THE PHOTOMETRIC CLASSIFICATION SERVER FOR Pan-STARRS1

R. P. Saglia1, 2, J. L. Tonry3, R. Bender1, 2, N. Greisel2, S. Seitz1, 2, R. Senger1, J. Snigula1, S. Phleps1, D. Wilman1, C. A. L. Bailier-Jones4, R. J. Klement4, 5, H.-W. Rix4, K. Smith4, P. J. Green6, W. S. Burgett3, K. C. Chambers3, J. N. Heasley3, N. Kaiser3, E. A. Magnier3, J. S. Morgan3, P. A. Price3, C. W. Stubbs6, and R. J. Wainscoat3

1 Max Planck Institute for Extraterrestrial Physics, Giessenbachstrasse, Postfach 1312, 85741 Garching, Germany
2 University Observatory Munich, Ludwig-Maximilians Universitaet, Scheinerstrasse 1, 81679 Munich, Germany
3 Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822, USA
4 Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg, Germany
5 Department of Radiation Oncology, University of Würzburg, D-97080 Würzburg, Germany
6 Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA
7 Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544, USA

Received 2011 September 23; accepted 2011 November 28; published 2012 February 1

ABSTRACT

The Pan-STARRS1 survey is obtaining multi-epoch imaging in five bands ($g_{p1}/r_{p1}/i_{p1}/z_{p1}/y_{p1}$) over the entire sky north of declination -30 deg. We describe here the implementation of the Photometric Classification Server (PCS) for Pan-STARRS1. PCS will allow the automatic classification of objects into star/galaxy/quasar classes based on colors and the measurement of photometric redshifts for extragalactic objects, and will constrain stellar parameters for stellar objects, working at the catalog level. We present tests of the system based on high signal-to-noise photometry derived from the Medium-Deep Fields of Pan-STARRS1, using available spectroscopic surveys as training and/or verification sets. We show that the Pan-STARRS1 photometry delivers classifications and photometric redshifts as good as the Sloan Digital Sky Survey (SDSS) photometry to the same magnitude limits. In particular, our preliminary results, based on this relatively limited data set down to the SDSS spectroscopic limits, and therefore potentially improvable, show that stars are correctly classified as such in 85% of cases, galaxies in 97%, and QSOs in 84%. False positives are less than 1% for galaxies, \approx19% for stars, and \approx28% for QSOs. Moreover, photometric redshifts for 1000 luminous red galaxies up to redshift 0.5 are determined to 2.4% precision (defined as $1.48 \times \text{Median} |\Delta z/\text{spec}|/(1+z))$ with just 0.4% catastrophic outliers and small ($\approx 0.5\%$) residual bias. For bluer galaxies up to the same redshift, the residual bias (on average $\approx 0.5\%$) trend, percentage of catastrophic failures ($\approx 1.2\%$), and precision ($\approx 4.2\%$) are higher, but still interestingly small for many science applications. Good photometric redshifts (to 5%) can be obtained for at most 60% of the QSOs of the sample. PCS will create a value-added catalog with classifications and photometric redshifts for eventually many millions of sources.

Key words: galaxies: active – galaxies: distances and redshifts – stars: general – surveys

1. INTRODUCTION

Pan-STARRS1, the prototype of the Panoramic Survey Telescope and Rapid Response System, started scientific survey operations in 2010 May and is producing a five-band ($g_{p1}/r_{p1}/i_{p1}/z_{p1}/y_{p1}$) imaging for 3/4 of the sky that will be \approx1 mag deeper than the Sloan Digital Sky Survey (SDSS; York et al. 2000; Abazajian et al. 2009) at the end of the foreseen three years of operations. Approximately 200 million galaxies, a similar number of stars, about a million quasars, and ≈ 7000 Type Ia supernovae will be detected. In addition to the search for the so-called killer asteroids, the science cases driving Pan-STARRS1 are both galactic and extragalactic. Extragalactic goals range from Baryonic Acoustic Oscillations and growth of structure, to weak shear, galaxy–galaxy lensing, and lensing tomography. All rely on the determination of accurate photometric redshifts for extremely large numbers of galaxies. The galactic science cases focus on the search for very cool stars and the structure of the Milky Way, requiring good star/galaxy (photometric) classification and constraints on stellar parameters. Further science goals, such as the detection of high-redshift quasars and galaxies, quasar/quasar and quasar/galaxy clustering, or the study of how galaxies evolve with cosmic time profit from the availability of good photometric redshifts and star/galaxy photometric classification. Therefore, in the last few years we have designed (Saglia 2008; Snigula et al. 2009) and implemented the Photometric Classification Server (PCS) for Pan-STARRS1 to derive and administrate photometric redshift estimates and probability distributions, star/galaxy classification, and stellar parameters for extremely large data sets. The present paper describes the system and its performances in various tests.

The structure of the paper is as follows. The Pan-STARRS1 system is sketched out in Section 2, the observations we used are described in Section 3, and data processing is outlined in Section 4. Section 5 presents the PCS system, its algorithms and components, and the implementation. Section 6 discusses the tests of the system, which is followed by our conclusions in Section 7.

2. THE PAN-STARRS1 TELESCOPE, CAMERA, AND IMAGE PROCESSING

The Pan-STARRS1 system is a high-etendue wide-field imaging system, designed for dedicated survey operations. The system is installed on the peak of Haleakala on the island of Maui in the Hawaiian island chain. Routine observations are conducted remotely from the Advanced Technology Research Center in Pukalani. We provide below a terse summary of the Pan-STARRS1 survey instrumentation. A more complete description of the Pan-STARRS1 system, both hardware and software, is provided by Kaiser et al. (2010). The survey philosophy and execution strategy are described by K. C. Chambers et al. (in preparation).
The Pan-STARRS1 optical design (Hodapp et al. 2004) uses a 1.8 m diameter primary mirror and a 0.9 m secondary. The resulting converging beam then passes through two refractive correctors, a 48 cm × 48 cm interference filter, and a final refractive corrector that is the dewar window. The entire optical system delivers an f/4.4 beam and an image with a diameter of 3.3 deg with low distortion. The Pan-STARRS1 imager (Tonry & Onaka 2009) comprises a total of 60 detectors, with 4800 × 4800 10 μm pixels that each subtend 0.258 arcsec. The detectors are back-illuminated CCDs, manufactured by Lincoln Laboratory, and read out using a StarGrasp CCD controller, with a readout time of 7 s for a full unbinned image. Initial performance assessments are presented by Onaka et al. (2008).

The Pan-STARRS1 observations are obtained through a set of five broadband filters, which we have designated as gP1, rP1, iP1, zP1, and yP1. Under certain circumstances Pan-STARRS1 observations are obtained with a sixth, “wide” filter designated as wP1 that essentially spans gP1, rP1, and iP1. Although the filter system for Pan-STARRS1 has much in common with those used in previous surveys, such as the SDSS, there are important differences. The gP1 filter extends 20 nm redward of gSDSS, paying the price of 5577 Å sky emission for greater sensitivity and lower systematics for photometric redshifts, and the zP1 filter is cut off at 930 nm, giving it a different response from zSDSS. SDSS has no corresponding yP1 filter, while Pan-STARRS1 is lacking u-band photometry that SDSS provides. Further information on the passband shapes is described in Stubbs et al. (2010). Provisional response functions (including 1.3 airmasses of atmosphere) are available at the project’s Web site.8 Photometry is in the “natural” Pan-STARRS1 system, \(m = -2.5 \log(\text{flux}) + m^\prime \), with a single zero-point adjustment \(m^\prime \) made in each band to conform to the AB magnitude scale (J. L. Tonry et al., in preparation). Pan-STARRS1 magnitudes are interpreted as being at the top of the atmosphere, with 1.3 airmasses of atmospheric attenuation being included in the system response function. No correction for Galactic extinction is applied to the Pan-STARRS1 magnitudes. We stress that, like SDSS, Pan-STARRS1 uses the AB photometric system and there is no arbitrariness in the definition. Flux representations are limited only by how accurately we know the system response function versus wavelength.

Images obtained by the Pan-STARRS1 system are processed through the Image Processing Pipeline (IPP; Magnier 2006), on a computer cluster at the Maui High Performance Computer Center. The pipeline runs the images through a succession of stages, including flat fielding (“de-trending”), a flux-conserving warping to a sky-based image plane, masking and artifact removal, and object detection and photometry. The IPP also performs image subtraction to allow for the prompt detection of variables and transient phenomena. Mask and variance arrays are carried forward at each stage of IPP processing. Photometric and astrometric measurements performed by the IPP system are described in Magnier (2007) and Magnier et al. (2008), respectively.

Table 1 lists the typical Medium-Deep cadence of observations. The IPP software running SExtractor (Bertin & Arnoux 1996) on each stacked image from a dome screen in combination with an illumination correction obtained by rastering sources across the field of view. Bad pixel masks were applied, and carried forward for use at the masking stage. After determining an initial astrometric solution, the flat-fielded images were then warped onto the tangent plane of the sky, using a flux-conserving algorithm. The plate scale for the warped images is 0.200 arcsec pixel\(^{-1}\). The IPP software for stacking and photometry is still being optimized. Therefore, for this paper we generate stacks using customized software from one of us (J.T.) and produce aperture photometry catalogs running SExtractor (Bertin & Arnoux 1996) on each stacked image independently. At a second stage, we match the catalogs requiring a detection in each band within a 1 arcsec radius. For simplicity, we use a rather large aperture radius (7.4 arcsec) for our photometry and we do not apply any seeing correction, even if for some of the Medium-Deep Fields slight variations in the FWHM between the filters are observed (see Table 2). In the production mode of operations, IPP will provide stacks with homogenized point-spread function (PSF), where forced photometry will be performed at each point where a detection in one of the unconvolved stacks is reported. The catalogs will be ingested in the Published Science Products Subsystem (PSPS; Heasley 2008), the database that will serve the scientific community with the final Pan-STARRS1 products. Note that at present PCS uses fluxes and flux ratios, but no morphological information such as spatial extent or shape.

Table 1

Field	Alternative Names	R.A. (deg, J2000)	Decl. (deg, J2000)
MD01	M01, PS1-MD01	35.875	4.250
MD02	M02, PS1-MD02	53.100	-27.800
MD03	M03, PS1-MD03	130.592	44.317
MD04	M04, PS1-MD04	150.000	2.200
MD05	M05, PS1-MD05	161.917	58.083
MD06	M06, PS1-MD06	185.000	47.117
MD07	M07, PS1-MD07	213.704	53.083
MD08	M08, PS1-MD08	242.787	54.950
MD09	M09, PS1-MD09	334.188	0.283
MD10	M10, PS1-MD10	352.312	-0.433

8 http://svn.pan-starrs.ifa.hawaii.edu/trac/ipp/wiki/PS1_Photometric_System
5. THE PCS SYSTEM

The science projects described in Section 1 define broadly the requirements for the PCS. It should provide software tools to compute (1) photometric, color-based star/QSO/galaxy classification (i.e., morphological classifiers based on sizes and shapes are not part of PCS, even if this additional information could and probably will be added in the future), and (2) best-fitting spectral energy distribution (SED) and photometric redshifts (photo-z) with errors for (reddish) galaxies. Furthermore, (3) (a subset of the stellar parameters) best-fitting temperature, metallicity, gravity, and interstellar extinction with errors for (hot and cool) stars should be provided. The codes should be interfaced to the PSPS database and to the dataserver requirements for the PCS. It should provide software tools to handle, or data mining, techniques to handle this data volume. There is therefore a need for automated data handling, or data mining, techniques to handle this data volume. Automated source classifiers based on photometric observations can provide class labels for catalogs, or be used to recover objects for further study according to various criteria.

The SDSS used a selection of algorithms to classify catalog objects and select follow-up targets (Adelman-McCarthy et al. 2006). Methods based on color selection were particularly employed for finding probable quasars (Richards et al. 2002). More recently, Gao et al. (2008) and Richards et al. (2009a, 2009b) have used kernel density estimators for quasar selection in SDSS data. Galaxy classification is usually primarily based on detecting source extension by comparing PSF magnitudes with magnitudes based on various profile models. For examples of Galaxy classification, see Vasconcellos et al. (2011) who used decision trees for star–galaxy separation in SDSS, or Henrion et al. (2011), who used a Bayesian method for star–galaxy separation in SDSS and UKIDSS. Tzalmantza et al. (2007, 2009) have developed a test library and selection methods for identifying galaxies in the forthcoming Gaia mission.

Lee et al. (2008) identified various stellar populations for follow-up in the SEGUE survey from SDSS photometry. Other attempts to identify stellar populations from photometric data include Smith et al. (2010), who investigated the use of several

Table 2

Pan-STARRS1 MDF Statistics, 2009 April–2011 April

Field	Filter	N	$\log t$	PSF	m_{lim}	Field	Filter	N	$\log t$	PSF	m_{lim}
MDF01	g_p	42	4.7	1.25	1.55	MDF06	g_p	38	4.6	1.25	1.56
MDF01	r_p	42	4.7	1.15	1.35	MDF06	r_p	39	4.6	1.18	1.45
MDF01	i_p	41	4.9	1.05	1.27	MDF06	i_p	41	4.9	1.14	1.39
MDF01	z_p	41	4.9	1.03	1.24	MDF06	z_p	38	4.9	1.05	1.30
MDF01	y_p	21	4.6	0.95	1.17	MDF06	y_p	24	4.7	1.00	1.25
MDF02	g_p	30	4.5	1.31	1.79	MDF07	g_p	36	4.5	1.23	1.68
MDF02	r_p	29	4.5	1.20	1.74	MDF07	r_p	39	4.5	1.13	1.46
MDF02	i_p	30	4.8	1.11	1.50	MDF07	i_p	39	4.9	1.14	1.44
MDF02	z_p	33	4.8	1.06	1.30	MDF07	z_p	43	4.9	1.08	1.37
MDF02	y_p	16	4.5	1.14	1.42	MDF07	y_p	30	4.8	1.01	1.28
MDF03	g_p	38	4.6	1.18	1.44	MDF08	g_p	38	4.5	1.27	1.68
MDF03	r_p	37	4.6	1.09	1.28	MDF08	r_p	38	4.5	1.14	1.47
MDF03	i_p	41	4.9	1.06	1.31	MDF08	i_p	33	4.8	1.07	1.34
MDF03	z_p	42	5.0	1.03	1.27	MDF08	z_p	40	4.9	1.09	1.39
MDF03	y_p	20	4.6	1.00	1.36	MDF08	y_p	32	4.9	0.98	1.27
MDF04	g_p	35	4.6	1.17	1.52	MDF09	g_p	34	4.5	1.26	1.55
MDF04	r_p	37	4.6	1.09	1.46	MDF09	r_p	33	4.5	1.15	1.42
MDF04	i_p	35	4.9	1.07	1.35	MDF09	i_p	34	4.8	1.02	1.36
MDF04	z_p	28	4.8	1.03	1.32	MDF09	z_p	34	4.8	1.02	1.26
MDF04	y_p	8	4.3	1.03	1.21	MDF09	y_p	12	4.3	0.94	1.12
MDF05	g_p	42	4.6	1.24	1.58	MDF10	g_p	30	4.5	1.26	1.60
MDF05	r_p	40	4.6	1.17	1.46	MDF10	r_p	33	4.5	1.18	1.53
MDF05	i_p	34	4.8	1.06	1.44	MDF10	i_p	30	4.8	1.01	1.31
MDF05	z_p	27	4.8	0.99	1.27	MDF10	z_p	28	4.8	1.03	1.24
MDF05	y_p	17	4.6	1.02	1.33	MDF10	y_p	11	4.4	0.96	1.22

Notes. N is the number of nights of observation, $\log t$ is the \log_{10} of the net exposure time in seconds, “PSF” is the DoPhot FWHM of the core–skirt PSF in the stack–stacks, (w) is the median IPP FWHM of the observations, and m_{lim} is the 5σ detection limit for point sources.
automated classifiers on SDSS data to identify BHB stars, and Klement et al. (2011) who used a support vector machine (SVM) to separate field giants from dwarfs using photometric data from a range of surveys. Marengo & Sanchez (2009) used a kNN technique to search for brown dwarfs in Spitzer data.

Finally, it should be mentioned that there is a whole industry of finding ways to classify various types of variable objects based on their photometric light curves. See, for example, Dubath et al. (2011) for classification of various stellar types with a random forest method, or Schmidt et al. (2010) who developed a method for separating quasars from variable stars based on a structure function.

The Pan-STARRS1 Discrete Source Classifier (PanDiSC) used here is based on an SVM, a statistical learning algorithm. SVM works by learning a nonlinear boundary to optimally separate two or more classes of objects. Here, it takes as input the four Pan-STARRS1 $g_p−r_p, r_p−i_p, i_p−z_p,$ and $z_p−y_p$ colors. PanDiSC is based on the Discrete Source Classifier under development for the purpose of classifying low-resolution spectroscopy from Gaia (Bailer-Jones et al. 2008). The SVM runs in the PanDiSC component of PCS (see Section 5.2). The SVM implementation used is libSvm (Chang & Lin 2011), available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

Probabilities are calculated by modeling the density of data points on either side of the decision boundary, according to the method of Platt (1999), and the multiclass probabilities are obtained by pairwise coupling, as described by Wu et al. (2004). PanDiSC chooses the highest membership probability from the eventual output for each source and assigns the membership to the star/QSO/galaxy class accordingly.

The SVM is trained on a sample of objects with Pan-STARRS1 photometry and spectroscopic classification, to which the parameters γ (the scaling factor) and C (the regularization cost) of the radial basis functions (RBFs) kernel are tuned using a downhill simplex algorithm (Smith 2009). The system has been applied to the SDSS DR6 data set (Elting et al. 2008) producing an excellent confusion matrix (i.e., high accuracy of classification, \geq96%, and low percentage of false positives, \approx29% for the stellar catalog, 0.5% for the galaxy catalog, 10% for the QSO catalog). The code is a compiled Java program.

5.1.2. PhotoZ for PanZ

In the last decade, several efficient codes for the determination of photometric redshifts have been developed, based on either empirical methods or template fitting. In the first case, one tries to parameterize the low-dimensional surface in color–redshift space that galaxies occupy using low-order polynomials, nearest-neighbor searches, or neural networks (Csabai et al. 2003; Collister & Lahav 2004). These codes extract the information directly from the data, given an appropriate training set with spectroscopic information. Template fitting methods work instead with a set of model spectra from observed galaxies and stellar population models (Padmanabhan et al. 2005; Ilbert et al. 2006, 2009; Mobasher et al. 2007; Pello et al. 2009).

The PhotoZ code used in the PanZ component of the PCS system (see Section 5.2) belongs to this last category and is described in Bender et al. (2001). The code estimates redshifts z by comparing T, a set of discrete template SEDs, to the broadband photometry of the (redshifted) galaxies. For each SED, the full redshift posterior probability function including priors for redshift, absolute luminosity, and SED probability is computed using Bayes’ theorem:

$$P(z, T|F, M, \ldots) \propto p(F|z, T)p(z, T|M),$$

where F is the vector of measured fluxes in different bands, M is the galaxy absolute magnitude in the B band (see below), $p(z, T|M)$ is the prior distribution, and $p(F|z, T) \propto \exp(-\chi^2/2)$ is the probability of obtaining a normalized χ^2 for the given data set, redshift, and template T. In detail, we compute χ^2 as

$$\chi^2 = \sum_i \left[\frac{\alpha f_{i,mod}(z) - f_{i,dat}}{\sigma_{i,dat}}\right]^2,$$

where $f_{i,mod}(z)$ and $f_{i,dat}$ are the fluxes at the templates (at the redshift z) and of the data in a filter band i, and $\sigma_{i,dat}$ are the errors on the data. The model weights α quantify the intrinsic uncertainties of the SEDs for the specific filter i; presently they are all set to $\alpha_i = 0.1$. The normalization parameter α is computed by minimizing χ^2 at each choice of parameters.

The priors are (products of) parameterized functions of the type

$$p(y) \propto \exp\left(-\frac{y}{\sigma_y}\right)^p,$$

where the variable y stands for redshift or absolute magnitudes. Typically, we use $n = 0$, $p = 6$ or 8, and γ and σ_y with appropriate values for mean redshifts and ranges, or mean absolute B magnitudes and ranges, which depend on the SED type. The absolute magnitudes of the objects are computed on the fly for the considered rest-frame SED, normalization α, and redshift, using the standard cosmological parameters ($\Omega_m = 0.3, \Lambda = 0.7, H_0 = 70$ Mpc (km s$^{-1}$)$^{-1}$). The use of fluxes $f_{i,dat}$ instead of magnitudes allows us to take into account negative data points and upper limits.

The set of galaxy templates is semi-empirical and can be optimized through an interactive comparison with a spectroscopic data set. The original set (Bender et al. 2001; Gabasch et al. 2004) includes 29 SEDs describing a broad range of galaxy spectral types, from early to late star-bursting objects. Recently, we added a set of SEDs tailored to fit luminous red galaxies (LRGs; Eisenstein et al. 2001; see N. Greis et al., in preparation), and one SED to represent an average QSO spectrum. This was obtained by averaging the low-redshift HST composite of Telfer et al. (2002) and the SDSS median quasar composite of Vanden Berk et al. (2001). Furthermore, the method also fits a set of stellar templates, allowing a star/galaxy classification and an estimate of the line-of-sight extinction for stellar objects. The templates cover typically the wavelength range $\lambda = 900$–25000 Å (with the QSO template covering instead 300–8000 Å) and are sampled with a step typically 10 Å wide (varying from 5 to 20 Å; the QSO SED has $\Delta \lambda = 1$ Å).

The method has been extensively tested and applied to several photometric catalogs with spectroscopic follow-up (Gabasch et al. 2004, 2008; Feulner et al. 2005; F. Brimiouille et al., in preparation). Given a (deep) photometric data set covering the wavelength range from the U to the K band, excellent photometric redshifts with $(z_{\text{phot}} - z_{\text{spec}})/(1 + z) \approx 0.03$ up to $z \approx 5$ with at most a few percent catastrophic failures can be derived for every SED type. With the help of appropriate priors, photometric redshifts accurate to 2% (in $(z_{\text{phot}} - z_{\text{spec}})/(1 + z_{\text{spec}})$) with just 1% outliers (see Section 6 for definitions) are obtained for LRGs using the ugriz SDSS photometric data set (N. Greis et al., in preparation). This is the first time we attempt to
determine the photometric redshifts of QSOs. We couple the available SED to a strong prior in luminosity that dampens its probability as soon as the predicted B-band absolute magnitude is fainter than -24.

The code is in C++. A Fortran version is available as implemented under Astro-WISE (Valentijn et al. 2006; Saglia et al. 2012).

5.2. The Components of PCS

Figure 1 describes schematically the components and data flow of PCS. Each component, or module, is a separate unit of the package with a well-defined operational goal. Following the usual convention, it is indicated by a box with bars (for interfaces and/or processes, from A to F, plus PanZ and PanDiSC) or a cylinder (for a database) in Figure 1. There are four databases: two reside in Hawaii (PSPS, where the primary Pan-STARRS1 catalogs are stored and a subset of the output produced by PCS is copied, and MYDB, where the whole of the PCS output goes). The other two are in Garching: the Master, where configuration files and templates are stored, and the local PS1 DATA, where PCS input and output are stored. Light-blue boxes indicate interfaces to the users and the yellow box to the upper left indicates the IPP system. The arrows in the figure represent links between the components. Their colors code the type of link (red for input, blue for output/results, gray for configuration data, cyan for a trigger). For clarity, the lines joining to the C’, D’, and PanDiSC components are dotted. The paper-like symbols indicate generated data files. The two yellow boxes, “Photometric catalog” and “Photometric Classification Data,” refer to the manual mode of operations (see below).

In the normal batch mode of activities, the interfaces/processes A to F permanently run in the background and react to changes in the PSPS database (A) or the Master database in stand-alone mode. However, parallel manual sessions can be activated where the user is free to use parts or all of the pipeline, adding further photometric or spectroscopic data sets to the local database, changing setups, testing new SEDs and recipes, or defining and using new training sets. Below we first describe the automatic mode of operations and then summarize the manual options.

The starting point is the PSPS database in Hawaii, which is filled with catalog data produced by IPP. The module A periodically checks when new sets of data with all five band fluxes measured are available in PSPS. It copies tables of input data according to selectable input parameters to Garching. The module B detects the output of process A, ingests these data in the local database, and computes for each object the galactic absorption corrections according to the Schlegel et al. (1998) maps. They are applied to the photometry only when computing photometric redshifts. The bare photometry is considered when classifying the objects (in PanDiSC) or when testing the stellar
templates (in PanZ). Once B has finished, the module C and C’ start to prepare PanZ and PanDiSC jobs, respectively, to analyze the newly available data, according to the preset configuration files. The input catalog is split into many suitable chunks to allow the triggered submission of multiple jobs on the parallel queue of the computer cluster (see Section 5.3). Once all the jobs are finished, the modules D and D’ become active. They copy the results of PanZ and PanDiSC, respectively, into the local database, except for the full redshift probability distributions for each object, which are too large to be written in the database directly. They are saved as separate compressed files. At this point, the procedure E is activated. This prepares the data tables for delivery to Hawaii. Finally, the module F signals PSPS in Hawaii, which then uploads them into the PSC MYDB part for delivery to Hawaii. Finally, the module F signals PSPS in Hawaii, which then uploads them into the PSC MYDB part of the PSS database. They can be accessed by the whole Pan-STARRS1 community through the Pan-STARRS1 Science Interface (the light-blue box at the lower right of Figure 1).

As a second mode of operation, the system can work in “manual” mode, where specific data sets can be (re-)analyzed independently of the automatic flow. This is useful in the testing phase, or while considering external data sets, such as the SDSS, or mock catalogs of galaxies (indicated by the yellow box “Photometric catalog” of Figure 1). The output of such manual runs is indicated by the yellow box “Photometric Classification Data” of Figure 1. Many of the tests discussed in this paper have been obtained in “manual” mode. Extensive spectroscopic data sets are available in the local database to allow an efficient cross-correlation with the Pan-STARRS1 objects.

The configuration files, as well as the different modes of operations, can be manipulated through a user-friendly Web interface (the light-blue box at the lower right of Figure 1). This feature, initially developed to ease the life of the current small number of PCS members, makes the system interesting for a possible future public release.

5.3. The Implementation of PCS

The PCS is implemented on the PanSTARRS1 cluster, a 175 node (each with 2.6 GHz, 4 CPUs, and 6 GB memory, for a total of 700 CPUs) Beowulf machine with 180 TB disk space, attached to a PB robotic storing device, mounted at the Max-Planck Rechenzentrum in Garching. The modules described in the previous section are a series of shell scripts, or html/php files, executing php code or SQL commands, or running compiled C++ code. In particular, the input/output interfaces A and F to the PS database make use of SOAP/http calls. The Schlegel maps are queried using the routines available from the Web. The local database is based on MySQL. A set of Python scripts allows the user to automatically generate plots and statistics similar to Figures 4 and 5. Presently, new available photometry is downloaded from the PS database in chunks of four million objects. They are split in blocks of 25,000, each of which is sent as a single job to the parallel queue. These numbers are subject to further optimization. The system allows parallel running of jobs operating on the same data set, but with different recipes.

The performance (in terms of processed objects per second) of the complete system is summarized in Table 3, where the case of a catalog of 1.8 million objects is presented.

The modular structure of the PCS allows implementation of further components, such as alternative photometric redshift codes and the modules to constrain stellar parameters that are under development.

6. PCS TESTS

Several spectroscopic surveys overlap with the Pan-STARRS1 MDFs, providing abundant spectral classifications and redshifts: BOSS (Aihara et al. 2011; MDF1, 4, 9, and 10), CDFS (Vanzella et al. 2006; MDF2), SDSS and SEGUE/SDSS (Eisenstein et al. 2001; Lee et al. 2008; Abazajian et al. 2009; MDF2–10), the 2dF Galaxy Redshift Survey (Colless et al. 2001; MDF4), VVDS (Le Fèvre et al. 2004, 2005; Garilli et al. 2008; MDF1, 7, and 10), and ZCosmos (Lilly et al. 2007; MDF4). Here, we present tests of PanDiSC and PanZ based on the SDSS DR7 data set which provides the largest available homogeneous spectroscopic follow-up of LRGs (selected as DR7 objects with prime-Target = 32 or 96), the objects for which the Pan-STARRS1 filter set suffices to deliver excellent photometric redshifts. Moreover, the SDSS data set comprises a large enough sample of stars and QSOs to allow a global sensible test of the capabilities of PCS. The remaining spectroscopic surveys will be discussed in future Pan-STARRS1 papers dealing with the science applications of the PCS.

Table 4 gives the average galactic reddening of the fields covered by SDSS (the largest value of $E(B-V) = 0.066$ mag is reached in MDF09) and summarizes the numbers of matched objects, typically several hundreds per field, with more than a thousand in MDF4 and a total of 5784. The same table splits them into stars, galaxies, and QSOs. The majority of the matches are galaxies (of which approximately a quarter are red), but numerous (of the order of a hundred) stars and quasars are represented per field. Figure 2 shows the histograms of...
the magnitudes in the Pan-STARRS1 filters (within an aperture of 7.4 arcsec radius) for the SDSS spectroscopically classified (and assumed to be the “truth”) stars, galaxies, and QSOs of the sample. As expected due to the SDSS spectroscopic limits (resulting from the main spectroscopic sample limited at \(r = 17.77 \) and the sparser additional surveys, reaching fainter magnitudes), the galaxy sample peaks around \(g_{P1} \approx 17.5 \), while the QSO sample is \(\approx 1.5 \) mag fainter. The star sample spans a broader range of magnitudes, from \(g_{P1} \approx 16 \) to \(\approx 24 \). Given the achieved depth of the MDFs, photometric data for this sample have very large signal-to-noise and can be used to test the systematic limitations of PCS. In the following, we describe tests performed using both the Pan-STARRS1 and the SDSS photometry to show that the Pan-STARRS1 data set is at least as good as SDSS.

6.1. Star/Galaxy/Quasar Classification

We trained and tested the PanDiSC SVM using a ten-fold cross-validation approach. We divided the sample described in Table 4 with Pan-STARRS1 photometry in 10 partitions, each with 45 stars, 475 galaxies, and 55 QSOs. Note that they span the magnitude ranges shown in Figure 2. We constructed 10 subsets by randomly selecting 55 out of the 475 galaxies. We created 10 training sets by concatenating 9 of the subsets, and tested the PanDiSC SVM on each of the 10 partitions not used in the 10 training sets.

Table 5 shows the results: galaxies are classified correctly in almost 97% of cases, with very small variations from field to field. Stars (one of which having equal probability of being a star, a galaxy, or a QSO, and therefore not considered) and QSOs are recovered on average in \(\approx 84\% \) of cases. Successful star classification goes up to 95% for MDF5, and is as low as 75% for MDF10. Successful QSO classification is at the 87% level in MDF4 and drops to 69% for MDF9. We will investigate the statistical significance and possible cause of these variations with future larger Pan-STARRS1 catalogs.

The relatively poor performance of the stellar classification is driven by early-type stars alone (correctly classified in 80% of cases) and the Pan-STARRS1 filter set. The classification of late-type stars is better, with just 4% of the late stars being wrongly classified as galaxies.

We now look at the fraction of false positives. Only 21 stars and 44 QSOs are classified as galaxies; therefore the galaxy sample defined by PanDiSC is contaminated at the level of 1%. This is not unexpected because the extragalactic MDF number counts are dominated by galaxies. The purity of the star and QSO samples are much worse. There are 38 galaxies and 47 QSOs classified as stars, which results in a 19% contamination of the star catalog defined by PanDiSC. Without the contribution of galaxies, which could be flagged by adding morphological information (i.e., whether the objects are point-like or extended), the contamination (by QSOs) reduces to 10%. Preliminary tests (Klement 2009) show that this development is indeed very promising. There are 47 stars and 107 galaxies classified as QSOs. This means that the QSO catalog defined by PanDiSC is contaminated at the 28% level, without galaxies just 8.5%. Clearly, the situation will be different at lower galactic latitudes, where stars dominate the number counts at these magnitude limits. Overall, the results are not much worse than those reported by Elting et al. (2008). They can be improved when larger Pan-STARRS1 catalogs will be available, by optimizing the probability thresholds for making a classification decision since they depend on the relative distribution of stars, galaxies, and quasars in the training/test data sets used to make the assessment.

Figure 3 presents the Pan-STARRS1 color–color plots with the distributions of stars, galaxies, and quasars of the spectroscopic SDSS data set. Objects that are stars according to the spectroscopic SDSS classification are shown in the left diagrams, objects that are galaxies in the central diagrams, and objects that are QSOs in the right diagrams. Objects classified correctly by PanDiSC are shown in black. Objects wrongly classified as stars by PanDiSC are shown in green, wrongly classified as galaxies in red, and wrongly classified as QSOs in blue. So, a red dot on the left column is a star that PanDiSC classified as a galaxy.

Clearly, misclassifications happen in regions of color space where the different types overlap, where only an additional filter (for example, the \(u \) band) would help discriminate between the populations. In contrast, late-type stars are seldom misclassified thanks to their red colors that divide them well from galaxies and QSOs. Note that the increased scatter in the stellar \(g_{P1} - r_{P1} \) colors at \(r_{P1} - i_{P1} > 1.8 \) is due to stars near or below the \(g_{P1} \) and \(r_{P1} \) magnitude limits of Table 2.

We repeated the same tests based on the ten-fold cross-validation technique using the SDSS Petrosian ugriz.
Table 6
SVM Predictions for Evaluation Set Using the SDSS Petrosian Magnitude ugriz Photometry: The Confusion Matrix (First in Absolute Numbers, and Second in Fractions Normalized to 1) is Given as Fractions Normalized to 1 with True Classes in Rows

True Classes	N_{tot}	Star	Galaxy	Quasar
Star	450	412	23	15
	0.916	0.051	0.033	
Galaxy	4750	99	4525	126
	0.021	0.953	0.026	
Quasar	550	25	15	510
	0.046	0.027	0.927	

6.2. Photometric Redshifts

The Pan-STARRS1 photometric data set misses the u band on the blue side of the SED, and the NIR colors redder than the y band. Therefore, one expects any photometric redshift program to perform best for red galaxies at moderate redshifts (e.g., the LRGs), and to fail especially when blue galaxies at low redshifts are considered. Similarly, late stars are expected to be better recognized than earlier ones. Finally, since at present the PhotoZ program misses SEDs optimized for QSOs, we expect poor performances in these cases.

Figure 4 shows the comparison between spectroscopic and photometric redshifts obtained for the SDSS sample of LRGs, field by field. Figure 5 shows the results for the whole sample. As usual, we define the percentage of catastrophic failures η as the fraction of objects (outliers) for which \(|z_{\text{phot}} - z_{\text{spec}}| > 0.15 \times (1 + z_{\text{spec}})\), the residual bias as the mean of \((z_{\text{phot}} - z_{\text{spec}})/(1 + z_{\text{spec}})\) without the outliers, and the robust error as \(\sigma_z = 1.48 \times \text{Median}|z_{\text{phot}} - z_{\text{spec}}|/(1 + z_{\text{spec}})\) without the outliers. For LRGs, the Pan-STARRS1 photometry allows the determination of photometric redshifts accurate to 2.4% in \(\sigma_z\), with bias smaller than 0.5%, no strong trend with redshift and 0.4% catastrophic outliers (when no QSO SED is allowed). No field-to-field dependences are present.

As expected, the situation is not as satisfactory for non-LRGs. Figure 6 shows that especially at \(z_{\text{spec}} < 0.2\) the residuals are
biased in a systematic way and more than 1% catastrophic outliers are present. Nevertheless, the robust estimate of the scatter remains below 5%.

If we now use for the same galaxies the Petrosian ugriz SDSS photometry, we find the following. The photometric redshifts for LRGs are similarly good (2.6%), but with a higher percentage of outliers. In contrast, the precision (3.7%) and percentage of outliers (1%) are better for blue galaxies, where the presence of the u band helps.

As described in Section 5.1, PanZ also computes the goodness of fits for a number of stellar templates. Therefore, the difference $\chi^2_{\text{star}} - \chi^2_{\text{galaxy}}$ between the χ^2 of the best-fitting stellar SED χ^2_{star} and the best-fitting galaxy SED χ^2_{galaxy} provides a crude galaxy/star classification: if $\chi^2_{\text{star}} - \chi^2_{\text{galaxy}} < 0$, the stellar template is providing a better fit than the galaxy ones and we classify the object as a star. In Figure 7, left (where just for plotting convenience we give $\chi^2_{\text{star}}/\chi^2_{\text{galaxy}}$), we show that requiring $\chi^2_{\text{star}} - \chi^2_{\text{galaxy}} < 0$ (i.e., $\chi^2_{\text{star}}/\chi^2_{\text{galaxy}} < 1$ in the plot) allows us to correctly classify spectroscopically confirmed SDSS stars in 73% of the cases. The percentage of successful classifications grows to 89% if only late-type SDSS stars are considered. The percentage of success is 98% if spectroscopically confirmed SDSS galaxies are considered (Figure 7, right).

Finally, we consider the class of QSOs. Figure 8, left, shows that spectroscopically confirmed SDSS QSOs are classified as
Figure 6. Comparison between spectroscopic and photometric redshifts for the SDSS galaxy sample not classified as LRGs. The magenta points show the five of the six objects for which the QSO SEDs would give the best fit (but a catastrophically poor photometric redshift; two of these cases are visible in red).

QSOs (i.e., are best fit by the QSO SED) in 22% and as galaxies in 50% of the cases. As expected, the photometric redshifts are very poor (Figure 8, right). The QSO SED in the sample is selected as giving the best fit in 22% of the cases, giving the right redshift in 20% of the cases. For an additional 28% where catastrophically wrong redshifts are derived, the QSO SED gives the second best fit and a reasonable redshift. Still, if we allow only the QSO SED to be used, we get a good redshift (≈5% in σ_z) for only 61% of the objects. We are in the process of adding some more QSO SEDs to model better the redshift dependence of QSO evolution. First tests show that only modest improvements can be achieved since we are hitting the intrinsic limitations of the Pan-STARRS1 filter photometry, combined with the well-known difficulties of deriving photometric redshifts for the power-law-like, featureless QSO SEDs (Budavari et al. 2001; Salvato et al. 2011). The addition of the u band certainly improves the results a lot. When we derive photometric redshifts using the SDSS $ugriz$ Petrosian magnitudes, we get a best fit with the QSO SED in 51% of the cases (with a photometric redshift good to 5% in 43% of the cases), and for an additional 19% the QSO SED gives the second best solution with the correct redshift. If we allow only the QSO SED to be used, we get a good redshift (≈5% in σ_z) for 70% of the objects.

Table 7 shows the confusion matrix for PanZ as a star/QSO/galaxy photometric classifier. PanZ performs as well as PanDiSC when classifying galaxies, but is poorer when it comes to stars and QSOs, probably due to a lack of appropriate SED templates. As a consequence, the false positive contamination is higher for stars (53%) and galaxies (8%) classes, but lower (4%) for QSOs, compared to PanDiSC. Finally, it is interesting to note that PanZ biases the classification in a different way than PanDiSC: there are 29 stars and 3 QSOs recognized as such by PanZ but not by PanDiSC.

Finally, Table 8 shows the confusion matrix for PanZ as a star/QSO/galaxy photometric classifier when the SDSS Petrosian $ugriz$ photometry is used. The percentage of correctly

![456 Stars ALL](image1)

![4763 Galaxies ALL](image2)
classified QSOs doubles (but is still not competitive with the results of PanDiSC) to reach 44%, the star classification is slightly improved to 80%, and the success in the galaxy classification is slightly worse (85%). Therefore, the presence of the u band helps in the classification of (blue) stars and quasars, but does not compensate for the absence of the y-band data and of good z-band data for galaxies.

As discussed in Section 6.1, the final assessment of the relative performances of PanDiSC and PanZ as morphological classifiers will be made when larger Pan-STARRS1 catalogs will allow the derivation of optimal probability thresholds.

7. CONCLUSIONS

We presented the PCS of Pan-STARRS1, a database-supported, fully automatized package to classify Pan-STARRS1 objects into stars, galaxies, and quasars based on their Pan-STARRS1 colors and compute the photometric redshifts of extragalactic objects. Using the high signal-to-noise photometric catalogs derived for the Pan-STARRS1 Medium-Deep Fields, we provide preliminary star/QSO/galaxy classifications and demonstrate that excellent photometric redshifts can be derived for the sample of LRGs. Further tuning of our probabilistic classifier with the large Pan-STARRS1 catalogs available in the future will optimize its already nice performances in terms of completeness and purity. Applied to the photometry that the 3π survey is going to deliver, possibly combined with u-band or near-infrared photometry coming from other surveys, this will allow us to build up an unprecedented large sample of LRGs with accurate distances. In a future development of PCS, we will include size and/or morphological information to improve further the object classification, implement the PanSTeP (Pan-STARRS1 Stellar Parametrizer) software to constrain stellar parameters, and enlarge the SED sample to follow LRGs to higher redshifts and possibly improve results for blue galaxies and QSOs. Alternative photometric redshift codes could also be considered. Moreover, the independent classification information coming from PanZ and PanDiSC will be merged and used to iterate on the photometric redshifts by narrowing down the choice of SEDs or deciding which photometry (PSF photometry for point objects versus extended sources photometry for galaxies) is more appropriate for each object.

Facility: PS1 (GPC1)

The Pan-STARRS1 survey has been made possible through contributions of the Institute for Astronomy; the University of Hawaii; the Pan-STARRS Project Office; the Max-Planck Society and its participating institutes; the Max Planck Institute for Astronomy, Heidelberg, and the Max Planck Institute for Extraterrestrial Physics, Garching; The Johns Hopkins University; Durham University; the University of Edinburgh; Queen’s University Belfast; the Harvard-Smithsonian Center for Astrophysics; and the Las Cumbres Observatory Global Telescope Network, Incorporated; the National Central University of Taiwan; and the National Aeronautics and Space Administration under grant no. NNX08AR22G issued through the Planetary Science Division of the NASA Science Mission Directorate. Partial support for this work was provided by National Science Foundation grant AST-1009749.

REFERENCES

Abazajian, K. N., Adelman-McCarthy, J. K., Agüeros, M. A., et al. 2009, ApJS, 182, 543
Adelman-McCarthy, K. S. J., Agüeros, M. A., Allam, S. S., et al. 2006, ApJS, 162, 38
Ahn, H., Allende Prieto, C., An, D., et al. 2011, ApJS, 193, 29
Bailer-Jones, C. A. L., Smith, K. W., Tiede, C., Sordo, R., & Vallenari, A. 2008, MNRAS, 391, 1838
Bender, R., Appenzeller, I., Böhm, A., et al. 2001, in Deep Fields, ed. S. Cristiani, A. Renzini, & R. E. Williams (Berlin: Springer), 96
Berin, E., & Arnoux, S. 1996, A&A, 117, 393
Budavari, T., Csabai, I., Szalay, A. S., et al. 2001, AJ, 122, 1163
Chang, C. C., & Lin, C.-J. 2011, ACM Trans. Intell. Syst. Technol., 2, 7
Colless, M., Dalton, G., Maddox, S., et al. 2001, MNRAS, 328, 1039
Collister, A. A., & Lahav, O. 2004, PASP, 116, 345
Csabai, I., Budavári, T., Connolly, A. J., et al. 2003, AJ, 125, 580
Dubath, P., Rimoldini, L., Säveges, M., et al. 2011, MNRAS, 414, 2602
Eisenstein, D. J., Annis, J., Gunn, J. E., et al. 2001, AJ, 122, 2267
Elting, C., Bailer-Jones, C. A. L., & Smith, K. W. 2008, in AIP Conf. Proc. 1082, Classification and Discovery in Large Astronomical Surveys, ed. C. A. L. Bailer-Jones (Melville, NY: AIP), 9
Feulner, G., Gabasch, A., Salvato, M., et al. 2005, ApJ, 633, L9
Gabasch, A., Bender, R., Seitz, S., et al. 2004, A&A, 421, 41
Gabasch, A., Goranova, Y., Hopp, U., & Pannella, M. 2008, MNRAS, 383, 1319
Gao, D., Zhang, Y.-X., & Zhao, Y.-H. 2008, MNRAS, 386, 1417
Garilli, B., Le Févre, O., Guzzo, L., et al. 2008, A&A, 486, 685
Heasley, J. N. 2008, in AIP Conf. Proc. 1082, Classification and Discovery in Large Astronomical Surveys, ed. C. A. L. Bailer-Jones (Melville, NY: AIP), 352
