A NOTE ON SESHADRI CONSTANTS ON GENERAL $K3$ SURFACES

ANDREAS LEOPOLD KNUTSEN

Abstract. We prove a lower bound on the Seshadri constant $\varepsilon(L)$ on a $K3$ surface S with $\text{Pic} S \simeq \mathbb{Z}[L]$. In particular, we obtain that $\varepsilon(L) = \alpha$ if $L^2 = \alpha^2$ for an integer α.

1. Introduction and results

Let X be a smooth, projective variety and L be an ample line bundle on X. Then the real number

$$\varepsilon(L, x) := \inf_{C \ni x} \frac{L.C}{\text{mult}_x C},$$

introduced by Demailly [De], is the Seshadri constant of L at $x \in X$ (where the infimum is taken over all irreducible curves on X passing through x). The (global) Seshadri constant of L is defined as

$$\varepsilon(L) := \inf_{x \in X} \varepsilon(L, x).$$

We refer to [La, pp. 270–303] for more background, properties and results on these constants.

The subtle point about Seshadri constants is that their exact values are known only in a few cases and even on surfaces it is difficult to control them.

It is known that the global Seshadri constant on a surface satisfies $\varepsilon(L) \leq \sqrt{L^2}$, cf. e.g. [St, Rem. 1], and that $\varepsilon(L)$ is rational if $\varepsilon(L) < \sqrt{L^2}$, cf. [Sz, Lemma 3.1] or [Og, Cor. 2]. (It is not known whether Seshadri constants are always rational, but no examples are known where they are irrational.)

In the case of $K3$ surfaces, Seshadri constants have only been computed for the hyperplane bundle of quartic surfaces [Ba2] and in the particular case of non-globally generated ample line bundles [BDS, Prop. 3.1].

In this note we prove the following result:

Theorem Let S be a smooth, projective $K3$ surface with $\text{Pic} S \simeq \mathbb{Z}[L]$. Then either

$$\varepsilon(L) \geq \lfloor \sqrt{L^2} \rfloor,$$

or

$$(L^2, \varepsilon(L)) \in \left\{ \left(\alpha^2 + \alpha - 2, \alpha - \frac{2}{\alpha + 1} \right), \left(\alpha^2 + 1, \frac{1}{2} - \frac{1}{2\alpha + 1} \right) \right\}$$

for some $\alpha \in \mathbb{N}$. (Note that in fact $\alpha = \lfloor \sqrt{L^2} \rfloor$.)

Research supported by a Marie Curie Intra-European Fellowship within the 6th European Community Framework Programme.

2000 Mathematics Subject Classification: Primary 14J28. Secondary 14C20.
Remark In the two exceptional cases (1) of the theorem, the proof below shows that there has to exist a point \(x \in S \) and an irreducible rational curve \(C \in |L| \) (resp. \(C \in |2L| \)) such that \(C \) has an ordinary singular point of multiplicity \(\alpha + 1 \) (resp. \(2\alpha + 1 \)) at \(x \) and is smooth outside \(x \), and \(\varepsilon(L) = L.C/\text{mult}_xC \).

By a well-known result of Chen [Ch1], rational curves in the primitive class of a general K3 surface in the moduli space are nodal. Hence the first exceptional case in (1) cannot occur on a general K3 surface in the moduli space (as \(\alpha \geq 2 \)). If \(\alpha = 2 \), so that \(L^2 = 4 \), this special case is case (b) in [Ba2, Theorem].

As one also expects that rational curves in any multiple of the primitive class on a general K3 surface are always nodal (cf. [Ch2, Conj. 1.2]), we expect that also the second exceptional case in (1) cannot occur on a general K3 surface.

Since \(\varepsilon(L) \leq \sqrt{L^2} \), an immediate corollary of the theorem is the following:

Corollary Let \(S \) be a smooth, projective K3 surface such that \(\text{Pic} S \cong \mathbb{Z}[L] \) with \(L^2 = \alpha^2 \) for an integer \(\alpha \geq 4 \).

Then \(\varepsilon(L) = \alpha \).

2. Proof of the theorem

The reader will recognize the similarity of the proof of the theorem with the proofs of [Ba1] Thm. 4.1 and [St] Prop. 1.

Set \(\alpha := \sqrt{L^2} \) and assume that \(\varepsilon(L) < \alpha \). Then it is well-known (see e.g. [Og, Cor. 2]) that there is an irreducible curve \(C \subset S \) and a point \(x \in C \) such that

\[
C.L < \alpha \text{ mult}_xC.
\]

Set \(m := \text{mult}_xC \). Since a point of multiplicity \(m \) causes the geometric genus of an irreducible curve to drop at least by \(\binom{m}{2} \) with respect to the arithmetic genus, we must have

\[
p_a(C) = \frac{1}{2}C^2 + 1 \geq \binom{m}{2} = \frac{1}{2}m(m-1),
\]

so that

\[
m(m-1) - 2 \leq C^2.
\]

We have that \(C \in |nL| \) for some \(n \in \mathbb{N} \). From (2) we obtain \(nL^2 < m\alpha \), so that, by assumption, \(n\alpha^2 < m\alpha \), whence \(n\alpha < m \). As \(n\alpha \in \mathbb{Z} \) we must have

\[
(5) \quad n\alpha \leq m - 1.
\]

Combining (2), (4) and (5), we obtain

\[
m(m-1) - 2 \leq C^2 = nC.L < n\alpha m \leq m(m-1),
\]

giving the only possibilities \(C^2 = n^2L^2 = m(m-1) - 2 \) and \(n\alpha = m - 1 \). It follows from (3) that \(C \) is a rational curve with a single singular point \(x \) that is an ordinary singularity of multiplicity \(m \geq 2 \).
As
\[C.L = nL^2 = \frac{m(m-1)-2}{n} = m\alpha - \frac{2}{n} \]
and \(m\alpha \in \mathbb{Z} \), we must have \(\frac{2}{n} \in \mathbb{Z} \), so that \(n = 1 \) or \(2 \).

If \(n = 1 \), then \(m = \alpha + 1 \), so that \(L^2 = C^2 = m(m-1) - 2 = \alpha(\alpha+1) - 2 \) and
\(\varepsilon(L) = C.L/m = \alpha - \frac{2}{\alpha+1} \) from (6).

If \(n = 2 \), then \(m = 2\alpha + 1 \), so that \(L^2 = \frac{1}{4}C^2 = \frac{1}{4}((2\alpha+1)2\alpha - 2) \) and
\(\varepsilon(L) = \alpha - \frac{1}{2\alpha+1} \) from (6).

This concludes the proof of the theorem.

References

[BDS] Th. Bauer, S. Di Rocco, T. Szemberg, Generation of jets on K3 surfaces, J. of Pure and Appl. Alg. 146 (2000), 17–27.
[Ba1] Th. Bauer, Seshadri constants on algebraic surfaces, Math. Ann 313 (1999), 547–583.
[Ba2] Th. Bauer, Seshadri constants of quartic surfaces, Math. Ann 309 (1999), 475–481.
[Ch1] X. Chen, A simple proof that rational curves on K3 are nodal, Math. Ann. 324 (2002), 71–104.
[Ch2] X. Chen, Rational curves on K3 surfaces, J. Alg. Geom. 8 (1999), 245–278.
[De] J. P. Demailly, Singular Hermitian metrics on positive line bundles, Complex algebraic varieties (Bayreuth, 1990), 87–104, Lecture Notes in Math. 1507, Springer, Berlin, 1992.
[La] R. Lazarsfeld, Positivity in algebraic geometry. I. Classical setting: line bundles and linear series. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, 48. Springer-Verlag, Berlin, 2004.
[Og] K. Oguiso, Seshadri constants in a family of surfaces, Math. Ann. 323 (2002), 625–631.
[St] A. Steffens, Remarks on Seshadri constants, Math. Z. 227 (1998), 505–510.
[Sz] T. Szemberg, On positivity of line bundles on Enriques surfaces, Trans. Am. Math. Soc. 353 (2001), 4963–4972.

Andreas Leopold Knutsen, Dipartimento di Matematica, Università di Roma Tre, Largo San Leonardo Murialdo 1, 00146, Roma, Italy.

E-mail address: knutsen@mat.uniroma3.it