Medial Tibial Stress Syndrome in Active Individuals: A Systematic Review and Meta-analysis of Risk Factors

Mark F. Reinking, PT, PhD, SCS, ATC,*† Tricia M. Austin, PT, PhD, ATC,‡ Randy R. Richter, PT, PhD,‡ and Mary M. Krieger, MLIS, RN§

Context: Medial tibial stress syndrome (MTSS) is a common condition in active individuals and presents as diffuse pain along the posteromedial border of the tibia.

Objective: To use cross-sectional, case-control, and cohort studies to identify significant MTSS risk factors.

Data Sources: Bibliographic databases (PubMed, Scopus, CINAHL, SPORTDiscus, EMBASE, EBM Reviews, PEDRo), grey literature, electronic search of full text of journals, manual review of reference lists, and automatically executed PubMed MTSS searches were utilized. All searches were conducted between 2011 and 2015.

Study Selection: Inclusion criteria were determined a priori and included original research with participants' pain diffuse, located in the posterior medial tibial region, and activity related.

Study Design: Systematic review with meta-analysis.

Level of evidence: Level 4.

Data Extraction: Titles and abstracts were reviewed to eliminate citations that did not meet the criteria for inclusion. Study characteristics identified a priori were extracted for data analysis. Statistical heterogeneity was examined using the I² index and Cochran Q test, and a random-effects model was used to calculate the meta-analysis when 2 or more studies examined a risk factor. Two authors independently assessed study quality.

Results: Eighty-three articles met the inclusion criteria, and 22 articles included risk factor data. Of the 27 risk factors that were in 2 or more studies, 5 risk factors showed a significant pooled effect and low statistical heterogeneity, including female sex (odds ratio [OR], 2.35; CI, 1.58-3.50), increased weight (standardized mean difference [SMD], 0.24; CI, 0.03-0.45), higher navicular drop (SMD, 0.44; CI, 0.21-0.67), previous running injury (OR, 2.18; CI, 1.00-4.72), and greater hip external rotation with the hip in flexion (SMD, 0.44; CI, 0.23-0.65). The remaining risk factors had a nonsignificant pooled effect or significant pooled effect with high statistical heterogeneity.

Conclusion: Female sex, increased weight, higher navicular drop, previous running injury, and greater hip external rotation with the hip in flexion are risk factors for the development of MTSS.

Keywords: medial tibial stress syndrome; risk factors; meta-analysis
Nomenclature for MTSS historically has included such terms as shin splints, medial tibial syndrome, tibial stress syndrome, and soleus syndrome. In this systematic review, MTSS was defined as including 3 characteristics: (1) pain along the posteromedial border of the tibia, (2) diffuse pain, and (3) pain that is activity related.

Over the past 2 decades, there has been an increase in obesity prevalence in the United States, with a concomitant increase in associated chronic disease conditions, including type II diabetes, heart disease, and stroke. While the health benefits of physical activity in addressing these conditions are well known, physical activity may result in such overuse conditions as MTSS. The failure to successfully prevent MTSS is a reflection of our limited understanding of the risk factors. The purpose of this systematic review was to identify cross-sectional, case-control, and cohort studies that included MTSS risk data and to use a meta-analysis to identify significant risk factors across those studies.

METHODS

Data Sources and Search Strategy

Between October 2011 and May 2012, searches of electronic and print information sources were conducted to identify all potentially relevant articles. The data sources used in the search are available in the supplementary web materials (see Appendix 1, available at http://sph.sagepub.com/content/suppl). A PubMed search strategy was developed using 3 concepts: (1) the nomenclature used for MTSS, (2) anatomical location of MTSS, and (3) activity related to the development of MTSS, each with relevant medical subject headings (MeSH) and text words. The PubMed strategy was adapted for syntax and controlled vocabulary for the other electronic databases. No restrictions to publication year or language were applied to the searches. All citations were imported into a bibliographic management software program (EndNote; Thomson Reuters). The detailed search strategy for PubMed is located in the supplementary web materials (see Appendix 2, available at http://sph.sagepub.com/content/suppl).

Study Selection

Criteria for study inclusion were established a priori. To be included, studies had to be original research and participants’ pain had to be diffuse, located in the posterior medial tibial region, and activity related. The selection of included studies began with title and abstract review, and irrelevant citations were eliminated. After the title and abstract review, duplicate citations were removed and the full-text articles for potentially relevant citations were obtained. A training set of full-text articles was selected and used by the authors to pilot test the determination of study inclusion/exclusion. After this pilot process and development of decision rules, the complete set of full-text articles selected for possible inclusion was divided into 2 subsets, and 2 pairs of authors reviewed their assigned subsets for inclusion/exclusion. Within each pair, articles were reviewed independently, and consensus was used to resolve disagreements. If the pair of authors could not reach consensus, the article was reviewed by all authors, with consensus used to determine possible eligibility. A final set of studies was selected that met the MTSS inclusion criteria (Figure 1).

Data Collection and Extraction

Prior to data extraction from the selected studies, a preliminary data collection form was developed and a training set of articles was selected. Pilot testing of the form and data extraction was similar to the previous pilot testing used for inclusion/exclusion. The set of studies selected for inclusion was again divided between the same pairs of authors for data extraction. The following key data, among others, were recorded for each individual study: study purpose, study design, setting, participant characteristics, activity associated with MTSS, definition of MTSS, diagnostic tests for MTSS, length of follow-up, risk factors, and risk factor results. When needed, selected study authors were contacted to obtain specific data.

Quality Analysis

Quality indicators were developed a priori from several sources. For this systematic review, 2 quality indicators, not based on past literature, were added a priori. These 2 indicators included whether the reliability of risk factor(s) measures was reported and whether the risk factor(s) measures were direct or indirect. Quality items were scored as "met," "mixed" (met for some but not all risk factors), "not met," "unclear," and “not reported.” Decision rules were used to clarify scoring of quality items. For example, the quality item “analysis” was deemed “met” when a multivariate technique was used to analyze the data. Before quality assessments of the final set of articles were reviewed, all authors discussed the items to further clarify and agree on scoring. Two authors (R.R.R. and M.M.K.) independently reviewed the full text of the included studies for quality indicators. Consensus was used to resolve disagreements. When needed, consensus among all authors was used. Table 1 includes the quality indicators for all included studies.

Data Analysis

All included studies were reviewed for clinical heterogeneity by examining differences in measurement methods for risk factors. The risk factor data were extracted from each study, and the data were entered into meta-analysis software (Comprehensive Meta-Analysis, version 2.0.64; Biostat). Statistical heterogeneity was examined using the I² index and the Cochran Q test. A random-effects model was used to calculate the meta-analysis. Because the included studies were not likely to have a common effect size, a random-effects model was chosen. The random-effects model also is more conservative than the fixed-effects model. Pooled summary results for risk factors were calculated when 2 or more studies reported on the risk factor.
The initial search of the bibliographic databases, grey literature, and electronic full-text journal searches yielded 18,212 articles. An additional 135 articles were located through searching the reference lists of systematic reviews and automated PubMed searches of MTSS. Title and abstract review combined with removal of duplicates, and non–English language articles resulted in 1825 full-text articles assessed for eligibility. These articles were reviewed to assess whether they met inclusion criteria, provided usable risk factor data, and had comparable measurement methodology to allow for comparison. From the 1825 articles, 83 articles met inclusion criteria based on the definition of MTSS. These 83 articles were reviewed, and 22 articles with MTSS risk factor data were selected for this systematic review (Figure 1). From these 22 articles, 27 different risk factors were selected based on the availability of risk data from 2 or more studies and low clinical heterogeneity based on risk factor measurement techniques (Table 2). The supplementary web materials provide the study characteristics for all 22 selected studies (see Appendix 3, available at http://sph.sagepub.com/content/suppl). The risk factors selected for

RESULTS

The initial search of the bibliographic databases, grey literature, and electronic full-text journal searches yielded 18,212 articles. An additional 135 articles were located through searching the reference lists of systematic reviews and automated PubMed searches of MTSS. Title and abstract review combined with removal of duplicates, and non–English language articles resulted in 1825 full-text articles assessed for eligibility. These articles were reviewed to assess whether they met inclusion criteria, provided usable risk factor data, and had comparable measurement methodology to allow for comparison. From the 1825 articles, 83 articles met inclusion criteria based on the definition of MTSS. These 83 articles were reviewed, and 22 articles with MTSS risk factor data were selected for this systematic review (Figure 1). From these 22 articles, 27 different risk factors were selected based on the availability of risk data from 2 or more studies and low clinical heterogeneity based on risk factor measurement techniques (Table 2). The supplementary web materials provide the study characteristics for all 22 selected studies (see Appendix 3, available at http://sph.sagepub.com/content/suppl). The risk factors selected for
Table 1. Study quality

Study	Design	Homogeneous Participants	Follow-up Length	Follow-up ≥80%	Reliability of Risk Factor(s)	Risk Factor(s) Direct	Diagnosis of MTSS	Adjustments	Analysis^f
Bennett et al^3	P								
Burne et al^5	P								
Hubbard et al^16	P								
Magnusson et al^21	P								
Moen et al^26	P								
Plisky et al^32	P								
Raissi et al^34	P								
Yagi et al^35	P								
Yates and White^44	P								
Bandholm et al^1	CS	NA	NA						
Bartosik et al^2	CS	NA	NA						
Eickhoff et al^9	CS	NA	NA						
Franklyn et al^10	CS	NA	NA						
Lee^18	CS							Multiple analyses	Multiple analyses
Madeley et al^19	CS	NA	NA						
Magnusson et al^20	CS	NA	NA						
Messier and Pittala^24	CS								
Rathleff et al^36	CS								
Tweed et al^41	CS								
Viitasalo and Kvist^42	CS								
Rathleff et al^35	CC								
Sommer and Vallentyne^39	CC								

CC, case-control; CS, cross-sectional; MTSS, medial tibial stress syndrome; P, prospective.

^a Color code: green, met; red, not met; yellow (met for some but not all risk factors); grey, not clear; orange, not reported.

^b Athletes followed by season; recreational and military, 6 weeks.

^c Risk factors were measured directly.

^d Made by a health care provider.

^e History of MTSS or orthotic use was controlled for in design or analysis.

^f Statistical analysis appropriate for the design of the study.
Table 2. Risk factors by study

Study	Age	Dflex ROM With Knee ext	Dflex ROM With Knee flex	BMI	Dflex isom Strength	Eversion isom Strength	Eversion ROM With Running	Eversion ROM	Hip ext ROM With Knee ext	Hip ext ROM With Knee flex	Hip flex	Female Sex	Hx MTSS	Hip int rot ROM With Hip flex	Inversion ROM	Inversion isom Strength	Inversion ROM With Hip flex	Lean Calf Girls	Leg Length Difference	Navicular Drop	PFlex ROM	Previous Running Injury	O Angle	Stand Foot Angle	Tibia Varum	Walking Speed	Weekly Mileage	Weight	Years Running
Bennett et al3																													
Burne et al5	•			•																									
Hubbard et al16																													
Magnusson et al21																													
Moen et al26	•			•																									
Piskny et al27				•																									
Raissi et al39																													
Yagi et al43				•																									
Yates and White44				•																									
Bandholm et al1																													
Bartosik et al2				•																									
Eickhoff et al9				•																									
Franklyn et al10				•																									
Lee20																													
Madeley et al19				•																									
Magnusson et al20				•																									
Meisser and Pittalls24																													
Rathleff et al36				•																									
Tweed et al41				•																									
Viitasalo et al42																													
Rathleff et al35																													
Sommer and Vallentyne39				•																									

Dflex, dorsiflexion; ext, extended; ext rot, external rotation; flex, flexed; int rot, internal rotation; isom, isometric; MTSS, medial tibial stress syndrome; Pflex, plantarflexion; ROM, range of motion.
analysis were organized into 7 categories: demographics/body composition, static posture, gait variables, training variables, injury history, joint mobility, and muscle strength. From the meta-analysis, risk factors were placed into 1 of 4 groups (Table 3) based on the presence or absence of a statistically significant pooled effect and the extent of statistical heterogeneity based on the I^2 index and Cochran Q value. To be considered low statistical heterogeneity, I^2 was less than 32.5% and/or the Cochran Q value was nonsignificant ($P > 0.05$).

Demographics/Body Composition

Two of the 6 risk variables in this category (sex and weight) had a significant pooled effect with low heterogeneity ($I^2 < 31\%$) across studies (8 studies included sex, 7 studies included weight). The meta-analysis revealed that female sex (Figure 2) and increased weight (Figure 3) were both risk factors for MTSS. Although greater body mass index (BMI) was a risk factor for MTSS based on the pooled effect, the 9 studies were moderately heterogeneous ($I^2 = 61\%$). While 8 of the 9 studies found greater mean BMI in the MTSS group, Lee18 found BMI to be lower in the MTSS group. The other 3 risk factors in this category (age, height, and lean calf girth) were not significant risk factors for MTSS based on pooled analysis. Both age (8 studies) and height (9 studies) had low heterogeneity across studies; the lean calf girth variable was examined in 2 studies with high heterogeneity ($I^2 = 74\%$). Moen et al26 found the MTSS group to have a greater lean calf girth, whereas Burne et al5 reported smaller calf girth in the MTSS group.

Static Posture

The only postural variable that was a significant predictor of MTSS based on the meta-analysis was a greater navicular drop value (Figure 4). The 8 studies that examined navicular drop had low to moderate heterogeneity ($I^2 = 39\%$) with a nonsignificant Q value. Standing foot angle (SFA), Q angle, tibial varum, and limb-length discrepancy were nonsignificant as risk factors for MTSS based on pooled analyses. The 2 studies16,42 that reported tibial varum data had low heterogeneity ($I^2 = 0\%$). Conversely, there was high heterogeneity across the studies that reported SFA ($I^2 = 74\%$), Q angle ($I^2 = 68\%$), and limb-length difference ($I^2 = 86\%$). Sommer and Vallentyne39 reported that subjects (folk dancers) with an SFA $< 140^\circ$ were at greater risk for MTSS, but Moen et al26 did not corroborate that finding. For Q angle, 2 studies reported a smaller Q angle as a risk for MTSS34,43 and 3 studies18,24,43 reported the Q angle was greater in the MTSS group. Finally, the results of the 4 studies

Table 3. MTSS risk factors grouping based on pooled effect and statistical heterogeneity

Significant Pooled Effect	Nonsignificant Pooled Effect
Low Heterogeneity	Moderate-High Heterogeneity
Female sex	Lean calf girth
Higher weight	Hip int rot with hip flexed
Higher navicular drop	Leg length difference
Previous running injury	Q-angle
Greater hip ext rot with	Dflex ROM with knee extended
HIP flexed	Inversion isom strength
Greater BMI	Pflex ROM
Eversion with running	Standing foot angle
Age	Years running

Figure 2. Forest plot for female sex as a risk factor for medial tibial stress syndrome (MTSS).
examining limb-length differences and MTSS had highly variable
and nonsignificant results.

Gait Variables

Only 2 gait variables were assessed for MTSS risk in 2 or more
studies. The pooled effect of rearfoot eversion during running
revealed significantly greater eversion in the MTSS groups as
compared with controls, but the 3 pooled studies were highly
heterogeneous ($I^2 = 92\%$). Self-selected walking speed was not
a significant predictor variable for MTSS, with very low
heterogeneity ($I^2 = 0\%$).

Training Variables

Neither of the 2 training variables (years of running experience
and weekly training mileage) were risk factors for MTSS based
on the meta-analysis. The statistical heterogeneity for years
running was high ($I^2 = 87\%$), as Hubbard et al.\(^16\) reported that
fewer years running was a risk factor for MTSS whereas Lee\(^18\)
reported that more years of running was a risk factor for MTSS.
Plisk et al.\(^25\) did not find years running to be risk factor for

MTSS in high school runners. Weekly mileage was not a risk
factor based on pooled data from 2 studies,\(^16,18\) and the studies
had low heterogeneity ($I^2 = 24.3\%$).

Injury History

Pooled analysis revealed that a previous running injury was a
risk factor for MTSS (Figure 5), with low heterogeneity ($I^2 = 0\%$)
across 2 studies.\(^32,34\) History of MTSS did not have a significant
pooled effect, and the 2 studies\(^16,44\) providing these data had
high heterogeneity ($I^2 = 93\%$). Hubbard et al.\(^16\) reported a
significant risk ratio of 5.3 (95% CI, 3.43-8.21), whereas the risk
ratio reported by Yates and White\(^44\) was 1.5 (95% CI, 0.78-3.0).

Joint Mobility

Greater hip external rotation range of motion (ROM) with the
hip flexed had a significant pooled effect as a risk factor for
MTSS (Figure 6) across 3 studies\(^5,26,43\) with low heterogeneity
($I^2 = 0\%$), whereas the pooled effect of hip internal rotation
ROM was not significant with the same 3 studies showing high
heterogeneity ($I^2 = 85\%$) for this variable. Both eversion and
inversion ROM were not risk factors for MTSS based on the
meta-analysis (nonsignificant pooled effect), although both
factors had low statistical heterogeneity ($I^2 < 23\%$). Neither
dorsiflexion ROM with the knee flexed nor with the knee
extended were risk factors for MTSS based in the pooled effect,
and both factors showed high statistical heterogeneity ($I^2 > 83\%$).
Plantarflexion ROM with the knee extended also was not a significant risk factor for MTSS, and the 2 studies examining this factor\(^{18,26}\) also showed high statistical heterogeneity.

Muscle Strength

None of the 3 isometric ankle strength factors (inversion, eversion, or dorsiflexion) were significant risk factors for MTSS. Two studies\(^{16,18}\) investigated these 3 strength variables, and for both eversion and dorsiflexion isometric strength, the heterogeneity was very low (\(I^2 = 0\%\)) while the pooled effect was nonsignificant. The inversion strength variable results were markedly different between the 2 studies with high heterogeneity (\(I^2 = 82\%\)), as Hubbard et al\(^{16}\) found no difference between groups with and without MTSS but Lee\(^{18}\) found that weaker isometric inversion was a risk factor for MTSS.

DISCUSSION

The purpose of this systematic review was to identify cohort, case-control, and cross-sectional studies that included MTSS risk data and to use a meta-analysis to identify significant risk factors across those studies. A total of 22 studies were included in this systematic review and meta-analysis, representing a total of 235 potential risk factors. However, only 27 risk factors were identified that could be analyzed in the meta-analysis. Either there was unusable data or there was only a single study that examined a particular risk factor and, as such, there was no opportunity to pool results. We recognize that of those 208 risk factors not subject to meta-analysis, some may, in fact, be risk factors for MTSS but, at present, that conclusion is based on a single study.

Our level of confidence in the identification of significant or nonsignificant risk factors was based on the pooled effect and the statistical heterogeneity of the risk factor. Table 3 summarizes the 27 risk factors by a cross-tabulation of the pooled effect and heterogeneity. Five factors (female sex, higher weight, higher navicular drop, previous running injury, and greater hip external rotation with the hip in flexion) were found to have a significant pooled effect and low heterogeneity (see Figures 2-6). These are the factors in which we have high confidence for increased risk for the occurrence of MTSS. On the other end of the spectrum, 9 factors (age, height, eversion ROM, inversion ROM, dorsiflexion isometric strength, eversion isometric strength, tibial varum, walking speed, and weekly training mileage) did not show a significant pooled effect and had low statistical heterogeneity. These are factors that likely do not increase the risk for MTSS occurrence. The other 2 categories include 13 risk factors that display moderate to high heterogeneity in pooled analysis, limiting the confidence in the results of the meta-analysis regarding whether the factor actually is or is not a risk factor for MTSS (see Appendix 4, available at http://sph.sagepub.com/content/suppl).

Female sex increases the risk for MTSS, which is in agreement with the systematic review and meta-analysis by Newman et al\(^{31}\) and the critical review by Moen et al\(^{27}\). The mechanism by which female sex causes this increased risk is not known at this time. Newman et al\(^{31}\) proposed that this increased risk may be related to differences in running kinematics between men and women, but this has not been subject to investigation at present. In their study of MTSS among naval recruits, Yates and White\(^{44}\) found that female recruits were at greater risk of MTSS and suggested this might have been related to women training with men and “overstriding” to match the men’s cadence in marching.

Hamstra-Wright et al\(^{15}\) and Newman et al\(^{31}\) both found BMI to be a risk factor for MTSS. Hamstra-Wright et al\(^{15}\) used 4 studies in their meta-analysis and we used those 4 plus an additional 6 studies that met our inclusion criteria. Newman et al\(^{31}\) based their conclusions on the meta-analysis of 6 studies, but only 2 of those 6 studies\(^{13,15}\) met our inclusion criteria. We did, however, find that history of MTSS was a risk factor for the repeat occurrence of MTSS. We did find, however, that increased weight was a risk factor for MTSS when pooling the results across 7 studies (see Figure 3). Our meta-analysis indicated that difference in height was not a risk factor for MTSS, so the findings of BMI as a risk factor reported by Hamstra-Wright et al\(^{15}\) and by Newman et al\(^{31}\) may be related to differences in weight between the MTSS and non-MTSS groups.

A greater navicular drop emerged from the meta-analysis as a risk factor for MTSS, which is consistent with the findings of both Hamstra-Wright et al\(^{15}\) and Newman et al\(^{31}\). This measurement is employed by clinicians as a measure of foot pronation\(^{29}\) and has been shown to have a relationship with rearfoot motion during walking.\(^{25}\) Of the 8 studies included in the meta-analysis for navicular drop, 5 reported a significantly greater navicular drop in the MTSS groups\(^{13,20,24,45}\) (MTSS group: range, 6.0-7.7 mm; noninjured athletes: range, 3.6-5.4 mm). In 2 of the other 3 studies\(^{46,48}\) the MTSS group had a greater navicular drop value than the non-MTSS group, but the difference was not significant. Plisky et al\(^{22}\) found no difference in the percentage of athletes with MTSS who had a navicular drop >10 mm as compared with athletes without MTSS.

Previous injury history is commonly identified as a risk for a lower extremity overuse injury. Newman et al\(^{31}\) reported that a history of MTSS was a risk factor for the repeat occurrence of MTSS, but this was not confirmed by Hamstra-Wright et al.\(^{15}\) Our meta-analysis showed that history of MTSS had a nonsignificant pooled effect for relative risk and displayed high statistical heterogeneity (\(I^2 = 88\%\)). Newman et al\(^{31}\) based their conclusion on the meta-analysis of 6 studies, but only 2 of those 6 studies\(^{13,44}\) met our inclusion criteria. We did, however, find that history of any previous running injury was a significant risk factor for the development of MTSS. The pooled odds ratio for any running injury as an MTSS risk was 2.181 with low heterogeneity (\(I^2 = 0\%\)), although the lower limit of the 95\% confidence interval is very close to an odds ratio of 1 (1.008).

Based on the meta-analysis, the final factor that increases risk for MTSS is greater hip external rotation with the hip flexed.
Our findings are consistent with both previously published meta-analyses on MTSS risk factors. In 2 of the 3 studies used in our meta-analysis, the authors analyzed and reported male and female hip ranges of motion separately. In both of those studies, we treated the male and female data as separate data sets, resulting in 5 data sets for the meta-analysis. Newman et al reported that in both studies, the differences in male hip external ROM were significant and the female differences were not significant. However, in the study by Moen et al, the male and female subjects were combined in the analysis, which did not reveal a significant difference between groups. We are in agreement with Hamstra-Wright et al that the mechanism underlying the increased risk for MTSS as a result of increased hip external rotation ROM is not known at this time. The difference in this risk factor between men and women also remains unclear. We did not find that pooled effect for hip internal ROM was significant, and this factor also exhibited high statistical heterogeneity between studies (I² = 85%).

Limitations

One feature of this systematic review that differentiates it from other MTSS systematic reviews was our use of a strict definition of MTSS. As stated earlier, for a study to be included in this review, the definition of MTSS used in the study had to include 3 characteristics: (1) pain located along the posteromedial border of the tibia, (2) diffuse pain, and (3) pain that was activity related. This strict definition can be viewed as a limitation of our study as it restricted the number of studies included in our review. However, we believe that this strict definition increased our confidence that the diagnostic entity was consistent across studies and minimized the clinical heterogeneity with respect to the condition of interest.

A second limitation of this meta-analysis is that we used a random-effects model for all pooled effect calculations. We made this decision based on the variations across studies both in terms of participants and how the studies were conducted. As the random-effects model is more conservative than the fixed-effect model, this model is less likely to show significant pooled effects. Newman et al made the decision to use random-effects modeling when the I² value was >25% and to used fixed-effects modeling if the I² was ≤25%. Hamstra-Wright et al used random-effects modeling when the I² value was ≥20% and used fixed-effects modeling if the I² was <20%. In this meta-analysis, we found that the 5 factors (years running, history of MTSS, standing foot angle, plantarflexion ROM, and inversion strength) showed a significant pooled effect when we used a fixed-effects model, but the pooled effect was not significant when we used a random-effects model. In all of these cases, the I² value was >70%. Newman et al found both years running and history of MTSS to be significant risk factors using random-effects modeling, whereas we did not find either to have a significant pooled effect. Hamstra-Wright et al found plantarflexion to be a significant risk factor using a fixed-effects model based on the heterogeneity of the 4 studies (I² = 0%), whereas we did not find a significant pooled effect based on the results of the 2 studies that met our inclusion criteria with high heterogeneity (I² = 85%).

The 2 risk factors that were common to the 2 previously published meta-analyses on MTSS risk factors and our study are increased navicular drop and increased hip external ROM with hip flexed. Both Newman et al and our study also found female sex to be a significant risk factor; Hamstra-Wright et al did not study sex as the authors only considered continuous variables. Therefore, these 3 risk factors were common to all 3 systematic reviews with meta-analysis.

CONCLUSION

This systematic review and meta-analysis revealed 5 risk factors that showed a significant pooled effect and low statistical heterogeneity: female sex, higher weight, higher navicular drop, previous running injury, and greater hip external rotation with the hip in flexion. Based on our strict definition of MTSS and requirement for risk factor measurement consistency, these factors also had low clinical heterogeneity, contributing to our confidence in these findings. The risk factors that did not show a significant pooled effect and had low statistical and clinical heterogeneity were age, height, eversion ROM, inversion ROM, dorsiflexion isometric strength, eversion isometric strength, tibial varum, walking speed, and weekly training mileage. Based on these results, we believe that these factors do not likely increase the risk for MTSS. Identification of risk factors is critical in the prevention of overuse injuries in active individuals, and the pooling of data across multiple studies increases our confidence in those risk factors that need to be considered in preventative strategies.

REFERENCES

1. Bandholm T, Boyesen L, Haaguard S, Zelis MK, Bencke J. Foot medial longitudinal-arch deformation during quiet standing and gait in subjects with medial tibial stress syndrome. J Foot Ankle Surg. 2008;47:89-95.
2. Bartosik KE, Siller M, Hillstrom HJ, Palamaruchuk H, Huxel K, Kim E. Anatomical and biomechanical assessments of medial tibial stress syndrome. J Am Podiatr Med Assoc. 2010;100:121-122.
3. Bennett JE, Reinking MF, Pluemer B, Pentel A, Seaton M, Elian C. Factors contributing to the development of medial tibial stress syndrome in high school runners. J Orthop Sports Phys Ther. 2001;31:504-510.
4. Boeroente M, Hedges LV, Higgins JPT, Rothstein HR. Introduction to Meta-Analysis. Chichester, UK: Wiley; 2009.
5. Burme SG, Khan KM, Bouldville PB, et al. Risk factors associated with exertional medial tibial pain: a 12 month prospective clinical study. Br J Sports Med. 2004;38:441-445.
6. Chowdhury PP, Mawokomatanda T, Xu F, et al. Surveillance for certain health behaviors, chronic diseases, and conditions, access to health care, and use of preventive health services among states and selected local areas—Behavioral Risk Factor Surveillance System, United States, 2012. MMWR Surveill Summ. 2016;65:1-142.
7. Clement DB. Tibial stress syndrome in athletes. J Sports Med. 1974;2:81-85.
8. Degen RM, Hoppe DJ, Petrisor BA, Bhandari M. Making decisions about prognosis in evidence-based practice. Hand Clin. 2009;25:59-66.
9. Eickhoff CA, Hossain SA, Slawski DP. Effects of prescribed foot orthoses on medial tibial stress syndrome in collegiate cross-country runners. Clin Kines. 2008;54(4):76-80.
10. Franklin M, Oakes B, Field B, Wells P, Morgan D. Section modulus is the optimum geometric predictor for stress fractures and medial tibial stress syndrome in both male and female athletes. Am J Sports Med. 2008;36:1179-1189.
11. Gaeta M, Minutoli F, Vinci S, et al. High-resolution CT grading of tibial stress reactions in distance runners. AJR Am J Roentgenol. 2006;187:789-793.
28. Moons KG, Royston P, Vergouwe Y, Grobbee DE, Altman DG. Prognosis and
27. Moen MH, Tol JL, Weir A, Steunebrink M, De Winter TC. Medial tibial stress
26. Moen MH, Bongers T, Bakker EW, et al. Risk factors and prognostic indicators
25. Michael RH, Holder LE. The soleus syndrome: a cause of medial tibial stress
23. McPoil TG, Cornwall MW. The relationship between static lower extremity
22. Mak K, Kum CK. How to appraise a prognostic study.
21. Magnusson HI, Westlin NE, Nyqvist F, Gardsell P, Seeman E, Karlsson MK. Low regional
15. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in
14. Hayden JA, Cote P, Bombardier C. Evaluation of the quality of prognosis studies
13. Hamstra-Wright KL, Bliven KC, Bay C. Risk factors for medial tibial stress
12. Guyatt G, Rennie D, Meade MO, Cook DJ. Users' Guides to the Medical
11. Guyatt G, Rennie D, Meade MO, Cook DJ. Users’ Guides to the Medical
10. National Institutes of Health, National Heart, Lung, and Blood Institute. Clinical
9. Yagi S, Muneta T, Sekiya I. Incidence and risk factors for medial tibial stress
8. Viitasalo JT, Kvist M. Some biomechanical aspects of the foot and ankle in
7. Tweed JL, Campbell JA, Avil SJ. Biomechanical risk factors in the development
6. McPoil TG, Cornwall MW. The relationship between static lower extremity
5. Moons KG, Boyston P, Vergouwe Y, Grobbbee DE, Altman DG. Prognosis and prognostic research: what, why, and how? BMJ. 2009;338:b375.
4. Puranen J. The medial tibial syndrome: exercise ischaemia in the medial fascial
3. Puranen J. The medial tibial syndrome: exercise ischaemia in the medial fascial
2. Felson DT. The epidemiology of chronic musculoskeletal pain. *Br J Sports Med*. 2000;34(Suppl 1):S4-S7.
1. Zernicke RF, Nachemson AL. The epidemiology of shin splints: a review. *Am J Sports Med*. 1981;9:202-205.