q-EULER AND GENOCCHI NUMBERS

TAEKYUN KIM

Institute of Science Education,
Kongju National University, Kongju 314-701, S. Korea
e-mail: tkim@kongju.ac.kr (or tkim64@hanmail.net)

Abstract. Carlitz has introduced an interesting q-analogue of Frobenius-Euler numbers in [4]. He has indicated a corresponding Stadudt-Clausen theorem and also some interesting congruence properties of the q-Euler numbers. In this paper we give another construction of q-Euler numbers, which are different than his q-Euler numbers. By using our q-Euler numbers, we define the q-analogue of Genocchi numbers and investigate the relations between q-Euler numbers and q-analogs of Genocchi numbers.

1. Introduction

Throughout this paper, we consider a complex number $q \in \mathbb{C}$ with $|q| < 1$ as an indeterminate. The q-analogue of n is defined by $[n]_q = \frac{1 - q^n}{1 - q}$. The ordinary Euler numbers are defined by the generating function as follows:

\begin{equation}
F(t) = \frac{2}{e^t + 1} = e^{Et} = \sum_{n=0}^{\infty} E_n \frac{t^n}{n!}, \quad |t| < \pi,
\end{equation}

where we use the technique method notation by replacing E^m by E_m $(m \geq 0)$, symbolically, cf.\,[2, 6].

From Eq.\,(1), we can derive the Genocchi numbers as follows:

\begin{equation}
G(t) = \frac{2t}{e^t + 1} = \sum_{n=0}^{\infty} G_n \frac{t^n}{n!}, \quad |t| < \pi.
\end{equation}

2000 Mathematics Subject Classification 11S80, 11B68
Key words and phrases: Sums of powers, Bernoulli number, Bernoulli polynomials

Typeset by AMS-TEX
It satisfies $G_1 = 1$, $G_3 = G_5 = G_7 = \cdots = 0$, and even coefficients are given $G_m = 2(1 - 2^{2m})B_{2m} = 2mE_{2m-1}$, where B_m are the m-th ordinary Bernoulli numbers, cf.[6]. It follows from (2) and Staduclt-Clasusen theorem that Genocchi numbers are integers. For $x \in \mathbb{R}$ (=the field of real numbers) the Euler polynomials are defined by

$$F(x, t) = F(t)e^{xt} = \frac{2}{e^t + 1}e^{xt} = \sum_{n=0}^{\infty} E_n(x)\frac{t^n}{n!}, \quad (|t| < \pi).$$

From (3), we can also derive the definition of Genocchi polynomials as follows:

$$\frac{2t}{e^t + 1}e^{xt} = \sum_{n=0}^{\infty} G_n(x)\frac{t^n}{n!}, \quad (|t| < \pi).$$

The following formulae ((5)-(6)) are well known in [6].

$$E_m(x) = \sum_{k=0}^{m} \binom{m}{k} G_{k+1}x^{m-k}.$$ \hfill (5)

For $n, m \geq 1$, and n odd, we have

$$E_m(x) = \sum_{k=1}^{m-1} \binom{m}{k} n^k G_k Z_{m-k}(n-1),$$ \hfill (6)

where $Z_m(n) = 1^m - 2^m + 3^m - \cdots + (-1)^{n+1}n^m$. In this paper we give the q-analogs of the above Eq.(5) and Eq.(6). The purpose of this paper is to give another construction of q-Euler numbers, which are different than a q-Eulerian numbers of Carlitz. From the definition of our q-Euler numbers, we derive the q-analogs of Genocchi numbers and investigate the properties of q-Genocchi numbers which are related to q-Euler numbers.

2. q-Euler Numbers and Polynomials

Let q be a complex number with $q < 1$. In [3, 4] Carlitz constructed q-analogue of Eulerian numbers. We now consider another construction of a q-Eulerian numbers, which are different than his q-Eulerian numbers. First we consider the following generating functions:

$$F_q(t) = [2]_q e^{\frac{1}{1-q}} \sum_{j=0}^{\infty} (-1)^j \frac{1}{j!} \frac{t^j}{1 + q^{j+1}} = e^{E_q t} = \sum_{n=0}^{\infty} E_{n,q} \frac{t^n}{n!},$$ \hfill (7)
and
\[F_q(x, t) = [2]_q e^{\frac{1}{t-q}} \sum_{j=0}^{\infty} \frac{(-1)^j q^j x}{1 + q^{j+1}} \left(\frac{1}{1 - q} \right)^j \frac{t^j}{j!} = e^{E_q(x)t} = \sum_{n=0}^{\infty} E_{n,q}(x) \frac{t^n}{n!}, \]
where we use the technique method notation by replacing \(E_n \) by \(E_{n,q} \), symbolically. Thus we have
\[E_{n,q} = \frac{[2]_q}{(1 - q)^n} \sum_{l=0}^{n} \binom{n}{l} \frac{(-1)^l}{1 + q^{l+1}}, \]
and
\[E_{n,q}(x) = \frac{[2]_q}{(1 - q)^n} \sum_{l=0}^{n} \binom{n}{l} \frac{(-1)^l q^{lx}}{1 + q^{l+1} q^x}, \]
where \(\binom{n}{l} \) is binomial coefficient.

By (8-1), we easily see that \(\lim_{q \to 1} E_{n,q} = E_n \) and \(\lim_{q \to 1} E_{n,q}(x) = E_n(x) \). From Eq.(8), we can derive the below Eq.(9):
\[F_q(x, t) = [2]_q \sum_{n=0}^{\infty} (-1)^n q^n e^{[n+x]_q t} = \sum_{n=0}^{\infty} E_{n,q}(x) \frac{t^n}{n!}. \]
By (9), we easily see that
\[E_{n,q} = \frac{[2]_q}{(1 - q)^n} \sum_{l=0}^{n} \binom{n}{l} \frac{(-1)^l q^{m-1} q^{lx}}{1 + q^{l+1} q^x}, \]
where \(m \) is odd.

This is equivalent to
\[[2]_q \sum_{n=0}^{m-1} (-1)^n q^n E_{n,q}(\frac{a + x}{m}) = \sum_{k=0}^{n} \binom{n}{k} [x]_q^{n-k} q^{kx} E_{k,q}, \]
for \(m \) odd.

If we put \(x = 0 \) in Eq.(11), then we have
\[[m]_{-q} E_{n,q} - [m]_{q} [m(n + 1)]_{-q} E_{n,q} = \sum_{l=0}^{n-1} \binom{n}{l} [m]_{l} q \sum_{a=1}^{m-1} (-1)^a q^{a(l+1)} [a]_{q}^{n-l}, \]
where \([m]_{-q} = \frac{1 + q^m}{1 + q} \) for \(m \) odd.

Define the operation \(*\) on \(f_n(q) \) as follows:
\[(1 - [m]_{q}) * f_n(q) = [m]_{-q} f_n(q) - [m]_{q} \frac{[m(n + 1)]_{-q} - [m]_{[n + 1]_{-q}}}{[n + 1]_{-q}} f_n(q^m). \]
By (12) and (13), we obtain the following:
Proposition 1. For $m, n \in \mathbb{N}$ and m odd, we have

$$(1 - [m]_q^n) \ast E_{n,q} = \sum_{l=0}^{n-1} \binom{n}{l} [m]_q^l E_{l,q} \sum_{a=1}^{m-1} (-1)^a q^{a(l+1)} [a]_q^{n-l}.$$

For any positive integer n, it is easy to see that

$$(14) \quad -[2]_q \sum_{l=0}^{\infty} (-1)^l q^{l+n} e^{[l+n]_q t} + [2]_q \sum_{l=0}^{\infty} (-1)^l q^l e^{[l]_q t} = [2]_q \sum_{l=0}^{n-1} (-1)^l q^l e^{[l]_q t}.$$

From (9) and (14) we can derive the below:

$$\sum_{l=0}^{n-1} (-1)^l q^l [l]_q^m = \frac{1}{[2]_q} \left((-1)^{n+1} q^n E_{m,q}(n) - E_{m,q} \right).$$

Therefore we obtain the following:

Proposition 2. For $n, m \in \mathbb{N}$, we have

$$\sum_{l=0}^{n-1} (-1)^l q^l [l]_q^m = \frac{1}{[2]_q} \left((-1)^{n+1} q^n E_{m,q}(n) - E_{m,q} \right).$$

In the recent many authors have studies the sums of powers of consecutive integers, cf.[1, 5, 7, 10, 11]. The above Proposition 2 is the another q-analogue of the sums of powers of consecutive integers. The Genocchi numbers G_n are defined by the generating function:

$$G(t) = \frac{2t}{e^t + 1} = e^{Gt} = \sum_{n=0}^{\infty} G_n \frac{t^n}{n!}, \quad (|t| < \pi),$$

where we use the technique method notation by replacing G^m by G_m ($m \geq 0$), symbolically. It satisfies $G_1 = 1$, $G_3 = G_5 = G_7 = \cdots = 0$ and even coefficients are given $G_m = 2(1 - 2^m) B_{2m} = 2m E_{2m-1}$, cf.[6]. We now derive the q-extension of the above Genocchi numbers from the definition of our q-Euler numbers.
3. \(q\)-Genocchi Numbers and polynomials

By the meaning of (1) and (2), let us define the \(q\)-extension of Genocchi numbers as follows:

\[
G_q(t) = [2]_q t \sum_{n=0}^{\infty} (-1)^n q^n e^{[n]_q t} = \sum_{n=0}^{\infty} G_{n,q} \frac{t^n}{n!}, \quad (|t| < \pi).
\]

Note that \(\lim_{q \to 1} G_q(t) = \frac{2t}{e^t + 1} = \sum_{n=0}^{\infty} G_n \frac{t^n}{n!}\). Hence, \(\lim_{q \to 1} G_{n,q} = G_n\). In [8], the \(q\)-Bernoulli numbers are defined by

\[
(15) -\sum_{n=0}^{\infty} q^n e^{[n]_q t} = \sum_{n=0}^{\infty} B_{n,q} \frac{t^n}{n!}, \quad (|t| < 2\pi).
\]

It was known that \(\lim_{q \to 1} B_{n,q} = B_n\), cf.[8, 9]. By (15), we easily see that

\[
(16) -[2]_q t \sum_{n=0}^{\infty} q^n e^{[n]_q t} + 2[2]_q t \sum_{n=0}^{\infty} q^{2n} e^{[2n]_q t} = [2]_q t \sum_{n=0}^{\infty} (-1)^n q^n e^{[n]_q t}.
\]

From (15) and (16), we can derive the below Eq.(17):

\[
(17) G_{n,q} = [2]_q B_{n,q} - 2[2]_q^n B_{n,q^2}.
\]

Let us consider the \(q\)-analogue of Genocchi polynomials as follows:

\[
(18) G_q(x, t) = [2]_q t \sum_{n=0}^{\infty} (-1)^n q^{n+x} e^{[n+x]_q t} = \sum_{n=0}^{\infty} G_{n,q}(x) \frac{t^n}{n!}.
\]

By (18), we easily see that

\[
(19) G_q(x, t) = [2]_q q^x t e^{\frac{t}{1-q}} \sum_{l=0}^{\infty} \frac{(-1)^l t^l}{1 + q^{l+1}} q^l x \left(\frac{1}{1-q} \right)^l \frac{t^l}{l!}.
\]

Thus, we have

\[
G_{n,q}(x) = n \left(\frac{1}{1-q} \right)^{n-1} \sum_{l=0}^{n-1} \frac{(-1)^l}{1 + q^{l+1}} q^{(l+1)x}.
\]
From (8) and (19), we can derive the below equality:

$$F_q(x, t) = [2]_q \sum_{n=0}^{\infty} (-1)^n q^n e^{[n+x]_q} t^n = \frac{e^{[x]_q t}}{q^x t} [2]_q q^x t \sum_{n=0}^{\infty} (-1)^n q^n e^{[n]_q t}$$

(20)

$$= e^{[x]_q t} \sum_{n=0}^{\infty} q^n x q^{n+1} \frac{t^n}{n+1} n! = \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} \left(\begin{array}{c} n \\ k \end{array} \right) [x]_q x^{n-k} q^{n} \frac{G_{n+1,q}}{n+1} \right) \frac{t^n}{n!}.$$

By (20), we easily see that

$$E_{n,q}(x) = \sum_{k=0}^{n} \left(\begin{array}{c} n \\ k \end{array} \right) [x]_q x^{n-k} q^{n} \frac{G_{n+1,q}}{n+1}. \tag{21}$$

Remark. The Eq.(21) is the q-analogue of Eq.(5).

Therefore we obtain the following theorem:

Theorem 3. For any positive integer n, we have

(a) $G_{n,q}(x) = n \left(\frac{1}{1-q} \right)^{n-1} \sum_{l=0}^{n-1} \left(\begin{array}{c} n-1 \\ l \end{array} \right) \frac{(-1)^l}{1+q^{l+1}} q^{(l+1)x}$,

(b) $E_{n,q}(x) = \sum_{k=0}^{n} \left(\begin{array}{c} n \\ k \end{array} \right) [x]_q x^{n-k} q^{n} \frac{G_{n+1,q}}{n+1},$

(c) $G_{n,q} = [2]_q B_{n,q} - 2[2]_q B_{n,q^2},$

where $B_{n,q}$ are the q-Bernoulli numbers which are defined in [8].

By (18), we easily see that

$$\sum_{n=0}^{\infty} G_{n,q}(x) \frac{t^n}{n!} = \sum_{n=0}^{\infty} \left(\frac{[2]_q}{[2]_q m} \right)^{n-1} \sum_{a=0}^{m-1} (-1)^a q^{a+x} G_{n,q^m} \left(\frac{x+a}{m} \right) \frac{t^n}{n!}, \text{ for } m \text{ odd}.$$

(22)

Thus we obtain the following:

Theorem 4. Let $m \in \mathbb{N}$ and m odd. Then we see that

$$G_{n,q}(x) = \frac{[2]_q}{[2]_q m} \sum_{a=0}^{m-1} (-1)^a q^{a+x} G_{n,q^m} \left(\frac{x+a}{m} \right) = \sum_{k=0}^{\infty} \left(\begin{array}{c} n \\ k \end{array} \right) q^{kx} G_{k,q} [x]_q^{n-k}.$$
This is equivalent to

\begin{equation}
G_{n,q}(mx) = \frac{[2]_q}{[2]_q m} [m]_q [m]_q \sum_{a=0}^{m-1} (-1)^a q^{a+mx} G_{n,q}(x + \frac{a}{m}).
\end{equation}

If we take \(x = 0 \) in Eq. (23), then we easily see that

\begin{equation}
[2]_q [m]_q G_{n,q} - [2]_q [m]_q^n G_{n,q} m \frac{[2]_q q^{m+1}}{[2]_q q^{n+1}} = [2]_q \sum_{k=0}^{n-1} \binom{n}{k} [m]_q [m]_q^n G_{k,q} m \sum_{a=0}^{m-1} (-1)^a q^{a(k+1)} [a]_q^{n-k}.
\end{equation}

From the definition of the operation \(*\) in the previous section, we note that

\begin{equation}
([m]_q - [m]_q^n) * f_n(q) = [2]_q [m]_q f_n(q) - [2]_q [m]_q^n \frac{[2]_q q^{m+1}}{[2]_q q^{n+1}} f_n(q^n).
\end{equation}

By (24) and (25), we easily see that

\begin{equation}
([m]_q - [m]_q^n) * G_{n,q} = [2]_q \sum_{k=0}^{n-1} \binom{n}{k} [m]_q [m]_q^n G_{n,q} m \sum_{a=0}^{m-1} (-1)^a q^{a(k+1)} [a]_q^{n-k}.
\end{equation}

REFERENCES

1. G. E. Andrews, \(q\)-analogs of the binomial coefficient congruences of Babbage, Wolstenholme and Glaisher, Discrete Math. 204 (1999), 15-25.
2. T. Apostol, Introduction to analytic number theory, Undergraduate Texts in Math., Springer-Verlag, New York, 1986.
3. L. Carlitz, \(q\)-Bernoulli numbers and polynomials, Duke Math. J. 15 (1948), 987-1000.
4. L. Carlitz, \(q\)-Bernoulli and Eulerian Numbers, Trans. Amer. Math. Soc. 76 (1954), 332-350.
5. G. Gasper, M. Rahman, Basic hypergeometric series, Encyclopedia of Mathematics and Its Applications, Vol 96, Secod Edition, Cambridge Univ. Press, 2004.
6. F. T. Howard, Applications of a recurrence for the Bernoulli numbers, J. Number Theory 52 (1995), 157-172.
7. T. Kim, Sums of powers of consecutive \(q\)-integers, Advan. Stud. Contemp. Math. 9 (2004), 15-18.
8. T. Kim, Analytic continuation of multiple \(q\)-zeta functions and their values at negative integers, Russian J. Math. Phys. 11 (2004), 71-76.
9. T. Kim, Multiple \(p\)-adic L-Function, Russian J. Math. Phys. 13 no. 1 (2006), 00-00.
10. D. E. Knuth, Johann Faulhaber and sums of powers, Math. Comput. 61 (1993), 277-294.
11. Y.-Y. Shen, A note on the sums of powers of consecutive integers, Tunghai Science 5 (2003), 101-106.