Tidal Dwarf Galaxies: disc formation at z=0

Federico Lelli
Astronomy Department, Case Western Reserve University, Cleveland, Ohio, USA

In collaboration with:
Pierre-Alain Duc (AIM, Paris-Saclay)
Stacy McGaugh (Case Western Reserve)
Elias Brinks (University of Hertfordshire)
Frédéric Bournaud (AIM, Paris-Saclay)
What is a Tidal Dwarf Galaxy (TDG)?

Different types of objects are formed during interactions/mergers:

- **Intergalactic HII regions**
 - Mendes de Oliveira et al., 2004

- **Intergalactic shocks**
 - Appleton et al., 2006

- **(Super) Star Clusters**
 - Gallagher et al., 2001

- **Tidal Dwarf Galaxies**
 - Lisenfeld et al., 2002, 2004
 - Stephan's Quintet (Duc+2006)

TDG candidates = Massive condensations of gas & young stars ($\sim 10^8$-$10^9 M_{\odot}$)
Most massive TDGs can survive:
How many dwarfs have tidal origin?
(Bournaud & Duc 2006; Ploeckinger+2014, 2015)

Simulated TDGs are rotation supported and devoid of non-baryonic dark matter!
(Barnes & Hernquist 1992; Elmegreen+1993; Duc+2004; Bournaud & Duc 2006; Wetzelein+2007; Bournaud+2008)
Prediction: TDGs should be free of DM!

- Tides have different effects on the dynamically-cold disc w.r.t. the dynamically-hot DM halo (e.g. Barnes & Hernquist 1992):
 - Disc --> tails, bridges, and eventually TDGs
 - Halo --> too dynamically-hot to form tails
Prediction: TDGs should be free of DM!

- Tides have different effects on the **dynamically-cold disc** w.r.t. the **dynamically-hot DM halo** (e.g. Barnes & Hernquist 1992):
 - Disc --> tails, bridges, and eventually TDGs
 - Halo --> too dynamically-hot to form tails

- Baryons & DM are "segregated" in phase-space
Prediction: TDGs should be free of DM!

- Tides have different effects on the dynamically-cold disc w.r.t. the dynamically-hot DM halo (e.g. Barnes & Hernquist 1992):
 - Disc --> tails, bridges, and eventually TDGs
 - Halo --> too dynamically-hot to form tails

- Baryons & DM are "segregated" in phase-space

- TDGs have shallow potential wells with $V_{\text{rot}} \sim 50 \text{ km/s}$:
 They cannot accrete DM particles with $V_{\text{disp}} \sim 200 \text{ km/s}$!
Previous kinematic studies on TDGs

Braine+2001: No evidence of DM!

Bournaud+2007: Evidence of DM!

Rotation velocities from CO line-widths (TDGs unresolved)

Rotation velocities from HI interferometry (TDGs barely resolved)

MISSING MASS IN TDGS?

CO-dark molecules?

PV diagram

Visible Mass (M_{\odot})

$R \Delta V^2 / G M_\odot$	\log_{10}	\log_{10}
N7252W	10^9	10^9
N4876N	10^9	10^9
N5291N	10^8	10^8
N5291S	10^8	10^8
A245N	10^7	10^7
A108S	10^7	10^7
N7319	10^7	10^7
N4038S	10^8	10^8
Lelli+2015: sample of 6 TDGs

Head-on Collision

NGC 5291N
NGC 5291
"The Seashell"
NGC 5291S
NGC 5291SW

Post-Merger ETG

NGC 4694
VCC 2062

Late-stage Merger

NGC 7252
NGC 7252SE
NGC 7252NW

Blue = HI (VLA)
Pink = FUV (GALEX)

Yellow = Tidal Dwarf Galaxies
Lelli, Duc, Brinks et al. 2015, A&A, submitted

Federico Lelli (Case Western Reserve)
Requirements to be a bona-fide TDG:

1) High metallicities

2) Kinematically distinct components

Young TDGs are forming out of pre-enriched material ejected from massive progenitors!

TDGs are associated with steep HI velocity gradients: rotation in a local potential well? Gravitationally bound?
Rotating disc models for TDGs

Lelli+2015, submitted:
- High-Res. VLA data
- 3D kinematical model

\[V_{\text{rot}} \sim 20 \text{ km/s} \]
\[R_{\text{HI}} \sim 8 \text{ kpc} \]
\[\frac{M_{\text{gas}}}{M_*} \sim 8!! \]

Federico Lelli (Case Western Reserve)
Rotating disc models for TDGs

Lelli+2015, submitted:
- High-Res. VLA data
- 3D kinematical model

Federico Lelli (Case Western Reserve)

Tidal Dwarf Galaxies: disc formation at z=0
Observational facts on TDGs:

- Condensations of HI, molecules, and young stars:
 Masses, sizes, and SFRs similar to typical dwarfs

- TDGs deviate from the $M_\star-Z$ relation:
 They are *not* pre-existing dwarfs, but new-born objects

- TDGs are associated with steep HI velocity gradients:
 Consistent with regularly rotating discs (Lelli+2015)
Observational facts on TDGs:

- **Condensations of HI, molecules, and young stars:**
 Masses, sizes, and SFRs similar to typical dwarfs

- **TDGs deviate from the M_*-Z relation:**
 They are *not* pre-existing dwarfs, but new-born objects

- **TDGs are associated with steep HI velocity gradients:**
 Consistent with regularly rotating discs (Lelli+2015)

PUZZLING ISSUE: $t_{\text{orb}} > t_{\text{merg}}$ (or TDG "age")

These HI discs didn't have time to complete a full revolution!

Are they in dynamical equilibrium? Can we estimate M_{dyn}?
IF the discs are in dynamical equilibrium...

No Dark Matter! (as expected from simulations)

Deviation from the baryonic TF relation!

\[\frac{M_{\text{dyn}}}{M_{\text{bar}}} \sim 1! \]

The high values reported by Bournaud et al. (2007) are *not* confirmed.

Caution: the shape of the rotation curve is uncertain. We may not be tracing \(V_{\text{flat}} \)
Conclusions:

- TDGs are rotating gas discs forming at z=0, that have undergone less than a revolution.

- IF these discs are in dynamical equilibrium:
 No DM & deviation from the BTF relation