Drees, Manuel; Najjari, Bardia
Energy spectrum of thermalizing high energy decay products in the early universe. (English)
Zbl 0748.9218
J. Cosmol. Astropart. Phys. 2021, No. 10, Paper No. 9, 27 p. (2021)

MSC:
83C40 Gravitational energy and conservation laws; groups of motions
81V22 Unified quantum theories
83F05 Relativistic cosmology
35Q20 Boltzmann equations
81U90 Particle decay
80A10 Classical and relativistic thermodynamics
83F05 Open systems, reduced dynamics, master equations, decoherence
83F10 Mathematical modeling or simulation for problems pertaining to relativity and gravitational

Keywords:
particle physics-cosmology connection; physics of the early universe; cosmology of theories beyond the

Full Text: DOI arXiv

References:
[1] Allahverdi, Rouzbeh; Brandenberger, Robert; Cyr-Racine, Francis-Yan; Mazumdar, Anupam, Reheating in inflationary cosmo-
ology: theory and applications, Ann. Rev. Nucl. Part. Sci., 60, 27-51 (2010) - doi:10.1146/annurev.nucl.012809.104511
[2] Kane, Gordon; Sinha, Kuver; Watson, Scott, Cosmological moduli and the post-inflationary universe: a critical review, Int. J. Mod. Phys. D, 24 (2015) - doi:10.1142/S0218271815300220
[3] Allahverdi, Rouzbeh, The first three seconds: a review of possible expansion histories of the early universe (2020) - doi:10.21105/astro.2006.16182
[4] Di Marco, Alessandro; Pradisi, Gianfranco, Variable inflaton equation of state and reheating (2021) - doi:10.1142/S0217751X21500950
[5] Visinelli, Luca, (Non-)thermal production of WIMPs during kination, Symmetry, 10, 546 (2018) - doi:10.3390/sym10110546
[6] Maldonado, Carlos; Unwin, James, Establishing the dark matter relic density in an era of particle decays, JCAP, 06 (2019) - Zbl 0747.6084 - doi:10.1088/1475-7516/2019/06/037
[7] Visinelli, Luca; Gondolo, Paolo, Axion cold dark matter in non-standard cosmologies, Phys. Rev. D, 81 (2010) - doi:10.1103/PhysRevD.81.063508
[8] Garcia, Marcos A. G.; Kaneta, Kunio; Mambrini, Yann; Olive, Keith A., Inflaton oscillations and post-inflationary reheating, JCAP, 04 (2021) - Zbl 1485.83044 - doi:10.1088/1475-7516/2021/04/012
[9] Garcia, Marcos A. G.; Kaneta, Kunio; Mambrini, Yann; Olive, Keith A., Reheating and post-inflationary production of dark matter, Phys. Rev. D, 101 (2020) - Zbl 1485.83044 - doi:10.1103/PhysRevD.101.123507
[10] Giblin, John T.; Kane, Gordon; Nesbit, Eva; Watson, Scott; Zhao, Yue, Was the universe actually radiation dominated prior to nucleosynthesis?, Phys. Rev. D, 96 (2017) - doi:10.1103/PhysRevD.96.043525
[11] Giudice, Gian Francesco; Kolb, Edward W.; Riotto, Antonio, Largest temperature of the radiation era and its cosmological implications, Phys. Rev. D, 64 (2001) - doi:10.1103/PhysRevD.64.023508
[12] Allahverdi, Rouzbeh; Drees, Manuel, Thermalization after inflation and production of massive stable particles, Phys. Rev. D, 66 (2002) - doi:10.1103/PhysRevD.66.063513
[13] Allahverdi, Rouzbeh; Drees, Manuel Production of massive stable particles in inflaton decayPhys. Rev. Lett.200289091302
[14] Berlin, Asher; Hooper, Dan; Krnjaic, Gordan, PeV-scale dark matter as a thermal relic of a decoupled sector, Phys. Lett. B, 760, 106-111 (2016) - doi:10.1016/j.physletb.2016.06.037
[15] Berlin, Asher; Hooper, Dan; Krnjaic, Gordan, Thermal dark matter from a highly decoupled sector, Phys. Rev. D, 94 (2016) - doi:10.1103/PhysRevD.94.095019
[16] Hamdan, Saleh; Unwin, James, Dark matter freeze-out during matter domination, Mod. Phys. Lett. A, 33 (2018) - doi:10.1142/S021773231850181X
[17] Chanda, Prolay; Hamdan, Saleh; Unwin, James, Reviving Z and Higgs mediated dark matter models in matter dominated freeze-out, JCAP, 01 (2020) - doi:10.1088/1475-7516/2020/01/034
[18] Co, Raymond T.; D’Eramo, Francesco; Hall, Lawrence J.; Pappadopulo, Duccio, Freeze-in dark matter with displaced signatures at colliders, JCAP, 12 (2015) - doi:10.1088/1475-7516/2015/12/024
[19] Garcia, Marcos A. G.; Amin, Mustafa A., Prethermialization production of dark matter, Phys. Rev. D, 98 (2018) - doi:10.1103/PhysRevD.98.103504
[20] Ishiwata, Koji, Axiso dark matter in moduli-induced baryogenesis, JHEP, 09, 122 (2014) - doi:10.1007/JHEP09(2014)122
[21] Dhuria, Mani; Hati, Chandan; Sarkar, Utpal, Moduli induced cogenesis of baryon asymmetry and dark matter, Phys. Lett. B, 756, 376-383 (2016) - Zbl 1400.81196 - doi:10.1016/j.physletb.2016.03.018
[22] Hasenkamp, Jasper; Kersten, Jörn, Dark radiation from particle decay: cosmological constraints and opportunities, JCAP, 08 (2013) - doi:10.1088/1475-7516/2013/08/024
[23] Harigaya, Keisuke; Kawasaki, Masahiro; Mukaida, Kyohei; Yamada, Masaki, Dark matter production in late time reheating, Phys. Rev. D, 89 (2014) - doi:10.1103/PhysRevD.89.063532
[24] Harigaya, Keisuke; Mukaida, Kyohei; Yamada, Masaki, Dark matter production during the thermalization era, JHEP, 07, 059 (2019) - doi:10.1007/JHEP07(2019)059
[25] Drees, Manuel; Hajkarim, Fazlollah, Neutralino dark matter in scenarios with early matter domination, JHEP, 12, 042 (2018) - doi:10.1007/JHEP12(2018)042
[26] Drees, Manuel; Hajkarim, Fazlollah, Dark matter production in an early matter dominated era, JCAP, 02 (2018) - doi:10.1088/1475-7516/2018/02/057
[27] Kurata, Yasuhiro; Maekawa, Nobuhiro, Averaged number of the lightest supersymmetric particles in decay of superheavy particle with long lifetime, Prog. Theor. Phys., 127, 657-664 (2012) - doi:10.1143/PTP.127.657
[28] Gelmini, Graciela B.; Gondolo, Paolo, Neutralino with the right cold dark matter abundance in (almost) any supersymmetric model, Phys. Rev. D, 74 (2006) - doi:10.1103/PhysRevD.74.023510
[29] Chung, Daniel J. H.; Kolb, Edward W.; Riotto, Antonio, Production of massive particles during reheating, Phys. Rev. D, 60 (1999) - doi:10.1103/PhysRevD.60.063504
[30] Ishiwata, Koji; Jeong, Kwang Sik; Takahashi, Fuminobu, Moduli-induced baryogenesis, JHEP, 02, 062 (2014) - doi:10.1007/JHEP02(2014)062
[31] Kane, Gordon; Winkler, Martin Wolfgang, Baryogenesis from a modulus dominated universe, JCAP, 02 (2020) - doi:10.1088/1475-7516/2020/02/019
[32] Asaka, Takehiko; Ishida, Hiroyuki; Yin, Wen, Direct baryogenesis in the broken phase, JHEP, 07, 174 (2020) - doi:10.1007/JHEP07(2020)174
[33] Hamada, Yuta; Kawana, Kiyoharu, Reheating-era leptonogenesis, Phys. Lett. B, 763, 388-392 (2016) - doi:10.1016/j.physletb.2016.10.067
[34] Fan, Jili; Özsoy, Ogan; Watson, Scott, Nontherm kinetic histories and implications for structure formation, Phys. Rev. D, 90 (2014) - doi:10.1103/PhysRevD.90.043530
[35] Hoffmann, Eric; Kawasaki, M.; Kohri, Kazumori; Moroi, Takeo, Radiative decay of a longlived particle and big bang nucleosynthesis, Phys. Rev. D, 60 (1999) - doi:10.1103/PhysRevD.60.023506
[36] Kawasaki, Masahiro; Kohri, Kazumori; Moroi, Takeo, Big-Bang nucleosynthesis and hadronic decay of long-lived massive particles, Phys. Rev. D, 71 (2005) - doi:10.1103/PhysRevD.71.083502
[37] Cyburt, Richard H.; Ellis, John R.; Fields, Brian D.; Olive, Keith A., Updated nucleosynthesis constraints on unstable relic particles, Phys. Rev. D, 67 (2003) - doi:10.1103/PhysRevD.67.103521
[38] Kawasaki, Masahiro; Kohri, Kazumori; Moroi, Takeo; Takaesu, Yoshihiko, Revisiting Big-Bang nucleosynthesis constraints on long-lived decaying particles, Phys. Rev. D, 97 (2018) - doi:10.1103/PhysRevD.97.035020
[39] Visinelli, Luca; Redondo, Javier, Axion miniclusters in modified cosmological histories, Phys. Rev. D, 101 (2020) - doi:10.1103/PhysRevD.101.023508
[40] Rozsowksi, Leszek; Sessolo, Enrico Maria; Trojanowski, Sebastian, WIMP dark matter candidates and searches-current status and future prospects, Rept. Prog. Phys., 81 (2018) - doi:10.1088/1361-6633/aa9113
[41] Feng, Jonathan L.; Rajaraman, Arvind; Takayama, Fuminori, SuperWIMP dark matter signals from the early universe, Phys. Rev. D, 68 (2003) - doi:10.1103/PhysRevD.68.063504
[42] Hall, Lawrence J.; Jedamzik, Karsten; March-Russell, John; West, Stephen M., Freeze-in production of FIMP dark matter, JHEP, 03, 080 (2010) - Zbl 1217.83088 - doi:10.1007/JHEP03(2010)080
[43] Acharya, Bobby Samir; Kane, Gordon; Watson, Scott; Kumar, Pyu, A non-thermal WIMP miracle, Phys. Rev. D, 80 (2009) - doi:10.1103/PhysRevD.80.083529
[44] Kim, Hyungjin; Hong, Jeong-Pyoung; Shin, Chang Sub, A map of the non-thermal WIMP model, Phys. Lett. B, 768, 292-298 (2017) - doi:10.1016/j.physletb.2017.03.005
[45] Baer, Howard; Barger, Vernon; Salam, Shadman; Sengupta, Dibyashree; Sinha, Kuver, Status of weak scale supersymmetry after LHC Run 2 and ton-scale noble liquid WIMP searches, Eur. Phys. J. ST, 229, 3085-3141 (2020) - doi:10.1140/epjst/e2020-000020-x
[46] Pérez de los Heros, Carlos, Status, challenges and directions in indirect dark matter searches, Symmetry, 12, 1648 (2020) - doi:10.3390/sym12101648
[47] Schumann, Marc, Direct detection of WIMP dark matter: concepts and status, J. Phys. G, 46 (2019) - doi:10.1088/1361-6471/ab2e5a
[48] L.D. Landau and I. Pomeranchuk, Limits of applicability of the theory of bremsstrahlung electrons and pair production at high-energies, Dokl. Akad. Nauk Ser. Fiz. 92 (1953) 535.
[49] Migdal, A. B., Bremsstrahlung and pair production in condensed media at high-energies, Phys. Rev., 103, 1811-1820 (1956) - Zbl 0073.23102 - doi:10.1103/PhysRev.103.1811
