Does Taekwondo Poomsae Training Impact on Body Composition, Physical Fitness, and Blood Composition in Children and Adolescents? A Systematic Review

Ye Lei1 MS, Hyung-pil Jun2,3 PhD
1Department of Taekwondo, Dong-A University, Busan; 2Department of Physical Education, Dong-A University, Busan; 3Yonsei Institute of Sports Science & Exercise Medicine (YISSEM), Yonsei University, Seoul, Korea

INTRODUCTION

The American College of Sports Medicine (ACSM) advocated that children and adolescent should participate in regular exercise of moderate intensity or above including aerobic exercise and strength training every day [1,2]. In recent years, however, with the improvement of economic level and the change of lifestyle, the physical activity in children and adolescents are obviously insufficient [3]. Insufficient physical activity results in decreased physical fitness, metabolic dysfunction, and body imbalance [4], which are directly related to overweight or obesity, and metabolic syndrome and other primary symptoms. These, easily seen in the adult group are becoming more and more common in children and adolescents [5-7]. In addition, obesity can also induce hypertension, arteriosclerosis, chronic inflammation, sleep apnea syndrome, asthma, etc. [8] and also lead to abnormal levels of Total cholesterol (TC), Triglyceride (TG), insulin and blood pressure [9]. Based on these evidences, preventing and improving the health problems in adolescents and children has gradually become the focus of attention.

Numerous studies have shown that long-term appropriate physical activity can effectively enhance physical fitness and improve health problems such as obesity or metabolic syndrome [6,10-13]. Among numerous physical activities, Especially, Taekwondo is very effective sports or phys-
metrical activity that is targeting children and adolescents in Korea [14,15]. Taekwondo can be largely divided into Kyorugi, Poomsae, and Breaking, etc. Among them, Taekwondo Poomsae is a technical system based on the basic movements of attack and defense technology which assuming the situation of fighting and can be practiced alone [16-18]. At the same time, as a martial arts sport in which martial arts and sports spirit were determined together, it not only Meaning of the practice of Tao and courtesy [19], but also emphasized spiritual cultivation.

Generally, Taekwondo Poomsae refers to Official Poomsae, and recently, in order to induce the diversity and interest of Taekwondo training programs, Music Taekwondo or Taekwon Gymnastics, Rhythm Taekwondo and Taekwondance, which are based on the basic movements of Taekwondo and recreated with music, are diversified and activated [20].

From the perspective of the previous research related to the practice effect of Taekwondo training, studies on primary school students [3,21-26], middle school students [13,27-33], college students [34,35], adults [36] and the elderly [37] are diverse and comprehensive. Also, Taekwondo training is effective in improving physical fitness, promoting exercise performance, resolving body imbalance, improving balance, improving body composition and blood composition, promoting physical development, and improving health status, etc.

Interestingly, in most of these studies, the intervention means are Kyorugi rather than Poomsae. This may be because Kyorugi is an official Olympic event, which is widely spread all over the world, with a high penetration rate and more practitioners. Despite this, we still found some research on the effects of Poomsae training. Seo & Park (2017) found that after 12 weeks of quality intervention, not only the physical condition of primary school students was improved, but also the dynamic and static balance was improved, and it was considered that the quality of Taekwondo was an effective sport [38]. The study by Park & Seo (2017) showed that 12-week Taekwondo can improve the posture stability and sports performance of primary school students, and it is also very effective in reducing the physical imbalance and improving the physical function of the growing children [26]. And the study by Jo (2006) & Lee (2010) said that after implementing a 12-week Poomsae training program, participants’ blood TC, TG, LDL-C decreased, and HDL-C increased [34,36].

In addition, some researchers have Poomsae intervention studies on overweight [39] or obese people [7,13,15,21,29,35,40] and people with metabolic syndrome [6,13] and the results of these studies showed that after 12 weeks of Poomsae intervention, participants’ weight, BMI, body fat rate decreased, and risk factors for obesity and metabolic syndrome such as waist circumference, blood glucose, triglycerides in blood, and Cystatin C, etc. were significantly improved.

Based on this evidence, we have reason to believe that Taekwondo Poomsae is not only a very effective exercise method to help healthy or obese children improve their physique [16], but also a very effective exercise method for early prevention of lifestyle diseases and metabolic syndrome caused by obesity [8,18-20].

However, some research reported that after Taekwondo Poomsae training, the improvement of body composition and physical fitness did not show statistical significance [33,41], or the improvement effect is not ideal.

In this way, researchers made various attempts to verify the physical effects of the Poomsae training, but the results of the previous studies were diverse, and the effects were insignificant or statistically insignificant. Therefore, there is a limit to conclusively presenting appropriate information on improving body composition, blood components and physical fitness. To provide more accurate information for on-site instructors and readers, it is necessary to Systematic Review of the effect in Poomsae training.

Therefore, the purpose of this study is to review the evidence from the previous studies and to determine whether Taekwondo Poomsae is effective physical activity on body composition, physical fitness, and blood components in children and adolescents, thereby determine the applicability of Taekwondo Poomsae training as a training method and kinesiology.

METHODS

1. **Search Method**

All relevant studies were searched via Korea’s Research Information Sharing Service (RISS), Korean studies Information Service System (KISS), and Data Base Periodical Information Academic (DBPIA). The search was limited to human subjects and journals published in Korean language from March 1 to 3 in 2021 using the search key words Taekwondo, Poomsae, music Poomsae, Taekwondo Gymnastics, body composition, physical fitness, blood composition. All retrieved studies were cross-referenced at the end of selection, in order to identify other potential studies.
2. Inclusion and Exclusion Criteria

A rigorous review process was carried out for all retrieved studies. Each study was identified and selected according to the inclusion and exclusion criteria. The concrete inclusion and exclusion criteria are as follows.

Inclusion Criteria

1) The studies which intervention methods are Taekwondo Poomsae, Music Poomsae or basic movement of Poomsae and Taekwon Gymnastics.

 - **Taekwondo Poomsae**: It refers to an official Poomsae and includes a total of 17 items, including the Taegeuk 1-8 jang, and Koryo, Keumgang, Taebaek, Pyongwon Poomsae, etc.
 - **Basic movement of Poomsae**: It is the minimum unit of technology created by Poomsae, including the Seogi, Makgi, Jireugi, Jjireugi, Chigi, Chagi, etc.
 - **Music Poomsae**: It is a method of performing poomsae in accordance with the rhythm of the background music when performing the certified Poomsae of Taekwondo.
 - **Taekwon Gymnastics**: It is an interesting performance form that uses music based on basic movements of Poomsae to create new creations according to movements, music or rhythm.
 2) The participants of studies who were children and adolescents.
 3) The type of study was randomized controlled trial (RTC).
 4) The studies that must have a detailed training program.

Exclusion Criteria

1) If there were inappropriate interventions in the included studies (the training program included both character/music character/Tae kwondo Gymnastics and Kyorugi), they were excluded.
2) If the participants included in the study were not only children and adolescents, but also participants of other age groups, they were excluded.
3) If the results of the included RTC studies were not comprehensive, they were excluded.
4) If the included studies did not provide a detailed training program, they were excluded.

Data Extraction and Quality Assessment

The two authors independently extracted data and quality assessment of the included studies according to the Cochrane Handbook. The low, high, or unclear risk of bias in all studies were evaluated by considering the following 7 factors: 1) Random sequence generation, 2) Allocation concealment, 3) Blinding of participants and personnel, 4) Blinding of outcome assessment, 5) Incomplete outcome data, 6) Selective reporting, 7) Other.

When there is any uncertainty or disagreement in data extraction and quality assessment, a third person will make the decision.

RESULTS

1. Study characteristics

The entire process of the literature search is shown in Fig. 1. A total of 202 results were retrieved at the initial step, of which 92 studies from RISS, 43 studies from KISS, and 67 studies from DBPIA. After EndNote X9 and manual deletion of duplicates, there are 115 documents associated with the topic. Then, after excluding unqualified articles based on title and abstract and studies type, 69 studies may be eligible. Through the review of the full text of the remaining literatures, it was concluded that 22 studies met the inclusion and exclusion criteria of this review. The basic characteristics of the included studies are shown in Table 1.

A total of 765 subjects participated in the 22 studies. The sample size

![Fig. 1. Flowchart illustrating the different steps of the study selection.](https://www.ksep-es.org)
of each study ranged from 9 to 145, and the age of participants was mainly between 7 and 19 years old. The main participants included elementary school students (14 studies), middle school students (4 studies) and high school students (4 studies). In addition, 2 studies focused on female students, 7 studies were related to overweight or obesity and metabolic syndrome, and there were 1 study related to children with Intellectual Disability.

2. Effects of Taekwondo Poomsae Training on Outcome Indicators

In the 22 included studies, the effects of Taekwondo Poomsae training on outcome indicators of children and adolescents were described. These outcome indicators were mainly divided into three categories: body composition, physical fitness and blood composition. The detailed information is included in Tables 2-4.

1) Body Composition

Of the 22 studies, 11 studies reported the effect of Taekwondo Poomsae Training on body composition (Table 2). Except for one study which showed that there was no significant change in body composition after 12 weeks of Taekwondo Poomsae intervention, all the other studies demonstrated significant changes in varying degrees [33].

Regarding the study of changes in body weight, the 4 studies declare that the body weight had a significant change after the Taekwondo Poomsae intervention [23,39,44,45]. And 4 Studies emphasized significant differences in body weight before and after training, respectively \(p < .05 \) [13,14,29] and \(p < .001 \) [21]. However, in the studies of Jang (2013), Jeong (2014), Kim & Kwon (2009) and Park (2009) although the body weight was decreased, it was not statistically significant [6,13,29,43].

In the case of the body fat, the study of Cho & Jeoung (2013) stated that the body fat rate had a significant change after the intervention of Taekwondo Poomsae [21]. The similar results were found in 5 studies, and the significance was \(p < .01 \) [6,14,43-45]. And in the study result of Kim & Kwon (2009), the significance was \(p < .05 \) [29]. However, the other studies showed that the body fat rate had no significant difference, but it changed in different degrees compared with that before training [13,33,39].

For the BMI, the study on Cho & Jeoung (2013) reported that there was a significant difference in BMI before and after training [21]. In addition, the studies also declared significant differences in BMI, which respectively were \(p < .01 \) [44,45] and \(p < .05 \) [29,43]. However, other studies have indicated that although BMI was changed, it did not show no statistical significance [6,13,14,23,29].

Regarding the LBM, only Jang (2013) and Jo & Ann (2010) two studies demonstrated significant differences. The other studies, although more or less the trend of increase or decrease or unchanged can be seen, but there was no statistical significance [13,14,29,33,43,45].

2) Physical Fitness

Of the 22 studies, 16 studies reported the effect of Taekwondo Poomsae training on physical fitness [3,6,7,14,15,22-24,26,28,30,33,42,43,45] (Table 3). Only one study of Song (2003) said 12 weeks of Taekwondo Poomsae intervention did not have a positive effect on physical fitness factors. This is because static strength (3.6%), abdominal muscle endurance (2.6%), endurance (37.2%), and full-body endurance (10.4%) of the physical fitness factors have improved slightly after the intervention of Taekwondo Poomsae training, but they have not reached the statistically significant level [33]. In addition to this, other studies have declared significant changes to varying degrees.

Among these 17 studies, 5 studies are about cardiopulmonary endurance, and all 5 studies revealed that the cardiopulmonary endurance was significant improvement in varying degree after 12 weeks of Taekwondo Poomsae intervention compared with before the experiment [14,22,23,26,30]. There are 16 studies involving both muscle strength and flexibility, among which 10 studies showed different degrees of significance in the case of muscle strength [3,7,15,24,26,27,29,30,43,45], and 6 studies were improved compared to before the Taekwondo Poomsae intervention, but did not show significance [6,14,23,28,33,42]. In the case of flexibility, 12 studies were significantly improved after the intervention of Taekwondo Poomsae [3,6,7,14,24,26,28-30,42,43,45], while 4 studies were improved compared with those before the Taekwondo Poomsae intervention, but had no statistical significance [15,22,23,33]. In the case of explosive power, except for 3 studies of 12 related studies, which said that the explosive power was improved after intervention but had no statistical significance [7,42,43]. The other 9 studies all reported that the explosive power was obviously improved after Taekwondo Poomsae intervention, and it had statistical significance [3,6,14,15,23,24,26,30,45].

In addition, 11 studies related to agility, 10 studies alleged significant changes in agility [3,7,15,24,26,29,30,42,43,45], and only one study said no significant changes, but there was a trend of improvement [28]. Among the 11 studies involving muscle endurance, 8 studies declared that the muscle endurance level was significant improved [3,7,23,26,28-
Author/ Year	Participants N (EG, CG)	Age	Intervention	Outcome			
An HS (2017) [42]	40 (20, 20)	11.10 ± 0.91 EG, 11.55 ± 1.10 CG	12 3 60	Taekwondo Reverse Poomsae Training	RPE: 7-9	Basic Physical Fitness	
Cho WJ (2013) [21]	24 (12, 12)	11.17 ± 0.72 EG, 11.33 ± 0.65 CG	12 3 60	Normal physical activity	Taekwondo Poomsae Training	VO_{2max}: 50-60%	Body Composition Blood Lipid (TC, TG, HDL-C), Adiponectin
Choi JI (2009) [22]	145 (80, 45)	10-12	12 5 60	No training	Basic movements of Poomsae, Taekwondo gymnastic, Taekwondo Poomsae		
Ham KW (2020) [23]	19 (10, 9)	11.10 ± 1.37 EG, 10.67 ± 1.66 CG	12 4 55	Taekwondo Poomsae	Auditory and Visual stimulation Taekwondo Poomsae Training	RPE: 8-15	Body Composition Physical Fitness
Jang CH (2013) [6]	16 (8, 8)	11.38 ± 1.85 EG, 10.63 ± 1.51 CG	12 5 60	No training	Basic movements of Poomsae, Taekwondo gymnastic, Taekwondo Poomsae (Taeguk 1-4 Jang)	HR_{max}: 50-70%	Body Composition Physical Fitness, Cystatin C
Jeong MK (2014) [43]	16 (8, 8)	7-8	12 3 60	No training	Basic movements of Poomsae, Taekwondo gymnastic, Taekwondo Poomsae (Taeguk 1-3 Jang)	HR_{max}: 55-70%	Body Composition Physical Fitness, Precocious Puberty Risk Factors
Jo KY (2010) [39]	20 (10, 10)	11.60 ± 1.07 EG, 11.90 ± 1.19 CG	12 4 60	Taekwondo poomsae	Rhythmic Taekwondo poomsae training	HR_{max}: 50-70%	Body Composition Blood Lipid (TC, TG, HDL-C, LDL-C)
Kim WK (2009) [29]	20 (10, 10)	14.70 ± 1.25 EG, 15.10 ± 0.88 CG	12 5 50	No training	Basic movements of Poomsae, Taekwondo gymnastic, Taekwondo Poomsae		Body Composition Physical Fitness, Growth Hormone, IGF-1 or DHEAs Concentration
Kim HD (2008) [44]	24 (12, 12)	13.35 ± 0.48 EG, 12.42 ± 0.50 CG	12 2 70	No training	Basic movements of Poomsae, Taekwondo gymnastic, Taekwondo Poomsae	HR_{max}: 50-80%	Body Composition Growth hormone, IGF-I, IGFBP-III
Kim JT (2009) [28]	41 (14, 13, 14)	16.21 ± 1.12 EG1, 15.94 ± 1.83 EG2, 15.74 ± 2.13 CG	14 2-4 35-70	No training	Basic movements of Poomsae, Taekwondo Poomsae		Physical Fitness
Kim KJ (2001) [24]	96 (32, 32, 32)	10.98 11.30 11.21	8 - 85	Basic movements of Poomsae, Taeguk Poomsae	Basic movements of Poomsae, Koryo Poomsae, Kumgang Poomsae		Physical Fitness

(Continued to the next page)
Author/Year	Participants N (EG, CG)	Age	Intervention	Outcome					
Lee SJ (2009) [30]	78 (39, 39)	15-16	12	5	50	No training	Basic movements of Poomsae, Taekwondo Poomsae (Taeguk 1-6 Jang)	Physical Fitness	
Nam SN (2008) [31]	16 (8, 8)	17.75 ± 1.50	12	5	60	No training	Basic movements of Poomsae, Taekwondo Poomsae (Taeguk 1-3 Jang)	Stress Hormones (epinephrine, norepinephrine, cortisol)	
Moon DS (2009) [45]	18 (9, 9)	EG: 12.18 ± 2.12	12	5	60	No training	Basic movements of Poomsae, Taekwondo Poomsae (Taeguk 1-3 Jang)	HRmax: 60-70%	Body Composition, Physical Fitness, Growth Factors, Women's Hormones
Nam SN (2011) [7]	20 (10, 10)	EG: 11.60 ± 1.07	12	4	60	General Poomsae training	Music Poomsae training	HRmax: 60-70%	Leptin, Physical Fitness
Park JM (2017) [26]	40 (20, 20)	EG: 11.84 ± 1.64	12	5	60	Basic movements of Poomsae, Taekwondo Kyoyugi	Basic movements of Poomsae, Taekwondo Poomsae, Music Poomsae training	RPE: 11-13	Physical Fitness, Balance Capability
Park SK (2009) [13]	30 (15, 15)	EG: 14.67 ± 1.40	12	5	60	No training	Basic movements of Poomsae, Taekwondo Poomsae, Music Poomsae training	HRmax: 60-70%	Body Composition, Metabolic Syndrome Risk Factors
Park SK (2010) [14]	24 (12, 12)	EG: 11.92 ± 0.90	12	3	60	No training	Basic movements of Poomsae, Taekwondo Poomsae, Music Poomsae training	HRmax: 55-70%	Body Composition, Physical Fitness, Serum Adiponectin
Park TH (2009) [15]	20 (10, 10)	EG: 9.10 ± 0.90	12	5	50	No training	Basic movements of Poomsae, Taekwondo Poomsae, Music Poomsae training	HRmax: 65.7-67.7%	Body Composition, Health-related Physical Fitness, Blood Lipid
Shin GS (2006) [3]	20	8.75 ± 0.75	12	5	60	No training	Basic movements of Poomsae, Taekwondo Poomsae, Music Poomsae training	-	Physical Fitness
Son YN (2019) [32]	10	17.0 ± 0.67	60	Taekwondo Poomsae training without kinesio taping	Taekwondo Poomsae training with kinesio taping	-	Blood Lipid Concentration		
Song JK (2013) [33]	19 (12, 7)	EG: 14.0 ± 0.64	12	3	50	No training	Basic movements of Poomsae, Taekwondo Poomsae, Music Poomsae training	HRmax: 60-70%	Body composition, Health-related fitness
Table 2. Effect of Taekwondo Poomsae Training on Body Composition

Author/Year	Outcome measurement	Results
Cho WJ (2013) [21]	Weight, Fat%, BMI	Weight ↓ & Fat% ↓ & BMI ↓ (p<.001)
Ham KW (2020) [23]	Weight, BMI	Weight ↑ (p<.01), BMI ↓ (p<.001)
Jang CH (2013) [6]	Weight, Fat%, BMI, LBM	Weight ↓ & BMI ↓ & Fat% ↓ (p<.01), LBM ↑ (p<.001)
Jeong MK (2014) [43]	Weight, Fat%, BMI, LBM	Weight & Fat% ↓ (p<.01), BMI ↓ (p<.05), LBM ↑
Jo KY (2010) [39]	Weight, Fat%, BMI	Weight ↑ (p<.01), Fat% ↓ & BMI ↓ (p<.001)
Kim WK (2009) [29]	Weight, Fat%, BMI, LBM	Weight ↓, Fat% ↓, BMI ↓, LBM ↑
Kim HD (2008) [44]	Weight, BMI	Weight ↓, & Fat% ↓ & BMI ↓ (p<.01)
Moon DS (2009) [45]	Weight, Fat%, BMI, LBM	Weight ↓ & Fat% ↓ & BMI ↓ (p<.01), LBM ↓
Park SK (2009) [13]	Weight, Fat%, BMI, LBM	Weight ↓, Fat% ↓, BMI ↑, LBM ↓
Park SK (2010) [14]	Weight, Fat%, BMI, LBM	Weight (p<.05), Fat% ↓ (p<.001), BMI ↓, LBM ↑
Song JK (2013) [33]	Fat%, LBM	Fat% ↑, LBM ↑

BMI, body mass index; LBM, lean body mass.
↓: decrease; ↑: increase; &: and.

Table 3. Effect of Taekwondo Poomsae Training on Physical Fitness

Author/Year	Outcome measurement	Results
An HS (2017) [42]	Muscular strength, Muscle endurance, Agility, Flexibility, Explosive power	Agility ↑ (p<.001), Flexibility ↑ (p<.05), Muscular strength ↑, Muscle endurance ↑, Explosive power ↑
Choi JI (2009) [22]	Muscular strength, Muscle endurance, Flexibility, Cardiopulmonary endurance	Muscular strength ↑ (p<.001), Muscle endurance ↑ (p<.001), Flexibility ↑, Cardiopulmonary endurance ↑
Ham KW (2020) [23]	Muscular strength, Muscle endurance, Explosive power, Flexibility, Cardiopulmonary endurance	Muscle endurance ↑ & Explosive power ↑ (p<.05), Cardiopulmonary endurance ↑ (p<.01), Muscular strength ↑, Flexibility ↑
Jang CH (2013) [6]	Muscular strength, Muscle endurance, Explosive power, Flexibility, Equilibrium	Explosive power ↑ (p<.01), Flexibility ↑ (p<.05), Muscular strength ↑, Muscle endurance ↑, Equilibrium ↑
Jeong MK (2014) [43]	Muscular strength, Abdominal strength, Agility, Flexibility, Explosive power, Equilibrium	Muscular strength & Flexibility & Equilibrium ↑ (p<.05), Abdominal strength, Agility ↑ (p<.001), Explosive power ↑
Kim WK (2009) [29]	Muscular strength, Abdominal strength, Agility, Flexibility, Equilibrium	Agility & Flexibility ↑ (p<.01), Muscular strength ↑ (p<.05), Equilibrium
Kim JT (2009) [28]	Muscular strength, Muscle endurance, Agility, Flexibility, Equilibrium	Muscle endurance, Flexibility ↑ (p<.01), Muscular strength & Agility & Equilibrium ↑, Taegeuk Poomsae: Abdominal strength & Agility & Explosive power & Flexibility ↑ (p<.01)
Kim KJ (2001) [24]	Abdominal strength, Explosive power, Agility, Flexibility, Equilibrium	Kyryo Poomsae: Agility ↑ (p<.01), Equilibrium ↑ (p<.05), Keumgang Poomsae: Agility ↑ (p<.01)
Lee SJ (2009) [30]	Muscular strength, Muscle endurance, Explosive power, Flexibility, Agility, Cardiopulmonary endurance	Muscular strength & Muscle endurance & Agility & Explosive power, & Flexibility & Cardiopulmonary endurance ↑
Moon DS (2009) [45]	Back strength, Muscle endurance, Explosive power, Flexibility, Agility, Equilibrium	Back strength & Muscle endurance & Flexibility & Agility & Explosive power & Equilibrium ↑ (p<.001), Muscular strength ↑ (p<.01), Muscle endurance ↑ (p<.05),
Nam SN (2011) [7]	Muscular strength, Muscle endurance, Explosive power, Flexibility, Agility, Equilibrium	Agility & Flexibility ↑ (p<.001), Explosive power & Equilibrium ↑
Park JM (2017) [26]	Muscular strength, Muscle endurance, Explosive power, Flexibility, Agility, Cardiopulmonary endurance	Muscle endurance & Explosive power & Agility & Cardiopulmonary endurance ↑ (p<.001), Muscular strength & Flexibility ↑ (p<.01)
Park SK (2010) [14]	Muscular strength, Flexibility, Back strength, Agility, Equilibrium, Explosive power, Cardiopulmonary endurance (Maximum oxygen uptake & Maximum oxygen uptake per maximum)	Flexibility & Equilibrium & Explosive power ↑ (p<.05), Agility, Maximum oxygen uptake ↑ (p<.01), Maximum oxygen uptake per maximum ↑ (p<.001), Muscular strength & Back strength ↑
Park TH (2009) [15]	Muscular strength, Muscle endurance, Agility, Flexibility, Explosive power, Equilibrium	Muscular strength & Muscle endurance & Explosive power & Agility ↑ (p<.01), Flexibility & Equilibrium ↑
Shin GS (2006) [3]	Muscular strength, Muscle endurance, Explosive power, Flexibility, Agility, Equilibrium	Muscular strength & Explosive power & Flexibility & Equilibrium ↑ (p<.01), Muscle endurance ↑ (p<.05), Agility ↑ (p<.001)
Song JK (2013) [33]	Static strength, Muscle endurance, Abdominal endurance, Flexibility, Whole body endurance	Static strength & Muscle endurance & Abdominal endurance & Whole-body endurance & Flexibility ↑

↓: Decrease; ↑: Increase; &: and.
Table 4. Effect of Taekwondo Poomsae Training on Blood Composition

Author/Year	Characteristics of participants	Outcome measures	Results
Cho WJ (2013) [21]	Obese children	TC, TG, HDL-C, Adiponectin	TC ↓ (p < .05), HDL-C ↑ (p < .01), TG ↓ & Adiponectin ↑ (p < .001)
Jang CH (2013) [6]	Metabolic syndrome	TG, HDL-C, Glucose, Cystatin C	TG ↓ (p < .01), Glucose ↓ & Cystatin C ↓ (p < .001), HDL-C ↑
Jeong MK (2014) [43]	Obese girls	TC, TG, HDL-C, LDL-C, Leptin, LH, FSH, Estradiol	Leptin ↓, TC ↓, TG ↓, HDL-C ↓, LDL-C ↓, Estradiol ↓, LH ↓, FSH ↑
Jo KY (2010) [39]	Overweight students	TC, TG, HDL-C, LDL-C	TC ↓ (p < .01), TG ↓ & LDL-C ↓ & HDL-C ↑ (p < .05)
Kim WK (2009) [29]	Obese adolescent	TC, TG, HDL-C, LDL-C, CIGF-1, DHEAs, Insulin, HOMA-IR	Growth hormone ↑ & IGF-1 ↑ & IGFBP-III ↑ (p < .05)
Kim HD (2008) [44]	Children	Growth hormone, IGF-1, IGFBP-III	Growth hormone ↑ & IGF-1 ↑ & IGFBP-III ↑ (p < .05)
Nam SN (2008) [31]	High school student	Epinephrine, Cortisol, Norepinephrine	Epinephrine ↓ (p < .01), Cortisol ↓ & Norepinephrine ↓ (p < .001)
Moon DS (2009) [45]	Female students	IGF-1, Progesterone, Estradiol, Estrogen	IGF-1 ↑ (p < .05), Estradiol ↓, Estrogen ↓, Progesterone ↑
Nam SN (2011) [7]	Obese children	Leptin	Leptin ↓ (p < .05)
Park SK (2009) [13]	Metabolic syndrome	TG, HDL-C, Glucose	TG ↓ & HDL-C ↑ (p < .05), Glucose ↓
Park SK (2010) [14]	Obese children	TC, TG, HDL-C, Glucose, Adiponectin, HOMA-IR, Insulin	TC ↓ & Glucose ↓ & Adiponectin ↓ & Insulin ↓, HOMA-IR ↓ (p < .05), HDL-C ↑ (p < .01), TG ↓
Park TH (2009) [15]	Obese children	TC, HDL-C, LDL-C, Glucose, IGF-1, Growth hormone, Insulin, HOMA-IR	TC ↓, HDL-C ↑, LDL-C ↓, Glucose ↑, IGF-1 ↑ (p < .01), Growth hormone ↑ & Insulin ↑ & HOMA-IR ↑ (p < .05)
Son YN (2019) [32]	High school student	Glucose, TG	Glucose ↓ & TG ↓ (p < .05)

TC, Total cholesterol; TG, Triglyceride; HDL-C, High density lipoprotein cholesterol; LDL-C, Low density lipoprotein cholesterol; LH, Luteinizing hormone; FSH, Follicle stimulating hormone; GH, Growth hormone; IGF-1, Insulin growth factor 1; IGFBP-III, Insulin like growth factor binding protein-III; DHEAs, Dehydroepiandrosterone sulfate; HOMA-IR, Homeostasis model of insulin resistance.

↓: Decrease; ↑: Increase; &: and.

30,45], while the remaining 3 studies reported seeing changes after the intervention of Taekwondo Poomsae training, but it was not statistically significant [6,33,42]. And the case of equilibrium, 10 studies are related to it, of which 5 studies showed significant changes after the Taekwondo Poomsae intervention[3,14,24,43,45]. However, there are also 5 studies revealed no significant changes after the Taekwondo Poomsae intervention, but the trend of improvement could be seen [6,7,15,28,29].

3) Blood Composition

Of the 22 studies, 13 studies declared the effects of Taekwondo Poomsae training on blood components [6,7,13-15,21,29,31,32,39,43-45]. 9 studies involved blood lipid factors such as TC, TG, HDL-C, LDL-C, etc. After 12 weeks of different times of the Taekwondo Poomsae intervention, the concentration of TC, TG, LDL-C in blood of the participants decreased significantly, while the concentration of HDL-C increased significantly [6,13-15,21,29,32,39,43].

There are 7 studies related to overweight or obese children, among which 6 studies showed the effect of Taekwondo Poomsae training on neutral lipid variability (TC, TG, HDL-C,LDL-C) [14,15,21,29,39,43], and 2 studies reported that adiponectin of obese children increased significantly after 12 weeks Taekwondo Poomsae potentials intervention [14, 21].

Furthermore, another study conducted 12 weeks of Music Poomsae intervention on obese children, and the results demonstrated that the leptin content in blood of the participants decreased from 12.62 ± 4.72 ng/mL before training to 11.60 ± 4.67 ng/mL after training, with a significant difference [7].

Two studies were related to metabolic syndrome, and the results asserted that the concentration of risk factors of metabolic syndrome (Waist circumference, Glucose, SBP, DBP, TC) decreased significantly and HDL-C increased after 12 weeks of Taekwondo Poomsae intervention [6,13]. And Jang (2013) also reported the changes in the concentration of Cystatin C was significantly decreased before and after Taekwondo Poomsae intervention.

And beyond that there are 2 studies on female children. The study of Jeong (2014) was the risk factors of precocious puberty of obese girls aged 7-8 through 12 weeks Taekwondo Poomsae training. The results found that estradiol, LH decreased and FSH increased after 12 weeks, but did not show statistical significance [43]. And the study of Moon (2009) conducted a 12-weeks Taekwondo Poomsae intervention on girls aged 11-13 who had undergone menstruation. The results discovered that Estradiol and Estrogen were significantly reduced, and the content of Progesterone increased, although there was no significant difference, the growth hormone and IGF-1 increased significantly [45].
3. Intervention time and intensity

From these 22 studies of Taekwondo Poomsae intervention on children and adolescents, it was found that the intervention period is between 8 and 20 weeks. 86.96% (20 of 23 studies) lasted for 12 weeks, and the frequency of intervention varied from 2-5 times a week, and the duration of each time is 35-85 minutes.

In addition, 14 studies showed training intensity, and most of them were set between medium and medium-high intensity (Table 1). Four studies used HRRmax to express exercise intensity, including one study HRRmax: 50-80% [44], one study HRRmax: 65.7-67.7% [15], and other two studies HRRmax: 60-70% [13,33]. Six studies used HRmax to express exercise intensity, specifically HRmax: 50-70% [6,39], HRmax: 55-70% [14,43] and HRmax: 60-70% [7,45]. In the other four studies, RPE [23,26,42] and VO2max [21] were used to represent exercise intensity.

From the setting of exercise intensity, these intensities are consistent (similar) to those emphasized by the American College of Sports Medicine, that is, in order to maintain and improve the body composition, the 40-70% VO2max exercise intensity is needed [46], and in order to promote the physical enhancement of children and adolescents, the daily exercise intensity is above medium and medium-high [1,2].

4. Quality assessment

The risk of bias in the included studies was overall low (Figs. 2, 3). 14 studies [6,7,13,14,21-23,26,28,29,32,33,44,45] described the allocation concealment, and the other 8 studies [3,15,24,30,31,39,42,43] did not mention the allocation concealment. All studies did not mention whether the participants and personnel were blinded, which is related to the nature of the intervention, and it is not easy to be blind to the participants and personnel. In addition, most of the included studies showed that the total sample size was low. Except that the total sample size of the three studies were 145 [22], 96 [24], 78 [30] respectively, the total sample size of the other studies did not exceed 42.

DISCUSSION

This review is the first systematic review of Taekwondo Poomsae intervention in children and adolescents. The purpose is to explore whether Taekwondo Poomsae training can improve the body composition, physical fitness and blood composition of children and adolescents. Although there was a similar systematic review and meta-analysis before, the intervention mode was not the Taekwondo Poomsae or the study participant was the elderly rather than children and adolescents.

1. Body Composition

Among the many elements of body composition, the proportion of Fat%, BMI, LBM etc. are the standard to judge the balance of body composition and the most basic condition to maintain health, which has an important impact on obesity, health, and sports performance.

Taekwondo training significantly reduce the weight, fat% and BMI of healthy and overweight or obese adolescents and children (10 reports in 11 studies), which seems to indicate that it is effective in improving body composition. According to results, Taekwondo is considered to be a very suitable aerobic exercise for teenagers and children [47]. Although previous studies have different opinions on the impact of exercise training intensity on body composition, aerobic exercise is considered to be the most appropriate activity to reduce the percentage of body fat and in-

![Fig. 2. Risk of bias graph.](https://www.ksep-es.org)
crease the level of aerobic exercise (such as peak oxygen uptake) [48]. Especially compared with low-intensity exercise, high-intensity training is more effective in reducing BF% [49,50], which is due to higher energy consumption during exercise lead to more body fat loss, thus reducing body weight and body fat [40,50,51]. This is also the reason why the body composition of the subjects changed after the Taekwondo Poomsae intervention.

2. Physical Fitness

Physical fitness is the basic guarantee to maintain daily work and leisure activities and to deal with emergencies, and it’s also the basis to promote health and improve sports performance. ACSM advocates more than 30 minutes of continuous moderate intensity aerobic exercise and strength training every day to promote the improvement of adolescents’ physical fitness [2].

In this review, agility [3,7,14,15,24,26,28-30,42,43,45], cardiopulmonary endurance [14,22,23,26,30], explosive power [2,3,6,7,14,15,23,24,26,30,42,43,45], flexibility [3,6,7,14,15,22-24,26,28-30,33,42,43,45] muscle endurance [3,6,7,15,22-23,26,28,30,33,42,43,45] muscle strength [3,6,7,14,15,22-24,26,28-30,33,42,43,45] and equilibrium [3,6,7,14,15,24,28,29,43,45] of the 16 literatures related to physical fitness were presented significantly improved in different degrees, which shows that Taekwondo Poomsae training is effective in promoting the physical fitness of children and adolescents.

Although previous studies have shown that various sports such as soccer [52,53], basketball [54,55], volleyball [56], martial arts [57] and karate [58,59], etc. all contribute to the growth and development of young children and improvement of basic physical fitness. However, it is worth mentioning that, compared with these sports, on the other hand, Taekwondo is not an exercise that uses only the limited parts of the body, but requires various movements, such as Jireugi, Jjireugi, Chagi, Breaking, jumping and rapid body movement etc. therefore, it can experience physical activity throughout the body [28,30]. Especially, Taekwondo has extremely strict requirements for physical elements such as strength, flexibility and balance when it completes various movements in an abnormal posture. Through Taekwondo Poomsae training, it can not only induce physical activities of the whole body and promote the functions of the nervous system and circulatory system [30,60], but also balance train the physical fitness such as muscle strength, muscular endurance, agility, flexibility, explosive power and equilibrium [28,30]. In addition, as a martial arts sport, Taekwondo Poomsae pursues the technical prac-
ticability of physical exercise, and also includes the educational and philosophical factors in oriental thought such as personality cultivation, spiritual exercise and self-discovery [61]. Through Personality education and martial arts education, it is possible to achieve educational effects and values that emphasize character completion or self-education. This is very beneficial for growing children [62].

3. Blood Composition

In this review, we found that Taekwondo Poomsae training caused significant changes in adiponectin [14,21], leptin [7,43], blood composition (TC, TG, HDL-C, etc.) and the risk factors of metabolic syndrome (TG, HDL-C, glucose, Cystatin C, insulin, HOMA-IR, etc.). This indicates that Taekwondo Poomsae training is an effective exercise method to improve obesity and metabolic syndrome [10,63-66].

According to previous studies, exercise can reduce plasma TG concentration, which is mainly caused by TG baseline level rather than energy consumption [67]. In addition, although the mechanism of exercise-induced changes in blood lipids (TC, TG, HDL-C) is not clear, total energy expenditure and exercise intensity are considered as the main factors affecting the changes in blood lipids [68]. On the one hand, exercise itself may increase blood lipid consumption, thus reducing blood lipid level [69]. Also, under the same amount of exercise, the higher the exercise intensity, the more obvious the change of blood lipid [70]. The mechanism of this change may be related to the increased activity of lipoprotein lipase (LPL), which is responsible for the hydrolysis of chyle particles and VLDL TAG in particles [67,71].

Previous studies have shown that increased plasma adiponectin levels are caused by weight loss [72-76], and the decrease of exercise-related leptin may be due to the change of nutrient availability or nutrient flow of adipocytes (the main place of leptin production and secretion) [77,78]. Exercise with high energy consumption has a greater impact on circulating leptin level [77,79]. Many studies have confirmed that the change of HOMA-IR is related to the decrease of fat, and the decrease of total body fat and percentage is the intermediary of the change of HOMA-IR caused by exercise [80-83].

In addition, there were significant changes in growth related factors (growth hormone, IGF-1, IGFBP-Ⅲ) caused by Taekwondo Poomsae training. This is because an increase in the concentration of lactic acid produced during exercise, or more accurately, an increase in the concentration of hydrogen ions, regulates the release of growth hormone (GH) [84-86]. The mechanism of the decrease of IGF-1 and IGFBP-Ⅲ in pre-adolescent and early adolescent boys is explained as may be partly related to the increase of the basic level of some pro-inflammatory cytokines related to training [87].

4. Limitations

Although this systematic review shed light on many benefits, it still has some limitations. For example, when searching for studies, only the published studies in Korean are searched, which may be a limitation. Therefore, other databases and languages can be considered for further research. In addition, it should be emphasized that the number of included studies is small, and most studies have few participants, which may lead to inconsistent results. And in terms of allocation concealment and blind method of participants and personnel, it is usually poorly reported, which will be solved in the future research on Taekwondo Poomsae training for children and adolescents, so as to improve the quality of current research in this field.

CONCLUSIONS

In conclusion, we firmly believe that Taekwondo Poomsae is an effective sport to improve the physical condition of children and adolescents. It is even worth recommending to more people, such as the middle-aged and the elderly. However, only from the 7 literatures included, we cannot assert that taekwondo Poomsae is also an effective exercise therapy for special groups such as overweight, obesity or metabolic syndrome in growth and development. Although some reports say it is, more evidence is needed to verify it. Therefore, we suggested that sports formulators, Taekwondo Poomsae experts, coaches and other professionals provide more Taekwondo Poomsae training programs suitable for physical exercise and exercise kinesitherapy for different ages and groups (healthy and non-healthy or ordinary and special groups).

CONFLICT OF INTEREST

The authors declare that there is no conflict of interests regarding the publication of this paper.

AUTHOR CONTRIBUTIONS

Conceptualization: I. Ye, H Jun; Data curation: I. Ye; Formal analysis: I. Ye, H Jun; Funding acquisition: N/A; Methodology: I. Ye, H Jun; Proj-
Yi Lei, et al. Poomsae Training in Children and Adolescents

Vol. 31, No. 1, February 2022: 11-25

text administration: L Ye, H Jun; Visualization: L Ye, H Jun; Writing-original draft: L Ye, H Jun; Writing-review & editing: L Ye, H Jun.

ORCID

Lei Ye https://orcid.org/0000-0001-7127-8921
Hyung-pil Jun https://orcid.org/0000-0001-7772-8276

REFERENCES

1. Piercy KL, Troiano RP, Ballard RM, Carlson SA, Fulton JE, et al. The physical activity guidelines for Americans. JAMA. 2018;320(19):2020-8.
2. ACSM. physical activity guidelines for americans 2nd edition. HHS. 2018:47-54.
3. Shin GS, Kim HJ. The impact of the taekwondo training on the fitness improvement of elementary school students. Korea Sports Research. 2006;17(4):823-30.
4. Skinner EC. Quality of life with reconstruction. In Seminars In Urologic Oncology. 2001;19(1)56-8.
5. Mead E, Brown T, Rees K, Azevedo LB, Whittaker V, et al. Diet, physical activity and behavioural interventions for the treatment of overweight or obese children from the age of 6 to 11 years. Cochrane Database Syst Rev. 2017;(6).
6. Jang CH, Kwon YC, Park SK, Park JH, Jung HH, et al. Effects of taekwondo exercise on physical fitness and cystatin c in children with metabolic syndrome. The Journal of Korean Alliance of Martial Arts. 2013;15(1):183-95.
7. Nam SN, Chae SI, Kim JH. The influence of music taekwondo poomsae training with taekwon-exercise on leptin and physical fitness of obese children for 12 weeks. Journal of the Korean Society for Wellness. 2011;6(3):311-9.
8. Ebbeling CB, Pawlak DB, Ludwig DS. Childhood obesity: public-health crisis, common sense cure. Lancet. 2002;360(9331):473-82.
9. Cook S, Weitzman M, Auinger P, Nguyen M, Dietz WH. Prevalence of a metabolic syndrome phenotype in adolescents: findings from the third national health and nutrition examination survey, 1988-1994. Arch Pediatr Adolesc Med. 2003;157(8):821-7.
10. Katzmarzyk PT, Leon AS, Wilmore JH, Skinner JS, Rao D, et al. Targeting the metabolic syndrome with exercise: evidence from the HERITAGE family study. Med Sci Sports Exerc. 2003;35(10):1703-9.
11. Kelley GA, Kelley KS. Effects of exercise in the treatment of overweight and obese children and adolescents: a systematic review of meta-analyses. Journal of Obesity. 2013: 2013.
12. Marson EC, Delevatti RS, Prado AKG, Netto N, Krudel LFM. Effects of aerobic, resistance, and combined exercise training on insulin resistance markers in overweight or obese children and adolescents: a systematic review and meta-analysis. Prev Med. 2016;93:211-8.
13. Park SK, Jang JH, Kim EH, Kwon YC. Effects of taekwondo training on maximal oxygen uptake and metabolic syndrome risk factors in adolescents with metabolic syndrome. The Journal of Korean Alliance of Martial Arts. 2009;11:275-90.
14. Park SK, Kwon YC, Park JK, Kim Eh, Jang JH. Effects of taekwondo training on body composition, physical fitness and serum adiponectin in children obesity. The Journal of Korean Alliance of Martial Arts. 2010;12(2):239-51.
15. Park TH, Heo JS. The effect of taekwondo training program on health-related physical fitness and growth of height in obese children. Journal of Martial Arts. 2009;3(2):127-49.
16. Hun AJ. The effect of music pumsae performance of taekwondo on iron status criterion parameters of girls high school students. Korean J Sport Sci. 2008;17(4):1277-85.
17. Koo BC, Nam JR, Seo JG. Effect of body composition, physical fitness, pulmonary function, and blood chemistry in practiced tae-kwon-do pumsae. J Coaching Development. 2009;11(3):49-58.
18. Park JS, Kim GJ. Comparison of exercise intensity following to the types of poomsae of black belt players in taekwondo. Journal of Sport and Leisure Studies. 2003:13:1145-56.
19. Jung HD. Study for Development method of official poomsae match of taekwondo. Korean Soc Stud Phys Educ. 2012;17(3):131-41.
20. Joo Dw, Kim JD. An effect of taekwondo poomsae training with music on training absorption, training satisfaction and training continuity. Korean J Sports. 2012;10(1):185-97.
21. Cho WJ, Jeoung JH. Effects of taekwondo poomsae training on body composition, blood lipid, and adiponectin in obese children. The Journal of Korean Alliance of Martial Arts. 2013;13(1):57-67.
22. Choe J, Kim BY. The effect on physical growth and health-related fitness by taekwondo training of elementary school student. J Coaching Development. 2009;11(4):163-74.
23. Ham KW, Lee JA. Effects of 12-week auditory and visual stimulation taekwondo poomsae training on body composition, physical fitness and cognitive function in skilled elementary school students. Journal
of Martial Arts. 2020;14(4):179-200.
24. Kim KJ. Effect of influence on the physique and physical strength in children due to Taekwondo training ways. World Taekwondo Research. 2001;5:109-18.
25. Lee SW, Jin KD, Chyul CY. The Change of cardiorespiratory function the taekwondo form in elementary school. Korean J Sport Sci. 2010;19(4):1393-401.
26. Park JM, Seo DW. Effects of regular taekwondo poomsae training on physical fitness and balance capability in elementary school children. Journal of Sport and Leisure Studies. 2017;67:575-82.
27. Choi SG, Cho SH. The effect of tae gwon fo program has on problematic behavior decrease and basic physical fitness of the slightly mentally retarded. Korea Sport Research 2008;19(4):177-84.
28. Kim JE. Change of fitness and physical self description of adolescents with intellectual disability according to participation in a taekwondo program. Eur J Adapt Phys Act. 2009;17(4):35-50.
29. Kim WK, Kwon YC. The effect of taekwondo poomsae training on physical fitness and growth hormone, IGF-1 or DHEAs concentration in obesity adolescent. Korean J Sport Sci. 2009;18(3):1007-18.
30. Lee SJ, Lee WB. Impact of after-school taekwondo training on the physical fitness of adolescents. Korean J Sports. 2009;7(2):151-8.
31. Nam SN, Kim SM, Jeong JH. The effect of general and music poomsae of taekwondo on level of strees hormones in the blood. J Korean Soc Living Environ Sys. 2008;15(1):9-14.
32. Son YN, Kim GD, Min JU. Effect of taekwondo poomsae training for poomsae player of blood lipid concentration. Korean J Sports. 2019;17(3):1071-8.
33. Song JK, Kim HB, Kang HJ, Jung HC. Effect of 12 weeks Taekwondo poomsae training on body composition, health-related fitness and dietary intake in male adolescents. Taekwondo Journal of Kukkiwon. 2013;4(1):61-76.
34. Jo YM. The Effect of taekwondo form training on the body composition, physical fitness, blood components. Korean J Sports Sci 2006;15(3):587-93.
35. Lee GH, Kim NS. The effects of 12 weeks taekwondo poomsae training on body composition, physical strength and risk factors of metabolic syndrome in obese male college lege students. Korean J Sport Sci. 2021;30(3):921-31.
36. Lee JH, Park KY. An analysis on body composition, bone density, blood lipid and mental health of middle aged women followed by each form of taekwondo training. The Journal of Korean Alliance of Martial Arts. 2010;12(2):265-78.
37. Woo YH, Han SW, Lee WJ. Effects of taekwondo posture (pumsae) training on the physical fitness and temperature in elderly women. Korean J Sorts Sci. 2009;18(3):1151-66.
38. Seo DW, Park JM. Effects of taekwondo poomsae training on posture stability and functional exercise performance abilities in elementary school children. Journal of Learner-Centered Curriculum and Instruction. 2017;17(12):459-75.
39. Jo KY, Ann JH. The effect of rhythmic taekwondo poomsae on body composition and blood lipid level in over weight elementary school students. Korean J Sport Sci. 2010;19(1):851-60.
40. Ohkawara K, Tanaka S, Miyachi M, Ishikawa-Takata K, Tabata I. A dose–response relation between aerobic exercise and visceral fat reduction: systematic review of clinical trials. Int J Obes (Lond). 2007;31(12):1786-97.
41. Park JY, Hyung KA, Choi DH, Kim EJ. The influence of taekwondo poomsae training on health-related fitness and psychological factors by using music. Journal of Korean Society for Rhythmic Exercises. 2021;14(1):59-72.
42. An HS, Song YE, Kim CH, Kim BW, Kang EB. Effects of taekwondo reverse poomsae training on basic physical fitness, working memory and switching ability of schoolchild. Taekwondo Journal of Kukkiwon. 2017;8(3):119-34.
43. Jeong MK, Park SK, Park JH, Kwon YC, Kim EH. Effects of taekwondo training on body composition, physical fitness and precocious puberty risk factors in obese girls. The Journal of Korean Alliance of Martial Arts. 2014;16(1):85-97.
44. Kim HD, Kim DJ. The effects of taekwondo training program on body composition, bone mineral density and growth factors in the children. J Life Sci. 2008;18(9):1230-8.
45. Moon DS, Seo DG, Kim TI, Kim WK, Shin JD. The effect of taekwondo training on physical fitness, growth factors and women’s hormones and in female students after menarche. The Journal of Korean Alliance of Martial Arts. 2009;11(2):235-49.
46. ACSM’S guidelines for exercyse testing and prescription , 6th edition. Lippincott Williams & Wilkins 2006:117.
47. Park SK, Kim EH, Chan KY. The Effects of combined training on abdominal fat and adipocytokines in obese adolescents. Korean J Sports Med. 2005;23(3):270-7.
48. Oda K, Miyatake N, Sakano N, Saito T, Miyachi M, et al. Relationship between peak oxygen uptake and regional body composition in Japa-
nese subjects. J Sport Health Sci. 2014;3(3):233-8.
49. Lee MG, Park KS, Kim DU, Choi SM, Kim HJ. Effects of high-intensity exercise training on body composition, abdominal fat loss, and cardiorespiratory fitness in middle-aged Korean females. Appl Physiol Nutr Metab. 2012;37(6):1019-27.
50. Chiu CH, Ko MC, Wu LS, Yeh DP, Kan NW, et al. Benefits of different intensity of aerobic exercise in modulating body composition among obese young adults: a pilot randomized controlled trial. Health Qual Life Outcomes. 2017;15(1):1-9.
51. Ross R, Janssen I. Physical activity, total and regional obesity: dose-response considerations. Med Sci Sports Exerc. 2001;33(6):S521-7.
52. Lee CJ, Kim JW, Shin DS. Effects of soccer exercise after school on health-related physical fitness and cortisol in middle school boys. Korean J Sports Sci. 2015;24(2):1137-44.
53. Lee SB. The effects of participation in school soccer sports club activities on physical fitness, blood lipids and inflammatory markers in obese children. The Journal of Education. 2016;36(1):141-56.
54. Chung SP, Jin HH, Oh HJ. The effects of elementary school students participation in basketball sports club activity on students' physical fitness Korean J Sports. 2019;17(4):763-71.
55. Park CE, Kim JD. An effect of 12-week combined basketball exercise program on body composition, physical fitness, and concentration in male elementary school students. Journal of Sport and Leisure Studies. 2018;74:539-50.
56. Bae KY. Effect of volleyball program on physical fitness and attention concentration of middle school students with intellectual disabilities. J Digit Converg. 2020;18(2):175-82.
57. Ha SH, Chang IH. Effects of wushu exercise on changes in physical fitness in school-age children with normal and abnormal body weight. Physiotherapy Q. 2019;27(3):28-33.
58. Pinto-Escalona T, Gobbi E, Valenzuela PL, Bennett SJ, Aschieri P, et al. Effects of a school-based karate intervention on academic achievement, psychosocial functioning, and physical fitness: a multi-country cluster randomized controlled trial. J Sport Health Sci. 2021.
59. Rutkowski T, Sobiech K, Chwałczyńska A. The effect of karate training on changes in physical fitness in school-age children with normal and abnormal body weight. Physiotherapy Q. 2019;27(3):28-33.
60. Jun YH. The effect of Taekwondo trainings on elementary students' physical strength, body composition, and bone volume [thesis]. Yong-in University; 2007.
61. Nam SW. The study on the values of Taekwondo pumsae training. Journal of Martial Arts. 2007;1(1):121-38.
62. Bae SJ. The effect of taekwondo training on heart autonomic nerve balance of growth elementary students [dissertation]. Chonbuk National University 2004.
63. Bateman LA, Slentz CA, Willis JH, Shields AT, Piner LW, et al. Comparison of aerobic versus resistance exercise training effects on metabolic syndrome (from the Studies of a Targeted Risk Reduction Intervention Through Defined Exercise-STRRIDE-AT/RT). Am. J. Cardiol. 2011;108(6):838-44.
64. Chen AK, Roberts CK, Barnard RJ. Effect of a short-term diet and exercise intervention on metabolic syndrome in overweight children. Metabolism. 2006;55(7):871-8.
65. Dugan SA. Exercise for preventing childhood obesity. Phys Med Rehabil Clin N Am. 2008;19(2):205-16.
66. Strasser B. Physical activity in obesity and metabolic syndrome. Ann N Y Acad Sci. 2013;1281(1):141-59.
67. Wang YT, Xu DY. Effects of aerobic exercise on lipids and lipoproteins. Lipids Health Dis. 2017;16(1):1-8.
68. Kraus WE, Houmard JA, Duscha BD, Knetzger KJ, Wharton MB, et al. Effects of the amount and intensity of exercise on plasma lipoproteins. N Engl J Med. 2002;347(19):1483-92.
69. Earnest CP, Artero EG, Sui X, Lee DC, Church TS, et al. Maximal estimated cardiorespiratory fitness, cardiometabolic risk factors, and metabolic syndrome in the aerobics center longitudinal study. In Mayo Clinic Proceedings. 2013;88(3):259-70.
70. O’Donovan G, Owen A, Bird SR, Kearney EM, Nevill AM, et al. Changes in cardiorespiratory fitness and coronary heart disease risk factors following 24 wk of moderate-or high-intensity exercise of equal energy cost. J Appl. Physiol. 2005;98(5):1619-25.
71. Calabresi L, Franceschini G. Lecithin: cholesterol acyltransferase, high-density lipoproteins, and atheroprotection in humans. Trends Cardiovasc Med. 2010;20(2):50-3.
72. Esposito K, Pontillo A, Di Palo C, Giugliano G, Masella M, et al. Effect of weight loss and lifestyle changes on vascular inflammatory markers in obese women: a randomized trial. JAMA. 2003;289(14):1799-804.
73. Hotta K, Funahashi T, Arita Y, Takahashi M, Matsuda M, et al. Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients. Arterioscler Thromb Vasc Biol. 2000;20(6):1595-9.
74. Milan G, Granzotto M, Scarda A, Calcagno A, Pagano C, et al. Resistin and adiponectin expression in visceral fat of obese rats: effect of
weight loss. Obes Res. 2002;10(11):1095-103.
75. Oberbach A, Tönjes A, Klöting N, Fasshauer M, Kratzsch Jr, et al. Effect of a 4 week physical training program on plasma concentrations of inflammatory markers in patients with abnormal glucose tolerance. Eur J Endocrinol. 2006;154(4):577-85.
76. Yang WS, Lee WJ, Funahashi T, Tanaka S, Matsuzawa Y, et al. Weight reduction increases plasma levels of an adipose-derived anti-inflammatory protein, adiponectin. J Clin Endocrinol Metab. 2001;86(8):3815-9.
77. Hulver MW, Houmard JA. Plasma leptin and exercise. Sports Med. 2003;33(7):473-82.
78. Venner AA, Lyon ME, Doyle-Baker PK. Leptin: a potential biomarker for childhood obesity? Clin Biochem. 2006;39(11):1047-56.
79. Olive JL, Miller GD. Differential effects of maximal-and moderate-intensity runs on plasma leptin in healthy trained subjects. Nutrition. 2001;17(5):365-9.
80. Frank LL, Sorensen BE, Yasui Y, Tworoger SS, Schwartz RS, et al. Effects of exercise on metabolic risk variables in overweight postmenopausal women: a randomized clinical trial. Obes Res. 2005;13(3):615-25.
81. Friedenreich CM, Neilson HK, Woolcott CG, McTiernan A, Wang Q, et al. Changes in insulin resistance indicators, IGFs, and adipokines in a year-long trial of aerobic exercise in postmenopausal women. Endocr Relat Cancer. 2011;18(3):357-69.
82. Mora-Rodriguez R, Ortega J, Ramirez-Jimenez M, Moreno-Cabañas A, Morales-Palomo F. Insulin sensitivity improvement with exercise training is mediated by body weight loss in subjects with metabolic syndrome. Diabetes Metab J. 2020;46(3):210-8.
83. Nordby P, Auerbach PL, Rosenkilde M, Kristiansen L, Thomasen JR, et al. Endurance training per se increases metabolic health in young, moderately overweight men. Obes Res. 2012;20(11):2202-12.
84. Galbo H. Hormonal and metabolic adaptation to exercise. Thieme Stuttgart; 1983.
85. Gordon SE, Kraemer WJ, Vos NH, Lynch JM, Knuttgen HG. Effect of acid-base balance on the growth hormone response to acute high-intensity cycle exercise. J Appl Physiol. 1994;76(2):821-9.
86. Roemmich JN, Rogol AD. Exercise and growth hormone: does one affect the other? J Pediatr. 1997;131(1):S75-80.
87. Scheett TP, Nemet D, Stoppani J, Maresh CM, Newcomb R, et al. The effect of endurance-type exercise training on growth mediators and inflammatory cytokines in pre-pubertal and early pubertal males. Pediatr Res. 2002;52(4):491-7.