Diagnostic performance of pulmonary ultrasonography and a clinical score for the evaluation of hydration status in haemodialysis patients

CURRENT STATUS: UNDER REVIEW

BMC Nephrology

Mickaël Bobot mickael.bobot@gmail.com
Assistance Publique - Hôpitaux de Marseille

Corresponding Author
ORCiD: 0000-0002-9451-0372

Laurent Zieleskiewicz
Service de Réanimation Polyvalente - Hôpital Nord, Assistance Publique - Hôpitaux de Marseille, Aix-Marseille Université

Noémie Jourde-Chiche
Service de Néphrologie et Transplantation rénale, Hôpital de la Conception, APHM, Aix-Marseille Université

Clarissa Von Kotze
Service de Néphrologie et Transplantation Rénale, Hôpital de la Conception, APHM, Aix-Marseille Université

Manon Ebersolt
Service de Néphrologie et Transplantation Rénale, Hôpital de la Conception, APHM, Aix-Marseille Université

Bertrand Dussol
Service de Néphrologie et Transplantation Rénale, Hôpital de la Conception, APHM, Aix-Marseille Université

Marion Sallée
Service de Néphrologie et Transplantation Rénale, Hôpital de la Conception, APHM, Aix-Marseille Université

Sophie Chopinet
Service de Chirurgie Digestive, Hôpital de la Timone, APHM, Aix-Marseille
Université

Yvon Berland
Service de Néphrologie et Transplantation Rénale, Hôpital de la Conception, APHM, Aix-Marseille Université

Philippe Brunet
Service de Néphrologie et Transplantation Rénale, Hôpital de la Conception, APHM, Aix-Marseille Université

Thomas Robert
Service de Néphrologie et Transplantation Rénale, Hôpital de la Conception, APHM, Aix-Marseille Université

DOI: 10.21203/rs.2.17834/v1

SUBJECT AREAS Urology & Nephrology

KEYWORDS Hydration status, lung ultrasound, fluid overload, haemodialysis, echocardiography
Abstract

BACKGROUND There is no feasible benchmark in daily routine to estimate the hydration status of haemodialysis patients, which is essential to their management. We performed a retrospective study in HD patients to assess the diagnostic performance of pulmonary ultrasound and clinical examination for the evaluation of fluid overload using transthoracic echocardiography (TTE) as a gold standard.

METHODS 31 patients receiving chronic HD were included. Evaluation of hydration status was assessed weekly before haemodialysis sessions using clinical and Echo Comet Scores from pulmonary ultrasound and TTE (reference method).

RESULTS Five patients had a TTE overload. Compared with TTE, the diagnostic performance of the clinical overload score has a sensitivity (Se) of 100%, a specificity (Sp) of 77%, a positive predictive value (PPV) of 50% and a negative predictive value (NPV) of 100% with a κ of 0.79. Only orthopnoea (P=0.008), jugular turgor (P=0.005) and hepatic-jugular reflux (P=0.008) were significantly associated with TTE overload diagnosis. The diagnostic performance of Echo Comet Score by pulmonary ultrasound has a Se of 80%, a Sp of 58%, a PPV of 26% and a NPV of 94%. Ten patients (32.3%) had an increase of extravascular pulmonary water without evidence of TTE or clinical overload.

CONCLUSIONS Our clinical score has a convincing diagnostic performance compared to TTE and could be easily used in daily clinical routine to adjust dry weight. The evaluation of the overload using pulmonary ultrasound seems poorly correlated with the overload evaluated by TTE. The presence of extravascular pulmonary water undetected by clinical examination and TTE remains a parameter which requires further investigation.
Background

The definition of hydration status to determine optimal dry weight (DW) is essential for the management of haemodialysis patients. The DW concept in dialysis was conceived at the same time as dialysis in 1967 (1) and has evolved over time. DW is defined as the lowest weight tolerated by the patient at the end of the dialysis session at which there are minimal symptoms of hypovolemia or hypervolemia (2). DW is an element of standard care for haemodialysis patients because inadequate DW is associated with increased cardiovascular morbidity and mortality (3–7).

Patients with end-stage renal disease (ESRD) requiring haemodialysis have a high risk of developing pulmonary congestion. The accumulation of pulmonary water can be infra-clinical and occurs gradually between dialysis sessions, especially in anuric patients (8) and is related in part to increased alveolar-capillary permeability (9).

Clinical examination is the classic tool for assessing hydration status at the patient’s bedside. However, it can be faulted in finer evaluation. There is currently neither a validated clinical score to assess hydration status in haemodialysis patients nor a gold standard to define the DW. Various anthropometrical (10) or radiological tools (11–15) and biomarkers (16–19) have been tested. Among them, transthoracic echocardiography (TTE) provides a more accurate assessment of blood volume than clinical examination (20) by studying left ventricular filling pressure (LVFP), systolic pulmonary arterial pressure (sPAP) and inferior vena cava (IVC) diameter at the same time, but it requires training and its long duration is poorly suited to routine use.

In lung ultrasound, B-lines are artefactual images resulting from close contact between (alveolar) air and water (clogged septa). Lung ultrasound detects
pulmonary congestion with a sensitivity (Se) and a specificity (Sp) respectively, of 93 and 93% in intensive care patients (21). This technique has several advantages: it is fast (from 3 to 10 minutes) (12,14,22), non-irradiating and inexpensive. It can be performed with any ultrasound machine. The training is simple (about 2 hours) (13), with low inter-operator variability (23,24). It can be used in daily practice to detect fluid overload (FO) and has been validated in congestive heart failure and intensive care (25,26).

Recently, several studies have evaluated this technique in the haemodialysis population (27). The number of B-lines is correlated with an elevated LVFP by TTE, and the increase of total and lung water by bio-impedance spectroscopy (BIS) (11–13,28–30). The number of B-lines decreases during a dialysis session and is correlated with weight loss and water loss in BIS (13,28). The relationship between the presence of asymptomatic pulmonary water on ultrasound, the DW and the occurrence of adverse events is yet to be clarified.

We conducted a retrospective study to compare the performance of lung ultrasound and clinical examination with TTE as the diagnostic gold standard to assess FO in haemodialysis patients.

The secondary objective was to determine which clinical signs best correlate with pulmonary and cardiac FO.

Methods

Patients

Volunteer patients over 18 years old in haemodialysis for more than 3 months at the University Hospital Centre in Marseilles, France, haemodynamically stable and without any cardiovascular, infectious or haemorrhagic event in the previous three
months were included. All patients had at least three dialysis sessions per week. All patients gave their express consent. Procedures followed were in accordance with the Helsinki Declaration of 1975, as revised in 2000. Patients who missed more than one dialysis session in the previous month and patients with a history of pulmonary fibrosis or active lung infection were not included. The persistence of a residual diuresis was assessed for all patients and was defined by a diuresis volume superior to 500 mL per day.

Fluid overload assessment

The hydration status evaluation was performed during the mid-week dialysis session by a physician trained in clinical examination, cardiac and pulmonary ultrasound. We have developed a clinical score to define the presence of FO using the following criteria: Major criteria – dyspnoea New York Heart Association (NYHA) > III, orthopnoea; Minor criteria – jugular turgor and hepatic-jugular reflux in half-sitting position, pulmonary crackles at auscultation, peripheral oedema (evaluated by searching an indentation after pressing the two inferior limbs (over the dorsum of the foot, behind and above the medial malleolus) and the sacral region) and pre-dialysis high blood pressure. The association of two major or three minor criteria or the combination of one major and one minor criterion defined FO (**Table 1**). This score was obtained at the beginning of the dialysis session.

Cardiac and pulmonary echocardiography was evaluated in the first 30 minutes of the dialysis session using an ultrasound machine (Philips® CX50 POC, Amsterdam, Netherlands), after the clinical examination. The TTE evaluated three parameters: 1) IVC diameter using the two-dimensional motion-mode method (M-mode), measured in sub-xiphoid view in the hepatic portion at non-forced end-expiratory and end-inspiratory phases. IVC collapsibility index was calculated as follows: (maximum IVC
diameter at expiration - minimum IVC diameter) / maximum IVC diameter *100. A collapsibility index greater than 40% is the threshold to define hypovolemia in spontaneous ventilation (31). 2) sPAP was evaluated by measuring the tricuspid regurgitation velocity peak plus the estimated right atrial pressure. The right atrial pressure was rated at 10 mmHg if the IVC diameter was greater than 2 cm and at 5 mmHg in other cases, according to the Brennan et al. classification (32). sPAP was considered elevated above a value of 35 mmHg (33). 3) LVFP was evaluated using two measurements: the velocity ratio of the early to late filling flow (E/A ratio) using pulsed Doppler at the mitral annulus and the velocity ratio of the early filling flux (E) to the early velocity of the mitral annulus in lateral position (E') in tissue Doppler mode (E/E' ratio)(34,35). Only the E/E' ratio was measured in the case of chronic atrial fibrillation (36). It was considered high for values greater than 13 and low for values below 8 in patients with preserved left ventricular ejection fraction (LVEF), according to the 2012 French Haute Autorité de Santé (HAS) guidelines (37). In the absence of a validated echocardiographic score to define overload in haemodialysis patients, we defined the echocardiographic FO as E/E’ ratio > 13 or a combination of the following criteria: E/E' ratio between 8 and 13, IVC collapsibility <40% and sPAP> 35 mmHg. This definition was chosen using semiotic evidence bundles conventionally used in clinical practice and values described in the literature for ESRD patients (38-42). We chose this definition as the gold standard in our study because of the absence of a suitable benchmark to assess FO in ESRD patients, and because it has been shown that the E/E’ ratio correlates well with the elevation of LVFP in cardiac catheterization in patients with ESRD (38). In addition, the thresholds appear to be similar to those in the non-haemodialysis population (41), with elevated values representing an independent risk factor for mortality
Lung ultrasound assessed the number of anterior and lateral B-lines in a supine position. Lung water quantification was evaluated by the Echo Comet Score (ECS) using the 28-region technique described by Jambrik et al. (22). The sum of the B-lines at each site led to a score of over 280 indicating the importance of extravascular pulmonary water. The presence of B-lines was considered "mild" (5 to 14 B-lines), "moderate" (15 to 29 B-lines) or "severe" (more than 30 B-lines) (39).

Clinical, anthropometric and demographic characteristics were collected at baseline. Intra-dialytic hypotension was defined as systolic blood pressure fall more than 20 mmHg, or more than 10 mmHg associated with signs of poor tolerance, according to Kidney Disease Outcomes Quality Initiative (KDOQI) recommendations (40).

Biological data were collected before the dialysis session. The relative changes in blood volume during the dialysis session were evaluated by the relative blood volume (RBV) monitor incorporated into the dialysis machine (Nikkiso® DBB05, Tokyo, Japan).

Statistical analysis

Categorical variables were tested by Chi-square test and expressed as counts and percentages. The quantitative values were tested by a Mann-Whitney test and expressed as median and interquartile (IQR) ranges (25th-75th percentiles) and calculation of correlation by Spearman test and linear regression. Inter-observer variability was measured by Cohen’s kappa (κ) coefficient between 2 observers in 10 patients. All tests were non-parametric. A P<0.05 was considered significant. We express the diagnostic weight as likelihood ratio (LR) to describe the discriminatory power of clinical examination and lung ultrasound to define FO compared to the diagnostic gold standard (TTE). LRs were calculated using the Evidence-Based...
Medicine Calculator (©Knowledge Translation Program). Values greater than 1 increase the probability of disease. LRs less than 1 decrease the probability of disease. LRs of 2, 5, and 10 increase the probability of disease by about 15%, 30%, and 45%, respectively (in absolute terms). LRs of 0.5, 0.2, and 0.1 decrease probability by 15%, 30%, and 45%, respectively. We analysed clinical examination and lung ultrasound findings with tables comparing LRs of each different parameters to express the greatest diagnostic value (43).

Results

General characteristics of the study population

Thirty-one patients were included between December 2016 and April 2017. Characteristics of the study population are shown in Table 2. 83.9% of the patients were classified as hypertensive. Antihypertensive medications were prescribed to 67.8% of the study population. Most commonly prescribed were beta-blockers (32.3% of patients), followed by renin angiotensin system blockade (12.9% of patients), and calcium channel blockers (9.7% of patients). Loop diuretics were prescribed for 41.3% of patients. 19.3% of the patients had chronic heart failure, 41.9% had ischemic cardiopathy, 16.1% had atrial fibrillation, and 35.4% had diabetes mellitus. 61.3% of the patients had a residual diuresis.

Prevalence of fluid overload according to TTE

Volemic characteristics of the patients are presented in Table 2. At TTE, patients had a median E / A ratio of 0.82 [0.59–1.1], a median E / E’ ratio of 7.5 [5.7–10.6], a median IVC collapsibility of 17.4% [6.6–47.6], a median sPAP of 10.0 mmHg [5.0–28.2]. Five (16.1%) participants had FO according to the TTE score. In the TTE FO group, the median inter-dialytic weight variation was + 2.3% [1.6–3.0].
Clinical and lung ultrasound characteristics of patients with fluid overload

Ten out of 31 patients (32.3%) had FO according to the clinical score. The number of patients with clinical FO was significantly higher in patients with TTE FO: 100% versus 19.2%, P=0.0002. Five patients (19.2%) had clinical FO but no TTE FO (Table 3). Three clinical signs of FO were significantly associated with TTE FO: orthopnoea (60.0% versus 3.8%, P=0.0082, LR: 10.5); jugular turgor (100% versus 26.9%, P=0.0047, LR: 3.7); hepatic-jugular reflux (100% versus 30.8%, P=0.0076, LR: 3.24) (Table 4, Figure 1). There was no significant difference between the TTE overload and no TTE overload groups for all other clinical signs. There was no significant difference in terms of the occurrence of intra-dialytic hypotension between the two TTE groups (Table 3).

The proportion of patients with fistula was not different between the TTE overload and no TTE overload groups: 80.0% vs. 61.6%, respectively (P=0.63). The fistula flow rate was not different between the TTE overload and no TTE overload groups: 700 [500-950] ml/min vs. 900 [700-1060] ml/min, respectively (P=0.37). Serum albumin was not different between the TTE overload and no TTE overload groups: 37.8 [35.6-39.0] g/L vs 36.7 [34.4-41.3], respectively (p=0.89).

The diagnostic performances of the clinical FO score according to TTE FO were: Se: 100%; Sp: 77%; positive predictive value (PPV): 50%; negative predictive value (NPV): 100%, LR: 4.32 (Table 4, Figure 1). Inter-observer reliability test showed a substantial agreement with a κ of 0.77.

Fifteen out of 31 patients (48.4%) had pulmonary water on chest ultrasonography: one patient had mild pulmonary overload, two patients had moderate overload, and 12 patients had severe overload. The median ECS was 3 [0-42]. Among patients with pulmonary water on ultrasound, the median ECS was 44.5 [30.0-66.2]. The
number of patients with lung water on ultrasonography was not different between the two TTE groups (80.0% versus 42.3%, P=0.11). The ECS was not significantly higher in patients with TTE overload: 51 [18-146] versus 0 [0-33.7], P=0.22 (Table 3). ECS were significantly correlated with E/E’ ratio (r=0.40, p=0.02, R² 0.40). The diagnostic performance of lung ultrasound according to TTE FO was Se: 80%; Sp: 58%; PPV: 26%; NPV: 94%, with a LR of 1.9 (Table 4, Figure 1). By considering only the patients with moderate to severe pulmonary overload (ECS > 15), lung ultrasound had a Se of 80%, a Sp of 62%, a PPV of 29%, a NPV of 94%, and a LR of 2.08 (Table 4). Finally, by considering only the patients with severe pulmonary overload (ECS > 30), lung ultrasound had a Se, Sp, PPV and NPV of 80%, 69%, 33%, and 95%, respectively, and a LR of 2.6 (Table 4).

Clinical and TTE characteristics of the patients based on the presence of pulmonary water at lung ultrasound

There were not significantly more patients in overload according to the clinical score in patients with overload on the pulmonary ultrasound than in patients without pulmonary overload: 35.7 versus 29.4%, P=0.50. Ten patients (32.3%) had pulmonary water without clinical overload. Pulmonary water ultrasonography was significantly associated with the presence of crackles: 28.6% versus 0.0%, P=0.03. There was no significant difference between the two lung ultrasound groups for all other clinical signs. There were not significantly more patients with TTE overload in patients with pulmonary ultrasound overload than in patients without lung overload: 5.8 versus 28.6%, P=0.11. Pulmonary water ultrasonography was significantly associated with a higher sPAP: 7.5 mmHg [5.0-11.5] versus 25.5 mmHg [5.0-39.7], P=0.012. There was no significant difference between the two lung ultrasound groups regarding other TTE data.
Discussion

In our study, it appears that lung ultrasonography data do not correlate with TTE data to assess FO in ESRD patients. It had a poor Sp and PPV, but a good NPV. FO clinical score appears to be a better tool for gauging TTE-assessed overload with greater Se, Sp, PPV, and NPV than lung ultrasound.

Clinical overload evaluated by the score proposed in this study appears well correlated with TTE overload data, in particular, orthopnoea, jugular turgor and hepatic-jugular reflux. Our score has the advantage of being simple and fast for a volume assessment in routine clinical practice, and with a good inter-observer reliability. Thus, it seems useful for detecting intravascular overload and would make it possible to avoid the realization of TTE to assess DW.

While TTE data (elevation of LVFP, sPAP, diameter and collapsibility of IVC) are markers of increased intravascular pressure, lung ultrasound seems rather to be a reflection of extravascular overload. It does not appear to be correlated with the echocardiographic data or clinical examination in our study. It was only correlated with crackles. Thus, it seems of interest for the detection of infra-clinical pulmonary FO, which is not identifiable using TTE. It could refine the accuracy of DW determination, particularly in patients for whom clinical evaluation of FO is difficult, since stating normohydration from only the intravascular fluid accumulation may lead to persistent fluid overload.

Because of the simplicity, the speed, and the excellent inter-observer reproducibility (42) of this examination, it appears a useful technique in which nephrologists should be trained.

Eleven of the 12 studies currently published on haemodialysis pulmonary ultrasound
used ECS (27). Our results are consistent with those of the Lung Water by Ultrasound Guided Treatment in Hemodialysis Patients (LUST) study, which reported the low sensitivity of pulmonary crackles and peripheral oedema compared to lung ultrasonography for evaluation of lung water in haemodialysis patients, but a good specificity (29). Indeed, it has been shown that a decrease in ECS correlates with weight loss between the beginning and end of dialysis, while neither the diameter of the IVC (12,14) nor the E/A ratio varies (44). In our study we confirm the existence of a correlation between LFVP evaluated in TTE and ECS, which is consistent to other studies (23,45).

This suggests that the extravascular compartment would balance more slowly than the intravascular area with ultrafiltration. The study of Agricola et al. showed a linear correlation between ECS and extravascular pulmonary water determined in transpulmonary thermodilution (45). In our study, 15 out of 31 patients had overload on pulmonary ultrasound. However, the occurrence of a single episode of cardiac decompensation in our cohort suggests that in most cases this overload is well tolerated. The fact that the majority of the patients in the study had a residual diuresis probably limited the risk of cardiac decompensation.

Several questions remain unanswered. Our study shows 32.3% of clinically euvolemic patients with pulmonary water on ultrasound. There may be a risk of overtreating these patients. Ultrafiltration volumes that are too high lead to an exposure to risks, such as the occurrence of inter-dialytic hypotensions (46), fistula thrombosis (46,47), loss of residual diuresis (48,49) or decreased LVEF (50). Conversely, FO could favour the occurrence of cardiovascular adverse effects, and even asymptomatic overload is an independent risk factor for mortality (3-6,51).

Asymptomatic lung congestion is probably also dependent on other variable factors
such as vascular hyper-permeability (due to a possible endothelial dysfunction) (9),
as albuminemia was not different in our study between patients with TTE overload
and no TTE overload. Detection of asymptomatic lung water by ultrasound could
allow for better control of the hydration status and avoids the occurrence of cardiac
events. The current LUST randomized trial (ClinicalTrials.gov identifier No.
NCT02310061) may answer this question by comparing the mortality and the risk of
cardiovascular events in chronic haemodialysis patients according to management
based on a daily clinical volume assessment or pulmonary ultrasound examination
in everyday practice.

Ours is the first study comparing clinical signs with cardiac and pulmonary
ultrasonography to detect FO at the chronic dialysis patient's bedside in stable
ESRD patients. The physicians in charge of the patients were blinded to study
results that could have influenced the change in DW. The fact that clinical
evaluations were performed before ultrasound evaluations limits an eventual
assessment bias, as the ultrasound findings appear to be more objective than the
clinical findings.

Our work has several limitations. It is a relatively small sample drawn from a single
dialysis centre. The clinical and TTE evaluation scores were chosen empirically, in
the absence of clearly defined and validated scores in the haemodialysis population
in the literature. We did not evaluated serum BNP in our study due to his poor
sensitivity and specificity to assess fluid overload in dialysis patients (19). We did
not evaluated BIS neither, as this technique was not available in our center and
already compared to ECS in previous studies (28,30).

Conclusions
In conclusion, evaluation of overload using the ECS by pulmonary ultrasound is poorly correlated with the overload evaluated by TTE. The presence of extravascular pulmonary water undetected by clinical examination and TTE remains a parameter which requires further investigation from a diagnostic and prognostic point of view in haemodialysis patients. The clinical score proposed in this study has a satisfying diagnostic performance compared to TTE with good inter-observer reliability, and could be easily used in daily clinical routine to adjust DW.

Abbreviations

BIS: BioImpedance Spectroscopy
DW: Dry Weight
ECS: Echo Comet Score
FO: Fluid Overload
IVC: Inferior Vena Cava
LR: Likelihood Ratio
LVEF: Left Ventricular Ejection Fraction
LVFP: Left Ventricular Filling Pressure
NYHA: New York Heart Association
NPV: Negative Predictive Value
PPV: Positive Predictive Value
RBV: Red Blood Volume
Se: Sensitivity
Sp: Specificity
sPAP: systolic Pulmonary Artery Pression
TTE: Trans-Thoracic Echocardiography
Declarations

Ethics approval and consent to participate

Procedures followed were in accordance with the Helsinki Declaration of 1975, as revised in 2000. Since the echocardiography and lung ultrasound are realised in routine in our unit, and the data collected retrospectively, written consent were not necessary, but all patients were contacted and gave their express oral consent for the publication of their data. This study is registered in the local portal for access to health data (*Portail d’Accès aux données de Santé, Assistance-Publique – Hôpitaux de Marseille*) under the number PADS19-344.

Consent for publication

Not applicable.

Availability of data and materials

The datasets used and analysed during the current study are available from the corresponding author on reasonable request.

Competing Interests

The authors declare that they have no competing interests.

Funding

None declared.

Authors’ contributions

Design of the study: MB, LZ, PB and TR

Clinical evaluation and follow up: MB, CVK, ME

Ultrasound evaluation: MB

Statistical analysis: MB, TR, SC

Draft of the manuscript: MB
Figure: MB, TR

Review of the manuscript and substantial modifications: NJC, BD, MS, YB, SC, PB, TR.

All authors have read and approved the manuscript

Acknowledgements

English Editing: Felicity Kay

References

1. Thomson GE, Waterhouse K, McDonald HP, Friedman EA. Hemodialysis for chronic renal failure. Clinical observations. Archives of Internal Medicine 1967; 120: 153-167.

2. Sinha AD, Agarwal R. Can chronic volume overload be recognized and prevented in hemodialysis patients? The pitfalls of the clinical examination in assessing volume status. Seminars in Dialysis 2009; 22: 480-482.

3. Zoccali C. Lung Ultrasound in the Management of Fluid Volume in Dialysis Patients: Potential Usefulness. Seminars in Dialysis 2017; 30: 6-9.

4. Kim YJ, Jeon HJ, Kim YH et al. Overhydration measured by bioimpedance analysis and the survival of patients on maintenance hemodialysis: a single-center study. Kidney Research and Clinical Practice 2015; 34: 212-218.

5. Wizemann V, Wabel P, Chamney P et al. The mortality risk of overhydration in haemodialysis patients. Nephrology, Dialysis, Transplantation: Official Publication of the European Dialysis and Transplant Association - European Renal Association 2009; 24: 1574-1579.

6. Chazot C, Wabel P, Chamney P, Moissl U, Wieskotten S, Wizemann V. Importance of normohydration for the long-term survival of haemodialysis
patients. Nephrology, Dialysis, Transplantation: Official Publication of the European Dialysis and Transplant Association - European Renal Association 2012; 27: 2404-2410.

7. Zoccali C, Torino C, Tripepi R et al. Pulmonary congestion predicts cardiac events and mortality in ESRD. Journal of the American Society of Nephrology: JASN 2013; 24: 639-646.

8. Mathew AT, Fishbane S, Obi Y, Kalantar-Zadeh K. Preservation of residual kidney function in hemodialysis patients: reviving an old concept. Kidney International 2016; 90: 262-271.

9. Morgan AG. Contribution of Uremia to Pulmonary Edema in ESRD. Seminars in Dialysis 1989; 2: 192-192.

10. Kyle UG, Bosaeus I, De Lorenzo AD et al. Bioelectrical impedance analysis--part I: review of principles and methods. Clinical Nutrition (Edinburgh, Scotland) 2004; 23: 1226-1243.

11. Noble VE, Murray AF, Capp R, Sylvia-Reardon MH, Steele DJR, Liteplo A. Ultrasound assessment for extravascular lung water in patients undergoing hemodialysis. Time course for resolution. Chest 2009; 135: 1433-1439.

12. Trezzi M, Torzillo D, Ceriani E et al. Lung ultrasonography for the assessment of rapid extravascular water variation: evidence from hemodialysis patients. Internal and Emergency Medicine 2013; 8: 409-415.

13. Mallamaci F, Benedetto FA, Tripepi R et al. Detection of pulmonary congestion by chest ultrasound in dialysis patients. JACC. Cardiovascular imaging 2010; 3: 586-594.

14. Basso F, Milan Manani S, Cruz DN et al. Comparison and Reproducibility of Techniques for Fluid Status Assessment in Chronic Hemodialysis Patients.
15. Yotsueda R, Taniguchi M, Tanaka S et al. Cardiothoracic Ratio and All-Cause Mortality and Cardiovascular Disease Events in Hemodialysis Patients: The Q-Cohort Study. American Journal of Kidney Diseases: The Official Journal of the National Kidney Foundation 2017; 70: 84-92.

16. Sinha AD, Light RP, Agarwal R. Relative plasma volume monitoring during hemodialysis AIDS the assessment of dry weight. Hypertension (Dallas, Tex.: 1979) 2010; 55: 305-311.

17. Rodriguez HJ, Domenici R, Diroll A, Goykhman I. Assessment of dry weight by monitoring changes in blood volume during hemodialysis using Crit-Line. Kidney International 2005; 68: 854-861.

18. Reddan DN, Szczech LA, Hasselblad V et al. Intradialytic blood volume monitoring in ambulatory hemodialysis patients: a randomized trial. Journal of the American Society of Nephrology: JASN 2005; 16: 2162-2169.

19. Lee SW, Song JH, Kim GA, Lim HJ, Kim M-J. Plasma brain natriuretic peptide concentration on assessment of hydration status in hemodialysis patient. American Journal of Kidney Diseases: The Official Journal of the National Kidney Foundation 2003; 41: 1257-1266.

20. Chiu DYY, Green D, Abidin N, Sinha S, Kalra PA. Cardiac imaging in patients with chronic kidney disease. Nature Reviews. Nephrology 2015; 11: 207-220.

21. Lichtenstein D, Mézière G, Biderman P, Gepner A, Barré O. The comet-tail artifact. An ultrasound sign of alveolar-interstitial syndrome. American Journal of Respiratory and Critical Care Medicine 1997; 156: 1640-1646.

22. Jambrik Z, Monti S, Coppola V et al. Usefulness of ultrasound lung comets as a nonradiologic sign of extravascular lung water. The American Journal of
23. Volpicelli G, Elbarbary M, Blaivas M et al. International evidence-based recommendations for point-of-care lung ultrasound. Intensive Care Medicine 2012; 38: 577–591.

24. Gargani L, Sicari R, Raciti M et al. Efficacy of a remote web-based lung ultrasound training for nephrologists and cardiologists: a LUST trial sub-project. Nephrology, Dialysis, Transplantation: Official Publication of the European Dialysis and Transplant Association - European Renal Association 2016; 31: 1982–1988.

25. Zieleskiewicz L, Contargyris C, Brun C et al. Lung ultrasound predicts interstitial syndrome and hemodynamic profile in parturients with severe preeclampsia. Anesthesiology 2014; 120: 906–914.

26. Miglioranza MH, Gargani L, Sant’Anna RT et al. Lung ultrasound for the evaluation of pulmonary congestion in outpatients: a comparison with clinical assessment, natriuretic peptides, and echocardiography. JACC. Cardiovascular imaging 2013; 6: 1141–1151.

27. Ross DW, Abbasi MM, Jhaveri KD et al. Lung ultrasonography in end-stage renal disease: moving from evidence to practice—a narrative review. Clinical Kidney Journal [Internet] 2017; [cited 2017 Oct 9] Available from: http://academic.oup.com/ckj/article/doi/10.1093/ckj/sfx107/4265533/Lung-ultrasonography-in-endstage-renal-disease

28. Donadio C, Bozzoli L, Colombini E et al. Effective and timely evaluation of pulmonary congestion: qualitative comparison between lung ultrasound and thoracic bioelectrical impedance in maintenance hemodialysis patients. Medicine 2015; 94: e473.
29. Torino C, Gargani L, Sicari R et al. The Agreement between Auscultation and Lung Ultrasound in Hemodialysis Patients: The LUST Study. Clinical Journal of the American Society of Nephrology 2016; 11: 2005–2011.

30. Vitturi N, Dugo M, Soattin M et al. Lung ultrasound during hemodialysis: the role in the assessment of volume status. International Urology and Nephrology 2014; 46: 169-174.

31. Muller L, Bobbia X, Toumi M et al. Respiratory variations of inferior vena cava diameter to predict fluid responsiveness in spontaneously breathing patients with acute circulatory failure: need for a cautious use. Critical Care (London, England) 2012; 16: R188.

32. Brennan JM, Blair JE, Goonewardena S et al. Reappraisal of the use of inferior vena cava for estimating right atrial pressure. Journal of the American Society of Echocardiography: Official Publication of the American Society of Echocardiography 2007; 20: 857-861.

33. McGoon M, Gutterman D, Steen V et al. Screening, early detection, and diagnosis of pulmonary arterial hypertension: ACCP evidence-based clinical practice guidelines. Chest 2004; 126: 14S-34S.

34. Ommen SR, Nishimura RA, Appleton CP et al. Clinical utility of Doppler echocardiography and tissue Doppler imaging in the estimation of left ventricular filling pressures: A comparative simultaneous Doppler-catheterization study. Circulation 2000; 102: 1788-1794.

35. Nagueh SF, Kopelen HA, Zoghbi WA. Relation of mean right atrial pressure to echocardiographic and Doppler parameters of right atrial and right ventricular function. Circulation 1996; 93: 1160-1169.

36. Nagueh SF, Kopelen HA, Quiñones MA. Assessment of left ventricular filling
pressures by Doppler in the presence of atrial fibrillation. Circulation 1996; 94: 2138-2145.

37. HAS. Echocardiographie doppler transthoracique : principales indications et conditions de réalisation [Internet]. 2012;Available from: https://www.has-sante.fr/portail/jcms/c_896375/fr/echocardiographie-doppler-transthoracique-principales-indications-et-conditions-de-realisation

38. Sharma R, Pellerin D, Gaze DC et al. Mitral peak Doppler E-wave to peak mitral annulus velocity ratio is an accurate estimate of left ventricular filling pressure and predicts mortality in end-stage renal disease. Journal of the American Society of Echocardiography: Official Publication of the American Society of Echocardiography 2006; 19: 266-273.

39. Frassi F, Gargani L, Tesorio P, Raciti M, Mottola G, Picano E. Prognostic value of extravascular lung water assessed with ultrasound lung comets by chest sonography in patients with dyspnea and/or chest pain. Journal of Cardiac Failure 2007; 13: 830-835.

40. K/DOQI Workgroup. K/DOQI clinical practice guidelines for cardiovascular disease in dialysis patients. American Journal of Kidney Diseases: The Official Journal of the National Kidney Foundation 2005; 45: S1-153.

41. Wang AY-M, Wang M, Lam CW-K, Chan IH-S, Zhang Y, Sanderson JE. Left ventricular filling pressure by Doppler echocardiography in patients with end-stage renal disease. Hypertension (Dallas, Tex.: 1979) 2008; 52: 107-114.

42. Bedetti G, Gargani L, Corbisiero A, Frassi F, Poggianti E, Mottola G. Evaluation of ultrasound lung comets by hand-held echocardiography. Cardiovascular Ultrasound 2006; 4: 34.

43. McGee S. Simplifying likelihood ratios. Journal of General Internal Medicine
44. Douchet MP, Couppie P, Verdun A et al. [Doppler echocardiography of left ventricular filling in chronic renal insufficiency: before and after dialysis]. Nephrologie 1997; 18: 291–298.

45. Agricola E, Bove T, Oppizzi M et al. “Ultrasound comet-tail images”: a marker of pulmonary edema: a comparative study with wedge pressure and extravascular lung water. Chest 2005; 127: 1690–1695.

46. Agarwal R, Alborzi P, Satyan S, Light RP. Dry-weight reduction in hypertensive hemodialysis patients (DRIP): a randomized, controlled trial. Hypertension (Dallas, Tex.: 1979) 2009; 53: 500–507.

47. Curatola G, Bolignano D, Rastelli S et al. Ultrafiltration intensification in hemodialysis patients improves hypertension but increases AV fistula complications and cardiovascular events. Journal of Nephrology 2011; 24: 465–473.

48. Moist LM, Port FK, Orzol SM et al. Predictors of loss of residual renal function among new dialysis patients. Journal of the American Society of Nephrology: JASN 2000; 11: 556–564.

49. Jansen MAM, Hart AAM, Korevaar JC et al. Predictors of the rate of decline of residual renal function in incident dialysis patients. Kidney International 2002; 62: 1046–1053.

50. Burton JO, Jefferies HJ, Selby NM, McIntyre CW. Hemodialysis-induced cardiac injury: determinants and associated outcomes. Clinical journal of the American Society of Nephrology: CJASN 2009; 4: 914–920.

51. Ok E, Levin NW, Asci G, Chazot C, Toz H, Ozkahya M. Interplay of volume, blood pressure, organ ischemia, residual renal function, and diet: certainties and
uncertainties with dialytic management. Seminars in Dialysis 2017; 30: 420-429.

Tables

Table 1: Clinical score of fluid overload

Major criterions:	
- Dyspnea NYHA 3 or 4	
- Orthopnea	

Minor criterions:	
- Pulmonary crackles	
- Peripheral oedema	
- Jugular turgor	
- Hepatic-jugular reflux	
Predialysis blood pressure above 150/100 mmHg	

Clinical overload was defined by the association of 2 major criterions, or the association of 3 minor criteria, or the association of 1 major criterion and one minor criterion

Table 2: Characteristics of the population

Characteristics	Population (n=31)
Demographic	
Men, n (%)	22 (70.9)
Age (years)	63 [52–76]
Dry weight (kg)	70.5 [61.0–81.0]
Body mass index (kg/m²)	23.9 [21.9–27.3]
Residual diuresis, n (%)	19 (61.3)
High blood pressure, n (%)	26 (83.9)
Hypercholesterolemia, n (%)	12 (38.7)
Diabetes mellitus, n (%)	11 (35.4)
Smoking, n (%)	16 (51.6)
Chronic heart failure, n (%)	6 (19.3)
Atrial fibrillation, n (%)	5 (16.1)
Coronaropathy, n (%)	13 (41.9)
Baseline left ventricular ejection fraction (%)	64.5 [55.0–66.7]
Chronic obstructive pulmonary disease, n (%)	3 (9.7)
Chronic respiratory failure, n (%)	0 (0)
Dialysis	
Vascular access	
Technique
- Catheter, n (%) 11 (35.5)
- Fistula, n (%) 20 (64.5)

Sessions per week (n)
3 [3–3]

Duration of sessions (hours)
4 [4.0–4.7]

Dialysis vintage (months)
33 [8–102]

Biological data

Parameter	Median [Range]
C-Reactive protein (mg/L)	8.1 [2.7–11.0]
Serum albumin (g/L)	36.9 [35.1–40.1]

Clinical data

Parameter	Median [Range]
Fluid overload according to clinical score, n (%)	10 (32.3)
KT/V of the session	1.35 [1.15–1.54]
Ultrafiltration volume during sessions (litres)	1.7 [1.2–2.1]
Weight gain since last session (kg)	1.3 [0.8–1.8]
Weight gain compared to dry weight (% dry weight)	2.3 [1.6–3.0]
Pre-dialysis blood pressure (mmHg)	
Diastolic	132 [120–149]
Systolic	72 [63–82]

Dyspnoea NYHA stage

Stage	Median [Range]
I	16 (51.6)
II	11 (35.5)
III	4 (12.9)
IV	0 (0)

Orthopnoea

Stage	Median [Range]
	4 (12.9)

Cough

Stage	Median [Range]
	7 (22.6)

Juguar turgor

Stage	Median [Range]
	12 (38.7)

Hepatic-jugular reflux

Stage	Median [Range]
	13 (41.9)

Pulmonary crackles

Stage	Median [Range]
	4 (12.9)

Peripheral oedema

Stage	Median [Range]
	7 (22.6)

Skin fold

Stage	Median [Range]
	5 (16.1)

Cramps

Stage	Median [Range]
	9 (29.0)

Global asthenia

Stage	Median [Range]
	13 (41.9)

Post-dialysis asthenia

Stage	Median [Range]
	17 (54.8)
Biological data	
-----------------	---------------------------
Haematocrit (L/L)	0.33 [0.30–0.35]
Protidaemia (g/L)	68.1 [65.2–73.0]
Red Blood Volume at first hour (%)	-3.5 [-1.6 to -4.9]
Red Blood Volume at the end of session (%)	-6.0 [-3.1 to -10.1]

Echocardiography	
Fluid overload according to TTE Score, n (%)	5 (16.1)
Inferior vena cava collapsibility (%)	17.4 [6.6–47.6]
E/A ratio	0.82 [0.59–1.10]
E/E’ ratio	7.5 [5.7–10.6]
sPAP (mmHg)	10.0 [5.0–28.2]

Lung ultrasound	
Presence of lung water, n (%)	15 (48.4)
Echo Comet Score /280	3 [0-42]

Categorical variables are expressed in number (percentage). Quantitative values are expressed in median [1st and 3rd quartile]. NYHA, New York Heart Association; sPAP, systolic pulmonary arterial pressure; TTE, transthoracic echocardiography.

Table 3: Clinical and ultrasound characteristics of the population, depending on their transthoracic echocardiography (TTE) fluid overload
Clinical

	No TTE overload (n=26)	TTE overload (n=5)	p
Fluid overload according to clinical score, n (%)	5 (19.2)	5 (100.0)	0.0002
Weight gain compared to dry weight (% dry weight)	2.13 [1.37–2.98]	2.43 [2.10–4.71]	0.19
Pre-dialysis systolic blood pressure (mmHg)	131 [121.5–147]	153 [83–151]	0.78
Pre-dialysis diastolic blood pressure (mmHg)	72 [64–82.5]	63 [47.5–82.5]	0.29
Dyspnoea	4 (15.4)	0 (0.0)	NS
Orthopnoea	1 (3.8)	3 (60.0)	0.0082
Cough	6 (23.1)	1 (20.0)	0.74
Jugular turgor	7 (26.9)	5 (100.0)	0.0047
Hepatic-jugular reflux	8 (30.8)	5 (100.0)	0.0076
Pulmonary crackles	2 (7.7)	2 (40.0)	0.11
Peripheral oedema	4 (15.4)	3 (60.0)	0.06
Skin fold	4 (15.4)	1 (20.0)	0.61
Cramps	8 (30.8)	1 (20.0)	0.84
Global asthenia	10 (38.5)	3 (60.0)	0.34
Post-dialysis asthenia	15 (57.7)	2 (40.0)	0.88
Intra-dialytic hypotensions	12 (46.1)	3 (60.0)	0.46
Poorly tolerated intra-dialytic hypotension	3 (11.6)	0 (0.0)	1.00
Red Blood Volume at first hour (%)	-2.5 [-0.97 to -4.4]	-5.8 [-4.0 to -7.1]	0.019
Red Blood Volume at the end of session (%)	-5.2 [-2.5 to -10.0]	-7.8 [-6.2 to -10.8]	0.08

Echocardiography

	No TTE overload (n=26)	TTE overload (n=5)	p
Fluid overload according to TTE score, n (%)	28.0 [7.1–51.6]	10.7 [5.1–11.8]	0.0002
Inferior vena cava collapsibility (%)	0.8 [0.6-1.0]	1.3 [1.2-1.4]	0.04
E/A ratio	6.7 [2.6–8.7]	14.5 [12.0–15.9]	0.0011
E/E' ratio	5.0 [5.0-19.5]	38.5 [21.0-44.9]	0.0049

Lung ultrasound

	No TTE overload (n=26)	TTE overload (n=5)	p
Presence of lung water, n (%)	11 (42.3)	4 (80.0)	0.11
Echo Comet Score /280	0 [0-33.7]	51 [18-146]	0.22

Categorical variables are expressed in number (percentage). Quantitative values are expressed in median [1st and 3rd quartile].

Table 4: Fluid overload diagnostic performances of the clinical signs and the lung ultrasound compared to the diagnostic gold standard by transthoracic echocardiography (TTE) score
Variable	Sensitivity (%)	Specificity (%)	Likelihood ratio	
Clinical signs			Present	Abs:
Dyspnoea	0	84.6	-	0.
Orthopnoea	60	96.2	10.5	0.42
Cough	20	76.9	0.87	1.
Jugular turgor	100	73.1	3.7	0.42
Hepatic-jugular reflux	100	69.2	3.24	0.42
Pulmonary crackles	40	92.3	5.2	0.42
Peripheral oedema	60	84.6	3.9	0.42
Lung ultrasound				
Mild to severe overload	80	57.7	1.9	0.42
Moderate to severe overload	80	61.5	2.08	0.42
Severe overload	80	69.2	2.6	0.42

Figures

Probability of fluid overload in echocardiography

![Probability of fluid overload in echocardiography](image)

Figure 1

Probability of fluid overload in echocardiography depending on clinical signs and