Exosome: Function and Role in Cancer Metastasis and Drug Resistance

Chengcheng Zhang, MA¹,², Qing Ji, MD, PhD², Yue Yang, MA², Qi Li, MD, PhD², and Zhongqi Wang, MD, PhD¹

Abstract
As a kind of nanometric lipidic vesicles, exosomes have been presumed to play a leading role in the regulation of tumor microenvironment through exosomes-mediated transfer of proteins and genetic materials. Tumor-derived exosomes are recognized as a critical determinant of the tumor progression. Intriguingly, some current observations have identified that exosomes are essential for several intercellular exchanges of proteins, messenger RNAs, noncoding RNAs (including long noncoding RNAs and microRNAs) as well as to the process of cancer metastasis and drug resistance. Herein, we review the role of exosomes and their molecular cargos in cancer invasion and metastasis, summarize how they interact with antitumor agents, and highlight their translational implications.

Keywords
Exosomes, contents, metastasis, drug resistance, cancer

Abbreviations
CRC, colorectal cancer; CRNDE-h, colorectal neoplasia differentially expressed-h; ECM, extracellular matrix; EMT, epithelial–mesenchymal transition; HCC, hepatocellular carcinoma; ITG, integrins; IncRNAs, long noncoding RNAs; MET, mesenchymal–epithelial transition; miRNAs, microRNAs; mRNAs, messenger RNAs; MVBS, multivesicular bodies; ncRNAs, noncoding RNAs; PCR, polymerase chain reaction; SR, serine/arginine-rich; TEM, transmission electron microscope; TGF-β, transforming growth factor β; UCA1, urothelial cancer associated-1

Received: September 3, 2017; Revised: December 20, 2017; Accepted: February 5, 2018.

Introduction
Exosomes are spherical bilayered membrane vesicles with an average diameter of 30 to 100 nm and “saucer-shape” morphology.¹ They are the only type of extracellular vesicles formed from endosomal compartment invaginations, which are called multivesicular bodies (MVBs) and are released in the endosomal network.²-⁴ After the fusion of MVBs with plasma membrane, the internal contents are released into the extracellular space as the form of “exosomes” (Figure 1). Exosomes can be found in a range of fluids, including blood, plasma, saliva, urine, synovial fluid, amniotic fluid, malignant ascite, and pleural effusions.⁵-⁹ The biogenesis mechanisms of exosomes have not been fully elucidated, but they are secreted from nearly all cell types including normal cells and diseased cells.¹⁰-¹² In particular, tumor cells possess more exosomes-releasing properties when compared to normal cells.¹³ Exosomes from different cell phenotypes and body fluids contain various bioactive molecules such as proteins (including oncoproteins, tumor suppressor proteins, and transcriptional

¹ Department of Medical Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
² Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China

Corresponding Authors:
Zhongqi Wang, MD, PhD, Department of Medical Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 625 Wappingn Road, Shanghai 200032, China.
Email: aledx@sina.com
Qi Li, MD, PhD, Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai 201203, China.
Email: lzwf@hotmail.com

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (http://www.creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).
regulators), lipids (including phosphatidycholines, phosphatidylethanolamines, and phosphatidylserines), DNA (including single-strand DNA, genomic DNA, XX DNA, and retrotransposon elements), and RNAs (including messenger RNAs [mRNAs], long noncoding RNAs [lncRNAs], microRNAs [miRNAs], and other non-coding RNAs [ncRNAs]). Circulating exosomes are complex molecular assemblies of these bioactive molecules, and these biomolecules permit horizontal transfer of oncogenic traits from the primary tumor to recipient target cells located in distant organs. Pioneering works call this phenomenon “genometastasis” as an implication of the intercellular trafficking of oncogenic macromolecules via exosomes to explain cancer metastasis. Since Abdouh et al confirmed the validity of the genometastatic theory in human cells for the first time, recent studies provide more evidences to support this idea, and experimental data demonstrate the role of circulating factors carried by exosomes in conferring mesenchymal–epithelial transition (MET), mediating oncogenic transformation and contributing to cancer metastasis.

Although it is possible that horizontal transformation may require preexisting alterations in recipient cells, Abdouh et al also reported that human cells carrying a single oncosuppressor mutation would show an increased uptake of exosomes when exposed to blood-circulating cancer factors and were capable of integrating cancer factors at metastatic sites. This further demonstrates that oncogenic factors transferred via circulating cancer exosomes induce malignant transformation of target cells even at distant distance.

The constituent information about the exosomal molecular cargos can be obtained in public access databases, such as ExoCarta and EVPedia. Under the stimulation of external extreme conditions such as oxidative stress and serum starvation, most cells can produce exosomes containing altered RNA contents.

In addition, mutated oncogenes may also alter exosome secretion. Tumor cells release exosomes into the circulation, leading to significant increase of exosomes in patients with cancer compared to the healthy controls, and the abnormal exosomes may be associated with decreased overall survival. Tumor-secreted exosomes can even influence organotropism. It is proved that tumor-derived exosomal molecules guide exosomes to specific organs and promote organ-specific metastasis because exosomes from different cancer recapitulate the organ specificity of their cell of origin and prepare premetastatic niches as well.

There are several approaches for the isolation of exosomes: Ultracentrifugation and commercial kits (ExoQuick kit, System Biosciences, USA; Total Exosome Isolation Reagent, Invitrogen, USA; Qiagen miRNeasy Kit, Qiagen, Germany) are usually used. Generally, traditional ultracentrifugation-based approach can provide cleaner exosomes, but this method is labor intensive and time consuming and in need of expensive laboratory equipment and larger sample volumes. For the commercial kit approach, the acquired exosomes contain additional molecular complexes that are unnecessary. Therefore, an improved isolation technology is required to obtain exosomes effectively.

In this article, we review the role of exosomes and its molecular cargos in tumor invasion and metastasis, summarize how they interact with antitumor drugs, and show the potential of clinical application.
Exosomes in Tumor Metastasis and Drug Resistance

Exosomes were considered “garbage bag” of unnecessary cellular materials when they were first discovered. However, many important biological functions of exosomes have been convincingly demonstrated in the recent years. They are involved in intercellular communication, immune system modulation, cell growth enrichment, energy pathways maintenance, and propagation of viruses via releasing intracellular cargoes (eg, proteins, lipids, DNA, and RNAs including tumor-derived ncRNAs). One type of the exosomes, tumor-derived exosomes, have been found to apparently facilitate tumor growth and metastasis. Rather than simple cellular debris, tumor-derived exosomes act as extracellular organelles with roles in remodeling tumor microenvironment by delivering messages for cell–cell communication. It is a well-built means of intercellular exchange via exosomes, and especially, the exosomes transport the nucleic acids and proteins from tumor cells to neighboring cells in tumor microenvironments.

First, tumor-derived exosomes induce proinflammatory phenomena. They interact with their proteins and miRNAs to result in an inflammatory behavior, and this is essential for recruiting inflammatory CCR6+/CD4+ Th17+ into specific tumor sites to contribute to proliferation, angiogenesis, and metastasis of malignant cells in tumor microenvironment. For instance, when taken up by resident cells, tumor-derived exosomal integrins (ITG) increase proinflammatory S100 gene expression. Second, tumor-derived exosomes mediate vascular leakiness as a key feature of premetastatic niche formation. Similar to cytokines, tumor-derived exosomes can recruit bone marrow-derived cells to premetastatic tumor tissue, thus contributing to creating a permissive microenvironment for tumor metastases. In this way, they could remodel the extracellular matrix (ECM) to support tumor growth and a premetastatic phenotype. Third, tumor-derived exosomes are involved in immune response. They suppress the activation of effector T-cells, trigger the apoptosis of activated T-cells, and help metastatic cells to escape tumor immune surveillance. Fourth, tumor-derived exosomes promote tumor progression via regulating drug resistance: (1) tumor cells can utilize the exosome secretion to extrude anticancer drugs; (2) exosomal molecular cargoes can compete with anticancer drugs, especially antibody-based drugs, to bind with oncogenic targets, thus lowering their therapeutic effect; and (3) exosomes contribute to the lateral transfer of drug resistance from drug-resistant cells to drug-sensitive cells.

Exosomes and Tumor Metastasis

Exosomes can mediate important cancer-related pathways to enhance tumor invasion and metastasis through different manners, including controlling angiogenesis, modulating stromal cells, remodeling the ECM, transferring malignant traits, and establishing the premetastatic niche. Exosomes containing ncRNAs and proteins play significant roles in these pathways (Table 1 and Figure 2). However, the biological function of exosomal ncRNAs and proteins in tumor invasion and metastasis remains unclear.

Association between exosomal proteins and tumor metastasis. Exosomes contain numerous proteins, which may be associated with the growth and survival of metastatic tumor cells. Chen et al revealed some upregulated exosomal proteins from patients with colorectal cancer (CRC) in the modulation of pretumorigenic microenvironment for metastasis and invasiveness. These exosomal proteins, such as fibronectin-1, mediate cytoskeletal organization and actin dynamics to enable cell adhesion and motility. Matrix metalloproteinase-9 (MMP9), a protein found to be overexpressed in exosomes of patients with CRC, plays a key role in ECM degradation via the activation of transforming growth factor β (TGF-β)/Smad signaling pathway. Additionally, some exosomal protein markers could be used as predictive markers for organ-specific metastasis. For example, epithelial growth factor (EGF)-like repeats and discoidin I-like domain 3 protein from urinary exosomes of patients with bladder cancer can be used for predicting muscle metastasis. Furthermore, surface proteins of exosomes are also involved in metastatic tropism. Hoshino et al revealed a close correlation between exosomal ITG and metastatic tropism. They found that exosomal ITG could regulate local microenvironments within future metastatic organs. They also reveal that the expression of exosomal ITG in its partners ITGβ4 and ITGβ1 was associated with lung metastasis; ITGzv and ITGβ5 were linked to liver metastasis, while ITGβ3 underlined organotropism to the brain. Recent studies show that the metastatic tumor cells-derived exosomes are enriched with proteins, such as S100A8 and S100A9. Exosomal S100A8/A9 proteins can be upregulated from tumor cells with high activity of Wnt/β-catenin pathway, and these proteins are able to recruit leukocytes and probably indirectly involved in the formation of premetastatic niches in distal metastatic organs.

Association between exosomal miRNAs and tumor metastasis. Micro-RNAs, a large class of ncRNAs, play pivotal roles in various cancers through the repression of downstream cancer-associated mRNAs. Since miRNAs are detected in serum from patients with diffuse large B-cell lymphoma first, different exosomal miRNAs have been reported in distinct types of malignancies, including tongue cancer, breast cancer, lung cancer, ovarian cancer, prostate cancer, CRC, and gastric cancer. These findings support that these miRNAs are potential biomarkers for cancer diagnosis and prognosis. There are abundant miRNAs in the exosomes. Notably, the expression and distribution exosomal miRNAs are often dysregulated in cancerous tissue. Cancer-derived exosomes transfer miRNAs into target cell cytoplasm and then result in downregulation of expression of specific target genes, thus affecting cell function. This process is
possibly modulated by important signaling pathways in recipient cells, such as Wnt, Ras, TGF-β, and p53 signaling pathways. Intriguingly, packaging of miRNAs into exosomes is not stochastic, miRNAs are preferentially selected into CD63-positive exosomes via a ceramide-dependent pathway, and some oncogenic signaling, such as Kirsten rat sarcoma viral oncogene homolog, may result in selective packaging of miRNA into exosomes, thus generating different cancer-specific exosome profiles.

Among those exosomal miRNAs mentioned earlier, some miRNAs are closely associated with tumor invasion and metastasis. For example, exosomal miR-31 from breast cancer cells influences metastasis by suppressing local invasion and metastatic colonization, and it is an onco-miR whose overexpression enhances cancer cell proliferation and migration. Similarly, miR-130a and miR-328 are observed to be upregulated in exosomes derived from metastatic MDA-MB-231 cells. Moreover, the let-7 miRNA family, including let-7a, let-7b, let-7c, let-7d, let-7e, and let-7i, is packaged into exosomes from metastatic AZ-P7a gastric cancer cell to maintain their oncogenesis and invasiveness. Thus, this miRNA family has a vital role in the delivery of oncogenic signals to promote

Table 1. Functions of Exosomal Noncoding RNAs and Proteins in Tumor Metastasis and Invasion.

Exosomal proteins/Exosomal miRNA family/lncRNA	Tumor Types	Oncogene/Suppressor	Functions in Tumors	Reference
EDIL-3	Urinary bladder cancer	Oncogene	High-grade muscle invasive	Beckham et al78
FN1	Colorectal cancer	Oncogene	Tumor progression and metastasis; ECM degradation; EMT	Street et al79
MMP9	Colorectal cancer	Oncogene	ECM degradation; EMT by TGF-β/Smad signaling pathway	Lampropoulos et al81
S100A8 and S100A9 H-ras	Colorectal cancer	Oncogene	Involves in distal metastasis by Wnt/β-catenin pathway	Ichikawa et al82
ITGζ6, ITGβ4, and ITGβ1	Breast cancer	Oncogene	Lung metastasis	Hoshino et al38
ITGζ5, and ITGβ5	Pancreatic cancer	Oncogene	Liver metastasis	Hoshino et al38
ITGβ3	Breast cancer	Oncogene	Brain metastasis	Hoshino et al38
let-7 miRNA family	Gastric cancer	Oncogene	Promote metastasis	Ohshima et al83
miR-31	Breast cancer	Oncogene	Opposing local invasion and metastatic colonization	Ragusa et al81
miR-105	Breast cancer	Oncogene	Promote metastasis	Zhou et al84
miR-130	Breast cancer	Oncogene	Enhances cell proliferation and migration	Ragusa et al81
miR-328	Breast cancer	Oncogene	Promote metastasis	Kruger et al85
miR-150	Monocytic	Oncogene	Cell migration	Zhang et al86
miR-210	Colorectal cancer	Oncogene	Promote EMT, metastasis	Bigagli et al87
miR-200c, miR-141	Colorectal cancer	Oncogene	Cell proliferation, invasion, migration, EMT	Tanaka et al88
miR-125b, miR-130b, miR-155	Prostate cancer	Oncogene	Triggering neoplastic transformation and MET	Abd Elmageed et al27
MALAT1	Liver cancer	Oncogene	Regulate alternate splicing, cancer metastasis, and tumor recurrence	Tripathi et al89
ATB	Liver cancer	Oncogene	Mediate TGF-β signaling pathway, promote the invasion–metastasis cascade	Yang et al90
CRNDE-h	Colorectal cancer	Oncogene	Reduce the sensitivity to the cytostatic effect of TGF-β	Liu et al92
lncRNA-TUC339	Hepatic cancer	Oncogene	Promote the growth and spread	Kogure et al93
lncRNA-H19	Liver cancer	Oncogene	EMT, hepatic metastases	Conigliaro et al94
lncRNA-HOTAIR	Urothelial bladder cancer	Oncogene	Tumor migration and invasion	Berrondo et al95
lncRNA-p21	Multiple cancers	Oncogene	Affect global gene expression	Gezer et al97
Abbreviations: EDIL-3, epidermal growth factor-like repeats and discoidin I-like domain 3; FN1, fibronectin-1; ECM, extracellular matrix; EMT, epithelial–mesenchymal transition; MMP9, matrix metalloproteinase-9; TGF-β, transforming growth factor β; ITG, integrins; miRNA, microRNA; MET, mesenchymal–epithelial transition; lncRNA, long noncoding RNA; MALAT1, metastasis-associated lung adenocarcinoma transcript-1; CRNDE-h, colorectal neoplasia differentially expressed-h.				
metastasis. Le et al114 clearly demonstrated that exosomes containing miR-200 could transfer the metastatic capability between metastatic and nonmetastatic cancer cells. Bigagli and her group also found that exosomes containing miR-210 might be considered as epithelial–mesenchymal transition (EMT) promoting signal that guides metastatic cells to free new sites of dissemination with low level of vimentin and high level of E-cadherin.87 Zhang et al86 showed that exosomes from the human monocytic cells human acute monocytic leukemia cells (THP-1) with a high level of miR-150 could deliver miR-150 into the human endothelial cells human microvascular endothelial cells (HMEC-1) and then affect MYB proto-oncogene (c-Myb) expression and cell migration. Likewise, exosomes derived from MDA-MB-231 cells and Michigan Cancer Foundation-10 (MCF-10) cells harbor plentiful miR-105, which was responsible for promoting metastasis by suppressing the expression of tight junction protein zonula occludens 1 (ZO-1).84 Abd Elmageed et al27 revealed a new role for prostate cancer (PC) cell-derived exosomes in triggering neoplastic transformation and MET through trafficking of oncogenic factors (including onco-miRNAs miR-125b, miR-130b, and miR-155) into adipose-derived stem cells of patients with PC. In contrast, some exosomal miRNAs are negatively correlated with invasion ability. Shota et al88 observed an increased expression of exosomal miR-200c and miR-141 in SW620 and SW620/OxR CRC cells after decitabine treatment, accompanied by the acquisition of epithelial cell-like characteristics. So exosomal miR-200c and miR-141 may be an indicator for MET and potentially associated with metastasis inhibition.

Association between exosomal lncRNAs and tumor metastasis. The lncRNAs from exosomes may serve as signaling molecules in various biological processes mediating intercellular communication. High levels of exosomal lncRNAs not only provide a novel diagnostic method for early prediction but also show predictive potential for tumor invasion and metastasis.115,116 Notably, quantitative comparisons prove that exosomes lack mRNAs but contain abundant lncRNAs.117,118 A subsequent attempt points out that lncRNAs occupy 3.36\% of the total exosomal RNA content.119 Liu et al92 also indicated that exosomal colorectal neoplasia differentially expressed-h (CRNDE-h) levels were associated with distant metastasis and lymph node metastasis, accompanied by high expression of iroquois homeobox protein-5 in the metastatic sites.120 Besides, this exosomal lncRNA decreased the sensitivity to the cytostatic effect of TGF-β and granted a growth performance to tumor cells in TGF-β/SMADS pathway.120 Kogure and colleagues97 suggested that the exosome-mediated transfer of lncRNA-TUC339 could improve the growth of cancer cells and facilitate the spread of hepatocellular carcinoma (HCC). Through the secretion of exosomes containing lncRNA-H19, CD90+ liver cancer cells can modulate endothelial–mesenchymal phenotype and involve in hepatic metastases by inducing an increase in vascular EGF and intercellular adhesion molecule-1 transcripts.121 thus influencing tumor microenvironment in a prometastatic way.122 Through the release of exosomes containing metastasis-associated lung adenocarcinoma transcript-1 (MALAT1), liver cancer cells can modify RNA alternate splicing by adjusting the levels of phosphorylated to dephosphorylated serine/arginine-rich (SR) proteins.89 This
Exosomal miRNA
miR-433
Ovarian cancer
Promote
Paclitaxel
Weiner-Gorze et al126

Exosomal lncRNA
lncRNA-ROR
Hepatocellular cancer
Promote
Chemotherapeutic drugs
Takahashi et al127

lncRNA UCA1
Breast cancer
Promote
Tamoxifen
Nawaz et al98

HER2
Breast cancer
Promote
Tamoxifen
Xu et al96

lncARSR
Renal cancer
Promote
Sunitinib
Fan et al128

Ciravolo et al62
Qu et al129

Exosomes and Drug Resistance

Exosomes-mediated drug resistance. Drug resistance is a major challenge for cancer therapy. Several studies reveal that exosomes are involved in the modulation of chemosensitivity by transferring the resistant phenotype to recipient cells.64 Transport of ncRNAs, including miRNAs and lncRNAs, mediated by exosomes, is believed to be an effective mechanism for acquiring drug resistance in cancer cells (Table 2). For example, in ovarian cancer, exosomal transfer of miR-433 can promote paclitaxel resistance through the induction of cellular senescence.126 In HCC, exosomal transfer of lncRNA-ROR can increase TGF-\(\beta\)-dependent chemoresistance.127,98 In breast cancer, exosomal transfer of lncRNA urothelial cancer associated-1 (UCA1) can increase tamoxifen resistance in estrogen receptor-positive MCF-7 cells through mTOR signaling pathway.96 Exosomal transfer of lncRNA UCA1 can also increase chemoresistance of bladder cancer cells via activating the Wnt signaling pathway.128 Exosomes expressing full-length human epidermal growth factor 2 molecules enable them to bind and sequester Trastuzumab, thus lowering the therapeutic effectiveness of Trastuzumab in breast cancer.62 In renal cancer, exosome-transmitted lncRNA Activated in RCC with Sunitinib Resistance (lncARSR) can disseminate Sunitinib resistance by acting as a competing endogenous RNA for miR-34 and miR-449, thus facilitating expression of receptor tyrosine kinase (AXL) and c-MET.129 Exosomes are speculated as a novel target for cancer therapy because they can promote angiogenic phenotype and cell-to-cell adhesion in target cells.130

A study suggests that the acid microenvironment of the tumor–host interface may stimulate the output of exosomes,131 and such exosomes could release several contents that transport a resistance phenotype to sensitive tumor cells by changing cell cycle control and stimulating antiapoptosis programs.132 It has also been proposed that EMT inducers can increase resistance to chemotherapy.133 Bigagli et al114 proved the chemosensitivity of metastatic cells undergoing EMT was diminished compared to adherent HCT-8 colon cancer cells, since exosomes secreted from HCT-8 cells might impact the EMT program and made the metastatic cells spontaneously insensitive to chemotherapeutic strategies. There is also a deduction that vesicles such as exosomes are able to move between cells using specific structures called nanotubes.133 However, it is not clear which of these theories may be correct.

Therapeutic potential of exosomes in drug resistance of cancer. Treatment with locked nucleic acids targeting exosomal
lncRNA and miRNAs can restore drug sensitivity. Through the untiring efforts of researchers, the lncRNAs and miRNAs are considered as putative targets for cancer therapy via exosome-mediated mechanism, such as lncRNA-H19 and Inc-ARSR9. Exosomal ncRNAs-based therapeutic protocols, such as antisense oligonucleotides, have been proved to be capable of restraining pathological lncRNAs. Therefore, these exosomal ncRNAs are inspiring and appealing for cancer therapy. In addition, there is a speculation that exosomes can deliver drugs to selective targets as a novel platform in a drug delivery system. In particular, exosomes are capable of crossing the blood–brain barrier without inducing an immune response. However, a set of troubles have been suffered during the clinical development of exosomes-based therapeutic technologies for cancers, including their indefinite functions in the complex networks, the difficulty in accurate quantification of exosomal lncRNAs and miRNAs, the hard transport of several lncRNAs and miRNAs antagonists or mimics as well as the unclear clinical pharmacokinetics and drug toxicity. Therefore, more studies are needed to verify the potential of applying exosomes and their contents in cancer therapy. Exosomes-based drugs are expected to enter clinical trials, and their great potential may be revealed.

Prospects and Challenges

From the above, we conclude that tumor-derived exosomes not only discard cellular waste but also trigger signaling pathways and drug resistance in target cells and facilitate the growth of metastatic cells. It is encouraging that nanomaterials or microbodies, such as exosomes-mediated delivery system, provide more possibility. Exosomes containing MAGE family member A3 (MAGE-3) peptides show minimal toxic effects after treatment in patients with stages III/IV melanoma. However, small RNA-based drugs, such as miRNAs and circRNAs, face different kinds of challenges due to the lack of targeted delivery strategies in cancer-targeted therapy.

Switching to a wider scientific horizon, exosomes are still on initial exploration at present, and only a few molecular mechanisms about exosomes in cancer progression are discovered. In addition, the strategies and methods used for investigating exosomes are still limited and challenging. The identification methods of exosomes are diverse; for instance, the size of pelleted particles can be measured using dynamic light scattering such as Brookhaven instruments BI-9000 digital correlator (Brookhaven instruments, USA), Zetasizer Nano ZS (Malvern, UK), LM10 NanoSight (Malvern, UK), or BI200-SM goniometer (Brookhaven instruments, USA), configured with a solid-state laser tuned at 532 nm. The morphology of exosomes is suitable to be examined under a transmission electron microscope (TEM) at 80 keV, with a diameter of approximately 30 to 100 nm under the TEM ultimately. The typical electron micrographs can be captured by a megapixel digital camera, such as Erlangshen 11 digital camera (Gatan, USA).

Exosomes can also be identified by Western blot analysis with exosomal surface protein markers antibodies such as anti-CD9, anti-CD63, anti-CD81, anti-CD82, and so on. However, from the reported studies, we can see that the identification of exosomes is not coherent and comprehensive, which cannot avoid the occurrence of false-positive or false-negative results.

Currently, the large-scale profiles of miRNAs or lncRNAs in exosomes are usually obtained using microarrays of next-generation sequencing followed by the extraction of exosomes, which can be customized and time reduced. Besides, quantitative polymerase chain reaction (PCR), digital PCR, and NanoString nCounter Gene Expression Assay (NanoString nCounter system, USA) can be used for detection of miRNAs or lncRNAs, with features of expensive and ineffective but high sensitivity. Exosome protein can be isolated by optimized lysis buffer and quantitated by a microBCA Protein Assay kit (Pierce, USA). When the focus is on the number of total exosomal proteins in patients with cancer, a quantitative proteomic analysis can be used.

In conclusion, more details regarding the functional contents of exosomes involved in cancer progression are highly desired, and exploring their biological mechanism will improve the clinical applicability of exosomes in cancer diagnosis and therapy.

Authors’ Note

Chengcheng Zhang, Qing Ji, and Yue Yang contributed equally to this work.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported by International Cooperation Key Project of National Natural Science Foundation of China (81520108031) and National Natural Science Foundation of China (81573749 and 81473478), Key Project of Shanghai Municipal Science and Technology Commission (16401970500), Program of Shanghai Academic Research Leader (16XD1403600), Program for Shanghai Outstanding Medical Academic Leader, National Science Foundation of Shanghai, China (16ZR1437700), and Research Project for Practice Development of National TCM Clinical Research Bases (JDZX2015067).

References

1. Sun Y, Zheng W, Guo Z, et al. A novel TP53 pathway influences the HGS-mediated exosome formation in colorectal cancer. Sci Rep. 2016;6:28083. doi:10.1038/srep28083
2. Hurley JH, Odorizzi G. Get on the exosome bus with ALIX. Nat Cell Biol. 2012;14(7):654-655. doi:10.1038/ncb2530
3. Urbanelli L, Magini A, Buratta S, et al. Signaling pathways in exosomes biogenesis, secretion and fate. Genes. 2013;4(2):152-170. doi:10.3390/genes4020152
4. Yanez-Mo M, Siljander PR, Andreu Z, et al. Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles. 2015;4:27066. doi:10.3402/jev.v4.27066
5. Gonzalez-Begne M, Lu B, Han X, et al. Proteomic analysis of human parotid gland exosomes by multidimensional protein identification technology (MudPIT). J Proteome Res. 2009;8(3):1304-1314. doi:10.1021/pr800658c

6. Garcia JM, Garcia V, Pena C, et al. Extracellular plasma RNA from colon cancer patients is confined in a vesicle-like structure and is mRNA-enriched. RNA. 2008;14(7):1424-1432. doi:10.10121/ma.755908

7. Keller S, Rupp C, Stoeck A, et al. CD24 is a marker of exosomes secreted into urine and amniotic fluid. Kidney Int. 2007;72(9):1095-1102. doi:10.1038/sj.ki.5002486

8. Dear JW, Street JM, Bailey MA. Urinary exosomes: a reservoir for biomarker discovery and potential mediators of intrarenal signalling. Proteomics. 2013;13(10-11):1572-1580. doi:10.1002/pmc.201200285

9. Gallo A, Tandon M, Alevizos I, Illei GG. The majority of micro-RNAs detectable in serum and saliva is concentrated in exosomes. PLoS One. 2012;7(3):e30679. doi:10.1371/journal.pone.0030679

10. Yang C, Robbins PD. The roles of tumor-derived exosomes in cancer pathogenesis. Clin Dev Immunol. 2011;2011:842849. doi:10.1155/2011/842849

11. Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol. 2013;200(4):373-383. doi:10.1083/jcb.201211138

12. Pant S, Hilton H, Burczynski ME. The multifaceted exosome: biogenesis, role in normal and aberrant cellular function, and frontiers for pharmacological and biomarker opportunities. Biochem Pharmacol. 2012;83(11):1484-1494. doi:10.1016/j.bcp.2011.12.037

13. Taylor DD, Gercel-Taylor C. MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol. 2008;110(1):13-21. doi:10.1016/j.gyneo.2008.04.033

14. Subra C, Laulagnier K, Perret B, Record M. Exosome lipidomics unravels lipid sorting at the level of multivesicular bodies. Biochimie. 2007;89(2):205-212. doi:10.1016/j.biochi.2006.10.014

15. Record M, Carayon K, Poirot M, Silvente-Poirot S. Exosomes as new vesicular lipid transporters involved in cell-cell communication and various pathophysiological processes. Biochim Biophys Acta. 2014;1841(1):108-120. doi:10.1016/j.bbalip.2013.10.004

16. Kahler C, Melo SA, Protopopov A, et al. Identification of double-stranded genomic DNA spanning all chromosomes with mutated KRAS and p53 DNA in the serum exosomes of patients with pancreatic cancer. J Biol Chem. 2014;289(7):3869-3875. doi:10.1074/jbc.C113.532267

17. Balaj L, Lessard R, Dai L, et al. Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences. Nat Commun. 2011;2:180. doi:10.1038/ncomms1180

18. Cai J, Han Y, Ren H, et al. Extracellular vesicle-mediated transfer of donor genomic DNA to recipient cells is a novel mechanism for genetic influence between cells. J Mol Cell Biol. 2013;5(4):227-238. doi:10.1093/jmcb/mjt011

19. Burger D, Schock S, Thompson CS, Montezano AC, Hakim AM, Touyz RM. Microparticles: biomarkers and beyond. Clin Sci (Lond). 2013;124(7):423-441. doi:10.1042/cs20120309

20. Thakur BK, Zhang H, Becker A, et al. Double-stranded DNA in exosomes: a novel biomarker in cancer detection. Cell Res. 2014;24(6):766-769. doi:10.1038/cr.2014.44

21. Mittelbrunn M, Gutierrez-Vazquez C, Villarroya-Beltri C, et al. Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nat Commun. 2011;2:282. doi:10.1038/ncomms1285

22. Record M, Subra C, Silvente-Poirot S, Poirot M. Exosomes as intercellular signalosomes and pharmacological effectors. Biochem Pharmacol. 2011;81(10):1171-1182. doi:10.1016/j.bcp.2011.02.011

23. Raimondo F, Morosi L, Cinello C, Magni F, Pitto M. Advances in membranous vesicle and exosome proteomics improving biological understanding and biomarker discovery. Proteomics. 2011;11(4):709-720. doi:10.1002/pmc.201000422

24. Garcia-Olmo D, Garcia-Olmo DC, Ontanon J, Martinez E, Valde-lejo M. Tumor DNA circulating in the plasma might play a role in metastasis. The hypothesis of the genometastasis. Histol Histopathol. 1999;14(4):1159-1164.

25. Colombo M, Raposo G, Ther C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol. 2014;30:255-289. doi:10.1146/annurev-cellbio-101512-122326

26. Abdouh M, Zhou S, Arena V, et al. Transfer of malignant trait to immortalized human cells following exposure to human cancer serum. J Exp Clin Cancer Res. 2013;33:86. doi:10.1186/s13046-014-0086-5

27. Abd Elmageed ZY, Yang Y, Thomas R, et al. Neoplastic reprogramming of patient-derived adipose stem cells by prostate cancer cell-associated exosomes. Stem Cells. 2014;32(4):983-997. doi:10.1002/stem.1619

28. Hamad D, Abdouh M, Gao ZH, Arena V, Arena M, Arena GO. Transfer of malignant trait to BRCA1 deficient human fibroblasts following exposure to serum of cancer patients. J Exp Clin Cancer Res. 2016;35:80. doi:10.1186/s13046-016-0360-9

29. Lee TH, Chennakrishnaiah S, Meehan B, et al. Barriers to horizontal cell transformation by extracellular vesicles containing oncogenic H-ras. Oncotarget. 2016;7(32):51991-52002. doi:10.18632/oncotarget.10627

30. Abdouh M, Hamad D, Gao ZH, Arena V, Arena M, Arena GO. Exosomes isolated from cancer patients’ sera transfer malignant traits and confer the same phenotype of primary tumors to oncosuppressor-mutated cells. J Exp Clin Cancer Res. 2017;36(1):113. doi:10.1186/s13046-017-0587-0

31. Mathivanan S, Fahner CJ, Reid GE, Simpson RJ. ExoCarta 2012: database of exosomal proteins, RNA and lipids. Nucleic Acids Res. 2012;40(Database issue):D1241-D1244. doi:10.1093/nar/gkr828

32. Kim DK, Kang B, Kim OY, et al. EVpedia: an integrated database of extracellular vesicles. J Exp Clin Cancer Res. 2013;2:86. doi:10.1186/s13046-014-0238-4

33. Valad LD, Ekstrom K, Bossis A, Sjostrand M, Lee JJ, Lotvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9(6):654-659. doi:10.1038/ncb1596
34. Eldh M, Ekstrom K, Valadi H, et al. Exosomes communicate protective messages during oxidative stress; possible role of exosomal shuttle RNA. *PloS One.* 2010;5(12):e15353. doi:10.1371/journal.pone.0015353

35. Manohar S, Harlow M, Nguyen H, Li J, Hankins GR, Park M. Chromatin modifying protein 1A (Chmp1A) of the endosomal sorting complex required for transport (ESCRT)-III family activates ataxia telangiectasia mutated (ATM) for PanC-1 cell growth inhibition. *Cell Cycle.* 2011;10(15):2529-2539. doi:10.4161/cc.10.15.15926

36. Hupalowska A, Miaczynska M. The new faces of endocytosis in signaling. *Traffic.* 2012;13(1):9-18. doi:10.1111/j.1600-0854.2011.01249.x

37. Silva J, Garcia V, Rodriguez M, et al. Analysis of exosome release and its prognostic value in human colorectal cancer. *Genes Chromosomes Cancer.* 2012;51(4):409-418.

38. Hoshino A, Costa-Silva B, Shen TL, et al. Tumour exosome integrins determine organotropic metastasis. *Nature.* 2015;527(7578):329-335. doi:10.1038/nature15756

39. Qi P, Zhou XY, Du X. Circulating long non-coding RNAs in cancer: current status and future perspectives. *Mol Cancer.* 2016;15(1):39. doi:10.1186/s12943-016-0524-4

40. Chen Y, Xie Y, Xu L, et al. Protein content and functional characteristics of serum-purified exosomes from patients with colorectal cancer revealed by quantitative proteomics. *Int J Cancer.* 2017;140(4):900-913. doi:10.1002/ijc.30496

41. Ragusa M, Statello L, Maugeri M, et al. Highly skewed distribution of miRNAs and proteins between colorectal cancer cells and their exosomes following Cetuximab treatment: biomolecular, genetic and translational implications. *Oncoscience.* 2014;1(2):132-157. doi:10.18632/oncoscience.19

42. Ahadi A, Khoury S, Losseva M, Tran N. A comparative analysis of IncRNAs in prostate cancer exosomes and their parental cell lines. *Genomics Data.* 2016;9:7-9. doi:10.1016/j.gdata.2016.05.010

43. Johnstone RM, Adam M, Hammond JR, Orr L, Turbide C. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). *J Biol Chem.* 1987;262(19):9412-9420.

44. Mathivanan S, Ji H, Simpson RJ. Exosomes: extracellular organelles important in intercellular communication. *J Proteomics.* 2010;73(10):1907-1920. doi:10.1016/j.jprot.2010.06.006

45. Nolte’-t Hoen EN, Buschow SI, Anderton SM, Stoorvogel W, Wauben MH. Activated T cells recruit exosomes secreted by dendritic cells via LFA-1. *Blood.* 2009;113(9):1977-1981. doi:10.1182/blood-2008-08-174094

46. Fervier B, Vilette D, Archer F, et al. Cells release prions in association with exosomes. *Proc Natl Acad Sci U S A.* 2004;101(26):9683-9688. doi:10.1073/pnas.0308413101

47. Filipazzi P, Burdek M, Villa A, Rivoltini L, Huber V. Recent advances on the role of tumor exosomes in immunosuppression and disease progression. *Semin Cancer Biol.* 2012;22(4):342-349. doi:10.1016/j.semcancer.2012.02.005

48. Clayton A, Mason MD. Exosomes in tumour immunity. *Curr Oncol.* 2009;16(3):46-49.

49. Corrado C, Raimondo S, Saëva L, Flugy AM, De Leo G, Alessandro R. Exosome-mediated crosstalk between chronic myelogenous leukemia cells and human bone marrow stromal cells triggers an interleukin 8-dependent survival of leukemia cells. *Cancer Lett.* 2014;348(1-2):71-76. doi:10.1016/j.canlet.2014.03.009

50. Kahlert C, Calluri R. Exosomes in tumor microenvironment influence cancer progression and metastasis. *J Mol Med (Berl).* 2013;91(4):431-437. doi:10.1007/s00109-013-1020-6

51. Hong BS, Cho JH, Kim H, et al. Colorectal cancer cell-derived microvesicles are enriched in cell cycle-related mRNAs that promote proliferation of endothelial cells. *BMC Genomics.* 2009;10:556. doi:10.1186/1471-2164-10-556

52. Zomer A, Vендриг T, Hopmans ES, van Eijndhoven M, Middeldorp JM, Pegtel DM. Exosomes: fit to deliver small RNA. *Commun Integr Biol.* 2010;3(5):447-450. doi:10.4161/cib.3.5.12339

53. Deng ZB, Zhuang X, Ju S, et al. Exosome-like nanoparticles from intestinal mucosal cells carry prostaglandin E2 and suppress activation of liver NK T cells. *J Immunol.* 2013;190(7):3579-3589. doi:10.4049/jimmunol.1203170

54. Colotta F, Allavena P, Sica A, Garlanda C, Mantovani A. Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. *Carcinogenesis.* 2009;30(7):1073-1081. doi:10.1093/carcin/bgp127

55. Bondar T, Medzhitov R. The origins of tumor-promoting inflammation. *Cancer Cell.* 2013;24(2):143-144. doi:10.1016/j.ccr.2013.07.016

56. Costa-Silva B, Aiello NM, Ocean AJ, et al. Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. *Nat Cell Biol.* 2015;17(6):816-826. doi:10.1038/ncb3169

57. Peinado H, Aleckovic M, Lavotshkin S, et al. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. *Nat Med.* 2012;18(6):883-891. doi:10.1038/nm.2753

58. Milane L, Singh A, Mattheolabakis G, Suresh M, Amiji MM. Exosome mediated communication within the tumor microenvironment. *J Control Release.* 2015;219:278-294. doi:10.1016/j.jconrel.2015.06.029

59. Vella LJ. The emerging role of exosomes in epithelial-mesenchymal-transition in cancer. *Front Oncol.* 2014;4:361. doi:10.3389/fonc.2014.00361

60. Andreola G, Rivoltini L, Castelli C, et al. Induction of lymphocyte apoptosis by tumor cell secretion of FasL-bearing microvesicles. *J Exp Med.* 2002;195(10):1303-1316

61. Huber V, Fais S, Iero M, et al. Human colorectal cancer cells induce T-cell death through release of proapoptotic microvesicles: role in immune escape. *Gastroenterology.* 2005;128(7):1796-1804.

62. Ciravolo V, Huber V, Ghedini GC, et al. Potential role of HER2-overexpressing exosomes in countering trastuzumab-based therapy. *J Cell Physiol.* 2012;227(2):658-667. doi:10.1002/jcp.22773

63. Safaei R, Larson BJ, Cheng TC, et al. Abnormal lysosomal trafficking and enhanced exosomal export of cisplatin in drug-resistant human ovarian carcinoma cells. *Mol Cancer Ther.* 2005;4(10):1595-1604. doi:10.1158/1535-7163.mct-05-0102
Chiba M, Kimura M, Asari S. Exosomes secreted from human Boelens MC, Wu TJ, Nabet BY, et al. Exosome transfer from Hood JL, San RS, Wickline SA. Exosomes released by melanoma Webber J, Steadman R, Mason MD, Tabi Z, Clayton A. Cancer Rana S, Malinowska K, Zoller M. Exosomal tumor microRNA Ji H, Greening DW, Barnes TW, et al. Proteome profiling of Tadokoro H, Umezu T, Ohyashiki K, Hirano T, Ohyashiki JH. Ekstrom EJ, Bergenfelz C, von Bulow V, et al. WNT5A induces Sousa D, Lima RT, Vasconcelos MH. Intercellular transfer of cancer drug resistance traits by extracellular vesicles. Trends Mol Med. Boelens MC, Wu TJ, Nabet BY, et al. Exosome transfer from Cancer Res. 2014;16(9):1566-1578. doi:10.1158/0008-5472.can-14-1722

71. Zhang Y, Liu D, Chen X, et al. Secreted monocytic miR-150 enhances targeted endothelial cell migration. Mol Cell 2010;39(1):133-144. doi:10.1016/j.molcel.2010.06.010

72. Beckham CJ, Olsen J, Yin PN, et al. Bladder cancer exosomes contain EDIL-3/Dell1 and facilitate cancer progression. J Urol 2014;192(2):583-592. doi:10.1016/j.juro.2014.02.035

73. Street JM, Yuen PS, Star RA. Bioactive exosomes: possibilities for diagnosis and management of bladder cancer. J Urol 2014;192(2):297-298. doi:10.1016/j.juro.2014.05.050

74. Akakura N, Hoogland C, Takada YK, et al. The COOH-terminal globular domain of fibrinogen gamma chain suppresses angiogenesis and tumor growth. Cancer Res. 2006;66(19):9691-9697. doi:10.1158/0008-5472.can-06-1686

75. Lampropoulos P, Zizi-Sermpetzoglou A, Rizos S, Kostakis A, Nikiteas N, Papavassiliou AG. TGF-beta signalling in colon carcinogenesis. Cancer Lett. 2012;314(1):1-7. doi:10.1016/j.canlet.2011.09.041

76. Ichikawa M, Williams R, Wang L, Vogl T, Srikrishna G. S100A8/A9 activate key genes and pathways in colon tumor progression. Mol Cell Res. 2011;9(2):133-148. doi:10.1158/1541-7786.mcr-10-0394

77. Zhou W, Wong MY, Min Y, et al. Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis. Cancer Cell. 2014;25(4):501-515. doi:10.1016/j.ccr.2014.03.007

78. Kruger S, Abd Elmageed ZY, Hawke DH, et al. Molecular characterization of exosome-like vesicles from breast cancer cells. BMC Cancer. 2014;14:44. doi:10.1186/1471-2407-14-44

79. Zhang Y, Liu D, Chen X, et al. Secreted monocytic miR-150 enhances targeted endothelial cell migration. Mol Cell. 2010;39(1):133-144. doi:10.1016/j.molcel.2010.06.010

80. Bigagli E, Luceri C, Guasti D, Cinci L. Exosomes secreted from human colon cancer cells influence the adhesion of neighboring metastatic cells: role of microRNA-210. Cancer Biol Ther. 2016;1-8. doi:10.1080/15384047.2016.1219815

81. Tanaka S, Hosokawa M, Ueda K, Ikawaka S. Effects of decitabine on invasion and exosomal expression of miR-200c and miR-141 in oxaliplatin-resistant colorectal cancer cells. Biol Pharm Bull. 2015;38(9):1272-1279. doi:10.1248/bpb.b15-00129

82. Tripathi V, Ellis JD, Shen Z, et al. The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol Cell. 2010;39(6):925-938. doi:10.1016/j.molcel.2010.08.011

83. Yang X, Xie X, Xiao YF, et al. The emergence of long non-coding RNAs in the tumorigenesis of hepatocellular carcinoma. Cancer Lett. 2015;360(2):119-124. doi:10.1016/j.canlet.2015.02.035

84. Yuan JH, Yang F, Wang F, et al. A long noncoding RNA activated by TGF-beta promotes the invasion-metastasis cascade in hepatocellular carcinoma. Cancer Cell. 2014;25(5):666-681. doi:10.1016/j.ccr.2014.03.010

85. Liu T, Zhang X, Gao S, et al. Exosomal long noncoding RNA CRNDE-h as a novel serum-based biomarker for diagnosis and prognosis of colorectal cancer. Oncotarget. 2016;7(51):85551-85563. doi:10.18632/oncotarget.13465

10. Technology in Cancer Research & Treatment
93. Sun R, Qin C, Jiang B, et al. Down-regulation of MALAT1 inhibits cervical cancer cell invasion and metastasis by inhibition of epithelial–mesenchymal transition. *Mol BioSyst*. 2016; 12(3):952-962. doi:10.1039/c5mb00685f

94. Huarte M, Gottman M, Feldser D, et al. A large intergenic non-coding RNA induced by p53 mediates global gene repression in the p53 response. *Cell*. 2010;142(3):409-419. doi:10.1016/j.cell.2010.06.040

95. Malik ZA, Kott KS, Poe AJ, et al. Cardiac myocyte exosomes: mechanisms of intercellular signaling in human heart failure. *Am J Physiol Heart Circ Physiol*. 2013;304(7):H954-H965. doi:10.1152/ajpheart.00835.2012

96. Xu CG, Yang MF, Ren YQ, Wu CH, Wang LQ. Exosomes mediated transfer of lncRNA UCA1 results in increased tamoxifen resistance in breast cancer cells. *Eur Rev Med Pharmacol Sci*. 2016;20(20):4362-4368.

97. Kogure T, Yan IK, Lin WL, Patel T. Extracellular vesicle-mediated transfer of a novel long noncoding RNA TUC339: a mechanism of intercellular signaling in human hepatocellular cancer. *Genes Cancer*. 2013;4(7-8):261-272. doi:10.1177/1947601913499020

98. Nawaz M, Fatima F, Nazarenko I, et al. Extracellular vesicles in ovarian cancer: applications to tumor biology, immunotherapy and biomarker discovery. *Expert Rev Proteomics*. 2016;13(4):395-409. doi:10.1586/14789450.2016.115613

99. Coghlin C, Murray GI. Biomarkers of colorectal cancer: recent advances and future challenges. *Proteomics Clin Appl*. 2015;9(1-2):64-71. doi:10.1002/prca.201400082

100. Romero-Cordoba SL, Sálido-Guadarrama I, Rodriguez-Dorantes M, Hidalgo-Miranda A. miRNA biogenesis: biological impact in the development of cancer. *Cancer Biol Ther*. 2014;15(11):1444-1455. doi:10.4161/15384047.2014.955442

101. Lawrie CH, Gal S, Dunlop HM, et al. Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. *Br J Haematol*. 2008;141(5):672-675. doi:10.1111/j.1365-2410.2008.07077.x

102. Wong TS, Liu XB, Wong BY, Ng RW, Yuen AP, Wei WI. Mature miR-184 as potential oncogenic microRNA of squamous cell carcinoma of tongue. *Clin Cancer Res*. 2008;14(9):2588-2592. doi:10.1158/1058-0432.ccr-07-0666

103. King HW, Michael MZ, Gledadle JM. Hypoxic enhancement of exosome release by breast cancer cells. *BMC Cancer*. 2012;12:421. doi:10.1186/1471-2407-12-421

104. Aushev VN, Zbrovskaya IB, Laktionov KK, et al. Comparisons of microRNA patterns in plasma before and after tumor removal reveal new biomarkers of lung squamous cell carcinoma. *PLoS One*. 2013;8(10):e78649. doi:10.1371/journal.pone.0078649

105. Kobayashi M, Salomon C, Tapia J, Illanes SE, Mitchell MD, Rice GE. Ovarian cancer cell invasiveness is associated with discordant exosomal sequestration of Let-7 miRNA and miR-200. *J Transl Med*. 2014;12:4. doi:10.1186/1479-5876-12-4

106. Westermann AM, Schmidt D, Holdenrieder S, et al. Serum microRNAs as biomarkers in patients undergoing prostate biopsy: results from a prospective multi-center study. *Anticancer Res*. 2014;34(2):665-669.

107. Yang Y, Gu X, Zhou M, Xiang J, Chen Z. Serum microRNAs: a new diagnostic method for colorectal cancer. *Biomed Rep*. 2013;1(4):495-498. doi:10.3892/br.2013.109

108. Kalimutho M, Del Vecchio Blanco G, Di Cecilia S, et al. Differential expression of miR-144* as a novel fecal-based diagnostic marker for colorectal cancer. *J Gastroenterol*. 2011;46(12):1391-1402. doi:10.1007/s00535-011-0456-0

109. Simpson RJ, Lim JW, Moritz RL, Mathivanan S. Exosomes: proteomic insights and diagnostic potential. *Expert Rev Proteomics*. 2009;6(3):267-283. doi:10.1586/er09.017

110. Ji H, Chen M, Greening DW, et al. Deep sequencing of RNA from three different extracellular vesicle (EV) subtypes released from the human LIM1863 colon cancer cell line uncovers distinct miRNA-enrichment signatures. *PloS One*. 2014;9(10):e110314. doi:10.1371/journal.pone.0110314

111. Tovar-Camargo OA, Todsen S, Goel A. Exosomal microRNA biomarkers: emerging frontiers in colorectal and other human cancers. *Expert Rev Mol Diagn*. 2016;16(5):553-567. doi:10.1586/14737159.2016.115635

112. Cha DJ, Franklin JL, Dou Y, et al. KRAS-dependent sorting of miRNA to exosomes. *Elife*. 2015;4:e07197. doi:10.7554/eLife.07197

113. Kosaka N, Iuchi H, Yoshioka Y, Takeshita F, Matsuki Y, Ochiya T. Secretory mechanisms and intercellular transfer of microRNAs in living cells. *J Biol Chem*. 2010;285(23):17442-17452. doi:10.1074/jbc.M110.107821

114. Le MT, Hamar P, Guo C, et al. miR-200-containing extracellular vesicles promote breast cancer cell metastasis. *J Clin Invest*. 2014;124(12):5109-5128. doi:10.1172/jci75695

115. Pandey GK, Mitra S, Subhash S, et al. The risk-associated long noncoding RNA NBAT-1 controls neuroblastoma progression by regulating cell proliferation and neuronal differentiation. *Cancer Cell*. 2014;26(5):722-737. doi:10.1016/j.ccell.2014.09.014

116. Veltri WR. Non-coding RNAs as biomarkers for metastatic prostate cancer. *The Lancet Oncol*. 2014;15(13):1412-1413. doi:10.1016/s1470-2045(14)71124-6

117. Gezer U, Ozgur E, Cetinkaya M, Isin M, Dalay N. Long non-coding RNAs with low expression levels in cells are enriched in secreted exosomes. *Cell Biol Int*. 2014;38(9):1076-1079. doi:10.1002/cbin.10301

118. Batagov AO, Kuznetsov VA, Kurochkin IV. Identification of nucleotide patterns enriched in secreted RNAs as putative cis-acting elements targeting them to exosome nano-vesicles. *BMC Genomics*. 2011;12(suppl 3):S18. doi:10.1186/1471-2164-12-s3-s18

119. Huang X, Yuan T, Tschanne M, et al. Characterization of human plasma-derived exosomal RNAs by deep sequencing. *BMC Genomics*. 2013;14:319. doi:10.1186/1471-2164-14-319

120. Liu T, Zhang X, Yang YM, Du LT, Wang CX. Increased expression of the long noncoding RNA CRNDE-h indicates a poor prognosis in colorectal cancer, and is positively correlated with IRX5 mRNA expression. *Onco Targets Ther*. 2016;9:1437-1448. doi:10.2147/ott.s98268

121. Fellig Y, Ariel I, Ohana P, et al. H19 expression in hepatic metastases from a range of human carcinomas. *J Clin Pathol*. 2005;58(10):1064-1068. doi:10.1136/jcp.2004.023648
122. Conigliaro A, Costa V, Lo Dico A, et al. CD90+ liver cancer cells modulate endothelial cell phenotype through the release of exosomes containing H19 lncRNA. *Mol Cancer*. 2015;14:155. doi:10.1186/s12943-015-0426-x

123. Dimitrova N, Zamudio JR, Jong RM, et al. lincRNA-p21 activates p21 in cis to promote Polycomb target gene expression and to enforce the G1/S checkpoint. *Mol Cell*. 2014;54(5):777-790. doi:10.1016/j.molcel.2014.04.025

124. Berrondo C, Flax J, Kucherov V, et al. Expression of the long non-coding RNA HOTAIR correlates with disease progression in bladder cancer and is contained in bladder cancer patient urinary exosomes. *PLoS One*. 2016;11(1):e0147236. doi:10.1371/journal.pone.0147236

125. Yan TH, Lu SW, Huang YQ, et al. Upregulation of the long noncoding RNA HOTAIR predicts recurrence in stage Ta/T1 bladder cancer. *Tumour Biol*. 2016;37(11):10249-10257. doi:10.1007/s13277-015-2344-8

126. Weiner-Gorzel K, Dempsey E, Milewska M, et al. Overexpression of the microRNA miR-433 promotes resistance to paclitaxel through the induction of cellular senescence in ovarian cancer cells. *Cancer Med*. 2015;4(5):745-758. doi:10.1002/cam4.409

127. Takahashi K, Yan IK, Kogure T, Haga H, Patel T. Extracellular vesicle-mediated transfer of long non-coding RNA ROR modulates chemosensitivity in human hepatocellular cancer. *FEBS Open Bio*. 2014;4:458-467. doi:10.1016/j.fobb.2014.04.007

128. Fan Y, Shen B, Tan M, et al. Long non-coding RNA UCA1 increases chemoresistance of bladder cancer cells by regulating Wnt signaling. *FEBS J*. 2014;281(7):1750-1758. doi:10.1111/febs.12737

129. Qu L, Ding J, Chen C, et al. Exosome-Transmitted IncARSR Promotes Sunitinib Resistance in Renal Cancer by Acting as a Competing Endogenous RNA. *Cancer Cell*. 2016;29(5):653-668. doi:10.1016/j.ccell.2016.03.004

130. Tominaga N, Yoshioka Y, Ochiya T. A novel platform for cancer therapy using extracellular vesicles. *Adv Drug Deliv Rev*. 2015;95:50-55. doi:10.1016/j.addr.2015.10.002

131. Taraboletti G, D’Ascenzo S, Giusti I, et al. Bioavailability of VEGF in tumor-shed vesicles depends on vesicle burst induced by acidic pH. *Neoplasia*. 2006;8(2):96-103. doi:10.1593/neo.05583

132. Chen WX, Liu XM, Lv MM, et al. Exosomes from drug-resistant breast cancer cells transmit chemoresistance by a horizontal transfer of microRNAs. *PLoS One*. 2014;9(4):e95240. doi:10.1371/journal.pone.0095240

133. Hoshino H, Miyoshi N, Nagai K, et al. Epithelial–mesenchymal transition with expression of SNAI1-induced chemoresistance in colorectal cancer. *Biochem Biophys Res Commun*. 2009;390(3):1061-1065. doi:10.1016/j.bbrc.2009.10.117

134. Qi P, Du X. The long non-coding RNAs, a new cancer diagnostic and therapeutic gold mine. *Mod Pathol*. 2013;26(2):155-165. doi:10.1038/modpathol.2012.160

135. Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJ. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. *Nat Biotechnol*. 2011;29(4):341-345. doi:10.1038/nbt.1807

136. Gong Z, Yang J, Li J, et al. Novel insights into the role of microRNA in lung cancer resistance to treatment and targeted therapy. *Curr Cancer Drug Targets*. 2014;14(3):241-258.

137. Wang J, Zhou Y, Lu J, et al. Combined detection of serum exosomal miR-21 and HOTAIR as diagnostic and prognostic biomarkers for laryngeal squamous cell carcinoma. *Med Oncol*. 2014;31(9):148. doi:10.1007/s12032-014-0148-8

138. Huang YK, Yu JC. Circulating microRNAs and long non-coding RNAs in gastric cancer diagnosis: an update and review. *World J Gastroenterol*. 2015;21(34):9863-9886. doi:10.3748/wjg.v21.i34.9863

139. Mohankumar S, Patel T. Extracellular vesicle long noncoding RNA as potential biomarkers of liver cancer. *Brief Funct Genomics*. 2016;15(3):249-256. doi:10.1093/bfgp/elv058

140. Alhamdani MS, Schrader C, Hoheisel JD. Analysis conditions for proteomic profiling of mammalian tissue and cell extracts with antibody microarrays. *Proteomics*. 2010;10(17):3203-3207. doi:10.1002/pmc.201000170

141. Lim JW, Mathias RA, Kapp EA, et al. Restoration of full-length APC protein in SW480 colon cancer cells induces exosome-mediated secretion of DKK-4. *Electrophoresis*. 2012;33(12):1873-1880. doi:10.1002/elps.201100687