A Human Factors Intervention in Hospital - Evaluating Outcome of a TeamSTEPPS Program in a Surgical Ward

CURRENT STATUS: UNDER REVIEW

Oddveig Reiersdal Aaberg
Norges Teknisk-Naturvitenskapelige Universitet Fakultet for Medisin og Helsevitenskap
Corresponding Author
oddveig.aaberg@ntnu.no
ORCiD: https://orcid.org/0000-0002-3310-0804

Marie Louise Hall-Lord
Norges Teknisk-Naturvitenskapelige Universitet Fakultet for Medisin og Helsevitenskap

Sissel Iren Eikeland Husebø
Universitetet i Stavanger

Randi Ballangrud
Norges Teknisk-Naturvitenskapelige Universitet Fakultet for Medisin og Helsevitenskap

DOI: 10.21203/rs.3.rs-19991/v1

SUBJECT AREAS
Health Policy
Health Economics & Outcomes Research

KEYWORDS
Human factors, Implementation, Intervention, Interprofessional teamwork, Longitudinal, Patient safety culture, SEIPS, TeamSTEPPS, Team training
Abstract
Background Patient safety in hospitals is being jeopardized, as too many patients experience adverse events. Most of the adverse events arise from human factors, such as inefficient teamwork and communication failures, and the incidence of adverse events is greatest in the surgical area. Previous research has shown the effect of team training on patient safety culture and on different areas of teamwork. Limited research has investigated teamwork in surgical wards. The aim of the study was to evaluate the outcome of a team training intervention among healthcare professionals in a surgical ward after 6 and 12 months. The Systems Engineering Initiative for Patient Safety 2.0 was used as a conceptual framework for the study.

Methods This study had a pre-post design with measurements at baseline, after 6 months and 12 months of intervention. The intervention was conducted in a urology and gastrointestinal surgery ward in Norway, and study site was selected based on the leaders’ willingness to participate in the project. Survey data from healthcare professionals, measured by the TeamSTEPPS Teamwork Perceptions Questionnaire, the Collaboration and Satisfaction about Care Decisions in Teams, and the unit-based sections of the Hospital Survey of Patient Safety Culture Questionnaire, were used to evaluate the intervention. A paired t-test, a Wilcoxon signed-rank test, a generalized linear mixed model and linear regression analysis were used to analyze the data.

Results After six months, improvements were found in organizational outcomes in two patient safety dimensions. After 12 months improvements were found in both organizational and professional outcomes, that was in three patient safety culture dimensions and three teamwork dimensions. The generalized linear mixed model estimates demonstrated that physicians had effect on two patient safety culture measures. Furthermore, results showed that teamwork was associated with the organizational outcome Patient Safety Grade.

Conclusion These results demonstrate that the team training program had an effect after 12 months of implementation. Future studies are recommended to examine the causal effect of a team training intervention in this context, preferably with studies with larger sample sizes and stronger study designs.
Trial registration number:
ISRCTN13997367 (retrospectively registered)

Background
Patient safety in hospitals is being jeopardized, as too many patients experience adverse events [1, 2]. The risk of adverse events in surgical care is higher than in other areas of hospitals [3, 4]. Most adverse events arise not from the solitary actions of individuals but from systems of which they are a part and with which they interact [5]. Root cause analyses have revealed that human factors, as poor teamwork and communication failures are the underlying factors for the majority of adverse events in hospitals [2, 6]. Focusing on patient safety culture is crucial for minimizing adverse events and improving patient safety [7]. An organization’s patient safety culture is the product of individual and group values, beliefs, attitudes, perceptions, competencies, and patterns of behavior that determine the organization’s commitment to quality and patient safety [8]. Patient safety requires that healthcare professionals have the right competencies and tools to perform their tasks. It is therefore crucial to examine patient safety interventions that focus on healthcare professionals and work system factors that contribute to safe care [9]. In this study, we conducted a team training intervention in a surgical ward.

The surgical ward is a microsystem within a hospital organization and a unit type with a high degree of complexity [10]. The interdependency among healthcare professionals contributes to this complexity [1]. Healthcare professionals working in wards are generalists. The clinical work requires a broad spectrum of competencies, and healthcare professionals are often working under high time pressure [11]. The physician members of the surgical ward teams are often in the operating room [12], making interprofessional teamwork extra challenging.

Human factors is a multidisciplinary science at the intersection of psychology and engineering [13] and is commonly described as a discipline devoted to studying and improving the interactions among humans and other elements of a system (within a given environment) [14]. Human factors interventions are about improving system performance and preventing accidental harm, which for healthcare means supporting the cognitive and physical work of healthcare professionals and
promoting high-quality, safe care for patients [15]. Human factors interventions, as team training, is regarded as an innovative approach for improving patient safety [16-18]. Team training is described as applying a set of instructional strategies that rely on well-tested tools (e.g., simulation, lectures, videos) to accomplish specific team competencies [19, 20].

Previous research on team training interventions has shown improvements in different areas of teamwork [21, 22] and safety culture [23, 24], reductions in surgical harm [25], and reductions in surgical mortality [26]. However, most of the team training research has been conducted in specialty units, and limited research has investigated teamwork in surgical wards [27] or investigated teamwork over long time frames [28]. Few studies have examined the associations between perceptions of teamwork and patient safety culture after a 12-month team training intervention.

Observational studies have found that interprofessional teamwork was associated with organizational culture [29] and that event reporting, communication, and leadership were predictors of patient safety culture [30].

In this study, we implemented Team Strategies and Tools to Enhance Performance and Patient Safety (TeamSTEPPS™) in a surgical ward. TeamSTEPPS is a generic program based on research [31, 32] and is built on five key principles: “Team Structure” and the four team competencies “Leadership”, “Situation monitoring”, “Mutual support” and “Communication” [32]. “Team decision-making” is an additional team competency [2, 33, 34] that is not included in the TeamSTEPPS program but was included in this study. The four team competencies of TeamSTEPPS have 17 associated tools and strategies that are meant to be implemented in clinical practice to improve performance and patient safety [35].

Since the need to implement team training programs in the surgical ward context is being increasingly recognized, an interprofessional teamwork intervention was initiated. The aim of the study was to evaluate the outcome of a team training intervention among healthcare professionals in a surgical ward after 6 and 12 months. The research questions were as follows:

1. Did healthcare professionals’ perceptions of teamwork and patient safety culture improve from baseline after 6 and 12 months of intervention?
2. Did patient safety culture related to the TeamSTEPPS intervention vary by profession group and by time, demonstrating an effect of the intervention?
3. Were perceptions of teamwork dimensions associated with patient safety culture in the unit after 12 months?

Conceptual framework

Teamwork and patient safety may be explained on the basis of a structure-process-output (SPO) framework that describes the impact of input in the structure on process and output, as in classic system theory [20, 33, 36]. The human factors model “The Systems Engineering Initiative for Patient Safety 2.0” (SEIPS 2.0) is a SPO model developed for innovative patient safety research in healthcare [5, 37]. The model emphasizes structural elements in the work system with a person at the center. The person may be patients, healthcare professionals or healthcare teams as in this study. The team members perform a range of tasks using various tools and technologies in an internal and external environment and under specific organizational conditions, which all influence the care processes and which in turn influence the outcomes [5, 37]. Unlike most of the SPO models, the SEIPS model differentiates the outcomes. In addition to 1) patient outcomes, the model includes 2) professional outcomes and 3) organizational outcomes [37]. The interrelatedness of the elements (person, tasks, tools and technology, organization, internal and external environment) in the work system, and between the work system, process and outcome, illustrates the complexity of the system [37].

In this study, we used the SEIPS 2.0 model to conceptualize the intervention and the outcomes of the study from a system perspective [38]. Implementation of a team training program was regarded as an input in the organization element to strengthen the work system by attempting to improve healthcare professionals’ team competencies and patient safety culture [20, 36]. The outcomes in this study were healthcare professionals’ perceptions of teamwork (professional outcome) and patient safety culture (organizational outcome). See Fig. 1.

Please insert Fig. 1 here

Methods

Study design

We conducted a study with a pre-post design with measurements at baseline, after 6 months and 12
months of intervention.

Setting and sample

The intervention was conducted in a 20-bed urology and gastrointestinal surgery ward in a 180-bed hospital in Norway. The study site was selected based on the leaders’ willingness to participate in the project, motivated by patient safety incidents in the ward. The profile of the surgical ward at the three timepoints for data collection is displayed in Table 1. No major changes in the unit profile occurred during the study period, except for changes in leadership positions. All 43 frontline healthcare professionals (12 physicians, 24 registered nurses, and 7 nursing assistants) were invited to participate in the study.

Table 1	Unit profile data		
	Baseline	6 months	12 months
Beds and nurse/bed ratio			
Number of patient beds	20	20	20
Nurse/bed ratio	1.16	1.16	1.16
Full-time equivalent positions			
Physicians	13	12	12
Registered nurses	17.25	19.25	20.25
Nursing assistants	4.95	3.1	2.1
Unit nurse director	1.0	1.0	1.0
Clinical nurse specialist	1.0	1.0	1.0
Change in positions			
Clinical nurse specialist	-	No	No
Unit nurse manager	-	No	Yes
Physician leader gastrointestinal surgery	-	No	No
Physician leader urology	-	No	Yes
Chair of the surgical department	-	No	Yes
Patient data and sick leave (previous 6 months)			
Number of patient admissions per month	192	174	173
Length of stay (mean days)	3.46	3.63	3.62
Occupied beds	87%	96%	89%
Emergency admissions	64%	65%	66%
Sick leave nursing staff	13.22%	5.05%	7.58%
Sick leave physicians	3.55%	1.47%	2.58%
Adverse events	2015	2016	2017
Numbers of reported adverse events	38	42	52

Please insert Table 1 here

The intervention

The intervention was conducted according to the TeamSTEPPS implementation plan [32], which comprises three phases and aligns with the Clinical Human Factors Group recommendation for team training interventions [39].

Phase 1. Set the stage and decide what to do - Assessment and planning
A site assessment was conducted. After the leaders of the surgical ward had decided that their unit was ready for the TeamSTEPPS program, an intervention plan was developed jointly by the researchers and the leaders of the ward.

Phase 2. Make it happen - Training, planning and implementation

The onset of the intervention was a mandatory six-hour interprofessional TeamSTEPPS training that included simulation training (41 participants over 3 days). The training was conducted in a simulation center at the university and delivered by the master trained nurse -and physicians leaders in the unit. Safety issues in the ward were identified by the frontline healthcare professionals at the training. After the training, an interprofessional change team was established. The change team consisted of 12 members from all levels in the organization, in addition to a former patient and one of the researchers (ORA). Based on the identified safety issues, the change team developed an action plan, according to which they implemented tools and strategies into daily practice. Five tools were implemented during the first five months of the implementation phase (Closed-loop, SBAR, Briefs, Huddles, and Cross-monitoring). Refresher training for the nursing staff (75 minutes) and physicians (20 minutes) was held after 5 months.

Phase 3. Make it stick - Sustainment

The implementation of tools and strategies continued. Five more tools were implemented (Debriefs, Task assistance, STEP, Two challenge rule, and I-PASS) during the last five months of the 12-month study period. After 11 months, another refresher training session was held for the nursing staff (75 minutes). Further details of the intervention are described elsewhere [40].

Measurements

Three questionnaires were used to evaluate the intervention. The TeamSTEPPS Teamwork Perceptions Questionnaire (T-TPQ) [41, 42] is a 35-item questionnaire that measures individuals’ perception of the level of teamwork that exists in their work unit. Participants responded using a 5-point Likert scale of agreement (5 = strongly agree to 3 = neutral to 1 = strongly disagree). The T-TPQ measures five teamwork dimensions addressed in the TeamSTEPPS program; there are seven items for each of the following five dimensions: “Team structure”, “Leadership”, “Mutual Support”, “Situational Monitoring”
The Collaboration and Satisfaction about Care Decisions in Team (CSACD-T) is a questionnaire measuring clinical decision making in teams. It is composed of seven items with statements about collaboration in team decision making about patient care and two items about satisfaction with decision making. The participants responded by using a 7-point Likert scale of agreement (from 1 = strongly disagree to 7 = strongly agree), global collaboration (from 1 = no collaboration to 7 = complete collaboration), and satisfaction about care decisions (from 1 = not satisfied to 7 = very satisfied). The questionnaire was developed from the original nurse-physician “Collaboration and Satisfaction about Care Decisions” questionnaire [43].

The Hospital Survey of Patient Safety Culture Questionnaire (HSOPS) [44] is a questionnaire that assesses the extent to which healthcare professionals’ organizational culture supports patient safety. It is recommended for evaluating the cultural impact of team training and patient safety interventions [44]. The full HSOPS comprises 2 single items and 12 patient safety culture dimensions. Each dimension is composed of three or four items [44]. The two single items (“Number of Events Reported” and “Patient Safety Grade”) and two of the dimensions (“Overall Perceptions of Patient Safety” and “Frequency of Events Reported”) are regarded as outcome measures. Three dimensions are regarded as hospital level measures [45]. Because we only studied one unit, we excluded the hospital-level section of the questionnaire (11 items – 3 dimensions) and used the 2 single items and the remaining 33 items of the nine unit-level dimensions: “Teamwork Within Unit”, “Manager’s Expectations & Actions Promoting Patient Safety”, “Organizational Learning - Continuous Improvement”, “Feedback and Communication About Error”, “Communication Openness”, “Staffing”, “Nonpunitive Response to Errors”, “Overall Perceptions of Patient Safety”, and “Frequency of Events Reported” [45]. The participants responded by using a 5-point Likert scale of agreement (from 1 = strongly disagree to 5 = strongly agree), with neither in the middle, or how often (from 1 = very seldom to 5 = very often). The single item: “Patient Safety Grade”, which asks participants to provide an overall grade on patient safety for their unit, has the following five response options: A = Excellent, B = Very Good, C = Acceptable, D = Poor, E = Failing. The single item “Number of Events Reported”,

and “Communication”.
which indicates the number of adverse events the participants have reported over the past 12 months, has six response options: 1 = No events, 2 = 1 to 2 events, 3 = 3 to 5 events, 4 = 6 to 10 events, 5 = 11 to 20 events, 6 = 21 events or more [44].

All three questionnaires were translated into Norwegian and psychometrically tested [46-48]. In addition to the questionnaires, participants’ background information was asked for (sex, age group, profession group, employee time in the unit).

Data collection
An electronic survey (SurveyXact) was distributed by email to the healthcare professionals to evaluate the effect of the TeamSTEPPS program. Data collection was conducted at baseline (February-March 2016) and after 6 months (November -December 2016) and 12 months of intervention (June 2017). Unit profile data were collected from the unit nurse manager.

Statistical analyses
To test for statistically significant changes between baseline and 6 months and between baseline and 12 months, a paired t-test was applied on the healthcare professional’s mean scores of the T-TPQ and HSOPS dimensions and the total score of the CSACD-T, and a Wilcoxon signed-rank test was applied on the two single items of the HSOPS [49]. A generalized linear mixed model (GLMM) [50] was used to investigate the outcome of TeamSTEPPS by estimating the associations among the nine HSOPS dimensions used as dependent variables and “Profession group” (nursing staff and physicians) and “Time” (baseline, after 6 and 12 months of intervention) as the two independent variables. A GLMM is a generalization of traditional linear regression that adjusts for the correlation between repeated measurements within each subject and finds the best linear fit to the data across all individuals. The model maximizes power by utilizing all data despite missing observations in some subjects [51, 52]. The GLMM was applied to the total sample (n = 98), and the results are reported as estimates with 95% confidence intervals. To test whether any of the three significant improved teamwork dimensions of the T-TPQ were associated with two of the patient safety culture outcomes (“Overall patient safety” and “Patient Safety Grade”) after 12 months of intervention, a multiple linear regression analysis was performed on all healthcare professionals (n = 31) who responded after 12 months of intervention.
A p-value < .05 was considered to be statistically significant for all analyses. Statistical Package for Social Sciences (SPSS) version 24 (Armonk, New York) and R 3.1.1 were used to analyze the data. The study adheres to the TREND guidelines [54].

Results
Of the 43 invited healthcare professionals in the ward, 35 of them (81%) responded to the survey at baseline. After six months of the intervention, 32 (76%) healthcare professionals responded, of which 28 had also responded at baseline. After twelve months of the intervention, 31 (78%) healthcare professionals responded, of which 25 had responded at baseline. A total of 98 responses from all respondents were collected at the three time points. See Table 2 for an overview. The characteristics of the respondents are displayed in Table 3.

Table 2	The number of respondents
	n
Baseline	35
After 6 months of intervention	32
After 12 months of intervention	31
In total	98
Baseline and after 6 months	28
Baseline and after 12 months	25

Table 3	Characteristics of the respondents
	n = 28
	6 months
n (%)	
Gender	
Female	23 (82)
Male	5 (18)
Profession	
Physicians	6 (21)
Assistant nurses	4 (14)
Registered nurses	18 (64)
Age	
≤ 30 years	6 (22)
31–50 years	12 (44)
≥ 51 years	9 (33)
Missing	1
Time employed in the unit	
0–5 years	6 (25)
6–15 years	11 (46)
≥ 16 years	7 (29)
Missing	4

Please insert Table 2 here

Table 2	The number of respondents
	n
Baseline	35
After 6 months of intervention	32
After 12 months of intervention	31
In total	98
Baseline and after 6 months	28
Baseline and after 12 months	25

The mean scores on the T-TPQ, CSACD-T and HSOPS for those answered two times (baseline and after 6 months or baseline and after 12 months) are displayed in Table 4. None of the teamwork dimensions of the T-TPQ showed significant changes after six months. After 12 months of
intervention, significant improvements were found in three teamwork dimensions: “Situation Monitoring”, “Mutual Support”, and “Communication”. No significant changes were found in team decision making (CSACD-T) during the study period.

Table 4
Healthcare professional perceptions of teamwork and patient safety culture from baseline to 6 and 12 months of intervention

	n = 28			n = 25				
	baseline mean	6 months mean	change from baseline to 6 months	baseline mean	12 months mean	change from baseline to 12 months		
T-TPQ² dimensions								
Team Function	3.93 (.40)	3.96 (.44)	.48	.638	3.95 (.43)	4.08 (.44)	1.71	.100
Leadership	4.24 (.40)	4.21 (.49)	-.39	.700	4.16 (.39)	4.15 (.63)	-.09	.926
Situation Monitoring	3.79 (.47)	3.98 (.56)	1.74	.094	3.70 (.43)	4.06 (.54)	4.70	.001
Mutual Support	3.85 (.44)	3.93 (.51)	.89	.382	3.83 (.44)	4.03 (.50)	1.04	.027
Communication	3.84 (.40)	3.94 (.50)	3.34	.345	3.81 (.39)	4.02 (.53)	2.66	.015
CSACD-T³ dimensions								
Team Decision Making	4.73 (.89)	5.02 (1.09)	1.29	.207	4.69 (.92)	4.95 (.03)	1.32	.20
HSOPS⁴ dimensions								
Teamwork Within Unit	3.87 (.54)	4.08 (.52)	1.80	.084	3.78 (.52)	4.05 (.51)	2.39	.025
Manager Expect. & Actions Promoting Pat. Safety	4.18 (.60)	4.29 (.50)	.91	.370	4.11 (.56)	4.39 (.52)	2.72	.012
Organizational Learning - Cont. Improvement	3.82 (.51)	4.05 (.61)	1.8	.001	3.76 (.51)	3.97 (.65)	1.78	.087
Feedback & Communication About Error	3.71 (.62)	3.85 (.70)	.04	.965	3.65 (.58)	3.90 (.60)	1.84	.078
Communication Openness	3.80 (.57)	3.80 (.62)	2.37	.025	3.77 (.59)	3.97 (.49)	2.58	.017
Staffing	3.83 (.49)	4.07 (.60)	-1.08	.292	3.81 (.49)	4.07 (.53)	.06	.955
Nonpunitive Response to Errors	2.90 (.69)	3.14 (.83)	1.38	.178	2.86 (.66)	3.01 (.84)	.97	.342
Frequency of Events Reported⁵	3.52 (.46)	3.39 (.52)	1.98	.059	3.49 (.45)	3.50 (.66)	1.09	.287
Overall Perceptions of Patient Safety⁵	4.12 (.51)	4.28 (.50)	.90	.375	4.13 (.49)	4.27 (.62)	1.94	.065
HSOPS⁴ single items								
Number of Events Reported⁵	2.11 (.83)	2.00 (.80)	-.63	.527	2.24 (.78)	2.24 (.78)	-.78	.439
Patient Safety	3.67 (.56)	3.79 (.59)	-.82	.414	3.67 (.57)	3.67 (.57)	-.19	.059
The patient safety culture results (HSOPS) showed significantly improved scores in two dimensions after six months of intervention: “Organizational Learning & Continuous Improvement” and “Communication Openness”. The three dimensions “Communication Openness”, “Teamwork Within Unit” and “Manager`s Expectations & Actions Promoting Patient Safety” were significantly improved after 12 months.

The results of the GLMM estimates suggest an effect of time on the TeamSTEPPS regarding “Organizational Learning & Continuous Improvement” and “Communication Openness” after six months (compared to baseline). The estimates also suggest that physicians had an effect on the TeamSTEPPS intervention regarding “Frequency of Events Reported” and “Patient Safety Grade” (Table 5).
Table 5
Estimated Patient Safety Culture by “Time” and “Profession group” (n = 98).

Parameter	Estimate	95% Confidence Interval	p
Organizational Learning and Continuous Improvement			
Intercept	3.80	3.60 - 4.00	.000
Baseline	.0b		
6 months of intervention	.33	.05 - .60	.020
12 months of intervention	.18	-.09 - .46	.193
Nursing staff	0b		
Physicians	-.27	-.54 - .00	.051
Communication Openness			
Intercept	3.80	3.63 - 4.02	.000
Baseline	.0b		
6 months of intervention	.29	.02 - .55	.035
12 months of intervention	.21	-.05 - .48	.116
Nursing staff	0b		
Physicians	-.12	-.38 - .14	.366
Frequency of Events Reported			
Intercept	2.73	2.46 - 3.00	.000
Baseline	.0b		
6 months of intervention	.26	-.11 - .63	.164
12 months of intervention	.13	-.25 - .51	.500
Nursing staff	0b		
Physicians	.56	.19 - .93	.003
Patient Safety Grade			
Intercept	3.60	3.41 - 3.79	.000
Baseline	.0b		
6 months of intervention	.11	-.16 - .38	.410
12 months of intervention	.25	-.02 - .52	.074
Nursing staff	0b		
Physicians	.40	.14 - .66	.003

1A mixed effects model with individual mean scores
2Baseline and nursing staff were set to zero

Please insert Table 5 here.

The multiple linear regression analysis of all respondents after 12 months (n = 31) found that the three improved teamwork dimensions “Situational Monitoring”, “Mutual Support” and “Communication” (independent variables) explained 31.6% of the variance in the “Patient Safety Grade” after 12 months of intervention. The model reached statistical significance (p = .012). When analyzing which of the three independent variables contributed to the prediction of “Patient Safety Grade”, the model showed that “Mutual Support” had the largest β coefficient (β = .76) and that the
effect was significant (p = .036). When testing with the “Overall Perceptions of Patient Safety” as the dependent variable, the model reached statistical significance (p = .021). The three teamwork dimensions explained 24.3% of the variance in the “Overall Perceptions of Patient Safety” after 12 months of intervention but with a low β-coefficient and without statistical significance.

Discussion
Regarding organizational outcomes as related to the SEIPS 2.0 model, improvements were found in two patient safety culture dimensions after the first six months of this comprehensive intervention. No improvement was found in professional outcome after the first six months, as measured by perceptions of teamwork. After the full 12 months, however, improvements were found in both professional and organizational outcomes. Improvement in professional outcomes were shown in three out of four perceptions of teamwork dimensions. Regarding organizational outcomes, improvements were found in three patient safety culture dimensions. These results indicate that the team training program had an effect after 12 months of implementation. The GLMM estimates demonstrated an effect of time on the patient safety culture dimensions (organizational outcome) “Organizational Learning and Continuous Improvement” and “Communication Openness” after 6 months, and the estimates also demonstrated that physicians had an effect on the patient safety culture dimensions “Frequency of Events Reported” and “Patient Safety Grade”. Furthermore, the teamwork dimension “Mutual Support” was associated with “Patient Safety Grade” after 12 months of intervention.

No significant improvement in T-TPQ measures after six months may be explained by the fact that few of the TeamSTEPPS tools had been implemented by that point. We expected to find improvement in “Communication” after 6 months since the tools Closed-loop and SBAR (Situation, Background, Assessment, Request or Recommendation) were implemented in the work system in an early phase of the intervention. After 12 months of intervention, however, the results showed improvement in three teamwork dimensions (“Situation Monitoring”, “Mutual Support”, and “Communication”). The Cross monitoring strategy was implemented after five months, and the STEP tool was implemented after nine months [40], so the improvement in “Situation Monitoring” may be due to the implementation of
these tools. “Situation Monitoring” is about continuously scanning the environment for important information, watching out for other team members, exchanging relevant information, and jointly reevaluating patient goals [41]. The improved scores in “Mutual Support” may be a result of the “Task Assistance” and “Two Challenge Rule” strategies that were implemented in the work system during the study period [40]. “Mutual Support” is about cautioning each other about potentially risky patient safety situations and about assisting one another during high workloads [41]. When seeing these improvements in teamwork dimensions from a system perspective, they are seen as improved professional outcomes (see Fig. 1). Previous studies from the context of surgical wards that have measured self-reported teamwork have produced ambiguous results [55–57]. Paull et. al [57] found improvement in all scores in their multicenter study when the scores were measured immediately after the training. Study results collected a short time after a team training may benefit from the positive experience the participants have just had and can be seen to reflect a strong Hawthorne effect [58]. The reason why we did not see improvements in team decision making in our study may be due to the time points for measuring. Previous studies that showed enhanced scores in decision making measured two weeks and two months after simulation training [59, 60]. Our results for team decision making may also be explained by the fact that the TeamSTEPPS program does not emphasize decision making, and therefore, there was not a focus on this important aspect of teamwork in the intervention.

The organizational outcome measured by the patient safety culture results (HSOPS) showed improvement in “Organizational Learning & Continuous Improvement” and “Communication Openness” after six months of intervention, and the improvement in the latter was also sustained after 12 months, both of which are interesting results. “Communication Openness” is a measure of whether staff freely speak up if they see something that may negatively affect a patient and if they feel free to question those with more authority than themselves [61]. This result is therefore of importance regarding the patient safety culture in the ward, as it may contribute to catching an adverse events before it reaches a patient. Regarding whether the healthcare professionals reported diverse types of adverse events in our study, the average answer was “sometimes” at all data
collection times, while the registered adverse events increased during the study period. An increase in adverse events is not desirable but may be seen as an improvement in the reporting culture. The main purpose of reporting is to learn from adverse events [62], and learning is an important part of the human factors approach to patient safety. After six months, improvements were found in organizational outcomes (in two patient safety dimensions). After the full 12 months, improvements were found in both organizational outcomes (three patient safety culture dimensions) and professional outcomes (three teamwork dimensions). The mixed model estimates demonstrated that physicians had effect on two patient safety culture measures. Furthermore, results showed that teamwork was associated with Patient Safety Grade [63]. The improvement in the HSOPS dimension “Organizational Learning – Continuous Improvement” (organizational outcome) may indicate that the healthcare professionals perceived their ward as a learning unit. This result also supports the mixed model estimate, which demonstrated that the time had an effect on “Organizational Learning & Continuous Improvement” after six months. The estimates also demonstrated that the healthcare professional’s perceptions of “Communication Openness” were affected by time (six months), which corresponds with the results from the t-test analyses, where “Communication Openness” showed significant improvements after both 6 and 12 months. The “Frequency of Events Reported” and “Patient Safety Grade” were affected by the physicians which is an interesting finding since it is often challenging to involve physicians in interprofessional interventions in wards [64]. All professions were trained together, which may have influenced the professional and organizational outcomes in a positive way. In addition to the sustained improvement in “Communication Openness”, two more dimensions of HSOPS were improved after 12 months: “Teamwork Within Unit” and “Manager’s Expectations & Actions Promoting Patient Safety”. Management and leadership are important enablers in achieving effective teamwork and patient safety in complex organizations [65], and improvement in these three dimensions of the patient safety culture may enable further work and future improvement in the other patient safety culture dimensions in the surgical ward. Our improved patient safety culture results in three dimensions of the HSOPS (organizational outcome) are in line with those from previous research in diverse hospital contexts. Two multicenter
studies found improvement in three HSOPS dimensions when measured after 12 months [66, 67], and Thomas and Galla [64] found improvements in three HSOPS dimensions after 2 years. Schwartz, Welsh [67] found a decrease from 6 to 12 months in their multicenter study, a decrease they explained with a need for early refresher training.

The professional outcome “Mutual Support” was associated with “Patient Safety Grade” at the end of the study period, which is interesting from a human factors perspective since this T-TPQ dimension encompasses items focusing on patient safety and emphasizes the strong patient safety aspect of the TeamSTEPPS program.

The use of the conceptual framework contributed to an enhanced understanding of the system approach in our study, which is important to implement and sustain innovations [68]. When implementing teamwork tools such as SBAR, Closed-loop, and Cross-monitoring [40] in the work system, the use of the tools and strategies in the clinical work processes have influenced professional outcomes indicating that the teamwork competencies of the healthcare professionals improved during the study period. Transfer of the learning from team training is crucial to patient safety and interesting from a human factors perspective, as outcomes are influenced by the learning-to-transfer pathway [69]. The improvement in organizational outcomes (patient safety culture) may be due to the TeamSTEPPS intervention in the work system (see Fig. 1). In this study, the implementation was conducted by the master trained leaders and the champions on the change team, which may have contributed to the transfer and sustainment of this human factors innovation initiative.

Study limitations
The study has some limitations. The lack of randomization and controls may have threatened the internal validity, although a pre-post design is useful where there are practical barriers to a randomized design [70]. The study samples were small, but the response rates were satisfying, without risk of response bias. Because of the uncontrolled design, we cannot conclude that the improvements were due to the intervention. There are always secular trends that might be occurring at the same time in a surgical ward, and which may have influenced our results [71]. Because of the study limitations, caution must be taken in generalizing the results.
Conclusions
This study showed the effect of a human factors team training intervention after 12 months of implementation in a surgical ward, an effect that was demonstrated by both professional and organizational outcomes in the SEIPS 2.0 model. More work needs to be done to investigate the effect of TeamSTEPPS interventions in surgical wards, and studies with larger sample sizes and stronger designs are preferred. Future studies testing the causal pathways identified by SEIPS 2.0 will be of special interest.

Abbreviations
CSACD-T Collaboration and Satisfaction with Care Decisions in Team
GLMM Generalized Linear Mixed Model
HSOPS The Hospital Survey of Patient Safety Culture Questionnaire
SBAR Situation, Background, Assessment, Request or Recommendation
SEIPS Systems Engineering Initiative for Patient Safety
TeamSTEPPS Team Strategies and Tools to Enhance Performance and Patient Safety
T-TPQ TeamSTEPPS Teamwork Perceptions Questionnaire

Declarations
Ethics approval and consent to participate
The study protocol was reviewed by the “Regional Committees for Medical Research Ethics - South East Norway” (ref. 2016/1013 C). The study was approved by the “Norwegian Center for Research Data# (ref. no. 46323), and conducted in accordance with the Helsinki Declaration [72]. Written information about the study was sent to all participants via SurveyXact with reference to the principle of autonomy addressed by confidentiality and voluntariness. Although the team training and implementation activities were compulsory during work hours, participating in the surveys was voluntary. Completion of the surveys was regarded as informed consent. For ethical reasons, we did not collect data about the non-responders.

Consent for publication
“Not applicable”
Availability of data and materials

All data generated or analyzed during this study that are not included in this published article may be found in the supplementary files.

Competing interests

The authors declare that they have no competing interests.

Funding

This work was supported by the Norwegian Nurses Organization (15/0018). The Norwegian Nurses Organization had no role in the study design, collection, analysis and interpretation of the data or in the writing of the manuscript.

Authors' contributions

ORA, MLHL, SEH, and RB contributed to the conception and design and the writing and critical revision of the manuscript and approved the final version published.

Acknowledgements

We would like to thank the healthcare professionals from the surgical ward who participated in the study. We also wish to thank associate professor Randi Tosterud (NTNU) and senior consultant Terje Ødegården, Center for Simulation and Patient Safety (NTNU), for their valuable facilitation of the simulation training. Last, we want to thank statistician Jo Røislien, professor of Medical Statistics at the University of Stavanger, for consulting on the data analysis.

References

1. Leape, L.L., *Patient safety in the era of healthcare reform*. Clin Orthop Relat Res, 2015. 473(5): p. 1568-73.
2. WHO. 10 facts on patient safety. 2019 August 2019 [cited 2020 January 10]; Available from: https://www.who.int/features/factfiles/patient_safety/en/.

3. de Vries, E.N., et al., The incidence and nature of in-hospital adverse events: a systematic review. Quality and Safety in Health Care, 2008. 17(3): p. 216-223.

4. de Vries, E.N., et al., Effect of a comprehensive surgical safety system on patient outcomes. New England Journal of Medicine, 2010. 363(20): p. 1928-1937.

5. Carayon, P., et al., Safety by design - Work system design for patient safety: the SEIPS model. Qual Saf Health Care, 2006(15): p. 50-58.

6. The Joint Commission. Sentinel event statistics released for 2014 [report] 2015 [cited 2015 101015]; Available from: file:///Users/oddveig/Downloads/jconline_April_29_15pdf.pdf.pdf.

7. WHO. Patient safety. 2015 01.12.2015]; Available from: http://www.euro.who.int/en/health-topics/Health-systems/patient-safety/patient-safety.

8. Joint Commission, Patient Safety Systems (PS) CAMH Update 2, in The accreditation program's Comprehensive Accreditation Manual. 2016.

9. Carayon, P. and K.E. Wood, Patient safety - the role of human factors and systems engineering. Studies in Health Technology & Informatics, 2010. 153: p. 23-46.

10. Kannampallil, T.G., et al., Considering complexity in healthcare systems. Journal of biomedical informatics, 2011. 44(6): p. 943-947.

11. Marshall, D.C. and M.P.J.o.c.n. Finlayson, Identifying the nontechnical skills required of nurses in general surgical wards. 2018. 27(7-8): p. 1475-1487.

12. Mache, S., et al., General and visceral surgery practice in German hospitals: a real-time work analysis on surgeons’ work flow. 2010. 395(1): p. 81.

13. National Center for Human Factors in Healthcare. 2020 [cited 2020 January 23];
14. Holden, R.J., V.P. Cornet, and R.S. Valdez, Patient ergonomics: 10-year mapping review of patient-centered human factors. Appl Ergon, 2020. 82: p. 102972.

15. Russ, A.L., et al., The science of human factors: separating fact from fiction. BMJ Qual Saf, 2013. 22(10): p. 802-8.

16. Carayon, P., et al., Challenges And Opportunities For Improving Patient Safety Through Human Factors And Systems Engineering. Health Affairs, 2018. 37(11): p. 1862-1869.

17. Carayon, P., Human factors in patient safety as an innovation. Appl Ergon, 2010. 41(5): p. 657-65.

18. WHO. Human factors in patient safety: review of topics and tools. [Report] 2009 [cited 2015 March 15]; Available from: http://testing.chfg.org/resources/10_qrt01/WHO_PS_HF_Review.pdf.

19. Cannon-Bowers, J.A., et al., Defining Competencies and Establishing Team Training Requirements, in Team Effectiveness and Decision Making in Organizations, R.A. Guzzo and E. Salas, Editors. 1995, Jossey-Bass: San Francisco. p. 333–80.

20. Baker, D.P., et al., The Relation between Teamwork and Patient Safety, in Handbook of Human Factors and Ergonomics in Health Care and Patient Safety. 2012, CRC Press. p. 185-198.

21. Weaver, S.J., S.M. Dy, and M.A. Rosen, Team-training in healthcare: a narrative synthesis of the literature. BMJ quality & safety, 2014. 23(5): p. 359-372.

22. Salas, E., et al., Does team training improve team performance? A meta-analysis. Hum Factors, 2008. 50(6): p. 903-33.

23. Weaver, S.J., et al., Promoting a culture of safety as a patient safety strategy: a systematic review. Ann Intern Med, 2013. 158(5 Pt 2): p. 369-74.
24. Sacks, G.D., et al., Teamwork, communication and safety climate: a systematic review of interventions to improve surgical culture. BMJ Qual Saf, 2015. 24(7): p. 458-67.

25. Howell, A.-M., et al., Reducing the burden of surgical harm: a systematic review of the interventions used to reduce adverse events in surgery. Annals Of Surgery, 2014. 259(4): p. 630-641.

26. Neily, J., et al., Association between implementation of a medical team training program and surgical mortality. Jama, 2010. 304(15): p. 1693-700.

27. Aaberg, O.R. and S. Wiig. Interprofessional team training in hospital wards: A literature review. in European Safety and Reliability Conference (ESREL). 2017. Portoroz, Slovenia: CRC Press 2017.

28. Rosen, M.A., et al., Teamwork in healthcare: Key discoveries enabling safer, high-quality care. American Psychologist, 2018. 73(4): p. 433.

29. Korner, M., et al., Relationship of organizational culture, teamwork and job satisfaction in interprofessional teams. BMC Health Serv Res, 2015. 15: p. 243.

30. El-Jardali, F., et al., Predictors and outcomes of patient safety culture in hospitals. BMC Health Services Research, 2011. 11(1): p. 45.

31. King, H.B., et al., TeamSTEPPS: Team Strategies and Tools to Enhance Performance and Patient Safety, in Advances in Patient Safety: New Directions and Alternative Approaches (Vol. 3: Performance and Tools), K. Henriksen, et al., Editors. 2008, Agency for Healthcare Research and Quality (US): Rockville (MD).

32. TeamSTEPPS 2.0. 2014 June 2019 [cited 2019 August 12]; Available from: https://www.ahrq.gov/teamstepps/instructor/index.html.

33. Reader, T.W., Team Decision Making, in The Wiley Blackwell Handbook of the Psychology of Team Working and Collaborative Processes., E. Salas, R. Rico, and J.
34. Salas, E., J.A. Cannon-Bowers, and J.H. Johnston, *How can you turn a team of experts into an expert team? Emerging training strategies*, in *Naturalistic Decision Making*, C. Zsambok and G. Klein, Editors. 2014, Psychology Press: New York. p. 359-370.

35. Stewart, G.L., K.A. Manges, and M.M. Ward, *Empowering Sustained Patient Safety: The Benefits of Combining Top-down and Bottom-up Approaches*. J Nurs Care Qual, 2015. 30(3): p. 240-6.

36. Carayon, P., et al., *Human factors systems approach to healthcare quality and patient safety*. Applied ergonomics, 2014. 45(1): p. 14-25.

37. Holden, R.J., et al., *SEIPS 2.0: a human factors framework for studying and improving the work of healthcare professionals and patients*. Ergonomics, 2013. 56(11): p. 1669-86.

38. Ballangrud, R., et al., "*Teamwork in hospitals": a quasi-experimental study protocol applying a human factors approach*. BMC Nurs, 2017. 16: p. 34.

39. Clinical Human Factors Group. *Implementing Human Factors in Healthcare - 'Taking further steps'. ‘How to’ Guide to Human Factors 2013* [cited 2019 May 07 2019]; Available from: https://improvementacademy.org/documents/Projects/human_factors/Implementing-human-factors-in-healthcare-How-to-guide-volume-2-FINAL-2013_05_16.pdf.

40. Aaberg, O.R., et al., *A complex teamwork intervention in a surgical ward in Norway*. BMC Res Notes, 2019. 12(1): p. 582.

41. American Institutes for Research. *TeamSTEPPS® Teamwork Perceptions Questionnaire Manual*. 2010.

42. Keebler, J.R., et al., *Validation of a teamwork perceptions measure to increase patient safety*. BMJ Qual Saf, 2014. 23(9): p. 718-26.
43. Baggs, J.G., Development of an instrument to measure collaboration and satisfaction about care decisions. Journal of Advanced Nursing, 1994. 20(1): p. 176-182.

44. Sorra, J. and N. Dyer, Multilevel psychometric properties of the AHRQ hospital survey on patient safety culture. BMC Health Serv Res, 2010. 10: p. 199.

45. Jones, K.J., et al., The AHRQ Hospital Survey on Patient Safety Culture: A Tool to Plan and Evaluate Patient Safety Programs, in Advances in Patient Safety: New Directions and Alternative Approaches (Vol. 2: Culture and Redesign), K. Henriksen, et al., Editors. 2008, Agency for Healthcare Research and Quality (US): Rockville (MD).

46. Ballangrud, R., S.E. Husebø, and M.L. Hall-Lord, Cross-cultural validation and psychometric testing of the Norwegian version of the TeamSTEPPS® teamwork perceptions questionnaire. BMC Health Services Research, 2017. 17(1): p. 799.

47. Aaberg, O.R., et al., Collaboration and Satisfaction About Care Decisions in Team questionnaire—Psychometric testing of the Norwegian version, and hospital healthcare personnel perceptions across hospital units. Nursing Open, 2019. 6(2): p. 642-650.

48. Olsen, E., Reliability and validity of the Hospital Survey on Patient Safety Culture at a Norwegian hospital., in Quality and safety Improvement Research: Methods and research practice from the International Quality Improvement Research Network., J. Øvretveit and P. Sousa, Editors. 2008, National Scool of Public Health.: Lisbon, Portugal: National School of Public Health1. p. 173-186

49. Derrick, B. and P. White, Comparing two samples from an individual Likert question. International Journal of Mathematics and Statistics, 2017. 18(3).

50. Bolker, B.M., et al., Generalized linear mixed models: a practical guide for ecology and evolution. Trends in ecology & evolution, 2009. 24(3): p. 127-135.

51. West, P., et al., Surgical programs in the Veterans Health Administration maintain
briefing and debriefing following medical team training. Jt Comm J Qual Patient Saf, 2014. 40(5): p. 235-9.

52. Katz, M.H., *Multivariable analysis: a practical guide for clinicians and public health researchers*. 2011: Cambridge university press.

53. Polit, D.F. and C.T. Beck, *Nursing research. Generating and assessing evidence for nursing practice*. 2017, Philadelphia: Wolters Kluwer.

54. Des Jarlais, D.C., et al., *Improving the reporting quality of nonrandomized evaluations of behavioral and public health interventions: the TREND statement*. 2004. 94(3): p. 361-366.

55. Kim, L.Y., *The Effects of Simulation-based TeamSTEPPS Interprofessional Communication and Teamwork Training on Patient and Provider Outcomes*. 2014, UCLA.

56. Riggall, V.K. and C.M. Smith, *Creating a sustainable, interprofessional-team training program: initial results*. Clin Nurse Spec, 2015. 29(3): p. 147-55.

57. Paull, D.E., et al., *The Effect of Simulation-Based Crew Resource Management Training on Measurable Teamwork and Communication Among Interprofessional Teams Caring for Postoperative Patients*. Journal of Continuing Education in Nursing, 2013. 44(11): p. 516-524.

58. McCambridge, J., K. Kypri, and D. Elbourne, *Research participation effects: a skeleton in the methodological cupboard*. J Clin Epidemiol, 2014. 67(8): p. 845-9.

59. Maxson, P.M., et al., *Enhancing nurse and physician collaboration in clinical decision making through high-fidelity interdisciplinary simulation training*. Mayo Clin Proc, 2011. 86(1): p. 31-6.

60. Klipfel, J.M., et al., *Using high-fidelity simulation to develop nurse-physician teams*. J Conti Educ Nurs, 2011. 42(8): p. 347-57; quiz 358-9.
61. Sorra, J., et al., *AHRQ Hospital Survey on Patient Safety Culture: User’s Guide.* Prepared by Westat, under Contract No. HHSA290201300003C). AHRQ Publication No. 15-0049-EF (Replaces 04-0041). 2016, Agency for Healthcare Research and Quality, USA: Rockville, MD.

62. Weinzierl, L.G. and C.A.J.T.J.o.A.B.S. Esken, *Learning from mistakes: How mistake tolerance positively affects organizational learning and performance.* 2017. 53(3): p. 322-348.

63. Itoh, K., H.B. Andersen, and M.D. Madsen, *Safety Culture in Health Care*, in *Handbook of Human Factors and Ergonomics in Health Care and Patient Safety*, P. Carayon, Editor. 2012, CRC Press: Boca Raton, Florida USA. p. 823.

64. Thomas, L. and C. Galla, *Building a culture of safety through team training and engagement.* BMJ Qual Saf, 2013. 22(5): p. 425-34.

65. Cunningham, U., et al., *Team interventions in acute hospital contexts: a systematic search of the literature using realist synthesis.* BMC health services research, 2018. 18(1): p. 536.

66. Jones, K.J., et al., *A theory-driven, longitudinal evaluation of the impact of team training on safety culture in 24 hospitals.* BMJ Qual Saf, 2013. 22(5): p. 394-404.

67. Schwartz, M.E., et al., *The effects of crew resource management on teamwork and safety climate at Veterans Health Administration facilities.* Journal of Healthcare Risk Management, 2018. 38(1): p. 17-37.

68. Eccles, M., et al., *Changing the behavior of healthcare professionals: the use of theory in promoting the uptake of research findings.* Journal of clinical epidemiology, 2005. 58(2): p. 107-112.

69. Salas, E., et al., *Team Training for Patient Safety*, in *Human Factors and Ergonomics in Health Care and Patient Safety*, P. Carayon, Editor. 2012, CRC Press.
70. Eccles, M., et al., Research designs for studies evaluating the effectiveness of change and improvement strategies. Qual Saf Health Care, 2003. 12(1): p. 47-52.

71. Portela, M.C., et al., How to study improvement interventions: a brief overview of possible study types. Postgrad Med J, 2015. 91(1076): p. 343-54.

72. The World Medical Association. Declaration of Helsinki – Ethical Principles for Medical Research Involving Human Subjects. 2013 [cited 2019 15 May]; Available from: https://www.wma.net/policies-post/wma-declaration-of-helsinki-ethical-principles-for-medical-research-involving-human-subjects/.

Figures

![Figure 1](image_url)

A modified SEIPS 2.0 model adapted from Holden et al. (2013). The components with the bold lines illustrate this study from a human factors system perspective. Used with permission from Richard Holden.

Supplementary Files
This is a list of supplementary files associated with this preprint. Click to download.

AdditionalfileP3AabergGLMM270220.xlsx
TRENDChecklistP3Aaberg070420.pdf