Epidemiological description, case-fatality rate, and trends of Hantavirus Pulmonary Syndrome: 9 years of surveillance in Argentina

Daniel Oscar Alonso | Ayelen Iglesias | Rocio Coelho | Natalia Periolo | Agostina Bruno | Maria Teresa Córdoba | Noemi Filomarino | Marcelo Quipildor | Emiliano Biondo | Eduardo Fortunato | Carla Bellomo | Valeria Paula Martínez

1Laboratorio Nacional de Referencia para Hantavirus, Instituto Nacional de Enfermedades Infecciosas (INEI) Administración Nacional de Laboratorio e Institutos de Salud (ANLIS) “Dr. C. G. Malbrán”, Ciudad Autónoma de Buenos Aires, Argentina
2Laboratorio de Enfermedades Tropicales, Hospital San Vicente de Paúl, Orán, Salta, Argentina
3Laboratorio Provincial de Hantavirus, Hospital Señor Del Milagro, Salta, Argentina
4Area Programatica Esquel, Ministerio de Salud de la Provincia de Chubut, Esquel, Chubut, Argentina
5Region Sanitaria XI, Ministerio de Salud de la Provincia de Buenos Aires, Buenos Aires, Argentina

Correspondence
Valeria Paula Martínez, Instituto Nacional de Enfermedades Infecciosas—ANLIS “Dr. C.G. Malbrán”, Av. Velez Sarsfield 563, 1281 Buenos Aires CP, Argentina. Email: pmartinez@anlis.gov.ar

Funding information
Instituto Nacional de Enfermedades Infecciosas—ANLIS “Dr. C.G. Malbrán”

Abstract
Hantavirus pulmonary syndrome (HPS) is an endemic disease in Argentina, one of the most affected countries in the Americas. Andes virus (ANDV) is the main Orthohantavirus species causing HPS in Argentina. In this study, the geographical distribution, clinical presentation, and epidemiological features of HPS from all endemic regions of Argentina were analyzed. We focused on the clinical and epidemiological data from 533 HPS cases confirmed during the period 2009 to 2017 by the National Reference Laboratory for Hantavirus. A case-fatality rate of 21.4% was registered, and most of the cases presented a severe clinical picture requiring intensive care treatment (84%). Since HPS first detection in 1995 the case-fatality rate showed a general trend towards a decrease. After more than 22 years of experience in HPS diagnosis and surveillance, we discuss some possible factors implicated in this tendency. This clinical and epidemiological analysis gives a global perspective, being useful to detect trends and patterns, to update preventive actions at a national level, and evaluate their impact on public health.

KEYWORDS
Andes virus, epidemiology, hantavirus, hantavirus pulmonary syndrome, virology, zoonotic

1 INTRODUCTION

Hantaviruses include human pathogens responsible for hemorrhagic fever with renal syndrome in Europe and Asia and hantavirus pulmonary syndrome (HPS) in the Americas, respectively.1,2 The first pathogenic American hantavirus was characterized in the southwestern United States in 1993 after an unusual outbreak of respiratory disease in the Four Corners region.3,4 Two years later a similar outbreak occurred in the Andean region of Patagonia, Argentina, leading to the characterization of Andes virus (ANDV).5,6

Hantaviruses are trisegmented RNA viruses belonging to the Hantaviridae family, Orthohantavirus genus,7 and are maintained in nature by small mammals (rodents, shrew, moles, and bats) and their transmission occurs ex vivo without intermediate vectors. These viruses establish persistent infections in several species of rodents and insectivores.8

After the description of ANDV and its rodent reservoir, Oligoryzomys longicaudatus, several variants of this virus were confused with new orthohantaviral species because they were identified in different rodent species.5,9 However, further genetic analysis has demonstrated that the amino acidic divergence among
them was not enough to consider them as separate viral species.10-12 It is noteworthy that ANDV is the causative agent of almost all HPS cases in Argentina;10,13 the only exception is Laguna Negra virus (LNV), which was identified in very few HPS cases in the Northwest region.14 The variants or genotypes of ANDV are differently distributed among each endemic region in the country. All pathogenic genotypes of ANDV found in Argentina have in common that their reservoir hosts belong to the Oligoryzomys genus.

The main mechanism for humans to become infected is by inhaling aerosolized excreta from reservoir hosts.15 However, ANDV is also capable of person-to-person transmission, a mechanism that makes it unique among hantaviruses.16-18 After an incubation period of up to 40 days, HPS begins with a febrile phase indistinguishable from other viral prodromes.19 At the end of this phase, which can last from 3 to 6 days, dry cough and dyspnea typically appear. This marks the beginning of the cardiopulmonary phase characterized by pulmonary edema due to capillary leakage, with typically abrupt progress that can be followed by cardiogenic shock in a few hours. ANDV, like other American hantaviruses, is considered one of the most lethal human pathogens.19-21 A major problem is that there are no vaccines or therapeutics approved to prevent or ameliorate this devastating disease.22

Although HPS was firstly described in the early 1990s in the Americas, it is still considered an emerging disease due to the ongoing process of the discovery of novel hantaviruses, and the cyclic reemergence of certain orthohantavirus species in clusters or outbreaks of human infections.2 HPS emergence is thought to be driven mainly by socioeconomic and environmental factors, such as unfavorable working conditions in rural areas, precarious housing, and unpredictable changes in rodent populations.

The aim of this study was to present an extensive description of the epidemiological situation of HPS in Argentina, to accurately determine the region of infection of patients with travel records inside the country and to establish case fatality rates and tendencies in the period 2009-2017.

2 | METHODS

2.1 | HPS case definition

A suspected case was defined as a patient who resides or reports a recent travel history to an endemic region, with persistent fever (>48 hours) showing headache, myalgias, and gastrointestinal manifestations (abdominal pain, vomiting and/or diarrhea), and a marked decrease in platelet count. This definition was particularly applicable to find patients during the earlier phase of the disease. In an advanced stage, also patients with any sign of respiratory compromise. Any febrile person who has been in contact during the previous 40 days with a recently laboratory-confirmed HPS case was also considered.

2.2 | Study population

We analyzed blood samples from patients who met to the definition of the suspected case from all the country during the period 2009-2017, which were received directly in the National Reference Laboratory (NRL) or through any of the provincial laboratories from the National Laboratory Network for Hantavirus.

2.3 | Clinical severity classification

We were able to categorize 519 case-patients by their clinical picture severity using the classification criteria as previously described.23 Briefly, grade I for patients with prodromal symptoms without respiratory compromise; grade II for patients with mild to moderate respiratory compromise without hemodynamic compromise; grade III for patients with severe respiratory insufficiency with hemodynamic compromise; grade IV for patients with severe respiratory insufficiency and refractory-to-treatment hemodynamic compromise with fatal outcome.

2.4 | Study design

The epidemiological study presented here was a descriptive and retrospective analysis. HPS cases were classified according to the ordinal variable severity grade and described by the following nominal variables: sex, geographical region (namely, Northwest, Northeast, Central, Cuyo, and Patagonia), clinical symptoms, and risk activities. Finally, we analyzed age as a quantitative continuous variable.

To study the risk activities we defined four categories of exposure in a period of 40 days before the onset of symptoms: Occupational, persons who performed activities related to their work; Recreational, persons who performed activities in wild environments or rural surrounding (camping, fishing, trekking, etc.); Peridomestic, rural or suburban residents without defined events of exposure in other places, considering housing and the surrounding land the source of infectious rodents; human-to-human transmission, persons who were in close contact with confirmed HPS case-patients.17 Patients with travel records outside the country during their most probable exposure or patients with travel records to endemic areas out of Argentina were excluded from the analysis.

The diagnosis was performed on serum or blood samples from suspected cases detecting specific immunoglobulin M (IgM) by enzyme-linked immunosorbent assay (ELISA) (μ-capture technique) and IgG against ANDV recombinant nucleoprotein (NP), which was developed and produced at the NRL as previously described.24

2.5 | Laboratory confirmation of HPS cases

Cases were laboratory-confirmed by the presence of both IgM and IgG antibodies; cases with IgM titers but not IgG were confirmed verifying IgG seroconversion in second samples and/or by viral RNA detection. ELISA techniques were validated using confirmed HPS sera from all regions of the country, to evaluate the specific response against all different circulating genotypes of ANDV and LNV. In the same way, two groups of samples were also tested for specificity; nonreactive sera for ANDV-NP and reactive sera for pathologies considered in the differential diagnosis for HPS (data not published).
Diagnostic sensitivity and specificity parameters were determined by receiver operating characteristic curves for IgM and IgG, showing 96.6% and 90.6% values, respectively. Viral RNA detection and genetic characterization were performed, when necessary, by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and RT-PCR followed by nucleotide sequencing, respectively, as previously described. RT-qPCR was used to quantify the S segment. RT-PCR was used to amplify partial genome sequences from the S and M-segment coding regions.

2.6 Data analysis and statistics

To study differences in the geographical distribution of cases, the Kruskal-Wallis test was performed. Case-fatality rate according to sex was compared by Fisher Exact test and χ^2 for trends was used to analyze the annual number of cases. Data were statistically analyzed using GraphPad (Prism 6.0; GraphPad Software Inc; San Diego, CA). Geographic Information System QGIS “Las Palmas” (version 2.18.11; http://www.qgis.org/es/site/) was used to evaluate HPS case distribution in the country.

3 RESULTS

3.1 Diagnosis and laboratory confirmation

The NRL received 4488 samples from HPS suspected cases during the period 2009-2017, of which 533 HPS cases were laboratory confirmed (11.9% of all suspected samples), around 59 cases per year, on average. Since HPS is a reportable disease, cases were notified through the National Health Surveillance System (SIVILA). Although 241 additional cases were reported through SIVILA by independent laboratories usually performing diagnostic tests not validated by the NRL, those cases were not taken into account for this study. Standardized information was required for each suspected cases through HPS clinical/epidemiological forms. The overall case-fatality rate tendency was 21.4%.

In the present study, 94.2% (502 of 533) of the samples sent for diagnosis had detectable levels of both IgM and IgG specific antibodies against ANDV. The remaining 5.8% (31 of 533) were confirmed by direct viral genome detection. Some patients showed only IgG reactivity, but due to the absence of IgM, no seroconversion, and no viral genome amplification (n = 51) were not considered as current acute HPS cases.

Time elapsed between onset of symptoms and sampling date was on average 5.9 days (median = 5; n = 443). For Northwest the median value was 4, n = 223; Central 6, n = 155; Patagonia 5, n = 63; Northeast 6, n = 2. The differences were statistically significant ($P < 0.0001$, the Kruskal-Wallis test).

3.2 Temporal and geographical distribution of cases

The analysis of the geographical distribution of cases showed that HPS were reported in four of five geographical regions of the country: Northwest, Northeast, Central, and Patagonia, but not in Cuyo region (Table 1). Cases inside each region were restricted to relatively small areas as shown in Figure 1. The Northwest was the most affected, showing 48.7% of cases (260 of 533), followed by Central and Patagonia with 36.7% (196 of 533) and 14.1% (75 of 533), respectively. Only two cases occurred in the Northeast region, 0.4% (Tables 1 and 4). Seasonal distribution was marked, the warmer seasons being when more cases occurred; this distribution was consequently wider in the tropical region of the country (Figure 2C).

We observed a highly variable annual distribution with different patterns according to each region (Figure 2A). HPS affected all age groups, the age ranged from 0 to 86 years (mean = 32.5; median = 31); 7.4% of cases were children (<14 years of age). The youngest case was a 15-day-old newborn child who was probably infected by his mother, who was retrospectively classified as a suspected case based on clinical and epidemiological data after her death. Among the present case series, 78.7% were male patients (Figure 3).

The overall annual incidence ranged from 1.15 to 1.85 in the period, showing wide variations between regions: 9, 1, and 5 per 1 000 000 persons in Northwest, Central, and Patagonia, respectively. This analysis was performed on the basis of the last national census (www.indec.gov.ar).

3.3 Clinical characteristics

Although the course of the disease was highly variable, most of the cases presented the typical clinical picture described for HPS. Most cases (99.4%) were hospitalized, excluding three

TABLE 1	Hantavirus pulmonary syndrome (HPS) case-patient distribution by geographic regions, Argentina, 2009-2017		
Geographic Region	Provinces that reported HPS casesa	Hantavirus variants circulating in the regionb	Number of cases in the present period
------------------	--	---------------------------------	--------------------------
Northwest	Salta, Jujuy, Tucumán	Andes-Oran, Andes-Bermejo, Laguna Negra virus	260
Northeast	Corrientes, Formosa	Andes-Lechiguanas; Andes Juquitiva	2
Central	Buenos Aires, Buenos Aires city, Santa Fé, Entre Ríos	Andes-Lechiguanas; Andes-Buenos Aires; Andes-Plata	196
Patagonia	Neuquén, Río Negro, Chubut	Andes-South	75

a Only provinces with more than one probable rodent exposure.

b Data provided by previously published studies (period, 1995-2017).
asymptomatic cases detected due to a study of contacts and some other patients showing only prodromal symptoms in the North-west region. As shown in Table 2, 84.2% (437 of 519) of cases developed a severe disease requiring intensive care (severity groups II, III, and IV) and at least 31.4% (163 of 519) of those cases required mechanical ventilation (III and IV). The prodromal phase was short, 3 to 5 days, followed by different degrees of respiratory compromise, usually acute distress with rapid progression to respiratory failure. Besides fever, the most frequent prodromal symptoms were headache, myalgia, arthralgia, conjunctival injection and retro-ocular pain. Gastrointestinal symptomatology was common and some patients showed abdominal pain even before any other prodromal symptoms.

Neurological manifestations were rarely reported (6.9%), confusional syndrome being the most frequently observed, while some patients showed severe complications as convulsions and/or encephalitis (Table 3). Thrombocytopenia was present in 84% of cases (Range, 7,000-511,000 cells/mL; mean = 70,271; n = 426); and petechiae was also common. Other hemorrhagic manifestations were rarely observed.

FIGURE 1 Geographical distribution of HPS cases in departments in Argentina, 2009-2017 (n = 508). Squares indicate cumulative number of cases. HPS, hantavirus pulmonary syndrome
TABLE 2 Clinical classification of Hantavirus pulmonary syndrome cases by severity, Argentina, 2009-2017

Severity group	Case-patients, n (%)	Northwest	Central	Patagonia	Total
0	3 (1.2)	0	0	3 (0.6)	
I	62 (24.2)	12 (6.3)	3 (4)	77 (14.8)	
II	...	78 (41.3)	27 (36.5)	165 (31.8)	
III	...	37 (19.5)	15 (20.3)	57 (11)	
II/III*	152 (59.4)	15 (8)	2 (2.7)	104 (20)	
IV	39 (15.2)	47 (24.9)	27 (36.5)	113 (21.8)	

n = 519 (Northwest, 256; Central, 189; Patagonia, 74).

TABLE 4 Case-fatality rates (by sex) and type of exposure by geographical area

Characteristic	Case-fatality rates (%)	Northwest	Central	Patagonia	Northeast	Total
M**	13.5	22.1	35.7	50	19.8	
F**	20.8	31	36.8	...	27.2	
Total	15*	23.9*	36*	50	21.4	

Type of Exposure

N° of case-patients (%)	Occupational	Recreational	Peridomestic	Contact with previous HPS case-patient
	147 (64.2)	72 (48.7)	27 (42.2)	...
	14 (12)	11 (13.7)	11 (11.1)	11 (13.7)
	21 (19.8)	22 (20.6)	22 (21.4)	22 (20.6)
	3 (2.8)	5 (4.2)	5 (4.2)	5 (4.2)

Abbreviations: HPS, hantavirus pulmonary syndrome. N° of HPS cases per geographic region (n = 533). Type of exposure was classified according to most probable risk activities during the estimated incubation period (n = 441). The fatality rates varied significantly between regions (P < 0.0001, χ² for trends). **Not significant difference was observed in fatality rate associated to sex (P < 0.0936, Fisher Exact test).**

3.4 Case-fatality rate

The overall case-fatality rate was 21.4% in this period and varied significantly between geographical regions showing an increasing trend southwards: Northwest (15%), Central (23.9%), and Patagonia (36%) (P < 0.0001, χ² for trends) (Table 4). The Northeast region only reported two cases during this period, one of them being fatal. Although fatal outcome was higher for female, the difference by sex for the whole period was not significant (27.4% vs 19.9%) (P < 0.0936, Fisher Exact test). The fatality rate of HPS per million population in the studied period was: 12 (Northwest); 2 (Central) and 15 (Patagonia). The age-adjusted fatality rate was 12.2; 1.8 and 13.9, respectively (Waterhouse standard population) and results similar to the crude case-fatality rate.

3.5 Exposure activities

To study the risk activities associated with infection and according to information provided by clinical/epidemiological forms, we classified 441 cases in the following rodent-exposure groups: 55.8% occupational, 14.3% recreational, 28.1% peridomestic; the remaining 1.8% reported contact with previous cases and probable person-to-person transmissions (Table 4). The regional comparison showed that occupational exposures were most frequent in all regions, with the highest values in the Northwest. This kind of exposures affected mainly rural workers, although other activities such as security personnel and truck drivers were also reported. Exposure to a previous confirmed HPS case was only reported in Central and Patagonia regions. These events of exposure were accurately analyzed for most of the cases from the Central region in a previous work.26

The determination of the viral genotype helped to figure out the most probable site of infection in several patients who had a travel record history within the previous 40 days before the onset of symptoms (Table 5). One particular case was a patient who died in Buenos Aires City, Central region, but with rural exposure outside the known endemic area of the Northwest region. This allowed us to confirm the first case in Tucuman Province.27

TABLE 3 Clinical symptoms reported in confirmed HPS cases, Argentina, 2009-2017

Clinical symptoms and findings	Case-patients, n (%)	Northwest	Central	Patagonia	Total
Respiratory and circulatory (cough, dyspnoea, tachypnoea, shock)	176 (68.6)	177 (89.4)	61 (89.7)	414 (79)	
Hepatic (hepatomegaly, elevated GOT, GPT, and LDH)	21 (8.2)	83 (41.5)	25 (36.5)	129 (24.6)	
Renal (elevated levels of creatinine, oligoanuria, renal failure)	25 (9.8)	45 (22.5)	22 (32.4)	92 (17.6)	
Hemorrhagic manifestations (conjunctival injection, petechiae, purpura, hemoptysis, melena, epistaxis, etc.)	42 (16.4)	39 (19.5)	6 (8.8)	87 (17.6)	
Gastrointestinal (abdominal pain, vomiting, diarrhea)	152 (59.3)	59 (29.5)	12 (17.6)	223 (42.5)	
Neurological (confusional syndrome, seizures, encephalitis, meningitis, photophobia)	11 (4.3)	19 (9.5)	6 (8.82)	36 (6.9)	
Retro-ocular pain	96 (37.4)	19 (9.5)	0 (0)	115 (21.9)	

Abbreviations: GOT, glutamate oxalate transaminase; GPT, glutamate pyruvate transaminase; HPS, hantavirus pulmonary syndrome; LDH, lactate dehydrogenase. n = 524 (Northwest, 258; Central, 198; Patagonia, 68).
In this study, we accurately analyzed the epidemiological situation of more than 500 HPS case-patients in Argentina during a 9-year period and the tendency of case-fatality rate since its first description. This analysis represented around 70% of HPS reported cases in Argentina, 533 definitely confirmed HPS cases. A previous work of our group reported an average of 50.8 cases/year during the period 1995-2008, while during the present period the mean number of cases per year was 59.2, representing an increase of around 14%. We observed an expansion of the area of cases in the Northwest. Cases have been reported in 12 of 24 Argentine provinces since 1995. Although the most affected regions in a number of cases were Northwest and Central regions, the incidence per million persons was higher in Patagonia than in the Central region. Comparing these values for Argentina and the United States of America, which ranged from 1.15 to 1.85 and 0.04 to 0.19 HPS cases/million persons, respectively, Argentina showed at least 10-fold higher incidence rate. It is worth noting that the endemic Andean region in Patagonia is a particularly touristic zone where several infections led to the exportation of ANDV cases to other counties and/or nonendemic places in Argentina. Furthermore, the current HPS-case distribution is not conclusive and it does not imply that other areas may be affected in the future. The presence of Oligoryzomys longicaudatus was predicted to be present with high probability by modeling approaches all along the Andean Mountains in Patagonia. Since this predicted host distribution area is wider than the HPS endemic area for ANDV-South, new endemic places could be expected in the future especially associated with demographic increments in the human population. Nevertheless, considering the ex-vivo viral...
transmission mechanism, virus survival is probably restricted to high humid environments, beyond the natural presence of the host.

Although the interannual variation was marked, there was a slight tendency towards increment of cases in the period, particularly in the Central region. Conversely, the notable decrease in the count during the last 2 years in the Northwest region marked a reduction trend there. It is noteworthy that HPS case number was relatively stable in the Patagonia region since during the study period a particular phenomenon took place all along the endemic area inside the region of Patagonian Forests: the flowering of the Colihue cane (Chusquea culeou).32 The overwhelming abundance of seeds is one of the causes for the rodent population increasing. The prediction of this phenomenon allowed the implementation of preventive campaigns throughout the region, so its impact with an increase in human hantavirus infections could be avoided. The stable tendency in the occurrence of cases in this southern region of the country demonstrated the effectiveness of preventive measures to reduce rodent-human interaction in the area.

It is noteworthy the importance to perform studies at a national level because they give a global perspective of the disease. They are also useful to detect trends and to evaluate the impact of the already implemented measures at regional or even at a national level. HPS has been associated with high case-fatality rates and is considered one of the most lethal viral diseases.19,28,33-35 Only two countries performed previous case-series studies at a national level in The Americas spanning long periods of time: the US and Argentina. In the US, during the period 1993-2009, there were reported 30 cases per year on average (n = 510) and the case fatality rate was 35%. In Argentina, during a shorter period of 14 years, 710 cases were reported in the period 1995-2008 with an overall case-fatality rate of 25.8%.28-30 Adding the 533 new cases reported in the present work, a total of 1243 HPS laboratory-confirmed cases were identified during 22 years of surveillance in Argentina. During the present study period, the case-fatality rate in the entire country was 21.4%, indicating a decrease compared to the previous period.19 In spite of this, the clinical picture observed was moderate to severe, in general, requiring hospitalization in almost all patients. The decrease in case fatality rate could be explained by the cumulative medical experience in the supportive treatment for this pathology and/or the improved technology in respiratory assistance. It is noteworthy that the case-fatality rate was lower among patients treated in hospitals with previous experience in HPS treatment. Given the absence of preventive vaccines or specific therapeutic treatments for HPS, to turn case-fatality rate even lower, prompt transfer of patients to experienced and specialized centers in supportive treatments should be evaluated. On the other hand, differences in clinical picture and case-fatality rates between regions could also be related to unknown viral determinants among genotypes and/or differences in human population susceptibilities. To figure out its definite origin particular studies should be focused on both these aspects in the future.

Due to the variable and long incubation period of HPS, in which some cases reported multiple risk activities, to assess accurately the source of infection was very difficult. Analyzing the information related to the source of exposure, we identified that occupational activities were most frequently associated with HPS in each region and were mostly related to rural activities. This would indicate the need for preventive approaches, policies and/or employee education programs. Population with potential for frequent rodent exposure should be aware of the risks for hantavirus infection at their workplaces. On the other hand, exposures to previously confirmed cases were mostly reported in Patagonia (8%), but few cases also occurred in the Central region (2%), where ANDV-South and ANDV-BsAs genotypes were associated to well defined person-to-person transmission respectively. Larger educational efforts should be carried on to reduce exposure risk in all categories.
Given the extensive territory of the country, our main limitation for a more accurate HPS surveillance was the nonstandardized data obtained from each province. Misdiagnosis or incomplete diagnosis of HPS cases in Argentina was also an important limitation for our present analysis because independent laboratories reported around 30% of the suspected cases without the supervision of the NRL, and could not be included in this analysis. The reinforcement of the Hantavirus National Laboratory Network, lead by the NRL, adding new nodes that could perform a local (at the provincial level) and early diagnosis with validated techniques will help to decrease misdiagnosis, to improve detection and, therefore, to improve survival of patients. This might be also useful to decrease under-reporting in Argentina. A multidisciplinary public health effort will be required to improve surveillance, decrease underreporting of HPS, and carry out extensive reservoir studies all around the country to determine a complete risk map at a national level. This will help to design and conduct epidemiological studies and preventive measures at a national level.

ACKNOWLEDGMENTS

We appreciate the invaluable contributions of physicians and epidemiologists in data collection and continued support, which made this study possible. This study was supported by Instituto Nacional de Enfermedades Infecciosas—ANLIS “Dr. C.G. Malbrán”.

CONFLICT OF INTERESTS

The authors declare that there are no conflict of interests.

ORCID

Daniel Oscar Alonso http://orcid.org/0000-0003-3605-4679

REFERENCES

1. Clement J, Heyman P, McKenna P, Colson P, Avisic-Zupanc T. The hantaviruses of Europe: from the bedside to the bench. Emerging Infect Dis. 1997;3(2):205-211.
2. Schonrich G, Rang A, Lutheke N, Raftery MJ, Charbonnel N, Ulrich RG. Hantavirus-induced immunity in rodent reservoirs and humans. Immunol Rev. 2008;225:163-189.
3. Nichol ST, Spriropoulou CF, Morznov S, et al. Genetic identification of a hantavirus associated with an outbreak of acute respiratory illness. Science. 1993;262(5135):914-917.
4. Sands L, Kioski C, Komatsu K. Hantavirus in the southwestern United States: epidemiology of an emerging pathogen. J Am Osteopath Assoc. 1993;93(12):1279-1285.
5. Lopez N, Padula PJ, Rossi C, Lazaro ME, Franze Fernandez MT. Genetic identification of a new hantavirus causing severe pulmonary syndrome in Argentina. Virology. 1996;220(1):223-226.
6. Lopez N, Padula P, Rossi C, et al. Genetic characterization and phylogeny of Andes virus and variants from Argentina and Chile. Virus Res. 1997;50(1):77-84.
7. Plyusnin A, Vapalahi O, Vaheri A. Hantaviruses: genome structure, expression and evolution. J Gen Virol. 1996;77(Pt 11):2677-2687.
8. Ermonval M, Baychelier F, Tordo N. What do we know about how hantaviruses interact with their different hosts? Viruses. 2016; 8(8):223.
9. Levis S, Morznov SP, Rowe JE, et al. Genetic diversity and epidemiology of hantaviruses in Argentina. J Infect Dis. 1998;177(3):529-538.
10. Padula PJ, Colavecchia SB, Martinez VP, et al. Genetic diversity, distribution, and serological features of hantavirus infection in five countries in South America. J Clin Microbiol. 2000;38(8):3029-3035.
11. Bohlmam MC, Morznov SP, Meissner J, et al. Analysis of hantavirus genetic diversity in Argentina: S segment-derived phylogeny. J Virol. 2002;76(8):3765-3773.
12. Maes P, Klempe B, Clement J, et al. A proposal for new criteria for the classification of hantaviruses, based on S and M segment protein sequences. Infect. Genet Evol. 2009;9(5):813-820.
13. Martinez VP, Colavecchia S, Garcia Alay M, et al. Hantavirus pulmonary syndrome in Buenos Aires Province. Medicina. 2001;61(2):147-156.
14. Levis S, Garcia J, Pini N, et al. Hantavirus pulmonary syndrome in northwestern Argentina: circulation of Laguna Negra virus associated with Calomys callosus. Am J Trop Med Hyg. 2004;71(5):658-663.
15. Jonsson CB, Figueiredo LT, Vapalahi O. A global perspective on hantavirus ecology, epidemiology, and disease. Clin Microbiol Rev. 2010;23(2):412-441.
16. Padula PJ, Edelstein A, Miguel SD, Lopez NM, Rossi CM, Rabinovich RD. Hantavirus pulmonary syndrome outbreak in Argentina: molecular evidence for person-to-person transmission of Andes virus. Virology. 1998;241(2):323-330.
17. Martinez VP, Bellomo C, San Juan J, et al. Person-to-person transmission of Andes virus. Emerging Infect Dis. 2005;11(12):1848-1853.
18. Ferres M, Vial P, Marco C, et al. Prospective evaluation of household contacts of persons with hantavirus cardiopulmonary syndrome in Chile. J Infect Dis. 2007;195(11):1563-1571.
19. Martinez VP, Bellomo CM, Cacace ML, Suarez P, Bogni L, Padula PJ. Hantavirus pulmonary syndrome in Argentina, 1995-2008. Emerging Infect Dis. 2010;16(12):1853-1860.
20. Khan AS, Ksiazek TG, Peters CJ. Hantavirus pulmonary syndrome. Lancet. 1996;347(9003):739-741.
21. Peters CJ, Simpson GL, Levy H. Spectrum of hantavirus infection: clinical evidence for person-to-person transmission of Andes virus. J Infect Dis. 1996;174(1):1195-1201.
22. Schmaljohn CS. Vaccines for hantaviruses: progress and issues. Expert Rev Vaccines. 2012;11(5):511-513.
23. Garcia M, Iglesias A, Landoni VI, et al. Massive plasmablast response elicited in the acute phase of hantavirus pulmonary syndrome. J Med Virol. 2003;70(1):151-155.
24. Padula PJ, Rossi CM, Della Valle MO, et al. Development and evaluation of a solid-phase enzyme immunoassay based on Andes hantavirus recombinant nucleoprotein. J Med Microbiol. 2000;49(2):149-155.
25. Bellomo CM, Pires-Marzecski FC, Padula PJ. Viral load of patients with hantavirus pulmonary syndrome in Argentina. J Med Virol. 2015;87(11):1823-1830.
26. Iglesias AA, Bellomo CM, Martinez VP. Hantavirus pulmonary syndrome in Buenos Aires, 2009-2014. Medicina. 2016; 76(1):1-9.
27. Ciancaglini M, Bellomo CM, Torres Cabreros CL, et al. Hantavirus pulmonary syndrome in Tucumán province associated to an unexpected viral genotype. Medicina. 2017;77(2):81-84.
28. MacNeil A, Ksiazek TG, Rollin PE. Hantavirus pulmonary syndrome, United States, 1993-2009. Emerging Infect Dis. 2011; 17(7):1195-1201.
29. Kuenzli AB, Marschall JC, Schefold JC, et al. Hantavirus cardiopulmonary syndrome due to imported Andes Hantavirus infection in Switzerland: a multidisciplinary challenge, two cases and a literature review. *Clin Infect Dis*. 2018;67:1788-1795.

30. Kofman A, Eggers P, Kjemtrup A, et al. Notes from the field: contact tracing investigation after first case of andes virus in the United States—Delaware, February 2018. *MMWR Morb Mortal Wkly Rep*. 2018;67(41):1162-1163.

31. Andreo V, Glass G, Shields T, Provensal C, Polop J. Modeling potential distribution of *Oligoryzomys longicaudatus*, the Andes virus (Genus: Hantavirus) reservoir, in Argentina. *EcoHealth*. 2011;8(3):332-348.

32. Guerreiro C. Flowering cycles of woody bamboos native to southern South America. *J Plant Res*. 2014;127(2):307-313.

33. Oliveira RC, Sant’ana MM, Guterres A, et al. Hantavirus pulmonary syndrome in a highly endemic area of Brazil. *Epidemiol Infect*. 2016;144(5):1096-1106.

34. Riquelme R, Roisco ML, Bastidas L, et al. Hantavirus pulmonary syndrome, Southern Chile, 1995-2012. *Emerging Infect Dis*. 2015;21(4):562-568.

35. Schmaljohn C. Vaccines for hantaviruses. *Vaccine*. 2009;27(suppl 4):D61-D64.

How to cite this article: Alonso D, Iglesias A, Coelho R, et al. Epidemiological description, case-fatality rate, and trends of Hantavirus Pulmonary Syndrome: 9 years of surveillance in Argentina. *J Med Virol*. 2019;91:1173-1181. https://doi.org/10.1002/jmv.25446