Lameness is a common problem in horses. Equine veterinarians are often called upon to diagnose the source of lameness and institute appropriate treatment to return horses to soundness promptly. A lameness examination typically involves perineural and/or intra-articular anesthesia to determine the location of the lameness. Following anatomic localization of the problem, diagnostic imaging is pursued to obtain more specific information about the etiology of the lameness. Advanced diagnostic imaging is pursued when more traditional imaging methods (eg, radiography and ultrasonography) have failed to reveal the specific cause for a lameness. CT and MRI, both of which are cross-sectional imaging modalities, are frequently used in these cases to accomplish the ultimate goal of diagnostic imaging: to obtain a definitive diagnosis.

Basic Principles

MRI uses strong magnetic fields and radiofrequency pulses to perturb the target tissues. The differing chemical composition of different tissues causes different responses. The responses of the tissues are recorded and constructed into images. Images appear as thin (typically 1 to 5 mm thick) slices in the anatomic plane selected by the operator. Multiple different sequence types are used to obtain different sorts of information; some sequences excel at highlighting anatomy, others at identifying fluid-like signal, and others at imaging articular cartilage. A typical MRI examination of 1 region or joint in a horse takes approximately 30 minutes, but this can vary depending on the exact protocol used.

CT uses x-ray radiation that is received by a detector using the same principles as radiography. It is a structural imaging modality that measures radiodensity. Multiple projections around the axis of the region of interest are obtained as the scanner rotates around the anatomy. These projections are processed to create thin (1 to 3 mm) slices along the plane in which the anatomy was scanned. Different processing parameters highlight different tissue types. Bone and soft tissue algorithms are commonly used for the equine musculoskeletal system. The type of data obtained by a CT scan lends itself to various reconstructions, including 3-D volume renderings and multiplanar reconstructions. A typical CT scan of 1 region or joint in a horse takes only a few minutes.

General advantages of cross-sectional imaging include minimization of superimposition and increased detail. Although the images obtained from both CT and MRI examinations represent thin slices of tissue, the very different properties of the information obtained give them different strengths and
weaknesses. CT excels at assessing bony anatomy. The high spatial resolution of CT and very thin slices (<1 mm in some cases) allow detailed examination of bony abnormalities such as fractures and changes in bone opacity. MRI has better contrast resolution than CT, which highlights areas of abnormal tissue in both bone and soft tissues. CT is broadly considered the gold standard for bony pathology and MRI the gold standard for soft tissue pathology, but there are notable exceptions to this generalization, for example the ability of MRI to identify bone marrow lesions.3–5 If both CT and MRI are available options, there should be careful consideration of which modality to choose for a particular case. In the author’s experience, MRI is generally a better choice for most lameness cases because MRI can generate detailed information about both bone and soft tissue pathology, providing more information about more structures than does CT.6–10 Bilateral imaging is often performed for comparison purposes and to identify potential subclinical pathology.5,11–13

The major disadvantages of both CT and MRI are the cost of the equipment and its maintenance and their relative lack of availability outside referral hospitals. Although some scanner types and designs do not require general anesthesia for imaging of the distal limb, others do. This is particularly relevant for MRI, as high-field scanner designs require general anesthesia to image horses, but this disadvantage may be outweighed by improved image quality, which will be discussed below.

Designs

Available MRI scanners vary in both strength and design. Scanners currently in clinical use for horses range between 0.3 and 3.0 T in strength. Many scanners were designed for human use and require general anesthesia to position the horse within the bore of the scanner, but there is 1 low-field (0.3-T) design manufactured for horses that accommodates the distal limb of a standing, sedated horse. Motion can be a problem when imaging a standing horse, particularly as more proximal areas of the limb are imaged.14,15 Higher magnet strength has several clinically relevant advantages, including decreased scan times, increased resolution, larger field of view, availability of specialized sequences (eg, to evaluate articular cartilage), and overall improved image quality.5,16–18 These factors can translate into increased anatomic visibility, greater diagnostic ability, and higher diagnostic confidence in the findings.16–20 One recent study17 comparing low-field standing, low-field general anesthesia, and high-field general anesthesia MRI examinations of the equine foot found that image quality was better in high-field scans than in either type of low-field scan, indicating that higher field strength itself led to improved image quality rather than the use of general anesthesia. Other studies18,21–24 have shown higher detail and/or greater lesion detection in a variety of tissue types with high-field MRI than with low-field MRI in the foot, fetlock region, proximal metacarpus, and carpus. These studies parallel the author’s experience that some lesions are identifiable on low-field scans but many lesions require a high-field scan to identify or characterize completely.

Like MRI, many CT scanners in clinical use for horses are designed for humans and have been repurposed for the horse, but designs specifically for horses have become available recently. Some designs require general anesthesia to image limbs, while others can accommodate a standing, sedated horse. Due to the shorter scans time as compared with MRI, motion is less of a problem with standing CT, but is still an issue.25–29 There are also differences between cone beam and fan beam CT systems. In a basic sense, fan beam CT collects thin slices of information and cone beam CT collects a volume of information. In both types, the information is then processed into axial slices within operator-selected parameters. However, the differences in how the systems acquire and process data have practical implications that must be considered. Image quality is superior with fan beam CT, compared with the quality in cone beam CT, with fewer artifacts, better signal-to-noise ratio, better contrast resolution, and lower scatter (Figure 1).26,30 However, cone beam CT can be more anatomically versatile in a standing horse.25,26

Figure 1—Transverse CT images of the distal aspect of the third metacarpal bone and proximal sesamoid bones obtained from a fan beam (A) and a cone beam (B) system. Note the superior image quality obtained with the fan beam system.
Lameness Evaluation Prior to CT/MRI

It is most appropriate to pursue cross-sectional imaging after a complete lameness examination, including regional and/or intra-articular anesthesia (“blocking”) to localize the anatomic site of the lesion as precisely and accurately as possible. This may involve blocking the horse in slightly different ways over the course of multiple days (eg, a horse that blocks to palmar digital perineural anesthesia on day 1 being reblocked with intra-articular anesthesia of the distal interphalangeal joint on day 2). Accurate anatomic localization is important due to the cost of the examinations, the need for general anesthesia in some cases, the patience of the horse, reasonable amounts of sedation for standing examinations, and the amount of time the examination takes for each region. It is not practical to routinely screen an entire limb from the carpus or tarsus distally. If abnormalities in multiple locations are identified, knowing the presumptive anatomic location of the lameness is helpful in determining the clinical significance of those abnormalities. If the contralateral limb will be imaged for comparison, time for those scans needs to be factored in as well.

However, there are limitations to perineural and intra-articular anesthesia. We have learned that the anatomic structures that are anesthetized are often out of the traditional “boundaries” of a block and that regional anesthesia is not as specific as we would hope. Palmar digital perineural anesthesia can diffuse proximally and potentially anesthetize lesions in the fetlock region. Basisesamoid peri-neural anesthesia can also diffuse proximally and is not specific for the pastern region. Other common sites where local anesthesia can diffuse to (or penetrate) and anesthetize an adjacent structure include anesthesia of the distal tarsal joints anesthetizing the proximal metatarsal region (and vice versa) and anesthesia of the middle carpal/carpometacarpal joints anesthetizing the proximal metacarpal region (and vice versa). These observations are supported by reports of horses that respond to palmar digital perineural anesthesia with MRI-confirmed primary lesions in the pastern or fetlock region and horses that respond to basisesamoid perineural anesthesia with primary lesions in the fetlock region. There are additional reports of horses with a primary MRI diagnosis of distal tarsal disease responding to anesthesia of the proximal metatarsal region and horses with a primary diagnosis of proximal metatarsal disease responding to anesthesia of the distal tarsal joints.

Recognition of the lack of specificity of regional anesthesia should be considered during scan planning. In the author’s practice (and in others), a scan of the foot for a lameness case always includes images as far proximally as the fetlock joint. A scan of the carpus/tarsus should include images of the proximal metacarpal/metatarsal region and vice versa. Even with these adjacent areas included in a typical scan protocol, if a scan requires general anesthesia to perform, it is valuable to have the images reviewed as the scan progresses in case additional anatomic areas need to be added to the examination (eg, adding a fetlock region scan if a foot scan has no significant abnormalities). This can minimize or prevent additional anesthetic episodes. If the scan is performed with standing sedation, the ability to come back later and obtain additional scans is usually readily available.

Foot

Advanced imaging of the foot is generally more useful with MRI than with CT. Radiography and ultrasonography are limited in their diagnostic abilities, and MRI provides a diagnosis in many cases where these modalities have failed to do so. An example of an imaging decision tree for a horse that blocks to palmar digital perineural anesthesia or intra-articular anesthesia of the distal interphalangeal joint is provided (Figure 2). Some of the more common pathologies identified include navicular bone flexor cortex defects, distal margin fragments, degenerative change, impar or navicular suspensory ligament desmopathy, deep digital flexor tendinopathy, proximal or distal interphalangeal joint osteoarthritis, fracture, resorptive or subchondral lesions, and distal interphalangeal joint collateral ligament.

Figure 2—Imaging decision tree for a horse that responds to palmar digital perineural anesthesia and/or intra-articular anesthesia of the distal interphalangeal joint. DIPJ = Distal interphalangeal joint. PDN = Palmar digital nerve anesthesia.
desmopathy. MRI also allows evaluation of bone marrow lesions, which may be seen alone or at entheses in combination with soft tissue pathology. MRI findings have been shown to correlate well with histologic findings of abnormalities of the deep digital flexor tendon, navicular bone, impar ligament, and navicular suspensory ligament and to correlate reasonably well for the collateral ligaments of the distal interphalangeal joint.

CT excels at assessment of bony structures, and more detailed information about the bones of the foot can be obtained as compared with radiography and, in some instances, as compared with MRI. CT provides some information about soft tissues, although MRI provides superior visualization of soft tissue anatomy and lesion detection. The use of intra-articular and intrahepal contrast to improve identification of lesions of the flexor tendons in the distal limb has been described and can identity pathology of these structures reasonably well.

Fetlock Region

CT and MRI are both valuable in the diagnosis of fetlock region lameness. When considering soft tissue injury, lesions of the distal sesamoidean ligaments, flexor tendons, and suspensory ligament branches are common diagnoses made with MRI in the fetlock region, with abnormalities in these structures characterized by increases in size and changes in signal intensity. Changes in size and signal intensity on MRI images are associated with histologic abnormalities of the oblique distal sesamoidean ligaments. Lesions of the distal sesamoidean ligaments and suspensory ligament branches are not always identifiable or able to be characterized fully ultrasonographically, even retrospectively, and represent a common source of lameness. CT provides some detail about the tendons and ligaments of the fetlock region, but not to the degree that MRI can.

Subchondral bone and/or articular cartilage lesions including sclerosis, resorption, bone marrow lesions, osteophytosis, fracture, and cartilage damage are also common pathologies seen with MRI or CT in many types of horses with fetlock region lameness. CT and MRI are superior to radiography in the diagnosis of bony injury in the fetlock region in a variety of types of horses. Many of these types of bony injuries are suspected to originate from an accumulation of damage rather than a 1-time event, so the use of CT/MRI to identify pathology sooner could potentially prevent more severe or permanent damage as well as providing a more prompt, accurate diagnosis. In sport horses, subchondral bone disease often presents as a bone marrow lesion or fissure fracture in the distal metacarpal or third metacarpal bone or the proximal part of the first phalanx.

Palmar/plantar osteochondral disease of the distal metacarpal or third metacarpal bone is an important cause of lameness in Thoroughbred racehorses and is common both clinically and subclinically. Radiography is insensitive for diagnosis compared with the sensitivity of CT and MRI, so these modalities provide an opportunity for earlier diagnosis before permanent change has occurred. Catastrophic musculoskeletal injury in racehorses is another area of potential utility. Although differences in the palmar condyles of the distal metacarpal or third metacarpal bone and the proximal sesamoid bones between racehorses that have and have not sustained metacarpal or tarsal or proximal sesamoid bone fracture have been documented on both CT and MRI, there is currently no reliable way to differentiate changes that are a normal response to training and changes that are indicative of pathology that will likely lead to catastrophic injury in an individual horse.

As of now, CT and MRI are not appropriate as a clinical screening tool for predicting impending breakdown injuries, but work is ongoing. Positron emission tomography also shows promise in this area, and the reader is referred to a companion Currents in One Health by Sprriet, AJVR, July 2022, for further information.

Proximal Metacarpus/Metatarsus and Carpal/Tarsal Regions

When considering MRI or CT of horses that respond to intra-articular anesthesia of the middle carpal/carpometacarpal joints and distal tarsal joints or regional anesthesia of the proximal metacarpal/metatarsal regions, the lack of specificity of these blocks must be borne in mind. For this reason, a scan of the proximal metacarpal/metatarsal region (suspending ligament origin) should include images of the middle carpal/carpometacarpal joints or distal tarsal/tarsometatarsal joints and vice versa. In the author’s experience, as well as in that of others, there have been many horses with lesions in the “wrong” location, and MRI and CT of the entire region has been invaluable in treating these horses appropriately.

Figure 3—Parasagittal (A), dorsal (B), and transverse (C) plane MRI of a bone cyst (arrows) in the dorsomedial aspect of the third tarsal bone in a lame horse that responded to anesthesia of the proximal metatarsal region. Radiographic and ultrasonographic examinations prior to MRI were normal. No other significant abnormalities were identified in this region on MRI. Medial and dorsal are to the left of the images.
MRI is more sensitive for detection and characterization of lesions of the suspensory ligament, and its bony origin as compared with radiography and ultrasonography.3,4,4,103–106 There is good correlation of suspensory ligament lesion detection with MRI and histopathology.103 Bone marrow lesions, sclerosis, resorption, and enthesophyte formation within the metacarpal or third metacarpal bone associated with the origin of the ligament can be readily identified in addition to pathology within the ligament itself, including enlargement, irregular margins, and abnormal signal intensity patterns.3,4,4,106,107 Pathology in the accessory ligament of the deep digital flexor tendon or the flexor tendons in the metacarpal/metatarsal region has also been identified in horses that responded to anesthesia of the proximal metacarpal/tarsal region with normal ultrasonographic findings in the metacarpal/tarsal region.3,40 CT can also provide some information about the suspensory ligament but is inferior to MRI.108

MRI is well suited to identify pathology in the tarsal joints, including osteoarthritis, subchondral bone cysts, intertarsal ligament desmopathy, sclerosis, fracture, and bone marrow lesions.3,4,4,103,109,110 CT can identify subchondral bone disease, subchondral bone cysts, degenerative joint disease, and fracture in the tarsus.111–113 Less work has been performed on MRI and CT of the carpus, but similar pathology would be expected to be identified as is seen in other joints.105,114–117

Stifle Region

Although not as commonly performed as distal limb CT and MRI due to the challenges of positioning the stifle region within the bore of a scanner, advanced imaging of the stifle region is useful particularly due to the inability of ultrasonography, radiography, and arthroscopy to completely image the area.118–120 MRI allows excellent visualization of the soft tissues, including menisci, meniscofemoral and meniscotibial ligaments, cruciate ligaments, collateral ligaments, and patellar ligaments.121,122 Bone marrow lesions and subchondral bone disease can also be identified.122 Noncontrast CT has improved detection of enthesopathy and subchondral bone disease as compared with stifle region radiography.119 CT arthrography (ie, intra-articular injection of positive contrast material) is useful in the diagnosis of intra-articular soft tissue injuries in the stifle region, including meniscal damage, cranial medial meniscotibial ligament desmopathy, articular cartilage damage, collateral ligament desmopathy, and cruciate ligament pathology.119,123,124 For some soft tissue structures, the diagnostic performance of CT arthrography was comparable to MRI for experimentally induced lesions.125

Cervical Spine

One area in which there has been interesting new work is in CT of the cervical spine in horses with poor performance or an “unblockable” lameness. The advent of large-bore and robotic scanner designs has allowed routine accommodation of the entire cervical spine and the cranialmost thoracic vertebrae in live adult horses (Figure 4).126–129 This has enhanced our diagnostic abilities significantly, as radiography of this area is limited by superimposition, the degree of muscle mass present, and the reality of only being able to obtain lateral-lateral and oblique views in the adult horse. Ultrasonography can only evaluate the bony margins of the vertebral canal and not the soft tissues within it. The 3-D nature of CT imaging allows evaluation in any plane without superimposition, allowing complete evaluation of the spinal column. Spinal cord compression, subarachnoid space narrowing, articular process enlargement, intervertebral foramen narrowing, osteoarthritis, osteochondral fragmentation, and intervertebral disc disease have all been diagnosed using plain or myelographic CT (ie, CT after injection of positive contrast material into the subarachnoid space).126–130 In many cases, radiography or radiographic myelography is not sufficient to make a complete diagnosis (Figure 5).

The diagnosis of cervical stenotic myelopathy (CSM) using CT provides a good example of how CT adds to the diagnostic toolbox. Previous work evaluating decision criteria of both plain radiography and radiographic myelography for a diagnosis of CSM has demonstrated less-than-ideal combinations of sensitivity, specificity, and interobserver agreement to identify specific sites of spinal cord compression.131–135 CT myelography can assess...
the spinal cord more fully, as lateral compression can be identified in addition to the dorsoventral compression that can be identified with a radiographic myelogram. It is hoped that future research investigating the association between CT findings, clinical signs, and histologic lesions of the spinal cord will lead to improved decision criteria for CSM. It is important to note that most CT scanners are unable to accommodate the degree of flexion and extension typically obtained during a radiographic myelography study, so in the opinion of this author and others, it is most appropriate to combine CT and radiographic myelography. Although MRI of cadavers has been shown to be useful in predicting a diagnosis of CSM and would provide superior information about the spinal cord, spinal nerves, and soft tissues of the vertebral canal as compared with CT, there are no designs that allow routine MR imaging of the complete cervical spine in a live adult horse.

Radiographic identification of osteoarthropathy in the cervical spine is another clinical challenge as radiographic abnormalities of the articular processes in the cervical spine are poorly associated with clinical signs. However, there does appear to be an association between articular process abnormalities identified on CT and clinical signs including neurologic deficits localized to the cervical spine, an “unblockable” forelimb lameness, and neck pain. Although much work remains to be done, CT shows a great deal of potential in helping to define the clinical significance of bony pathology in this area.

Figure 5—Transverse (A) multiplanar reconstruction image of the cervical spine at C6–7 of a horse with grade 2/3 neurologic signs in the pelvic limbs undergoing CT myelography. The radiographic myelographic images are shown in B (neutral), C (flexion), and D (extension). Measurements of the contrast column on the radiographic myelogram do not support a diagnosis of spinal cord compression at C6–7 (black arrows), but the CT myelogram shows spinal cord compression and displacement to the right (white arrowhead) due to lateral compression by marked enlargement and osteoarthropathy of the left articular processes (white arrows). Cranial and right are to the left of the images.
Conclusion

As with all imaging modalities, integrating the history and clinical/lameness examination findings into both the decision to pursue advanced imaging as well as the interpretation of the results is of paramount importance. CT and MRI are not tools that should be used in isolation, and although there is discussion of possible future use as screening tools to help prevent catastrophic injury, we are not at that stage currently, and even then, clinical information will need to be considered. Therefore, a thorough lameness examination to localize the source of the lameness as much as possible, including reblocking some horses, is extremely important.

For obvious financial and logistical reasons, CT and MRI are unlikely to become tools that are available outside referral settings, so these procedures frequently necessitate cooperation between the primary veterinarian and the referral center providing the advanced imaging. Both parties need to be comfortable with the clinical presentation and lameness examination findings, the region that will be imaged, the plan if significant pathology is not found within the requested area (particularly if general anesthesia is involved), and how communication with the client will be handled. In the author’s experience, there are 2 important factors to keep in mind to keep these relationships productive. First, the goal is to find the reason for the lameness in the most efficient way possible. To accomplish this, the referral center may wish to reblock the horse to confirm or narrow down the site to be imaged, particularly if the lameness examination findings were not straightforward or a less specific block was previously performed (eg, basesesamoid perineural anesthesia was performed without palmar digital perineural anesthesia being performed before it). Second, MRI and CT are inherently more sensitive tools than radiography and ultrasonography. Referring a horse for advanced imaging does not mean that a veterinarian is unskilled, it means that more sensitive modalities are needed to make a diagnosis in the case.

CT and MRI have greatly enhanced our diagnostic capabilities in equine lameness. They provide a better determination of the exact anatomic structures that are abnormal, including location, extent, and severity of lesions. This superior diagnostic information has direct relevance to prognostication and treatment recommendations. Different pathologies may present with a similar clinical picture but benefit from different treatments, highlighting the importance of an accurate diagnosis. Considering a group of lame horses that respond to a palmar digital perineural anesthesia. Rather than simply diagnosing all of them with “navicular disease,” we can pinpoint the source of the problem, be it navicular bone degenerative changes, a core lesion in the deep digital flexor tendon, distal interphalangeal joint osteoarthritis, collateral ligament desmitis, or distal sesamoidean ligament desmitis. These horses have different prognoses and require different treatment strategies. We have come a long way from treating all these horses the same way. Advanced imaging is truly a situation of “knowledge is power.”

References

1. Daniel AJ, Judy CE, Rick MC, Saveraid TC, Herthel DJ. Comparison of radiography, nuclear scintigraphy, and magnetic resonance imaging for detection of specific conditions of the distal tarsal bones of horses: 20 cases (2006–2010). J Am Vet Med Assoc. 2012;240(9):1109–1114.
2. Dakin SG, Dyson SJ, Murray RC, Tranquille C. Osseous abnormalities associated with collateral desmopathy of the distal interphalangeal joint: part 1. Equine Vet J. 2009;41(8):786–793.
3. Brokken MT, Schneider RK, Sampson SN, Tucker RL, Gavin PR, Ho CP. Magnetic resonance imaging features of proximal metacarpal and metatarsal injuries in the horse. Vet Radiol Ultrason. 2007;48(6):507–517.
4. Gold SJ, Werpy NM, Gutierrez-Nibeyro SD. Injuries of the sagittal groove of the proximal phalanx in warmblood horses detected with low-field magnetic resonance imaging: 19 cases (2007–2015). Vet Radiol Ultrason. 2017;58(3):344–353.
5. d’Anjou M-A. Principles of computed tomography and magnetic resonance imaging. In: Thrall DE, ed. Textbook of Veterinary Diagnostic Imaging. 7th ed. Elsevier; 2018:71–95.
6. Stewart HL, Kawcak CE, Inscoe CR, et al. Comparative evaluation of tomosynthesis, computed tomography, and magnetic resonance imaging findings for metacarpophalangeal joints from equine cadavers. Am J Vet Res. 2021;82(11):872–879.
7. Murray RC, Branch MV, Tranquille C, Woods S. Validation of magnetic resonance imaging for measurement of equine articular cartilage and subchondral bone thickness. Am J Vet Res. 2005;66(11):1999–2005.
8. Nelson BB, Kawcak CE, Barrett MF, McIlwrath CW, Grinstaff MW, Goodrich LR. Recent advances in articular cartilage evaluation using computed tomography and magnetic resonance imaging. Equine Vet J. 2018;50(5):564–579.
9. Olive J, d’Anjou M-A, Alexander K, Laverty S, Theoret C. Comparison of magnetic resonance imaging, computed tomography, and radiography for assessment of noncartilaginous changes in equine metacarpophalangeal osteoarthritis. Vet Radiol Ultrason. 2010;51(3):267–279.
10. O’Brien T, Baker TA, Brounts SH, et al. Detection of articular pathology of the distal aspect of the third metacarpal bone in Thoroughbred racehorses: comparison of radiography, computed tomography and magnetic resonance imaging. Vet Surg. 2011;40(8):942–951.
11. Sampson SN, Schneider RK, Tucker RL, Gavin PR, Zubrod CJ, Ho CP. Magnetic resonance imaging features of oblique and straight distal sesamoidean ligament desmitis in 27 horses. Vet Radiol Ultrason. 2007;48(4):303–311.
12. Dyson S, Murray R. Magnetic resonance imaging evaluation of 264 horses with foot pain: the podotrochlear apparatus, deep digital flexor tendon and collateral ligaments of the distal interphalangeal joint. Equine Vet J. 2007;39(4):340–343.
13. Gonzalez LM, Schramme MC, Robertson ID, Thrall DE, Redding RW, MRI features of metacarpal(tarsal)phalangeal region lameness in 40 horses. Vet Radiol Ultrason. 2010;51(4):404–414.
14. Labens R, Schramme MC, Murray RC, Bolas N. Standing low-field MRI of the equine proximal metacarpal/metatarsal region is considered useful for diagnosing primary bone pathology and makes a positive contribution to case management: a prospective survey study. Vet Radiol Ultras. 2020;61(2):197–205.
15. Porter EG, Werpy NM. New concepts in standing advanced diagnostic equine imaging. Vet Clin North Am Equine Pract. 2014;30(1):239–268.
16. Konar M, Lang J. Pros and cons of low-field magnetic resonance imaging in veterinary practice. Vet Radiol Ultrason. 2011;52(suppl 1):S5–S14.
17. Byrne CA, Marshall JF, Voute LC. Clinical magnetic
18. Murray RC, Mair TS, Sherlock CE, Blunden AS. Comparison of high-field and low-field magnetic resonance images of cadaver limbs of horses. *Equine Vet J*. 2009;165(10):281–288.

19. Vallance SA, Bell RJW, Spriet M, Kass PH, Puchalski SM. Comparison of computed tomography, contrast-enhanced computed tomography and standing low-field magnetic resonance imaging in horses with lameness localised to the foot. Part 2: lesion identification. *Equine Vet J*. 2012;44(2):149–156.

20. Biggi M, Dyson SJ. Use of high-field and low-field magnetic resonance imaging to describe the anatomy of the proximal portion of the tarsal region of nonlame horses. *Am J Vet Res*. 2018;79(5):299–310.

21. Nagy A, Dyson S. Magnetic resonance anatomy of the proximal metacarpal region of the horse described from images acquired from low- and high-field magnets. *Vet Radiol Ultrason*. 2009;50(6):595–605.

22. Nagy A, Dyson S. Magnetic resonance anatomy of the carpus of the horse described from imaging acquired from low-field and high-field magnets. *Vet Radiol Ultrason*. 2011;52(2):273–283.

23. Nagy A, Dyson S. Magnetic resonance imaging and histological findings in the proximal aspect of the suspensory ligament of forelimbs in nonlame horses. *Equine Vet J*. 2012;44(1):43–50.

24. Lechuga L, Weidlich GA, Murray RC. The appearance of the equine metacarpophalangeal region on high-field vs. standing low-field magnetic resonance imaging. *Vet Radiol Ultrason*. 2011;52(1):61–70.

25. Curtiss AL, Ortved KF, Dallap-Schaer B, et al. Validation of standing cone beam computed tomography for diagnosing subchondral fetlock pathology in the Thoroughbred racehorse. *Equine Vet J*. 2021;53(3):510–523.

26. Stewart HL, Siewersd JH, Nelson BB, Kawcak CE. Use of cone-beam computed tomography for advanced imaging of the equine patient. *Equine Vet J*. 2021;53(5):872–885.

27. Bregger MDK, Koch C, Zimmermann R, Sangiorgio D, Schweizer-Gorgas D. Cone-beam computed tomography of the head in standing equids. *BMJ Vet Res*. 2019;35(3):289. doi:10.1186/s12917-019-2045-z.

28. Koch C, Pauwels F, Schweizer-Gorgas D. Technical set-up and case illustrations of orthopaedic cone beam computed tomography in the standing horse. *Equine Vet Educ*. 2021;33(5):255–262.

29. Pauwels FE, Van der Vekens E, Christian Y, Koch C, Schweizer D. Feasibility, indications, and radiographically contrasted diagnoses of standing extremity cone beam computed tomography in the horse. *Vet Surg*. 2021;50(2):365–374.

30. Lechuga L, Weidlich GA. Cone beam CT vs. fan beam CT: a comparison of dose delivered between two differing CT imaging modalities. *Cureus*. 2016;8(9):e778. doi:10.7759/cureus.778.

31. Gylling SMK, Frandsen SS, Østergaard S, et al. The effect of a compression bandage on the distribution of radiodense contrast medium after palmar digital nerve blocks. *Equine Vet J*. 2019;51(2):261–265.

32. Nagy A, Malton R. Diffusion of radiodense contrast medium after perineural injection of the palmar digital nerves. *Equine Vet Educ*. 2015;27(12):648–654.

33. Schumacher J, Livesey L, Graves FJ, et al. Effect of anaesthesia of the palmar digital nerves on proximal interphalangeal joint pain in the horse. *Equine Vet J*. 2004;36(5):409–414.

34. Nagy A, Bodo G, Dyson S, Szabo F, Barr ARS. Diffusion of contrast medium after perineural injection of the palmar digital nerves in vivo and in vitro study. *Equine Vet J*. 2009;41(4):379–383.

35. Pezzanine L, Contino E, Kawcak C. Lameness originating from the proximal metacarpus/tarsus: a review of local analgesic techniques and clinical diagnostic findings. *Equine Vet Educ*. 2020;32(4):204–217.

36. Dyson SJ, Romero JM. An investigation of injection techniques for local analgesia of the equine distal tarsus and proximal metatarsus. *Equine Vet J*. 1993;25(1):30–35.

37. Contino EK, King MR, Váldez-Martínez A, et al. In vivo diffusion characteristics following perineural injection of the deep branch of the lateral plantar nerve with mepivacaine or iohexol in horses. *Equine Vet J*. 2015;47(2):230–234.

38. Nagy A, Bodo G, Dyson SJ. Diffusion of contrast medium after four different techniques for analgesia of the proximal metacarpal region: an in vivo and in vitro study. *Equine Vet J*. 2012;44(6):668–673.

39. Dyson S. Proximal metacarpal and metatarsal pain: a diagnostic challenge. *Equine Vet Educ*. 2003;15(3):134–138.

40. Murray R, Tranquille C, Walker V, et al. Magnetic resonance imaging findings in the proximal metacarpal region of 359 horses and proximal metatarsal region of 64 horses acquired under standing sedation. *J Equine Vet Sci*. 2020;94:103268. doi:10.1016/j.jevs.2020.103268.

41. Dyson S, Nagy A, Murray R. Clinical and diagnostic imaging findings in horses with subchondral bone trauma of the sagittal groove of the proximal phalanx. *Vet Radiol Ultrason*. 2011;52(5):596–604.

42. Vallance SA, Bell RJW, Spriet M, Kass PH, Puchalski SM. Comparisons of computed tomography, contrast enhanced computed tomography and standing low-field magnetic resonance imaging in horses with lameness localised to the foot. Part 1: anatomic visualisation scores. *Equine Vet J*. 2012;44(1):51–56.

43. Barrett MF, Selberg KT, Johnson SA, Hersman J, Frisbie DD. High field magnetic resonance imaging contributes to diagnosis of equine distal tarsus and proximal metatarsus lesions: 103 horses. *Vet Radiol Ultrason*. 2018;59(5):587–596.

44. Labens R, Schramme MC, Robertson ID, Thrall DE, Redding WR. Clinical, magnetic resonance, and tomographic imaging findings in horses with proximal metatarsal pain. *Vet Radiol Ultrason*. 2010;51(1):11–18.

45. Biggi M, Dyson S. Comparison between radiological and magnetic resonance imaging lesions in the distal border of the navicular bone with particular reference to distal border fragments and osseous cyst-like lesions. *Equine Vet J*. 2012;44(6):707–712.

46. Dyson SJ, Murray R, Schramme M, Branch M. Collateral desmits of the distal interphalangeal joint in 18 horses (2001–2002). *Equine Vet J*. 2004;36(2):160–166.

47. Dyson SJ, Murray R, Schramme MC. Lameness associated with foot pain: results of magnetic resonance imaging in 199 horses (January 2001–December 2003) and response to treatment. *Equine Vet J*. 2005;37(2):113–121.

48. Marsh CA, Schneider RK, Sampson SN, Roberts GD. Response to injection of the navicular bursa with corticosteroid and hyaluronan following high-field magnetic resonance imaging in horses with signs of navicular syndrome: 101 cases (2000–2008). *J Am Vet Med Assoc*. 2012;241(10):1353–1364.

49. Parkes R, Newton R, Dyson S. Is there an association between clinical features, response to diagnostic analgesia and radiological findings in horses with a magnetic resonance imaging diagnosis of navicular disease or other injuries of the podotrochlear apparatus? *Vet J*. 2015;204(1):40–46.

50. Sampson SN, Schneider RK, Gavin PR, Ho CP, Tucker RL, Charles EM. Magnetic resonance imaging findings in horses with recent onset navicular syndrome but without radiographic abnormalities. *Vet Radiol Ultrason*. 2009;50(4):339–346.

51. Sherlock C, Mair T, Blunden T. Deep erosions of the palmar aspect of the navicular bone diagnosed by standing magnetic resonance imaging. *Equine Vet J* 2008;40(7):684–692.

52. Young AC, Dimock AN, Puchalski SM, Murphy B, Spriet M. Magnetic resonance and radiographic diagnosis of osseous resorption of the flexor surface of the distal phalanx in the horse. *Equine Vet J Suppl*. 2012;43:3–7.

53. Zubrod CJ, Schneider RK, Tucker RL, Gavin PR, Ragle CA,
Farnsworth KD. Use of magnetic resonance imaging for identifying subcondral bone damage in horses: 11 cases (1999–2003). J Am Vet Med Assoc. 2004;224(3):411–418.

Sherlock CE, Kinns J, Mair TS. Evaluation of foot pain in the standing horse by magnetic resonance imaging. Vet Rec. 2007;161(22):739.

Blunden A, Murray R, Dyson S. Lesions of the deep digital flexor tendon in the digit: a correlative MRI and post mortem study in control and lame horses. Equine Vet J. 2009;41(1):25–33.

Cillán-García E, Milner PI, Talbott A, et al. Deep digital flexor tendon injury within the hoof capsule; does lesion type or location predict prognosis? Vet Rec. 2013;173(3):70.

Dakin SG, Dyson SJ, Murray RC, Newton R. Osseous abnormalities associated with collateral desmopathy of the distal interphalangeal joint. Part 2: treatment and outcome. Equine Vet J. 2009;41(8):794–799.

Gutiérrez-Nibeyro SD, Werpy NM, Gold SJ, Olguin S, Schaeffer DJ. Standing MRI lesions of the distal interphalangeal joint and podotrochlear apparatus occur with a high frequency in warmblood horses. Vet Radiol Ultrasound. 2010;61(3):336–345.

Rovel T, Audigié F, Coudry V, Jacquet-Guibon S, Bertoni L, Denoix J-M. Evaluation of standing low-field magnetic resonance imaging for diagnosis of advanced distal interphalangeal primary degenerative joint disease in horses; 12 cases (2010–2014). J Am Vet Med Assoc. 2019;254(2):257–265.

Selberg K, Werpy N. Fractures of the distal phalanx and associated soft tissue and osseous abnormalities in 22 horses with ossified sclerotic ungual cartilages diagnosed with magnetic resonance imaging. Vet Radiol Ultrasound. 2011;52(4):394–401.

Dyson S, Blunden T, Murray R. Comparison between magnetic resonance imaging and histological findings in the navicular bone of horses with foot pain. Equine Vet J. 2012;44(6):692–698.

Dyson S, Blunden T, Murray R. The collateral ligaments of the distal interphalangeal joint: magnetic resonance imaging and post mortem observations in 25 lame and 12 control horses. Equine Vet J. 2008;40(6):538–544.

Kotze JD, Everard D, de Villiers J, Adendorff J, Stadler M, van Vuuren M. Magnetic resonance imaging and gross pathological appearance of changes in the paracondylar region: a retrospective study of 131 horses. Equine Vet J. 2012;44(2):169–177.

Murray RC, Blunden TS, Schramme MC, Dyson SJ. How does magnetic resonance imaging represent histological findings in the equine digit? Vet Radiol Ultrasound. 2006;47(1):17–31.

Sherlock CE, Mair TS, Ireland J, Blunden T. Do low field magnetic resonance imaging abnormalities correlate with macroscopical and histological changes within the equine deep digital flexor tendon? Res Vet Sci. 2015;98:92–97.

Clairhoudt S, Bergman HJ, Van Der Veen H, Duchateau L, Raes EV, Saunders JH. Differences in the morphology of distal border synovial invaginations of the distal sesamoid bone in the horse as evaluated by computed tomography compared with radiography. Equine Vet J. 2012;44(6):679–683.

Whitton BC, Buckley C, Donovan T, Wales AD, Dennis R. The diagnosis of lameness associated with distal limb pathology in a horse: a comparison of radiography, computed tomography and magnetic resonance imaging. Vet J. 1998;155(3):223–229.

Puchalski SM, Galuppo LD, Hornof WJ, Wisner ER. Intratraetorial contrast-enhanced computed tomography of the equine distal extremity. Vet Radiol Ultrasound. 2007;48(1):21–29.

van Hamel SE, Bergman HJ, Puchalski SM, de Groot MW, van Weeren PR. Contrast-enhanced computed tomographic evaluation of the deep digital flexor tendon in the equine foot compared to macroscopic and histological findings in 23 limbs. Equine Vet J. 2014;46(3):300–305.

Puchalski SM, Galuppo LD, Drew CP, Wisner ER. Use of contrast-enhanced computed tomography to assess angiogenesis in deep digital flexor tendonopathy in a horse. Vet Radiol Ultrasound. 2009;50(3):292–297.

King JN, Zubrod CJ, Schneider RK, Sampson SN, Roberts G. MRI findings in 232 horses with lameness localized to the metacarpal(tarsal)phalangeal region and without a radiographic diagnosis. Equine Vet J. 2013;54(1):36–47.

Olive J, Serraud N, Vila T, Germain J-P. Metacarpophalangeal joint injury patterns on magnetic resonance imaging: a comparison in racing Standardbreds and Thoroughbreds. Vet Radiol Ultrasound. 2017;58(5):588–597.

Smith S, Dyson SJ, Murray RC. Magnetic resonance imaging of distal sesamoidean ligament injury. Vet Radiol Ultrasound. 2008;49(6):516–528.

van Veggel ECS, Selberg KT, van der Velde-Hoogelander B, Vanderperren K, Cokelaere SM, Bergman H-J. Deep digital flexor tendon injury at the level of the proximal phalanx in frontlimbs with tendon sheath distension characterized by standing low-field magnetic resonance imaging in horses: 13 cases (2015–2021). Front Vet Sci. 2021;8:734729. doi:10.3389/fvets.2021.734729.

Ellis KL, Barrett MF, Selberg KT, Frisbie DD. Magnetic resonance imaging and histopathological evaluation of equine oblique sesamoidean ligaments. Equine Vet J. 2020;52(4):522–530.

Powell SE. Low-field standing magnetic resonance imaging findings of the metacarpus/metatarsalphalangeal joint of racing Thoroughbreds with lameness localised to the region: a retrospective study of 131 horses. Equine Vet J. 2012;44(2):169–177.

Ramzan PHL, Powell SE. Clinical and imaging features of suspected prodromal fracture of the proximal phalanx in three Thoroughbred racehorses. Equine Vet J. 2010;42(2):164–169.

Sherlock CE, Mair TS, ter Braake F. Osseous lesions in the metacarpus(tarsus)phalangeal joint diagnosed using low-field magnetic resonance imaging in standing horses. Vet Radiol Ultrasound. 2008;49(5):48–57.

Brünisholz HP, Hagen R, Fürst AE, Kuemmere JM. Radiographic and computed tomographic configuration of incomplete proximal fractures of the proximal phalanx in horses not used for racing. Vet Surg. 2015;44(7):809–815.

Crijns CP, Martens A, Bergman H-J, et al. Intramodality and intermodality agreement in radiography and computed tomography of equine distal limb fractures. Equine Vet J. 2014;46(1):92–96.

Morgan JW, Santschi EM, Zekas LJ, et al. Comparison of radiography and computed tomography to evaluate metacarpus/metatarsalphalangeal joint pathology of paired limbs of Thoroughbred racehorses with severe condylar fracture. Vet Surg. 2009;50(1):13–20.

Johnston GCA, Ahern B, Palmieri C, Young AC. Imaging and gross pathological appearance of changes in the parasagittal grooves of Thoroughbred racehorses. Animals (Basel). 2021;11(12):3366. doi:10.3390/ani11123366.

Lipreri G, Bladon BM, Giorio ME, Singer ER. Conservative versus surgical treatment of 21 sports horses with osseous trauma in the proximal phalangeal collateral groove diagnosed by low-field MRI. Vet Surg. 2018;47(7):908–915.

Pinchbeck GL, Clegg PD, Boyde A, Barr ED, Riggs CM. Horse-, training- and race-level risk factors for palmar/plantar osteochondral disease in the racing Thoroughbred. Equine Vet J. 2013;45(5):582–586.
87. Janes JG, Kennedy LA, Garrett KS, Engiles JB. Common lesions of the distal end of the third metacarpal/metatarsal bone in racehorse catastrophic breakdown injuries. *J Vet Diagn Invest*. 2017;29(4):431–436.

88. Riggs CM, Whitehouse GH, Boyde A. Pathology of the distal condyles of the third metacarpal and third metatarsal bones of the horse. *Equine Vet J*. 1999;31(2):140–148.

89. Guio C, Ségard-Weisse E, Thomas-Cancian A, Schramme M. Bone marrow lesions of the distal condyle of the third metacarpal bone are common and not always related to lameness in sports and pleasure horses. *Vet Radiol Ultra- sound*. 2019;60(2):167–175.

90. Barr ED, Pinchbeck G, Clegg PD, Boyde A, Riggs CM. Post mortem evaluation of palmar osteochondral disease (traumatic osteochondrosis) of the metacarpo/metatarsophalangeal joint in Thoroughbred racehorses. *Equine Vet J*. 2009;41(4):366–371.

91. Pinchbeck GL, Clegg PD, Boyde A, Riggs CM. Pathological and clinical features associated with palmar/plantar osteochondral disease of the metacarpo/metatarsophalangeal joint in Thoroughbred racehorses. *Equine Vet J*. 2017;49(5):556–562.

92. Bani Hassan E, Mirams M, Ghasem-Zadeh A, Mackie EJ, Whitton RC. Role of subchondral bone remodelling in collapse of the articular surface of Thoroughbred racehorses with palmar osteochondral disease. *Equine Vet J*. 2015;48(2):228–233.

93. Davis AM, Pan X, Shen L, Robinson P, Riggs CM. Improved radiological diagnosis of palmar osteochondral disease in the Thoroughbred racehorse. *Equine Vet J*. 2017;49(4):454–460.

94. Bogers SH, Rogers CW, Bolwell C, Roe W, Gee E, McIlwraith CW. Quantitative comparison of bone mineral density characteristics of the distal epiphysis of third metacarpal bones from Thoroughbred racehorses with and without con- dylar fracture. *Am J Vet Res*. 2016;77(1):32–38.

95. Loughridge AB, Hess AM, Parkin TD, Kawcak CE. Qualitative assessment of bone density at the distal articular surface of the third metacarpal in Thoroughbred racehorses with and without condylar fracture. *Equine Vet J*. 2017;49(2):172–177.

96. Denoix J-M, Coutry V. Clinical insights: imaging of the equine fetlock in Thoroughbred racehorses: identification of imaging changes to predict catastrophic injury. *Equine Vet J*. 2020;52(3):342–343.

97. Tranquille CA, Murray RC, Parkin TDH. Can we use subchondral bone thickness on high-field magnetic resonance images to identify Thoroughbred racehorses at risk of catastrophic lateral condylar fracture? *Equine Vet J*. 2017;49(2):167–171.

98. Peloso JG, Vogler JB III, Cohen ND, Marquis P, Hilt L. Association of catastrophic biaxial fracture of the proximal sesamoid bones with bony changes of the metacarpo- phalangeal joint identified by standing magnetic resonance imaging in cadaveric forelimbs of Thoroughbred racehorses. *J Am Vet Med Assoc*. 2015;246(6):661–673.

99. Peloso JG, Cohen ND, Vogler JB, Marquis PA, Hilt L. Association of catastrophic condylar fracture with bony changes of the third metacarpal bone identified by use of standing magnetic resonance imaging in forelimbs from cadavers of Thoroughbred horses in the United States. *Am J Vet Res*. 2019;80(2):196–199.

100. Cresswell EN, McDonough SP, Palmer SE, Hernandez CJ, Whitton RC. Can HR-pQCT imaging predict condylar fracture in Thoroughbred racehorses? *Equine Vet J*. 2015;47(4):428–432.

101. Tranquille CA, Parkin TDH, Murray RC. Magnetic resonance imaging-detected adaptation and pathology in the distal condyles of the third metacarpus, associated with lateral condylar fracture in Thoroughbred racehorses. *Equine Vet J*. 2012;44(6):699–706.

102. Dyson S, Pinilla MJ, Bolas N, Murray R. Proximal suspensory desmopathy in hindlimbs: magnetic resonance imaging, gross post-mortem and histological study. *Equine Vet J*. 2018;50(2):159–165.

103. Hinkle FE, Selberg KT, Friisbie DD, Barrett MF. Radiographic changes of the proximal third metatarsal bone do not predict presence or severity of proximal suspensory desmopathy in a predominately Quarter Horse population. *Equine Vet J*. Published online January 29, 2022. doi:10.1111/evj.13562

104. Nagy A, Dyson S. Magnetic resonance imaging findings in the carpus and proximal metacarpal region of 50 lame horses. *Equine Vet J*. 2012;44(2):163–168.

105. Powell SE, Ramzan PHL, Head MJ, Shepherd MC, Baldwin GI, Steven WN. Standing magnetic resonance imaging detection of bone marrow oedema-type signal pattern associated with subcarpal pain in 8 racehorses: a prospective study. *Equine Vet J*. 2010;42(1):10–17.

106. Barrett MF, Manchon PT, Hersman J, Kawcak CE. Magnetic resonance imaging findings of the proximal metacarpus in Quarter Horses used for cutting: retrospective analysis of 32 horses 2009–2012. *Equine Vet J*. 2018;50(2):172–178.

107. Elemmawy YM, Senna NA, Abu-Seida AM, Youssef AF. Suspensory branch desmitis in a horse: ultrasonography, computed tomography, magnetic resonance imaging, and gross postmortem findings. *Equine Vet Sci*. 2019;80:49–55.

108. Branch MV, Murray RC, Dyson SJ, Goodship AE. Alteration of distal tarsal subchondral bone thickness pattern in horses with tarsal pain. *Equine Vet J*. 2007;39(2):101–105.

109. Zubrod CJ, Schneider RK, Tucker RL. Use of magnetic resonance imaging to identify suspensory desmitis and adhesions between exostoses of the second metacarpal bone and the suspensory ligament in four horses. *J Am Vet Med Assoc*. 2004;224(11):1815–1820.

110. García-López JM, Kirker-Head CA. Occult subchondral osseous cyst-like lesions of the equine tarsocarpal joint. *Vet Surg*. 2004;33(5):557–564.

111. Raes E, Bergman HJ, Ryssen BV, Vanderperren K, Stock E, Saunders JH. Computed tomographic features of lesions detected in horses with tarsal lameness. *Equine Vet J*. 2014;46(2):189–193.

112. Knuchell JA, Spriet M, Galuppo LD, Katzman SA. Fracture of the central tarsal bone in nonracehorses: four cases. *Vet Radiol Ultrasound*. 2016;57(4):403–409.

113. Anastasiou A, Skioldebrand E, Ekman S, Hall LD. Ex vivo magnetic resonance imaging of the distal row of equine carpal bones: assessment of bone sclerosis and cartilage damage. *Vet Radiol Ultrasound*. 2003;44(5):501–512.

114. Getman LM, McKnight AL, Richardson DW. Comparison of magnetic resonance contrast arthrography and arthroscopic anatomy of the equine palmar lateral outpouching of the middle carpal joint. *Vet Radiol Ultrasound*. 2007;48(6):493–500.

115. Gray SN, Puchalski SM, Galuppo LD. Computed tomographic arthrography of the intercarpal ligaments of the equine carpus. *Vet Radiol Ultrasound*. 2013;54(3):245–252.

116. Suarez Sanchez-Andrade J, Richter H, Kuhn K, Bischofberger AS, Kircher PR, Höey S. Comparison between magnetic resonance imaging, computed tomography, and arthrography to identify artificially induced cartilage defects of the equine carpal joints. *Vet Radiol Ultrasound*. 2018;59(3):312–325.

117. Barrett MF, Friisbie DD, McIlwraith CW, Werpy NM. The arthroscopic and ultrasonographic boundaries of the equine femorotibial joints. *Equine Vet J*. 2012;44(1):57–63.

118. Nelson BB, Kawcak CE, Goodrich LR, Werpy NM, Valdés-Martínez A, McIlwraith CW. Comparison between computed tomographic arthrography, radiography, ultrasonography, and arthroscopy for the diagnosis of femorotibial joint disease in western performance horses. *Vet Radiol Ultrasound*. 2016;57(4):387–402.
120. Adrian AM, Barrett MF, Werpy NM, Kawcak CE, Chapman PL, Goodrich LR. A comparison of arthroscopy to ultrasonography for identification of pathology of the equine stifle. Equine Vet J. 2017;49(3):314–321.

121. Daglish J, Frisbie DD, Selberg KT, Barrett MF. High field magnetic resonance imaging is comparable with gross anatomy for description of the normal appearance of soft tissues in the equine stifle. Vet Radiol Ultrasound. 2018;59(6):721–736.

122. Waselau M, McKnight A, Kasparek A. Magnetic resonance imaging of equine stifles: technique and observations in 76 clinical cases. Equine Vet Educ. 2020;32(suppl 10):85–91.

123. Allmann AD, Oehlerth S, Suárez Sánchez-Andráde J, Torgerson PR, Bischofberger AS. Ex vivo comparison of 3 tesla magnetic resonance imaging and multidetector computed tomography arthrography to identify artificial soft tissue lesions in equine stifles. Vet Surg. Published online March 15, 2022. doi:10.1111/vsu.13798

124. Van der Vekens E, Bergman EHJ, Vanderperren K, et al. Computed tomographic anatomy of the equine stifle joint. Am J Vet Res. 2011;72(4):512–521.

125. Brown KA, Davidson EJ, Johnson AL, Walster KB, Orved K. Inflammatory cytokines in horses with cervical articular process joint osteoarthritis on standing cone beam computed tomography. Equine Vet J. 2021;53(5):944–954.

126. Gough SL, Anderson JDC, Dixon JJ. Computed tomographic myelography in horses: technique and findings in 51 clinical cases. J Vet Intern Med. 2020;34(5):2142–2151.

127. Tucker R, Hall YS, Hughes TK, Parker RA. Osteochondral fragmentation of the cervical articular process joints; prevalence in horses undergoing CT for investigation of cervical dysfunction. Equine Vet J. 2022;54(1):106–113.

128. Rovel T, Zimmerman M, Duchateau L, et al. Computed tomographic examination of the articular process joints of the cervical spine in warmblood horses: 86 cases (2015–2017). J Am Vet Med Assoc. 2021;259(10):1178–1187.

129. Lindgren CM, Wright L, Kristoffersen M, Puchalski SM. Computed tomography and myelography of the equine cervical spine: 180 cases (2013–2018). Equine Vet Educ. 2021;33(9):475–483.

130. Rovel T, Zimmerman M, Duchateau L, et al. Computed tomographic myelography for assessment of the cervical spinal cord in ataxic warmblood horses: 26 cases (2015–2017). J Am Vet Med Assoc. 2021;259(10):1188–1195.

131. van Biervliet J, Scrivani PV, Divers TJ, Erb HN, de Lahunta A, Nixon A. Evaluation of decision criteria for detection of spinal cord compression based on cervical myelography in horses: 38 cases (1981–2001). Equine Vet J. 2004;36(1):14–20.

132. Hahn CN, Handel I, Green SL, Bronsoort MB, Mayhew IG. Assessment of the utility of using intra- and intervertebral minimum sagittal diameter ratios in the diagnosis of cervical vertebral malformation in horses. Vet Radiol Ultrasound. 2008;49(1):1–6.

133. Hughes KJ, Laidlaw EH, Reed SM, et al. Repeatability and intra- and inter-observer agreement of cervical vertebral sagittal diameter ratios in horses with neurological disease. J Vet Intern Med. 2014;28(6):1860–1870.

134. Levine JM, Scrivani PV, Divers TJ, et al. Multicenter case-control study of signalment, diagnostic features, and outcome associated with cervical vertebral malformation-malarticulation in horses. J Am Vet Med Assoc. 2010;237(7):812–822.

135. Scrivani PV, Levine JM, Holmes NL, Furr M, Divers TJ, Cohen ND. Observer agreement study of cervical-vertebral ratios in horses. Equine Vet J. 2011;43(4):399–403.

136. Janes JP, Garrett KS, McQuerry KJ, et al. Comparison of MRI with radiographs for vertebral canal stenosis evaluation. Equine Vet J. 2014;46(6):681–686.

137. Dow SS, Henson FMD. Radiographic retrospective study of the caudal cervical articular process joints in the horse. Equine Vet J. 2009;41(6):518–524.

138. Espinosa-Mur P, Phillips KL, Galuppo LD, et al. Radio logical prevalence of osteoarthritis of the cervical region in 104 performing warmblood jumpers. Equine Vet J. 2021;53(5):972–978.

139. Koenig JB, Westlund A, Nykamp S, et al. Case-control comparison of cervical spine radiographs from horses with a clinical diagnosis of cervical facet disease with normal horses. J Equine Vet Sci. 2020;92:103176. doi:10.1016/j.ejevs.2020.103176

140. Veraa S, de Graaf K, Wijnberg ID, et al. Caudal cervical vertebral morphological variation is not associated with clinical signs in warmblood horses. Equine Vet J. 2020;52(2):219–224.

141. Gutierrez-Nibeyro SD, White NA II, Werpy N. Outcome of medical treatment for horses with foot pain: 56 cases. Equine Vet J. 2010;42(9):680–685.

142. Gutierrez-Nibeyro SD, Werpy NM, White NA II, et al. Outcome of palmar/plantar digital neurectomy in horses with foot pain evaluated with magnetic resonance imaging: 50 cases (2005–2011). Equine Vet J. 2015;47(2):160–164.

143. Holowinski M, Judy C, Saveraid T, Maranda L. Resolution of lesions on STIR images is associated with improved lameness status in horses. Vet Radiol Ultrasound. 2010;51(5):479–484.

144. Lutter JD, Schneider RK, Sampson SN, Cary JA, Roberts GD, Vahl CI. Medical treatment of horses with deep digital flexor tendon injuries diagnosed with high-field-strength magnetic resonance imaging: 118 cases (2000–2010). J Am Vet Med Assoc. 2015;247(11):1309–1318.

145. Vanel M, Olive J, Gold S, Mitchell RD, Walker L. Clinical significance and prognosis of deep digital flexor tenosynovitis assessed over time using MRI. Vet Radiol Ultrasound. 2012;53(6):621–627.