Coherent spin dynamics in a gadolinium-doped CaW O4 crystal

Baibekov E., Gafurov M., Zverev D., Kurkin I., Rodionov A., Malkin B., Barbara B.
Kazan Federal University, 420008, Kremlevskaya 18, Kazan, Russia

Abstract

© 2017 American Physical Society. We report the first observation of Rabi oscillations in the spin-7/2 ensemble of trivalent gadolinium ions hosted in CaWO4 single crystal. A number of transitions within the lowest electronic multiplet 8S7/22 of Gd3+ ion are studied using a combination of continuous-wave and pulsed electron paramagnetic resonance spectroscopy. The corresponding Rabi damping curves and the spin coherence times are detected at varying strengths of the microwave field. These data are well reproduced by a theoretical model which accounts for the intrinsic inhomogeneity of the microwave field within the microwave resonator and the magnetic dipole interactions in the diluted spin ensemble. The results indicate that the studied 8-level ground manifold of Gd3+ ion can represent an effective three-qubit quantum system.

http://dx.doi.org/10.1103/PhysRevB.95.064427

References

[1] N. Gershenfeld and I. L. Chuang, Science 275, 350 (1997). 10.1126/science.275.5298.350
[2] D. P. DiVincenzo, Science 270, 255 (1995). 10.1126/science.270.5234.255
[3] L. M. K. Vandersypen, M. Steffen, G. Breyta, C. S. Yannoni, M. H. Sherwood, and I. Chuang, Nature 414, 883 (2001). 10.1038/414883a
[4] S. L. Braunstein, C. M. Caves, R. Jozsa, N. Linden, S. Popescu, and R. Schack, Phys. Rev. Lett. 83, 1054 (1999). 10.1103/PhysRevLett.83.1054
[5] W. S. Warren, Science 277, 1688 (1997). 10.1126/science.277.5332.1688
[6] www.bruker.com/products/mr/epr/epr-resonators-accessories/epr-accessories/pulse-epr-accessories/spinjet-awg/overview.html.
[7] K. Sato, S. Nakazawa, R. Rahimi, T. Ise, S. Nishida, T. Yoshino, N. Mori, K. Toyoda, D. Shiomi, Y. Yakiyama, Y. Morita, M. Kitagawa, K. Nakasui, M. Nakahara, H. Hara, P. Carl, P. Hofer, and T. Takui, J. Mater. Chem. 19, 3739 (2009). 10.1039/b819556k
[8] F. Jelezko, T. Gaebel, I. Popa, M. Domhan, A. Gruber, and J. Wrachtrup, Phys. Rev. Lett. 93, 130501 (2004). 10.1103/PhysRevLett.93.130501
[9] F. H. L. Koppens, C. Buizert, K. J. Tielrooij, I. T. Vink, K. C. Nowack, T. Meunier, L. P. Kouwenhoven, and L. M. K. Vandersypen, Nature 442, 766 (2006). 10.1038/nature05065
[10] S. Bertaina, S. Gambarelli, T. Mitra, B. Tsukerblat, A. Müller, and B. Barbara, Nature 453, 203 (2008). 10.1038/nature06962
[11] M. Atzori, L. Tesi, E. Morra, M. Chiesa, L. Sorace, and R. Sessoli, J. Am. Chem. Soc. 138, 2154 (2016). 10.1021/jacs.5b13408
[12] C. Schlegel, J. van Slageren, M. Manoli, E. K. Brechin, and M. Dressel, Phys. Rev. Lett. 101, 147203 (2008). 10.1103/PhysRevLett.101.147203
[13] S. Bertaina, S. Gambarelli, A. Tkachuk, I. N. Kurkin, B. Malkin, A. Stepanov, and B. Barbara, Nature Nanotechnology 2, 39 (2007). 10.1038/nnano.2006.174
[14] F. Mentink-Vigier, L. Binet, D. Gourier, and H. Vezin, J. Phys.: Condens. Matter 25, 316002 (2013). 10.1088/0953-8984/25/31/316002
[15] A. Abragam and B. Bleaney, Electron Paramagnetic Resonance of Transition Ions (Clarendon Press, Oxford, 1970).
