Ultrastructural description of rabies virus infection in cultured sensory neurons

Myriam L Velandia*/++/**+, Rosalía Pérez-Castro*/++/**, Hernán Hurtado*/**, Jaime E Castellanos/+*

Instituto de Virología, Universidad El Bosque, Transv. 9A Bis 132–55, Edificio de Rectoría, Laboratorio 205, Bogotá, Colombia
*Laboratorio de Neurociencias, Instituto Nacional de Salud Bogotá, Colombia **Facultad de Biología, Universidad Militar Nueva Granada, Bogotá, Colombia

Primary cultures were made from adult mouse spinal ganglia for depicting an ultrastructural description of rabies virus (RABV) infection in adult mouse sensory neuron cultures; they were infected with rabies virus for 24, 36, and 48 h. The monolayers were processed for transmission electron microscopy and immunochemistry studies at the end of each period. As previously reported, sensory neurons showed great susceptibility to infection by RABV; however, in none of the periods evaluated were assembled virions observed in the cytoplasm or seen to be associated with the cytoplasmic membrane. Instead, fibril matrices of aggregated ribonucleoprotein were detected in the cytoplasm. When infected culture lysate were inoculated into normal animals via intracerebral route it was observed that these animals developed clinical symptoms characteristic of infection and transmission electron microscopy revealed assembled virions in the cerebral cortex and other areas of the brain. Sensory neurons infected in vitro by RABV produced a large amount of unassembled viral ribonucleoprotein. However, this intracellular material was able to produce infection and virions on being intra-cerebrally inoculated. It can thus be suggested that the lack of intracellular assembly in sensory neurons forms part of an efficient dissemination strategy.

Key words: rabies virus - sensory neurons - viral assembly

Rabies virus (RABV) is a negative, non-segmented, single-strand RNA virus which infects animals and the human nervous system (Mattos et al. 2001). RABV entry to cells is due to viral glycoprotein (G) binding to some of the membrane proteins proposed as being viral receptors (the nicotinic acetylcholine receptor, the neural cell adhesion molecule, and the p75 low affinity neurotrophin receptor) (Lafon 2005). Once within the cytoplasm, the ribonucleoprotein (RNP) complex is released; this is formed by the RNA strand and non-structural proteins N, P, and L (nucleoprotein, phosphoprotein, and viral polymerase, respectively). Viral transcription and replication begin on this complex, following processes culminating in new viral progeny being released (Finke & Conzelmann 2005). Viral capture and transport in a rabid accident is produced by endocytic process, reaching the soma of sensory neurons located in the spinal ganglia (SP) or the motoneurons of the spinal cord’s (SC) ventral horn. Sensory neurons’ ability to capture, transport, and replicate RABV has been described in sensory neuron cultures from different animal species. Our group has developed an in vitro RABV infection model using adult mouse sensory neurons which has confirmed and evaluated susceptibility to infection and the antiviral and anti-replication effect of some drugs on these cells (Castellanos et al. 2005). Such susceptibility has been observed in models in vivo and it has been confirmed that these neurons are fundamentally involved in viral transport from the periphery to the central nervous system (CNS) via retrograde and anterograde axonal transport (Tsiang et al. 1983, 1989, 1991, Coulon et al. 1989, Dietzschold et al. 2005).

Even though the virus’ tropism towards neurons is widely known, it has been observed that some non-neuron cells may support viral entry and replication. Laboratory-adapted “fixed strain” viruses are frequently used in in vitro studies for infecting cells or tissue having different origin to the neurons. It has been found that baby hamster kidney fibroblast cells present high susceptibility to infection and produce assembled viral particles, recuperating in culture medium 12 to 18 h post-infection (pi) (Madore & England, 1977). On the contrary, even though high susceptibility to infection has been observed in myocyte primary cultures, no assembled viral particles have been detected or released to the extracellular space. Just a large amount of viral inclusions can be observed in cytoplasm, even up to 72 h pi (Tsiang et al. 1986).

On the other hand, it has been observed in both in vitro and in vivo neuron infection studies that even though marked viral neurotropism is maintained, there are differences in infection ability and viral production between different neuron types. Sensory neurons pro-
ducibility between 10- to 100-fold less viral particles respecting cortical neurons (Mrak & Young 1994). Such results suggest that each neuronal type has particular metabolic and biochemical characteristics which may interfere in different ways in the main processes of the viral cycle, just the same as that observed in fibroblasts and myocytes. It is thus particularly interesting to evaluate the ultrastructural characteristics of RABV infection in sensory neuron cultures and adult mouse cortex neurons by immunocytochemistry [immunoperoxidase (IP), immunofluorescence (IFA), and transmission electron microscopy (TEM)] techniques.

MATERIALS AND METHODS

Sensory neuron cultures - Four independent adult ICR strain mouse spinal ganglia sensory neuron cultures were done according to previously reported protocol (Castellanos & Hurtado 1999). The animals were sacrificed by cervical dislocation; the complete vertebral column was extracted and the ganglia dissected. They were then mechanically and enzymatically dissociated in a 200 U/ml collagenase solution in complete medium (CM, DMEM supplemented with 10% bovine foetal serum, 100 U/ml penicillin, and 100 µg/ml streptomycin). The cell suspension was centrifuged at 200 × g for 5 min. Cell viability was then evaluated with Trypan blue and 2500 cells seeded on Thermanox coverslips pre-treated with poly-L-lysine (10 µg/ml) in 24-well dishes and kept at 37ºC with 5% CO₂. The medium was changed each 48 h.

In vitro infection - Sensory neuron cultures (consisting of sensory neurons, Schwann cells, and fibroblasts) were infected with a 1:10 dilution of CVS-11 strain rabies virus (Challenge Virus Standard), produced in mouse brain (10²-43 DL₅₀) diluted in complete medium. The inoculum was removed 1 h pi, complete medium was introduced and the cultures were taken to 24, 36, and 48 h pi. Once these periods had elapsed, half of the infected cultures were processed; they were infected at 120 h pi (according to the previously described protocol) and finally embedded in Epon-Araldite resin in the ratios described above. They were hydrated in increasing ethanol gradients (70, 80, 90, 95, and 100%). The monolayers were infiltrated with a mixture of 100% ethanol and Epon-812 Polybed resin in 3:1, 1:1, 1:3 ratios and then embedded in a mixture of Epon-Araldite resins. Slices of nerve tissue were infiltrated with a mixture of propylene oxide and Epon-Araldite resin in the ratios described above. They were then embedded in Epon-Araldite and polymerised at 67ºC for 18 h. Semi-thin and ultra-thin sections were obtained by using a Sorvall MT1 ultramicrotome. Semi-thin sections were stained with toluidine blue and specific areas were defined for obtaining the ultra-thin sections. These were contrasted with uranyl acetate and lead citrate and observed using a Carl Zeiss EM 109 electron microscope.

Electron microscopy - Once immunoperoxidase revealing time had elapsed; three samples by duplicate per culture were processed for TEM. Both kinds of sample were then post-fixed with 1% osmium tetroxide and dehydrated in increasing ethanol gradients (70, 80, 90, 95, and 100%). The monolayers were infiltrated with a mixture of 100% ethanol and Epon-812 Polybed resin in 3:1, 1:1, 1:3 ratios and then embedded in a mixture of Epon-Araldite resins. Slices of nerve tissue were infiltrated with a mixture of propylene oxide and Epon-Araldite resin in the ratios described above. They were finally embedded in Epon-Araldite and polymerised at 67ºC for 18 h. Semi-thin and ultra-thin sections were obtained by using a Sorvall MT1 ultramicrotome. Semi-thin sections were stained with toluidine blue and specific areas were defined for obtaining the ultra-thin sections. These were contrasted with uranyl acetate and lead citrate and observed using a Carl Zeiss EM 109 electron microscope.

Infected cell count - Two replicas of each culture were taken 48 h pi and processed by immunoperoxidase. Infected neuronal and non-neuronal cells were counted under a microscope; the proportions so obtained were submitted to angular transformation and analysed by one-way ANOVA and Newman-Keuls’ multiple mean comparison test. There was considered significant p values less of 0.05.
RESULTS

Morphological description - The sensory neurons cultures presented a typical heterogeneous aspect. Neuronal and non-neuronal cells were identified. The neurons were seen to be refringent, spherical, having an eccentric nucleus; neuritic processes were observed in most of them which increased in length during culture time. The non-neuronal cell population (Schwann cells and fibroblasts) appeared to be non-refringent cells which were strongly adhered to the surface of the plate. No appreciable differences were observed between infected culture morphology compared to that of non-infected ones. When evaluating the number of neurons and non-neuronal cells infected with RABV at 24 h pi, it was observed that 39.8% of the neurons had become infected whilst the population of non-neuronal cells (fibroblasts and Schwann cells) in cultures presented 2.1% infection (Table).

	Infected (%)	Non Infected (%)	Total (%)
Neurons	1035 (39.8)	1568 (60.2)	2603 (100)
Non neuronal	222 (2.1)	9968 (97.8)	10,190 (100)
Total	1257	11536	12,793

Immunochemistry - Viral antigen was observed in sensory neuron cultures at three periods pi, evaluated by both IF and IP techniques. Immunoreactivity (IR) was low at 24 h pi and was located mainly in the perinuclear region and in sensory neuron neurites. IR was also observed in some non-neuronal cells. A large amount of cytoplasmic vesicles which were IR for viral antigen 36 and 48 h pi were observed in the cytoplasm of infected neurons; these vesicles were located in the cytoplasm’s central area. An increase in the number of these vesicles was also observed 48 h pi; they were located very close to the neuronal membrane (Fig. 1A). Infection in the brain was observed in different areas of the cortex and in the hippocampus’ pyramidal cell layer. IR was observed in the cerebellum in the molecular and granular layers of the cortex. However, it was preferentially detected in Purkinje neuron soma in which cytoplasmic inclusions were identified close to the cell membrane (Fig. 1B).

Infected cell ultrastructure - Infected neuron cytoplasm presented multi-vesicular and lamellar bodies. It was possible to identify subcellular structures such as lysosomes, lipofuscin granules, mitochondria, and Golgi apparatus. Type B neurons (dark neurons) were most found in cultures. Cytoskeleton structures, such as microtubules and neurofilaments, could only be identified in some neurons (i.e. being more evident in neuritic processes). Granular electron-dense aggregates (fibrillar matrices) were observed during all pi periods around the nucleus or very close to the plasma membrane. Such aggregates were more evident at 36 and 48 h pi (Figs 2A, B). TEM revealed that these electron-dense structures were half-moon shaped and were IR for viral antigens. This morphological pattern was maintained during the periods analysed; however, a larger number of these aggregates was found at 48 h pi, located very close to the plasma membrane or fused to it (Figs 2C, D). No assembled viral particles were found at any time analyzed or in the cytoplasm or close to the cell membrane. Aspect of mock infected sensory neuron cultures is showed in Fig 2E.

Infected cell lysates were inoculated by the intracerebral route into mice at 48 h pi to confirm the infectious ability of fibril matrices present in the sensory neuron culture cytoplasm. The animals presented symptoms characteristic of RABV infection 5 days pi. The sections presented a positive reaction in the hippocampus, cerebral cortex, and the cerebellar Purkinje neurons when evaluated by IFA and/or IP. TEM revealed viral particles in pyramidal cells from the hippocampus, some of them presenting degeneration and diluted mitochondrial matrix. Each infected neuron cell presented 2 to 8 cytoplasmic inclusions which seemed to be Negri body-like (viral RNP) structures, observed as being a strongly electron-dense matrix; 75 nm diameter, variable length (approximately 200 nm), assembled viral

Fig. 1: immunochemical staining of rabies virus. A: sensory neurons culture processed by immunofluorescence. Infected sensory neurons (arrowheads); note the immunoreactive neurites (arrows); B: cerebellum sections processed by immunoperoxidase technique. Purkinje cell bodies are positive to viral antigen (arrowheads) and dendrites are shown with immunoreactive vesicles (arrow). Bars = 50 µm.
Ultrastructure of in vitro rabies infection • Myriam L Velandia et al.

particles were observed around such structures. These viral particles were also observed to be sometimes associated with vesicles close to the endoplasmic reticule (ER) or Golgi apparatus; they were only observed in these neuron cells budding through the cytoplasmic membrane of soma or some synaptic buttons. Electron immunomicroscopy revealed granular, rounded precipitates associated with ER. Assembled viral particles were observed close to these structures in some cases (Fig. 3).

DISCUSSION

Sensory ganglia are peripheral nervous system structures, mainly consisting of pseudomonopolar neurons and support tissue provided by Schwann cells and fibroblasts. Sensory neurons have been described and characterised both in vivo and in vitro according to their physiology, biochemistry, and morphology (Thomas et al. 1993). Ultrastructurally, and according to their density and ER distribution in the cytoplasm, these cells

Fig. 2: electron micrographs of cultured sensory neurons. A: infected neuron 36 h pi. Many viral inclusions (arrow and arrowhead) were detected by using immunoperoxidase inside the cytoplasm near the nucleus (Nu). Bar = 1 µm; B: infected sensory neuron 48 h pi; viral inclusions (V) are concentrated near the plasma membrane (arrowhead), Bar = 5 µm; C: detail of cytoplasmic immunoreactive vesicles (arrows) and membrane fusion; Bar = 1 µm. D: detail of immunoreactive viral inclusion (arrows); note the electron-dense diaminobenzidine crystals; Bar = 0.5 µm. E: electron micrograph of sensory neuron from a non-infected culture; Bar = 1 µm.
can be classified into clear (type A) and dark neurons (type B) (Martínez et al. 2002). Our culture model favoured the presence of type B neurons, corresponding to intermediate and small nociceptive-associated neurons. On the other hand, the loss of large neurons (type A) could have been due to the technique employed for obtaining them and the culture's senescence. These findings coincide with those previously described by Sommer et al. (1986) in in situ models and by Martínez et al. (2002) and Rambourg et al. (1983) in in vitro models.

Viral antigen distributed in infected sensory neurons' soma and neurites was detected during the present work, confirming marked RABV neurotropism. High rabies' virus neurotropism was confirmed by the percentage of infected cells present in cultures where 39.8% of sensory neurons were infected, whilst only 2.1% of non-neuronal cells were infected.

A particular cytoplasmic IR structure was observed near the nucleus, associated or not with ER during all evaluated periods in infected neurons. These aggregates were dense fibril structures, suggesting that they were viral ribonucleoprotein (RNP), being free inside the cytoplasm or accumulated forming irregular-shaped structures. The absence of assembled viral particles in these cell cultures coincided with that preliminarily reported in rat sensory neurons and myocytes (Tsian et al. 1986, Martinez et al. 2000). Both cell types can be considered to be primary viral capture and replication sites, suggesting that the virus initially enters these cells to avoid immune system attack and/or undergo some adaptation processes (Iwasaki et al. 1973, Watson et al. 1981, Lycke & Tsian 1987). Low assembled virus production in these types of cell could possibly be attributed to differences in the machinery of neurons from the sensory neurons and brain, these being transport and immune response evasion strategies.

Viral antigen distributed in infected sensory neurons' soma and neurites was detected during the present work, confirming marked RABV neurotropism. High rabies' virus neurotropism was confirmed by the percentage of infected cells present in cultures where 39.8% of sensory neurons were infected, whilst only 2.1% of non-neuronal cells were infected.

A particular cytoplasmic IR structure was observed near the nucleus, associated or not with ER during all evaluated periods in infected neurons. These aggregates were dense fibril structures, suggesting that they were viral ribonucleoprotein (RNP), being free inside the cytoplasm or accumulated forming irregular-shaped structures. The absence of assembled viral particles in these cell cultures coincided with that preliminarily reported in rat sensory neurons and myocytes (Tsian et al. 1986, Martinez et al. 2000). Both cell types can be considered to be primary viral capture and replication sites, suggesting that the virus initially enters these cells to avoid immune system attack and/or undergo some adaptation processes (Iwasaki et al. 1973, Watson et al. 1981, Lycke & Tsian 1987). Low assembled virus production in these types of cell could possibly be attributed to differences in the machinery of neurons from the sensory neurons and brain, these being transport and immune response evasion strategies.

Viral antigen distributed in infected sensory neurons' soma and neurites was detected during the present work, confirming marked RABV neurotropism. High rabies' virus neurotropism was confirmed by the percentage of infected cells present in cultures where 39.8% of sensory neurons were infected, whilst only 2.1% of non-neuronal cells were infected.

A particular cytoplasmic IR structure was observed near the nucleus, associated or not with ER during all evaluated periods in infected neurons. These aggregates were dense fibril structures, suggesting that they were viral ribonucleoprotein (RNP), being free inside the cytoplasm or accumulated forming irregular-shaped structures. The absence of assembled viral particles in these cell cultures coincided with that preliminarily reported in rat sensory neurons and myocytes (Tsian et al. 1986, Martinez et al. 2000). Both cell types can be considered to be primary viral capture and replication sites, suggesting that the virus initially enters these cells to avoid immune system attack and/or undergo some adaptation processes (Iwasaki et al. 1973, Watson et al. 1981, Lycke & Tsian 1987). Low assembled virus production in these types of cell could possibly be attributed to differences in the machinery of neurons from the sensory neurons and brain, these being transport and immune response evasion strategies.

Viral antigen distributed in infected sensory neurons' soma and neurites was detected during the present work, confirming marked RABV neurotropism. High rabies' virus neurotropism was confirmed by the percentage of infected cells present in cultures where 39.8% of sensory neurons were infected, whilst only 2.1% of non-neuronal cells were infected.

A particular cytoplasmic IR structure was observed near the nucleus, associated or not with ER during all evaluated periods in infected neurons. These aggregates were dense fibril structures, suggesting that they were viral ribonucleoprotein (RNP), being free inside the cytoplasm or accumulated forming irregular-shaped structures. The absence of assembled viral particles in these cell cultures coincided with that preliminarily reported in rat sensory neurons and myocytes (Tsian et al. 1986, Martinez et al. 2000). Both cell types can be considered to be primary viral capture and replication sites, suggesting that the virus initially enters these cells to avoid immune system attack and/or undergo some adaptation processes (Iwasaki et al. 1973, Watson et al. 1981, Lycke & Tsian 1987). Low assembled virus production in these types of cell could possibly be attributed to differences in the machinery of neurons from the sensory neurons and brain, these being transport and immune response evasion strategies.

Viral antigen distributed in infected sensory neurons' soma and neurites was detected during the present work, confirming marked RABV neurotropism. High rabies' virus neurotropism was confirmed by the percentage of infected cells present in cultures where 39.8% of sensory neurons were infected, whilst only 2.1% of non-neuronal cells were infected.

A particular cytoplasmic IR structure was observed near the nucleus, associated or not with ER during all evaluated periods in infected neurons. These aggregates were dense fibril structures, suggesting that they were viral ribonucleoprotein (RNP), being free inside the cytoplasm or accumulated forming irregular-shaped structures. The absence of assembled viral particles in these cell cultures coincided with that preliminarily reported in rat sensory neurons and myocytes (Tsian et al. 1986, Martinez et al. 2000). Both cell types can be considered to be primary viral capture and replication sites, suggesting that the virus initially enters these cells to avoid immune system attack and/or undergo some adaptation processes (Iwasaki et al. 1973, Watson et al. 1981, Lycke & Tsian 1987). Low assembled virus production in these types of cell could possibly be attributed to differences in the machinery of neurons from the sensory neurons and brain, these being transport and immune response evasion strategies.

Viral antigen distributed in infected sensory neurons' soma and neurites was detected during the present work, confirming marked RABV neurotropism. High rabies' virus neurotropism was confirmed by the percentage of infected cells present in cultures where 39.8% of sensory neurons were infected, whilst only 2.1% of non-neuronal cells were infected.

A particular cytoplasmic IR structure was observed near the nucleus, associated or not with ER during all evaluated periods in infected neurons. These aggregates were dense fibril structures, suggesting that they were viral ribonucleoprotein (RNP), being free inside the cytoplasm or accumulated forming irregular-shaped structures. The absence of assembled viral particles in these cell cultures coincided with that preliminarily reported in rat sensory neurons and myocytes (Tsian et al. 1986, Martinez et al. 2000). Both cell types can be considered to be primary viral capture and replication sites, suggesting that the virus initially enters these cells to avoid immune system attack and/or undergo some adaptation processes (Iwasaki et al. 1973, Watson et al. 1981, Lycke & Tsian 1987). Low assembled virus production in these types of cell could possibly be attributed to differences in the machinery of neurons from the sensory neurons and brain, these being transport and immune response evasion strategies.
assemble viral particles. Viral dispersion and immune eva-
sion may thereby become increased. It is possible that
RABV may not be assembled in typical viral particles
within the cytoplasm of sensory neurons by as yet un-
known biochemical or metabolic mechanisms. By con-
trast, it may produce a large amount of RNP aggregates,
these being constantly stored and transported during pro-
longed infection; such mechanism thereby guaranteeing
the efficiency of spreading, silencing and persistence
of infection in sensory neurons. These neurons could
then transport RNP complexes to the CNS where the vi-
rus could conventionally assemble and disperse itself
by using genetic information and a different cellular
machinery. The latter may be suggested as intra-cere-
brally inoculating supernatants and homogenised pro-
ducts from sensory neurons cultures into adult mice has
led to the animals developing symptoms characteristic
of infection. Assembled viral particles have also been
observed in cortical neurons.

Our results suggest that sensory neurons support in-
fecction and offer RABV an excellent scenario for viral
replication and transcription; however, a large amount
of non-assembled RNP are produced which are able to
produce the characteristic signs of paralysis and death
in infected animals due to their biochemical and func-
tional characteristics. These RNP also produce viral cor-
tical neuron progeny which are assembled and released.
Such phenomenon offers a strategy for the mass and si-
lent production of viral RNP in sensory neurons which
might be transported and then released in the dorsal horn
of spinal cord so that RABV can then start on a new in-
fecious cycle. The virus might possibly encounter suit-
able metabolic, biochemical, and functional conditions
in the latter neurons, allowing correct and efficient as-
sembly of new viral progeny. The present evidence leads
to suggesting that RABV adopts different mechanisms
in each type of neuron which it infects to increase its
ability to disperse itself within the organism and avoid
the immune system’s attack. How and why the virus uses
such types of strategy is still to be determined. Further
studies are also needed for a much more precise define-
tion of the sensory neurons’ role during viral capture,
transport, and spreading within the nervous system.

ACKNOWLEDGEMENTS
To Jason Garry for translating this paper.

REFERENCES
Castellanos J, Hurtado H 1999. Viral infection studied in adult
sensory neurons. In L Haynes, The Neuron in Tissue Cul-
ture, John Wiley & Sons Ltd., Chichester, p.289-293.

Castellanos JE, Castañeda D, Velandia A, Hurtado H 1996.
Inmunodetección por peroxidasa de células de ganglio sen-
soorial infectadas por virus de rabia. Biomédica 16: 214-218.

Castellanos JE, Martinez-Gutierrez M, Hurtado H, Kassis R,
Bourhy H, Acosta O, Lafon M 2005. Studying neurotrophic
antiviral effect on rabies-infected dorsal root ganglia cultures.
J Neurovirol 11: 403-410.

Charlton K, Casey G 1979. Experimental rabies in Skunks: im-
munofluorescence light and electron microscopic studies.
Lab Invest 41: 36-44.

Coulon P, Dervin C, Kucera P, Lafay F, Preuduc A, Flamand A
1989. Invasion of the peripheral nervous systems of adult
mice by the CVS strain of rabies virus and its avirulent derivate. J Virol 63: 3550-3554.

Dietzschold B, Schnell M, Koppowski H 2005. Pathogenesis
of rabies. Curr Top Microbiol Immunol 292: 45-56.

Finke S, Conzelmann K 2005. Replication strategies of rabies
virus. Virus Res 111: 120-131.

Harty R, Brown M, Mc Gettigan J, Wang G, Jayakar H,
Huibregtse J, Whitt M, Schnell M 2001. Rhabdoviruses
and the cellular ubiquitin-proteasome system: a budding
interaction. J Virol 75: 10623-10629.

Harty R, Paragas J, Sudol M, Palese P 1999. A prolin-rich motif
within the matrix protein of vesicular stomatitis virus and ra-
bies virus interacts with WW domains of cellular proteins:
implications for viral budding. J Virol 73: 1921-1929.

Iwasaki Y, Wiktor T, Kopolowski H 1973. Early events of rabies
virus replication in tissue cultures: an electron microscopy
study. Lab Invest 28: 142-148.

Lafon M 2005. Rabies virus receptors. J Neurovirol 11: 82-87.

Lenard J 1999. Negative-strand virus M and retrovirus MA pro-
teins: all in a family? Virolology 216: 289-298.

Lycke E, Tsang H 1987. Rabies virus infection of cultures rat
sensory neurons. J Virol 61: 2733-2741.

Madore HP, England J 1977. Rabies virus protein synthesis in
infected BHK-21 cells. J Virol 22: 102-112.

Martinez M, Quiroga N, Castellanos J, Hurtado H 2000.
Subpoblaciones neuronales presentes en el ganglio de la ra-
iz dorsal. Biomédica 20: 248-260.

Martinez M, Velandia M, Quiroga N, Castellanos JE 2002. Dif-
ferential susceptibility in sensory cultured neurons to rabies
virus infection. J Neurovirol 8 (Suppl.1): 109.

Mattos C, Mattos C, Rupprecht C 2001. Rhabdoviruses. In DM
Knie, PM Howley, L Williams (eds), Fields Virology,
Lippincott, Williams & Wilkins, Philadelphia, p. 1245-1277.

McQuaid S, Campbell S, Wallace I, Kirk J, Cosby S 1998. Measles
virus infection and replication in undifferentiated and differ-
entiated human neuronal cells in culture. J Virol 72: 5245-5252.

Meabatsion T, Weiland F, Colzemann K 1999. Matrix protein or
rabies virus is responsible for the assembly and budding of
bullet-shaped particles and interacts with the transmembrane
spike glycoprotein G. J Virol 73: 242-250.

Mrak R, Young L 1994. Rabies encephalitis in humans: pathol-
ogy, pathogenesis and pathophysiology. J Neuropathol Exp
Neurology 53: 1-10.

Nakamichi K, Saiki M, Sawada M, Takayama-Ito M, Yamamuro
Y, Morimoto K, Kurane I 2005. Rabies virus-induced activa-
tion of mitogen-activated protein kinase and NF-kB signaling
pathways regulates expression of CXC and CC chemokine
ligands in microglia. J Virol 79: 11801-11812.

Rambourg A, Clermont Y, Beaudet A 1983. Ultrastructural fea-
tures of six types of neurons in rat dorsal root ganglia. J
Neurocytol 12: 47-66.

Sommer E, Kazimeierczak J, Droz B 1986. Neuronal subpopula-
tions in the dorsal root ganglion of the mouse as characterised
by combinations of ultrastructural and cytochemical features.
Brain Res 346: 310-326.
Thomas PK, Berthold C, Ochoa C 1993. Microscopic anatomy of the peripheral nervous system. In P Dyck, Peripheral Neuropathy, WB Saunders Co, p. 230-263.

Tsiang H, De la Porte S, Ambroise D, Derer M, Koenig J 1986. Infection of cultured rat myotubes and neurons from the spinal cord by rabies virus. J Neuropathol Exp Neurol 45: 28-42.

Tsiang H, Koulakoff A, Bizzini B, Berwald-Netter Y 1983. Neurrotropism of rabies virus: an in vitro study. J Neuropath Exp Neurol 42: 439-452.

Tsiang H, Lycke E, Ceccaldi P, Ermine A, Hirardot X 1989. The anterograde transport of rabies virus in rat sensory dorsal root ganglia neurons. J Gen Virol 70: 2075-2085.

Tsiang H, Ceccaldi PE, Lycke E 1991. Rabies virus infection and transport in human sensory dorsal root ganglia neurons. J Gen Virol 72: 1191-1194.

Watson H, Tignor G, Smith A 1981. Entry of rabies virus into the peripheral nerves of mice. J Gen Virol 56: 371-382.