A review of the use of fiducial markers for image-guided bladder radiotherapy

Conor P. Nolan and Elizabeth J. Forde
Applied Radiation Therapy Trinity, Discipline of Radiation Therapy, School of Medicine, Trinity College Dublin, Ireland.

ABSTRACT

Background: Enhancing target visualization and reducing set-up errors in image-guided radiotherapy (IGRT) are issues faced when trying to implement more conformal and partial bladder techniques. This review examines the evidence available pertaining to the clinical use of Lipiodol and gold fiducials for IGRT for bladder cancer. Material and methods: Nine published articles relating to the feasibility of using Lipiodol injections or gold fiducial markers in IGRT for bladder patients were recruited from a database search strategy. Set-up errors were evaluated in addition to the stability and visibility of each on verification imaging. Adverse reactions from the insertion of each method were also assessed. Results: Both Lipiodol and gold fiducials have the potential to remain stable and visible in the bladder, however, fading, washout and seed loss was also reported. Set-up errors can be reduced by using Lipiodol or fiducial registration when compared to other registration techniques. Adverse reactions reported were minimal for each. Conclusion: Current evidence suggests that Lipiodol injections and gold fiducial markers present as promising and highly accurate methods of overcoming interfraction bladder motion in IGRT.

Bladder cancer is somewhat of a rarity in radiation oncology accounting for just 3% of cancer cases worldwide [1]. Bladder preserving techniques commonly practiced include transurethral resection coupled with adjuvant radiotherapy and chemotherapy, as well as definitive chemoradiation [2,3]. Advances in radiotherapy are often hindered by the risk of normal tissue toxicity. In the case of bladder cancer, this is complicated by the issue of inter- and intrafraction target motion, where motion can be dependent on the location of the tumor in the bladder wall [4] and can vary up to 3 cm [5]. Whole bladder treatment coupled with large planning target volumes (PTVs) margins ranging from 15 mm to 20 mm act as a safety net for target motion and have been the standard of care for many years [5].

As advanced image-guided radiotherapy (IGRT) methods have come on stream in the last decade, an opportunity for increased accuracy in treatment delivery has been presented. However, even with use of these improved imaging modalities, target visualization still remains an issue. This problem becomes even more critical in the setting of partial bladder radiotherapy [6]. The combined use of IGRT, along with fiducial markers hopes to improve these uncertainties and provide greater sparing of normal structures. Furthermore, online adaptive radiotherapy aims to combat the issue of interfraction bladder filling variation. This combination of technological advances may in fact result in an increase in the number of patients receiving adjuvant radiotherapy. However, with many studies investigating partial bladder radiotherapy, coupled with dose escalation or boost delivery, accuracy remains paramount [6–8].

Gold seed fiducial markers present as a potentially accurate method of providing an easily visualized surrogate for the target in bladder patients. They have shown huge success in breast radiotherapy, allowing for reduced margins, partial breast treatments and dose escalation [9,10]. In prostate radiotherapy, they are used routinely for image guidance in many institutions leading to increased set-up accuracy, reduced target margins and dose escalation [11–13].

Lipiodol can be used as a radio opaque contrast agent in modern medicine. Similar to gold fiducials, it presents as a novel method of providing an easily visualized surrogate for the target and has a potential role to play in both target delineation and image verification for bladder radiotherapy.

Through the means of this review, the feasibility of the use of gold fiducial markers in comparison with Lipiodol injections for enhancing target visualization and image registration in bladder patients will be investigated. The insertion of both Lipiodol and gold fiducials is somewhat invasive for patients. There is also the potential for poor visibility due to fading and fall out, as well as migration. The ability of each method to reduce set-up errors and to remain stable and visible throughout treatment will be examined.

Material and methods

The participant population of this research was all bladder cancer patients undergoing radical whole or partial bladder radiotherapy, of any age and performance status. It included...
patients of any disease stage and grade, along with any disease subtype. All radiotherapy techniques and verification imaging modalities were included in the research.

A database search using Pubmed, Embase, Science Direct and The Cochrane Library was carried out to establish articles published in English from 2004–2014. Search terms used were: ‘Lipiodol AND bladder cancer’; ‘Lipiodol AND bladder cancer AND IGRT’; ‘IGRT AND bladder cancer’; ‘Lipiodol AND IGRT’; ‘fiducial AND bladder cancer’; ‘fiducial AND bladder cancer AND IGRT’; ‘bladder cancer AND image AND verification. The included studies were prospective and retrospective single and multi-institution cohort and observational studies that examined Lipiodol injections and gold fiducial markers in relation to reliability and the enhancement of target visualization. Any method of insertion of Lipiodol or gold fiducials was included. Studies with any population size were included. Published abstracts from oral presentations and poster presentations were excluded.

The recruited studies aimed to include set-up errors in two or more translational directions when using either Lipiodol injections or fiducial markers for image registration purposes. The number and visibility of Lipiodol spots and gold fiducials remaining throughout treatment were also included. They also aimed to report adverse reactions that occurred in patients due to the interventions used, i.e. Lipiodol or gold fiducials, using an internationally recognized toxicity scoring system. The studies also aimed to report the number and visibility of Lipiodol spots or gold fiducials remaining throughout treatment, to assess reliability.

Results

Thirteen articles were recruited and analyzed for eligibility in the research based on the inclusion and exclusion criteria. Nine full text articles, including a total of 131 patients, were used. This included six studies with a total of 85 patients examining the set-up errors and reliability of Lipiodol spots and three studies with a total of 46 patients examining the set-up errors and reliability of fiducial markers.

Impact on reducing set-up errors and enhancing image registration

Three studies reported the difference in set-up errors between using Lipiodol image registration and other registration techniques (Table I). Sondergaard et al., Chai et al., and Pos et al. all reported increased accuracy when using a Lipiodol registration on kV cone beam computed tomography (CBCT) compared to other conventional methods of registration [14–16]. One study reported on the accuracy of using a general mask registration (one large spot) and a sub mask registration (multiple spots) [15].

Considering the difference in set-up errors between using gold fiducial marker image registration and a bony match registration, on both kV two-dimensional (2D) and kV CBCT imaging (Table I), Della Biancia et al. reported increased accuracy when using fiducial match compared to a bony match, on kV CBCT [17]. It was found that the results of the fiducial match on kV CBCT were comparable to the same match on kV 2D images [17].

All studies used kV CBCT imaging only for Lipiodol image registration. Sondergaard et al. reported difficulty in the visualization of the Lipiodol spots on 2D kV images and did not report on accuracy of matches using this modality [14].

Visibility and accuracy for providing a stable surrogate for the target

Five studies reported on the number of Lipiodol spots remaining visible during the course of radiotherapy from insertion to CT to kV CBCT (Table II). Lipiodol spots remained visible throughout treatment on kV CBCT [18]. Furthermore, the movement of the gold fiducials was consistent with the movement of the bladder wall [19] and in fact, Chai et al. found a strong correlation ($R = 0.86$) between bladder volume variation and Lipiodol marker movement [15].

Four studies reported on the percentage loss of visible Lipiodol spots by the final kV CBCT, which ranged from 5% to 24% [14–16,20]. All studies reported some degree of fading or washout of Lipiodol spots throughout the course of treatment with the exception of Meijer et al. [14–16,18,20,21] (Table III). Seed loss was also reported by all studies during treatment, ranging from 2% to 41%, when assessed on various imaging modalities (MV CBCT, kV CBCT and kV 2D images) [17,19,22]. In the case of the Garcia et al. study, this 2% loss was reported only for gold seeds not placed in the tumor area.

Toxicities associated with insertion

Six studies reported on the side effects associated with the Lipiodol insertion technique. All studies reported that there were no adverse reactions experienced as a direct result of the Lipiodol, with any reactions being associated with cystoscopy or radiotherapy treatment [14–16,18,20,21].

Two studies reported on the adverse effects of the fiducial marker insertion technique. Garcia et al. reported hemorrhuria and Mangar et al. reported mild dysuria, both resulting from the fiducial insertion procedure [19,22]. Mangar et al. reported difficulties in inserting gold fiducial markers into the dome of the bladder where disease was present [22]. Meijer et al. reported that Lipiodol could not be successfully injected to mark the tumor borders close to the bladder neck [21].

Discussion

This review has examined the body of literature regarding the clinical use of Lipiodol and gold fiducials for image-guided bladder radiotherapy. Each method was successful in reducing the effects of interfraction target motion. However, the small number of studies available and low patient numbers result in low levels of evidence for the interventions in question.

Sondergaard et al. demonstrated that the difference in shifts between a bony match and a Lipiodol match was greater than 5 mm in over 50% of all treatment fractions [14]. Pos et al. showed registration accuracy of within 2 mm (SD), when compared to Gray scale registration [16]. Despite promising results, these studies are based on small populations of five
Table I. Set-up errors in fiducial matches (Lipiodol and gold fiducials) compared to alternative match types.

Authors	No. of CBCT scans	Imaging protocol	Initial type	Secondary type	Basis of match type	Mean shift from initial match to Lipiodol-based match (mm)	SD (mm)	Analysis Method
Pos et al. [16]	80	Online	Automatic Gray value	Automatic	Lipiodol	Mean Initial SD: 0.9 (LR, CC, AP) Mean Lipiodol SD: 0.8 (LR, CC, AP)	0.8	Registration
		Online Manual fiducial	Automatic Lipiodol	Automatic Lipiodol	Lipiodol	Mean Initial SD: 1.8 (LR, CC, AP) Mean Lipiodol SD: 0.9 (LR, CC, AP)	0.9	Registration
Sondergaard et al. [14]	114	Offline Pelvic bony match	Automatic Lipiodol	Automatic Lipiodol	Lipiodol	Mean shift from initial match to Lipiodol-based match (mm)	1.0	General mask
Chai et al. [15]	135	Online Fiducial registration	Automatic Lipiodol	Automatic Lipiodol	Lipiodol	Average difference (mm): LR: -0.3 ± 1.0 (range -3.8–0.3) AP: 1.7 ± 4.4 (range 0.5–8.2) CC: 3.1 ± 2.5 (range -9.0–13.1)	1.0	Registration
Della Bianca et al. [17]	20–37 patients	Online 2D bony match	Automatic Lipiodol	Automatic Lipiodol	Lipiodol	Mean and SD of the difference between twice average sub mask registrations were 0.06 mm and 0.18 mm, respectively	0.1	Registration
Della Bianca et al. [17]	20–37 patients	Online 3D bony match	Automatic Lipiodol	Automatic Lipiodol	Lipiodol	Mean and SD of the difference between twice average sub mask registrations were 0.06 mm and 0.18 mm, respectively	0.1	Registration

*An investigation into the accuracy of using a general mask registration (using all Lipiodol spots combined as one marker) and a sub mask registration (including individual spots) was carried out in which the reproducibility of possible target displacements of up to 13.5 mm and 16.8 mm in the anterior direction and superior directions, respectively, when using a bony match compared to a fiducial match, were demonstrated [17]. The evidence for the use of fiducial marker registration is promising; however, the level of evidence provided is poor as these results are based on one observational study with 20 participants. Garcia et al. reported that the difference between a fiducial set up based on MV CBCT and a non-IGRT set up was 20 mm and 10 mm in the left/right and cranial/caudal dimensions, respectively [19]. However, inaccuracies in the technique used, which involved the clinician drawing dots on the patient to predict target location based on skin marker set up, result in these findings being questionable.

Lipiodol and fiducial matching are also appropriate for specialized techniques, such as IMRT and adaptive radiotherapy [14,17,18,21]. The superior set-up accuracy has translated into margin reduction, organ at risk sparing and also partial bladder treatment. Compared to the traditional 20–25 mm margin used when no Lipiodol demarcation is used [24,25], Sondergaard et al. reported that a 10–15 mm margin is needed when Lipiodol is used for tumor demarcation, and van Rooijen et al. report only a 5 mm margin is needed [14,26]. This presents promising outcomes for the use of Lipiodol for boost and partial bladder treatment delivery. Online adaptive radiotherapy acts in the interest of varying bladder sizes between fractions and has been deemed a viable method of treatment delivery in many studies [21,27–30]. Lipiodol and fiducial markers can both work well with adaptive planning, by providing enhanced visualization of the target as well as improved registration, which are fundamental to a successful online adaptive protocol.

The large variation in the number of Lipiodol spots injected (from 1 to 6 spots) may have had an impact on the differing set-up errors reported by three studies [14–16]. All six studies reported that 92% or more of the Lipiodol spots remained visible on CBCT, excluding Sondergaard et al. who reported...
that only 76% remained visible [14–16, 18, 20, 21]. Difficulties in injection techniques reported by Sondergaard et al. from the outset, undoubtedly, led to improved accuracy in Lipiodol insertion for the subsequent studies conducted, e.g. the use of fluoroscopy in the study by Meijer et al. [21]. This may explain the relatively consistent volumes of Lipiodol (0.25 ml per spot where multiple spots are used and 10–15 ml for one large spot) used to demark the tumor bed.

The visibility and stability of the fiducial markers within the bladder was also examined. Mangar et al. reported that only 59% of gold fiducials inserted remained in place and visible on the MV portal images used for verification [22]. Design changes to the fiducial markers in subsequent studies, such as using micro-tines along their sides to help anchor into place achieved much higher levels of stability [17, 19]. Garcia et al. reported that 98% of gold fiducials, when placed at the anatomical boundaries of the bladder, remained stable and visible on verification imaging and their representation of the movement of the target due to bladder filling was accurate [19]. Gold fiducials were easily visualized on all imaging modalities, both MV and kV.

Limitations to the Lipiodol method of registration lie in its dependence on kV imaging modalities. All studies used kV CBCT, and one reported difficulty in the visualization of the Lipiodol spots on 2D kV images. Artifact from pelvic bony anatomy had a large role to play in this and was reported to be worse on the lateral image [14]. This would restrict the use of such registration techniques in institutions that do not facilitate kV CBCT technology and would question its ability to be used on 2D kV imaging. No studies reporting on set-up accuracy in fiducial registration, compared to other registration techniques, used MV imaging modalities. One study reported that a Lipiodol spot was not visible in one patient due to artifact from a hip prosthesis, potentially deeming these patients unsuitable for this technique [15].

With Lipiodol fading reported by two studies, the accuracy of registrations based on this technique are debatable [14, 15]. Poor visualization of the spots may lead to inaccuracies in image registration procedures. Dominance of clearer Lipiodol spots can occur, resulting in Lipiodol acting as an inaccurate surrogate for the target [15]. Sondergaard et al. also reported a loss of spots in one patient likely due to intravesical spillage during injection [14].

A study into the effects that gold fiducial markers can have on dose perturbation in patients undergoing photon beam therapy found that the maximum dose reduction was within 5% at 6 MV and 2% at 18 MV. It is important to take this into consideration especially when a large number of gold fiducials may be inserted.

A small proportion of bladder sites were deemed unsuccessful for demarcation in various studies. Mangar et al. reported difficulties in inserting gold fiducial markers into the dome of the bladder where disease was present [22]. Meijer et al. reported that in six patients with tumors close to the bladder neck, Lipiodol could not be successfully injected to mark the tumor borders due to restrictions of the cytoscope [21].

While most studies reported no adverse reactions from the insertion techniques used for both fiducial markers and Lipiodol, there were some isolated incidences of side effects experienced. Mild dysuria was reported post-insertion of fiducial markers, but this subsided after 24 hours [22]. Garcia et al. reported hematuria which resolved between 24 and

Table II. Visibility and percentage loss of Lipiodol spots from insertion to verification imaging.

Author	No. of patients	Method of insertion	No. of Lipiodol spots per patient & ml of Lipiodol used	% Lipiodol spots visible at planning CT	% Lipiodol spots visible on kV CBCT	Fading of Lipiodol reported
Freilich et al. [18]	5	Cystoscopy, fluoroscopy guided, GA	1 large spot, 10–15 ml per spot	100%	100%	No
Sondergaard et al. [14]	5	Cystoscopy, local gel anaesthetic	4–6 spots, 0.25–0.5 ml per spot	Unknown	76%	Yes
Pos et al. [16]	40	Cystoscopy, no anaesthetic	1 large spot, 0.25 ml per injection, 3–5 injections	95%	95%	No
Baumgarten et al. [20]	5	Cystoscopy, GA	1 large spot 10–15 ml, 0.5 ml per injection unknown	95%	95%	No
Meijer et al. [21]	20	Cystoscopy, fluoroscopy guided	*100%	*100%	*100%	No
Chai et al. [15]	15	Cystoscopy	2–4 spots, 0.25 ml per spot	92%	Yes	No

GA, general anesthetic.

*Where no loss was reported by studies, 100% value was given for number of Lipiodol spots remaining.

Table III. Visibility and percentage loss of gold fiducial markers from insertion to verification imaging.

Author	No. of patients	Method of insertion	No. of fiducial markers per patient	% fiducials visible at planning CT	% fiducials visible on verification imaging	Type of verification imaging used
Della Biancia et al. [17]	20	Cystoscopy	2–4, total 82 markers	Unknown	100%	kV CBCT & 2D kV images
Garcia et al. [19]	16	Cystoscopy, fluoroscopy guided	3–5, total 82 markers	Unknown	98%	MV CBCT & MV portal images
Mangar et al. [22]	8	Cystoscopy, GA, cystodiathermy	5–6, total 44 markers	75%	59%	MV portal images

GA, general anesthetic.
48 hours post-operatively with the aid of urinary catheteriza-
tion [19]. Allergic reactions to the Lipiodol agent are possible, with
institutions requiring appropriate facilities and personnel
to deal with possible reactions.

While both insertion techniques involve a minimally invasive
rigid or flexible cystoscopy insertion technique, general
anesthetic was used in a number of studies and this may
eliminate patients who would be unable to tolerate this.
However, a number of studies also carried out the procedure
with local gel anesthetic or no anesthetic. A cystodiathermy
technique was also used in one study which can result in tissue
necrosis and delayed marker fallout [19,22].

While this review has focused on Lipiodol and gold fiducials,
it must be noted that the use of absorbable hydrogel has also
been recently investigated as an upcoming marker type for this
patient group. One multicenter study reported promising
results with respect to ease of insertion and also visibility
throughout a course of IGRT [31]. More recently, Lutkenhaus
et al. published a comprehensive evaluation of the dose
delivered during a course of adaptive radiotherapy for bladder
cancer [32]. Of their patient cohort of 16, 31% had hydrogel
inserted to assist in target localization and image matching,
validating its use in routine clinical practice. There may also be
scope to include the use of electromagnetic transponders, such
as the Calypso tracking system for this patient population;
however, this may be difficult for whole bladder treatments
[33] and data here is limited.

Motion management certainly poses a difficult and complex
challenge in bladder radiotherapy. Lipiodol injections and gold
fiducial markers present as promising and accurate methods of
overcoming interfracton bladder motion in IGRT treatment
delivery. Combined with continuous image acquisition, such
as fluoroscopy, these markers may also prove to be a valuable
tool for the online assessment of intrafraction motion.
Although fading and seed fall out is possible, they can
remain stable and visible throughout treatment leading to
high levels of accuracy and reliability. Furthermore, they act in
the interest of improving partial bladder radiotherapy and
online adaptive planning delivery methods. Further studies
relating to accuracy of the image registrations achieved, with
multi-institutional cooperation to achieve substantial patient
numbers, are needed.

Declaration of interest

The authors report no conflicts of interest. The authors alone are
responsible for the content and writing of the paper.

References

1. Bladder cancer incidence statistics. 2014 [cited 2014 November 28th]; Available from: http://www.cancerresearchuk.org/cancer-info/cancerstats/types-bladder/incidence/.
2. Gofrit O, Nof R, Meirovitz A, Pode D, Frank S, Katz R, et al. Radical cystectomy vs. chemoradiation in T2-4aN0M0 bladder cancer: A case-control study. Urol Oncol Semin Original Investigat 2015;33:19:e1–19:e5
3. Efstratiou J, Spiegel D, Shipley W, Heney N, Kaufman D, Niemienko A, et al. Long-Term Outcomes of Selective bladder preservation by combined-modality therapy for invasive bladder cancer: The MGH Experience. Eur Urol 2012; 61:705–11.
4. Lotz H, Pos F, Hulshof M, van Herk M, Lebesque J, Dupper J, et al. Tumor motion and deformation during external radiotherapy of bladder cancer. Int J Radiat Oncol Biol Phys 2006;64:1551–8.
5. Muren L, Smaaland R, Dahl O. Conformal radiotherapy of urinary bladder cancer. Radiother Oncol 2004;73:387–98.
6. Cowan R, McBain C, Ryder D, Wylie J, Logue J, Turner S, et al. Radiotherapy for muscle-invasive carcinoma of the bladder: results of a randomized trial comparing conventional whole bladder with dose-
escalated partial bladder radiotherapy. Int J Radiat Oncol Biol Phys 2004;59:197–207.
7. Pos F, van Tienhoven G, Hulshof M, Koedooder K, Gonzalez Gonzalez D. Concomitant boost radiotherapy for muscle invasive bladder cancer. Radiother Oncol 2003;68:75–80.
8. Canyilmaz E, Yavuz M, Serdar L, Uslug Z, Zengin A, Aynaci O, et al. Long-term Outcomes in Treatment of invasive bladder cancer with concomitant boost and accelerated hyperfractionated radiation ther-
apy. Int J Radiat Oncol Biol Phys 2014;90:562–9.
9. Leonard C, Tallhamer M, Johnson T, Hunter K, Howell K, Kercher J, et al. Clinical experience with image-guided radiotherapy in an accelerated partial breast intensity-modulated radiation protocol. Int J Radiat Oncol Biol Phys 2010;76:528–34.
10. Park C, pritz J, Zhang G, Forster K, Harris E. Validating fiducial markers for image-guided radiation therapy for accelerated partial breast irradiation in early-stage breast cancer. Int J Radiat Oncol Biol Phys 2012;82:e425–31.
11. van der Heide U, Kotte A, Dehdan H, Hofman P, Lagenijk J, van Vulpen M. Analysis of fiducial marker-based position verification in the external beam radiotherapy of patients with prostate cancer. Radiother Oncol 2007;82:38–45.
12. Fonteyne V, Ost P, Villeer G, Oosterlinck W, Impens A, de Gersem, et al. Improving positioning in high-dose radiotherapy for prostate cancer: Safety and visibility of frequently used gold fiducial markers. Int J Radiat Oncol Biol Phys 2012;83:46–52.
13. Gauthier I, Carrier JF, Beliveau-Nadeau D, Fotin B, Taussky D. Dosimetric Impact and Theoretical Clinical Benefits of Fiducial Markers for Dose Escalated Prostate Cancer Radiation Treatment. Int J Radiat Oncol Biol Phys 2009;74:1128–33.
14. Sandergaard J, Olsen K, Muren L, Elstrom U, Grau C, Hoyer M. A study of image-guided radiotherapy of bladder cancer based on lipiodol injection in the bladder wall. Acta Oncol 2010;49:1109–15.
15. Chai X, van Herk M, van de Kamer J, Remeijer P, Bex A, Betgen A, et al. Behavior of Lipiodol Markers During Image Guided Radiotherapy of Bladder Cancer. Int J Radiat Oncol Biol Phys 2014;90:390–5.
16. Freilich J, Spiess P, Biagioli M, Fernandez D, Shi E, Hunt D, et al. Lipiodol injection for target volume delineation and image guid-
ance during radiotherapy for bladder cancer. Radiother Oncol 2009;93:364–7.
17. Bianca C, Yorke E, and Kollmeier M. Image guided radiation therapy for bladder cancer: Assessment of bladder motion using implanted fiducial markers. Pract Radiat Oncol 2014;4(2):108–15.
18. Garcia M, Gottschalk A, Brajtbord J, Konety B, Meng M, Roach M, et al. Endoscopic gold fiducial marker placement into the bladder wall to optimize radiotherapy targeting for bladder-preserving management of muscle-invasive bladder cancer: Feasibility and initial outcomes. PLoS One 2014;9:e89754.
19. Baumgarten A, Emtege J, Wilder R, Biagioli M, Gupta S, Spiess P. Intravesical lipiodol injection technique for image-guided radiation therapy for bladder cancer. Urology 2014;83:946–50.
20. Meijer G, van der Toorn P, Bal M, Schuring D, Weterings J, de Wildt M. A study of image-guided radiotherapy of bladder cancer: Assessment of bladder motion using implanted fiducial markers. Pract Radiat Oncol 2014;4(2):108–15.
21. Muren L, Smaaland R, Dahl O. Conformal radiotherapy of urinary bladder cancer. Radiother Oncol 2004;73:387–98.
22. Mangar S, Thompson A, Miles E, Huddart R, Horwich A, Khoo V. A feasibility study of using gold seeds as fiducial markers for bladder localization during radical radiotherapy Br J Radiol 2007;80:279–83.
23. Foroudi F, Pham D, Bressel M, Hardcastle N, Gill S, Kron T. Comparison of margins, integral dose and interfraction target coverage with image-guided radiotherapy compared with non-image-guided radiotherapy for bladder cancer. Clin Oncol 2014;26:497–505.

24. Turner S, Swindell R, Bowl N, Marrs J, Brookes B, Read G, et al. Bladder movement during radiation therapy for bladder cancer: Implications for treatment planning. Int J Radiat Oncol Biol Phys 1997;39:355–60.

25. Meijer G, Rasch C, Remeijer P, lebesque J. Three-dimensional analysis of delineation errors, setup errors, and organ motion during radiotherapy of bladder cancer. Int J Radiat Oncol Biol Phys 2003;55:1277–87.

26. van Rooijen D, Pool R, van de Kamer J, Hulshof M, Koning C, Bel A. Independent position correction on tumor and lymph nodes; consequences for bladder cancer irradiation with two combined IMRT plans. Radiat Oncol 2010;5:53. doi:10.1186/1748-717X-5-53

27. Burridge N, Amer A, Marchant T, Sykes J, Stratford J, Henry A, et al. Online adaptive radiotherapy of the bladder: Small bowel irradiated-volume reduction. Int J Radiat Oncol Biol Phys 2006;66:892–7.

28. Pos F, Hulshof M, Lebesque J, Lotz H, van Tienhoven G, Moonen L, et al. Adaptive radiotherapy for invasive bladder cancer: A feasibility study. Int J Radiat Oncol Biol Phys 2006;64:862–8.

29. Vestergaard A, Muren L, Sondergaard J, Elstrom U, Hoyer M, Petersen J. Adaptive plan selection vs. re-optimisation in radiotherapy for bladder cancer: a dose accumulation comparison. Radiother Oncol 2013;109:457–62.

30. Vestergaard A, Sondergaard J, Petersen J, Hoyer M, Muren L. A comparison of three different adaptive strategies in image-guided radiotherapy of bladder cancer. Acta Oncol 2010;49:1069–76.

31. Chamie K, Pantuck A, Bass J, James H, Mouraviev V, Guzzo T, et al. Initial multicentre experience utilizing an absorbable radiopaque hydrogel for patients with invasive bladder tumours. J Urol 2014;191(4):e689–90.

32. Lutkenhaus L, Visser J, de Jong R, Hulshof M, Bel A. Evaluation of delivered dose for a clinical daily adaptive plan selection strategy for bladder cancer radiotherapy. Radiother Oncol 2015;116:51–56.

33. Foroudi F, Pham D, Bressel M, Gill S, Kron T. Intrafraction bladder motion in radiation therapy estimated from pretreatment and posttreatment volumetric imaging. Int J Radiat Oncol Biol Phys 2013;86(1):77–82.