TITLE:
Operational and harmonic-analytic aspects of quasi-probability distributions (Abstract_要旨)

AUTHOR(S):
Harada, Ryo

CITATION:
Harada, Ryo. Operational and harmonic-analytic aspects of quasi-probability distributions. 京都大学, 2011, 博士(理学)

ISSUE DATE:
2011-11-24

URL:
http://hdl.handle.net/2433/152034

RIGHT:
学位審査報告書

(ふりがな) はらだ りょう
氏名

原田 僚

学位(専攻分野) 博士 (理学)

学位記番号 理博第号

学位授与の日付 平成年月日

学位授与の要件 学位規則第4条第1項該当

研究科・専攻 理学研究科 数学・数理解析専攻

(学位論文題目)

Operational and harmonic-analytic aspects of quasi-probability distributions
(準確率分布函数の測定理論的および調和解析的研究)

論文調査委員

(主査) 小嶋 泉 准教授
山田 道夫 教授
中島 啓 教授

理学研究科
京都大学
博士（理学）
氏名 原田 僚

論文題目
Operational and harmonic-analytic aspects of quasi-probability distributions
（準確率分布函数の測定理論的および調和解析的研究）

（論文内容の要旨）
この論文で扱われるのは、Lie 群の作用の下で対称性を持つ量子系に関する準確率分布函数（quasi-probability distributions）という概念である。通常の確率分布函数は、特定の確率変数の個々の実現値に対応する確率分布を与え、定義からその正値性が明らかだが、量子系で確率変数に相当する「観測量 observable」＝「測定量」は「不確定性原理」に由来して相互に非可換なため、一般に複数の測定量の同時測定を考えると対応する確率分布の正値性が保証されない。そうした複数の測定量の同時測定状況の量子ゆらぎを記述することで、準確率分布函数は量子系の確率的・統計的記述において中心的役割を演ずる。量子系の対称性が Lie 群 G の作用で記述される状況では、例えば回転対称性が Lie 群 $SO(3)$ で記述され、角運動量がその生成子に対応するように、基本的な測定量は Lie 環の生成子によって与えられる。この系には一般化された「コヒーレント相空間」が存在し、その上に一般化された「コヒーレント状態」が定義される。コヒーレント状態は「最小不確定状態」を記述し、その物理的意味は、例えばレーザー光の位相の揃った状態として知られている。このような文脈で、当論文で得られた成果の本質は次の 3 つの帰結に要約される：

1) 準確率分布函数は一般化されたコヒーレント状態系から完全に定まること、
2) コヒーレント状態系を、この準確率分布函数とのつながりを通じて測定過程や調和解析と有機的に結びつけるようにしたこと、
3) 正値性を満たす準確率分布函数である一般化された伏見函数を定義し、それを最小不確定分布として測定論的に特徴づけたこと。

これによって、量子状態を表す非可換量としての密度作用素に対する微分方程式で記述される量子系の動力学的方程式は、密度作用素と準確率分布函数との等価性を通じて、準確率分布函数に関する通常のタイプの微分方程式に書き換えることができる。

上の課題の実現のために学位申請者の原田僚氏が着目した重要な概念は、Stratonovich-Weyl 核作用素を呼ばれる等質空間 G/H 上の 1 の分解で、それを用いることによって、G/H 上に定義された一般化コヒーレント状態系は準確率分布函数族と緊密な仕方で結びつけられ、両者を自然な形で公理論的に特徴づける著性質を示し、それを検証することにより、曖昧さのないやり方で上記 1), 3)の証明がなされた。

2) を明らかにするために、複数の非可換な測定量の測定で用いられる正作用素値測度の拡大法（dilation）を用いて、対象系と測定系との合成系を構成することによって、測定過程と、また等質空間上の Fourier 変換の概念とも自然につなぐことができた。
この論文では、Lie 鎖論における標準的概念・手法を与える Cartan 部分環、Borel 部分環に加えて、それと密接に絡む等質空間の複素化、複素幾何構造、Kähler 構造とシンプレクティック構造だけではなく、再生核・再生核 Hilbert 空間と群の調和解析的手法、Fourier 双対、誘導表現と Frobenius reciprocity、調和解析的補間理論、Naimark 拡大と dilation 等々、非常に多岐に互い手機が縦横に使われ、それらが固有の場所で固有の役割を演じている。このため、その全ての側面、話題に互って透徹した理解を得ることは容易ではない。

申請者の原田僚氏は、この研究の中心テーマであるコヒーレント状態の概念について大学院入学当初より現在まで 5 年間に互り、独自の視点に基づく掘り下げを続けてきた。特に、この分野の標準的教科書とされてきた Perelomov: “Generalized Coherent States and Their Applications” (Springer, 1986) を踏まえつつ、その内容がコヒーレント状態の群論的側面の扱いに終始して、量子物理学の普遍で重要な側面である測定過程との関連、そこでのミクロ量子系とマクロ参照系との相互関係に関する掘り下げが不十分であることにこだわり、それを克服するための糸口を探してきた。現時点でその試みの集大成が当論文で提示されており、コヒーレント状態の概念に詳しい専門家から既にその内容が高く評価されている。

最初に目指された目標の全てがこれによって達成されているかどうかについては慎重な判断が必要である：例えば、準確率分布函数をパラメータづける変数 s の意味については当論文で十分議論されているわけではない、その特定の値 s=1 が一般化伏見函数、s=0 が一般化 Wigner 函数、s=-1 が一般化 Glauber-Sudarshan 函数に対応すること、パラメータ s は s＞1 で分布を粗視化し函数を滑らかにする一方、s＜1 では逆方向の効果をもつこと等が明らかにされているが、それが本来物理的に何を意味するか？どの s の値のモデルが現実状況に最も良く適合するか？等々の問題が今後解明されるべき課題として残されている。この問題はまた、エントロピー概念とその α-divergence、情報幾何学とのつながりにおいて重要であり、また著者により指摘されている“weak value”との関連も非常に興味深い。

以上のように本申請論文は、独自の観点から広い視野に立って有用な概念・方法を用い、未だ十分開拓されていない領域に新たな展望を切り拓いた重要な研究内容を備えており、理学博士の学位論文として十分価値あるものと認められる。なお、平成 23 年 10 月 4 日に、主論文に報告された研究業績を中心としこれに関連した研究分野について口頭試問をおこなった結果、合格と認めた。