数値解析を用いた稠密バンドルの圧力損失予測に関する研究*

Study on pressure drop of tight lattice fuel bundles using CFD analysis

多田宏次郎** 師岡慎一**
TADA Kojiro MOROOKA Shinichi

Abstract This paper presents a prediction method about pressure drop in tight lattice fuel bundles. Pressure drop of fuel bundle is one of the important parameters to evaluate the core performance. Friction coefficient and spacer loss coefficient depend on the fuel shape. In previous study, these coefficients were evaluated based on experimental data or an experimental correlation. However, the experiments need a lot of time and cost. Therefore, the purpose of this study is to predict pressure drop of fuel bundle without experiments. In this study, friction coefficient and spacer loss coefficient under single phase flow condition were evaluated using CFD analysis and total pressure drop under two phase flow condition were predicted using these coefficients. The predicted results were compared with the experimental results of 3 types of tight lattice fuel bundle. It was found from comparison results that the prediction accuracy of this method was about 10% and this accuracy was the almost same as that of previous method.

Keywords: Pressure drop, Spacer, Tight lattice fuel bundle, CFD, Two phase flow

1. 緒 言

沸騰水型原子炉(BWR)の炉心は、数百体の燃料集合体によって構成されている。燃料集合体には複数のスペーサが取り付けられている。スペーサは燃料棒間隔を保持し、冷却材の流れに伴う振動を抑制する役割がある。更にスペーサは圧力損失や限界出力等の熱水力特性に影響を与える。燃料集合体の圧力損失はポンプ動力、流動安定性、冷却材流量配分の評価等に重要なパラメータであり、圧力損失の正確な予測は原子炉の安全性や信頼性また経済的な面において重要事項である。

従来、燃料集合体の圧力損失は新しい形状を考察することに炉外流れ試験により測定されている。新型燃料の開発ごとに試験を行う要因の一つとして、スペーサによる影響が挙げられる。スペーサによる熱水力特性への影響はスペーサの形状によって変化するため、その影響を把握する必要がある。しかしながら、試験には多大な時間と経費を要し、新型燃料の開発期間の長期化と高コスト化の要因となっている。従来の研究[1,2]では、摩擦損失係数及びスペーサ損失係数を以下のよう求めていない。摩擦損失係数の評価は、円管の相関式であるBlasiusの式、Pfanの式を用いている。また、玉井ら[3]は単相流状態で稠密バンドルの摩擦圧力損失を測定しBlasiusの式と比較を行っているが、稠密バンドルの摩擦損失係数は円管における摩擦損失係数よりも小さいを報告している。一方、スペーサ損失係数に関しては、単相流状態で測定された圧力損失から位置圧力損失及び摩擦圧力損失を減ずることでスペーサ圧力損失及びスペーサ損失係数を評価している。師岡ら[1]、玉井ら[2]は、このようにして求めた摩擦及びスペーサ損失係数を用いて二相圧力損失の評価を行い、二相圧力損失の測定値を約10%程度の精度で予測できると報告している。従来研究の課題は、燃料集合体の形状に依存する摩擦及びスペーサ損
失係数を評価するために試験が必要であることである。
これらの点から、本研究では試験を実施することなく、数値解析的に燃料集合体の形状から単相流での摩擦及びスペーサ損失係数の評価を行い、この値を用いて二相流における圧力損失を予測する手法を構築することを目的としている。本研究では単相流におけるCFD解析を用いることで、摩擦及びスペーサ損失係数の評価を行う。現在のCFD解析の能力では、二相流条件下での正確な解析結果を得ることが困難であると考えられる。そのため、二相圧力損失の評価は従来研究の手法[1]を用いる。試験をすることなく、従来の手法と同等の精度を有した圧力損失予測手法を構築することが、新型燃料の開発において開発期間の短縮、コストの削減、また燃料集合体形状の最適化に繋がると考えている。

2. 解析手法
2.1 二相圧力損失評価手法
軽水炉内における燃料集合体の二相圧力損失\(\Delta P_{\text{TTHP}}\)は式（1）に示すように4つの圧力損失因子、摩擦、スペーサ、位置、加速度圧力損失の総和で評価される。本研究における二相圧力損失評価には師岡ら[1]の従来手法を用いた。また二相圧力損失の評価に用いる各パラメータは流路断面平均値である。

\[
\Delta P_{\text{TTHP}} = \Delta P_f + \Delta P_{\text{SP}} + \Delta P_H + \Delta P_A \tag{1}
\]

式（1）の各圧力損失の評価方法を以下に説明する。摩擦圧力損失\(\Delta P_f\)は式（2）を用いて評価した。単相摩擦圧力損失\(\Delta P_{f,\text{sp}}\)に二相増倍係数\(f_f\)を乗じることで評価を行った。二相増倍係数\(f_f\)は、師岡ら[1]、玉井ら[2]と同様にMartinelli-Nelsonモデル[4]を用いた。\(f_{l,p}\)は単相流条件下における摩擦損失係数を表しており形状に依存する。師岡らBlasius[1]、玉井らPfann[2]の式を用いて摩擦圧力損失を評価している。本研究では、\(f_{l,p}\)をCFDより予測した。

\[
\Delta P_f = \Delta P_{f,\text{sp}} f_f = \frac{G^2 f_{l,p}}{2 \rho_l H} \phi_f \tag{2}
\]

スペーサ圧力損失\(\Delta P_{\text{SP}}\)は式（3）を用いて評価した。式（3）の括弧内の平均流を仮定した二相増倍係数である。この増倍係数はLahey[5]とGeiger[6]によってグリッドスペーサの圧力損失を評価した。

\[
\Delta P = K_{\text{SP}} \frac{G^2}{2 \rho_l} \left[1 + \left(\frac{\rho_l}{\rho_g} - 1\right) x\right] \tag{3}
\]

位置圧力損失\(\Delta P_H\)、加速度圧力損失\(\Delta P_A\)は式（4）及び式（5）を用いて評価した。加速度圧力損失は分離流モデルより評価を行い、添え字の1、2は評価の対象区分の入出口气流の状態を表している。

\[
\Delta P_H = \int \left[\alpha \rho_g + (1 - \alpha) \rho_l\right] g dL \tag{4}
\]

\[
\Delta P_A = G^2 \left[\frac{x^2}{\alpha \rho_g + (1 - \alpha) \rho_l} \right] \left[\frac{1 - x}{(1 - \alpha) \rho_l}\right] \tag{5}
\]

式（4）、式（5）のポイド率\(\alpha\)は式（6）のドリフトフラックスモデル[7]を用いて評価した。分布定数\(c_0\)はポイド率及び質量流束の分布に依存するパラメータであり、\(V_{ij}\)はドリフト速度を表している。分布定数とドリフト速度はそれぞれDixの式[8]、Laheyの式[5]を用いた。

\[
a = \frac{x}{c_0 \left[\frac{\rho_g}{\rho_l} \left(1 - \alpha\right) + \frac{\rho_g}{G^2} V_{ij}\right]} \tag{6}
\]

2.2 二相流圧力損失予測の手順
Fig.1は本研究における圧力損失予測の手順を表している。前述したように本研究の予測の特徴は、従来、試験データに基づいて得られている形状に依存するパラメータ(摩擦及びスペーサ損失係数)をCFD解析で予測することである。まずCFD解析を行うために3次元CADを用いて燃料集合体を忠実に再現する。再現した3次元CADをCFDソフト(FLUENT ver.12.1)に取り込み単相流条件下の圧力損失の計算を行う。得られた結果より摩擦損失係数及びスペーサ損失係数の評価を行う。二相圧力損失に関してはポイド率、二相
増倍係数等を用いることで、二相流における各圧力損失因子を評価し、それらの和を圧力損失の予測値とする。ポイド率、二相増倍係数、スペーサ増倍係数はそれぞれドリフトフラックスモデル[7]、Martinelli-Nelson二相増倍係数[4]、均質流モデル[5,6]を用いた。

Reproduce the geometry of fuel assembly by 3D-CAD
To calculate pressure drop of single phase flow by CFD
To evaluate \(f_{\text{sp}} \) and \(K_{\text{sp}} \) from CFD analysis result
To calculate pressure drop of two phase flow using two phase flow similarity
To compare predicted result with experimental result

Fig. 1 Flowchart for pressure drop prediction.

2.3 CFD解析結果の検証

CFD解析により得られる解の妥当性を検証するために、円管における単相摩擦圧力損失の計算を行った。

CFDの乱流モデルとしてRealizable k-εモデル[9]を使用した。このモデルは改良型k-εモデルとして位置づけられている。Realizable k-εモデルを用いた流れ場の検証により、回転せん断流れ、境界流れ、剥離流れ等の流れ場において標準k-εモデルよりも現実的な解が得られることが可能であり、より精度のよい解析結果を得ることができる[9]。

また乱流において、発達した速度分布を形成するためには、25〜40\(D_H \)の助走区間が必要とされている。円管のCFD解析を行う際に、円管の40\(D_H \)を助走区間として解析を行った。解析結果は助走区間（ここでは40\(D_H \)）以降の圧力損失の勾配が一定となっており、発達した速度分布での摩擦損失係数が得られていると考えられる。

メッシュ形状として四面体、六面体、多面体、プリズム等がある。本研究では四面体のメッシュ形状を使用した。メッシュ生成は多面体で空を埋めるため、四面体は複雑な形状にも柔軟に対応ができメッシュの生成が容易である。メッシュサイズは四面体の辺が最大で0.898mm、最小で0.00735mm、臨接するメッシュとの体積比が最大で1.2以下となるようにメッシュの生成を行った。

Fig. 2 に内径5mmの円管における摩擦損失係数の解析結果を示す。Fig. 2において実験及び破線は、それぞれBlasius及びNikuradseによる管摩擦係数を表している。プロットで示した値がCFD解析によって得られた内径5mmの円管における管摩擦係数である。この結果より、CFDによって得られた値はBlasius及びNikuradseによる管摩擦係数と良好に一致しており、CFD解析解析手法として使用することは妥当であると考えた。

3. 検証に用いた実密パワラン圧力損失データ

本研究で圧力損失予測を行った実密パワランを3次元CADによって再現した。それぞれの断面図及び立体図をFig. 3, Fig. 4に示す。各実密パワランの仕様と検証条件をTable 1, Table 2に示す。7本、14本パワランは師岡ら[1,10]によって、37本パワランは呉田ら[11]、玉井ら[12]によって圧力損失測定の検証が行われた。
Fig. 3 Cross sectional view of test bundles.

Fig. 4 Geometry of test bundles.

Table 1 Specifications of test bundles [10-12]

Bundle	7rod	14rod	37rod gap1.3mm	37rod gap1.0mm
Rod-dia [mm]	10.8	13	1.3	1.0
Rod-gap [mm]	1.3	1.3	1.3	1.0
Axial heated length [m]	1.6	1.6	1.26	
Hydraulic-dia [mm]	5.9	5.7	4.4	3.7
Spacer-thickness [mm]	0.3		0.3	
Spacer-height [mm]	30	20		
Spacer shape	Hexagonal honeycomb			

Table 2 Test condition [1, 11, 12]

Bundle	7rod	14rod	37rod gap1.3mm	37rod gap1.0mm
P_{out} [MPa]	7.0	7.2, 8.5	7.2, 9.0	
Inlet sub-cooling [kJ/kg]	50	25~50	25	
Mass flux [kg/m³·s]	800~1200	1000~1500	400~1000	
Axial power [kW]	0~270	0~500	0~1200	
Axial power shape	Cosine	Non-Uniform		

4. 結果及び検討

4.1 単相流での摩擦損失係数及びスペーサ損失係数の評価

稠密バンドルのCFD解析によって得られた結果より、単相流での摩擦及びスペーサ損失係数の評価方法について説明する。Table 3は各稠密バンドルの解析条件である。Fig. 5は例として37本バンドルの燃料棒間隔が1.3mmのCFD解析結果である。縦軸は流動圧力損失として算出及びスペーサ圧力損失の和の分布を示している。横軸の軸方向高さ0.15mの位置にスペーサが設けられている。Fig. 5では表示していないが、計算は0.2mの地点まで行っており、この地点の境界条件は、速度分布均一である。軸方向の圧力損失分布の解析結果より、圧力勾配が一定と判断した点をFig. 5の横軸0mとしている。従って、Fig. 5の軸方向高さ0m以降は十分に発達した流れ状態における解析結果である。

Table 3 Test condition [1, 11, 12]
関式を作成した。Fig. 6に例として37本バンドルの燃料棒間隔が1.3mmの場合のCFD解析によって得られた摩擦損失係数とレイノルズ数の計算結果をプロットで示す。式(7)は、この計算結果に基づいて作成した関式である。図中に破線と実線で、それぞれBlasiusの式と式(7)を示す。低レイノルズ数では圧の差が現れるが、高レイノルズ数域において両者の差は減少している。スペーサ損失係数においても同様の手順で相関式、式(8)を作成した。師岡ら[1]、玉井ら[2]はスペーサ損失係数をレイノルズ数によらず定数としているが、その理由についての報告はされていない。本研究ではCFD解析に基づいてスペーサ損失係数をレイノルズ数の関数として表した。ちなみに玉井ら[2]は37本バンドルのスペーサ損失係数を試験に基づいて0.5で一定としている。レイノルズ数範囲が20000~60000では、式(8)よりスペーサ損失係数は0.55~0.47であり、単相流におけるCFD解析を試験の代替と使用することにより、試験から求めた値に対して大きな差異なくスペーサ損失係数を評価できていることがわかる。

4.2 単相圧力損失予測
Fig. 7は、横軸に37本バンドルの燃料棒間隔が1.3mmの流動圧力損失(摩擦及びスペーサ圧力損失の合計)を、縦軸に軸方向高さをとり、解析結果(実線)と試験結果との比較を流量ごとに示す。体のスペーサが挿入されており、スペーサ位置は軸方向高さ、0.21, 0.51, 0.73, 1.03mの順に挿入されている。試験体下部で試験結果と解析結果の一致の度合いが悪い点がみられるが、予測結果は流れ方向圧力損失分布の傾向を、本研究の対象としている流量範囲で概ね評価できている。試験体下部での、一部の評価における度合いと悪い要因としては、玉井ら[11]の文献には各部圧力損失の数値データが記載されていないため、グラフより数値データを読み取ており、その読み取り誤差、加えて試験体下部は圧力損失の測定値も大きく、差圧の測定誤差も要因と考えられる。

またFig. 8は各密度バンドルの全長における流動圧力損失の測定値と予測値の比較を示す。予測精度(予測値/測定値)の平均値及び標準偏差は、1.03, 0.12である。

Table 3 Analysis condition of CFD
Bundle
Pout [MPa]
Mass flux [kg/(m²s)]

Fig. 5 Typical CFD analysis result of 37rod tight lattice fuel bundle.

Fig. 6 Relationship between Reynolds number and friction coefficient of 37rod tight lattice fuel bundle gap1.3mm by CFD analysis.

\[f_{LP} = 0.168R e^{-0.195} \]
\[K_{SP} = 1.997R e^{-0.131} \]
Fig. 7 Effect of mass flux on single phase friction loss and spacer loss of 37rod bundle gap1.3mm.

Fig. 8 Comparisons about sum of friction loss and spacer loss between the experimental results and the predicted results under the single-phase flow.

4.3 二相圧力損失予測

Fig. 9、Fig. 10 は 37 本バンドルの燃料棒間隔が 1.3mm と 1.0mm の二相圧力損失予測結果と試験結果との比較を示す。圧力損失と軸方向高さの関係を出力ごとに表している。ともに試験条件として出口圧力が 7.2[MPa]、質量流量は 1000[kg/(m²s)]である。図のスペーサが前述と同様に軸方向高さ、0.21、0.51、0.73、1.03m の順に挿入されている。出力の増加に伴い圧力損失も増加する傾向を評価することができている。燃料棒間隔の違いから Fig. 9、Fig. 10 の予測結果について検討すると、入口に近い低クオリティ領域では燃料棒間隔が 1.3mm の予測結果が過小評価しており、徐々に過小評価から過大評価への傾向にあると考えられる。また燃料棒間隔が 1.0mm の予測結果については入口に近い低クオリティ領域では良好に予測できているが、徐々に過大評価へ
と転じている。予測結果を検討すると、燃料棒間隔が 1.3mm から 1.0mm へと狭まると全長における圧力損失の予測値の測定値に対する過大評価が顕著となる。

また Fig. 11、Fig. 12、Fig. 13 は各側面バンドルの全長における二相圧力損失の測定値と予測値の比較を表している。本手法は、各側面バンドルの二相圧力損失を各±10%程度で予測できている。

37 本バンドルの各燃料棒間隔における予測精度を Fig. 12、Fig. 13 を用いて比較すると、共に傾向として過大評価していることがわかる。また、先に言及したように燃料棒間隔が狭まることで、37 本バンドルの燃料棒間隔が 1.0mm の予測はより過大評価していることがある。

Fig. 14 に 37 本バンドルの燃料棒間隔における依存性を示す。プロットは測定値を表しており、実線、点線及び破線は予測値を表している。特に試験条件として出口圧力が 7.2MPa、質量流束は 800[kg/(m²s)]である。傾向として、燃料棒間隔の減少により、圧力損失が増大を評価することができる。燃料集合体の圧力損失には燃料棒間間隔依存性が存在し、燃料棒間隔の減少に伴う依存性を本解析手法では評価できていない。Fig. 14 中の单相流における試験値と予測値との比較より单相圧力損失予測においては燃料棒間隔の依存性が圧力損失を評価できたと考えると、二相圧力損失の評価手法に課題があると考えられる。

Fig. 11 Comparisons about total pressure drop between the experimental results and the predicted results of 7rod and 14rod bundle under the two-phase flow.

Fig. 12 Comparisons about total pressure drop between the experimental results and the predicted results of 37rod bundle gap1.3mm under the two-phase flow.

Fig. 13 Comparisons about total pressure drop between the experimental results and the predicted results of 37rod bundle gap1.0mm under the two-phase flow.

そこで前述の過大評価の要因を分析するために Fig. 15 に 37 本バンドルの各燃料棒間隔における各圧力損失因子が占める割合を示す。また試験条件として出口圧力が 7.2MPa、質量流束は 1000[kg/(m²s)], 出力は 600[kW]である。

Fig. 15 より全体の圧力損失に対して各圧力損失因子が占める割合は摩擦、位置、スペーサ、加速圧力損失の順であった。約 60%を摩擦圧力損失
が占めており、スペース圧力損失に関しては約10%程度であった。7 本バンドル、14 本バンドルにおいても各圧力損失因子の割合は同様の傾向が見られた。Fig. 15 より各圧力損失因子の割合から全体の圧力損失に大きく影響するのは摩擦圧力損失であると考えられる。単相圧力損失から二相圧力損失の評価の違いについて考察すると、二相流においてはクオリティ、ポイド率及び二相増倍係数が各圧力損失因子を評価するために使用されている。すなわち、これらのパラメータに過大評価の要因があると考えられる。

三島ら[13]は大気圧下における空気-水二相流条件の流動特性に与える管内径の影響について報告している。内径が小さい場合、管壁面の影響が大きくなることからドリフトフラックスモデルは過大評価の傾向にあることを述べ、試験データに基づいて管内径を考慮したポイド率相関式を報告している。稠密バンドルは燃料棒間隔が狭いことから、37 本バンドルにおいて燃料棒間隔が狭まることで壁面による影響が増大し類似した傾向が得られたと考えられる。

また Martinelli-Nelson 二相増倍係数は内径5mm以上の円管による試験データに基づき作成されている。そのため管内径が小さい場合、前述に言及した壁面の影響が大きくなることにより実際の二相増倍係数は Martinelli-Nelson 二相増倍係数よりも小さい値をとることが考えられる。Table 1 に示した 37 本バンドルの水力直径は各燃料棒間隔ともに 5mm を下回っている。そして燃料棒間隔が1.3mmから1.0mmに狭まることで水力直径はより小さくなることにより壁面の影響が増大することを考えられる。Martinelli-Nelson 二相増倍係数は円管による試験データに基づき作成されているため、複雑な流路、燃料棒間隔について考慮できていない。

Fig. 15 より、37 本バンドルの燃料棒間隔が1.0mmの二相圧力損失の過大評価が顕著となった要因はポイド率と Martinelli-Nelson 二相増倍係数の評価にあると考えられ、流路または燃料棒間隔の小さい場合におけるポイド率と二相増倍係数の現象論的な評価手法の検討が必要であると考えられる。

本解析手法による稠密バンドルの全長における圧力損失予測精度は、試験に基づいて予測を行う従来研究手法と同程度の精度[1,2]であり、十分な予測精度であると考えられる。

5. 結 言

本研究により得られた結論を以下に示す。

(1) CFD 解析を用いることで稠密バンドルの単相流の摩擦及びスペース圧力損失を評価した。それらの値を用いて、各稠密バンドルの全長における単相流での摩擦圧力損失とスペース圧力損失の和を約10%の精度で予測が可能であることを示した。

Power [kW]	Experimental data	Calculation result
0	□	□
800	□	□
800	□	□

Fig. 14 Effect of rod gap on pressure drop of 37rod tight lattice bundle G=800[kg/(m²s)]

G=1000[kg/(m²s)] , Q=600[kW]

Fig. 15 Ratio of each pressure loss component to total pressure loss of 37rod tight lattice bundle.

(2) 本解析手法を用いて 3 種の稠密バンドルの
二相圧力損失の予測を行った。試験により測定された各稠密バンドルの全長における二相圧力損失と比較することで、その試験範囲では約10%の精度で予測が可能であることを示した。

(3) 37 本バンドルの全長における圧力損失の予測値、試験値の比較より燃料棒間隔が1.3mmから1.0mmへ狭まったことで、予測値が試験値に対して過大評価が顕著となることが課題として得られた。本解析手法にて、さらに精度よく二相圧力損失予測するためには、流れまたは燃料棒間隔の小さい場合におけるポイド率と二相増倍係数の現象論的な評価手法の検討が必要であると考えられる。また、本解析手法の汎用性を図るためにBWR燃料集合体の圧力損失を予測することを計画している。

Nomenclature

\[G \quad : \text{mass flux} \quad [\text{kg/(m}^2\text{s})] \]
\[L \quad : \text{length or axial height} \quad [\text{m}] \]
\[D_h \quad : \text{hydraulic diameter} \quad [\text{m}] \]
\[x \quad : \text{quality} \quad [-] \]
\[\alpha \quad : \text{void fraction} \quad [-] \]
\[Re \quad : \text{Reynolds number} \quad [-] \]
\[f_{LP} \quad : \text{friction loss coefficient} \quad [-] \]
\[K_{SP} \quad : \text{spacer loss coefficient} \quad [-] \]
\[g \quad : \text{gravitational acceleration} \quad [\text{m/s}^2] \]
\[Q \quad : \text{power} \quad [\text{kW}] \]

Greek letters

\[\Delta P_{THP} \quad : \text{two phase pressure loss} \quad [\text{Pa}] \]
\[\Delta P_f \quad : \text{friction loss} \quad [\text{Pa}] \]
\[\Delta P_{SP} \quad : \text{friction loss of single phase} \quad [\text{Pa}] \]
\[\Delta P_{SP} \quad : \text{spacer loss} \quad [\text{Pa}] \]
\[\Delta P_H \quad : \text{static head loss} \quad [\text{Pa}] \]
\[\Delta P_A \quad : \text{acceleration loss} \quad [\text{Pa}] \]
\[\rho \quad : \text{density} \quad [\text{kg/m}^3] \]
\[\Phi_f \quad : \text{two-phase multiplier in friction loss} \quad [-] \]

Subscripts

\[g \quad : \text{gas phase} \]
\[l \quad : \text{liquid phase} \]

参考文献

[1] Morooka, S., Yamamoto, Y. and Shirakawa, K., Study for Pressure Drop of Rod Bundle with Tight Lattice Array, Journal of the Japan Society of Mechanical Engineers, Series B, Vol.72, No.715, 141-148 (2006).
[2] Tamai, H., Kureta, M., Ohnuki, A., Sato, T. and Akimoto, H., Pressure Drop Experiments using Tight-Lattice 37-Rod Bundles, Journal of Nuclear Science and Technology, Vol.43, No.6, 699-706 (2006).
[3] Tamai, H., Kureta, M. and Akimoto, H., Pressure Drop Characteristics in Tight-Lattice Rod Bundles for Reduced-Moderation Water Reactors, 11th International Conference on Nuclear Engineering, ICONE11-36098 (2003).
[4] Martinek, R.C. and Nelson, D.B., Prediction of Pressure Drop During Forced Circulation Boiling Water. Trans ASME, Vol.70, 695-701 (1948).
[5] Lahey, R.T. and Moody,F.J., The Thermal-Hydraulics of a Boiling Water Nuclear Reactor, 211-230, American Nuclear Society (1979).
[6] Geiger, G.E., Sudden Contraction Losses in Single-and-Two-Phase Flow, Ph. D. Thesis, University of Pittsburg (1964).
[7] Zubai, N. and Findlay, J. A., Average Volumetric Concentration in Two-Phase Flow Systems, J. Heat Transfer, Vol.87, 453-468 (1965).
[8] The Japan Society of Mechanical Engineers ed., Handbook of Gas-Liquid Two-Phase Flow Technology - Second Edition, 25-60, Corona Publishing, Tokyo (2006).
[9] Shih, T-H., Liou, W.W., Shabbir, A., Yang, Z. and Zhu, J., A New k-ε Eddy-Viscosity Model for High Reynolds Number Turbulent Flows, Computers and Fluids, Vol.24, 227-238 (1995).
[10] Yamamoto, Y., Akiba, M., Morooka, S., Shirakawa, K. and Abe, N., Thermal Hydraulic Preformance of Tight Lattice Bundle, Journal of the Japan Society of Mechanical Engineers, Series B. Vol.49, No.2, 334-342 (2006).
[11] Kureta, M., Tamai, H., Liu, W., Sato T., Watanabe, H., Ohnuki, A. and Akimoto, H., Date Report of a Tight-Lattice Rod Bundle Thermal-hydraulic Tests (I) -Base Case Test using 37-rod Bundle Simulated Water-cooled Breeder Reactor- (Contract Research), JAEA-Data/Code 2006-007 JP0650335, Japan Atomic Energy Agency, (2006).
[12] Tamai, H., Kureta, M., Liu, W., Sato T., Watanabe, H., Ohnuki, A. and Akimoto, H., Date Report of a Tight-Lattice Rod Bundle Thermal-hydraulic Tests (II) -Base Case Test using 37-rod Bundle Simulated Water-cooled Breeder Reactor- (Contract Research), JAEA-Data/Code 2006-016 JP0650671, Japan Atomic Energy Agency, (2006).
[13] Mishima, K. and Hibiki, T., Some Characteristics of Air-Water Two-Phase Flow in Small Diameter Vertical Tubes, Int. J. Multiphase Flow, Vol.22, 703-712 (1996).