi(F_{\sigma}(C)) \) is a binary self-dual code of length 12.

Thus each choice of the codes \(F_{\sigma}(C) \) and \(E_{\sigma}(C) \) determines a self-dual code \(C \). So for a given length all self-dual codes with an automorphism \(\sigma \) can be obtained.

Denote with \(E_{\sigma}(C)^* \) the subcode \(E_{\sigma}(C) \) with the last 4 zero coordinates deleted. \(E_{\sigma}(C)^* \) is a self-orthogonal binary code of length 8.3^2 = 72 and dimension \(\frac{3}{2}(3^2 - 1) = 32 \). For \(v \in E_{\sigma}(C)^* \) we let \(v|\Omega_i = (v_0, v_1, \ldots, v_8) \) correspond to the polynomial \(v_0 + v_1x + \cdots + v_8x^8 \) from \(\mathcal{T} \), where \(\mathcal{T} \) is the ring of even-weight polynomials in \(F_2[x]/(x^9 - 1) \). Thus we obtain the map \(\varphi : E_{\sigma}(C)^* \rightarrow \mathcal{T}^8 \). Denote \(C_{\varphi} = \varphi(E_{\sigma}(C)^*) \).

Let \(e_1 = x^8 + x^7 + x^5 + x^4 + x^2 + x \) and \(e_2 = x^6 + x^3 \). In our work [4] we proved that \(\mathcal{T} = I_1 \oplus I_2 \), where \(I_1 = \{ 0, e_1, \omega = xe_1, \overline{\omega} = x^2e_1 \} \) is a field with identity \(e_1 \) and \(I_2 \) is a field with \(2^6 \) elements with identity \(e_2 \). The element \(\alpha = (x + 1)e_2 \) is a primitive element in \(I_2 \) so \(I_2 = \{ 0, \alpha^k, 0 \leq k \leq 62 \} \).

The following theorem is from [3].
Theorem 2. \[C_\varphi = M_1 \oplus M_2, \text{ where } M_j = \{ u \in E_\sigma(C) \mid u_i \in I_j, i = 1, \ldots, 8 \}, \quad j = 1, 2. \] Moreover \(M_1 \) and \(M_2 \) are Hermitian self-dual codes over the fields \(I_1 \) and \(I_2 \), respectively. If \(C \) is a binary self-dual code having an automorphism \(\sigma \) of type \((1) \) then \(E_\sigma(C)^* = E_1 \oplus E_2 \) where \(M_i = \varphi(E_i), i = 1, 2. \)

This proves that \(C \) has a generator matrix of the form
\[
G = \begin{bmatrix}
\varphi^{-1}(M_2) & 0 & 0 & 0 & 0 \\
\varphi^{-1}(M_1) & 0 & 0 & 0 & 0 \\
F_\sigma
\end{bmatrix}.
\] (2)

Let \(B_s \) and \(E_s \) denote the number of words of weight \(s \) in \(E_\sigma(C)^* \) and \(E_\sigma(C)^* \), respectively. Every word of weight \(s \) in \(E_\sigma(C)^* \) is in an orbit of length 3, therefore, \(E_s \equiv 0 \pmod{3} \) and \(A_s \equiv B_s \pmod{3} \) for \(1 \leq s \leq n. \)

Since the minimum distance of \(C \) is 16 the code \(M_2 \) is a \([8, 4]\) Hermitian self-dual code over \(\mathbb{F}_{64} \), having minimal distance \(d \geq 4 \). Using Singleton bound \(d \leq n - k + 1 \) we have \(d = 5 \) or \(d = 4 \). The case \(d = 5 \) is studied in [3] and there are exactly 96 MDS Hermitian \([8, 4, 5]\) codes such that the minimum distance of \(\varphi^{-1}(M_2) \) is 16. The case for the near MDS codes is completed in [10] and the number of the codes is 26 and we state the following.

Theorem 3 ([3], [10]). Up to equivalence, there are exactly 122 Hermitian \([8, 4]\) self-dual codes such that the minimum distance of \(\varphi^{-1}(M_2) \) is 16.

We denote these codes by \(M_{2,i} \) for \(1 \leq i \leq 122. \) Their generator parameters can be obtained from [10].

We fix the upper part of \(G \) in (2) to be generated by one of the 122 already constructed Hermitian MDS or NMDS \([8, 4]\) codes. Now we continue with construction of the middle part, i.e. the code \(M_1. \) Theorem 2 states that \(M_1 \) is a quaternary Hermitian self-dual \([8, 4]\) code. There exists a unique such code \(e_8 \) with a generator matrix \(Q_1 = \begin{pmatrix}
10001111 \\
01001011 \\
00101101 \\
00011110
\end{pmatrix}. \) We have to put together the two codes from \(M_2 \) and \(M_1 \) in (2), but we have to examine carefully all transformations on \(Q_1 \) that can lead to a different joined code. The full automorphism group of \(e_8 \) is of order \(2.3^8(8!) \) and we have to consider the following transformations that preserve the decomposition of the code \(C:\)

(i) a permutation \(\tau \in S_8 \) acting on the set of columns.

(ii) a multiplication of each column by a nonzero element \(e_1, \omega \) or \(\overline{\omega} \) in \(I_1. \)
(iii) a Galois automorphism γ which interchanges ω and $\overline{\omega}$.

The action of (i) and (ii) can be represented by a monomial matrix $M = PD$ for a diagonal matrix D and permutational matrix P. Since every column of Q_1 consists only of 0 and 1 the action of $PD\gamma$ on Q_1 can be obtained via $P\overline{D}$. Thus we apply only transformations (i) and (ii).

Denote by M_1^τ the code determined by the matrix Q_1 with columns permuted by τ. To narrow down the computations we can use $\text{PAut}(M_1) = \langle (47)(56), (45)(67), (12)(3586), (24)(68), (34)(78) \rangle$, $|\text{PAut}(M_1)| = 1344$ and the right transversal T of S_8 with respect to $\text{PAut}(M_1)$

$T = \{ (), (78), (67), (687), (68), (56), (56)(78), (567), (5678), (5687),
(568), (576), (5786), (57), (578), (57)(68), (5768), (5876), (586), (587), (58),
(5867), (58)(67), (45678), (4568), (4578), (45768), (458), (458)(67) \}$.

For every one of the 122 codes $M_{2,i}$ and $\tau \in T$ we considered 3^8 possibilities for $\text{gen}(M_1^\tau)$ and checked the minimum distance in the corresponding binary code $E_\sigma(C)^*$. We state the following result.

Theorem 4. There are exactly 36659 inequivalent self-orthogonal $[72, 32, 16]$ codes having an automorphism with 8 cycles of order 9.

Denote the codes obtained by $C_{72,i}$, $i = 1, \ldots, 36659$. In Table 1 and Table 2 we summarize the values of the order of the automorphism groups $|\text{Aut}|$ and the number A_{16} of codewords of weight 16 for these codes.

| Table 1: The cardinality of the automorphism groups of the $[72, 32, 16]$ codes |
|-----------------|---|---|---|---|---|---|
| $|\text{Aut}|$ | 9 | 18 | 27 | 36 | 54 | 72 |
| $\#$ of codes | 35876 | 730 | 24 | 25 | 2 | 2 |
A_{16}	#								
14751	1	14967	454	15183	806	15399	207	15615	27
14760	2	14976	479	15192	787	15408	212	15624	28
14769	1	14985	569	15201	740	15417	180	15633	26
14778	2	14994	598	15210	798	15426	193	15642	20
14787	6	15003	635	15219	654	15435	148	15651	20
14796	8	15012	722	15228	674	15444	161	15660	8
14805	12	15021	740	15237	654	15453	145	15669	9
14814	17	15030	760	15246	687	15462	118	15678	8
14823	25	15039	764	15255	615	15471	127	15687	15
14832	32	15048	787	15264	521	15480	120	15696	6
14841	45	15057	807	15273	544	15489	116	15705	13
14850	62	15066	826	15282	503	15498	102	15714	9
14859	70	15075	815	15291	504	15507	75	15723	8
14868	93	15084	889	15300	424	15516	75	15732	8
14877	127	15093	910	15309	446	15525	68	15741	7
14886	155	15102	860	15318	428	15534	56	15750	5
14895	179	15111	962	15327	416	15543	60	15759	8
14904	213	15120	832	15336	385	15552	48	15768	9
14913	290	15129	827	15345	357	15561	48	15777	1
14922	264	15138	863	15354	340	15570	39	15786	2
14931	317	15147	862	15363	345	15579	48	15795	5
14940	326	15156	855	15372	288	15588	38	15804	3
14949	401	15165	847	15381	267	15597	39	15813	2
14958	419	15174	784	15390	233	15606	30	15822	3
3 Construction of new $[76, 38, 14]$ codes with an automorphism of type 9-$(8, 0, 4)$

The highest attainable minimum weight for length 76 is 14 and there are three possible weight enumerators and shadows \[7\]:

\[
\begin{align*}
W_{76,1} &= 1 + (4750 - 16\alpha)y^{14} + (79895 + 64\alpha)y^{16} + (915800 + 64\alpha)y^{18} + \cdots \\
S_{76,1} &= \alpha y^{10} + (9500 - 14\alpha)y^{14} + (1831600 + 91\alpha)y^{18} + \cdots \\
(0 \leq \alpha \leq 296)
\end{align*}
\]

\[
\begin{align*}
W_{76,2} &= 1 + 2590y^{14} + 106967y^{16} + 674584y^{18} + \cdots \\
S_{76,2} &= y^2 + 8954y^{14} + 1836865y^{18} + 105664452y^{22} + \cdots
\end{align*}
\]

\[
\begin{align*}
W_{76,3} &= 1 + (4750 + 16\alpha)y^{14} + (80919 - 64\alpha)y^{16} + (905560 - 64\alpha)y^{18} + \cdots \\
S_{76,3} &= y^6 + (-16 - \alpha)y^{10} + (9620 + 14\alpha)y^{14} + (1831040 - 91\alpha)y^{18} + \cdots \\
(-296 \leq \alpha \leq -16)
\end{align*}
\]

There are only three known codes with $\alpha = 0$ for $W_{76,1}$ \[6\], possessing an automorphism of type 19-$(4, 0)$.

Now C_π is a binary self-dual $[12, 6]$ code. Up to equivalence there are three such codes $6i_2, 2i_2 + h_8$ and d_{12} \[7\]. In the case of $6i_2$ we can not fix any point since then there will be a codeword of weight 10 in C. When $C_\pi \cong 2i_2 + h_8$ we have to take the four fixed points from the h_8 summand. Since the automorphism group of h_8 is 3-transitive we can take any three points from it and we have to choose one more cyclic point from the last five. We checked all five different splits and found a vector in $F_8(C)$ with weight $d < 14$. Lastly, when $C_\pi \cong d_{12}$, for every 4-weight codeword we have to choose at least two coordinates from its support.

The code d_{12} possesses a cluster \{1, 2\}, \{3, 4\}, \{5, 6\}, \{7, 8\}, \{9, 10\}, \{11, 12\} so we have to choose the four fixed points from different duads. Up to a permutation of the cyclic points or a permutation of the fixed points we have a unique generating matrix

\[
G_2 =
\begin{pmatrix}
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0
\end{pmatrix}
\]

for the code C_π.

By Q-extensions \[2\] we obtained $G'' = \langle (1, 2), (2, 4, 3)(5, 7)(6, 8), (5, 6)(7, 8) \rangle$ the subgroup of the symmetric group S_8 that preserves the code generated by G_2.

7
The group G'' has cardinality 420. To construct a generator matrix of a $[76, 38]$ self-dual code in form (2) we fix a generator matrix of $E_9(C)^*$ and we use the matrix G_2 with columns permuted by μ for all permutations $\mu \in G''$.

Our exhaustive search gives the following result.

Theorem 5. Up to equivalence there exist exactly 6 binary self-dual $[76, 38, 14]$ codes with an automorphism of type 9-$(8, 0, 4)$. All codes have weight enumerators $W_{76,1}$ for $\alpha = 4$ or 13 and automorphism groups of order 9.

The generator parameters and the weight enumerator for the six binary self-dual $[76, 38, 14]$ codes, denoted by $C_{76,i}, 1 \leq i \leq 6$, are displayed in Table 3. The notation τ, D in Table 3 means that we are using the permutation $\tau \in T$ on M_{1}^{*} and then a multiplication of each column by the corresponding element in D. Alternatively the generator matrices of the codes $C_{76,i}$ for $i = 1, 2, \ldots, 6$ can be obtained online at "http://shu.bg/tadmin/upload/storage/2599.txt".

code	$C_{72,i}$	τ, D	$\text{supp}(C_{\tau})$	α
$C_{70,1}$	11	(4, 5, 7, 8), (1, 1, $\bar{\varepsilon}$, $\bar{\varepsilon}$, ω, 1, 1, ω)	$\{1, 3, 9, 10\}, \{3, 5, 10, 11\}, \{5, 8, 11, 12\}, \{2, 7, 8, 12\}, \{2, 4, 6, 7\}, \{1, 3, 5, 6, 7, 8\}$	4
$C_{70,2}$	11	(4, 5, 7, 8), (1, 1, $\bar{\varepsilon}$, $\bar{\varepsilon}$, ω, 1, 1, ω)	$\{1, 3, 9, 10\}, \{3, 5, 10, 11\}, \{5, 8, 11, 12\}, \{2, 7, 8, 12\}, \{2, 4, 6, 7\}, \{1, 3, 4, 5, 7, 8\}$	4
$C_{70,3}$	36	(4, 5, 8), (1, $\bar{\varepsilon}$, $\bar{\varepsilon}$, $\bar{\varepsilon}$, $\bar{\varepsilon}$, ω, 1, ω)	$\{2, 4, 9, 10\}, \{4, 6, 10, 11\}, \{6, 8, 11, 12\}, \{1, 7, 8, 12\}, \{1, 3, 5, 7\}, \{2, 4, 5, 6, 7, 8\}$	4
$C_{70,4}$	36	(4, 5, 8), (1, $\bar{\varepsilon}$, $\bar{\varepsilon}$, $\bar{\varepsilon}$, $\bar{\varepsilon}$, ω, 1, ω)	$\{2, 4, 9, 10\}, \{4, 6, 10, 11\}, \{6, 8, 11, 12\}, \{1, 7, 8, 12\}, \{1, 3, 5, 7\}, \{2, 3, 4, 6, 7, 8\}$	4
$C_{70,5}$	106	(4, 5, 6, 7, 8), (1, ω, 1, ω, ω, ω, ω, 1)	$\{3, 4, 9, 10\}, \{4, 5, 10, 11\}, \{5, 7, 11, 12\}, \{1, 6, 7, 12\}, \{1, 2, 6, 8\}, \{3, 4, 5, 6, 7, 8\}$	13
$C_{70,6}$	106	(4, 5, 6, 7, 8), (1, ω, 1, ω, ω, ω, ω, 1)	$\{3, 4, 9, 10\}, \{4, 5, 10, 11\}, \{5, 7, 11, 12\}, \{1, 6, 7, 12\}, \{1, 2, 6, 8\}, \{2, 3, 4, 5, 6, 7\}$	13

Acknowledgements

This work was supported by Shumen University under Project No RD-08-68/02.02.2017.

References

[1] A. Baartmans and V. Yorgov. Some new extremal codes of lengths 76 and 78. *IEEE Transactions on Information Theory*, 49(5):1353–1354, 2003.
[2] I. Bouyukliev. *About the code equivalence in Advances in Coding Theory and Cryptography* vol. 3, pages 126–151. World Scientific Publishing Company, 2007.

[3] S. Bouyuklieva. Some MDS codes over $GF(64)$ connected with the binary doubly-even [72, 36, 16] code. *Serdica Journal of Computing*, 1:185–192, 2007.

[4] S. Bouyuklieva, R. Russeva, and N. Yankov. On the Structure of Binary Self-Dual Codes Having an Automorphism of Order a Square of an Odd Prime. *IEEE Transactions on Information Theory*, 51(10):3678–3686, 2005.

[5] J. H. Conway, V. Pless, and N. J. A. Sloane. Self-dual codes over $GF(3)$ and $GF(4)$ of length not exceeding 16. *IEEE Transactions on Information Theory*, 25(3):312–322, 1979.

[6] R. Dontcheva and V. Yorgov. The extremal codes of lengths 76 with an automorphism of order 19. *Finite Fields and Their Applications*, 9(4):395–399, 2003.

[7] S. Dougherty, T. A. Gulliver, and M. Harada. Extremal binary self-dual codes. *IEEE Transactions on Information Theory*, 43(6):2036–2047, 1997.

[8] W. C. Huffman and V. S. Pless. *Fundamentals of Error-Correcting Codes*. Cambridge University Press, 2003.

[9] V. Pless. A classification of self-orthogonal codes over $GF(2)$. *Discrete Mathematics*, 3(1-3):209–246, 1972.

[10] N. Yankov. A putative doubly even [72, 36, 16] code does not have an automorphism of order 9. *IEEE Transactions on Information Theory*, 58(1):159–163, 2012.