Using the hyperglycemic and euglycemic clamp, we demonstrated impaired β-cell function in obese youth with increasing dysglycemia. Herein we describe oral glucose tolerance test (OGTT)–modeled β-cell function and incretin effect in obese adolescents spanning the range of glucose tolerance. β-Cell function parameters were derived from established mathematical models yielding β-cell glucose sensitivity (βCGS), rate sensitivity, and insulin sensitivity in 255 obese adolescents (173 with normal glucose tolerance [NGT], 48 with impaired glucose tolerance [IGT], and 34 with type 2 diabetes [T2D]). The incretin effect was calculated as the ratio of the OGTT βCGS to the 2-h hyperglycemic clamp βCGS. Incretin and glucagon concentrations were measured during the OGTT. Compared with NGT, βCGS was 30 and 65% lower in youth with IGT and T2D, respectively; rate sensitivity was 40% lower in T2D. Youth with IGT or T2D had 32 and 38% reduced incretin effect compared with NGT in the face of similar changes in GLP-1 and glucose-dependent insulinotropic polypeptide (GIP) in response to oral glucose. We conclude that glucose sensitivity deteriorates progressively in obese youth across the spectrum of glucose tolerance in association with impairment in incretin effect without reduction in GLP-1 or GIP, similar to that seen in adult dysglycemia.

A core defect in the pathogenesis of type 2 diabetes (T2D) is impaired β-cell function (1,2). In adults, longitudinal (2,3) and cross-sectional (4,5) investigations have demonstrated that β-cell function declines with increasing hyperglycemia already within the normal glucose tolerance (NGT) range and is further impaired with the onset of impaired glucose tolerance (IGT) and progression to T2D. Similarly, cross-sectional and longitudinal studies in pediatrics, using a variety of methodologies, have established that β-cell function is impaired in prediabetes, and to a worse extent in T2D (6–12), with evidence of rapid deterioration (13–15). Using the hyperglycemic clamp together with the hyperinsulinemic-euglycemic clamp, we demonstrated that β-cell function relative to insulin sensitivity was diminished in obese youth with IGT by ~40% and in T2D by ~80% compared with their NGT peers (6).

Because of the important physiological role of incretin hormones (GLP-1 and glucose-dependent insulinotropic polypeptide [GIP]) in augmenting insulin secretion, a frequent view is that GLP-1 secretion is deficient in T2D patients and, in a lesser degree, in people with prediabetes (16). However, studies in adults have yielded conflicting results showing decreased (16,17), normal
(16,18,19), or increased (20) GLP-1 concentrations in individuals with prediabetes or T2D. Moreover, the incretin effect, defined as a higher insulin response to oral than intravenous glucose at similar prevailing glucose concentrations, is found to be markedly reduced in adults with T2D (21,22), but similar in IGT (23,24), compared with NGT. At present, pediatric data are completely lacking with respect to the incretin effect and incretin hormone secretion in youth with T2D or prediabetes. Therefore, the aims of the present investigation were as follows: 1) to examine β-cell function, modeled from a simple 2-h oral glucose tolerance test (OGTT), in obese adolescents across the spectrum of glucose tolerance; and more importantly 2) to assess the incretin effect and the relationship between incretin hormone response during the OGTT and β-cell function in obese adolescents with NGT, IGT, or T2D.

RESEARCH DESIGN AND METHODS

Complete data from an OGTT and a synchronized hyperglycemic clamp were available for 255 obese adolescents (173 NGT, 48 IGT, and 34 T2D), as participants in the National Institutes of Health–funded studies Childhood Insulin Resistance and Childhood Metabolic Markers of Adult Morbidity (7,25–27). All participants were pubertal (Tanner II–V) and had exogenous obesity with no clinical evidence of endocrinopathy associated with obesity except dysglycemia. Glucose tolerance and T2D were defined according to the 2003 American Diabetes Association guidelines (28). Family history for diabetes was defined as the presence of known family members with T2D in any of three generations (siblings, parents, or grandparents) (29). Adolescents with T2D were negative for GAD antibodies (30,31). Eight participants (3 NGT and 5 T2D) are missing DEXA data, and 11 are missing abdominal adiposity data (6 NGT, 3 IGT, and 2 T2D) due to technical difficulties and weight exceeding the limit of measurement. Clinical characteristics of the study participants are summarized in Table 1.

OGTT

After 10–12 h of overnight fasting, participants underwent a 2-h OGTT (1.75 g/kg, maximum 75 g) (7,26). Blood samples were obtained at −15, 0, 15, 30, 60, 90, and 120 min for the measurement of glucose, insulin, C-peptide, glucagon, total GLP-1, GIP, and pancreatic polypeptide (PP).

Clinical phenotype	NGT	IGT	T2D	ANOVA	NGT vs. IGT	NGT vs. T2D	IGT vs. T2D
n	173	48	34				
Age (years)	14.7 ± 0.1	15.2 ± 0.3	15.1 ± 0.3	NS			
Sex (male/female)	68/105	19/29	16/18	NS			
Race (AA/CA/Bi)	89/78/6	16/31/1	19/16/0	NS			
Tanner (II–III/IV–V)	24/149	6/42	3/31	NS			
FHD (no/yes)	38/135	10/36	1/32	0.04			
BMI (kg/m²)	34.2 ± 0.5	36.5 ± 0.9	36.6 ± 1.0	0.01	0.02	0.03	NS
BMI percentile	97.4 ± 0.2	98.4 ± 0.4	99.0 ± 0.5	0.003	NS	0.01	NS
FM (kg)	39.7 ± 0.9	45.0 ± 1.8	41.2 ± 2.3	0.03	0.03	NS	NS
FFM (kg)	51.3 ± 0.8	52.8 ± 1.5	54.4 ± 1.9	NS			
Percent body fat	42.2 ± 0.5	44.8 ± 1.0	42.4 ± 1.3	NS			
VAT (cm²)	61.5 ± 2.4	75.2 ± 4.7	86.0 ± 5.5	<0.001	0.03	<0.001	NS
SAT (cm²)	469.5 ± 13.8	546.4 ± 26.6	546.4 ± 32.0	0.01	0.03	0.03	NS
HbA1c (%)	5.4 ± 0.04	5.3 ± 0.08	6.6 ± 0.09	<0.001	NS	<0.001	<0.001

AA, African American; Bi, biracial; CA, Caucasian; FHD, family history of diabetes. Post hoc analyses using Tukey.
Hyperglycemic Clamp

Either the day after the OGTT or on a separate visit within a 1–4-week period, a 2-h hyperglycemic clamp (~225 mg/dL) was performed in a subset of 198 subjects (NGT = 122, IGT = 42, and T2D = 34) (6,7). Plasma glucose concentration was rapidly raised to 225 mg/dL with a bolus dextrose infusion and maintained at 225 mg/dL with a variable-rate infusion of 20% dextrose for 2 h (6,7,26).

Biochemical Measurements

At each sampling point, blood was collected in chilled aprotinin/EDTA tubes for insulin, C-peptide, and glucagon measurement. Dipeptidyl peptidase-4 (DPP-4) inhibitor (10 μL, catalog no. DPP4; Millipore, St. Charles, MO) was added before sampling to the aprotinin/EDTA tubes to prevent the enzymatic degradation of GLP-1 (7-36) and GLP-1 (7-37). Blood samples were immediately separated in a refrigerated centrifuge. Plasma samples were divided into aliquots and stored at −80°C until analysis. Plasma glucose was determined, at the bedside, after the glucose challenge (32).

Area under the curve (AUC) was calculated with the use of GraphPad Prism (version 20; SPSS Inc., Chicago, IL). The AUC of insulin secretion during the 2-h OGTT was denoted as total insulin output (expressed in nmol · m−2 · h−1). A model-based index of insulin sensitivity (oral glucose insulin sensitivity [OGIS]) was calculated using the plasma glucose and insulin concentrations measured during a standard 2-h OGTT (35); this index has been validated against the hyperinsulinemic-euglycemic clamp (36).

During the hyperglycemic clamp, insulin secretion was obtained from C-peptide levels by deconvolution (37). Acute insulin response (AIR) was calculated as the mean incremental insulin secretion between 0 and 5 min, when insulin secretion rate had fallen from the initial peak to a nadir in all subjects. Rate sensitivity was then the ratio of AIR to the corresponding glucose increment. An empirical estimate of βCGS (clamp-βCGS) was obtained as the increment in insulin secretion during the last 40 min of the clamp above basal insulin secretion, divided by the corresponding glucose increment (see the Supplementary Data for details). The clamp- and the OGTT-βCGS thus represent an average slope of the relationship between insulin secretion and glucose concentration, obtained with intravenous and oral glucose administration, respectively. Of note is that βCGS, as the mean slope of a dose-response relationship, is independent of absolute insulin secretion. As previously shown (23,24), the incretin effect is exerted not only on absolute insulin secretion but also on βCGS. In the present studies, the incretin effect was estimated as the OGTT-βCGS/clamp-βCGS ratio.

Statistical Analysis

ANOVA with Tukey post hoc correction for quantitative variables and χ² test for categorical variables were used to examine subject characteristics, β-cell function parameters, and early- and late-phase incretin response among the three groups. ANCOVA models were used to assess between-group differences adjusting for covariates as applicable, such as VAT or BMI. Log transformations were used to normalize the distribution for glucose, insulin, C-peptide, and GLP-1. All other variables were normally distributed. To assess the relationships between β-cell function parameters and incretin response, bivariate Pearson or Spearman correlations were applied according to data distribution. Unless otherwise stated, data are presented as mean ± SEM. Statistical significance was set at P < 0.05, and the statistical analyses were performed using PASW Statistics (version 20; SPSS Inc., Chicago, IL).
RESULTS
Participant Characteristics

There were no significant differences in age, sex, race, Tanner stage, FFM, or percent FM between the groups. Compared with NGT, participants with IGT and T2D had higher BMI, SAT, and VAT. As expected, HbA1c was higher in the T2D group compared with NGT and IGT (Table 1).

Glucose and Hormone Responses to the OGTT

Fasting glucose and insulin concentrations increased from NGT to IGT as did 2-h plasma glucose levels (Supplementary Table 1). Two-hour insulin and C-peptide were higher in IGT compared with NGT, whereas they only tended to be lower in T2D. Among the incretin hormones, both fasting and 2-h GLP-1 were higher in IGT compared with NGT. Fasting concentrations of PP tended to be higher in IGT and T2D compared with NGT, whereas GIP showed no significant differences across groups.

In Supplementary Fig. 1, early-phase (0–30 min) insulin response (expressed as the ratio of insulin to glucose AUC) was lowest in T2D compared with NGT and IGT (2,403 vs. 3,221 μg2·mL$^{-2}$·min$^{-2}$, respectively, $P = 0.017$); the same was true of early-phase C-peptide response ($P = 0.012$). In contrast, early-phase glucagon response (as the product of glucagon and glucose AUC) was highest in T2D as compared with NGT and IGT (3,005 vs. 2,154 μg2·mL$^{-2}$·min$^{-2}$, respectively, $P < 0.001$). Late-phase (30–90 min) insulin response showed the same pattern as early-phase insulin response, decreasing from NGT to T2D through IGT (14,512 ± 1,279 vs. 12,661 ± 674 vs. 10,046 ± 1,520 pmol·mmol$^{-1}$, $P < 0.001$); late-phase C-peptide response tracked with insulin ($P < 0.001$). Late-phase glucagon response increased from NGT to IGT to T2D (6,131 ± 214 vs. 7,456 ± 561 vs. 10,542 ± 1,008 μg2·mL$^{-2}$·min$^{-2}$, respectively, $P < 0.001$) (Supplementary Fig. 1).

Incretin hormone responses are shown in Fig. 1. Because of baseline group differences in GLP-1 and PP, incremental AUCs (iAUCs), rather than total AUCs, were calculated. iAUC for GIP (2,613 ± 101, 2,611 ± 193, 2,301 ± 229 pmol·L$^{-1}$·h, $P = 0.45$) was not different among NGT, IGT, and T2D, whereas iAUC for GLP-1 (183.4 ± 25.3, 139.4 ± 48.1, 461.1 ± 57.1 pmol·L$^{-1}$·h, $P = 0.08$) and PP (510 ± 44, 597 ± 83, 752 ± 99 pmol·L$^{-1}$·h, $P = 0.07$) showed a trend. Early-phase GLP-1 iAUC was not different among the three groups (data not shown), whereas late-phase GLP-1 iAUC was significantly different among the NGT, IGT, and T2D (105.6 ± 19, 67.7 ± 36.1, 326.0 ± 42.9 pmol·L$^{-1}$·h, respectively, $P = 0.005$). Furthermore, there were no significant differences in fasting GLP-1 (14.3 ± 1.8 vs. 15.9 ± 3.3 pmol·L$^{-1}$, $P = 0.55$), 2-h GLP-1 (13.6 ± 2.5 vs. 11.3 ± 2.6 pmol·L$^{-1}$, $P = 0.57$), or GLP-1 iAUC (428.8 ± 138 vs. 528.6 ± 286 pmol·L$^{-1}$·h, $P = 0.77$) in T2D youth prescribed metformin ($n = 23$) versus those not prescribed metformin ($n = 11$). Early-phase and late-phase GIP did not differ significantly according to glucose tolerance status. Both early-phase PP iAUC (193 ± 19 vs. 273 ± 35 vs. 267 ± 42 pmol·L$^{-1}$·h, $P = 0.06$) and late-phase PP iAUC showed a trend (317 ± 32 vs. 324 ± 60 vs. 485 ± 72 pmol·L$^{-1}$·h, $P = 0.10$) among NGT, IGT, and T2D, respectively.

Insulin sensitivity, as estimated by OGIS, was significantly, and to a similar extent, impaired in IGT and T2D.
as compared with NGT (Supplementary Table 1), the difference remaining significant after adjusting for BMI or VAT.

β-Cell Function and Incretin Effect

During the OGTT, basal insulin secretion rate was higher in IGT and T2D compared with NGT. Total insulin output was higher in IGT compared with the other two groups (Table 2). The insulin secretion to plasma glucose dose-response functions was progressively shifted to the right and downward from NGT to IGT to T2D (Fig. 2). Consequently, βCGS was progressively lower, whereas rate sensitivity was lowest only in youth with T2D. These group differences remained statistically significant after adjusting for BMI or VAT (data not shown).

During the hyperglycemic clamp, insulin secretion rates followed the expected biphasic pattern, with an early peak followed by a second phase of increasing insulin release (Supplementary Fig. 2). AIR was markedly impaired in T2D (381 ± 119 vs. 1,968 ± 104 pmol · min⁻¹ · m⁻², P < 0.001) but only marginally reduced in IGT (1,639 ± 154). Coherently with this, rate sensitivity was significantly reduced in T2D (225 ± 85 pmol · m⁻² · mM⁻¹, P < 0.001, vs. 1,174 ± 54 in NGT) and slightly impaired in IGT (938 ± 92). During the second phase, insulin secretion between 80 and 120 min averaged 657 ± 25, 698 ± 43, and 255 ± 40 pmol · min⁻¹ · m⁻² in NGT, IGT, and T2D, respectively, being significantly reduced only in T2D (P < 0.0001) (Table 3 and Supplementary Fig. 2). Figure 3A depicts OGTT- and clamp-βCGS. Unlike OGTT-βCGS, where reduced βCGS was observed in both IGT and T2D compared with NGT, clamp-βCGS was similar between NGT (93 ± 4) and IGT (101 ± 6) youth but lower in T2D youth (53 ± 7 pmol · min⁻¹ · m⁻² · mM⁻¹) (P < 0.001 for both). Moreover, clamp-βCGS between IGT youth in the upper half (9.4–11.0 mmol/L) versus lower half (7.8–8.9 mmol/L) of the glucose concentration of the 120 min of the OGTT was not different (73.8 ± 9.6 vs. 106.7 ± 8.0 pmol · min⁻¹ · m⁻² · mM⁻¹, P = 0.13); however, OGTT-βCGS was significantly lower (82.2 ± 8.8 vs. 133.5 ± 8.0 pmol · min⁻¹ · m⁻² · mM⁻¹, P = 0.008) in IGT youth in the upper half of glucose concentration.

In the whole group, OGTT-βCGS and clamp-βCGS were strongly correlated with one another (r = 0.70, P < 0.0001), but the relationship was significantly (P < 0.02) different across glucose tolerance status. Thus, a clamp-βCGS of 100 pmol · min⁻¹ · m⁻² · mM⁻¹ predicted an OGTT-βCGS of 181 pmol · min⁻¹ · m⁻² · mM⁻¹ in NGT, 122 in IGT, and 119 in T2D (Fig. 4). Consequently, the ratio OGTT-βCGS/clamp-βCGS, an estimate of the incretin effect, was significantly reduced in IGT and T2D compared with NGT, with no difference between IGT and T2D (Fig. 3B). Dividing T2D youth into those with short (<6 months) and those with longer disease duration (>6 months) revealed no significant difference in OGTT-βCGS/clamp-βCGS (1.2 ± 0.15 vs. 1.2 ± 0.19, P = 0.94).

Relationship of β-Cell Function Parameters to Glycemia and Incretin Hormones

OGTT-2 h glucose correlated negatively with OGTT-βCGS (r = −0.41, P < 0.001), rate sensitivity (r = −0.22, P < 0.001), and OGIS (r = −0.40, P < 0.001) and correlated

Table 2—OGTT-modeled parameters of β-cell function

	NGT	IGT	T2D	ANOVA	NGT vs. IGT	NGT vs. T2D	IGT vs. T2D
Basal insulin secretion rate (pmol · min⁻¹ · m⁻²)	141 ± 5	166 ± 9	188 ± 11	<0.001	0.03	<0.001	NS
Total insulin output (nmol · m⁻²)	58 ± 2	72 ± 3	57 ± 4	0.001	0.001	NS	0.01
βCGS (pmol · min⁻¹ · m⁻² · mM⁻¹)	178 ± 8	125 ± 15	64 ± 17	<0.001	0.01	<0.001	0.02
Rate sensitivity (pmol · m⁻² · mM⁻¹)	1,788 ± 100	1,608 ± 190	1,095 ± 226	0.02	NS	0.02	NS
Potentiation ratio	1.1 ± 0.03	1.1 ± 0.05	1.1 ± 0.06	NS			

Post hoc analyses using Tukey.

Figure 2—Dose-response of insulin secretion rates and plasma glucose concentrations in obese youth with NGT, IGT, and T2D. Plots are mean ± SEM; the mean slope of the dose-response function is βCGS.
positively with 2-h GLP-1 (r = 0.22, P = 0.001) and GLP-1 AUC (r = 0.18, P = 0.005). Multiple linear regression analyses models assessing the independent effects of age, sex, race, VAT, insulin sensitivity, clamp-βCGS, incretin effect, OGTT-βCGS, and rate sensitivity are presented in Table 4. Insulin sensitivity, incretin effect, clamp-βCGS, and rate sensitivity explained 69% of variance in OGTT glucose AUC and 44% of the variance in OGTT 2-h glucose concentration. Including family history of diabetes into the model made no significant independent contribution.

DISCUSSION

The current study adds to the scarce literature in pediatric T2D by 1) providing novel information on the incretin effect and incretin concentrations during the OGTT in obese adolescents across the spectrum of glucose tolerance from NGT to IGT to T2D, and 2) further documenting the abnormalities in β-cell function and insulin sensitivity in these obese adolescents. The key finding of the current studies is that youth with IGT or T2D have a reduced incretin effect compared with their NGT peers without reductions in GLP-1 and GIP concentrations. In these youth, the incretin effect is an important determinant of the glycemic response to oral glucose.

β-Cell function is a key determinant of T2D (1,2) as it declines with the onset of IGT and progression to T2D in adults (2–5). In the current study, we demonstrate that βCGS was 30 and 65% lower in IGT and T2D, respectively, compared with NGT, with a 40% lower rate sensitivity in those with T2D. These results are in agreement with protocols involving intravenous glucose administration in both adults (2,3,5) and youth (6–12), and with OGTT-modeled data in adults (38–40). In particular, compared with obese NGT, βCGS was 40 and 85% lower in IGT and T2D adults, respectively, and rate sensitivity was significantly lower in T2D, consistent with the current data in youth. In another study (39), total insulin output was significantly higher in adults with impaired glucose regulation compared with NGT, whereas βCGS was 42% lower. A decline in βCGS, but not rate sensitivity, was also reported in Mexican American adults with IGT compared with NGT (40).
In the current study, the finding that IGT was associated with reduced βCGS when the measure is derived from the OGTT, but not from the clamp, is of particular interest and suggests that in prediabetes, impairment in incretin effect may precede defective β-cell secretory response to intravenous glucose. In more advanced stages of dysglycemia, such as T2D, both incretin effect and β-cell function appear to be impaired since βCGS derived from either the clamp or the OGTT is abnormal. The temporal sequence with which these metabolic abnormalities develop relative to one another during the different stages of dysglycemia remains uncertain. Although the mechanisms underlying the reduced β-cell response to oral glucose are undefined, recent investigations suggest that chronic exposure to higher glucose concentrations may downregulate GIP receptor expression (41,42).

Whereas there were no significant differences in clamp-βCGS between the IGT youth in the upper versus the lower half of glucose concentration, OGTT-βCGS was significantly lower in IGT youth in the upper half of glucose concentration, consistent with the above proposed mechanism. On the other hand, the lack of difference in the clamp-βCGS may be due to the fact that insulin sensitivity is not accounted for. When we compare clamp-βCGS between NGT and IGT with OGIS as a covariate, we do not see significant differences (96.3 ± 3.9 vs. 90.7 ± 6.8 pmol · min⁻¹ · m⁻² · mM⁻¹, P = 1.50). This implies that insulin sensitivity may play a role in clamp-βCGS and that IGT may indeed have a relative impairment of β-cell function compared with NGT. However, such cross-sectional findings must be interpreted with caution, because many individuals with IGT may never develop diabetes, and their metabolic characteristics may well differ from those who do.

GLP-1 and GIP have been shown to be increased (20,43,44), decreased (16,17,45–47), or normal (16,18,19).

Table 3—Insulin secretion, βCGS, and incretin effect using different time interval of the hyperglycemic clamp

	80–120 min	Ratio to NGT	20–120 min	Ratio to NGT
Insulin secretion (pmol · min⁻¹ · m⁻²)				
NGT	657 ± 25	1	566 ± 20	1
IGT	698 ± 43	1.06	578 ± 34	1.02
T2D	255 ± 40	0.39	218 ± 31	0.39
βCGS (pmol · min⁻¹ · m⁻² · mM⁻¹)				
NGT	93 ± 4	1	79 ± 5	1
IGT	101 ± 6	1.09	82 ± 3	1.04
T2D	42 ± 6	0.45	35 ± 5	0.44
Incretin effect				
NGT	1.97 ± 0.08	1	2.27 ± 0.09	1
IGT	1.33 ± 0.14	0.68	1.61 ± 0.15	0.71
T2D	1.15 ± 0.13	0.58	1.38 ± 0.14	0.61

Table 4—Significant independent predictors of glucose AUC and 2-h glucose of the OGTT

Dependent variable: OGGTT AUC	Partial r	Model r²	Change in r²	P
Model 1				
Insulin sensitivity	-0.72	0.27	0.27	<0.001
Incretin effect	-0.65	0.43	0.17	<0.001
Clamp-βCGS	-0.54	0.63	0.20	<0.001
Rate sensitivity	-0.39	0.69	0.06	<0.001
Model 2				
Insulin sensitivity	-0.69	0.29	0.29	<0.001
OGTT-βCGS	-0.65	0.57	0.28	<0.001
Rate sensitivity	-0.40	0.64	0.07	<0.001

Dependent variable: 2-h glucose	Partial r	Model r²	Change in r²	P
Model 1				
Insulin sensitivity	-0.50	0.14	0.14	<0.001
Incretin effect	-0.46	0.41	0.13	<0.001
Clamp-βCGS	-0.42	0.28	0.13	<0.001
Rate sensitivity	-0.23	0.44	0.03	<0.001
Model 2				
Insulin sensitivity	-0.50	0.36	0.17	<0.001
OGTT-βCGS	-0.48	0.19	0.19	<0.001
Rate sensitivity	-0.27	0.41	0.05	<0.001

Incretin effect = OGTT-βCGS/clamp-βCGS.
24,46–49) in adults with T2D or IGT. A detailed meta-analysis by Calanna et al. (48,49) published very recently further supports no reduction in GLP-1 and GIP in adults with T2D. To our knowledge, there are no published incretin data in youth comparing NGT to IGT to T2D. In the current study, incretin hormone concentrations in response to the oral glucose load were not different between NGT, IGT, and T2D and were unlikely to explain the impaired incretin effect in IGT and T2D. However, it should be considered that the circulating concentrations of total GLP-1 and total GIP only partially reflect the activity of incretin hormones (50), which work through the intact forms only, and may also function independent of circulating levels. Furthermore, metformin has been shown to increase GLP-1 secretion in vitro (51) and could have masked a reduction in GLP-1 secretion in these subjects. However, we did not observe any significant differences in fasting GLP-1, 2-h GLP-1, or GLP-1 iAUC in T2D youth prescribed metformin versus those not prescribed metformin. With respect to the temporal pattern of incretin hormone response, in the current study, GLP-1 concentrations demonstrated an initial rise followed by a decline ~30 min after the glucose load. As shown by a recent systematic review by Nauck et al. (16), GLP-1 response may increase and then slowly decline, with a biphasic pattern or a monophasic pattern. Our results, however, are only relevant to a glucose load as the incretin response to a mixed meal may be different. Additional investigations in pediatrics are much needed to enhance knowledge with respect to the interplay of incretin hormones, their effect, and β-cell function in the evolution of prediabetes and T2D. Also of pathophysiological, clinical, and therapeutic relevance is the current finding of an augmented glucagon response in both IGT and T2D youth in the face of higher plasma glucose concentrations. This relative hyperglucagonemia, a correlate of β-cell dysfunction, further augments glucose dysregulation. Similar observations of α-cell upregulation were made in obese insulin-resistant youth with NGT or IGT (52).

With regard to the incretin effect, the novel finding is that the IGT and T2D youth both demonstrated a significantly reduced incretin effect, by 32 and 38% respectively, compared with their NGT peers. Since glucose levels during the clamp markedly exceeded the glucose levels during OGTT in IGT and NGT, the incretin effect may have been underestimated using this measure. In the current study, we used the ratio of the βCGS derived from the OGTT to the βCGS from the hyperglycemic clamp because absolute insulin secretion is dependent on the glucose concentrations, which were not matched. Although this index has not been validated against the gold standard isoglycemic protocol, glucose sensitivity is the most sensitive parameter accounting for glucose levels as its use to calculate the incretin effect from the isoglycemic method has been shown to be consistent with the more classical parameter obtained from insulin secretion (23). Furthermore, glucose sensitivity was consistent within individuals in the two tests (Supplementary Fig. 4) and was always higher with the OGTT than the clamp (by 95 ± 10% in NGT, 33 ± 8% in IGT, and 15 ± 10% in T2D). More importantly, the OGTT-βCGS/clamp-βCGS ratio retrieves the quantitative reduction in incretin effect (30–40%) that has been previously reported (21–23) and more recently confirmed (53) with the use of the OGTT and the isoglycemic protocol in adults with T2D. Our data in youth also confirm the quantitative contribution of the incretin effect to glucose tolerance (indexed by the 2-h plasma glucose concentration on the OGTT) (Table 4). In fact, glucose sensitivity could be estimated empirically from the ratio of incremental insulin secretion to incremental glucose levels (as shown in the Supplementary Data).

In our subjects, the incretin defect was not associated with a decrease in GLP-1 release in response to oral glucose (Fig. 1), which resonates with findings in adults, as reviewed by Nauck et al. (16), and suggests β-cell resistance to GLP-1 action on the β-cell (54). Furthermore, there is now mounting evidence that the incretin defect of adult T2D is not a consequence of chronic hyperglycemia, as initially argued (21), but a constitutive feature of T2D given that antihyperglycemic treatment is not associated with any improvement in incretin effect (53,55,56). Furthermore, recently Knop et al. (57) described reduced incretin effect in obese adults with NGT compared with healthy, lean NGT adults. These data shed light on a progressive defect that may even precede any underlying glucose dysregulation. Despite our limitation of not having a healthy, nonobese control group, our finding of an incretin defect in youths with IGT compared with obese NGT lends support to the postulate that an incretin defect may be an early, inherent part of T2D pathogenesis. Whether an incretin defect is present in youth with simple obesity and no dysglycemia remains to be determined.

In conclusion, OGTT-based βCGS declines progressively in obese youth across the spectrum of glucose tolerance from NGT to IGT to T2D. This is associated with a clear deficit in incretin effect with no evidence of decreased circulating concentrations of incretin hormones.

Acknowledgments. The authors thank all the children and their parents who participated in this study, without whom science would not advance. The authors are grateful to the nursing staff of the Pediatric Clinical and Translational Research Center (Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center) for their outstanding care of the participants and meticulous attention to the research and to Resa Stauffer (Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center) for her laboratory analytical contributions.

Funding. This work was supported by the American Diabetes Association 7-08-JF-27 (S.L.), Thraisher Research Fund (F.B.), R01-HD-27503 (S.A.), K24-HD-01357 (S.A.), Richard L. Day Endowed Chair (S.A.), and UL1-RR-024153 and UL1-TR-000005 CTSA (The Clinical and Translational Science Award).

Duality of Interest. No potential conflicts of interest relevant to this article were reported.

Author Contributions. S.F.M. first authored the manuscript and contributed to the data analyses and interpretation. A.M. and E.F. performed the
mathematical modeling of the OGTT, the hyperglycemic clamp, and the incretin effect and critically reviewed and edited the manuscript. S.L., F.B., and H.T. contributed participants to the research project, contributed data, and reviewed the manuscript. L.F. maintained the database and contributed data analysis. S.A. provided the study concept and design; acquired data; obtained funding; provided administrative, technical, and material support; supervised the study; and critically reviewed and edited the manuscript. S.A. is the guarantor of this work and, as such, had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

References

1. DeFronzo RA. Pathogenesis of type 2 diabetes mellitus. Med Clin North Am 2004;88:787–835, ix
2. Festa A, Williams K, D’Agostino R Jr, Wagenknecht LE, Haffner SM. The natural course of beta-cell function in nondiabetic and diabetic individuals: the Insulin Resistance Atherosclerosis Study. Diabetes 2006;55:1114–1120
3. Weyer C, Bogardus C, Mott DM, Pratley RE. The natural history of insulin secretory dysfunction and insulin resistance in the pathogenesis of type 2 diabetes mellitus. J Clin Invest 1999;104:787–794
4. Abdul-Ghani MA, Matsuda M, Jani R, et al. The relationship between fasting hyperglycemia and insulin secretion in subjects with normal or impaired glucose tolerance. Am J Physiol Endocrinol Metab 2008;295:E401–E406
5. DeFronzo RA, Banerji MA, Bray GA, et al.; ACT NOW Study Group. Determinants of glucose tolerance in impaired glucose tolerance at baseline in the Actos Now for Prevention of Diabetes (ACT NOW) study. Diabetologia 2010;53:435–445
6. Bacha F, Gungor N, Lee S, Arslanian SA. In vivo insulin sensitivity and secretion in obese youth: what are the differences between normal glucose tolerance, impaired glucose tolerance, and type 2 diabetes? Diabetes Care 2009;32:100–105
7. Sjaarda LA, Michalisyn SF, Lee S, et al. HbA1c diagnostic categories and beta-cell function relative to insulin sensitivity in overweight/obese adolescents. Diabetes Care 2012;35:2559–2563
8. Burns SF, Bacha F, Lee SJ, Tfayli H, Gungor N, Arslanian SA. Declining beta-cell function relative to insulin sensitivity with escalating OGTT 2-h glucose concentrations in the nondiabetic through the diabetic range in overweight youth. Diabetes Care 2011;34:2033–2040
9. Saad R, Gungor N, Arslanian S. Progression from normal glucose tolerance to type 2 diabetes in a young girl: longitudinal changes in insulin sensitivity and secretion assessed by the clamp technique and surrogate estimates. Pediatr Diabetes 2005;6:95–99
10. Weiss R, Dufour S, Takaal SE, et al. Prediabetes in obese youth: a syndrome of impaired glucose tolerance, severe insulin resistance, and altered myocellular and abdominal fat partitioning. Lancet 2003;362:951–957
11. Goran MI, Bergman RN, Avila Q, et al. Impaired glucose tolerance and insulin action. Diabetologia 2008;51:853–861
12. Saad R, Gungor N, Arslanian S. Family history of type 2 diabetes is associated with decreased insulin sensitivity and an impaired balance between insulin sensitivity and insulin secretion in white youth. Diabetes Care 2005;28:115–119
13. Lee S, Kim Y, Kuk JL, Boada FE, Arslanian S. Whole-body MRI and ethnic differences in adipose tissue and skeletal muscle distribution in overweight black and white adolescent boys. J Obes 2011;2011:159373
14. Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. Report of the Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. Diabetes Care 2003;26(Suppl. 1):S5–S20
15. Arslanian SA, Bacha F, Saad R, Gungor N. Family history of type 2 diabetes is associated with decreased insulin sensitivity and an impaired balance between insulin sensitivity and insulin secretion in white youth. Diabetes Care 2005;28:115–119
16. Giannini C, Weiss R, Cali A, et al. Evidence for early defects in insulin sensitivity and secretion before the onset of glucose dysregulation in obese youths: a longitudinal study. Diabetes 2012;61:606–614
17. Bacha F, Gungor N, Lee S, Arslanian SA. Progressive deterioration of beta-cell function in obese youth with type 2 diabetes. Pediatr Diabetes 2013;14:106–111
18. TODAY Study Group. Effects of metformin, metformin plus rosiglitazone, and metformin plus lifestyle on insulin sensitivity and beta-cell function in TODAY. Diabetes Care 2013;36:1749–1757
19. Cali AM, Man CD, Cobelli C, et al. Primary defects in beta-cell function further exacerbated by worsening of insulin resistance mark the development of impaired glucose tolerance in obese adolescents. Diabetes Care 2009;32:456–461
20. Nauck M, Vardarli I, Deacon CF, Holst JJ, Meier JJ. Secretion of glucagon-like peptide-1 (GLP-1) in type 2 diabetes: what is up, what is down? Diabetologia 2011;54:10–18
21. Laakso M, Zillinsky J, Hansen T, et al.; EUGENE2 Consortium. Insulin sensitivity, insulin release and glucagon-like peptide-1 levels in persons with impaired fasting glucose and/or impaired glucose tolerance in the EUGENE2 study. Diabetologia 2008;51:502–511
22. Volleter K, Holst JJ, Baller B, et al. Predictors of incretin concentrations in subjects with normal, impaired, and diabetic glucose tolerance. Diabetes 2008;57:687–687
23. Smushkin G, Sathananthan A, Man CD, et al. Defects in GLP-1 response to an oral challenge do not play a significant role in the pathogenesis of prediabetes. J Clin Endocrinol Metab 2012;97:589–598
24. Faerch K, Vaag A, Holst JJ, Glümer C, Pedersen O, Borch-Johnsen K. Impaired fasting glycaemia vs impaired glucose tolerance: similar impairment of pancreatic alpha and beta cell function but differential roles of incretin hormones and insulin action. Diabetologia 2008;51:853–861
25. Knop FK, Vilsbøll T, Højberg PV, et al. Reduced incretin effect in type 2 diabetes: cause or consequence of the diabetic state? Diabetes 2007;56:1951–1959
26. Nauck M, Stöckmann F, Ebert R, Creutzfeldt W. Reduced incretin effect in type 2 (non-insulin-dependent) diabetes. Diabetologia 1986;29:46–52
27. Muscelli E, Mari A, Casaloro A, et al. Separate impact of obesity and glucose tolerance on the incretin effect in normal subjects and type 2 diabetic patients. Diabetes 2008;57:1340–1348
28. Muscelli E, Mari A, Natali A, et al. Impact of incretin hormones on beta-cell function in subjects with normal or impaired glucose tolerance. Am J Physiol Endocrinol Metab 2006;291:E1144–E1150
29. Bacha F, Lee S, Gungor N, Arslanian SA. From pre-diabetes to type 2 diabetes in obese youth: pathophysiological characteristics along the spectrum of glucose dysregulation. Diabetes Care 2010;33:2225–2231
30. Tfayli H, Bacha F, Gungor N, Arslanian S. Islet cell antibody-positive versus -negative phenotypic type 2 diabetes in youth: does the oral glucose tolerance test distinguish between the two? Diabetes Care 2010;33:632–638
31. Lee S, Kim Y, Kuk JL, Boada FE, Arslanian S. White whole-body MRI and ethnic differences in adipose tissue and skeletal muscle distribution in overweight black and white adolescent boys. J Obes 2011;2011:159373
32. Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. Report of the Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. Diabetes Care 2003;26(Suppl. 1):S5–S20
33. Arslanian SA, Bacha F, Saad R, Gungor N. Family history of type 2 diabetes is associated with decreased insulin sensitivity and an impaired balance between insulin sensitivity and insulin secretion in white youth. Diabetes Care 2005;28:115–119
34. Lee S, Kuk JL, Hannon TS, Arslanian SA. Race and gender differences in the relationships between anthropometrics and abdominal fat in youth. Obesity (Silver Spring) 2008;16:1066–1071
35. Higgins PB, Féméndez JR, Garvey WT, Granger WM, Gower BA. Enteroinsular axis and postprandial insulin differences in African American and European American children. Am J Clin Nutr 2008;88:1277–1283
36. Mari A, Schmitz O, Gastaldelli A, Oestergaard T, Nyholm B, Ferrannini E. Meal and oral glucose tests for assessment of beta-cell function: modeling analysis in normal subjects. Am J Physiol Endocrinol Metab 2002;283:E1159–E1166
37. Mari A, Tura A, Gastaldelli A, Ferrannini E. Assessing insulin secretion by modeling in multiple-meal tests: role of potentiation. Diabetes 2002;51(Suppl. 1):S221–S226
38. Mari A, Pacini G, Murphy E, Ludvik B, Nolan JJ. A model-based method for assessing insulin sensitivity from the oral glucose tolerance test. Diabetes Care 2001;24:539–548
39. Mari A, Pacini G, Brazzale AR, Ahrén B. Comparative evaluation of simple insulin sensitivity methods based on the oral glucose tolerance test. Diabetologia 2005;48:748–751
37. Van Cauter E, Mestrez F, Sturis J, Polonsky KS. Estimation of insulin secretion rates from C-peptide levels. Comparison of individual and standard kinetic parameters for C-peptide clearance. Diabetes 1992;41:368–377.

38. Ferrannini E, Gastaldelli A, Miyazaki Y, Matsuda M, Mari A, DeFronzo RA. Beta-cell function in subjects spanning the range from normal glucose tolerance to overt diabetes: a new analysis. J Clin Endocrinol Metab 2005;90:493–500.

39. Mari A, Tura A, Natali A, et al.; RISC Investigators. Impaired beta cell glucose sensitivity rather than inadequate compensation for insulin resistance is the dominant defect in glucose intolerance. Diabetologia 2010;53:749–756.

40. Kanat M, Mari A, Norton L, et al. Distinct beta-cell defects in impaired fasting glucose and impaired glucose tolerance. Diabetes 2012;61:447–453.

41. Lynn FC, Pamir N, Ng EH, McIntosh CH, Kieffer TJ, Pederson RA. Defective glucose-dependent insulinotropic polypeptide receptor expression in diabetic fatty Zucker rats. Diabetes 2001;50:1004–1011.

42. Zhou J, Livak MF, Bernier M, et al. Ubiquitination is involved in glucose-mediated downregulation of GIP receptors in islets. Am J Physiol Endocrinol Metab 2007;293:E538–E547.

43. Salera M, Giacomoni P, Pironi L, et al. Gastric inhibitory polypeptide release after oral glucose: relationship to glucose intolerance, diabetes mellitus, and obesity. J Clin Endocrinol Metab 1982;55:329–336.

44. Romero F, Nicolau J, Flores L, et al. Comparable early changes in gastrointestinal hormones after sleeve gastrectomy and Roux-en-Y gastric bypass surgery for morbidly obese type 2 diabetic subjects. Surg Endosc 2012;26:2231–2239.

45. Vaag AA, Holst JJ, Valud A, Beck-Nielsen HB. Gut incretin hormones in identical twins discordant for non-insulin-dependent diabetes mellitus (NIDDM)—evidence for decreased glucagon-like peptide 1 secretion during oral glucose ingestion in NIDDM twins. Eur J Endocrinol 1996;135:425–432.

46. Alam MJ, Buchanan KD. Gastric inhibitory polypeptide (GIP) responses in type 2 diabetes using three different antibodies. Ann Saudi Med 1993;13:350–354.

47. Toft-Nielsen MB, Damholt MB, Madbad S, et al. Determinants of the impaired secretion of glucagon-like peptide-1 in type 2 diabetic patients. J Clin Endocrinol Metab 2001;86:3717–3723.

48. Calanna S, Christensen M, Holst JJ, et al. Secretion of glucose-dependent insulinotropic polypeptide in patients with type 2 diabetes: systematic review and meta-analysis of clinical studies. Diabetes Care 2013;36:3346–3352.

49. Calanna S, Christensen M, Holst JJ, et al. Secretion of glucagon-like peptide-1 in patients with type 2 diabetes mellitus: systematic review and meta-analyses of clinical studies. Diabetologia 2013;56:965–972.

50. Deacon CF, Nauck MA, Toft-Nielsen M, Pridal L, Willms B, Holst JJ. Both subcutaneously and intravenously administered glucagon-like peptide I are rapidly degraded from the NH2-terminus in type II diabetic patients and in healthy subjects. Diabetes 1995;44:1126–1131.

51. Kappe C, Patrone C, Holst JJ, Zhang Q, Sjöholm A. Metformin protects against lipooapoptosis and enhances GLP-1 secretion from GLP-1-producing cells. J Gastroenterol 2013;48:322–332.

52. Weiss R, D’Adamo E, Santoro N, Hershkop K, Caprio S. Basal alpha-cell up-regulation in obese insulin-resistant adolescents. J Clin Endocrinol Metab 2011;96:91–97.

53. Vardarli I, Arndt E, Deacon CF, Holst JJ, Nauck MA. Effects of sitagliptin and metformin treatment on incretin hormone and insulin secretory responses to oral and “isoglycemic” intravenous glucose. Diabetes 2014;63:663–674.

54. Mari A, Bagger JI, Ferrannini E, Holst JJ, Knop FK, Vilsbøll T. Mechanisms of the incretin effect in subjects with normal glucose tolerance and patients with type 2 diabetes. PLoS ONE 2013;8:e73154.

55. Vardarli I, Nauck MA, Köthe LD, et al. Inhibition of DPP-4 with vildagliptin improved insulin secretion in response to oral as well as “isoglycemic” intravenous glucose without numerically changing the incretin effect in patients with type 2 diabetes. J Clin Endocrinol Metab 2011;96:945–954.

56. Muscelli E, Casolaro A, Gastaldelli A, et al. Mechanisms for the antihyperglycemic effect of sitagliptin in patients with type 2 diabetes. J Clin Endocrinol Metab 2012;97:2818–2826.

57. Knop FK, Aabo E, Vilsbøll T, et al. Impaired incretin effect and fasting hyperglucagonaemia characterizing type 2 diabetic subjects are early signs of dysmetabolism in obesity. Diabetes Obes Metab 2012;14:500–510.