Random pullback attractor of a non-autonomous local modified stochastic Swift-Hohenberg with multiplicative noise

Yongjun Li 1*, Tinggang Zhao 1 and Hongqing Wu 1

1 School of Mathematics, Lanzhou City University, Lanzhou, 730070, P.R. China; li_liyon120@163.com (Y. Li); 13669397938@163.com(T.Zhao); wuhq@lzcu.edu.cn(H.Wu), * Correspondence: li_liyon120@163.com (Y. Li)

Abstract: In this paper, we study the existence of the random pullback attractor of a non-autonomous local modified stochastic Swift-Hohenberg equation with multiplicative noise in Stratonovich sense. It is shown that a random pullback attractor exists in $\mathbb{H}^0(D)$ when its external force has exponential growth. Due to the stochastic term, the estimate are delicate, we overcome this difficulty by using the Ornstein-Uhlenbeck(O-U) transformation and its properties.

Keywords: Swift-Hohenberg equation; Random pullback attractor; Non-autonomous random dynamical system

1. Introduction

The Swift-Hohenberg(S-H) type equations arise in the study of convective hydrodynamical, plasma confinement in toroidal and viscous film flow, was introduced by authors in [1]. After that, Doelman and Standstede [2] proposed the following modified Swift-Hohenberg equation for a pattern formation system near the onset to instability

$$u_t + \Delta^2 u + 2\Delta u + au + b |\nabla u|^2 + u^3 = 0,$$ \hspace{1cm} (1.1)

where a and b are arbitrary constants.

We can see from the above equation that there exist two operators Δ and Δ^2, these two operators have some symmetry, for any $u \in H_0^1(D)$, the inner product $(\Delta u, u) = - (\nabla u, \nabla u) = \|\nabla u\|^2$, for any $u \in H_0^2(D)$, $(\Delta^2 u, u) = (\Delta u, \Delta u) = \|\Delta u\|^2$, Δ is antisymmetry and Δ^2 is symmetry. We will use the symmetry principle study S-H equation.

The dynamical properties of the S-H equation are important for the studies pattern formation system have been extensively investigated by many authors; see [3-8]. Polat [8] establish the existence of global attractor for the system (1.1), and then Song et al. [7] improved the result in \mathbb{H}^k.

Recently for non-autonomous modified S-H equation:

$$du + (\Delta^2 u + 2\Delta u + au + b |\nabla u|^2 + u^3 - g(x,t)) dt = lu \circ dW(t),$$ \hspace{1cm} (1.2)

it has also attracted the interest of many authors. If $l = 0$, equation (1.2) becomes a non-autonomous modified S-H equaiton. Park [9] proved the existence of \mathcal{D}-pullback attractor when the external force has exponential growth, Xu et al.[10] established the existence of uniform attractor when the external force $g(x,t)$ satisfies translation bounded, these results need the spatial variable in two dimensions. When $l = 0$, equation (1.2) becomes a non-autonomous stochastic S-H equation, if $|b| << 1$ is a constant, Guo et al.[11] investigated the equation when $g(x,t) = 0$ and proved the existence of random attractor which need the spatial variable in one dimension. For $g(x,t) = 0$, to the best of our knowledge, the existence of random \mathcal{D}-pullback attractor for equation (1.2) has not yet considered.
In this paper, we consider the following one dimensional non-autonomous local modified stochastic S-H equation with multiplicative noise:
\[
 du + (\Delta^2 u + 2u_{xx} + au + bu_{x}^2 + u^3 - g(x,t))dt = lu \circ dW(t), \text{ in } D \times [\tau, \infty),
\]
\[
 u = u_x = 0, x \in \partial D, \tag{1.3}
\]
\[
 u(x, \tau) = u_\tau, x \in D \tag{1.4}
\]
Where D is a bounded open interval, Δu means u_{xx}, and $\Delta^2 u$ means u_{xxxx}, $|b| < 4$, a and l are arbitrary constants. $W(t)$ is a two-sided real-valued Wiener process on a probability space which will be specified later. For the external force $g(x) \in L^2_{\text{loc}}(R, L^2(D))$, we assume that there exist $M > 0$ and $\beta > 0$ such that
\[
 a - \beta - 5 < 0, \quad \|g(x, t)\|^2 \leq M e^{\gamma |t|}, \text{ for any } t \in \mathbb{R}, \quad 0 \leq \gamma < \frac{3\beta}{11}. \tag{1.6}
\]
The assumption is same as [8, 12], through simple calculation, for all $t \in R$, we have
\[
 H(t) := \int_{-\infty}^{t} e^{\beta s} \|g(x, s)\|^2 ds < \infty, \quad \int_{-\infty}^{t} e^{-\frac{8\beta}{9} s} H^{\frac{11}{3}}(s)ds < \infty. \tag{1.7}
\]
An outline of this paper is as follows: In section 2, we recall some basic concepts about random \mathcal{D}-pullback attractors. In Section 3, we prove that the stochastic dynamical system generated by (1.3) exists a random \mathcal{D}-pullback attractor in $H^2_0(D)$.

2.2 Preliminaries

There are many research results on random attractors and related issues. The reader is referred to [13-19] for more details, we only list the definitions and abstract result.

Let $(X, || \cdot ||_X)$ be a separable Banach space with Borel σ-algebra $B(X)$ and $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. In this paper, the term \mathbb{P}-a.s.(the abbreviation for \mathbb{P} almost surely) denotes that an event happens with probability one. In other words, the set of possible exception may be non-empty, but it has probability zero.

Definition 2.1. ([15,16,20,21]) $(\Omega, \mathcal{F}, \mathbb{P}, (\theta_t)_{t \in \mathbb{R}})$ is called a metric dynamical systems if $\theta : \mathbb{R} \times \Omega \rightarrow \Omega$ is $(B(\mathbb{R}) \otimes \mathcal{F}, \mathcal{F})$-measurable, and θ_0 is the identity on Ω, $\theta_{s+t} = \theta_s \theta_t$ for all $t, s \in \mathbb{R}$ and $\theta_t \mathbb{P} = \mathbb{P}$ for all $t \in \mathbb{R}$.

Definition 2.2. ([12,13,18]) A non-autonomous random dynamical system (NRDS) (φ, θ) on X over a metric dynamical system $(\Omega, \mathcal{F}, \mathbb{P}, (\theta_t)_{t \in \mathbb{R}})$ is a mapping
\[
 \varphi(t, \tau, \omega) : X \rightarrow X, \quad (t, \tau, \omega, x) \rightarrow \varphi(t, \tau, \omega)x, \tag{1.8}
\]
which represents the dynamics in the state space X and satisfies the properties
 (i) $\varphi(t, \tau, \omega) = \text{the identity on } X$;
 (ii) $\varphi(t, \tau, \omega) = \varphi(t, s, \theta_{s-t}, \omega) \varphi(s, \tau, \omega)$ for all $\tau \leq s \leq t$;
 (iii) $\omega \rightarrow \varphi(t, \tau, \omega)x$ is \mathcal{F}-measurable for all $t \geq \tau$ and $x \in X$.

In the sequel, we use \mathcal{D} to denote a collection of some families of nonempty bounded subsets of X:
\[
 \mathcal{D}' \subseteq \mathcal{D}, \mathcal{D}' = \{D(t, \omega) : t \in \mathbb{R}, \omega \in \Omega\}. \tag{1.9}
\]

Definition 2.3. ([12,13,18]) A set $B \subseteq \mathcal{D}$ is called a random \mathcal{D}-pullback bounded absorbing set for NRDS (φ, θ) if for any $t \in \mathbb{R}$ and any $D' \in \mathcal{D}$, there exists $\tau_0(t, D')$ such that
\[
 \varphi(t, \tau, \theta_{\tau-\tau_0}, \omega)D(t, \tau, \omega, \omega) \subseteq B(t, \omega) \quad \text{for any} \quad \tau \leq \tau_0. \tag{1.10}
\]

Definition 2.4. ([12,13,18]) A set $\mathcal{A} = \{A(t, \omega) : t \in \mathbb{R}, \omega \in \Omega\}$ is called a random \mathcal{D}-pullback attractor for (φ, θ) if the following hold:
 (i) $A(t, \omega)$ is a random compact set;
 (ii) \mathcal{A} is invariant; that is, for \mathbb{P}-a.s. $\omega \in \Omega$, and $\tau \leq t$, $\varphi(t, \tau, \omega)A(\tau, \omega) = A(t, \theta_{t-\tau}, \omega)$;
(iii) A attracts all set in D; that is, for all $B' \in D$ and P-a.s. $\omega \in \Omega$,
$$\lim_{t \to \infty} d(\phi(t, \tau, \theta_{\tau}, \omega)) B(\tau, \theta_{\tau}, \omega), A(t, \omega)) = 0.$$

Where d is the Hausdorff semimetric given by $\text{dist}(B, A) = \sup_{b \in B} \inf_{a \in A} \| b - a \|_x$.

Definition 2.5. ([14, 17]) A NRDS (ϕ, θ) on a Banach space X is said to be pullback flattening if for every random bounded set $B' = \{ B(t, \omega) : t \in \mathbb{R}, \omega \in \Omega \} \subset D$, for any $\varepsilon > 0$ and $\omega \in \Omega$ there exists a $T(B', \varepsilon, \omega) < t$ and a finite dimensional subspace X_ε such that

(i) $P(\bigcup_{\tau \in T} \phi(t, \tau, \theta_{\tau}, \omega) B(\tau, \theta_{\tau}, \omega))$ is bounded, and

(ii) $\| (I - P)(\bigcup_{\tau \in T} \phi(t, \tau, \theta_{\tau}, \omega) B(\tau, \theta_{\tau}, \omega)) \|_X < \varepsilon,$

where $P : X \to X_\varepsilon$ is a bounded projector.

Theorem 2.1. ([14, 17]) Suppose that (ϕ, θ) is a continuous NRDS on a uniformly convex Banach space X. If (ϕ, θ) possesses a random D-pullback bounded absorbing sets $B' = \{ B(t, \omega) : t \in \mathbb{R}, \omega \in \Omega \}$ and (ϕ, θ) is pullback flattening, then there exists a random D-pullback attractor $A = \{ A(t, \omega) : t \in \mathbb{R}, \omega \in \Omega \}$.

3. Random pullback attractor for modified Swift-Hohenberg

In this section, we will use abstract theory in section 2 to obtain the random D-pullback attractor for equation (1.3)-(1.5). First we introduce an Ornstein-Uhlenbeck process,

$$z(\theta_{\tau}(\omega)) = -\int_{-\infty}^{0} e^{t}(\theta_{\tau}(\omega)) d\tau, t \in \mathbb{R}.$$

We known from [6], it is the solution of Langevin equation

$dz + zdt = dW(t).$

$W(t)$ is a two-sided real-valued Wiener process on a probability space (Ω, \mathcal{F}, P), where

$$\Omega = \{ \omega \in C(\mathbb{R}, \mathbb{R}) : \omega(0) = 0 \},$$

\mathcal{F} is the Borel algebra induced by the compact open topology of Ω, and P is the corresponding Wiener measure on (Ω, \mathcal{F}). We identify $\omega(t)$ with $W(t)$, i.e.,

$$W(t) = W(t, \omega) = \omega(t), t \in \mathbb{R}.$$

Define the Wiener time shift by

$$\theta_{\tau}\omega(s) = \omega(s + \tau) - \omega(t), \omega \in \Omega, t, s \in \mathbb{R}.$$

Then $(\Omega, \mathcal{F}, P, \theta_{\tau})$ is an ergodic metric dynamical system.

From [15, 16, 20], it is known that the random variable $z(\omega)$ is tempered and there exists a θ_{τ}-invariant set of full measure $\hat{\Omega} \subset \Omega$ such that for all $\omega \in \hat{\Omega}$:

$$\lim_{t \to \infty} \frac{|z(\theta_{\tau}(\omega))|}{|t|} = 0, \quad \lim_{t \to \infty} \frac{1}{t} \int_{0}^{t} |z(\theta_{\tau}(\omega))| ds = 0,$$

and for any $\varepsilon > 0$, there exists $\rho(\varepsilon) > 0$, such that

$$|z(\theta_{\tau}(\omega))| \leq \rho(\omega) + \varepsilon |t|, \quad \int_{0}^{t} |z(\theta_{\tau}(\omega))| ds \leq \rho(\omega) + \varepsilon |t|.$$

Let $v(s) = e^{-iz(\theta_{\tau}(\omega))} u(s)$, then

$$dv = -le^{-iz(\theta_{\tau}(\omega))} u(s) dz + e^{-iz(\theta_{\tau}(\omega))} du.$$

Using Langevin equation, combined with the original equation (1.3), we get

$$\frac{dv}{ds} + \Delta^{2}v + 2v_{ss} + (a - \lambda z)v + be^{z(\theta_{\tau}(\omega))} |v_{s}|^{2} + e^{2z(\theta_{\tau}(\omega))} v_{s}^{3} = e^{-iz(\theta_{\tau}(\omega))} g(x, s), \text{in } D \times [\tau, \infty),$$

$$v = 0 \text{ on } \partial D \times [\tau, \infty),$$

$$v(x, \tau) = v_{\tau} = e^{-iz(\theta_{\tau}(\omega))} u_{\tau}(x) \text{ in } D.$$

Equation (1.3)-(1.5) are equivalent to equation (3.3)-(3.5), by a standard method, it can be proved that the problem (3.3)-(3.5) is well posed in $H^1_0(D)$, that is, for every $\tau \in \mathbb{R}$ and $v_0 \in H^1_0(D)$, there exits a unique solution $v \in C([\tau, \infty), H^1_0(D))$ (see e.g. [2, 22]). Furthermore, the solution is continuous with respect to the initial condition v_0 in $H^1_0(D)$. To construct a non-autonomous random dynamical system $\{V(t, \tau, \omega)\}$ for problem (3.3)-(3.5), we define $V(t, \tau, \omega): H^1_0(D) \rightarrow H^1_0(D)$ by $V(t, \tau, \omega)v_0$. Then the system $\{V(t, \tau, \omega)\}$ is a non-autonomous random dynamical system in $H^1_0(D)$.

We now apply abstract theory in Section 2 to obtain the random \mathcal{D}-pullback attractors for non-autonomous modified Swift-Hohenberg equation, by the equivalent, we only consider the random \mathcal{D}-pullback attractor of equation (3.3)-(3.5).

For convenience, the $U^p(D)$ norm of u will be denoted by $\|u\|_{p,1}$, $H = L^2(D)$ with a scalar product and the norm of Sobolev spaces $W^1_0(D)$ by $\|u\|_{1,p}$, we regard the space $H^1_0(D)$ endowed with the norm $\|u\|_{2,2} = \|\Delta u\|_2$, c or $c(\omega)$ denote the arbitrary positive constants, which only depend on ω and may be different from line to line and even in the same line.

For our purpose that the following Gagliardo-Nirenberg inequality will be used.

Lemma 3.1. (Gagliardo-Nirenberg Inequality). Let D be an open, bounded domain of the Lipschitz class in \mathbb{R}^n. Assume that $1 \leq p \leq \infty, 1 \leq q \leq \infty, 1 \leq r, 0 < \theta \leq 1$ and let

$$k - \frac{n}{p} \leq \theta(m - \frac{n}{q}) + (1 - \theta)\frac{n}{r}.$$

Then the following inequality holds:

$$\|u\|_{k,p} \leq c(D)\|u\|_{r,q}^{\theta} \|u\|_{m,q}^{1 - \theta}.$$

Lemma 3.2. For all $t \geq \tau$, the following inequality holds:

$$\|v(t, \tau, \theta)\|^2 \leq c(\omega)(e^{-\beta(t-\tau)}\|v_0\|^2 + 1 + e^{-\beta H(t)}),$$

and

$$\int_{\tau}^{t} e^{2\beta(t-\tau)z(\theta, \omega)dr} \|v_{x}\|^2 ds \leq c(\omega)(e^{-\beta(t-\tau)}\|v_{x}\|^2 + 1 + e^{-\beta H(t)}).$$

Proof. Let $v(s)$ or v denotes $v(s, \tau, \theta, \omega)$ be the solution of equation (3.3)-(3.5). Taking the inner product of equation (3.3) with v, we get

$$\frac{1}{2} \frac{d}{ds} \|v\|^2 + \|\Delta v\|^2 + 2(\Delta v, v) + (a - lz)\|v\|^2 + be^{2z(\theta, \omega)}(v_{x}^2, v)\|v\|_4^4$$

$$+ e^{2z(\theta, \omega)}\|v\|_4^4 = e^{-z(\theta, \omega)}(g(x, s), v).$$

Using Young inequality, we get

$$\|2\Delta v, v\| \leq \frac{1}{4} \|\Delta v\|^2 + 4\|v\|^2.$$

By integration by parts, we obtain

$$be^{2z(\theta, \omega)}(v_{x}^2, v) = be^{2z(\theta, \omega)} \int_{D} v_{x}^2 v dx = -be^{2z(\theta, \omega)} \int_{D} (v_{x}^2 v + vv_{x}^2) dx,$$

thus

$$be^{2z(\theta, \omega)}(v_{x}^2, v) = -\frac{b}{2} e^{2z(\theta, \omega)} \int_{D} v_{x}^2 v_{x} dx.$$

Applying the Hölder inequality and Young inequality, we get

$$be^{2z(\theta, \omega)} \|v_{x}^2 \| \leq \frac{b}{2} e^{2z(\theta, \omega)} \int_{D} v_{x}^2 v_{x} dx \leq \frac{b}{2} e^{2z(\theta, \omega)} \|v_{x}\| \|v\|_{4}^2 \leq \frac{b}{16\eta} \|v_{x}\| \|v\|_{4}^4 \leq \frac{b^2}{16\eta} e^{2z(\theta, \omega)} \|v\|_{4}^4.$$
and

\[e^{-\varepsilon g(x, s)} \leq ||v||^2 + \frac{1}{4} e^{-2\varepsilon g(x, s)}||v||^2. \]

For convenience, we take \(\eta = \frac{1}{4} \), \(|b| < 2 \) \((|b| < 4 \), the same conclusion hold), we obtain

\[\frac{d}{ds}||v||^2 + ||\Delta v||^2 + 2(a - \varepsilon g(x, s))||v||^2 + 2(1 - b^2) e^{2\varepsilon g(x, s)}||v||^2 \leq 1 + e^{-2\varepsilon g(x, s)}||v||^2. \]

Taking \(\beta > 0 \) such that \(a - \beta - 5 < 0 \), we have

\[\frac{d}{ds}||v||^2 + ||\Delta v||^2 + 2(\beta - \varepsilon g(x, s))||v||^2 + 2(1 - b^2) e^{2\varepsilon g(x, s)}||v||^2 \leq -2(a - \beta - 5)||v||^2 + \frac{1}{2} e^{-2\varepsilon g(x, s)}||v||^2. \]

By the Sobolev imbedding \(L^1(D) \subset L^2(D) \) and Young inequality, we get

\[-2(a - \beta - 5)||v||^2 \leq c||v||^2 \leq 2(1 - \frac{b^2}{4}) e^{2\varepsilon g(x, s)}||v||^2 + ce^{-2\varepsilon g(x, s)}. \]

Thus we obtain

\[\frac{d}{ds}||v||^2 + ||\Delta v||^2 + 2(\beta - \varepsilon g(x, s))||v||^2 \leq ce^{-2\varepsilon g(x, s)}(1+(g(x, s))||v||^2) \]

Multiply this by \(e^{2\beta(t - 1) t e^{2\beta(t - 1)} ||v||^2 ds \) and integrating from \(\tau \) to \(t \), we have

\[||v(t)||^2 + \int_{\tau}^{t} e^{2\beta(t - 1) t e^{2\beta(t - 1)} ||v(r)||^2 ds \]

\[\leq e^{-2\beta(t - 1) t e^{2\beta(t - 1)} ||v||^2 + \int_{\tau}^{t} e^{-2\beta(t - 1) t e^{2\beta(t - 1)} (1+(g(x, s))||v||^2) ds \}

\[\leq e^{-2\beta(t - 1) t e^{2\beta(t - 1)} ||v||^2 + \int_{\tau}^{t} e^{-2\beta(t - 1) t e^{2\beta(t - 1)} (1+(g(x, s))||v||^2) ds \}

From (3.2), we get

\[2\int_{\tau}^{t} \lambda(t, \omega) d\tau \leq \mu(\omega) + \beta(t - \tau), \quad 2\int_{\tau}^{t} \lambda(t, \omega) - 2\lambda(t, \omega) \leq \mu(\omega) + \beta(t - \tau). \]

Then we have

\[||v(t)||^2 + \int_{\tau}^{t} e^{2\beta(t - 1) t e^{2\beta(t - 1)} ||v||^2 ds \]

\[\leq c(\omega)(e^{-2\beta(t - 1) t e^{2\beta(t - 1)} ||v||^2 + \int_{\tau}^{t} e^{-2\beta(t - 1) t e^{2\beta(t - 1)} (1+(g(x, s))||v||^2) ds \}

\[\leq c(\omega)(e^{-2\beta(t - 1) t e^{2\beta(t - 1)} ||v||^2 + 1 + e^{-\beta(t - 1) t e^{2\beta(t - 1)} (g(x, s))||v||^2) ds \}

Thus we get the desired results. \(\square \)

Lemma 3.3. For all \(t \geq \tau \), the following inequality hold:

\[||\Delta v(t, \tau, \lambda_{\tau}, \omega)||^2 \leq c(\omega)[(1 + \frac{1}{t - \tau}) e^{-2\beta(t - 1) t e^{2\beta(t - 1)} ||v||^2 + \frac{11}{3} \beta(t - 1) t e^{2\beta(t - 1)} ||v||^2 \frac{22}{3} + e^{-2\beta(t - 1) t e^{2\beta(t - 1)} ([H(t) + \frac{1}{3} e^{2\beta(t - 1) t e^{2\beta(t - 1)} H^3(s) ds])] \]

Proof. Taking inner product of equation (3.3) with \(\Delta^2 v \), we have

\[\frac{1}{2} \frac{d}{ds} ||\Delta v||^2 + ||\Delta^2 v||^2 + 2(\Delta v, \Delta^2 v) + (a - \varepsilon g(x, s)) ||\Delta v||^2 + \beta e^{2\varepsilon g(x, s)} (v_1^2, \Delta^2 v) + e^{2\varepsilon g(x, s)} (v_3, \Delta^2 v) = e^{-2\varepsilon g(x, s)} (g(x, s), \Delta^2 v). \]

\[(3.8) \]

\[(3.9) \]
By the Hölder inequality, Young inequality and Gagliardo-Nirenberg inequality, we get

\[-2(\Delta v, \Delta^2 v) \leq \frac{1}{8} \| \Delta^2 v \|^2 + 8 \| \Delta v \|^2,\]

\[|b| e^{2\varepsilon (\theta, \omega)} \left| (v_x^2, \Delta^2 v) \right| \leq \frac{1}{8} \| \Delta^2 v \|^2 + ce^{\| v \|^2} \| \Delta^2 v \|^2 \leq \frac{1}{8} \| \Delta^2 v \|^2 + ce^{\frac{11}{18} \| v \|^2} \| \Delta^2 v \|^2,\]

\[e^{2\varepsilon (\theta, \omega)} \left| (v^3, \Delta^2 v) \right| \leq ce^{2\varepsilon (\theta, \omega)} \| v \|^3 \| \Delta^2 v \|^2 \leq ce^{2\varepsilon (\theta, \omega)} \| v \|^3 \| \Delta^2 v \|^2 + ce^{\frac{1}{8} \| \Delta^2 v \|^2} \| v \|^3,\]

\[= ce^{\frac{5}{2} \varepsilon (\theta, \omega)} \| \Delta^2 v \|^2 \| v \|^3 \leq \frac{1}{8} \| \Delta^2 v \|^2 + ce^{\frac{11}{18} \| v \|^2} \| \Delta^2 v \|^2,\]

\[e^{-\varepsilon (\theta, \omega)} (g(x, s), \Delta^2 v) \leq \frac{1}{8} \| \Delta^2 v \|^2 + 2e^{-2\varepsilon (\theta, \omega)} \| g(x, s) \|^2.\]

Putting all these inequalities together, we deduce

\[\frac{d}{ds} \| \Delta v \|^2 + 2(\beta - 2\varepsilon) \| \Delta v \|^2 \leq 2(8 + \beta - \eta) \| \Delta v \|^2 + c(e^{\frac{16}{3} \varepsilon (\theta, \omega)} \| v \|^3 + e^{-2\varepsilon (\theta, \omega)} \| g(x, s) \|^2).\]

Multiplying this by \((s - \tau) e^{2\beta t - 2\varepsilon (\theta, \omega) dr}\) and integrating it over \((\tau, t)\), we get

\[(t - \tau) e^{2\beta t - 2\varepsilon (\theta, \omega) dr} \| \Delta v(t) \|^2 \leq \int_{\tau}^{t} e^{2\beta t - 2\varepsilon (\theta, \omega) dr} \| \Delta v \|^2 ds + \int_{\tau}^{t} \left(\frac{1}{t - \tau} e^{-2\beta (t - s)} + e^{2\varepsilon (\theta, \omega) dr} \right) \| g(x, s) \|^2 ds.\]

Then we have

\[\| \Delta v(t) \|^2 \leq c(1 + \frac{1}{t - \tau}) \int_{\tau}^{t} e^{-2\beta (t - s)} + e^{2\varepsilon (\theta, \omega) dr} \| \Delta v \|^2 ds + \left[\frac{1}{t - \tau} e^{-2\beta (t - s)} + e^{2\varepsilon (\theta, \omega) dr} \right] \| g(x, s) \|^2 ds.\]

By (3.2), (3.6) and the inequality \((a + b)^r \leq c(a^r + b^r) (a, b > 0, r \geq 1)\), we get

\[\int_{\tau}^{t} e^{-2\beta (t - s)} + e^{2\varepsilon (\theta, \omega) dr} \| \Delta v \|^2 ds \leq c(\omega) \int_{\tau}^{t} e^{-2\beta (t - s)} \| \Delta v \|^2 ds \leq c(\omega) \int_{\tau}^{t} e^{-2\beta (t - s)} \| \Delta v \|^2 ds \leq c(\omega) e^{-\beta (t - r)} \left[e^{11 r} \| v \|^2 + 1 + e^{-\beta s} H(s) \right],\]

\[\leq c(\omega) e^{-\beta (t - r)} \left[e^{11 r} \| v \|^2 + 1 + e^{-\beta s} H(s) \right],\]

By (3.2), (3.6) and the inequality \((a + b)^r \leq c(a^r + b^r) (a, b > 0, r \geq 1)\), we get

\[\int_{\tau}^{t} e^{-2\beta (t - s)} + e^{2\varepsilon (\theta, \omega) dr} \| \Delta v \|^2 ds \leq c(\omega) \int_{\tau}^{t} e^{-2\beta (t - s)} \| \Delta v \|^2 ds \leq c(\omega) \int_{\tau}^{t} e^{-2\beta (t - s)} \| \Delta v \|^2 ds \leq c(\omega) \int_{\tau}^{t} e^{-2\beta (t - s)} \| \Delta v \|^2 ds \leq c(\omega) e^{-\beta (t - r)} \left[e^{11 r} \| v \|^2 + 1 + e^{-\beta s} H(s) \right] ds.\]

Thus, we have

\[\| \Delta v(t, \tau) \|^2 \leq c(\omega) \int_{\tau}^{t} e^{-2\beta (t - s)} \| \Delta v \|^2 ds \leq c(\omega) \int_{\tau}^{t} e^{-2\beta (t - s)} \| \Delta v \|^2 ds \leq c(\omega) e^{-\beta (t - r)} \left[e^{11 r} \| v \|^2 + 1 + e^{-\beta s} H(s) \right] ds.\]

We complete the proof of Lemma 3.3. □

Let \(\mathcal{R} \) be the set of all function \(r : \mathbb{R} \to (0, +\infty) \) such that \(\lim_{r \to +\infty} e^{\beta r^2(t)} = 0 \) and denote by \(\mathcal{D} \) the class of all families \(\mathcal{D} = \{ D(t) : t \in \mathbb{R} \} \) such that \(D(t) \subset \overline{B}(r(t)) \) for some \(r(t) \in \mathcal{R} \), \(\overline{B}(r(t)) \) denote the closed ball in \(H^2_{\Omega}(D) \) with radius \(r(t) \). Let
\[r_1^2(t) = 2c(\omega)[1 + e^{-\beta t}(H(t)) + \int_{-\infty}^{t} e^{-\frac{8\beta s}{3}} H^2(s) ds] \]
(3.10)

By lemma 3.3 for any \(\hat{D} \in \mathcal{D} \) and \(t \in \mathbb{R} \), there exists \(\tau_0(\hat{D}, t, \omega) < t \) such that
\[
\| \Delta v(t, \tau, \theta^{-\omega}, \omega) \| \leq r_1(t), \text{ for any } \tau < \tau_0.
\]

Since \(0 \leq \gamma < \frac{3\beta}{11} \), simple calculation imply that \(r_1(t) \in \mathcal{R} \), which say that the \(\mathcal{B}(r_1(t)) \) be a family of random \(\mathcal{D} \)-pullback bounded absorbing sets in \(H_0^2(D) \) and \(\{ \mathcal{B}(r_1(t)) \} \in \mathcal{D} \).

Theorem 3.1. The non-autonomous random dynamical system to problem (1.1)-(1.3) possesses a unique random \(\mathcal{D} \)-pullback attractor in \(H_0^2(D) \).

Proof. We need only prove that the dynamical system (3.3)-(3.5) satisfies the pullback flattening condition. Since \(A^{-1} \) is a continuous compact operator in \(H_0^2(D) \), by the classical spectral theorem, there exists a sequence \(\{ \lambda_j \}_{j=1}^{\infty} \) satisfying
\[
0 < \lambda_1 \leq \lambda_2 \leq \cdots \lambda_j \rightarrow +\infty, \text{ as } j \rightarrow +\infty,
\]
and a family of elements \(\{ e_j \}_{j=1}^{\infty} \) of \(H_0^2(D) \) which are orthonormal in \(H \) such that
\[
A e_j = \lambda_j e_j, \forall j \in \mathbb{N}^+.
\]

Let \(H_m = \text{span}\{e_1, e_2, \cdots, e_m\} \) in \(H \) and \(P_m : H \rightarrow H_m \) be an orthogonal projector. For any \(v \in H \) we write
\[
v = P_m v + (I - P_m)v = v_1 + v_2.
\]

Taking inner product of (3.3) with \(\Delta^2 v_2 \) in \(H \), we get
\[
-2(\Delta v, \Delta^2 v_2) - \frac{1}{2} \int ds \| \Delta v_2 \|^2 + \frac{1}{2} \| \Delta^2 v_2 \|^2 + 2(\Delta v, \Delta^2 v_2) + (a - lz)\| \Delta v_2 \|^2 \\
+ be^{b(\theta^{-\omega})}(\| \nabla v_2 \|^2, \Delta^2 v_2) + e^{2b(\theta^{-\omega})}(v_1, \Delta^2 v_2) = e^{-b(\theta^{-\omega})}(g(x, s), \Delta^2 v_2).
\]

By the Hölder inequality, Young inequality and Gagliardo-Nirenberg inequality, we get
\[
-2(\Delta v, \Delta^2 v_2) - \frac{1}{8} \| \Delta^2 v_2 \|^2 + 8\| \Delta v \|^2,
\]
\[
- be^{b(\theta^{-\omega})}(v_1, \Delta^2 v_2) \leq \frac{1}{8} \| \Delta^2 v_2 \|^2 + 2b^2 e^{2b(\theta^{-\omega})}\| v_1 \|^4
\]
\[
\leq \frac{1}{8} \| \Delta^2 v_2 \|^2 + ce^{2b(\theta^{-\omega})}\| v \|^4 \| \Delta v \|^4
\]
\[
= \frac{1}{8} \| \Delta^2 v_2 \|^2 + ce^{2b(\theta^{-\omega})}\| v \|^4 \| \Delta v \| \quad (\theta = \frac{1}{4})
\]
\[
\leq \frac{1}{8} \| \Delta^2 v_2 \|^2 + \frac{1}{2} \| \Delta v \|^2 + ce^{4b(\theta^{-\omega})}\| v \|^6.
\]
Putting all these inequalities together, we have
\[
\frac{d}{ds} \left(\| \Delta v_s \|^2 + \| \Delta v_{3s} \|^2 + 2(a - lc) \| \Delta v_s \| \right) \leq 18 \| \Delta v_s \|^2 + e^{4z(\Theta - \omega_z)} \| v \|^6 + e^{8z(\Theta - \omega_z)} \| v \|^4 + e^{-2z(\Theta - \omega_z)} \| g(x,s) \|^2.
\]

\[\lambda_n \| \Delta v_s \|^2 \leq \| \Delta v_{3s} \|^2,\]
which imply that
\[
\frac{d}{ds} \left(\| \Delta v_s \|^2 + (\lambda_n - 2lz) \| \Delta v_s \|^2 \right) \leq c(\| \Delta v_s \|^2 + e^{4z(\Theta - \omega_z)} \| v \|^6 + e^{8z(\Theta - \omega_z)} \| v \|^4 + e^{-2z(\Theta - \omega_z)} \| g(x,s) \|^2).
\]

Multiply this by \((s - \tau) e^{\lambda_n - 2l \int_{\tau}^{s} z(\Theta - \omega_z) ds}\) and integrating from \(\tau\) to \(t\), we obtain
\[
(t - \tau) e^{\lambda_n - 2l \int_{\tau}^{s} z(\Theta - \omega_z) ds} \| \Delta v_s \|^2 \leq c\left[\int_{\tau}^{t} (1 + s - \tau) e^{\lambda_n - 2l \int_{\tau}^{s} z(\Theta - \omega_z) ds} \| \Delta v_s \|^2 ds \right.
\]
\[
+ \left. \int_{\tau}^{t} (s - \tau) e^{\lambda_n - 2l \int_{\tau}^{s} z(\Theta - \omega_z) ds} \left(e^{4z(\Theta - \omega_z)} \| v \|^6 + e^{8z(\Theta - \omega_z)} \| v \|^4 + e^{-2z(\Theta - \omega_z)} \| g(x,s) \|^2 \right)ds \right]
\]

Thus we get
\[
\| \Delta v_s \|^2 \leq c\left[(1 + \frac{1}{t - \tau}) \int_{\tau}^{t} e^{\lambda_n - 2l \int_{\tau}^{s} z(\Theta - \omega_z) ds} \| \Delta v_s \|^2 ds + \int_{\tau}^{t} e^{\lambda_n - 2l \int_{\tau}^{s} z(\Theta - \omega_z) ds + 8z(\Theta - \omega_z)} \| v \|^6 ds + \int_{\tau}^{t} e^{\lambda_n - 2l \int_{\tau}^{s} z(\Theta - \omega_z) ds - 2z(\Theta - \omega_z)} \| g(x,s) \|^2 ds \right]
\]
\[
\leq c(\omega)(1 + \frac{1}{t - \tau}) \int_{\tau}^{t} e^{(\lambda_n - \beta)x(s - \tau)} \| \Delta v_s \|^2 ds + \int_{\tau}^{t} e^{(\lambda_n - \beta)(s - \tau)} \| v \|^6 ds + \int_{\tau}^{t} e^{(\lambda_n - \beta)(s - \tau)} \| g(x,s) \|^2 ds
\]
\[
= c(\omega)(I_1 + I_2 + I_3 + I_4).
\]

By simple calculation, we find that there exists \(N \in \mathbb{N}\), \(\forall n > N\), \(\lambda_n - \beta > \beta\), and
\[
I_1 \leq (1 + \frac{1}{t - \tau}) \int_{\tau}^{t} e^{(\beta)(s - \tau)} \| \Delta v_s \|^2 ds < \infty, \quad e^{\lambda_n - 2l \int_{\tau}^{s} z(\Theta - \omega_z) ds} \rightarrow 0 \quad \text{as} \quad n \rightarrow \infty,
\]

According to the Lebesgue dominated convergent theorem, we obtain
\[
I_1 \rightarrow 0 \quad \text{as} \quad n \rightarrow \infty.
\]

Using (3.6), we get
\[
I_2 \leq c\left[\int_{\tau}^{t} e^{(\lambda_n - \beta)(s - \tau)} \| v_s \|^2 + 1 + e^{-\beta t} H(s) \right] ds
\]
\[
\leq c\left[\int_{\tau}^{t} e^{(\lambda_n - \beta)(s - \tau)} \| v_s \|^6 + 1 + e^{-3\beta t} H^3(s) \right] ds
\]
\[
\leq c\left[e^{-\beta t} \frac{e^{-3\beta t}}{\lambda_n - 4\beta} \| v_s \|^6 + \frac{1}{\lambda_n - \beta} + \frac{e^{-4\beta t}}{\lambda_n - 4\beta} H^3(t) \right] \rightarrow 0 \quad \text{as} \quad n \rightarrow \infty.
\]
\[
I_3 \leq c \int_\tau^t e^{(\lambda_n - \beta)(s-t)} (e^{-\beta(s-t)} \| v_s \|^2 + 1 + e^{-\beta t} H(s))^2 \, ds
\]

\[
\leq c \int_\tau^t e^{(\lambda_n - \beta)(s-t)} (e^{-\beta(s-t)} \| v_s \|^4 + 1 + e^{-2\beta t} H^2(s)) \, ds
\]

\[
\leq c [e^{\beta} - \frac{e^{-2\beta(t-t)}}{\lambda_n - 3\beta} \| v_t \|^4 \frac{1}{\lambda_n - \beta} + \frac{e^{-3\beta t}}{\lambda_n - 3\beta} H^2(t)] \to 0 \text{ as } n \to \infty,
\]

and

\[
I_4 \leq e^{-\beta t} \int_\tau^t e^{\beta s} \| g(x,s) \|^2 ds, \quad e^{(\lambda_n - \beta)(s-t)} \| g(x,s) \|^2 \to 0 \text{ as } n \to \infty,
\]

Again using Lebesgue dominated convergent theorem, we get

\[
e^{(\lambda_n - \beta)(t-t)} \| g(x,s) \|^2 ds \to 0 \text{ as } n \to \infty.
\]

In summary, we obtain that the terms on the right hand of inequality (3.13) tend to 0 as \(n \to \infty \), which say that \(\| v_\tau(t, \tau, \Theta_{\tau,s}, \omega) \| \to 0 \), i.e., the random dynamical system (3.3)-(3.5) satisfies pullback flattening.

\]

4. Conclusions

This paper extends the existence of pullback attractor of non-autonomous modified S-H equation to the case of non-autonomous stochastic modified S-H equation with multiplicative noise. In the concrete experiment, the random term in the equation is more consistent with the actual problem. For S-H equation with multiplicative noise, the external force has exponential growth, we have proved that the equation exists a random \(\mathcal{D} \)-pullback attractor in one dimension. In the future work, we will continue to investigate whether the same results can be obtained when the spatial dimension is two-dimensional or n-dimensional.

Author Contributions: All the authors have equal contribution to this study. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the National Natural Science Foundation of China (11761044, 11661048) and the key constructive discipline of Lanzhou City University (LZCU-ZDJSXK-201706).

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

References

1. J.B. Swift, P.C. Hohenberg, Hydrodynamics fluctuations at the convective instability, Phys. Rev. A, 1977, 15, 319-328.
2. D. Blömker, M.Hairer, G.Pavliotis, Stochastic Swift-Hohenberg equation near a change of stability, Proceedings of Equa.Diff., 2005, 11, 27-37.
3. A.Doelman, B.Standstede, A.Scheel, G. Schneider, Propagation of hexagonal patterns near onset, European J.Appl.Math., 2003, 85, 110.
4. L.A.Peletier, V. Rottschafer, Large time behavior of solution of the Swift-Hohenberg equation, Comptes Rendus Mathematique, 2003, 336(3), 225-230.
5. L.A. Peletier, V.Rottschäfer, Pattern selection of solutions of the Swift-Hohenberg equation, Physica D, 2004, 194(1-2),95-126.
6. L.A. Peletier, J.F.Williams, Some canonical bifurcations in the Swift-Hohenberg equation, SIAM J.Appl.Dyn.Syst., 2007, 6, 208-235.
7. L.Song, Y.Zhang, T.Ma, Global attractor of a modified Swift-Hohenberg equation in H^2 spaces, Nonlinear Anal., 2006, 64, 483-498.
8. M.Polat, Global attractor for a modified Swift-Hohenberg equation, Comput. Math. Appl., 2009, 57, 62-66.
9. S.H. Park, J.Y. Park, Pullback attractors for a non-autonomous modified Swift-Hohenberg equation, Comput. Math. Appl., 2014, 67, 542-548.
10. L.Xu, Q.Ma, Existence of the uniform attractors for a non-autonomous modified Swift-Hohenberg equation, Advances in Difference Equations, 2015, 2015(1):153.
11. C.Guo, Y.Guo, C.Li, Dynamical behavior of a local modified stochastic Swift-Hohenberg equation with multiplicative noise, Boundary Value Problems, 2017, DOI: 10.1186/s13661-017-0753-5.
12. Y.Li, C.Zhong, Pullback attractors for the norm-to-weak continuous process and application to the non-autonomous reaction-diffusion equations, Applied Mathematics and Computation, 2007, 190, 1020-1029.
13. B.Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical system, J.Differential Equations, 2009, 253, 1583-1593.
14. P.E.Kloeden, J.A.Langa, Flattening, squeezing and the existence of random attractors, Proc.R.Soc.A, 2007, 463, 163-181.
15. P.W.Bates, K.Lu, B.Wang, Random attractors for stochastic reaction-diffusion equations on unbounded domains, J.Differential Equations, 2009, 246, 845-869.
16. Y.Li, B.Guo, Random attractors for quasi-continuous random dynamical systems and application to stochastic reaction-diffusion equation, J.Differential Equations, 2008, 245, 1775-1800.
17. Y.Li, J.Wei, T.Zhao, The existence of random D-pullback attractors for a random dynamical system and its application, Journal of Applied Analysis and Computation, 2019, 9(4), 1571-1588.
18. Y.Wang, J.Wang, Pullback attractors for multi-valued non-compact random dynamical systems generated by reaction-diffusion equations on an unbounded domain, J.Differential Equations, 2015, 259, 728-776.
19. Z.Wang, S.Zhou, Random attractor for stochastic reaction-diffusion equation with multiplicative noise on unbounded domains, Journal of Mathematical Analysis and Applications, 2011, 384, 160-172.
20. J.Duan, An introduction to Stochastic Dynamics, Science Press, Beijing, 2014.
21. L.Arnold, Random Dynamical System, Springer-Verlag, 1998.
22. R.Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, 2nd ed., Springer-Verlag, 1997.