The Warm-hot Gaseous Halo of the Milky Way

Smita Mathur
The Ohio State University

With
Anjali Gupta, Yair Krongold, Fabrizio Nicastro, M. Galeazzi
In the low-redshift Universe, baryons are missing on all scales.
Where are the Galactic missing baryons?

Local WHIM filament
scale length > 1 Mpc

Local Group Medium
scale length of ~ 1 Mpc

Circum-Galactic Medium: extending up to the virial radius (~ 250 kpc)

10^5 K $< T < 10^7$ K
Simulations of the CGM

Stinson et al. 2011
Diffuse Warm-hot CGM

Low Feedback

High Feedback

$L = 0.79 \, L^*$

$L = 0.84 \, L^*$
$z = 0$ X-ray Absorption

In several high S/N Chandra and XMM spectra

- **OVII absorption** (@21.60 Å)
- **Sometimes OVIII** (@18.96 Å)
 and/or **Ne IX** (@13.44 Å)

Mathur et al. 2003
Z=0 X-ray absorption
PKS 2155-304
Nicastro et al. 2002
\(z = 0 \) X-ray Absorption

- In several high S/N Chandra spectra:
 - Mkn 421 (Williams et al. 2005)
 - Mkn 279 (Williams et al. 2006)
 - PKS 2155-304 (Nicastro et al. 2002)
 - 3C 273 (Fang et al. 2003)
 - Other sightlines with lower significance (McKernan et al. 2004)
- Always OVII, sometimes other species
- Chandra-LETG resolution 700 km/s, so all lines are unresolved
Origin

• Hot Galactic Halo/Corona…
 – From galaxy formation / feedback processes
 – Some OVII seen within 50 kpc (Wang et al. 2005)

• … or Local Warm-Hot IGM?
 – Predicted by simulations (Kravtsov et al. 2002)
 – Upper limit on OVII emission implies very low density (Rasmussen et al. 2003)
Our Chandra Survey of OVII and OVIII

- Chandra sight lines
- Previous OVII detection
Our Chandra Survey of OVII and OVIII

- 29 sight lines with good S/N near OVII $z=0$ region
- OVII detection in 21 sight lines
- OVIII detection in 8 sight lines
OVII EW Distribution

- OVII detection
- OVII upper limit
OVII and OVIII $z=0$ Absorption

- $\log T = 6.1-6.4 \, K$
Column Density Measurement

- Optically thin line
 \[N(\text{ion}) = 1.3 \times 10^{20} \left(\frac{\text{EW}}{f\lambda^2} \right) \text{ cm}^{-2} \]
- For OVII
 \[\frac{\text{EW}(K\beta)}{\text{EW}(K\alpha)} = 0.156 \]

Target	\text{EW} (OVII \text{K}\alpha) (m\text{\AA})	\text{EW} (OVII K\beta) (m\text{\AA})	\text{EW} (OVIII \text{K}\alpha) (m\text{\AA})	\text{OVII} \left(\frac{\text{EW}(K\beta)}{\text{EW}(K\alpha)} \right)	\text{b} (\text{km/s})	\text{log(NO VII)} (\text{cm}^{-2})
Mrk290	18.9 ± 4.5	5.1 ± 3.7	8.4 ± 2.9	0.27 ± 0.21	> 55	16.14 ± 0.32*
PKS2155-304	11.6 ± 1.6	4.2 ± 1.3	6.7 ± 1.4	0.36 ± 0.12	35 – 94	16.09 ± 0.19
Mrk421	9.4 ± 1.1	4.6 ± 0.7	1.8 ± 0.9	0.49 ± 0.09	24 – 55	16.22 ± 0.23
Mrk509	23.9 ± 5.0	11.7 ± 4.1	10.3 ± 4.3	0.49 ± 0.20	70 – 200	16.7 ± 0.27
3C382	17.3 ± 5.0	7.8 ± 3.0	6.8 ± 3.8	0.45 ± 0.22	> 40	16.50 ± 0.49*
Arp564	12.0 ± 1.9	< 3.8	9.5 ± 4.1	...	> 20	15.82 ± 0.20*
NGC3783	14.4 ± 2.5	5.6 ± 1.6	4.5 ± 2.9	0.39 ± 0.13	50 – 130	16.30 ± 0.25
H2106-099	48.3 ± 18.0	< 34.2	28.8 ± 13.8	...	> 70	16.23 ± 0.16*

*TI analysis Most of OVII K\alpha are saturated
$\log(N_{\text{OVII}})$ and b contour
• $\log N_{\text{OVII}} = 16.19 \pm 0.08 \text{ cm}^{-2}$

2-3 times higher than previous estimates

• Column density $N_H = \mu n_e L$
Galactic Halo Emission Measure

Henley et al. (2010) and Yoshino et al. (2009)

• Galactic Halo temperature is fairly constant
 \[T = (1.8 - 2.4) \times 10^6 \text{ K} \]

• Halo emission measure varies by an order of magnitude
 \[\text{EM} = (0.0005 - 0.005) \text{ cm}^{-6} \text{ pc} \]

\[\text{EM} = 0.003 \left(\frac{Z}{Z_\odot} \right) \text{ cm}^{-6} \text{ pc} \]
Combining Absorption and Emission Measurement

\[n_e = (2.0 \pm 0.6) \times 10^{-4}(0.5/f_{\text{OVII}})^{-1} \text{ cm}^{-3} \]

\[R = (71.8 \pm 30.2) \left(8.51 \times 10^{-4}/(A_O/A_H)\right)(0.5/f_{\text{OVII}})^2(Z_{\Theta}/Z) \text{ kpc} \]

\[L > 41.6 \text{ kpc} \]

\[n_e < 2.6 \times 10^{-4} \text{ cm}^{-3} \]
Mass Probed by OVII and OVIII X-ray Absorbing/Emitting Gas Phase

\[M_{\text{total}} > 1.7 \times 10^9 \left(\frac{f_c}{0.72} \right) \left(8.51 \times 10^{-4} / (A_O/A_H) \right)^3 \left(0.5/f_{\text{OVII}} \right)^5 \left(\frac{Z_\odot}{Z} \right)^3 M_\odot \]

For \(Z = 0.3Z_\odot \)

\[L > 138 \text{ kpc} \]

\[M_{\text{total}} > 6.1 \times 10^{10} M_\odot \]

Gupta, Mathur + 2012, 2014
Fang, Bullock +2012
This is a robust result!

• Is the z=0 absorption mostly from the Galactic disk? **No.**

• What about the uniform density profile? **No problem: gives a lower limit on mass.**

• Are the emission and absorption at different temperatures? **No.**
..... no anticorrelation between EW and sin(b)
Future directions

• Probing the anisotropy: emission and absorption along the same sightline.
 -- New Suzaku observations
 -- New XMM-Newton Observations.

• Different density and temperature profiles: e.g. Maller-Bullock profile in NFW halo.

• Probing the multi-phase medium: other ions dominant at different temperatures.
Conclusion

• X-rays provides evidence for hot (T>10^6 K) gas in and around the Milky Way.

• X-ray OVII and O VIII absorption lines at z=0 probe the hot gas extending over a large region around the Milky Way, with a radius of over 100 kpc.

• The mass content of this phase is over 10^{10} M_Ω.

• A large fraction of Galactic missing baryons are in this hot phase.

• Appears to be a robust result supported by theoretical models.