Electrochemical Techniques-Based approaches for Mycobacterium Tuberculosis Detection: Last Decade Review

K Alfarhan1, A Zakaria1, N Yusof2, S Zakaria1, J Abdullah2, L Kamaruddin1,3, U Azmi2 and N Ariffin2

1Centre of Excellence for Advanced Sensor Technology (CEASTech), School of Mechatronic Engineering, Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia.
2Chemistry Department, Faculty of Science, Universiti Putra Malaysia Institute of Advanced Technology (ITMA), UPM.
3School of Computer and Communication Engineering, Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia.

*Corresponding author: Khudhur.alfarhan@gmail.com

Abstract. Mycobacterium Tuberculosis (MTB) is a common airborne infectious disease that leads to millions of deaths every year worldwide. It is still one of the top ten causes of death and the victims of TB are more than HIV/AIDS in 2017. Traditional approaches for MTB detection are either take a long time, unreliable or high cost. The electrochemical techniques (ECTs) as improved and inexpensive approaches to detect the MTB. Many of ECTs were used in MTB detection such as differential pulse voltammetric (DPV), cyclic voltammetric (CV), square wave voltammetric (SWV), amperometric and impedimetric. Principle of the MTB detection using ECTs depends on DNA hybridization of the MTB on the working electrode of ECTs. The researchers developed biosensors or aptasensors and used them for ECTs analyzing to detect the MTB. They developed various biosensors from various composite and DNA probes but all the developed composite of the biosensors were used to coat the electrodes that used in ECTs. Many types of electrodes and electrolytes were used in MTB detection. The most used ECTs in MTB detection is DPV and CV while the least used is amperometric. The ECTs for MTB detection achieved high sensitivity, reliability, low detection time and very low detection limits.

1. Introduction

Mycobacterium Tuberculosis (MTB) is a common airborne infectious disease that leads to millions of deaths every year worldwide [1]. In 2014, about one million children got TB out of which 14% died [2]. TB is still one of the top ten causes of death and the victims of TB are more than HIV/AIDS in 2017 [3]. Usually, MTB attacks and affects lungs but some times it affects bones, abdomen, lymph nodes and genitourinary tract [3]. Traditional approaches for MTB detection are either take a long time or high cost. Approaches such as the chest X-ray [4], sputum smear microscopy and skin test is lack specificity [5]. Also, there are other approaches for MTB detection but these approaches are considered as expensive such as antibody-based Enzyme-Linked Immunosorbent Assay (Antibody ELISA) [6] and polymerase chain reactions (PCR) [7].

Recently, many studies directed to use electrochemical techniques (ECTs) as improved and inexpensive approaches to detect the MTB. A bunch of ECTs were used in MTB detection such as differential pulse voltammetric (DPV), cyclic voltammetric (CV), square wave voltammetric (SWV), amperometric and impedimetric. The ECTs are electrical measurements through chemical solutions. These measurements are classified into three types:
Potential difference (voltammetric) like DPV, CV, SWV and so on.
- Changes in current (amperometric).
- Changes in impedance (impedimetric).

Generally, the basic principle of ECTs measurements as shown in Figure 1 is based on measuring the current passed through the chemical solution (electrolyte). This current measured between two electrodes; namely, the working electrode (WE) and the counter electrode (CE). There is a third electrode also is dipped in the same chemical solution and it is called the reference electrode (RE) except the amperometric does not have this electrode or in sometimes it is shortened with WE, RE and WE are used to provide the excitation electrical signal to the chemical solution while the current is measured between WE and CE. In the amperometric, the measured current between WE and CE is used directly for the analyzing. Voltammetric is the study of the current as a function of applied potential that means the measured current through WE and CE electrodes is converted to a voltage. Impedimetric is the ratio of an incremental change in voltage to the resulting change in current that means the measured current through the WE and CE is used to find the impedance in the chemical solution [8, 9].

![Figure 1. The basic principle and setup of ECTs (1- WE, 2- CE and 3- RE) [10]](image)

In this paper, the ECTs that were used for MTB detection using DNA will be reviewed. We will focus on only three ECTs types were used in MTB detection; namely, voltammetric, amperometric and impedimetric. Some techniques of voltammetric will be reviewed in details and these techniques are DPV, CV and SWV. Also, the types and materials of the electrodes will be reviewed.

2. Detection of MTB Using Electrochemical Techniques

ECTs are rapid, easy and inexpensive approaches of MTB detection. For these reasons, many researchers worked on developing new and advanced approaches for MTB detection using ECTs. All studies in our literature focused on developing a DNA hybridization and immobilization (using DNA probes) for MTB detection using ECTs. The principle behind MTB detection using ECTs depends on DNA hybridization of the MTB on the working electrode of ECTs [11]. Hybridization of the targeted DNA on the electrode changes the impedance value of the electrode so that leads to change in the measured electrical current [11]. In MTB detection using ECTs, the researchers developed biosensors or aptasensors and used them for ECTs analyzing to detect the MTB. The researchers developed various biosensors from various composites and DNA probes but all the developed composites of the biosensors were used to coat the electrodes that used in ECTs [12]. There are four common type of working electrodes used in MTB detection screen-printed carbon electrode (SPCE) [12, 13, 14, 15, 16, 17], graphite [18] and a mechanical pencil as a graphite electrode (PGE), graphene or graphene oxide electrode (GOE) [19, 16] and bare gold.
disk electrode (BGE) [1]. To increase the surface area of the electrodes, the gold in nano-forms was used like gold nanoparticles (AuNPs) [13, 14, 19, 15, 11] and gold nanotubes (AuNTs) [20]. As mentioned before, the ECTs used for chemical analyzing by measure the electrical current through the electrolyte, in MTB detection also the electrolyte or indicator is an important part of ECTs and play a vital role in MTB detection. Methylene blue (MB) widely used as an indicator/electrolyte in MTB detection [12, 4, 18, 20, 21]. By monitoring the changes in MB oxidation current can indicate the MTB, because MB has a strong affinity for the free guanine bases [22]. Also, MB has high stability and extraordinary ability to transfer electrons[4]. There are other studies used other types of electrolytes like phosphate buffered saline (PBS) [23, 24] and potassium chloride (KCl) [17]. ECTs like DPV, CV, SWV, Amperometric and impedimetric will be reviewed and explained in brief below:

2.1. Differential Pulse Voltammetric (DPV)

DPV is a method of voltammetric with a small influence of capacitive current. It has better signal-to-noise ratio by attenuating the background currents. In DPV, the excitation electrical signal has constant magnitude and linear ramped electrical pulses [25]. The current sample is measured twice in each pulse period (once at the beginning of the pulse, and at the pulse’s end), and the difference between these two current values is used in the measurements [25, 26]. The electrical wave of the DPV is shown in Figure 2. DPV is widely used in MTB detection [11, 7, 19, 27] with various setups like voltage range and scan rate.

2.2. Cyclic Voltammetric (CV)

The CV is a potential-controlled reverse electrochemical process [28] also, it is widely used ECT in MTB detection [29, 11, 19]. Normally, the experiment of CV starts by scanning the potential from a user-defined initial potential value to final user-defined potential value then reverse the scanning to the initial value [28], as shown in Figure 3. There are many researchers used the CV in MTB detection with various setups like initial and final potential values, scanning rate and so on [11, 7, 19, 30].

2.3. Square Wave Voltammetric (SWV)

The SWV is a linear potential sweep voltammetric technique that uses a constant amplitude square wave formed in a staircase manner. In the SWV the current is measured at the end of each peak, and the current measured on the button peak (I_b) is subtracted from the current measured on the top peak (I_t). This difference current (I_t - I_b) is displayed as a function of the applied potential [32, 26]. The waveform of the SWV is shown in Figure 4. Since SWV and DPV have similar voltage sequences and exhibit similar peak shapes [33] it is a commonly used method in MTB detection [34, 35, 36].
2.4. Impedimetric

Impedimetric or electrochemical impedance spectroscopy (EIS) is an ECT used to measure the electrical impedance in the electrolyte. The impedimetric uses a range of frequencies to scan the electrolyte and this range of frequencies can be set by the user [37]. In our review, there are many studies that used the impedimetric in MTB detection [38, 1].

2.5. Amperometric

It is simple and basic ECT that used in chemical analyzing and it is depending on the changing in the direct electrical current between two electrodes dipped in the electrolyte (WE and CE) [39]. Amperometric is used in MTB detection for its simplicity, and it gives good results for MTB detection by using various configuration [7, 40, 30].

3. Summary

In this section, we will summarize (in Table 1) all studies that we reviewed about MTB detection using ECTs and some details about these studies like types of ECTs, potential range in volt (V), scan rate in millivolt.second\(^{-1}\) (mV .sec\(^{-1}\)), electrodes’ materials, electrolytes, DNA detection limits and other parameters like the range of frequencies of EIS. Only, working electrodes will be mentioned in the table because most studies use Ag/AgCl as a reference electrode and platinum as a counter (auxiliary) electrode.

Table 1. The summary of the reviewed studies about MTB detection using ECTs

Ref.	ECTs	Potential range (V)	Scan rate (mV .sec\(^{-1}\))	WE material	Electrolyte and/or indicator	Detection limit	Other parameters
[1]	EIS	0.01	50	Bare gold disk electrode (BGE)	Ferricyanide and KCl	6 ng.μL\(^{-1}\)	EIS frequency =0.1 to 100 Hz
[12]	DPV	0.01	20	SPCE	MB	15 μg.mL\(^{-1}\)	-
[18]	DPV	0.01	20	PGE	MB	15 μg.mL\(^{-1}\)	-
[38]	DPV	-0.5 to 0.5	50	BGE	Ferricyanide and KCl	20 fg.mL\(^{-1}\)	-
[11]	DPV	-0.4 to 0.3	50	BGE	buffered saline (PBS)	50 fM	-

Figure 4. The waveform of the SWV [26]
Method	Range	Sample Volume (μL)	Electrode Type	PBS Concentration	Ring Electrode	Ring Electrolyte	Frequency Range (Hz)	Accuracy
DPV	-0.4 to 0.3	50	Glass carbon electrode (GCE)	KCl 0.33 mM	-	-	-	-
CV	-1.5 to +0.7	20	BGE MB and PBS	-	-	-	-	-
DPV	-0.2 to +0.8	100	SPCE MB	7.853×10⁻⁷ M	-	-	-	-
DPV	-1 to +1	50	BGE PBS	2.7046 μg.mL⁻¹	accuracy=99.22%	-	-	-
DPV	0.1 to -0.3	50	PBS	-	-	-	-	-
EIS	0.01	-	BGE Ferricyanide and KCl	10 fg.mL⁻¹	EIS freq.=0.01 to 10⁵ Hz	-	-	-
DPV	-0.3 to +0.4	100	GCE PBS	-	-	-	-	-
DPV	-0.6 to -0.1	50	SPCE MB and PBS	8.9×10⁻¹³ M EIS freq.=10⁻⁴ to 0.1 Hz	-	-	-	-
DPV	0.2 to 0.8	60	Carbon nanotubes (CNT) PBS	0.5 ± 0.2 fg.mL⁻¹ EIS freq.=0.1 to 10⁵ Hz	-	-	-	-
EIS	0.24	-	GOE PBS	0.9 fg.mL⁻¹	-	-	-	-
DPV	0 to 0.4	50	Fabricated PBS	1.25 ng.mL⁻¹ EIS freq.=0.01 to 10⁵ Hz	-	-	-	-
DPV	0.2 to 0.6	50	Silk screen printing ITO	0.01 ng.mL⁻¹	-	-	-	-
DPV	-0.6 to 0.1	50	Indium-tin-oxide (ITO) PBS	1×10⁻¹² M EIS freq.=0.01 to 10⁵ Hz	-	-	-	-
DPV	0.7 to -1.1	50	BGE Sodium chloride	-	-	-	-	-
DPV	-0.6 to 0.8	-	indium-tin-oxide (ITO) PBS	1×10⁻¹² M EIS freq.=0.01 to 10⁵ Hz	-	-	-	-
EIS	0.01	-	-	-	-	-	-	-
DPV	0 to 0.4	50	SPCE MB and PBS	10 pg Sensitivity=95%	-	-	-	-
DPV	-0.4 to 0.1	50	ITO PBS	0.00078 μM Sensitivity=6.38×10⁻⁶ AmM⁻¹	-	-	-	-
DPV	-0.4 to 0.8	-	SPCE MB and PBS	10 pg.mL⁻¹	-	-	-	-
CV	-2.5 to 2.5	-	BGE PBS	7.853×10⁻⁷ M	-	-	-	-
DPV	-0.2 to 0.8	100	SPCE MB and PBS	10⁴ cfu/mL EIS freq.=0.1 to 10⁵ Hz	-	-	-	-
CV	-0.4 to 0.6	-	BGE PBS	3.3×10⁻⁵ ng.mL⁻¹	-	-	-	-
EIS	-0.70 to 0.30	100	GCE PBS	3.3×10⁻⁵ ng.mL⁻¹	-	-	-	-
EIS	-0.20 to 0.60	100	-	-	-	-	-	-
SWV	-0.5 to 0	-	ITO MB	-	-	-	-	-
4. Conclusion

In this paper, we reviewed the studies about MTB detection using ECTs. Five types of ECTs were reviewed; namely, DPV, CV, SWV, EIS and amperometric. Also, parameters of the ECTs, electrodes composites, electrolytes and DNA detection limits were reviewed. The most used ECTs in MTB detection are DPV and CV then EIS followed by SWV and finally amperometric. The ECTs for MTB detection achieved high sensitivity, reliability, low detection time and very low detection limits. Also, ECTs for MTB detection become widely used in point-of-care as a commercial MTB detection approaches.

5. Acknowledgment

This work financially supported under grant (UPM/800-4/11/MRUN/2018/5539230).

References

[1] Costa M, Andrade C, Montenegro R, Melo F and Oliveira M 2014 Self-assembled monolayers of mercuribenzoic acid and magnetite nanoparticles as an efficient support for development of tuberculosis genosensor J Colloid Interface Sci 433 141
[2] Thakur H, Kaur N, Sareen D and Prabhakar N 2017 Electrochemical determination of M. tuberculosis antigen based on Poly (3,4-ethylenedioxythiophene) and functionalized carbon nanotubes hybrid platform Talanta 171 115-123
[3] World Health Organization (WHO) 2018 Global Tuberculosis Report
[4] Lavania S, Das R, Dhiman A, Myneedu V, Verma A, Singh N, Sharma T and Tyagi J 2018 Aptamer-Based TB Antigen Tests for the Rapid Diagnosis of Pulmonary Tuberculosis: Potential Utility in Screening for Tuberculosis ACS Infect Dis 4 1718
[5] Tufa L, Oh S, Tran V, Kim J, Jeong K, Park T, Kim H and Lee J 2018 Electrochemical immunosensor using nanotriplex of graphene quantum dots, Fe3O4, and Ag nanoparticles for tuberculosis *Electrochimica Acta* **290** 369

[6] Zhu C, Liu J, Ling Y, Yang H, Liu Z, Zheng R, Qin L and Hu Z 2012 Evaluation of the clinical value of ELISA based on MPT64 antibody aptamer for serological diagnosis of pulmonary tuberculosis *BMC Infect Dis* **12** 96

[7] Chen Y, Guo S, Zhao M, Zhang P, Xin Z, Tao J and Bai L 2018 Amperometric DNA biosensor for Mycobacterium tuberculosis detection using flower-like carbon nanotubes-polyaniline nanohybrid and enzyme-assisted signal amplification strategy *Biosens Bioelectron* **119** 215-220

[8] Zoski C 2007 Handbook of electrochemistry 1st ed. (Amsterdam: Boston: Elsevier) p 892

[9] Wang Y, Ye Z and Ying Y 2012 New Trends in impedimetric biosensors for the detection of foodborne pathogenic bacteria *Sensors* **12** 3449-3471

[10] Voltammetry 2019 Wikipedia Available from: https://en.wikipedia.org/w/index.php?title=Voltammetry&oldid=892933254

[11] Chen Y, Li Y, Yang Y, Wu F, Cao J and Bai L 2017 A polyaniline-reduced graphene oxide nanocomposite as a redox nanoprobe in a voltammetric DNA biosensor for Mycobacterium tuberculosis *Microchim Acta* **84** 1801-1808

[12] Issa R, Hamdan N and Noh M 2019 Differential pulse voltammetric determination of dna hybridization using methylene blue on screen printed carbon electrode for the detection of mycobacterium tuberculosis *Biotechnology* **9** 304-311

[13] Thiruppathiraja C, Kamatchiammal S, Adaikkappan P, Santhosh D and Alagar M 2011 Specific detection of Mycobacterium sp. genomic DNA using dual labeled gold nanoparticle based electrochemical biosensor *Anal Biochem* **417** 73-79

[14] Torres E and Alocilja E 2011 Nanoparticle based DNA biosensor for tuberculosis detection using thermophilic helicase-dependent isothermal amplification *Biosens Bioelectron* **26** 4614-4618

[15] Ng B, Xiao W, West N, Wee E, Wang Y and Trau M 2015 Rapid, Single-cell electrochemical detection of mycobacterium tuberculosis using colloidal gold nanoparticles *Anal Chem* **87** 10613–1618

[16] Mat M, Abdullah J, Yusof N, Sulaiman Y, Wasoh H, Noh M and Issa R 2017 PNA biosensor based on reduced graphene oxide/water soluble quantum dots for the detection of Mycobacterium tuberculosis *Sens Actuators B Chem* **241** 1024–1034

[17] Mohamad F, Zaid M, Abdullah J, Zawawi R, Lim H, Sulaiman Y and Rahman N 2017 Synthesis and characterization of polyaniline/graphene composite nanofiber and its application as an electrochemical dna biosensor for the detection of mycobacterium tuberculosis *Sensors* **17** 2789

[18] Hamdan N, Issa R, Noh M and Zin N 2012 Electrochemical technique using methylene blue with pencil graphite electrode for optimum detection of mycobacterium tuberculosis DNA *Curr Res Tuberc* **4** 1-12

[19] Liu C, Jiang D, Xiang G, Liu L, Liu F and Pu X 2014 An electrochemical DNA biosensor for the detection of Mycobacterium tuberculosis, based on signal amplification of graphene and a gold nanoparticle–polyaniline nanocomposite *The Analyst* **139** 5460–5465

[20] Torati S, Reddy V, Yoon S and Kim C 2016 Electrochemical biosensor for Mycobacterium tuberculosis DNA detection based on gold nanotubes array electrode platform *Biosens Bioelectron* **78** 483-488

[21] Tahir M, Bajwa S, Mansoor S, Briddon R, Khan W, Scheffler B and Amin I 2018 Evaluation of carbon nanotube based copper nanoparticle composite for the efficient detection of agroviruses *J Hazard Mater* **346** 27-35
[22] Das M, Sumana G, Nagarajan R and Malhotra B 2010 Zirconia based nucleic acid sensor for mycobacterium tuberculosis detection Appl Phys Lett 96 133703
[23] Thakur H, Kaur N, Sabherwal P, Sareen D and Prabhakar N 2017 Aptamer based voltammetric biosensor for the detection of Mycobacterium tuberculosis antigen MPT64 Microchim Acta 184 1915-1922
[24] Gaffar S, Nurmalasari R and Hartati Y 2017 Voltammetric DNA Biosensor using gold electrode modified by self assembled monolayer of thiol for detection of mycobacterium tuberculosis Procedia Technol 27 74-80
[25] Amin M, Isa M, Sidek R and Yusof N 2015 An embedded processing of differential pulse voltammetry (DPV) data using ARM processor (LPC1768) IEEE International Circuits and Systems Symposium (ICSyS) (Langkawi: Malaysia IEEE) p 80-84
[26] Bioanalytical Systems Inc Pulse Voltammetric Techniques Available from: https://www.basinc.com/manuals/EC_epsilon/Techniques/Pulse/pulse
[27] Das M, Sumana G, Nagarajan R and Malhotra B 2010 Application of nanostructured ZnO films for electrochemical DNA biosensor Thin Solid Films 519 1196-1201
[28] Vivian J 2013 Towards HIV Sensing: The Development of electrochemical DNA/RNA aptamer biosensors on dendrimer-gold platforms University of Johannesburg
[29] Rueda D, Furukawa R, Fuentes P, Comina G, Castro N, Requena D, Gilman R, Sheen P and Zimic M 2018 A novel inexpensive electrochemical sensor for pyrazinoic acid as a potential tool for the identification of pyrazinamide-resistant Mycobacterium tuberculosis Int J Mycobacteriology 7 275
[30] Smith Y, Bhattacharyya D, Mohanty S and Misra M 2016 Anodic functionalization of titania nanotube arrays for the electrochemical detection of tuberculosis biomarker vapors J Electrochem Soc 163 B83-B89
[31] Denis A 2008 Cyclic Voltammetry (New York: John Wiely & Sons publication) p 3-12
[32] Mirceski V, Skrzypek S and Stojanov L 2018 Square-wave voltammetry ChemTexts 4 1-14
[33] Ainla A, Mousavi M, Tsaloglou M, Redston J, Bell J, Teresa M and Whitesides G 2018 Open-source potentiostat for wireless electrochemical detection with smartphones Anal Chem 90 6240-6246
[34] Yan Z, Gan N, Zhang H, Wang D, Qiao L, Cao Y, Li T and Hu F 2015 A sandwich-hybridization assay for simultaneous determination of HIV and tuberculosis DNA targets based on signal amplification by quantum dots-PowerVision polymer coding nanotracers Biosens Bioelectron 71 20713
[35] Yesil M, Donmez S and Arslan F 2016 Development of an electrochemical DNA biosensor for detection of specific Mycobacterium tuberculosis sequence based on poly (L-glutamic acid) modified electrode J Chem Sci 128 1823-1829
[36] Miodek A, Mejri N, Gomgnimbou M, Sola C and Korri H 2016 E-DNA Sensor of mycobacterium tuberculosis based on electrochemical assembly of nanomaterials (MWCNTs/PPy/PAMAM) Anal Chem 128 1823-1829
[37] Liju Y and Anthony G 2008 Impedimetric biosensors for nano and microfluidics, encyclopedia of microfluidics and nanofluidics (Boston: Springer)
[38] Bai L, Chen Y, Bai Y, Chen Y, Zhou J and Huang A 2017 Fullerene-doped polyaniline as new redox nanoprobe and catalyst in electrochemical aptasensor for ultrasensitive detection of mycobacterium tuberculosis MPT64 antigen in human serum Biomaterials 133 11-19
[39] Lakshminarayanaiah N 1976 Membrane Electrodes (Academic Press) p 378
[40] Evans D, Papadimitriou K, Greathed L, Vasilakis N, Pantelidis P, Kelleher P, Morgan H and Prodromakis T 2017 An Assay system for point-of-care diagnosis of tuberculosis using commercially manufactured PCB technology Sci Rep 7
[41] Li N, Huang X, Sun D, Yu W, Tan W, Luo Z and Chen Z 2018 Dual-aptamer-based voltammetric biosensor for the Mycobacterium tuberculosis antigen MPT64 by using a gold electrode modified with a peroxidase loaded composite consisting of gold nanoparticles and a Zr(IV)/terephthalate metal-organic framework Microchim Acta 185

[42] Mohd U, Yusof N, Kusnin N, Abdullah J, Suraiya S, Ong P, Raston N, Rahman V and Fathil M 2018 Sandwich electrochemical immunosensor for early detection of tuberculosis based on graphene/polyaniline-modified screen-printed gold electrode Sensors 18 3926

[43] Zhang Y, Yan Y, Zhang B, Zhu W, He Y, Huang H, Li J, Jiang Z and Tan S 2015 Fabrication of an interferon-gamma-based ITO detector for latent tuberculosis diagnosis with high stability and lower cost J Solid State Electrochem 163 B206-B214

[44] Bhattacharyya D, Smith Y, Mohanty S and Misra M 2016 Titania nanotube array sensor for electrochemical detection of four predominate tuberculosis volatile biomarkers J Electrochem Soc 163 3111-3119

[45] Chiu N, Huang T, Kuo C, Lee W, Hsieh M and Lai H 2012 Single-layer graphene based SPR biosichips for tuberculosis bacillus detection Biophotonics: Photonic Solutions for Better Health Care III p 84273M

[46] Das M, Dhand C, Sumana G, Srivastava A, Nagarajan R, Nain L, Iwamoto M, Manaka T and Malhotra B 2011 Electrophoretic fabrication of chitosan–zirconium-oxide nanobiocomposite platform for nucleic acid detection Biomacromolecules 12 540-547

[47] Das R, Dhiman A, Mishra S, Haldar S, Sharma N, Bansal A, Ahmad Y, Kumar A, Tyagi J and Sharma T 2019 Structural switching electrochemical DNA aptasensor for the rapid diagnosis of tuberculous meningitis Int J Nanomedicine 14 2103-2113

[48] He F, Xiong Y, Liu J, Tong F and Yan D 2016 Construction of Au-IDE/CFP10-ESAT6 aptamer/DNA-AuNPs MSPQC for rapid detection of mycobacterium tuberculosis Biosens Bioelectron 77 799-804

[49] Li L, Yuan Y, Chen Y, Zhang P, Bai Y and Bai L 2018 Aptamer based voltammetric biosensor for Mycobacterium tuberculosis antigen ESAT-6 using a nanohybrid material composed of reduced graphene oxide and a metal-organic framework Microchim Acta 185 379

[50] Luo J, Fang X, Ye D, Li H, Chen H, Zhang S and Kong J 2014 A real-time microfluidic multiplex electrochemical loop-mediated isothermal amplification chip for differentiating bacteria Biosens Bioelectron 60 84-91

[51] Metters J, Kampouris D and Banks C 2014 Fingerprinting breath: electrochemical monitoring of markers indicative of bacteria mycobacterium tuberculosis infection J Braz Chem Soc 25 1667-1672

[52] Prabhakar N, Solanki P, Kaushik A, Pandey M and Malhotra B 2010 Peptide nucleic acid immobilized biocompatible silane nanocomposite platform for mycobacterium tuberculosis detection Electroanalysis 22 2672-2682

[53] Tsaloglou M, Nemiroski A, Camci G, Christodoulouas D, Murray L, Connelly J and Whitesides G 2018 Handheld isothermal amplification and electrochemical detection of DNA in resource-limited settings Anal Biochem 543 116-121

[54] Navin M, Vikrant S, Raj S and Dhanraj T 2016 Reduced graphene oxide nanoribbon immobilized gold nanoparticles based electrochemical DNA biosensor for detection of mycobacterium tuberculosis J Mater Chem B 6 5181-5187

[55] Yu X, Chai Y, Jiang J and Cui H 2012 Sensitive ECL sensor for sequence-specific DNA from mycobacterium tuberculosis based on N-(aminobutyl)-N-ethylisoluminol functionalized gold nanoparticles labeling J Photochem Photobiol Chem 241 45-51
[56] Zhang Q, March G, Noel V, Piro B, Reisberg S, Tran L, Hai L, Abadia E, Sola C, et al. 2012 Label-free and reagentless electrochemical detection of PCR fragments using self-assembled quinone derivative monolayer: application to mycobacterium tuberculosis Biosens Bioelectron 32 163-168
[57] Zhang C, Lou J, Tu W, Bao J and Dai Z 2015 Ultrasensitive electrochemical biosensing for DNA using quantum dots combined with restriction endonuclease The Analyst 140 506-511