2. p-primary part of the Milnor K-groups and
Galois cohomologies of fields of characteristic p

Oleg Izhboldin

2.0. Introduction

Let F be a field and F^{sep} be the separable closure of F. Let F^{ab} be the maximal abelian extension of F. Clearly the Galois group $G^{\text{ab}} = \text{Gal}(F^{\text{ab}}/F)$ is canonically isomorphic to the quotient of the absolute Galois group $G = \text{Gal}(F^{\text{sep}}/F)$ modulo the closure of its commutant. By Pontryagin duality, a description of G^{ab} is equivalent to a description of

$$\text{Hom}_{\text{cont}}(G^{\text{ab}}, \mathbb{Z}/m) = \text{Hom}_{\text{cont}}(G, \mathbb{Z}/m) = H^1(F, \mathbb{Z}/m),$$

where m runs over all positive integers. Clearly, it suffices to consider the case where m is a power of a prime, say $m = p^i$. The main cohomological tool to compute the group $H^1(F, \mathbb{Z}/m)$ is a pairing

$$(\cdot, \cdot)_m : H^1(F, \mathbb{Z}/m) \otimes K_n(F)/m \to H^{n+1}_m(F)$$

where the right hand side is a certain cohomological group discussed below.

Here $K_n(F)$ for a field F is the n-th Milnor K-group $K_n(F) = K_n^M(F)$ defined as

$$(F^*)^n / J$$

where J is the subgroup generated by the elements of the form $a_1 \otimes \ldots \otimes a_n$ such that $a_i + a_j = 1$ for some $i \neq j$. We denote by $\{a_1, \ldots, a_n\}$ the class of $a_1 \otimes \ldots \otimes a_n$. Namely, $K_n(F)$ is the abelian group defined by the following generators: symbols $\{a_1, \ldots, a_n\}$ with $a_1, \ldots, a_n \in F^*$ and relations:

$$\{a_1, \ldots, a_i a'_i, \ldots, a_n\} = \{a_1, \ldots, a_i, \ldots, a_n\} + \{a_1, \ldots, a'_i, \ldots, a_n\}$$

$$\{a_1, \ldots, a_n\} = 0 \quad \text{if} \ a_i + a_j = 1 \text{ for some } i \text{ and } j \text{ with } i \neq j.$$

We write the group law additively.

Published 10 December 2000: © Geometry & Topology Publications
Consider the following example (definitions of the groups will be given later).

Example. Let \(F \) be a field and let \(p \) be a prime integer. Assume that there is an integer \(n \) with the following properties:

(i) the group \(H_{n+1}^p(F) \) is isomorphic to \(\mathbb{Z}/p \),

(ii) the pairing

\[
(,)_p : H^1(F, \mathbb{Z}/p) \otimes K_n(F)/p \to H_{n+1}^p(F) \simeq \mathbb{Z}/p
\]

is non-degenerate in a certain sense.

Then the \(\mathbb{Z}/p \)-linear space \(H^1(F, \mathbb{Z}/p) \) is obviously dual to the \(\mathbb{Z}/p \)-linear space \(K_n(F)/p \). On the other hand, \(H^1(F, \mathbb{Z}/p) \) is dual to the \(\mathbb{Z}/p \)-space \(G_{ab}/(G_{ab})^p \).

Therefore there is an isomorphism

\[
\Psi_{F,p} : K_n(F)/p \simeq G_{ab}/(G_{ab})^p.
\]

It turns out that this example can be applied to computations of the group \(G_{ab}/(G_{ab})^p \) for multidimensional local fields. Moreover, it is possible to show that the homomorphism \(\Psi_{F,p} \) can be naturally extended to a homomorphism \(\Psi_F : K_n(F) \to G_{ab} \) (the so called reciprocity map). Since \(G_{ab} \) is a profinite group, it follows that the homomorphism \(\Psi_F : K_n(F) \to G_{ab} \) factors through the homomorphism \(K_n(F)/DK_n(F) \to G_{ab} \) where the group \(DK_n(F) \) consists of all divisible elements:

\[
DK_n(F) := \bigcap_{m \geq 1} mK_n(F).
\]

This observation makes natural the following notation:

Definition (cf. section 6 of Part I). For a field \(F \) and integer \(n \geq 0 \) set

\[
K_n^+(F) := K_n(F)/DK_n(F),
\]

where \(DK_n(F) := \bigcap_{m \geq 1} mK_n(F) \).

The group \(K_n^+(F) \) for a higher local field \(F \) endowed with a certain topology (cf. section 6 of this part of the volume) is called a topological Milnor \(K \)-group \(K_{top}(F) \) of \(F \).

The example shows that computing the group \(G_{ab} \) is closely related to computing the groups \(K_n(F), \ K_n^+(F), \) and \(H_{n+1}^m(F) \). The main purpose of this section is to explain some basic properties of these groups and discuss several classical conjectures.

Among the problems, we point out the following:

- discuss \(p \)-torsion and cotorsion of the groups \(K_n(F) \) and \(K_n^+(F) \),
- study an analogue of Satz 90 for the groups \(K_n(F) \) and \(K_n^+(F) \),
- compute the group \(H_{n+1}^m(F) \) in two "classical" cases where \(F \) is either the rational function field in one variable \(F = k(t) \) or the formal power series \(F = k((t)) \).

We shall consider in detail the case (so called "non-classical case") of a field \(F \) of characteristic \(p \) and \(m = p \).
2.1. Definition of $H^{n+1}_m(F)$ and pairing $(\cdot, \cdot)_m$

To define the group $H^{n+1}_m(F)$ we consider three cases depending on the characteristic of the field F.

Case 1 (Classical). Either $\text{char}(F) = 0$ or $\text{char}(F) = p$ is prime to m.

In this case we set

$$H^{n+1}_m(F) := H^{n+1}(F, \mu_m^\otimes n).$$

The Kummer theory gives rise to the well known natural isomorphism $F^*/F^*_m \to H^1(F, \mu_m^\otimes n)$. Denote the image of an element $a \in F^*$ under this isomorphism by (a). The cup product gives the homomorphism

$$F^n \otimes \cdots \otimes F^n \to H^n(F, \mu_m^\otimes n), \quad a_1 \otimes \cdots \otimes a_n \mapsto (a_1, \ldots, a_n)$$

where $(a_1, \ldots, a_n) := (a_1) \cup \cdots \cup (a_n)$. It is well known that the element (a_1, \ldots, a_n) is zero if $a_i + a_j = 1$ for some $i \neq j$. From the definition of the Milnor K-group we get the homomorphism

$$\eta_m: K^M_n(F)/m \to H^n(F, \mu_m^\otimes n), \quad \{a_1, \ldots, a_n\} \mapsto (a_1, \ldots, a_n).$$

Now, we define the pairing $(\cdot, \cdot)_m$ as the following composite

$$H^1(F, \mathbb{Z}/m) \otimes K_n(F)/m \xrightarrow{\text{id} \otimes \eta_m} H^1(F, \mathbb{Z}/m) \otimes H^n(F, \mu_m^\otimes n) \xrightarrow{\cup} H^{n+1}_m(F).$$

Case 2. $\text{char}(F) = p \neq 0$ and m is a power of p.

To simplify the exposition we start with the case $m = p$. Set

$$H^{n+1}_p(F) = \text{coker}(\Omega^n_F \to \Omega^n_F / d \Omega^{n-1}_F)$$

where

$$d(a db_2 \wedge \cdots \wedge db_n) = da \wedge db_2 \wedge \cdots \wedge db_n,$$

$$\varphi(a \frac{db_1}{b_1} \wedge \cdots \wedge \frac{db_n}{b_n}) = (a^p - a) \frac{db_1}{b_1} \wedge \cdots \wedge \frac{db_n}{b_n} + d \Omega^{n-1}_F$$

($\varphi = C^{-1} - 1$ where C^{-1} is the inverse Cartier operator defined in subsection 4.2). The pairing $(\cdot, \cdot)_p$ is defined as follows:

$$(\cdot, \cdot)_p: F/\varphi(F) \times K_n(F)/p \to H^{n+1}_p(F),$$

$$(a, \{b_1, \ldots, b_n\}) \mapsto a \frac{db_1}{b_1} \wedge \cdots \wedge \frac{db_n}{b_n}$$

where $F/\varphi(F)$ is identified with $H^1(F, \mathbb{Z}/p)$ via Artin–Schreier theory.
To define the group $H_{p_i}^{n+1}(F)$ for an arbitrary $i \geq 1$ we note that the group $H_{p_i}^{n+1}(F)$ is the quotient group of Ω_p^n. In particular, generators of the group $H_{p_i}^{n+1}(F)$ can be written in the form $adb_1 \wedge \cdots \wedge db_n$. Clearly, the natural homomorphism

$$F \otimes F^* \otimes \cdots \otimes F^* \to H_{p_i}^{n+1}(F), \quad a \otimes b_1 \otimes \cdots \otimes b_n \mapsto \frac{adb_1}{b_1} \wedge \cdots \wedge \frac{db_n}{b_n}$$

is surjective. Therefore the group $H_{p_i}^{n+1}(F)$ is naturally identified with the quotient group $F \otimes F^* \otimes \cdots \otimes F^*/J$. It is not difficult to show that the subgroup J is generated by the following elements:

- $(a^p - a) \otimes b_1 \otimes \cdots \otimes b_n$,
- $a \otimes a \otimes b_2 \otimes \cdots \otimes b_n$,
- $a \otimes b_1 \otimes \cdots \otimes b_n$, where $b_i = b_j$ for some $i \neq j$.

This description of the group $H_{p_i}^{n+1}(F)$ can be easily generalized to define $H_{p_i}^{n+1}(F)$ for an arbitrary $i \geq 1$. Namely, we define the group $H_{p_i}^{n+1}(F)$ as the quotient group

$$W_i(F) \otimes \underbrace{F^* \otimes \cdots \otimes F^*}_{n} / J$$

where $W_i(F)$ is the group of Witt vectors of length i and J is the subgroup of $W_i(F) \otimes F^* \otimes \cdots \otimes F^*$ generated by the following elements:

- $(F(w) - w) \otimes b_1 \otimes \cdots \otimes b_n$,
- $(a, 0, \ldots, 0) \otimes a \otimes b_2 \otimes \cdots \otimes b_n$,
- $w \otimes b_1 \otimes \cdots \otimes b_n$, where $b_i = b_j$ for some $i \neq j$.

The pairing $(\ ,)_{p_i}$ is defined as follows:

$$(\ ,)_{p_i}: W_i(F)/\wp(W_i(F)) \times K_n(F)/p^i \to H_{p_i}^{n+1}(F),$$

$$(w, \{b_1, \ldots, b_n\}) \mapsto w \otimes b_1 \otimes \cdots \otimes b_n$$

where $\wp = F - \text{id}: W_i(F) \to W_i(F)$ and the group $W_i(F)/\wp(W_i(F))$ is identified with $H^1(F, \mathbb{Z}/p^i)$ via Witt theory. This completes definitions in Case 2.

Case 3. $\text{char}(F) = p \neq 0$ and $m = m'p^i$ where $m' > 1$ is an integer prime to p and $i \geq 1$.

The groups $H_{m}^{n+1}(F)$ and $H_{p_i}^{n+1}(F)$ are already defined (see Cases 1 and 2). We define the group $H_{m}^{n+1}(F)$ by the following formula:

$$H_{m}^{n+1}(F) := H_{m}^{n+1}(F) \oplus H_{p_i}^{n+1}(F)$$

Since $H^1(F, \mathbb{Z}/m) \simeq H^1(F, \mathbb{Z}/m') \oplus H^1(F, \mathbb{Z}/p^i)$ and $K_n(F)/m \simeq K_n(F)/m' \oplus K_n(F)/p^i$, we can define the pairing $(\ ,)_m$ as the direct sum of the pairings $(\ ,)_{m'}$ and $(\ ,)_{p_i}$. This completes the definition of the group $H_{m}^{n+1}(F)$ and of the pairing $(\ ,)_m$.
Part I. Section 2. K-groups and Galois cohomologies of fields of characteristic p

Remark 1. In the case $n = 1$ or $n = 2$ the group $H_n^m(F)$ can be determined as follows:

$$H_1^m(F) \cong H^1(F, \mathbb{Z}/m) \quad \text{and} \quad H_2^m(F) \cong m \text{Br}(F).$$

Remark 2. The group $H_n^{n+1}(F)$ is often denoted by $H^{n+1}(F, \mathbb{Z}/m(n))$.

2.2. The group $H_n^{n+1}(F)$

In the previous subsection we defined the group $H_n^{n+1}(F)$ and the pairing $(\ , \)_m$ for an arbitrary m. Now, let m and m' be positive integers such that m' is divisible by m. In this case there exists a canonical homomorphism

$$i_{m,m'}: H_n^{n+1}(F) \to H_n^{n+1}(F).$$

To define the homomorphism $i_{m,m'}$ it suffices to consider the following two cases:

Case 1. Either $\text{char}(F) = 0$ or $\text{char}(F) = p$ is prime to m and m'.

This case corresponds to Case 1 in the definition of the group $H_n^{n+1}(F)$ (see subsection 2.1). We identify the homomorphism $i_{m,m'}$ with the homomorphism

$$H_n^{n+1}(F, \mu \otimes \mathbb{Z}/m(n)) \to H_n^{n+1}(F, \mu \otimes \mathbb{Z}/m(n))$$

induced by the natural embedding $\mu_m \subset \mu_{m'}$.

Case 2. m and m' are powers of $p = \text{char}(F)$.

We can assume that $m = p^i$ and $m' = p^{i'}$ with $i \leq i'$. This case corresponds to Case 2 in the definition of the group $H_n^{n+1}(F)$. We define $i_{m,m'}$ as the homomorphism induced by

$$W_i(F) \otimes F^* \otimes \ldots F^* \rightarrow W_{i'}(F) \otimes F^* \otimes \ldots F^*,$$

$$(a_1, \ldots, a_i) \otimes b_1 \otimes \ldots \otimes b_n \mapsto (0, \ldots, 0, a_1, \ldots, a_i) \otimes b_1 \otimes \ldots \otimes b_n.$$

The maps $i_{m,m'}$ (where m and m' run over all integers such that m' is divisible by m) determine the inductive system of the groups.

Definition. For a field F and an integer n set

$$H_n^{n+1}(F) = \lim_{\rightarrow m} H_n^{n+1}(F).$$

Conjecture 1. The natural homomorphism $H_n^{n+1}(F) \rightarrow H_n^{n+1}(F)$ is injective and the image of this homomorphism coincides with the m-torsion part of the group $H_n^{n+1}(F)$.
This conjecture follows easily from the Milnor–Bloch–Kato conjecture (see subsection 4.1) in degree \(n \). In particular, it is proved for \(n \leq 2 \). For fields of characteristic \(p \) we have the following theorem.

Theorem 1. Conjecture 1 is true if \(\text{char}(F) = p \) and \(m = p^i \).

2.3. Computing the group \(H^{n+1}_m(F) \) for some fields

We start with the following well known result.

Theorem 2 (classical). Let \(F \) be a perfect field. Suppose that \(\text{char}(F) = 0 \) or \(\text{char}(F) \) is prime to \(m \). Then

\[
H^{n+1}_m(F((t))) \simeq H^{n+1}_m(F) \oplus H^n_m(F)
\]

\[
H^{n+1}_m(F(t)) \simeq H^{n+1}_m(F) \oplus \bigoplus_{\text{monic irred } f(t)} H^n_m(F[t]/f(t)).
\]

It is known that we cannot omit the conditions on \(F \) and \(m \) in the statement of Theorem 2. To generalize the theorem to the arbitrary case we need the following notation. For a complete discrete valuation field \(K \) and its maximal unramified extension \(K_{ur} \) define the groups \(H^n_{m,ur}(K) \) and \(\tilde{H}^n_m(K) \) as follows:

\[
H^n_{m,ur}(K) = \ker(H^n_m(K) \to H^n_m(K_{ur})) \quad \text{and} \quad \tilde{H}^n_m(K) = H^n_m(K)/H^n_{m,ur}(K).
\]

Note that for a field \(K = F((t)) \) we obviously have \(K_{ur} = F_{\text{sep}}((t)) \). We also note that under the hypotheses of Theorem 2 we have \(H^n(K) = H^n_{m,ur}(K) \) and \(H^n(K) = 0 \). The following theorem is due to Kato.

Theorem 3 (Kato, [K1, Th. 3 §0]). Let \(K \) be a complete discrete valuation field with residue field \(k \). Then

\[
H^{n+1}_{m,ur}(K) \simeq H^{n+1}_{m,ur}(k) \oplus H^n_m(k).
\]

In particular, \(H^{n+1}_{m,ur}(F((t))) \simeq H^{n+1}_m(F) \oplus H^n_m(F) \).

This theorem plays a key role in Kato’s approach to class field theory of multidimensional local fields (see section 5 of this part).

To generalize the second isomorphism of Theorem 2 we need the following notation. Set

\[
\begin{align*}
H^{n+1}_{m,\text{sep}}(F(t)) &= \ker(H^{n+1}_m(F(t)) \to H^{n+1}_m(F_{\text{sep}}(t))) \quad \text{and} \\
\tilde{H}^{n+1}_m(F(t)) &= H^{n+1}_m(F(t))/H^{n+1}_{m,\text{sep}}(F(t)).
\end{align*}
\]

If the field \(F \) satisfies the hypotheses of Theorem 2, we have \(H^{n+1}_{m,\text{sep}}(F(t)) = H^{n+1}_m(F(t)) \) and \(\tilde{H}^{n+1}_m(F(t)) = 0 \).

In the general case we have the following statement.
Theorem 4 (Izhboldin, [12, Introduction]).

\[H_{n+1}^{m, \text{sep}}(F(t)) \simeq H_{n+1}^m(F) \oplus \prod_{\text{monic irred } f(t)} H_{m}^n(F[t]/f(t)), \]

\[\tilde{H}_{n+1}^m(F(t)) \simeq \bigoplus_v \tilde{H}_{n+1}^m(F(t)_v) \]

where \(v \) runs over all normalized discrete valuations of the field \(F(t) \) and \(F(t)_v \) denotes the \(v \)-completion of \(F(t) \).

2.4. On the group \(K_n(F) \)

In this subsection we discuss the structure of the torsion and cotorsion in Milnor \(K \)-theory. For simplicity, we consider the case of prime \(m = p \). We start with the following fundamental theorem concerning the quotient group \(K_n(F)/p \) for fields of characteristic \(p \).

Theorem 5 (Bloch–Kato–Gabber, [BK, Th. 2.1]). Let \(F \) be a field of characteristic \(p \). Then the differential symbol

\[d_F : K_n(F)/p \to \Omega_F^n, \quad \{a_1, \ldots, a_n\} \mapsto \frac{da_1}{a_1} \wedge \cdots \wedge \frac{da_n}{a_n} \]

is injective and its image coincides with the kernel \(\nu_n(F) \) of the homomorphism \(\varphi \) (for the definition see Case 2 of 2.1). In other words, the sequence

\[0 \to K_n(F)/p \xrightarrow{d_F} \Omega_F^n \xrightarrow{\varphi} \Omega_F^n / d\Omega_F^{n-1} \]

is exact.

This theorem relates the Milnor \(K \)-group modulo \(p \) of a field of characteristic \(p \) with a submodule of the differential module whose structure is easier to understand. The theorem is important for Kato’s approach to higher local class field theory. For a sketch of its proof see subsection A2 in the appendix to this section.

There exists a natural generalization of the above theorem for the quotient groups \(K_n(F)/p^i \) by using De Rham–Witt complex ([BK, Cor. 2.8]).

Now, we recall well known Tate’s conjecture concerning the torsion subgroup of the Milnor \(K \)-groups.

Conjecture 2 (Tate). Let \(F \) be a field and \(p \) be a prime integer.

(i) If \(\text{char } (F) \neq p \) and \(\zeta_p \in F \), then \(pK_n(F) = \{\zeta_p\} \cdot K_{n-1}(F) \).

(ii) If \(\text{char } (F) = p \) then \(pK_n(F) = 0 \).

This conjecture is trivial in the case where \(n \leq 1 \). In the other cases we have the following theorem.
Theorem 6. Let \(F \) be a field and \(n \) be a positive integer.

1. Tate’s Conjecture holds if \(n \leq 2 \) (Suslin, [S]).
2. Part (ii) of Tate’s Conjecture holds for all \(n \) (Izhboldin, [11]).

The proof of this theorem is closely related to the proof of Satz 90 for \(K \)-groups. Let us recall two basic conjectures on this subject.

Conjecture 3 (Satz 90 for \(K_n \)). If \(L/F \) is a cyclic extension of degree \(p \) with the Galois group \(G = \langle \sigma \rangle \) then the sequence

\[
K_n(L) \xrightarrow{1-\sigma} K_n(L) \xrightarrow{N_{L/F}} K_n(F)
\]

is exact.

There is an analogue of the above conjecture for the quotient group \(K_n(F)/p \). Fix the following notation till the end of this section:

Definition. For a field \(F \) set

\[
k_n(F) = K_n(F)/p.
\]

Conjecture 4 (Small Satz 90 for \(k_n \)). If \(L/F \) is a cyclic extension of degree \(p \) with the Galois group \(G = \langle \sigma \rangle \), then the sequence

\[
k_n(F) \oplus k_n(L) \xrightarrow{i_{F/L} \oplus (1-\sigma)} k_n(L) \xrightarrow{N_{L/F}} k_n(F)
\]

is exact.

The conjectures 2,3 and 4 are not independent:

Lemma (Suslin). Fix a prime integer \(p \) and integer \(n \). Then in the category of all fields (of a given characteristic) we have

\((\text{Small Satz } 90 \text{ for } k_n) + (\text{Tate conjecture for } pK_n) \iff (\text{Satz } 90 \text{ for } K_n)\).

Moreover, for a given field \(F \) we have

\((\text{Small Satz } 90 \text{ for } k_n) + (\text{Tate conjecture for } pK_n) \Rightarrow (\text{Satz } 90 \text{ for } K_n)\)

and

\((\text{Satz } 90 \text{ for } K_n) \Rightarrow (\text{small Satz } 90 \text{ for } k_n)\).

Satz 90 conjectures are proved for \(n \leq 2 \) (Merkurev-Suslin, [MS1]). If \(p = 2 \), \(n = 3 \), and \(\text{char } (F) \neq 2 \), the conjectures were proved by Merkurev and Suslin [MS] and Rost. For \(p = 2 \) the conjectures follow from recent results of Voevodsky. For fields of characteristic \(p \) the conjectures are proved for all \(n \):
Part I. Section 2. \(K\)-groups and Galois cohomologies of fields of characteristic \(p\)

Theorem 7 (Izhboldin, [I1]). Let \(F\) be a field of characteristic \(p\) and \(L/F\) be a cyclic extension of degree \(p\). Then the following sequence is exact:

\[
0 \rightarrow K_n(F) \rightarrow K_n(L) \xrightarrow{1-\sigma} K_n(L) \xrightarrow{N_{L/F}} K_n(F) \rightarrow H_{n+1}^p(F) \rightarrow H_{n+1}^p(L)
\]

2.5. On the group \(K^t_n(F)\)

In this subsection we discuss the same issues, as in the previous subsection, for the group \(K^t_n(F)\).

Definition. Let \(F\) be a field and \(p\) be a prime integer. We set

\[
DK_n(F) = \bigcap_{m \geq 1} mK_n(F) \quad \text{and} \quad D_pK_n(F) = \bigcap_{i \geq 0} p^iK_n(F).
\]

We define the group \(K^t_n(F)\) as the quotient group:

\[
K^t_n(F) = K_n(F)/DK_n(F) = K_n(F)/\bigcap_{m \geq 1} mK_n(F).
\]

The group \(K^t_n(F)\) is of special interest for higher class field theory (see sections 6, 7 and 10). We have the following evident isomorphism (see also 2.0):

\[
K^t_n(F) \simeq \text{im} \left(K_n(F) \rightarrow \lim_{\leftarrow m} K_n(F)/m \right).
\]

The quotient group \(K^t_n(F)/m\) is obviously isomorphic to the group \(K_n(F)/m\). As for the torsion subgroup of \(K^t_n(F)\), it is quite natural to state the same questions as for the group \(K_n(F)\).

Question 1. Are the \(K^t\)-analogue of Tate’s conjecture and Satz 90 Conjecture true for the group \(K^t_n(F)\)?

If we know the (positive) answer to the corresponding question for the group \(K_n(F)\), then the previous question is equivalent to the following:

Question 2. Is the group \(DK_n(F)\) divisible?

At first sight this question looks trivial because the group \(DK_n(F)\) consists of all divisible elements of \(K_n(F)\). However, the following theorem shows that the group \(DK_n(F)\) is not necessarily a divisible group!

Theorem 8 (Izhboldin, [I3]). For every \(n \geq 2\) and prime \(p\) there is a field \(F\) such that \(\text{char}(F) \neq p\), \(\zeta_p \in F\) and

1. The group \(DK_n(F)\) is not divisible, and the group \(D_pK_2(F)\) is not \(p\)-divisible.

Geometry & Topology Monographs, Volume 3 (2000) – Invitation to higher local fields
(2) The K^t-analogue of Tate’s conjecture is false for K^t_{n}:
\[pK^t_{n}(F) \neq \{ \zeta_p \} \cdot K^t_{n-1}(F). \]

(3) The K^t-analogue of Hilbert 90 conjecture is false for group $K^t_{n}(F)$.

Remark 1. The field F satisfying the conditions of Theorem 8 can be constructed as the function field of some infinite dimensional variety over any field of characteristic zero whose group of roots of unity is finite.

Quite a different construction for irregular prime numbers p and $F = \mathbb{Q}(\mu_p)$ follows from works of G. Banaszak [B].

Remark 2. If F is a field of characteristic p then the groups $D_pK^t_{n}(F)$ and $DK^t_{n}(F)$ are p-divisible. This easily implies that $pK^t_{n}(F) = 0$. Moreover, Satz 90 theorem holds for K^t_{n} in the case of cyclic p-extensions.

Remark 3. If F is a multidimensional local fields then the group $K^t_{n}(F)$ is studied in section 6 of this volume. In particular, Fesenko (see subsections 6.3–6.8 of section 6) gives positive answers to Questions 1 and 2 for multidimensional local fields.

References

[B] G. Banaszak, Generalization of the Moore exact sequence and the wild kernel for higher K-groups, Compos. Math., 86(1993), 281–305.

[BK] S. Bloch and K. Kato, p-adic étale cohomology, Inst. Hautes Études Sci. Publ. Math. 63, (1986), 107–152.

[F] I. Fesenko, Topological Milnor K-groups of higher local fields, section 6 of this volume.

[I1] O. Izhboldin, On p-torsion in K^M_{s} for fields of characteristic p, Adv. Soviet Math., vol. 4, 129–144, Amer. Math. Soc., Providence RI, 1991

[I2] O. Izhboldin, On the cohomology groups of the field of rational functions, Mathematics in St.Petersburg, 21–44, Amer. Math. Soc. Transl. Ser. 2, vol. 174, Amer. Math. Soc., Providence, RI, 1996.

[I3] O. Izhboldin, On the quotient group of $K_{2}(F)$, preprint, www.maths.nott.ac.uk/personal/ibf/stqk.ps

[K1] K. Kato, Galois cohomology of complete discrete valuation fields, In Algebraic K-theory, Lect. Notes in Math. 967, Springer-Verlag, Berlin, 1982, 215–238.

[K2] K. Kato, Symmetric bilinear forms, quadratic forms and Milnor K-theory in characteristic two, Invent. Math. 66(1982), 493–510.

[MS1] A. S. Merkur’ev and A. A. Suslin, K-cohomology of Severi-Brauer varieties and the norm residue homomorphism, Izv. Akad. Nauk SSSR Ser. Mat. 46(1982); English translation in Math. USSR Izv. 21(1983), 307–340.
[MS2] A. S. Merkur’ev and A. A. Suslin, The norm residue homomorphism of degree three, Izv. Akad. Nauk SSSR Ser. Mat. 54(1990); English translation in Math. USSR Izv. 36(1991), 349–367.

[MS3] A. S. Merkur’ev and A. A. Suslin, The group K_3 for a field, Izv. Akad. Nauk SSSR Ser. Mat. 54(1990); English translation in Math. USSR Izv. 36(1991), 541–565.

[S] A. A. Suslin, Torsion in K_2 of fields, K-theory 1(1987), 5–29.