Potential of mangrove stands carbon deposits in the north part Pannikang islands, Barru Regency, South Sulawesi province

E Kezia¹, B Nurkin¹, B Bachtia¹, S Millang¹, Muh. Restu² and S H Larekeng²

¹Silviculture and Tree Physiology Laboratory, Faculty of Forestry, Hasanuddin University, Makassar
²Biotechnology and Tree Breeding, Faculty of Forestry, Hasanuddin University, Makassar

Email: sitih5h.82@gmail.com

Abstract. Global warming is one of the world's issues today. Global warming is a result of the greenhouse effect because it absorbs infrared light reflected by the earth from the sun. CO₂ gas contributes the most to the greenhouse effect. The solution to the problem of global warming is the presence of forests. One type of forest ecosystem is the mangrove forest ecosystem. This study aims to determine the carbon storage of mangrove stands found on Pannikang Island in the northern part of Barru Regency, South Sulawesi Province. Biomass measurement uses the allometric method performed on mangrove stems by measuring stem diameter in a circle-shaped sample plot of 12.62 m. The results showed that there were ten species found in the study locations: Avicennia alba, Avicennia marina, Bruguiera gymnorrhiza, Bruguiera sexangula, Ceriops decandra, Rhizophora apiculata, Rhizophora mucronata, Rhizophora stilosa, Scyphiphora hydrophyllaceae, and Soneratia alba. The total value of the total stem carbon deposits in the mangrove stands on Pannikang Island in the northern part of Barru Regency reached a total carbon stem portion of 640,512 tons with a maximum range of 859,174 tons and a minimum of 421,871 tons.

1. Introduction
Global warming is one of the issues of the world today. Global warming occurs due to the greenhouse effect that absorbs infrared light reflected by the earth from the sun. This trapped heat then causes the Earth's temperature to increase. CO₂ gas contributes the most to the greenhouse effect. The CO₂ concentration in the atmosphere, coupled with its heating ability, CO₂ contributes around 55%. Other GHG components that fill the atmosphere are as much as 17% methane, 7% nitric oxide, and other gases, including chlorofluorocarbon (CFC) [1]. The solution for the global warming problem is the presence of forests presence.

One of forest ecosystem types is the mangrove forest ecosystem. Mangrove forests are forests that grow in the creek or tides. Mangrove plants are unique because they are a combination of characteristics of plants that live on land and in the sea [2]. Mangrove forest ecosystems can bind carbon much higher than terrestrial forests and tropical rainforests. Mangrove forest has functions and benefits of mangrove forests into three major groups. Physically, can maintain the stability of the...
coastline, accelerate land expansion, protect the coast from river cliffs, and process waste materials. Biologically, are places for spawning and enlarging the seeds of fish, shrimp and shellfish, nesting places and foraging for birds and natural habitats for most biota. Economically, it is one of the coastal areas suitable for fishponds, salt mills, recreation, and wood production [3].

Zainuddin and Gunawan stated that the area of mangrove forests in Indonesia is 25% of the total area of mangrove forests in the world. The area of Indonesian mangrove forests is between 2.5 and 4.5 million ha. Indonesia has the highest level of mangrove diversity in the world, with 202 species of mangroves [4]. Mangrove forests, as well as other forests, have a role as absorbers of carbon dioxide (CO₂) from the air. Absorption of carbon dioxide is closely related to tree biomass. Trees go through and convert them to organic carbon (carbohydrates) and store them in tree body biomass [5]. Based on this, research on the potential carbon storage of mangrove forests in Pannikiang Island needs to investigate. So that the amount of functional capacity of environmental services that can be played by mangrove forests in Pannikiang Island to reduce global warming.

2. Research Methodology

2.1. Time and place
This research was carried out from December 2018 to January 2019. Data collection and samples in Mangrove Forests on the Pannikiang northern island, Madello Village, Balusu District, Barru Regency and data processing conducted at the Faculty of Forestry, Hasanuddin University, Makassar.

2.2. Tools and materials
The tools used in this study were as follows GPS, Suunto Clinometer, roll meters, digital cameras, stationery, the book of mangrove identification.

2.3. Research procedure in the preparation and field observation phase
This initial stage research was carried out through literature studies and field observation activities. Observations will make by land and sea route. The land route by tracing the paths that exist in the mangrove forest area, while the sea route by using a boat, then gathering information from the local community about the mangrove forest area.

2.3.1. Plot making phase. The determination of the number of plots is done using the equation:

\[\sum \text{Plot} = \text{Sampling Intensity} \times \frac{\text{Region area (ha)}}{\text{Plot Area (ha)}} \]

Where:
\[\sum \text{Plot} \] = Number of plots
Sampling Intensity = Sampling intensity used 7%
Plot area = 0.05 ha
Region area = 21.40 ha

From the calculation results, showed that the plots to be made at the research location were 30 plots. After the location of the sampling plot is known, the plot placement is determined based on the length and width of the research location so that the laying of the plots can be systematically arranged.

2.3.2. Data collection phase. The measurement phase and data collection carried out in this study include measuring above ground biomass [6].

Preparation

Before making measurements in the field, the equipment that needs to be adequately prepared is:
Field Data Collection

a. Determine the main plot location (Center Plot) which will be used as the starting point of measurement.
b. Line making, 5 lines (Line 1 = 5 plot, Line 2 = 7 plot, Line 3 = 6 plot, Line 4 = 5 plot, Line 5 = 7 plot). The distance between lines is 150m, and the distance between plots in the lane is 50m (Appendix 4).
c. Make a circular plot with a radius of 12.62 m (Figure 1).
d. Then make the next circular plot to reach 30 plots (Figure 2).

Figure 1. Circular plot for tree biomass measuring

Figure 2. Pathways and plots for measuring the biomass of mangrove trees in the northern part of Pannikiang Island
e. Measure the circumference, total height, branch-free height, diameter, and write the name of the type of each tree contained in the plot. Research documentation can be seen in Appendix
f. Record the measurement results and the name of the tree type in the tally sheet provided.

2.3.3. Data analysis techniques.

Tree biomass calculation
Carbon storage research was carried out on plots that had been made for vegetation analysis. Carbon calculation is only done on the tree trunk. Data collection includes plant types and circumference measurements to obtain branch free diameter, total height, and height values. Calculation of carbon deposits and CO$_2$ uptake is based on the approach of aboveground biomass, namely by using allometric equations. Tree biomass can be estimated using the allometric equation, which is based on measurements of stem diameter and tree density.

According to Komiyama, et al (2008) allometric general equations for mangrove types are as follows:

$$B = 0.251 \rho D^{2.46}$$

Remarks:
- $B =$ Biomassa (kg)
- $\rho =$ BJ wood (g/cm3);
- $D =$ Tree Diameter (cm).

Scientific Name	Specific Gravity (g/cm3)
Bruguiera gymnorrhiza	0.741
Rhizophora apiculata	1.050
Rhizophora mangle	0.830
Sonneratia alba	0.078
germinans Avicennia	0.661
Laguncularia racemosa	0.600
Avicennia officinalis	0.670
Bruguiera gymnorrhiza	0.860
Ceriops decandra	0.960
Excoecaria agallocha	0.450
Fomes Herttiera	1.074
Sonneratia apetala	0.559
Xylocarpus granatum	0.700
Xylocarpus mekongensis	0.725
Average	**0.752**
Calculation of carbon from Biomass

The diameter of the tree influences the biomass amount. The larger the tree diameter shows the higher tree biomass. Increasing the size of the diameter indicates the more CO\textsubscript{2} absorbed by the tree. After obtaining the overall biomass of mangrove forests, the determination of stored carbon is done using conversion rates, which is 46\% of the total biomass. Total biomass is by the concentration of carbon in organic matter is usually 46\% so that carbon deposits can be calculated with total biomass x 0.46 [7].

\[
\text{Stored carbon} = \text{Total Biomass} \times 0.46
\]

3. Results and discussion

3.1. Tree biomass

The research results show that in this research, there were ten types of trees, stakes, and poles, which determined the amount of biomass in the mangrove forest in northern Pannikiang Island. The ten types of mangrove are \textit{Avicennia alba}, \textit{Avicennia marina}, \textit{Bruguiera gymnorrhiza}, \textit{Bruguiera sexangula}, \textit{Ceriops decandra}, \textit{Rhizophora apiculata}, \textit{Rhizophora mucronata}, \textit{Rhizophora stilosa}, \textit{Scyphiphora hydrophyllaceae}, and \textit{Soneratia alba}. Biomass can be divided into two categories, namely above-ground biomass (stems, branches, twigs, leaves, flowers, and fruit) and biomass in the soil (roots). In this study, the measurement of mangrove biomass was carried out on the above ground. Mangrove forest biomass is calculated using tree trunk diameter data. Results Analysis of tree biomass data can be seen in Table 2.

No	Plot	Biomass Total (kg/plot)	Biomass Total (ton/ha)
1	Plot 1	15007,762	300,155
2	Plot 2	7338,096	146,762
3	Plot 3	5271,323	105,426
4	Plot 4	5205,891	104,118
5	Plot 5	6407,098	128,142
6	Plot 6	2128,897	42,578
7	Plot 7	3151,488	63,030
8	Plot 8	7527,647	150,553
9	Plot 9	1617,534	32,351
10	Plot 10	1507,761	30,155
11	Plot 11	1558,678	31,174
12	Plot 12	952,134	19,243
13	Plot 13	956,254	19,125
14	Plot 14	641,428	12,829
15	Plot 15	1611,392	32,228
16	Plot 16	980,344	19,607
17	Plot 17	964,171	19,283
18	Plot 18	5225,996	104,520
19	Plot 19	9143,26	182,865
20	Plot 20	4729,668	94,593
Based on Table 2., it can be seen that there were 1291 trees in the study location with average biomass of 69.845 tons/ha. So that the total biomass in the northern mangrove stands of Pannikiang Island was obtained at 1392.7093 tons. When compared with the research results on the biomass calculation in the Kemujan Island Mangrove Area Karimunjawa National Park shows that of the 977 fruit trees having biomass of 182.62 tons/ha. this biomass is much greater due to the different trees and tree diameters. The mangroves found in the research locations also differ in diameter in the Kemujaan Island Mangrove Zone. The difference number of mangrove species also influences the amount of biomass.

The research results conducted on plot 1 had the highest biomass content compared to other plots, which amounted to 300.55 tons/ha with 33 total trees and the lowest biomass content in plot 14 which was 12.829 tons/ha with 41 total trees. The high and low value of biomass produced by a mangrove ecosystem was caused by the level of soil fertility and tree density found in the region[8]. The tree biomass value varies in various ecosystems, depending on the diversity and density of existing plants, and how they are managed.

3.2. Carbon trees
After obtaining the overall biomass of mangrove forests, the determination of stored carbon by using conversion rates, which was 46% of total biomass [7]. So that the carbon deposits value was directly proportional to the biomass content. The higher the biomass content, the greater the carbon savings. Results Analysis of tree carbon data can show in Table 3.

No.	Plot	Total of carbon (kg/plot)	Total of carbon (ton/ha)
1	Plot 1	6903,570	138.071
2	Plot 2	3375,524	67.510
3	Plot 3	2424,809	48.496
4	Plot 4	2394,710	47.894
5	Plot 5	2947,265	58.945
6	Plot 6	979,292	19.586
7	Plot 7	1449,684	28.994
8	Plot 8	3462,718	69.254
9	Plot 9	744,066	14.881
10	Plot 10	693,570	13.871
11	Plot 11	716,992	14.340
Plot	Plot Number	Carbon Storage (tons)	Carbon Storage (tons/ha)
------	-------------	-----------------------	-------------------------
12	Plot 12	437,982	8.760
13	Plot 13	439,877	8.798
14	Plot 14	295,057	5.901
15	Plot 15	741,240	14.825
16	Plot 16	450,958	9.019
17	Plot 17	438,919	8.778
18	Plot 18	2403,958	48.079
19	Plot 19	4205,899	84.118
20	Plot 20	2175,647	43.513
21	Plot 21	554,610	11.092
22	Plot 22	1105,175	22.104
23	Plot 23	1408,856	28.177
24	Plot 24	1106,642	22.133
25	Plot 25	731,092	14.622
26	Plot 26	687,919	13.758
27	Plot 27	668,321	13.366
28	Plot 28	2608,320	52.166
29	Plot 29	730,972	14.619
30	Plot 30	899,947	17.999

Average

| | 1606,120 | 1) 32,122 |

The carbon deposits research results in Table 3 show that the highest yield was found in plot one which was 138.071 tons/ha with 23 trees. The lowest results were in plot 14 which was 5.901 tons/ha with 41 trees. The results show that the number of trees the high did not always have high carbon stocks. Stored carbon stocks are determined by biomass that can be observed in the field, which is based on measurements of tree diameters. An observation plot that has trees larger than other plots can indicate that the biomass in the plot is large. So carbon deposits are also abundant as stated by [9] that CO$_2$ absorption has a relationship withstand biomass. An area can obtain the amount of biomass from production and density based on the estimation results of measurements of diameter, or plant height, specific gravity, and density of each tree species, and soil fertility. Another statement by [10] that, the high carbon content in the stem is caused by carbon elements which are organic materials that make up the walls of stem cells. The carbon content of the tree trunk is essential in estimating the carbon potential of stands and is closely related to the measurement of the diameter as one of the measurement indicators.

Based on this research, the total carbon stock in the northern part of Pannikiang Island was 640,512 tons with an average carbon deposit per hectare of 32,122 tons/ha. The carbon deposits on the northern part of Pannikiang Island were categorized as higher compared to the total value of biomass and carbon deposits in the mangrove community of Untia Village, Biringkanaya District, Makassar, with 700,332 tons/ha total biomass value and 350,158 tons/ha total carbon storage value. Based on Asdiron’s research [11].

The content carbon deposits research results were quite high in northern Pannikiang Island when compared with some research results. The carbon deposits size in vegetation depends on the biomass amount contained in the tree, soil fertility, and absorption of the vegetation. The tree trunks size affects biomass so that the amount of carbon also contained influences. The higher the tree stem diameter, the higher the biomass value and the stored carbon content. Basically, on tree trunks that have large diameters, the cellulose content and extractive substances and other polysaccharide
compounds stored in the stem are also getting more significant. The size of these constituents correlates with carbon content [12].

3.3. Average carbon value and estimated confidence interval value

It often appears in the environment in everyday life that cannot be avoided. The problem that often occurs is how these allegations can approach the truth. Hose estimation is the determination of the interval values, called the upper and lower limits. The boundaries are calculated based on the measurement of the sample, and the results have individual opportunities that contain the target parameters. The opportunity is called the level of trust. Hoses produced with a certain level of confidence are called confidence intervals. An estimate that is done is not closed, and an error will likely occur.

Plot	Total of Carbon (ton/ha)
Plot 1	138.071
Plot 2	67.510
Plot 3	48.496
Plot 4	47.894
Plot 5	58.945
Plot 6	19.586
Plot 7	28.994
Plot 8	69.254
Plot 9	14.881
Plot 10	13.871
Plot 11	14.340
Plot 12	8.760
Plot 13	8.798
Plot 14	5.901
Plot 15	14.825
Plot 16	9.019
Plot 17	8.778
Plot 18	48.079
Plot 19	84.118
Plot 20	43.513
Plot 21	11.092
Plot 22	22.104
Plot 23	28.177
Plot 24	22.133
Plot 25	14.622
Plot 26	13.758
Plot 27	13.366
Plot 28	52.166
Plot 29	14.619
Plot 30	17.999
Average	**32.122**
Lower Limit C1	**21.157**
Based on the results of the research in 30 research sample plots with 1921 trees, it was obtained that the average carbon value per plot was 32,122 tons/ha. Then a statistical calculation is performed by calculating the confidence interval of 95%. Based on the results, an upper limit value of 43,088 tons and a lower limit value of 21,157 tons was obtained for the research plot sample. So that the maximum total carbon value for the total mangrove stands in the northern part of Pannikiang Island was 859,174 tons and a minimum of 421,871 tons.

4. Conclusion

The composition of the mangrove stands in the northern part of Pannikiang Island consists of 10 species, namely Avicennia alba, Avicennia marina, Bruguiera gymnorrhiza, Bruguiera sexangula, Ceriops decandra, Rhizophora apiculata, Rhizophora mucronata, Rhizophora stilos, Scyphiphora hydrophyllaceae, and Soneratia alba. The total value of the total stem carbon in the mangrove stands reached a total carbon stem portion of 640,512 tons with a maximum range of 859,174 tons and a minimum of 421,871 tons. When compared with carbon researches in other locations, the carbon content in the northern part of Pannikiang Island was high. The northern part of Pannikiang Island was used for fishing settlements. Part of the stand had been cut down which had caused the decline of carbon stocks throughout the northern part of the island.

References

[1] Widiatmaka 2013 Urgensi Penjagaan Kadar Karbon dalam Tanah dalam Rangka Mitigasi dan Adaptasi Perubahan Iklim (Padang: Stkip PGRI Sumbar) p 249
[2] Mulyadi E and Fitriani N 2014 Konservasi Hutan Mangrove Sebagai Ekowisata J. Ilm. Tek. Lingkung. 2 11–8
[3] Taufik A 2011 Mangrove Sebagai Penangkap Karbon, Pendingin Udara Serta Penahan Tsunami
[4] Noor Y R, Khazali M and Suryadipura I N N 2006 Panduan Pengenalan Mangrove di Indonesia
[5] Donato D C, Kauffmam J B, Murdiyarso D, Kurnianto S and Stidham M 2011 Mangroves among the most carbon-rich forests in the tropics Nat. Geosci. 4 293–7
[6] Sutaryo D 2009 Penghitungan Biomassa Sebuah pengantar untuk studi karbon dan perdagangan karbon (Wetl. Int. Indones. Program.) p 1-48
[7] Hairiah K, Ekadinata A, Sari RR R S 2011 Pengukuran cadangan karbon: dari tingkat lahan ke bentang lahan. Petunjuk praktis. (Bogor: World Agroforestry Centre) p 1-110
[8] Rahmah F, Basri H and Sufardi S 2015 Potensi Karbon Tersimpan Pada Lahan Mangrove dan Tambak di Kawasan Pesisir Kota Banda Aceh J. Manaj. Sumberd. Lahan 4 527–34
[9] Heriyanto N M and Subiandono E 2012 Komposisi Dan Struktur Tegakan, Biomasa, Dan Potensi Kandungan Karbon Hutan Mangrove Di Taman Nasional Alas Purwo J. Penelit. Hutan dan Konserv. Alam 9 023–32
[10] Limbong H D H 2009 Potensi Karbon Tegakan Acacia Crassicarpa Pada Lahan Gambut Bekas Terbakar (Studi Kasus IUPHHK-HT PT. SBA Wood Industries, Sumatera Selatan) (Institut Pertanian Bogor)
[11] Panandu A, Paembonan S A and Bachtiar B 2017 Potensi Simpanan Karbon pada Hutan Mangrove di Kelurahan Untia, Kecamatan Biringkanaya, Makassar (Universitas Hasanuddin Makassar) p 1-10
[12] Hilmi E 2003 Model pendugaan kandungan karbon pada pohon kelompok jenis Rhizophora spp