The Potency of *Ludwigia adscendens* and *L. octovalvis* As Phytoremediator Macrophytes in Indonesia

ABSTRACT

The potency of *Ludwigia adscendens* and *L. octovalvis* as phytoremediator macrophytes in Indonesia was reviewed. The characteristics of these species might be essential information for operators who wanted to implement phytoremediation in their sites. Information and articles about these species in Indonesia was collected through Google-Scholar during the first week of February 2021 and reviewed. Many studies about phytoremediation focused only on the capabilities of macrophytes to remove contaminants from water and paid only little attention to their compatibility with the ecosystem leading to upset the ecosystem. To Indonesia, these two species were introduced and became weeds, with different ecological characteristics. In Indonesia, scarce phytoremediation studies using these species were detected. Therefore, although these species were classified as weeds it was, remained, worthwhile to investigate further these species to be used in the phytoremediation of water.

Keywords: macrophyte, accumulator, weed, rooted-floating

1. INTRODUCTION

It is a common knowledge that phytoremediation applications always focus on the end results only and with little attention to the characteristics of the plants. Various plants were compared and studied to determine which ones were the most effective in reducing contaminants from water or soils. For example, a study conducted by Dewi et al. (2019) which used two macrophytes namely *Pistia stratiotes* and *Lemna* sp. to treat wastewater form tofu industries. The study showed better results which these species could increase dissolved oxygen and remove some nutrients. However, these two species are well-known as weeds and invasive species which may upset the water-body ecosystem equilibrium. Obviously, a phytoremediation research is expected to be applied in fields so that the compatibility of species to the local ecosystem must be the main consideration so as not to damage the ecosystem when results of phytoremediation are applied (Nash et al., 2019; Leguizamo et al., 2017; Xu et al., 2020). This is where the user or operator's discretion in determining which plant species will be applied in the field. On the other hand, researchers are also required to be more diligent in selecting plants that are suitable for the local ecosystem in order to make it easier for users or operators to choose phytoremediation plants. If it is not necessary that the native species from the local ecosystem are used in the phytoremediation research, then information on the distribution of the plant species should be described in their research articles.
This article is a literature review of two macrophytes, namely *Ludwigia adscendens* and *L. octovalvis*, which elaborates their potential as phytoremediation plants in Indonesia.

2. PLANT SUITABILITY FOR PHYTOREMEDIATION

Many considerations are used in determining the phytoremediation plant species. From now on, apart from the best capability of plants in reducing contaminants from the media, the suitability of plants to the local ecosystem should be taken so that phytoremediation plants do not shift the ecosystem balance (Baroroh & Irawanto, 2016; Delgadillo-López et al., 2011). Moreover, Delgadillo-López et al. (2011) emphasised to incinerate the fully-grown phytoremediators to avoid exotic species spread. Based on these, at least 2 (two) main considerations in determining phytoremediation research plants: 1) The capability of the species as phytoremediator, and 2) Distribution or nativity of the species.

2.1. The Capabilities of *Ludwigia adscendens* (L.) H. Hara

As noted by cabi.org (2019), *L. adscendens* is the most used common scientific name, although this species has several synonyms, such as *Jussiaea repens* L., *Jussiaea diffusa* Forsk., *Jussiaea stolonifera* Guill. & Perr., *Ludwigia natans* (L.) Ell. In Indonesia, this species is also known by various local names such as *dadangsit* from South Kalimantan Province (Rostini et al., 2014), *krangking* from Purwodadi, Central Java Province, *krokot membulat* from Bekasi, West Java (Hidayati & Rini, 2017), *tapak dara air* from East Java Province (Rosyada & Purnomo, 2018) (Fig. 1). According to its type, *L. adscendens* is included in the type of aquatic plants or macrophytes which leaves float and are rooted at the base of wetlands or sediments (Floating leaf plant-FLP) (Xiao, 2018), the process of vegetative growth occurs throughout the year, while flowering and fruit formation occurs at the beginning of the rainy season for 4-5 months (Dutta & Sarma, 2018).

![Fig. 1. *L. adscendens* with Five White Petals and Yellow Color at the Base](https://worldoffloweringplants.com/ludwigia-adscendens-water-primrose/)
From its habitus, *L. adscendens* is suitable for use in phytoremediation because the role of its roots is significant. In the substrate, the roots supply oxygen for the living things in it, which in turn, may activate and accelerate the phytoremediation process. In addition to providing life for living things, the diffusion of oxygen in the substrate may stimulate the precipitation of metals in the sediments (Babcsányi et al., 2017). With a little modification, it is expected that the roots of *L. adscendens* can float in the water column so that its function as a metal absorber is maximized.

Caution should be taken when this species is used in phytoremediation because of the potential to spread mosquitoes by attaching mosquito larvae (Vythilingam et al., 1992), and snails (Ashour et al., 2008) to the stems and leaves of *L. adscendens* into new habitats.

In fact *L. adscendens* is better known and widely studied as a pharmaceutical raw material or for medication (Chakraborty, 2014). For example, research conducted by Ahmed et al. (2005) and Lwin (2019) used this species as an antibacterial agent, by Krishnappa et al. (2020) as a mosquito repellent, by Al-douri (2000) and Yan et al. (2020) as a medicine for ulcers and itching on skin, by Das, Ghosal, Chakraborty, and Pradhan (2015) as an anemia medicine, by Khandekar et al. (2020) for diabetic medication.

In the phytoremediation application of contaminated water, *L. adscendens*, especially in Indonesia, is still not widely implemented, although its potential to treat wastewater has been predicted. Baroroh and Irawanto (2016) have identified 18 macrophytes in the Purwodadi Botanical Garden, Central Java Province and one of them is *L. adscendens*, which was thought to have an ability to treat domestic liquid waste through phytoremediation techniques. Xu et al. (2020) concluded that *L. adscendens* was performed better than *Eichhornia crassipes* which was trusted as the best phytoremediator for domestic wastewater.

In India, *L. adscendens* is classified as weed (Khankhane & Varshney, 2008), and in their research, Khankhane and Varshney (2008) had identified the capability of *L. adscendens* in phytoremediation which accumulated Ni, Cu, Fe, and Zn as much 17, 57, 1,878, and 155 μg/g (dw/dw), respectively, in the biomass. In that study, 18 plants were tested, and *L. adscendens* was included in the first 5 (five) species that had the highest capability in removing the four metals. In relation to Fe and Cu, *L. adscendens* took second place after *Convulvulus arvensis* and *Mullugo verticillata*, respectively.

Against other heavy metals, Cd, Cu, Cr and Pb, it turned out that *L. adscendens* had a higher capability to remove Cr from water bodies than other the tested heavy metals (Shah, Rai, & Singh, 2015). From Illinois-America, Larson and Sims (2003) managed to detect the ability of this plant in the removal of atrazine (C₈H₁₄ClN₅), which is a persistent compound, up to 50% within 6-7 days. While at Hartbeesport Dam in the North West Province of South Africa, *L. adscendens* succeeded in absorbing cyanotoxin which was toxic and was produced by a type of cyanobacteria that was often found in water bodies (Pindihama & Gitari, 2017).

The phytoremediation studies on *L. adscendens* in Indonesia are scarce and the studies have just started since early 2010. Its adaptability in habitats contaminated with Cd has been
studied by Rachma (2013) and published in a national journal by Rahma et al. (2014). After that, several phytoremediation studies were carried out to remove Cd (Rachmadiarti & Sholikah, 2020; Rosyada & Purnomo, 2018) and Pb from Lapindo mud in East Java Province (Nandra & Purnomo, 2019). Rachmadiarti et al. (2020) used several macrophytes, one of which is L. adscendens to remove detergents in Surabaya city, and proved the species could reduce detergent from the wastewater. Although there have not been many studies on this species, but it has given sufficiently an indication of its capability to remove metals and organic compounds from wastewater of from water bodies.

2.2. The Capabilities of Ludwigia octovalvis (Jacq.) Raven

In Indonesia L. octovalvis is known by several local names such as: Salah nyowo from Purwodadi, Central Java Province (Irawanto, 2016), bunga kuning from Bekasi, West Java Province (Hidayati & Rini, 2017), cecabean from Ogan Ilir, South Sumatra Province (Haryanto, 2017).

L. octovalvis is an emergent macrophyte which stems and leaves are above the water surface while the roots are in the sediment (Xiao, 2018). Hidayati and Rini (2017), who are researchers at the Centre for Biological Research-Indonesian Institute of Sciences (Lembaga Ilmu Pengetahuan Indonesia - LIPI), found that L. octovalvis is a bioaccumulator for Cd. Apart from Cd, several studies such as, Titah et al. (2018), Rajoo et al. (2016) have proven that L. octovalvis may remove As, Pb (Idris et al., 2016), Hg (Marrugo-Negrete et al., 2016) from contaminated media.

Al-Mansoory et al. (2017), Alanbary et al. (2017), Alanbary et al. (2019), Alanbary et al. (2018) in their studies also concluded that L. octovalvis is quite tolerant of hydrocarbons and is able to break down hydrocarbons from contaminated media. The process of breaking down and decreasing TPH by L. octovalvis can be accelerated and increased by the addition of bio-surfactants (Almansoory et al., 2019).
Figure 2. *L. octovalvis* with Four Yellow Petals but the Stem and Sepals are Red

Similar to *L. adscendens*, research on *L. octovalvis* as a medicinal ingredient (Lobato-de Magalhães & Martinez, 2018; Mallick et al., 2019) has also been widely carried out. Chang et al. (2004) examined this plant for cancer medicine, Aung and Chaw (2019) examined its leaves as an antibacterial/microbial material, Lin et al. (2017) examined as a diabetes treatment ingredient. Moreover, the use of *L. octovalvis* is known to be safer than *L. adscendens*, which may cause allergic effects on the skin (Sharma et al., 2017).

2.3. Distribution *L. adscendens* in Indonesia

According to Mallick et al. (2019), this species originates (nativity) from the Tropical America region. In Indonesia, *L. adscendens* is better known as *tapak dara air* and its existence has been scientifically identified since 1979 by Holm, Pancho, Herberger, and Plucknett (1979). Based on several scientific studies on phytoremediation using this species, which was recently implemented in the early 2010s, it is known that its distribution is in the Purwodadi-Central Java Province and Surabaya-East Java Province.

Known as weed, *L. adscendens* distribution has been identified in Malang, East Java Province (Widyaningrum, 2015), Sragen Regency, Central Java Province (Sudhana et al., 2019), Cangkir Village, Mijen District, Semarang City, Central Java Province (Purnomo, 2011), Hulu Sungai Utara Regency and Hulu Sungai Selatan Regency in South Kalimantan Province (Rostini et al., 2014).

This species is also considered as a weed in India (Jayan & Sathyanathan, 2012), and even in Bangladesh (Chakraborty, 2014). Nevertheless, although it is a weed, *L. adscendens* is less invasive. Observations made by Chakraborty (2014) in the wetlands of Netrokona and Sunamgonj, North Bangladesh indicated a three-year decline in the *L. adscendens* population due to human activities. Purnomo (2011) states that *L. adscendens* tends to die after its reproductive period. This species has less adaptation capability to the significant change of environment, for example, the change from wet, such as rice fields, to dry media is enough to kill it (Rostini et al., 2014).

2.4. Distribution *L. octovalvis* in Indonesia

According to Sainkhediya and Sisodiya (2020), *L. octovalvis* originated (nativity) from the Tropical Africa. This was different from the publication of Mallick et al. (2019) which stated the origin of this species is Tropical America. However, both of them have in common that they both came from the tropics. Nevertheless, its current distribution in the literature review by Liu et al. (2016) and by looking at its genetic information done by Liu et al. (2017) concluded that this species has spread throughout the world and is an invasive weed species. In Mexico, *L. octovalvis* is commonly found in wetlands and is a weed (Lobato-de Magalhães & Martinez, 2018), and in India as well which may threat to biodiversity of the wetlands (Barua et al., 2017). For *L. adscendens*, *L. octovalvis* is more invasive, which was concluded from observations in lakes in Baiyun and Caohai, China by Xiao (2018). Therefore *L. adscendens* was more recommended for phytoremediation although it was knows that this species might potentially spread mosquitoes. With or without *L. adscendens*.
mosquitoes spread freely and widely because they can fly. On the other hand, *L. adscendens* could spread mosquitoes through their larvae, but the attached mosquito larvae on the *L. adscendens* might not be survived in its new environment.

In Indonesia, *L. octovalvis* is considered as weed, especially in agricultural fields and needs to be intensively controlled. If the effect of metsulfuron methyl herbicide to suppress broadleaf weeds in rice fields has disappeared, then *L. octovalvis* may return (Respati et al., 2015). However, a weed research in Philippines conducted by Chauhan and Abugho (2012) showed different conclusion which *L. octovalvis* growth was suppressed by paddy (*Oriza sativa*). *L. octovalvis* adapted to the *O. sativa* interference by applying its plasticity capability by reducing the size of shoot parts of the plants. In other words, *L. octovalvis* might not inhibit significantly *O. sativa* growth but the presence of *L. octovalvis* could reduce the nutrient availability in the media.

In a study of the phytoremediator in the Purwodadi Botanical Garden, *L. octovalvis* was also found together with *L. adscendens* (Baroroh & Irawanto, 2016; Hidayah et al., 2020). Its potency in maintaining the water quality in Cisadane River, West Java Province and in Karawang-Bekasi has also been noted by Siahaan (2012) and Hidayati and Rini (2017), respectively. As a rice weed, *L. octovalvis* has been identified as being found in Ogan Ilir Regency, South Sumatra Province (Haryanto, 2017), Sigi Regency, Central Sulawesi Province (Suwitra et al., 2017), Malang, East Java Province (Widyaningrum, 2015), Sragen Regency, Central Java Province (Sudhana et al., 2019).

However, some parts of Indonesia these species has not been found. For examples, the results of an inventory of macrophytes in *Embau* River, *Hulu Gurung* District, *Kapuas Hulu* Regency, West Kalimantan Province, the two species have not been identified (Jayadi et al., 2017) as well as in the wetlands of *Rawa Village*, Kampar Regency, Riau Province (Nasution et al., 2020).

3. CONCLUSION

In Indonesia, these two species have not been widely studied in phytoremediation, although their existence has been identified in scientific publications since 1979. Research on these two species as phytoremediators has only started a decade earlier. Therefore it is worth examining their ability for phytoremediation applications in Indonesia.

L. adscendens was more widely used in phytoremediation studies than *L. octovalvis*. Based on this situation, more phytoremediation studies using *L. octovalvis* were recommended. It was also suggested to use COD and BOD parameters in water phytoremediation studies because these two parameters had not been used to measure the effectiveness of a phytoremediation using these species.

For areas in Indonesia where these two species have not been found, it is recommended not to use this species for phytoremediation because they were weeds and exotics to Indonesia. However, comparing these two species, *L. adscendens* was less invasive than *L. octovalvis*, so *L. adscendens* was more preferred to be used with a strict control measures to ensure it did not escape into nature, if there was no phytoremediator options available.
REFERENCES
Cabi. Org (2019). Ludwigia adscendens (water primrose). https://www.cabi.org/isc/datasheet/31668, accessed 9 February 2021

Ahmed, F., Selim, M., & Shilpi, J. (2005). Antibacterial activity of Ludwigia adscendens. Fitoterapia, 76(5), 473-475.

Al-douri, N. A. (2000). A survey of medicinal plants and their traditional uses in Iraq. Pharmaceutical biology, 38(1), 74-79.

Al-Mansoory, A. F., Idris, M., Abdullah, S. R. S., & Anuar, N. (2017). Phytoremediation of contaminated soils containing gasoline using Ludwigia octovalvis (Jacq.) in greenhouse pots. Environmental Science and Pollution Research, 24(13), 11998-12008.

Alanbary, S., Abdullah, S., & Abu Hassan, H. (2017). Screening for Resistant and Tolerable Plants (Ludwigia octovalvis and Phragmites karka) in Crude Oil Sludge for Phytoremediation of Hydrocarbons. Iranian (Iranica) Journal of Energy & Environment, 8(4), 288-191.

Alanbary, S. N., Abdullah, S. S., Hassan, H. A., & Othman, A. R. (2018). Screening for Resistant and Tolerable Plants (Ludwigia Octovalvis and Phragmites Karka) in Crude Oil Sludge for Phytoremediation of Hydrocarbons. Iranian Journal of Energy and Environment, 9(1), 48-51.

Alanbary, S. R. N., Abdullah, S. R. S., Al-Baldawi, I. A. W., Abu Hassan, H., Anuar, N., Othman, A. R., & Suja, F. (2019). Phytotoxicity of contaminated sand containing crude oil sludge on ludwigia octovalvis. Journal of Ecological Engineering, 20(11).

Almansoory, A. F., Hasan, H. A., Abdullah, S. R. S., Idris, M., Anuar, N., & Al-Adiwish, W. M. (2019). Biosurfactant produced by the hydrocarbon-degrading bacteria: Characterization, activity and applications in removing TPH from contaminated soil. Environmental Technology & Innovation, 14, 100347.

Ashour, A., Mostafa, B., Taha, H., & Azzam, A. (2008). Distribution of natural populations of Lymnaea snails in some Egyptian Governorates and their natural infection with Fasciola. J. Environ. Sci, 16(1), 19-31.

Aung, L. W., & Chaw, D. K. E. (2019). Study on morphology, anatomy, preliminary phytochemical test, nutritional values and antimicrobial activities of leaves of Ludwigia octovalvis (Jacq.) Raven. Dagon Univ Commemorat 25th Anniv Silver Jubilee Res J, 9(2), 321-327.

Babcsányi, I., Meite, F., & Imfeld, G. (2017). Biogeochemical gradients and microbial communities in Winogradsky columns established with polluted wetland sediments. FEMS Microbiology Ecology, 93(8). doi:10.1093/femsec/fix089

Baroroh, F., & Irawanto, R. (2016). Seleksi Tumbuhan Akuatik Berpotensi Dalam Fitoremediasi Air Limbah Domestik di Kebun Raya Purwodadi. Paper presented at the Prosiding Seminar Nasional Biologi. Universitas Negeri Malang, Malang.
Barua, I. C., Deka, J., Devi, M., Deka, R. L., & Moran, J. (2017). Weeds as emerging threat to biodiversity: a consequence of spread of Ludwigia peruviana in Dhanasiri and Kopili catchment areas of Assam, North East India. *Curr Sci, 112*(9), 1904-1914.

Chakraborty, B. K. (2014). Status of diversify medicinal plants in floodplain basin of northern Bangladesh. *Journal of Crop and Weed, India, 10*(2), 196-204.

Chang, C.-I., Kuo, C.-C., Chang, J.-Y., & Kuo, Y.-H. (2004). Three New Oleanane-Type Triterpenes from Ludwigia octovalvis with Cytotoxic Activity against Two Human Cancer Cell Lines. *Journal of natural products, 67*(1), 91-93.

Chauhan, B. S., & Abugho, S. B. (2012). Phenotypic plasticity of spiny amaranth (Amaranthus spinosus) and longfruited primrose-willow (Ludwigia octovalvis) in response to rice interference. *Weed science, 60*(3), 411-415.

Das, A., Ghosal, S., Chakraborty, I., & Pradhan, N. (2015). Haematinic potential of Jussiaea repens L—a search for anti anaemic herb. *Journal of Pharmaceutical Research International, 1*-11.

Delgadillo-López, A. E., González-Ramírez, C. A., Prieto-García, F., Villagómez-Ibarra, J. R., & Acevedo-Sandoval, O. (2011). Fitorremediación: una alternativa para eliminar la contaminación. *Tropical and subtropical agroecosystems, 14*(2), 597-612.

Dewi, Q. C., Hasan, Z., Hamdani, H., & Herawati, H. (2019). Utilization of Aquatic Plants as Phytoremediation Agents of Tofu Liquid Waste. *Asian Journal of Fisheries and Aquatic Research, 1*-9.

Dutta, R., & Sarma, S. K. (2018). Growth forms, phenology, composition and uses of the aquatic macrophytes found in the downstream of the Subansiri river ecosystem, Assam. *International Journal of basic and applied research, 8*(8), 407-420.

Dwi Respati, C. S., Dwi Yamika, W. S., & Sebayang, H. T. (2015). Pengaruh pengendalian gulma pada berbagai umur bibit terhadap pertumbuhan dan hasil tanaman padi sawah (Oryza sativa L.). *Jurnal Produksi Tanaman, 3*(4).

Haryanto, D. (2017). Identifikasi Gulma Di Lahan Pertanian Padi (Oryza sativa L.) Pasang Surut di Desa Pegayut Kecamatan Pemulutan Kabupaten Ogan Ilir Dan Sumbang Shnya Pada Pokok Bahasan Keanekaragaman Hayati Kelas X Di MA/SMA. UIN Raden Fatah Palembang

Hidayah, W. N., Ilham, M., & Irawanto, R. (2020). *Re-Inventarisasi Keanekaragaman Tanaman Air dan Persebarannya di Kebun Raya Purwodadi-LIPI*.

Hidayati, N., & Rini, D. S. (2017). Possible solution of cleaning up heavy metals contamination in agriculture area using accumulator plants. Paper presented at the The 7 Th International Symposium For Sustainable Humanosphere [ISSH].

Holm, L., Pancho, J. V., Herberger, J. P., & Plucknett, D. L. (1979). *A geographical atlas of world weeds*: John Wiley and Sons.

Idris, M., Abdullah, S. R. S., Titah, H. S., Abasa, A. R., Husin, A. K., Hanima, R. F., & Ayub, R. (2016). Screening and identification of plants at a petroleum contaminated site in
Malaysia for phytoremediation. *Journal of Environmental Science and Management*, 19(1).

Irawanto, R. (2016). Revitalisasi Koleksi Tumbuhan Akuatik Kebun Raya Purwodadi sebagai Taman Kolam Fitoremediasi. *Prosidings Temu Ilmiah IPLBI*, 1.

Jayadi, I. F., Linda, R., & Setyawati, T. R. (2017). Struktur Komunitas Makrofita Akuatik di Sungai Embau Kecamatan Hulu Gurung Kabupaten Kapuas Hulu. *Protobiont*, 6(2).

Jayan, P., & Sathyanathan, N. (2012). Aquatic weed classification, environmental effects and the management technologies for its effective control in Kerala, India. *International Journal of Agricultural and Biological Engineering*, 5(1), 76-91.

Khandekar, T., Roy, A., & Pradhan, N. (2020). Aqueous extract of Jussiaea repens L. ameliorates diabetes associated complications in STZ induced diabetic male rats. *International Journal of Bio-Pharma Research*, 9(8), 2683-2690.

Khankhane, P., & Varshney, J. G. (2008). Accumulation of heavy metals by weeds grown along drains of Jabalpur. *Indian Journal of Weed Science*, 40(1&2), 55-59.

Krishnappa, K., Baranitharan, M., Elumalai, K., & Pandiyan, J. (2020). Larvicidal and repellant effects of Jussiaea repens (L.) leaf ethanol extract and its major phytoconstituent against important human vector mosquitoes (Diptera: Culicidae). *Environmental Science and Pollution Research*, 27(18), 23054-23061.

Larson, R. A., & Sims, G. K. (2003). *Atrazine Removal Using Aquatic Plants: A Kinetic Approach*. Retrieved from

Lin, W.-S., Lo, J.-H., Yang, J.-H., Wang, H.-W., Fan, S.-Z., Yen, J.-H., & Wang, P.-Y. (2017). Ludwigia octovalvis extract improves glycemic control and memory performance in diabetic mice. *Journal of ethnopharmacology*, 207, 211-219.

Liu, S.-H., Edwards, C., Hoch, P. C., Raven, P. H., & Barber, J. C. (2016). Complete plastome sequence of Ludwigia octovalvis (Onagraceae), a globally distributed wetland plant. *Genome announcements*, 4(6).

Liu, S.-H., Hoch, P. C., Diazgranados, M., Raven, P. H., & Barber, J. C. (2017). Multi-locus phylogeny of Ludwigia (Onagraceae): Insights on infra-generic relationships and the current classification of the genus. *Taxon*, 66(5), 1112-1127.

Lobato-de Magalhães, T., & Martinez, M. (2018). Temporary freshwater wetlands floristics in central Mexico highlands. *Botanical Sciences*, 96(1), 138-156.

Lwin, H. H. (2019). Investigation of morphological characterization, qualitative analysis and antimicrobial activities of Jussiaea repens L. *Dragon University Commemoration of 25th Anniversary Silver Jubilee Research Journal*, 9(9), 273-279.

Mallick, S. N., Ekka, N. X., Kumar, S., & Sahu, S. C. (2019). Invasive Alien Flora in and around an Urban Area of India *Diversity and Ecology of Invasive Plants* (pp. 3): IntechOpen.
Marrugo-Negrete, J., Marrugo-Madrid, S., Pinedo-Hernández, J., Durango-Hernández, J., & Diez, S. (2016). Screening of native plant species for phytoremediation potential at a Hg-contaminated mining site. *Science of the Total Environment, 542*, 809-816.

Nandra, L. W., & Purnomo, T. (2019). Potensi Tapak Dara Air (Ludwigia adscendens) dalam Menurunkan Kandungan Logam Berat Timbal (Pb) pada Perairan yang Tercemar Lumpur Lapindo, Sidoarjo. *LenteraBio: Berkala Ilmiah Biologi, 8*(1).

Nash, D. A. H., Abdullah, S. R. S., Hasan, H. A., Idris, M., Muhammad, N. F., Al-Baldawi, I. A., & Ismail, N. I. (2019). Phytoremediation of nutrients and organic carbon from sago mill effluent using water hyacinth (Eichhornia crassipes). *J. Eng. Technol. Sci, 51*, 573.

Nasution, A. S., Windarti, W., & Efawani, E. (2020). Identification of Macrophyta in the Swamp Area of the Sawah Village, Kampar Regency, Riau Province. *Asian Journal of Aquatic Sciences, 2*(2), 95-106.

Oyuela Leguizamo, M. A., Fernández Gómez, W. D., & Sarmiento, M. C. G. (2017). Native herbaceous plant species with potential use in phytoremediation of heavy metals, spotlight on wetlands — A review. *Chemosphere, 168*, 1230-1247. doi:https://doi.org/10.1016/j.chemosphere.2016.10.075

Pindihama, G. K., & Gitari, M. W. (2017). Uptake and growth effects of cyanotoxins on aquatic plants Ludwigia adscendens and Amaranthus hybridus in raw surface waters. *International Journal of Environmental Science and Development, 8*(2), 93.

Purnomo, H. (2011). Changes Of Weed Communities In Secondary Succession On Rice Field Area With Different Water Puddle. *Bioma: Jurnal Ilmiah Biologi, 1*(2, Oktober).

Rachma, N. (2013). Adaptasi Tumbuhan Tapak Dara Air (Jussiaea repens L.) Yang Terpapar Logam Berat Kadmium (Cd): Skripsi.

Rachmadiarti, F., Asri, M., Bashri, A., & Pratiwi, I. (2020). Consortium of Marsilea crenata and Ludwigia adscendens for Linear Alkylbenzene Sulfonate Detergent Phytoremediator. *Asian Journal of Water, Environment and Pollution, 17*(3), 37-41.

Rachmadiarti, F., & Sholikah, M. (2020). *Effectiveness of Ludwigia adscendens and Ludwigia grandiflora as Cadmium (Cd) Phytoremediator.*

Rahma, N. A., Rachmadiarti, F., & Kuntjoro, S. (2014). Kemampuan Adaptasi Tumbuhan Tapak Dara Air (Jussiaea repens) terhadap Logam Berat Kadmium (Cd). *Lentera Bio, 3*(1), 13-19.

Rajoo, K. S., Ismail, A., Karam, D. S., & Muharam, F. M. (2016). Phytoremediation studies on soils contaminated with heavy metals in Malaysia: A review article. *American-Eurasian Journal Agricultural & Environmental Sciences, 16*(8), 1504-1514.

Rostini, T., Abdullah, L., Wirawan, K., & Karti, P. (2014). Production and nutrition potency of swamp local forage in South Kalimantan as ruminant feed. *Glob J Anim Sci Livestock Prod Anim Breed, 2*(2), 107-113.

Rosyada, A., & Purnomo, T. (2018). Kemampuan Tapak Dara Air (Ludwigia adscendens) sebagai Fitoremediator dalam Menurunkan Logam Berat Kadmium (Cd) pada
Perairan yang Tercemar Lumpur Lapindo, Sidoarjo. *LenteraBio: Berkala Ilmiah Biologi*, 7(3).

Sainkhediya, J., & Sisodiya, S. (2020). International Research World Journal of Multidisciplinary Scientific Research.

Shah, A. B., Rai, U., & Singh, R. P. (2015). Correlations between some hazardous inorganic pollutants in the Gomti River and their accumulation in selected macrophytes under aquatic ecosystem. *Bulletin of environmental contamination and toxicology*, 94(6), 783-790.

Sharma, A., del Carmen Flores-Vallejo, R., Cardoso-Taketa, A., & Villarreal, M. L. (2017). Antibacterial activities of medicinal plants used in Mexican traditional medicine. *Journal of ethnopharmacology*, 208, 264-329.

Siahaan, R. (2012). *Peranan Vegetasi Riparian Dalam Mempertahankan Kualitas Air Sungai Cisadane*. (Master), Institut Pertanian Bogor, Bogor, Indonesia.

Sudhana, A., Kawuryan, S. H. E., & Padmini, O. S. (2019). *Pengaruh Aplikasi Herbisida Dan Pgpr Dalam Pengendalian Gulmauntuk Meningkatkan Pertumbuhan Tanaman Padi Sawah*. Paper presented at the Seminar Nasional Inovasi Produk Pangan Lokal Untuk Mendukung Ketahanan Pangan Universitas Mercu Buana Yogyakarta.

Suwitra, I. K., Nasir, B., & Lasmini, S. A. (2017). Pengendalian Gulma Dengan Herbisida Pratumbuh Pada Buddaya Padi Sistem Tabela Di Sulawesi Tengah.

Titah, H. S., Abdullah, S. R. S., Idris, M., Anuar, N., Basri, H., Mukhlisin, M., . . . Kurniawan, S. B. (2018). Arsenic resistance and biosorption by isolated rhizobacteria from the roots of Ludwigia octovalvis. *International journal of microbiology*, 2018.

Titah, H. S., Halmi, M. I. E. B., Abdullah, S. R. S., Hasan, H. A., Idris, M., & Anuar, N. (2018). Statistical optimization of the phytoremediation of arsenic by Ludwigia octovalvis-in a pilot reed bed using response surface methodology (RSM) versus an artificial neural network (ANN). *International journal of phytoremediation*, 20(7), 721-729.

Vythilingam, I., Chiang, G., Lee, H., & Singh, K. (1992). Special report on bionomics of important mosquito vectors in Malaysia. *Southeast Asian J. Trop. Med. Public Health*, 23, 581-602.

Widyaningrum, I. (2015). *Pest and Weed Suppressive Mechanisms in Complex Rice System at Malang, East Java, Indonesia*.

Xiao, L. (2018). Case Study of Baiyun and Caohai Lakes Implies How to Implement Wetland Restoration/Creation. *Open Access Library Journal*, 5(10), 1.

Xu, L., Cheng, S., Zhuang, P., Xie, D., Li, S., Liu, D., . . . Xing, F. (2020). Assessment of the Nutrient Removal Potential of Floating Native and Exotic Aquatic Macrophytes Cultured in Swine Manure Wastewater. *International Journal of Environmental Research and Public Health*, 17(3), 1103. Retrieved from https://www.mdpi.com/1660-4601/17/3/1103

Yan, F., Li, F., Liu, J., Ye, S., Zhang, Y., Jia, J., . . . Mo, X. (2020). The formulae and biologically active ingredients of Chinese herbal medicines for the treatment of
atopic dermatitis. *Biomedicine & Pharmacotherapy*, 127, 110142. doi:https://doi.org/10.1016/j.biopha.2020.110142