Towards a diagrammatic derivation of the Veneziano-Yankielowicz-Taylor superpotential

J. Ambjørn and R.A. Janik

a The Niels Bohr Institute, Copenhagen University
Blegdamsvej 17, DK-2100 Copenhagen Ø, Denmark.
email: ambjorn@nbi.dk

b Institute of Physics, Jagellonian University,
Reymonta 4, PL 30-059 Krakow, Poland.
email: ufrjanik@if.uj.edu.pl

Abstract

We show how it is possible to integrate out chiral matter fields in $\mathcal{N} = 1$ supersymmetric theories and in this way derive in a simple diagrammatic way the $N_f S \log S - S \log \det X$ part of the Veneziano-Yankielowicz-Taylor superpotential.
Introduction

The recent renewed interest in the calculation of the glueball superpotential via matrix models [1] has led to an understanding of how to extract the non-logarithmic part of these superpotentials by ordinary diagrammatic methods [2]. Just as the matrix models in the applications to non-critical strings and 2d quantum gravity were convenient tools for solving specific combinatorial problems: the summation over all “triangulated” worldsheets with given weights, we understand now that the matrix model in the Dijkgraaf-Vafa (DV) context is an effective way of summing a set of ordinary Feynman graphs which by the magic of supersymmetry can be combined in such a way that they have no space-time dependence.

However, we are still left without a simple diagrammatic derivation of the logarithmic part of the glueball superpotential, the so called Veneziano-Yankielowicz-Taylor superpotential. This effective Lagrangian was originally derived for a pure $\mathcal{N} = 1$ $U(N_c)$ gauge theory by Veneziano and Yankielowicz [3] by anomaly matching and, by the same method, generalized to a $U(N_c)$ theory with N_f flavors in the fundamental representation by Taylor, Veneziano and Yankielowicz [4]. It is given by

$$W_{\text{eff}}^{VYT}(S, X) = W_{\text{eff}}^{VY}(S) + W_{\text{eff}}^{\text{matter}}(S, X)$$

(1)

where $W_{\text{eff}}^{VY}(S)$ is the pure gauge part

$$W_{\text{eff}}^{VY}(S) = -N_c S \log \frac{S}{\Lambda^3}$$

(2)

while $W_{\text{eff}}^{\text{matter}}(S, X)$ denotes the part coming from N_f flavors in the fundamental representation:

$$W_{\text{eff}}^{\text{matter}}(S, X) = N_f S \log \frac{S}{\Lambda^3} - S \log \frac{\det X}{\Lambda^2}.$$

(3)

In the above formulas S denotes the composite chiral superfield $W_\alpha^2/32\pi^2$ and $X = QQ$ is the $(N_f \times N_f)$ mesonic superfield, Q being the chiral matter field. In (2) and (3) Λ is an UV cut off. Usually this UV cut off is replaced by a renormalization group invariant scale Λ_M by use of the one-loop renormalization group:

$$\Lambda_M = \Lambda e^{-\frac{S_x^2}{(3N_c-N_f)g^2}}.$$

(4)
The beautiful derivation of (1)-(3) by anomaly matching has always been somewhat antagonizing since a clear diagrammatic understanding is missing. It is summarized in the following citation from [5]: “Its [i.e. (1)-(4)] only raison d'être is the explicit realization of the anomalous and non-anomalous symmetries of SUSY gluodynamics”.

In this letter we point out that there exists a simple diagrammatic derivation of (3). The derivation is inspired by diagrammatic techniques used in [2] and the observation that the DV-matrix models techniques could be extended to cover the case of superpotentials depending on mesonic superfields by considering the constrained (Wishart) matrix integrals [6]

\[\int DQD\tilde{Q} \delta(\tilde{Q}Q - X) = \frac{(2\pi)^{N(N+1)/2}}{\prod_{j=N-N_f+1}^{N}(j-1)!} (\det X)^{N-N_f} \quad (5) \]

and taking the large \(N \) limit.

Perturbative considerations

The matter contribution to the effective superpotential was shown in [2] to arise from the path integral

\[\int DQD\tilde{Q} e^{i d^4x d^2\theta \left(-\frac{1}{2}\tilde{Q}(\Box-i\partial\alpha)Q+W_{tree}(\tilde{Q},Q)\right)} \quad (6) \]

where \(W^\alpha \) is an external field and \(\partial_\alpha \equiv \frac{\partial}{\partial x^\alpha} \). If the quarks are massive (\(W_{tree} = m\tilde{Q}Q \)) then the above path integral reduces to a functional determinant which can be easily evaluated using the Schwinger representation:

\[\frac{1}{2} \int_\frac{1}{\Lambda}^\infty \frac{ds}{s} \int \frac{d^4p}{(2\pi)^4} \int d^2\pi_\alpha \exp \left(-s(p^2 + W^\alpha \pi_\alpha + m)\right) \quad (7) \]

where we introduced an UV cut-off \(\Lambda \). Due to fermionic integrations the result is

\[\frac{W^2}{32\pi^2} \int_\frac{1}{\Lambda}^\infty \frac{ds}{s} e^{-ms} \quad (8) \]

which reduces for large \(\Lambda \) to

\[S \log \left(\frac{m}{\Lambda}\right) \quad (9) \]
At this stage one could integrate-in X to obtain (3). However, as “integrating-in” is in fact an assumption and we would like to obtain the desired result perturbatively, or more precisely: diagrammatically. To this end we impose the *superspace* constraint

$$X = \tilde{Q}Q$$ \hspace{1cm} (10)

at the level of the path integral (6). This is done by introducing a Lagrange multiplier chiral superfield α. Since the antichiral sector does not influence the chiral superpotentials, we will perform a trick analogous to [2] and introduce an antichiral partner $\bar{\alpha}$ with a tree level potential $M\bar{\alpha}^2$. Thus we have

$$\int d^4x d^4\theta \, \bar{\alpha}\alpha + \int d^4x d^2\theta \, M\bar{\alpha}^2.$$ \hspace{1cm} (11)

The path integral w.r.t. $\bar{\alpha}$ is Gaussian and yields (c.f. [2])

$$-\frac{1}{2M} \int d^4x d^2\theta \, \alpha\Box\alpha.$$ \hspace{1cm} (12)

The final path integral is

$$\int D\alpha D\tilde{Q}DQ \, e^{\int d^4x d^2\theta (\frac{1}{2}Q(\Box+nW^{\alpha}\partial_{\alpha})Q - \frac{1}{2}\alpha\Box\alpha - \alpha X + \alpha\tilde{Q}Q)},$$ \hspace{1cm} (13)

where we also took $W_{tree} = 0$ and fixed the auxiliary mass $M = 1$ (it will be clear from the arguments below that the result is independent of M).

This is no longer a free field theory, but nevertheless there are significant simplifications if we only want to extract the $\text{tr} \, W^2$ dependence. This implies that we must have two W insertions per $\tilde{Q}Q$ loop. The integrals over the fermionic momenta thus force all graphs which contain an α-line in a loop to vanish. Thus we are left with graphs coming from (13) which have the structure of $\tilde{Q}Q$ loops connected by at most one α propagator, and α propagators connected to the external field X as shown in fig. 1.

Moreover, if the field X contains a zero momentum component, which will generically be the case, the integrals will be dominated by this constant mode which forces the α propagators to be evaluated at zero momentum. Consequently we have to introduce an IR cut-off Λ_{IR}. Each 0-momentum α propagator will then just contribute a factor of $1/\Lambda_{IR}$. Thanks to the above property we may find the full $\tilde{Q}Q$ propagator in terms of the α 1-point function which we will denote by F:

$$\frac{1}{p^2 + W^{\alpha}\pi_{\alpha} + F}.$$ \hspace{1cm} (14)
Figure 1: Only tree level graphs survive, i.e. we are left with the the graphs shown in fig. 1c).

and the effective action will be given by the formula (7) with m substituted by F:

$$S \log \det \frac{F}{\Lambda}$$ \hspace{1cm} (15)

It remains to determine F. The Schwinger-Dyson equation for F is (see fig. 2)

$$F = -\frac{1}{\Lambda_{IR}}X + \frac{1}{\Lambda_{IR} F} S$$ \hspace{1cm} (16)

where we used

$$\int_0^\infty ds \int \frac{d^4 p}{(2\pi)^4} \int d^2 \pi \alpha \ e^{-s(p^2+W_{\alpha}^2+X_{\alpha}^2+F)} = \frac{S}{F}$$ \hspace{1cm} (17)

Eq. (16) is quadratic and has 2 solutions. Since the final result has to be IR finite, we will take the solution which has a finite limit as $\Lambda_{IR} \to 0$. Therefore

$$F = \frac{S}{X}$$ \hspace{1cm} (18)

and by substituting this back in (15) one obtains the desired result:

$$S \log \det \frac{SX^{-1}}{\Lambda}$$, \hspace{1cm} (19)

or, in the case of N_f flavors:

$$N_f S \log \frac{S}{\Lambda^3} - S \log \det \frac{X}{\Lambda^2}.$$ \hspace{1cm} (20)
Further examples

Exactly the same technique can be adapted to the theories studied in [7] where the matter effective superpotentials in terms of only mesonic fields are quite complex (see eqn. (1.1) in [7]) and follow from quite intricate physical analysis. However, as noted in [7] the superpotentials with both glueball fields and matter fields are simpler. The pure matter superpotentials can then be obtained by integrating out the glueball fields S_i.

The simplest case considered in [7] is a gauge theory with gauge group $SU(2)_1 \times SU(2)_2$, with a bifundamental matter field Q in the $(2,2)$ representation. The natural gauge invariant matter superfield is

$$X = Q^2 \equiv \frac{1}{2} Q_{ab} Q_{cd} \varepsilon^{ac} \varepsilon^{bd}, \tag{21}$$

and the matter part of the superpotential $W_{eff}(S, X)$ is (eq. (4.19) in [7]):

$$(S_1 + S_2) \log \frac{S_1 + S_2}{X \Lambda} \tag{22}$$

We will now show that the expression (22) also follows from a diagrammatic reasoning.

Since for $SU(2)$ the fundamental and antifundamental representations are equivalent through $\tilde{Q}_a \equiv Q_a \varepsilon^{a'} a'$ the Lagrangian for the bifundamental fields takes the form:

$$Q_{a'b'} \varepsilon^{a’a} \varepsilon^{b'b}(\Box - iW_{ac}^{(1)} \partial_a - iW_{bd}^{(2)} \partial_d)Q_{cd} \tag{23}$$

Again we introduce a Lagrange multiplier superfield α enforcing the above constraint. We thus have

$$Q(C \otimes C)(\Box - W^{(1)}_a \otimes 1\pi_\alpha - 1 \otimes W^{(2)}_a \pi_\alpha + \frac{1}{2} \alpha)Q - \alpha X \tag{24}$$

where $C^{ab} \equiv \varepsilon^{ab}$.

Figure 2: The Schwinger-Dyson equation for F.
The analogue of formula (15) will then be

$$\frac{1}{2} 2^2 (S_1 + S_2) \log \left(\frac{F}{2\Lambda} \right)$$

(25)

where the 1/2 comes from the fact that we are dealing with a real representation, while the 2 comes from performing the trace over the trivial factor in $\mathcal{W}^{(2)} \otimes 1^2$. The Schwinger-Dyson equation for F will then have the form

$$F = -\frac{1}{\Lambda_{IR}} X + \frac{1}{2} \frac{1}{\Lambda_{IR}} \frac{1}{2} (S_1 + S_2)$$

(26)

hence

$$F = \frac{2(S_1 + S_2)}{X}$$

(27)

Inserting F into (25) reproduces precisely the nontrivial result (22).

Another example studied in [7] for the gauge group $SU(2)_1 \times SU(2)_2$ is matter L_{\pm} in the $(1,2)$ representation. The classical D-flat direction is labeled by $Y = L_{\alpha \beta} L_{\beta \alpha} - \varepsilon_{\alpha \beta}$ and the matter contribution to W^{VYT}_{eff} was found in [7] to be:

$$S_2 \log \frac{S_2}{Y \Lambda}.$$

(28)

We can also reproduce this expression1 by computing diagrammatically the contribution from the L_{\pm} fields, starting with the Lagrangian

$$L(C \otimes 1)(\Box - \mathcal{W}^{(2)}_{\alpha} \otimes 1 \pi_{\alpha} + \alpha 1 \otimes C)L - \alpha Y,$$

(29)

where the second component in the tensor product is the flavor space.

Discussion

We have shown that it is possible to obtain the matter part of some generalized $W^{VYT}_{eff}(X, S)$ potentials by simple diagrammatic reasoning. It would be interesting to generalize the diagrammatic derivation to the gauge part of the Taylor-Veneziano-Yankielowicz superpotential. That would complete the diagrammatic derivation of the glueball superpotential.

1Up to a trivial rescaling of Λ. Note that in our approach the definition of the UV cut-off Λ (see e.g. (8)) is a matter of convention and may be modified.
Acknowledgments JA and RJ acknowledge support by the EU network on “Discrete Random Geometry”, grant HPRN-CT-1999-00161, RJ was partially supported by KBN grant 2P03B09622 (2002-2004) and J.A. partially supported by “MaPhySto”, the Center of Mathematical Physics and Stochastics, financed by the National Danish Research Foundation.

References

[1] R. Dijkgraaf and C. Vafa, Matrix models, topological strings, and supersymmetric gauge theories Nucl.Phys.B644:3-20,2002, [hep-th/0206255]; On geometry and matrix models, Nucl.Phys.B644:21-39,2002, [hep-th/0207106]; A perturbative window into nonperturbative physics, [hep-th/0208048].

[2] R. Dijkgraaf, M.T. Grisaru, C.S. Lam, C. Vafa and D. Zanon, Perturbative computation of glueball superpotentials, [hep-th/0211017].

[3] G. Veneziano and S. Yankielowicz, An effective Lagrangian for the pure N=1 supersymmetric Yang-Mills theory, Phys.Lett.113B:231-235,1982.

[4] Taylor, G. Veneziano and S. Yankielowicz, Supersymmetric QCD and its massless limit: an effective Lagrangian analysis, Nucl.Phys.B218:493-505,1983.

[5] M. A. Shifman and A. I. Vainshtein, Instantons versus supersymmetry: fifteen years later. ITEP Lectures in Particle Physics and Field Theory. Edited by M. Shifman. Singapore, World Scientific, 1999. Vol. 2, pp. 485-648, [hep-th/9902018]

[6] Y. Demasure and R. A. Janik, Effective matter superpotentials from wishart random matrices, Phys.Lett.B553:105-108,2003, [hep-th/0211082].

[7] K. A. Intriligator, R.G. Leigh and N. Seiberg, Exact superpotentials in four-dimensions, Phys.Rev.D50:1092-1104,1994, [hep-th/9403198]