Non-Markovian Models of Environmentally-driven Disentanglement in Molecular Charge Qubits

Shengyang Zhou1 and Enrique P. Blair1

Affiliation: Electrical and Computer Engineering Department, Baylor University, Waco, TX, USA, 76798

(Dated: 2 March 2022)

Models of quantum disentanglement are developed for nanometer-scale molecular charge qubits (MCQs). Two MCQs, A and B, are prepared in a Bell state and separated for negligible $A-B$ interactions. Interactions between the local environment and each MCQ unravels $A-B$ entanglement during coherent system+environment evolution. Three models are used for dynamics: (1) a previously-developed, numerical model, in which both AB and environment \mathcal{E} are modeled explicitly; (2) an exact, semi-analytic model, in which only the dynamics of AB are calculated, and (3) an approximate model developed from the semi-analytic model and assumptions about randomness in \mathcal{E}. In the approximate model, the non-zero coherences of the density operator for AB decay with a Gaussian time dependence. This provides a time scale for system dynamics in the exact models as well. This time scale is related directly to the strength of $AB-\mathcal{E}$ interaction. This time scale describes cases where environmental interaction with one target MCQ is dominant, generalizing a previous time scale applicable only when both MCQs have roughly the same strength of interaction with the local environment. Entanglement is measured using two-qubit correlation functions, the dynamics of which are used to demonstrate the effectiveness of the time scale. The early-time decay of coherences and the loss of entanglement is well-characterized as Gaussian, a behavior that Markovian models for memoryless environments cannot capture. The approximate Gaussian model may be used to describe the dynamics of MCQ disentanglement under the influence of environments modeled here, as well as other environments where randomness is present.

Keywords: Quantum computing, molecular charge qubit, entanglement

I. INTRODUCTION

Quantum computing promises new ways to process information and to efficiently solve problems that are difficult or impossible for classical computers. Such applications include Shor’s algorithm for defeating a widely-used encryption scheme, Grover’s search algorithm for simulating quantum systems and optimization problems. Quantum cryptography promises provably secure methods for sharing information. Entanglement between qubits is an essential resource in both quantum computation and communication, but it is easily unraveled by qubit-environment interactions.

Several physical implementations exist for quantum bits (qubits), and still others could be invented. This paper focuses on molecular charge qubits (MCQs), which could be implemented using π-cojugated block copolymers or multi-metal-centered mixed-valence molecules, suitable also for a general-purpose classical computing paradigm known as quantum-dot cellular automata (QCA). Quality factors of $\sim 10^3-10^4$ have been reported for MCQ systems, making it feasible to process information using MCQs.

In this paper, the dynamics of disentanglement are studied in MCQs using computational and analytic methods. Here, a double-quantum-dot (DQD) molecule provides an MCQ. A remotely-separated target pair of MCQs is prepared in a Bell state for maximal entanglement. Vast spatial separation eliminates Coulomb coupling between the target MCQs. Each MCQ in the pair is allowed to interact Coulombically with its local environment, which consists of M charge-neutral DQD molecules. This is the starting point for a time evolution, over which entanglement in AB is quantified using quantum correlation functions. Here, the time dependence of disentanglement is found, along with a characteristic time scale.

This work generalizes a previously-found time scale for environmentally-driven disentanglement in the target Bell pair. Previous work was constrained to a regime in which the strength of local environmental interactions was approximately equal for each of the two target qubits. The previously-used time scale does not generalize to cases where one MCQ in the target pair suffers the dominant environmental interaction. In this paper, a more general time scale found.

A previously-developed numerical model for the dynamics of disentanglement in AB is reviewed, and an exact, semi-analytic model is developed in Section. Additionally, the semi-analytic model is used with assumptions about randomness in \mathcal{E} to obtain an approximate model for the dynamics of disentanglement, as well as to obtain a time scale characteristic of those dynamics. The time scale is related directly to energies of interaction between each target MCQ and its local environment and also characterizes the dynamics of the exact models. Quantum correlation functions are used to quantify entanglement in the target MCQ pair and to demonstrate
the effectiveness of the new time scale in characterizing the
dynamics of disentanglement. The dynamics of disentan-
glement are seen to have a Gaussian form unattainable
using Markovian models of a memoryless environment.
The approximate Gaussian model for disentanglement
could be used to describe AB dynamics not only in the
environments studied here, but also in other randomly-
arranged non-Markovian environments.

II. MODELS OF DISENTANGLEMENT

A. A Molecular Charge Qubit

A mixed-valence compound such as diferrocenyl
acetylene (DFA) can function as a molecular DQD [14,15]
Here, two iron centers provide redox centers, each of
which functions as a molecular quantum dot. While the
DFA molecule must be singly-ionized to provide useful
charge states for this application, other charge-neutral
(zwitterionic) molecules are under study for both molecu-
lar quantum dots. Also, a fixed charge $+e/2$ (not pictured) is
the fundamental charge, and the dots are treated as charged points separated by
distance a. It will be helpful to quantify the charge state
of a DQD in a single number, the polarization, P, given
by $P = \langle \hat{\sigma}_z \rangle$, where $\hat{\sigma}_z$ is one of the Pauli operators
$\{\hat{\sigma}_x, \hat{\sigma}_y, \hat{\sigma}_z\}$.

B. A Bell Pair

The system of interest, AB, is a target pair of entan-
gled molecular charge qubits, designated A and B. The
pair AB is prepared in a Bell state as the initial state of the
time evolution:

$$|\Psi_{AB}(0)\rangle = \frac{1}{\sqrt{2}} (|0_A\rangle \otimes |0_B\rangle + |1_A\rangle \otimes |1_B\rangle)$$

Henceforth, a more compact notation is used:

$$|\Psi_{AB}(0)\rangle = (1/\sqrt{2}) (|00\rangle + |11\rangle),$$

where $|m_A m_B\rangle = |m_A\rangle \otimes |m_B\rangle$ denotes a product of A and B computa-
tional basis states and $m_A, m_B \in \{0, 1\}$. It is assumed
that A and B are separated spatially so that Coulomb
interactions between them are negligible, but that each
MCQ interacts with its own local environment. This
separation could be established after preparation in
$|\Psi_{AB}(0)\rangle$, or some remote entanglement mechanism
could be applied after separation. The dynamics of the
loss of entanglement in AB—not the means of
entanglement—are the focus of this work.

C. The Environment

The local environment for each MCQ in AB is ex-
plitly modeled using M DQDs surrounding each target
MCQ [15]. The M environmental DQDs are arranged on
the surface of a sphere of radius R_X centered on qubit
$X \in \{A, B\}$, as depicted in Figure 2. Here, the orien-
tations and positions on the sphere of the environmental
molecules are randomized. Generally, $R_A \neq R_B$ so that
one MCQ in AB may have a stronger environmental in-
teraction than does its partner. This generalizes a pre-
vious study, in which $R_A = R_B$ was a constraint so
that neither MCQ suffered the dominant environmental
interaction. We designate the two local environments to-
gether as the complete environment, E, with $N = 2M$ en-
vironmental DQDs. Environmental product states may
be formed by taking tensor products

$$|\vec{m}_p\rangle = |m_N\rangle |m_{N-1}\rangle \cdots |m_k\rangle \cdots |m_2\rangle |m_1\rangle,$$

where a counting number, k, indexes the environmental
DQDs, and $m_k \in \{0, 1\}$ labels a classical basis state for
the k-th environmental molecule. The N-element binary
vector,

$$\vec{m}_p = m_N m_{N-1} \cdots m_k \cdots m_2 m_1,$$

then, specifies an environmental product state, and $p \in
\{0, 1, 2, \ldots, 2^N - 1\}$ is a whole-number representation of
\vec{m}_p.

In this paper, the initial state of the environ-
ment, $|\mathcal{E}(0)\rangle$, is a product state of environmental
DQDs, each prepared in a superposition $|\psi_k\rangle =
(1/\sqrt{2}) (|0\rangle + e^{i\phi_k} |1\rangle)$:

$$|\mathcal{E}(0)\rangle = |\psi_N\rangle |\psi_{N-1}\rangle \cdots |\psi_2\rangle |\psi_1\rangle.$$

Here, the relative phase, ϕ_k, is randomly selected. In
the environmental classical basis, $\{|\vec{m}_p\rangle\}$, the state $|\mathcal{E}(0)\rangle$
may be written as

\[|\mathcal{E}(0)| = \frac{1}{2^{N/2}} \sum_{|\vec{m}\rangle} e^{i\phi(\vec{m})} |\vec{m}\rangle, \tag{4} \]

where

\[\Phi(\vec{m}) = \sum_{k=1}^{N} [\vec{m}]_{p} \phi_k, \]

and \([\vec{m}]_{p}\) denotes the \(k\)-th bit of \(\vec{m}\).

D. System Dynamics

The Hamiltonian of the global system, \(\Omega \equiv AB\mathcal{E}\), is determined by the Coulomb interactions between all the DQDs of \(\Omega\). Let \(U_{m_j,m_k}^{j,k}\) be the electrostatic potential energy between the \(j\)-th DQD in state \(m_j\) and the \(k\)-th DQD in state \(m_k\). This energy is given by

\[
U_{m_j,m_k}^{j,k} = \frac{P(m_j)P(m_k)e^2}{16\pi\varepsilon_0} \left[\frac{1}{r_{j,0,0}} - \frac{1}{r_{j,0,1}} - \frac{1}{r_{j,1,0}} + \frac{1}{r_{j,1,1}} \right],
\]

where \(\varepsilon_0\) is the permittivity of free space; \(r_{j,m_j,m_k}\) is the distance between dot \(m_j\) in DQD \(j\) and dot \(m_k\) in DQD \(k\); \(P(m)\) is polarization of a DQD in state \(m\); and \(P(1) = +1\) and \(P(0) = -1\).

Let \(E_{m_A,m_B}(\vec{m})\) be the total electrostatic potential energy of a global state \(\Phi_{m_A,m_B;\vec{m}}\) defined as

\[|\Phi_{m_A,m_B;\vec{m}}\rangle = |m_Am_B\rangle \otimes |\vec{m}\rangle. \]

The energy \(E_{m_A,m_B}(\vec{m})\) is calculated by summing over all DQD pair-wise interactions in \(\Omega\):

\[
E_{m_A,m_B}(\vec{m}) = \left\langle \Phi_{m_A,m_B;\vec{m}} | \hat{H} | \Phi_{m_A,m_B;\vec{m}} \right\rangle = \frac{1}{2} \sum_{j \neq k} U_{m_j,m_k}^{j,k} \tag{6}
\]

Here, \(\hat{H}\) is the Hamiltonian for \(\Omega\), and the indices of summation, \(i\) and \(j\), include each DQD in \(\Omega\): \(i,j \in \{A, B, 1, 2, \ldots, N\}\).

To eliminate complicating dissipative effects, this study of disentanglement is constrained to the regime where tunneling between states \(|0\rangle\) and \(|1\rangle\) is suppressed. In this limit, the global Hamiltonian may be written as

\[
\hat{H} = \sum_{m_A,m_B} |m_Am_B\rangle \langle m_Am_B| \\
\otimes \sum_{\vec{m}} E_{m_A,m_B}(\vec{m}) |\vec{m}\rangle \langle \vec{m}|.
\]

The Hamiltonian is diagonal in the global basis \(\{|\Phi_{m_A,m_B;\vec{m}}\rangle\}\).

1. Global System Dynamics

The dynamics of the global system are described exactly within this model using the Schrödinger equation,

\[
\frac{\partial}{\partial t} |\Psi(t)\rangle = -\frac{i}{\hbar} \hat{H} |\Psi(t)\rangle.
\]

The time-dependent state, \(|\Psi(t)\rangle\), is obtained by applying the time evolution operator, \(\hat{U}(t) = \exp\left(-i\hat{H}t/\hbar\right)\) to the initial state \(|\Psi(0)\rangle\):

\[
|\Psi(t)\rangle = \hat{U}(t) |\Psi(t)\rangle. \tag{7}
\]

2. Reduced Dynamics of the Target MCQ Pair

Unlike the initial state, the time-dependent \(|\Psi(t)\rangle\) generally is not a product of an \(AB\) state \(|\Psi_{AB}(t)\rangle\) and an environmental state \(|\mathcal{E}(t)\rangle\). This is due to the interaction between \(AB\) and \(\mathcal{E}\), which causes entanglement between \(AB\) and \(\mathcal{E}\) over time, as well as the unraveling of \(A\)-\(B\) entanglement.

While \(AB\) may no longer have its own local state for \(t > 0\), the best time-dependent, local description possible for \(AB\) is its reduced density matrix, \(\hat{\rho}_{AB}(t)\). This is obtained by forming the time-dependent global density matrix, \(\hat{\rho}_\Omega(t) = |\Psi(t)\rangle \langle \Psi(t)|\), and tracing \(\hat{\rho}_\Omega(t)\) over the environmental degrees of freedom:

\[
\hat{\rho}_{AB}(t) = \text{Tr}_\mathcal{E}(\hat{\rho}_\Omega(t)) = \sum_{j\mathcal{E}} \langle j\mathcal{E}| \hat{\rho}_\Omega(t) | j\mathcal{E}\rangle. \tag{8}
\]
Here, \(\text{Tr}_E \) denotes the trace over the degrees of freedom of \(E \), and \(\{|j_e\} \) is any orthonormal basis for the \(E \). Henceforth, we drop the superscript \((r)\) from the reduced density matrix for \(AB \).

This model is designated as the “numerical” model, in which the dynamics of \(AB \) and \(E \) are calculated explicitly in order to obtain \(\hat{\rho}_{AB}(t) \).

E. Semi-analytic Model

Here, an analytical treatment is used to find \(\hat{\rho}_{AB}(t) \) without explicitly calculating the dynamics of \(E \).

The initial state vector for the system and environment is a product of the system and environment initial states from Equations (1) and (4):

\[
|\Psi(0)\rangle = \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle) \otimes \frac{1}{2^{N/2}} \sum_{\vec{m}_p} e^{i\Phi(\vec{m}_p)} |\vec{m}_p\rangle .
\]

Because \(\hat{H} \) is diagonal in the global basis \(\{|\Phi_{m_Am_B}\vec{m}_p\rangle\} \), so also is the time evolution operator, \(\hat{U}(t) \):

\[
\hat{U}(t) = \sum_{m_A,m_B} |m_Am_B\rangle \langle m_Am_B| \\
\otimes \frac{1}{2^{N/2}} \sum_{\vec{m}_p} e^{-iE_{m_Am_B}(\vec{m}_p)t/\hbar} |\vec{m}_p\rangle \langle \vec{m}_p| .
\]

Thus, the time-dependent global state \(|\Psi(t)\rangle \) is found by using Equations (7), (9) and (10):

\[
|\Psi(t)\rangle = \frac{1}{2^{(N+1)/2}} |00\rangle \otimes \sum_{\vec{m}_p} e^{-iE_{00}(\vec{m}_p)t/\hbar} e^{i\Phi(\vec{m}_p)} |\vec{m}_p\rangle \\
+ \frac{1}{2^{(N+1)/2}} |11\rangle \otimes \sum_{\vec{m}_p} e^{-iE_{11}(\vec{m}_p)t/\hbar} e^{i\Phi(\vec{m}_p)} |\vec{m}_p\rangle .
\]

This may be used to form the global \(\hat{\rho}_G(t) \), which, when traced over the classical environmental basis, \(\{|\vec{m}_p\rangle\} \), yields the reduced density matrix for the target MCQ pair:

\[
\hat{\rho}_{AB}(t) = \frac{1}{2} (|00\rangle \langle 00| + |11\rangle \langle 11|) \\
+ \frac{1}{2^{N+1}} |00\rangle \langle 11| \sum_{\vec{m}_p} e^{-i\omega_{00p}(\vec{m}_p)t} \\
+ \frac{1}{2^{N+1}} |11\rangle \langle 00| \sum_{\vec{m}_p} e^{i\omega_{00p}(\vec{m}_p)t} .
\]

Here, we have defined the double-bit-flip frequency

\[
\omega_{00p}(\vec{m}_p) \equiv \frac{1}{\hbar} (E_{11}(\vec{m}_p) - E_{00}(\vec{m}_p)) = \frac{1}{\hbar} E_{00p}^{\text{flip}} ,
\]

which is proportional to the double-bit-flip energy

\[
E_{00p}^{\text{flip}} = E_{11}(\vec{m}_p) - E_{00}(\vec{m}_p) ,
\]

the cost of a double bit flip of \(AB \) given environtmental state \(|\vec{m}_p\rangle \).

We designate the model of Equation (11) a “semi-analytic” model, since an analytic treatment was used to obtain Equation (11), but the numerous energies, \(\{E_{00p}^{\text{flip}}\} \), and \(\rho_{AB}(t) \) must be evaluated numerically. This model alleviates the significant burden of explicitly calculating the dynamics of \(E \).

F. Approximate Gaussian Model

Now, consider the summations in Equation (11). Together with the factor 1/2\(^N\), these may be written as

\[
\sum_{\vec{m}_p} e^{\pm i\omega_{00p}(\vec{m}_p)t} = \sum_{k} \frac{1}{k!} (\pm it)^k \frac{1}{2^N} \sum_{\vec{m}_p} \omega_{00p}^k (\vec{m}_p) \\
= \sum_{k} \frac{1}{k!} (\pm it)^k \langle \omega^k \rangle ,
\]

where we define

\[
\langle \omega^k \rangle \equiv \frac{1}{2^N} \sum_{\vec{m}_p} \omega_{00p}^k (\vec{m}_p) .
\]

Here, \(\langle \omega^k \rangle \) is an average over \(\{\omega_{00p}^k (\vec{m}_p)\} \), and we identify \(\langle \omega^1 \rangle = \bar{\omega} \) and \(\sqrt{\langle \omega^2 \rangle} = \omega_{\text{RMS}}^{\text{flip}} \) as average and root-mean-square values, respectively, of the frequencies \(\{\omega_{00p}^k (\vec{m}_p)\} \). Similarly, we can define averages of the double-bit-flip energies and their powers:

\[
\left\langle \left(E_{00p}^{\text{flip}} \right)^k \right\rangle \equiv \frac{1}{2^N} \sum_{\vec{m}_p} \left(E_{00p}^{\text{flip}} \right)^k = \hbar \langle \omega^k \rangle ,
\]

with a mean double-bit-flip energy,

\[
\bar{E}_{00p}^{\text{flip}} = \left\langle \left(E_{00p}^{\text{flip}} \right)^1 \right\rangle = \hbar \bar{\omega} ,
\]

and a root-mean-square double-bit-flip energy,

\[
\sigma_E = E_{\text{RMS}}^{\text{flip}} = \sqrt{\langle \left(E_{00p}^{\text{flip}} \right)^2 \rangle} = \hbar \omega_{\text{RMS}}^{\text{flip}} .
\]

For environments with randomly-placed and randomly-oriented DQDs—more generally than just the spherical environments modeled in this paper—the frequencies \(\{\omega_{00p}^k (\vec{m}_p)\} \) and energies \(\{E_{00p}^{\text{flip}} (\vec{m}_p)\} \) will tend to be normally distributed. Thus, on average, a random environment will have small \(\langle \omega^k \rangle \) and small \(\langle \left(E_{00p}^{\text{flip}} (\vec{m}_p) \right)^k \rangle \) for odd \(k \). Neglecting these terms from Equation (14) as well as terms beyond the third order in
Now, inserting Equation (17) into $\hat{\rho}_{AB}(t)$ of Equation (11), the coherences $\langle 00 \mid \hat{\rho}_{AB} \mid 11 \rangle = \langle 11 \mid \hat{\rho}_{AB} \mid 00 \rangle$ have a time-dependence with a Gaussian decay:

$$\hat{\rho}_{AB}(t) \approx \frac{1}{2} \left[\langle 00 \rangle \langle 00 \rangle + \langle 11 \rangle \langle 11 \rangle + e^{-\left(\omega_{RMS}^{flip}\right)^2 t^2/2} \langle 00 \rangle \langle 11 \rangle + \langle 11 \rangle \langle 00 \rangle \right].$$ (18)

The main assumption behind the Gaussian approximate model for $\hat{\rho}_{AB}(t)$ is randomness in the environment. The Gaussian model could be applied more broadly to describe the dynamics of disentanglement due to other environments where randomness is a feature, as well.

1. Application to Local Spherical Environments

The double-sphere environments studied in this context provide a concrete example of this analysis. Here, a histogram of the energies $\{E_{\vec{m}_p}^{flip}\}$ is plotted for a particular random environment. To provide a qualitative visual cue for how Gaussian the distribution is, a fitting function,

$$g(E_{\vec{m}_p}^{flip}) = A e^{-\left(E_{\vec{m}_p}^{flip}-E_{\vec{m}_p}^{0}\right)^2/2\sigma_E^2},$$

also is plotted (dashed red curve), where A is chosen to minimize curve-fitting error. The highly-Gaussian energy distribution shown in the upper panel results in a Gaussian time dependence for the magnitude of the coherences of $\hat{\rho}_{AB}$, shown in the lower panel of Figure 3(a). Here, the ratio $f(t)$ is plotted, which is defined as the magnitude of non-zero coherences relative to their initial magnitudes:

$$f(t) \equiv \frac{\langle 11 \rangle \langle 11 \rangle}{\langle 00 \rangle \langle 00 \rangle} = \frac{\langle 11 \rangle \langle 11 \rangle}{\langle 00 \rangle \langle 00 \rangle}. \quad (19)$$

In the plot of $f(t)$, the approximate Gaussian decay from Equation (18) is shown using a dashed red line, and deviations from this approximate behavior are attributed to the terms neglected from Equation (17).

Figure 3(b) provides an example of an environment in which the distribution $\{E_{\vec{m}_p}^{flip}\}$ deviates from a Gaussian form (upper panel). Here, a larger $E_{\vec{m}_p}^{flip}$ leads to a larger $\tilde{\omega}$; and, other terms for higher odd powers of t neglected in Equation (18) introduce non-zero imaginary components which drive departures from a purely Gaussian time dependence in the coherences of $\hat{\rho}_{AB}(t)$. Thus, more notable deviations from the red Gaussian line appear in the corresponding plot of $f(t)$ of the lower panel.

Henceforth, we refrain from calculating results using the fully numerical model, since it is more computationally-intensive than the semi-analytic treatment. This is justified, since the lower panels of subfigures 3(a) and 3(b) demonstrate exact agreement between the numerical and semi-analytic models.

G. A Time Scale for Disentanglement

Let the decay of non-zero coherences in Equation (18) be mapped to a Gaussian with standard deviation σ_t, $g(t) \propto \exp(-\frac{t-t_0}{2\sigma_t^2})$. Then, for this decay, $t_0 = 0$ and $\sigma_t = 1/\omega_{RMS}^{flip}$. Thus, the root-mean-square double-bit-flip frequency characterizes the Gaussian decay of the coherences of $\hat{\rho}_{AB}(t)$. We define

$$\tau_E = \frac{\pi}{\omega_{RMS}^{flip}} = \frac{\pi \hbar}{E_{RMS}^{flip}}. \quad (20)$$

as a time scale for the dynamics of disentanglement. Here, the factor of π is included to make τ_E directly comparable to τ, the time scale from previous work [13].

H. Measures of Entanglement

To quantify entanglement between A and B, we use three correlation functions: S_{BM}, the Bell-Mermin (BM) correlation function, S_{CSH}, the Clauser-Horne-Shimony-Holt (CHSH) correlation function, and S_{BPRV}, the Brukner-Paunković-Rudolph-Vedral (BPRV) correlation function. These are functions of the two-qubit reduced density matrix $\hat{\rho}_{AB}(t)$. The details of our implementations of the correlation functions are discussed either here or in the previous work by Blair, Tth, and Lent [13].

1. The Bell-Mermin Correlation Function

The Bell-Mermin correlation used here is formulated for two qubits, A and B, measured independently with three measurement settings $j \in \{1, 2, 3\}$ corresponding to three rotated angles of measurement $\{\theta_j\}$. The Bell-Mermin correlation function, S_{BM}, is

$$S_{BM} = \text{Tr} \left(\hat{P}_{same} \right). \quad (21)$$
As the distribution of double-bit-flip energies $\{E_{\text{flip}}^{m,p}\}$ approaches a zero-centric Gaussian distribution, the time dependence of the decay in coherences $\langle 00 | \hat{\rho}_{AB} | 11 \rangle = \langle 11 | \hat{\rho}_{AB} | 00 \rangle^*$ becomes more Gaussian. (a) A histogram of the energies $\{E_{\text{flip}}^{m,p}\}$ (upper plot) which approaches an ideal Gaussian (dashed red line) centered at the origin corresponds to a highly-Gaussian form in the decay of coherences. (b) Deviations from a zero-centric Gaussian distribution in energies $\{E_{\text{flip}}^{m,p}\}$ introduces non-Gaussian behavior in the decay of f. In both cases shown, $a = 1$ nm, the environmental radii are $R_A/R_B = 4a/2a$, and the environmental populations are $N = 20$.

where

$$P_{\text{same}} = \sum_{i=1,j\neq i}^{3} \sum_{m=0}^{1} \hat{R}(\theta_i) |m\rangle \langle m| \hat{R}(\theta_i)$$

and $R(\theta)$ is a single-qubit rotation operator:

$$R(\theta) = \cos \theta (|0\rangle \langle 0| + |1\rangle \langle 1|) + \sin \theta (|0\rangle \langle 1| - |1\rangle \langle 0|).$$

S_{BM} may be interpreted as the sum of the probabilities that a measurement on each MCQ will yield the same result, 0 or 1, when measured in dissimilar bases. A value of $S_{\text{BM}} \leq 1$ is not possible for a pair of particles described by purely classical statistics assuming local realism, so this is designated the “Bell violation” regime. To maximize the Bell violation of measurements on $\hat{\rho}_{AB}(t)$, we choose $(\theta_1, \theta_2, \theta_3) = (0, \pi/3, 2\pi/3)$.

Applying the exact, semi-analytic $\hat{\rho}_{AB}$ of Equation (11) to Equation (21), we obtain

$$S_{\text{BM}}(t) = 9/8 - \frac{3}{8} \sum_{m_p} \cos [\omega(n_p) t].$$

The approximate $\hat{\rho}_{AB}$ of Equation (18) leads to

$$S_{\text{BM}}(t) \approx 9/8 - \frac{3}{8} e^{-\omega_{\text{RMS}}^2 t^2/2}.$$

The approximate form of S_{BM} clearly highlights the initial and asymptotic values of $S_{\text{BM}}(t)$: $S_{\text{BM}}(0) = 3/4$, and $S_{\text{BM}}(\infty) = 9/8$. Thus, the pair AB starts maximally-entangled in the Bell violation regime, and time evolution unravels this entanglement through interaction and entanglement with E.

2. The Clauser-Horne-Shimony-Holt (CHSH) Correlation Function

Similarly, the CHSH correlation function as implemented by Blair, Tth, and Lencs[13] may be applied to the semi-analytic version of $\hat{\rho}_{AB}(t)$ of Equation (11), with result

$$S_{\text{CHSH}}(t) = \sqrt{2} \left| 1 + \frac{1}{2N} \sum_{n_p} \cos [\omega(n_p) t] \right|;$$

or the approximate $\hat{\rho}_{AB}(t)$ of Equation (18), leading to

$$S_{\text{CHSH}}(t) \simeq \sqrt{2} \left| 1 + e^{-\omega_{\text{RMS}}^2 t^2/2} \right|.$$

Here, the Bell violation regime is $S_{\text{CHSH}} > 2$. By this measure of entanglement, the AB pair starts well within the Bell violation region with $S_{\text{CHSH}}(0) = 2\sqrt{2}$, but AB eventually crosses out to a classically-describable region with $S_{\text{CHSH}}(\infty) = \sqrt{2}$.
3. The Brukner-Paunković-Rudolph-Vedral (BPRV) Correlation Function

Finally, the BPRV correlation is calculated for the exact $\hat{\rho}_{AB}(t)$ of Equation (11) as

$$S_{\text{BPRV}}(t) = 6 + \frac{3}{2N+1} \sum_{\vec{m}_p} \cos \left[\omega (\vec{m}_p) t \right].$$ \hspace{1cm} (22)

The approximate $\hat{\rho}_{AB}(t)$ of Equation (18) results in

$$S_{\text{BPRV}}(t) \simeq 6 + \frac{3}{2} e^{-\omega_{\text{RMS}}^2 t^2 / 2}.$$ \hspace{1cm} (23)

The details of our S_{BPRV} calculation are found in previous work[13] Here, the Bell violation regime is defined by $S_{\text{BPRV}} > 7$. Initially maximally entangled, AB has $S_{\text{BPRV}}(0) = 15/2$, and time evolution brings AB out of the Bell violation regime to an asymptotic value of $S_{\text{BPRV}}(\infty) = 6$.

III. RESULTS

A. Validation of τ_E as a Time Scale

Part of the motivation for this work was that $\tau = \sqrt{\tau_A \tau_B}$, a previous disentanglement time scale[13] used in the case where $R_A = R_B$, did not generalize well to cases in which $R_A \neq R_B$. Here, τ_A and τ_B are time scales for the decoherence of each single qubit within its own local environment[13].

The limitations of τ as a time scale for disentanglement are illustrated in Figure 4. Here, the local environments are populated with $M = 5$ DQDs each, and S_{BM} for the target MCQ pair is plotted for several randomized environments with different radial ratios, R_A/R_B. In particular, R_A was fixed at $R_A = 4a$ and $R_B \in \{R_A/2, R_A, 2R_A\}$ was chosen with $a = 1$ nm.

In subplot 4(a), S_{BM} is plotted versus time in fs for several random environments, and diverse environmental interaction strengths drive disentanglement at diverse speeds. A small R_B results in strong B-E interactions (red-line cases) and drives the fastest disentanglement, as S_{BM} rapidly leaves the Bell violation region. On the other hand, a large R_B generally allows the target pair to retain entanglement longer (green-line cases), up to the point where R_B is so large that environmental interactions are dominated by A-E interactions, and changing R_B no longer has a significant effect on overall AB-E interactions.

When each time evolution from 4(a) is time-scaled to its own particular τ, as in subfigure 4(b), the various time evolutions for the $R_A = R_B$ case roughly overlay one another, having approximately the same time-scaled form (see the blue plots). This is consistent with previous work[13] which suggests that τ is an effective time scale for characterizing disentanglement when $R_A = R_B$. On the other hand, the τ-scaled calculations of S_{BM} with $R_A \neq R_B$ do not overlay the τ-scaled $R_A = R_B$ plots, indicating that τ is not as effective a time scale when $R_A \neq R_B$. For the $R_A \neq R_B$ cases, τ overestimates the time scale for disentanglement.

Figure 5 shows τ_E of Equation (20) is effective at capturing the dynamics of disentanglement, even in cases where $R_A \neq R_B$. Here, several time evolutions are calculated, each for a different randomized environment. In each case, we use $a = 1$ nm, and $R_A = 4a$, but R_B is varied. For these time evolutions, subfigure 5(a) provides S_{BM}, S_{CHSH}, and S_{BPRV} plots against time in fs. As expected, a diverse range of environmental interaction strengths leads to diverse plots of the correlation functions with dynamics on different time scales. When these plots are time-scaled to τ_E, as in subfigure 5(b), the τ_E-scaled correlation function plots have a common form and overlay one another for all R_A/R_B ratios shown, neglecting long-time oscillations. Indeed, τ_E characterizes well the dynamics of disentanglement.

B. Early-time Gaussian Decay of Coherences

Figure 6 shows that the magnitudes of the coherences $\langle 00 | \hat{\rho}_{AB} | 11 \rangle = \langle 11 | \hat{\rho}_{AB} | 00 \rangle^\dagger$ generally exhibit a Gaussian decay in the early-time behavior, even for $\{E_{\text{m}_{\omega}}^{\text{m}}, \}$ distributions that deviate from a zero-centric Gaussian distribution and cause notable revivals in the magnitude of the coherences. To show this, a linearization technique is applied to the $f(t)$ data. A Gaussian function $g(t) = \exp (-t^2 / 2\sigma_t^2)$ may be linearized to obtain

$$\ln (-\ln g) = 2 \ln t - \ln \left(2\sigma_t^2\right).$$

Therefore, a function $f(t)$ may be characterized as Gaussian if a plot of $y = \ln (-\ln f)$ versus $x = \ln t$ has a slope of $dy/dx = -2$. Four environments, $\{E_1, E_2, E_3, E_4\}$ were selected and characterized. Their $\{E_{\text{m}_{\omega}}^{\text{m}}\}$ distributions are shown in subfigure 6(a), and the linearization of each $f(t)$ is plotted in 6(b). For each plot, a blue line of slope +2 (labeled “Gaussian”) is drawn through the leftmost data point. Since several subsequent linearized data points fall on or very close to the Gaussian marker line, we say that these time evolutions are highly Gaussian, especially at early times.

IV. DISCUSSION

We discuss why the previously-used time scale, τ, is suitable when $R_A = R_B$ but becomes less suitable when $R_A \neq R_B$.

The time scale τ was defined as the geometric mean of time scales τ_A and τ_B[13] which are time scales for decoherence of a single MCQ, A or B, in environments E_A and E_B, respectively[24]

$$\tau = \sqrt{\tau_A \tau_B}. \hspace{1cm} (24)$$
A disentanglement time scale, τ, characterizes the time scale of disentanglement when the two local environments interact with their individual target MCQ with roughly the same strength (that is, when $R_A = R_B$); however, τ does not generalize to cases where $R_A \neq R_B$. Here, $a = 1$ nm, and global environmental population is $N = 10$ for 3 different cases: $R_A/R_B \in \{4a/2a, 4a/4a, 4a/8a\}$. (a) The BM correlation function, S_{BM}, is plotted against time in fs for several time evolutions, and each randomized environment drives a unique time evolution. (b) When S_{BM} for each evolution is plotted against time scaled to its own τ, τ is only partially effective as a time scale. It is most effective when $R_A = R_B$ (blue plots), mapping the various $R_A = R_B$ evolutions to roughly the same scaled time dependence. If τ also were an effective time scale for the $R_A \neq R_B$ evolutions, the red and green plots would also overlay the blue plots. However, τ overestimates the time constant when $R_A \neq R_B$.

The time scale τ_E of Equation (20) characterizes the dynamics of environmentally-driven disentanglement for various ratios R_A/R_B. Here, R_A is kept constant, and R_B is varied with $a = 1$ nm and $N = 20$. (a) Correlation functions from Section III are plotted against time in fs for several random environments, showing that varied $AB-E$ interaction strengths drive disentanglement over varied durations. (b) Each time evolution of subfigure (a) is time-scaled to its particular τ_E, resulting in a common time-scaled form within each correlation function up to slight oscillations.
Each τ_X for $X \in \{A, B\}$ was defined as

$$\tau_X = \frac{\pi \hbar}{E^{(X)}_{\text{RMS}}},$$

(25)

where $E^{(X)}_{\text{RMS}}$ is the root-mean-square value of the single-bit-flip energies $\{E_{X,j}\}$ in environment E_X comprised of M randomly-oriented DQDs randomly placed on the surface of a shell of radius R_X from the target MCQ:

$$E^{(X)}_{\text{RMS}} = \left(\frac{1}{2M} \sum_{j=0}^{2^M-1} |E_X(\tilde{m}_{X,j})|^2 \right)^{1/2}.$$ (26)

Here, $E_X(\tilde{m}_{X,j})$ is the single-bit-flip energy of the target MCQ given environmental state $|\tilde{m}_{X,j}\rangle$, labeled by the M-bit binary word

$$\tilde{m}_{X,j} = m_M m_{M-1} \cdots m_2 m_1.$$

Additionally, for each state $|\tilde{m}_{X,j}\rangle$, there is a complementary state $|\overline{m}_{X,j}\rangle$,

$$m_{X,j} = \tilde{m}_M \tilde{m}_{M-1} \cdots \tilde{m}_k \cdots \tilde{m}_2 \tilde{m}_1,$$

for which the label $\tilde{m}_{X,j}$ is the bit-wise complement of $\tilde{m}_{X,j}$, and for which $E_X(\overline{m}_{X,j}) = -E_X(\tilde{m}_{X,j})$. Now, let us order $\{E_X(\tilde{m}_{X,j})\}$ from most positive to most negative, and then relabel this ordered set $\{\varepsilon_{X,a}\}$, where a is a counting number smaller than 2^M. It is now possible to write $E^{(X)}_{\text{RMS}}$ of Equation (26) in terms of only the first $2^M - 1$ energies $\{\varepsilon_{X,a}\}$, which are non-negative by virtue of ordering:

$$E^{(X)}_{\text{RMS}} = \frac{1}{2^{(M-1)/2}} \left(\sum_{a=0}^{2^M-1} \varepsilon_{X,a}^2 \right)^{1/2}.$$ (27)

Then, $\tau = \sqrt{\tau_A \tau_B}$ is found by combining Equations (24), (25), and (27):

$$\tau = \frac{\pi \hbar 2^{(M-1)/2}}{\left(\sum_{a=0}^{2^M-1} \varepsilon_{A,a}^2 \right)^{1/2} \left(\sum_{b=0}^{2^M-1} \varepsilon_{B,b}^2 \right)^{1/2}}$$

(28)

On the other hand, there are 2^{2M} double-bit-flip energies $\{E_{m_{a,b}}^{\text{flip}}\}$ as defined in Equation (13). These double-bit-flip energies can be formed by adding and subtracting only the positive single bit flip energies $\pm \varepsilon_{A,a}$ and $\varepsilon_{B,b}$, since A and B do not interact: $\{E_{m_{a,b}}^{\text{flip}}\} = \{\pm \varepsilon_{A,a} \pm \varepsilon_{B,b}\}$. It can be shown that the RMS value of these double-bit-flip energies is given by

$$E^{\text{flip}}_{\text{RMS}} = \frac{1}{2^{(M-1)/2}} \left(\sum_{j=0}^{2^M-1} \varepsilon_{A,j}^2 + \varepsilon_{B,j}^2 \right)^{1/2}.$$ (29)

Thus, by combining Equations (26) and (14), the time
The cross-terms in the approximate time constant calculate for several randomized environments for various R_A/R_B ratios, each with $a = 1$ nm and an environmental population $N = 10$.

The cross-terms arise in the approximate time constant when each local environment interacts with the target pair (the weaker environment has a larger radius R_A) than does a previously-developed time scale, τ. While τ is useful in the case where each local environment an approximately equal strength of interaction its central target MCQ (the local environments have the same radius), τ_E also characterizes systems where environmental interactions are dominant for only one MCQ in the target pair (the weaker environment has a larger radius than the dominant local environment). The approximate Gaussian model may be used to provide an accurate, non-Markovian description of system dynamics under the influence of a much broader class of environments characterized by randomness. Models of disentanglement and other quantum phenomena can help explore the dynamics of MCQs and the role they can play in quantum information processing under the influence of the environment.

ACKNOWLEDGMENTS

The authors thank Craig S. Lent from the University of Notre Dame for engaging with us in dialogue on this work. We also gratefully acknowledge peer reviewers for insightful ideas and comments, which were helpful in developing the models presented here. This work was sponsored by Baylor University under a new-faculty startup grant.

1. R. Feynman, Int. J. Theor. Phys. 21, 467 (1982).
2. R. Feynman, Optics news 11, 11 (1985).
3. P. W. Shor, in Foundations of Computer Science, 1994 Proceedings., 35th Annual Symposium on (IEEE, 1994) pp. 124–134.
4. L. Grover, unpublished (1996), arXiv:quant-ph/9605043v3.
5. E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser, unpublished (2000), arXiv:quant-ph/0001106v1.
6. C. Bennett and G. Brassard, in Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing (1984) pp. 175–179.
7. A. Ekert, Phys Rev Lett 67, 661 (1991).
The MCQs and the environmental molecules all are assumed to be DQDs of the same molecular species. However, for clarity, “MCQ” is reserved for the target pair of DQDs used to model qubits; on the other hand, “DQD” is more general and may be applied to both target molecules and environmental molecules. Following this train of thought, we reserve the term “computational basis” to describe fully-localized electronic states of the MCQs in AB, but the term “classical basis” could describe an analogous state in any system of DQDs–either MCQ or environmental.