A Test of the Standard Model, Using DaΦne

Martin M. Block *

Department of Physics and Astronomy,
Northwestern University, Evanston, IL 60208

Abstract

Both the light hypernucleus \(\Lambda H^4 \) and the nucleus He\(^4 \) have spin 0. The ratio \(R \) of the electron to muon rates for the pure Fermi transitions

\[
R = \frac{\Gamma (\Lambda H^4 \rightarrow e^- + \bar{\nu} + He^4)}{\Gamma (\Lambda H^4 \rightarrow \mu^- + \bar{\nu} + He^4)}
\]

(1)

is a sensitive measure of the presence of a second-class weak current (to the extent that SU(3) is valid in strong interactions), and hence, is a test of the Standard Model. Rates and sensitivities, using DaΦne, the \(e^+e^- \) machine under construction at Frascati, are discussed.

1 Introduction

The ground states of both the light hypernucleus \(\Lambda H^4 \) and the nucleus He\(^4 \) are spin 0 states[1]. Therefore, the weak decays

\[
\Lambda H^4 \rightarrow e^- + \bar{\nu} + He^4
\]

(2)

and

\[
\Lambda H^4 \rightarrow \mu^- + \bar{\nu} + He^4
\]

(3)

are both Fermi transitions, and hence, are both pure vector transitions[2, 3, 4, 5]. Thus, the hadronic current is given by the vector current

\[
V^\rho = G_\Lambda \gamma^\rho + g_2 i\sigma^{\mu\nu} Q_\nu + f_3 Q^\rho,
\]

(4)

*to be published in the Proceedings of the XXIV International Symposium on Multiparticle Dynamics, Eds. A. Giovannini, S. Lupia and R. Ugocionni, World Scientific, Singapore. Work partially supported by Department of Energy grant DOE 0680-300-N008 Task B.
where the 4-momentum transfer Q^ρ is given by $\Lambda - p = \ell - \nu$. The first term of eq. (4), γ^ρ, is the conventional (and dominant) term, the second term, $i\sigma^{\mu \nu} Q_\nu$, is the “weak magnetism” term (which will later neglected as very tiny), both of which are first class currents, and the third term, Q^ρ, is the “induced scalar”, which is a second-class current, and hence (to the level that SU(3) is valid for the strong interactions) is forbidden in the Standard Model. Thus, a non-zero f_3 would be a violation of the Standard Model.

This communication will suggest a method of testing for a non-zero f_3, using the Frascati accelerator DaΦne.

2 Experimental Outline

DaΦne, the new e^+e^- machine being constructed at Frascati, is a copious source of Φ’s, which decay dominantly into very low energy K$^+K^-$ pairs. If one surrounds the intersection region with a Helium target (either a liquid or a sufficiently large gaseous target), one can stop the K$^-$ and produce the at-rest reaction

$$K^- + \text{He}^4 \rightarrow \pi^0 + \Lambda \text{He}^4.$$ \hspace{1cm} (5)

This reaction occurs copiously, being about 1% of all reactions in which a negative kaon stops in Helium[1]. This hypernucleus production has a unique experimental signature, producing a monoenergetic and isotropic π^0 of ≈ 260 MeV. Subsequently, after the detection of the π^0, one can measure the ratio of the electron to muon rates for the pure Fermi transition

$$R = \frac{\Gamma(\Lambda \text{He}^4 \rightarrow e^- + \bar{\nu} + \text{He}^4)}{\Gamma(\Lambda \text{He}^4 \rightarrow \mu^- + \bar{\nu} + \text{He}^4)},$$ \hspace{1cm} (6)

which is a sensitive measure of f_3 in eq. (4), i.e., the presence of an induced scalar term (a second-class term) in the weak hadronic current. It is easy to show that the contraction of vector term $f_3 Q^\rho$ with the leptonic current $\bar{u}_\ell \gamma_\rho (1 - i\gamma_5) u_\nu$, (where ℓ stands for lepton, either e or μ), results in an effective induced scalar term $m_\ell f_3 [\bar{u}_\ell (1 - i\gamma_5) u_\nu]$, where the lepton mass m_ℓ is given by either m_μ or m_e. Since the electron mass is so small, the ratio R in eq. (6) is sensitive to the presence of $f_3 Q^\rho$, because the induced scalar contributes negligibly in the electron channel, whereas it has a strong influence in the muon channel. The ratio of electrons to muons is thus very sensitive to f_3, whereas, at the same time, it is very insensitive to the details of the calculation, since the uncertainties in the nuclear physics, wave functions, etc., is about the same for the muon and the electron and tends to cancel in the ratio.

Further, in our case, the only second-class current allowed by Lorentz invariance is the “induced scalar” term $f_3 Q^\rho$, since only the vector transition is allowed. The axial “induced pseudoscalar” term of the form $Q^\rho \gamma_5 (which is allowed in the free decay of the Λ^0, and thus ‘mimics’ the vector term $f_3 Q^\rho$) is not allowed in the pure vector transition of the hypernucleus. Thus, we have a unique interpretation of the experimental results.

The remainder of this paper will be devoted to a quantitative analysis of the ratio R, with regard to its sensitivity to f_3.
3 Decay Rate for $\Lambda H^4 \rightarrow \ell^- + \bar{\nu} + He^4$

The nuclear matrix element \mathcal{M}^ρ for the $0 \rightarrow 0$ transition $\Lambda H^4 \rightarrow \ell^- + \nu + He^4$ is

$$\mathcal{M}^\rho = \sqrt{2} \int e^{-i\vec{p}_\nu \cdot \vec{r}_\nu + i\vec{p}_\ell \cdot \vec{r}_\ell} e^{-i\phi(r_\nu + r_\ell + \vec{r}_4)/4} \Phi^*_\Lambda(r_\nu, r_\ell, \vec{r}_4) \chi^*_\ell(p, 2; 3, 4) \times$$

$$V^\rho \times \Phi_\Lambda(r_\Lambda; r_2, r_3, r_4) \chi_\ell(\Lambda; 2; 3, 4) \delta(r_\nu - r_\Lambda) \delta(r_\ell - r_\Lambda) \delta(r_\nu - r_\Lambda) \delta_{p_\Lambda} \times$$

$$d\tau_\nu d\tau_\ell d\tau_\nu d\tau_2 d\tau_3 d\tau_4,$$

where q_ν and p_ℓ are the momenta of the recoil He^4, the anti-neutrino and the electron (muon), and $\vec{q} + \vec{p}_\nu + \vec{p}_\ell = 0$. The χ's are the spin-wave functions for ΛH^4 and He^4. The factor $\sqrt{2}$ arises from having two identical protons in He^4.

For the alpha-particle wave function in eq. (7), we use the Gaussian wave function

$$\Phi^*_\alpha(r_1, r_2; r_3, r_4) = N_4 e^{-\frac{1}{2} \sum r_i^2}, \quad (7)$$

where $\vec{r}_{ij} = \vec{r}_j - \vec{r}_i$, the normalization factor is given by $N_4 = 2^{3/4} (\frac{2\alpha_4}{\pi})^{9/4}$, and $\alpha_4 = \frac{9}{32R_4^3}$. The radius R_4 is fixed from electron scattering data, assuming that the matter distribution is the same as the charge distribution and allowing for the finite size of the nucleon. We will use $R_4 = 1.44 f$. We will assume that the hypernucleus wave function factors into a Λ_0 moving about a physical triton core, i.e.,

$$\Phi_\Lambda(r_\Lambda; r_2; r_3, r_4) = u_\Lambda \left(\vec{r}_\Lambda - \frac{\vec{r}_2 + \vec{r}_3 + \vec{r}_4}{3} \right) \Phi_t(r_2; r_3, r_4)$$

$$= u_\Lambda(\rho) \Phi_t(r_2; r_3, r_4)$$

$$= u_\Lambda(\rho) N_3 e^{-\frac{\alpha_3}{2} \sum r_i^2}, \quad (9)$$

where in eq. (9), the triton wave function is assumed to be Gaussian and $\vec{r} = \vec{r}_\Lambda - \frac{\vec{r}_2 + \vec{r}_3 + \vec{r}_4}{3}$. The triton normalization factor is given by $N_3 = \frac{(3\alpha_3)^{3/4}}{\pi^{1/2}}$ and $\alpha_3 = \frac{1}{3R_3^2}$. Again, the radius R_3 is fixed from electron scattering data, assuming that the matter distribution is the same as the charge distribution and allowing for the finite size of the nucleon. We use $R_3 = 1.66 f$. The wave function $u_\Lambda(\rho)$ has been numerically evaluated by Dalitz and Downs, after solving the Schrödinger equation using a binding energy $\epsilon = 1.9$ MeV for the ΛH^3.

Since the calculation of eq. (7) involves (non-relativistic) wave functions for helium and the hypernucleus, we must expand the relativistic hadronic current V^ρ non-relativistically to get

$$V^\rho = \left(G_\Lambda + f_3 Q^0, G_\Lambda \left[\vec{\sigma} \cdot \nabla_{r_\Lambda} \frac{\vec{r}_\Lambda}{2m_\Lambda} - \left(\vec{\sigma} \cdot \nabla_{r_p} \frac{\vec{r}_p}{2m_\rho} \right) \vec{\sigma} \right] + f_3 \vec{Q} \right), \quad (10)$$

where the form factors G_Λ and f_3 are assumed to be functions of the squared 4-momentum Q^2, and are taken to be

$$G_\Lambda(Q^2) = G_\Lambda(0) \frac{M_{K^*}}{M_{K^*} + Q^2},$$

$$f_3(Q^2) = f_3(0) \frac{M_{K^*}^2}{M_{K^*}^2 + Q^2}, \quad (11)$$
where $M_{K^*} = 894.1$ MeV, the mass of the K^* resonance. The effect of the form factor variation will turn out to be very small ($< 5\%$). In the non-relativistic expression for V^o in eq. (10), we have neglected completely the "weak magnetism" term $g_2 i \sigma^\mu \nu Q_\nu$ of eq. (4), completely, which is exceedingly small. As emphasized earlier, the term in f_3 is only important for muon decay, and is negligible for electron decay. After integration over triton coordinates, using the factorizable wave functions, we find the nuclear matrix element

$$M^0 = \sqrt{2} \chi f \chi_i F(q),$$

(12)

$$\vec{M} = \sqrt{2} \vec{f} \chi_i F(q) \left\{ G_{\Lambda}(q) \cdot \vec{\sigma} \frac{1 + 1.366}{2m_4} + f_3 Q \right\},$$

where $F(q)$, the nuclear overlap integral is

$$F(q) = \left[\frac{48 \alpha_3 \alpha_4}{(3\alpha_3 + \alpha_4)^2} \right]^{3/2} G(q),$$

(13)

with

$$G(q) = (3\alpha_4/\pi)^{3/4} \int \exp(-\frac{3}{2} \alpha_4 \rho^2) \times \exp\left[\frac{3}{4} \vec{q} \cdot \vec{\rho} \right] u_{\Lambda}(\rho) d\rho,$$

(14)

and $m_4 \equiv 4m$. Dalitz and Downs have evaluated $G(q)$ numerically, as a function of q, using the numerical wave function $u_{\Lambda}(\rho)$, for the binding energy $\epsilon(\Lambda^4) = 1.9$ MeV. In the correction term proportional to $\frac{1}{2m_4}$, the term $\frac{1.366}{2m_4}$ is due to the nuclear corrections arising from the nuclear wave functions employed. We have also substituted $m_4 = 4m_p$ in the above correction terms. The quantity $F^2(q)$ is recognized as the "sticking probability" that the decay proton from the Λ_0 inside the hypernucleus and the triton core of the hypernucleus overlap to form He4.

The total matrix element M is given by

$$M = \frac{1}{\sqrt{2}} \left(M^0 j_0 - \vec{M} \cdot \vec{j} \right),$$

(15)

where the lepton current is given by

$$j_\rho = (j_0, \vec{j}) = \bar{u}_\ell \gamma_\rho (1 - i\gamma_5) u_\nu.$$

(16)

The squared matrix element, summed and averaged over spins, for the reaction $\Lambda^4 H \rightarrow e^- + \bar{\nu} + \text{He}^4$, is given by

$$\frac{1}{2J + 1} \left(m_\ell m_\nu \sum_{\text{spins}} |M|^2 \right) = 2F^2(q^2) \times \left\{ |G_A|^2 \left[(E_\nu(E_\ell + p_\ell x) \left(1 + 2.37 \frac{\Delta m}{m_4} \right) - 2.37 \frac{m_\ell^2 E_\nu}{m_4} \right] + 2 \Re(G_A f_3) \left[m_\ell^2 E_\nu \left(1 + 2.37 \frac{E_\nu + p_\ell x}{2m_4} \right) \right] + |f_3|^2 \left[m_\ell^2 E_\nu (E_\ell - p_\ell x) \right] \right\}$$

(17)
where \(x = \vec{p}_\ell \cdot \vec{p}_\nu, \vec{p}_\ell + \vec{p}_\nu + \vec{q} = 0, \) \(\Delta m \) is the mass difference \(m_{\text{He}^4} - m_{\Lambda^4} \), and \(m_4 = 4m_p \), where \(m_p \) is the nucleon (proton) mass.

The correction term \([1 + 2.37(\Delta m/m_4)]\) has been evaluated using the approximate energy relation \(\Delta m \approx E_\ell + E_\nu \), and the form factor can be adequately numerically approximated by

\[
F^2(q^2) = a - bq^2 + cq^4 - dq^6, \quad \text{(18)}
\]

with \(q \) in units of 100 MeV/c, and \(a = 0.723, b = 0.170, c = 0.0166, d = 0.0025 \) (taken from Dalitz and Downs\([6]\)].

We consider the motion of the \(\text{He}^4 \) to be non-relativistic. Thus, the energy and momentum conservation conditions are

\[
\begin{align*}
\Delta m &= E_\ell + E_\nu + \frac{q^2}{2m_{\text{He}^4}}, \\
0 &= \vec{p}_\ell + \vec{p}_\nu + \vec{q},
\end{align*}
\]

(19) (20)

where \(m_{\text{He}^4} \), the mass of the \(\text{He}^4 \), will be approximated by \(m_4 \). We obtain \(q^2 = p_\ell^2 + E_\ell^2 + 2p_\ell E_\ell x \). In terms of the lepton energy \(E_\ell \), momentum \(p_\ell \) and the mass difference \(\Delta m \), we get

\[
E_\nu = \Delta m - E_\ell - \frac{p_\ell^2 + (\Delta m - E_\ell)^2 + 2p_\ell(\Delta m - E_\ell)x}{2m_4},
\]

(21)

using the approximate energy conservation relation \(E_\ell = \Delta m - E_\nu \) in the small correction term proportional to \(1/m_4 \). Energy conservation limits the electron (muon) energy to

\[
m_\ell \leq E_\ell \leq E_{\text{max}},
\]

(22)

where

\[
E_{\text{max}} = \Delta m(1 - \frac{\Delta m}{2m_4}) + \frac{m_\ell^2}{2m_4}(1 - \frac{\Delta m}{m_4}).
\]

(23)

To obtain the phase space needed for the decay process, it is useful to find the quantity \(\frac{\partial E_\nu}{\partial \Delta m} \), which is given by

\[
\frac{\partial E_\nu}{\partial \Delta m} = 1 - \frac{\Delta m - E_\ell + p_\ell x}{m_4}.
\]

(24)

In order to find the lepton energy spectrum, \(d\Gamma/dE_\ell \), we must integrate over phase space the quantity

\[
d^6\Gamma = \frac{1}{(2\pi)^4} \left(\frac{1}{2J+1} \right) \left(m_\ell m_\nu \sum_{\text{spins}} |M|^2 \right) \frac{d^3\vec{p}_\ell}{(2\pi)^3 E_\ell} \frac{d^3\vec{p}_\nu}{(2\pi)^3 E_\nu} \frac{d^3\vec{q}}{(2\pi)^3} \times \delta^3(\vec{p}_\ell + \vec{p}_\nu + \vec{q}) \delta(\Delta m - (E_\ell + E_\nu + \frac{q^2}{2m_4})),
\]

(25)

where non-relativistic kinematics for the recoiling \(\text{He}^4 \) nucleus, including the substitution of \(m_4 \) for \(m_{\text{He}^4} \), have been used. Using \(J = 0 \), after integrating over \(p_\nu \), as well as over \(\vec{q} \), using energy and momentum conservation, we obtain

\[
d^5\Gamma = \frac{1}{(2\pi)^2} \left(m_\ell m_\nu \sum_{\text{spins}} |M|^2 \right) \frac{d^3\vec{p}_e}{(2\pi)^3 E_e} \frac{dE_\nu}{\partial \Delta m} \frac{\partial E_\nu}{\partial \Delta m} d\ell.
\]

(26)
We next substitute for $\partial E_\nu / \partial \Delta m$ and integrate over the azimuthal angle $\phi_{\ell \nu}$ ($f d\phi_{\ell \nu} = 2\pi$) to get, using the relation $p_\ell dp_\ell = E_\ell dE_\ell$,

$$d^4\Gamma = \frac{1}{(2\pi)^4} \left(m_\ell m_\nu \sum_{\text{spins}} |M|^2 \right) (1 - \frac{\Delta m - E_\ell + p_\ell x}{m_4}) p_\ell E_\nu dx dE_\ell d\Omega_\ell. \tag{27}$$

Using $q^2 = E_\ell^2 + E_\nu^2 + 2p_\ell E_\nu x$, and substituting for E_ν the relation (in terms of E_ℓ, p_ℓ and x), and using $\int\int d\Omega_\ell = 4\pi$, we can rewrite the lepton (electron or muon) spectrum $\frac{d\Gamma}{dE_\ell}$ as

$$\frac{d\Gamma}{dE_\ell} = \frac{1}{4\pi^3} \int_{-1}^{+1} \left(m_\ell m_\nu \sum_{\text{spins}} |M|^2 \right) \left(1 - \frac{\Delta m - E_\ell + p_\ell x}{m_4}\right) p_\ell E_\nu dx. \tag{28}$$

The integration over x was performed analytically, using Mathematica. The total rate for both muons and electrons was found by integrating Eq. (27) numerically, from $m_\ell \leq E_\ell \leq E_{\text{max}}$. The energy spectra were then converted into momentum spectra, using the relation $\frac{d\Gamma}{dp_\ell} = \frac{d\Gamma}{dE_\ell} \frac{p_\ell E_\ell}{E_\ell}$. The momentum spectra, for the case of $f_3 = 0$, i.e., for the case of no second-class currents, are plotted in Fig. 1, with the electron spectrum being the full line and the muon spectrum being the dashed line. Both of these spectra have been normalized to unit area.

![Figure 1: The normalized lepton momentum spectrum $\frac{1}{p} \frac{d\Gamma}{dp}$ vs. the lepton momentum p, in units of 100 MeV. The solid curve is for the electron and the dashed curve is for the muon.](image)

In absolute units, the spectra have been integrated, using $G_A(0) = \sqrt{\frac{2}{3}} G_F \sin\theta_C$, where the Fermi coupling constant G_F is given by 1.01×10^{-5} and θ_C, the Cabbibo angle, was taken as 0.26. The results for $f_3 = 0$ (no second-class current) are

$$\Gamma_e = 2.18 \times 10^6 \text{sec}^{-1},$$

$$\Gamma_\mu = 0.742 \times 10^6 \text{sec}^{-1}. \tag{29}$$
4 Experimental Predictions

Using a lifetime\cite{1,8} for the ΛH4 of 2×10^{-10} sec., and with the rates of eq. (29), we find branching ratios for the electron and muon decays of $R_e = \frac{\Gamma_e}{\Gamma_{\text{all}}} = 4.36 \times 10^{-4}$ and $R_\mu = \frac{\Gamma_\mu}{\Gamma_{\text{all}}} = 1.48 \times 10^{-4}$, respectively. Using a production rate\cite{1} of 10^{-2} ΛH4 per stopped K$^-$ in He4, we find, for 10^9 stopped K$^-$ in a helium target, that 4600 decays of ΛH$^4 \rightarrow e^- + \bar{\nu} + \text{He}^4$ and 1570 decays of ΛH$^4 \rightarrow \mu^- + \bar{\nu} + \text{He}^4$ are expected. These results are summarized in Table I, where we have used the production rates and branching ratios of ΛH$^4 \rightarrow$ all e^-, ΛHe$^4 \rightarrow$ all e^- and ΛH$^3 \rightarrow$ all e^- taken from ref. 5 to calculate these event rates.

In Table II, we summarize the sensitivity of the experiment to assumed values of f_3, the amplitude that violates the Standard Model. There, the amplitude f_3 has units of inverse mass m^{-1}. If instead, we reexpress the amplitude as $f_3 = \frac{1}{M}$, we see from Table II that we can reach a limit of $M \approx 10$ GeV for an experimental sensitivity of 2%. This is also the level where we might expect SU(3) violations to play a role.

References

[1] M. M. Block et al., Proceedings of the Tenth Annual International Conference on High Energy Physics, edited by E. C. G. Sudarshan, J. H. Tinlot, and A. C. C. Melissinos (Interscience Publishers, Inc. New York, 1961).

[2] The significance of this $0 \rightarrow 0$ transition was originally pointed out by R. H. Dalitz, Proceedings of the International Conference on Hyperfragments, St. Cergue, 1963, CERN Report No. 64-1, 1964, p. 206.

[3] M. M. Block, Bull. Am. Phys. Soc. 10, 1105 (1965).

[4] P McNamee and R. J. Oakes, Phys. Rev. 149, 1157 (1966).

[5] M. M. Block, Phys. Rev. 168, 1795 (1968).

[6] R. H. Dalitz and B. W. Downs, Phys Rev. 111, 967 (1958).

[7] N. Cabbibo, Phys. Rev. Letters 10, 531 (1963).

[8] G. Keyes et al., Nuovo Cimento 31 A, N. 3, 491 (1976).
Table I

Summary—Experimental Rates for Hyperfragment β-Decay

For 10^9 stopped K^- in a He4 target, we expect:

- 7600 decays of $\Lambda H^4 \rightarrow$ all e$^-$,
- 10,500 decays of $\Lambda He^4 \rightarrow$ all e$^-$,
- 1200 cases of $\Lambda H^3 \rightarrow$ all e$^-$,
 of which 400 are $\Lambda H^3 \rightarrow e^- + \bar{\nu} +$ He3.

Pure Fermi Transitions

- 4600 $\Lambda H^4 \rightarrow e^- + \bar{\nu} +$ He4,
- 1570 $\Lambda H^4 \rightarrow \mu^- + \bar{\nu} +$ He4,

Table II

$f_3 \, (m_\mu)$	R
1.0	0.72
0.1	2.46
0.01	2.88
0	2.94
-.01	2.99
-.1	3.52
-1.0	5.50

Summary: At the level of 2%, we are sensitive to a mass scale of ≈ 10 GeV.