Microsatellite polymorphism for molecular characterization of pomelo (Citrus maxima) accessions from Indonesia

RATNA SUSANDARINI1,*, SITI SUBANDIYAH2, BUDI S. DARYONO3, RUGAYAH3
1Faculty of Biology, Universitas Gadjah Mada. Jl. Teknika Selatan, Sekip Utara, Sleman 55281, Yogyakarta, Indonesia.
Tel/fax. +62-274-580839, *email: ratna-susandarini@ugm.ac.id
2Faculty of Agriculture, Universitas Gadjah Mada. Jl. Agro, Bulaksumur, Sleman 55281, Yogyakarta, Indonesia
3Research Center for Biology, Indonesian Institute of Sciences, Indonesia. Jl. Raya Jakarta-Bogor Km. 46, Cibinong Science Centre, Cibinong, Bogor 16911, West Java, Indonesia

Abstract. Susandarini R, Subandiyyah S, Daryono BS, Rugayah. 2020. Microsatellite polymorphism for molecular characterization of pomelo (Citrus maxima) accessions from Indonesia. Biodiversitas 21: 2390-2395. Citrus maxima (Burm.) Merr. (pomelo) as a minor fruit crop deserve attention on its phenotypic and genotypic variability to avoid the risk of extinction. Previous study showed that pomelo from Indonesia has high morphological variability, and thus it is interesting to explore its genotypic variability using molecular markers. Microsatellite is a molecular marker widely used in Citrus taxonomy studies. This study aimed at revealing microsatellite polymorphism and its potential application in cultivar characterization of C. maxima. Eighty accessions of C. maxima consisting of registered cultivars and landraces from Indonesia were used in this study. Analysis of microsatellite sequences from genomic DNA amplified using DY296883 primer showed that C. maxima microsatellite has high polymorphism in the form of repeat length variation of (GA)n, ranging from (GA)7 to (GA)19. This study proved the existence of high genotypic variability in C. maxima, and confirmed the role of microsatellite as a useful molecular marker for uncovering variability at intraspecific level. Observation of the microsatellite polymorphisms indicated that variability of (GA)n can be used to distinguish some pomelo cultivars.

Keywords: Citrus maxima, microsatellite, characterization, genotypic variability

INTRODUCTION

Pomelo (Citrus maxima (Burm.) Merr.) is a tropical fruit crop plant originating from Asia, with wide distribution areas covering Indo-China, Australia, Japan, India, Mediterranean regions, and tropical America (Shapit et al. 2012). Pomelo has high phenotypic variability especially in fruits characters, which include shape, size, thickness of fruit skin, flesh color, and fruit flavor. In general, people recognize two variants of pomelo based on fruit color, namely white and red.

Pomelo as cultivated plant species has a risk of decreased variability as a result of the prolonged practice of artificial selection (Arora 2000). Cultivated plants undergoing selection during domestication process may experience a decrease in variation through the elimination of undesirable phenotypic characters, which results in a decrease genotypic variation (Smykal et al. 2018). The decrease of genotypic and phenotypic variation might be caused by selection for desirable traits is a common phenomenon compared to its wild progenitor (Chinthiya and Bhavyasree 2019). It is, therefore, the risk of decreasing variability in pomelo warrants serious attention to prevent loss of biological resources with untapped potentials. An important step to overcome this problem is by documenting species variability through the inventory of pomelo cultivars and landraces, followed by characterization of their phenotype and genotype. Study on morphological variability on pomelo cultivars and landraces in Indonesia has been carried out along with the assessment of their taxonomic relationships (Susandarini et al. 2013). The present study was intended as initial step in exploring genotypic variability using molecular marker in an attempt to obtain comprehensive features of intraspecific variation on C. maxima.

The development of molecular systematic approach facilitates an effort in finding the most fundamental character as a basis for plant biodiversity assessment and classification. Microsatellite is a DNA-based molecular marker widely used in systematic studies on Citrus. Microsatellite, also known as simple sequence repeat (SSR) and short tandem repeat (STR), is a sequence of repetitive nucleotide motifs, composed of mono-, di-, tri-, tetra-, penta-, or hexa-nucleotide (Cristofani-Yaly et al. 2011). Microsatellite is a widely used molecular marker for plant germplasm characterization, cultivar identification, genetic diversity analysis, and phylogenetic analysis (Ijaz 2011, Rania et al. 2012, Sharma et al. 2015, Zhao et al. 2019). A number of studies using microsatellite reveal that microsatellites is a molecular marker with many advantages including high reproducibility, high degree of polymorphism, co-dominant, presents in large quantities and distributed in various plant genomes, and has high mutation rates (Lee et al. 2011, Abdul-Muneer 2014, Bilska and Szczecińska 2016, Vieira et al. 2016). This study reported the occurrence of microsatellite polymorphism in the form of repeat length variability as
molecular marker for characterization of *C. maxima* cultivars and landraces from Indonesia.

MATERIALS AND METHODS

Plant samples for DNA analysis

A total of 80 pomelo accessions were used in this study. Plant samples were collected from six provinces in Indonesia representing both registered cultivars and landraces (Table 1). Fully expanded leaves from mature individual plants were used as materials for DNA isolation.

DNA isolation, PCR, Electrophoresis, and Purification of PCR product

Genomic DNA isolation was done using Microzone™ DNA Mite extraction kit (Microzone, UK) according to manufacturer’s protocol. PCR reaction to amplify microsatellite was performed in a 25 μL volume consisted of 25 ng DNA, 1x buffer (Mango™), 0.2 mM of dNTPs (Scientific™), 0.6 μM of primer (each for forward and reverse primers), 2.0 mM of MgCl₂ (Bioline™), 0.5 unit/μL of Taq polymerase (Mango™), and 0.5 μL DMSO. The primers used in this study were DY296883 (forward 5’-CCCCCTCTTTTTTCTTCCA-3’ and reverse 5’-TTCTGGGCCTGGTAGGTCAG-3’) developed by Luro et al. (2008) that has been tested for its transferability among *Citrus* species. PCR reaction was done on Biorad™ thermal cycler using the following program: initial denaturation at 94°C for 3 minutes, followed by 35 amplification cycles of denaturation at 94°C for 50 seconds, annealing at 50°C for 2 minutes, elongation at 72°C for 90 seconds, and final extension at 72°C for 6 minutes.

The amplification product was visualized on 1% agarose gel and stained with GelRed nucleic acid stain (Biotium™). Two microliters of PCR product was mixed with 1 μL loading dye (0.25% bromophenol blue and 40% (w/v) sucrose). At each gel, a 1 Kb or 100 bp DNA ladder (Bioline™) was loaded as a standard for measurement of DNA fragments. The electrophoresis was run at constant voltage of 100 volts for 30 minutes. Electrophoresis results were viewed and documented using Kodak Gel Logic 100 Digital Imaging System (Kodak Inc. USA) and saved as JPEG file. Purification of PCR product was done using DNA purification kit (Viogen™) according to manufacturer’s protocol. Purification result was checked on agarose gel using the same protocol as described for visualization of PCR product.

Collection sites (Province)	Accession code	Number of plant samples
Nangroe Aceh Darussalam	ACH	6
Central Java	JTG	11
Yogyakarta	DIY	14
East Java	JTM	8
East Nusa Tenggara	NTT	25
South Sulawesi	SLW	16

RESULTS AND DISCUSSION

Results

DNA amplification on target regions containing microsatellite of (GA)n repeats using SSR primer DY296883 resulted in a single fragment of 215 bp as z microsatellite (GA)n on 80 accessions of *C. maxima* showed a high variation in repeat length, or repeat number of dinucleotide unit (GA), from 7 to 19. The microsatellite was found on the 106th to 155th nucleotide positions. Microsatellite polymorphism observed in this study reflected a high genotypic variability. There were nine types of (GA)n found in this study, namely (GA)7, (GA)10, (GA)12, (GA)13, (GA)15, (GA)16, (GA)17, (GA)18, and (GA)19.

Some representatives of microsatellite-containing sequences showing variability of microsatellite (GA)n repeat number on was shown in Table 2. Complete data showing variability in microsatellite repeat numbers of 80 accessions used in this study, accompanied by 7 selected morphological characters were shown in Table 3. The seven morphological characters displayed here were those most prominent and easily recognizable in the field.

Reaction for sequence cycle and precipitation of reaction product

Sequence cycle to amplify purified DNA was carried out in a volume of 20 μL consisted of 25 ng DNA, 0.6 μM of primer (each for forward and reverse primer), 1.5 μL Big Dye Terminator (BDT), 3.5 μL BDT buffer, and 10.9 μL sterile water. The sequence cycle was run as follows: initial denaturation at 94°C for 5 minutes, followed by 30 cycles of amplification program consisted of denaturation at 94°C for 10 seconds, annealing at 50°C for 5 seconds, and elongation at 60°C for 4 minutes. The amplification products from sequence cycle reactions were precipitated using ammonium acetate. The precipitated DNA was then resuspended by adding 10 μL Hi-Di Formamide before being applied to DNA sequencer. DNA sequencing process was performed using ABI-3130xl Genetic Analyzer (Applied Biosystems, USA).

Data analysis

The microsatellite sequences were read using SeqMan and EditSeq tools in Lasergene program of DNASTAR software version 9.0 (DNASTAR, Inc.). Sequence alignment was done using ClustalW program on Mesquite software version 2.75 (Mesquite Project, http://www.mesquiteproject.org).

![Figure 1. Amplification products of primer DY296883 showing microsatellite fragment at 215 bp. M: 1 Kb DNA ladder; number 1-12: amplification results of *C. maxima* samples](http://www.mesquiteproject.org)
In this study, the detection of microsatellite polymorphisms to determine genotypic variations were done through analysis of DNA sequences where microsatellites are located. Analysis of microsatellite polymorphisms by examining variations of repeat units performed by sequencing method has advantages over the detection of polymorphisms based on amplicon size variations generated through capillary gel electrophoresis (Vieira et al. 2016). This study indicated that microsatellite is a useful molecular marker for detecting genotypic variability within Citrus maxima. In taxonomic context, knowledge on genotypic variation is very important for the development of cultivar databases and the utilization of plant germplasm resources, as mentioned by Shahzadi et al. (2014) in a study on sixteen Citrus cultivars. Previous studies in Citrus taxonomy also have successfully employed microsatellite as molecular marker. Analysis of microsatellite characterization and polymorphism was reported by Singh et al. (2011) in 30 Citrus genotypes and by Polat et al. (2012) in Citrus aurantiun. Furthermore, Shahzadi et al. (2014) and Sharma et al. (2015) also noted that variations in microsatellite were useful to study genetic diversity in Citrus. From taxonomic point of view, Sonah et al. (2011) argued that microsatellite polymorphisms in terms of sequence lengths due to insertion or deletion indicated the process of molecular evolution.

Results of this study indicated that microsatellite is a useful molecular marker for detecting genotypic variability in pomelo. This is in line with previous studies which showed that microsatellite sequences were highly variable in pomelo. This is in line with previous studies which showed that microsatellite sequences were highly variable in pomelo. This is in line with previous studies which showed that microsatellite sequences were highly variable in pomelo. This is in line with previous studies which showed that microsatellite sequences were highly variable in pomelo. This is in line with previous studies which showed that microsatellite sequences were highly variable in pomelo.
Table 3. List of pomelo accessions, their morphological characters, and microsatellite repeat number (GA)n

Accession code	Selected morphological characters*	(GA)n
ACH 1	Ovate, Oblongate, Spherical, Medium, Pink, Soft, Few	17
ACH 2	Ovate, Oblongate, Spherical, Medium, Pink, Soft, Seedless	17
ACH 3	Ovate, Oblongate, Spherical, Medium, Pink, Soft, Seedless	17
ACH 4	Linear, Elliptical, Medium, Pink, Medium, Few	16
ACH 5	Linear, Elliptical, Medium, Pink, Soft, Few	16
ACH 6	Ovate, Obovate, Spherical, Medium, Pink, Soft, Few	17
JTG 1	Ovate, Obovate, Spherical, Smooth, Red, Soft, Numerous	19
JTG 2	Ovate, Obovate, Elliptical, Medium, Yellowish white, Medium, Numerous	19
JTG 3	Ellips, Obovate, Spherical, Smooth, Yellowish white, Medium, Medium	17
JTG 4	Ovate, Obovate, Elliptical, Medium, Pink, Medium, Numerous	17
JTG 5	Ellips, Obovate, Spherical, Smooth, Pink, Medium, Numerous	10
JTG 6	Ovate, Obovate, Spherical, Smooth, Pink, Medium, Few	7
JTG 7	Ovate, Obovate, Elliptical, Medium, Yellowish white, Medium, Few	13
JTG 8	Ovate, Obovate, Elliptical, Medium, Yellowish white, Firm, Few	12
JTG 9	Ellips, Obovate, Spherical, Smooth, Pink, Medium, Numerous	16
JTG 10	Ovate, Obovate, Spherical, Smooth, Pink, Medium, Few	12
JTG 11	Ovate, Obovate, Elliptical, Medium, Yellowish white, Medium, Numerous	16
JGY 1	Ovate, Obovate, Elliptical, Rough, Red, Firm, Few	17
JGY 2	Ovate, Obovate, Elliptical, Rough, Red, Medium, Medium	16
JGY 3	Ovate, Obovate, Spherical, Medium, Pink, Medium, Medium	16
JGY 4	Ovate, Obovate, Oblongate, Rough, White, Medium, Medium	15
JGY 5	Ovate, Obovate, Spherical, Smooth, Red, Firm, Numerous	13
JGY 6	Ovate, Obovate, Spherical, Smooth, Pink, Firm, Medium	13
JGY 7	Ovate, Obovate, Elliptical, Spherical, Medium, Pink, Medium, Few	10
JGY 8	Ovate, Obovate, Spherical, Smooth, Pink, Medium, Firm	10
JGY 9	Ovate, Obovate, Elliptical, Rough, Pink, Soft, Medium	12
JGY 10	Ovate, Obovate, Spherical, Smooth, Pink, Medium, Few	17
JGY 11	Ovate, Obovate, Oblongate, Medium, Pink, Soft, Seedless	12
JGY 12	Ovate, Obovate, Spherical, Medium, Pink, Medium, Few	10
JGY 13	Ovate, Obovate, Spherical, Medium, Pink, Medium, Few	10
JGY 14	Ovate, Obovate, Elliptical, Medium, Pink, Firm, Medium	17
JTM 1	Ovate, Obovate, Spherical, Medium, Pink, Soft, Few	13
JTM 2	Ovate, Obovate, Spherical, Medium, Pink, Soft, Medium	13
JTM 3	Ovate, Obovate, Spherical, Medium, Pink, Medium, Medium	13
JTM 4	Ovate, Obovate, Spherical, Medium, Pink, Medium, Few	13
JTM 5	Ovate, Obovate, Spherical, Rough, Pink, Medium, Few	13
JTM 6	Ovate, Obovate, Spherical, Medium, Pink, Medium, Few	13
JTM 7	Ovate, Obovate, Spherical, Medium, Pink, Medium, Numerous	7
JTM 8	Ovate, Obovate, Spherical, Medium, Pink, Soft, Seedless	13
NTT 1	Ovate, Obovate, Spherical, Smooth, Pink, Medium, Medium	12
NTT 2	Ellips, Obovate, Spherical, Medium, Pink, Medium, Seedless	16
NTT 3	Ovate, Obovate, Spherical, Smooth, Pink, Medium, Medium	17
NTT 4	Ovate, Obovate, Spherical, Medium, Yellowish white, Medium, Numerous	10
NTT 5	Ovate, Obovate, Spherical, Medium, White, Soft, Few	13
NTT 6	Ovate, Obovate, Spherical, Medium, Pink, Medium, Medium	12
NTT 7	Ovate, Obovate, Spherical, Medium, Pink, Medium, Few	16
NTT 8	Ovate, Obovate, Spherical, Medium, Yellowish white, Medium, Medium	10
NTT 9	Ellips, Obovate, Spherical, Medium, Pink, Medium, Medium	17
NTT 10	Ovate, Obovate, Spherical, Medium, Pink, Medium, Few	16
NTT 11	Ovate, Obovate, Spherical, Medium, Pink, Medium, Few	17
NTT 12	Ovate, Obovate, Elliptical, Rough, Pink, Medium, Numerous	17
NTT 13	Ellips, Obovate, Spherical, Medium, Pink, Medium, Few	16
NTT 14	Ovate, Obovate, Elliptical, Medium, Red, Soft, Seedless	17
NTT 15	Ovate, Obovate, Elliptical, Medium, Yellowish white, Medium, Seedless	13
NTT 16	Ovate, Obovate, Spherical, Smooth, Yellowish white, Medium, Medium	17
NTT 17	Ovate, Obovate, Spherical, Medium, Pink, Medium, Few	10
NTT 18	Ovate, Obovate, Elliptical, Medium, Pink, Medium, Seedless	13
NTT 19	Ovate, Obovate, Pyriform, Medium, Pink, Firm, Few	16
NTT 20	Ovate, Obovate, Elliptical, Medium, Pink, Medium, Medium	13
Further observations on results of this study indicated that variability on microsatellite sequences has the potential to be developed as intraspecific molecular marker. This is particularly applicable for distinguishing between cultivars or cultivar-groups of pomelo. This potential could be observed in the consistency of \((GA)_n\) types on some of cultivars used in this study. The cultivars "Adas Nambangan" \((JTM 1, JTM 2)\) and "Adas Duku" \((JTM 4, JTM 5)\) from East Java consistently had microsatellite type of \((GA)_n\). These four accessions belonged to the same cultivar-group based on phenetic analysis of their morphology \(\text{(Susandarini et al. 2013).}\) The same case was found for pomelo cultivars from South Sulawesi, in which "Pangkajene Merah" \((SLW 1, SLW 2, SLW 3)\) with microsatellite type of \((GA)_n\), was clearly different from "Pangkajene Putih" cultivar \((SLW 6, SLW 7, SLW 8)\) with \((GA)_{17}\) type. Studies on several plant species indicated the potential of microsatellite, especially the expressed sequence tags-simple sequence repeat \((\text{EST-SSR})\), to be developed into a specific marker, as mentioned by Dillon et al. \(\text{(2014) for Mangifera indica, Biswas et al. (2015) for Poncirus trifoliata, and Zhang et al. (2019) for Elymus species. A study by Ramadugu et al. (2015) indicated that microsatellite is molecular marker that has the ability to discriminate among accessions within a species, and thus could be developed as species-specific marker, as reported on Citrus medica. The potential of microsatellite \((GA)_n\) to be developed as a specific marker for pomelo cultivars deserve further studies. Thus, results of this study offered an opportunity to test the consistency and reliability of \((GA)_n\) for molecular characterization of \(C. \text{maxima}\) by using more cultivars collected from different regions.

The DNA target region used in this study is part of the EST. This result confirmed the study of Palmieri et al. \(\text{(2007) which found that microsatellite sequences in the form of perfect microsatellite repeats, such as \((GA)_{17}\), were the most common type of EST-SSR.\)} Results of this study also provide an opportunity for a deeper examination of the possible linkages between types of \((GA)_n\) with particular phenotypes, given that the microsatellite used in this study is EST-SSR, or part of a coding region on ribosomal DNA. This is in line with the statement from Victoria et al. \(\text{(2011) that the EST-SSR has the potential as a functional marker to detect associations between a gene and a particular phenotype. The same opinion was expressed by Zhao et al. \(\text{(2013) by referring to the potential of EST-SSR as a gene-related marker that can carry gene function information, particularly related to the phenotype characteristics of a cultivar. Similar result was reported by Sharma et al. \(\text{(2015) on the Citrus paradisi, which showed that there was a correlation between genetic diversity detected by microsatellites and morphological data even though the correlation was at a low level.}\)}

The use of EST-SSR in Citrus systematic studies has been mentioned by Shahzadi et al. \(\text{(2014) who noted that microsatellite is very informative molecular marker for genetic diversity analysis. In addition, Vieira et al. \(\text{(2016) noted that the nature of microsatellite mutations makes it as informative molecular markers, and argued that microsatellite was even more informative than SNPs. The application of EST-SSR in plant systematic studies is also supported by a fairly high level of transferability among species, and even among genera within a family, which reached 56% among Poncirus, Fortunella, and Citrus \(\text{(Biswas et al. 2015).}\)} This fact emphasized the importance

NTT 21	Orbicular	Obcordate	Elliptical	Medium	Pink	Medium	Medium	17
NTT 22	Ovate	Obdeltate	Elliptical	Medium	Pink	Medium	Numerous	17
NTT 23	Ovate	Obdeltate	Spherical	Medium	Pink	Medium	Numerous	12
NTT 24	Ovate	Obdeltate	Spherical	Medium	Pink	Firm	Medium	17
NTT 25	Ovate	Obdeltate	Elliptical	Medium	Pink	Medium	Medium	18
SLW 1	Ovate	Obdeltate	Spherical	Medium	Yellowish white	Medium	Medium	12
SLW 2	Ovate	Obdeltate	Spherical	Medium	Pink	Medium	Few	12
SLW 3	Ovate	Obdeltate	Spherical	Medium	Pink	Medium	Few	12
SLW 4	Ovate	Obdeltate	Spherical	Medium	Pink	Medium	Medium	12
SLW 5	Ovate	Obdeltate	Spherical	Medium	White	Medium	Medium	17
SLW 6	Ovate	Obdeltate	Spherical	Medium	White	Medium	Medium	17
SLW 7	Ovate	Obdeltate	Spherical	Medium	White	Medium	Few	17
SLW 8	Ovate	Obdeltate	Spherical	Medium	White	Medium	Medium	17
SLW 9	Ovate	Obdeltate	Spherical	Medium	Pink	Medium	Few	16
SLW 10	Ovate	Obdeltate	Spherical	Medium	Pink	Medium	Medium	16
SLW 11	Ovate	Obdeltate	Spherical	Medium	Yellowish white	Firm	Medium	10
SLW 12	Ovate	Obdeltate	Spherical	Medium	Pink	Medium	Few	13
SLW 13	Obovate	Obcordate	Elliptical	Medium	Pink	Medium	Medium	18
SLW 14	Ovate	Obdeltate	Spherical	Medium	Pink	Medium	Few	17
SLW 15	Obovate	Obcordate	Spherical	Medium	Pink	Medium	Medium	13
SLW 16	Obovate	Obcordate	Spherical	Medium	Pink	Medium	Medium	13

Note: * major distinguishing characters between accessions; detail morphological analysis has been published \(\text{(Susandarini et al. 2013).}\) LS: leaf shape, PW: petiole wing shape; FS: fruit shape, PT: peel texture, FC: flesh color, FT: flesh texture, SN: seed number \(\text{(determination of character states referred to Descriptors for Citrus - IPGRI 1999 with some modifications).}\) ACH: Nangroe Aceh Darussalam, JTG: Central Java, JGY: Special Province of Yogyakarta, JTM: East Java, NTT: East Nusa Tenggara, SLW: South Sulawesi.
of EST-SSR in plant systematics studies, particularly in studying the origin, relationships between species, and the evolution of Citrus and their relatives.

Based on the results of this study it could be concluded that microsatellite polymorphism in the forms of repeat length variations has the potential to be developed as molecular markers for the characterization of C. maxima cultivars. The repeat length variations on C. maxima microsatellites, ranging from (GA)\(^n\) to (GA)\(^{19}\) found in this study, were largely due to insertions and deletions on microsatellite sequences.

ACKNOWLEDGEMENTS

This study was financially supported by The Research Fellowship Program from Charles Darwin University, Australia granted for the first author.

REFERENCES

Abdul-Maneer PM. 2014. Application of microsatellite markers in conservation genetics and fisheries management: Recent advances in population structure analysis and conservation strategies. Genet Res Int. DOI: 10.1155/2014/691759.

Ahmad M, Javaid A, Rahman H, Hussain SI, Ramzan A, Ghafoor A. 2012. Identification of mandarin x orange hybrids using simple-sequence repeat markers. J Agric Res 50 (2): 225-232.

Arora RK. 2000. In situ Conservation of Biological Diversities in Citrus. GCGN Meeting, 7-8 December 2000.

Bilski K, Szczecinska M. 2016. Comparison of the effectiveness of ISJ and SSR markers and detection of outlier loci in conservation genetics of Pulsatilla patens populations. Peer J: e2504. DOI: 10.7717/peerj.2504.

Bisswas MK, Chen P, Amar MH, Dinda A. 2015. Novel polymorphic EST-based microsatellite marker isolation and characterization from Poncirus trifoliata (Rutaceae). Front Agr Sci Eng 2 (1): 60-65. DOI: 10.15302/J-FASE-2015048.

Chintiya A, Bhavasyaree RK. 2019. Domestication in plants: A key to unexplored variability. Int J Curr Microbiol App Sci 8 (1): 133-138. DOI: 10.20546/ijcmas.2019.810.16.

Cristofani-Yaly M, Novelli VM, Bastianel M, Machado MA. 2011. Transferability and level of heterozygosity of microsatellite markers in Citrus species. Plant Mol Biol Rep 19: 418-423. DOI: 10.1007/s11105-010-0241-x.

Dillon NL, Innes DJ, Bally ISE, Wright CL, Luke C. 2012. Advances in genotyping microsatellite markers. Aust J Crop Sci 9 (1): 27-35. DOI: 10.1016/j.biotechadv.2010.11.002.

Smyk D, Nelson MN, Berger JD, Wettberg EJB. 2018. The impact of genetic changes during crop domestication on healthy food development. Agronomy 8: 26. DOI: 10.3390/agronomy8030026.

Sonah H, Deshmukh RK, Singh VP, Gupta DK, Singh NK, Sharma TR. 2011. Genomic resources in horticultural crops: Status, utility and challenges. Biotechnol Adv 29: 199-209. DOI: 10.1016/j.biotechadv.2010.11.002.

Shapit BR, Rao VR, Shapit S. 2012. Tropical Fruit Tree Species and Climate Change. Bioversity International, New Delhi, India.

Susandrini R, Subandiyah S, Rugayah, Daryono BS, Nugroho LH. 2013. Assessment of taxonomic affinity of Indonesian pummelo (Citrus maxima (Burm.) Merr.) based on morphological characters. Am J Agric Biol Sci 8 (3): 182-190. DOI: 10.3844/ajassp.2013.182.190.

Victoria FC, da Maia LC, de Oliveira AC. 2011. In silico comparative analysis of SSR markers in plants. BMC Plant Biol 11: 15. DOI: 10.1186/1471-2229-11-15.

Veirea ML, Santini L, Diniz AL, Munhoz CF. 2016. Microsatellite markers: What they mean and why they are so useful. Genet Mol Biol 39 (3): 312-328. DOI: 10.1590/1678-4685-GMB-2016-0007.

Viruel J, Hagneuau A, Jun M, Mirleau F, Bouteiller D, Boudagher-Kharat M, Oualhane L, La Malifa S, Medail F, Sanguin H, Feliner GN. 2018. Advances in genotyping microsatellite markers through sequencing and consequences of scoring methods for Ceratonia siliqua (Leguminosae). Appl Plant Sci 6 (12): e1201. DOI: 10.1002/aps3.1201.

Zhang Z, Xie W, Zhou H, Zhang J, Wang N, Ntakirutimana F, Yan J, Wang Y. 2019. EST-SSR marker development based on RNA-sequencing of E. sibiricus and its application for phylogenetic relationships analysis of seventeen Elymus species. BMC Plant Biol 19:235. DOI: 10.1186/s12870-019-1825-8.

Zhao TK, Landrein S, Barrett RL, Sakaguchi S, Maki M, Yang T, Zhu ZX, Liu H, Wang HF. 2019. Phylogenetic analysis and genetic structure of an endemic Sino-Japanese disjunctive genus Diabellia (Capparidaceae). Front Plant Sci 10: 913. DOI: 10.3389/fpls.2019.00913.

Zhou Y, Williams R, Prakash CS, He G. 2013. Identification and characterization of genome-based SSR markers in date palm (Phoenix dactylifera L.). BMC Plant Biol 12: 237. DOI: 10.1186/1471-2229-12-237.