Urinary tract infection (UTI) is one of the most common bacterial infections in humans and a major cause of morbidity and represent an important public health problem of all ages from neonate to geriatric age group (Mazzariol et al., 2017). Among of the most common infectious diseases, second ranking after respiratory tract infection is urinary tract infection which involve about 250 million people in developing countries annually. (Piranfar et al., 2014). It is classified to bladder infection (cystitis) and kidney infection (pyelonephritis), which can be either symptomatic or asymptomatic (Prakasam et al., 2012). Although diuerent causative agents can be responsible for UTIs, bacteria are the major cause being responsible for more than 95% of UTI cases, The Escherichia coli (E. coli) accounts for approximately 85% of community acquired UTIs and 50% of hospital acquired UTIs (Ahmad et al., 2015). Clermont and colleagues developed a triplex PCR assay to detect the genes chuA, yjaA, and TspE4.C2 in 2000. Regarding the presence/absence of these three genes, an E. coli strain could be classified into one of the main phylogroups intestinal pathogenic E. coli (InPEC) (include A, B1 group) while extraintestinal pathogenic E. coli (ExPEC) (include B2, or D group) (Clermont et al.,
CTX-M type β-lactamases constitute a relatively small but growing group of ESBLs. Resistance to cefotaxime conferred by blaCTX-M (Bush class A β-lactamases) (Bush and Jacoby, 2010). CTX-M enzyme were common among community acquired and hospital acquired infection with E. coli which regards the most important pathogen producing these enzymes (Coque et al., 2008). Chromosome-encoded genes of intrinsic cefotaximases in Kluyvera spp. are proposed to be the progenitors of CTX-M family (Zhao and Hu, 2013). Most of CTX-Ms exhibit powerful activity against cefotaxime and ceftriaxone and some of them for ceftazidime. The family of CTX-M enzymes is grouped on the basis of similarities in amino acid sequences into four major phylogenetic groups: the CTX-M-I group (CTX-M-1, CTX-M-3, CTX-M-10, CTX-M-12, CTX-M-15, CTX-M-22, CTX-M-23, CTX-M-28, CTX-M-29, CTX-M-30

Table 1. Primer pairs with amplicon size for blaCTX-M genotyping

Target Gene	Primer sequence (5'-3')	Product (bp)	Annealing (°C)	Ref.
chuA	F GACGAACCAACGGTACAG	279	59	(Clermont et al., 2000)
	R TGCCGCCGTTACCAAGACA			
yjaA	F TGAAGTGTCAGAGGCGCTG	211	59	
	R ATGGAGAATGCGTTCCTCAAC			
TSpE4.C2	F GAGTAAATGTCGGGGCACTCA	152	59	
	R CGCGGAACAAGGATATTACG			
bla CTX-M-I	F GACGATGTCGTCGCGCCGC	499	55°C	(Kiiru et al., 2012)
	R AGCCGCGCATGCAGTTGAG			
bla CTX-M-II	F GCGACCGGCTGATGGTAGAC	351	55°C	
	R CGGATATGCTGGATCTGCA			
bla CTX-M-III	F CGCTTGCAGTGCAGGCGCA	305	55°C	
	R GCTGACTGATGAGAGCGC			
bla CTX-M-IV	F GCTGGAAGAAGCAGCGGAG	474	62°C	

Table 2. Distribution of CRUPEC among phylogenetic subgroups

Total	No. (%)	chuA/yjaA/TspE4.C2	Phylogenic subgroup	Phylogenic group
9(16.07%)	2(3.57%)	-ve/-ve/-ve	Subgroup A0	Group A
	2(3.57%)	-ve/+ve/-ve	Subgroup A1	Group A
	5(8.93%)	-ve/-ve/+ve	B1	Group B1
47(83.93%)	6(10.72%)	+ve/+ve/-ve	Subgroup B2	Group B2
	37(66.07%)	+ve/+ve/+ve	Subgroup B2	Group B2
	3(5.36%)	+ve/-ve/+ve	Subgroup D1	Group D
	1(1.78%)	-ve/-ve/+ve	Subgroup D2	Group D

J PURE APPL MICROBIOL, 12(3), SEPTEMBER 2018.
and CTX-M-32), the CTX-M-II group (CTX-M-2, CTX-M-4, CTX-M-5, CTX-M-6, CTX-M-7, CTX-20), the CTX-M-III group (CTX-M-8), and the CTX-M-IV group (CTX-M-9, CTX-M-13, CTX-M-14, CTX-M-16, CTX-M-17, CTX-M-18, CTX-M-19, CTX-M-21 and CTX-M-27) (Kiiru et al., 2012). The current study aimed to investigate dominant CTX-M genotypes among local UPEC isolated from patients with cystitis.

MATERIALS AND METHODS

Bacterial Isolates

Fifty-six UPEC isolates with confirmed resistance to cefotaxime (according to CLSI, 2016) were selected to study the phylogenetic subgroups using specific primer pairs to amplify **chuA**, yjaA and TspE2.C4 genes. Genotyping of **blaCTX-M** were performed using specific four pairs of primers for **blaCTX-M-I**, **blaCTX-M-II**, **blaCTX-M-III** and **blaCTX-M-IV** groups.

Extraction of Genomic DNA

Favor Prep™ Genomic DNA Mini Kit (Favorgen/Taiwan) was used to extract genomic DNA from *E. coli* isolates following the manufacturer’s protocol.

Polymerase Chain Reaction

Fifty-six isolates were screened for the resistance genes CTX-M by a multiplex PCR assay using specific primer pair (Table 1). PCR amplification reactions were performed in a volume of 20 μl containing. The cycling parameters were as follows: an initial denaturation at 94°C for 2 min; followed by 30 cycles of 94°C for 30s, 55°C for 30s, and 72°C for 30s; and with a final extension at 72°C for 5 min (Clermont et al., 2000; Kiiru et al., 2012). The amplified PCR products were subjected to electrophoresis at 1.5% agarose gel in 0.5X TBE buffer.

Fig. 1. 1.5% Agarose gel electrophoresis at 72 volt for 90 minutes of PCR to **blaCTX-M-I** amplicon (499bp) and **blaCTX-M-III** amplicon (305bp); lane M represent DNA marker size(100bp) while E1-E88 represent the isolates

Fig. 2. 1.5% Agarose gel electrophoresis at 72 volt for 90 minutes of PCR to **blaCTX-M-I** amplicon (499bp) and **blaCTX-M-III** amplicon (305bp); lane M represent DNA marker size(100bp) while E89-E118 represent the isolates

Fig. 3. 1.5% Agarose gel electrophoresis at 72 volt for 90 minutes of PCR to **blaCTX-M-II** amplicon (351bp); lane M represent DNA marker size(100bp) while E1-E39 represent the isolates
RESULTS

The results of phylogenetic subgrouping of UPEC using multiplex PCR to detect chuA (279bp), yjaA (211bp) and TspE4.C2 (152bp) revealed that among 56 CRUPEC 47 (83.93%) were ExPEC (37 (66.07%) for B2, 6 (10.72%) for B2', 3 (5.36%) for D1 and 1 (1.78%) for D2). InPEC compile 9 (16.07%) (Table 2). The results in accordance with many similar studies, ExPEC compile 80%-94.82% (Lee et al., 2016; Ochoa et al., 2016; Lara et al., 2017; Al-Khaqani et al., 2017; Salehzadeh and Zamani, 2018). Predominance of B2 subgroup were stated by many studies (Alizade et al., 2014; Merza and Jubrael, 2015; Al-Khafaji and Al-Thahab, 2017).

Genotypic investigation of cefotaxime resistance among 56 CRUPEC were performed using specific four primer pairs to detect the genotypes of blaCTX-M groups. Multiplex-PCR were used to detect blaCTX-M-I (499bp) and blaCTX-M-III (305bp) while monoplex-PCR for blaCTX-M-II (351bp) and blaCTX-M-IV (474bp) (Figures 1-8). The results revealed existence of all blaCTX-M genotypes in different percentage: 36 (64.28%) for blaCTX-MI, 38 (67.85%) for blaCTX-MII 26 (46.43%) for blaCTX-MIII and 18 (32.14%) for blaCTX-MIV (Figure 9). Concern

![Fig. 4. 1.5% Agarose gel electrophoresis at 72 volt for 90 minutes of PCR to blaCTX-M-II amplicon (351bp); lane M represent DNA marker size(100bp) while E40-E87 represent the isolates](image1)

![Fig. 5. 1.5% Agarose gel electrophoresis at 72 volt for 90 minutes of PCR to blaCTX-M-II amplicon (351bp); lane M represent DNA marker size(100bp) while E88-E120 represent the isolates](image2)

![Fig. 6. 1.5% Agarose gel electrophoresis at 72 volt for 90 minutes of PCR to blaCTX-M-IV amplicon (474bp) lane M represent DNA marker size(100bp) while E1-E40 represent the isolates](image3)
possessing of isolates for more than one \(\text{blaCTX-M} \) genotypes were also reported in this study. Our results revealed that \(\text{blaCTX-M} \) were present in 50 (89.29%) of CRUPEC. Coexistence of more than one genotypes were reported in 38 (67.86%) (Table 3). The results displayed that 40 (80%) of \(\text{blaCTX-M} \) positive CRUPEC were belong to group B2, 4 (8%) for group D, 3 (6%) for group A and 3 (6%) for group B1. Our results were roughly similar to those stated by other researcher. Mohajeri et al., (2014) found that UPEC that have \(\text{blaCTX-M} \) compile (93.3%). Occurrence of \(\text{blaCTX-M} \) ranged from 70-90% (Hernandez et al., 2014; Micenková et al., 2014; Poovendran and Ramanathan, 2015; Al-Mayahie and Al Kuriashy, 2016; Nojoomi et al., 2016; Padmavathy et al., 2016).

Fig. 7. 1.5% Agarose gel electrophoresis at 72 volt for 90 minutes of PCR to \(\text{blaCTX-M-IV} \) amplicon (474bp) lane M represent DNA marker size(100bp) while E41-E88 represent the isolates.

Fig. 8. 1.5% Agarose gel electrophoresis at 72 volt for 90 minutes of PCR to \(\text{blaCTX-M-IV} \) amplicon (474bp) lane M represent DNA marker size(100bp) while E89-E120 represent the isolates.

Fig. 9. Distribution of \(\text{blaCTX-M} \) genotypes among CRUPEC.
Table 3. Distribution of cefotaxime resistance genotypes among UPEC

Cefotaxime Resistance Genotypes	Phylogenetic Subgroups								
	A0	A1	B1	B22	B23	D1	D2	Total No.	(%)
CTX-MI/CTX-MII/CTX-MIII/CTX-MIV	0	0	0	3	1	0	4	38	
CTX-MI/CTX-MII/CTX-MIV	0	0	0	3	1	0	4	38 (67.86)	
CTX-MI/CTX-MII/CTX-MIII	0	0	1	2	10	0	14		
CTX-MI/CTX-MII/CTX-MIV	0	0	0	3	1	0	4		
CTX-MI/CTX-MII/CTX-MIV	0	0	0	0	4	0	4		
CTX-MI/CTX-MII/CTX-MIV	0	0	0	1	0	0	2		
CTX-MI/CTX-MII/CTX-MIV	0	0	0	1	0	0	1		
CTX-MI/CTX-MII/CTX-MIV	0	0	1	0	1	0	2		
CTX-MI/CTX-MII/CTX-MIV	0	0	1	2	0	0	3		
CTX-MI/CTX-MII/CTX-MIV	0	1	1	0	0	0	3	12	
CTX-MI/CTX-MII/CTX-MIV	2	0	0	5	0	0	7	(21.43)	
CTX-MI/CTX-MII/CTX-MIV	0	0	0	0	0	0	0		
CTX-MI/CTX-MII/CTX-MIV	0	0	0	2	0	0	2		
CTX-MI/CTX-MII/CTX-MIV	0	2	0	4	0	0	6		
CTX-MI/CTX-MII/CTX-MIV	0	3	5	35	3	1		(10.71)	
CTX-MI/CTX-MII/CTX-MIV	2	6	10	70	6	2		56	
CTX-MI/CTX-MII/CTX-MIV	4	2	6	10	70	6	2	(100)	

DISCUSSION

The dominance of B23 phylosubgroup can be attributed to that most of ExPEC belong to group B2 and D while presence of isolated belong to intestinal phylogroups (A and B1) may be due to contamination and autoinoculation from feces in person with low personal hygiene (Cao et al., 2011; Luo et al., 2011; Merza and Jubrael, 2015; Abdullah and Lakshmidevi, 2016). BlaCTX-M is Extend spectrum beta-lactamase (ESBLs) with hydrolytic activity against cefotaxime and ceftriaxone with high susceptibility to tazobactam. The high prevalence of BlaCTX-M may attributed to the quick spread worldwide among both hospital and community acquired infections especially UTIs and so it called pandemic-BlaCTX-M (Cantón and Coque, 2006). The global spread of this enzyme may be due to high usage of third generation especially cefotaxime which leads to explosive of resistance. Also due to high spread of plasmid, transposon, integron and insertion sequence which ac a carrier for blaCTX-M may responsible for their high prevalence (Cantón et al., 2012). The spread of blaCTX-M may be via international traveler (Arcilla et al., 2017). There are more than 25 variant of BlaCTX-M and emergence of these types may be resulted from recombination as a results of presence of the two different blaCTX-M types (Sun et al., 2017). Dominance of blaCTX-M in were reported in many studies and blaCTX-M15 is the commonly documented variant among UPEC (Park et al., 2012; Castanheira et al., 2014; Hasan et al., 2015; Bonger et al., 2016; Mshana et al., 2016; Abrar et al., 2017; Hashemizadeh et al., 2018). The low prevalence of blaCTX-M-III and blaCTX-M-IV were also reported in many studies from different geographical region (Tekiner and Özpynar, 2016; Nairoukh et al., 2018).

Concern co-existence of multiple genotypes of blaCTX-M clusters, it is very risky and may leads to new variant of blaCTX-M. Our results revealed 38/56 CUPEC isolates with multiple blaCTX-M clusters. He et al., 2016 found that as a results of recombination of blaCTX-MI cluster (blaCTX-M-15) and blaCTX-MIV cluster (blaCTX-M-14), the new variants with high stability and catalytic activity will results like blaCTX-M-64. Several stable and highly active hybrid including blaCTX-M-123, blaCTX-M-137, and blaCTX-M-132 were also resulted from recombination of blaCTX-M-15 and blaCTX-M-14 (Nagano et al., 2009; He et al., 2013; Tian et al., 2014; He et al., 2015; Liu et al., 2015).
CONCLUSION

The current study concludes the presence of blaCTX-M clusters (I, II, III, IV) as a main mechanism or ceftotaxime resistance among CRUPEC and coexistence of multiple clusters within same isolates that may leads to emergence of new hybrides of blaCTX-M.

ACKNOWLEDGEMENT

I am warmly thanks Dr. Noor S.K. Al-Khafaji for kind cooperation and many thanks for Dr. Naeem R. Al-Jebori for assistance in isolate collection.

REFERENCES

1. Abdullah, A.H.K.Y. and Lakshmidevi, N., Prevalence of Escherichia Coli sequence type 131 (ST131) among extra-intestinal clinical isolates in different phylogenetic groups. Health Sciences, 2016; 5(3), pp.90-94.
2. Abrar, S., Vajeeha, A., Ul-Ain, N. and Riaz, S., Distribution of CTX-M group I and group III β-lactamases produced by Escherichia coli and klebsiella pneumoniae in Lahore, Pakistan. Microbial pathogenesis, 2017; 103, pp.8-12.
3. Ahmad, W., Jamshed, F. and Ahmad, W., Frequency of escherichia coli in patients with community acquired urinary tract infection and their resistance pattern against some commonly used anti bacteria. Journal of Ayub Medical College Abbottabad, 2015; 27(2), pp.333-337.
4. Alizade, H., Ghanbarpour, R. and Aflatoonian, M.R., Virulence genotyping of Escherichia coli isolates from diarrheic and urinary tract infections in relation to phylogeny in southeast of Iran. Trop Biomed, 2014; 31(1), pp.174-82.
5. Al-Khafaji, N.S. and Al-Thahab, A.A., Phylogenetic Study of Escherichia coli Isolated from Clinical Samples in Hilla City, Iraq. Journal of Pure and Applied Microbiology, 2017; 11(4): p. 1777-1781.
6. Al-Khaqani, M.M., Alwash, M.S. and Al-Dahmoshi, H.O., Investigation of phylogroups and some virulence traits among cervico-vaginal Escherichia coli (CVEC) isolated for female in Hilla City, Iraq. Malaysian Journal of Microbiology, 2017; 13(2), pp.132-138.
7. Al-Mayahie, S. and Al Kuriahy, J.J., Distribution of ESBLs among Escherichia coli isolates from outpatients with recurrent UTIs and their antimicrobial resistance. The Journal of Infection in Developing Countries, 2016; 10(06), pp.575-583.
8. Arcilla, M.S., van Hattum, J.M., Haverkate, M.R., Bootsm, M.C., van Genderen, P.J., Grohs, A., Grobusch, M.P., Lashof, A.M.O., Molhoek, N., Schultz, C. and Stobberingh, E.E., Import and spread of extended-spectrum β-lactamase-producing Enterobacteriaceae by international travellers (COMBAT study): a prospective, multicentre cohort study. The Lancet Infectious Diseases, 2017; 17(1), pp.78-85.
9. Bogner, C., Mietheke, T., Wantia, N., Gebhard, F., Busch, D. and Hoffmann, R., 2016. Differences in ESBL Genes between E. coli, Klebsiella spp. and Enterobacter Cloacae Strains. International Journal of Clinical & Medical Microbiology, 2016.
10. Bush, K. and Jacoby, G.A., Updated functional classification of β-lactamases. Antimicrobial agents and chemotherapy, 2010; 54(3): pp.969-976.
11. Cantón, R. and Coque, T.M., The CTX-M β-lactamase pandemic. Current opinion in microbiology, 2006; 9(5), pp.466-475.
12. Cantón, R., González-Alba, J.M. and Galán, J.C., CTX-M enzymes: origin and diffusion. Frontiers in microbiology, 2012; 3 :p.110.
13. Cao, X., Cavaco, L.M., Lv, Y., Li, Y., Zheng, B., Wang, P., Hasman, H., Liu, Y. and Aarestrup, F.M., Molecular Characterization and Antimicrobial Susceptibility testing of Escherichia coli isolates from urinary tract infections in 20 Chinese hospitals. Journal of clinical microbiology, 2011; pp.JCM-02503.
14. Castanheira, M., Farrell, S.E., Krause, K.M., Jones, R.N., and Sader, H.S., Contemporary Diversity of β-Lactamases among Enterobacteriaceae in the Nine U.S. Census Regions and Ceftazidime-Avibactam Activity Tested against Isolates Producing the Most Prevalent β-Lactamase Groups. Antimicrobial Agents and Chemotherapy, 2014; 58(2): 833–838.
15. Clermont, O., Bonacorsi, S. and Bingen, E., Rapid and simple determination of the Escherichia coli phylogenetic group. Applied and environmental microbiology, 2000; 66(10), pp.4555-4558.
16. CLSI. Performance Standards for Antimicrobial Susceptibility Testing, 26th ed. CLSI supplement M100S. Wayne, PA: Clinical and Laboratory Standards Institute; 2016.
17. Coque, T.M., Baquero, F. and Canton, R., Increasing prevalence of ESBL-producing Enterobacteriaceae in Europe. Eurosurveillance,
25. Kiiru, J., Kariuki, S., Goddeeris, B.M. and Butaye, P., Analysis of β-lactamase phenotypes and carriage of selected β-lactamase genes among Escherichia coli strains obtained from Kenyan patients during an 18-year period. *BMC microbiology*, 2012; 12(1), p.155.

26. Lara, F., Nery, D.R., de Oliveira, P.M., Araujo, M.L., Carvalho, F.R., Messias-Silva, L.C., Ferreira, L.B., Faria-Junior, C. and Pereira, A.L., Virulence markers and phylogenetic analysis of Escherichia coli strains with hybrid EAEC/UPEC genotypes recovered from sporadic cases of extraintestinal infections. *Frontiers in microbiology*, 2017; 8: p.146.

27. Lee, J.H., Subhadra, B., Son, Y.J., Kim, D.H., Park, H.S., Kim, J.M., Koo, S.H., Oh, M.H., Kim, H.J. and Choi, C.H., Phylogenic group distributions, virulence factors and antimicrobial resistance properties of uropathogenic Escherichia coli strains isolated from patients with urinary tract infections in South Korea. *Letters in applied microbiology*, 2016; 62(1), pp.84-90.

28. Liu, L., He, D., Lv, L., Liu, W., Chen, X., Zeng, Z., Partridge, S.R. and Liu, J.H., blaCTX-M-1/9/1 hybrid genes may have been generated from blaCTX-M-15 on an IncI2 plasmid. *Antimicrobial agents and chemotherapy*, 2015; pp.AAC-00501.

29. Luo, C., Walk, S.T., Gordon, D.M., Feldgarden, M., Tiedje, J.M. and Konstantinidis, K.T., Genome sequencing of environmental Escherichia coli expands understanding of the ecology and speciation of the model bacterial species. *Proceedings of the National Academy of Sciences*, 2011; p.201015622.

30. Mazzariol, A., Bazaj, A. and Cornaglia, G., Multi-drug-resistant Gram-negative bacteria causing urinary tract infections: a review. *Journal of Chemotherapy*, 2017; 29(suppl), pp.2-9.

31. Merza, N.S. and Jubrael, J.M., Phylogenic Grouping of Uropathogenic Escherichia coli Using Different Molecular Typing Methods in Kurdistan Region-Iraq. *Int. J. chem. BioMol. Sci*, 2015; pp.51-55.

32. Merza, N.S. and Jubrael, J.M., Phylogenic Grouping of Uropathogenic Escherichia coli Using Different Molecular Typing Methods in Kurdistan Region-Iraq. *Int. J. chem. BioMol. Sci*, 2015; pp.51-55.

33. Micenková, L., Šišková, P., Bosák, J., Jamborová, I., Ėrnahorská, L. and Šmajs, D., Characterization of human uropathogenic ESBL-producing Escherichia coli in the Czech Republic: spread of CTX-M-27-producing strains in a university hospital. *Microbial Drug Resistance*, 2014; 20(6), pp.610-617.

34. Mohajeri, P., Rostami, Z., Farahani, A. and Norozi, B., Distribution of ESBL-producing Uropathogenic Escherichia coli and carriage of selected β-lactamase genes in Hospital and community isolates in west of Iran. *Annals of
35. Mshana, S.E., Falgenhauer, L., Mirambo, M.M., Mushiri, M.F., Moremi, N., Julius, R., Seni, J., Imirzalioglu, C., Matee, M. and Chakraborty, T., Predictors of bla CTX-M-15 in varieties of Escherichia coli genotypes from humans in community settings in Mwanza, Tanzania. *BMC infectious diseases*, 2016; **16**(1), p.187.

36. Nagano, Y., Nagano, N., Wachino, J.I., Ishikawa, K. and Arakawa, Y., Novel chimeric β-lactamase CTX-M-64, a hybrid of CTX-M-15-like and CTX-M-14 β-lactamases, found in a Shigella sonnei strain resistant to various oxyimino-cephalosporins, including ceftazidime. *Antimicrobial agents and chemotherapy*, 2009; **53**(1), pp.69-74.

37. Nairookh, Y.R., Mahafzah, A.M., Irshaid, A. and Shehabi, A.A., Molecular Characterization of Multidrug Resistant Uropathogenic E. Coli Isolates from Jordanian Patients. *The open microbiology journal*, 2018; **12**, p.1.

38. Nojoomi, F. and Ghasemian, A., Prevalence of ESBL phenotype, blaCTX-M-1, blasHV and blaTEM genes among uropathogenic Escherichia coli isolates from 3 military hospitals of Tehran, Iran. *Journal of Coastal Life Medicine*, 2016; pp.616-618.

39. Ochoa, S.A., Cruz-Córdova, A., Luna-Pineda, V.M., Reyes-Grajeda, J.P., Cázares-Dominguez, V., Escalona, G., Sepúlveda-González, M., López-Montiel, F., Arellano-Galindo, J., López-Martínez, B. and Parra-Ortega, I., Multidrug-resistant Extend-Spectrum Beta Lactamases-producing Enterobacteriaceae from foods of animal origin. *Brazilian Journal of Microbiology*, 2016; **47**(2), pp.444–451.

40. Padmavathy, K., Padma, K. and Rajasekaran, S., Multidrug resistant CTX-M-producing Escherichia coli: a growing threat among HIV patients in India. *Journal of pathogens*. 2016; **1**(1):1-6.

41. Park, S.H., Byun, J.H., Choi, S.M., Lee, D.G., Kim, S.H., Kwon, J.C., Park, C., Choi, J.H. and Yoo, J.H., Molecular epidemiology of extended-spectrum β-lactamase-producing Escherichia coli in the community and hospital in Korea: emergence of ST131 producing CTX-M-15. *BMC infectious diseases*, 2012; **12**(1), p.149.