Essential Heterochromatic Loci in 2Rh

Essential Loci in Centromeric Heterochromatin of Drosophila melanogaster. I: the right arm of chromosome 2

Alistair B. Coulthard¹*, Christina Alm¹, Iulia Cealac¹, Don Sinclair², Barry Honda², Fabrizio Rossi³, Patrizio Dimitri³ and Arthur J. Hilliker¹

Dept. of Biology, York University, Toronto ON, M3J 1P3, Canada.

² Dept. of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada

³ Laboratorio di Genomica Funzionale e Proteomica di Sistemi modello and Istituto Pasteur-Fondazione Bolognetti, Dipartimento di Genetica e Biologia Molecolare “Charles Darwin“, Università “La Sapienza“, Via dei sardi 70, Rome 00185, Italy

*Corresponding author: e-mail: alistair@yorku.ca
Abstract

With the most recent releases of the *Drosophila melanogaster* genome sequences, much of the previously absent heterochromatic sequences have now been annotated. We undertook an extensive genetic analysis of existing lethal mutations, as well as molecular mapping and sequence analysis (using a candidate gene approach), in order to identify as many essential genes as possible in the centromeric heterochromatin on the right arm of the second chromosome (2Rh) of *D. melanogaster*. We also utilized available RNAi lines to knock down the expression of genes in 2Rh as another approach to identify essential genes. In total, we verified the existence of eight novel essential loci in 2Rh: CG17665, CG17683, CG17684, CG17883, CG40127, CG41265, CG42595 and Atf6. Two of these essential loci, CG41265 and CG42595, are synonymous with the previously characterized loci l(2)41Ab and unextended, respectively. The genetic and molecular analysis of the previously reported locus, l(2)41Ae, revealed that this is not a single locus, but rather it is a large region of 2Rh that extends from unextended (CG42595) to CG17665, and includes four of the novel loci uncovered here.

Keywords: *Drosophila melanogaster*, heterochromatin, essential heterochromatic genes
Introduction

The term heterochromatin was introduced by Heitz (1928) to describe regions of mitotic chromosomes that remain condensed throughout the cell cycle, in contrast to, regions of euchromatin, which condense only during cell division. Heterochromatin was later divided into two classes: constitutive and facultative heterochromatin (Brown 1966). Constitutive heterochromatin is found in large blocks near centromeres and telomeres, while facultative heterochromatin can be described as silenced euchromatin that undergoes heterochromatization at specific developmental stages. Other properties of constitutive heterochromatin include: late replication in S phase, low gene density, strikingly reduced level of meiotic recombination, enrichment in transposable elements sequences and highly repetitive satellite DNA sequences, and the ability to silence euchromatic gene expression in a phenomenon called position effect variegation (PEV).

Approximately 30% of the *Drosophila melanogaster* genome consists of constitutive heterochromatin (Gatti and Pimpinelli 1992). Centromeric heterochromatin in *D. melanogaster* is mainly composed of middle-repeat satellite DNA sequences and clusters of transposable element sequences (Pimpinelli *et. al.* 1995; Lohe *et. al.* 1993). Genes that reside in the heterochromatin are scattered like islands between the satellites and clusters of transposable elements. On average, heterochromatic genes are larger than euchromatic genes, primarily due to the prevalent accumulation of transposable element sequences in their introns (Hoskins *et. al.* 2007; Dimitri *et. al.* 2003; Biggs *et. al.* 1994; Devlin *et. al.* 1990). Heterochromatic genes also tend to be AT-rich compared to their euchromatic counterparts; there is some evidence suggesting that the coding sequences of heterochromatic genes evolve towards AT-richness in
response to being located in heterochromatin (Diaz-Castillo and Golic, 2007; Yasuhara et. al. 2005).

Drosophila heterochromatin is vastly under replicated in polytene chromosomes, so heterochromatic genes cannot easily be mapped through polytene analysis. However, using Hoechst 33258 and N-chromosome banding techniques, Dimitri (1991) was successful in dividing heterochromatin in mitotic chromosomes into distinct cytological bands; this was an important step in mapping the precise location of heterochromatic genes, since before this time, heterochromatic genes could only be mapped relative to one another. Here we focus on further refining the previous mapping work on essential genes in the proximal heterochromatin of the right arm of the second chromosome (2Rh) in cytological region h41-h46 of D. melanogaster (Hilliker 1976; Hilliker et. al. 1980; Coulthard et. al. 2003; Myster et. al. 2004).

Early mapping studies in D. melanogaster putatively placed the light (lt) and rolled (rl) genes in, or near, chromosome 2 heterochromatin (Hessler 1958; Hannah 1951; Scultz 1936). The first large scale mutagenesis specifically directed at finding vital loci in second chromosome heterochromatin was conducted by Hilliker (1976). Using heterochromatic deletions created by Hilliker and Holm (1975), Hilliker (1976) set out to map vital loci using the mutation ethyl methanesulphonate (EMS). He identified 7 individual lethal complementation groups in 2Rh that were interpreted as representing 7 vital loci. One of these heterochromatic loci was identified as the previously described rolled (rl) gene. Two of the remaining vital loci have since been identified: Nipped-A is synonymous with the l(2) 41Ah complementation group (Rollins et. al. 1999) and RpL38 is synonymous with Minute(2)41A and Hilliker`s (1976) l(2)41Af complementation group (Marygold et. al. 2005; also referred to as l(2)Ag in Flybase). In
addition, Rollins et. al. (1999) found the *Nipped-B* gene to be located in 2Rh, but how this locus fit into the data from Hilliker (1976) was unclear.

With the limited release of some of the more distal heterochromatic sequences (Hoskins et. al. 2002), a more recent mutagenesis screen focusing on distal 2Rh was conducted by Myster et. al. (2004). In the region defined by the overlap between *Df(2R)41A8* and *Df(2R)41A10* (the latter was previously shown to be deficient for most of 2Rh; Hilliker and Holm 1975), Myster et. al. (2004) reported the existence of fifteen vital loci, considerably more than the four essential loci predicted by Hilliker (1976). The discrepancy between these two studies was the catalyst for this current work. Each group used the same mutagen, ethyl methanesulphonate (EMS), yet each group came up with very different interpretations of the number of vital loci.

Hilliker's interpretation relied on earlier evidence that EMS preferentially produced point mutations and not large scale aberrations (Lim and Snyder, 1974). Assuming the mutants isolated in his study were point mutations, or small aberrations limited to one locus, Hilliker found that some of the loci he identified exhibited complex interallelic complementation; the most complex complementation pattern was observed with locus *l(2)41Ae*. On the other hand, the interpretation of Myster et. al. (2004) was that heterochromatin was more sensitive to EMS and that EMS could produce large heterochromatic deletions; they proposed that the complex interallelic complementation in *l(2)41Ae* was due the presence of deletions and that *l(2)41Ae* represented a region of 2Rh containing many genes, rather than being a single locus.

In order to resolve these different interpretations of the genomic segment containing *l(2)41Ae* (i.e. is it a single locus or a region of 2Rh), we set out to map *l(2)41Ae* and the region surrounding the presumed location of *l(2)41Ae* (as in Myster et. al. 2004) by performing a large scale *inter se* complementation analysis between all available mutant lines that were previously
mapped to l(2)41Ae (including Nipped-B). In addition, we undertook a molecular mapping and sequence analysis, using a candidate gene approach with the most recent annotation of 2Rh (Hoskins et. al. 2007), in order to characterize the region and identify as many essential genes as possible. We also used these approaches to map l(2)41Ab and unextended (two of the more proximal complementation groups identified by Hilliker (1976)). Finally, we also utilized available RNAi lines to knock down the expression of 12 genes in 2Rh in an attempt to identify essential genes.
Methods and Materials

Fly Strains

A total of 69 mutant lines that had been previously mapped to, or near, the presumed location of \(l(2)41Ae \), were obtained (Table 1). The majority of these lines were EMS-induced homozygous lethals. Of the 49 EMS lines obtained, 12 were created by Hilliker (1976), while the 28 EMS lines named NC## were created by Myster et. al. (2004). The remaining 9 EMS lines were created by Eberl (1990). In addition to the EMS-induced lines, we had access to: 10 transposable element insertion lines, 7 known heterochromatic deletions and 2 \(\gamma \) ray-induced lines. A total of 5 EMS mutant lines (Table 1) were used to map loci \(l(2)41Ab \) and unextended.

The second chromosome balancer line \(w; Kr^{ef-1}/CyO, P[GAL4-twii.G], P[UAS-2xEGFP] \) was used to rebalance all mutant lines in preparation for sequencing or deletion mapping (see below). The heterochromatic deletion line, \(Df(2R)M41A10/CyO, S cn bw \), was used to test any lethal line to ensure that their lethality mapped to 2Rh. \(Df(2R)M41A10 \) lacks most of the heterochromatin on the right arm of the second chromosome (Hilliker and Holm 1975).

Lethal Complementation Analysis

Complementation analysis was performed by crossing 3-5 males from one mutant line to 3-5 females of a second line in a glass vial containing standard Drosophila medium. All crosses were maintained at 25\(^o\)C with a 12 hour light/day cycle. Progeny from each cross were scored for the presence or absence of the balancer chromosome, using both the dominant Curly and Star
markers on the balancer chromosome. Each crossing vial was scored until exhaustion (i.e. all animals had either emerged as adults or died in earlier stages).

Detecting Lethal Combinations of Mutant Chromosomes

Chi-square analysis was performed to test the ratio of observed progeny from each cross against the 2:1 expected ratio for a viable combination of chromosomes. When observed ratios were significantly different from the expected ratios, due to a small number of unbalanced progeny, the chromosome combination was considered to have some degree of lethality. Typically, if the unbalanced progeny comprised <5% of the total progeny the cross was considered lethal; if the unbalanced progeny >5% of the total progeny, and observed ratios were significantly different from the expected ratios, the cross was considered semi-lethal.

Interallelic Complementation Maps

Interallelic complementation maps were drawn in the same manner as Hilliker (1976). In brief, each mutant strain was represented with a line. If two mutant strains were lethal in combination then the lines representing them were drawn on the map such that they were parallel and could be joined by a perpendicular transversal.

Using Recombination to Resolve Potential Second Site Lethal Interactions

Any two mutant chromosomes that were believed to be lethal due to a shared second site lethal were allowed to undergo recombination with a wildtype chromosome in order to try and separate
the second site lethal from the 2Rh mutation under study. Independent putative recombinant lines were recovered as described below.

Males of the mutant line were crossed to virgin wildtype females and the resulting unbalanced F1 female progeny (in which recombination could take place) were crossed to males of a second chromosome balancer line containing the \(CyO, S, cn, bw \) balancer chromosome. In the next generation, a single male progeny containing the \(CyO, S, cn, bw \) balancer chromosome and a putative recombinant chromosome, was backcrossed to the second chromosome balancer line. The resulting balanced progeny were used to create a putative recombinant stock containing a single putative recombinant chromosome. A total of 10 single male derived putative recombinant lines were obtained for each mutant line.

Putative recombinant lines were then tested for: 1) lethality with the parental line from which it was derived; 2) lethality with the chromosome believed to share a second site lethal. Because recombination will not remove the 2Rh mutation from the original chromosome, viability between putative recombinant lines whose parental lines are lethal, reveal the presence of a second site lethal mutation.

Isolating Genomic DNA From Homozygous Lethal Mutant Strains

All lethal chromosomes of interest were first balanced over the \(CyO, P[GAL4-twi.G], P[UAS-2xEGFP] \) balancer chromosome by crossing mutant lines to \(w; K\rho^{J6-1}/EGFP[w^+] CyO \) and selecting against the dominant \(K\rho^{J6-1} \) marker, and selecting for \(CyO \) progeny. Embryo collection began by placing approximately 50 males and 50 females from each line into
individual collection cages consisting of an empty Drosophila mating bottle with small air holes poked in its bottom, and one collection plate (a 35x100 mm culture dish lid filled with grape juice agar) used as the bottle’s sealing cap. A small amount of active yeast was sprinkled on the surface of the collection plate to promote egg laying. Flies were allowed to lay eggs overnight.

The next day, a fresh collection plate (sprinkled with yeast) was added to each collection cage. Flies were allowed to lay eggs for 2 hours after which the adult were removed to a fresh collection cage so the process could be repeated. Embryos on collection plates were allowed to develop for 2 hours. Embryos were then dechorionated by gently rolling on scotch tape and placed in 13 uL of embryo lysis buffer (10mM Tris pH 8.2, 1mM EDTA, 25mM NaCl) and 2uL of Proteinase K (20mg/mL). The proteinase K in the lysis solution was then activated by incubating the PCR tubes at 37°C for 30 minutes. After the 30 minute incubation the proteinase K was inactivated by increasing the temperature to 95°C for 10 minutes.

EGFP-diagnostic PCR

EGFP-diagnostic PCR is a method used to detect balancer chromosome DNA in a single fly/embryo genomic DNA preparation. This method relies on the fact that EGFP protein is not present in the *Drosophila* genome, so there are unique DNA sequences in the *EGFP* marker. Primers made to the *EGFP* sequence were used to detect the presence of the *EGFP* marker in genomic DNA isolated from balanced embryos, and to reveal the absence of the marker in homozygous embryos. A control primer set was run simultaneously to ensure the PCR reaction was successful in reactions lacking the *EGFP* PCR product.

Primers to the *EGFP* sequence are listed in Table 2 and produce a 683 bp PCR product when using a DNA template containing the *EGFP-CyO* balancer chromosome. The *EGFP*
diagnostic control primer pair produces a 350 bp PCR product corresponding to a segment of the Drosophila SOD1 gene. All primers were designed using the Primer 3 program available at http://frodo.wi.mit.edu/primer3/ (last accessed Dec 14, 2009).

PCR reaction products were run on 2% agarose gels to separate and visualize the two potential PCR products in the diagnostic reaction: the EGFP product and the SOD1 control product. PCR products that gave a strong SOD1 control product and no EGFP product revealed that the original embryo from which DNA was extracted was homozygous for the desired mutant second chromosome.

Mapping Deletion Breakpoints

To map the breakpoints of homozygous lethal deletions, genomic DNA was isolated from homozygous embryos using the embryo collection protocols described above. Deletion breakpoints were mapped using diagnostic PCR with primer pairs designed against the annotated 2Rh heterochromatic map (Table 2). Deletion breakpoints were roughly mapped by determining which primer pair product could be amplified through PCR, and which could not be amplified. A control primer set was run simultaneously to ensure the DNA was intact and that the PCR reaction was successful in reactions lacking the other primer pair product.

Sequencing and Polymorphisms

Genomic DNA used in sequencing was obtained from homozygous embryos using the embryo collection protocols described above. To help identify mutations and polymorphisms, each sequence obtained from a mutant line was compared to three groups of sequences: 1) The
published heterochromatin sequence; 2) Other lines from the same mutagenesis screen; 3) Lines
from other mutagenesis screens.

DNA sequences were compared using the ClustalW2 alignment software available at
http://www.ebi.ac.uk/Tools/clustalw2/index.html (last accessed Dec 14, 2009). The ExPASy
translation software (available at http://ca.expasy.org/tools/dna.html; last accessed Dec 14, 2009)
was used to translate DNA sequences into amino acid sequences. ClustalW2 was also used to
align amino acid sequences.

RNAi

RNAi lines from the Fly Stocks of the National Institute of Genetics (NIG-fly;
http://www.shigen.nig.ac.jp/fly/nigfly/index.jsp) and the Vienna Drosophila RNAi Center
(VDRC; http://stockcenter.vdrc.at/control/main) were used to knock down the expression of 12
putative genes in 2Rh. The transgenic lines contained inverted repeat (IR) sequences,
corresponding to the heterochromatic genes of interest, and under the regulation of a UAS-
promoter. UAS-IR males were crossed to UAS-dcr2; daughterless-GAL4 virgin females (created
from VDRC line 60011), in which the DCR2 protein is overexpressed, inducing a highly
efficient RNAi pathway. As a control for lethality due to the double inserts, the males were also
crossed to UAS-dcr2; Ly/TM3. All crosses were brooded for 2-3 days, kept at 25°C, and
subsequently scored for lethality. Numbers of viable offspring, as well as those of dead larvae
and pupae, were recorded. In some cases, ratios of balanced vs. non-balanced offspring were
tested with chi-square analysis, as described above.
Cytology

Mitotic chromosome preparations and DAPI staining were as described by Dimitri, (2004). Chromosome preparations were analyzed using a computer-controlled Leica fluorescence microscope equipped with a cooled CCD camera (Photometrics, Tucson, AZ). The DAPI staining was recorded by IP Spectrum Lab Software and edited with Adobe PhotoShop 8.
Results

A schematic map of the heterochromatic segment of the right arm of mitotic chromosome 2 is shown in Fig. 1 (modified from Fig. 1 of Dimitri et al. 2009). In the current work, we focus on the region of 2Rh extending from CG42595 to Nipped-B in cytological bands h45-h46. Our initial objective was to resolve the issue of the genetic identity of l(2)41Ae, which was mapped to h46 (Dimitri 1991; Coulthard et al. 2003; Dimitri et al. 2009). However, we also planned to characterize as many of the other essential loci in the region as possible.

Creating a New Complementation Map For 41Ae

Sixty-eight mutant lines were tested inter se in order to create a large complementation map for l(2)41Ae (Table 1; Supplementary Table 1). The first complementation map produced from this analysis showed a level of complexity similar to the original 41Ae complementation map produced by Hilliker (1976). This initial map needed to be refined due to the presence of shared second site lethal mutations and complex rearrangements that unduly complicated the map (see Supplementary Table 2).

The refined complementation map is presented in Fig. 2 and contains a total of 50 mutant lines. This map contains 6 complementation groups: Nipped-B, RpL38, CG17665, CG40127, CG17683 and CG42595 (uex). Four of these complementation groups were identified molecularly in this study (see below). The Nipped-B complementation group was identified by the eight Nipped-B alleles sequenced by Gause et al. (2008) (see Table 1). Similarly, Marygold et al. (2005) previously sequenced line NC21 showing it is an allele of RpL38.
Essential Heterochromatic Loci in 2Rh

Of particular interest with respect to Fig 2 was the exclusion of line EMS 34-14, because EMS 34-14 has been the traditional tester allele for l(2)41Ae. Cytological analysis of EMS 34-14 (and EMS 34-25) mitotic chromosomes from larval brain squashes using DAPI-staining yielded a surprising result. While the structure and heterochromatin pattern of EMS 34-25 chromosome is cytologically normal (data not shown), the EMS 34-14 chromosome clearly contains a complex rearrangement associated with the occurrence of multiple breaks (Fig. 3). The EMS 34-14 chromosome has a sub-metacentric structure, shows a reduction of region h46 on 2Rh and carries a large DAPI bright block of unknown origin on the 2L tip. The new sub-metacentric organization may be explained by assuming the presence of a pericentric inversion with a breakpoint in h46 of 2Rh and somewhere within 2L. The breakpoint in h46, possibly associated with a partial deletion of this region, may inactivate several vital genes and thus be responsible for the complex complementation pattern of EMS 34-14. Since a complex heterochromatic rearrangement such as EMS 34-14 can join non-adjacent regions of 2Rh, it could unduly complicate a lethal complementation map and thus it was not included in Fig. 2.

EMS 34-2 is a Heterochromatic Deletion Overlapping Df(2R)247 and Df(2R)41A2

Fig. 2 contains two known deletions: Df(2R)247 and Df(2R)41A2. In order to better align the complementation map to the published heterochromatin sequences, the endpoints of Df(2R)247 and Df(2R)41A2 were roughly mapped using EGFP-diagnostic PCR. EMS 34-2 was included in the analysis because its complementation profile closely matched that of Df(2R)247, suggesting that it might also be a deletion.

Representative molecular data for Df(2R)41A2 and EMS 34-2 are shown in Fig. 4. Fig. 4A shows that EMS 34-2 is deficient for the 5′ end of CG17665, while the gene Grpk1
(CG40129) is present in EMS 34-2. Fig. 4B shows that CG42595 cannot be amplified in EMS 34-2 or Df(2R)247. Taken together with the results of other diagnostic tests (not shown), the data indicate that EMS 34-2 is a deletion that extends from the 5’ end, or upstream of, CG17665 to exon 11-12, or downstream of, CG42595. Df(2R)41A2 is deficient for Gprk1 and the 5’ end of CG17665 (Fig. 4A). Further analysis (data not shown) found that Df(2R)41A2 was not deficient for exon 2 of CG17665. Df(2R)41A2 and Df(2R)34-2 are lethal in combination, so these diagnostic tests reveal that Df(2R)41A2 and Df(2R)34-2 overlap at the 5’ end of CG17665. Diagnostic-PCR tests on Df(2R)247 show that it extends from some point proximal to CG17883 to some point between CG41592 and CG40270 (data not shown), placing the proximal breakpoint of Df(2R)247 in contig CP000163 in cytological region h44. The mapping data are summarized in Fig. 5.

Molecular Identification of Four Complementation Groups

After establishing that Df(2R)34-2 is a large heterochromatic deletion, a direct sequencing strategy was employed in order to identify the essential complementation groups within the boundaries of Df(2R)34-2. We began our sequencing with CG17665 because Df(2R)41A2 and Df(2R)34-2 both break in CG17665 and are lethal with the large EMS 45-34 complementation group (Fig. 2).

CG17665 was first sequenced in EMS 45-34 and a G to A nucleic acid substitution was discovered (see Table 3 for all mutations discovered in this study); this substitution gives rise to a premature stop codon in exon 3. Two other stop codons in CG17665 were found in lines EMS 45-61 and NC19. Line NC28 was found to contain a T to A substitution in CG17665 that produces an L to P amino acid change, while line EMS 45-71 contains a G to A substitution that
lead to a G to A amino acid change. Four polymorphisms were detected in \(CG17665\) and these are listed in Table 4, together with other polymorphisms discovered in this study. These data confirm that the \(EMS45-34\) complementation group represents \(CG17665\). These data also confirm that the complex complementation pattern observed in the \(EMS45-34\) complementation group (Fig. 2) is due to interallelic complementation.

Table 3 shows the three mutations that were found in gene \(CG17683\). All 3 mutations were in lines that comprise the \(NC38\) complementation group (Fig. 2), showing that the \(NC38\) group represents \(CG17683\). Line \(NC38\) contains a T to A nucleic acid substitution that results in a premature stop codon. Line \(EMS\ 34-13\) contains a C to T substitution in exon 3 that leads to an S to F amino acid change. \(NC109\) contains two closely linked amino acid substitutions in exon 3; a T to A and T to G that lead to a V to D and S to A amino acid substitution, respectively. In addition, 2 polymorphisms were detected in, or near, \(CG17683\) (Table 5).

The \(L2\) line was found to contain a premature stop codon in exon 4 of \(CG42595\) while line \(NC1\) was found to have two small deletions: a frame shifting 13 bp deletion in exon 11 and a 4 bp deletion of the first 4 nucleotides of intron 11 that potentially removes a splice junction motif (Table 3). One polymorphism has been identified in \(CG42595\) (Table 4).

Lastly, the \(NC110\) line was found to contain an L to H amino acid substitution in exon 3 of the small \(CG40127\) gene. There were several intronic polymorphisms detected in \(CG40127\) (Table 4).

The unextended Gene (l(2)41Ad) is Synonymous with CG42595

Preliminary data (not shown) revealed that \(Df(2R)247\) uncovers the unextended \((uex)\) gene; thus, having already mapped the breakpoints of \(Df(2R)247\), as described above (Figure 5),
we conducted a genetic analysis of the \textit{uex}^{34-7} and \textit{uex}^{45-17} alleles, originally described by Hilliker (1976), in order to map \textit{uex}.

Lines \textit{uex}^{34-7} and \textit{uex}^{45-17} were lethal in combination, with most trans-heterozygotes dying in the pupal stage or during eclosion (Table 5). In crosses between \textit{Df(2R)247} and either \textit{uex} allele, the majority of \textit{uex}^{34-7}/\textit{Df(2R)247} heterozygotes died in the pupal stage or during eclosion (Table 5). The rare adult escapers exhibited smaller body size, misshapen hind legs and unextended wings. These phenotypes were not fully penetrant, with escapers showing any combination of the phenotypes and sometimes these escapers appeared fully wildtype (Fig. 6). Specific hind leg phenotypes observed include: shortened and bulbous leg segments, leg segments fused together, missing or extra leg segments (usually tarsal segments); a tarsal ‘hook’ where the last tarsal segment is held out at almost 90 degrees.

Crosses between \textit{uex}^{3-47} and \textit{Df(2R)34-2} revealed a semi-lethality with a few adults exhibiting misshapen hind legs (Table 5), so representative alleles of the complementation groups in Fig. 2 that were lethal with \textit{Df(2R)34-2} were crossed to the \textit{uex} alleles. Crosses between the \textit{CG42595} stop codon mutant, L2, and \textit{uex}^{34-7}, produced hind leg phenotypes similar to \textit{uex} hind leg phenotypes, while crosses between L2 and \textit{uex}^{45-17} yielded a considerable amount of pupal lethality (Table 5). These data suggested \textit{CG42595} might correspond to \textit{uex}. Therefore, the genetic analysis was extended to the entire \textit{CG42595} complementation group. Crosses between \textit{uex} alleles and \textit{CG42595} alleles produced characteristic \textit{uex} phenotypes: pupal and eclosion deaths, misshapen hind legs and unextended wings (Table 5).

\textit{CG42595} was sequenced using DNA from homozygous \textit{uex}^{34-7} embryos and a G to C nucleotide change was found in the third position of the predicted translation start site of
CG42595. Together, the genetic and molecular data show that the CG42595 complementation group represents the uex gene.

Combining all the deletion mapping, complementation data and sequencing gives the flat complementation map in Fig. 7. EMS 45-20 was not included in Fig. 7 because it was lethal with both the Nipped-B complementation group and the CG17683 complementation group from the map, yet diagnostic-PCR and sequencing of EMS 45-20 found no detectable aberrations in EMS 45-20 in CG17665 or between CG17683 and CG17665 (data not shown). Thus, our genetic and molecular data shows that, of the 12 current protein-coding gene models region spanning from Nipped-B to CG42595 (see Fig. 5) at least 7 are essential. Although this is likely a minimal estimate (see below), it is considerably less than the 15 essential genetic loci previously reported for this segment by Myster et. al. (2004).

Molecular Basis for l(2)41Ab Uncovered

Mapping studies originally placed l(2)41Ab proximal to the rolled (rl) gene (for review see Coulthard et. al. 2003). Based on the recent annotations of heterochromatin (Hoskins et. al. 2007 and Tweedie et. al. 2009), there are only 2 protein-coding gene models located proximal to rl (see Fig. 1). Sequencing these candidate genes from DNA from EMS 45-10 embryos failed to indentify l(2)41Ab. Since we thought it possible that the mapping of this locus was incorrect due to the existence of inversion polymorphisms, we turned next to the protein-coding gene models that are distal to rl. Thus, we sequenced these candidate genes from DNA from EMS 45-10 embryos and uncovered the molecular basis of l(2)41Ab (Table 3) i.e. EMS 45-10 contains a premature stop codon in exon 7 of CG41265.
Identification of Vital Loci in 2Rh Through RNAi

We wished to investigate whether we could identify essential genes in 2Rh that had not yet been identified with conventional mutagenesis (EMS or transposable element mutagenesis). To this end, we carried out a pilot study using RNAi-lines from VDRC and NIG to knock down the expression of 14 genes in the 2Rh area (see Materials and Methods; at the time this work was begun only these 2Rh lines were available). None of the lethal RNAi-constructs had any off-target effects, meaning that the knock-down is specific to one mRNA (see Dietzl et. al. (2007) for VDRC’s Methods on detecting off-target genes). The UAS-RNAi transgenes were expressed under the control of the daughterless-GAL4 transgene, since the da promoter drives GAL4 expression in a large proportion of tissues (Hilliker laboratory, unpublished observations). The knock-down of 9 of the genes led to a lethal, or semi-lethal, phenotype, whereas no effect was observed for the other 3 (Table 6). Four of the genes that were identified as essential, Nipped-A, Nipped-B, gus and RpL38, had been identified as essential in earlier studies and served as positive controls in our study (Rollins et. al. 1999; Styhler et. al. 2002; Marygold et. al. 2005). Interestingly, the remaining 5 essential genes had not been identified as essential in earlier studies, but the semi-lethality of the RNAi knock-down lines for genes CG17665 and CG17683 is consistent with our genetic and molecular identification of these genes as essential, as described above.
Essential Heterochromatic Loci in 2Rh

Discussion

The heterochromatic locus \(l(2)41Ae \) was previously mapped to cytological band h44 in the centromeric heterochromatin on the right arm of the second chromosome (Dimitri 1991), and was originally believed to be a single locus exhibiting a complex interallelic complementation pattern (Hilliker 1976). A more recent study by Myster et.al. (2004) concluded that \(l(2)41Ae \) represented a region of 2Rh and not a single locus. In order to resolve these opposing views for \(l(2)41Ae \), we completed a large inter se complementation analysis with mutant lines that were known to mapped to, or near, \(l(2)41Ae \). From the initial complementation map we were able to resolve the map to 6 complementation groups (Fig. 2), two of which, Nipped-B and RpL38, had already be defined molecularly. The molecular identities of the remaining four complementation groups were discovered here to be: \(CG17665 \), \(CG40127 \), \(CG17683 \) and \(CG42595 \).

It is evident from the current work that \(l(2)41Ae \) is not a single locus, but rather a large region of 2Rh that we now refer to as the 41Ae region. The borders of the 41Ae region are defined by the breakpoints of \(Df(2R)34-2 \), which includes the 5 gene models from \(CG42595 \) (\(uex \)) to \(CG17665 \) (see Figs. 1 and 7; Tweedie et. al. 2009). The Nipped-B locus was represented in Hilliker’s (1976) original complementation map of \(l(2)41Ae \), but we do not include Nipped-B in the 41Ae region because Nipped-B does not fall within the breakpoints of \(Df(2R)34-2 \) and because locus \(RpL38 \) (41Af), which has always been separated genetically from 41Ae (Hilliker 1976; Marygold et al. 2005), is located between Nipped-B and \(CG17665 \) (Fig. 5). It is likely that complex EMS-induced rearrangements, such as \(EMS \ 34-14 \), caused Nipped-B to be included in Hilliker’s (1976) original complementation map of 41Ae. We found that \(EMS \ 34-14 \) failed to complement alleles from \(CG17665 \) and Nipped-B, as well as failing to complement numerous other lethal mutant lines, including insertion lines with distant insertion sites. \(EMS \ 34-14 \) was
Essential Heterochromatic Loci in 2Rh

often used as a representative allele for what was believed to be a single locus, l(2)41Ae. In hindsight, because of its complex genetic properties, it was not a good choice.

Myster et. al. (2004) were correct in their conclusion that EMS can induce large chromosome aberrations and that 41Ae is a region, not a locus. However, they considerably overestimated the number of vital genetic loci in 2Rh. Of the 12 vital loci reported by Myster et. al. (2004) that lie proximal to RpL38/41Af (Figure 7), 2 of them, NC19 and NC28 have been shown here, through sequencing, to be alleles of CG17665. Seven of the 12 loci reported by Myster et al (2004) were shown to lie between NC19 and NC28; this cannot be the case as there are not 7 essential loci embedded within CG17665. The identification of these as 7 separate loci by Myster et. al. (2004) was likely incorrect because they did not create as many heterochromatic deletions in the area as they believed (see Table 8). The single alleles of the last 3 of the 12 loci reported by Myster et. al. 309, NC83 and NC30 were all viable with Df(2R)M41A10 when tested here, so their location in 2Rh could not be determined. Table 8 summarizes the evidence from this study that resolves the 12 loci proximal to 41Af reported by Myster et.al. (2004), into the 4 essential loci identified here. Table 8 also lists four deletions reported by Myster et.al. (2004) that do not appear to be deletions joining separate essential loci; if they are deletions they are likely limited to one essential locus, or, as in the case of Df(2R)NC109, have now been shown to be associated with point mutations in one essential locus.

One puzzling example of interallelic complementation uncovered in this study involves line EMS 45-71, a missense allele in exon 3 of CG17665 (Table 3). This missense mutation fails to complement EMS 45-34, a stop codon mutant in exon 3 of CG17665, yet EMS 45-71 fully complements NC19, another stop codon mutant of CG17665 that is upstream of EMS 45-34 stop
codon mutation. The opposite result would be more intuitive since \textit{NC19} produces the more truncated protein and may be missing a critical functional domain present in the longer \textit{EMS 45-34} protein. With only the genetic data available, a proper explanation of the \textit{EMS 45-71} complementation data is not possible.

The classic example of homodimers versus heterodimers provides a simple mechanism of interallelic complementation that could explain the complementation data for \textit{EMS45-71}. In this case, flies homozygous for \textit{EMS 45-34}, \textit{EMS 45-71} or \textit{NC19} would produce a homodimer (or larger multimer) that does not function adequately, resulting in lethality. In the case of a \textit{NC19}/\textit{EMS 45-71} transheterozygote genotype, non functioning homodimers would be formed alongside heterodimers. The truncated protein encoded by the 45-34 contain approximately 60 more amino acids than the \textit{NC19} protein. This stretch of 60 amino acids may not contain any vital functional domain, but rather, may allow 45-71/45-34 heterodimers to establish a better and more functional conformation than 45-71/\textit{NC19} heterodimers. The differing functional abilities of each heterodimer could be the factor that allows one combination to compliment while the other fails to complement.

In addition to characterizing the 41Ae region, we have discovered the molecular basis for locus \textit{l(2)41Ab} to be \textit{CG41625}. It should be emphasized that early mapping studies placed \textit{l(2)41Ab} proximal to the \textit{rolled (rl)} gene (for review see Coulthard \textit{et. al.} 2003), but based on the recent annotation of heterochromatin (Hoskins \textit{et. al.} 2007), and the more recent evidence from Dimitri \textit{et. al.} (2009), \textit{l(2)41Ab} should be located distal to \textit{rl}. Indeed, \textit{CG41265} is located distal to \textit{rl} (see Fig. 1). We believe it likely that there was an inversion in 2Rh in the genetic background of the original mapping strains produced by Hilliker and Holm (1975). This may also be true for the \textit{uex} region, as indicated by the fact that \textit{uex} (\textit{CG42595}) was originally
mapped to cytological region h44 (Dimitri 1991), when in fact, the gene is located in the distal end of cytological region h45 (Rossi et. al. 2007; see also Fig. 1).

The apparent prevalence of polymorphic inversions in second chromosome heterochromatin may explain other mapping difficulties for this segment. For example, Rollins et. al. (1999) placed Nipped-B distal to Nipped-A (l(2)41Ah); however, the recent annotation of 2Rh (Hoskins et. al. 2007), and our discovery that Nipped-B was part of the original l(2)41Ae complementation map from Hilliker (1976), clearly places Nipped-B proximal to Nipped-A. Similar mapping problems have been encountered in 2Lh heterochromatin. For example, on the left arm of the second chromosome, the genetic locus E(Sd) has been mapped to different locations by different laboratories (Brittnaker and Ganetsky 1984 and Sharp et. al. 1985).

Our genetic and molecular analysis of existing mutants has allowed the identification of eight previously molecularly undefined essential loci in 2Rh. It is unclear how many more of the 41 currently annotated genes in 2Rh (i.e. the segment deleted by Df(2R)M41A10) are actually essential, but identification of novel essential genes within the 2Rh region through RNAi analysis indicates that the previous 2Rh EMS mutagenesis screens (Hilliker 1976, Eberl 1990; Sharp 1988; Myster et. al. 2004) did not saturate the region. This finding is consistent with the observation that different genes and regions have different mutability (Hilliker et. al. 1981) and that it may be difficult to isolate lethal alleles of all of the essential loci using EMS as a mutagen.

It seems reasonable to suggest that one of the limiting factors in the recovery of EMS-induced alleles of most genes, is the size of their protein products, simply because genes that encode smaller products would provide smaller targets. In other words, essential genes could be missed because of their size. However, it is noteworthy in this regard that a gene with a very small protein product, RPL38 (70 amino acids; Marygold et. al. 2005), yielded EMS alleles in the
two previous EMS mutagenesis studies. Thus, gene size is clearly not the only variable with respect to gene mutability. Three of the genes that were knocked down with RNAi in the current study, did not show a lethal phenotype using a daughterless-GAL4 driver transgene (Table 6). These genes may be truly non-essential, due to functional redundancy or for some other reason. Alternatively, they may be essential, but the level of RNAi knockdown achieved using the daughterless-GAL4 driver transgene was insufficient to cause death. Thus, we may need to use GAL4 driver lines that utilize different promoters, such as Actin-5C or tubulin, to enhance knockdown.

The existence of essential, as well as non-essential loci, in 2Rh supports the view that heterochromatin is neither genetically inert nor is it enriched only in essential genes. There is also sufficient evidence that the set of heterochromatic genes in D. melanogaster, and other organisms, is not unique when compared to the set of euchromatic genes (reviewed by Corradini et. al. 2007). Similar to any set of euchromatic genes, heterochromatic genes encode an extensive array of proteins, with a wide variety of molecular functions, as has been established by a number of genetic and molecular studies (Biggs et. al. 1994; Warner et. al. 1998; Rollins et. al. 1999; Schulze et. al. 2005; Yasuhara et.al. 2005; Hallson et. al. 2008). This conclusion is also clearly supported by the recent annotation of heterochromatin sequence (Hoskins et. al. 2007; Dimitri et al. 2009; Tweedie et. al. 2009). Additionally, the expression profiles of heterochromatic genes are not especially restricted; heterochromatic genes are often expressed throughout development and in different tissues (for examples see Biggs et. al. 1994; Marygold et. al. 2005; Schulze et. al. 2005; Dimitri et al. 2009).

The principal difference between heterochromatic versus euchromatic genes is the chromatin environment in which each type of gene resides. One of the main distinguishing
features of heterochromatin is the high density of repeat sequences (Gatti and Pimpinelli 1992; Lohe et. al. 1993; Bartolomé et. al. 2002); in fact, it has been shown that some heterochromatic genes are located within regions containing nearly 90% repeats, including transposable element and repetitive satellite sequences (Smith et. al. 2007). In addition, heterochromatic genes generally possess larger introns consisting mainly of transposable element remnants (Devlin et. al. 1990; Uchida et. al. 1993; Biggs et. al. 1994; Tulin et. al. 2002; Dimitri et. al. 2003b; Smith et al. 2007) and are often enriched in terms of AT content (Adams et. al. 2000; Díaz-Castillo and Golic 2007).

The evolution of certain heterochromatic genes argues that it is the chromatin environment, and not the genes themselves, that distinguish heterochromatic genes from euchromatic genes. In evolutionary time frames, there appears to be flexibility between the euchromatic and heterochromatic environments in terms of where genes can reside (Schulze et. al. 2006; Yasuhara and Wakimoto 2006). For example, in the evolution of the light (lt) gene in Drosophila, the ancestral version of D. melanogaster’s lt gene has been found to be euchromatic (Yasuhara et.al. 2005). In the D. melanogaster version of lt, the introns have grown in size due to the accumulation of transposable element sequences compared to its euchromatic orthologs with smaller intron sizes. Contrariwise, the male specific fertility factors in D. pseudoobscura are moving from a heterochromatic location to a euchromatic location, and in the process, the size of their introns is decreasing (Carvalho and Clark 2005). Finally, in D. melanogaster, genes Dhp80 and Rpl15 are adjacent heterochromatic genes located deep within centromeric heterochromatin, but in D. psuedoobscura these genes are euchromatic. Furthermore, in D. virilis, Dhp80 is euchromatic while Rpl15 is heterochromatic (Schulze et. al. 2006).
Perhaps the most important aspect of comparison between heterochromatic and euchromatic genes is their dependence on their own chromatin environment for their proper expression. To the extent that it has been examined, heterochromatic genes require heterochromatin to function properly, just as euchromatic genes require euchromatin. For heterochromatic genes, this has been most extensively studied for the *rolled* gene (Eberl et. al. 1993), and to a lesser extent, the *light* gene (Howe et. al. 1995). These genes variegate when moved to distal euchromatin, with the strength of the variegation varying inversely to the size of the heterochromatic block in which the variegating gene resides. Heterochromatic gene variegation is also sensitive to the effect of modifiers of position effect variegation, just as with euchromatic genes. For the most part, the effects of these modifiers on variegating heterochromatic genes are opposite to the effects on variegating euchromatic genes (Hearn et. al. 1991; Weiler and Wakimoto 1995; Locke et. al. 1988; Lu et. al. 2000; Schulze and Wallrath 2007), as would be expected if gene requires their own chromatin environment in which to function properly. Thus, there may be some flexibility with respect to heterochromatin and euchromatin in terms of where genes can reside over evolutionary time scales, as discussed above; but in general, any gene moving from one chromatin environment to another will tend not function properly. Therefore, the heterochromatic dependency of the *rl* and *lt* genes in *D. melanogaster* is no more surprising than the presumed euchromatin-dependence of *rl* and *lt* in Drosophila species where these genes reside in euchromatin. As such, constitutive heterochromatin should no longer be described as silencing DNA, which it is commonly termed, for the simple reason that euchromatin is silencing chromatin from the view point of heterochromatic genes.
Acknowledgements

This work was supported by a joint grant from the Canadian Institutes of Health Research (CIHR) awarded to Drs. A.J. Hilliker, B. Honda and D. Sinclair, and by a grant from the National Sciences and Engineering Research Council of Canada (NSERC) awarded to Dr. A.J. Hilliker.
Essential Heterochromatic Loci in 2Rh

References

Adams, M. D., S. E. Celniker, R. A. Holt, C. A. Evans, J. D. Gocayne et. al. 2000. The genomic sequence of Drosophila melanogaster. Science 287: 2185-2195.

Bartolomé, C., X. Maside and B. Charlesworth 2002. On the abundance and distribution of transposable elements in the genome of Drosophila melanogaster. Mol. Biol. Evol. 19: 926-937.

Bellen H. J., R. W. Levis, G. Liao, Y. He, J. W. Carlson, et. al. 2004. The BDGP gene disruption project: single transposon insertions associated with 40% of Drosophila genes. Genetics 162(2):761-781.

Biggs, W. H. III, K. H. Zavitz, B. Dickson, A. Van der Straten, D. Brunner, et. al. 1994. The Drosophila rolled locus encodes a MAP kinase required in the sevenless signal transduction pathway. EMBO J. 13:1628-1635.

Brittnacher, J. G., and B. Ganetzky 1984. On the components of segregation distortion in Drosophila melanogaster. III. Nature of enhancer of SD. Genetics 197: 423-434.

Brown, S.W. 1966. Heterochromatin. Science 151:417-425.
Carvalho, A. B. and A. G. Clark 2005. Y chromosome of *D. Pseudoobscura* is not homologous to the ancestral *Drosophila* Y. *Science* **307**: 108-110.

Corradini, N., F. Rossi, F. Verni and P. Dimitri 2003. FISH analysis of *Drosophila melanogaster* heterochromatin using BACs and P elements. *Chromosoma* **112**: 26-37.

Coulthard A. B., D. F. Eberl, C. B. Sharp, and A. J. Hilliker 2003. Genetic analysis of the second chromosome centromeric heterochromatin of *Drosophila melanogaster*. *Genome* **46**: 343-352.

Devlin, R. H., B. Bingham and B. T. Wakimoto 1990. The organization and expression of the light gene, a heterochromatic gene of *Drosophila melanogaster*. *Genetics* **125**:129-140.

Díaz-Castillo, C. and K. G. Golic 2007. Evolution of gene sequence in response to chromosomal location. *Genetics* **177**:359-374.

Dietzl G., D. Chen, F. Schnorrer, K.C. Su, Y. Barinova, M. Fellner, B. Gassner, K. Kinsey, S. Oppel, S. Scheiblauer, A. Couto, V. Marra, K. Keleman and B.J. Dickson 2007. A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. *Nature* **448**: 151-156.

Dimitri, P. 1991. Cytogenetic analysis of the second chromosome heterochromatin of *Drosophila melanogaster*. *Genetics* **127(3)**: 553-654.
Dimitri P., B. Arca`, L. Berghella and E. Mei 1997. High genetic instability of heterochromatin after transposition of the LINE-like I factor in *Drosophila melanogaster*. *Proc. Natl. Acad. Sci. USA* **94**: 8052-8057.

Dimitri, P., N. Corradini, F. Rossi, F. Verni, G. Cenci *et. al.* 2003a. Vital genes in the heterochromatin of chromosome 2 and 3 of *Drosophila melanogaster*. *Genetica* **117**:209-215.

Dimitri P., N. Junakovic and B. Arcà 2003b. Colonization of heterochromatic genes by transposable elements in Drosophila. *Mol Biol Evol* **20**: 503-512.

Dimitri, P. 2004. Fluorescent *in situ* hybridization with transposable element probes to mitotic chromosome heterochromatin of *Drosophila*. In: Mobile genetic elements: protocols and genomic applications. *Methods Mol Biol.* **260**: 29-39.

Dimitri, P., R. Caizzi, E. Giordano, M. Carmela Accardo, G. Lattanzi and G. Biamonti 2009. Constitutive heterochromatin: a surprising variety of expressed sequences. *Chromosoma* **118**: 419-435.

Eberl, D. F. 1990. Genetic studies on the nature and function of autosomal heterochromatin in *Drosophila melanogaster*. Ph.D. thesis, University of Guelph, Guelph, ON, Canada.
Essential Heterochromatic Loci in 2Rh

Eberl D. F., B. J. Duyf and A. J. Hilliker 1993. The role of heterochromatin in the expression of a heterochromatic gene, the rolled locus of Drosophila melanogaster. Genetics 134: 277-292.

Gatti, M. and S. Pimpinelli 1992. Functional elements in Drosophila melanogaster heterochromatin. Annu. Rev. Genet. 26:239-275.

Gause, M., H. A. Webber, Z. Misulovin, G. Haller, R. A. Rollins, J. C. Eissenberg, S. E. Bickel and D. Dorsett 2008. Functional links between Drosophila Nipped-B and cohesin in somatic and meiotic cells. Chromosoma 117: 51-66.

Hallson, G., M. Syrzycka, S. A. Beck, J. A. Kennison, D. Dorsett, S. L. Page, S. M. Hunter, R. Keall, W. D. Warren, H. W. Brock, D. A. Sinclair and B. M. Honda 2008. The Drosophila cohesin subunit Rad21 is a trithorax group (trxG) protein. Proc. Natl Acad Sci U.S.A. 105: 12405-12410.

Hannah, A. 1951. Localization and function of heterochromatin Drosophila melanogaster. Adv. Genet. 4: 87–125.

Hearn, M. G., A. Hedrick, T. A. Grigliatti and B. T. Wakimoto 1991. The effect of modifiers of position-effect variegation on the variegation of heterochromatic genes of Drosophila melanogaster. Genetics 128: 785-797.
Essential Heterochromatic Loci in 2Rh

Heitz, E. 1928. Das heterochromatin der moose. I. *Jb. Wiss. Bot.* **69**:762-818.

Hessler, A. Y. 1958. V-type position effects at the *light* locus in *Drosophila melanogaster*.

Genetics **43**: 395–403.

Hilliker, A. J. 1976. Genetic analysis of the centromeric heterochromatin of chromosome 2 of *Drosophila melanogaster*: deficiency mapping of EMS-induced lethal complementation groups. *Genetics* **83**: 765-782.

Hilliker, A. J. and D. G. Holm 1975. Genetic analysis of the proximal region of chromosome 2 of *Drosophila melanogaster*. I. Detachment products of compound autosomes. *Genetics* **81**: 705-721.

Hilliker, A. J., R. Appels and A. Schalet 1980. The genetic analysis of *D. melanogaster* heterochromatin. *Cell* **21**: 607-619.

Hilliker, A. J., A. Chovnick and S. H. Clark 1981. The relative mutabilities of vital genes in *D. melanogaster*. *DIS* **56**: 64-65.

Hoskins, R. A., J. W. Carlson, C. Kennedy, D. Acevedo, M. Evans-Holm et. al. 2007. Sequence finishing and mapping of *Drosophila melanogaster* heterochromatin. *Science* **316**: 1625-1628.
Essential Heterochromatic Loci in 2Rh

Hoskins, R. A., C. D. Smith, J. W. Carlson, A. B. Carvalho, A. Halpern et al., 2002
Heterochromatic sequences in a Drosophila whole-genome shotgun assembly. *Genome Biol.* 3: RESEARCH0085.

Howe M., Dimitri P, Berloco M., Wakimoto B. T. 1995. Cis-effects of heterochromatin on euchromatic and heterochromatic gene expression in *Drosophila melanogaster*. *Genetics* 140:1033-45.

Lim, J. K. and L. A. Snyder 1974. Cytogenetic and complementation analyses of recessive lethal mutations induced in the X chromosome of *Drosophila* by three alkylating agents. *Genet. Res. Camb.* 24:1-10.

Locke, J., M. A. Kotarski and K. D. Tartof 1988. Dosage dependent modifiers of position effect variegation in *Drosophila* and a mass action model that explains their effects. *Genetics* 120: 181-198.

Lohe, A. R., A. J. Hilliker and P. A. Roberts 1993. Mapping simple repeated DNA sequences in heterochromatin of *Drosophila melanogaster*. *Genetics* 134:1149-1174.

Lu, B. Y., P. C. Emtage, G. J. Duyf, A. J Hilliker and J. C. Eissenberg 2000. Heterochromatin protein 1 is required for the normal expression of two heterochromatin genes in *Drosophila*. *Genetics* 155: 699-708.
Marygold, S. J., C. M. Coelho and S. J. Leevers, 2005. Genetic analysis of \(RpL38\) and \(RpL5\), two \textit{Minute} genes located in the centric heterochromatin of chromosome 2 of \textit{Drosophila melanogaster}. \textit{Genetics} \textbf{169}:683-695.

Myster S. H., F. Wang, R. Cavallo, W. Christian, S. Bhotika, C. T. Anderson and M. Peifer 2004. Genetic and bioinformatic analysis of 41C and the 2R heterochromatin of \textit{Drosophila melanogaster}: a window on the heterochromatin-euchromatin junction. \textit{Genetics} \textbf{166}: 807-22.

Pimpinelli, S., M. Berloco, L. Fanti, P. Dimitri, S. Bonaccorsi, E. Marchetti, R. Caizzi, C. Caggese, M. Gatti 1995. Transposable elements are stable structural components of \textit{Drosophila melanogaster} heterochromatin.

Rollins, R. A., P. Morcillo and D. Dorsett 1999. Nipped-B, a Drosophila homologue of chromosomal adherins, participates in activation by remote enhancers in the \textit{cut} and \textit{Ultrabithorax} Genes. \textit{Genetics} \textbf{152}: 577-593.

Rossi, F., R. Moschetti, R. Caizzi, N. Corradini and P. Dimitri 2007. Cytogenetic and molecular characterization of heterochromatin gene models in \textit{Drosophila melanogaster}. \textit{Genetics} \textbf{175}: 595-607.

Schultz, J. 1936. Variegation in Drosophila and the inert chromosome regions. \textit{Proc. Natl. Acad. Sci. U.S.A.} \textbf{22}: 27–33.
Schulze, S. R., D. A. Sinclair, K. A. Fitzpatrick K. A. and B. M. Honda 2005. A genetic and molecular characterization of two proximal heterochromatic genes on chromosome 3 of *Drosophila melanogaster*. *Genetics* **169**: 2165-2177.

Schulze, S. R., B. F. McAllister, D. A. R. Sinclair, K. A. Fitzpatrick, M. Marchetti, S. Pimpinelli and B.M. Honda 2006. Heterochromatic genes in Drosophila: a comparative analysis of two genes. *Genetics* **173**: 1433-1455.

Schulze, S. R and L. L. Wallrath 2007. Gene regulation by chromatin structure: paradigms established in *Drosophila melanogaster*. *Annu. Rev. Entomol.* **52**: 171-192.

Sharp, C. B., Hilliker, A. J., and D. G. Holm 1985. Further characterization of genetic elements associated with the segregation distorher phenomenon in *Drosophila melanogaster*. *Genetics* **110**: 671-688.

Sharp, C. B. 1988. Biometrical and genetic studies of segregation distortion in *Drosophila melanogaster*. Ph.D. thesis, University of Guelph, Guelph, ON, Canada.

Smith C. D., S. Q. Shu, C. J. Mungall, G. H. Karpen 2007. The release 5.1 annotation of *Drosophila melanogaster* heterochromatin. *Science* **316**: 1586-1591.
Styhler, S., A. Nakamura and P. Lasko 2002. VASA localization requires the SPRY-domain and SOCS-box containing protein, GUSTAVUS. Dev. Cell 3: 855-876.

Tulin, A., D. Stewart and A. C. Spradling 2002. The Drosophila heterochromatic gene encoding poly(ADP-ribose) polymerase (PARP) is required to modulate chromatin structure during development. Genes Dev. 16: 2108-2109.

Tweedie S., M. Ashburner, K. Falls, P. Leyland, P. McQuilton, S. Marygold, G. Millburn, D. Osumi-Sutherland, A. Schroeder, R. Seal, H. Zhang and The FlyBase Consortium 2009. FlyBase: enhancing Drosophila Gene Ontology annotations. Nucleic Acids Res. 37: D555-D559.

Uchida, K., S. Hanai, K. Ishikawa, Y. I. Ozawa, M. Uchida, T. Sugimura and M. Miwa 1993. Cloning of cDNA encoding Drosophila poly(ADP-ribose) polymerase: leucine zipper in the auto-modification domain. PNAS U.S.A. 90: 3481-3485.

Weiler, K. S., and B. T. Wakimoto 1995. Heterochromatin and gene expression in Drosophila

Annu. Rev. Genet. 29: 577-605.

Yasuhara, J. C., C. H. DeCrease and B. T. Wakimoto 2005. Evolution of heterochromatic genes of Drosophila. Proc. Natl. Acad. Sci. U.S.A. 102(31):1-958-10963.
Yasuhara J. C. and B. T. Wakimoto 2006. Oxymoron no more: the expanding world of heterochromatic genes. *Trends Genet.* **22**: 330-338.

Zhang, P. and A. C. Spradling 1994. Insertional mutagenesis of *Drosophila* heterochromatin with single *P* elements. *Proc. Natl. Acad. Sci. USA* **91**: 3539-3543.
Essential Heterochromatic Loci in 2Rh

Figure captions

Figure 1. A schematic map of the heterochromatic segment of the right arm of mitotic chromosome 2. This map, modified from Fig. 1 of Dimitri et al. (2009), and only includes current gene models (recently withdrawn models have been removed). The approximate positions of the current gene models located in this segment are shown above the chromosome. Cytological regions are labelled 38-46, as determined by Dimitri (1991), and the centromere is labelled ‘C’. The five gene models inside the box belong to contig CP000218; their exact cytological location within 2Rh is unknown.

Figure 2. The simplified complementation map of l(2)41Ae was drawn, as in Hillker (1976), with each mutant strain being represented with a line. If two mutant strains were lethal in combination then the lines representing them were drawn on the map such that they were parallel, and could be joined by a perpendicular transversal. In order to fully complete the map, some mutant strains had to be represented by lines that ran horizontal, angled, and vertical. The molecular identity of six complementation groups, some of which were determined here, is labelled on the map.

Figure 3. EMS 34-14 mitotic chromosomes from larval brain squashes using DAPI-staining. The 34-14 chromosome is clearly a complex rearrangement due to the occurrence of multiple breaks. It has a sub-metacentric structure, shows the reduction of region h46 on 2Rh and carries a large DAPI bright block of unknown origin on the 2L tip. The new sub-metacentric organization may be explained assuming the presence of a pericentric
inversion with a breakpoint in h46 of 2Rh and somewhere within 2L. The breakpoint in h46 possibly associated with a partial deletion of this region, may inactivate several vital genes and thus be responsible for the complex complementation pattern of *EMS 34-14*.

Figure 4. A) *Df(2R)41A2* and *Df(2R)34-2* overlap at the 5’ end of *CG17665*; B) Gene *CG42595* cannot be amplified in *Df(2R)34-2* or *Df(2R)247*. The top band in each gel is the deletion mapping control band that should be present in all PCR reactions and the second, shorter product, is the test product amplified from the DNA template using primers designed to specific sequences in 2Rh (Table 2). The DNA templates are written above the gel and the test primers are listed on the bottom. The order of the DNA templates is the same for each test group on the same gel. Arrows point to missing test products.

Figure 5. Mapping heterochromatic deletions in the vicinity of *l(2)41Ae*. The thick horizontal lines represent the second chromosome while thin vertical lines represent the position of known or predicted genes. Solid horizontal lines below the chromosome show the areas of the chromosome that are missing in the mapped deficiencies. Hatched areas of the deletion lines are used to represent uncertainty about the exact endpoint of the deletions. The + and – signs above the gens represent diagnostic PCR deletion mapping results. A + indicates a PCR product was obtained for the deletion indicated on the left, while a – sign indicates no product was obtained for the deletion. Note that *Df(2R)41A2* breaks in the first exon of *CG17665* so the diagnostic results are represented by a + - to indicate that
part of the gene is present in the deletion and part is absent. Current gene models are indicated by a ‘Y’; the other gene models have been withdrawn.

Figure 6. Picture of 3 rare adult escapers of the genotype $Df(2R)247 / uex^{34}7$ showing varying severities of uex phenotypes. A: The uppermost fly appears wildtype while the bottom two flies have unextended wings and smaller body size. B: A closer look at the hind legs of the bottom two flies in panel A; one fly has legs with a wildtype appearance (C) while the other fly has a single misshapen hind leg (D).

Figure 7. Flat complementation map showing the identity of six complementation groups and how the 12 loci reported by Myster et. al. (2004) align with our results. The thick horizontal lines represent the second chromosome while thin vertical lines represent the positions of known genes or current gene models. Solid horizontal lines below the chromosome show the areas of the chromosome that are missing in the mapped deficiencies. Hatched areas of the deletion lines are used to represent uncertainty about the exact endpoint of the deletions. Boxes enclose lethal complementation groups identified in this study. The 12 loci reported by Myster et. al. that were mapped proximal to $RpL38$ are listed, in order, above the map. Arrows originating from the Myster loci point to their true identity, as determined in this study.
Table 1. Mutant lines obtained for this study.

Line Obtained	Known Synonyms	Mutagen or Method of Creation	Reference	
NC1	l(2)IR3NC1	EMS	Myster et. al. 2004	
NC6	Nipped-BNC6	EMS	Gause et. al. 2008	
NC7	EMS	Myster et. al. 2004		
NC9	EMS	Myster et. al. 2004		
NC19	l(2)NC19NC19	EMS	Myster et. al. 2004	
NC21	RpL38NC21	EMS	Myster et. al. 2004; Marygold et. al. 2005	
NC23	Nipped-BNC23	EMS	Gause et. al. 2008	
NC28	l(2)NC28NC28	EMS	Myster et. al. 2004	
NC30	l(2)NC30NC30	EMS	Myster et. al. 2004	
NC37	l(2)NC37NC37	EMS	Myster et. al. 2004	
NC38	l(2)NC38NC38	EMS	Myster et. al. 2004	
NC39	Nipped-BNC39	EMS	Gause et. al. 2008	
NC41	Nipped-BNC41	EMS	Gause et. al. 2008	
NC59	Nipped-BNC59	EMS	Gause et. al. 2008	
NC60	EMS	Myster et. al. 2004		
NC70	l(2)NC70NC70	EMS	Myster et. al. 2004	
NC71	Nipped-BNC71	EMS	Gause et. al. 2008	
NC77	Nipped-BNC77	EMS	Gause et. al. 2008	
NC78	Nipped-BNC78	EMS	Gause et. al. 2008	
NC83	l(2)NC83NC83	EMS	Myster et. al. 2004	
NC89	Df(2R)NC89	EMS	Myster et. al. 2004	
NC91	EMS	Myster et. al. 2004		
NC109	Df(2R)NC109	EMS	Myster et. al. 2004	
NC110	l(2)NC110NC110	EMS	Myster et. al. 2004	
NC133	l(2)NC133NC133	EMS	Myster et. al. 2004	
NC138	Df(2R)NC138	EMS	Myster et. al. 2004	
NC173	EMS	Myster et. al. 2004		
NC195	EMS	Myster et. al. 2004		
34-2	EMS34-2	EMS	Hilliker 1976	
34-3	EMS34-3	EMS	Hilliker 1976	
34-13	EMS34-13	EMS	Hilliker 1976	
34-14	EMS34-14	EMS	Hilliker 1976	
34-25	EMS34-25	EMS	Hilliker 1976	
45-20	EMS 45-20	EMS	Hilliker 1976	
45-23	EMS45-23	EMS	Hilliker 1976	
45-33	EMS45-33	EMS	Hilliker 1976	
45-34	EMS45-34	EMS	Hilliker 1976	
45-53	EMS45-53	EMS	Hilliker 1976	
45-61	EMS45-61	EMS	Hilliker 1976	
45-71	EMS45-71	EMS	Hilliker 1976	
L10	EMS	Eberl 1990		
L2	EMS	Eberl 1990		
L5	EMS	Eberl 1990		
L7	EMS	Eberl 1990		
La4	EMS	Eberl 1990		
La6	EMS	Eberl 1990		
Lc	EMS	Eberl 1990		
Lt	EMS	Eberl 1990		
LL	EMS	Eberl 1990		
407	Nipped-B⁴⁰⁷	γ rays	Rollins et. al. 1999	
292.1	Nipped-B^{292.1}	γ rays	Rollins et. al. 1999	
IR13	I(2)41Ae^{IR13}	IR-hybrid dysgenesis	Dimitri et. al. 1997	
IR23	IR-hybrid dysgenesis	Dimitri et. al. 1997		
IR3	IR-hybrid dysgenesis	Dimitri et. al. 1997		
IR4	IR-hybrid dysgenesis	Dimitri et. al. 1997		
k02601	Nipped-B^{k02601a}	P element insertion	Corradini et. al. 2003	
EY09264	Nipped-B²⁰⁴⁷	P element insertion	Bellen et al. 2004	
2047	Nipped-B²⁰⁴⁷	P element insertion	Rollins et. al. 1999	
Lp5	Nipped-B²⁰⁴⁷	P element insertion	Eberl 1990	
309	I(2)309¹	P element insertion	Myster et al. 2004	
CH(2)54	Nipped-B⁽²⁾⁵⁴	P element insertion	Zhang and Spradling 1994	
Df(2R)41A2	Df(2R)M41A2	X-ray	Imprecise P element excision	Myster et al. 2004
Df(2R)247	Df(2R)247	Imprecise P element excision	Myster et al. 2004	
Df(2R)244	Imprecise P element excision	Myster et al. 2004		
Df(2R)Dark2	Imprecise P element excision	Rollins et. al. 1999		
Df(2R)Nipped-D 263.3	Imprecise P element excision	Rollins et. al. 1999		
Df(2R)Nipped-D 341.1	Imprecise P element excision	Rollins et. al. 1999		
739b	unknown	unknown		
EMS 45-84	45-10	EMS	Hilliker, 1976	
EMS 45-87	45-10	EMS	Hilliker, 1976	
EMS 45-10	45-10	EMS	Hilliker, 1976	
EMS 34-7	uex²	EMS	Hilliker, 1976	
EMS 45-17	uex⁴	EMS	Hilliker, 1976	
Table 2. Primers pairs for all diagnostic PCR and sequencing analysis. All primers were designed to have a melting temperature around 60-64°C.

Locus/Marker	Primer Pair Specifics	Forward primer	Reverse Primer
EGFP		ctggtcagctggagagctggcga	caegaactccagcaggacatcg
EGFP diagnostic control	SOD1	gacgacggtcgtagcgcggta	gcacccacggtgccgcggta
Deletion mapping control	3’ essential end of crumbs	ggcaactgcagcggatcttat	ggcgcgtacctatgtctatct
	Exon 1	ttctattctggagagattga	gaaagaatattacagcggcagtgg
	Exon 2-3	fgtctctcaaatgactattggaagc	gcacatcgacagatagatgaaaacg
	Exon 4	ccagcctctcatcttggtatgtcc	gctaactgctttcataccagacg
	Exon 5	tgaattttgccttctacttgcg	aaaaactatgtatgcggcggaaacg
	Exon 6-7	aagatgacagcaatgtaaaacc	tccagaaatcctgcgtatttg
	CG41265 (l(2)41Ab)		
	3’ end	tcagtttggcagagatcaga	tcatttgcgtcgtctttgc
	CG41592	5’ end	atggccgtacggaatacc
	CG40270	5’ end	tggccgtctcccaataact
	CG40733	5’ end	ctatttcagtcgctgggttcc
	CG41278	5’ end	caagctcaacgcagttcaca
	CG42595 (uex)	exon 1	tgcatttagcttttattacatactg
		exon 2	tggatattcatctttttagctcagc
		exons 3-4	tggatattcaagagaataataacc
		exons 5-6	gaaattttgccttctgtgtgtc
		exons 7-9	attttacatctgcttctactg
		exon 10	gcatcgtattttgccttttcac
		exons 11-13	taatgttctctatctccagttg
	Haspin	exons 1-2	aagcaatatttaatattacagtcacc
		exon 5	tgcacacgatatttattagaaataacg
		CG41323	atcttccaatctttctcttgctcc
		exons 3-4	ataacegggaatctataaacctttgctc
Gene	5' end	Exons	3' end
-----------	--------	-------	--------
CG40085	atcttccaatctttetgctgtgctcc	ataaecgggaatctataacccgtgtctg	
CG41363	ctttgaacatgcccgtgtc	tccacagcccccaacagta	
CG17683	gaggtttctgctggattgtg	gcagcatcttcacacctat	
	attacgccctacaggtttg	tgtcttgtgtaaaaagtctt	
	ctaccatgtagccgtagtc	taaaggagtittcgggtgctg	
	cgaggagacacaataacgtc	aacggccatgcattetcatc	
	cacagggagaagagaccta	cgacttttcgtcataactgc	
	ccataacacgctgctgaaa	cacaagttctggttggtgctc	
	caca	gggaagagaatgacca	ccgacttttcgtcataactgc
	tggagtcattggtcagcaaa	gcaggctatctcactcagcagcag	
	cgggtcattttattgtggtc	acgaatatccgtaaaacccg	
	aattcagctgtctttgtgc	ccggaacgcttaactactgc	
	tcccttgaaaagtgcaaatgg	agaaatccaaacagcgtgtc	
	gatggggcaatcataggttg	catctgtgctacccgtatag	
	ttttaggcgaagacagggtgtg	tcaaaacaacgctaacag	
	gggagaatctgctcataacca	gactccaggtcagcttgtc	
	ccgcctcgtactcttcactg	gaacgtuaagccagtcataac	
	tgcgctcctgccttatcactg	tctctcttagcggcttgc	
	gcaggccagaagatgaacc	aaccatctgggatcgtgctc	
CG17665	cggctctcgactatttcactg	gaacgtaaaggccagttc	
	gacttccggcttccagttct	exons 6-9	
	tcgctctgttcctctgtc	exons 8-11	
	gcacgctggtcgatgtc	3' end	
Gprk1	aataacctggggtggtaat	gcacatccaggtcacaacta	
	ataaagtcgtccgcccccaat	tctcaggttataggttaaacggttaat	
CG17883	eggggagacacaataacgcagtc	aacggccatgcattetcatc	
Nipped-B	gttggttctgttgtagagtcag	atgtggtctccggagagtcag	
	3’ end	gaggagaattggaccttgttg	gttgcttagctgacttcttc
------------	-------------------------	-----------------------	-----------------------
CG17706	agcacttctcattgcacatcc	cacttccactgtttccagttc	
Table 3. The nature and location of mutations found in this study. Genes are listed in the proximal to distal direction. The location of the mutation is written as the number of amino acids downstream (+) or upstream (-) from the predicted translation start site (+0).

Gene	Sequenced Mutant Line	Nucleotide Changes	Amino Acid Changes	Location of Mutation
CG41265 (l(2)41Ab)	EMS45-10	G→A	(W→stop)	+93785 (exon 7)
CG42595 (uex)	l2	C→T	Q→STOP	+10139 (exon 4)
	NC1	13 bp deletion and 4 bp deletion	frame shift + possible loss of a splice junction motif	+9949 to +9961 (exon 11) and +9989 to +9991 (intron 11)
	uex34-7	G→C	M→I	+3 (putative transcription start site)
CG17683	NC109	T→A and T→G	V→D and S→A	+559 and +564 (exon 3)
	NC38	T→A	C→STOP	+602 (exon 3)
	EMS 34-13	C→T	S→F	+ 658 (exon 3)
CG40127	NC110	T→A	L→H	+ 375 (exon 3)
CG17665	EMS 45-34	G→A	W→STOP	+3917 (exon 3)
	EMS 45-61	C→T	R→STOP	+6088 (exon 7)
	EMS 45-71	G→A	G→E	+4168 (exon 3)
	NC19	G→A	W→STOP	+3736 (exon 3)
	NC28	T→A	L→P	+3796 (exon 3)
Table 4. Polymorphisms found in all sequences analyzed. The location of the polymorphism is written as the number of amino acids downstream (+) or upstream (-) from the predicted translation start site (+0). All polymorphisms are relative to the published genomic sequence.

Gene Model	Location of Polymorphism	Polymorphism Detected	Lines with Polymorphism	Lines Without Polymorphism
CG41265	+48 (exon 1)	T→A	45-10, 45-84, 45-87, 34-7	
	+ 94167 (exon 7)	C→T (A→V)	45-10, 45-84, 45-87, 34-7	
CG42595	+22662 (intron 6)	T→C	L2, NC9, NC1, *uex*³⁴⁻⁷	
	-142 to -177	36 missing nucleotides	NC9, NC109, NC70, NC1, NC38	34-13
	+1876 (3'UTR)	G→A	34-13, NC109	
CG40133	+8197 (exon 2)	G→T (S→I)	NC9, NC1, Lf	45-20
	+119 (intron 1)	G→T	45-20, NC9, NC1, Lf, NC110	45-34
	+289 to +293 (intron 2)	ATAC absent	45-20, 45-34	
	+307 (intron 2)	A→C	45-20, NC9, NC1, Lf, NC110	
	+319 (intron 2)	T→C	45-20, NC9, NC1, Lf, NC110	
CG40131	+235 (exon 1)	G→C (G→R)	45-20, NC9, NC1, Lf	
CG41449	+186 (exon 1)	C→G (silent)	NC9, NC1, Lf	45-20
	+49 (exon 1)	A→G (I→V)	45-20, 45-34, 45-61, NC9, NC19, Lf	
	+4358 (intron 3)	T→C	45-20, NC9, NC28, NC19, Lf	45-34, 45-61, 45-71, Lf
	+6176 (intron 7)	A→G	45-20, 45-34, NC9, NC19, Lf	45-61
	+6460 (intron 8)	G→A	45-20, 45-34, 45-61, NC9, NC19, Lf	
Table 5. Genetic analysis leading to the discovery of the molecular basis of uex

Line 1	Line 2	Progeny Count	CyO	CyO[+]	Dead Pupae	Eclosion Deaths	Misshapen Hind Leg	Unextended Wings
uex$^{34-7}$	uex$^{45-17}$	108	0	46	26			
uex$^{34-7}$	Df(2R)247	79	5	21	34	3	4	
uex$^{45-17}$	Df(2R)247	92	21	32	13	5	9	
uex$^{34-7}$	Df(2R)M41A10	90	0	53	4	0	0	
uex$^{45-17}$	Df(2R)M41A10	68	5	34	16	0	5	
uex$^{34-7}$	Df(2R)34-2	58	16	8	1	2	0	
uex$^{45-17}$	Df(2R)34-2	69	34	8	3	0	0	
uex$^{34-7}$	L2	32	31	6	0	9	0	
uex$^{45-17}$	L2	98	68	28	2	0	0	
uex$^{34-7}$	La4	82	42	13	2	1	1	
uex$^{34-7}$	NC9	43	28	15	1	0	0	
Df(2R)34-2	La4	93	0	44	3	0	0	
Df(2R)34-2	NC1	68	0	12	6	0	0	
Df(2R)34-2	L2	82	0	4	0	0	0	
Df(2R)34-2	NC9	108	0	1	0	0	0	
La4	NC1	150	16	77	6	1	6	
NC1	L2	75	0	3	1	0	0	
NC1	NC9	67	0	22	0	0	0	
L2	NC9	89	0	2	1	0	0	
Table 6: Characteristics of genes in 2Rh knocked down by RNAi. All progeny counts are for *dcr2*-enhanced RNAi knockdown with a *daughterless (da)-GAL4* driver. Expected progeny ratios differ depending on the insertion location and viability of the RNAi construct.

Gene	RNAi line	Source	Non-Knockdown Progeny Classes	dcr2 RNAi da-GAL4 Progeny	Expected Progeny Ratio	lethality	stage
Nipped-B	17704R-2	NIG	86	0	1:1	lethal	L
Nipped-A	2905R-7	NIG	79	0	1:1	lethal	E
gus *	8688	VDRC	62	0	1:1	lethal	E
CG17684	46596	VDRC	76	0	1:1	lethal	E
CG17665 **	46743	VDRC	41	0	1:1	lethal	P
CG17683	19180	VDRC	53	0	1:1	lethal	L, P
CG17883 ***	30277	VDRC	89	59	1:1	semi-lethal	E, P
	17883R-4	NIG	98	48	1:1	semi-lethal	E, P
Atf6	36504	VDRC	53	7	1:1	semi-lethal	L
CG2981	2981R-3	NIG	43	33	1:1	viable	n/a
CG17486	17486R-1	NIG	60	17	3:1	viable	n/a

* RNAi knockdown with *gus* was not enhanced with *dcr2*. Used *da*-GAL4 driver only.

**Semi-lethal without *dcr2* enhancement.

*** weak semi-lethality present only in *da*2-enhanced knockdown. Viable without *dcr2* enhancement.
Table 7. A summary of the essential loci in this study, listed from proximal to distal. Six novel essential loci were uncovered while the molecular identity of two previously reported essential loci, l(2)41Ab and uex, was discovered. Putative homologues were determined using BLASTp available at http://blast.ncbi.nlm.nih.gov (last accessed Dec. 14, 2009).

Essential Locus Uncovered	Methods Used To Uncover Locus	Homologues
CG41265 (l(2)41Ab)	sequencing 1 allele	Similar to myosin heavy polypeptide 9, non-muscle, (rat), 2e-47
		Ccdc40 mouse 2e-17
		Myosin heavy chain A (*Schmidtia mediterranea*), 3e-15
		Centromere protein E (CENP-E) (Human), 9e-10
CG17684	RNAi	DPPY (DPP10, dipeptidyl peptidase) (human), 6e-74
uex (CG42595)	genetic analysis and sequencing 3 alleles	cyclin M2, 3E-168
CG17683	genetic analysis, RNAi and sequencing 3 alleles	Nuclear prelamin A recognition factor-like (rat), 8.00E-147
CG40127	genetic analysis and sequencing 1 allele	Salivary secreted ribonucleases (*Culex pipiens quinquefasciatus*), 1e-27
		RnaseK (mouse), 3e-10
CG17665	genetic analysis, RNAi and sequencing 5 alleles	Integrator complex subunit 3 (mouse), E=0
CG17883	RNAi	TBC1 domain family member 20 (human), 4.00E-65
CG14464	genetic analysis	unknown
Atf6	RNAi	ATF6 (human), 2e-16
Table 8. Reconsideration of 12 essential loci and 4 deletions that were reported by Myster et. al. (2004) as mapping proximal to \(\textbf{l(2)41Af}\). Loci in column two are listed in proximal to distal order as reported by Myster et. al. Complementation groups, indicated in column 1, are unordered.

Groupings as reported by Myster et. al.	Myster et. al. Locus/Deletion	Nature of the Locus/Deletion	Evidence from this study
Most proximal complementation group. Loci were unordered			
\(\text{NC83}\)	unclear if line maps to 2Rh	not lethal with \(\text{Df(2R)M41A10}\)	
\(\text{NC30}\)	unclear if lines maps to 2Rh	not lethal with \(\text{Df(2R)M41A10}\)	
\(\text{NC28}\)	\(\text{CG17665}\) allele	A sequenced allele in the \(\text{CG17665}\) complementation group (Table 3; Fig. 8)	
\(\text{l(2)309}\)	unclear if line maps to 2Rh	not lethal with \(\text{Df(2R)M41A10}\)	
Second most proximal complementation group. Loci were unordered			
\(\text{NC37}\)	\(\text{CG17683}\) allele	Fails to complement three sequenced alleles in the \(\text{CG17683}\) complementation group (Supp. Table 1; Supp. Figure 1; Table 3)	
\(\text{NC38}\)	\(\text{CG17683}\) allele	A sequenced allele (Table 3) in the \(\text{CG17683}\) complementation group (Fig. 8)	
\(\text{NC133}\)	unclear	\(\text{NC133}\) was only lethal with line \(\text{45-20}\) and that lethality has been shown to be secondary (Supp Table 2)	
\(\text{NC110}\)	\(\text{CG40127}\) allele	A sequence allele of \(\text{CG40127}\) (Table 3)	
\(\text{NC70}\)	\(\text{CG17683}\) allele	Fails to complement two sequenced alleles in the \(\text{CG17683}\) complementation group (Supp. Table 1; Supp. Figure 1; Table 3)	
\(\text{IR3}\)	\(\text{uex}\) allele	Fails to complement three alleles in the \(\text{uex}\) complementation group (Supp. Table 1 and Supp. Figure 1), two of which have been sequenced (Table 3).	
\(\text{IR23}\)	\(\text{CG17665}\) allele	Fails to complement four alleles in the \(\text{CG17665}\) complementation group (Supp. Table 1 and Supp. Figure 1), two of which have been sequenced (Table 3).	
\(\text{NC19}\)	\(\text{CG17665}\) allele	A sequenced allele (Table 3) in the \(\text{CG17665}\) complementation group (Fig. 8)	
\(\text{Df(2R)NC138}\)	\(\text{Nipped-B}\) allele.	Fails to complement twenty-four alleles in the \(\text{Nipped-B}\) complementation group (Supp. Table 1 and Supp. Figure 1), eleven which have been sequenced (\text{Gaue et. al. 2008}).	
\(\text{Df(2R)NC109}\)	\(\text{CG17683}\) allele	A sequenced allele (Table 3) in the \(\text{CG17683}\) complementation group (Fig. 8)	
\(\text{Df(2R)NC89}\)	\(\text{CG17665}\) allele	Fails to complement five alleles in the \(\text{CG17665}\) complementation group (Supp. Table 1 and Supp. Figure 1), three of which have been sequenced (Table 3).	
\(\text{Df(2R)NC9}\)	\(\text{uex}\) allele	Fails to complement three alleles in the \(\text{uex}\) complementation group (Supp. Table 1 and Supp. Figure 1), two of which have been sequenced (Table 3).	