Higher Spin Gravity refers to extensions of gravity including at least one field of spin greater than two. These extensions are expected to provide manageable models of quantum gravity thanks to the infinite-dimensional (higher spin) gauge symmetry constraining them. One of the key aspects of Higher Spin Gravity/Symmetry is the range and diversity of topics it embraces: (a) higher spin fields play a role in quantum gravity, AdS/CFT, string theory and are expected to have important consequences in cosmology and black hole physics; (b) higher spin symmetry finds applications in Conformal Field Theories, condensed matter systems and dualities therein; (c) these models often rely on tools developed in the study of the mathematical foundations of QFT or in pure mathematics: from deformation quantization and non-commutative geometry to conformal geometry, graded geometry (including BV-BRST quantization), and geometry of PDEs. Recent exciting applications also involve (d) modelling the coalescence of black hole binaries as scattering of massive higher spin particles.
Contents

1 Introduction

2 Recent Progress and State of the Art

3 Future Directions
 3.1 Higher Spin Gravity and Quantum Gravity
 3.2 Supersymmetry, Higher Dimensions and M-theory
 3.3 Higher Spin Symmetry for Conformal Field Theory
 3.4 Higher Spin Techniques for Black Hole Scattering
 3.5 Non-relativistic Higher Spin Symmetry
 3.6 Higher Spin Gravity and Mathematics

4 Outlook

Bibliography

1 Introduction

One of the major challenges of theoretical high energy physics has long been the problem of quantum gravity. A number of approaches have emerged over the years, e.g. supergravities were born with the idea that supersymmetry can improve the quantum behaviour of General Relativity [1], which was followed by string theory, asymptotic safety and few others, see e.g. [2]. In the same vein as Supergravity, the founding idea of Higher Spin Gravity (HiSGRA) is to explore the most general gauge theories that can incorporate particles of any spin, hoping that the additional symmetries they bring in may improve their quantum behaviour [3]. Gauge theories, e.g. the Standard Model, and supergravities include massless particles with \(s \leq 2 \), with \(s = 1 \), \(s = 3/2 \) and \(s = 2 \) corresponding to gauge bosons, gravitini and the graviton, respectively. On the other hand, the spectrum of String Theory has towers of (massive) higher spin states that are essential for its consistency. Independently of string theory, the AdS/CFT correspondence gives strong indications that higher spin states (with \(s > 2 \)) may be important to resolve the quantum gravity problem.

A remarkable and still not well-understood fact is that slightly different values of the spin lead to completely different theories and phenomena. They also imply different mathematical structures: gauge bosons of spin one are described by Yang-Mills theories and are, thus, parameterized by Lie groups and their representations; gauge bosons of spin two cannot have color and result in Einstein gravity plus higher derivative corrections [4], which is governed by Riemannian geometry; gauge fermions of spin three-half lead to a zoo of supergravities [1], which contain the graviton plus other fields and require superalgebras/supergeometry. The leitmotiv of HiSGRA is the first-principle systematical study of all possible fundamental interactions and their underlying symmetries and mathematical structures.

The presence of at least one massless higher spin field in the spectrum implies that the theory must also contain the graviton, hence the name HiSGRA. In the simplest setups, the spectrum of HiSGRA actually contains massless particles of all integer spins, see e.g. [5][11]. Masslessness severely constrains HiSGRA’s since massless particles are described by gauge fields and interactions must respect the gauge symmetry. Interactions of massless higher spin particles are strongly constrained by the QFT principles [1]. At the same time,
masslessness can simulate some features of the UV regime, which makes HiSGRA’s good probes of the Quantum Gravity Problem since the quantum issues are, to some extent, pushed to the classical level.

Higher Spin Gravity has developed into a rich subject that has many links to other topics from fundamental physics to pure mathematics. Recent progress described below brought the subject to a new level of maturity, where concepts and methods are ready to be exported to other areas.

2 Recent Progress and State of the Art

Many of the future challenges are closely related to the Recent Progress, which we summarize below.

Quantum corrections/UV finiteness. HiSGRA has initially been studied with the hope that the extended symmetries accompanying massless higher spin fields can cure the problems of General Relativity at the quantum level \[3\]. It is only recently that the computation of quantum corrections became feasible. Concrete results include the following: (a) Explicit calculations of vacuum one-loop corrections \[27–42\], the idea being to read off the spectrum of HiSGRA’s from the expected holographic dual CFT’s, e.g. various vector models \[43–46\]. Knowing the spectrum one can compute the one-loop determinant of the kinetic operators. Higher spin multiplets are infinite, therefore a regularization is required in order to be able to sum up the individual one-loop contributions. It was found for a great number of cases that these (regularized) vacuum one-loop corrections either vanish or are proportional to the free energy of the CFT duals, which is consistent with AdS/CFT duality. These results reveal also that the infinite multiplets, as determined by higher spin symmetry, are crucial for the cancellation of divergences and anomalies. (b) AdS/CFT-inspired techniques combined with higher spin symmetry lead to a one-loop contribution to the four-point function that is consistent with (a) \[47\]. (c) One-loop amplitudes were computed in various simple models \[48\], e.g. in Conformal HiSGRA \[49–51\] and in Chiral HiSGRA \[52–54\], where there are encouraging results that higher spin symmetry improves the quantum behavior of amplitudes and can even render them finite.

Higher spin symmetry for CFT’s. It has been understood that, at least in the large-N limit, a rich class of conformal field theories in three dimensions should be controlled by higher spin symmetry. The class of CFT’s consists of (Chern-Simons) vector models and incorporates many important CFT’s, e.g. the Ising model, which has been a major challenge for a number of decades. In the free or large-N limit these conformal field theories are known to feature an infinite-dimensional extension of the conformal symmetry, which is exactly the higher spin symmetry \[7 55\], as shown in \[12 14 50\]. This symmetry alone is powerful enough to fix all correlation functions \[12 57 60\]. A challenge has been to understand what happens when interactions are
turned on or when one departs from the large-N limit. Due to the very sparse spectrum of operators in vector models, the conserved tensors (higher spin currents) that are responsible for the higher spin symmetry can have few terms that violate the conservation. Importantly, the non-conservation operator is a composite operator built from the higher spin currents themselves. This allows one to close the loop and to bootstrap the correlation functions from the symmetry vantage point, putting aside any concrete details of the microscopical realization. This idea is called slightly-broken higher spin symmetry [61]. It seems to be powerful enough to fix three-point and four-point correlators [61–68]. It has also been important to understand what slightly-broken higher spin symmetry means algebraically and the proposal is that it is realized as a certain strong homotopy algebra [69, 70].

Tensionless limit of string theory. Since the early days of HiSGRA there has been a strong indication that certain HiSGRA’s can emerge in the tensionless limit of string theory or, to put it in reverse, that string theory could be understood as a spontaneously broken phase of some HiSGRA [71–75]. Also, phenomenological applications bring to the forefront the important question of how higher spin symmetry breaking can occur. Whereas the systematics of such breaking and its possible physical implications for string theory and beyond are still among the main open questions in the subject, some concrete proposals on how this can be realized have started to emerge thanks to the AdS/CFT correspondence [76–81].

The appearance of massless higher spin states in the spectra of strings and branes in four and more spacetime dimensions was studied using semi-classical methods in [78, 82], and using discretization methods in [83], leading to dual formulations in terms of non-compact Wess–Zumino–Witten models with critical levels [84], that are solvable by means of spectral flows and admit handy free-field realizations in terms of symplectic bosons with W-gauge symmetries. The holography proposals have since been sharpened in [85] in the case of AdS_4, and the tensionless string proposal has recently been made more concrete in AdS_5 in [86]. In AdS_3, limits involving tensionless strings with NS fluxes have led to concrete examples of complete AdS/CFT correspondences [87], including entire string spectra and not just truncations to massless states or first Regge trajectories.

Higher spin models in low dimensions. In three spacetime dimensions the little group of massless particles does not admit non-trivial irreducible representations of arbitrary helicity. Nevertheless, one can consider, e.g., the couplings of symmetric tensor fields to gravity or between themselves, and build low-dimensional models for HiSGRA [88]. The simplest examples generalise the Chern-Simons formulation of three-dimensional gravity and do not require an infinite number of higher spin fields [89, 90]. This remarkable simplification allowed to show that the asymptotic symmetries are given by W-algebras [91, 92] and to build solutions carrying entropy, identified as higher spin black holes [93–100]. Customary signatures of black holes, like metric
singularities and event horizons, are, however, not invariant under higher spin gauge trans-
mformations: these solutions thus provide a natural playground to study problems like singularity
resolution in extension of (quantum) gravity [94, 101]. The previous results were first established
on AdS$_3$ and accompanied by generalisations of various holographic tools, see e.g. [102, 109]. On
the other hand, in three dimensions one can also build along the same lines flat-space HiSGRAs
[89, 110–112]. Similar generalisations exist for conformal gravity as well [113–115].

The appearance of \mathcal{W}-symmetries led to conjecture a holographic duality between higher spin
gauge theories coupled to matter [116] and \mathcal{W}_N minimal models [117]. Given the good degree
of control over \mathcal{W}_N minimal models that have been accumulated over the years, the duality
has been subjected to several tests [27, 118–123], that confirmed its bases and allowed further
subtle refinements to account for quantum effects [124, 126]. The key issue which remains to be
understood is whether minimal model holography can stand on its own even at the quantum
level or if it can only be considered as an effective duality emerging in the tensionless limit
of suitable compactifications of string theory on AdS$_3$ [80]. For this reason, minimal model
holography also sparked an in-depth analysis of the tensionless limit of string theory on AdS$_3$,
see e.g. [87, 127, 128].

Interestingly, in two dimensions, there exists a similar higher spin extension of Jackiw-Teitelboim
gravity [129, 132] exploiting the fact that the latter is a BF theory. Two-dimensional higher
spin gravity is an almost uncharted territory which is worth exploring along similar lines to
three-dimensional one, especially due to its potential relevance for building a bulk dual of the
Sachdev–Ye–Kitaev model [133–137].

Massive higher spin fields for Black Hole scattering. Very recent excitement about higher
spin theories is due to gravitational wave physics, where massive higher spin particles can be
used to model rotating black holes [138–144]. The recent experimental discovery of gravitational
waves by LIGO and the rapid development of gravitational wave physics leads to new challenges
for theoretical physics. There is a high demand for efficient methods to compute various charac-
teristics of complicated processes in General Relativity to many orders in post-Minkowskian and
post-Newtonian expansions. These challenging and timely computations can be done efficiently
provided a HiSGRA in four-dimensional spacetime is available whose spectrum contains massive
higher spin fields and the graviton.

It is also worth giving a concise list of the results achieved within the topic so far as to summarize the
current **State of the Art:**

- Many different approaches to higher spin fields have been developed over the years: metric-like
 [5, 115, 118], generalizing the metric as a tool to describe a massless spin-two field to any spin;
frame-like extending tetrad/vielbein and spin-connection variables to any spin; light-front, unfolded, based on Free Differential Algebra techniques; parent formalism, unifying unfolded and metric-like approaches within the unified Batalin–Vilkoviski–Becchi–Ronet–Stora–Tyutin (BV-BRST) scheme that can also be seen as a generalization of the Alexandrov–Kontsevich–Schwarz–Zaboronsky (AKSZ) approach; Maxwell-like; twistor and twistor-inspired, which are suitable for self-dual higher spin theories.

- One of the most powerful approaches to constructing field theories bottom-up that has been developed is the perturbative Noether procedure that received a systematic BV-BRST reformulation in, see also.

- A detailed description of cubic (and some higher) interactions, which should be understood as seeds of interactions from which complete theories can grow, has been obtained within various approaches. The complete classification of cubic interactions involving massless as well as massive, fermionic and bosonic, fields of any spin is available.

- Extensions of spacetime symmetries, known as higher spin symmetries, have been thoroughly studied and were related to deformation quantization and to higher symmetries of PDE’s. It was also proved that rigid higher spin symmetry is realized in free conformal field theories. In particular, the correlation functions can be represented and computed as higher spin invariants. Recently, higher spin asymptotic symmetries, providing counterparts of the infinite-dimensional symmetries emerging for spin-one gauge systems and for gravity in asymptotically flat spaces, have been identified at the linear level and a candidate non-Abelian algebra for their global part was proposed.

- Higher spin gravities found a natural place within the AdS/CFT paradigm as gravitational duals of simple conformal field theories, including the free ones. One large class of theories is given by vector models, e.g. by the free and critical vector models. Another class incorporates tensionless limits of string theories and M-theory.

- The latter HiSGRA AdS/CFT developments triggered the discovery of the three-dimensional bosonization duality. More generally, a large class of 3D conformal field theories, known as Chern-Simons vector models, are related by a number of dualities. These models exhibit in the large-N limit a peculiar realization of the higher spin symmetry as an infinite-dimensional extension of the conformal one, called slightly-broken higher spin symmetry. This new type of a symmetry seems to be powerful enough to fix correlation functions at least in the large-N limit and, thereby, explain the three-dimensional bosonization duality.
Within the formal deformation approach many higher spin gravity models have been constructed [9, 244–252], the problem was solved in full generality — it was shown how to construct formally consistent classical equations for any given higher spin algebra [253] — and turned out to be deeply related to deformation quantization, topological field theory and non-commutative geometry [83, 246, 249, 253–256].

Within the latter paradigm some exact solutions, including the domain wall, FLRW-like and the black-hole-like were found [257–264]. The black-hole like solutions look promising in resolving the black-hole singularity problem.

Concrete simple models of HiSGRA have been constructed, including Chern-Simons [89–92, 113, 115, 218], conformal [265, 267], chiral [10, 11, 52, 53, 268] HiSGRA’s, and their quantum corrections were found to reveal remarkable cancellations of UV divergences [28, 31, 42, 48, 52–54]. Other interesting recent proposals include [269, 271].

Some HiSGRA models were studied in regard to cosmological applications [262, 272, 274].

In addition to the study of massless fields, there is a number of systematic results on massive higher spin fields including cubic interactions [145, 146, 159, 195, 197, 204, 209, 275, 287], which are most relevant for applications of massive higher spin fields to black hole scattering.

3 Future Directions

3.1 Higher Spin Gravity and Quantum Gravity

One of the main future directions is to fulfil the original idea behind HiSGRA — to prove that higher spin symmetry is powerful enough to make higher spin gravities renormalizable, or even finite, models of quantum gravity. To this end, the already existing results need to be pushed to higher loop orders, which presents a considerable technical challenge. Therefore, indirect, symmetry-based approaches can turn out to be more efficient. For example, it should be possible to classify all possible higher spin invariant counterterms by computing the corresponding Chevalley-Eilenberg cohomology of higher spin algebras. The main hope would be that the corresponding groups are empty (the theory is finite) or contain just one representative corresponding to the on-shell action (the theory is renormalizable).

In the same vein, it should be possible to approach possible anomalies.

It is also important to enlarge the family of HiSGRA’s with new models. A completely new fruitful direction within the HiSGRA approach would be to extend the existing results and techniques to a broader class of theories that are somehow in between the HiSGRA’s and string theory, i.e., to systematically look for theories that are much simpler than string theory, are closer to HiSGRA, but whose spectrum contains massive higher spin states. This study should clarify to which extent
string theory can be regarded as the unique solution to the quantum gravity problem under some natural assumptions [288]. A particular class of such theories — four-dimensional theories with one graviton and massive higher spins in the spectrum — can model various processes in General Relativity, including scattering of black holes; see section 3.4.

In addition, complete and simple enough HiSGRA’s models of quantum gravity should help to resolve the puzzles of cosmology of the early Universe. The main experimental challenge would be to look for deviations from Einstein gravity during the early stages of the Universe, while HiSGRA make specific predictions for higher derivative corrections to Einstein-Hilbert action with certain cosmological implications [273]. The very notion of black holes has to be reconsidered in quantum gravity. HiSGRA’s provide a concrete testing ground for ideas on quantum black holes and singularity resolution, and may help to shine new light on some of the old paradoxes of black hole physics, which, to some extent, has already been realized in 3D HiSGRA and needs to be extended to higher dimensions.

3.2 Supersymmetry, Higher Dimensions and M-theory

At the fundamental level, it is important to understand whether and how higher spin symmetries could cure the problems of Einstein’s gravity at the quantum level. In that context, it is natural to focus on pure HiSGRA as the fundamental extension of Einstein’s gravity. At the same time, it is also important to investigate the spontaneous breaking of higher spin symmetry [289] down to the usual diffeomorphisms and gauge symmetries, and search for a unified description of matter couplings. While string theory with desirable properties requires supersymmetry and ten dimensions, so far no consistency considerations have been suggested to determine if similar constraints arise in HiSGRA’s. Whether such constraints exist remains to be investigated. Besides consistency, the question of whether higher spin symmetry is powerful enough to render quantum gravity finite, or renormalizable, will need to be settled. Concomitant to this, the question of how HiSGRA’s constructed so far can be constrained in search for a realistic (super) HiSGRA theory will require extensive studies. These are among the key questions which deserve in-depth studies and which will also sharpen the queries on whether HiSGRA is necessarily a phase of string/M-theory. In particular whether HiSGRA can be viewed as the tensionless limit of string theory and how turning on the string tension breaks the higher spin symmetry [73, 75, 79, 289, 291] will be among the important topics to explore.

One tantalizing prospect for a connection with M-theory may also come from the exploration of
relationship between the super HiSGRA based on higher spin extension of $\mathcal{N} = 8$ super AdS group in 4D, and the tensionless limit of supermembrane in M-theory compactified on $AdS_4 \times S^7$. Certain aspects of this connection have been considered in [78, 236] but much remains to be investigated. Whether the remarkable connection found between 3D SCFT and 11D supergravity correlators [295] can play a role in the study of these higher spin theories remains to be seen.

Regarding the introduction of Yang-Mills gauge symmetries in HiSGRA’s, the key ingredients are singletons living on the boundary of AdS that carry representations of a suitable gauge group, and the holographic constructions of bulk HiSGRA’s [8]. Several details and extensions are yet to be worked out. As for the coupling of massive higher spin multiplets, their kinematics is based on the triple and higher order products of the singleton representations. A construction has been given in [296], see also [83, 84], for their couplings by making use of multi-singleton oscillators, and connection to string theory has been conjectured. Another approach may be the construction of fully nonlinear higher dimensional (super) HiSGRA’s, and study of their compactifications. Fully nonlinear bosonic HiSGRA’s have been constructed in higher dimensions [244, 245, 252, 253] within the formal deformation scheme. Their supersymmetric versions are known at the linearized level in 5D [297] and 7D [78], but their fully nonlinear version remain to be constructed.

One of the notorious problems in string theory is the difficulty in obtaining a de Sitter (dS) solution. An interesting mechanism was proposed long ago by KKLT [298] but this has encountered serious obstacles, the most recent one noted in [299]. In HiSGRA, however, both signs of the cosmological constant are allowed, and they can be chosen to be very small. This fact has been exploited in [300] where it was conjectured that HiSGRA in dS_4 is holographically dual to a CFT_3 living on the spacelike boundary of dS_4 at future timelike infinity. Further progress has been made in [272, 301–303]. This line of development clearly deserves further studies.

Ultimately, a (quasi-)local Effective Field Theory (EFT) that provides an S matrix as the well-defined observable in flat spacetime, is needed. On the other hand, there is no known fully nonlinear higher spin extension of Einstein’s gravity in 4D that admits flat spacetime as a vacuum solution. Once again the importance of spontaneous breaking of higher spin symmetry enters the picture to achieve the stated goal. Another avenue to pursue may be the utilization of the domain-wall solutions of a higher dimensional HiSGRA. While higher spin field equations seem to be prohibitively difficult to solve, a remarkable framework exists in which exact solutions have been found, and they contain domain-wall solutions among others (see [261] for a review). Their in-depth study is in progress and much remains to be done in this direction.

3.3 Higher Spin Symmetry for Conformal Field Theory

As it was already reviewed, a number of encouraging results, see e.g. [61, 65, 69, 70, 294, 304, 309], gives a strong support to the idea of the slightly-broken higher spin symmetry being realized in Chern-
Simons matter theories at least in the large-N limit. This immediately leads to two challenges. (1) what slightly-broken higher spin symmetry means as a symmetry? It has been mostly explored via the study of the non-conservation equation for higher spin currents, where the crucial observation is that the conservation can be broken only by double- and triple-trace operators that are built of the higher spin currents themselves. The latter allows one to apply the non-conservation law inside correlation functions deriving, thereby, strong constraints for the correlators with the help of the large-N factorization. Clearly, slightly-broken higher spin symmetry is a new type of an infinite-dimensional symmetry that extends the conformal symmetry at least in three dimensions. It is tempting to argue that in the context of vector models it can be somewhat analogous to Virasoro symmetry. (2) it is critically important to extend the applications of the slightly-broken higher spin symmetry to higher point correlation functions to constrain them and obtain explicit expressions. Since the constraints imposed by the slightly-broken higher spin symmetry are insensitive to whether the higher spin currents are built of bosonic or fermionic matter, the three-dimensional bosonization can be proved without having to resort to any concrete microscopical description in terms of Chern-Simons matter theories. If the latter is achieved, the next goal would be to extend the slightly-broken higher spin symmetry beyond the large-N limit. It looks encouraging that the non-conservation equation is also true for small values of N, while the higher spin currents have (numerically) small anomalous dimensions even for the $N = 1$ Ising model.

In a similar vein, the higher spin symmetry of the weakly coupled $\mathcal{N} = 4$ SYM theory can be explored, see \cite{290, 291} for earlier works. It does not, however, follow the slightly-broken higher spin symmetry idea, since the conservation of the $\mathcal{N} = 4$ SYM higher spin currents is not broken by the double-trace operators built of the higher spin currents themselves. The spectrum of operators also contain infinitely many operators on top of the currents. The latter can be organized into certain multiplets of the higher spin algebra. Understanding the mechanism of the higher spin breaking in $\mathcal{N} = 4$ SYM can lead to new (as compared to integrability \cite{310}) computational techniques to get anomalous dimensions at least at weak coupling and can shed more light on the tensionless limit of string theory \cite{86, 311}.

3.4 Higher Spin Techniques for Black Hole Scattering

The recent experimental discovery of gravitational waves by LIGO \cite{312} and the rapid development of gravitational-wave physics leads to new challenges for theoretical physics. Precision computations of gravitational-wave templates are necessary for interpreting data from LIGO \cite{313}, VIRGO \cite{314} and similar experiments. While numerical relativity is necessary to describe the final stages of a merger, this approach is computationally expensive. Hence, there is a high demand for efficient analytic methods, particularly for the so-called inspiral phase of the merger in which the two compact object emitting gravitational waves (i.e., black holes or neutron stars) are still well separated. It should be
noted that, in the mergers that lead to gravitational waves observed by LIGO and similar experiments, the inspiral phase accounts by far for the largest portion of the observed signal.

Among the various analytic approaches that have been developed to carry out calculations relevant to gravitational-wave physics, the ones most closely related to HiSGRA draw from the EFT framework. These approaches describe well-separated black holes with an effective worldline theory of point masses coupled to gravity (see Refs. \[315-317\] for their foundations). While worldline EFT techniques give results in a post-Newtonian expansion (i.e., weak fields, non-relativistic velocities), more recently, methods based on scattering amplitudes have also been developed. These approaches build on techniques developed for scattering amplitude calculations in relativistic quantum field theories and give results which are naturally organized in a post-Minkowskian expansion (i.e. an expansion in Newton’s constant). A full account of the application of amplitude methods to calculations related to gravitational-wave physics is beyond the scope of this paper; the interested reader should refer to the white paper \[318\] (see also Ref. \[319\] for an overview of modern methods for amplitudes in gravity).

The standard route to obtain the effective Hamiltonian of a binary system requires matching the classical limit of a QFT amplitude with the amplitude calculated from an EFT with free parameters (see, e.g., Ref. \[320-322\]). This matching calculation allows to fix the desired two-body effective Hamiltonian, which can then be used to describe the bound system and obtain the desired gravitational-wave template. Alternative procedures have also been formulated that allow to obtain data for bound orbits by analytic continuation \[323\]. However, the field theory employed to calculate amplitudes in the classical limit needs to be chosen carefully. In case of mergers in which the black holes do not carry spin, a theory with massive scalars is sufficient—indeed many of the results from amplitude methods are obtained in this case, including results up to $O(G^4)$ \[324, 325\].

An important open problem is the inclusion of spin effects in the amplitude framework (see also Ref. \[326\] for a comprehensive review of spin effects in the post-Newtonian expansion using worldline EFTs and Refs. \[327, 336\] for recent results using worldline approaches). Some results for spin corrections to the two-body effective potential for a binary system were carried out in Refs. \[139-141, 143, 337-344\]. One of the major challenges that have emerged is however identifying the correct QFT of massive spinning fields that needs to be used to compute the correct scattering amplitudes. Scattering amplitudes corresponding to a spinning (Kerr) black hole emitting a graviton are known at three points \[138, 142, 339\]. However, higher point (Compton) amplitudes between massive fields of generic spin and two or more gravitons are necessary for precision calculations, and these amplitudes are affected by a contact-term ambiguity. Attempts to resolve this ambiguity were carried out in Refs. \[144, 342, 345\], but research in this direction is ongoing. This is precisely where the HiSGRA framework is necessary—identifying from physical principles the correct action to model the coupling of spinning black-holes to gravity would provide the building-blocks necessary for applying amplitude methods to problems in gravitational radiation. By providing a gauge-invariant description of massive higher spin particles, HiSGRA gives systematic tools for tackling this problem \[197, 277, 280\]. The fact that HiSGRA
might be applied to solve challenging problems in amplitudes and gravitational radiation is indicative of its close connection with other subfields in theoretical and gravitational physics and underlines the potential for mutually-beneficial synergies.

3.5 Non-relativistic Higher Spin Symmetry

The quantum many-body problem of a non-relativistic two-component Fermi gas with short-range attractive interactions is a longstanding problem in condensed matter physics. At low temperature, the system is known to be superfluid and undergoes a smooth crossover from the Bardeen-Cooper-Schrieffer (BCS) to the Bose-Einstein-Condensate (BEC) regime as the two-body attraction is increased. In particular, there is a specific regime in between BCS and BEC, known as the “unitary Fermi gas” of special theoretical interest because, on the one hand, it is strongly coupled and no obvious small parameter is available precluding the reliable application of a perturbative expansion but, on the other hand, a characteristic of the unitary Fermi gas in vacuum is its invariance under the Schrödinger group, which extends the Galilean group of non-relativistic symmetries by scale transformations and expansions (a non-relativistic analogue of special conformal transformations). This non-relativistic conformal symmetry of the unitary Fermi gas allowed to apply the methods of gauge-gravity duality to this system. While these seminal papers triggered an intensive search for the holographic duals of various non-relativistic systems originating from condensed matter physics, a holographic description of the unitary fermions still remains tantalising. In , inspired by the method of null dimensional reduction and the conjectured AdS dual of the free/critical $O(N)$ model, a holographic dual description of the ideal/unitary Fermi gas was attempted. However, the corresponding bulk gravity theory remains elusive; it deserves further investigations and possible improvements.

Another route to apply gauge-gravity techniques to condensed matter systems was pioneered in : the key idea is to study systems that display a different conformal-like extension of the Galilei algebra that, differently from the Schrödinger algebra, can be obtained from the contraction of the relativistic conformal algebra. Recently, a higher spin extension of the conformal Galilei algebra was proposed and this may pave the way to the holographic description of other condensed-matter systems with infinite-dimensional symmetries, along the lines of the quantum Hall effect.

More generally, there is a number of condensed matter systems, e.g. massive Chern-Simons matter theories, fractons, Kondo systems, unitary Fermi gas and quantum Hall effect, where it could be possible to either directly exploit (possibly, slightly-broken) higher spin symmetry or to apply many higher spin techniques developed to work with tensorial degrees of freedom. In fact, in several 2+1 dimensional Chern–Simons models were constructed that describe in a unified way fractional-spin fields coupled to tensorial higher-spin gravity and internal non-abelian gauge fields. The second quantisation of fractional-spin fields leads to anyons, therefore the results of suggest the...
possibility of a dual HiSGRA description of anyons. Finally, thanks to the remarkable simplifications displayed by higher-spin theories in three dimensions, various non-relativistic holographic setups have been proposed in that context [360–363].

3.6 Higher Spin Gravity and Mathematics

Deformation quantization, non-commutative geometry. Higher spin symmetries have long been known to result from the canonical Deformation Quantization of Poisson manifolds or alternatively (and equivalently), as algebras of higher symmetries of free field equations of motion [55, 169, 225, 364]. However, gauging higher spin symmetry leads to new twists that correspond to an extensions of Deformation Quantization — Deformation Quantization of Poisson Orbifolds, which is still an open problem in mathematics. It is not even clear what would be the proper analog of Kontsevich formality for Poisson Orbifolds [365, 366]. Nevertheless, some simple cases of Weyl algebras extended with various groups of symplectomorphisms were treated by different methods [230, 367–378]. The latter provides a great number of examples that are both useful for HiSGRA applications and can lead to the development of new techniques for deformation quantization.

Geometry of Gauge Theories. From its early days HiSGRA was challenging the mathematical foundations of QFT and now continues to do so. A characteristic feature of HiSGRA models is the intricate interplay between the spacetime and field-space geometry, rigid and gauge symmetries, and somewhat generalised notion of locality and variational principle. All these call for developing an adequate quantization formalism unifying the existing BV-BRST-like approaches [171–173, 379–381], including AKSZ sigma models, and frame-like formulations and extending them beyond the standard jet-bundle setting and covering local gauge theories on manifolds with (asymptotic) boundaries. Interesting results in this direction have been already obtained in [171, 172, 247, 379, 382].

A proper BV-BRST-like description of background fields and background independence [232, 247, 383, 388] is expected to uncover the still somewhat elusive higher spin geometry [254, 255]. These developments are also expected to shed some light on the relation of HiSGRA to string (field) theory and its background independence.

Applications to HiSGRA have also resurrected the interest in the inverse problem of variational calculus, especially in the context of gauge systems [173, 382, 389, 392], and has triggered the development of the presymplectic AKSZ approach [173, 393, 394] which turned out remarkably fruitful [395] in the HiSGRA context. Promising future directions include developing efficient quantization scheme for presymplectic AKSZ systems.

AKSZ quantization of Formal HiSGRA. The BV-BRST extension of the formal HiSGRA’s (most notably of the original Vasiliev’s equations) naturally has the form of an AKSZ sigma model [390, 395, 397]. While Fronsdal’s formulation of higher spin gravity is based on a perturbative expansion
around AdS with observables given by Witten diagrams, it was shown in [22], under natural assumptions, that Vasiliev’s classical field equations, which provide a fully nonlinear background independent formulation of HiSGRA, does not lend itself to computation of such diagrams. Instead, thinking of the moduli space of this version of higher spin theory as deformations of fibered noncommutative background geometries of first-quantized models [398] — which rhymes well with [395] — leads to second-quantized AKSZ sigma models [249, 255] formulated directly in terms of the higher spin master fields, interpreted as horizontal forms. It has been proposed that their effective actions have perturbative expansions in terms of zero-form charges [257] reproducing the first-quantized amplitudes [83] known to give rise to the desired holographic higher spin amplitudes once evaluated on states in appropriate representations [57–60, 238, 399]. The completion of this perturbative scheme already at tree-level remains an interesting open problem.

Conformal (higher spin) Geometry. Conformal geometry is one of oldest branches of mathematics, yet it is still full of open problems that are easy to formulate. The most basic questions are about classification of conformal invariants and, closely related to them, conformal anomalies and conformally invariant differential operators. Even though most of the physics is not conformally invariant (in the sense of conformal geometry, i.e., with respect to local Weyl transformations), conformal geometry has surprisingly many connections to theoretical physics.

One existing class of HiSGRA, conformal HiSGRA [265–267], opens up new ways of approaching these old problems. By its very definition, each conformal HiSGRA, being a higher spin extension of conformal gravity, leads to a variety of conformally-invariant operators [400–406]. Conformal HiSGRA also gives a new perspective on conformal geometry since the conformal symmetries become a subalgebra of higher spin transformations. Moreover, the HiSGRA naturally leads to a higher spin extension of (conformal) geometry [250, 251, 265, 267, 401].

Twistor theory. Twistor theory is well adapted to self-dual backgrounds and theories. It had also been somewhat ahead of the main higher spin developments by offering a number of important results that are valid for fields of any spin [180–183, 407]. The recently constructed self-dual higher spin theories [25, 268, 408, 409] together with higher spin extensions of self-dual Yang-Mills and self-dual gravity theories [184, 410] point towards twistor methods being relevant and set new challenges for twistor theory. For example, Chiral higher spin gravity is a generalisation of both of self-dual Yang-Mills and self-dual Gravity theories and, in fact, it shares many features with them. One crucial property of SDYM and SDGR is that they are integrable systems, a property made manifest through their reformulation in twistor space — this is the content of Ward’s Theorem for SDYM [411] and Penrose non-linear graviton theorem for SDGR [412]. What is more, twistor variational principles for these theories have been useful to derive features of the corresponding scattering amplitudes that are otherwise inaccessible (see, e.g., reviews [413, 414]). This begs the questions: could it be that
Chiral HiSGRA (and its non-chiral completion) admit covariant variational principles in twistor space (possibly without any spacetime equivalent)? If so, what could this geometrical reformulation in twistor space tell us about HiSGRA? The same questions apply to the four-dimensional conformal HiSGRA and its self-dual truncations [408][409].

4 Outlook

In this brief review, we have provided a partial list of results achieved so far in higher spin theory, exciting recent progress, and selected topics for future directions. Higher spin theories are expected to have impact on how we treat quantum gravity, spacetime and black holes, in a way that differs profoundly from the treatment of Einstein’s gravity. In particular, higher spin symmetries, non-localities and non-commutative extension of spacetime play key roles in their description, and several mathematical developments that emerge in the study of higher spin theories have the potential of boosting the interface with the mathematics discipline.

Acknowledgments

We are grateful to Yannick Herfray and Per Sundell for valuable contributions to this review. A.C. and E.S. are Research Associates of the Fund for Scientific Research (FNRS), Belgium. The work of N.B. was partially supported by FNRS under Grant No. T.0022.19. The work of A.C. was partially supported by FNRS under Grant No. F.4503.20. The work of E.S. was partially supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 101002551) and by FNRS under Grant No. F.4544.21. The work of E.Se. is supported in part by the NSF grants PHY-1803875 and PHYS-2112859. The work of M.C. is supported by the Swedish Research Council under grant 2019-05283.

Bibliography

[1] P. Van Nieuwenhuizen, “Supergravity,” Phys. Rept. 68 (1981) 189–398
[2] H. Nicolai, “Quantum Gravity: the view from particle physics,” Fundam. Theor. Phys. 177 (2014) 369–387, arXiv:1301.5481 [gr-qc]
[3] E. S. Fradkin, “The problem of unification of all interactions and self-consistency.” Talk presented for the reception of the Dirac medal (Trieste, 1989).
[4] N. Boulanger, T. Damour, L. Gualtieri, and M. Henneaux, “Inconsistency of interacting, multigraviton theories,” Nucl. Phys. B597 (2001) 127–171, arXiv:hep-th/0007220
[5] C. Fronsdal, “Massless fields with integer spin,” Phys. Rev. D18 (1978) 3624
[6] M. Flato and C. Fronsdal, “One Massless Particle Equals Two Dirac Singletons: Elementary Particles in a Curved Space. 6.,” Lett.Math.Phys. 2 (1978) 421–426
[7] E. S. Fradkin and M. A. Vasiliev, “Candidate to the role of higher spin symmetry,” *Ann. Phys.* **177** (1987) 63.

[8] S. E. Konstein and M. A. Vasiliev, “Extended higher spin superalgebras and their massless representations,” *Nucl. Phys.* **B331** (1990) 475–499.

[9] M. A. Vasiliev, “Consistent equation for interacting gauge fields of all spins in (3+1)-dimensions,” *Phys. Lett.* **B243** (1990) 378–382.

[10] R. R. Metsaev, “Poincare invariant dynamics of massless higher spins: Fourth order analysis on mass shell,” *Mod. Phys. Lett.* **A6** (1991) 359–367.

[11] R. R. Metsaev, “S matrix approach to massless higher spins theory. 2: The Case of internal symmetry,” *Mod. Phys. Lett.* **A6** (1991) 2411–2421.

[12] J. Maldacena and A. Zhiboedov, “Constraining Conformal Field Theories with A Higher Spin Symmetry,” *J. Phys. A* **46** (2013) 214011, arXiv:1112.1016 [hep-th].

[13] N. Boulanger, D. Ponomarev, E. D. Skvortsov, and M. Taronna, “On the uniqueness of higher-spin symmetries in AdS and CFT,” *Int. J. Mod. Phys.* **A28** (2013) 1350162, arXiv:1305.5180 [hep-th].

[14] V. Alba and K. Diab, “Constraining conformal field theories with a higher spin symmetry in d > 3 dimensions,” *JHEP* **03** (2016) 044, arXiv:1510.02535 [hep-th].

[15] S. Weinberg, “Photons and Gravitons in S Matrix Theory: Derivation of Charge Conservation and Equality of Gravitational and Inertial Mass,” *Phys. Rev.* **135** (1964) B1049–B1056.

[16] S. R. Coleman and J. Mandula, “All Possible Symmetries of the S Matrix,” *Phys. Rev.* **159** (1967) 1251–1256.

[17] P. Benincasa and F. Cachazo, “Consistency Conditions on the S-Matrix of Massless Particles,” arXiv:0705.4305 [hep-th].

[18] M. Porrati, “Universal Limits on Massless High-Spin Particles,” *Phys. Rev. D* **78** (2008) 065016, arXiv:0804.4672 [hep-th].

[19] X. Bekaert, N. Boulanger, and S. Leclercq, “Strong obstruction of the Berends-Burgers-van Dam spin-3 vertex,” *J. Phys. A* **46** (2013) 214011, arXiv:1112.1016 [hep-th].

[20] X. Bekaert, N. Boulanger, and P. Sundell, “How higher-spin gravity surpasses the spin two barrier: no-go theorems versus yes-go examples,” *Rev. Mod. Phys.* **84** (2012) 987–1000, arXiv:1007.0435 [hep-th].

[21] A. Fotopoulos and M. Tsulaia, “On the Tensionless Limit of String theory, Off - Shell Higher Spin Interaction Vertices and BCFW Recursion Relations,” *JHEP* **11** (2010) 086, arXiv:1009.0727 [hep-th].

[22] N. Boulanger, P. Kessel, E. D. Skvortsov, and M. Taronna, “Higher spin interactions in four-dimensions: Vasiliev versus Fronsdal,” *J. Phys. A* **49** no. 9, (2016) 095402, arXiv:1508.04139 [hep-th].

[23] R. Roiban and A. A. Tseytlin, “On four-point interactions in massless higher spin theory in flat space,” *JHEP* **04** (2017) 139, arXiv:1701.05773 [hep-th].

[24] C. Sleight and M. Taronna, “Higher-Spin Gauge Theories and Bulk Locality,” *Phys. Rev. Lett.* **121** no. 17, (2018) 171604, arXiv:1704.07859 [hep-th].

[25] D. Ponomarev, “Chiral Higher Spin Theories and Self-Duality,” *JHEP* **12** (2017) 141, arXiv:1710.00270 [hep-th].

[26] D. Ponomarev, “A Note on (Non)-Locality in Holographic Higher Spin Theories,” *Universe* **4** no. 1, (2018) 2, arXiv:1710.00403 [hep-th].

[27] M. R. Gaberdiel, R. Gopakumar, T. Hartman, and S. Raju, “Partition Functions of Holographic Minimal Models,” *JHEP* **08** (2011) 077, arXiv:1106.1897 [hep-th].

[28] S. Giombi and I. R. Klebanov, “One Loop Tests of Higher Spin AdS/CFT,” *JHEP* **12** (2013) 068, arXiv:1308.2337 [hep-th].
[29] A. A. Tseytlin, “On partition function and Weyl anomaly of conformal higher spin fields,” Nucl. Phys. B877 (2013) 598–631, arXiv:1309.0785 [hep-th].

[30] A. A. Tseytlin, “Weyl anomaly of conformal higher spins on six-sphere,” Nucl. Phys. B877 (2013) 632–646, arXiv:1310.1795 [hep-th].

[31] S. Giombi, I. R. Klebanov, and B. R. Safdi, “Higher Spin AdS\textsubscript{d+1}/CFT\textsubscript{d} at One Loop,” Phys. Rev. D89 no. 8, (2014) 084004, arXiv:1402.5396 [hep-th].

[32] S. Giombi, I. R. Klebanov, and A. A. Tseytlin, “Partition Functions and Casimir Energies in Higher Spin AdS\textsubscript{d+1}/CFT\textsubscript{d},” Phys. Rev. D90 no. 2, (2014) 024048, arXiv:1402.5396 [hep-th].

[33] M. Beccaria, X. Bekaert, and A. A. Tseytlin, “Partition function of free conformal higher spin theory,” JHEP 08 (2014) 113, arXiv:1406.3542 [hep-th].

[34] M. Beccaria and A. A. Tseytlin, “Higher spins in AdS\textsubscript{5} at one loop: vacuum energy, boundary conformal anomalies and AdS/CFT,” JHEP 11 (2014) 114, arXiv:1410.3273 [hep-th].

[35] M. Beccaria and A. A. Tseytlin, “Vectorial AdS\textsubscript{5}/CFT\textsubscript{4} duality for spin-one boundary theory,” J. Phys. A47 no. 49, (2014) 492001, arXiv:1410.4457 [hep-th].

[36] T. Basile, X. Bekaert, and N. Boulanger, “Flato-Fronsdal theorem for higher-order singletons,” JHEP 11 (2014) 131, arXiv:1410.7668 [hep-th].

[37] M. Beccaria, G. Macorini, and A. A. Tseytlin, “Supergravity one-loop corrections on AdS\textsubscript{5} and AdS\textsubscript{3}, higher spins and AdS/CFT,” Nucl. Phys. B892 (2015) 211–238, arXiv:1412.0489 [hep-th].

[38] M. Beccaria and A. A. Tseytlin, “On higher spin partition functions,” J. Phys. A48 no. 27, (2015) 275401, arXiv:1503.08143 [hep-th].

[39] M. Beccaria and A. A. Tseytlin, “Iterating free-field AdS/CFT: higher spin partition function relations,” J. Phys. A49 no. 29, (2016) 295401, arXiv:1602.00948 [hep-th].

[40] J.-B. Bae, E. Joung, and S. Lal, “One-loop test of free SU(N) adjoint model holography,” JHEP 04 (2016) 061, arXiv:1603.05387 [hep-th].

[41] J.-B. Bae, E. Joung, and S. Lal, “On the Holography of Free Yang-Mills,” JHEP 10 (2016) 074, arXiv:1607.07651 [hep-th].

[42] E. D. Skvortsov and T. Tran, “AdS/CFT in Fractional Dimension and Higher Spin Gravity at One Loop,” Universe 3 no. 3, (2017) 61, arXiv:1707.00758 [hep-th].

[43] I. R. Klebanov and A. M. Polyakov, “AdS dual of the critical O(N) vector model,” Phys. Lett. B550 (2002) 213–219, arXiv:hep-th/0210114.

[44] R. G. Leigh and A. C. Petkou, “Holography of the N=1 higher spin theory on AdS(4),” JHEP 0306 (2003) 011, arXiv:hep-th/0304217 [hep-th].

[45] E. Sezgin and P. Sundell, “Holography in 4D (super) higher spin theories and a test via cubic scalar couplings,” JHEP 0507 (2005) 044, arXiv:hep-th/0305040 [hep-th].

[46] S. Giombi, S. Minwalla, S. Prakash, S. P. Trivedi, S. R. Wadia, and X. Yin, “Chern-Simons Theory with Vector Fermion Matter,” Eur. Phys. J. C72 (2012) 2112, arXiv:1101.4386 [hep-th].

[47] D. Ponomarev and A. A. Tseytlin, “On quantum corrections in higher-spin theory in flat space,” JHEP 05 (2016) 184, arXiv:1603.06273 [hep-th].

[48] D. Ponomarev, E. Sezgin, and E. Skvortsov, “On one loop corrections in higher spin gravity,” JHEP 11 (2019) 138, arXiv:1904.01042 [hep-th].

[49] E. Joung, S. Nakach, and A. A. Tseytlin, “Scalar scattering via conformal higher spin exchange,” JHEP 02 (2016) 125, arXiv:1512.08896 [hep-th].
[50] M. Beccaria, S. Nakach, and A. A. Tseytlin, “On triviality of S-matrix in conformal higher spin theory,” *JHEP* **09** (2016) 034, arXiv:1607.06379 [hep-th].

[51] T. Adamo, S. Nakach, and A. A. Tseytlin, “Scattering of conformal higher spin fields,” *JHEP* **07** (2018) 016, arXiv:1805.00394 [hep-th].

[52] E. D. Skvortsov, T. Tran, and M. Tsulaia, “Quantum Chiral Higher Spin Gravity,” *Phys. Rev. Lett.* **121** no. 3, (2018) 031601, arXiv:1805.00048 [hep-th].

[53] E. Skvortsov, T. Tran, and M. Tsulaia, “More on Quantum Chiral Higher Spin Gravity,” *Phys. Rev.* **D101** no. 10, (2020) 106001, arXiv:2002.08487 [hep-th].

[54] E. Skvortsov and T. Tran, “One-loop Finiteness of Chiral Higher Spin Gravity,” *JHEP* **07** (2020) 021, arXiv:2004.10797 [hep-th].

[55] M. G. Eastwood, “Higher symmetries of the Laplacian,” *Annals Math.* **161** (2005) 1645–1665, arXiv:hep-th/0206233 [hep-th].

[56] V. Alba and K. Diab, “Constraining conformal field theories with a higher spin symmetry in d=4,” arXiv:1307.8092 [hep-th].

[57] N. Colombo and P. Sundell, “Higher Spin Gravity Amplitudes From Zero-form Charges,” arXiv:1208.3880 [hep-th].

[58] V. Didenko and E. Skvortsov, “Exact higher-spin symmetry in CFT: all correlators in unbroken Vasiliev theory,” *JHEP* **1304** (2013) 158, arXiv:1210.7963 [hep-th].

[59] V. E. Didenko, J. Mei, and E. D. Skvortsov, “Exact higher-spin symmetry in CFT: free fermion correlators from Vasiliev Theory,” *Phys. Rev.* **D88** (2013) 046001, arXiv:1301.4166 [hep-th].

[60] R. Bonezzi, N. Boulanger, D. De Filippi, and P. Sundell, “Noncommutative Wilson lines in higher-spin theory and correlation functions of conserved currents for free conformal fields,” *J. Phys.* **A50** no. 47, (2017) 475401, arXiv:1705.03928 [hep-th].

[61] J. Maldacena and A. Zhiboedov, “Constraining conformal field theories with a slightly broken higher spin symmetry,” *Class. Quant. Grav.* **30** (2013) 104003, arXiv:1204.3882 [hep-th].

[62] S. Giombi, V. Gurucharan, V. Kirilin, S. Prakash, and E. Skvortsov, “On the Higher-Spin Spectrum in Large N Chern-Simons Vector Models,” *JHEP* **01** (2017) 058, arXiv:1610.08472 [hep-th].

[63] G. J. Turiaci and A. Zhiboedov, “Veneziano Amplitude of Vasiliev Theory,” *JHEP* **10** (2018) 034, arXiv:1802.04390 [hep-th].

[64] E. Skvortsov, “Light-Front Bootstrap for Chern-Simons Matter Theories,” *JHEP* **06** (2019) 058, arXiv:1811.12333 [hep-th].

[65] Z. Li, “Bootstrapping conformal four-point correlators with slightly broken higher spin symmetry and 3D bosonization,” *JHEP* **10** (2020) 007, arXiv:1906.05834 [hep-th].

[66] R. R. Kalloor, “Four-point functions in large N Chern-Simons fermionic theories,” *JHEP* **10** (2020) 028, arXiv:1910.14617 [hep-th].

[67] J. A. Silva, “Four point functions in CFT’s with slightly broken higher spin symmetry,” *JHEP* **05** (2021) 097, arXiv:2103.00275 [hep-th].

[68] S. Jain and R. R. John, “Relation between parity-even and parity-odd CFT correlation functions in three dimensions,” *JHEP* **12** (2021) 067, arXiv:2107.00695 [hep-th].

[69] A. Sharapov and E. Skvortsov, “A_∞ algebras from slightly broken higher spin symmetries,” *JHEP* **09** (2019) 024, arXiv:1809.10027 [hep-th].
[70] P. Gerasimenko, A. Sharapov, and E. Skvortsov, “Slightly broken higher spin symmetry: general structure of correlators,” *JHEP* **01** (2022) 097, arXiv:2108.05441 [hep-th]

[71] D. J. Gross and P. F. Mende, “The High-Energy Behavior of String Scattering Amplitudes,” *Phys. Lett. B* **197** (1987) 129–134

[72] D. J. Gross and P. F. Mende, “String Theory Beyond the Planck Scale,” *Nucl. Phys. B* **303** (1988) 407–454

[73] G. Bonelli, “On the tensionless limit of bosonic strings, infinite symmetries and higher spins,” *Nucl. Phys. B* **669** (2003) 159–172, arXiv:hep-th/0305155

[74] A. Sagnotti and M. Tsulaia, “On higher spins and the tensionless limit of string theory,” *Nucl. Phys. B* **682** (2004) 83–116, arXiv:hep-th/0311257

[75] A. Sagnotti, “Notes on Strings and Higher Spins,” *J. Phys. A* **46** (2013) 214006, arXiv:1112.4285 [hep-th]

[76] B. Sundborg, “Stringy gravity, interacting tensionless strings and massless higher spins,” *Nucl. Phys. Proc. Suppl.* **102** (2001) 113–119, arXiv:hep-th/0103247

[77] A. Mikhailov, “Notes on higher spin symmetries,” arXiv:hep-th/0201019

[78] E. Sezgin and P. Sundell, “Massless higher spins and holography,” *Nucl. Phys. B* **644** (2002) 303–370, arXiv:hep-th/0205131 [hep-th]

[79] G. Bonelli, “On the covariant quantization of tensionless bosonic strings in AdS space-time,” *JHEP* **11** (2003) 028, arXiv:hep-th/0309222 [hep-th]

[80] M. R. Gaberdiel and R. Gopakumar, “Higher Spins & Strings,” *JHEP* **11** (2014) 044, arXiv:1406.6103 [hep-th]

[81] M. R. Gaberdiel and R. Gopakumar, “String Theory as a Higher Spin Theory,” *JHEP* **09** (2016) 085, arXiv:1512.07237 [hep-th]

[82] S. S. Gubser, I. R. Klebanov, and A. M. Polyakov, “A Semiclassical limit of the gauge / string correspondence,” *Nucl. Phys. B* **636** (2002) 99–114, arXiv:hep-th/0204051

[83] J. Engquist and P. Sundell, “Brane partons and singleton strings,” *Nucl. Phys. B* **752** (2006) 206–279, arXiv:hep-th/0508124 [hep-th]

[84] J. Engquist, P. Sundell, and L. Tamassia, “On Singleton Composites in Non-compact WZW Models,” *JHEP* **02** (2007) 097, arXiv:hep-th/0701051

[85] C.-M. Chang, S. Minwalla, T. Sharma, and X. Yin, “ABJ Triality: from Higher Spin Fields to Strings,” *J. Phys. A* **46** (2013) 214009, arXiv:1207.4485 [hep-th]

[86] M. R. Gaberdiel and R. Gopakumar, “String Dual to Free N=4 Supersymmetric Yang-Mills Theory,” *Phys. Rev. Lett.* **127** no. 13, (2021) 131601, arXiv:2104.08263 [hep-th]

[87] M. R. Gaberdiel and R. Gopakumar, “Tensionless string spectra on AdS3,” *JHEP* **05** (2018) 085, arXiv:1803.04423 [hep-th]

[88] C. Aragone and S. Deser, “Hypersymmetry in D = 3 of Coupled Gravity Massless Spin 5/2 System,” *Class. Quant. Grav.* **1** (1984) L9

[89] M. Blencowe, “A Consistent Interacting Massless Higher Spin Field Theory in D = (2+1),” *Class. Quant. Grav.* **6** (1989) 443

[90] E. Bergshoeff, M. P. Blencowe, and K. S. Stelle, “Area Preserving Diffeomorphisms and Higher Spin Algebra,” *Commun. Math. Phys.* **128** (1990) 213

[91] M. Henneaux and S.-J. Rey, “Nonlinear W_∞ as Asymptotic Symmetry of Three-Dimensional Higher Spin Anti-de Sitter Gravity,” *JHEP* **1012** (2010) 007, arXiv:1008.4679 [hep-th]

20
[92] A. Campoleoni, S. Fredenhagen, S. Pfenninger, and S. Theisen, “Asymptotic symmetries of three-dimensional gravity coupled to higher-spin fields,” *JHEP* **1011** (2010) 007, arXiv:1008.4744 [hep-th]
[93] M. Gutperle and P. Kraus, “Higher Spin Black Holes,” *JHEP* **05** (2011) 022, arXiv:1103.4304 [hep-th]
[94] M. Ammon, M. Gutperle, P. Kraus, and E. Perlmutter, “Spacetime Geometry in Higher Spin Gravity,” *JHEP* **1110** (2011) 053, arXiv:1106.4788 [hep-th]
[95] M. R. Gaberdiel, T. Hartman, and K. Jin, “Higher Spin Black Holes from CFT,” *JHEP* **04** (2012) 103, arXiv:1203.0015 [hep-th]
[96] A. Perez, D. Tempo, and R. Troncoso, “Higher spin gravity in 3D: Black holes, global charges and thermodynamics,” *Phys. Lett. B* **726** (2013) 444-449, arXiv:1207.2844 [hep-th]
[97] A. Campoleoni, S. Fredenhagen, S. Pfenninger, and S. Theisen, “Towards metric-like higher-spin gauge theories in three dimensions,” *J. Phys.* **A46** (2013) 214017, arXiv:1208.1851 [hep-th]
[98] J. de Boer and J. I. Jottar, “Thermodynamics of higher spin black holes in AdS_3,” *JHEP* **01** (2014) 023, arXiv:1302.0816 [hep-th]
[99] C. Bunster, M. Henneaux, A. Perez, D. Tempo, and R. Troncoso, “Generalized Black Holes in Three-dimensional Spacetime,” *JHEP* **05** (2014) 031, arXiv:1404.3305 [hep-th]
[100] D. Grumiller, A. Perez, S. Prohazka, D. Tempo, and R. Troncoso, “Higher Spin Black Holes with Soft Hair,” *JHEP* **10** (2016) 119, arXiv:1607.05360 [hep-th]
[101] A. Castro, E. Hijano, A. Lepage-Jutier, and A. Maloney, “Black Holes and Singularity Resolution in Higher Spin Gravity,” *JHEP* **01** (2012) 031, arXiv:1110.4117 [hep-th]
[102] M. Ammon, A. Castro, and N. Iqbal, “Wilson Lines and Entanglement Entropy in Higher Spin Gravity,” *JHEP* **10** (2013) 110, arXiv:1306.4338 [hep-th]
[103] J. de Boer and J. I. Jottar, “Entanglement Entropy and Higher Spin Holography in AdS_3,” *JHEP* **04** (2014) 089, arXiv:1306.4347 [hep-th]
[104] E. Perlmutter, “Comments on Renyi entropy in AdS_3/CFT_2,” *JHEP* **05** (2014) 052, arXiv:1312.5740 [hep-th]
[105] J. de Boer, A. Castro, E. Hijano, J. I. Jottar, and P. Kraus, “Higher spin entanglement and W_N conformal blocks,” *JHEP* **07** (2015) 168, arXiv:1412.7520 [hep-th]
[106] E. Perlmutter, “Bounding the Space of Holographic CFTs with Chaos,” *JHEP* **10** (2016) 069, arXiv:1602.08272 [hep-th]
[107] P. Narayan and J. Yoon, “Chaos in Three-dimensional Higher Spin Gravity,” *JHEP* **07** (2019) 046, arXiv:1903.08761 [hep-th]
[108] L. F. Alday, J.-B. Bae, N. Benjamin, and C. Jorge-Diaz, “On the Spectrum of Pure Higher Spin Gravity,” *JHEP* **12** (2020) 001, arXiv:2009.01830 [hep-th]
[109] S. Zhao, C. Northe, K. Weisenberger, and R. Meyer, “Charged moments in W_3 higher spin holography,” *JHEP* **05** (2022) 166, arXiv:2202.11111 [hep-th]
[110] A. Campoleoni, “Higher Spins in $D = 2 + 1$,” *Subnucl. Ser.* **49** (2013) 385–396, arXiv:1110.5841 [hep-th]
[111] H. Afshar, A. Bagchi, R. Fareghbal, D. Grumiller, and J. Rosseel, “Spin-3 Gravity in Three-Dimensional Flat Space,” *Phys. Rev. Lett.* **111** no. 12, (2013) 121603, arXiv:1307.4768 [hep-th]
[112] H. A. Gonzalez, J. Matulich, M. Pino, and R. Troncoso, “Asymptotically flat spacetimes in three-dimensional higher spin gravity,” *JHEP* **09** (2013) 016, arXiv:1307.5651 [hep-th]
[113] C. N. Pope and P. K. Townsend, “Conformal Higher Spin in (2+1)-dimensions,” *Phys. Lett.* **B225** (1989) 245–250
E. S. Fradkin and V. Ya. Linetsky, “A Superconformal Theory of Massless Higher Spin Fields in $D = (2+1)$,” Mod. Phys. Lett. A4 (1989) 731 [Annals Phys.198.293(1990)].

M. Grigoriev, I. Lovrekovic, and E. Skvortsov, “New Conformal Higher Spin Gravities in 3d,” JHEP 01 (2020) 059 arXiv:1909.13305 [hep-th]

S. Prokushkin and M. A. Vasiliev, “Higher spin gauge interactions for massive matter fields in 3-D AdS space-time,” Nucl.Phys. B545 (1999) 385 arXiv:hep-th/9806236 [hep-th].

S. Prokushkin and M. A. Vasiliev, “Higher spin gauge interactions for massive matter fields in 3-D AdS space-time,” Nucl.Phys. B545 (1999) 385 arXiv:hep-th/9806236 [hep-th].

M. R. Gaberdiel and R. Gopakumar, “An AdS$_3$ Dual for Minimal Model CFTs,” Phys.Rev. D83 (2011) 066007 arXiv:1011.2986 [hep-th].

M. R. Gaberdiel and T. Hartman, “Symmetries of Holographic Minimal Models,” JHEP 05 (2011) 031 arXiv:1101.2910 [hep-th].

P. Kraus and E. Perlmutter, “Partition functions of higher spin black holes and their CFT duals,” JHEP 11 (2011) 061 arXiv:1108.2567 [hep-th].

T. Creutzig, Y. Hikida, and P. B. Ronne, “Higher spin AdS$_3$ supergravity and its dual CFT,” JHEP 02 (2012) 010 arXiv:1111.2139 [hep-th].

M. Ammon, P. Kraus, and E. Perlmutter, “Scalar fields and three-point functions in D=3 higher spin gravity,” JHEP 1207 (2012) 113 arXiv:1111.3926 [hep-th].

M. R. Gaberdiel and R. Gopakumar, “Triality in Minimal Model Holography,” JHEP 07 (2012) 127 arXiv:1205.2472 [hep-th].

S. Fredenhagen, O. Krüger, and K. Mkrtchyan, “Constraints for Three-Dimensional Higher-Spin Interactions and Conformal Correlators,” Phys. Rev. D100 no. 6, (2019) 066019 arXiv:1812.10462 [hep-th].

C.-M. Chang and X. Yin, “Higher Spin Gravity with Matter in AdS$_3$ and Its CFT Dual,” JHEP 1210 (2012) 024 arXiv:1106.2580 [hep-th].

A. Castro, R. Gopakumar, M. Gutperle, and J. Raeymaekers, “Conical Defects in Higher Spin Theories,” JHEP 02 (2012) 096 arXiv:1111.3381 [hep-th].

E. Perlmutter, T. Prochazka, and J. Raeymaekers, “The semiclassical limit of \mathcal{W}_N CFTs and Vasiliev theory,” JHEP 05 (2013) 007 arXiv:1210.8452 [hep-th].

K. B. Alkalaev, “Global and local properties of AdS$_3$ higher spin gravity,” JHEP 09 (2013) 036 arXiv:1305.4181 [hep-th].

L. Eberhardt, M. R. Gaberdiel, and R. Gopakumar, “The Worldsheet Dual of the Symmetric Product CFT,” JHEP 04 (2019) 103 arXiv:1904.5330 [hep-th].

K. B. Alkalaev, “On higher spin extension of the Jackiw-Teitelboim gravity model,” J. Phys. A 47 (2014) 365401 arXiv:1311.5119 [hep-th].

D. Grumiller, M. Leston, and D. Vassilevich, “Anti-de Sitter holography for gravity and higher spin theories in two dimensions,” Phys. Rev. D89 no. 4, (2014) 044001 arXiv:1311.7413 [hep-th].

K. B. Alkalaev, “Global and local properties of AdS$_3$ higher spin gravity,” JHEP 10 (2014) 122 arXiv:1404.5330 [hep-th].

K. Alkalaev and X. Bekaert, “On BF-type higher-spin actions in two dimensions,” JHEP 05 (2020) 158 arXiv:2002.02387 [hep-th].

H. A. González, D. Grumiller, and J. Salzer, “Towards a bulk description of higher spin SYK,” JHEP 05 (2018) 083 arXiv:1802.01562 [hep-th].

K. Alkalaev and X. Bekaert, “Towards higher-spin AdS$_3$/CFT$_1$ holography,” JHEP 04 (2020) 206 arXiv:1911.13212 [hep-th].
S. Datta, “The Schwarzian sector of higher spin CFTs,” JHEP 04 (2021) 171, arXiv:2101.04980 [hep-th]

C. Peng, “$N = (0, 2)$ SYK, Chaos and Higher-Spins,” JHEP 12 (2018) 065, arXiv:1805.09325 [hep-th]

J. Kruthoff, “Higher spin JT gravity and a matrix model dual,” arXiv:2204.09685 [hep-th]

N. Arkani-Hamed, T.-C. Huang, and Y.-t. Huang, “Scattering amplitudes for all masses and spins,” JHEP 11 (2021) 070, arXiv:1709.04891 [hep-th]

A. Guevara, A. Ochirov, and J. Vines, “Scattering of Spinning Black Holes from Exponentiated Soft Factors,” JHEP 09 (2019) 056, arXiv:1812.06895 [hep-th]

B. Maybee, D. O’Connell, and J. Vines, “Observables and amplitudes for spinning particles and black holes,” JHEP 12 (2019) 156, arXiv:1906.09260 [hep-th]

A. Guevara, A. Ochirov, and J. Vines, “Black-hole scattering with general spin directions from minimal-coupling amplitudes,” Phys. Rev. D 100 no. 10, (2019) 104024, arXiv:1906.10071 [hep-th]

N. Arkani-Hamed, Y.-t. Huang, and D. O’Connell, “Kerr black holes as elementary particles,” JHEP 01 (2020) 046, arXiv:1906.10100 [hep-th]

Z. Bern, A. Luna, R. Roiban, C.-H. Shen, and M. Zeng, “Spinning black hole binary dynamics, scattering amplitudes, and effective field theory,” Phys. Rev. D 104 no. 6, (2021) 065014, arXiv:2005.03071 [hep-th]

M. Chiodaroli, H. Johansson, and P. Pichini, “Compton black-hole scattering for $s \leq 5/2$,” JHEP 02 (2022) 156, arXiv:2010.07799 [hep-th]

L. P. S. Singh and C. R. Hagen, “Lagrangian formulation for arbitrary spin. 1. the boson case,” Phys. Rev. D 9 (1974) 898–909

L. P. S. Singh and C. R. Hagen, “Lagrangian formulation for arbitrary spin. 2. the fermion case,” Phys. Rev. D 9 (1974) 910–920

J. Fang and C. Fronsdal, “Massless Fields with Half Integral Spin,” Phys. Rev. D18 (1978) 3630

B. de Wit and D. Z. Freedman, “Systematics of Higher Spin Gauge Fields,” Phys. Rev. D 21 (1980) 358

C. Aragone and S. Deser, “Consistency Problems of Hypergravity,” Phys. Lett. 86B (1979) 161–163

C. Aragone and S. Deser, “Higher Spin Vierbein Gauge Fermions and Hypergravities,” Nucl. Phys. B170 (1980) 329–352

M. A. Vasiliev, “Gauge’ form of description of massless fields with arbitrary spin,” Sov. J. Nucl. Phys. 32 (1980) 439.

E. S. Fradkin and M. A. Vasiliev, “Cubic Interaction in Extended Theories of Massless Higher Spin Fields,” Nucl. Phys. B291 (1987) 141

V. E. Lopatin and M. A. Vasiliev, “Free massless bosonic fields of arbitrary spin in d-dimensional de sitter space,” Mod. Phys. Lett. A3 (1988) 257

Y. Zinoviev, “Spin 3 cubic vertices in a frame-like formalism,” JHEP 1008 (2010) 084, arXiv:1007.0158 [hep-th]

N. Boulanger, D. Ponomarev, and E. Skvortsov, “Non-abelian cubic vertices for higher-spin fields in anti-de Sitter space,” JHEP 1305 (2013) 008, arXiv:1211.6979 [hep-th]

A. K. H. Bengtsson, I. Bengtsson, and L. Brink, “Cubic interaction terms for arbitrary spin,” Nucl. Phys. B227 (1983) 31

A. K. H. Bengtsson, I. Bengtsson, and L. Brink, “Cubic interaction terms for arbitrarily extended Supermultiplets,” Nucl. Phys. B227 (1983) 41

A. K. H. Bengtsson, I. Bengtsson, and N. Linden, “Interacting Higher Spin Gauge Fields on the Light Front,” Class. Quant. Grav. 4 (1987) 1333.
[159] R. R. Metsaev, “Cubic interaction vertices for massive and massless higher spin fields,” [Nucl. Phys. B759 (2006) 147–201] arXiv:hep-th/0512342

[160] R. R. Metsaev, “Light-cone gauge cubic interaction vertices for massless fields in AdS(4),” [Nucl. Phys. B936 (2018) 320–351] arXiv:1807.07542 [hep-th].

[161] M. A. Vasiliev, “Consistent equations for interacting massless fields of all spins in the first order in curvatures,” Annals Phys. 190 (1989) 59–106.

[162] M. A. Vasiliev, “Properties of equations of motion of interacting gauge fields of all spins in (3+1)-dimensions,” Class. Quant. Grav. 8 (1991) 1387–1417.

[163] X. Bekaert, S. Cnockaert, C. Iazeolla, and M. A. Vasiliev, “Nonlinear higher spin theories in various dimensions,” in 1st Solvay Workshop on Higher Spin Gauge Theories, pp. 132–197. 2004. arXiv:hep-th/0503128.

[164] D. Sullivan, “Infinitesimal computations in topology,” Publ. Math. IHES 47 (1977) 269–331.

[165] R. D’Auria, P. Fre, and T. Regge, “Graded Lie Algebra Cohomology and Supergravity,” Rev. Nuovo Cim. 3N12 (1980).

[166] P. van Nieuwenhuizen, “Free graded differential superalgebras.” Group Theoretical Methods in Physics. Proceedings, 11th International Colloquium, Istanbul, Turkey, August 23-28, 1982, 1982.

[167] G. Barnich, M. Grigoriev, A. Semikhatov, and I. Tipunin, “Parent field theory and unfolding in BRST first-quantized terms,” Commun. Math. Phys. 260 (2005) 147–181 arXiv:hep-th/0406192 [hep-th].

[168] G. Barnich and M. Grigoriev, “Parent form for higher spin fields on anti-de Sitter space,” JHEP 0608 (2006) 013 arXiv:hep-th/0602166 [hep-th].

[169] X. Bekaert and M. Grigoriev, “Manifestly conformal descriptions and higher symmetries of bosonic singletons,” SIGMA 6 (2010) 038 arXiv:0907.3195 [hep-th].

[170] K. B. Alkalaev and M. Grigoriev, “Unified BRST description of AdS gauge fields,” Nucl. Phys. B835 (2010) 197–220 arXiv:0910.2690 [hep-th].

[171] G. Barnich and M. Grigoriev, “First order parent formulation for generic gauge field theories,” JHEP 1101 (2011) 122 arXiv:1009.0190 [hep-th].

[172] M. Grigoriev, “Parent formulation at the Lagrangian level,” JHEP 07 (2011) 061 arXiv:1012.1903 [hep-th].

[173] K. B. Alkalaev and M. Grigoriev, “Frame-like Lagrangians and presymplectic AKSZ-type sigma models,” Int. J. Mod. Phys. A29 no. 18, (2014) 1450103 arXiv:1312.5296 [hep-th].

[174] M. Alexandrov, M. Kontsevich, A. Schwarz, and O. Zaboronsky, “The Geometry of the Master Equation and Topological Quantum Field Theory,” Int. J. Mod. Phys. A12 (1997) 1405–1429 arXiv:hep-th/9502010 [hep-th].

[175] D. Francia, “String theory triplets and higher-spin curvatures,” Phys. Lett. B 690 (2010) 90–95 arXiv:1001.5003 [hep-th].

[176] A. Campoleoni and D. Francia, “Maxwell-like Lagrangians for higher spins,” JHEP 03 (2013) 168 arXiv:1206.5877 [hep-th].

[177] D. Francia, S. L. Lyakhovich, and A. A. Sharapov, “On the gauge symmetries of Maxwell-like higher-spin Lagrangians,” Nucl. Phys. B 881 (2014) 248–268 arXiv:1310.8589 [hep-th].

[178] X. Bekaert, N. Boulanger, and D. Francia, “Mixed-symmetry multiplets and higher-spin curvatures,” J. Phys. A 48 no. 22, (2015) 225401 arXiv:1501.02462 [hep-th].

[179] D. Francia, G. L. Monaco, and K. Mkrtchyan, “Cubic interactions of Maxwell-like higher spins,” JHEP 04 (2017) 068 arXiv:1611.00292 [hep-th].
[180] R. Penrose, “Zero rest mass fields including gravitation: Asymptotic behavior,” Proc. Roy. Soc. Lond. A 284 (1965) 159.

[181] L. P. Hughston, R. S. Ward, M. G. Eastwood, M. L. Ginsberg, A. P. Hodges, S. A. Huggett, T. R. Hurd, R. O. Jozsa, R. Penrose, A. Popovich, et al., eds., Advances in twistor theory. 1979.

[182] M. G. Eastwood, R. Penrose, and R. O. Wells, “Cohomology and Massless Fields,” Commun. Math. Phys. 78 (1981) 305–351.

[183] N. M. J. Woodhouse, “Real methods in twistor theory,” Class. Quant. Grav. 2 (1985) 257–291.

[184] K. Krasnov, E. Skvortsov, and T. Tran, “Actions for self-dual Higher Spin Gravities,” JHEP 08 (2021) 076 arXiv:2105.12782 [hep-th].

[185] G. Barnich, M. Henneaux, “Consistent couplings between fields with a gauge freedom and deformations of the master equation,” Phys. Lett. B 311 (1993) 123–129 arXiv:hep-th/9304057 [hep-th].

[186] G. Barnich, F. Brandt, and M. Henneaux, “Local BRST cohomology in the antifield formalism. I. General theorems,” Commun. Math. Phys. 174 (1995) 57–92 hep-th/9405109.

[187] G. Barnich, F. Brandt, and M. Henneaux, “Local BRST cohomology in gauge theories,” Phys. Rept. 338 (2000) 439–560 arXiv:hep-th/0002245 [hep-th].

[188] G. Barnich and M. Henneaux, “Consistent couplings between fields with a gauge freedom and deformations of the master equation,” Phys. Lett. B 311 (1993) 123–129 arXiv:hep-th/9304057 [hep-th].

[189] G. Barnich, F. Brandt, and M. Henneaux, “Local BRST cohomology in the antifield formalism. I. General theorems,” Commun. Math. Phys. 174 (1995) 57–92 hep-th/9405109.

[190] E. S. Fradkin and M. A. Vasiliev, “On the Gravitational Interaction of Massless Higher Spin Fields,” Phys. Lett. B 189 (1987) 89–95.

[191] K. B. Alkalaev and M. A. Vasiliev, “N = 1 supersymmetric theory of higher spin gauge fields in ads(5) at the cubic level,” Nucl. Phys. B 655 (2003) 295–334 hep-th/0206068.

[192] X. Bekaert, N. Boulanger, and S. Cnockaert, “Spin three gauge theory revisited,” JHEP 01 (2006) 052 arXiv:hep-th/0508004.

[193] N. Boulanger and S. Leclercq, “Consistent couplings between spin-2 and spin-3 massless fields,” JHEP 11 (2006) 034 arXiv:hep-th/0609221.

[194] D. Francia, J. Mourad, and A. Sagnotti, “Current Exchanges and Unconstrained Higher Spins,” Nucl. Phys. B 773 (2007) 203–237 arXiv:hep-th/0701163.

[195] R. R. Metsaev, “Cubic interaction vertices for fermionic and bosonic arbitrary spin fields,” arXiv:0712.3526 [hep-th].

[196] A. Fotopoulos and M. Tsulaia, “Gauge Invariant Lagrangians for Free and Interacting Higher Spin Fields. A Review of the BRST formulation,” Int. J. Mod. Phys. A 24 (2009) 1–60 arXiv:0805.1346 [hep-th].

[197] Y. M. Zinoviev, “On spin 3 interacting with gravity,” Class. Quant. Grav. 26 (2009) 035022 arXiv:0805.2226 [hep-th].

[198] N. Boulanger, S. Leclercq, and P. Sundell, “On The Uniqueness of Minimal Coupling in Higher-Spin Gauge Theory,” JHEP 08 (2008) 050 arXiv:0805.2764 [hep-th].

[199] R. Manvelyan, K. Mkrtchyan, and W. Ruehl, “Direct Construction of A Cubic Selfinteraction for Higher Spin Gauge Fields,” Nucl. Phys. B 844 (2011) 348–364 arXiv:1002.1358 [hep-th].

[200] A. Sagnotti and M. Taronna, “String Lessons for Higher-Spin Interactions,” Nucl. Phys. B 842 (2011) 299–361 arXiv:1006.5242 [hep-th].

[201] R. Manvelyan, K. Mkrtchyan, and W. Ruhl, “General trilinear interaction for arbitrary even higher spin gauge fields,” Nucl. Phys. B 836 (2010) 204–221 arXiv:1003.2877 [hep-th].
[202] R. Manvelyan, K. Mkrtchyan, and W. Ruehl, “A Generating function for the cubic interactions of higher spin fields,” *Phys.Lett.* B696 (2011) 410–415, arXiv:1009.1054 [hep-th]

[203] E. Joung and M. Taronna, “Cubic interactions of massless higher spins in (A)dS: metric-like approach,” *Nucl.Phys.* B861 (2012) 145–174 arXiv:1110.5918 [hep-th]

[204] R. R. Metsaev, “BRST-BV approach to cubic interaction vertices for massive and massless higher-spin fields,” *Phys. Lett.* B720 (2013) 237–243 arXiv:1205.3131 [hep-th]

[205] E. Joung and M. Taronna, “Cubic-interaction-induced deformations of higher-spin symmetries,” *JHEP* 1403 (2014) 103 arXiv:1311.0242 [hep-th]

[206] X. Bekaert, J. Erdmenger, D. Ponomarev, and C. Sleight, “Towards holographic higher-spin interactions: Four-point functions and higher-spin exchange,” *JHEP* 03 (2015) 170 arXiv:1412.0016 [hep-th]

[207] X. Bekaert, J. Erdmenger, D. Ponomarev, and C. Sleight, “Quartic AdS Interactions in Higher-Spin Gravity from Conformal Field Theory,” *JHEP* 11 (2015) 149 arXiv:1508.04292 [hep-th]

[208] C. Sleight and M. Taronna, “Higher Spin Interactions from Conformal Field Theory: The Complete Cubic Couplings,” *Phys. Rev. Lett.* 116 no. 18, (2016) 181602 arXiv:1603.00022 [hep-th]

[209] E. Joung and K. Mkrtchyan, “Spinor-Helicity Three-Point Amplitudes from Local Cubic Interactions,” *JHEP* 08 (2016) 040 arXiv:1605.07402 [hep-th]

[210] I. L. Buchbinder, S. J. Gates, and K. Koutrolikos, “Conserved higher spin supercurrents for arbitrary spin massless supermultiplets and higher spin superfield cubic interactions,” *JHEP* 08 (2018) 055 arXiv:1805.04413 [hep-th]

[211] K. Mkrtchyan, “Cubic interactions of massless bosonic fields in three dimensions,” *Phys. Rev. Lett.* 120 no. 22, (2018) 221601 arXiv:1712.10003 [hep-th]

[212] I. L. Buchbinder, S. J. Gates, and K. Koutrolikos, “Conserved higher spin supercurrents for arbitrary spin massless supermultiplets and higher spin superfield cubic interactions,” *JHEP* 08 (2018) 055 arXiv:1805.04413 [hep-th]

[213] E. Joung and M. Taronna, “A note on higher-order vertices of higher-spin fields in flat and (A)dS space,” *JHEP* 09 (2020) 171 arXiv:1912.12357 [hep-th]

[214] S. Fredenhagen, O. Krüger, and K. Mkrtchyan, “Vertex-Constraints in 3D Higher Spin Theories,” *Phys. Rev. Lett.* 123 no. 13, (2019) 131601 arXiv:1905.00093 [hep-th]

[215] R. R. Metsaev, “Cubic interaction vertices for N=1 arbitrary spin massless supermultiplets in flat space,” *JHEP* 08 (2019) 130 arXiv:1905.11357 [hep-th]

[216] R. R. Metsaev, “Cubic interactions for arbitrary spin N -extended massless supermultiplets in 4d flat space,” *JHEP* 11 (2019) 084 arXiv:1909.05241 [hep-th]

[217] S. Fredenhagen, O. Krüger, and K. Mkrtchyan, “Restrictions for n-Point Vertices in Higher-Spin Theories,” *JHEP* 06 (2020) 118 arXiv:1912.13476 [hep-th]

[218] M. Grigoriev, K. Mkrtchyan, and E. Skvortsov, “Matter-free higher spin gravities in 3D: Partially-massless fields and general structure,” *Phys. Rev. D* 102 no. 6, (2020) 066003 arXiv:2005.05931 [hep-th]

[219] I. L. Buchbinder and A. A. Reshetnyak, “General cubic interacting vertex for massless integer higher spin fields,” *Phys. Lett. B* 820 (2021) 136470 arXiv:2105.12030 [hep-th]

[220] P. A. M. Dirac, “A Remarkable representation of the 3 + 2 de Sitter group,” *J. Math. Phys.* 4 (1963) 901–909

[221] M. Grisaru and C. Sachogi, “Oscillator Like Unitary Representations of Noncompact Groups With a Jordan Structure and the Noncompact Groups of Supergravity,” *Commun. Math. Phys.* 87 (1982) 159
[222] M. Günaydin, “Oscillator like unitary representations of noncompact groups and supergroups and extended supergravity theories,” in *Group Theoretical Methods in Physics. Proceedings, 11th International Colloquium, Istanbul, Turkey, August 23-28, 1982*, pp. 192–213. 1983.

[223] M. A. Vasiliev, “Extended higher spin superalgebras and their realizations in terms of quantum operators,” *Fortsch. Phys.* **36** (1988) 33–62.

[224] M. Günaydin, “Singleton and doubleton supermultiplets of space-time supergroups and infinite spin superalgebras,” in *Trieste Conference on Supermembranes and Physics in 2+1 Dimensions Trieste, Italy, July 17-21, 1989*, pp. 0442–456. 1989.

[225] A. G. Nikitin, “Generalized killing tensors of arbitrary rank and order,” *Ukrainian Mathematical Journal* **43** no. 6, (Jun, 1991) 734–743.

[226] S. E. Konstein, M. A. Vasiliev, and V. N. Zaikin, “Conformal higher spin currents in any dimension and AdS / CFT correspondence,” *JHEP* **12** (2000) 018 [arXiv:hep-th/0010239]

[227] C. Iazeolla and P. Sundell, “A Fiber Approach to Harmonic Analysis of Unfolded Higher-Spin Field Equations,” *JHEP* **10** (2008) 022 [arXiv:0806.1942 [hep-th]]

[228] N. Boulanger and E. Skvortsov, “Higher-spin algebras and cubic interactions for simple mixed-symmetry fields in AdS spacetime,” *JHEP* **1109** (2011) 063 [arXiv:1107.5028 [hep-th]]

[229] J.-P. Michel, “Higher symmetries of the laplacian via quantization,” *Annales de l’Institut Fourier* **64** no. 4, (2014) 1581–1609.

[230] E. Joung and K. Mkrtchyan, “Notes on higher-spin algebras: minimal representations and structure constants,” *JHEP* **05** (2014) 103 [arXiv:1401.7977 [hep-th]]

[231] E. Joung and K. Mkrtchyan, “Partially-massless higher-spin algebras and their finite-dimensional truncations,” *JHEP* **01** (2016) 003 [arXiv:1508.07332 [hep-th]]

[232] M. Grigoriev, “Off-shell gauge fields from BRST quantization,” [arXiv:hep-th/0605089]

[233] A. Campoleoni, D. Francia, and C. Heissenberg, “On higher-spin supertranslations and superrotations,” *JHEP* **05** (2017) 120 [arXiv:1703.01351 [hep-th]]

[234] A. Campoleoni, D. Francia, and C. Heissenberg, “On asymptotic symmetries in higher dimensions for any spin,” *JHEP* **12** (2020) 129 [arXiv:2011.04420 [hep-th]]

[235] A. Campoleoni and S. Pekar, “Carrollian and Galilean conformal higher-spin algebras in any dimensions,” *JHEP* **02** (2022) 150 [arXiv:2110.07794 [hep-th]]

[236] E. Bergshoeff, A. Salam, E. Sezgin, and Y. Tanii, “Singletons, Higher Spin Massless States and the Supermembrane,” *Phys. Lett. B* **205** (1988) 237–244.

[237] S. Giombi and X. Yin, “Higher Spin Gauge Theory and Holography: The Three-Point Functions,” *JHEP* **1009** (2010) 115 [arXiv:0912.3462 [hep-th]]

[238] S. Giombi and X. Yin, “Higher Spins in AdS and Twistorial Holography,” *JHEP* **1104** (2011) 086 [arXiv:1004.3736 [hep-th]]

[239] S. Giombi and X. Yin, “On Higher Spin Gauge Theory and the Critical O(N) Model,” *Phys.Rev.* **D85** (2012) 086005 [arXiv:1105.4011 [hep-th]]

[240] O. Aharony, G. Gur-Ari, and R. Yacoby, “Correlation Functions of Large N Chern-Simons-Matter Theories and Bosonization in Three Dimensions,” *JHEP* **12** (2012) 028 [arXiv:1207.4593 [hep-th]]

[241] O. Aharony, “Baryons, monopoles and dualities in Chern-Simons-matter theories,” *JHEP* **02** (2016) 093 [arXiv:1512.00161 [hep-th]]
[242] A. Karch and D. Tong, “Particle-Vortex Duality from 3d Bosonization,” Phys. Rev. X6 no. 3, (2016) 031043 arXiv:1606.01893 [hep-th]

[243] N. Seiberg, T. Senthil, C. Wang, and E. Witten, “A Duality Web in 2+1 Dimensions and Condensed Matter Physics,” Annals Phys. 374 (2016) 395–433 arXiv:1606.01989 [hep-th]

[244] M. A. Vasiliev, “Nonlinear equations for symmetric massless higher spin fields in (A)dS(d),” Phys. Lett. B567 (2003) 139–151 arXiv:hep-th/0304049 [hep-th]

[245] A. Sagnotti, E. Sezgin, and P. Sundell, “On higher spins with a strong sp(2,r) condition,” hep-th/0501156.

[246] N. Boulanger and P. Sundell, “An action principle for Vasiliev’s four-dimensional higher-spin gravity,” J. Phys. A44 (2011) 495402 arXiv:1102.2219 [hep-th]

[247] X. Bekaert and M. Grigoriev, “Higher order singletons, partially massless fields and their boundary values in the ambient approach,” Nucl. Phys. B876 (2013) 667–714 arXiv:1305.0162 [hep-th]

[248] C. Brust and K. Hinterbichler, “Partially Massless Higher-Spin Theory,” JHEP 02 (2017) 086 arXiv:1610.08510 [hep-th]

[249] R. Bonezzi, N. Boulanger, E. Sezgin, and P. Sundell, “Frobenius–Chern–Simons gauge theory,” J. Phys. A50 no. 5, (2017) 055401 arXiv:1607.00726 [hep-th]

[250] X. Bekaert, M. Grigoriev, and E. D. Skvortsov, “Higher Spin Extension of Fefferman-Graham Construction,” Universe 4 no. 2, (2018) 17 arXiv:1710.11463 [hep-th]

[251] M. Grigoriev and E. D. Skvortsov, “Type-B Formal Higher Spin Gravity,” JHEP 05 (2018) 138 arXiv:1804.05196 [hep-th]

[252] A. Sharapov, E. Skvortsov, and T. Tran, “Towards massless sector of tensionless strings on AdS3,” Phys. Lett. B 800 (2020) 135091 arXiv:1908.00050 [hep-th]

[253] A. Sharapov and E. Skvortsov, “Formal Higher Spin Gravities,” Nucl. Phys. B941 (2019) 838–860 arXiv:1901.01426 [hep-th]

[254] E. Sezgin and P. Sundell, “Geometry and Observables in Vasiliev’s Higher Spin Gravity,” JHEP 07 (2012) 121 arXiv:1103.2360 [hep-th]

[255] N. Boulanger, E. Sezgin, and P. Sundell, “4D Higher Spin Gravity with Dynamical Two-Form as a Frobenius-Chern-Simons Gauge Theory,” arXiv:1505.04957 [hep-th]

[256] S. Li and K. Zeng, “Homotopy Algebras in Higher Spin Theory,” Adv. Theor. Math. Phys. 24 no. 3, (2020) 757–819 arXiv:1807.06037 [hep-th]

[257] E. Sezgin and P. Sundell, “On an exact cosmological solution of higher spin gauge theory,” Bulg. J. Phys. 33 no. s1, (2006) 506–519, arXiv:hep-th/0511296

[258] E. Sezgin and P. Sundell, “An Exact solution of 4-D higher-spin gauge theory,” Nucl.Phys. B762 (2007) 1–37, arXiv:hep-th/0508158 [hep-th]

[259] V. E. Didenko and M. A. Vasiliev, “Static BPS black hole in 4d higher-spin gauge theory,” Phys. Lett. B 682 (2009) 305–315 arXiv:0906.3898 [hep-th] [Erratum: Phys.Lett.B 722, 389 (2013)].

[260] C. Iazeolla and P. Sundell, “Biaxially symmetric solutions to 4D higher-spin gravity,” J. Phys. A 46 (2013) 214004 arXiv:1208.4077 [hep-th].

[261] C. Iazeolla, E. Sezgin, and P. Sundell, “On Exact Solutions and Perturbative Schemes in Higher Spin Theory,” Universe 4 no. 1, (2018) 5 arXiv:1711.03550 [hep-th]

[262] R. Aros, C. Iazeolla, J. Noroña, E. Sezgin, P. Sundell, and Y. Yin, “FRW and domain walls in higher spin gravity,” JHEP 03 (2018) 153 arXiv:1712.02401 [hep-th]
[263] R. Aros, C. Iazeolla, P. Sundell, and Y. Yin, “Higher spin fluctuations on spinless 4D BTZ black hole,” JHEP 08 (2019) 171, arXiv:1903.01399 [hep-th].

[264] D. De Filippi, C. Iazeolla, and P. Sundell, “Metaplectic representation and ordering (in)dependence in Vasiliev’s higher spin gravity,” arXiv:2111.09288 [hep-th].

[265] A. Y. Segal, “Conformal higher spin theory,” Nucl. Phys. B664 (2003) 59–130 arXiv:hep-th/0207212.

[266] A. A. Tseytlin, “On limits of superstring in AdS5 × S5,” Theor. Math. Phys. 133 (2002) 1376–1389 arXiv:hep-th/0201112 [hep-th]. [Teor. Mat. Fiz.133,69(2002)].

[267] X. Bekaert, E. Joung, and J. Mourad, “Effective action in a higher-spin background,” JHEP 02 (2011) 048 arXiv:1012.2103 [hep-th].

[268] D. Ponomarev and E. D. Skvortsov, “Light-Front Higher-Spin Theories in Flat Space,” J. Phys. A50 no. 9, (2017) 095401 arXiv:1609.04655 [hep-th].

[269] M. Sperling and H. C. Steinacker, “Covariant 4-dimensional fuzzy spheres, matrix models and higher spin,” J. Phys. A50 no. 37, (2017) 375202 arXiv:1704.02863 [hep-th].

[270] R. de Mello Koch, A. Jevicki, K. Suzuki, and J. Yoon, “AdS Maps and Diagrams of Bi-local Holography,” JHEP 03 (2019) 133 arXiv:1810.02332 [hep-th].

[271] O. Aharony, S. M. Chester, and E. Y. Urbach, “A Derivation of AdS/CFT for Vector Models,” JHEP 03 (2021) 208 arXiv:2101.06328 [hep-th].

[272] D. Aminos, F. Denef, K. Konstantinidis, and E. Shaghoulian, “Higher Spin de Sitter Holography from Functional Determinants,” JHEP 02 (2014) 007 arXiv:1305.6321 [hep-th].

[273] D. Aminos, V. De Luca, G. Franciolini, A. Kehagias, and A. Riotto, “Cosmological Shapes of Higher-Spin Gravity,” JCAP 04 (2019) 045 arXiv:1902.01251 [hep-th].

[274] S. Kim, T. Noumi, K. Takeuchi, and S. Zhou, “Heavy Spinning Particles from Signs of Primordial Non-Gaussianities: Beyond the Positivity Bounds,” JHEP 12 (2019) 107 arXiv:1906.11840 [hep-th].

[275] I. L. Buchbinder, D. M. Gitman, V. A. Krykhtin, and V. D. Pershin, “Equations of motion for massive spin-2 field coupled to gravity,” Nucl. Phys. B 584 (2000) 615–640 arXiv:hep-th/9910188.

[276] I. L. Buchbinder, D. M. Gitman, and V. D. Pershin, “Causality of massive spin-2 field in external gravity,” Phys. Lett. B 492 (2000) 161–170 arXiv:hep-th/0006144.

[277] Y. M. Zinoviev, “On massive high spin particles in (a)ds,” hep-th/0108192.

[278] I. L. Buchbinder and V. A. Krykhtin, “Gauge invariant Lagrangian construction for massive bosonic higher spin fields in D dimensions,” Nucl. Phys. B 727 (2005) 537–563 arXiv:hep-th/0505092.

[279] I. L. Buchbinder, V. A. Krykhtin, and P. M. Lavrov, “Gauge invariant Lagrangian formulation of higher spin massive bosonic field theory in AdS space,” Nucl. Phys. B 762 (2007) 344–376 arXiv:hep-th/0608005.

[280] Y. M. Zinoviev, “Towards frame-like gauge invariant formulation for massive mixed symmetry bosonic fields. II. General Young tableau with two rows,” Nucl. Phys. B 826 (2010) 490–510 arXiv:0907.2140 [hep-th].

[281] Y. M. Zinoviev, “Gravitational cubic interactions for a massive mixed symmetry gauge field,” Class. Quant. Grav. 29 (2012) 015013 arXiv:1107.3222 [hep-th].
[285] I. L. Buchbinder, T. V. Snegirev, and Y. M. Zinoviev, “On gravitational interactions for massive higher spins in AdS3,” *J. Phys. A* 46 (2013) 241015, arXiv:1208.0183 [hep-th].

[286] I. L. Buchbinder, T. V. Snegirev, and Y. M. Zinoviev, “Lagrangian description of massive higher spin supermultiplets in AdS3 space,” *JHEP* 08 (2017) 021, arXiv:1705.06163 [hep-th].

[287] I. L. Buchbinder, M. V. Khabarov, T. V. Snegirev, and Y. M. Zinoviev, “Lagrangian formulation of the massive higher spin N=1 supermultiplets in AdS4 space,” *Nucl. Phys. B* 942 (2019) 1–29, arXiv:1901.09637 [hep-th].

[288] S. Caron-Huot, Z. Komargodski, A. Sever, and A. Zhiboedov, “Strings from Massive Higher Spins: The Asymptotic Uniqueness of the Veneziano Amplitude,” *JHEP* 10 (2017) 026, arXiv:1607.04253 [hep-th].

[289] L. Girardello, M. Porrati, and A. Zaffaroni, “3-D interacting CFTs and generalized Higgs phenomenon in higher spin theories on AdS,” *Phys. Lett.* B561 (2003) 289–293, arXiv:hep-th/0212181 [hep-th].

[290] M. Bianchi, J. F. Morales, and H. Samtleben, “On stringy AdS(5) x S**5 and higher spin holonomy,” *JHEP* 07 (2003) 062, arXiv:hep-th/0305052.

[291] N. Beisert, M. Bianchi, J. F. Morales, and H. Samtleben, “Higher spin symmetry and N=4 SYM,” *JHEP* 07 (2004) 058, arXiv:hep-th/0405057 [hep-th].

[292] O. Aharony, O. Bergman, and D. L. Jafferis, “Fractional M2-branes,” *JHEP* 11 (2008) 043, arXiv:0807.4924 [hep-th].

[293] S. Hirano, M. Honda, K. Okuyama, and M. Shigemori, “ABJ Theory in the Higher Spin Limit,” *JHEP* 08 (2016) 174, arXiv:1504.00365 [hep-th].

[294] D. J. Binder, S. M. Chester, and M. Jerdee, “ABJ Correlators with Weakly Broken Higher Spin Symmetry,” *JHEP* 04 (2021) 242, arXiv:2103.01969 [hep-th].

[295] L. F. Alday, S. M. Chester, and H. Raj, “ABJM at strong coupling from M-theory, localization, and Lorentzian inversion,” *JHEP* 02 (2022) 005, arXiv:2107.10274 [hep-th].

[296] M. A. Vasiliev, “From Coxeter Higher-Spin Theories to Strings and Tensor Models,” *JHEP* 08 (2018) 051, arXiv:1804.06520 [hep-th].

[297] E. Sezgin and P. Sundell, “Towards massless higher spin extension of D=5, N=8 gauged supergravity,” *JHEP* 09 (2001) 025, arXiv:hep-th/0107186 [hep-th].

[298] S. Kachru, R. Kallosh, A. D. Linde, and S. P. Trivedi, “De Sitter vacua in string theory,” *Phys. Rev. D* 68 (2003) 046005, arXiv:hep-th/0301240.

[299] S. L¨ ust, C. Vafa, M. Wiesner, and K. Xu, “Holography and the KKLT Scenario,” arXiv:2204.07171 [hep-th].

[300] D. Anninos, T. Hartman, and A. Strominger, “Higher Spin Realization of the dS/CFT Correspondence,” *Class. Quant. Grav.* 34 no. 1, (2017) 015009, arXiv:1608.07776 [hep-th].

[301] L. F. Alday and A. Zhiboedov, “Conformal Bootstrap With Slightly Broken Higher Spin Symmetry,” *JHEP* 06 (2016) 091, arXiv:1506.04659 [hep-th].

[302] D. Anninos, F. Denef, R. Monten, and Z. Sun, “Higher Spin de Sitter Hilbert Space,” *JHEP* 10 (2019) 071, arXiv:1711.10037 [hep-th].

[303] A. David and Y. Neiman, “Higher-spin symmetry vs. boundary locality, and a rehabilitation of dS/CFT,” *JHEP* 10 (2020) 127, arXiv:2006.15813 [hep-th].

[304] L. F. Alday and A. Zhiboedov, “Conformal Bootstrap With Slightly Broken Higher Spin Symmetry,” *JHEP* 06 (2016) 091, arXiv:1506.04659 [hep-th].

[305] E. D. Skvortsov, “On (Un)Broken Higher-Spin Symmetry in Vector Models,” in *International Workshop on Higher Spin Gauge Theories*, pp. 103–137, 2017. arXiv:1512.05994 [hep-th].
[306] S. Giombi and V. Kirilin, “Anomalous dimensions in CFT with weakly broken higher spin symmetry,” *JHEP* **11** (2016) 068, arXiv:1601.01310 [hep-th].

[307] L. F. Alday, “Solving CFTs with Weakly Broken Higher Spin Symmetry,” *JHEP* **10** (2017) 161, arXiv:1612.00696 [hep-th].

[308] S. Giombi, V. Kirilin, and E. Skvortsov, “Notes on Spinning Operators in Fermionic CFT,” *JHEP* **05** (2017) 041, arXiv:1701.06997 [hep-th].

[309] S. Jain, R. R. John, and V. Malvimat, “Constraining momentum space correlators using slightly broken higher spin symmetry,” *JHEP* **04** (2021) 231, arXiv:2008.08610 [hep-th].

[310] N. Beisert *et al.*, “Review of AdS/CFT Integrability: An Overview,” *Lett. Math. Phys.* **99** (2012) 3–32, arXiv:1012.3982 [hep-th].

[311] M. R. Gaberdiel and R. Gopakumar, “The worldsheet dual of free super Yang-Mills in 4D,” *JHEP* **11** (2021) 129, arXiv:2105.10496 [hep-th].

[312] LIGO Scientific, Virgo Collaboration, B. P. Abbott *et al.*, “Observation of Gravitational Waves from a Binary Black Hole Merger,” *Phys. Rev. Lett.* **116** no. 6, (2016) 061102, arXiv:1602.03837 [gr-qc].

[313] LIGO Scientific Collaboration, J. Aasi *et al.*, “Advanced LIGO,” *Class. Quant. Grav.* **32** (2015) 074001, arXiv:1411.4547 [gr-qc].

[314] VIRGO Collaboration, F. Acernese *et al.*, “Advanced Virgo: a second-generation interferometric gravitational wave detector,” *Class. Quant. Grav.* **32** no. 2, (2015) 024001, arXiv:1408.3978 [gr-qc].

[315] W. D. Goldberger and I. Z. Rothstein, “An Effective field theory of gravity for extended objects,” *Phys. Rev. D* **73** (2006) 104029, arXiv:hep-th/0409156 [hep-th].

[316] R. A. Porto, “Post-Newtonian corrections to the motion of spinning bodies in NRGR,” *Phys. Rev. D* **73** (2006) 104031, arXiv:gr-qc/0511061 [gr-qc].

[317] D. Neill and I. Z. Rothstein, “Classical Space-Times from the S Matrix,” *Nucl. Phys. B* **877** (2013) 177–189, arXiv:1304.7263 [hep-th].

[318] A. Buonanno, M. Khalil, D. O’Connell, R. Roiban, M. P. Solon, and M. Zeng, “Snowmass White Paper: Gravitational Waves and Scattering Amplitudes,” in 2022 Snowmass Summer Study. 4, 2022. arXiv:2204.05194 [hep-th].

[319] T. Adamo, J. J. M. Carrasco, M. Carrillo-González, M. Chiodaroli, H. Elvang, H. Johansson, D. O’Connell, R. Roiban, and O. Schlotterer, “Snowmass White Paper: the Double Copy and its Applications,” in 2022 Snowmass Summer Study. 4, 2022. arXiv:2204.06547 [hep-th].

[320] C. Cheung, I. Z. Rothstein, and M. P. Solon, “From Scattering Amplitudes to Classical Potentials in the Post-Minkowskian Expansion,” *Phys. Rev. Lett.* **121** no. 25, (2018) 251101, arXiv:1808.02489 [hep-th].

[321] Z. Bern, C. Cheung, R. Roiban, C.-H. Shen, M. P. Solon, and M. Zeng, “Scattering Amplitudes and the Conservative Hamiltonian for Binary Systems at Third Post-Minkowskian Order,” *Phys. Rev. Lett.* **122** no. 20, (2019) 201603, arXiv:1901.04424 [hep-th].

[322] Z. Bern, C. Cheung, R. Roiban, C.-H. Shen, M. P. Solon, and M. Zeng, “Black Hole Binary Dynamics from the Double Copy and Effective Theory,” *JHEP* **10** (2019) 206, arXiv:1908.01493 [hep-th].

[323] G. Källin and R. A. Porto, “From Boundary Data to Bound States,” *JHEP* **01** (2020) 072, arXiv:1910.03008 [hep-th].

[324] Z. Bern, J. Parra-Martinez, R. Roiban, M. S. Ruf, C.-H. Shen, M. P. Solon, and M. Zeng, “Scattering Amplitudes and Conservative Binary Dynamics at $O(G^4)$,” *Phys. Rev. Lett.* **126** no. 17, (2021) 171601, arXiv:2101.07254 [hep-th].
Z. Bern, J. Parra-Martinez, R. Roiban, M. S. Ruf, C.-H. Shen, M. P. Solon, and M. Zeng, “Scattering Amplitudes, the Tail Effect, and Conservative Binary Dynamics at $O(G^4)$,” Phys. Rev. Lett. 128 no. 16, (2022) 161103, arXiv:2112.10750 [hep-th].

M. Levi, “Effective Field Theories of Post-Newtonian Gravity: A comprehensive review,” Rept. Prog. Phys. 83 no. 7, (2020) 075901, arXiv:1807.01699 [hep-th].

M. Levi, S. Mougiaakos, and M. Vieira, “Gravitational cubic-in-spin interaction at the next-to-leading post-Newtonian order,” JHEP 01 (2021) 036, arXiv:1912.06276 [hep-th].

M. Levi, A. J. Mcleod, and M. Von Hippel, “N3LO gravitational spin-orbit coupling at order G^4,” JHEP 07 (2021) 115, arXiv:2003.02827 [hep-th].

M. Levi, A. J. Mcleod, and M. Von Hippel, “N3LO gravitational quadratic-in-spin interactions at G^4,” JHEP 07 (2021) 116, arXiv:2003.07890 [hep-th].

G. Mogull, J. Plefka, and J. Steinhoff, “Classical black hole scattering from a worldline quantum field theory,” JHEP 02 (2021) 048, arXiv:2010.02865 [hep-th].

M. Levi and F. Teng, “NLO gravitational quartic-in-spin interaction,” JHEP 01 (2021) 066, arXiv:2008.12280 [hep-th].

G. U. Jakobsen, G. Mogull, J. Plefka, and J. Steinhoff, “Gravitational Bremsstrahlung and Hidden Supersymmetry of Spinning Bodies,” Phys. Rev. Lett. 128 no. 1, (2022) 011101, arXiv:2106.10256 [hep-th].

J.-W. Kim, M. Levi, and Z. Yin, “Quadratic-in-spin interactions at fifth post-Newtonian order probe new physics,” arXiv:2112.01509 [hep-th].

G. U. Jakobsen, G. Mogull, J. Plefka, and J. Steinhoff, “SUSY in the sky with gravitons,” JHEP 01 (2022) 027, arXiv:2109.04465 [hep-th].

G. U. Jakobsen and G. Mogull, “Conservative and Radiative Dynamics of Spinning Bodies at Third Post-Minkowskian Order Using Worldline Quantum Field Theory,” Phys. Rev. Lett. 128 no. 14, (2022) 141102, arXiv:2201.11570 [hep-th].

A. Edison and M. Levi, “A tale of tails through generalized unitarity,” arXiv:2202.04674 [hep-th].

M.-Z. Chung, Y.-T. Huang, J.-W. Kim, and S. Lee, “The simplest massive S-matrix: from minimal coupling to Black Holes,” JHEP 04 (2019) 156, arXiv:1812.08752 [hep-th].

M.-Z. Chung, Y.-t. Huang, J.-W. Kim, and S. Lee, “Complete Hamiltonian for spinning binary systems at first post-Minkowskian order,” JHEP 05 (2020) 105, arXiv:2003.06600 [hep-th].

A. Guevara, B. Maybee, A. Ochirov, D. O’connell, and J. Vines, “A worldsheet for Kerr,” JHEP 03 (2021) 201, arXiv:2012.07378 [hep-th].

D. Kosmopoulos and A. Luna, “Quadratic-in-spin Hamiltonian at $O(G^2)$ from scattering amplitudes,” JHEP 07 (2021) 037, arXiv:2102.10137 [hep-th].

W.-M. Chen, M.-Z. Chung, Y.-t. Huang, and J.-W. Kim, “The 2PM Hamiltonian for binary Kerr to quartic in spin,” arXiv:2111.13639 [hep-th].

R. Aoude and A. Ochirov, “Classical observables from coherent-spin amplitudes,” JHEP 10 (2021) 008, arXiv:2108.01649 [hep-th].

Z. Bern, D. Kosmopoulos, A. Luna, R. Roiban, and F. Teng, “Binary Dynamics Through the Fifth Power of Spin at $O(G^2)$,” arXiv:2203.06202 [hep-th].

R. Aoude, K. Haddad, and A. Helset, “Searching for Kerr in the 2PM amplitude,” arXiv:2203.06197 [hep-th].

A. Falkowski and C. S. Machado, “Soft Matters, or the Recursions with Massive Spinors,” JHEP 05 (2021) 238, arXiv:2005.08981 [hep-th].
[367] E. P. Wigner, “Do the equations of motion determine the quantum mechanical commutation relations?,” *Phys. Rev.* **77** (1950) 711–712.

[368] L. M. Yang, “A Note on the Quantum Rule of the Harmonic Oscillator,” *Phys. Rev.* **84** no. 4, (1951) 788.

[369] D. G. Boulware and S. Deser, “Ambiguity of harmonic-oscillator commutation relations,” *Il Nuovo Cimento (1955-1965)* **30** no. 1, (1963) 230–234.

[370] B. Gruber and L. O’Raifeartaigh, “Uniqueness of the harmonic oscillator commutation relation,” *Proceedings of the Royal Irish Academy. Section A: Mathematical and Physical Sciences* **63** (1963) 69–73.

[371] N. Mukunda, E. C. G. Sudarshan, J. K. Sharma, and C. L. Mehta, “Representations and properties of parabose oscillator operators. I. Energy position and momentum eigenstates,” *J. Math. Phys.* **21** (1980) 2386–2394.

[372] C. N. Pope, L. J. Romans, and X. Shen, “A New Higher Spin Algebra and the Lone Star Product,” *Phys. Lett.* **B242** (1990) 401–406.

[373] P. Bielavsky, S. Detournay, and P. Spindel, “The Deformation quantizations of the hyperbolic plane,” *Commun. Math. Phys.* **289** (2009) 529–550, arXiv:0806.4741 [math-ph].

[374] A. V. Korybut, “Covariant structure constants for a deformed oscillator algebra.” *Theor. Math. Phys.* **193** no. 1, (2017) 1409–1419, arXiv:1409.8634 [hep-th].

[375] T. Basile and N. Boulanger, “Structure constants of shs[\lambda] : the deformed-oscillator point of view,” *J. Phys.* **A51** no. 2, (2018) 025201, arXiv:1604.04510 [hep-th].

[376] A. A. Sharapov and E. D. Skvortsov, “Hochschild cohomology of the Weyl algebra and Vasiliev’s equations,” *Letters in Mathematical Physics* **107** no. 12, (Dec, 2017) 2415–2432, arXiv:1705.02958 [math-ph].

[377] A. A. Sharapov and E. D. Skvortsov, “A simple construction of associative deformations,” *Letters in Mathematical Physics* (Jul, 2018), arXiv:1803.10957 [math-ph].

[378] A. Korybut, “Star product for deformed oscillator algebra Aq (2,\nu),” *J. Phys. A* **54** no. 50, (2021) 505202, arXiv:2006.01622 [hep-th].

[379] A. Cattaneo, P. Mnev, and N. Reshetikhin, “Classical BV theories on manifolds with boundary,” *Commun. Math. Phys.* **332** (2014) 535–603, arXiv:1201.0290 [math-ph].

[380] A. S. Cattaneo, P. Mnev, and N. Reshetikhin, “Perturbative quantum gauge theories on manifolds with boundary,” *Commun. Math. Phys.* **357** no. 2, (2018) 631–730, arXiv:1507.01221 [math-ph].

[381] P. Mnev, M. Schiavina, and K. Wernli, “Towards holography in the BV-BFV setting,” *Annales Henri Poincare* **21** no. 3, (2019) 993–1044, arXiv:1905.00952 [math-ph].

[382] A. A. Sharapov, “Variational Tricomplex, Global Symmetries and Conservation Laws of Gauge Systems,” SIGMA **12** (2016) 098, arXiv:1607.01626 [math-ph].

[383] G. T. Horowitz, J. D. Lykken, R. Rohn, and A. Strominger, “A Purely Cubic Action for String Field Theory,” *Phys. Rev. Lett.* **57** (1986) 283–286.

[384] P. Dai, Y.-t. Huang, and W. Siegel, “Worldgraph Approach to Yang-Mills Amplitudes from N=2 Spinning Particle,” *JHEP* **10** (2008) 027, arXiv:0807.0391 [hep-th].

[385] T. Adamo, E. Casali, and D. Skinner, “A Worldsheet Theory for Supergravity,” *JHEP* **02** (2015) 116, arXiv:1409.5656 [hep-th].

[386] R. Bonezzi, A. Meyer, and I. Sachs, “Einstein gravity from the N = 4 spinning particle,” *JHEP* **10** (2018) 025, arXiv:1807.07989 [hep-th].

[387] R. Bonezzi, E. Latini, and A. Waldron, “Gravity, Two Times, Tractors, Weyl Invariance and Six Dimensional Quantum Mechanics,” *Phys. Rev. D* **82** (2010) 064037, arXiv:1007.1724 [hep-th].
M. Grigoriev, A. Meyer, and I. Sachs, “A toy model for background independent string field theory,” arXiv:2106.07966 [hep-th].

I. Khavkine, “Presymplectic current and the inverse problem of the calculus of variations,” J. Math. Phys. 54, (Oct., 2012) 111502, 1210.0802.

N. Boulanger, N. Colombo, and P. Sundell, “A minimal BV action for Vasiliev’s four-dimensional higher spin gravity,” JHEP 1210 (2012) 043, arXiv:1205.3339 [hep-th].

A. A. Sharapov, “On presymplectic structures for massless higher-spin fields,” Eur. Phys. J. C76 no. 6, (2016) 305, arXiv:1602.06393 [hep-th].

M. Grigoriev and V. Gritzaenko, “Presymplectic structures and intrinsic Lagrangians for massive fields,” Nucl. Phys. B 975 (2022) 115686, arXiv:2109.05596 [hep-th].

M. Grigoriev, “Presymplectic structures and intrinsic Lagrangians,” arXiv:1606.07532 [hep-th].

M. Grigoriev and A. Kotov, “Presymplectic AKSZ formulation of Einstein gravity,” arXiv:2008.11690 [hep-th].

M. Grigoriev and A. A. Tseytlin, “On conformal higher spins in curved background,” J. Phys. A50 no. 12, (2017) 125401, arXiv:1609.09381 [hep-th].

M. Beccaria and A. A. Tseytlin, “On induced action for conformal higher spins in curved background,” Nucl. Phys. B 919 (2017) 359–383, arXiv:1702.00222 [hep-th].

G. Barnich and M. Grigoriev, “BRST extension of the non-linear unfolded formalism,” in International School / Seminar on Quantum Field Theory, Supersymmetry, High Spin Fields, Gravity Tomsk, Russia, March 20-26, 2005. 2005. arXiv:hep-th/0504119 [hep-th].

K. B. Alkalaev, M. Grigoriev, and E. D. Skvortsov, “Uniformizing higher-spin equations,” J. Phys. A48 no. 1, (2015) 015401, arXiv:1409.6507 [hep-th].

C. Arias, P. Sundell, and A. Torres-Gomez, “Differential Poisson Sigma Models with Extended Supersymmetry,” arXiv:1607.00272 [hep-th].

S. M. Kuzenko and M. Ponds, “Conformal geometry and (super)conformal higher-spin gauge theories,” JHEP 05 (2019) 113, arXiv:1902.08010 [hep-th].

S. M. Kuzenko, M. Ponds, and E. S. N. Raptakis, “New locally (super)conformal gauge models in Bach-flat backgrounds,” JHEP 08 (2020) 068, arXiv:2005.08657 [hep-th].

N. J. Hitchin, “Linear field equations on selfdual spaces,” Proc. Roy. Soc. Lond. A370 (1980) 173–191.

P. Hähnel and T. McLoughlin, “Conformal higher spin theory and twistor space actions,” J. Phys. A 50 no. 48, (2017) 485401, arXiv:1604.08209 [hep-th].
[409] T. Adamo, P. Hähnel, and T. McLoughlin, “Conformal higher spin scattering amplitudes from twistor space,” *JHEP* **04** (2017) 021, arXiv:1611.06200 [hep-th]

[410] T. Tran, “Twistor constructions for higher-spin extensions of (self-dual) Yang-Mills,” *JHEP* **11** (2021) 117, arXiv:2107.04500 [hep-th]

[411] R. S. Ward, “On Selfdual gauge fields,” *Phys. Lett. A* **61** (1977) 81–82

[412] R. Penrose, “Nonlinear Gravitons and Curved Twistor Theory,” *Gen. Rel. Grav.* **7** (1976) 31–52

[413] T. Adamo, M. Bullimore, L. Mason, and D. Skinner, “Scattering Amplitudes and Wilson Loops in Twistor Space,” *J. Phys. A* **44** (2011) 454008, arXiv:1104.2890 [hep-th]

[414] M. Atiyah, M. Dunajski, and L. Mason, “Twistor theory at fifty: from contour integrals to twistor strings,” *Proc. Roy. Soc. Lond. A* **473** no. 2206, (2017) 20170530, arXiv:1704.07464 [hep-th]