Abstract. Rabl is a small GTPase regulating vesicular traffic between early compartments of the secretory pathway. To explore the role of rabl we have analyzed the function of a mutant (rabla(S25N)) containing a substitution which perturbs Mg$^{2+}$ coordination and reduces the affinity for GTP, resulting in a form which is likely to be restricted to the GDP-bound state. The rabla(S25N) mutant led to a marked reduction in protein export from the ER in vivo and in vitro, indicating that a guanine nucleotide exchange protein (GEP) is critical for the recruitment of rabl during vesicle budding. The mutant protein required posttranslational isoprenylation for inhibition and behaved as a competitive inhibitor of wild-type rabl function. Both rabla and rablb (92% identity) were able to antagonize the inhibitory activity of the rabla(S25N) mutant, suggesting that these two isoforms are functionally interchangeable. The rabl mutant also inhibited transport between Golgi compartments and resulted in an apparent loss of the Golgi apparatus, suggesting that Golgi integrity is coupled to rabl function in vesicular traffic.

Members of the rab/YPT1/SEC4 family of ras-related GTPases are associated with distinct subcellular compartments comprising the endocytic and exocytic pathways (for review see Zerial and Stenmark, 1993; Nuoffer and Balch, 1994). Although their precise functions are unknown, these proteins are likely to serve as molecular switches which regulate the assembly/disassembly of protein complexes involved in the targeting and fusion of transport vesicles mediating the vectorial transfer of protein between secretory compartments. In yeast, Yptlp was the first small GTPase shown to be required for vesicular traffic between the ER and the Golgi compartments (for review see Fryer et al., 1992; Ferro-Novick and Novick, 1993). The rabla and rablb proteins (92% identical) are 75 and 66% identical to Yptlp, respectively, and are considered the mammalian counterparts of Yptlp (Touchot et al., 1987). Overexpression of mouse rabla can rescue yeast mutants lacking Yptlp function (Haubruck et al., 1989). Furthermore, several lines of evidence now suggest that rabl is essential for both ER to Golgi and intra-Golgi transport in mammalian cells in vivo and in vitro (Plutner et al., 1990, 1991; Tisdale et al., 1992; Davidson and Balch, 1993).

GTPases go through a characteristic cycle of reactions which drive the transition between at least two distinct conformational states (for review see Bourne et al., 1990, 1991; Wittinghofer and Pai, 1991). Release of GDP from the ‘inactive’ (GDP-bound) state allows binding of GTP. This converts the protein to the ‘active’ (GTP-bound) form. It then returns to the inactive state upon GTP hydrolysis, an irreversible reaction which renders the cycle unidirectional. The function of individual GTPases as molecular switches depends on the abilities of these distinct conformational states to interact with specific macromolecules. These include putative ‘effector’ proteins and various regulatory factors which control the GTPase cycle, such as guanine nucleotide dissociation inhibitors (GDI) which inhibit GDP dissociation, guanine nucleotide exchange proteins (GEP) which stimulate GDP dissociation, and GTPase-activating proteins (GAP) which promote GTP hydrolysis (for review see Takai et al., 1992; Nuoffer and Balch, 1994).

All members of the GTPase superfamily share a number of highly conserved sequence motifs critical for guanine nucleotide binding and GTP hydrolysis (Bourne et al., 1991). Extensive mutational analysis of these domains in the case of H-ras have led to the identification of numerous substitutions which alter the affinity for guanine nucleotides and/or prevent GTP hydrolysis (for review see Barbacid, 1987; Lowy and Willumsen, 1993). These mutations are believed to restrict the protein to either the inactive, GDP-bound state, or to the active state, GTP-bound state. The current address of Dr. Howard W. Davidson is Department of Clinical Biochemistry, University of Cambridge, Cambridge, CB2 2QR, England.

Address all correspondence to Dr. William E. Balch, Departments of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California 92037.

The current address of Dr. Howard W. Davidson is Department of Clinical Biochemistry, University of Cambridge, Cambridge, CB2 2QR, England.

Abbreviations used in this paper: BFA, brefeldin A; endo-H, endoglycosidase H; GAP, GTPase-activating protein; GDI, guanine nucleotide dissociation inhibitor; GEP, guanine nucleotide exchange protein; GGPP, [3H]geranylgeranyl pyrophosphate; Mann II, α-1,2-mannosidase II; VSV-G, vesicular stomatitis virus glycoprotein.
bound or the active, GTP-bound state and interfere with normal H-ras function in a dominant fashion.

We previously screened a number of rabl mutants to identify substitutions which inhibit ER to Golgi traffic in vivo (Tisdale et al., 1992). We now analyze in detail the biochemical properties and the inhibitory phenotype of rabla(S22N), a mutant analogous to the growth inhibitory H-ras(S12N) mutant which appears to be restricted to the GDP-bound conformation and has been proposed to interfere with the function of ras-GEP (Feig and Cooper, 1988; Farnsworth and Feig, 1991). Our data show that the S25N substitution in rabl reduces the affinity for GTP by 100-fold, supporting the view that the mutant is restricted to the inactive, GDP-bound form. We find that the S25N mutant perturbs transport by inhibiting protein export from the ER by a mechanism that depends on posttranslational isoprenylation and involves competition with wild-type rabl. The mutant also inhibits transport between Golgi compartments and disrupts the morphological integrity of the Golgi complex. These studies suggest a cycle in which the function of a rabl-specific GEP mediating guanine nucleotide exchange is critical for the recruitment of rabl and the formation of ER and Golgi carrier vesicles competent for fusion with downstream compartments.

Materials and Methods

Materials

A polyclonal serum recognizing α-1,2-mannosidase II (anti-Man II) was prepared as described (Velasco et al., 1993). A monoclonal cell line producing antibodies which recognize the cytoplasmic tail of vesicular stomatitis virus glycoprotein (VSV-G) (P3D4) was provided by K. Howell (University of Colorado, Denver, CO). A polyclonal reagent recognizing p53 was provided by H.-P. Hauri (Biocenter, Basel, Switzerland). Secondary antibodies were obtained from the following sources: FITC-conjugated goat anti-rabbit F(ab)2 and anti-mouse IgG from Zymed Labs. (S. San Francisco, CA).

Generation of Mutant Constructs

The construction of the rabb(S22N) mutant has been described previously (Tisdale et al., 1992). New mutations were created using the PCR and appropriate subcloning strategies. All constructions were introduced into the Ndel and BamHI sites of pET3a for expression under control of the phage T7 promoter. The S25N, T43A, and D47N substitutions were introduced into canine rabl (Chavrier et al., 1990) using a two-step PCR procedure involving two complementary mutagenic oligonucleotides in combination with flankng 5' and 3' primers. In a first set of reactions, overlapping 3' and 5' fragments were generated using pET3a-rabla (Khvorov-Far et al., 1992; Tisdale et al., 1992) as a template. The T7 primer (5'-TTAATACGACTCACTATAGGG; His6-tag) and the anti-sense primer 5'-GGGATCCCTGGCGTGTTTTACTCGAC-3' were used for the amplification PCR procedure using the overlapcomplementary oligonucleotides 5'-CATGCGATCATCATCATCAACCCCGAATATGACTAC-3' (5' sense primer, His codons underlined) and 5'-AGGATCCCTGAGATCTAGACCAAGGCAACC-3' (3' anti-sense primer). All PCR products were examined by DNA sequencing to confirm the mutations and exclude other changes. A His-tagged form of rabla was constructed by transferring the rabla sequence from pET3a-rabla (Tisdale et al., 1992) simultaneously with a NcoI-Ndel linker encoding an initiator Met, a Gly, and six consecutive His residues (assembled using the overlapping complementary oligonucleotides 5'-CATGGGCCATCATCATCATCATCAACCCCGAATATGACTAC-3' (5' sense primer, Met codon underlined) and 5'-AGGATCCCTGAGATCTAGACCAAGGCAACC-3' (3' anti-sense primer)), into the NcoI and BamHI sites of pET1ld (Novagen, Madison, WI).

Transient Expression and Analysis of Transport in HeLa Cells

Experimental procedures for the transient expression of pET-rab constructs in HeLa cells were essentially as described previously (Tisdale et al., 1992). Briefly, cells infected with the T7 RNA polymerase-recombinant vaccinia virus vTF7-3 (Fuerst et al., 1986) were coinfected with 1 µg of the appropriate pET-rab constructs using the TransfectACE™ (GIBCO-BRL, Gaithersburg, MD) procedure. After pulse-labeling the cells for 10 min with 20 µCi Trans35S-label (1192 Ci/mmol, ICN Biomedicals Inc., Irvine, CA) followed by a 60-min chase, transport between the ER and the cis-medial Golgi compartments was assessed biochemically by monitoring the processing of VSV-G from endoglycosidase H (endo H)-sensitive to endo H-resistant forms as described (Tisdale et al., 1992), except for the following modifications: the monoclonal anti-VSV-G antibodies (clone 8G5, 5 Id/0.5 ml lysate) were added without preclearing the lysates. After incubation at 4°C overnight, 40 µl of a 1:1 suspension of protein A-Sepharose™ (Sigma Chemical Co., St. Louis, MO) in TBST (50 mM Tris-HCl (pH 8.0), 150 mM NaCl, 1% Triton X-100 (Surfac-Amps™, Pierce Chemical Corp., Rockford, IL)) were added, and the samples incubated for 1 h at room temperature.

Immunoprecipitates were washed 3× with TBST, 1× with 10 mM Tris-HCl (pH 6.8), boiled, and the eluates precipitated with 0.5 ml acetone for 15 min on ice. The pellets were resuspended in 20 µl 0.1 M NaOAc (pH 5.6), 0.3% Na-decyl sulfatne (SDS) and 2% β-mercaptoethanol, boiled, diluted with 40 µl 0.1 M NaOAc (pH 5.6), and digested with 5 µl endo H (Boehringer Mannheim Corp., Indianapolis, IN) at 37°C overnight. The samples were processed for SDS-PAGE and fluorography as described (Tisdale et al., 1992). Autoradiograms were quantitated by scanning densitometry (GS300 transmission scanning densitometer, HOFFER Scientific Instruments, San Francisco, CA). For morphological analysis of transport, cells cotransfected with pAR-tsO45-G (encoding the temperature-sensitive tsO45 mutant of VSV-G [Laiby, 1974]) and appropriate pET-rab constructs were incubated at the restrictive temperature (39.5°C) to accumulate the protein in the ER. Transport was initiated by shifting the cells to the permissive temperature (32°C). After a 2-h incubation the cells were processed for indirect immunofluorescence as described (Tisdale et al., 1992).

Expression and Purification of His6-Tagged Proteins

Plasmids were introduced into E. coli strain BL21(DE3)pLysS (Novagen) for expression. For induction with 0.4 mM isopropyl-β-D-thiogalactopyranoside for 1-4 h at 28°C, the cells were collected, resuspended in 10 vol buffer A (50 mM Tris-HCl (pH 8.0)) containing 10 mM 2-mercaptoethanol, 1 mM EDTA, 1 mM PMSEF, 1 mM benzamidine, 1 mM GDP, 2 µg/ml leupeptin, 2 µg/ml aprotinin, and 1 µg/ml pepstatin A), and lysed by digestion with lysozyme (400 µg/ml) for 30 min at 4°C and two cycles of freeze-thawing. The cell lysate was adjusted to 300 mM NaCl, 10 mM MgCl2, 0.2% deoxycholate (final concentrations), and incubated with DNAse (40 µg/ml) for 30 min at 4°C. After centrifugation (22,000 g for 30 min), the supernatant was applied to a 2-5-ml column of nickel-saturated nitrilotri-acetic acid (NTA)-agarose (Qiagen, Chatsworth, CA) equilibrated with buffer A containing 300 mM NaCl and 10 mM MgCl2. The column was washed with 10 vol each of the equilibration buffer, buffer B (50 mM MesNaOH (pH 6.0) containing 300 mM NaCl, 10 mM 2-mercaptoethanol, 1 mM EDTA, 50 µM MgCl2, 1 µM EGTA, and 1 µM GDP), and buffer B supplemented

The Journal of Cell Biology, Volume 125, 1994 226
with 25 mM imidazole. The column was then washed with buffer B contain-
ing 250 mM imidazole, and 2-ml fractions collected. Fractions containing
rabla were pooled and applied to a 150 x 1.6 cm column of Sephacryl
S-100 equilibrated with 25 mM Hepes-KOH (pH 7.2), containing 125 mM
KCl, 1 mM NaCl, 1 mM Na-mercaptoethane sulfonic acid, and 1 mM
GDP. Peak fractions containing rabla were pooled, concentrated by ul-
tramicrofiltration and stored in aliquots at ~70°C. Protein concentrations
were determined with the Coomassie Plus reagent (Pierce Chem. Co.) using
BSA as a standard.

**Guanine Nucleotide Exchange Reactions**

Guanine nucleotide exchange reactions were routinely performed in duplic-
ate using 0.5 µg (~20 pmol) recombinant rabla protein in 100 µl 50 mM
Hepes-KOH (pH 8.0), 1 mM DTT, 0.1 mg/ml BSA, 5 mM EDTA, 4.5 mM
MgCl₂, and 2.5 µM [3H]GDP (25-50 Ci/mmole; New England Nuclear
Corp., Wilmington, DE; diluted to ~5000 cpm/ml with unlabeled GDP).
For competition experiments, reactions were supplemented with un-
labeled nucleotides as specified. The samples were incubated at 32°C for
the desired period of time, transferred to ice, diluted with 2 ml of an ice-cold
buffer containing 25 mM Tris-HCl (pH 8.0), 100 mM NaCl, 30 mM
MgCl₂, 1 mM DTT, 0.1 mg/ml BSA, and immediately filtered through
pore-size nitrocellulose filter discs (BA85, Schleicher and
Schuell, Kenne, NH). The tubes were rinsed 1X with 2 ml dilution buffer,
filters washed 3X with 2 ml dilution buffer without DTT and BSA, and
protein-bound [3H]GDP was quantitated by liquid scintillation counting.

**Prenylation of Recombinant Proteins In Vitro**

To assess posttranslational isoprenylation of recombinant rabla proteins in
vitro, 26 pmol (Heterogenized) pyrophosphate (GGPP) (19.3 Ci/mmole, New
England Nuclear Corp.) were dried in a speed-vac lyophilizer and
resuspended in a final volume of 50 µl containing 1 µg (~40 pmol) recom-
binant protein, 25 µl cystosol (5-15 µg/ml protein in 25 mM Hepes-KOH
(pH 7.2), 125 mM KOAc) prepared from rat liver homogenates as described
(Davidson et al., 1992), 10 mM MgCl₂, 1 mM MesNa, and an ATP-
regenerating system (1 mM ATP, 5 mM creatine phosphate, and 0.2 IU
rabbit muscle creatinine phosphokinase, final concentrations). After incu-
bation for 1 h at 32°C, the samples were boiled in sample buffer (0.5 M
Tris-HCl (pH 6.8), 0.1% SDS, 5% mercaptoethanol, 10% glycerol, and
0.1% Bromophenol blue, final concentrations) and analyzed by SDS-PAGE
on 12% gels. The gels were soaked in 1 M salicylate for 1 h, dried, and
exposed to XAR-5 film (Eastman Kodak Corp., Rochester, NY) at ~70°C.

For subsequent inclusion of posttranslational processed proteins into
intracellular transport reactions, 5 µg recombinant rabla were preincubated as
outlined above, except that 10 µg (20 nmol) of unlabeled GGPP (generously
provided by A.M. Garcia [Eisai Research Institute, Andover, MA]) (10 µl
of a 1-mg/ml solution in 25 mM Hepes-KOH [pH 7.2], 125 mM KOAc) were
substituted for the radiolabeled precursor. Since the composition of the
prenylation cocktail was incompatible with the conditions required for effi-
cient transport, the samples were "diluted" by centrifugation (10 min
at 1,500 g) through 1 ml Sephadex™-G-25 (Pharmacia Fine Chemicals, Pis-
cataway, NJ) columns equilibrated with 25 mM Hepes-KOH (pH 7.2), 125
mM KOAc before further usage. The efficiency of the prenylation reaction
was estimated by phase separation in Triton X-114 solution as described
(Bordier, 1981). Briefly, the samples were boiled in sample buffer (0.5 M
Tris-HCl (pH 6.8), 0.1% SDS, 5% mercaptoethanol, 10% glycerol, and
0.1% Bromophenol blue, final concentrations) and analyzed by SDS-PAGE
on 12% gels. The gels were soaked in 1 M salicylate for 1 h, dried, and
exposed to XAR-5 film (Eastman Kodak Corp., Rochester, NY) at ~70°C.

**Microinjection of Cells with Recombinant Proteins**

NRK cells were infected with the ts-045 strain of VSV at the restrictive tem-
perature as described (Plutner et al., 1992). The cells were then miroin-
jected with an IgG marker and recombinant wild-type or mutant rabla as
described (Wilson et al., 1994). After a 1-5-h incubation at the restrictive
temperature, transport was initiated by shifting the cells to the permissive
temperature. The cells were processed for indirect immuno-
fluorescence as described previously (Plutner et al., 1992).

**Results**

**Guanine Nucleotide Binding Properties of Recombinant Rabla(S25N)**

To focus on the role of guanine nucleotide exchange in rabla function, we
generated the rabla(S25N) mutant which contains a substitution in the
GxxxxGKS/T motif (residues 10-17 in H-ras) involved in phosphate binding and Mg²⁺
coordination (Pai et al., 1989, 1990). It is analogous to the
dominant negative H-ras(S17N) mutant, which inhibits cell
proliferation and appears to be restricted to an inactive,
GDP-bound state (Farnsworth and Feig, 1991; Feig and
Cooper, 1988). To establish the guanine nucleotide-binding properties of the rabla(S25N) mutant, we purified the protein
after overexpression in E. coli, taking advantage of
an amino-terminal His₃-modification (data not shown)
(Hochuli et al., 1988). When transiently expressed in vivo, His₃-tagged wild-type and mutant proteins have properties
identical to their untagged counterparts (data not shown).
After expression in E. coli, ras-like GTPases are normally
isolated as stable GDP-protein complexes (Tucker et al.,
1986). In the presence of high concentrations of free Mg²⁺,
the protein-bound nucleotide is only slowly displaced by ex-
genously added GDP or GTP, a reaction which can be ac-
celerated by complexing Mg²⁺ with EDTA (Hall and Self,
1986). During incubation of recombinant wild-type rabla in
the presence of [3H]GDP and a low concentration of free
Mg²⁺ (5 mM EDTA, 4.5 mM Mg²⁺), the endogenous GDP was
readily exchanged for the radiolabeled nucleotide (Fig. 1;
left panel, open circles). No exchange was observed at a
high concentration of free Mg²⁺ (5 mM EDTA, 10 mM
Mg²⁺) (Fig. 1, right panel, compare lanes a and b). Anal-

Nuoffer et al. Rabla Regulation of ER Export
Figure 1. The rabla(S25N) mutant shows preferential affinity for GDP. (A) Time course and Mg\(^{2+}\) dependence of GDP exchange. Exchange reactions were performed in duplicate by incubating 0.5 µg (20 pmol) of recombinant protein at 32°C with 2.5 µM [31-1]GDP (~5,000 cpm/pmol) in the presence of EDTA and MgCl\(_2\). Bound [3H]GDP was quantitated by liquid scintillation counting after capture of the proteins on nitrocellulose membranes as described in Materials and Methods. (Left panel) The wild-type (○) and mutant proteins (■) were incubated for the specified times with [3H]GDP in the presence of 5 mM EDTA and 4.5 mM MgCl\(_2\), and the amount of protein-bound GDP was determined for each time point. (Right panel) The wild-type (wt, lanes a and b) and mutant proteins (S25N, lanes c and d) were incubated for 1 h with [3H]GDP in the presence of 5 mM EDTA and either 10 mM MgCl\(_2\) (gray bars, lanes a and c) or 4.5 mM MgCl\(_2\) (black bars, lanes b and d), and the amount of protein-bound GDP was determined. (B) Relative affinities of the proteins for GDP and GTP. The wild-type (○, ●) and mutant (□, ■) proteins were incubated for 1 h with [3H]GDP in the presence of 5 mM EDTA and 4.5 mM MgCl\(_2\), and the indicated concentrations of unlabeled GDP (○, □) or GTP (●, ■). The results are expressed as the percentage of the amount of [3H]GDP bound in the absence of additional nucleotide.

Analysis of the rabla(S25N) mutant showed that the rate and extent of exchange were similar to those of the wild-type protein (Fig. 1 A, left panel, closed squares). In this case, however, high concentrations of free Mg\(^{2+}\) did not stabilize the protein-bound nucleotide (Fig. 1 A, right panel, compare lanes c and d), consistent with structural data suggesting a role of the equivalent residue in H-ras in Mg\(^{2+}\) coordination (Farnsworth and Feig, 1991; Pai et al., 1989, 1990).

Competition experiments were performed to compare the affinities of wild-type rabla and the rabla(S25N) mutant for GDP and GTP. The recombinant proteins were incubated at low Mg\(^{2+}\) concentration with [3H]GDP (2.5 × 10\(^{-4}\) M) in the presence of increasing concentrations of unlabeled GDP (Fig. 1 B, open symbols) or GTP (Fig. 1 B, closed symbols). In the case of the wild-type protein, supplementing the reaction with ~2 × 10\(^{-1}\) M GDP was sufficient to reduce [3H]GDP binding by ~50% (Fig. 1 B, closed circles). Since this value is ~10-fold less than the GDP concentration present in the reaction, it appears that wild-type rabla has a higher affinity for GTP than for GDP. In contrast, a ~10-fold excess of GTP was necessary for half-maximal inhibition of [3H]GDP binding to the rabla(S25N) mutant (Fig. 1 B, closed circles). These data establish that the S25N substitution reduces the affinity of rabla for GTP without altering its affinity for GDP.

**Rabla(S25N) Must be Geranylgeranylated to Inhibit Transport in Vivo**

Having established that the rabla(S25N) mutant is likely to be restricted to the GDP-bound conformation, we examined its effect on transport between the ER and the Golgi compartment in vivo using a vaccinia virus-dependent transient expression system (Tisdale et al., 1992). HeLa cells infected with the T7 RNA polymerase-recombinant virus were co-transfected with plasmids encoding the appropriate rab construct(s) and the VSV-G under control of the phage T7 promotor. VSV-G is a type I integral membrane protein which acquires two N-linked oligosaccharides during cotranslational insertion into the ER membrane (Etchison et al., 1977). It is processed through a transient endo H-resistant 'Rf' form in the cis/medial Golgi compartments, before acquisition of terminal sialic acids in the trans-Golgi to form the mature 'Rt' form (Schwaninger et al., 1991; Plutner et al., 1992; Tisdale et al., 1992; Davidson and Balch, 1993). These carbohydrate processing intermediates can be resolved by their unique mobilities using SDS-PAGE (Fig. 2, lane b).

As shown in Fig. 2 (lane c), transient expression of the rabla(S25N) mutant potently inhibited ER to Golgi transport. In this case, only ~10% of the VSV-G was processed to the Rf form (Fig. 2, lane c). In this and subsequent experiments, the expression level of the various rabl wild-type and mutant proteins was between 2- and 8-fold over the endogenous pool (data not shown). The equivalent mutation in the rablb isoform (rablb(S22N)) also inhibits transport (Tisdale et al., 1992). Given that the two isoforms have markedly different carboxyl-terminal sequences which appear to be involved in membrane localization (Chavrier et al., 1991), the two proteins may be targeted to different components.

We have consistently noticed that the small fraction of VSV-G (generally 5-15%) which is processed to the Rf form in the presence of the mutant is not further modified to the Rf form (Fig. 2, lane c). Processing to the latter form is diagnostic of transport from the cis to the trans Golgi compartments (Davidson and Balch, 1993). These data suggest that the rabla(S25N) mutant not only inhibits ER to Golgi transport, but also transport through compartments of the Golgi stack and supports our previous observation that a neutralizing, rabl-specific antibody inhibits both ER to Golgi and intra-Golgi transport (Plutner et al., 1991).
Figure 2. The S25N mutant requires prenylation for function in vivo. HeLa cells were infected with the T7 RNA polymerase-recombinant vaccinia virus vTF7-3 and cotransfected with plasmids encoding VSV-G (lanes a and b) and the indicated rabla constructs (lanes c and d) as described in Materials and Methods. After 5 h, cells were pulse-labeled with Trans 35S-label for 10 rain (lane a), chased for 60 min (lanes b-d), VSV-G was immunoprecipitated, digested with endo H, and the endo H-sensitive (S), the endo H-resistant intermediate (RI) and the terminally glycosylated (R~) forms were separated by SDS-PAGE, and autoradiographs (upper panel) quantitated by scanning densitometry as described in Materials and Methods (lower panel). Transport is expressed as the percentage of total VSV-G converted to endo H-resistant forms.

Several lines of evidence indicate that posttranslational isoprenylation of carboxyl-terminal Cys residues is critical for the function of ras and ras-like GTPases (for review see Der and Cox, 1991). Rabl is normally modified by the addition of two geranylgeranyl (GG) groups to the terminal CC motif (Khosravi-Far et al., 1992). To investigate the role of isoprenylation in rabl function, we determined the phenotype of a truncated form of the rabl(S25N) mutant lacking the terminal Cys residues (rabl(S25N-ACC)). As shown in Fig. 2 (lane d), deletion of the CC motif eliminated the inhibitory activity of the S25N mutant. In this case, VSV-G was efficiently processed to the intermediate (R~) and the terminally glycosylated (R~) forms by SDS-PAGE, and autoradiographs (upper panel) quantitated by scanning densitometry as described in Materials and Methods (lower panel). Transport is expressed as the percentage of total VSV-G converted to endo H-resistant forms.

Both Rabla and Rablb Are Able to Antagonize Rabla(S25N)

To provide insight into the molecular mechanisms underlying the inhibitory effect of the rabla(S25N) mutant, we examined whether the simultaneous overexpression of wild-type rabl might reverse the mutant phenotype. Coexpression of the mutant protein with wild-type rabla (Fig. 3, lane b), but not with rabl(ACC), which lacks the carboxyl-terminal Cys residues (Fig. 3, lane c), could overcome the inhibition. These data not only indicate a competitive relationship between the S25N mutant and the wild-type protein, but provide evidence that isoprenylation is essential for the normal function of rabla. Moreover, these results provided us with an assay to examine directly the functional relationship of rabla and rablb by testing whether one or both isoforms could antagonize the inhibitory effect of the S25N mutant. As shown in Fig. 3, both wild-type rabla and rablb reversed inhibition by either the rabla(S25N) (Fig. 3, lanes b and d) or rablb(S22N) (Fig. 3, h and i) mutants at similar levels of expression (data not shown). Thus, despite their divergent carboxyl-termini, it is evident that they may interact with a common target. In contrast, coexpression of the rabla(S25N) mutant with either rab3a, which is believed to regulate the fusion of synaptic vesicles in the nerve terminal (Fischer von Mollard et al., 1990, 1991) or rab5, which is involved in the endocytic pathway (Bucci et al., 1992; Gorvel et al., 1991), at levels similar to those of the rabla and rablb wild-type proteins, did not restore transport (Fig. 3, lanes e and f). The latter results eliminate the trivial possibility that reversal of inhibition might be due to indirect effects of the coexpression procedure.

Figure 3. Rabla and rablb isoforms reverse inhibition of the S25N mutant in vivo. The rabla(S25N) and rablb(S22N) mutants were transiently expressed in HeLa cells alone (lanes a and g) or in combination with the indicated mutant or wild-type (wt) rab proteins (lanes b-f, h and i). Their effects on transport of VSV-G between the ER and the Golgi compartments were quantitated as outlined in the legend to Fig. 2 and in the Materials and Methods. Lanes b and c contrast the abilities of wild-type rabla (lane b) or rabla(ACC) (lane c) to antagonize the inhibitory phenotype of the S25N mutant (lane a). Lane d shows the consequence of coexpressing the mutant protein with wild-type rablb. The results of the reciprocal experiments using the analogous rablb(S22N) mutant are illustrated in lanes g-i.
Characterization of the Role of the Effector Domain in Rabla Function

To extend our molecular characterization of the functional domains involved in rabl function, we examined mutations in the putative effector domain. The effector domain of ras (residues 32-40 of H-ras) is one of several domains which undergo prominent changes in conformation depending on the phosphorylation state of the bound nucleotide (Wittinghofer and Pai, 1991). Mutations in the effector domain (e.g., T35A) can neutralize the transforming potential of oncogenic forms of ras (Haubruck and McCormick, 1991; Sigal et al., 1986) and often impair the ability of the protein to respond to GAP (Adari et al., 1988; Calés et al., 1988). More recently, mutations in the Yptlp and rab3a effector domains have been reported to render these proteins insensitive to GAP (Becker et al., 1991; Burstein et al., 1992), and in the case of rab3a, insensitive to GEP (Burstein et al., 1992).

To determine whether analogous amino acids in the effector domain of rabl contribute to function, we examined the consequences of replacing the highly conserved Thr at position 43 of rabla (position 35 in H-ras) with Ala in the rabla wild-type and the S25N mutant. Transient expression of the rabla(T43A) mutant had no effect on ER to Golgi transport (Fig. 4, lane a). Moreover, since the rabla(T43N) was able to antagonize the inhibitory phenotype of the S25N mutant (Fig. 4, lane d), it is apparent that the rabla(T43N) mutant has normal function and therefore differs significantly from H-ras with respect to the biological role of the highly conserved Thr residue.

A D44N substitution in rablb has recently been suggested to inhibit prenylation (Wilson and Malteze, 1993). In addition, the analogous mutation (D44N) in Yptlp results in a recessive, temperature-sensitive phenotype (Becker et al., 1991). In contrast, we found no inhibitory phenotype at either 37°C (Fig. 4, lane e) or 39.5°C (data not shown) in cells overexpressing the analogous rabla(D44N) mutant. Moreover, overexpression of rabla(D47N) was also able to prevent the transport block imposed by the S25N mutant in a fashion comparable to wild-type rabla (Fig. 4, lane f). Interestingly, introduction of the D47N substitution into the effector domain of the S25N mutant completely abolished the inhibitory phenotype of the mutant protein (data not shown). Thus, while the D47N substitution does not seem to alter the functional properties of wild-type rabla, it appears to have a significant effect on the capacity of the S25N mutant to interact with its target.

Morphological Analysis of the Inhibitory Effects of the Rabla(S25N) Mutant on VSV-G Transport

To establish the morphological phenotype of the rabla-(S25N) mutant in vivo, a temperature-sensitive mutant of VSV-G (tsO45) was substituted for wild-type VSV-G as a reporter molecule. TsO45 VSV-G has a thermoreversible folding defect and is retained in the ER when HeLa cells are transfected at the restrictive temperature (39.5°C) as indicated by a diffuse immunofluorescence staining pattern (Tisdale et al., 1992). Incubation of transfected cells at the permissive temperature (32°C) results in transport of VSV-G to punctate, perinuclear Golgi structures (Tisdale et al., 1992). In contrast, in the presence of the rabla(S25N) mutant VSV-G largely remained in a diffuse reticular distribution during incubation at the permissive temperature, although in a few cells VSV-G could also be detected in a distribution which overlapped with p53, a marker protein for pre-Golgi transport intermediates (Schweizer et al., 1988) (data not shown). In addition to the transport block, we also noticed that the Golgi complex of cells overexpressing the S25N mutant was considerably more fragmented when compared to cells expressing the wild-type protein (data not shown). This raised the possibility that inhibition of transport by rabla(S25N) might also perturb Golgi structure.

We examined more carefully the relationship between inhibition of vesicular traffic and disruption of Golgi structure by microinjecting recombinant rabla(S25N) into NRK cells expressing tsO45 VSV-G. To facilitate efficient prenylation of the recombinant protein in vivo, injected cells were preincubated for 1.5 h at the restrictive temperature before transfer to the permissive temperature for 1.5 h. As shown in Fig. 5, a-c, cells microinjected with wild-type rabl (which were identified by coinjection with an IgG marker [large arrowheads]) showed migration of VSV-G to typical Golgi complexes as shown by overlap with α-1,2-mannosidase II (Man II), a marker protein localized to the cis/medial compart-ments (Velasco et al., 1993) (compare Fig. 5 a to 5 c, small arrows). In contrast, ~70-80% of the cells microinjected with the S25N mutant (Fig. 5, d-f) showed nearly complete retention of VSV-G in the ER as indicated by the diffuse
Figure 5. Microinjection of recombinant rabla(S25N) inhibits protein export from the ER and triggers dispersal of the Golgi complex. NRK cells were infected with the ts045 strain of VSV at the restrictive temperature and microinjected with a 10-20-fold excess of recombinant rabla (a-c) or rabla(S25N) (d-f) over the endogenous rabl pool in combination with an IgG marker as described in Materials and Methods. After a 1.5-h incubation at the restrictive temperature, the cells were shifted to the permissive temperature for 1.5 h, and the distribution of VSV-G (a and d), IgG (b and e), and Man II (c and f) were determined by indirect immunofluorescence as described in Materials and Methods. The large arrowheads denote the microinjected cells. The small arrows in panels a and c denote colocalization of VSV-G with representative Golgi structures in cells injected with wild-type rabla; the open arrow in panels a and c points to a Golgi structure in a non-injected cell. The arrows in panels d and f indicate Golgi in non-injected cells; the small arrowheads in panel f denote dispersed Golgi fragments in cells injected with the rabla(S25N) mutant.

staining pattern (Fig. 5 d), although in some cells variable degrees of transport to small punctate structures reminiscent of pre-Golgi intermediates (Plutner et al., 1992) could be detected (Fig. 5 d). Strikingly, injected cells which showed no or little export of VSV-G from the ER also lacked recognizable Golgi structures as detected by the distribution of Man II (Fig. 5 f, compare injected [large arrowheads] to non-injected cells). In some cases, structures containing Man II, but not VSV-G, could be detected throughout the cytoplasm (Fig. 5 f, small arrowheads). There was no apparent redistribution of Man II to the ER (Fig. 5 f), a result consistent with the nearly complete lack of processing of VSV-G to the Rf form (Fig. 2). Thus, microinjection of the S25N mutant dramatically perturbed the structural integrity of the Golgi apparatus in a fashion which was distinct from that of brefeldin, A (BFA), a drug which promotes the collapse of the Golgi...
stack into the ER (Lippincott-Schwartz, 1993) and processing of VSV-G (Doms et al., 1989), or from nocodazole, a microtubule-depolymerizing agent which disperses the central Golgi stack to numerous peripheral fragments (Turner and Tartakoff, 1989) (data not shown).

Rabla(S25N) Inhibits Export of VSV-G from the ER in Perforated Cells

The above results raised the possibility that the apparent inhibitory effect of the S25N mutant on ER to Golgi transport might be indirect—due to dismantling of the Golgi stack. A technical limitation inherent to the transient expression and microinjection approaches is the incubation time required for the accumulation of functional protein in vivo. To identify the immediate effect of the mutant on transport, we established conditions which support posttranslational processing of recombinant rabl wild-type and mutant proteins in vitro. For this purpose, recombinant rabl proteins were incubated with [3H]GGPP in the presence of cytosol prepared from rat liver homogenates. While no labeling was detected using the rabla(ACC) mutant lacking the carboxy-terminal Cys residues (Fig. 6, lane a), comparable levels of [3H]GG were incorporated into both wild-type rabla and the S25N mutant (Fig. 6, lanes b and c). Similar results were obtained with the wild-type rabla and rab3a proteins (Fig. 6, lanes f and g). These results demonstrate that the recombinant proteins have intact carboxy-terminal sequences and provide evidence that rat liver cytosol contains prenyl transferase(s) which support modification of both CC and the CXC motifs, the latter being found at the carboxyl-termini of rab3 and several other members of the rab family. In contrast to previous results with the equivalent rablb mutant (Wilson and Maltese, 1993), we found that the D47N substitution could not be prenylated (Fig. 6, lane e). The latter result provides an unexpected, but plausible explanation for the ability of the D47N substitution to neutralize the inhibitory potential of the rabla mutation.

Having established conditions to generate posttranslationally processed recombinant wild-type and rabla mutant proteins, we examined the effects of these proteins on transport using an assay which efficiently reconstitutes both ER to Golgi and intra-Golgi transport using perforated cells (Beckers et al., 1987; Davidson and Balch, 1993). The recombinant proteins were first incubated for 1 h in the presence of rat liver cytosol and GGPP to promote isoprenylation before addition to the assay. The efficiency of the modification reaction in this case was estimated from the fraction of rabla protein recovered in the detergent phase after phase separation in Triton X-114 solution (Bordier, 1981) and was generally found to be ~5–10% of the total rabla added (data not shown). No processing or partitioning of rabla into the detergent phase occurred in the absence of GGPP (data not shown). Aliquots of the posttranslationally modified proteins were added to transport assays which contained ~5–10 ng of endogenous rabla. As shown in Fig. 7, wild-type rabla preincubated in the absence (~1 µg of unprocessed protein) or presence of GGPP (~70–90 ng of processed protein) neither stimulated nor inhibited ER to Golgi transport (Fig. 7 A, lanes c and d; B, open circles). In contrast, inhibition was achieved with the S25N mutant after preincubation in the presence of GGPP (Fig. 7 A, lane f). The amount of processed rabla(S25N) required for complete inhibition was ~80–100 ng with an IC50 in the range of ~40 ng (Fig. 7 B). This value represents a 5–10-fold excess over the endogenous pool. Omitting GGPP from the preincubation cocktail eliminated the inhibitory potential of the S25N mutant (Fig. 7 A, lane e). In addition, no inhibition was observed with the rabla(S25N-ACC) mutant lacking the carboxy-terminal Cys residues (Fig. 7 A, lane g). Supple-menting the assay with an equivalent amount of processed wild-type rabla or rabl, but not rab3a, efficiently reversed the inhibition (Fig. 8, lanes c, e, and f). Wild-type rabla failed to restore transport if preincubated in the absence of GGPP (Fig. 8, lane b). The combined results illustrate that the phenotype of the S25N mutant in vitro is identical to that observed in vivo and requires isoprenylation for function.

Rabla(S25N) Inhibits Export of Protein from the ER

To identify the stage at which the rabla(S25N) mutant inhibits transport, NRK cells were infected with tsO45 VSV at the restrictive temperature, transferred to ice, and permeabilized using conditions which allow us to follow the migration of tsO45 VSV-G from the ER to the Golgi in vitro using indirect immunofluorescence (Plutner et al., 1992). These cells were subsequently incubated for 30 min at 32°C with prenylated forms of wild-type rabla or the rabla(S25N) mutant at concentrations ~20-fold over the endogenous rabla pool to insure strong inhibition. As shown in Fig. 9, in the absence of recombinant protein tsO45 VSV-G redistributed from the ER (Fig. 9 a) to intensely labeled punctate structures (Fig. 9 c) consisting of preGolgi intermediates and Man II containing Golgi compartments (Fig. 9 c [VSV-G] and d [Man II]) (Plutner et al., 1992). A similar pattern was observed upon incubation with wild-type rabla (Fig. 9 e [VSV-G] and f [Man III]). In contrast, no overlap of VSV-G with the Golgi marker could be detected in the presence of rabla(S25N) (Fig. 9 g [VSV-G] and h [Man III]), a result which is consistent with the lack of processing to the endo H-resistant R form (see Fig. 2). Instead, VSV-G largely remained in a diffuse ER staining pattern and could be detected, albeit infrequently, in weakly staining punctate structures (Fig. 9 g [boxed region and arrowheads]). These results

The Journal of Cell Biology, Volume 125, 1994 232
Wild-type rabla and rablb reverse rabla(S25N) mediated inhibition in vitro and require posttranslational prenylation for function. Perforated NRK cells were incubated in vitro with processed rabla(S25N) alone (lane a) and in combination with equivalent amounts of the indicated proteins (lanes b-f) preincubated in the absence (−; lane b) or presence (+; lanes c-f) of GGPP. Transport was assessed and quantitated as described in the legend to Fig. 8 and in Materials and Methods.

Figure 7. Recombinant rabla(S25N) inhibits ER to Golgi transport in vitro. NRK cells infected with the ts045 strain of VSV were pulse-labeled with Trans 35S-label at the restrictive temperature, transferred to ice, and perforated as described in Materials and Methods. (A) Reconstitution of the inhibitory phenotype of the S25N mutant in vitro. Perforated cells were incubated in the presence of rat liver cytosol and ATP for 2 h on ice (lane a) or at 32°C (lanes b-g). The reactions contained no additions (lanes a and b) or were supplemented with wild-type rabla (lanes c and d), rabla(S25N) (lanes e and f), or rabla(S25N-ACC) (lane g) which were preincubated with rat liver cytosol and ATP in the absence (−; lanes c and e) or presence (+; lanes d, f, and g) of GGPP as described in Materials and Methods. Endo H-sensitive (S) and endo H-resistant (R) forms of VSV-G were resolved by SDS-PAGE (upper panel) and the fraction of processed VSV-G was quantitated by scanning densitometry (lower panel) as described in Materials and Methods. (B) Dose-dependent inhibition of transport in the presence of prenylated rabla(S25N). The wild-type (∗) and mutant (I) proteins were prenylated in vitro as outlined above, and aliquots of the preincubation reactions containing the indicated amounts of processed protein were included into the transport cocktails. The extent of posttranslational modification was estimated using phase separation in Triton X-114 solution as described in Materials and Methods.

suggest that the S25N mutant leads to a marked reduction of export from the ER to preGolgi intermediates, similar to that observed when cells are incubated in the presence of limiting cytosol (Plutner et al., 1992; Peter et al., 1993). Importantly, throughout this relatively short incubation the Golgi compartments remained largely intact (Fig. 9, compare d and h). These results confirm that the primary consequence of the S25N mutant is to cause a reduction in the extent of vesicle budding from the ER. Under these conditions, vesicles escaping the ER are likely to contain the rabla(S25N) mutant protein. This may also inhibit their targeting/fusion to the cis-Golgi compartment due to the inability of the mutant protein to adopt a conformation equivalent to the active GTP-bound state.

Discussion

In this study we have analyzed the role of the transition of rabl from the GDP-bound to the GTP-bound state in ER to Golgi traffic. The rabla(S25N) mutant, which shows a markedly reduced affinity for GTP, inhibits normal rabl function by blocking vesicle formation in a competitive fashion. These results provide the first direct evidence for the role of rabl at this step in transport, demonstrate that posttranslational isoprenylation is essential for rabl function, and indicate that the two isoforms of rabl, despite their divergent carboxyl-terminal domains, are functionally interchangeable. Moreover, the data show that the rabla(S25N) mutant also inhibits intra-Golgi transport and, unexpectedly,
establish a close relationship between rabl function in vesicular traffic and the integrity of the Golgi apparatus.

**Proper Mg\(^{2+}\) Coordination Is Critical for Rabl Function**

Replacing the highly conserved Ser at position 25 of rabl with Asn converts the protein into a potent trans-dominant inhibitor of vesicular transport between the ER and the Golgi compartments both in vivo and in vitro. X-ray crystallographic studies have revealed that the hydroxyl group of the equivalent Ser-17 in H-ras contributes to the coordination of a Mg\(^{2+}\) ion, which binds to the \(\beta\)- and \(\gamma\)-phosphates of guanine nucleotides and is essential for GTP hydrolysis (Pai et al., 1989, 1990). Consistent with an important role of Mg\(^{2+}\) in stabilizing nucleotide binding, rabl required low concentrations of free Mg\(^{2+}\) for the rapid exchange of bound nucleotide for exogenous GDP or GTP in vitro. In contrast, the guanine nucleotide exchange capacity of the rabl(S25N) mutant was independent of the Mg\(^{2+}\) concentration, a result entirely compatible with the involvement of Ser-25 in Mg\(^{2+}\) coordination. Our results demonstrate that the S25N substitution decreases the affinity of the protein for GTP in vitro.
by as much as two orders of magnitude, without affecting its affinity for GDP, although the mutant can still bind GTP in the presence of high nucleotide concentrations. It has been established that the equivalent H-ras(S17N) mutant remains unable to stimulate a downstream effector protein in vitro even upon binding of the non-hydrolyzable analog GTPyS (Farnsworth and Feig, 1991). Thus, it appears that the S17N substitution restricts the protein to an inactive, GDP-bound conformation. It has been proposed that this mutant inhibits growth by competing with the wild-type protein for a ras-GEP, critical for ras activation (Farnsworth and Feig, 1991). Given the biochemical properties common to the rabla(S25N) and the analogous H-ras(S17N) mutant, a similar mechanism is likely to be responsible for the inhibitory activity of the rabla(S25N) mutant on transport between the ER and Golgi compartments.

Isoprenylation Is Essential for the Inhibitory Activity of the Rabla(S25N) Mutant and the Function of Wild-Type Rabla

The growth inhibitory phenotype of the H-ras(S17N) mutant can be overcome by coexpression of the mutant protein with normal or transforming forms of ras (Feig and Cooper, 1988). Similarly, we have demonstrated that wild-type rabla is able to antagonize the inhibitory potential of the rabla(S25N) mutant both in vivo and in vitro, suggesting a competitive relationship between the mutant and the wild-type protein. Posttranslational isoprenylation of the carboxyl-terminal Cys residues is critical not only for the inhibitory activity of the S25N mutant, but also for the ability of the wild-type rabla to relieve the transport block. The results are consistent with the notion that isoprenylation is, in general, essential for the function of ras-like GTPases (Der and Cox, 1991; Newman and Magee, 1993). While the precise role of this modification remains unknown, one possibility, among others, is that prenyl groups are critical for interaction of rab with GEP- and/or GDI-like regulators (Soldati et al., 1993; Ullrich et al., 1993). In any event, the competitive nature of the rabla(S25N) mutant allowed us for the first time to directly investigate the contribution of the highly homologous rabla and rablb proteins to the transport process. Our data support the view that these proteins, which share 92% sequence identity, represent functionally interchangeable isoforms, although we cannot exclude the possibility that they differ in a subtle fashion which may not be apparent in our present experimental systems. Isoforms are common to many rab proteins (Zerial and Stennark, 1993). In the case of rab3, however, recent evidence suggests that rab3b, but not rab3a, is critical for regulated secretion in rat anterior pituitary cells (Liedo et al., 1993). Thus, different isoforms may fulfill more specialized roles in different cell types.

Effectors Domain Substitutions

To test for the role of the putative rabla effector domain in vesicular traffic, we examined the impact of selected substitutions (T43A and D47N) in this region on both wild-type and mutant rabla function. The T43A mutation was chosen because the equivalent substitution in H-ras has been shown to neutralize the transforming potential of various oncogenic forms (Haubruck and McCormick, 1991; Sigal et al., 1986), presumably by disrupting the interaction between the activated protein and a specific GTPase-activating protein (ras-GAP) (Adari et al., 1988; Calès et al., 1988). In addition, the analogous rab3a(T54A) mutant blocks interaction with a putative rab3-GEP in vitro (Burstein et al., 1992). The T43A substitution in rabla did not perturb activity, suggesting that this highly conserved Thr may be less critical for rabl function. The D47N substitution was based on evidence that the equivalent mutation in Yptlp (D44N) results in a temperature-sensitive phenotype, and more recently, that the D44N substitution in rablb prevents posttranslational isoprenylation in vitro (Wilson and Maltese, 1993). In contrast, we found that the rabla(D47N) mutant was efficiently prenylated and had functional activity equivalent to that of the wild-type protein in vivo and in vitro. An explanation for these apparently discrepant results remains to be established. However, the observation that the rabla(S25N-D47N) double-mutant was defective for prenylation provided an explanation for the ability of the D47N substitution to neutralize inhibition by the S25N mutant. Such effects will be important to consider when analyzing the capacity of other mutations to perturb wild-type and mutant function.

The S25N Mutant Inhibits Export from the ER and Affects Golgi Integrity

Morphologically, the presence of high concentrations of the S25N mutant led to a significant retention of VSV-G in the ER. This was particularly evident in vitro, but could also be detected upon microinjection of recombinant rabla(S25N) into intact NRK cells. We interpret these results to indicate that the S25N mutant markedly reduces the extent of vesicle budding from the ER. This could be due to perturbing the function of a rabl-specific GEP, a factor which is likely to be essential for rabl activation during recruitment of the protein before or coincident with vesicle formation. Carrier vesicles which do form even in the presence of excess rabla(S25N) mutant are likely to be fusion incompetent, given that the rabl mutant, like the equivalent ras mutant (Farnsworth and Feig, 1991), may be unable to undergo conformational changes normally associated with GTP-binding.

Inhibition of vesicular traffic by rabla(S25N) was accompanied by an apparent dispersal of the Golgi apparatus based on the distribution of Man II. Even at the level of indirect immunofluorescence we found this result to be distinct from the morphological effect of the microtubule-depolymerizing agent nocodazole (which leads to fragmentation of the Golgi to small stacks [Turner and Tartakoff, 1989]), and from that of BFA (for review see Klausner et al., 1992; Lippincott-Schwartz, 1993) or the Arf(T31N) mutant containing a substitution equivalent to that in rabla(S25N) (Dascher and Balch, 1994). Both BFA and the Arf(T31N) mutant promote release of β-COP from Golgi membranes (Dascher and Balch, 1994; Lippincott-Schwartz, 1993) and the retrograde delivery of resident Golgi proteins to the ER. In both cases, tsO45 VSV-G is processed to endo H-resistant forms (Doms et al., 1989; Dascher and Balch, 1994). In contrast, the rabla(S25N) mutant did not promote redistribution of Golgi processing enzymes to the ER, and VSV-G largely remained in the endo H-sensitive form. These results provide new evidence which link the structural organization of the Golgi complex to rabl and its associated components involved in vesicle traffic. The effect of the S25N mutant on the struc-
tural integrity of the Golgi stack has been characterized at high resolution elsewhere (Wilson et al., 1994).

It is now apparent from these studies that rab1 has biochemical properties which are in part similar and, in part, different from those of H-ras. Identification of the upstream and downstream components required for rabl function should prove useful in understanding the molecular interactions responsible for these differences and in elucidating the different roles that rabl may have in vesicle budding, targeting, and fusion. In the accompanying manuscript (Pind et al., 1994), we address the role of a rabla mutant which has a high guanine nucleotide exchange rate (rabl[N24I]) in specifically inhibiting carrier vesicle targeting/fusion.

We would like to thank A. M. Garcia for generously providing us with GGPP, and K. Moremen, and M. Farquhar for providing the ~1,2-antibody was generously provided by H. P. Hauri. TSRI manuscript Received for publication 3 August 1993 and in revised form 13 December 1993.

References

Adari, H., D. R. Lowy, B. M. Willumsen, C. J. Der, and F. McCormick. 1988. Guanosine triphosphate activating protein (GAP) interacts with the p21 effector binding domain. Science (Wash. DC). 240:518–521.
Barbacid, M. 1987. ms genes. Cell. 49:495–505.
Beckers, C. J. M., D. S. Keller, and W. E. Belch. 1987. Semiciate cells permeable to macromolecules: use in reconstitution of protein transport from the endoplasmic reticulum to the Golgi complex. Cell. 50:523–534.
Bordier, C. 1981. Phase separation of integral membrane proteins in Triton X-114 solution. J. Biol. Chem. 256:1604–1607.
Bourne, H. R., D. A. Sanders, and F. McCormick. 1990. The GTPase superfamily: a conserved switch for diverse cell functions. J. Biol. Chem. 265:851–891.
Bucci, C., R. G. Patton, J. H. Trepte, and D. Gallwitz. 1991. Mutational analysis of the putative effector domain of the GTP-binding Ypt1 protein in yeast suggests specific regulation by a novel GTP activator. EMBO (Eur. Mol. Biol. Organ.) J. 10:785–792.
Beckers, C. J. M., D. S. Keller, and W. E. Belch. 1987. Semi-acute cells permeable to macromolecules: use in reconstitution of protein transport from the endoplasmic reticulum to the Golgi complex. Cell. 50:523–534.
Bordier, C. 1981. Phase separation of integral membrane proteins in Triton X-114 solution. J. Biol. Chem. 256:1604–1607.
Bourne, H. R., D. A. Sanders, and F. McCormick. 1990. The GTPase superfamily: a conserved switch for diverse cell functions. J. Biol. Chem. 265:851–891.
Bucci, C., R. G. Patton, I. H. Mather, K. Simons, B. Hoflack, and M. Zerial. 1990. Molecular cloning of YPTl/ORCl-related cDNAs from an epithelial cell line. Nature (Lond.). 348:532–535.
Caenepeel, S. N., C. Nuoffer, J. M. McCaffery, H. Plutoer, H. W. Davidson, M. G. Sinensky, and C. J. Der. 1992. Ras (CXX) and rab (CC/CXC) prenylation signal sequences are unique and functionally distinct. J. Biol. Chem. 267:24363–24368.
Klausner, R. D., J. B. Weeks, J. Lippincott-Schwartz, and R. A. F. Ferguson. 1992. Insights into the control of membrane traffic and organelle structure. J. Cell Biol. 116:1071-1080.
Lafay, F. 1974. Envelope proteins of vesicular stomatitis virus: effect of temperature-sensitive mutations in complementation groups III and V. J. Virol. 14:1220–1228.
Liedio, P., P. Vernier, J. Vincent, W. T. Mason, and R. Zorec. 1993. Inhibition of Rab5B expression attenuates Ca2+ dependent exocytosis in rat anterior pituitary cells. Nature (Lond.). 364:540–544.
Lippincott-Schwartz, J. 1993. Bidirectional membrane traffic between the endoplasmic reticulum and Golgi apparatus. Trends Cell Biol. 3:81–87.
Lowy, D. R., and B. M. Willumsen. 1993. Function and regulation of RAS. Annu. Rev. Biochem. 62:851–891.
Mishra, S., H. Zhu, T. Kreis, and W. E. Balch. 1993. B-COP is essential for yeast ERG3 and YPT1 complementation. J. Biol. Chem. 268:1155–1168.
Mishra, S., C. Nuoffer, J. M. McCaffery, H. Plutoer, H. W. Davidson, M. G. Sinensky, and C. J. Der. 1992. Ras (CXX) and rab (CC/CXC) prenylation signal sequences are unique and functionally distinct. J. Biol. Chem. 267:24363–24368.
Klausner, R. D., J. B. Weeks, J. Lippincott-Schwartz, and R. A. F. Ferguson. 1992. Insights into the control of membrane traffic and organelle structure. J. Cell Biol. 116:1071-1080.
Lafay, F. 1974. Envelope proteins of vesicular stomatitis virus: effect of temperature-sensitive mutations in complementation groups III and V. J. Virol. 14:1220–1228.
Liedio, P., P. Vernier, J. Vincent, W. T. Mason, and R. Zorec. 1993. Inhibition of Rab5B expression attenuates Ca2+ dependent exocytosis in rat anterior pituitary cells. Nature (Lond.). 364:540–544.
Lippincott-Schwartz, J. 1993. Bidirectional membrane traffic between the endoplasmic reticulum and Golgi apparatus. Trends Cell Biol. 3:81–87.
Lowy, D. R., and B. M. Willumsen. 1993. Function and regulation of RAS. Annu. Rev. Biochem. 62:851–891.
Newman, C. M., and A. I. Magee. 1993. Posttranslational processing of the ras superfamily of small GTP-binding proteins. Biochem. Biophys. Acta. 1155:79–95.
Nuoffer, C., and W. E. Balch. 1994. GTPases: multi-functional molecular switches regulating vesicular traffic. Annu. Rev. Biochem. In press.
Pai, E. F., W. Kabsch, U. Krengel, K. C. Holmes, J. John, and A. Wittinghofer. 1989. Structure of the guanine-nucleotide-binding domain of the Ras oncogene product p21 in the triphosphate conformation. Nature (Lond.). 341:209–214.
Pai, E. F., U. Krengel, G. A. Petakos, R. S. Goody, W. Kabsch, and A. Wittinghofer. 1990. Refined crystal structure of the triphosphate conformation of Ras p21 at 1.35 A resolution: implications or the mechanism of GTP hydrolysis. EMBO (Eur. Mol. Biol. Organ.) J. 9:2351–2359.
Pai, E. F., U. Krengel, G. A. Petakos, R. S. Goody, W. Kabsch, and A. Wittinghofer. 1990. Refined crystal structure of the triphosphate conformation of Ras p21 at 1.35 A resolution: implications or the mechanism of GTP hydrolysis. EMBO (Eur. Mol. Biol. Organ.) J. 9:2351–2359.
Pai, E. F., U. Krengel, G. A. Petakos, R. S. Goody, W. Kabsch, and A. Wittinghofer. 1990. Refined crystal structure of the triphosphate conformation of Ras p21 at 1.35 A resolution: implications or the mechanism of GTP hydrolysis. EMBO (Eur. Mol. Biol. Organ.) J. 9:2351–2359.
Pai, E. F., U. Krengel, G. A. Petakos, R. S. Goody, W. Kabsch, and A. Wittinghofer. 1990. Refined crystal structure of the triphosphate conformation of Ras p21 at 1.35 A resolution: implications or the mechanism of GTP hydrolysis. EMBO (Eur. Mol. Biol. Organ.) J. 9:2351–2359.
Pai, E. F., U. Krengel, G. A. Petakos, R. S. Goody, W. Kabsch, and A. Wittinghofer. 1990. Refined crystal structure of the triphosphate conformation of Ras p21 at 1.35 A resolution: implications or the mechanism of GTP hydrolysis. EMBO (Eur. Mol. Biol. Organ.) J. 9:2351–2359.
Pai, E. F., U. Krengel, G. A. Petakos, R. S. Goody, W. Kabsch, and A. Wittinghofer. 1990. Refined crystal structure of the triphosphate conformation of Ras p21 at 1.35 A resolution: implications or the mechanism of GTP hydrolysis. EMBO (Eur. Mol. Biol. Organ.) J. 9:2351–2359.
Pryer, N. K., L. J. Wuestehube, and R. Schekman. 1992. Vesicle-mediated protein sorting. *Ann. Rev. Biochem.* 61:471-516.

Schwaninger, R., C. J. M. Beckers, and W. E. Balch. 1991. Sequential transport of protein between the endoplasmic reticulum and successive Golgi compartments in semi- intact cells. *J. Biol. Chem.* 266:13055-13063.

Schweizer, A., J. A. M. Fransen, T. Bach, L. Ginsel, and H.-P. Haas. 1988. Identification, by a monoclonal antibody, of a 53-kD protein associated with a tubulo-vesicular compartment at the cis-side of the Golgi apparatus. *J. Cell Biol.* 107:1643-1653.

Schwaninger, R., C. J. M. Beckers, and W. E. Belch. 1991. Sequential transport of protein between the endoplasmic reticulum and successive Golgi compartments in semi-intact cells. *J. Biol. Chem.* 266:13055-13063.

Schweizer, A., J. A. M. Fransen, T. Bach, L. Ginsel, and H.-P. Haas. 1988. Identification, by a monoclonal antibody, of a 53-kD protein associated with a tubulo-vesicular compartment at the cis-side of the Golgi apparatus. *J. Cell Biol.* 107:1643-1653.

Sigal, I. S., J. B. Gibbs, J. S. D'Alonzo, and E. M. Scolnick. 1986. Identification of effector residues and a neutralizing epitope of Ha-ras-encoded p21. *Proc. Natl. Acad. Sci. USA.* 83:4725-4729.

Soldati, T., M. A. Riederer, and S. R. Pfeffer. 1993. Rab GDI: a solubilizing and recycling factor for rab9 protein. *Mol. Biol. Cell.* 4:425-434.

Takai, Y., K. Kajibuchi, A. Kikuchi, and M. Kawata. 1992. Small GTP-binding proteins. *Int. Rev. Cytol.* 133:187-230.

Tisdale, E. J., J. R. Bourne, R. Khosravi-Far, C. J. Der, and W. E. Balch. 1992. GTP-binding mutants of rab1 and rab2 are potent inhibitors of vesicular transport from the endoplasmic reticulum to the Golgi complex. *J. Cell Biol.* 119:749-761.

Touchot, N., P. Chardin, and A. Tavitian. 1987. Four additional members of the ras gene superfamily isolated by an oligonucleotide strategy: molecular cloning of YPT-related cDNAs from a rat brain library. *Proc. Natl. Acad. Sci. USA.* 84:8210-8214.

Tucker, J., G. Szakai, J. Feuerstein, J. John, R. S. Goody, and A. Wittinghofer. 1986. Expression of p21 proteins in *Escherichia coli* and stereochemistry of the nucleotide-binding site. *EMBO (Eur. Mol. Biol. Organ.) J.* 5:1351-1358.

Turner, J. R., and A. M. Tartakoff. 1989. The response of the Golgi complex to microtubule alterations: the roles of metabolic energy and membrane traffic in Golgi complex organization. *J. Cell Biol.* 109:2081-2088.

Ulrich, O., H. Stenmark, K. Alexandrov, L. A. Huber, K. Kailbuchi, T. Sasaki, Y. Takai, and M. Zerial. 1993. Rab GDI as a general regulator for the membrane association of rab proteins. *J. Biol. Chem.* 268:18143-18150.

Velasco, A., L. Hendricks, K. W. Moremen, D. R. P. Tulissan, O. Touster, and M. G. Farquhar. 1993. Cell type dependent variations in the subcellular distribution of α-mannosidase I and II. *J. Cell Biol.* 122:39-51.

Wilson, A. L., and W. A. Malese. 1993. Isoprenylation of rab11b is impaired by mutations in its effector domain. *J. Biol. Chem.* 268:14561-14564.

Wilson, B. S., C. Nuoffer, J. L. Meinkoth, M. McCaffery, J. R. Ferrantino, W. E. Balch, and M. Gist Farquhar. 1994. Microinjection of rab11 mutants defective in guanine nucleotide binding and hydrolysis triggers disassembly of the Golgi complex. *J. Cell Biol.* In press.

Wittinghofer, A., and E. F. Pai. 1991. The structure of ras protein: a model for a universal molecular switch. *Trends Biochem. Sci.* 16:382-387.

Zerial, M., and H. Stenmark. 1993. Rab GTPases in vesicular transport. *Curr. Opin. Cell Biol.* 5:615-620.