Breast cancer recurrence after immediate and delayed postmastectomy breast reconstruction—A systematic review and meta-analysis

Claudia A. Bargon, MD 1,2,3; Danny A. Young-Afat, MD, PhD 1,4; Mehmet Ikinici, MD 5; Assa Braakenburg, MD 6; Marc A.M. Mureau, MD, PhD 1,7; Helena M. Verkooijen, MD, PhD 1,8; and Annemiek Doeksen, MD, PhD 2

BACKGROUND: Oncological safety of different types and timings of PMBR after breast cancer remains controversial. Lack of stratified risk assessment in literature makes current clinical and shared decision-making complex. This is the first systematic review and meta-analysis to evaluate differences in oncological outcomes after immediate versus delayed postmastectomy breast reconstruction (PMBR) for autologous and implant-based PMBR separately. METHODS: A systematic literature search was performed in MEDLINE, Cochrane Library, and Embase. The Cochrane Collaboration Handbook and Meta-analysis Of Observational Studies in Epidemiology checklist were followed for data abstraction. Variability in point estimates attributable to heterogeneity was assessed using ²-statistic. (Loco)regional breast cancer recurrence rates, distant metastasis rates, and overall breast cancer recurrence rates were pooled in generalized linear mixed models using random effects.

RESULTS: Fifty-five studies, evaluating 14,217 patients, were included. When comparing immediate versus delayed autologous PMBR, weighted average proportions were: 0.03 (95% confidence interval [CI], 0.02–0.03) versus 0.02 (95% CI, 0.01–0.04), respectively, for local recurrences. 0.02 (95% CI, 0.01–0.03) versus 0.02 (95% CI, 0.01–0.03) for regional recurrences, and 0.04 (95% CI, 0.03–0.06) versus 0.01 (95% CI, 0.00–0.03) for locoregional recurrences. No statistically significant differences in weighted average proportions for local, regional and locoregional recurrence rates were observed between immediate and delayed autologous PMBR. Data did not allow comparing weighted average proportions of distant metastases and total breast cancer recurrences after autologous PMBR, and of all outcome measures after implant-based PMBR.

CONCLUSIONS: Delayed autologous PMBR leads to similar (loco)regional breast cancer recurrence rates compared to immediate autologous PMBR. This study highlights the paucity of strong evidence on breast cancer recurrence after specific types and timings of PMBR. Cancer 2022;128:3449-3469. © 2022 The Authors. Cancer published by Wiley Periodicals LLC on behalf of American Cancer Society. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

LAY SUMMERY:

- Oncologic safety of different types and timings of postmastectomy breast reconstruction (PMBR) remains controversial.
- Lack of stratified risk assessment in literature makes clinical and shared decision-making complex.
- This meta-analysis showed that delayed autologous PMBR leads to similar (locoregional) recurrence rates as immediate autologous PMBR. Data did not allow comparing weighted average proportions of distant metastases and total breast cancer recurrence after autologous PMBR, and of all outcome measures after implant-based PMBR.
- Based on current evidence, oncological concerns do not seem a valid reason to withhold patients from certain reconstructive timings or techniques, and patients should equally be offered all reconstructive options they technically qualify for.

KEYWORDS: autologous, breast cancer, breast neoplasm, breast reconstruction, implant, metastasis, oncological safety, recurrence.

INTRODUCTION

Advances in early detection and treatment of breast cancer have improved breast cancer survival and shifted focus toward optimizing quality of life.¹ In this context, an increase in requests for postmastectomy breast reconstruction (PMBR) has been observed to preserve breast contour and function.² Autologous tissue, breast implants, or a combination, can be used to optimize quality of life. In this context, an increase in requests for postmastectomy breast reconstruction (PMBR) has been observed to preserve breast contour and function.

Additional supporting information may be found in the online version of this article.

DOI: 10.1002/cncr.34393, Received: February 7, 2022; Revised: May 11, 2022; Accepted: May 28, 2022, Published online July 27, 2022 in Wiley Online Library (wileyonlinelibrary.com)
for PMBR, either in an immediate or delayed fashion. Because of logistical challenges, concerns about delays in adjuvant treatment, and concerns of impaired outcomes of PMBR in combination with adjuvant radiotherapy, breast reconstruction is often performed in a delayed fashion. Still, immediate PMBR is considered superior in terms of patient satisfaction, costs, hospitalization and psychological benefits and as such, hospitals are increasingly offering immediate PMBR.

The growing application of PMBR has raised new concerns regarding long-term oncological safety. According to the concept of tumor dormancy, breast cancer patients might harbor dormant micrometastases that can be activated by stressors, such as extensive (reconstructive) surgery, thereby inducing recurrence and metastasis. Also, reconstructed breasts might mask recurrent tumors on radiological imaging.

In the absence of well-known landmark studies, the oncological safety of different types and timings of PMBR remains controversial. Isern and colleagues reported higher breast cancer recurrence rates after delayed PMBR than after mastectomy only, whereas others were not able to confirm this increased risk. Moreover, different relapse patterns were described, such as a higher 18-month peak in relapses following delayed versus no reconstruction, and after autologous versus implant-based reconstruction.

There is a paucity of studies comparing differences in oncological outcomes after immediate versus delayed PMBR for autologous and implant-based reconstructions separately. Making this distinction is important, because surgical impact, indications, and patient selection differ between autologous and implant-based reconstructions, and the same applies to immediate versus delayed reconstructions.

The abundance of inconclusive literature on breast reconstructive surgery makes current clinical decision-making and clear patient education complex. As such, contemporary decision-making remains based on expert consensus rather than scientific clinical evidence, subsequently leading to unequal access to reconstructive options. A well conducted up-to-date systematic review and meta-analysis (SR/MA) may provide more insight into this much-debated issue and support clinical and shared decision-making. Therefore, with this SR/MA, we aim to investigate whether delayed PMBR leads to different (loco)regional recurrence, distant metastasis, and overall recurrence rates than immediate PMBR in patients with primary breast cancer. Because of differences in nature and indications of implant-based and autologous breast reconstructive techniques, this question was evaluated separately for autologous and implant-based breast reconstruction.

MATERIALS AND METHODS
This SR/MA was registered in PROSPERO (CRD4202 0141137).

Search strategy
A comprehensive systematic literature search was performed following the Cochrane Collaboration Handbook and the Meta-analysis Of Observational Studies in Epidemiology checklist in MEDLINE (via PubMed), Embase and the Cochrane Library from inception to November 19, 2020 (Fig. 1). The search strategy was designed by three authors (C.A.B., A.D., and A.B.) and two hospital librarians (Nienke van der Werf and Carla Sloof-Enthoven), and included three components: “breast cancer,” “breast reconstruction,” and “oncological outcome” (Table S1). Duplicate articles were removed.

Study selection
Two authors (C.A.B. and M.I.) independently screened all articles for title and abstract. If title and abstract were ambiguous, the full-text article was reviewed. Authors were blinded for each other’s results until the screening process was completed. Subsequently, two independent authors (C.A.B. and M.I.) screened full-texts to select articles for inclusion in the SR/MA.

Original articles including patients >18 years old and reporting oncological outcomes (i.e., “local,” “regional,” “locoregional” or “total breast cancer recurrences,” and “distant metastasis”) after PMBR in patients with breast cancer were included. Because of the scarcity of randomized controlled trials, prospective and retrospective observational studies were included. Comparative studies with only one study arm meeting in- and exclusion criteria were included. Exclusion criteria included (1) other publication types (i.e., isolated abstracts, case reports, preclinical studies, reviews, meta-analyses, practical summary’s, guidelines, editorials, communications, correspondence, discussions, unrelated, duplicated, conference, overlapping data, authors response theses, books, and letters), (2) animal studies, (3) non-English or non-Dutch language articles, (4) studies published before 2000, (5) studies including cohorts with <50 patients, (6) studies with a mean follow-up <24 months or unknown follow-up, (7) studies including patients with PMBR after initial breast-conserving surgery or prophylactic mastectomy, and (8) studies including patients with distant metastasis at time of diagnosis or PMBR, and breast cancer recurrence before PMBR. Nonavailable full-text articles (9) were also excluded. In case of overlapping cohorts,
either the largest cohort or the cohort with the most suitable study design was included. A cross-refer- ence check was performed among included articles and ex- cluded reviews for additional studies meeting the inclu- sion criteria.

Missing data
All corresponding authors of articles reporting aggregated data on recurrences or metastases for immediate and de- layed or implant-based and autologous PMBR were con- tacted to request data for each group separately.

Quality assessment and data extraction
The quality of studies and risk of bias was evaluated with the Methodological Index for NOn-Randomized Studies, which is designed to critically appraise prospective and ret- rospective studies, as well as comparative and noncompar- ative studies. The maximum score for noncomparative studies is 16 and 24 for comparative studies. A higher total score corresponds with less risk of bias.

Data extraction was performed by two independent authors (C.A.B. and M.I.) using a standardized form that was pilot-tested and optimized accordingly. Extracted
FIGURE 2. Forest plots of local, regional, locoregional, distant, and total breast cancer recurrences after immediate and delayed autologous breast reconstruction. The first column shows the included studies by year of publication and first author. The second and third columns show the total number of recurrences and the total study population, respectively. The fourth column shows the recurrence rates with 95% CIs of each study. On the right, each study corresponds to a red square centered at the point estimate (i.e., recurrence rate) with black horizontal lines indicating the 95% CI. Powerful studies (i.e., studies with more participants) have a narrower 95% CI. The overall weighted recurrence rates are represented by the black diamonds. The width of the diamond represents the 95% CI for the overall weighted recurrence rate. The vertical lines highlight study-specific deviations from the overall weighted recurrence rates. 95% CI indicates 95% confidence interval; 95% CI GLMM, 95% confidence interval generalized linear mixed models; DMR, delayed breast reconstruction; df, degrees of freedom; GLMM, generalized linear mixed models; IBR, immediate breast reconstruction; P, p value. (A) Forest plot of local recurrences after immediate and delayed autologous breast reconstruction. (B) Forest plot of regional recurrence after immediate and delayed autologous breast reconstruction. (C) Forest plot of locoregional recurrence after immediate and delayed autologous breast reconstruction. (D) Forest plot of distant metastasis after immediate and delayed autologous breast reconstruction. (E) Forest plot of total breast cancer recurrence after immediate and delayed autologous breast reconstruction.

Data included study design, patient characteristics, interventions, and outcomes (Tables 2–4). Outcomes of interest were local, regional, locoregional, distant and overall breast cancer recurrence and expressed as the proportion of patients experiencing recurrence. Overall breast cancer recurrence was defined as the sum of all (loco)regional recurrences and distant metastases.

Discordances in study selection, quality assessment, and data extraction were resolved by discussion by two authors (C.A.B. and M.I.). In case of disagreement, a third author (D.A.Y.- A.) was involved in reaching consensus.

Data analysis
For all studies, one or more of the primary outcomes of interest were reported. Proportions of recurrence and distant metastasis were pooled in a generalized linear mixed model (GLMM) and presented as forest plots. Publication bias was considered acceptable if the distribution of studies was symmetrical on visual inspection of the funnel plots. The variability in point estimates attributable to heterogeneity was assessed using the Higgins’s and Thompson’s I^2-statistic, which was tolerable if I^2 values were low or moderate (<75%).17 Based on I^2 values, analyses for the primary outcomes were conducted using random effects models. Weighted averages were reported as proportions with 95% confidence intervals (95% CI). Variances of distribution of true proportions among subgroups (between-study variances) were reported using T^2 values. When no variance between studies is observed, T^2 is low or 0.18 Differences in weighted average proportions after delayed versus immediate breast reconstruction were evaluated among subgroups by comparing 95% CIs. In case of overlapping 95% CIs, differences were not considered statistically significant. Statistical analyses were performed in the R software environment (R Foundation of Statistical Computing).

RESULTS

Search results and synthesis of evidence
After removing 1277 duplicates, the literature search yielded 3049 unique studies (Fig. 1). After title and abstract screening, full texts of 371 studies were assessed for eligibility. Finally, 48 studies4,9,11,13,19–62 met the inclusion criteria. Additional data was requested for 65 studies (Table S2) of whom seven (10.8%)6,60,63–68 provided data, enabling inclusion of these studies in analyses. In total, 55 studies4,8,9,11,13,19–68 were selected for qualitative synthesis (Tables 2–4). Quantitative synthesis included 37 studies4,8,9,11,13,19–21,30,39–47,50–52,56,58,59,62–65,67,68 on autologous PMBR (Figs. 2A-E; Table S3a) and 28 studies20,31–38,41–43,46–49,53–55,57–61,64,66–68 on implant-based PMBR (Figs. 3A–E; Table S3b).

Study characteristics and quality of evidence
All included studies were published between February 200343 and October 202068 (Table 2). Among the 55 studies, 48 studies (87.3%)4,8,9,11,13,19–23,25–32,34,36,38–41,43–54,56–58,60–68 were retrospective and seven (12.7%)24,33,35,37,42,55,59 were prospective. The quality of included studies ranged from 6 to 12 points for noncomparative studies, and from 10 to 20 points for comparative studies (Table 1).

Study population
The 55 studies evaluated 14,452 patients, including 12,480 PMBRs performed in an immediate setting, 1852 in a delayed setting, and for 33765 the setting was unclear (Tables 2–4). Median sample size per study was 138 patients (interquartile range, 77–249). Mean/median age ranged from 33 to 53 years old. Mean/median follow-up time ranged from 27 to 146 months. The majority of patients (n = 11,429, 80.4%) were diagnosed with invasive breast cancer.

Immediate versus delayed autologous PMBR
A total of 31 studies3,4,9,13,19,21–30,39,40,42,44,45,47,50–52,56,59,62–65,67,68 included local recurrence as an outcome.
Breast cancer after breast reconstruction/Bargon et al

Cancer October 1, 2022

(2) $\chi^2 = 51.7\%$ [95% CI, 27.9\%–67.6\%], 28 of which $4.2 \pm 30.49, 42.44, 44.47, 50.52, 56.92, 65.67, 68.75$ ($T^2 = 0.29$) reported on immediate autologous post-mastectomy breast reconstruction (I-ABR) and five studies ($T^2 = 0.24$) on delayed autologous post-mastectomy breast reconstruction (D-ABR). In the I-ABR group, 163
Original Article

FIGURE 3. Forest plots of local, regional, locoregional, distant and total breast cancer recurrences after immediate and delayed implant-based breast reconstruction. The first column shows the included studies by year of publication and first author. The second and third columns show the total number of recurrences and the total study population, respectively. The fourth column shows the recurrence rates with 95% CIs of each study. On the right, each study corresponds to a red square centered at the point estimate (i.e., recurrence rate) with black horizontal lines indicating the 95% CI. Powerful studies (i.e., studies with more participants) have a narrower 95% CI. The overall weighted recurrence rates are represented by the black diamonds. The width of the diamond represents the 95% CI for the overall weighted recurrence rate. The vertical lines highlight study-specific deviations from the overall weighted recurrence rates. 95% CI indicates 95% confidence interval; 95% CIGLM, 95% confidence interval generalized linear mixed models; DBR, delayed breast reconstruction; df, degrees of freedom; GLMM, generalized linear mixed model; IBR, immediate breast reconstruction; P, p value. (A) Forest plot of local recurrences after immediate implant-based breast reconstruction. No studies were available on local recurrences after delayed implant-based breast reconstruction. (B) Forest plot of regional recurrences after immediate implant-based breast reconstruction. No studies were available on regional recurrences after delayed implant-based breast reconstruction. (C) Forest plot of locoregional recurrence after immediate and delayed implant-based breast reconstruction. (D) Forest plot of distant metastasis after immediate and delayed implant-based breast reconstruction. (E) Forest plot of total breast cancer recurrences after immediate and delayed implant-based breast reconstruction.
of 6,249 patients (2.6%) developed local recurrence, and in the D-ABR group 22 of 1,037 patients (2.1%) developed local recurrence (Table S3a). The weighted average proportion for local recurrence in the I-ABR group was 0.03 (95% CI, 0.02–0.03), and 0.02 (95% CI, 0.01–0.04) in the D-ABR group.

| Abbreviation: MINORS, methodological index for non-randomized studies. |
| Note: Each item was scored 0–2 points: 0 indicates that this item was not reported in the article, 1 indicates that it was reported, but inadequately, and 2 indicates that it was reported adequately. A higher total score corresponds with less risk of bias. Green, 2 points; yellow, 1 point; red, 0 points. |
TABLE 2. Study Characteristics And Baseline Characteristics Of Included Study Populations

Year	First author	Country	Journal	Study design	No. of patients	No. of breasts	Age (range), years	Follow-up (range), months	Reconstructive method
2014	Adam	Sweden	Eur J Surg Oncol	Re	67	69	49.3 (24–74)	36.3 (4–162)	Immediate, implant-based
2018	Adam	Sweden	Br J Surg	Re	250	254	48.2 (25–67)	89.6 (4–214)	Immediate, implant-based
2019	Bjöhle	Sweden	Radiother Oncol	Re	128	128	46.2 (21–68)	69.6 (1–90)	Immediate, implant-based
2006	Caruso	Italy	Eur J Surg Oncol	Re	50	51	42.0 (28–68)	66.6 (9–140)	Immediate, implant-based
2018	Chen	Taiwan	Ann Plast Surg	Re	111	111	40.5 (SD = 7.5)	85.3 (91.0)	Immediate, implant-based
2017	Cont	Italy	Breast Cancer Res Treat	Re	518	518	NR	33.3 (NR)	Immediate, implant-based
2016	Dilléka	Norway	Breast Cancer Res Treat	Re	312	312	48.0 (NR)	137.0 (NR)	Delayed, autologous
2017	Du	China	Sci Rep	Pr	157	157	NR	74.0 (62–111)	Immediate, implant-based
2020	Early	United States of America	Clin Breast Cancer	Re	337	337	NR (34–70)	45.4 (NR)	Immediate and delayed, autologous
2011	Eriksen	Sweden	Breast Cancer Res Treat	Re	300	300	48.0 (23–70)	144.0 (48–216)	Immediate, implant-based
2016	Fujimoto	Japan	Eur J Plast Surg	Re	136	144	42.0 (24–63)	75.0 (51–129)	Immediate, autologous
2018	Geers	Belgium	BMC Cancer	Re	485	485	47.0 (24–71)	76.0 (4–152)	Immediate and delayed, autologous
2010	Ha	South-Korea	Am J Surg	Re	225	225	50.0 (25–76)	49.0 (NR)	Immediate, autologous and implant-based
2008	Hölmich	Denmark	Ann Plast Surg	Re	580	580	47.0 (24–72)	121.0 (12–155)	Delayed, implant-based
2006	Huang	China	Plast and Reconstr Surg	Re	82	83	42.7 (27–58)	40.0 (24–74)	Immediate, autologous
2011	Isen	Sweden	Br J Surg	Re	125	125	45.4 (SD = 7.8)	146.0 (NR)	Delayed, autologous
2010	Kim	South-Korea	Ann of Surg	Re	520	520	42.0 (35–50)	63.0 (NR)	Immediate, autologous
2012	Kim	South-Korea	World J Surg Oncol	Re	65	65	48.4 (21–74)	34.0 (1.6–89.9)	Immediate, autologous
2016	Lee	Taiwan	PLoS ONE	Re	213	213	44.8 (26–60)	85.2 (80)	Immediate, autologous
2020	Lee	South-Korea	Br J Surg	Pr	438	438	43.1 (SD = 7.4)	82.0 (13–131)	Immediate, autologous and implant-based
2018	Lee	South-Korea	Medicine (Baltimore)	Re	1032	1032	48.1 (23–90)	94.4 (81–220.2)	Immediate, autologous
2019	Lee	South-Korea	Asia J Med	Re	118	118	33.0 (23–35)	86.7 (NR)	Immediate, autologous
2012	Lee	South-Korea	Arch Plast Surg	Pr	1000	1000	42.2 (22–68)	56.4 (3–93)	Immediate, autologous
2013	Liang	Taiwan	World J Surg Oncol	Re	249	249	41.0 (22–62)	53.0 (24–181)	Immediate, autologous
2010	Lim	South-Korea	World J Surg Oncol	Re	112	125	53.0 (24–69)	64.0 (5–111)	Immediate, autologous
2017	Maalouf	Canada	Ann Chir Plast Est	Re	62	62	Immediate: 50.0 (SD = 9.5)	Immediate: 32.0 (11–67)	Immediate and delayed, autologous
2008	McCarthy	United States of America	Plast Reconstr Surg	Re	309	309	46.8 (25.6–73.3)	68.4 (2.4–111.6)	Immediate, implant-based
2020	Metere	Italy	Medicina (Kaunas)	Re	894	894	47.5 (22–76)	41.2 (15.7–101)	Immediate, implant-based
2010	Min	South-Korea	Breast J	Re	120	120	40.7 (26–61)	39.2 (SD = 15.8)	Immediate, autologous
2013	Munhoz	Brazil	Breast Canc Res Treat	Re	106	114	51.4 (33–78)	65.8 (6–130)	Immediate, implant-based
2017	Murphy	United States of America	Am J Surg	Pr	226	240	48.5 (43–54)	34.0 (NR)	Immediate, implant-based
2005	Mustonen	Finland	Scand J Surg	Re	56	56	SSM = 46.8 (SD = 8.2)	SSM = 43.2 (SD = 9.6)	Immediate, autologous
2015	Narui	Japan	Eur J Surg Oncol	Re	201	205	42.2 (23–64)	36.0 (NR)	Immediate, autologous
Year	First author	Country	Journal	Study design	No. of patients	No. of breasts	Age (range), years	Follow-up (range), months	Reconstructive method
------	--------------	---------	---------	--------------	----------------	---------------	-------------------	--------------------------	------------------------
2012	Nava35	Italy	Breast	Pr	58	59	NR	36 (24–84)	Immediate, implant-based
2014	Ota36	Japan	Clin Breast Cancer	Re	133	133	46 (27–49)	47 (NR)	Immediate, implant-based
2020	Ozmen61	Turkey	World J Surg Oncol	Re	75	75	42 (24–78)	56 (14–116)	Immediate, implant-based
2016	Park40	South-Korea	J Breast Cancer	Re	189	189	41.96 (SD = 80.8)	65.6 (10–132)	Immediate, implant-based
2020	Parvez90	Canada	Clin Breast Cancer	Re	162	173	47.9 (SD = 11.2)	27 (5–68)	Immediate, implant-based
2012	Patterson10	United States of America	Ann Surg Oncol	Re	390	390	49.5 (SD = 8.3)	69.2 (24.1–134.4)	Immediate, implant-based
2011	Reddy41	United States of America	Ann Plast Surg	Re	494	494	47.8 (23.9–72.2)	54 (NR)	Immediate, autologous and implant-based
2012	Romics42	Scotland	Br J Surg	Pr	207	207	49 (26–68)	119 (14–163)	Immediate, implant-based
2016	Sakamoto57	Japan	Breast Cancer	Re	404	421	40 years: 92 < 40 years: 329	61 (7.2–139)	Immediate, implant-based
2008	Scholz52	United States of America	Plast Reconstr Surg	Re	54	54	51.5 (31–69)	42 (12–108)	Immediate, autologous
2013	Serra57	Italy	Plast Surg Int	Pr	155	155	37.5 (20–52)	47 (12–96)	Immediate, implant-based
2007	Sno51	Slovenia	Eur J Surg Oncol	Re	156	157	45.9 (26–68)	66 (18–277)	Immediate, autologous and delayed, autologous
2003	Spieger43	United States of America	Plast Reconstr Surg	Re	221	221	42 (24–81)	117.6 (72–156)	Immediate, autologous and implant-based
2016	Tanos44	United Kingdom	Plast Reconstr Surg	Glob Open	88	88	Implant-based: 48 (29–75)	Implant-based: 28.2 (NR)	Immediate, autologous and implant-based
2008	Ueda45	Japan	Surgery	Re	74	74	45.7 (NR)	50 (NR)	Immediate, autologous and implant-based
2019	Valente46	United States of America	Am J Surg	Re	458	586	49 (26–85)	90.48 (65.64–144.96)	Immediate, autologous and implant-based
2007	Vaughan57	United States of America	Am J Surg	Re	206	210	Local recurrence: 41 (31–56)	58.6 (13.1–132.5)	Immediate, autologous and implant-based
2020	Wu37	South-Korea	Ann Surg Oncol	Re	199	199	43 (20–65)	97 (39–186)	Immediate, autologous and implant-based
2020	Wu38	South-Korea	JAMA Surg	Re	323	323	42 (23–72)	67 (17–125)	Immediate, autologous and implant-based
2020	Yamada62	Japan	J Surg Res	Re	239	239	44 (23–65)	73 (NR)	Immediate, autologous

Abbreviations: NR, not reported; Pr, prospective; Re, retrospective; SCM, subcutaneous mastectomy; SD, standard deviation; SSM, skin-sparing mastectomy.
aMean.
bMedian.
TABLE 3. Oncological Characteristics Of Included Study Populations

Year	First author	AJCC stage (n)	T classification (n)	Histology (n)	ER (n)	PR (n)	Her2Neu (n)
2014	Adam48	NR	Tis: NR T1: 37 T2: 14 T3: 3 T4: 1 Missing: 14	In situ: 14 Invasive: 55 Missing: 0	Positive: 44 Negative: 14 Missing: 11	Positive: 40 Negative: 17 Missing: 12	Positive: 44 Negative: 7 Missing: 18
2018	Adam19	NR	Tis: 9 T1: 65 T2: 140 T3: 40 T4: 0 Missing: 0	In situ: 9 Invasive: 219 Missing: 19	Positive: 176 Negative: 61 Missing: 17	Positive: 148 Negative: 75 Missing: 31	Positive: 31 Negative: 89 Missing: 134
2019	Bjöhle38	NR	Tis: 0 T1: 65 T2: 45 T3: 13 T4: 0 Missing: 5	In situ: 0 Invasive: 128 Missing: 0	Positive: 95 Negative: 32 Missing: 1	NR	Positive: 20 Negative: 98 Missing: 0
2006	Caruso31	0: 8 I: 24 II: 18 III: 1	NR	In situ: 21 Invasive: 30 Missing: 0	Positive: 37 Negative: 9 Missing: 5	Positive: 32 Negative: 14 Missing: 5	NR
2018	Chen32	0: 0 I: 6 II: 63 III: 42 Missing: 0	T0–T1: 32 T2: 70 T3: 8 T4: 1	NR	Positive: 78 Negative: NR Missing: NR	Positive: 74 Negative: NR Missing: NR	Positive: 23 Negative: 66 Null: 1 Missing: 21
2017	Cont49	NR	NR	NR	Positive: 442 Negative: NR Missing: 11	Positive: 404 Negative: NR Missing: 13	Positive: 76 Negative: NR Missing: 100
2016	Dillekâs9	NR	Tis: 0 T1: 190 T2: 91 T3: 22 T4: 2	In situ: 0 Invasive: 312 Missing: 0	Positive: 113 Negative: 44 Missing: 0	NR	Positive: 53 Negative: 104 Missing: 0
2017	Du33	0: 0 I: 36 II: 97 III: 24	NR	In situ: 0 Invasive: 157 Missing: 0	Positive: 113 Negative: 44 Missing: 0	NR	Positive: 53 Negative: 104 Missing: 0
2020	Early65	NR	NR	NR	Positive: 219 Negative: NR Missing: 26	Positive: 219 Negative: NR Missing: 26	Positive: 53 Negative: 104 Missing: 0
2011	Eriksen54	NR	NR	NR	Positive: 219 Negative: NR Missing: 26	Positive: 219 Negative: NR Missing: 26	Positive: 53 Negative: 104 Missing: 0
2016	Fujimoto21	0: 48 I: 35 II: 44 III: 7	Tis: 48 T1: 42 T2: 36 T3: 8	In situ: 48 Invasive: 488 Missing: 0	Positive: 82 Negative: 26 Missing: 28	NR	Positive: 20 Negative: 101 Missing: 15
2018	Geers8	I: 45 II: 206 III: 225	NR	In situ: NR Invasive: 485 Missing: 0	Positive: 374 Negative: 103 Missing: 8	Positive: 374 Negative: 103 Missing: 8	Positive: 92 Negative: 375 Missing: 18
2005	Greenway64	0 - II	Tis: 27 T1: 123 T2: 75 T3–T4: 0	NR	NR	NR	NR
Year	First author	AJCC stage (n)	T classification (n)	Histology (n)	ER (n)	PR (n)	Her2Neu (n)
------	--------------	----------------	---------------------	---------------	--------	--------	------------
2020	Ha38	Implant-based/autologous: 0: 47/57 I: 100/82 II: 73/79 III: 27/31 Missing: 0	NR	NR	Implant-based/autologous: Positive: 198/206 Negative: 49/43 Missing: 0/0	Implant-based/autologous: Positive: 171/173 Negative: 76/76 Missing: 0/0	Implant-based/autologous: Positive: 56/44 Negative: 174/193 Missing: 17/12
2008	Hölmich20		T1: 370 T2–T4: 188 Missing: 22	In situ: NR Invasive: 548 Missing: 32	NR	NR	NR
2006	Huang22	0: 0 I: 4 II: 64 III: 14	NR	Positive: 28 Negative: 48 Missing: 9	Positive: 28 Negative: 48 Missing: 9	NR	
2011	Isern11	NR	Tis: 0 T1: 60 T2: 60 T3: 5 T4: 0 Missing: 0	In situ: 0 Invasive: 125 Missing: 0	Positive: 105 Negative: 20 Missing: 0	Positive: 23 Negative: 101 Missing: 1	
2010	Kim23	0: 84 I: 220 II: 176 III: 40	NR	NR	Positive: 324 Negative: 180 Missing: 10	NR	0–2: 341 3: 158 Missing: 21
2012	Kim29	0: 15 I: 29 II: 20 III: 1	Tis: 15 T1: 30 T2: 20 T3–T4: 0 Missing: 0	In situ: 15 Invasive: 50 Missing: 0	NR	NR	NR
2016	Lee25	0: 0 I: 0 II: 121 III: 92	Tis: 0 T1: 48 T2: 134 T3: 24 T4: 7 Missing: 0	In situ: 0 Invasive: 213 Missing: 0	Positive: 113 Negative: 83 Missing: 17	Positive: 95 Negative: 19 Missing: 19	
2020	Lee36	0: 116 I-Ill: 332	Tis: 116 T1–T4: NR	In situ: 116 Invasive: 332 Missing: 0	Positive: 341 Negative: 97 Missing: 0	Positive: 320 Negative: 118 Missing: 0	Positive: 169 Negative: 269 Missing: 0
2018	Lee36	0: 164 I: 382 II: 399 III: 87	NR		Positive: 656 Negative: 338 Missing: 38	Positive: 616 Negative: 378 Missing: 38	Positive: 332 Negative: 644 Missing: 56
2019	Lee37	0: 0 I: 54 II: 50 III: 14	NR	In situ: 0 Invasive: 118 Missing: 0	Positive: 72 Negative: 47 Missing: 0	Positive: 61 Negative: 47 Missing: 0	Positive: 47 Negative: 72 Missing: 0
2012	Lee34	0: 173 I: 362 II: 371 III: 93	NR	NR	Positive: 137 Negative: 112 Missing: 0	Positive: 137 Negative: 112 Missing: 0	NR
2013	Liang28	0: 0 I: 32 II: 132 III: 85	Tis: 0 T1: 110 T2: 130 T3: 6 T4: 3 Missing: 0	In situ: 0 Invasive: 249 Missing: 0	Positive: 162 Negative: 22 Missing: 0	Positive: 137 Negative: 112 Missing: 0	NR
2013	Lindford13	NR	Tis: 0 T1: 46 T2: 56 T3: 6 T4: 3 Missing: 1	In situ: 0 Invasive: 112 Missing: 0	Positive: 92 Negative: 20 Missing: 0	Positive: 73 Negative: 39 Missing: 0	Positive: 20 Negative: 80 Missing: 12

(Continued)
Year	First author	AJCC stage (n)	T classification (n)	Histology (n)	ER (n)	PR (n)	Her2Neu (n)	
2010	Lim	0: 0	T1: 13	In situ: NR	“Hormone receptor”:	Positive: 26	Negative: 57	
		I: 0	T2: 48	Invasive: 87	Positive: 65	Negative: 22	Negative: 22	
		II: 8	T3: 26	Missing: 0	Negative: 22	Missing: 0	Missing: 4	
		III: 79						
2017	Maalouf	Immediate/delayed: 0: 1/0	Immediate/delayed:	In situ: 1/0	Immediate/delayed:	Immediated/ delayed:	Immediate/ delayed:	Immediate/ delayed:
		I: 5/9	T1: 13	Invasive: 29/32	Negative/missing:	Positive: 17/22	Negative/missing:	Negative/missing:
		II: 16/12	T2: 48	Missing: 0/0	Positive/missing:	Negative/missing:	Positive/missing:	Negative/missing:
		III: 8/11	T3: 26	Missing: 0			Negative/missing:	Negative/missing:
2008	McCarthy	NR	NR	In situ: 0	Positive: 189	Negative: 77	Negative: 106	Negative: 46
		I: 98	Invasive: 309	Missing: 0	Positive: 157	Negative: 106	Negative: 106	Negative: 46
		II: 164						
		III: 47						
2020	Metere	NR	NR	In situ: 0	Positive: 205	Negative: 30	Negative: 46	Positive: 18
		I-II: 75.2%	Invasive: 662	Negative: 22	Positive: 729	Negative: 165	Negative: 823	Negative: 0
		III: NR	Other: 9	Missing: 0	Positive: 71	Negative: 165	Negative: 165	Negative: 0
2010	Min	NR	NR	In situ: 0	Positive: 107	Negative: 19	Missing: 85	Positive: 14
		I: 22	Invasive: 98	“Hormone receptor”:	Positive: 76	Negative: 40	Negative: 40	Negative: 12
		II: 48	Missing: 0	“Hormone receptor”:	Positive: 40	Negative: 40	Negative: 40	Negative: 12
		III: 31		“Hormone receptor”:	Missing: 4			Negative/missing:
		III: 13		“Hormone receptor”:				Negative/missing:
2013	Munhoz	NR	NR	Tis: 0	Positive: 205	Negative: 30	Negative: 46	Positive: 18
				T1: 78	Positive: 157	Negative: 106	Negative: 106	Negative: 46
				T2: 28				
				T3–T4: 0				
2017	Murphy	NR	NR	T0–Tis: 73	Positive: 205	Negative: 30	Negative: 46	Positive: 18
				T1: 109	Positive: 157	Negative: 106	Negative: 106	Negative: 46
				T2: 47				
				T3: 11				
				T4: 0				
2005	Mustonen	NR	NR	Tis: 0	Positive: 205	Negative: 30	Negative: 46	Positive: 14
				T1: 78	Positive: 157	Negative: 106	Negative: 106	Negative: 46
				T2: 28				
				T3–T4: 0				
2015	Naru	NR	NR	DCIS: 63	Positive: 107	Negative: 13	Missing: 85	Positive: 14
				Invasive: 168	Negative: 107	Negative: 13	Missing: 85	Positive: 14
				Other: 9				
2012	Nava	0: 8	Tis: 8	In situ: 8	Positive: 38	Negative: 10	Negative: 10	Positive: 12
				T1: 35	Positive: 38	Negative: 10	Negative: 10	Positive: 12
				T2: 12				
				T3: 1				
				T4: 0				
2014	Ota	NR	NR	Tis–T3: 128	In situ: 20	Positive: 114	Negative: 19	Positive: 15
				T4: 5	“Hormone receptor”:	Positive: 114	Negative: 19	Positive: 15
				Missing: 0	“Hormone receptor”:	Positive: 114	Negative: 19	Positive: 15
2020	Ozmen	0: 0	Tis: 0	In situ: 0	Positive: 129	Negative: 60	Negative: 89	Positive: 55
				T1: 121	Positive: 129	Negative: 60	Negative: 89	Positive: 55
				T2: 52				
				T3: 13				
				T4: 3				
2016	Park	0: 0	Tis: 0	In situ: 0	Positive: 129	Negative: 60	Negative: 89	Positive: 55
				T1: 121	Positive: 129	Negative: 60	Negative: 89	Positive: 55
				T2: 52				
				T3: 13				
				T4: 3				

TABLE 3. Continued
Year	First author	AJCC stage (n)	T classification (n)	Histology (n)	ER (n)	PR (n)	Her2Neu (n)
2020	Parvez56	NR	Tis: 31	In situ: NR	"Hormone receptor": Positive: 24		
			T1: 83	Invasive: 144	Positive: 103		
			T2: 51	Missing: 31	Positive: 103		
			T3: 10		Negative: 41		
			T4: 0		Missing: 31		
2012	Patterson50	0– II: 312	NR	In situ: 100	Positive: 215		
		II: 70		Invasive: 254	Positive: 193		
		Missing: 0		Missing: 36	Negative: 88		
2011	Reddy41	0: 119	NR	In situ: NR	Positive: 295		
		I: 183		Invasive: 144	Positive: 128		
		II: 114		Missing: 0	Negative: 90		
		III: 43			Missing: 109		
2012	Romics42	0: 54	Tis: 54	In situ: 54	Positive: 119		
		I: 57	T1: 94	Invasive: 153	Negative: 34		
		II: 83	T2: 52	Missing: 0	Missing: 54		
		III: 13	T3: 6				
			T4: 1				
			Missing: 0				
2016	Sakamoto57	0: 117	NR	In situ: 117	Positive: 333		
		I: 149		Invasive: 304	Negative: 71		
		II: 141		Missing: 0	Missing: 17		
2008	Scholz52	0: 23	NR	In situ: 23	Positive: 57		
		I: 17		Invasive: 31	Negative: 231		
		II: 14		Missing: 0	Missing: 133		
2013	Serra37	NR	Tis: 23	In situ: 23	Positive: 84		
			T1: 36	Invasive: 132	Negative: 67		
			T2: 96	Missing: 0	Missing: 6		
			T3–T4: 0	Missing: 3			
2007	Snoj51	NR	Tis: 0	In situ: 0	Positive: 99		
			T1: 78	Invasive: 157	Negative: 53		
			T2: 61	Missing: 0	Missing: 5		
			T3: 15				
			Missing: 3				
2003	Spiegel & Butler43	NR	NR	In situ: 44	Positive: 44		
				Invasive: 177	Negative: 0		
				Missing: 0			
2016	Tanos44	0–I: 0	NR	In situ: 0	Positive: 87		
		III: 88		Invasive: 88	Positive: 87		
		Missing: 0		Missing: 0	Negative: 87		
					Missing: 0		
2008	Ueda45	NR	Tis: 7	In situ: 7	Positive: 106		
			T1: 32	Invasive: 67	Negative: 106		
			T2: 33	Missing: 0	Missing: 2		
			T3: 2				
			T4: 0				
			Missing: 0				
2019	Valente46	0: 0	Tis: 0	In situ: 0	Positive: 350		
		I: 208	T1: 272	Invasive: 458	Negative: 106		
		II: 189	T2: 151	Missing: 0	Missing: 2		
		III: 61	T3: 27				
		Missing: 0	T4: 8				
2007	Vaughan47	0: 40	Tis/T1: 107	In situ: NR	Positive: 87		
		I: 41	T2: 80	Negative: 87			
		II: 65	T3: 13	Negative: 87			
		III: 64	T4: 10	Negative: 87			
		Missing: 0	Missing: 0	Negative: 87			
2020	Wu57	0: 199	Tis: 199	In situ: 199	Positive: 173		
		Missing: 0	Missing: 0	Negative: 173			

(Continued)
TABLE 3. Continued

Year	First author	AJCC stage (n)	T classification (n)	Histology (n)	ER (n)	PR (n)	Her2Neu (n)
2020	Wu	NR	Tis/T0: 44	In situ: NR	Positive: 101	Positive: 26	Positive: 114
			T1: 122	Invasive: 316	Positive: 153	Positive: 21	Positive: 209
			T2: 115	Other: 7	Missing: 0	Negative: 89	Negative: 89
			T3: 42		Positive: 234	Positive: 89	Negative: 89
			T4: 0		Missing: 0	Negative: 89	Negative: 89
			Missing: 0			Missing: 0	Missing: 0

Abbreviations: AJCC, American Joint Committee on Cancer; DCIS, ductal carcinoma in situ; ER, estrogen receptor; NR, not reported; PR, progesterone receptor.

Fourteen studies9,13,19,21,22,24,26,28,30,39,40,52,56,62 reported on regional recurrence (Fig. 2B, $I^2 = 40.1\%$ [95\% CI, 0.0\%–68.2\%]). Eleven studies9,13,19,21,22,24,26,28,30,40–42,52,58,63–65,67,68 ($I^2 = 0.19$) included 3454 patients with I-ABR, and three studies9,13,19 ($I^2 = 0$) included 674 patients with D-ABR (Table S3a). In the I-ABR group, 83 (2.4\%) regional recurrences occurred, and 14 (2.1\%) in the D-ABR group. Their weighted average proportions were 0.02 (95\% CI, 0.01–0.03) and 0.02 (95\% CI, 0.01–0.03), respectively.

Locoregional recurrence after autologous PMBR was reported by 16 studies8,13,21,22,28,30,40–42,52,58,63–65,67,68 (Fig. 2C, $I^2 = 72.2\%$ [95\% CI, 55.3\%–82.6\%]). Of those, 15 studies8,21,22,28,30,40–42,52,58,63–65,67,68 reported on I-ABR ($I^2 = 0.40$), and the weighted average proportion of locoregional recurrences was 0.04 (95\% CI, 0.03–0.06). In the three studies that reported on D-ABR8,13,65 ($I^2 = 0.86$), the weighted average proportion of locoregional recurrence was 0.01 (95\% CI, <0.01–0.03).

Twenty-five studies4,8,9,13,19,21,22,24–26,28–30,40–42,50,52,56,62–65,67,68 (Fig. 2D, $I^2 = 86.0\%$ [95\% CI, 80.9\%–89.8\%]) reported occurrence of distant metastasis after autologous PMBR, of which 22 studies4,8,21,22,24–26,28–30,40–42,50,52,56,62–65,67,68 ($I^2 = 0.85$) included 5476 patients with I-ABR, and 6 studies8,9,13,19,50,65 ($I^2 = 0.75$) included 1380 patients with D-ABR (Fig. 1D). In total, 368 of 5476 patients (6.7\%) developed distant metastasis after I-ABR, and 125 of 1380 patients (9.1\%) developed distant metastasis after D-ABR (Table S3a). The heterogeneity among these studies was too high to pool the results. Therefore, no weighted average proportion is reported.

Finally, 26 studies8,9,13,19,21,24,26,28–30,40–43,46,52,56,58,59,62–65,67,68 reported total breast cancer recurrence in autologous PMBR (Fig. 2E, $I^2 = 89.7\%$ [95\% CI, 86.6\%–92.5\%]). Twenty-two studies8,21,24,26,28–30,40–43,46,52,56,58,59,62–65,67,68 ($I^2 = 0.50$), representing 5723 patients after I-ABR, reported 578 recurrences (10.1\%, Table S3a). Six studies8,9,11,13,19,65 ($I^2 = 0.50$), including 1473 patients after D-ABR, reported 191 recurrences (13.0\%). Again, the high heterogeneity among these studies did not allow pooling of the data.

In conclusion, delayed autologous PMBR did not lead to different local, regional, and locoregional breast cancer recurrence rates than immediate autologous PMBR. Although it seems that there are no statistically significant differences in distant metastasis or overall breast cancer recurrence rates between immediate and delayed autologous PMBR, we could not calculate reliable weighted average proportions for these outcome measures due to a too high heterogeneity among the studies. Therefore, it was not possible to draw a solid conclusion on whether delayed autologous PMBR leads to higher distant metastasis and total breast cancer recurrence rates than immediate autologous PMBR.

Immediate versus delayed implant-based PMBR

In total, 22 studies31–38,42,47–49,54,55,57,59–61,64,66–68 reported local recurrence after immediate implant-based post-mastectomy breast reconstruction (I-IBR) (Fig. 3A, $I^2 = 42.1\%$ [95\% CI, 3.8\%–65.1\%]). These studies ($I^2 = 0.27$) included 4121 patients, of whom 146 (3.5\%) developed local recurrences (Table S3b). The weighted average proportion of local recurrences was 0.03 (95\% CI, 0.02–0.04).

Proportions of regional recurrences after I-IBR were reported in 10 studies31–33,35,38,45,55,57,59–61,64,66–68 ($I^2 = 61.2\%$ [95\% CI, 22.6\%–80.5\%]), including 79 regional recurrences in 2446 patients (3.2\%) (Fig. 3B; Table S3b). The weighted average proportion of local recurrences was 0.02 (95\% CI, 0.01–0.04).

Fifteen studies20,31–33,35,41,42,53,55,57,59–61,64,66–68 ($I^2 = 56.4\%$ [95\% CI, 22.4\%–75.5\%]) reported locoregional recurrences after implant-based PMBR (Fig. 3C).
Year	First author	Mastectomy type	Chemotherapy	Radiotherapy	Hormone therapy
2014	Adam	Skin- and nipple-sparing: 69	Neo-adjuvant/adjuvant: Yes 6/19	Yes: 22	Yes: 41
		Missing: 0	No/missing: NR/NR	No/missing: NR	No/missing: NR
2018	Adam	NR	Neo-adjuvant/adjuvant: Yes: 94/157	Yes: 209	Yes: 191
			No: 160/96	No: 44	No: 63
			Missing: 1/1	Missing: 1	Missing: 1
2019	Bjöhle	NR	Neo-adjuvant/adjuvant: Yes: 31/79	Yes: 128	Yes: 95
			No: 97/48	No: 0	No: 32
			Missing: 0/1	Missing: 0	Missing: 1
2006	Caruso	Skin- and nipple-sparing: 51	Yes: 12	Yes: 3	Yes: 21
		Missing: 0	No: 39	No: 48	No: 30
			Missing: 0	Missing: 0	Missing: 0
2018	Chen	NR	Yes: 110	Yes: 111	Yes: 77
			No: NR	No: NR	No: NR
			Missing: 0	Missing: 0	Missing: 0
2017	Cont	Skin- and nipple-sparing: 518	Yes: 253	Yes: 94	Yes: 420
		Missing: 0	No/missing: NR	No/missing: NR	No/missing: NR
2016	Dillekás	NR	Yes: 143	Yes: 191	Yes: 136
			No: 144	No: 117	No: 117
			Missing: 25	Missing: 59	Missing: 59
2017	Du	Skin- and nipple-sparing: 157	NR	Yes: 18	NR
		Missing: 0	No/missing: NR	NR	NR
2020	Early	Conventional mastectomy, skin-sparing mastectomy, and nipple-areola skin-sparing mastectomy: NR	NR	NR	NR
2011	Eriksen	NR	Neo-adjuvant/adjuvant: Yes: 39/132	Yes: 99	Yes: 209
			No: NR/NR	No: NR	No: NR
			Missing: 0/8	Missing: 11	Missing: 17
2016	Fujimoto	Skin- and nipple-sparing: 136	Neo-adjuvant: Yes: 25	NR	NR
		Skin-sparing: 36	No/missing: NR	NR	NR
		Missing: 0	Missing: 0	Missing: 0	Missing: 0
2018	Geers	NR	NR	NR	NR
2005	Greenway	Skin-sparing: 225	NR	NR	NR
2020	Ha	Implant-based/autologous: Skin- and nipple-sparing: 68/58	Implant-based/autologous: Yes: 136/132	Yes: 51/48	Yes: 51
		Skin-sparing: 64/84	No: 111/117	No: 195/200	No: 195/200
		Total/conventional mastectomy: 115/107	Missing: 0/0	Missing: 1/1	Missing: 1/1
2008	Hölmich	NR	Yes: 165	Yes: 116	Yes: 24
			No/M: NR	No: 464	No: NR
			Missing: NR	Missing: 0	Missing: NR
2006	Huang	Modified radical mastectomy: 82	Yes: 82	Yes: 82	“All patients with ER- or PR-positive receptor”
		Missing: 0	No: 0	No: 0	
			Missing: 0	Missing: 0	
2011	Isern	NR	Yes: 48	Yes: 109	Yes: 33
			No: 77	No: 16	No: 92
			Missing: 0	Missing: 0	
2010	Kim	Skin- and nipple-sparing: 152	NR	Yes: 38	NR
		Skin-sparing: 368	No/missing: NR	No/missing: NR	
2017	Kim	Skin-sparing: 65	Yes: 29	Yes: 1	Yes: 50
		Missing: 0	No: 36	No: 64	No: 15
			Missing: 0	Missing: 0	Missing: 0
2016	Lee	Modified radical mastectomy: 213	Yes: 213	Yes: 213	“All hormonal receptor-positive patients”
		Missing: 0	No: 0	No: 0	
			Missing: 0	Missing: 0	
2020	Lee	Skin- and nipple-sparing: 111	Neo-adjuvant/adjuvant: Yes: 29/182	Yes: 52	NR
		Skin-sparing: 327	No: NR Missing: NR	No/missing: NR	

(Continued)
TABLE 4. Continued

Year	First author	Mastectomy type	Chemotherapya	Radiotherapya	Hormone therapyb
2018	Lee26	Skin- and nipple-sparing: 1032	Yes: 603	Yes: 87	Yes: 648
		Missing: 0	No: 423	No: 940	No: 377
			Missing: 6	Missing: 5	Missing: 7
2019	Lee27	Skin-sparing: 118	Yes: 93	Yes: 17	Yes: 80
		Missing: 0	No: 26	No: 102	No: 39
			Missing: 0	Missing: 0	Missing: 0
2012	Lee24	Skin- and nipple-sparing: 361	NR	NR	NR
		Skin-sparing: 510	NR	NR	NR
		Modified radical mastectomy: 29	Missing: 100	Missing: 6	Missing: 7
2013	Liang28	Skin-sparing: 249	Yes: 16/196	Yes: 32	Yes: 126
		Missing: 0	No: NR/NR	No: NR/NR	No: NR/NR
2013	Lindford13	Nonskin-sparing: 112	Yes: 91	Yes: 76	Yes: 83
		Missing: 0	No: 21	No: 36	No: 29
2010	Lim63	Skin- and nipple-sparing: 14	Yes: 86	Yes: 49	Yes: 65
		Skin-sparing: 73	No: 1	No: 38	No: 22
		Missing: 0	Missing: 0	Missing: 0	Missing: 0
2017	Maalouf50	Skin-sparing: 40	Immediate/delayed: 24/22	Immediate/delayed: 30/32	Immediate/delayed: 17/23
		Modified radical mastectomy: 22	Missing: 0	Missing: 0	Missing: 0
		Missing: 0	No/missing: NR/NR	No/missing: NR/NR	No/missing: NR/NR
2008	McCarthy53	NR	Yes: 238	Yes: 67	NR
		Missing: 2	No: 69	No: 236	NR
			Missing: 0	Missing: 303	
2020	Metere60	Skin- and nipple-sparing: 894	Yes: 215/264	Yes: 87	NR
		Missing: 0	No/missing: NR/NR	No/missing: NR	
2010	Min6	NR	Yes: 72	Yes: 48	NR
		Missing: 0	No: 111	Missing: 0	
2013	Munhoz54	Skin- and nipple-sparing: 106	Yes: 28	Yes: 10	NR
		Missing: 0	No/missing: NR	No/missing: NR	
2017	Murphy55	Skin- and nipple-sparing: 240	NR	NR	NR
		Missing: 0	No/missing: NR	NR	
2005	Mustonen56	Skin- and nipple-sparing: 21	NR	NR	NR
		Subcutaneous: 34	No/missing: NR	NR	
		Nonskin-sparing: 1	No/missing: NR	NR	
2015	Narui29	Skin- and nipple-sparing: 152	Yes: 43	Yes: 15	Yes: 120
		Skin-sparing: 53	No/missing: NR	No/missing: NR	No/missing: NR
		Missing: 0	No/missing: NR	No/missing: NR	No/missing: NR
2012	Nava36	Skin- and nipple-sparing: 59	Yes: 26	Yes: 10	Yes: 38
		Missing: 0	No/missing: NR	No/missing: NR	No/missing: NR
2014	Ota36	Skin- and nipple-sparing: 2	Yes: 60	Yes: 2	Yes: 91
		Skin-sparing: 131	No: 73	No/missing: NR	No: 42
		Missing: 0	Missing: 0	No/missing: NR	Missing: 0
2020	Ozmen61	Skin- and nipple-sparing: 75	NR	Yes: 23	NR
		Missing: 0	No/missing: NR		
2016	Park40	Skin- and nipple-sparing: 36	Yes: 136	Yes: 19	NR
		Skin-sparing: 78	No: 53	No: 170	
		Missing: 0	Missing: 0	Missing: 0	
2020	Parvez66	Skin- and nipple-sparing: 175	Yes: 49	Yes: 40	NR
		Missing: 0	No/missing: NR	No/missing: NR	
2012	Patterson30	Skin-sparing: 170	Yes: 105	Yes: 51	Yes: 65
		Modified radical mastectomy: 142	No/missing: NR	No/missing: NR	No/missing: NR
2011	Reddy41	NR	Yes: 181	Yes: 135	Yes: 232
		Missing: 0	No: 313	No: 359	No: 262
2012	Romics42	Skin-sparing: 207	Yes: 100	Yes: 72	Yes: 126
		Missing: 0	No: 107	No: 81	No: 27
			Missing: 0	Missing: 54	Missing: 54
Fourteen studies31–33,35,41,42,53,55,57,58,60,64,67,68 included 2793 patients in the I-IBR group, of whom 139 patients (5.0\%) developed locoregional recurrences (Table S3b). Their weighted average proportion was 0.03 (95\% CI, 0.01–0.05). One study20 reported 49 locoregional recurrences in 580 patients (8.4\%) after delayed implant-based post-mastectomy breast reconstruction (D-IBR), representing a proportion of 0.08 (95\% CI, 0.06–0.11).

Eighteen studies20,31,33–36,38,41,42,48,54,55,57,60,64,66,67,69 (Fig. 3D, \(I^2 = 88.6\%\) [95\% CI, 83.5\%–92.1\%]) described the occurrence of distant metastasis after implant-based PMBR, of which 1731,33–36,38,41,42,48,54,55,57,60,64,66,67,69 reported distant metastases after I-IBR (\(T^2 = 0.55\)); in total, 177 of 3022 patients (5.9\%) developed distant metastases after I-IBR (Table S3b). However, the high heterogeneity among these studies did not allow pooling of the data. One study20 reported 86 distant metastases in 580 patients (14.8\%) after D-IBR, representing a proportion of 0.15 (95\% CI, 0.12–0.18).

Twenty studies20,31,33–36,38,41–43,46,48,53,57–59,60,64,66–68 (\(I^2 = 89.2\%\) [95\% CI, 84.7\%–92.3\%]) reported overall recurrences after implant-based PMBR, of which 19 studies48,50–53,55,58–60,63,65,70,74–76,89,98,100,109 (\(T^2 = 0.32\)) reported data on 353 recurrences (11.7\%) (Table S3b). High heterogeneity did not allow pooling of the data. One study20 reported 145 (25.0\%) overall recurrences among 580 patients after D-IBR (0.25 [95\% CI, 0.22–0.29]).

In summary, the data were too heterogeneous to calculate weighted average proportions for distant and total breast cancer recurrences after I-IBR. Moreover, none of the studies reported local or regional recurrence rates after D-IBR, and only one study20 reported locoregional recurrence, distant metastasis, and total recurrence rates after D-IBR (Table S3b). Consequently, there were insufficient data to calculate weighted average proportions of local, regional, locoregional, distant, or total breast cancer recurrence rates after D-IBR. Therefore, it was not possible to compare local, regional, locoregional, distant, or total recurrence rates between I-IBR and D-IBR.

DISCUSSION

This SR/MA, including studies of moderate-level quality, showed that delayed autologous PMBR does not lead to different local, regional, and locoregional breast cancer recurrence rates compared to immediate autologous PMBR. Data of the included studies were either insufficient or too heterogeneous to evaluate whether delayed autologous...
PMBR leads to different distant metastasis or overall breast cancer recurrence rates compared to immediate autologous PMBR, or whether delayed implant-based PMBR led to higher breast cancer recurrence and distant metastasis rates than immediate implant-based PMBR. This meta-analysis is the first to focus on the differences in oncological outcomes after immediate versus delayed PMBR for autologous and implant-based PMBR separately.

Consistent with our results, Shen and colleagues (2020) observed no difference in recurrence rates after immediate and delayed PMBR in their systematic review. Similarly, in a meta-analysis by Gieni and colleagues (2012), no difference was found in local recurrences between immediate PMBR and mastectomy only. However, both reviews were limited by the absence of stratified data on type of reconstruction (i.e., autologous and/or implant-based). Similar limitations were present in a review by Tsoi and colleagues, comparing implant-based with autologous PMBR while not considering the timing of reconstruction. Both distinctions are important for clinical decision-making, because surgical impact and postoperative complications differ greatly between implant-based and autologous breast reconstructive surgery and between immediate and delayed breast reconstructions. Ha and colleagues were the first to compare oncological safety between immediate reconstructive methods. To provide robust evidence that supports clinical and shared decision-making, prospective studies focusing on both surgical methods and both timings of reconstructive surgery separately are needed.

Personalized health care is increasingly becoming standard of care for patients with breast cancer. Ideally, each patient’s treatment strategy is aligned with patients’ genotypic, phenotypic and clinical characteristics, as well as patients’ personal preferences. Subsequently, decision aids (DAs) to support shared decision-making (SDM) are gaining popularity. However, breast reconstruction DAs are predominantly designed for general patient education about different reconstructive options and at best predict the risk of postoperative complications. Because of lack of detailed data on oncological outcomes after different methods and timings, it is not surprising that information on oncological outcomes is not included in current DAs. Moreover, due to various reasons (e.g., previous surgery or radiotherapy, body type), not all patients are eligible for all reconstructive options. To support SDM and improve personalized patient information, patient education should be adjusted to the specific characteristics of the individual. This tailored information can only be achieved through better understanding of differences in oncological outcomes after PMBR.

Another important aspect of clinical decision-making in the field of breast reconstructive surgery concerns the potential influence of specific reconstructive types and timings on the overall breast cancer treatment strategy. Immediate PMBR does not delay time to adjuvant chemotherapy to a clinically relevant extent. However, the timing of PMBR when radiotherapy is indicated, is still controversial. To enhance personalized medicine, better understanding of oncological risks within subgroups will allow more profound assessments of individual risks in a multidisciplinary setting, thereby improving quality of care.

Better insight in recurrence rates and recurrence patterns after different reconstructive techniques may also improve postoperative surveillance strategies. To date, no consensus exists on routine imaging of the reconstructed breast. Physical examination is mostly used to detect locoregional recurrences after PMBR, but deeper located recurrences (i.e., chest wall recurrences) may be missed. Although Shammas and colleagues did not find a difference in disease-free survival between reconstructed patients who received postoperative imaging for surveillance versus those who did not, routine imaging may still be of added clinical value after specific reconstructive techniques or in patients with certain risk profiles. In example, due to preservation of the skin envelope, immediate autologous PMBR might form a risk for developing local recurrences. Because approximately two thirds of all patients with locoregional recurrences will develop distant metastasis, larger studies are needed to define the role of routine mammography, ultrasound, and/or magnetic resonance imaging for early detection of locoregional recurrences.

Most importantly, the low risk of locoregional breast cancer recurrence and distant metastasis after breast cancer treatment makes it hard to generate robust evidence-based conclusions about oncological outcomes after the various reconstructive timings and techniques, and recommendations for breast cancer surveillance after PMBR. As a result, patient education on which type and timing of breast reconstruction patients qualify for remains highly sensitive to experts’ beliefs (e.g., the tumor dormancy theory), preferences, resources, and experience. As such, breast reconstructive options that are offered vary widely, even on regional levels.

In addition to the generally low recurrence rates after breast cancer treatment, other challenges of many studies on PMBR are the heterogeneity in study populations and follow-up, and their susceptibility for confounding by indication. This was illustrated by the large variation
in recurrence rates found in our analyses. For example, recurrence rates for distant metastasis and overall breast cancer recurrences after D-1BR, as reported by Hölmich and colleagues, seem high in comparison to other subgroups. However, their high recurrence rates could be explained by the fact that only patients with invasive breast carcinoma were included, that patients were treated between 1978 and 1992, and by their long follow-up of 10 years. Although we recognize the challenges researchers are faced with when performing studies concerning PMBR, we would like to emphasize the need for larger, prospective long-term follow-up studies focusing on PMBR and oncological outcomes in order to increase equal education on, and access to various reconstructive options. The use of prospectively maintained databases and intensive collaboration between existing registries such as oncological, pathological, and surgical registries (e.g., the Dutch Breast Implant Registry or the UK Flap registry) will help overcome these challenges. Transparent, uniform, and complete data collection can be improved by implementation of standardized reporting formats in electronic medical patient records.

This meta-analysis has several limitations inherent to the quality of the included studies. Despite efforts to minimize heterogeneity among the study populations by only including studies reporting outcomes per subgroup (i.e., autologous delayed and immediate, implant-based delayed and immediate) and applying strict in- and exclusion criteria, substantial heterogeneity was observed. Moreover, the definitions of local, regional, locoregional, and total recurrences were not always specified among studies and often one of these outcomes was not reported. However, we did not exclude studies lacking a detailed description of their outcome measure to ensure we could use all data of all available studies, given that they complied with our predefined level of quality, to support a data-driven conclusion. Because of the nonrandomized nature of the studies and lack of high-quality trials, the risk of selection bias and confounding in the included studies is substantial. However, performing randomized trials for breast reconstructive surgery and oncological safety is often considered unethical or unfeasible. By requesting specified data of subgroups from authors who only reported outcomes for the entire groups, selection bias due to unavailability of studies was reduced. Subgroup or adjusted analyses based on tumor stage were not feasible due to incomplete and/or unstratified data. Last, considering that multiple different groups were compared, although formal testing was not performed, there could be an issue with multiple testing. However, the included data allowed for only few formal comparisons. Therefore, we believe this potential issue is minor. We believe this would not have affected the interpretation of the results. A strength of these aggregated patient data (APD) meta-analyses is that it overcomes potential bias of narrative literature reviews, whereas summarizing data of many studies that were each too small to provide valid evidence. Furthermore, generalizability was strengthened by the large number of studies including a wide range of patient demographics and origins (i.e., Asia, Europe, North and South America).

In conclusion, delayed autologous PMBR leads to similar (loco)regional breast cancer recurrence rates as compared to immediate autologous PMBR. Data of the included studies were unfit to reliably conclude whether delayed autologous PMBR leads to different distant metastasis or overall breast cancer recurrence rates compared to immediate autologous PMBR, or whether delayed implant-based PMBR leads to different breast cancer recurrence and distant metastasis rates than immediate implant-based PMBR. Based on current evidence, oncological concerns do not seem a valid reason to withhold patients from certain reconstructive timings or techniques, and patients should equally be offered all reconstructive options they technically qualify for.

However, these results are based on moderate-level quality studies and therefore do not allow firm conclusions regarding oncological outcomes after different types and timings of PMBR. As such, it remains challenging to define evidence-based recommendations. In support of equal access to care and better patient selection for breast reconstructions, prospective and sufficiently powered studies evaluating long-term oncological outcomes are needed to confirm oncological safety after different breast reconstructive timings and techniques in the treatment of patients with breast cancer.

ACKNOWLEDGMENTS

The authors thank Dr. Hans Kelder, clinical epidemiologist in the St. Antonius Hospital, for his support in the performance of the statistical meta-analyses and for providing methodologic advice. We are greatly indebted to our hospital librarians Carla Sloof-Enthoven and Nienke van der Wett for their support in designing the comprehensive search strategy.

AUTHOR CONTRIBUTIONS

Claudia A. Bargon: Conception or design of the work, acquisition of data for the work, analysis of data for the work, interpretation of data for the work, drafting the work, critical revision of the work for important intellectual content, and responsibility for overall content as a guarantor. Danny A. Young-Afat: Conception or design of the work, analysis of data for the work, drafting the work, and critical revision of the work for important intellectual content. Mehmet Ikinci: Acquisition of data for the work, analysis of data for the work, interpretation of data for the work, and critical revision of the work for important intellectual content. Assa Braakenburg: Conception or design of the work, interpretation of data for the work, and critical revision of the
work for important intellectual content. Hinne A. Rakhorst: Conception or design of the work, interpretation of data for the work, and critical revision of the work for important intellectual content. Marc A.M. Mureau: Conception or design of the work, acquisition of data for the work, drafting the work, and critical revision of the work for important intellectual content. Ahlen M. Verkooijen: Conception or design of the work, acquisition of data for the work, and critical revision of the work for important intellectual content. Annemiek Doeke: Conception or design of the work, acquisition of data for the work, analysis of data for the work, interpretation of data for the work, drafting the work, critical revision of the work for important intellectual content, and responsibility for overall content as a guarantor. All authors have given final approval for the version of this article to be published and have agreed to be accountable for all aspects of the work and thereby ensure that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

CONFLICTS OF INTEREST
Hilma Verkooijen reports a grant from Elekta Instrument AB. The other authors have no conflicts of interest to disclose.

REFERENCES
1. Lagendijk M, van Egdom LSE, van Veen FEE, et al. Patient-reported outcome measures may add value in breast cancer surgery. Ann Surg Oncol. 2021;28(12):3563-3571.
2. Cordeiro PG. Breast reconstruction after surgery for breast cancer. N Engl J Med. 2008;359(15):1590-1601.
3. Gini M, Avram R, Dickson L, et al. Local breast cancer recurrence after mastectomy and immediate breast reconstruction for invasive cancer: a meta-analysis. Breast. 2012;21(3):230-236.
4. Min SY, Kim HY, Jung SY, et al. Oncological safety and quality of life associated with mastectomy and immediate breast reconstruction with a latissimus dorsi myocutaneous flap. Breast J. 2010;16(4):356-361.
5. Hershenson KS, Bick K, Shauly O, et al. Systematic review and meta-analysis of immediate versus delayed autologous breast reconstruction in the setting of post-mastectomy adjuvant radiation therapy. J Plast Reconstr Aesthet Surg. 2021;74(5):931-944.
6. Shen Z, Sun J, Yu Y, et al. Oncological safety and complication risks of mastectomy with or without breast reconstruction: a Bayesian analysis. J Plast Reconstr Aesthet Surg. 2021;74(2):290-299.
7. Ho AV, Hu ZI, Mehrara BJ, Wilkins EG. Radiotherapy in the setting of breast reconstruction: types, techniques, and timing. Lancet Oncol. 2017;18(12):e742-e753.
8. Genni WJ, Wildiers H, Van Calster K, et al. Oncological safety of autologous breast reconstruction after mastectomy for invasive breast cancer. BMC Cancer. 2018;18(1):994-999.
9. Dillekas H, Demichel R, Ardoino I, Jensen SAH, Bignanzoli E, Straume O. The recurrence pattern following delayed breast reconstruction after mastectomy for breast cancer suggests a systemic effect of surgery on occult dormant micrometastases. Breast Cancer Res Treat. 2016;158(1):169-178.
10. Demichel R, Miceli R, Molletini A, et al. Breast cancer recurrence dynamics following adjuvant CMF is consistent with tumor dormancy and mastectomy-driven acceleration of the metastatic process. Ann Oncol. 2005;16(9):1449-1457.
11. Isern AE, Manjer J, Malina J, et al. Risk of recurrence following delayed large flap reconstruction after mastectomy for breast cancer. Br J Surg. 2011;98(5):659-666.
12. Sree A, Mani M, Sandquist K, et al. Survival and risk of breast cancer recurrence after breast reconstruction with deep inferior epigastric perforator flap. Br J Surg. 2018;105(11):1446-1453.
13. Lindford AJ, Siponen ET, Jahkola TA, Leidenius MH. Effect of delayed autologous breast reconstruction on breast cancer recurrence and survival. World J Surg. 2018;43(7):2872-2882.
14. Tsio B, Ziołkowski NI, Thoma A, Campbell K, O’Reilly D, Goeree R. Safety of tissue expander/implant versus autologous abdominal tissue breast reconstruction in postmastectomy breast cancer patients: a systematic review and meta-analysis. Plast Reconstr Surg. 2014;133(2):234-249.
15. Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA (editors). Cochrane Handbook for Systematic Reviews of Interventions version 6.2 (updated February 2021). Cochrane; 2022. http://www.training.cochrane.org/handbook
16. Shin K, Nini E, Forestier D, Kwiatkowski F, Panis Y, Chipponi J. Methodological index for non-randomized studies (minors): development and validation of a new instrument. ANZ J Surg. 2003;73(9):712-716.
17. Higgins JPT, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327(7414):557-560.
18. Borenstein M, Hedges LV, Higgins JPT, Rothstein HR. Fixed-effect versus random-effects models. Introduction to Meta-Analysis. John Wiley & Sons Inc; 2009:77-86.
19. Adam H, Docherty Skogh AC, Edsander Nord A, et al. Risk of recurrence and death in patients with breast cancer after delayed deep inferior epigastric perforator flap reconstruction. Br J Surg. 2018;105(11):1435-1445.
20. Hölmich LR, Düring M, Henriksen TF, et al. Delayed breast reconstruction with implants after invasive breast cancer does not impair prognosis. Ann Plast Surg. 2008;61(1):11-18.
21. Fujimoto H, Ishikawa T, Satake T, et al. Donor site selection and clinical outcomes of nipple-areola skin-sparing mastectomy with immediate autologous free flap reconstruction: a single-institution experience. Eur J Surg Oncol. 2016;42(3):369-375.
22. Huang CJ, Hou MF, Lin SD, et al. Comparison of local recurrence and distant metastases between breast cancer patients after postmastectomy radiotherapy with and without immediate TRAM flap reconstruction. Plast Reconstr Surg. 2006;118(5):1079-1086.
23. Kim HJ, Park EH, Lim WS, et al. Nipple areola skin-sparing mastectomy with immediate transverse rectus abdominis musculocutaneous flap reconstruction is an oncologically safe procedure: a single-center study. Ann Surg. 2010;251(3):493-498.
24. Lee TJ, Hur WJ, Kim EK, Ahn SH. Outcome of management of local recurrence after immediate transverse rectus abdominis myocutaneous flap breast reconstruction. Arch Plast Surg. 2012;39(4):376-383.
25. Lee HH, Hou MF, Wei SY, et al. Comparison of long-term outcomes of postmastectomy radiotherapy between breast cancer patients with and without immediate flap reconstruction. PLoS One. 2016;11(2):e0148318.
26. Lee SB, Lee JW, Kim HJ, et al. Long-term outcomes of patients with nipple-sparing mastectomy/skin-sparing mastectomy followed by immediate transverse rectus abdominis musculocutaneous flap reconstruction: Comparison with conventional mastectomy in a single-center study. Medicine (Baltimore). 2018;97(18):e0680.
27. Lee SB, Lee JW, Son BH, et al. Oncologic safety of skin-sparing mastectomy followed by immediate reconstruction in young patients with breast cancer. Asian J Surg. 2019;42(1):274-282.
28. Liang TJ, Wang BW, Liu SL, et al. Recurrence after skin-sparing mastectomy and immediate transverse rectus abdominis musculocutaneous flap reconstruction for invasive breast cancer. World J Surg Oncol. 2013;11(1):194.
29. Narui K, Ishikawa T, Satake T, et al. Outcomes of immediate perforator flap reconstruction after skin-sparing mastectomy following neoadjuvant chemotherapy. Eur J Surg Oncol. 2015;41(1):94-99.
30. Patterson SG, Teller R, Iyengar R, et al. Locoregional recurrence after mastectomy with immediate transverse rectus abdominis myocutaneous (TRAM) flap reconstruction. Ann Surg Oncol. 2012;19(8):2679-2684.
31. Caruso F, Ferrara M, Castiglione G, et al. Nipple sparing subcutaneous mastectomy: sixty-six months follow-up. Eur J Surg Oncol. 2006;32(9):937-940.
32. Chen CF, Hung CF, Lin SF, Chung YL. Does prostheses-based breast reconstruction affect the clinical outcome of postmastectomy radiotherapy? A Patient Level Analysis? Ann Plast Surg. 2018;80(2S supp 1):S7-S10.
33. Du J, Liang Q, Qi X, et al. Endoscopic nipple sparing mastectomy with immediate implant-based reconstruction versus breast conserving surgery: a long-term study. Sci Rep. 2017;7:45636.
34. Eriksen C, Frisell J, Wickman M, Lidbrink E, Krawiec K, Sandelin K. Immediate reconstruction with implants in women with invasive breast cancer does not impair oncological safety in a matched cohort study. Breast Cancer Res Treat. 2011;127(2):439-446.
35. Nava MB, Ottolenghi J, Pennati A, et al. Skin/nipple sparing mastectomies and implant-based breast reconstruction in patients with large and ptotic breast: oncological and reconstructive results. Breast. 2012;21(3):267-271.
36. Ota D, Fukuuchi A, Iwahira Y, et al. Clinical outcome of reconstruction with tissue expanders for patients with breast cancer and mastectomy. *Clin Breast Cancer*. 2014;14(5):339-345.

37. Serra R, Miglietta AM, Abonante S, Giordano V, Buffone G, de Franciscis S. Skin-sparing mastectomy with immediate breast and nipple reconstruction: a new technique of nipple reconstruction. *Plast Surg Int*. 2013;2013:406375. 1, 5.

38. Björhle J, Onjukka E, Rinteli N, et al. Post-mastectomy radiation therapy with or without implant-based reconstruction is safe in terms of clinical target volume coverage and survival – a matched cohort study. *Radiother Oncol*. 2019;131:229-236.

39. Kim Z, Kang SG, Roh JH, et al. Skin-sparing mastectomy and immediate latissimus dorsi flap reconstruction: a retrospective analysis of the surgical and patient-reported outcomes. *World J Surg Oncol*. 2012;10:259.

40. Park SH, Han W, Yoo TK, et al. Oncologic safety of immediate breast reconstruction for invasive breast cancer patients: a matched case control study. *J Breast Cancer*. 2016;19(1):68-75.

41. Reddy S, Colakoglu S, Curtis MS, et al. Breast cancer recurrence following postmastectomy reconstruction compared to mastectomy with no reconstruction. *Ann Plast Surg*. 2011;66(5):466-471.

42. Romics L Jr, Chow BK, Weiler-Mithoff E, et al. Ten-year follow-up of skin-sparing mastectomy followed by immediate breast reconstruction. *Br J Plast Surg*. 2012;59(6):799-806.

43. Spiegel AJ, Butler CE. Recurrence following treatment of ductal carcinoma in situ with skin-sparing mastectomy and immediate breast reconstruction. *Plast Reconstr Surg*. 2003;111(2):706-711.

44. Tanos G, Prousskaia E, Chow W, et al. Locally advanced breast cancer: autologous versus implant-based reconstruction. *Plast Reconstr Surg Glob Open*. 2016;4(2):e622.

45. Ueda S, Tamaki Y, Yano K, et al. Impact of autologous breast reconstruction using a vertical skin pattern for skin-sparing mastectomy for invasive breast cancer by free flaps from the abdomen and breast-related factors for complications. *Am J Surg*. 2019;217(3):514-518.

46. Valente SA, Liu Y, Upadhyaya S, Tu C, Pratt DA. The effect of wound complications following mastectomy with immediate breast reconstruction. *Am J Surg*. 2007;194(4):438-443.

47. Adam H, Bygdeson M, de Boniface J. The oncological safety of nipple-sparing mastectomy - a Swedish matched cohort study. *Eur J Surg Oncol*. 2014;40(10):1209-1215.

48. Cont NT, Maggiorotto F, Martinich L, et al. Primary tumor location predicts the site of local relapse after nipple-areola complex (NAC) sparing mastectomy. *Breast Cancer Res Treat*. 2017;165(1):85-95.

49. Maalouf C, Bou-Merhi J, Karam E, Patocskai E, Danino AM. The cosmetic outcome and patient satisfaction after nipple-sparing mastectomy for patients who underwent partial mastectomy (PM) with mini latissimus dorsi flap (MLDF) and subcutaneous mastectomy with implant (M+I) regarding quality of life (QOL), cosmetic outcome and survival rates. *World J Surg Oncol*. 2020;18(1):87.

50. Park SH, Han W, Yoo TK, et al. Oncologic safety of immediate breast reconstruction after mastectomy for invasive breast cancer patients: a matched case control study. *J Breast Cancer*. 2016;19(1):68-75.

51. Reddy S, Colakoglu S, Curtis MS, et al. Breast cancer recurrence following postmastectomy reconstruction compared to mastectomy with no reconstruction. *Ann Plast Surg*. 2011;66(5):466-471.

52. Romics L Jr, Chow BK, Weiler-Mithoff E, et al. Ten-year follow-up of skin-sparing mastectomy followed by immediate breast reconstruction. *Br J Plast Surg*. 2012;59(6):799-806.

53. Spiegel AJ, Butler CE. Recurrence following treatment of ductal carcinoma in situ with skin-sparing mastectomy and immediate breast reconstruction. *Plast Reconstr Surg*. 2003;111(2):706-711.

54. Tanos G, Prousskaia E, Chow W, et al. Locally advanced breast cancer: autologous versus implant-based reconstruction. *Plast Reconstr Surg Glob Open*. 2016;4(2):e622.

55. Ueda S, Tamaki Y, Yano K, et al. Impact of autologous breast reconstruction using a vertical skin pattern for skin-sparing mastectomy for invasive breast cancer by free flaps from the abdomen and breast-related factors for complications. *Am J Surg*. 2019;217(3):514-518.

56. Mustonen P, Kataja V, Berg M, Pietiläinen T, Papp A. Recurrences after immediate reconstruction in breast cancer. *Scand J Surg*. 2005;94(1):21-24.

57. Sakamoto N, Fukushima E, Teraoka K, Hoshi K. Local recurrence following treatment for breast cancer with an endoscopic nipple-sparing mastectomy. *Breast Cancer*. 2016;11(4):552-560.

58. Ha JH, Hong KY, Lee HB, et al. Oncologic outcomes after immediate breast reconstruction following mastectomy: comparison of implant and flap using propensity score matching. *BMJ Cancer*. 2020;20(1):78.

59. Lee KT, Jung JM, Mun GH, et al. Influence of complications following total mastectomy and immediate reconstruction on breast cancer recurrence. *Br J Surg*. 2020;107(9):1154-1162.

60. Merete A, Fabiani E, Lonardo MT, Giannotti D, Pace D, Giacomelli L. Nipple-sparing mastectomy-long-term outcomes: early and late complications. *Medicina (Kaunas)*. 2020;56(4):166.

61. Ozmen V, Ilgun S, Celet Ozden B, et al. Comparison of breast cancer patients who underwent partial mastectomy (PM) with mini latissimus dorsi flap (MLDF) and subcutaneous mastectomy with implant (M+I) regarding quality of life (QOL), cosmetic outcome and survival rates. *World J Surg Oncol*. 2020;18(1):87.

62. Yamada A, Narui K, Satake T, et al. Long-term outcomes of immediate autologous breast reconstruction for breast cancer patients. *J Surg Res*. 2020;251:78-84.

63. Lim W, Ko BS, Kim HJ, et al. Oncological safety of skin sparing mastectomy following immediate reconstruction for locally advanced breast cancer. *J Surg Oncol*. 2010;102(1):39-42.

64. Greenway RM, Schlossberg L, Dooley WC. Fifteen-year series of skin-sparing mastectomy for stage 0 to 2 breast cancer. *Am J Surg*. 2005;190(6):918-922.

65. Early AR, Moon W. Breast cancer and secondary cancer recurrences after autologous tissue reconstruction. *Clin Breast Cancer*. 2021;21(1):e96-e101.

66. Parvez E, Martel K, Morency D, et al. Surgical and oncologic outcomes of nipple-sparing mastectomy for a cohort of breast cancer patients, including cases with high-risk features. *Clin Breast Cancer*. 2020;20(4):353-358.

67. Wu ZY, Kim HJ, Lee J, et al. Recurrence outcomes after nipple-sparing mastectomy and immediate breast reconstruction in patients with pure ductal carcinoma in situ. *Ann Surg Oncol*. 2020;27(5):1627-1635.

68. Wu ZY, Kim HJ, Lee JW, et al. Long-term oncologic outcomes of immediate breast reconstruction vs conventional mastectomy alone for breast cancer in the setting of neoadjuvant chemotherapy. *JAMA Surg*. 2020;155(12):1142-1150.

69. Wu ZY, Kim HJ, Lee JW, et al. Oncologic outcomes of nipple-sparing mastectomy and immediate reconstruction after neoadjuvant chemotherapy for breast cancer. *Ann Surg Oncol*. 2021;27(6):e1196-e1201.

70. Pinker K, Chin J, Melsaether AN, Morris EA, Moy L. Precision medicine and radiogenomics in breast cancer: new approaches toward diagnosis and treatment. *Radiology*. 2018;287(3):732-747.

71. Ter Stege JA, Woerdeman LAE, Hahn DEE, et al. The impact of an online patient decision aid for women with breast cancer considering immediate breast reconstruction: an updated guideline for reporting systematic reviews. *BMJ*. 2018;362:k2600.

72. Hreg E, Harmelink JX, Bechter BE, Marang-van de Mheen PJ, Vrzadken Peeters M, Bureau MAM. Nationwide population-based study of the impact of immediate breast reconstruction after mastectomy on the timing of adjuvant chemotherapy. *Br J Surg*. 2020;106(12):1640-1648.

73. Shammas RL, Broadwater G, Cason RW, et al. Assessing the utility of post-mastectomy imaging after breast reconstruction. *J Am Coll Surg*. 2020;230(4):605-614.e601.

74. Tiop I. Is there a role for imaging surveillance after mastectomy and autologous breast reconstruction? *Radiology*. 2018;289(1):49-50.

75. Buchanan CL, Dorn PL, Fey J, et al. Locoregional recurrence after mastectomy: incidence and outcomes. *J Am Coll Surg*. 2006;203(4):469-474.

76. Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. *BMJ*. 2021;372:n791.