VERITAS DISCOVERY OF >200 GeV GAMMA-RAY EMISSION FROM THE INTERMEDIATE-FREQUENCY-PEAKED BL LACERTAE OBJECT W COMAE

V. A. Acciari,1,2,20 E. Aliu,23 M. Beilicke,2,20 W. Benbow,1 M. Böttcher,26 S. M. Bradbury,4 J. H. Buckley,2 V. Bugaev,2 Y. Butt,23 O. Celik,6 A. Cesaroni,1,21 L. Ciupik,7 Y. C. K. Chow,6 P. Cogan,12 P. Colin,11 W. Cuì,8 M. K. Daniel,4,27 T. Ergin,3 A. D. Falcone,22 S. J. Fegan,6 J. P. Finley,3 G. Finneghan,11 P. Fortin,14 L. F. Fortson,7 A. Furniss,17 D. Gall,6 G. H. Gillanders,21 J. Grube,13 R. Guenette,12 G. Gyuk,7 D. Hanna,12 E. Hayes,5,3 J. Holder,13 D. Horan,5 C. M. Hui,11 T. B. Humensky,10 A. Imam,4 P. Kaaret,8 N. Karlsson,7 M. Kertzman,15 D. B. Kieda,11 A. Konopelko,8,29 H. Krawczynski,2 F. Krennrich,9 M. J. Lang,24 S. LeBohec,11 K. Lee,2 G. Maier,2 A. McCann,12 M. McCutcheon,12 P. Moriarty,20 R. Mukherjee,14 T. Nagai,9 J. Niemiec,28 R. A. Ong,3 D. Pandel,18 J. S. Perkins,1 D. Petry,25 M. Pohl,9 J. Quinn,13 K. Ragan,12 L. C. Reyes,19 P. T. Reynolds,19 E. Roache,1 H. J. Rose,1 M. Schroedter,4 G. H. Sembroski,9 A. W. Smith,14 D. Steele,1 S. P. Swordy,19 J. A. Toner,1,21 V. V. Vassiliev,4 R. Wagner,5 S. P. Wakely,10 J. E. Ward,13 T. C. Weekes,1 A. Weinstein,6 R. J. White,4 D. A. Williams,17 S. A. Wissel,10 M. Wood,9 and B. Zitzer8

Received 2008 June 16; accepted 2008 August 4; published 2008 August 20

ABSTRACT

We report the detection of very high energy γ-ray emission from the intermediate-frequency-peaked BL Lacertae object W Comae (ζ = 0.102) by VERITAS. The source was observed between 2008 January and April. A strong outburst of γ-ray emission was measured in the middle of March, lasting for only 4 days. The energy spectrum measured during the two highest flare nights is fit by a power law and is found to be very steep, with a differential photon spectral index of \(\Gamma = 3.81 \pm 0.35\text{stat} \pm 0.34\text{syst} \). The integral photon flux above 200 GeV during those two nights corresponds to roughly 9% of the flux from the Crab Nebula. Quasi-simultaneous \textit{Swift} observations at X-ray energies were triggered by the VERITAS observations. The spectral energy distribution of the flare data can be described by synchrotron self-Compton (SSC) or external Compton (EC) leptonic jet models.

Subject headings: BL Lacertae objects: individual (W Comae) — gamma rays: observations

1. INTRODUCTION

The blazars detected at very high energies (VHE; \(E > 100 \text{ GeV} \)) by ground-based imaging atmospheric Cerenkov telescopes (IACTs) are extreme objects in the active galactic nucleus (AGN) population. Typically these sources show core-dominated emission, and they are characterized by rapid variability and strong broadband continuum emission ranging from the radio band to the X-ray band. Multipwavelength data on blazars reveal that their spectral energy distribution (SED) is characterized by two broad, well-separated “humps” arising from synchrotron (low energy) and inverse Compton (IC) or hadronic emission (high energy). Blazars are categorized into different subclasses based on the frequencies at which these emission components reach a maximum. Flat-spectrum radio quasars (FSRQs) and low-frequency-peaked BL Lac objects (LBLs) are generally seen to have low-frequency, synchrotron peaks in the IR/optical regime, whereas high-frequency-peaked BL Lac objects (HBLs) exhibit peaks in the X-ray band, in several cases at energies of \(\sim 100 \text{ keV} \) or higher. Intermediate-frequency-peaked BL Lac objects (IBLs) bridge the gap between LBLs and HBLs. The properties of the broad subclasses of blazars, the luminosity-versus-frequency trends, and possible physical explanations are discussed by Ghisellini & Tavecchio (2008).

Gamma rays are an important component of the SED of blazars; the integral power in the γ-ray wave band is comparable to or higher than that in the rest of the electromagnetic spectrum (from radio to X-rays). There are 65 blazars detected...
at MeV/GeV energies by the EGRET instrument on board the Compton Gamma Ray Observatory (CGRO) (Mattox et al. 2001; Hartman et al. 1999) and several of the other EGRET sources also have likely blazar counterparts. Ground-based IACTs have established ~20 blazars as emitters of VHE γ-radiation. While the blazars detected at MeV/GeV energies tend to be largely FSRQs (and some LBLs), almost all VHE blazars belong to the class of HBLs, the only exceptions being the LBLs BL Lacertae (Albert et al. 2007a), S5 0716+71 (Teshima et al. 2007), and the FSRQ 3C 279 (Teshima et al. 2007).

The IBL W Comae (W Com) at a redshift of $z = 0.102$ has long been an object of interest for VHE observatories. W Com was discovered at radio frequencies (Brown 1971) and later detected at X-ray energies by the Einstein Imaging Proportional Counter in 1980 June (Worrall & Wilkes 1990). Data taken with the BeppoSAX satellite in 1998 (Tagliaferri et al. 2000) clearly showed that the transition between the low- and high-energy peaks in the SED occurs around ~ 4 keV. In 1998 April–May an exceptional optical outburst was detected from W Com showing rapid variability on timescales of hours (Massaro et al. 2001). At γ-ray energies, W Com was detected by EGRET in the 100 MeV to 10 GeV band (Hartman et al. 1999) and in a reanalysis of the data up to 25 GeV (Dingus & Bertsch 2001). Due to its rather hard EGRET spectrum (photon spectral index $\alpha = 1.73 \pm 0.18$), with no sign of spectral cutoff (Hartman et al. 1999), the source became even more interesting for VHE observations. However, W Com was not detected by the Whipple IACT above 300 GeV in 1993/1994 (Kerrick et al. 1995) and 1995/1996/1998 (Horan et al. 2004), nor by the solar heliostat Čerenkov telescope STACEE (Scalzo et al. 2004). In this Letter we report the discovery of VHE γ-ray emission from W Com with VERITAS.

2. VERITAS AND SWIFT OBSERVATIONS AND RESULTS

VERITAS consists of four 12 m diameter IACTs and is located at the base camp of the Fred Lawrence Whipple Observatory (FLWO) in southern Arizona at an altitude of 1280 m. It detects the Čerenkov light emitted by an extensive air shower (initiated by a VHE γ-ray photon or cosmic-ray entering the Earth’s atmosphere) using a 499 pixel photomultiplier camera located in the focal plane of each telescope. The array is sensitive to γ-rays in the energy range from ~ 100 GeV to ~ 30 TeV. Observations are performed in moonless nights in the “wobble” mode of operation, where the telescopes are pointed to positions offset by $\pm 0.5\degree$ (alternating in direction) with respect to the source position, to allow for a simultaneous background estimation. More details about VERITAS, the data calibration, and the analysis techniques can be found in Acciari et al. (2008).

Only shower images which pass certain quality cuts are considered in the event reconstruction (image size ≥ 500 digital counts [dc]; $\leq 30^\circ$ distance between the image center of gravity and the center of the camera $\leq 0.14^\circ$). The γ/hadron separation cuts used in this analysis are based on the width and length of the recorded images (Acciari et al. 2008) and were optimized a priori on Crab Nebula data for a source with a flux at the 5% level of the Crab Nebula. We refer to these as “standard cuts.” An event is considered to fall into the signal (on) region if the squared angular distance $\Delta \theta^2$ between the reconstructed event direction and the W Com position is less than 0.0125 deg2. The background is estimated from different regions of equal size positioned at the same radial distance from the camera center as the on region (Berge et al. 2007). This background model, referred to as the “reflected region model,” is used unless otherwise stated. Since the energy spectrum of W Com is found to be very steep (see below) a second set of cuts (optimized on Crab Nebula data for low energies of $E \leq 200$ GeV) is used to derive the energy spectrum and the light curve. These a posteriori cuts are referred to as “soft cuts” in this Letter and use an image size ≥ 250 dc and an angular distance to the source position of $\Delta \theta^2 \leq 0.02$ deg2. All results obtained with the soft cuts are in good agreement with the ones obtained using the standard cuts.

VERITAS observed W Com from 2008 January to April for a total of 39.5 hr (dead-time corrected) after run quality selection. The zenith-angle range of the observations was $3^\circ–45^\circ$ with an average of 19°, corresponding to an analysis energy threshold33 of 260 GeV (standard cuts) and 180 GeV (soft cuts). In the entire data set, 111 excess events (543 on events and 432 normalized off events, normalization $\alpha = 0.111$) are detected from the direction of W Com using the standard cuts, corresponding to a statistical significance of 4.9 standard deviations (4.9σ), calculated following Li & Ma (1983). The sky map showing W Com and the known VHE blazar 1ES 1218+30434 (Albert et al. 2006; Fortin et al. 2007) located in the same field of view of the dedicated W Com observations is shown in Figure 1. The mean position of the W Com excess

\[\frac{33}{34} \text{ See for example TeVCat (S. Wakely & D. Horan 2007; available online at http://tevcat.uchicago.edu).} \]

\[\frac{33}{34} \text{ A significant VHE γ-ray excess was recorded from 1ES 1218+304 during the dedicated W Com observations, which will be addressed in a forthcoming paper.} \]
is derived by fitting a 2D Gaussian function to the uncorrelated excess sky map and is found to be compatible within errors with the nominal position of W Com.

Almost the entire excess from W Com (>70%) is recorded during a strong flare, which occurred during four nights in the middle of March (Swordy 2008) (see Fig. 2). The measured excess of the whole corresponding observation period—modified Julian date (MJD) 54,528.4 to 54,540.4—corresponds to a statistical significance of 6.3 σ (standard cuts; 85 excess events) and 8.6 σ (soft cuts; 275 excess events). Correcting for eight trials (four observation periods and two sets of cuts) results in 5.9 and 8.3 σ, respectively. No statistically significant excess is measured in the remaining data set.

A fit of a constant function to the whole night-by-night light curve (January to April) results in a probability of constant emission of 2.1%. No statistically significant excess is measured in the remaining data set. A fit of a constant function to the whole night-by-night light curve (January to April) results in 5.9 and 8.3σ, respectively. No statistically significant excess is measured in the remaining data set. A fit of a constant function to the whole night-by-night light curve (January to April) results in 5.9 and 8.3σ, respectively. No statistically significant excess is measured in the remaining data set. A fit of a constant function to the whole night-by-night light curve (January to April) results in 5.9 and 8.3σ, respectively. No statistically significant excess is measured in the remaining data set. A fit of a constant function to the whole night-by-night light curve (January to April) results in 5.9 and 8.3σ, respectively. No statistically significant excess is measured in the remaining data set. A fit of a constant function to the whole night-by-night light curve (January to April) results in 5.9 and 8.3σ, respectively. No statistically significant excess is measured in the remaining data set. A fit of a constant function to the whole night-by-night light curve (January to April) results in 5.9 and 8.3σ, respectively.

A differential energy spectrum is derived for the two highest flare nights. The spectrum is shown in Figure 3 (top panel). No change in spectral slope could be detected when comparing results for individual nights. An X-ray flare at a level roughly 4 times higher than the flux observed during the VHE flare was observed around MJD 54,553.3 (see Fig. 2, top panel). VERITAS also observed W Com during this night for ~40 minutes but the data do not pass the standard quality selection.36 Nevertheless, since the VERITAS data (MJD 54,553.3) are simultaneous with the X-ray flare the flux derived from these data (including an additional 50% systematical error) is shown for reference in Figure 2 (label 2). The 99.9% c.l. upper limit (assuming an underestimation of the count rates by 50%) is calculated to be \(\Phi_{E>200\text{GeV}} = (1.99 \pm 0.07) \times 10^{-11} \text{ cm}^{-2} \text{s}^{-1} \), corresponding to 9% of the flux measured from the Crab Nebula above the same energy. The systematic errors on the normalization constant and the photon index for this low-energy regime are estimated to be \(\Delta I_0/H_0 = 25\% \) and \(\Delta \Gamma = 9\% \), respectively.

Simultaneous Swift observations of W Com were performed for a total duration of 11.6 hr. Swift comprises a UV instrument UVOT and X-ray instruments XRT and BAT (Gehrels et al. 2004). Data reduction and calibration are performed with the HEAsoft 6.4 package35 and the xrtpipeline tool. All energy spectra are fit with an absorbed power law using XSPEC 12.4. A Galactic column density of \(N_H = 1.88 \times 10^{22} \text{ cm}^{-2} \) was assumed (Dickey & Lockman 1990). No significant deviation from a power-law spectral shape is found within the limited statistics. UVOT observations were taken over the six photometric bands of \(V, B, U, \text{UVM2}, \text{UVW2} \), and \(\text{UVW1} \) (Poole et al. 2008). The uvotsource tool is used to extract counts, correct for coincidence losses, apply background subtraction, and calculate the source flux. The source fluxes are dereddened using the interstellar extinction curve in Fitzpatrick (1999).

The light curve of the X-ray flux is shown in Figure 2 (top panel). No change in spectral slope could be detected when comparing results for individual nights. An X-ray flare at a level roughly 4 times higher than the flux observed during the VHE flare was observed around MJD 54,553.3 (see Fig. 2, top panel). VERITAS also observed W Com during this night for ~40 minutes but the data do not pass the standard quality selection.36 Nevertheless, since the VERITAS data (MJD 54,553.3) are simultaneous with the X-ray flare the flux derived from these data (including an additional 50% systematical error) is shown for reference in Figure 2 (label 2). The 99.9% c.l. upper limit (assuming an underestimation of the count rates by 50%) is calculated to be ~2 times higher than the peak flux measured during the VHE flare. Although no detailed conclusions can be drawn, a linear X-ray/TeV flux correlation does not seem likely.

3. MODELING AND DISCUSSION

The VERITAS data taken at MJD 54,538.4 and 54,539.4 are used to model the SED of W Com (see Fig. 4) together with the simultaneous Swift XRT/UVOT (MJD 54,539.4) and optical

35 See http://heasarc.gsfc.nasa.gov/heasoft/

36 Showing a cosmic-ray trigger rate ~27% lower than expected due to nonoptimal weather conditions—with the maximum allowed deviation being 20%.
AAVSO data (MJD 54,540; J. Bedient 2008, private communication), as well as archival radio data. The following model curves are corrected for $\gamma\gamma$ absorption by the extragalactic background light according to the “best fit” model of Kneiske et al. (2004). The SED can be fit by a simple one-zone SSC model, using the equilibrium version of the code of Böttcher & Chiang (2002a). Here an ad hoc nonthermal electron injection spectrum with particle index q and total particle injection luminosity L_{inj} is balanced self-consistently with radiative cooling from synchrotron and Compton emission. The best fit to the SED is shown in Figure 4 as a solid line. The parameters of the best fit are $\gamma_1 = 450$, $\gamma_2 = 4.5 \times 10^4$, $q = 2.2$, $L_{inj} = 2.8 \times 10^{45}$ erg s$^{-1}$, a magnetic field of $B = 0.007$ G, a Doppler factor of $\delta = 30$, and a size of the emission region of $R = 10^4$ cm. The wide separation of the SED peaks, together with the very low X-ray flux, require an unusually low magnetic field in order to allow for sufficiently high particle Lorentz factors to produce the observed VHE $\gamma\gamma$-ray flux. The ratio between the magnetic and electron energy density is $\sigma = 1.3 \times 10^{-3}$. The light crossing time $\tau = R/(c \times \delta) \approx 1.3$ days matches the timescale observed in the VHE flare (compare Fig. 2), but it is relatively large compared with the extremely rapid VHE variability on timescales of 2–10 minutes seen in other TeV blazars at higher flux levels (Albert et al. 2007b; Aharonian et al. 2007).

The SED was also fit by a self-consistent model that contains both SSC emission and an EC component, similar to the model of Inoue & Takahara (1996). The external photons are assumed as steady-state blackbody radiation peaking in the near-infrared (radius 1800 Schwarzschild radii, 0.4% of the Eddington luminosity). The particles are accelerated by diffusive shock acceleration and the maximum electron Lorentz factor γ_{max} is determined by competition between acceleration and radiative cooling. As for the SSC fit, a cooling break in the electron spectrum is assumed to occur at the energy where the cooling time becomes shorter than the light crossing time of the emission region. Finally, we assume that the electron distribution has some minimum Lorentz factor γ_{min} from some unknown injection process. The power-law slope of the electron spectrum (without the cooling break) is parameterized by $dN/dE \propto E^{-\gamma}$, where the free parameter s is expected to vary between 2.3 (for canonical first-order Fermi ultrarelativistic shock acceleration) and 2.0 (for canonical nonrelativistic first-order Fermi acceleration by a strong shock).

A reasonably good fit (see Fig. 4) is obtained taking $B = 0.3$ G, $\delta = \Gamma = 30$, $\sigma = 1.0$ (assuming equipartition), $\gamma_{\text{min}} = \Gamma = 30$, and $R = 1.76 \times 10^{30}$ cm. To match the inferred shape of the electron spectrum, rather inefficient particle acceleration is invoked with an electron spectrum with index $s = 2.0$. For this choice of parameters, the model gives an acceleration time (equal to the cooling time) at the maximum electron energy of 7.2 minutes. Assuming that the emission region of radius R is comoving with the jet, the light crossing time for these parameters is $\tau = 330$ minutes. This value is closer to the typical variability timescales of other VHE blazars and consistent with our observed light curve.

The synchrotron proton blazar (SPB) model from Böttcher et al. (2002b) fitted to data of the 1998 W Com campaign is also shown for reference in Figure 4.

4. SUMMARY AND CONCLUSION

VERITAS detected VHE $\gamma\gamma$-ray emission from W Com with a statistical significance of 4.9 standard deviations for the entire data set (2008 January–April). A strong outburst was observed in 2008 March with a statistical significance of >8 standard deviations, that lasted for only 4 days. In addition to W Com, a second extragalactic source (the VHE blazar 1ES 1218+304) is detected in the same field of view, for the first time in VHE $\gamma\gamma$-ray astronomy.

W Com is the first VHE-detected blazar of the IBL class. The extension of the VHE catalog to the FSRQ, LBL, and IBL classes will play a major role in our understanding of blazar populations and dynamics. The quasi-simultaneous SED of W Com at the time of the VHE outburst can be modeled with a simple one-zone SSC model. However, an unusually low magnetic field of $B = 0.007$ G (more than an order of magnitude lower than typically found in the modeling of other BL Lac-type blazars) and a small ratio of the magnetic field to electron energy density of $\sigma = 1.3 \times 10^{-3}$ are required. An EC model with more natural parameters ($B = 0.3$ G and $\sigma = 1$) provides a good fit and could account for shorter variability timescales. Our model results agree with the expectation that for IBLs (and LBLs) the higher optical luminosity plays an important role in providing the seed population for IC scattering.

The IBL W Com will be an excellent target for future observations at GeV energies with GLAST and in the VHE regime with IACTs, including correlated GeV/TeV variability studies.

This research is supported by grants from the US Department of Energy, the US National Science Foundation, and the Smithsonian Institution, by NSERC in Canada, by Science Foundation Ireland, and by PPARC in the UK. We acknowledge the excellent work of the technical support staff at the FLWO and the collaborating institutions in the construction and operation of the instrument. We acknowledge the efforts of the Swift team for providing the UVOT/XRT observations. We thank James Bedient of the AAVSO for his V- and I-band data on W Com.
REFERENCES

Acciari, V. A., et al. 2008, ApJ, 679, 1427
Aharonian, F., et al. 2007, ApJ, 664, L71
Albert, J., et al. 2006, ApJ, 642, L119
———. 2007a, ApJ, 666, L17
———. 2007b, ApJ, 669, 862
Berge, D., Funk, S., & Hinton, J. 2007, A&A, 466, 1219
Böttcher, M., & Chiang, J. 2002a, ApJ, 581, 127
Böttcher, M., Mukherjee, R., & Reimer, O. 2002b, ApJ, 581, 143
Browne, I. W. A. 1971, Nature, 231, 515
Dickey, J. M., & Lockman, F. M. 1990, ARA&A, 28, 215
Dingus, B. L., & Bertsch, D. L. 2001, in AIP Conf. Ser. 587, Gamma 2001: Gamma-Ray Astrophysics, ed. S. Ritz et al. (New York: AIP), 251
Fitzpatrick, E. L. 1999, PASP, 111, 63
Fortin, P., et al. 2007, in Proc. 30th Int. Cosmic Ray Conf. (Merida), preprint (arXiv:0709.3657)
Gehrels, N., et al. 2004, ApJ, 611, 1005
Ghisellini, G., & Tavecchio, F. 2008, MNRAS, 387, 1669
Hartman, R. C., et al. 1999, ApJS, 123, 79
Horan, D., et al. 2004, ApJ, 603, 51
Inoue, S., & Takahara, F. 1996, ApJ, 463, 555
Kerrick, A. D., et al. 1995, ApJ, 452, 588
Kneiske, T. M., Bretz, T., Mannheim, K., & Hartmann, D. H. 2004, A&A, 413, 807
Li, T., & Ma, Y. 1983, ApJ, 272, 317
Massaro, E., et al. 1999, A&A, 342, L49
Mattox, J. R., Hartman, R. C., & Reimer, O. 2001, ApJS, 135, 155
Poole, T. S., et al. 2008, MNRAS, 383, 627
Scalzo, R. A., et al. 2004, ApJ, 607, 778
Swordy, S. 2008, ATel 1422
Tagliaferri, G., et al. 2000, A&A, 354, 431
Teshima, M., et al. 2007, in 30th Int. Cosmic Ray Conf. (Merida), preprint (arXiv:0709.1475)
———. 2008, ATel 1500
Worrall, D. M., & Wilkes, B. J. 1990, ApJ, 360, 396