A New Xanthone from *Garcinia oligantha* and Its Cytotoxicity

YAN-QING YE¹, CONG-FANG XIA¹, XIANG-LI LI², YUN-HUA QIN², GANG DU¹, QIU-FEN HU¹ and XUE-MEI GAO¹,*

¹Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan University of Nationalities, Kunming 650031, P.R. China
²Key Laboratory of Tobacco Chemistry of Yunnan Province, Yunnan Academy of Tobacco Science, Kunming 650106, P.R China

*Corresponding author: E-mail: gao_xuemei@hotmail.com

Received: 4 April 2013; Accepted: 1 August 2013; Published online: 22 March 2014; AJC-14935

A new xanthone, methyl 6-(2-acetoxyethyl)-4,8-dihydroxy-9-oxo-xanthene-1-carboxylate (1), was isolated from the stems of *Garcinia oligantha*. Its structure was elucidated by spectroscopic methods, including extensive 1D and 2D NMR techniques. Compound 1 was tested for its cytotoxicities against five human tumor cell lines (NB4, A549, SHSY5Y, PC3 and MCF7) and it exhibited moderate cytotoxicity against NB4, PC3 and MCF7 cell with IC₅₀ values of 6.2, 3.8 and 5.4 µM, respectively.

Keywords: Xanthone, *Garcinia oligantha*, Cytotoxicities.

INTRODUCTION

The species of *Garcinia oligantha* are one of the plants belonging to Garcinia genus. This species distributed in the south of Yunnan and Guangxi Province of China¹. Plants of the genus *Garcinia* (Guttiferae) has been extensively investigated from the phytochemical and biological points of view. Xanthones²,³, benzophenones⁴,⁵, depsidones⁶-⁸, flavonoids⁹-¹², biflavonoids¹³ and triterpenes¹⁴ have been reported from *Garcinia* species.

In our previous studies, some apoptotic compounds were isolated from the stems of *Garcinia oligantha*⁵. With the aim of multipurpose utilization of Garcinia plants and identify bioactive natural products from this genus, the phytochemical investigation on *G. oligantha* was carried out. As a result, a new xanthone (1) was isolated from this plant. The structure of 1 was elucidated on the basis of a comprehensive analysis of the ¹H NMR, ¹³C NMR and 2D NMR spectra. In addition, the cytotoxicities of 1 were evaluated. The details of the isolation, structure elucidation and cytotoxicities of 1 are reported in this article.

EXPERIMENTAL

UV spectra were obtained using a Shimadzu UV-2401A spectrophotometer. IR spectra were obtained in KBr disc on a Bio-Rad Winifred spectrophotometer. ESI-MS were measured on a VG Auto Spec-3000 MS spectrometer. ¹H, ¹³C and 2D NMR spectra were recorded on Bruker DRX-500 instrument with TMS as internal standard. Column chromatography was performed on silica gel (200-300 mesh), or on silica gel H (10-40 mm, Qingdao Marine Chemical Inc., China). The crude extract (115 g) was applied to silica gel (250 mm × 250 mm, 7 mm) column and DAD detector.

Extraction and isolation: The air-dried and powdered stems of *G. oligantha* (4.5 kg) were extracted four times with 70 % MeOH (4 × 5 L) at room temperature and filtered. The crude extract (115 g) was applied to silica gel (200-300 mesh) column chromatography, eluting with a CHCl₃-CH₃COCH₃ gradient system (20:1, 9:1, 8:2, 7:3, 6:4, 5:5), to give six fractions A-F. The further separation of fraction B (9:1, 2.94 g) by silica gel chromatography was performed on silica gel (200-300 mesh), or on silica gel H (3425, 3076, 2916, 2876, 1742, 1726, 1650, 1604, 1548, 1460, 1375, 1126, 1065, 876, 764; ESIMS m/z (positive ion mode) 395 [M+Na]⁺; HRESIMS (positive ion mode) m/z 395.0748 [M+Na]⁺ (calcd. C₁₀H₁₂O₆Na for 395.0743).

Methyl 6-(2-acetoxyethyl)-4,8-dihydroxy-9-oxo-9H-xanthene-1-carboxylate (1): Obtained as a yellow gum; UV (MeOH) λ max (log e) 210 (4.36), 242 (3.57), 308 (3.94) nm; IR (KBr, ν max, cm⁻¹) 3475, 3029, 2915, 1686, 1675, 1726, 1650, 1604, 1548, 1460, 1375, 1126, 1065, 876, 764; ESIMS m/z (positive ion mode) 395 [M+Na]⁺; HRESIMS (positive ion mode) m/z 395.0748 [M+Na]⁺ (calcd. C₁₀H₁₂O₆Na for 395.0743).
RESULTS AND DISCUSSION

A 70 % aq. methanol extract prepared from the stems of G. oligantha was subjected repeatedly to column chromatography on Silica gel, Sephadex LH-20, RP-18 and Preparative HPLC to afford compound 1. The structure of 1 was shown in Fig. 1. The 1H and 13C NMR data of 1 were listed in Table-1.

Compound 1 was isolated as a yellow gum. The HRESIMS of 1 gave the pseudomolecular [M+Na]+ ion at m/z 395.0748, corresponding to a molecular formula of C21H20O10. The 1H NMR spectra data (Table-1) showed the presence of two hydroxy groups, two ortho coupled aromatic protons, two meta coupled aromatic protons, two methylene protons and an acetoxy group. These signals could be attributed to a basic xanthone skeleton, an ethanol group and an acetoxy group. The appearance of the methylene protons (H-12) of the ethanol group at δH 2.59 together with J cross-peaks in the HMBC spectrum (Fig. 2) with two aromatic methine carbon (C-2, δC 110.9; C-4, δC 108.1) and a quaternary aromatic carbon (C-3, δC 143.6) suggested that the ethanol group was at C-3. The correlation between one of the ortho-coupled aromatic protons (H-7, δH 7.62) and C-7 in the HSQC spectrum established the attachment of this proton at C-7. Thus, the other ortho-coupled aromatic proton at δH 7.42 was attributed to H-6. H-7 also gave HMBC cross-peaks with C-11 (δC 168.0) of the ester carbonyl side chain and an aromatic carbon C-8 (δC 127.2) in the HMBC spectrum. Thus, the methoxycarbonyl group was placed at C-8. Two hydroxy groups were assigned to C-1 and C-5 on the basis of HMBC correlations between the hydroxy proton (δH 12.56) and C-1 (δC 162.0), C-2 (δC 110.9) and C-9a (δC 106.9), as well as those between the other hydroxy proton (δH 12.56) and C-5 (δC 152.0), C-6 (δC 120.2) and C-10a (δC 147.1). Finally, an acetoxy group attached to C-13 was supported by the HMBC correlation of H-13 (δH 4.37) with the carbonyl carbon (δC 169.8). Therefore, compound 1 was assigned as methyl 6-(2-acetoxyethyl)-4,8-dihydroxy-9-oxo-9H-xanthen-1-carboxylate.

Compound 1 was tested for its cytotoxicity against five human tumor cell lines (NB4, A549, SH-SY5Y, PC3 and MCF7) using the MTT method as reported previously16. Taxol was used as the positive control. The results shown that the compound 1 exhibited moderate cytotoxicity against NB4, PC3 and MCF7 cell with IC50 values of 6.2, 3.8 and 5.4 µM, respectively.

ACKNOWLEDGEMENTS

This research was supported by the National Natural Science Foundation of China (No. 21002085), the Excellent Scientific and Technological Team of Yunnan High School (2010CI08), the Yunnan University of Nationalities Green Chemistry and Functional Materials Research for Provincial Innovation Team (2011HC008), the National Undergraduates Innovating Experimentation Project (2011HX18) and start-up funds of Yunnan University of Nationalities.

REFERENCES

1. X.W. Li, J. Li and P.F. Stevens, Flora of China, Chinese Science Press: Beijing, Vol. 13, p. 1267 (2007).
2. Y.J. Xu, Y.H. Lai, Z. Imiyabir and S.H. Goh, J. Nat. Prod., 64, 1191 (2001).
3. X.M. Gao, T. Yu, M.Z. Cui, J.X. Pu, X. Du, Q.B. Han, Q.F. Hu, T.C. Liu, K.Q. Luo and H.X. Xu, Bioorg. Med. Chem. Lett., 22, 2350 (2012).
4. J.H. Wu, Y.T. Tung, C.F. Chyu, S.C. Chien, S.Y. Wang, S.T. Chang and Y.H. Kuo, J. Wood Sci., 54, 383 (2008).
5. Z.H. Mbwambo, M.C. Kapingu, M.J. Moshli, F. Machumi, S. Apers, P. Cos, D. Ferreira, J.P.J. Marais, D. Vanden Berghe, L. Maes, A. Vlietinck and L. Pieters, J. Nat. Prod., 69, 369 (2006).
6. X.-M. Gao, T. Yu, F.S.F. Lai, J.-X. Pu, C.-F. Qiao, Y. Zhou, X. Liu, J.-Z. Song, K.Q. Luo and H.-X. Xu, Tetrahedron Lett., 51, 2442 (2010).

TABLE-1

No.	δH (m)	δC (m, J, Hz)	No.	δH (m)	δC (m, J, Hz)
1	162.0		9a	106.9	
2	110.9	7.09 s	10a	147.1	
3	143.6		11	168.0	
4	108.1	7.21 s	12	38.0	2.59 (t, 7.2)
5	152.0		13	66.7	4.37 (t, 7.2)
6	120.2	7.42 (d, 9.0)	1-OAc	169.8	
7	126.0	7.62 (d, 9.0)	13-OAc	69.8	
8	127.2				
9	181.8				
4a	156.8				
8a	118.9				
7. L.-J. Zhang, C.-T. Chiou, J.-J. Cheng, H.-C. Huang, L.-M.Y. Kuo, C.-C. Liao, K.F. Bastow, K.-H. Lee and Y.-H. Kuo, *J. Nat. Prod.*, **73**, 557 (2010).
8. X.M. Gao, T. Yu, F.S.F. Lai, Y. Zhou, X. Liu, C.F. Qiao, J.Z. Song, S.L. Chen, K.Q. Luo and H.X. Xu, *Bioorg. Med. Chem.*, **18**, 4957 (2010).
9. C. Ito, M. Itoigawa, Y. Mishina, H. Tomiyasu, M. Litaudon, J.P. Cosson, T. Makainaka, H. Tokuda, H. Nishino and H. Furukawa, *J. Nat. Prod.*, **64**, 147 (2001).
10. V. Rukachaisirikul, W. Naklue, S. Phongpaichit, N.H. Towatana and K. Maneenoon, *Tetrahedron*, **62**, 8578 (2006).
11. S. Deachathai, W. Mahabusarakam, S. Phongpaichit and W.C. Taylor, *Phytochemistry*, **66**, 2368 (2005).
12. M. Ilyas, M. Kamil, M. Parveen and M.S. Khan, *Phytochemistry*, **36**, 807 (1994).
13. Q.B. Han, S.F. Lee, C.F. Qiao, Z.D. He, J.Z. Song, H.D. Sun and H.X. Xu, *Chem. Pharm. Bull. (Tokyo)*, **53**, 1034 (2005).
14. V. Rukachaisirikul, S. Saelim, P. Karmomchoke and S. Phongpaichit, *J. Nat. Prod.*, **68**, 1222 (2005).
15. X.M. Gao, T. Yu, M.Z. Cui, J.X. Pu, X. Du, Q.B. Han, Q.F. Hu, T.C. Liu, K.Q. Luo and H.X. Xu, *Bioorg. Med. Chem.*, **22**, 2350 (2012).
16. T. Mosmann, *J. Immunol. Methods*, **65**, 55 (1983).