QCD penguins are responsible for about 2/3 of the $\Delta I = 1/2$ rule in $K \to \pi\pi$ decays, as inferred from a combined analysis of $K \to \pi\pi$ and $K_L \to \gamma\gamma$. Further tests based on the decays $K_S \to \pi^0\gamma\gamma$ and $K^+ \to \pi^+\gamma\gamma$ are proposed. New insights into the treatment of π^0, η, η' pole amplitudes are also reported.

1 Introduction

Recently, a systematic analysis of η_0 pole contributions to radiative K decays was performed in the context of large N_c ChPT, in order to better understand the role of gluonic penguin operators in $K \to \pi\pi$ transitions. In this note, we emphasize some aspects of this study, in view of the forthcoming new experimental information on $K^+ \to \pi^+\gamma\gamma$ by the NA48 Collaboration. A number of issues, like the correspondence between the $SU(3)$ and $U(3)$ chiral expansions, the impact of our analysis for $K_L \to \gamma\gamma^*$, $K_L \to \pi^0\pi^0\gamma\gamma$ and $K_L \to \pi^+\pi^-\gamma$, or the fate of the weak mass operator, are left to the original paper.

2 General framework

The effective weak Hamiltonian relevant to describe (CP-conserving) hadronic K decays reads:

$$\mathcal{H}_{\Delta S=1}^{\Delta S=1} (\mu < m_c) \simeq \frac{G_F}{\sqrt{2}} V_{ud} V_{us}^* \left[z_1 (\mu) Q_1 (\mu) + z_2 (\mu) Q_2 (\mu) + z_6 (\mu) Q_6 (\mu) \right],$$

(1)
with the familiar current-current operators

\[Q_1 = 4 \langle \bar{s}_L \gamma_\alpha d_L \rangle \langle \bar{u}_L \gamma^\alpha u_L \rangle, \quad Q_2 = 4 \langle \bar{s}_L \gamma_\alpha u_L \rangle \langle \bar{u}_L \gamma^\alpha d_L \rangle, \]

and the density-density dominant penguin operator

\[Q_6 = -8 \langle \bar{s}_L q_R \rangle \langle \bar{q}_R d_L \rangle. \]

In our notations, \(q^R_L \equiv \frac{1}{2}(1 \pm \gamma_5)q \) and the light flavours \(q = u, d, s \) are summed over. The effective coupling constants \(z_i (\mu) \) contain QCD effects above the renormalization scale \(\mu \), kept high enough to allow the use of perturbation theory. In order to investigate the effects of long-distance strong interactions, we will make use of ChPT (Chiral Perturbation Theory) techniques.

ChPT relies on the SU(3)_L \times SU(3)_R symmetry of the QCD Lagrangian in the massless limit to build a dual representation, in terms of meson fields. If one formally considers the number of QCD colours \(N_c \) as large, SU(3) can be extended to U(3) and the spontaneous symmetry breaking \(U(3)_L \times U(3)_R \rightarrow U(3)_V \) gives rise to a nonet \(\Pi \) of pseudoscalar Goldstone bosons, which are written \(U \equiv \exp(i\sqrt{2}\Pi/F) \) in the standard parametrization. This extension to U(3) will prove crucial afterwards. The corresponding leading nonlinear Lagrangian reads

\[\mathcal{L}_S^{(p^2,\infty)+(p^0,1/N_c)} = \frac{F^2}{4} \langle \partial_\mu U \partial^\mu U^\dagger \rangle + \frac{F^2}{4} \langle \chi U^\dagger + U \chi^\dagger \rangle + \frac{F^2}{16N_c} m_0^2 (\ln U - \ln U^\dagger)^2 \]

where \(\langle \rangle \) denotes a trace over flavours, the external source \(\chi \) is frozen at \(\chi = rM \) with \(M = \text{diag}(m_u, m_d, m_s) \) to account for meson masses, \(F \) is identified with the pion decay constant \(F_\pi = 92.4 \text{ MeV} \) at this order and \(m_0 \) represents the anomalous part of the \(\eta_0 \) mass. Note that the leading SU(3) chiral Lagrangian is recovered in the limit \(m_0 \rightarrow \infty \), when the \(\eta_0 \) decouples.

The meson realization of Eq. (1) can be obtained from the chiral representations of the corresponding quark currents and densities, i.e., preserving the colour and flavour structures:

\[\mathcal{H}_{\text{eff},Q(p^2)} (\mu \sim m_{\pi,K}) \simeq \frac{G_F}{\sqrt{2}} V_{ud} V_{us}^{*} \left[x_1 \hat{Q}_1 + x_2 \hat{Q}_2 + x_6 \hat{Q}_6 \right], \]

with

\[\hat{Q}_1 = 4 \langle L_{\mu} \rangle_{23} \langle \bar{L}^{\mu} \rangle_{11}, \quad \hat{Q}_2 = 4 \langle L_{\mu} \rangle_{13} \langle \bar{L}^{\mu} \rangle_{21}, \quad \hat{Q}_6 = 4 \langle L_{\mu} \bar{L}^{\mu} \rangle_{23}, \]

and the left-handed currents \(\langle L_{\mu} \rangle_{lk}^{lk} = \frac{iF^2}{2} \langle \partial_\mu U U^\dagger \rangle_{lk} \). The weak coefficients \(x_i \) are not fixed by symmetry arguments, and contain both short-distance and long-distance strong interaction effects. The latter are known to be important in explaining the \(\Delta I = 1/2 \) rule observed in \(K \rightarrow \pi\pi \) decays. Still, the genuine mechanism responsible for the \(\Delta I = 1/2 \) enhancement, i.e., the relative strength of the penguin and current-current operators, has not been completely settled yet. In this work, we propose a phenomenological extraction of the \(x_i \) parameters, and thus of the penguin fraction \(\mathcal{F}_P = 3x_6/(\sim x_1 + 2x_2 + 3x_6) \).

To reach this goal, it is clear that one has to go beyond the standard SU(3) ChPT which only contains two independent weak operators \((Q_8 \text{ and } Q_{27}) \) such that current-current and penguin operators cannot be disentangled. On the other hand, in U(3), the presence of \(\eta_0 \) as a dynamical degree of freedom allows for an extra \(\mathcal{O}(p^2) \) weak operator

\[Q_8^* = 4 \langle L_{\mu} \rangle_{23} \langle \bar{L}^{\mu} \rangle \sim 4 \langle L_{\mu} \rangle_{23} \partial^\mu \eta_0, \]

which, together with the straightforward extensions of \(Q_8 \) and \(Q_{27} \) to U(3)

\[Q_8 = 4 \langle L_{\mu} \bar{L}^{\mu} \rangle_{23}, \quad Q_{27} = 4 \left[\langle L_{\mu} \rangle_{23} \langle \bar{L}^{\mu} \rangle_{11} + \frac{2}{3} \langle L_{\mu} \rangle_{13} \langle \bar{L}^{\mu} \rangle_{21} - \frac{1}{3} \langle L_{\mu} \rangle_{23} \langle \bar{L}^{\mu} \rangle \right], \]
permits now to write the effective Hamiltonian in a way equivalent to Eq. (5):
\[H_{\text{eff},O(p^2)}^{\Delta S=1} (\mu \sim m_{\pi,K}) \simeq G_8 Q_8 + G_{27} Q_{27} + G_{8}^8 Q_{8}^8. \] (9)

Explicitly, this change of basis reads (\(G_W \equiv G_F V_{ud} V_{us}/\sqrt{2} \)):
\[G_8/G_W = -\frac{2}{5} x_1 + \frac{2}{5} x_2 + x_6, \quad G_{8}^8/G_W = \frac{2}{5} x_1 - \frac{2}{5} x_2, \quad G_{27}/G_W = \frac{3}{5} (x_1 + x_2). \] (10)

G_8 and G_{27} are still extracted from \(K \to \pi \pi \). The knowledge of \(G_8^8 \) would thus give access to the \(x_i \) parameters, and consequently to \(F_P \). Because of Eq. (7), natural candidates for its extraction are anomaly-driven radiative \(K \) decays, that receive a \(\eta_0 \) pole contribution.

3 Penguin fraction in \(K \to \pi \pi \) vs \(\eta_0 \) effects in \(K_L \to \gamma \gamma \)

Due to the well-known pole cancellations at work in \(K_L \to \gamma \gamma \), we propose a two-step analysis for this mode:

Step 1: work with the theoretical masses \(m_{\pi}, m_{\eta}, m_{\eta}', \) i.e., consistently at a given order in ChPT, in order to identify the vanishing pole contributions (Fig.1a). It turns out that \(Q_8 \) does not contribute at \(O(p^4) \), just like in \(SU(3) \) ChPT. The leading contribution, of \(O(p^4) \), comes from the \(\overline{u}u \) intermediate state generated by \(\hat{Q}_1 \) (Fig.1b), and is thus proportional to \(G_W x_1 = G_8^8 + 2 G_{27}/3 \), i.e., the non-symmetry breaking couplings.

Step 2: freeze the \(\pi^0, \eta, \eta' \) poles at the physical values \(M_{\pi}, M_{\eta}, M_{\eta}' \) to ensure correct analytical properties for the remaining contributions (\(\hat{Q}_1 \)) only. This is done through the following prescription for the \(\eta-\eta' \) propagator:
\[i P_{\text{phys}} (q^2)_{\eta_0}^{-1} = \left(\begin{array}{cc} \cos \theta_P & \sin \theta_P \\ -\sin \theta_P & \cos \theta_P \end{array} \right) \left(\begin{array}{cc} q^2 - M_{\eta}'^2 & 0 \\ 0 & q^2 - M_{\eta^0}^2 \end{array} \right) \left(\begin{array}{cc} \cos \theta_P & -\sin \theta_P \\ \sin \theta_P & \cos \theta_P \end{array} \right), \] (11)

where the parametrisation in terms of one mixing angle is allowed as we work at lowest order in the chiral expansion, cf. Eq. (10). A discussion of two-angle pole formulas may be found in our original paper.

The resulting pole amplitude (\(c_\theta \equiv \cos \theta_P, s_\theta \equiv \sin \theta_P \)),
\[A^{\mu \nu} (K_L \to \gamma \gamma) = \frac{2 F_A}{\pi} \left[G_8^8 + \frac{2}{3} G_{27} \right] M_{K^*}^2 i \varepsilon^{\mu \nu \rho \sigma} k_{1\rho} k_{2\sigma} \times \left(\frac{1}{M_{K^*}^2 - M_{\eta'}^2} + \frac{(c_\theta - 2 \sqrt{2} s_{\theta})(c_\theta - \sqrt{2} s_{\theta})}{3(M_{K^*}^2 - M_{\eta^0}^2)} + \frac{(s_\theta + 2 \sqrt{2} c_{\theta})(s_\theta + \sqrt{2} c_{\theta})}{3(M_{K^*}^2 - M_{\eta^0}^2)} \right), \] (12)

turns out to be dominated by the \(\eta \):
\[A^{\mu \nu} (K_L \to \gamma \gamma) = \left[G_8^8 + \frac{2}{3} G_{27} \right] \left[(0.46)_\pi - (1.83 \pm 0.30)_{\eta^0} - (0.12 \pm 0.02)_{\eta'} \right] i \varepsilon^{\mu \nu \rho \sigma} k_{1\rho} k_{2\sigma}, \] (13)
and is quite stable with respect to the η_8-η_0 mixing angle θ_P, allowed to vary in the large range $[-25^\circ, -15^\circ]$ to get a hold on the typical size of NLO effects. From the experimental $K_L \to \gamma\gamma$ branching ratio, we obtain $(G_s^8/G_8)_{ph} \simeq \pm 1/3$, in agreement with the QCD-inspired value $(G_s^8/G_8)_{th} = -0.38 \pm 0.12$, leading to $(F_P)_{th} \approx 60\%$.

4 $K_S \to \pi^0\gamma\gamma$ - the simplest probe

The simplest mode to test $(G_s^8/G_8)_{th+ph} \simeq -1/3$ is $K_S \to \pi^0\gamma\gamma$. Indeed, at leading order in the chiral expansion, i.e., $O(p^4)$, it proceeds entirely through pole diagrams (Fig.2a). It receives contributions from \hat{Q}_1 and \hat{Q}_6, but not \hat{Q}_2, or correlated contributions from Q_8^s, Q_9^s and Q_8 in the natural $U(3)$ basis. The latter dominates the decay via the pion pole. When η_0 effects are integrated out, the standard $SU(3)$ result \cite{5} is recovered:

$$B(K_S \to \pi^0\gamma\gamma)_{SU(3) O(p^4)}^{m_{\gamma\gamma}>220 \text{ MeV}} = 3.8 \times 10^{-8}. \quad (15)$$

However, the contribution of the η_0 meson, despite non-leading, can significantly enhance the branching fraction (Fig.2b). For our preferred value \cite{14} and $\theta_P \in [-25^\circ, -15^\circ]$, we obtain:

$$B(K_S \to \pi^0\gamma\gamma)_{U(3) O(p^4)}^{m_{\gamma\gamma}>220 \text{ MeV}} = (4.8 \pm 0.5) \times 10^{-8}, \quad (16)$$

where the theoretical error only reflects the ranges assigned to G_s^8/G_8 and θ_P. The current experimental value is \cite{6}:

$$B(K_S \to \pi^0\gamma\gamma)_{m_{\gamma\gamma}>220 \text{ MeV}}^{exp} = (4.9 \pm 1.8) \times 10^{-8}. \quad (17)$$

Note that a more precise measurement could already fix the sign of G_s^8/G_8.

5 $K^+ \to \pi^+\gamma\gamma$ - a promising probe

The case of $K^+ \to \pi^+\gamma\gamma$ is slightly more involved as it proceeds through both loop and pole diagrams at leading order in the chiral expansion, i.e., again, $O(p^4)$. Still, these two types of contributions correspond to photons in different CP eigenstates, and do not interfere in the rate. The usual $SU(3)$ analysis, including unitarity corrections, can thus be applied to the loops while the poles (Fig.3a), sensitive to η_0 effects, are better treated within the $U(3)$ framework.

Unlike for $K_S \to \pi^0\gamma\gamma$, the pion pole contribution from Q_8 plays a minor role here as $K^+ \to \pi^+\pi^0$ is purely $\Delta I = 3/2$ when on-shell. The pole amplitude is thus quite sensitive to
Figure 3: a) Pole diagrams for $K^+ \to \pi^+\gamma\gamma$. b) $\mathcal{B}(K^+ \to \pi^+\gamma\gamma)$ as a function of G_s^s/G_s for $\theta_P = -15^\circ, -20^\circ, -25^\circ$. c) $\mathcal{B}(K^+ \to \pi^+\gamma\gamma)$ for $m_{\gamma\gamma} < 108$ MeV, $\times 10^9$. Assuming non-negligible loop contributions8, the recent upper bound10 hints towards negative values for G_s^s/G_s. The stars refer to Eq.(14).

Q_s^8 and Q_{27}. Already at the $SU(3)$ level, when η_0 effects are discarded, one can see that the 27 operator actually accounts for about half of the pole-induced branching fraction:

$$\mathcal{B}(K^+ \to \pi^+\gamma\gamma)^{P,SU(3),\mathcal{O}(p^4)}_{m_{\gamma\gamma}>220 \text{ MeV}} = 1.17 \times 10^{-7},$$

(18)

instead of 0.51 \times 10$^{-7}$ without Q_{27}7. The contribution of the η_0 meson may substantially suppress or enhance this value, depending on G_s^s/G_s (Fig.3b).

In particular, for $G_s^s/G_s = -0.38 \pm 0.12$ and $\theta_P \in [-25^\circ, -15^\circ]$, poles can be safely neglected with respect to loops:

$$\mathcal{B}(K^+ \to \pi^+\gamma\gamma)^{P,U(3),\mathcal{O}(p^4)}_{m_{\gamma\gamma}>220 \text{ MeV}} \lesssim 0.3 \times 10^{-7},$$

(19)

while, for $G_s^s/G_s > 0$, they could increase the total rate by more than 20%. In that case, they should be taken into account in the extraction of the $\mathcal{O}(p^4)$ combination of counterterms \hat{c} to reach consistency between the total and differential rate7,8,9.

Finally, restricting the analysis to the low energy end of the $\gamma\gamma$ spectrum, negative values of G_s^s/G_s are already favoured (cf. Fig3c).

6 Implication for ΔM_K

Pole diagrams also play a central role in the long distance contribution to the K_L-K_S mass difference ΔM_K (Fig.4a). The situation here is quite similar to the one of $K_L \to \gamma\gamma$, in that the contribution of Q_8 vanishes both in $SU(3)$ and $U(3)$ ChPT at $\mathcal{O}(p^4)$, the leading effect being driven by the \hat{Q}_1 operator, i.e., a $u\bar{u}$ pair (Fig.4b). The resulting pole formula was worked out in our original paper11. Its contribution to ΔM_K is summarized in Fig.4c. For the preferred value Eq.(14), the negative contribution of poles partially cancels the positive contribution of $\pi\pi$ loops, leaving to short-distance effects11 the task of reproducing the bulk of the observed mass difference.
7 Conclusion

The $\Delta S = 1$ effective operator Q_8^s, which describes pure η_0 effects, holds the key to a phenomenological extraction of the penguin fraction in $K \to \pi\pi$ amplitudes via the change of chiral basis $(\hat{Q}_1, \hat{Q}_2, \hat{Q}_6) \leftrightarrow (Q_8, Q_{27}, Q_8^s)$.

From $\mathcal{B}(K_L \to \gamma\gamma)$, we found $G_8^s/G_8 \simeq -1/3$, which corresponds to a rather smooth non-perturbative current-current operator evolution and a penguin contribution to the $\Delta I = 1/2$ rule around $2/3$ at the hadronic scale. Better measurements of the decays $K_S \to \pi^0\gamma\gamma$ and $K^+ \to \pi^+\gamma\gamma$ would provide important tests of this picture.

The recourse to (broken) $U(3)$ chiral symmetry also allowed us to identify correctly the leading contribution to $K_L \to \gamma\gamma$, namely the transition $K_L \to u\bar{u}$ generated by \hat{Q}_1. This results in a new pole formula, based on \hat{Q}_1 instead of \hat{Q}_6. For $G_8^s/G_8 < 0$, the sign of the interference between the short-distance and dispersive $\gamma\gamma$ amplitudes in $K_L \to \mu^+\mu^-$ is flipped.

Along the same lines, the pole contribution to ΔM_K^{LD} was shown to be essentially due to \hat{Q}_1, pleading again for a better knowledge of the low-energy constants x_i, that is to say, of G_8^s.

Acknowledgments: S.T. would like to thank the organizers of the XLIrst Rencontres de Moriond. J.-M.G. acknowledges support by the Belgian Federal Office for Scientific, Technical and Cultural Affairs through IAP P5/27; C.S. is supported by the Schweizerischer Nationalfonds; S.T. is supported by the DFG grant No. NI 1105/1-1; this work has also been supported in part by IHP-RTN, EC contract No. HPRN-CT-2002-00311 (EURIDICE).

References

1. J.-M. Gérard, C. Smith and S. Trine, Nucl. Phys. B730 (2005) 1.
2. http://na48.web.cern.ch/NA48/NA48-2/Overview/results.html
3. W. A. Bardeen, A. J. Buras and J.-M. Gérard, Phys. Lett. B180 (1986) 133; Nucl. Phys. B293 (1987) 787; Phys. Lett. B192 (1987) 138.
4. A. Lai et al. [NA48 Collaboration], Phys. Lett. B551 (2003) 7.
5. M. Adinolfi et al. [KLOE Collaboration], Phys. Lett. B566 (2003) 61.
6. G. Ecker, A. Pich and E. de Rafael, Phys. Lett. B189 (1987) 363.
7. A. Lai et al. [NA48 Collaboration], Phys. Lett. B578 (2004) 276.
8. G. Ecker, A. Pich and E. de Rafael, Nucl. Phys. B303 (1988) 665.
9. G. D’Ambrosio and J. Portolés, Phys. Lett. B386 (1996) 403; err. ibid., B389 (1996) 770.
10. P. Kitching et al. [E787 Collaboration], Phys. Rev. Lett. 79 (1997) 4079.
11. A. V. Artamonov et al. [E949 Collaboration], Phys. Lett. B623 (2005) 192.
12. S. Herrlich and U. Nierste, Nucl. Phys. B419 (1994) 292.