On Multisequences and their Extensions

Srinivasan Krishnaswamy*, H. K. Pillai

August 23, 2012

Abstract

In this paper we deal with the dimension of multisequences and related properties. For a given multisequence W and $R \in \mathbb{Z}_+$, we define the R–extension of W. Further we count the number of multisequences W whose R–extensions have maximum dimension and give an algorithm to derive such multisequences. We then go on to use this theory to count the number of Linear Feedback Shift Register(LFSR) configurations with multi input multi output delay blocks for any given primitive characteristic polynomial and also to design such LFSRs. Further, we use the result on multisequences to count the number of Hankel matrices of any given dimension.

1 Introduction

Linear recurring sequences, over a finite field \mathbb{F}_q, with maximum period have been shown to exhibit several important randomness properties such as 2-level autocorrelation property and span-\(n\) property (all nonzero subsequences of length n occur once in every period)\[1\]. As a result they find applications in a wide array of areas including cryptography [2], error correcting codes [3] and spread spectrum communication [4].

An obvious extension of a sequence of scalars is a sequence of vectors over the given finite field. Such a sequence of vectors is known as a multisequence. Periodic multisequences and linear relations among the elements of such sequences, have been a subject of study for a considerable period of time [5], [6], [7]. Generating multisequences with a given minimal polynomial has been an important problem motivating papers like [8], [9] and [10].

In this paper, we start by deriving some basic theorems regarding multisequences. We then introduce the concept of an R–extension of a multisequence, for $R \in \mathbb{Z}_+^m$. We then
derive an algorithm to generate multisequences whose R-extensions have maximum dimension. Further we derive a formula for the number of multisequences having this property. As an application, we show that the problem of generating some special class of LFSR configurations for any given primitive characteristic polynomial is a special case of the above problem. We then go on to count the number of such LFSR configurations using the formula derived for multisequences. Finally we demonstrate another application of the theory developed: a novel way to count the number of full rank Hankel matrices with entries from a given finite field.

In the remainder of this paper, \mathbb{F}_q denotes a field of cardinality q, where q is a prime power. $\mathbb{F}_q[s]$ denotes the ring of polynomials in s with coefficients from \mathbb{F}_q. The group of all full rank $n \times n$ matrices with entries from \mathbb{F}_q is denoted by $GL(n,\mathbb{F}_q)$. The cardinality of any set K is given by $|K|$. The set of positive integers is denoted by \mathbb{Z}_+. For some integer i, we denote the vector in \mathbb{F}_q^n, with 1 in the ith position and 0 in the remaining positions, by e^n_i. For any matrix M, we denote the submatrix of M, where the row indices run from a to b and the column indices run from c to d, by $M(a:b,c:d)$. We denote the a-th row of a matrix by $M(a,:)$.

The column span of a matrix M is denoted by $\text{colspan}(M)$.

2 Multisequences

We define a sequence S in \mathbb{F}_q as map from \mathbb{Z} to \mathbb{F}_q. A sequence $S = \{S(k)\}_{k \in \mathbb{Z}}$, in a finite field \mathbb{F}_q is called periodic if there exists an integer r such that $S(k + r) = S(k)$ for all k. The smallest such nonnegative r is called the period of the sequence. There are linear relations amongst the elements of a periodic sequence. One obvious example of such a relation being $S(k + r) = S(k)$. A general form of such a relation is

\[S(k + n) = a_{n-1}S(k + n - 1) + a_{n-2}S(k + n - 2) + \cdots + a_0S(k) \quad \forall k \text{ where } a_i \in \mathbb{F}_q. \]

These are called Linear Recurring Relations (LRRs). The integer n in equation (1) is called the order of the LRR. Given an LRR we can uniquely associate a monic polynomial with it. For example the polynomial associated with the LRR in equation (1) is $p(s) = s^n - a_{n-1}s^{n-1} - a_{n-2}s^{n-2} - \cdots - a_0$. Since we are dealing with periodic sequences, without loss of generality, we can assume that $a_0 \neq 0$ [11, Theorem 6.11].

It is easy to check that all polynomials associated with LRRs of a given sequence S, form an ideal I_S in the polynomial ring $\mathbb{F}_q[s]$. Since $\mathbb{F}_q[s]$ is a principal ideal domain, every ideal
has a unique monic generating polynomial. The generating polynomial of \mathcal{S} is called the minimal polynomial of the sequence S. The degree of the minimal polynomial is called the linear complexity of the sequence.

Given an LRR of degree n, there are many sequences that satisfy this relation. In fact, the collection of all sequences that satisfy this relation form a vector space over \mathbb{F}_q. The maximum possible period of sequences in this vector space is equal to the order of the polynomial associated with the LRR. In particular, if the polynomial associated with the LRR is a primitive polynomial of degree n, then every nonzero sequence in the corresponding vector space has a period equal to $q^n - 1$ (Theorem 6.33).

Consider a sequence of linear complexity n. Given n consecutive elements of the sequence, every subsequent element can be generated using the LRR corresponding to the minimal polynomial. The vector consisting of n consecutive elements of the sequence is called the state vector of the sequence. We denote the i-th state vector of the sequence by x_i i.e., $x_i = [S(i), S(i+1), \ldots, S(i+n-1)]$. Observe that if the minimal polynomial of the sequence is primitive then the sequence has $q^n - 1$ different state vectors i.e., every nonzero vector in \mathbb{F}_q^n is a state vector of the sequence.

Let σS denote the sequence got by shifting the sequence S once to the left i.e., $\sigma S(k) = S(k+1)$. The k-th state vector of σS is denoted by $\sigma x(k)$. Therefore $\sigma x(k) = x(k+1)$. Observe that $\sigma x(k) = x(k+1) = x(k)A$, where

$$A = \begin{bmatrix} 0 & 0 & \ldots & 0 & a_0 \\ 1 & 0 & \ldots & 0 & a_1 \\ 0 & 1 & \ldots & 0 & a_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \ldots & 1 & a_{n-1} \end{bmatrix} \in \mathbb{F}_q^{n \times n}$$

This matrix is the companion matrix of the polynomial $p(s) = s^n - (\sum_{i=0}^{n-1} a_is^i)$. Observe that the companion matrix associated to the polynomial is unique. The sequence obtained by shifting $S \ell$ times to the left, is denoted by $\sigma^\ell S$ i.e $\sigma^\ell S(k) = S(k+\ell)$.

Similar to sequences, we define a multisequence in \mathbb{F}_q^m as a map from \mathbb{Z} to \mathbb{F}_q^m. A multisequence $W = \{W(k)\}_{k \in \mathbb{Z}}$ is called periodic if exists a finite integer r such that $W(k+r) = W(k)$, for all k. As in the case of scalar sequences, there exist linear recurring relations between the elements of the multisequence. These relations are of the form

$$W(k+n) = a_{n-1}W(k+n-1) + a_{n-2}W(k+n-2) + \cdots + a_0W(k) \ \forall k \ \text{where} \ a_i \in \mathbb{F}_q \quad (2)$$
Analogous to scalar sequences, one can define a polynomial $p(s) = s^n - a_{n-1}s^{n-1} - a_{n-2}s^{n-2} - \cdots - a_0$, which can be associated with every LRR. Again, the polynomials associated to all LRRs of a given periodic multisequence, form an ideal in the principal ideal domain $F_q[s]$ and the monic generator of this ideal is called the minimal polynomial of the multisequence. The degree of the minimal polynomial is defined as the linear complexity of the multisequence.

The ith component of each vector in W gives a sequence of scalars in F_q. We call this sequence the ith component sequence of W, denoted by W_i. Clearly, the minimal polynomial of the multisequence is the least common multiple of the minimal polynomials of the component sequences. Therefore, the minimal polynomials of each of the component sequences divide the minimal polynomial of the multisequence. Hence, if the minimal polynomial of the multisequence is an irreducible polynomial $p(s)$, each of the nonzero component sequences also have $p(s)$ as their minimal polynomial.

Note that a multisequence, with linear complexity n is completely determined by the first n terms (vectors). The state of a multisequence can therefore be thought of as n consecutive elements (vectors) of the multisequence. Each state is thus an $m \times n$ matrix. Thus, we have a sequence of matrix states associated with every multisequence. We denote the k-th matrix state of the multisequence W by $M_W(k)$, i.e. $M_W(k) = [W(k), W(k+1), \ldots, W(n+k-1)]$. The ith row, denoted by $x_i(k)$, of $M_W(k)$ is the k-th state vector of the component sequence W_i. In the following theorem we prove that for a periodic multisequence W, all matrix states have the same column span.

Lemma 2.1. For a periodic multisequence, the column span of the matrix states is an invariant.

Proof. Consider a periodic multisequence W. It is enough to show that $\text{colspan}(M_W(k)) = \text{colspan}(M_W(k + 1))$, for any given integer k. Let the minimal polynomial of the multisequence be $p(s) = s^n - a_{n-1}s^{n-1} - a_{n-2}s^{n-2} - \cdots - a_0$. Since $W(k+n) = a_0W(k) + a_1W(k+1) + \ldots + a_{n-1}W(k+n-1)$, therefore $W(k+n) \in \text{colspan}(M_W(k))$. Thus,

$$\text{colspan}(M_W(k + 1)) \subseteq \text{colspan}(M_W(k))$$

Since $a_0 \neq 0$, $W(k) = \frac{1}{a_0}(W(k+n) - a_1W(k+1) - a_2W(k+2) - \ldots - a_{n-1}W(k+n-1))$, i.e., $W(k) \in \text{colspan}(M_W(k + 1))$. Hence

$$\text{colspan}(M_W(k)) \subseteq \text{colspan}(M_W(k + 1))$$
Therefore $\text{colspan}(M_W(k + 1)) = \text{colspan}(M_W(k))$. Hence proved.

We define the dimension of a multisequence as follows

Definition 2.2. The dimension of a multisequence W is defined as the rank of its matrix states.

As in the case of scalar sequences, any nonzero multisequence with a primitive minimal polynomial $p(s)$ of degree n, has a period of $q^n - 1$. In this paper, we henceforth assume that the multisequences considered have primitive minimal polynomials.

The first problem we address is the following:

Problem 1. Given a positive integer ℓ and a primitive polynomial $p(s)$ of degree n, how many multisequences of dimension ℓ exist in \mathbb{F}_q^m with $p(s)$ as its minimal polynomial. (Clearly $0 \leq \ell \leq \min(m, n)$)

Two multisequences are considered the same if they are shifted versions of one another, i.e., the multisequence W is the same as its shifted version $\sigma^r W$ for any $r \in \mathbb{Z}$.

We denote the collection of ℓ dimensional subspaces of \mathbb{F}_q^m by $G(\ell, m, \mathbb{F}_q)$. The cardinality of $G(\ell, m, \mathbb{F}_q)$ is given by

$$|G(\ell, m, \mathbb{F}_q)| = \frac{(q^m - 1)(q^m - q)\ldots(q^m - q^{\ell-1})}{(q^\ell - 1)(q^\ell - q)\ldots(q^\ell - q^{\ell-1})}$$

(3)

Lemma 2.3. Given a primitive polynomial $p(s)$ of degree n, the number of multisequences in \mathbb{F}_q^m, with minimal polynomial $p(s)$, having dimension ℓ is $|G(\ell, m, \mathbb{F}_q)| \times (q^n - q)(q^n - q^2)\ldots(q^n - q^{\ell-1})$.

Proof. Given a multisequence W of dimension ℓ, by Lemma 2.1, the column space of the matrix states $M_W(k)$ is a unique ℓ dimensional subspace of \mathbb{F}_q^m. Observe that there are $|G(\ell, m, \mathbb{F}_q)|$ subspaces of \mathbb{F}_q^m that have dimension ℓ. Consider any one such $\ell-$ dimensional space V. Fix a basis for V, say v_1, v_2, \ldots, v_ℓ, where $v_i \in \mathbb{F}_q^m$. Let T be the matrix $T = [v_1, v_2, \ldots, v_\ell]$. Any $M \in \mathbb{F}_q^{m \times n}$ whose column span is V can then be written as $M = TB$, where $B \in \mathbb{F}_q^{\ell \times n}$. The number of such matrices B is equal to $(q^n - 1)(q^n - q)\ldots(q^n - q^{\ell-1})$ (choosing ℓ independent vectors in \mathbb{F}_q^n). As the polynomial $p(s)$ is primitive, each multisequence has $q^n - 1$ distinct matrix states. Thus, the number of multisequences with column span V is equal to $\frac{(q^n - 1)(q^n - q)\ldots(q^n - q^{\ell-1})}{(q^n - 1)} = (q^n - q)(q^n - q^2)\ldots(q^n - q^{\ell-1})$. Therefore,
given a primitive polynomial \(p(s) \) of degree \(n \), the number of multisequences in \(\mathbb{F}_{q}^m \) with minimal polynomial \(p(s) \) having dimension \(\ell \) is \(|G(\ell, m, \mathbb{F}_q)| \times (q^n - q)(q^n - q^2) \cdots (q^n - q^{\ell-1}) \).

If a multisequence in \(\mathbb{F}_{q}^m \) has dimension \(m \), its component sequences are linearly independent. We can therefore give the following corollary to Lemma 2.3.

Corollary 2.4. Given a primitive minimal polynomial \(p(s) \) of degree \(n \), the number of multisequences in \(\mathbb{F}_{q}^m \) with minimal polynomial \(p(s) \), having linearly independent component sequences is \((q^n - q)(q^n - q^2) \cdots (q^n - q^{m-1}) \).

3 Extensions of Multisequences

We now look to extend an \(m \)-dimensional multisequence \(W \) in \(\mathbb{F}_{q}^m \) to an \(r \)-dimensional multisequence in \(\mathbb{F}_{q}^r \) where \(r > m \). Further, we impose a condition that the minimal polynomial of the new multisequence is the same as the minimal polynomial of \(W \). An obvious way of keeping the minimal polynomial unchanged is by appending to \(W \) its component sequences or their linear combinations. Thus \(W_j = \sum_{i=1}^{m} a_i W_i \) for \(j > m \), where \(a_i \in \mathbb{F}_q \). The extended multisequence however continues to have dimension \(m \). On other hand, appending \(W \) with shifted versions of the component sequences may perhaps increase the dimension of the multisequence.

Let \(R = (r_1, r_2, \ldots, r_m) \in \mathbb{Z}_{\geq 0}^m \), with \(\sum r_k = r \). We define the \(R \)-extension of the multisequence \(W \) in \(\mathbb{F}_{q}^m \) as the multisequence \(W_R \) in \(\mathbb{F}_{q}^r \), whose component sequences are obtained from the component sequences of \(W \) in the following order: \(W_1, \sigma W_1, \ldots, \sigma^{r_1-1} W_1, W_2, \sigma W_2, \ldots, \sigma^{r_2-1} W_2, \ldots, W_i, \sigma W_i, \ldots, \sigma^{r_i-1} W_i, \ldots, W_m, \sigma W_m, \ldots, \sigma^{r_m-1} W_m \). Clearly, the minimal polynomial of the multisequences \(W_R \) and \(W \) are the same. We can therefore ask the following question.

Problem 2. Given \(R = (r_1, r_2, \ldots, r_m) \in \mathbb{Z}_{\geq 0}^m \), with \(\sum r_k = r \), how many multisequences \(W \) of rank \(m \) in \(\mathbb{F}_{q}^m \) give \(R \)-extended multisequences in \(\mathbb{F}_{q}^r \) having dimension \(r \)?

The solution to this problem is given by the following theorem.

Theorem 3.1. Let \(R = (r_1, r_2, \ldots, r_m) \in \mathbb{Z}_{\geq 0}^m \) such that \(r = \sum r_i \) and let \(p(s) \) be a primitive polynomial of degree \(n \). The number of multisequences in \(\mathbb{F}_{q}^m \) with minimal polynomial \(p(s) \) whose \(R \)-extensions have dimension \(r \) is equal to \((q^n - q^{r-m+1})(q^n - q^{r-m+2}) \cdots (q^n - q^{r-1}) \).
In the remainder of this section we give a constructive proof to this theorem. Starting with a multisequence in \mathbb{F}_q^m with dimension m, we recursively generate a series of $r - m$ multisequences in \mathbb{F}_q^m culminating in a desired multisequence whose $R-$extension has dimension r. We first prove a few preparatory results which when put together gives us the constructive proof.

For any $G = (g_1, g_2, \ldots , g_m) \in \mathbb{Z}_+^m$, let $G_{\max} = \max_i g_i$. Let Φ define the following map from \mathbb{Z}_+^m to \mathbb{Z}_+^m.

$$\Phi(g_1, g_2, \ldots , g_m) = (g_1, g_2, \ldots , g_{c-1}, g_c - 1, g_{c+1}, \ldots , g_m)$$

where c is the smallest integer such that $g_c = G_{\max}$

Note that the repeated action of Φ on any element of \mathbb{Z}_+^m eventually gives $1 = (1, 1, \ldots , 1)$. Thus, given $R = (r_1, r_2, \ldots , r_m) \in \mathbb{Z}_+^m$, Φ defines a unique path from R to 1. We call this path the ‘$R-$road’.

Example 3.2. The $R-$road for $R = (3, 2, 5, 4, 1)$ is $(3, 2, 4, 4, 1)$ $(3, 2, 3, 4, 1)$ $(3, 2, 3, 3, 1)$ $(2, 2, 2, 3, 1)$ $(2, 2, 2, 1)$ $(1, 2, 2, 1)$ $(1, 1, 2, 1)$ $(1, 1, 1, 1)$.

Clearly given any point $G = (g_1, g_2, \ldots , g_m)$ on an $R-$road, for any other point $Q = (q_1, q_2, \ldots , q_m)$ lying on the path from R to G, $q_i \geq g_i \forall i$. Besides, the map Φ ensures the following:

- If $i < j$, $g_i > g_j$ if and only if $g_i > r_j$

We now look to retrace the R-road from 1 to R. As a first step, we prove the following lemma.

Lemma 3.3. For every point $G = (g_1, g_2, \ldots , g_m) \neq R$ on the $R-$road, there exists a coordinate g_c which satisfies at least one of the following conditions:

1. $g_c = G_{\max} - 1$ and $g_c < r_c$.
2. $g_c = G_{\max}$ and $g_c < r_c$.

Proof. For every point $G = (g_1, g_2, \ldots , g_m) \neq R$ on the $R-$road, there exists a unique point G^* on the $R-$road such that $\Phi(G^*) = G$. Now, $G^* = (g_1, g_2, \ldots , g_{c-1}, g_c + 1, g_{c+1}, \ldots , g_m)$, where $g_c + 1 \geq g_i \forall i \neq c$. Also, since G^* is on the path from R to 1, $g_c + 1 \leq r_c$. Therefore, $g_c < r_c$. If $g_c + 1 > g_c \forall i \neq c$ then $g_c = G_{\max}$. If instead, there exists an i such that $g_c + 1 = g_i$, then $g_c = G_{\max} - 1$. Hence proved.

\[\square\]
We therefore have the following definition.

Definition 3.4. Consider an \(R = (r_1, r_2, \ldots, r_m) \in \mathbb{Z}_+^m \). For every point \(G = (g_1, g_2, \ldots, g_m) \neq R \), on the \(R \)-road the active coordinate is defined as follows:

1. If there exists a coordinate \(g_c \) such that \(g_c = G_{\text{max}} - 1 \) and \(g_c < r_c \), then the active coordinate is the coordinate corresponding to the largest such \(c \).

2. In the event of there being no \(g_c \) that satisfies point 1, the active coordinate is the coordinate corresponding to the largest \(c \) such that \(g_c = G_{\text{max}} \) and \(g_c < r_c \).

It can be easily seen that one can traverse the \(R \)-road backwards from \(1 \) to \(R \) by repeatedly incrementing the active coordinate at every point. This is demonstrated in the following example:

Example 3.5. Let \(R = (3, 2, 5, 4, 1) \). Starting from \(1 \) the \(R \)-road is traversed backwards as follows: (At every point the active coordinate is underlined) \((1, 1, 1, 1, 1) (1, 1, 2, 1) (1, 2, 2, 1) (2, 2, 2, 1) (2, 2, 3, 1) (3, 2, 3, 1) (3, 2, 4, 1) (3, 2, 4, 1) (3, 2, 5, 4, 1)\).

Detecting the active coordinate of any point \(G \) involves the following steps:

- Find \(G_{\text{max}} \).
- Find the largest \(i \) such that the \(i \)-th coordinate has value \(G_{\text{max}} - 1 \) and is less than \(r_i \).
- In the event of there being no \(i \) satisfying the preceding condition, find the largest \(j \) such that the \(j \)-th coordinate has value \(G_{\text{max}} \) and is less than \(r_j \).

Notice that each of the above steps can be implemented in \(O(m) \) operations.

For generating multisequences with \(R \)-extensions having maximum dimension, we travel backwards along the \(R \)-road from \(1 \) to \(R \). During this backward traversal, at every point \(G \) on the \(R \)-road, we recursively generate a multisequence whose \(G \)-extension has maximum dimension.

We now make the following observation: Given a matrix \(A \in \mathbb{F}_q^{\ell \times \ell} \) in the companion form and a vector \(x = (b_1, b_2, \ldots, b_\ell) \in \mathbb{F}_q^\ell \), for \(k < \ell \), \(x A^k \) has the following form

\[x A^k = (b_{k+1}, b_{k+2}, \ldots, b_\ell, *, *, \ldots, *) \]

\[\text{\(k \) entries} \]
Theorem 3.6. Let \(\mathbf{P} \) be consecutive points on the \(k \)-dimensional minimal polynomial of degree \(k \). Therefore, the matrix \([x; xA; \ldots; xA^{k-1}]\) has the following structure.

\[
\begin{bmatrix}
 b_1 & b_2 & \ldots & b_{\ell-k+1} & b_{\ell-k+2} & \ldots & b_{\ell-1} & b_{\ell} \\
 b_2 & b_3 & \ldots & b_{\ell-k+2} & b_{\ell-k+3} & \ldots & b_{\ell} & * \\
 \vdots & \vdots & & \vdots & \vdots & & \vdots & \vdots \\
 b_k & b_{k+1} & \ldots & b_{\ell} & * & \ldots & * & *
\end{bmatrix}
\]

For any \(G \in \mathbb{Z}_q^m \), let \(N(G, k) \) denote the number of multisequences in \(\mathbb{F}_q^m \) with a given primitive minimal polynomial of degree \(k \), whose \(G \)-extensions have maximum dimension.

Theorem 3.6. Let \(R = (r_1, r_2, \ldots, r_m) \), and let \(G = (g_1, g_2, \ldots, g_m) \) and \(\Phi(G) \) be consecutive points on the \(R \)-road. Then,

\[
N(G, k) = q^{m-1}N(\Phi(G), k-1)
\]

where \(k \) is any integer greater than \(g = \sum_{i=1}^m g_m \).

Proof. Let \(c \) be the smallest integer such that \(g_c = G_{\text{max}} \). Therefore \(\Phi(G) = (g_1, g_2, \ldots, g_{c-1}, g_c-1, g_{c+1}, \ldots, g_m) \). Let \(W \) be a multisequence in \(\mathbb{F}_q^m \) whose minimal polynomial \(p_{k-1}(s) \) is a primitive polynomial of degree \(k-1 \). Further assume that the \(\Phi(G) \)-extension of \(W \) has dimension \(g-1 \). Each matrix state of \(W \) is therefore a matrix in \(\mathbb{F}_q^{m \times (k-1)} \) with full row rank. As \(p_{k-1}(s) \) is a primitive polynomial of degree \(k-1 \), there is a matrix state \(M \) of \(W \), whose \(c \)-th row is \(e_{k-1}^k = (0, 0, \ldots, 0, 1) \). For \(i \neq c \), let \(x_i = [b_{i1}, b_{i2}, \ldots, b_{i(k-1)}] \) be the \(i \)-th row of this \(M \). Therefore, \(M = [x_1; x_2; \ldots; x_{c-1}; e_{k-1}^k; x_{c+1}; \ldots; x_m] \). Now expand \(M \) to a matrix \(M^* \in \mathbb{F}_q^{m \times k} \) as follows:

1. For every \(i \neq c \), append the \(i \)-th row of \(M \) with any element \(d_i \) of \(\mathbb{F}_q \). Therefore, the \(i \)-th row of \(M^* \) is \(x_i^* = (x_i, d_i) \in \mathbb{F}_q^k \), for some \(d_i \in \mathbb{F}_q \).

2. Let the \(c \)-th row of \(M^* \) be \(e_k^k \) i.e., \((0, 0, \ldots, 0, 1) \).

Let \(p_k(s) \) be a primitive polynomial of degree \(k \). Using \(M^* \) as a matrix state, one can generate a multisequence \(W^* \) whose minimal polynomial is \(p_k(s) \). We claim that \(W^* \) has a \(G \)-extension with dimension \(g \).
As M is a matrix state of W, the following matrix $M_{\Phi(G)}$ is a matrix state of the $\Phi(G)$–extension of W:

$$M_{\Phi(G)} = [x_1; x_1 A_{k-1}; \ldots; x_1 A_{g_{k-1}}^\circ; x_2; x_2 A_{k-1}; \ldots; x_2 A_{g_{k-1}}^\circ; \ldots; x_c; x_c A_{k-1}; \ldots; x_c A_{g_{k-1}}^\circ; e_{k-1}^g; e_{k-1}^g A_{k-1}; \ldots; e_{k-1}^g A_{g_{k-1}}^\circ; x_{c+1}; x_{c+1} A_{k-1}; \ldots; x_{c+1} A_{g_{k-1}}^\circ; \ldots; x_m; x_m A_{k-1}; \ldots; x_m A_{g_{m-1}}^\circ]$$

where A_{k-1} is the companion matrix of the polynomial $p_{k-1}(s)$.

The c–th block of rows of $M_{\Phi(G)}$ has the following structure:

$$
\begin{bmatrix}
0 & 0 & \cdots & 0 & 0 & \cdots & 1 & \ast \\
0 & 0 & \cdots & 0 & 0 & \cdots & 1 & \ast \\
\vdots & \vdots & \cdots & \vdots & \vdots & \cdots & \vdots & \vdots \\
0 & 0 & \cdots & 0 & 1 & \cdots & \ast & \ast \\
\end{bmatrix} \in \mathbb{F}_q^{(g_{c-1}) \times (k-1)}
$$

For $1 \leq i \neq c \leq m$, let $x_i = (b_{i1}, b_{i2}, \ldots, b_{i(k-1)})$. The corresponding i–th block of rows of $M_{\Phi(G)}$ has the following structure:

$$
\begin{bmatrix}
b_{i1} & b_{i2} & \cdots & b_{i(g_c)} & b_{i(k-g_c)} & \ldots & b_{i(k-g_c+2)} & b_{i(k-2)} & b_{i(k-1)} \\
b_{i2} & b_{i3} & \cdots & b_{i(g_c+1)} & b_{i(k-g_c+2)} & \ldots & b_{i(k-2)} & b_{i(k-1)} & \ast \\
\vdots & \vdots & \cdots & \vdots & \vdots & \cdots & \vdots & \vdots & \vdots \\
b_{i(g_c)} & b_{i(g_c+1)} & \cdots & b_{i(k-g_c+g_i-1)} & b_{i(k-g_c+g_i)} & \cdots & b_{i(k-2)} & b_{i(k-1)} & \ast & \ast \\
\end{bmatrix} \in \mathbb{F}_q^{g_i \times (k-1)}
$$

The *s shown in the blocks above represent entries from \mathbb{F}_q which depend on the matrix A_{k-1}. Since $g_c \geq g_i \forall i$, the *s appear only in the last $g_c - 1$ columns of $M_{\Phi(G)}$ (shown as the trailing submatrix after the vertical line). As $\Phi(G)$–extension of W has rank $g - 1$, therefore $M_{\Phi(G)}$ has rank $g - 1$.

Similarly, corresponding to the matrix state M^* of W^*, we have the following matrix state of the G–extension of W^*:

$$M^*_G = [x_1^*; x_1^* A_k; \ldots; x_1^* A_k^{g_{k-1}}; x_2^*; x_2^* A_k; \ldots; x_2^* A_k^{g_{k-1}}; \ldots; x_c^*; x_c^* A_k; \ldots; x_c^* A_k^{g_{k-1}}; e_k^g; e_k^g A_k; \ldots; e_k^g A_k^{g_{k-1}}; x_{c+1}^*; x_{c+1}^* A_k; \ldots; x_{c+1}^* A_k^{g_{k-1}}; \ldots; x_m^*; x_m^* A_k; \ldots; x_m^* A_k^{g_{m-1}}]$$

where A_k is the companion matrix of the polynomial $p_k(s)$.

For $i \neq c$, the i–th block of M^*_G is $[x_i^*; x_i^* A_k; \ldots; x_i^* A_k^{g_{k-1}}]$ (recall that $x_i^* = (x_i, d_i)$), where
A_k is the companion matrix of the polynomial $p_k(s)$. This block has the following structure:

$$
\begin{bmatrix}
 b_{i1} & b_{i2} & \cdots & b_{i(k-g)} \\
 b_{i2} & b_{i3} & \cdots & b_{i(k-g+1)} \\
 \vdots & \vdots & \ddots & \vdots \\
 b_{ig_i} & b_{ig_i+1} & \cdots & b_{i(k-g_i+g_i-1)} \\
\end{bmatrix}
\begin{bmatrix}
 \cdots & b_{i(k-g_i+1)} & b_{i(k-g_i+2)} & \cdots & b_{i(k-1)} & d_i \\
 \cdots & b_{i(k-g_i+2)} & b_{i(k-g_i+3)} & \cdots & d_i & \ast \\
 \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
 \cdots & b_{i(k-1)} & d_i & \cdots & \ast & \ast \\
\end{bmatrix}
\in \mathbb{F}_q^{g_i \times (k)}
$$

The c–th block of M_G^* is $[e_k; e_k A_k; \ldots; e_k A_k^{g_i-1}]$. This block has the following structure.

$$
\begin{bmatrix}
 0 & 0 & \cdots & 0 & 0 & \cdots & 0 & 1 \\
 0 & 0 & \cdots & 0 & 0 & \cdots & 1 & \ast \\
 \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots \\
 0 & 0 & \cdots & 0 & 1 & \cdots & \ast & \ast \\
\end{bmatrix}
\in \mathbb{F}_q^{(g_i) \times (k)}
$$

Let M_G be the submatrix of M_G^* got by removing its last column and the first row of its c–th block. Observe that $\text{rank}(M_G) = \text{rank}(M_G^*) - 1$. By the structure of the c–th block of M_G one can clearly see that this submatrix M_G can be modified to $M_{\Phi(G)}$ using elementary row operations. Hence this submatrix M_G has rank $g - 1$. This implies that M_G^* has rank g. Therefore, W^* does have a G–extension with dimension g.

Note that each of the d_is can be chosen in q ways. Each such choice yields a different matrix M^* and hence a different multisequence W^*. As a result for every multisequence W with minimal polynomial $p_k-1(s)$, the above process gives us q^{m-1} multisequences W^* with minimal polynomial $p_k(s)$. Therefore,

$$N(G, k) \geq q^{m-1}N(\Phi(G), k - 1) \quad (5)$$

Conversely, consider a multisequence U^* in \mathbb{F}_q^m with primitive minimal polynomial $p_k(s)$ whose G–extension has rank g. Consider its matrix state $M_1^* \in \mathbb{F}_q^{m \times k}$ whose c–th row is e_k^k. Now M_1^* can be reduced to a matrix $M_1 \in \mathbb{F}_q^{m \times (k-1)}$ as follows:

1. For $i \neq c$ remove the last entry of the i–th row.

2. Let the c–th row of M_1 be e_k^{k-1}.

Let M_1 generate a multisequence U having primitive minimal polynomial $p_{k-1}(s)$. Using similar arguments as those used earlier in the proof, one can prove that the $\Phi(G)$–extension of U has dimension $g - 1$. Note that the matrix M_1 is independent of the last entries of
the rows of M_1^*. Hence, there are q^{m-1} matrices (including M_1^*), with c-th row e_k^c, which have the same first $k - 1$ columns as M_1. By the above process each one of these matrices gives the same matrix M_1 (and hence the same multisequence U). Besides if we start with a matrix with c-th row e_k^c which differs from M_1 in any entry corresponding to the first $k - 1$ columns, it results in a different M_1 (and hence a different multisequence U). Therefore,

$$N(\Phi(G), k - 1) \geq \frac{N(G, k)}{q^{m-1}} \quad (6)$$

$$\Rightarrow q^{m-1}N(\Phi(G), k - 1) \geq N(G, k)$$

Thus, from equations (5) and (6) we can conclude that

$$N(G, k) = q^{m-1}N(\Phi(G), k - 1)$$

\[\square\]

Using this result, Theorem 3.1 can be proved in the following manner:

Proof of Theorem 3.1 For each j, such that $n - r + m \leq j \leq n$, let $p_j(s)$ be a given primitive polynomial of degree j. For every point $G = (g_1, g_2, \ldots, g_m)$ on the R-road, let $g = \sum_{i=1}^{m} g_i$. As we have seen in the proof of Theorem 3.6 starting from a multisequence in F_q^m with dimension m (i.e., its 1-extension has maximum dimension), having minimal polynomial $p_{n-r+m}(s)$, we can recursively generate multisequences in F_q^m, with minimal polynomial $p_{n-r+g}(s)$, whose G-extensions have maximum dimension, for every G on the R-road.

By Theorem 3.6 for any two consecutive points, $\Phi(G)$ and $G = (g_1, g_2, \ldots, g_m)$ in the path from $1 = (1, 1, \ldots, 1)$ to R, $N(G, n - r + g) = q^{m-1}N(\Phi(G), n - r + g - 1)$ where $g = \sum_{i=1}^{m} g_i$. The path from 1 to R has $r - m$ such steps. Therefore,

$$N(R, n) = (q^{m-1})^{r-m}N(1, n - r + m) \quad (7)$$

However, $N(1, n - r + m)$ is the number of multisequences in F_q^m of dimension m, with a given primitive minimal polynomial $p_{n-r+m}(s)$ of degree $n - r + m$. Therefore, by Corollary 2.4 $N(1, n - r + m) = (q^{n-r+m} - q)(q^{n-r+m} - q^2) \cdots (q^{n-r+m} - q^{m-1})$. Hence,

$$N(R, n) = (q^{m-1})^{r-m}(q^{n-r+m} - q)(q^{n-r+m} - q^2) \cdots (q^{n-r+m} - q^{m-1})$$

$$= (q^n - q^{r-m+1})(q^n - q^{r-m+2}) \cdots (q^n - q^{r-1})$$

Hence proved. \[\square\]
Remark 3.7. $N(R, n)$ does not depend on the integers (r_1, r_2, \ldots, r_m) but just their sum.

One can therefore ask the following question.

Problem 3. Given any $r \geq m$, how many multisquences in F^r having dimension r are R-extensions of multisquences in F^m for some $R = (r_1, r_2, \ldots, r_m) \in Z^m_+$ where $\sum r_i = r$.

This problem is answered in the following lemma.

Lemma 3.8. The number of multisquences in F^r which are R-extensions of multisquences in F^m is given by,

$$N_r = \binom{r-1}{r-m}(q^n - q^{r-m+1})(q^n - q^{r-m+2}) \ldots (q^n - q^{r-1})$$

(8)

Proof. For any $r \in Z_+$, define the following subset R_r of Z^m_+.

$$R_r := \{ (r_1, r_2, \ldots, r_m) \in Z^m_+ \mid \sum_{i=1}^{m} r_i = r \}$$

Therefore,

$$N_r = \left| R_r \right| \times (q^n - q^{r-m+1})(q^n - q^{r-m+2}) \ldots (q^n - q^{r-1})$$

Corresponding to each element of R_r, say (r_1, r_2, \ldots, r_m), we can define a monomial, $x_1^{r_1}x_2^{r_2} \ldots x_m^{r_m}$. Therefore, calculating $\left| R_r \right|$ is equivalent to finding the number of monomials of degree r where each variable is raised to a nonzero index. However, every such monomial can be written as $x_1x_2 \ldots x_m \Upsilon(x_1, x_2, \ldots, x_m)$, where $\Upsilon(x_1, x_2, \ldots, x_m)$ is a monomial of degree $r - m$. Consequently, the cardinality of R_r is equal to the number of monomials of degree $r - m$. This number is equal to $\binom{(r-m)+m-1}{r-m} = \binom{r-1}{r-m}$. As a result,

$$N_r = \binom{r-1}{r-m}(q^n - q^{r-m+1})(q^n - q^{r-m+2}) \ldots (q^n - q^{r-1})$$

Given $R = (r_1, r_2, \ldots, r_m) \in Z^m_+$, let $r = \sum_{i=1}^{m} r_i$. Let $\{p_j(s)\}_{j=n-r+m}^{n}$ be a series of primitive polynomials where the index j denotes the degree of the respective polynomial. Let $A_{1,i}$s be their corresponding companion matrices. Let $\Phi(G)$ and G be consecutive points on the R-road. Further, let c be the position of the active coordinate of $\Phi(G)$. Consider a multisquence U in F^m_q with a minimal polynomial $p_{n-r+g-1}(s)$, whose $\Phi(G)$-extension
has maximum dimension. Note that U can be uniquely determined by any of its matrix states. Let M_U be its matrix state whose c-th row is $e_{n-r+g-1}^n$. The proof of Theorem 3.6 gives us a procedure to go from M_U, to the matrix state M^*_U of a multisequence U^* with a primitive minimal polynomial $p_{n-r+g}(s)$ of degree $n-r+g$, whose G-extension has maximum dimension. Thus, using this procedure one can generate a sequence of matrices $\{M_j\}_{j=n-r+m}^m$ starting with a matrix $M_{n-r+m} \in \mathbb{F}_q^{m \times (n-r+g)}$ having full row rank, and culminating in a matrix $M_n \in \mathbb{F}_q^{m \times (n)}$. Each matrix M_j in the above sequence uniquely corresponds to a point G on the R-road and can be seen as a matrix state of a multisequence with minimal polynomial $p_j(s)$ whose corresponding G-extension has maximum dimension. The following is an algorithm to generate this sequence:

Algorithm 3.9. (The variable M is used to store the respective matrix state at every step of the algorithm. The current point in the path from 1 to R is stored in the variable $G = (g_1, g_2, \ldots, g_m)$. The variable c stores the position of the active coordinate of G. The variable g stores the summation of the values of the coordinates of G.)

Initialization:

- Initialize G to 1.
- Initialize the value of g to m.
- Initialize M to any matrix in $\mathbb{F}_q^{m \times (n-r+m)}$ that has full row rank.

Main Loop:

- While $g < r$ do the following
 - Find the position of the active coordinate of G and store it in c.
 - Find a polynomial $f(s)$ such that $M(c,:)f(A_{n-r+g}) = e_{n-r+g}^n$.
 - $M = Mf(A_{n-r+g})$. (This gives us the matrix state whose c-th row is e_{n-r+g}^n.)
 - For all $i \neq c$, append the i-th row of M with any $d_i \in \mathbb{F}_q$ to get the row vector $(M(i,:),d_i)$. Change the c-th row of M to $e_{n-r+g+1}^n$.
 - Increment g and g_c by 1.

The most complex part of the above algorithm is to find the polynomial $f(s)$. This can be done using the following subroutine.
Subroutine 3.10. Construct the matrix $\mathcal{M} = [M(c,:); M(c,:)_n; \dots; M(c,:)_n^{n-r+g-1}]$.

- Solve the set of linear equations

$$a_{\mathcal{M}} = \epsilon_{n-r+g}^{n-r+g} \quad \text{for} \quad a \in \mathbb{F}_{q}^{n-r+g}.$$ \hspace{1cm} (9)

- If $a = (a_0, a_1, \ldots, a_{n-r+g-1})$ is the solution to the above set of equations, $a_0 M(c,:) + a_1 M(c,:)_n + \cdots + a_{n-r+g-1} M(c,:)_n^{n-r+g-1} = \epsilon_{n-r+g}^{n-r+g}$. Therefore $f(s) = a_0 + a_1 s + \cdots + a_{n-r+g-1} s^{n-r+g-1}$.

Let c_1 and c_2 be the active coordinates of 1 and $\Phi(R)$ respectively. Algorithm 3.9 can be thought of as a map from the space of matrices in $\mathbb{F}_{q}^{n \times (n-r+m)}$ which have full row rank and whose c_1-th rows are ϵ_{n-r+m}^{n-r+m}, to the space of matrices in $\mathbb{F}_{q}^{m \times n}$ which have full row rank and whose c_2-th rows are ϵ_{n}^{n}. There are precisely $(q^{n-r+m} - q)(q^{n-r+m} - q^2) \cdots (q^{n-r+m} - q^{m-1})$ matrices in $\mathbb{F}_{q}^{m \times (n-r+m)}$ whose c_1-th row is ϵ_{n-r+m}^{n-r+m}. During each iteration of the while loop one can chose d_0's in q^{m-1} ways. Therefore, corresponding to each choice of matrix $M_{n-r+m} \in \mathbb{F}_{q}^{m \times (n-r+m)}$ there are $q^{(m-1)(r-m)}$ possible candidates for $M_{n} \in \mathbb{F}_{q}^{m \times n}$.

No two distinct choices for the matrix M_{n-r+m} can give the same M_{n}. Therefore, we have $(q^n - q^{r-m+1})(q^n - q^{r-m+2}) \cdots (q^n - q^{r-1})$ possible matrices which can occur as an output to Algorithm 3.9. The number of full row rank matrices in $\mathbb{F}_{q}^{m \times n}$, whose c_2-th row is ϵ_{n}^{n}, is however $(q^n - q)(q^n - q^2) \cdots (q^n - q^{m-1})$. Out of these matrices, precisely those matrices that occur as matrix states of multisequences whose $R-$extensions have full rank are the ones that can be obtained from the above algorithm.

We now determine the computational complexity of Algorithm 3.9. We begin by evaluating the computational complexity of calculating $Mf(A_{n-r+g})$:

- For any i, $M(i,:) A_{n-r+g}^i = (M(i,:) A_{n-r+g}^{i-1}) A_{n-r+g}$. Therefore, knowing $(M(i,:) A_{n-r+g}^{i-1})$, $M(i,:) A_{n-r+g}^i$ can be calculated in $O(n^2)$ steps. Consequently, the matrix \mathcal{M} can be generated in $O(n^3)$ operations.

- Using $LU-$decomposition, solving the set of linear equations (9) takes $O(n^3)$ operations.

- For any i, such that $(1 \leq i \leq n-r+g)$, the $i-$th row of $Mf(A_{n-r+g})$ is given by $a_0 M(i,:) + a_1 M(i,:) A_{n-r+g} + \cdots + a_{n-r+g-1} M(i,:) A_{n-r+g}^{n-r+g-1}$. As we have already seen each element in the above summation can be generated in $O(n^2)$ steps. Each row of
$Mf(A_{n-r+g})$ can thus be calculated in $O(n^3)$ steps. Therefore, $Mf(A_{n-r+g})$ can be calculated in $O(n^4)$ operations.

As we have already seen, the active coordinate of G can be found in $O(m)$ steps. Also, appending $m-1$ rows of M takes $O(m)$ operations. Further, incrementing g and g_c has complexity $O(1)$. Therefore each iteration of the while loop takes $O(m+n^4)$ time. Since the number of steps from 1 to R is $(r-m)$, the while loop runs for a maximum of $r-m$ iterations. As a result, the computational complexity of algorithm 3.9 is $O((r-m)(m + n^4))$. Therefore for a fixed m and r this computational complexity is $O(n^4)$. This is therefore a polynomial time algorithm.

We now proceed to see an application of the above developed theory.

4 Word Based Linear Feedback Shift Registers

The theory developed in the preceding sections finds an application in word based Linear Feedback Shift Register (LFSR) design. We begin our discussion by giving a brief introduction to Linear Feedback Shift Registers (LFSR)s.

LFSRs are electronic circuits that implement LRRs. These are widely used in the field of pseudo-random number generation and coding theory. LFSRs consist of delay elements, feedback elements and adders. For example, the LFSR corresponding to the LRR

\[
S(k+n) = a_{n-1}S(k+n-1) + a_{n-2}S(k+n-2) + \cdots + a_0S(k)
\]

is as shown in Figure 1. LFSRs with primitive characteristic polynomials are of particular interest since they generate sequences with desirable randomness properties like 2-level autocorrelation property and
span-n property (all nonzero subsequences of length n occur once in every period)[1]. An LFSR can be seen as a state machine where the states are the outputs of the delay blocks. Its state transition matrix is the companion matrix of the characteristic polynomial of the LRR, (i.e., matrix A in equation (2)).

Conventional LFSRs use bitwise operations and hence are incapable of efficiently utilizing the parallelism provided by word based processors. In the 1994 conference on fast software encryption, a challenge was set forth to design LFSR’s which exploit the parallelism offered by the word oriented operations of modern processors [12]. A special case of this scheme was implemented by Tsaban and Vishne in their paper [13]. Here, they introduced a family of efficient word oriented LFSRs with multiple input multiple output delay blocks. The design of Tsaban and Vishne was further generalized in [14] wherein the structure shown in figure 2 was proposed to implement the mathematical scheme proposed in [10].

Consider the LFSR shown in Figure 2. Let $W(k)$ be the output of the LFSR at the k-th time instant. Due to the structure of the LFSR, the following algebraic relation is satisfied by the vectors generated by it.

$$W(k + b) = B_0W(k) + B_1W(k + 1) + \cdots + B_{b-1}W(k + b - 1)$$

(10)

where $B_i \in \mathbb{F}_q^{m \times m}$. Therefore, for all i,

$$\begin{bmatrix}
W(k + 1) \\
W(k + 2) \\
\vdots \\
W(k + b)
\end{bmatrix} = A_{mb} \begin{bmatrix}
W(k) \\
W(k + 1) \\
\vdots \\
W(k + b - 1)
\end{bmatrix}$$

(11)
where,

$$A_{mb} = \begin{bmatrix}
0 & I & 0 & \ldots & 0 \\
0 & 0 & I & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & I \\
B_0 & B_1 & B_2 & \ldots & B_{b-1}
\end{bmatrix} \in \mathbb{F}_q^{mb \times mb}$$

We henceforth call the structure of the matrix A_{mb} as the m--companion structure. The matrix A_{mb} is called the transition matrix of the LFSR and it uniquely characterizes the LFSR. The characteristic polynomial of an LFSR is the characteristic polynomial of the respective transition matrix. As in the scalar case, LFSRs with primitive characteristic polynomials are of special interest. Interestingly, in this design, different combinations of feedback matrices can be used to get the same characteristic polynomial. This gives rise to the following question:

Problem 4. Given integers n, m and a primitive polynomial $p(s)$, of degree $n = mb$, how many different LFSR realizations, using m-input m-output delay elements, have $p(s)$ as their characteristic polynomial?

From the discussion above, it is clear that this number is equal to the number of m-companion matrices that have the given primitive polynomial as their characteristic polynomial. Therefore, problem 4 can be restated as follows.

Problem 5. Given integers n, m and a primitive polynomial $p(s)$, of degree $n = mb$, how many m--companion matrices in $\mathbb{F}_q^{n \times n}$ have $p(s)$ as their characteristic polynomial?

This question was addressed by us in [15] where the solution was found for the cases $m = 1$, $m = 2$ and $m = n$. We will now demonstrate how the theory developed earlier in the paper can be used to solve this problem for the general case and in addition give an algorithm for generating such configurations.

Consider an LFSR with m--input m--output delay blocks with primitive characteristic polynomial $p(s)$ of degree $n = mb$. Let A_{mb} be the transition matrix of the LFSR. The output of such an LFSR can be seen as a multisequence $W = \{W(k)\}_{k \in \mathbb{Z}}$ in \mathbb{F}_q^m. Let W_1, W_2, \ldots, W_m be the component sequences of W. Each component sequence of W satisfies the LRR corresponding to $p(s)$. Therefore, the minimal polynomial of W divides
\(p(s) \). Since \(p(s) \) is a primitive polynomial, the minimal polynomial of \(W \) is \(p(s) \). The matrix state of \(W \) at time instant \(k \) is \(M(k) = [W(k), W(k + 1), \ldots, W(k + n - 1)] \). Let \(x_i(k) \) be the state vector of the component sequence \(W_i \) at time instant \(k \). Therefore \(M(k) \) can also be written as \([x_1(k); x_2(k); \ldots; x_m(k)]\). Let \(R = (b, b, \ldots, b) \) and let \(W_R \) be the \(R-\)extension of \(W \). Therefore, the matrix state of \(W_R \) at time instant \(k \) is \(M_R(k) = [x_1(k); \sigma x_1(k); \ldots; \sigma^{b-1} x_1(k); x_2(k); \sigma x_2(k); \ldots; \sigma^{b-1} x_2(k); \ldots; x_m(k); \sigma x_1(k); \ldots; \sigma^{b-1} x_m(k)] \).

By permuting the rows of \(M_R(k) \) we get the matrix \(M_1(k) = [x_1(k), x_2(k), \ldots, x_m(k), \sigma x_1(k), \sigma x_2(k), \sigma x_m(k), \ldots, \sigma^{b-1} x_1(k), \sigma^{b-1} x_2(k), \ldots, \sigma^{b-1} x_m(k)] \) which can also be written as follows:

\[
M_1(k) = \begin{bmatrix}
W(k) & W(k + 1) & \cdots & W(k + mb - 1) \\
W(k + 1) & W(k + 2) & \cdots & W(k + mb) \\
\vdots & \vdots & \ddots & \vdots \\
W(k + b - 1) & W(k + b) & \cdots & W(k + b + mb - 2)
\end{bmatrix}
= \begin{bmatrix}
W(k) \\
W(k + 1) \\
\vdots \\
W(k + b - 1)
\end{bmatrix}, A_m^b \begin{bmatrix}
W(k) \\
W(k + 1) \\
\vdots \\
W(k + b - 1)
\end{bmatrix}, \ldots, A_m^{n-1} \begin{bmatrix}
W(k) \\
W(k + 1) \\
\vdots \\
W(k + b - 1)
\end{bmatrix}
\]

Since \(A_m^b \) has a primitive characteristic polynomial, for any non zero vector \(v \in \mathbb{F}_q^n \), the vectors \(v, A_m^b v, \ldots, A_m^{n-1} v \) are linearly independent. Therefore, \(M_1(k) \) has rank \(n \). As a consequence, \(M_R(k) \) has rank \(n \) i.e., \(W_R \) has dimension \(n \). We therefore have the following lemma:

Lemma 4.1. Let \(R = (b, b, \ldots, b) \). Given an LFSR with \(m-\)input \(m-\)output delay blocks having a primitive characteristic polynomial \(p(s) \) of degree \(n \), the \(R-\)extension of any nonzero multisequence generated by it has an dimension \(n \) (i.e., maximum dimension).

Further, since \(A_m^b \) has primitive characteristic polynomial, repeated action of \(A_m^b \) on any nonzero vector \(v \in \mathbb{F}_q^n \) will generate all nonzero vectors in \(\mathbb{F}_q^n \). Therefore, by Equation (11), for any initial nonzero state of the LFSR all possible nonzero states of the LFSR will be covered. As a result, all multisequences generated by the LFSR are just shifted versions of each other. In other words, each LFSR with a primitive characteristic polynomial has a unique multisequence associated with it.
Conversely, consider a multisequence \(W^* = \{W^*(k)\}_{k \in \mathbb{Z}} \) with primitive minimal polynomial \(p(s) \) of degree \(n \), whose \(R \)–extension has dimension \(n \). Let \(A \) be the companion matrix of \(p(s) \) and \(M^*_W(k) \) be the matrix state of \(W^* \) at instant \(k \). One can construct the following full rank matrices \(M^*(k) \) by permuting the rows of the matrix states of the \(R \)–extension of \(W^* \).

\[
\begin{bmatrix}
M^*_W(k) \\
M^*_W(k)A \\
\vdots \\
M^*_W(k)A^{b-1}
\end{bmatrix}
= \begin{bmatrix}
W^*(k) & W^*(k + 1) & \cdots & W^*(k + mb - 1) \\
W^*(k + 1) & W^*(k + 2) & \cdots & W^*(k + mb) \\
\vdots & \vdots & \cdots & \vdots \\
W^*(k + b - 1) & W^*(k + b) & \cdots & W^*(k + b + mb - 2)
\end{bmatrix}
= M^*(k) \quad (12)
\]

Clearly, for any \(k \in \mathbb{Z} \), \(M^*(k + 1) = M^*(k)A = M^*(k - 1)A^2 = \cdots = M^*(0)A^{k+1} \). Therefore, \(M^*(k + 1)M(k)^{-1} = M^*(0)A^{k+1}A^{-k}M^*(0)^{-1} = M^*(0)AM^*(0)^{-1} \). Thus \(M^*(k + 1)M(k)^{-1} \) is independent of \(k \) and is a constant matrix for a given multisequence \(W^* \). Let this matrix be denoted by \(A^*_mb \). Therefore, for all \(k \),

\[
M^*(k + 1) = A^*_mbM^*(k). \quad (13)
\]

Further, given any matrix state \(M^*_W(k) \) of \(W^* \), \(A^*_mb \) can be constructed as follows:

\[
A^*_mb = M^*(k)AM^*(k)^{-1}. \quad (14)
\]

where \(M^*(k) \) is got from Equation (12).

It can be easily verified that the matrix \(A^*_mb \) satisfying equation (14) has an \(m \)–canonical structure. Let \(A^*_mb \) be as follows:

\[
A^*_mb = \begin{bmatrix}
0 & I & 0 & \cdots & 0 \\
0 & 0 & I & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & I \\
B^*_0 & B^*_1 & B^*_2 & \cdots & B^*_b-1
\end{bmatrix} \in \mathbb{F}^{mb \times mb}
\]

Therefore, for any \(k \), \(W^*(k + b) = B^*_0W^*(k) + B^*_1W^*(k + 1) + \cdots + B^*_b-1W^*(k + b - 1) \). Thus we have an LRR (and hence an LFSR) generating the multisequence \(W \).

Thus, we have demonstrated a one to one correspondence between LFSRs with \(m \)–input \(m \)–output delay blocks having a given primitive minimal polynomial \(p(s) \) of degree \(n = mb \).
and multisequences in \mathbb{F}_q^m with minimal polynomial $p(s)$ whose R–extensions have dimension n. Therefore, by Theorem 3.1 we have the following:

Theorem 4.2. Number of LFSRs with m–input m–output delay blocks whose transition matrices have a given primitive polynomial $p(s)$ of degree $n = mb$, as their characteristic polynomial is $(q^n - q^{n-1})(q^n - q^{n-2})\ldots(q^n - q^{n-m+1})$

Thus, for $R = (b, b, \ldots, b)$, every multisequence W with a primitive minimal polynomial $p(s)$, such that W_R has dimension mb, is generated by a unique LFSR whose transition matrix has characteristic polynomial $p(s)$. Besides, given a matrix state of W one can uniquely determine the transition matrix A_{mb} of the LFSR by Equation (14).

Therefore, the problem of finding LFSRs generating multisequences with a given primitive polynomial reduces to a special case of problem [2] where $n = r = mb$ and $R = (b, b, \ldots b)$. Hence algorithm [3.9] can be used to obtain desired LFSR configurations as demonstrated in the following example.

4.1 Example

We demonstrate Algorithm [3.9] by generating a 3–companion matrix over \mathbb{F}_2 with primitive characteristic polynomial $p_6(s) = s^6 + s + 1$. We therefore generate a multisequence in \mathbb{F}_2^3 whose $(2, 2, 2)$–extension has maximum dimension i.e., 6. Note that here $R = (2, 2, 2)$. Consider

\[
\begin{align*}
p_5(s) &= s^5 + s^2 + 1 \\
p_4(s) &= s^4 + s + 1 \\
p_3(s) &= s^3 + s + 1
\end{align*}
\]

which are primitive polynomials over \mathbb{F}_2 of corresponding degrees. Let A_is be the companion matrices of the respective $p_i(s)$s, for $3 \leq i \leq 6$. We start with a multisequence in \mathbb{F}_q^3 with minimal polynomial $p_3(s)$ and the following matrix state

$$M_3 = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

We initialize $G = I = (1, 1, 1)$
Iteration 1: \(G = (1, 1, 1) \). Therefore, the active coordinate of \(G \) is the 3rd coordinate. (The 3rd row of \(M \) is already \(e_3^3 \) and hence \(M_3 \) is the desired matrix state). Let us append the first and second rows of \(M_3 \) with 1 and 0 respectively and change the third row to \(e_4^4 \). We therefore get the matrix.

\[
\begin{bmatrix}
1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

This is the state matrix of a multisequence \(W_4 \) with characteristic polynomial \(p_4(s) \). Increment the active coordinate of \(G \) to get \(G = (1, 1, 2) \). It can be verified that \(W_4 \) is a multisequence whose \((1, 1, 2)\)–extension has dimension 4.

Iteration 2: \(G = (1, 1, 2) \). Therefore, the active coordinate of \(G \) is the 2nd coordinate. The matrix state of \(W_4 \) with second row being \(e_4^4 \) is

\[
M_4 = \begin{bmatrix}
1 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 \\
0 & 1 & 1 & 1
\end{bmatrix}
\]

Suppose we append the first and third rows of \(M_4 \) with 0 and 1 respectively and change the second row to \(e_5^5 \). This gives the following matrix:

\[
\begin{bmatrix}
1 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & 1
\end{bmatrix}
\]

This is the state matrix of a multisequence \(W_5 \) with characteristic polynomial \(p_5(s) \). Increment the active coordinate of \(G \) to get \(G = (1, 2, 2) \). Note that \(W_5 \) is a multisequence whose \((1, 2, 2)\)–extension has dimension 5.

Iteration 3: \(G = (1, 2, 2) \). Therefore, the active coordinate of \(G \) is the 1st coordinate. The matrix state of \(W_5 \) with first row being \(e_5^5 \) is

\[
M_5 = \begin{bmatrix}
0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 1
\end{bmatrix}
\]
Suppose we append the second and third rows of M_5 with 0 and 1 respectively and change the second row to e^6_6. This gives the following matrix:

$$M_W = \begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 \\
\end{bmatrix}$$

This is the state matrix of a multisequence W with characteristic polynomial $p_6(s)$. Increment the active coordinate of G to get $G = (2, 2, 2)$. Now W is a multisequence whose $(2, 2, 2)$--extension has maximum dimension, i.e., 6.

Using the matrix M_W we can construct the following matrix M^*:

$$M^* = \begin{bmatrix} M_W \\ M_W A_6 \end{bmatrix} = \begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 1 & 0 \\
\end{bmatrix}$$

The 3–companion matrix A_{33} can now be obtained as follows:

$$A_{33} = M^* A_6 (M^*)^{-1} = \begin{bmatrix}
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 & 0 & 1 \\
\end{bmatrix}$$

This corresponds to an LFSR whose output multisequence will satisfy the following linear recurring recurring relation:

$$W(k + 2) = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} W(k) + \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix} W(k + 1)$$
5 Counting the number of non-singular block Hankel matrices

Hankel matrices are specially structured matrices which frequently appear in the fields of signal processing [16], image processing and control theory. In this section we derive a formula for the number of non-singular Hankel matrices of a given size, over a given finite field \mathbb{F}_q, by using the theory developed in the preceding sections.

A Hankel matrix is a matrix which is constant along the anti-diagonals. For example:

$$H = \begin{bmatrix}
 a_1 & a_2 & \ldots & a_{n-1} & a_n \\
 a_2 & a_3 & \ldots & a_n & a_{n+1} \\
 \vdots & \vdots & \ddots & \vdots & \vdots \\
 a_{n-1} & a_n & \ldots & a_{2n-3} & a_{2n-2} \\
 a_n & a_{n+1} & \ldots & a_{2n-2} & a_{2n-1}
\end{bmatrix}$$ \hspace{1cm} (15)

It can be easily seen that the space of $n \times n$ Hankel matrices is a $2n - 1$ dimensional space and each Hankel matrix can be uniquely determined by the corresponding vector $a_H = (a_1, a_2, \ldots, a_{2n-1}) \in \mathbb{F}_q^{2n-1}$. Since the number of Hankel matrices over a finite field \mathbb{F}_q is finite, one may pose the following question.

Problem 6. Given n, find the number of Hankel matrices in $\mathbb{F}_q^{n \times n}$ that have full rank.

We solve this problem by proving a bijection between the set of full rank Hankel matrices in $\mathbb{F}_q^{n \times n}$ and the set of multisequences in \mathbb{F}_q^2 with a given primitive minimal polynomial $p(s)$ whose R–extension has maximum dimension, for $R = (n - 1, n)$.

Theorem 5.1. Let $p(s)$ be a primitive polynomial of degree $2n - 1$. Let $R = (n - 1, n)$. Consider a Hankel matrix $H \in \mathbb{F}_q^{n \times n}$ corresponding to the vector $a_H = (a_1, a_2, \ldots, a_{2n-1}) \in \mathbb{F}_q^{2n-1}$. The matrix H has full rank if and only if the matrix $M = [e_{2n-1}^{2n-1}; a_H]$ is a matrix state of a multisequence W with minimal polynomial $p(s)$, whose R–extension has maximum dimension.

Proof. Consider the multisequence W with primitive polynomial $p(s)$ and matrix state M. Therefore the corresponding matrix state M_R of the R–extension of W is as follows:
Clearly, the submatrix $M_R(1 : n - 1, n + 1 : 2n - 1)$ (the top right submatrix) has full rank. Therefore, M_R has full rank if and only if the submatrix $M_R(n : 2n - 1, 1 : n)$ (the bottom left submatrix) has full rank. However, $M_R(n : 2n - 1, 1 : n)$ is the Hankel matrix H. Hence, the matrix H has full rank if and only if the matrix M_R has full rank. In other words, the matrix H has full rank if and only if the R–extension of the multisequence W has maximum dimension. Hence proved.

Every multisequence W in \mathbb{F}_q^2, with primitive minimal polynomial $p(s)$ is uniquely characterized by any of its matrix states. Therefore, the number of full rank Hankel matrices in $\mathbb{F}_q^{n \times n}$ is equal to the number of multisequences in \mathbb{F}_q^2 whose R–extensions have maximum dimension. Hence, by Theorem 3.1 we have the following theorem

Theorem 5.2. The number of Hankel matrices in $\mathbb{F}_q^{n \times n}$ having full rank is $(q^{2n-1} - q^{2n-2})$.

6 Conclusions

In this paper we have introduced the concept of matrix states. Using matrix states, we have defined the dimension of a multisequence and calculated the number of multisequences with a given dimension. The concept of R–extensions has then been introduced. We have calculated the number of multisequences whose R–extensions have maximum dimension. Further we give an algorithm to generate such multisequences. We have then demonstrated an application of the theory developed for R–extensions. For any given m, we have derived a formula for the number of LFSR configurations, with m input m output delay blocks,
that generate multisquences with a given primitive minimal polynomial. Further, we have demonstrated the use of the algorithm developed for R–extensions, for the generation of such LFSR configurations. Finally, using the theory developed, we have derived a formula for the number of Hankel matrices in $\mathbb{F}_q^{m \times n}$ that have full rank.

References

[1] S. W. Golomb, *Shift Register Sequences*. Cambridge University Press, 1967.

[2] B. Schneier, *Applied Cryptography: protocols, algorithms and source code in C*. John Wiley and Sons Inc, New York, 1996.

[3] W. W. Peterson, *Error Correcting Codes*. John Wiley and Sons Inc, New York, 1961.

[4] R. Pickholtz, D.L. Schilling, and L. B. Milstein, “Theory of spread-spectrum communications - a tutorial,” *IEEE Transactions on Communications*, vol. 30, no. 5, pp. 855–884, 1982.

[5] D. E. Daykin, “On linear sequences over a finite field,” *The American Mathematical Monthly*, 1962.

[6] W. S. Chou and G. L. Mullen, “Generating linear span over finite fields,” *ACTA Mathematica*, pp. 183–191, 1992.

[7] R. Fitzgerald and J. Yucas, “On generating linear span over gf(p),” *Congr. Numer.*, vol. 69, pp. 55–60, 1989.

[8] L’Ecuyer, “Random number for simulation,” *Comm. ACM*, vol. 33, no. 10, pp. 85–97, 1990.

[9] R. Neiderreiter, “The multiple recursive matrix method for pseudorandom vector generation,” *Finite Fields and Applications*, vol. 3, no. 30, 1995.

[10] R. Neiderreiter, “Pseudorandom vector generation by multiple recursive matrix method,” *Mathematics of Computation*, vol. 64, no. 209, pp. 279–294, 1995.

[11] R. Lidl and H. Neiderrieter, *Introduction to Finite Fields and their Applications*. Cambridge University Press, 1986.
[12] B. Preneel, “Introduction,” in Proc. Fast Software Encryption 1994 Workshop (Lecture Notes in Computer Science), vol. 1008, pp. 1–5, Springer-Verlag, 1995.

[13] B. Tsaban and U. Vishne, “Efficient linear feedback shift registers with maximal period,” Finite Fields and Their Applications, vol. 8, no. 2, pp. 256–267, 2002.

[14] G. Zeng, W. Han, and K. He, “High efficiency feedback shift register: $ \sigma $-LFSR,” IACR Eprint archive, 2007.

[15] S. Krishnaswamy and H. K. Pillai, “On the number of linear feedback shift registers with a special structure,” IEEE Transactions on Information Theory, vol. 58, pp. 1783–1790, March 2012.

[16] M. A. Hassan and A. A. Hassan, “Hankel matrices of finite rank with applications to signal processing and polynomials,” Journal of Mathematical Analysis and Applications, vol. 208, pp. 218–242, 1997.