Comment on “Energy levels and radiative rates for Ne-like ions from Cu to Ga” by N. Singh and S. Aggarwal [Pramana – J. Phys. 89 (2017) 79]

Kanti M Aggarwal

Astrophysics Research Centre, School of Mathematics and Physics, Queen’s University Belfast, Belfast BT7 1NN, Northern Ireland, UK

e-mail: K.Aggarwal@qub.ac.uk

Keywords: Energy levels, oscillator strengths, radiative rates, lifetimes, accuracy assessment

PACS numbers: 32.70.Cs, 95.30Ky
Abstract

Recently, N. Singh and S. Aggarwal [Pramana – J. Phys. 89 (2017) 79] have reported energies and lifetimes for 127 levels of three Ne-like ions, namely Cu XX, Zn XXI and Ga XXII. For the calculations they have adopted two independent atomic structure codes, i.e. GRASP and FAC, and have concluded that both codes give comparable energies. However, we find that the differences between the two sets of energies are up to 1.5 Ryd (over 1.6×10^5 wavenumbers) for many levels, and for all three ions. In the absence of other available theoretical or experimental data, it becomes difficult to know which set of energies is more accurate. Through our calculations with the same code we demonstrate that their listings from the FAC calculations are incorrect. A few more anomalies noted in their tabulated results are also highlighted.
1 Introduction

In a recent paper, Singh and Aggarwal [1] have reported results for energy levels, radiative rates (A-values), and lifetimes (τ) among 127 levels of three Ne-like ions, namely Cu XX, Zn XXI and Ga XXII. These levels belong to the $2s^22p^6$, $2s^22p^53\ell$, $2s2p^63\ell$, $2s^22p^54\ell$, $2s2p^64\ell$ and $2s^22p^55\ell$ ($\ell \leq 3$) configurations. For the calculations, they have adopted two independent atomic structure codes, i.e. the general-purpose relativistic atomic structure package (GRASP) and the flexible atomic code (FAC), which are available at the websites http://amdpp.phys.strath.ac.uk/UKAPAP/codes.html and https://www-amdis.iaea.org/FAC/, respectively. It was done for the assessment of accuracy, particularly for the energy levels, because prior similar data, experimental or theoretical, for most of the levels for these three ions do not exist. Therefore, based on the two calculations they concluded that both codes provide ‘comparable energies’. However, we notice that for many levels of all three ions the differences between the two sets of energies are significant, i.e. up to 1.5 Ryd – see for example, levels 111–127 of Cu XX, 112–119 of Zn XXI and 111-116 of Ga XXII in their tables 1–3. In our long experience for a wide range of ions we have not noticed such large differences between calculations with these two codes, particularly when the same level of CI (configuration interaction) has been used. Additionally, in the absence of any other similar data, it is difficult to know which set of energies is more accurate. Therefore, we have performed our own calculations with these two codes and note that while their energies with the GRASP are correct, with FAC are not.

2 Energy levels

In both calculations (with GRASP and FAC) Singh and Aggarwal [1] have included CI among 51 configurations, namely $2s^22p^6$, $2s^22p^5n\ell$ ($3 \leq n \leq 7$, but $\ell \leq 3$), $2s2p^6n\ell$ ($3 \leq n \leq 7$, but $\ell \leq 3$), $2s^22p^43\ell3\ell'$ and $2s^22p^43\ell3\ell'$. These configurations generate 1016 levels in total, but the results have been reported for only among 127, as noted in Section 1. Since both codes are fully relativistic and the same CI has been used in both calculations, the results obtained are expected to be comparable, and this has also been concluded by them. However, some of the energies obtained between the two calculations differ by up to \sim1.5 Ryd as noted already, and therefore their conclusion is not based on the calculated data. Since such discrepancies unnecessarily confuse the users of data, we have performed our own calculations with both codes, and with the same CI. Their listed energies obtained with GRASP are found to be comparable with our own calculations, but not with FAC. We discuss these in detail below.

In tables 1–3 we list our calculated energies with FAC along with those of Singh and Aggarwal [1] for 127 levels of Cu XX, Zn XXI and Ga XXII. Only their final energies, obtained with the inclusion of Breit and quantum electrodynamic effects (QED), are listed in these tables, but with both the GRASP and the FAC. Two conclusions can be easily drawn from these tables. Firstly, there are no appreciable differences between the GRASP and FAC2 (our calculations) energies for any of the ion considered here. This result is fully expected and has been noted in the past for several other ions. Secondly, and more importantly, there are significant differences between the GRASP and FAC1 energies obtained by Singh and Aggarwal. Differences in FAC1 and FAC2 energies for the lowest about 100 levels of these ions are comparatively minor, and are below 0.2 Ryd. However, for the higher excited levels the discrepancies are much larger, up to \sim1.5 Ryd, or equivalently over 1.6×10^5 cm$^{-1}$ – see for example, levels 111–127 of Ga XXII in table 3, and in a majority of cases the results of Singh and Aggarwal are lower. We discuss below the (possible) reason for these discrepancies.

In calculations with FAC it is much easier to include a larger number of configurations and their levels, or the CSFs (configuration state functions). For this reason, in the GRASP calculations Singh and Aggarwal [1] have ignored configurations with $\ell > 3$, but have (perhaps) included in FAC. As a result of this the FAC calculations have been performed with 1112 CSFs, which include all possible values of ℓ for $4 \leq n \leq 7$ of the
configurations listed above. Unfortunately, the 96 levels arising from these ‘additional’ 12 configurations do not lie above the 1016 included in GRASP, or above the 127 listed by them, but intermix with those. In fact they intermix quite early, from about level 100 onward. In listing the FAC energies, Singh and Aggarwal have ignored this reality and have (perhaps) listed the lowest 127 energies, and hence the discrepancies. It may be worth noting here that their calculations with both the GRASP and FAC codes had similar discrepancies in the past, for a range of ions, see for example the energy levels of five Br-like ions [2] with $38 \leq Z \leq 42$ and F-like W LXVI [3],[4].

Apart from these major discrepancies noted above, there are a few more (minor) anomalies in the tabulations provided by Singh and Aggarwal [1]. We highlight only three, i.e. (i) in table 1 the NIST energy for level 25 should be 79.466 Ryd, and not 7.9E+07, (ii) the level 88 in table 1 should be $^3P_0^0$, and not $^3P_0^r$, and finally (iii) the level 48 in table 2 should be $^3P_0^r$, and not $^3P_0^r$, as listed. Similarly, for a few levels the FAC1 energies listed by them are non degenerate, but is not the case in our FAC2 calculations, see for example the levels 74/75 in their table 1 for Cu XX, and 62/63, 88/89, 102/103 and 106/107 in table 3 for Ga XXII. There are a few more anomalies in other tables as well, but we will like to particularly comment on the comparisons of energies shown in their table 4, because the discrepancies for a few levels appear to be very significant (~2 Ryd) – see for example, levels 3 and 5, i.e. $2s^22p^53s^1P_1$ and $2s^22p^53s^3P_1$. This is because these levels (and many more) are highly mixed and their ordering may change with the change in CI. For this reason such levels are not given an LSJ$^\pi$ designations in the NIST listings, but only their J values.

3 Radiative rates

Singh and Aggarwal [1] have also listed A-values for some resonance transitions in tables 5–7, but for four types, i.e. electric and magnetic dipole (E1 and M1) and quadrupole (E2 and M2). In table 9 they have compared their results with the earlier ones of Hibbert et al [5] for a few E1 transitions, and have ‘concluded’ a good agreement, whereas we find that the listed A-values of [5] are larger by a factor of three, for all transitions and ions. This is not only contrary to their conclusion but also inconsistent with their subsequent results of τ (listed and compared in table 10) for which there are no discrepancies. A closer look at the tables of Hibbert et al [5] reveals that they have listed weighted A-values, i.e. ωA, and for the transitions in table 9 of Singh and Aggarwal, the statistical weight ω is exactly three, and hence the discrepancies. Similar discrepancies, and for the same reason, were also noted earlier [6] with their results for the transitions of Sr XXX.

4 Conclusions

In this paper we have highlighted some of the errors and discrepancies in the reported data of Singh and Aggarwal [1] for 127 levels of three Ne-like ions: Cu XX, Zn XXI and Ga XXII. Particularly for energy levels, their listed results with the FAC calculations are incorrect, by up to 1.5 Ryd. Apart from this, their listed 127 levels of the $2s^22p^6$, $2s^22p^53\ell$, $2s^22p^63\ell$, $2s^22p^54\ell$, $2s2p^64\ell$ and $2s2p^55\ell$ ($\ell \leq 3$) configurations are not the lowest in energy, because some from the neglected configurations, such as $2s2p^55g$, intermix. Therefore, there is scope for the improvement over their work. For the similar reason, some of the listed lifetimes may be affected because some of the missing transitions may make a contribution. Furthermore, the limited data reported in their paper for the A-values are not of much use, because for any modelling or diagnostic application a complete set of data covering all transitions is preferred.

With the ready availability of various atomic structure codes it has become comparatively easy to produce atomic data. However, it is still not straightforward to produce accurate and reliable data which can be applied with confidence. Most of the discrepancies, often noted in various atomic parameters, including energy levels and radiative rates, are because of the non practical assumptions made or inadequate comparisons and
assessments. Many times the assessment of accuracy is based on speculations rather than a rigorous and robust analysis. Several instances of large discrepancies in various parameters, and their possible simple resolutions, have recently been highlighted by us [7].

A complete set of data for energy levels, A-values and lifetimes for all three ions (Cu XX, Zn XXI and Ga XXII) are reported in our recent paper [8] and can be confidently applied in the modelling of plasmas.

References

[1] N Singh and S Aggarwal, Pramana – J. Phys. 89, 79 (2017)
[2] K M Aggarwal and F P Keenan, Phys. Scr. 89, 125404 (2014)
[3] K M Aggarwal, Chin. Phys. B 25, 043201 (2016)
[4] K M Aggarwal, Atoms 4, 4030024 (2016)
[5] A Hibbert, M Le Dourneuf and M Mohan, At. Data Nucl. Data Tables 53, 23 (1993)
[6] K M Aggarwal, J. Quant. Spectros. Rad. Transfer 166, 108 (2015)
[7] K M Aggarwal, Atoms 5, 5040037 (2017)
[8] K.M. Aggarwal. At. Data Nucl. Data Tables 124, in press (2018) – http://arxiv.org/abs/1803.04203
Index	Configuration	Level	GRASP	FAC1	FAC2
1	2s22p5	1S$_0$	0.0000	0.0000	0.0000
2	2s22p53s	3P$_2$	70.6919	70.7705	70.63754
3	2s22p53s	1P$_1$	70.8653	70.9535	70.80313
4	2s22p53s	3P$_0$	72.2166	72.2977	72.15617
5	2s22p53s	1P$_1$	72.3172	72.4053	72.25147
6	2s22p53p	3S$_1$	73.3742	73.4435	73.32529
7	2s22p53p	3D$_2$	73.6392	73.7184	73.58100
8	2s22p53p	3D$_4$	73.8841	73.9592	73.83012
9	2s22p53p	1P$_1$	73.9583	74.0387	73.90212
10	2s22p53p	3P$_2$	74.1445	74.2258	74.08412
11	2s22p53p	3P$_0$	74.7588	74.8408	74.68418
12	2s22p53p	3D$_1$	75.1061	75.1872	75.04516
13	2s22p53p	3P$_1$	75.4856	75.5648	75.42378
14	2s22p53p	1D$_2$	75.5343	75.6162	75.46973
15	2s22p53p	1S$_0$	76.6747	76.7670	76.49453
16	2s22p53d	3P$_0$	77.3901	77.4741	77.30283
17	2s22p53d	3P$_2$	77.4886	77.5468	77.40108
18	2s22p53d	3P$_0$	77.6721	77.7263	77.58429
19	2s22p53d	3F$_4$	77.6720	77.7326	77.58456
20	2s22p53d	3F$_3$	77.7222	77.7778	77.62885
21	2s22p53d	1D$_2$	77.8832	77.9411	77.78970
22	2s22p53d	3D$_3$	77.9900	78.0527	77.89623
23	2s22p53d	3D$_1$	78.4870	78.5407	78.37643
24	2s22p53d	3F$_2$	79.2339	79.2971	79.14201
25	2s22p53d	3D$_2$	79.3136	79.3733	79.21323
26	2s22p53d	1F$_3$	79.3771	79.5361	79.27460
27	2s22p53d	1P$_1$	79.9972	80.0433	79.85892
28	2s2p3s	3S$_1$	82.6714	82.7901	82.65656
29	2s2p3s	1S$_0$	83.2709	83.3917	83.24921
30	2s2p63p	3P$_0$	85.5424	85.6516	85.54147
31	2s2p63p	3P$_2$	85.5878	85.6984	85.58796
32	2s2p63p	3P$_0$	85.8917	86.0002	85.89172
33	2s2p63p	1P$_1$	86.0536	86.1689	86.05657
34	2s2p63d	3D$_1$	89.5212	89.5967	89.48917
35	2s2p63d	3D$_2$	89.5402	89.6158	89.50820
36	2s2p63d	3D$_3$	89.5777	89.6530	89.54538
37	2s2p63d	1D$_2$	90.0109	90.1029	89.97868
38	2s2p64s	3P$_2$	95.5294	95.5800	95.60201
39	2s2p64s	1P$_1$	95.5845	95.6373	95.65949
40	2s2p64p	3S$_1$	96.6490	96.6972	96.71725
41	2s2p64p	3D$_2$	96.7127	96.7619	96.78351
42	2s2p64p	3D$_3$	96.8157	96.8639	96.88505
43	2s2p64p	1P$_1$	96.8430	96.8919	96.91355
44	2s2p64p	3P$_2$	96.9026	96.9524	96.97429
45	2s2p64s	3P$_0$	97.0570	97.1121	97.13254
Index	Configuration	Level	GRASP	FAC1	FAC2
-------	---------------	-------	--------	--------	--------
46	2s² 2p⁵ 4s	3P⁰	97.0837	97.1400	97.16054
47	2s² 2p⁵ 4p	3P⁰	97.2722	97.3121	97.33091
48	2s² 2p⁵ 4d	3P⁰	98.1282	98.1747	98.19264
49	2s² 2p⁵ 4d	3P⁰	98.1698	98.2154	98.23391
50	2s² 2p⁵ 4d	3P⁰	98.2236	98.2687	98.28776
51	2s² 2p⁵ 4d	3P⁰	98.2391	98.2691	98.30323
52	2s² 2p⁵ 4d	3P⁰	98.2405	98.2832	98.30276
53	2s² 2p⁵ 4p	3P⁰	98.2169	98.2833	98.28912
54	2s² 2p⁵ 4d	1D²	98.2988	98.3402	98.36112
55	2s² 2p⁵ 4d	3D⁰	98.3389	98.3796	98.40092
56	2s² 2p⁵ 4p	3P⁰	98.3627	98.4162	98.43573
57	2s² 2p⁵ 4p	1D²	98.3833	98.4372	98.45709
58	2s² 2p⁵ 4d	1P⁰	98.5765	98.6104	98.63273
59	2s² 2p⁵ 4p	1S⁰	98.5960	98.6370	98.65317
60	2s² 2p⁵ 4f	3D¹	98.9161	98.9769	98.99990
61	2s² 2p⁵ 4f	1G⁴	98.9238	98.9864	99.00787
62	2s² 2p⁵ 4f	3D²	98.9295	98.9910	99.01653
63	2s² 2p⁵ 4f	3G⁵	98.9316	98.9943	99.01272
64	2s² 2p⁵ 4f	3F⁴	98.9661	99.0296	99.05234
65	2s² 2p⁵ 4f	1D²	98.9687	99.0363	99.05705
66	2s² 2p⁵ 4f	1F³	98.9754	99.0399	99.06224
67	2s² 2p⁵ 4f	3F⁴	98.9852	99.0500	99.07230
68	2s² 2p⁵ 4d	3F⁵	99.7552	99.8037	99.82186
69	2s² 2p⁵ 4d	3D³	99.7861	99.8341	99.85231
70	2s² 2p⁵ 4d	1F³	99.8147	99.8615	99.88031
71	2s² 2p⁵ 4d	3D⁰	99.9821	100.0200	100.04225
72	2s² 2p⁵ 4f	3G³	100.4694	100.5370	100.55752
73	2s² 2p⁵ 4f	3G⁴	100.4834	100.5510	100.57141
74	2s² 2p⁵ 4f	3F²	100.4875	100.5580	100.57841
75	2s² 2p⁵ 4f	3D³	100.4906	100.5580	100.57952
76	2s² 2p⁵ 5s	3P⁴	106.2758	106.3310	106.35044
77	2s² 2p⁵ 5s	1P⁴	106.3043	106.3590	106.37932
78	2s² 2p⁵ 5p	3S¹	106.8108	106.8650	106.88153
79	2s² 2p⁵ 5p	3D²	106.8680	106.9210	106.94092
80	2s² 2p⁵ 5p	3D³	106.9194	106.9730	106.99187
81	2s² 2p⁵ 5p	1P¹	106.9290	106.9820	107.00132
82	2s² 2p⁵ 5p	3P²	106.9625	107.0150	107.03518
83	2s² 2p⁵ 5p	1S⁰	107.1485	107.1940	107.21065
84	2s² 2p⁵ 5p	3S¹	107.4520	107.4750	107.49048
85	2s² 2p⁵ 5d	3P⁰	107.5565	107.6170	107.63197
86	2s² 2p⁵ 5d	3P⁰	107.5785	107.6370	107.65339
87	2s² 2p⁵ 5d	3F⁴	107.6066	107.6480	107.68114
88	2s² 2p⁵ 5d	3F⁴	107.6141	107.6640	107.68710
89	2s² 2p⁵ 5d	3P²	107.6138	107.6690	107.68814
90	2s² 2p⁵ 5d	1D²	107.6414	107.6710	107.71408
Index	Configuration	Level	GRASP	FAC1	FAC2
------	---------------	--------	--------	-------	-------
91	2s2p^64s	^1S_0	107.6356	107.6950	107.66429
92	2s^22p^5d	^3D_3	107.6611	107.7140	107.73308
93	2s^22p^5d	^1P_y	107.7641	107.8130	107.83283
94	2s^22p^5s	^3P_0	107.7971	107.8560	107.87410
95	2s^22p^5s	^3P_y	107.8348	107.8900	107.90797
96	2s^22p^5f	^3D_1	107.9400	108.0060	108.02713
97	2s^22p^5f	^3D_2	107.9508	108.0180	108.03856
98	2s^22p^5f	^3G_4	107.9545	108.0220	108.04248
99	2s^22p^5f	^3G_5	107.9565	108.0240	108.04405
100	2s^22p^5f	^3D_3	107.9710	108.0390	108.05925
101	2s^22p^5f	^1D_2	107.9778	108.0400	108.06748
102	2s^22p^5f	^1F_3	107.9792	108.0440	108.06792
103	2s^22p^5f	^3F_4	107.9848	108.0470	108.07363
104	2s^22p^5f	^3D_4	108.3864	108.0480	108.46130
105	2s^22p^5f	^3P_1	108.4674	108.0530	108.54401
106	2s^22p^5f	^1D_2	108.4687	108.0550	108.54325
107	2s^22p^5f	^3P_0	108.5485	108.0580	108.61346
108	2s^2p^64p	^3P_y	108.6111	108.0610	108.64568
109	2s^2p^64p	^3P_y	108.6158	108.0630	108.65070
110	2s^2p^64p	^3P_y	108.7342	108.0690	108.76862
111	2s^2p^64p	^1P_y	108.7914	108.0720	108.82734
112	2s^22p^5d	^3F_2	109.1362	108.4430	109.21307
113	2s^22p^5d	^3D_2	109.1553	108.5250	109.23176
114	2s^22p^5d	^1F_3	109.1658	108.5260	109.24195
115	2s^22p^5d	^3D_3	109.2410	108.6000	109.31123
116	2s^22p^5f	^3G_3	109.4909	108.6300	109.58144
117	2s^22p^5f	^3F_3	109.4927	108.6350	109.58350
118	2s^22p^5f	^3F_2	109.4972	108.7540	109.58903
119	2s^22p^5f	^3G_4	109.4997	108.8100	109.59068
120	2s^2p^64d	^3D_1	110.1045	109.1970	110.12934
121	2s^2p^64d	^3D_2	110.1152	109.2160	110.14050
122	2s^2p^64d	^3D_3	110.1349	109.2250	110.16087
123	2s^2p^64d	^1D_2	110.2809	109.2940	110.30125
124	2s^2p^64f	^3F_2	110.7921	109.5630	110.84024
125	2s^2p^64f	^3F_3	110.7941	109.5650	110.84754
126	2s^2p^64f	^3F_4	110.8017	109.5710	110.85810
127	2s^2p^64f	^1F_3	110.8157	109.5720	110.86835

GRASP: Earlier results of Singh and Aggarwal [1] with the GRASP code

FAC1: Earlier results of Singh and Aggarwal [1] with the FAC code

FAC2: Present results with the FAC code
Index	Configuration	Level	GRASP	FAC1	FAC2
1	$2s^22p^5$	1S_0	0.0000	0.0000	0.0000
2	$2s^22p^53s$	$^3P_2^0$	77.0829	77.1622	77.02974
3	$2s^22p^53s$	$^1P_1^0$	77.2657	77.3546	77.20457
4	$2s^22p^53s$	$^3P_0^0$	78.8614	78.9435	78.80181
5	$2s^22p^53s$	$^3P_1^0$	78.9649	79.0539	78.90022
6	$2s^22p^53p$	3S_1	79.9196	79.9897	79.87126
7	$2s^22p^53p$	3D_2	80.1804	80.2601	80.12322
8	$2s^22p^53p$	3D_4	80.4828	80.5583	80.42992
9	$2s^22p^53p$	1P_1	80.5515	80.6322	80.49657
10	$2s^22p^53p$	3P_2	80.7564	80.8381	80.69710
11	$2s^22p^53p$	3P_0	81.4461	81.5289	81.37004
12	$2s^22p^53p$	3D_1	81.8956	81.9773	81.83533
13	$2s^22p^53p$	3P_1	82.3366	82.4164	82.27576
14	$2s^22p^53p$	1D_2	82.3920	82.4746	82.32825
15	$2s^22p^53p$	1S_0	83.4967	83.5888	83.32059
16	$2s^22p^53d$	$^3P_0^0$	84.1579	84.2146	84.07169
17	$2s^22p^53d$	$^3P_1^0$	84.2661	84.3240	84.17962
18	$2s^22p^53d$	$^3P_2^0$	84.4671	84.5172	84.38020
19	$2s^22p^53d$	$^3F_4^0$	84.4631	84.5274	84.37681
20	$2s^22p^53d$	$^3F_3^0$	84.5079	84.5635	84.41571
21	$2s^22p^53d$	1D_2	84.6811	84.7391	84.58873
22	$2s^22p^53d$	3D_3	84.8000	84.8624	84.70740
23	$2s^22p^53d$	$^3D_5^0$	85.3457	85.3986	85.23471
24	$2s^22p^53d$	$^3F_2^0$	86.2698	86.3332	86.17882
25	$2s^22p^53d$	$^3D_2^0$	86.3610	86.4209	86.26147
26	$2s^22p^53d$	$^1F_3^0$	86.4317	86.4909	86.32999
27	$2s^22p^53d$	$^1P_1^0$	87.0583	87.1054	86.92262
28	$2s^2p^63s$	3S_1	89.7723	89.8922	89.75857
29	$2s^2p^63s$	1S_0	90.4013	90.5230	90.38050
30	$2s^2p^63p$	$^3P_0^0$	92.7900	92.9003	92.78983
31	$2s^2p^63p$	$^3P_1^0$	92.8395	92.9512	92.84050
32	$2s^2p^63p$	$^3P_2^0$	93.2025	93.3119	93.20325
33	$2s^2p^63p$	$^1P_1^0$	93.3696	93.4859	93.37355
34	$2s^2p^63d$	3D_1	97.0103	97.0861	96.97910
35	$2s^2p^63d$	3D_2	97.0332	97.1092	97.00204
36	$2s^2p^63d$	3D_3	97.0790	97.1547	97.04758
37	$2s^2p^63d$	1D_2	97.5360	97.6286	97.50471
38	$2s^2p^64s$	$^3P_0^0$	104.2275	104.2790	104.30032
39	$2s^2p^64s$	$^1P_1^0$	104.2857	104.3390	104.36092
40	$2s^2p^64p$	3S_1	105.4109	105.4600	105.47927
41	$2s^2p^64p$	3D_2	105.4742	105.5240	105.54500
42	$2s^2p^64p$	3D_3	105.6007	105.6500	105.67009
43	$2s^2p^64p$	1P_1	105.6269	105.6760	105.69740
44	$2s^2p^64p$	3P_2	105.6926	105.7430	105.76432
45	$2s^2p^64s$	$^3P_0^0$	106.0096	106.0660	106.08551
Index	Configuration	Level	GRASP	FAC1	FAC2
-------	---------------	--------	-------	-------	-------
46	2s²2p³4p	³P₀	106.0372	106.0950	106.14487
47	2s²2p⁵4s	³P₁	106.0873	106.1270	106.11443
48	2s²2p⁵4d	³P₀	106.9794	107.0270	107.04406
49	2s²2p⁵4d	³P₁	107.0244	107.0710	107.08862
50	2s²2p⁵4d	³F₁	107.0839	107.1300	107.14819
51	2s²2p⁵4d	³F₂	107.0977	107.1410	107.16050
52	2s²2p⁵4d	³P₂	107.0998	107.1450	107.16348
53	2s²2p⁵4d	¹D₂	107.1607	107.2030	107.22317
54	2s²2p⁵4d	³D₃	107.2059	107.2470	107.26792
55	2s²2p⁵4p	³D₁	107.2311	107.2840	107.30363
56	2s²2p⁵4d	¹P₀	107.4028	107.4570	107.47601
57	2s²2p⁵4p	³P₁	107.4247	107.4800	107.51529
58	2s²2p⁵4p	¹D₂	107.4593	107.4940	107.49883
59	2s²2p⁵4p	¹S₀	107.6192	107.6620	107.67708
60	2s²2p⁵4f	³D₁	107.8197	107.8810	107.90350
61	2s²2p⁵4f	¹G₄	107.8297	107.8930	107.91365
62	2s²2p⁵4f	³D₂	107.8378	107.8990	107.92260
63	2s²2p⁵4f	³G₅	107.8372	107.9010	107.92036
64	2s²2p⁵4f	³F₃	107.8752	107.9390	107.96143
65	2s²2p⁵4f	¹D₂	107.8781	107.9470	107.96655
66	2s²2p⁵4f	¹F₃	107.8853	107.9510	107.97209
67	2s²2p⁵4f	³F₄	107.8969	107.9620	107.98395
68	2s²2p⁵4d	³F₂	108.8657	108.9160	108.93279
69	2s²2p⁵4d	³D₂	108.9023	108.9520	108.96901
70	2s²2p⁵4d	¹F₃	108.9329	108.9810	108.99892
71	2s²2p⁵4d	³D₁	109.1018	109.1430	109.16225
72	2s²2p⁵4f	³G₃	109.6309	109.7000	109.71927
73	2s²2p⁵4f	³G₄	109.6476	109.7170	109.73579
74	2s²2p⁵4f	³F₂	109.6499	109.7220	109.74110
75	2s²2p⁵4f	³D₃	109.6543	109.7230	109.74351
76	2s²2p⁵5s	³P₂	116.0031	116.0590	116.07773
77	2s²2p⁵5s	¹P₀	116.0333	116.0900	116.10839
78	2s²2p⁵5p	³S₁	116.5293	116.5800	116.59354
79	2s²2p⁵5p	³D₂	116.6284	116.6820	116.70123
80	2s²2p⁵5p	¹P₁	116.6920	116.7450	116.76329
81	2s²2p⁵5p	³D₃	116.6915	116.7460	116.76395
82	2s²2p⁵5p	³P₂	116.7372	116.7910	116.80986
83	2s²2p⁵5p	¹S₀	116.9031	116.9370	116.96329
84	2s²p⁶4s	³S₁	116.9081	116.9460	116.95404
85	2s²p⁶4s	¹S₀	117.0788	117.0960	117.10867
86	2s²2p⁵5d	³P₀	117.3596	117.4210	117.43507
87	2s²2p⁵5d	³P₁	117.3839	117.4440	117.45881
88	2s²2p⁵5d	³F₁	117.4162	117.4750	117.49099
89	2s²2p⁵5d	³F₂	117.4217	117.4780	117.49515
90	2s²2p⁵5d	³P₂	117.4232	117.4810	117.49727
Index	Configuration	Level	GRASP	FAC1	FAC2
-------	---------------	--------	-----------	----------	----------
91	$2s^22p^5d$	$^1D_2^0$	117.4517	117.5070	117.52450
92	$2s^22p^5d$	$^3D_3^0$	117.4739	117.5280	117.54601
93	$2s^22p^5d$	$^1P_1^0$	117.5966	117.6430	117.66148
94	$2s^22p^5f$	$^3D_1^0$	117.7695	117.8100	117.85645
95	$2s^22p^5f$	$^3D_2^0$	117.7819	117.8370	117.86942
96	$2s^22p^5f$	$^3G_4^0$	117.7517	117.8470	117.87419
97	$2s^22p^5f$	$^3G_5^0$	117.7864	117.8500	117.87666
98	$2s^22p^5s$	$^3P_0^0$	117.7893	117.8550	117.82523
99	$2s^22p^5f$	$^3D_3^0$	117.8040	117.8580	117.89209
100	$2s^22p^5f$	$^1D_2^0$	117.8117	117.8720	117.90127
101	$2s^22p^5f$	$^1F_3^0$	117.8129	117.8760	117.90144
102	$2s^22p^5f$	$^3F_4^0$	117.8195	117.8800	117.90820
103	$2s^22p^5s$	$^3P_1^0$	117.7886	117.8820	117.86364
104	$2s^22p^4p$	$^3P_1^0$	118.0939	117.8830	118.13043
105	$2s^22p^4p$	$^3P_0^0$	118.1060	117.8890	118.14479
106	$2s^22p^4p$	$^3P_2^0$	118.2282	117.8920	118.26240
107	$2s^22p^4p$	$^1P_1^0$	118.2918	117.8960	118.32829
108	$2s^22p^5p$	$^3D_3^0$	118.3992	117.8980	118.47430
109	$2s^22p^5p$	$^3P_1^0$	118.4932	117.9010	118.56895
110	$2s^22p^5p$	$^1D_2^0$	118.4940	117.9080	118.57005
111	$2s^22p^5p$	$^3P_0^0$	118.5667	117.9110	118.63262
112	$2s^22p^5d$	$^3F_2^0$	119.1983	118.1150	119.27555
113	$2s^22p^5d$	$^3D_2^0$	119.2183	118.1290	119.29566
114	$2s^22p^5d$	$^1F_3^0$	119.2316	118.2480	119.30828
115	$2s^22p^5d$	$^3D_1^0$	119.3062	118.3120	119.37708
116	$2s^22p^5f$	$^3F_3^0$	119.5431	118.4580	119.61725
117	$2s^22p^5f$	$^3F_2^0$	119.5597	118.5520	119.63652
118	$2s^22p^5f$	$^3G_3^0$	119.5790	118.5530	119.67037
119	$2s^22p^5f$	$^3G_4^0$	119.5881	118.6200	119.67924
120	$2s^2p^4d$	$^3D_1^0$	119.6672	119.2610	119.69228
121	$2s^2p^4f$	$^3D_2^0$	119.7023	119.2810	119.74253
122	$2s^2p^4d$	$^3D_3^0$	119.7378	119.2930	119.78004
123	$2s^2p^4d$	$^1D_2^0$	119.8555	119.3620	119.87640
124	$2s^2p^4f$	$^3F_2^0$	120.3999	119.6030	120.45145
125	$2s^2p^4f$	$^3F_3^0$	120.4023	119.6220	120.46340
126	$2s^2p^4f$	$^3F_4^0$	120.4117	119.6530	120.47974
127	$2s^2p^6f$	$^1F_3^0$	120.4269	119.6620	120.48666

GRASP: Earlier results of Singh and Aggarwal [1] with the GRASP code
FAC1: Earlier results of Singh and Aggarwal [1] with the FAC code
FAC2: Present results with the FAC code
Table 3: Comparison of energies (in Ryd) for 127 levels of Ga XXII.

Index	Configuration	Level	GRASP	FAC1	FAC2
1	2s²2p⁵	¹S₀	0.0000	0.0000	0.00000
2	2s²2p⁵3s	⁴P₂	83.7426	83.8227	83.69079
3	2s²2p⁵3s	¹P₁	83.9348	84.0246	83.87482
4	2s²2p⁵3s	⁴P₀	85.8058	85.8890	85.74715
5	2s²2p⁵3s	¹P₁	85.9122	86.0023	85.84867
6	2s²2p⁵3p	³S₁	86.7349	86.8059	86.68729
7	2s²2p⁵3p	³D₂	86.9911	87.0714	86.93499
8	2s²2p⁵3p	³D₄	87.3592	87.4354	87.30757
9	2s²2p⁵3p	¹P₁	87.4221	87.5033	87.36857
10	2s²2p⁵3p	³P₂	87.6461	87.7284	87.58796
11	2s²2p⁵3p	³P₀	88.4146	88.4982	88.33686
12	2s²2p⁵3p	³D₁	88.9853	89.0679	88.92588
13	2s²2p⁵3p	³P₁	89.4964	89.5769	89.43643
14	2s²2p⁵3p	¹D₂	89.5583	89.6419	89.49547
15	2s²2p⁵3p	¹S₀	90.6161	90.7082	90.44428
16	2s²2p⁵3d	³P₀	91.2036	91.2602	91.11856
17	2s²2p⁵3d	³P₁	91.3219	91.3798	91.23651
18	2s²2p⁵3d	³P₂	91.5411	91.5879	91.45519
19	2s²2p⁵3d	³F₄	91.5338	91.6013	91.44879
20	2s²2p⁵3d	³F₃	91.5713	91.6270	91.48034
21	2s²2p⁵3d	¹D₂	91.7574	91.8157	91.66630
22	2s²2p⁵3d	³D₄	91.8898	91.9525	91.79834
23	2s²2p⁵3d	³D₃	92.4846	92.5370	92.37331
24	2s²2p⁵3d	³F₂	93.6143	93.6780	93.52431
25	2s²2p⁵3d	³D₂	93.7190	93.7793	93.62042
26	2s²2p⁵3d	¹F₂	93.7968	93.8564	93.69603
27	2s²2p⁵3d	¹P₁	94.4270	94.4753	94.29389
28	2s²p⁶3s	³S₁	97.1756	97.2969	97.16302
29	2s²p⁶3s	¹S₀	97.8344	97.9571	97.81450
30	2s²p⁶3p	³P₀	100.3409	100.4520	100.34146
31	2s²p⁶3p	³P₁	100.3943	100.5070	100.39630
32	2s²p⁶3p	³P₂	100.8246	100.9350	100.82625
33	2s²p⁶3p	¹P₁	100.9970	101.1140	101.00202
34	2s²p⁶3d	³D₁	104.8107	104.8870	104.78048
35	2s²p⁶3d	³D₂	104.8380	104.9150	104.80786
36	2s²p⁶3d	³D₃	104.8936	104.9700	104.86314
37	2s²p⁶3d	¹D₂	105.3738	105.4670	105.34357
38	2s²p⁶3s	³P₀	113.2984	113.3510	113.37141
39	2s²p⁶4s	³P₂	113.3597	113.4140	113.43512
40	2s²p⁶4p	³S₁	114.5460	114.5960	114.61448
41	2s²p⁶4p	³D₂	114.6088	114.6590	114.67960
42	2s²p⁶4p	³D₃	114.7622	114.8120	114.83161
43	2s²p⁶4p	¹P₁	114.7872	114.8380	114.85764
44	2s²p⁶4p	³P₂	114.8591	114.9100	114.93084
45	2s²p⁶4p	³P₀	115.2783	115.3180	115.33489
Index	Configuration	Level	GRASP	FAC1	FAC2
-------	---------------	-------	-------	------	------
46	$2s^22p^3s$	3P_0	115.3657	115.4230	115.44212
47	$2s^22p^3s$	3P_1	115.3941	115.4530	115.47182
48	$2s^22p^3d$	3P_0	116.2073	116.2560	116.27206
49	$2s^22p^3d$	3P_1	116.2556	116.3030	116.32000
50	$2s^22p^3d$	3P_2	116.3215	116.3680	116.38595
51	$2s^22p^3d$	3F_3	116.3313	116.3760	116.39421
52	$2s^22p^3d$	3P_2	116.3374	116.3830	116.40111
53	$2s^22p^3d$	1D_2	116.3996	116.4430	116.46217
54	$2s^22p^3d$	3D_3	116.4501	116.4920	116.51226
55	$2s^22p^3p$	3D_1	116.6492	116.7040	116.72211
56	$2s^22p^3d$	1P_0	116.7194	116.7540	116.77510
57	$2s^22p^3p$	3P_1	116.8501	116.9060	116.92368
58	$2s^22p^3p$	1D_2	116.8734	116.9300	116.94786
59	$2s^22p^3p$	1S_0	117.0469	117.0910	117.10551
60	$2s^22p^3f$	3D_1	117.1009	117.1630	117.18462
61	$2s^22p^3f$	1G_4	117.1128	117.1770	117.19678
62	$2s^22p^3f$	3D_2	117.1216	117.1860	117.20638
63	$2s^22p^3f$	3G_5	117.1226	117.1860	117.20569
64	$2s^22p^3f$	3F_3	117.1618	117.2270	117.24811
65	$2s^22p^3f$	1D_2	117.1651	117.2350	117.25364
66	$2s^22p^3f$	1F_3	117.1727	117.2390	117.25952
67	$2s^22p^3f$	3F_4	117.1862	117.2530	117.27332
68	$2s^22p^3d$	3F_2	118.3836	118.4350	118.45112
69	$2s^22p^3d$	3D_2	118.4268	118.4780	118.49398
70	$2s^22p^3d$	1F_3	118.4592	118.5090	118.52578
71	$2s^22p^3d$	3D_0	118.6287	118.6710	118.68965
72	$2s^22p^3f$	3G_3	119.2006	119.2710	119.28929
73	$2s^22p^3f$	3F_2	119.2205	119.2910	119.31213
74	$2s^22p^3f$	3G_4	119.2203	119.2940	119.30882
75	$2s^22p^3f$	3D_1	119.2266	119.2970	119.31618
76	$2s^22p^5s$	3P_0	126.1503	126.2080	126.22497
77	$2s^22p^5s$	1P_1	126.1823	126.2400	126.25746
78	$2s^2p^5s$	3S_1	126.5311	126.5660	126.57676
79	$2s^2p^5p$	3D_2	126.8090	126.8570	126.88190
80	$2s^2p^5p$	3P_1	126.8464	126.8640	126.91502
81	$2s^2p^5s$	1S_0	126.8375	126.8970	126.87346
82	$2s^2p^5p$	3D_3	126.8857	126.9410	126.95811
83	$2s^2p^5p$	3P_2	126.9340	126.9870	127.00426
84	$2s^2p^5p$	1P_1	126.9367	126.9890	127.00670
85	$2s^2p^5p$	1S_0	127.1699	127.2120	127.22363
86	$2s^2p^5d$	3P_0	127.5796	127.6410	127.65391
87	$2s^2p^5d$	3P_1	127.6080	127.6690	127.68237
88	$2s^2p^5d$	3F_3	127.6485	127.7090	127.72343
89	$2s^2p^5d$	3F_3	127.6517	127.7090	127.72533
90	$2s^2p^5d$	3P_2	127.6537	127.7130	127.72778
Index	Configuration	Level	GRASP	FAC1	FAC2
-------	---------------	-------	-------	------	------
91	$2s^22p^5d$	$^1D^o_2$	127.6843	127.7410	127.75723
92	$2s^22p^5d$	$^3D^o_3$	127.7093	127.7650	127.78153
93	$2s^22p^5d$	$^1P^o_1$	127.8377	127.8840	127.90177
94	$2s^22p^5d$	$^3P^o_0$	127.8976	127.9260	127.93940
95	$2s^22p^5d$	$^3P^o_1$	127.9415	127.9660	127.97990
96	$2s^22p^5d$	$^3D^o_1$	128.0211	128.0890	128.10779
97	$2s^22p^5d$	$^3D^o_2$	128.0352	128.1040	128.12248
98	$2s^22p^5d$	$^3G^o_4$	128.0408	128.1110	128.12852
99	$2s^22p^5d$	$^3G^o_5$	128.0448	128.1140	128.13205
100	$2s^22p^5d$	$^3D^o_3$	128.0595	128.1290	128.14743
101	$2s^22p^5d$	$^1D^o_2$	128.0683	128.1330	128.15776
102	$2s^22p^5d$	$^1F^o_3$	128.0692	128.1390	128.15764
103	$2s^22p^5d$	$^3F^o_4$	128.0770	128.1390	128.16560
104	$2s^22p^5d$	$^3P^o_2$	128.1320	128.1400	128.16658
105	$2s^22p^5d$	$^1P^o_1$	128.1372	128.1470	128.18768
106	$2s^22p^5d$	$^3P^o_0$	128.2730	128.1530	128.34535
107	$2s^22p^5d$	$^3P^o_1$	128.3123	128.1530	128.37384
108	$2s^22p^5d$	$^3D^o_3$	128.8614	128.1570	128.93661
109	$2s^22p^5d$	$^3P^o_1$	128.9718	128.1580	129.04802
110	$2s^22p^5d$	$^1D^o_2$	128.9715	128.1620	129.04755
111	$2s^22p^5d$	$^3P^o_0$	129.0372	128.1690	129.10388
112	$2s^22p^5d$	$^3D^o_1$	129.6426	128.1730	129.66847
113	$2s^22p^5d$	$^3D^o_2$	129.6433	128.1740	129.66991
114	$2s^22p^5d$	$^3D^o_3$	129.6544	128.3290	129.68199
115	$2s^22p^5d$	$^3F^o_2$	129.7133	128.3570	129.79114
116	$2s^22p^5d$	$^3D^o_2$	129.7363	128.9210	129.81430
117	$2s^22p^5d$	$^1F^o_3$	129.7509	129.0320	129.82799
118	$2s^22p^5d$	$^3D^o_1$	129.8364	129.0330	129.89680
119	$2s^22p^5d$	$^1D^o_2$	129.8254	129.0930	129.85765
120	$2s^22p^5d$	$^3G^o_3$	130.1195	129.6580	130.21107
121	$2s^22p^5d$	$^3G^o_4$	130.1302	129.6600	130.22156
122	$2s^22p^5d$	$^3F^o_2$	130.1389	129.6720	130.23026
123	$2s^22p^5d$	$^3F^o_3$	130.1457	129.7780	130.23506
124	$2s^22p^5d$	$^3F^o_2$	130.4188	129.8010	130.47401
125	$2s^22p^5d$	$^3F^o_3$	130.4215	129.8140	130.49580
126	$2s^22p^5d$	$^3F^o_4$	130.4331	129.8430	130.54657
127	$2s^22p^5d$	$^1F^o_3$	130.4497	129.8830	130.54456

GRASP: Earlier results of Singh and Aggarwal [1] with the GRASP code
FAC1: Earlier results of Singh and Aggarwal [1] with the FAC code
FAC2: Present results with the FAC code