Emergent Collectivity in Nuclei and Enhanced Proton-Neutron Interactions

D. Bonatsos1, S. Karampagia1, R.B. Cakirli2,3, R.F. Casten4, K. Blaum3, L. Amon Susam2
1Institute of Nuclear and Particle Physics, National Centre for Scientific Research Demokritos, GR-153 10 Aghia Paraskevi, Attiki, Greece
2Department of Physics, University of Istanbul, Istanbul, Turkey
3Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg, Germany and
4Wright Nuclear Structure Laboratory, Yale University, New Haven, CT 06520, USA
(Dated: October 30, 2013)

Enhanced proton-neutron interactions occur in heavy nuclei along a trajectory of approximately equal numbers of valence protons and neutrons. This is also closely aligned with the trajectory of the saturation of quadrupole deformation. The origin of these enhanced p-n interactions is discussed in terms of spatial overlaps of proton and neutron wave functions that are orbit-dependent. It is suggested for the first time that nuclear collectivity is driven by synchronized filling of protons and neutrons with orbitals having parallel spins, identical orbital and total angular momenta projections, belonging to adjacent major shells and differing by one quantum of excitation along the z-axis. These results may lead to a new approach to symmetry-based theoretical calculations for heavy nuclei.

PACS numbers: 21.60.Cs, 21.10.Dr, 21.60.Ev, 21.30.Fe

I. INTRODUCTION

In many areas of science, coherence and correlations emerge in complex many-body systems from microscopic ingredients and their interactions. Examples abound in the vibrational, rotational, and bending modes of atoms and molecules and in spatial patterns in complex molecules [1], in collectivity and phase transitions in atomic nuclei and in similarities to correlations in cold atoms [2]. Similar physics appears in pattern formation in biological entities (e.g., Turing model [3]), cooperativity in biochemical signaling [4], in self-organized social behavior in animal species, in ecological environments [5, 6], and in climatic tipping points [7]. The over-arching question cutting across disciplines is how ensembles of interacting constituents can develop emerging collectivity not apparent in the individual constituents.

Atomic nuclei provide a fascinating venue for such studies. Their structure is primarily determined by two forces (strong and Coulomb) whose relative strengths are proton number dependent. Further, one can often control the number of interacting bodies (nucleons) and study the particle-number dependence of collective phenomena. Studying how the often simple behavior of nuclei can emerge from nucleonic interactions has been described as one of the great challenges in the study of nuclei [8, 9]. The key residual interactions are those among the valence nucleons, and, in particular, the residual valence proton-neutron (p-n) interactions [10–14].

It is the purpose of this paper to first, show newly discovered singular aspects of p-n interactions in nuclei with equal or nearly equal numbers of valence protons and neutrons and, secondly, to relate these enhanced interactions to the onset of collectivity. We will then exploit an empirical relation between the single particle quantum numbers of the last-filled proton and neutron orbitals in these nuclei to suggest a simple interpretation of those p-n interactions in terms of spatial overlaps of their wave functions. Finally, we show that the nearly synchronous filling of such pairs of orbitals correlates well with the growth and saturation of collectivity. This leads to a suggestion for a possible new coupling scheme that could greatly simplify symmetry-based shell model calculations.

II. EMPIRICAL P-N INTERACTIONS

A measure of the average p-n interaction of the last nucleons can be extracted from a double difference of binding energies, called \(\delta V_{pn} \) [15]. In Refs. [16–22] \(\delta V_{pn} \) was related to shell effects and the onset of deformation. In Ref. [22] it was shown that \(\delta V_{pn} \) has large singularities for light \(Z=N \) nuclei linked [16] to maximal spatial-spin overlaps of proton and neutron wave functions.

One expects such a phenomenon to dissipate in heavier nuclei where spin-orbit and Coulomb forces grow in importance. And, of course, \(Z=N \) nuclei do not exist beyond \(A\sim 100 \). Thus it came as a surprise that \(\delta V_{pn} \) values in heavy nuclei show similar, though highly muted, peaks [23], as shown in Fig. 1(a), when the number of valence neutrons equals the number of valence protons or, late in the shells, slightly exceeds the valence proton number. Interestingly, there is a special quantal relation between the last-filled proton and neutron Nilsson [25] orbitals (these are all deformed nuclei) in many nuclei exhibiting these singular \(\delta V_{pn} \) values, namely, that these orbitals are often related by \(\Delta K[\Delta N, \Delta n_z, \Delta \Lambda]=0[110] \), where \(K \) and \(\Lambda \) are the projections of the total and orbital angular momenta on the z-axis (\(K=\Lambda=\pm 1/2 \)), respectively. If both the oscillator quantum number \(N (N=n_x+n_y+n_z) \) and the number of quanta in the z-direction (the deformation axis), \(n_z \), increase by one, then \(n_x+n_y \) is constant: the two wave functions differ by a single quantum in the z-direction and are therefore highly overlapping.

These results concern nuclei with even numbers of pro-
tons and the peaks in δV_{pn} were for even-even nuclei. It is well known in such nuclei that the ground state wave functions are spread out over several orbits due to the pairing force. Therefore a much more direct and pure perspective is given by odd-odd nuclei where the last protons and last neutrons occupy specific single orbits. The panel (b) of Fig. 1 shows for the first time the empirical results for δV_{pn} for odd-Z nuclei with both even and odd-N. Not only do these results also show spikes, at $Z_{val} \simeq N_{val}$, but now the peaks are sharper and greatly enhanced in magnitude (about 4 times larger than for even-even nuclei). Figure 1(c) shows the locus of maximum δV_{pn} values in an Z-N plot of $R_{4/2} \equiv E(4^+_\pi)/E(2^+_\pi)$, which varies from <2 near closed shells to ~3.33 for well-deformed axial rotors. The results for even-even and odd-odd nuclei closely match both the $Z_{val} \simeq N_{val}$ line and the onset of deformation occurring for $R_{4/2} > 3.3$. This highlights the link to the evolution and saturation of collectivity.

III. A SIMPLE MODEL FOR THE P-N INTERACTIONS: CALCULATIONS AND COMPARISON WITH EMPIRICAL RESULTS

How can one try to understand the origin and implications for these results? One approach is large scale computationally intensive methods such as Density Functional Theory calculations which, indeed, were compared to empirical trends of δV_{pn} in Ref. [20]. While this approach yields good agreement with the data it does not reveal per se the underlying origin of the behavior of δV_{pn}. Here we take a much simpler theoretical perspective by directly calculating spatial overlaps of proton and neutron Nilsson wave functions. Our approach in fact obtains similar results but now in a way that explicitly exposes, in a physically intuitive way, the underlying origins of the emergent collectivity through the roles of specific orbitals in p-n interactions. As will be seen, this uncovers a heretofore unrecognized pattern in the synchronous filling of proton and neutron orbitals that helps explain the evolution of collectivity and its locus in Z and N.

Nilsson wave functions in the form [25] $\chi_{\Omega \Lambda \Sigma} = \sum_{\Omega} \alpha_{\Omega \Lambda}^\Omega |N\Omega\Sigma\rangle$ were used, where Ω, Λ, Σ are the projections of the total particle angular momentum j, the orbital angular momentum l and the spin s on the z-axis, while the coefficients $\alpha_{\Omega \Lambda}^\Omega$ were calculated by solving the Nilsson Hamiltonian with the standard parameter values, $\kappa = 0.0637$ and $\mu = 0.42$ for neutrons and 0.0637 and 0.6 for protons, respectively. For axially symmetric nuclei, which we deal with here, K, the projection of the total angular momentum on the z-axis, and Ω are the same. Overlaps $\int (\chi_{N_1 \Omega_1 \Lambda_1 \Sigma_1}^* \chi_{N_2 \Omega_2 \Lambda_2 \Sigma_2})dV$ were calculated using spherical coordinates. Though the deformation dependence is weak, we used three values, $\epsilon = 0.05, 0.22$ and 0.3, allocating nuclei to these categories according to $R_{4/2}$ (see Fig. 1(right)), and extending these choices to unknown nuclei using the P-factor [20].

It is instructive to look globally at the overlaps. Figure 2 shows their behavior against correlated differences in K and α_z as well as against differences in each of the Nilsson quantum numbers. In panel (a) the overlaps are highest when ΔK and $\Delta \alpha_z$ are small, including the $I=0\{000\}$ case involving proton unique parity orbitals and the case of present interest $0\{110\}$. The overlaps generally fall off for
larger ΔK and Δn_z values.

However one notes two outlying pink boxes at the upper left in panel (a). These occur for large values of ΔK (3 and even 6) such as the orbital pair 1/2[431] and 13/2[606] and were at first rather puzzling. To understand these and the other patterns we show a further analysis of the overlaps in panels (b)-(f). Each point is an average over all the overlaps for that value of the difference in the relevant Nilsson quantum number. In each case, the overlaps fall off steeply as the particular quantum number differs by larger and larger amounts in the two orbits, peaking at a quantum number difference of zero or one (for ΔN and $\Delta \Lambda$ - see below). Note that the steepest dependence is for the Δn_z plot at bottom left, where Δn_z is the difference in the number of radial nodes with $n_z = (N - n_z - \Lambda)/2$. Finally, the peak at $\Delta N = +1$ is interesting. Given that the maximum overlaps occur for Δn_z and $\Delta n_p = 0$, the peak at $\Delta N = +1$ implies a corresponding peak at $\Delta \Lambda = 1$ which is indeed seen. We can now understand the pink boxes with large ΔK in the top left panel (c). They all correspond to cases of $\Delta n_p = 0$ for which the large Δn_p overlaps compensate for the large ΔK and Δn_z values. However, such orbit pairs form the ground states only in neutron-rich nuclei not currently accessible.

Figure 3 shows empirical values of δV_{pn} (a) and our calculated overlaps (b and c). Overall the agreement is quite good given the simplicity and parameter free nature of our approach, and is comparable to that from DFT calculations [20]. The results generally show small values far from the diagonal, a spread out region of large values early in the shells, and large values near the $Z_{val} = N_{val}$ line that shift slightly to the right of the $Z_{val} = N_{val}$ line towards the end of the shell. A possible reason for this

![Figure 2](image1.png)

FIG. 2: (Color online) Calculated average spatial overlaps (for a deformation $\epsilon = 0.22$) for proton and neutron orbitals in the $Z=50-82$, $N=82-126$ region against the differences (neutron orbit minus proton orbit) in their K and n_z values in a color code (a). Other panels show average overlaps as a function of differences $[\Delta N$ (b), ΔK (c), Δn_z (d), Δn_p (e), $\Delta \Lambda$ (f)] in individual Nilsson quantum numbers.

![Figure 3](image2.png)

FIG. 3: (Color online) Color coded empirical δV_{pn} values for the $Z=50-82$ and $N=82-126$ shells (a). Large values have redder colors. Similar as (a) but for calculated overlaps for nuclei where empirical values of δV_{pn} are known (b). Calculated overlaps for the full major shells (excluding nuclei beyond the proton dripline) (c). The upper (lower) black lines represent $Z_{val} = N_{val}$ (equal fractional filling).
latter behavior will be evident below. There are occasional pink boxes to the upper left that disagree with the data. They correspond to very neutron-deficient isotopes for \(Z \sim 72-76 \). Note also that the blue box for Pb at \(N = 124 \) would be light pink were zero deformation (instead of 0.05) to be used.

Of course, calculated values are not limited to known nuclei. Figure 3(c) shows overlaps for the full shells. Interestingly, large overlaps now also appear (as in DFT calculations [20]) in neutron-rich nuclei in the region \(Z \sim 52-64 \) and \(N \sim 92-108 \). Here pairs of orbitals, such as \(5/2[413] \) with \(5/2[512] \) and \(1/2[420] \) with \(1/2[521] \), coupled to \(S = 0 \), are filling (near \(^{168}\text{Gd} \) and \(^{162}\text{Nd} \), respectively), that do not satisfy \(0[110] \), which implies \(S = 1 \). Measurement of masses in these regions, which may be available in the future at FAIR, FRIB, and RIKEN, would offer important tests of the current ideas.

IV. IMPLICATIONS FOR THE DEVELOPMENT OF COLLECTIVITY AND DEFORMATION

The idea of \(p-n \) Nilsson orbital pairs related by \(0[110] \) has a much deeper consequence related to the overall emergence of collectivity in nuclei. In Fig. 4 we show standard proton (a) and neutron (b) Nilsson diagrams for this mass region. We first note that every one of the 16 Nilsson proton orbitals for the entire shell, including the unique parity orbitals, has a \(0[110] \) neutron partner. This in itself is perhaps not surprising since the neutron shell has one additional quantum. However, a closer look shows a general pattern, not heretofore recognized, namely, that, these \(0[110] \) pairs fill almost *synchronously* as the proton and neutron shells fill. This is obvious for small deformations. For example, one has the successive \(p-n \) combinations: \(1/2[431] - 1/2[541] \); \(3/2[422] - 3/2[532] \); \(5/2[413] - 5/2[523] \); \(1/2[420] - 1/2[530] \); etc. Since the patterns of up-and-down-sloping orbits and orbit crossings are similar in the two shells, this synchronous filling of \(0[110] \) combinations approximately persists even as the deformation increases. For example, near mid-shell for \(\epsilon \sim 0.3 \), one has, starting at \(Z = 68 \) and \(N = 100 \) (18 valence nucleons each): \(7/2[523] - 7/2[633] \); \(1/2[411] - 1/2[521] \); \(5/2[402] - 5/2[512] \); \(7/2[404] - 7/2[514] \); \(9/2[514] - 9/2[624] \). Except for one interchange of adjacent orbits, these continue to fill in highly overlapping \(0[110] \) combinations even as the deformation changes. This synchronous filling sequence correlates with, and gives a microscopic basis to, the empirical phenomenon of enhanced collectivity along the \(Z_{\text{val}}=N_{\text{val}} \) line.

It is only past mid-shell that neutron orbitals occur (6 of 22) that do not have a \(0[110] \) proton partner. Interestingly, each of these has \(n_z = 0 \), that is, oblate orbitals
that do not contribute to prolate deformation. The interspersing of these rogue $n_{\gamma}=0$ orbitals late in the shell interrupts the $Z_{\text{val}}=N_{\text{val}}$ correlation with maximal δV_{pn}, leading to shifts in peaks in δV_{pn} to $N_{\text{val}}=Z_{\text{val}}+2$ noted earlier (e.g., Hf-W and Lu-Ta region).

V. A POSSIBLE NEW PSEUDO-SHELL APPROACH TO HEAVY NUCLEI

The $[110]$ correlation is repeatedly encountered from the sd shell to the actinides. This generality may suggest a new coupling scheme, similar in spirit to the idea of pseudo-SU(3) \cite{27,28}, but different in content. The 50-82 major shell is formed by the orbits of the sdq oscillator shell, with the exception that the $1g_{9/2}$ orbit has escaped into the 28-50 major shell, and is replaced by the 1$h_{11/2}$ orbit, from the pfh oscillator shell. As a result, the $sdg_{7/2}h_{11/2}$ 50-82 shell (with the single orbital $11/2[505]$ left out) can be considered as an approximate sdg shell by replacing the $1h_{11/2}$ orbitals by their 0[110] counterpart $1g_{9/2}$ orbitals. Whereas, in pseudo-SU(3), the entire unique parity orbit is excised, here only the single, highest K, Nilsson orbital is excluded. The new scheme could simplify symmetry-based shell model calculations. Instead of two pseudo-SU(3) shells (with SU(3) subalgebras) plus two shell model single-j shells (not possessing SU(3) subalgebras), one has just two approximate shells with SU(3) subalgebras (plus two high-lying high-K single orbitals, which can often be ignored), thus deriving from the shell model an approximate SU(3) symmetry for heavy nuclei, at least for $Z_{\text{val}}\approx N_{\text{val}}$.

As an example, 154Sm is considered, for which the Nilsson deformation parameter is $\epsilon \approx 0.95\beta_2 \approx 0.32$, \cite{27,28}. From Fig. 4 it is clear that 6 of the 12 valence protons occupy normal parity orbitals in the 50-82 shell, while the other 6 occupy $1h_{11/2}$ orbitals. In addition, 6 of the 10 valence neutrons occupy normal parity orbitals in the 82-126 shell, while the other 4 occupy $1i_{13/2}$ orbitals.

1) In the pseudo-SU(3) scheme, the 6 protons of normal parity sit in the $(12,0)$ irreducible representation (irrep) of U(10) (the pseudo-shell formed within the 50-82 shell \cite{27}), while the other 6 are outside the pseudo-SU(3) symmetry and have to be treated separately. Similarly, the 6 neutrons of normal parity sit in the $(18,0)$ irrep of U(15) (the pseudo-shell formed within the 82-126 shell \cite{27}), while the other 4 are outside the pseudo-SU(3) symmetry and are treated separately. Thus, one has a $(30,0)$ irrep describing the normal parity nucleons, plus 6 protons in $1h_{11/2}$ orbitals, plus 4 neutrons in $1i_{13/2}$ orbitals.

2) In the present coupling scheme, using the same group theoretical methods as in \cite{27}, we see that all 12 valence protons sit in the $(24,0)$ irrep of U(15) formed by the 50-82 shell except the high-lying $11/2[505]$, which plays no role in 154Sm, while all 10 neutrons sit in the $(30,4)$ irrep of U(21) formed by the 82-126 shell except the high-lying $13/2[606]$, which also plays no role. Hence, one has a $(54,4)$ irrep for all valence nucleons in 154Sm.

To proceed further, one has to choose a Hamiltonian containing, in addition to the usual quadrupole-quadrupole and angular momentum terms, SU(3) symmetry preserving third-order and/or fourth-order terms \cite{28,30}. Work in this direction is in progress. Finally, the $[0110]$ proton-neutron pairs considered in the present work have $S=1$. The presence of isoscalar $S=1$ proton-neutron pairs in competition with isovector $S=0$ nucleon pairs has long been considered in medium mass nuclei with $Z\approx N$ \cite{31,32}. The present work suggests that similar studies for heavy nuclei with $Z_{\text{val}}\approx N_{\text{val}}$.

VI. CONCLUSIONS

New results, for odd-Z nuclei, show a magnified enhancement of the large empirical values of $p-n$ interactions along the $Z_{\text{val}}\approx N_{\text{val}}$ line in a purer form, without the muting effects of pairing. These enhanced values are closely correlated with the development of collectivity, shape changes, and the saturation of deformation. These strong interactions can be simply understood in terms of parameter-free spatial overlaps of special pairs of spin-aligned proton and neutron wave functions differing by single oscillator quanta along the deformation axis. It is precisely these highly interacting $[0110]$ pairs that fill almost synchronously in heavy nuclei, giving a rationale for the way collectivity develops across major shells. This points to a possible, complementary, new symmetry-based coupling scheme for shell model calculations that is more inclusive than existing schemes.

VII. ACKNOWLEDGMENTS

We are grateful to W. Nazarewicz, K. Heyde, A. Frank and S. Pittel for useful discussions. Work supported by the Max-Planck Society, by the US DOE under Grant No. DE-FG02-91ER-40609 and by the Scientific Research Projects Coordination Unit of Istanbul University under Project Numbers 21658 and 26433. R.B.C. acknowledges support by the Max-Planck-Partner group.

[1] F. Iachello and S. Oss, Eur. Phys. J. D 19, 307 (2002).
[2] N.T. Zinner and A.S. Jensen, J. Phys. G, 40, 053101 (2013).
[3] S. Kondo and T. Miura, Science 329, 1616 (2010).
[4] W. Bialek and S. Setayeshgar, Phys. Rev. Lett. 100, 258101 (2008).
[5] R. Fossion et al., Symmetries in Nature: Symposium in Memoriam Marcos Moshinsky, Aug. 7-14, 2010, Cuer-
[6] R. Fossion, D.A. Hartasanchez, O. Resendis-Antonio, and A. Frank, Frontiers in Biology, 8, 247 (2013).
[7] T. Lenton, Nature Climate Change 1, 201209 (2011).
[8] NAS-NRC Decadal Report: Nuclear Physics: Exploring the Heart of Matter (Nat. Acad. Sci. 2012).
[9] US DOE/NSF Long Range Plan, The Frontiers of Nuclear Science, DOE/NSF 2007; NuPECC Long Range Plan 2010: Perspectives of Nuclear Physics in Europe.
[10] A. de Shalit and M. Goldhaber, Phys. Rev. 92, 1211 (1953).
[11] I. Talmi, Rev. Mod. Phys. 34, 704 (1962).
[12] P. Federman and S. Pittel, Phys. Lett. B 69, 385 (1977).
[13] R.F. Casten, D.D. Warner, D.S. Brenner, and R.L. Gill, Phys. Rev. Lett. 47, 1433 (1981).
[14] T. Otsuka, T. Suzuki, R. Fujimoto, H. Grawe and Y. Akaishi Phy. Rev. Lett. 95, 232502 (2005).
[15] J.D. Garrett and Z.-Y. Zhang, Int. Conf. on Contemporary Topics in Nuclear Structure Physics, Cocoyoc, Mexico, June, 1988, and J.-Y. Zhang, R.F. Casten, and D.S. Brenner, Phys. Lett. B 227, 1 (1989).
[16] P. Van Isacker, D.D. Warner and D.S. Brenner, Phys. Rev. Lett. 74, 4607 (1995).
[17] R.B. Cakirli, D.S. Brenner, R.F. Casten, E.A. Millman, Phys. Rev. Lett. 94, 092501 (2005).
[18] D.S. Brenner, R.B. Cakirli, R.F. Casten Phys. Rev. C. 73, 034315 (2006).