Selective activation of Gₛ signaling in adipocytes causes striking metabolic improvements in mice

Lei Wang¹, Sai P. Pydi¹, Yinghong Cui¹, Lu Zhu¹, Jaroslavna Meister¹, Oksana Gavriloava², Rebecca Berdeaux², Jean-Philippe Fortin⁴, Kendra K. Bence⁴, Cecile Vernochet⁴,⁵, Jürgen Wess¹,¹

ABSTRACT

Objective: Given the worldwide epidemics of obesity and type 2 diabetes, novel antidiabetic and appetite-suppressing drugs are urgently needed. Adipocytes play a central role in the regulation of whole-body glucose and energy homeostasis. The goal of this study was to examine the metabolic effects of acute and chronic activation of Gₛ signaling selectively in adipocytes (activated Gₛ stimulates cAMP production), both in lean and obese mice.

Methods: To address this question, we generated a novel mutant mouse strain (adipo-GₛD mice) that expressed a Gₛ-coupled designer G protein-coupled receptor (Gs DREADD or short GₛD) selectively in adipocytes. Importantly, the GₛD receptor can only be activated by administration of an exogenous agent (CNO) that is otherwise pharmacologically inert. The adipo-GₛD mice were maintained on either regular chow or a high-fat diet and then subjected to a comprehensive series of metabolic tests.

Results: Pharmacological (CNO) activation of the GₛD receptor in adipocytes of adipo-GₛD mice caused profound improvements in glucose homeostasis and protected mice against the metabolic deficits associated with the consumption of a calorie-rich diet. Moreover, chronic activation of Gₛ signaling in adipocytes led to a striking increase in energy expenditure and reduced food intake, resulting in a decrease in body weight and fat mass when mice consumed a calorie-rich diet.

Conclusion: Systematic studies with a newly developed mouse model enabled us to assess the metabolic consequences caused by acute or chronic activation of Gₛ signaling selectively in adipocytes. Most strikingly, chronic activation of this pathway led to reduced body fat mass and restored normal glucose homeostasis in obese mice. These findings are of considerable relevance for the development of novel antidiabetic and anti-obesity drugs.

© 2019 National Institutes of Health. Published by Elsevier GmbH. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Keywords G protein-coupled receptor; G protein; DREADD technology; Adipocytes; Glucose homeostasis; Obesity

1. INTRODUCTION

Type 2 diabetes (T2D) has emerged as a major health problem in most parts of the world. The T2D epidemic is fueled by the rapid rise in the prevalence of obesity, due to changes in lifestyle and diet [1—4]. Since lasting changes in lifestyle and diet are difficult to achieve, there is a clear need for new antidiabetic drugs endowed with increased efficacy and reduced incidence of side effects.

Like most other cell types, adipocytes express many G protein-coupled receptors (GPCRs) which are present on the cell surface and can be activated by extracellular ligands such as hormones or neurotransmitters [5,6]. Each GPCR displays a distinct G protein coupling preference, activating either Gₛ, Gᵢ, or G_q-type G proteins which are linked to specific signaling pathways or networks and are predicted to have multiple effects on adipocyte function [6,7]. At present, little is known about how activation of these various GPCR/G protein pathways affects glucose homeostasis under physiological and pathophysiological conditions in vivo. Studies in this field have been hampered by the lack of GPCR subtype-selective ligands and the fact that the GPCRs expressed by adipocytes are also present in many other tissues.

To circumvent these difficulties, we started to employ a novel experimental strategy that involves the use of designer GPCRs that can only be activated by an exogenously administered drug [8,9]. These new designer receptors are generally referred to as DREADDs (Designer Receptors Exclusively Activated by a Designer Drug) [8,9]. Most DREADDs are mutant muscarinic acetylcholine receptors that no longer...
respond to the endogenous ligand, acetylcholine, but can be activated by nanomolar concentrations of clozapine-N-oxide (CNO), a clozapine metabolite that has little or no pharmacological activity [8,9]. We recently developed a mouse strain in which the expression of a Gs-coupled DREADD (GsD) [10] can be induced in specific cell types in a Cre-dependent fashion [11]. In the present study, we examined the metabolic effects of acute and chronic activation of Gs signaling selectively in adipocytes, both in lean and obese mice. To address this question, we used the newly developed mouse strain described by Akhmedov et al. [11] to generate mutant mice that express the GsD receptor selectively in adipocytes (adipo-GsD mice). Systematic metabolic studies with adipo-GsD mice showed that selective activation of a Gs-coupled receptor in adipocytes causes profound improvements in glucose tolerance and insulin sensitivity and protects against the metabolic deficits associated with the consumption of a calorie-rich diet. Moreover, chronic activation of Gs signaling in adipocytes leads to a striking increase in energy expenditure and a decrease in food intake, leading to a significant loss in body weight when mice are maintained on a high-fat diet (HFD). These findings should be of considerable relevance for the development of novel antidiabetic and anti-obesity drugs.

2. MATERIAL AND METHODS

2.1. Animals

We generated mutant mice that express the GsD receptor selectively in adipocytes (adipo-GsD mice) by crossing ROSA26-LSL-GsDREADD-CRE-cre mice [11] with adipopq-Cre mice (The Jackson Laboratory; stock no. 010803; genetic background: C57BL/6J). The ROSA26-LSL-GsDREADD-CRE-cre mice used for these matings had been backcrossed for 10 generations onto a C57BL/6 background. ROSA26-LSL-GsDREADD-CRE-cre mice that lacked the adipopq-Cre transgene served as control animals. All experiments were carried out with male littermates. Mice were housed under conditions of controlled temperature (23 °C) and illumination (12-h light/12-h dark cycle, light off at 6 pm), and had free access to water and food. Mice consumed standard mouse chow (7022 NIH-07 diet, 15% kcal fat, energy density 3.1 kcal/g, Envigo Inc.) or were switched to a high-fat diet (HFD; F3282, 60% kcal fat, energy density 5.5 kcal/gm, Bioserv) when they were 6 weeks old. Unless stated otherwise, mice were maintained on the HFD diet for at least 8 weeks. All animal studies were carried out according to the US National Institutes of Health Guidelines for Animal Research and were approved by the NIDDK Institutional Animal Care and Use Committee.

2.2. In vivo metabolic tests

In vivo metabolic tests were carried out with male mice (8–20 weeks of age) using standard procedures. Intraportal ethanol glucose tolerance tests (ITT) were performed with mice that had been fasted overnight for about 16 h. Blood glucose concentrations were determined before and after i.p. injection with glucose (1 or 2 g/kg, as indicated). Blood glucose concentrations were determined by collecting blood from the tail vein using a portable glucometer (Glucometer Contour; Bayer). For insulin tolerance tests (ITT), mice that had been fasted for 4 h were injected i.p. with human insulin (0.75 or 1 U/kg, as indicated; Humulin, Eli Lilly). To study glucose-stimulated insulin secretion (GSIS), mice that had been fasted overnight were injected i.p. with 1 or 2 g/kg of glucose, as indicated. Plasma insulin levels were detected by using a mouse insulin ELISA kit (Crystal Chem Inc.). For acute CNO challenge tests, mice that had been fasted for 4 h were injected i.p. with 10 mg/kg CNO. Blood was collected from the tail vein before and at specific time points after CNO treatment. Plasma FFA levels were determined using a commercially available kit (Sigma–Aldrich). Plasma leptin and adiponectin levels were also measured by employing ELISA kits (R&D Systems).

For chronic CNO treatment experiments, mice that had been maintained on a HFD for 4 weeks received single daily injections of CNO (10 mg/kg i.p.) for 4 weeks. During the CNO injection period, mice continued to consume the same HFD as before.

2.3. Body composition analysis

The lean/fat mass composition of mice was measured using the 3-in-1 Echo MRI Composition Analyzer (Echo Medical System).

2.4. Real-time qPCR gene expression analysis

Mouse tissues were collected and frozen quickly. Total mRNA was extracted and purified by using the RNeasy mini kit combined with the RNase-free DNase set (Qiagen), following the manufacturer’s protocol. cDNA was synthesized using SuperScript™ III First-Strand Synthesis SuperMix (Invitrogen). Real-time qPCR was performed using both the SYBR Green and TaqMan methods (Applied Biosystems). TaqMan primer/probe sets for real-time PCR were designed using Primer Express software (Applied Biosystems) and were purchased from Integrated DNA Technologies. RNA expression data were normalized relative to the expression of β-actin or 18S rRNA. The PCR primer sequences and probes are listed in Supplemental Table 1.

2.5. Histology

Adipose and liver tissues were fixed in 4% paraformaldehyde for 24 h and embedded in Optimal cutting temperature compound (OCT). Five-μm-thick sections were prepared, and sections were mounted and stained with hematoxylin and eosin (H&E) and/or Oil Red O. Bright-field images of stained tissue sections were taken with the Keyence Microscope BZ-9000.

2.6. Indirect calorimetry and energy expenditure measurements

Indirect calorimetry and energy expenditure measurements were performed using Oxymax-CLAMS (Columbus Instruments) chambers [12,13]. Mice maintained on regular chow were acclimatized to the chambers for 2 days at 30 °C (thermoneutrality) and then received a single injection of CNO (10 mg/kg i.p.) or vehicle (saline). For each mouse, food intake, O2 consumption, CO2 production, and ambulatory activity (infrared beam breaks) were determined every 13 min for 6.5 h (390 min). Total energy expenditure (TEE) and respiratory exchange ratio (RER) were calculated based on O2 consumption and CO2 production. Mice maintained on a high-fat diet (HFD) were treated in a similar fashion, except that they received daily CNO injections (10 mg/ kg i.p.) for one week. Indirect calorimetry studies were also carried out with mice housed at room temperature (22 °C), following a 2-day acclimatization period.

2.7. Cold tolerance test

Mice that had been housed at room temperature were transferred to 4 °C, and rectal temperature was measured hourly for up to 6 h.

2.8. Liver triglyceride content

Livers were homogenized in PBS, and protein concentrations determined. Total lipid was extracted from the homogenate with chloroform/methanol (2:1). An aliquot of the organic phase was collected, dried overnight, and re-suspended in 1% Triton X-100 ETOH. Hepatic triglyceride content was determined using a commercially available kit (Sigma–Aldrich).
2.9. cAMP assay

cAMP levels in mouse adipose tissue (iWAT) were measured using a cAMP ELISA kit (Cayman Chemical). Briefly, iWAT was rapidly collected, homogenized, and extracted, followed by the detection of cAMP in the supernatant according to the manufacturer’s protocol. Protein concentrations were determined using a bicinchoninic acid assay kit (Pierce).

2.10. Isolation of mature adipocytes

Adipose tissue (iWAT and eWAT) of 16-week-old C57BL/6J mice (males) was digested with KRH buffer (2% FFA-free BSA) containing 3.3 mg/ml collagenase via incubation at 37°C for 30–45 min. When the tissue was fully digested, 10 ml of KRH buffer was added to terminate collagenase activity. Cells were then filtered through a 250 μm cell strainer. After 10 min, the floating top layer containing mature adipocytes was collected. Mature adipocytes were washed twice with KRH buffer containing 5 mM EDTA and then used for RNA-seq analysis.

2.11. RNA-seq study

Total RNA extracted from mature adipocytes (iWAT and eWAT) and BAT tissue of C57BL/6J mice (16-week old males) maintained on regular mouse chow (RC) to a series of metabolic tests. Prior to CNO administration, adipo-GsD and control mice showed no significant differences in body weight (Supplemental Fig. 1B), as well as fed and fasting blood glucose and plasma insulin levels (Supplemental Figs. 1C and D). To study the metabolic effects of acute activation of Gs signaling in mouse adipocytes in vivo, we injected adipo-GsD and control mice with a single dose of CNO (10 mg/kg i.p.) (CNO challenge test). The acute CNO injection caused an increase in blood glucose levels in the control animals (Figure 1A), most likely caused by the injection stress. In striking contrast, acute CNO treatment of adipo-GsD mice led to a pronounced and long-lasting decrease in blood glucose levels (Figure 1A). As expected, CNO treatment increased cAMP levels in fat tissue (iWAT) prepared from adipo-GsD mice, as compared to iWAT from control littermates (Supplemental Fig. 1E).

We also monitored CNO-induced changes in plasma insulin levels. While acute CNO (10 mg/kg i.p.) treatment of control mice had no significant effect on plasma insulin levels, CNO caused a robust increase in plasma insulin levels in adipo-GsD mice (Figure 1B). Moreover, CNO treatment of adipo-GsD mice, but not of control littermates, triggered a significant increase in plasma free fatty acid (FFA) levels, consistent with the known ability of Gs signaling to trigger PKA-dependent lipolysis [15]. Importantly, CNO-treated adipo-GsD mice also showed significant improvements in glucose tolerance (Figure 1D), whole-body insulin sensitivity (Figure 1E), and glucose-stimulated insulin-secretion (GSIS) (Figure 1F), as compared to their control littermates.

3.3. Indirect calorimetry studies with mice maintained on RC

Since adipose tissue plays a central role in the regulation of energy homeostasis [16–19], we studied total energy expenditure (TEE) via indirect calorimetry. All measurements were carried out at thermoneutrality (30 °C) since mouse studies carried out under these conditions more closely mimic human physiology [20]. Acute CNO (10 mg/kg i.p.) treatment of adipo-GsD mice maintained on RC caused a very robust and long-lasting (~6 h) increase in TEE (Figure 1G). CNO treatment of control mice or saline (vehicle) treatment of adipo-GsD or control mice had no significant effect on TEE (Figure 1G). CNO-treated adipo-GsD mice also showed a significant reduction in the respiratory exchange ratio (RER), as compared to the three control groups (Figure 1H), most likely due to elevated plasma FFA levels (Figure 1C). The four groups of mice did not differ in total locomotor activity, either before or after CNO treatment (Figure 1I). CNO-treated adipo-GsD mice showed a trend towards reduced food intake, but this effect failed to reach statistical significance (Figure 1J).

3.4. Metabolic studies with mice consuming an obesity-inducing diet

We next carried out metabolic studies with mice that had been maintained on a high-fat diet (HFD) for at least 8 weeks (Figure 2A). The HFD causes obesity and all major metabolic deficits characteristic for T2D including glucose intolerance and insulin resistance [21]. When consuming the HFD, adipo-GsD and control mice showed similar body weight gain (Figure 2A). After 8 weeks of HFD feeding, we monitored CNO-induced changes in blood glucose, plasma insulin, and plasma FFA levels. As observed with RC adipo-GsD mice (Figure 1A–C), CNO (10 mg/kg i.p.) treatment of HFD adipo-GsD mice caused pronounced decreases in blood glucose levels, accompanied by striking increases in plasma insulin and FFA levels (Figure 2B–D). Acute CNO administration also greatly improved glucose tolerance, insulin sensitivity, and GSIS in the HFD adipo-GsD mice (Figure 2E–G).

3.2. Metabolic studies with mice maintained on regular chow

We subjected adipo-GsD mice and their control littermates (ROSA26-LSL-GsDREADD-CRE-luc mice lacking the Cre transgene) consuming regular mouse chow (RC) to a series of metabolic tests. Prior to CNO administration, adipo-GsD and control mice showed no significant differences in body weight (Supplemental Fig. 1B), as well as fed and fasting blood glucose and plasma insulin levels (Supplemental Figs. 1C and D). To study the metabolic effects of acute activation of Gs signaling in mouse adipocytes in vivo, we injected adipo-GsD and control mice with a single dose of CNO (10 mg/kg i.p.) (CNO challenge test). The acute CNO injection caused an increase in blood glucose levels in the control animals (Figure 1A), most likely caused by the injection stress. In striking contrast, acute CNO treatment of adipo-GsD mice led to a pronounced and long-lasting decrease in blood glucose levels (Figure 1A). As expected, CNO treatment increased cAMP levels in fat tissue (iWAT) prepared from adipo-GsD mice, as compared to iWAT from control littermates (Supplemental Fig. 1E).

We also monitored CNO-induced changes in plasma insulin levels. While acute CNO (10 mg/kg i.p.) treatment of control mice had no significant effect on plasma insulin levels, CNO caused a robust increase in plasma insulin levels in adipo-GsD mice (Figure 1B). Moreover, CNO treatment of adipo-GsD mice, but not of control littermates, triggered a significant increase in plasma free fatty acid (FFA) levels, consistent with the known ability of Gs signaling to trigger PKA-dependent lipolysis [15]. Importantly, CNO-treated adipo-GsD mice also showed significant improvements in glucose tolerance (Figure 1D), whole-body insulin sensitivity (Figure 1E), and glucose-stimulated insulin-secretion (GSIS) (Figure 1F), as compared to their control littermates.

Since adipose tissue plays a central role in the regulation of energy homeostasis [16–19], we studied total energy expenditure (TEE) via indirect calorimetry. All measurements were carried out at thermoneutrality (30 °C) since mouse studies carried out under these conditions more closely mimic human physiology [20]. Acute CNO (10 mg/kg i.p.) treatment of adipo-GsD mice maintained on RC caused a very robust and long-lasting (~6 h) increase in TEE (Figure 1G). CNO treatment of control mice or saline (vehicle) treatment of adipo-GsD or control mice had no significant effect on TEE (Figure 1G). CNO-treated adipo-GsD mice also showed a significant reduction in the respiratory exchange ratio (RER), as compared to the three control groups (Figure 1H), most likely due to elevated plasma FFA levels (Figure 1C). The four groups of mice did not differ in total locomotor activity, either before or after CNO treatment (Figure 1I). CNO-treated adipo-GsD mice showed a trend towards reduced food intake, but this effect failed to reach statistical significance (Figure 1J).

The HFD causes obesity and all major metabolic deficits characteristic for T2D including glucose intolerance and insulin resistance [21]. When consuming the HFD, adipo-GsD and control mice showed similar body weight gain (Figure 2A). After 8 weeks of HFD feeding, we monitored CNO-induced changes in blood glucose, plasma insulin, and plasma FFA levels. As observed with RC adipo-GsD mice (Figure 1A–C), CNO (10 mg/kg i.p.) treatment of HFD adipo-GsD mice caused pronounced decreases in blood glucose levels, accompanied by striking increases in plasma insulin and FFA levels (Figure 2B–D). Acute CNO administration also greatly improved glucose tolerance, insulin sensitivity, and GSIS in the HFD adipo-GsD mice (Figure 2E–G).
3.5. Chronic CNO treatment of HFD mice

We next studied the effect of chronic CNO treatment on HFD adipo-GsD and control mice. After four weeks of HFD feeding, we treated both groups of mice with daily injections of CNO (10 mg/kg i.p.) for 4 weeks. During this time, the mice continued to consume the HFD. Chronic CNO treatment led to a significant and sustained loss in body weight in the HFD adipo-GsD mice, but not in the HFD control littersmates (Figure 3A).

Consistent with this observation, the mass of inguinal white adipose tissue (iWAT), epididymal WAT (eWAT), and brown adipose tissue (BAT) was greatly reduced in the HFD adipo-GsD mice at the end of the 4-week CNO treatment period (Figure 3B,C). Chronic CNO treatment of HFD adipo-GsD mice led to significant reductions in blood glucose, plasma insulin, plasma FFA, and plasma leptin levels, but increased plasma adiponectin levels (Figure 3D–H). Moreover, CNO-treated HFD mice had increased plasma adiponectin levels (Figure 3D–H).
adipo-GsD mice displayed a striking improvement in glucose tolerance (Figure 3), and a pronounced reduction in liver weight (Figure 3J) and hepatic triglyceride (lipid) content (Figure 3K,L).

In H&E staining experiments, iWAT from CNO-treated HFD adipo-GsD mice showed a staining pattern typical for the appearance of beige fat (Figure 3M). In agreement with this observation, qRT-PCR studies showed that the expression of key genes involved in iWAT beiging showed that the expression of key genes involved in iWAT beiging (Supplemental Fig. 3). Similarly, the transcript levels of several key mitochondrial marker genes were significantly increased in iWAT of CNO-treated HFD adipo-GsD mice (Supplemental Fig. 2). Finally, cold exposure (4 °C) of HFD adipo-GsD and control mice showed that chronic CNO treatment enabled the HFD adipo-GsD mice to maintain normal body temperature during the 6 h observation period (Figure 3O). In contrast, CNO-treated HFD control mice showed significant hypothermia under the same experimental conditions (Figure 3O), indicative of increased thermogenic activity in BAT and iWAT of HFD adipo-GsD mice (Figure 3M, N).

Figure 3A indicates that CNO treatment of HFD adipo-GsD mice for 1 week was sufficient to cause a major reduction in body weight. To explore the mechanisms underlying this phenotype, we carried out metabolic studies with adipo-GsD and control mice that had been maintained on a HFD for 5 weeks and had received daily injections of CNO (10 mg/kg, i.p.) during the last week of HFD feeding. As expected, CNO treatment led to a time-dependent decrease in body weight in the HFD adipo-GsD mice (Figure 4A), accompanied by a ~ 50% reduction in body fat mass (Figure 4B), as compared to HFD control littermates. In the HFD adipo-GsD mice, the daily CNO injections caused a significant increase in TEE (Figure 4C) and a decrease in RER (Figure 4D), as compared to the CNO-injected HFD control group. Moreover, the CNO-treated HFD adipo-GsD mice showed a dramatic decrease in daily food intake, as compared to the CNO-injected HFD control mice (Figure 4E). Total locomotor activity was not significantly different between the CNO-injected HFD adipo-GsD and control mice (Supplemental Fig. 3).

3.6. Gα-linked GPCRs that are endogenously expressed by mouse adipocytes

To identify Gα-linked GPCRs that are endogenously expressed by mouse adipose tissue, we subjected RNA prepared from isolated mouse adipocytes (iWAT and eWAT) and BAT tissue to RNA-seq analysis. This analysis demonstrated that mouse adipocytes/BAT tissue express several GPCRs that are selectively coupled to Gα, including the V2 vasopressin receptor, the glucagon receptor, and different melanocortin receptor subtypes (Supplemental Table 2).

4. DISCUSSION

In this study, we used DREADD technology to study the metabolic consequences of selective activation of Gα signaling in mouse adipose tissues. Specifically, we generated a novel mutant mouse strain that expresses a Gα-coupled designer GPCR (GsD) selectively in adipose tissues. Several Gα-coupled designer GPCRs have been developed for use in pharmacological applications, including Gα16, Gα12, and Gα13. However, few Gα-coupled designer GPCRs are known to be expressed in adipose tissue. In this paper, we report the development of a novel mutant mouse strain that expresses a Gα-coupled designer GPCR (GsD) selectively in adipose tissues.
Figure 3: Chronic activation of adipocyte Gs signaling significantly decreases body weight and improves glucose homeostasis in mice consuming a HFD. All studies shown in this figure were carried out with male adipo-GsD and control mice that had been maintained on a HFD for 8 weeks and had received daily injections of CNO (10 mg/kg, i.p.) during the last 4 weeks of HFD feeding. (A) Body weight gain of HFD adipo-GsD and control mice chronically treated with CNO. (B) Representative photographs of inguinal WAT (iWAT), epididymal WAT (eWAT), and brown adipose tissue (BAT) following chronic CNO treatment. (C) Tissue weight of iWAT, eWAT and BAT after chronic CNO treatment. (D) Blood glucose, (E) plasma insulin, (F) plasma FFA, (G) plasma leptin, and (H) plasma adiponectin levels before and after chronic CNO administration. (I) Intraperitoneal glucose tolerance test (IGTT, 1 glucose/kg, i.p.) carried out after chronic CNO treatment. (J) Liver weight and (M) liver triglyceride (TG) content of mice following chronic CNO administration. (N) Images of liver sections stained with Oil Red O after chronic CNO treatment. (M) H&E staining of adipose tissues after chronic CNO treatment. (N) Expression of beiging-related genes in iWAT following chronic CNO administration. (O) Cold tolerance test (4°C) after chronic CNO treatment. All studies were performed with male littermates. Data represent mean ± s.e.m. (mouse numbers are indicated in each panel). *P < 0.05, **P < 0.01, and ***P < 0.001 vs. control. Significance was determined by two-way ANOVA followed by Bonferroni’s post-hoc test (A, D-I, O) or by two-tailed Student’s t test (C, J, K, and N).
The observed increase in energy expenditure is most likely due to the increased thermogenic activity of BAT and iWAT caused by chronic CNO treatment of HFD adipo-GsD mice (Figure 3M–O). At present, the physiological basis underlying the appetite-suppressing effect of CNO in HFD adipo-GsD mice remains unclear. Interestingly, this phenotype was observed despite a pronounced reduction in plasma leptin levels (Figure 3G). One possibility is that this anorectic effect is caused by changes in the release of one or more hormones/adipokines from adipose tissues. It is also possible that CNO-stimulated thermogenesis in BAT and other fat depots activates an afferent neuronal signaling pathway that modulates feeding behavior in the brain. Clearly, these mechanistic issues need to be addressed in future studies.

anti-obesity effect caused by chronic activation of adipocyte Gs signaling is due to a combination of enhanced energy expenditure and reduced caloric intake.

Figure 4: Chronic activation of adipocyte Gs signaling stimulates total energy expenditure and reduces food intake in HFD mice. All studies shown in this figure were carried out with male adipo-GsD and control mice that had been maintained on a HFD for 5 weeks and had received daily injections of CNO (10 mg/kg i.p.) during the last week of HFD feeding. In HFD adipo-GsD mice, daily CNO injections reduced body weight (A) and total fat mass (B). For indirect calorimetry studies (C–E), mice were housed in Oxymax/CLAMS chambers at room temperature (22°C). HFD adipo-GsD mice showed increased total energy expenditure (TEE) (C), decreased respiratory exchange ratio (RER) (D), and reduced food intake (E), as compared to control littermates. All studies were performed using 8-12-week-old male littermates. Data represent mean ± s.e.m. (control, n = 6; adipo-GsD, n = 5). *P < 0.05, **P < 0.01, and ***P < 0.001 vs. control. Statistical significance was determined by two-way ANOVA followed by Bonferroni’s post-hoc test (A) or by two-tailed Student’s t test (B–E).
similar to those described here for CNO-treated adipo-GsD mice [20,26,28–30]. These effects are thought to be mediated by β3-ARs expressed by rodent adipocytes [31,32]. Although the β3-AR is predominantly linked to Gα, it can also activate G proteins of the Gα family [33–35]. In contrast, the GαD designer receptor used in the present study does not seem to couple to other G proteins besides Gα [8–10], suggesting that the metabolic responses observed after CNO stimulation of adipo-GsD mice are caused by enhanced adipocyte Gα signaling. In contrast, the physiological effects seen after treatment of rodents with CL316,243 or other β3-AR-selective agonists are likely due to the activation of both Gα and Gβγ-type G proteins. For this reason, the metabolic phenotypes displayed by CNO-treated adipo-GsD mice can be interpreted in a more straightforward manner.

The use of adipo-GsD mice as a model system to study the metabolic consequences of activating Gα signaling in adipose tissue offers another major advantage. As shown in Supplemental Fig. 1A, the GαD designer receptor is selectively expressed in adipose tissues of adipo-GsD mice. In contrast, the β3-AR is not only expressed by adipocytes but also by many other cell types and tissues, including heart, brain, kidney, and urinary bladder [36,37]. As a result, the metabolic effects observed after treatment of rodents with selective β3-AR agonists are most likely caused by the activation of both adipocyte- and non-adipocyte β3-ARs.

In fact, several years ago, a selective β3-AR agonist, mirabegron, was approved for the treatment of overactive bladder, due to the presence of β3-ARs on bladder smooth muscle. A recent study reported that acute treatment of healthy male individuals with mirabegron increased resting metabolic rate, probably due to stimulation of β3-ARs expressed by human BAT [38]. However, it remains to be seen whether mirabegron or β3-AR agonists with increased selectivity and efficacy will prove useful for treating human metabolic disorders including obesity and T2D. In any case, the search for compounds that can stimulate Gα signaling in human adipocytes appears to be a very attractive goal.

In conclusion, the generation and use of a novel mouse model (adipo-GsD mice) allowed us to monitor the metabolic effects after acute or chronic activation Gα signaling selectively in adipocytes. Most strikingly, chronic activation of this pathway reduced body fat mass in obese mice and restored normal glucose homeostasis. The development of compounds that can selectively activate Gα signaling in adipocytes should prove highly beneficial for the treatment of obesity and T2D.

AUTHOR CONTRIBUTIONS

L.W., C.V., and J.W. designed the experiments. L.W., S.P., Y.C., L.Z., L.W., C.V., and J.W. designed the experiments. L.W., S.P., Y.C., L.Z., S.P., Y.C., L.Z., and J.P.F. performed experiments and analyzed and interpreted the resulting data. O.G. provided guidance throughout this study and carried out the indirect calorimetry experiments. C.V., J.P.F., and K.B. gave helpful advice throughout this study. R.B. provided the ROSA26-LSL-GsDREADD-CRE-luc mice as a novel experimental tool. L.W. and J.W. wrote the manuscript.

ACKNOWLEDGEMENTS

This research was funded by the Intramural Research Program of the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK, NIH) and by Pfizer, Inc. J.P.F., C.V., and K.B. were employees and shareholders of Pfizer Inc. at the time this work was done.

R.B. and the development of the ROSA26-LSL-GsDREADD-CRE-luc mouse line were supported by extramural grants from the NIDDK (DK092590) and the National Institutes of Arthritis and Musculoskeletal and Skin Diseases (NAMS, NIH: AR059847), which had no role in the study design or conclusions. We thank Yin Yan Ma and Naili Liu (Mouse Metabolism Core, NIDDK) for carrying out several metabolite and hormone measurements. Dr. Takefumi Kimura (NIDDK, NIH) for his help in preparing mature adipocytes, and Drs. Shuam Jain and Guoyou Liu (NIDDK, NIH) for sharing their expertise regarding the RNA-seq studies.

CONFLICT OF INTEREST

None declared.

APPENDIX B. SUPPLEMENTARY DATA

Supplementary data to this article can be found online at https://doi.org/10.1016/j.molmet.2019.06.018.

REFERENCES

[1] Gonzalez-Muniesa, P., Martinez-Gonzalez, M.A., Hu, F.B., Despres, J.P., Matsuzawa, Y., Loos, R.J.F., et al., 2017. Obesity. Nature Reviews Discovery Primers 3:17034.

[2] Kusminski, C.M., Bickel, P.E., Scherer, P.E., 2016. Targeting adipose tissue in the treatment of obesity-associated diabetes. Nature Reviews Drug Discovery 15(9):639–660.

[3] Saltiel, A.R., Olefsky, J.M., 2017. Inflammatory mechanisms linking obesity and metabolic disease. Journal of Clinical Investigation 127(1):1–4.

[4] Guo, D.P., Zhang, W., Bansback, N., Amarsi, Z., Birmingham, C.L., Anis, A.H., 2009. The incidence of co-morbidities related to obesity and overweight: a systematic review and meta-analysis. BMC Public Health 9:88.

[5] Regard, J.B., Sato, I.T., Coughlin, S.R., 2006. Anatomical profiling of G protein-coupled receptor expression. Cell 135(3):561–571.

[6] Amisten, S., Neville, M., Hawkes, R., Persaud, S.J., Karpe, F., Salahi, A., 2015. An atlas of G-protein coupled receptor expression and function in human subcutaneous adipose tissue. Pharmacology & Therapeutics 146:51–93.

[7] Carmen, G.Y., Victor, S.M., 2006. Signalling mechanisms regulating lipolysis. Cellular Signalling 18(4):401–408.

[8] Wess, J., 2016. Use of designer G protein-coupled receptors to dissect metabolic pathways. Trends in Endocrinology and Metabolism 27(9):600–603.

[9] Urban, D.J., Roth, B.L., 2015. DREADDs (designer receptors exclusively acti-

[10] Gavrilova, O., Jeon, J., Pack, S., Jou, W., Cui, Y., et al., 2006. Signalling mechanisms regulating lipolysis. Cellular Signalling 18(4):401–408.

[11] Akhmedov, D., Mendoza-Rodriguez, M.G., Rajendran, K., Rossi, M., Wess, J., Baudot, R., 2015. Gαq αdread knock-in mice for tissue-specific, temporal stimulation of cyclic AMP signaling. Molecular and Cellular Biology 35(9):337–347.

[12] Gavrilova, O., Jeon, J., Pack, S., Jou, W., Cui, Y., et al., 2006. Beneficial metabolic effects of M3 muscarinic acetylcholine receptor deficiency. Cell Metabolism 6(2):363–375.

[13] Nakata, N., Takahashi, S., Matsubara, T., Jiang, C., Sakamoto, W., Chanturiya, T., et al., 2015. Adipocyte-specific disruption of fat-specific G protein-coupled receptor 27 causes hepatosteatosis and insulin resistance in high-fat diet-fed mice. Journal of Biological Chemistry 290(5):3092–3105.

[14] Eguchi, J., Wang, X., Yu, S., Kershaw, E.E., Chiu, P.C., Dushay, J., et al., 2011. Transcriptional control of adipose lipid handling by IRF4. Cell Metabolism 13(3):249–259.

[15] Duncan, R.E., Ahmadian, M., Jaworski, K., Sarkadi-Nagy, E., Sul, H.S., 2007. Regulation of lipolysis in adipocytes. Annual Review of Nutrition 27:79–101.
Luo, L., Liu, M., 2016. Adipose tissue in control of metabolism. Journal of Endocrinology 231(3):R77–R99.

Rosen, E.D., Spiegelman, B.M., 2014. What we talk about when we talk about fat. Cell 156(1–2):20–44.

Rosen, E.D., Spiegelman, B.M., 2006. Adipocytes as regulators of energy balance and glucose homeostasis. Nature 444(7121):847–853.

Stern, J.H., Rutkowski, J.M., Scherer, P.E., 2016. Adiponectin, leptin, and fatty acids in the maintenance of metabolic homeostasis through adipose tissue crosstalk. Cell Metabolism 23(5):770–784.

Xiao, C., Goldgof, M., Gavrilova, O., Reitman, M.L., 2015. Anti-obesity and metabolic efficacy of the beta3-adrenergic agonist, CL316243, in mice at thermoneutrality compared to 22 degrees C. Obesity (Silver Spring) 23(7):1450–1459.

Heydemann, A., 2016. An overview of murine high fat diet as a model for type 2 diabetes mellitus. Journal of Diabetes Research 2016:2902351.

Hauke, S., Keutler, K., Phapale, P., Yushchenko, D.A., Schultz, C., 2018. White adipose tissue during CL 316,243-induced reversal of obesity and diabetes in Zucker fa/fa rats. International Journal of Obesity and Related Metabolic Disorders 21(6):465–475.

Collins, S., Daniel, K.W., Rohlfs, E.M., 1999. Depressed expression of adipocyte beta-adrenergic receptors is a common feature of congenital and diet-induced obesity in rodents. International Journal of Obesity and Related Metabolic Disorders 23(7):669–677.

Susulic, V.S., Frederich, R.C., Lawitts, J., Tozzo, E., Kahn, B.B., Harper, M.E., et al., 1995. Targeted disruption of the beta 3-adrenergic receptor gene. Journal of Biological Chemistry 270(49):29483–29492.

Alexander, S.P., Christopoulos, A., Davenport, A.P., Kelly, E., Marrion, N.V., Peters, J.A., et al., 2017. THE CONCISE GUIDE TO PHARMACOLOGY 2017/18: G protein-coupled receptors. British Journal of Pharmacology 174(Suppl 1):S17–S129.

Ghorbani, M., Himms-Hagen, J., 1997. Appearance of brown adipocytes in white adipose tissue during CL 316,243-induced reversal of obesity and diabetes in Zucker fa/fa rats. International Journal of Obesity and Related Metabolic Disorders 21(6):465–475.

Himms-Hagen, J., Cui, J., Danforth Jr, E., Taatjes, D.J., Lang, S.S., Waters, B.L., et al., 1994. Effect of CL-316,243, a thermogenic beta 3-agonist, on energy balance and brown and white adipose tissues in rats. American Journal of Physiology 266(4 Pt 2):R1371–R1382.

Collins, S., Surwit, R.S., 2001. The beta-adrenergic receptors and the control of adipose tissue metabolism and thermogenesis. Recent Progress in Hormone Research 56:309–328.

Grujic, D., Susulic, V.S., Harper, M.E., Himms-Hagen, J., Cunningham, B.A., Corkey, B.E., et al., 1997. Beta3-adrenergic receptors on white and brown adipocytes mediate beta3-selective agonist-induced effects on energy expenditure, insulin secretion, and food intake. A study using transgenic and gene knockout mice. Journal of Biological Chemistry 272(28):17686–17693.

Gavrilova, O., Marcus-Samuels, B., Reitman, M.L., 2000. Lack of responses to a beta3-adrenergic agonist in lipoatrophic A-ZIP/F-1 mice. Diabetes 49(11):1910–1916.

Soeder, K.J., Snedden, S.K., Cao, W., Della Rocca, G.J., Daniel, K.W., Luttrell, L.M., et al., 1999. The beta3-adrenergic receptor activates mitogen-activated protein kinase in adipocytes through a Gi-dependent mechanism. Journal of Biological Chemistry 274(17):12017–12022.

Varghese, P., Harrison, R.W., Lofthouse, R.A., Georgakopoulos, D., Berkowitz, D.E., Hare, J.M., 2000. beta3-adrenoceptor deficiency blocks nitric oxide-dependent inhibition of myocardial contractility. Journal of Clinical Investigation 106(5):697–703.

Li, F., De Godoy, M., Rattan, S., 2004. Role of adenylate and guanylate cyclases in beta1-, beta2-, and beta3-adrenoceptor-mediated relaxation of internal anal sphincter smooth muscle. Journal of Pharmacology and Experimental Therapeutics 308(3):1111–1120.

Schena, G., Caplan, M.J., 2019. Everything you always wanted to know about beta3-AR but were afraid to ask. Cells 8(4).

Michel, M.C., Ochodnicky, P., Summers, R.J., 2010. Tissue functions mediated by beta3-adrenoceptors-findings and challenges. Naunyn-Schmiedeberg’s Archives of Pharmacology 382(2):103–108.

Cypess, A.M., Weiner, L.S., Roberts-Toler, C., Franquet Elia, E., Kessler, S.H., Kahn, P.A., et al., 2015. Activation of human brown adipose tissue by a beta3-adrenergic receptor agonist. Cell Metabolism 21(1):33–38.