Clinical and Biomarker Predictors of Expanded Heart Failure Outcomes in Patients With Type 2 Diabetes Mellitus After a Recent Acute Coronary Syndrome: Insights From the EXAMINE Trial

Abhinav Sharma, MD, PhD; Muthiah Vaduganathan, MD, MPH; João Pedro Ferreira, MD, PhD; Yuyin Liu, MSc; George L. Bakris, MD; Christopher P. Cannon, MD; William B. White, MD; Faiez Zannad, MD, PhD

Background—Improved heart failure (HF) risk stratification after a recent acute coronary syndrome may identify those who can benefit from therapies that reduce HF risk. We aimed to identify clinical and biomarker predictors for expanded HF outcomes in patients with type 2 diabetes mellitus after recent acute coronary syndrome.

Methods and Results—The EXAMINE (Examination of Cardiovascular Outcomes with Alogliptin versus Standard of Care) trial was a multicenter, non-inferiority, double-masked, placebo-controlled study which randomized 5380 patients with type 2 diabetes mellitus after recent acute coronary syndrome to alogliptin or placebo. Baseline biomarkers were measured in 5154 patients: N-terminal pro-B-type natriuretic peptide and clinical variables enabled risk stratification for expanded HF outcomes.

Conclusions—Among patients with type 2 diabetes mellitus after recent acute coronary syndrome, the use of biomarkers such as N-terminal pro-B-type natriuretic peptide and clinical variables enables risk stratification for expanded HF outcomes.

Clinical Trial Registration—URL: https://www.clinicaltrials.gov/. Unique identifier: NCT00968708. (J Am Heart Assoc. 2020;9:e012797. DOI: 10.1161/JAHA.119.012797.)

Key Words: biomarkers • heart failure • natriuretic peptide • risk stratification

Diabetes mellitus is one of the most prevalent comorbidities in patients with heart failure (HF) and patients with type 2 diabetes mellitus are at significantly increased risk for developing incident and recurrent HF.1–3 Furthermore, the burden of HF events and HF death remains substantially high in patients with type 2 diabetes mellitus and established cardiovascular disease,4,5 even in patients with optimally controlled background risk factors and glycemic control.6 Trials of oral anti-hyperglycemic therapies such as thiazolidinediones and select dipeptidyl peptidase-4 inhibitors have demonstrated a significantly increased risk of HF.7–9 Other clinical markers of worsening HF, such as increased use of loop diuretics and increased peripheral edema, were also seen in these studies.7,8 Emerging anti-hyperglycemic therapies such as sodium glucose cotransporter-2 inhibitors have demonstrated a reduction in the risk of HF in large
cardiovascular outcome trials.10–13 Biomarkers play an important role in the risk stratification for incident and recurrent HF.14 To date, there are limited data on the use of clinical variables and biomarkers for HF risk stratification in patients with type 2 diabetes mellitus after recent acute coronary syndrome (ACS). Improved HF risk stratification may help to identify patients with type 2 diabetes mellitus who are post ACS, who may benefit from therapies, such as sodium glucose cotransporter-2 inhibitors, that can reduce the risk of HF outcomes.

To address this knowledge gap, we evaluated whether clinical variables and biomarkers can improve risk stratification for expanded heart failure (HF) outcomes in patients with type 2 diabetes mellitus after recent acute coronary syndrome (ACS) in the EXAMINE (Examination of Cardiovascular Outcomes with Alogliptin versus Standard of Care) trial.

Research Design and Methods

EXAMINE Trial

The design, rationale, results, and details of the EXAMINE trial have been previously published.15–18 The data used for this analysis from the EXAMINE trial are currently not publicly available. Briefly, the EXAMINE trial was a multicenter, randomized, non-inferiority, double-masked, placebo-controlled, cardiovascular safety trial. Patients were eligible if they had type 2 diabetes mellitus, 15 to 90 days post ACS, glycated hemoglobin between 6.5% and 11% at the time of screening (or 7%–11% if they were taking insulin), and were receiving drugs other than a dipeptidyl peptidase-4 inhibitor or glucagon-like peptide 1 receptor agonist to treat diabetes mellitus. Patients were excluded if they had type 1 diabetes mellitus; end-stage renal disease and were receiving dialysis; New York Heart Association class IV HF; refractory angina; uncontrolled arrhythmias; significant valve disease; or severe uncontrolled hypertension. In total, 5380 patients with type 2 diabetes mellitus and an ACS event within 15–90 days (before enrollment) were randomly assigned to receive alogliptin or placebo, administered in a double-masked fashion, in addition to standard treatment. Overall, alogliptin was non-inferior to placebo for the primary outcome of death from cardiovascular causes, non-fatal myocardial infarction, or non-fatal stroke. The median follow-up was 597 days (interquartile range 361–792 days). The institutional review board or ethics committee at each participating institution reviewed and approved the trial. All patients randomized in the trial provided informed consent, including for the biomarker study.

Biomarker Measurements

The biomarker population included 5154 patients at baseline. NT-proBNP (N-terminal pro-B-type natriuretic peptide) was measured in all available samples from the 6-month follow-up visit. At baseline, blood was drawn into EDTA-anticoagulated plastic tubes and plasma was isolated and frozen at −20°C to −80°C at the local sites until they were shipped to the central laboratory. Frozen samples were then shipped to the Biomarker Research/Thrombolysis in Myocardial Infarction Clinical Trials Laboratory (Brigham and Women's Hospital [Boston, MA]), and were stored at −80°C or colder. Biomarkers across pathophysiologic pathways were measured including biomarker of myocardial stretch (NT-proBNP, Roche Diagnostics, Indianapolis, IN), cardiac ischemia (high-sensitivity troponin I [Hs-Tnl, Abbott Laboratories]), atherogenesis (Adiponectin [R&D Systems, Minneapolis, MN]), inflammation (growth-differentiation-factor-15 [GDF-15; Roche Diagnostics, Minneapolis, MN, USA], and macrophage activation (galectin-3 [Gal-3, BG Medicine, Inc, Waltham, MA]). Details of these assays have been provided previously.19–22

Outcomes of Interest

The primary outcome of the present analysis was an expanded HF outcome consisting of the composite of cardiovascular death, HF hospitalization, initiation of loop diuretics, or NT-proBNP elevation during follow-up (measured at 6 months). The secondary outcome of interest was the composite of cardiovascular death or HF hospitalization.

Statistical Analysis

Baseline continuous variables are presented as median (25th, 75th percentile) and categorical variables as number/total non-missing (percentage) among patient with and without biomarkers. A baseline clinical model was derived using age, sex, systolic blood pressure at baseline, history of HF,
Table 1. Baseline Characteristics

Characteristics	Biomarker Population (n=5154)	With Primary Outcome (n=837)	Without Primary Outcome (n=4543)
Demographics			
Age, y			
Mean±SD (n)	60.9±9.9	63.2±10.0	60.5±9.8
Median	61.0	63.0	60.0
Range (min, max)	(26.0, 91.0)	(38.0, 91.0)	(26.0, 91.0)
Male	67.7% (3491)	58.8% (492)	69.5% (3159)
Race			
American Indian or Alaska Native	2.1% (106)	2.6% (22)	1.9% (88)
Asian	20.0% (1030)	21.5% (180)	20.0% (909)
Black or African American	3.9% (203)	5.7% (48)	3.7% (168)
Native Hawaiian or Other Pacific Islander	0.2% (11)	0.1% (1)	0.2% (10)
White	73.0% (3760)	68.6% (574)	73.4% (3335)
Multiracial	0.9% (44)	1.4% (12)	0.7% (33)
Ethnicity			
Hispanic or Latino	28.4% (1465)	29.4% (246)	28.4% (1291)
Not Hispanic or Latino	71.6% (3689)	70.6% (591)	71.6% (3252)
Region			
United States, Canada	15.5% (800)	16.1% (135)	15.8% (718)
Mexico, Central/South America	25.9% (1333)	27.8% (233)	25.5% (1160)
Western Europe, Australia, New Zealand, Middle East	11.5% (595/5154)	11.0% (92)	11.5% (524)
Eastern Europe, Africa	28.4% (1465)	24.9% (208)	28.6% (1300)
Asia/Pacific	18.6% (961)	20.2% (169)	18.5% (841)
Current smoker	13.7% (705)	11.9% (100)	14.0% (634)
NYHA class			
I	22.0% (317)	22.1% (76)	22.1% (255)
II	57.7% (831)	51.2% (176)	59.6% (689)
III	18.9% (273)	24.7% (85)	17.2% (199)
IV	1.4% (20)	2.0% (7)	1.1% (13)
BMI, kg/m²			
Mean±SD (n)	29.5±5.6	30.0±6.6	29.4±5.4
Median	28.7	29.2	28.7
Range (min, max)	(15.6, 68.3)	(15.6, 67.2)	(15.7, 68.3)
Systolic BP, mm Hg			
Mean±SD (n)	129.1±16.6	130.4±18.3	128.7±16.3
Median	130.0	130.0	130.0
Range (min, max)	(80.0, 202.0)	(82.0, 195.0)	(80.0, 202.0)
Diastolic BP, mm Hg			
Mean±SD (n)	76.4±9.7	75.9±10.4	76.5±9.5
Median	78.0	78.0	78.0
Range (min, max)	(40.0, 122.0)	(40.0, 110.0)	(42.0, 122.0)

Continued
Table 1. Continued

Characteristics	Biomarker Population (n=5154)	With Primary Outcome (n=837)	Without Primary Outcome (n=4543)
Heart rate, bpm			
Mean±SD (n)	71.4±10.8	72.9±11.9	71.1±10.5
Median	70.0	72.0	70.0
Range (min, max)	(40.0, 143.0)	(44.0, 118.0)	(40.0, 143.0)
Medical history			
Hypertension	83.3% (4291)	90.0% (753/837)	81.8% (3716)
Myocardial infarction	88.0% (4534)	91.2% (763/837)	87.4% (3971)
Coronary bypass surgery	12.8% (659)	17.4% (146/837)	11.9% (542)
Peripheral arterial disease	9.5% (489)	14.6% (122/837)	8.6% (392)
Congestive heart failure	28.0% (1442)	41.1% (344/837)	25.5% (1157)
Laboratory Results			
eGFR, mL/min per 1.73 m²			
Mean±SD (n)	70.9±21.4	62.1±22.5	72.6±20.8
Median	71.1	61.7	72.9
Range (min, max)	(4.2, 186.1)	(5.0, 143.0)	(4.2, 186.1)
Glycated hemoglobin (%)			
Mean±SD (n)	8.0±1.1	8.0±1.0	8.0±1.1
Median	7.9	7.9	7.9
Range (min, max)	(4.9, 12.8)	(5.8, 12.8)	(4.9, 12.7)
Total cholesterol, mg/dL			
Mean±SD (n)	154.4±44.0	161.7±48.5	153.0±42.8
Median	147.0	152.0	146.0
Range (min, max)	(58.0, 481.0)	(59.0, 390.0)	(58.0, 481.0)
HDL cholesterol, mg/dL			
Mean±SD (n)	43.1±10.5	43.1±11.1	43.2±10.5
Median	42.0	42.0	42.0
Range (min, max)	(11.0, 106.0)	(18.0, 115.0)	(11.0, 104.0)
LDL cholesterol, mg/dL			
Mean±SD (n)	78.7±34.8	85.2±38.3	77.4±33.9
Median	72.0	78.0	71.0
Range (min, max)	(2.0, 290.0)	(12.0, 250.0)	(2.0, 290.0)
Triglycerides, mg/dL			
Mean±SD (n)	164.5±104.4	167.4±99.6	164.0±104.7
Median	141.0	144.0	140.0
Range (min, max)	(34.0, 1631.0)	(46.0, 838.0)	(34.0, 1631.0)
Hemoglobin, g/dL			
Mean±SD (n)	13.5±1.6	12.9±1.7	13.6±1.5
Median	13.6	13.0	13.6
Range (min, max)	(7.2, 19.7)	(7.2, 18.7)	(7.2, 19.7)
BNP, pg/mL			
Mean±SD (n)	162.1±276.7	307.8±422.8	135.0±229.9

Continued
Table 1. Continued

Characteristics	Biomarker Population (n=5154)	With Primary Outcome (n=837)	Without Primary Outcome (n=4543)
Median	75.8	157.4	66.4
Range (min, max)	(9.0, 3879.7)	(9.0, 3879.7)	(9.0, 3633.1)
Sodium, mEq/L			
Mean±SD (n)	139.9±2.8	139.7±3.0	139.9±2.8 (4542)
Median	140.0	140.0	140.0
Range (min, max)	(119.0, 153.0)	(122.0, 150.0)	(119.0, 153.0)
Potassium, mEq/L			
Mean±SD (n)	4.5±0.5	4.5±0.5	4.5±0.5
Median	4.4	4.5	4.4
Range (min, max)	(2.6, 9.2)	(2.9, 7.5)	(2.6, 9.2)
WBC, K/cu mm			
Mean±SD (n)	7.4±2.4	7.5±2.1	7.3±2.4
Median	7.1	7.3	7.1
Range (min, max)	(2.0, 97.4)	(2.7, 16.8)	(2.0, 97.4)
Platelet count, K/cu mm			
Mean±SD (n)	232.6±71.5	234.6±78.4	232.0±69.9
Median	223.0	222.0	223.0
Range (min, max)	(46.0, 833.0)	(74.0, 833.0)	(46.0, 744.0)
Baseline medications			
Diabetic agents	98.9% (5099)	98.7% (826)	99.0% (4499)
Sulfonylureas	46.4% (2393)	44.9% (376)	46.8% (2127)
Metformin	66.2% (3412)	57.0% (477)	67.9% (3085)
Insulin	29.9% (1540)	38.0% (318)	28.3% (1287)
Thiazolidinediones	2.4% (126)	2.4% (20)	2.4% (111)
Pioglitazone	2.3% (116)	2.0% (17)	2.3% (104)
Rosiglitazone	0.2% (10)	0.4% (3)	0.2% (7)
Antiplatelet agents	97.3% (5014)	95.5% (799)	97.6% (4433)
ASA	90.9% (4683)	88.8% (743)	91.1% (4138)
Thieno	80.4% (4146)	77.7% (650)	80.8% (3670)
Cholesterol lowering agents	92.1% (4745)	89.4% (748)	92.3% (4194)
Statin	90.6% (4672)	87.3% (731)	91.0% (4135)
Fibrate	5.2% (266)	6.1% (51)	5.0% (227)
Niacin	1.0% (49)	0.8% (7)	0.9% (43)
Ezetimibe	2.3% (117)	2.7% (23)	2.1% (97)
Beta blockers	82.3% (4240)	79.6% (666)	82.4% (3745)
Renin-angiotensin system-blocking agents	82.4% (4247)	84.1% (704)	81.6% (3707)
ACEI	62.1% (3201)	59.7% (500)	62.1% (2823)
ARB	22.2% (1145)	26.8% (224)	21.3% (966)
Diuretics	37.4% (1929)	49.6% (415)	35.2% (1599)
Thiazide	15.0% (771)	17.8% (149)	14.4% (653)

Continued
duration of diabetes mellitus, prior myocardial infarction, hypertension, hyperlipidemia, smoking, and estimated glomerular filtration rate (eGFR; based on variables used in prior analyses).5,16–19 The multivariable association of baseline variables and clinical outcomes were assessed using Cox proportional hazards regression models, reported as hazard ratio (HR) and 95% CI.

The association between individual biomarkers (hs-TnI, NT-proBNP, GDF-15, adiponectin, and Gal-3) and time to events was determined. Linearity testing was performed to assess the relationship between biomarker and end point. The net reclassification improvement index was presented with 95% bootstrap CI. Continuous net reclassification improvement was calculated as it is the most objective and versatile measure of improvement in risk prediction. CI’s come from 1000 bootstrap samples selected with replacement of the size equal to the number of observations in the original data set. The biomarker cut-offs in the present analysis were determined through a complement of existing literature and statistical consideration. The following values were used as cut-offs for elevated biomarkers: adiponectin, values in the 4th quartile (ranging from 20.5 to 115 ng/mL); HsTnI ≥16 ng/mL for female and ≥34 ng/L male participants; NTproBNP ≥450 pg/mL for patients aged <50 years, ≥900 pg/mL for patients aged 50 to 75 years and ≥1800 for patients aged ≥75 years; and GDF-15 ≥1800 pg/mL23–25 The C-index is presented for the clinical model and with the addition of biomarker dichotomized as elevated or not elevated. Data were analyzed using SAS version 9.4 software (SAS, Cary, North Carolina). Statistical significance was based on a P<0.05.

Results

Baseline Demographics

Among patients with biomarkers values (n=5154), the median age was 61.0 years, 67.7% (n=3491) were men, 73.0% (n=3760) were white, 83.3% (n=4291) had a history of hypertension, and 28.0% (n=1442) had a baseline history of HF (Table 1). Median biomarker levels at baseline were: hs-TnI 9 ng/L; Gal-3 17 ng/mL; adiponectin 5.2 μg/mL; NT-proBNP 422 pg/mL; and GDF-15 1246 pg/mL. Patients with a primary end point, compared with those who did not experience the end point, were older (63.2 versus 60.5 years of age), less likely to be men (58.8% versus 69.5%), and had a greater burden of cardiovascular comorbidities (Table 1).

Association of Clinical Variables and Biomarkers With Outcomes

Median patient follow-up was 18 months. Using clinical variables alone, eGFR (per unit increase, HR 0.98, 95% CI 0.98–0.99) and history of HF (HR 1.65, 95% CI 1.42–1.91) were most frequent clinical variables associated with the primary outcome (by the Wald-square measure) (Figure S1; Table 2). In univariate analysis, each biomarker was individually associated with the primary outcome (Table S1). In the multivariable model with both clinical variables and biomarkers, NT-proBNP was the strongest variable (by the Wald-square measure) associated with the primary outcome (per log2 HR 1.24, 95% CI 1.18–1.31) followed by a history of HF (HR 1.42, 95% CI 1.39–1.45).

Table 1. Associated of Clinical Variables and Biomarkers With Outcomes

Variable	Hazard Ratio (95%CI)	Wald χ^2	p Value
eGFR, mL/min per 1.73 m²	0.98 (0.98, 0.99)	52.3	<0.0001
Heart failure	1.65 (1.42, 1.91)	43.9	<0.0001
Duration of diabetes mellitus	1.02 (1.01, 1.03)	19.8	<0.0001
Hypertension	1.47 (1.15, 1.88)	9.4	0.002
Myocardial infarction	1.47 (1.15, 1.87)	9.4	0.002
Men	0.81 (0.70, 0.95)	7.1	0.008
Smoking status	1.17 (0.94, 1.46)	2.0	0.2
Age	1.00 (1.00, 1.01)	0.9	0.4
Hyperlipidemia	1.06 (0.89, 1.25)	0.4	0.5
Systolic BP, mm Hg	1.00 (1.00, 1.01)	0.1	0.8

BP indicates blood pressure; eGFR, estimate glomerular filtration rate; NT-proBNP, N-terminal pro-B-type natriuretic peptide.

DOI: 10.1161/JAHA.119.012797

[1] Sharma et al. (2023). Predictors of Expanded Heart Failure Outcomes. *Journal of the American Heart Association*. DOI: 10.1161/JAHA.119.012797
95% CI 1.22–1.65) (Figure S2; Table 3). eGFR no longer remained significantly associated with the primary outcome in the multivariable model. All other biomarkers except adiponectin were also associated with the primary outcome in the multivariable model: GDF-15 (per log2 HR 1.15, 95% CI 1.04–1.28); Gal-3 (per log2 HR 1.21, 95% CI 1.03–1.41), and hs-TnI (per log2 HR 1.04, 95% CI 1.00–1.09).

For the secondary outcome of the composite of cardiovascular death or HF hospitalization, in the multivariable model with only clinical variables, the most associated variables were a history of HF (HR 2.89; 95% CI 2.33–3.58) followed by eGFR (per unit increase HR 0.98; 95% CI 0.97–0.98) (Table S2). Similar to the primary outcome, each individual biomarker in the univariate analysis was associated with cardiovascular death or HF hospitalization (Table S1). In the multivariable analysis, a doubling of NT-proBNP was most associated with cardiovascular death or HF hospitalization (per log2 HR 1.45; 95% CI 1.34–1.57), followed by a history of HF (HR 2.20; 95% CI 1.76–2.76), a doubling of hsTnI (per log2 HR 1.10; 95% CI 1.04–1.16), and a doubling of GDF-15 (per log2 HR 1.22; 95% CI 1.05–1.41) (Table S3). The P-value for the Hosmer-Lemeshow Goodness of fit test is <0.001 for the baseline clinical model and clinical model with the biomarkers (as continuous and cut-offs).

Risk Stratification for Outcomes

Compared with the baseline clinical model, individual biomarkers improved the discrimination in risk prediction of the primary outcome (Table 4). NT-proBNP, when added to a base clinical model, was associated with the greatest increase in discrimination compared with other individual biomarkers (c-statistic from 0.66 to 0.71) (Table 4). When combined, all biomarkers increased the discrimination of the primary end point compared with the baseline model (c-statistic from 0.66 to 0.72) (Table 4). For the secondary end point of cardiovascular death or HF hospitalization, NT-proBNP, compared with other biomarkers, was associated with the largest increase in outcome discrimination (c-statistic from 0.75 to 0.82) (Table S4). When all biomarkers were combined with the clinical model, the outcome discrimination improved (c-statistic from 0.75 to 0.83) (Table S4).

Discussion

Improving risk stratification for HF outcomes in patients with type 2 diabetes mellitus is crucial given the emergence of therapies that may reduce the risk of incident and recurrent HF. While multi-biomarker approaches to risk stratification for HF outcomes have been demonstrated in HF populations, there are sparse data among patients with type 2 diabetes mellitus. We evaluated the role of a combined clinical variables and biomarkers to improve risk stratification for HF outcomes in patients with type 2 diabetes mellitus post ACS in the EXAMINE trial. Our results identified that biomarkers, especially NT-proBNP, were among the strongest parameters associated with future risk of expanded HF outcomes while a prior history of HF was the strongest clinical predictor. Use of both clinical variables and biomarkers improved risk stratification for expanded HF outcomes over a clinical model. Our results suggest that the use of biomarkers either alone (NT-proBNP) or in combination may improve identification of patients with type 2 diabetes mellitus after a recent ACS who are at increased for future HF events.

Initiation of loop diuretics among stable patients may reflect an attempt at management of water retention or worsening HF symptoms and may be considered a marker for future risk of HF. Similarly, elevations in natriuretic peptides also reflect an increased risk of HF events. Expanding the definition of HF to include these end points as a component of the composite outcome enables a more sensitive definition of HF. In a prior analysis of the EXAMINE study, an increased NT-proBNP at baseline was significantly associated with increased future risk of HF.

Table 3. Multivariable Clinical and Biomarker Predictors of the Composite Outcome of Cardiovascular Death, Heart Failure Hospitalization, Initiation of Loop Diuretics, or Elevated NT-proBNP During Follow-Up

Variable	Hazard Ratio (95% CI)	Wald χ^2	P Value
log$_2$ (NT-proBNP)	1.24 (1.18, 1.31)	67.4	<0.0001
Heart failure	1.42 (1.22, 1.65)	20.8	<0.0001
Hypertension	1.63 (1.27, 2.09)	14.5	0.0001
Duration of diabetes mellitus	1.01 (1.00, 1.02)	8.2	0.004
log$_2$ (GDF-15)	1.15 (1.04, 1.28)	7.2	0.007
log$_2$ (Gal-3)	1.21 (1.03, 1.41)	5.5	0.02
Male	0.83 (0.71, 0.97)	5.5	0.02
log$_2$ (hsTnI)	1.04 (1.00, 1.09)	4.2	0.04
Hyperlipidemia	1.16 (0.97, 1.38)	2.7	0.1
Smoking status	1.17 (0.93, 1.45)	1.9	0.2
Systolic BP, mm Hg	1.00 (1.00, 1.01)	0.7	0.4
log$_2$ (adiponectin)	1.04 (0.95, 1.14)	0.7	0.4
Age	1.00 (0.99, 1.01)	0.6	0.5
eGFR, mL/min per 1.73 m2	1.00 (0.99, 1.00)	0.3	0.6
Myocardial infarction	1.01 (0.79, 1.30)	0.01	0.9

The clinical model adjusted by age (continuous), sex, systolic blood pressure (continuous), history of heart failure, duration of diabetes mellitus, prior myocardial infarction, hypertension, hyperlipidemia, smoking, estimated glomerular filtration rate (continuous). BP indicates blood pressure; Gal-3, galectin-3; GDF-15, growth-differentiation-factor –15; hs-CRP, high-sensitivity C-reactive protein; NT-proBNP, N-terminal pro-B-type natriuretic peptide.
predictors of expanded heart failure outcomes

Sharma et al

DOI: 10.1161/JAHA.119.012797

Journal of the American Heart Association

HF have been advocated in consensus guidelines.14 Among mechanisms to identify patients at risk for incident HF and recurrent hospitalization or cardiovascular death.

The results were seen consistently across the more traditional HF outcome composite of HF hospitalization or initiation of loop diuretics, or elevated NT-proBNP during follow-up.

Furthermore, the risk of future cardiovascular events remained persistently elevated when landmarked for elevated NT-proBNP at 6 months. Similar findings have been seen with serial measurements of hs-TnI in the EXAMINE trial21 and in community cohorts.28 In our analysis, the association of an elevated NT-proBNP at baseline with an increased future risk of cardiovascular death or HF hospitalization or initiation of loop diuretic is not unexpected. A prior study demonstrated that adiponectin (a marker of atherogenesis) was associated with increased risk of cardiovascular events in the EXAMINE trial.22 When evaluated in our multivariable model, adiponectin was not associated with expanded HF outcomes. However, our analysis identified that biomarkers associated with myocardial stretch (NT-proBNP), cardiac fibrosis (GDF-15),29,30 cardiac ischemia (hsTnI)31,32 and macrophage activation (Gal-3)33,34 are significantly associated with an increased risk of our expanded primary HF outcome; these results suggest that multiple pathophysiologic mechanisms may be playing a role in driving the development of HF in patients with type 2 diabetes mellitus post-ACS. The results were seen consistently across the more traditional HF outcome composite of HF hospitalization or cardiovascular death.

Using multiple biomarkers across pathophysiologic mechanisms to identify patients at risk for incident HF and recurrent HF have been advocated in consensus guidelines.14 Among 15,10 stable community participants with diabetes mellitus but without prevalent cardiovascular disease in the Atherosclerosis Risk in Communities study, both troponin T ≥14 ng/L (HR 1.96, 95% CI 1.57–2.46) and NT-proBNP >125 pg/mL (HR 1.61, 95% CI 1.29–1.99) were statistically associated with incident cardiovascular events (coronary heart disease, HF, or stroke).28 In post-ACS patients with type 2 diabetes mellitus, the risk of HF and recurrent ACS remains high yet there are limited data on strategies to optimize risk prediction.18,23 Our demonstration that among patients with type 2 diabetes mellitus post ACS, a multi-biomarker approach improves the risk stratification of expanded HF outcomes has significant therapeutic implications. For example, among higher risk patients, medications such as sodium glucose cotransporter-2 inhibitors that may reduce the risk of HF events can be initiated or intensified.

Gal-3 indicates galectin-3; GDF-15, growth-differentiation-factor -15; hs-CRP, high-sensitivity C-reactive protein; integration, discrimination index; IDI, integration discrimination index; NRI, net reclassification improvement; NT-proBNP, N-terminal pro-B-type natriuretic peptide.

*The clinical model adjusted by age (continuous), sex, systolic blood pressure (continuous), history of heart failure, duration of diabetes mellitus, prior myocardial infarction, hypertension, hyperlipidemia, smoking, estimated glomerular filtration rate (continuous).

Cardiovascular death, myocardial infarction, or stroke.20

Table 4. Discrimination for the Composite Outcome of Cardiovascular Death, Heart Failure Hospitalization, Initiation of Loop Diuretics, or Elevated NT-proBNP During Follow-Up

Models	c-Statistic	Change in c-Statistic	Continuous NRI (95% Bootstrap CI)	IDI (95% Bootstrap CI)
Clinical model*	0.66			
Clinical model+hsTnI	0.68	0.019	0.2914 (0.2054, 0.3705)	0.0340 (0.0283, 0.0406)
Clinical model+NT-proBNP	0.71	0.050	0.3854 (0.3037, 0.4721)	0.0877 (0.077, 0.0976)
Clinical model+GDF-15	0.67	0.010	0.1521 (0.0631, 0.243)	0.0183 (0.014, 0.0235)
Clinical model+Gal-3	0.67	0.009	0.1265 (0.0384, 0.2062)	0.0162 (0.0123, 0.0204)
Clinical model+adiponectin	0.67	0.010	0.1455 (0.0561, 0.2311)	0.0091 (0.0062, 0.0129)
Clinical model+all biomarkers	0.72	0.054	0.4097 (0.3245, 0.4963)	0.0955 (0.0848, 0.1078)
Clinical model+hsTnI (by cut-offs)	0.67	0.008	0.2380 (0.1559, 0.3231)	0.0152 (0.0111, 0.0192)
Clinical model+NTproBNP (by cut-offs)	0.69	0.028	0.4141 (0.3314, 0.4948)	0.0487 (0.0421, 0.0553)
Clinical model+GDF-15 (by cut-offs)	0.67	0.005	0.2485 (0.1571, 0.3316)	0.0088 (0.0062, 0.0114)
Clinical model+Gal-3 (by cut-offs)	0.67	0.004	0.1832 (0.0940, 0.2660)	0.0057 (0.0039, 0.0079)
Clinical model+adiponectin (by cut-offs)	0.67	0.005	0.2226 (0.1416, 0.3096)	0.0067 (0.0042, 0.0095)
Clinical model+all biomarkers(by cut-offs)	0.70	0.034	0.3996 (0.3159, 0.4867)	0.0588 (0.0515, 0.0662)

Gal-3 indicates galectin-3; GDF-15, growth-differentiation-factor -15; hs-CRP, high-sensitivity C-reactive protein; integration, discrimination index; IDI, integration discrimination index; NRI, net reclassification improvement; NT-proBNP, N-terminal pro-B-type natriuretic peptide.
from therapies such as mineralocorticoid receptor antagonists and sodium glucose cotransporter-2 inhibitors.

Limitations
The EXAMINE trial was composed of patients with type 2 diabetes mellitus who had a recent ACS; as such the results of our analysis may not be generalizable to other populations with type 2 diabetes mellitus. Additional measures of HF status such as left ventricular ejection fraction, a known prognostic marker in patients with diabetes mellitus, were not formally assessed. While the c-statistic improved from 0.66 to 0.70 for the model with biomarkers for the expanded HF outcome, the clinical utility of such an increase in discrimination remains unclear. The results from the P-value of calibration of the Hosmer-Lemeshow Goodness of Fit test highlight the challenges in model calibration for expanded HF outcomes. Nevertheless, EXAMINE may be an optimal setting to investi- gate this issue given the trial enrolled the highest proportion of patients with baseline HF (28%) of any cardiovascular safety trial of anti-hyperglycemic therapies, enriched cardiovascular risk given the requirement for a recent ACS, and collected robust biomarker data in >95% of enrolled patients.

Conclusions
Among stable patients with type 2 diabetes mellitus after recent ACS, combining clinical variables with biomarkers approach allows for risk stratification for a broad range of heart failure events. Given the emergence of anti-hyperglycemic therapies that reduce the risk of heart failure among patients with type 2 diabetes mellitus and established cardiovascular disease, future randomized studies evaluating the role of risk prediction using clinical factors and biomarkers to target these medical therapies are warranted. In settings where assaying multiple biomarkers is impractical, measurement of natriuretic peptides as a single biomarker may most inform risk of future HF events. Patients with type 2 diabetes mellitus and elevated natriuretic peptide concentrations or prior history of HF face particularly high risks of subsequent HF events and warrant closer monitoring.

Acknowledgments
The authors are solely responsible for the design of the study, all study analyses, and the drafting and editing of the manuscript and its final contents.

Sources of Funding
EXAMINE is a clinical trial sponsored by Takeda Global Research and Development Center, Inc, Deerfield, IL.

Disclosures
Dr Sharma is supported by a research grant from the Fonds de Recherche Sante—Quebec Junior 1 award, Alberta Innovates Health Solution Clinician Scientist fellowship, the European Society of Cardiology Young Investigator research grant, and has received research support from Roche Diagnostics, Boehringer-Ingelheim, Takeda, Akcea, and the Canadian Cardiovascular Society Bayer Vascular award. Dr Bakris has received personal fees from Takeda Development Center, is a consultant for Merck, Relypsa, and is on the steering committee for international renal/cardiovascular outcomes trials for Janssen, Bayer, Vascular Dynamics. Dr White has received research support from the National Institute of Aging (National Institute of Health [NIH]) and personal fees from Takeda Development Center (Deerfield, IL, USA) during the conduct of the EXAMINE trial (Steering Committee Chair). Dr Zannad has received fees for serving on the board of Boston Scientific; consulting fees from Novartis, Takeda, AstraZeneca, Boehringer Ingelheim, GE Healthcare, Relypsa, Servier, Boston Scientific, Bayer, Johnson & Johnson, and Resmed; and speaking fees from Pfizer and AstraZeneca. Dr Cannon reports research grants from Amgen, Boehringer-Ingelheim, Bristol-Myers Squibb, Daiichi Sankyo, Janssen, Merck and consulting fees from Alnylam, Amarin, Amgen, Boehringer-Ingelheim, Bristol-Myers Squibb, Eisai, Janssen, Kowa, Merck, Pfizer, Regeneron, Sanofi. Dr Vaduganathan is supported by the KL2/Catalyst Medical Research Investigator Training award from Harvard Catalyst (NIH/National Center for Advancing Translational Sciences Award UL 1TR002541), serves on advisory boards for Amgen, AstraZeneca, Bayer AG, and Baxter Healthcare, and participates in clinical end points committees for studies supported by Novartis and the NIH. The remaining authors have no disclosures to report.

References
1. Sharma A, Zhao X, Hammill BG, Hernandez AF, Fonarow GC, Felker GM, Yancy CW, Heidenreich PA, Ezekowitz JA, DeVore AD. Trends in noncardiovascular comorbidities among patients hospitalized for heart failure. Circ Heart Fail. 2018;11:e004646.
2. Cavender MA, Steg PG, Smith SC, Eagle K, Ohman EM, Goto S, Kuder J, Irmak S, Wilson PW, Bhatt DL. Impact of diabetes mellitus on hospitalization for heart failure, cardiovascular events, and death: outcomes at 4 years from the reduction of atherothrombosis for continued health (REACH) registry. Circulation. 2015;132:923–931.
3. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE, Drazner MH, Fonarow GC, Geraci SA, Horwich T, Januzzi JL, Johnson MR, Kasper EK, Levy WC, Masoudi FA, McBride PE, McMurray JJ, Mitchell JE, Peterson PN, Riegel B, Sam F, Stevenson LW, Tang WH, Tsai EJ, Wilkoff BL. 2013 ACCF/AHA guideline for the management of heart failure: executive summary: a report of the American college of cardiology foundation/American Heart Association task force on practice guidelines. Circulation. 2013;128:1810–1852.
4. Sharma A, Green A, Dunnig A, Lokhnygina Y, Al-Khatib SM, Lopes RD, Buse JB, Lachin JM, Van de Werf F, Armstrong PW, Kaufman KD, Standl E, Chan JCN, Distiller LA, Scott R, Peterson ED, Holman RR. Causes of death in a contemporary cohort of patients with type 2 diabetes and atherosclerotic cardiovascular disease: insights from the TECOS trial. Diabetes Care. 2017;40:1763–1770.
5. White WB, Kuper S, Zannad F, Mehta CR, Wilson CA, Lei L, Bakris GL, Nissen SE, Cushman WC, Heller SR, Bergenstal RM, Fleck PR, Cannon CP. Cardiovascular mortality in patients with type 2 diabetes and recent acute coronary syndromes from the EXAMINE trial. Diabetes Care. 2016;39:1267–1273.
6. Rawhani A, Rawhani A, Franzen S, Franzen S, Sattar N, Eliasson B, Svensson AM, Solcia E, Mifsud B, Mfiteku M, McGuire DK, Rosenkranz A, Gudbjartsson DT. Risk factors, mortality, and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2017;379:633–644.

7. Home PD, Pocock SJ, Beck-Nielsen H, Curtis PS, Gomi R, Hanefeld M, Jones NP, Komajda M, McMurray JJ. Rosiglitazone evaluated for cardiovascular outcomes in oral agent combination therapy for type 2 diabetes (RECORD): a multicentre, randomised, open-label trial. Lancet. 2009;373:2125–2132.

8. Dormandy JA, Charbonnel B, Eckel JD, Erdmann E, Massi-Beneddetti M, Loules IK, Skene AM, Tan MH, Lefebvre PJ, Murray GD, Standl EM, Wilcox RG, Weil-Michel B, Badger J, Boulanger P, Bonnefoy E, Buse J, Canesi M, Cohnert T, Conti S, Creager MA, Derumeaux G, De WLock K, Malaisse-Lagarde JT, Tornvik L, Laskos M, Mokan M, Norskov A, Pragas V, Podar T, Scheffer A, Schonbom M, Schuler G, Schuria J, Smith U, Stow J, Taton J. Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROActive Study (PROSpective pioglitAzone Clinical Trial in macrovascular Events): a randomised controlled trial. Lancet. 2005;366:1279–1289.

9. Sharma A, Cooper LB, Fiuzat M, Mentz RJ, Ferreira JP, Butler J, Fitchett D, Moses JS. Antihyperglycemic therapies to treat patients with heart failure and diabetes mellitus. JACC Heart Fail. 2019;6:183–822.

10. Zinnman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, Mattheus M, Devins T, Johansen OE, Woerle HJ, Broedl UC, Inzucchi SE. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373:2117–2128.

11. Fitchett D, Zinnman B, Wanner C, Lachin JM, Hantel S, Salsali A, Johansen OE, Woerle HJ, Broedl UC, Inzucchi SE. Heart failure outcomes with empagliflozin in patients with type 2 diabetes at high cardiovascular risk: the results of the EMPA-REG OUTCOME trial. Eur Heart J. 2016;37:1526–1534.

12. Neal B, Perkovic V, Mahaffey KW, de Zeeuw D, Fulcher G, Erondu N, Shaw W, McMurray JJ, Deedwania PC, Drezner J, Lefebvre PJ, Murray GD, Standl EM, Wilcox RG. 626.e1. A randomised controlled trial. Lancet. 2009;363:639–652.

13. Thuesen K, Mair J, Mueller C, Huber K, Weber M, Piehans M, Hasin Y, Riasucci LM, Giannitsis E, Lindahl B, Koenig W, Tubaro M, Collinson P, Katus H, Galvani M, Venge P, Alpert JS, Hamm C, Jaffe AS. Recommendations for the use of natriuretic peptides in acute cardiac care: a position statement from the Study Group on Biomarkers of Cardiology of the ESC Working Group on Acute Cardiac Care. Eur Heart J. 2012;33:2001–2006.

14. Greene SJ, Mentz RJ, Fiuzat M, Butler J, Solomon AD, Ambrose AP, Mehta C, Teerlink JR, Zannad F, O’Connor CM. Reassessing the role of surrogate end points in drug development for heart failure. Circulation. 2018;138:1039–1053.

15. Shen L, Jhund PS, Mogensen UM, Kaber L, Clogg A, Rogers JK, McMurray JVIJ. Re-examination of the best trial using composite outcomes including emergency department visits. JACC Heart Fail. 2017;5:591–599.

16. Gori M, Gupta DK, Clogg A, Selvin E, Folsom AR, Matsushita K, Bello NA, Cheng S, Shah A, Skali H, Vardeny O, Ni H, Ballantyne CM, Astor BC, Klein BE, Aguilar D, Solomon SD. Natriuretic peptide and high-sensitivity troponin for cardiovascular risk prediction in diabetes: the Atherosclerosis Risk in Communities (ARIC) study. Circulation. 2016;39:677–685.

17. Sharma A, Stevens SR, Lucas J, Fiuzat M, Adams KF, Donahue MP, Kitzman DW, Pina IL, Zannad F, Kraus WE, O’Connor CM, Felker GM. Utility of growth differentiation factor-15, a marker of oxidative stress and inflammation, in chronic heart failure: insights from the HF-ACTION study. JACC Heart Fail. 2015;3:724–734.

18. Kempf T, Eden M, Streul a J, Naguib M, Willenbockel C, Tongers J, Heinke J, Kotlarz D, Xu J, Moklentd JD, Niessen HH, Drexler H, Wollert KC. The transforming growth-factor-β1 superfamily member growth-differentiation factor-15 protects the heart from ischemia/reperfusion injury. Circ Res. 2006;98:351–360.

19. Kociol RD, Pang PS, Ghebrhiade M, Fonarow GC, O’Connor CM, Felker GM. Troponin elevation in heart failure: prevalence, mechanisms, and clinical implications. J Am Coll Cardiol. 2010;56:1071–1078.

20. Januzzi JL, Filipatatos G, Nieminen M, Ghebrhiade M. Troponin elevation in patients with heart failure: on behalf of the third Universal Definition of Myocardial Infarction Global Task Force: Heart Failure Section. Eur Heart J. 2012;33:2257–2271.

21. Sharma UC, Pokharel S, van Brakel TJ, van Berlo JH, Cleutjens JP, Schroen B, Spaan JA, Boersma E, de Winter RJ, Lixtu J, van der Voort PH. Galectin-3 marks activated macrophages in failure-prone hypertrophied hearts and contributes to cardiac dysfunction. Circulation. 2004;110:3121–3128.

22. Lok DJ, Lok SJ, Bruggink-André de la Porte PW, Badings E, Lips E, van der Veldenhuizen DJ, van der Meer P. Galectin-3 is an independent marker for ventricular remodeling and mortality in patients with chronic heart failure. Clin Res Cardiol. 2013;102:103–110.

23. Collaboration Natriuretic Peptide Studies. Natriuretic peptides and integrated risk assessment for cardiovascular disease: an individual-participant-data meta-analysis. Lancet Diabetes Endocrinol. 2016;4:840–849.

24. Hong CR, Li HY, Pan SL, Hiemy S, Su FY, Chen KC, Yin WH, Chan SH, Wu WY, Wang KY, Chang KC, Hwang JJJ, Wu CC. Relationship between body mass index, antiabetic drugs, and midterm mortality in patients with both type 2 diabetes mellitus and acute coronary syndrome. J Am Heart Assoc. 2019;8:e011215. DOI: 10.1161/JAHA.118.011215.

25. Swoboda PP, McDaid AK, Erhayiem B, Ripley DP, Dobson LE, Garg P, Musa TA, Witte KK, Keanev MT, Barth JH, Ajan R, Greenwood JP, Plein S. Diabetes microalbuminuria, and subclinical disease: identification and monitoring of individuals at risk of heart failure. J Am Heart Assoc. 2017;6:005539. DOI: 10.1161/JAHA.117.005539.

26. Cooper L, Lippmann S, Greiner M, Sharma A, Kelly J, Fonarow G, Yang C, Hendrich P, Hernandez A. Use of mineralocorticoid receptor antagonists in patients with heart failure and comorbid diabetes mellitus or chronic kidney disease. J Am Heart Assoc. 2017;6:e006540. DOI: 10.1161/JAHA.117.006540.

27. Rarath R, Jhund PS, Mogensen UM, Kristensen SL, Petrie MC, Kaber L, McMurray JJV. Risk of incident heart failure in patients with diabetes and asymptomatic left ventricular systolic dysfunction. Diabetes Care. 2018;41:1285–1291.

28. Greene SJ, Vagadianathan M, Khan MS, Bikris GL, Weir MR, Seltzer JH, Sattar N, McGuire DK, Januzzi JL, Stockbridge N, Butler J. Prevalent and incident heart failure in cardiovascular outcome trials of patients with type 2 diabetes. J Am Coll Cardiol. 2018;71:1379–1390.
Supplemental Material
Table S1. Univariate association of individual biomarkers with heart failure outcomes.

Biomarkers	HF hospitalization or elevated NTproBNP during follow-up or initiation of loop diuretics or CV death	HF hospitalization or CV death
	Hazard ratio (95% CI)	P value
Biomarker (continuous)		
log2 (hsTnI)	1.18 (1.15, 1.21)	<.0001
log2 (NTproBNP)	1.40 (1.35, 1.46)	<.0001
log2 (GDF15)	1.67 (1.55, 1.80)	<.0001
log2 (GAL3)	1.94 (1.74, 2.16)	<.0001
log2 (ADPN)	1.53 (1.42, 1.66)	<.0001
Biomarkers (by cut-offs)		
Elevated hsTnI	1.77 (1.52, 2.06)	<.0001
Elevated NTproBNP	2.61 (2.27, 3.00)	<.0001
Elevated GDF15	2.09 (1.81, 2.40)	<.0001
Elevated GAL3	1.96 (1.70, 2.26)	<.0001
Elevated ADPN	1.92 (1.66, 2.22)	<.0001

ADPN: adiponectin; GaL-3: galectin-3; GDF-15: growth-differentiation-factor -15; hs-CRP: high sensitivity C-reactive protein; NT-proBNP: N-terminal pro-B-type natriuretic peptide.
Table S2. Multivariable clinical predictors for the composite of heart failure hospitalization or cardiovascular death.

Variable	Hazard ratio(95%CI)	Wald X^2	P value
Heart failure	2.89 (2.33, 3.58)	94.3	<.0001
eGFR (ml/min/1.73m2)	0.98 (0.97, 0.98)	50.9	<.0001
Myocardial infarction	3.43 (2.00, 5.88)	20.1	<.0001
Duration of diabetes	1.02 (1.01, 1.03)	10.5	0.0012
age	1.01 (1.00, 1.03)	5.1	0.0244
Systolic BP (mmHg)	0.99 (0.99, 1.00)	3.8	0.0515
Hyperlipidemia	1.23 (0.96, 1.57)	2.7	0.0985
Hypertension	1.33 (0.93, 1.90)	2.4	0.1246
Male	0.91 (0.73, 1.13)	0.7	0.3933
Smoking Status	1.16 (0.83, 1.62)	0.7	0.3965

eGFR: estimate glomerular filtration rate; BP blood pressure.
Table S3. Multivariable clinical variables and biomarkers for the outcome of heart failure hospitalization and cardiovascular death.

Variable	Hazard ratio (95%CI)	Wald X^2	P value
log$_2$(NTproBNP)	1.45 (1.34, 1.57)	78.8	<.0001
Heart Failure	2.20 (1.76, 2.76)	47.2	<.0001
log$_2$(hsTnI)	1.10 (1.04, 1.16)	12.0	0.0005
log$_2$(GDF15)	1.22 (1.05, 1.41)	7.0	0.0080
Hyperlipidemia	1.41 (1.08, 1.83)	6.6	0.0103
Hypertension	1.54 (1.07, 2.23)	5.3	0.0216
Myocardial infarction	1.85 (1.06, 3.23)	4.7	0.0302
Duration of diabetes	1.01 (1.00, 1.02)	2.9	0.0873
log$_2$(GAL3)	1.18 (0.95, 1.47)	2.2	0.1411
Systolic BP (mmHg)	1.00 (0.99, 1.00)	1.6	0.2122
Age	1.01 (1.00, 1.02)	1.3	0.2516
Male	0.90 (0.71, 1.13)	0.8	0.3642
Smoking Status	1.16 (0.82, 1.63)	0.7	0.3959
log$_2$(ADPN)	1.03 (0.90, 1.17)	0.2	0.6861
eGFR (ml/min/1.73m2)	1.00 (0.99, 1.01)	0.04	0.8306

ADPN: adiponectin; Gal-3: galectin-3; GDF-15: growth-differentiation-factor-15; eGFR: estimated glomerular filtration rate; hs-CRP: high sensitivity C-reactive protein; NT-proBNP: N-terminal pro-B-type natriuretic peptide.
Table S4. Discrimination for the outcome of heart failure hospitalization or cardiovascular death.

Models	c-statistic	Change in c-statistic	Continuous NRI (95% Bootstrap CI)	IDI (95% Bootstrap CI)
Clinical model*	0.75			
Clinical model + hsTnI	0.78	0.036	0.5778 (0.4562, 0.6992)	0.0708 (0.0527, 0.0921)
Clinical model + NTproBNP	0.82	0.075	0.6684 (0.5655, 0.7735)	0.1619 (0.1344, 0.1947)
Clinical model + GDF15	0.76	0.016	0.2066 (0.0818, 0.3356)	0.0305 (0.0181, 0.046)
Clinical model + GAL3	0.76	0.011	0.2246 (0.1062, 0.3401)	0.0208 (0.0123, 0.0311)
Clinical model + ADPN	0.76	0.015	0.2644 (0.1422, 0.3887)	0.0132 (0.0037, 0.0236)
Clinical model + All biomarkers	0.83	0.082	0.6994 (0.5924, 0.8101)	0.1747 (0.145, 0.2091)
Clinical model + hsTnI (by cut-offs)	0.76	0.016	0.4460 (0.3213, 0.5796)	0.0411 (0.0276, 0.0553)
Clinical model + NTproBNP (by cut-offs)	0.81	0.060	0.9041 (0.7951, 1.0132)	0.1302 (0.1099, 0.1516)
Clinical model + GDF15 (by cut-offs)	0.76	0.010	0.4195 (0.3013, 0.5416)	0.0168 (0.0094, 0.0239)
Clinical model + GAL3 (by cut-offs)	0.76	0.007	0.3139 (0.1853, 0.4307)	0.0131 (0.0081, 0.019)
Clinical model + ADPN (by cut-offs)	0.76	0.014	0.4065 (0.2829, 0.5394)	0.0198 (0.0105, 0.0295)
Clinical model + All biomarkers (by cut-offs)	0.82	0.068	0.8276 (0.721, 0.9346)	0.1522 (0.1299, 0.1791)

*The clinical model adjusted by age (continuous), sex, systolic blood pressure (continuous), history of heart failure, duration of diabetes, prior myocardial infarction, hypertension, hyperlipidemia, smoking, estimated glomerular filtration rate (continuous). ADPN: adiponectin; Gal-3: galectin-3; GDF-15: growth-differentiation-factor-15; hs-CRP: high sensitivity C-reactive protein; NT-proBNP: N-terminal pro-B-type natriuretic peptide.
Figure S1. Relative importance of clinical variables for the composite outcome of cardiovascular death, heart failure hospitalization, initiation of loop diuretics, or elevated NT-proBNP during follow-up.

eGFR estimated glomerular filtration rate. Variables with a p-value ≥0.05 for the association with the variable and outcome in multivariable analysis are not displayed. A higher X^2 score implies a stronger association with the outcome.
Figure S2. Relative importance of clinical variables and biomarkers for the composite outcome of cardiovascular death, heart failure hospitalization, initiation of loop diuretics, or elevated NT-proBNP during follow-up.

NT-proBNP N-terminal pro-B-type natriuretic peptide; GDF-15 growth-differentiation-factor-15; Gal-3 galectin-3. Variables with a p-value ≥0.05 for the association with the variable and outcome in multivariable analysis are not displayed. A higher X^2 score implies a stronger association with the outcome.