Discovering Algorithms with Matrix Code

M.H. van Emde
Department of Computer Science
University of Victoria, Canada
Research Report DCS-345-IR

Abstract
In first-year programming courses it is often difficult to show students how an algorithm can be discovered. In this paper we present a program format that supports the development from specification to code in small and obvious steps; that is, a discovery process. The format, called Matrix Code, can be interpreted as a proof according to the Floyd-Hoare program verification method. The process consists of expressing the specification of a function body as an initial code matrix, and then growing the matrix by adding rows and columns until the completed matrix is translated in a routine fashion to compilable code. As worked example we develop a Java program that generates the table of the first \(N\) prime numbers.

1 Introduction

Structured programming was a great step forward from the preceding stage of chaotic programming. The next step, beyond structured programming, is verification-driven programming, where proof of correctness and code are developed in parallel. Matrix Code is important for the practicing programmer because it makes verification-driven programming possible. But it also helps to solve the problem faced by an instructor in a first-year programming class: most of the class understands why a given program works, but how to help the student, faced with a blank screen, to get started with the program of the next assignment? This is where Matrix Code helps: there is always something (small) to do, and when there is nothing more to do, the code matrix is ready for routine translation to Java with confidence that the resulting code has the desired behaviour.

E.W. Dijkstra addressed the same problem when he started teaching in the 1960's. His remedy was a detailed step-by-reasoning and construction resulting in an Algol-60 program for filling an array with the first thousand prime numbers. In this paper we address the same task to ease comparison with Dijkstra's report [1].

2 Hoare’s verification method

As an introduction to the verification method due to R.W. Floyd and C.A.R. Hoare we verify a Java version of the prime-number generating program developed by Dijkstra in [1]. See Figure 1.

The essence of imperative code is that computation progresses through the code along a well-defined set of code locations. In Figure 1 some of these locations are indicated by the comments S, A, B, C, and H.

We think of a computation as a sequence of computation states each of which consists of a control state (a code location) and a data state (a vector of values of the variables).
public static void primes(int[] p, int N) {
 // S
 int j,k,n;
 p[0] = 2; p[1] = 3; k = 2;
 // A
 while (k<N) {
 j = p[k-1]+2; n = 0;
 // B
 while (p[n]*p[n] <= j) {
 // C
 if (j%p[n+1] != 0) n++;
 else {j += 2; n = 0;}
 }
 p[k++] = j;
 }
 // H
}

Figure 1: An example of a Java function for filling \(p[0..N-1]\) with the first \(N\) primes. At the points indicated by the comments S, A, B, C, H we need assertions to allow verification by Hoare’s method.

According to the Floyd-Hoare method, assertions are attached to selected code locations. The assertions assert that certain relations between program variables hold at the code locations concerned. When such an assertion occurs in a loop, it is the familiar invariant of that loop. In Figure 1 we have indicated by the comments where these assertions have to be placed. Figure 2 contains the corresponding assertions and the required Hoare triples (see following explanation).

The verification of the function as a whole relies on the verification of a number of implications defined in terms of assertions and program elements such as tests and statements. Consider Figure 1 because there is an execution path from A to B, one has to show the truth of

\[
\{ A \land k<N \} \quad \text{j=p[k-1]+2; j=0; } \quad \{ B \}
\]

It has as meaning: if \(A \land k<N \) (the precondition) is true and if

\[j=p[k-1]+2; \quad j=0; \]

is executed, then \(B \) (the postcondition) is true. Because of the three elements: precondition, postcondition, and the item in between, this is called a Hoare triple.

There are many other implementations of the function in Figure 1 that are verified by the same set of triples as in Figure 2. It would be tempting to say that, once we have a sufficient set of Hoare triples, we can forget the program in Figure 1 all information about it is in the Hoare triples of Figure 2. This may seem so because, for example, in

\[
\{ A \land k<N \} \quad \text{j=p[k-1]+2; n=0; } \quad \{ B \}
\]

\(A \) stands for the assertion defined earlier in that figure. What is missing is the fact that assertion \(A \) is tied to code location \(A \). But the idea of regarding the set of triples as the essence is a fruitful one. It leads one to ask: what is a format for the information in Figure 2 plus the fact that the code locations are tied to the assertions of the same name? For the answer to this question we propose Matrix Code.
Assertions:
S: p[0..N-1] exists and N>1
H: p[0..N-1] are the first N primes
A: S && p[0..k-1] are the first k primes && k <= N
B: A && k<N && relB(p, k, n, j)
C: B && p[n]*p[n] <= j

relB(p, k, n, j) means that there is no prime between p[k-1] and j, and that j is not divided by any prime in p[0..n], and that n<k.

Hoare triples:

{S} p[0]=2; p[1]=3; k=2; {A}
{A && k >= N} {H}
{A && k < N} j=p[k-1]+2; n=0; {B}
{B && p[n]*p[n] < j} {C}
{B && p[n]*p[n] > j} p[k++] = j {A}
{C && j%p[n+1] != 0} n++ {B}
{C && j%p[n+1] == 0} j += 2; n = 0 {B}

Figure 2: Assertions and Hoare triples for Figure 1. The meaning of a Hoare triple {A0} CODE {A1} is that if assertion A0 is true and if CODE is executed with termination, then assertion A1 is true.

3 Matrix Code

A code matrix can be thought of as a graph with code locations as nodes and directed arcs that are labeled with code. A natural notation for such a graph is a matrix with columns and rows labeled by nodes and the arc labels as matrix entries. When we use this notation for Figure 2 then we get the matrix in Figure 6. This is a code matrix.

Although a code matrix arose from a collection of logical statements, it can also be interpreted as specifying a set of computations of an abstract machine. In the explanation below we use a picturesque terminology that is worth trying on an audience of novices in programming.

A code matrix is executed by a turtle moving over it. The turtle contains a data state and a knowledge state. The data state is a vector of the values of the variables accessible from the code under construction. The knowledge state is an assertion concerning the values of these variables.

The turtle has an innate truthfulness that prevents it from knowing a lie. In other words, its knowledge state is always an assertion that is true of its data state. The turtle is a logical animal in the sense that it is endowed with an innate drive that makes it draw a conclusion from the assertion that is its knowledge state and from it data state. And the turtle only has available for its conclusions the Hoare triples of the code matrix and its own data and knowledge states.

The knowledge state specifies a row or column of the code matrix. In Figure 6 the knowledge state can have as values S, A, B, C, and H. The data state is a vector of the values of the variables. In Figure 6 the data state has as components the content of array p and the values of the variables k, j, and n. We call the entries of the code matrix gates.

Execution of a code matrix consists of the turtle performing a sequence of cycles. The
turtle’s data and knowledge states are updated as a consequence of executing the cycle. At the beginning of the cycle the turtle enters from the top of the matrix through the column indicated by the current knowledge state until it encounters a gate. The data state passes the gate or fails to do so. In the latter case execution terminates with failure. If the data state passes through the gate, then the turtle exits the matrix to the right through the row in which that gate occurs. The new state has the label of that row as knowledge state and as data state the one determined by having had to pass through the gate. This completes the cycle.

Initially the turtle has knowledge state S. When the knowledge state changes to H, execution halts with success.

What determines whether the turtle can pass through a gate and how does its state change when it does? If a gate is a boolean expression that evaluates to false in the data state, then the turtle fails to pass. If it evaluates to true, then the data state passes and remains unchanged. If a gate is an assignment statement, then the turtle passes if execution of the statement is defined and terminates. When it passes, then the data state is changed as defined by the semantics of the statement. In Figure 6 we see that gates may be composed by means of a semicolon. In general, if g and h are gates, then g; h is also a gate. The data state s passes through gate g; h yielding state t if it passes through gate g giving s’ and if s’ passes through gate h giving t.

The concept of gate is especially useful because of the possibility that a gate consisting of a boolean expression can be composed with an assignment. Such a gate may block the data state because the boolean expression evaluates to false. When the data state is not thus blocked, it will be transformed by the assignment statement. Gates may be composed of boolean expressions and statements in any order. For ease of translation to a conventional language like Java, we ensure that boolean expressions precede statements.

For example, suppose we start execution of Figure 6 with parameter N equal to 1000 and with knowledge state equal to S. As there is only one triple in column S, and as this triple occurs in row A, the computation continues with column A. Only one of the gates in that column allows the data state to pass, so computation continues in the row of that gate, namely B. Here follows an excerpt of the computation:

\[
\begin{array}{|c|c|c|c|c|}
\hline
\text{k} & \text{j} & \text{n} & \text{p} \\
\hline
S & & & \\
A & 2 & \{2,3,\ldots\} & \\
B & 2 & 5 & 0 & \{2,3,\ldots\} \\
C & 2 & 5 & 0 & \{2,3,\ldots\} \\
B & 2 & 5 & 1 & \{2,3,\ldots\} \\
A & 3 & 5 & 1 & \{2,3,5,\ldots\} \\
\ldots & & & \\
H & 1000 & 7919 & 23 & \{2,3,5,\ldots,7919\} \\
\hline
\end{array}
\]

4 Algorithm discovery from first principles

Let us use Matrix Code to discover an algorithm for filling an array $p[0..N-1]$ with the successive prime numbers $p_0 = 2, p_1 = 3, p_2 = 5, \ldots, p_{N-1}$.

4
The specification of the desired function body \(G \) can be given as the Hoare triple \(\{ S \} G \{ H \} \) with \(S \) and \(H \) as in Figure 3. This triple becomes part of the final code matrix; see Figure 3. As we don’t have an immediate implementation of gate \(G \) in Java, we need to expand the code matrix. One by one we add rows and columns in such a way that the matrix is expanded from the top right corner downward and to the left.

![Figure 3: A code matrix solving the problem, if only we had an easy implementation for gate \(G \) such that \(\{ S \} G \{ H \} \). We need at least one intermediate assertion; see Figure 4.](image)

Assertion \(H \) is too ambitious to achieve with a simple gate when the data state is as described by \(S \). So we need at least one condition, say, \(A \), that is intermediate between \(S \) and \(H \) in the sense that \(\{ S \} G_1 \{ A \} \) and \(\{ A \} G_2 \{ H \} \) for simple \(G_1 \) and \(G_2 \). Less formally: if we can’t fill all of a prime-number table of size \(N \) right away, we can at least fill a small one, say, of size \(k \leq N \). This suggests as intermediate assertion \(A \): the first \(k \) primes in increasing order are in \(p[0..k-1] \) with \(1 < k \leq N \). It is easy to reach \(A \) from \(S \): we put the first two primes in the table and set \(k=2 \).

This allows us to exit through the new row for \(A \), setting the knowledge state to \(A \). In the next step we enter through the column determined by the knowledge state, hence column \(A \). If the knowledge state is \(A \) (and if that assertion holds), then passing the gate \(k \geq N \) allows us to halt by exiting through row \(H \). The new row and column update our code matrix to the one in Figure 4.

However, when execution enters through column \(A \) in Figure 4 we may have that \(k < N \), so that we do not pass the gate \(k \geq N \). This points to the need to increase \(k \), hence to find the next prime after \(p[k-1] \). Let \(j \) be the candidate for this next prime. That suggests including in assertion \(B \): “\(A \) is true and \(k \leq N \) and \(j \) is such that there is no prime greater than \(p[k-1] \) and less than \(j \) and \(j \) is not divisible by any of \(p[0..n] \), a statement that we abbreviate to \(relB(p,k,n,j) \), as in Figure 2.

Column \(A \) is now completed with a gate allowing exit through the new row for \(B \). When we enter through the new column for \(B \) we immediately know one of the gates in column \(B \) for the easy case where the candidate \(j \) for the next prime actually turns out to be the next prime. See Figure 5 for the resulting stage in the development of the code matrix.

In condition \(B \) primeness of \(j \) can be concluded for sufficiently large \(n \). Initially this is typically not the case, hence the need for condition \(C \): \(B \) is true and the square of \(p[n] \) is not greater than \(j \). We need to be assured that \(n \) does not exceed \(k-1 \), which is a fact of number theory.

When entering column \(C \) we know that \(n \) is not large enough to conclude that \(j \) is prime.

\[^1\] In [2] we pay due attention to such crucial details.
A:	S: p[0..N-1] exists && N>1	H: p[0..N-1] contains the first N primes
k >= N	p[0] = 2; p[1] = 3; k = 2	A: p[0..k-1] contains the first k primes && k <= N
p[n]*p[n]>j; p[k++]=j		
k<N; j = p[k-1]+2; n=0		B: A && k<N && relB(p,k,n,j)

Figure 4: Next step after Figure 3 in column A the case k < N is missing. This leads to a new row and column labeled B in Figure 5.

B:	A:	S: p[0..N-1] exists && N>1	H: p[0..N-1] contains the first N primes
k >= N	p[0] = 2; p[1] = 3; k = 2	A: p[0..k-1] contains the first k primes && k <= N	
p[n]*p[n]>j; p[k++]=j			
k<N; j = p[k-1]+2; n=0		B: A && k<N && relB(p,k,n,j)	

Figure 5: Next step after Figure 4 in column A we have added a transition in column A for the case that k < N. In that case we can start finding the next prime after p[k-1] because we know that there is enough space in p to store it. relB(p,k,n,j) means that there is no prime between the last prime found and j and that n<k, and that j is not divided by any prime in p[0..n]. The missing entry in column B leads to a new row and column labeled C in Figure 6.
So we need to test for divisibility of \(j \) by \(p[n+1] \). Number theory assures that \(p[n+1] \) is a prime that has already been found \([2]\). See Figure 6.

C:	B:	A:	S: \(p[0..N-1] \) exists & \(N>r;1 \)
\(k >= N \)	\(p[n]*p[n] > j; p[k++] = j \)	\(p[0] = 2; p[1] = 3; k = 2 \)	\(H: p[0..N-1] \) contains the first \(N \) primes
\(j % p[n+1] != 0; n++ \)	\(k < N; j = p[k-1]+2; n=0 \)	\(A: p[0..k-1] \) contains the first \(k \) primes & \(k <= N \)	
\(j % p[n+1] == 0; j += 2; n=0 \)	\(p[n]*p[n] <= j \)	\(B: A && k<N && relB(p,k,n,j) \)	
\(j <= j \)	\(j <= j \)	\(C: B && p[n]*p[n] <= j \)	

Figure 6: Next step after Figure 5. Change from Figure 5 row and column with label \(C \) are added. There are no incomplete columns, so this is ready for translation to Java; see Figure 6.

This code matrix has no incomplete columns, so all that remains to be done is a straightforward translation to Java, which is possible because all boolean expressions precede assignments. See Figure 6.

5 Conclusions

We have introduced Matrix Code, a hybrid between correctness proof and program in the form of a matrix with rows and columns labeled by program assertions. The entries in the matrix consist of tests or statements or combinations of both. One can say that Matrix Code is code-independent. At the same time it is code: one uses it to program an abstract machine.

The existence of a code-independent notation for the algorithm allows us to separate concerns. The concerns are addressed in two stages: (1) a code matrix from the specification and (2) compilable code from the code matrix. Both stages have been demonstrated in this paper. The second stage is a routine task because of the special structure of the code matrix.

We have chosen the generation of the prime number table because the algorithm is around the upper limit of what most students in a first-year programming course can grasp. We believe that with matrix code a larger proportion of the class will be able to approach their
programming assignments not as a trial-and-error process, but as a goal-directed activity.

6 Acknowledgments

We gratefully acknowledge financial support from the Canadian Natural Sciences and Engineering Research Council as well as facilities from the University of Victoria.

References

[1] Edsger W. Dijkstra. Notes on structured programming, section 9. In O.-J. Dahl, E.W. Dijkstra, and C.A.R. Hoare, editors, *Structured Programming*, pages 1–72. Academic Press, 1972.

[2] M.H. van Emden. Matrix Code: a Language for Parallel Development of Code and Proof. http://arxiv.org/pdf/1109.5416v3.pdf, November 17, 2011.

```java
public static void primesCM(int[] p, int N) {
    final int S=0, A=1, B=2, C=3, H=4;
    int state=S;  // knowledge state
    int j=0, k=0, n=0; // data state
    while (true) {
        switch (state) {
            case S: p[0] = 2; p[1] = 3; k = 2;
                state = A;
                break;
            case A:
                if (k >= N) state = H;
                else {j = p[k-1]+2; n = 0; state = B;}
                break;
            case B: if (p[n]*p[n] > j) {
                p[k++] = j; state = A;
            } else state = C;
                break;
            case C:
                if (j%p[n+1] != 0) {n++; state = B;}
                else {j += 2; n = 0; state = C;}
                break;
            case H: return;
        } }
```

Figure 7: Translation into a Java function of the code matrix in Figure 6. A gate b0;S0 in column X and row R0 and gate !b0;S1 in column X and row R1 translate to case X: if (b0) {S0; state = R0;} else {S1; state = R1} break; in the above code. We display the literal translation, before performing the obvious optimizations.