GEOMETRY OF WACHSPRESS SURFACES

COREY IRVING AND HAL SCHENCK

Abstract. Let \(P_d \) be a convex polygon with \(d \) vertices. The associated Wachspress surface \(W_d \) is a fundamental object in approximation theory, defined as the image of the rational map

\[
\mathbb{P}^2 \xrightarrow{w_d} \mathbb{P}^{d-1},
\]
determined by the Wachspress barycentric coordinates for \(P_d \). We show \(w_d \) is a regular map on a blowup \(X_d \) of \(\mathbb{P}^2 \) and if \(d > 4 \) is given by a very ample divisor on \(X_d \), so has a smooth image \(W_d \). We determine generators for the ideal of \(W_d \), and prove that in graded lex order, the initial ideal of \(I_{W_d} \) is given by a Stanley-Reisner ideal. As a consequence, we show that the associated surface is arithmetically Cohen-Macaulay, of Castelnuovo-Mumford regularity two, and determine all the graded betti numbers of \(I_{W_d} \).

1. Introduction

Introduced by Möbius [14] in 1827, barycentric coordinates for triangles appear in a host of applications. Recent work in approximation theory has shown that it is also useful to define barycentric coordinates for a convex polygon \(P_d \) with \(d \geq 4 \) vertices (a \(d \)-gon). The idea is as follows: to deform a planar shape, first place the shape inside a control polygon. Then move the vertices of the control polygon, and use barycentric coordinates to extend this motion to the entire shape.

For a \(d \)-gon with \(d \geq 4 \), barycentric coordinates were defined by Wachspress [15] in his work on finite elements; these coordinates are rational functions depending on the vertices \(\nu(P_d) \) of \(P_d \). In [17], Warren shows that Wachspress’ coordinates are the unique rational barycentric coordinates of minimal degree. The Wachspress coordinates define a rational map \(w_d \) on \(\mathbb{P}^2 \), whose value at a point \(p \in P_d \) is the \(d \)-tuple of barycentric coordinates of \(p \). The closure of the image of \(w_d \) is the Wachspress surface \(W_d \), first defined and studied by García–Puente and Sottile [6] in their work on linear precision.

In Definition 1.3 we fix linear forms \(\ell_i \) which are positive inside \(P_d \) and vanish on an edge. Let \(A = \ell_1 \cdots \ell_d \), \(Z \) be the \(\binom{d}{2} \) singular points of \(\mathbb{V}(A) \) and \(Y = Z \setminus \nu(P_d) \). We call \(Y \) the external vertices of \(P_d \), and show that \(w_d \) has basepoints only at \(Y \). Let \(X_d \) be the blowup of \(\mathbb{P}^2 \) at \(Y \). In §2, we prove that \(W_d \) is the image of \(X_d \), embedded by a certain divisor \(D_{d-2} \) on \(X_d \). The global sections of \(D_{d-2} \) have a simple interpretation in terms of the edges \(\mathbb{V}(\ell_i) \) of \(P_d \): we prove that

\[
H^0(\mathcal{O}_{X_d}(D_{d-2})) \text{ has basis } \{ \ell_3 \cdots \ell_d, \ell_1 \ell_4 \cdots \ell_d, \ldots, \ell_2 \cdots \ell_{d-1} \}.
\]

We show that \(D_{d-2} \) is very ample if \(d > 4 \), hence \(W_d \subseteq \mathbb{P}^{d-1} \) is a smooth surface.

2000 Mathematics Subject Classification. 13D02, 52C35, 14J26, 14C20.

Key words and phrases. Barycentric coordinates, Wachspress variety, Rational surface.

Irving supported by Texas Advanced Research Program 010366-0054-2007.
Schenck supported by NSF 1068754, NSA H98230-11-1-0170.
1.1. Statement of main results. For a d-gon P_d with $d \geq 4$

(1) We give explicit generators for $I_{W_d} \subseteq S = \mathbb{K}[x_1, \ldots, x_d]$.
(2) We determine $\text{in}_{\prec}(I_{W_d})$, where \prec is graded lex order.
(3) We prove $\text{in}_{\prec}(I_{W_d})$ is the Stanley-Reisner ideal of a graph Γ.
(4) We prove that S/I_{W_d} is Cohen-Macaulay, and $\text{reg}(S/I_{W_d}) = 2$.
(5) We determine the graded betti numbers of S/I_{W_d}.

In §1.2 we give some quick background on geometric modeling, and in §1.3 we do the same for algebraic geometry (in particular, we define all the terms above). Our strategy runs as follows. In §2, we study I_{W_d} by blowing up \mathbb{P}^2 at the external vertices. Define a divisor

$$D_{d-2} = (d-2)E_0 - \sum_{p \in Y} E_p$$

on X_d, where E_0 is the pullback of a line and E_p is the exceptional fiber over p. We show that D_{d-2} is very ample, and that I_{W_d} is the ideal of the image of

$$X_d \to \mathbb{P}(H^0(D_{d-2})).$$

Riemann-Roch then yields the Hilbert polynomial of S/I_{W_d}.

In §3 and §4 we find distinguished sets of quadrics and cubics vanishing on W_d, and use them to generate a subideal $I(d) \subseteq I_{W_d}$. In §5 we tie everything together, showing that in graded lex order, $I_{\Gamma}(d) \subseteq \text{in}_{\prec}I(d)$, where $I_{\Gamma}(d)$ is the Stanley-Reisner ideal of a certain graph. Using results on flat deformations and an analysis of associated primes, we prove

$$I_{\Gamma}(d) = \text{in}_{\prec}(I(d)).$$

The description in terms of the Stanley-Reisner ring yields the Hilbert series for $S/I_{\Gamma}(d)$. We prove that $S/I_{\Gamma}(d)$ is Cohen-Macaulay and has Castelnuovo-Mumford regularity two, and it follows from uppersemicontinuity that the same is true for $S/I(d)$. The differentials on the quadratic generators of $I_{\Gamma}(d)$ turn out to be easy to describe, and combining this with the regularity bound and knowledge of the Hilbert series yields the graded betti numbers for $\text{in}_{\prec}(I(d))$.

Finally, we show that $I(d)$ has no linear syzygies on its quadratic generators, which allows us to prune the resolution of $\text{in}_{\prec}(I(d))$ to obtain the graded betti numbers of $I(d)$. Comparing Hilbert polynomials shows that up to saturation

$$S/I(d) = S/I_{W_d}.$$

Since I_{W_d} is prime, it is saturated, and a short exact sequence argument shows that $S/I(d)$ is also saturated, concluding the proof.

1.2. Geometric Modeling Background. Let P_d be a d-gon with vertices v_1, \ldots, v_d and indices taken modulo d.

Definition 1.1. Functions $\{\beta_i : P_d \to \mathbb{R} \mid 1 \leq i \leq d\}$ are barycentric coordinates if for all $p \in P_d$:

1. $\beta_i(p) \geq 0$
2. $p = \sum_{i=1}^{d} \beta_i(p)v_i$
3. $\sum_{i=1}^{d} \beta_i(p) = 1$.

Wachspress coordinates have a geometric description in terms of areas of subtriangles of the polygon. Let $A(a, b, c)$ denote the area of the triangle with vertices $a, b,$ and c. For $1 \leq j \leq d$ set $\alpha_j := A(v_{j-1}, v_j, v_{j+1})$ and $A_j := A(p, v_j, v_{j+1})$.

Definition 1.2. For $1 \leq i \leq d$, the functions

$$
\beta_i = \frac{b_i}{\sum_{j=1}^d b_j}, \quad \text{where} \quad b_i = \alpha_i \prod_{j \neq i-1, i} A_j
$$

are Wachspress barycentric coordinates for the d-gon P_d, see Figure 1.

![Figure 1. Wachspress coordinates for a polygon](image)

We embed P_d in the plane $z = 1 \subseteq \mathbb{R}^3$, and form the cone with $0 \in \mathbb{R}^3$. Explicitly, to each vertex $v_i \in \nu(P_d)$ we associate the ray $v_i := (v_i, 1) \in \mathbb{R}^3$. Let P_d denote the cone generated by the rays v_i, and $\nu(P_d) := \{v_i | v_i \in \nu(P_d)\}$. The cone over the edge $[v_i, v_{i+1}]$ corresponds to a facet of P_d, with normal vector $n_i := v_i \times v_{i+1}$. We redefine α_j and A_j to be the determinants $|v_j v_{j+1} p|$ and $|v_j v_{j+1} p|$, where $p = (x, y, z)$. This scales the b_i by a factor of 2, so leaves the β_i unchanged, save for homogenizing the A_j with respect to z, and allows us to define Wachspress coordinates for non-convex polygons, although Property 1 of barycentric coordinates fails when P_d is non-convex.

Definition 1.3. $\ell_j := A_j = n_j \cdot p = |v_j v_{j+1} p|$. The ℓ_j are homogeneous linear forms in (x, y, z), and vanish on the cone over the edge $[v_j, v_{j+1}]$. We use Theorem 1.6 below, but Warren’s proof does not require convexity. Our results hold over an arbitrary field \mathbb{K}, as long as no three of the lines $V(\ell_j) \subseteq \mathbb{P}^2$ meet at a point. For Condition 1 of Definition 1.1 to make sense, \mathbb{K} should be an ordered field.

Definition 1.4. The dual cone to P_d is the cone spanned by the normals n_1, \ldots, n_d and is denoted P_d^*. Triangulating P_d yields a triangulation of P_d, and the volume of the parallelepiped S spanned by vertices $\{v_i, v_j, v_k, 0\}$ is $a_S = |v_i v_j v_k|$. The adjoint of C is

$$
A_{T(C)}(p) = \sum_{S \in T(C)} a_S \prod_{v \in \nu(P_d) \setminus \nu(S)} (\mathbf{v} \cdot \mathbf{p}) \in \mathbb{K}[x, y, z]_{d-3}.
$$

Theorem 1.6. (Warren [16]) $A_{T(C)}(p)$ is independent of the triangulation $T(C)$.

Definition 1.5. Let C be a cone defined by a polygon P_d and $T(C)$ a triangulation of C obtained from a triangulation of P_d as above. The adjoint of C is
1.3. **Algebraic Geometry Background.** Next, we review some background in algebraic geometry, referring to [4], [9], [13] for more detail. Homogenizing the numerators of Wachspress coordinates yields our main object of study:

Definition 1.7. The Wachspress map defined by a polygon P_d is the rational map $\mathbb{P}^2 \dashrightarrow \mathbb{P}^d$, given on the open set $U_{z \neq 0} \subseteq \mathbb{P}^2$ by $(x, y) \mapsto (b_1(x, y), \ldots, b_d(x, y))$. The Wachspress variety W_d is the closure of the image of w_d.

The polynomial ring $S = \mathbb{K}[x_1, \ldots, x_d]$ is a graded ring: it has a direct sum decomposition into homogeneous pieces. A finitely generated graded S-module N admits a similar decomposition; if $s \in S$ and $n \in N$ then $s \cdot n \in N_{p+q}$. In particular, each N_q is a $S_0 = \mathbb{K}$-vector space.

Definition 1.8. For a finitely generated graded S-module N, the Hilbert series $HS(N, t) = \sum \dim \mathbb{K} N_q t^q$.

Definition 1.9. A free resolution for an S-module N is an exact sequence $F : \cdots \rightarrow F_i \rightarrow F_{i-1} \rightarrow \cdots \rightarrow F_0 \rightarrow N \rightarrow 0$, where the F_i are free S-modules.

If N is graded, then the F_i are also graded, so letting $S(-m)$ denote a rank one free module generated in degree m, we may write $F_i = \oplus_j S(-j)^{a_{i,j}}$. By the Hilbert syzygy theorem [4] a finitely generated, graded S-module N has a free resolution of length at most d, with all the F_i of finite rank.

Definition 1.10. For a finitely generated graded S-module N, a free resolution is minimal if for each i, $\text{Im}(d_i) \subseteq \text{m} F_{i-1}$, where $\text{m} = \langle x_1, \ldots, x_d \rangle$. The graded betti numbers of N are the $a_{i,j}$ which appear in a minimal free resolution, and the Castelnuovo-Mumford regularity of N is $\max_{i,j} \{a_{i,j} - i\}$.

While the differentials which appear in a minimal free resolution of N are not unique, the ranks and degrees of the free modules which appear are unique. The graded betti numbers are displayed in a betti table. Reading this table right and down, starting at $(0, 0)$, the entry $b_{ij} := a_{i,i+j}$, and the regularity of N is the index of the bottommost nonzero row in the betti table for N.

Example 1.11. In Examples 2.9 and 3.11 of [6] it is shown that I_{W_6} is generated by three quadrics and one cubic. The variety $\mathcal{V}(\ell_1 \cdots \ell_6)$ of the edges of P_6 has $\binom{6}{2} = 15$ singular points, of which six are vertices of P_6, and S/I_{W_6} has betti table

total	1	4	6	3
0	1	-	-	-
1	-	3	-	-
2	-	1	6	3

For example, $b_{1,2} = a_{1,3} = 1$ reflects that I_{W_6} has a cubic generator, and $\text{reg}(S/I_{W_6}) = 2$. The Hilbert series can be read off the betti table:

$$HS(S/I_{W_6}, t) = \frac{1 - 3t^2 - t^3 + 6t^4 - 3t^5}{(1 - t)^6} = \frac{1 + 3t + 3t^2}{(1 - t)^3}.$$

Theorem [5.11] gives a complete description of the betti table of S/I_{W_d}.
2. $H^0(D_{d-2})$ and the Wachspress surface

2.1. Background on blowups of \mathbb{P}^2. Fix points $p_1, \ldots, p_k \in \mathbb{P}^2$, and let

\[(1) \quad X \xrightarrow{\pi} \mathbb{P}^2 \]

be the blow up of \mathbb{P}^2 at these points. Then $Pic(X)$ is generated by the exceptional curves E_i over the points p_i, and the proper transform E_0 of a line in \mathbb{P}^2. A classical geometric problem asks for a relationship between numerical properties of a divisor $D_m = mE_0 - \sum a_i E_i$ on X, and the geometry of

\[X \xrightarrow{\phi} \mathbb{P}(H^0(D_m)^\vee).\]

First, some basics. Let m and a_i be non-negative, let I_{p_i} denote the ideal of a point p_i, and define

\[(2) \quad J = \bigcap_{i=1}^k I_{p_i}^{a_i} \subseteq \mathbb{K}[x, y, z] = R.\]

Then $H^0(D_m)$ is isomorphic to the m^{th} graded piece J_m of J (see [7]). In [3], Davis and Geramita show that if $\gamma(J)$ denotes the smallest degree t such that J_t defines J in scheme theoretically, then D_m is very ample if $m > \gamma(J)$, and if $m = \gamma(J)$, then D_m is very ample iff J does not contain m collinear points, counted with multiplicity. Note that $\gamma(J) \leq \text{reg}(J)$.

2.2. Wachspress surfaces. For a polygon P_d, fix defining linear forms ℓ_i as in Definition 1.3 and let $A := \ell_1 \cdots \ell_d$; the edges of P_d are defined by the ℓ_i. Let Z denote the \binom{d}{2} singular points of $\nu(A)$ and $Y = Z \setminus \nu(P_d)$. Finally, X_d will be the blowup of \mathbb{P}^2 at Y. We study the divisor

\[D_{d-2} = (d - 2)E_0 - \sum_{p \in Y} E_p\]

on X_d. First, some preliminaries.

Definition 2.1. Let L be the ideal in $R = \mathbb{K}[x, y, z]$ given by

\[L = \langle \ell_3 \cdots \ell_d, \ell_1 \ell_4 \cdots \ell_d, \ldots, \ell_2 \cdots \ell_{d-1} \rangle = \langle A/\ell_1 \ell_2, A/\ell_2 \ell_3, \ldots, A/\ell_d \ell_1 \rangle,\]

where $A = \prod_{i=1}^d \ell_i$.

For any variety V, we use I_V to denote the ideal of polynomials vanishing on V.

Lemma 2.2. The ideals L and I_V are equal up to saturation at $\langle x, y, z \rangle$.

Proof. Being equal up to saturation at $\langle x, y, z \rangle$ means that the localizations at any associated prime except $\langle x, y, z \rangle$ are equal. The ideal I_p of a point p is a prime ideal. Recall that the localization of a ring T at a prime ideal p is a new ring T_p whose elements are of the form f/g, with $f, g \in T$ and $g \notin p$. Localize R at I_p, where $p \in Y$. Then in R_{I_p}, ℓ_i is a unit if $p \notin \nu(\ell_i)$. Without loss of generality, suppose forms ℓ_1 and ℓ_2 vanish on p (note that all points of Y are intersections of exactly two lines), and the remaining forms do not. Thus, $L_{I_p} = \langle \ell_1, \ell_2 \rangle = (I_Y)_{I_p}. \quad \square$

The ideal L is not saturated.

Lemma 2.3. I_V is generated by one form F of degree $d - 3$ and $d - 3$ forms of degree $d - 2$. Hence a basis for L_{d-2} consists of $F \cdot x, F \cdot y, F \cdot z$ and the $d - 3$ forms.
From the Hilbert-Burch resolution, any minimal syzygy on \(I \) is linear. We claim that it is unique. To see this, first note that no \(\ell_i \) divides \(F \): by symmetry if one \(\ell_i \) divides \(F \), they all must, which is impossible for degree reasons. Now suppose \(G \) is a second form of degree \(d - 3 \) in \(I \). Let \(p \in \nu(P_d) \) and \(\nu(\ell_i) \) be a line corresponding to an edge containing \(p \). \(F(p) \) must be nonzero, since if not \(\nu(F) \) would contain \(d - 2 \) collinear points of \(\nu(\ell_i) \), forcing \(\nu(F) \) to contain \(\nu(\ell_i) \), a contradiction. This also holds for \(G \). But in this case, \(F(p)G - G(p)F \) is a polynomial of degree \(d - 3 \) vanishing at \(d - 2 \) collinear points, again a contradiction. So \(F \) is unique (up to scaling), which shows that the Hilbert function satisfies

\[
\text{HF}(R/L, d - 3) = |Y|,
\]

so \(\text{HF}(R/L, t) = |Y| \) for all \(t \geq d - 3 \) (see [13]). As the polynomials \(A/\ell_i \ell_{i+1} \) are linearly independent and there are the correct number, \(L_{d-2} \) must be the degree \(d - 2 \) component of \(I_Y \).

Theorem 2.4. The minimal free resolution of \(R/L \) is

\[
0 \rightarrow R(-d) \xrightarrow{d_3} R(-d+1)^d \xrightarrow{d_2} R(-d+2)^d \xrightarrow{d_1} R \rightarrow R/L \rightarrow 0,
\]

where \(d_2 = \begin{bmatrix} \ell_1 & 0 & \cdots & \cdots & 0 & 0 & m_1 \\ -\ell_3 & \ell_2 & 0 & \cdots & \cdots & \vdots & m_2 \\ 0 & -\ell_4 & \ddots & \ddots & \ddots & \vdots & \vdots \\ \vdots & 0 & \ddots & \ell_{d-2} & 0 & \vdots & \vdots \\ \vdots & \vdots & \ddots & -\ell_d & \ell_{d-1} & \vdots & \vdots \\ 0 & \cdots & \cdots & 0 & 0 & -\ell_1 & m_d \end{bmatrix}
\]

and the \(m_i \) are linear forms.

Proof. By Lemma 2.3 the generators of \(I_Y \) are known. Since \(I_Y \) is saturated, the Hilbert-Burch theorem implies that the free resolution of \(R/I_Y \) has the form

\[
0 \rightarrow R(-d + 1)^{d-3} \rightarrow R(-d + 3) \oplus R(-d + 2)^{d-3} \rightarrow R \rightarrow R/I_Y \rightarrow 0.
\]

Writing \(I_Y \) as \(\langle f_1, \ldots, f_{d-3}, F \rangle \) and \(L \) as \(\langle f_1, \ldots, f_{d-3}, xF, yF, zF \rangle \), the task is to understand the syzygies on \(L \) given the description above of the syzygies on \(I_Y \). From the Hilbert-Burch resolution, any minimal syzygy on \(I_Y \) is of the form

\[
\sum g_i f_i + qF = 0,
\]

where \(g_i \) are linear and \(q \) is a quadric (or zero). Since

\[
qF = g_1xF + g_2yF + g_3zF
\]

with \(g_i \) linear, all \(d - 3 \) syzygies on \(I_Y \) lift to give linear syzygies on \(L \). Furthermore, we obtain three linear syzygies on \(\{xF, yF, zF\} \) from the three Koszul syzygies on \(\{x, y, z\} \). It is clear from the construction that these \(d \) linear syzygies are linearly independent. Since \(\text{HF}(R/L, d - 1) = |Y| \), this means we have determined all the linear first syzygies. Furthermore, the three Koszul first syzygies on \(\{xF, yF, zF\} \) generate a linear second syzygy, so the complex given above is a subcomplex of the minimal
free resolution. A check shows that the Buchsbaum-Eisenbud criterion [11] holds, so the complex above is actually exact, hence a free resolution. The differential d_2 above involves the canonical generators $A_1/t_1, A_2/t_2, \ldots$, rather than a set involving \{xF, yF, zF\}. Since the $d - 1$ linear syzygies appearing in the first $d - 1$ columns of d_2 are linearly independent, they agree up to a change of basis; the last column of d_2 is a vector of linear forms determined by the change of basis. □

Theorem 2.5. $H^0(D_{d-2}) \simeq \operatorname{Span}_K\{A_i/t_i^2, A_j/t_j^3, \ldots\}, H^1(D_{d-2}) = 0 = H^2(D_{d-2}).$

Proof. The remark following Equation (2) shows that $H^0(D_{d-2}) \simeq L_{d-2}$. Since $K = -3E_0 + \sum_{p \in Y} E_p$ (see [9]), by Serre duality

$$H^2(D_{d-2}) \simeq H^0((-d - 1)E_0 + \sum_{p \in Y} E_p),$$

which is clearly zero. Using that X_d is rational, it follows from Riemann-Roch that

$$h^0(D_{d-2}) - h^1(D_{d-2}) = \frac{D^2_{d-2} - D_{d-2} \cdot K}{2} + 1.$$

The intersection pairing on X_d is given by $E_i^2 = 1$ if $i = 0$, and -1 if $i \neq 0$, and $E_i \cdot E_j = 0$ if $i \neq j$.

Thus,

(3) \quad $D^2_{d-2} = (d - 2)^2 - |Y|$ \quad and \quad $-D_{d-2}K = 3(d - 2) - |Y|,$

yielding

(4) \quad $h^0(D_{d-2}) - h^1(D_{d-2}) = \frac{d^2 - d - 2|Y|}{2} + 1 = d.$

Thus $h^0(D_{d-2}) - h^1(D_{d-2}) = d$. Now apply the remark following Equation (2). □

Corollary 2.6. If $d > 4$, D_{d-2} is very ample, so the image of X_d in \mathbb{P}^{d-1} is smooth.

Proof. By Theorem 2.4, the ideal L is $d - 2$ regular. Furthermore, the set Y contains d sets of $d - 3$ collinear points, but no set of $d - 2$ collinear points if $d > 4$. The result follows from the Davis-Geramita criterion. □

Theorem 2.7. $W_4 \simeq \mathbb{P}^1 \times \mathbb{P}^1$, and $X_4 \to W_4$ is an isomorphism away from the (-1) curve $E_0 - E_1 - E_2$, which is contracted to a smooth point.

Proof. The surface X_4 is \mathbb{P}^2 blown up at two points, which is toric, and isomorphic to $\mathbb{P}^1 \times \mathbb{P}^1$ blown up at a point. By Proposition 6.12 of [2], D_2 is basepoint free. Since $D_2^2 = 2$, W_4 is an irreducible quadric surface in \mathbb{P}^3. As $D_2 \cdot (E_0 - E_1 - E_2) = 0$, the result follows. □

Replacing D_{d-2} with tD_{d-2}, a computation as in Equations (3) and (4) and Serre vanishing shows that the Hilbert polynomial $HP(S/I_{W_4}, t)$ is equal to

(5) \quad $\frac{(d^2 - d - 2|Y|)t^2 + (3d^2 - 2|Y|)t}{2} + 1 = \frac{d^2 - 5d + 8}{4} t^2 - \frac{d^2 - 9d + 12}{4} t + 1.$
3. The Wachspress Quadrics

In this section, we construct a set of quadrics which vanish on W_d. These quadrics are polynomials that are expressed as a scalar product with a fixed vector τ. The vector τ defines a linear projection $\mathbb{P}^{d-1} \rightarrow \mathbb{P}^2$, also denoted by τ, given by

$$\mathbf{x} \mapsto \sum_{i=1}^{d} x_i \mathbf{v}_i,$$

where $\mathbf{x} = [x_1 : \cdots : x_d] \in \mathbb{P}^{d-1}$. By the second property of barycentric coordinates, the composition $\tau \circ w_d : \mathbb{P}^2 \rightarrow \mathbb{P}^2$ is the identity map on \mathbb{P}^2. Since $\mathbf{v}_i \in \mathbb{K}^3$, the vector τ is a triple of linear forms $(\tau_1, \tau_2, \tau_3) \in S^3$. The linear subspace \mathcal{C} of \mathbb{P}^{d-1} where the projection is undefined is the center of projection, and $\mathcal{I}_C = \langle \tau_1, \tau_2, \tau_3 \rangle$.

3.1. Diagonal Monomials. A diagonal monomial is a monomial $x_i x_j \in S_2$ such that $j \notin \{i-1, i, i+1\}$. We write D for the subspace of S_2 spanned by the diagonal monomials; identifying x_i with the vertex \mathbf{v}_i, a diagonal monomial is a diagonal in P_d, see Figure 2.

![Figure 2. A diagonal monomial](image)

Lemma 3.1. Any quadric which vanishes on W_d is a linear combination of elements of D.

Proof. Let Q be a polynomial in $(I_{W_d})_2$. Then $Q(w_d) = Q(b_1, \ldots, b_d) = 0$. On the edge $[v_k, v_{k+1}]$ all the b_i vanish except b_k and b_{k+1}. Thus on this edge, the expression $Q(w_d) = 0$ is

$$(6) \quad c_1 b_k^2 + c_2 b_k b_{k+1} + c_3 b_{k+1}^2 = 0$$

for some constants $c_1, c_2,$ and c_3 in \mathbb{K}. Recall that $b_i(v_j) = 0$ if $i \neq j$ and $b_i(v_i) \neq 0$ for each i. Evaluating Equation 6 at v_k and v_{k+1}, we conclude $c_1 = c_3 = 0$. At an interior point of edge $[v_k, v_{k+1}]$ neither b_k nor b_{k+1} vanishes. This implies that $c_2 = 0$. A similar calculation on each edge shows that all coefficients of non-diagonal terms in Q are zero. \qed
3.2. The Map to \((I_C)_2\). We define a surjective map onto \((I_C)_2\), and use the map to calculate the dimension of the vector space of polynomials in \((I_C)_2\) that are supported on diagonal monomials. Let \(S_1^3\) denote the space of triples of linear forms on \(\mathbb{P}^{d-1}\). Define the map \(\Psi : S_1^3 \to (I_C)_2\) by \(F \mapsto F \cdot \tau\), where \(\cdot\) is the scalar product.

Lemma 3.2. The kernel of \(\Psi\) is three-dimensional.

Proof. Since \(I_C\) is a complete intersection, the kernel is generated by the three Koszul syzygies on the \(\tau_i\).

Next we determine conditions on \(F\) so that \(\Psi(F) \in \mathcal{D}\). If \(u_i \in \mathbb{K}^3\) for \(i = 1, \ldots, d\), then

\[
F = \sum_{i=1}^{d} x_i u_i
\]

is an element of \(S_1^3\). Viewing the projection \(\tau\) as an element of \(S_1^3\) we have

\[
\Psi(F) = F \cdot \tau = \left(\sum_{i=1}^{d} x_i u_i\right) \cdot \left(\sum_{i=1}^{d} x_i v_i\right) = \sum_{i,j=1}^{d} (u_i \cdot v_j + u_j \cdot v_i) x_i x_j.
\]

If \(\Psi(F) \in \mathcal{D}\) then the coefficients of non-diagonal monomials must vanish:

\[
u_i \cdot v_i = 0 \quad \text{and} \quad u_i \cdot v_{i+1} + u_{i+1} \cdot v_i = 0 \quad \text{for all } i.
\]

Lemma 3.3. The dimension of the vector space \(\mathcal{D} \cap (I_C)_2\) is \(d - 3\).

Proof. We show the conditions in Equation (8) give \(2d\) independent conditions on the \(3d\)-dimensional vector space \(S_1^3\), and the solution space is \(\Psi^{-1}(\mathcal{D} \cap (I_C)_2)\), thus \(\dim(\Psi^{-1}(\mathcal{D} \cap (I_C)_2)) = d\). The conditions are represented by the matrix equation:

\[
\begin{pmatrix}
v_1 \cdot u_1 \\
\vdots \\
v_d \cdot u_d \\
v_1 \cdot u_2 + v_2 \cdot u_1 \\
\vdots \\
v_d \cdot u_1 + v_1 \cdot u_d
\end{pmatrix} = M
\begin{pmatrix}
v_1^T & 0 & \cdots & 0 \\
0 & v_2^T & \cdots & 0 \\
\vdots & \vdots & \ddots & 0 \\
0 & \cdots & 0 & v_d^T \\
v_1^T & v_2^T & \cdots & 0 \\
0 & \cdots & \cdots & \cdots \\
v_1^T & v_2^T & \cdots & v_d^T \\
\end{pmatrix}
\begin{pmatrix}
u_1 \\
u_2 \\
\vdots \\
u_d \\
u_1 \\
u_2 \\
\vdots \\
u_d
\end{pmatrix} =
\begin{pmatrix}
0 \\
0 \\
\vdots \\
0
\end{pmatrix},
\]

where the \(v_i\) and \(u_i\) are column vectors the superscript \(T\) indicates transpose. The matrix \(M\) in the middle is a \(2d \times 3d\) matrix, and the proof will be complete if the rows are shown to be independent. Denote the rows of \(M\) by \(r_1, \ldots, r_d, r_{d+1}, \ldots, r_{2d}\) and let \(c_1 r_1 + \cdots + c_d r_d + c_{d+1} r_{d+1} + \cdots + c_{2d} r_{2d}\) be a dependence relation among them. The first three columns give the dependence relation \(c_1 v_1 + c_{d+1} v_2 + c_{2d} v_d = 0\). Since \(v_d, v_1,\) and \(v_2\) define adjacent rays of a polyhedral cone, they must be independent, so \(c_1, c_{d+1},\) and \(c_{2d}\) must be zero. Repeating the process at each triple \(v_{i-1}, v_i,\) and \(v_{i+1}\) shows the rest of the \(c_i\)'s vanish. Since the restriction \(\Psi : \Psi^{-1}(\mathcal{D} \cap (I_C)_2) \to \mathcal{D} \cap (I_C)_2\) remains surjective we find \(\dim(\mathcal{D} \cap (I_C)_2) = \dim(\Psi^{-1}(\mathcal{D} \cap (I_C)_2)) - \dim(\ker(\Psi)) = d - 3\). □
3.3. Wachspress Quadrics. We now compute the dimension and a generating set for $(I_{W_d})_2$.

Definition 3.4. Let $\gamma(i)$ denote the set $\{1, \ldots, d\} \setminus \{i-1, i\}$, $\gamma(i,j) = \gamma(i) \cap \gamma(j)$, and $\gamma(i,j,k) = \gamma(i) \cap \gamma(j) \cap \gamma(k)$.

The image of a diagonal monomial x_ix_j under the pullback map $w_d^* : S \to R$ is

$$b_ib_j = \alpha_i\alpha_j \prod_{k \in \gamma(i)} \ell_k \prod_{m \in \gamma(j)} \ell_m = \alpha_i\alpha_j \prod_{k=1}^d \ell_k \prod_{m \in \gamma(i,j)} \ell_m,$$

and each diagonal monomial has a common factor $A = \prod_{k=1}^d \ell_k$. To find the quadratic relations among Wachspress coordinates it suffices to find linear relations among products $\prod_{m \in \gamma(i,j)} \ell_m \in R_{d-4}$ for diagonal pairs i,j. Define the map $\phi : D \to R_{d-4}$ by $x_ix_j \mapsto \frac{b_ib_j}{A}$, and extend by linearity; this is w_d^* restricted to D and divided by A. By Lemma 3.1 it follows that $(I_{W_d})_2 = \ker(\phi) \subseteq D$.

Lemma 3.5. The dimension of $(I_{W_d})_2$ is $d - 3$.

Proof. We will show $\phi : D \to R_{d-4}$ is surjective with $\dim(\ker \phi) = d - 3$. To see this, note that there are $d - 3$ diagonal monomials that have x_1 as a factor. We show that the images of the remaining $d(d - 3)/2 - (d - 3) = (d - 3)(d - 2)/2 = \dim(R_{d-4})$ diagonal monomials are independent. Let $p_{s,t} = \ell_s \cap \ell_t$ and $x_{p,q} = x_px_q$. In Table 1 a star, \ast, represents a nonzero number, a blank space is zero. The (i,j) entry in Table 1 represents the value of the image of the diagonal monomial in column j at the external vertex in row i. The external vertices not lying on ℓ_d are arranged down the rows with their indices in lexicographic order.

$x_{2,4}$	\cdots	$x_{2,d}$	$x_{3,5}$	\cdots	$x_{3,d}$	\cdots	$x_{d-3,d-1}$	$x_{d-3,d}$	$x_{d-2,d}$
$p_{1,3}$		\ast		\cdots		\ast			
	\vdots	\ddots	\vdots	\ddots					
$p_{1,d-1}$		\ast		\ast		\ast			
$p_{2,4}$		\ast		\ast		\ast			
	\vdots	\ddots	\vdots	\ddots					
$p_{2,d-1}$		\ast		\ast		\ast			
\vdots	\ddots	\ddots	\ddots	\ddots					
$p_{(d-4)(d-2)}$				\ast					
$p_{(d-4)(d-1)}$		\ast		\ast					
$p_{(d-3)(d-1)}$		\ast		\ast					

Table 1. Values of images of diagonal monomials at external vertices

Since Table 1 is lower triangular, the images are independent. We have found $\dim(R_{d-4})$ independent images and hence ϕ is surjective. This is a map from a vector space of dimension $d(d - 3)/2$ to one of dimension $(d - 2)(d - 3)/2$. The map is surjective, so the kernel has dimension $d(d - 3)/2 - (d - 2)(d - 3)/2 = d - 3$. □
There is a generating set for \((I_{W_d})_2\) where each generator is a scalar product with the vector \(\tau\). The other vectors in these scalar products are

\[
\Lambda_k = \frac{x_{k+1}}{\alpha_{k+1}} n_{k+1} - \frac{x_k}{\alpha_k} n_{k-1} \in S^3_1.
\]

Lemma 3.6. The vectors \(\{\Lambda_1, \ldots, \Lambda_d\}\) form a basis for the space \(\Psi^{-1}(D \cap (I_C)_2)\).

Proof. Suppose that \(\sum_{k=1}^d c_k \Lambda_k = 0\) is a linear dependence relation among the \(\Lambda_k\). The coefficient of a variable \(x_k\) is

\[
\frac{1}{\alpha_k} (c_{k-1} n_k - c_k n_{k-1}).
\]

By the dependence relation this must be zero, which implies that \(n_{k-1}\) and \(n_k\) are scalar multiples. This is impossible since they are normal vectors of adjacent facets of a polyhedral cone. Hence, \(c_{k-1} = c_k = 0\) for all \(k\) which shows that the \(\Lambda_k\) are independent.

In the proof of Lemma 3.3 we showed that \(\dim(\Psi^{-1}(D \cap (I_C)_2)) = d\) and we have just shown \(\dim(\langle \Lambda_k \mid k = 1, \ldots, d \rangle) = d\). To prove the result, it suffices to show \(\langle \Lambda_k \mid k = 1, \ldots, d \rangle \subseteq \Psi^{-1}(D \cap (I_C)_2)\). The conditions of Equation (8) are required for \(\Lambda_k \in S^3_1\) to lie in \(\Psi^{-1}(D \cap (I_C)_2)\). We show these conditions are satisfied for each \(\Lambda_k\).

Let \(u_i = 0\) if \(i \neq k, k + 1\), \(u_k = -n_{k-1}/\alpha_k\), and \(u_{k+1} = n_{k+1}/\alpha_{k+1}\) for each fixed \(k\). Then

\[
\Lambda_k = \frac{x_{k+1}}{\alpha_{k+1}} n_{k+1} - \frac{x_k}{\alpha_k} n_{k-1} = \sum_{i=1}^d u_i x_i.
\]

Since \(n_{k-1} \cdot v_k = 0\), \(n_{k+1} \cdot v_{k+1} = 0\), and \(u_i = 0\) for \(i \neq k, k + 1\) we have that \(u_i \cdot v_i = 0\) for each \(i = 1, \ldots, d\). The expression \(u_i \cdot v_{i+1} + u_{i+1} \cdot v_i\) is zero for all \(i \neq k - 1, k, k + 1\) simply because \(u_i = 0\) for \(i \neq k, k + 1\). We have

\[
u_i \cdot v_{i+1} + u_{i+1} \cdot v_i = -\frac{\alpha_k}{\alpha_{k+1}} v_{k-1} x_k v_{k+2} \cdot v_k = 0,
\]

as \(\alpha_j = |v_{j-1} v_j v_{j+1}|\). It is easy to show that the expression \(u_i \cdot v_{i+1} + u_{i+1} \cdot v_i\) is zero for \(i = k \pm 1\). Thus the \(u_i\) satisfy the conditions in Equation (8), so \(\Lambda_k \in \Psi^{-1}(D \cap (I_C)_2)\).

Theorem 3.7. (Wachspress Quadrics)

The Wachspress quadrics \((I_{W_d})_2\) are those elements of \(S^3_2\) which are diagonally supported and vanish on \(C\). The quadrics \(Q_k = \Lambda_k \cdot \tau\) for \(k = 1, \ldots, d\) span \((I_{W_d})_2\).

Proof. Let \(p\) be the vector \((x, y, z)\). By definition of Wachspress coordinates,

\[
\tau(w_d(p)) = \sum_{i=1}^d b_i(p) v_i = p \sum_{i=1}^d b_i(p).
\]

We have

\[
\Lambda_k(w_d(p)) = \frac{b_{k+1}(p)}{\alpha_{k+1}} n_{k+1} - \frac{b_k(p)}{\alpha_k} n_{k-1}
\]

GEOMETRY OF WACHSPRESS SURFACES 11
By Lemma 3.5, so we may use the lead term of Λ

Repeating the process proves that the term order to graded lex with I basis for $(\cdot)\cdot$, arguing as in the proof of Corollary 3.8 shows that we may assume a

must be a linear combination of the Koszul syzygies on ζ

Proof. By Corollary 3.8, we may assume that a basis for $(\cdot)\cdot$ is a basis for $\text{in}_\zeta(I_{W_d})_2$.

Proof. Expanding the expression for Λ

$\Lambda_i \cdot \tau = x_1 x_{i+1} \left(\frac{V_1 \cdot n_{i+1}}{\alpha_{i+1}} - x_1 x_i \left(\frac{V_1 \cdot n_{i-1}}{\alpha_i} \right) \right) + \zeta_i,$

where $\zeta_i \in \mathbb{K}[x_2, \ldots, x_d]$. Since $n_i = v_i \times v_{i+1}$,

$\Lambda_2 \cdot \tau = x_1 x_3 \left(\frac{V_1 \cdot n_3}{\alpha_3} \right) + \zeta_2.$

Since no three of the lines $V(i_j)$ are concurrent, $v_i \cdot n_j$ is nonzero unless $j \in \{i, i+1\}$, so we may use the lead term of $\Lambda_2 \cdot \tau$ to reduce $\Lambda_3 \cdot \tau$ to $x_1 x_4 + f(x_2, \ldots, x_d)$. Repeating the process proves that

$\{x_1 x_3, \ldots, x_1 x_{d-1}\} \subseteq \text{in}_\zeta(I_{W_d})_2.$

By Lemma 3.6, $(I_{W_d})_2$ has dimension $d - 3$, which concludes the proof.

Corollary 3.9. There are no linear first syzygies on $(I_{W_d})_2$.

Proof. By Corollary 3.8 we may assume that a basis for $(I_{W_d})_2$ has the form

$x_1 x_3 + \zeta_3(x_2, \ldots, x_d)

x_1 x_4 + \zeta_4(x_2, \ldots, x_d)

x_1 x_5 + \zeta_5(x_2, \ldots, x_d)

\vdots

x_1 x_{d-1} + \zeta_{d-1}(x_2, \ldots, x_d).$

Since the ζ_i do not involve x_1, this implies that any linear first syzygy on $(I_{W_d})_2$ must be a linear combination of the Koszul syzygies on $\{x_3, \ldots, x_{d-1}\}$. Now change the term order to graded lex with $x_3 > x_{i+1} > \cdots > x_d > x_1 > x_2 \cdots > x_{i-1}$. In this order, arguing as in the proof of Corollary 3.8 shows that we may assume a basis for $(I_{W_d})_2$ has the form
\[x_i x_{i+1} + \zeta_{i+2}(x_1, \ldots, \hat{x}_i, \ldots, x_d) \]
\[x_i x_{i+3} + \zeta_{i+3}(x_1, \ldots, \hat{x}_i, \ldots, x_d) \]
\[x_i x_{i+4} + \zeta_{i+4}(x_1, \ldots, \hat{x}_i, \ldots, x_d) \]
\[\vdots \]
\[x_i x_{i-2} + \zeta_{i-2}(x_1, \ldots, \hat{x}_i, \ldots, x_d). \]

Hence, any linear first syzygy on \((W_d)_{2}\) must be a combination of Koszul syzygies on \(x_{i+2}, x_{i+3}, \ldots, x_{i-2}\). Iterating this process for the term orders above shows there can be no linear first syzygies on \((W_d)_{2}\).

3.4. Decomposition of \(\mathcal{V}(⟨(W_d)_{2}⟩)\). We now prove that \(\mathcal{V}(⟨(W_d)_{2}⟩) = C \cup W_d\). The results in §4 and §5 are independent of this fact.

Lemma 3.10. For any \(i, j, \) and \(k\) we have

\[|n_i n_j n_k| = |v_j v_k v_{k+1}| \cdot |v_i v_{i+1} v_{j+1}| - |v_{j+1} v_k v_{k+1}| \cdot |v_i v_{i+1} v_j| \]

Proof. Apply the formulas \(a \times (b \times c) = b(a \cdot c) - c(a \cdot b)\) and \(|a b c| = a \times b \cdot c\),

\[|n_i n_j n_k| = n_i \times n_j \cdot n_k = (n_i \times (v_j \times v_{j+1})) \cdot n_k \]
\[= (v_j (n_i \cdot v_{j+1}) - v_{j+1}(n_i \cdot v_j)) \cdot n_k \]
\[= (v_j \cdot n_k)(n_i \cdot v_{j+1}) - (v_{j+1} \cdot n_k)(n_i \cdot v_j) \]
\[= |v_j v_k v_{k+1}| \cdot |v_i v_{i+1} v_{j+1}| - |v_{j+1} v_k v_{k+1}| \cdot |v_i v_{i+1} v_j|. \]

Corollary 3.11.

\[|n_i n_j n_{j+1}| = \alpha_{j+1} |v_i v_{i+1} v_{j+1}| \]

Proof. This follows from Lemma 3.10 and the definition of \(\alpha_{j+1}\).

Corollary 3.12.

\[|n_{i-1} n_i n_{i+1}| = \alpha_i \alpha_{i+1} \]

Proof. This follows from Lemma 3.10 and the definition of \(\alpha_i\) and \(\alpha_{i+1}\).

Lemma 3.13. Let \(x = [x_1 : \cdots : x_d] \in \mathcal{V}(⟨(W_d)_{2}⟩) \setminus C\). If \(\tau(x)\) is a base point \(p_{ij} = n_i \times n_j\), then \(x\) lies on the exceptional line \(\hat{p}_{ij}\) over \(p_{ij}\).

Proof. Since indices are cyclic we assume that \(i = 1\). Thus \(\tau(x) = p_{1,j} = n_1 \times n_j\) for some \(j \notin \{d, 1, 2\}\). The relation \(Q_1(x) = \Lambda_1 \cdot \tau(x) = \Lambda_1 \cdot (n_1 \times n_j) = 0\) yields
\[
(9) \quad L(1) := x_2 n_2 \cdot p_{1,j} - x_1 n_d \cdot p_{1,j} = 0.
\]
The relation \(Q_j(x) = 0\) implies
\[
(10) \quad L(j) := x_{j+1} | n_{j+1} n_1 n_j | - x_j | n_2 n_1 n_j | = 0.
\]
Also,
\[
Q_2(x) = (x_3 n_3 - x_2 n_1) \cdot n_1 \times n_j = x_3 | n_3 n_1 n_j | = 0,
\]
implying \(x_3 = 0\) since \(|n_3 n_1 n_j| \neq 0\) if \(j \neq 3\). Assume \(x_k = 0\) for \(3 \leq k < j - 1\). Note that
\[
Q_k(x) = (x_{k+1} n_{k+1} - x_k n_{k-1}) \cdot n_1 \times n_j = x_{k+1} | n_{k+1} n_1 n_j | = 0,
\]
and thus \(x_{k+1} = 0\) for \(3 \leq k < j - 1\). Proceeding inductively for the remaining \(x_k\), if \(2 \leq k \leq n - 1\), we find that
\[
Q_n(x) = x_2 n_2 \cdot p_{1,j} - x_1 n_d \cdot p_{1,j} = 0.
\]
hence $x_{k+1} = 0$ since $|n_{k+1} n_1 n_j| \neq 0$ and by induction $x_k = 0$ for $3 \leq k \leq j-1$. An analogous argument shows that $x_k = 0$ for $j + 2 \leq k \leq d$. Hence x lies on the line $V(L(1), L(j), x_k \mid k \notin \{1, 2, j, j+1\})$, which is the exceptional line $\hat{p}_{i,j}$.

Theorem 3.14. The subset $V((I_{W_d})_2) \setminus C$ is contained in W_d. It follows that the variety $V((I_{W_d})_2)$ has irreducible decomposition $W_d \cup C$.

Proof. Let $x = [x_1 : \cdots : x_d] \in V((I_{W_d})_2) \setminus C$. The Wachspress quadrics give the relations

$$x_{r+1} n_{r+1} \tau = x_r n_{r-1} \tau$$

for each $r = 1, \ldots, d$. By Theorem 1.6, the adjoint is independent of triangulation, so we use A to denote the adjoint, specifying the triangulation if necessary. We now show for each $k \in \{1, \ldots, d\}$, $b_k(\tau(x)) = A(\tau(x)) x_k$, where the triangulation above is used for the adjoint A. It follows from the uniqueness of Wachpress coordinates that the denominator $\sum_{i=1}^d b_i$ of β_i is the adjoint of P_d^*, so it follows that

$$w_d(\tau(x)) = A(\tau(x)) x.$$

Provided $A(\tau(x)) \neq 0$, the result follows since $w_d(\tau(x)) \in \mathbb{R}^{d-1}$ is a nonzero scalar multiple of x, hence x is in the image of the Wachspress map and thus lies on W_d. If $x \in V((I_{W_d})_2) \setminus C$ and $A(\tau(x)) = 0$, then by Equation (12) $w_d(\tau(x)) = 0$ and hence $\tau(x)$ is a basepoint of w_d. Thus $\tau(x) = n_i \times n_j$ for some diagonal pair (i, j). By Lemma 3.13 x lies on an exceptional line and hence lies on W_d. To prove the claim, note that since all indices are cyclic it suffices to assume $k = 3$. Let $|n_i n_j n_k| = |n_{ijk}|$ and

$$n_{i_1, \ldots, i_m} \tau := \prod_{j=1}^m (n_{ij} \tau),$$

This is the product of m linear forms in S, and with this notation

$$b_3(\tau) = n_1, \ldots, d \tau.$$

For each $r \in \{3, \ldots, d\}$ define

$$\sigma_r := (n_{i_1, \ldots, r} \tau)n_1 \left[\sum_{i=1}^r v_i(n_{r+1, \ldots, d} \tau) x_i + \sum_{i=r+1}^d v_i(n_{r-1, \ldots, i-1, i} \tau)(n_{i+1, \ldots, d} \tau) x_r \right],$$

![Figure 3. Triangulation used for adjoint](attachment:image.png)
where we set $\mathbf{n}_{i,\ldots,j} \cdot \tau = 1$ if $j < i$. We show $x_3 A(\tau(\mathbf{x})) = \sigma_3 = \sigma_d = b_3(\tau(\mathbf{x}))$.

First, we show $\sigma_3 = x_3 A(\tau)$: to see this, note that

$$x_3 A(\tau) = |n_{1,2,3}| (n_{4\ldots,d} \cdot \tau) x_3 + \sum_{i=4}^{d} |n_{i,i-1,i}| (n_{2\ldots,i-2} \cdot \tau) (n_{i+1\ldots,d} \cdot \tau) x_3,$$

where we express the adjoint A using the triangulation in Figure 3. Applying the scalar triple product to $|n_{1,2,3}|$ and $|n_{i,i-1,i}|$ in the expression (13) yields,

$$\mathbf{n}_1 \cdot (\mathbf{n}_2 \times \mathbf{n}_3) (n_{4\ldots,d} \cdot \tau) x_3 + \sum_{i=4}^{d} \mathbf{n}_1 \cdot (n_{i-1} \times \mathbf{n}_i)(n_{2\ldots,i-2} \cdot \tau) (n_{i+1\ldots,d} \cdot \tau) x_3.$$

Factoring an \mathbf{n}_1 and noting that $\mathbf{n}_1 \times \mathbf{n}_{i+1} = \mathbf{v}_{i+1}$, (14) becomes

$$\mathbf{n}_1 \cdot [\mathbf{v}_3(n_{4\ldots,d} \cdot \tau) x_3 + \sum_{i=4}^{d} \mathbf{v}_i(n_{2\ldots,i-2} \cdot \tau)(n_{i+1\ldots,d} \cdot \tau) x_3] = \sigma_3.$$

Now we show $\sigma_d = b_3(\tau)$. Since $n_{d+1\ldots,d} \cdot \tau = 1$

$$\sigma_d = (n_{4\ldots,d} \cdot \tau) \mathbf{n}_1 \cdot \left(\sum_{i=4}^{d} \mathbf{v}_i(n_{d+1\ldots,d} \cdot \tau)x_i \right) = (n_{4\ldots,d} \cdot \tau) \mathbf{n}_1 \cdot \left(\sum_{i=4}^{d} \mathbf{v}_i x_i \right).$$

Observing that $\mathbf{n}_1 \cdot \sum_{i=1}^{n} x_i \mathbf{v}_i = 0$ we see that (15) is

$$(n_{4\ldots,d} \cdot \tau) (\mathbf{n}_1 \cdot \tau) = n_{1,4\ldots,d} \cdot \tau = b_3(\tau).$$

We now claim that for $r \in \{3,\ldots,d-1\}$ we have $\sigma_r = \sigma_{r+1}$. Indeed,

$$\sigma_r = (n_{4\ldots,r} \cdot \tau) \mathbf{n}_1 \cdot \left[\sum_{i=4}^{r} \mathbf{v}_i(n_{r+1\ldots,d} \cdot \tau) x_i + \sum_{i=r+1}^{d} \mathbf{v}_i(n_{r\ldots,i-2} \cdot \tau)(n_{i+1\ldots,d} \cdot \tau)(n_{r-1} \cdot \tau) x_r \right]$$

$$= (n_{4\ldots,r} \cdot \tau) \mathbf{n}_1 \cdot \left[\sum_{i=4}^{r} \mathbf{v}_i(n_{r+1\ldots,d} \cdot \tau) x_i + \sum_{i=r+1}^{d} \mathbf{v}_i(n_{r\ldots,i-2} \cdot \tau)(n_{i+1\ldots,d} \cdot \tau)(n_{r+1} \cdot \tau) x_{r+1} \right],$$

where we have applied (14) to the last term. Factoring out $n_{r+1} \cdot \tau$ yields

$$(n_{4\ldots,r+1} \cdot \tau) \mathbf{n}_1 \cdot \left[\sum_{i=3}^{r} \mathbf{v}_i(n_{r+2\ldots,d} \cdot \tau) x_i + \sum_{i=r+1}^{d} \mathbf{v}_i(n_{r\ldots,i-2} \cdot \tau)(n_{i+1\ldots,d} \cdot \tau) x_{r+1} \right]$$

Lastly, since the expressions in both summations agree at the index $i = r + 1$ we can shift the indices of summation,

$$(n_{4\ldots,r+1} \cdot \tau) \mathbf{n}_1 \cdot \left[\sum_{i=3}^{r+1} \mathbf{v}_i(n_{r+2\ldots,d} \cdot \tau) x_i + \sum_{i=r+2}^{d} \mathbf{v}_i(n_{r\ldots,i-2} \cdot \tau)(n_{i+1\ldots,d} \cdot \tau) x_{r+1} \right],$$

which is precisely σ_{r+1}, proving the claim. The claim shows that $\sigma_3 = \sigma_d$, hence (12) holds and so x lies in W_d if $A(\tau(\mathbf{x})) \neq 0$. \qed
4. The Wachspress Cubics

Theorem 3.14 shows that the Wachspress quadrics do not suffice to cut out the Wachspress variety \(W_d \). We now construct cubics, the Wachspress cubics, that lie in \(I_{W_d} \) and do not arise from the Wachspress quadrics. These cubics are determinants of 3 \times 3\ matrices of linear forms. The key to showing that they are in \(I_{W_d} \) is to write them as a difference of adjoints \(\mathcal{A}_{T_1(C)} - \mathcal{A}_{T_2(C)} \), where \(T_1(C) \) and \(T_2(C) \) are two different triangulations of a subcone \(C \) of the dual cone \(\mathbb{P}_d^* \). By Theorem 1.6 the difference is zero, so the cubic is in \(I_{W_d} \).

4.1. Construction of Wachspress Cubics. As in Lemma 3.6 let

\[
\Lambda_r = \frac{x_r+1}{\alpha_r+1} n_{r+1} - \frac{x_r}{\alpha_r} n_r - 1.
\]

Theorem 4.1. If \(i \neq j \neq k \neq i \), then \(w_{i,j,k} := |\Lambda_i, \Lambda_j, \Lambda_k| \in I_{W_d} \).

Proof. We break the proof into two parts. First, suppose no pair of \((i, j, k)\) corresponds to an edge of \(P_d \). We call such an \((i, j, k)\) a \(T \)-triple. A direct calculation shows that if \((i, j, k)\) is a \(T \)-triple, then evaluating the monomial \(x_i x_j x_k \) at Wachspress coordinates yields

\[
(17) \quad x_i x_j x_k(w_d) = b_i b_j b_k = A^2 \prod_{m \in \gamma(i,j,k)} \ell_m,
\]

where \(\gamma(i,j,k) \) is as in Definition 3.4. Since there are no \(T \)-triples if \(d < 6 \), we may assume \(d \geq 6 \). Changing variables by replacing \(x_i \) with \(x_i/\alpha_i \), we may ignore the constants \(\alpha_i \). Using the definition of the \(\Lambda \)'s, observe that \(w_{i,j,k} = \)

\[
(18) \quad \begin{array}{c}
|n_i+1 n_j+1 n_{k+1}|x_{i+1} x_{j+1} x_{k+1} - |n_i+1 n_j+1 n_{k-1}|x_{i+1} x_{j+1} x_k - \\
|n_i+1 n_j-1 n_{k+1}|x_{i+1} x_j x_{k+1} + |n_i+1 n_j-1 n_{k-1}|x_i x_{j+1} x_k - \\
|n_i-1 n_j+1 n_{k+1}|x_i x_j x_{k+1} + |n_i-1 n_j+1 n_{k-1}|x_i x_j x_{k+1} + \\
|n_i-1 n_j-1 n_{k+1}|x_i x_j x_{k+1} - |n_i-1 n_j-1 n_{k-1}|x_i x_j x_k.
\end{array}
\]

There are several situations to consider, depending on various possibilities for interactions among the indices. Interactions may occur if \(i+1 = j-1 \) or \(j+1 = k-1 \) or \(k+1 = i-1 \), so there are four cases:

1. All three hold
2. Two hold
3. One holds
4. None hold.

Case 1: The indices \((i, j, k)\) satisfy Case 1 if and only if \(d = 6 \). For \(d = 6 \) there are only two \(T \)-triples; \((1, 3, 5)\) and \((2, 4, 6)\). We show that \(w_{1,3,5} \) vanishes on Wachspress coordinates; the case of \(w_{2,4,6} \) is similar. All but two of the determinants in Equation 18 vanish, leaving

\[
(19) \quad w_{1,3,5} = |A_1, A_3, A_5| = |n_2 n_4 n_6| x_2 x_4 x_6 - |n_6 n_2 n_4| x_1 x_3 x_5.
\]

Notice that the coefficients are equal, and we conclude by showing that

\[x_1 x_3 x_5 - x_2 x_4 x_6 \]

vanishes on Wachspress coordinates. The monomials \(x_1 x_3 x_5 \) and \(x_2 x_4 x_6 \) evaluated at Wachspress coordinates are \(b_1 b_3 b_5 \) and \(b_2 b_4 b_6 \), respectively. Both of these are equal to \(A^2 \), so \(x_1 x_3 x_5 - x_2 x_4 x_6 \) vanishes on Wachspress coordinates.
Case 2: We can assume without loss of generality \(i + 1 \neq j - 1, j + 1 = k - 1 \), and \(k + 1 = i - 1 \). Four coefficients vanish in Equation 18 yielding

\[
w_{ijk} = |n_{i+1} n_{j+1} n_{i-1}| x_{i+1} x_{j+1} x_{i-1} - |n_{i+1} n_{j-1} n_{i-1}| x_{i+1} x_{j} x_{i-1} + |n_{i+1} n_{j-1} n_{j+1}| x_{i+1} x_{j} x_{i-2} - |n_{i-1} n_{j-1} n_{j+1}| x_{i} x_{j} x_{i-2}.\]

Evaluating this at Wachspress coordinates yields,

\[
w_{ijk} o w_d = |n_{i+1} n_{j+1} n_{i-1}| \prod_{m \in \gamma(i+1,j+1,i-1)} \ell_m + |n_{i+1} n_{j-1} n_{i-1}| \prod_{m \in \gamma(i+1,j,i-1)} \ell_m - |n_{i+1} n_{j-1} n_{j+1}| \prod_{m \in \gamma(i+1,j,i)} \ell_m
\]

\[
= A^2 \left(\prod_{m \in \gamma(i+1,j+1,j+1)} \ell_m \right) |n_{i+1} n_{j+1} n_{i-1}| |n_{j+1} n_{i-1}| - |n_{i+1} n_{j-1} n_{i-1}| |n_{j+1} n_{i-1}| + |n_{i+1} n_{j-1} n_{j+1}| |n_{j+1} n_{i-1}| |n_{j+1} n_{i-1}| - |n_{i+1} n_{j+1} n_{i-1}| |n_{j+1} n_{i-1}| |n_{j+1} n_{i-1}|
\]

\[
= A^2 \left(\prod_{m \in \gamma(i+1,j+1,j+1)} \ell_m \right) \left(|n_{i+1} n_{j+1} n_{i-1}| |n_{j+1} n_{i-1}| + |n_{i+1} n_{j+1} n_{i-1}| |n_{j+1} n_{i-1}| - |n_{i+1} n_{j+1} n_{i-1}| |n_{j+1} n_{i-1}| - |n_{i+1} n_{j+1} n_{i-1}| |n_{j+1} n_{i-1}|
ight),\text{ where } A = \prod_{i=1}^d \ell_i.
\]

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure4.png}
\caption{Case 2 triangulation}
\end{figure}

The last factor is the difference of two adjoints with respect to the triangulations of the quadrilateral in Figure 4. The vanishing can be seen directly: write \(n_1, \ldots, n_4 \) for \(n_{i-1}, n_{i+1}, n_{j-1}, n_{j+1} \). Then the last factor is

\[
|n_2 n_3 n_4| |\ell_1| - |n_1 n_3 n_4| |\ell_2| + |n_1 n_2 n_4| |\ell_3| - |n_1 n_2 n_3| |\ell_4|.
\]

Applying \(\frac{\partial}{\partial x} \) to this shows the \(x \) coefficient is

\[
|n_2 n_3 n_4| |n_1| - |n_1 n_3 n_4| |n_2| + |n_1 n_2 n_4| |n_3| - |n_1 n_2 n_3| |n_4|.
\]

This is the determinant of the matrix of the \(n_i \) with a repeat row for the \(x \) coordinates \(n_{i1} \), so it vanishes. Reason similarly for the \(y \) and \(z \) coefficients.
Case 3: Assume without loss of generality $i + 1 \neq j - 1$, $j + 1 \neq k - 1$, and $k + 1 = i - 1$. In this case two coefficients vanish in Equation (18) and after evaluating at Wachspress coordinates we obtain,

$$
w_{ijk} \circ w_d = |n_{i+1} n_{j+1} n_{i-1}| \prod_{m \in \gamma(i+1,j,k+1)} \ell_m - |n_{i+1} n_{j+1} n_{k-1}| \prod_{m \in \gamma(i+1,j+1,k)} \ell_m - \\
|n_{i+1} n_{j-1} n_{i-1}| \prod_{m \in \gamma(i+1,j,k+1)} \ell_m + |n_{i+1} n_{j-1} n_{k-1}| \prod_{m \in \gamma(i+1,j,k)} \ell_m + \\
|n_{i-1} n_{j+1} n_{k-1}| \prod_{m \in \gamma(i,j,k+1)} \ell_m - |n_{i-1} n_{j-1} n_{k-1}| \prod_{m \in \gamma(i,j,k)} \ell_m
$$

$$
= A^2 \left(\prod_{m \in \gamma(i,j,k) \cap i+1,j,k+1} \ell_m \right) (|n_{i+1} n_{j+1} n_{i-1}| \ell_{j-1} \ell_{k-1} - \\
n_{i+1} n_{j-1} n_{i-1}| \ell_{j-1} \ell_{j-1} - |n_{i+1} n_{j-1} n_{i-1}| \ell_{j+1} \ell_{k-1} + \\
n_{i-1} n_{j+1} n_{k-1}| \ell_{j+1} \ell_{i-1} + |n_{i-1} n_{j+1} n_{k-1}| \ell_{i+1} \ell_{j-1} - \\
n_{i-1} n_{j-1} n_{k-1}| \ell_{i+1} \ell_{j+1})
$$

The last factor is the difference of adjoints with respect to the triangulations of the pentagon in Figure 5.

Case 4: In this case evaluation at Wachspress coordinates yields

$$
w_{ijk} \circ w_d = |n_{i+1} n_{j+1} n_{k+1}| \prod_{m \in \gamma(i+1,j,k+1)} \ell_m - |n_{i+1} n_{j+1} n_{k-1}| \prod_{m \in \gamma(i+1,j+1,k)} \ell_m - \\
|n_{i+1} n_{j-1} n_{k+1}| \prod_{m \in \gamma(i+1,j,k+1)} \ell_m + |n_{i+1} n_{j-1} n_{k-1}| \prod_{m \in \gamma(i+1,j,k)} \ell_m + \\
|n_{i-1} n_{j+1} n_{k+1}| \prod_{m \in \gamma(i,j,k+1)} \ell_m - |n_{i-1} n_{j+1} n_{k-1}| \prod_{m \in \gamma(i,j,k+1)} \ell_m
$$

$$
= A^2 \left(\prod_{m \in \gamma(i,j,k) \cap i+1,j,k+1} \ell_m \right) (|n_{i+1} n_{j+1} n_{k+1}| \ell_{i-1} \ell_{j-1} \ell_{k-1} - \\
n_{i+1} n_{j-1} n_{k+1}| \ell_{i-1} \ell_{j-1} \ell_{j-1} - |n_{i+1} n_{j-1} n_{k+1}| \ell_{j+1} \ell_{k-1} + \\
n_{i-1} n_{j+1} n_{k+1}| \ell_{j+1} \ell_{i-1} + |n_{i-1} n_{j+1} n_{k-1}| \ell_{i+1} \ell_{j-1} - \\
n_{i-1} n_{j-1} n_{k-1}| \ell_{i+1} \ell_{j+1})
$$
The last factor is the difference of adjoints expressed using the triangulations of the hexagon in Figure 6. This completes the analysis when \((i, j, k)\) is a \(T\)-triple.

Figure 6. Case 4 triangulation

Next, we consider the situation when \((i, j, k)\) contains a pair of consecutive indices. Suppose first that there are exactly two consecutive vertices; without loss of generality we assume the indices are \((2, 3, i)\) with \(i > 4\). We have

\[
\begin{align*}
|n_{i+1}n_{j+1}n_{k-1}|\ell_{i-1}\ell_{j+1}\ell_{k+1} - |n_{i+1}n_{j-1}n_{k-1}|\ell_{i-1}\ell_{j+1}\ell_{k+1} + \\
|n_{i-1}n_{j+1}n_{k-1}|\ell_{j+1}\ell_{i-1}\ell_{k+1} + |n_{i-1}n_{j-1}n_{k+1}|\ell_{i+1}\ell_{j-1}\ell_{k+1} + \\
|n_{i-1}n_{j-1}n_{k-1}|\ell_{i+1}\ell_{j+1}\ell_{k+1} - |n_{i-1}n_{j-1}n_{k-1}|\ell_{i+1}\ell_{j+1}\ell_{k+1}.
\end{align*}
\]

We show \(w_{2,3,i} \circ w_d\) is a multiple of the difference between two expressions of the adjoint polynomial of a polygon with respect to two different triangulations. After evaluation at \(w_d\) each monomial has a common factor of \(A \prod_{j \neq 2,3} \ell_j\). Thus
The factor in parentheses is the difference of the adjoints computed with respect to the triangulations of the polygon in Figure 7.

Finally, for the case where the three vertices are consecutive, assume without loss of generality the triple is \((2, 3, 4)\), and proceed as above. In this case, the triangulations which arise are those which appear in Figure 5.

Definition 4.2. \(I(d)\) is the ideal generated by the Wachspress quadrics appearing in Corollary 3.8 and the Wachspress cubics appearing in Theorem 4.1.
In this section, we determine the initial ideal of $I(d)$ in graded lex order, and prove $I(d) = I_W$. First, some preliminaries.

5. Gröbner basis, Stanley-Reisner ring, and free resolution

An abstract n-simplex is a set consisting of all subsets of an $n + 1$ element ground set. Typically a simplex is viewed as a geometric object; for example a two-simplex on the set $\{a, b, c\}$ can be visualized as a triangle, with the subset $\{a, b, c\}$ corresponding to the whole triangle, $\{a, b\}$ an edge, and $\{a\}$ a vertex. For this reason, elements of the ground set are called the vertices.

Definition 5.1. [13] A simplicial complex Δ on a vertex set V is a collection of subsets σ of V, such that if $\sigma \in \Delta$ and $\tau \subseteq \sigma$, then $\tau \in \Delta$. If $|\sigma| = i + 1$ then σ is called an i-face. Let $f_i(\Delta)$ denote the number of i-faces of Δ, and define $\dim(\Delta) = \max\{i \mid f_i(\Delta) \neq 0\}$. If $\dim(\Delta) = n - 1$, we define $f_\Delta(t) = \sum_{i=0}^{n} f_i(-1)^{n-i}$. The ordered list of coefficients of $f_\Delta(t)$ is the f-vector of Δ, and the coefficients of $h_\Delta(t) := f_\Delta(t-1)$ are the h-vector of Δ.

Example 5.2. Consider the one-skeleton of a tetrahedron, with vertices labelled $\{x_1, x_2, x_3, x_4\}$, as below: The corresponding simplicial complex Δ consists of all vertices and edges, so $\Delta = \emptyset, \{x_i\}, \{x_i, x_j\} \mid 1 \leq i \leq 4$ and $i < j \leq 4$. Thus, $f(\Delta) = (1, 4, 6)$ and $h(\Delta) = (1, 2, 3)$; the empty face gives $f_{-1}(\Delta) = 1$.

A simplicial complex Δ can be used to define a commutative ring, known as the Stanley-Reisner ring. This construction allows us to use tools of commutative algebra to prove results about the topology or combinatorics of Δ.

Definition 5.3. Let Δ be a simplicial complex on vertices $\{x_1, \ldots, x_n\}$. The Stanley-Reisner ideal I_Δ is
$$I_\Delta = \langle x_{i_1} \cdots x_{i_k} \mid \{x_{i_1}, \ldots, x_{i_k}\} \text{ is not a face of } \Delta \rangle \subseteq \mathbb{K}[x_1, \ldots, x_n],$$
and the Stanley-Reisner ring is $\mathbb{K}[x_1, \ldots, x_k]/I_\Delta$.

In Example 5.2 since Δ has no two-faces,
$$I_\Delta = \langle x_1x_2x_3, x_1x_2x_4, x_1x_3x_4, x_2x_3x_4 \rangle = \cap_{1 \leq i < j \leq 4} \langle x_i, x_j \rangle.$$

Definition 5.4. A prime ideal P is associated to a graded S-module N if P is the annihilator of some $n \in N$, and $\text{Ass}(N)$ is the set of all associated primes of N.

Definition 5.5. For a finitely generated graded S-module N, $\text{codim}(N) = \min\{\text{codim}(P) \mid P \in \text{Ass}(N)\}$. The projective dimension $\text{pdim}(N)$ is the length of a minimal free resolution of N; N is Cohen-Macaulay if $\text{codim}(N) = \text{pdim}(N)$. S/I is arithmetically Cohen-Macaulay if it is Cohen-Macaulay as an S-module.
5.2. Application to Wachpress surfaces.

Definition 5.6. Define $I_{\Gamma}(d) \subseteq \mathbb{K}[x_1, \ldots, x_d]$ as

$$ I_{\Gamma}(d) = \langle x_1x_3, \ldots, x_1x_{d-1} \rangle + K_{2,d-1}, $$

where $K_{2,d-1}$ consists of all squarefree cubic monomials in x_2, \ldots, x_{d-1}.

Theorem 5.7. The quotient $S/I_{\Gamma}(d)$ is arithmetically Cohen-Macaulay, of Castelnuovo-Mumford regularity two, and has Hilbert series

$$ HS(S/I_{\Gamma}(d), t) = \frac{1 + (d-3)t + \binom{d-3}{2}t^2}{(1-t)^3}. $$

Proof. The ideal $I_{\Gamma}(d)$ is the Stanley-Reisner ideal of a one dimensional simplicial complex Γ consisting of a complete graph on vertices $\{x_2, \ldots, x_{d-1}\}$, with a single additional edge x_1x_2 attached. All connected graphs are shellable, so since shellable implies Cohen-Macaulay (see [13]), $S/I_{\Gamma}(d)$ is Cohen-Macaulay. Since $I_{\Gamma}(d)$ contains no terms involving x_d, if $S' = \mathbb{K}[x_1, \ldots, x_{d-1}]$, then

$$ S/I_{\Gamma}(d) \cong S'/I_{\Gamma}(d) \otimes \mathbb{K}[x_d] $$

The Hilbert series of a Stanley-Reisner ring has numerator equal to the h-vector of the associated simplicial complex (see [13]), which in this case is a graph on $d-1$ vertices with $\binom{d-2}{2} + 1$ edges. Converting $f(\Gamma) = (1, d-1, \binom{d-2}{2} + 1)$ to $h(\Gamma)$ yields the Hilbert series of $S'/I_{\Gamma}(d)$. The Hilbert series of a graph has denominator $(1-t)^2$, and tensoring with $\mathbb{K}[x_d]$ contributes a factor of $\frac{1}{1-t}$, yielding the result. □

Theorem 5.8. In graded lex order, $\text{in}_< I(d) = I_{\Gamma}(d)$.

Proof. First, note that

$$ I_{\Gamma}(d) \subseteq \text{in}_< I(d), $$

which follows from Corollary [58] and Theorem [12], combined with the observation that in graded lex order, $\text{in}(\{A_iA_jA_k\}) = x_ix_jx_k$ if $i < j < k$, as long as $k \neq d$. Since $I(d) \subseteq I_{W_d}$, there is a surjection

$$ S/I(d) \twoheadrightarrow S/I_{W_d}, $$

hence $HP(S/I(d), t) \geq HP(S/I_{W_d}, t)$. Since

$$ HP(S/I(d), t) = HP(S/\text{in}_< I(d), t) $$

and

$$ I_{\Gamma}(d) \subseteq \text{in}_< I(d) $$

we have

$$ HP(S/I_{\Gamma}(d), t) \geq HP(S/\text{in}_< I(d), t) = HP(S/I(d), t) \geq HP(S/I_{W_d}, t). $$

The Hilbert polynomial $HP(S/I_{W_d}, t)$ is given by Equation [53]. The Hilbert series of $S/I_{\Gamma}(d)$ is given by Theorem [5.7], from which we can extract the Hilbert polynomial:

$$ HP(S/I_{\Gamma}(d), t) = \binom{d-3}{2} \binom{t}{2} + \binom{d-3}{2} \binom{t+1}{2} + \binom{t+2}{2}, $$

and a check shows this agrees with Equation [5]. Since $I_{\Gamma}(d) \subseteq \text{in}_< I(d)$, equality of the Hilbert polynomials implies that in high degree (i.e. up to saturation)

$$ I_{\Gamma}(d) = \text{in}_< I(d) \quad \text{and} \quad I(d) = I_{W_d}. $$
Consider the short exact sequence
\[0 \longrightarrow \in_{\prec} I(d)/I_{\Gamma}(d) \longrightarrow S/I_{\Gamma}(d) \longrightarrow S/\in_{\prec} I(d) \longrightarrow 0. \]

By Lemma 3.6 of [4],
\[(20) \text{Ass}(\in_{\prec} I(d)/I_{\Gamma}(d)) \subseteq \text{Ass}(S/I_{\Gamma}(d)). \]

Since \(HP(S/I_{\Gamma}(d), t) = HP(S/\in_{\prec} I(d), t) \), the module \(\in_{\prec} I(d)/I_{\Gamma}(d) \) must vanish in high degree, so is supported at \(\mathfrak{m} \), which is of codimension \(d \). But \(I_{\Gamma}(d) \) is a radical ideal supported in codimension \(d - 3 \), so it follows from Equation (20) that \(\in_{\prec} I(d)/I_{\Gamma}(d) \) must vanish. \(\square \)

Corollary 5.9. The ideal \(I(d) \) is the ideal of the image of \(X_d \rightarrow \mathbb{P}(H^0(D_{d-2})) \).

In particular, \(I(d) = I_{W_d} \), and \(S/I(d) \) is arithmetically Cohen-Macaulay.

Proof. By the results of §2 and §3, \(I(d) \subseteq I_{W_d} \), and the proof of Theorem 5.8 showed that they are equal up to saturation. Hence, \(I_{W_d}/I(d) \) is supported at \(\mathfrak{m} \). Consider the short exact sequence
\[0 \longrightarrow I_{W_d}/I(d) \longrightarrow S/I(d) \longrightarrow S/I_{W_d} \longrightarrow 0. \]

Since \(S/I_{\Gamma}(d) = S/\in_{\prec} I(d) \) is arithmetically Cohen-Macaulay of codimension \(d - 3 \), by uppersemicontinuity [11] so is \(S/I(d) \), so \(I_{W_d}/I(d) = 0. \) \(\square \)

Corollary 5.10. The quotient \(S/I_{W_d} \) has regularity two.

Proof. Since \(S/I(d) \) is Cohen-Macaulay, reducing modulo a linear regular sequence of length three yields an Artinian ring with the same regularity, which is equal to the socle degree [5]. By Theorem 5.7 and Theorem 5.8 this is two, so the regularity of \(S/I_{W_d} \) is two. \(\square \)

Theorem 5.11. The nonzero graded betti numbers of the minimal free resolution of \(S/I(d) \) are given by \(b_{12} = d - 3 \), and for \(i \geq 3 \) by
\[b_{i-2,i} = \binom{d - 3}{i} - (d - 3) \binom{d - 3}{i - 1} + \binom{d - 3}{2} \binom{d - 3}{i - 2}. \]

Proof. By Corollary 5.10 there are only two rows in the betti table of \(S/I(d) \). By Corollary 5.9 the top row is empty, save for the quadratic generators at the first step. Thus, the entire betti diagram may be obtained from the Hilbert series, which is given in Theorem 5.7, and the result follows. \(\square \)

We are at work on generalizing the results here to higher dimensions.

Acknowledgments Computations were performed using Macaulay2, by Grayson and Stillman, available at: http://www.math.uiuc.edu/Macaulay2/. A script is available at http://www.math.uiuc.edu/~schenck/Wpress.m2/. Our collaboration began during a SIAM conference on applied algebraic geometry, and we thank the organizers of that conference, Dan Bates and Frank Sottile. We thank Frank Sottile and Greg Smith for useful comments, and the first author also thanks his thesis advisor Frank Sottile for introducing him to Wachspress varieties and providing guidance during the dissertation process.
References

[1] D. Buchsbaum, D. Eisenbud, What makes a complex exact?, J. Algebra 25 (1973), 259–268.
[2] D. Cox, J. Little, H. Schenck, Toric Varieties, Graduate Studies in Mathematics, vol. 124, American Mathematical Society, 2011.
[3] E. Davis, A. Geramita, Birational morphisms to \mathbb{P}^2: an ideal-theoretic perspective, Math. Ann. 279 (1988), 435–448.
[4] D. Eisenbud, Commutative Algebra with a view towards Algebraic Geometry, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, Berlin-Heidelberg-New York, 1995.
[5] D. Eisenbud, The geometry of syzygies, Graduate Texts in Mathematics, vol. 229, Springer-Verlag, Berlin-Heidelberg-New York, 2005.
[6] L. García-Puente, F. Sottile, Linear precision for parametric patches, Advances in Computational Mathematics, 33 (2010), 191–214.
[7] B. Harbourne, Problems and progress: survey on fat points in \mathbb{P}^2, Queens Papers in Pure and Applied Mathematics 123 (2002), 85-132.
[8] B. Harbourne, Free resolutions of fat point ideals on \mathbb{P}^2, J. Pure Appl. Algebra 125 (1998), 213–234.
[9] R. Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics, vol. 52, Springer-Verlag, Berlin-Heidelberg-New York, 1977.
[10] C. Irving, Wachspress Varieties, Thesis, Texas A&M, 2012.
[11] J. Herzog, Finite free resolutions, in “Computational commutative and non-commutative algebraic geometry” Comput. Syst. Sci. 196, (2005), 118–144.
[12] E. Miller, B Sturmfels, Combinatorial commutative algebra, Graduate Texts in Mathematics, vol. 227, Springer-Verlag, Berlin-Heidelberg-New York, 2005.
[13] H. Schenck, Computational algebraic geometry, Cambridge University Press, 2003.
[14] A. Möbius, Der barycentrische Calcul, Verlag von Johann Ambrosius Barth, Leipzig, 1827.
[15] E. Wachspress, A rational finite element basis, Academic Press, 1975.
[16] J. Warren, Barycentric coordinates for convex polytopes, Adv. Comp. Math 6, (1996) 97–108.
[17] J. Warren, On the uniqueness of barycentric coordinates, in “Topics in algebraic geometry and geometric modeling: Workshop on Algebraic Geometry and Geometric Modeling”, AMS Contemporary Mathematics 334, (2003) 93–99.
[18] G. Ziegler, Lectures on polytopes, Graduate Texts in Mathematics, vol. 152, Springer-Verlag, Berlin-Heidelberg-New York, 1995.