Factors predictive of invasive ductal carcinoma in cases preoperatively diagnosed as ductal carcinoma in situ

CURRENT STATUS: UNDER REVIEW

Koji Takada
Osaka City University Graduate School of Medicine

Shinichiro Kashiwagi
Osaka City University Graduate School of Medicine

spqv9ke9@view.ocn.ne.jp Corresponding Author
ORCiD: https://orcid.org/0000-0002-0460-9599

Yuka Asano
Osaka City University Graduate School of Medicine

Wataru Goto
Osaka City University Graduate School of Medicine

Tamami Morisaki
Osaka City University Graduate School of Medicine

Katsuyuki Takahashi
Osaka City University Graduate School of Medicine

Hisakazu Fujita
Osaka City University Graduate School of Medicine

Tsutomu Takashima
Osaka City University Graduate School of Medicine

Shuhei Tomita
Osaka City University Graduate School of Medicine

Kosei Hirakawa
Osaka City University Graduate School of Medicine

Masaichi Ohira
Osaka City University Graduate School of Medicine
DOI: 10.21203/rs.2.19211/v1

SUBJECT AREAS
 Oncology Cancer Biology

KEYWORDS
 invasive ductal carcinoma, ductal carcinoma in situ, invasion, platelet-lymphocyte ratio, biopsy, surgery
Abstract

Background

Invasion is often found in the postoperative pathological examination of cases diagnosed as ductal carcinoma in situ (DCIS) by histological examinations such as core needle biopsy (CNB) or vacuum-assisted biopsy (VAB). A meta-analysis reported that 25.9% of invasive ductal carcinoma (IDC) cases are diagnosed as DCIS preoperatively by CNB. Risk factors for invasion by postoperative examination have been studied, but no factors have been found that could be assessed preoperatively from blood tests. In this study, we investigated factors predictive of invasion based on preoperative blood tests in patients diagnosed with DCIS by preoperative biopsy.

Methods

In this study, 118 patients who were diagnosed with DCIS by preoperative biopsy were included. Biopsies were performed with 16-gauge CNB or VAB. Peripheral blood was obtained at the time of diagnosis. This study evaluated absolute platelet count, absolute lymphocyte count, lactate dehydrogenase, carcinoembryonic antigen, and cancer antigen 15-3 (CA15-3). The platelet-lymphocyte ratio (PLR) was calculated by dividing the absolute platelet count by the absolute lymphocyte count, and patients were grouped into high PLR (≥160.0) and low PLR (<160.0) groups.

Results

Invasion was found more frequently after surgery in pathologically high-grade cases than in pathologically not-high-grade cases (p = 0.015). The median PLR was 138.9, and 48 patients (40.7%) were classified into the high PLR group. The high PLR group was significantly more likely to have invasion in the postoperative pathology than the low PLR group (p = 0.018). In multivariate analysis of factors predictive of invasion in postoperative pathology, a high PLR (p = 0.007, odds ratio [OR] = 3.212), larger tumor size (p = 0.044, OR = 2.758), and biopsy method (VAB vs CNB, p = 0.001, OR = 0.206) were independent risk factors.

Conclusions

The PLR may be a predictor of invasion in the postoperative pathology for patients diagnosed with DCIS by preoperative biopsy.
Background
Because ductal carcinoma in situ (DCIS) is not an invasive malignant tumor, it does not have the ability to metastasize. Therefore, the necessity of surgical treatment and sentinel lymph node biopsy for DCIS has been studied [1–4]. However, DCIS is diagnosed by histological examinations such as core needle biopsy (CNB) or vacuum-assisted biopsy (VAB), and invasion is often found in the postoperative pathological examination. A meta-analysis reported 25.9% (18.6–37.2%) of invasive ductal carcinomas (IDCs) are preoperatively diagnosed as DCIS by CNB [5]. Although risk factors have been examined, there are no factors that can be identified easily using blood tests.

Cancer affects the general condition as it progresses. In particular, changes in the blood are often observed from an early stage. Tumor markers often correlate with progression and have been reported to change earlier than other symptoms and other tests after recurrence [6–8]. Carcinoembryonic antigen (CEA) and cancer antigen 15 – 3 (CA15-3) are commonly used as tumor markers for breast cancer. The white blood cell population and blood chemistry can also change. Lactate dehydrogenase (LDH) is one of the most important metabolic enzymes involved in glycolysis [9]. An increase in serum LDH is observed with tissue destruction caused by cancerous growth [10], and serum LDH values have been reported to be consistent with clinical TNM staging [10, 11]. Furthermore, the peripheral blood platelet-lymphocyte ratio (PLR) has been reported to be useful for predicting prognosis [12–14], and results from a meta-analysis suggest a correlation between the PLR and progression in breast cancer [12]. Therefore, we hypothesized that there may be a difference in blood test results if there is invasion in patients diagnosed with DCIS by preoperative biopsy. In this study, we identified predictors of invasion from preoperative blood tests in patients diagnosed with DCIS by preoperative biopsy.

Methods
Patients
In this study, one hundred and eighteen patients who were diagnosed with DCIS by preoperative biopsy from August 2007 to January 2018 at the Osaka City University Hospital were included. The grade of DCIS was based on the World Health Organization classification [15]. Patients with multiple breast cancers were excluded, as were patients with a history of cancer regardless of breast cancer.
Biopsies were performed with 16-gauge CNB or VAB at the discretion of the attending physician. All patients underwent mastectomy or breast-conserving surgery. In both preoperative biopsy and postoperative pathological examination, invasion was examined by Hematoxylin-Eosin staining and immunohistochemical staining. Furthermore, the expression of the estrogen receptor (ER), progesterone receptor (PgR), human epidermal growth factor receptor 2 (HER2), and Ki67 was evaluated by immunohistochemical staining in the biopsy tissue. Tumor size was measured by imaging evaluation such as ultrasonography, computed tomography, and magnetic resonance imaging. Cases that are suspected of having lymph node metastases in the image are diagnosed IDC even if they are diagnosed with DCIS by biopsy, and are excluded from this study.

Blood Sample Analysis

Peripheral blood was obtained at diagnosis, before surgery. This study evaluated absolute platelet count, absolute lymphocyte count, LDH, CEA, and CA15-3. Patients in whom any of these variables was not measured were excluded from the study. The number of blood cells was determined using a hemocytometer. Percentages of different cell types were determined using a Coulter LH 750 Hematology Analyzer (Beckman Coulter, Brea, CA, USA). The PLR was calculated from the preoperative blood sample by dividing the absolute platelet count by the absolute lymphocyte count. On the basis of previous studies, a PLR value of 160.0 was used as the cutoff value to discriminate between a high PLR (≥ 160.0) and a low PLR (< 160.0) [16]. For LDH, CEA, and CA15-3, each upper limit of normal range (ULN) was set as a cut-off value (LDH: 120–242 IU/L, CEA: ≤5.0 ng/mL, CA15-3: ≤25.0 U/mL).

Statistical Analysis

All statistical analysis was performed with the JMP software package (SAS, Tokyo, Japan). The relationship between each factor was examined using Pearson’s chi-square test. The odds ratio (OR) and 95% confidence interval were calculated by logistic analysis. Multivariable analysis was performed using the multivariable logistic regression model. Significance was defined as a p-value less than 0.05.

Results

Clinicopathological features
Their clinicopathological features of one hundred and eighteen patients who were diagnosed with DCIS by preoperative biopsy and met the conditions of this study are shown in Table 1. The median age was 51 (range, 30–78) years, and the median tumor diameter was 17.7 mm (range, 3.0–50.0 mm).

Parameters	Number of patients (n = 118) (%)
Age at operation (years old)	51 (30–78)
Palpability Impalpable / Palpable	33 (28.0%) / 85 (72.0%)
Tumor size (mm)	17.7 (3.0–50.0)
Biopsy device	67 (56.8%) / 51 (43.2%)
Estrogen receptor Impalpable / Positive	22 (18.6%) / 96 (81.4%)
Progesterone receptor Impalpable / Positive	37 (31.4%) / 81 (68.6%)
HER2 ≤2 / 3	101 (85.6%) / 17 (14.4%)
Ki67 ≤14% / >14%	98 (83.1%) / 20 (16.9%)
Grade of DCIS Low, intermediate / High	98 (83.1%) / 20 (16.9%)
Postoperative pathology DCIS only / Invasive ductal carcinoma	70 (59.3%) / 48 (40.7%)
Platelets–lymphocyte ratio Low / High	median 138.9 (range, 55.0–292.0)
LDH ≤ULN / >ULN	median 170 (range, 121–452)
CEA ≤ULN / >ULN	median 1.6 (range, < 0.5–12.4)
CA15-3 ≤ULN / >ULN	median 6.6 (range, < 0.5–40.8)

DCIS: ductal carcinoma in situ, HER2: human epidermal growth factor receptor 2, LDH: lactate dehydrogenase, CEA: carcinoembryonic antigen, ULN: upper limit of normal.

In 85 patients (72.0%), a tumor was palpable. VAB was selected in 51 patients (43.2%), but 67 patients (56.8%), more than half, were diagnosed preoperatively by 16-Gauge CNB. Ninety-six patients (81.4%) had ER-positive tumors, and 81 patients (68.6%) had PgR-positive tumors.

Seventeen patients (14.4%) had a score of 3 + for HER2. Ki67 expression was >14% in 20 patients (16.9%). Twenty preoperative biopsy specimens (16.9%) were pathologically high-grade. Forty-eight patients (40.7%) were found to have invasion by postoperative pathological examination.

The median LDH was 170 IU/L (range, 121–452 IU/L), with 13 patients (11.0%) having higher than the ULN. The median CEA was 1.6 ng/mL (range, <0.5–12.4 ng/mL), with 7 patients (5.9%) having higher than the ULN. In addition, the median CA15-3 was 6.6 U/mL (range, <0.5–40.8 U/mL), with 3 patients (2.5%) having higher than the ULN. The median PLR was 138.9 (range, 55.0–292.0), and 48 patients (40.7%) had a PLR > 160 and were placed into the high PLR group.
Correlations between clinicopathological features and postoperative pathology

The correlations between clinicopathological features and postoperative pathology are listed in Table 2. In cases in which the tumor was palpable before surgery, the postoperative pathology tended to be IDC (p = 0.065). In cases in which the tumor diameter was larger than 20 mm, the probability of the postoperative pathology being IDC was significantly higher (p = 0.024). Cases biopsied by VAB were significantly more likely to be diagnosed as DCIS by postoperative pathology than those biopsied by CNB (p = 0.003). Although no significant difference was observed based on immunohistochemical staining, invasion was found more frequently after surgery in pathologically high-grade cases than in pathologically not-high-grade cases (p = 0.015) (Fig. 1).

Table 2
Correlation between postoperative pathology and clinicopathological features

Parameters	Postoperative pathology	p value
	DCIS only (n = 70)	Invasive ductal carcinoma (n = 48)
Age at operation (years old)	≤ 60 20 (28.6%)	> 60 50 (71.4%)
	33 (68.8%)	15 (31.3%)
Palpability Impalpable	9 (18.8%)	24 (45.7%)
Palpable	39 (81.3%)	46 (65.7%)
Tumor size (mm) ≤ 20.0	35 (72.9%)	32 (45.7%)
> 20.0	19 (39.6%)	22 (31.4%)
Biopsy device	52 (74.3%)	38 (54.3%)
Core needle biopsy	19 (39.6%)	32 (45.7%)
Vacuum-assisted biopsy	29 (60.4%)	13 (27.1%)
Estrogen receptor Negative	13 (27.1%)	9 (18.8%)
Positive	35 (72.9%)	61 (87.1%)
Progesterone receptor	29 (60.4%)	52 (74.3%)
Negative	19 (39.6%)	18 (25.7%)
HER2 ≤ 2	35 (72.9%)	63 (90.0%)
HER2 > 3	13 (27.1%)	7 (10.0%)
Ki67 ≤ 14%	10 (20.8%)	60 (85.7%)
Ki67 > 14%	38 (79.2%)	10 (20.8%)
Grade of DCIS Low, intermediate	35 (72.9%)	63 (90.0%)
High	13 (27.1%)	7 (10.0%)
Platelets-lymphocyte ratio	24 (50.0%)	50 (71.4%)
Low	24 (50.0%)	20 (28.6%)
High	6 (12.5%)	63 (90.0%)
LDH ≤ ULN	42 (87.5%)	20 (28.6%)
> ULN	7 (10.0%)	10 (14.3%)
CEA ≤ ULN	45 (93.8%)	66 (94.3%)
> ULN	4 (5.7%)	4 (5.7%)
CA15-3 ≤ ULN	46 (95.8%)	69 (98.6%)
> ULN	2 (4.2%)	1 (1.4%)

DCIS: ductal carcinoma in situ, HER2: human epidermal growth factor receptor 2, LDH: lactate dehydrogenase, ULN: upper limit of normal, CEA: carcinoembryonic antigen.
Examination of preoperative blood sampling results showed no significant difference in LDH or tumor markers based on pre- and postoperative concordance. However, the high PLR group was significantly more likely to show invasion in postoperative pathology than the low PLR group (p = 0.018). The correlations between the PLR and other clinical factors were examined, but there was no clear correlation (Table 3). In univariate analysis of factors predictive of invasion in postoperative pathology, a high PLR (p = 0.018, OR = 2.500) was a factor, as were larger tumor size (p = 0.024, OR = 2.372), non-Low Grade of DCIS (p = 0.015, OR = 3.343) and biopsy method (VAB vs CNB, p = 0.003, OR = 0.313) (Fig. 1). Moreover, in multivariate analysis of factors predictive of invasion in postoperative pathology, a high PLR (p = 0.007, OR = 3.212) was an independent factor, as were larger tumor size (p = 0.044, OR = 2.758) and biopsy method (VAB vs CNB, p = 0.001, OR = 0.206) (Table 4).
Parameters	Platelets–lymphocyte ratio		p value
	Low (n = 74)	High (n = 44)	
Age at operation (years old) ≤ 60	51 (68.9%)	32 (72.7%)	0.661
	23 (31.1%)	12 (27.3%)	
	22 (29.7%)	11 (25.0%)	0.580
	52 (70.3%)	33 (75.0%)	
Palpability	Impalpable	Palpable	
	45 (60.8%)	26 (59.1%)	0.854
	29 (39.2%)	18 (40.9%)	
Tumor size (mm) ≤ 20.0 > 20.0	42 (56.8%)	25 (56.8%)	0.995
	32 (43.2%)	19 (43.2%)	
Biopsy device	Core needle biopsy	Vacuum-assisted biopsy	
	15 (20.3%)	7 (15.9%)	0.556
	59 (79.7%)	37 (84.1%)	
Estrogen receptor	Negative	Positive	
	25 (33.8%)	12 (27.3%)	0.461
	49 (66.2%)	32 (72.7%)	
HER2	≤ 2	≥ 3	
	63 (82.4%)	40 (90.9%)	0.205
	13 (17.6%)	4 (9.1%)	
Ki67	≤ 14%	> 14%	
	62 (83.8%)	36 (81.8%)	0.783
	12 (16.2%)	8 (18.2%)	
Grade of DCIS	Low, intermediate	High	
	60 (81.1%)	38 (86.4%)	0.460
	14 (18.9%)	6 (13.6%)	
LDH	≤ ULN	> ULN	
	67 (90.5%)	38 (86.4%)	0.484
	7 (9.5%)	6 (13.6%)	
CEA	≤ ULN	> ULN	
	70 (94.6%)	41 (93.2%)	0.753
	4 (5.4%)	3 (6.8%)	
CA15-3	≤ ULN	> ULN	
	71 (95.9%)	44 (100.0%)	0.176
	3 (4.1%)	0 (0.0%)	
Postoperative pathology	DCIS only	Invasive ductal carcinoma	
	50 (67.6%)	20 (45.5%)	0.018
	24 (32.4%)	24 (54.5%)	

DCIS: ductal carcinoma in situ, HER2: human epidermal growth factor receptor 2, LDH: lactate dehydrogenase, ULN: upper limit of normal. CEA: carcinoembryonic antigen.
Table 4
Univariate and multivariate analysis with upstaging preoperatively DCIS to invasive cancer.

Parameters	Univariate analysis			Multivariate analysis		
	Odd ratio	95% CI	p value	Odd ratio	95% CI	p value
Age at operation (years old) ≤ 60 vs > 60	1.136	0.510–2.531	0.754	1.662	0.588–4.923	0.342
Palpability Impalpable vs Palpable	2.261	0.941–5.434	0.065	1.662	0.588–4.923	0.342
Tumor size (mm) ≤ 20.0 vs > 20.0	2.372	1.111–5.063	0.024	2.758	1.028–7.925	0.044
Biopsy device CNB vs VAB	0.313	0.142–0.690	0.003	0.206	0.075–0.516	0.001
Estrogen receptor Negative vs Positive	0.397	0.154–1.023	0.051	0.689	0.187–2.550	0.572
Progesterone receptor Negative vs Positive	0.528	0.240–1.163	0.111			
HER2 ≤ 2 vs 3	2.368	0.832–6.744	0.100			
Ki67 ≤ 14% vs > 14%	1.579	0.601–4.149	0.352			
Grade of DCIS Low, intermediate vs High	3.343	1.221–9.155	0.015	2.599	0.717–9.973	0.146
Platelets - lymphocyte ratio Low vs High	2.500	1.160–5.386	0.018	3.212	1.370–7.866	0.007
LDH ≤ ULN vs > ULN	1.286	0.404–4.094	0.670			
CEA ≤ ULN vs > ULN	1.100	0.235–5.152	0.904			
CA15-3 ≤ ULN vs > ULN	3.000	0.264–34.052	0.353			

DCIS: ductal carcinoma in situ, CNB: core needle biopsy, VAB: vacuum-assisted biopsy, HER2: human epidermal growth factor receptor 2, LDH: lactate dehydrogenase, ULN: upper limit of normal, CEA: carcinoembryonic antigen, CI: confidence intervals.

Discussion
IDC may be misdiagnosed as DCIS by preoperative biopsy. As mentioned above, 25.9% (18.6–37.2%) of cases preoperatively diagnosed as DCIS have been reported to be IDC according to a meta-analysis.
However, the ratio in this study was 40.7%, higher than that previously reported. This is greatly influenced by the biopsy method. The meta-analysis found that one of the risk factors of underestimation was sampling by 14-Gauge CNB instead of 11-Gauge CNB. In contrast, more than half of the cases in this study used 16-Gauge CNB for biopsy. As a result, in patients diagnosed with DCIS by VAB, the rate of postoperative invasion was 27.1%, but that in patients diagnosed by CNB, it was 52.2%. Certainly, VAB has stronger pain and higher medical costs than CNB. However, in the future, CNB with a thicker puncture needle or VAB is considered necessary for more accurate preoperative diagnosis.

There are various factors other than biopsy devices that are risk factors for underestimation. High grade, tumor size larger than 20 mm, and palpability have been previously identified as risk factors [5]. One study also reported hormone receptor negativity as a risk factor [17]. Similar results were found in this study regarding these clinical factors. However, this study focused on preoperative blood test results, and invasion in postoperative pathology was found significantly more frequently in patients with a high PLR than in patients with a low PLR. Platelets and growth factors such as platelet-derived growth factor and transforming growth factor-β are known to promote tumor growth [18–22]. In addition, immunity is involved in the progression of cancer, and lymphocytes play a key role in the host anti-tumor immune function [23]. In recent years, one report has reported changes in the immune microenvironment around tumors in DCIS and IDC. According to the report, immune escape is progressing in the invasion part [24]. This study was started with the hypothesis that blood test changes may occur as cancer progresses. LDH and tumor markers showed no significant difference based on pre- and postoperative concordance, but invasion was significantly more likely showed in the high PLR group than in the low PLR group. This result may indicate that PLR is not elevated as cancer progresses, but that a systemic immune state with a high PLR involved in the change from DCIS to IDC.

One limitation in this study is that there were many cases in which biopsy was performed with 16-Gauge CNB, so the rate of IDC after surgery was higher than that of previous reports. In addition, since the absolute platelet count and lymphocyte count are easily affected by liver diseases and
inflammation, it is also a limitation that the comorbidities are not included in the study. However, randomized trials are currently underway to investigate follow-up for low-grade DCIS [25, 26]. One strength of this study is that the PLR can be evaluated relatively easily in clinical practice, and changes in DCIS can be found by evaluating the PLR over time.

Conclusions

The PLR may be a predictor of invasion in postoperative pathology for patients diagnosed with DCIS by preoperative biopsy.

List Of Abbreviations

CA15-3, cancer antigen 15 – 3
CEA, carcinoembryonic antigen
CNB, core needle biopsy
DCIS, ductal carcinoma in situ
ER, estrogen receptor
HER2, human epidermal growth factor receptor 2
IDC, invasive ductal carcinoma
LDH, lactate dehydrogenase
OR, odds ratio
PgR, progesterone receptor
PLR, platelet-lymphocyte ratio
ULN, upper limit of normal
VAB, vacuum-assisted biopsy

Declarations

Ethics approval and consent to participate

Written informed consent was obtained from all subjects. This research conformed to the provisions of the Declaration of Helsinki in 2013. All patients were informed of the investigational nature of this study and provided their written, informed consent. The study protocol was approved by the Ethics Committee of Osaka City University (#926).

Consent for publication
Not applicable.

Availability of data and materials

The datasets supporting the conclusions of this article is included within the article.

Competing interests

The authors declare that they have no competing interests.

Funding

This study was supported in part by Grants-in Aid for Scientific Research (KAKENHI, Nos. 17K10559 and 19K18067) from the Ministry of Education, Science, Sports, Culture and Technology of Japan.

Authors’ contributions

KTakad participated in the design of the study and drafted the manuscript. SK participated in the design of the study and manuscript editing. YA, WG, TM and TT helped with study data collection and manuscript preparation. HF, KTakah and ST helped with study data collection and participated in its design. KH and MO conceived the study, and participated in its design and coordination and helped to draft the manuscript. All authors have read and approved the final manuscript.

Acknowledgements

We thank Yayoi Matsukiyo and Tomomi Okawa (Department of Surgical Oncology, Osaka City University Graduate School of Medicine) for helpful advice regarding data management.

Author’s information

1Department of Breast and Endocrine Surgery, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan.

2Department of Pharmacology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan.

3Department of Scientific and Linguistic Fundamentals of Nursing, Osaka City University Graduate School of Nursing, 1-5-17 Asahi-machi, Abeno-ku, Osaka 545-0051, Japan.

4Department of Gastrointestinal Surgery, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan.
References

1. van Roozendaal LM, Goorts B, Klinkert M, Keymeulen K, De Vries B, Strobbe LJA, Wauters CAP, van Riet YE, Degreaf E, Rutgers EJT et al: Sentinel lymph node biopsy can be omitted in DCIS patients treated with breast conserving therapy. *Breast Cancer Res Treat* 2016, 156(3):517-525.

2. Prendeville S, Ryan C, Feeley L, O'Connell F, Browne TJ, O'Sullivan MJ, Bennett MW: Sentinel lymph node biopsy is not warranted following a core needle biopsy diagnosis of ductal carcinoma in situ (DCIS) of the breast. *Breast* 2015, 24(3):197-200.

3. Rosen PP, Braun DW, Jr., Kinne DE: The clinical significance of pre-invasive breast carcinoma. *Cancer* 1980, 46(4 Suppl):919-925.

4. Sagara Y, Mallory MA, Wong S, Aydogan F, DeSantis S, Barry WT, Golshan M: Survival Benefit of Breast Surgery for Low-Grade Ductal Carcinoma In Situ: A Population-Based Cohort Study. *JAMA Surg* 2015, 150(8):739-745.

5. Brennan ME, Turner RM, Ciatto S, Marinovich ML, French JR, Macaskill P, Houssami N: Ductal carcinoma in situ at core-needle biopsy: meta-analysis of underestimation and predictors of invasive breast cancer. *Radiology* 2011, 260(1):119-128.

6. Fu Y, Li H: Assessing Clinical Significance of Serum CA15-3 and Carcinoembryonic Antigen (CEA) Levels in Breast Cancer Patients: A Meta-Analysis. *Med Sci Monit* 2016, 22:3154-3162.

7. Harris L, Fritsche H, Mennel R, Norton L, Ravdin P, Taube S, Somerfield MR, Hayes DF, Bast RC, Jr., American Society of Clinical O: American Society of Clinical Oncology 2007 update of recommendations for the use of tumor markers in breast cancer. *J Clin Oncol* 2007, 25(33):5287-5312.
8. Di Gioia D, Stieber P, Schmidt GP, Nagel D, Heinemann V, Baur-Melnyk A: **Early detection of metastatic disease in asymptomatic breast cancer patients with whole-body imaging and defined tumour marker increase.** *Br J Cancer* 2015, **112**(5):809-818.

9. Gallo M, Sapio L, Spina A, Naviglio D, Calogero A, Naviglio S: **Lactic dehydrogenase and cancer: an overview.** *Front Biosci (Landmark Ed)* 2015, **20**:1234-1249.

10. Liu D, Wang D, Wu C, Zhang L, Mei Q, Hu G, Long G, Sun W: **Prognostic significance of serum lactate dehydrogenase in patients with breast cancer: a meta-analysis.** *Cancer Manag Res* 2019, **11**:3611-3619.

11. Agrawal A, Gandhe MB, Gupta D, Reddy MV: **Preliminary Study on Serum Lactate Dehydrogenase (LDH)-Prognostic Biomarker in Carcinoma Breast.** *J Clin Diagn Res* 2016, **10**(3):BC06-08.

12. Zhang M, Huang XZ, Song YX, Gao P, Sun JX, Wang ZN: **High Platelet-to-Lymphocyte Ratio Predicts Poor Prognosis and Clinicopathological Characteristics in Patients with Breast Cancer: A Meta-Analysis.** *Biomed Res Int* 2017, **2017**:9503025.

13. Zhu Y, Si W, Sun Q, Qin B, Zhao W, Yang J: **Platelet-lymphocyte ratio acts as an indicator of poor prognosis in patients with breast cancer.** *Oncotarget* 2017, **8**(1):1023-1030.

14. Asano Y, Kashiwagi S, Onoda N, Noda S, Kawajiri H, Takashima T, Ohsawa M, Kitagawa S, Hirakawa K: **Platelet-Lymphocyte Ratio as a Useful Predictor of the Therapeutic Effect of Neoadjuvant Chemotherapy in Breast Cancer.** *PLoS One* 2016, **11**(7):e0153459.

15. Allred DC, Mohsin SK, Fuqua SA: **Histological and biological evolution of human premalignant breast disease.** *Endocr Relat Cancer* 2001, **8**(1):47-61.
16. Cihan YB, Arslan A, Cetindag MF, Mutlu H: **Lack of prognostic value of blood parameters in patients receiving adjuvant radiotherapy for breast cancer.** *Asian Pac J Cancer Prev* 2014, **15**(10):4225-4231.

17. Ozkan-Gurdal S, Cabioglu N, Ozcinar B, Muslimanoglu M, Ozmen V, Kecer M, Yavuz E, Igci A: **Factors predicting microinvasion in Ductal Carcinoma in situ.** *Asian Pac J Cancer Prev* 2014, **15**(1):55-60.

18. Betsholtz C, Johnsson A, Heldin CH, Westermark B, Lind P, Urdea MS, Eddy R, Shows TB, Philpott K, Mellor AL et al: **cDNA sequence and chromosomal localization of human platelet-derived growth factor A-chain and its expression in tumour cell lines.** *Nature* 1986, **320**(6064):695-699.

19. Ross R, Masuda J, Raines EW, Gown AM, Katsuda S, Sasahara M, Malden LT, Masuko H, Sato H: **Localization of PDGF-B protein in macrophages in all phases of atherogenesis.** *Science* 1990, **248**(4958):1009-1012.

20. Heldin CH, Westermark B: **Growth factors: mechanism of action and relation to oncogenes.** *Cell* 1984, **37**(1):9-20.

21. Miyazono K, Yuki K, Takaku F, Wernstedt C, Kanzaki T, Olofsson A, Hellman U, Heldin CH: **Latent forms of TGF-beta: structure and biology.** *Ann N Y Acad Sci* 1990, **593**:51-58.

22. Sporn MB, Roberts AB: **Transforming growth factor-beta. Multiple actions and potential clinical applications.** *JAMA* 1989, **262**(7):938-941.

23. Lin EY, Pollard JW: **Role of infiltrated leucocytes in tumour growth and spread.** *Br J Cancer* 2004, **90**(11):2053-2058.

24. Gil Del Alcazar CR, Huh SJ, Ekram MB, Trinh A, Liu LL, Beca F, Zi X, Kwak M, Bergholtz H, Su Y, et al: **Immune Escape in Breast Cancer During In Situ to Invasive Carcinoma Transition.** *Cancer Discov* 2017, **7**(10):1098-1115.
25. Soumian S, Verghese ET, Booth M, Sharma N, Chaudhri S, Bradley S, Umranikar S, Millican-Slater RA, Hanby AM, Francis A: *Concordance between vacuum assisted biopsy and postoperative histology: implications for the proposed Low Risk DCIS Trial (LORIS)*. *Eur J Surg Oncol* 2013, 39(12):1337-1340.

26. Elshof LE, Tryfonidis K, Slaets L, van Leeuwen-Stok AE, Skinner VP, Dif N, Pijnappel RM, Bijker N, Rutgers EJ, Wesseling J: *Feasibility of a prospective, randomised, open-label, international multicentre, phase III, non-inferiority trial to assess the safety of active surveillance for low risk ductal carcinoma in situ - The LORD study*. *Eur J Cancer* 2015, 51(12):1497-1510.

Figures

![Figure 1](image)

Forrest plot. Forest plot showed odd ratios for the univariate association of the clinicopathological features on postoperative pathology changes to invasive ductal carcinoma. In univariate analysis of factors predictive of invasion in postoperative pathology, a high PLR (p = 0.018, OR = 2.500) was a factor, as were larger tumor size (p = 0.024, OR = 2.372), non-Low Grade of DCIS (p = 0.015, OR = 3.343) and biopsy method (VAB vs CNB, p = 0.003, OR = 0.313).