Metabolic Effects of Replacing Sucrose by Isomaltulose in Subjects With Type 2 Diabetes

A randomized double-blind trial

Stefanie Brunner, MSc1
Ines Holub, Dipl. Troph2
Stephan Theis, PhD2
Andrea Gostner, PhD, MD3
Ralph Melcher, MD3

Petra Wolf, Dipl Stat4
Ulrike Amann-Gassner, PhD1
Wolfgang Scheppach, MD5
Hans Hauner, MD1

OBJECTIVE—To test the hypothesis that replacement of sucrose with isomaltulose in sweet foods and beverages improves metabolic control in patients with type 2 diabetes.

RESEARCH DESIGN AND METHODS—One hundred ten patients with type 2 diabetes were randomized to receive sweet foods containing either 50 g/day isomaltulose or sucrose for 12 weeks as part of their habitual diet under free-living conditions. HbA1c at 12 weeks was the primary outcome parameter.

RESULTS—In the final analysis comprising 101 patients, isomaltulose did not significantly affect HbA1c at 12 weeks (sucrose: 7.39 ± 0.78%; isomaltulose: 7.24 ± 0.76%; regression coefficient [b]: 0.02 [95% CI: −0.21 to 0.25], P = 0.844). Triglycerides at 12 weeks were significantly lower in the isomaltulose versus the sucrose group (b: 34.01 [6.59–61.44], P = 0.016). Other secondary parameters did not significantly differ between groups.

CONCLUSIONS—Isomaltulose did not influence glycemic control assessed as HbA1c in type 2 diabetes under free-living conditions but was associated with lower triglyceride levels.

Diabetes Care 35:1249–1251, 2012

In patients with type 2 diabetes, a low glycemic diet is recommended to reduce postprandial hyperglycemia and, thereby, improve glycemic control (1). Isomaltulose (Palatinose), a disaccharide composed of α-1,6-linked glucose and fructose, was recently introduced as an alternative sugar with delayed digestion and absorption (2) resulting in a low glycemic index (GI) of 32 (3).

The aim of this study was to examine whether replacing a daily intake of 50 g sucrose by isomaltulose in sweet foods and beverages over a period of 12 weeks would result in improved glycemic control assessed as HbA1c and metabolic parameters in individuals with type 2 diabetes.

RESEARCH DESIGN AND METHODS—The study followed a randomized, controlled, double-blind design with two parallel groups. One hundred ten patients with type 2 diabetes (age > 18 years, BMI 25–40 kg/m2, HbA1c 6.5–9.0) treated by diet alone or with oral antidiabetic agents were recruited through advertisements between March 2007 and December 2008 in two study centers (Munich and Wuerzburg, Germany) and randomly assigned to either isomaltulose (n = 57) or sucrose (n = 53) intervention. The study protocol was approved by the ethical committees of the Technical University of Munich and the University of Wuerzburg, Germany.

The participants received sweet foods and beverages (biscuits, toffees, milk drinks, soft drinks) containing either 50 g of isomaltulose or sucrose per day in a double-blinded fashion for a period of 12 weeks and were asked to maintain their habitual diet but to refrain from additional sweetened foods other than the test products.

At study entry, after 6 and 12 weeks, venous blood was taken in the morning after a 12-h overnight fast to determine clinical routine and metabolic parameters. HbA1c, fasting glucose, serum fructosamine, insulin, C-peptide, proinsulin, nonesterified fatty acids (NEFA), total cholesterol, triglycerides, LDL-cholesterol, HDL-cholesterol, and standard clinical parameters were analyzed by a certified laboratory. Homeostasis model assessment—insulin resistance (HOMA-IR) was calculated as previously described (4).

Commercial ELISA kits were used to analyze oxidized (ox)LDL (Mercodia, Uppsala, Sweden), leptin, and adiponectin (R&D Systems, Abingdon, U.K.).

The primary end point of the study was HbA1c at week 12. With a sample size of 55 patients per group, the study had a power of 80% to show a statistically significant difference of at least 0.3% in HbA1c at week 12 between the groups with a type I error level of 0.05 assuming a common standard deviation of 0.5.

RESULTS—One hundred patients completed the study (isomaltulose, n = 52; sucrose, n = 48). Ten patients dropped out for various reasons but not because of side effects (Supplementary Fig. 1). One...
Effects of isomaltulose in type 2 diabetes

Table 1—HbA1c and secondary target parameters over the course of the 12-week intervention period in the sucrose vs. isomaltulose group

Parameter	Baseline	Week 6	Week 12	Adjusted mean difference [95% CI] at week 12*
HbA1c (%)	Sucrese	Isomaltulose	Sucrese	Isomaltulose
	7.39 ± 0.66 (49)	7.36 ± 0.70 (49)†	7.39 ± 0.78 (49)	0.02 [−0.21 to 0.25]
Fasting glucose (mg/dL)	Sucrese	Isomaltulose	Sucrese	Isomaltulose
	145 ± 26.2 (49)	144 ± 27.8 (49)	152 ± 29.9 (49)	5.68 [−4.88 to 16.24]
Insulin (mIU/L)	Sucrese	Isomaltulose	Sucrese	Isomaltulose
	10.0 [2.0; 31.0]	0.59 [0.13; 1.00]	10.0 [2.0; 31.0]	0.05 [−0.05 to 0.10]
Fructosamine (μmol/L)	Sucrese	Isomaltulose	Sucrese	Isomaltulose
	151 [79; 459]	145 [77; 459]	144 [77; 459]	34.01 [6.59–61.44]
C-peptide (nmol/L)	Sucrese	Isomaltulose	Sucrese	Isomaltulose
	120 ± 29.2 (52)	123 ± 34.9 (52)	123 ± 30.6 (52)	−4.13 [−11.42 to 3.15]
Triglycerides (mg/dL)	Sucrese	Isomaltulose	Sucrese	Isomaltulose
	49.2 ± 0.98 (49)	48.4 ± 0.86 (49)	48.8 ± 0.99 (49)	0.36 [−2.73 to 3.45]
Total cholesterol (mg/dL)	Sucrese	Isomaltulose	Sucrese	Isomaltulose
	193 ± 34.8 (49)	191 ± 38.7 (49)	197 ± 37.4 (49)	2.08 [−6.00 to 10.16]
LDL cholesterol (mg/dL)	Sucrese	Isomaltulose	Sucrese	Isomaltulose
	119 ± 31.3 (49)	118 ± 31.9 (49)	119 ± 33.3 (49)	−4.13 [−11.42 to 3.15]
HDL cholesterol (mg/dL)	Sucrese	Isomaltulose	Sucrese	Isomaltulose
	49.2 ± 0.98 (49)	48.4 ± 0.86 (49)	48.8 ± 0.99 (49)	0.36 [−2.73 to 3.45]
NEFA (mmol/L)	Sucrese	Isomaltulose	Sucrese	Isomaltulose
	0.65 [0.10; 1.30]	0.52 [0.16; 1.10]	0.62 [0.14; 1.40]	0.03 [−0.05 to 0.10]
oxLDL (µL/L)	Sucrese	Isomaltulose	Sucrese	Isomaltulose
	74.8 ± 27.3 (49)	70.7 ± 21.3 (49)	69.7 ± 21.9 (48)	1.04 [−4.13 to 6.20]
Leptin (ng/mL)	Sucrese	Isomaltulose	Sucrese	Isomaltulose
	11.9 [2.0; 81.1]	10.0 [2.0; 71.0]	10.9 [2.1; 72.7]	−1.44 [−4.75 to 1.88]
Adiponectin (µg/mL)	Sucrese	Isomaltulose	Sucrese	Isomaltulose
	3.11 [0.77; 18.1]	3.14 [0.76; 19.6]	3.11 [0.94; 13.40]	0.37 [−0.49 to 1.22]

Data are presented as mean ± SD (n) for normally distributed variables or as median [min; max] (n) if the distribution was skewed. Individuals who dropped out from the study before the week 6 visit were excluded from the analysis (n = 9). Patients who dropped out thereafter (n = 1) were included by using a last-observation-carried-forward analysis. Significant differences at week 12 are in boldface. †Data are presented as the regression coefficient [b] along with the 95% CI from multiple linear regression analyses controlling for BMI and baseline levels. ‡Mean of HbA1c measured at weeks 4 and 8. §Significant change over time, P < 0.05 (repeated-measures ANOVA for normally distributed variables; Friedman test for skewed variables).
CONCLUSIONS—Short-term studies have consistently shown a reduced glycemnic and insulin response after isomaltulose compared with sucrose/glucose ingestion in healthy patients as well as in individuals with type 2 diabetes (5–8). Our study is the first to investigate the effects of a 12-week dietary intervention with 50 g/day isomaltulose compared with sucrose in sweet foods and beverages in patients with type 2 diabetes under free-living conditions. Both dietary interventions were well-tolerated by the participants, independent of the antidiabetic medication. HbA1c, the primary outcome parameter, remained virtually unchanged in both groups after 12 weeks of intervention. Likewise, no profound effects on most other secondary metabolic parameters and cardiovascular risk factors were observed. However, triglyceride levels were significantly lower in the isomaltulose group, which is in accordance with findings from an animal study (9) and might indicate a potential metabolic benefit if sustained over the longer term.

Thus, the results of our study suggest that replacement of 50 g/day sucrose with isomaltulose is not enough to induce a pronounced and clinically relevant effect on HbA1c in individuals with type 2 diabetes in addition to their standard antidiabetic treatment and under free-living conditions. This may be explained by the fact that isomaltulose and sucrose, respectively, constituted only approximately 10% of total caloric intake resulting in an approximate reduction of the overall GI by ~6 units according to a simple calculation (3), and it is obvious that this proportion within a mixed diet is too small to evoke distinct effects on metabolic control. This finding is in line with a recent 1-year trial in type 2 diabetic patients that shows that an only modest reduction of the dietary GI does not affect HbA1c, as a long-term marker for glycemic control (10), although meta-analyses have provided evidence for low GI diets as a useful strategy in the management of diabetes (11–13).

In conclusion, substitution of 50 g/day sucrose by isomaltulose in sweet food and beverages over 12 weeks did not significantly affect HbA1c and most other metabolic and cardiovascular risk parameters, despite significantly lower triglyceride levels in the isomaltulose versus the sucrose group.

Although the principle of isomaltulose action is unquestionable, a more marked modification of the dietary GI may be required to achieve a clinically significant improvement in glycemic control in type 2 diabetic patients.

Acknowledgments—The study was funded by Suedzucker AG, Mannheim/Ochsenfurt, Germany. The study results and data contained in the published work have been developed by and/or for the Suedzucker group. The Suedzucker group reserves the exclusive right to use the results and data for possible health claim requests. S.B., A.G., R.M., P.W., U.A.-G., and H.H. received a defined grant paid to their institutions from Suedzucker AG, Mannheim/Ochsenfurt, Germany, to conduct this study. I.H. and S.T. are employed by Suedzucker AG, Mannheim/Ochsenfurt, Germany. No other potential conflicts of interest relevant to this article were reported.

S.B. and I.H. interpreted data and wrote the manuscript. I.H., S.T., A.G., U.A.-G., W.S., and H.H. conceived and designed the study. I.H. and U.A.-G. implemented the study. R.M., W.S., and H.H. supervised the study. P.W. performed statistical analysis. S.T., W.S., and H.H. were responsible for critical revision of the manuscript and its important intellectual content. H.H. is the guarantor of this work and, as such, had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

The authors thank K. Backhaus, Y. Breusing, D. Dobarth, E. Kelber, H. Lichtlein, A. Volk (University Hospital Wuerzburg), E. Titova (Julius-Spital Wuerzburg), E. Jobst and E. Hammerl (Else Kröner-Fresenius Center for Nutritional Medicine, Technische Universität München) for excellent assistance; Dr. C. Groeger (Labor Dr. Limbach and colleagues, Heidelberg) for coordination of blood analysis; and M. Arenz and T. Doerr (Suedzucker AG Mannheim/Ochsenfurt) for development and preparation of test products.

References
1. Bantle JP, Wylie-Rosett J, Albright AL, et al.; American Diabetes Association. Nutrition recommendations and interventions for diabetes: a position statement of the American Diabetes Association. Diabetes Care 2008;31(Suppl 1):S61–S78
2. Lina BAR, Jonker D, Kozianowski G. Isomaltulose (Palatinose): a review of biological and toxicological studies. Food Chem Toxicol 2002;40:1375–1381
3. Atkinson FS, Foster-Powell K, Brand-Miller JC. International tables of glycemic index and glycemic load values: 2008. Diabetes Care 2008;31:2281–2283
4. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Tumer RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985;28:412–419
5. Kawai K, Okuda Y, Yamashita K. Changes in blood glucose and insulin after an oral palatinose administration in normal subjects. Endocrinol Jpn 1985;32:933–936
6. Kawai K, Yoshikawa H, Murayama Y, Okuda Y, Yamashita K. Usefulness of palatinose as a caloric sweetener for diabetic patients. Horm Metab Res 1989;21:338–340
7. Arai H, Mizuno A, Saito M, et al. Effects of a palatinose-based liquid diet (Inslow) on glycemic control and the second-meal effect in healthy men. Metabolism 2007;56:115–121
8. Holub I, Gostner A, Theis S, et al. Novel findings on the metabolic effects of the low glycemic carbohydrate isomaltulose (Palatinose). Br J Nutr 2010;103:1730–1737
9. Arai H, Mizuno A, Matsuo K, et al. Effect of a novel palatinose-based liquid balanced formula (MHN-01) on glucose and lipid metabolism in male Sprague-Dawley rats after short- and long-term ingestion. Metabolism 2004;53:977–983
10. Wolfer TM, Gibbs AL, Mehling C, et al. The Canadian Trial of Carbohydrates in Diabetes (CCD), a 1-y controlled trial of low-glycemic-index dietary carbohydrate in type 2 diabetes: no effect on glycated haemoglobin but reduction in C-reactive protein. Am J Clin Nutr 2008;87:114–125
11. Livesey G, Taylor R, Hulshof T, Howlett J. Glycemic response and health—a systematic review and meta-analysis: relations between dietary glycemic properties and health outcomes. Am J Clin Nutr 2008;87:2585–2685
12. Opperman AM, Venter CS, Oosthuizen W, Thompson RL, Vorster HH. Meta-analysis of the health effects of using the glycaemic index in meal-planning. Br J Nutr 2004;92:367–381
13. Brand-Miller JC, Hayne S, Petocz P, Colagrucci S. Low-glycemic index diets in the management of diabetes: a meta-analysis of randomized controlled trials. Diabetes Care 2003;26:2261–2267