Key sectors in Input-Output Production Networks: an application to Brexit

Gallegati, Mauro and Giammetti, Raffaele and Russo, Alberto

Università Politecnica delle Marche

6 March 2019

Online at https://mpra.ub.uni-muenchen.de/92559/
MPRA Paper No. 92559, posted 06 Mar 2019 11:17 UTC
Key sectors in Input-Output Production Networks: an application to Brexit

Mauro Gallegati, Raffaele Giammetti, Alberto Russo

Abstract
This paper presents the first detailed and holistic description of the European production network (EPN) and provides different rankings of the most 'systemically important' industries involved in Brexit. Employing techniques of complex networks analysis and Input-Output traditional tools, the study identifies those industries that are key in the complex structure of the UK-EU trade relationships. The method developed would help policy-makers to better understand which tariff would have a more distortive impact, which export sector should be pushed, which imports should be safeguarded. Such information may have foremost importance in the negotiations between the UK and EU. Our findings suggest that Brexit would be not just a problem for the UK, as it is often portrayed, but any form of Brexit could propagate affecting the global production system. Further, by inspecting industries centrality within the EPN, we find that the UK could be less exposed to trade barriers than EU countries.

Keywords: Brexit, trade barriers, tariffs, key sector, centrality measures, input-output analysis, production networks, value chains.

JEL Classification: C67, F13, F14, R11

1. Introduction

The structure of the global production system is nowadays characterised by a complex network of industries linked within and across different sectors and countries by means of input-output production ties (Amador and Cabral, 2017). The texture of the interdependencies between industries has relevant implications in the propagation throughout the economy of sectoral shocks and stimulus (Acemoglu et al., 2012). The primary role played by such interconnections in generating macro fluctuations was highlighted by the last economic crisis. Since the economic recession hit the USA and the world, there has been a large and growing body of research regarding the government bailout plans, in both the academic arena as well as in the popular press. Several criteria have emerged from the debate on the priority and choice of industries that the government should bailout in economic recessions (Luo, 2013). For example, focussing on the scale of the industry and its internal performance, some literature states that governments and institutions should come to the rescue of the 'too big to fail' firms and banks (White, 2014). Other studies highlighted the relevance of network effects, and suggest that should be prioritised 'too interconnected' (Battiston et al., 2012b; Markose et al., 2012) and 'too central to fail' (Battiston et al., 2012a) industries. The present paper aims to study the properties of the
European production network (EPN) and to identify the 'systemically important' sectors from a Brexit perspective. After the vote on January 15th, the spectrum of a no-deal scenario is approaching, therefore the identification of key sectors would be of a foremost relevance to suggest which industries are to be safeguarded before the potential negative impact of Brexit unfolds.

Using the recently constructed World Input-Output Database (WIOD), we build and summarise the main features of the EPN in which the nodes are individual sectors in different EU countries, and edges are dollar goods and services flows within and across sectors. The topological properties of the EPN reveal that in Europe sectors are both highly, and asymmetrically, connected, as a few industries placed in core countries, especially Germany, the UK, and France, dominate the EPN. These key players are the most central nodes in the EPN and they could act as global propagators in the network. This implies that a shock affecting one of these hubs will spread quickly to most sectors, either domestically or abroad, thus affecting the performance of the aggregate economy (Carvalho, 2014). From a Brexit point of view, it is worth noting that the UK is the most represented country in both the top 30 sectors ranked by size and in the top 30 sectors ranked by network 'influence measures' of centrality. This means that both macro-regions, the UK and the EU27, should safeguard UK key sectors from the potential negative impact of Brexit.

In the second part of the paper, building on W. Chen et al. (2018), we develop a measure of country and sectors exposure to sectoral tariff and non-tariff barriers. We apply the 'hypothetical extraction' method, a well-known input-output technique, to identify those sectors for which a reduction in trade flows implies a higher loss for the economies involved. Furthermore, our indicator provides answers to questions like to what extent the UK (EU) GDP depends on the export of sector \(i \) to EU (UK), or conversely, to what extent the UK (EU) GDP depends on the import from the \(i^{th} \) EU (UK) sector? In this sense, the measure we develop allows for the identification of key import and export sectors.

Our results demonstrate, on the one hand, that the UK is the country most exposed to the economic risk deriving from Brexit. On the other hand, that the UK would be less exposed than EU countries to trade barriers. Indeed, we find that the most vulnerable UK sectors are services industries whose products can only be subject to non-tariff barriers, whereas the most exposed EU industries are goods sectors, mainly manufacturing, which can be subject to both tariff and non-tariff barriers. However, this conclusion could be no longer valid if EU imposes extreme non-tariff barriers, for example by banning the UK from the sale of financial products.

The structure of the paper is as follows: the second section explores and discuss the relevant literature. The third section examines the topological structure of the EPN, whilst the fourth section describes the model and the methodology used for analysis. The fifth section presents and discusses the results. Lastly, the paper offers some concluding remarks.

2. Propagation of Shocks and Key Sectors in Input-Output Networks: a short Literature Review

The modern global economic system is a highly interlinked network composed of several heterogeneous industries connected within and across different countries by means of input-output trade linkages. Several studies pointed out that the structure of this production web is crucial in establishing whether and how microeconomic local shocks can propagate throughout the economy and lead to significant aggregate fluctuations (Carvalho, 2014). Therefore, understanding the structure of this production network is of a foremost importance to design predictive tools and better inform regulators on how to dampen aggregate variability and reduce the likelihood of systemic risk.
Since the contributions of Leontief (1936) and Hirschmann (1958), the idea of input-output linkages as a key channel through which shocks propagate throughout the economy has been explored mainly in the real business cycle literature (e.g. Long and Plosser, 1983; Horvath, 1998, 2000; Shea, 2002). Recently, several papers have revisited the argument, proposing new approaches and perspectives (see Roson and Sartori, 2016 for a wide review). For example, Gabaix (2011) finds that the distribution of firm size in an economy is typically fat-tailed. A degree distribution is fat-tailed when there are only a few industries which have several connections to many other industries. Hence, any shock affecting these central sectors would be able to propagate and generate macro disturbances. Under these circumstances, the central limit theorem breaks down, and idiosyncratic shocks to large sectors or firms affect aggregate outcomes. Building on Gabaix (2011) ‘granular’ hypothesis, Carvalho and Gabaix (2013), interpret the recent rise of macroeconomic volatility as a direct consequence of the increase in the size of the financial sector. Further important theoretical contributions in this direction were made by Acemoglu et al. (2012), Acemoglu et al. (2016), Acemoglu et al. (2017), Carvalho (2014) and Carvalho et al. (2016), who focused on the impact the topology of the economic network has on shock propagation. In particular, in their seminal work, Acemoglu et al. (2012) find that the existence of relatively few, ‘dominant’, suppliers of intermediate factors fosters the amplification of sectoral shocks. The authors propose to interpret the input-output structure as a (weighted) network, where the nodes correspond to the sectors and the links to the input-output trade flows. In such a framework, the relative importance of an industry as a supplier for other industries is captured by the sum of weights of all outgoing links, i.e. what is known in network theory as the weighted degree or strength of a node. Studying the distribution of degrees in the economy and the ‘fat-tailedness’ of that distribution, Acemoglu et al. (2012) conclude that the asymmetric and fat-tailed distribution of the input-output network connections serves as the micro origin of the macro economic fluctuations.

Most of the empirical works in this field focussed on a single national economy, whilst much less attention has been given to the cross-country transmission of shocks, which is crucial from a Brexit perspective. However, there are exceptions. For example, Alatriste-Contreras and Fagiolo (2014), investigate how economic shocks propagate through the input-output network connecting industrial sectors in Europe. They show that the more a sector is globally central in the country network, the largest its impact. Similar results are stressed by the recent and growing literature on trade in value added and its implication on the transmission of shocks via international trade (e.g. see Johnson and Noguera, 2012; Garbellini and Wirkierman, 2014; Nagengast and Stehrer, 2016 and Tukker and Dietzenbacher, 2013, among others). Building on this literature and on Gabaix (2011), Di Giovanni and Levchenko (2012) and Eaton et al. (2012), show that international trade amplifies the 'granularity' of an economy, and hence its sensitivity to sectoral shocks.

The common theme across the literature reviewed is that whenever few hubs dominate the linkage structure in the economy, an idiosyncratic shock which hit these hubs will result in sizable aggregate fluctuations. Therefore, from a Brexit perspective, it is of primary importance to study the structure of the European production network (EPN), finding out if key sectors exist and identify them in order to understand which sectors should be safeguarded. Further, a key sector analysis would allow policymaker to better understand which sectoral tariffs would have a more distortive impact.

To date many studies have been conducted on the economic impact of Brexit (see the special issue edited by Philip McCann, 2018 and the recent mini-symposium edited by David Greenaway and Chris Milner, 2019, among others). Just a few have emphasised the relevance of input-output linkages (e.g. Vandenbussche et al., 2017; Cappariello et al., 2018; W. Chen et al., 2018). Nobody focused specifically on the analysis of the key sectors in the EPN. The present study aims to fill this gap in the literature.
The identification of key sectors in an economy has been one of the most important research topics in input-output analysis, for a long time (see Miller and Blair, 2009; Temurshoev and Oosterhaven, 2014 for a wide review). Since the seminal works of Rasmussen (1956), Chenery and Watanabe (1958) and Hirschman (1958), this strand of input-output literature has often focused on the number, strength, and structure of inter-sector linkages (Yotopoulos and Nugent, 1973; Los, 2004). After the first introduction of the linkage measures, several changes have been proposed (Jones, 1976). For example, the eigenvector method of backward linkages proposed by Dietzenbacher (1992), which is based on the reasoning that industries with more linkages should be weighted more (Luo, 2014). This method is similar to the eigenvector centrality long used in network theory and social network analysis, according to which nodes are considered to be central in the network if their connections in the network are themselves well-connected nodes (see García Muñiz et al., 2008; García Muñiz et al., 2011; Alatriste-Contreras, 2015 and Gurgul and Lach, 2018 for a discussion on the similitudes between input-output linkage measures and network centrality measures). One drawback of the eigenvector method is that it does not penalise the distant connections (Newman, 2010). Therefore, its variations such as Katz-Bonachic centrality (Katz, 1953; Bonachic, 1987) and PageRank centrality (Brin and Page, 1998) have been preferred in recent studies on input-output networks (Acemoglu et al., 2012; Carvalho 2014; Cerina et al. 2015).

All these measures generally identify the key or strategic sectors in the network. However, focussing on Brexit as a trade shock, we are mainly interested in the input-output trade connections between the UK and European countries. In this case the so-called ‘hypothetically extraction method’ is the best possible choice. The extraction technique is widely used in input-output analysis to estimate the importance of a sector i. The procedure consists in deleting the i-th row and column of the input-output matrix A, then using the Leontief model, to compute the reduced outputs obtained when $i = 0$ and compare with total output before extraction (see Miller and Blair, 2009; Dietzenbacher and van der Linden, 1997; Miller and Lahr, 2001; Dietzenbacher and Lahr, 2013 and Los et al., 2016 for insight and extensions). W. Chen et al. (2018) use this method to rank European regions in terms of economic exposure to Brexit. Building on this contribution, we use the hypothetical extraction method to rank the key country-sectors in the UK EU input-output network. Hence, we develop an index of exposure to sectoral tariffs that would be useful for the design of trade policies.

3. The European Production Network

During the last decades, the degree of trade integration between the UK and EU countries has strengthened significantly due to the increased trade in intermediate goods and the development of supply chains (Mulabdic et al. 2017; J. Chen, 2018). The emergence of such production networks implies that one can no longer consider bilateral trade in isolation when evaluating the impact and transmission of idiosyncratic shocks or trade policy as Brexit (Johnson, 2014; Acemoglu et al., 2012). Therefore, in this section we show how to build the EPN, the main features of the EPN, and the most central sectors.

3.1. Mapping inter-industrial connections to data

The construction of the EPN requires the availability of a global input-output table. Such data have become available only very recently. Here, we employ the World Input-Output Table (WIOT) available from the World Input-Output Database (WIOD), which has the main advantage that it
provides time-series of global input-output tables, covering, at the time of writing, 56 industries classified by the International Standard Industrial Classification revision 4 (ISIC Rev.4), in 43 countries in the world plus a region called ‘Rest of the World’, for the period 2000-2014, although we make use only of the 2014 data (see Timmer et al., 2014 and Dietzenbacher et al., 2013 for sources and details). Figure 1 shows the schematic outline for a WIOT. Essentially, it includes a combination of national input-output tables in which the use of products is broken down according to country-industry of origin.

Intermediate use (S columns per country)	Final use (C columns per country)	Total	
S Industries, country 1	Z₁¹ Z₁² Z₁ᴺ	F₁¹ F₁² F₁ᴺ	x₁¹ x₁² x₁ᴺ
...			
S Industries, country N	Zᴺ¹ Zᴺ² Zᴺᴺ	Fᴺ¹ Fᴺ² Fᴺᴺ	xᴺ¹ xᴺ² xᴺᴺ
Value added	(v₁¹)¹ (v₁²)¹ (v₁ᴺ)¹		
Output	(x₁¹)¹ (x₁²)¹ (x₁ᴺ)¹		

Figure 1. A world input-output table with N countries and S sectors (source: Los et al. 2013).

The stylised WIOT depicted in Figure 1 illustrates a simplified WIOT with N countries and S sectors, which together constitute the world economy. The rows in the WIOT give the total dollar value of deliveries of output from a particular industry in a given country to another industry for intermediate use (block matrices labelled Z), or to final user (block matrices labelled F), either within the same country or abroad. The fundamental accounting identity of any input-output table is that total use of output in a row equals total output of the same industry as indicated by the sum of inputs in the respective column in the left-hand part of the table. The columns indicate the amounts of intermediate inputs needed for production; hence, they are informative about the technology of production. What remains between total output and total intermediate inputs is value added (v), i.e. the direct contribution of domestic factors to output.

Input-output tables, as one can guess, provide a natural source of information for representing the economy as a network. In particular, in order to build the EPN we consider the Z block matrices of the WIOT, for the 28 EU economies, as a weighted adjacency matrix of a network where the nodes are individual sectors in different countries, and edges are dollar goods flows within and across sectors. The direction of the flows goes from the supplier sector to the buyer sector. This data contain 1568 nodes (56 sectors in each of the 28 countries) and 2241747 directed weighted edges.

3.2. The Structure of the EPN

The aim of this section is to summarise the main topological properties of the EPN, from a Brexit perspective. Our primary interest is in illustrating the degree of industries connection, the density of sectoral interactions, the distance between country-sectors, and the presence of hub sectors or potential shock propagators in the network. These basic network statistics allow us to provide a descriptive analysis of the EPN and advance hypotheses on the propagation of a trade shock, as Brexit would be.

To study the extent to which industries are connected in the EPN we start analysing the degree and strength distributions. The degree of a node in a network is defined as the number of links incident upon a node, here, the number of input-output connections each sector has. When these connections
are weighted, the strength of a node is measured, i.e. the sum of weights attached to the edges belonging to a node. Here, the dollar amount of input-output connections each sector has. Recall that the EPN is based on the weighted adjacency matrix \mathbf{Z} that is suitable to study the strength distribution. On the other hand, to analyse the degree distribution of the EPN, as in Cerina et al. (2015), we need to define a regular binary adjacency matrix \mathbf{D}, where $D_{ij} = D_{ji} = 1$ if either $Z_{ij} > 0$ or $Z_{ji} > 0$, and $D_{ij} = D_{ji} = 0$ otherwise. Further, according to the direction of the connections, a sector has an in-degree (d_{i}^{in}) and an in-strength (s_{i}^{in}) respectively defined as the sum of all elements in the column i^{th} of the adjacency (D) and weighted (Z) matrices:

$$d_{i}^{in} = \sum_{j \neq i} d_{ji}$$

(1)

$$s_{i}^{in} = \sum_{j \neq i} s_{ji}$$

(2)

Conversely, a sector has an out-degree (d_{i}^{out}) and an out-strength (s_{i}^{out}) defined as the sum of all elements in the row i^{th} of the adjacency (D) and weighted (Z) matrices, respectively:

$$d_{i}^{out} = \sum_{j \neq i} d_{ij}$$

(3)

$$s_{i}^{out} = \sum_{j \neq i} s_{ij}$$

(4)

Summarising, the in(out)-degree of a node i represents the number of supplier (buyer) sectors linked to sector i. Similarly, the in(out)-strength of a node i represents the dollar value of goods employed as inputs (delivered as outputs) by sector i. The sum of in and out degree or in and out strength are respectively the total-degree and total-strength.

As shown in Figure 2, the EPN is featured by highly left skewed degree distributions, showing that most of the sectors in the economy have many connections with other sectors. The average in-degree and out-degree is about 1478, i.e. every node is linked with almost every node. In particular, most of the values of the out-degrees are concentrated on the highest values. Therefore, there are sectors that act as general suppliers delivering inputs to many or all other sectors (Alatriste-Contreras, 2015 shows similar results). The high connectivity of the EPN is also highlighted by the density of the EPN that is 0.976, a high value which suggests that in the network under consideration sectors are highly dependent on almost all other sectors. Furthermore, the diameter, defined as the shortest distance between the two most distant nodes in the network, which is the largest number of steps that separate sector i from sector j for all possible pairs of sectors (i, j), is 3; and the average path length, i.e. the average of the number of steps it takes to get from sector i to sector j for all possible pairs of sectors (i, j), is 1.

Moving from the unweighted EPN to the weighted one, Figure 3 illustrates the empirical distributions of in-strength, out-strength and total-strength in the EPN. The x-axis is, respectively, the in, out and total strength for each country-sector presented on a log scale. The y-axis, also in log scale, represents the probability that the sector i^{th} has a strength larger than or equal to x. Hence, the upper left-hand portion of all the three subgraph, shows that nearly 100 percent of country-sectors have an in, out and total strength greater than 0.01; moving down on the y-axis we see that only about one tenth

2 Note that the in-strength is similar to the Chenery and Watanabe (1958) direct backward linkages measure, obtained by the column sums of the input matrix \mathbf{A}.
of all country-sectors have an in, out and total strength greater than 10000; and finally, the right-hand portion of all the distributions shows that only less than 1 percent of all country-sectors have an in, out and total strength greater than 100000. Therefore, on the contrary to the degree distributions observed, the in, out and total strength distributions for country-sectors in the EPN are all positively skewed.

Our findings are coherent with Alatriste-Contreras and Fagiolo (2014), Alatriste-Contreras (2015) and Luu et al. (2017), which show that each European economy at sectoral level of aggregation is characterised by negatively skewed degree distributions and positively skewed strength distributions. The heavy tailed behaviour of the strength distributions means that there is a statistically significant probability that a node has a very large strength compared to the average, i.e. in the EPN many country-sectors have a low strength, whilst only a few have high strength values.

The unequal distribution of in, out and total strength suggests the presence of hub-like country-sectors. In fact, as shown in Table 1, the EPN is dominated in terms of strength, i.e. dollar goods that flow through a sector, by a few industries placed in core countries, especially, Germany, the UK, and France. These key players could act as global propagators in the network. This implies that a shock affecting one of these hubs will spread quickly to most sectors, either domestically or abroad, thus affecting the performance of the aggregate economy (Carvalho, 2014). From a Brexit point of view, it is worth noting that the UK economy plays a primary role hosting more than 20 percent of top industries. Notably, according to the strength rankings, the UK and EU should take care of the trade
relationships that involving the following UK’s industries: construction (F), which is the largest sector in terms of total strength, health (Q), real estate (L68), electricity and gas (D35), food products (C10-12), administrative services (N), financial services (K64), retail trade (G47), legal and accounting (M69-70).

Table 1. Top 30 country-sectors ranked by in, out and total strength (millions of dollar). For sector abbreviations see di-annex.

country-sector	in-strength	country-sector	out-strength	country-sector	tot-strength
DEU_C29	272498,8	DEU_N	234098,36	GBR_F	424515,55
GBR_F	225088,8	FRA_N	213793,85	DEU_C29	402500,36
FRA_F	203144,5	GBR_F	196720,72	DEU_N	336599,33
DEU_F	188456,9	GBR_N	191547,49	DEU_F	290562,27
DEU_C10-12	170753,8	DEU_L68	185875,73	FRA_N	306366,88
ITA_F	167043,6	FRA_M69_70	174760,05	FRA_G46	300768,77
DEU_C28	164105,8	FRA_G46	158369,81	DEU_L68	296700,69
GBR_Q	151958,3	DEU_H52	152657,35	FRA_F	288916,08
FRA_G46	142399	DEU_G46	146143,95	GBR_N	288616,79
FRA_C10-12	139922,9	GBR_K64	133260,23	DEU_C28	265780,30
ESP_C10-12	133140,2	GBR_M69_70	131851,37	ITA_F	263051,82
ITA_C10-12	126986,3	DEU_C29	130001,58	DEU_G46	251530,40
DEU_L68	110825	FRA_K64	126867,99	DEU_C10-12	240952,16
ITA_G46	107965,7	DEU_F	121105,40	ESP_C10-12	236122,80
GBR_L68	107884,4	GBR_D35	117598,56	GBR_K64	229237,41
FRA_M69_70	107149,9	DEU_K64	115622,15	GBR_D35	224378,79
FRA_G46	106780,2	ITA_G46	112145,64	FRA_C10-12	223866,58
DEU_C20	105407,3	DEU_C25	112080,42	ITA_G46	220111,31
DEU_N	102501	DEU_C24	103537,57	DEU_M69_70	218094,98
DEU_Q	98574,22	DEU_C20	103988,15	DEU_C20	209398,42
GBR_C10-12	97505,82	ITA_N	103771,05	GBR_Q	209232,51
GBR_N	97069,3	DEU_D35	103011,98	DEU_K64	207556,63
GBR_K64	95977,18	ESP_C10-12	102982,65	ITA_C10-12	203823,38
DEU_C47	95218,18	DEU_C28	101674,50	DEU_C25	199102,33
GBR_G47	93847,27	FRA_D35	99000,40	FRA_K64	196062,07
DEU_D35	92778,75	ITA_K64	98489,34	DEU_D35	195790,73
ITA_C28	92725,99	ESP_D35	96462,71	DEU_C24	194794,47
FRA_N	92573,03	GBR_C10-12	96027,96	GBR_C10-12	193533,79
DEU_K64	91934,47	ITA_F	96008,18	GBR_M69_70	182039,83

To sum up, the structure of the EPN in which sectors are both highly connected as shown by the degree distributions, and asymmetrically connected as reported by the strength distributions, combined with the remarks about the EPN density, diameter, average path length, and the presence of a small number of hubs, suggest the small-world nature of the EPN (on the definition of small-world networks see Caldarelli, 2007). In production networks characterised by these topological properties a local idiosyncratic shock, as it could be a trade shock due to Brexit, is able to propagate through the whole European economy and generate a sizeable global disturbance (Acemoglu et al., 2012; Carvalho, 2014; Cerina et al., 2015).

3.3. Central Nodes in the EPN

In the previous section, we have explored the EPN and identified the main sectors in terms of strength. However, this preliminary rough measure does not offer a complete view of the importance of a sector. For example, the strength of a node does not take into account the degree to which a specific sector is involved in global value chains (Bohn et al., 2018). Therefore, in this section we conduct a local analysis of the nodes and individualise the key sectors in the EPN employing the traditional methods.

8
of input-output literature and the PageRank centrality, a network-based measure also known as Google’s algorithm (Brin and Page, 1998).

Consider an economy with n industries and denote the interindustry flows by the $n \times n$ transaction matrix Z. Let f be the vector of industry final demands and x the vector of industry gross output. The accounting equations are given as $x = Zi + f$, where i is the summation vector, i.e. a vector of all ones. Define the direct input coefficients as the ratio of input supplied by i and bought by j over the gross output of sector j as $a_{ij} = z_{ij}/x_j$, which is the typical element of the economy’s direct requirements matrix A, also known as the technical coefficients matrix. Considering that, $A = Z\hat{x}^{-1}$ we can substitute $Ax = Zi$ in the accounting equations to get $x = Ax + f$. Solving for x yields:

$$x = (I - A)^{-1}f = Lf$$ \hspace{1cm} (5)

where I is the identity matrix and $L \equiv (I - A)^{-1}$ is the Leontief inverse or multiplier matrix, which makes clear the direct and indirect dependence of each of gross outputs on the values of each of the final demand. The j^{th} column sum of the Leontief inverse describes the total output increase due to an increase of one unit in the final demand of sector j. Thus, Rasmussen (1956) proposed to use the column sums of the L matrix, i^L, to rank the industries and identify the key ones in the economy. One drawback of the Rasmussen method of backward linkages is that it assumes homogeneous sectors, assigning the same weight to all the industries, which is far from the reality. In particular, the industries composing the EPN are very heterogeneous as are the 28 economies that host them. Therefore, as in Cerina et al. (2015) we use the final-demand-weighted version of the Rasmussen method, i.e. the Laumas (1976) key sector measure:

$$w = i^L \circ \frac{f'}{i^f}$$ \hspace{1cm} (6)

where \circ is the element-wise multiplication operator. However, in the Laumas method the weighting scheme is arbitrary. Furthermore, this measure, although weights the industries according to their final demand, does not take into account the heterogeneity of intersectoral relationships, i.e. it assumes that all the neighbouring industries have the same importance. To solve this issue, Dietzenbacher (1992) proposed the eigenvector method of backward linkages, which is based on the reasoning that the inputs from a sector with stronger pulling power should be weighted more than the inputs from a sector with weaker power (Luo, 2014). In other words, not all the connected industries are equal but the one with more strength should be weighted more. Dietzenbacher (1992) proved that sectors can be ranked by importance computing a sector power indicator, which we denote as e, that coincides to the left-hand eigenvector corresponding to the dominant eigenvalue of the technical coefficients matrix A. In the input-output literature, Dietzenbacher method is de facto in line with the eigenvector centrality one of the best known ‘influence measures’ employed in network theory and social network analysis, according to which nodes are considered to be central in the network if their connections in the network are themselves well-connected nodes. One drawback of this indicator is that it does not penalise the distant connections, this means that it can overestimates the importance of some peripheral industries if they have even only an insignificant indirect connection with a hub industry (Cerina et al., 2015). Therefore, other ‘influence measures’ of network centrality such as Katz-Bonachic centrality (Katz,
1953; Bonachic, 1987) and PageRank centrality (Brin and Page, 1998) have been preferred in recent studies on input-output networks (Acemoglu et al., 2012; Carvalho 2014; Cerina et al. 2015). Here, we refer mainly to the weighted version of PageRank centrality used in Cerina et al., 2015. The PageRank \((PR)\) also relates the importance of a sector with the quality of its connection but it contains a damping factor that penalises distant connections. It is computed iteratively for each node \(i\) as follows:

\[
PR(i; t + 1) = \frac{1 - d}{N} + d \sum_{j \in M(i)} \frac{PR(j; t)w_{ij}}{S(j)}
\]

where \(N\) is the total number of nodes (sectors), \(d\) is the damping factor set to its default value, 0.85, \(M(i)\) are the in-neighbours of \(i\) (input supplier for the \(i\) sector), \(w_{ij}\) is the weight of the link connecting the nodes \(i\) and \(j\), \(S(j)\) is the sum of the weights of the outgoing edges from \(j\) (the sum of the output delivered by sector \(j\)). Note that the algorithm starts at time step \(t = 0\), assuming a probability distribution such that \(PR(i; 0) = 1/N\).

As in the strength distributions, Figure 4 shows that the network centrality of different nodes is distributed as a power-law. Far out in the right tails, we find the central production nodes in the network, which we rank for each centrality measures in Table 2. Again, as in Table 1 we find that key sectors in the EPN are placed in core countries. In particular, the Laumas indicator \((w)\), which emphasises the role of final demand, indicates the construction \((F)\) sector in France as the key EPN sector, followed by two UK sectors, respectively real estate \((L68)\) and health \((Q)\).

Differently, the Dietzenbacher eigenvector indicator \((e)\) shows the relevance of German sectors. Especially according to this measure, almost fifty percent of the top 30 sectors in the EPN are from Germany that hosts even the first four key sectors. However, the presence of many German sectors in the \(e\) ranking reveals another drawback of this measure already noted in Cerina et al. (2015). Indeed, in the presence of clusters in the network, such as in the EPN where sectors usually cluster domestically, the eigenvector centrality measure tends to overestimate the importance of some nodes. For example, if some industries in Germany have strong linkages, the eigenvector method imputes a high strength to almost all other industries in Germany due to the national connections and this process will reinforce itself. In addition, to penalising ties with distant nodes, the other ‘influence measure’,
namely PageRank centrality \((PR) \), addresses also this problem. According to \(PR \), Germany still plays a central role in the EPN, hosting the first two sectors, which are motor vehicles (C29), and machinery and equipment (C28), respectively. However, what is noteworthy from a Brexit point of view is that with eleven industries, the UK is the most represented country in the top 30 sectors ranking. In other words, more than 35 percent of key sectors in the EPN are hosted by the UK. Recalling the definition of the \(PR \), this means that UK sectors are among the most influential sectors, i.e. they are very important sectors and are well connected with other EPN key sectors.

\(w \)	\(e \)	\(PR \)
FRA_F	DEU_C20	DEU_C29
GBR_L68	DEU_N	DEU_C28
GBR_Q	DEU_H52	GBR_Q
DEU_Q	DEU_C24	DEU_F
DEU_F	FRA_N	GBR_F
GBR_F	DEU_M69_70	FRA_F
DEU_L68	GBR_N	GBR_O84
FRA_L68	FRA_M69_70	GBR_L68
ITA_F	DEU_C28	DEU_C10-12
DEU_O84	DEU_G46	GBR_G47
GBR_G47	FRA_G46	ITA_F
FRA_Q	ESP_D35	FRA_C10-12
FRA_O84	DEU_C29	FRA_G46
GBR_L68	DEU_L68	DEU_C20
DEU_C10-12	GBR_D35	DEU_O84
DEU_C29	FRA_D35	ITA_G46
ITA_Q	DEU_C25	GBR_G46
FRA_G47	ITA_G46	DEU_Q
ITA_L68	DEU_H49	ITA_C28
DEU_G47	GBR_K64	ITA_C10-12
FRA_C10-12	GBR_M69_70	GBR_K65
DEU_P85	GBR_B	ESP_C10-12
ESP_F	ITA_D35	GBR_K64
GBR_P85	DEU_K64	ESP_C29
ESP_I	DEU_D35	DEU_L68
ITA_O84	ITA_C24	GBR_N
GBR_1	NLD_M69_70	FRA_O84
ITA_1	FRA_C20	GBR_1
ITA_G47	DEU_J62-63	GBR_C10-12
DEU_R-S	FRA_K64	ITA_1

Table 2. Top 30 country-sectors ranked by Laumas \((w)\), eigenvector \((e)\) and PageRank \((PR)\) centrality measures. For sector abbreviations see di annex.

Our findings on the structure of the EPN help the understanding of the UK relevance within the EPN and suggest that a shock hitting key sectors placed in the UK could propagate through other key sectors and generate macro disturbances in other European economies. However, they merely give us a descriptive and qualitative view, whereas it does not provide any effective quantitative measure of the possible economic implications of Brexit. This will be the object of the next section.

4. The Hypothetically Extraction method to unveil Key Industries from a Brexit perspective

The Brexit debate has been enriched by numerous studies of academics and governing bodies that attempt to quantify the economic impacts of Brexit on the UK, the EU and the rest of the world (see Gasiorek et al., 2019; Hantzsche et al., 2019; Minford, 2019 and the special issue edited by Philip McCann, 2018, among others). In general, this literature focussed on the trade effects of Brexit, noting that the UK decision to leave the EU will have a significant negative impact on international trade.
However, as the outcome of the negotiations between the UK and Europe is not known yet, most of these studies are based on assumptions about possible future scenarios. Furthermore, these analyses require also assumptions on the strength of international substitution patterns. One exception is W. Chen et al. (2018), which opt for a different approach to study the degree to which EU regions and countries are exposed to negative trade-related consequences of Brexit. In particular, using an extended version of the general formula proposed by Los et al. (2016), they get estimates of domestic value added (DVA) in exports of EU regions to the UK and DVA exports of UK regions to the EU. Dividing these estimates by regional GDP, they compute an index of the share of GDP exposed to Brexit, for EU regions and countries, which takes into account all the effects due to the fragmented production processes within the UK, the EU and beyond. This accounting exercise, which not allows for an actual quantification of changes in regional GDP due to Brexit, helps in answering the question: what if the UK and EU regions would stop trading? In other words, W. Chen et al. (2018) are able to rank EU regions and countries by the risk they face due to Brexit.

The method employed by Los et al. (2016) and W. Chen et al. (2018) is called “hypothetical extraction” and it is used in the input-output literature to identify key sectors (for a complete review and insights see Dietzenbacher and Lahr, 2013 and Miller and Blair, 2009). The aim of this technique is to quantify how much the output of an n-sectors economy would decrease if a particular industry were not present. Extracting industry k requires that the k^{th} row and column of the A matrix are set equal to zero. We define this matrix by A^*. Equally, the final demand for goods and services provided by industry k is set to zero, i.e. $f_k = 0$, which gives the new final demand vector f^*. Thus, the estimated new vector of sector gross outputs will be:

$$x^* = (I - A^*)^{-1}f^*$$

(8)

The change before and after extraction is equal to the difference $s' = (x - x^*)$. This method can be easily extended to an inter-country input-output framework with N countries and n production sectors in each country to quantify the effect on the output of the rest of the economy, as induced by hypothetically extracting a country (see Ditezenbacher et al., 1993; Dietzenbacher and van der Linden, 1997). As shown by W. Chen et al. (2018), this approach is suitable in the case of Brexit to quantify how much the GDP of UK and EU would change if these two macro regions stop trading.
Figure 5 shows a simplified version of the global WIOT presented in Figure 1, with one sector and three countries, namely the UK, an EU country (EU), and the rest of the world (ROW). The darker panels indicate the sub-matrices directly involved into Brexit, i.e. the sub-matrices of intermediate and final trade between the UK and EU. An extended version of Figure 5, with three countries and \(n \) sectors, can be formally represented using partitioned matrices. The coefficients matrix \(A \) and the final demand matrix \(F \) are constructed as:

\[
A = \begin{bmatrix}
A_{UU} & A_{UE} & A_{UR} \\
A_{EU} & A_{EE} & A_{ER} \\
A_{RU} & A_{RE} & A_{RR}
\end{bmatrix}
\]

\[
F = \begin{bmatrix}
F_{UU} & F_{UE} & F_{UR} \\
F_{EU} & F_{EE} & F_{ER} \\
F_{RU} & F_{RE} & F_{RR}
\end{bmatrix}
\]

(9)

Extracting trade flows between the UK and EU requires that the matrices \(A_{UE}, A_{EU}, F_{UE} \) and \(F_{EU} \) are replaced by matrices of appropriate dimension filled with zeros, such that the new \(A^* \) and \(F^* \) matrices are:

\[
A^* = \begin{bmatrix}
A_{UU} & 0 & A_{UR} \\
0 & A_{EE} & A_{ER} \\
A_{RU} & A_{RE} & A_{RR}
\end{bmatrix}
\]

\[
F^* = \begin{bmatrix}
F_{UU} & 0 & F_{UR} \\
0 & F_{EE} & F_{ER} \\
F_{RU} & F_{RE} & F_{RR}
\end{bmatrix}
\]

(10)

Again, the estimated new vector of sector gross outputs is given by equation (8), and the change before and after extraction will be equal to the difference \(s' = (x - x^*) \). To express this change in GDP terms we pre-multiply equation (8) by the value added coefficients matrix \(\hat{V} \), i.e. a diagonal matrix, of which the typical element on the main diagonal, \(v_{js} / x_j^s \), is the value added coefficient of industry \(j \) in country \(s \). This leads to:

\[
v^* = \hat{V}(I - A^*)^{-1}f^*
\]

(11)

Finally, the change in value added is derived by the difference \(s' = (v - v^*) \).

Briefly, this is the technique employed by W. Chen et al. (2018). Here, we build on this approach and develop a more granular monetary indicator able to quantify the impact of sectoral hypothetical extraction on the GDP of the UK and EU countries. One can consider such a measure as the exposure of the UK and EU countries to sectoral tariff and non-tariff barriers (on the determinants and relevance of trade barriers see Ennew et al, 1990; Greenaway and Milner, 1994 and Greenaway and Milner, 2003). Indeed, if trade barriers, in general, can reduce bilateral trade between two countries, applying country-sector hypothetical extractions allows us to identify those sectors for which a reduction in trade flows implies a higher loss for the economies involved (on the impact of trade barriers and border effects see Capello et al., 2017 and Capello et al., 2018).

Our exposure measure is closely related to the concept of industries vulnerability to Brexit developed by Gasiorek et al. (2019). Employing a multisector and partial equilibrium framework, Gasiorek et al. (2019) analyse effects on 122 UK manufacturing sectors, using 2016 trade data. The authors provide one of the most detailed and granular analysis on the possible impacts of Brexit on prices, output and trade on specific manufacturing industries. Gasiorek et al. (2019) model five different Brexit scenarios, and achieve results that point to considerable variation across manufacturing sectors, and across skill categories of labour. Here, adopting a different modelling strategy, we extend Gasiorek et al. (2019) by including raw material and services industries and exploring the sectoral vulnerability to Brexit in both the UK and EU27 countries. Furthermore, the indicator that we propose, in addition to being a measure of risk, provides answers to questions like: to what extent the UK (EU)
GDP depends on the export of sector \(i \) to EU (UK), or conversely, to what extent the UK (EU) GDP depends on the import from the \(i^{th} \) EU (UK) sector? In this sense, the measure we develop could be seen as a kind of sector external centrality measure. In other words, our measure identifies also key import sectors and key export sectors.

4.1. Methodology

As in section 3, in our accounting exercise we use the last available WIOT released by the WIOD (2014), but we consider all the 44 economies in order to quantify the impact the extraction of sectoral trade flows between the UK and EU will have on these directly involved countries and the rest of the world.

Using partitioned matrices, the coefficients matrix \(A \) and the final demand matrix \(F \) of the WIOT are presented in summary form as:

\[
A = \begin{bmatrix}
A^{UU} & A^{UE_1} & \ldots & A^{UE_{27}} & A^{UR} \\
A^{E_1U} & A^{E_1E_1} & \ldots & A^{E_1E_{27}} & A^{E_1R} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
A^{E_{27}U} & A^{E_{27}E_1} & \ldots & A^{E_{27}E_{27}} & A^{E_{27}R} \\
A^{RU} & A^{RE_1} & \ldots & A^{RE_{27}} & A^{RR}
\end{bmatrix}
\]

\[F = \begin{bmatrix}
F^{UU} & F^{UE_1} & \ldots & F^{UE_{27}} & F^{UR} \\
F^{E_1U} & F^{E_1E_1} & \ldots & F^{E_1E_{27}} & F^{E_1R} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
F^{E_{27}U} & F^{E_{27}E_1} & \ldots & F^{E_{27}E_{27}} & F^{E_{27}R} \\
F^{RU} & F^{RE_1} & \ldots & F^{RE_{27}} & F^{RR}
\end{bmatrix}
\]

where again U stands for the UK, \(E_1 \) and \(E_{27} \) are respectively the first and the last EU country in the WIOD list and R identify a generic extra-EU country.

Suppose that the UK after Brexit will stop importing intermediate and final product delivered by the \(i^{th} \) EU sector. This means that the \(i^{th} \) row of the sub matrices \(A^{E_iU} \) to \(A^{E_{27}U} \) are set equal to zero. Thus, the pre and post extraction coefficients matrix of the EU country \(s \) will be:

\[
A^{EsU} = \begin{bmatrix}
E_{sU}^{E_1} & \ldots & E_{sU}^{E_{27}} \\
\vdots & \ddots & \vdots \\
E_{sU}^{E_1} & \ldots & E_{sU}^{E_{27}} \\
E_{sU}^{E_1} & \ldots & E_{sU}^{E_{27}} \\
E_{sU}^{E_1} & \ldots & E_{sU}^{E_{27}}
\end{bmatrix}
\]

\[
A^{EsU*} = \begin{bmatrix}
0 & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & 0 \\
0 & \ldots & 0 \\
0 & \ldots & 0
\end{bmatrix}
\]

\[
F^{EsU} = \begin{bmatrix}
E_{sU}^{E_1} & \ldots & E_{sU}^{E_{27}} \\
\vdots & \ddots & \vdots \\
E_{sU}^{E_1} & \ldots & E_{sU}^{E_{27}} \\
E_{sU}^{E_1} & \ldots & E_{sU}^{E_{27}} \\
E_{sU}^{E_1} & \ldots & E_{sU}^{E_{27}}
\end{bmatrix}
\]

\[
F^{EsU*} = \begin{bmatrix}
0 & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & 0 \\
0 & \ldots & 0 \\
0 & \ldots & 0
\end{bmatrix}
\]

Hence, the post extraction global \(A \) and \(F \) matrices are constructed as:
Finally, as in W. Chen et al. (2018), we estimate the new vector of sector value added using equation (11), and the hypothetical loss in value added (LiVA) derived from trade flows extraction, as the difference $s' = (v' - v)$.

Clearly, one can consider also the opposite case, in which the i^{th} row of the sub matrices A_{UEi} to A_{UE27} are set equal to zero, or both cases simultaneously, i.e. the UK and EU countries will stop importing each other product delivered by sector i.

In the next results section, we contemplate all these three scenarios extracting one at a time all the 56 UK and EU sectors included in the WIOT.

5. Results and Discussion

5.1. The exposure to sectoral hypothetical extractions due to Brexit

In this sub-section, we discuss the results about the hypothetical extractions of sectoral bilateral trade flows between the UK and EU countries. The results are presented in Tables 3, 4 and 5, more detailed information can be found in tables from A.3 to A.8 in the Appendix.

Table 3 summarises the results in tables A.3 to A.6, and shows the top 30 sectors ranked by LiVA aggregates at the country level, i.e. those sectors delivering products that if excluded in bilateral trade between the UK and Europe would generate a greater loss in terms of aggregate domestic value added. The UK would be most affected by the exclusion of wholesale trade products (G46), administrative and support activities (N) and auxiliary financial services (K66). On the other side of the channel, EU countries appear to be very sensitive to the dynamics affecting motor vehicles industries (C29), food products (C10-12) and wholesale trade (G46). Furthermore, the paths designed by motor vehicle (C29) and food (C10-12) sectors, together with other manufacturing industries, such as petroleum products (C19), chemicals (C20), electronics and computers (C26) etc., are also significant for extra-EU countries. This evidence suggests that EU manufacturing industries are highly integrated in global value chains, thus the economic impact of Brexit would propagate worldwide. The automotive industry (C29) is the sector most exposed to Brexit. Consistently with the PageRank ranking in Table 2, Table A.3 suggests that this finding depends largely on the relevance of the German motor vehicles industry, which is a driving sector in Europe and has many input-output connections with other key sectors both in Europe and in the UK.
As revealed by Tables A.3 and A.4, unsurprisingly, the UK is the most exposed country in the world. In particular, the most vulnerable goods sector is food products (C10-12) and the most exposed services sector is the wholesale trade industry (G46). The fact that Brexit is risky and costly especially for the UK is in line with W. Chen et al. (2018) and the main Brexit literature. Here this finding is obtained by applying our technique by extracting all sectoral trade inflows and outflows between the UK and the EU, thus in a context of 1 against 27 countries. On the other hand, it is noteworthy that some EU countries such as Germany, the most exposed EU country in absolute LiVA terms, Ireland, France, Italy, the Netherlands, and Belgium appear significantly vulnerable as well. Outside Europe, Tables A.5 and A.6 show that the USA is the most exposed country along with the region labelled in the WIOD as rest of the world (ROW).

The exposure to aggregate LiVA, as a result of sectoral bilateral trade flows extractions, could also be seen as a measure of economic exposure to sectoral trade barriers. Generally, trade barriers include tariff and non-tariff barriers (see Greenaway, 1983; Greenaway, and Milner, 2003 for more insight on this). The goods sector could face both, whereas only non-tariff barriers can be applied to the service sectors. Table 3 shows that the UK most exposed sectors are services, whereas the most vulnerable sectors in EU countries are goods industries. Therefore, the UK main trade flows are exposed to non-tariff barrier, whilst EU countries are exposed to both tariff and non-tariff barriers. Hence, we can conclude that the UK is less exposed to the economic impact of trade barriers than Europe. This last remark, clearly, holds if EU does not impose huge non-tariff barriers. For example, the picture could change in the extreme case in which EU forbids the UK from selling financial products to EU countries.

Sector	Aggregate LiVA						
G46	-30532.12	C22	-9325.70	C29	-8810.95	C20	-58536.82
N	-22664.77	C10-12	-28075.26	C29	-8810.95	C20	-58536.82
K66	-13522.43	G46	-21467.87	C19	-7821.97	C10-12	-47777.54
C10-12	-10891.33	N	-20411.80	C20	-6984.73	N	-45578.63
M74-75	-10306.99	C28	-19123.69	C26	-6502.18	C28	-31792.38
C29	-9520.74	C20	-16778.59	C28	-4617.09	C28	-31792.38
C20	-8980.25	C21	-16720.40	C21	-3893.17	C21	-28599.07
B	-8353.32	C26	-13068.68	G46	-3843.51	C26	-26060.56
C28	-8051.61	C30	-10432.92	C30	-3826.90	C30	-18167.07
C21	-7985.50	C27	-9066.50	C24	-3624.20	C19	-7155.52
M69-70	-7935.16	C31-32	-7773.90	N	-2502.06	K66	-15082.68
K64	-7066.88	C13-15	-7742.37	C27	-2440.12	K64	-15080.35
C26	-6489.70	C22	-7657.62	A01	-2412.97	C27	-14967.54
J61	-5462.65	C25	-6899.24	H51	-2173.72	C74-75	-14925.02
C24	-4416.66	A01	-6437.99	C22	-2021.30	C42	-14266.96
C30	-4357.25	J61	-6252.89	C13-15	-1871.57	M69-70	-13720.50
R-S	-4194.27	K64	-6233.71	K64	-1779.76	C22	-13496.98
J62-63	-4149.98	C24	-6226.10	C31-32	-1516.96	B	-13069.11
G47	-4028.49	C19	-6112.17	C25	-1337.21	J61	-12949.81
C22	-3800.05	H51	-5725.90	J62-63	-1281.25	C31-32	-12897.85
E37-39	-3772.97	C17	-5266.36	J61	-1234.27	C13-15	-12600.67
C31-32	-3606.99	M69-70	-4877.78	B	-1181.57	A01	-10820.96
C27	-3460.92	L68	-4350.26	C17	-1005.56	C25	-10169.82
M71	-3274.67	G47	-4158.23	H50	-915.10	H51	-9530.62
C19	-3216.38	R-S	-4148.80	M69-70	-907.56	R-S	-8980.25
G45	-3012.99	M74-75	-3761.71	M74-75	-856.31	G47	-8685.19
C13-15	-2986.74	B	-3534.23	C23	-773.61	J62-63	-7905.60
J59-60	-2937.85	H49	-3126.51	K66	-715.55	C17	-7446.92
K65	-2808.33	C23	-3009.74	E37-39	-678.24	E37-39	-7389.34
H52	-2342.49	H50	-2983.15	R-S	-637.17	G45	-5690.95

Table 3. Bilateral trade flows extraction. Top 30 sectors ranked by aggregate LiVA (expressed in millions of US dollars) in the UK, the EU27, extra-EU countries and World.
In this sub-section, we discuss the results about the hypothetical extractions of sectoral trade inflows and outflows between the UK and EU countries. We first extract UK sectoral exports to EU, and then...
we extract UK sectoral imports from EU. The results are presented in tables 6 and 7, more detailed information can be found in tables from A.9 to A.20 in the Appendix.

Tables 6 and 7 present the top 30 sectors ranked by the expected aggregate LiVA as a result of respectively the extraction of sectoral UK export flows to EU countries, and the extraction of sectoral UK import flows from EU countries. The results shown in these two tables can be interpreted as measures of sectors external centrality. In other words, tables 6 and 7 indicate the Brexit strategic sectors, i.e. those sectors that play a key role in the import-export relations between the UK and EU countries. In particular, Table 6 provides a ranking of key export sectors for the UK and reveals that the most important products exported to EU countries are delivered respectively by the wholesale trade industries (G46) administrative and support activities sector (N) and auxiliary financial services (K66).

On the other side of the channel, EU countries in order to safeguard their domestic value-added should import from the UK automotive (C29), chemicals (C20) and wholesale trade (G46) industries. Conversely, Table 7 indicates the key import sectors for the UK and shows the relevance of food products (C10-12), motor vehicles industries (C29) and financial services (K64). Losing UK imports could have significant repercussions for EU countries, especially if the UK would stop importing from the automotive (C29), food products (C10-12) and wholesale trade (G46) industries. Again, the UK industries most involved in direct and indirect trade relationships with EU countries are mainly services sectors, whilst the most important EU industries are goods sectors. Thus, as aforementioned, the UK is, in general, less exposed to sectoral trade barriers than EU. This last remark could strengthen the position of the UK in the negotiation of a Brexit deal with EU.

Sector	Aggregate LiVA	EU 27	Aggregate LiVA	extra-EU	Aggregate LiVA	World	Aggregate LiVA
G46	-30318.81	C29	-2897.38	C29	-2504.05	G46	-34320.49
N	-22507.18	C20	-2368.68	C20	-2556.64	N	-25271.90
K66	-13505.51	G46	-1891.19	C19	-2253.79	K66	-14684.84
M74-75	-10274.22	N	-1480.60	G46	-2110.49	C29	-14314.86
C10-12	-9835.51	C28	-1384.15	C24	-2049.25	C20	-13358.06
C29	-8913.45	C10-12	-1207.74	C26	-1561.92	C10-12	-12309.91
C20	-8631.40	C24	-1126.20	C24	-1541.50	M74-75	-11556.40
B	-8334.21	C26	-945.32	C30	-1477.26	C26	-10711.84
M69-70	-7883.89	C21	-842.50	N	-1284.13	B	-9765.32
C28	-7786.19	C19	-779.87	C10-12	-1268.66	C21	-9214.18
C21	-7717.74	C30	-673.97	B	-946.79	C26	-8743.59
K64	-6397.60	M74-75	-672.67	C27	-809.40	M69-70	-8487.04
C26	-6236.35	C27	-666.57	K66	-662.90	C44	-7459.64
J61	-5378.81	C22	-654.72	C21	-653.94	K64	-7018.96
C24	-4284.19	K66	-516.45	M74-75	-621.51	J61	-6359.01
C30	-4185.71	B	-484.33	C22	-601.91	C30	-6336.93
J62-63	-4043.99	J61	-429.88	J61	-550.31	C19	-5836.90
G47	-3961.88	C31-32	-382.65	C31-32	-472.67	C22	-4891.75
R-S	-3908.81	E37-39	-357.70	C13-15	-334.32	C27	-4796.38
E37-39	-3742.33	M69-70	-301.94	K64	-322.52	E37-39	-4418.33
C22	-3635.12	K64	-298.85	E37-39	-318.31	J62-63	-4414.41
C31-32	-3489.36	C13-15	-283.14	C25	-294.19	C31-32	-4344.68
C27	-3320.41	G45	-225.83	M69-70	-281.27	G47	-4335.10
M71	-3257.06	C25	-200.39	H51	-234.10	R-S	-4220.32
G45	-2991.91	C17	-190.16	C23	-218.03	M71	-3543.94
J59-60	-2935.11	J62-63	-182.51	G47	-205.73	C13-15	-3472.72
C13-15	-2855.26	G47	-167.48	A01	-199.27	G45	-3414.47
C19	-2803.24	A01	-166.49	G45	-196.74	J59-60	-3293.96
K65	-2758.61	C23	-165.38	J59-60	-196.37	K65	-3097.79
H52	-2320.88	J59-60	-162.49	K65	-193.47	H52	-2614.71

Table 6. Extraction of sectoral UK export flows to EU. Top 30 sectors ranked by aggregate LiVA (expressed in millions of US dollars) in the UK, the EU27, extra-EU countries and World.
Table 7. Extraction of sectoral EU import flows from the UK. Top 30 sectors ranked by aggregate LiVA (expressed in millions of US dollars) in the UK, the EU27, extra-EU countries and World.

Sector	Aggregate LiVA	Sector	Aggregate LiVA	Sector	Aggregate LiVA
C10-12	-1560.32	C29	-3976.21	C10-12	-7641.43
C29	-775.39	C10-12	-2705.49	C29	-7076.99
K64	-772.01	G46	-1965.71	C19	-5674.28
C20	-531.67	N	-1981.51	C26	-5076.75
A01	-518.34	C28	-1811.87	C20	-5055.61
C19	-459.37	C21	-1629.95	C21	-3320.13
C21	-339.35	C20	-1567.76	C28	-3150.00
C26	-337.71	C26	-1249.46	C30	-2427.72
C28	-323.69	C30	-9922.21	A01	-2230.67
C30	-303.64	C27	-8531.99	H51	-1947.39
K6	-293.42	C13-15	-7545.66	C27	-1741.12
N	-273.56	C31-32	-7410.39	C24	-1698.56
H51	-270.65	C22	-7111.58	C27	-1660.90
G46	-231.24	C25	-6735.15	C13-15	-1557.91
C22	-193.64	A01	-6297.77	K64	-1465.84
C24	-176.51	K64	-5953.93	C22	-1441.15
C27	-164.80	J61	-5887.72	N	-1258.35
C13-15	-158.33	H51	-5630.35	C13-15	-1557.91
C25	-129.46	C24	-5462.80	C25	-1049.44
C31-32	-127.66	C19	-5412.93	C31-32	-1048.18
J61	-114.30	C17	-5151.80	H50	-878.33
J62-63	-110.38	M69-70	-4591.61	C17	-853.64
C17	-106.21	L68	-4342.16	J61	-694.31
M69-70	-82.42	R-S	-3999.55	C17	-694.31
H50	-73.66	R-S	-3992.65	C23	-560.04
G47	-67.36	M4-75	-3176.46	R-S	-477.35
C23	-66.35	B	-3098.32	H50	-3914.19
C16	-62.56	H49	-3088.74	C16	-436.13
E37-39	-57.92	H50	-2962.20	C16	-436.13
K65	-57.19	C23	-2862.69	E37-39	-374.34

The results shown in this and the previous sub-section do not provide any prediction about the economic impact of Brexit. In fact, the aim of the present study is different. Our findings would allow indicating those sectors that are key in the complex structure of the UK-EU trade relationships. In particular, our sectoral hypothetical extraction technique would help policy-maker to better understand which tariff would have a more distortive impact, which export sector should be pushed, which imports should be safeguarded. Such information may have foremost importance in the negotiations between the UK and EU.

6. Conclusion

This paper aimed to provide a detailed and holistic description of the EPN and to identify those sectors that are key in the complex structure of the UK-EU trade relationships. Studying the structure of the EPN is crucial in establishing whether and how a potential shock due to Brexit can propagate throughout the economy and lead to significant aggregate fluctuations. Furthermore, the analysis of this production network and the identification of 'systemically important' sectors, is of a foremost importance to design predictive tools, rather than bailout post-recession arguments, and better inform regulators on how to dampen aggregate variability and reduce the likelihood of systemic risk.

Our results can be summarised in three major points. First, the sectors in Europe are both highly connected and asymmetrically connected, i.e. most of the sectors have many connections with other
sectors, whilst most of the goods and services flow through just a few sectors. Therefore, a few industries placed in core countries, especially, Germany, the UK, and France dominate the EPN. In particular, the UK hosts the most important sectors both in standard input-output key sectors measure and in terms of network centrality. This means that a shock affecting one of these UK hubs will spread quickly to most sectors and countries, thus affecting the performance of the aggregate economy. Therefore, both macro-regions, the UK and the EU27, should safeguard UK key sectors from the potential negative impact of Brexit.

Second, the measure of country and sectors exposure to tariff and non-tariff barriers, that we developed inspired by the 'hypothetical extraction' method used in W. Chen et al. (2018), shows that the UK would be less exposed than EU countries to trade barriers. Indeed, although in our simulation as well as in the main literature, the UK is the country most exposed to the economic risk deriving from Brexit, we find that the most vulnerable UK sectors are services industries whose products can only be subject to non-tariff barriers, whereas the most exposed EU industries are goods sectors, mainly manufacturing, which can be subject to both tariff and non-tariff barriers.

Third, our measure identifies Brexit key import and export sectors for the UK, EU27, i.e. those sectors that play a key role in the import-export relations between the UK and EU countries. Results show that the UK industries most involved in direct and indirect trade relationships with EU countries are mainly services sectors, whilst the most important EU industries are goods sectors.

Therefore, the main implication of our results is that Brexit could be risky and costly not just for the UK, as it is often portrayed, but any form of Brexit could propagate within the EPN and affect businesses and governments in the EU and globally. Further, our findings of the exposure to trade barriers could strengthen the position of the UK in the negotiation of a Brexit deal with EU.

Considering the recent rise of protectionism worldwide, our study could be a useful tool to guide governments and institutions in implementing trade and economic policies. However, our analysis could be extended by implementing a multilayer network able to consider also the countries positions within the trade agreements network (Sopranzetti, 2017). Furthermore, the measure presented in this paper shares all limits with the comparative statics exercises. Future research could be dedicated to the development of a more sophisticated model which complements the standard input-output framework with agent-based models (Gualdi and Mandel, 2018; Baqee and Farhi, 2018 and Otto et al., 2017 provide the first experiments), allowing for endogenous sectoral interactions (Battiston et al., 2007; Delli Gatti et al., 2010; Delli Gatti et al., 2012), real and financial interactions (Sornette and Woodard, 2010; Riccetti et al., 2013; Bargigli et al., 2014), disequilibrium (Johnson, 1985), and non-linear dynamics (Dietzenbacher, 1993).
References

Acemoglu, D., Carvalho, V., Ozdaglar, A. and Tahbaz-Salehi, A., 2012. The Network Origins of Aggregate Fluctuations, Econometrica 80(5).

Acemoglu, D., Akcigit, U., Kerr W., 2016. Networks and the Macroeconomy: An Empirical Exploration, In National Bureau of Economic Research Macroeconomics Annual (Martin Eichenbaum and Jonathan Parker, eds.), volume 30, pp. 276–335, University of Chicago Press.

Acemoglu, D., Carvalho V.M., Ozdaglar A., Tahbaz-Salehi A., 2017. Microeconomic Origins of Macroeconomic Tail Risks, American Economic Review 107, pp. 54–108.

Alatriste-Contreras, M.G., 2015. The Relationship between the Key Sectors in the European Union Economy and the Intra-European Union Trade. Journal of Economic Structures, 4, 1–24.

Alatriste-Contreras, M., G., Fagiolo, G., 2014. Propagation of Economic Shocks in Input-Output Networks: A Cross-Country Analysis, Physical Review E, Vol. 90, 062812.

Amador, J., Cabral, S., 2017. Networks of Value-added Trade. The World Economy, 40(7):1291-1313. https://doi.org/10.1111/twec.12469

Baqaee, D., R., Farhi, E., 2018. Macroeconomics with Heterogeneous Agents and Input-Output Networks. NBER Working Paper No. 24684.

Bargigli, L., Gallegati, M., Riccetti, L., Russo, A., 2014. Network analysis and calibration of the “leveraged network-based financial accelerator”, Journal of Economic Behavior & Organization, Elsevier, vol. 99(C), pages 109-125.

Battiston, S., Delli Gatti, D., Gallegati, M., Greenwald, B. and Stiglitz, J., 2007. Credit chains and bankruptcy propagation in production networks, Journal of Economic Dynamics and Control, 31, issue 6, pp. 2061-2084.

Battiston, S., Delli Gatti, D., Gallegati, M., Greenwald, B., Stiglitz, J.E., 2012b. Liaisons dangereuses: Increasing connectivity, risk sharing, and systemic risk, Journal of Economic Dynamics and Control, Elsevier, vol. 36(8), pages 1121-1141.

Battiston, S., Puliga, M., Kaushik, R., Tasca, P. & Caldarelli, G., 2012a. DebtRank: too connected to fail? Financial networks, the FED and systemic risks. Sci. Rep. 2, 541.

Bohn T., Brakman S., Dietzenbacher E., 2018. The role of services in globalisation. The World Economy, 00:1–18. https://doi.org/10.1111/twec.12640

Bonacich, P., 1987. Power and Centrality: A Family of Measures. American Journal of Sociology, 92, 1170–1182.

Brin, S., Page, L., 1998. The Anatomy of a Large-Scale Hypertextual Web Search Engine. Computer Networks 30: 107–117.

Caldarelli, G., 2007. Scale-free networks: complex webs in nature and technology. Oxford University Press.

Capello, R., Caragliu, A., & Fratesi, U., 2017. Measuring border effects in European cross-border regions. Regional Studies. https://doi.org/10.1080/00343404.2017.1364843
Capello, R., Caragliu, A., & Fratesi, U., 2018. The regional costs of market size losses in a EU dismembering process. Special Issue: The trade, geography and regional implications of Brexit, Papers in Regional Science, 97(1), pp. 73–90. https://doi.org/10.1111/pirs.12347

Cappariello, R., Damjanovic, M., Mancini, M., Vergara Caffarelli, F., 2018. EU-UK global value chain trade and the indirect costs of Brexit. Questioni di Economia e Finanza, Occasional Papers, Bank of Italy. Number 468 – November.

Carvalho, Vasco M., 2014. From Micro to Macro via Production Networks. Journal of Economic Perspectives, 28 (4): 23-48.

Carvalho, V., Gabaix, X., 2013. The Great Diversification and Its Undoing. American Economic Review, 103(5): 1697-1727.

Carvalho, V. M., Nirei, M., Saito, Y.U., Tahbaz-Salehi, S. A., 2016. Supply Chain Disruptions: Evidence from the Great East Japan Earthquake, Columbia Business School Research Paper.

Cerina F, Zhu Z, Chessa A, Riccaboni M., 2015. World Input-Output Network. PLoS ONE 10(7): e0134025. https://doi.org/10.1371/journal.pone.0134025

Chen, J., Ebeke, E., Lin, L., Qu, H., Schoelermann, H., Siminitz, J., 2018. The Long-Term Impact of Brexit on the European Union. IMF Country Report No. 18/224.

Chen, W., Los, B., McCann, P., Ortega-Argilés, R., Thissen, M., & van Oort, F., 2018. The continental divide? Economic exposure to Brexit in regions and countries on both sides of The Channel. Papers in Regional Science, 97(1), 25–54.

Chenery, H., Watanabe, T., 1958. International comparisons of the structure of production, Econometrica 26, 487–521.

Delli Gatti, D., Gallegati, M., Greenwald, B., C., Russo, A., Stiglitz, J., E., 2010. The financial accelerator in an evolving credit network. Journal of Economic Dynamics & Control 34 (2010) 1627–1650.

Delli Gatti, D., Gallegati, M., Greenwald, B.C., Russo, A., Stiglitz, J.E., 2012. Mobility constraints, productivity trends, and extended crises, Journal of Economic Behavior & Organization, Elsevier, vol. 83(3), pages 375-393.

Dietzenbacher, E., 1992. The Measurement of Interindustry Linkages: Key Sectors in the Netherlands, Economic Modeling, 9, 419–437.

Dietzenbacher, E., 1993. The non-linear Perron-Frobenius theorem: Perturbations and aggregation Journal of Mathematical Economics Volume 23, Issue 1, January 1994, Pages 21-31.

Dietzenbacher, E., & Lahr, M.L., 2013. Expanding extractions. Economic Systems Research, 25, 341–360.

Dietzenbacher, E., Lenzen, M., Los, B., Guan, D., Lahr, M.L., Sancho, F., Suh, S., Yang, C., 2013. Input-output analysis: the next 25 years, Economic Systems Research, 25:4, 369-389, DOI: 10.1080/09535314.2013.846902

Dietzenbacher, E., Los, B., Stehrer, R., Timmer, M. P., & de Vries, G., 2013. The construction of world input-output tables in the WIOD project. Economic Systems Research, 25, 71–98.
Dietzenbacher, E. van der Linden, J.A., 1997. Sectoral and Spatial Linkages in the EC Production Structure. Journal of Regional Science, 37, 235–257.

Dietzenbacher, E., van der Linden, J.A., Steenge, A.E., 1993. The Regional Extraction Method: EC Input-Output Comparisons. Economic Systems Research, 5, 185–206.

Di Giovanni J., Levchenko, A.A., 2012. Country Size, International Trade, and Aggregate Fluctuations in Granular Economies. Journal of Political Economy, 120, 1083–1132.

Eaton J., Kortum S., Sotelo, S., 2012. International Trade: Linking Micro and Macro, Working Paper 17864, National Bureau of Economic Research.

Ennew, C., Greenaway, D., Reed, G., 1990. Further Evidence on Effective Tariffs and Effective Protection in the UK. Oxford Bulletin of Economics and Statistics, 52(1).

Gabaix X., 2011. The Granular Origins of Aggregate Fluctuations. Econometrica, 79, 733–772.

Garbellini, N., Wirkberman, A.L., 2014. Domestic demand and global production in the Eurozone: A multi-regional input-output assessment of the global crisis, International Review of Applied Economics, Volume 28, Issue 3, Pages 336-364.

García Muñiz, A.S., Raya, M., Ramos Carvajal, C., 2008. Key Sectors: A New Proposal from Network Theory. Regional Studies, 42, 1013–1030.

García Muñiz, A.S., Raya, M., Ramos Carvajal, C., 2011. Core periphery valued models in input-output field: A scope from network theory. Papers in Regional Science, 90(1).

Gasiorek, M., Serwicka, I., Smith, A., 2019. Which Manufacturing Industries and Sectors Are Most Vulnerable to Brexit?. The World Economy, 2019; 42:21–56. https://doi.org/10.1111/twec.12757

Greenaway, D., 1983. International Trade Policy: From Tariffs to the New Protectionism. The MACMILLAN Press LTD, London, England-United Kingdom.

Greenaway, D., Milner, C., 1994. Determinants of the Inter-Industry Structure of Protection in the UK. Oxford Bulletin of Economics and Statistics, 56(4).

Greenaway, D., Milner, C., 2003. Effective Protection, Policy Appraisal and Trade Policy Reform. The World Economy, 26(4): 441-456. https://doi.org/10.1111/1467-9701.00531

Greenaway D., Milner C., 2019. The economic impact of Brexit on the UK economy. The World Economy, 42:2–4. https://doi.org/10.1111/twec.12774

Gualdi, S., Mandel, A., 2018. Endogenous Growth in Production Networks. J Evol Econ (2018). https://doi.org/10.1007/s00191-018-0552-x

Gurgul, H., Lach, L., 2018. Some remarks on a social network approach to identifying key sectors, Economic Systems Research, Vol. 30, Issue 1. DOI:10.1080/09535314.2017.1365048

Hantzsche A., Kara A., Young G., 2019. The economic effects of the UK government's proposed Brexit deal. The World Economy, 42:5–20. https://doi.org/10.1111/twec.12770

Hirschmann, A. O., 1958. The strategy of economic development. New Haven: Yale University Press.

Horvath M., 1998. Cyclicality and Sectoral Linkages: Aggregate Fluctuations from Independent Sectoral Shocks. Review of Economic Dynamics, 1, 781–808.
Horvath M., 2000. Sectoral Shocks and Aggregate Fluctuations. Journal of Monetary Economics, 45, 69–106.

Jones, L.P., 1976. The Measurement of Hirschmanian Linkages. The Quarterly Journal of Economics, 90, 323–333.

Johnson, R.C., 2014. Five facts about value-added exports and implications for macroeconomics and trade research, The Journal of Economic Perspectives 28(2), 119–142.

Johnson, R.C., Noguera, G., 2012. Accounting for Intermediates: Production Sharing and Trade in Value Added. Journal of International Economics, 86, 224–236.

Johnson, T., 1985. A Continuous Leontief Dynamic Input-Output Model. Papers in Regional Science, 56(1), pp 177–188. https://doi.org/10.1111/j.1435-5597.1985.tb00846.x

Katz, L., 1953.A New Status Index Derived from Sociometric Analysis. Psychometrika, 18, 29–43.

Laumas, P.S., 1976. The Weighting Problem in Testing the Linkage Hypothesis. Quarterly Journal of Economics, 90, 308–312.

Leontief, W., 1936. Quantitative Input and Output Relations in the Economic Systems of the United States. The Review of Economics and Statistics, 18, 105-125.

Long J.B. and Plosser C.I., 1983. Real Business Cycles. Journal of Political Economy, 91 (1), 39–69.

Los, B., 2004. Identification of Strategic Industries: A Dynamic Perspective. Papers in Regional Science, 83, 669–698.

Los, B. Timmer, M., de Vries, G.J., 2013. Made in Europe? Trends in International Production Fragmentation, (GGDC Working Papers; Vol. GD-131). Groningen: GGDC.

Los, B., Timmer, M. P., & de Vries, G. J., 2016. Tracing value-added and double counting in gross exports: Comment. American Economic Review, 106(7), 1958–1966.

Luo, J., 2014. Which industries to bail out first in economic recession? Ranking U.S. industrial sectors by the Power-of-Pull, Economic Systems Research, 25:2, 157-169.

Luu, D., T., Napoletano, M., Fagiolo, G., Roventini, A., Sgrignoli, P., 2017. Uncovering the Network Complexity in Input-Output Linkages among Sectors in European Countries, Working Paper.

Markose, S.M., Giansante, S., Shaghaghi, A., R., 2012. ‘Too interconnected to fail’ financial network of US CDS market: Topological fragility and systemic risk, Journal of Economic Behavior & Organization Volume 83, Issue 3, Pages 627-646.

McCann, P. (Ed.), 2018. The trade, geography and regional implications of Brexit, [Special issue]. Papers in Regional Science, 97(1).

Miller, R.E., Blair, P. D., 2009. Input-output analysis; foundations and extensions (2nd ed.). Cambridge, UK: Cambridge University Press.

Miller, R.E., Lahr, M.L., 2001. A Taxonomy of Extractions. In: M.L. Lahr and R.E. Miller (eds.) Regional Science Perspectives in Economic Analysis. Amsterdam: Elsevier Science, 407–44.

Minford P., 2019. The effects of Brexit on the UK economy. The World Economy, 42:57–67. https://doi.org/10.1111/twec.12771
Mulabdic, A., Osnago, A., and Ruta, M., 2017. Deep Integration and UK- EU Trade Relations, Policy Research Working Paper Series 7947, The World Bank.

Nagengast, A. J. and R. Stehrer, 2016. Accounting for the Differences Between Gross and Value Added Trade Balances, The World Economy, 39, 9, 1276–1306. https://doi.org/10.1111/twec.12401

Newman M., 2010. Networks: An Introduction. Oxford University Press, Inc., New York, NY, USA.

Otto, C., Willner, S. N., Wenz, L., Frieler, K., and Levermann, A., 2017. Modeling loss-propagation in the global supply network: The dynamic agent-based model acclimate. Journal of Economic Dynamics and Control, 83, 232–269, 2017.

Rasmussen, P., 1956. Studies in Intersectoral Relation. North Holland, Amsterdam.

Ricci, L., Russo, A., Gallegati, M., 2013. Leveraged network-based financial accelerator. Journal of Economic Dynamics & Control 37 (2013) 1626–1640.

Roson, R., Sartori, M., 2016. Input–output linkages and the propagation of domestic productivity shocks: assessing alternative theories with stochastic simulation, Economic Systems Research, 2016 http://dx.doi.org/10.1080/09535314.2015.1132194

Shea, John S., 2002. Complementarities and Comovements, Journal of Money, Credit and Banking, Blackwell Publishing, vol. 34(2), pages 412-433, May.

Sopranzetti S., 2017. Overlapping free trade agreements and international trade: A network approach. The World Economy, 00:1–18. https://doi.org/10.1111/twec.12599

Sornette, D., Woodard, R., 2010. Financial Bubbles, Real Estate bubbles, Derivative Bubbles, and the Financial and Economic Crisis, in Watanabe Tsutomu, Takayasu Hideki (Eds.), Econophysics approaches to large-scale business data and financial crisis. Springer, Tokyo.

Temurshoev, U., Oosterhaven, J., 2014. Analytical and Empirical Comparison of Policy-Relevant Key Sector Measures, Spatial Economic Analysis, Vol. 9, Issue 3.

Timmer, M.P., Erumban, A.A., Los, B., Stehrer, R., de Vries, G.J., 2014. Slicing Up Global Value Chains. Journal of Economic Perspectives, 28 (2): 99-118.

Tukker A., Dietzenbacher, E., 2013. Global Multiregional Input–Output Frameworks: An Introduction and Outlook. Economic Systems Research, 25, 1–19.

Vandenbussche, H., Connell, W., & Simons, W., 2017. Global value-chains, trade shocks and jobs: An application to Brexit. In CEPR Discussion Paper DP123030. London, UK: Centre for Economic Policy Research.

White, L., J., 2014. The Basics of “Too Big to Fail”, in Paul H. Schultz, ed. Dodd-Frank and the Future of Finance, MIT Press.

Yotopoulos, P.A., Nugent, J.B., 1973. A Balanced-growth Version of The Linkage Hypothesis: A Test. The Quarterly Journal of Economics, 87, 157–171.

25
Appendix

Country Name	ISO Code	Country Name	ISO Code
AUSTRALIA	AUS	IRELAND	IRL
AUSTRIA	AUT	ITALY	ITA
BELGIUM	BEL	JAPAN	JPN
BULGARIA	BGR	SOUTH KOREA	KOR
BRASIL	BRA	LITHUANIA	LTU
CANADA	CAN	LUXEMBOURG	LUX
SWITZERLAND	CHE	LATVIA	LVA
CHINA	CHN	MEXICO	MEX
CYPRUS	CYP	MALTA	MLT
CZECH REPUBLIC	CZE	NETHERLANDS	NLD
GERMANY	DEU	NORWAY	NOR
DENMARK	DNK	POLAND	POL
SPAIN	ESP	PORTUGAL	PRT
ESTONIA	EST	ROMANIA	ROU
FINLAND	FIN	RUSSIA	RUS
FRANCE	FRA	SLOVAKIA	SVK
UNITED KINGDOM	GBR	SLOVENIA	SVN
GREECE	GRC	SWEDEN	SWE
CROATIA	HRV	TURKEY	TUR
HUNGARY	HUN	TAIWAN	TWN
INDIA	IDN	UNITED STATES	USA
INDONESIA	IND	REST OF THE WORLD	ROW

Table A.1. Countries in WIOD.
ISIC Rev. 4 Code	Sector Legend	ISIC Rev. 4 Code	Sector Legend
A01	Live Animals	D35	Electricity & Gas
A02	Forestry	E36	Water Collection Activities
A03	Fishing	E37-39	Waste Collection Activities
B	Mining and quarrying	F	Construction
C10-12	Food Product	G45	Wholesale and retail trade
C13-15	Textiles	G46	Wholesale trade
C16	Wood and Cork	G47	Retail trade
C17	Paper Products	H49	Land & Pipeline transport
C18	Printing and Media	H50	Water transport
C19	Petroleum Products	H51	Air transport
C20	Chemicals	H52	Warehousing
C21	Pharmaceutical	H53	Postal
C22	Rubber and Plastic	I	Accommodation & Food serv.
C23	Other Non-metallic mineral	J58	Publishing Act.
C24	Basic Metals	J59-60	Media Production
C25	Metal products	J61	Telecom
C26	Electronics and Computers	J62-63	Computer Programming
C27	Electrical Equipment	K64	Financial Services
C28	Machinery & Equipment	K65	Insurance
C29	Motor vehicles	K66	Auxiliary Financial Serv.
C30	Transport equipment	L68	Real Estate
C31-32	Furniture & other manufac.	M69-70	Legal and Accounting
C33	Installation of machinery	M71	Architectural and engineering act.
		M72	Scientific Research
		M73	Advertising and market research
		M74-75	Other professional activities
		N	Administrative and support act.
		O84	Public admin and defence
		P85	Education
		Q	Health
		R-S	Other services
		T	Activities of Households as Employers
		U	Activities of Extraterritorial Org.

Table A.2. Sectors in WIOD.
AUT	BEL	BGR	CYP	CZE	DEU	EST	FIN	FRA	GRC	HRV	HUN	IRL	ITA	LUX	LVA	MLT	NLD	NOR	POL	PRT	ROU	SVK	SVN	UAE	GBR			
31	169	-21	-11	-17	359	135	896	139	808	-3	570	-78	-50	54	398	61	85	-81	-34	114	-12	-2	-4	-9	-14	-16	-14	-10
32	-12	-1	0	0	2	-10	-24	-11	-35	56	96	36	73	-38	-34	61	85	-81	-34	114	-12	-2	-4	-9	-14	-16	-14	-10
33	1	-10	-13	-18	139	139	139	139	139	139	139	139	139	139	139	139	139	139	139	139	139	139	139	139	139	139	139	
34	-5	58	253	218	139	139	139	139	139	139	139	139	139	139	139	139	139	139	139	139	139	139	139	139	139	139	139	
35	-5	58	253	218	139	139	139	139	139	139	139	139	139	139	139	139	139	139	139	139	139	139	139	139	139	139	139	
36	-5	58	253	218	139	139	139	139	139	139	139	139	139	139	139	139	139	139	139	139	139	139	139	139	139	139	139	
37	-5	58	253	218	139	139	139	139	139	139	139	139	139	139	139	139	139	139	139	139	139	139	139	139	139	139	139	
38	-5	58	253	218	139	139	139	139	139	139	139	139	139	139	139	139	139	139	139	139	139	139	139	139	139	139	139	
39	-5	58	253	218	139	139	139	139	139	139	139	139	139	139	139	139	139	139	139	139	139	139	139	139	139	139	139	
40	-5	58	253	218	139	139	139	139	139	139	139	139	139	139	139	139	139	139	139	139	139	139	139	139	139	139	139	
Table A.3. Aggregate LiVA (expressed in millions of US dollars) in all EU27 countries and the UK as a result of bilateral trade flows extraction. Goods.																												
Table A.5. Aggregate LiVA (expressed in millions of US dollars) in all Extra-EU countries and ROW as a result of bilateral trade flows extraction. Goods.

Country	AUS	BRA	CAN	CHN	CNY	EID	IND	JPN	KOR	MEX	NOR	ROW	TUR	USA	World
AUS	-11	-30	-24	-23	-21	-24	-24	-24	-24	-24	-24	-24	-24	-24	-24
BRA	-10	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20
CAN	-9	-19	-19	-19	-19	-19	-19	-19	-19	-19	-19	-19	-19	-19	-19
CHN	-8	-18	-18	-18	-18	-18	-18	-18	-18	-18	-18	-18	-18	-18	-18
CNY	-7	-17	-17	-17	-17	-17	-17	-17	-17	-17	-17	-17	-17	-17	-17
EID	-6	-16	-16	-16	-16	-16	-16	-16	-16	-16	-16	-16	-16	-16	-16
IND	-5	-15	-15	-15	-15	-15	-15	-15	-15	-15	-15	-15	-15	-15	-15
JPN	-4	-14	-14	-14	-14	-14	-14	-14	-14	-14	-14	-14	-14	-14	-14
KOR	-3	-13	-13	-13	-13	-13	-13	-13	-13	-13	-13	-13	-13	-13	-13
MEX	-2	-12	-12	-12	-12	-12	-12	-12	-12	-12	-12	-12	-12	-12	-12
NOR	-1	-11	-11	-11	-11	-11	-11	-11	-11	-11	-11	-11	-11	-11	-11
ROW	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TUR	1	2	2	2	2	2	2	2	2	2	2	2	2	2	2
USA	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3
World	3	4	4	4	4	4	4	4	4	4	4	4	4	4	4

Table A.6. Aggregate LiVA (expressed in millions of US dollars) in all Extra-EU countries and ROW as a result of bilateral trade flows extraction. Services.
Country-Sector	Loss	Loss
GBR_A01	-946.24	-549.16
GBR_A02	-476.08	-352.61
GBR_A03	-331.02	-161.13
GBR_A04	-157.87	-157.59
GBR_A05	-140.35	-129.85
GBR_A06	-128.11	-124.27
GBR_A07	-121.85	-51.96
GBR_A08	-31.76	-8.92

Table A.7: Top 15 most affected country-sectors in terms of LiVA (expressed in millions of US dollars) as a result of goods sectors hypothetical extraction.
Extracted Sector	Country-Sector	Loss								
D35	GBR_D35	86.06	GBR_M75	32.50	GBR_B	19.87	GBR_S	26.79		
E36		10.28		7.48		1.33		1.25		1.65
E37		-263.64		-133.95		-89.20		-152.02		-184.27
F		-50.37		-364.03		-144.63		-90.72		-73.89
G		-16.15		79.68		56.61		33.64		35.18
H		-56.93		-387.74		-149.74		-128.86		-121.63
K		-162.66		-162.86		-103.12		-109.79		-103.26
L		-42.38		-44.75		-40.25		-34.09		-30.07
M		-124.72		-124.33		-120.32		-114.03		-109.21
N		-308.01		-325.45		-296.78		-296.04		-294.29
P		-265.70		-233.01		-156.40		-153.91		-146.98
Q		-125.49		-125.49		-125.49		-125.49		-125.49
R		-336.99		-336.99		-336.99		-336.99		-336.99

Table A.8: Top 15 most affected country-sectors in terms of LiVA (expressed in millions of US dollars) as a result of services sectors hypothetical extraction.
Table A.9. Aggregate LiVA (expressed in millions of US dollars) in all EU27 countries and the UK as a result of UK outflows to EU extraction. Goods.

Table A.10. Aggregate LiVA (expressed in millions of US dollars) in all EU27 countries and the UK as a result of UK outflows to EU extraction. Services.
AUS	BRA	CAN	CHE	CZE	CYP	DEU	DEN	ESP	FIN	FRA	GBR	GEO	HUN	IRL	ITA	JPN	KOR	LUX	MEX	NLD	NOR	POL	POR	RUS	SVN	TUR	UKR	UZA	ROW	WORLD																			
0.92	1.22	2.31	1.94	3.47	0.96	0.62	1.32	0.75	0.45	0.966	9.42	0.16	-5.87	-10.62	-6.39	5.34	0.25	0.92	0.45	0.966	9.42	0.16	-5.87	-10.62	-6.39	5.34	0.25	0.92	0.45	0.966	9.42	0.16	-5.87	-10.62	-6.39	5.34	0.25	0.92	0.45	0.966	9.42	0.16	-5.87	-10.62	-6.39	5.34	0.25	0.92	0.45
0.09	0.05	0.01	-0.00	0.02	0.05	-0.01	0.02	0.01	0.02	0.01	0.02	0.01	0.02	0.01	0.02	0.01	0.02	0.01	0.02	0.01	0.02	0.01	0.02	0.01	0.02	0.01	0.02	0.01	0.02	0.01	0.02	0.01	0.02	0.01	0.02	0.01	0.02	0.01	0.02	0.01	0.02	0.01	0.02	0.01	0.02	0.01			
0.03	0.02	0.01	-0.00	0.03	-0.01	0.02	-0.01	0.03	0.02	-0.01	0.02	0.02	-0.01	0.02	0.02	-0.01	0.02	0.02	-0.01	0.02	0.02	-0.01	0.02	0.02	-0.01	0.02	0.02	-0.01	0.02	0.02	-0.01	0.02	0.02	-0.01	0.02	0.02	-0.01	0.02	0.02	-0.01	0.02	0.02	-0.01	0.02	0.02	-0.01			
-0.01	-0.02	-0.03	0.04	-0.05	0.06	-0.07	0.08	-0.09	0.10	-0.11	0.12	-0.13	0.14	-0.15	0.16	-0.17	0.18	-0.19	0.20	-0.21	0.22	-0.23	0.24	-0.25	0.26	-0.27	0.28	-0.29	0.30	-0.31	0.32	-0.33	0.34	-0.35	0.36	-0.37	0.38	-0.39	0.40	-0.41	0.42	-0.43	0.44	-0.45	0.46				
-0.01	-0.02	-0.03	0.04	-0.05	0.06	-0.07	0.08	-0.09	0.10	-0.11	0.12	-0.13	0.14	-0.15	0.16	-0.17	0.18	-0.19	0.20	-0.21	0.22	-0.23	0.24	-0.25	0.26	-0.27	0.28	-0.29	0.30	-0.31	0.32	-0.33	0.34	-0.35	0.36	-0.37	0.38	-0.39	0.40	-0.41	0.42	-0.43	0.44	-0.45	0.46				
-0.01	-0.02	-0.03	0.04	-0.05	0.06	-0.07	0.08	-0.09	0.10	-0.11	0.12	-0.13	0.14	-0.15	0.16	-0.17	0.18	-0.19	0.20	-0.21	0.22	-0.23	0.24	-0.25	0.26	-0.27	0.28	-0.29	0.30	-0.31	0.32	-0.33	0.34	-0.35	0.36	-0.37	0.38	-0.39	0.40	-0.41	0.42	-0.43	0.44	-0.45	0.46				
-0.01	-0.02	-0.03	0.04	-0.05	0.06	-0.07	0.08	-0.09	0.10	-0.11	0.12	-0.13	0.14	-0.15	0.16	-0.17	0.18	-0.19	0.20	-0.21	0.22	-0.23	0.24	-0.25	0.26	-0.27	0.28	-0.29	0.30	-0.31	0.32	-0.33	0.34	-0.35	0.36	-0.37	0.38	-0.39	0.40	-0.41	0.42	-0.43	0.44	-0.45	0.46				
-0.01	-0.02	-0.03	0.04	-0.05	0.06	-0.07	0.08	-0.09	0.10	-0.11	0.12	-0.13	0.14	-0.15	0.16	-0.17	0.18	-0.19	0.20	-0.21	0.22	-0.23	0.24	-0.25	0.26	-0.27	0.28	-0.29	0.30	-0.31	0.32	-0.33	0.34	-0.35	0.36	-0.37	0.38	-0.39	0.40	-0.41	0.42	-0.43	0.44	-0.45	0.46				

Table A.11. Aggregate LiVA (expressed in millions of US dollars) in all Extra-EU countries and ROW as a result of EU outflows to EU extraction. Goods.
Country-Sector	GBR_A01	GBR_C10-12	GBR_G45	GBR_K65	GBR_K64	GBR_G46	GBR_F	GBR_N	GBR_ROW	GBR_D35	GBR_M69_70	GBR_H90	GBR_B	GBR_G67	NOR_B															
Loss	-801.46	-97.02	-56.66	-55.38	-40.32	-37.25	-9.95	-20.64	-24.07	-23.95	-30.30	-16.48	-16.22	-14.28	-13.66															
Loss	-17.50	-4.86	-2.78	-2.76	-2.35	-2.31	-1.35	-1.45	-1.29	-1.10	-0.94	-0.87	-0.91	-0.79	-0.79															
Loss	-30.49	-3.48	-2.78	-2.76	-2.35	-2.31	-2.12	-2.15	-2.21	-1.99	-1.90	-2.09	-2.07	-2.06	-2.06															
Loss	-65.98	-7.92	-6.06	-6.33	-5.76	-5.99	-3.99	-3.99	-3.53	-3.26	-3.23	-3.23	-3.23	-3.23	-3.23															
Loss	-70.16	-8.92	-8.67	-8.32	-7.52	-7.52	-6.77	-6.77	-6.42	-6.17	-6.17	-6.17	-6.17	-6.17	-6.17															
Loss	-102.45	-11.92	-10.99	-9.99	-9.99	-9.99	-9.99	-9.99	-9.99	-9.99	-9.99	-9.99	-9.99	-9.99	-9.99															
Loss	-185.42	-22.48	-20.60	-22.10	-21.76	-21.76	-21.76	-21.76	-21.76	-21.76	-21.76	-21.76	-21.76	-21.76	-21.76															
Loss	-257.71	-32.47	-30.28	-30.28	-30.28	-30.28	-30.28	-30.28	-30.28	-30.28	-30.28	-30.28	-30.28	-30.28	-30.28															
Loss	-349.56	-40.87	-40.87	-40.87	-40.87	-40.87	-40.87	-40.87	-40.87	-40.87	-40.87	-40.87	-40.87	-40.87	-40.87															
Loss	-432.45	-49.20	-49.20	-49.20	-49.20	-49.20	-49.20	-49.20	-49.20	-49.20	-49.20	-49.20	-49.20	-49.20	-49.20															
Loss	-523.95	-62.47	-62.47	-62.47	-62.47	-62.47	-62.47	-62.47	-62.47	-62.47	-62.47	-62.47	-62.47	-62.47	-62.47															
Loss	-615.76	-74.46	-74.46	-74.46	-74.46	-74.46	-74.46	-74.46	-74.46	-74.46	-74.46	-74.46	-74.46	-74.46	-74.46															
Loss	-707.10	-86.47	-86.47	-86.47	-86.47	-86.47	-86.47	-86.47	-86.47	-86.47	-86.47	-86.47	-86.47	-86.47	-86.47															
Loss	-799.84	-98.46	-98.46	-98.46	-98.46	-98.46	-98.46	-98.46	-98.46	-98.46	-98.46	-98.46	-98.46	-98.46	-98.46															
Loss	-892.50	-110.45	-110.45	-110.45	-110.45	-110.45	-110.45	-110.45	-110.45	-110.45	-110.45	-110.45	-110.45	-110.45	-110.45															
Country-Sector	Loss																													
----------------	------	----------------	------	----------------	------	----------------	------	----------------	------	----------------	------	----------------	------																	
GBR_D35	-182.09	GBR_B	-4.38	GBR_M99_70	2.37	GBR_M47	-3.87	GBR_M46	-3.87	GBR_M7	-3.87	GBR_M15	-3.87																	
GBR_E36	7.8	GBR_M99_70	-60.9	GBR_M47	-3.87	GBR_M45	-3.87	GBR_M46	-3.87	GBR_M7	-3.87	GBR_M15	-3.87																	
E37-39	-2394.80	GBR_R-S	-62.22	GBR_M99_70	4.37	GBR_M45	-3.87	GBR_M46	-3.87	GBR_M7	-3.87	GBR_M15	-3.87																	
F	-299.14	GBR_M99_70	-59.46	GBR_M47	-3.87	GBR_M45	-3.87	GBR_M46	-3.87	GBR_M7	-3.87	GBR_M15	-3.87																	
G45	-2314.52	GBR_M99_70	-46.68	GBR_M47	-3.87	GBR_M45	-3.87	GBR_M46	-3.87	GBR_M7	-3.87	GBR_M15	-3.87																	
G46	-1470.05	GBR_M99_70	-78.51	GBR_M47	-3.87	GBR_M45	-3.87	GBR_M46	-3.87	GBR_M7	-3.87	GBR_M15	-3.87																	
H49	-346.93	GBR_N	8.69	GBR_M99_70	-19.08	GBR_M47	-3.87	GBR_M46	-3.87	GBR_M7	-3.87	GBR_M15	-3.87																	
H50	-228.68	GBR_R-S	3.96	GBR_M99_70	-19.08	GBR_M47	-3.87	GBR_M46	-3.87	GBR_M7	-3.87	GBR_M15	-3.87																	
H51	-230.09	GBR_R-S	3.96	GBR_M99_70	-19.08	GBR_M47	-3.87	GBR_M46	-3.87	GBR_M7	-3.87	GBR_M15	-3.87																	
H52	-146.88	GBR_N	3.96	GBR_M99_70	-19.08	GBR_M47	-3.87	GBR_M46	-3.87	GBR_M7	-3.87	GBR_M15	-3.87																	
H53	-593.45	GBR_R-S	3.96	GBR_M99_70	-19.08	GBR_M47	-3.87	GBR_M46	-3.87	GBR_M7	-3.87	GBR_M15	-3.87																	
J8	-705.19	GBR_N	10.83	GBR_M99_70	-19.08	GBR_M47	-3.87	GBR_M46	-3.87	GBR_M7	-3.87	GBR_M15	-3.87																	
J9	-1108.19	GBR_N	10.83	GBR_M99_70	-19.08	GBR_M47	-3.87	GBR_M46	-3.87	GBR_M7	-3.87	GBR_M15	-3.87																	
J95-60	-1901.01	GBR_N	10.83	GBR_M99_70	-19.08	GBR_M47	-3.87	GBR_M46	-3.87	GBR_M7	-3.87	GBR_M15	-3.87																	
J61	-3829.57	GBR_R-S	10.83	GBR_M99_70	-19.08	GBR_M47	-3.87	GBR_M46	-3.87	GBR_M7	-3.87	GBR_M15	-3.87																	
J62-65	-2792.81	GBR_R-S	10.83	GBR_M99_70	-19.08	GBR_M47	-3.87	GBR_M46	-3.87	GBR_M7	-3.87	GBR_M15	-3.87																	
J64	-4167.71	GBR_R-S	10.83	GBR_M99_70	-19.08	GBR_M47	-3.87	GBR_M46	-3.87	GBR_M7	-3.87	GBR_M15	-3.87																	
K64	-1587.87	GBR_R-S	10.83	GBR_M99_70	-19.08	GBR_M47	-3.87	GBR_M46	-3.87	GBR_M7	-3.87	GBR_M15	-3.87																	
K65	-6961.68	GBR_R-S	10.83	GBR_M99_70	-19.08	GBR_M47	-3.87	GBR_M46	-3.87	GBR_M7	-3.87	GBR_M15	-3.87																	
M69-70	-4172.09	GBR_R-S	10.83	GBR_M99_70	-19.08	GBR_M47	-3.87	GBR_M46	-3.87	GBR_M7	-3.87	GBR_M15	-3.87																	
M71	-2146.62	GBR_R-S	10.83	GBR_M99_70	-19.08	GBR_M47	-3.87	GBR_M46	-3.87	GBR_M7	-3.87	GBR_M15	-3.87																	
M72	-1122.97	GBR_R-S	10.83	GBR_M99_70	-19.08	GBR_M47	-3.87	GBR_M46	-3.87	GBR_M7	-3.87	GBR_M15	-3.87																	
M74-75	-7229.31	GBR_R-S	10.83	GBR_M99_70	-19.08	GBR_M47	-3.87	GBR_M46	-3.87	GBR_M7	-3.87	GBR_M15	-3.87																	
N	-1241.45	GBR_M99_70	10.83	GBR_M99_70	-19.08	GBR_M47	-3.87	GBR_M46	-3.87	GBR_M7	-3.87	GBR_M15	-3.87																	
R	-313.29	GBR_M99_70	10.83	GBR_M99_70	-19.08	GBR_M47	-3.87	GBR_M46	-3.87	GBR_M7	-3.87	GBR_M15	-3.87																	
P95	-894.73	GBR_M99_70	10.83	GBR_M99_70	-19.08	GBR_M47	-3.87	GBR_M46	-3.87	GBR_M7	-3.87	GBR_M15	-3.87																	
Q	-123.58	GBR_M99_70	10.83	GBR_M99_70	-19.08	GBR_M47	-3.87	GBR_M46	-3.87	GBR_M7	-3.87	GBR_M15	-3.87																	
R-S	-2009.41	GBR_M99_70	10.83	GBR_M99_70	-19.08	GBR_M47	-3.87	GBR_M46	-3.87	GBR_M7	-3.87	GBR_M15	-3.87																	
	AUT	BEL	BGR	CYP	DEN	EST	FIN	FRA	GBR	HOL	HUN	ICT	ISL	ITA	JPN	KOR	LIT	NLD	NOR	PRT	ROU	SVN	SWE	TUR	UKR	USA	VEN	ZAF		
-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----		
M70	53	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72	73	
M71	54	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72	73
M72	55	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72	73	74
M73	56	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75

Table A.15. Aggregate LiVA (expressed in millions of US dollars) in all EU27 countries and the UK as a result of UK inflows from EU extraction. Goods.

	AUT	BEL	BGR	CYP	DEN	EST	FIN	FRA	GBR	HOL	HUN	ICT	ISL	ITA	JPN	KOR	LIT	NLD	NOR	PRT	ROU	SVN	SWE	TUR	UKR	USA	VEN	ZAF	
D5	14	80	32	18	78	33	42	74	33	18	78	33	42	74	33	42	74	33	42	74	33	42	74	33	42	74	33	42	74
D6	15	81	33	19	79	34	43	75	34	19	79	34	43	75	34	43	75	34	43	75	34	43	75	34	43	75	34	43	75

Table A.16. Aggregate LiVA (expressed in millions of US dollars) in all EU27 countries as a result of UK inflows from EU extraction. Services.
Table A.17. Aggregate LiVA (expressed in millions of US dollars) in all Extra-EU countries and ROW as a result of UK inflows from EU extraction. Services.

| Country | AUS | BRA | CAN | CHE | CHN | CRO | DEN | IND | JPN | KOR | MEX | NOR | RUS | TUR | TYN | USA | ROW | WORLD |
|---------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-------|
| AUS | -14 | -46 | -48 | -113 | -23 | -20 | -30 | -18 | -21 | -124 | -13 | -11 | -888 | -699 | -597 | |
| BRA | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -3 | -6 | -11 | |
| CAN | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -6 | -106 | |
| CHE | 2 | 12 | -19 | -2 | -1 | -1 | -1 | -1 | -1 | -2 | 2 | 2 | 0 | | |
| CHN | -71 | -309 | -147 | -229 | -499 | -115 | -105 | -121 | -61 | -55 | -184 | -36 | -37 | -278 | |
| CRO | -20 | -39 | -18 | -48 | -294 | -26 | -80 | -35 | -43 | -11 | -27 | -67 | -145 | -17 | -180 | -508 | -926 |
| DEN | -3 | -7 | -30 | -15 | -45 | -4 | -8 | -6 | -6 | -6 | -18 | -6 | -18 | -7 | -180 | -247 | -612 |
| IND | -7 | -23 | -15 | -92 | -28 | -9 | -20 | -13 | -6 | -60 | -102 | -18 | -7 | -180 | -247 | -612 |
| C20 | -37 | -30 | -35 | -147 | -110 | -110 | -155 | -89 | -59 | -259 | -519 | -70 | -35 | 1012 | -2741 | -2185 | |
| C21 | -39 | -40 | -41 | -27 | -275 | -27 | -39 | -65 | -37 | -23 | -61 | -168 | -29 | -1333 | 692 | -19954 | |
| C22 | -14 | -24 | -22 | -39 | -177 | -14 | -29 | -21 | -12 | -81 | -132 | -22 | -14 | -299 | -445 | -8746 | |
| C23 | -5 | -7 | -9 | -19 | -48 | -4 | -7 | -12 | -7 | -7 | -39 | -42 | -10 | -4 | -45 | -260 | -345 | |
| C24 | -17 | -35 | -37 | -45 | -141 | -174 | -14 | -25 | -33 | -25 | -142 | -281 | -39 | -14 | -248 | -580 | -7538 | |
| C25 | -11 | -22 | -22 | -44 | -129 | -9 | -20 | -34 | -10 | -49 | -119 | -33 | -15 | -181 | -327 | -7914 | |
| C26 | -37 | -39 | -53 | -167 | -115 | -33 | -46 | -320 | -286 | -24 | -59 | -131 | -43 | -176 | -973 | -1516 | -17874 | |
| C27 | -16 | -23 | -26 | -82 | -359 | -15 | -29 | -87 | -63 | -16 | -32 | -125 | -45 | -37 | -241 | -465 | -10538 | |
| C28 | -28 | -52 | -55 | -147 | -611 | -25 | -57 | -175 | -91 | -27 | -106 | -216 | -123 | -59 | -530 | 827 | 21586 | |
| C29 | -64 | -103 | -107 | -380 | -1132 | -60 | -155 | -436 | -279 | -78 | -221 | -513 | -386 | -122 | -1020 | -2060 | -41962 | |
| C30 | -18 | -38 | -80 | -89 | -324 | -17 | -39 | -102 | -53 | -32 | -54 | -100 | -53 | -36 | -839 | -534 | -1264 | |
| C31 | -9 | -17 | -18 | -55 | -178 | -12 | -21 | -23 | -10 | -14 | -6 | -6 | -4 | -39 | -57 | -160 | | |

Table A.18. Aggregate LiVA (expressed in millions of US dollars) in all Extra-EU countries and ROW as a result of UK inflows from EU extraction. Services.
Table A.19. Top 15 most affected country-sectors in terms of LiVA (expressed in millions of US dollars) as a result of UK goods imports from EU hypothetical extraction.

Country-Sector	Loss																									
IRL_A01	-125.03	ESP_A01	590.03	NLD_A01	-476.84	ITA_A01	352.16	USA_S	330.78	DEU_A01	-100.97	USA_N	157.61	USA_G	155.73	IRL_C13-12	-138.39	ROW_A01	-129.74	USA_M	115.09	IRL_B	-108.97	103.84	-90.29	-88.80
A02	-92.76	ESP_A01	9.45	ITA_A01	-4.24	NLD_A01	-3.60	POL_A02	-2.56	DEU_A01	-1.96	USA_N	1.15	USA_S	1.45	IRL_C13-12	-1.43	ROW_A01	-1.40	USA_M	-1.31	IRL_B	-1.03	-0.97	-0.95	-0.95
A03	-19.41	NLD_A02	-9.53	DEU_A02	-4.39	POL_A02	-3.69	DEU_A01	-2.34	DEU_A01	-1.70	USA_N	1.08	USA_S	1.50	IRL_C13-12	-1.35	ROW_A01	-1.54	USA_M	-1.01	-0.79	-0.76	-0.67		
Country-Sector	Loss																									
NLD_B	-1736.47	DNK_B	-732.08	IRL_C10-15	-660.89	NLD_D35	-55.13	USA_N	-42.56	NLD_K64	-31.76	ROW_A01	-29.26	USA_M	-26.37	ROW_A01	-25.04	USA_M	-19.43	-17.66	-16.28	-14.08				
Country-Sector	Loss																									
Country-Sector	Loss																									
Country-Sector	Loss																									
Country-Sector	Loss																									

Table A.19. Top 15 most affected country-sectors in terms of LiVA (expressed in millions of US dollars) as a result of UK goods imports from EU hypothetical extraction.
Extracted Sector	Country-Sector	% Loss												
D35	DNK_D35	46.05	DEU_D35	15.73	BEL_D35	15.73	NLD_D35	16.33	SWE_D35	39.36	SVK_D35	17.37	HUN_D35	17.37
E36	POL_E36	6.41	CZE_E36	0.38	HU_E36	0.38	HRV_E36	0.38	AUT_E36	0.38	CZE_E36	0.38	HU_E36	0.38
E37	ITA_E37	15.91	BEL_E37	16.33	FRA_E37	16.33	NLD_E37	16.33	SWE_E37	16.33	ITA_E37	16.33	BEL_E37	16.33
F	UK_E39	19.88	BEL_F	16.33	FRA_F	16.33	NLD_F	16.33	SWE_F	16.33	UK_E39	19.88	BEL_F	16.33
G45	DEU_G45	17.99	BEL_G45	16.33	FRA_G45	16.33	NLD_G45	16.33	SWE_G45	16.33	DEU_G45	17.99	BEL_G45	16.33
G46	NLD_G46	12.49	BEL_G46	16.33	FRA_G46	16.33	NLD_G46	16.33	SWE_G46	16.33	NLD_G46	12.49	BEL_G46	16.33
G47	ITA_G47	16.33	BEL_G47	16.33	FRA_G47	16.33	NLD_G47	16.33	SWE_G47	16.33	ITA_G47	16.33	BEL_G47	16.33
H49	DEU_H49	16.33	BEL_H49	16.33	FRA_H49	16.33	NLD_H49	16.33	SWE_H49	16.33	DEU_H49	16.33	BEL_H49	16.33
H50	NLD_H50	39.77	BEL_H50	16.33	FRA_H50	16.33	NLD_H50	16.33	SWE_H50	16.33	NLD_H50	39.77	BEL_H50	16.33
H51	ITA_H51	16.33	BEL_H51	16.33	FRA_H51	16.33	NLD_H51	16.33	SWE_H51	16.33	ITA_H51	16.33	BEL_H51	16.33
H52	NLD_H52	16.33	BEL_H52	16.33	FRA_H52	16.33	NLD_H52	16.33	SWE_H52	16.33	NLD_H52	16.33	BEL_H52	16.33
H53	-297.00	16.33	BEL_H53	16.33	FRA_H53	16.33	NLD_H53	16.33	SWE_H53	16.33	-297.00	16.33	BEL_H53	16.33
I88	DNK_I88	16.33	BEL_I88	16.33	FRA_I88	16.33	NLD_I88	16.33	SWE_I88	16.33	DNK_I88	16.33	BEL_I88	16.33
I89	DEU_I89	16.33	BEL_I89	16.33	FRA_I89	16.33	NLD_I89	16.33	SWE_I89	16.33	DEU_I89	16.33	BEL_I89	16.33
L68	ITA_L68	16.33	BEL_L68	16.33	FRA_L68	16.33	NLD_L68	16.33	SWE_L68	16.33	ITA_L68	16.33	BEL_L68	16.33
M70	NLD_M70	16.33	BEL_M70	16.33	FRA_M70	16.33	NLD_M70	16.33	SWE_M70	16.33	NLD_M70	16.33	BEL_M70	16.33
M71	DNK_M71	16.33	BEL_M71	16.33	FRA_M71	16.33	NLD_M71	16.33	SWE_M71	16.33	DNK_M71	16.33	BEL_M71	16.33
M72	ITA_M72	16.33	BEL_M72	16.33	FRA_M72	16.33	NLD_M72	16.33	SWE_M72	16.33	ITA_M72	16.33	BEL_M72	16.33
M73	DEU_M73	16.33	BEL_M73	16.33	FRA_M73	16.33	NLD_M73	16.33	SWE_M73	16.33	DEU_M73	16.33	BEL_M73	16.33
M74	ITA_M74	16.33	BEL_M74	16.33	FRA_M74	16.33	NLD_M74	16.33	SWE_M74	16.33	ITA_M74	16.33	BEL_M74	16.33
N84	DNK_N84	16.33	BEL_N84	16.33	FRA_N84	16.33	NLD_N84	16.33	SWE_N84	16.33	DNK_N84	16.33	BEL_N84	16.33
P85	DEU_P85	16.33	BEL_P85	16.33	FRA_P85	16.33	NLD_P85	16.33	SWE_P85	16.33	DEU_P85	16.33	BEL_P85	16.33
Q	FRQ_Q	16.33	BEL_Q	16.33	FRA_Q	16.33	NLD_Q	16.33	SWE_Q	16.33	FRQ_Q	16.33	BEL_Q	16.33
R	DNK_R	16.33	BEL_R	16.33	FRA_R	16.33	NLD_R	16.33	SWE_R	16.33	DNK_R	16.33	BEL_R	16.33

Table A20: Top 15 most affected country-sectors in terms of LiVA (expressed in millions of US dollars) as a result of UK services imports from EU hypothetical extraction.