Ruminal Bacterial Degradation of Benzo(b)thien-4-yl Methylcarbamate (Mobam) and Effect of Mobam on Ruminal Bacteria

PHLETUS P. WILLIAMS and ROSA L. STOLZENBERG

U.S. Department of Agriculture, Animal Science Research Division, Metabolism and Radiation Research Laboratory, Fargo, North Dakota 58102

Received for publication 15 October 1971

Mixtures of ruminal bacteria degraded benzo(b)thien-4-yl methylcarbamate (Mobam) to 4-hydroxybenzothiophene, CO₂, and polar product(s). The metabolite, 4-hydroxybenzothiophene, was identified (after acetylation) by comparative infrared and mass spectrometry with an authentic sample. Carbon dioxide and polar product(s) were produced by degradation of the methylcarbamate moiety. Ten previously characterized strains of ruminal bacteria with diverse physiological capabilities did not degrade Mobam. However, three tributyrylhydrolyzing strains were isolated that did degrade Mobam. Mobam inhibited growth of two of ten strains isolated on Mobam-free glycerol-tributyrin enrichment medium. One of these strains was also sensitive to 2-carbethoxy-propene-2-yl dimethyl phosphate (Phosdrin). Mobam prevented some ruminal bacteria from producing zones of hydrolysis in tributyrin emulsion media and inhibited some ruminal bacteria from degrading 1-naphthyl acetate and fluorescein-3',6'-diacetate.

Benzo(b)thien-4-yl methylcarbamate (Mobam) is an effective pesticide that exhibits broad spectrum insecticidal activity coupled with an apparent low mammalian toxicity (2, 7). Ruminants administered [14C]-Mobam as single oral doses excreted 87 to 96% of the [14C] dose via the urine in 24 hr (10). Cleavage of the methylcarbamate moiety of Mobam was evident in the production of two primary metabolites, 4-benzothieryl sulfate and 4-benzothieryl sulfate-1-oxide. The purpose of this investigation was to determine whether ruminal bacteria degrade Mobam. The effect of Mobam on ruminal bacteria was also considered.

MATERIALS AND METHODS

Chemicals. Mobam [benzo(b)thienyl-4-yl methylcarbamate-4, 7-[14C]] with a specific activity of 3.74 μCi/mg and unlabeled Mobam were supplied by Mobil Chemical Co., Metuchen, N.J. 14C-Mobam, labeled in the carbonyl position (5.0 μCi/mg), was synthesized by New England Nuclear Corp., Boston, Mass. 14C-methyl-labeled Mobam (165.9 μCi/mg) was supplied by G. L. Lamoureux, Plant Science Division, of this laboratory. Purity of the 14C-labeled Mobam preparations was greater than 99%, as determined by thin-layer chromatography (TLC).

Cultures. Characterized ruminal bacterial strains [Bacteroides amylophilus, H-18; B. ruminicola sub-species brevis, GA-33; B. succinogenes, S-85; Eubacterium ruminantium, B,C-23; Lachnospira multiparas, D-32; (Megasphaera Peptostreptococcus) elsdenii, B-159; E. limosum (Butyribacterium rettgeri, Ramibacterium species), L-34; Selenomonas ruminantium, HD-1; Streptococcus bouis, FD-10; and Succinimonas amylolytica, B,4] were obtained from M. P. Bryant's collection and were maintained on rumen fluid-Trypticase-yeast extract medium (RFTY, 3). Mixtures of bacteria in ruminal contents were obtained by stomach tube from calves (>70 days of age, free of ruminal ciliated protozoa) maintained on a pelleted ration of alfalfa, grain, and wheat bran (10:5:1) (13). Bacteria from the ruminal samples were concentrated by centrifuging the content at 3,000 × g for 8 min and then centrifuging the resulting supernatant fluid at 13,000 × g for 20 min at 5 C. The sedimented bacterial cells were made up to one-fourth the original volume with basal medium (14) and incubated with 14C-Mobam (100,000 to 250,000 dpm/ml of medium with Mobam concentration adjusted to 72 μg/ml). Preparations of cell suspensions of pure cultures were obtained from each culture incubated in RFTY liquid medium for 48 hr at 39 C. The cultures were centrifuged, diluted in basal medium (14), and incubated with 14C-Mobam as above but for 18 hr. Cell densities for each culture were diluted so that a 1:10 dilution of...
the incubating cell preparation had an absorbancy reading of 0.4 at 600 nm in 1.2-cm-diameter cuvettes.

Anaerobic dilution methods and culture methods used were essentially as reported by Bryant and Burkey (1). Serial dilutions of whole ruminal contents from 10^{-4} through 10^{-6} were each inoculated, in triplicate, into 0.25% glycerol-2% tributyrin-RFTY-agar medium (minus glucose, cellobiose, and starch) containing zero or 600 μg/ml levels of Mobam. The inoculated media were prepared as roll tubes and incubated at 39 C for 2 weeks. Isolates from colonies showing lytic zones (5, 13) were maintained in neoprene-stoppered tubes in Spirit Blue agar medium (Difco, Detroit, Mich.) modified by addition of 1% (v/v) tributyrin, 30% (v/v) clarified ruminal fluid, 0.4% Na_2CO_3, and cysteine·HCl and Na_2S·9H_2O (each 0.05%). The medium was adjusted to pH 6.85 under CO_2 in a medium-dispensing apparatus (11).

Assays. Thin-layer chromatograms were prepared in the laboratory with Silica Gel G (250 μm thick, Brinkmann) on glass plates (5 by 20 by 0.35 cm) and spotted with 14C-material. The TLC plates were developed ascendingly with hexane-ethyl acetate-acetic acid (70:30:2) and scanned for 14C distribution (14). Samples were dissolved in dioxane or toluene (12) scintillation solution. The dioxane formulation consisted of 7.0 g of PPO (2,5-diphenyloxazole), 100 g of naphthalene, 300 mg of POPP [1,4-bis(2(5-phenyloxazoyl)-benzene], and enough agent-grade dioxane to bring the volume to 1 liter. Counting of radioactivity was done with a liquid scintillation counter. Counting efficiencies were determined by internal standardization with toluene-14C or by channels ratio standardization. Counting times ranged from 2 to 30 min, depending on the level of radioactivity in the samples. Radioactive 14CO_2 produced in 14C-Mobam culture experiments was monitored as previously described (12). Gas production of ruminal bacteria in the presence of Mobam (100 to 500 μg/ml) was determined manometrically (14). Bacteria were assayed for carboxylesterase activity by incubating the preparations with 1-naphthyl acetate (NA) for 15 min at 39 C. The reaction was stopped by addition of 10% lauryl sulfate solution, and the 1-naphthol produced was coupled with fast garnet GBC (C.I. 37210, 4-amino-3,1'-dimethyl azobenzene) and read photometrically at 560 nm (9). Similarly, fluorescein-3',6'-diacetyl (FDA) was used as a substrate for bacterial carboxylesterases, with fluorescein production determined with a spectrofluorometer (4). Protein content of sonically treated bacterial extracts was determined by the method of Lowry et al. (8), with bovine serum albumin (Sigma Chemical Co.) as the standard.

Metabolite detection. Bacterial cultures containing 14C-Mobam products were extracted with methylene chloride. The extract was evaporated to dryness, taken up in methanol, and applied to a column of Sephadex LH-20 (0.9 by 40 cm) in methanol. The column was eluted with methanol, and the radioactive fractions were analyzed by TLC and gas-liquid chromatographic (GLC) techniques.

Metabolites were recovered from TLC plates by stripping 14C-containing bands and eluting with methylene chloride. The 14C material was taken to dryness under N_2 and derivatized with 1 μl of pyridine and 100 μl of acetic anhydride. The sample was then analyzed by GLC on an instrument equipped with a 14C monitor and effluent splitters to facilitate simultaneous flame ionization detection and trapping with glass capillary tubes (14). A 2% SE-30 Chromasorb W (60/80 mesh) column [6 ft (1.8 m) by 4 mm] programmed from 100 to 200 C at 5 C/min was used. Injection port and detector temperatures were set at 300 C. Helium (55 ml/min) was used as a carrier gas. Metabolites trapped were analyzed by infrared and mass spectrometric analysis as previously reported (14).

Culture techniques. Effect of Mobam on growth of mixed ruminal bacteria was determined as follows. Gauze-strained ruminal contents (0.1 ml) were inoculated, in duplicate, into 15-mm cuvettes each containing 4.9 ml of RFTY medium under CO_2 with either 0.2, 10, 50, 100, or 200 μg of Mobam/ml of medium. The cuvettes were flushed with CO_2, sealed with neoprene stoppers, and incubated at 39 C for 24 hr. Absorbancy readings were taken at 600 nm. Readings (at 0, 4, 8, and 24 hr of incubation) were compared with unoinoculated medium containing the appropriate concentrations of Mobam.

Mixtures of bacteria from ruminal fluid (300 ml) and newly isolated ruminal bacterial strains (see below; no. 29, 53, and 88, each grown 48 hr in 300 ml of RFTY liquid medium) were separately concentrated by centrifugation and suspended in 7.5-ml volumes of basal medium (14). These cells were then sonically treated at maximum intensity (Fisher probe model BP-5; generator model CW-5) for 3 min at 5 C and assayed for NA carboxylesterase activity (9). Agar well-diffusion experiments were run with the sonically treated preparations as follows. A medium of 1.5% agar in 0.2 m sodium phosphate buffer at pH 6.8 was poured into petri dishes containing Mobam dissolved in a minimum volume of ethanol. Final concentration of Mobam was 500 μg/ml of medium. Fifty to 75 μl of the sonically treated cell preparations was added to each 8-mm-diameter well cut in the solidified medium. The preparations were incubated at 39 C. At 0, 4, 8, and 24 hr of incubation, separate preparations were flooded with 10% ferric chloride solution and observed for development of dark blue-black zones due to the presence of 4-hydroxybenzothiophene. These sonically treated cell preparations were compared to sonically treated mixed- and pure culture-cell preparations treated to temperatures of near 100 C for 5 min or treated with 15% ethanol. In some instances, FDA (100 μg/ml) was used as a substrate. FDA degradation was indicated by development of a fluorescent zone surrounding the wells when viewed under ultraviolet light.

RESULTS AND DISCUSSION

Metabolite identification. Methylene chloride extracted 97 to 99.3% of the 14C from
mixed-cell suspensions incubated for 24 hr with 14C-ring-labeled (RL Mobam. The radioactivity in the methylene chloride extract separated into two fractions during column chromatography on Sephadex LH-20. Fraction 1 (41 to 43 ml) co-chromatographed (TLC) with 4-hydroxybenzothiophene, and fraction 2 (49 to 51 ml) co-chromatographed (TLC) with Mobam.

14C radioactivity in fraction 1, when removed from TLC plates and acetylated, was released from the GLC column when the GLC column oven reached a temperature of 145 C. The retention time of the compound compared favorably with an authentic sample of 4-hydroxybenzothiophene (which was acetylated according to the method used for the metabolite). Infrared and mass spectra of the metabolite were identical to the authentic sample. The metabolite was therefore identified as 4-hydroxybenzothiophene.

The 14C-compound in fraction 2 was degraded during GLC. It had an infrared spectrum identical with high-purity Mobam.

14C-Mobam degradation. Degradation of 14C-Mobam by mixed-ruminal bacterial preparations is shown in Table 1. Carboxyl-labeled Mobam was progressively degraded with release of 30.7% of the total 14C as 14CO2 in 18 hr. Mobam, at RF 0.27 on TLC, accounted for 59.8% of the radioactivity, and 7.2% of the 14C remained at RF 0 to 0.1. Total 14C recovered in CO2 and methylene chloride extractions was 97.7%. With [14C-methyl]Mobam, only a trace of 14CO2 (0.9%) was found at 18 hr. Mobam accounted for 62.0% of the 14C, and the remaining radioactivity (15.1%) remained at the origin. Total 14C recovered was 78.0%. Attempts to account for the loss of the methyl 14C were not successful. With 14C-RL-Mobam, no 14CO2 was produced, and 33.8% of the 14C co-chromatographed with 4-hydroxybenzothiophene at RF 0.49. Remaining 14C (65.1%) was at the same RF as Mobam. Total 14C recovered was 98.9%. Since no 14C was found at the origin when 14C-RL-Mobam was incubated with mixed bacterial preparations but was found when incubated with Mobam labeled in the carbonyl or methyl positions of the methylenebarnionate moiety, it indicated that only the methylenebarnionate moiety was the source of carbon for production of polar product(s) by the bacteria. These products were not identified.

Mobam-degrading bacteria. A number of bacterial isolates from 10-4 and 10-1 dilutions of ruminal samples were effective in repeatedly showing zones of hydrolysis in tributyrin emulsion-Mobam medium. Three isolates from this medium were found to degrade Mobam. These obligately anaerobic bacterial strains (no. 29, 53, and 88) are gram-negative motile curved rods that appear similar to isolates of Hobson and Mann (5). These cultures on tributyrin emulsion-Spirit Blue agar medium showed colonies with clear zones of hydrolysis surrounded by a dark blue coloration. Sonically treated cell preparations of these strains and mixtures of ruminal bacteria (2.1 to 4.2 mg of soluble protein/ml) in agar well experiments showed degradation of Mobam and FDA. Degradation was detectable as early as 4 hr after incubation. Zones of hydrolysis for both Mobam and FDA preparations with the strains and mixtures of bacteria ranged from 25 to 40 mm in diameter after 24 hr of incubation. Cell suspensions of strains 29, 53, and 88 incubated with 14C-RL-Mobam, degraded the 14C-substrate to 4-hydroxybenzothiophene at respective rates of 21.3, 23.3, and 18.4% in 18 hr. Characterized ruminal bacterial strains (L-34, GA-33, B4, HD-1, B4-C-23, S-85, FD-10, B-

Table 1. Mixed rumen bacterial degradation of 14C-Mobam*
Position of 14C label

Carboxyl
Methyl
Ring-4, 7

*Values in the tables are computed as means from three experiments for each 14C-Mobam preparation in basal medium (14). Controls (without ruminal bacteria) showed no degradation of 14C-Mobam. 14C levels for Mobam preparations included: carbonyl (119,640 dpm/ml), methyl (236,794 dpm/ml), and ring (159,104 dpm/ml). Each preparation was adjusted with unlabeled Mobam to 72 µg/ml.

*Remaining 14C in the preparations was methylene chloride extracted and quantitated by liquid scintillation methods. The percentage of 14C recovered was then assigned to the RF values according to thin-layer chromatography (TLC) scanning information for each preparation.
159, H-18, and D-32) did not degrade Mobam. Whether these strains could be adapted over a long period of time to degrade Mobam is unknown. With soil bacterial species, adaptation to chlorophenyl-carbamates is necessary before degradation of these substrates occurs (6).

Mobam inhibition of bacteria. Manometric experiments with mixtures of ruminal bacteria showed no suppression of endogenous gasses produced in 80 min of incubation in the presence of Mobam concentrations of up to 500 μg/ml. Values obtained at the 500-μg level were 2.86 μl of gas produced per min per 38 mg of bacteria (dry weight) from the experimental preparations and 2.65 μl of gas produced per min per 38 mg of bacteria (dry weight) from the control preparations (without Mobam). Gas production by the 10 characterized ruminal strains was also not inhibited by Mobam. Growth of mixtures of ruminal bacteria in RFTY liquid medium containing Mobam up to 200 μg/ml suggested that the actively growing members of the mixed population apparently were not suppressed.

Evidence that growth could be inhibited by Mobam was demonstrated with a gram-negative, tributyrin-degrading bacillus which was isolated and maintained in Mobam-free medium. This obligately anaerobic ruminal bacterial isolate was inhibited by Mobam and an organophosphate, Phosdrin, as shown in Table 2. Both pesticides at 10⁻⁴ M concentrations and above were inhibitory at 72 hr of incubation. This strain (no. 102) was one of only two strains out of ten isolated on Mobam-free medium that was inhibited by Mobam. Strain 53, which was isolated on a medium containing Mobam, as expected, showed a resistance to Mobam at the levels tested in Table 2. Also, strains L-34 and HD-1 showed resistance to these Mobam concentrations. No other strains have been tested at this time.

Suppression of ruminal bacterial populations showing zones of tributyrin hydrolysis was demonstrated when numbers of colonies growing in the presence of Mobam (600 μg/ml) were compared to counts growing in the absence of Mobam. At 2 weeks of incubation, 1.2 × 10⁷ colonies/g of ruminal contents showed zones in the presence of Mobam. In comparison, 4.6 × 10⁴ colonies/g of ruminal contents showed zones in the absence of Mobam. Total culturable counts on 0.25% glycerol-2% tributyrin-RFTY-agar medium with and without Mobam, respectively, were 1.4 × 10⁷/g and 1.8 × 10⁷/g of ruminal contents. [On RFTY-agar medium containing glucose, cellobiose, and starch, culturable counts ranged from 7.5 to 14 × 10⁶/g ruminal contents (13)].

When Mobam (500 μg/ml) was incorporated in the agar well preparations with sonically treated preparations of ruminal bacteria, fluorescein production was suppressed. To determine the extent of Mobam inhibition, suspensions of ruminal bacteria were incubated with NA and FDA as shown in Table 3. Mobam, at a concentration of 6.5 × 10⁻⁴ M, inhibited 65.5% of the production of 1-naphthol. However, only 5% inhibition was observed with FDA in combination with Mobam at a concentration of 9.7 × 10⁻⁵ M. With isolate no. 53, 69.5% inhibition of FDA hydrolysis was observed with Mobam at a concentration of 13.4 × 10⁻⁴ M. With isolate no. 29, 35.7% inhibition of FDA hydrolysis with Mobam at 9.7 × 10⁻⁵ M was obtained.

The levels of Mobam used in these experiments are higher than one might expect in a contaminant of ruminant rations. The rate of Mobam degradation by ruminal bacteria appears to be adequate to detoxify the insecticide. The biological activity of the hydrolysis product (4-hydroxybenzothiophene) is unknown. Data presented on the effect of Mobam on March 19, 2020 by guest

Table 2. Mobam and Phosdrin inhibition of growth of a rumen bacterial isolate (strain 102)*

Pesticide and incubation time (hr)	Pesticide molarities and absorbancy readings (600 nm)	0 M					
	10⁻¹ M	10⁻² M	10⁻³ M	10⁻⁴ M	10⁻⁵ M	10⁻⁶ M	
Mobam							
27	0	0.05	0.02	0.09	0.13	0.14	0.21
49	0	0.07	0.02	0.20	0.47	0.52	0.83
72	0	0.05	0.04	0.34	0.75	0.75	0.75
Phosdrin							
27	0.02	0.11	0.11	0.12	0.21	0.22	0.21
49	0.03	0.11	0.15	0.33	0.81	0.83	0.83
72	0.01	0.13	0.20	0.54	0.89	0.80	0.75

* Phosdrin, 2-carboxmethoxy-propene-2yl dimethyl phosphate. Bacteria inoculated in glycerol-rumen fluid-Trypticase-yeast extract medium minus glucose, cellobiose, and soluble starch.
on ruminal bacterial endogenous gas production, growth in RFTY liquid medium, and total culturable counts suggested that ruminal bacteria were not inhibited by Mobam. However, colony counts of bacteria showing zones of hydrolysis on tributyrin differential media were reduced in the presence of Mobam, and Mobam inhibited hydrolysis of aromatic ester compounds by pure cultures of ruminal bacteria. The relative importance to rumen metabolism of the bacterial reactions inhibited by Mobam presently cannot be assessed. Further basic knowledge on ruminal bacterial carboxyl-esterases in relation to water-insoluble aromatic ester compounds and rumen metabolism may be helpful in evaluating Mobam inhibition of microbial reactions.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the technical assistance of Mary Clare Helgeson. Also, we thank Joe D. Robbins for gas-liquid chromatography assistance.

LITERATURE CITED

1. Bryant, M. P., and L. A. Burkey. 1953. Cultural methods and some characteristics of some of the more numerous groups of bacteria in the bovine rumen. J. Dairy Sci. 36:205–217.
2. Dorough, H. W. 1970. Metabolism of insecticidal methylicarbamates in animals. J. Agr. Food Chem. 18:1015–1022.
3. Fulghum, R. S., B. B. Baldwin, and P. P. Williams. 1966. Antibiotic susceptibility of anaerobic ruminal bacteria. Appl. Microbiol. 16:301–307.
4. Guilbault, G. G., and D. N. Kramer. 1964. Fluorometric determination of lipase, acylase, alpha- and gamma-chymotrypsin and inhibitors of the enzymes. Anal. Chem. 36:409–412.
5. Hobson, P. N., and S. O. Mann. 1961. The isolation of glycerol-fermenting and lipolytic bacteria from the rumen of the sheep. J. Gen. Microbiol. 25:227–240.
6. Kaufman, D. D., and P. C. Kearney. 1965. Microbial degradation of isopropyl-N-3-chlorophenyl carbamate and 2-chloroethyl-N-3-chlorophenylcarbamate. Appl. Microbiol. 13:443–446.
7. Kilshheimer, J. R., H. A. Kaufman, H. M. Foster, P. R. Driscoll, L. A. Glick, and R. P. Napier. 1969. Benzo(b)-thiophenyl carbamate insecticides. J. Agr. Food Chem. 17:91–93.
8. Lowry, O. H., N. J. Rosebrough, A. L. Farr, and R. J. Randall. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.
9. Markert, C. L., and R. L. Hunter. 1959. The distribution of esterases in mouse tissues. J. Histochem. Cytochem. 7:42–49.
10. Robbins, J. D., J. E. Bakke, and V. J. Feil. 1970. Metabolism of benzo(b)-thienyl methylcarbamate (Mobam) in dairy goats and a lactating cow. J. Agr. Food Chem. 18:130–134.
11. Williams, P. P. 1966. Dispensing apparatus for controlling pH, and volume of anaerobic bacterial and protozoal culture media. Appl. Microbiol. 14:1045–1046.
12. Williams, P. P. 1967. "CO₂ trapping assembly for monitoring anaerobic microbial cultures. Appl. Microbiol. 15:681–682.
13. Williams, P. P., and W. E. Dinuson. 1972. Composition of the ruminal flora and establishment of ruminal ciliated protozoal species in isolated calves. J. Anim. Sci. 34:468–474.
14. Williams, P. P., and V. J. Feil. 1971. Identification of trifluralin metabolites from rumen microbial cultures: effect of trifluralin on bacteria and protozoa. J. Agr. Food Chem. 19:1198–1204.