In Vitro Activity of Plazomicin among Carbapenem-resistant Enterobacteriaceae

Sara Essam*, Nada Nawar, Mohamed ElBashaar, May Soliman, May Abdelfattah

Department of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, Giza, Egypt

Abstract

BACKGROUND: Carbapenem-resistant Enterobacteriaceae (CRE) have been disseminated worldwide and became a global threat. Due to limited therapeutic drugs plazomicin - a new semisynthetic aminoglycoside - have been suggested as an alternative option due to its stability against aminoglycoside modifying enzymes.

AIM: This study aims to assess the in vitro activity of plazomicin against CRE isolates and to detect different types of carbapenemases among these isolates.

METHODS: In this study, 102 CRE isolates were collected from different clinical samples at Cairo University hospitals and the presence of carbapenemases was detected by modified carbapenem inhibition method and multiplex polymerase chain reaction tests. Plazomicin susceptibility testing was done using E-test.

RESULTS: The most frequently detected carbapenemase genes were blaNDM in 75 (73.5%) isolates, followed by blaOXA-48 in 57 (55.9%) and blaKPC in 16 (15.5%) isolates. Plazomicin was active against 32 (31.4%) isolates.

CONCLUSION: Plazomicin might be a good option for treatment of infections caused by CRE. In health-care settings where blaNDM gene is prevalent, plazomicin may not be a good therapeutic option for CRE infections.

Introduction

Carbapenem-resistant Enterobacteriaceae (CRE) are resistant to almost all β-lactams leaving only few and unfortunately older, antimicrobial classes with adequate activity [1]. These limited therapeutic options are highlighting the need for new antibiotics to treat serious infections caused by these resistant pathogens. Since the early 1980s, carbapenems are considered the last line of defense against multidrug-resistant (MDR) Gram-negative organisms [2]. CRE are defined as pathogens that are resistant to at least one carbapenem or are proved to produce a carbapenemase [3]. Over the past two decades, dissemination of CRE has been observed worldwide [4], [5]. Klebsiella pneumoniae (K. pneumoniae) isolates showed the highest rate of carbapenem resistance among Enterobacteriaceae [6], [7].

In Egypt, Kotb et al., 2020, have reported that 1105 (47.9%) of the 2306 Enterobacteriaceae isolates included in the surveillance from 2011 to 2017 were CRE [8]. The highest percentage of CRE was among Klebsiella spp. 53.7% followed by Enterobacter spp. 43.5%, while a smaller percentage of Escherichia coli (E. coli) isolates 27.1% were CRE.

Few antibiotics are still active against CRE, since they usually carry resistance genes to β-lactams, aminoglycosides, and fluoroquinolones. Older antimicrobials such as fosfomycin and polymyxins that were rarely used in the past due to efficacy and toxicity concerns may be considered [9]. Plazomicin is a semisynthetic aminoglycoside that inhibits bacterial protein synthesis. It has an important role of carbapenemases. Enhanced activity of plazomicin (AMEs), extended spectrum beta-lactamases, and carbapenemases. Enhanced activity of plazomicin against Enterobacteriaceae is due to its stability to commonly encountered AMEs that inhibit the activity of other aminoglycosides [10], [11].

In June 2018, plazomicin was approved by the US Food and Drug Administration (FDA) for treatment of complicated urinary tract infections, including acute pyelonephritis [12] and is waiting for FDA approval for acute bloodstream infections caused by MDR Enterobacteriaceae infections, including CRE [13].
isolates and to detect different types of carbapenemases among these isolates.

Methods

This cross-sectional study was performed in Cairo University Hospitals, Clinical Pathology Department. A total of 102 CRE isolates from different clinical specimens were collected without duplication from October 2019 to October 2020. All isolates were collected from cultures sent to the laboratory as part of the routine medical service provided to the patients and were cultured aerobically on routine blood, chocolate, MacConkey, and CLED agar media at 37°C for (24–48) h and Enterobacteriaceae were further identified by Gram staining and conventional biochemical reactions that include triple sugar iron, lysine iron agar, motility indole ornithine, simmon citrate, and urease agar.

Susceptibility to carbapenems was determined by the standard Kirby–Bauer disk diffusion method to detect CRE isolates according to clinical and laboratory standards institute breakpoints for carbapenems [14]. Bacteriological strains were suspended in 20% glycerol trypticase soy broth and stored at –80°C for further laboratory testing. Subculture of the stored isolates were done on blood agar and incubated aerobically at 37°C for 24 h, then subjected to:

Phenotypic detection of carbapenem enzymes activity

Phenotypic detection of carbapenemase enzymes activity was detected by modified carbapenem inactivation method (mCIM) and EDTA-mCIM (eCIM) [15].

Detection of carbapenemase genes by conventional multiplex polymerase chain reaction (PCR)

DNA extraction, multiplex conventional PCR, and gel electrophoresis according to Poirel et al. [16]. Multiplex conventional PCR was performed to detect the following carbapenemase genes using three different multiplex reactions:

- Reaction 1: OXA-48, NDM, KPC, and BIC
- Reaction 2: AIM, GIM, SIM, and DIM
- Reaction 3: IMP, VIM, and SPM.

Plazomicin susceptibility testing

Plazomicin susceptibility was determined using minimal inhibitory concentration (MIC) method on Muller–Hinton agar using plazomicin E test (PLZ; 0.016–256 µg/mL) (liofilchem diagnostics, Italy) and the MIC value was determined [17].

Quality control measures were performed all through the different tests including the culture media, biochemical reactions, and antimicrobial discs.

- E. coli ATCC 25922 was used for plazomicin susceptibility testing control.
- K. pneumoniae NCTC 13443 was used for PCR technique as a positive control of NDM.

Statistical analysis

Data were statistically described in terms of range, mean ± standard deviation (±SD), and percentages. A probability value p < 0.05 was considered statistically significant. All statistical calculations were done using computer programs Microsoft Excel 2010 and Statistical Package for the Social Science version 23 for Microsoft Windows. This study was approved by the ethical committee of faculty of medicine Cairo University.

Results

During the study period, a total of 10,964 clinical samples were sent to the Clinical Pathology Department of Cairo University Hospitals. Gram-negative pathogens were identified in 3301 (30.1%) samples. Among the 3301 Gram-negative isolates, 2229 (67.5%) were **Enterobacteriaceae** isolates; out of which 131 (5.8%) isolates were CRE, and a total of 102 CRE isolates were randomly collected.

Out of 102 CRE isolates, 97 (95%) were **klebsiella** species, while 5 (5%) isolates were other types including E. coli, Proteus, and Citrobacter species.

Results of mCIM and eCIM tests are illustrated in Tables 1 and 2, respectively.

Table 1: Results of mCIM test according to CLSI [15]

Result	Number	Percent
Positive	65	63.7
Negative	24	23.5
Indeterminate	13	12.7
Total	102	100

MNMB: Modified carbapenem inactivation method, CLSI: Clinical and Laboratory Standards Institute.

Table 2: Results of eCIM test according to CLSI [15]

Result	Number	Percent
MBL positive	50	49
MBL negative	15	14.7
Not applicable	37	36.3
Total	102	100

eCIM: EDTA-modified carbapenem inactivation method, CLSI: Clinical and Laboratory Standards Institute, MBL: Metallo-β-lactamases.

Results of multiplex PCR are illustrated in Table 3.

Plazomicin susceptibility testing have detected that 32 (31.4%) isolates were sensitive as shown in Table 4.
that the most frequently detected gene was blaNDM among carbapenem resistant Enterobacteriaceae isolates.

Discussion

In this study, the most common isolated pathogen was Klebsiella spp. in 95% of the isolates. Similarly, other studies reported that Klebsiella spp. was the most common isolated pathogen [18], [19]. In our study, we found that mCIM was positive in 63.7% of our study, we found that mCIM was positive in 63.7% of the isolates carrying blaNDM or blaOXA-48 gene only. In this study, plazomicin was active against 31.4% of the isolates. While among the isolates carrying blaNDM gene only and those carrying blaOXA-48 gene only, 21% and 41% were sensitive to plazomicin, respectively. Earlier studies reported similar sensitivity rates of plazomicin among blaNDM carrying isolates. While, higher sensitivity rates were detected among isolates carrying blaOXA-48 genes [10], [23].

On the other hand, Plazomicin showed the higher sensitivity rates in other studies [24], [25], [26]. The discrepancy between our results and these studies may be related to the different characteristics of the tested isolates, as most of our isolates were carrying blaNDM genes 73.5%. As previously discussed, blaNDM genes are commonly co-expressed with 16S-RMTases; the main mechanism of resistance to plazomicin [27]. We found also that plazomicin showed the highest susceptibility rate (31.4%) among CRE isolates in comparison to the other routinely tested antibiotics (quinolones [3.9%], sulfamethoxazole-trimethoprim [6.9%], amikacin [6.9%], and gentamicin [17.6%]). Similar findings were reported in various studies [23], [25], [26], [28].

Our study results revealed that the infections caused by CRE represent a serious public health problem even in the presence of new antibiotics like plazomicin.

Limitations of the study

Detection of plazomicin resistance mechanism in plazomicin-resistant isolates was not performed. Larger sample size is recommended for more accurate evaluation of plazomicin activity.

Conclusion

Further efforts should be exerted toward the control of spread of Klebsiella spp. infections being the most commonly isolated. In addition, more studies should be directed to CRE isolates carrying blaNDM, blaOXA-48, and blaKPC, respectively. Although plazomicin showed the highest sensitivity against CRE isolates compared to the other tested antibiotics thus it might be a good option for treatment of infections caused
by CRE, in health-care settings where bla_{NDM} gene is prevalent, it may not be a good therapeutic option for CRE infections.

Recommendations

Our study results recommend further studies with larger sample size to evaluate plazomicin activity against different species of MDR bacteria including CRE. In addition, studies that assess synergy between plazomicin and other antibiotics are recommended.

Furthermore, clinical trial studies are recommended to evaluate the efficacy of plazomicin in the treatment of infections caused by CRE.

References

1. Harting J. Carbapenem-resistant Enterobacteriaceae infections: A review of epidemiology and treatment options. Univ Louisville J Respir Infect. 2019;3(1):4.

2. Temkin E, Adler A, Lerner A, Carmeli Y. Carbapenem-resistant Enterobacteriaceae: Biology, epidemiology, and management. Ann N Y Acad Sci. 2014;1323(1):22-42. https://doi.org/10.1111/nyas.12537

3. Centers for Disease Control and Prevention. Facility Guidance for Control of Carbapenem-resistant Enterobacteriaceae (CRE): November 2015 Update CRE Toolkit. Atlanta, GA: United States Department of Health and Human Services; 2015.

4. Nordmann P, Naas T, Poirel L. Global spread of carbapenemase-producing Enterobacteriaceae. Emerg Infect Dis. 2011;17(10):1791. https://doi.org/10.3201/eid1710.110655

5. Schwabre MJ, Carmeli Y. Carbapenem-resistant Enterobacteriaceae: A potential threat. JAMA. 2008;300(24):2911-3. https://doi.org/10.1001/jama.2008.896

6. Kelly AM, Mathema B, Larson EL. Carbapenem-resistant Enterobacteriaceae in the community: A scoping review. Int J Antimicrob Agents. 2017;50(2):127-34. https://doi.org/10.1016/j.ijantimicag.2017.03.012

7. Nasiri MJ, Miraesadi M, Mousavi SM, Arshadi M, Fardasanei F, Deihim B, et al. Prevalence and mechanisms of carbapenem resistance in Klebsiella pneumoniae and Escherichia coli: A systematic review and meta-analysis of cross-sectional studies from Iran. Microbial Drug Resist. 2020;26(12):1491-502. https://doi.org/10.1089/mdr.2019.0440

8. Kotb S, Lyman M, Ismail G, Abd El Fattah M, Girgis SA, Etman A, et al. Epidemiology of carbapenem-resistant Enterobacteriaceae in Egyptian intensive care units using national healthcare-associated infections surveillance data, 2011-2017. Antimicrob Resist Infect Control. 2020;9(1):1-9. https://doi.org/10.1186/s13756-019-0699-7

9. Elshamy AA, Aboshanab KM. A review on bacterial resistance to carbapenems: Epidemiology, detection and treatment options. Future Sci OA. 2020;6(3):FSO438. https://doi.org/10.2144/fsoa-2019-0098

10. Castanheira M, Deshpande LM, Woosley LN, Serio AW, Krause KM, Flamm RK. Activity of plazomicin compared with other aminoglycosides against isolates from European and adjacent countries, including Enterobacteriaceae molecularly characterized for aminoglycoside-modifying enzymes and other resistance mechanisms. J Antimicrob Chemother. 2018;73(12):3346-54. https://doi.org/10.1093/jac/dky344

11. WalktyA, Karlowsky JA, Baxter MR, Adam HJ, Zhanel GG. In vitro activity of plazomicin against gram-negative and gram-positive bacterial pathogens isolated from patients in Canadian hospitals from 2013 to 2017 as part of the CANWARD surveillance study. Antimicrob Agents Chemother. 2019;63(1):e02068-18. https://doi.org/10.1128/AAC.02068-18

12. US Food. Drug Administration Antimicrobial Drugs Advisory Committee. FDA Briefing Document: Plazomicin Sulfate Injection (NDA 210303). United States: US Food; 2018.

13. Mok WW, Brynildsen MP. Resistance and tolerance to aminoglycosides. In: Bacterial Resistance to Antibiotics-From Molecules to Man. United States: John Wiley and Sons, Inc.; 2019. p. 81-100.

14. Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing. 29th ed. Wayne, PA: Clinical and Laboratory Standards Institute; 2019.

15. Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing. 30th ed. Wayne, PA: Clinical and Laboratory Standards Institute; 2020.

16. Poirel L, Walsh TR, Cuvillier V, Nordmann P. Multiplex PCR for detection of acquired carbapenemase genes. Diagn Microbiol Infect Dis. 2011;70(1):119-23. https://doi.org/10.1016/j.diagmicrobio.2010.12.002

17. Andrei S, Droc G, Stefan G. FDA approved antibacterial drugs: 2018-2019. Discoveries. 2019;7(4):e102. https://doi.org/10.15190/d.2019.15

18. Tawfick MM, Alshareef WA, Bendary HA, Elmahalawy H, Abdulai AK. The emergence of carbapenemase bla NDM genotype among carbapenem-resistant Enterobacteriaceae isolates from Egyptian cancer patients. Eur J Clin Microbiol Infect Dis. 2020;39(7):1251-9. https://doi.org/10.1007/s10096-020-03830-2

19. Grundmann H, Glaser C, Albigert B, Aannensen DM, Tomlinson CT, Andrzejewić AT, et al. Occurrence of carbapenemase-producing Klebsiella pneumoniae and Escherichia coli in the European survey of carbapenemase-producing Enterobacteriaceae (EuSCAPE): A prospective, multinational study. Lancet Infect Dis. 2017;17(2):153-63. https://doi.org/10.1016/S1473-3099(16)30257-2

20. Raheel A, Azab H, Hassam W, Abbadi S, Ezzat A. Detection of carbapenemase enzymes and genes among carbapenem-resistant Enterobacteriaceae isolates in Suez Canal university hospitals in Ismaïlia, Egypt. Microbes Infect Dis. 2020;1(1):24-33.

21. Gelmez GA, Can B, Hasdemir U, Soyletir G. Evaluation of phenotypic tests for detection of carbapenemases: New modifications with new interpretation. J Infect Chemother. 2021;27(2):226-31. https://doi.org/10.1016/j.jiac.2020.09.021

PMid:33008736
22. Ghaith DM, Zafer MM, Said HM, Elanwary S, Elsaban S, Al-Agamy MH, et al. Genetic diversity of carbapenem-resistant Klebsiella Pneumoniae causing neonatal sepsis in intensive care unit, Cairo, Egypt. Eur J Clin Microbiol Infect Dis. 2020;39(3):583-91. https://doi.org/10.1007/s10096-019-03761-2 PMid:31773363

23. Fleischmann WA, Greenwood-Quaintance KE, Patel R. In vitro activity of plazomicin compared to amikacin, gentamicin, and tobramycin against multidrug-resistant aerobic Gram-Negative Bacilli. Antimicrob Agents Chemother. 2020;64(2):e01711-19. https://doi.org/10.1128/AAC.01711-19 PMid:31712206

24. Castanheira M, Davis AP, Mendes RE, Serio AW, Krause KM, Flamm RK. In vitro activity of plazomicin against Gram-negative and Gram-positive isolates collected from US hospitals and comparative activities of aminoglycosides against carbapenem-resistant Enterobacteriaceae and isolates carrying carbapenemase genes. Antimicrob Agents Chemother. 2018;62(8):e00313-18. https://doi.org/10.1128/AAC.00313-18 PMid:29866862

25. Clark JA, Kulengowski B, Burgess DS. In vitro activity of plazomicin compared to other clinically relevant aminoglycosides in carbapenem-resistant Enterobacteriaceae. Diagn Microbiol Infect Dis. 2020;98(2):115117. https://doi.org/10.1016/j.diagmicrobio.2020.115117 PMid:32755805

26. Jacobs MR, Good CE, Hujer AM, Abdelhamed AM, Rhoads DD, Hujer KM, et al. ARGONAUT II study of the in vitro activity of plazomicin against carbapenemase-producing Klebsiella pneumoniae. Antimicrob Agents Chemother. 2020;64(5):e00012-20. https://doi.org/10.1128/AAC.00012-20 PMid:32152078

27. Eljaaly K, Alharni A, Alshehri S, Ortwine JK, Pogue JM. Plazomicin: A novel aminoglycoside for the treatment of resistant Gram-negative bacterial infections. Drugs. 2019;79(3):243-69. https://doi.org/10.1007/s40265-019-1054-3 PMid:30723876

28. Zhang Y, Kashikar A, Bush K. In vitro activity of plazomicin against β-lactamase-producing carbapenem-resistant Enterobacteriaceae (CRE). J Antimicrob Chemother. 2017;72(10):2792-5. https://doi.org/10.1093/jac/dkx261 PMid:29091224