Boundary Layer Study for an Ocean Related System with a Small Viscosity Parameter

Wenshu Zhoua Xulong Qinb Xiaodan Weic Xu Zhaod,a

a Department of Mathematics, Dalian Minzu University, Dalian 116600, P. R. China
b Department of Mathematics, Sun Yat-sen University, Guangzhou 510275, P. R. China
c School of Computer Science, Dalian Minzu University, Dalian 116600, P. R. China
d School of Mathematics, Beifang Minzu University, Yinchuan 750021, P. R. China

Abstract

We study an ocean related system with a small viscosity parameter, which is the linearized version of the modified Primitive Equations. As the parameter goes to zero, an L^∞ convergence result is obtained together with the estimation on the thickness of the boundary layer.

Keywords. Primitive Equations, L^∞ convergence, boundary layer.

2010 MSC. 35L50; 47D06; 76D10; 76N20; 86A05.

1 Introduction

We consider the ocean related system with a small parameter ε in the space-time domain $(0, L) \times (0, T)$:

\begin{equation}
\begin{cases}
\partial_t u^\varepsilon + \overline{U}_0 u_x^\varepsilon + \psi_x^\varepsilon - 2\varepsilon u_{xx}^\varepsilon = f, \\
\psi_t^\varepsilon + \overline{U}_0 \psi_x^\varepsilon + \lambda^{-2}u_x^\varepsilon = g,
\end{cases}
\end{equation}

with the boundary and initial conditions:

\begin{equation}
\begin{cases}
u^\varepsilon(0, t) = u^\varepsilon(L, t) = 0, \quad \psi^\varepsilon(0, t) = 0, \quad 0 < t < T, \\
u^\varepsilon(x, 0) = u_0(x), \quad \psi^\varepsilon(x, 0) = \psi_0(x), \quad 0 < x < L,
\end{cases}
\end{equation}

where $0 < \varepsilon \ll 1, \overline{U}_0 > 0$ and $\lambda > 0$ are constants with $\overline{U}_0 < \lambda^{-1}$. This system was derived from the Primitive Equations (PEs) of the ocean with mild viscosity thanks to a modal decomposition in the vertical direction, see [1] (cf. [2, 3]).

The PEs are one of the fundamental models for geophysical flows and they are used to describe oceanic and atmospheric dynamics, see [4, 5]. In the presence of viscosity, the study of the PEs through analytical means was started by Lions, Temam and Wang in [6, 7], and some recent advances for the PEs have been obtained, see [8] and the survey [9]. In the absence of viscosity, it is known that the PEs are not well-posed for any set of local boundary conditions, see [10]. To overcome this difficulty, a modified PEs (i.e. δ-PEs) was proposed in [1]. System (1.1) is the linearized version of the modified PEs.
Formally setting $\varepsilon = 0$ in (1.1), one obtains the following system in the space-time domain $(0, L) \times (0, T)$:

$$
\begin{cases}
 u_t^0 + \mathcal{U}_0u_x^0 + \psi_0^0 = f, \\
 \psi_t^0 + \mathcal{U}_0\psi_x^0 + \lambda^{-2}u_x^0 = g.
\end{cases}
$$

(1.3)

Like in [2, 3], the boundary and initial conditions are chosen as follows:

$$
\begin{cases}
 u^0(0, t) + \mathcal{U}_0\lambda^2\psi^0(0, t) = 0, & u^0(L, t) = 0, \quad 0 < t < T, \\
 u^0(x, 0) = u_0(x), & \psi^0(x, 0) = \psi_0(x), \quad 0 < x < L.
\end{cases}
$$

(1.4)

In [3], the existence and uniqueness of solutions of both problem (1.1)-(1.2) and problem (1.3)-(1.4) was proved for some initial data. As numerically shown in [2], some boundary layers appear at the boundary $x = 0$ when ε goes to zero. Actually, it was shown in [3, Theorem 1.3] that U^ε and Ψ^ε are $O(\varepsilon^{1/2})$ in $L^\infty(0, T; L^2(0, L))$, where

$$
U^\varepsilon = u^\varepsilon - u^0 - \theta_u^\varepsilon, \quad \Psi^\varepsilon = \psi^\varepsilon - \psi^0 - \theta_\psi^\varepsilon,
$$

where θ_u^ε and θ_ψ^ε are the boundary layer correctors and are the same as in Section 2. This implies that $(u^\varepsilon, \psi^\varepsilon)$ converges to (u^0, ψ^0) in $L^\infty(0, T; L^2(0, L))$ as $\varepsilon \to 0^+$. Recently, the analysis of the boundary layers for the linearized viscous PEs has been presented in [11] for 2D and in [12, 14] for 3D.

In the present paper, we study the L^∞ convergence of $(U^\varepsilon, \Psi^\varepsilon)$ as $\varepsilon \to 0^+$. Our main result is as follows.

Theorem 1.1. Assume that $(u^\varepsilon, \psi^\varepsilon) \in \mathcal{K}$ and $(u^0, \psi^0) \in \mathcal{K}^0$ are solutions of problem (1.1)-(1.2) and problem (1.3)-(1.4), respectively, where \mathcal{K} and \mathcal{K}^0 are the same as in Section 3. Then there exists some constant C independent of ε such that

$$
\| (U^\varepsilon, \Psi^\varepsilon) \|_{L^\infty(0,T;L^2(0,L))} + \varepsilon^{1/2} \| (U^\varepsilon, \Psi^\varepsilon) \|_{L^2((0,L) \times (0,T))} \leq C \varepsilon,
$$

$$
\| (U^\varepsilon, \Psi^\varepsilon) \|_{L^\infty(0,T;L^\infty(0,L))} \leq C \varepsilon^{1/2}.
$$

From Theorem 1.1 and the definitions of θ_u^ε and θ_ψ^ε (see Section 2), we immediately obtain

Corollary 1.1. Under the assumptions of Theorem 1.1, we have $\lim_{\varepsilon \to 0^+} \| (u^\varepsilon - u^0, \psi^\varepsilon - \psi^0) \|_{L^\infty(0,T;L^\infty(0,L))} = 0$ for any nonnegative function $\delta(\varepsilon)$ satisfying $\delta(\varepsilon) \to 0$ and $\delta(\varepsilon)/\varepsilon \to +\infty$ as $\varepsilon \to 0^+$, and $\lim_{\varepsilon \to 0^+} \| (u^\varepsilon - u^0, \psi^\varepsilon - \psi^0) \|_{L^\infty(0,T;L^\infty(0,L))} > 0$ for any nonnegative function $\delta(\varepsilon)$ satisfying $\delta(\varepsilon) \to 0$ and $\delta(\varepsilon)/\varepsilon \to c$ (nonnegative constant) as $\varepsilon \to 0^+$ whenever $(u^0(0,t), \psi^0(0,t)) \neq (0,0)$ in $(0,T)$. This implies that the boundary layer thickness is of the order $O(\varepsilon)$.

Theorem 1.1 will be proved in Section 2. The main difficulty in the proof is that system (1.1) is an incompletely parabolic perturbation of a hyperbolic system. To overcome the difficulty, a key observation is to obtain the equation (2.9). With this, one can deduce the required estimates, for example, (2.25). In Section 3, some remarks on the regularities of $(u^\varepsilon, \psi^\varepsilon)$ and (u^0, ψ^0) will be presented. The regularity conditions will be used to show the equation (2.8).

2 Proof of Theorem 1.1

Let $(u^0, \psi^0) \in \mathcal{K}^0$ be a solution of problem (1.3)-(1.4). As in [3], θ_u^ε and θ_ψ^ε are defined as follows:

$$
\begin{pmatrix}
 \theta_u^\varepsilon(x,t) \\
 \theta_\psi^\varepsilon(x,t)
\end{pmatrix} = e^{-rx/\varepsilon} \begin{pmatrix}
 A^\varepsilon(t) \\
 B^\varepsilon(t)
\end{pmatrix} + \begin{pmatrix}
 C^\varepsilon(t) \\
 D^\varepsilon(t)
\end{pmatrix},
$$

(2.1)
where \(r = \frac{1}{2 \lambda^2} - \frac{\gamma_0}{2} > 0 \), and
\[
\begin{pmatrix}
A^\varepsilon \\
B^\varepsilon \\
C^\varepsilon \\
D^\varepsilon
\end{pmatrix} = \begin{pmatrix}
-(1 - e^{-rL/\varepsilon})^{-1}u^0(0, t) \\
\lambda^{-2}e^{-rL/\varepsilon} - 1u^0(0, t) \\
e^{-rL/\varepsilon} - 1u^0(0, t) \\
-\lambda^{-2}e^{-rL/\varepsilon} - 1u^0(0, t)
\end{pmatrix}.
\tag{2.2}
\]

Due to \(u^0(0, t) = -U_0 \lambda^2 \psi^0(0, t) \), it is easy to verify that \(\theta_u^\varepsilon \) and \(\theta_\psi^\varepsilon \) satisfy
\[
\begin{array}{l}
\{ \begin{array}{l}
U_0 \theta_u^\varepsilon + \theta_\psi^\varepsilon - 2\varepsilon \theta_{u\psi}^\varepsilon = 0, \\
U_0 \theta_\psi^\varepsilon + \lambda^{-2} \theta_u^\varepsilon = 0,
\end{array}\end{array}
\tag{2.3}
\]
\[
\theta_u^\varepsilon(0, t) = -u^0(0, t), \quad \theta_\psi^\varepsilon(0, t) = -\psi^0(0, t), \quad \theta_u^\varepsilon(L, t) = 0.
\]

From now on, we use \(C \) to denote a positive generic constant independent of \(\varepsilon \).

Lemma 2.1. Assume that \((u^0, \psi^0) \in K^0 \) is a solution of problem (1.3)-(1.4). Then
\[
\begin{array}{l}
\{ \begin{array}{l}
\| (\theta_u^\varepsilon, \theta_\psi^\varepsilon, \theta_{u\psi}^\varepsilon) \|_{L^\infty(0, T; L^2(0, L))} \leq C\varepsilon^{1/2}, \\
\| (\theta_u^\varepsilon, \theta_\psi^\varepsilon, \theta_{u\psi}^\varepsilon) \|_{L^\infty(0, T; L^2(0, L))} \leq C, \\
\| x(\theta_u^\varepsilon, \theta_{u\psi}^\varepsilon, \varepsilon \theta_{u\psi}^\varepsilon) \|_{L^\infty(0, T; L^2(0, L))} \leq C\varepsilon^{3/2}.
\end{array}\end{array}
\tag{2.4}
\]

Proof. Due to \(u^0(L, t) = 0, u^0(0, t) = -\int_0^L u^0_x(x, t) dx \). Thus, \(u^0(0, t) \in L^\infty(0, T) \) since \(u^0_x \in L^\infty(0, T; L^2(0, L)) \). This together with \(u^0(0, t) = -U_0 \lambda^2 \psi^0(0, t) \) gives \(\psi^0(0, t) \in L^\infty(0, T) \). Using the inequality \(e^{-rL/\varepsilon} \leq 6/\varepsilon \) (\(\forall \varepsilon > 0 \)), we have \(e^{-2rL/\varepsilon} \leq C\varepsilon^3 \). Noticing \(\| x e^{-rL/\varepsilon} \|_{L^2(0, L)} \leq C\varepsilon^{3/2} \), we deduce that \(\| x \theta_{u\psi}^\varepsilon \|_{L^\infty(0, T; L^2(0, L))} \leq C\varepsilon^{3/2} \). The other estimates of (2.4) can be deduced similarly. The proof is completed. \(\square \)

Proof of Theorem 1.1 For simplicity, write \(u = U^\varepsilon \) and \(\psi = \Psi^\varepsilon \). It follows from (1.1), (1.3) and (2.3) that \(u \) and \(\psi \) satisfy
\[
\begin{array}{l}
\{ \begin{array}{l}
u_t + U_0 u_x + \psi_x - 2\varepsilon u_{xx} = 2\varepsilon u^0_x - \theta_u^\varepsilon, \\
\psi_t + U_0 \psi_x + \lambda^{-2} u_x = -\theta_\psi^\varepsilon,
\end{array}\end{array}
\tag{2.5}
\]
with the boundary and initial conditions
\[
\begin{array}{l}
\{ \begin{array}{l}
u(0, t) = u(L, t) = 0, \quad \psi(0, t) = 0, \quad 0 < t < T, \\
u(x, 0) = 0, \quad \psi(x, 0) = 0, \quad 0 < x < L.
\end{array}\end{array}
\tag{2.6}
\]

From (2.5), we obtain
\[
(u - \lambda \psi)_t + U_0 (u - \lambda \psi)_x - \lambda^{-1}(u - \lambda \psi)_x - 2\varepsilon u_{xx} = 2\varepsilon u^0_x - \theta_u^\varepsilon + \lambda \theta_\psi^\varepsilon.
\tag{2.7}
\]
Differentiating (2.5) in \(x \) and multiplying the resulting equation by \(2\varepsilon \lambda^2 \), we have
\[
2\varepsilon \lambda^2 \psi_{xt} + 2\varepsilon U_0 \lambda^2 \psi_{xx} + 2\varepsilon u_{xx} = -2\varepsilon \lambda^2 \theta_{u\psi}^\varepsilon.
\tag{2.8}
\]
Denote \(W = u - \lambda \psi + 2\varepsilon \lambda^2 \psi_\varepsilon \). Adding (2.7) and (2.8) yields
\[
W_t + U_0 W_x - \lambda^{-1}(u - \lambda \psi)_x = 2\varepsilon u^0_x - \theta_u^\varepsilon + \lambda \theta_\psi^\varepsilon - 2\varepsilon \lambda^2 \theta_{u\psi}^\varepsilon =: 2\varepsilon u^0_x + F^\varepsilon.
\tag{2.9}
\]
Multiplying (2.9) by \(W\), integrating over \((0, L) \times (0, t)\) and using (2.6), we have

\[
\frac{1}{2} \int_0^L W^2 dx + \frac{\lambda}{2} \int_0^t W^2 |_{x=L} ds + 2\varepsilon\lambda^2 \int_0^t \int_0^L \psi_x^2 dxds
\]

\[
= \frac{1}{2} \int_0^L W^2 |_{x=0} ds + \frac{\lambda}{2} \int_0^t W^2 |_{x=0} ds + \frac{1}{2\lambda} \int_0^t (u - \lambda \psi)^2 |_{x=0} ds
\]

\[
+ 2\varepsilon\lambda \int_0^t \int_0^L u_x \psi_x dxds + \int_0^t \int_0^L (2\varepsilon u_x^0 + F^\varepsilon) W dxds
\]

\[
= \frac{\lambda}{2} \int_0^t \psi^2 |_{x=L} ds + 2\varepsilon^2 \lambda \int_0^t \psi_x^2 |_{x=0} ds + 2\varepsilon\lambda \int_0^t \int_0^L u_x \psi_x dxds
\]

\[
+ \int_0^t \int_0^L 2\varepsilon u_x^0 W dxds + \int_0^t \int_0^L F^\varepsilon (u - \lambda \psi) dxds + 2\varepsilon \lambda \int_0^t \int_0^L F^\varepsilon \psi_x dxds
\]

\[
= \frac{\lambda}{2} \int_0^t \psi^2 |_{x=L} ds + \sum_{i=1}^5 E_i.
\]

Using the Hardy inequality (cf. [15]) and noticing (2.6), we obtain

\[
\int_0^L \frac{u_x^2}{x^2} dx \leq 4 \int_0^L u_x^2 dx, \quad \int_0^L \frac{\psi_x^2}{x^2} dx \leq 4 \int_0^L \psi_x^2 dx.
\]

By Lemma 2.1, we have

\[
\|F^\varepsilon\|_{L^\infty(0, T; L^2(0, L))}^2 \leq C\varepsilon, \quad \|xF^\varepsilon\|_{L^2(0, T; L^2(0, L))}^2 \leq C\varepsilon^3.
\]

Applying the Young inequality, (2.12) and (2.11), we deduce that

\[
E_4 \leq \frac{C}{\varepsilon} \|xF^\varepsilon\|_{L^2((0, T) \times (0, L))}^2 + \varepsilon \frac{1}{32} \int_0^t \int_0^L \frac{(u - \lambda \psi)^2}{x^2} dxds
\]

\[
\leq C\varepsilon^2 + \frac{\varepsilon}{4} \int_0^t \int_0^L (u_x^2 + \lambda^2 \psi_x^2) dxds,
\]

and

\[
E_5 \leq C\varepsilon^2 + \frac{\varepsilon \lambda^2}{4} \int_0^t \int_0^L \psi_x^2 dxds.
\]

Using (2.5), we have \(\psi_x |_{x=0} = -\frac{\lambda}{\lambda_0} - 2 u_x |_{x=0} - \frac{\lambda}{\lambda_0} \theta_{\psi} |_{x=0}\). Noticing \(\psi_x^0(0, t) \in L^\infty(0, T)\) (see the proof of Lemma 2.1), we have

\[
E_1 \leq C\varepsilon^2 + \frac{4\varepsilon^2}{\lambda_0} \int_0^t u_x^2(0, s) ds.
\]

Since \(u(0, t) = u(L, t) = 0\), there exists some \(\xi = \xi_t \in (0, L)\) such that \(u_x(\xi, t) = 0\), thus,

\[
u_x^2(0, t) = -\int_0^\xi (u_x^2)_x dx.\]

Substituting it into (2.13) and using the Young inequality, we obtain

\[
E_1 \leq C\varepsilon^2 + \frac{8\varepsilon^2}{\lambda_0} \int_0^t \int_0^L |u_x u_{xx}| dxds
\]

\[
\leq C\varepsilon^2 + \frac{64\varepsilon \lambda^2}{\lambda_0^2} \int_0^t \int_0^L u_x^2 dxds + \frac{\varepsilon \lambda^2}{4} \int_0^t \int_0^L u_x^2 dxds.
\]
Using \(u_{xx}^0 \in L^\infty(0, T; L^2(0, L)) \) and Lemma 2.1, we derive from (2.5) that

\[
\int_0^t \int_0^L (4\varepsilon^2 u_{xx}^2 + u_t^2) dx ds + 2\varepsilon \int_0^t u_x^2 dx = \int_0^t \int_0^L (u_t - 2\varepsilon u_{xx})^2 dx ds
\]

(2.17)

\[
\leq C\varepsilon + 4U_0^2 \int_0^t \int_0^L u_x^2 dx ds + 4 \int_0^t \int_0^L \psi_x^2 dx ds
\]

consequently,

\[
\varepsilon^2 \int_0^t \int_0^L u_{xx}^2 dx ds \leq C\varepsilon + \frac{64}{U_0^2\lambda^2} + \frac{U_0^2\lambda^2}{4} \varepsilon \int_0^t \int_0^L u_x^2 dx ds + \frac{\varepsilon \lambda^2}{4} \int_0^t \int_0^L \psi_x^2 dx ds.
\]

(2.18)

Substituting (2.18) into (2.16) yields

\[
E_1 \leq C\varepsilon^2 + \frac{(64 + U_0^2\lambda^2)}{(U_0^2\lambda^2 + 4)} \varepsilon \int_0^t \int_0^L u_x^2 dx ds + \frac{\varepsilon \lambda^2}{4} \int_0^t \int_0^L \psi_x^2 dx ds.
\]

(2.19)

By the Young inequality, we have

\[
E_2 + E_3 \leq C\varepsilon^2 + \frac{1}{2} \int_0^t \int_0^L W^2 dx ds + 4\varepsilon \int_0^t \int_0^L u_x^2 dx ds + \frac{\varepsilon \lambda^2}{4} \int_0^t \int_0^L \psi_x^2 dx ds.
\]

(2.20)

Plugging (2.13), (2.14), (2.19) and (2.20) into (2.10), we obtain

\[
\frac{1}{2} \int_0^t \int_0^L W^2 dx + \varepsilon \lambda^2 \int_0^t \int_0^L \psi_x^2 dx ds
\]

\[
\leq C\varepsilon^2 + \frac{\lambda}{2} \int_0^t \frac{\psi^2}{x=L} ds + C_0\varepsilon \int_0^t \int_0^L u_x^2 dx ds + \frac{1}{2} \int_0^t \int_0^L W^2 dx ds,
\]

(2.21)

where \(C_0 = \frac{17}{4} + \frac{64}{U_0^2\lambda^2} + \frac{U_0^2\lambda^2}{4} \).

On the other hand, multiplying (2.5) by \(2\varepsilon u_{xx}^0 \) and \(2\varepsilon^2 \psi \) respectively, integrating over \((0, L) \times (0, t)\), using (2.6) and (2.11), and performing a similar argument to (2.13), we obtain

\[
\int_0^L (u^2 + \lambda^2 \psi^2) dx + U_0\lambda^2 \int_0^t \psi^2 \big|_{x=L} ds + 4\varepsilon \int_0^t \int_0^L u_x^2 dx ds
\]

\[
= 2 \int_0^t \int_0^L (2\varepsilon u_{xx}^0 - \theta \psi u - \lambda^2 \theta \psi \psi) dx ds
\]

\[
\leq C\varepsilon^2 + C \int_0^t \int_0^L u_x^2 dx ds + 2\varepsilon \int_0^t \int_0^L u_x^2 dx ds + \frac{\varepsilon \lambda^2}{2(C_0 + 1/(2U_0))} \int_0^t \int_0^L \psi_x^2 dx ds.
\]

Hence,

\[
\int_0^L (u^2 + \lambda^2 \psi^2) dx + U_0\lambda^2 \int_0^t \psi^2 \big|_{x=L} ds + 2\varepsilon \int_0^t \int_0^L u_x^2 dx ds
\]

\[
\leq C\varepsilon^2 + C \int_0^t \int_0^L u_x^2 dx ds + \frac{\varepsilon \lambda^2}{2(C_0 + 1/(2U_0))} \int_0^t \int_0^L \psi_x^2 dx ds.
\]

(2.23)
Multiplying (2.23) by $C_0 + 1/(2\lambda U_0)$ and adding the resulting equations to (2.21), we have
\[
\frac{1}{2} \int_0^L W^2 dx + C_0 \int_0^L (u^2 + \lambda^2 \psi^2) dx + \varepsilon \int_0^T \int_0^L \left(\frac{\lambda^2}{2} \psi_x^2 + C_0 u_x^2\right) dx ds \\
\leq C\varepsilon^2 + C \int_0^T \int_0^L (u^2 + W^2) dx ds.
\]
Then, the Gronwall inequality gives
\[
\sup_{0 < t < T} \int_0^L (W^2 + u^2 + \psi^2) dx + \varepsilon \int_0^T \int_0^L (\psi_x^2 + u_x^2) dx ds \leq C\varepsilon^2.
\tag{2.24}
\]
Recalling (2.17) and $W = u - \lambda \psi + 2\varepsilon \lambda^2 \psi_x$ and using (2.24), we deduce that
\[
\sup_{0 < t < T} \int_0^L (u_x^2 + \psi_x^2) dx \leq C.
\tag{2.25}
\]
Thanks to $u(0, t) = 0$, we have $u^2(x, t) = \int_0^x (u^2)_x dx$. Then, using the Hölder inequality, (2.24) and (2.25), we obtain
\[
u^2(x, t) \leq 2 \left(\int_0^L u^2 dx \int_0^L u_x^2 dx \right)^{1/2} \leq C\varepsilon,
\]
thus, $\|U^\varepsilon\|_{L^\infty(0,T;L^\infty(0,L))} \leq C\varepsilon^{1/2}$. Similarly, $\|\Psi^\varepsilon\|_{L^\infty(0,T;L^\infty(0,L))} \leq C\varepsilon^{1/2}$. The proof of Theorem 1.1 is completed.

3 Remarks on Regularity of Solutions

By the Hille-Yosida theorem, the authors in [39] proved the following results on existence and uniqueness of both problem (1.1)-(1.2) and problem (1.3)-(1.4):

(i) If $(f, g) \in L^1(0, T; H), (u_0, \psi_0) \in D(A)$, and (f, g) is continuous in H at $t = 0$, then for every $\varepsilon > 0$ problem (1.1)-(1.2) admits a unique solution $(u^\varepsilon, \psi^\varepsilon)$ in $F = C([0, T]; H) \cap L^\infty(0, T; D(A))$ with $(u_t^\varepsilon, \psi_t^\varepsilon) \in L^\infty(0, T; H)$, where $H = L^2(0, L) \times L^2(0, L)$ and $D(A) = \{(u, \psi) \in \mathcal{H}| u_x, \psi_x, u_{xx} \in L^2(0, L), u(0) = \psi(0) = u(L) = 0\}$.

(ii) If $(f, g) \in L^1(0, T; H)$ and $(u_0, \psi_0) \in D(A^0)$, then problem (1.1)-(1.2) admits a unique solution $(u_0^0, \psi_0^0) \in \mathcal{F}^0 = C([0, T]; H) \cap L^\infty(0, T; D(A^0))$ with $(u_t^0, \psi_t^0) \in L^\infty(0, T; H)$, where $D(A^0) = \{(u, \psi) \in \mathcal{H}| u_x, \psi_x \in L^2(0, L), u(0) + \Upsilon_0 \lambda^2 \psi(0) = 0, u(L) = 0\}$.

To get $(u^\varepsilon, \psi^\varepsilon) \in \mathcal{K}$, where
\[
\mathcal{K} = \{(u, \psi) \in \mathcal{F}| u_{xx} \in L^\infty(0, T; L^2(0, L)), (u_t, \psi_t) \in C([0, T]; H)\},
\]
some additional conditions on f, g, u_0, ψ_0 must be imposed, for example, the following conditions: $(f_t, g_t) \in L^1(0, T; H), (u_0, \psi_0) \in D(A) \cap (H^4(0, L) \times H^3(0, L)), (f_t, g_t)$ is continuous in H at $t = 0$, and
\[
\left\{
\begin{aligned}
u_{0xx}(0) &= u_{0xx}(L) = 0, \\
U_0 u_{0x}(0) + \psi_{0x}(0) &= f(0, 0), \\
U_0 u_{0x}(L) + \psi_{0x}(L) &= f(L, 0), \\
\right.
\end{aligned}
\right.
\tag{3.1}
\]
Indeed, we observe by differentiating the equations in (1.1) with respect to t that $(u_t^\varepsilon, \psi_t^\varepsilon)$ satisfies (1.1) with (f_t, g_t) instead of (f, g) and the initial condition $(u_t^\varepsilon|_{t=0}, \psi_t^\varepsilon|_{t=0}) = (f(x, 0) -$
\[\mathcal{U}_0 u_{0x} - \psi_{0x} + 2 \varepsilon u_{0xx} - g(x,0) - \mathcal{U}_0 \psi_{0x} - \lambda^{-2} u_{0x} \]. From the above assumptions, we find that \((u^\varepsilon_t|_{t=0}, \psi^\varepsilon_t|_{t=0}) \in D(A)\). Thus, by a similar argument to (i), one has \((u^\varepsilon, \psi^\varepsilon) \in C([0,T]; H) \cap L^\infty(0,T; D(A))\) and then, one deduces from (1.1) that \(\psi^\varepsilon_x \in L^\infty(0,T; H^1(0,L))\) if \(g_x \in L^\infty(0,T; L^2(0,L))\). Consequently, \((u^\varepsilon, \psi^\varepsilon) \in \mathcal{K}\).

To get \((u^0, \psi^0) \in \mathcal{K}^0\), where

\[
\mathcal{K}^0 = \{ (u, \psi) \in \mathcal{F}^0 | \psi_{xt}, u_{xx}, \psi_{xx} \in L^\infty(0,T; L^2(0,L)), (u_t, \psi_t) \in C([0,T]; H) \},
\]

we observe that under \([3]\), \(f, g, u_0, \psi_0\) satisfy the compatibility conditions (1.72) of \([3]\). Consequently, if in addition we assume that \((f_x, g_x) \in L^\infty(0,T; H)\) and \(u_{0xx}, \psi_{0xx}, f_t|_{t=0}, g_t|_{t=0} \in L^2(0,L)\), then \((u^0, \psi^0) \in \mathcal{K}^0\), see \([3\) Remark 1.4] for the detail.

Acknowledgments

The research was supported by the NSFC (11571062, 11571380), the Program for Liaoning Innovative Talents in University (LR2016004), Guangzhou Science and Technology Program (201607010144) and the Fundamental Research Fund for the Central Universities (DMU).

References

[1] R. Temam and J. Tribbia, Open boundary conditions for the primitive and Boussinesq equations, J. Atmospheric Sci. 60 (2003) 2647-2660.

[2] A. Rousseau, R. Temam and J. Tribbia, Boundary layers in an ocean related system, Journal of Scientific Computing 21(3)(2004) 405-432.

[3] A. Rousseau, R. Temam and J. Tribbia, Boundary conditions for an ocean related system with a small parameter, in nonlinear partial differential equations and related analysis, Contemp. Math. 371 (2005) 231-263.

[4] J. Pedlosky, Geophysical Fluid Dynamics, 2ed, Springer-Verlag, New York, 1987.

[5] W. M. Washington and C. L. Parkinson, An Introduction to Three Dimensional Climate Modeling, Oxford University Press, Oxford, 1986.

[6] J. L. Lions, R. Temam and S. Wang, New formulations of the primitive equations of the atmosphere and applications, Nonlinearity 5 (1992) 237-288.

[7] J. L. Lions, R. Temam and S. Wang, On the equations of the large-scale ocean, Nonlinearity 5 (1992) 1007-1053.

[8] C. Cao and E. S. Titi, Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics, Ann. of Math. 166 (2007) 245-267.

[9] J. Li and E. S. Titi, Recent advances concerning certain class of geophysical flows, in Handbook of Mathematical Analysis in Mechanics of Viscous Fluids, Springer, 2016.

[10] J. Oliger and A. Sundström. Theoretical and practical aspects of some initial boundary value problems in fluid dynamics, SIAM J. Appl. Math. 35(3)(1978) 419-446.
[11] M. Hamouda, C. Y. Jung and R. Temam, Boundary layers for the 2D linearized primitive equations, Commun. Pure Appl. Anal. 8(1)(2009) 335-359.

[12] M. Hamouda, C. Y. Jung and R. Temam, Boundary layers for the 3D primitive equations in a cube: The supercritical modes, Nonlinear Anal. TMA 132 (2016) 288-317.

[13] M. Hamouda, C. Y. Jung and R. Temam, Asymptotic analysis for the 3D primitive equations in a channel, Discrete Contin. Dyn. Syst. Ser. 6(2)(2013) 401-422.

[14] M. Hamouda, D. Z. Han, C. Y. Jung, K. Tawri and R. Temam, Boundary layers for the subcritical modes of the 3D primitive equations in a cube, J. Differential Equations (2019), https://doi.org/10.1016/j.jde.2019.01.005.

[15] H. Brezis and M. Marcus, Hardy’s inequalities revisited, Ann. Scuola Norm. Pisa 25 (1997) 217-237.