Transfinite inductions producing coanalytic sets

Zoltán Vidnyánszky*

May 2, 2014

Abstract

A. Miller proved the consistent existence of a coanalytic two-point set, Hamel basis and MAD family. In these cases the classical transfinite induction can be modified to produce a coanalytic set. We generalize his result formulating a condition which can be easily applied in such situations. We reprove the classical results and as a new application we show that consistently there exists an uncountable coanalytic subset of the plane that intersects every C^1 curve in a countable set.

1 Introduction

A two-point set is a subset of the plane that intersects every line in exactly two points. Mazurkiewicz showed the existence of a two-point set using transfinite induction. Erdős asked whether a two-point set can be a Borel set. This question is still open.

A. Miller proved in [13] that under certain set theoretic assumptions (namely $V = L$, where L denotes Gödel’s constructible universe) one can construct a coanalytic two-point set. Miller also proved the consistent existence of a coanalytic MAD family and Hamel basis. The author proves the statement solely for two-point sets and the proof uses deep set theoretical tools. References to Miller’s method appear in several papers ([2], [3], [8] etc.), sometimes omitting the proof. However, the first version of the method was published by Erdős, Kunen and Mauldin ([3]).

Our aim here is to make precise and prove a ”black box” condition which could easily be applied without the set theoretical machinery.

Let us remark here that in all of the above mentioned cases, except of course the two-point set, the class of coanalytic sets is best possible, since it is known that there is no analytic

1. MAD family,
2. Hamel basis,

*Partially supported by the Hungarian Scientific Research Fund grant no. K72655

2010 Mathematics Subject Classification: Primary 03E15; Secondary 28A05, 03E45, 54H05.

Key words and phrases: coanalytic, constructible, Hamel basis, two-point set, transfinite.
3. C^1-small set (that is, an uncountable subset of the plain that intersects every C^1 curve in countably many points).

1. is a classical result of Mathias (11) and for the proof of 3. see 8, 2. can be shown with an easy computation. Moreover, assuming projective determinacy one can show that there is no projective Hamel basis or C^1-small set. It is also an interesting fact that an analytic two-point set is automatically Borel.

Now to formulate our results first we define Turing reducibility. Throughout the paper M will stand for \mathbb{R}^n, 2^ω, $P(\omega)$ or ω^n.

Definition 1.1. Suppose that $x, y \in M$. We say that x is Turing reducible to y if there exists a Turing machine that computes x with the oracle y. This relation is denoted by $x \leq_T y$. Let us say that $A \subset M$ is cofinal in the Turing degrees, if for every $x \in M$ there exists a $y \in A$ such that $x \leq_T y$.

Roughly speaking, the theorem will state that if given a transfinite induction that picks a real x_α at each step α, the set of possible choices (described by the set F below) is nice enough and cofinal in the Turing degrees then the induction can be realized so that it produces a coanalytic set. In most cases there will be an extra requirement that x_α has to be picked from a given set H_α. For example, in the construction of the two-point set H_α is the α^{th} line. Instead of the sets H_α we will use a parametrization where H_α will be coded by p_α and typically the codes will range over \mathbb{R}. The set of the codes will be denoted by B.

Notation. If $S \subset X \times Y$ and $x \in X$ we denote the x-section of S (i.e. $\{y \in Y : (x, y) \in S\}$) with S_x. Let ω denote the first infinite ordinal, ω_1 is the first uncountable ordinal. For a set H the set of countable sequences of elements of H is denoted by $H^{\leq\omega}$. Note that if M is a Polish space then there is a natural Polish structure on $M^{\leq\omega}$.

Definition 1.2. Let $F \subset M^{\leq\omega} \times B \times M$, and $X \subset M$. We say that X is compatible with F if there exist enumerations $B = \{p_\alpha : \alpha < \omega_1\}$, $X = \{x_\alpha : \alpha < \omega_1\}$ and for every $\alpha < \omega_1$ a sequence $A_\alpha \in M^{\leq\omega}$ that is an enumeration of $\{x_\beta : \beta < \alpha\}$ in type $\leq \omega$ such that $(\forall \alpha < \omega_1)(x_\alpha \in F(A_\alpha, p_\alpha))$ holds.

This definition is basically describing that in each step of the transfinite induction we pick an element from a set $F(A_\alpha, p_\alpha)$ which depends on the set of the previous choices A_α and the α^{th} parameter p_α.

Theorem 1.3. $(V = L)$ Let B be an uncountable Borel subset of an arbitrary Polish space. Suppose that $F \subset M^{\leq\omega} \times B \times M$ is a coanalytic set and for all $p \in B$, $A \in M^{\leq\omega}$ the section $F(A,p)$ is cofinal in the Turing degrees. Then there exists a coanalytic set X that is compatible with F.

In fact we will prove a much stronger theorem (Theorem 3.4), which we call the Main Theorem. However, all the classical applications are using Theorem 1.3 and it will be an easy consequence of the Main Theorem (see Section 4). We would like to emphasize one of our further results from Section 4.

Theorem 1.4. $(V = L)$ Suppose that $G \subset \mathbb{R} \times \mathbb{R}^n$ is a Borel set and for every countable $A \subset \mathbb{R}$ the complement of the set $\cup_{p \in A} G_p$ is cofinal in the Turing degrees. Then there exists an uncountable coanalytic set $X \subset \mathbb{R}^n$ that intersects for every $p \in \mathbb{R}$ the section G_p in a countable set.

Our paper is organized as follows: in Section 2 we summarize the most important facts used for the proof and Section 3 contains the proof of the Main Theorem. In Section 4 we prove several generalizations, a partial converse and we obtain
the existence of a coanalytic Hamel basis (which slightly differs from the other applications). Finally in Section 5 we present the applications of our theorem and mention some open problems. The reader only interested in how to apply the method developed in this paper may now proceed to Section 5 which is not building on Sections 2, 3 and 4.

2 Preliminaries

We will use standard notation as in [14]. If A is a set, $\mathcal{P}(A)$ denotes the power set of A. We identify ω^ω, $(\omega^\omega)^{\leq_\omega}$, 2^ω, ω^ω, \mathbb{R}^{\leq_ω}, $\mathcal{P}(\omega)$ and their finite products, since there are recursive Borel-isomorphisms between them (see [14, 3I.4. Theorem]). A “real” is an element of one of these spaces. For convenience we will use their continuous images \mathcal{L} of \mathcal{L}.

Theorem 2.1. ([10, Theorem (2A-1)]) \mathcal{L} is the standard well ordering of ω^ω.

Theorem 2.2. ([12, Corollary 27.4]) Let A be an arbitrary set. We will use the following form of Spector-Gandy-theorem:

Theorem 2.3. ([15, Corollary 29.3]) Let $A \subseteq (\omega^\omega)^2$ be a $\Pi^1_1(t)$ subset of $(\omega^\omega)^2$. Then the set

$$\{y \leq_h x \mid (x,y) \in A\}$$

is also $\Pi^1_1(t)$.

In [11] the authors work with a very useful alternative form. We call a formula in the language of set theory Σ_1 if it has just one unbounded quantifier and that is existential. In case all the quantifiers are bounded, we call it Δ_0.

Theorem 2.4. A set A is $\Pi^1_1(t)$ if and only if there exists a Σ_1 formula θ such that

$$x \in A \iff L_{\omega^\alpha,1}[x,t] \models \theta(x,t).$$

Definition 2.5. We call a set $X \subseteq \omega^\omega$ cofinal in the hyperdegrees if for every $y \in \omega^\omega$ there exists an $x \in X$ such that $y \leq_h x$.

Furthermore, in [11] one can find the following lemma.

Lemma 2.6. ($V=L$) Let $t \in \omega^\omega$ be arbitrary. A $\Pi^1_1(t)$ set X is cofinal in the hyperdegrees if and only if $X \cap S$ is cofinal in the hyperdegrees.

3
3 The main theorem

First we will prove a rather technical lemma.

Lemma 3.1. Suppose that \(\theta(s,p,q) \) is a \(\Sigma_1 \) formula of set theory. Then there exists a \(\Sigma_1 \) formula \(\theta'(s,p) \) such that for every limit ordinal \(\alpha > \omega \)

\[
L_\alpha \models ((\forall q < L \ p)(\theta(s,p,q)) \iff \theta'(s,p)).
\]

Proof. By [2, 3.5 Lemma, p. 75] there exists a \(\Sigma_1 \) formula \(\zeta(x,y) \) such that for arbitrary limit ordinal \(\alpha > \omega \)

\[
L_\alpha \models (\zeta(x,y) \iff y = \{t : t < L \ x\}).
\]

Notice that if \(\alpha > \omega \) is a limit ordinal and \(x \in L_\alpha \) then \(\{t : t < L \ x\} \in L_\alpha \). Let

\[
\theta''(s,p) = (\exists y)(\zeta(p,y) \wedge (\forall q < y)(\theta(s,p,q))).
\]

Now, since \(\theta'' \) contains solely existential and bounded quantifiers, using the well-known trick there exists a \(\Sigma_1 \) formula \(\theta'(s,p) \) such that for every limit ordinal \(\alpha > \omega \)

\[
L_\alpha \models (\theta''(s,p) \iff \theta'(s,p)).
\]

In the following lemma we will select a single well-ordering of \(\omega \) of type \(\alpha \) for every countable ordinal \(\alpha \) in a "nice" way. The selection will be done by a formula \(\phi(z,x) \) that intuitively means that \(x \) "knows" that \(z \) is a canonical well-ordering.

Let \(z \in \omega^\omega \) and define \(<_z \) as the relation \(m <_z n \iff (m,n) \in z \). Let us use the notation \(\text{dom}(<_z) \) for the set \(\{n \in \omega : (\exists m \in \omega)((m,n) \in z)\} \). For \(z,z' \in \mathcal{P}(\omega^\omega) \) we say that \(<_z \equiv <_{z'} \) if there exists a bijection \(f : \text{dom}(<_z) \to \text{dom}(<_{z'}) \) such that

\[
(\forall m,n \in \text{dom}(<_z))(m <_z n \iff f(m) <_{z'} f(n)).
\]

Now if \(<_z \) is an ordering and \(n \in \omega \) let us denote by \(<_z \upharpoonright <_z \nabla n \) the ordering obtained by restricting \(<_z \) to the set \(\{m \in \omega : m <_z n\} \).

Lemma 3.2. \((V = L)\) There exists a formula \(\phi(z,x) \) defining a \(\Pi_1^1 \) subset of \(\mathcal{P}(\omega^\omega) \times \omega^\omega \) with the following properties

1. if \(s \subseteq \omega^\omega \) and \(<_z \) is a well-ordering then there exists a unique \(z \) such that \(<_z \equiv <_{s}, (\exists x \in \omega^\omega)\phi(z,x) \) and \(\text{dom}(<_z) \) is a natural number or \(\omega \)
2. if \(y \in S \), \(x \leq_h y \) and \(\phi(z,x) \) then \(\phi(z,y) \)
3. if \(\phi(z,x) \) then \(z \leq_h x \) and \(x \in S \)
4. if \(\phi(z,x) \) and \(n \in \omega \) is arbitrary then there exists a unique pair \(g_n,y_n \in L_{\omega_1^\omega} \) such that \(\phi(y_n,x) \) and \(g_n \subseteq \omega^2 \) is an isomorphism between \(<_z \upharpoonright <_z \nabla n \) and \(<_{y_n}. \)

Proof. First let us denote by \(\psi(z,h,\alpha) \) the conjunction of the following three formulas:

- \(h \) is a function, \(\text{dom}(h) = \alpha \) is an ordinal, \(\text{ran}(h) = \text{dom}(<_z) \)
- \((\forall \beta, \beta' \in \alpha)(\beta \in \beta' \iff h(\beta) <_z h(\beta')) \)
- \(\text{dom}(<_z) \) is a natural number or \(\omega. \)
So $\psi(z, h, \alpha)$ says that h is an isomorphism between α and $<_z$. Notice that ψ is a Δ_0 formula (see [2], Section 1). Hence for limit ordinals $\beta > \omega$ if $z, h, \alpha \in L_\beta$ then $L \models \psi(z, h, \alpha) \iff L_\beta \models \psi(z, h, \alpha)$.

Let us define $\phi(z, x)$ as follows:

$$\phi(z, x) \iff x \in S \land z \leq_h x \land$$

$$L_\omega \models (\exists h \exists \alpha)((\psi(z, h, \alpha) \land (\forall (z', h') <_L (z, h))(-\psi(z', h', \alpha))))$$

First, we will prove that $\phi(z, x)$ defines a Π^1_1 set. The formula

$$(\exists h \exists \alpha)((\psi(z, h, \alpha) \land (\forall (z', h') <_L (z, h))(-\psi(z', h', \alpha))))$$

by Lemma 3.1 is equivalent to a Σ_1 formula, say $\zeta(z)$, in L_β if β is a limit ordinal and $\beta > \omega$. Notice that $z \leq_h x$ implies $(x, z) \leq x$ so $\omega^{(x,z)} \leq \omega^1_1$ by Theorem 2.2. Moreover, from $(x, z) \leq_h x$ and by Theorem 2.2 we have that $(x, z) \in L_\omega^1[x]$. Additionally, $x \in S$ so $L_\omega^1 = L_{\omega^1_1[x]}$. Thus $(x, z) \in L_\omega^1$ and the equality $L_{\omega^1_1[x]}[x, z] = L_\omega^1$ holds. Therefore

$$L_\omega^1 \models (\exists h \exists \alpha)((\psi(z, h, \alpha) \land (\forall (z', h') <_L (z, h))(-\psi(z', h', \alpha))))$$

$$\iff L_\omega^1 \models \zeta(z)$$

$$\iff L_{\omega^1_1[x, z]}[x, z] \models \zeta(z).$$

By Theorems 2.1 and 2.2 it is clear that $(x \in S) \land (z \leq_h x)$ defines a Π^1_1 set. Now we can prove that the set $\{ (x, z) : L_{\omega^1_1[x, z]}[x, z] \models \zeta(z) \}$ is also Π^1_1 using Theorem 2.4 with $t = 0$ and replacing x by (x, z). Thus ϕ defines a Π^1_1 set.

Now we will prove that $\phi(z, x)$ has the required properties.

1. Let $s \subset \omega^2$ be an arbitrary well-ordering. Then $<_s$ is isomorphic to some ordinal α. There exists a $<_L$ minimal pair (z, h) such that h is an isomorphism between $<_s$ and α and $\operatorname{dom}(<_s)$ is a natural number or ω. Therefore

$$L \models (\exists h \exists \alpha)((\psi(z, h, \alpha) \land (\forall (z', h') <_L (z, h))(-\psi(z', h', \alpha))))$$

Notice that if $\xi(s)$ is a Δ_0 formula, β is a limit ordinal such that $s \in L_\beta$ and $L \models \xi(s)$ then $L_\beta \models \xi(s)$. Therefore automatically $L_\beta \models (\exists r)(\xi(r))$. Considering this one can conclude that

$$L_\omega^1 \models (\exists h \exists \alpha)((\psi(z, h, \alpha) \land (\forall (z', h') <_L (z, h))(-\psi(z', h', \alpha))))$$

holds if $(z, h) \in L_\omega^1$. S is cofinal in the hyperdegrees (Lemma 2.0) hence there exists an $x \in S$ such that $(z, h) \in L_\omega^1$. So for such an x we have $\phi(z, x).

2. To prove the second claim just observe that Σ_1 formulas are upward absolute for transitive sets and notice that $x \leq_h y$ implies that $L_\omega^1 \subset L_\omega^1$.

3. Obvious from the definition of ϕ.

5
Let us recall the definition of compatibility. Every \(\alpha \leq \omega \) \(F \) with \(\omega \leq \) in the hyperdegrees. Then there exists a \((\text{Main Theorem}) (\text{Theorem 3.4.})\) \(\omega \) \(F \) \(\omega \times \omega \) such that \(x \leq \omega \) \(\beta < \alpha \) \(h \) is a one-to-one function from a finite number or \(\omega \) between the finite subsets of \(\langle \omega \rangle \). Now take \(\langle k,l \rangle \in y_n \iff (e(k),e(l)) \in z \) and \(h'_n = e^{-1} \circ h' \). Then \(L \models \psi(y'_n,h'_n,\beta) \) and of course \(y'_n, h'_n, \beta \in L_{\omega_1^\omega} \) hence \(L_{\omega_1^\omega} \models \psi(y'_n,h'_n,\beta) \).

Thus there exists a \(<_L \) minimal pair \((y_n,h_n) \in L_{\omega_1^\omega} \) such that \(L_{\omega_1^\omega} \models \psi(y_n,h_n,\beta) \). Note that the \(<_L \) ordering is absolute for \(L \alpha \) and \(L \) if \(\alpha > \omega \) is a limit ordinal, so \(L_{\omega_1^\omega} \models \psi(y_n,h_n,\beta)^\beta \). By Theorem 2.2 if \(y_n \in L_{\omega_1^\omega} \) then \(y_n \leq h x \). Thus \(\phi(y_n,x) \) holds.

Finally recall that \(h_n : \beta \to \text{dom}(<_n) \) and \(h' : \beta \to \text{dom}(<_n) \) are isomorphisms in \(L_{\omega_1^\omega} \). So the function \(g_n = h_n \circ (h')^{-1} \) is in \(L_{\omega_1^\omega} \). This is an isomorphism between two well-orderings so this is unique.

Let us recall the definition of compatibility.

Definition 3.3. Let \(F \in M^{\omega^\omega} \times B \times M, X \subseteq M \). We say that \(X \) is compatible with \(F \) if there exist enumerations \(B = \{ \alpha : \alpha < \omega_1 \}, X = \{ x_n : \alpha < \omega_1 \} \) and for every \(\alpha < \omega_1 \) a sequence \(A_\alpha \in M^{\omega^\omega} \) that is an enumeration of \(\{ x_\beta : \beta < \alpha \} \) in type \(\leq \omega \) such that \((r \alpha < \omega_1) (x_n \in F(A_\alpha,p_n)) \) holds.

Theorem 3.4. (Main Theorem) \((V = L) \) Let \(t \in \omega^\omega \). Suppose that \(F \subseteq (\omega^\omega)^{\omega^\omega} \times \omega^\omega \times \omega^\omega \) is a \(\Pi_2(t) \) set and for all \(p \in \omega^\omega, A \in (\omega^\omega)^{\omega^\omega} \) the section \(F(A,p) \) is cofinal in the hyperdegrees. Then there exists a \(\Pi_2(t) \) set \(X \subseteq \omega^\omega \) that is compatible with \(F \).

Proof of the Main Theorem.

In the first step we will modify the set \(F \). Let us define

\[
F' \subseteq P(\omega^2) \times (\omega^\omega)^{\omega^\omega} \times (\omega^\omega)^{\omega^\omega} \times (\omega^\omega)^{\omega^\omega}, (z,A,P,p,x) \in F' \iff \\
1. \phi(z,x) \ (\text{in particular } x \in S) \\
2. A, p, t, h x, (A,p,x) \in F \\
3. L_{\omega_1^\omega} \models \exists g \\
(a) \ g \text{ is a function, } \text{dom}(g) \in \omega \cup \{ \omega \}, \text{ran}(g) = P \\
(b) \ (\forall n, m \in \text{dom}(g)) \ (n <_z m \iff g(n) <_L g(m))
\]
(c) \((\forall p' <_L p)(p' \in \omega^\omega \Rightarrow (\exists n \in \omega)(g(n) = p'))\)

The role of \(z\) is that it will encode the history of the previous choices. 1 – 2 basically ensures that \(z\) is complicated enough. The clauses (a) and (b) describe that \(P\) is an enumeration in type \(\omega\) of the first \(\alpha\) reals with respect to \(<_L\) where \(\alpha = tp(<_z)\). (c) is the formalization of \(L_{\omega_1^\omega} \models "p\) is the \(\alpha^{th}\) real with respect to \(<_L\”).

Lemma 3.2 Theorems 2.1 and 2.2 guarantee that the 1 and 2 are defining a \(\Pi_1^1(\omega)\) set.

We can prove that 3 defines a \(\Pi_1^1(\omega)\) set similarly as we did in Lemma 3.2. (a) and (b) are \(\Delta_\alpha\) formulas, (c) is \(\Sigma_\omega\) by Lemma 3.1. So by the well-known technical trick the conjunction is equivalent to a \(\Sigma_\omega\) formula. Moreover we know that for arbitrary reals \(a \leq_b b \iff a \in L_{\omega_1^\omega}[b]\) and \(a \leq_b b\) implies \(\omega^\omega \leq \omega_1^\omega\). Therefore by 1 and 2

\[L_{\omega_1^\omega(z,A,P,p,t,x)} = L_{\omega_1^\omega}\]

and using the Spector-Gandy Theorem (Theorem 2.4) we can conclude that \(F'\) is a \(\Pi_1^1(\omega)\) set.

Remark 3.5. By absoluteness, if \((z,A,P,p,x) \in F'\) then \(P\) must be the enumeration of the first \(\alpha\) reals given by \(<_z\) in \(L\) as well. Similarly \(p\) must be the \(\alpha^{th}\) real with respect to \(<_L\) (where \(\alpha = tp(<_z)\)).

Lemma 3.6. Suppose that \(x \in F'_z(A,P,p,x), x \leq_b y\) and \(y \in S \cap F(A,p)\). Then \(y \in F'_z(A,P,p)\).

Proof. Let \(x, y\) be reals satisfying the conditions above. Now considering the definition of \(F'\), the formula \(\phi(x, y)\) holds by the second claim of Lemma 3.2. Of course, \(A, P, p, t \leq_b x\) implies \(A, P, p, t \leq_b y\). Finally, \(L_{\omega_1^\omega} \subset L_{\omega_1^\omega}\), by Theorem 2.2 and the formula in 3. that must hold in \(L_{\omega_1^\omega}\) does not depend on \(x\), hence it is also true in \(L_{\omega_1^\omega}\).

Lemma 3.7. If the section \(F'_z(A,P,p)\) is non-empty then it is cofinal in the hyperdegrees.

Proof. Fix an arbitrary \(s \in \omega^\omega\) and let \(x \in F'_z(A,P,p)\). By the assumptions of the Main Theorem each section \(F(A,p)\) cofinal in the hyperdegrees. Using Lemma 2.3 we have that there exists a \(y \in F(A,p) \cap S\) such that \(s, x \leq_b y\). Thus by the previous lemma \(y \in F'_z(A, P, p)\) and this proves the statement.

Now we select a real from each nonempty section of \(F'\). Let \(F'' \subset F'\) be a \(\Pi_1^1(\omega)\) uniformization of \(F'\), that is, for all \((z,A,P,p) \in proj(F')\) we have \(|F''_{(z,A,P,p)}| = 1\) (see [12] or [15] for the relative version of the uniformization theorem).

There may be elements \((z, A, P, p, x) \in F''\) with "wrong" history, namely \(A(n)\) may not be a selected real for some \(n \in \omega\). So we have to sort out the appropriate ones.

Let \(F''' \subset F''\) be defined as follows:

\((z,A,P,p,x) \in F''\) \iff

1. \((z,A,P,p,x) \in F''\)
2. \((\forall n \in \omega)(\exists g_n, y_n \leq_b x)\)
 (a) \(\phi(y_n, x)\)
 (b) \(g_n\) is an isomorphism between \(<_z|_{<_z n}\) and \(y_n\)
 (c) if \(A_n, P_n \in (\omega^\omega)^{<_z}\) is defined by \(A_n(i) = A(g_n(i))\) and similarly \(P_n(i) = P(g_n(i))\) then \((g_n, A_n, P_n, P(n), A(n)) \in F''\)
By properties of \(\phi \), for every countable ordinal \(\alpha \) we have a canonical enumeration of \(\alpha \). In the definition above (c) ensures that for every \((z, A, P, p) \in F'''\) the set \(A \) is the canonical enumeration of the previous choices given by the uniformization of \(F' \).

The clauses (a), (b) are defining a \(\Pi_1^1(t) \) set. Now take the map \(\Psi : (A, P, y_n, g_n, n) \mapsto (g_n, P \circ g_n, P(n), A(n)) \). Observe that \((A, P, y_n, g_n, n), (w_1, w_2, w_3, w_4, w_5)) \in \Psi \iff y_n = w_1, w_4 = P(n), w_5 = A(n)\) and \((\forall m \in \omega)(w_2(m) = A(g_n(m)) \land w_3(m) = P(g_n(m)))\). So \(\Psi \) is a \(\Delta_1^1 \) map and condition (c) describes that \((A, P, y_n, g_n, n) \in \Psi^{-1}(F'')\) thus defines a \(\Pi_1^1(t) \) set. Therefore, using Theorem 2.3 we can conclude that \(F''' \) is also a \(\Pi_1^1(t) \) set.

Now we will prove that \(F''' \) contains a "good selection" and then \(X \) will be the projection of \(F''' \) on the last coordinate.

More precisely, let:

\[
x \in X \iff (\exists (z, A, P, p) \leq_h x)((z, A, P, p, x) \in F''').
\]

Notice that \(X \) is indeed the projection of \(F''' \) on the last coordinate: if \((z, A, P, p, x) \in F''' \subset F'\) then \((A, P, p) \leq_h x\) by the definition of \(F' \) and from the \(3^{rd} \) point of Lemma 3.2 we obtain that \(z \leq_h x \), so obviously \((z, A, P, p) \leq_h x\) holds.

Observe that by Theorem 2.3 the set \(X \) is also \(\Pi_1^1(t) \).

Proposition 3.8. For every \(\alpha \in \omega_1 \) there exists a unique \((z_\alpha, A_\alpha, P_\alpha, p_\alpha, x_\alpha) \in F'''\) such that \(<_{z_\alpha} \cong \alpha \). Moreover, \(\{A_\alpha(n) : n \in \omega\} = \{x_\beta : \beta < \alpha\} \) holds for every \(\alpha < \omega_1 \).

Uniqueness. Let \((z, A, P, p, x), (z', A', P', p', x') \in F'''\) be such that \(<_{z} \cong <_{z'} \cong \alpha\). Let \(z = z'\) follows form the \(1^{st} \) point of Lemma 3.2 since both of \(\phi(z, x) \) and \(\phi(z', x') \) must hold.

- \(p = p'\): clear by Remark 3.5.
- \(P = P'\): also from Remark 3.5 we have that \(P \) and \(P' \) are enumerations of the first \(\alpha \) reals given by \(<_{z} = <_{z'} \).

- \(\alpha = A'\): suppose not. Then take the \(<_{z} \) minimal \(n \in \omega \) such that \(A(n) \neq A'(n) \). By the definition of \(F''' \) there exist \(y_n, g_n \) and \(y'_n, g'_n \) such that \((y_n, A_n, P(n), A(n)) \in F'''\) and \((y'_n, A'_n, P'(n), A'(n)) \in F'''\), \(g_n \) and \(g'_n \) are isomorphism between \(<_{z} \cong <_{z}, y_n, g_n \) and \(\phi(y_n, x) \) and \(\phi(y'_n, x) \) hold. Then again by Lemma 3.2 \(y_n = y'_n, g_n \) is unique so it must equal to \(g'_n \). We obtain that \((y_n, A_n, P(n)) = (y'_n, A'_n, P'(n)) \) but then \(A(n) = A'(n) \) since \(F' \) was uniformized.

- \(x = x'\): also follows from the fact that \(F' \) was uniformized.

Existence.Now with transfinite induction we construct for each \(\alpha \in \omega_1 \) a \((z_\alpha, A_\alpha, P_\alpha, p_\alpha, x_\alpha) \in F'''\) with the required properties.

Let us formulate the inductive hypothesis: let \(\alpha < \omega_1 \) be an ordinal and suppose that for every \(\beta < \alpha \) we have \((z_\beta, A_\beta, P_\beta, p_\beta, x_\beta) \in F''' \) such that for every \(\beta < \alpha \) we have \(\{A_\beta(n) : n \in \omega\} = \{x_\gamma : \gamma < \beta\} \).

We will construct \((z_\alpha, A_\alpha, P_\alpha, p_\alpha, x_\alpha) \in F''' \) satisfying the previous hypothesis. \(z_\alpha \): using the \(1^{st} \) point of Lemma 3.2 there exists a unique \(z_\alpha \) such that \(<_{z_\alpha} \cong \alpha\) and \((\exists x \in \omega^\omega) \phi(z_\alpha, x) \).

- \(p_\alpha \): let \(p_\alpha \) be the \(\alpha^{th} \) real with respect to \(<_L \).

- \(A_\alpha, P_\alpha \): the order-preserving bijection between \(<_{z_\alpha} \) and \(\alpha \) yields enumerations \(\{x_\beta : \beta < \alpha\} \) and \(\{p_\beta : \beta < \alpha\} \), let \(A_\alpha(n) \) be the \(n^{th} \) element of the first set’s enumeration and define \(P_\alpha(n) \) similarly.
By the definition of A_n we have that $\{A_n(n) : n \in \omega\} = \{x_\beta : \beta < \alpha\}$.

We will prove that there exists an $x_\alpha \in \omega^\omega$ such that $(z_\alpha, A_\alpha, P_\alpha, p_\alpha, x_\alpha) \in F'''$. By the properties of F for every (A, p) there exist cofinaly many (in the hyperdegrees) x such that $(A, p, x) \in F$, so this also holds for (A_α, p_α). From Lemma 3.7 we have that if the section $F_{(z_\alpha, A_\alpha, p_\alpha)}$ is non-empty then it is cofinal in the hyperdegrees.

Now we show that it is non-empty. $L \models \phi$ is an enumeration of the first α reals given by $<_{z_\alpha}$ and p_α is the α^{th} real” so by absoluteness arguments it holds in $L_{\omega_1^L}$ is ω_1^L is high enough. Let us choose a real x such that $x \in F_{A_\alpha, p_\alpha} \cap S$, $L_{\omega_1^L} \models \phi$ is an enumeration of the first α reals given by $<_{z_\alpha}$ and p_α is the α^{th} real” and $\phi(z_\alpha, x)$. Such an x exists by the 2^{nd} point of Lemma 3.7 and by the fact that $F_{(A, p)} \cap S$ is cofinal in the hyperdegrees. Clearly $(z_\alpha, A_\alpha, p_\alpha, p_\alpha, x) \in F'$.

Thus there exists an x_α such that $(z_\alpha, A_\alpha, p_\alpha, p_\alpha, x_\alpha) \in F'''$.

What remains to show is that $(z_\alpha, A_\alpha, p_\alpha, p_\alpha, x_\alpha) \in F'''$:

From $(z_\alpha, A_\alpha, p_\alpha, p_\alpha, x_\alpha) \in F'$ follows that $\phi(z_\alpha, x_\alpha)$. First notice that by the 4^{th} point of Lemma 3.2 $\phi(z_\alpha, x_\alpha)$ implies the existence of y_n-s and g_n-s satisfying properties 2(a) and 2(b) from the definition of F'''.

To see that 2(c) also holds for $(z_\alpha, A_\alpha, P_\beta, p_\alpha, x_\alpha)$, fix a natural number n. We know that $\phi(y_n, x_\alpha)$ holds thus there exists a $\beta < \alpha$ such that $\gamma = y_n$. For all $\beta < \alpha$ the formula $\phi(z_\beta, x_\beta)$ holds (by inductive hypothesis $(z_\beta, A_\beta, P_\beta, p_\beta, x_\beta) \in F'''$ and use the 1^{st} point of the definition of F'). Let us set $A_n = A_\alpha \circ g_n$ and $p_n = P_\beta \circ g_n$.

We will prove that

$$(y_n, A_\alpha, P_\beta, (n), A_\alpha(n)) = (z_\beta, A_\beta, p_\beta, x_\beta) \in F'''.$$

By the 1^{st} property of ϕ the equality $y_n = z_\beta$ holds.

Now using the inductive hypothesis we have that $\{A_\beta(m) : m \in \omega\} = \{x_\gamma : \gamma < \beta\}$. The latter set clearly equals $\{A_\beta(m) : m \in \omega\}$. A_β and A_α are the enumerations of the same set of reals given by $<_{z_\beta} = <_{y_n}$, hence $A_\alpha = A_\beta$.

Similarly, since P_β and P_α are the enumerations of the same set (namely the β long initial segment of the reals with respect to $<_L$, see the Existence part of the proof and Remark 3.8). Finally, $A_\alpha(n)$ and $P_\alpha(n)$ are defined as x_β and the β^{th} real, respectively.

This finishes the proof of the statement that 2(c) also holds for $(z_\alpha, A_\alpha, P_\beta, p_\alpha, x_\alpha)$ and hence the proof of the existence.

We have already seen that X is a $\Pi^1_1(t)$ set. Now we check that it is compatible with F. By the previous proposition, for every $\alpha < \omega_1$ there exists a unique element $(z_\alpha, A_\alpha, p_\alpha, x_\alpha) \in F'''$ such that $<_{z_\alpha} \cong \alpha$. This gives us the enumerations $X = \{x_\alpha : \alpha < \omega_1\}$ and $\{p_\alpha : \alpha < \omega_1\}$. Now by 3^{rd} point of the definition of F'' we have that if $(z_\alpha, A_\alpha, p_\alpha, x_\alpha) \in F'' \subset F'$ then $L_{\omega_1^\alpha} \models p_\alpha$ is the α^{th} real with respect to $<_L$ and by absoluteness the same holds in L. Thus we obtain that $\omega^\omega = \{p_\alpha : \alpha < \omega_1\}$. Fix an $\alpha < \omega_1$. By the second claim of Proposition 3.2 it is clear that A_α is an enumeration of $\{x_\beta : \beta < \alpha\}$. Furthermore, $(z_\alpha, A_\alpha, P_\alpha, p_\alpha, x_\alpha) \in F'' \subset F'$ thus by the 2^{nd} point of the definition of F' we have that $x_\alpha < F(A_\alpha, p_\alpha)$ so we can conclude that X is compatible with F.

4 Generalizations and remarks

Now we will prove the following theorem.
Theorem 4.1. \((V = L)\) Let \(B\) be a Borel subset of an arbitrary Polish space, \(|B| > \aleph_0\). Suppose that \(F \subseteq (\omega^\omega)^{\leq \omega} \times B \times \omega^\omega\) is a coanalytic set and for all \(p \in B\), \(A \in (\omega^\omega)^{\leq \omega}\) the section \(F_{(A,p)}\) is cofinal in the hyperdegrees. Then there exists a coanalytic set \(X \subseteq \omega^\omega\) that is compatible with \(F\).

Proof. A classical result states that for every uncountable Borel subset \(B\) of a Polish space there exists a map \(\Psi : \omega^\omega \to B\) that is a Borel isomorphism.

Suppose that \(F\) is a set as above. Let us define \(G \subseteq (\omega^\omega)^{\leq \omega} \times \omega^\omega \times \omega^\omega\) as follows:

\[
(A, q, x) \in G \iff (A, \Psi(q), x) \in F.
\]

Clearly, \(G\) is a coanalytic set thus there exists a \(t \in \omega^\omega\) so that \(G \subseteq \Pi^1_1(t)\). Of course, each section \(G_{(A,q)}\) is cofinal in the hyperdegrees. The direct application of the Main Theorem yields a \(\Pi^1_1(t)\) (therefore coanalytic) set \(X \subseteq \omega^\omega\) that is compatible with \(G\). From the compatibility we obtain the enumeration \(\omega^\omega = \{q_\alpha : \alpha < \omega_1\}\). But then \(\{\Psi(q_\alpha) : \alpha < \omega_1\}\) is an enumeration of \(B\) and clearly, \(X\) is compatible with \(F\) using this enumeration.

We can derive an obvious but useful consequence of the previous theorem using that \(x \leq_\pi y\) implies \(x \leq_\pi y\) and omitting the relativization.

Theorem 4.2. \((V = L)\) Let \(P\) be an uncountable Borel subset of a Polish space. Suppose that \(F \subseteq (\omega^\omega)^{\leq \omega} \times P \times \omega^\omega\) is a coanalytic set and for all \(p \in \omega^\omega\), \(A \in (\omega^\omega)^{\leq \omega}\) the section \(F_{(A,p)}\) is cofinal in the Turing degrees. Then there exists a coanalytic set \(X\) that is compatible with \(F\).

It is also easy to see that in the previous theorem we can replace \(\omega^\omega\) by \(\mathbb{R}\) or \(2^\omega\) etc., since there are recursive Borel isomorphisms between these spaces. Thus we obtain Theorem 1.3.

With the same methods one could prove the following strengthening of the Main Theorem:

Theorem 4.3. \((V = L)\) Let \(B\) be a \(\Delta^1_1\) subset of \(\omega^\omega\), \(|B| > \aleph_0\). Suppose that \(F \subseteq (\omega^\omega)^{\leq \omega} \times B \times \omega^\omega\) is a \(\Pi^1_1(t)\) set and for all \(p \in B\), \(A \in (\omega^\omega)^{\leq \omega}\) the section \(F_{(A,p)}\) is cofinal in the hyperdegrees. Then there exists an \(X \subseteq \Pi^1_1(t)\) that is compatible with \(F\).

Now we will examine the necessity of \((V = L)\).

Theorem 4.4. If the conclusion of the Main Theorem holds then there exists a \(\Sigma^1_2\) well-ordering of the reals. In particular, every real is constructible.

Proof. Fix recursive \(\Delta^1_1\) bijections \(\Psi_1 : \omega^\omega \to (\omega^\omega)^{\leq \omega} \times \omega^\omega\) and \(\Psi_2 : \omega^\omega \to \omega^\omega \times \omega^\omega\).

Let us define the set \(F \subseteq (\omega^\omega)^{\leq \omega} \times \omega^\omega \times \omega^\omega\) as follows:

\[
(A, p, x) \in F \iff (A, p) = \Psi_1(\pi_1(\Psi_2(x))) \land (\forall n)(A(n) \neq x),
\]

where \(\pi_1\) is the projection of \(\omega^\omega \times \omega^\omega\) on the first coordinate. So basically \(x\) is coding the previous choices and the parameter in the “odd coordinates”.

\(F\) is clearly \(\Delta^1_1\). Now for an arbitrary pair \((A, p)\) and \(y \in \omega^\omega\) there exist cofinally many \(x \in \omega^\omega\) such that \((A, p) = \Psi_1(\pi_1(\Psi_2(x)))\) and \(y \leq_x h\), hence every section \(F_{(A,p)}\) is cofinal in the hyperdegrees. Thus by our hypothesis there exists a \(\Pi^1_1\) set \(X = \{x_\alpha : \alpha < \omega_1\}\) and an enumeration \(\omega^\omega = \{p_\alpha : \alpha < \omega_1\}\) such that for every \(\alpha < \omega_1\) we have \(x_\alpha \in F_{(A_\alpha,p_\alpha)}\), where \(A_\alpha\) is an enumeration of \(\{x_\beta : \beta < \alpha\}\).

We will define the well-ordering of \(\omega^\omega\) with the help of the given enumeration of \(X\). Since every \(x_\alpha\) codes the appropriate \(p_\alpha\), we can order \(\omega^\omega\) by the first appearance of a real \(p\).

Now for \(p, q \in \omega^\omega\) let \((p, q) \in E \iff \exists x, y, A, B\)
1. \(x, y \in X, x \neq y, (A, p, x) \in F, (B, q, y) \in F \)
2. \((\forall m)(\forall C)((C, p, A(m)) \not\in F \land (C, q, B(m)) \not\in F)\)
3. \((\exists n)(x = B(n)).\)

Since \(F \) is \(\Delta^1_1 \), we have that \(E \) is a \(\Sigma^1_3 \) relation.

Fix \(p, q \in \omega^\omega \). There exist minimal ordinals \(\alpha, \beta \) such that \(p_\alpha = p \) and \(p_\beta = q \).

We will prove that \((p, q) \in E \iff \alpha < \beta \). We have for \(\alpha \) and \(\beta \) that \((A_\alpha, p_\alpha, x_\alpha) \in F \) and \((A_\beta, p_\beta, x_\beta) \in F \).

First, if \(\alpha < \beta \) choose \(x = x_\alpha, y = x_\beta, A = A_\alpha, B = A_\beta. \) Then 1 is obvious (by the definition of \(F \) we have that \(x_\alpha \neq x_\beta \) if \(\alpha < \beta \) and \(A_\beta \) is an enumeration of \(\{x_\gamma : \gamma < \beta \} \) so 3 also holds. Suppose that 2 fails for \(p \); there exists a pair \(m, C \) such that \((C, p, A(m)) \in F \) (the other case is similar). Then \(A(m) = x_\alpha \) for some \(\gamma < \alpha \) and \((C, p) = (A_\gamma, p_\alpha) \). This would contradict the minimality of \(\alpha \), and similarly for \(\beta \).

For the other direction suppose that \((p, q) \in E \) and take \(x, y, A, B \) witnessing this fact. Clearly, \(x = x_\alpha \) for some \(\alpha' \) so \((A_\alpha', p_\alpha') = (A, p) \) and similarly \((A_\beta', p_\beta') = (B, q) \). Using 2 we get the minimality of \(\alpha' \) and \(\beta' \) so they must be equal to \(\alpha \) and \(\beta \).

Suppose that \(\alpha \geq \beta \), then of course \(\alpha > \beta \). By 3 we have that there exists an \(n \in \omega \) such that
\[
A_\beta(n) = A_\beta'(n) = B(n) = x = x_\alpha' = x_\alpha.
\]

By the assumption \(\{x_\gamma : \gamma < \beta\} \not\subseteq \{x_\gamma : \gamma < \alpha\} \). We have that
\[
\{A_\beta(m) : m \in \omega\} = \{x_\gamma : \gamma < \beta\} \subseteq \{A_\alpha(m) : m \in \omega\}
\]
then \(A_\alpha(m) = x_\alpha \) for some \(m \in \omega \). But this is a contradiction, since \((\forall n)(A(n) \neq x) \) for every \((A, p, x) \in F \). Thus \(\alpha < \beta \).

So we obtain that \(E \) is a \(\Sigma^1_3 \) well-ordering. The second claim follows from Mansfield’s theorem, see [2] Theorem 25.39.

Next we show that the definability assumption on our “selection algorithm” \(F \) cannot be dropped in the Main Theorem.

Example 4.5. (CH) There exists a family \(\{A_\alpha : \alpha < \omega_1\} \subseteq [\omega^\omega]^{\leq \aleph_0} \) such that if for a set \(X \) there exists an enumeration \(X = \{x_\alpha : \alpha < \omega_1\} \) so that \((\forall \alpha < \omega_1)(x_\alpha \notin A_\alpha) \) then \(X \) is not coanalytic.

Proof. Fix an enumeration of the reals \(\{y_\alpha : \alpha < \omega_1\} \). We will define \(A_\alpha \) by recursion. Suppose that we are ready for \(\beta < \alpha \) and let us choose \(A_\alpha \in [\omega^\omega]^{\leq \aleph_0} \) such that for every uncountable \(P \in \bigcup_{\beta \leq \alpha} \Pi^1_1(y_\beta) \) we have \(|P \cap (A_\alpha \setminus \bigcup_{\beta < \alpha} A_\beta)| \geq 2 \) and \(\bigcup_{\beta < \alpha} A_\beta \subseteq A_\alpha \) and \(y_\alpha \in A_\alpha \). Since \(|\bigcup_{\beta < \alpha} A_\beta| \leq \aleph_0 \) and \(\bigcup_{\beta \leq \alpha} \Pi^1_1(y_\beta) \) is countable, there exists such an \(A_\alpha \).

Now suppose that \(X = \{x_\alpha : \alpha < \omega_1\} \) is coanalytic and for every \(\alpha \) we have \(x_\alpha \notin A_\alpha \). Clearly, \(\bigcup_{\alpha} A_\alpha = \omega^\omega \), thus \(X \) must be uncountable. Since \(X \) is coanalytic, we have that there exist an \(a_0 \) such that \(X \in \Pi^1_1(y_{a_0}) \). Thus for every \(\alpha \geq a_0 \) by the construction of \(A_\alpha 's \) \(|X \cap (A_{\alpha} \setminus \bigcup_{\beta < \alpha} A_\beta)| \geq 2 \). Now consider the map \(\phi \) that assigns to each \(\alpha \geq a_0 \) the minimal index \(\phi(\alpha) \) such that \(x_{\phi(\alpha)} \in A_{\alpha + 1} \setminus A_\alpha \). There are at least two distinct elements of \(X \) in \(A_{\alpha + 1} \setminus A_\alpha \) and \(x_\gamma \notin A_{\alpha + 1} \gamma \geq \alpha \) (the constructed family is increasing), hence \(\phi(\alpha) < \alpha \). Moreover, \(\phi \) is clearly injective. Therefore, we have that \(\phi \) is a regressive function whose domain is a co-countable subset of \(\omega_1 \). This contradicts Fodor’s lemma.
Remark 4.6. The same holds for any projective class.

Now we will prove a general technical theorem which implies the existence of Π_1^1 Hamel basis, but could be used to prove the existence of Π_1^1 n-point sets, analogous versions for circles, etc. The situation in the following definition is that we have a relation $R(x,y)$ on finite subsets of the reals that intuitively means that x is ”stronger” than y in some sense (e.g. in case of Hamel basis all elements of y are linearly generated by x, in case of two-point sets all lines that intersect y in at least two points intersect x in at least two points etc.). Our goal is to find an R-independent set (all the relations are trivial) that is ”stronger” than all the finite subsets of the reals. H^R_n will be the set of finite sets that can be added to B preserving it’s independence.

Definition 4.7. Let R be a binary relation on the finite subsets of \mathbb{R}^n.

- We say that a set $X \subset \mathbb{R}^n$ is R-independent if for all $x, y \in [X]^{<\omega}$ $R(x, y) \Rightarrow y \subset x$.
- Fix a $k \in \omega$, if for every $y \in [\mathbb{R}^n]^k$ there exists an element $x \in [X]^{<\omega}$ such that $R(x, y)$ then we say that X is a k-generator set for R.
- If B is an R-independent set let us use the notation $H^R_B = \{x \in [\mathbb{R}^n]^{<\omega} : x \cup B$ is R-independent\}.

We use parameters n and k even though they will not be needed for the proof of the Hamel basis case.

Definition 4.8. We will use the following notation: $x \equiv_h y \iff (x \leq_h y \land y \leq_h x)$.

The extra difficulty in the construction of a Hamel basis is that in a step we have to put more than one real into our set, so we have to deal with finite sequences. Moreover, to use our method one have to choose reals which are high enough in \leq_h. Thus our strategy is to select \leq_h equivalent reals in every step of the procedure.

Definition 4.9. Let us denote by E the set

\[\{x \in [\mathbb{R}^n]^{<\omega} : (\forall x_1, x_2 \in x)(x_1 \equiv_h x_2)\}. \]

Theorem 4.10. ($\mathcal{N} = L$) Let $t \in \mathbb{R}$ and $n, k \in \omega$ be arbitrary. Suppose that $R \subset [\mathbb{R}^n]^{<\omega} \times [\mathbb{R}^n]^{<\omega}$ is a $\Delta^1_1(t)$ relation that satisfies the property (*):

for every countable $B \subset \mathbb{R}^n$ the set $E \cap H^R_B$ is cofinal in the hyperdegrees and if for $y \in [\mathbb{R}^n]^k$ there is no $z \in [B]^{<\omega}$ such that $R(z, y)$ then \{x : R(x, y)\} \cap E \cap H^R_B is cofinal in the hyperdegrees.

Then there exists an uncountable $\Pi_1^1(t)$, R-independent set that is a k-generator for R.

Proof. Let us define the set $F \subset ([\mathbb{R}^n]^{<\omega})^{<\omega} \times \mathbb{R} \times [\mathbb{R}^n]^{<\omega}$ and fix a recursive Borel isomorphism $\Phi : \mathbb{R} \to [\mathbb{R}^n]^k$.

$(A, p, x) \in F \iff$

Either the conjunction of the following clauses holds

1. $\bigcup \text{ran}(A)$ is R-independent
2. $(\forall z \in \text{ran}(A))(\neg R(z, \Phi(p)))$
3. $R(x, \Phi(p))$ holds and $x \in E \cap H^R_{\bigcup \text{ran}(A)}$
OR $1 \land \neg 2$ holds and $x \in \mathcal{E} \cap H_{\bigcup \text{ran}(A)}^R$

OR $\neg 1$.

Since A is countable and the relation \equiv_h is Π^1_1, we get that F is $\Pi^1_1(t)$. By property (*) every section $F_{(A,y)}$ is cofinal in the hyperdegrees (if $\neg 1$ then this is obvious and the cases when $1 \land \neg 2$ or $1 \land 2$ holds are exactly described by property (*) so we can apply Theorem 5.3) This gives us a $\Pi^1_1(t)$ set $Y \subseteq [\mathbb{R}^n]^{<\omega}$ such that $\bigcup \text{ran}(Y)$ is R-independent and for every $y \in [\mathbb{R}^n]^{<\omega}$ there exists an $x \in Y$ such that $R(x,y)$ thus $\bigcup \text{ran}(Y)$ is a k-generator for R. Moreover $\text{ran}(Y) \subseteq \mathcal{E}$. Hence it suffices to prove that $X = \bigcup \text{ran}(Y)$ is a $\Pi^1_1(t)$ set. But using that for every $x \in Y$ the elements of x are equivalent in hyperdegrees we get

$$a \in X \iff (\exists l \in \omega)(\exists a_1, \ldots, a_l \leq_h a)(\{a, a_1 \ldots a_l\} \in \text{ran}(Y)).$$

Applying Theorem 2.3 we can verify that $X \in \Pi^1_1(t)$. \hspace{1cm} ■

Corollary 4.11. $(V = L)$ There exists a Π^1_1 Hamel basis.

Proof. Let us define the relation $R \subseteq [\mathbb{R}]^{<\omega} \times [\mathbb{R}]^{<\omega}$. $R(x,y) \iff (y \subseteq \langle x \rangle_0)$ i.e. every element of y is in the linear subspace generated by the elements of x over the rationals. Notice that R is Δ^1_1. In the terminology of the previous theorem X is a Hamel basis if it is R-independent and 1-generator for R. So we just have to check whether property (*) holds.

First if B is a countable linearly independent subset of the reals then for all but countably many finite sets $a \subseteq [\mathbb{R}]^{<\omega}$ we have $a \in H_B^R$. Therefore obviously H_B^R is cofinal in the hyperdegrees. So the first part of (*) holds.

Now fix an element $y \in \mathbb{R}$, a countable $B \subseteq \mathbb{R}$ such that there is no $z \in [B]^{<\omega}$ such that $R(z,\{y\})$. We will prove that for every $s \in \mathbb{R}$ there exists a pair $w_1, w_2 \in \mathbb{R}$ satisfying $y = w_1 + w_2, w_1 \equiv_h w_2, B \cup \{w_1, w_2\}$ linearly independent and $s \leq_h w_1, w_2$. This fact indeed implies that the set $\{x : x \in \mathcal{E} \land R(x,y)\} \cap H_B^R$ is cofinal in the hyperdegrees, so the second part of (*) also holds.

Here we repeat Miller’s argument. Without loss of generality we can suppose that $y \leq_h s$ and s is not hyperarithmetical in any finite subset of $B \cup \{y\}$ because we can replace s by a more complicated real. We can choose w_1 and w_2 such that s is coded in w_1’s odd and w_2’s even digits so that $w_1 + w_2 = y$. Then $s \leq_h w_1, w_2$ hence $y \leq_h w_1, w_2$. But then $y = w_1 + w_2$ implies $w_1 \equiv_h w_2$. If $w_1 \in \langle B, w_2 \rangle_0$, then $y \in \langle B, w_2 \rangle_0 \setminus \langle B \rangle_0$, and then $w_2 \in \langle B, y \rangle_0$ but this would imply that s is hyperarithmetical in a finite subset of $B \cup \{y\}$ which is a contradiction. Thus w_1 and w_2 are the appropriate reals.

Thus property (*) holds indeed, and the direct application of Theorem 4.10 hence produces a Π^1_1 Hamel basis. ■

Finally we will prove another variant of our theorem, considering the case where the choice at step α does not depend on the previous choices.

Theorem 4.12. $(V = L)$ Let $b \in \mathbb{R}$ and suppose that $G \subseteq \mathbb{R}^n \times \mathbb{R}$ is a $\Delta^1_1(t)$ set and for every countable $A \subseteq \mathbb{R}$ the complement of the set $\bigcup_{p \in A} G_p$ is cofinal in the hyperdegrees. Then there exists an uncountable $\Pi^1_1(t)$ set $X \subseteq \mathbb{R}^n$ that intersects every G_p in a countable set.

Proof. Using Theorem 2.3 there exists a Σ^1_1 formula θ such that

$$a \in G^e \iff L_{\omega_1^{(\alpha, t)}}[a, t] \models \theta(a, t).$$
Now let us define the set H as follows:

$$(x, p) \in H \iff x \in S \land p, t \leq_h x \land L_{\omega_1}^t \models (\forall p') \leq_L p)((x, p'), t).$$

H is a $\Pi^1_1(t)$ set, for this just repeat the usual argument, that is, $x \in S \land p, t \leq_h x$ implies that $L_{\omega_1}^t = L_{\omega_1}((x, p), t)$ and use Theorems 2.4, 2.1, 2.2 and Lemma 3.1. Observe that for a real p

$$H_p = (\bigcap_{p' \leq_L p} G_{p'}) \cap S \cap \{z : p, t \leq_h z\}.$$

Thus the theorem’s conditions imply that for every real p the section H_p is cofinal in the hyperdegrees.

Define $F \subset (\mathbb{R}^\omega)^\omega \times \mathbb{R} \times \mathbb{R}^\omega$: $(A, p, x) \in F \iff (x, p) \in H \land x \notin A$. Obviously for every (A, p) the section $F_{(A, p)}$ is cofinal in the hyperdegrees and F is $\Pi^1_1(t)$.

Our Main Theorem provides an uncountable $\Pi^1_1(t)$ set $X \subset \mathbb{R}^\omega$ and enumerations $X = \{x_\alpha : \alpha < \omega_1\}$, $\mathbb{R} = \{p_\alpha : \alpha < \omega_1\}$ and an enumeration A_α (in type \leq_ω) of $\{x_\beta : \beta < \alpha\}$ such that $x_\alpha \in F_{(A_\alpha, p_\alpha)} \Rightarrow H_{p_\alpha} \setminus \{x_\beta : \beta < \alpha\}$. Suppose that there exists a $p \in \mathbb{R}$ for which $|X \cap G_p| > \aleph_0$. Then $p_\beta >_L p$ if β is high enough, since only countably many p_α’s are less than p. But if $p_\beta >_L p$ then $x_\beta \in G_p$.

Now Theorem 1.4 is a trivial consequence of Theorem 1.12.

5 Applications

Theorem 1.3 can be applied in various situations. Let us remark here that one can obtain Π^1_1 sets instead of coanalytic ones by just repeating the proofs and using Theorem 1.4 in all the theorems of this section. We will prove the simpler (boldface) versions for the sake of transparency.

Theorem 5.1. ($V = L$) There exists a coanalytic MAD family.

Proof. First fix a recursive partition $B = \{B_i : i \in \omega\}$ of ω to infinite sets. Define $F \subset (\mathcal{P}(\omega))^{\omega} \times \mathcal{P}(\omega) \times \mathcal{P}(\omega)$ as follows: $(A, p, x) \in F \iff$ EITHER the conjunction of the following clauses holds

1. $\text{ran}(A) \cup B$ contains pairwise almost disjoint elements
2. p is almost disjoint form the elements of $\text{ran}(A) \cup B$
3. $p \subset x$ and x is almost disjoint form the elements of $\text{ran}(A) \cup B$

OR $1 \land \neg 2$ holds and x is almost disjoint form the elements of $\text{ran}(A) \cup B$

OR $\neg 1$.

Clearly, F is Borel. What we have to prove is that for all pairs (A, p) the section $F_{(A, p)}$ is cofinal in the Turing degrees.

Suppose that 1 and 2 hold, let $u \in \mathcal{P}(\omega)$ be an arbitrary real. Choose $x' = p \cup \bigcup_{i \in u} F_i$, where $F_i \subset B_i$ are finite and if $i > j$ then $A(j) \cap F_i = \emptyset$ and

$$|(p \cup F_i) \cap B_i| \equiv 1 \mod 2 \iff u(i) = 1.$$

For every i there exist such an F_i, since the B_i’s are disjoint and infinite, and $\text{ran}(A) \cup B$ contains pairwise almost disjoint sets. Then x' satisfies 3 and $u \leq_T x'$.

Now in the case when $1 \land \neg 2$ holds our job is easier: e. g. we can repeat the previous argument omitting p.

14
Finally, if \(-1\) is true then \(F_{(A,p)} = \mathcal{P}(\omega)\).

Notice that Theorem 1.3 was stated in the form that the set of the parameters is \(\mathbb{R}\) but we can easily replace it by \(\mathcal{P}(\omega)\) using a recursive Borel isomorphism.

So we can apply Theorem 1.3 and we get a coanalytic set \(X = \{x_\alpha : \alpha \in \omega_1\}\) such that \(X\) is compatible with \(F\). It is obvious by transfinite induction that the elements of \(X\) are pairwise almost disjoint. It is also clear that \(X \cup B\) is maximal since for every real \(p\) there exists an \(\alpha < \omega_1\) such that \(p_\alpha = p\). Thus there exists an element of \(X\) that is not almost disjoint from \(p\).

Theorem 5.2. \((V = L)\) There exists a coanalytic two-point set.

Proof. For each real \(p \in \mathbb{R}\) fix a line \(l_p\) such that it is the line defined by the equation \(((p)_1)x + ((p)_2)y = (p)_3\), where \((p)_1, (p)_2\) and \((p)_3\) are the reals made of every \(3k^{th}, 3k + 1^{st}\) and \(3k + 2^{nd}\) digit of \(p\). \(l_p\) can be empty, however every line appears at least two times. Let us define \(F \subset (\mathbb{R}^2)^{\lt \omega} \times \mathbb{R} \times \mathbb{R}\) by \((A, p, x) \in F \iff\)

EITHER the conjunction of the following clauses holds

1. there are no 3 collinear points in \(\text{ran}(A)\)
2. \(|\text{ran}(A) \cap l_p| < 2\) and \(l_p \neq \emptyset\)
3. \(x \in l_p \setminus \text{ran}(A)\) and \(x\) is not collinear with any two distinct points of \(\text{ran}(A)\)

OR \(1 \land \neg 2\) holds and \(x\) is not collinear with two distinct points of \(\text{ran}(A)\)

OR \(\neg 1\).

Now \(F\) is clearly Borel. What we have to check is that for all \((A, p)\) the section \(F_{(A,p)}\) is cofinal in the Turing degrees. Fix a pair \((A, p)\). If \(1 \land 2\) holds then the section is equal to \(l_p\) minus a countable set. Every line is cofinal in the Turing degrees, because we can choose one of the coordinates arbitrarily. Now notice that if \(H\) is a set which is cofinal in the Turing degrees and \(H'\) is countable the \(H \setminus H'\) is still cofinal: to see this let \(u\) be an arbitrary real and let \(s\) be such that \((\forall s' \in H')(s' \not\leq_T s)\) then there exist \(r \in H\) such that \(s, u \leq_T r\) and clearly \(r \not\in H'\).

So we have that if \(1 \land 2\) holds then \(F_{(A,p)}\) is cofinal in the Turing degrees.

If \(1 \land \neg 2\) holds then we just have to choose an arbitrary point that is not collinear with any two distinct points of \(A\). The case when \(1\) is false is obvious. Thus by Theorem 1.3 we get an uncountable coanalytic set \(X = \{x_\alpha : \alpha < \omega_1\} \subset \mathbb{R}^2\). One can easily verify that \(X\) cannot contain three collinear points. Moreover, since every line \(l_p\) appears at least twice, \(|l_p \cap X| \geq 2\).

Similar statements can be formulated for \(n\)-point sets, circles, appropriate algebraic curves etc., the above method works in these cases.

5.1 Curves in the plane

Now we will consider the following question: What can we say about a set in the plane which intersects every "nice" curve in a countable set? Let us call a continuously differentiable \(\mathbb{R} \to \mathbb{R}^2\) function a \(C^1\) curve.

Definition 5.3. We say that a set \(H \subset \mathbb{R}^2\) is \(C^1\)-small if the intersection of \(H\) with the range of every \(C^1\) curve is a countable set.

In [1] the authors proved that assuming Martin’s axiom and the Semi-Open Coloring Axiom if \(H\) is \(C^1\)-small then \(|H| \leq \aleph_0\). Moreover, they showed in ZFC that no perfect set is \(C^1\)-small. Thus no uncountable analytic set is \(C^1\)-small. On the other hand, the following proposition holds.

Proposition 5.4. \((CH)\) There exists an uncountable \(C^1\)-small set.
Proof. We will prove later that the union of the range of countably many C^1 curves cannot cover the plane. This implies the statement by an easy transfinite induction.

Thus it is interesting whether an uncountable C^1-small subset can be coanalytic.

We will apply Theorem 1.4.

Theorem 5.5. ($\mathcal{V} = \mathcal{L}$) There exists an uncountable C^1-small coanalytic set.

Proof. First we have to prove that there exists a Borel set $G \subset \mathbb{R}^2 \times \mathbb{R}$ such that if γ is a C^1 curve then there exists a $p \in \mathbb{R}$ such that $G_p = \text{ran}(\gamma)$.

One can easily prove that the set B of C^1 curves as a subset of $C(\mathbb{R}, \mathbb{R}^2)$ is a Borel set (see e.g. [9, 23. D]). The set $\{(x,y), (x,y) \in \text{ran}(\gamma)\} \subset \mathbb{R}^2 \times C(\mathbb{R}, \mathbb{R}^2)$ is clearly closed. So $(\mathbb{R}^2 \times B) \cap \{(x,y), (x,y) \in \text{ran}(\gamma)\}$ is also a Borel set.

Furthermore, there exists a Borel isomorphism $\phi : \mathbb{R} \to B$ since these two are standard Borel spaces of cardinality \mathfrak{c} and we can apply the isomorphism theorem.

Now we can define $G \subset \mathbb{R}^2 \times \mathbb{R}$: $(x,y), p \in G \iff (x,y), \phi(p) \in (\mathbb{R}^2 \times B) \cap \{(x,y), (x,y) \in \text{ran}(\gamma)\}$ which is a Borel set and for every $\gamma \in C^1$ there exists a $p \in \mathbb{R}$ such that $G_p = \text{ran}(\gamma)$.

To apply Theorem 1.4 we have to check that if we have countably many C^1 curves $\{\gamma_i : i \in \omega\}$ then the complement of the union of their ranges is cofinal in the Turing degrees. For this it is enough that there exists a line l such that

$$|l \cap \bigcup \{\text{ran}(\gamma_i) : i \in \omega\}| \leq \aleph_0.$$

Let us concentrate solely on the horizontal lines. For a curve γ_i take let $f_i(x) = \pi_y(\gamma_i(x))$, i.e. the composition with the projection on the vertical axis. f_i is C^1 function, thus by Sard’s lemma the set $H_i = \{y \in \mathbb{R} : (\exists x)(f'_i(x) = 0 \land f_i(x) = y)\}$ has Lebesgue measure zero. Let $b \in \mathbb{R} \setminus (\cup H_i)$. Then the line $\{(x,b) : x \in \mathbb{R}\}$ intersects every curve γ_i in countably many points, since otherwise it would be an image of a critical value.

Finally, the application of Theorem 1.4 produces an uncountable C^1-small coanalytic set.

5.2 Problems

In Theorem 1.3 the set of the parameters is a Borel set and this was used in the proof numerous times.

Problem 5.6. Does Theorem 1.3 hold if we only assume that B is coanalytic?

As a partial converse we have proved that the conclusion of the Main Theorem implies that every real constructible. It is natural to ask whether the converse also holds.

Problem 5.7. Does the conclusion of Theorem 1.3 hold if every real is constructible?

One of the weaknesses of the method is that the constructed set X is a subset of \mathcal{S}. It is known (see e.g. [10]) that \mathcal{S} is the largest thin (not containing a perfect subset) Π^1_1 set. Thus none of the constructed sets contain a perfect subset. In the case of C^1-small sets this cannot be expected, but how about the other constructions?
Problem 5.8. Is it consistent that there exists a Π^1_1 Hamel basis (two-point set, MAD family) that contains a perfect subset?

Acknowledgement I am very grateful to my supervisor, Márton Elekes, for his patience and the help what he provided during the writing of this paper.

References

[1] C. T. Chong, L. Yu, A Π^1_1-uniformization principle for reals, Trans. Amer. Math. Soc. 361 (2009), no. 8, 4233–4245.

[2] K. J. Devlin, Constructibility, Springer-Verlag, Berlin, 1984.

[3] P. Erdős, K. Kunen, R.D. Mauldin, Some additive properties of sets of real numbers, Fund. Math. 113 (1981), 187-199.

[4] V. Fischer, A. Törnquist, A co-analytic maximal set of orthogonal measures, J. Symbolic Logic 75 (2010), no. 4, 1403–1414.

[5] S. Gao, Y. Zhang, Definable sets of generators in maximal cofinitary groups, Adv. Math. 217 (2008), no. 2, 814–832.

[6] J. Hart, K. Kunen, Arcs in the Plane, Topology and Applications 158 (2011), 2503–2511.

[7] T. Jech, Set Theory. The third millennium edition, revised and expanded, Springer-Verlag, Berlin, 2003.

[8] B. Kastermans, J. Steprans, Y. Zhang, Analytic and coanalytic families of almost disjoint functions, J. Symbolic Logic 73 (2008), no. 4, 1158–1172.

[9] A. S. Kechris, Classical Descriptive Set Theory, Graduate Texts in Mathematics 156, Springer-Verlag, Berlin, 1994.

[10] A. S. Kechris, The theory of countable analytical sets, Trans. Am. Math. Soc. 202 (1975), 259–297.

[11] A. R. D. Mathias, Happy families, Annals of Mathematical Logic 12 (1977), 59–111.

[12] A. W. Miller, Descriptive Set Theory and Forcing, Lecture Notes in Logic, Springer-Verlag, Berlin, 1995.

[13] A. W. Miller, Infinite combinatorics and definability, Ann. Pure Appl. Logic 41 (1989), no. 2, 179–203.

[14] Y. N. Moschovakis, Descriptive set theory, Studies in Logic and the Foundations of Mathematics, 100. North-Holland Publishing Co., Amsterdam-New York, 1980.

[15] G. E. Sacks, Higher Recursion Theory, Springer-Verlag, Berlin, 1987.

Institute of Mathematics, Eötvös Loránd University, Pázmány Péter s. 1/c, Budapest 1117, Hungary
Email address: vidnyanszkyz@gmail.com
www.cs.elte.hu/~vidnyanz