Electronic Supplementary Information

Aqueous biphasic systems comprised of random ethylene/propylene oxide copolymers, choline acetate, and water for triazine-based herbicide partitioning study

Hongzhe Tiana,b, Paula Bertona,†, Robin D. Rogersa, c*

a Department of Chemistry, Otto Maass Chemistry Building, McGill University, 801 Sherbrooke St. West, Montreal, QC H3A 0B8, Canada.

b Plant Protection College, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110161, P.R. China.

c 525 Solutions, Inc., 720 2nd Street, Tuscaloosa, AL 35401, United States.

† PB Current address: Chemical and Petroleum Engineering Department, University of Calgary, Calgary, AB T2N 1N4, Canada.

1. Characterization of the Synthesized Choline Acetate

The [Cho][OAc] was obtained as crystalline solid and characterized using 1H-NMR, 13C-NMR, and FTIR spectrometer to confirm its structure. 1H-NMR (500 MHz, d\textsubscript{6}DMSO, TMS): \(\delta= 1.62\) (s, 3H, –OOCCH\textsubscript{3}), 3.13 (s, 9H, –NCH\textsubscript{3}), 3.43 (t, 2H, –NCH\textsubscript{2}), 3.84 (m, 2H, –OCH\textsubscript{2}) ppm. 13C-NMR (100 MHz, d\textsubscript{6}DMSO), \(\delta= 25.5, 53.5, 55.4, 67.7, 173.8\) ppm. The FTIR spectrum of [Cho][OAc] (Figure S1) matched the reported spectrum; specific peaks: 3145, 3025, 2850, 1573, 1386, and 1080 cm-1.[1]
Figure S1. FTIR spectra of the synthesized [Cho][OAc].

2. 1H-NMR spectra of the Two Phases in the ABS

Figure S2. 1H-NMR spectra of (from top to bottom) the top and bottom phases (30 wt% EOPO-2500 and 35 wt% [Cho][OAc] ABS), respectively, pure [Cho][OAc], and pure EOPO-2500.
3. Phase Behavior of the EOPO/[Cho][OAc] ABS

The binodal data of the EOPO/[Cho][OAc] ABS at different temperatures are provided in Table S1. The experimental binodal curves were fit to the empirical relationship described by Eq. 1, and the regression parameters obtained for the ABS with the lowest SD values at different temperatures are provided in Table S2. The SD values of the binodal data at different temperatures are lower than 0.006, indicating that Eq. 1 well correlated the binodal data of the ABS at the investigated temperatures.

Table S1. Experimental weight fraction data for the EOPO/[Cho][OAc] ABS at different temperatures

	20 °C	25 °C	30 °C	40 °C				
	100w₁	100w₂	100w₁	100w₂	100w₁	100w₂	100w₁	100w₂
2.098	77.702	4.021	70.131	3.245	76.544	2.519	77.277	
3.810	69.630	5.803	68.204	4.902	60.785	3.883	67.017	
6.807	59.502	6.602	63.503	6.760	55.411	5.377	60.599	
8.996	54.570	8.712	57.910	7.906	51.321	6.576	55.024	
11.744	48.189	10.314	53.005	10.659	47.290	7.836	51.823	
12.801	44.704	14.306	43.808	11.730	44.666	9.072	48.405	
14.071	42.681	16.701	39.304	13.820	41.001	10.101	45.911	
14.290	40.713	21.200	31.109	14.215	37.669	12.271	42.890	
15.714	38.197	25.204	23.702	15.027	35.799	12.852	39.874	
17.245	36.009	31.006	14.608	15.776	34.367	13.807	38.316	
17.930	34.427	34.801	9.121	16.501	33.319	14.270	36.401	
19.001	32.103	39.112	5.004	17.119	32.402	15.080	34.846	
23.841	24.053	40.106	4.510	17.723	31.224	15.613	33.228	
25.112	22.201	41.602	4.404	16.137	32.057			
25.727	21.694	42.501	3.803					

Balance readability: 0.1 mg.
Table S2. Correlation parameters used in Equation (1) to describe the binodal data EOPO/[Cho][OAc] ABS at different temperatures

Temperature (°C)	Parameters	R²	sd⁻	a	b	c	d
20	-16.17	11.63	-4.426	0.857	0.998	0.0060	
25	0.443	2.584	-3.048	0.827	0.998	0.0009	
30	-237.2	87.42	-12.35	1.063	0.985	0.0015	
40	-231.5	78.7	-10.89	0.996	0.998	0.0006	

\[sd = \left(\frac{1}{n} \sum_{i=1}^{n} (w_{i}^{\text{cal}} - w_{i}^{\text{exp}})^2 \right)^{0.5},\] where \(n\) is the number of binodal data, \(w_{i}^{\text{cal}}\) and \(w_{i}^{\text{exp}}\) are the calculated and experimental mass fraction of EOPO, respectively.

Table S3. Experimental LLE data for the EOPO/[Cho][OAc] ABS with the same mass fractions of EOPO-2500

TL	Overall (wt%)	Top phase (wt%)	Bottom phase (wt%)	100 TLL	STL			
	IL	EOPO	IL	EOPO	IL	EOPO		
1	27.94	25.00	39.70	5.33	8.73	57.34	60.5	-0.60
2	30.27	24.93	43.70	2.98	5.68	65.56	73.2	-0.61
3	31.87	25.00	46.13	1.72	4.02	70.13	80.3	-0.62
4	33.91	25.08	48.36	1.43	2.86	75.98	87.3	-0.61
5	36.14	24.94	51.29	0.57	2.22	79.83	93.2	-0.62

Balance readability: 0.1 mg.

Table S4. Experimental LLE data for the EOPO/[Cho][OAc] ABS with the same mass fractions of [Cho][OAc]

TL	Overall (wt%)	Top phase (wt%)	Bottom phase (wt%)	100 TLL	STL			
	IL	EOPO	IL	EOPO	IL	EOPO		
1	27.94	25.00	39.70	5.33	8.73	57.34	60.5	-0.60
2	27.91	27.94	43.57	2.45	6.50	62.80	70.8	-0.61
3	27.91	30.57	45.64	1.68	5.70	67.18	76.7	-0.61
4	27.98	33.99	47.72	1.42	3.22	75.59	86.5	-0.60
5	28.01	36.94	49.82	1.25	2.58	78.34	90.4	-0.61

Balance readability: 0.1 mg.

4. Tie Line Measured Compositions Fitted to Othmer-Tobias Correlations

The tie-line data at 25 °C was used to correlate the Othmer-Tobias equation’s parameters as Eq. 4. showed. The linear dependence between the plots \(\ln [(1-W_T)/W_T] = F + G \ln [(1+W_B)/W_B]\) is shown in Figure S3. The \(R^2\) value is greater than 0.98, and the high correlation expresses the
reliability of the methodology used to obtain the tie-lines.

Figure S3. Linear dependency of the Othmer-Tobias equation at 25 °C.

5. HPLC Determination

Figure S4. Chromatogram of the herbicide standard solution (5 µg/mL) separated by HPLC: 1-Simazine; 2-Cyanazine; 3-Atrazine.
Figure S5. (A) Chromatograms of the top phase, and (B) bottom phase in the ABS blank sample (25.6 wt% EOPO, 26.8 wt% [Cho][OAc]).

Figure S6. (A) Chromatograms of the top phase, and (B) bottom phase in the ABS spiked sample (25.6 wt% EOPO, 26.8 wt% [Cho][OAc], spiked concentration 0.1 µg/g): 1-Simazine; 2-Cyanazine; 3-Atrazine.

Reference

1. Kalla, R. M. N.; Lim, J.; Bae, J.; Kim, I. Sulfated choline ionic liquid-catalyzed acetamide synthesis by grindstone method. *Tetrahedron Lett.* 2017, 58, 1595-1599.