On Rings whose Simple Singular R-Modules are GP-Injective

Zubayda M. Ibraheem
z.mohammed@uomosul.edu.iq
College of Computers Sciences and Mathematics
University of Mosul, Iraq

Received on: 25/04/2004 Accepted on: 13/12/2004

ABSTRACT

In this work we give a characterization of rings whose simple singular right R-modules are Gp-injective. We prove that if R is a quasi-duo ring whose simple singular right R-modules are Gp-injective, then any reduced right ideal of R is a direct summand. We also consider that a zero commutative ring with every simple singular left R-module is Gp-injective

Keywords: Gp-injective, R-modules, Quasi-duo ring, ZC-Ring

حوال الحلقات التي مقاساتها البسيطة المنفردة تكون غامرة من النمط--GP

زبيدة محمد أبراهيم
كلية علوم الحاسوب والرياضيات
جامعة الموصل

تاريخ استلام البحث: 25/04/2004 تاريخ قبول البحث: 14/12/2004

الملخص

في هذا البحث ندرس الحلقات التي تكون مقاساتها اليمنى البسيطة المنفردة غامرة من النمط--GP. برهنا أنه في حلقة كواري-ديو التي تكون مقاساتها اليمنى البسيطة المنفردة غامرة من النمط--GP فإن كل مثالياً يمكن مختزل يكون قابل للجمع المباشر، كما بين أن الحلقة شبه ألا بديلية تكون حلقة منتظمة ضعيفة مختزلة إذا كانت مقاساتها اليمنى البسيطة المنفردة غامرة من النمط--GP.

الكلمات المفتاحية: غامرة من النمط--GP، حلقات، مقاسات، حلقات، Quasi-duo

63
1. Introduction:
Throughout this paper, \(R \) denotes an associative ring with identity, and all modules are unitary right \(R \)-modules. Recall that: (1) A right \(R \)-module \(M \) is called general right principally injective (briefly right Gp-injective) if for any \(0 \neq a \in R \) there exists a positive integer \(n \), such that \(a^n \neq 0 \) and any right \(R \)-homomorphism of \(a^nR \) into \(M \) extends to one of \(R \) into \(M \); (2) \(R \) is called reduced if \(R \) has no non-zero nilpotent elements; (3) \(R \) is right (left) quasi-duo ring if every maximal right (left) ideal of \(R \) is an ideal of \(R \); (4) A ring \(R \) is called semi-prime if \(0 \) is the only nilpotent ideal ; (5) for any element \(a \) in \(R \) we define a right annihilator of \(a \) by \(r(a) = \{ x \in R : ax = 0 \} \) and a left annihilator of \(a \), \(l(a) \) is similarly defined.

2. Rings whose simple singular modules are GP-Injective:
In this section, we study rings whose simple singular right \(R \)-modules are Gp-injective. We begin this section with the following result.

Proposition 2-1:
Let \(R \) be a quasi-duo ring, with every simple singular right \(R \)-modules is Gp-injective. Then any reduced right ideal of \(R \) is a direct summand.

Proof: Let \(I = aR \) be a reduced principal right ideal of \(R \). We shall show that \(aR + r(a) = R \). if not, there exists a maximal right ideal \(M \) of \(R \) such that \(aR + r(a) \subseteq M \). Now, \(M \) is essential right ideal of \(R \), if not, then there exists a non-zero right ideal \(L \) of \(R \) such that \(M \cap L = 0 \). Then \(aRL \subseteq ML \cap L = 0 \), implies that \(L \subseteq r(a) \subseteq M \), so \(M \cap L = L = 0 \), and this is a contradiction.

So \(M \) must be essential right ideal of \(R \). Therefore \(R/M \) is Gp-injective. Then there exists a positive integer \(n \) such that any \(R \)-homomorphism of \(a^nR \) into \(R/M \) extends to one of \(R \) into \(R/M \). let \(f : a^nR \rightarrow R/M \) be defined by \(f(a^nr) = r + M \). \(f \) is a well-defined \(R \)-homomorphism. Indeed , let \(r_1, r_2 \in R \) such that \(a^nr_1 = a^nr_2 \). Then \(a^nr_1 - a^nr_2 = 0 \), implies that \(a^n(r_1 - r_2) = 0 \), so \(r_1 - r_2 \in r(a^n) \), since \(I \) is reduced. Therefore \(r(a^n) = r(a) \), this implies that \(r_1 - r_2 \in r(a) \subseteq M \). Hence, \(r_1 + M = r_2 + M \). Now \(R/M \) is Gp-injective, so there exists \(c \in R \) such that \(1 + M = f(a^n) = ca^n + M \). Hence , \(1 - ca^n \in M \), since \(a^n \in M \) and \(R \) is a quasi-duo ring , then \(ca^n \in M \) and so \(1 \in M \). This contradicts \(M \neq R \).

Therefore \(aR + r(a) = R \). In particular \(ar + c = 1 \), for some \(r \in R \) and \(c \in r(a) \), whence \(a^2 = a \), if we set \(d = a^2 \in I \), then \(a = a^2d \). Clearly \((a - ada)^2 = 0 \), since \(I \) is reduced, thus \(a = ada \), and hence \(I = eR \), where \(e = ad \) is an idempotent element. Thus \(I \) is a direct summand.
Proposition 2-2:
Let R be a semi-prime ring with every simple singular right R-module is Gp-injective. Then every right ideal of R is an idempotent.

Proof: For any right ideal I of R, suppose there exists an element b in I, such that $b \not\in I^2$. Then $bR \neq (bR)^2$. Since R is a semi-prime ring, then $(bR)^2$ is essential in bR. By Zorn's lemma, the set of right ideals J such that $(bR)^2 \subseteq J \subseteq bR$ has a maximal member L. Then bR/L is a simple singular, and therefore is Gp-injective. Now, let $f:bR \rightarrow bR/L$ is the canonical homomorphism defined by $f(br) = br + L$ for all ring R, since bR/L is Gp-injective, so there exists $c \in R$, such that $f(br) = (bc + L)br$. Then $f(b) = (bc + L)b = b + L$, which implies that $b + L = bcb + L$. Hence, $b - bcb \in L$, whence it follows that $b \in L$. Thus $bR \subseteq L$ and this is a contradiction. Therefore $I = I^2$.

3-Zero Commutative Rings

In this section we introduce the notion of a zero commutative ring in order to study the connection between rings whose simple singular right R-modules are Gp-injective and other rings.

Definition 3-1:
A ring R is called zero commutative (briefly ZC) if for $a, b \in R$, $ab = 0$ if $ba = 0$.

We shall begin this section with the following result.

Lemma 3-2:
Let R be a ZC ring. Then $RaR + l(a)$ is an essential left ideal of R.

Proof: Given $a \in R$, assume that $[RaR + l(a)] \bigcap I = 0$, where I is a right ideal of R. Then $al \subseteq I \bigcap RaR = 0$, so $I \subseteq (a) \subseteq l(a)$. Hence, $l = 0$; where $RaR + l(a)$ is an essential left ideal of R.

Lemma 3-3:
Let R be a ZC ring with every simple singular left R-module is Gp-injective, then R is reduced.

Proof: Let $a^2 = 0$. Suppose that $a \neq 0$. By lemma (3-2), $l(a)$ is an essential left ideal of R. Since $a \neq 0$, $l(a) \neq R$. Thus, there exists a maximal essential left ideal M of R containing $l(a)$, therefore R/M is Gp-injective. So any R-homomorphism of Ra into R/M extends to one of R into R/M. Let $f: Ra \rightarrow R/M$ be defined by $f(ra) = r + M$. Clearly, f is a well-defined R-
homomorphism. Thus \(1 + M = f(a) = ac + M\). Hence, \(1 - ac \in M\) and so \(1 \in M\), which is a contradiction. Hence \(a = 0\), and so \(R\) is reduced.

Definition 3-4:
A ring \(R\) is said to be right weakly regular if for all \(a \in R\), there exists \(b \in RaR\) such that \(a = ab\).

Now, we give the main result.

Proposition 3-5:
If \(R\) is ZC and every simple singular left \(R\)-module is Gp-injective, then \(R\) is a reduced weakly regular ring.

Proof: By Lemma (3-3), \(R\) is a reduced ring. We shall show that \(RaR + l(a) = R\) for any \(a \in R\). Suppose that there exists \(b \in R\) such that \(RbR + l(b) \neq R\). Then there exists a maximal left ideal \(M\) of \(R\) containing \(RbR + l(b)\). By Lemma (3-2), \(M\) must be essential in \(R\). Therefore \(R/M\) is Gp-injective. So there exists a positive integer \(n\) such that any \(R\)-homomorphism of \(Rb^n\) into \(R/M\) extends to one of \(R\) into \(R/M\). Let \(f: Rb^n \to R/M\) be defined by \(f(rb^n) = r + M\). Since \(R\) is a reduced ring, \(f\) is a well-\(R\)-homomorphism. Now, \(R/M\) is Gp-injective, so there exists \(c \in R\) such that \(1 + M = f(b^n) = b^n c + M\). Hence \(1 - b^n c \in M\) and so \(1 \in M\), which is a contradiction. Therefore \(RaR + l(a) = R\) for any \(a \in R\). Hence \(R\) is a left weakly regular ring. Since \(R\) is reduced, \(RaR + r(a) = R\), implies that \(R\) is a right weakly regular ring. Therefore \(R\) is a weakly regular ring.

Kim and Nam in [2] proved that. Rings whose simple right \(R\)-modules are Gp-injective are always semi-prime. But in general rings whose simple singular right \(R\)-modules are Gp-injective need not be semi-prime.

Proposition 3-6:
Let \(R\) be a ZC ring, and every simple singular left \(R\)-module is Gp-injective, then \(R\) is a semi-prime ring.

Proof: From Lemma (3-3), \(R\) is a reduced ring and then \(R\) is a semi-prime ring.
REFERENCES

[1] Kim N.K., Nam S.B. and Kim J.Y. (1999), “On simple Singular Gp-injective modules”, Comm. In Algebra, 27(5), 2087-2096.

[2] N.K.kim, Nam S.B. and Kim J.Y. (1995), “On simple Gp-injective modules”, Comm. In Algebra, 23(14), 5437-5444.

[3] SANG Bok NAM (1999), “A Note on Simple singular Gp-injective Modules” kangweon-kyungki Math. Jour.7, No.2, pp.215-218.

[4] Ming R.Y.C. (1986) “On Semi-Prime and reduced ring” Riv. Mat.Univ.Parma (4) 12,167-175..

[5] Ming R.Y.C. (1994) “A not on regular rings,II”, Bull.Math. Soc. Sc.38.

[6] Ramamurthi V.S. (1973) “Weakly regular rings”, Canad. Math.Bull.16,317-321.