SYSTEMATIC REVIEW AND META-ANALYSIS

Systematic Review and Network Meta-Analysis Comparing Bifurcation Techniques for Percutaneous Coronary Intervention

Dae Yong Park MD*; Seokyung An BS*; Neeraj Jolly, MD; Steve Attanasio, MD; Neha Yadav, MD; Sunil Rao MD; Aviral Vij MD

BACKGROUND: Bifurcation lesions account for 20% of all percutaneous coronary interventions and represent a complex subset which are associated with lower procedural success and higher rates of restenosis. The ideal bifurcation technique, however, remains elusive.

METHODS AND RESULTS: Extensive search of the literature was performed to pull data from randomized clinical trials that met predetermined inclusion criteria. Conventional meta-analysis produced pooled relative risk (RR) and 95% CI of 2-stent technique versus provisional stent on prespecified outcomes. Both frequentist and Bayesian network meta-analyses were performed to compare bifurcation techniques. A total of 8318 patients were included from 29 randomized clinical trials. Conventional meta-analysis showed no significant differences in all-cause mortality, cardiac death, major adverse cardiac events, myocardial infarction, stent thrombosis, target lesion revascularization, and target vessel revascularization between 2-stent techniques and provisional stenting. Frequentist network meta-analysis revealed that double kissing crush was associated with lower cardiac death (RR, 0.57; 95% CI, 0.38–0.84), major adverse cardiac events (RR, 0.50; 95% CI, 0.39–0.64), myocardial infarction (RR, 0.60; 95% CI, 0.39–0.90), stent thrombosis (RR, 0.50; 95% CI, 0.28–0.88), target lesion revascularization, and target vessel revascularization when compared with provisional stenting. Double kissing crush was also superior to other 2-stent techniques, including T-stent or T and protrusion, dedicated bifurcation stent, and culotte.

CONCLUSIONS: Double kissing crush was associated with lower risk of cardiac death, major adverse cardiac events, myocardial infarction, stent thrombosis, target lesion revascularization, and target vessel revascularization compared with provisional stenting and was superior to other 2-stent techniques. Superiority of 2-stent strategy over provisional stenting was observed in subgroup meta-analysis stratified to side branch lesion length ≥10 mm.

Key Words: bifurcation technique ■ coronary ■ DK crush ■ percutaneous coronary intervention ■ provisional ■ stent ■ two-stent

See Editorial by Alasnag and Mamas

Bifurcation lesions account for up to 20% of all percutaneous coronary interventions (PCI) and have been associated with worse clinical outcomes when compared with non-bifurcation lesions.1,2 Over the years, several bifurcation techniques have been developed to improve procedural and clinical outcomes, but the ideal technique remains elusive.3 The European Bifurcation Club published its 14th consensus statement in 2019 and advocated for provisional stenting strategy as the standard technique.
for majority of bifurcation lesions.4 Upfront 2-stent approach should be reserved for select cases with appropriate lesion preparation, proximal optimization technique (POT) and final kissing balloon inflation (FKBI).4 Double kissing (DK) crush received a class IIB recommendation as the choice or upfront 2-stent technique.5

Two previous Bayesian network meta-analysis have compared the outcomes between different bifurcation techniques but were limited by misclassification and lack of contemporary intervention practices in older trials.6,7 Additional trials comparing bifurcation techniques have since been published, therefore, we performed an updated network meta-analysis using both frequentist and Bayesian models to compare the various bifurcation techniques.

CLINICAL PERSPECTIVE

What Is New?
- We used both frequentist and Bayesian approaches of network meta-analysis in comparing different bifurcation techniques.
- We included the findings of newer trials, performed multiple sensitivity analyses, and incorporated results from trials on dedicated bifurcation stents to produce more robust indirect evidence.

What Are the Clinical Implications?
- Results of our conventional analysis demonstrated no benefit of 2-stent strategies over provisional stenting.
- Two-stent strategy should be favored over provisional stenting when lesion length of the side branch is >10 mm.
- Double kissing crush technique of bifurcation had more favorable clinical outcomes when compared with provisional stenting, crush, culotte, or T-stenting or T and protrusion.

METHODS

Search Strategy and Inclusion Criteria
The authors declare that all supporting data are available within the article. An extensive literature search was conducted by 2 authors (D.P. and S.A.) using the online libraries, PubMed, Medline, Embase, and Cochrane Library from inception to November 24, 2021. The search terms applied were “bifurcation,” “coronary,” and “randomized trial.” The inclusion criteria were as follows: (1) randomized controlled trials (RCTs) with 1 bifurcation technique in case group and another bifurcation technique in the control group; (2) pre-specified end points which included all-cause mortality, cardiac death, major adverse cardiac events (MACE), myocardial infarction (MI), stent thrombosis, target lesion revascularization (TLR), and target vessel revascularization (TVR). Multiple bifurcation techniques could be included in 1 arm if the percentage of each technique was specified. If an RCT had multiple publications, the latest data were collected. For 6 RCTs that included >1 bifurcation technique in 1 arm,8–13 outcomes were attributed to the predominantly used technique.

Data Extraction and Quality Assessment
Two authors (D.P. and S.A.) collaboratively reviewed full text articles to assess for predetermined eligibility. All the articles were perused for reference citations which were also included if eligible. For each selected RCT, author, published year, follow-up period, bifurcation techniques, duration of antiplatelet therapy, dual antiplatelet agent, and stent types were arranged into tables (Table 1 and Table S1). Inclusion and exclusion criteria of the RCTs were also summarized in Tables S2 and S3. Anatomical characteristics of bifurcation lesions, demographics, clinical presentation, procedural characteristics, definition of outcomes, and quantitative coronary angiography at baseline were extracted and further organized in Table 2 and Tables S3 through S6. The present meta-analysis adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines.14 Risk of biases were assessed using Cochrane Collaboration’s tool (Table S7).15 Only data from published papers that are publicly available were used, so the study was not under the purview of the institutional review board.

Statistical Analysis
For conventional meta-analysis, random effects model based on DerSimonian and Laird method was used to produce pooled relative risk (RR) and 95% CI of 2-stent technique versus provisional stent on prespecified outcomes. Haldane-Ascorbne corrections were made for zero-cell corrections. Egger and Begg-Mazumdar tests
Table 1. Characteristics of Selected Trials

Trial	Author	Y	Follow-up	DAPT	Left main	Total	Predominant bifurcation Technique n	Control
EBC MAIN^9	Hildick-Smith et al	2021	1 y	6 mo	Yes	467	Culotte (53%), T/TAP (32%), DK crush (5%), missing (7%)	237
NBBS IV^10	Kumsars et al	2020	2 y	12 mo	Yes	446	Culotte (66%), crush (22%), T-stent (7%), others (6%)	228
DEFINITION II^13	Zhang et al	2020	1 y	12 mo	Yes	653	DK crush (78%), culotte (18%), TAP (3%), others (1%)	328
DKCRUSH-V^16	Chen et al	2019	3 y	12 mo	Yes	482	DK crush	240
COBRA^17	Bennett et al	2018	5 y	12 mo	No	40	DBS	150
DKCRUSH-II^18	Chen et al	2017	5 y	12 mo	Yes	366	Culotte	183
BBK I^19	Ferenc et al	2016	1 y	6 mo	Yes	300	Crush	150
POLBOS II^20	Gil et al	2016	1 y	12 mo	Yes	202	DBS	102
EBC TWO^21	Hildick-Smith et al	2016	1 y	12 mo	No	200	Culotte	97
SMART-STRATEGY^22	Song et al	2016	3 y		Yes	258	TAP	130
Zhang et al	Zhang et al	2016	9 mo	12 mo	Yes	104	Culotte	52
Zheng et al	Zheng et al	2016	1 y	12 mo	Yes	300	Crush	150
DKCRUSH-III^25	Chen et al	2015	3 y	12 mo	Yes	415	DK crush	208
BBK I^18	Ferenc et al	2015	5 y	6 mo	No	202	T-stent	101
TRYTON^17	Genereux et al	2015	9 mo	6-12 mo	No	704	DBS	355
POLBOS II^20	Gil et al	2015	1 y	12 mo	Yes	243	DBS	120
PERFECT^29	Kim et al	2015	1 y	12 mo	No	419	Crush	213
NSTS^30	Kervinen et al	2013	3 y	6-12 mo	Yes	424	Crush	209
NBS^31	Maeng et al	2013	5 y	6-12 mo	Yes	404	Crush (50%), culotte (21%), others (29%)	202
Ruiz-Salmeron et al (2013)^32	Ruiz-Salmeron et al	2013	9 mo	12 mo	No	65	T-stent	34
Ye et al (2012)^32	Ye et al	2012	1 y	12 mo	No	68	DK crush	38
BBC ONE^33	Hildick-Smith et al	2010	9 mo	9 mo	No	500	Crush (68.1%), culotte (30.2%), others (1.6%)	250
Lin et al (2010)^31	Lin et al	2010	8 mo	12 mo	No	108	DK crush (65%), culotte (25%), others (10%)	54
Ye et al (2010)^33	Ye et al	2010	8 mo	12 mo	No	51	DK crush	25
CACTUS^34	Colombo et al	2009	6 mo	6 mo	No	350	Crush	177
Cervinka et al (2008)^35	Cervinka et al	2008	1 y	1 mo	No	60	DBS	30

(Continued)
Table 1. Continued

Trial	Author	Y Follow-up	DAPT	Left main	Total	Predominant bifurcation Technique n	Technique n
DKCRUSH-I	Chen et al	2008	8 mo	Yes	311	DK crush	155
	Colombo et al	2004	6 mo	No	85	T-stent	63
	Colombo et al	(2004)37					
	Pan et al	2004	6 mo	Yes	91	T-stent	44
BBC ONE indicates British Bifurcation Coronary Study; BBK I, Bifurcations Bad Krozingen I; BBK II, Bifurcations Bad Krozingen II; CACTUS, Coronary Bifurcations: Application of the Crushing Technique Using Everolimus-Eluting Stents; COBRA, Complex Coronary Bifurcation Lesions: Randomized Comparison of a Strategy Using a Dedicated Self-Expanding Stent Versus a Culotte Stenting for Treatment of Coronary Bifurcation Lesions; DBS, dedicated bifurcation stent; DEFINITION II, Definitions and Impact of Complex Bifurcation Lesions on Clinical Outcomes After Percutaneous Coronary Intervention Using Drug-Eluting Stents; DKCRUSH-I, Study Comparing the Double Kissing Crush With Classical Crush for the Treatment of Coronary Bifurcation Lesions; DKCRUSH-II, Double Kissing Crush Versus Culotte Stenting for the Treatment of Coronary Bifurcation Lesions; DKCRUSH-III, Double Kissing Crush Versus Culotte Stenting for the Treatment of Unprotected Distal Left Main Coronary Stent Study; EBC MAIN, European Bifurcation Club Left Main Coronary Stent Study; EBC TWO, European Bifurcation Coronary Two; NBBS IV, Nordic-Baltic Bifurcation Study IV; NSTS, Nordic Stent Technique Study; PERFECT, Optimal Stenting Strategy for True Bifurcation Lesions; POLBOS I, Polish Bifurcation Optimal Stenting I; POLBOS II, Polish Bifurcation Optimal Stenting II; PS, provisional stent; SMART-STRATEGY, Smart Angioplasty Research Team-Optimal STRATEGY for Provisional Side Branch Intervention in Coronary Bifurcation Lesions; T/TAP, T-stenting or T and protrusion; and TRYTON, Prospective, Single Blind, Randomized Controlled Study to Evaluate the Safety & Effectiveness of the Tryton Side Branch Stent Used With DES in Treatment of de Novo Bifurcation Lesions in the Main Branch & Side Branch in Native Coronaries.							

13 trials.‡References 8, 11, 17, 21, 26, 27, 29, 31–35, 37.
‡References 4, 9, 10, 12, 13, 16, 18–20, 22–25, 28, 30, 36, 38.

RESULTS

Bibliographic Search and Trial Characteristics

After a comprehensive search of the literature, 29 RCTs, published from 2004 to 2021, were included in the study (Figure 1). A total of 8318 patients were included consisting of 3225 provisional stenting, 1357 crush, 1356 culotte, 1231 DK crush, 627 dedicated bifurcation stent (DBS), and 522 T-stent or T and protrusion (T/TAP) (Table 1). The follow-up period ranged from 6 months to 5 years. Left main (LM) bifurcations were included in 16 trials1 while solely non-LM bifurcations were included in 13 trials.2 Most of the trials prescribed clopidogrel as the dual antiplatelet agent, with some older studies also were applied after visualization of funnel plots to evaluate for publication biases (Table S8). Both Cochran’s Q and Higgins and Thompson’s I² statistic were generated to describe the heterogeneities among the trials. P value <0.05 or 95% CI not including 1 was statistically significant.

Network meta-analysis based on frequentist framework was first performed to produce network estimates from direct and indirect estimates. To evaluate for inconsistencies, node-splitting analysis was conducted to compare direct and indirect evidence for each outcome. P value <0.05 signified the presence of inconsistency. Tau-squared and I² were used to assess the heterogeneities in the network models, which was then broken down into heterogeneities within designs and between designs, each evaluated with Cochran’s Q (Table S9). P-scores of each bifurcation technique were also calculated for all outcomes (Table S10). P-scores were interpreted only for outcomes in which the network meta-analysis showed significant difference among the bifurcation techniques. Bayesian network meta-analysis was additionally performed whereby estimates of the bifurcation techniques were calculated through a generalized linear model fitted under a hierarchic Bayesian random-effect framework. Models were computed by Markov-chain Monte Carlo simulations using 4 chains, 5000 adaptations, and 100,000 iterations. Convergence was observed by visual inspection of time-series and density plots. Surface under the cumulative ranking scores were calculated from the Bayesian model to validate the P-scores from the frequentist model (Table S11). Hierarchy of bifurcation techniques were then displayed using rankograms (Table S12). Frequentist network meta-analysis was performed with meta and netmeta packages, and Bayesian network meta-analysis with gemtc and rjags packages, all with the use of R version 4.0.5 (R Foundation for Statistical Computing, Vienna, Austria).
Case/control, %	EBC MAIN⁹	NBBS IV¹⁰	DEFINITION II¹³	DKCRUSH-I⁸	COBRA¹²	DKCRUSH-I¹⁶	BBK¹¹	POLBOS¹³	EBC TWO²¹
Age, y	71.4/70.8	63.0/64.0	63.0/64.0	65.0/64.0	66.0/64.0	63.9/64.7	66.3/69.1	67.2/66.6	63.5/62.9
Male	74/79	...	77.7/76.9	82.9/77.7	14.0/15.0	78.8/75.8	71.3/76.0	76.9/75.0	78.0/85.0
BMI, mean	28.4/28.6	...	24.8/24.7
Diabetes	27.0/29.0	15.4/16.5	34.1/35.7	28.8/25.6	25.0/20.0	19.6/23.1	27.3/28.0	44.1/32.0	31.0/25.0
Hypertension	82.0/79.0	65.6/70.0	66.2/70.1	72.9/64.5	75.0/70.0	65.2/60.9	88.0/85.3	84.3/81.0	68.0/63.0
Dyslipidemia	72.0/70.0	81.1/82.0	69.2/68.6	47.5/47.5	95.0/95.0	33.7/29.1	...	83.3/81.0	70.0/70.0
Smoking	13.0/16.0	21.1/18.9	28.4/30.2	...	25.0/20.0	...	11.3/11.3	20.6/26.0	50.0/56.0
PVD	16.0/14.0	...	5.8/4.6
Renal failure	4.0/5.0
Family history	33.0/33.0	47.4/50.0
Previous MI	28.0/26.0	...	11.9/12.9	21.7/21.1	30.0/10.0	17.4/14.2	16.0/21.3	43.1/48.0	41.0/39.0
Previous PCI	43.0/41.0	33.5/35.5	19.8/16.6	...	40.0/20.0	21.2/20.9	38.0/32.0	52.0/57.0	41.0/40.0
Previous stroke	7.0/7.0
LVEF, mean	56.0/57.0	59.0/60.0	...	67.0/68.0	...	56.0/57.0
Stable CAD	60.0/66.0	80.0/80.0	68.0/69.0
Stable angina	...	82.4/86.6	24.1/21.8	...	15.3/11.0
Silent ischemia	...	1.3/0.5	5.2/5.2	...	1.6/5.8
ACS	40.0/33.0
Unstable angina	...	16.7/12.9	48.8/50.5	...	20.0/20.0	66.8/68.7
Acute MI	22.0/22.5	...	16.3/16.3
SYNTAX, mean	23.2/22.6	...	24.7/24.2	17.5/18.2
0–22	26.0/30.0	...	44.8/48.6
22–32	57.0/56.0	...	33.8/32.6
>32	21.3/18.8	37.9/36.4
Medina class
Complex features

Table 2. Demographics, Clinical Presentation, and Characteristics of Lesion

(Continued)

Comparison of PCI Bifurcation Techniques

Park et al
Table 2. Continued

Case/control, %	EBC MAIN	NBBS MAIN	DEFINITION II	DKCRUSH-V	COBRA	DKCRUSH-II	BBK	POLBOS II	EBC TWO	
Calcification	54.0/4.0	43.6/48.4	38.7/40.3	37.1/39.7	17.0/19.0	
Tortuosity	24.0/19.0	7.0/2.8	15.0/10.0	
Lesion location										
Left main	100/100	1.3/2.7	28.7/28.9	100/100	...	17.8/15.7	18.7/15.3	35.3/38	...	
LAD		76.7/74.2	62.5/60.6	60.5/59.5	54.7/55.3	44.1/43	77/78	
LCx		17.6/16.6	5.2/7.7	12.4/16.2	24.0/25.3	15.7/15.0	19.75	
RCA		4.0/6.5	3.7/2.8	9.2/8.6	2.7/4.0	4.9/4.0	4/6	
Age, y	61.5/61.8	64.2/64.5	63.0/64.0	64.3/63.3	66.9/66.7	64.5/64.6	65.9/66.2	60.9/61.1	65.0/65.0	63.0/63.0
Male	83.1/82.0	0.83/0.92	72.7/74.0	77.1/79.9	78.2/79.4	71.8/73.4	68.8/68.3	75.1/75.2	71.0/71.0	78.0/76.0
BMI, mean	24.9/24.9	...	
Diabetes	25.4/28.9	21.2/19.2	22.0/24.7	31.9/30.1	18.8/25.7	23.9/26.1	37.5/25.2	25.8/29.1	13.0/15.0	12.0/13.0
Hypertension	57.7/54.7	63.5/67.3	70.7/77.2	70.5/61.2	89.1/97.1	73.2/73.6	78.3/73.2	55.4/55.3	62.0/60.0	58.0/54.0
Dyslipidemia	131/12.5	115.5/11.5	76.0/70.0	41.4/42.1	...	741/77.3	62.5/56.9	62.0/57.3	84.0/74.0	72.0/78.0
Smoking	17.7/25.8	51.9/59.6	38.7/44.7	...	13.9	...	21.7/25.2	25.4/32.5	20.0/27.0	...
PVD	9.2/5.7	
Renal failure	3.1/1.6	23.7/20.8	...	10.9/9.8	0.5/0.5	...
Family history	14.6/13.3	...	30.0/34.7	36.9/32.5	...	14.1/12.6	57.0/62.0	54.0/56.0
Previous MI	3.8/5.5	19.2/23.1	20.8/18.8	30.0/37.8	45.8/35.0	42.4/4.4	...
Previous PCI	6.9/10.9	23.1/25.0	26.7/22.7	...	51.5/44.6	38.0/41.8	49.2/48.0	...	40.0/34.0	25.0/25.0
Previous stroke	7.7/3.9	2.3/3.8	
LVEF, mean	59.3/60.5	61.0/59.0	57.7/57.5	60.4/59.5	57.0/57.0	...
Stable CAD	91.8/94.3	
Stable angina	63.1/62.5	38.5/28.8	9.3/8.0	73.8/74.8	...	78.0/72.0	...	
Silent ischemia	5.4/10.2	...	8.0/6.0	5.6/5.2	...	2.0/3.0	...	
ACS	
Unstable angina	23.8/20.3	53.8/48.1	82.7/86.0	20.0/19.8	...	21.0/26.0	...	
Acute MI	7.7/7.0	
SYNTAX, mean	
0–22	
22–32	
>32	
Table 2. Continued

Case/control, %	SMART-STRATEGY²²	Zhang et al (2016)²³	Zheng et al (2016)²⁴	DKCRUSH-II²⁵	BBK²⁶	TRYTON²⁷	POLBOS I²⁸	PERFECT²⁹	NSTS³⁰	NBS³¹
Medina class										
1,0,0	1.5/1.6	2.0/3.0	...	4.2/4.9	1.0/2.0			
0,1,0	14.6/20.3	13.9/11.9	...	2.54/1	1.9/2.5			
1,1,0	14.6/13.3	9.9/11.9	...	16.7/15.4	2.4/10.9			
1,1,1	58.5/53.1	65.4/57.7	72.7/74.0	98.7/94.8	30.7/35.6	73.2/68.7	42.5/5.5	65.9/62.4		
0,0,1	0.8/0.8	5.9/5.0	...	1.4/1.0				
1,0,1	3.1/1.3	13.5/11.5	18.0/21.3	...	5.9/7.9	11.5/12.4	10.8/7.3	8.7/8.9		
0,1,1	6.9/4.7	21.2/30.8	9.3/4.7	1.3/5.2	31.7/24.8	14.6/18.7	23.3/22.8	18.8/12.4		
Complex features										
Trifurcation			
Calcification						16.422.3				
Tortuosity						2.5/4.1	11.5/12.4			
Lesion location										
Left main	43.8/44.5	26.9/30.8	8.7/12.7	100/100	...	22.5/14.8	10/10	1/2		
LAD	50.8/40.6	65.4/63.5	64.0/68.0	...	73.3/75.2	75.8	52.5/69.9	93.9/92.2	63/66	74/73
LCx	2.3/7.8	3.8/5.8	23.3/17.3	...	20.8/15.8	18.2	175/13.0	4.7/3.3	20/20	18/17
RCA	3.1/7.0	3.8/0	4.0/2.0	...	5.9/8.9	6.0	7.5/2.4	14/0.5	2/4	6/7

Table 2. Continued

Case/control, %	Ruiz-Salmeron et al (2013)³	Ye et al (2012)³	BBC One³	Lin et al (2010)³	Ye et al (2010)³	CACTUS³	Cervinka et al (2008)³	DKCRUSH-I³	Colombo et al (2004)³	Pan et al (2004)³
Age, y	63.6/63.4	63.5/61.7	64.0/64.0	59.2/60.6	63.6/63.2	65.0/670	65.3/61.5	63.8/63.9	63.0/62.0	58.0/61.0
Male	78.0/85.0	63.2/76.7	77.0/77.0	75.9/83.3	64.0/73.1	80.2/76.3	85.0/83.0	76.2/70.0	76.0/91.0	86.0/72.0
BMI, mean	...	28.0/28.0		
Diabetes	33.0/45.0	18.4/13.3	11.0/13.0	13.0/18.5	16.0/19.2	23.7/22.0	30.0/27.0	27.0/8.4	39.0/42.0	
Hypertension	72.0/67.0	76.3/66.7	62.0/57.0	83.3/90.7	76.0/73.1	70.6/79.8	76.2/76.6	570/59.0		
Dyslipidemia	64.0/51.0	18.4/20.0	76.0/76.0	...	16.0/11.5	63.8/70.5	67.0/70.0	68.6/62.6	41.0/53.0	
Smoking	50.0/61.0	17.0/17.0	24.1/29.6		
PVD	...	5.0/10.0		
Renal failure		
Family history		
Previous MI		
Previous PCI		
Previous stroke		
LVEF, mean		
Stable CAD		
Case/control, %	Ruiz-Salmeron et al (2013)	Ye et al (2012)	BBC One	Lin et al (2010)	Ye et al (2010)	CACTUS	Cervinka et al (2008)	DKCRUSH-I	Colombo et al (2004)	Pan et al (2004)
-----------------	-----------------------------	----------------	---------	-----------------	---------------	--------	----------------------	-----------	--------------------	----------------
Stable angina	31.1/36.4	55.0/50.0
Silent ischemia	17.5/13.3
ACS	...	29.0/27.0
Unstable angina	...	71.1/63.3	...	40.7/42.6	96.0/76.9	4.4/0.47.4	69.5/70.1	170/17.0
Acute MI	15.2/16.8
SYNTAX, mean
0–22
22–32
>32
Medina class	1,0,0	2.8/2.9	...	5.04/6.0	43.0/50.0
	0,1,0	0.5/9	...	2.0/4.0	20.0/20.0
	1,1,0	5.6/11.8	...	8.0/10.0
	1,1,1	80.6/70.6	...	42.6/48.1	37.0/30.0
	0,0,1	1.0/0
	1,0,1	8.3/8.8	...	10.0/8.0	24.1/16.7
	0,1,1	2.8/0	...	14.0/13.0	33.3/35.2
Complex features										
Trifurcation	84.0/81.0
Calcification	27.8/25.9
Tortuosity
Lesion location										
Left main	15.3/15.9	...	5/6	
LAD	72/71	78	84/81	79.6/83.3	74/70	80/77	65.7/61.7	75.3	75/71	
LCx	17/26	15	11/14	11.1/9.3	19/25	17/23	11.3/14.0	17.6	13/17	
RCA	11/3	7	5/4	9.3/7.4	7/5	3/0	76/8.4	8.2	7.6	

ACS indicates acute coronary syndrome; BBC ONE, British Bifurcation Coronary Study; BBK I, Bifurcations Bad Krozingen I; BBK II, Bifurcations Bad Krozingen II; CACTUS, Coronary Bifurcations: Application of the Crushing Technique Using Sirolimus-eluting stents; CAD, coronary artery disease; COBRA, Complex Coronary Bifurcation Lesions: Randomized Comparison of a Strategy Using a Dedicated Self-Expanding Sirolimus-Eluting Stent Versus a Qutote Strategy Using Everolimus-Eluting Stents; DEFINITION II, Definitions and Impact of Complex Bifurcation Lesions on Clinical Outcomes After Percutaneous Coronary Intervention Using Drug-Eluting Stents; DKCRUSH-I, Study Comparing the Double Kissing Crush with Classical Crush for the Treatment of Coronary Bifurcation Lesions; DKCRUSH-II, Double Kissing Crush Versus Provisional Stenting Technique for Treatment of Coronary Bifurcation Lesions; DKCRUSH-III, Double Kissing Crush Versus Qutote Stenting for the Treatment of Unprotected Distal Left Main Bifurcation Lesions; DKCRUSH-V, Double Kissing Crush Versus Provisional Stenting for Left Main Bifurcation Lesions; EBC MAIN, European Bifurcation Club Left Main Coronary Stent Study; EBC TWO, European Bifurcation Coronary Two; LAD, left anterior descending coronary artery; LCX, left circumflex coronary artery; MI, myocardial infarction; NBBS IV, Nordic-Baltic Bifurcation Study IV; NBS, Nordic Bifurcation Study; NSTS, Nordic Stent Technique Study; PERFECT, Optimal Stenting Strategy for True Bifurcation Lesions; POLBOS I, Polish Bifurcation Optimal Stenting I; POLBOS II, Polish Bifurcation Optimal Stenting II; SMART-STRATEGY, Smart Angioplasty Research Team-Optimal STRATEGY for Provisional Side Branch Intervention in Coronary Bifurcation Lesions; PVD, peripheral vascular disease; RCA, right coronary artery; and TRYTON, Prospective, Single Blind, Randomized Controlled Study to Evaluate the Safety & Effectiveness of the Tryton Side Branch Stent Used With DES in Treatment of de Novo Bifurcation Lesions in the Main Branch & Side Branch in Native Coronaries.
administering ticlopidine (Table S1). The types of stents used varied widely across the studies. Demographics, clinical presentation, and characteristics of bifurcation lesions in each of the trials were also heterogeneous (Table 2). Clinical and anatomical inclusion criteria are summarized in Tables S2 and S3. Details of quantitative angiography and PCI procedural information were inconsistent across all trials (Tables S4 and S6).

Angiographic follow-ups were provided for most trials and ranged between 6 and 13 months after index procedure (Table S13).

Comparison of Bifurcation Techniques

Conventional meta-analysis was initially performed to compare clinical outcomes between 2-stent and provisional stent strategies. There were no significant differences in all-cause mortality, cardiac death, MACE, MI, stent thrombosis, TLR, and TVR (Figures S1 through S7). However, in subgroup analysis stratified to the length of side branch (SB) lesion, 2-stent strategies performed better than provisional stents at reducing cardiac death (RR, 0.60; 95% CI, 0.40–0.90), MACE (RR, 0.68; 95% CI, 0.50–0.93), TLR (RR, 0.55; 95% CI, 0.39–0.78), and TVR (RR, 0.58; 95% CI, 0.36–0.95) when the lesion in the SB was ≥10 mm (Figures S8 through S14). On the other hand, the risk of MACE (RR, 1.20; 95% CI, 1.00–1.44) was marginally greater in 2-stent strategy than provisional stenting when the length of the SB lesion was <10 mm (Figure S10).

Frequentist network meta-analysis (Figure 2) revealed that DK crush was associated with lower cardiac death (RR, 0.57; 95% CI, 0.38–0.84), MACE (RR, 0.50; 95% CI, 0.39–0.64), MI (RR, 0.60; 95% CI, 0.39–0.90), stent thrombosis (RR, 0.50; 95% CI, 0.28–0.88), TLR (RR, 0.44; 95% CI, 0.33–0.59), and TVR (RR, 0.48; 95% CI, 0.34–0.66) when compared with provisional stenting (Figure 3). T/TAP performed worse than provisional stenting and was associated with increased risk of stent thrombosis (RR, 2.37; 95% CI, 1.02–5.51). Node-splitting analysis showed no inconsistencies between direct and indirect evidence for all outcomes (Table S14).

DK crush was associated with lower risk of cardiac death, MACE, MI, stent thrombosis, TLR, and TVR compared with crush. It was also associated with lower risk of MACE, MI, stent thrombosis, TLR, and TVR compared...
end points including cardiac death, MACE, and MI. Subgroup analysis within conventional meta-analysis demonstrated upfront 2-stent strategy was superior to provisional stenting when the SB lesion length was ≥10 mm.

Two previous network meta-analyses have been reported comparing different bifurcation techniques. Crimi et al compiled 26 RCTs and showed that DK crush was associated with the lowest device-oriented clinical event consisting of cardiac death, target-vessel MI, stent thrombosis, TLR, and TVR. This was in line with the findings of the present network meta-analysis, which also presented highest P-scores as well as surface under the cumulative ranking scores for DK crush. However, Crimi et al mislabeled THUEBIS (Thueringer bifurcation Study) trial as a trial on DBS versus provisional stent and did not account for case groups in which >1 bifurcation techniques were used. Di Gioia et al performed a similar meticulous network meta-analysis on the same subject that included 21 RCTs and 3 sensitivity analyses. They showed that DK crush was associated with lower MACE which was driven by lower rates of TLR and TVR. However, they did not include trials with DBS, and their sensitivity analysis on trials with only non-LM bifurcations included a significant number of trials with LM bifurcations.

Several theories have been proposed to explain the superiority of DK crush over more conventional and less complex bifurcation techniques. DK crush is advantageous in that it is not affected by the bifurcation angle and maintains wire access in the MV. However, it is a complex multi-step process that requires crossing stent struts twice and results in greater radiation and contrast exposures. FKBI, an important step in the DK crush technique, may also be contributing to favorable outcomes. Summary of procedural characteristics in our analysis also showed that FKBI was performed more frequently in the DK crush arms (Table S4). Bench modeling demonstrated greater occurrence of stent malaposition in single kissing compared with DK with FKBI. Chen et al claimed that DK crush reduced the strut layer in the SB ostium, thereby increasing the success of the final kissing balloon inflation. Ye et al also explained the superiority of DK crush with the higher rate of FKBI, which potentially leads to improved stent apposition, optimized stent geometry, and reduced flow disturbance. However, FKBI after PCI of distal LM bifurcation lesions was not associated with improved outcomes within the EXCEL (Evaluation of XIENCE Versus Coronary Artery Bypass Surgery for Effectiveness of Left Main Revascularization) trial. Similarly, in DEFINITION II (Definitions and Impact of Complex Bifurcation Lesions on Clinical Outcomes After Percutaneous Coronary Intervention Using Drug-Eluting Stents) trial, despite having similar percentages

Figure 2. Network plot of selected trials.
The network plot demonstrates the number of studies and patients included among trials that compared double kissing crush, dedicated bifurcation stent, culotte, crush, provisional stenting, and T-stent or T and protrusion. The size of the blue circles and blue lines are proportional to the total sample size and number of relevant studies, respectively. DBS indicates dedicated bifurcation stent; DK, double kissing; PS, provisional stenting; and T/TAP, T-stent or T and protrusion.

with culotte. Similarly, DK crush was associated with better outcomes compared with DBS, T/TAP, and provisional stent (Table S15). The superiority of DK crush was consistently observed in sensitivity analysis of trials that only included true bifurcations (Table S16) or those that excluded LM bifurcations (Table S17). Similar outcomes were found on sensitivity analysis excluding trials without LM bifurcations (Table S18). After excluding trials allowing multiple bifurcation techniques in 1 arm, outcomes still favored DK crush (Table S19).

P-scores calculated by the frequentist model demonstrated that DK crush ranked the highest for MACE, MI, stent thrombosis, TLR, and TVR, most often followed by provisional strategy (Figure 4). Culotte, crush, and T/TAP were associated with lower ranks. Surface under the cumulative ranking scores from Bayesian model produced identical results (Figures S15 and S16). Rankograms redemonstrated the superiority of DK crush and the inferiority of culotte, crush, and T/TAP (Figure 5).

DISCUSSION
The results from our present comprehensive meta-analysis show that DK crush was superior to other bifurcation techniques in reducing the risk of not only stent thrombosis, TLR, TVR, but also the hard
Coronary intravascular imaging has shifted the paradigm of coronary interventions from “guessing” based on quantitative angiography to “knowing” accurate vessel and lesion characteristics. Recent meta-analysis demonstrated that the use of intravascular ultrasound during bifurcation PCI was associated with lower risk of MACE compared with angiography-guided PCI.44 Only 9 out of the 29 RCTs included in our present study reported the use of intravascular ultrasound, which was not significantly different between the 2 arms except in the PERFECT trial (Table S4). Similarly, only European Bifurcation Club MAIN reported the percentage of optical coherence tomography in both its arms. Perhaps a more standardized and uniform use and reporting of imaging would improve our understanding of bifurcation lesion preparation and optimization.

Proximal optimization technique, which was introduced in 2010, has been proposed to reconstruct the natural and fractal geometry of coronary bifurcations and achieve optimal stent expansion and apposition in the proximal segment. POT was strongly favored over other strategies. In the case of bifurcations with ostial lesions, the POT technique allows proximal optimization of the ostial side branch with an appropriate stent, followed by distal optimization of the parent vessel stenting. This approach has been associated with better long-term outcomes compared with angiography-guided PCI and provisional stenting.

References 9, 13, 16, 18, 22, 25, 29, 34, 37, 42.
recommended by European Bifurcation Club across all 2 stent strategies. However, it was reported in only 5 RCTs. The difference in POT percentage was not significant between the 2 arms in the European Bifurcation Club MAIN (European Bifurcation Club Left Main Coronary Stent Study (EBC MAIN)) and DKCRUSH-V (Double Kissing Crush versus Provisional Stenting for Left Main Distal Bifurcation Lesions) trials, but was significantly different in DEFINITION II and POLBOS I and II (Polish Bifurcation Optimal Stenting Polish Bifurcation Optimal Stenting) trials (Table S4). Analysis of eULTIMASTER (Prospective, Single-Arm, Multi Centre Observations Ultimaster Des) multinational registry showed that POT was associated with reduction in target lesion failure and stent thrombosis regardless of bifurcation anatomy and technique, so the potential differences in the use of POT could have also affected the studied outcomes.

Other potential confounding variables such as the site of access (radial versus femoral) were only reported in 10 RCTs. However, the difference was not significant between any of the 2 arms (Table S4), and a propensity-matched analysis of Coronary Bifurcation Stenting Registry in Korea also did not observe any differences in cardiac death, MI, TLR, and MACE between transradial and transfemoral approaches. Antiplatelet use after bifurcation stenting varied across trials. More recent trials included ticagrelor and prasugrel as their choice of antiplatelet, while most other studies used clopidogrel and some older studies used ticlopidine (Table S1). A recent network meta-analysis suggested that ticagrelor and prasugrel performed better than clopidogrel in reducing cardiovascular outcomes, so choice of dual antiplatelet agent also needs dedicated analysis in bifurcation lesions. Furthermore, the heterogeneities in the anatomical characteristics of the bifurcation lesions in each of the RCTs were greatly variable, with some trials including more complex cases as those described in the DEFINITION criteria, limiting our results to be applied across all patient population (Tables S4 and S7).

Limitations
The present network meta-analysis is subject to several limitations. Individual patient level data were unavailable. The time RCTs were conducted spanned from the year 2004 to 2021, and there have been significant improvements in secondary prevention, stent design, choice of anti-proliferative agent in stents, and functional testing of lesions. Events were attributed to the most performed bifurcation technique in 6 RCTs where >1 technique was performed. Sensitivity analyses accounting for heterogeneities
Comparison of PCI Bifurcation Techniques

among the trials were conducted, which yielded similar results (Tables S15 through S19). Several RCTs were subject to high risk of bias primarily attributable to the lack of blinding and conducting open-label studies. Operators could not be masked because of the nature of the study. Significant crossovers occurred in many of the provisional stent arms, and many of the RCTs were conducted by the same group of experts at high-volume centers who would be more proficient in performing complex interventions. Outcomes after DK crush may vary depending on the level of expertise of operators, so further studies reproducing similar safety and efficacy will be required to validate the superiority of the DK crush technique.

CONCLUSIONS

The findings of the present network meta-analysis of bifurcation techniques showed that DK crush was associated with lower risk of cardiac death, MACE, MI, stent thrombosis, TLR, and TVR compared with provisional stenting. Superiority of 2-stent strategy over provisional stenting was observed in subgroup meta-analysis stratified to SB lesion length ≥10 mm. Given the findings from successive network meta-analysis, including our present study, and those from DEFINITION II and DKCRUSH-V trials, DK crush can be considered over other 2-stent strategies in patients with complex bifurcation lesions. Further studies will be required to reproduce and validate these findings.

ARTICLE INFORMATION

Received March 10, 2022; accepted April 7, 2022.

Affiliations

Department of Medicine, John H. Stroger Jr Hospital of Cook County, Chicago, IL (D.Y.P.); Department of Biomedical Science, Seoul National University Graduate School, Seoul, Korea (S.A.); Division of Cardiology, Rush University Medical Center, Chicago, IL (N.J., S.A.); Division of Cardiology, Cook County Health, Chicago, IL (N.Y., A.V.); Division of Cardiology, Rush Medical College, Chicago, IL (N.Y., A.V.); and Duke Clinical Research Institute and Duke University Health System, Durham, NC (S.R.).

Acknowledgments

Author contributions: Conceptualization: A.V.; Methodology: D.P., S.An, and A.V.; Software: D.P. and S.An; Validation: D.P., S.R., and A.V.; Formal analysis: D.P. and S.An; Investigation: D.P. and S.An; Resources: D.P. and S.An; Data curation: D.P. and S.An; Original draft preparation: D.P. and S.An; Review and revision: D.P., S.An, N.J., S.A, N.Y., S.R., and A.V.; Visualization: D.P. and S.An; Supervision: S.R. and A.V.; Project administration: A.V.; Funding acquisition: N/A.

Sources of Funding
None.

Disclosures
None.
coronary bifurcation BiOGS expert stent: multicenter open-label randomized controlled POLBOS I Trial. Can J Cardiol. 2015;31:671–678. doi: 10.1016/j.cjca.2014.12.024
29. Kim YH, Lee JH, Roh JH, Ahn JM, Yoon SH, Park DW, Lee JY, Yun SC, Kang SJ, Lee SW, et al. Randomized comparisons between different stenting approaches for bifurcation coronary lesions with or without side branch stenosis. JACC Cardiovasc Interv. 2015;8:550–560. doi: 10.1016/j.jcin.2015.01.016
30. Kervinen K, Niemelä M, Romppanen H, Erglis A, Kumsara I, Maeng M, Holm NR, Lassen JF, Gunnnes P, Stavnes S, et al. Clinical outcome after crush versus culotte stenting of coronary artery bifurcation lesions: the Nordic Stent Technique Study 36-month follow-up results. JACC Cardiovasc Interv. 2013;6:1160–1165. doi: 10.1016/j.jcin.2013.06.009
31. Ruiz-Salmeron RJ, Valenzuela LF, Perez I, Fuentes M, Rodriguez-Leiras S, Vizzcaino M, Carrascosa C, Marcos F. Approach to coronary bifurcation lesions using the everolimus-eluting stent: comparison between a simple strategy and a complex strategy with T-stenting. Rev Esp Cardiol (Engl Ed). 2013;66:638–643. doi: 10.1016/j.rec.2013.03.005
32. Ye F, Chen SL, Zhang JJ, Zhu ZS, Kan J, Tian NL, Lin S, Liu ZZ, You W, Xu HM, et al. Hemodynamic changes of fractional flow reserve after double kissing crush and provisional stenting technique for true bifurcation lesions. Chin Med J (Engl.). 2012;125:2658–2662.
33. Ye F, Zhang JJ, Tian NL, Lin S, Liu ZZ, Kan J, Xu HM, Zhu Z, Chen SL. The acute changes of fractional flow reserve in DK (double kissing), crush, and 1-stent technique for true bifurcation lesions. J Interv Cardiol. 2010;23:341–345. doi: 10.1111/j.1540-8183.2010.00668.x
34. Colombo A, Bramucci E, Saccà S, Violini R, Lettieri C, Zanini R, Sheiban I, Paloscia L, Grube E, Schofer J, et al. Randomized study of the crush technique versus provisional side-stenting technique for true coronary bifurcations: the CACTUS (Coronary Bifurcations: Application of the Crushing Technique Using Sirolimus-Eluting Stents) study. J Circulation. 2009;119:71–78. doi: 10.1161/CIRCULATIONAHA.108.808402
35. Cervinka P, Bystron M, Spacek R, Kvasnak M, Adhikari S, Jakabcin J. Treatment of bifurcation lesions using dedicated bifurcation stents versus classical bare-metal stents. Randomized, controlled trial with 12-month angiographic follow up. J Invasive Cardiol. 2008;20:516–520.
36. Chen SL, Zhang JJ, Ye F, Chen YD, Patel T, Kawajiri K, Lee M, Kwan TW, Mintz G, Tan HC. Study comparing the double kissing (DK) crush with classical crush for the treatment of coronary bifurcation lesions: the DkCRUSH-I Bifurcation Study with drug-eluting stents. Eur J Clin Invest. 2008;38:361–371. doi: 10.1111/j.1365-2262.2008.03493.x
37. Colombo A, Moses JW, Morice MC, Ludwig J, Holmes DR Jr, Spanos V, Louvard Y, Desmedt B, Di Mario C, Leon MB. Randomized study to evaluate sirolimus-eluting stents implanted at coronary bifurcation lesions. Circulation. 2004;109:1244–1249. doi: 10.1161/01.CIR.0000184771.6622.E3
38. Pan M, de Lezo JS, Medina A, Romero M, Segura J, Pavlovic D, Delgado A, Ojeda S, Melián F, Herrador J, et al. Rapamycin-eluting stents for the treatment of bifurcated coronary lesions: a randomized comparison of a simple versus complex strategy. Am Heart J. 2004;148:857–864. doi: 10.1016/j.ahj.2004.05.029
39. Raphael CE, O’Kane PD. Contemporary approaches to bifurcation stenting. J RSM Cardiovasc Dis. 2021;10:204800421992190. doi: 10.1177/204800421992190
40. Omiston JA, Webster MW, Webber B, Stewart JT, Ruygrok PN, Hatrick RI. The “crush” technique for coronary artery bifurcations: insights from micro-computed tomographic imaging of bench deployments. JACC Cardiovasc Interv. 2008;1:351–357. doi: 10.1016/j.jcin.2008.06.003
41. Foin N, Secco GG, Ghilencea L, Krans R, Di Mario C. Final proximal post-dilation is necessary after kissing balloon in bifurcation stenting. EuroIntervention. 2011;7:597–604. doi: 10.4244/eijv7iaa96
42. Kini AS, Dangas GD, Baber U, Vengrenyuk Y, Kandzari DE, Leon MB, Morice M-C, Serruys PW, Kappetein AP, Sabik JF, et al. Influence of final kissing balloon inflation on long-term outcomes after PCI of distal left main bifurcation lesions in the EXCEL trial. EuroIntervention. 2020;16:218–224. doi: 10.4244/EU-D-19-00851
43. Raphael CE, O’Kane PD, Johnson TW, Prasad A, Gulati R, Sandoval Y, Di Mario C, Holmes DR Jr, Evolution of the crush technique for bifurcation stenting. JACC Cardiovasc Interv. 2021;14:2315–2326. doi: 10.1016/j.jcin.2021.08.048
44. Yang RR, Lv YH, Guo C, Li M, Zhang MB, Wang ZL, Meng Y. Intravascular ultrasound-guided percutaneous coronary intervention for patients with coronary bifurcation lesions: a systematic review and meta-analysis. Medicine (Baltimore). 2020;99:e20798. doi: 10.1097/md.00000000000020798
45. Chevalier B, Mamas MA, Hovasse T, Rashid M, Gómez-Hospital JA, Pan M, Witkowski A, Crowley J, Aminian A, McDonald J, et al. Clinical outcomes of proximal optimization technique (POT) in bifurcation stenting. EuroIntervention. 2021;17:e910–e918. doi: 10.4244/eij-d-20-01393
46. Chung S, Her S-H, Song PS, Song YB, Hahn J-Y, Choi J-H, Lee SH, Jang Y, Yoon JH, Tahir S-J, et al. Trans-radial versus trans-femoral intervention for the treatment of coronary bifurcations: results from Coronary Bifurcation Stenting Registry. J Korean Med Sci. 2013;28:388–395. doi: 10.3346/jkms.2013.28.3.388
47. Navarese EP, Khan SU, Kolodziejczak M, Kubica J, Bucherri S, Cannon CP, Gurbel PA, De Servi S, Budaj A, Bartorelli A, et al. Comparative efficacy and safety of oral P2Y(12) inhibitors in acute coronary syndrome: network meta-analysis of 52 816 patients from 12 randomized trials. Circulation. 2020;142:150–160. doi: 10.1177/000973222094786
48. Chen S-L, Sheiban I, Xu BO, Jepson N, Paiboon C, Zhang J-J, Ye F, Sansoto T, Kwan TW, Lee M, et al. Impact of the complexity of bifurcation lesions treated with drug-eluting stents: the DEFINITION study (Definitions and impact of complex bifurcation lesions on clinical outcomes after percutaneous coronary intervention using drug-eluting stents). JACC Cardiovasc Interv. 2014;7:1266–1276. doi: 10.1016/j.jcin.2014.04.026
SUPPLEMENTAL MATERIAL
Table S1. Type of dual antiplatelet agents and stents used in the trials.

Trials	Dual Antiplatelet Agent	Case	Stent	Dual Antiplatelet Agent	Control	Stent
EBC MAIN	Clopidogrel (67%)	Onyx ZES	Clopidogrel (66%)	Ticagrelor (22%)	Onyx ZES	
	Ticagrelor (20%)			Prasugrel (5%)		
	Prasugrel (6%)					
NBBS IV	Clopidogrel (100%)	Cypher SES	Clopidogrel (99.5%)	Firebird-2 SES, Excel SES, BuMA SES, Partner SES, Xience EES, Endeavor ZES		
DEFINITION II	Clopidogrel (100%)	Xience Prime EES, Resolute ZES	Clopidogrel (100%)	Xience EES		
DKCRUSH-V	Clopidogrel (100%)	Axxess BES, Biomatrix BES	Clopidogrel (100%)	Excel SES		
COBRA	Clopidogrel (100%)	Excel SES	Clopidogrel (100%)	Firebird-2 SES, Xience V EES		
DKCRUSH-II	Clopidogrel (100%)	Tryton side branch stent (100%), Xience EES (59.0%), Promus EES (27.5%), Resolute Integrity ZES (6.0%), Endeavor ZES (4.3%), SES (3.2%)	Clopidogrel (100%)	Cypher SES		
BBK II	Clopidogrel, ticagrelor, or prasugrel	Cypher SES (8%), Xience pro EES (8.7%), Promus EES (28.7%), Resolute ZES (36.0%), Orsiro SES (11.3%), Synergy SES (7.3%)	Clopidogrel, ticagrelor, or prasugrel	Cypher SES (10.0%), Xience pro EES (10.0%), Promus EES (32.7%), Resolute ZES (30.7%), Orsiro SES (14.0%), Synergy SES (3.3%)		
POLBOS II	-	BIOSS LIM SES	-	-	-	
EBC TWO	Clopidogrel (100%)	Nobori SES	Clopidogrel (100%)	Nobori SES		
SMART-STRATEGY	-	SES (48%), EES (27%), others (25%)	-	SES (47%), EES (31%), others (22%)		
Zhang et al. (2016)	Clopidogrel (100%)	SES (79%), ZES (12%), EES (10%)	Clopidogrel (100%)	SES (62%), EES (19%), ZES (15%), PES (4%)		
Zheng et al. (2016)	Clopidogrel (100%)	SES	Clopidogrel (100%)	SES		
POLBOS I	Clopidogrel (100%)	BiOSS Expert PES	Clopidogrel (100%)	EES (41.5%), PES (38.2%), BES (9.8%), SES (8.9%), ZES (0.8%), TES (0.8%)		
PERFECT	Clopidogrel (100%)	SES (60%), EES (28%), ZES (9%), PES (1%), others (3%)	Clopidogrel (100%)	EES (57%), EES (29), ZES (9%), PES (2%), others (3%)		
NSTS	Clopidogrel (100%)	Cypher SES	Clopidogrel (100%)	Cypher SES		
NBS	Clopidogrel (99.5%)	Cypher SES	Clopidogrel (100%)	Cypher SES		
Ruiz et al. (2013)	-	Xience Prime EES	-	Xience Prime EES		
Ye et al. (2012)	Clopidogrel (100%)	Cypher SES, Firebird-2 SES	Clopidogrel (100%)	Cypher SES, Firebird-2 SES		
BBC ONE	Clopidogrel (100%)	Taxus PES	Clopidogrel (100%)	Taxus PES		
Lin et al. (2010)	Clopidogrel or ticloplidine	SES (57%), PES (43%)	Clopidogrel or ticloplidine	SES (65%), PES (35%)		
Ye et al. (2010)	Clopidogrel (100%)	SES (57.4%)	Clopidogrel (100%)	SES (64.8%)		
CACTUS	Clopidogrel or ticloplidine	Cypher SES	Clopidogrel or ticloplidine	Cypher SES		
Cervinka et al. (2008)	Clopidogrel (100%)	Twin-Rail BMS	Clopidogrel (100%)	Liberte BMS		
DKCRUSH-I	Clopidogrel (100%)	PES or SES	Clopidogrel (100%)	PES or SES		
Colombo et al. (2004)	Clopidogrel or ticloplidine	Cypher SES	Clopidogrel or ticloplidine	Cypher SES		
Pan et al. (2004)	Clopidogrel (100%)	SES	Clopidogrel (100%)	SES		

Abbreviations: BES = biolimus-eluting stent; BMS = bare metal stent; EES = everolimus-eluting stent; PES = paclitaxel-eluting stent; SES = sirolimus-eluting stent; TES = tacrolimus-eluting stent; ZES = zirolimus-eluting stent.
Case/Control	Inclusion Criteria	Exclusion Criteria
EBC MAIN	Age ≥18 years Medina type 1,1,1 or 0,1,1 Both MV and SB >50% narrowed Both MV and SB RVD ≥2.75mm Ischemic symptoms, positive non-invasive imaging, positive fractional flow reserve, or LM stem IVUS-derived minimum luminal area <6mm²	Acute STEMI Cardiogenic shock Chronic total occlusion of either vessel LM trifurcation with all three vessels ≥2.75mm diameter LM stem diameter >5.75mm Life expectancy <12 months Known relevant allergies
NBBS IV	Stable angina pectoris, unstable angina, or silent ischemia Medina 1,1,1, 1,0,1, or 0,1,1 MV diameter ≥3.0mm SB diameter ≥2.75mm	STEMI within 24 hours SB lesion length >15mm Life expectancy <1 year Serum creatinine >200µmol/L Allergy to aspirin, clopidogrel, ticlopidine, sirolimus, or everolimus
DEFINITION II	Age ≥18 years Medina 1,1,1 or 0,1,1 SB RVD ≥2.5mm Native coronary lesion Complex bifurcation lesions based on DEFINITION study	STEMI within 24 hours Pregnancy or breastfeeding Life expectancy <50% at 12 months Scheduled major surgery in 12 months Allergy to aspirin, clopidogrel, or ticagrelor History of major hemorrhage Chronic total occlusion in either LAD, LCx, or RAD Severe calcification needing rotational atherectomy
DKCRUSH-V	Ages 18 to 80 years Stable angina, unstable angina, or myocardial infarction Medina 1,1,1 or 0,1,1 De novo unprotected LM lesion Unprotected LM lesion with chronic total occlusion in LAD, LCx, or RCA after recanalization Diameter stenosis in LAD/LM and LCx ≥50% by visual estimation	Acute myocardial infarction within 24 hours Severe calcification needing rotational atherectomy Restenotic lesion Allergies to study or protocol-required medications Intolerance to dual anti-platelet therapy Life expectancy <12 months Pregnancy or breastfeeding Distal LM coronary restenosis
COBRA	Age >18 years Stable angina, unstable angina, or positive functional study De novo true native coronary bifurcation lesion Medina 1,1,1, 1,0,1, or 0,1,1 Proximal MV RVD 2.75-3.75mm SB RVD >2.25mm	LVEF <30% Serum creatinine >2.0mg/dL Previous or planned brachytherapy of target vessel Unprotected lesion of the LM trunk 50% Intraluminal thrombus in the target vessel Moderate to severe calcification or tortuosity Allergies to protocol stent or medications Pregnancy or breastfeeding Life expectancy <12 months
DKCRUSH-II	Age ≥18 years Silent ischemia, angina, or acute myocardial infarction Chronic total occlusion in MV or SB immediately after successful recanalization Unprotected distal LM bifurcation lesions involving both ostia of LAD and LCx without chronic total occlusion in the RCA	Liver dysfunction Life expectancy <12 months Heavy calcification requiring rotational atherectomy Pregnancy Contraindication to one of the study drugs
Study	Criteria	
-------	--	
BBK II	Only one coronary bifurcation lesion	
Medina 1,1,1 and 0,1,1		
Diameter stenosis >50% in both vessels with RVD between 2.5 and 4.0mm		
De novo bifurcation lesion		
MV RVD 2.5 to 4.0mm		
SB RVD ≥2.25mm and ≤1.0mm smaller than that of RV		
POLBOS II	Age ≥18 years	
Stable coronary artery disease or non-STEMI		
De novo coronary bifurcation lesion		
MV RVD ≥2.5mm		
SB RVD ≥2.0mm		
Age ≥18 years		
Both MV and SV >50% narrowed		
Both MV and SV RVD ≥2.5mm		
SB ostial disease ≥5mm		
EBC TWO	Stable coronary artery disease or non-STEMI	
De novo coronary bifurcation lesion		
MV RVD ≥2.5mm		
SB RVD ≥2.0mm		
SB lesion causing angina and a potential target for intervention		
SMART-STRATEGY	Stable coronary artery disease or non-STEMI	
De novo coronary bifurcation lesion, including unprotected LM		
MV RVD ≥2.5mm		
SB RVD ≥2.3mm		
Age ≥18 years		
De novo true coronary bifurcation lesion		
Medina 1,1,1, 0,1,1, and 1,0,1		
Located either in LM stem, LAD, and LCx		
MV RVD ≥2.5mm		
SB RVD ≥2.0mm		
Zhang et al. (2016)	De novo coronary true bifurcation lesion	
SB RVD ≥2.25mm		
Age ≥18 years		
Ischemic symptoms or myocardial ischemia		
LMV RVD ≤5mm		
Difference in RVD between LAC and LCX ≤1mm		
Medina 1,1,1 or 0,1,1		
De novo LM distal brain lesion		
Chronic total occlusion after successful recanalization		
Zheng et al. (2016)	De novo coronary true bifurcation lesion	
SB RVD ≥2.25mm		
Age ≥18 years		
Ischemic symptoms or myocardial ischemia		
LMV RVD ≤5mm		
Difference in RVD between LAC and LCX ≤1mm		
Medina 1,1,1 or 0,1,1		
De novo LM distal brain lesion		
Chronic total occlusion after successful recanalization		
Acute STEMI		
Hemodynamic instability		
History of bleeding diathesis or coagulopathy		
Intraluminal thrombus		
Heavy calcification		
Severe tortuosity		
Contraindication to study drugs		
STEMI		
LVEF ≤30%		
Medina 0.0,1		
Serum creatinine ≥2.0mg/dL		
Inability to take dual antiplatelet therapy for 12 months		
Acute STEMI		
Cardiogenic shock		
Unprotected LM stem narrowing ≥50%		
Chronic total occlusion of either vessel		
Additional type C lesion requiring PCI		
LVEF ≤20%		
Platelet count ≤50,000/µL		
Life expectancy < 12 months		
Known relevant allergies		
Acute STEMI within 24 hours		
Life expectancy <12 months		
Allergies to any drugs used in the study		
Acute STEMI within 24 hours		
Liver or renal dysfunction		
LVEF ≤30%		
Life expectancy <1 year		
Platelet count ≤10,000/µL		
Suspected intolerance to any of the drugs used		
Acute myocardial infarction within 2 weeks		
Liver dysfunction		
Lung cancer		
LVEF <30%		
eGFR <40mL/min/1.73m²		
Trifurcation lesions or heavy calcification		
Pregnancy		
Study	Inclusion Criteria	Exclusion Criteria
---------	---	---
BBK I	Stable angina or positive stress test	Platelet count ≤10,000/µL
	De novo bifurcation lesion	Suspected intolerance to any of the study drugs
	Native coronary artery >50% diameter stenosis	LM stenosis
	MV RVD 2.5-4mm	Intraluminal thrombus
	SB RVD ≥2.25mm	Heavy calcification
		Severe tortuosity
	Symptoms or objective evidence of ischemia	Contraindication to drug or stent used in the study
	True bifurcation lesion ≥50% narrowing	History of bleeding diathesis or coagulopathy
	Medina 1,1,1, 1,0,1, and 0,1,1	
	MV RVD 2.5-4mm	
	SB RVD 2.5-3.5mm	
	Lesion length in MV ≤28mm	
	Lesion length in SB ≤5mm	
TRYTON	Age ≥18 years	STEMI within 72 hours
	Stable coronary artery disease or non-STEMI	Non-STEMI within 7 days
	De novo coronary bifurcation lesion	LVEF <30%
	MV RVD ≥2.5mm	Serum creatinine >2.5mg/dL
	SB RVD ≥2.0mm	LM disease
		Trifurcation lesion
		Total occlusion of target vessel
		Severe calcification
		Excessive tortuosity
		Angiographic evidence of thrombus
POLBOS I	Age 18-75 years	STEMI
	Angina with bifurcation coronary disease requiring protection	Medina 0,0,1
	MV RVD ≥2.5mm	Serum creatinine ≥2.0mg/dL
	MV lesion length ≤50mm	Inability to receive dual antiplatelet therapy for 12 months
	SB RVD ≥2.0mm	LVEF ≤30%
		LM disease
		In-stent restenosis
		Graft lesions
		Chronic total occlusion
		STEMI within 2 weeks
		Decreased SB flow
		Renal failure
		LVEF ≤35%
		Life expectancy <12 months
PERFECT	Age ≥18 years	STEMI
	Stable coronary artery disease or non-STEMI	Medina 0,0,1
	De novo coronary bifurcation lesion	Serum creatinine ≥2.0mg/dL
	MV RVD ≥2.5mm	Inability to receive dual antiplatelet therapy for 12 months
	SB RVD ≥2.5mm	LVEF ≤30%
		LM disease
		STEMI within 24 hours
		Life expectancy <12 months
		Serum creatinine ≥200µmol/L
		Allergy to any of the drugs used
NSTS	Age ≥18 years	STEMI
	Stable angina, unstable angina, or silent ischemia	Life expectancy <12 months
	De novo coronary bifurcation lesion	Serum creatinine ≥200µmol/L
	MV RVD ≥3.0mm	Allergy to any of the drugs used
	SB RVD ≥2.5mm	LM bifurcation in a left dominant system
NBS	Age ≥18 years	STEMI
	Stable angina, unstable angina, or silent ischemia	Life expectancy <12 months
	MV RVD ≥2.5mm	Serum creatinine ≥200µmol/L
	SB RVD ≥2.0mm	Allergy of any of the drugs used
		LM bifurcation in a left dominant system
Ruiz et al. (2013)	True bifurcation lesions	LM disease
	MV RVD 2.5-4mm	Thrombotic lesions
	SB RVD ≥2mm	Acute coronary syndrome within 48 hours
		LVEF <30%
		Serum creatinine >3mg/dL
Ye et al. (2012)	Age 18-75 years	
Medina 1,1,1, 1,0,1, or 0,1,1		
SB RVD ≥2.25mm	LVEF ≤30%	
Life expectancy <12 months		
Pregnancy		
Severe diffuse or calcified MV or SB lesions		
Platelet count ≤10,000/µL		
Serum creatinine >3mg/dL		
Cerebrovascular events within 6 months		
STEMI or other condition with refractory hypotension		
Intolerance to injection of adenosine		
----------------	-----------------	-----------------
Ye et al. (2010)	Age ≥18 years	
MV RVD ≥2.5mm		
SB RVD ≥2.25mm	STEMI	
Cardiogenic shock		
Chronic total occlusion of either vessel		
LM stem narrowing ≥50%		
Additional type C or bifurcation lesion that required PCI		
LVEF ≤20%		
Platelet count ≤50,000/µL		
Life expectancy <12 months		
Known relevant allergies		
BBC ONE	Age ≥18 years	
MV RVD ≥2.5mm		
SB RVD ≥2.25mm	Myocardial infarction within 24 hours	
Life expectancy <12 months		
Serum creatinine >3.0mg/dL		
Allergy to any of the drugs used		
LM bifurcation in a left dominant system		
Lin et al. (2010)	Age ≥18 years	
Stable angina, unstable angina, or silent ischemia		
De novo coronary true bifurcation lesion		
Bifurcation angle ≤60 degrees		
MV RVD ≥2.5mm		
SB RVD ≥2.22mm	Not reported	
Ye et al. (2010)	Age 18-75 years	
Single vessel disease with de novo bifurcation lesion		
Medina 1,1,1, 1,0,1, or 0,1,1		
MV RVD ≥2.0mm		
SB RVD ≥2.0mm	STEMI	
LVEF ≤30%		
Life expectancy <1 year		
Pregnancy		
Severely diffuse or calcified lesions		
Platelet count ≤100,000/µL		
Cerebrovascular events within 6 months		
Allergy to aspirin, clopidogrel, or sirolimus		
CACTUS	Age ≥18 years	
Stable angina, unstable angina, or silent ischemia		
De novo true coronary bifurcation lesion		
Stenosis in both MB and ostium of the SB >50%		
Both branches with TIMI flow ≥1		
Treatable lesion length ≤28mm		
MV RVD 2.5-3.5mm		
SB RVD 2.25-3.5mm	Myocardial infarction within 24 hours	
LM trunk unprotected by a graft		
Visible thrombus within target lesion		
Chronic total occlusion		
LVEF <35%		
Serum creatinine ≥2.65µmol/L		
Contraindication to one of the study drugs		
Cervinka et al. (2008)	Symptoms or signs of angina	
All types but Medina 0,1,0		
Lesion length <15mm		
MV RVD 2.7-4.0mm		
SB RVD >2.2mm	Not reported	
DKCRUSH-I	MV RVD ≥2.5mm	
SB RVD ≥2.0mm | Life expectancy <12 months
Liver dysfunction |
Two or more bifurcation lesions if there was one bifurcation lesion per vessel. Another single lesion in a different target vessel that could be covered by a single DES were also included.

Plasma creatinine ≥200µmol/L	**Cerebrovascular within 6 months**
History of coronary artery bypass grafting	**Allergy to aspirin, clopidogrel, and stent**

Colombo et al. (2004)

- Age ≥18 years
- Stable angina, unstable angina, or silent ischemia
- De novo true coronary bifurcation lesion
- Stenosis in both MB and ostium of the SB >50%
- Both branches with TIMI flow ≥1
- Treatable lesion length ≤24mm
- Both MV and SB RVD 2.5-3.5mm

Myocardial infarction within 24 hours

- **Stenosis of LM unprotected by graft**
- **Thrombus within the target lesion**
- **LVEF ≤35%**
- **Serum creatinine ≥3.0mg/dL**
- **Suspected intolerance to one of the study drugs**

Pan et al. (2004)

- Lesion located in major bifurcation regardless of morphology and angulation
- MV RVD ≥2.5mm
- SB RVD ≥2.25mm
- Significant stenosis in both main vessel and SB origin

Diffuse SB lesions

Abbreviations: IVUS = intravascular ultrasound; LAD = left anterior descending coronary artery; LCx = left circumflex coronary artery; LM = left main coronary artery; LVEF = left ventricular ejection fraction; MV = main vessel; RCA = right coronary artery; RVD = reference vessel diameter; SB = side branch (vessel); STEMI = ST elevation myocardial infarction
Table S3. Anatomical characteristics of bifurcation lesions included in each trial.

Trial	Left Main Included	True Bifurcation	Medina Classification	Main Vessel	Side Branch	Lesion Length, mm																							
				Diameter, mm	Stenosis, %	Diameter, mm	Stenosis, %																						
EBC MAIN	Yes	Yes	1,1,1	0,1,1	≥2.75	>50%	≥2.75	>50%	-																				
NBBS IV	Yes	Yes	1,1,1	1,0,1	≥3.0	≥50%	≥2.75	≥50%	SB ≤15																				
DEFINITION II	Yes	Yes	1,1,1	0,1,1	<2.5*	-	≥2.5	Distal LM ≥70%*	MV ≥25*																				
						Non-LM ≥90%*		Non-LM ≥90%*																					
DKCRUSH-V	Yes	Yes	1,1,1	0,1,1	-	≥50%	-	≥50%	-																				
COBRA	No	Yes	1,1,1	0,1,1	2.75-3.75	-	2.25	-	-																				
DKCRUSH-II	Yes	Yes	1,1,1	0,1,1	2.5-4.0	>50%	2.5-4.0	>50%	≤2 stents																				
BBK II	Yes	No	1,1,1	0,1,1	2.5-4.0	-	2.25	-	-																				
POLBOS II	Yes	No	1,1,1	0,0,1	≥2.5	-	≥2.0	-	-																				
EBC TWO	No	Yes	1,1,1	0,1,1	≥2.5	>50%	≥2.5	>50%	-																				
SMART-STRATEGY	Yes	No	1,1,1	0,0,1	≥2.5	-	≥2.3	-	-																				
Zhang et al. (2016)	Yes	Yes	1,0,1	0,1,1	≥2.5	-	≥2.0	-	-																				
Study	Recommendation	Result	Category	Rating	Obs. (mm)	MV	SB																						
------------------------	----------------	--------	----------	--------	-----------	-----	----																						
Zheng et al. (2016)	Yes	Yes	1,1,1	-	≥2.25	-																							
DKCRUSH-III	Yes	Yes	1,1,1	≤5	-	-																							
BBK I	No	No	1,0,0	2.5-4	>50%	≥2.25	>50%																						
			0,1,0	>2																									
TRYTON	No	Yes	1,0,1	2.5-4	≥50%	2.5-3.5	≥50%																						
			0,1,1	>2.5																									
			1,1,1	>50%																									
			1,0,1	>50%																									
POLBOS I	Yes	No	1,0,0	≥2.5	-	≥2.0																							
			0,1,0																										
			1,1,0																										
			1,1,1																										
			1,0,1																										
			0,1,1																										
PERFECT	No	No	1,0,0	≥2.5	-	≥2.0	≥50%	MV ≤50																					
			0,1,0																										
			1,1,0																										
			1,1,1																										
			1,0,1																										
			0,1,1																										
NSTS	Yes	No	-	≥3.0	-	≥2.5	-																						
NBS	Yes	No	-	≥2.5	-	≥2.0	-																						
Ruiz et al. (2013)	No	No	1,0,0	2.5-4	-	>2	-																						
			0,1,0																										
			1,1,0																										
			1,1,1																										
			1,0,1																										
			0,1,1																										
Ye et al. (2012)	No	Yes	1,0,1	-	-	≥2.25	-																						
			0,1,1				<2 stents																						
BBC ONE	No	No	≥2.5	-	≥2.25	-																							
Study	No	Yes	≥2.5	-	≥2.2	-	-	≥2.0	-	≥2.0	-	-	2.5-3.5	>50%	2.25-3.5	>50%	≤28	2.7-4.0	-	>2.2	-	-	<15	≤2 stents	≤24	≤24	Significant	Significant	-
----------------------	----	-----	------	---	------	---	---	------	---	------	---	---	--------	------	----------	------	-----	--------	---	------	---	---	-----	----	----	---	---	-----	------
Lin et al. (2010)	No	Yes																											
Ye et al. (2010)	No	Yes																											
CACTUS	No	Yes	1,0,1		1,1,1					1,0,1			2.5-3.5	>50%	2.25-3.5	>50%	≤28												
Cervinka et al. (2008)	No	No	1,0,0		0,1,0					1,0,1			2.7-4.0	-	>2.2	-	<15												
DKCRUSH-I	Yes	Yes																											
Colombo et al. (2004)	No	Yes																											
Pan et al. (2004)	Yes	Yes	1,1,1		0,1,1					1,1,1			≥2.5	Significant	≥2.25	Significant	-												

*One of the criteria of complex bifurcation lesions included in the trial

Abbreviations: LM = left main coronary artery; MV = main vessel; SB = side branch
Table S4. Procedural characteristics.

Trial	Case/Control	Radial Approach, %	Intravascular Ultrasound, %	Stent Diameter, mm ± SD	Stent Length, mm ± SD	Main Vessel	Side Branch	POT, %	FKBI, %
EBC MAIN	70/71	31/36	3.6±0.6/3.8±0.5	21.8±7.0/22.1±7.0	3.6±0.6/3.5±0.6	19.3±6.7/17.6±6.9	87/85	93/22	
NBBS IV	-	-	24.3±9.6/25.0±9.5	-	9±6:13/13[8:15]*	-	-	91.2/36.1	
DEFINITION II	80.6/78.7	24.4/31.1	3.1±0.3/3.0±0.3	46.3±19.3/46.5±19.7	2.6±0.3/2.8±0.4	25.6±11.3/26.5±12.3	64.6/100	99.3/95.9	
DKCRUSH-V	-	42.9/40.5	-	-	-	-	99.2/98.8	99.6/78.9	
COBRA	-	-	3.4±0.2/3.0±0.3	49.2±14.1/49.1±17.8**	2.7±0.2/2.7±0.3	-	-	100/100	
DKCRUSH-II	-	46.2/47.8	-	28.6±12.4/28.8±13.5	-	16.2±9.1/16.7±8.6	-	100/79.2	
BBK II	35.3/37.3	-	3.3±0.4/3.3±0.4	26.7±9.4/26.4±11.7	2.9±0.4/2.8±0.4	21.6±7.7/18.5±8.9	-	100/100	
POLBOS II	63.7/81	-	3.7±0.5/3.3±0.5	17.8±2.7/19.9±6.3	-	-	37.3/68	32.7/49.0	
EBC TWO	57/63	-	3.0±0.3/3.1±0.3	22.9±5.1/23.4±4.8	2.7±0.3/2.6±0.3	20.7±5.5/19.9±6.8	-	96/94	
SMART-STRATEGY	-	98.5/96.9	3.3±0.4/3.3±0.4	25.1±5.3/24.9±5.6	2.9±0.4/2.8±0.2	17.7±5.6/18.4±7.8	-	68.5/25.8	
Zheng et al. (2016)	-	-	22.8±7.5/24.6±6.7	-	10.4±5.6/10.2±5.8	-	71.3/86.0	-	
DKCRUSH-III	58.1/58.9	69.0/73.7	3.4±0.3/3.3±0.4	35.5±14.0/35.7±16.0	3.0±0.4/3.0±0.4	25.9±13.8/26.7±11.9	-	99.5/99.5	
BBK I	-	-	-	-	-	-	100/100	-	
TRYTON	34.6/35.5	-	3.1±0.4/3.1±0.4	14.8±4.0/14.4±3.5	2.6±0.4/2.4±0.4	13.4±3.3/13.8±3.5	-	89.3/88.8	
POLBOS I	80.8/82.1	-	3.7±0.3/3.2±0.5	17.4±2.5/20.7±6.8	-	-	37.5/69.1	30.8/49.6	
PERFECT	11.7/12.1	91.5/79.6	3.3±0.3/3.3±0.3	37.3±14.7/36.9±15.3	2.7±0.2/2.7±0.2	21.4±6.7/21.5±6.9	-	95.8/79.1	
NSTS	-	-	23.5±9.3/23.6±9.1	-	10.6±5.6/10.6±5.8	-	85/92	-	
NBS	-	-	23.2±8.6/23.4±8.6	-	10.3±5.0/2.8±6.1	-	74/32	-	
Ruiz et al. (2013)	-	-	22±11/25±11	-	-	-	64/42	-	
Ye et al. (2012)	-	-	3.1±0.4/3.2±0.4	33.5±12.4/30.7±16.3	2.7±0.3/2.8±0.3	20.7±7.4/18.0±8.2	-	100/86.7	
BBC ONE	29/34	-	3.2±0.3/3.2±0.3	22±61/21±6	2.6±0.3/NR	16±5/NR	-	90/31	
Lin et al. (2010)	-	-	3.5±0.1/3.6±0.2	23.6±2.1/23.8±2.6	2.9±0.1/2.9±0.2	12.7±2.8/12.9±3.1	-	90.7/94.4	
Ye et al. (2010)	-	-	-	-	-	-	-	-	
CACTUS	-	3.4/4.1	23.8±5.9/22.2±5.7	-	17.9±5.0/18.1±6.2	-	92.1/90.2	-	
Cervinka et al. (2008)	-	-	-	-	-	-	97/97	-	
DKCRUSH-I	-	-	3.4±0.4/3.4±0.5	22.2±12.5/25.0±12.7	2.7±0.4/2.8±0.4	17.4±5.6/17.9±7.0	-	100/76.1	
Colombo et al. (2004)	-	100/100	3.1±0.3/3.2±0.3	-	2.7±0.3/2.6±0.4	-	90.5/81.8	-	
Pan et al. (2004)	-	2.9±0.3/2.9±0.3	26±9/25±12	-	-	-	77/60	-	

*Median with interquartile range

**Includes stent length in the side branch

Abbreviation: FKBI = final kissing balloon inflation; NR = not reported; POT = proximal optimization technique; SD = standard deviation
Table S5. Definition of outcomes.

Trial	Cardiac Death	Myocardial Infarction	Target Lesion Revascularization	Target Vessel Revascularization	Stent Thrombosis	Major Adverse Cardiac Events
EBC MAIN	Not specified	Third Universal Definition of Myocardial Infarction except for PCI- and CABG-related MI, for which Society for Cardiovascular Angiography and Interventions (SCAI) consensus definition was used	Repeat revascularization of MV or SB within treated vessel or 5mm adjacent area	Not specified	ARC definition	All-cause death, MI, TLR
NBBS IV	Death from coronary artery disease, heart failure, or cardiac procedure within 28 days	Rise or fall of cardiac biomarkers with at least one value above the 99th percentile of ULN and evidence of ischemia in the myocardium documented by either ischemic symptoms, ECG changes, evidence of new loss of viable myocardium, or new RMWA Sudden and unexpected cardiac death Pathological findings suggestive of acute MI	Repeat revascularization by PCI or CABG of the target lesion in stented segments or their 5mm margins	Not specified	ARC definition	Cardiac death, non-procedural MI, clinically indicated TLR, definite stent thrombosis within 6 months
DEFINITION II	Death from sudden cardiac death, acute MI, arrhythmia, heart failure, stroke, other cardiovascular causes, or bleeding	Post-procedure (within 48 hours after PCI): CK-MB ≥10 times ULN or ≥5 times with new pathologic Q waves in at least 2 contiguous leads or new LBBB, rise in CK-MB to aforementioned increment from the most recent pre-procedure level Spontaneous MI (48 hours after PCI): rise of CK-MB or troponin >1 times ULN with evidence of prolonged ischemia, ischemic ST segment changes, new pathological Q waves, angiographic evidence of flow-limiting complication, imaging evidence of new loss of viable myocardium, or new RWMA	Repeat revascularization for target lesions in the presence of symptoms or objective signs of ischemia	Repeat revascularization for target vessels in the presence of symptoms or objective signs of ischemia	ARC definition	Cardiac death, target-vessel MI, clinically driven TLR
DKCRUSH-V	Any death without a clear non-cardiac cause	Peri-procedural MI: CK-MB >10 times ULN or >5 times ULN with either new pathological Q waves in 2 contiguous leads; angiographically documented graft or coronary artery occlusion or new severe stenosis with thrombosis; or imaging evidence of new loss of viable myocardium or new RWMA Spontaneous MI 72 hours after PCI: clinical syndrome consistent with MI with CK-MB or troponin >1 times ULN and new ST segment elevation or depression or equivalent	Angina or ischemic referable to the target lesion requiring clinically driven PCI or CABG	Not specified	ARC definition	Cardiac death, target-vessel MI (all MI unless clearly attributable to non-target vessel), TLR
COBRA	All deaths considered cardiac unless unequivocal non-cardiac cause demonstrated	Evidence of myocardial necrosis consistent with myocardial ischemia, typically including detection of cardiac biomarkers with at least one value above the 99th percentile of ULN together with ischemic symptoms, pathognomonic ECG, or imaging evidence of ischemia By convention, increase of cardiac biomarkers above 3 times ULN was used to defined PCI-related MI	Revascularization of significant angiographic restenosis ≥70% anywhere in the target lesion in combination with angina or FFR <0.80 in MV or SB subtending a large myocardial territory	Not specified	Not specified	Cardiac death, MI (CK-MB based), TVR
DKCRUSH-II	All deaths considered cardiac	Rise of biochemical markers above 99th percentile with at least one of the following ischemic symptoms:	Repeat revascularization by	Repeat revascularization by	ARC definition	Cardiac death, MI, TVR
Trial	Definition	Additional Criteria				
-------	------------	---------------------				
BBK II	PCI or surgery of the target lesion	CABG or repeat PCI involving the stented segment and performed for symptoms or signs of ischemia in the presence of angiographic restenosis				
POLBOS II	Re-vascularization of any segment of the index coronary artery	Not specified				
EBC TWO	PCI or CABG of either the MV or SB and/or TIMI flow <3 in either the MV or SB after vasodilators	All-cause death, MI, TLR				
SMART-STRATEGY	Repeat PCI of lesion within 5 mm of stent or CABG of the target vessel	Repeat revascularization of target vessel by PCI or CABG				
Zhang et al. (2016)	Repeat target lesion therapy either by PCI or CABG	All-cause death, MI, TLR, TVR, stent thrombosis				
Zheng et al. (2016)	ARC definition	ARC definition				
DKCRUSH-III	Any repeat PCI of the stented segment, including 5mm proximal and distal margins	Not specified				
BBK I	CABG or repeat PCI involving the stented segment and	Not specified				

ECG changes indicative of ischemia, development of pathological Q waves, and no relation to PCI procedure

- During hospitalization: presence of new Q waves in 2 or more contiguous ECG leads or an elevation of CK or CK-MB to at least 3 times of ULN in 2 samples
- After discharge: ESC/ACC guidelines (2000) and based on new rise in troponin T associated with typical symptoms, ECG changes, and/or angiographic findings

Not specified

- ARC definition
- Target-vessel failure, target bifurcation revascularization, TVL, TVR
- Cardiac death, MI, TVR, stent thrombosis
- Cardiac death, MI, TVR, stent thrombosis

Typical rise and fall of biochemical markers of myocardial necrosis with ischemic symptoms or ECG changes as per ESC/ACC 2000

- Peri-procedural MI: elevation of troponin >5 times the 99th percentile in patients with normal baseline values or rise >20% if the baseline values are elevated and are stable or falling
- In addition, either symptoms suggestive of myocardial ischemia, new ischemic ECG changes, angiographic findings consistent with procedural complication, or imaging demonstrating of new loss of viable myocardium or new RWMA

Typical rise and fall of biochemical markers of myocardial necrosis with ischemic symptoms or ECG changes as per ESC/ACC 2000

- NQWMI: CK-MB or troponin-T/I increase ≥3 times ULN with clinical signs of MI but without Q waves and not related to intervention
- QWMI: New pathological Q waves in 2 or more contiguous leads with clinical signs of MI

Zhang et al. (2016)

- Repeat target lesion therapy either by PCI or surgery
- Repeat target vessel therapy either by PCI or surgery

Zheng et al. (2016)

- Any repeat PCI of the stented segment, including 5mm proximal and distal margins
- Not specified
| Study | Definition | CK-MB >3 times ULN | Repeat revascularization | ARC definition | Outcome 1 | Outcome 2 | Outcome 3 |
|-------|------------|--------------------|-------------------------|---------------|-----------|-----------|-----------|
| TRYTON | Not specified | CK-MB >3 times ULN | Clinically or ischemia-driven revascularization of target lesion | All-cause death, MI, CABG, TLR |
| POLBOS I | All deaths deemed cardiac unless proven otherwise | Third Universal Definition of Myocardial Infarction | Re-intervention of target lesion because of symptomatic stenosis ≥50% of diameter | Not specified | Cardiac death, MI TLR |
| PERFECT | All deaths considered cardiac unless unequivocal non-cardiac cause established | Increase in CK-MB >3 times ULN with ischemic symptoms or new ischemic ECG changes | Repeat revascularization with PCI or CABG within the stent or adjacent 5mm margins | Not specified | All-cause death, MI, TVR |
| NSTS | All deaths considered cardiac unless other cause documented | Rise of biochemical markers above the 99th percentile of ULN with ischemic symptoms, ischemic ECG changes, pathological Q waves, or no relation to PCI procedure | Repeat revascularization by PCI or surgery of the target lesion | All-cause death, MI, TVR, stent thrombosis |
| NBS | All deaths considered cardiac unless other cause documented | NQWMI: CK-MB or troponin-T/I increase ≥3 times ULN with clinical signs of MI and not related to intervention QWMI: New pathological Q waves in 2 or more contiguous leads with clinical signs of MI | Repeat revascularization by PCI or surgery of the target lesion | Angiographically verified | Cardiac death, MI, TVR, stent thrombosis |
| Ruiz et al. (2013) | Not specified | Hospital admission with diagnosis of acute coronary syndrome with or without ST segment elevation | Repeat revascularization of target vessel | All-cause death, MI, TVR |
| Ye et al. (2012) | All deaths considered cardiac unless otherwise documented | Rise of CK-MB 3 times ULN | Repeat revascularization for a stenosis >50% in target lesion | Cardiac death, MI, TLR, TVR |
| BBC ONE | Not specified | First 24 hours after PCI: CK 3 times ULN, CK rise to 50% of the previous value for patient who already had a diagnosis of MI After 24 hours from PCI: ESC/ACC guidelines (2000) | PCI or CABG of either the MV or SB and/or TIMI flow <3 in either the MV or SB after vasodilators | All-cause death, MI, target-vessel failure |
| Lin et al. (2010) | Not specified | Not specified | Repeat revascularization within the treated vessel | All-cause death, MI, TVR, stent thrombosis |
| Ye et al. (2010) | All deaths considered cardiac | Rise of CK-MB 3 times ULN | Repeat revascularization for a stenosis diameter ≥50% within the stent or adjacent 5mm margins | Cardiac death, MI, TLR, TVR |
| Study | Definition of QWMI | Definition of NQWMI | Revascularization within 5mm of the stent edges | Revascularization within the treated vessel | Revascularization in the treated vessel | Cause of death or MI | Cause of death, MI, TVR |
|-------|------------------|--------------------|---|---|---|------------------|--------------------------|
| CACTUS | QWMI: New Q waves in 2 or more contiguous leads with post-procedure CK or CK-MB above ULN and CK-MB >10% of CK level. | NQWMI: Post-procedural CK levels 2 times ULN with elevated CK-MB in the absence of pathological Q waves. | Not specified | Not specified | Not specified | ARC definition | Cardiac death, MI, TVR |
| Cervinka et al. (2008) | QWMI: New Q waves in 2 or more ECG leads with post-procedural elevation of CK 3 times ULN and CK-MB >10% of CK level. | NQWMI: Post-procedural elevation of CK 3 times ULN and CK-MB above normal. | Revascularization within 5mm of the stent edges. | Revascularization in the treated vessel. | ARC definition | All-cause death, MI, CABG, PCI |
| DKCRUSH-I | CK-MB enzyme elevation 3 times ULN either with or without Q waves in at least two contiguous leads on ECG. | Not specified | Repeat revascularization with a diameter stenosis ≥50% within the stent or in the 5mm distal or proximal margins. | Repeat revascularization within the treated vessel. | ARC definition | Cardiac death, MI, TLR |
| Colombo et al. (2004) | Not specified | In-stent occlusion or thrombus, or death or MI within 30 days. | Cardiac death, MI, TVR |
| Pan et al. (2004) | Increase in CK level 3 times ULN | Not specified | Not specified | Not specified | Not specified | Cardiac death, MI, TVR |

Abbreviations: CABG = coronary artery bypass graft; CK = creatine kinase; ECG = electrocardiogram; FFR = fractional flow reserve; MI = myocardial infarction; MV = main vessel; NQWMI = non-Q-wave myocardial infarction; PCI = percutaneous coronary intervention; QWMI = Q-wave myocardial infarction; RWMA = regional wall motion abnormality; SB = side branch; TLR = target lesion revascularization; TVR = target vessel revascularization; ULN = upper limit of normal.
Trial	Proximal Main Vessel	Distal Main Vessel	Side Branch									
	RVD (mm)	MLD (mm)	DS (%)	Length (mm)	RVD (mm)	MLD (mm)	DS (%)	Length (mm)	RVD (mm)	MLD (mm)	DS (%)	Length (mm)
EBC MAIN	3.8 ± 0.7	1.6 ± 0.8	56 ± 21	6.3 ± 2.8	2.9 ± 0.6	1.3 ± 0.5	56 ± 17	8.0 ± 5.1	2.7 ± 0.5	1.19 ± 0.5	55 ± 16	7.9 ± 5.7
NBBS IV	3.8 ± 0.8	1.8 ± 0.9	53 ± 21	6.4 ± 3.2	2.8 ± 0.4	1.1 ± 0.4	59 ± 14	8.4 ± 6.1	2.7 ± 0.6	1.29 ± 0.6	52 ± 19	5.8 ± 4.0
DEFINITION II	3.2 ± 0.6	1.4 ± 0.6	57 ± 17	19.5 ± 8.9	2.61 ± 0.5	1.43 ± 0.6	43 ± 22	-	2.40 ± 0.5	1.21 ± 0.5	49 ± 17	7.7 ± 4.9
DKCRUSH-V	3.1 ± 0.5	1.29 ± 0.6	59 ± 16	20.8 ± 9.9	2.57 ± 0.5	1.43 ± 0.6	40 ± 20	-	2.33 ± 0.5	1.43 ± 0.7	43 ± 18	6.4 ± 4.1
COBRA	3.5 ± 0.5	2.0 ± 1.0	43 ± 26	41 ± 13*	2.7 ± 0.4	1.12 ± 0.5	58 ± 19	-	2.38 ± 0.4	0.91 ± 0.4	62 ± 16	20.7 ± 10
DKCRUSH-II	3.4 ± 0.5	1.86 ± 0.7	57 ± 13	7.35 ± 3.7	2.56 ± 0.5	1.32 ± 0.5	48 ± 16	10.6 ± 8.0	2.33 ± 0.3	0.94 ± 0.4	59 ± 18	9.2 ± 5.9
BBK II	2.9 ± 0.3	1.46 ± 0.7	62 ± 14	10.1 ± 3.7	2.49 ± 0.6	1.51 ± 0.6	39 ± 17	7.6 ± 5.8	2.21 ± 0.4	1.19 ± 0.6	46 ± 23	7.1 ± 5.3
POLBOS II	3.6 ± 0.2	1.40 ± 0.2	61 ± 14	9.3 ± 3.4	3.01 ± 0.1	1.56 ± 0.2	48 ± 16	8.3 ± 2.9	2.45 ± 0.4	1.13 ± 0.2	54 ± 24	4.2 ± 2.1
EBC TWO	-	1.1 ± 0.5	48 ± 21	18 ± 8.8	-	-	-	-	0.93 ± 0.3	55 ± 14	10.8 ± 7.3	
SMART-STRATEGY	3.1 ± 0.6	0.82 ± 0.5	73 ± 15	13.7 ± 8.1	-	-	-	-	0.96 ± 0.4	54 ± 16	9.7 ± 7.1	
Zhang et al. (2016)	3.0 ± 0.5	0.77 ± 0.5	75 ± 15	13.2 ± 6.9	-	-	-	-	2.49 ± 0.5	1.27 ± 0.7	50 ± 23	4.9 ± 4.0
Zheng et al. (2016)	3.4 ± 0.6	1.29 ± 0.9	61 ± 27	7.6 ± 4.9	0.76 ± 0.6	75 ± 21	14.7 ± 7.7	2.44 ± 0.4	0.59 ± 0.3	76 ± 11	12.8 ± 4.9	
DKCRUSH-III	3.4 ± 0.4	1.85 ± 0.5	56 ± 9	16.1 ± 6.3	-	1.42 ± 0.5	64 ± 8	-	2.6 ± 0.3	1.23 ± 0.3	56 ± 10	7.9 ± 4.1
BBK I	3.1 ± 0.4	1.63 ± 0.9	47 ± 26	20.9 ± 8.2	-	1.20 ± 0.7	55 ± 24	-	2.38 ± 0.3	2.30 ± 0.4	54 ± 22	9.9 ± 4.2
TRYTON	3.1 ± 0.4	1.53 ± 0.8	50 ± 27	21.7 ± 7.5	-	1.28 ± 0.7	53 ± 24	-	2.39 ± 0.3	1.97 ± 0.5	53 ± 23	10.4 ± 4.1
POLBOS I	3.6 ± 0.3	1.14 ± 0.4	64 ± 12	26.9 ± 15	2.6 ± 0.4	-	-	-	2.2 ± 0.4	1.1 ± 0.4	57 ± 14	10.3 ± 8.2
PERFECT	3.7 ± 0.5	1.14 ± 0.4	66 ± 12	27.8 ± 13	2.6 ± 0.4	-	-	-	2.2 ± 0.4	1.1 ± 0.4	53 ± 17	8.3 ± 7.3
NSTS	3.0 ± 0.7	1.98 ± 0.8	36 ± 22	17.4 ± 10	2.59 ± 0.6	1.53 ± 0.7	40 ± 23.41	-	2.39 ± 0.6	1.45 ± 0.6	39 ± 23	7.3 ± 5.8
NBS	3.0 ± 0.7	1.8 ± 0.8	40 ± 23	17.4 ± 10	2.49 ± 0.6	1.48 ± 0.7	40 ± 24	-	2.38 ± 0.6	1.39 ± 0.7	42 ± 23	7.5 ± 6.0
Ruiz et al. (2013)	2.9 ± 0.7	1.43 ± 0.8	40 ± 27	23.4 ± 8.6	2.41 ± 0.6	1.18 ± 0.7	52 ± 24	-	2.24 ± 0.5	1.21 ± 0.6	46 ± 26	6.0 ± 4.8
Ye et al. (2012)	2.9 ± 0.5	0.97 ± 0.3	64 ± 7	28.9 ± 11	-	-	-	-	2.27 ± 0.3	0.97 ± 0.3	70 ± 7	16.9 ± 8.2
BBC ONE	-	-	85 ± 11	-	-	-	-	-	0.10 ± 0.4	45 ± 20	-	

Note: DS = Diameter Stenosis, MLD = Minimum Lumen Diameter, RVD = Reference Vessel Diameter, Length = Length of Stenosis.
Study	DS (mm)	MLD (mm)	RVD (mm)	87 ± 10	63 ± 31						
Lin et al. (2010)	3.9 ± 0.4	60 ± 8	23.6 ± 2.1	3.82 ± 0.5	1.43 ± 0.2	62 ± 5	2.79 ± 0.2	0.84 ± 0.1	70 ± 5	12.7 ± 2.8	
	4.0 ± 0.4	60 ± 8	23.8 ± 2.6	3.91 ± 0.6	1.45 ± 0.3	63 ± 4	2.82 ± 0.3	0.85 ± 0.2	70 ± 5	12.9 ± 3.1	
Ye et al. (2010)	3.1 ± 0.6	60 ± 8	12.6 ± 7.2	2.4 ± 0.5	1.4 ± 0.6	-	29.3 ± 8.3	2.2 ± 0.4	1.2 ± 0.4	17.1 ± 8.0	
	3.3 ± 0.7	60 ± 8	12.3 ± 5.1	2.8 ± 0.7	1.6 ± 0.6	-	25.3 ± 7.7	2.4 ± 0.7	1.3 ± 0.5	-	11.5 ± 6.9
CACTUS	2.9 ± 0.3	68 ± 12	15.8 ± 8.7	-	-	-	-	2.16 ± 0.3	0.83 ± 0.3	61 ± 13	5.7 ± 4.2
Ye et al. (2010)	2.7 ± 0.4	69 ± 12	14.7 ± 8.2	-	-	-	-	2.16 ± 0.3	0.83 ± 0.3	61 ± 13	5.7 ± 4.2
Cervinka et al. (2008)	3.4 ± 0.4	60 ± 8	21.3 ± 11	2.53 ± 0.4	0.65 ± 0.3	66 ± 20	-	2.46 ± 0.5	0.84 ± 0.6	65 ± 20	10.3 ± 6.3
	3.5 ± 0.4	-	20.0 ± 10	2.56 ± 0.5	0.62 ± 0.3	62 ± 12	-	2.45 ± 0.5	0.84 ± 0.5	66 ± 19	10.5 ± 7.5
DKCRUSH-I	2.85 ± 0.5	65 ± 13	21.3 ± 11	2.53 ± 0.4	0.65 ± 0.3	66 ± 20	-	2.46 ± 0.5	0.84 ± 0.6	65 ± 20	10.3 ± 6.3
	2.86 ± 0.6	64 ± 14	20.0 ± 10	2.56 ± 0.5	0.62 ± 0.3	62 ± 12	-	2.45 ± 0.5	0.84 ± 0.5	66 ± 19	10.5 ± 7.5
Colombo et al. (2004)	2.6 ± 0.4	62 ± 12	10.8 ± 4.8	-	-	-	-	2.1 ± 0.3	0.88 ± 0.4	57 ± 17	5.5 ± 4.1
	2.6 ± 0.5	65 ± 11	12.2 ± 5.6	-	-	-	-	2.1 ± 0.3	1.14 ± 0.5	46 ± 22	5.1 ± 4.4
Pan et al. (2004)	0.74 ± 0.5	77 ± 14	-	-	-	-	-	0.93 ± 0.4	64 ± 13	-	

*Lesion length including both proximal and distal main vessel
Abbreviations: DS = diameter stenosis; MLD = minimum lumen diameter; RVD = reference vessel diameter
Table S7. Risk of bias in the selected trials using the Cochrane Risk Assessment Tool.

Trial	Random Sequence Generation (Selection Bias)	Allocation Concealment (Selection Bias)	Blinding of Participants and Personnel* (Performance Bias)	Blinding of Outcome Assessment (Detection Bias)	Incomplete Outcome Data (Attrition Bias)	Selective Reporting (Reporting Bias)	Other Bias
EBC MAIN	Low	Low	Low	Low	Low	Low	Low
NBBS IV	High	High	High	High	Low	Low	Low
DEFINITION II	Low	Low	Unclear	Low	Low	Low	Low
DKCRUSH-V	Low	Low	Unclear	Low	Low	Low	Low
COBRA	Low	Unclear	Low	Low	Low	Low	Low
DKCRUSH-II	Unclear	Low	Low	Low	Low	Low	Low
BBK II	Low	High	Low	Low	Low	Low	Low
POLBOS II	Low	High	Low	Unclear	Low	Low	Low
EBC TWO	Low	Unclear	Low	Unclear	Low	Low	Low
SMART-STRATEGY	Unclear	Low	High	Low	Low	Low	Low
Zhang et al. (2016)	Low	Unclear	Low	Unclear	Low	Low	Low
Zheng et al. (2016)	Unclear	Low	Unclear	Unclear	Low	Low	Low
DKCRUSH-III	Unclear	Low	Unclear	Low	Low	Low	Low
BBK I	Low	High	Unclear	Low	Unclear	Unclear	Low
TRYTON	Low	Low	Low	High	Low	Low	Low
POLBOS I	Low	Low	High	Low	Low	High	Low
PERFECT	Low	Low	High	Unclear	Low	Low	Low
NSTS	Low	High	Low	Unclear	Low	Low	Low
NBS	Low	High	Low	Unclear	Low	Unclear	Low
Ruiz et al. (2013)	Unclear	Low	Unclear	High	Unclear	Low	High
Ye et al. (2012)	High	High	Unclear	Low	Low	Unclear	Low
BBC ONE	Low	Low	Unclear	Low	Low	Low	Low
Lin et al. (2010)	Low	Unclear	Low	Unclear	Low	Unclear	Low
Ye et al. (2010)	High	High	Unclear	Low	Low	Unclear	Low
CACTUS	Unclear	Low	Unclear	Low	Low	Low	Low
Cervinka et al. (2008)	Low	Unclear	Low	Low	Low	Low	Low
DKCRUSH-I	Low	Unclear	Low	Low	Low	Unclear	Low
Colombo et al. (2004)	Unclear	Low	Unclear	Low	Unclear	High	Low
Pan et al. (2004)	High	High	Unclear	Low	Unclear	High	Low

*Single-blinded trials were assessed to have low risk of bias as operators could not be completely blinded due to the nature of the study.
	Begg and Mazumdar’ Test, \(P \)-value	Egger’s Test, \(P \)-value
All-cause mortality	0.93	0.44
Cardiac Death	0.09	0.40
Major Adverse Cardiac Events	0.32	0.39
Myocardial Infarction	0.43	0.29
Stent Thrombosis	0.37	0.02
Target Lesion Revascularization	0.71	0.93
Target Vessel Revascularization	0.09	0.40
Table S9. Assessment of heterogeneities in the network model.

Outcome	τ^2	I^2	Total						
	Q	DF	P-value	Q	DF	P-value	Q	DF	P-value
All-cause mortality	0	14	0.9884	2.59	11	0.9951	2.21	3	0.5292
Cardiac Death	0	18	0.9990	4.27	13	0.9880	0.65	5	0.9856
Major Adverse Cardiac Events	0.0172	21	0.2632	20.02	16	0.2195	4.62	5	0.4637
Myocardial Infarction	0.0366	24	0.2997	22.79	19	0.2469	4.32	5	0.5048
Stent Thrombosis	0	23	0.9770	8.48	18	0.9705	3.06	5	0.6915
Target Lesion Revascularization	0	21	0.8578	10.29	16	0.8510	3.98	5	0.5526
Target Vessel Revascularization	0	18	0.7042	9.38	14	0.8058	5.00	4	0.2877

Abbreviations: DF = degrees of freedom
Table S10. P-scores of each bifurcation technique for every outcome.

	Provisional	Culotte	DK Crush	DBS	T/TAP	Crush
All-cause mortality	0.6064	0.2766	0.7387	0.6744	0.4972	0.2067
Cardiac Death	0.4960	0.3649	0.8473	0.8622	0.1751	0.2545
Major Adverse Cardiac Events	0.6867	0.5076	1.0000	0.3854	0.1755	0.2448
Myocardial Infarction	0.5580	0.4343	0.9522	0.3304	0.5796	0.1455
Stent Thrombosis	0.6430	0.3731	0.9809	0.3513	0.1125	0.5392
Target Lesion Revascularization	0.6451	0.5208	1.0000	0.2306	0.1571	0.4465
Target Vessel Revascularization	0.6205	0.5899	0.9997	0.1762	0.2957	0.3180

Abbreviation: DBS = dedicated bifurcation stent; DK crush = double kissing crush; T/TAP = T-stenting or T and protrusion
Table S11. SUCRA scores of each bifurcation technique for every outcome.

	Provisional	Culotte	DK Crush	DBS	T/TAP	Crush
All-cause mortality	0.5826	0.3111	0.7048	0.6655	0.5119	0.2242
Cardiac Death	0.4923	0.3676	0.8292	0.8639	0.1853	0.2627
Major Adverse Cardiac Events	0.6759	0.5046	0.9998	0.3968	0.1721	0.2508
Myocardial Infarction	0.5278	0.4266	0.9324	0.41019	0.5663	0.1450
Stent Thrombosis	0.6474	0.3854	0.9750	0.3596	0.1264	0.5061
Target Lesion Revascularization	0.6271	0.5055	0.9999	0.2486	0.1576	0.4613
Target Vessel Revascularization	0.5822	0.5730	0.9987	0.1864	0.3228	0.3369

Abbreviation: DBS = dedicated bifurcation stent; DK crush = double kissing crush; T/TAP = T-stenting or T and protrusion
Table S12. Best rank analyses with hierarchical Bayesian model for each outcome.

	1st	2nd	3rd	4th	5th	6th	
All-cause Mortality							
Culotte	0.03300	0.07775	0.11763	0.20628	0.32578	0.23958	
DK Crush	0.33365	0.26843	0.15513	0.11625	0.07445	0.05210	
DBS	0.37618	0.18980	0.12650	0.11200	0.09328	0.10225	
Crush	0.01923	0.04540	0.07813	0.15545	0.28853	0.41328	
T/TAP	0.18905	0.17388	0.14315	0.17163	0.14450	0.17780	
PS	0.04890	0.24475	0.37948	0.23840	0.07348	0.01500	
Cardiac Death							
Culotte	0.01343	0.06648	0.18848	0.31595	0.30783	0.10785	
DK Crush	0.28798	0.59903	0.09003	0.01778	0.00440	0.00080	
DBS	0.66385	0.17045	0.06743	0.03983	0.03675	0.02170	
Crush	0.00420	0.02993	0.09915	0.23995	0.39528	0.23150	
T/TAP	0.02810	0.05340	0.08155	0.09883	0.12485	0.61328	
PS	0.00245	0.08073	0.47338	0.28768	0.13090	0.02488	
Major Adverse Cardiac Events							
Culotte	0.00003	0.22493	0.29793	0.28718	0.15508	0.03488	
DK Crush	0.99903	0.00098	0.00000	0.00000	0.00000	0.00000	
DBS	0.00088	0.17345	0.19593	0.22605	0.24593	0.15778	
Crush	0.00000	0.01795	0.08110	0.26393	0.41103	0.22600	
T/TAP	0.00008	0.06313	0.06823	0.11473	0.17348	0.58038	
PS	0.00000	0.51958	0.35683	0.10813	0.01450	0.00098	
Myocardial Infarction							
Culotte	0.01085	0.14490	0.23765	0.27080	0.24463	0.09118	
DK Crush	0.72735	0.22533	0.03380	0.00978	0.00315	0.00060	
DBS	0.05663	0.16495	0.16580	0.17635	0.21653	0.21975	
Crush	0.00060	0.01100	0.04065	0.11825	0.31935	0.51015	
T/TAP	0.20100	0.28068	0.12290	0.10935	0.11648	0.16960	
PS	0.00358	0.17315	0.39920	0.31548	0.09988	0.00873	
------------------	-------	-------	-------	-------	-------		
	1st	2nd	3rd	4th	5th	6th	
Stent Thrombosis	Culotte	0.00573	0.07410	0.19285	0.36505	0.29340	0.06888
	DK Crush	0.89528	0.08993	0.01055	0.00333	0.00085	0.00008
	DBS	0.07113	0.15840	0.10823	0.11203	0.26023	0.29000
	Crush	0.01613	0.21670	0.28818	0.27925	0.15993	0.03983
	T/TAP	0.00220	0.01653	0.04500	0.08358	0.25273	0.59998
	PS	0.00955	0.44435	0.35520	0.15678	0.03288	0.00125
Target Lesion	**Revascularization**						
Stent Thrombosis	Culotte	0.00003	0.26973	0.24548	0.27343	0.16533	0.04603
	DK Crush	0.99973	0.00028	0.00000	0.00000	0.00000	0.00000
	DBS	0.00023	0.08858	0.09708	0.14105	0.31400	0.35908
	Crush	0.00000	0.20553	0.23448	0.29223	0.19633	0.07145
	T/TAP	0.00003	0.03478	0.05028	0.10430	0.28953	0.52110
	PS	0.00000	0.40113	0.37270	0.18900	0.03483	0.00235
Target Vessel	**Revascularization**						
Stent Thrombosis	Culotte	0.00090	0.41400	0.24023	0.18490	0.11398	0.04600
	DK Crush	0.99393	0.00580	0.00023	0.00005	0.00000	0.00000
	DBS	0.00053	0.04838	0.07040	0.12575	0.27323	0.48173
	Crush	0.00008	0.06155	0.16600	0.31193	0.31615	0.14430
	T/TAP	0.00450	0.18350	0.11535	0.13800	0.23550	0.32315
	PS	0.00008	0.28678	0.40780	0.23938	0.06115	0.00483
Table S13. Follow up coronary angiography and time at outcome assessment.

Trial	Angiographic Follow Up	Clinical Follow Up
EBC MAIN	N/A	1 year
NBBS IV	8 months	2 years
DEFINITION II	13 months	1 year
DKCRUSH-V	13 months	3 years
COBRA	9 months	5 years
DKCRUSH-II	8 months	5 years
BBK II	9 months	1 year
POLBOS II	12 months	1 year
EBC TWO	N/A	1 year
SMART-STRATEGY	9 months	3 years
Zhang et al. (2016)	9 months	9 months
Zheng et al. (2016)	12 months	1 year
DKCRUSH-III	8 months	3 years
BBK I	9 months	5 years
Tryton	9 months	9 months
POLBOS I	12 months	1 year
PERFECT	8 months	1 year
NSTS	8 months	3 years
NBS	8 months	5 years
Ruiz et al. (2013)	9 months	9 months
Ye et al. (2012)	8 months	1 year
BBC ONE	N/A	9 months
Lin et al. (2010)	8 months	8 months
Ye et al. (2010)	8 months	8 months
CACTUS	6 months	6 months
Cervinka et al. (2008)	12 months	1 year
DKCRUSH-I	8 months	8 months
Colombo et al. (2004)	6 months	6 months
Pan et al. (2004)	6 months	6 months
Table S14. Node-splitting analysis for each outcome.

Outcome	Comparison	K	Prop	NMA	Direct	Indirect	Difference	Z-value	P-value
All-cause Mortality	Culotte vs Crush	2	0.59	-0.0670	0.2098	-0.4617	0.6714	1.13	0.2593
	Culotte vs DBS	1	0.18	0.4225	-0.6931	0.6727	-1.3658	-1.04	0.2968
	Culotte vs PS	3	0.57	0.2922	0.1136	0.5272	-0.4136	-0.74	0.4566
	Culotte vs T/TAP	1	0.24	0.2070	0.4055	0.1443	0.2612	0.25	0.8015
	DBS vs PS	4	0.86	-0.1303	-0.3172	1.0486	-1.3658	-1.04	0.2968
	PS vs Crush	3	0.72	-0.3592	-0.5460	0.1254	-0.6714	-1.13	0.2593
	PS vs T/TAP	3	0.84	-0.0852	-0.1281	0.1331	-0.2612	-0.25	0.8015
Cardiac Death	Culotte vs Crush	2	0.66	-0.1545	-0.1324	-0.1977	0.0652	0.08	0.9374
	Culotte vs DBS	1	0.19	1.1243	0.0000	1.3844	-1.3844	-0.63	0.5278
	Culotte vs DK Crush	1	0.36	0.7791	0.6980	0.8242	-0.1262	-0.14	0.8851
	Culotte vs PS	2	0.23	0.2097	0.2682	0.1923	0.0759	0.08	0.9374
	Culotte vs T/TAP	1	0.36	-0.5517	0.0000	-0.8612	0.8612	0.49	0.6248
	DBS vs PS	4	0.85	-0.9146	-1.1254	0.2589	-1.3844	-0.63	0.5278
	DK Crush vs Crush	1	0.12	-0.9337	-1.0922	-0.9111	-0.1811	-0.15	0.8828
	DK Crush vs PS	6	0.92	-0.5694	-0.5715	-0.5445	-0.0270	-0.04	0.9721
	PS vs Crush	3	0.61	-0.3642	-0.3582	-0.3737	0.0155	0.02	0.9841
	PS vs T/TAP	2	0.70	-0.7614	1.0224	-0.1612	-0.8612	-0.49	0.6248
Major Adverse Cardiac Events	Culotte vs Crush	2	0.45	-0.1336	-0.2095	-0.0707	-0.1388	-0.47	0.6350
	Culotte vs DBS	1	0.02	-0.0641	1.6094	-0.0967	1.7062	1.11	0.2675
	Culotte vs DK Crush	1	0.30	0.7825	1.0634	0.6611	0.4023	1.14	0.2539
	Culotte vs PS	4	0.46	0.0832	0.0785	0.0872	-0.0086	-0.03	0.9745
	Culotte vs T/TAP	1	0.38	-0.2345	-0.5878	-0.0169	-0.5709	-1.12	0.2607
	DBS vs PS	4	0.99	0.1472	0.1667	-1.5395	1.7062	1.11	0.2675
	DK Crush vs Crush	1	0.26	-0.9161	-0.7408	-0.9779	0.2371	0.69	0.4875
	DK Crush vs PS	6	0.72	-0.6993	-0.6729	-0.7658	0.0928	0.33	0.7382
	PS vs Crush	4	0.72	-0.2168	-0.2239	-0.1982	-0.0258	-0.10	0.9181
	PS vs T/TAP	2	0.70	-0.3177	-0.1438	-0.7147	0.5709	1.12	0.2607
Myocardial Infarction	Culotte vs Crush	2	0.36	-0.2197	-0.2961	-0.1758	-0.1203	-0.27	0.7902
	Culotte vs DBS	1	0.04	-0.0859	1.0986	-0.1319	1.2305	0.75	0.4547
	Culotte vs DK Crush	1	0.28	0.5944	0.8921	0.4775	0.4146	0.73	0.4625
	Culotte vs PS	4	0.61	0.0767	-0.0161	0.2245	-0.2406	-0.60	0.5467
	Culotte vs T/TAP	1	0.16	0.1723	0.6931	0.0736	0.6196	0.46	0.6453
	DBS vs PS	4	0.98	0.1627	0.1912	-1.0393	1.2305	0.75	0.4547
	Culotte vs Crush	2	0.73	0.1854	2.310	0.0647	0.1663	0.25	0.7998
------------------	------------------	----	------	--------	-------	--------	--------	------	--------
	Culotte vs DBS	1	0.14	-0.1501	0.0000	-0.1752	0.1752	0.08	0.9346
	Culotte vs DK Crush	1	0.14	1.0032	2.0843	0.8325	1.2518	1.10	0.2707
	Culotte vs PS	4	0.54	0.3083	-0.0551	0.7361	-0.7912	-1.26	0.2065
	Culotte vs T/TAP	1	0.10	-0.5529	1.0986	-0.7400	1.8386	1.07	0.2847
	DBS vs PS	4	0.88	0.4584	0.4797	0.3045	0.1752	0.08	0.9346
	DK Crush vs Crush	1	0.23	-0.8178	-0.9099	-0.7910	-0.1189	-0.13	0.8996
	DK Crush vs PS	5	0.84	-0.6949	-0.5874	-1.2717	0.6843	0.87	0.3849
	PS vs Crush	4	0.47	-0.1229	-0.1794	-0.0723	-0.1071	-0.16	0.8694
	PS vs T/TAP	5	0.93	-0.8612	-0.9855	0.8530	-1.8386	-1.07	0.2847

Stent Thrombosis

	Culotte vs Crush	2	0.39	-0.0418	-0.1169	0.0066	-0.1236	-0.31	0.7547
	Culotte vs DBS	1	0.03	-0.2152	1.0986	-0.2540	1.3526	0.83	0.4058
	Culotte vs DK Crush	1	0.26	0.8872	1.2927	0.7442	0.5485	1.22	0.2231
	Culotte vs PS	3	0.51	0.0604	0.0776	0.0425	0.0351	0.11	0.9150
	Culotte vs T/TAP	1	0.36	-0.2713	-0.6931	-0.0343	-0.6589	-1.35	0.1782
	DBS vs PS	4	0.98	0.2756	0.3005	-1.0521	1.3526	0.83	0.4058
	DK Crush vs Crush	1	0.37	-0.9290	-0.7218	-1.0531	0.3313	0.86	0.3904
	DK Crush vs PS	6	0.71	-0.8268	-0.8113	-0.8645	0.0531	0.16	0.8731
	PS vs Crush	3	0.61	-0.1022	-0.1616	-0.0085	-0.1531	-0.47	0.6391
	PS vs T/TAP	4	0.77	-0.3317	-0.1800	0.8389	0.6589	1.35	0.1782

Target Lesion Revascularization

	Culotte vs Crush	2	0.53	-0.1634	-0.2146	-0.1060	-0.1086	-0.31	0.7588
	Culotte vs DBS	1	0.05	-0.3027	0.6931	-0.3560	1.0491	0.86	0.3877
	Culotte vs DK Crush	1	0.40	0.7409	1.1835	0.4510	0.7325	1.81	0.0708
	Culotte vs PS	3	0.37	-0.0014	-0.3762	0.2234	-0.5995	-1.61	0.1084
	DBS vs PS	4	0.97	0.3013	0.3308	-0.7183	1.0491	0.86	0.3877
	DK Crush vs Crush	1	0.39	-0.9042	-0.7473	-1.0052	0.2578	0.72	0.4744
	DK Crush vs PS	3	0.58	-0.7422	-0.6233	-0.9040	0.2807	0.83	0.4049
	PS vs Crush	4	0.71	-0.1620	-0.1919	-0.0885	-0.1034	-0.34	0.7340
Table S15. Pooled estimates of network meta-analysis for each outcome.

	Culotte	DK Crush	DBS	T/TAP	Crush	Provisional
All-cause Mortality (19 trials)	0.65 (0.31-1.37)	0.66 (0.24-1.77)	0.81 (0.34-1.94)	1.07 (0.60-1.90)	0.75 (0.44-1.28)	
1.55 (0.73-3.28)						
1.53 (0.57-4.12)	0.98 (0.35-2.74)					
1.23 (0.52-2.94)	0.79 (0.32-1.98)	0.81 (0.25-2.56)	T/TAP	1.32 (0.54-3.22)	0.92 (0.43-1.95)	
0.94 (0.53-1.66)	0.60 (0.29-1.26)	0.61 (0.22-1.68)	0.76 (0.31-1.86)	Crush	0.70 (0.41-1.18)	
1.34 (0.78-2.30)	0.86 (0.51-1.45)	0.88 (0.36-2.12)	1.09 (0.51-2.32)	1.43 (0.85-2.42)		

Cardiac Death (23 trials)	Culotte	DK Crush	DBS		Crush	Provisional
2.18 (0.96-4.95)	0.71 (0.14-3.47)	3.78 (0.75-19.20)	2.54 (1.15-5.64)	1.77 (1.19-2.63)		
3.08 (0.57-16.50)	1.41 (0.29-6.92)		5.34 (0.59-48.20)	3.59 (0.66-19.41)	2.50 (0.53-11.69)	
0.58 (0.11-3.02)	0.26 (0.05-1.34)	0.19 (0.02-1.69)	T/TAP	0.67 (0.12-3.67)	0.47 (0.10-2.28)	
0.86 (0.40-1.85)	0.39 (0.18-0.87)	0.28 (0.05-1.50)	1.49 (0.27-8.12)	Crush	0.69 (0.33-1.46)	
1.23 (0.56-2.73)	0.57 (0.38-0.84)	0.40 (0.09-1.88)	2.14 (0.44-10.46)	1.44 (0.68-3.03)		Provisional

Major Adverse Cardiac Events (26 trials)	Culotte	DK Crush	DBS	T/TAP	Crush	Provisional
2.19 (1.59-3.00)	2.33 (1.56-3.49)	2.76 (1.66-3.49)	2.50 (1.86-3.35)	2.01 (1.57-2.57)		
0.94 (0.62-1.42)	0.43 (0.29-0.64)		1.19 (0.68-2.07)	1.07 (0.73-1.58)	0.86 (0.63-1.19)	
0.79 (0.49-1.28)	0.36 (0.22-0.60)	0.84 (0.48-1.47)	T/TAP	0.90 (0.55-1.48)	0.73 (0.46-1.15)	
0.87 (0.66-1.16)	0.40 (0.30-0.54)	0.93 (0.63-1.38)	1.11 (0.67-1.82)	Crush	0.81 (0.65-1.00)	
1.09 (0.83-1.42)	0.50 (0.39-0.64)	1.16 (0.84-1.60)	1.37 (0.87-2.17)	1.24 (1.00-1.55)		Provisional

Myocardial Infarction (29 trials)	Culotte	DK Crush	DBS	T/TAP	Crush	Provisional
1.81 (1.10-2.98)	1.97 (1.04-3.74)	1.53 (0.56-4.13)	2.26 (1.44-3.53)	1.68 (1.11-2.55)		
0.92 (0.50-1.69)	0.51 (0.27-0.96)		0.77 (0.28-2.17)	1.14 (0.64-2.04)	0.85 (0.52-1.38)	
1.19 (0.45-3.12)	0.66 (0.24-1.78)	1.29 (0.46-3.63)	T/TAP	1.48 (0.57-3.86)	1.10 (0.44-2.73)	
0.80 (0.52-1.23)	0.44 (0.28-0.69)	0.87 (0.49-1.56)	0.68 (0.26-1.76)	Crush	0.74 (0.54-1.02)	
1.08 (0.74-1.58)	0.60 (0.39-0.90)	1.18 (0.72-1.91)	0.91 (0.37-2.26)	1.35 (0.98-1.85)		Provisional

Stent Thrombosis (28 trials)	Culotte	DK Crush	DBS	T/TAP	Crush	Provisional
2.73 (1.27-5.86)	3.17 (0.73-13.3)	4.74 (1.72-13.04)	2.27 (1.05-4.90)	2.00 (1.14-3.51)		
0.86 (0.20-3.73)	0.32 (0.07-1.38)		1.50 (0.30-7.45)	0.71 (0.16-3.17)	0.63 (0.16-2.48)	
0.58 (0.21-1.59)	0.21 (0.08-0.58)	0.67 (0.13-3.33)	T/TAP	0.48 (0.17-1.36)	0.42 (0.18-0.98)	
1.20 (0.68-2.14)	0.44 (0.20-0.95)	1.40 (0.32-6.20)	2.09 (0.74-5.94)	Crush	0.88 (0.47-1.67)	
1.36 (0.74-2.51)	0.50 (0.28-0.88)	1.58 (0.40-6.21)	2.37 (1.02-5.51)	1.13 (0.60-2.14)		Provisional

Target Lesion Revascularization (26 trials)	Culotte	DK Crush	DBS			
2.43 (1.65-3.58)	3.01 (1.79-5.07)	3.19 (1.95-5.20)	2.53 (1.76-3.65)	2.29 (1.70-3.07)		
0.81 (0.47-1.37)	0.33 (0.20-0.56)	1.06 (0.59-1.90)	0.84 (0.50-1.43)	0.76 (0.49-1.17)		
Target Vessel Revascularization (23 trials)	0.76 (0.48-1.21)	0.31 (0.19-0.51)	0.95 (0.53-1.70)	T/TAP	0.79 (0.48-1.30)	0.72 (0.48-1.07)
0.96 (0.66-1.40)	0.39 (0.27-0.57)	1.19 (0.70-2.02)	1.26 (0.77-2.06)	Crush	0.90 (0.66-1.23)	
1.06 (0.77-1.47)	0.44 (0.33-0.59)	1.32 (0.86-2.02)	1.39 (0.93-2.09)	1.11 (0.81-1.51)	Provisional	
Culotte	0.48 (0.32-0.70)	1.35 (0.80-2.28)	1.25 (0.66-2.35)	1.18 (0.83-1.66)	1.00 (0.70-1.43)	
2.10 (1.42-3.09)	DK Crush	2.84 (1.71-4.72)	2.61 (1.41-4.86)	2.47 (1.75-3.49)	2.10 (1.52-2.91)	
0.74 (0.44-1.25)	0.35 (0.21-0.59)	DBS	0.92 (0.48-1.78)	0.87 (0.54-1.40)	0.74 (0.50-1.10)	
0.80 (0.43-1.51)	0.38 (0.21-0.71)	1.09 (0.56-2.09)	T/TAP	0.94 (0.52-1.71)	0.80 (0.47-1.36)	
0.85 (0.60-1.20)	0.40 (0.29-0.57)	1.15 (0.71-1.85)	1.06 (0.59-1.91)	Crush	0.85 (0.65-1.11)	
1.00 (0.70-1.42)	0.48 (0.34-0.66)	1.35 (0.91-2.00)	1.24 (0.74-2.11)	1.18 (0.90-1.54)	Provisional	
Table S16. Sensitivity analysis of trials that only included true bifurcations.						

All-cause Mortality (10 trials)						
Culotte	0.77 (0.32-1.87)	0.88 (0.20-3.87)	0.55 (0.05-5.82)	2.00 (0.18-21.82)	0.89 (0.44-1.83)	
DK Crush	1.30 (0.54-3.14)	1.14 (0.28-4.62)	0.72 (0.07-7.16)	2.59 (0.20-33.13)	1.16 (0.69-1.95)	
DBS	1.14 (0.26-5.01)	0.88 (0.22-3.56)	0.63 (0.05-8.40)	2.27 (0.14-37.88)	1.02 (0.28-3.72)	
T/TAP	1.81 (0.17-18.99)	1.39 (0.14-13.92)	1.59 (0.12-21.18)	N/A	1.61 (0.17-15.17)	
Crush	0.50 (0.05-5.46)	0.41 (0.03-5.18)	0.56 (0.04-8.28)	0.29 (0.01-8.33)	0.47 (0.04-5.68)	
Provisional	1.12 (0.55-2.29)	0.86 (0.51-1.45)	0.98 (0.27-3.61)	0.62 (0.07-5.83)	2.24 (0.18-27.15)	
Cardiac Death (12 trials)						
Culotte	0.52 (0.19-1.40)	0.95 (0.09-9.87)	N/A	1.21 (0.25-5.89)	0.93 (0.34-2.54)	
DK Crush	1.93 (0.72-5.21)	1.83 (0.18-18.13)	N/A	2.34 (0.52-10.58)	1.79 (1.20-2.69)	
DBS	1.06 (0.10-11.01)	0.55 (0.06-5.43)	N/A	1.28 (0.09-18.75)	0.98 (0.10-9.52)	
Crush	0.83 (0.17-4.02)	0.43 (0.09-1.94)	0.78 (0.05-11.47)	N/A	0.77 (0.17-3.52)	
Provisional	1.08 (0.39-2.94)	0.56 (0.37-0.84)	1.02 (0.11-9.90)	N/A	1.30 (0.28-5.99)	
Major Adverse Cardiac Events (14 trials)						
Culotte	0.72 (0.33-1.57)	1.29 (0.47-3.56)	N/A	1.13 (0.47-2.70)	1.00 (0.55-1.81)	
DK Crush	1.40 (0.64-3.05)	1.80 (0.68-4.74)	N/A	1.57 (0.59-4.17)	1.40 (0.84-2.33)	
DBS	0.77 (0.28-2.14)	0.56 (0.21-1.46)	N/A	0.87 (0.27-2.81)	0.78 (0.34-1.76)	
Crush	0.83 (0.17-4.02)	0.43 (0.09-1.94)	0.78 (0.05-11.47)	N/A	0.77 (0.17-3.52)	
Provisional	1.08 (0.39-2.94)	0.56 (0.37-0.84)	1.02 (0.11-9.90)	N/A	1.30 (0.28-5.99)	
Myocardial Infarction (16 trials)						
Culotte	0.55 (0.34-0.89)	1.35 (0.80-2.30)	1.19 (0.28-5.06)	1.05 (0.61-1.81)	0.99 (0.68-1.44)	
DK Crush	1.82 (1.13-2.94)	2.46 (1.42-4.28)	2.17 (0.51-9.27)	1.92 (1.21-3.04)	1.81 (1.21-2.69)	
DBS	0.74 (0.43-1.26)	0.41 (0.23-0.70)	N/A	0.99 (0.44-1.87)		
0.78 (0.21-3.75)	0.78 (0.43-1.42)	0.73 (0.50-1.08)	0.54 (0.06-4.60)	0.57 (0.12-2.70)	0.36 (0.11-1.14)	
Crush	0.95 (0.55-1.63)	0.52 (0.33-0.83)	1.29 (0.71-2.35)	1.13 (0.26-4.93)	0.94 (0.59-1.50)	
Provisional	1.00 (0.55-1.81)	0.72 (0.43-1.19)	1.29 (0.57-2.94)	N/A	1.13 (0.49-2.59)	
Stent Thrombosis (15 trials)						
Culotte	0.47 (0.20-1.09)	1.36 (0.21-9.03)	2.54 (0.65-9.95)	1.45 (0.49-4.33)	0.91 (0.44-1.87)	
DK Crush	2.15 (0.92-5.03)	2.93 (0.44-19.43)	5.46 (1.50-19.86)	3.12 (1.08-8.98)	1.95 (1.11-3.46)	
DBS	0.73 (0.11-4.86)	0.34 (0.05-2.27)	N/A	1.86 (0.22-16.01)	1.07 (0.14-8.40)	
T/TAP	0.39 (0.10-1.54)	0.18 (0.05-0.67)	0.54 (0.06-4.60)	0.57 (0.12-2.70)	0.36 (0.11-1.14)	
Crush	0.69 (0.23-2.06)	0.32 (0.11-0.92)	0.94 (0.12-7.40)	1.75 (0.37-8.27)	0.63 (0.22-1.76)	
Provisional	1.10 (0.53-2.26)	0.51 (0.29-0.90)	1.50 (0.24-9.17)	2.79 (0.88-8.90)	1.60 (0.57-4.49)	
Target Lesion Revascularization (15 trials)						
Culotte	0.42 (0.24-0.73)	1.30 (0.60-2.81)	2.00 (0.40-10.03)	1.18 (0.60-2.31)	0.95 (0.62-1.45)	
DK Crush	2.37 (1.37-4.12)	3.08 (1.48-6.42)	4.76 (0.97-23.39)	2.79 (1.35-5.79)	2.25 (1.58-3.20)	
DBS	0.77 (0.36-1.67)	0.32 (0.16-0.68)	N/A	1.54 (0.29-8.30)	0.91 (0.37-2.24)	
Provisional	0.73 (0.38-1.39)	0.37 (0.19-0.75)	N/A	1.01 (0.37-2.81)	0.73 (0.38-1.39)	
Target Vessel Revascularization (12 trials)	0.50 (0.10-2.50)	0.21 (0.04-1.03)	0.65 (0.12-3.48)	T/TAP	0.59 (0.11-3.15)	0.47 (0.10-2.24)
Culotte	1.08 (0.64-1.84)	0.41 (0.26-0.65)	1.22 (0.55-2.66)	1.97 (0.38-10.01)	Crush	0.93 (0.58-1.49)
DK Crush	1.61 (0.69-1.61)	0.44 (0.31-0.63)	1.37 (0.72-2.61)	2.11 (0.45-9.99)	1.24 (0.65-2.35)	Provisional
Culotte	0.76 (0.38-1.49)	2.00 (0.85-4.72)	1.64 (0.45-5.94)	1.41 (0.72-2.75)	1.41 (0.84-2.37)	
DK Crush	1.32 (0.67-2.60)	2.65 (1.19-5.92)	2.17 (0.62-7.60)	1.86 (0.88-3.93)	1.87 (1.21-2.87)	
Culotte	0.50 (0.21-1.18)	0.38 (0.17-0.84)	2.00 (0.85-4.72)	1.64 (0.45-5.94)	1.41 (0.72-2.75)	1.41 (0.84-2.37)
DK Crush	0.61 (0.17-2.22)	0.46 (0.13-1.62)	1.22 (0.31-4.77)	0.86 (0.23-3.24)	0.86 (0.26-2.80)	
Culotte	0.95 (0.54-1.66)	0.43 (0.27-0.70)	1.25 (0.53-2.97)	1.13 (0.31-4.16)	Crush	0.97 (0.59-1.62)
DK Crush	0.71 (0.42-1.20)	0.54 (0.35-0.82)	1.42 (0.72-2.80)	1.16 (0.36-3.77)	1.00 (0.54-1.84)	Provisional
Table S17. Sensitivity analysis excluding trials that did not include left main bifurcations.

Event Type	Culotte	DK Crush	DBS	T/TAP	Crush	Provisional
All-cause Mortality						
(11 trials)	1.67 (0.76-3.68)	2.80 (0.62-12.71)	1.90 (0.40-9.01)	0.99 (0.54-1.80)	1.44 (0.80-2.61)	
	0.60 (0.27-1.32)	1.68 (0.38-7.41)	1.14 (0.21-6.21)	0.59 (0.27-1.28)	0.86 (0.51-1.45)	
	0.36 (0.08-1.62)	T/TAP	0.68 (0.08-5.72)	0.35 (0.08-1.59)	0.51 (0.13-2.07)	
	0.53 (0.11-2.49)			0.52 (0.10-2.68)	0.76 (0.15-3.81)	
	1.01 (0.55-1.84)			1.46 (0.82-2.58)	Provisioinal	
	0.69 (0.38-1.26)					
Cardiac Death						
(14 trials)	2.39 (1.02-5.57)	8.09 (0.84-78.34)	0.52 (0.09-3.10)	0.86 (0.39-1.89)	1.36 (0.59-3.14)	
	0.42 (0.18-0.98)	3.39 (0.39-29.14)	0.22 (0.04-1.28)	0.36 (0.15-0.84)	0.57 (0.38-0.86)	
	0.12 (0.01-1.20)	0.30 (0.03-2.54)	0.60 (0.00-0.99)	0.11 (0.01-1.02)	0.17 (0.02-1.39)	
	1.92 (0.32-11.47)	4.59 (0.78-27.00)	1.65 (0.26-10.47)	2.62 (0.46-14.94)	1.59 (0.70-3.58)	
	1.16 (0.53-2.56)	2.78 (1.18-6.51)	1.78 (0.84-1.10)	1.59 (0.70-3.58)	Provisional	
Major Adverse Cardiac Events						
(15 trials)	2.16 (1.61-2.91)	1.27 (0.73-2.20)	0.48 (0.24-0.96)	0.87 (0.66-1.16)	1.19 (0.91-1.56)	
	0.60 (0.34-0.62)	0.59 (0.34-1.00)	0.22 (0.10-0.47)	0.40 (0.30-0.55)	0.55 (0.43-0.70)	
	0.79 (0.45-1.37)	0.30 (0.03-2.54)	0.38 (0.16-0.91)	0.69 (0.39-1.20)	0.94 (0.58-1.52)	
	2.09 (1.04-4.19)	4.51 (2.13-9.55)	1.65 (0.26-10.47)	1.83 (0.87-3.85)	2.48 (1.19-5.18)	
	1.14 (0.861.51)	2.57 (1.18-6.51)	1.78 (0.84-1.10)	1.36 (0.10-1.80)	1.27 (0.74-2.19)	
	0.84 (0.64-1.10)	1.82 (1.44-2.30)	1.07 (0.66-1.73)	Provisional		
Myocardial Infarction						
(16 trials)	1.67 (0.97-2.88)	1.63 (0.42-6.27)	0.65 (0.12-3.61)	0.78 (0.46-1.35)	0.94 (0.59-1.50)	
	0.60 (0.35-1.03)	0.98 (0.25-3.77)	0.39 (0.07-2.25)	0.47 (0.27-0.82)	0.56 (0.35-0.91)	
	0.61 (0.16-2.35)	0.39 (0.14-3.77)	0.40 (0.15-0.84)	0.48 (0.12-1.91)	0.58 (0.16-2.03)	
	1.54 (0.28-8.51)	2.57 (1.44-14.84)	1.21 (0.21-7.04)	1.27 (0.69-2.07)	1.27 (0.74-2.19)	
	1.27 (0.74-2.19)	2.13 (1.23-3.69)	1.07 (0.67-1.70)	Provisional		
Stent Thrombosis						
(16 trials)	2.25 (1.00-5.04)	0.66 (0.07-5.95)	0.44 (0.13-1.54)	1.32 (0.73-2.41)	1.06 (0.53-2.10)	
	0.45 (0.20-1.00)	0.29 (0.03-2.57)	0.20 (0.06-0.68)	0.59 (0.25-1.38)	0.47 (0.26-0.84)	
	1.51 (0.17-13.58)	3.39 (0.39-29.60)	0.67 (0.06-7.05)	2.00 (0.22-18.39)	1.60 (0.20-12.88)	
	2.26 (0.65-7.90)	5.08 (1.48-17.46)	2.39 (0.80-7.17)	2.99 (0.81-11.01)	1.25 (0.59-2.67)	
	0.76 (0.42-1.38)	1.70 (0.73-3.97)	0.80 (0.38-1.71)	Provisional		
	0.95 (0.48-1.88)	2.12 (1.19-3.80)	0.42 (0.14-1.25)			
Target Lesion Revascularization						
(16 trials)	2.34 (1.57-3.49)	0.84 (0.43-1.65)	2.34 (1.57-3.49)	0.84 (0.43-1.65)		
	0.43 (0.29-0.64)	0.36 (0.18-0.70)	1.19 (0.61-2.33)	1.99 (0.81-11.01)	1.30 (0.59-2.89)	
	1.55 (0.89-2.68)	3.62 (1.97-6.65)	2.39 (0.80-7.17)	3.62 (1.97-6.65)	1.30 (0.59-2.89)	
	1.07 (0.72-1.60)	2.51 (1.70-3.72)	2.08 (1.51-2.86)	Provisional		
	0.89 (0.64-1.24)	2.08 (1.51-2.86)	0.74 (0.42-1.34)			
Target Vessel Revascularization (12 trials)	0.65 (0.37-1.12)	0.28 (0.15-0.51)	0.77 (0.35-1.70)	T/TAP	0.69 (0.37-1.29)	0.57 (0.33-0.99)
--	------------------	------------------	------------------	-------	------------------	------------------
Culotte	0.93 (0.63-1.39)	0.40 (0.27-0.59)	1.11 (0.56-2.19)	1.44 (0.77-2.68)	Crush	0.83 (0.58-1.18)
DK Crush	1.13 (0.81-1.57)	0.48 (0.35-0.66)	1.34 (0.47-2.40)	1.74 (1.01-2.99)	1.21 (0.84-1.73)	Provisional
Culotte	2.03 (1.30-3.19)	0.49 (0.31-0.77)	1.27 (0.64-2.55)	1.32 (0.60-2.90)	1.19 (0.79-1.79)	0.93 (0.60-1.43)
DK Crush	0.78 (0.39-1.57)	0.39 (0.19-0.77)	2.59 (1.31-5.13)	2.68 (1.23-5.86)	2.42 (1.58-3.72)	1.88 (1.23-2.87)
Culotte	0.76 (0.34-1.67)	0.37 (0.17-0.82)	0.97 (0.41-2.26)	1.04 (0.44-2.42)	0.94 (0.48-1.83)	0.73 (0.42-1.25)
DK Crush	0.84 (0.56-1.26)	0.41 (0.27-0.63)	1.07 (0.55-2.09)	1.11 (0.51-2.39)	Crush	0.78 (0.52-1.16)
Culotte	1.08 (0.70-1.67)	0.53 (0.35-0.81)	1.37 (0.80-2.35)	1.42 (0.74-2.75)	1.29 (0.86-1.93)	Provisional
Table S18. Sensitivity analysis of trials that included only non-left main bifurcations.

	Culotte	N/A	1.86 (0.12-28.03)	2.33 (0.18-29.33)	3.06 (0.19-49.33)	1.88 (0.17-20.44)
	N/A	DK Crush	N/A	N/A	N/A	N/A
All-cause Mortality	0.54 (0.04-8.14)	N/A	1.26 (0.27-5.94)	1.65 (0.24-11.38)	1.02 (0.28-3.72)	
(7 trials)	0.43 (0.03-5.41)	N/A	0.80 (0.17-3.77)	T/TAP	1.32 (0.25-6.95)	0.81 (0.34-1.90)
	0.33 (0.02-5.26)	N/A	0.61 (0.09-4.17)	0.76 (0.14-4.02)	Crush	0.61 (0.15-2.56)
	0.53 (0.05-5.76)	N/A	0.98 (0.27-3.61)	1.24 (0.53-2.91)	1.63 (0.39-6.78)	Provisional
Cardiac Death	N/A	DK Crush	1.68 (0.05-53.06)	1.55 (0.02-127.3)	1.72 (0.10-29.10)	1.69 (0.21-13.52)
(8 trials)	N/A	DBS	0.92 (0.01-108.7)	1.03 (0.04-29.57)	1.01 (0.06-15.93)	
	N/A	1.08 (0.01-127.9)	T/TAP	1.12 (0.01-85.22)	1.09 (0.02-53.52)	
	N/A	0.58 (0.03-9.80)	0.97 (0.03-27.97)	0.90 (0.01-68.53)	Crush	0.98 (0.14-6.66)
	N/A	0.59 (0.07-4.73)	0.99 (0.06-15.66)	0.91 (0.02-44.74)	1.02 (0.15-6.92)	Provisional
Major Adverse Cardiac Events	4.96 (1.55-15.80)	DK Crush	5.18 (2.28-11.74)	3.73 (1.51-9.21)	4.45 (2.01-9.83)	3.73 (1.77-7.87)
(10 trials)	0.96 (0.37-2.47)	0.19 (0.09-0.44)	DBS	0.72 (0.39-1.33)	0.86 (0.56-1.32)	0.72 (0.51-1.01)
	1.33 (0.48-3.69)	0.27 (0.11-0.66)	1.39 (0.75-2.55)	T/TAP	1.19 (0.67-2.12)	1.00 (0.60-1.66)
	1.11 (0.44-2.81)	0.22 (0.10-0.50)	1.16 (0.76-1.79)	0.84 (0.47-1.49)	Crush	0.84 (0.64-1.10)
	1.33 (0.55-3.22)	0.27 (0.13-0.56)	1.39 (0.99-1.94)	1.00 (0.60-1.66)	1.19 (0.91-1.56)	Provisional
Myocardial Infarction	4.85 (0.47-50.54)	DK Crush	3.16 (0.37-26.77)	1.67 (0.16-16.98)	3.27 (0.40-26.55)	2.28 (0.29-17.70)
(12 trials)	1.53 (0.42-5.58)	0.32 (0.04-2.67)	DBS	0.53 (0.15-1.84)	1.03 (0.49-2.19)	0.72 (0.39-1.32)
	2.91 (0.60-14.15)	0.60 (0.06-6.12)	1.90 (0.54-6.64)	T/TAP	1.96 (0.60-6.39)	1.37 (0.46-4.10)
	1.48 (0.44-5.04)	0.31 (0.04-2.49)	0.97 (0.46-2.05)	0.51 (0.16-1.66)	Crush	0.70 (0.45-1.09)
	2.12 (0.68-6.64)	0.44 (0.06-3.39)	1.39 (0.76-2.54)	0.73 (0.24-2.18)	1.43 (0.92-2.23)	Provisional
Stent Thrombosis	6.75 (0.24-189.0)	DK Crush	3.46 (0.14-84.60)	4.72 (0.29-77.39)	5.27 (0.33-83.63)	2.12 (0.18-24.84)
(11 trials)	1.94 (0.09-40.56)	0.29 (0.01-7.07)	DBS	1.36 (0.12-15.56)	1.52 (0.14-16.73)	0.61 (0.08-4.71)
	1.43 (0.11-19.47)	0.21 (0.01-3.48)	0.73 (0.06-8.37)	T/TAP	0.73 (0.06-8.37)	1.12 (0.18-6.97)
	1.28 (0.10-16.79)	0.19 (0.01-3.01)	0.66 (0.06-7.20)	0.89 (0.14-5.57)	Crush	0.40 (0.11-1.41)
	3.19 (0.34-30.11)	0.47 (0.04-5.53)	1.63 (0.21-12.55)	2.23 (0.59-8.41)	2.49 (0.71-8.74)	Provisional
Target Lesion Revascularization	N/A	DK Crush	5.54 (1.85-16.62)	4.32 (1.47-12.68)	3.78 (1.25-11.39)	4.05 (1.66-9.86)
(9 trials)	N/A	DBS	0.78 (0.32-1.89)	0.68 (0.27-1.71)	0.73 (0.38-1.39)	
Target Vessel Revascularization (10 trials)	N/A	0.23 (0.08-0.68)	1.28 (0.53-3.11)	T/TAP	0.87 (0.36-2.13)	0.94 (0.51-1.72)
--	-----	-------------------	------------------	------	------------------	------------------
N/A	0.26 (0.09-0.80)	1.47 (0.59-3.67)	1.14 (0.47-2.79)	Crush	1.07 (0.56-2.06)	
N/A	0.25 (0.10-0.60)	1.37 (0.72-2.61)	1.07 (0.58-1.96)	0.93 (0.49-1.79)	Provisional	
Culotte	0.71 (0.06-8.11)	4.01 (0.38-41.95)	2.20 (0.18-26.81)	3.03 (0.31-29.99)	2.83 (0.30-26.70)	
DK Crush	1.40 (0.12-15.97)	5.63 (1.78-17.86)	3.08 (0.73-13.05)	4.26 (1.51-12.00)	3.96 (1.56-10.07)	
0.25 (0.02-2.60)	0.18 (0.06-0.56)	DBS	0.55 (0.15-2.00)	0.76 (0.33-1.71)	0.70 (0.36-1.39)	
0.45 (0.04-5.55)	0.32 (0.08-1.37)	1.83 (0.50-6.66)	T/TAP	1.38 (0.42-4.53)	1.29 (0.43-3.86)	
0.33 (0.03-3.26)	0.23 (0.08-0.66)	1.32 (0.59-2.99)	0.72 (0.22-2.38)	Crush	0.93 (0.59-1.46)	
0.35 (0.04-3.35)	0.25 (0.10-0.64)	1.42 (0.72-2.80)	0.78 (0.26-2.34)	1.07 (0.68-1.69)	Provisional	
Table S19. Sensitivity analysis excluding trials with multiple bifurcation techniques in either arm.

Event Type	Culotte	DK Crush	DBS	T/TAP	Crush	Provisional
All-cause Mortality (14 trials)	0.87 (0.25-3.06)	0.94 (0.31-2.83)	0.81 (0.26-2.58)	1.15 (0.33-4.03)	0.91 (0.29-2.85)	1.10 (0.35-3.47)
Cardiac Death (19 trials)	0.44 (0.17-1.17)	0.76 (0.15-3.75)	1.61 (0.27-9.75)	2.26 (0.86-5.94)	1.11 (0.48-2.57)	0.76 (0.26-2.22)
Major Adverse Cardiac Events (20 trials)	0.48 (0.34-0.66)	1.12 (0.74-1.71)	1.33 (0.87-2.03)	2.10 (1.51-2.92)	1.04 (0.78-1.40)	0.94 (0.68-1.29)
Myocardial Infarction (23 trials)	0.53 (0.31-0.91)	1.06 (0.57-1.96)	0.82 (0.32-2.12)	1.89 (1.10-3.24)	0.94 (0.58-1.50)	0.84 (0.51-1.39)
Stent Thrombosis (22 trials)	0.22 (0.08-0.59)	0.64 (0.13-3.15)	0.92 (0.27-3.12)	4.56 (1.71-12.19)	0.92 (0.73-1.91)	0.94 (0.58-1.50)
Target Lesion Revascularization (21 trials)	0.42 (0.26-0.68)	1.23 (0.65-2.34)	0.92 (0.27-3.12)	2.36 (1.47-3.79)	0.92 (0.73-1.91)	0.94 (0.58-1.50)
Target Vessel Revascularization (19 trials)						
--						
0.77 (0.45-1.30)	0.32 (0.19-0.54)	0.94 (0.52-1.71)	T/TAP	0.73 (0.42-1.27)	0.72 (0.47-1.09)	
1.05 (0.66-1.66)	0.45 (0.29-0.68)	1.29 (0.71-2.37)	1.37 (0.97-2.38)	Crush	0.98 (0.64-1.52)	
1.07 (0.66-1.73)	0.45 (0.32-0.65)	1.32 (0.86-2.02)	1.40 (0.92-2.11)	1.02 (0.66-1.57)	Provisional	

Culotte

| 0.43 (0.38-0.66) | 1.06 (0.57-1.97) | 0.97 (0.47-2.00) | 0.99 (0.67-1.46) | 0.78 (0.47-1.28) |

DK Crush

| 2.47 (1.43-4.28) | 2.26 (1.17-4.35) | 2.30 (1.56-3.39) | 1.81 (1.23-2.68) |

0.94 (0.51-1.76) | 0.40 (0.23-0.70) | DBS | 0.91 (0.47-1.76) | 0.93 (0.52-1.65) | 0.73 (0.50-1.09) |

1.03 (0.50-2.13) | 0.44 (0.23-0.85) | 1.09 (0.57-2.11) | T/TAP | 1.02 (0.52-2.01) | 0.80 (0.47-1.36) |

1.01 (0.68-1.50) | 0.43 (0.30-0.64) | 1.07 (0.60-1.91) | 0.98 (0.50-1.93) | Crush | 0.79 (0.51-1.21) |

1.29 (0.78-2.11) | 0.55 (0.37-0.81) | 1.36 (0.92-2.02) | 1.24 (0.74-1.94) | 1.27 (0.83-1.94) | Provisional |
Figure S1. Forest plot of two-stent versus provisional stent on all-cause mortality.

Study	Experimental Events	Experimental Total	Control Events	Control Total	Weight	Risk Ratio Random, 95% CI
EBC MAIN	10.0	237	7.0	230	8.8%	1.39 [0.54; 3.58]
NBBS IV	5.0	228	5.0	218	5.3%	0.96 [0.28; 3.26]
DEFINITION II	9.0	328	11.0	325	10.5%	0.81 [0.34; 1.93]
DKCRUSH-V	16.0	240	18.0	242	18.7%	0.90 [0.47; 1.72]
POLBOS II	1.0	102	3.0	100	1.6%	0.33 [0.03; 3.09]
EBC TWO	1.0	97	2.0	103	1.4%	0.53 [0.05; 5.76]
Zheng et al. (2016)	2.0	150	1.0	150	1.4%	2.00 [0.18; 21.82]
BBK I	10.0	151	8.0	101	10.0%	1.25 [0.51; 3.04]
TRYTON	4.0	355	4.0	349	4.2%	0.98 [0.25; 3.90]
POLBOS I	2.0	120	3.0	123	2.5%	0.68 [0.12; 4.02]
PERFECT	3.0	213	2.0	206	2.5%	1.45 [0.24; 8.59]
NSTS	10.0	209	14.0	215	12.7%	0.73 [0.33; 1.62]
NBS	21.0	202	12.0	202	17.0%	1.75 [0.88; 3.46]
BBC One	2.0	250	1.0	250	1.4%	2.00 [0.18; 21.92]
Cervinka et al. (2008)	0.0	30	0.0	30	0.5%	1.00 [0.02; 48.82]
Colombo et al. (2004)	1.0	63	0.0	22	0.8%	1.08 [0.05; 25.54]
Pan et al. (2004)	0.0	44	1.0	47	0.8%	0.36 [0.01; 8.50]

Total (95% CI) 2972 2916 100.0% 1.05 [0.79; 1.39]

Heterogeneity: Tau² = 0; Chi² = 6.73, df = 16 (P = 0.98); I² = 0%
Figure S2. Forest plot of two-stent versus provisional stent on cardiac death.

Study	Experimental Events	Experimental Total	Control Events	Control Total	Weight	Risk Ratio Random, 95% CI
NBBS IV	2.0	228	2.0	218	3.9%	0.96 [0.14; 6.73]
DEFINITION II	7.0	328	8.0	325	12.5%	0.87 [0.32; 2.36]
DKCRUSH-V	20.0	240	41.0	242	30.6%	0.49 [0.30; 0.81]
DKCRUSH-II	4.0	183	6.0	183	8.7%	0.67 [0.19; 2.32]
POLBOS II	0.0	102	3.0	100	1.8%	0.14 [0.01; 2.68]
SMART-STRATEGY	4.0	130	1.0	128	3.2%	3.94 [0.45; 34.76]
Zhang et al. (2016)	1.0	52	0.0	52	1.5%	3.00 [0.13; 71.99]
Zheng et al. (2016)	2.0	150	1.0	150	2.7%	2.00 [0.18; 21.82]
TRYTON	0.0	355	0.0	349	1.0%	0.98 [0.02; 49.41]
POLBOS I	0.0	120	20	123	1.7%	0.20 [0.01; 4.23]
PERFECT	2.0	213	1.0	206	2.6%	1.93 [0.18; 21.17]
NSTS	7.0	209	7.0	215	12.0%	1.03 [0.37; 2.88]
NBS	8.0	202	5.0	202	10.7%	1.60 [0.53; 4.81]
Ruiz et al. (2013)	0.0	34	0.0	31	1.0%	0.91 [0.02; 44.74]
Ye et al. (2012)	0.0	38	0.0	30	1.0%	0.79 [0.02; 38.93]
Lin et al. (2010)	0.0	54	1.0	54	1.5%	0.33 [0.01; 8.01]
Ye et al. (2010)	0.0	25	0.0	26	1.0%	1.04 [0.02; 50.43]
CACTUS	0.0	177	1.0	173	1.5%	0.33 [0.01; 7.94]
Cervinka et al. (2008)	0.0	30	0.0	30	1.0%	1.00 [0.02; 48.82]

Total (95% CI)

Study	Experimental Events	Experimental Total	Control Events	Control Total	Weight	Risk Ratio Random, 95% CI
Total (95% CI)	**2880**	**2847**	**100.0%**	**80**	**0.80**	**0.54; 1.19**

Heterogeneity: $\tau^2 = 0.0688$; $\chi^2 = 11.78$, df = 18 ($P = 0.86$); $I^2 = 0\%$
Figure S3. Forest plot of two-stent versus provisional stent on major adverse cardiac events.

Study	Experimental Events Total	Control Events Total	Weight	Risk Ratio Random, 95% CI	
EBC MAIN	42.0	34.0	237	230	1.20 [0.79; 1.81]
NBBS IV	5.0	12.0	228	218	0.40 [0.14; 1.11]
DEFINITION II	20.0	37.0	328	325	0.54 [0.32; 0.90]
DKCRUSH-V	20.0	41.0	240	242	0.49 [0.30; 0.81]
DKCRUSH-II	29.0	44.0	183	183	0.66 [0.43; 1.00]
POLBOS II	12.0	15.0	102	100	0.78 [0.39; 1.59]
EBC TWO	10.0	8.0	97	103	1.33 [0.55; 3.22]
SMART-STRATEGY	8.0	1.0	130	128	7.88 [1.00; 62.08]
Zhang et al. (2016)	4.0	2.0	52	52	2.00 [0.38; 10.45]
Zheng et al. (2016)	10.0	8.0	150	150	1.25 [0.51; 3.08]
BBK I	23.0	23.0	101	101	1.00 [0.60; 1.66]
TRYTON	65.0	45.0	355	349	1.42 [1.00; 2.02]
POLBOS I	16.0	15.0	120	123	1.09 [0.57; 2.11]
PERFECT	38.0	38.0	213	206	0.97 [0.64; 1.45]
NSTS	43.0	36.0	209	215	1.23 [0.82; 1.83]
NBS	44.0	32.0	202	202	1.38 [0.91; 2.07]
Ye et al. (2012)	1.0	5.0	38	30	0.16 [0.02; 1.28]
BBC One	38.0	20.0	250	250	1.90 [1.14; 3.17]
Lin et al. (2010)	6.0	21.0	54	54	0.29 [0.13; 0.65]
Ye et al. (2010)	0.0	1.0	25	26	0.35 [0.01; 8.12]
CACTUS	28.0	26.0	177	173	1.05 [0.64; 1.72]
Cervinka et al. (2008)	4.0	4.0	30	30	1.00 [0.28; 3.63]

Total (95% CI) 3522 3491 100.0% 0.95 [0.77; 1.17]

Heterogeneity: $\tau^2 = 0.1274, \text{Chi}^2 = 51.91, \text{df} = 21 (P < 0.01); i^2 = 60\%$
Figure S4. Forest plot of two-stent versus provisional stent on myocardial infarction.

Study	Experimental	Control	Risk Ratio	Risk Ratio			
	Events	Total	Events	Total	Weight	Random, 95% CI	Random, 95% CI
EBC MAIN	24.0	237	23.0	230	8.7%	1.01 [0.59; 1.74]	
NBBS IV	7.0	228	11.0	218	5.4%	0.61 [0.24; 1.54]	
DEFINITION II	10.0	328	23.0	325	6.9%	0.43 [0.21; 0.89]	
DKCRUSH-V	4.0	240	14.0	242	4.4%	0.29 [0.10; 0.86]	
DKCRUSH-II	7.0	183	6.0	183	4.5%	1.17 [0.40; 3.40]	
POLBOS II	2.0	102	3.0	100	2.1%	0.65 [0.11; 3.83]	
EBC TWO	10.0	97	5.0	103	4.7%	2.12 [0.75; 5.99]	
SMART-STRATEGY	4.0	130	0.0	128	0.9%	8.86 [0.48; 162.95]	
Zheng et al. (2016)	0.0	52	3.0	52	0.9%	0.14 [0.01; 2.70]	
Zheng et al. (2016)	7.0	150	3.0	150	3.3%	2.33 [0.61; 8.85]	
BBK I	2.0	101	4.0	101	2.3%	0.50 [0.09; 2.67]	
TRYTON	54.0	355	38.0	349	10.3%	1.40 [0.95; 2.06]	
POLBOS I	2.0	120	4.0	123	2.3%	0.51 [0.10; 2.75]	
PERFECT	30.0	213	29.0	206	9.4%	1.00 [0.62; 1.61]	
NSTS	14.0	209	13.0	215	6.9%	1.11 [0.53; 2.30]	
NBS	16.0	202	8.0	202	6.1%	2.00 [0.88; 4.57]	
Ruiz et al. (2013)	0.0	34	1.0	31	0.8%	0.30 [0.01; 7.22]	
Ye et al. (2012)	0.0	38	2.0	30	0.8%	0.16 [0.01; 3.19]	
BBC One	28.0	250	9.0	250	6.9%	3.11 [1.50; 6.46]	
Lin et al. (2010)	0.0	54	0.0	54	0.5%	1.00 [0.02; 49.50]	
Ye et al. (2010)	0.0	25	0.0	26	0.5%	1.04 [0.02; 50.43]	
CACTUS	19.0	177	15.0	173	7.7%	1.24 [0.65; 2.36]	
Cervinka et al. (2008)	0.0	30	0.0	30	0.5%	1.00 [0.02; 48.82]	
Colombo et al. (2004)	7.0	63	2.0	22	2.8%	1.22 [0.27; 5.45]	
Pan et al. (2004)	0.0	44	0.0	47	0.5%	1.07 [0.02; 52.63]	

Total (95% CI) 3670 3598 100.0% 1.06 [0.80; 1.40]
Heterogeneity: Tau² = 0.1638; Chi² = 36.13, df = 24 (P = 0.05); I² = 34%
Figure S5. Forest plot of two-stent versus provisional stent on stent thrombosis.

Study	Experimental	Control	Risk Ratio	Risk Ratio
	Events	Total	Weight	Random, 95% CI
EBC MAIN	3.0	237	5.2%	0.73 [0.16; 3.22]
NBBS IV	5.0	228	7.9%	0.80 [0.25; 2.57]
DEFINITION II	4.0	328	7.7%	0.50 [0.15; 1.63]
DKCRUSH-V	6.0	240	11.4%	0.43 [0.17; 1.11]
DKCRUSH-II	5.0	183	7.4%	1.00 [0.29; 3.40]
POLBOS II	1.0	102	1.6%	0.98 [0.06; 15.46]
EBC TWO	3.0	97	2.4%	3.19 [0.34; 30.11]
SMART-STRATEGY	2.0	130	1.4%	4.92 [0.24; 101.56]
Zhang et al. (2016)	0.0	52	0.8%	1.00 [0.02; 49.47]
Zheng et al. (2016)	4.0	150	4.2%	2.00 [0.37; 10.75]
BBK I	5.0	101	4.5%	2.50 [0.50; 12.59]
TRYTON	2.0	355	2.1%	1.97 [0.18; 21.59]
POLBOS I	1.0	120	1.2%	3.07 [0.13; 74.73]
PERFECT	1.0	213	1.2%	2.90 [0.12; 70.83]
NSTS	11.0	209	16.4%	0.67 [0.32; 1.39]
NBS	3.0	202	6.0%	0.50 [0.13; 1.97]
Ruiz et al. (2013)	0.0	34	0.8%	0.91 [0.02; 44.74]
Ye et al. (2012)	0.0	38	0.8%	0.79 [0.02; 38.93]
BBC One	5.0	250	2.7%	5.00 [0.59; 42.49]
Lin et al. (2010)	0.0	54	1.2%	0.33 [0.01; 8.01]
CACTUS	3.0	177	3.8%	1.47 [0.25; 8.67]
Cervinka et al. (2008)	0.0	30	0.8%	1.00 [0.02; 48.82]
Colombo et al. (2004)	3.0	63	1.5%	2.52 [0.14; 46.86]
Pan et al. (2004)	8.0	44	7.0%	2.85 [0.81; 10.06]

Total (95% CI) 3646 3573 100.0% 1.00 [0.70; 1.42]

Heterogeneity: Tau$^2 = 0.0626$, Chi$^2 = 17.84$, df = 23 (P = 0.77); I$^2 = 0%
Figure S6. Forest plot of two-stent versus provisional stent on target lesion revascularization.

Study	Experimental	Control	Risk Ratio	
	Events	Total	Weight	Random, 95% CI
EBC MAIN	22.0	237	6.8%	1.53 [0.80; 2.91]
NBBS IV	14.0	228	6.7%	0.67 [0.35; 1.29]
DEFINITION II	8.0	328	5.2%	0.44 [0.19; 1.00]
DKCRUSH-V	12.0	240	6.6%	0.48 [0.25; 0.94]
DKCRUSH-II	16.0	183	7.6%	0.53 [0.30; 0.94]
POLBOS II	10.0	102	4.9%	1.09 [0.46; 2.57]
SMART-STRATEGY	15.0	130	5.9%	1.34 [0.64; 2.81]
Zhang et al. (2016)	4.0	52	1.1%	4.00 [0.46; 34.59]
Zheng et al. (2016)	8.0	150	3.8%	1.33 [0.47; 3.75]
BBK I	16.0	101	6.9%	1.00 [0.53; 1.89]
TRYTON	17.0	355	5.8%	1.52 [0.72; 3.20]
POLBOS I	14.0	120	5.4%	1.59 [0.72; 3.54]
PERFECT	4.0	213	3.0%	0.55 [0.16; 1.86]
NSTS	13.0	209	5.8%	1.03 [0.49; 2.17]
NBS	31.0	202	8.4%	1.35 [0.82; 2.23]
Ye et al. (2012)	1.0	38	1.1%	0.26 [0.03; 2.40]
Lin et al. (2010)	4.0	54	3.9%	0.24 [0.08; 0.65]
Ye et al. (2010)	0.0	25	0.6%	0.35 [0.01; 8.12]
CACTUS	13.0	177	5.6%	1.16 [0.53; 2.51]
Cervinka et al. (2008)	4.0	30	2.7%	1.00 [0.28; 3.63]
Colombo et al. (2004)	6.0	63	1.2%	2.10 [0.27; 16.45]
Pan et al. (2004)	2.0	44	1.0%	2.14 [0.20; 22.74]

Total (95% CI): 3282 3207 100.0% 0.92 [0.72; 1.17]

Heterogeneity: $\tau^2 = 0.1120; \ Chi^2 = 33.38, df = 21 (P = 0.04); I^2 = 37\%$
Figure S7. Forest plot of two-stent versus provisional stent on target vessel revascularization.

Study	Experimental	Control	Risk Ratio				
	Events	Total	Events	Total	Weight	Random, 95% CI	Random, 95% CI
NBBS IV	15.0	228	23.0	218	7.9%	0.62 [0.33; 1.16]	
DKCRUSH-II	23.0	183	35.0	183	10.7%	0.66 [0.40; 1.07]	
POLBOS II	14.0	102	12.0	100	6.5%	1.14 [0.56; 2.35]	
EBC TWO	1.0	97	3.0	103	0.9%	0.35 [0.04; 3.35]	
SMART-STRATEGY	21.0	130	14.0	128	7.8%	1.48 [0.79; 2.77]	
Zhang et al. (2016)	4.0	52	1.0	52	1.0%	4.00 [0.46; 34.59]	
Zheng et al. (2016)	9.0	150	7.0	150	4.1%	1.29 [0.49; 3.36]	
TRYTON	19.0	355	13.0	349	6.9%	1.44 [0.72; 2.86]	
POLBOS I	19.0	120	12.0	123	7.1%	1.62 [0.82; 3.20]	
PERFECT	6.0	213	7.0	206	3.4%	0.83 [0.28; 2.43]	
NSTS	25.0	209	21.0	215	9.3%	1.22 [0.71; 2.12]	
NBS	37.0	202	27.0	202	11.4%	1.37 [0.87; 2.16]	
Ruiz et al. (2013)	2.0	34	4.0	31	1.6%	0.46 [0.09; 2.32]	
Ye et al. (2012)	1.0	38	3.0	30	0.9%	0.26 [0.03; 2.40]	
BBC One	17.0	250	14.0	250	7.0%	1.21 [0.61; 2.41]	
Lin et al. (2010)	4.0	54	16.0	54	3.7%	0.25 [0.09; 0.70]	
CACTUS	14.0	177	13.0	173	6.4%	1.05 [0.51; 2.17]	
Cervinka et al. (2008)	0.0	30	0.0	30	0.3%	1.00 [0.02; 48.82]	
Colombo et al. (2004)	7.0	63	2.0	22	1.9%	1.22 [0.27; 5.45]	
Pan et al. (2004)	2.0	44	2.0	47	1.2%	1.07 [0.16; 7.26]	

Total (95% CI): 2732 / 2667 = 100.0% 1.02 [0.83; 1.27]

Heterogeneity: Tau² = 0.0524; Chi² = 24.37, df = 19 (P = 0.18); I² = 22%
Figure S8. Comparison of two-stent versus provisional stent stratified to lesion length of side branch on all-cause mortality.

Study or Subgroup	Experimental	Control	Risk Ratio	Risk Ratio		
	Events	Total	Events	Total	Random, 95% CI	Random, 95% CI
Group = SB <10mm						
EBC MAIN	10.0	237	7.0	230	1.39 [0.54; 3.58]	
NBBS IV	5.0	228	5.0	218	0.96 [0.28; 3.26]	
POLBOS II	1.0	102	3.0	100	0.33 [0.03; 3.09]	
TRYTON	4.0	355	4.0	349	0.98 [0.25; 3.90]	
POLBOS I	2.0	120	3.0	123	0.68 [0.12; 4.02]	
NBS	21.0	202	12.0	202	1.75 [0.88; 3.46]	
Colombo et al. (2004)	1.0	63	0.0	22	1.08 [0.05; 25.54]	
Total (95% CI)	**1308**	**1245**			**1.27 [0.81; 1.97]**	

Heterogeneity: $\tau^2 = 0$; $\chi^2 = 3.1$, df = 6 ($P = 0.80$); $I^2 = 0$

Group = SB ≥10mm	Experimental	Control	Risk Ratio	Risk Ratio		
	Events	Total	Events	Total	Random, 95% CI	Random, 95% CI
DEFINITION II	9.0	328	11.0	325	0.81 [0.34; 1.93]	
DKCRUSH-V	16.0	240	18.0	242	0.90 [0.47; 1.72]	
EBC TWO	1.0	97	2.0	103	0.53 [0.05; 5.76]	
BBK I	10.0	101	8.0	101	1.25 [0.51; 3.04]	
PERFECT	3.0	213	2.0	206	1.45 [0.24; 8.59]	
Total (95% CI)	**979**	**977**			**0.96 [0.62; 1.47]**	

Heterogeneity: $\tau^2 = 0$; $\chi^2 = 0.97$, df = 4 ($P = 0.91$); $I^2 = 0$

Test for subgroup differences: $\chi^2 = 0.80$, df = 1 ($P = 0.37$)
Figure S9. Comparison of two-stent versus provisional stent stratified to lesion length of side branch on cardiac death.

Study or Subgroup	Experimental Events	Control Events	Risk Ratio Random, 95% CI	Risk Ratio Random, 95% CI	
	Total	Total			
Group = SB <10mm					
NBBS IV	2.0	228	2.0	218	0.96 [0.14; 6.73]
POLBOS II	0.0	102	3.0	100	0.14 [0.01; 2.68]
SMART-STRATEGY	4.0	130	1.0	128	3.94 [0.45; 34.76]
TRYTON	0.0	355	0.0	349	0.98 [0.02; 49.41]
POLBOS I	0.0	120	2.0	123	0.20 [0.01; 4.23]
NBS	8.0	202	5.0	202	1.60 [0.53; 4.81]
CACTUS	0.0	177	1.0	173	0.33 [0.01; 7.94]
Total (95% CI)	1318	1297		1.10 [0.51; 2.37]	
Heterogeneity: Tau^2 = 0; Chi^2 = 5.4, df = 6 (P = 0.49); I^2 = 0%					

Group = SB ≥10mm					
	Total	Total			
DEFINITION II	7.0	328	8.0	325	0.87 [0.32; 2.36]
DKCRUSH-V	20.0	240	41.0	242	0.49 [0.30; 0.81]
DKCRUSH-II	4.0	183	6.0	183	0.67 [0.19; 2.32]
Zhang et al. (2016)	1.0	52	0.0	52	3.00 [0.13; 71.99]
PERFECT	2.0	213	1.0	206	1.93 [0.18; 21.17]
Ye et al. (2012)	0.0	38	0.9	38	0.79 [0.02; 38.93]
Lin et al. (2010)	0.0	54	1.0	54	0.33 [0.01; 8.01]
Ye et al. (2010)	0.0	25	0.0	26	1.04 [0.02; 50.43]
Total (95% CI)	1137	1122		0.60 [0.40; 0.90]	
Heterogeneity: Tau^2 = 0; Chi^2 = 3.28, df = 7 (P = 0.86); I^2 = 0%					
Test for subgroup differences: Chi^2 = 1.83, df = 1 (P = 0.18)					
Figure S10. Comparison of two-stent versus provisional stent stratified to lesion length of side branch on major adverse cardiac events.

Study or Subgroup	Experimental Events	Control Events	Risk Ratio Random, 95% CI
Group = SB <10mm			
EBC MAIN	42.0	34.0	1.20 [0.79; 1.81]
NBBS IV	5.0	12.0	0.40 [0.14; 1.11]
POLBOS II	12.0	15.0	0.78 [0.39; 1.59]
SMART-STRATEGY	8.0	1.0	7.88 [1.00; 62.08]
TRYTON	65.0	45.0	1.42 [1.00; 2.02]
POLBOS I	16.0	15.0	1.09 [0.57; 2.11]
NBS	44.0	32.0	1.38 [0.91; 2.07]
CACTUS	28.0	26.0	1.05 [0.64; 1.72]
Total (95% CI)	**1551**	**1523**	**1.20 [1.00; 1.44]**

Heterogeneity: Tau² = < 0.0001; Chi² = 10.67, df = 7 (P = 0.15); I² = 34%

Study or Subgroup	Experimental Events	Control Events	Risk Ratio Random, 95% CI
Group = SB ≥10mm			
DEFINITION II	20.0	37.0	0.54 [0.32; 0.90]
DKCRUSH-V	20.0	41.0	0.49 [0.30; 0.81]
DKCRUSH-II	29.0	44.0	0.66 [0.43; 1.00]
EBC TWO	10.0	8.0	1.33 [0.55; 3.22]
Zhang et al. (2016)	4.0	2.0	2.00 [0.38; 10.45]
BBK I	23.0	23.0	1.00 [0.60; 1.66]
PERFECT	38.0	38.0	0.97 [0.64; 1.45]
Ye et al. (2012)	1.0	5.0	0.16 [0.02; 1.28]
Lin et al. (2010)	6.0	21.0	0.29 [0.13; 0.65]
Ye et al. (2010)	0.0	1.0	0.35 [0.01; 8.12]
Total (95% CI)	**1332**	**1323**	**0.68 [0.50; 0.93]**

Heterogeneity: Tau² = 0.0966; Chi² = 17.5, df = 9 (P = 0.04); I² = 49%

Test for subgroup differences: Chi² = 9.64, df = 1 (P < 0.01)
Figure S11. Comparison of two-stent versus provisional stent stratified to lesion length of side branch on myocardial infarction.

Study or Subgroup	Experimental	Control	Risk Ratio
	Events Total	Events Total	Random, 95% CI
Group = SB <10mm			
EBC MAIN	24.0 237	23.0 230	1.01 [0.59; 1.74]
NBBS IV	7.0 228	11.0 218	0.61 [0.24; 1.54]
POLBOS II	2.0 102	3.0 100	0.65 [0.11; 3.83]
SMART-STRATEGY	4.0 130	0.0 128	8.86 [0.48; 162.95]
TRYTON	54.0 355	38.0 349	1.40 [0.95; 2.06]
POLBOS I	2.0 120	4.0 123	0.51 [0.10; 2.75]
NBS	16.0 202	8.0 202	2.00 [0.88; 4.57]
CACTUS	19.0 177	15.0 173	1.24 [0.65; 2.36]
Colombo et al. (2004)	7.0 63	2.0 22	1.22 [0.27; 5.45]
Total (95% CI)	**1615**	**1546**	**1.22 [0.95; 1.56]**

Heterogeneity: $\tau^2 = 0.0001; \chi^2 = 7.74, df = 8 (P = 0.46); I^2 = 0\%$

Study or Subgroup	Experimental	Control	Risk Ratio
	Events Total	Events Total	Random, 95% CI
Group = SB ≥10mm			
DEFINITION II	10.0 328	23.0 325	0.43 [0.21; 0.89]
DKCRUSH-V	4.0 240	14.0 242	0.29 [0.10; 0.86]
DKCRUSH-II	7.0 183	6.0 183	1.17 [0.40; 3.40]
EBC TWO	10.0 97	5.0 103	2.12 [0.75; 5.99]
Zhang et al. (2016)	0.0 52	3.0 52	0.14 [0.01; 2.70]
BBK I	2.0 101	4.0 101	0.50 [0.09; 2.67]
PERFECT	30.0 213	29.0 206	1.00 [0.62; 1.61]
Ye et al. (2012)	0.0 38	2.0 30	0.16 [0.01; 3.19]
Lin et al. (2010)	0.0 54	0.0 54	1.00 [0.02; 49.50]
Ye et al. (2010)	0.0 25	0.0 26	1.04 [0.02; 50.43]
Total (95% CI)	**1335**	**1326**	**0.70 [0.41; 1.19]**

Heterogeneity: $\tau^2 = 0.2518; \chi^2 = 13.59, df = 9 (P = 0.14); I^2 = 34\%$

Test for subgroup differences: $\chi^2 = 3.42, df = 1 (P = 0.06)$
Figure S12. Comparison of two-stent versus provisional stent stratified to lesion length of side branch on stent thrombosis.

Study or Subgroup	Experimental	Control	Risk Ratio Random, 95% CI	Risk Ratio Random, 95% CI
Group = SB <10mm	Events Total	Events Total		
EBC MAIN	3.0 237	4.0 230	0.73 [0.16; 3.22]	
NBBS IV	5.0 228	6.0 218	0.80 [0.25; 2.57]	
POLBOS II	1.0 102	1.0 100	0.98 [0.06; 15.46]	
SMART-STRATEGY	2.5 131	0.5 129	4.92 [0.24; 101.56]	
TRYTON	2.0 355	1.0 349	1.97 [0.18; 21.59]	
POLBOS I	1.0 120	0.0 123	3.07 [0.13; 74.73]	
NBS	3.0 202	6.0 202	0.50 [0.13; 1.97]	
CACTUS	3.0 177	2.0 173	1.47 [0.25; 8.67]	
Colombo et al. (2004)	3.0 63	0.0 22	2.52 [0.14; 46.66]	
Total (95% CI)	**1617**	**1548**	**0.98 [0.53; 1.81]**	

Heterogeneity: Tau^2 = 0; Chi^2 = 3.7, df = 8 (P = 0.88); I^2 = 0%

Group = SB ≥10mm	Experimental	Control	Risk Ratio Random, 95% CI	Risk Ratio Random, 95% CI
DEFINITION II	4.0 328	8.0 325	0.50 [0.15; 1.63]	
DKCRUSH-V	6.0 240	14.0 242	0.43 [0.17; 1.11]	
DKCRUSH-II	5.0 183	5.0 183	1.00 [0.29; 3.40]	
EBC TWO	3.0 97	1.0 103	3.19 [0.34; 30.11]	
Zhang et al. (2016)	0.0 52	0.0 52	1.00 [0.02; 49.47]	
BBK I	5.0 101	2.0 101	2.50 [0.50; 12.59]	
PERFECT	1.0 213	0.0 206	2.90 [0.12; 70.83]	
Ye et al. (2012)	0.0 38	0.0 30	0.79 [0.02; 38.93]	
Lin et al. (2010)	0.0 54	1.0 54	0.33 [0.01; 8.01]	
Total (95% CI)	**1310**	**1300**	**0.81 [0.45; 1.48]**	

Heterogeneity: Tau^2 = 0.0920; Chi^2 = 6.68, df = 8 (P = 0.57); I^2 = 0%

Test for subgroup differences: Chi^2 = 0.19, df = 1 (P = 0.67)
Figure S13. Comparison of two-stent versus provisional stent stratified to lesion length of side branch on target lesion revascularization.

Study or Subgroup	Experimental	Control	Risk Ratio	Risk Ratio
	Events Total	Events Total	Random, 95% CI	Random, 95% CI
Group = SB <10mm				
EBC MAIN	22.0 237	14.0 230	1.53 [0.80; 2.91]	
NBBS IV	14.0 228	20.0 218	0.67 [0.35; 1.29]	
POLBOS II	10.0 102	9.0 100	1.09 [0.46; 2.57]	
SMART-STRATEGY	15.0 130	11.0 128	1.34 [0.64; 2.81]	
TRYTON	17.0 355	11.0 349	1.52 [0.72; 3.20]	
POLBOS I	14.0 120	9.0 123	1.59 [0.72; 3.54]	
NBS	31.0 202	23.0 202	1.35 [0.82; 2.23]	
CACTUS	13.0 177	11.0 173	1.16 [0.53; 2.51]	
Colombo et al. (2004)	6.0 63	1.0 22	2.10 [0.27; 16.45]	
Total (95% CI)	**1614**	**1545**	**1.25 [0.98; 1.59]**	

Heterogeneity: Tau² = 0; Chi² = 4.96, df = 8 (P = 0.76); I² = 0%

Study or Subgroup	Experimental	Control	Risk Ratio	Risk Ratio
	Events Total	Events Total	Random, 95% CI	Random, 95% CI
Group = SB ≥10mm				
DEFINITION II	8.0 328	18.0 325	0.44 [0.19; 1.00]	
DKCRUSH-V	12.0 240	25.0 242	0.48 [0.25; 0.94]	
DKCRUSH-II	16.0 183	30.0 183	0.53 [0.30; 0.94]	
Zhang et al. (2016)	4.0 52	1.0 52	4.00 [0.46; 34.59]	
BBK I	16.0 101	16.0 101	1.00 [0.53; 1.89]	
PERFECT	4.0 213	7.0 206	0.55 [0.16; 1.86]	
Ye et al. (2012)	1.0 38	3.0 30	0.26 [0.03; 2.40]	
Lin et al. (2010)	4.0 54	17.0 54	0.24 [0.08; 0.65]	
Ye et al. (2010)	0.0 25	1.0 26	0.35 [0.01; 8.12]	
Total (95% CI)	**1235**	**1220**	**0.55 [0.39; 0.78]**	

Heterogeneity: Tau² = 0.0487; Chi² = 10.23, df = 8 (P = 0.25); I² = 22%

Test for subgroup differences: Chi² = 14.40, df = 1 (P < 0.01)
Figure S14. Comparison of two-stent versus provisional stent stratified to lesion length of side branch on target vessel revascularization.

Study or Subgroup	Experimental Events Total	Control Events Total	Risk Ratio Random, 95% CI	Risk Ratio Random, 95% CI
Group = SB <10mm				
NBBS IV	15 228	23 218	0.62 [0.33; 1.16]	
POLBOS II	14 102	12 100	1.14 [0.56; 2.35]	
SMART-STRATEGY	21 130	14 128	1.48 [0.79; 2.77]	
TRYTON	19 355	13 349	1.44 [0.72; 2.86]	
POLBOS I	19 120	12 123	1.62 [0.82; 3.20]	
NBS	37 202	27 202	1.37 [0.87; 2.16]	
CACTUS	14 177	13 173	1.05 [0.51; 2.17]	
Colombo et al. (2004)	7 63	2 22	1.22 [0.27; 5.45]	
Total (95% CI)	**1377**	**1315**	**1.21 [0.96; 1.53]**	

Heterogeneity: $\tau^2 = 0.0019; \chi^2 = 6.14, df = 7 (P = 0.52); \ I^2 = 0\%$

Group = SB ≥10mm				
DKCRUSH-II	23 183	35 183	0.66 [0.40; 1.07]	
EBC TWO	1 97	3 103	0.35 [0.04; 3.35]	
Zhang et al. (2016)	4 52	1 52	4.00 [0.46; 34.59]	
PERFECT	6 213	7 206	0.83 [0.28; 2.43]	
Ye et al. (2012)	1 38	3 30	0.26 [0.03; 2.40]	
Lin et al. (2010)	4 54	16 54	0.25 [0.09; 0.70]	
Total (95% CI)	**637**	**628**	**0.58 [0.36; 0.95]**	

Heterogeneity: $\tau^2 = 0.0655; \chi^2 = 6.98, df = 5 (P = 0.22); \ I^2 = 28\%$

Test for subgroup differences: $\chi^2 = 6.91, df = 1 (P < 0.01)$
Figure S15. Bar graph showing SUCRA scores of each bifurcation technique for every outcome.
Figure S16. Bayesian network meta-analysis.

All-cause mortality

Compared with PS	Odds Ratio (95% Crl)	Compared with PS	Odds Ratio (95% Crl)	Compared with PS	Odds Ratio (95% Crl)
Crush	1.5 (0.76, 2.8)	Crush	1.5 (0.63, 3.7)	Crush	1.3 (0.97, 1.8)
Culotte	1.3 (0.67, 2.4)	Culotte	1.3 (0.52, 3.3)	Culotte	1.1 (0.80, 1.6)
DBS	0.85 (0.31, 2.2)	DBS	0.65 (0.18, 2.1)	DBS	1.2 (0.73, 1.7)
DK Crush	0.85 (0.41, 1.7)	DK Crush	0.54 (0.30, 0.98)	DK Crush	0.42 (0.30, 0.57)
T/TAP	1.1 (0.40, 2.8)	T/TAP	2.8 (0.52, 22.)	T/TAP	1.7 (0.97, 3.1)

Cardiac Death

Compared with PS	Odds Ratio (95% Crl)	Compared with PS	Odds Ratio (95% Crl)	Compared with PS	Odds Ratio (95% Crl)
Crush	1.5 (0.63, 3.7)	Crush	1.5 (0.63, 3.7)	Crush	1.3 (0.97, 1.8)
Culotte	1.3 (0.52, 3.3)	Culotte	1.3 (0.52, 3.3)	Culotte	1.1 (0.80, 1.6)
DBS	0.65 (0.18, 2.1)	DBS	0.65 (0.18, 2.1)	DBS	1.2 (0.73, 1.7)
DK Crush	0.54 (0.30, 0.98)	DK Crush	0.54 (0.30, 0.98)	DK Crush	0.42 (0.30, 0.57)
T/TAP	2.8 (0.52, 22.)	T/TAP	2.8 (0.52, 22.)	T/TAP	1.7 (0.97, 3.1)

Major Adverse Cardiac Events

Compared with PS	Odds Ratio (95% Crl)	Compared with PS	Odds Ratio (95% Crl)
Crush	1.3 (0.97, 1.8)	Crush	1.3 (0.97, 1.8)
Culotte	1.1 (0.80, 1.6)	Culotte	1.1 (0.80, 1.6)
DBS	1.2 (0.73, 1.7)	DBS	1.2 (0.73, 1.7)
DK Crush	0.42 (0.30, 0.57)	DK Crush	0.42 (0.30, 0.57)
T/TAP	1.7 (0.97, 3.1)	T/TAP	1.7 (0.97, 3.1)

Myocardial infarction

Compared with PS	Odds Ratio (95% Crl)	Compared with PS	Odds Ratio (95% Crl)	Compared with PS	Odds Ratio (95% Crl)
Crush	1.5 (0.95, 2.3)	Crush	1.5 (0.95, 2.3)	Crush	1.1 (0.75, 1.6)
Culotte	1.1 (0.65, 1.7)	Culotte	1.1 (0.65, 1.7)	Culotte	1.1 (0.75, 1.6)
DBS	1.1 (0.48, 2.0)	DBS	1.6 (0.45, 5.3)	DBS	1.3 (0.81, 2.2)
DK Crush	0.56 (0.33, 0.93)	DK Crush	0.48 (0.25, 0.90)	DK Crush	0.39 (0.26, 0.55)
T/TAP	1.0 (0.43, 2.5)	T/TAP	2.2 (0.95, 5.3)	T/TAP	1.5 (0.92, 2.5)

Stent thrombosis

Compared with PS	Odds Ratio (95% Crl)	Compared with PS	Odds Ratio (95% Crl)
Crush	1.3 (0.68, 2.7)	Crush	1.3 (0.68, 2.7)
Culotte	1.5 (0.80, 2.9)	Culotte	1.5 (0.80, 2.9)
DBS	1.6 (0.45, 5.3)	DBS	1.6 (0.45, 5.3)
DK Crush	0.48 (0.25, 0.90)	DK Crush	0.48 (0.25, 0.90)
T/TAP	2.2 (0.95, 5.3)	T/TAP	2.2 (0.95, 5.3)

Target Lesion Revascularization

Compared with PS	Odds Ratio (95% Crl)	Compared with PS	Odds Ratio (95% Crl)
Crush	1.1 (0.75, 1.6)	Crush	1.1 (0.75, 1.6)
Culotte	1.1 (0.75, 1.6)	Culotte	1.1 (0.75, 1.6)
DBS	1.3 (0.81, 2.2)	DBS	1.3 (0.81, 2.2)
DK Crush	0.39 (0.26, 0.55)	DK Crush	0.39 (0.26, 0.55)
T/TAP	1.5 (0.92, 2.5)	T/TAP	1.5 (0.92, 2.5)

Target Vessel Revascularization

Compared with PS	Odds Ratio (95% Crl)	Compared with PS	Odds Ratio (95% Crl)
Crush	1.2 (0.80, 1.7)	Crush	1.2 (0.80, 1.7)
Culotte	0.98 (0.62, 1.5)	Culotte	0.98 (0.62, 1.5)
DBS	1.4 (0.62, 2.3)	DBS	1.4 (0.62, 2.3)
DK Crush	0.98 (0.62, 1.5)	DK Crush	0.38 (0.24, 0.59)
T/TAP	1.2 (0.62, 2.4)	T/TAP	1.2 (0.62, 2.4)