Kelvin Probe Force Microscopy Study of a Pt/TiO\textsubscript{2} Catalyst Model Placed in an Atmospheric Pressure of N\textsubscript{2} Environment

Ryohei Kokawa,*[a, b, c] Masahiro Ohta,[a, b] Akira Sasahara,[a, d] and Hiroshi Onishi*[a, c]

Abstract: A catalyst model comprising platinum nanoparticles deposited on a TiO\textsubscript{2}(110) wafer was prepared in a vacuum, transferred in air, and characterized with a Kelvin probe force microscope placed in a N\textsubscript{2} environment. The topography and local work function of individual nanoparticles were observed with single-nanometer resolution in the N\textsubscript{2} environment of one atmosphere pressure. Some nanoparticle presented positive shifts of work function relative to that of the TiO\textsubscript{2} surface, while the others showed negative shifts.

Keywords: electron transfer · heterogeneous catalysis · nanotechnology · scanning probe microscopy · supported catalysts

This finding suggests heterogeneous properties of the nanoparticles exposed to air and then N\textsubscript{2}. The ability of the advanced microscope was demonstrated in observing the work function of metal nanoparticles on a metal oxide support even in the presence of vapor environments.

Introduction

Our current civilization is supported by a number of chemical processes for artificial materials production. Heterogeneous catalysts are solid-state devices that assist the chemical reactions of demand. Most catalysts contain nanometer-sized transition-metal particles interfaced with metal oxide supports. The charge transfer from metal to metal oxide is thought to affect reactions catalyzed on the nanoparticles. Fine tuning of catalyst activity and selectivity has been achieved by using particle–support charge transfer. X-ray photoelectron spectroscopy provides an efficient method to evaluate the extent of charge transfer, based on the chemical shift of core-level photoemission. While the observed chemical shifts are averaged over the catalyst, the metal particles are not always homogeneous. Particles can be of different sizes or interfaced with different sites of the support, for example, terraces, steps, or kinks. The composition of adsorbed species should also be heterogeneous nanoparticle-by-nanoparticle. When the transferred charge is quantified on each nanoparticle, much progress can be made in the methods of catalyst characterization. Application of Kelvin probe force microscopy (KPFM) has been proposed for this purpose.[1,2]

When a transition-metal nanoparticle donates electrons to the support, an electric dipole moment appears at the interface. The moment is directed from the support to the nanoparticle. The work function of the support is reduced by the outward-directed dipole moment (Figure 1), since the dipole moment acts as a miniaturized electric double layer. Hence the work function presents a local, negative shift over the electron-donating particle. In contrast, a positive shift of local work function is expected with an electron-accumulating particle. The particle-induced local shifts of work function can be observed by KPFM.

As described below, a number of researchers including the authors have demonstrated single-nanometer or atomic resolution with KPFM operated in a vacuum, where microscopes present their best performance. However, catalyst...
characterization should be done in vapor atmospheres where catalysts work. High-resolution imaging in practical pressures remains a challenge to applications of KPFM. In the current study, we modified a commercial AFM instrument to enhance the signal-to-noise ratio and applied the modified microscope to KPFM observation in a N$_2$ environment of one atmospheric pressure. The object under consideration was Pt nanoparticles deposited on rutile TiO$_2$(110) surface. Surfaces of single-crystalline rutile$^{[1,10-12]}$ and anatase$^{[11]}$ TiO$_2$ with deposited platinum particles have frequently been examined as catalyst models using scanning probe microscopes.

Kelvin Probe Force Microscopy (KPFM)

Kelvin probe force microscopy$^{[12,13]}$ is based on frequency-modulation atomic force microscopy (FM-AFM)$^{[14]}$ and simultaneously provides the topography and local work function of a solid object. In FM-AFM, the resonance oscillation of a cantilever is mechanically excited. When conservative force is applied to the tip, the resonance frequency shifts accordingly. The topography of the solid object is traced with regulation of the tip–surface distance by keeping the frequency shift constant. In KPFM, the oscillating tip is used as the miniaturized reference electrode of a Kelvin probe. The tip and surface form a capacitor, and the contact potential difference (CPD) between the two electrodes causes an electrostatic tip–surface force. The strength of the electrostatic force is oscillated by applying an oscillating sample bias voltage (V_S) relative to the tip. When a direct-current (DC) voltage is further added to the oscillated V_S and compensates for CPD, the oscillated component of tip–surface force disappears. The microscope is operated to find the compensating DC voltage at different places over the object. The obtained map of compensating voltage represents the lateral distribution of CPD and thus the distribution of local work function.

In the low-noise extreme, the lateral resolution of the work function distribution is limited by the radius of the tip apex and by the tip–surface distance$^{[15-17]}$. Single-nanometer or atomic resolution was achieved on semiconductors, Au/Si$^{[11]}$, Si(111)$^{[18]}$, Sb/Si(111)$^{[19]}$, Ge/Si(110)$^{[20]}$, Si(111)$^{[21]}$, oxidized Si(111)$^{[22]}$, P dopant buried in Si$^{[23]}$, TiO$_2$(110)$^{[24,25]}$, and alkali halides (001)$^{[26]}$. Successful applications to catalyst-related materials have further been done on WO$_3$/TiO$_2$$^{[27]}$, Au/NaCl$^{[28]}$, Pd/MgO(001)$^{[29]}$, MgO/Au$^{[30]}$, and Pd/graphite.$^{[21]}$ The authors conducted a series of KPFM studies with TiO$_2$(110) modified by Na adatoms$^{[31]}$, Cl adatoms$^{[32]}$, Pt adatoms$^{[33]}$, Pt nanoparticles$^{[34]}$, and photosensitizer dyes$^{[35]}$.

KPFM based on FM-AFM requires a triple feedback loop with respect to the cantilever oscillation amplitude, frequency shift, and contact potential difference. The triple feedback loop is more complex and more sensitive to external noise than the double loop of an ordinary FM-AFM instrument. The signal-to-noise ratio is seriously reduced when the cantilever is oscillated in vapor. The vapor-induced viscos resistance negatively affects the quality factor of cantilever oscillation. As a result, the lateral resolution of the work function has been limited to 30 nm in vapor environments of one atmospheric pressure, whereas an atomic or molecular resolution is available in the topography provided by the ordinary FM-AFM in the presence of vapor environments of this pressure.$^{[36-38]}$ In the current study, we modified a microscope to enhance the signal-to-noise ratio and demonstrated a single-nanometer resolution of work function distribution under a vapor environment of one atmospheric pressure.

Results and Discussion

Figure 2 shows the topography of a catalyst model comprising TiO$_2$(110) with deposited Pt. The topography was observed with the ordinary FM-AFM in a N$_2$ environment of one atmospheric pressure. The negative set point of frequency shift regulation, ~30 Hz, suggested an attractive tip–surface force and thus noncontact scans by the oscillating tip. The quantitative relationship of the frequency shift and force strength has been given by Sader and Jarvis.$^{[39]}$

The catalyst model was prepared by exposing a sputter-annealed TiO$_2$ wafer to a Pt vapor source for 20 min. In the topography of Figure 2a, four stacked terraces were separated by winding steps. The terrace width was 100 nm or more, and the step height was 0.3 nm. These features reproduced the topographic features of sputter-annealed TiO$_2$(110) wafers observed in vacuum.$^{[40-42]}$ Nanometer-sized particles additionally appeared on the terraces. The height of the nanoparticles was smaller than the step height. The raw topography was duplicated and adjusted in contrast to identify nanoparticles, as shown in Figure 2b–e. Twenty nanoparticles are identified and marked with circles in the four contrast-adjusted images. The topographic height of the marked particles was determined by analyzing cross sections. The height distribution was limited at 0.4 nm with an average height of 0.23 nm as shown in Figure 2f.

We assigned the nanoparticles to deposited Pt, because the number density increased on another catalyst model that was exposed to the Pt source for 60 min. Figure 3a shows the raw topography of the catalyst model obtained after 60 min deposition. Eighty-seven nanoparticles were identified over two stacked terraces and marked in Figure 3b. The topographic height distribution of the identified nanoparticles is presented in Figure 3c. Comparing to the distribution shown in Figure 2f, the average height shifted.

Abstract in Japanese:

白金ナノ粒子を真空蒸着した二酸化チタン（110）単結晶面を一酸化炭素ガス中でケルビンプローブフォーマス顕微鏡で計測した。顕微鏡計測した局所仕事関数をもとに白金-二酸化チタン間の電荷移動の方向と量がナノ粒子ごとに異なることを明らかにした。
slightly to 0.25 nm with the top of the distribution at 0.6 nm. The average heights of 0.23–0.25 nm suggest a one- or two-atom-layer thickness of the nanoparticles on the two catalyst models. The layer-to-layer distance of Pt(111) is 0.23 nm based on the face-centered cubic lattice constant of 0.39 nm.

When Pt was deposited on TiO$_2$(110) and imaged in a vacuum, not exposed to air, the deposited nanoparticles showed a height distribution ranging from 0.1 to 0.5 nm. The nanoparticles were marked with circles on the contrast-adjusted topography. Nanoparticles on the underlying terraces are identified and marked as shown in (c), (d) and (e). The distribution of the particle height is shown in (f).

Figure 3 presents the work function distribution. Portions colored red showed larger work function relative to that of the TiO$_2$ surface, whereas blue portions were of smaller work function. The nanoparticles identified in the topography are marked in the duplicated distribution of Figure 4(d). The work function shift was determined relative to that of the TiO$_2$ surface. Figure 4(f) shows the summary of the particle-induced shifts of work function. Twenty-four nanoparticles presented positive shifts, and the other twelve showed negative shifts in a range of ± 0.3 eV.

The work function shift distribution was broad across the origin. The median of the distribution was $+0.15$ eV. The broad distribution suggests heterogeneous properties of the Pt nanoparticles, although they are uniformly deposited in the vacuum, transferred in air, and exposed to the N$_2$ environment. In contrast, Pt nanoparticles deposited and observed in the vacuum presented negative shifts proportional to the lateral size of the nanoparticles in the range from -0.1 to -0.5 eV. The size-dependent, systematic shifts indicated the homogeneous nature of the nanoparticles when they were not in contact with air and N$_2$. Oxygen, water, and CO$_2$ may be adsorbed on the nanoparticles by exposing the catalyst model to air. Adsorbed species create additional dipole moments at Pt surfaces. Adsorption of different species leads to the different signs of work function shift. The
Conclusions

Platinum nanoparticles were vacuum-deposited on TiO$_2$ (110) to prepare a catalyst model. The lateral distribution of work function was observed over the Pt-deposited TiO$_2$ surface in the presence of the N$_2$ environment of one atmospheric pressure using an advanced Kelvin probe force microscope. Some nanoparticles presented positive shifts of work function relative to that of the TiO$_2$ surface, while the others showed negative shifts. This result suggests that exposure to air and then N$_2$ made the nanoparticles heterogeneous.

Experimental Section

A commercial AFM instrument (SPM-9600, Shimadzu) was modified according to Fukuma et al.7 with a low-noise cantilever deflection sensor and radio-frequency modulation of laser diode power. The total noise of the optical beam deflection was reduced to 7 fm Hz$^{-1/2}$ in air. Imaging scans were done with doped silicon cantilevers (PPP-NCHR, Nanosensors). The nominal resonance frequency and spring constant of the cantilevers were 300 kHz and 42 N m$^{-1}$, respectively. The bias voltage V_b of the sample was modulated relative to the tip by a peak-to-peak amplitude of 5 V at 3 kHz. The microscope was placed in a glove box.

Atomically flat (110) wafers of rutile TiO$_2$ ($10 \times 10 \times 0.5$ mm3, Shinko-sha) were prepared in a UHV chamber equipped with an Ar ion gun (EX03, Thermo). A wafer was clamped with tungsten mesh on a sample holder, sputtered with Ar ions of 2 keV at room temperature (RT), and annealed in the vacuum at 900 K. The (1 x 1) order was checked by low-energy electron diffraction. The annealed wafer was cooled to RT and exposed to a heated Pt wire. The exposed wafer was removed from the chamber, transferred in air, and placed on the microscope in the glove box. The glove box was evacuated with a turbo molecular pump to 10$^{-3}$ Pa and then filled with research-grade N$_2$ gas of one atmospheric pressure. Imaging scans were conducted at RT in the N$_2$ atmosphere.

Acknowledgements

The microscope has been developed in collaboration with Kazuyuki Watanabe of Shimadzu Corporation and Kei Kobayashi and Hirofumi Yamada of Kyoto University. Shiho Moriguchi of Shimadzu Analytical & Measuring Center supported the authors in quantitative analysis of the microscope images.

[1] A. Sasahara, K. Hiehata, H. Onishi, Catal. Surv. Asia 2009, 13, 9.
[2] C. Barth, A. S. Foster, C. R. Henry, A. L. Shluger, Adv. Mater. 2011, 23, 477.
[3] O. Dulub, W. Hebenstreit, U. Diebold, Phys. Rev. Lett. 2000, 84, 3646.
[4] S. Gan, Y. Liang, D. R. Baer, M. R. Sievers, G. S. Herman, C. H. F. Peden, J. Phys. Chem. B 2001, 105, 2412.
[5] A. Berkó, O. Hakkel, J. Szőkő, F. Solymosi, Surf. Sci. 2002, 507–510, 643.
[6] S. Takakusagi, K. Fukui, R. Tero, F. Narihiki, Y. Iwasawa, Phys. Rev. Lett. 2003, 91, 066102.
[7] H. Uetsuka, C. Pang, A. Sasahara, H. Onishi, Langmuir 2005, 21, 11802.
[8] A. Sasahara, C. Pang, H. Onishi, J. Phys. Chem. B 2006, 110, 13453.
[9] A. Sasahara, C. Pang, H. Onishi, J. Phys. Chem. B 2006, 110, 17584.
[10] K. Hiehata, A. Sasahara, H. Onishi, Nanotechnology 2007, 18, 084007.
Kelvin Probe Force Microscopy of a Pt/TiO$_2$ Catalyst Model

[11] X.-Q. Gong, A. Selloni, O. Dulub, P. Jacobson, U. Diebold, J. Am. Chem. Soc. 2008, 130, 570.

[12] Kelvin Probe Force Microscopy (Eds.: S. Sadewasser, T. Glatzel), Springer, Heidelberg, 2011.

[13] W. Melitz, J. Shen, A. C. Kummel, S. Lee, Surf. Sci. Rep. 2011, 66, 1.

[14] Noncontact Atomic Force Microscopy (Eds.: S. Morita, R. Wiesendanger, E. Meyer), Springer, Heidelberg, 2002.

[15] W. Melitz, J. Shen, A. C. Kummel, S. Lee, Surf. Sci. Rep. 2011, 66, 1.

[16] U. Zerweck, C. Loppacher, T. Otto, S. Grafström, L. M. Eng, Phys. Rev. B 2005, 71, 125424.

[17] F. Krok, K. Sajewicz, J. Konior, M. Goryl, P. Piatkowski, M. Szymonski, Phys. Rev. B 2008, 77, 235427.

[18] S. Ono, T. Takahashi, Jpn. J. Appl. Phys. Part 1 2004, 43, 4639.

[19] T. Shiota, K. Nakayama, Jpn. J. Appl. Phys. Part 1 2002, 41, L1178.

[20] K. Okamoto, K. Yoshimoto, Y. Sugawara, S. Morita, Surf. Sci. Rep. 2003, 51, 128.

[21] T. Eguchi, Y. Fujikawa, K. Akiyama, T. An, M. Ono, T. Hashimoto, Y. Morikawa, K. Terakura, T. Sakurai, M. G. Lagally, Y. Hasegawa, Phys. Rev. Lett. 2004, 93, 266102.

[22] S. Sadewasser, P. Jelinek, C.-K. Fang, O. Custance, Y. Yamada, Y. Sugimoto, M. Abe, S. Morita, Phys. Rev. Lett. 2009, 103, 266103.

[23] L. Bolotov, T. Tada, M. Itake, M. Nishizawa, T. Kanayama, Surf. Sci. Nanotechnol. 2011, 9, 117.

[24] M. Ligowski, D. Moraru, M. Anwar, T. Mizuno, R. Jablonski, M. Tabe, Appl. Phys. Lett. 2008, 93, 142101.

[25] A. Sasahara, H. Uetsuka, H. Onishi, Surf. Sci. 2003, 529, L245.

[26] G. H. Enevoldsen, T. Glatzel, M. C. Christensen, J. V. Lauritsen, F. Besenbacher, Phys. Rev. Lett. 2008, 100, 236104.

[27] C. Barth, C. R. Henry, Phys. Rev. Lett. 2007, 98, 136804.

[28] S. I. Wang, G. Cheng, X. H. Jiang, Y. C. Li, Y. Huang, Z. L. Du, Appl. Phys. Lett. 2006, 88, 212108.

[29] C. Barth, C. R. Henry, Appl. Phys. Lett. 2006, 89, 252119.

[30] L. Gross, F. Mohn, P. Lijeroth, J. Repp, F. J. Giessibl, G. Meyer, Science 2009, 324, 1428.

[31] C. Barth, C. R. Henry, J. Phys. Chem. C 2009, 113, 247.

[32] T. König, G. H. Simon, H.-P. Rust, G. Pacchioni, M. Heyde, H.-J. Freund, J. Am. Chem. Soc. 2009, 131, 17544.

[33] A. Sasahara, H. Uetsuka, H. Onishi, Jpn. J. Appl. Phys. Part 1 2004, 43, 4647.

[34] K. Hiehata, A. Sasahara, H. Onishi, Jpn. J. Appl. Phys. Part 1 2008, 47, 6149.

[35] M. Ikeda, N. Koide, L. Han, A. Sasahara, H. Onishi, J. Phys. Chem. C 2008, 112, 6961.

[36] A. Sasahara, S. Kitamura, H. Uetsuka, H. Onishi, J. Phys. Chem. B 2004, 108, 15735.

[37] T. Fukuma, K. Kobayashi, K. Matsushige, H. Yamada, Rev. Sci. Instrum. 2005, 76, 053704.

[38] T. Fukuma, T. Ichii, K. Kobayashi, H. Yamada, K. Matsushige, Appl. Phys. Lett. 2005, 86, 034103.

[39] J. E. Sader, S. P. Jarvis, Appl. Phys. Lett. 2004, 84, 1801.

[40] H. Onishi, K. Fukui, Y. Iwasawa, Bull. Chem. Soc. Jpn. 1995, 68, 2447.

[41] K. Fukui, H. Onishi, Y. Iwasawa, Phys. Rev. Lett. 1997, 79, 4202.

[42] U. Diebold, Surf. Sci. Rep. 2003, 48, 53.

Received: December 12, 2011
Revised: March 19, 2012
Published online: April 18, 2012