The cyclic job-shop scheduling problem

The new subclass of the job-shop problem and applying the Simulated annealing to solve it

P.V. Matrenin, V.Z. Manusov
Department of the Power Supply Systems
Novosibirsk State Technical University
Novosibirsk, Russia
pavel.matrenin@gmail.com

Abstract—In the paper, the new approach to the scheduling problem are described. The approach deals with the problem of planning the cyclic production and proposes to consider such scheduling problem as the cyclic job-shop problem of the order \(k \), where \(k \) is the number of reiterations. It was found out that planning of only one iteration of the loop is less effective than planning of the entire cycle. To the experimental research, a number of test instances of the job-shop scheduling problem by Operation Research Library were used. The Simulated Annealing was applied to solve the instances. The experiments proved that the approach proposed allows increasing the efficiency of cyclic scheduling significantly.

Keywords—job-shop, scheduling problem, multistage service system, simulated annealing, combinatorial optimization, heuristic, cyclic job-shop

I. INTRODUCTION

The combinatorial optimization is one of the most important areas of discrete mathematic because thousands of industrial tasks can be formulated as problems of the combinatorial optimization. Real-life problems often belong to NP-hard problems and have a high dimensionality. Scheduling tasks may be characterized as one of the most significant optimization problems since plans and schedules need to be arranged in all fields. Such tasks, as a rule, are usually modeled as the job-shop scheduling problem, which deals with planning multi-stage service systems. However, this view ignores the cyclic nature of the tasks. Since production processes are cycle-after-cycle often, it is necessary to make a plan not for a single execution but for multiple ones. In this paper, we deal with a modification of the job-shop scheduling problem for the cyclic production and we substantiate the claim that an optimal solution of the cyclic job-shop task is not limited to the cyclic using a solution of the usual job-shop task. For the purpose of experimental research, the Simulated Annealing (SA) algorithm is used.

The article is organized as follows. Section II describes the mathematical model of the job-shop scheduling problem and gives an example of the cyclic job-shop scheduling problem. Section III gives a brief overview of the SA algorithms. Section IV shows experimental evidence, and the conclusion describes the results.

II. STATEMENT OF THE PROBLEM

A. Overview of the job-shop scheduling

The job-shop scheduling problem is among the hardest combinatorial optimization problems [1, 2, 3]. In general, the job-shop problem can be described as follows: [1]. A finite set of jobs \(N = \{1, 2, ..., n \} \) and a finite set of machines (performers) \(M = \{1, 2, ..., m \} \). The process of servicing each job includes a number of stages (operations), so each job has the order defined through the machines during an uninterrupted time interval. The sequences of execution can be different for different jobs. There is the important rule: one machine can process at most one operation at a time. The process of system functioning can be described by specifying the schedule (a calendar plan). The schedule can be described as an allocation of the stages to time intervals on the machines. The objective of the problem is minimizing the makespan. For the shortest or quickest schedule. It is the simplified model, however, this model can be considered as a basis for many real-life scheduling problems [1, 4].

B. Complexity of the job-shop problem

The job-shop problem is NP-hard generally and even among the members of this class, it belongs to the most difficult ones [2, 3]. It is known that small size instances of the problem can be solved with a reduced computational time by exact algorithms, such as branch-and-bound, as has been shown by Lagewed, Lenstra, and Kan (1977), Carlier and Pinson (1989) [2, 5]. The job-shop scheduling problem is polynomial if it has 2 machines and no more than 2 operations per job or if the problem has 2 machines and unitary processing times [1, 2, 6]. For large instances, only heuristic algorithms achieve satisfactory results. Lenstra et al. [7] show that even some simplified versions are NP-hard. These include only 3 machines and 3 jobs; or 2 machines and no more than 3 operations per job; or 3 machines and no more than 2 operations per job; 3 machines and unitary processing times [3].

Accordingly, a brute-force enumerative algorithm for the problem has worst-case complexity \(O(n!)^m \), which is lower
than the worst-case complexity for branch-and-bound algorithms [3].

There is a number of methods using priority rules for choosing the operation from a subset of yet unseduced stages [1, 9, 10]. These methods work quickly but the schedules obtained are not good enough often.

The approach of Adams, Balas and Zawack [8], named shifting bottleneck procedure has the high efficiency, but this method is laborious for applying and requires sophisticated modifications in case of changing the details of the mathematical model of the scheduling problem [2].

Now the stochastic heuristics and the meta-heuristics methods are the most effective for NP-hard optimization problem since these methods are self-organize, i.e. automatically adapting to the task solved. The Genetic algorithm, the Tabu Search, the Simulated Annealing, and the Swarm Intelligence algorithms are the most commonly used. These algorithms are used successfully for solving the job-shop scheduling problem (the Genetic [10, 12, 13], the Tabu Search [12], the SA [2], the Swarm Intelligence [14, 15]).

C. The mathematical model

The mathematical model of the job-shop problem can be written as follow [12]:

- $N = \{1, 2, \ldots, n\}$ is the set of jobs.
- $M = \{1, 2, \ldots, m\}$ is the set of machines.
- $V = \{0, 1, \ldots, j+1\}$ denote the set of the operations, 0 and $j+1$ are fictional operations: start and finish.
- A be the set of pairs of operations constrained by the precedence relations.
- V_j be the set of operations to be performed by the machine j.
- $E_k \subseteq V_i \times V_j$ be the set of pairs of operations to be performed on the machine k and which therefore have to be sequenced.
- p_i and t_i denote the known processing time and the unknown start time of the operation i.

Given this assumption, the job-shop problem can be considered as:

$$\begin{align*}
\text{minimize} & \quad t_{j+1}, \quad t_j - t_i = p_i, \quad (i, j) \in A \\
\text{subject to} & \quad t_j - t_i \geq p_i \ \& \ t_i - t_j \geq p_j, \quad (i, j) \in E_k, \ k \in M
\end{align*}$$

(1)

Any feasible solution to the problem (1) is called schedule

D. The cyclic job-shop scheduling

In this paper, we propose to analyze the job-shop optimization problems taking into account a cyclic nature of the proceeding. Such an approach implies that the setting of the classical job-shop model relates to the production of a certain set (one consignment) of products and the modified job-shop model relates to the production a number of such identical sets (k consignments); k is a number of sets. Let’s take, for example, the job-shop task, given in [10], which describes the production of consignments with the notations A, B, C, D. The set of machines is defined as $\{R, S, T, Q\}$. The Gantt chart for this task is shown in Fig. 1.

![Fig. 1. The Gantt chart of a job-shop task example](image)

The Gantt chart in Fig. 1 has the extensive vacant areas on the machine R after the 16th hour and the machine T after the 19th hour. If it is required to produce 2 consignments of each type, then, obviously, the execution time may be less than the double time for the planned execution shown in Fig. 1, that is less than 62 ($2^3 \times 31$) hours. The optimal solution of this modified problem is shown in Fig. 2.

![Fig. 2. The Gantt chart of a cyclic job-shop task example, $k = 2$](image)

Fig. 2 shows that the processing time is 54 hours, in addition, the performance of the first half of the consignment goes according to plan, which differs from the plan shown in Fig. 1.

We have named the job-shop scheduling problem obtained from the classic job-shop problem by introducing requirements for the performance of all works k times as the cyclic job-shop problem of the order k. If $k = 1$, then the cyclic job-shop problem of the order k is equivalent to the classic job-shop problem.

III. SOLVING THE CYCLIC JOB-SHOP PROBLEM

A. The simulated annealing

As it is shown in Fig. 1 and Fig. 2, the solution to the job-shop task of the order k can be more effective than simply copying the solution result of the job-shop task k times. In order to conduct research on the various tasks, it is necessary to choose an efficient algorithm for obtaining solutions that are close to optimum solutions. Since the dimension of the job-shop task of the order k is much higher than the classical task, and the deviation of the solution from optimum level by several percentages is not crucial for scheduling purposes, it is advisable to apply the SA algorithm. This algorithm enables us...
to quickly obtain optimum solutions; it is especially effective in combinatorial problems [2, 16].

The inspiration for the SA comes from the physical process of cooling molten materials down to the solid state [16, 17]. The energy state of a system is described by the energy state of each particle of the system. A particle’s energy state changes randomly and a probability of moving depends on the temperature of the system. The probability of moving from a high-energy state to a lower-energy state is very high. In the oppositional case, the probability is less but is nonzero. The higher the temperature, the more likely energy moving will occur.

Any combinatorial optimization problem can be considered as minimizing the total energy, i.e. as a task of a search minimum-energy state. The random transitions (changes of a current solution) generated according to the given probability distribution mimics the physics cooling process to solve a combinatorial optimization problem. At first, the SA uses randomness to explore the search space of all possible solutions widely, so the probability of accepting a negative moving should be high. The cooling process regulated by the following parameters [16]:

- Initial system temperature, \(t_1 \).
- Temperature decrement function, typically \(t_{n+1} = \alpha \cdot t_n \), where \(0.0 < \alpha < 1 \).
- A number of iterations between temperature change \((step_temp) \).
- Acceptance criteria. A criterion is to accept any transition from solution \(s_{\text{current}} \) to solution \(s_{\text{new}} \) when \(s_{\text{new}} \) better than \(s_{\text{current}} \), and also accept a negative transition whenever \(\exp\left(\frac{-\text{criterion}(s_{\text{current}}) - \text{criterion}(s_{\text{new}})}{k t_1}\right) \geq r \), where \(r \) is a random number \(0 \leq r < 1 \).
- Stop criteria. After evaluating a certain number of iterations, the search is terminated.

A number of studies have proved the high efficiency of the SA, such as [2, 16, 18, 19].

B. The realization of the SA algorithm

The realization of the SA algorithm for solving job-shop task showed from below using the pseudocode.

Start annealing algorithm

```plaintext
{ /* initialization */
  temperature ← INITIAL_TEMPERATURE
  solution ← initialize()
  current_value = schedule_length(solution)
  counter_steps ← 0

  while (counter_steps < COOLING_STEPS)
  { 
    temperature ← temperature* COOLING_FRACTION
    start_value = current_value
    counter_steps_temp ← 0

    while(counter_steps_temp < STEPS_TEMP)
    { /* pick randomly two elements of a schedule to swap */
      r1 ← random_integer(1, N)
      r2 ← random_integer(1, N)

      /*create a new schedule and find it’s length */
      solution ← swap_schedule(solution, r1, r2)
      new_value = schedule_length(solution)
      delta = new_value − current_value

      if (delta < 0) /*find a better solution*/
        { 
          current_value = new_value
        }
      else /*find a worse solution, use a randomize chose */
      { 
        ex = exp((-delta/current_value)/(KT*temperature))
        if (ex > random_float(0,1)) /*accept new solution*/
          { 
            current_value = new_value
          }
        else /* reject */
          { 
            solution ← swap_schedule(solution, r2, r1)
          }
      }
      counter_steps_temp ← counter_steps_temp + 1
    }

    /* restore temperature if progress has been mad */
    if ((current_value - start_value) < 0.0)
    { 
      temperature ← temperature/COOLING_FRACTION;
    }
    counter_steps ← counter_steps + 1
  }
}
End annealing algorithm
```

Table 1 shows the values of coefficients used in this research.

Table 1. THE VALUES OF THE SA COEFFICIENTS

Parameter	Value
INITIAL_TEMPERATURE	1.0
COOLING_STEPS	3000
COOLING_FRACTION	0.97
STEPS_TEMP	3000
KT	0.01
IV. SOLVING THE CYCLIC JOB-SHOP PROBLEM

A. Test instances used

A number of test instances were used as a benchmark for the experiments. The test tasks were selected from OR-Library [20] (“abz” – Adams, Balas, Zawack, “ft” – Fisher and Tomson, la - Lawrence), the real industrial task from [10] (“sk” – Sekaev), and example showed in Figure 1. The complexities of the tasks are listed in Table 2.

Task	n, number of jobs	m, number of machines	lmax, max number of operations from all jobs
abz6	10	10	10
ft06	6	6	6
ft10	10	10	10
ft20	20	5	5
la01	10	5	5
la02	10	5	5
la03	10	5	5
la04	10	5	5
la05	10	5	5
la06	15	5	5
la07	15	5	5
la08	15	5	5
la09	15	5	5
la10	15	5	5
la11	20	5	5
la12	20	5	5
la13	20	5	5
la14	20	5	5
la15	20	5	5
la16	10	10	10
la17	10	10	10
la18	10	10	10
la19	10	10	10
la20	10	10	10
la21	15	10	10
Fig.1	4	4	4
sk	3	6	23

B. The results comparison

For each test instance, a quasi-optimal solution was carried out by the SA in terms of the classical formulation (1st order), and then as well as modifications, i.e. cyclic job-shop problem 2nd and 4th orders. To compare our approach with the reiterations of the schedule obtained for 1st order task, we took the best-known solutions from [11] and multiplied them the number of reiterations (1, 2 and 4). The schedule’s lengths, obtained by other methods are shown in Table 3. To be specific, let’s assume that the schedule’s lengths are measured in hours.

In Table 3, the following notations are used:

- Best 1 – quasi-optimal result from [11], which can be considered as the best possible solution;
- SA 1 – the result obtained by the SA algorithm;
- Best 2 – the best result of solving the task, multiplied by 2, i.e. obtained by a simple repetition of the plan for the task of the first order;
- SA 2 – solution to the task of the 2nd order obtained by the SA algorithm;
- Best 4 – the best result of solving the task, multiplied by 4, i.e. obtained by a simple repetition of the plan for the task of the first order;
- SA 4 – solution to the task of the 4th order obtained by the SA algorithm;
- Dif – difference between “Best 4” and “SA 4”, this value shows as far the consideration job-shop problem as a cyclic problem more efficiently than a simple repetition of the solution of the first-order job-shop problem.

Task	Best 1	SA 1	Best 2	SA 2	Best 4	SA 4	Dif. %
abz6	943	943	1886	1810	3772	3482	7.69
ft06	55	55	110	103	220	197	10.45
ft10	930	937	1860	1661	3720	3112	16.34
ft20	1165	1178	2330	2280	4660	4484	3.78
la01	666	666	1332	1332	2664	2664	0
la02	655	655	1310	1290	2620	2560	2.29
la03	597	597	1194	1176	2388	2352	1.51
la04	590	590	1180	1115	2360	2186	7.37
la05	593	593	1186	1186	2372	2372	0
la06	926	926	1852	1852	3704	3704	0
la07	890	890	1780	1759	3560	3497	1.77
la08	863	863	1726	1726	3452	3452	0
la09	951	951	1902	1902	3804	3804	0
la10	958	958	1916	1916	3832	3832	0
la11	1222	1222	2444	2444	4888	4888	0
la12	1039	1039	2078	2078	4156	4156	0
la13	1150	1150	2300	2300	4600	4600	0
la14	1292	1292	2584	2584	5168	5168	0
la15	1207	1207	2414	2414	4828	4828	0
la16	945	946	1890	1712	3780	3272	13.4
la17	784	784	1568	1501	3136	2946	6.06
la18	848	848	1696	1621	3392	3156	6.96
la19	842	848	1684	1639	3368	3188	6.83
la20	902	907	1804	1722	3608	3388	7.48
la21	1046	1074	2092	2043	4184	4013	4.27
Fig.1	31	31	62	54	124	102	17.8
sk	657.55	657.55	1315.1	1284.05	2630.2	2539.4	3.45

The complexities of the test instances shown in Figure 1.
The maximum difference between results “Best 4” and “SA 4” is 17.8%, the average difference is 4.35%. However, is we ignore the tasks, which have less than ten machines (lat1-15, f20, Fig.1), and then the average difference will be 8.3% or 97 hours. It should be noted high-speed operation of the SA algorithm. Thus, to solve the tasks under consideration the algorithm required from a few seconds to 10 minutes (the SA algorithm were implemented on a 2.4 GHz Intel CPU i7 using C++ language).

It is obvious that increasing the number of repetitions of a production cycle leads to increasing the difference of effectiveness. For example, Table 4 shows schedules’ lengths for the task la20. However, for orders 6-10 we had to increase the number of the SA steps to 6000 (COOLING_STEPS and STEPS_TEMP) because the complexity of the task proved to be too high.

Order	Reiteration the first order task	Solving as the cyclic task	Difference, hours	Difference, %
1	902	907	-3	-0.55%
2	1804	1722	82	4.54%
4	3698	3338	270	7.48%
6	5412	4895	517	9.55%
8	7216	6497	719	9.96%
9	8118	7401	717	8.80%
10	9020	8113	907	10.1%

TABLE IV. SCHEDULES’ LENGTHS FOR LA20

CONCLUSION

Since scheduling often has a cyclic nature, in some situations it is necessary to consider drawing up plans in terms of their reiterations. Planning a single iteration with subsequent reiterations may be inefficient in comparison with a plan prepared for all the iterations of the cycle as it is proposed in this paper. The experiments show that in the case of four and more reiterations the second approach is significantly more effective. Therefore, we propose to consider such scheduling problem as the cyclic job-shop problem of the order k, where k is the number of iterations. In the experiments, the average difference of the effectiveness proved to be about 8% for four iterations (k = 4). Increasing the number of reiterations results in the growth of the difference. It first increases linearly, then goes into saturation, since the computational complexity of the task increases exponentially.

The proposed approach increases efficiency and it depends on the conditions of a specific problem. The increasing computational time for preparing a schedule is usually insignificant in relation to the time saving due to a more efficient schedule. The results of this paper may be practically applied to solve scheduling tasks in the field of the multi-stage service systems.

The Simulated Annealing algorithm can be easy implemented for different optimization problem and it demonstrates a high-performance for the scheduling problems.

REFERENCES

1. V.S. Tanaev, U.I. Sotskov, V.A. “Strausevich. Teorija raspisaniy. Mnogostad'nye sistemy” [The Theory of schedules. The multi-stage systems]. Moscow, Russia, 1989 (in Russian).
2. P. van Laarhoven, E. Aarts, J. Lenstra. “Job-shop scheduling by Simulated Annealing”, in Operations Research, vol. 40, no. 1, 1992, pp. 113-125.
3. J. Gromicho, J. Hoorn, F. Saldanga-da-Gama, G. Timmer. “Exponentially better than brute force: solving the job-shop scheduling problem optimally by dynamic programming” in Research Memorandum 2009-56 of Vrije Universiteit Amsterdam, 2009, pp.1-26.
4. Conway R.W., W.L. Maxwell, L.W. Miller. “Theory of Scheduling”, New York: Wiley, 1967.
5. P. Brucker, B. Jurisch, B. Sievers. “A branch and bound algorithm for the job shop scheduling problem” in Discrete Applied Mathematics, no. 49, 1994, pp. 107 – 127.
6. S.M. Johnson. “Optimal two- and three-stage production schedules with setup times included” in Naval Research Logistics Quarterly, vol 1, 1954, pp. 61–68.
7. J. K. Lenstra, A. H. G. Rinnooy Kan, P. Brucker. “Complexity of machine scheduling problems” in Annals of Discrete Mathematics, no. 1, 1977, pp. 343–362.
8. J. Adams, E. Balas, D. Zawack. “The shifting bottleneck procedure for job shop scheduling” in Management Science, no. 34, 1988, pp. 391–401.
9. H. Fisher, G. Thompson. “Probabilistic learning combination of local job-shop scheduling rules” in Industrial Scheduling. Prentice-Hall, New Jersey, 1963.
10. V.G. Sekaev “Ispol’zovanie algoritmov kombinirovannoj jevristiki pro postroenii optimal’nyh raspisanij” [Optimization of schedule using the algorithm of combining of heuristics] in “Informacionnie tehnologii”, no. 10, 2009, pp. 61–64 (in Russian).
11. F. Pezzella, E. Merelli, “A tabu search method guided by shifting bottleneck for the job shop scheduling problem” in European Journal of Operational Research, no. 120, 2000, pp. 297-310.
12. C. Bierwirth. “A Generalized Permutation Approach to Job Shop Scheduling with Genetic Algorithms,” OR-Spectrum, Special Issue: Applied Local Search, vol. 17, no. 213, 1995, pp. 87-92.
13. J.F. Goncalves, J. Mendes, M. Resende “A Hybrid Genetic Algorithm for the Job Shop Scheduling Problem” in AT&T Labs Research Technical Report TD-SEAL61, September 2002.
14. P.V. Matrenin, V.G. Sekaev. “Particle Swarm optimization with velocity restriction and evolutionary parameters selection for scheduling problem” in proc. of the International Siberian Conference Control and Communications (SIBCON), IEEE, Omsk, 2015, pp.1–5.
15. P.V. Matrenin, V.G. Sekaev, “Optimizacija adaptivnog algoritma murav’ynoj kolonii na primere zadachi kalendarnogo planirovaniya” [Optimizing adaptive ant colony algorithm on the example of scheduling problem] in Programmaya inzheneriya, no. 4, 2013, pp. 34–40 (in Russian).
16. S. Skiena. “The Algorithm design manual. Second edition”, Springer, London, 2008.
17. S. Kirkpatrick, Jr. Gelatt, M.P. Vecchi. (1983). “Optimization by Simulated Annealing” in Science, vol. 220, 1983, pp. 671-680.
18. L. Ingber. “Simulated Annealing: Practice versus theory” in Mathematical and Computer Modelling, no. 18(11), 1993, pp. 29-57.
19. L. Ingber, B. Rosen. “Genetic Algorithms and Very Fast Simulated Annealing: A Comparison” in Mathematical and Computer Modelling, no. 16(11), 1992, pp. 87-100.
20. J.E. Beasley, “OR-Library: distributing test problems by electronic mail”, in Journal of the Operational Research Society, no. 41(11), 1990, pp. 1069-1072.