Characteristics and Antagonistic Potential of *Pseudomonas* spp. against *Pratylenchus loosi*

Rahanandeh H1*, Khodakaramian G2, Hassanzadeh N1, Seraji A3 and Asghari SM4

1Department of Plant Pathology, Science and Research Branch, Islamic Azad University, Hesark Ponak, Tehran, Iran
2Department of Plant Protection, College of Agriculture, Bu – Ali Sina University, Hamadan, Iran
3Department of Plant Protection, Iranian Tea Research Institute, Lahijan, Guilan, Iran
4Department of Biology, Faculty of Basic Sciences, University of Guilan, Rasht, Iran

Abstract

The tea root lesion nematode, *Pratylenchus loosi*, has been shown internationally as a serious nematode pest causing yield losses in tea plantations. The purpose of this study is to identify and test the potential of biocontrol agents against this nematode. Eight bacterial strains with nematicidal activity were characterized and identified. All belonged to the genus *Pseudomonas*. Seven strains were identified as *Pseudomonas fluorescens* and one as *P. aeruginosa*. Death percentage of juveniles ranged from 63.10% to 95.24% for *P. fluorescens* (Rh-36) and *P. fluorescens* (Rh-19), respectively.

Keywords: *Camellia sinensis*; RLNs; *Pratylenchus loosi*; Bacterial biocontrol agents

Introduction

Tea, *Camellia sinensis* (L.) O. Kuntze, cultivated on 2.85 million ha, with a total production of 3.87 million ton per annum. Tea is considered as a strategic economic crop in Iran. According to FAO statistics in 2010, tea is already harvested in Iran from a surface of about 32000 ha [1]. This plant is attacked by more than 30 animal species. Amongst the various constraints to tea production, plant parasitic nematodes have a significant economic importance [2]. As a permanent crop grown as a monoculture, tea creates a stable micro-climate and provides a uniform food environment for several pests and diseases. More than 40 species of plant parasitic nematodes, belonging to 20 genera, have been reported from tea worldwide [3]. Two species of root-lesion nematodes (RLNs), *Pratylenchus loosi* Loof 1960 and *P. brachyurus* (Godfrey) Godey, are known to attack tea plants in some producing countries such as Sri Lanka, Philippines, Japan, China, Bangladesh, Taiwan, India, Vietnam, USA and Australia [4]. Among these species, *P. loosi*, was seen for the first time in 1930 by Gadd in tea gardens in Sri Lanka and in 1960 was reported by Loof [5]. This nematode caused a severe damage on tea plants and remarkably reduced crop yields in many other countries such as India, China, Japan and Bangladesh [3]. *Pratylenchus loosi* is a serious parasite of tea in Iran [6,7], causing losses in tea quantity and quality [8].

The side, undesired effects of common pesticides led the investigators to develop and apply environmentally safe pest management strategies, including microbial-based compounds. Bacteria, yeast and filamentous fungi are general insects of soil and plant surfaces, and some species are known for various mechanisms limiting disease incidence or severity [9-17].

Various management systems have been designed to envisage and introduce more efficient compounds against plant-parasitic nematodes, notably in the past thirty years [18-20]. The rhizoplane and rhizosphere are colonized and differently affected by many microorganisms. Plant growth promoting bacteria supply plant growth promoting matter and antibiotics. They prepare fundamental guarding against nematode diseases [21]. Up to 10% of rhizobacterial populations have been shown to be antagonist on parasitic nematodes. However the application of crop rotations and mulches as a procedure to increase levels of rhizobacteria antagonists to plant-parasitic nematodes showed variable results [22-25].

The nematicidal activities of these bacteria may be attributed to antibiotics produced in the agar medium. The seed or tuber treatments with non-parasitic rhizobacteria and even their application in soils may affect root penetration by nematodes on diverse crops, both in greenhouse and field conditions. Use of these non-parasitic rhizobacteria among other beneficial microorganisms such as root-nodule bacteria, arbuscular mycorrhizae, saprophytic and opportunistic fungi appeared advantageous for suppression of nematode populations on various crops [26-31].

Aim of this study was to isolate and characterize some native bacterial strains capable to suppress tea root-lesion nematodes, under laboratory condition.

Materials and Methods

Sampling and nematode extraction

Sampling for extraction of *P. loosi* was performed in the years 2010-2011, in infested tea plantation of north Iran. In each year 20 complex...
sample were collected at infested tea gardens. Each sample consisted of dozens of tiny sub samples collected at 15-25 cm depth and 20 cm distance from the crown. The samples, one and a half pounds of tea and ten gram tea roots, were later transferred to the laboratory. The tea root lesion nematode separation method was used [32], and centrifugal separation was performed according to the method of [33], from collected roots.

Isolation of antagonistic bacterial strains

A total of 40 bacterial strains were isolated from the rhizosphere of tea plants from the Guilan province (North of Iran). All isolates were cultured on both nutrient agar and King’s B media. In brief, one gram of soil was suspended in 100 ml sterilized distilled H2O containing one gram of gelatin and then shaken for 30 minutes at 70 rpm. The resultant suspensions were diluted up to 1x10⁷ and streaked on agar plates and kept at 27 ± 1°C for 72 h. Bacterial colonies were purified and stored at 4°C for further investigation.

In vitro evaluation of antagonistic activities of the bacterial strains against root-lesion nematodes

Bacterial suspensions were prepared in sterilized distilled water adding 1 ml from each suspension to 100 ml nutrient broth or King’s B broth, later allowed to grow under shaking for 48 h at 25°C. The cultures were centrifuged at 5000 rpm for 15 min and the supernatants were evaluated for anti-nematicidal activities of tested bacteria against *P. loosi*. To perform the test, a total of 30 *P. loosi* active juveniles were added into 1 ml of each bacterial supernatant and incubated at 27-29°C for 48 h. Sterilized distilled water was used as control. The experiment was conducted in a randomized completely design in three replicates and following formula was used to calculate percentage of nematode juvenile mortality, as normalized on controls.

\[
\text{Mortality (\%)} = \frac{C_1 - C_2}{C_1} \times 100
\]

Where, *C*₁ is the number of live nematodes juveniles in control treatments and *C*₂ is the number of live nematodes juvenile counted in other treatments [34].

Phenotypic characteristics of the bacterial strains

The most effective bacterial strains were selected and their phenotypic features were characterized based on the standard bacteriological methods [35].

Protease test

This test was carried out using skim milk agar (casein peptone 5 g, yeast extract 5 g, skim milk 1 g, glucose 1g and agar 10.5 g per liter). Bacterial strains were inoculated on casein agar medium and the plates were incubated at 27°C for 48 hours. The clear zones around the colonies were considered as positive reaction [36].

Results

Isolation of antagonistic bacterial strains

Antagonistic activities of the challenged bacterial strains were determined based on juvenile mortality. The strains nematicidal activities were quite variable ranking from 14.15 to 95.24%. Among the 34 tested *Pseudomonas* strains, 4 strains of *P. fluorescent* (RH-36, RH-25, RH-79 and RH-37) showed high levels of antagonistic activity (Group A). Within this group, *P. fluorescent* biovar 1 (RH-36) ranked first causing 95.24% of juvenile mortality (Table 1 and 3). Strains RH-

Strain	Mortality (%)	Statistical group	Strain	Mortality (%)	Significance
RH-36	95.24	A	RH-77	26.37	FG
RH-25	84.98	A	RH-33	20.00	FG
RH-79	91.90	A	RH-15	20.00	FG
RH-96	70.15	BC	RH-74	22.94	FG
RH-35	71.17	BC	RH-12	28.87	FGH
RH-37	87.44	A	RH-11	22.28	FG
RH-19	63.10	C	RH-76	22.17	FG
RH-39	82.62	AB	RH-53	17.15	G
RH-50	29.15	EFG	RH-43	27.85	FG
RH-24	23.49	FG	RH-85	42.95	DE
RH-60	26.04	FG	RH-99	23.68	FG
RH-57	20.49	FG	RH-28	33.83	DEF
RH-31	20.01	FG	RH-23	34.68	DEF
RH-63	18.69	FG	RH-48	44.45	G
RH-41	22.86	FG	RH-94	24.25	FG
RH-78	21.43	FG	RH-44	34.24	DEF
RH-16	25.47	FG	Control	15.63	G

Data are means of three replications

Values followed by the same letters in each column are not significantly different (α=0.05).

Table 1: In vitro antagonistic activities of 34 rhizosphere bacteria of tea plants against *Pratylenchus loosi* based on juvenile mortality.

Strain Mortality (%)	Statistical group	Strain Mortality (%)	Significance
RH-96 95.24	A	RH-77 26.37	FG
RH-25 84.98	A	RH-33 20.00	FG
RH-79 91.90	A	RH-15 20.00	FG
RH-96 70.15	BC	RH-74 22.94	FG
RH-35 71.17	BC	RH-12 28.87	FGH
RH-37 87.44	A	RH-11 22.28	FG
RH-19 63.10	C	RH-76 22.17	FG
RH-39 82.62	AB	RH-53 17.15	G
RH-50 29.15	EFG	RH-43 27.85	FG
RH-24 23.49	FG	RH-85 42.95	DE
RH-60 26.04	FG	RH-99 23.68	FG
RH-57 20.49	FG	RH-28 33.83	DEF
RH-31 20.01	FG	RH-23 34.68	DEF
RH-63 18.69	FG	RH-48 44.45	G
RH-41 22.86	FG	RH-94 24.25	FG
RH-78 21.43	FG	RH-44 34.24	DEF
RH-16 25.47	FG	Control 15.63	G

Table 2: Characteristics of eight antagonistic *Pseudomonas* strains against *Pratylenchus loosi*.

79, RH-25 and RH-37 showed 84.98, 91.90 and 87.44% nematicidal activities, respectively.

Phenotypic features determination of the bacterial strains

Based on rates of nematicidal activities of the bacterial strains, 8 isolates were chosen for further characterization, based on Schaad et al. [35] (Table 2).
nematodes [5,44,45]. Population densities of natural predators and parasites of parasitic to many other useful effects, these practices were known to enhance compost and soil modifications have been practiced in a unified loosi, and its control impact was not confirmed [2]. For several years, P. loosi. [43] isolates of fungi can reduce populations of nematodes [42]. According to Maafi nematodes [39-41]. Beside this bacterium, also nematode trapping Pasteuria penetrans is an antagonist specialized against root knot Discussion

Table 3: The degree of nematicidal activities of effective antagonistic bacteria based on % of juvenile mortality.

Bacterial strain name	Mortality (%)	Significance
Pseudomonas fluorescent bv. I (Rh-36)	95.24	A
P. aeroginosa (Rh-25)	84.98	A
P. fluorescens bv. I (Rh-79)	91.90	A
P. fluorescens bv. IV (Rh-96)	70.15	BC
P. fluorescens bv. IV (Rh-35)	71.17	BC
P. fluorescens bv. IV (Rh-37)	87.44	A
P. fluorescens bv. I (Rh-19)	63.10	C
P. fluorescens bv. V (Rh-39)	82.62	AB
Control (distilled water)	15.63	G

Table 4: Tested strains three species of *P. fluorescens* bv. IV(Rh-37) and *P. aeroginosa* (RH-25) showed the largest clear zones, indicating high level of protease production.

Based on statistical differences observed the isolates of *P. fluorescens* showed different effects, as these bacteria affected nematodes conferring them a different appearance and colors, ranging from brown, to black some specimens appearing also degenerated.

According to Westcott and Kluepfel [23], prior applications of *P. fluorescens* prevented egg hatchin and affected juveniles due to exotoxin formation and disruption of normal cellular nematode metabolism. It is important to note that some of these bacteria induce plant systemic resistance for indirect control of soil pathogens, in addition to exhibited antibiosis [48].

Some bacterial species with nematicidal actuality have been applied for control of root-knot nematodes: among them *Streptomyces* spp., *Serratia* spp., *Bacillus* spp., *Azotobacter chroococcum*, *Rhizobium*, *Corynebacterium* and *Pseudomonas*. Eapen reported that treating pepper seedlings with isolates of *P. fluorescens* reduced the detriment effects due to *Meloidogyne incognita*. Similarly, immunization of wheat plants with *P. fluorescens* terminated in considerable lower nematode populations [49].

It is significant to point that rhizosphere of antagonistic plants may represent beneficial sources of potential biological control agents for nematodes [23] as suggested by prevention effects of *P. fluorescens* on *M. incognita*. However, this biovar proceeded from radish rhizosphere host for *Meloidogyne* spp. [48].

The results herein showed may represent a fraction of the effects related to the complex relationships among different types of microorganisms in the rhizosphere. PGPR species alone or with *Rhizobium* enhanced plant growth both in *M. javanica* and inoculated plants. Inoculation with *Rhizobium* spp. caused an increase in plant growth than the effect caused by any species of PGPR in nematode-inoculated plants. Combined use of *Rhizobium* with other species of PGPR also decreased galling and nematode propagation than their single inoculation [50].

All the antagonist bacteria are able to produce protease enzyme. Protease production is an effective mechanism for controlling nematodes.

Extracellular enzymes, including subtilisin-like serine protease, chitinase and collagenase, corresponding to the main chemical constituents of nematode cuticle and eggshell, have been reported to be involved in the infection as virulence factors [51]. In the interaction between pathogen and hosts, much experimental evidence supported that serine protease can destroy the integrity of cuticle to help penetration of pathogen [52,53] and initiate or trap nematophagous fungi [54].

These preliminary results provide a strong incentive for further experiments on the use of rhizosphere bacteria in the biocontrol of plant parasitic nematodes. If the potential of these strains is confirmed, they could be used in the future in greenhouse and field conditions, to develop alternative, low cost and environment friendly technologies.

Acknowledgement

The authors gratefully acknowledge Dr. A. Ciancio, CNR, IST, Protezione Piante-Sez. Di Bari, Italia for his kind editing, revising and other commentary on an early draft of this article.

References

1. FAO (2010) Current situation and medium-term outlook for tropical fruits. Sugar and Beverages Group, Raw Materials, Tropical and Horticultural Products.
Service, Commodities and Trade Division, Food and Agriculture Organization of the United Nations.

2. Luc M, Sikora RA, Bridge J (2005) Plant Parasitic Nematodes in Subtropical and Tropical Agriculture. Nematode Parasite of Tea. CABI.

3. Campos VP, Sivapanal P, Gnanapragasam NC (1990) Nematode Parasites of Coffee, Cocoa and Tea. Plant Parasitic Nematodes in Tropical and Subtropical Agriculture. CABI International, UK.

4. Gnanapragasam NC, Mohotti M, Sureshkumar B, Udamulla GP (1993) Effect of “JAWAN” a neem based natural pesticide in controlling nematode pests of tea. Sri Lanka Journal of Tea Science 62: 47-52.

5. Sivapanal P (1972) Nematode Pest of Tea. Academic Press, New York, USA.

6. Pourjam E, Waveyengeber L, Moens M, Geraert E (1999) Morphological, morphometrical and molecular study of Pratylenchus coffeae and P. longoi (Nematoda: Pratylenchus). International Symposium on Crop Protection 64: 391-401.

7. Seraji A (2007) Biology and population dynamics of tea root lesion nematode, Pratylenchus loosi, in Iran and the possibility its loss assessment on the host using epidemiological models. Tarbiat Modarres University, Tehran, Iran.

8. Seraji A, Pourjam E, Safaie N, Maafi ZT (2010) Effect of tea root lesion nematode, Pratylenchus loosi, on tea quality in Iran. Proceedings of the 4th International Conference on O-CHA (Tea) Culture and Science, Shizuoka, Japan.

9. Zhang Z, Yuen GY, Sarath G, Penheiter AR (2001) Chitinases from the Plant Disease Biocontrol Agent, Stenotrophomonas maltophilia C3. Phytopathology 91: 204-211.

10. Vey A, Hoagland RE, Butt TM (2005) Fungi as Biocontrol Agents: Progress, Problems and Potential. CABI Publishing, Wallingford.

11. Leite LG, Alves SB, Batista Filho A, Roberts DW (2005) Simple, inexpensive media for mass production of three entomophthoralean fungi. Mycol Res 109: 326-334.

12. Quezada-Moraga E, Vey A (2004) Bassiacridin, a protein toxic for locusts secreted by the entomopathogenic fungus Beauveria bassiana. Mycol Res 108: 441-452.

13. Small CL, Biddochka MJ (2005) Up-regulation of Prl, a subtilisin-like protease, in resistant oilseed rape and sensitive canola plants. Phytopathology 95: 1169-1175.

14. Vizcaino JA, Sanz L, Basilio A, Vicente F, Gutierrez S, et al. (2005) Screening of antimicrobial activities in Trichoderma isolates representing three trichoderma sections. Mycol Res 109: 1397-1406.

15. Steddom K, Menge JA (2001) Evaluation of Continuous Application Technology for Delivery of the Biocontrol Agent Pseudomonas putida 06909-193. Plant disease. 85: 387-392.

16. Atkins SD, Hidalgo-Diaz L, Clark IM, Morton CO, de Orca NM, et al. (2003) Approaches for monitoring the release of Pochonia chlamydosporia var. catenulata, a biocontrol agent of root-knot nematodes. Mycol Res 107: 206-212.

17. Atkins SD, Maafi ZT, (2000) Study of Pasteuria penetrans on grapevine (Vitis vinifera L.) Nematology: Challenges and opportunities in 21 st century. Proceeding of the Third International Symposium of Afro-Asian Society of Nematologists, (TISAASN’98), Sugar-cane Breeding Institute (ICAR), Coimbatore, India.

18. Atkins SD, Maafi ZT, (2000) Study of Pasteuria penetrans group on some plant parasitic nematodes and their host ranges in the North of Iran. Iran. J Plant Pathol 36: e221-e231.

19. Atkinson WP, Summerhill MA, Mehlman S, (1994) Wheat and barley rust resistance conferred by the pea aphid, Acyrthosiphon pisum. Cytologia 59: 333-341.

20. Kloepper JW, Rodriguez-Kabana R, McNhoy RA, Young RW (1992) Rhizosphere bacteria antagonistic to soybean cyst (Heterodera glycines) and root-knot (Meloidogyne incognita) nematodes: identification by fatty acid analysis and frequency of biocontrol activity. Plant Soil 139: 75-84.

21. Atsumi Y, Matuda K, Iwata T, Takagi T, Matsumura M, et al. (2003) Effect of Trichoderma harzianum on the population of root-knot nematode, Meloidogyne incognita, in soil. J. Jpn. Soc. Nemat. Sci. 9: 84-92.

22. Atsumi Y, Matuda K, Iwata T, Takagi T, Matsumura M, et al. (2003) Effect of Trichoderma harzianum on the population of root-knot nematode, Meloidogyne incognita, in soil. J. Jpn. Soc. Nemat. Sci. 9: 84-92.

23. Kloepper JW, Rodriguez-Kabana R, McNhoy RA, Young RW (1992) Rhizosphere bacteria antagonistic to soybean cyst (Heterodera glycines) and root-knot (Meloidogyne incognita) nematodes: identification by fatty acid analysis and frequency of biocontrol activity. Plant Soil 139: 75-84.

24. Westcott SW, Kupefel DA (1993) Inhibition of Citocenemela xenopola egg hatch by Pseudomonas aerofaciens. Phytopathology 83: 1245-1249.

25. Pedersen JB, Rodrigoz-Kabana R, Shely RA (1988) Ryegrass cultivars and entyphyle install fescue affect nematodes in grass and succeeding soybean. Agron J 80: 81-84.

26. Becker JO, Zavala-Majia E, Colbert SF, Schrot MN, Weinhold AR, et al. (1998) Effects of rhizobacteria on root-knot nematodes and gall formation. Phytopathology 78: 1466-1469.

27. Oostendorp M, Sikora R (1990) In vitro interrelationship between rhizosphere bacteria and Heteroderaschachtii. Rev Nematol 13: 269-274.

28. Siddiqui ZA, Mahmood I (1993) Biological control of Meloidogyne incognita race 3 and Macrophomina phaseolinae by Paeillocybensilacea and Bacillus subtilis alone and in combination on chickpea. Fundam. Applied Nematol 16: 215-218.

29. Siddiqui ZA, Mahmood I (1995a) Management of Meloidogyne incognita race 3 and Macrophomina phaseolinae fungus cultures and Bacillus subtilis on chickpea. Fundam. Applied Nematol 18: 71-78.

30. Siddiqui ZA, Mahmood I (1995b) Role of plant symbionts in nematode management. A review. Bioreosour Technol 54: 217-226.

31. Siddiqui ZA, Mahmood I (1997) Interaction of Meloidogyne javanica, Fusarium solani and plant symbionts on chickpea. Thai J Agric Sci 30: 379-388.

32. Jenkins WR (1964) A rapid centrifugal-fotation technique for separating nematodes from soil. Plant Disease Reporter 48: 692.

33. Coolen WA, D’hderle CJ (1972) A Method for the Quantitive Extraction of Nematodes forms Plant Tissue. Min Agriculture Ghent, Belgium.

34. Li B, Xie GL, Soad A, Coosemans J (2005) Suppression of Meloidogyne javanica by antagonistic and plant growth-promoting rhizobacteria. J Zhejiang Univ Sci B 6: 496-501.

35. Schaad NW, Jones JB, Chum W (2001) Laboratory Guide for Identification of Plant Pathogenic Bacteria. (3rdedn), APS Press, USA.

36. Olajuyigbe FM, Ajele JO (2005) Production dynamics of extracellular protease from Bacillus species. African Journal of Biotechnology 4: 776-779.

37. Deacon JW (1991) Significance of ecology in the development of biocontrol agents against soil-borne plant pathogens. Biocontrol Science and Technology 1: 5-20.

38. Weller DM (1988) Biological control of soil borne plant pathogens in the rhizosphere with bacteria. Annu Rev Phytopathol 26: 379-407.

39. Daud AT, Chanmer AG, Ahmed R, Gowen SR (1990) Pasteuria penetration as a biological agent of Meloidogyne incognita in the field. Malawi. Brighton Crop Protection conf. Pest and Disease, Farnham.

40. Liu L, Kloepper JW, Tuzun S (1995) Induction of systemic resistance in cucumber against Fusarium wilt by plant growth-promoting rhizobacteria. Phytopathology 85: 695-698.

41. Shanthi A, Raisewati S, Sivakumar CV, Mehta UK (1998) Soil application of Pseudomonas fluorescens for the control of root-knot nematode Meloidogyne incognita on grapevine (Vita vinifera L.) Nematology: Challenges and opportunities in 21 st century. Proceeding of the Third International Symposium of Afro-Asian Society of Nematologists, (TISAASN’98), Sugar-cane Breeding Institute (ICAR), Coimbatore, India.

42. Mohotti KM, Briscoe BR, Gowen SR, Bridge J (1998) Are entomopathogenic nematodes susceptible to infection by the plant parasitic nematode biocontrol organism, Pasteuria penetrans. Proceedings of the Third International Symposium of Afro-Asian Society of Nematologists, Coimbatore, India.

43. Maafi ZT, (2000) Study of Pasteuria penetrans group on some plant parasitic nematodes and their host ranges in the North of Iran. Iran. J Plant Pathol 36: e221-e231.

44. Visser T (1959) Observation on the prevalence and control of parasitoid eelworms in tea. Tea Quarterly 30: 96-107.

45. Gnanapragasam NC (1989) Varietal response of pepper to infestation by the burrowing nematode, Radopholus similis. Sri Lanka J Tea Sci 58: 5-8.
46. Shanthi A, Rajendran G, Sivakumar M (2003) Biomanagement of lesion nematodes in banana. Proceedings of the 6th International PGPR Workshop, Calcutta, India.

47. Siddiqui S, Siddiqui ZA, Iqbal A (2005) Evaluation of fluorescent Pseudomonads and Bacillus isolates for the biocontrol of a wilt disease complex of pigeonpea. World J Microbiol Biotechnol 21: 729-732.

48. Ashoub AH, Amara MT (2010) Biocontrol Activity of Some Bacterial Genera Against Root-Knot nematode, Meloidogyne incognita. Journal of American Science 6: 321-328.

49. Mohamed ZK, El-Sayed SA, Radwan TEE, Abd El-Wahab GS (2009) Potency evaluation of Serratia marcescens and Pseudomonas fluorescens as biocontrol agents for root-knot nematodes in Egypt. J Applied Sci Res 4: 93-102.

50. Siddiqui ZA, Baghel G, Akhtar MS (2007) Biocontrol of Meloidogyne javanica by Rhizobium and plant growth-promoting rhizobacteria on lentil. World J Microbiol Biotechnol 23: 435-441.

51. Huang X, Zhao N, Zhang K (2004) Extracellular enzymes serving as virulence factors in nematophagous fungi involved in infection of the host. Res Microbiol 155: 811-816.

52. Decraemer W, Karamastasi E, Brown D, Backeljau T (2003) Review of the ultrastructure of the nematode body cuticle and its phylogenetic interpretation. Biol Rev Camb Philos Soc 78: 465-510.

53. Qiuhong N, Xiaowei H, Baiyou T, Jinkui Y, Jiang L, et al. (2006) Bacillus sp. B16 kills nematodes with a serine protease identified as a pathogenic factor. Appl Microbiol Biotechnol 69: 722-730.

54. Ahman J, Johansson T, Olsson M, Punt PJ, van den Hondel CA, et al. (2002) Improving the pathogenicity of a nematode-trapping fungus by genetic engineering of a subtilisin with nematotoxic activity. Appl Environ Microbiol 68: 3406-3415.

Submit your next manuscript and get advantages of OMICS Group submissions

Unique features:
- User friendly/feasible website-translation of your paper to 50 world’s leading languages
- Audio Version of published paper
- Digital articles to share and explore

Special features:
- 200 Open Access Journals
- 15,000 editorial team
- 21 days rapid review process
- Quality and quick editorial, review and publication processing
- Indexing at PubMed (partial), Scopus, DOAJ, EBSCO, Index Copernicus and Google Scholar etc
- Sharing Option: Social Networking Enabled
- Authors, Reviewers and Editors rewarded with online Scientific Credits
- Better discount for your subsequent articles

Submit your manuscript at: www.editorialmanager.com