A polymorphism in the thyroid hormone receptor gene is associated with bronchodilator response in asthmatics

QL Duan1, R Du1, J Lasky-Su1, BJ Klanderman1, AB Partch1, SP Peters2, CG Irvin3, JP Hanrahan4, JJ Lima5, KV Blake5, SB Liggett6, AA Litonjua1 and KG Tantisira1

1Channing Laboratory, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA; 2Center for Genomics and Personalized Medicine Research, Wake Forest University Health Sciences, Winston-Salem, NC, USA; 3Vermont Lung Center, Department of Medicine and Physiology, University of Vermont, Burlington, VT, USA; 4Pulmonary Clinical Research, Sepracor, Marlborough, MA, USA; 5Nemours Children’s Clinic, Center for Pharmacogenomics and Translational Research, Jacksonville, FL, USA and 6Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA

Correspondence:
Dr QL Duan, Channing Laboratory, Brigham and Women’s Hospital and Harvard Medical School, 181 Longwood Avenue, Boston, MA 02115, USA.
E-mail: reqdu@channing.harvard.edu

A pro-asthmatic culture milieu and β2-agonist (isoproterenol) were previously shown to regulate the expression of select transcription factors (TFs) within human airway epithelial and smooth muscle cells. This study tests 1116 single-nucleotide polymorphisms (SNPs) across 98 of these TF genes for association with bronchodilator response (BDR) in asthma patients. Genotyping was conducted using the Illumina HumanHap550v3 Beadchip in 403 non-Hispanic White asthmatic children and their parents. SNPs were evaluated for association with BDR using family and population-based analyses. Forty-two SNPs providing P-values < 0.1 in both analyses were then genotyped in three adult asthma trials. One SNP 5’ of the thyroid hormone receptor-β gene was associated with BDR in the childhood population and two adult populations (P-value = 0.0012). This investigation identified a novel locus for inter-individual variability in BDR and represents a translation of a cellular drug–response study to potential personalization of clinical asthma management.

The Pharmacogenomics Journal (2013) 13, 130–136; doi:10.1038/tpj.2011.56; published online 3 January 2012

Keywords: bronchodilator response; transcription factor; association; thyroid hormone receptor-β; asthma; pharmacogenetics

Introduction

Asthma is a chronic disorder characterized by inflammation, hyper-responsiveness of the bronchial muscles and narrowing of the airways that affects ~ 300 million individuals worldwide. The increasing prevalence of asthma in recent decades has resulted in high rates of morbidity, mortality and annual health-care costs estimated to be tens of billions of dollars within the United States. Despite the availability of several classes of asthma therapies, large inter-individual variability in drug response has been described, which may be attributed in part to genetic factors. Pharmacogenetic studies of β2-agonists, the most common asthma therapy, have identified multiple genes associated with bronchodilator response (BDR). The loci described to date, however, explain only a fraction of the variability in drug response, suggesting that other factors modulate BDR.

We previously described the differential expression of transcription factors (TFs) in two types of human airway (epithelial and smooth muscle) cell lines that are regulated by a pro-asthmatic culture milieu and β2-agonist. Specifically, the expression of 307 TFs was quantified following incubation with pro-inflammatory cytokines (interleukins 4 and 13, transforming growth factor-β), mediator leukotriene D4 and β2-agonist isoproterenol. Under these pro-asthmatic conditions,
isoproterenol evoked changes (≥50% difference) in TF gene expression. Given that the role of these two airway cell types in asthma pathophysiology (that is, inflammation, remodeling and bronchoconstriction), we hypothesized that genes regulated by in vitro exposure to isoproterenol and a pro-asthmatic culture milieu would be good candidates for modulating drug response to β2-agonists in asthmatics. The aim of this study is to test the association of single-nucleotide polymorphisms (SNPs) in these TF genes with BDR in asthma trial populations treated with a short-acting β2-agonist.

Materials and methods

Study populations

The Childhood Asthma Management Program (CAMP) was a clinical trial of 1041 asthmatic children over an average period of 4.3 years.7,8 A total of 403 non-Hispanic white probands and their parents were successfully genotyped on the Illumina HumanHap550v3 BeadChip (Illumina, San Diego, CA, USA). Each of the three replication trials consisted primarily of white adults with mild-to-severe asthma but no other significant comorbid medical conditions: Sepracor asthma trial (n = 435),9 Leukotriene Modifier or Corticosteroid or Corticosteroid Salmeterol (LOCCS) trial (n = 159);10 Effectiveness of Low Dose (LODO) Theophylline as Add-on Treatment in Asthma trial (n = 155).9 Sepracor participants were selected to have BDR ≥15%. LOCCS patients were treated with a low-dose inhaled corticosteroid during a 4- to 6-week run-in period prior to randomization, which improved lung function in the range of 85–92% predicted.11 In all four trial populations, BDR was measured as the percentage difference in forced expiratory volume in 1 s (FEV1) after administration of two inhalations of albuterol (180 μg total) via a metered dose inhaler (BDR = 100 × (post-FEV1/pre-FEV1)/pre-FEV1). All participants or their guardians provided written informed consent, and all protocols were approved by the Institutional Review Board.

Gene selection and genotyping

We selected 98 candidate genes, which code for isoforms of 59 TFs, that were previously shown to be differentially expressed in lung cells (≥50% up- or downregulation) in response to isoproterenol and pro-asthmatic conditions.6 A total of 1116 SNPs across these candidate genes and 20 kb on either side were successfully genotyped in CAMP using the Illumina HumanHap550v3 BeadChip (Illumina). Data cleaning and quality control of this genotype data has been previously reported.12 Follow-up genotyping in the three replication populations used a Sequenom MassARRAY MALDI-TOF mass spectrometer (Sequenom, San Diego, CA, USA). Each SNP had a greater than 95% completion rate and a Hardy–Weinberg equilibrium P-value of >0.01.

Table 1 Baseline characteristics of four asthma trial populations

	CAMP (n = 403)	LOCCS (n = 159)	LODO (n = 155)	Sepracor (n = 435)
Age, mean year (s.d.)	8.7 (2.1)	34.9 (15.2)	43.0 (14.7)	32.4 (13.6)
Range	5.2–13.2	7–71	15–76	12–80
Male, n (%)	266 (63.0)	54 (34.0)	39 (25.2)	214 (49.2)
Prebronchodilator FEV1 % predicted, mean (s.d.)	93.4 (14.0)	84.3 (12.3)	78.8 (17.7)	61.5 (6.8)
BDR				
Mean % (s.d.)	10.8 (10.4)	6.3 (6.1)	9.7 (11.1)	40.3 (20.6)
Median	8	5.9	7.5	35.6
Skewness	1.5	0.04	1.3	1.5
Kurtosis	3.9	0.4	5.9	3.1

Abbreviations: BDR, bronchodilator response; FEV1, forced expiratory volume in 1 s; s.d., standard deviation.

*Prebronchodilator FEV1 % predicted = (prebronchodilator FEV1/predicted FEV1) × 100%.
Haplotype associations were considered significant only if a global haplogroup test and a subsequent specific haplogroup test each provided \(P \)-values <0.05.

Replication analysis in the three adult asthma trial populations consisted of population-based tests using PLINK. In all analyses, the additive model was used and adjusted for nongenetic covariates including sex, age, height and prebronchodilator FEV\(_1\). Combined \(P \)-values were calculated from the one-sided \(P \)-values of the replication populations using Fisher's method. The allelic and summary odds ratios of the mutant allele were estimated using the DerSimonian-Laird random-effects meta-analysis approach as implemented in the rmeta package in R. The variation in drug–response phenotype attributed by the rs892940 genotype is estimated using a logistic regression model in the Design package within R. Linkage disequilibrium (LD) among SNPs was determined by correlation coefficient values (\(r^2 \)) as calculated using PLINK.

Results

Baseline characteristics of the four asthma trial populations are detailed in Table 1. CAMP consisted of children ranging from ages 5–13 years, whereas the three replication populations were composed primarily of adult asthma cases. Other distinctions among the four clinical trials include the gender composition with LOCCS and LODO recruiting fewer males than CAMP and Sepracor, as well as differences in the mean and distribution of BDR across the four trials. For example, Sepracor participants were selected to have BDR \(\geq 15\% \), reflected in a higher mean BDR of 40.3\% (s.d. = 21.6). In addition, LOCCS participants were previously treated with an inhaled corticosteroid, which may have improved their lung function and explain in part their lower mean and more normally distributed BDR (that is, skewness = 0.038 and kurtosis = 0.444). Given the phenotypic variability across our asthma trial populations, we did not apply conventional clinical thresholds of BDR for classifying patients as ‘responders’ (12\% or greater BDR). Instead, the median BDR value of each trial was used to distinguish responders within that trial.

A total of 1116 SNPs across the 98 candidate genes were tested for association with BDR in the CAMP trial using both family-based and population-based methods. SNPs providing \(P \)-values <0.1 using both analytical methods were considered to be the most robustly associated polymorphisms. Table 2 lists 42 such markers that were not correlated (linkage disequilibrium, LD) with each other, indicated by correlation coefficients (\(r^2 < 0.8 \)). These were subsequently genotyped in the three adult asthma trials (listed in Table 2). SNP association analyses in these follow-up populations identified five SNPs that provided \(P \)-values <0.1 in one or more of the replication populations (Table 3). SNP rs892940 in the thyroid hormone receptor B (\(THRB \)) locus is associated with BDR in CAMP, and replicated in LODO and Sepracor with a Fisher’s combined \(P \)-value of 0.0012, which meets Bonferroni’s significance threshold (\(\leq 0.0012 \)).

This is a common SNP (minor allele frequency of 41.7\% in CAMP) that is located 2.5 kb \(5' \) of the \(THRB \) gene. Figure 1 shows that individuals with the minor allele are 33\% more likely to respond to \(\beta_2 \)-agonists compared with those with the major allele, with a summary odds ratio of 1.33 (95\% confidence interval 1.11–1.58; Table 4). However, the percentage of phenotypic variation attributed to the rs892940 is small with estimates of 0.75\%, 0.30\%, 1.04\% and 0.25\% in CAMP, LOCCS, LODO and Sepracor, respectively. Using SNP genotype data from the hapmap CEU population (www.hapmap.org), this SNP was determined to be in LD (\(r^2 > 0.8 \)) with another SNP (rs4858119), located 2.8 kb \(5' \) of \(THRB \). In addition, genotype data from the 1000 Genomes Project confirms the LD between these 2 SNPs and identifies 14 other SNPs in the LD block, located within 50 kb of the \(THRB \) gene. However, none of these SNPs are coding. It remains to be determined whether any of these SNPs regulate the expression of \(THRB \).

As multiple markers providing modest associations were identified across genes (Table 2), haplotype analysis was conducted to determine whether the haplotypic effects were stronger than single marker associations. Although significant haplotypic effects (\(P \)-values <0.05) were found for several candidate genes (\(RUNX1, TCF12, PARP1 \) and \(AP3 \)) in CAMP, none of these haplotype associations replicated in the additional asthma populations.

Two SNPs in the vitamin D receptor, with the lowest \(P \)-values in CAMP, were nominally associated with BDR in LODO but did not meet significance criteria when the \(P \)-values were combined using Fisher’s method. Similarly, rs3858444 in the Wilms tumor 1 isoform B was moderately associated with BDR in CAMP and replicated in LODO only, yielding a high combined \(P \)-value. Finally, rs2249650 in the runt-related TF 1 (\(RUNX1 \)) gene replicated in Sepracor but was nonsignificant when the \(P \)-values were combined across the replication trials.

Discussion

In this manuscript, we identified a non-coding SNP (rs892940) located \(5' \) of the \(THRB \) gene that is associated with response to \(\beta_2 \)-agonists in the childhood asthma trial (family-based association test \(P \)-value = 0.001, population-based \(P \)-value = 0.09) and replicated this association in two adult asthma populations (combined \(P \)-value of 0.0012 in three replication populations and 0.0007 in all populations). Previous work by our group demonstrated that the expression of this gene is altered by exposure to a \(\beta_2 \)-agonist in human airway epithelial and smooth muscle cells, co-treated with pro-inflammatory cytokines and leukotriene D4, which are known to be elevated in asthmatic patients. Taken together, this thyroid hormone receptor gene is a novel candidate for regulation of variable response to a common asthma therapy. Further studies are necessary to determine whether the associated SNP or any variant in LD with it regulates the expression or activity of the \(THRB \) gene in response to bronchodilators. Genetic variants associated
with BDR may facilitate genetic tests for predicting individual asthma therapy outcomes.

The \textit{THRB} gene is located on chromosome 3p24.2, encoding for the \(\beta\)-subunit of the thyroid hormone receptor, which is one of two genes (\(\alpha\) and \(\beta\)) that code for several isoforms.\cite{18} The thyroid hormone receptor is located in the nucleus, and upon binding to the thyroid hormone, regulates (both repress and activate) transcription through binding to T3 response elements either as a homodimer or heterodimer with retinoid X receptor beta (RXRB). The thyroid hormone, mediated through activation of its receptor, has been implicated in the growth and development of the lung as well as other organs in pre- and postnatal stages.\cite{19,20} In a study of rats treated with this hormone, one group showed increased relaxation of the renal artery smooth muscle along with elevated cyclic AMP, nitric oxide synthase and nitric oxide, which is a potent vasodilator.\cite{21} Thus, genetic variants in \textit{THRB} may affect the

TF*	Iso effect on asthma\(^a\)	Gene	SNP rs\#	POP P-value	FBAT P-value
AP3	D	AP3B1	rs13163558	0.017	0.027
		AP3B1	rs355412	0.077	0.042
		AP3B1	rs9790855	0.006	0.010
		AP3S1	rs156666	0.012	0.092
		AP3S1	rs3797568	0.010	0.064
		AP3S1	rs6882704	0.008	0.005
CCAAT-BF	I	NFKB1	rs931067	0.070	0.017
Evi-1	I	EVI1	rs3851378	0.055	0.057
HMG-1	I	HMG1B	rs4335357	0.081	0.044
KLF-15	I	KLF15	rs9838915	0.074	0.017
NFR-1	I	NRRF1	rs10276606	0.094	0.031
PARP	I	PARP1	rs12567614	0.008	0.069
		PARP1	rs6426551	0.076	0.086
		PARP1	rs874583	0.003	0.011
PAX8	D	PAX8	rs12620738	0.040	0.088
PEBP2a	I	RUNX1	rs2246560	0.017	0.031
PTF1-\(\beta\)	I	TCF12	rs4494480	0.063	0.072
		TCF12	rs8037469	0.063	0.072
RAR	D	RAR	rs12635379	0.025	0.065
		RAR	rs1286654	0.027	0.005
		RAR	rs1299407	0.099	0.042
		RAR	rs1406575	0.088	0.017
		RAR	rs1529672	0.049	0.017
		RAR	rs2056777	0.022	0.041
		RAR	rs922939	0.071	0.076
		RAR	rs1554753	0.080	0.057
SREBP-1c	D	SREBF1	rs9902941	0.079	0.082
T3R	D	THRRA	rs868150	0.010	0.017
		THRRA	rs892940	0.086	0.041
VDR	D	VDR	rs1540339	0.024	0.008
		VDR	rs1544410	0.063	0.013
		VDR	rs2107301	0.056	0.092
		VDR	rs2189480	0.032	0.027
		VDR	rs2239179	0.034	0.003
		VDR	rs2239182	0.017	0.007
		VDR	rs2239186	0.027	0.015
		VDR	rs3819545	0.009	0.004
		VDR	rs3757343	0.019	0.049
		VDR	rs3858444	0.064	0.093

Abbreviations: BDR, bronchodilator response; CAMP, Childhood Asthma Management Program; D, decrease; FBAT, family-based association test; I, increase; Iso, isoproterenol; POP, population-based association test; SNP, single-nucleotide polymorphism; TF, transcription factor.

Overall, 42 SNPs providing \(P\)-values <0.1 in both the population-based (POP \(P\); derived using PLINK) and family-based analyses (FBAT \(P\)) in CAMP were selected for follow-up genotyping in three adult asthma trials.

\(^a\)Data from Panebra \textit{et al.}\cite{6}
expression of this receptor and have wide-spread down-stream effects on transcription regulation that may contribute to inflammation, constriction of the bronchial smooth muscle and obstruction of the airways. However, given the multiple protein isoforms, an earlier knockout mouse study demonstrated biological redundancy of the receptor activity. In addition, the biological effect of a potential regulatory mutation, which may alter the level of the wild-type protein in specific cells depending on the available transcription machinery, likely differs from a non-synonymous variant that alters the protein function in all cells expressing the gene. Thus, variable expression of the thyroid hormone receptor-β isoform may be cell-specific and may not have the detrimental effects of a coding variant or another gene without functional redundancy. The mechanism by which THRB modulates BDR is unknown and further investigations are necessary to determine its role in β2-agonist response.

A limitation of our study was the sample sizes of the asthma trials, especially for LOCCS (n = 159) and LODO (n = 155), which may have reduced the power to detect genetic associations. To compensate for the reduced power, we selected only those SNPs associated with BDR in both family-based and population-based analyses in CAMP to carry forward for replication. In addition, there were ascertainment biases of the replication populations, which may have contributed to heterogeneity across the cohorts. Specifically, participants in the LOCCS trial were previously treated with glucocorticoids and, consequently, had well-controlled asthma compared with the other trials. Glucocorticoid treatment has been shown to alter arginine metabolism by inhibiting the induction of nitric oxide synthase by cytokines, thereby reducing nitric oxide production, resulting in improved lung function. This may explain, in part, for the lower mean BDR and more

Table 3 SNPs associated with BDR in the four asthma trials

SNP	Gene	CAMP POP	CAMP FBAT	LOCCS PO	LODO PO	Sepracor PO	Combined REP PO	Combined ALL PO
rs892940	THRB	0.086	0.041	0.431	0.004	0.011	0.0012	0.0007
rs3819545	VDR	0.009	0.004	0.938	0.043	0.857	0.347	0.040
rs2189480	VDR	0.032	0.026	0.949	0.048	0.937	0.390	0.106
rs3858444	WT1	0.064	0.093	0.811	0.048	0.459	0.235	0.094
rs2249650	RUNX1	0.017	0.031	0.798	0.426	0.028	0.157	0.026

*Abbreviations: BDR, bronchodilator response; FBAT, family-based association test; POP, population-based association test; SNP, single-nucleotide polymorphism. P-values shown are two-sided for CAMP and one-sided for LOCCS, LODO and Sepracor, based on the direction of association in CAMP. The Fisher’s method was used to calculate the combined P-values for LOCCS, LODO and Sepracor (REP) as well as for all four populations (ALL)."
normalized BDR distribution observed in the LOCCS trial compared with the other populations. Also, ~60% of LODO participants were taking a controller medication, such as a long-acting β2-agonist, that could modify BDR. Finally, the Sepracor trial recruited only high responders to albuterol (BDR >15%). As a result of the heterogeneity in BDR distributions across these studies, we dichotomized the phenotype using the median value of each study to distinguish responders from nonresponders, which differ from the conventional thresholds for classifying responders from nonresponders. The reproducibility of our association results across the three replication trials, given the population heterogeneity, makes our study more robust. Moreover, whereas the initial association analyses were conducted in a childhood asthma population, the replication trials were composed primarily of adults, but each included some childhood cases.

The fact that multiple SNPs across a number of genes were only modestly associated with BDR and no stronger haplotype effect within these genes were found suggests that the genetic associations identified in this manuscript are likely due to LD with the causative variant(s). Further studies are necessary to determine the functional role, if any, of the associated SNP in THRB on the expression of this gene or if it is in LD with other functional variants.

The identification of TFs that modulate BDR provides a better understanding of the inter-individual variability in response to β2-agonists, the most common class of asthma medications, as well as novel therapeutic targets for better symptom control. For example, antagonists, inhibitors or small interfering RNAs may be used to alter the expression of a specific TF gene. However, to date, few general TFs have been associated with asthma and asthma pharmacogenetics (that is, vitamin D receptor) since overexpression or suppression of such proteins are expected to result in wide-spread adverse effects. Therapeutic interventions to regulate the expression of TFs (for example, antisense oligonucleotides, TF decoys) would have to be cell-specific such as via aerosol or intra-tracheal administration, which specifically targeting TF expression in human lung cells such as airway epithelial and smooth muscle cells only, without affecting gene expression in other cell types or organs. Further studies are necessary to improve the administration of such therapies in humans in order to minimize adverse effects and optimize therapeutic benefits.

Conflict of interest

The authors declare no conflict of interest.

Acknowledgments

This work was supported by the grants U01 HL65899 and P01 HL083069: The Pharmacogenetics of Asthma Treatment from the National Heart, Lung and Blood Institute (NHLBI). We thank all families for their enthusiastic participation in the CAMP Genetics Ancillary Study, supported by the National Heart, Lung, and Blood Institute, N01-HR-16049. We acknowledge the CAMP investigators and research team for collection of CAMP Genetic Ancillary Study data. Additional support for this research came from Grants N01 HR16044, HR16045, HR16046, HR16047, HR16048, HR16049, HR16050, HR16051 and HR16052 from the National Heart, Lung and Blood Institute. All work on data collected from the CAMP Genetic Ancillary Study was conducted at the Channing Laboratory of the Brigham and Women’s Hospital under appropriate CAMP policies and human subject’s protections. The CAMP Genetics Ancillary Study is supported by U01 HL075419, U01 HL65899, P01 HL083069, R01 HL086601 and T32 HL07427 Grants from the NHLBI, National Institutes of Health. We acknowledge the American Lung Association (ALA) and the ALA’s Asthma Clinical Research Centers investigators and research teams for use of LOCCS and LODO data, with additional funding from HL071394 and HL074755 from the NHLBI, and Nemours Children’s Clinic. GlaxoSmithKline supported the conduct of the LOCCS Trial by an unrestricted Grant to the ALA. We acknowledge Sepracor for use of the Sepracor data. QLD receives funding from the Canadian Institutes of Health Research.

References

1 Masoli M, Fabian D, Holt S, Beasley R. The global burden of asthma: executive summary of the GINA Dissemination Committee report. Allergy 2004; 59: 469–478.
2 Mannino DM, Homa DM, Pertoski CA, Ashizawa A, Nixon LL, Johnson CA et al. Surveillance for Asthma—United States, 1960-1995. In: Morbidity and Mortality Weekly Report. CDC Surveillance Summaries, 1998; 47(No. SS-1): 1–28.
3 Moorman JE, Rudd RA, Johnson CA, King M, Minor P, Bailey C et al. National surveillance for asthma–United States, 1980-2004. MMWR Surveill Summ 2007; 56: 1–54.
4 Rudd RA, Moorman JE. Asthma incidence: data from the National Health Interview Survey, 1980-1996. J Asthma 2007; 44: 65–70.
5 Duan QL, Tantisira KG. Pharmacogenetics of asthma therapy. Curr Pharm Des 2009; 15: 3742–3753.
6 Panebra A, Schwarz MB, Glinka CB, Liggett SB. Heterogeneity of transcription factor expression and regulation in human airway epithelial and smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2007; 293: L453-L462.
7 Childhood Asthma Management Program Research Group. The Childhood Asthma Management Program (CAMP): design rationale methods. Control Clin Trials 1999; 20: 91–120.
8 The Childhood Asthma Management Program Research Group. Long-term effects of budesonide or nedocromil in children with asthma. N Engl J Med 2000; 343: 1054–1063.
9 American Lung Association Asthma Clinical Research Centers. Clinical trial of low-dose theophylline and montelukast in patients with poorly controlled asthma. Am J Respir Crit Care Med 2007; 175: 235–242.
10 Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 2007; 81: 559–575.
11 Peters JP, Anthonisen N, Castro M, Holbrook JT, Irvin CG, Smith L et al. Randomized comparison of strategies for reducing treatment in mild persistent asthma. N Engl J Med 2007; 356: 2027–2039.
12 Fisher RA. Statistical methods for research workers. Hafner: New York, 1950.
13 Lange C, DeMeo D, Silverman SK, Weiss ST, Laird NM. PBAT: tools for family-based association studies. Am J Hum Genet 2004; 74: 367–369.
14 Schaid DJ, Rowland CM, Tines DE, Jacobson RM, Poland GA. Score tests for association between traits and haplotypes when linkage phase is ambiguous. Am J Hum Genet 2002; 70: 425–434.
15 Veenstra DL, Saint S, Saha S, Lumley T, Sullivan SD. Efficacy of antibiotic-impregnated central venous catheters in preventing catheter-related bloodstream infection: a meta-analysis. JAMA 1999; 281: 261–267.
16 Lung function testing: selection of reference values interpretative strategies. American Thoracic Society. Am Rev Respir Dis 1991; 144: 1202–1218.
17 Pellegrino R, Viegi G, Brusasco V, Crapo RO, Burgos F, Casaburi R et al. Interpretative strategies for lung function tests. *Eur Respir J* 2005; 26: 948–968.

18 Lazar MA. Thyroid hormone receptors: multiple forms, multiple possibilities. *Endocr Rev* 1993; 14: 184–193.

19 Perez-Castillo A, Bernal J, Ferreiro B, Pans T. The early ontogenesis of thyroid hormone receptor in the rat fetus. *Endocrinology* 1985; 117: 2457–2461.

20 Weinberger C, Thompson CC, Ong ES, Lebo R, Gruol DJ, Evans RM. The c-erb-A gene encodes a thyroid hormone receptor. *Nature* 1986; 324: 641–646.

21 Bussemaker E, Popp R, Fisslthaler B, Larson CM, Fleming I, Busse R et al. Hyperthyroidism enhances endothelium-dependent relaxation in the rat renal artery. *Cardiovasc Res* 2003; 59: 181–188.

22 Gauthier K, Chassande O, Plateroti M, Roux JP, Legrand C, Pain B et al. Different functions for the thyroid hormone receptors TRα and TRβ in the control of thyroid hormone production and post-natal development. *EMBO J* 1999; 18: 623–631.

23 Saleh D, Ernst P, Lim S, Barnes PJ, Giaid A. Increased formation of the potent oxidant peroxynitrite in the airways of asthmatic patients is associated with induction of nitric oxide synthase: effect of inhaled glucocorticoid. *FASEB J* 1998; 12: 929–937.