Recursive Sketching For Frequency Moments

Vladimir Braverman, Rafail Ostrovsky
University of California, Los Angeles
{vova, rafail}@cs.ucla.edu

November 12, 2010

Abstract

In a ground-breaking paper, Indyk and Woodruff (STOC 05) showed how to compute \(F_k \) (for \(k > 2 \)) in space complexity \(O(\text{poly-log}(n, m) \cdot n^{1-\frac{2}{k}}) \), which is optimal up to (large) poly-logarithmic factors in \(n \) and \(m \), where \(m \) is the length of the stream and \(n \) is the upper bound on the number of distinct elements in a stream. The best known lower bound for large moments is \(\Omega(\log(n)n^{1-\frac{2}{k}}) \). A follow-up work of Bhuvanagiri, Ganguly, Kesh and Saha (SODA 2006) reduced the poly-logarithmic factors of Indyk and Woodruff to \(O(\log^2(m) \cdot (\log n + \log m) \cdot n^{1-\frac{2}{k}}) \). Further reduction of poly-log factors has been an elusive goal since 2006, when Indyk and Woodruff method seemed to hit a natural “barrier.” Using our simple recursive sketch, we provide a different yet simple approach to obtain a \(O(\log(m) \log(nm) \cdot (\log \log n)^4 \cdot n^{1-\frac{2}{k}}) \) algorithm for constant \(\epsilon \) (our bound is, in fact, somewhat stronger, where the \((\log \log n) \) term can be replaced by any constant number of \(\log \) iterations instead of just two or three, thus approaching \(\log^* n \)). Our bound also works for non-constant \(\epsilon \) (for details see the body of the paper). Further, our algorithm requires only \(4 \)-wise independence, in contrast to existing methods that use pseudo-random generators for computing large frequency moments.
1 Introduction

The celebrated paper of Alon, Matias and Szegedy [1] defined the following streaming model:

Definition 1.1. Let m, n be positive integers. A stream $D = D(n, m)$ is a sequence of size m of integers p_1, \ldots, p_m, where $p_i \in \{1, \ldots, n\}$. A frequency vector is a vector of dimensionality n with non-negative entries $f_i, i \in [n]$ defined as:

$$f_i = |\{j : 1 \leq j \leq m, p_j = i\}|.$$

Definition 1.2. A k-th frequency moment of D is defined by $F_k(D) = \sum_{i \in [n]} f_i^k$. Also $F_\infty = \max_{i \in [n]} f_i$.

Alon, Matias and Szegedy [1] initiated the study of approximating frequency moments with sublinear memory. Their surprising and fundamental results imply that for $k \leq 2$ it is possible to approximate F_k with polylogarithmic space; and that polynomial space is necessary for $k > 2$. Today, research on frequency moments is one of the central directions for streaming; many important discoveries have been made since [1]. The incomplete list of relevant work includes [18, 15, 2, 10, 3, 12, 13, 14, 16, 17, 25, 23, 24, 28, 30, 4, 9, 20].

For small $k \leq 2$, a long line of papers culminated in the recent optimal results:

- $k = 0$: In their award-winning paper, Kane, Nelson and Woodruff [24] gave optimal-space solution.
- $0 < k < 2$: Kane, Nelson, and Woodruff [23], and later Kane, Nelson, Porat and Woodruff [22], gave optimal-space solutions.
- $k = 2$: The famous sketch of Alon, Matias and Szegedy [1] is, in fact, optimal.

For large $k > 2$, after years of tremendous effort by the theory community, with important intermediate results, the state of the art is as follows:

- $k > 2$ [Lower bounds:] The lower bound of $\Omega \left(n^{1-\frac{2}{k}}\right)$ on space complexity was shown by Bar-Yossef, Jayram, Kumar and Sivakumar [2], and Chakrabarti, Khot and Sun [10]. Recently, the lower bound of $\Omega \left((\log n) \cdot n^{1-\frac{2}{k}}\right)$ was announced by Jayram and Woodruff (see the last page of [26] Monemizadeh and Woodruff SODA 2010 presentation of [27]).
- $k > 2$ [Upper bounds:] Indyk and Woodruff in their ground-breaking paper [19] first presented a two-pass algorithm with space complexity of $O \left(\frac{1}{\epsilon^{2+4/k}} \cdot (\log^2 n) \cdot (\log^6 m) \cdot n^{1-\frac{2}{k}}\right)$ and then shown how their two-pass algorithm can be converted to one-pass algorithm with additional poly-log multiplicative factors. The method of Indyk and Woodruff [19] was subsequently improved in 2006 by Bhuvanagiri, Ganguly, Kesh and Saha [5] to achieve: $O \left(\frac{k^2}{\epsilon^{2+4/k}} \cdot (\log^2 m) \cdot (\log n + \log m) \cdot n^{1-\frac{2}{k}}\right)$ space complexity with one pass. To the best of our knowledge, this bound is the best known until today.

Main Technical Challenge: No progress was made on the problem of large frequency moments since the 2006 work of [5] described above due to the following “barrier”: The large frequency moments represent the case of implicit vectors that cannot be sketched, at least directly. That is, no linear computation is known (unlike the case for the small sketches) that would give a good approximation for the entire vector. In fact, every algorithm that achieves $\tilde{O}(n^{1-2/k})$ memory bits boils down to the Indyk and Woodruff approach. Moreover, this is also true for algorithms for other implicit objects [6, 21]. Thus, it might be necessary to not only improve the existing bounds, but also to come up with new methods for computing estimates of implicit vectors.
Our Results: This is exactly what we do in this paper. We give a new, recursive method of computations of implicit vectors that also improves the upper bounds for large frequency moments. We improve the bound of Bhuvanagiri, Ganguly, Kesh and Saha \[5\] from \(O(k^2 \epsilon^{-2-(4/k)} \log^2(m) \log(nm)n^{1-\frac{2}{k}})\) to at least \(O(k^2 \epsilon^{-2-(4/k)}(\log \log(n))^4 \log(m) \log(nm)n^{1-\frac{2}{k}})\). In fact, we give an even better bound. For any constant \(t\) we achieve:

\[
O \left(\frac{k^2}{\epsilon^{2+4/k}} g_t(n) \log(m) \log(nm)n^{1-\frac{2}{k}} \right)
\]

space complexity, where:

\[
g_0(n) = n
\]

and

\[
g_t(n) = \log(g_{t-1}(n)).
\]

For constant \(t\) and \(\epsilon\), we can further improve our bound to \(O(\log(n) \log(n \log(m)) \cdot g_t(n) \cdot n^{1-2/k})\). (Thus, this is a nearly quadratic improvement of the possible ratio between upper and lower bounds compared to the recently announced \(\Omega(\log(n)n^{1-2/k})\) lower bound of Jayram and Woodruff.)

Our reduction requires only pairwise independence in contrast to the full independence that previous approaches need. Eliminating the need for total randomness is an important challenge for streaming; see, e.g., \[23\]. We obtain an algorithm that needs only 4-wise independence and thus does not need Nisan’s pseudorandom generators \[29\]. Finally, we note that our proofs are elementary, along the lines of AMS-type proofs.

An Alternative Perspective of Our Results: Many fundamental problems in streaming can be seen as computing \(L_1\) approximation of implicit vectors. For instance, the frequency moment \(F_k\) can be seen as an \(L_1\) norm of a vector with entries \(f_i^k\). Except for small moments (i.e., \(k \leq 2\)), no sketching (i.e., linear transformation) algorithms were known in the past. That is, all previous methods for computing \(F_k\) for \(k > 2\) resorted to non-linear computations, such as medians to boost the probability that heavy hitters will contribute.

We give a recursive sketching algorithm for estimating within \((1 \pm \epsilon)\) the \(L_1\) norm of an implicit \(n\)-dimensional vector of non-negative values, where the algorithm is not given such a vector explicitly, but is only allowed access through a “heavy hitters” oracle. Unlike all previous methods, our recursive sketching algorithm is a linear transformation (to heavy hitters) and requires \(O(\log n)\) calls to a heavy hitters oracle and yields a \((1 \pm \epsilon)\) approximation to \(L_1\) with constant probability. We note that our algorithm can be viewed as a random linear transformation on an implicit vector to heavy hitters, and thus gives a new dimension reduction method. Note that our dimension reduction does not contradict the impossibility result of Brinkman and Charikar \[8\], since our dimension reduction method preserves only the norm of the implicit vector and not pairwise distances between vectors. Yet, our method is sufficient for multiple streaming applications where we typically care about the norm of a single implicit vector. Thus, we believe that our method might be useful beyond approximating large frequency moments. In particular, it can be applied to other functions and implicit objects such as matrices, e.g., in \[6\] \[21\] \[7\].

Informal Ideas: Let us describe, very informally, the fundamental approach of Indyk and Woodruff \[19\]. They split the frequency vector into “layers,” where each layer contains all entries with frequencies between, e.g., \(\gamma^l\) and \(\gamma^{l+1}\) for a carefully chosen \(\gamma > 1\). Then they approximate the contribution of each layer by sampling the stream and by finding the heavy elements that contribute to the layer. Their elegant analysis shows that such a procedure ensures a good approximation with high probability.

We also use the connection between frequency moments and heavy hitters discovered by Indyk and Woodruff. However, we do not use the layers method; we employ recursion instead. For streaming applications, recursion can be helpful if it is possible to reduce computations to a single instance of a smaller
problem. This is the approach that we take. More specifically, we show that, given an algorithm for “heavy hitters,” it is possible to reduce such a problem on a vector of size n to a single computation of a random vector of size approximately $\frac{1}{2}n$.

This simple observation follows from elementary arguments such as Chebychev or Hoeffding inequality. We then employ this observation recursively and show that $\log(n)$ recursive calls can give an algorithm that already matches the bounds from [5]. Further, it is possible to reduce the number of recursive calls $\log\log(n)$ to $\log\log\log(n)$ by applying the same argument, but stopping after $O(\log\log(n))$ steps. At the depth $O(\log\log(n))$ of the recursion, the number of positive frequencies in a corresponding vector is polylogarithmically smaller than n, with constant probability. Thus, any algorithm that works in $polylog(n, m)n^{1-2/k}$ space will approximate such a vector “for free.” Employing such an algorithm at the bottom of $\log\log(n)$ recursion reduces the $\log(n)$ factor to a $poly(\log\log(n))$ factor. Further, the same idea may be repeated at least constant number of times; this is how we achieve our final bound. That is, we show that approximating the L_1 norm of implicit vectors is practically equivalent to finding heavy hitters. Our method is quite general and works for any implicit vector. Further, the simplest variant of the argument requires only pairwise independence, giving an algorithm that requires only 4-wise independence, in contrast to existing methods that use pseudorandom generators.

We gave a simple analysis that uses Chebyshev inequality. Better bounds are possible. For instance, assuming total randomness of H we can apply tail bounds such as the Hoeffding bound or Bernstein inequality. For our purposes, even Chebyshev-like bounds are sufficient, thus we present only these bounds here. Also, pairwise independence allows us to simplify algorithms by avoiding pseudorandom generators.

1.1 Roadmap

In Section 2 we introduce the basic argument and extend it to a special case, suitable for streaming applications, case in Section 3. In Section 4 we describe a generic algorithm for recursive computations. In Section 5 we use our method to obtain a better upper bound for the problem of frequency moments.

2 Recursive Sketches

In this paper we denote by $|V|$ the L_1 norm of V, i.e., $|V| = \sum_{j \in [n]} v_j$.

Definition 2.1. Major elements

Let V be a vector of dimensionality n with non-negative entries $v_i \geq 0$. Let $0 < \alpha \leq 1$. An element v_i is a α-major with respect to V if: $v_i \geq \alpha|V|$. A set $S \subseteq [n]$ is a α-core w.r.t. V if $i \in S$ for any α-major v_i.

Lemma 2.2. Let $V \in \mathbb{R}^{[n]}$ be a fixed vector and let S be an α-core w.r.t. V. Let H be a random vector with uniform zero-one entries $h_i, i \in [n]$ that are pairwise-independent. Define

$$X = \sum_{i \in S} v_i + 2\sum_{i \notin S} h_i v_i.$$

Then $P(|X - |V|| \geq \epsilon|V|) \leq \frac{\alpha}{\epsilon^2}$.

Proof. Clearly, $E(X) = |V|$. By the properties of variance, by pairwise independence of h_i and by the definition of α-core:

$$Var(X) = 4\sum_{i \in S} v_i^2 Var(h_i) = 2\sum_{i \notin S} v_i^2 \leq \alpha|V|^2.$$

Thus, by Chebyshev inequality:

$$P(|X - |V|| \geq \epsilon|V|) \leq \frac{\alpha}{\epsilon^2}.$$

\[\square\]
Corollary 2.3. Let $V \in \mathbb{R}^{[n]}$ be a random vector and let S be an α-core w.r.t. V. Let H be a random vector independent of V and S with uniform zero-one entries h_i, $i \in [n]$ that are pairwise-independent. Define

$$X = \sum_{i \in S} v_i + 2 \sum_{i \notin S} h_i v_i.$$

Then

$$P(|X - |V|| \geq \epsilon |V|) \leq \frac{\alpha}{\epsilon^2}.$$

Proof. For any fixed V and S the main claim is true since H is independent of V and S and by Lemma 2.2. Thus, the corollary follows.

2.0.1 Recursive Computations

Let ϕ be a parameter. Let H_1, \ldots, H_ϕ be i.i.d. random vectors with zero-one entries that are uniformly distributed and pairwise independent. For two vectors of dimensionality n define $Had(V, U)$ to be their Hadamard product; i.e., $Had(V, U)$ is a vector of dimensionality n with entries $v_i u_i$. Define:

$$V_0 = V, \text{ and } V_j = Had(V_{j-1}, H_j) \text{ for } j = 1, \ldots, \phi.$$

Denote by v_i^j and h_i^j the i-th entry of V_j and H_j respectfully. Let S_0, \ldots, S_ϕ be a sequence of subsets of $[n]$ such that S_j is an α-core of V_j. Define the sequence

$$X_j = \sum_{i \in S_j} v_i^j + 2 \sum_{i \notin S_j} h_i^{j+1} v_i^j, \quad j = 0, \ldots, \phi - 1,$$

and $X_\phi = |V_\phi|$.

Fact 2.4.

$$P\left(\bigcup_{j=0}^{\phi} (|X_j - |V_j|| \geq \epsilon |V_j|)\right) \leq \frac{(\phi + 1)\alpha}{\epsilon^2}.$$

Proof. Consider fixed $j < k$. It follows from the definitions that H_{j+1} is independent of V_j and S_j. Applying Corollary 2.3 and the union bound we obtain the proof.

Consider the following recursive definition:

$$Y_\phi = X_\phi, \quad Y_j = 2Y_{j+1} + \sum_{i \in S_j} (1 - 2h_i^{j+1}) v_i^j.$$

Lemma 2.5. For any ϕ, γ, vector V and $\alpha = \Omega(\frac{\gamma^2}{\phi^2})$:

$$P(|Y_0 - |V|| \geq \gamma |V|) \leq 0.2.$$

Proof. Denote $Err_j^1 = |V_j| - X_j$ and $Err_j^2 = |V_j| - Y_j$. We can rewrite

$$X_j = 2|V_{j+1}| + \sum_{i \in S_j} (1 - 2h_i^{j+1}) v_i^j.$$

Thus $X_j - Y_j = 2(|V_{j+1}| - Y_{j+1}) = 2Err_{j+1}^2$ and

$$|Err_j^2| = |Y_j - |V_j|| \leq |X_j - |V_j|| + |X_j - Y_j| = |Err_j^1| + 2|Err_{j+1}^2|.$$
By definition $Err_φ^1 = Err_φ^2 = 0$. Thus we can rewrite:

$$|Err_0^2| \leq |Err_0^1| + 2|Err_1^2| \leq \cdots \leq \sum_{j=0}^{φ} 2^j |Err_j^1|.$$

Choose $ε = \frac{7}{10(φ+1)}$; we have by Fact 2.4:

$$P(|Y_0 - |V|| \geq γ|V|) = P(|Err_0^2| \geq γ|V|) \leq P\left(\sum_{j=0}^{φ} 2^j |Err_j^1| \geq γ|V|\right) \leq \frac{(φ + 1)α}{ε^2}.$$

For $j > 0$ we note that $|V_j|$ is a random variable defined as:

$$|V_j| = \sum_{i \in [n]} v_i \left(\prod_{t=1}^{j} h_i^t\right).$$

Since all H_j are mutually independent, we conclude that

$$E\left(\sum_{j=0}^{φ} 2^j |V_j|\right) = \sum_{j=0}^{φ} 2^j \left(\sum_{i \in [n]} v_i \left(\prod_{t=1}^{j} E(h_i^t)\right)\right) = \sum_{j=0}^{φ} 2^j \left(\sum_{i \in [n]} v_i 2^{-j}\right) = (φ + 1)|V|.$$

Thus, and by Markov inequality, we have

$$P\left(\sum_{j=0}^{φ} 2^j |V_j| \geq 10(φ + 1)|V|\right) \leq 0.1.$$

Also, $\frac{(φ+1)α}{ε^2} \leq 0.1$ for sufficiently large $α = Ω(\frac{2}{φ^2})$. Thus,

$$P(|Y_0 - |V|| \geq γ|V|) \leq 0.2.$$

\[\square\]

3 An Extension: Approximate and Random Cores

There are many ways to extend our basic result. We will explore one direction, when the cores are random and contain approximations of heavy hitters with high probability.\[\[\]

We consider vectors from a finite domain $[m]^n$.\[\[\]

\[\[\]

\[\[\]

\[\[\]

In this section we limit our discussion to finite sets and discrete distributions. This limitation is artificial but sufficient for our applications; on the other hand it simplifies the presentation.
Definition 3.1. Let Ω be a finite set of real numbers. Define Pairs_t to be a set of all sets of pairs of the form:

$$\{(i_1, w_1), \ldots, (i_t, w_t)\}, \quad 1 \leq i_1 < i_2 < \ldots < i_t \leq n, i_j \in \Omega.$$

Further define

$$\text{Pairs} = \emptyset \cup \left(\bigcup_{t=1}^{n} \text{Pairs}_t \right).$$

Definition 3.2. A non-empty set $Q \in \text{Pairs}_t$, i.e., $Q = \{(i_1, w_1), \ldots, (i_t, w_t)\}$ for some $t \in [n]$, is (α, ϵ)-cover w.r.t. vector $V \in [M]^n$ if the following is true:

1. $\forall j \in [t](1 - \epsilon)w_{i_j} \leq w_j \leq (1 + \epsilon)w_{i_j}$.
2. $\forall i \in [n]$ if v_i is α-major then $\exists j \in [t]$ such that $i_j = i$.

Definition 3.3. Let D be a probability distribution on Pairs. Let $V \in [m]^n$ be a fixed vector. We say that D is δ-good w.r.t. V if for a random element Q of Pairs with distribution D the following is true:

$$P(Q \text{ is } (\alpha, \epsilon)\text{-cover of } V) \geq 1 - \delta.$$

Definition 3.4. Let g be a mapping from $[M]^n$ to a set of all distributions on Pairs. We say that g is δ-good if for any fixed $V \in [M]^n$ the distribution $g(V)$ is δ-good w.r.t. V. Intuitively, g represents an output of an algorithm that finds heavy hitters (and their approximations) of input vector V w.p. $1 - \delta$.

Definition 3.5. For non-empty $Q \in \text{Pairs}$ define $\text{Ind}(Q)$ to be the set of indexes of Q. Formally, for $Q \in \text{Pairs}$, denote $\text{Ind}(Q) = \{i : \exists j < t \text{ such that for } j\text{-th pair } (i_j, w_j) \text{ of } Q \text{ it is true that } i_j = i\}$. For $i \in \text{Ind}(Q)$ denote by $w_Q(i)$ the corresponding approximation, i.e. if $i = i_j$ then $w_Q(i) = w_j$. (Note that since $i_j < i_{j+1}$ this is a valid definition.) For completeness, denote $w_Q(i) = 0$ for $i \notin \text{Ind}(Q)$ and $\text{Ind}(\emptyset) = \emptyset$.

Now we are ready to repeat the arguments from the previous section.

Corollary 3.6. Let $V \in R^{[n]}$ be a random vector. Let g be a δ-good mapping and let Q be a random element of Pairs that is chosen according to a distribution $g(V)$. Let H be a random vector independent of V and Q with uniform zero-one entries $h_i, i \in [n]$ that are pairwise-independent. Define

$$X' = \sum_{i \in \text{Ind}(Q)} v_i + 2 \sum_{i \notin \text{Ind}(Q)} h_i v_i.$$

Then

$$P(|X' - |V|| \geq \epsilon|V|) \leq \frac{\epsilon}{\alpha^2} + \delta.$$

Proof. Consider a fixed vector V_0 and an event that $V = V_0$. Conditioned on this event, the distribution $g(V)$ is fixed and δ-good w.r.t. V_0. Consider the event that $Q = Q_0$, where Q_0 is an (α, ϵ)-cover w.r.t. V_0. Conditioned on this event, $\text{Ind}(Q)$ is an α-cover w.r.t. V_0. Since H is independent of Q the claim is true for any such V_0 by Lemma 2.2 and by union bound. Thus, the corollary follows. \qed
3.0.2 Recursive Computations

Let ϕ be a parameter. Let H_1, \ldots, H_ϕ be i.i.d. random vectors with zero-one entries that are uniformly distributed and pairwise independent. Define:

$$V_0 = V, \quad \text{and} \quad V_j = \text{Had}(V_{j-1}, H_j) \quad \text{for} \quad j = 1, \ldots, \phi.$$

Denote by v_i^j and h_i^j the i-th entry of V_j and H_j respectfully. Let g be a δ-good mapping and let Q_i be a random element of Pairs with distribution $g(V_i)$. Define $w_j(i) = w_{Q_j}(i)$. Define the sequence:

$$X_j' = \sum_{i \in \text{Ind}(Q_j)} v_i^j + 2 \sum_{i \notin \text{Ind}(Q_j)} h_i^{j+1} v_i^j, \quad j = 0, \ldots, \phi - 1,$$

and $X_\phi' = |V_\phi|$. From Corollary 3.6 and by repeating the arguments from Fact 2.4 we obtain

Fact 3.7.

$$P\left(\bigcup_{j=0}^\phi \left(|X_j'| - |V_j| \geq \epsilon|V_j|\right)\right) \leq (\phi + 1)\left(\frac{\alpha}{2^{\phi}} + \delta\right).$$

Consider the following recursive definition. Let $Y_\phi' = Y_\phi'(V_\phi)$ be a random variable that depends on random vector V_ϕ and such that for any fixed V_ϕ:

$$P(|Y_\phi' - |V_\phi|| \geq \epsilon|V_\phi|) \leq \delta.$$

Also, define for $j = 0, \ldots, \phi - 1$:

$$Y_j' = 2Y_{j+1}' + \sum_{i \in \text{Ind}(Q_j)} (1 - 2h_i^{j+1})w_i^j.$$

Lemma 3.8. For any ϕ, γ, vector V: for $\alpha = \Omega\left(\frac{\gamma^2}{\phi}\right)$ and $\delta = \Omega\left(\frac{1}{\phi}\right)$:

$$P(|Y_\phi' - |V|| \geq \gamma|V|) \leq 0.2.$$

Proof. Denote $\text{Err}_j^1 = |V_j| - X_j'$, $\text{Err}_j^2 = |V_j| - Y_j'$ and $\text{Err}_j^3 = \sum_{i \in \text{Ind}(Q_j)} |w_j(i) - v_i^j|$. We can rewrite

$$X_j' = 2|V_{j+1}| + \sum_{i \in \text{Ind}(Q_j)} (1 - 2h_i^{j+1})v_i^j.$$

Thus $|X_j' - Y_j'| \leq 2|\text{Err}_j^2 + \text{Err}_j^3|$. And

$$|\text{Err}_j^2| = |Y_j' - |V_j|| \leq |X_j' - |V_j|| + |X_j' - Y_j'| \leq |\text{Err}_j^1| + |\text{Err}_j^3| + 2|\text{Err}_{j+1}^2|.$$

Thus we can rewrite:

$$|\text{Err}_0^2| \leq |\text{Err}_0^1| + |\text{Err}_1^3| + 2|\text{Err}_1^2| \leq \ldots \leq 2^k|\text{Err}_k^2| + \sum_{j=0}^\phi 2^j|\text{Err}_j^1| + \sum_{j=0}^\phi 2^j|\text{Err}_j^3|.$$

Choose $\epsilon = \frac{\gamma}{m(\phi + 1)}$ and denote $Z = 2^k|\text{Err}_\phi^2| + \sum_{j=0}^\phi 2^j|\text{Err}_j^1| + \sum_{j=0}^\phi 2^j|\text{Err}_j^3|$. Then

$$P(|Y_\phi' - |V|| \geq \gamma|V|) = P(|\text{Err}_0^2| \geq \gamma|V|) \leq P(Z \geq \gamma|V|) \leq$$

7
Thus and by Fact 3.7:

$$P \left(Z \geq \gamma |V| \right) \cap \left(\bigcap_{j=0}^{\phi} (|Err_j^3| < \epsilon |V_j|) \right) \cap \left(\bigcap_{j=0}^{\phi} (|Err_j^3| < \epsilon |V_j|) \right) \cap \left(|Err_0^2| < \epsilon |V_0| \right) +$$

$$P \left(|Err_0^2| \geq \epsilon |V_0| \right) + P \left(\bigcup_{j=0}^{\phi} (|Err_j^3| \geq \epsilon |V_j|) \right) + P \left(\bigcup_{j=0}^{\phi} (|Err_j^3| \geq \epsilon |V_j|) \right).$$

Note that by the definition of Y_0', we have $P(|Err_0^2| \geq \epsilon |V_0|) \leq \delta$. Also, by the definition of Q_j and union bound,

$$P(\bigcup_{j=0}^{\phi} (|Err_j^3| \geq \epsilon |V_j|)) \leq (\phi + 1) \delta.$$

Thus and by Fact 3.7

$$P(|Y_0' - |V|| \geq \gamma |V|) \leq P \left(\sum_{j=0}^{\phi} 2^j |V_j| \geq 10(\phi + 1)|V| \right) + (\phi + 2)(\frac{\alpha}{\epsilon^2} + 2\delta).$$

The lemma follows by repeating the concluding arguments from Lemma 2.5.

\section{A Generic Algorithm}

Let D be a stream as in Definition 1.1. For a function $H : [n] \rightarrow \{0, 1\}$, define D_H to be a sub-stream of D that contains only elements $p \in D$ such that $H(p) = 1$. Let $V = V(D)$ be an implicit vector of dimensionality n defined by a stream, e.g., a frequency moment vector from Definition 1.1. We say that a vector V is \textit{separable} if for any H, we have $Had(V(D), H) = V(D_H)$. Let $HH(D, \alpha, \epsilon, \delta)$ be an algorithm that produces (α, ϵ)-cover w.r.t. $V(D)$ w.p. $1 - \delta$, i.e., produces δ-good distribution w.r.t. $V(D)$ for some suitable finite set of Pairs, as defined in Definition 3.1.

\begin{algorithm}[h]
\caption{Recursive Sum[0](D, \epsilon)}
1. Generate $\phi = O(\log(n))$ pairwise independent zero-one vectors H_1, \ldots, H_ϕ. Denote D_j to be a stream $D_{H_1, H_2, \ldots, H_j}$.
2. Compute, in parallel, random cores $Q_j = HH(D_j, \frac{\phi^3}{\epsilon^2}, \epsilon, \frac{1}{\phi})$.
3. If $F_0(V_0) > 10^{10}$ then output 0 and stop. Otherwise compute precisely $Y_0 = |V_0|$.
4. For each $j = \phi - 1, \ldots, 0$, compute $Y_j = 2Y_{j+1} - \sum_{i \in t_S(A_j)} (1 - 2h_i^j) w_{Q_j}(i)$.
5. Output Y_0.
\end{algorithm}

\textbf{Theorem 4.2.} Algorithm 4.1 computes $(1 \pm \epsilon)$-approximation of $|V|$ and errs w.p. at most 0.3. The algorithm uses $O(\log(n) \mu(n, \frac{1}{\epsilon^2 \log^a(n)}, \epsilon, \frac{1}{\log(n)})$ memory bits, where μ is the space required by the above algorithm HH.

\textbf{Proof.} The correctness follows directly from the description of the algorithm and Lemma 3.8 and Markov inequality. The memory bounds follows from the direct computations.

\section*{5 Conclusion}

In this paper, we have presented a generic algorithm for computing (α, ϵ)-approximation of $V(D)$, where $V(D)$ is an implicit vector defined by a stream. The algorithm uses $O(\log(n) \mu(n, \frac{1}{\epsilon^2 \log^a(n)}, \epsilon, \frac{1}{\log(n)})$ memory bits, where μ is the space required by the above algorithm HH. The algorithm also produces δ-good distribution w.r.t. $V(D)$ for some suitable finite set of Pairs, as defined in Definition 3.1.
5 Approximating Large Frequency Moments on Streams

We apply the developed above technique to the problem of frequency moments.

Fact 5.1. Let \(V \) be a vector of dimensionality \(n \) with non-negative entries and let \(n_0 \) be a number of non-zero entries in \(V \). Let \(0 < \alpha < 1 \) and let \(v_i \) be such that \(v^k_i \geq \alpha \sum_{j \in [n]} v^k_j \). Then \(v^2_i \geq 0.5 \alpha^2 n_0^{-1} \sum_{j \neq i} v^2_j \).

Proof. If \(n_0 = 0 \) the fact is trivial. Otherwise, by Hölder’s inequality, \(\sum_{j \neq i} v^2_j \leq n_0^{-1/2} \left(\sum_{j \neq i} v^k_j \right)^{k/2} \leq n_0^{-1/2} \alpha^{-2} v_i^2 \).

The famous Count-Sketch [II] algorithm finds all \(\alpha \)-heavy elements. In particular, the following is a corollary from [II].

Theorem 5.2. (from [II]) Let \(a_t \) be the frequency of the \(t \)-th most frequent element. There exists an algorithm that w.p. \(1 - \delta \) outputs \(t \) pairs \((i, f^k_i)\) such that \((1 - \epsilon) f_i \leq f^k_i \leq (1 + \epsilon) f_i \) and such that all elements with \(f_i \geq (1 - \epsilon) a_t \) appear in the list. The algorithm uses \(O((t + \frac{\sum_{i \in [n]} f_i < a_t}{(a_t)^2}) \log(m/\delta) \log(m)) \) memory bits.

Combining with Fact 5.1 we obtain

Corollary 5.3. There exists an algorithm that w.p. \(1 - \delta \) outputs \(O(\alpha^{-1}) \) pairs \((i, f^k_i)\) such that \((1 - \epsilon) f_i \leq f^k_i \leq (1 + \epsilon) f_i \) and such that all elements with \(f^k_i \geq \alpha \sum_{j \in [n]} f^k_j \) appear in the list. The algorithm uses \(O((\alpha^{-1} + \frac{k^2}{\epsilon^2} \alpha^{-2/k} n^{1-2/k}) \log(m/\delta) \log(m)) \) memory bits.

The algorithm from Corollary 5.3 defines a \(\delta \)-good distribution w.r.t. to the input vector \(V(D) \) over some finite set \(\Theta \) from Definition 3.1. Denote the algorithm from Corollary 5.3 by \(CS(D, \alpha, \epsilon, \delta) \). Thus, combining with Algorithm 4.1 if gives an algorithm errs w.p. \(\delta \), outputs \((1 \pm \epsilon)\)-approximation of \(F_k \) and uses \(O(\frac{k^2}{\epsilon^2 \log(m/\delta)} n^{1-2/k} \log(m) \log(m) \log(1/\delta)) \) memory bits, nearly matching the bound in [5]. Denote this algorithm by \(A_0(D, \epsilon, \delta) \). We can improve the bound further recursively:

Algorithm 5.4. Recursive \(F_k[1](D, \epsilon) \)

1. Generate \(\phi = O(\log \log(n)) \) pairwise independent zero-one vectors \(H_1, \ldots, H_\phi \). Denote \(D_j \) to be a stream \(D H_1 H_2 \ldots H_\phi \).
2. Compute, in parallel, \(Q_j = CS(D_j, \frac{\epsilon^2}{\phi \epsilon}, \epsilon, \frac{1}{1000 \phi}) \).
3. Compute \(Y_\phi = A_0(D_\phi, \epsilon, 0.1) \).
4. For each \(j = \phi - 1, \ldots, 0 \), compute \(Y_j = 2Y_{j+1} - \sum_{i \in Ind(Q_j)} (1 - 2h^j_i) w_{Q_j}(i) \).
5. Output \(Y_0 \).

There exists a constant \(c \) such that for \(\phi = c \log \log(n) \), except with a small constant probability, \(F_0(D_\phi) \leq \frac{n}{\log \log(m)} \). Thus, executing \(A_0 \) for \(n' = \frac{n}{\log \log(m)} \) we obtain an approximation of \(F_k(D_\phi) \) using \(O(\frac{k^2}{\epsilon^2 + \delta} n^{1-2/k} \log(m) \log(m)) \) memory bits. Since \(\phi = O(\log \log(n)) \), the complexity of the new algorithm becomes \(O(\frac{k^2}{\epsilon^2 + \delta} n^{1-2/k} \log(m) \log(m)(\log \log(n))^4) \). Repeating this argument a constant number of times we arrive at:

\footnote{Indeed, we can define the finite set \(\Omega \) from Definition 3.1 as a set of all possible outputs of Count-Sketch executed over all vectors on \([m]^n \). This is a finite set (for finite \(n, m \) and thus we can define Pairs accordingly.}
Theorem 5.5. Define $g_1(n) = \log(n)$ and $g_t(n) = \log(g_{t-1}(n))$. For any constant t there exist an algorithm computes a $(1 \pm \epsilon)$-approximation of $F_k(D)$, errs w.p. at most $\frac{1}{3}$ and uses $O(c_t k^2 \epsilon^{-2-(4/k)} n^{1-\frac{2}{k}} g_t(n) \log(m) \log(nm))$ memory bits, where c_t is a constant that depends on t.

We note also that it is possible to reduce the complexity to $O(n^{1-\frac{2}{k}} g_t(n) \log(n) (\log(n) + \log \log(m)))$, at least for constant ϵ, using, instead of CountSketch, the variant of the AMS sketch and the ideas from [7].

References

[1] Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating the frequency moments. \textit{J. Comput. Syst. Sci.}, 58(1):137–147, 1999.

[2] Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, and D. Sivakumar. An information statistics approach to data stream and communication complexity. \textit{J. Comput. Syst. Sci.}, 68(4):702–732, 2004.

[3] Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, D. Sivakumar, and Luca Trevisan. Counting distinct elements in a data stream. In \textit{RANDOM ’02: Proceedings of the 6th International Workshop on Randomization and Approximation Techniques}, pages 1–10, London, UK, 2002. Springer-Verlag.

[4] Paul Beame, T. S. Jayram, and Atri Rudra. Lower bounds for randomized read/write stream algorithms. In \textit{STOC ’07: Proceedings of the thirty-ninth annual ACM symposium on Theory of computing}, pages 689–698, New York, NY, USA, 2007. ACM.

[5] Lakshminath Bhuvanagiri, Sumit Ganguly, Deepanjan Kesh, and Chandan Saha. Simpler algorithm for estimating frequency moments of data streams. In \textit{SODA}, pages 708–713, 2006.

[6] Vladimir Braverman and Rafail Ostrovsky. Measuring independence of datasets. In \textit{STOC ’10: Proceedings of the 42nd ACM symposium on Theory of computing}, pages 271–280, New York, NY, USA, 2010. ACM.

[7] Vladimir Braverman and Rafail Ostrovsky. Zero-one frequency laws. In \textit{STOC ’10: Proceedings of the 42nd ACM symposium on Theory of computing}, pages 281–290, New York, NY, USA, 2010. ACM.

[8] Bo Brinkman and Moses Charikar. On the impossibility of dimension reduction in l1. \textit{J. ACM}, 52(5):766–788, 2005.

[9] Amit Chakrabarti, Graham Cormode, and Andrew McGregor. Robust lower bounds for communication and stream computation. In \textit{STOC ’08: Proceedings of the 40th annual ACM symposium on Theory of computing}, pages 641–650, New York, NY, USA, 2008. ACM.

[10] Amit Chakrabarti, Subhash Khot, and Xiaodong Sun. Near-optimal lower bounds on the multi-party communication complexity of set disjointness. In \textit{IEEE Conference on Computational Complexity}, pages 107–117, 2003.

[11] Moses Charikar, Kevin Chen, and Martin Farach-Colton. Finding frequent items in data streams. In \textit{ICALP ’02: Proceedings of the 29th International Colloquium on Automata, Languages and Programming}, pages 693–703, London, UK, 2002. Springer-Verlag.

[12] Don Coppersmith and Ravi Kumar. An improved data stream algorithm for frequency moments. In \textit{SODA}, pages 151–156, 2004.

[13] Graham Cormode, Mayur Datar, Piotr Indyk, and S. Muthukrishnan. Comparing data streams using hamming norms (how to zero in). \textit{IEEE Trans. on Knowl. and Data Eng.}, 15(3):529–540, 2003.
[14] Joan Feigenbaum, Sampath Kannan, Martin Strauss, and Mahesh Viswanathan. An approximate l1-difference algorithm for massive data streams. In FOCS ’99: Proceedings of the 40th Annual Symposium on Foundations of Computer Science, page 501, Washington, DC, USA, 1999. IEEE Computer Society.

[15] Philippe Flajolet and G. Nigel Martin. Probabilistic counting algorithms for data base applications. J. Comput. Syst. Sci., 31(2):182–209, 1985.

[16] Sumit Ganguly. Estimating frequency moments of data streams using random linear combinations. In APPROX-RANDOM, pages 369–380, 2004.

[17] Sumit Ganguly and Graham Cormode. On estimating frequency moments of data streams. In APPROX ’07/RANDOM ’07: Proceedings of the 10th International Workshop on Approximation and the 11th International Workshop on Randomization, and Combinatorial Optimization. Algorithms and Techniques, pages 479–493, Berlin, Heidelberg, 2007. Springer-Verlag.

[18] Piotr Indyk. Stable distributions, pseudorandom generators, embeddings, and data stream computation. J. ACM, 53(3):307–323, 2006.

[19] Piotr Indyk and David Woodruff. Optimal approximations of the frequency moments of data streams. In STOC ’05: Proceedings of the thirty-seventh annual ACM symposium on Theory of computing, pages 202–208, New York, NY, USA, 2005. ACM.

[20] T. S. Jayram, Andrew McGregor, S. Muthukrishnan, and Erik Vee. Estimating statistical aggregates on probabilistic data streams. In PODS ’07: Proceedings of the twenty-sixth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems, pages 243–252, New York, NY, USA, 2007. ACM.

[21] T. S. Jayram and David P. Woodruff. The data stream space complexity of cascaded norms. In FOCS ’09: Proceedings of the 2009 50th Annual IEEE Symposium on Foundations of Computer Science, pages 765–774, Washington, DC, USA, 2009. IEEE Computer Society.

[22] Daniel M. Kane, Jelani Nelson, Ely Porat, and David P. Woodruff. Fast moment estimation in data streams in optimal space. CoRR, abs/1007.4191, 2010.

[23] Daniel M. Kane, Jelani Nelson, and David P. Woodruff. On the exact space complexity of sketching and streaming small norms. In Proceedings of the 21st Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2010), 2010.

[24] Daniel M. Kane, Jelani Nelson, and David P. Woodruff. An optimal algorithm for the distinct elements problem. In PODS ’10: Proceedings of the twenty-ninth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems of data, pages 41–52, New York, NY, USA, 2010. ACM.

[25] Ping Li. Compressed counting. In SODA ’09: Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 412–421, Philadelphia, PA, USA, 2009. Society for Industrial and Applied Mathematics.

[26] Morteza Monemizadeh and David P. Woodruff. http://www.almaden.ibm.com/cs/people/dpwoodru/soda10.ppt.

[27] Morteza Monemizadeh and David P. Woodruff. 1-pass relative-error lp-sampling with applications. In SODA, pages 1143–1160, 2010.

[28] Jelani Nelson and David P. Woodruff. Fast manhattan sketches in data streams. In PODS ’10: Proceedings of the twenty-ninth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems of data, pages 99–110, New York, NY, USA, 2010. ACM.
[29] Noam Nisan. Pseudorandom generators for space-bounded computation. Combinatorica, 12:449–461, 1992. 10.1007/BF01305237.

[30] David Woodruff. Optimal space lower bounds for all frequency moments. In SODA ’04: Proceedings of the fifteenth annual ACM-SIAM symposium on Discrete algorithms, pages 167–175, 2004.