Two Groups in a Curie-Weiss Model

Werner Kirsch · Gabor Toth

Received: 7 May 2019 / Accepted: 20 April 2020 / Published online: 11 May 2020 © The Author(s) 2020

Abstract
We analyse a Curie-Weiss model with two disjoint groups of spins with homogeneous coupling. We show that similarly to the single-group Curie-Weiss model a bivariate law of large numbers holds for the normed sums of both groups’ spin variables. We also show central limit theorem in the high temperature regime.

Keywords Curie-Weiss model · Central limit theorem · Statistical physics

Mathematics Subject Classification (2010) 60F05 · 82B20

1 Introduction
The Curie-Weiss model is probably the easiest model of magnetism which shows a phase transition between a diamagnetic and a ferromagnetic phase. In this model the spins can take values in \{-1, 1\} (or up/down), each spin interacts with all the others in the same way. More precisely, for finitely many spins \((X_1, X_2, \ldots, X_N) \in \{-1, 1\}^N\) the energy of the spins is given by

\[
H = H(X_1, \ldots, X_N) := -\frac{1}{2N} \left(\sum_{j=1}^N X_j \right)^2. \tag{1}
\]

Consequently, in the ‘canonical ensemble’ with inverse temperature \(\beta \geq 0\) the probability of a spin configuration is given by

\[
P(X_1 = x_1, \ldots, X_N = x_N) := Z^{-1} e^{-\beta H(x_1, \ldots, x_N)} \tag{2}
\]
where \(x_i \in \{-1, 1\}\) and \(Z\) is a normalization constant which depends on \(N\) and \(\beta\).
The quantity
\[S_N = \sum_{j=1}^{N} X_j \] (3)
is called the (total) magnetization. It is well known (see e.g. Ellis [4] or [10]) that the Curie-Weiss model has a phase transition at \(\beta = 1 \) in the following sense
\[\frac{1}{N} S_N \implies \frac{1}{2} (\delta_{-m(\beta)} + \delta_{m(\beta)}) \] (4)
where \(\implies \) denotes convergence in distribution, \(\delta_x \) the Dirac measure in \(x \).

For \(\beta \leq 1 \) we have \(m(\beta) = 0 \) which is the unique solution of
\[\tanh(\beta x) = x \] (5)
for this case.

If \(\beta > 1 \) (5) has exactly three solutions and \(m(\beta) \) is the unique positive one. Equation (4) is a substitute for the law of large numbers for i.i.d. random variables. Moreover, for \(\beta < 1 \) there is a central limit theorem, i.e.
\[\frac{1}{\sqrt{N}} S_N \implies N\left(0, \frac{1}{1-\beta}\right) \] (6)
For \(\beta = 1 \) there is no such central limit theorem. In fact, the random variables
\[\frac{1}{N^{3/4}} S_N \] (7)
converge in distribution to a limit which is not a normal distribution.

The Curie-Weiss model is also called the Husimi-Temperley model. It was first introduced by Husimi [7] and Temperley [15]. Subsequently it was discussed by Kac [9], Thompson [16], and Ellis [4]. More recently, the Curie-Weiss model has been used in the context of social and political interactions. See e.g. [3] and [11].

We mention that the Curie-Weiss model is also used to describe the behaviour of voters who have the choice to vote ‘Yea’ (spin=1, say) or ‘Nay’ (spin=-1) (see [11]).

In this paper, we partition the set of all \(N \) Curie-Weiss spins into two disjoint groups \(X_1, \ldots, X_{N_1} \) and \(Y_1, \ldots, Y_{N_2} \) with \(N_1 + N_2 = N \). We let \(N_1 \) and \(N_2 \) depend on \(N \) in such a way that both \(N_1 \) and \(N_2 \) go to infinity as \(N \) does. We consider the asymptotic behaviour of the two-dimensional random variables
\[\left(\sum_{i=1}^{N_1} X_i , \sum_{j=1}^{N_2} Y_j \right) \] (8)
as \(N \) goes to infinity and prove results similar to the one-group case considered above. We will use the method of moments which was used in [12] for the one-group case. We rely on the method developed there.

Note that all spins are coupled by the same constant \(\beta \geq 0 \). We could also define the model using a homogeneous coupling matrix
\[J = \beta \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} . \]
For an analysis of heterogeneous coupling matrices see [13].

We prove
Theorem 1 (Law of Large Numbers) If $N_1, N_2 \to \infty$ as $N \to \infty$, then we have for all β

$$
\left(\frac{1}{N_1} \sum_{i=1}^{N_1} X_i, \frac{1}{N_2} \sum_{j=1}^{N_2} Y_j \right) \overset{N \to \infty}{\Longrightarrow} \frac{1}{2} \left(\delta(-m(\beta),-m(\beta)) + \delta(m(\beta),m(\beta)) \right).
$$

Above ‘\Longrightarrow’ denotes convergence in distribution of the 2-dimensional random variable on the left hand side and $m(\beta)$ is again the largest solution of (5), in particular $m(\beta) = 0$ for $\beta \leq 1$ and $m(\beta) > 0$ for $\beta > 1$.

Remark 2 If we consider a model without interaction between the groups X_i and Y_j then the limit in (9) is

$$
\frac{1}{4} \left(\delta(-m(\beta),-m(\beta)) + \delta(-m(\beta),m(\beta)) + \delta(m(\beta),-m(\beta)) + \delta(m(\beta),m(\beta)) \right)
$$

For $\beta < 1$ we also have a central limit theorem. The covariance of the limiting normal distribution depends on the growth rate of N_1 and N_2. We set

$$
\alpha_1 = \lim_{N \to \infty} \frac{N_1}{N} \quad \alpha_2 = \lim_{N \to \infty} \frac{N_2}{N}
$$

and assume that these limits exist.

Theorem 3 (Central Limit Theorem) If $\beta < 1$, then

$$
\left(\frac{1}{\sqrt{N_1}} \sum_{i=1}^{N_1} X_i, \frac{1}{\sqrt{N_2}} \sum_{j=1}^{N_2} Y_j \right) \overset{N \to \infty}{\Longrightarrow} \mathcal{N}'((0, 0), C),
$$

where the covariance matrix C is given by

$$
C = \left[\begin{array}{c} 1 + \alpha_1 \beta \\ \sqrt{\alpha_1 \alpha_2 \beta} \end{array} \right]
$$

In particular, for sublinear growth of either N_1 or N_2, i.e. if $\alpha_1 = 0$ or $\alpha_2 = 0$, the standardized sums in (11) are asymptotically independent.

In the proof of both results we employ the moment method (see e.g. [1] or [10]). In [12] the method of moments is used to prove limit theorems for the (one-group) Curie-Weiss Model.

Thus, to show the convergence in distribution of a sequence (X_n, Y_n) of two-dimensional random variables to a measure μ on \mathbb{R}^2 we prove that

$$
\mathbb{E} \left(X^K_n \cdot Y^L_n \right) \to \int x^K y^L \mu(dx, dy)
$$

for all $K, L \in \mathbb{N}$.

\(\square \) Springer
Equation (13) implies convergence in distribution if the moments of μ grow only moderately, namely if for some constants A and C and all K, L

$$\int |x|^K |y|^L \mu(dx, dy) \leq AC^{K+L} (K + L)!$$ (14)

holds. For the multidimensional case of the moment method we refer to [14].

After publishing the first version of this paper on arXiv, we became aware of the articles [5] and [6] which contain the above results as special cases. The methods used by those authors are different from ours. In [6], the authors show a central limit theorem based on the assumption that a certain function has one or more global minima. The article [5] shows how for two groups, under asymmetric scaling of the sums of spins, a central limit theorem can be proved. We are grateful to Francesca Collet for drawing our attention to the papers [2], [5] and [6].

2 Preparation

We have to evaluate terms of the form

$$\mathbb{E} \left(\left(\sum_{i=1}^{N_1} X_i \right)^K \left(\sum_{j=1}^{N_2} Y_j \right)^L \right)$$

$$= \sum_{i_1, i_2, \ldots, i_K=1}^{N_1} \sum_{j_1, j_2, \ldots, j_L=1}^{N_2} \mathbb{E} \left(X_{i_1} \cdot X_{i_2} \cdots X_{i_K} \cdot Y_{j_1} \cdot \ldots \cdot Y_{j_L} \right)$$ (15)

To shorten notation we set

$$\bar{i} = (i_1, \ldots, i_K) \in \{1, 2, \ldots, N_1\}^K$$

$$\bar{j} = (j_1, \ldots, j_L) \in \{1, 2, \ldots, N_1\}^L$$

and $W_{Q, M} := \{1, 2, \ldots, M\}^Q$. We also denote for $\bar{i} \in W_{K, N_1}$

$$X(\bar{i}) := X_{i_1} \cdot X_{i_2} \cdot \ldots \cdot X_{i_K}$$

and similar for $Y(\bar{j})$. So, (15) reads

$$\sum_{\bar{i} \in W_{K, N_1}} \sum_{\bar{j} \in W_{L, N_2}} \mathbb{E} \left(X(\bar{i})Y(\bar{j}) \right)$$ (16)

The energy function H and hence the probability measure \mathbb{P} are invariant with respect to permutation of indices. Thus we observe that

$$\mathbb{E} \left(X_{i_1} \cdot \ldots \cdot X_{i_K} \cdot Y_{j_1} \cdot \ldots \cdot Y_{j_L} \right) = \mathbb{E} \left(X_1 \cdot \ldots \cdot X_K \cdot Y_1 \cdot \ldots \cdot Y_L \right)$$

whenever both i_1, \ldots, i_K and j_1, \ldots, j_L are pairwise distinct. Since

$$X_i^{2m} = 1, \quad X_i^{2m+1} = X_i$$
and similar for Y_j, we conclude that

$$\mathbb{E}\left(X(i)Y(j)\right) = \mathbb{E}\left(X_1 \cdot \ldots \cdot X_{\rho(i)} \cdot Y_1 \cdot \ldots \cdot Y_{\rho(j)}\right)$$ (17)

where $\rho(i)$ denotes the number of indices i_K which occur an odd number of times in i. So, to compute sums of the form (15) we need good estimates of expectations (‘correlations’) as in (17). Such estimates are provided in [12] (see also [11]).

Proposition 4 For $K + L$ even we have

1) for $\beta < 1$:

$$\mathbb{E}\left(X_1 \cdot X_2 \cdot \ldots \cdot X_K \cdot Y_1 \cdot Y_2 \cdot \ldots \cdot Y_L\right) \approx (K + L - 1)!! \left(\frac{\beta}{1-\beta}\right)^{\frac{K+L}{2}} N^{-\frac{K+L}{2}}$$

2) for $\beta = 1$:

$$\mathbb{E}\left(X_1 \cdot X_2 \cdot \ldots \cdot X_K \cdot Y_1 \cdot \ldots \cdot Y_L\right) \approx \int t^{K+L} e^{-\frac{1}{12}t^4} dt \int e^{-\frac{1}{12}t^4} dt \cdot N^{-\frac{K+L}{4}}$$

3) for $\beta > 1$:

$$\mathbb{E}\left(X_1 \cdot X_2 \cdot \ldots \cdot X_K \cdot Y_1 \cdot \ldots \cdot Y_L\right) \approx m(\beta)^{K+L},$$

where $m(\beta)$ is the unique (strictly) positive solution of $t = \tanh(\beta t)$. For $K + L$ odd:

$$\mathbb{E}\left(X_1 \cdot X_2 \cdot \ldots \cdot X_K \cdot Y_1 \cdot \ldots \cdot Y_L\right) = 0$$

Above $a_n \approx b_n$ means $\lim_{n \to \infty} \frac{a_n}{b_n} = 1$ and $(2n - 1)!! = 1 \cdot 3 \cdot 5 \cdot \ldots \cdot (2n - 3) \cdot (2n - 1)$. For a proof of Proposition 4 see [12].

3 **Laws of Large Numbers**

To prove Theorem 1 we consider

$$\frac{1}{N_1^K} \frac{1}{N_2^L} \sum_{i \in W_{K,N_1}} \sum_{j \in W_{L,N_2}} \mathbb{E}\left(X(i)Y(j)\right)$$ (18)

We assume $\beta \leq 1$ first.

By U_{K,N_1} we denote the set of those $\underline{i} \in W_{K,N_1}$ for which the i_v are pairwise distinct. Note that for $\underline{i} \in U_{K,N_1}$ and $\underline{j} \in W_{L,N_2}$ we have

$$\mathbb{E}\left(X(\underline{i})Y(\underline{j})\right) \leq C N^{-\frac{K}{4}}$$
by Proposition 4. We single out the following Lemma (where $|M|$ denotes the cardinality of the set M).

Lemma 5

1) $|U_{K,N_1}| = \frac{N_1!}{(N_1 - K)!} \approx N_1^K$
 \hspace{2cm} \text{(19)}

2) $|W_{K,N_1} \setminus U_{K,N_1}| \leq K! N_1^{K-1}$
 \hspace{2cm} \text{(20)}

Proof 1) is obvious.

2) If $\bar{i} \in W_{K,N_1} \setminus U_{K,N_1}$, then there are at most $K - 1$ distinct indices i_v belonging to \bar{i}. We have consequently at most N_1^{K-1} choices for the i_v. There are at most $K!$ ways to position them in the multiindex \bar{i}.

We estimate

$$\sum_{i \in U_{K,N_1}} \sum_{j \in W_{L,N_2}} \mathbb{E}\left(X(i)Y(j)\right) + \sum_{i \in W_{K,N_1} \setminus U_{K,N_1}} \sum_{j \in W_{L,N_2}} \mathbb{E}\left(X(i)Y(j)\right)$$

$$\leq N_1^K \frac{1}{N_1} \frac{1}{N_2} K! N_1^{K-1} L! N_2^L + \frac{1}{N_1^K} \frac{1}{N_2^L} K! N_1^{K-1} L! N_2^L$$

For $\beta > 1$ we prove in a similar way that

$$\frac{1}{N_1^K} \frac{1}{N_2^L} \left(\sum_{i \in U_{K,N_1}} \sum_{j \in W_{L,N_2}} \mathbb{E}\left(X(i)Y(j)\right) + \sum_{i \in W_{K,N_1} \setminus U_{K,N_1}} \sum_{j \in W_{L,N_2}} \mathbb{E}\left(X(i)Y(j)\right) \right)$$

goes to zero.

Consequently

$$\frac{1}{N_1^K} \frac{1}{N_2^L} \sum_{i \in W_{K,N_1} \setminus U_{K,N_1}} \sum_{j \in W_{L,N_2}} \mathbb{E}\left(X(i)Y(j)\right)$$

$$\approx \frac{1}{N_1^K} \frac{1}{N_2^L} \sum_{i \in U_{K,N_1}} \sum_{j \in U_{L,N_2}} \mathbb{E}\left(X(i)Y(j)\right)$$

$$\rightarrow \begin{cases} m(\beta)K + L, & \text{if } K + L \text{ even} \\ 0, & \text{otherwise} \end{cases}$$

which are the moments of the measure $\frac{1}{2} \left(\delta(-m(\beta),-m(\beta)) + \delta(+m(\beta),+m(\beta)) \right)$.

\(\square\) Springer
4 The Central Limit Theorem

We start this section by computing the moments of a centred two-dimensional normal distribution. Let \((Z_1, Z_2)\) be normally distributed with mean zero and covariance matrix

\[
\Sigma = \begin{pmatrix} \sigma_1^2 & \bar{\sigma} \\ \bar{\sigma} & \sigma_2^2 \end{pmatrix}
\] (21)

Lemma 6 We have

\[
\mathbb{E}\left(Z_1^{2K} Z_2^{2L} \right) = \sum_{r=0}^{K \land L} \binom{2K}{2K-2r} \binom{2L}{2L-2r} (2r)! (2K - 2r - 1)! (2L - 2r - 1)! \cdot (\sigma_1^2)^{K-r} \bar{\sigma}^{2r} (\sigma_2^2)^{L-r} \quad (22)
\]

and

\[
\mathbb{E}\left(Z_1^{2K+1} Z_2^{2L+1} \right) = \sum_{r=0}^{K \land L} \binom{2K+1}{2K-(2r+1)} \binom{2L+1}{2L-(2r+1)} (2r+1)! (2K - 2r - 1)! (2L - 2r - 1)! \cdot (\sigma_1^2)^{K-r} \bar{\sigma}^{2r+1} (\sigma_2^2)^{L-r} \quad (23)
\]

A proof is given in the Appendix.

For this section we assume \(\beta < 1\). We have to evaluate

\[
\frac{1}{N_{1}^{K/2}} \frac{1}{N_{2}^{L/2}} \sum_{i \in W_{K, N_{1}}} \sum_{j \in W_{L, N_{2}}} \mathbb{E}\left(X(i) Y(j) \right) . \quad (24)
\]

As for the law of large numbers, many multiindices \(i, j\) are negligible. However, this time the selection of the leading terms is more subtle.

Definition 7 Let us set

\[
W_{Q, M} := \{1, 2, \ldots, M\}^Q,
\]

\[
W_{Q, M}(r) := \{i \in W_{Q, M} \mid \text{exactly } r \text{ indices } i_v \text{ occur exactly once in } i\},
\]

\[
W_{Q, M}^+(r) := \{i \in W_{Q, M}(r) \mid \text{at least one index } i_v \text{ occurs more than twice in } i\},
\]

\[
W_{Q, M}^0(r) := W_{Q, M}(r) \setminus W_{Q, M}^+(r).
\]

Moreover by \(w_{Q, M}(r) \left(w_{Q, M}^+(r), w_{Q, M}^0(r) \right) \) we denote

\[
|W_{Q, M}(r)| \left(|W_{Q, M}^+(r)|, |W_{Q, M}^0(r)| \right).
\]

\(W_{Q, M}^0(r)\) consists of those multiindices for which (exactly) \(r\) indices occur once and the remaining indices occur exactly twice. It follows that \(W_{Q, M}^0(r) = \emptyset\) if \(Q - r\) is odd.

We note the following combinatorial Proposition:
Proposition 8

\[W_{Q,M}(Q) = \frac{M!}{(M-Q)!} \approx M^Q, \]

\[W_{Q,M}(r) \leq Q! M^{\frac{Q+r}{2}}, \]

\[W^+_Q, M(r) \leq Q! M^{\frac{Q+r}{2}} - \frac{1}{2}, \]

\[W_{Q,M}^0(r) = \begin{cases}
\frac{M!}{(M-Q+r)!} & \text{if } Q-r \text{ is even} \\
0 & \text{otherwise}
\end{cases} \]

For a proof see the Appendix or [12].

Now, we split the sum (24) in four parts.

(24)

\[= \frac{1}{N_1^{K/2}} \frac{1}{N_2^{L/2}} \sum_{r=0}^{K} \sum_{i \in W^0_{K,N_1}(r)} \sum_{s=0}^{L} \sum_{j \in W^0_{L,N_2}(s)} \mathbb{E} \left(X(i) Y(j) \right) \]

\[+ \frac{1}{N_1^{K/2}} \frac{1}{N_2^{L/2}} \sum_{r=0}^{K} \sum_{i \in W^+_{K,N_1}(r)} \sum_{s=0}^{L} \sum_{j \in W^0_{L,N_2}(s)} \mathbb{E} \left(X(i) Y(j) \right) \]

\[+ \frac{1}{N_1^{K/2}} \frac{1}{N_2^{L/2}} \sum_{r=0}^{K} \sum_{i \in W^+_{K,N_1}(r)} \sum_{s=0}^{L} \sum_{j \in W^0_{L,N_2}(s)} \mathbb{E} \left(X(i) Y(j) \right) \]

\[+ \frac{1}{N_1^{K/2}} \frac{1}{N_2^{L/2}} \sum_{r=0}^{K} \sum_{i \in W^+_{K,N_1}(r)} \sum_{s=0}^{L} \sum_{j \in W^+_{L,N_2}(s)} \mathbb{E} \left(X(i) Y(j) \right) \]

\[= A_1 + A_2 + A_3 + A_4 \]

Lemma 9 \(A_2, A_3, A_4 \rightarrow 0 \) as \(N \rightarrow \infty \)

Proof If \(i \in W^0_{K,N_1}(r), j \in W^0_{L,N_2}(s) \) then \(\mathbb{E} \left(X(i) Y(j) \right) \leq C N^{-\frac{r+s}{2}} \) by Proposition 4. Moreover

\[w^0_{K,N_1}(r) \leq C_1 N_1^{\frac{K+r}{2}} \]

\[w^+_{L,N_2}(s) \leq C_2 N_2^{\frac{L+s-1}{2}} \]

by Proposition 4. Thus

\[\frac{1}{N_1^{K/2}} \frac{1}{N_2^{L/2}} \sum_{i \in W^0_{K,N_1}(r)} \sum_{j \in W^0_{L,N_2}(s)} \mathbb{E} \left(X(i) Y(j) \right) \leq C' N^{-\frac{1}{2}} \]

It follows that \(A_2 \rightarrow 0 \). The proofs for \(A_3 \) and \(A_4 \) are similar. \(\square \)
We turn to the asymptotic computation of A_1.

$$A_1 = \sum_{r=0}^{K} \sum_{i \in W_{K,N_1}^0(r)} \sum_{s=0}^{L} \sum_{j \in W_{L,N_2}^0(s)} \mathbb{E} \left(X(i) Y(j) \right)$$

First, we observe that for $K + L$ odd $\mathbb{E} \left(X(i) Y(j) \right) = 0$ by Proposition 4. So, we may assume that K and L are both even or both odd. If K and L are even (odd) then both r and s have to be even (odd) otherwise $W_{K,N_1}^0(r) = \emptyset$ or $W_{L,N_2}^0(s) = \emptyset$. In the following we will treat the case K and L even, the other one being similar.

So we assume $K = 2k$ and $L = 2\ell$ and rewrite A_1:

$$\sum_{r=0}^{k} \sum_{s=0}^{\ell} \sum_{i \in W_{2k,N_1}^0(2r)} \sum_{j \in W_{2\ell,N_2}^0(2s)} \mathbb{E} \left(X(i) Y(j) \right)$$

If $i \in W_{2k,N_1}^0(2r)$ and $j \in W_{2\ell,N_2}^0(2s)$ then by Proposition 4

$$\mathbb{E} \left(X(i) Y(j) \right) \approx (2r + 2s - 1)!! \left(\frac{\beta}{1-\beta} \right)^{r+s} N_1^{-r} N_2^{-s}$$

using Proposition 8 we get:

$$A_1 \approx \frac{1}{N_1^2} \frac{1}{N_2^2} \sum_{r=0}^{k} \sum_{s=0}^{\ell} \frac{N_1!}{(N_1!-k-r)!} \frac{N_2!}{(N_2!-\ell-s)!} \frac{2k!}{2r!(k-r)!2\ell!} \frac{2\ell!}{2s!(\ell-s)!2r!} \cdot (2r + 2s - 1)!! \left(\frac{\alpha_1 \beta}{1-\beta} \right)^r \left(\frac{\alpha_2 \beta}{1-\beta} \right)^s (25)$$

where we set $\tilde{\beta} := \frac{\beta}{1-\beta}$.

This proves that all moments converge, hence $\left(\frac{1}{\sqrt{N_1}} \sum_{i=1}^{N_1} X_i, \frac{1}{\sqrt{N_2}} \sum_{j=1}^{N_2} Y_j \right)$ converge in distribution. In the following we have to identify the limit measure.

First we consider the case that $\alpha_1 = 0$ or $\alpha_2 = 0$. Let’s assume $\alpha_2 = 0$. Then (25) simplifies to

$$\sum_{r=0}^{k} \frac{(2k)!}{(2r)!(k-r)!2^{k-r}} \frac{(2\ell)!}{\ell!2^\ell} \frac{(2r)!}{r!2^r} \left(\alpha_1 \tilde{\beta} \right)^r$$

$$= \frac{(2k)!}{k!2^k} \frac{(2\ell)!}{\ell!2^\ell} \sum_{r=0}^{k} \left(\frac{k}{r} \right) \left(\alpha_1 \tilde{\beta} \right)^r$$

$$= (K-1)!! (L-1)!! \left(1 + \alpha_1 \tilde{\beta} \right)^{K/2}$$
The last expression is the \((K,L)\)-moment of a centred normal distribution with covariance matrix
\[
\begin{pmatrix}
1 + \frac{\alpha_1 \beta}{1 - \beta} & 0 \\
0 & 1
\end{pmatrix}.
\] (26)

Now, we turn to the general case \((\alpha_2 \geq 0)\).
We use the following combinatorial identity which is Corollary 13 in the Appendix. A proof is given there.

\[
(2r + 2s - 1)!! = \sum_{t=0}^{r \wedge s} \frac{2r!}{(2r - 2t)!2t!} \frac{2s!}{(2s - 2t)!} \frac{(2r - 2t)!}{(r - t)!2^{r - t}} \frac{(2s - 2t)!}{(s - t)!2^{s - t}}. \tag{27}
\]

Substituting this expression into (25) we get:
\[
\begin{align*}
A_1 & \approx \sum_{r=0}^{k} \sum_{s=0}^{\ell} \alpha_1^r \alpha_2^s \frac{2k!}{2r!(k - r)!2^{k - r}} \frac{2\ell!}{2s!(\ell - s)!2^{\ell - s}} \\
& \quad \cdot \sum_{t=0}^{r \wedge s} \frac{2r!}{(2r - 2t)!2t!} \frac{2s!}{(2s - 2t)!} \frac{(2r - 2t)!}{(r - t)!2^{r - t}} \frac{(2s - 2t)!}{(s - t)!2^{s - t}} \bar{\beta}^{r+s} \\
& = \sum_{r=0}^{k} \sum_{s=0}^{\ell} \sum_{t=0}^{r \wedge s} \alpha_1^r \alpha_2^s \frac{2k!}{(k - r)!2^{k - r}} \frac{2\ell!}{(\ell - s)!2^{\ell - s}} \cdot \\
& \quad \cdot \frac{1}{2t!(r - t)!2^{r - t}} \frac{1}{(s - t)!2^{s - t}} \bar{\beta}^{r+s} \\
& = \sum_{t=0}^{k \wedge \ell} \sum_{r=t}^{k} \sum_{s=t}^{\ell} \sum_{m=0}^{k-t} \sum_{n=0}^{\ell-t} \frac{2k!}{(k - m - t)!m!2^{k - m - t}} \frac{2\ell!}{(\ell - n - t)!n!2^{\ell - n - t}} \frac{1}{2t!} \frac{1}{2^{r - t}} \frac{1}{2^{s - t}} \bar{\beta}^{m+n+2t} \\
& = \sum_{t=0}^{k \wedge \ell} \frac{2k!}{2^{k-t}} \frac{2\ell!}{2^{\ell-t}} \frac{1}{2t!} \left(\sqrt{\alpha_1 \alpha_2 \beta}\right)^{2t} \\
& \quad \cdot \sum_{m=0}^{k-t} \frac{1}{(k - m - t)!m!} (\alpha_1 \bar{\beta})^{m} \sum_{n=0}^{\ell-t} \frac{1}{(\ell - n - t)!n!} (\alpha_2 \bar{\beta})^{n} \\
& = \sum_{t=0}^{k \wedge \ell} \frac{2k!}{(2k - 2t)!2t!} \frac{2\ell!}{(2\ell - 2t)!} \frac{(2k - 2t)!}{(k - t)!2^{k-t}} \frac{(2\ell - 2t)!}{(\ell - t)!2^{\ell-t}} \\
& \quad \cdot \left(1 + \alpha_1 \bar{\beta}\right)^{k-t} \left(\sqrt{\alpha_1 \alpha_2 \beta}\right)^{2t} (1 + \alpha_2 \bar{\beta})^{\ell-t}.
\]
The last expression is, according to Lemma 6, the moment $E(Z_1^{2k}Z_2^{2\ell})$ of a bivariate normal distribution with zero mean and covariance matrix
\[
\begin{pmatrix}
1 + \alpha_1\beta \
\sqrt{\alpha_1\alpha_2}\beta
\end{pmatrix}.
\]

This concludes the proof of the Central Limit Theorem 3.

Funding Information Open Access funding provided by Projekt DEAL.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix

In this appendix we discuss some combinatorics in connection with the moment method and the Theorem of Isserlis.

Let us denote by $P_{L}(r)$ the set of all partitions $\Pi = \{\pi_1, \pi_2, ..., \pi_{\ell}\}$ of $\{1, 2, ..., L\}$ with r sets π_i with $|\pi_i| = 1$ and $\ell - r$ sets π_j with $|\pi_j| = 2$. In particular, $P_{L}(0)$ is the set of pair partitions of $\{1, 2, ..., L\}$.

We show

Lemma 10

\[
|P_{2L}(0)| = (2L - 1)!! = \frac{2L!}{L!2^L}
\]

and

\[
|P_{2L+1}(0)| = 0.
\]

Proof The claim is true for $L = 1$. Suppose $P_{2L}(0) = (2L - 1)!!$. Then to build $\{\pi_1, ..., \pi_{2L+1}\}$ we can match the number $2L + 2$ with any of the other $2L - 1$ numbers. Thus, by induction hypothesis, we have $(2L - 1)!!$ choices to build pair partitions from the remaining $2L$ unmatched elements.

Proposition 11 Let $L, r \in \mathbb{N}$.

If $L - r$ is even, then

\[
p_L(r) := |P_L(r)| = \binom{L}{r} (L - r - 1)!!
\]

and if $L - r$ is odd, then $p_L(r) = 0$.

Proof If $\{\pi_1, ..., \pi_{\ell}\} \in P_{L}(r)$ then $2\ell - r = 2(\ell - r) + r = L$, so $L - r$ is even. This proves the second assertion of the Proposition. Let $L - r$ be even. Then we have
choices for the sets π_i with $|\pi_i| = 1$. There remain $L - r$ elements to build pair partitions from. By Lemma 10 this can be done in $(L - r - 1)!$ ways.

Proof (Proposition 8): We prove the final assertion of the proposition, the other assertions are easier to prove. There are 2^r different indices to choose from a total of M possible choices. This gives $\frac{M!}{(M - 2^r)!}$ possibilities. To distribute them on the Q indices with r single and $\frac{Q - r}{2}$ double occurrences gives

$$\binom{Q}{r} (Q - r - 1)! = \frac{Q!}{(Q - r)!r!} \frac{(Q - r)!}{\left(\frac{Q - r}{2}\right)!2^r}.$$ Multiplying gives the assertion.

Now, we consider a disjoint partition $\{1, 2, \ldots, 2L\}$ into two sets K and M with $k = |K|$ and $m = |M|$, and look for all pair partitions $\Pi = (\pi_1, \ldots, \pi_L)$ such that exactly r of the π_i are mixed, i.e. $\pi_i \cap K \neq \emptyset$ and $\pi_i \cap M \neq \emptyset$.

Proposition 12 The number $p_{K,M}(r)$ of pair partitions $\Pi = (\pi_1, \ldots, \pi_L)$ of $\{1, 2, \ldots, 2L\}$ with exactly r mixed π_i is given by

$$p_{K,M}(r) = \frac{k!}{(k - r)!} \frac{m!}{(m - r)!} \frac{1}{r!} (k - r - 1)! (m - r - 1)!$$

if both $k - r$ and $m - r$ are even and non-negative, and

$$p_{K,M}(r) = 0 \quad \text{otherwise.}$$

Proof There are $\frac{k!}{(k - r)!r!}$ choices for elements of K in the mixed π_i and $\frac{m!}{(m - r)!}$ ways to fill them with elements from M. The choices for the $(k - r)$ pure π_i from K and $(m - r)$ pure π_i from M are given by Lemma 10.

Corollary 13 If both k and m are even, then

$$(k + m - 1)! = \sum_{\rho=0}^{\frac{k}{2}} \sum_{\rho=0}^{\frac{m}{2}} \frac{k! m!}{(k - 2\rho)! (m - 2\rho)! 2\rho!} (k - 2\rho)!! (m - 2\rho)!!$$

If both k and m are odd, then

$$(k + m - 1)! = \sum_{\rho=0}^{\frac{k-1}{2}} \sum_{\rho=0}^{\frac{m-1}{2}} \frac{k! m!}{(k - 2\rho + 1)! (m - 2\rho + 1)! (2\rho + 1)!} (k - 2\rho + 1)!! (m - 2\rho + 1)!!$$
This Corollary follows by summing $p_{k,m}(\rho)$ over all possible ρ. We end this appendix with the proof of Lemma 6.

Proof (Lemma 6): By the Theorem of Isserlis [8], we have

$$E \left(Z_1^{2K} Z_2^{2L} \right) = \sum_{\prod = (\pi_1, \ldots, \pi_{K+L}) \in \mathcal{P}_{2K+2L}(0)} \prod_{j=1}^{K+L} E_{\pi j},$$

where

$$E_{(\kappa, \lambda)} = \begin{cases} E \left(Z_1^2 \right) = \sigma_1^2, & \text{if } \kappa, \lambda \leq 2K \\ E \left(Z_2^2 \right) = \sigma_2^2, & \text{if } \kappa, \lambda > 2K \\ E \left(Z_1 Z_2 \right) = \bar{\sigma} & \text{otherwise.} \end{cases}$$

Therefore,

$$= \sum_{r=0}^{K \wedge L} \sum_{\prod \in \mathcal{P}_{2K+2L}(2r)} (\sigma_1^2)^{K-r} \bar{\sigma}^{2r} (\sigma_2^2)^{L-r}$$

$$= \sum_{r=0}^{K \wedge L} \frac{2K}{2K-2r} \frac{2L}{2L-2r} (2r)! (2K - 2r - 1)!! (2L - 2r - 1)!!$$

$$\cdot (\sigma_1^2)^{K-r} \bar{\sigma}^{2r} (\sigma_2^2)^{L-r}$$

by Proposition 12. Equation (23) can be proved analogously.

References

1. Breiman, L.: Probability Addison-Wesley (1968)
2. Contucci, P., Gallo, I.: Bipartite mean field spin systems. Existence and solution. Math. Phys. Elec. Jou. 14(1), 1–22 (2008)
3. Contucci, P., Ghirlanda, S.: Modelling society with statistical mechanics: an application to cultural contact and immigration. Qual. Quant. 41, 569–578 (2007)
4. Ellis, R.: Entropy, large deviations, and statistical mechanics Whiley (1985)
5. Fedele, M.: Rescaled magnetization for critical bipartite Mean-Fields models. J. Stat. Phys. 155, 223–236 (2014)
6. Fedele, M., Contucci, P.: Scaling Limits for Multi-species Statistical Mechanics Mean-Field Models. J. Stat. Phys. 144, 1186–1205 (2011)
7. Husimi, K.: Statistical Mechanics of Condensation. In: Proceedings of the International Conference of Theoretical Physics, pp. 531-533. Science Council of Japan, Tokyo (1953)
8. Isserlis, L.: On a Formula for the Product-Moment Coefficient of any Order of a Normal Frequency Distribution in any Number of Variables. Biometrika 12(1/2), 134–139 (1918)
9. Kac, M.: Mathematical Mechanisms of Phase Transitions, in Statistical physics: Phase Transitions and Superfluidity, Vol. 1, pp. 241-305 Brandeis University Summer Institute in Theoretical Physics (1968)
10. Kirsch, W.: A Survey on the Method of Moments, available from http://www.fernuni-hagen.de/stochastik/
11. Kirsch, W.: On Penrose’s Square-root Law and Beyond. Homo Oeconomicus 24(3/4), 357–380 (2007)
12. Kirsch, W., The Curie-Weiss model – an approach using moments. arXiv:1909.05612
13. Kirsch, W., Toth, G.: Two Groups in a Curie-Weiss Model with Heterogeneous Coupling, J. Theor. Prob. arXiv:712.08477
14. Kleiber, C., Stoyanov, J.: Multivariate distributions and the moment problem. J. Multivar. Anal. 113, 7–18 (2013)
15. Temperley, H.N.V.: The mayer theory of condensation tested against a simple model of the imperfect gas. Proc. Phys. Soc., A 67, 233–238 (1954)
16. Thompson, C.J.: Mathematical statistical mechanics macmillan (1972)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.