The use of Whatman-31ET paper for an efficient method for radiochemical purity test of 131I-Hippuran

Amal Rezka Putra*, Maskur, Yono Sugiharto, Chairuman, Adang Hardi Gunawan, and Rohadi Awaludin

Center for Radioisotope and Radiopharmaceutical Technology, BATAN, Tangerang Selatan, 15314, Banten, Indonesia

*E-mail: amalrezka@batan.go.id

Abstract. Current chromatography methods used for radiochemical purity test of 131I-Hippuran is time consuming. Therefore, in this study we explored several static and mobile phases in order to have a chromatography method which is accurate and efficient or less time consuming. In this study, stationary phases (Whatman-1, 31ET, and 3MM papers) and several mobile phases were explored to separate 131I-Hippuran from its impurity (131I). The results of this study showed that the most efficient chromatography system for measurement of radiochemical purity of 131I-Hippuran was by using Whatman-31ET paper and n-butanol: acetic acid: water (4:1:1) as a static phase and mobile phase respectively. Developing time for this method was of approximately 75.7 ± 2.7 minutes. The result of radiochemical purity (%RCP) of 131I-Hippuran measured with this chromatography system either using Whatman-1 or Whatman-31ET paper strips was 98.7%. The short size of Whatman-31ET paper strip (1 x 8 cm) was found to have shorter developing time compared to that of long size paper. This system showed a good separation of 131I-Hippuran from its impurities and gave %RCP of 98.1% ± 0.04% with developing time approximately 44.3 ± 9.4 minutes. The short size of Whatman-31ET paper strips was found to be more efficient compared to that of Whatman-1 and Whatman-3MM paper strips in term of developing time.

1. Introduction

Labelled compounds have been widely used for diagnostic or therapeutic purposes. One of them is 131I-Hippuran which is used for diagnosis of renal function [1]. In Indonesia, 131I-Hippuran has been routinely used in several hospitals namely Ulin Hospital, Kalimantan Tengah; Hasan Sadikin Hospital, Bandung; Annur Specialist Surgery Hospital and Bethesda Hospital, Yogyakarta; POLRI Hospital, Jakarta; and Kartini Hospital, Jepara [2]. The utilization of the 131I-Hippuran must be supported with an effective and efficient of its quality control. Labelled compounds must meet with the certain requirements for their physicochemical and biological qualities. The physicochemical quality of the labelled compound includes osmolality, pH, clarity, radionuclide purity, and radiochemical purity (RCP) [1,3,4], while the biological quality includes sterility, pyrogenecity, and biodistribution in testing animals [5].

Synthesis of 131I-Hippuran and its optimization also radiochemical purity test method had been performed and reported [2]. Radiochemical purity (RCP) of 131I-Hippuran (OIH) is associated with percentage of 131I bind to Hippuran and radiochemical impurities is associated with the percentage of free 131I in form of iodide ions (131I$^-$) and 131I-o-iodobenzoic acid (OIB). The RCP data of the 131I-Hippuran and its impurities are shown in Table 1.
Table 1. The RCP of 131I-Hippuran (OIH), 131I-o-iodobenzoic acid (OIB), and Iodide ion (131I) [1,2,6,7,8,9,10,11,12,13]

Stationary phase	Mobile phase	Rf	(% RCP of 131I-Hippuran	Developing time/ size of paper	Ref.	
Chromatography paper	Acetic acid: chloroform (1:9)	OIH = 0.2	>96.00	-	[1]	
Whatman-1	n-butanol: acetic acid: water (4:1:1)	$\Gamma = 0.00 – 0.30$	>95.00	-	[2]	
Whatman-1	n-butanol: acetic acid: water (4:1:1)	$\Gamma = 0.09-0.23$	-	30 cm = 16 h	[6]	
Whatman-1	Benzene: acetic acid: water (2:2:1)	$\Gamma = 0.00-0.05$	-	30 cm = 16 h	[6]	
Whatman-3MM	Sodium acetate: glacial acetic acid: water (10:10:100)	$\Gamma = 0.83$	-	-	[7]	
TLC cellulose	n-butanol: glacial acetic acid: water (6:1.5:2.5)	$\Gamma = 0.35$	m-IH = 0.57	-	-	[8]
Whatman-1	n-butanol: water: glacial acetic acid (120:50:30)	OIH = 0.94	>99.00	15 cm = 18 h	[9]	
Silica Gel G-plates	n-butanol : 1N acetic acid (1:1)	OIH = 0.72	-	15 cm	[9]	
TCL silica gel	Benzene: acetic acid: water: n-butanol (5:5:2:1.5)	-	98.00 – 99.00	-	[10]	
TLC; silica gel F 1500LS 254	Methanol 80%	$\Gamma = 0.00$	93.74 – 99.62	9 cm = 50 minutes	[11]	
TLC	Methanol: water: acetic acid (30:70:0.5)	-	99.20 ± 0.20	-	[12]	
TLC 5716 plates	Benzene: acetic acid: water (2:2:1)	$\Gamma = 0.00$ - 0.100	94.00	1-2 h	[13]	

RCP test of the 131I-Hippuran generally performed by a paper chromatography method using Whatman-1 paper as stationary phase and n-butanol: acetic acid: water (4:1:1) solvent mixture as mobile phase [2,6]. In the USP 30/ NF 35 is stated that the %RCP of the 131I-Hippuran must be over than 97% when measured by using Whatman-1 as static phase and benzene: glacial acetic acid: water (2:2:1) as a mobile phase [14]. However, this method is considered inefficient because its long developing time (150 minutes). Therefore, there is a need to find out a new or modified method or system with a shorter developing time in the RCP test of 131I-Hippuran. The modified method can be carried out by modifying the mobile or stationary phase used in the paper chromatography method.

Several types of the paper commonly used in the paper chromatography method are Whatman-1, Whatman-3MM, and Whatman-31ET papers. The Whatman-31ET paper is one of the fast flow chromatography paper compared to that of Whatman-1 and Whatman-3MM papers [15]. Figure 1 shows the retention factor (Rf) of 131I-Hippuran (OIH) and iodide ion (131I). The Rf value of 131I-Hippuran approximately 0.70 – 0.92, and for 131I approximately of 0.00 to 0.30 [2,6]. The Rf value was calculated by the Formula 1 [9]:

\[
\Gamma = \frac{R_f}{R_f \text{ max}}
\]
\[R_f = \frac{\text{migration distance of substance}}{\text{migration distance of solvent}} \]

Figure 1. The chromatogram of \(^{131}\)I-Hippuran using Whatman No.1 paper as static phase and n-butanol: acetic acid: water (4:1:4) as mobile phase [6].

The aim of this study is therefore to determine the most efficient paper chromatography method based on various mobile phases or various Whatman paper (Whatman-1, Whatman-31ET, and Whatman-3MM papers), based on the required %RCP of \(^{131}\)I-Hippuran.

2. Methods

2.1. The materials
Labelled compound of \(^{131}\)I-Hippuran was produced by The Center for Radioisotope and Radiopharmaceutical Technology – BATAN, water (IPHA Laboratories), n-butanol for analysis 99.5%, acetic acid for analysis 99.8%, benzene for analysis, acetone for analysis 99.8%, propanol for analysis, ethanol absolute for analysis 99.8%, ammonia 25% (Merck), plastic film, strips of 1 x 11 cm Whatman-1 paper (Schleicher & Schuell), strips of 1 x 11 cm Whatman-3MM (Sigma-Aldrich), strips of 1 x 8 cm; 1 x 10 cm; 1 x 11 cm; 1 x 12 cm; 1 x 16 cm; and 1 x 21 cm Whatman-31ET paper (GE Healthcare Life Sciences).

2.2. The equipment
Equipment used this study were glass cylindrical tank, stopwatch, gamma counter (Caprac-t), micropipette (Eppendorf).

2.3. The procedure
The \(^{131}\)I-Hippuran was spotted 2 cm from the bottom of the chromatographic paper strips and then developed in a closed 10 x 29 cm glass cylindrical tank, which contained the developing solvent. The solvent is allowed to migrate up to 1 cm from the top of the paper strips. They were immediately removed, left to dry at room temperature, wrapped in a plastic film. The paper strips were then cut (1 cm/ portion) and then counted on gamma counter (Caprac-t) [16]. The measurement of repeatability was carried out in the same experimental conditions, tools, place, and short interval of time trial. The same procedure is also done for various mobile phases, stationary phases and size of paper.

2.4. Data analysis
The data comparison performed using the independent t-test, especially in order to know the significantly difference between two samples with homogeneous data. The t-test of independent two-sample with equal variance can be calculated in the Formula 2 and 3 [17,18].

\[
t = \frac{x_1 - x_2}{\sqrt{\frac{s_p^2}{n_1} + \frac{s_p^2}{n_2}}}
\]

(2)

where

\[
s_p = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}}
\]

(3)

Where

- \(t \) = t-value,
- \(x_1 \) = average data of sample 1,
- \(x_2 \) = average data of sample 2,
- \(s_p \) = pooled standard deviation,
- \(s_1 \) = sample variance 1,
- \(s_2 \) = sample variance 2,
- \(n_1 \) = sample size 1, and
- \(n_2 \) = sample size 2

The percentage of RCP of the \(^{131}\text{I}-\text{Hippuran} \) data processing which were analysed using various Whatman papers performed by t-test. The difference of % RCP of \(^{131}\text{I}-\text{Hippuran} \) are significant if the t-value of t-test statistic is equal to or greater than 2.10, the critical value in this case (significance level \(P' = 0.05 \) with number of degrees freedom \(\Theta = 18 \)).

3. Results and Discussion

The RCP of the \(^{131}\text{I}-\text{Hippuran} \) was determined by a paper chromatography method using various mobile and stationary (Whatman-1 paper) phases. The RCP results of the \(^{131}\text{I}-\text{Hippuran} \) are showed in Table 2.

Table 2. The results of \(^{131}\text{I}-\text{Hippuran} \) RCP test using Whatman-1 paper with various mobile phases

Mobile phase	\(^{131}\text{I} \) Hippuran	\(^{133}\text{I} \) Hippuran	OIB	Developing Time (minute)
benzene: acetic acid: water (2:2:0.5)	0.0 – 0.2	0.6 – 0.7	Not defined	242
n-butanol: acetic acid: water (4:1:1)	0.10	0.8 – 0.9	-	130
n-butanol: acetic acid: water (8:1:1)	0.0 – 0.1	0.8 – 0.9	-	133
n-butanol: acetic acid: water (1:1:1)	0.4 – 0.5	0.8	-	147
acetone : acetic acid: water (4:1:1)	0.9 – 1.0	0.9	-	65
propanol : acetic acid: water (4:1:1)	0.0 – 0.2	0.7 – 0.9	-	120
ethanol: water: ammonia 25% (25:3:4)	0.5 – 0.7	0.5 – 0.7	-	95
ethanol: water: ammonia 25% (10:1:10)	0.8	0.8 – 0.9	-	105

It can be seen in Table 2 that the mobile phases of benzene: acetic acid: water (2:2:0.5), n-butanol: acetic acid: water (4:1:1) and n-butanol: acetic acid: water (8:1:1) gave a good separation between \(^{131}\text{I}-\text{Hippuran} \) (Rf ~ 0.6 – 0.9) and \(^{133}\text{I} \) was (Rf ~ 0.0 – 0.2), while OIB was not visible in mobile phase benzene: acetic acid: water (2:2:0.5). The mobile phase of acetone: acetic acid: water (4:1:1), ethanol: water: ammonia 25% (25:3:4) and ethanol: water: ammonia 25% (10:1:10) however showed a good separation between \(^{131}\text{I}-\text{Hippuran} \) and its impurity \(^{131}\text{I} \). The use of n-butanol: acetic acid: water (1:1:1) and propanol : acetic acid: water (4:1:1) mobile phases gave a tail separation, therefore it could not be used in RCP test of \(^{131}\text{I}-\text{Hippuran} \). The standard method where n-butanol: acetic acid: water (4:1:1) used as a mobile phase, gave a good separation between \(^{131}\text{I}-\text{Hippuran} \) (Rf ~ 0.8 – 0.9) and its impurity \(^{131}\text{I} \), (Rf ~ 0.10). This system also has relatively short developing time (130 minutes). Hippuran (Figure 2)
is a polar compound which has an amine group (secondary amine) and methylene [2]. Polar molecules have a high attraction for polar solvent such as n-butanol and acetic acid is able in forming a strong hydrogen bonding, which resulted in an acceleration of the migration of polar compound [19].

Figure 2. Molecule structure of 131I-Hippuran

The chromatograms of 131I-Hippuran which were developed on various stationary phases (Whatman-1, 31ET and 3MM papers) with mobile phase of n-butanol: acetic acid: water (4:1:1) are presented in Figure 3 and Table 3.

Figure 3. Chromatograms of 131I-Hippuran developed using various Whatman papers as stationary phases and n-butanol: acetic acid: water (4:1:1) as a mobile phase

Table 3. Chromatography systems of 131I-Hippuran based on various Whatman papers as stationary phases and n-butanol: acetic acid: water (4:1:1) as a mobile phase

Stationary phase	%RCP	Developing time (minute)	Description
Whatman No. 1	98.7 ± 0.9%	158.3 ± 6.2%	Standard method
Whatman No.31 ET	98.7 ± 0.7%	75.7 ± 2.7%	Fast flow
Whatman No. 3MM	98.7 ± 0.8%	142.0 ± 3.7%	Medium flow

It can be seen from Figure 3 that all types of Whatman papers gave Rf value of approximately 0.9 for 131I-Hippuran. The use of different Whatman paper (Whatman-31ET, Whatman-1 and Whatman-3MM) gave no significant effect on the Rf value of 131I-Hippuran. Figure 3 also shows that the use Whatman-3MM paper in the above mentioned chromatography system gave a higher peak counts than the other papers because the Whatman-3MM paper is thicker and has higher capacities therefore it is able to hold more sample [20]. The %RCP of the 131I-Hippuran measured using for either with
Whatman-1 or and Whatman-31ET papers were higher than 98%. The Whatman-31ET paper showed faster developing time of 75.7 ± 2.7 minutes compared to that of Whatman-1 (158.3 ± 6.2 minutes) for 131I-Hippuran as Whatman-31ET paper has a looser fiber network [20].

The difference in %RCP of the 131I-Hippuran measured using Whatman-1 and 31ET paper was analyzed using t-test. The results were shown in Table 4. The percentage of relative standard deviation (%RSDs) for Whatman-1 paper and Whatman-31ET paper were of 0.30% and 0.22%, respectively which indicated that the value of %RSD for both papers were in range of the precision standard. It should be noted that the required (%RSDs) should less than 1%. Overall, t-test showed that the %RCP results of 131I-Hippuran obtained using either Whatman-1 or Whatman-31ET paper is similar, as there was no significant statistical difference (t-value = 0.40).

Table 4. The t-test of % radiochemical purity between Whatman-1 paper and Whatman-31ET paper

	Whatman-1	Whatman-31ET
1	99.10	99.513
2	99.25	99.001
3	99.43	98.940
4	98.73	99.037
5	99.30	98.870
6	98.85	98.673
7	99.28	99.028
8	98.86	99.172
9	98.64	99.183
10	98.66	99.135
Mean	99.01	99.055
SD	0.30	0.22
%RSD	0.30 %	0.22 %
t-value	0.40	

The experiments using various size of Whatman-31ET paper were also performed in order to get paper chromatography system which has more efficient developing time. The shorter size of chromatography paper strip might offer a faster developing time. However, a paper chromatography system is not only has short developing time but is also able to properly separate 131I-Hippuran from its impurities.

Percentage of RCP and developing time of 131I-Hippuran measured using Whatman-31ET paper with size of 1 x 8 (short size) up to 1 x 21 cm (long size) as stationary phases and n-butanol:acetic acid: water (4:1:1) as mobile phase are shown in Table 5. The Rf value of this method showed in Figure 4. Based on Table 5, it be seen that there are no different of the %RCP and the Rf value of 131I-Hippuran when measured using 1 x 8 (short size), 1 x 11 (standard method) and 1 x 21 cm (long size) Whatman-31ET paper strips. The %RCPs of 131I-Hippuran measured with those strips were >98%. The results also showed that there are no correlation between size of paper strips and Rf value of the 131I-Hippuran. The long size Whatman paper extends the migration distance of substance so that it can nicely separate 131I-Hippuran from its impurities. The Rf value of 131I-Hippuran from this experiment was of 0.9 – 1.0. This value is almost the same with the reported Rf for this paper chromatography system Rf approximately 0.70 – 0.92 [2,6]. The shorter developing time for this RCP test of 131I-Hippuran using the above mentioned chromatography was of ~ 44.3 ± 9.4 minutes which was showed by 1 x 8 cm size Whatman-31ET paper strips. This chromatography system was found to be more efficient compared to that of the USP 30/ NF 35 standard method with developing time of 150 minutes [14].

International Conference on Chemistry and Material Science (IC2MS) 2017
IOP Conf. Series: Materials Science and Engineering 299 (2018) 012007
doi:10.1088/1757-899X/299/1/012007
Table 5. The %RCP and the developing time of 131I-Hippuran measured using various size of paper Whatman-31ET paper strips

Size of Paper (cm)	%RCP	Developing time (minute)
1 x 8	98.1 ± 0.0%	44.3 ± 9.4%
1 x 10	98.1 ± 0.1%	65.3 ± 0.8%
1 x 11	98.7 ± 0.7%	75.8 ± 2.7%
1 x 12	98.4 ± 0.1%	101.3 ± 11.5%
1 x 16	98.2 ± 0.1%	167.0 ± 2.2%
1 x 21	98.0 ± 0.1%	314.0 ± 2.2%

Figure 4. Rf Value of 131I-Hippuran using various size of Whatman-31ET paper strips

4. Conclusions

Paper chromatography method for measuring the radiochemical purity of 131I-Hippuran has been studied. The most suitable mobile phase for this system was found to be the mixture of n-butanol: acetic acid: water (4:1:1) which showed a good separation between 131I-Hippuran from its impurities. This study also found that the most efficient stationary phase for the above mentioned chromatography system Whatman-31ET paper strips (1 x 8 cm) which has a developing time of 44.3 ± 9.4 minutes. This method has been to be efficient in term of developing time and comparable with other chromatography systems which have been reported elsewhere.

References
[1] Huang L Set al2014 Microwave Assistance of Labeling Hippiric Acid by I-131 J. Appl. Radiat. Isot.89 53–57
[2] Maskuret al 2015 Proc. of the Nat. Sem. on Chem.(Surabaya)(Indonesia)pp11–18
[3] Kilian Ket al2014 Synthesis, Quality Control and Determination of Metallic Impurities in 18F-Fludeoxyglucose. Reports Pract. Oncol. Radiother9 22–31
[4] Dziel Tet al 2015 Radionuclidic Purity Tests in Process F Radiopharmaceuticals Production J. Appl. Radiat. Isot.109 242–246
[5] Pathuri Get al 2016 Synthesis and In Vivo Evaluation of Ortho- [124I] Iodohippurate for PET Renography in Healthy Rats J. Appl. Radiat. Isot.115 251–255;
[6] Varga L Kelemen I and Kovach A 1968 Paper Chromatographic Study of the Radioactive Contaminants of 131I-Hippuran J. Nucl. Med.9(12) 604–608
[7] Pluchet E and Lederer M 1960 Adsorption Paper Chromatography of Inorganic Anions in Acetate Buffers J. Chromatogr.3 290–296
[8] Elias H Arnold C and Kloss G 1973 Preparation of 131I-Labelled m-Iodohippuric Acid and its Behaviour in Kidney Function Studies Compared to o-Iodohippuric Acid J. Appl. Radiat. Isot. 24 463–469.

[9] Belkas E P Hiotellis E and Dassiou C 1975 Hippuran-131I; Preparation and Purity Control J. Appl. Radiat. Isot. 26 629–630

[10] Kaspersen F M and Westera G 1979 Radioiodinated o-Iodobenzoic Acid as Impurity in Hippuran Preparations Int. J. Appl. Radiat. Isot. 31 97–99

[11] Hammermaier A Reich E and Bogl W 1986 Radiochemical Purity and In Vitro Stability of Commercial Hippurans J. Nucl. Med. 27(6) 850–854

[12] Mertens et al. 1987 New fast preparation of 123I labelled radiopharmaceuticals Eur. J. Nucl. Med. 13(7) 380–381

[13] Hawkins et al. 1992 A Rapid Method for the Preparation of 123I-Iodo-Hippuric Acid Eur. J. Nucl. Med. 7 58–61

[14] Anonim 2011 United States Pharmacopeia 35/ National Formulary 30(2nd vol. Rockville)(The United States Pharmacopeial Convention) pp 3522-3523

[15] Ponto J A 2011 Evaluation of Alternative Methods for Radiochemical Purity Testing of Indium-111 Capromab Pendetide J. Am. Pharm. Assoc. 51(3) 359–362

[16] Wilson ID 2000 Paper Chromatography. In: Reference Module in Chemistry, Molecular Sciences and Chemical Engineering (UK: Academic Press) pp 397-404

[17] Zhang J and Pan M 2016 A High-Dimension Two-Sample Test for The Mean Using Cluster Comput. Stat. Data Anal. 97 87–97

[18] Kim et al. 2013 An Efficient and Effective Wrapper Based on Paired t-Test for Learning Naive Bayes Classifiers from Large-Scale Domains Procedia Comput. Sci. 23 102–112

[19] Ahuja S 2003 Chromatography and Separation Science, Separation Science and Technology 4th ed(United States of America: Academic Press) pp 102-112

[20] Sherma J and Fried B 1984 Flat bed techniques. In: New Comprehensive Biochemistry 8th ed. (USA: Elsevier Science Publisher) pp 363-413

Acknowledgement
This work was supported by the Center for Radioisotope and Radiopharmaceutical Technology-BATAN. The authors would like to thank to Yayan Tahyan and Enny Lestari for their expertise assistances