Systems biology approaches to investigating the roles of extracellular vesicles in human diseases

András Gézsi1,2,3, Árpád Kovács1, Tamás Visnovitz1 and Edit I. Buzás1,2

Abstract
Extracellular vesicles (EVs) are membrane-enclosed structures secreted by cells. In the past decade, EVs have attracted substantial attention as carriers of complex intercellular information. They have been implicated in a wide variety of biological processes in health and disease. They are also considered to hold promise for future diagnostics and therapy. EVs are characterized by a previously underappreciated heterogeneity. The heterogeneity and molecular complexity of EVs necessitates high-throughput analytical platforms for detailed analysis. Recently, mass spectrometry, next-generation sequencing and bioinformatics tools have enabled detailed proteomic, transcriptomic, glycomic, lipidomic, metabolomic, and genomic analyses of EVs. Here, we provide an overview of systems biology experiments performed in the field of EVs. Furthermore, we provide examples of how in silico systems biology approaches can be used to identify correlations between genes involved in EV biogenesis and human diseases. Using a knowledge fusion system, we investigated whether certain groups of proteins implicated in the biogenesis/release of EVs were associated with diseases and phenotypes. Furthermore, we investigated whether these proteins were enriched in publicly available transcriptomic datasets using gene set enrichment analysis methods. We found associations between key EV biogenesis proteins and numerous diseases, which further emphasizes the key role of EVs in human health and disease.

Introduction
The rapidly emerging field of extracellular vesicles (EVs) has led to paradigm shifts in many different areas of biology and biomedicine. The release of EVs, originally thought to only act to remove harmful substances from cells, has been shown to have many more functional consequences and a wide range of implications for biomedicine. To understand the structure and function of EVs, the initial biochemical targeted approaches rapidly progressed to bias-free large-scale analyses using systems biology and bioinformatics. In 2009, the first manually curated database of EV proteins, RNA and lipids, Exocarta1 (http://www.exocarta.org/), was launched. It was followed by two additional databases including Vesiclepedia2,3 (http://www.microvesicles.org/) and EVpedia4,5 (http://student4.postech.ac.kr/evpedia2_xe/xe/). These are repositories of RNA, protein, lipid, and metabolite datasets. Given that preanalytical parameters may play important roles in the quality of EV preparations, database entries should be interpreted with caution, and special attention has to be paid to preanalytical conditions. Recently, gene ontology has been extended to the context of EV communication, owing to increased recognition of the importance of the EV field6. Furthermore, bioinformatic tools that can be used to analyze EV datasets have become available7,8. Future directions may include the following: (i) systems biology analyses after more standardized EV preanalytics, (ii) multiomics analyses of EV samples (combinations of different -omic groups used for the analysis), and (iii) the determination of disease-specific EV molecular patterns/networks composed of different molecule types. Additionally, systems
biology approaches may be extended to novel fields such as image-based systems biology.

Advancements in the analysis of complex biological systems such as EVs will help to reveal the biological significance of these recently discovered structures and exploit their diagnostic and/or therapeutic potential.

EV proteomics

To date, the best characterized EV cargo is EV-associated protein molecules. Proteomics analysis of EVs has been made available on MS-based technological platforms. Proteomic analyses of EVs have been reviewed extensively elsewhere\(^9,10\) and are not the focus of the present article. Of note, thousands of proteins have been identified in various EV subtypes, and disease-specific proteome alterations have also been identified\(^11–14\). The potential for EV proteins to be used as monitoring tools for disease progression has also been successfully studied\(^15\). In addition, unconventional membrane protein orientation has been described in EVs\(^16\). The topology of various EV-associated proteins remains a very important hot topic because it influences target cell recognition by different EV subtypes and the signal transduction pathways induced by EVs.

EV transcriptomics

A plethora of studies confirmed the feasibility of using high-throughput transcriptomic methods for EVs (such as microarrays and next-generation sequencing; see Table 1)\(^17–19\), and these approaches have been used successfully to characterize the healthy circulating\(^20,21\), urine\(^22\), cerebrospinal fluid\(^23\), or saliva\(^24,25\) EV RNA cargo. The first study exploring the physiological miRNA pattern of circulating EVs was published in 2008\(^26\). In the following years, the heterogeneity of circulating EV transcriptional landscapes was analyzed and revealed the presence of many different RNA types, including tRNA, miRNA, Y-RNA, mRNA, SRP-RNA, rRNA, lncRNA, piRNA, snRNA, snoRNA, and scaRNA\(^17,20,21\). In vitro studies further suggested that various types of RNA molecules identified in EVs were specifically shuttled into EV subsets\(^27\). A reference dataset for miRNA profiling in whole blood, peripheral blood cells, serum, and EVs was also published\(^28\). EV transcriptomics is particularly useful in the study of complex diseases because it assists in the identification of novel biomarkers (Table 1). The biomarker potential of EVs has been highlighted by high-throughput studies; however, the analysis of a single subtype of EVs\(^29\) instead of bulk EV ‘omics’ analyses may yield more targeted results and suggest novel therapeutic strategies.

EV metabolomics

Metabolomics involves the simultaneous detection and analysis of a large number of small molecules (<2000 Da) from biological samples\(^30\). The relatively low sensitivity of NMR to detect metabolites in EV samples (which are usually available in low amounts) does not allow detailed analysis of the EV metabolome. However, with advances in the available methodological platforms (e.g., Ultra-Performance Liquid Chromatography-Mass Spectrometry, UPLC MS), numerous studies have performed detailed analyses of the EV metabolome\(^31–34\). Interestingly, EVs have been shown to function as independent metabolic units\(^35\) and to modify the metabolome of their body fluid environment\(^36,37\) or to induce metabolic changes in recipient cells\(^38\).

EV lipiddomics

EV lipiddomics (see Table 2) is a relatively new field mainly because the amount of an EV sample is usually very limited, and novel techniques with increased sensitivity have only recently become available to EV researchers. In the twentieth century and in the first decade of the twenty-first century, thin layer chromatography (TLC) was widely used, and it was essentially the only technique available that enabled the study of the lipid composition of EV membranes. TLC is an easy and straightforward method and does not require expensive equipment. However, the data collected in TLC experiments are very limited. Only a few lipid forms (main classes) can be separated with the help of external lipid standards. Since 2004, the application of different liquid chromatography technologies has been reported. The sensitivity and reproducibility of these experiments were significantly improved compared to those of the TLC methods, but the number of detectable lipid species was still very limited. Revolutionarily development began in the early 2010s with MS-based methods, when real EV lipiddomics began. The different MS-based techniques made it possible to determine the different acyl chains of membrane lipids (not just the major lipid types based on the head groups). The number of complex lipiddomic studies started to increase significantly in 2016, and an exponential growth of the field is expected to come in the next few years.

EV glycomics

Glycomics in general show a relative backlog compared to other omic fields, such as genomics or proteomics (see Table 3). This is possibly due to the complexity of carbohydrate structures and the lack of sensitive and simple high-throughput methods for glycan analysis that caused a significant delay in the development of glycomics. For glycosylation analyses of EVs, lectin-based microarrays, and high resolution MS analyses have been used, and these approaches provide evidence of EV-specific glycosylation patterns.
Disease/pathological condition	Biological fluid	EV transcriptomics	Applied methods	Publication
Mycobacterium tuberculosis Infection	Serum	mRNA, miRNA, snRNA, snoRNA, ncRNA, RNA-Seq	69	
Hand, foot, and mouth disease	Serum	miRNA	Human miRNA microarray	70
Type 1 diabetes mellitus	Urine	miRNA	RNA-Seq	71
Type 2 diabetes mellitus	Plasma	miRNA	Focus miRNA PCR panel	72
Heart failure after acute myocardial infarction	Serum	miRNA	miRNA microarray	73
Prostate cancer	Urine	mRNA	Whole-genome gene expression direct hybridization	74
Benign prostate hyperplasia	Urine	mRNA	Whole-genome gene expression direct hybridization	74
Breast cancer	Serum	miRNA	Small RNA sequencing	75
Breast invasive lobular carcinoma	Plasma	mRNA	RNA-Seq	76
Colorectal carcinoma	Plasma and serum	miRNA	Human miRNome panels I and II (Ver.3)	77
Ovarian cancer	Plasma	RNA	Microarray analysis	78
Serous papillary adenocarcinoma of the ovary	Serum	mRNA	Microarray analysis	79
Ovarian carcinoma	Peritoneal or pleural effusion	miRNA	TaqMan microRNA array A	80
Lung adenocarcinoma	Plasma	miRNA	miRCURY-human-panel I + II-V1.M	81
Lung adenocarcinoma	Plasma	miRNA	miRNA microarray	82
Melanoma	Vitreous humor and serum	miRNA	TaqMan low density array	83
Pancreaticobiliary cancers	Pleural fluid and plasma	mRNA	Transcriptome sequencing	53
Osteosarcoma	Plasma	mRNA, rRNA, tRNA, ncRNA, RNA-Seq	84	
Glioblastoma multiforme	Serum	mRNA	Agilent 4 × 44 K human microarrays	85
Young-Onset Alzheimer’s Disease	Cerebrospinal fluid	miRNA	Human miRNome panels I + II (V4.M)	86
Multiple sclerosis	Plasma	miRNA	3D-Gene Human miRNA oligo chip	87
Relapsing-remitting multiple sclerosis	Serum	tRNA, tRNA-like, rRNA, miRNA, lincRNA, scaRNA, rRNA, piRNA, RNA-seq	88	
Cardiac allograft rejection	Serum	miRNA	Focus human microRNA PCR	89
Chronic lung allograft dysfunction	Bronchoalveolar lavage fluid	Exosomal shuttle RNA	RNA-seq	90
Oligoasthenozoospermia	Seminal plasma	miRNA	60 K microarray	91
Salt sensitivity of blood pressure	Urine	miRNA	miRNA microarray	92
Post vasectomy	Seminal plasma	miRNA	miRNA microarray	93
Post gastric bypass surgery	Plasma and serum	mRNA	miRNA microarray	94

Table 1 Transcriptomics of pathological condition-derived EVs
EV genomics

Some of the EVs carry DNA that may range in size from 100 base pairs to several kilobase pairs or even fragments up to 2 million base pairs long\(^\text{39}\). \(^\text{40}\). EV-associated DNA may be single-stranded DNA, mitochondrial DNA, or double-stranded DNA.\(^\text{39,41,42}\). The DNA content associated with EVs (termed EV-DNA) may be transported within the lumen of EVs;\(^\text{39,40}\); however, recent studies have shown that, depending on the biological context, EV-DNA can also be found attached to the outer surface of EVs.\(^\text{43–46}\).

Several studies have shown that EV-DNA spans sequences across all chromosomes of genomic DNA (gDNA)\(^\text{39,40,47}\). Sequences of mitochondrial DNA (mtDNA) may or may not be present depending on the context and/or cell line\(^\text{39}\). Other studies have shown that selective sorting of specific DNA sequences may occur. For example, a study investigating different prostate cancer cell-derived EV subpopulations showed that different EVs carried different gDNA contents.\(^\text{48}\). Another study that investigated the EVs of healthy individuals provided evidence of an uneven representation of the human genome and even detected EV-DNA of bacterial origin.\(^\text{46}\). Nevertheless, very little is currently known about the mechanisms of DNA packaging or selective sorting of DNA into EVs.

At present, the functional significance of EV-DNA is largely unknown. A recent study has shown that surface-bound EV-DNA plays a significant role in the binding of EVs to fibronectin,\(^\text{45}\), an extracellular matrix glycoprotein that is of vital importance in processes associated with tumor progression.\(^\text{49}\). Generally, surface-bound molecules are responsible for the binding of EVs to target cells or to the extracellular matrix.\(^\text{40}\). Therefore, it is likely that exofacial EV-DNA may have some physiological significance for the recipient cells. Additionally, it has been shown that oncogenes can be transferred from donor to recipient cells; however, contradictory results have been reported regarding whether cancer cell-derived EV-DNA is functional in the recipient cells. In a study, the EV-mediated spread of oncogenes was shown to promote disease progression in mice.\(^\text{51}\). Another study showed that EVs containing oncogenic H-ras failed to produce a permanent tumorigenic conversion of primary and immortalized fibroblasts.\(^\text{52}\). Several studies have shown that EV-DNA reflects the parental cell gDNA both qualitatively\(^\text{39,47,53–58}\) and quantitatively\(^\text{40,42}\). Therefore, the analysis of circulating EV-DNA may have substantial diagnostic potential. Moreover, the analysis of genomic mutations may prove to be superior to the analysis of the RNA transported by EVs, as DNA is intrinsically more stable than RNA.

Systems biology approaches show relationships between genes involved in EV biogenesis and diseases

Finally, it is possible to gain information about the role of EVs through a systems biology analysis of public transcriptomic and genomic data, as well as different types of biomedical data. Our goal was to determine the relationships between key genes involved in EV biogenesis and diseases using systems biology approaches. We investigated whether a selected group of the proteins from among those reported to play a role in the biogenesis or

Technique for lipidomic analysis	Year of publication	EV types in the study
Thin layer chromatography (TLC)	1987\(^\text{94}\), 1989\(^\text{95}\), 1999\(^\text{96}\), 2002\(^\text{97}\), 2004\(^\text{98}\), 2009\(^\text{99}\), 2010\(^\text{100}\,\ldots\)	sEV\(^\text{94–96,98–103}\), mEV\(^\text{94,98}\)
Liquid chromatography (HPLC, GC, LC-CAD)	2004\(^\text{98,104}\), 2010\(^\text{100}\), 2011\(^\text{101}\), 2013\(^\text{105}\), 2015\(^\text{102}\), 2017\(^\text{107}\)	sEV\(^\text{98,100,102,104–106}\), mixed EV\(^\text{107}\)
MS-based techniques (ESI MS/MS, GC MS, LC MS/MS)	2010\(^\text{103}\), 2012\(^\text{108}\), 2013\(^\text{109}\), 2015\(^\text{113,116}\), 2016\(^\text{114–116}\), 2017\(^\text{117–119}\), 2018\(^\text{120–123}\)	sEV\(^\text{98,100,102,104–106}\), mixed EV\(^\text{107}\)

Technique for glycomic analysis	Publications	Pros and cons
Lectin-based microarrays	125–129	Unbiased glycan analysis of carbohydrates on the surfaces of intact EVs
High resolution MS	130–134	Requires expensive equipment. Data analysis may be time consuming
secretion of EVs were associated with phenotypes and were enriched in publicly available transcriptomic databases.

Based on the literature, without a claim of completeness, we have compiled lists of proteins that have been reported to play roles in the biogenesis (see Tables S1 and S3) and secretion of EVs (see Table S2). We defined five partly overlapping gene sets from among these lists, namely, genes involved in EV biogenesis and secretion, EV biogenesis, exosome biogenesis, microvesicle biogenesis, and exosome secretion. We used these sets as inputs for the different analyses. Of note, the term “exosomes” refers here to small (50–150 nm in diameter) EVs that originate from the multivesicular body, whereas the designation “microvesicles” is used for EVs shed from the plasma membrane that are usually of medium size (100–1000 nm in diameter).

The Quantitative Semantic Fusion (QSF) System is an extensible framework that incorporates distinct annotated semantic types (also called entities) and links between them by integrating different data sources from the Linked Open Data world. The QSF System then enables the users to quantitatively prioritize a freely chosen entity based on evidence propagated from any other entity or possibly multiple entities through the connecting links (see Figure S1). Currently, the system contains genes, taxa, diseases, phenotypes, disease categories (UMLS semantic types and MeSH disease classes), pathways, substances, assays, cell lines, and the targets of the compounds. Links define associations between entities. For example, genes and pathways are connected with a link that represents gene-pathway associations. To enable cross-species information fusion, we also added gene orthologue links.

The most important gene-disease associations identified in this research are from the DisGeNet database. This database integrates many other sources of information (e.g., OMIM, GWAS Catalog, OrphaNet, Mouse Genome Database, and Rat Genome Database).

We constructed three different computation graphs that were used to detect known and predicted disease and phenotype associations (see Fig. 1). All three models can be used to answer the question of whether the genes involved in the biogenesis or secretion of EVs are functionally altered (for example, due to significant polymorphisms, mutations, or changes in the gene expression or the amount of protein produced), and, if so, which diseases are associated with these changes. This can also elucidate the pathomechanisms underlying the association between diseases or phenotypes and EVs.

The first model, based on gene-disease associations known in the literature (based on the data sources in the DisGeNet database), prioritizes the diseases and related phenotypes that can be linked to important genes relevant to EVs. In the second model, molecular pathway associations were used to expand the range of genes to include disease-associated genes that are in the same molecular pathways as the genes that are important for EVs. In the third model, we used the molecular pathway information from different species to predict the diseases associated with human genes the orthologues of which in other species are in the same molecular pathways as the orthologues of the human genes important for EVs.

We used the QSF System to quantitatively prioritize diseases and phenotypes that are associated with the five gene sets of genes known to be involved in the biogenesis and/or secretion of different types of EVs. First, we used a model that exploited the gene-disease associations already known in the literature. The top 20 diseases that are associated with genes that are involved either in the biogenesis or the secretion of EVs are shown in Table 4. The top 20 phenotypes are shown in Table S4. EV biogenesis genes are significantly associated with several diseases, including several tumors, such as mammary neoplasms.
Table 4 Diseases associated with different sets of key EV genes based on gene-disease associations known in the literature

Disease	Extracellular vesicle biogenesis and secretion	Extracellular vesicle biogenesis	Exosome biogenesis	Microvesicle biogenesis	Exosome secretion			
	Relevance score	P-value						
Mammary neoplasms	1.00	0.00	0.94	0.05	0.36	0.35	1.00	0.03
Degenerative polyarthritis	0.72	0.00	0.55	0.00	0.34	0.04	0.41	0.03
Neoplasm invasiveness	0.71	0.00	0.82	0.00	0.33	0.18	0.83	0.00
Squamous cell carcinoma	0.66	0.00	0.37	0.02	0.04	0.27	0.52	0.00
Esophageal neoplasms	0.60	0.00	0.56	0.02	0.01	0.22	0.83	0.00
Diabetes mellitus, experimental	0.59	0.00	0.64	0.09	0.97	0.01	0.53	0.00
Neoplasm metastasis	0.53	0.00	0.82	0.03	0.53	0.03	0.62	0.03
Liver carcinoma	0.52	0.02	0.10	0.39	0.04	0.43	0.10	0.15
Non-small cell lung carcinoma	0.49	0.00	0.29	0.12	0.00	0.91	0.45	0.03
Mouth neoplasms	0.48	0.00					0.80	0.00
Melanoma	0.47	0.02	0.68	0.02	0.39	0.10	0.55	0.02
Animal mammary neoplasms	0.47	0.00					0.79	0.00
Juvenile-onset dystonia	0.47	0.01					0.79	0.00
IGA glomerulonephritis	0.44	0.07	1.00	0.00	1.00	0.05	0.28	0.32
Mammary neoplasms, experimental	0.43	0.01	0.18	0.28			0.28	0.19
Alzheimer’s disease	0.43	0.06	0.32	0.15	0.01	0.74	0.48	0.06
Prostatic neoplasms	0.42	0.11	0.07	0.65	0.01	0.77	0.10	0.30
Stomach neoplasms	0.41	0.05	0.07	0.49	0.02	0.46	0.07	0.20
Adenocarcinoma	0.40	0.01	0.33	0.08	0.00	0.75	0.48	0.02
Myocardial reperfusion injury	0.39	0.02	0.64	0.00	0.22	0.17	0.97	0.00

For each gene list (columns), the relevance score is the normalized relevance score computed by the first model (see Fig. 1). P-values were computed by permutation tests. The top 20 most relevant diseases are reported based on the gene list of EV biogenesis and secretion.

(microvesicle biogenesis: \(p = 0.03 \); Exosome secretion: \(p < 0.01 \)) and melanoma (microvesicle biogenesis: \(p = 0.02 \)); pathologic functions, such as neoplasm invasiveness (EV biogenesis and secretion: \(p < 0.01 \)) and neoplasm metastasis (EV biogenesis: \(p = 0.03 \)); and cardiovascular diseases, such as myocardial reperfusion injury (microvesicle biogenesis: \(p < 0.01 \)). The most relevant phenotypes include frontotemporal dementia (exosome biogenesis: \(p < 0.01 \)), lack of insight (exosome biogenesis: \(p < 0.01 \)), and autoimmune neutropenia (exosome secretion: \(p = 0.01 \)).

Pathway-mediated analysis (i.e., determining which diseases are associated with genes that participate in the same pathway as EV biogenesis genes) indicated possible associations of EVs with many common diseases (see Table S5 and Table S6), such as diabetes (microvesicle biogenesis: \(p < 0.01 \), Alzheimer’s disease (EV biogenesis and secretion: \(p < 0.01 \)), and obesity (microvesicle biogenesis: \(p = 0.02 \)). Cross-species pathway-mediated analysis indicated the possible association of EVs with several tumors (see Tables S7 and S8), such as mouth neoplasms.
GEO accession	Study	Contrast	Extracellular vesicle biogenesis and secretion	Extracellular vesicle biogenesis	Exosome biogenesis	Microvesicle biogenesis	Exosome secretion
GSE13576	Xenografted leukemia samples with different time to leukemia phenotypes	No relapse vs. early relapse	1.16E-11	1.24E-05	3.27E-04	1.14E-02	2.66E-06
		No relapse vs. late relapse	3.46E-03	1.56E-01	2.53E-01	7.43E-01	9.51E-02
		No relapse vs. relapse	7.85E-15	5.25E-07	2.30E-05	3.78E-03	6.53E-08
		Early relapse vs. late relapse	5.11E-03	1.71E-01	3.24E-01	7.79E-01	1.37E-01
GSE6919	Normal and prostate tumor tissues	Healthy vs. tumor	1.59E-03	3.45E-02	4.29E-01	9.54E-02	8.41E-04
		Tumor vs. adjacent	4.70E-03	6.29E-01	9.88E-01	8.70E-01	1.34E-03
		Tumor vs. metastatic	1.58E-09	9.75E-04	1.87E-02	8.04E-06	4.55E-11
GSE4115	Smokers with suspected lung cancer	No cancer vs. cancer	5.53E-25	3.48E-08	3.37E-04	8.37E-06	2.40E-21
GSE54514	Survivors and nonsurvivors of sepsis	Healthy vs. survivor	1.32E-16	1.99E-03	2.81E-02	9.99E-02	1.51E-15
		Healthy vs. nonsurvivor	7.00E-09	1.79E-05	1.67E-03	4.87E-05	1.26E-07
		Healthy vs. sepsis (survivor + nonsurvivor)	1.92E-25	2.11E-05	2.00E-03	5.41E-01	3.42E-23
		Nonsurvivor vs. survivor	3.79E-25	9.98E-05	1.28E-03	3.64E-09	3.99E-24
GSE43696	Normal controls, mild-moderate asthmatic patients and severe asthmatic patients	Control vs. moderate asthma	9.78E-01	9.21E-01	9.94E-01	9.21E-01	1.00E+00
		Control vs. severe asthma	5.62E-02	1.96E-01	3.43E-01	3.34E-01	5.62E-02
		Control vs. asthma (moderate + severe)	4.40E-01	6.16E-01	8.09E-01	7.70E-01	3.96E-01
		Moderate vs. severe asthma	2.54E-01	3.53E-01	4.23E-01	5.08E-01	3.74E-01

Values in the table represent Benjamini-Hochberg adjusted p-values for enrichment combining the results of 10 different enrichment algorithms. Statistically significant p-values (<0.05) are in bold.
prostate tissues, obtained from men of various ages. The tissues, prostate tissues adjacent to tumor, and organ donor analysis on 152 human samples, including prostate cancer enriched in many of the analyzed contrasts (see Table 5).

leukemia samples transplanted into NOD/SCID mice. They found that the time to the development of leukemia impact on outcomes of 50 pediatric acute lymphoblastic

The Ensemble of Gene Set Enrichment Analysis (EGSEA) utilizes and combines the analysis results of many prominent gene set enrichment tools to calculate the collective significance score for a given gene set in the generally long lists of genes that arise from a differential expression analysis.

We reanalyzed five publicly available gene expression experiments using contrasts defined by the authors of these experiments, and then we computed the enrichment of the five key EV gene lists using the EGSEA method based on these contrasts (i.e., gene expression signatures relevant for a specific biological process).

The key EV gene sets were statistically significantly enriched in many of the analyzed contrasts (see Table 5).

Meyer et al. investigated the engraftment properties and impact on outcomes of 50 pediatric acute lymphoblastic leukemia samples transplanted into NOD/SCID mice. They found that the time to the development of leukemia (i.e., weeks from transplant to overt leukemia) was strongly associated with the risk of early relapse. We found that the differentially expressed genes between the no relapse and the early relapse groups were significantly enriched for key EV genes as well.

Yu et al. performed a comprehensive gene expression analysis on 152 human samples, including prostate cancer tissues, prostate tissues adjacent to tumor, and organ donor prostate tissues, obtained from men of various ages. The differentially expressed genes between the nonmetastatic tumor samples and the metastatic tumor samples were significantly enriched for all key EV gene sets.

Spira et al. compared gene expression data from smokers with lung cancer with samples from smokers without lung cancer. This allowed them to generate a diagnostic gene expression profile that could distinguish between the two classes. We found that all EV gene sets were significantly enriched in the gene expression profile comparing smokers with and without lung cancer.

Parnell et al. performed gene expression profiling of whole blood to monitor immune dysfunction in critically ill septic patients. We found that all gene expression signatures comparing healthy controls with sepsis survivors, healthy controls with nonsurvivors, and non-survivors with survivors were significantly enriched for EV genes.

Voraphani et al. compared the gene expression profiles of airway epithelial and bronchoalveolar lavage cells of healthy controls, mild-moderate asthmatic patients, and severe refractory asthmatic patients, respectively. We found no enrichment in the different gene expression signatures.

Genes that have been reported to participate in the biogenesis or secretion of EVs are significantly associated with numerous common diseases, including different types of tumors and cardiovascular diseases, which further emphasizes the key role of EVs in human health and disease.

Acknowledgements

This work was supported by the National Scientific Research Program of Hungary (OTKA) grant no. 112872, 111958 and 120237, National Heart Program (NKH_16-1-2016-0017) and the ÚNKP-18-3-I-V-SE-14 New National Excellence Program of the Ministry of Human Capacities. Additional funding included VEKOP-2.3.2-16-2017-000002 and VEKOP-2.3.3-15-2017-00016, Higher Education Institutional Excellence Program – Therapeutic Development, STIA2017 and H2020-MSCA-ITN-2017-722148 TRAIN EV. The development of the Quantitative Semantic Fusion System was supported by the European Union’s Horizon 2020 research and innovation program “Ageing with Elegans” (Grant agreement No 633589).

Author details

1. Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary. 2. MTA-SE Immune-Proteogenomics Extracellular Vesicle Research Group, Budapest, Hungary. 3. Department of Measurement and Information Systems, Budapest University of Technology and Economics, Budapest, Hungary.

Conflict of interest

The authors declare that they have no conflict of interest.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information accompanies this paper at https://doi.org/10.1038/s12276-019-0226-2.

Received: 11 December 2018 Accepted: 12 December 2018. Published online: 15 March 2019

References

1. Mathivanan, S. & Simpson, R. J. ExoCarta: a compendium of exosomal proteins and RNA. Proteomics. 9, 4997–5000 (2009).
2. Kalra, H. et al. Vesiclepedia: a compendium for extracellular vesicles with continuous community annotation. PLoS Biol. 10, e1001450 (2012).
3. Pathan, M. et al. Vesiclepedia 2019: a compendium of RNA, proteins, lipids and metabolites in extracellular vesicles. Nucleic Acids Res. 47, D516–D519 (2019).
4. Kim, D-K. et al. EVpedia: an integrated database of high-throughput data for systemic analyses of extracellular vesicles. J. Extracell. Vesicles. 2, 20384 (2013).
5. Kim, D-K et al. EVpedia: a community web portal for extracellular vesicles research. Bioinformatics. 31, 933–939 (2015).
6. Cheung, K-H et al. Extending gene ontology in the context of extracellular RNA and vesicle communication. J. Biomed. Semant. 7, 19 (2016).
15. Xu, Y. et al. Exosomal proteome analysis of human plasma to monitor sepsis progression of septic patients with albuminuria. Oncotarget 8, 44217–44231 (2017).
16. Arbelaiz, A. et al. Serum extracellular vesicles contain protein biomarkers for primary sclerosing cholangitis and cholangiocarcinoma. Hepatology 66, 1125–1143 (2017).
17. Xu, Y. et al. Exosomal proteome analysis of human plasma to monitor sepsis progression. Biochim. Biophys. Acta. ReV. 1863, 856–861 (2018).
18. Cvetkovic, A. et al. Detailed analysis of protein topology of extracellular vesicles-evidence of unconventional membrane protein orientation. Sci. Rep. 6, 36338 (2016).
19. Amorim, M. G. et al. A total transcriptome profiling method for plasma-derived extracellular vesicles: applications for liquid biopsies. Sci. Rep. 7, 14395 (2017).
20. Buschmann, D. et al. Evaluation of serum extracellular vesicle isolation methods for profiling miRNAs by next-generation sequencing. J. Extracell. Vesicles 7, 1481321 (2018).
21. Reiker, K. et al. Comparison of serum exosome isolation methods for microRNA profiling. Clin. Biochem. 47, 135–138 (2014).
22. Li, M. et al. Analysis of the RNA content of the exosomes derived from blood serum and urine and its potential as biomarkers. PloS. One. B. Biol. Sci. 369, 20130502–20130502 (2014).
23. Huang, X. et al. Characterization of human plasma-derived exosomal RNAs by deep sequencing. BMC. Genom. 14, 319 (2013).
24. Miranda, K. C. et al. Massively parallel sequencing of human urinary exosome/microvesicle RNA reveals a predominance of non-coding RNA. PloS. One 9, e96094 (2014).
25. Yang, Y. et al. Next-generation sequencing-based small RNA profiling of cerebrospinal fluid exosomes. Neurosci. Lett. 636, 48–57 (2017).
26. Ogawa, Y., Taketomi, Y., Murakami, M., Tsujimoto, M. & Yanoshita, R. Small RNA transcripomes of two types of exosomes in human whole saliva determined by next generation sequencing. Bioll. Pharm. Bull. 36, 66–75 (2013).
27. Palamajov, V. et al. NANOstructural and transcriptomic analyses of human saliva derived exosomes. PloS. One 5, e85777 (2010).
28. Hunter, M. P. et al. Detection of microRNA expression in human peripheral blood microvesicles. PloS. One 3, e3694 (2008).
29. Driedonks, T. A. P. et al. Immune stimuli shape the small non-coding transcriptome of extracellular vesicles released by dendritic cells. Cell. Mol. Life Sci. 75, 385–397 (2018).
30. Juarez, S. et al. A comprehensive, cell specific microRNA catalogue of human peripheral blood. Nucleic. Acids. Res. 45, 9029–9031 (2017).
31. Hubal, M. J. et al. Circulating adipocyte-derived exosomal MicroRNAs associated with decreased insulin resistance after gastric bypass. Obes. Silver. Spring. 25, 102–110 (2017).
32. Palomo, L. et al. Considerations for applying metabolomics to the analysis of extracellular vesicles. Front. Immunol. 5, 651 (2014).
33. Clos-Garcia, M. et al. Metabolic alterations in urine extracellular vesicles are associated to prostate cancer pathogenesis and progression. J. Extracell. Vesicles 7, 1470442 (2018).
34. Puhka, M. et al. Metabolomic profiling of extracellular vesicles and alternative normalization methods reveal enriched metabolites and strategies to study prostate cancer-related changes. Theranostics 7, 3824–3841 (2017).
35. Casal, E., Palomo, L., Cabrera, D. & Falcon-Perez, J. M. A novel sensitive method to measure catechol-O-methyltransferase activity unravels the presence of this activity in extracellular vesicles released by rat hepatocytes. Front. Pharmacol. 7, 501 (2016).
36. Altdorfer, T. et al. Enabling metabolomics based biomarker discovery studies using molecular phenotyping of exosome-like vesicles. PloS. One 11, e0151339 (2016).
37. Irawi, N. et al. Extracellular vesicles are independent metabolic units with asparagine activity. Nat. Chem. Biol. 13, 951–955 (2017).
38. Royo, F. et al. Hepatocyte-secreted extracellular vesicles modify blood metabolome and endothelial function by an arginase-dependent mechanism. Sci. Rep. 7, 42798 (2017).
39. Royo, F. et al. Metabolically active extracellular vesicles released from hepatocytes under drug-induced liver-damaging conditions modify serum metabolome and might affect different pathophysiological processes. Eur. J. Pharmac. Sci. 98, 51–57 (2017).
40. Lopes-Rodrigues, V. et al. Identification of the metabolic alterations associated with the multidrug resistant phenotype in cancer and their intercellular transfer mediated by extracellular vesicles. Sci. Rep. 7, 44541 (2017).
41. Thakur, B. K. et al. Double-stranded DNA in extrosomes: a novel biomarker in cancer detection. Cell. Res. 28, 105 (2018).
42. Vagner, T. et al. Large extracellular vesicles carry most of the tumour DNA circulating in prostate cancer patient plasma. J. Extracell. Vesicles 7, 1505403 (2018).
43. Guescini, M., Genedani, S., Stocchi, V. & Aghini, L. F. Astrocytes and glioblastoma cells release exosomes carrying miDNA. J. Neural. Transm. 117, 1–4 (2018).
44. Balaj, L. et al. Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences. Nat. Commun. 2, 180 (2011).
45. Shelke, G., Jang, S. C., Yin, Y., Lässer, C. & Lotvall, J. Human mast cells release extracellular vesicle-associated DNA. Matters (Zürich). https://doi.org/10.1016/j.mats.2016020000004 (2016).
46. Fischer, S. et al. Indication of horizontal DNA gene transfer by extracellular vesicles. PloS. One 11, e0163665 (2016).
47. Aneel, M. et al. Antibiotic-induced release of small extracellular vesicles (exosomes) with surface-associated DNA. Sci. Rep. 7, 8202 (2017).
48. Grigor'eva, A. E. et al. Exosomes in tears of healthy individuals: isolation, identification, and characterization. Biochim. Biophys. Acta. Rep. Chemo. 1863, 365–641 (2014).
49. Kuhlert, C. et al. Identification of double-stranded genomic DNA spanning all chromosomes with mutated KRAS and p53 DNA in the serum exosomes of patients with pancreatic cancer. J. Biol. Chem. 289, 3869–3875 (2014).
50. Lázaro-Ibáñez, E. et al. Different gDNA content in the subpopulations of prostate cancer extracellular vesicles: apoptotic bodies, microvesicles, and exosomes. Prostate 74, 1379–1390 (2014).
51. Wang, J. P. & Hielscher, A. Fibronectin: how its aberrant expression in tumors may improve therapeutic targeting. J. Cancer 8, 674–682 (2017).
52. Yáñez-Mó, M. et al. Biological properties of extracellular vesicles and their physiological functions. J. Extracell. Vesicles 4, 1–60 (2015).
53. Cai, J. et al. Transferred BCR/ABL DNA from K562 extracellular vesicles causes chronic myeloid leukemia in immunodeficient mice. PloS. One 9, e105200 (2014).
54. Lee, T. H. et al. Barriers to horizontal cell transformation by extracellular vesicles containing oncogenic H-ras. Oncotarget 7, 51991–52002 (2016).
55. San Lucas, F. A. et al. Minimally invasive genomic and transcriptomic profiling of visceral cancers by next-generation sequencing of circulating extravesicles. Onc. OncoL. 27, 635–641 (2014).
56. Allenson, K. et al. High prevalence of mutant KRAS in circulating exosome-derived DNA from early stage pancreatic cancer patients. Ann. Oncol. 28, mds004 (2016).
57. Möhrmann, L. et al. Liquid biopsies using plasma exosomal nucleic acids and plasma cell-free DNA compared with clinical outcomes of patients with advanced cancers. Oncl. Cancer Res. 24, 181–188 (2018).
58. Yang, S. et al. Detection of mutant KRAS and TP53 DNA in circulating exosomes from healthy individuals and patients with pancreatic cancer. Cancer Biol. Ther. 18, 158–165 (2017).
59. Castellanos-Rizaldos, E. et al. Exosome-based detection of EGFRT790M in plasma from non–small cell lung cancer patients. Oncl. Cancer Res. 24, 2944–2950 (2018).
60. García-Romero, N. et al. DNA sequences within gloma-derived extracellular vesicles can cross the intact blood-brain barrier and be detected in peripheral blood of patients. Oncotarget 8, 1416–1428 (2017).
109. Baig, S. et al. Lipidomic analysis of human placental syncytiotrophoblast microvesicles in adverse pregnancy outcomes. Placenta 34, 436–442 (2013).
110. Rappa, G., Mercapide, J., Anzanello, F., Pope, R. M. & Lorico, A. Biochemical and biological characterization of exosomes containing prominin-1/CD133. Mol. Cancer 12, 62 (2013).
111. Llorente, A. et al. Molecular lipidomics of exosomes released by PC-3 prostate cancer cells. Biochim. Biophys. Acta 1831, 1302–1309 (2013).
112. Pienimaeki-Roemer, A. et al. Lipidomic and proteomic characterization of platelet extracellular vesicle subfractions from senescent platelets. Transfusion 55, 507–521 (2015).
113. Lydic, T. A. et al. Rapid and comprehensive ‘shotgun’ lipidome profiling of colorectal cancer cell derived exosomes. Methods 87, 83–95 (2015).
114. Hanszt, R. A. et al. High-resolution proteomic and lipidomic analysis of exosomes and microvesicles from different cell sources. J. Extracell. Vesicles 5, 32570 (2016).
115. Hu, Q. et al. Lipid profile of platelets and platelet-derived microparticles in ovarian cancer. BBA Clin. 6, 76–81 (2016).
116. Ouyang, Y. et al. Isolation of human trophoblastic extracellular vesicles and characterization of their cargo and antiviral activity. Placenta 47, 86–95 (2016).
117. Durcin, M. et al. Characterisation of adipocyte-derived extracellular vesicle subtypes identifies distinct protein and lipid signatures for large and small extracellular vesicles. J. Extracell. Vesicles 6, 1305677 (2017).
118. Braig, D. et al. Transitional changes in the CRP structure lead to the exposure of proinflammatory binding sites. Nat. Commun. 8, 14188 (2017).
119. Dang, V. D., Jella, K. K., Ragheb, R. R. T., Denslow, N. D. & Alli, A. A. Lipidomic and proteomic analysis of exosomes from mouse cortical collecting duct cells. FASEB J. 31, 5399–5408 (2017).
120. Hough, K. P. et al. Unique lipid signatures of extracellular vesicles from the airways of asthmatics. Sci. Rep. 8, 10340 (2018).
121. Jeon, J. et al. Comparative lipidomic profiling of the human commensal bacterium Propionibacterium acnes and its extracellular vesicles. RSC Adv. 8, 15241–15247 (2018).
122. Downs, C. A., Dan, V. D., Johnson, N. M., Denslow, N. D. & Alli, A. A. Hydrogen peroxide stimulates exosomal cathepsin B regulation of the receptor for advanced glycation end-products (RAGE). J. Cell Biochem. 119, 599–606 (2018).
123. Miranda, A. M. et al. Neuronal lysosomal dysfunction releases exosomes harboring APP C-terminal fragments and unique lipid signatures. Nat. Commun. 9, 291 (2018).
124. Chao, O. S. et al. The HDAC6 inhibitor tubacin induces release of CD133+ extracellular vesicles from cancer cells. J. Cell. Biochem. 118, 4414–4424 (2017).
125. Krishnamoorthy, L., Bess, J. W., Preston, A. B., Nagashima, K. & Mahal, L. K. HIV-1 and microvesicles from T cells share a common glycome, arguing for a common origin. Nat. Chem. Biol. 5, 244–250 (2009).
126. Batista, B. S., Eng, W. S., Pilibello, K. T., Hendrickx-Muñoz, K. D. & Mahal, L. K. Identification of a conserved glycan signature for microvesicles. J. Proteome Res. 10, 4624–4633 (2011).
127. Shimoda, A., Tahara, Y., Sawada, S.-I., Sasaki, Y. & Akiyoshi, K. Glycan profiling analysis using evanescent-field fluorescence-assisted lectin array: Importance of sugar recognition for cellular uptake of exosomes from mesenchymal stem cells. Biochim. Biophys. Res. Commun. 491, 701–707 (2017).
128. Pilibello, K. T., Krishnamoorthy, L., Slawek, D. & Mahal, L. K. Development of a lectin microarray for the rapid analysis of protein glycopatterns. Chembiochem 6, 985–989 (2005).
129. Echevarria, J. et al. Microarray-based identification of lectins for the purification of human urinary extracellular vesicles directly from urine samples. Chembiochem 15, 1621–1626 (2014).
130. Escrevente, C. et al. Sialoglycoproteins and N-glycans from secreted exosomes of ovarian carcinoma cells. PLoS One 8, e78631 (2013).
131. Gomes, J. et al. Extracellular vesicles from ovarian carcinoma cells display specific glycosignatures. Biomolecules 5, 1741–1761 (2015).
132. Nyúlvíðsdóttir, J. O. et al. Increased bisection N-acetylgalactosamine and decreased branched chain glycans of N-linked glycoproteins in expressed prostatic secretions associated with prostate cancer progression. Proteom. Clin. Appl. 7, 677–689 (2013).
133. Staubach, S., Schädelwandt, P., Wendel, U., Nohroudi, K. & Hanisch, F.-G. Differential glycomics of epithelial membrane glycoproteins from urinary exo-vesicles reveals shifts toward complex-type N-glycosylation in classical galactosemia. J. Proteome Res. 11, 906–916 (2012).
134. Zhang, H. et al. Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow field-flow fractionation. Nat. Cell Biol. 20, 332–343 (2018).