DATA NOTE

The genome sequence of the painted lady, Vanessa cardui

Linnaeus 1758 [version 1; peer review: 2 approved]

Konrad Lohse1, Charlotte Wright2, Gerard Talavera3, Aurora García-Berro3, Darwin Tree of Life Barcoding collective, Wellcome Sanger Institute Tree of Life programme, Wellcome Sanger Institute Scientific Operations: DNA Pipelines collective, Tree of Life Core Informatics collective, Darwin Tree of Life Consortium

1Institute of Evolutionary Biology, University of Edinburgh, Edingburgh, UK
2Tree of Life, Wellcome Sanger Institute, Cambridge, UK
3Institut Botànic de Barcelona (IBB, CSIC-Ajuntament de Barcelona), Barcelona, Spain

Abstract
We present a genome assembly from an individual female Vanessa cardui (the painted lady; Arthropoda; Insecta; Lepidoptera; Nymphalidae). The genome sequence is 425 megabases in span. The majority of the assembly is scaffolded into 32 chromosomal pseudomolecules, with the W and Z sex chromosome assembled. Gene annotation of this assembly on Ensembl has identified 12,821 protein coding genes.

Keywords
Vanessa cardui, painted lady, genome sequence, chromosomal; Lepidoptera

This article is included in the Tree of Life gateway.

Open Peer Review

Approval Status 🟢 🟢

1	2	
version 1	view	view
26 Nov 2021	view	view

1. Li-Wei Wu, Tunghai University, Taichung, Taiwan
2. Nicholas VanKuren, University of Chicago, Chicago, USA

Any reports and responses or comments on the article can be found at the end of the article.
Corresponding author: Darwin Tree of Life Consortium (mark.blaxter@sanger.ac.uk)

Author roles: Lohse K: Investigation, Resources, Writing – Review & Editing; Wright C: Writing – Original Draft Preparation, Writing – Review & Editing; Talavera G: Writing – Original Draft Preparation, Writing – Review & Editing; García-Berro A: Writing – Original Draft Preparation, Writing – Review & Editing.

Competing interests: No competing interests were disclosed.

Grant information: This work was supported by Wellcome through core funding to the Wellcome Sanger Institute (206194) and the Darwin Tree of Life Discretionary Award (218328).
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Copyright: © 2021 Lohse K et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Lohse K, Wright C, Talavera G et al. The genome sequence of the painted lady, Vanessa cardui Linnaeus 1758 [version 1; peer review: 2 approved] Wellcome Open Research 2021, 6:324 https://doi.org/10.12688/wellcomeopenres.17358.1

First published: 26 Nov 2021, 6:324 https://doi.org/10.12688/wellcomeopenres.17358.1
Species taxonomy
Eukaryota; Metazoa; Ecdysozoa; Arthropoda; Hexapoda; Insecta; Pterygota; Neoptera; Endopterygota; Lepidoptera; Glossata; Ditrysia; Papilionoidea; Nymphalidae; Nymphalinae; Vanessa; Vanessa cardui (Linnaeus, 1758) (NCBI:txid171605).

Background
The painted lady, Vanessa cardui, is an extremely widespread butterfly, occurring on all continents except most of South America and Oceania (Shields, 1992). The species undertakes long-distance multi-generational migrations each year (Pollard et al., 1998; Stefanescu et al., 2013; Talavera et al., 2018; Williams, 1970). It does not overwinter and is therefore engaged in a constant movement. In the Palaearctic, migrants are known to seasonally circulate between North Africa and Europe (Pollard et al., 1998; Stefanescu, 2011; Stefanescu et al., 2013). Recent work has also revealed that autumn populations from Europe cross the Sahara Desert reaching tropical Africa (Stefanescu et al., 2016; Talavera & Vila, 2016). This journey, spanning over 4000 km, represents the longest single-leg migratory flight known in butterflies. The butterflies migrate back to Europe in spring, thus covering up to 14000 km in an annual cycle involving 8–10 generations in their Palaearctic-African range (Menchetti et al., 2019; Talavera et al., 2018). The painted lady is found throughout the British Isles but abundance varies greatly between years. Larvae are polyphagous on a large variety of plant families, but most commonly feed on thistles (Cirsium spp. and Carduus spp.) and mallows (Malva spp.). The painted lady occurs in a wide range of biomes and environments spanning semi-deserts, grasslands, meadows, and mountains to suburban areas. It is listed as Least Concern in the IUCN Red List (Walker & Coetzee, 2020). Studies of V. cardui have included thermoregulation (Tsai et al., 2020), adaptations to host plants (Celorio-Mancera et al., 2016), flight behaviour (Gamberale-Stille et al., 2019; Liu et al., 2021) and movement ecology (Suchan et al., 2018). Genes involved in the development of the distinctive eyespots on the forewings and hindwings of V. cardui have been identified (Mazo-Vargas et al., 2017; Zhang & Reed, 2016; Zhang et al., 2017). V. cardui has a karyotype of 31 chromosomes (Lorkovic, 1941).

We note the recent publication of another high-quality genome assembly for V. cardui (Zhang et al., 2021). We hope that the sequence described here, generated as part of the Darwin Tree of Life project, will further contribute to the study of V. cardui as an emerging model for the genetics of migratory behavior, ecological genomics and developmental genetics.

Genome sequence report
The genome was sequenced from a single female V. cardui (iLVanCard2; Figure 1A, B) collected from Carrifran Wildwood,
Scotland (latitude 55.400132, longitude -3.3352). Hi-C data were generated from a second female *V. cardui* (ilVanCard3; Figure 1C, D) collected from Yellowcraig, East Lothian, Scotland (latitude 56.062445, longitude -2.769836). A total of 25-fold coverage in Pacific Biosciences single-molecule long reads (N50 15 kb) and 89-fold coverage in 10X Genomics read clouds were generated. Primary assembly contigs were scaffolded with chromosome conformation Hi-C data. Manual assembly curation corrected 79 missing/misjoins and removed 7 haplotypic duplications, reducing the assembly size by 0.48% and scaffold number by 61.70%, and increasing the scaffold N50 by 21.74%.

The final assembly has a total length of 425 Mb in 37 sequence scaffolds with a scaffold N50 of 15 Mb (Table 1). Of the assembly sequence, 96.0% was assigned to 32 chromosomal-level scaffolds, representing 30 autosomes (numbered by sequence length), and the W and Z sex chromosome (Figure 2—Figure 5; Table 2). The assembly has a BUSCO (Simão et al., 2015) completeness of 98.8% using the lepidoptera_odb10 reference set. While not fully phased, the assembly deposited is of one haplotype. Contigs corresponding to the second haplotype have also been deposited.

Gene annotation
The Ensembl gene annotation system (Aken et al., 2016) was used to generate annotation for the *Vanessa cardui* assembly (GCA_905220365.1, see https://rapid.ensembl.org/Vanessa_cardui_GCA_905220365.1/; Table 1). The annotation was created primarily through alignment of transcriptomic data to the genome, with gap filling via protein-to-genome alignments of a select set of proteins from UniProt (UniProt Consortium, 2019) and OrthoDB (Kriventseva et al., 2008). Prediction tools, CPC2 (Kang et al., 2017) and RNAsamba (Camargo et al., 2020), were used to aid determination of protein coding genes.

Methods
Sample acquisition and nucleic acid extraction
The first female *V. cardui*, ilVanCard2 (genome assembly), was collected from Carrifran Wildwood, Scotland (latitude 55.400132, longitude -3.3352). Two further female *V. cardui* specimens, ilVanCard1 (RNA-Seq) and ilVanCard3 (Hi-C), was collected from Yellowcraig, East Lothian, Scotland (latitude 56.062445, longitude -2.769836). All samples were collected and identified by Konrad Lohse, University of Edinburgh, and were snap-frozen from life in liquid nitrogen.

DNA was extracted at the Wellcome Sanger Institute (WSI) Scientific Operations core from the whole organism using the Qiagen MagAttract HMW DNA kit, according to the manufacturer’s instructions. RNA was extracted in the Tree of Life Laboratory at the WSI using TRIzol (Invitrogen), according to the manufacturer’s instructions. RNA was then eluted in 50 µl RNAse-free water and its concentration RNA assessed.

Table 1. Genome data for *Vanessa cardui*, ilVanCard2.1.

Project accession data	
Assembly identifier	ilVanCard2
Species	*Vanessa cardui*
Specimen	ilVanCard1 (RNA-Seq); ilVanCard2 (genome assembly); ilVanCard3 (Hi-C)
NCBI taxonomy ID	NCBI:txid171605
BioProject	PRJEB42869
BioSample ID	SAMEA7523147
Isolate information	Female, whole organisms

Raw data accessions	
PacificBiosciences SEQUEL II	ERR6608653
10X Genomics Illumina	ERR6054369-ERR6054372
Hi-C Illumina	ERR6054373
Illumina polyA RNA-Seq	ERR6054374

Genome assembly	
Assembly accession	GCA_905220365.1
Accession of alternate haplotype	GCA_905220355.1

Genome assembly	
Span (Mb)	425
Number of contigs	128
Contig N50 length (Mb)	7
Number of scaffolds	37
Scaffold N50 length (Mb)	15
Longest scaffold (Mb)	17
BUSCO* genome score	C:98.2%, S:97.9%, D:0.3%, F:0.8%, M:1.0%, n:1658

Gene annotation	
Number of protein coding genes	12,821
Average coding sequence length (bp)	1,738
Average number of exons per transcript	9.44
Average exon size (bp)	393
Average intron size (bp)	2358

*BUSCO scores based on the lepidoptera_odb10 BUSCO set using v5.1.2. C= complete [S= single copy, D=duplicated], F=fragmented, M=missing, n=number of orthologues in comparison. A full set of BUSCO scores is available at https://blobtoolkit.genomehubs.org/view/Vanessa%20cardui/dataset/CAJMJZP01/busc.
Figure 2. Genome assembly of Vanessa cardui, iVanCard2.1: metrics. The BlobToolKit Snailplot shows N50 metrics and BUSCO gene completeness. The main plot is divided into 1,000 size-ordered bins around the circumference with each bin representing 0.1% of the 424,813,639 bp assembly. The distribution of chromosome lengths is shown in dark grey with the plot radius scaled to the longest chromosome present in the assembly (17,040,296 bp, shown in red). Orange and pale-orange arcs show the N50 and N90 chromosome lengths (14,615,999 and 9,960,137 bp), respectively. The pale grey spiral shows the cumulative chromosome count on a log scale with white scale lines showing successive orders of magnitude. The blue and pale-blue area around the outside of the plot shows the distribution of GC, AT and N percentages in the same bins as the inner plot. A summary of complete, fragmented, duplicated and missing BUSCO genes in the lepidoptera_odb10 set is shown in the top right. An interactive version of this figure is available at https://blobtoolkit.genomehubs.org/view/iVanCard2.1/dataset/CAJMZP01/snail.

using a Nanodrop spectrophotometer and Qubit Fluorometer using the Qubit RNA Broad-Range (BR) Assay kit. Analysis of the integrity of the RNA was done using Agilent RNA 6000 Pico Kit and Eukaryotic Total RNA assay.

Sequencing
Pacific Biosciences HiFi circular consensus and 10X Genomics Chromium read cloud sequencing libraries were constructed according to the manufacturers’ instructions. Poly(A) RNA-Seq libraries were constructed using the NEB Ultra II RNA Library Prep kit. Sequencing was performed by the Scientific Operations core at the Wellcome Sanger Institute on Pacific Biosciences SEQUEL II (HiFi), Illumina HiSeq X (10X) and Illumina HiSeq 4000 (RNA-Seq) instruments. Hi-C data were generated using the Arima v1 Hi-C kit and sequenced on HiSeq X.
Figure 3. Genome assembly of Vanessa cardui, ilVanCard2.1: GC coverage. BlobToolKit GC-coverage plot. Scaffolds are coloured by phylum. Circles are sized in proportion to scaffold length. Histograms show the distribution of scaffold length sum along each axis. An interactive version of this figure is available at https://blobtoolkit.genomehubs.org/view/ilVanCard2.1/dataset/CAJMZP01/blob.

Genome assembly
Assembly was carried out with Hifiasm (Cheng et al., 2021). Haplotypic duplication was identified and removed with purge_dups (Guan et al., 2020). One round of polishing was performed by aligning 10X Genomics read data to the assembly with longranger align, calling variants with freebayes (Garrison & Marth, 2012). The assembly was then scaffolded with Hi-C data (Rao et al., 2014) using SALSA2 (Ghurye et al., 2019). The assembly was checked for contamination and corrected using the gEVAL system (Chow et al., 2016) as described previously (Howe et al., 2021). Manual curation was performed using gEVAL, HiGlass (Kerpedjiev et al., 2018) and Pretex. The mitochondrial genome was assembled using MitoHiFi (Uliano-Silva et al., 2021). The genome was
analysed and BUSCO scores generated within the BlobToolKit environment (Challis et al., 2020). Table 3 contains a list of all software tool versions used, where appropriate.

Ethical/compliance issues

The materials that have contributed to this genome note were supplied by a Tree of Life collaborator. The Wellcome Sanger Institute was granted access to these materials for scientific research purposes.
Institute employs a process whereby due diligence is carried out proportionate to the nature of the materials themselves, and the circumstances under which they have been/are to be collected and provided for use. The purpose of this is to address and mitigate any potential legal and/or ethical implications of receipt and use of the materials as part of the research project, and to ensure that in doing so we align with best practice wherever possible.

The overarching areas of consideration are:
- Ethical review of provenance and sourcing of the material;

Figure 5. Genome assembly of *Vanessa cardui*, ilVanCard2.1: Hi-C contact map. Hi-C contact map of the ilVanCard2.1 assembly, visualised in HiGlass. Chromosomes are arranged by size from left to right and top to bottom.
Table 2. Chromosomal pseudomolecules in the genome assembly of *Vanessa cardui*, ilVanCard2.1.

INSDC accession	Chromosome	Size (Mb)	GC%
LR999925.1	1	16.61	32.7
LR999926.1	2	16.36	33.2
LR999927.1	3	16.09	33.1
LR999928.1	4	16.00	32.7
LR999929.1	5	15.95	32.9
LR999930.1	6	15.72	32.5
LR999931.1	7	15.57	33
LR999932.1	8	15.43	32.9
LR999933.1	9	15.30	32.6
LR999934.1	10	14.95	33.7
LR999935.1	11	14.87	33
LR999936.1	12	14.77	33.1
LR999937.1	13	14.62	33
LR999938.1	14	14.61	32.8
LR999939.1	15	13.92	32.7
LR999941.1	16	13.77	32.9
LR999942.1	17	13.55	33.1
LR999943.1	18	13.24	33
LR999944.1	19	12.93	33.7
LR999945.1	20	12.86	33.4
LR999946.1	21	12.59	33.5
LR999947.1	22	11.70	33.5
LR999948.1	23	11.33	33.8
LR999949.1	24	11.20	34.5
LR999950.1	25	9.96	33.6
LR999951.1	26	9.84	33.8
LR999952.1	27	8.26	35
LR999953.1	28	8.18	36
LR999954.1	29	7.38	35.1
LR999955.1	30	6.17	36
LR999940.1	W	13.82	37
LR999924.1	Z	17.04	32.7
LR999956.1	MT	0.02	19
-	Unplaced	0.22	49.5

Table 3. Software tools used.

Software tool	Version	Source
Hifiasm	0.12	Cheng et al., 2021
purge_dups	1.2.3	Guan et al., 2020
SALSA2	2.2	Ghurye et al., 2019
longranger align	2.2.2	https://support.10xgenomics.com/genome-exome/software/pipelines/latest/advanced/other-pipelines
freebayes	1.3.1-17-gaa2ace8	Garrison & Marth, 2012
MitoHiFi	1.0	Uliano-Silva et al., 2021
gEVAL	N/A	Chow et al., 2016
HiGlass	1.11.6	Kerpedjiev et al., 2018
PretextView	0.1.x	https://github.com/wtsi-hpag/PretextView
BlobToolKit	2.6.2	Challis et al., 2020
Each transfer of samples is undertaken according to a Research Collaboration Agreement or Material Transfer Agreement entered into by the Tree of Life collaborator, Genome Research Limited (operating as the Wellcome Sanger Institute) and in some circumstances other Tree of Life collaborators.

Data availability

European Nucleotide Archive: Vanessa cardui (painted lady) genome assembly, iVanCard2. Accession number PRJEB42869; https://identifiers.org/ena.embl/PRJEB42869.

The genome sequence is released openly for reuse. The V. cardui genome sequencing initiative is part of the Darwin Tree of Life (DToL) project. All raw sequence data and the assembly have been deposited in INSDC databases. Raw data and assembly accession identifiers are reported in Table 1.

References

Aken BL, Ayling S, Barrett D, et al.: The Ensembl Gene Annotation System. Database (Oxford), 2016; 2016: baw093.

Camargo AP, Sournok V, Pereira GAG, et al.: RNAsambl: Neural Network-Based Assessment of the Protein-Coding Potential of RNA Sequences. NAR Genom Bioinform. 2020; 2(1): lqq024.

Chellini R, Richards E, Rajan J, et al.: Blob2Kit-Interactive Quality Assessment of Genome Assemblies. G3 (Bethesda), 2020, 10(4): 1361-74.

Cheng H, Concepcion GT, Feng X, et al.: Haplotype-Resolved de Novo Assembly Using Phased Assembly Graphs with Hifiasm. Not Methods. 2021; 18(2): 170-75.

Chow W, Brugger K, Caccamo M, et al.: gEVAL - a web-based browser for evaluating genome assemblies. Bioinformatics. 2016; 32(16): 2508-10.

Gamberale-Stille G, Schäpers A, Janz N, et al.: Selective Attention by Priming in Host Search Behavior of 2 Generalist Butterflies. Behav Ecol. 2019; 30(1): 142-49.

Garrison E, Marth G: Haplotype-Based Variant Detection from Short-Read Sequencing. arXiv: 1207.3907. 2012.

Ghurye J, Rhie A, Walenz BP, et al.: Integrating Hi-C Links with Assembly Graphs for Chromosome-Scale Assembly. PLoS Comput Biol. 2019; 15(8): e1007273.

Guo D, McCarthy SA, Wood J, et al.: Identifying and Removing Haplotypic Duplication in Primary Genome Assemblies. Bioinformatics. 2020; 36(9): 2896-98.

Howe K, Chow W, Collins J, et al.: Significantly Improving the Quality of Genome Assemblies through Curation. Gigascience. 2021; 10(1): giaa153.

Kerpezjiev P, Abdennur N, Lekschas F, et al.: HiGlass: Web-Based Visual Exploration and Analysis of Genome Interaction Maps. Genome Biol. 2018; 19(1): 125.

Kriventseva EV, Rahman N, Espinosa O, et al.: OrthoDB: The Hierarchical Catalog of Eukaryotic Orthologs. Nucleic Acids Res. 2008; 36(Database issue): D271-75.

Liu Y, Wooster MJ, Grosovenor MJ, et al.: Strong impacts of smoke polluted air demonstrated on the flight behaviour of the painted lady butterfly (Vanessa cardui L.). Ecol Entomol. 2021; 46(2): 195-208.

Lorkovic Z: Die Chromosomenzahlen in der Spermatogenese der Tagfalter. Chromosoma. 1941; 2: 155-191.

Mazo-Vargas A, Concha C, Livraghi L, et al.: Macroevolutionary Shifts of WntA Function Potentiate Butterfly Wing Pattern Diversity. Proc Nail Acad Sci U S A. 2017; 114(40): 10701-6.

Menchetti M, Gueguen M, Talavera G: Spatial-temporal niche modelling of multigenerational insect migrations. Proc Biol Soc. 2019; 286(1910): 20191583.

Pollard E, van Swaay CAM, Stefanescu C, et al.: Migration of the Painted Lady Butterfly Cynthia Cardui in Europe: Evidence from Monitoring. Diversity and Distributions. 2016; 4(56): 243-53.

Rao S, Hunter HG, Durand NC, et al.: A 3D Map of the Human Genome at Kilobase Resolution Reveals Principles of Chromatin Looping. Cell. 2014; 159(7): 1665-80.

Shields O: World Distribution of the Vanessa Cardui Group (Nymphalidae). J Lepid Soc. 1992; 46: 235-38.

Simão PA, Waterhouse RM, Ioannidis P, et al.: BUSCO: Assessing Genome Assembly and Annotation Completeness with Single-Copy Orthologs. Bioinformatics. 2015; 31(19): 3210-12.

Stefanescu C: Moroccan Source Areas of the Painted Lady Butterfly Vanessa Cardui (Nymphalidae: Nymphalinae) Migrating into Europe in Spring. Journal of the Lepidotera’s Society. 2011; 65(1): 15-26.

Stefanescu C, Parmalo F, Åkesson S: Multi-Generational Long-Distance Migration of Insects: Studying the Painted Lady Butterfly in the Western Palearctic. Ecography. 2013; 36(4): 474-86.

Stefanescu C, Soto DX, Talavera G, et al.: Long-Distance Autumn Migration across the Sahara by Painted Lady Butterflies: Exploiting Resource Pulses in the Tropical Savannah. Biol Lett. 2016; 12(10): 20160561.

Stefanescu C, Parmalo F, Åkesson S: Multi-Generational Long-Distance Migration of Insects: Studying the Painted Lady Butterfly in the Western Palearctic. Ecography. 2013; 36(4): 474-86.

Stefanescu C, Soto DX, Talavera G, et al.: Long-Distance Autumn Migration across the Sahara by Painted Lady Butterflies: Exploiting Resource Pulses in the Tropical Savannah. Biol Lett. 2016; 12(10): 20160561.

Suchan T, Talavera G, Sáez L L, et al.: Pollen metabarcoding as a tool for tracking long-distance insect migrations. Mol Ecol Resour. 2018; 19(1):
Open Peer Review

Current Peer Review Status: ✓ ✓

Version 1

Reviewer Report 29 March 2023

https://doi.org/10.21956/wellcomeopenres.19192.r55528

© 2023 VanKuren N. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Nicholas VanKuren
University of Chicago, Chicago, USA

Lohse and colleagues assembled and annotated the genome sequence of a cosmopolitan butterfly, *Vanessa cardui*, and present general statistics on its quality. WSI ToL has published many short reports like this recently, and this manuscript follows a similar format as those before. Despite redundancy with an available *V. cardui* sequence, this genome sequence and annotation are high-quality and will be of interest to butterfly genomics, population genomics, and genetics researchers.

Very minor comments:
- Fig. 1: It would be nice to note that these are all females in the figure, or at least in the legend.
- Results: BUSCO completeness in text and Fig. 2 listed as 98.8%, but Table 1 shows 98.2%.
- Fig. 5: it would be nice to point out the W and Z here so that people can immediately visualize.
- Gene annotation: Perhaps this has been listed in previous publications, but what is the "select set of proteins from UniProt and OrthoDB"? This would be useful to know for other groups looking to annotate their genomes. In general, there should be a section on gene annotation in the Methods giving a few more details on important parameters used for predictions.
- Methods: "Two further female ... was" --> "were".

Is the rationale for creating the dataset(s) clearly described?
Yes

Are the protocols appropriate and is the work technically sound?
Yes

Are sufficient details of methods and materials provided to allow replication by others?
Partly

Are the datasets clearly presented in a useable and accessible format?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Genetics, genomics, developmental biology

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Reviewer Report 31 January 2023
https://doi.org/10.21956/wellcomeopenres.19192.r54282

© 2023 Wu L. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Li-Wei Wu
Tunghai University, Taichung, Taiwan

The presented manuscript entitled "The genome sequence of the painted lady, Vanessa cardui Linnaeus 1758" has been evaluated. The writing and flow are concise and clear to public readers. The provided data could be useful for further work. As a reader, I am happy to read this article. Only some suggestions are provided as follows, and most of them are pointing out that the association between used sample and its produced sequence data should be clear. For example, I cannot find out which individual produced the RNA-seq data.

Some suggestions are as following:

"Abstract" section:
○ The presented genome of Vanessa cardui seems like its from two female individuals, please revise it.

"Genome sequence report" section:
○ "The genome was sequenced from a single female": need to revise. More than one sample was detected in the text.

"Methods" section:
"sample acquisition and nucleic acid extraction" part:
○ There are three individuals in this genome assembling, please check all the used materials and their associated datasets.
RNA-seq data was from which individual? The collection data should be provided.

"Genome assembly" part:
- The authors have assembled mitochondrial genome, but no associated accession number is provided.

Discussion (if possible):
The authors have noticed Zhang et al. (2021) published another high-quality genome of Vanessa cardui, and the authors presented the second report to this organism. I think the authors should give some discussion between these two works, making readers aware what you find when a new genome is generated. For example, the two works present different protein-coding genes in the same species, why?

Is the rationale for creating the dataset(s) clearly described?
Yes

Are the protocols appropriate and is the work technically sound?
Yes

Are sufficient details of methods and materials provided to allow replication by others?
Partly

Are the datasets clearly presented in a useable and accessible format?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: molecular phylogeny, historical biogeography, genome from museum specimen, mitochondrial genome

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.