Results on Complex Partial b-Metric Space with an Application

Gunaseelan Mani 1, Arul Joseph Gnanaprakasam 2, Ramakrishnan Kalaichelvan 1, and Yaé Ulrich Gaba 3, 4

1Department of Mathematics, Sri Sankara Arts and Science College(Autonomous), Affiliated to Madras University, Enathur, Kanchipuram 631 561, Tamil Nadu, India
2Department of Mathematics, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar Kattankulathur, Kanchipuram 603203, Tamil Nadu, India
3Department of Mathematics and Applied Mathematics, Sefako Makgatho Health Sciences University, Ga-Rankuwa, South Africa
4African Center for Advanced Studies, P.O. Box 4477, Yaounde, Cameroon

Correspondence should be addressed to Gunaseelan Mani; mathsguna@yahoo.com and Yaé Ulrich Gaba; yaeulrich.gaba@gmail.com

Received 2 February 2021; Revised 22 February 2021; Accepted 25 March 2021; Published 10 April 2021

Copyright © 2021 Gunaseelan Mani et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this paper, we prove a fixed point theorem in complex partial b-metric space under new contraction mapping. The proved results generalize and extend some of the well-known results in the literature. We also give some applications of our main results.

1. Introduction

Introduced in 1989 by Bakhtin [1] and Czerwik [2], the concept of b-metric spaces provided a framework to extend the results already known in the classical setting of metric spaces. About two decades later, more precisely in 2011, Azamet al. [3] came up with the notion of complex-valued metric spaces and provided some common fixed point theorems under some contractive conditions. Two years after, it was in [4] Rao et al. discussed for the first time the idea of complex-valued b-metric spaces.

It was just very recently, in 2017, that Dhihya and Marudai [5] extended all the preceding results in the setting of complex partial metric spaces making use of a rational type contraction.

This was followed by Gunaseelan [6], who introduced the concepts of complex partial b-metric spaces and discussed some results of fixed point theory for self-mappings in these new spaces.

Many authors have studied related interesting metric such as structures along with some applications. And, in this line, significant results have been obtained and can be read in [7–23]. In this paper, under new contraction condition, we prove a fixed point theorem in complex partial b-metric space. Although there have been a significant amount of scientific contributions to the theory of partial b-metric space, very few address that of complex valued, and even less, the applicability of complex partial b-metrics in the resolution integral equations. This, however, in one the main contributions of the present work. We begin by recalling basic facts about complex partial b-metric spaces.

2. Preliminaries

Let \mathbb{C} be the set of complex numbers and $\bar{\omega}_1, \bar{\omega}_2, \bar{\omega}_3 \in \mathbb{C}$. Define a partial order $<$ on \mathbb{C} as follows: $\bar{\omega}_1 < \bar{\omega}_2$ if and only if $\text{Re.part}(\bar{\omega}_1) \leq \text{Re.part}(\bar{\omega}_2)$, $\text{Im.part}(\bar{\omega}_1) \leq \text{Im.part}(\bar{\omega}_2)$.

Consequently, one can infer that $\bar{\omega}_1 < \bar{\omega}_2$ if one of the following conditions is satisfied:

(i) $\text{Re.part}(\bar{\omega}_1) = \text{Re.part}(\bar{\omega}_2)$ and $\text{Im.part}(\bar{\omega}_1) < \text{Im.part}(\bar{\omega}_2)$
(ii) $\text{Re. part}(\omega_1) < \text{Re. part}(\omega_2)$ and $\text{Im. part}(\omega_1) = \text{Im. part}(\omega_2)$

(iii) $\text{Re. part}(\omega_1) < \text{Re. part}(\omega_2)$ and $\text{Im. part}(\omega_1) < \text{Im. part}(\omega_2)$

(iv) $\text{Re. part}(\omega_i) = \text{Re. part}(\omega_j)$ and $\text{Im. part}(\omega_i) = \text{Im. part}(\omega_j)$

In particular, we write $\omega_1 \preceq \omega_2$ if $\omega_1 \neq \omega_2$ and one of (i), (ii), and (iii) is satisfied, and we write $\omega_1 \prec \omega_2$ if only (iii) is satisfied. Notice that

(a) If $0 < |\omega_1| < |\omega_2|$

(b) If $|\omega_1| < |\omega_2|$ and $\omega_2 \prec \omega_1$, then $\omega_1 \prec \omega_2$

(c) If $\tau, \gamma \in \mathbb{R}$ and $\tau \leq \gamma$, then $\omega_1 \prec \omega_2$ for all $0 < \omega_1 \in \mathbb{C}$

Definition 1 (see [4]). Let Θ be a nonvoid set and let $s \geq 1$ be a given real number. A function $d : \Theta \times \Theta \rightarrow \mathbb{C}$ is called a complex-valued b-metric on Θ if, for all $e, f, g \in \Theta$, the following conditions are satisfied:

(i) $0 < d(e, f) < d(e, f) = 0$ and only if $e = f$

(ii) $d(e, f) - d(f, g) = d(e, g)$

(iii) $d(e, f) \leq s[d(e, g) + d(g, f)]$

The pair (Θ, d) is called a complex-valued b-metric space.

Here, $\mathbb{C}^+ = \{e \in \mathbb{C} : e \geq 0\}$ and $\mathbb{R}^+ = \{e \in \mathbb{R} : e \geq 0\}$ denote the set of nonnegative complex numbers and the set of nonnegative real numbers, respectively. We now give the complex partial metric space.

Definition 2 (see [5]). A complex partial metric on a nonvoid set Θ is a function $\xi : \Theta \times \Theta \rightarrow \mathbb{C}^+$ such that, for all $\alpha, \beta, \gamma \in \Theta$,

(i) $0 < \xi(\alpha, \alpha) < \xi(\alpha, \beta)$ (small self-distances)

(ii) $\xi(\alpha, \beta) = \xi(\beta, \alpha)$ (symmetry)

(iii) $\xi(\alpha, \beta) = \xi(\gamma, \beta)$ if and only if $\alpha = \beta$ (equality)

(iv) $\xi(\alpha, \beta) < \xi(\alpha, \gamma) + \xi(\gamma, \beta)$ (triangularity)

A complex partial metric space is a pair (Θ, ξ) such that Θ is a nonvoid set and ξ is the complex partial metric on Θ.

Definition 3 (see [6]). A complex partial b-metric on a nonvoid set Θ is a function $\gamma_{cb} : \Theta \times \Theta \rightarrow \mathbb{C}^+$ such that, for all $\alpha, \beta, \gamma \in \Theta$,

(i) $0 < \gamma_{cb}(\alpha, \alpha) < \gamma_{cb}(\alpha, \beta)$ (small self-distances)

(ii) $\gamma_{cb}(\alpha, \beta) = \gamma_{cb}(\beta, \alpha)$ (symmetry)

(iii) $\gamma_{cb}(\alpha, \beta) = \gamma_{cb}(\gamma, \beta) \iff \alpha = \beta$ (equality)

(iv) $\exists a$ a real number $s \geq 1$ and s is an independent of α, β, γ such that $\gamma_{cb}(\alpha, \beta) \leq s(\gamma_{cb}(\alpha, \gamma) + \gamma_{cb}(\gamma, \beta))$

$\gamma_{cb}(\alpha, \beta) \prec \gamma_{cb}(\gamma, \beta)$ (triangularity)

A complex partial b-metric space is a pair (Θ, γ_{cb}) such that Θ is a nonvoid set and γ_{cb} is the complex partial b-metric on Θ. The number s is called the coefficient of (Θ, γ_{cb}).

Remark 1 (see [6]). In a complex partial b-metric space (Θ, γ_{cb}) if $a, \beta \in \Theta$ and $\gamma_{cb}(a, \beta) = 0$, then $a = \beta$, but the converse may not be true.

Every complex partial b-metric γ_{cb} on a nonvoid set Θ generates a topology τ_{cb} on Θ whose base is the family of open γ_{cb}-balls $B_{\gamma_{cb}}(\alpha, \varepsilon)$, where $\tau_{cb} = \{B_{\gamma_{cb}}(\alpha, \varepsilon) : \alpha \in \Theta, \varepsilon > 0\}$ and $B_{\gamma_{cb}}(\alpha, \varepsilon) = \{\beta \in \Theta : \gamma_{cb}(\alpha, \beta) < \varepsilon + \gamma_{cb}(\alpha, \alpha)\}$.

Now, we define Cauchy sequence and convergent sequence in complex partial b-metric spaces.

Definition 4 (see [6]). Let (Θ, γ_{cb}) be a complex partial b-metric space with coefficient s. Let $\{a_n\}$ be any sequence in Θ and $a \in \Theta$. Then

(i) The sequence $\{a_n\}$ is said to be convergent with respect to γ_{cb} and converges to a if $\lim_{n \rightarrow \infty} \gamma_{cb}(a_n, a) = \gamma_{cb}(a, a)$

(ii) The sequence $\{a_n\}$ is said to be Cauchy in (Θ, γ_{cb}) if $\lim_{n,m \rightarrow \infty} \gamma_{cb}(a_n, a_m)$ exists and is finite

(iii) (Θ, γ_{cb}) is said to be a complete complex partial b-metric space if, for every Cauchy sequence $\{a_n\}$ in Θ, there exists $a \in \Theta$ such that $\lim_{n \rightarrow \infty} \gamma_{cb}(a_n, a) = \gamma_{cb}(a, a)$

(iv) A mapping $\Xi : \Theta \rightarrow \Theta$ is said to be continuous at $a_0 \in \Theta$ if, for every $\varepsilon > 0$, there exists $\delta > 0$ such that $\Xi(B_{\gamma_{cb}}(a_0, \delta)) \subseteq B_{\gamma_{cb}}(\Xi(a_0), \varepsilon)$

Let (Θ, γ_{cb}) be a complete complex partial b-metric space $\Theta \times \Theta \rightarrow \mathbb{C}^+$ with $\gamma_{cb} = (\max|\alpha, \beta|^2 + i(\max|\alpha, \beta|^2))\gamma_{cb}$, where $\theta \in \Theta$.

In 2019, Gunaseelan [6] proved the following theorem.

Theorem 1 (see [6]). Let (Θ, γ_{cb}) be a complete complex partial b-metric space with coefficient $s \geq 1$ and $\Xi : \Theta \rightarrow \Theta$ be a mapping satisfying the following condition:

$$\gamma_{cb}(\Xi a, \Xi \beta) < \gamma_{cb}(\alpha, \Xi a) + \gamma_{cb}(\beta, \Xi \beta), \quad \forall a, \beta \in \Theta,$$

where $a \in [0, (1/s)]$. Then, Ξ has a unique fixed point $\gamma \in \Theta$ and $\gamma_{cb}(\gamma, \gamma) = 0$.

Inspired by Theorem 1, we prove a fixed point theorem on complex partial b-metric space under new contraction mapping.

In Section 3, we first prove, under new contraction mapping, a fixed point theorem on complete complex partial b-metric space. We also provide an example of the complete complex partial b-metric space and clarify that, under certain conditions, it has a unique fixed point.

3. Main Results

Theorem 2. Let (Θ, γ_{cb}) be a complete complex partial b-metric space with constant $s \geq 1$ and let Ξ be a self-mapping on Θ. Suppose that there exist functions $\tau_i, i = 1, 2, 3, 4, 5,$ of C^* into C^* such that

1. Each τ_i is upper semicontinuous from the right.
2. For any distinct $\alpha, \beta \in \Theta$,

 $\gamma_{cb}(\alpha, \beta)^2 = \gamma_{cb}(\alpha, \beta)\gamma_{cb}(\Xi\alpha, \Xi\beta)$

 $\leq \tau_1(\gamma_{cb}(\alpha, \beta))\gamma_{cb}(\alpha, \beta) + \tau_2(\gamma_{cb}(\alpha, \beta))\gamma_{cb}(\alpha, \Xi\beta)$

 $+ \tau_3(\gamma_{cb}(\alpha, \beta))\gamma_{cb}(\Xi\alpha, \beta) + \tau_4(\gamma_{cb}(\alpha, \beta))\gamma_{cb}(\alpha, \Xi\alpha)$

 $+ \tau_5(\gamma_{cb}(\alpha, \beta))\gamma_{cb}(\beta, \Xi\beta)$

 $= \tau_1(\gamma_{cb}(\alpha, \beta))\gamma_{cb}(\alpha, \beta) + \tau_2(\gamma_{cb}(\alpha, \beta))\gamma_{cb}(\alpha, \beta)$

 $+ \tau_3(\gamma_{cb}(\alpha, \beta))\gamma_{cb}(\alpha, \beta) + \tau_4(\gamma_{cb}(\alpha, \beta))\gamma_{cb}(\alpha, \alpha)$

 $+ \tau_5(\gamma_{cb}(\alpha, \beta))\gamma_{cb}(\beta, \beta)$

 $\leq \tau_1(\gamma_{cb}(\alpha, \beta))\gamma_{cb}(\alpha, \beta) + \tau_2(\gamma_{cb}(\alpha, \beta))\gamma_{cb}(\alpha, \beta)$

 $+ \tau_3(\gamma_{cb}(\alpha, \beta))\gamma_{cb}(\alpha, \beta) + \tau_4(\gamma_{cb}(\alpha, \beta))\gamma_{cb}(\alpha, \alpha)$

 $+ \tau_5(\gamma_{cb}(\alpha, \beta))\gamma_{cb}(\alpha, \alpha)$

 $= (\tau_1(\gamma_{cb}(\alpha, \beta)) + \tau_2(\gamma_{cb}(\alpha, \beta)) + \tau_3(\gamma_{cb}(\alpha, \beta)) + \tau_4(\gamma_{cb}(\alpha, \beta)) + \tau_5(\gamma_{cb}(\alpha, \beta)))\gamma_{cb}(\alpha, \beta)$

 $\leq 1 - \frac{1}{2s}\gamma_{cb}(\alpha, \beta)$

 $< \gamma_{cb}(\alpha, \beta),$

which implies that

$$|\gamma_{cb}(\alpha, \beta)|^2 < |\gamma_{cb}(\alpha, \beta)|,$$

which is impossible. Therefore, $\alpha = \beta$. Choose $\alpha_1 \in \Theta$. Set

$$\alpha_2 = \Xi\alpha_1, \ldots, \alpha_{m+1} = \Xi\alpha_m = \Xi^{m+1}\alpha_1,$$

which indicates that $\gamma_{cb}(\alpha, \beta) < 0$. If there exists $m \in \mathbb{N}$ such that

$$\gamma_{cb}(\alpha, \beta) = 0,$$

then Ξ has a unique fixed point.

Proof. Let us first prove that if fixed points of Ξ exists, then it is unique. Let $\alpha, \beta \in \Theta$ be two distinct fixed points of Ξ, that is, $\Xi\alpha = \alpha \neq \beta = \Xi\beta$. Then, $\gamma_{cb}(\alpha, \beta) > 0$. If $\gamma_{cb}(\alpha, \alpha) = 0$, we have $0 = (1/2s)\gamma_{cb}(\alpha, \alpha) = (1/2s)\gamma_{cb}(\alpha, \Xi\alpha) < \gamma_{cb}(\alpha, \beta)$. If $\gamma_{cb}(\alpha, \alpha) > 0$. By the definition of complex partial b-metric space, we obtain

$$\frac{1}{2s}\gamma_{cb}(\alpha, \alpha) = \frac{1}{2s}\gamma_{cb}(\alpha, \alpha) < \gamma_{cb}(\alpha, \beta).$$

From condition (C3), we derive

$$\frac{1}{2s}\gamma_{cb}(\alpha, \alpha) < \gamma_{cb}(\alpha, \beta),$$

which implies that

$$|\gamma_{cb}(\alpha, \beta)|^2 < |\gamma_{cb}(\alpha, \beta)|,$$

which is impossible. Therefore, $\alpha = \beta$. Choose $\alpha_1 \in \Theta$. Set

$$\alpha_2 = \Xi\alpha_1, \ldots, \alpha_{m+1} = \Xi\alpha_m = \Xi^{m+1}\alpha_1.$$
From (2), we derive

\[
\gamma_{cb}(a_m, \Xi a_m) Y_{cb}(\Xi a_m, \Xi^2 a_m) \leq \tau_1 (\gamma_{cb}(a_m, \Xi a_m) Y_{cb}(a_m, \Xi a_m)) + \tau_2 (\gamma_{cb}(a_m, \Xi a_m) Y_{cb}(a_m, \Xi^2 a_m)) + \tau_3 (\gamma_{cb}(a_m, \Xi a_m) Y_{cb}(\Xi a_m, \Xi a_m)) + \tau_4 (\gamma_{cb}(a_m, \Xi a_m) Y_{cb}(a_m, \Xi a_m)) + \tau_5 (\gamma_{cb}(a_m, \Xi a_m) Y_{cb}(\Xi a_m, \Xi^2 a_m))
\]

\[
\leq \tau_1 (\gamma_{cb}(a_m, \Xi a_m) Y_{cb}(a_m, \Xi a_m)) + \tau_2 (\gamma_{cb}(a_m, \Xi a_m) Y_{cb}(a_m, \Xi^2 a_m)) + \tau_3 (\gamma_{cb}(a_m, \Xi a_m) Y_{cb}(\Xi a_m, \Xi^2 a_m)) + \tau_4 (\gamma_{cb}(a_m, \Xi a_m) Y_{cb}(a_m, \Xi^2 a_m)) + \tau_5 (\gamma_{cb}(a_m, \Xi a_m) Y_{cb}(\Xi a_m, \Xi^2 a_m))
\]

\[
≤ \left[\tau_1 (\gamma_{cb}(a_m, \Xi a_m)) + \tau_2 (\gamma_{cb}(a_m, \Xi a_m)) + \tau_3 (\gamma_{cb}(a_m, \Xi^2 a_m)) + \tau_4 (\gamma_{cb}(\Xi a_m, \Xi a_m)) + \tau_5 (\gamma_{cb}(\Xi a_m, \Xi^2 a_m)) \right] Y_{m+1} Y_m
\]

which implies that

\[
\gamma_{m+1} Y_{m+1} \leq \frac{\left[\tau_1 (\gamma_{cb}(a_m, \Xi a_m)) + \tau_2 (\gamma_{cb}(a_m, \Xi a_m)) + \tau_3 (\gamma_{cb}(a_m, \Xi^2 a_m)) + \tau_4 (\gamma_{cb}(\Xi a_m, \Xi a_m)) + \tau_5 (\gamma_{cb}(\Xi a_m, \Xi^2 a_m)) \right] Y_{m+1} Y_m}{\gamma_m - \tau_2 (Y_m) - \tau_5 (Y_m)}.
\]

(9)

From \(C_3\), we obtain

\[
\tau_1 (v) + 2s \tau_2 (v) + 2s \tau_3 (v) + \tau_4 (v) + \tau_5 (v) < 2s \left(\tau_1 (v) + \tau_2 (v) + \tau_3 (v) + \tau_4 (v) + \tau_5 (v) \right)
\]

(11)

which implies that

\[
|\gamma_{cb}(a_{m+1}, \Xi a_{m+1})| < |\gamma_{cb}(a_m, \Xi a_m)|, \quad \forall m \in \mathbb{N}.
\]

(14)

Consequently, \(\text{Re}.\part(\gamma_{m+1}) < \text{Re}.\part(\gamma_m)\) and \(\text{Im}.\part(\gamma_{m+1}) < \text{Im}.\part(\gamma_m)\). Therefore, \(\{\text{Re}.\part(\gamma_m)\}\) is a decreasing sequence of real numbers which is bounded from below. So, \(\{\text{Re}.\part(\gamma_m)\}\) converges to some point \(\gamma \in [0, \infty)\). Similarly, \(\{\text{Im}.\part(\gamma_m)\}\) converges to some point \(\gamma \in [0, \infty)\).

and consequently,

\[
\gamma_m Y_{m+1} < \left[\tau_1 (Y_m) + \tau_2 (Y_m) + 2s \tau_3 (Y_m) + \tau_4 (Y_m) \right] Y_m
\]

(10)
\[V = \lim_{m \to \infty} V_{m+1} = \lim_{m \to \infty} \sup_{m+1} V_{m+1} \]

\[\leq \lim_{m \to \infty} \frac{\tau_1(Y_m') + s\tau_3(Y_m') + 2s\tau_3(Y_m') + \tau_4(Y_m')}{Y_m - \tau_5(Y)} \]

\[= \frac{\tau_1(Y) + s\tau_3(Y) + 2s\tau_3(Y) + \tau_4(Y)}{Y - \tau_5(Y)} \]

\[< V, \]

(15)

which implies that \(|V| < |V|\), which is impossible. Therefore,

\[\lim_{m \to \infty} V_m = \lim_{m \to \infty} V_{cb}(\alpha_m, \Xi \alpha_m) = 0. \]

(16)

Next, we prove that

\[\lim_{m \to \infty} V_{cb}(\alpha_m, \alpha_m) = 0. \]

(17)

Suppose not, we assume that there exist \(\varepsilon > 0\) and sequence \(\{\zeta(m)\}\) and \(\{\xi(m)\}\) of natural numbers such that

\[\zeta(m) > \xi(m) > m, \]

\[V_{cb}(\alpha_{\zeta(m)}, \alpha_{\xi(m)}) > \varepsilon, \]

\[V_{cb}(\alpha_{\zeta(m)-1}, \alpha_{\xi(m)}) < \varepsilon, \quad \forall n \in \mathbb{N}. \]

(18)

Therefore, we derive

\[\varepsilon < V_{cb}(\alpha_{\zeta(m)}, \alpha_{\xi(m)}) < s\left(V_{cb}(\alpha_{\zeta(m)}, \alpha_{\xi(m)-1}) + V_{cb}(\alpha_{\zeta(m)-1}, \alpha_{\xi(m)}) \right) \]

\[- V_{cb}(\alpha_{\zeta(m)-1}, \alpha_{\xi(m)-1}) \]

\[< sV_{cb}(\alpha_{\zeta(m)}, \alpha_{\xi(m)-1}) + sV_{cb}(\alpha_{\zeta(m)-1}, \alpha_{\xi(m)}) \]

\[< sV_{cb}(\alpha_{\xi(m)}, \alpha_{\xi(m)-1}) + s \varepsilon. \]

(19)

Using (16), we derive

\[\varepsilon < \lim_{m \to \infty} \inf V_{cb}(\alpha_{\zeta(m)}, \Xi \alpha_{\xi(m)}) < \varepsilon, \quad \forall m > M. \]

(20)

From (16), there exists \(M \in \mathbb{N}\) such that \((1/2s)Y_{cb}(\alpha_{\zeta(m)}, \Xi \alpha_{\xi(m)}) < \varepsilon, \forall m > M\), and using (18), we derive

\[\frac{1}{2s}Y_{cb}(\alpha_{\zeta(m)}, \Xi \alpha_{\xi(m)}) < \frac{1}{2s}Y_{cb}(\alpha_{\zeta(m)-1}, \alpha_{\xi(m)+1}) \]

\[= Y_{cb}(2\alpha_{\xi(m)}, \Xi \alpha_{\xi(m)}), \quad \forall m > M. \]

(21)

Therefore, from (C3), for every \(m > M\), we obtain
Hence, from (C₂), we derive

\[
\gamma_{cb}(\alpha(m), \alpha(m)) \gamma_{cb}(\Xi \alpha(m), \Xi \alpha(m)) \leq \frac{1}{2 s^2} \left[\gamma_{cb}(\alpha(m), \alpha(m)) \right]^2 + \frac{1}{2 s^2} \gamma_{cb}(\alpha(m), \alpha(m)) \gamma_{cb}(\Xi \alpha(m), \alpha(m)) \\
+ \frac{1}{2 s^2} \gamma_{cb}(\alpha(m), \alpha(m)) \gamma_{cb}(\alpha(m), \Xi \alpha(m)).
\]

(23)

From (16)–(23), we obtain

\[
\epsilon^2 < \lim_{m \rightarrow \infty} \sup \left[\gamma_{cb}(\alpha(m), \alpha(m)) \gamma_{cb}(\alpha(m+1), \alpha(m+1)) \right] \\
< \lim_{m \rightarrow \infty} \sup \left[\frac{1}{2 s^2} \left[\gamma_{cb}(\alpha(m), \alpha(m)) \right]^2 + \frac{1}{2 s^2} \gamma_{cb}(\alpha(m), \alpha(m)) \gamma_{cb}(\Xi \alpha(m), \alpha(m)) n \\
+ \frac{1}{2 s^2} \gamma_{cb}(\alpha(m), \alpha(m)) \gamma_{cb}(\alpha(m), \Xi \alpha(m)) \right] n \\
< \frac{1}{2 s^2} (\epsilon^2) = \frac{1}{2} \epsilon^2 < \epsilon^2,
\]

(24)

which is impossible. Hence, \(\lim_{m \rightarrow \infty} \gamma_{cb}(\alpha(m), \alpha(m)) = 0 \). By completeness of \((\Theta, \gamma_{cb})\), there exists \(\alpha \in \Theta \) such that

\[
\gamma_{cb}(\alpha, \alpha) = \lim_{m \rightarrow \infty} \gamma_{cb}(\alpha(m), \alpha) = \lim_{m, n \rightarrow \infty} \gamma_{cb}(\alpha(m), \alpha(n)) = 0.
\]

(25)

We shall prove that, for every \(m \in \mathbb{N} \),

\[
\frac{1}{2 s} \gamma_{cb}(\alpha(m), \Xi \alpha(m)) \leq \gamma_{cb}(\alpha(m), \alpha).
\]

(26)

or

\[
\frac{1}{2 s} \gamma_{cb}(\Xi \alpha(m), \Xi^2 \alpha(m)) \leq \gamma_{cb}(\Xi \alpha(m), \alpha).
\]

(27)

Suppose not, we assume that there exists \(q \in \mathbb{N} \) such that

\[
\frac{1}{2 s} \gamma_{cb}(\alpha(q), \Xi \alpha(q)) \geq \gamma_{cb}(\alpha(q), \alpha),
\]

(28)

which is impossible. Hence, (25) and (26) holds. From (25), we obtain

\[
\gamma_{cb}(\alpha(m), \alpha) \gamma_{cb}(\Xi \alpha(m), \Xi \alpha) \leq \tau_1 \left(\gamma_{cb}(\alpha(m), \alpha) \right) \gamma_{cb}(\alpha(m), \alpha) \\
+ \tau_2 \left(\gamma_{cb}(\alpha(m), \alpha) \right) \gamma_{cb}(\alpha(m), \Xi \alpha) \\
+ \tau_3 \left(\gamma_{cb}(\alpha(m), \alpha) \right) \gamma_{cb}(\Xi \alpha(m), \alpha) \\
+ \tau_4 \left(\gamma_{cb}(\alpha(m), \alpha) \right) \gamma_{cb}(\alpha(m), \Xi \alpha) \\
+ \tau_5 \left(\gamma_{cb}(\alpha(m), \alpha) \right) \gamma_{cb}(\alpha(m), \Xi \alpha) \\
+ \tau_6 \left(\gamma_{cb}(\alpha(m), \alpha) \right) \gamma_{cb}(\alpha(m), \Xi \alpha) \\
+ \tau_7 \left(\gamma_{cb}(\alpha(m), \alpha) \right) \gamma_{cb}(\alpha(m), \Xi \alpha) \\
+ \tau_8 \left(\gamma_{cb}(\alpha(m), \alpha) \right) \gamma_{cb}(\alpha(m), \Xi \alpha) \\
+ \tau_9 \left(\gamma_{cb}(\alpha(m), \alpha) \right) \gamma_{cb}(\alpha(m), \Xi \alpha) \\
+ \tau_{10} \left(\gamma_{cb}(\alpha(m), \alpha) \right) \gamma_{cb}(\alpha(m), \Xi \alpha)
\]

(29)
Using (25) and (26), we derive

\[+ \tau_3 (\chi_{cb}(a, a)) \chi_{cb}(a, a) \]
\[+ \tau_3 ((\chi_{cb}(a, a)) \chi_{cb}(a, a)) \]
\[\leq t_1 (\chi_{cb}(a, a)) \chi_{cb}(a, a) \]
\[+ [s \tau_2 (\chi_{cb}(a, a)) + \tau_4 (\chi_{cb}(a, a))] \chi_{cb}(a, a) \]
\[+ [s \tau_2 (\chi_{cb}(a, a)) + \tau_5 (\chi_{cb}(a, a))] \chi_{cb}(a, a) \]
\[+ [\tau_3 (\chi_{cb}(a, a)) + \tau_5 (\chi_{cb}(a, a))] \chi_{cb}(a, a). \]

(30)

From (12), we derive

\[\chi_{cb}(a, a) \leq \chi_{cb}(a, a) + \chi_{cb}(a, a) \]
\[+ \chi_{cb}(a, a) + \chi_{cb}(a, a) \]
\[\leq [s \tau_2 (\chi_{cb}(a, a)) + \tau_4 (\chi_{cb}(a, a))] \chi_{cb}(a, a) \]
\[+ [s \tau_2 (\chi_{cb}(a, a)) + \tau_5 (\chi_{cb}(a, a))] \chi_{cb}(a, a) \]
\[+ [\tau_3 (\chi_{cb}(a, a)) + \tau_5 (\chi_{cb}(a, a))] \chi_{cb}(a, a). \]

(31)

Using (25) and (26), we derive

\[\lim_{m \to \infty} \chi_{cb}(a, a) = 0. \]

(32)

Since

\[\chi_{cb}(a, a) < s[\chi_{cb}(a, a) + \chi_{cb}(a, a)] - \chi_{cb}(a, a) \]
\[< s[\chi_{cb}(a, a) + \chi_{cb}(a, a)] \]
\[= s \chi_{cb}(a, a) + s \chi_{cb}(a, a), \]

(33)

using (25) and (32), we get \(a = a. \) From (27), we obtain

\[\chi_{cb}(a, a) \leq \chi_{cb}(a, a) + \chi_{cb}(a, a) \]
\[+ \chi_{cb}(a, a) + \chi_{cb}(a, a) \]
\[\leq [s \tau_2 (\chi_{cb}(a, a)) + \tau_4 (\chi_{cb}(a, a))] \chi_{cb}(a, a) \]
\[+ [s \tau_2 (\chi_{cb}(a, a)) + \tau_5 (\chi_{cb}(a, a))] \chi_{cb}(a, a) \]
\[+ [\tau_3 (\chi_{cb}(a, a)) + \tau_5 (\chi_{cb}(a, a))] \chi_{cb}(a, a). \]

(34)
which means that

\[
\gamma_{cb}(\Xi^2 a_m, \Xi a) < \frac{\tau_1(\Xi a_m, \alpha)\gamma_{cb}(\Xi a_m, \alpha)}{\gamma_{cb}(\Xi a_m, \alpha) - s \tau_2(\gamma_{cb}(\Xi a_m, \alpha)) - s \tau_5(\gamma_{cb}(\Xi a_m, \alpha))} + (s \tau_2(\gamma_{cb}(\Xi a_m, \alpha)) + s \tau_5(\gamma_{cb}(\Xi a_m, \alpha)))\gamma_{cb}(\Xi^2 a_m, \Xi^2 a) + \gamma_{cb}(\Xi a_m, \alpha) - s \tau_2(\gamma_{cb}(\Xi a_m, \alpha)) - s \tau_5(\gamma_{cb}(\Xi a_m, \alpha))
\]

From (12) and (35), we derive that
\[
0 < \gamma_{cb}(\Xi^2 a_m, \Xi a) < \gamma_{cb}(\Xi a_m, \alpha) + \gamma_{cb}(\Xi^2 a_m, \Xi a) + \gamma_{cb}(\alpha, \Xi a_m).
\]

(36)

Using (16) and (25), we derive
\[
\lim_{m \to \infty} \gamma_{cb}(\Xi^2 a_m, \Xi a) = 0.
\]

(37)

Since
\[
\gamma_{cb}(\alpha, \Xi a) < s\left[\gamma_{cb}(\alpha, \Xi^2 a_m) + \gamma_{cb}(\Xi^2 a_m, \Xi a)\right] - \gamma_{cb}(\Xi^2 a_m, \Xi^2 a_m) - s\left[\gamma_{cb}(\alpha, \Xi^2 a_m) + \gamma_{cb}(\Xi^2 a_m, \Xi a)\right],
\]

using (25) and (37), we get \(\alpha = \Xi a\).

Example 2. Let \(\Theta = \mathbb{N} \cup \{r + (1/j + 3): r, j \in \mathbb{N}\}\). Define \(\gamma_{cb}: \Theta \times \Theta \to \mathbb{C}^+\) by

\[
\frac{1}{2}\gamma_{cb}\left(r + \frac{1}{j + 3}, \Xi\left(r + \frac{1}{j + 3}\right)\right) = \frac{1}{2}\gamma_{cb}\left(r + \frac{1}{j + 3}, 8r + \frac{1}{j + 3}\right)
\]

\[
= \frac{1}{2}\left(\max\left[r + \frac{1}{j + 3}, 8r + \frac{1}{j + 3}\right]^2 + \left|\frac{1}{j + 3} - 8r - \frac{1}{j + 3}\right|^2 + i\left(\max\left[r + \frac{1}{j + 3}, 8r + \frac{1}{j + 3}\right]^2 + \left|\frac{1}{j + 3} - 8r - \frac{1}{j + 3}\right|^2\right)\right)
\]

\[
= \frac{1}{2}\left(8r + \frac{1}{j + 3}\right)^2 + 49r^2 + i\left(8r + \frac{1}{j + 3}\right)^2 + 49r^2
\]

\[
= \frac{1}{2}\left(113r^2 + \frac{1}{(j + 3)^2} + \frac{16r}{j + 3} + i\left(113r^2 + \frac{1}{(j + 3)^2} + \frac{16r}{j + 3}\right)\right).
\]

\[
\gamma_{cb}\left(r + \frac{1}{j + 3}, j + \frac{1}{j + 3}\right) = \max\left[r + \frac{1}{j + 3}, j + \frac{1}{j + 3}\right]^2 + \left|\frac{1}{j + 3} - j - \frac{1}{j + 3}\right|^2
\]

Define a mapping \(\Xi\) on \(\Theta\) by

\[
-10\pi \Xi (r) = 2, \quad r \in \mathbb{N},
\]

\[
8r + \frac{1}{j + 3}, \quad r \in \left\{r + \frac{1}{j + 3}: r, j \in \mathbb{N}\right\}.
\]

(40)

Then, \(\Xi\) satisfies in the assumption of Theorem 2.

Proof. It is clear that \((\Xi, \gamma_{cb})\) is a complete complex partial b-metric space with coefficient \(s = 2^5\) and 2 is a unique fixed point of \(\Xi\). Let \(j < r\):

\[
\gamma_{cb}(r, j) = \max\{r, j\}^2 + |r - j|^2 + i\left(\max\{r, j\}^2 + |r - j|^2\right).
\]

(39)
\[+ i \left(\max \left\{ r + \frac{1}{j + 3}, j + \frac{1}{j + 3} \right\}^2 + |r + \frac{1}{j + 3} - j - \frac{1}{j + 3}|^2 \right) \]

\[= \left(r + \frac{1}{j + 3} \right)^2 + |r - j|^2 + i \left(\left(r + \frac{1}{j + 3} \right)^2 + |r - j|^2 \right) \]

\[< r^2 + \frac{1}{(j + 3)^2} + \frac{2r}{j + 3} + (|r| - |j|)^2 \]

\[+ i \left(r^2 + \frac{1}{(j + 3)^2} + \frac{2r}{j + 3} + (|r| - |j|)^2 \right) \]

\[< r^2 + \frac{1}{(j + 3)^2} + \frac{2r}{j + 3} + (|r| + |j|)^2 \]

\[+ i \left(r^2 + \frac{1}{(j + 3)^2} + \frac{2r}{j + 3} + (|r| + |j|)^2 \right). \]

So, for \(j < r, \) \((1/2)\gamma_{cb}(r + (1/j + 3), \Xi(r + (1/j + 3))) \\& \gamma_{cb}(r + (1/j + 3), j + (1/j + 3)).\) Therefore, \(\Xi \) satisfies all the conditions of Theorem 2. \(\square \)

3.1. Nonlinear Integral Equations

In this section, we prove the existence and uniqueness of a solution for nonlinear Fredholm integral equations by using Theorem 2.

Theorem 3. Consider the nonlinear Fredholm integral equation:

\[r(t) = j(t) + \int_a^b K(t, s, r(s))ds, \] (42)

where \(a, b \in \mathbb{R} \) with \(a < b \) and \(j: [a, b] \to \mathbb{R} \) and \(K: [a,b]^2 \times \mathbb{R} \to \mathbb{R} \) are given continuous mappings. Suppose that the following condition holds:

(a) The mapping \(\Xi: C[a, b] \to C[a, b] \) defined by \((\Xi r)(t) = j(t) + \int_a^b K(t, s, r(s))ds \) for all \(r \in C[a,b] \) and \(t \in [a, b]. \)

Then, the nonlinear integral equation (42) has a unique solution.

Proof. Let \(\Theta = C[a, b]. \) Clearly, \(\Theta \) with the complex partial \(b \)-metric \(\gamma_{cb}: \Theta \times \Theta \to \mathbb{C} \) given by

\[\gamma_{cb}(r(t), v(t)) = \max \{r(t), v(t)\}^2 + i \max \{r(t), v(t)\}^2, \quad t \in [a, b], \] (43)

for all \(r, v \in \Theta \) is a complete complex partial \(b \)-metric space. Without loss generality, we may assume that

\[r < v \Rightarrow r(t) \leq v(t), \quad \forall t \in [a, b]. \] (44)

Now,

\[\frac{1}{2s} \left(\left(j(t) + \int_a^b K(t, s, v(s)) \right)^2 + i \left(\left(j(t) + \int_a^b K(t, s, v(s)) \right)^2 \right) \right) \]

\[< \left(j(t) + \int_a^b K(t, s, v(s)) \right)^2 + i \left(\left(j(t) + \int_a^b K(t, s, v(s)) \right)^2 \right). \] (45)

Therefore,

\[\frac{1}{2s} \gamma_{cb}(v(t), \Xi v(t)) < \gamma_{cb}(r(t), v(t)). \] (46)

Hence, \(\Xi \) satisfies all the conditions of Theorem 2. \(\square \)

4. Conclusion

In the present work, we presented a new fixed point theorem for self-mappings defined on complex partial \(b \)-metric. We illustrated our main theorem by an example and showed, moreover, that the main theorem can be easily used to solve a nonlinear integral equation.

Data Availability

No data were used in this study.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

[1] I. A. Bakhtin, “The contraction mappings principle in quasimetric spaces,” *Functional Analysis*, vol. 30, pp. 26–37, 1989, (Russian).

[2] S. Czerwick, “Contraction mappings in \(b \)-metric spaces,” *Acta Mathematica et Informatica Universitatis Ostraviensis*, vol. 1, pp. 5–11, 1993.

[3] A. Azam, B. Fisher, and M. Khan, “Common fixed point theorems in complex valued metric spaces,” *Numerical
[4] K. P. R. Rao, P. R. Swamy, and J. R. Prasad, “A common fixed point theorem in complex valued b-metric spaces,” *Bulletin of Mathematics and Statistics Research*, vol. 1, no. 1, 2013.

[5] P. Dhivya and M. Marudai, “Common fixed point theorems for mappings satisfying a contractive condition of rational expression on a ordered complex partial metric space,” *Cognet Mathematics*, vol. 4, no. 1, Article ID 1389622, 2017.

[6] M. Gunaseelan, "Generalized fixed point theorems on complex partial b-metric space," *International Journal of Research and Analytical Reviews*, vol. 6, no. 2, 2019.

[7] A. Latif, T. Nazir, and M. Abbas, "Stability of fixed points in generalized metric spaces," *Journal of Nonlinear Functional Analysis*, vol. 2, pp. 287–294, 2018.

[8] A. Deepmala and H. K. Pathak, "A study on some problems on existence of solutions for nonlinear functional-integral equations," *Acta Mathematica Scientia*, vol. 33, no. 5, pp. 1305–1313, 2013.

[9] A. Deepmala, "Study on fixed point theorems for nonlinear contractions and its applications," Ph.D. Thesis, Ravishankar Shukla University, Chhatisgarh, India, 2014.

[10] F. Gu and W. Shatanawi, "Some new results on common coupled fixed points of two hybrid pairs of mappings in partial metric spaces," *Journal of Nonlinear Functional Analysis*, vol. 2019, p. 13, 2019.

[11] H. K. Pathak and A. Deepmala, "Common fixed point theorems for PD-operator pairs under relaxed conditions with applications," *Journal of Computational and Applied Mathematics*, vol. 239, pp. 103–113, 2013.

[12] M. Abbas, I. Beg, and B. T. Leyew, "Common fixed points of (R,α)-generalized rational multivalued contractions in R-complete b-metric spaces," *Communications in Optimization Theory*, vol. 2019, p. 14, 2019.

[13] Y. U. Gaba, "Fixed points on partial metric type spaces," *Research Fixed Point Theory and Applications*, vol. 2019, Article ID 2019009, 21 pages, 2019.

[14] M. Aslantas, H. Sahin, and D. Turkoglu, "Some Caristi type fixed point theorems," *The Journal of Analysis*, vol. 29, pp. 1–15, 2020.

[15] H. Sahin, M. Aslantas, and I. Altun, "Feng-Liu type approach to best proximity point results for multivalued mappings," *Journal of Fixed Point Theory and Applications*, vol. 22, no. 1, p. 11, 2020.

[16] I. Altun, M. Aslantas, and H. Sahin, "Best proximity point results for p-proximal contractions," *Acta Mathematica Hungarica*, vol. 162, no. 2, pp. 393–402, 2020.

[17] M. Aslantas, H. Sahin, and I. Altun, "Best proximity point theorems for cyclic p-contractions with some consequences and applications," *Nonlinear Analysis: Modelling and Control*, vol. 26, no. 1, pp. 113–129, 2021.

[18] Y. U. Gaba, "Metric type spaces and λ-sequences," *Quaestiones Mathematicae*, vol. 40, no. 1, pp. 49–55, 2017.

[19] M. U. Ali, H. Aydi, and M. Alansari, "New generalizations of set valued interpolative Hardy-Rogers type contractions in b-metric spaces," *Journal of Function Spaces*, vol. 2021, Article ID 6641342, 8 pages, 2021.

[20] K. Javed, H. Aydi, F. Uddin, and M. Arshad, "On orthogonal partial b-metric spaces with an application," *Journal of Mathematics*, vol. 2021, Article ID 8881859, 11 pages, 2020.

[21] N. Mlaiki, N. Souayah, T. Abdeljawad, and H. Aydi, "A new extension to the controlled metric type spaces endowed with a graph," *Advances in Difference Equations*, vol. 2021, p. 94, 2021.