Mutations in TRAF3IP1/IFT54 reveal a new role for IFT proteins in microtubule stabilization

Albane A. Bizet1,2, Anita Becker-Heck3, Rebecca Ryan1,2, Kristina Weber4, Emilie Filhol1,2, Pauline Krug1,2, Jan Halbritter5,6, Marion Delous1,2, Marie-Christine Lasbennes3, Bolan Linghu7, Edward J. Oakeley3, Mohammed Zarhrate2,8, Patrick Nitschke2,9, Meriem Garfa-Traore10, Fabrizio Serluca7, Fan Yang7, Tewis Bouwmeester3, Lucile Pinson11, Elisabeth Cassuto12, Philippe Dubot13, Neveen A. Soliman Elshakhs14, José A. Sahel15,16, Rémi Salomon1,2,17, Iain A. Drummond18,19, Marie-Claire Gubler1,2,20, Salahdine Chibout3, Joseph D. Szustakowski7, Friedhelm Hildebrandt5, Esben Lorentzen4, Andreas W. Sailer3, Alexandre Benmerah1,2,*, Pierre Saint-Mezard3,*, & Sophie Saunier1,2, *

Ciliopathies are a large group of clinically and genetically heterogeneous disorders caused by defects in primary cilia. Here we identified mutations in TRAF3IP1 (TNF Receptor-Associated Factor Interacting Protein 1) in eight patients from five families with nephronophthisis (NPH) and retinal degeneration, two of the most common manifestations of ciliopathies. TRAF3IP1 encodes IFT54, a subunit of the IFT-B complex required for ciliogenesis. The identified mutations result in mild ciliary defects in patients but also reveal an unexpected role of IFT54 as a negative regulator of microtubule stability via MAP4 (microtubule-associated protein 4). Microtubule defects are associated with altered epithelialization/polarity in renal cells and with pronephric cysts and microphthalmia in zebrafish embryos. Our findings highlight the regulation of cytoplasmic microtubule dynamics as a role of the IFT54 protein beyond the cilium, contributing to the development of NPH-related ciliopathies.

1 Inserm UMR-1163, Laboratory of Hereditary Kidney Diseases, 75015 Paris, France. 2 Paris Descartes Sorbonne Paris Cité University, Imagine Institute, 75015 Paris, France. 3 Novartis Institutes for Biomedical Research, Basel CH-4002, Switzerland. 4 Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, 82152 Martinsried, Germany. 5 Division of Nephrology, Department of Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA. 6 Division of Nephrology, Department of Internal Medicine, University Clinic Leipzig, 04103 Leipzig, Germany. 7 Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139, USA. 8 Inserm UMR-1163, Genomic Core facility, 75015 Paris, France. 9 Paris Descartes Sorbonne Paris Cité University, Bioinformatics Core Facility, 75015 Paris, France. 10 Cell Imaging Platform, INSERM US24 Structure Fédérative de recherche Necker, Paris Descartes Sorbonne Paris Cité University, 75015 Paris, France. 11 Department of Medical Genetic, Arnaud de Villeneuve University Health Center, 34090 Montpellier, France. 12 Nephrology department, L’Arche de l’Héritage, Nice University Health Center, 06202 Nice, France. 13 Hemodialysis-Nephrology Department, William Morey Hospital, 71321 Chalon-sur-Saône, France. 14 Department of Pediatrics, Center of Pediatric Nephrology and Transplantation, Cairo University, Egyptian Group for Orphan Renal Diseases, 11956 Cairo, Egypt. 15 INSERM U968, CNRS UMR 7210; Sorbonne Universités, Université Pierre et Marie Curie, UMR 5698, Institut de la vision, 75012 Paris, France. 16 Centre Hospitalier National d’Ophthalmologie des Quinze-Vingts, INSERM, Direction de l’Hospitalisation et de l’Organisation des Soins, Centre d’Investigation Clinique 1423, 75012 Paris, France. 17 Assistance Publique—Hôpitaux de Paris, Pediatric Nephrologic department, Necker-Enfants Malades Hospital, 75015 Paris, France. 18 Nephrology Division, Massachusetts General Hospital, Charlestown, Massachusetts 02114, USA. 19 Department of Genetics, Harvard Medical School, Boston, Massachusetts 02114, USA. 20 Assistance Publique-Hôpitaux de Paris, Department of Genetics, Necker-Enfants Malades Hospital, 75015 Paris, France. * These authors contributed equally to this work. Correspondence and requests for materials should be addressed to P.-S.-M. (email: pierre.saint-mezard@novartis.com) or to S.S. (email: sophie.saunder@inserm.fr).

DOI: 10.1038/ncomms9666
Nephronphthisis (NPH) is an autosomal-recessive nephropathy characterized by massive interstitial fibrosis, tubular basement membrane thickening and cyst formation, leading to end-stage renal disease (ESRD) during childhood. NPH is a major manifestation of ciliopathies, a large group of diseases caused by dysfunction of the primary cilium. The cilium is a microtubule-based organelle present at the surface of almost all vertebrate cells, which senses flow changes and mediates signalling pathways essential during development and tissue homeostasis, such as Hedgehog, Wnt/PCP and cAMP/PKA signalling. Intraflagellar transport (IFT) selects cargos at the base of the cilium and transports axonemal components required for cilia assembly, and proteins involved in ciliary signalling. The IFT-B complex, which consists of 16 different proteins, mediates anterograde transport by associating with kinesin II and has been shown to be essential for cilium formation. Retrograde transport is mediated by dynein 2 and the 6 subunits of the IFT-A complex, however, inactivation of most IFT-A subunits does not lead to major defects in ciliogenesis.

NPH and associated syndromes are clinically and genetically heterogeneous diseases. To date, NPH-causing mutations have been identified in more than 20 genes (NPHP1–19; IFT140), accounting for about 50% of all cases presenting with NPH. Most of the NPHP-encoded proteins participate in cilary function, either at the transition zone or as components of the IFT complex. All 6 IFT-A subunit encoding genes are frequently mutated in syndromic NPH, whereas mutations in only one IFT-B encoding gene, IFT172, have been detected so far.

TRA3IP1 encodes the IFT-B subunit, IFT54, and its inactivation is embryonic lethal and causes characteristic ciliopathy phenotypes, including neural developmental defects, polydactyly and microphthalmia in mice, and curved body axis, pronephric cysts and retinal degeneration in the *elipsa* zebrafish mutant.

Our study demonstrates that hypomorphic mutations in the IFT-B protein IFT54 cause NPH with extrarenal defects. We linked these mutations with mechanistic features previously reported for other ciliopathies, including decreased ciliary cAMP signalling, hyperacetylation of cytoplasmic microtubules and defects in the establishment of cell junctions and polarity. Most importantly, this work describes an extra-ciliary role of the IFT54 protein in the regulation of cytoplasmic microtubule dynamics by modulating expression of MAP4. These data highlight a putative new mechanism responsible for NPH and associated phenotypes.

Results

Identification of TRA3IP1 mutations in NPH patients. Linkage analysis combined with whole-exome sequencing (WES) in parallel to targeted exome sequencing (ciliome) conducted in 1,427 individuals with NPH revealed mutations in TRA3IP1 in eight individuals from five unrelated families (Table 1 and Supplementary Tables 1 and 2). Three families carried three different homozygous missense mutations, whereas in one family, the affected individual NPH683–21 was compound heterozygous for a missense and a stop codon mutation (Table 1 and Supplementary Fig. 1a–d). Last, we identified a homozygous mutation in individual NPH1110-22 that creates a new donor splice site after exon 13, leading to a premature stop codon causing mRNA decay (Supplementary Figs 1e and 2a–d). All missense mutations were predicted to be damaging by Polyphen2, SIFT and/or PHRED2 (Table 1). Segregation of TRA3IP1 mutations with the disease was confirmed by Sanger sequencing in all families (Supplementary Fig. 1a–e).

All of these patients presented with tubulointerstitial nephritis characteristic of NPH (leading to ESRD between 3 and 16 years).

Microscopic analyses of kidney sections revealed massive interstitial fibrosis with inflammatory cell infiltration, atrophic tubules with thickening of the basement membrane, dedifferentiated tubules as well as dilatation of proximal tubules (Table 1, Fig. 1a–c). Consistent with Senior–Loken Syndrome, all patients with renal manifestation also developed early to late onset retinal dystrophy (between 2 months and 20 years) with infrequent occurrences of macular degeneration, nystagmus and strabismus (Table 1; Fig. 1d; Supplementary Fig. 3). Four patients also presented with liver defects (cholestatic, hepatic fibrosis or Caroli disease) and six with skeletal anomalies (polydactyly, small femoral heads; Table 1; Fig. 1e). Two patients from family NPH579 presented with clinical features of Bardet–Biedl Syndrome, i.e., developmental delay, retinal degeneration, polydactyly, obesity and hypogonadism (Table 1). These multi-systemic defects are reminiscent of mutations in the IFT172 gene, although certain features, namely the retinal, hepatic and skeletal defects, are also found with mutations in IFT-A genes.

The identified pathogenic mutations localize either at the beginning of the C-terminal coiled-coil domain, known to bind IFT20, another component of the IFT-B complex, or at the N-terminal domain, within the calponin homology (CH) domain, involved in tubulin binding (Fig. 1f). As most patients carried either two missense mutations, a missense mutation in association with a truncating mutation or an alternative splice mutation giving rise to partial mRNA decay, it is likely that the function of the protein is partly preserved. Indeed, the phenotypes observed in the patients bearing TRA3IP1 mutations somewhat reconcile the organ involvement of loss-of-function animal models, but the milder phenotypes observed suggest that the identified mutations are hypomorphic.

In vivo analysis of TRA3IP1 mutations in zebrafish. To confirm the pathogenicity of the identified TRA3IP1 mutations, we injected wild type (WT) and mutated mRNA into both *elipsa* mutant and *traf3ip1* morphant zebrafish embryos. While injection of WT mRNA resulted in a partial rescue of the mutant phenotypes, injection of mutated mRNA constructs mimicking the human mutations could not rescue the curved body axis, glomerular cysts, dilated pronephric tubules, oval eye shape and loss of photoreceptors and even led to an exacerbation of the ocular phenotype (Fig. 2a–f, Supplementary Fig. 4a–f). Notably, the most consistently severe phenotypes observed were those arising from injections with the construct mimicking the p.R155* (p.R154* in zebrafish), as could be expected for a truncating mutation (Fig. 2a–f, Supplementary Fig. 4a–f). These data further prove that mutations in TRA3IP1 are causal for NPH and retinal degeneration.

TRA3IP1 mutations result in ciliary localization defects. Having validated the damaging effects of the mutations in vivo, we next analysed their consequences on the localization of IFT54 within the cilia and on ciliogenesis. This study was conducted in several *in vitro* models, including patients’ fibroblasts and *Traf3ip1* knock-down (KD) mIMCD3 cells re-expressing either WT or mutant forms tagged with green fluorescent protein (GFP; Supplementary Fig. 5a,b).

GFP–IFT54–WT was found at the base and at the tip of cilia when transfected into fibroblasts and KD mIMCD3 cells (Fig. 3a, Supplementary Fig. 5c). This localization was confirmed using a commercial anti-IFT54 antibody that specifically recognizes the human form of IFT54 (Fig. 3a, Supplementary Fig. 5b). Next, we investigated the precise localization of IFT54 at the base of cilia. It has been shown previously that IFT54 docks to the transition...
Cep164 (Fig. 3b). In addition, it co-localized with IFT54 was present at the ciliary transition fibres/transition zone, fibres through its interaction with FBF1 (ref. 19). As expected, per se ciliogenesis Figs 4g and 5d). This suggests that the observed phenotype in embryos and mIMCD3-KD cells were partially rescued by re-

Moreover, in the cilia formed in patients’ fibroblasts, there was no obvious change in the localization of key ciliary proteins (IFT46, IFT140, Anks6 and Smoothened; Supplementary Fig. 6d–g), suggesting no general defect in ciliary composition and trafficking. However, we noticed a clear decrease of adenylyl cyclase III (ACIII) staining in cilia (Supplementary Fig. 7a,b). This defect in ACIII localization was associated with impaired translocation of PKA catalytic subunits from the cilium base to the cytoplasm on treatment with forskolin, an AC activator (Supplementary Fig. 7c,d). This result links IFT54 to the regulation of the cAMP/PKA pathway, as observed for mutations affecting IFT172 (ref. 11). Nevertheless, the mild ciliary structural defects associated with hypomorphic mutations of TRAF3IP1 seem insufficient to account for the large phenotypic spectrum of the patients and suggest that IFT54 may have an important extraciliary function.

N-terminal mutations of TRAF3IP1 impair binding to MAP4. To gain insight into the underlying mechanism responsible for the deleterious effects of TRAF3IP1 mutations, we studied the impact of these mutations on known IFT54 interacting partners. IFT54 forms a peripheral IFT-B sub-complex through the interaction of its C-terminal coiled-coil domain with IFT20 (ref. 20). In contrast to the two truncating alleles (p. R155* and p.MS25Mfs*3*), the missense mutations, including the C-terminal

Family	Patient	Ethnic origin	Nucleotide alteration	Deduced protein change	Exon	AA sequence conservation	Frequency in Exac	Parental consanguinity	PolyPhen2/ SIFT/ PHRED2	Renal Disease, ESRD at age (in years)	Extrarenal clinical features
NPH638	II-1	Mali	c.374T>C (het)	p.V125A	4	C. elegans	0	No CS	0.799/0/24.6	NPH, ESRD at 7	HF (7 years), RP (7 years)
NPH638	II-4	Portugal	c.1559T>G (hom)	p.MS20R	13	Orangutan	1/199 598	probable CS	0.216/0.01/24.9	NPH, ESRD at NA	Developmental delay, obesity, chronic bronchitis, mild ocular defects, polydactyly
NPH638	II-2	Italy	c.1575 + 6T>G (hom)	p.MS25Mfs*3	13	—	0	CS	1/0,01/26.2	NPH, ESRD at 15	Polydactyly, growth delay, RP with cone-rod dystrophy (20 years), HF (liver transplantation 20 years)
NPH302	II-3	Morocco	c.373G>A (hom)	p.V125M	4	C. elegans	0	CS	1/0,01/26.2	NPH, ESRD at 5	Microdactyly, growth delay, RP with cone-rod dystrophy (20 years), HF (liver transplantation 20 years)
NPH302	II-4	Morocco	c.373G>A (hom)	p.V125M	4	C. elegans	0	CS	1/0,01/26.2	NPH, ESRD at 5	Post-axial hexadactyly, strabismus, RP (before 6 years), cholestasis and hepatic cystosis
A4336	II-2	Egypt	c.51T>G (hom)	p.I17S	1	C. elegans	0	CS	1/0/79.2	NPH, ESRD at 7	Hexadactyly of the fingers and toes, nystagmus, RP (onset 2 months), Caroli disease (dilation of intra-hepatic bile ducts, perportal liver cirrhosis diagnosed at 28 months), CT-head: bilateral basal ganglia calcifications, global developmental delay with severe cognitive impairment

CS, Consanguineous; ESRD, end-stage renal disease; HF, hepatic fibrosis; hom, homozygous; het, heterozygous; NPH, nephronophthisis; RP, retinitis pigmentosa; NA, not available.
TRAF3IP1 mutations affect cytoplasmic microtubule dynamics. MAP4 is well known to bind to cytoplasmic microtubules and regulate their stability, so we analysed if TRAF3IP1 mutations could disturb MAP4 localization and expression. Unexpectedly, MAP4 staining was strongly increased along cytoplasmic microtubules in mutant cells (Supplementary Fig. 10a), which correlates with an overall enhanced protein expression (Fig. 5a,b). We thus investigated whether TRAF3IP1 mutations could affect cytoplasmic microtubule dynamics, by first assessing the level of acetylated α-tubulin, a marker of stable microtubules. Hyperacetylation of α-tubulin was observed in mutant fibroblasts (Fig. 5c), as well as in Traf3ip1-KD mIMCD3 cells, and was restored by re-expression of IFT54-WT but not by the mutant forms (Supplementary Fig. 11a). In patients’ kidney tubules, the increase in α-tubulin acetylation correlated with enhanced MAP4 levels (Fig. 5d), indicating that in vivo, tubular lesions are associated with microtubule stabilization. We then evaluated the impact of TRAF3IP1 mutations on the resistance of microtubules to cold treatment, which induces their depolymerization. Microtubules positive for MAP4 and resistant to cold treatment, which induces their depolymerization. Microtubules positive for MAP4 and resistant to cold treatment were detected in fibroblasts and mIMCD3 mutant cells (Fig. 5e, Supplementary Fig. 11b), consistent with increased microtubule stability. Finally, we examined the level of EB1 staining at the plus-tips of microtubules was drastically reduced in mutant fibroblasts (Supplementary Fig. 12a). Altogether, these results demonstrate that mutant cells display an abnormal stability of cytoplasmic microtubules that is linked to the increased expression of MAP4.

The majority of the identified mutations are present in the N-terminal CH-domain, previously shown to be involved in the interaction with α-tubulin and potentially other cargoes for IFT transport. Computational modelling of the N-terminal p.I17S and p.V125M substitutions predicted a disruption of two hydrophobic pockets of the CH domain (Fig. 4a). Consistently, introduction of the p.I17S or p.V125A/M mutations in this isolated CH-domain (1–133) generated insoluble (likely unfolded) recombinant proteins (Supplementary Fig. 8b–d). Moreover, circular dichroism and thermal denaturation experiments, using full-length IFT54 in complex with IFT20 (Supplementary Fig. 8e), indicated that the CH domain of the IFT54 mutants is not accurately folded at 37°C, likely affecting IFT54 binding to α-tubulin in vivo (Table 2). Indeed, IFT54 can be found along cytoplasmic microtubules and we observed that structural defects incurred by N-terminal mutations effectively impaired this localization (Supplementary Fig. 9). Altogether, these data indicate that the N-terminal mutations affect the stability of the CH domain of IFT54 and therefore inhibit its ability to bind to tubulin and/or other partners.

Among several previously identified candidate partners of IFT54 (ref. 18), we found that N-terminal mutations predominantly impaired the interaction with MAP4, while WT or the p.R155* mutant display normal interactions (Fig. 4b). MAP4 is the major MAP in non-neuronal cells that stabilizes cytoplasmic microtubules. MAP4 is also known to localize into primary cilia where it acts as a negative regulator of ciliary length, counteracting the function of septins. Consistently, we found that ciliary MAP4 staining was drastically reduced in patients’ fibroblasts (Fig. 4c,d) suggesting that loss of interaction between MAP4 and IFT54 in N-terminal mutants results in ciliary mislocalization. This result indicates that MAP4 could be a cargo of IFT54 for ciliary import.

p.M520R, had little or no impact on IFT20 binding, indicating that the IFT54–IFT20 sub-complex is preserved in most patients (Supplementary Fig. 8a).

The results demonstrate that mutant cells display an abnormal stability of cytoplasmic microtubules that is linked to the increased expression of MAP4.
To further confirm these observations, we studied the consequences of Traf3ip1 mutation on microtubule dynamics in vivo, using an EB3-GFP fusion construct as a reporter of plus-tip dynamics in elipsa mutant and WT zebrafish. Mutant embryos displayed a significantly lower speed of EB3 comets, confirming slower rates of microtubule polymerization compared to WT sibling.
Figure 3 | Mutations of TRAF3IP1 impair IFT54 ciliary trafficking. (a) Fibroblasts transfected with GFP-IFT54-WT were fixed with MeOH and stained for GFP (green), IFT54 (red) and acetylated α-tubulin (blue, cilia). The base and the tip of the cilia are indicated by arrowhead and asterisk respectively. Scale bar, 1 µm. (b) Traf3ip1-KD mIMCD3 cells stably expressing GFP-tagged IFT54 WT were fixed with 4% PFA and stained for Cep164 (distal appendages, red). Scale bar, 1 µm. (c) Ciliary distribution of IFT54 in serum-starved control and patients’ fibroblasts stained for IFT54 (red), acetylated α-tubulin (green, cilia) and the basal body marker γ-tubulin (blue). Scale bar, 1 µm. (d) Percentage of cilia with IFT54 at the distal tip of cilia (arrows in (c)), mean ± s.e.m. of n = 4 experiments (that is, ≥100 cilia), ***P < 0.001, Bonferroni’s multiple-comparison test. (e) Distribution of IFT54 at the basal body in ciliated fibroblasts stained for IFT54 (red) and for γ-tubulin (blue) and centrin (green), markers of proximal and distal parts of centrioles, respectively. A schematic representation of the orientation of the two centrioles, with the localization of the distal (DAP) and subdistal (sDAP) appendages is shown. Scale bar, 1 µm. (f) Intensity of IFT54 staining at the transition fibres/transition zone (TZ, arrows in (e)), mean ± s.e.m. of n = 3 experiments (that is, ≥50 cilia), ***P < 0.001, Dunn’s post-hoc test. (g) Fibroblasts from control or affected individuals were fixed and stained for ODF2 (red, subdistal appendages) and IFT54 (green) and analysed by STED microscopy. A schematic representation of the orientation of the analysed centrioles is shown. Arrows in g indicate the pool of IFT54 present at the distal tip of the mother centriole corresponding to the transition fibers/transition zone. Scale bars, 0.25 µm.
with heterozygous control siblings (Fig. 5g,h). Altogether, these data emphasize a novel role for IFT54 as a negative regulator of microtubule stability, likely through the regulation of MAP4.

Figure 4 | TRAF3IP1 mutations impair folding of the CH domain and interaction with MAP4. (a) Crystal structure of the CH domain of MmIFT54 (based on PDB entry 2EQO) showing that the I17 and V125 residues locate in conserved hydrophobic pockets (dotted line circles). The mutant residues S17, A125 and M125 were introduced (red) to show their effects on these hydrophobic pockets. (b) Lysates from HEK293T cells co-expressing Flag-tagged WT or mutant forms of MmIFT54 (p.K155*, p.I453R and p.M458Mfs3* correspond to the human mutations p.R155*, p.M520R and p.M525Mfs3*) and GFP-MAP4 were immunoprecipitated with an anti-GFP antibody. The co-immunoprecipitation of GFP-MAP4 and Flag-IFT54 constructs was followed by western blot (WB) using GFP and Flag antibodies. (c) Serum-starved fibroblasts were fixed in PFA to visualize ciliary MAP4 (red; acetylated α-tubulin, green). Scale bar, 2 μm. (d) Intensity of ciliary MAP4 staining (mean ± s.e.m. of n = 5 experiments (that is ≈150 cilia, *P < 0.05, ***P < 0.001, Dunn’s post-hoc test).

Table 2 | TRAF3IP1 N-terminal mutations result in lower stability of the IFT54/IFT20 complex.

Sample	Secondary structure determination	Thermal unfolding				
	α (%)	β (%)	Turn (%)	Unstructured (%)	Melting temperature TM (°C, ± s.d.)	
CrIFT54-WT/	CrIFT20	46	9	16	29	51.15 ± 0.400
CrIFT54-V126A/	CrIFT20	39	11	19	31	48.75 ± 0.061
CrIFT54-V126M/	CrIFT20	35	16	18	31	48.15 ± 0.106
CrIFT20	71	1	6	22	41.62 ± 0.146	

Secondary structure determination and thermal unfolding using circular dichroism spectroscopy for WT as well as p.V126A and p.V126M mutants of CrIFT54 (corresponding to the human p.V125A and p.V125M mutations) in complex with CrIFT20.
appeared disorganized in polarized Traf3ip1-KD mIMCD3 cells, and was restored by re-expression of IFT54-WT but not by IFT54 mutants (Supplementary Fig. 11c). The reformation of tight junctions and cell polarity were assessed by trans-epithelial resistance (TER) measurement following Ca$^{2+}$ switch (Fig. 6a–d). Traf3ip1-KD cells presented a decreased TER and reduced β-catenin localization at cell junctions, both of which were partially rescued by re-expression of WT and the p.V125M mutant but not by the p.R155* or p.M520R mutants (Fig. 6a,b). In addition, Traf3ip1-KD cells and all cells re-expressing IFT54-mutant proteins appeared flatter than controls and displayed decreased expression of the apical marker Gp135 (Fig. 6a,c,d). These results suggest that IFT54 mutant proteins may perturb the establishment of cell junctions and/or the targeting of apical proteins during epithelialization, as we previously reported for NPHP1 and NPHP4 (ref. 30).

To further study epithelialization and polarity processes, we used a well-established three-dimensional (3D) spheroid culture system that reflects the biology of kidney tubular epithelial cells. When cultured in matrigel, mIMCD3 control cells formed single-lumen spheroids, whereas Traf3ip1-KD cells formed abnormal structures with small lumens filled with dividing cells and/or surrounding misarranged nuclei, with markedly altered expression of the tight-junction component ZO1 (Fig. 6e,f). Normal lumen formation and ZO1 localization were restored by re-expression of IFT54-WT but not by any of the IFT54 mutant

Figure 5 | Mutations of TRAF3IP1 increase MAP4 expression, causing cytoplasmic microtubule stabilization. (a) Expression of MAP4 and GAPDH in control and patients’ fibroblasts were analysed by WB. (b) Relative expression of MAP4 normalized to that of GAPDH (mean ± s.e.m. of n = 5 experiments, *P < 0.05, Dunn’s post-hoc test). (c) Fibroblasts were stained for acetylated α-tubulin (green). Scale bar, 10 μm. (d) Kidney biopsies from control and NPH638-21 and NPH302-23 affected individuals were stained for MAP4 (red), acetylated α-tubulin (green) and with peanut agglutinin (PNA, light blue, distal tubules). Scale bar, 25 μm. (e) Fibroblasts treated for 10 min on ice (to depolymerize the microtubules) were fixed with MeOH (to visualize MAP4 on microtubules) and stained for α-tubulin (green), γ-tubulin (light blue) and MAP4 (red). Scale bar, 10 μm. (f) Fibroblasts were stained for α-tubulin (green) and the microtubule plus-tip associated protein EB1 (red). Scale bar, 2 μm. (g) WT and elipsa embryos were injected with EB3-GFP to follow the dynamics of the growing ends of microtubules which were analysed by time lapse confocal microscopy and Imaris tracking software. Pseudo colours were used to visualize the speed of EB3 comets (from blue (slow) to red (fast)). (h) Track speed analysis of EB3-GFP comets in WT and elipsa embryos (n = 6, mean ± s.d., ***P < 0.001, t-test).
proteins (Fig. 6e,f). These results demonstrate that in addition to its known function in ciliogenesis, IFT54 plays a key role in the early steps of epithelial morphogenesis, a process independent of cilia13.

Decreased MAP4 expression rescues TRAF3IP1 mutation defects. Our data suggest that the epithelialization defects associated with \textit{TRAF3IP1} mutations are mediated by the observed attendant increase in cytoplasmic MAP4 expression and microtubule stability. To validate this hypothesis, we first studied the consequences of overexpression of MAP4. A stable cell line overexpressing MAP4 displayed microtubule hyperacetylation and defects in cell-polarity establishment, associated with a loss of the apical marker Gp135 and of β-catenin at the cell junctions (Supplementary Fig. 12b–d). Finally, MAP4 overexpressing cells formed abnormal 3D structures with no lumens (Supplementary Fig. 12e). Thus, increased levels of MAP4 expression recapitulates the epithelialization and polarity defects observed in \textit{Traf3ip1}-mutant cells.

To provide further evidence that \textit{Traf3ip1}-related defects were mediated by MAP4, \textit{map4} was knocked down in zebrafish embryos or WT siblings (Fig. 7a,b). Therefore, our results indicate that the \textit{elps}a phenotype is partially induced through dysregulation of MAP4 expression.

We next inactivated \textit{Map4} by shRNA in mLMCD3 \textit{Traf3ip1}-KD cells (Fig. 7c). The decreased expression of MAP4 in \textit{Traf3ip1}-KD cells and in cells re-expressing the mutants reduced microtubule acetylation to a level similar to that of control cells (Fig. 7d). In addition, knocking down \textit{Map4} rescued Gp135 expression in both \textit{Traf3ip1}-KD cells and in cells re-expressing the mutants (Fig. 7e). Finally, \textit{Map4}-KD partially restored the formation of normal spheroids in \textit{Traf3ip1}-KD cells, and in cells re-expressing the mutant forms of IFT54 (Fig. 7f). Overall these results show that normalization of MAP4 overexpression can rescue to a large extent the cellular phenotype observed in \textit{Traf3ip1}-KD cells. It is noteworthy that depletion of MAP4 in control cells caused abnormal sphere formation similar to that seen when overexpressing MAP4 and mirroring our observations in WT zebrafish. This suggests that precise regulation of MAP4 expression level is essential for correct epithelialization of kidney collecting duct cells.

Altogether, these results demonstrate that \textit{TRAF3IP1} mutations lead to abnormal microtubule dynamics and altered cell polarity, via defective regulation of MAP4.

Discussion

In this work, we have identified mutations of \textit{TRAF3IP1} as a cause of NPH and retinal degeneration, associated with liver fibrosis, skeletal abnormalities and obesity. We thus propose NPHP20 as an alias for \textit{TRAF3IP1}. Of the sixteen IFT-B components, IFT54 is only the fourth component demonstrated to be causative of human ciliopathies. Previous loss-of-function studies have also shown the importance of this anterograde IFT subunit, as loss of \textit{Traf3ip1} is embryonic lethal with attendant neural, skeletal and ocular defects in mice, and loss of cilia, retinal degeneration, body axis curvature and pronephric cysts in \textit{elps}a mutant zebrafish11–13.

Although IFT54 has been shown to be required for ciliogenesis, the patients’ mutations identified in this study do not impair cilia formation. This is indicative of a hypomorphic effect of these mutations, that may explain the milder phenotype observed in patients compared with loss-of-function animal models. Analysis of ciliary composition from mutant fibroblasts did not reveal major defects, except for ACIII, which was strongly decreased and associated with a defective cAMP/PKA pathway. Defective cAMP/PKA signalling is a common feature of mutations in IFT genes10,32 and provides a potential explanation for the obesity observed in patients, a characteristic of an ACIII-deficient murine model13. It could also explain the increased cilia length observed in patient fibroblasts, as the ACIII-cAMP pathway has been linked to cilia length regulation34.

Because of this relatively mild phenotype, we investigated additional potential cargoes of IFT54 that could be affected by the identified hypomorphic mutations. After screening a large number of candidates from literature, we demonstrated that N-terminal mutations of \textit{TRAF3IP1} abrogate the interaction with MAP4 and suppress its ciliary entry, suggesting MAP4 as a cargo for IFT54. Since we have previously described MAP4 as a negative regulator of ciliogenesis28, the decreased ciliary expression of MAP4 may also be linked to the increased cilia length observed in patients’ fibroblasts.

Most surprisingly, although the level of ciliary MAP4 protein is decreased, we observed a strong increase in MAP4 staining along cytoplasmic microtubules coupled with an overall increase in protein expression. Thus it seems that IFT54 negatively regulates MAP4 protein levels and may inhibit recruitment of MAP4 to the microtubules, a process known to induce microtubule stabilization24. Indeed, in both our \textit{in vivo} and \textit{in vitro} models, we observed that mutations in \textit{TRAF3IP1} result in increased stabilization of microtubules. These defects in microtubule dynamics were associated with loss of apico-basal polarity in epithelialized kidney cells. Importantly, overexpression of MAP4 reproduces similar cellular defects while knock-down of \textit{Map4} rescues \textit{TRAF3IP1} mutations for most of the cellular phenotypes observed, demonstrating that IFT54 plays a role outside the cilia, by modulating MAP4 levels and thereby regulating cytoplasmic microtubule dynamics and cell polarity establishment/maintenance (Supplementary Fig. 13).

Although it is likely that IFT54 modulates MAP4 degradation, the exact mechanism by which IFT54 regulates MAP4 remains to be determined. As demonstrated for Septins23, it is possible that IFT54 competes with MAP4 for binding to the microtubules. Indeed, the association between the CH domain of IFT54 and MAP4 could be indirect through microtubules. Thus, N-terminal mutants of IFT54, which may have lower affinity for tubulin (as indicated by their impaired localization to microtubules and their unfolded CH domain), would increase the number of available binding sites for MAP4 on microtubules. As a consequence, MAP4 may be stabilized when bound to microtubules, promoting its accumulation. On the other hand, the p.M520R mutant still associates with microtubules and with MAP4. However, introduction of this mutation leads to increased MAP4 levels, suggesting the C-terminal domain of IFT54 for most of the cellular phenotypes observed, demonstrating that IFT54 plays a role outside the cilia, by modulating MAP4 levels and thereby regulating cytoplasmic microtubule dynamics and cell polarity establishment/maintenance (Supplementary Fig. 13).

Although it is likely that IFT54 modulates MAP4 degradation, the exact mechanism by which IFT54 regulates MAP4 remains to be determined. As demonstrated for Septins23, it is possible that IFT54 competes with MAP4 for binding to the microtubules. Indeed, the association between the CH domain of IFT54 and MAP4 could be indirect through microtubules. Thus, N-terminal mutants of IFT54, which may have lower affinity for tubulin (as indicated by their impaired localization to microtubules and their unfolded CH domain), would increase the number of available binding sites for MAP4 on microtubules. As a consequence, MAP4 may be stabilized when bound to microtubules, promoting its accumulation. On the other hand, the p.M520R mutant still associates with microtubules and with MAP4. However, introduction of this mutation leads to increased MAP4 levels, suggesting the C-terminal domain of IFT54 for most of the cellular phenotypes observed, demonstrating that IFT54 plays a role outside the cilia, by modulating MAP4 levels and thereby regulating cytoplasmic microtubule dynamics and cell polarity establishment/maintenance (Supplementary Fig. 13).

Although it is likely that IFT54 modulates MAP4 degradation, the exact mechanism by which IFT54 regulates MAP4 remains to be determined. As demonstrated for Septins23, it is possible that IFT54 competes with MAP4 for binding to the microtubules. Indeed, the association between the CH domain of IFT54 and MAP4 could be indirect through microtubules. Thus, N-terminal mutants of IFT54, which may have lower affinity for tubulin (as indicated by their impaired localization to microtubules and their unfolded CH domain), would increase the number of available binding sites for MAP4 on microtubules. As a consequence, MAP4 may be stabilized when bound to microtubules, promoting its accumulation. On the other hand, the p.M520R mutant still associates with microtubules and with MAP4. However, introduction of this mutation leads to increased MAP4 levels, suggesting the C-terminal domain of IFT54 for most of the cellular phenotypes observed, demonstrating that IFT54 plays a role outside the cilia, by modulating MAP4 levels and thereby regulating cytoplasmic microtubule dynamics and cell polarity establishment/maintenance (Supplementary Fig. 13).

Although it is likely that IFT54 modulates MAP4 degradation, the exact mechanism by which IFT54 regulates MAP4 remains to be determined. As demonstrated for Septins23, it is possible that IFT54 competes with MAP4 for binding to the microtubules. Indeed, the association between the CH domain of IFT54 and MAP4 could be indirect through microtubules. Thus, N-terminal mutants of IFT54, which may have lower affinity for tubulin (as indicated by their impaired localization to microtubules and their unfolded CH domain), would increase the number of available binding sites for MAP4 on microtubules. As a consequence, MAP4 may be stabilized when bound to microtubules, promoting its accumulation. On the other hand, the p.M520R mutant still associates with microtubules and with MAP4. However, introduction of this mutation leads to increased MAP4 levels, suggesting the C-terminal domain of IFT54 for most of the cellular phenotypes observed, demonstrating that IFT54 plays a role outside the cilia, by modulating MAP4 levels and thereby regulating cytoplasmic microtubule dynamics and cell polarity establishment/maintenance (Supplementary Fig. 13).

Although it is likely that IFT54 modulates MAP4 degradation, the exact mechanism by which IFT54 regulates MAP4 remains to be determined. As demonstrated for Septins23, it is possible that IFT54 competes with MAP4 for binding to the microtubules. Indeed, the association between the CH domain of IFT54 and MAP4 could be indirect through microtubules. Thus, N-terminal mutants of IFT54, which may have lower affinity for tubulin (as indicated by their impaired localization to microtubules and their unfolded CH domain), would increase the number of available binding sites for MAP4 on microtubules. As a consequence, MAP4 may be stabilized when bound to microtubules, promoting its accumulation. On the other hand, the p.M520R mutant still associates with microtubules and with MAP4. However, introduction of this mutation leads to increased MAP4 levels, suggesting the C-terminal domain of IFT54 for most of the cellular phenotypes observed, demonstrating that IFT54 plays a role outside the cilia, by modulating MAP4 levels and thereby regulating cytoplasmic microtubule dynamics and cell polarity establishment/maintenance (Supplementary Fig. 13).
in the transport of membrane and junction proteins along the microtubule network, with TRAF3IP1 mutations resulting in mistargeting of Gp135 and β-catenin. The subsequent defect in polarity establishment may lead to loss of differentiation and progressive degeneration of the epithelium, thus explaining the tubulo-interstitial lesions observed in NPH, the retinal

![Figure 6](image-url)
degeneration and the development of hepatic fibrosis, common progressive features of the so-called ‘ciliopathies’.

In the course of this study, we observed that decreased MAP4 expression is deleterious for lumen formation in 3D-cultured control cells and is fatal to WT zebrafish embryos, whereas it appears to have a partial rescue effect on Traf3ip1-KD cells and elipsa mutants. In humans, MAP4 loss-of-function mutations have recently been associated with Seckel syndrome (microcephaly at birth, dwarfism, brachydactyly or cone-shaped epiphyses)37. Conversely, we showed that overexpression of MAP4 results in similar epithelialization phenotypes to those observed in TRAF3IP1 mutant cells indicating that TRAF3IP1-dependent increase of MAP4 expression results in NPH, retinal degeneration and hepatic fibrosis. Therefore, fine regulation of MAP4 appears to be essential for proper tissue homeostasis.

Figure 7 | Defects in TRAF3IP1 mutants are mediated by MAP4. (a) Lateral views of WT zebrafish embryos injected with map4 morpholino at 48 hpf and phenotype distribution in WT embryos injected with control or map4 morpholino. (b) Lateral views of elipsa zebrafish embryos injected with map4 morpholino at 48 hpf and phenotype distribution in elipsa mutant embryos injected with control or map4 morpholino (data shown as combined result of n = 3 independent experiments). Scale bars, 1 mm. (c) Relative expression of Map4 normalized to that of Hprt was analysed by qPCR in control and Traf3ip1-KD mIMCD3 cells stably expressing GFP or GFP-IFT54 mutants and Map4 shRNA. (d) Control and Traf3ip1-KD/ Map4-KD mIMCD3 cells expressing either GFP or IFT54-GFP fusions were fixed in MeOH and stained for acetylated α-tubulin (red) and γ-tubulin (light blue). Scale bar, 10 μm. (e) Six hours after Ca²⁺ switch, mIMCD3 cells grown until confluence on filters were fixed with 4% PFA and stained for the apical marker Gp135 (red). Scale bar, 10 μm. (f) Percentage of normal spheroids of control and Traf3ip1-KD/ Map4-KD mIMCD3 cells expressing either GFP or IFT54-GFP fusions grown on Matrigel for 5 days (mean ± s.d., n ≥ 100 spheroids from 3 independent experiments, ***P ≤ 0.0001, *P < 0.012, Bonferroni’s multiple-comparison test).
Taken together, our data highlight two not mutually exclusive functions of IFT54: first, as a regulator of ciliatory composition; and second, as a negative regulator of cytoplasmic microtubule stability via MAP4. Since other NPHPs have been reported to localize along the cytoplasmic microtubule network, and hyperacetylation remains an unexplained observation in several ciliopathy models, defective regulation of microtubule dynamics may be a general pathophysiological mechanism leading to diverse degenerative organ lesions, in particular NPH. Further investigation is needed to establish whether NPHPs share a common aetiology linked to MAP4 and ciliary cAMP signalling as described in our study. Such understanding could provide a new perspective for potential therapeutics for ciliopathies.

Methods

Patients and families. Written informed consent was obtained for all individuals enrolled in this study and approved by the Institutional Review boards at the University of Paris Descartes and at the University of Michigan.

Homozygosity mapping, exome sequencing and mutation calling. Homozygosity mapping in families NPH302 and A4336 was performed using ‘Human Mapping 250k NspI’ array and parametric logarithm of odds scores were calculated with MERLIN software for NPH302, and GENEHUNTER 2.1 (ref. 44) for A4336, assuming dominant-inherited inheritance. WES in patients A4336-22 and NPH302-23 were performed as in brief. genomic DNA was isolated from blood lymphocytes and subjected to exome capture using Agilent SureSelect human exome capture arrays (Life Technologies) followed by next generation sequencing on the Illumina sequencing platform. Ciliary exome-targeted sequencing was conducted in NPH579-22, NPH363-21 and NPH1110-22, using a custom SureSelect capture kit (Agilent Technologies) targeting 4.5 Mb of 20,168 exons (1211 ciliary candidate genes), including homozygosity mapping, exome sequencing and mutation calling. University of Paris Descartes and at the University of Michigan. enrolled in this study and approved by the Institutional Review boards at the University of Paris Descartes and at the University of Michigan.

Circular dichroism spectroscopy. Secondary structure content was analysed on a Jasco J-715 spectropolarimeter at 4 °C using 0.1 mg ml⁻¹ of recombinant purified proteins in a 0.1-cm quartz cuvette. The measurements were performed in 10 mM HEPS 7.5, 100 mM NaCl 10% glycerol and 5 mM DTT. Data were obtained and processed using the Spectra Manager v2.06 software from Jasco. The measured curves were buffer corrected and secondary structure assignments were done using the DSSP fitting method and the SMP56 as the reference protein sequence. The resulting curves were measured continuously from 10 °C to 90 °C, with additional full spectra taken in 10 °C steps. Data analysis was performed in Spectra Manager v2.06.

Zebrafish strains and morpholinos. Adult zebrafish were maintained at 28 °C in system with a conductivity of 500 μS and a pH of 7. Embryos were cultured at 28 °C in embryo medium with 0.1% w/v methylene blue. The *elipsa* *tpβδ* morpholino, which encodes a premature stop codon at position 195 (previously described) was obtained as a gift from J. Malicki. Heterozygous sibling embryos were used as controls for all experiments using the *elipsa* mutant line. An auto-fluorophore targeting *traf3ip1* (previously published) was used for knock-down experiments. Knock-down of *map4* was performed using an ATG-specific shRNA sequence and selected by reverse transcription PCR (RT-PCR). Site-directed mutagenesis was then used to introduce mutations at the desired locations. The resulting products were then cloned into the pCGM-T Easy vector and constructs were linearized and transcribed using the SP6/T7 mMessage mMachine kit (Ambion). Approximately 100 pg of mRNA was injected into embryos at the 1-cell stage.

Effects of RNA injections (WT and mutated RNAs) were evaluated based on severity of body curvature, analysis of pronuclear cilia, presence or absence of pronuclear cysts and surface area of the retina. Body curvature was quantified by measuring the internal angle of each larva using ImageJ software. Larvae were classified as follows: severe (0–60°); moderate (60–90°); mild (90–120°); and normal (over 120°). Live embryos and larvae were photographed using a Leica M165FC microscope and camera. For histological analysis, larvae were fixed in 4% paraformaldehyde (PFA, Electron Microscopy Sciences), embedded in paraffin and sectioned at 5 μm. Sections were stained with haematoxylin and eosin (H&E) and photographed with a Nikon DXM1200F camera and an Olympus BX41 microscope.

Plasmids and establishment of stable cell lines. *Mm*Flag-*traf3ip1* was a gift from G. Pazour. Human cDNA of *TRAf3ip1 (Invitrogen)* was cloned into the pCXN-DEST40 vector. The mutations were created using the QuickChange site-directed mutagenesis kit according to the manufacturers protocol (Stratagene).

For gene silencing of *traf3ip1*, the shRNA sequences described in Supplementary Table 3 were cloned into the lentiviral plKO1 vector that contained a cassette conferring puromycin resistance. mLCM3 (from ATCC) were transduced with non-targeted (shNTC) or Traf3ip1-specific shRNA sequences and selected by
adding puromycin (Sigma, 2 μg·ml⁻¹) to the culture medium (DMEM/F12/1:1) with GlutaMax medium containing 10% fetal bovine serum (FBS), 100 U·ml⁻¹ penicillin and 100 μg·ml⁻¹ streptomycin (all from Life Technologies). For rescue experiments, shNTC and shTraf3ip1 (shRNA #461) miMC3D cells were transfected with pDEST-40-GFP-TRAF3IP1-WT or mutant plasmids using Amaxa Cell Line Nucleofector (Solution V, program O17, Lonza)®, sorted by FACS and selected with 0.35 mg/ml G418 (Life Technologies). shNTC and Traf3ip1-KD cells were then deconvoluted using Huygens software. Ciliogenesis analyses were performed on a CV7000 confocal microscope from YOKOGAWA with images acquired using a LEICA SP8 gSTED microscope, equipped with a laser power) and all measurements of fluorescence intensity were performed on CellProfiler software®. In brief, nuclei were detected as primary objects using Otsu-thresholding and identified as nuclear puncta. Cilia frequency was calculated by dividing cilia and nuclei counts. All data points are performed in duplicate with four fields acquired per experiment. Statistical analyses were performed with the GraphPad Prism software by using ANOVA followed by Bonferonni's or Dunnett's multiple-comparison tests. P<0.05 was considered statistically significant.

References
1. Salomon, R., Saunier, S. & Niaudet, P. Nephronophthisis. Pediatr. Nephrol. 24, 2333–2344 (2009).
2. Tobin, J. L. & Beales, P. L. The nonmotile ciliopathies. Genet. Med. 11, 386–402 (2009).
3. Ishikawa, H. & Marshall, W. F. Ciliogenesis: building the cell's antenna. Nat. Rev. Mol. Cell Biol. 12, 222–234 (2011).
4. Richey, E. A. & Qin, H. Dissecting the sequential assembly and localization of intraglellar transport particle complex B in Chlamydomonas. PLoS ONE 7, e43118 (2012).
5. Taschner, M., Bhogaraju, S. & Lorenzo, E. Architecture and function of IFT complex proteins in ciliogenesis. Differentiation 83, S12–S22 (2012).
6. Perrault, I. et al. Mainzer-Saldino syndrome is a ciliopathy caused by IFIT40 mutations. Am. J. Hum. Genet. 90, 864–870 (2007).
7. Schueler, M. et al. DCD2 mutations cause a renal-hepatic ciliopathy by disrupting wt1 signalling. Am. J. Hum. Genet. 96, 81–92 (2015).
8. Wolf, M. T. F. Traf3ip1 and related syndromes. Curr. Opin. Pediatr. 27, 201–211 (2015).
9. Delous, M., Gaudé, H. M. & Saunier, S. Genetic bases and pathogenic mechanisms of nephropathies. Drug Discov. Today 10, e143–e151 (2013).
10. Halbritter, J. et al. Defects in the IFT-B component IFT72 cause Jeune and Mainzer-Saldino syndromes in humans. Am. J. Hum. Genet. 93, 915–925 (2013).
11. Berbari, N. F. et al. Mutations in Traf3ip1 reveal defects in ciliogenesis, embryonic development, and altered cell size regulation. Dev. Biol. 360, 66–76 (2011).
12. Doerre, G. & Malicki, J. Genetic analysis of photoreceptor cell development in the zebrafish retina. Mech. Dev. 110, 125–138 (2002).
13. Omori, Y. et al. elfips is an early determinant of ciliogenesis that links the IFT particle to membrane-associated small GTPase Rab8. Nat. Cell Biol. 10, 437–444 (2008).
30. Delous, M.
14. Failler, M.
ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms9666
15. Bujakowska, K. M.
17. Davis, E. E.
18. Guo, C. W.
16. Bredrup, C.
23. Kremer, B. E., Haystead, T. & Macara, I. G. Mammalian Septins Regulate
21. Ling, L. & Goeddel, D. V. MIP-T3, a novel protein linking tumor necrosis
24. Ebneth, A., Drewes, G., Mandelkow, E. & Mandelkow, E. Phosphorylation of
25. Ghossoub, R.
34. Ou, Y.
33. Wang, Z.
28. Cohen, D., Brennwald, P. J., Rodriguez-Boulan, E. & Musch, A. Mammalian
27. Jiang, K. & Akhmanova, A. Microtubule tip-interacting proteins: a view from
29. Goldspink, D. A.
41. Mollet, G.
43. Abecasis, G. R., Cherny, S. S., Cookson, W. O. & Cardon, L. R. Merlin-rapid
Am. J. Hum. Genet.

Mutations of CEP83 cause infantile nephronophthisis and
Hedgehog signaling and microtubule dynamics.
87–97 (2014).
700, 1700–1710 (2004).
47. Boyden, L. M. et al. Mutations in Kelch-like 3 and Cullin 3 cause hypertension
and electrolyte abnormalities.
915–924 (2007).
25, 2802–2817 (2009).
44, 12662–12667 (2011).
15, 1700–1710 (2004).
97–101 (2002).
1945–1957 (2000).
66, 457–468 (2009).
275, 454–569 (2005).
4648–4659 (2005).
1591–1608 (2003).
372–378 (2012).
66, 89–97 (2004).
2337–2347 (2010).
3, 4492–4500 (2013).
77, 121–130 (2013).
127, 17–1180 (2011).
98–102 (2012).

14. Strauch, K. et al. Parametric and nonparametric multistep linkage analysis
with imprinting and two-locus-trait models: application to mite sensitization.
Am. J. Hum. Genet. 66, 517–528 (2000).

44. Strauch, K. et al. Parametric and nonparametric multistep linkage analysis
with imprinting and two-locus-trait models: application to mite sensitization.
Am. J. Hum. Genet. 66, 517–528 (2000).

Acknowledgements
We are grateful to the patients and their families for their participation. We thank J. Malicki for providing us with the elipsa zebrasfital, G. Pauzer, J. Nelson, L. Pedersen
and R. Koster for giving us the Flag-MolhIFTS4, GFP-MAP4 and EB3-GFP constructs,
respectively. We greatly acknowledge N. Goudin (Necker cell imaging facility) for
providing expert knowledge on confocal microscopy. E. Weyher-Sting (core facility,
MPI of Biochemistry) for assistance with the circular dichroism measurements,
H. Voisot for support in mass spectrometry and J. Ducu for help in molecular modelling.
C. Bole-Foyest, O. Alieva, S. Pruvost and M. Paristin (Imageme Genomique plattform) and
S. Laurent and N. Stenler (Cellular Biology, NIBR), for their excellent technical assistance.
The authors are grateful to the following scientists for their support: L. Klickstein, M. Labow,
M. Schebela, and K. Johnson for providing intellectual input at various stages of the
project. Finally, We thank S. Helliwell and S. Kirkland for their precious help in
manuscript correction. This work was supported by grants from the ‘Ageence nationale de
la Recherche’ (ANR) to S.S. (20100BLAN112202) and investments for the future
manuscript correction. This work was supported by grants from the ‘Ageence nationale de
la Recherche’ (ANR) to S.S. (20100BLAN112202) and investments for the future
program-ANR-10-IAHY-01 to S.S., the Fondation pour la Recherche Médicale
(DEQ/2013026532 to SS and RR) and (DEA20120624188 to P.K.) and the Fondation
Arc (EML20110602384) for the purchase of the LEICA SP8 confocal microscope.
This research was supported by a grant from the NIH to F.H. (DK068306). F.H. is an
Investigator of the Howard Hughes Medical Institute and Warren E. Gruppe Professor of
Pediatrics at the Harvard Medical School.

Author contributions
A.A.B. and A.B.H. performed cell biology and biochemical experiments with the help of
M.C.L. and R.R. performed zebrafish studies with the help of F.S. and the input of I.A.D.
and M.D. K.W. carried out the purification and in vivo interaction studies under the
supervision of E.L. E.F., P.K., J.H., E.J.O., M.Z., P.N., F.H., B.L, Y.F., J.D.S. and S.S.
performed mutational analysis. STED microscopy was performed by A.B. and M.G-T.
and S.S. performed mutational analysis. STED microscopy was performed by A.B. and M.G-T.
and S.S. performed mutational analysis. STED microscopy was performed by A.B. and M.G-T.
and S.S. performed mutational analysis. STED microscopy was performed by A.B. and M.G-T.
and S.S. performed mutational analysis. STED microscopy was performed by A.B. and M.G-T.
and S.S. performed mutational analysis. STED microscopy was performed by A.B. and M.G-T.