Distinguishing the effect of diapir growth on magnetic fabrics of syn-diapiric overburden rocks: Basque–Cantabrian basin, Northern Spain

Ruth Soto1 | Elisabet Beamud2,3 | Eduard Roca3 | Eloi Carola3 | Ylenia Almar4

1IGME, C/ Manuel Lasala 44-9B, Zaragoza, Spain
2Laboratori de Paleomagnetisme CCITUB-ICTIA CSIC, ICT “Jaume Almera”, Solé i Sabaris, Barcelona, Spain
3Institut GEOMODELS-Group Geodynamics and Basin Analysis, Universitat de Barcelona, Barcelona, Spain
4ICT “Jaume Almera”, CSIC, Solé i Sabaris, Barcelona, Spain

Correspondence
Ruth Soto, IGME, C/ Manual Lasala 44-9B, Zaragoza, Spain.
Email: r.soto@igme.es

Funding information
Spanish Ministry, Grant/Award Number: CGL2014-54118-C2-1-R, CGL2014-54118-C2-2-R

Abstract
An analysis of Anisotropy of Magnetic Susceptibility was done on Aptian–Albian sediments from the Basque–Cantabrian basin. Samples were collected from 39 sites in the halokinetic sequences of the Bakio, Bermeo, Guernica and Mungia diapirs; 28 sites were sampled close to diapirs, and 11 sites were far from the diapir edges. The magnetic foliation is parallel to bedding, suggesting it reflects depositional and compaction processes, whereas the orientation of magnetic lineation varies. Far from the diapir edges, the magnetic lineation is interpreted as being related to the regional Pyrenean compression. Close to diapir edges, the observed behaviour shows that diapirs, predominantly formed by rigid ophites, have acted as buttresses, with shadow areas at their northern faces being protected from the Pyrenean compression. The high sensitivity of AMS makes it a very useful tool to distinguish deformation in halokinetic sequences related to diapir growth from that related to subsequent compression.

1 | INTRODUCTION

The full characterisation of strata adjacent to salt structures is fundamental in the exploration and exploitation of geologic reservoirs; however, they often appear hidden in seismic lines, and good outcrop examples are scarce. Deformation studies in these strata have been mostly based on the analysis of mesoscale structures from outcrop examples (e.g., Alsop, Weinberger, Levi, & Marco, 2015, 2016; Giles & Rowan, 2012; Hearon et al., 2015; Poprawski et al., 2014; Rowan, Jackson, & Trudgill, 1999; Rowan, Lawton, Giles, & Ratliff, 2003). In this work, we propose the use of Anisotropy of Magnetic Susceptibility (AMS) to analyse the deformation of salt-related synkinematic strata. This use is important because it can give information even in the absence of strain markers and/or poorly developed mesoscale brittle structures. It can also be applied to subsurface diapirs, as AMS data can be reoriented to geographical coordinates using palaeomagnetic data.

Anisotropy of Magnetic Susceptibility represents a powerful tool for geologists, as it gives information related to the petrofabric of rocks. In structural studies, it is a recognised indicator of deformation (e.g., Hrouda, 1982), even in very subtly deformed rocks that lack strain markers (e.g., Kissel, Barrier, Laj, & Lee, 1986). When applied to salt tectonics, AMS data obtained from rocks outcropping in the interior of salt structures can give information on diapirc flow or internal deformation (Santolaria, Casas, & Soto, 2015; Smid, Schultmann, & Hrouda, 2001; Soto et al., 2014). We have selected several diapirs in the Basque–Cantabrian basin, which display well-exposed halokinetic sequences and suitable rocks for AMS analysis, to study the power of this approach in such geological settings.

2 | GEOLOGICAL SETTING

The study area is located in the northern margin of the Basque–Cantabrian basin, nowadays part of the southern Eurasian plate (Figure 1). The Basque–Cantabrian basin developed during Mesozoic Pyrenean rifting associated with the opening of the North Atlantic Ocean and Bay of Biscay (Garcia-Mondejar, 1996). From the Late Cretaceous, the African plate began to drift northwards, leading to convergence between Iberia and Europe and the inversion of the Basque–Cantabrian basin in the context of the Pyrenean orogeny (Gómez, Vergés, & Riaza, 2002; Figure 1).
The study area is characterised by Triassic to Cenomanian rocks deformed by a large WNW–ESE fold locally pierced by several salt diapirs (Bakio, Bermeo, Guernica and Mungia diapirs) (Cuevas & Tubia, 1985; Figures 1 and 2). These diapirs are composed of Triassic evaporites, red clays and basic subvolcanic rocks (ophites) and flanked by Jurassic to Cretaceous materials. The ophites comprise their caprock and, due to their high resistance to erosion, dominate the outcrops (Figure 2). They are flanked by Aptian–Albian syn-diapiric rocks organised in sequences limited by angular unconformities, becoming conformable as distance to the diapir edges increases. These sequences are characterised by lateral facies variations and mass-transported deposits created at the diapir roofs, typical of halokinetic hooks and wedges triggered by diapir growth (Ferrer et al., 2014; Poprawski, Basile, Jaillard, Gaudin, & López, 2016; Roca et al., 2016).

The geometry of these halokinetic sequences was not modified during the subsequent Pyrenean compression, with the exception of the NNW–SSE folds located to the south of the Bakio diapir and a slight E–W folding to the west of the Bermeo diapir (Figure 2). The Pyrenean compression inverted the northern part of the Basque–Cantabrian basin by means of north-directed thrusts that propagated from south to north and the development of a cleavage mostly oriented E–W to ENE–WSW in the study area (e.g., Gómez et al., 2002; for example Figure 3, site BK01). Locally, as in site BK03, cleavage, faults and tension gashes are associated with syn-diapiric layer-parallel slip of a thick bed of breccias with an irregular base above marls, which occurred during syn-diapiric drape folding (Figure 3).

3 | SAMPLING AND LABORATORY ANALYSIS

Samples from 39 sites (6–12 cores per site) of Aptian–Albian marls, marly limestones, fine sandstones and lutites were analysed by means of low-field AMS measured at room temperature. All samples were collected from halokinetic sequences related to the Bakio, Bermeo, Guernica and Mungia diapirs (Figure 2). Twenty-eight sites were close to diapir edges (sites located less than 1 km from the diapir walls, except sites BK15 and BK59, which were situated between two diapirs, were further from their walls, and were considered to be related to the Bermeo diapir), and 11 were far from diapirs (Table 1). The AMS analysis was done using a KLY3 (AGICO) from Zaragoza’s University. Data were processed using Anisoft 4.2 (Chadima & Jelinek, 2009) to obtain the directional and tensor data (where K_{max}, K_{int} and K_{min} are the maximum, intermediate and minimum principal axes of the magnetic ellipsoid, respectively) and the parameters defined by Jelinek (1981), the corrected anisotropy
Additionally, three types of experiments were performed to characterise the ferromagnetic (s.l.) minerals: (1) thermal demagnetisation of the natural remanent magnetisation (NRM) of all samples using the thermal demagnetisers TSD-1 (Schenstedt) and MMTD-80 (Magnetic Measurements) and a superconducting rock magnetometer SRM 755R (2G), (2) isothermal remanent magnetisation (IRM) acquisition up to 1 T and three-axis IRM (in fields of 1.2, 0.3 and 0.1 T) thermal demagnetisation as in Lowrie (1990) using an IM10-30 pulse magnetiser (ASC Scientific Carlsbad, CA, USA), a TSD-1 thermal demagnetiser and a magnetometer JR6A (AGICO Brno, Czech Republic), all measured in the Paleomagnetic Laboratory of Barcelona (CCiTUB-CSIC), and (3) K–T curves of selected samples using a KLY3.

4 | RESULTS

4.1 | Magnetic properties and ferromagnetic (s.l.) mineralogy

The bulk magnetic susceptibility (Km) of the studied rocks ranges from 50 to 412 × 10⁻⁶ SI (Table 1). Most magnetic ellipsoids are oblate, and the corrected anisotropy degree Pj is low (Pj ≤ 1.1), typical of weakly deformed sediments. A significant correlation between Pj and lithology is observed, with variable Pj values in a wider range.
Site	Age	Lithology	n	Km	SD	Pj	SD	T	SD	D/I (K_{max})	E11.1 (e12/e13)	D/I (K_{max}) corrected	SO (D/D)
	CLOSE to Bakio diapir edges												
BK-09	Aptian-Lower Albian	Marls	10	310	77.1	1.015	0.004	0.293	0.142	062/28	19.9/5.4	085/4	146/70
BK-27	Aptian-Lower Albian	Marls	10	222	50.3	1.048	0.010	0.354	0.222	282/79	7.7/5.1	135/21	322/103
BK-54	Aptian-Lower Albian	Fine sandstones	10	14.5	4.28	1.026	0.016	0.757	0.363	334/60	46.8/6.8	159/9	343/69
BK-01	Lower Albian	Lutites/fine sandstones	6	391	31.6	1.009	0.003	0.410	0.490	350/45	51.2/8.6	166/10	336/56
BK-03	Lower Albian	Marls/fine sandstones	10	308	125	1.018	0.010	–0.272	0.392	094/47	9.1/6.0	275/59	100/128
BK-12	Lower Albian	Marls/fine sandstones	11	63.4	22.7	1.061	0.055	0.483	0.260	014/9	22.0/6.3	018/1	096/46
BK-50	Lower Albian	Marls	10	285	15.8	1.023	0.007	0.296	0.137	016/21	4.5/2.9	019/1	062/28
BK-51	Lower Albian	Marls	10	308	37.3	1.018	0.006	0.383	0.161	034/43	8.9/5.8	194/0	336/61
BK-55	Lower Albian	Marls	9	43.3	10.2	1.016	0.008	0.793	0.244	066/20	50.6/12.0	024/47	292/60
BK-62	Lower Albian	Marls	10	362	41.8	1.012	0.005	0.262	0.212	018/50	15.7/10.3	354/4	240/62
BK-08	Middle–Upper Albian	Marls	12	54.0	14.0	1.036	0.011	0.648	0.188	266/7	14.0/4.9	088/2	348/56
BK-11	Middle–Upper Albian	Marls	11	56.9	10.6	1.080	0.009	0.812	0.115	061/36	19.3/6.8	084/1	134/66
BK-13	Middle–Upper Albian	Fine sandstones	8	51.0	14.1	1.041	0.012	0.813	0.153	215/0	9.7/6.6	038/8	136/46
BK-14	Middle–Upper Albian	Fine sandstones	12	87.2	23.3	1.072	0.047	0.623	0.270	29/12	13.1/4.7	031/3	098/23
BK-17	Middle–Upper Albian	Marls	12	55.1	16.4	1.067	0.024	0.762	0.070	037/9	9.9/5.9	217/7	088/25
BK-56	Middle–Upper Albian	Marls	8	40.9	7.59	1.055	0.019	0.680	0.165	076/29	8.6/5.1	268/4	140/58
BK-04	Upper Albian	Marls	7	188	17.5	1.100	0.030	0.815	0.074	039/16	25.6/15.8	222/1	093/27
	CLOSE to Bermeo diapir edges												
BK-15	Aptian–Lower Albian	Marls, marly limestones	11	396	20.6	1.009	0.003	0.007	0.455	352/43	34.0/11.6	189/14	046/75
BK-16	Aptian–Lower Albian	Marls	6	234	25.5	1.047	0.007	0.525	0.143	266/33	25.9/7.7	248/3	196/56
BK-22	Aptian–Lower Albian	Marly limestones	12	249	20.0	1.016	0.006	0.393	0.270	282/28	13.4/9.0	099/2	252/34
BK-28	Aptian–Lower Albian	Marly limestones	11	412	40.9	1.006	0.003	–0.125	0.473	046/63	14.1/7.1	027/19	012/47
BK-59	Aptian–Lower Albian	Fine sandstones	10	317	25.9	1.013	0.002	–0.255	0.241	139/38	6.5/5.4	169/1	220/78
BK-19	Lower Albian	Fine sandstones	8	168	12.5	1.061	0.018	0.866	0.103	295/6	26.2/3.3	115/4	220/37
BK-57	Lower Albian	Marls	10	169	28.3	1.100	0.023	0.809	0.047	247/2	14.8/3.6	248/1	336/44
BK-58	Lower Albian	Marls	8	204	16.3	1.073	0.011	0.745	0.045	264/17	12.8/4.3	086/4	308/28
	CLOSE to Guernica diapir edges												
BK-61	Aptian–Lower Albian	Fine sandstones	9	205	34.3	1.043	0.008	0.552	0.086	210/34	4.4/3.4	227/5	277/52
BK-20	Lower Albian	Marls	6	252	90.5	1.041	0.022	0.534	0.643	240/28	45.3/9.0	060/1	238/29

(Continues)
between 1 and 1.1 in marls and fine sandstones, and values between 1 and 1.03 in marly limestones (Figure 4). Km, Pj and T parameters do not show any significant variation with distance to the diapir edge (Figure 4).

K–T curves display a concave–hyperbolic shape in their initial parts indicating paramagnetic behaviour up to 300–400°C (Figure 5). Thermal demagnetisation of three-axis IRM shows a predominance of low coercivity minerals (<0.1–0.3 T) and complete demagnetisation below 590°C in all samples (Figure 5). Maximum unblocking temperatures of the NRM demagnetisation range between 480 and 550°C (Figure 5). Altogether, this points to magnetite as the main ferromagnetic (s.l.) phase. Although the formation of new magnetic phases upon heating obscures some of the thermomagnetic experiments, the main decrease in magnetic susceptibility below 590°C

TABLE 1 (Continued)

Site	Age	Lithology	n	Km	SD	Pj	SD	T	SD	D, I (K_{max}) in situ	E11.1 (e12/e13)	D/I (K_{max}) corrected	S0 (D/D)
CLOSE to Mungia diapir edges													
BK-10	Middle–Upper Albian	Marls	8	222	18.7	1.009	0.004	0.279	0.773	161/25	58.1/8.2	339/20	128/52
BK-29	Aptian–Lower Albian	Marly limestones	9	112	11.9	1.028	0.008	0.373	0.139	288/20	35.8/6.6	289/3	314/19
BK-02	Middle–Upper Albian	Marls	7	138	9.25	1.063	0.022	0.472	0.464	301/10	34.2/11.4	123/4	009/36
BK-18	Middle–Upper Albian	Marls	8	190	12.9	1.083	0.008	0.727	0.059	082/4	9.2/4.8	081/3	359/06
BK-21	Middle–Upper Albian	Marls	11	187	36.5	1.082	0.029	0.808	0.197	254/16	33.5/3.5	073/3	240/19
BK-23	Middle–Upper Albian	Marls	10	114	19.9	1.066	0.026	0.774	0.099	083/2	15.3/4.7	263/9	081/11
BK-24	Middle–Upper Albian	Marls	8	179	27.5	1.098	0.031	0.756	0.115	268/15	14.3/3.5	087/0	252/16
BK-25	Middle–Upper Albian	Fine sandstones	7	44.9	21.4	1.049	0.030	0.575	0.388	142/60	39.7/10.8	097/21	066/58
BK-26	Middle–Upper Albian	Marls	10	138	11.5	1.077	0.019	0.856	0.118	083/3	20.0/7.5	268/31	058/38
BK-05	Upper Albian	Marls	9	166	14.1	1.049	0.015	0.352	0.164	251/18	6.4/3.7	070/1	239/19
BK-06	Upper Albian	Marls	12	117	24.6	1.019	0.009	0.245	0.184	245/11	24.9/7.8	064/6	190/29
BK-07	Upper Albian	Marls	9	63.7	10.0	1.028	0.011	0.579	0.325	281/19	24.0/5.1	101/7	275/26

Km = (K_{max} + K_{int} + K_{min})/3 (mean susceptibility, in 10^{-6} SI units).
Pj = \exp \{(2[(n_1 - \eta_1)^2 + (n_2 - \eta_2)^2 + (n_3 - \eta_3)^2])^{1/2}\} (Jelinek, 1981).
T = (2n_2 - n_1 - n_3)/(n_1 + n_2 - n_3) (shape factor; Jelinek, 1981).
D, I (K_{max}) = Declination and inclination of K_{max}.
For each site the line shows the arithmetic means of the individual site mean values (standard deviation in parentheses).
E11.1 (e12/e13), e12 and e13 are half confidence angles of K_{max} from Jelinek’s statistics.
S0 (D/D) = Bedding (Dip direction/Dip).

FIGURE 4 Pj–T graphs for different lithologies indicating sites sampled close to or far from the diapir edges (circle and square symbols, respectively) [Colour figure can be viewed at wileyonlinelibrary.com]
also supports the occurrence of magnetite. Thermal demagnetisation of three-axis IRM reveals an additional and progressive IRM drop below 350°C (Figure 5), which might be attributed to the occurrence of either pyrrhotite and greigite (Larrasoña et al., 2007) or maghemite (Liu et al., 2005). The increase in bulk susceptibility at low temperature relative to its value at room temperature is similar in all
The magnetic foliation at all sites, except for site BK03, is parallel to bedding and has been interpreted as being related to depositional and compaction processes. However, the orientation of the magnetic lineation varies throughout the studied area and has been interpreted as being controlled by tectonic processes. Far from the diapir edges, the magnetic lineation shows a WSW–ENE orientation (Figure 8). We interpret it as being related to the N–S Pyrenean compression. This interpretation is justified because a cleavage associated with the Pyrenean orogeny is observed in the studied area. Formation of cleavage and/or incipient cleavage can reorient a previous magnetic fabric (Oliva-Urcia et al., 2013; Soto, Casas-Sainz, Villalain, & Oliva-Urcia, 2007). Sedimentary processes triggering the magnetic lineation acquisition can be discarded, as its orientation does not coincide with either palaeocurrents (turbidites were sourced in the north, but they were driven by the diapir relief) or slumping (triggered by the diapir growth) directions detected in the Bakio diapir by Poprawski et al. (2014) (Figure 2).

Close to the diapir edges, two different types of behaviour are observed (Figure 9). Sites located on the southern sides of diapirs show a magnetic lineation parallel to the diapir walls. We interpret the magnetic lineation observed at the southern walls to be associated with the Pyrenean compression stresses deviated around the diapirs. These diapirs are mainly composed of hard subvolcanic rocks (ophites), which act as buttresses, hindering the northward propagation of deformation and producing stress perturbations that

![Figure 6](https://example.com/figure6.png)

Figure 6 Ratio between the magnetic susceptibilities (Km) at low and room temperatures (LT/RT), where LT/RT = 3.8 corresponds to perfect paramagnetic behaviour (Lüneburg et al., 1999) [Colour figure can be viewed at wileyonlinelibrary.com]
are able to reorient the magnetic lineation parallel to the diapir walls (Figure 9). On the northern sides of diapirs, however, the magnetic lineation is either perpendicular/highly oblique to the diapir walls or could not be defined. In this case, we interpret the magnetic lineation to be associated with the outer-arc extension that occurred during salt rise (e.g., Giles & Rowan, 2012; see Figure 10). Magnetic lineation in extensional scenarios coincides with the stretching direction (e.g. Mattei, Sagnotti, Faccenna, & Funiciello, 1997); therefore, it is expected that outer-arc extension related to salt rise will also orient the magnetic lineation parallel to the extension direction, which would be perpendicular to the salt wall ridge (Figure 10). The occurrence of sites without defined magnetic lineation and with magnetic lineations acquired during Mesozoic diapir growth points to the existence of areas (“shadow areas”) protected from the subsequent Cenozoic Pyrenean compression at the northern edges of the diapirs due to the presence of rigid ophites (Figure 9). This work highlights the potential of AMS studies applied to halokinetic sequences to characterise their outer-arc deformation and thereby identify the trend of the diapir edges. It also indicates that caution is required in interpreting magnetic lineations from halokinetic sequences if subsequent tectonic events are present.

FIGURE 7 Stereoplots of the RT-AMS (left), LT-AMS (middle) and T-Pj diagrams (right) differentiating the RT- and LT-AMS values for each site. Confidence ellipses for AMS principal axes are shown. Lower-hemisphere equal-area stereoplots after bedding tilt correction [Colour figure can be viewed at wileyonlinelibrary.com]
The application of AMS to syn-diapiric overburden rocks highlights its potential in studying deformation in halokinetic sequences related to passive salt rise. Aptian–Albian turbiditic series from the Basque–Cantabrian basin have been analysed. Paramagnetic minerals dominate the total AMS, indicating that the AMS results reflect the petrofabric of the studied rocks. The observed magnetic foliation is parallel to bedding, and the orientation of the magnetic lineation is variable and related to different deformation processes. Far from the diapir edges, magnetic lineation is related to the Cenozoic Pyrenean compression, which propagated from south to north. Close to the diapirs, it reflects the effect of diapirs filled with ophites acting as rigid bodies and deflecting Pyrenean compression at their southern faces while protecting Mesozoic syn-diapiric deformation in their shadow areas to the north.

FIGURE 8 Stereoplots showing K_{max} (magnetic lineation), density plot and rose diagram after bedding tilt correction for sites located far from the diapir edges and for sites located close to the Bakio and Bermeo diapirs. Lower-hemisphere equal-area stereoplots [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 9 Geological map of the study area showing the magnetic lineation (K_{max}) after bedding tilt correction and magnetic lineation trajectories. Magnetic lineations of sites located close to diapir edges are represented in red, whereas black lines represent magnetic lineations of sites located far from the diapir edges. Sites BK01, BK10, BK20, BK54 and BK55 do not show a defined magnetic lineation, and site BK03 was discarded from further structural interpretations (see text for further explanation). A magnetic fabric acquired during or shortly after deposition in syn-diapiric rocks is only observed in the shadow areas on the northern faces of diapirs (see text for further explanation) [Colour figure can be viewed at wileyonlinelibrary.com]

6 | CONCLUSION
DEFORMATION RELATED TO DIAPIR GROWTH:

Active stretching area (arching salt wall roof)

Inactive stretched areas of rocks previously placed in the arching salt wall roof

Main stretching direction (perpendicular to the salt wall ridge)

Inflating salt wall

FIGURE 10 Active/inactive outer-arc deformation model related to salt rise in halokinetic sequences. The main stretching direction in the active stretching area is perpendicular to the salt wall ridges. The analysis of inactive stretched areas of rocks previously placed in the arching salt wall roof reveals that magnetic lineation would also be oriented perpendicular to the salt wall ridge in protected areas (i.e., where subsequent Pyrenean compression was not able to reorient the magnetic fabric) [Colour figure can be viewed at wileyonlinelibrary.com]

ACKNOWLEDGEMENTS

Funding came from projects CGL2014-54118-C2-1-R and CGL2014-54118-C2-2-R (Spanish Ministry). We thank the University of Zaragoza and the Paleomagnetic Laboratory (CCITUB-ICTJA CSIC) where the AMS and rock-mag analyses were carried out. We are grateful to Frederic Escosa and to Mark Dekkers for constructive comments.

REFERENCES

Alsop, G. I., Weinberger, R., Levi, T., & Marco, S. (2015). Deformation within an exposed salt wall: recumbent folding and extrusion of evaporites in the Dead Sea Basin. Journal of Structural Geology, 70, 95–118.

Alsop, G. I., Weinberger, R., Levi, T., & Marco, S. (2016). Cycles of passive versus active diapirism recorded along an exposed salt wall. Journal of Structural Geology, 84, 47–67.

Chadima, M., & Jelinek, V. (2009). Anisoft 4.2, Anisotropy Data Browser for Windows. Retrieved from www.agico.com

Cuevas, J., & Tubía, J. M. (1983). Estructuras diapíricas asociadas al sinclinal de Vizcaya. Munibe. Sociedad de Ciencias Naturales Aranzadi (San Sebastián), 37, 1–4.

EVE. (1991). Mapa geológico del País Vasco. Escala 1:25:000. Hoja 38-I (Bermeo). Ente Vasco de la Energía.

EVE. (1992). Mapa geológico del País Vasco. Escala 1:25:000. Hoja 38-III (Mungia). Ente Vasco de la Energía.

EVE. (1993a). Mapa geológico del País Vasco. Escala 1:25:000. Hoja 37-II (Arzanza). Ente Vasco de la Energía.

EVE. (1993b). Mapa geológico del País Vasco. Escala 1:25:000. Hoja 37-IV (Getxo). Ente Vasco de la Energía.

Ferrer, O., Arbués, P., Roca, E., Giles, K., Rowan, M.G., De Matteis, M., & Muñoz, J.A. (2014). Effect of Diapir Growth on Synkinematic Deepwater Sedimentation: The Bakio Diapir (Basque-Cantabrian Basin, Northern Spain). Houston, USA: American Association of Petroleum Geologists Annual Convention and Exhibition.

García-Mondejar, J. (1996). Plate reconstruction of the Bay of Biscay. Geology, 24(7), 635–638.

Giles, K. A., & Rowan, M. G. (2012). Concepts in halokinetic-sequence deformation and stratigraphy. In S. G. Archer, G. I. Alsop, A. J. Harley, N. T. Grant, & R. Hodgkinson (Eds.), Salt Tectonics, Sediments and Prospective, Vol. 363 (pp. 7–31). London: Geological Society of London. Special Publications.

Gómez, M., Vergés, J., & Riaza, C. (2002). Inversion tectonics of the northern margin of the Basque Cantabrian Basin. Bulletin de la Société Géologique de France, 173, 449–459.

Hearon, T. E., Rowan, M. G., Giles, K. A., Kernen, R. A., Gannaway, C. E., Lawton, T. F., & Fiduk, J. C. (2015). Allochthonous salt initiation and advance in the northern Flinders and eastern Willouran ranges, South Australia: Using outcrops to test subsurface-based models from the northern Gulf of Mexico. AAPG Bulletin, 99, 293–331.

Hrouda, F. (1982). Magnetic anisotropy of rocks and its application in geology and geophysics. Geophysical Surveys, 5, 37–82.

Jelinek, V. (1981). Characterization of the magnetic fabrics of rocks. Tectonophysics, 79, 63–67.

Kissel, C., Barrier, E., Laj, C., & Lee, T. Q. (1986). Magnetic fabric in “undeformed” marine clays from compositional zones. Tectonics, 5, 769–781.

Larrasoana, J.C., Roberts, A.P., Musgrave, R.J., Gracia, E., Pinero, E., Vega, M., & Martinez-Ruiz, F. (2007). Diagenetic formation of greigite and pyrrhotite in gas hydrate marine sedimentary systems. Earth and Planetary Science Letters, 261, 350–366.

Liu, Q., Deng, C., Yu, Y., Torrent, J., Jackson, M. J., Banerjee, S. K., & Zhu, R. (2005). Temperature dependence of magnetic susceptibility in an argon environment: Implications for pedogenesis of Chinese loess/palaeosols. Geophysical Journal International, 161, 102–112.

Lowrie, W. (1990). Identification of ferromagnetic minerals in a rock by coercivity and unblocking temperature properties. Geophysical Research Letters, 17, 159–162.

Lunenburg, C. M., Lampert, S. A., Lebit, H. D., Hirt, A. M., Casey, M., & Lowrie, W. (1999). Magnetic anisotropy, rock fabrics and finite strain in deformed sediments of SW Sardinia (Italy). Tectonophysics, 307, 51–74.

Mattei, M., Sagnotti, L., Facchenna, C., & Funicello, R. (1997). Magnetic fabric of weakly deformed clay-rich sediments in the Italian peninsula: Relationship with compositional and extensional tectonics. Tectonophysics, 271, 107–122.

Oliva-Urcia, B., Larrasoña, J. C., Pueyo, E. L., Mata, P., Parés, J. M., Schleicher, A. M., & Pueyo, O. (2009). Disentangling magnetic subfabrics and their link to deformation processes in cleaved sedimentary rocks from the Internal Sierras (west central Pyrenees, Spain). Journal of Structural Geology, 31, 163–176.

Oliva-Urcia, B., Román-Berdiel, T., Casas, A. M., Bogalo, M. F., Osacar, C., & García-Lasanta, C. (2013). Transition from extensional to compositional magnetic fabrics in the Cretaceous Cabuérniga basin (North Spain). Journal of Structural Geology, 46, 220–234.

Parés, J. M., & van der Pluijm, B. A. (2002). Phyllosilicate fabric characterization by Low-Temperature Anisotropy of Magnetic Susceptibility (LT-AMS). Geophysical Research Letters, 29(24), 2215.

Pedreira, D., Pulgar, J. A., Gallart, J., & Torné, M. (2007). Three-dimensional gravity and magnetic modeling of crustal indentation and
wedging in the western Pyrenees-Cantabrian Mountains. *Journal of Geophysical Research*, 112, B12405. doi:10.1029/2007JB005021

Poprawski, Y., Basile, C., Agirrezabala, L. M., Jaillard, E., Gaudin, M., & Jacquin, T. (2014). Sedimentary and structural record of the Albian growth of the Bakio salt diapir (the Basque Country, northern Spain). *Basin Research*, 26, 746–766.

Poprawski, Y., Basile, C., Jaillard, E., Gaudin, M., & López, M. (2016). Halokinetic sequences in carbonate systems: An example from the Middle Albian Bakio Breccias Formation (Basque Country, Spain). *Sedimentary Geology*, 334, 34–52.

Roca, E., Butiliè, M., Ferrer, O., Arbués, P., Rowan, M.G., Giles, K.E., ... Munoz, J.A. (2016). Salt tectonics and salt-sediment interaction around the Bakio diapir, Basque-Cantabrian basin, Pyrenees. AAPG/SEG International Conference & Exhibition. Barcelona, 3–6 April 2016.

Rowan, M. G., Jackson, M. P. A., & Trudgill, B. D. (1999). Salt related fault families and fault welds in the northern Gulf of Mexico. *AAPG Bulletin*, 83, 1454–1484.

Rowan, M. G., Lawton, T. F., Giles, K. A., & Ratliff, R. A. (2003). Near-salt deformation in La Popa basin, Mexico, and the northern Gulf of Mexico: A general model for passive diapirism. *AAPG Bulletin*, 87(5), 733–756.

Santolaria, P., Casas, A. M., & Soto, R. (2015). Anisotropy of magnetic susceptibility as a proxy to assess internal deformation in diapirs: Case study of the Naval salt wall (Southern Pyrenees). *Geophysical Journal International*, 202(2), 1207–1222.

Smid, J., Schulmann, K., & Hrouda, F. (2001). Preliminary data on the AMS fabric in salt domes from the SW part of Zagros Mts, Iran. *Geosciences*, 13, 114–115.

Soto, R., Beamud, E., Oliva-Urcia, B., Roca, E., Rubinat, M., & Villalain, J. J. (2014). Applicability of magnetic fabrics in rocks associated with the emplacement of salt structures (the Bicorb-Quesa and Navarrés salt walls, Prebetics, SE Spain). *Tectonophysics*, 629, 319–334.

Soto, R., Casas-Sainz, A. M., Villalain, J. J., & Oliva-Urcia, B. (2007). Mesozoic extension in the Basque-Cantabrian basin (N Spain): Contributions from AMS and brittle mesostructures. *Tectonophysics*, 445(3–4), 373–394.

How to cite this article: Soto R, Beamud E, Roca E, Carola E, Almar Y. Distinguishing the effect of diapir growth on magnetic fabrics of syn-diapiric overburden rocks: Basque–Cantabrian basin, Northern Spain. *Terra Nova*. 2017:29:191–201. https://doi.org/10.1111/ter.12262