Characterization of Rat Liver-specific Methionine Adenosyltransferase Gene Promoter

ROLE OF DISTAL UPSTREAM cis-ACTING ELEMENTS IN THE REGULATION OF THE TRANSCRIPTIONAL ACTIVITY

(Received for publication, March 18, 1997, and in revised form, June 25, 1997)

Luis Alvarez, Estrella Sánchez-Góngora‡, Jesús Mingorance, María A. Pajares, and José M. Mato§
From the Instituto de Investigaciones Biomédicas, C.S.I.C. Arturo Duperier 4, 28029 Madrid, Spain

Methionine adenosyltransferase is a ubiquitous enzyme that catalyzes the only known route of biosynthesis of S-adenosylmethionine, the major methyl group donor in cell metabolism. In mammals, two different methionine adenosyltransferases exist: one is confined to the liver, and the other one is distributed in extrahepatic tissues. In the present study, we report the cloning of the 5′-flanking region of liver-specific methionine adenosyltransferase gene from rat. Two closely spaced sites for transcriptional initiation were identified by primer extension analysis. The major transcription start site was determined to be 29 nucleotides downstream from the putative TATA box. Transient transfection analysis of constructs containing sequentially deleted 5′-flanking region of liver-specific methionine adenosyltransferase promoter was able to efficiently drive reporter expression only in liver-type cells (rat hepatoma H35 cells and human hepatoblastoma HepG2 cells) but also in Chinese hamster ovary cells. Two regions spanning nucleotides −1251 to −958 and −197 to +65 were found to be crucial for the promoter efficiency. The distal upstream region contains elements that positively regulate promoter activity in H35 and HepG2 cells but are ineffective in Chinese hamster ovary cells. Eight protein binding sites were characterized in both regions by DNase I footprinting analysis. Two of these elements, sites A and B, located in the distal region, were found to be essential for the regulation of promoter activity. Electrophoretic mobility shift assays and competition experiments showed that site A is recognized by an NF1 protein. Site B was able to interact with a member of HNF-3 family when nuclear extracts from rat liver and H35 cells were used in the in vitro assay, but an additional binding activity to an NF1-like protein was obtained with the hepatoma cell extracts. It is suggested that this differential binding can contribute to the cell specificity of promoter function.

S-Adenosylmethionine plays a central role in cellular metabolism, being the major methyl group donor in transmethylation reactions and the source of propylamine moieties for polyamine biosynthesis (1, 2). S-Adenosylmethionine is synthesized by transfer of the adenosyl moiety from ATP to the sulfur atom of methionine, in a reaction catalyzed by the enzyme methionine adenosyltransferase (MAT; ATP:L-methionine S-adenosyltransferase, EC 2.5.1.6) (3). The occurrence of MAT has been extensively studied in a variety of organisms, where different isoenzyme forms have been characterized (2). In mammals, biochemical and molecular cloning studies have revealed the existence of at least two MAT (for a consensus nomenclature for mammalian methionine adenosyltransferase genes and gene products, see Ref. 4). One is selectively expressed in the liver and the other one is distributed in non-hepatic tissues (reviewed in Ref. 5). The presence of a liver-specific isoenzyme is related to the main role of this organ in methionine metabolism. Thus, most of the methionine taken up from the diet is metabolized in the liver, and up to 85% of all transmethylation reactions occur in the liver (5).

Hepatic MAT is a cytosolic homo-oligomeric protein, found as a mixture of tetramers and dimers (6, 7). Its expression correlates well with liver growth and differentiation, having been proposed to be a marker of the differentiated state of the hepatocyte (8). There is growing evidence suggesting that this enzyme can be regulated at different levels by a variety of factors and under several pathological conditions. For instance, a serious decrease in the enzyme activity, without a concomitant reduction in the expression of the gene, has been found in several human hepatic disorders (9, 10), as well as in different experimental models of liver injury (11, 12). In contrast, a marked reduction of MAT gene expression has been reported in human hepatocarcinoma (13) and in a rat model of hypoxia-induced liver injury (14). On the other hand, glucocorticoids (15) and cAMP (8) increase the expression of the gene in rats, whereas insulin blocks the inducing effect of glucocorticoids (8). Altogether, these results suggest that hepatic MAT gene expression is regulated differently under various normal and pathophysiological conditions. The necessity of a strict regulation of the expression of this enzyme has been recently emphasized by the fact that a sustained enhancement in its synthesis is accompanied by a depletion of cellular ATP and NAD, and a greater sensitivity to oxidative cell injury (16).

To study molecular mechanisms underlying the regulation of hepatic MAT expression, we have isolated and characterized
the 5’-flanking region of the rat MAT gene. The regulatory elements necessary for basal expression have been identified using transient transfections into various cell lines with hepatic MAT promoter-luciferase chimeric genes as well as by in vitro DNase I footprinting analysis. These cis-acting elements are clustered in a promoter proximal region and in a distal region. We finally show that transcriptional activity of hepatic MAT promoter is predominantly dependent on the binding of an NF1-like protein and liver-enriched transcription factors to the promoter distal region.

EXPERIMENTAL PROCEDURES

General Procedures—Standard procedures were used for screening the recombinant genomic library, restriction enzyme mapping, subcloning, DNA labeling, isolation of genomic DNA, Southern transfer, and hybridization to DNA on filters (17, 18). Oligonucleotide primers were synthesized on an Applied Biosystems 391 DNA synthesizer using the phosphoramidite method.

Isolation and Characterization of Genomic Clones—A rat genomic DNA library in EMBL-3 SP6/T7 (CLONTECH) was screened using as a probe a 32P-labeled 580-bp EcoRI/XhoI fragment of the rat liver MAT cDNA clone. Agt11 phage DNA digested with EcoRI and HindIII was used as a size marker; molecular sizes are indicated.

Fig. 1. Southern blot analysis of rat genomic DNA. High molecular mass genomic DNA from rat liver (10 μg per lane; right panel) and DNA from clone GR54 (1 μg per lane; left panel) were digested with EcoRI, BamHI, XhoI, or PstI as indicated, separated on 1.2% agarose gel, and transferred to a nylon membrane. The radiolabeled probe was a 580-bp EcoRI/XhoI fragment of the rat liver MAT cDNA clone. Agt11 phage DNA digested with EcoRI and HindIII was used as a size marker; molecular sizes are indicated.

Fig. 2. Determination of the transcription start site(s) of the rat liver MAT gene by primer extension. A 32P-labeled primer complementary to nucleotides 186–163 of the rat liver MAT cDNA was annealed to rat liver poly(A)+ RNA (lane 1) or yeast tRNA (lane 2) and extended with reverse transcriptase. The primer extended products were analyzed on 6% denaturing polyacrylamide gels, in parallel with sequencing reactions (GATC) carried out on the genomic subclone using the same primer. Arrowheads show the position of the extended products. Solid circles indicate the position of the putative TATA box. The sequences of the sense strand near the bands and the TATA box are shown below.

FIG. 2. Determination of the transcription start site(s) of the rat liver MAT gene by primer extension. A 32P-labeled primer complementary to nucleotides 186–163 of the rat liver MAT cDNA was annealed to rat liver poly(A)+ RNA (lane 1) or yeast tRNA (lane 2) and extended with reverse transcriptase. The primer extended products were analyzed on 6% denaturing polyacrylamide gels, in parallel with sequencing reactions (GATC) carried out on the genomic subclone using the same primer. Arrowheads show the position of the extended products. Solid circles indicate the position of the putative TATA box. The sequences of the sense strand near the bands and the TATA box are shown below.

FIG. 1. Southern blot analysis of rat genomic DNA. High molecular mass genomic DNA from rat liver (10 μg per lane; right panel) and DNA from clone GR54 (1 μg per lane; left panel) were digested with EcoRI, BamHI, XhoI, or PstI as indicated, separated on 1.2% agarose gel, and transferred to a nylon membrane. The radiolabeled probe was a 580-bp EcoRI/XhoI fragment of the rat liver MAT cDNA clone. Agt11 phage DNA digested with EcoRI and HindIII was used as a size marker; molecular sizes are indicated.

Fig. 2. Determination of the transcription start site(s) of the rat liver MAT gene by primer extension. A 32P-labeled primer complementary to nucleotides 186–163 of the rat liver MAT cDNA was annealed to rat liver poly(A)+ RNA (lane 1) or yeast tRNA (lane 2) and extended with reverse transcriptase. The primer extended products were analyzed on 6% denaturing polyacrylamide gels, in parallel with sequencing reactions (GATC) carried out on the genomic subclone using the same primer. Arrowheads show the position of the extended products. Solid circles indicate the position of the putative TATA box. The sequences of the sense strand near the bands and the TATA box are shown below.
ments were +49 to +65, −193 to −177, −1012 to −996, and −1251 to −1235. One primer from each pair was 5'-end-labeled with [γ-32P]ATP using T4 polynucleotide kinase. PCR reactions were performed as described (7). Amplified fragments were purified using Sephacryl S-300 columns (Pharmacia). Approximately 3 × 10^4 cpm of end-labeled DNA fragments were incubated with 10–50 μg of nuclear proteins from rat liver. After 30 min incubation at room temperature, CaCl2 and MgCl2 were added to give a final concentration of 0.5 and 1 mM, respectively. DNase I digestions were performed at room temperature for 1 min, using different amounts of enzyme. The reactions were stopped by the addition of 140 μl of stop solution containing 2 mM of yeast tRNA, 20 mM EDTA, 150 mM sodium acetate, and 1.5 μg of proteinase K. Upon phenol extraction and ethanol precipitation, pellets were resuspended in sample dye buffer, and DNA fragments were resolved by electrophoresis in a denaturing 8% acrylamide/urea sequencing gel. The positions of specific DNase I-protected regions were determined by sequencing the fragments according to Maxam-Gilbert (26).

Electrophoretic Mobility Shift Assay—Electrophoretic mobility shift assays were performed in a 20-μl binding reaction containing 5 μg of crude nuclear extract, 40 mM HEPES, pH 7.5, 40 mM KCl, 0.2 mM EDTA, 5 mM MgCl2, 1.25% Ficoll, 1 μg poly(dI-dC)·poly(dI-dC), 1 μg of sonicated herring sperm DNA, and, when indicated, a 50-fold excess of competitor oligonucleotide. The reaction mixtures were incubated on ice for 10 min, and then 6 × 10^4 cpm of annealed oligonucleotides were added, and incubation was continued for an additional 20 min. The DNA-protein complexes were resolved in a 6% acrylamide gel in 0.5 × TBE (1 × TBE: 89 mM Tris, pH 8.0, 89 mM boric acid, 2 mM EDTA). Double-stranded oligonucleotides used as probes or competitors were composed of the following sequences (top strand shown): MAT promoter FPA site, CACTAGAATTTGTGCCAGAAAAAAAAAGTA; the HNF-1 binding site from the rat albumin promoter, TGTGGTTAATGATCTACAGT (27); the HNF-3 binding site from the transthyretin (TTR) promoter, GTTGACTAAGTCAATAATCAGAATCAG (28); a C/EBP binding site, GGTATGATTTTGTAATGGGGTA (29); a consensus NF-1 binding sequence, GCTTTGGCATGCTGCACATATG (30); a consensus AP1 recognition site, ATTCTAGACTGAGTCATGGTACCGA (31).

RESULTS

Molecular Cloning of the 5'-Flanking Region of Rat Liver MAT Gene—A rat genomic DNA library in EMBL-3 sp6T7 was screened with a 580-bp EcoRI/XbaI fragment of the rat liver MAT cDNA clone pSSRL, which comprises 211 bp of the 5'-untranslated sequence and the first 369 bp of the coding region (19). Five overlapping clones containing inserts ranging in size between 13 and 18 kb were isolated from approximately 1.3 × 10^6 recombinants. Restriction mapping and Southern analysis showed that all of them contained different lengths of the 5'-flanking region. A genomic clone of about 16 kb, designated GRS4, containing approximately 6 kb of the 5'-flanking region of the MAT gene was chosen for detailed analysis. To verify that no gross rearrangements had occurred during the cloning process, Southern blots prepared with rat genomic DNA were probed with the following sequences (top strand shown): MAT promoter FPA site, CACTAGAATTTGTGCCAGAAAAAAAAAGTA; the HNF-1 binding site from the rat albumin promoter, TGTTGGTTAATGATCTACAGT (27); the HNF-3 binding site from the thrombopoietin (TPO) promoter, GTTGACTAAGTCAATAATCAGAATCAG (28); a C/EBP binding site, GGTATGATTTTGTAATGGGGTA (29); a consensus NF-1 binding sequence, GCTTTGGCATGCTGCACATATG (30); a consensus AP1 recognition site, ATTCTAGACTGAGTCATGGTACCGA (31).
Fig. 4. Transient transfection analyses of the rat liver MAT promoter/luciferase chimeric constructs. A, schematic representation of the hepatic MAT-luciferase chimeric constructs. Progressive 5′ deletions of the MAT promoter extending from −1405 to +65 bp were generated by PCR (see "Experimental Procedures") and fused to the promoterless luciferase expression vector pXP1. Numbering is defined relative to the major transcriptional start site. B and C, graphical presentation of the transient luciferase activity in H35 (filled bars) and HepG2 cells (hatched bars) (B) and CHO (C) cells, transfected with the chimeric constructs described in A. Luciferase activities, normalized for β-galactosidase expression, are presented as a percentage of the activity of the −1405/+65 construct. The pXP1 vector without any promoter was used as negative control. Transfections with the positive control plasmid RSV-Luc were simultaneously performed (inset in B). The data represent the mean ± S.E. from three independent experiments performed in duplicate.

Results indicate that the cloned DNA segment retains the same sequence organization as in the genomic DNA and suggest that hepatic MAT gene is present as a single copy in the rat genome.

Determination of the Transcriptional Start Sites—To determine the start site of transcription, a primer extension assay was performed using poly(A)−RNA from rat liver, as described under “Experimental Procedures.” As shown in Fig. 2, a major product corresponding to a 89-base extended fragment was detected as well as a minor product two nucleotides longer. These products were not detected when the assay was carried out using tRNA. Sequencing reactions performed on the genomic clone GR54 using the same primer localized the major start site 251 nucleotides from the ATG translation initiation codon and 41 nucleotides upstream of the 5′-end of the partial cDNA sequence previously published (19). This base was designated as +1 for numbering the nucleotides in the gene.

Structural Features of the 5′-Flanking Region—The nucleotide sequence of rat hepatic MAT promoter region extending from 1557 bp upstream of the transcription initiation site is shown in Fig. 3. The exon sequence corresponding to the first 41 nucleotides of the MAT mRNA, not present in the reported cDNA sequence (19), is also included.

The 5′-flanking region shares 88% sequence identity with the 1113-bp promoter region reported for the mouse MAT gene (32). Sequence analysis revealed a putative TATA box located at positions −29 to −23, which is in agreement with the preferred position occupied by this element in a typical eukaryotic promoter (33). The canonical CAAT box, usually present around −80 bp, was not found in this area, but two perfect CAAT motifs were located far away (positions −379 and −1514). A number of DNA consensus sequences reported to bind specific trans-acting factors were also present. Thus, two AP-1 binding sites (34, 35) were found at positions −1057 to −1051 and −294 to −288. Two copies of the PEA3 motif (5′-AGGAAG-3′) (36), an oncogene-, growth factor-, and phorbol ester-responsive element, were located at −772 to −767 and −217 to −212. The consensus recognition motif for the glucocorticoid response element (TGT(CT)(CA) (37) was represented 4 times at positions −701 to −696, −636 to −631, −442 to −437, and −66 to −61. Two interleukin-6 response elements (38), which act as positive elements in several acute phase protein genes, were identified at −1301 to −1296, in reverse complement form, and at −317 to −312. Two NF-1 binding motifs (5′-TGNN7CCA-3′) (39) were found at −1218 to −1206 and −630 to −618, the latter overlapping with a glucocorticoid response element. Finally, the analysis also revealed several DNA elements that matched the consensus binding sequences for liver-enriched transcription factors, such as HNF-1 (27) (at −581 to −575), HNF-3 (40) (at −1138), HNF-3 (40) (at −1222 and −581 to −575), and HNF-4 (41) (at −159 to −154 and −79 to −73).

Functional Analysis of the 5′-Flanking Region of Rat Liver MAT Gene—To delineate the sequences that drive MAT expression, a series of deletion mutants extending from −1405 to +65 bp was generated by PCR and cloned into the promoterless luciferase expression vector pXP1 (Fig. 4A). A similar plasmid containing the RSV promoter was used as a positive control for transfection. These chimeric constructs were transiently transfected into two cell types of liver origin, the rat hepatoma H35 cell line and the human hepatoblastoma HepG2 cell line, as well as into CHO cells. In all transfection experiments, a vector expressing β-galactosidase was included as internal control. Transient expression of luciferase activity showed that the MAT-luciferase vectors were expressed in the three cell types. The pattern of transcriptional activity of the chimeric constructs was very similar in H35 and HepG2 cells (Fig. 4B). Only background expression was observed following transfection.
with the pXP1 luciferase vector without any promoter fragment. The highest luciferase activity, almost 14 and 20% of RSV-luciferase activity in H35 and HepG2, respectively, was observed with the $2^{1405} / 165$ construct. Removal of the fragment 2^{1405} to 2^{1251} had little effect on the promoter efficiency. However, successive 5' deletions from 2^{1251} to 2^{-87} bp resulted in a marked decrease in luciferase activity, indicating the presence of a positive-acting region between 2^{1251} and 2^{-958}, that increases transcriptional activity about 3-fold. Deletions of sequences from 2^{-958} to 2^{-727}, 2^{-727} to 2^{-527}, 2^{-527} to 2^{-375}, and 2^{-375} to 2^{-193} did not significantly affect luciferase activity, suggesting that no relevant additional elements involved in basal transcription are contained in this area. Further deletion from 2^{-193} to 2^{-87} promoted a 2-fold decrease, suggesting the presence of positive regulatory element(s) in this area. The resulting construct ($2^{-87} / 165$), which contains the minimal promoter elements including the TATA box, produced 10 and 18% maximal activity in H35 and HepG2 cells, respectively.

The profile of luciferase expression in CHO cells was quite different from that obtained in the liver-type cells (Fig. 4C). The constructs $2^{1405} / 165$, $2^{1251} / 165$, and $2^{-958} / 165$ yielded a similar luciferase activity. Therefore, as judged by the results obtained in the hepatic cells, the region comprised between

![DNase I footprinting analysis of 32P-labeled MAT 5'-flanking fragments −193 to +65 and −1251 to −996. Double-stranded fragments corresponding to nucleotides −193 to +65 (A) and −1251 to −996 (B) of the 5'-flanking region of MAT gene were synthesized by PCR with 5'-32P label on either strand and digested with different amounts of DNase I in the absence (0) or presence of 10, 20, and 50 μg of rat liver nuclear extract. Positions of protected regions are indicated by brackets, and major hypersensitive sites are marked with asterisks. Lanes G+A represent a Maxam-Gilbert sequencing reaction in the same fragments.](image-url)
with liver nuclear extracts (Fig. 5B). Footprint C presents some sequence similarity to NF1 and a tentative NF1 binding site, and footprint B (nucleotides 193 to 22880) extends the promoter distal region from -193 to -22880. These might contain elements that positively regulate transcription in CHO cells.

DNase I Footprinting Analysis of MAT 5'-Flanking Region—From the results of deletion analysis, it can be concluded that the essential elements governing MAT expression in hepatic cells lie between nucleotides -1251 to -958 and -193 to +65. To identify these potential cis-acting elements, DNase I footprinting analysis was performed using both DNA fragments and nuclear proteins isolated from rat liver. As shown in Fig. 5A, five DNase I-protected areas, designated I to V, were generated on both strands within the promoter proximal region (-193 to +65) at increasing amounts of protein. The nucleotide sequences of these footprints are depicted in Fig. 6. Footprint I is a large protected area that covers putative TATA box elements. The second protected region extends from -46 to -70 and includes a significant homology to an AP1 recognition site. Footprint III shows no sequence similarity to any of the known transcription factor binding sites, including cAMP response element, AP1, and AP4. Interestsingly, this region also contains two tandem copies of the motif, which does not match any consensus recognition site for known transcription factors.

Relative Contribution of Protein-binding Sites in the Distal Promoter Region to Transcription Activity—Since the region spanning nucleotides -1251 to -958 appeared to be crucial for the promoter activity in hepatic cells, we next focused on the analysis of the functional significance of the protein binding sites detected by footprinting in this area. For this purpose, 5' deletion mutants extending up to each footprint were carried out; the constructs were transfected in H35 and CHO cells, and the transcription capacity was assessed (Fig. 8). Removal of the fragment -1251 to -1154 containing the area corresponding to footprint C promoted a small decrease (about 20%) of luciferase activity. However, an additional deletion of sequences corresponding to element B (-1154 to -1134) resulted in about a 2-fold increase in reporter gene transcription, indicating the presence of elements that negatively influence the promoter function. Finally, upon deleting a fragment comprising also the footprint A, the promoter efficiency was reduced 3-fold, rendering a relative luciferase activity similar to that exhibited by the deletion construct -958/-65 (Fig. 4). On the other hand, and in agreement with the data shown in Fig. 4, no differences in luciferase activity were detected upon transfection of these deletion constructs in CHO cells.

Characterization of Nuclear Protein Binding to Sequences within Footprints A and B—Since sequences residing within footprints A and B appeared to be of major functional relevance, the identity of the potential factors that interact with these elements was explored by gel mobility shift analysis. Double-stranded synthetic oligonucleotides (named FPA and FPB; see “Experimental Procedures”) encompassing each of the two DNase I footprinted sites were used as probes and incubated with nuclear extracts from rat liver and H35 cells. To assess the specificity of each protein binding site, a series of double-stranded oligonucleotides was used as competitors in the binding reactions.

As shown in Fig. 9, the radiolabeled FPA probe formed two closely spaced DNA-protein complexes with rat liver and H35 nuclear extracts. The specificity of DNA binding was established by the ability of a 50-fold molar excess of the same unlabeled probe to compete for complex formation. An NF1 consensus oligonucleotide efficiently competed, even better than the homologous FPA with binding for both nuclear extracts, whereas no competition was observed with oligonucleotides containing HNF-1, HNF-3, C/EBP, or AP1 consensus sequences. This result suggests that the protein forming these complexes is a member of the NF1 family or an NF1-like protein.
footprint of MAT gene were incubated with 50 mmoles of radiolabeled FPB. The formation of the upper complex was abolished by an excess of HNF-1 oligonucleotide, which also showed a weak cross-competition with the lower complex. Conversely, addition of an HNF-3 consensus sequence did not affect the formation of the upper complex but efficiently competed with the lower complex. In fact, the latter exhibited a similar behavior in competition experiments with both cell extracts. In summary, these results suggest that in both cell extracts MAT promoter FPB element is interacting with an HNF3-like protein, whereas in the H35 extracts, the same element also binds an HNF1-like factor.

DISCUSSION

Among mammalian tissues, the liver is a major site of production of MAT, needed to metabolize most of the methionine taken from the diet and to provide key metabolites for the cell. The crucial role of the liver-specific MAT (1, 5, 44, 45) requires a precise regulation of its expression under basal conditions and in response to different stimuli. In this study, we report the cloning and initial characterization of the 5′-flanking region of the rat hepatic MAT gene, providing insights into the mechanisms that regulate its expression.

The gene for the rat liver-specific MAT is present as a single copy in the genome, as has also been reported for its human (10) and mouse (32) counterparts. The major start site of transcription was determined to be 29 nucleotides downstream of the putative TATA sequence, at the same site as that for the mouse MAT gene (32), further supporting the assignment of this nucleotide as the cap site. However, unlike the mouse gene, this site corresponds to a T residue, a nucleotide not usually found at the transcription start site in the eukaryotic promoters analyzed (33).

Functional analysis by transient transfections has shown that the promoter for the rat hepatic MAT is active not only in liver-type cells but also in a non-hepatic cell such as CHO. This finding raises the possibility that the liver-restricted expression of the endogenous gene is not mediated by the action of tissue-specific transcription factors. In such cases, the lack of its expression in the extrahepatic tissues could be due to situations known to stably repress the transcription of many tissue-specific genes, such as DNA methylation or genome organization (i.e., compaction of the chromatin) (46, 47). By analyzing a series of 5′-end deletions, two major regulatory regions have been identified, a promoter proximal region (−193 bp relative to the transcription start site) and a far upstream area extending nucleotides −1251 to −958. Most notably, promoter elements located in the latter produced the highest reporter activity upon transfection in H35 or HepG2 cells.

It is interesting to note that major differences can be found when the functional analysis of the 5′-flanking region of rat liver MAT gene is compared with that reported for its mouse counterpart, despite the high sequence conservation in the 1113-bp overlapping regions. Basically, in the mouse promoter, the 5′ cis-acting elements that produce the highest transcriptional activity are located between nucleotides −365 to −145, and the negatively acting region has been identified between −518 to −366 (32). Nevertheless, it is not known whether the crucial distal elements found in the rat promoter are also present in its mouse counterpart, since in the latter this region has not been analyzed.

The promoter proximal region of rat hepatic MAT appears to contain positive elements commonly active in both hepatic-type and CHO cells. Thus, the region spanning positions −87 to +65 exhibited similar relative transcriptional activity in the three
cell lines tested, probably owing to the action of basic regulatory sequences such as TATA box. In fact, three protected elements, one of them covering the putative TATA box, were detected in this DNA fragment by using the in vitro footprinting assay, and they appear to represent binding sites for ubiquitous trans-acting factors, as judged by analysis with nuclear extracts from different sources. Two additional footprinted areas were found between nucleotides −193 and −87. These elements also seem to be of functional relevance since its deletion produced a significant decrease in promoter activity. The identity of the proteins binding to this proximal region is the subject of further investigation.

The distal region is crucial for basal and tissue-specific promoter activity. Thus, its removal led to a drastic reduction in the reporter activity upon transfection in H35 and HepG2 cells but had no effect in CHO cells. The structure-function relationship of this area was studied by a combination of DNase I footprinting, transient transfections, and gel shift assays. With this approach, three relevant cis-acting elements (A–C) were defined. Sequences spanning sites A and C bind factors that positively regulate transcription of MAT promoter, with a predominant role for site A. Gel retardation and competition experiments have provided evidence that this element interacts with a member of the NF1 family, a finding that is consistent with the initial identification by sequence homologies. Our results suggest that NF1, which usually acts as a positive transcription factor (30, 48), plays a key role in directing MAT expression.

On the other hand, site B appears to bind a factor that negatively modulates transcriptional activity in H35 cells. Surprisingly, an oligonucleotide containing this element showed, in gel shift assays, different specific interactions with nuclear extracts from rat liver and hepatoma H35 cells. Thus, it was able to recognize a protein present in both cell extracts that, as judged by competition experiments, appears to be a member of the liver-enriched transcription factor NF1 family. However, an additional binding activity, corresponding to a potential NF1-1 transcription factor, was detected with the H35 extract. It is interesting to note that site B contains the sequence 5'-CGATTGATTAAC-3', which is 90 and 84% identical to the consensus NF1-3 (49) and NF1-1 (27) binding elements, respectively. Therefore, both factors could be partially interacting with the same core sequence. This assumption is supported by the fact that a mutated form of element B disrupting this sequence was unable to compete with the wild-type probe for the formation of both protein complexes. The absence of HNF-1 binding activity in the liver extract is, however, difficult to explain, since hepatic tissue expresses high levels of this transcription factor (50, 51). One possible explanation derives from the fact that de-differentiated hepatoma cells do not express HNF-1 but present a protein called variant HNF-1 (vHNF-1, Refs. 52 and 53). Although both factors can interact with the same target elements, it has been suggested that the sequence of the binding site may modulate the affinities of HNF-1 proteins, thus providing another level of regulation (54). Therefore, vHNF-1 or a related protein present in hepatoma cells might somehow display a higher affinity for element

FIG. 8. Role of distal cis-acting elements in the transcriptional activity of hepatic MAT promoter. Rat hepatoma H35 and CHO cells were transiently transfected with the indicated MAT promoter-luciferase constructs. Luciferase activities are expressed as a percentage of the activity of the −1251/+65 construct. Data are the mean ± S.E. from three independent experiments performed in duplicate. Boxes represent the three DNase I-footprinted regions.

FIG. 9. Gel mobility shift assay of nuclear proteins interacting with the FPA sequence proteins binding to the MAT promoter FPA sequence. Labeled oligonucleotide probe corresponding to DNase I-footprinted region A was incubated with 5 μg of nuclear extracts from rat liver or rat hepatoma H35 cells. For specific competition, a 50-fold molar excess of unlabeled oligonucleotide corresponding to binding sites for HNF-1, HNF-3, c/EBP, NF1, and AP1 were used (see “Experimental Procedures” for the sequences of the oligonucleotides). The binding reactions were separated by electrophoresis in a native 6% polyacrylamide gel. DNA-protein complexes are indicated by arrowheads.

FIG. 10. Differential binding of nuclear proteins from rat liver and H35 cells to the FPB sequence. Gel shift analysis of the interactions of FPA with rat liver and H35 nuclear proteins. Competition was carried out with a 50-fold molar excess of the indicated unlabeled oligonucleotides. An FPB mutant (MtFPB, see “Experimental Procedures”) was included as competitor. Arrowheads indicate the specific binding complex.
B than HNF-1 and then compete with HNF-3 binding. The finding that element B negatively regulates MAT transcription is in agreement with this hypothesis, since HNF1 is a positive regulatory factor (50, 51), and vHNF-1 has been shown to be involved in the negative regulation of some liver-specific genes (55). In this context, it should be mentioned that steady-state levels of liver-specific MAT mRNA are lower in rat hepatoma H35 cells than in hepatocytes (15). A similar pattern of reduced expression has been also detected for the human hepatic mRNA in the hepatoma HepG2 cell line,2 a finding that does not completely agree with a previous report suggesting a complete lack of transcription of the liver MAT gene in these cells (13).

It is well documented that the successful expression of several liver-specific genes requires a combined action of ubiquitous factors, such as NF-1, and liver-enriched factors (50, 51, 56, 57). HNF-3 proteins function as transcriptional activators (58), and their cooperative interaction with NF-1 has been reported to be needed, among others, for the hepatocyte-specific expression of albumin gene (59) or for full activity of the promoter of C4b binding protein (60). A combined action of both factors might also account for the proper expression of rat liver MAT. In fact, their respective sequence elements are tandemly arrayed and separated by only 16 nucleotides. Therefore, the finding that in hepatoma cells an additional protein can interact with the HNF-3 element of MAT promoter raises the possibility that such binding could interfere with the transactivating ability of this transcription factor. In this line, the results presented here could explain the different basal expression of MAT in rat liver and hepatoma cells and provide more insights into the mechanisms governing the expression of liver-specific genes in differentiation.

Acknowledgments—We are grateful to Dr. Steven K. Nordeen for providing us with the plasmid pXp1. We thank Dr. Beatriz Gil and Dr. Javier Rey-Campos for helpful discussion, and Antonio Fernández for photographic work.

REFERENCES
1. Cantoni, G. L. (1975) Annu. Rev. Biochem. 44, 435–451
2. Tabor, C. W., and Tabor, H. (1984) Adv. Enzymol. 56, 251–282
3. Cantoni, G. L. (1983) J. Biol. Chem. 258, 403–416
4. Koth, M., Muller, H., Mato, J. M., Geller, A. M., Kreidich, N. M., Chou, J. Y., and Cantoni, G. L. (1997) Trends Genet. 13, 51–52
5. Mato, J. M., Alvarez, L., Corrales, F., and Pajares, M. A. (1994) in The Liver: Biology and Pathobiology (Arias, I. M., Boyer, J. L., Fausto, N., Jakoby, W. B., Schachter, D. A., and Shafritz, D. A., eds) 3rd Ed., pp. 461–470, Raven Press, Ltd., New York
6. Cabrero, C., Puerta, J., and Alemany, S. (1987) Eur. J. Biochem. 170, 299–304
7. Alvarez, L., Mingorance, J., Pajares, M. A., and Mato, J. M. (1994) Biochem. J. 301, 557–561
8. Gil, B., Casado, M., Pajares, M. A., Bosca, L., Mato, J. M., Martin-Sanz, P., and Alvarez, L. (1996) Hepatology 24, 876–881
9. Cabrero, C., Martinez-Due, A., Ortiz, P., Alemany, S., and Mato, J. M. (1988) Hepatology 8, 1530–1534
10. Alvarez, L., Corrales, F., Martinez-Due, A., and Mato, J. M. (1993) Biochem. J. 293, 481–486
11. Corrales, F., Gimenez, A., Alvarez, L., Caballeria, J., Pajares, M. A., Andreu, H., Parés, A., Mato, J. M., and Rodés, J. (1992) Hepatology 16, 1022–1027
12. Avila, M. A., Mingorance, J., Martinez-Chantar, M. L., Casado, M., Martin-Sanz, P., Bosca, L., and Mato, J. M. (1997) Hepatology 25, 391–396
13. Cai, J. X., Sun, W. M., Hwuang, J. J., Stain, S. C., and Lu, S. C. (1996) J. Biol. Chem. 271, 1096–1097
14. Chawla, R. K., and Jones, D. P. (1994) Biochim. Biophys. Acta 1199, 45–51

2 L. Alvarez, and J. M. Mato, unpublished results.