Geometrodynamics in a spherically symmetric, static crossflow of null dust

Zsolt Horváth, Zoltán Kovács, László Á. Gergely
Departments of Theoretical and Experimental Physics,
University of Szeged, Szeged 6720, Dóm tér 9, Hungary

The spherically symmetric, static spacetime generated by a crossflow of non-interacting radiation streams, treated in the geometrical space-times was developed by Arnowitt, Deser and Misner (hereafter ADM) [1]. In this approach the canonical coordinates are the components of the induced metric on the 3-leaves of the foliation, while the canonical momenta are related in a simple way to the extrinsic curvature of these spatial hypersurfaces. Gravitational evolution is therefore quoted to geometrodynamics. The freedom to perform coordinate transformations on the leaves of the foliation leads to the diffeomorphism (or momentum) constraints. The true dynamics is encompassed in the so-called Hamiltonian constraint. These four constraints (per point) form a Dirac algebra ², which is not a true algebra in the mathematical sense, as its closure is obstructed by the appearance of the induced metric in the Poisson brackets of the Hamiltonian constraints.

The problem of time in canonical gravity was reviewed by Isham in Ref. [3]. Approaches for introducing the concept of time are of three types: time is either identified before or after quantization, or in certain approaches time plays no fundamental role at all. In what follows, we are interested in identifying time at the classical level. Time is not preselected by any Hamiltonian description of gravity, there are infinitely many ways to choose the time (many-fingered time formalism) ⁴. Despite this ambiguity, in certain cases it is possible to select a preferred time function, by either imposing coordinate conditions ⁵ or by filling space-time with an adequate reference fluid ⁶, ⁷ and letting gravity to evolve in the (proper) time of the chosen reference fluid.

In certain cases new canonical variables can be introduced, providing new constraints for gravity ⁸, ⁹, ¹⁰. Among the advantages we count that the Dirac algebra transforms into a true algebra and the quantization of the Hamiltonian constraint, usually leading to the Wheeler-de Witt equation (which has no linear space of solutions), rather gives a Schrödinger equation. This program has been particularly successful for incoherent dust, as presented by Brown and Kuchař in Ref. [6].

A similar formalism [11] was by Bičák and Kuchař applied for null dust, the geometrical optics approximation to non-gravitational radiation. Null dust however provides no natural time function, basically because, unlike the congruence of the incoherent dust particles, null world lines have no natural parametrization. While for ordinary dust the Hamiltonian- and supermomentum constraints depend on four pairs of canonical variables associated with the proper time and the comoving coordinate frame of the dust, the constraint equations for null dust contain only three pairs of comoving coordinates.

The problem of time in canonical gravity was reviewed by Isham in Ref. [3]. Approaches for introducing the concept of time are of three types: time is either identified before or after quantization, or in certain approaches time plays no fundamental role at all. In what follows, we are interested in identifying time at the classical level. Time is not preselected by any Hamiltonian description of gravity, there are infinitely many ways to choose the time (many-fingered time formalism) ⁴. Despite this ambiguity, in certain cases it is possible to select a preferred time function, by either imposing coordinate conditions ⁵ or by filling space-time with an adequate reference fluid ⁶, ⁷ and letting gravity to evolve in the (proper) time of the chosen reference fluid.

In certain cases new canonical variables can be introduced, providing new constraints for gravity ⁸, ⁹, ¹⁰. Among the advantages we count that the Dirac algebra transforms into a true algebra and the quantization of the Hamiltonian constraint, usually leading to the Wheeler-de Witt equation (which has no linear space of solutions), rather gives a Schrödinger equation. This program has been particularly successful for incoherent dust, as presented by Brown and Kuchař in Ref. [6].

A similar formalism [11] was by Bičák and Kuchař applied for null dust, the geometrical optics approximation to non-gravitational radiation. Null dust however provides no natural time function, basically because, unlike the congruence of the incoherent dust particles, null world lines have no natural parametrization. While for ordinary dust the Hamiltonian- and supermomentum constraints depend on four pairs of canonical variables associated with the proper time and the comoving coordinate frame of the dust, the constraint equations for null dust contain only three pairs of comoving coordinates.

The quantum theory of gravitational collapse can be modelled in the most simple spherically symmetric case by a collapsing thin shell of null dust [12], [13]. A second null dust shell can be introduced in the model in order to test the quantum behaviour of the geometry induced by the first shell. Motivated by certain problems in the above scenario, the canonical formalism in the presence of a null dust has been recently extended to the case of two cross-flowing, non-interacting null dust streams in a spherically symmetric space-time by Bičák and Hájíček [14]. This formalism combines ingredients of the canonical formalisms developed for null dust [11] with elements of the geometrodynamics of the Schwarzschild space-time [15], developed by Kuchař. The lack of a time-standard for a single null dust however deprived the canonical formalism of the cross-streaming null dust from a time-standard as well. This is because the starting point of the canonical description [14] is simply the sum of the spherically reduced Einstein-Hilbert action for gravity and two pieces of the null dust action, also reduced by spherically symmetry. The null dust variables are therefore doubled, without any of them becoming an internal time. The basic assumption of Ref. [14] is that the cross-flowing null dust streams interact only gravitationally, therefore the energy-momentum tensors of the components are conserved separately. The analysis of the equations of motion provides two pairs of integrals of motion (per point), one pair for each null dust component. Unfortunately the Hamiltonian density could not be explicitly expressed in terms of these quantities, except in the case when one of the null dust components is switched off. In this case the action can be transformed such that the matter part of the Liouville form contains the integrals of motion associated to the null dust component in question.
The formalism derived in Ref. [14] is valid for certain known spherically symmetric space-times, for example the Vaidya space-time, describing the one-component null dust [16], and the static space-time found in Ref. [17] by one of the present authors. The latter space-time represents the geometry in the presence of a static cross-flow of non-interacting null dust streams. Although it is asymptotically non-flat and it has a central naked singularity, it can be conveniently interpreted as the radiation atmosphere of a star. A second interpretation presented in Ref. [17] is of a 2-dimensional dilatonic model, in the presence of a pair of 2-dimensional scalar fields. While the dilaton is the square of the radial coordinate, the scalar fields are related to the energy densities of the null dust streams. The third interpretation, based on previous work of Letelier [18], is of an anisotropic fluid, with radial pressure equal to its energy density and no tangential pressures. The static solution [17] has a homogenous counterpart [19], which can be interpreted as a Kantowski-Sachs type cosmology. These two space-times obey a unicity theorem, as they are the only spherically symmetric solutions of the Einstein equation in the presence of a cross-flow of null dust streams with an additional (fourth) Killing vector [19]. Interestingly, for null dust streams with negative energy density, wormhole space-times emerge [20], [21].

The anisotropic fluid interpretation of the static space-time the cross-flow of null dust streams with positive energy densities is particularly important for our purposes. The physical model of the anisotropic fluid has a preferred time, which is the time elapsed in the rest frame of the fluid. This suggests that in contrast with the single null dust model, for the two component null dust an internal time formalism can be constructed. In this paper we will explicitly construct the matter action for the static configuration of non-interacting null dust streams in terms of suitable variables, containing the internal time singled out uniquely by the cross-flow of null dust.

In Sec. II we summarize the basic ingredients necessary for the purposes of the present work. We present:

(A) the canonical formalism of ordinary incoherent dust [8], with special emphasis on how the proper choice of the internal time allows us to introduce a set of new constraints for gravity, such that the new super-Hamiltonian constraint becomes linear in the canonical momentum conjugate to the internal time;

(B) the geometrodynamics of the spherically symmetric static vacuum [12], with special emphasis on the introduction of geometrically motivated canonical variables (including the Schwarzschild mass) in the gravitational sector;

(C) the spherically symmetric, static space-time with crossflowing null dust streams [17] and

(D) the anisotropic fluid interpretation of the cross-flow of non-interacting null dust streams [18], which provides the internal time for the two component null dust.

In Sec. III we introduce an action functional of three scalar fields characterizing the static cross-flow of null dust minimally coupled to gravity. We show that variation with respect to the metric together with the equations of motion reproduces the energy-momentum tensor of two non-interacting radiation streams. Two pairs of conservation equations for the rest mass currents and the momentum currents also emerge.

In Sec. IV we derive the contribution of the two null dust streams to the super-Hamiltonian and diffeomorphism constraints. Then we fulfill the program of replacing the total super-Hamiltonian and diffeomorphism constraints by an equivalent set, in which both momenta conjugate to the temporal and radial canonical variables appear linearly. We also prove that the new constraints form an Abelian algebra.

Sec. V. contains a discussion of the falloff conditions the gravitational variables, the lapse and the shift should obey.

In Sec. VI we compare our findings with the results presented in Ref. [14] and we show that similar techniques can be employed in the more generic context of Ref. [14] as well. We also underline the connections between our canonical variables and those employed in Ref. [14], specified for the static case.

Finally in Sec. VII we summarize our results.

II. PRELIMINARIES

In this section we present a more technical summary of the results of Refs. [6], [13], [17] and [18] needed later on in the paper.

A. Geometrodynamics of space-times with ordinary dust

The space-time action of ordinary dust was constructed by Brown and Kuchař [8] from eight scalar fields Z^k, W_k, T, M \((k = 1, 2, 3)\) minimally coupled to the space-time metric \((4)\ g_{ab}:

$$S_B \left[T, Z^k, M, W_k, (4) g_{ab} \right] = -\frac{1}{2} \int d^4x \sqrt{-g} g_{ab} (U_a U^a + 1) \ , \quad (1)$$

The four-velocity U_a is expressed as the Pfaff form of seven scalar fields,

$$U_a = -T_a + W_k Z_k^{\cdot a} \ . \quad (2)$$
The equations of motion are
\[
0 = \frac{\delta S^D}{\delta M} = \frac{1}{2} \sqrt{-g} g(U_a U^a + 1) , \quad (3)
\]
\[
0 = \frac{\delta S^D}{\delta W_k} = -\sqrt{-g} gM Z^k, U^a , \quad (4)
\]
\[
0 = \frac{\delta S^D}{\delta T} = -\sqrt{-g} gMU^a, a , \quad (5)
\]
\[
0 = \frac{\delta S^D}{\delta Z^k} = -\sqrt{-g} gMW_k U^a, a . \quad (6)
\]
According to Eq. (4), the three vector fields \(Z^k \) are constant along the flow lines of \(U^a \) (they can be interpreted as comoving coordinates for the dust.) Eq. (5) shows that the four-velocity \(U^a \) is a unit time-like vector field. Eq. (6) allows us to interpret \(M \) as the rest mass density of the dust and it represents mass conservation. Eq. (4) can be interpreted as the momentum conservation law. From Eqs. (2), (3) and (4) it is straightforward to deduce that \(T \) is the proper time along the dust world lines, measured between a fiducial hypersurface \(T = 0 \) and an arbitrary hypersurface with constant \(T \). The dust energy-momentum tensor \(T_{ab} \) can be found from the variation of the action \(S^D \) with respect to \(g_{ab} \). From the conservation of \(T_{ab} \) and \(M \) it follows that the dust particles evolve along geodesics.

The Legendre transformed action is
\[
S^D [T, Z^k, P, P_k, g_{ab}, N, N^a] = \int dt \int d^3x (PT + P_k Z^k - NH^D - N^a H^D_a) , \quad (7)
\]
where \(g_{ab} \) denotes the induced metric on the leaves, \(N \) and \(N^a \) are the lapse function and shift vectors, respectively, and the momenta \(P \) and \(P_k \) are conjugate to \(T \) and \(Z^k \). (The original variables \(W_k \) were expressed in terms of \(P \) and \(P_k \).) The constraints are
\[
H^1 \partial_p P_k = \frac{P^2}{2M^2} + \frac{1}{2} \frac{Mg_{1/2}}{P^2} (P^2 + g_{ab} H^D_a H^D_b) , \quad (8)
\]
\[
H^a \partial_p P_k = PT_a + P_k Z^k . \quad (9)
\]
The dependence of the Hamiltonian constraint on the variable \(M \) is spurious. This can be shown as follows. By varying the action with respect to \(M \) we obtain an algebraic expression from which \(M \) can be given in terms of the other variables. Substituting this into the Hamiltonian constraint gives
\[
H^1 = \sqrt{P^2 + g_{ab} H^D_a H^D_b} , \quad (10)
\]
so the mass multiplier \(M \) is eliminated from the action.

By employing that the total (gravitational + dust) constraints have to vanish, e.g. \(H^D_\perp = -H^G_\perp \) and \(H^D_k = -H^G_k \) on the constraint hypersurface, and solving the constraints \([10] \), [9] with respect to the momenta, we can replace the old constraints by an equivalent set. The new super-Hamiltonian constraint can be cast into the form
\[
H^1 = P + h(g_{ab} p^{ab}) = 0 , \quad (11)
\]
\[
h = -\sqrt{(H^G_\perp)^2 - g_{ij} H^G_i H^G_j} , \quad (12)
\]
where \(p^{ab} \) are the momenta conjugate to \(g_{ab} \). Similarly the new supermomentum constraint is
\[
H^G_{\gamma k} = P_k + h_{\gamma k} [T, Z^k, g_{ab} p^{ab}] = 0 , \quad (13)
\]
\[
h_{\gamma k} = Z^k H^G_\gamma - hT_{\gamma a} Z^k _a . \quad (14)
\]
The quantization of the linearized constraint \([11] \) gives a Schrödinger equation \([6] \).

B. Geometrodynamics of spherically symmetric static vacuum

After the preliminary studies on the canonical formalism of the spherically symmetric space-times \([22] \), a comprehensive analysis of Hamiltonian dynamics for Schwarzschild black holes was given by Kuchar \([21] \). In this section we summarize those results of his work which are relevant for our purposes.

The space-time was foliated by spherically symmetric leaves \(\Sigma_t \) which were labelled by the parameter time \(t \). The induced metric on these 3-leaves can be characterized by two metric functions \(\Lambda \) and \(R \),
\[
g_{ab} dx^a dx^b = \Lambda^2(t, r) dx^2 + R^2(t, r) d\Omega^2 , \quad (15)
\]
where \(r \) is a space-like coordinate and \(d\Omega^2 \) is the line element on the unit sphere. Under coordinate transformations \(\Lambda \) behaves as a scalar and \(\Lambda \) as a scalar density. In the ADM decomposition of the spherically symmetric geometry, the shift vector has a non-vanishing component only in the radial direction, denoted with \(N^r \), which together with the lapse function \(N \) depend solely on the variables \(t \) and \(r \).

The metric functions \(R \) and \(\Lambda \) are chosen as canonical coordinates and their momenta, as derived in \([15] \), are
\[
P_\Lambda = -N^{-1} \Lambda (\dot{R} - R' N^r) , \quad (16)
\]
\[
P_R = -N^{-1} \left[\Lambda (\dot{R} - R' N^r) + R (\dot{\Lambda} - (\Lambda N^r)') \right] . \quad (16)
\]
The vacuum action for the spherically symmetric geometry can be written as
\[
S[\Lambda, N, N^r] = \int dt \int_{\Sigma_t} d^3x (\dot{P}_\Lambda + \dot{R} P_R - N H^G_{\Lambda} - N^r H^G_{r}) , \quad (17)
\]
with super-Hamiltonian and supermomentum constraints
\[
H^G_{[R, \Lambda, P_\Lambda, P_R]} = \frac{1}{R} P_R P_\Lambda + \frac{1}{2R^2} \Lambda P_\Lambda^2
\]
\[
+ \frac{1}{\Lambda} R R'' - \frac{R}{\Lambda^2} R' N^r + \frac{1}{2\Lambda} R^2 - \frac{1}{2} \Lambda , \quad (18)
\]
\[
H^G_{[R, \Lambda, P_\Lambda, P_R]} = P_R R' - P_\Lambda \Lambda . \quad (19)
\]
There exists a canonical transformation, through which the only dynamical characteristics of the Schwarzschild space-time, the Schwarzschild mass M turns into a canonical variable. The new set of variables is $(M, R; P_M, P_R)$, where $M(t, r)$ is expressed in terms of the old variables $(\Lambda, R; P_\Lambda, P_R)$ through the formula of the Schwarzschild mass derived by Kuchař:

$$M = \frac{1}{2} R^{-1} P_\Lambda^2 - \frac{1}{2} \Lambda^{-2} R R' + \frac{1}{2} R^2 .$$

The remaining part of the canonical transformation is:

$$P_M = \Lambda P_\Lambda \left(1 - \frac{2M}{R}\right)^{-1} R^{-1} ,$$

$$R = R ,$$

$$P_R = P_R - \frac{1}{2} R^{-1} \Lambda P_\Lambda - \frac{1}{2} \left(1 - \frac{2M}{R}\right)^{-1} R^{-1} \Lambda P_\Lambda$$

$$- R^{-1} \Lambda^{-1} \left(1 - \frac{2M}{R}\right)^{-1} \left[(\Lambda P_\Lambda)' RR' - (\Lambda P_\Lambda)(R R')'\right] .$$

The second advantage of the new set of canonical variables is that the momentum P_M is the gradient T' of the Schwarzschild time (cf. Eq. (80) in Ref. [14]). The gravitational constraints [15] and [19], written in terms of the new canonical variables, become

$$H_{\ell}^{\ell}[M, R, P_M, P_R] = - \left(1 - \frac{2M}{R}\right)^{-1} \frac{M' R'}{\Lambda} +$$

$$+ \left(1 - \frac{2M}{R}\right) \frac{P_M P_R}{\Lambda} ,$$

$$H_{r}^{\ell}[M, R, P_M, P_R] = P_R R' + P_M M ,$$

where Λ rather than being a canonical variable, is only a shorthand notation for the following expression of the new canonical variables

$$\Lambda = \left(1 - \frac{2M}{R}\right)^{-1} M'^2 - \left(1 - \frac{2M}{R}\right) P_M^2 .$$

We will also introduce the canonical variable M in the description of the gravitational sector of the crossstreaming null-dust space-time.

We mention here the related result of Varadarajan [22], who has derived a transformation from the usually employed canonical variables (induced metric + extrinsic curvature), to a set of new canonical variables, which have the interpretation of Kruskal coordinates. This transformation is regular on the whole space-time, including the horizon. The constraints simplifies in such an extent, that those are equivalent to the vanishing of the canonical momenta.

C. The spherically symmetric, static space-time with crossflowing null dust streams

The static superposition of two non-interacting null dust streams propagating along the null congruence u^a and v^a is characterized by the energy-momentum tensor

$$T^{2ND}_{ab} = \rho (u_a u_b + v_a v_b) ,$$

with

$$u_a u^a = v_a v^a = 0 , \quad u_a v^a \neq 0 .$$

The same time-independent energy density ρ was chosen for both null dust components in order to assure no net energy flow (static configuration).

The spherically symmetric, static space-time containing such a cross-flow of two non-interacting null dust streams has been presented in Ref. [17]:

$$d s^2 = -2 a e^{L^2} R^2 \left[d Z^2 - R^2 (L) d L^2 \right] + R^2 (L) d \Omega^2 ,$$

where Z and L are the time and radial coordinates adapted to the symmetry and R is the following expression of the radial coordinate:

$$- R (L) = a (e^{L^2} - 2 L \Phi_B) ,$$

$$\Phi_B = B + \int^L e^{x^2} dx .$$

Here a is a positive constant and B is a parameter.

The four-velocity null vectors of the null dust streams are then

$$u_a = W Z_{,a} + R W L_{,a} ,$$

$$v_a = W Z_{,a} - R W L_{,a} ,$$

with

$$W = \sqrt{\frac{ae^{L^2}}{R}} .$$

The energy density becomes

$$\rho = \left(8 \pi R^2 W^2\right)^{-1} .$$

The superpoision of the in- and outgoing null dust streams can be interpreted as an anisotropic fluid. This indicates that there may be a possibility to use the same procedure as in the case of the incoherent dust to obtain an internal time for the canonical dynamics of cross-flowing (but otherwise non-interacting) null dust streams, minimally coupled to gravity.

D. The anisotropic fluid interpretation of the cross-flow of non-interacting null dust streams

Letelier has shown that the energy-momentum tensor of two null dust streams is equivalent with the energy-momentum tensor of a specific anisotropic fluid [18]. As
consequence, the source of the static, spherically symmetric space-times \(T_{ab} = \rho (U_a U_b + c_4 \alpha_a \alpha_b) \). Here \(\alpha \) is the (normalized) radial direction and \(U^a \) is the unit four-velocity of the fluid particles, obeying
\[
-U_a U^a = \alpha_a \alpha^a = 1 \quad , \quad U_a \alpha^a = 0 .
\]
They are related to the null vectors by
\[
U^a = \frac{1}{\sqrt{2}} (u^a + \nu^a) , \quad \alpha^a = \frac{1}{\sqrt{2}} (u^a - \nu^a) .
\]
By employing Eqs. (29), we can also express the vector fields \(U^a \) and \(\alpha^a \) in the coordinate basis defined by \(Z \) and \(L \):
\[
U_a = \sqrt{2} W Z, a \quad , \quad \alpha_a = \sqrt{2} R W L, a .
\]
In the anisotropic fluid picture \(\rho \) represents the energy density and the pressure, while no tangential pressure components to the spheres of constant \(L \) are present. The fluid is isotropic only about a single point, the origin.

\section*{III. ACTION PRINCIPLE FOR THE STATIC, SPHERICALLY SYMMETRIC CROSS-FLOW OF TWO NON-INTERACTING RADIATION STREAMS}

A generic spherically symmetric space-time, in coordinates \((T, R, \theta, \varphi)\) is characterized by two metric functions \(h \) and \(f \) as:
\[
ds^2 = -h(T, R) dT^2 + f^{-1}(T, R) dR^2 + R^2 d\Omega^2 \cdot (35)
\]
Let us introduce two scalar fields \(Z(T) \) and \(L(R) \), and the following advanced-type and retarded-type combinations of the 1-forms \(dZ \) and \(dL \), which span the \((T, R)\) sector:
\[
\begin{align*}
 u_a &= W Z, a + R W L, a , \\
 v_a &= W Z, a - R W L, a ,
\end{align*}
\]
with \(W \) given by Eq. (30). Thus, in this co-basis the 1-forms \(u_a \) and \(v_a \) do not have time-dependent components. They are entirely expressed in terms of the two scalar fields \(Z \) and \(L \) (as the coefficient functions \(W \) and \(R \) can be given in terms of \(L \)). Note that the expressions (30) are identical with (and in fact motivated by) Eqs. (29), but this time the scalars \(Z \) and \(L \) are not related to any exact solution, and in consequence the 1-forms \(u_a \) and \(v_a \) are not necessarily null for the generic spherically symmetric metric (35). They do have instead the same length:
\[
u^a \nu_a = v^a v_a
\]
\[
= -W^2 \left[h^{-1} \left(\frac{dZ}{dT} \right)^2 - f R^2 \left(\frac{dL}{dR} \right)^2 \right] .
\]
We also note that
\[
u^a \nu_a = -W^2 \left[h^{-1} \left(\frac{dZ}{dT} \right)^2 + f R^2 \left(\frac{dL}{dR} \right)^2 \right] \cdot \text{(38)}
\]
We let us define a dynamical system by the action:
\[
S^{2ND}[(4)_{g_{ab}}, \rho, Z, L] = -\frac{1}{2} \int d^4 x \sqrt{-(4)g} \rho (u^a u_a + v^a v_a) , \quad \text{(39)}
\]
where \(\rho (L) \) is a third scalar field. We do not know at this stage, what is the dynamical system described by the action (39).

Variation of the action with respect to the metric gives the energy-momentum tensor:
\[
T^{ab} = -\frac{2}{\sqrt{-(4)g}} \delta S^{2ND}_{\delta g_{ab}}
\]
\[
= \frac{1}{2} (4) g^{ab} \rho (u^a u_a + v^a v_a) , \quad \text{(40)}
\]
while the variation with respect to the coordinates \(Z, L \), and the parameter \(\rho \) give the Euler-Lagrange equations:
\[
\begin{align*}
 0 &= \delta S^{2ND}_{\delta Z} = -2 \left[\sqrt{-(4)g} W (u^a + v^a) \right] , \\
 0 &= \delta S^{2ND}_{\delta L} = 2 \sqrt{-(4)g} L \left(u^a u_a + v^a v_a \right) , \\
 0 &= \frac{\delta S^{2ND}_{\delta \rho}}{\delta \rho} = \frac{1}{2} \sqrt{-(4)g} \left(u^a u_a + v^a v_a \right) .
\end{align*}
\]
In Eq. (12) we have employed the relation \(dW/dL = W (2 R L - dR/dL)/2 R \).

Eq. (13) together with Eq. (37) implies that both \(u^a \) and \(v^a \) are null vectors. Then the energy-momentum tenor (40) reduces to
\[
T^{ab} = \rho (u^a u_b + v^a v_b) , \quad \text{(44)}
\]
charactizing a non-interacting cross-flow (in the null directions \(u^a \) and \(v^a \)) of null dust streams with energy density \(\rho \).

One can define rest mass currents as in [12]
\[
\mathcal{J}^a := \sqrt{-(4)g} u^a , \quad \mathcal{K}^a := \sqrt{-(4)g} v^a , \quad \text{(45)}
\]
and momentum currents as
\[
\mathcal{J}^a_L := W \mathcal{J}^a , \quad \mathcal{K}^a_L := W \mathcal{K}^a . \quad \text{(46)}
\]
In term of these Eq. (12) is a continuity equation for the net flow of radiation:
\[
\nabla_a (\mathcal{J}^a_L + \mathcal{K}^a_L) = 0 . \quad \text{(47)}
\]
As the vectors \(u^a \) and \(v^a \) are null, Eq. (12) simplifies to
\[
\nabla_a (\mathcal{J}^a_L - \mathcal{K}^a_L) = 0 , \quad \text{(48)}
\]
implying that both momentum currents are conserved individually:
\[
\nabla_a J^a_L = 0, \quad \nabla_a K^a_L = 0,
\]

as expected for non-interacting radiation fields.

We have shown that the action defined by Eqs. (36) and (39) describes a cross-flow of non-interacting null dust streams in a static configuration with energy density \(\rho \). As the vectors \(u^a \) and \(v^a \) are null, we can partially normalize them as \(u^a v_a = -1 \). Also, from Eq. (39) we get \(dZ/dT = \left(fh \right)^{1/2} RdL/dR \). Then Eq. (52) allows to express both metric functions as
\[
f^{-1} = 2ae L^2 \left(\frac{dL}{dr} \right)^2, \quad h = 2ae L^2 \left(\frac{dZ}{dT} \right)^2,
\]

By inserting these into the generic spherically symmetric metric (35), we obtain the metric form (27), however without the additional information (28) and (31). In order to recover these, we need the Einstein equations, derived from the sum of the Einstein-Hilbert action and the cross-flowing null dust action (39). These are identical to those presented in Ref. [17], thus lead to the solution summarized in Section II.C.

At the end of this section we note that the equivalent action in the anisotropic fluid picture is
\[
S^F[\{4\} g^{ab}, \rho, Z, L] = -\frac{1}{2} \int d^4 x \sqrt{-\{4\} g} \rho \left(U_a U^a + \chi_a \chi^a \right),
\]

with \(U_a \) and \(\chi_a \) given by Eq. (51) . Due to the equivalence of the two interpretations, all equations are the same, irrespective of they being derived from the cross-streaming null dust action (39) or from the anisotropic fluid action (62).

IV. CANONICAL FORMALISM

In this section we present the calculations yielding linearized constraints for the two-component null dust, similar to Eqs. (11) and (13) derived for ordinary dust.

A. 3+1 decomposition of the two null dust Lagrangian

The ADM decomposition of any spherically symmetric metric yields (12):
\[
ds^2 = - \left(N^2 - A^2 N^r \right) dt^2 + 2 \Lambda^2 N^r dr dt + \Lambda^2 dr^2 + R^2 d\Omega^2,
\]

where \(A \) and \(R \) are the metric functions from the induced line-element (17) and \((t, r) \) are generic coordinates orthogonal to the \((\theta, \varphi)\) sector. The variables \(\rho, Z, L \) characterizing the radiation cross-flow thus depend on both coordinates: \(\rho = \rho(t, r), Z = Z(t, r) \) and \(L = L(t, r) \). From Eq. (53) \(\sqrt{\{4\} g} = N \sqrt{g} \).

The \((3+1)\)-split form of the Lagrangian density taken from the action (59) is
\[
L^{2ND} = \frac{a}{N} \sqrt{\rho} W^2 \left(\dot{Z}^2 - 2N^r \dot{Z} Z' - \frac{N^2 - A^2 N^r}{\Lambda^2} Z'^2 \right)
+ \frac{a\sqrt{\rho} R^2 W^2}{N} \left(\dot{L}^2 - 2N^r \dot{L} L' - \frac{N^2 - A^2 N^r}{\Lambda^2} L'^2 \right).
\]

The canonical momenta conjugate to the radiation variables \(Z \) and \(L \) become
\[
P_Z := \frac{\partial L^{2ND}}{\partial \dot{Z}} = \frac{2a}{N} \sqrt{\rho} W^2 (\dot{Z} - N^r Z'), \quad P_L := \frac{\partial L^{2ND}}{\partial \dot{L}} = \frac{2a}{N} \sqrt{\rho} R^2 W^2 (\dot{L} - N^r L'),
\]

or inverted with respect to the velocities we obtain
\[
\dot{Z} = \frac{N}{2a \sqrt{\rho} W^2} P_Z + N^r Z', \quad \dot{L} = \frac{N}{2a \sqrt{\rho} R^2 W^2} P_L + N^r L'.
\]

By inserting the velocities only in one factor of the velocity-squared terms of (54) we obtain the Lagrangian in the "already Hamiltonian" form
\[
L^{2ND} = \dot{Z} P_Z + \dot{L} P_L - N \dot{H}^{2ND}_L - N^r \dot{H}^{2ND}_r
\]

where the Hamiltonian and momentum constraints associated with the cross-flow of null dust streams are found to be
\[
\dot{H}^{2ND}_L = \frac{1}{2a \sqrt{\rho} W^2} \left(P_Z^2 + P_L^2 \right)
+ \frac{2a \sqrt{\rho} R^2 W^2}{\Lambda^2} (Z'^2 + R^2 L'^2),
\]
\[
\dot{H}^{2ND}_r = Z' P_Z + L' P_L.
\]

Remarkably, the momentum constraint has the same form as the dust constraint (9).

B. Introduction of new dust constraints

If we vary the dust action (34) with respect to the comoving density \(\rho \) of the dust, we obtain
\[
\frac{\delta S^{2ND}}{\delta \rho} = -N \frac{\partial H^{2ND}}{\partial \rho} = 0,
\]

from which \(\rho \) can be expressed as
\[
2a \sqrt{\rho} W^2 = \Lambda \sqrt{\frac{P_Z^2 + P_L^2 / R^2}{Z'^2 + R^2 L'^2}}.
\]
By substituting this result into the Hamiltonian constraint \[(22) \], we get

\[
H_{2\perp}^{\text{2ND}} = \frac{2}{\Lambda} \sqrt{R^2(P_Z L')^2 + (P_L Z')^2 + (P_Z)^2 + (P_L L')^2}.
\]

(62)

Since (59) implies that the last two terms below the root appear in \((H_{2\perp}^{\text{2ND}})^2 \), we eliminate them from (22). The final form of the Hamiltonian constraint is

\[
H_{2\perp}^{\text{2ND}} = 2 \sqrt{\left(\frac{P_Z L' R - P_L Z'}{\Lambda} \right)^2 + g^{rr} H_{2\perp}^{\text{2ND}} H_{2\perp}^{\text{2ND}}}.
\]

(63)

We note that in the spherically symmetric case the momentum constraint \(H_{2\perp}^{\text{2ND}} \) can also be brought to a square root form. From Eq. (15) and (63) we have

\[
H_{2\perp}^{\text{2ND}} = \sqrt{- \left(\frac{P_Z L' R - P_L Z'}{\Lambda} \right)^2 + \frac{1}{4} (\Lambda H_{2\perp}^{\text{2ND}})^2}.
\]

(64)

Eq. (64) is of similar form to the Hamiltonian constraint of the incoherent dust derived in [6]. There is one difference, namely that the Hamiltonian constraint (11) of the incoherent dust depends on the momenta conjugate to the 3-dimensional coordinate frame variables only through the momentum constraint, while in (63) \(P_L \) appears both explicitly and through \(H_{2\perp}^{\text{2ND}} \). In spite of this, we can still follow the algorithm of [6], as will become transparent in the following.

The ADM decomposition of the total action leads to the super Hamiltonian and super momentum constraints

\[
H_{\perp} := H_{\perp}^{G} + H_{\perp}^{2\perp} = 0,
\]

(65)

\[
H_{r} := H_{r}^{G} + H_{r}^{2\perp} = 0,
\]

(66)

where the vacuum constraints \(H_{\perp}^{G} \) and \(H_{r}^{G} \) are expressed in terms of the canonical variables \((M, R; P_M, P_R) \) in Eqs. (22) and (26). By using Eqs. (59), (65) and (66) we can eliminate \(P_L \), \(H_{2\perp}^{\text{2ND}} \) and \(H_{2\perp}^{\text{2ND}} \) from Eq. (63) to obtain

\[
-H_{\perp}^{G} = 2 \sqrt{\left(\frac{(Z'^2 + L'^2 R^2) P_Z + Z' H_{r}^{G}}{L' \Lambda R} \right)^2 + g^{rr} H_{r}^{G} H_{r}^{G}}.
\]

(67)

Then \(P_Z \) can be separated from the other variables in Eq. (67):

\[
H_{1\perp} = P_Z + h_Z [M, R, Z, L, P_M, P_R] = 0,
\]

\[
h_Z = \frac{L' \Lambda R h + Z' H_{r}^{G}}{Z'^2 + L'^2 R^2}.
\]

(68)

From (63) we know

\[
P_Z = -h_Z = \frac{L' \Lambda R h + Z' H_{r}^{G}}{Z'^2 + L'^2 R^2}.
\]

(69)

Here we used the notation (12).

By using (59) and (63), the constraint (66) can be written as

\[
0 = H_r := H_r^{G} + H_{r}^{2\perp}
\]

\[
= H_r^{G} + Z' P_Z + L' P_L
\]

\[
= H_r^{G} - Z' L' \Lambda R h + Z' H_{r}^{G}
\]

\[
= \frac{Z' L' \Lambda R h + Z' H_{r}^{G}}{Z'^2 + L'^2 R^2} + L' P_L,
\]

(70)

Which gives

\[
0 = P_L + \frac{-Z' \Lambda R h + H_{r}^{G} L' R^2}{Z'^2 + L'^2 R^2}.
\]

(71)

We will denote the constraint (71) by \(H_{1\perp} \).

\[
H_{1\perp} = P_L + \pi_L [M, R, Z, L, P_M, P_R] = 0,
\]

\[
\pi_L = -Z' \Lambda R h + L' R^2 H_{r}^{G}
\]

\[
= \frac{-Z' \Lambda R h + L' R^2 H_{r}^{G}}{Z'^2 + L'^2 R^2}.
\]

(72)

Thus we have obtained a new, more convenient set of super-Hamiltonian constraint \(H_{1\perp} \) and supermomentum constraint \(H_{1\perp} \). Both linearized constraints contain exactly one null dust momentum. The Dirac algebra of the old constraints turns into an Abelian algebra of the new constraints:

\[
\{H_{1\perp}(r), H_{1\perp}(r')\} = 0,
\]

(73)

where \(H_{1\perp} = (H_{1\perp}, H_{1\perp}) \). This feature is similar to the case of the one-component ordinary dust [6], and in fact the proof proceeds exactly in the same way. Following [6] first we note that the Poisson brackets of the new constraints must vanish, at least weakly (on the constraint hypersurface). However, due to the linearity of the constraints (66), (72) in the momenta \(P_Z, P_L \), the brackets do not depend on any of \(P_Z, P_L \). But then there is no way the constraints (66), (72) would help in turning into zero the Poisson brackets. Therefore they have to strongly vanish.

V. FALLOFF OF THE CANONICAL VARIABLES

A. Falloff conditions for the eternal Schwarzschild black hole

The proof of Kuchař in Ref. [15] that the mapping (A, R, P_A, P_R) \(\rightarrow (M, R, P_M, P_R) \) is a canonical transformation in the gravitational sector relies on the check that the difference of the Liouville forms is an exact form. This translates to show that the expression

\[
\mathcal{E}(r) = \frac{1}{2} R\delta R \ln \frac{RR' + \Lambda P_A}{RR' - \Lambda P_A}
\]

(74)
vanishes on the boundaries of the domain of integration. For the eternal Schwarzschild black hole discussed there, the desired behaviour was assured at $r \to \pm \infty$ by imposing suitable falloff conditions for the canonical variables, based on the treatment of Beig and O’Murchadha [24]. The proper falloff of the variables Λ, R, P_Λ, P_R, Killing time T, lapse function N and shift N^r, given by Eqs. (49)-(55) of Ref. [13], assure that the Kuchar mapping is a canonical transformation.

B. Falloff conditions for $r \to 0$ in flat space-time

Hájíček and Kiefer have studied the evolution of a spherically symmetric null dust shell in the space-time generated by an other spherically symmetric null dust shell in the space-time Hamiltonian dynamics of a thin (distributional) null-dust the boundary term (74) also vanishes at $r \to 0$. Following the method developed for cylindrical gravitational waves [25], they have imposed boundary conditions on both the coordinates and their spatial derivatives at the regular centre. Based on these, Bičák and Hájíček [14] have shown that the boundary term [75] also vanishes at $r \to 0$.

Louko, Whiting and Friedman have discussed the Hamiltonian dynamics of a thin (distributional) null-dust shell under both sets of boundary conditions: first at the two spatial infinities $r \to \pm \infty$ of the Kruskal-like manifold and second at $r \to 0$ and $r \to \infty$ [26]. In the latter case, the falloff conditions at $r \to 0$ for the canonical variables, lapse and shift in the flat geometry within the null shell are given by their system of Eqs. (7.1):

$$
\Lambda(t,r) = \Lambda_0 + \mathcal{O}(r^2)
,$$

$$
R(t,r) = R_1 r + \mathcal{O}(r^3)
,$$

$$
P_\Lambda(t,r) = P_{\Lambda_2} r^2 + \mathcal{O}(r^4)
,$$

$$
P_R(t,r) = P_{R_1} r + \mathcal{O}(r^3)
,$$

$$
N(t,r) = N_0 + \mathcal{O}(r^2)
,$$

$$
N^r(t,r) = N^r_1 r + \mathcal{O}(r^3)
$$

(75)

where Λ_0, R_1, P_{Λ_2}, R_1, N_0 and N^r_1 are functions of time. With these falloffs, the expression $\mathcal{B}(0)$ vanishes, in accordance with the conclusion of Ref. [14].

Given the falloff behaviors [75], all terms in the vacuum gravitational super-Hamiltonian constraint [15] are $\mathcal{O}(r^2)$, with two exceptions: $R^2 \Lambda_1$ and $-\Lambda_0/2 + \mathcal{O}(r^2)$. Therefore

$$
H^G_+ = \frac{R_1^2 - \Lambda_0^2}{2\Lambda_0} + \mathcal{O}(r^2)
$$

(76)

The leading term vanishes for

$$
R_1 = \Lambda_0
$$

(77)

For this choice, the falloff conditions obey the vacuum gravitational super-Hamiltonian constraint. The gravitational super-momentum constraint [15], in turn behaves as

$$
\dot{H}^G_+ = -2P_{\Lambda_2} \Lambda_0 r + \mathcal{O}(r^2)
$$

(78)

Thus, the falloff conditions are consistent with the vacuum constraints. They are also preserved in time, as noted in [26], but we will show that only for

$$
P_{\Lambda_2} = 0
$$

(79)

This can be seen from the following argument. The time-evolution of the super-Hamiltonian and super-momentum constraints are linear combinations of the constraints and their covariant derivatives on the leaves:

$$
\dot{H}^G_+ = 2H^G_+ D^N - 2NKH^G_+
+ N^r D_r H^G_+ + ND_r H^{Gr}
,$$

$$
\dot{H}^G_r = 2H^G_r D_r N - NKH^G_r + H^G_r D_r N^r
+ ND_r H^G_r + N^r D_r H^G_r
$$

(80)

Here $K = \Lambda^{-1} R^{-2} (RP_R - \Lambda P_\Lambda) + 2R^{-2} P_R$ is the trace of the extrinsic curvature of the leaves Σ_t, given in Ref. [13]. From the falloff conditions [75] we obtain

$$
K = \Lambda_0^{-1} R_1^{-2} (R_1 P_{R_1} + \Lambda_0 P_{\Lambda_2}) + \mathcal{O}(r)
$$

(81)

Thus the terms proportional to the gravitational constraints, whether they contain K or not, will decay at least as $\mathcal{O}(r)$ and $\mathcal{O}(r^2)$, respectively (provided $R_1 = \Lambda_0$ was chosen). Problems could arise only from the terms containing derivatives of the constraints. The falloff conditions [75] and the covariant derivatives of the scalar and vector densities H^G_+ and H^G_r give at $r \to 0$

$$
N^r D_r H^G_+ = -N_1 \frac{R_1^2 - \Lambda_0^2}{2\Lambda_0} + \mathcal{O}(r)
$$

$$
ND_r H^{Gr} = -2N_0 \frac{P_{\Lambda_2}}{\Lambda_0} + \mathcal{O}(r)
$$

$$
ND_r H^G_r = -N_0 \frac{R_1^2 - \Lambda_0^2}{2\Lambda_0^2} (2r^{-1} + \Lambda_0^{-1}) + \mathcal{O}(r)
$$

$$
N^r D_r H^G_r = -2N_1 \Lambda_0 P_{\Lambda_2} r + \mathcal{O}(r^2)
$$

(82)

Therefore

$$
\dot{H}^G_+ = -N_1 \frac{R_1^2 - \Lambda_0^2}{2\Lambda_0} - 2N_0 \frac{P_{\Lambda_2}}{\Lambda_0} + \mathcal{O}(r)
$$

$$
\dot{H}^G_r = -N_0 \frac{R_1^2 - \Lambda_0^2}{2\Lambda_0^2} (2r^{-1} + \Lambda_0^{-1}) + \mathcal{O}(r)
$$

(83)

By choosing the condition [75], the expression for \dot{H}^G_+ will decay as $\mathcal{O}(r)$. As we exclude the possibility $N_0 = 0$ (which would froze time evolution at $r = 0$), the only possibility remaining for a proper decay of \dot{H}^G_+ is to set $P_{\Lambda_2} = 0$, which completes our proof.
C. Falloff conditions for the radiative atmosphere of a star

Now we study the question, whether the Kuchař mapping \((\Lambda, R, P, \rho) \rightarrow (M, R, P_M, \rho_\Pi)\) of the gravitational variables remains a canonical transformation in the configuration discussed in this paper. In order to answer this question, first we remark that the range of the cross-streaming null dust metric parameter \(B\) is restricted by \(R > 0\). This determines a lower boundary \(L_{min}\) of \(L\), corresponding to \(R = 0\). The quasi-local mass function \(m(L)\) (for a definition see [17]) vanishes at some \(L_{m=0}(a, B)\) and takes negative values below, in the interval \(L_{min} < L < L_{m=0}\). Besides, for \(L \rightarrow \infty\) the solution (24) is not asymptotically flat. One can escape these unpleasant features by cutting off the space-time between certain \(L_1 > L_{m=0}\) and an appropriate high value \(L_2 > L_1\) and matching with appropriate metrics across these boundaries (see Fig. 1). The cross-streaming null dust region (27) is matched then from the interior with the interior Schwarzschild solution, representing a static star with mass \(M_1\), whereas from the exterior it is bounded by incoming and outgoing Vaidya regions, and it touches three exterior Schwarzschild regions in three points (these are 2-spheres, if we take into account the angles \(\theta, \varphi\)). Therefore the solution (27) is interpreted as a thick shell of 2-component radiation, created from the intersection of incoming and outgoing thick radiation shells.

The intersection of the last incoming ray with the first outgoing ray is the point (2-sphere) where the junction to the outermost Schwarzschild region (characterized by mass \(M_2\)) is done. This region extends towards the spatial infinity \(i^0\). As the fluid region is bounded, only the proper falloff at \(i^0\) of the gravitational variables \(M, R, P_M, \rho_\Pi\) has to hold, as summarized in the first subsection of this Section.

The situation is not so trivial on the other boundary, at \(r \to 0\). There, in contrast with the previous treatments of Refs. [12], [14] and [26], we do not have vacuum, but rather the center of a static star represented by the interior Schwarzschild solution, where the falloff conditions are not yet known. The line-element representing the gravitational field in the interior Schwarzschild solution,

\[
d s^2 = - \left(a - b F^{1/2} \right)^2 dt^2 + F^{-1} dr^2 + r^2 d\Omega^2, \tag{84}
\]

\[
F(r) = 1 - \frac{\kappa^2 \rho r^2}{3} \tag{85}
\]

is generated by a perfect fluid with energy-momentum tensor

\[
T_{ab} = (\rho + p) u_a u_b + p \indices{^4}_{gab}, \tag{86}
\]

where the energy density \(\rho\) and pressure \(p\) (with respect to the 4-velocity \(u^a\) of the fluid particles) are given as

\[
\rho = \text{const}, \quad p = \frac{b F^{1/2} - a/3}{a - b F^{1/2}}. \tag{87}
\]

Here \(\kappa^2 = 8\pi G\) and \(a, b\) are constants, chosen such that \(\rho \geq 0\).

As the canonical treatment of the interior Schwarzschild solution has not been developed yet (and it is beyond the scope of the present paper), we will impose the simplifying condition that the worldlines of the fluid particles of the stellar material are along the time evolution vector \(\partial/\partial t\).

\[
\alpha u^a = \left(\frac{\partial}{\partial t} \right)^a = N u^a + N' \Lambda^{-1} \left(\frac{\partial}{\partial r} \right)^a, \tag{88}
\]

where \(\alpha(t, r) > 0\) is a scaling function. From the condition of normalization of the 4-velocity \(u^a u_a = -1\) we obtain \(\alpha^2 = N^2 - N' \Lambda^2\). This choice of the allowable foliations is in accordance with the generic expectation, that whenever a reference fluid is present in the system, it is advantageous to introduce the parameter associated with the worldlines of the reference fluid as time variable. Outside the interior Schwarzschild region, the leaves \(\Sigma_t\) are still allowed to be arbitrary space-like hypersurfaces.
The energy density and energy current density of the fluid with respect to the chosen foliation become

\[\mu = T_{ab}n^a n^b = \left(\frac{N}{\alpha} \right)^2 \rho + \left(\frac{N r}{\alpha} \right)^2 \rho , \]

\[j_r = T_{ab} n^a g_r = -\frac{N N r}{\alpha^2} \Lambda (\rho + p) . \]

With the falloff conditions (75) at \(r \to 0 \) the condition \(\mathcal{B} \to 0 \) will continue to hold, thus the Kuchař transformation is canonical. But are these falloff conditions consistent with the constraints? In order to respond affirmatively, first we note that for the fluid variables we have the following falloff conditions

\[p = \frac{3b - a}{3(a - b)} \rho S + \mathcal{O}(r^2) , \]

\[\alpha = N_0 + \mathcal{O}(r^2) , \]

\[\mu = \rho S + \mathcal{O}(r^2) , \]

\[j_r = -\frac{2a \rho S}{3(a - b)} N_0^{-1} N_1^r \Lambda_0 r + \mathcal{O}(r^2) . \]

These, together with \(\sqrt{g} = \Lambda R^2 \sin \theta \) imply that

\[H^\text{star}_r = 2\kappa^2 \sqrt{g} \mu = \mathcal{O}(r^2) , \]

\[H^\text{star}_r = 2\kappa^2 \sqrt{g} j_r = \mathcal{O}(r^3) , \]

which shows that the total constraints of gravity and fluid are obeyed for the chosen falloffs on the boundary, provided the condition (77) holds.

The last question to address is whether time evolution conserves these falloffs. In order to see this we note that both \(H^\text{star}_r \) and \(H^\text{star}_r \) vanish for the interior Schwarzschild solution and for the chosen class of foliations as \(\mathcal{O}(r^2) \) and \(\mathcal{O}(r^3) \), respectively. Thus, the falloff of the matter part of the constraints is faster than the falloff of the gravitational part, given by Eqs. (88). Fulfilling the conditions (77) and (78) is sufficient for the consistency with the constraints in the interior Schwarzschild solution.

Alternatively, if we do not insist on the interpretation of the cross-streaming null dust space-time region as a radiation atmosphere of a star, we can let the outgoing radiation to emerge from the origin and the incoming component to be absorbed by the boundary at \(r = 0 \). In this case Cauchy evolution can be chosen in such a way, that their boundary at \(r \to 0 \) is in a flat space-time, as in Fig. 3. of Ref. [16]. In this setup, the expression \(\mathcal{B} \) again vanishes, and the Kuchar transformation is proved to be canonical.

VI. COMPARISON WITH PREVIOUS RESULTS

In this Section we will establish the connections between the sets of canonical variables employed in this paper and in Ref. [16]. In order to do this first we illustrate in Subsec. V.A that an internal time can be introduced for a generic spherically symmetric crossflow of radiation streams. We start from the variables employed in Ref. [16]. In Subsec. V.B we show that the connection of those variables with our variables can be written up explicitly.

A. Constraints of null dust crossflow

Bíčák and Hájíček [14] generalized the canonical formulation of the one-component null dust, presented in Ref. [11] for a two-component null dust, with the specification of spherically symmetry. The gravitational part of their action was given by (17), whereas the energy-momentum tensor has been chosen as

\[T^{ab} = \frac{1}{4\pi} \left(I^a_+ I^b_+ + I^a_- I^b_- \right) , \]

with

\[I^a_\pm = \frac{\sqrt{\Pi_\pm \Phi^\prime_\pm}}{\Lambda R} \left[n^a \pm \Lambda^{-1} \left(\frac{\partial}{\partial r} \right)^a \right] \]

being the four-velocity null vectors of the ingoing and outgoing null dust streams. The latter were characterized by the canonical coordinates \(\Phi_+ \), \(\Phi_- \) and their conjugate momenta \(\Pi_\pm \), \(\Pi_- \). The unit normal to the leaves was denoted \(n^a \). The canonical action of the system became

\[S^T[N, N^r, \Lambda, R, \Phi_+, \Phi_-, P_\Lambda, P_R, \Pi_+, \Pi_-] = \int dt \int dr (P_\Lambda \dot{\Lambda} + P_R \dot{R} + \Pi_+ \dot{\Phi}_+ + \Pi_- \dot{\Phi}_-) \]

\[- NH^T \]

\[\left[n^a \pm \Lambda^{-1} \left(\frac{\partial}{\partial r} \right)^a \right] \]

\[\Lambda \]

\[H^T_\pm := H^G_\pm + H^{BH}_\pm = 0 , \]

\[H^{BH}_\pm = \frac{\left| \Pi_+ \Phi^\prime_+ \right| + \left| \Pi_- \Phi^\prime_- \right|}{\Lambda} , \]

and super-momentum constraint

\[H^T_\pm := H^G_\pm + H^{BH}_\pm = 0 , \]

\[H^{BH}_\pm = \Pi_+ \Phi^\prime_+ + \Pi_- \Phi^\prime_- . \]

Following the convention of Ref. [14], we assume that \(\Pi_+ \Phi^\prime_+ < 0 < \Pi_- \Phi^\prime_- \). Thus we will use

\[H^{BH}_\pm = \frac{-\Pi_+ \Phi^\prime_+ + \Pi_- \Phi^\prime_-}{\Lambda} . \]

The constraints (96) and (97) can be conveniently combined as follows

\[0 = \frac{\Lambda H^T_\pm - H^T_\pm}{2\Phi^\prime_\pm} = \Pi_+ + \frac{-\Lambda H^G_\pm + H^G_\pm}{2\Phi^\prime_\pm} . \]

Similarly

\[0 = \frac{\Lambda H^T_\pm + H^T_\pm}{2\Phi^\prime_-} = \Pi_- + \frac{\Lambda H^G_\pm + H^G_\pm}{2\Phi^\prime_-} . \]
The new constraints \([108]\) and \([109]\) are analogous to the previously introduced constraints \([98]\) and \([99]\) in containing the canonical momenta only linearly.

There is nothing to prevent us in introducing square-root type new constraints by properly transforming the constraints \([98]\) and \([99]\) as well. The product of the null dust momenta is

\[
\Pi_+\Pi_- = \frac{-(\Lambda H^G)^2 + (H_r^G)^2}{4\Phi^2\Phi'^2},
\]

\[
= \frac{-(\Lambda H^{BH})^2 + (H_r^{BH})^2}{4\Phi^2\Phi'^2},
\]

where we have employed the constraints \([98]\) and \([99]\) in the first equality and the constraints \([108]\) and \([109]\) in the second equality. Now we can express either \(H^{BH}_+\) or \(H^{BH}_r\) as a square root:

\[
H^{BH}_+ = \sqrt{-\frac{4}{A^2} \Phi^2 \Phi^\prime \Pi_+ \Pi_- + g^{rr} H^{BH}_r H^{BH}_r},
\]

\[
H^{BH}_r = \sqrt{\Phi^2 \Phi^\prime \Pi_+ \Pi_- + (\Lambda H^{BH}_\perp)^2}.
\]

These formulae are analogous to the result \([103]\).

The simple linear transformation

\[
T = \frac{1}{\sqrt{2}} (\Phi_+ + \Phi_-),
\]

\[
\sigma = \frac{1}{\sqrt{2}} (\Phi_+ - \Phi_-),
\]

\[
P_T = \frac{1}{\sqrt{2}} (\Pi_+ + \Pi_-),
\]

\[
P_\sigma = \frac{1}{\sqrt{2}} (\Pi_+ - \Pi_-)
\]

is a canonical transformation as can be checked by calculating the Poisson brackets of the new canonical variables \(T, \sigma, P_T, P_\sigma\). The sum of the constraints \([98]\) and \([99]\), divided by \(\sqrt{2}\), in the new canonical chart becomes

\[
0 = P_T + \frac{\sigma' \Lambda H^G + T' H^G_r}{T'^2 - \sigma'^2}.
\]

Similarly the difference of \([98]\) and \([99]\), divided by \(\sqrt{2}\), reads

\[
0 = P_\sigma - \frac{T' \Lambda H^G - \sigma' \Lambda H^G_r}{T'^2 - \sigma'^2}.
\]

The canonical momenta of the cross-flowing null dust are then completely separated from the rest of the variables in the new constraints \([108]\) and \([109]\).

If the null vectors \(l_{\pm,a} \propto e_{e,a}\) are both future-oriented, then \(T\) is time-like coordinate. Therefore the quantization of the constraint \([103]\) will give a functional Schrödinger equation.

B. Static case

In this subsection we establish the connection between the canonical variables \((\Phi_\pm, \Pi_\pm)\) employed in Ref. \([14]\) and our canonical coordinates \((Z, L)\) and momenta \((P_z, P_l)\). In order to do this, first we introduce the "tortoise-type" radial coordinate \(R^*\) defined as \(dR^* = R dL\). Next we define null coordinates \(X_\pm = Z \pm R^*\) (see \([17]\)).

As in the static scenario the metric is uniquely given by Eq. \([27]\), we would like to identify the energy-momentum tensors \([92]\) and \([93]\), which yields \(l^a_+ = k_+ \kappa a^a / R^2 W\) and \(l^a_- = k_- \kappa a^a / R^2 W\), with a proportionality constant \(\kappa\). According to Ref. \([14]\) the null forms \(l^a_\pm = \lambda^\pm (|\Pi_\pm|/\sqrt{2}) d\Phi_\pm\) \((\lambda^2\) a possible second proportionality constant). By employing Eq. \([29]\), we conclude that

\[
\Pi_\pm d\Phi_\pm = \mp \sqrt{g} \left(\frac{\kappa}{\lambda}\right)^2 \frac{dX_\pm}{R^2},
\]

with \(R\) regarded as a function of \(X_\pm\).

Equivalently, the derived canonical coordinates \((T, \sigma)\) are related in a simple way to \((Z, L)\):

\[
P_z dT + P_T d\sigma = -\sqrt{g} \left(\frac{2\kappa}{\lambda}\right)^2 \frac{dZ}{R^2},
\]

\[
P_T dT + P_\sigma d\sigma = \sqrt{g} \left(\frac{2\kappa}{\lambda}\right)^2 \frac{dL}{R},
\]

with \(R\) representing the function \([28]\) of \(L\).

The transformations \([105]\) and \([106]\) establish the relation between our results and the results derived in Ref. \([14]\).

VII. CONCLUDING REMARKS

The geometrical optics approximation of radiation fields is represented by null dust. This approximation is a very good one whenever the wavelength of the radiation is short as compared to the typical local curvature scale of the space-time. The crossflow of two such radiation streams describes the interesting situation of a two-component radiation atmosphere of a star. The assumptions of spherical symmetry and staticity lead to the space-time \((27)\). The two null dust components interact only gravitationally (through the curvature of the space-time they jointly produce) and formally they are equivalent to an anisotropic fluid.

A previous canonical treatment of such a system \([14]\), besides its many achievements, still suffers from the lack of an internal time (a difficulty first encountered in the case of one-component null dust). The existence of such a preferred time function would simplify the quantization of the gravitational field in question. The absence of the internal time from the formalism of Ref. \([14]\) is not
a major inconvenience for the analysis presented there, where the one-component null dust limit (Vaidya spacetime) is discussed in detail.

If one does not aim to have this limit in the formalism, the situation is different. We have shown on the example of the static crossflow of radiation streams how to construct an internal time for the two-component system. By suitable canonical transformations we have introduced the time function Z as canonical coordinate and we have constructed the new super-Hamiltonian and super-momentum constraints, Eqs. (68), (72), which have strongly vanishing Poisson brackets. With this, we have turned the Dirac algebra of the original constraints into an Abelian algebra.

The new constraints contain the momenta conjugate to the crossflowing null dust variables linearly. This convenient feature can be further exploited in the process of quantization, which will turn the new super-Hamiltonian constraint into a functional Schrödinger equation. The latter has the obvious advantage over the Wheeler-deWitt equation obtained by the quantization of the original super-Hamiltonian constraint, that its space of solutions is linear. Further properties of the resulting functional Schrödinger equation are under investigation and we propose to discuss this topic in detail elsewhere.

Acknowledgments

This work was supported by OTKA grants no. T046939 and TS044665. LÁG wishes to thank the support of the János Bolyai Scholarship of the Hungarian Academy of Sciences.

[1] R. Arnowitt, S. Deser, C.W. Misner, in Gravitation: An Introduction to Current Research, edited by L. Witten (Wiley, N.Y., 1962).
[2] P. A. M. Dirac, Can. J. Math. 3, 1 (1951).
[3] C.J. Isham, gr-qc/9210011 Canonical Quantum Gravity and the Problem of Time, Lectures at the NATO Advanced Study Institute “Recent Problems in Mathematical Physics”, Salamanca (Report No.: Imperial/TP/91-92/25), (1992).
[4] C.J. Isham, K.V. Kuchař, Ann. Phys. (N.Y.), 164, 288 (1985), 164, 316 (1985).
[5] K.V. Kuchař, C.G. Torre, Phys. Rev. D 43, 419 (1991).
[6] K.V. Kuchař, C.G. Torre, Phys. Rev. D 44, 3116 (1991).
[7] J.D. Brown, K.V. Kuchař, Phys. Rev. D 51, 5600 (1995).
[8] J.D. Brown, Class. Quant. Grav. 10, 1579 (1993).
[9] F. Markopoulou, Class. Quant. Grav. 13, 2577 (1996).
[10] K.V. Kuchař, J.D. Romano, Phys. Rev. D 51, 5579 (1995).
[11] J. Bičák, K.V. Kuchař, Phys. Rev. D 56, 4878 (1997).
[12] P. Hájíček, C. Kiefer, Nucl. Phys. B 603, 491 (2001).
[13] P. Hájíček, Nucl. Phys. B 603, 555 (2001).
[14] J. Bičák, P. Hájíček, Phys. Rev. D 68, 104016 (2003).
[15] K.V. Kuchař , Phys. Rev D 50, 3961 (1994).
[16] P.C. Vaidya, Nature 171, 260 (1953).
[17] L. Á. Gergely, Phys. Rev. D 58, 084030 (1998).
[18] The conversion to the notations of the present paper are $(A, 1/C, t/\sqrt{2}, r, r^*/\sqrt{2}, x^\pm/\sqrt{2}) \rightarrow (1, a, Z, R, R^*, X^\pm)$.
[19] P.S. Letelier, Phys. Rev. D 22, 807 (1980).
[20] L. Á. Gergely, Phys. Rev. D 59, 104014, (1999).
[21] S.A Hayward, Phys. Rev. D 65, 124016, (2002).
[22] L. Á. Gergely, Phys. Rev. D 65, 127503, (2002).
[23] M. Varadarajan, Phys. Rev. D 63, 084007, (2001).
[24] B.K. Berger, D.M. Chitre, V.E. Moncrief, Y. Nutku, Phys. Rev. D 8, 3247 (1973).
[25] R. Beig, N. O’Murchadha, Ann. Phys. (NY) 174, 463 (1987).
[26] K.V. Kuchař, Phys. Rev. D 4, 955 (1971).
[27] J. Louko, B.F. Whiting, J.L. Friedman, Phys. Rev. D 57, 2279 (1998).