Activity and tissue-specific expression of the transcription factor NF-E1 multigene family

Masayuki Yamamoto, Linda J. Ko, Mark W. Leonard, Hartmut Beug, 1 Stuart H. Orkin, 2 and James Douglas Engel3

Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, Evanston, Illinois 60208-3500; 1Institute of Molecular Pathology, A1030 Vienna, Austria; 2Division of Hematology/Oncology, Children’s Hospital and Department of Pediatrics, Harvard Medical School, Howard Hughes Medical Institute, Boston, Massachusetts 02115

NF-E1, a DNA-binding protein that recognizes the general consensus motif WGATAR, is the first tissue-specific factor to be identified in erythroid cells. Using a probe from the murine GF-1 (NF-E1) cDNA clone, we isolated three homologous chicken cDNAs: One of these corresponds to an mRNA (NF-Ela) that is abundantly and exclusively expressed in erythroid cells; a second mRNA (NF-Elb) is also expressed in all developmental stages of erythroid cells but is additionally found in a limited subset of other chicken tissues; mRNA representative of a third gene (NF-Elc) is expressed only in definitive (adult) erythrocytes within the red cell lineage but is also abundantly expressed in T lymphocytes and brain. All NF-E1 proteins are highly conserved within the DNA-binding domain and bind to the consensus motif with similar affinities in vitro; they are also all stimulatory trans-acting factors in vivo. The factors differ quantitatively in their ability to trans-activate reporter genes in which the number and position of cognate binding sites is varied relative to the transcriptional initiation site. These data suggest that the NF-E1 consensus motif directs a broader and more complicated array of developmental transcriptional regulatory processes than has been assumed and that NF-E1c may play a unique regulatory role in the developing chicken brain and in T lymphocytes.

[Key Words: Transcription factors; erythroid cell; T cell; trans-activation]

Received May 30, 1990, revised version accepted July 17, 1990.

Our current view of eukaryotic gene transcriptional regulation is based primarily on the observation that a wide variety of cis-acting DNA sequences are able, both singly and in concert, to aid or inhibit productive transcriptional initiation. These regulatory interactions have now been shown in many cases to be affected by the differential, site-specific DNA binding of constitutive and tissue-specific regulatory trans-acting factors that act to either enhance or inhibit the ability of RNA polymerase and ancillary transcription factors to form a functional initiation complex (for review, see Maniatis et al. 1987; Ptashne 1988; Johnson and McKnight 1989).

Furthermore, cis-regulatory domains appear to exert their effect by binding various combinations of both constitutive and tissue-specific factors to form functional modules; however, only rarely does the effect of deletion of a single protein binding site within a module abrogate the overall physiological effect of the entire regulatory module (e.g., Gallarda et al. 1989).

β-Globin gene expression is regulated primarily at the level of transcriptional initiation [Groudine et al. 1981]. Molecular genetic analysis has implicated the presence of several levels of transcriptional control: The first appears to be the ability to form an active chromatin domain [Weintraub and Groudine 1976] to allow the β-globin gene cluster to be transcribed; such activity may be a reflection of the genetic effect of dominant control regions (DCRs) or locus activation regions (LARs) within the β-globin gene cluster [Forrester et al. 1987; Grosvenor et al. 1987; Trudel et al. 1987]. Another level of control appears to be elicited by the tissue-specific transcriptional activity of the β-globin gene enhancer [Choi and Engel 1986; Hesse et al. 1986; Behringer et al. 1987; Kollias et al. 1987], a complex module whose activity is regulated by the binding of both ubiquitous and tissue-specific factors [Emerson et al. 1987; Wall et al. 1988; Gallarda et al. 1989]. The final level of regulation, determination of which globin gene isotype is to be expressed at a particular developmental stage [referred to as hemoglobin switching], is elicited by cooperative cis-regulatory interactions between distal control elements (enhancers or DCR/LAR) and sequences within physically linked genes [Choi and Engel 1988; Enver et al. 1990]. In

3Corresponding author.
within the human \( \alpha \)-globin promoter and in the human WGATAR (W = T or A; R = G or A), found in common in vitro and in vivo (Emerson et al. 1987, 1989; Choi and Engel 1988; Lewis et al. 1988; Nickol and Felsenfeld 1988; Reitman and Felsenfeld 1988; Gallarda et al. 1989). The first of the erythrocyte-specific trans-acting factor binding sites to be identified is a prevalent motif, WGATAR \( \{W = T \text{ or } A; R = G \text{ or } A\} \), found in common within the human \( \gamma \)-globin promoter and in the human and chicken \( \beta \)-globin gene enhancers (Evans et al. 1988; Wall et al. 1988; Catala et al. 1989; Martin et al. 1989; Perkins et al. 1989). This element has since been found to be associated with a variety of erythroid gene regulatory regions (Trainor et al. 1987; Knezetic and Felsenfeld 1989; Mignotte et al. 1989; Plumbl et al. 1989). These independent discoveries also assigned different names to the factor(s) recognizing the consensus motif, variably denoted NF-E1, GF-1, Eryfl, and EF-1.

The initial cDNA cloning and analysis of murine, chicken, and human NF-E1 (Evans and Felsenfeld 1989; Tsai et al. 1989; Trainor et al. 1990; Zon et al. 1990) demonstrated that the proteins produced by this erythroid-specific mRNA are able to recognize the consensus DNA binding site in vitro and that the mRNAs encoding these factors are transcribed only in erythroid cells. However, it is not clear from such studies whether or not the isolated chick, mouse, and human cDNA clones are functional homologs of one another or whether the proteins are capable of exerting identical activities in vivo. Thus, a functional analysis of chicken NF-E1 was initiated, in which we have compared this activity to the murine factor GF-1.

We used the murine GF-1 clone (Tsai et al. 1989) to isolate the chicken homolog of this factor. To our surprise, three distinct NF-E1 cDNAs were found to represent a multigene family, each of whose members is highly tissue restricted in expression. We find that all three chicken NF-E1 proteins bind with high affinity to the consensus recognition sequence in vitro and also that the chicken NF-E1 proteins are able to stimulate transcription from reporter genes in vivo, but differ in ability to stimulate transcription from reporter constructs bearing different numbers of factor binding sites or sites located in different positions relative to the start of transcription. These studies suggest that the different NF-E1 trans-acting factors, containing indistinguishable cis-regulatory DNA sequence recognition properties, differentially contribute to the program of developmentally regulated transcriptional activation in a variety of chicken tissues.

Results

Isolation and sequence analysis of chicken GF-1 homologs

A DNA fragment corresponding to the DNA binding domain of the murine GF-1 cDNA clone (Tsai et al. 1989) was used as an initial probe to screen a cDNA library prepared from anemic hen reticulocyte mRNA (RBC4; see Methods), whereas probes derived from these clones were used in further screening of a second library prepared from whole 10-day-old chicken embryos (Sap et al. 1986). Ninety-one independent recombinants were isolated, representing three separate genomic loci, designated NF-E1a, NF-E1b, and NF-E1c (Fig. 1).

Double-stranded DNA sequencing was performed on the largest cDNAs representing each locus. The NF-E1a cDNA sequence (data not shown) is identical, within the coding region, to the published sequence of Eryfl (Evans and Felsenfeld 1989). The sequence predicts a 304-amino-acid NF-E1a protein of 31,415 daltons [pI 10.2]. The NF-E1b cDNA [p30a] is 2812 bp in length and contains a single long open reading frame (ORF) encoding 466 amino acid residues predicting a protein of 50,147 daltons [pI 9.9]. The methionine codon at the 5' end of this ORF is located at nucleotide 410: The sequence surrounding the codon fits the ideal consensus for translation initiation (Kozak 1989; Fig. 2). The NF-E1c cDNA clone [p31a] predicts a single ORF from nucleotide position 187 to 1518 (Fig. 3). Conceptual translation of this ORF gives a predicted size for the NF-E1c protein of 48,194 daltons [pI 9.9], and once again, the sequence surrounding the 5'-most methionine codon is in a good translation context. An in-frame termination codon directly precedes the assigned ATG initiation codon of NF-E1c [nucleotide 4, Fig. 3] providing evidence that the ORF encodes the genuine NF-E1c protein.

When aligned for maximum identity to GF-1, the se-
Yamamoto et al.

Figure 2. Sequence of NF-E1b cDNA. The nucleotide sequence of cDNA clone p30a is shown; numbers at initiation site of NF-E1c (Fig. 3). The shaded area corresponds to the finger domain and the sequences encoding it. Remarkably similar within the entire presumptive DNA-binding domain (the chicken NF-E1 cDNAs display several noteworthy features (Fig. 4). First, all of the chicken proteins are murine sequences within this domain. Second, the encode protein products that share >90% sequence identity within this region. A similar degree of conservation is seen in the terminal domains of NF-Ela and GF-1. Finally, NF-Elb and NF-Elc clearly share far greater overall amino acid sequence identity with one another than either has to with any of the chicken proteins share with the GF-1 protein. Tissue specificity of NF-E1 expression To address the question of whether or not the three factors would differ in expression in various cell types and during maturation of erythroid progenitors, full-length probes were prepared to the three NF-E1 cDNAs (Fig. 1) and used in RNA blot analysis. Several interesting and potentially important regulatory features of the expression pattern of these mRNAs can be deduced from these studies. NF-E1a mRNA is strikingly abundant, is restricted to embryonic cardiac muscle, and fibroblast (Fig. 5B). NF-Elb is encoded by a 4.3-kb mRNA and is expressed at comparable levels in all stages of erythroid cells, as is not detectable in a T-lymphocyte cell line, adult liver, or embryonic skeletal muscle. In definitive reticulocytes, NF-Elb mRNA appears to be present at ~10% of levels in the other two stages of reticulocytes. NF-Ela mRNA is strikingly abundant, is restricted to embryonic cardiac muscle, and fibroblast (Fig. 5B).
Within hematopoietic lineages and during maturation of cells transformed with avian viruses. In this series blot analysis of the NF-E1 cDNAs to mRNAs derived hematopoietic progenitors, we performed further RNA present in definitive reticulocytes at much lower rela-

cipitous during erythrocyte maturation (Fig. 5D–F, because the total RNA recovered per cell decreases pre-

The tissue distribution of expression of the third gene, NF-E1c, is once again distinct when compared to that of the other NF-E1 mRNAs. Like NF-E1b, NF-E1c is present in definitive reticulocytes at much lower relative concentrations than the extremely abundant chicken NF-E1a mRNA [Fig. 5C]. Similarly, the 3.3-kb mRNA encoding NF-E1c is found in adult kidney and abundantly in embryonic brain. NF-E1c is unique among the gene family in that it is the only member whose expression is restricted to a distinct subset of erythroid cells, found only in definitive [adult] reticulocytes. It is also the sole member of the family expressed in MSB-1 (T-lymphocyte) cells [Akiyama and Kato 1974, Beug et al. 1981].

To examine the expression of these factors specifically within hematopoietic lineages and during maturation of hematopoietic progenitors, we performed further RNA blot analysis of the NF-E1 cDNAs to mRNAs derived from cells transformed with avian viruses. In this series of experiments, RNA from equal numbers of viable cells from the 5' end of the insert. Predicted protein sequence of the longest ORF is shown below the nucleic acid sequence. The shaded area corresponds to the finger domain and sequences encoding it.

**Figure 3.** Sequence of NF-E1c cDNA. The nucleotide sequence of cDNA clone p31a is shown, numbers at right represent nucleotides from the 5' end of the insert. Predicted protein sequence of the longest ORF is shown below the nucleic acid sequence. The shaded area corresponds to the finger domain and sequences encoding it.

**Figure 4.** Sequence comparison of the chicken NF-E1 and murine GF-1 proteins. Sequence alignment for maximum identity.
Yamamoto et al.

Figure 5. Expression of NF-E1 mRNAs. RNAs isolated from various chicken cell lines, virally transformed cell clones, or specific tissues were denatured, electrophoresed, and blotted to nylon membranes, as described previously (Riddle et al. 1989). The probes used were full-length NF-E1a [A and D], NF-E1b [B and E], or NF-E1c [C and F] cDNAs (Fig. 1). All blots were washed at moderate stringency (120 mM monovalent cation, 55°C). [A–C] Two micrograms of poly(A)⁺ RNA electrophoresed in each lane was isolated from anemic adult hen (definitive) reticulocytes (lanes 1); HD6 erythroid progenitor cells [lanes 2]; embryonic (primitive) reticulocytes from 4.5-day embryos [lanes 3]; Marek's virus-transformed chicken T-lymphoma cells [lanes 4; MSB-1; Akiyama and Kato 1974]; 11-day chick embryo brain [lanes 5]; 11-day chick embryo liver [lanes 6]; adult chicken perfused liver [lanes 7 in A and B, not shown in C]; adult chicken perfused kidney [lanes 8]; 11-day chick embryo cardiac muscle [lanes 9]; 11-day chick embryo skeletal muscle [lanes 10]; and 11-day chick embryo fibroblasts [lanes 11]. [D–F] Total cellular RNA (representing 6.5 x 10⁶ viable cell equivalents of RNA in each lane; see Results) was isolated from chicken erythroblasts transformed by a recombinant virus expressing the ts21 v-myb and human epidermal growth factor receptor [hEGFR] genes [Khazaie et al. 1988; H. Beug, unpubl.], either containing hEGF and cultured at 37°C [lanes 12] or induced to differentiate by depletion of hEGF and grown for 1 day [lanes 13], 2 days [lanes 14], 3 days [lanes 15], or 4 days [lanes 16] at 42°C in the presence of anemic chicken serum and concentrated supernatant [REV] factor derived from NP84 cells (Zenke et al. 1988). ts21 E26-transformed myeloid cells (Beug et al. 1984) shifted to the nonpermissive temperature for 0 days [lanes 17], 2 days [lanes 18], or 4 days [lanes 19], a clone of v-rel-transformed pre-B/pre-T lymphoblasts [P. Hayman, unpubl.]; lanes 20], RP-9 cells [a transformed B-lymphocyte cell line, Beug et al. 1981; H. Beug, unpubl.]; lanes 21]; and MSB-1 [T-lymphoma] cells [Beug et al. 1981; H. Beug, unpubl.]; lanes 22]. After hybridization to individual random primer-labeled NF-E1 cDNA clones, each of the blots was stripped and rehybridized to a mixture of cDNA probes encoding the chicken β-actin and erythrocyte band 3 proteins [Cleveland et al. 1980; Kim et al. 1989]. The resultant autoradiographs [not shown] were then used to determine the integrity, size, and relative concentration of the samples, whereas the band 3 hybridization signal was additionally used to estimate the degree of RBC contamination in the various nonerythroid chicken tissues [lanes 4–11]. All of the tissue RNAs [lanes 1–11] contained equivalent β-actin mRNA signals (to within a factor of two), and none of the mRNAs were significantly contaminated (>5%) with RBCs. Size markers shown at right correspond to the positions of β-actin [2.0 kb] and erythrocyte band 3 [4.3 kb] mRNAs. Exposure times were [A] 40 min; [B and E] 48 hr; [C and F] 18 hr; [D] 3 hr.

Sequence-specific DNA binding properties of NF-E1 proteins

NF-E1b and NF-E1c are predicted to encode finger domains with >90% identity to the DNA binding domains of the murine factor GF-1 and chicken NF-E1a (Evans and Felsenfeld 1989; Tsai et al. 1989), suggesting that the NF-E1b and NF-E1c proteins would also bind the WGATAR motif with high affinity. To compare the DNA binding properties of the NF-E1 proteins, each was expressed by in vitro transcription and translation. Single, full-length transcripts were produced [Fig. 6A] and used to direct protein synthesis of the NF-E1 factors in rabbit reticulocyte lysate [see Methods]. Proteins of ~39.5, 56, 55, and 51 kD were obtained for NF-E1a, NF-E1b, NF-E1c, and GF-1, respectively [Fig. 6B]. These are 6–8 kD larger than expected on the basis of conceptual translation of the cDNA clones [Fig. 4], possibly as a result of the high proline content of the proteins [Hope and Struhl 1985].

NF-E1a, NF-E1b, NF-E1c, and GF-1 proteins synthe-
NF-E1 proteins expressed in vitro specifically bind to the WGATAR consensus sequence. (A) In vitro transcription of NF-E1a, NF-E1b, NF-E1c, and GF-1 cDNA clones. RNA products of bacteriophage polymerase-initiated transcription were electrophoresed on a 1.5% agarose gel containing formaldehyde. (Lane 1) 0.46 μg of total anemic hen RBC RNA. The positions of the 18S and 28S rRNA bands are indicated. (Lanes 2–5) Two and one-half microliters of each of the in vitro transcription reactions with the following cDNA templates: (lane 2) NF-E1a; (lane 3) NF-E1b; (lane 4) NF-E1c; (lane 5) GF-1. (B) In vitro translation of NF-E1a, NF-E1b, NF-E1c, and GF-1 RNAs. RNA templates were translated in rabbit reticulocyte lysate in the presence of [35S]methionine. Two microliters of translation reactions were run on a 15% SDS–polyacrylamide gel and subjected to fluorography; molecular size standards are as indicated on the left. (Lane 1) NF-E1a; (lane 2) NF-E1b; (lane 3) NF-E1c; (lane 4) GF-1, [lane 5] no added RNA. (C and D) Gel mobility-shift assays using NF-E1a, NF-E1b, NF-E1c, and GF-1 in vitro translation products. The in vitro translation reaction (1.5 μl) was used to assay the binding properties of each NF-E1 protein with the MaP (C) or CBE (D) 32P-labeled probes [see Results]. Binding reactions were run on 5% nondenaturing polyacrylamide gels. Nonspecific poly[d(I-C)] poly[d(A-T)] competitor was used at 2 μg for basic extract [see Methods] or 50 ng for in vitro translation products. Unlabeled CBE (25 ng) or MaP (50 ng) oligonucleotides were added as indicated: (lane 1) free probe; (lane 2) 0.5 μl of definitive erythocyte basic extract [Gallarda et al. 1989]; (lane 3) no RNA added to the in vitro translation reaction; (lanes 4–6) NF-E1a; (lanes 7–9) NF-E1b; (lanes 10–12) NF-E1c; (lanes 13–15) GF-1. In vitro translation products were incubated with radiolabeled NF-E1 oligonucleotide plus added nonspecific competitor (lanes 4, 7, 10, and 13), a 50-fold excess of unlabeled CBE oligonucleotide (lanes 5, 8, 11, and 14), or a 100-fold excess of unlabeled MaP oligonucleotide (lanes 6, 9, 12, and 15). The arrows indicate high-affinity complexes of NF-E1 proteins with the probes. The open arrow shows the position of migration of free probe (D) the arrowhead indicates a complex formed by a protein present in rabbit reticulocyte lysate that preferentially binds to the [dimer site] CBE probe [see Results].

Gel mobility shift assays were also performed with amino-terminally truncated NF-E1b and NF-E1c proteins. Deletion of the first 260 amino acids of the NF-E1b protein or the first 131 amino acids of the NF-E1c protein still permits formation of high-affinity complexes with the CBE probe. In the case of NF-E1b, deletion of the amino-terminal region to within 20 amino acids of the finger domain still allows specific complex formation. With further truncation (deleting the entire finger domain), binding was completely eliminated (data not shown). Thus, specific binding of the chicken NF-E1 proteins to the WGATAR consensus sequence requires the finger domain.

Trans-activation by NF-E1 proteins

The ability of the NF-E1 proteins to stimulate transcription in vivo was examined by using a cotransfection trans-activation assay [Giguere et al. 1986]. In these experiments, the transcriptional activity of a reporter gene [human growth hormone (hGH)] was directed by the rabbit β-globin TATA box and either one or six copies of the MaP oligonucleotide or three or six copies of the CBE oligonucleotide [either 6 or 12 copies of the binding site], these are subsequently referred to as M1αGH, M6αGH, C3βGH, and C6βGH, respectively. In each
Yamamoto et al.

assay, a plasmid containing one of the NF-E1 cDNA clones [transcriptionally directed by the Rous sarcoma virus long terminal repeat (RSV LTR) in plasmid TFAneo [Federspiel et al. 1989]] was included as a potential trans-activator. Activation of the hGH constructs was assayed by measuring the amount of hGH peptide secreted into the tissue-culture medium by radioimmunoassay [RIA; see Methods]. Recipient cells used in these experiments were the human HeLa cell line, NIH-3T3 mouse fibroblasts, and immortal quail (QT6) fibroblasts [Scherer et al. 1953; Todaro and Green 1963; Moscovici et al. 1977].

The trans-activation activities are quite different, depending on the recipient cell origin, as well as the number and position of NF-E1 binding sites incorporated into the reporter gene plasmids. The murine GF-1 protein stably accumulates in all transfected cells and is able to trans-activate all hGH reporter gene constructs. In contrast, the chicken NF-E1 proteins fail to significantly accumulate in 3T3 or HeLa cells [D.I.K. Martin and S.H. Orkin, unpubl.] but are stable in QT6 [Fig. 7B]. Because of species-dependent differences in the stability of the various trans-activating proteins, we have drawn conclusions based only on the results derived from the QT6 cell transfections.

All of the hGH reporter gene plasmids are trans-activated by the murine (GF-1) factor and each chicken NF-E1 protein in QT6 cells [Figure 7A]; however, the levels of activity in this assay quantitatively differ depending on whether the reporter contains 1, 6, or 12 binding sites for the factor. Thus, trans-activation of M6αGH by NF-E1α is ~5-fold greater than the activation of M1αGH, whereas the level of activation of M6αGH by NF-E1c is ~10-fold greater than the same protein acting on the M1αGH reporter. Clearly, equal numbers of binding sites in the plasmids are not the sole determinant for efficient trans-activation: M6αGH and C3βGH each contain six binding sites, but the resultant trans-activation with each NF-E1 protein differs markedly. Curiously, activation of C6βGH was identical [within experimental error] for all four proteins tested and lower than achieved with C3βGH. Thus, one may conclude that all of the chicken NF-E1 DNA binding proteins are also trans-acting factors and that they are capable of distinguishing between various templates in vivo.

Discussion

NF-E1 is a developmentally regulated multigene family

We report the physical and biological characterization of a group of related trans-acting factor proteins whose mRNAs are expressed in a variety of chicken cell types. The proteins examined in this study all bind to a common consensus DNA motif WGATAR, bind with high affinity to this motif in vitro [Fig. 6], and can serve as potent positive trans-acting factors in vivo [Fig. 7].

When compared to the size of the cloned cDNA segments [Figs. 2 and 3] and to the size of the intact mRNAs derived from the RNA blots [Fig. 5] and primer extension data [not shown], it appears that the entire 3' end of NF-E1α is represented, whereas both NF-E1b and
NF-Elc are lacking sequence representation from both the 5'- and 3'-untranslated regions. Although NF-Elα lies in a relatively poor context for translation, the longest clone is missing only 39 nucleotides from the 5' end (M.W. Leonard, unpubl.). NF-Elb is in a good consensus sequence translation context and matches the predicted amino terminus of the NF-Elc protein with a high degree of amino acid sequence identity (Fig. 4). NF-Elc is in a reading frame preceded by an in-frame stop codon 183 nucleotides 5' to the assigned initiation codon. In summary, from these and the trans-activation data, we conclude that the full coding sequence for each of the NF-E1 proteins is represented in Figure 4.

The physical properties of the factor NF-Elα [Eryf1] have been well characterized previously [Evens and Felsenfeld 1989]. Here, we show that this DNA binding protein is also an effective trans-acting factor in vivo (Fig. 7); NF-Elα mRNA (and protein; M. Yamamoto, unpubl.) is abundantly and exclusively expressed in erythroid cells [Fig. 5] and therefore might, as its murine counterpart GF-1, serve as the primary determinant for genes that are to be expressed in the erythroid lineage. However, because it is equally abundant in primitive and definitive erythroid cells, it is unlikely that NF-Elα is also a primary determinant of hemoglobin switching, as chicken erythroid cells express different β-globin isoforms during development [Brans and Ingram 1973].

Factor NF-Elb appears to be the most enigmatic of the three factors reported here. NF-Elb is clearly restricted to expression in distinct, developmentally unrelated cell types [Fig. 5]; however, it is expressed at relatively high levels in immature definitive erythroid cells and declines very rapidly in abundance as these cells continue to mature (cf. the relative decrease in NF-Elα mRNA levels in Fig. 5D to NF-Elb mRNA levels in Fig. 5E, lanes 12–16). Because NF-Elα increases in relative poly(A)+ mRNA abundance during the same time frame [Fig. 5A, lanes 1 and 2], it seems possible that NF-Elb may be the very earliest form of a trans-acting factor capable of activating the WGATAR consensus motif during early erythropoiesis, and is subsequently replaced by a "late" factor, NF-Elα or NF-Elc. NF-Elb is also the only factor in which we have been able to detect tissuespecific RNA splicing (M.W. Leonard and M. Yamamoto, unpubl.).

NF-Elc is abundant in embryonic brain and mature T-lymphoid cells but is not expressed in embryonic [primitive] or immature definitive erythroid cells [Fig. 5C,F]. Although the role of this factor in erythropoiesis is unclear, it appears to be the only member of this family expressed almost exclusively in a different hematopoietic lineage. An indication as to the part this factor may play in T-cell-specific transcriptional regulation is suggested by recent observations that show detailed tissue-specific footprints in the human T-cell receptor δ gene enhancer, which lie directly over a consensus NF-El-binding motif [the TGATAA repeat comprising footprint δE4; Redondo et al. 1990]. Furthermore, this NF-E1 consensus has been identified in other gene regulatory regions important for T-cell-specific expression, for example, within the murine and human T-cell receptor α gene enhancer [Ahn and Baltimore, 1989] and AGATAA within footprint Tα3 [Evens and Felsenfeld 1989] and AGATAA within footprint To3 (Kaw et al. 1989) and at four locations within the human T-cell leukemia virus-III [HTLV-III] LTR U3 region [Rosen et al. 1985].

Why do erythroid cells have more than one NF-E1 protein?

The mRNAs for the three chicken proteins characterized here are all expressed in definitive erythroid cells, albeit at vastly different abundances; thus, one might infer that each plays some role in transcriptional regulation in erythroid cells. One puzzling aspect of these studies is why there are three different trans-acting factors that recognize the same consensus motif, with similar affinities, within a single cell. Several alternatives are apparent.

One possibility is that the various NF-E1 proteins differ in their trans-activation potential, as has been reported recently for the ubiquitous Oct-1 and lymphoid-specific Oct-2 factors [Tanaka and Herr 1990], and is suggested by the amino acid sequence divergence among these factors outside the DNA binding domain. A second possibility for why factors with a presumably identical DNA binding specificity may exist in the same cells is that the DNA sequence of any consensus binding site may be very important in determining which factor within a multigene family is actually bound to that site. One might predict that the ambiguities in accumulating a consensus sequence [e.g., whether a T or A residue is encountered at the first position of the NF-E1 consensus WGATAR] are not a reflection of a degenerate code to which several factors can bind with equal affinity but, rather, dictate a strong preference for which factor in a multigene family is actually used at a given site. Recent observations in the analysis of GF-1 [Plumb et al. 1989; D.I.K. Martin and S.H. Orkin, in press] and a more distantly related homolog [Wilson et al. 1990] support this hypothesis.

Another possibility addresses the more perplexing and currently only poorly understood nature of what arrangement of protein/DNA binding activities constitute a genuine enhancer. Clearly, multiple consensus sequence binding sites for these factors are not sufficient to form a functional enhancer: Whereas multiple copies of the NF-E1 consensus sequence inserted directly 5' to the human β-globin TATA box are sufficient to stimulate high levels of transcription in the presence of any of these factors [Fig. 7A], if the binding sites are placed 3' to a reporter gene, transcriptional stimulation is dramatically reduced [S.H. Orkin and J.D. Engel, data not shown]. Thus, an arrangement of simple multimeric binding sites for the NF-E1 proteins bear a much stronger resemblance to upstream promoter elements than to genuine enhancers, because the latter can be found at far distance locations relative to the promoters they activate [Maniatis et al. 1987].

Because enhancers are complex modules, consisting of
tightly clustered tissue-specific and constitutive trans-acting factor binding sites, it may be that none of the artificial constructs examined in cotransfection trans-activation assays are appropriate models for reconstitution or reflection of the activity of a genuine enhancer. One can imagine that not only is the precise DNA sequence of a factor binding site important, but the sequence context within these modules (i.e., the nearest adjacent proteins themselves) could be of equal or greater importance. Thus, the precise stereochemical relationships determined by sequence context could dictate binding of adjacent factors in a crowded complex. In this model, perhaps the overall sequence context is the major determinant of which factor might bind a given motif within a complex module when several members of a multigene family are expressed in one cell type.

How might this hypothesis aid in explaining why multiple NF-E1 factors exist in chicken erythroid cells? Consistent with the observed mRNA expression profile (Fig. 5), the presence of NF-E1b in primitive erythrocytes could indicate that this is the family member bound within the restricted confines of the shared β/e-globin enhancer in vivo (Choi and Engel 1988; Nickol and Felserfeld 1988) and is involved in directing e-globin transcription in primitive cells. During late definitive erythropoiesis, NF-E1c may then replace NF-E1b binding to the enhancer and, in conjunction with additional trans-acting factors such as NF-E4 (Gallard et al. 1989), direct adult β-globin transcription. A similar model has recently been proposed to account for the observation that the factors C/EBP and DBP, which are both expressed in hepatocytes, albeit with distinct developmental profiles (Mueller et al. 1990). Because the two minor abundance NF-E1 factors are so structurally dissimilar to NF-E1a outside of the DNA binding domain and yet so similar to one another (Fig. 4), perhaps the nearest neighbor protein–protein interactions within the tightly clustered confines of the β/e-globin enhancer allow only NF-E1b and NF-E1c to bind to this particular site in vivo. The cloning of three members of the NF-E1 multigene family should allow direct assessment of the several possibilities raised here.

Methods

**cDNA cloning and DNA sequencing**

Two independent agt11 cDNA libraries were used to isolate chicken NF-E1 cDNA clones. The BV4 library (Sap et al. 1986) was prepared with polyadenylated RNA isolated from a pool of 10-day-old chicken embryos. The RBC4 library was prepared in a new agt11 derivative vector agt11d (for directional; marketed as agt11 Sfi-Not, Promega, Madison, WI), developed to promote oriented insertion of cDNA libraries. The vector was made by digestion of agt11 with EcoRI and ligation to a linker that destroyed the original EcoRI site and simultaneously created new sites within the vector [5’ to 3’ in lacZ sense] for SfiI, EcoRI, and NotI.

First-strand cDNA synthesis was initiated by using an oligonucleotide primer with a NotI site at the 5’ end, followed by deoxynucleotidylate residues. Upon completion of double-stranded cDNA synthesis by standard procedures (Gübler and Hoffman 1983), EcoRI adapters were added. The cDNA was digested with NotI and the electroeluted cDNAs (1.2 kb in size) were then ligated to agt11d, which had been digested with NotI and EcoRI. The initial complexity of the RBC4 library was 10^6 PFU.

By plaque hybridization (Benton and Davis 1977) with a polymerase chain reaction (PCR)-amplified DNA fragment corresponding to the DNA binding domain of the murine GF-1 sequence (nucleotides 481–980 of GF-1 cDNA, Tsai et al. 1989), 6 × 10^3 PFU from the RBC4 library were first screened. The screening was performed at room temperature in the presence of 50% formamide, and filters were washed at 37°C in a solution containing 1 × blot wash [50 mM Tris-HCI (pH 8.0), 1 mM EDTA, and 0.1% SDS] plus 1 × SSC. After plaque purification, phage DNA was prepared by the method of Chisoholin (1989). The BV4 library was then screened by using a cDNA fragment specifying the DNA binding domain of NF-E1b as a probe (corresponding to nucleotides 938–1542 of the NF-E1b sequence, Fig. 2). The low-stringency hybridization and washing conditions used in the previous screen were again employed. Finally, the BV4 library was rescreened by using both of the 5’-end fragments of cDNA clones A10a and A8a, the longest cDNAs representing loci NF-E1b and NF-E1c, respectively, from the first screen. The probes were hybridized at 42°C in the presence of 50% formamide, and the filters were washed at 42°C in 1 × blot wash.

All independent cDNA clones were subcloned into either pGEM3 or pGEM7Zf(+) (Promega), and most of the independent subclones were sequenced directly from both ends. Selected subclones were subject to ordered serial deletion mutagenesis according to the method of Henikoff (1984). Nucleotide sequence of NF-E1a was determined from subclones p33d and p36c, that of NF-E1b from p10a and p30a, and NF-E1c from p8a and p31a. DNA sequencing was performed by using the dideoxy chain termination method (Sanger et al. 1977) with T7 DNA polymerase and alkali-denatured double-stranded plasmid DNA as template (Choi and Engel 1986). 7-Deaza-dGTP was used in place of dGTP (Mizusawa et al. 1986).

**In vitro expression of NF-E1 cDNA clones**

NF-E1a, NF-E1b, NF-E1c, and GF-1 cDNAs were subcloned into plasmid vectors for in vitro expression. A 1.0-kb NotI–EcoRI fragment of NF-E1a was inserted into the Ncol–EcoRI sites of vector pBSATG containing a strong translation initiation consensus sequence (Clerc et al. 1988). GF-1 cDNA was digested with XhoI, filled in by use of the Klenow fragment of DNA polymerase I to create blunt ends, and redigested with NcoI. The resultant 1.5-kb fragment of GF-1 was inserted into Ncol–Smal sites of pBSATG. Both of these were prepared such that an ATG within the Ncol site (CCATGC) would initiate translation of the cDNA in the proper reading frame. A 2.4-kb Ncol–EcoRI fragment of NF-E1b was inserted into pGEM4 (Promega), as was a 1.8-kb EcoRI fragment of NF-E1c, to create in vitro expression subclones of NF-E1b and NF-E1c. Translation of these two transcripts initiates from the ATG in native sequence context.

NF-E1a and GF-1 subclones were linearized with Ndel and transcribed by using T3 RNA polymerase; NF-E1b and NF-E1c subclones were linearized with HindIII and transcribed with SP6 RNA polymerase. Five micrograms of linearized template was transcribed after the method of Hull et al. (1988), in which...
was excised by EcoRI and untranslated leader sequence, both of which are derived from the v-src gene of RSV. The entire NF-E1c cDNA (1.8 kb) was excised by XbaI/HindIII digestion and transferred into CLA12NCO and is therefore translated from its intrinsic initiation codon. The NF-E1 and GF-1 cDNAs were then inserted into the Clal site of TFAneo by using the polylinker array in CLA12NCO, which is flanked by Clal sites. The pMT2 vector-derived trans-activation constructs (Fig. 8) were prepared similarly [Kauffman et al. 1989; D.I.K. Martin and S.H. Orkin, in press].

Transfection and cells
Cotransfection activation of reporter genes was carried out as described [Giguere et al. 1986]. QT6 cells were trypsinized at confluence, and 40% of the cells were then transfected with a mixture of (genuine or mock) activator plus reporter gene plasmids in addition to an internal transfection control plasmid [RSV luciferase: Wood et al. 1989]. Cells were transfected by using CaPO4 [Trainor et al. 1987], after 12 hr in transfection salts at 37°C, 3% CO2, the plates were washed once with PBS, fed with fresh DME/10% FBS, and transferred to 37°C, 5% CO2 [zero time].

For each transfection analysis, optimization for activator (constitutive promoter driving the putative factor cDNA under analysis) to reporter gene was determined by varying the ratios of both plasmids and comparing this value to the same ratio of activator plasmid with inserted antisense cDNA as a mock trans-activator. The ratios were found to vary greatly: In chicken and mammalian cells, 7 μg of pMT2 activator to 3 μg of reporter was found to give the greatest stimulatory activity, whereas use of the RSV LTR activator in TFAneo/reporter in a ratio of 2 : 8 μg, respectively, was found to be optimal.

In analysis of SV1CAT [Gorman et al. 1982] bearing three copies of the CBE-binding site, transfection efficiency was as...
sessed by normalizing for the activity of a cotransfected RSV–luciferase plasmid (20 ng) cotransfected with the activator and reporter plasmids. Amounts of extract containing identical luciferase activity were then used for the CAT assays. For the reporter gene assays presented (Fig. 7), four plasmids were used: All employed the rabbit β-globin TATA box and transcription initiation site (Fig. 7A; solid box) to direct transcription of the hGH gene (Fig. 7A; open box) in plasmid pDGH (Nichols Institute Diagnostics, San Juan Capistrano, CA; S.H. Orkin, unpubl.). To this basic construct, either one or six copies of the MaP oligonucleotide or three or six copies of the C6 oligonucleotide were inserted directly 5' to the TATA box to produce the M1ΔGH, M6ΔGH, C3ΔGH, and C6ΔGH plasmids, respectively (Fig. 7A, arrows). After supernatants containing secreted hGH were collected and assayed by RIA (using the Allegro hGH system from Nichols Institute Diagnostics), the cells were scraped from the plates, gently lysed, and examined for DNA binding activity of the proteins expressed from the activator plasmids by gel mobility-shift assay (Tsai et al. 1989; Fig. 7B). In separate experiments, it was determined that trans-activation, as measured by the assays used here, is also reflected by a parallel increase in the abundance of correctly initiated activator mRNA [D.I.K. Martin and S.H. Orkin, in press] Trans-activation was calculated by the following equation:

\[
\text{Trans-activation} = \frac{[A + R] - M}{R - M}
\]

where \(A + R\) represents counts per minute recovered in RIA after transfection with activator plus reporter plasmids, \(M\) is counts per minute in the media, and \(R\) represents counts per minute recovered after transfection with the reporter alone.

We noted in initial assays that accumulation of the hGH reporter product in cotransfection with the trans-activation plasmid was linear (with time) only after ~18 hr post-transfection. When the vector alone (minus the activator cDNA) was included in mock activation with the reporter plasmid, activator protein-independent reporter gene product accumulated linearly beginning at time zero (Fig. 8). We assume that this delay in factor-dependent stimulation of the reporter gene is due to the time required for accumulation of the trans-acting factor inside cotransfected cells. To circumvent this repetitive error in recording activation data, medium for all hGH assays was replaced 24 hr after transfection; the assays were then performed on supernatants collected after an additional 24 hr.

Acknowledgments

We thank Z. Yang, K. Lim, and S.J. Stamler for technical assistance during various phases of these studies, K.P. Foley, D.I.K. Martin, and L. Zon for critical evaluation of the manuscript, and C. Hofland and R. Gaber for expert assistance in preparing the figures. We are grateful to S. Hughes and M. Federspeil (Frederick Cancer Research and Development Center) for providing the RSV expression plasmid (TFAneo) used in the trans-activation assays, and to B. Morris and R. Mierendorf (Promega, Madison, WI) for generous assistance and expertise in the construction of the RBC4 cDNA library. We thank P. Hayman (SUNY Stony Brook) for allowing us to use the v-rel(RCAS)-transformed lymphoblasts prior to publication. We also thank N. Hayashi [Tohoku U.] for his encouragement in this work. This work was supported by grants from the National Institutes of Health (to S.H.O. and J.D.E.) and by an NRSA Postdoctoral Fellowship Award (to M.W.L.). S.H.O. is an investigator of the Howard Hughes Medical Institute.

The publication costs of this article were defrayed in part by payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 USC section 1734 solely to indicate this fact.

References

Akiyama, Y. and S. Kato. 1974. Two cell lines from lymphomas of Marek’s disease. *Biken J.* 17: 105–116.

Behringer, R.R., R.E. Hammer, R.L. Brinster, R.D. Palmiter, and T.M. Townes. 1987. Two 3’ sequences direct adult erythroid-specific expression of human β-globin genes in transgenic mice. *Proc. Natl. Acad. Sci.* 84: 7056–7060.

Benton, W.D. and R.W. Davis. 1977. Screening Agt recombinant clones by hybridization to single plaques in situ. *Science* 196: 180–182.

Beug, H., A. Leutz, P. Kahn, and T. Graf. 1984. ts mutants of E26 leukemia virus allow transformed myeloblasts, but not erythroblasts or fibroblasts to differentiate at the nonpermissive temperature. *Cell* 39: 579–588.

Beug, H., H. Muller, S. Grieser, G. Doederlein, and T. Graf. 1981. Hemopoietic cells transformed in vitro by REV-T avian reticulendotheliosis virus express characteristics of very immature lymphoid cells. *Virology* 115: 295–309.

Beug, H., S. Palmieri, C. Freundenstein, H. Zentgraf, and T. Graf. 1982. Hormone-dependent terminal differentiation in vitro of chicken erythroleukemia cells transformed by ts mutants of avian erythroblastosis virus. *Cell* 28: 907-919.

Bonner, W.M. and R.A. Laskey. 1974. A film detection method for tritium-labelled proteins and nucleic acids in polyacrylamide gels. *Eur. J. Biochem.* 46: 83–88.

Bruns, G.A. and V.M. Ingram. 1973. The erythroid cells and hemoglobins of the chick embryo. *Philos. Trans. R. Soc. Lond. Ser. B* 266: 225–305.

Catala, F., E. deBoer, G. Habets, and F. Grosveld. 1989. Nuclear protein factors and erythroid transcription of the human α-globin gene. *Nucleic Acids Res.* 17: 3811–3826.

Chisholm, D. 1989. A convenient moderate-scale procedure for obtaining DNA from bacteriophage lambda. *Biotechniques* 7: 21–23.

Choi, O.-R. and J.D. Engel. 1986. A 3’ enhancer is required for temporal and tissue-specific transcriptional activation of the chicken adult β-globin gene. *Nature* 323: 731–734.

——. 1988. Developmental regulation of β-globin gene switching. *Cell* 55: 17-26.

Clerc, R.G., L.M. Corcoran, J.H. LeBowitz, D. Baltimore, and P.A. Sharp. 1988. The B-cell specific Oct-2 protein contains POU box and homeo box-type domains. *Genes Dev.* 2: 1570–1581.

Cleveland, D.W., M.A. Lopata, R.J. MacDonald, N.J. Cowan, W.J. Rutter, and M. Kirschner. 1980. Number and evolutionary conservation of α- and β-tubulin and cytoplasmic α- and γ-actin genes using specific cloned cDNA probes. *Cell* 20: 95–105.

Emerson, B.M., J.M. Nickol, P.D. Jackson, and G. Felsenfeld. 1987. Analysis of the tissue-specific enhancer at the 3’ end of the chicken adult β-globin gene. *Proc. Natl. Acad. Sci.* 84: 4786–4790.

Emerson, B.M., J.M. Nickol, and T.C. Fong. 1989. Erythroid-specific activation and derepression of the chick β-globin promoter in vitro. *Cell* 57: 1189–1200.

Enver, T., N. Raich, A.J. Ebens, T. Papayannopoulou, F. Constantini, and G. Stamatoyannopoulou. 1990. Developmental regulation of human fetal-to-adult globin gene switching in transgenic mice. *Nature* 344: 309–313.

Evans, T. and G. Felsenfeld. 1989. The erythroid-specific transcription factor Eryfl: A new finger protein. *Cell* 58: 877–
Evans, T., M. Reitman, and G. Felsenfeld. 1988. An erythrocyte-specific DNA-binding factor recognizes a regulatory sequence common to all chicken globin genes. Proc. Natl. Acad. Sci. 85: 5976–5980.

Federspiel, M.J., L.B. Crittenden, and S.H. Hughes. 1989. Expression of avian reticuloendotheliosis virus envelope confers host resistance. Virology 173: 167–177.

Forrester, W.C., S. Takegawa, T. Papayannopoulou, G. Stamatoyannopoulos, and M. Groudie. 1987. Evidence for a locus activation region: The formation of developmentally stable hypersensitive sites in globin-expressing hybrids. Nucleic Acids Res. 15: 10159–10177.

Fried, M.G. and D.M. Crothers. 1981. Equilibria and kinetics of lac repressor-operator interactions by polyacrylamide gel electrophoresis. Nucleic Acids. Res. 9: 6505–6525.

Gallarda, J.L., K.P. Foley, Z. Yang, and J.D. Engel. 1989. The β-globin stage selector element factor is erythroid-specific promoter/enhancer binding protein NF-E4. Genes Dev. 3: 1845–1859.

Gamer, M.M. and A. Revzin. 1981. A gel electrophoresis method for quantifying the binding of proteins to specific DNA regions: Application to components of the Escherichia coli lactose operon regulatory system. Nucleic Acids Res. 9: 3047–3060.

Giguere, V., S.M. Hollenberg, M.G. Rosenfeld, and R.M. Evans. 1986. Functional domains of the human glycococcioid receptor. Cell 46: 645–652.

Gorman, C.M., L.F. Moffat, and B.H. Howard. 1982. Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells. Mol. Cell. Biol. 2: 1044–1051.

Grosveld, F., G.B. van Assendelft, D.R. Greaves, and G. Kollia. 1987. Position-independent, high-level expression of the human β-globin gene in transgenic mice. Cell 51: 975–985.

Groudine, M., M. Perez, and H. Weintraub. 1981. Transcriptional regulation of hemoglobin switching in chicken embryos. Mol. Cell. Biol. 1: 281–288.

Gübler, U. and B.J. Hoffman. 1983. A simple and very efficient method for generating cDNA libraries. Gene 25: 263–269.

Henikoff, S. 1984. Unidirectional digestion with exonuclease III creates targeted breakpoints for DNA sequencing. Gene 28: 351–359.

Hesse, J.E., J.M. Nickol, M.R. Lieber and G. Felsenfeld. 1986. Regulated gene expression in transplanted primary chicken erythrocytes. Proc. Natl. Acad. Sci. 83: 4312–4316.

Ho, I.C., L.-H. Yang, G. Morle, and J.M. Leiden. 1989. A T-cell-specific transcriptional enhancer element 3′ of Ca in the human T-cell receptor α locus. Proc. Natl. Acad. Sci. 86: 6714–6718.

Hope, I.A. and K. Struhl. 1985. GCN4 protein, synthesized in vitro, binds his3 regulatory sequences: Implications for general control of amino acid biosynthetic genes in yeast. Cell 43: 177–189.

Hughes, S.H., J.J. Greenhouse, C.J. Petropoulos, and P. Sutrave. 1987. Adaptor plasmids simplify the insertion of foreign DNA into helper-independent retroviral vectors. J. Virol. 61: 3004–3012.

Hull, J.D., R. Gilmore, and R.A. Lamb. 1988. Integration of a small integral membrane protein, M2, of influenza virus into the endoplasmic reticulum: Analysis of the internal signal-anchor domain of a protein with an endoplasmic NH2-terminus. J. Cell. Biol. 106: 1489–1498.

Johnson, P.F. and S.L. McKnight. 1989. Eukaryotic transcriptional regulatory proteins. Annu. Rev. Biochem. 58: 799–839.

Kaufman, R.J., M.V. Davies, V.K. Pathak, and J.W.B. Hershey. 1989. The phosphorylation state of eucaryotic initiation factor 2 alters translational efficiency of specific mRNAs. Mol. Cell. Biol. 9: 946–958.

Khaize, K., T.J. Dull, T. Graf, J. Schlessinger, A. Ullrich, H. Beug, and B. Vennström. 1988. Truncation of the human EGF receptor leads to differential transforming potentials in primary avian fibroblasts and erythroblasts. EMBO J. 7: 3061–3071.

Kim, H.-R.C., B.S. Kennedy, and J.D. Engel. 1989. Two chicken erythrocyte band 3 mRNAs are generated by alternative transcriptional initiation and differential RNA splicing. Mol. Cell. Biol. 9: 5198–5206.

Knezetic, J.A. and G. Felsenfeld. 1989. Identification and characterization of a chicken α-globin enhancer. Mol. Cell. Biol. 9: 893–901.

Kollia, G., J. Hurst, E. deBoer, and F. Grosfeld. 1987. The human β-globin gene contains a downstream developmental specific enhancer. Nucleic Acids Res. 15: 5739–5747.

Kozak, M. 1989. The scanning model for translation: An update. J. Cell Biol. 108: 229–241.

Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of the bacteriophage T4. Nature 227: 680–685.

Lewis, C.D., S.P. Clark, G. Felsenfeld, and H. Gould. 1988. An erythrocyte-specific protein that binds to the poly[dG] region of the chicken β-globin gene promoter. Genes Dev. 2: 863–873.

Maniatis, T., S. Goodbourn, and J.A. Fischer. 1987. Regulation of inducible and tissue-specific gene expression. Science 236: 1237–1245.

Martin, D.I.K. and S.H. Orkin. 1990. Transcriptional activation and DNA-binding by the erythroid factor GF-1/NF-E1/Eryf1. Genes Dev. 4 (in press).

Martin, D.I.K., S.-F. Tsai, and S.H. Orkin. 1990. Transcriptional activation of a chicken α-globin enhancer and characterization of an erythroid-specific DNA-binding factor. Nature 338: 435–438.

Mignotte, V., J.F. Eloueut, N. Raich, and P.-H. Romeo. 1989. Cis-acting and trans-acting elements involved in the regulation of the erythroid promoter of the human porphobilinogen deaminase gene. Proc. Natl. Acad. Sci. 86: 6548–6552.

Mizusawa, S., S. Nishimura, and F. Secla. 1986. Improvement of the dideoxy chain termination method of DNA sequencing by use of deoxy-7-deazaguanosine triphosphate in place of dGTP. Nucleic Acids Res. 14: 1319–1334.

Moscovici, C., M.G. Moscovici, H. Jimenez, M.M.C. Lai, M.J. Hayman, and P.K. Vogt. 1977. Continuous tissue culture cell lines derived from chemically induced tumors of Japanese quail. Cell 11: 95–103.

Mueller, C.R., P. Maire, and U. Schibler. 1990. DBP, a liver-enriched transcriptional activator, is expressed late in ontogeny and its tissue specificity is determined posttranscriptionally. Cell 61: 279–291.

Nickol, J.M. and G. Felsenfeld. 1988. Bidirectional control of the chicken β- and ε-globin genes by a shared enhancer. Proc. Natl. Acad. Sci. 85: 2548–2552.

Perkins, N.D., R.H. Nicolas, M.A. Plumb, and G.H. Goodwin. 1989. The purification of an erythroid protein which binds to enhancer and promoter elements of haemoglobin genes. Nucleic Acids Res. 17: 1309–1314.

Plumb, M., J. Hampton, H. Wainwright, M. Walker, K. Macleod, G. Goodwin, and P. Harrison. 1989. GATAAAG; a cis-control region binding an erythroid-specific nuclear factor with a role in globin and non-globin gene expression. Nucleic Acids Res. 17: 73–92.

Ptashne, M. 1988. How eukaryotic transcriptional activators

Transcription factor NF-E1
Yamamoto et al.

work. Nature 325: 683–689.

Redondo, J.M., S. Hata, C. Brocklehurst, and M.S. Kran gel. 1990. A T cell-specific transcriptional enhancer within the human T cell receptor \( \delta \) locus. Science 247: 1225–1229.

Reitman, M., and G. Felsenfeld. 1988. Mutational analysis of the chicken \( \beta \)-globin enhancer reveals two positive-acting domains. Proc. Natl. Acad. Sci. 85: 6267–6271.

Riddle, R.D., M. Yamamoto, and J.D. Engel. 1989. Expression of \( \delta \)-aminolevulinate synthase in avian cells: Separate genes encode erythroid-specific and nonspecific isozymes. Proc. Natl. Acad. Sci. 86: 792–796.

Rosen, C.A., J.G. Sodroski, and W.A. Haseltine. 1985. The location of cis-acting regulatory sequences in the human T cell lymphotropic virus type III (HTLV-III/LAV) long terminal repeat. Cell 41: 813–823.

Sanger, F., S. Nicklen, and A.R. Coulson. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. 74: 5463–5467.

Sap, J., A. Muñoz, K. Damm, Y. Goldberg, J. Ghysdael, A. Leutz, H. Beug, and B. Vennström. 1986. The c-erbA protein is a high-affinity receptor for thyroid hormone. Nature 324: 635–640.

Scherer, W.F., J.T. Syverton, and G.O. Gey. 1953. Studies on the propagation in vitro of poliomyelitis viruses. J. Exp. Med. 97: 695–715.

Tanaka, M. and W. Herr. 1990. Differential transcriptional activation by Oct-1 and Oct-2: Interdependent activation domains induce Oct-2 phosphorylation. Cell 60: 375–386.

Todaro, G.J. and H. Green. 1963. Quantitative studies of the growth of mouse embryo cells in culture and their development into established lines. J. Cell Biol. 17: 299–313.

Trainor, C.D., S.J. Stamler, and J.D. Engel. 1987. Erythroid-specific transcription of the chicken histone H5 gene is directed by a 3' enhancer. Nature 328: 827–830.

Trainor, C.D., T. Evans, G. Felsenfeld, and M.S. Boguski. 1990. Structure and evolution of a human erythroid transcription factor. Nature 343: 92–96.

Trudel, M., J. Magram, L. Bruckner, and F. Constantini. 1987. Upstream \( \gamma \)-globin and downstream \( \beta \)-globin sequences required for stage-specific expression in transgenic mice. Mol. Cell. Biol. 7: 4024–4029.

Tsai, S.-F, D.I.K. Martin, L.I. Zon, A.D. D'Andrea, G.G. Wong, and S.H. Orkin. 1989. Cloning of cDNA for the major DNA-binding protein of the erythroid lineage through expression in mammalian cells. Nature 339: 446–451.

Wall, L., E. deBoer, and F. Grosveld. 1988. The human \( \beta \)-globin gene 3' enhancer contains multiple binding sites for an erythroid-specific protein. Genes Dev. 2: 1089–1100.

Weintraub, H. and M. Groudine. 1976. Chromosomal subunits in active genes have an altered conformation. Science 193: 848–856.

Wilson, D.B., D.M. Dorfman, and S.H. Orkin. 1990. A non-erythroid GATA-binding protein is required for function of the human preproendothelin-1 promoter in endothelial cells. Mol. Cell. Biol. [in press].

Winoto, A. and D. Baltimore. 1989. A novel, inducible and T cell-specific enhancer located at the 3' end of the T cell receptor \( \delta \) locus. EMBO J. 8: 729–733.

Wood, W.M., M.Y. Kao, D.F. Gordon, and E.C. Ridgway. 1989. Thyroid hormone regulates the mouse thyrotropin \( \beta \)-subunit gene promoter in transfected primary thyrotropes. J. Biol. Chem. 264: 14840–14847.

Zenke, M., P. Kahn, C. Disela, B. Vennström, A. Leutz, K. Keegan, M.J. Hayman, H.-R. Choi, N. Yew, J.D. Engel, and H. Beug. 1988. v-erbA specifically suppresses transcription of the avian erythrocyte anion transporter (band 3) gene.

Cell 52: 107–119.

Zon, L.I., S.-F. Tsai, S. Burgess, P. Matsudaira, G.A.P. Bruns, and S.H. Orkin. 1990. The major human erythroid DNA-binding protein [GF-1]: Primary sequence and localization of the gene to the X chromosome. Proc. Natl. Acad. Sci. 87: 668–672.
Activity and tissue-specific expression of the transcription factor NF-E1 multigene family.

M Yamamoto, L J Ko, M W Leonard, et al.

Genes Dev. 1990, 4:
Access the most recent version at doi:10.1101/gad.4.10.1650

References
This article cites 73 articles, 30 of which can be accessed free at:
http://genesdev.cshlp.org/content/4/10/1650.full.html#ref-list-1

License

Email Alerting Service
Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article or click here.