Retrospective Study

Clinical significance of HOTAIR expression in colon cancer

Zhi-Fen Luo, Dan Zhao, Xi-Qing Li, Yong-Xia Cui, Ning Ma, Chuang-Xin Lu, Ming-Yue Liu, Yun Zhou

Abstract

AIM: To detect the expression of the long noncoding RNA HOTAIR in colon cancer and analyze its relationship with clinicopathological parameters of colon cancer.

METHODS: Total RNA was extracted from 80 colon cancer tissues and matched tumor-adjacent normal colon tissues and reverse transcribed. Quantitative polymerase chain reaction was used to detect the expression of HOTAIR. The relationship between the expression of HOTAIR and clinicopathological parameters of colon cancer was analyzed.

RESULTS: The expression of HOTAIR was significantly higher in colon cancer tissues than in matched tumor-adjacent normal colon tissues (P < 0.05). HOTAIR expression was significantly higher in cases with lymph node metastasis than in those without metastasis; in poorly differentiated and undifferentiated cases than in highly and moderately differentiated cases; and in stages III + IV cases than in stages I + II cases (P < 0.05).

CONCLUSION: HOTAIR expression is upregulated in colon cancer, suggesting that HOTAIR plays an important role in the tumorigenesis, development and metastasis of colon cancer. HOTAIR may act as an oncogene and represents a new molecular target for the treatment of colon cancer.

Key words: HOTAIR; Long non-coding RNA; Oncogene; Colon tumor
INTRODUCTION

Colon cancer is a clinically common, highly malignant tumor of the digestive tract. Although drugs targeting epidermal growth factor receptor (EGFR) and KRAS mutations have significantly extended the survival of some colon cancer patients[1-3], only a small number of patients can benefit from these drugs because of the complex etiology of this malignancy. Overall, the effects of current therapies for colon cancer are not satisfactory[4,5].

Long noncoding RNAs (lncRNAs) are non-protein coding transcripts of around 200 nucleotides, which exist widely in the genome and can regulate gene expression[6,7]. HOTAIR is one of the extensively studied lncRNAs in recent years. Many studies have indicated that HOTAIR plays an important role in breast cancer, pancreatic cancer, liver cancer, gastric cancer, esophageal cancer and non-small cell lung cancer[7-10]. Studies in colon cancer suggest that HOTAIR is an important oncogene that affects the biological behavior of colon cancer[11] and can serve as an independent risk factor[12]. The latest research suggests that the expression of HOTAIR is associated with tumor metastasis[13].

In the present study, we detected the expression of HOTAIR in 80 colon cancer tissue samples by quantitative polymerase chain reaction (qPCR). Based on the clinical and pathological parameters of colon cancer patients, we analyzed the possible role of HOTAIR in colon cancer development, metastasis and sensitivity to treatment, with an emphasis on the role of HOTAIR in colon cancer treatment. The findings will provide a theoretical basis for developing a new, targeted therapy for colon cancer.

MATERIALS AND METHODS

Clinical materials and reagents

Eighty patients with pathologically proven colon cancer who underwent surgery at our hospital from September 2011 to September 2013, and had complete clinical records, were included. All patients provided written informed consent, and the study protocol was approved by the Medical Ethics Committee of Zhengzhou University. The mean age of the patients was 64 ± 16 years. There were 46 patients with stage I or II disease, and 34 patients with stage III or IV disease. Forty-one patients had well or moderately differentiated tumors, and 34 patients had poorly differentiated or undifferentiated tumors. No patients had undergone radiotherapy or chemotherapy before surgery. Tumor tissues and normal colon tissues at least 7 cm away from the tumor were taken, frozen in liquid nitrogen within 30 min and preserved for further use.

Trizol was purchased from Invitrogen. The reverse transcription kit and DNA ladder were purchased from Takara. Primers for qPCR were designed and synthesized by Shanghai GenePharma. The qPCR kit was purchased from Thermo.

RNA preparation and reverse transcription

Tissue samples preserved in liquid nitrogen were put into an RNase-free mortar with liquid nitrogen and pulverized. For each 100 mg of tissue, 1 mL of Trizol was added. RNA preparation was then performed following the manufacturer’s instructions. The obtained RNA was dissolved in DEPC-treated water, and the RNA concentration was measured using a micro UV-Vis fluorescence spectrophotometer (e-spect, Malcom, Japan). The obtained RNA was preserved at -80℃ for further use.

RNA reverse transcription was performed using a reverse transcription kit in a 20-µL system, containing 11 µL of DEPC-treated water, 1 µL of total RNA, 4 µL of 5 × buffer, 1 µL of RNase inhibitor, 2 µL of dNTPs, and 1 µL of reverse transcriptase. Reaction parameters were 42℃ for 60 min and 95℃ for 5 min. The obtained cDNA was preserved at -80℃ for further use.

qPCR: qPCR was performed in a 20-µL system containing 1 µL of cDNA, 10 µL of 2 × Master Mix with 0.03 × ROX added, 1 µL of forward primer (final concentration of 0.5 µmol/L), 1 µL of reverse primer, and 8 µL of DEPC-treated water on a Mx3005p cycler. PCR amplification was performed in triplicate. Cycling parameters were 95℃ for 7 min, followed by 40 cycles of 95℃ for 15 s and 60℃ for 30 s.

Statistical analysis

The expression levels of HOTAIR in tissues are expressed as mean ± SD and were compared using a
RESULTS

Agarose gel electrophoresis of qPCR products
The length of the expected PCR product for HOTAIR is 91 bp, and agarose gel electrophoresis showed that qPCR yielded PCR products of expected size (Figure 1).

Expression of HOTAIR is higher in colon cancer tissues than in tumor-adjacent normal colonic tissues
QPCR analysis showed that, although the expression of GAPDH showed no significant differences, the Ct value of HOTAIR was significantly lower in colon cancer tissues than in tumor-adjacent normal colonic tissues, suggesting that HOTAIR expression is upregulated in colon cancer. When the relative expression level is expressed as N (N = 2^{-\Delta Ct}, \Delta Ct = Ct_{HOTAIR} - Ct_{GAPDH}[14]), the relative expression level of HOTAIR was significantly higher in colon cancer tissues than in tumor-adjacent normal colonic tissues (P < 0.05, Figure 2).

Relationship between HOTAIR expression and clinicopathological parameters in colon cancer
HOTAIR expression was significantly correlated with lymph node metastasis, tumor differentiation and TNM stage (P < 0.05). HOTAIR expression was significantly higher in cases with lymph node metastasis than in those without metastasis, in lowly differentiated and undifferentiated cases than in highly and moderately differentiated cases, and in stages III + IV cases than in stages I + II cases. By contrast, HOTAIR expression had no significant correlation with patient gender, age or tumor size (P > 0.05) (Tables 1-3).

Relationship between HOTAIR expression and survival in colon cancer
The Kaplan-Meier method was used to assess the impact of HOTAIR expression on survival of patients with colon cancer. The cumulative survival rate was significantly higher in patients with low HOTAIR expression than in those with high HOTAIR expression (P < 0.05) (Figure 3).

Risk factors for prognosis of colon cancer patients
Using prognosis of colon cancer patients as the dependent variable and factors possibly influencing the prognosis as independent variables, Cox multiple regression analysis was performed. The results showed that TNM stage, lymph node metastasis and HOTAIR expression were independent risk factors for prognosis of colon cancer patients.

Relationship between HOTAIR expression and prognosis in colon cancer
The relationship between prognosis of colon cancer patients after chemotherapy and HOTAIR expression was analyzed. The results showed that high HOTAIR expression was associated with poorer prognosis (Figure 4).

DISCUSSION
Colon cancer is a common malignancy[15,16]. With the
KRAS mutations have been effective in some patients with colon cancer\(^1\text{–}^3\), molecular targeted drugs, which often target only one or several molecules, are not suitable for all patients because of the complexity etiology of colon cancer. Therefore, there is an urgent need to find new therapeutic targets.

LncRNAs are non-protein coding transcripts of around 200 nucleotides that are widely distributed in the genome. Many lncRNAs can bind to DNA binding proteins and alter the chromosome state to participate in the regulation of many genes\(^6,19\). HOTAIR is an lncRNA located in the HOXC locus, and it can interact with polycomb repressive complex 2 and mediate the histone H3 lysine 27 methylation and lysine 4 demethylation in the HOXD locus, in which EZH2 also plays an important role\(^9,20,21\). HOTAIR can alter the state of chromosomes, thus affecting the expression of many genes. Researchers have found that HOTAIR expression is upregulated in cancer tissue samples from patients with breast cancer, pancreatic cancer, liver cancer, gastric cancer, or non-small cell lung cancer, and the expression is even higher in metastatic tissue.

Table 1 Primers used for quantitative polymerase chain reaction

Primer	Sequence
HOTAIR Forward	5'-CAGTGGGGAACCTCACTTGACTG-3'
HOTAIR Reverse	5'-GTGCCTGGGTCTCTTACC-3'
GAPDH Forward	5'-GTCACACCGATTGGTCTGATT-3'
GAPDH Reverse	5'-AGTCTTCTGGGTGCCAGTGAT-3'

Table 2 Relationship between HOTAIR expression and clinicopathological parameters in colon cancer

Clinicopathological parameter	No. of cases	HOTAIR expression	\(P\) value
Age (yr)			
< 6	49	3.69 ± 1.94	0.188
≥ 60	31	3.45 ± 1.55	
Gender			
Male	43	3.91 ± 1.85	0.761
Female	37	3.23 ± 1.68	
Tumor size (cm)			
< 7	38	3.59 ± 1.59	0.599
≥ 7	42	3.60 ± 1.81	
Lymph node metastasis			
Yes	48	4.27 ± 1.54	0.024
No	32	3.11 ± 1.92	
Tumor differentiation			
High and moderate	41	2.93 ± 1.62	0.019
Low and undifferentiated	39	4.35 ± 1.82	
TNM stage			
I + II	46	3.17 ± 1.77	0.034
III + IV	34	3.87 ± 1.66	

Table 3 Cox multiple regression analysis of risk factors for prognosis of colon cancer patients

Variable	Regression coefficient	SE	\(\chi^2\)	\(P\) value	OR	95%CI for OR	Lower	Upper
TNM stage	-0.732	0.345	4.489	0.034	2.090	1.056	4.090	
Lymph node metastasis	-2.512	1.088	5.325	0.021	0.0081	0.010	0.685	
HOTAIR expression	-2.048	0.785	6.806	0.090	0.1290	0.028	0.601	

Figure 3 Relationship between HOTAIR expression and survival in colon cancer. The cumulative survival rate was significantly higher in patients with low HOTAIR expression than in those with high HOTAIR expression \((P < 0.05)\).

Figure 4 Relationship between HOTAIR expression and prognosis in colon cancer. \(P < 0.05\) vs PD group.

KRAS mutations have been effective in some patients with colon cancer\(^1\text{–}^3\), molecular targeted drugs, which often target only one or several molecules, are not suitable for all patients because of the complexity etiology of colon cancer. Therefore, there is an urgent need to find new therapeutic targets.

LncRNAs are non-protein coding transcripts of around 200 nucleotides that are widely distributed in the genome. Many IncRNAs can bind to DNA binding proteins and alter the chromosome state to participate in the regulation of many genes\(^6,19\). HOTAIR is an IncRNA located in the HOXC locus, and it can interact with polycomb repressive complex 2 and mediate the histone H3 lysine 27 methylation and lysine 4 demethylation in the HOXD locus, in which EZH2 also plays an important role\(^9,20,21\). HOTAIR can alter the state of chromosomes, thus affecting the expression of many genes. Researchers have found that HOTAIR expression is upregulated in cancer tissue samples from patients with breast cancer, pancreatic cancer, liver cancer, gastric cancer, or non-small cell lung cancer, and the expression is even higher in metastatic tissue.

Table 1 Primers used for quantitative polymerase chain reaction

Primer	Sequence
HOTAIR Forward	5'-CAGTGGGGAACCTCACTTGACTG-3'
HOTAIR Reverse	5'-GTGCCTGGGTCTCTTACC-3'
GAPDH Forward	5'-GTCACACCGATTGGTCTGATT-3'
GAPDH Reverse	5'-AGTCTTCTGGGTGCCAGTGAT-3'

Table 2 Relationship between HOTAIR expression and clinicopathological parameters in colon cancer

Clinicopathological parameter	No. of cases	HOTAIR expression	\(P\) value
Age (yr)			
< 6	49	3.69 ± 1.94	0.188
≥ 60	31	3.45 ± 1.55	
Gender			
Male	43	3.91 ± 1.85	0.761
Female	37	3.23 ± 1.68	
Tumor size (cm)			
< 7	38	3.59 ± 1.59	0.599
≥ 7	42	3.60 ± 1.81	
Lymph node metastasis			
Yes	48	4.27 ± 1.54	0.024
No	32	3.11 ± 1.92	
Tumor differentiation			
High and moderate	41	2.93 ± 1.62	0.019
Low and undifferentated	39	4.35 ± 1.82	
TNM stage			
I + II	46	3.17 ± 1.77	0.034
III + IV	34	3.87 ± 1.66	

Table 3 Cox multiple regression analysis of risk factors for prognosis of colon cancer patients

Variable	Regression coefficient	SE	\(\chi^2\)	\(P\) value	OR	95%CI for OR	Lower	Upper
TNM stage	-0.732	0.345	4.489	0.034	2.090	1.056	4.090	
Lymph node metastasis	-2.512	1.088	5.325	0.021	0.0081	0.010	0.685	
HOTAIR expression	-2.048	0.785	6.806	0.090	0.1290	0.028	0.601	
Both in vivo and in vitro studies have confirmed that upregulated expression of HOTAIR enhances the ability of tumors to invade and metastasize\cite{7-9}. The aim of this study was to detect the expression of HOTAIR in tissue samples from patients with colon cancer, analyze the relationship between HOTAIR expression and clinicopathological parameters and explore the role of HOTAIR in colon cancer development and metastasis.

The results showed that the expression of HOTAIR is upregulated in colon cancer, suggesting that HOTAIR may act as an oncogene in the development of colon cancer. We also discovered that HOTAIR expression was significantly higher in lowly differentiated and undifferentiated cases compared with highly and moderately differentiated cases; in stages III + IV cases compared with stages I + II cases; and in cases with lymph node metastasis compared with those without. These results are similar to the findings of a previous study\cite{22}; however, that study found that the expression of HOTAIR did not differ significantly between cases with and without lymph node metastasis, but was significantly higher in cases with liver metastasis compared with those without. The present study did not compare the HOTAIR expression between cases with and without liver metastasis. Low differentiation, late stage or lymph node metastasis in colon cancer are often associated with poor prognosis; therefore, our findings need to be validated by studies with a larger sample size.

Although HOTAIR might affect response to therapy in some tumors; for example, HOTAIR is associated with resistance to chemotherapy in ovarian cancer and sarcoma\cite{13,20}, there have been no reports in colon cancer. Our study, together with previous research, found that HOTAIR has an impact on the biological behavior of colon cancer\cite{13}, and detecting the level HOTAIR in blood could be used to predict prognosis of colon cancer. We speculated that this finding may be related to the role of HOTAIR in chemotherapy resistance, and this, therefore, was the focus of this study. We found that tumors with high expression of HOTAIR tended to develop resistance to chemotherapy, which may be the reason that high expression of HOTAIR is associated with a poor prognosis.

This finding also suggested that it is essential to explore the relationship between HOTAIR and resistance to chemotherapy in vitro, as well as the impact of HOTAIR on the biological behavior of tumor cells. Several studies have revealed that HOTAIR has an important role in tumor metastasis. On the basis of these findings, our subsequent follow-up study will expand the sample size to conduct prognostic and survival analyses to further define the relationship between HOTAIR and tumor metastasis in colon cancer, to explore the mechanism of pathogenesis of this malignancy and provide new targets for molecular therapy for colon cancer patients.

REFERENCES

1. Ahmed D, Eide PW, Eilertsen IA, Danielsen SA, Eknaes M, Hektoen M, Lind GE, Lothe RA. Epigenetic and genetic features of 24 colon cancer cell lines. *Oncogenesis* 2013; 2: e71 [PMID: 24042735 DOI: 10.1038/oncsis.2013.35]
2. Corso G, Pascale V, Flauti G, Ferrara F, Marrelli D, Roviello F. Oncogenic mutations and microsatellite instability phenotype predict specific anatomical subsite in colorectal cancer patients. *Eur J Hum Genet* 2013; 21: 1383-1388 [PMID: 23572025 DOI: 10.1038/ejhg.2013.66]
3. Mouradov D, Domingo E, Gibbs P, Jorissen RN, Li S, Soo PY, Lipton L, Desai J, Danielsen HE, Oukrif D, Novelli M, Yau C, Holmes CC, Jones IT, McLaughlin S, Molloy P, Hawkins NJ, Ward R, Midgely R, Kerr D, Tomlinson IP, Sieber OM. Survival in stage II/III colorectal cancer is independently predicted by chromosomal and microsatellite instability, but not by specific driver mutations. *Am J Gastroenterol* 2013; 108: 1785-1793 [PMID: 24042191 DOI: 10.1038/ajg.2013.392]
4. Cekaite L, Eide PW, Lind GE, Skaatheim RI, Lothe RA. MicroRNAs as growth regulators, their function and biomarker status in colorectal cancer. *Oncotarget* 2016; 7: 6476-6505 [PMID: 26623728 DOI: 10.18632/oncotarget.6390]
5. Esin E, Yalcin S. Maintenance strategy in metastatic colorectal cancer: A systematic review. *Cancer Treat Rev* 2016; 42: 82-90 [PMID: 26608114 DOI: 10.1016/j.ctrv.2015.10.012]
6. Ponting CP, Oliver PL, Reik W. Evolution and functions of long noncoding RNAs. *Cell* 2009; 136: 629-641 [PMID: 19239885 DOI: 10.1016/j.cell.2009.02.006]
colorectal cancer cell proliferation through the GHS-R, Ras, PI3K, Akt, and mTOR signaling pathways. Eur J Pharmacol 2016; 776: 124-131 [PMID: 26879868 DOI: 10.1016/j.ejphar.2016.02.044]

Lloyd JM, McVerrry CM, Stephenson SA, Hewett PJ, Rieger N, Hardingham JE. Identification of early-stage colorectal cancer patients at risk of relapse post-resection by immunobead reverse transcription-PCR analysis of peritoneal lavage fluid for malignant cells. Clin Cancer Res 2006; 12: 417-423 [PMID: 16428481]

Zaenker P, Ziman MR. Serologic autoantibodies as diagnostic cancer biomarkers—a review. Cancer Epidemiol Biomarkers Prev 2013; 22: 2161-2181 [PMID: 24057574 DOI: 10.1158/1055-9965.epi-13-0621]

Khalil AM, Guttman M, Huarte M, Presser A, Bernstein BE, van Oudenaarden A, Regev A, Lander ES, Rinn JL. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci USA 2009; 106: 11667-11672 [PMID: 19571010 DOI: 10.1073/pnas.0904715106]

Rinn JL, Kertesz M, Wang JK, Szauchowski SL, Xu X, Brugmann SA, Goodnoo NH, Helms JA, Farnham PJ, Segal E, Chang HY. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 2007; 129: 1311-1323 [PMID: 17604720 DOI: 10.1016/j.cell.2007.05.022]

Tsai MC, Manor Q, Yan Y, Monammaparast N, Wang JK, Kan F, Shi Y, Segal E, Chang HY. Long noncoding RNA as modular scaffold of histone modification complexes. Science 2010; 329: 689-693 [PMID: 20616235 DOI: 10.1126/science.1192002]

Kogo R, Shimamura T, Mimori K, Kawahara K, Inomoto S, Sudo T, Tanaka F, Shibata K, Suzuki A, Komune S, Miyano S, Mori M. Long noncoding RNA HOTAIR regulates polycomb-dependent chromatin modification and is associated with poor prognosis in colorectal cancers. Cancer Res 2011; 71: 6320-6326 [PMID: 21862635 DOI: 10.1158/0008-5472.can-11-1021]

Milhem MM, Knutson T, Yang S, Zhu D, Wang X, Leslie K, Meng X. Correlation of MTDH/AEG-1 and HOTAIR Expression with Metastasis and Response to Treatment in Sarcoma Patients. J Cancer Sci Ther 2011; 55: pii 004 [PMID: 23543869]

Teschedorff AE, Lee SH, Jones A, Fieg C, Kalwa M, Wagner V, Chindera K, Evans I, Dubeau L, Orjalo A, Horlings HM, Niedereiter L, Kaser A, Yang W, Goede EL, Fridgeley BL, Jenner RG, Berns EM, Wink E, Salvesen HB, Wisman GB, van der Zee AG, Davidson B, Trope CG, Lambricets S, Vorgase I, Calvert H, Jacobs JJ, Widschwendter M. HOTAIR and its surrogate DNA methylation signature indicate carboplatin resistance in ovarian cancer. Genome Med 2015; 7: 108 [PMID: 26497652 DOI: 10.1186/s13073-015-0233-4]

Luo ZF et al. HOTAIR expression in colon cancer
