Consumer product chemicals in indoor dust: a quantitative meta-analysis of U.S. studies

Susanna D. Mitro, Robin E. Dodson, Veena Singla, Gary Adamkiewicz, Angelo F. Elmi, Monica K. Tilly, Ami R. Zota

Supporting Information

25 pages

3 figures

11 tables

Contents and page numbers

Table S1 – S2	Figure S1 – S17
Table S2 and unpublished dataset methods – S3	Figure S2 – S18
Table S3 – S6	Table S9 – S19
Table S4 – S8	Table S10 – S20
Table S5 – S9	Table S11 – S21
Table S6 and intake assessment equations – S10	Figure S3 – S22
Table S7 – S11	References – S23
Table S8 – S13	

S1
Paper	Chemical Classes Measured	Indoor Environment	Method	Sieve (µm)	Storage container	Storage temperature
Adamkiewicz et al. (unpublished dataset)	RFRs, Phenols, Phthalates, Fragrance	Home	Study vacuumed	150	Glass jars with Teflon liners	Refrigerated
Abdallah et al. 2007	RFRs	Home	Study vacuumed	500	Nylon sock in plastic bag	–20°C
Batterman et al. 2010	RFRs	Non-residential	Study vacuumed			
Bradman et al. 2012	RFRs, Phthalates, PFASs	Non-residential	Study vacuumed	150	Amber glass jars	–20°C
Brown et al. 2014	RFRs	Home, non-residential	Existing used bag	150	Amber glass jars, in the dark	4°C
Carignan et al. 2013a	RFRs	Non-residential	Study vacuumed	500	Cellulose thimble, in aluminum foil, in a polyethylene bag	Room temperature
Carignan et al. 2013b	RFRs	Home, non-residential, car	Study vacuumed	500	Cellulose thimble, in aluminum foil, in a polyethylene bag	Room temperature
Dodson et al. 2012	RFRs	Home	Study vacuumed	150		–16°C
Dodson et al. 2015	Phthalates	Home	Study vacuumed	150	Pre-cleaned glass jars with Teflon-lined lids	–4°C
Fang et al. 2013	RFRs	Home, car	Study vacuumed	500		Room temperature
Fraser et al. 2013	PFASs	Home, non-residential, car	Study vacuumed	500	Thimbles wrapped in aluminum foil, put in polyurethane bags; after sieving put in clean amber glass jars	Room temperature until sieving, then –20°C
Goosey et al. 2011	PFASs	Home	Study vacuumed	500	Sock closed, sealed in plastic bag, transferred to glass tube	4°C
Guo et al. 2011	Phthalates	Home	Existing used bag	2000	Packed in clean aluminum foil	4°C
Hoffman et al. 2014	RFRs	Home	Study vacuumed	500	Amber glass vials	Room temperature
Hoffman et al. 2015	RFRs	Home	Study vacuumed	500	Amber glass vials	Room temperature
Hwang et al. 2008	Phthalates	Mix	Existing used bag	100	Glass jars cleaned with hexane	–20°C
Johnson et al. 2013	RFRs	Home	Existing used bag	150	Vacuum bag put in aluminum foil, sealed in plastic bag	–20°C
Knobeloch et al. 2012	PFASs	Home	Existing used bag	1000	Vacuum bags double wrapped in aluminum foil	4°C
Liao et al. 2013	Phenols, Phthalates, PFASs	Home	Existing used bag	2000	Clean aluminum foil	4°C
Loganathan et al. 2011	Phenols	Home, non-residential	Existing used bag	425		–20°C
Meeker et al. 2010	RFRs	Home	Existing used bag	150		
Rudel et al. 2003	Phenols, Phthalates	Home	Study vacuumed	150	Thimbles put in glass jars with Teflon-lined lids	–4°C
Schreder et al. 2014	RFRs	Home	Study vacuumed	300	Cellulose collection filter in a whirl-pak	4°C
Shin et al. 2014	RFRs, Phthalates, Fragrance	Home	Study vacuumed	150	Thimbles wrapped in aluminum foil, put in polypropylene vials	–20°C
Stapleton et al. 2008	RFRs	Home	Study vacuumed	500		Room temperature
Stapleton et al. 2009	RFRs	Home	Existing used bag	150		Room temperature
Stapleton et al. 2014	RFRs	Home	Study vacuumed	500	Thimbles wrapped in foil, stored in plastic bags	–4°C
Strynar et al. 2008	PFASs	Mix	Existing used bag	150	Amber glass containers	Room temperature
Wang et al. 2012	Phenols	Mix	Existing used bag	2000	Clean aluminum foil	4°C
Wang et al. 2013	Phenols	Home	Existing used bag	2000	Clean aluminum foil	4°C
Wilson et al. 2007	Phenols	Home, non-residential	Study vacuumed		Lidded glass jar sealed with Teflon tape, in two Ziplock bags	–10°C
Wu et al. 2015	PFASs	Home	Study vacuumed	150		

Information was collected from published manuscripts and from personal communications with the authors of those manuscripts.
Table S2: Quality assurance/quality control measures from 31 papers and 1 unpublished dataset with quantitative data

Paper	Analysis	Reference material	Internal standard	Lab blank	Field blank	Additional Accuracy/Precision
Adamkiewicz et al. (unpublished)*	GC/MS in SIM mode		✓	✓		Lab-split duplicates measured (n=5 for phenols; n=4 for neutrals); Matrix spikes (n=10 for phenols; n=8 for neutrals)
Abdallah et al. 2007³	LC/MS/MS in ES negative ion mode, and MS/MS in MRM mode	✓	✓	✓	✓	Replicate analysis of SRM 2585; comparison to indicative values
Batterman et al. 2010²	GC/MS, negative chemical ionization mode	✓	✓	✓	✓	Calibrations checked with the Analytical Center “Typhoon” Laboratory. Standards run every 5 samples; results accepted only when standards varied by < 10%
Bradman et al. 2012³	GC/MS/MID	✓				Duplicates measured (n=2)
Brown et al. 2014⁴	GC/MS	✓	✓	✓		Lab blank corrected
Carignan et al. 2013⁵	GC/ECNI-MS	✓	✓	✓		Duplicates measured (n=3); lab and field blank corrected
Carignan et al. 2013⁶	GC/ECNI-MS	✓	✓	✓		Duplicates measured (n=3); matrix spikes (n=3)
Dodson et al. 2012⁷	GC-ECNI/MS or GC-EI/MS or LCMS/MS (HBCDs & TBBPA)	✓	✓	✓		Inter-laboratory comparisons, matrix spikes, blank corrected
Dodson et al. 2015⁸	GC/MS in SIM mode	✓	✓	✓		Duplicates measured (n=3); matrix spikes (n=3)
Fang et al. 2013⁹	GC/EI-MS	✓	✓	✓	✓	Matrix spikes, inter and intra-day variability measured, duplicates measured (n=3)
Fraser et al. 2013¹⁰	UPLC/MS/MS for most samples. HPLC/TOFMS for FTOHs, N-Me FOSE, N-Et FOSE, PFTra, PFTea	✓	✓	✓	✓	--
Goosey et al. 2011¹¹	LC/MS/MS in ES negative ion mode; MS/MS in MRM mode	✓	✓	✓	✓	--
Guo et al. 2011¹²	GC/MS in SIM mode	✓	✓	✓		Matrix spikes, fourth extraction of samples
Hoffman et al. 2014¹³	GS-ECNI/MS	✓	✓	✓		Blank subtraction, interclass correlation coefficients
Hoffman et al. 2015¹⁴	GS-ECNI/MS	✓	✓	✓		Blank subtraction, interclass correlation coefficients
Hwang et al. 2008¹⁵	GC/MS in EI and SIM mode	✓	✓	✓		Duplicate samples
Johnson et al. 2013¹⁶	GC/ECNI-MS	✓	✓	✓		Blank corrected
Knobeloch et al. 2012¹⁷	HPLC-MS/MS	✓	✓	✓		Matrix spikes
Liao et al. 2012¹⁸	LC-MS/MS. ESI-MS/MS, with HPLC, in negative ion MRM mode	✓	✓	✓		Third extraction, matrix spikes, duplicate samples
Loganathan et al. 2011¹⁹	HPLC–MS/MS in electrospray negative ion mode	✓	✓	✓		Third extraction, matrix spikes, duplicate samples
Meeker et al. 2010²⁰	GC-EI/MS for TPP,GC-ECNI/MS for TDCPP	✓	✓	✓		Duplicate samples (n=3), matrix spikes (n=3), blank correction
Rudel et al. 2003²¹	GC/MS system in SIM mode	✓	✓	✓		Duplicate samples (n=4), matrix spikes
Schreder et al. 2014²²	UPLC-APPI/MS/MS	✓	✓	✓	✓	Matrix spikes, duplicates, blank correction
Shin et al. 2014²³	GC-EI/MS; GC-NCI/MS for TBPH and TBB	✓	✓	✓		Duplicates, matrix spikes
Stapleton et al. 2008²⁴	(GC/ECNI-MS)	✓	✓	✓	✓	Duplicate samples (n=3), matrix spikes (n=53, blank correction)
Methods for Pesticide and Chemical Exposure (PACE) Study
(G. Adamkiewicz, unpublished data)

Participant Recruitment

A convenience sample of adults living in the low-income, and predominantly African American communities of Roxbury, Massachusetts (and surrounding communities), and Gadsden County, Florida was recruited. We utilized direct recruitment at community events and through the posting of informational flyers. We also recruited some participants via a previous health study of Gadsden County and Roxbury residents, if they had provided permission to be contacted possible participation in subsequent studies. A total of 198 households were recruited (n=98 in Florida and n=100 in Massachusetts), and home visits were conducted between December 2006 and January 2008.

Laboratory analysis

Settled dust samples were collected using a Eureka Mighty-Mite II canister vacuum cleaner, which was used to sample the entire residence for approximately 40 minutes. Samples were collected in two thimbles, which were placed into pre-cleaned glass jars with Teflon liners and refrigerated. The entire contents of the thimble containing the dust sample were passed through a 150-um sieve, and

Study (Year)	Methodology	Duplicate Samples	Matrix Spikes	Blank Correction	Other Analysis
Stapleton et al. 2009	GC/EI-MS for TCPP and TPP; GC/ECNI-MS for TDCPP	✓	✓		Blank corrected, interclass correlation coefficients
Stapleton et al. 2014	GC/MS	✓	✓		Duplicate analysis, matrix spikes
Strynar et al. 2008	GC-EI/MS in SIM mode (FTOHs). LC-MS/MS in negative ESI mode (other PFCs)	✓	✓		Duplicate analysis, matrix spikes
Wang et al. 2012	LC-MS/MS	✓	✓		Matrix spikes
Wang et al. 2013	HPLC-MS/MS	✓	✓		Matrix spikes
Wilson et al. 2007	GC/MS	✓	✓		Blank correction, duplicate samples, matrix spikes
Wu et al. 2015	LC/MS/MS	✓	✓		Duplicates
the fine fraction weighed. When designated for chemicals analyses, the fine fraction was split into two aliquots of equal weight for the pesticides/neutrals and phenols extractions. If fine dust mass was sufficient, extra aliquots of equal weight were prepared for duplicate or spiked sample extractions. Pesticides and neutral chemicals were determined by soxhlet-extraction of dust aliquots with 6% diethyl ether in hexanes, florisil cleanup, and GC/MS selected ion monitoring (SIM) analysis, with improvements using diazinon-d_{10} and pentachloronitrobenzene as additional extraction surrogates, deuterated pesticides and phthalates and benzyl benzoate as additional internal standards, and quadratic calibration for non-linear analytes. Phenolic chemicals were determined by sonication extraction of acidified dust aliquots with dichloromethane (DCM), diazomethane derivatization, and GC/MS/SIM analysis, generally as described by Rudel et al.(2009),^{32} with improvements using 2,4-dibromophenol as an added extraction surrogate, ortho-phenylphenol-^{13}C_{6}, bisphenol A-^{13}C_{12} and 2,4-dichlorophenol-^{13}C_{6} as additional internal standards, and quadratic calibration for non-linear analytes. All samples (n=198) were analyzed for target pesticides. Due to budgetary limitations, a subset of samples in each cohort was randomly selected for neutral (n=55 in Florida and n=55 in Massachusetts) and phenol (n=50 in Florida and n=50 in Massachusetts) analysis.

Acknowledgment: This work was funded by the U.S. Department of Housing and Urban Development (Grant Number MALHH0139-05).
Table S3: Studies contributing data to the meta-analysis

Chemical	Study Numbering Key
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27

Filled boxes indicate that a study’s measurements of a chemical were used to generate a pooled estimate for the chemical. Boxes are color coded by chemical class: blue represent phthalates; red represents RFRs; yellow represents fragrances; green represents phenols; and purple represents PFASs. Study numbering key: 1. Adamkiewicz et al. (unpublished); 2. Abdallah et al. 2007; 3. Batterman et al. 2010; 4. Bradman et al. 2012;
5. Brown et al. 2014; 6. Carignan et al. 2013a; 7. Carignan et al. 2013b; 8. Dodson et al. 2012; 9. Dodson et al. 2015; 10. Fraser et al. 2013; 11. Goosey et al. 2011; 12. Hoffman et al. 2014; 13. Hoffman et al. 2015; 14. Hwang et al. 2008; 15. Johnson et al. 2013; 16. Knobeloch et al. 2012; 17. Liao et al. 2012; 18. Meeker et al. 2010; 19. Rudel et al. 2003; 20. Schreder et al. 2014; 21. Shin et al. 2014; 22. Stapleton et al. 2008; 23. Stapleton et al. 2014; 24. Strynar et al. 2008; 25. Wang et al. 2012; 26. Wilson et al. 2007; 27. Wu et al. 2015
Table S4. Treatment of below-method detection limit (MDL) values, from 31 papers and 1 unpublished dataset with quantitative data

Paper	N/A	MDL/\sqrt{2}	MDL/2	Other	Not reported
Adamkiewicz et al. (unpublished)				MDL	
Abdallah et al. 2007	x		x	MDL	
Batterman et al. 2010			x	MDL	
Bradman et al. 2012				x	MDL
Brown et al. 2014					
Carignan et al. 2013	x		x	MDL	
Carignan et al. 2013	x			MDL	
Dodson et al. 2012	x		x	MDL	
Dodson et al. 2015	x			MDL	
Fang et al. 2013	x		x	MDL	
Fraser et al. 2013	x		x	MDL	
Goosey et al. 2011	x		x	MDL	
Guo et al. 2011	x		x	MDL	
Hoffman et al. 2014	x		x	MDL	
Hoffman et al. 2015	x		x	MDL	
Hwang et al. 2008	x			MDL	
Johnson et al. 2013	x		x	MDL	
Knobeloch et al. 2012	x		x	MDL	
Liao et al. 2012	x		x	MDL	
Loganathan et al. 2011	x		x	MDL	
Meeker et al. 2010	x		x	MDL	
Rudel et al. 2003	x		x	MDL	
Schreder et al. 2014	x		x	MDL	
Shin et al. 2014	x		x	MDL	
Stapleton et al. 2008	x		x	MDL	
Stapleton et al. 2009	x			MDL	
Stapleton et al. 2014	x			MDL	
Strynar et al. 2008	x			MDL	
Wang et al. 2012	x			MDL	
Wang et al. 2013	x			MDL	
Wilson et al. 2007	x		x	MDL	
Wu et al. 2015	x		x	MDL	

^1N/A: no values fell below the MDL, or no summary statistics were calculated by the authors that relied on values <\text{MDL}.

^2The complete dataset was available, and the study team inserted MDL/\sqrt{2} for <\text{MDL} values.
Table S5: Physico-chemical input values used for the intake model

Chemical Abbreviation	CAS Number	Molecular Weight	H (bond method)	Log Kaw	Log Koa estimated	Log Kow estimated	H (group method)
TPHP	115-86-6	326.29	3.98E-08	-7.40	8.459	4.70	
TDCIPP	13674-87-8	430.91	2.61E-09	-8.58	10.622	3.65	
TCIPP	13674-84-5	327.57	5.96E-08	-7.22	8.203	2.89	
TCEP	115-96-8	285.49	2.55E-08	-7.59	5.311	1.63	
BEH-TEBP	26040-51-7	706.15	2.98E-07	-6.53	16.864	11.95	3.08E-07
HBCDD	3194-55-6	641.70	1.72E-06	-5.76	10.466	7.74	6.43E-11
aHBCDD	3194-55-6	641.70	1.72E-06	-5.76	10.466	7.74	6.43E-11
bHBCDD	3194-55-6	641.70	1.72E-06	-5.76	10.466	7.74	6.43E-11
gHBCDD	3194-55-6	641.70	1.72E-06	-5.76	10.466	7.74	6.43E-11
BTBPE	37853-59-1	687.64	7.32E-09	-8.14	15.674	9.15	4.25E-07
DBDPE	84852-53-9	971.23	6.42E-08	-7.19	19.221	13.64	2.94E-08
aDDC-CO	13560-89-9	653.73	7.44E-06	-5.13	14.787	11.27	
sDDC-CO	13560-89-9	653.73	7.44E-06	-5.13	14.787	11.27	
TBBPA	79-94-7	543.88	2.31E-13	-12.64	18.225	7.20	
MeP	99-76-3	152.15	3.61E-09	-8.44	8.791	2.00	2.23E-09
BuP	94-26-8	194.23	8.45E-09	-8.07	10.032	3.47	6.00E-09
ETp	120-47-8	166.18	4.79E-09	-8.32	9.178	2.49	3.01E-09
NP	84852-15-3	220.36	5.97E-06	-5.22	9.525	5.77	1.73E-05
NP1EO	9016-45-9	440.63	9.61E-15	-14.02	16.886	4.48	2.62E-17
NP2EO	9016-45-9	440.63	9.61E-15	-14.02	16.886	4.48	2.62E-17
OP1EO	9036-19-5	426.60	7.24E-15	-14.14	16.299	3.77	
OP2EO	9036-19-5	426.60	7.24E-15	-14.14	16.299	3.77	
2,4-DHUBON	131-56-6	214.22	2.65E-11	-10.58	11.925	2.96	
BPA	80-05-7	228.29	9.16E-12	-11.04	12.747	3.64	
HHCB	1222-05-5	258.41	1.32E-04	-3.88	8.168	6.26	7.56E-07
BBzP	85-68-7	312.37	4.22E-08	-7.37	9.018	4.84	2.13E-09
DEHP	117-81-7	390.57	1.18E-05	-4.93	12.557	8.39	1.02E-05
DEHA	103-23-1	370.58	5.16E-05	-4.29	12.871	8.12	2.13E-05
DnBP	84-74-2	278.35	1.22E-06	-5.91	8.631	4.61	4.45E-07
DiBP	84-69-5	278.35	1.22E-06	-5.91	8.412	4.46	6.43E-07
DEP	84-66-2	222.24	3.94E-07	-6.40	7.023	2.65	1.12E-07
DnOP	117-84-0	390.57	1.18E-05	-4.93	12.079	8.54	7.05E-06
DnHP	84-75-3	334.46	3.80E-06	-5.42	9.799	6.57	1.77E-06

Chemical abbreviations can be found in the text, in Table 1.
Table S6: Exposure factors used for the intake model.

	Weight (kg)	Body Surface Area (m²)	Age (years)	Dust Ingestion (g/day)	Volume of air inhaled (m³/day)
Adult	70	1.89	40 – 49	0.03	16
Child	18.6	0.76	3 – 6	0.06	10.1

Intake equations used in the intake model
Parameters based on values from the literature.\(^{33-36}\)

Dust to gaseous air concentration (µg/m³):
Dust concentration (µg/g) × rho_dust / (fom_dust × (10\(^{\text{logKoa}}\)))
 - fom_dust = volume fraction of organic matter associated with settled dust, assumed 0.2
 - rho_dust = density of dust (g/m³), assumed to be 2000000 g/m³

Gaseous air to total air concentration (µg/m³):
Gaseous air concentration ((ng/m³) × (1 + (TSP / 1000000) × (fom_part × (10\(^{\text{logKoa}}\)) / rho_part))
 - TSP = total suspended particles (µg/m³), assumed 20 µg/m³
 - fom_part = volume fraction of organic matter associated with airborne particles, assumed to be 0.4
 - rho_part = density of airborne particles, default 100000 g/m³

Dust ingestion
Dust concentration (µg/g) × ingestion rate (g/day) / weight (kg)

Air inhalation
(Total air concentration (ng/m³) × volume of air inhaled (m³/day)) / weight (kg)

Dermal exposure through air
Gaseous air concentration (ng/m³) × (Indoor air transdermal permeability (cm/hour) / 100) × body surface area (m²) × exposure time (hours)) / weight (kg)
 - Indoor air transdermal permeability = (1 / ((1/vd) + (1/kp_b)))
 - vd = mass-transfer coefficient between bulk air and skin surface (cm/hr), default 600 cm/hr
 - kp_cw = (10\(^{(0.7 \times \text{logKow} - 0.0722 \times (\text{molecular weight}^{2/3}) - 5.252)}) × 3600
 - B = (kp_cw × (molecular weight \(^{0.5}\)) / 2.6
 - kp_w = kp_cw / (1+B)
 - kp_b = kp_w × 10\(^{\text{abs(logKaw)}}\)
Table S7: Identification and brief description (modified from California Department of Toxic Substances Control Safer Consumer Products (CA SCP)) of the authoritative sources which the CA SCP program used to describe hazard traits for each chemical of interest.

Authoritative List	Description
California Maximum Contaminant Levels (CA MCL)	Chemicals for which primary Maximum Contaminant Levels have been established and adopted. The State Water Resources Control Board establishes MCLs – health protective drinking water standards to be met by California public water systems. MCLs must be reviewed every five years and take into account not only a chemical’s health risks but also factors such as detectability and treatability, as well as costs of treatment.
California Proposition 65 (Prop 65)	Chemicals known to cause cancer and/or reproductive toxicity that are listed under the California Safe Drinking Water and Toxic Enforcement Act of 1986. California’s Office of Environmental Health Hazard Assessment (OEHHA) publishes and updates the Proposition 65 list of chemicals known to the state to cause cancer, or developmental or reproductive toxicity.
California Toxic Air Contaminants (CA TACs)	Chemicals identified as Toxic Air Contaminants. The California Air Resources Board (ARB) regulates Toxic Air Contaminants (TACs), or “air pollutants which may cause or contribute to an increase in mortality or an increase in serious illness, or may pose a present or potential hazard to human health.” In addition to the list of TACs it developed in collaboration with OEHHA, ARB has also designated chemicals identified as hazardous air pollutants under the federal Clean Air Act as TACs.
California Environmental Contaminant Biomonitoring Program Priority Chemicals (CECBP)	The California Biomonitoring Program is a multi-agency program involving California Department of Public Health, OEHHA, and Department of Toxic Substances Control (DTSC) to monitor priority chemicals identified by the Centers for Disease Control and Prevention (CDC) and recommended by their Scientific Guidance Panel.
Canada Persistent, Bioaccumulative, inherently Toxic (Canada PBiT)	Chemicals that are identified as Persistent, Bioaccumulative, and Inherently Toxic to the environment by the Canadian Environmental Protection Act Environmental Registry Domestic Substances List. Using information from Canadian industry, academic research and other countries, Government of Canada scientists from the Existing Substances Program at Health Canada and Environment Canada worked with partners in applying a set of rigorous tools to each of the approximately 23,000 chemicals on the Domestic Substances List.
Centers for Disease Control and Prevention (CDC) 4th National Exposure Report	Chemicals that are identified on the Centers for Disease Control and Prevention’s Fourth National Report on Human Exposure to Environmental Chemicals and Updated Tables. The Centers for Disease Control and Prevention (CDC) is part of the U.S. Department of Health and Human Services, and produces the National Exposure Report as a series of ongoing assessments of the U.S. population’s exposure to environmental chemicals.
Clean Water Act (CWA) 303(c) and 303(d)	Chemicals that are identified as priority pollutants in the California Water Quality Control Plans under section 303(c) of the federal Clean Water Act and in section 131.38 of Title 40 of the Code of Federal Regulations, or identified as pollutants by California or the United States Environmental Protection Agency for one or more water bodies in California under section 303(d) of the federal Clean Water Act and section 130.7 of title 40 of the Code of Federal Regulations.
European Commission Annex VI Carcinogen, Mutagen or Reproductive Toxicant (EC Annex VI CMR)	Chemicals classified by the European Commission as carcinogens, mutagens, and/or reproductive toxicants. Annex VI is maintained by the European Chemicals Agency (ECHA), an international authoritative organization working with the European Commission and the European Union (EU) Member States for the safety of human health and the environment by identifying the needs for regulatory risk management at the EU-wide level.
European Commission Persistent, Bioaccumulative and Toxic (EC PBTs)	Chemicals included as persistent, bioaccumulative and toxic, or very persistent and very bioaccumulative by the European Commission in the candidate list of Substances of Very High Concern.
Integrated Risk Information System (IRIS) carcinogens	Chemicals that are identified as “carcinogenic to humans”, “likely to be carcinogenic to humans”, or Group A, B1, or B2 carcinogens in the United States Environmental Protection Agency’s Integrated Risk Information System. IRIS is a human health assessment program that evaluates quantitative and qualitative information about effects from exposure to environmental contaminants.
Authoritative List	Description
--	---
International Agency for Research on Cancer (IARC) carcinogens	Groups 1, 2A, and 2B carcinogens identified by the International Agency for Research on Cancer. IARC promotes international collaboration in cancer research and developed criteria to evaluate carcinogenic risks to humans and publishes monographs describing these evaluations.
National Toxicology Program Office of Health Assessment and Translation Reproductive or Developmental Toxicants (NTP OHAT)	Reproductive or developmental toxicants identified in Monographs on the Potential Human Reproductive and Developmental Effects. The National Toxicology Program (NTP) is an interagency program managed by the U.S. Department of Health and Human Services whose mission is to evaluate agents of public health concern by developing and applying tools of modern toxicology and molecular biology. The NTP Office of Health Assessment and Translation (OHAT) conducts technical assessments focused on understanding the potential for adverse effects of substances on human health.
National Toxicology Program 12th Report on Carcinogens (NTP 12th ROC)	Chemicals that are identified as “known to be” or “reasonably anticipated to be” a human carcinogen. The Report on Carcinogens (RoC) is a congressionally mandated, science-based, public health report that identifies agents, substances, mixtures, or exposures in our environment that are “known” or “reasonably anticipated” to cause cancer in humans.
Oslo and Paris Conventions for the Protection of the Marine Environment of the North-East Atlantic (OSPAR)	Chemicals that are identified on Part A of the list of Chemicals for Priority Action, Oslo and Paris Conventions for the Protection of the Marine Environment of the North-East Atlantic. In 2002, the OSPAR Convention adopted the OSPAR List to protect the marine environment by indicating the substances on the OSPAR list, providing a background document to assess the uses and risks for the substances, and to conclude what actions OSPAR should take to move towards the cessation target.
United States Environmental Protection Agency Toxics Release Inventory Persistent, Bioaccumulative and Toxic (US EPA TRI PBTs)	Chemicals that are subject to reporting under the Emergency Planning and Community Right-to-Know Act section 313. U.S. EPA maintains the Toxics Release Inventory (TRI) database, which summarizes releases reported to U.S. EPA to provide communities with information about toxic chemical releases and waste management activities and to support informed decision-making by industry, government, non-governmental organizations and the public.
Washington State Persistent, Bioaccumulative and Toxic (WA PBTs)	Washington Department of Ecology’s Persistent, Bioaccumulative, Toxic (PBT) Chemicals. Washington’s PBT initiative aims to reduce and phase-out the use, release, and exposure to PBTs in Washington in order to reduce and eliminate threats to human health and the environment.

Hazard traits were identified directly from the authoritative list when available, or from related materials such as fact sheets produced by the organization responsible for the authoritative list. Hazard traits as defined by the California Department of Toxic Substances Control are “properties of chemicals that fall into broad categories of toxicity, adverse environmental effects, physical hazards or exposure potential characteristics that may contribute to adverse effects in exposed humans, domesticated animals, wildlife, or in ecological communities, populations or ecosystems.”
Table S8: Chemicals measured in one or two studies, not included in any subsequent phases of analysis. CAS RN and chemical common abbreviations are listed for chemicals measured in two studies.

Chemical Common Abbreviation	Common Name(s), Other Abbreviations	CAS Registry Number (CAS RN)	Measured in two studies
Replacement Flame Retardants (RFRs)			
a-DBE-DBCH	Alpha-1,2-dibromo-4-(1,2-dibromoethyl)-cyclohexane; a-TBEC; a-TBEC	3322-93-8	X
b-DBE-DBCH	Beta-1,2-dibromo-4-(1,2-dibromoethyl)-cyclohexane, b-TBEC; b-TBEC	3322-93-8	X
TBP-BAE	2-bromoallyl-2,4,6-tribromophenyl ether (BATE)	99717-56-3	X
TBP-DBPE	2-3-dibromopropyl-2,4,6-tribromophenyl ether (DPTE)	35109-60-5	X
HBB	Hexabromobenzene	87-82-1	X
Dechlorane Plus			
V6	alpha-tetrabromocyclooctane		
beta-tetrabromocyclooctane			
OBTMPI	cresyl diphenyl phosphate		
c-DBE-DBCH			
d-DBE-DBCH			
pentabromotoluene (PBT)			
pentabromoethylbenzene (PBE)			
tris (2,3-dibromopropyl) phosphate (TDBPP)			
triethyl phosphate (TEP)			
tri-n-propyl phosphate (TnPP)			
tri-n-butyl phosphate (TnBP)			
Tri-iso-butyl-phosphate (TiBP)			
tri-(2-butoxyethyl)-phosphate (TBOEP)			
tri-(2-ethylhexyl)phosphate (TEHP)			
ethylhexyl diphenyl phosphate (EHDPP)			
tricresyl phosphate (T3P)			
Hexachlorocyclopentadienyl-dibromocyclooctane (DBHCTD)			
TBP-AE			
TBBPA-BDBPE			
Bis(2chloroethyl)vinyl phosphate			
Tris(3-chloropropyl)phosphate			
Chemical Common Abbreviation	Common Name(s), Other Abbreviations	CAS Registry Number (CAS RN)	Measured in two studies
-------------------------------	---	-----------------------------	-------------------------
Tris(2-butoxyethyl)phosphate			
Isodecyl diphenyl phosphate			
Isopropylphenyldiphenyl phosphate			
Phthalates and phthalate alternatives			
DCHP	Dicyclohexyl phthalate	84-61-7	X
DPeP	Di-n-pentyl phthalate; dipentyl phthalate; DPP	131-18-0	X
DnPP	Di-n-propyl phthalate; dipropyl phthalate; DPRP	131-16-8	X
DMP	Dimethyl phthalate		
DiNP	Di-iso-nonyl phthalate		
Phenols			
PrP	Propyl paraben	94-13-3	X
4-tert-butylphenol		98-54-4	X
4,4'-methylenezidiphenol		620-92-8	X
4-cumylphenol		599-64-4	X
4,4' biphenyldiol		92-88-6	X
2,3-dibromo-1-propanol		96-13-9	X
4-nitrophenol		100-02-7	X
2,4-dichlorophenol		120-83-2	X
3-biphenylol		580-51-8	X
2(methylthio)Benothiazole		615-22-5	X
Bisphenol B		77-40-7	X
P-phenylphenol		14938-35-3	X
Bisphenol AF		1478-61-1	X
Benzyl paraben			
Heptyl paraben			
BADGE + Hydrolysis products of BPA			
nonylphenol ethoxycarboxylate			
4-octylphenol			
4-tert-octylphenol			
p-phenylphenol			
BPAF			
BPAP			
Bisphenol F			
Bisphenol P			
Bisphenol S			
Chemical Common Abbreviation	Common Name(s), Other Abbreviations	CAS Registry Number (CAS RN)	Measured in two studies
------------------------------	---	------------------------------	------------------------
Bisphenol Z	Benzophenone		
	Tetramethylbutyl phenol		
	Hydroquinone		
	4-hydroxybenzoic acid		
	1-H-benzotriazole		
	Tolytriazole		
	5-Cl-benzotriazole		
	5,6-dimethyl-1-H-benzotriazole		
	Benzothiazole		
	2-OH-benzothiazole		
	2-NH2-benzothiazole		
	2-thiocyanomethylthio-benzothiazole		
	2-OH-4-methoxy-benzophenone		
	2-OH-4-MeO-benzophenone		
	2,4-2OH-benzophenone		
	22'-2OH-4-MeO-benzophenone		
	22'44'-4OH-benzophenone		
	4-OH-benzophenone		
	2-ethylhexyl 4-hydroxybenzoate		
	2-sec-butylphenol		
	3-hydroxybenzophenone		
	4,4'bipheyldiol		
	4-sec-butylphenol		
	3,4- dichlorophenol		
	Bayer 28589		

Perfluoroalkyl Substances (PFAS)

Common Name(s), Other Abbreviations	CAS Registry Number (CAS RN)	Measured in two studies	
PFPeA	45167-47-3	X	
PFUND A	2058-94-8	X	
PFT A	862374-87-6	X	
PFT A	365971-87-5	X	
MeFOSE	24448-09-7	X	
EtFOSE	1691-99-2	X	
6:2 FTOH	647-42-7	X	
10:2 FTOH	865-86-1	X	
Chemical Common Abbreviation	Common Name(s), Other Abbreviations	CAS Registry Number (CAS RN)	Measured in two studies
------------------------------	-------------------------------------	------------------------------	-------------------------
PFDS	Perfluorodecane sulfonate		
PFHpS	Perfluorooctane sulfonate		
EtFOSA	N-ethylperfluorooctanesulfonamide		
MeFOSA	N-methylperfluorooctanesulfonamide		
PFOSA	Perfluorooctanesulfonamide		
Fragrances			
AHTN			
HCA			
ethyl methylphenylglycidate			
alpha-isomethylionone			
Lilial			
methyl salicylate			
3-hexenyl salicylate			
benzyl salicylate			
phenylethyl salicylate			
Musk dimethyl indane			
musk ketone			
musk xylene			
musk 36A			
amyl cinnamal			
Cedrene			
n-hexyl salicylate			
Maltol			
Menthol			
4H-pyran-4-1, 2,3-dihydro-3,5-dihydroxy-6-methyl			
2-methoxy-4-vinylphenol			
Piperonal			
Vanillin			
caryophyllene			
Coumarin			

Chemicals measured in 2 studies are denoted with an X; chemicals measured in only one study are not marked.
Figure S1. Map of the United States with circles indicating the locations where dust samples were collected for studies included in the meta-analysis. The size of the circles is proportional to the number of studies that collected dust and, for circles representing 2 or more studies, is labeled with the number of studies. If a study collected samples in more than one location, it is represented with a circle in each location. If a study tested samples for more than one chemical class, each class is represented in a separate color-coded circle. The circle located off the coast of New England represents a study that did not disclose a precise location. Studies included in the analysis are listed in Table S3. Base U.S. map from clipartbest.com
Figure S2: Number of samples collected in various indoor environments. Samples grouped by chemical class. Studies used were the ones included in the meta-analysis (studies listed in Table S3).
Table S9: Chemicals with highest detection frequencies of the chemicals measured in at least 3 datasets.

Chemical	Class	# datasets	Detected
DEHP	Phthalate	8	100%
DEHA	Phthalate	4	100%
HHCB	Fragrance	3	100%
BBzP	Phthalate	8	98-100%
TPHP	RFR	8	98-100%
TDCIPP	RFR	14	95-100%
DnBP	Phthalate	7	95-100%
DiBP	Phthalate	7	95-100%
HBCDD (and isomers)	RFR	10	92-100%
MeP	Phenol	3	90-100%

Detection frequency in each dataset was recorded and compared across datasets. Studies included in this analysis are listed in Table S3. Chemical abbreviations are defined in the text, in Table 1.
Chemical	Class	# Datasets Pooled	GM (ng/g)	95% CI	I^2	τ
DEHP	Phthalate	7	237542.06	(168030.37, 335843.31)	85.64%	0.4215
BBzP	Phthalate	6	44293.80	(22074.98, 88876.23)	93.04%	0.8354
DnBP	Phthalate	6	13643.25	(9780.05, 19030.53)	84.49%	0.3779
DEHA	Phthalate	4	6162.27	(4102.29, 9256.67)	85.69%	0.3833
DiBP	Phthalate	6	3588.18	(1968.25, 6541.36)	94.95%	0.7293
DEP	Phthalate	6	2033.47	(1148.14, 3601.48)	93.20%	0.6864
DnOP	Phthalate	3	1463.84	(1020.25, 2023.53)	63.04%	0.2401
DnHP	Phthalate	4	1307.93	(927.69, 1844.20)	64.81%	0.2794
TCIIPP	RFR	5	3309.33	(2306.30, 4748.58)	0.00%	0.00
TPHP	RFR	8	3299.41	(1658.72, 6562.32)	93.85%	0.9554
TDCIPP	RFR	14	3180.52	(2298.93, 4400.18)	76.03%	0.5219
TCEP	RFR	6	1067.95	(429.45, 2655.80)	92.03%	1.0810
EH-TBB	RFR	15	312.50	(139.32, 700.92)	95.07%	1.5325
HBCDD	RFR	9	275.17	(214.26, 353.40)	0.00%	0.00
BEH-TEBP	RFR	15	282.51	(130.28, 612.59)	95.24%	1.4695
aHBCD	RFR	5	127.41	(82.61, 196.53)	49.71%	0.3449
DBDPE	RFR	8	94.30	(66.66, 133.39)	41.36%	0.3146
TBBPA	RFR	5	105.48	(28.11, 395.88)	91.14%	1.4391
gHBCD	RFR	5	100.85	(59.03, 172.29)	66.89%	0.9495
BTBPE	RFR	9	27.00	(21.20, 34.39)	16.31%	0.1490
bHBCD	RFR	5	26.91	(20.19, 35.86)	0.00%	0.00
aDDC-CO	RFR	3	6.08	(3.13, 11.81)	82.03%	0.5301
sDDC-CO	RFR	3	2.92	(2.19, 3.88)	0.00%	0.00
HHCBO	Fragrance	3	1977.32	(550.54, 7101.06)	96.83%	1.1114
NPZEO	Phenol	3	6972.30	(3722.31, 13059.88)	91.72%	0.5305
NP	Phenol	3	4595.35	(2290.21, 9221.56)	92.87%	0.5874
NPIEO	Phenol	3	3516.78	(2023.73, 6111.33)	92.49%	0.4691
MeP	Phenol	4	1510.66	(705.50, 3234.73)	94.20%	0.7515
OPZEO	Phenol	3	622.54	(329.94, 1174.62)	91.75%	0.5366
OPIEO	Phenol	3	552.30	(366.65, 832.06)	85.04%	0.3329
2,4-DHBZON	Phenol	3	339.95	(123.08, 939.08)	96.55%	0.8821
BPA	Phenol	4	199.46	(25.55, 1557.29)	99.02%	2.0849
BuP	Phenol	3	102.37	(21.21, 493.98)	97.70%	1.3719
EtP	Phenol	3	80.73	(23.76, 274.27)	96.83%	1.0577
8:2 FTOH	PFAS	4	39.48	(8.29, 187.99)	97.26%	1.5652
PFOS	PFAS	9	38.91	(17.47, 86.69)	95.55%	1.1893
PFOA	PFAS	9	37.34	(20.26, 68.81)	94.33%	0.9230
PFHxS	PFAS	6	16.97	(4.17, 69.02)	97.74%	1.7289
PFNA	PFAS	8	14.97	(9.98, 22.46)	83.88%	0.5221
PFHpA	PFAS	5	14.37	(6.21, 33.28)	94.33%	0.9230
PFDoA	PFAS	3	13.72	(4.91, 38.32)	93.55%	0.8732
PFHxA	PFAS	5	11.40	(4.82, 26.96)	94.50%	0.9497
PFDA	PFAS	6	10.92	(6.23, 19.14)	89.18%	0.6479
PFBA	PFAS	3	8.30	(3.72, 18.54)	85.32%	0.6462
PFBS	PFAS	3	5.10	(1.66, 15.66)	97.11%	0.9755

Data are plotted in Figure 2. I^2 denotes the percentage of overall heterogeneity that is due to between-study heterogeneity; a large I^2 represents considerable variation between studies. τ is a point estimate of the magnitude of heterogeneity among study estimates, and can be understood as $\sqrt{\text{Total variance} \ - \ \text{within study variance}}$.

S20
Table S11: Comparison of dust levels by environment

Compound	Pooled GMs (95% CI) ng/g	P for difference		
	By Environment	All dust data	Residential Only	Non-Residential Only
TDICPP	3180.52 (2298.93, 4400.18)	2406.19 (1793.28, 3228.91)	6005.31 (3327.25, 10838.93)	0.0043**
EH-TBB	312.50 (139.32, 700.92)	206.52 (126.41, 337.41)	1003.25 (64.19, 15680.92)	0.026*
BEH-TEBP	282.51 (130.28, 612.59)	208.08 (137.73, 314.32)	641.24 (35.17, 11690.13)	0.11
PFOS	38.91 (17.47, 86.69)	54.09 (22.92, 127.68)	25.18 (5.79, 109.55)	0.36
PFOA	37.34 (20.26, 68.81)	47.07 (28.53, 77.68)	26.00 (8.03, 84.20)	0.32
PFNA	14.97 (9.98, 22.46)	12.68 (10.04, 16.03)	18.22 (7.85, 42.29)	0.38

Environmental comparisons were done comparing datasets collected in residential environments to those collected in non-residential environments. The P value is the significance value assigned to the categorical environment or time variable in the meta-regression model. Studies included in this analysis are listed in Table S3. Chemical abbreviations are defined in the text, in Table 1.
Figure S3. Filled points represent geometric mean (GM) and maximum values for each chemical. The dotted gray line represents the pooled geometric mean. Studies are labeled by number on the X axis. In cases where a study contributed more than one dataset, each dataset is labeled separately (e.g., 7.1 and 7.2 are two datasets from study 7). Study numbering is consistent with Table S3; please see Table S3 legend for key.
References

1. Abdallah, M. A.; Harrad, S.; Ibarra, C.; Diamond, M.; Melymuk, L.; Robson, M.; Covaci, A., Hexabromocyclododecanes in indoor dust from Canada, the United Kingdom, and the United States. *Environ. Sci. Technol.* **2008**, *42*, 459-464.
2. Batterman, S.; Godwin, C.; Chernyak, S.; Jia, C.; Charles, S., Brominated flame retardants in offices in Michigan, USA. *Environ. Int.* **2010**, *36*, (6), 548-56.
3. Bradman, A.; Gaspar, F.; Castorina, R.; Tong-Lin, E.; McKone, T.; Maddalena, R. *Environmental Exposures in Early Childhood Education Environments: Agreement Number 08-305; Center for Environmental Research and Children’s Health: University of California, Berkeley, 2012.*
4. Brown, F. R.; Whitehead, T. P.; Park, J. S.; Metayer, C.; Petreas, M. X., Levels of non-polybrominated diphenyl ether brominated flame retardants in residential house dust samples and fire station dust samples in California. *Environ. Res.* **2014**, *135*, 9-14.
5. Carignan, C. C.; Heiger-Bernays, W.; McClean, M. D.; Roberts, S. C.; Stapleton, H. M.; Sjodin, A.; Webster, T. F., Flame retardant exposure among collegiate United States gymnasts. *Environ. Sci. Technol.* **2013**, *47*, (23), 13848-56.
6. Carignan, C. C.; McClean, M. D.; Cooper, E. M.; Watkins, D. J.; Fraser, A. J.; Heiger-Bernays, W.; Stapleton, H. M.; Webster, T. F., Predictors of tris(1,3-dichloro-2-propyl) phosphate metabolite in the urine of office workers. *Environ. Int.* **2013**, *55*, 56-61.
7. Dodson, R. E.; Perovich, L. J.; Covaci, A.; Van den Eede, N.; Ionas, A. C.; Dirtu, A. C.; Brody, J. G.; Rudel, R. A., After the PBDE phase-out: a broad suite of flame retardants in repeat house dust samples from California. *Environ. Sci. Technol.* **2012**, *46*, (24), 13056-66.
8. Dodson, R. E.; Camann, D. E.; Morello-Frosch, R.; Brody, J. G.; Rudel, R. A., Semivolatile organic compounds in homes: Strategies for efficient and systematic exposure measurement based on empirical and theoretical factors. *Environ. Sci. Technol.* **2015**, *49*, (1), 113-122.
9. Fang, M.; Webster, T. F.; Gooden, D.; Cooper, E. M.; McClean, M. D.; Carignan, C.; Makey, C.; Stapleton, H. M., Investigating a novel flame retardant known as V6: measurements in baby products, house dust, and car dust. *Environ. Sci. Technol.* **2013**, *47*, (9), 4449-54.
10. Fraser, A. J.; Webster, T. F.; Watkins, D. J.; Strynar, M. J.; Kato, K.; Calafat, A. M.; Vieira, V. M.; McClean, M. D., Polyfluorinated compounds in dust from homes, offices, and vehicles as predictors of concentrations in office workers' serum. *Environ. Int.* **2013**, *60*, 128-36.
11. Goosey, E.; Harrad, S., Perfluoroalkyl compounds in dust from Asian, Australian, European, and North American homes and UK cars, classrooms, and offices. *Environ. Int.* **2011**, *37*, (1), 86-92.
12. Guo, Y.; Kannan, K., Comparative assessment of human exposure to phthalate esters from house dust in China and the United States. *Environ. Sci. Technol.* **2011**, *45*, (8), 3788-94.
13. Hoffman, K.; Fang, M.; Horman, B.; Patisaul, H. B.; Garantziotis, S.; Birnbaum, L. S.; Stapleton, H. M., Urinary tetrabromobenzoic acid (TBBA) as a biomarker of exposure to the flame retardant mixture Firemaster(R) 550. *Environ. Health Perspect.* **2014**, *122*, (9), 963-9.
14. Hoffman, K.; Garantziotis, S.; Birnbaum, L. S.; Stapleton, H. M., Monitoring indoor exposure to organophosphate flame retardants: hand wipes and house dust. *Environ. Health Perspect.* **2015**, *123*, (2), 160-5.
15. Hwang, H. M.; Park, E. K.; Young, T. M.; Hammock, B. D., Occurrence of endocrine-disrupting chemicals in indoor dust. *Sci. Total Environ.* **2008**, *404*, (1), 26-35.
16. Johnson, P. I.; Stapleton, H. M.; Mukherjee, B.; Hauser, R.; Meeker, J. D., Associations between brominated flame retardants in house dust and hormone levels in men. *Sci. Total Environ.* **2013**, *445-446*, 177-84.

17. Knobeloch, L.; Imm, P.; Anderson, H., Perfluoroalkyl chemicals in vacuum cleaner dust from 39 Wisconsin homes. *Chemosphere* **2012**, *88* (7), 779-83.

18. Liao, C.; Liu, F.; Guo, Y.; Moon, H. B.; Nakata, H.; Wu, Q.; Kannan, K., Occurrence of eight bisphenol analogues in indoor dust from the United States and several Asian countries: implications for human exposure. *Environ. Sci. Technol.** 2012**, *46* (16), 9138-45.

19. Loganathan, S. N.; Kannan, K., Occurrence of Bisphenol A in indoor dust from two locations in the eastern United States and implications for human exposures. *Arch. Environ. Con. Tox.* **2011**, *61* (1), 68-73.

20. Meeker, J. D.; Stapleton, H. M., House dust concentrations of organophosphate flame retardants in relation to hormone levels and semen quality parameters. *Environ. Health Perspect.** 2010**, *118* (3), 318-23.

21. Rudel, R. A.; Camann, D. E.; Spengler, J. D.; Korn, L. R.; Brody, J. G., Phthalates, alkylphenols, pesticides, polybrominated diphenyl ethers, and other endocrine-disrupting compounds in indoor air and dust. *Environ. Sci. Technol.** 2003**, *37* (20).

22. Schreder, E. D.; La Guardia, M. J., Flame retardant transfers from U.S. households (dust and laundry wastewater) to the aquatic environment. *Environ. Sci. Technol.** 2014**, *48* (19), 11575-83.

23. Shin, H. M.; McKone, T. E.; Nishioka, M. G.; Fallin, M. D.; Croen, L. A.; Hertz-Picciotto, I.; Newschaffer, C. J.; Bennett, D. H., Determining source strength of semivolatile organic compounds using measured concentrations in indoor dust. *Indoor air 2014*, *24* (3), 260-71.

24. Stapleton, H. M.; Allen, J. G.; Kelly, S. M.; Konstantinov, A.; Klosterhaus, S.; Watkins, D.; McClean, M. D.; Webster, T. F., Alternate and new brominated flame retardants detected in U.S. house dust. *Environ. Sci. Technol.** 2008*, *42*, 6910-6916.

25. Stapleton, H. M.; Klosterhaus, S.; Eagle, S.; Fuh, J.; Meeker, J. D.; Blum, A.; Webster, T. F., Detection of organophosphate flame retardants in furniture foam and U.S. house dust. *Environ. Sci. Technol.** 2009*, *43*, 7490-7495.

26. Stapleton, H. M.; Misenhimer, J.; Hoffman, K.; Webster, T. F., Flame retardant associations between children's handwipes and house dust. *Chemosphere 2014*, *116*, 54-60.

27. Strynar, M.; Lindstrom, A. B., Perfluorinated compounds in house dust from Ohio and North Carolina, USA. *Environ. Sci. Technol. 2008*, *42*, 3751-3756.

28. Wang, L.; Liao, C.; Liu, F.; Wu, Q.; Guo, Y.; Moon, H. B.; Nakata, H.; Kannan, K., Occurrence and human exposure of p-hydroxybenzoic acid esters (parabens), Bisphenol A diglycidyl ether (BADGE), and their hydrolysis products in indoor dust from the United States and three East Asian countries. *Environ. Sci. Technol. 2012*, *46* (21), 11584-93.

29. Wang, L.; Asimakopoulos, A. G.; Moon, H. B.; Nakata, H.; Kannan, K., Benzotriazole, benzothiazole, and benzophenone compounds in indoor dust from the United States and East Asian countries. *Environ. Sci. Technol. 2013*, *47* (9), 4752-9.

30. Wilson, N. K.; Chuang, J. C.; Morgan, M. K.; Lordo, R. A.; Sheldon, L. S., An observational study of the potential exposures of preschool children to pentachlorophenol, Bisphenol-A, and nonylphenol at home and daycare. *Environ. Res. 2007*, *103* (1), 9-20.

31. Wu, X. M.; Bennett, D. H.; Calafat, A. M.; Kato, K.; Strynar, M.; Andersen, E.; Moran, R. E.; Tancredi, D. J.; Tulve, N. S.; Hertz-Picciotto, I., Serum concentrations of perfluorinated compounds (PFC) among selected populations of children and adults in California. *Environ. Res. 2015*, *136*, 264-73.
32. Rudel, R. A.; Perovich, L. J., Endocrine disrupting chemicals in indoor and outdoor air. *Atmos. Environ.* **2009**, *43*, (1), 170-181.
33. Weschler, C. J.; Nazaroff, W. W., SVOC partitioning between the gas phase and settled dust indoors. *Atmos. Environ.* **2010**, *44*, (30), 3609-3620.
34. Little, J. C.; Weschler, C. J.; Nazaroff, W. W.; Liu, Z.; Hubal, E. A. C., Rapid methods to estimate potential exposure to semivolatile organic compounds in the indoor environment. *Environ. Sci. Technol.* **2012**, *46*, (20), 11171-11178.
35. Beko, G.; Weschler, C. J.; Langer, S.; Callesen, M.; Toftum, J.; Clausen, G., Children's phthalate intakes and resultant cumulative exposures estimated from urine compared with estimates from dust ingestion, inhalation and dermal absorption in their homes and daycare centers. *PLoS One* **2013**, *8*, (4), 18.
36. United States Environmental Protection Agency, Exposure Factors Handbook 2011 Edition (Final). In Washington, DC, 2011.
37. California Department of Toxic Substances Control, Safer Consumer Products, Authoritative Lists. Available from: http://www.dtsc.ca.gov/SCP/SourceLists.cfm (Accessed: April 20, 2016).
38. California Department of Toxic Substances Control, Safer Consumer Products, Candidate Chemical List Frequently Asked Questions. Available from: http://www.dtsc.ca.gov/SCP/CandidateChemicalListFAQs.cfm (Accessed: April 20, 2016).
39. California Code of Regulations Division 4.5, Title 22, Chapter 55, 69502.2. **2013**.