Intensity of class I antigen expression on human tumour cell lines and its relevance to the efficiency of non-MHC-restricted killing

A.M.E. Nouri, R.F. Hussain, A.V.L. Dos Santos, M. Mansouri & R.T.D. Oliver

Department of Medical Oncology, The Royal London Hospital, Whitechapel, London E1 1BB, UK.

Summary A modified tetrazolium reduction assay (MTT) was used to assess the relation between HLA class I antigen expression on tumour cells and their susceptibility as a target for non-MHC restricted LAK/NK cytotoxicity using interleukin-2 activated peripheral blood mononuclear cells (MNC) from normal individuals. At 20/1 effector/target ratio this ranged from no killing to 77%. The efficiency of killing was dependent on duration of effector cell culture with IL-2, peaking at day 10 and declining thereafter. This killing could be enhanced by addition of other cytokines including interferons alpha, beta and gamma.

Study of a panel of 15 tumour cell lines using a single effector showed that there was no statistically significant inverse correlation (using Spearman rank test) between the degree of tumour class I expression and LAK/NK killing at 20/1 (r = 0.23, P = 0.39) and 10/1 (r = 0.30, P = 0.27) and at 5/1 E/T ratio r = 0.47, P = 0.08) respectively. Lack of inverse correlation between these two parameters came from study of one bladder tumour line (FEN), whose absent class I antigens had been corrected by transfection with β2 microglobulin gene. At high E/T ratio (20/1) there was an increase in the susceptibility of target cells to lysis (36% parent cell, 45% transfected cell), whilst at lower E/T ratios (1/1) there was significantly more killing of the non-transfected cells (10% vs 31%). The addition of anti-class I antibody W6/32 increased killing by 18% but this was non-specific as the same increase occurred with a class II antibody.

These data suggest that overall there was not an inverse correlation between class I expression and LAK/NK killing at high E/T ratios, whilst at low (5/1 or lower) E/T ratios this correlation nearly reached statistical significance suggesting that the conflicting literature reports may be due to a threshold levels of effector cells above which the masking effects of MHC antigens disappears.

There is increasing recognition that abnormalities in Major Histocompatibility Complex (MHC) antigens may be a factor for tumour escape from immunosurveillance (for review see Oliver & Nouri, 1992). Reports suggesting that correction of these defects in tumour cells either by cytokine gene transfection (Gansbacher et al., 1990) or MHC gene transfection (Hui et al., 1984) induced immunity in recipients that enables them to reject parental untransfected tumour cells, offer real hope that genetic engineering could provide a cost effective approach to treatment of cancer.

Critical to the hypothesis of primacy of T cell immunity in resistance to cancer is the occurrence of specific MHC restricted anti-tumour cytolytic T lymphocytes (CTL). Though these can be demonstrated in a minority of melano-mas with apparently normal class I expression but over expression of non-functioning class II (Alexander et al., 1989) and the occasional other tumour under certain conditions (Lee et al., 1978; Belledgeun et al., 1988), most adult solid tumour patients only show lymphokine activated killer (LAK) and natural killer (NK) cytotoxicity (Itoh et al., 1988; Nouri et al., 1991) possibly a reflection of their degree of aberrant class I expression.

NK activity was first described by Kiessling et al. (1975). Because some tumour cells, such as Daudi were consistently resistant to NK cytotoxicity, it was the discovery that IL-2 activated lymphocytes were cytotoxic for Daudi that led to the definition of LAK cells (Grimm et al., 1982). It is now thought that LAK represents an activated form of NK cytotoxicity (Lange et al., 1991) and are involved in protection against experimental animal tumours (Mule et al., 1984) and in leukaemia in man (Archimbaud et al., 1991).

There has been considerable controversy over the influence of class I antigen on LAK/NK killing. Some authors (Karre et al., 1986; Lobo & Spencer 1989; Mazziarz et al., 1990) have demonstrated an inverse correlation, while others (Pena et al., 1989) failed to confirm these observations.

To clarify these conflicting views LAK/NK activity of cells from normal individuals activated with IL-2 against a series of cell lines with varying degrees of class I antigens was investigated together with a study of the effect of correcting HLA class I defect on class I negative tumour line by gene transfection.

Materials and methods

Interferons, monoclonal antibodies, plasmids and cell lines etc

Interferon α, β and γ were obtained from Wellcome, ASTA Pharma (Bioferon) and Biogen respectively. Monoclonal antibodies (Mabs) were W6/32 (Brodsky et al., 1979, detects all β2m-associated HLA-A,B,C antigens) and L243 (HB55, Lampson & Levy 1980, detects class II antigens). The pβ2m-13 plasmid contains β2m gene and was kindly donated by Dr E.J. Baas (Dept Cellular Biochemistry, The Netherlands Cancer Institute) and marker gene pSV2neo by Dr G. Reynolds, Cancer Immunology Laboratory, ICRF, Oxford). Cell lines Fen, Ha and Lan were in-house established lines from tumour biopsies of patients with transitional cell carcinoma, teratoma and seminoma respectively. For cell lines J82, Wil, RT4, Scaber, RT112, Tera I, Tera II, EP2012, 5637, SKV14 and lines see reference (Nouri et al., 1992a), for MCF7 from Human cell culture Bank (Mason Research inst. Rockville, MD, USA), T47D from ECACC (catalogue No. 85102201) and A431 from ATCC (CRL1555). Optimum and Lipofectin for transfection were purchased from Gibco (Cat No. 041-01985H) and BRL (Cat No. 8292 SA) respectively.

Preparation of MNCs and development of IL-2-activated cells or TILs

The MNCs from normal individuals were separated using density gradient technique (Lymphoprep, Nycomed, Pharma), as described previously (Nouri et al., 1991). The interface cells were aspirated washed and stimulated with IL-2 (100 U/ml-1· Biogen) for 72–96 h (unless otherwise stated) at 37°C. These activated cells, which are known to have both LAK and NK activities, were washed and resuspended at the required density to be used as effector cells (E).
Tumour infiltrating lymphocytes (TILs) were isolated from tumour biopsies as described previously (Nouri et al., 1991). Briefly, suspension of single cells prepared from tumours were prepared immediately after operation and after washes the cells were activated with IL-2 (100 u ml⁻¹) and cultured. The TILs from successful cases were fed every 2 to 3 days by adjusting the cell number to 0.5×10^6 ml⁻¹ in RPMI plus 10% Foetal Calf Serum (FCS, Gibco) and IL-2 (100 u ml⁻¹).

Binding assay

Tumour cells i.e. target (1 $\times 10^6$/well) were treated with interferons (IFN) α (1,000 u ml⁻¹), β (2,000 u ml⁻¹) or IFN γ (100 μg ml⁻¹) for 48 h (conditions which have previously been found to be optimum for maximum class I and II antigen induction, (Nouri et al., 1992b), in flat-bottomed microtitre plates and appropriate concentration of specific monoclonal antibodies containing 0.02% sodium azide (50 μl/well, in three replicates) were added and incubated for 45 mins at room temperature (RT). After three washes, 50 μl of diluted (in RPMI plus 10% FCS and 0.02% azide) iodinated rabbit anti-mouse antibody (50,000 cpm/well, Amershams) was added and incubation continued for a further 45 min. Following three washes, the cells were lysed with 100 μl/well of 2% (v/v) triton × 100 in water and the degree of radioactivity in the supernatants was measured using a gamma counter.

Cytotoxicity using MTT reduction assay

The use of MTT reduction assay for assessment of cytotoxicity has previously been reported (Hussain et al., 1992). This was carried out using the modified MTT (3-[4,5-Dimethyl- thiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay described by Mosmann (1983). Exponentially growing cells were treated with trypsin (0.05%) + EDTA (0.02%) for 5 min. washed resuspended in RPMI containing 10% FCS and plated at 10^5/well in flat-bottomed microtitre plates (Nunc). Effector cells i.e. IL-2-activated MNCs were added to give effector/target (E/T) ratios of 5:1, 10:1 or 20:1 and were incubated for 4 h at 37°C. After incubation, plates were washed with fresh medium plus 2% FCS and the remaining cells were loaded with 10 μl/well of 5 mg ml⁻¹ MTT plus 100 μl/well of medium and incubated for 3 h at 37°C. After the incubation medium was removed and 100 μl of acidified (0.04 M HCl) isopropanol was added, and the cells were incubated for 30 min at RT followed by the reading of the plate by an ELISA reader with 570 nm filter.

Transfection

Transfection was carried out using Lipofectin technique as described previously (Bourcraut et al., 1991). Briefly, 0.5×10^6 of exponentially growing adherent cells (in 25 cm² flask) were washed with sterile phosphate buffered saline (PBS) followed by addition of 5 ml of Optimem. Cells were incubated for 4 h at 37°C. This was followed by the addition of genomic DNA containing 2 μg ml⁻¹ of β2-m gene and 2 μg ml⁻¹ of marker gene i.e. pSV2neo, which were added to 50 μl of PBS and 2.5 ml of Optimem in a bijoue tube. The content of this tube was added very gently to a second bijoue tube containing 150 μl of Lipofectin and 2.5 ml of Optimem. This mixture was then added to the culture flask previously treated with the Optimem.

Cells were incubated overnight at 37°C after replacing the medium with fresh RPMI containing 10% FCS and the incubation continued for a further 10 h. The supernatant was then replaced by fresh medium containing Geneticin (500 μg ml⁻¹ Sigma) the concentration found to be sufficient to kill 100% of untransfected cells during the first weeks of culture). After 2 weeks of culture the surviving cells were cloned and positive clones were selected using W6/32 as a marker in peroxidase staining technique.

Results

Time course

The time course of LAK/NK killing against tumour targets was investigated, a representative of which is shown in Figure 1. At 20:1 and 10:1 E/T ratios after 10 days of culture there was a significant decrease in the level of cytotoxicity with time suggesting the inverse relationship between the degree of LAK/NK killing and duration of effector cell culture.

Investigation of correlation between the levels of class I antigen expression and LAK/NK killing

In order to establish whether the intensity of class I antigen expression on tumour targets affects their susceptibility to LAK/NK killing, parallel binding and killing experiments were carried out on 14 cell lines. As can be seen from Table I, there was a varying degree of class I antigen expression on tumour targets ranging from complete negative (cpm below 100 like Tera I and Fen) to highly positive line SKV14.

![Figure 1](image_url)
Figure 1 Time course of cytotoxic activity of IL-2-activated LAK/NK of an individual against Fen cell line.
Table I LAK/NK activity of IL-2-activated MNCs on cell lines expressing different intensity of class I antigens

Lines	Class I	LAK/NK killing E/T ratios		
	20/1	10/1	5/1	
J82	2,064 ± 407	2	1	1
SKV14	1,627 ± 288	11	17	-2
Wil	1,208 ± 67	14	2	ND
MCF7	1,186 ± 77	28	22	16
A431	1,121 ± 110	15	-2	7
5637	1,118 ± 110	-1	1	-2
T47D	1,105 ± 77	59	43	31
RT112	1,026 ± 57	-9	1	-16
Scaber	920 ± 109	0	-1	20
Lan	749 ± 76	2	7	16
Ep2102	706 ± 54	36	35	33
RT4	566 ± 61	-20	-17	10
Tera II	207 ± 26	34	28	18
Fen	86 ± 12	77	62	52
Tera I	70 ± 21	26	20	11

Results are expressed in mean ± s.d. (c.p.m.) of three replicates for class I antigens and in percent specific for LAK/NK. r and P denote Spearman correlation value and significance level between the class I antigens and the degree of killing. ND denotes not done.

(1,627 ± 288 cpm). The LAK/NK activity varied from target to target and when assessed using the Spearman-Rank correlation coefficient, there was no statistically significant correlation between the class I antigen and efficiency of killing at 20/1 and 10/1 and 5/1 E/T ratios (Table I). However, significant killing of tumour lines expressing lower class I antigens was observed when LAK/NK cells were tested against different targets at lower E/T ratios (Table II). Correlation with class II antigens after IFNγ (100 u ml⁻¹) stimulation of the target cells was less informative (Table III) and even after splitting the cells into higher and lower inducer there was no significant correlation with LAK/NK killing.

Correlation of missing class I antigen and its effects on efficiency of LAK/NK killing

If the intensity of class I antigen expression is an important factor for LAK/NK killing, the introduction of missing class I antigens into a class I negative tumour target ought to decrease their susceptibility to LAK/NK killing. In our previous study we have demonstrated that bladder cell line Fen lacks β2 microglobulin (Nouri et al., 1992b). After transfection with the missing β2m gene and selection with Geneticin, positive and negative cell clones were expanded and tested for susceptibility to LAK/NK killing. As can be seen from Table IV the level of binding for class I antigens before and after transfection were 132 ± 20 and 2,000 ± 48 cpm respectively. At higher E/T ratios (20/1) the restoration of class I antigens did not have a significant protective effects on LAK/NK killing (36% vs 45% respectively). However, at low E/T ratio 1/1 the restoration of class I expression was associated with less killing.

Effects of cytokines on target cells

Cytokines like interferons are known to upregulate MHC antigens. Experiment was set up to investigate the changes in the susceptibility of class I negative tumour target Fen after 48 h of IFNγ stimulation. As can be seen from Figure 2, there was a significant increase in the susceptibility of the cells in response to IFNs. The percent increase in the killing for E/T ratios of 20/1 and 10/1 for IFNα, β and γ treated cells were 30, 47, 44 and 6, 20 and 18 respectively indicating that all three IFNs increase susceptibility of target cells to killing. In addition, it was also found that the effector cell treatment with these IFNs increased their killing potential (Figure 3). This resulted in an increase of up to 20% over and above that with IL-2 alone and this may be a factor for their therapeutic efficacy of these cytokines.

In a separate experiment, in which the target cells were pretreated with IFNγ 48 h prior to testing, mononuclear antibodies against class I (W6/32) and class II (HB55) were added to investigate their influence of the LAK/NK killing.

Table II Percent cytotoxic killing of LAK/NK of different individuals against a number of tumour targets

Target	Effector	E/T ratios		
	20/1	10/1	5/1	
Fen	1	34	10	0
(a)	2	56	46	40
(b)	3	79	81	68
(c)	4	16	12	14
Tera I	6	64	48	38
(a)	1	30	34	23
(b)	2	83	71	60
(c)	3	60	52	45
J82	4	10	8	6
(a)	5	60	20	10
(b)	3	30	15	13
(c)	4	30	12	10
RT112	1	32	8	nd
(a)	2	3	2	6
(b)	3	12	7	16
(c)	4	4	2	4

Results are expressed in mean ± s.d. nd denoted not done, a = class negative lines (c.p.m. <100), b = intermediate class I expressor (207 c.p.m.) and c = high class I expressor (206 and 1,026 c.p.m.).

Table III Correlation between efficiency of LAK/NK killing and inducibility of MHC antigen induction in response to IFNy

Lines	IFNy Class II	LAK/NK killing E/T ratios	
	20/1	5/1	
T47D	1,575 ± 174	59	31
SKV14	1,484 ± 183	11	-2
Fen	1,337 ± 34	77	52
Wil	1,227 ± 118	14	1
J82	1,020 ± 112	2	1
MCF7	960 ± 114	28	16
Tera I	677 ± 90	26	11
Scaber	619 ± 24	1	-20
RT112	261 ± 28	-9	-16
RT4	212 ± 92	-20	10
Ep2102	130 ± 32	36	33
Tera II	93 ± 26	34	18
Lan	89 ± 22	6	6

Results are expressed as mean ± s.d. (c.p.m.) of three replicates. ND, r and P denote, not done, Spearman correlation values and level of significance respectively.

Table IV LAK/NK killing on Fen cell line before and after gene transfection

E/T ratios	Non-transfected	Transfected
20/1	36	45
10/1	45	51
5/1	41	52
2.5/1	26	48
1/1	31	10

Results of class I antigen binding and LAK/NK killing activity are expressed in mean ± s.d. of three replicates (in c.p.m.) and percent killing respectively.
et
inglymphocytes
tometastases
by
The
(TCR,
shown
from
negative
LAK/NK
and
shown
nagal
maximum
antibody
The
As
antigen
indicating
Discussion
results
bodies
E/T
FcR-mediated
treatment
Figure2
Specific
al.,
resultsofthis
specificity
ratios
whereas
what
individual
were
McMichael
1979).
activity
use
to
CTL
demonstrated
during
first
week
killing
of
tumour
targets
classI
is
HLA
et
et
1988;
MHC
stem
loss
have
recognised
with
cephalosporins
antibiotics
restricted
to
inhibit
was
NK
targets.
LAK/NKkilling
classI
were
to
the
same
tumour
and
that
there
be
to
better
targets.
Specific
CTL
was
discovered
long
before
LAK/NK
cells
and
shown
to
be
restricted
by
MHC
classI
antigens
(Zinkernagel et al., 1979). NK in contrast, were only
discovered
from
what
were
thought
to
be
false
positive
reactions
in
negative
controls
for
CTL
assays
(Carlson & Wegman 1977).
The
specificity
of
CTL
were
refined
by
T
cell
cloning
and
shown
to
use
the
alpha/beta
dimer
of
the
T
cell
receptor
(TCR,
McMichael et al., 1988; Moss et al., 1991) and, unlike
LAK/NK
activity
(Gorelik et al., 1988), could be
inhibited
by
antibodies
to
HLA
classI
(Salter
et
al.,
1989). The
demonstration
that
cloned
MHC
restricted
tumour
infiltrating
lymphocytes
from
melanomas
could
circulate
and
home
to
metastases
in
association
with
their
rejection
(Rosenberg
et
al.,
1990) is
to
date
the
most
convincing
evidence
that
anti-tumour
immune
specificity
exists
in
man.
LAK/NK,
were
originally
referred
to
as
NK
and
were
found
to
exist
spontaneously
in
peripheral
blood
without
the
need
for
preactivation
(Gorelik
et
al.,
1988).
However,
when
recombinant
cytokines
and
particularly
IL-2
became
available
and
the
cytotoxic
cells
induced
found
to
be
more
active
against
tumours
such
as
Daudi
which
were
consistently
negative
with
NK
cells
they
were
given
a
separate
name
i.e.
Lymphokine
Activated
Killers
or
LAK
(Grimm
et
al.,
1982).
However
more
recent
research
using
lymphocyte
differentiation
markers
and
studies
of
their
cytotoxic
mechanism
suggest
that
LAK/NK
are
probably
the
same
cell
(Lange
et
al.,
1991) and
the
differential
cytotoxicity
may
only
reflect
the
degree
of
activation
or
differentiation
from
a
common
stem
cell.
The
results
of
this
paper
have
demonstrated
that
at
high
E/T
ratios
LAK/NK
activity
do
not
show
an
inverse
correlation
with
the
degree
of
classI
loss
as
has
been
demonstrated
by
some
authors
(Lobo & Spencer 1989; Mazzarz
et
al.,
1990) and
that
the
correction
of
these
antigens
by
cytokine
treatment
or
transfection
does
not
alter
LAK/NK
activity.

Figure 2 Increased susceptibility of Fen cell line by Interferon
treatment
to
cytotoxic
activity
of
IL-2-activated
LAK/NK
Cells.

As
can
be
seen
from
Table
V. The
addition
of
both
antibodies
increased
the
target
killing
by
as
much
as
18% indicating
that
the
increase
target
killing
by
anti-class
I
antibody
is
not
class
I
antigen
specific
and
may
be
due
to
the
FcR-mediated
killing.

Discussion
The
results
of
this
investigation
have
demonstrated
that
there
was
a
large
variation
in
the
efficiency
of
LAK/NK
killing
of
different
individuals
against
the
same
tumour
target
and
the
same
individual
against
different
targets
and
this
was
at
its
maximum
during
the
first
week
to
10
days
of
culture.
The
results
also
demonstrated
that
there
was
no
inverse
correlation
between
the
LAK/NK
killing
and
the
intensity
of
class
I
antigen
when
the
cytotoxicity
assay
was
performed
at
high
E/T
ratios
whereas
at
deeper
E/T
classes
the
class
I
negative
tumours
were
found
to
be
better
targets.

Specific
CTL
was
discovered
long
before
LAK/NK
cells
and
shown
to
be
restricted
by
MHC
classI
antigens
(Zinkernagel
et
al.,
1979). NK
in
contrast,
were
only
discovered
from
what
were
thought
to
be
false
positive
reactions
in
negative
controls
for
CTL
assays
(Carlson
&
Wegman
1977).
The
specificity
of
CTL
were
refined
by
T
cloning
and
shown
to
use
the
alpha/beta
dimer
of
the
T
receptor
(TCR,
McMichael
et
al.,
1988; Moss
et
al.,
1991) and, unlike
LAK/NK
activity
(Gorelik
et
al.,
1988),
could
be
inhibited
by
antibodies
to
HLA
classI
(Salter
et
al.,
1989). The
demonstration
that
cloned
MHC
restricted
tumour
infiltrating
lymphocytes
from
melanomas
could
circulate
and
home
to
metastases
in
association
with
their
rejection
(Rosenberg
et
al.,
1990) is
to
date
the
most
convincing
evidence
that

Table V Effect of monoclonal antibody addition on the efficiency of
LAK/NK
killing

E/T ratios	NT	γ	γ + HB55	γ + W6/32	
A	10/1	54	62	63	72
	5/1	47	50	56	63
B	20/1	23	25	19	33
	10/1	15	12	8	9

Results are expressed in % specific killing. Effector cells from two
individuals (A and B) were mixed with target cells pre-treated with
IFN γ for 48 h. Antibodies W6/32 (anti-class I) and HB55 (anti-class
II) were added in 100 µl at the beginning of 4 h killing period.

Figure 3 Enhancement of cytotoxic activity of IL-2-activated
cells
by
Interferons
tested
against
Fen
tumour
cell
line.
Our findings support the views of Pena et al. (1989) who demonstrated that the efficiency of LAK/NK killing was independent of MHC class I antigen expression, and those by Aosi et al. (1991) who demonstrated that restoration of MHC class I antigens by addition of exogenous immunogenic peptides did not affect the efficiency of NK killing on target cells expressing both heavy and light chains of class I antigens in the absence of W6/32 antibody.

A possible explanation for these conflicting results, which might also explain why our data at low E/T ratio did show an inverse correlation between HLA class I level and LAK/NK cytotoxicity (Table I) was reported by Storkus et al. (1991). They demonstrated that transfection of some polymorphic class I genes such as HLA-A3, HLA-B7 and HLA-B27 into a class I negative tumour cell line had a protective effect on NK lysis but whilst other such as HLA-A2 did not, suggesting that conformational structure of different polymorphic class I antigens may influence the efficiency of its blocking effect on NK killing.

Our working hypothesis in explaining the contradictory reports is that the over-riding factor for controlling the non-MHC restricted LAK/NK killing is a receptor/target interaction independent of the mechanism regulating class I expression. However under circumstances when receptor expression is low, certain class I molecules as demonstrated by Storkus et al. (1991) would have conformational masking effect, hence becoming the limiting factor for the killing. On the other hand when receptors are in excess LAK/NK lysis occurs whatever the level of class I expression.

As yet the clinical relevance of these cells is unclear and their role in resistance to cancer is still controversial. While there was some suggestion that they were clinically significant from the studies of Rosenberg et al. (1989) whose clinical trial in melanoma demonstrated that IL-2 plus LAK/NK was more effective than IL-2 alone in terms of durable complete remission, his results in renal cell cancer were not significant and overview of pooled results in renal cell cancer failed to demonstrate any advantage of combination therapy over the results from IL-2 alone (Oliver & Nouri, 1992).

To better clarify our uncertainty about the role of LAK/NK in vivo, more work including specific blocking and augmentation experiments in vitro and in vivo are needed to identify the target recognition molecules and receptor mechanism involved.

This work was supported in part by The Imperial Cancer Research Fund and the Oncology Unit of The Royal London Hospital. We are grateful to clinical colleagues in The Urology Department, particularly Mr B. Jenkins and Mr A. Paris for providing clinical materials.

References

ALEXANDER, M.A., BENNICELLI, J. & GUERRY, D. (1989). Defective antigen presentation by human melanoma cell lines cultured from advance, but not biologically early, disease. J. Immunol., 142, 4070–4078.

AOSI, F., OHLAN, C., LIUSSERN, H.G., FRANKONSS, L., POLEGH, H., TOWNSEND, A., KARRE, K. & STAUS, H.J. (1991). Different types of allospecific CTLs identified by their ability to recognise but not to induce defective target cells. Eur J. Immunol., 21, 2767–2771.

ARCHIBAUD, E., BAILLY, M. & DORE, J.F. (1991). Inducibility of lymphokine activated killer (LAK) cells in patients with acute myelogenous leukaemia in complete remission and its clinical relevance. Br J. Haemat., 77, 328–334.

BELLEGRUNN, A., MUUL, L.M. & ROSENBERG, S.A. (1988). Interleukin-2 expanded tumour infiltrating lymphocytes in human renal cell carcinoma: isolation, characterisation and anti-tumour immunity Cancer Res., 48, 206–214.

BOUCRAUT, R., HAKEM, A., FAUCHET, R. & LE BOUTEILLER, P. (1991). Transfected trophoblast-derived human cell can express a single HLA class I alleric product. Tissue Antigens, 37, 84–89.

BRODSKY, F.M., PARIHAM, P., BRANSTABLE, C.J., CRUMPON, M.J. & BOER, W.F. (1979). Monoclonal antibodies for analysis of the HLA system. Immunol. Rev., 37, 1–31.

CARLSON, G. & WEGMAN, T. (1977). Rapid in vivo destruction of semisynthetic and allogeneic cells by nonmonoclonized mice as a consequence of nonidentity at H2. J. Immunol., 118, 2130–2137.

GANSBACHER, B., ZIER, K., DANIELS, B., CRONIN, K., BANNERJI, R. & GILBOA, E. (1990). Interleukin 2 gene transfer into tumour cells abrogates tumorigenecity and induces protective immunity. J. Exp. Med., 172, 1217–1224.

GORELIK, E., GUNSY, Y. & HERBERMAN, R.B. (1988). H-2 antigen expression and sensitivity of BL6 melanoma cells to natural killer cell cytotoxicity. J. Immunol., 140, 2096–2102.

GRIMM, E.A., MAZUMDER, A., ZHANG, H.Z. & ROSENBERG, S.A. (1982). The lymphokine activated killer cell phenomenon: Lysis of NK resistant fresh solid tumour cells by IL-2-activated autologous human peripheral blood lymphocytes. J. Exp. Med., 155, 1823–1841.

HUSSEIN, R.F., NOURI, A.M.E. & OLIVER, R.T.D. (1992). A new approach for measurement of cytotoxicity using colorimetric assay. J. Immunol. Methods, 160, 99–96.

HUI, K., GROVELD, F. & FESTENSTEIN, H. (1984). Reduction of transplantable AKR leukaemia cells following HMA DNA-mediated transformation. Nature, 311, 755–752.

ITO, K., PLATZKANIS, C.D. & BALCH, C.M. (1988). Autologous tumour specific cytotoxic T lymphocytes in the infiltrate of human metastatic melanomas: activation by interleukin-2 and autologous tumour cells and involvement of the T cell receptor. J. Exp. Med., 168, 1419–1441.

KARRE, K., LIUSSERN, H.G., PIONTEK, G. & KIELLING, R. (1986). Selective rejection of H-2-deficient lymphoma variants suggests alternative immune defence strategy. Nature, 319, 675–677.

KIELSSING, R., KLEIN, E. & WIGZELL, H. (1975). Natural killer cells in the mouse. I. Cytotoxic cells with specificity for mouse Moloney leukaemia cells. Specificity and distribution according to genotype. Eur. J. Immunol., 12, 112–115.

LAMPSON, L. & LEVY, R. (1980). Two populations of la molecules on a human B cell line. J. Immunol., 125, 293–299.

LEE, S.K. & OLIVER, R.T.D. (1978). Leukaemia specific T cell-mediated lymphocyte toxicity in patients with acute myelogenous leukaemia. J. Exp. Med., 17, 912–924.

LOBO, P. & SPENCER, C.E. (1989). Use of anti-HLA antibodies to mask major histocompatibility complex gene products on tumour cell can enhance susceptibility of these cells to lysis by natural killer cells. J. Clin. Invest., 83, 278–287.

MAZIARZ, R.T., MENTZER, S.J., BURAKOFF, S.J. & FALLER, D.V. (1990). Distinct effects of interferon-g and MHC class I surface antigen levels on resistance of the K562 tumour cell line to natural killer-mediated lysis. Cellular Immunol., 130, 329–338.

MCMICHAEL, A.J., GOTCH, F.M., SANTOS-AGUADO, J. & STROMINGER, J.L. (1988). Effect of mutations and variation of HLA-A2 on recognition of a virus peptide epitope by T lymphocytes. Proc. Natl Acad. Sci. USA, 85, 9194–9198.

MOSMANN, T. (1983). Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol., 65, 55–63.

MOSS, P.A.H., MOOTS, R.J., ROSENBERG, W.M.C., ROWLAND-JONES, S.J., BODMER, H.C. & MCMICHAEL, A.J. (1991). Extensive conservation of alpha and beta chains of the human T cell antigen receptor recognizing HLA-A2 and influenza matrix peptides. Proc. Natl Acad. Sci. USA, 88, 8979–8980.

MULE, J.J., SHU, S., SCHWARZ, S.L. & ROSENBERG, S.A. (1984). Adoptive immunotherapy of established pulmonary metastases with LAK cells and recombinant interleukin-2. Science, 225, 1487–1489.

NOURI, A.M.E., BERGBAUM, A., LEDERER, E., CROSBY, D., SHAMSA, A. & OLIVER, R.T.D. (1991). Paired tumour infiltrating lymphocyte (TIL) and tumour cell line from bladder cancer: A new approach to study tumour immunology in vitro. Eur. J. Cancer, 27, 608–612.

NOURI, A.M.E., HUSSAIN, R.F., DOS SANTOS, A.V.L., GILLOTT, D.J. & OLIVER, R.T.D. (1992a). Induction of MHC antigens by tumour cell lines in response to interferons. Eur. J. Cancer, 28, 1110–1115.

NOURI, A.M.E., HUSSAIN, R.F., OLIVER, R.T.D., HANBY, A.M., BARTKOVA, I. & BODMER, J. (1992b). Lack of correlation between MHC antigen expression and the presence of activated T cells in testis tumours. Eur. J. Cancer (in press).
1228 A.M.E. NOURI et al.

OLIVER, R.T.D. & NOURI, A.M.E. (1992). T cell immune response to cancer in humans and its relevance for immunodiagnosis and therapy. Cancer Surveys, 13, 173–204.

PENA, J., SOLANA, R., ALONSO, M.C., SANTAMARIA, M., SERRANO, R., RAMIREZ, R. & CARRACEDO, J. (1989). MHC class I expression on human tumour cells and their susceptibility to NK lysis. J. Immunogenetics, 16, 407–411.

ROSENBERG, S.A., LOTZE, M.T., YANG, J.C., LINEHAN, W.M., SEIPP, C., CALABRO, S., KARP, S.E., SHERRY, R.M., STEINBERG, S. & WHITE, D.E. (1989). Combination therapy with interleukin-2 and alpha interferon for the treatment of patients with advanced cancer. J. Clin. Oncol., 7, 1863–1864.

ROSENBERG, S.A., AEBERSOLD, P., CORNETTA, K., KASID, A., MORGAN, R.A., MOEN, R., KARSON, E.M., LOTZE, M.T., YANG, J.C., TOPALIEN, S.L., MERINO, M.J., CULVER, K., MILLER, D., BLAESE, R.M. & ANDERSON, W.F. (1990). Gene transfer into human immunotherapy of patients with advanced melanoma, using tumour infiltrating lymphocytes modified by retroviral gene transduction. N. Engl. J. Med., 323, 570–578.

STORKUS, W.J., SALTER, R.D., ALEXANDER, J., WARD, F.E., RUIZ, R.E., CRESSWELL, P. & DAWSON, J.R. (1991). Class I-induced resistance to natural killing: identification of nonpermissive residues in HLA-A2. Proc. Natl Acad. Sci. USA, 88, 5989–5992.

ZINKERNAGAL, R.M. & DOHERTY, P.C. (1979). MHC cytotoxic T cells: studies on the biological role of polymorphic major transplantation antigens determining T cell restriction specificity. Advanced Immunol., 27, 51–77.