Coexistence of Papillary carcinoma and anaplastic large cell lymphoma in a healthy 26-year-old male: A first case report

Majdi Saada, Mechal Weiler, Yaneev Zohar, Ayelet Raz-Paster

ABSTRACT

Introduction: We present an extremely rare presentation case of simultaneous existence of anaplastic large T cell lymphoma along with papillary thyroid carcinoma in a previously healthy 26-year-old male. Case Report: A previously healthy 26-year-old male presented with a history of fever, headache and subcutaneous nodules. Chemotherapy was initiated after histopathologic examination from one skin nodule revealed findings consistent with anaplastic large T cell lymphoma. A 18F-fluorodeoxyglucose positron emission tomography computed tomography scan (FDG-PET-CT) showed nodal involvement including the nasopharynx and extranodal involvement including disseminated skin involvement and a lung lesion A follow-up FDG-PET-CT which was performed five months after the initiation of treatment, showed resolution of all disease sites but a persistent pathological focal uptake at the right lobe of the thyroid gland. Ultrasound and a following fine needle aspiration revealed findings consistent with papillary carcinoma. The patient underwent successful surgical resection of the thyroid. Conclusion: This rare case illustrates the possibility of existence of concurrent diseases in patients with systemic ALCL.
Coexistence of papillary carcinoma and anaplastic large cell lymphoma in a healthy 26-year-old male: A first case report

Majdi Saada, Mechal Weiler, Yaneev Zohar, Ayelet Raz-Paster

ABSTRACT

Introduction: We present an extremely rare presentation case of simultaneous existence of anaplastic large T cell lymphoma along with papillary thyroid carcinoma in a previously healthy 26-year-old male. Case Report: A previously healthy 26-year-old male presented with a history of fever, headache and subcutaneous nodules. Chemotherapy was initiated after histopathologic examination from one skin nodule revealed findings consistent with anaplastic large T cell lymphoma. A \(^{18}\)F-fluorodeoxyglucose positron emission tomography computed tomography scan (FDG-PET-CT) showed nodal involvement including the nasopharynx and extranodal involvement including disseminated skin involvement and a lung lesion A follow-up FDG-PET-CT which was performed five months after the initiation of treatment, showed resolution of all disease sites but a persistent pathological focal uptake at the right lobe of the thyroid gland. Ultrasound and a following fine needle aspiration revealed findings consistent with papillary carcinoma. The patient underwent successful surgical resection of the thyroid. Conclusion: This rare case illustrates the possibility of existence of concurrent diseases in patients with systemic ALCL.

Keywords: ALCL, PTC, Coexistence

INTRODUCTION

Anaplastic large cell lymphoma (ALCL) is a subgroup of the peripheral T cell lymphomas (PTCL) which are a heterogeneous group of generally aggressive neoplasms that constitute less than 15% of all non-Hodgkin lymphomas in adults [1]. The ALCLs are further subdivided into three categories according to clinical criteria and immunohistochemistry: primary systemic anaplastic lymphoma kinase (ALK)(+), primary systemic ALK(−), and primary cutaneous ALCL [2]. Most patients with ALK negative ALCL are adults (age range 40–65 years) with a slight male predominance [3]. Thyroid cancer accounts for only 0.5–1.5% of all malignancies [4]. Papillary thyroid carcinoma (PTC) accounts for over 85% of all malignant thyroid tumors in regions with sufficient iodide intake. Risk factors for the development of thyroid cancer include radiation.
exposure, family history of thyroid cancer and hepatitis C related chronic hepatitis [5–7].

Herein, we report a clinical case of a 26-year-old male with ALK(-) ALCL and papillary carcinoma of the thyroid which appeared after five months following chemotherapy treatment.

CASE REPORT

A previously healthy 26-year-old male presented with a history of fever, headache and subcutaneous nodules on the scalp of three weeks’ duration. The initial evaluation including physical examination, blood tests, brain CT and lumbar puncture was non-diagnostic. The patient’s skin lesions were suspected to be multiple scalp trichilemmal cysts and the patient was discharged to ambulatory follow-up.

Two months later, he was admitted to the emergency department complaining of a neck pain, chest pain, dyspnea, general weakness and fatigue since two weeks. In addition, he reported a weight loss of six kilograms during a two-month period. On examination, the patient was fully oriented, his body temperature was 38.1°C, the heart rate was 105 beats per minute, the blood pressure was 130/70 mmHg and oxygen saturation was 96% while he was breathing ambient air. Skin examination revealed a firm nodular purple rash on the chest and the abdomen in addition to a soft nodule on the posterior scalp (Figure 1). A lymph node was enlarged on the left inguinal region. Lungs were clear on auscultation, there were no heart murmurs, and the abdomen was soft with no hepatosplenomegaly. Neurological examination revealed a supple neck with no other focal signs, the rest of the physical examination was otherwise normal.

A complete blood count showed white blood cells of 10900 with 80% neutrophils, 18% lymphocytes and 0.6% eosinophils. The erythrocyte sedimentation rate was 70 mm/hr, the alkaline phosphatase level was 152 U/L, the lactate dehydrogenase level was 630 U/L, and serological tests for viral hepatitis B and hepatitis C were negative. A lumbar puncture was performed showing no evidence of central nervous system infection.

Computed tomography scan of the chest showed no lymphadenopathy. Computed tomography scan of the abdomen showed enlarged liver and spleen, enlarged left inguinal lymphatic nodes 3–5 cm in diameter. Histopathologic examination from one skin nodule and from the inguinal node revealed infiltration by large T cell lymphocytes which were stained positively for CD3, CD4, CD30 and MUM1 and negative for CD8, TIA1, ALK, CLUSTERIN, CD123, CD56, CD10, CD20 and TDT (Figure 2). A proliferation index of 80% was reported. A bone marrow revealed hypercellular infiltration with T cells consistent with ALK negative ALCL. A \(^{18}F \)-fluorodeoxyglucose positron emission tomography computed tomography scan (FDG-PET-CT) showed nodal involvement including the nasopharynx and extranodal involvement including disseminated skin involvement and a lung lesion (Figure 3). A diagnosis of aggressive ALK negative ALCL stage IVB was made and treatment with CHOP (cyclophosphamide, doxorubicin, vincristine, prednisone) and high dose methotrexate was begun.

Following five cycles of the mentioned chemotherapy the patient felt well and there were notable improvement of the skin lesions (Figure 4). The patient underwent autologous hematopoietic stem transplantation with minor complications. A follow-up FDG-PET-CT performed five months after the initiation of treatment, showed resolution of all disease sites and pathological focal uptake at the upper right lobe of the thyroid gland (Figure 3). Ultrasound of the thyroid showed a solid echogenic nodule in the right lobe measuring 5.2x7.7 mm and another small nodule in the lobe of less than 5 mm. A fine needle aspiration showed findings consistent with papillary carcinoma of the thyroid. The patient was referred to a surgeon to undergo a total thyroidectomy. Histopathological examination from the thyroid confirmed the same diagnosis. On subsequent follow-up two months later; the patient reported feeling well with no traces of any of his diseases.

Figure 1 (A, B): The patient had multiple erythematous, tender nodules on the chest and abdomen, as well as several tender nodules on his scalp.

Figure 2: Abdominal skin biopsy showing dermal infiltration by large, anaplastic lymphocytes (A, H&E X40) positive for CD3 (B, X40) and CD30 (C, X40). Excisional lymph node biopsy showing marked infiltration by the same cells (D, H&E X60) which were positive for CD30 (inlet, X60).
DISCUSSION

Papillary carcinomas of the thyroid are the most common malignant growth affecting the thyroid, currently representing 60–65% of malignant thyroid neoplasm. Most patients with papillary thyroid carcinomas present clinically with the discovery of a thyroid nodule during an unrelated physical exam or by the patient or others who notice a lump in the patient's neck [8, 9]. Although the etiology of this neoplasm is unknown, they are thought to be related to neck irradiation, adenoma transformation, Hashimoto thyroiditis, family history of thyroid cancer, occupational and environmental exposures [9], None of which our vignette meets. The simultaneous existence of papillary carcinoma and other tumors had been reported in literature in rare cases, including the coexistence with squamous cell carcinoma in the thyroid and anaplastic carcinoma [10, 11]. The development of papillary carcinoma after chemotherapy is very rare, with one case report describing the development of PTC ten years after treating stage 1A Hodgkin's lymphoma with ABVD (adriamycin, bleomycin, vinblastine, dacarbazine) chemotherapy [12].

Overall, papillary carcinomas represent an indolent group of neoplasm and have an excellent prognosis.

Anaplastic large cell lymphoma is a peripheral T cell derived malignancy, representing around 2–3% of all lymphoid neoplasms. It is an aggressive lymphoma which frequently presents in an advanced clinical stage with systemic symptoms and extranodal involvement [13]. In a case of a systemic ALCL, pathological FDG uptake at the neck region can be seen as a part of the disease itself [14]. The coexistence of PTC with other lymphomas is rare, with 2 cases reporting the concurrent existence of thyroid MALT lymphoma and primary thyroid diffuse large cell lymphoma, respectively [15, 16]. Likewise, CD30+ T cell lymphoma and concurrent solid carcinoma tumor is a rare clinical scenario, with previous cases in literature reporting the co-existence with gastric, esophageal and...
renal carcinomas [17–19]. This is the first clinical report of concurrent ALCL with PTC. The pathophysiology of the underlying mechanism is poorly understood, with some theories relating to monotypic expansion of activated T cells that occurs with solid tumors, and it is possible that T cell lymphoma originates from cytotoxic CD30+ T cell expansion [20]. Secondary genetic abnormalities probably lead to the dominance of a T cell clone, leading to irreversible transformation to lymphoma [21]. Whether ALCL predisposes to, or is merely associated with papillary carcinoma, is still a controversial issue which requires a more detailed consideration.

CONCLUSION

Patients with anaplastic large cell lymphoma (ALCL) can frequently present with pathological uptake on PET-CT, thus easily masking an underlying solid tumor. Moreover, this case illustrates the need for further research on the underlying mechanism of the seemingly related tumors.

Acknowledgements

We are thankful to Ali Yahya, Alaa Khateeb and Noa Lavi for their contribution to the study.

Author Contributions

Majdi Saada – Substantial contributions to conception and design, Acquisition of data, Analysis and interpretation of data, Drafting the article, Revising it critically for important intellectual content, Final approval of the version to be published

Mechal Weiler – Analysis and interpretation of data, Revising it critically for important intellectual content, Final approval of the version to be published

Yanev Zohar – Analysis and interpretation of data, Revising it critically for important intellectual content, Final approval of the version to be published

Ayelet Raz-Paster – Analysis and interpretation of data, Revising it critically for important intellectual content, Final approval of the version to be published

Guarantor

The corresponding author is the guarantor of submission.

Conflict of Interest

Authors declare no conflict of interest.

Copyright

© 2017 Majdi Saada et al. This article is distributed under the terms of Creative Commons Attribution License which permits unrestricted use, distribution and reproduction in any medium provided the original author(s) and original publisher are properly credited. Please see the copyright policy on the journal website for more information.

REFERENCES

1. Morton LM, Wang SS, Devesa SS, Hartge P, Weisenburger DD, Linet MS. Lymphoma incidence patterns by WHO subtype in the United States, 1992–2001. Blood 2006 Jan 1;107(1):265–76.

2. Armitage JO, Chan WC, Gascoyne R. A clinical evaluation of the international lymphoma study group classification of non-Hodgkin’s lymphoma. The non-Hodgkin's lymphoma classification project. Blood 1997 Jun 1;89(11):3909–18.

3. Savage KJ, Harris NL, Vose JM, et al. ALK-anaplastic large-cell lymphoma is clinically and immunophenotypically different from both ALK+ ALCL and peripheral T-cell lymphoma, not otherwise specified: Report from the international peripheral T-Cell lymphoma project. Blood 2008 Jun 15;111(12):5496–504.

4. Hundahl SA, Fleming ID, Fremgen AM, Menck HR. A national cancer data base report on 53,856 cases of thyroid carcinoma treated in the U.S., 1985-1995. Cancer 1998 Dec 15;83(12):2638–48.

5. Schneider AB, Sarne DH. Long-term risks for thyroid cancer and other neoplasms after exposure to radiation. Nat Clin Pract Endocrinol Metab 2005 Dec;1(2):82–91.

6. Pal T, Vogl FD, Chappuis PO, et al. Increased risk for nonmedullary thyroid cancer in the first degree relatives of prevalent cases of nonmedullary thyroid cancer: A hospital-based study. J Clin Endocrinol Metab 2001 Nov;86(11):5307–12.

7. Antonelli A, Ferri C, Fallahi P, et al. Thyroid cancer in HCV-related chronic hepatitis patients: A case-control study. Thyroid 2007 May;17(5):447–51.

8. Willemze R, Jaffe ES, Burg G, et al. WHO-EORTC classification for cutaneous lymphomas. Blood 2005 May 15;105(10):3768–85.

9. Wartofsky L, Van Nostrand D. Thyroid Cancers. A Comprehensive Guide to Clinical Management. New York: Humana Press; 2006.

10. Eom TI, Koo BY, Kim BS, et al. Coexistence of primary squamous cell carcinoma of thyroid with classic papillary thyroid carcinoma. Pathol Int 2008 Dec;58(12):797–800.

11. Fortson JK, Durden FL Jr, Patel V, Darkeh A. The coexistence of anaplastic and papillary carcinomas of the thyroid: A case presentation and literature review. Am Surg 2004 Dec;70(12):1116–9.

12. Abboud B, Yazbeck T, Daher R, Chahine G, Ghorra C. Papillary thyroid carcinoma after chemotherapy for Hodgkin’s disease. Am Surg 2010 Nov;76(11):1316–7.

13. Medeiros LJ, Elenitoba-Johnson KS. Anaplastic large cell lymphoma. Am J Clin Pathol 2007 May;127(5):707–22.

14. Lamant L, de Reyniès A, Duplantier MM, et al. Gene-expression profiling of systemic anaplastic large-cell lymphoma reveals differences based on ALK status and two distinct morphologic ALK+ subtypes. Blood 2007 Mar 1;110(5):2156–64.

15. Shen G, Ji T, Hu S, Liu B, Kuang A. Coexistence of papillary thyroid carcinoma with thyroid MALT lymphoma in a patient with hashimoto’s thyroiditis: A clinical case report. Medicine (Baltimore) 2015 Dec;94(52):e2403.
16. Xie S, Liu W, Xiang Y, Dai Y, Ren J. Primary thyroid diffuse large B-cell lymphoma coexistent with papillary thyroid carcinoma: A case report. Head Neck 2015 Sep;37(9):1099–10.

17. Shah SA, Ormerod AD, Husain A, Kohle P, Culligan D. Primary cutaneous CD30 (Ki-1)-positive anaplastic large cell lymphoma associated with renal cell carcinoma. Br J Dermatol 1999 May;140(5):971–2.

18. Sugimoto M, Kajimura M, Hanai H, Shirai N, Tanioka F, Kaneko E. G-CSF-producing gastric anaplastic large cell lymphoma complicating esophageal cancer. Dig Dis Sci 1999 Oct;44(10):2035–8.

19. Au WY, Yeung CK, Chan HH, Wong RW, Shek TW. CD30-positive cutaneous T-cell lymphoma with concurrent solid tumour. Br J Dermatol 2002 Jun;146(6):1091–5.

20. Gruss HJ, Herrmann F. CD30 ligand, a member of the TNF ligand superfamily, with growth and activation control CD30+ lymphoid and lymphoma cells. Leuk Lymphoma 1996 Feb;20(5–6):397–409.

21. Chott A, Vonderheid EC, Olbricht S, Miao NN, Balk SP, Kadin ME. The dominant T cell clone is present in multiple regressing skin lesions and associated T cell lymphomas of patients with lymphomatoid papulosis. J Invest Dermatol 1996 Apr;106(4):696–700.
Edorium Journals: An introduction

Edorium Journals Team

About Edorium Journals
Edorium Journals is a publisher of high-quality, open access, international scholarly journals covering subjects in basic sciences and clinical specialties and subspecialties.

Invitation for article submission
We sincerely invite you to submit your valuable research for publication to Edorium Journals.

But why should you publish with Edorium Journals?
In less than 10 words - we give you what no one does.

Vision of being the best
We have the vision of making our journals the best and the most authoritative journals in their respective specialties. We are working towards this goal every day of every week of every month of every year.

Exceptional services
We care for you, your work and your time. Our efficient, personalized and courteous services are a testimony to this.

Editorial Review
All manuscripts submitted to Edorium Journals undergo pre-processing review, first editorial review, peer review, second editorial review and finally third editorial review.

Peer Review
All manuscripts submitted to Edorium Journals undergo anonymous, double-blind, external peer review.

Early View version
Early View version of your manuscript will be published in the journal within 72 hours of final acceptance.

Manuscript status
From submission to publication of your article you will get regular updates (minimum six times) about status of your manuscripts directly in your email.

Our Commitment

Six weeks
You will get first decision on your manuscript within six weeks (42 days) of submission. If we fail to honor this by even one day, we will publish your manuscript free of charge.*

Four weeks
After we receive page proofs, your manuscript will be published in the journal within four weeks (31 days). If we fail to honor this by even one day, we will publish your manuscript free of charge and refund you the full article publication charges you paid for your manuscript.*

Favored Author program
One email is all it takes to become our favored author. You will not only get fee waivers but also get information and insights about scholarly publishing.

Institutional Membership program
Join our Institutional Memberships program and help scholars from your institute make their research accessible to all and save thousands of dollars in fees make their research accessible to all.

Our presence
We have some of the best designed publication formats. Our websites are very user friendly and enable you to do your work very easily with no hassle.

Something more...
We request you to have a look at our website to know more about us and our services.

We welcome you to interact with us, share with us, join us and of course publish with us.

* Terms and condition apply. Please see Edorium Journals website for more information.

CONNECT WITH US