A makrogyűrűben foszforatomot tartalmazó koronaéterek előállítása és alkalmazási lehetőségeinek vizsgálata+

SZABÓ-SZENTJÓBI Hajnalka*a,b, TÓTH Tünde*a, HUSZTHY Péter*a

*aBudapesti Műszaki és Gazdaságtudományi Egyetem, Végysémártani és Biomérnöki Kar, Szerves Kémia és Technológia Tanszék, Szent Gellért tér 4., 1111 Budapest, Magyarország
bEnergiatudományi Kutatóközpont, Energia- és Környezetbiztonsági Intézet

Konkoly Thege Miklós út 29-33, 1121 Budapest, Magyarország

1. Bevezetés

A szupramolekuláris kémia napjainkra egy jelentős tudományágá nötte ki magát, alapja moleküláris felismerés, mely során a létezőjövő asszociátumot intermoleküláris másodrendű kötőerők tartják össze. Ezt a jelenséget sokáig a természetben egyedülik, az otto előforduló számos példa közül megemlíthetjük az antitest–antigén kapcsolatot, vagy a DNS kettős esvarjának kialakulását7. Az, hogy a szintetikus úton előállított vegyületek között is elkezdődhetett a moleküláris felismerés vizsgálata, C. J. Pedersen nevéhez köthető, aki egy véletlennel folytán előállított egy koronaétert, és észrevette, hogy az ilyen típusú makrociklusok a korábbi ismeretekhez képest szokatlan komplexképző képességgel rendelkeznek3.

A foszforatom előfordulhat rendkívül sokféle kémiai környezetben, régóta foglalkoznak szerves és szervetlen vegyületeivel. Így nem meglepő, hogy a koronaéterekkel kapcsolatos kutatások területén is találkozhatunk számos olyan szakirodalommá, például, ahol a foszforatomot valamilyen formában a makrociklusokhoz kötik. Sok kutatás célja olyan vegyületek előállítása, amelyben a foszforatom valamilyen koordinációs szerepet tölt be, mint foszfin származék, más esetekben feszítő vagy foszforfás származékként jelenik meg a heterociklusokban. Az 1. ábrán a teljesség igénye nélkül néhány foszforatomot tartalmazó makrociklust és ezek változatos felhasználási lehetőséget mutatom be5. Kutatási témán alapjául diarilfoszfinsav és trifenilfoszfin egységet tartalmazó koronaéterek előállításával, tulajdonságai való és felhasználási lehetőségeinek vizsgálatával foglalkozó kutatások szolgáltak3-6.

2. Eredmények

2.1. Új, deprotonálható koronaéterek szintézise és transzportfolyamatokban való vizsgálata

Transzportfolyamatok alatt azt értjük, amikor egy adott közegből valamilyen anyagot átjuttatunk egy másik közegbe egy membránrétegen keresztül. Ilyen folyamatokra számos példát találhatunk az élőtermészetben is, például a nátrium- és káliumionok transzportját a sejtekben. Sok kutatás irányul ezen folyamatok modellezésére, a kutatók már régóta próbálnak mesterséges rendszereket és transzport-molekulákat előállítani, melyekkel ezek a folyamatok megvalósíthatók. Doktori munkám egyik célja volt új, enantiomertiszta, lipofil, diarilfazsinsav egységet tartalmazó koronaéterek ((R,R)-5, (S,S)-5, (R,R)-6, és (S,S)-6, 2. ábra) szintézisének kidolgozása, illetve ezek transzporter-ligandumként történő alkalmazhatóságának vizsgálata volt [1,2]. Az általam szintetizált deprotonálható makrociklusokkal különböző királi aminok sínának enantiomerezelet transzport-folyamatait vizsgáltam a kutatócsoportban korábban kidolgozott rendszeren6. Sikerült a korábban előállított hasonló szerkezetű makrociklusokkal ((R,R)-7, (S,S)-7, (R,R)-8, és (S,S)-8, 2. ábra) előír enantiomerfélésg értékeket javítani.

Fémionok komplexálásának vizsgálata

Ag⁺, Hg²⁺, Pd²⁺ extrakciója

K⁺, Pb²⁺, Zn²⁺, Ag⁺ transportja

Pd²⁺ komplex katalizátor

1. Ábra. Foszforatomot tartalmazó makrociklusok és alkalmazhatóságuk

+ Szabó-Szentjóbi Hajnalka azonos című PhD értesítéséhez kapcsolódó Tézisfűzet alapján készült
* Tel.: 06 1 463 1071; fax: 06 1 463 3297; e-mail: huszthy@mail.bme.hu

126. évfolyam, 2. szám, 2020.
A királis vegyületek szintézisénél rac-1,2-epoxidodekánból (rac-9) indultak ki. Egy kinetikai rezolválási eljárás során mindkét enantiomer nagy tisztsággal izoláltak, majd az enantiomertiszta epoxidokat sikeresen tovább alakították, míg végül a megfelelő (S,S)-5 – (R,R)-6 diarilfoszfín-savakkhoz jutott (3. ábra).

Az enantiomertiszta makrociklusok transzport-tulajdonságainak hasznosítására kutatócsoportunk-ban kidolgozott módszer szerint királis protonált primer aminok enantiomerszélektív transzportját vizsgáltam egy vizes adófá-szivárgás és a tényleges transzport, mint két ellentétes folyamat alakítja ki az enantiomerfelesleg értékek alakulását. Megállapítot-tam, hogy a transzportok esetén a heterokiráli-s komplexek képződése preferált (5. ábra)10.

Idő (óra)	Transzportált mennyiség (%)	Enantiomer felesleg (%)
4	5	15
16	15	18
24	21	20
50	32	25
74	40	26
120	56	25
172	68	19
231	72	10

4. Ábra. Az enantiomerszélektív transzport eredményei

Fenilglicinol-hidrogénperklorát sójának esetében sikerült javítani az alkalmazott rendszerben éddig elért legjobb enantiomerfelesleg értéket. Ebben az esetben vizsgáltam a transzport időfüggését is, amivel bizonyítottam az aktív transzport működését. A transzport során tapasztalható enantiomerfelesleg értékek meglepően egy maximumon átívelő görbe szerint alakultak, ezért megvizsgáltam a transzportot koronaéter távollétében is, melynek során membránszivárgást tapasztaltam a fenilglicinol díklórmetában való oldhatósága miatt. Ez a folyamat az enantiomerek elválasztásának ellenében hat, így feltételeztem, hogy a szivárgás és a tényleges transzport, mint két ellentétes folyamat alakítja ki az enantiomerfelesleg értékek alakulását. Megállapítottam, hogy a transzportok esetén a heterokiráli-s komplexek képződése preferált (5. ábra).

5. Ábra. A fenilglicinol enantiomerszélektív transzportjának időfüggése
2.2. Fluoreszcsens szenzormolekulák szintézise és vizsgálata

Kutatócsoporthunkban nagy hagyomány van a fluoreszcsens szenzormolekulák szintézisének. A változatos szerkezetű koronaéterek különböző mértékű enantiozmerektétőltésével kezelték fel-ismerni protonált primer aminok enantiomerjeit. Célul tüzem kimondható egy fogyasztófogó, amely a fluoreszcsens szenzormolekula mindkét enantiomer-jének előállítását ((S,S)-13 és (R,R)-13) és vizsgálni ezek protonált aminok enantiomerjeivel szemben mutatott felismerőképességét. A szenzormolekula szintéziséhez először a tetraetilenglikol-ditozilátok enantiomerjeit állítottam elő. Az (S,S)-14 intermediert a szakirodalomban közölt módon állítottam elő, az (R,R)-14 enantiomer szintézisére pedig egy új módszert dolgoztam ki, melynek első lépése a lipofil tetraetilenglikol előállításánál (3. ábra) is használt kinetikus rezolválás volt. Az így kapott (R)-propilénxidot alakítottam tovább a megfelelő tetraetilenglikol származékká. A makrokilizácios lépés után a fluoreszcsens egység bevitelére több kíséreltem, többen köztött Grignard-, litiumorganikus- valamint Hiroa-reakcióval is. A legeredményesebb P-C kapcsolás körülményeit a 6. ábrán mutatom be11.

Az előállított koronaéterek komplex szerkezete miatt, sze rettük volna kétdimenziós NMR spektroszkópia segítségével alátámasztani azt. A méréseket Szügvetari Áron végezte Dr. Szántay Csaba vezetésével. Habár a makrokilusok szimmetrikusak, a fogyasztóatom egy prokírális centrum, így a makrokilus két fele diasztereotóp viszonyban áll egymással. Emiatt minden atom különböző eltolódással jelenik meg a NMR spektrumokban, azonban igen közel egymáshoz, így a jelek beazonosítása rendkívül bonyolult feladatként bizonyult. Az (S,S)-13 koronaéter teljes aszignációját elvégzettük11.

Az (R,R)-13 és (S,S)-13 szenzormolekulák enantiomerfelszerkezeti-mérséklését fluoreszcencia spektroszkópia segítségével vizsgáltunk 1-feniletilamin-hidrogénperklorát (PEA), 1-(1-naftil)etilamin-hidrogénperklorát (NEA), fenilglicinmeti-lészter-hidrogénperklorát (PGMA) és fenilala mín-metilősztér-hidrogénperklorát (PAMA) enantiomerjeivel szemben (7. ábra).

A szenzormolekülák komplexképzésére jellemző spektrális változásokat, valamint az ebből képzett Stern-Volmer görbék az (R,R)-13 koronaéter és az (R)-PGMA példáján mutat auchon ben (8. ábra). Az (R,R)-13 és (S,S)-13 makrokilusok esetében minden viszgált protonált aminnal negatív eltérést tapasztaltam a Stern-Volmer egyeneshez képest. Ebben az esetben a komplexstabilitási állandók számítása nehezebb, nem egyértelmű az összefüggés a fluoreszcencia intenzitásának csökkenése és a komplexstabilitási állandók között24.

6. Ábra. Fogyasztatomot tartalmazó fluoreszcsens szenzormolekula előállítása

A szenzormolekula dinamikus reakcióban lévő különbözően az előállított koronaéterek komplex szerkezete miatt, sze rettük volna kétdimenziós NMR spektroszkópia segítségével alátámasztani azt. A méréseket Szügvetari Áron végezte Dr. Szántay Csaba vezetésével. Habár a makrokilusok szimmetrikusak, a fogyasztóatom egy prokírális centrum, így a makrokilus két fele diasztereotóp viszonyban áll egymással. Emiatt minden atom különböző eltolódással jelenik meg a NMR spektrumokban, azonban igen közel egymáshoz, így a jelek beazonosítása rendkívül bonyolult feladatként bizonyult. Az (S,S)-13 koronaéter teljes aszignációját elvégzettük11.

Az (R,R)-13 és (S,S)-13 szenzormolekulák enantiomerfelszerkezeti-mérséklését fluoreszcencia spektroszkópia segítségével vizsgáltuk 1-feniletilamin-hidrogénperklorát (PEA), 1-(1-naftil)etilamin-hidrogénperklorát (NEA), fenilglicinmeti-lészter-hidrogénperklorát (PGMA) és fenilalamin-metilősztér-hidrogénperklorát (PAMA) enantiomerjeivel szemben (7. ábra).

7. Ábra. Vizsgált aminok hidrogénperklorát sői

A szenzormolekülák komplexképzésére jellemző spektrális változásokat, valamint az ebből képzett Stern-Volmer görbék az (R,R)-13 koronaéter és az (R)-PGMA példáján mutat auchon ben (8. ábra). Az (R,R)-13 és (S,S)-13 makrokilusok esetében minden viszgált protonált aminnal negatív eltérést tapasztaltam a Stern-Volmer egyeneshez képest. Ebben az esetben a komplexstabilitási állandók számítása nehezebb, nem egyértelmű az összefüggés a fluoreszcencia intenzitásának csökkenése és a komplexstabilitási állandók között24.

8. Ábra. Az (R,R)-13 makrokilus (R)-PGMA oldatával történő titrálása során kapott fluoreszcencia spektrum-sorozat (A), az (R,R)-13 makrokilus PGMA enantiomerjeivel végzett mérések alapján kapott Stern-Volmer görbék (B)

A komplexstabilitási állandók számításaig Dargó Gergő végzette Dr. Balogh György Tibor vezetésével. Az eredményekből látszik, hogy a koronaéterek viszonylag stabil komplexet képeznek a viszgált protonált aminokkal, a log K értékek minden esetben 4 körül vannak. A PGMA és a
PAMA esetében a homokirális komplexek, míg a NEA és a PEA esetében a heterokirális komplexek képződése preferált. Az eredmények alapján azt is láthatjuk, hogy a koronaéterek enantiomerfelismerő-képessége csak gyenge, közepes (9. ábra)

	(R)-NEA	(S)-NEA	(R)-PEA	(S)-PEA
(R,R)-13	4,29	4,37	3,97	4,03
Δlog K	0,08	0,06		
(S,SS)-13	4,21	4,14	4,12	4,01
Δlog K	0,07	0,11		
(R)-PGMA	4,28	3,99	3,82	
(R,R)-13	4,43	4,28	3,99	4,10
Δlog K	0,15	0,17		
(S,SS)-13	4,26	4,36	3,99	4,10
Δlog K	0,10	0,11		

9. Ábra. Szenzormolekulák protonált primer aminokkal képzett komplexeinek stabilitási állandói

2.3. Foszfin és szekunder foszfin-oxid egységet tartalmazó koronaéterek szintézise és vizsgálata katalizátor ligandumként

Kutatócsoportunkban korábban kis mennyiségben előállítottuk a 18. (R,R)-19 és az (S,S)-20 (10. ábra) trifenilfoszfin egységet tartalmazó makrociklusokat. Doktori munkám során a leírt szintézisétutakat reprodukálva sikerült ezen koronaétereket nagyobb mennyiségben is előállítani, így lehetőség nyílt ezen vegyületek katalizátorligandumként való vizsgálatára sztírozó hidroformilezési reakciójában. A vizsgálatokat Dr. Pongrácz Péter végezte Dr. Kollár László vezetésével. A reakció minden esetben egy nyomásálló edényben zajlott, ebben került a PtCl₂(PhCN)₂ és a ligandum (vagy az ezekből előzetes kialakított katalizátor), valamint a kokatalizátoroként használt ón-klorid toluolban készült oldata. A nyomásálló edényt 80 bar nyomás alá helyezték, ahol a szénmonoxid-hidrogén gáz-nyomás aránya 1:1 volt. A reakció során elágazó (A) és lineáris aldehid (B) is keletkezik, valamint hidrogénzési mellékreakció is lejátszódik, melynek terméke az etilbenzol (C), így vizsgálható a reakció kemo- ((A+B)/(A+B+C)) és regioszelektivitása (A/(A+B)). Amennyiben az alkalmazott ligandum kírális, úgy a 2-fenípropanol enantiomerjei racémtől eltérő arányban keletkezhetnek, azaz a reakció enantiomerszelektivitása is vizsgátható válik (10. ábra). A kutatás során vizsgáltuk a platina-ligandum arány, a reakcióidő, valamint a hőmérséklet reakcióra gyakorlott hatását. A kemoszelektivitás 63–90% között volt, tehát minden esetben az aldehidek keletkeztek nagyobb mennyiségben. A regioszelektivitás jellemzően 60% körül volt, az elágazó aldehid keletkezett nagyobb mennyiségben. A királis ligandumok alkalmazása esetén közepes enantiomer-szelektivitást sikerült elérni, a 2-fenípropanol a legnagyobb (52%) enantiomerfelesleg értékkkel az (S,S)-20 makrociklus alkalmazása esetén keletkezett15.

10. ábra. Trifenilfoszfin egységet tartalmazó makrociklusok alkalmazása katalizátor ligandumként

Az ez irányú kutatásokat kiterjesztve előállítottam további hat új trifenilfoszfin egységet tartalmazó makrociklust (16, S,S)-21 – (S,S,S,S)-26), valamint két szekunder foszfin-oxid egységet tartalmazó korona-értet (15, S,S)-27 és (S,S)-28 is16 (11. ábra). Ez utóbbi vegyületek a pentavalens foszfin-oxid és a trivalens foszfinossav tautomer formáik egyensúlyában léteznek Ez az egyensúly átmeneti fém hozzá-adása tárgyának hatására a foszfinossav irányába toldók el, így ezek a vegyületek is alkalmakas lehetnek katalizátor prekurzorként történő felhasználásra amellett, hogy oxidációira jóval kevésbé érzékenyek, mint a foszfin típusú vegyületek15.

A szintéziseket a foszfin egységet tartalmazó koronaéterek közös, a szakirodalomban már közölt kulcsintermedierjének (2916) előállításával kezdtem, melyet már kutatócsoportunk-
ban is előállították korábban11, azonban én ezt egy új, egy-szerűbben és gyorsabban kivitelezhető reakciókat magában foglaló szintézisüton állítottam elő. Első lépésként a 30 di-fenilklor-foszfátot vittem Grignard-reakcióba fenilmagne-
zium-bromiddal, így kaptam a 31 foszfónátot. Ezt reagáltat-
tam tovább in situ képzett litium-dizopropil-amiiddal, amely révén egy orto-litilásiást követő intermolekuláris átrendező-
dés játszódott le, így jutottam a kívánt 29 foszfín-oxidhoz ((12. ábra).

12. Ábra. A koronaéterek közös, foszfín-oxid egységet tartalmazó kul-
ceintermedijerének előállítása

A szintézisek másik kulcsintermedijerével az etilénlik-dio-
tozítók voltak, melyek közül a legtöbbet a szakirodalom-
ban már közölték. Az (R,R)-22 makrociklus előállításához
szükséges, a szakirodalomban eddig nem közölt, (R,R)-32
trietilénlik-ditozítót előállítását az enantiomer-tiszta
(S)-33 2-brómproprónyhból kiindulva valósítottam meg.
Elsőként utóbbi a nátrium sóját képeztem, melyet etilén-
likollal reagáltattam. Az így kapott disav származéko-
ntalanban tionil-kloriddal az (R,R)-35 diészterrel alakítottam,
amit lium-alumínium-hidrid segítségével diolá redu-
káltam, majd utolsó lépésként tozilát távoló-csoportokkal
láttam el ((R,R)-32, 13. ábra).

13. ábra. Dimetil-szubsztituált trietilénlik-ditozítót előállítása

Az (S,S,S)-21 - (S,S)-24 makrociklusok előállítása során a
következő lépés a makrociklizáció volt, amit minden eset-
ben valamilyen aprótípus poláros oldószerben végeztém,
a hőmérsékletet aszerint megválasztva, hogy primer vagy
szekunder ditozítálatot vittem gyűrűzarási reakcióba a 29
foszfín-oxidral. Utolsó lépésként a foszfín-oxid egységet
tartalmazó makrociklusokat trimetoxiszilán segítségével a
megfelelő foszfínokká redukáltam (14. ábra)15.

14. ábra. Makrociklizációs és redukciós reakciók

Az (S,S,S,S)-25 és (S,S,S,S)-26 két foszfén egységet
tartalmazó biszakaronér típusú vegyületek szintézi-
se során az (S,S)-3911 etil-diarilfoszfinatból indultam ki,
melyből savkloridó képzett, majd ezt reagáltattam
Grignard reakcióban 4-benziloxi-fenilmagnezium-bro-
middal. Ezután katálitikus hidrogénezéssel a benzil
védcsoportot eltávolítottam, így jutottam az (S,S)-40
szabad fénolos hidroxilcsoportot tartalmazó származék-
hoz. Ennek két mólját egy mól különböző hosszúságú
α,ω-dibrom-alkánokkal reagáltattam, majd az így ka-
pott biszfoszfín-oxidokat utolsó lépésként redukáltam
(15. ábra)15.

15. ábra. Biszmakrociklusok előállítása
Az (S,S)-27 és (S,S)-28 szekunder foszfin-oxid egységet tartalmazó koronaétereket a megfelelő etil-diärilfoszfintoxotokból ((S,S)-39 és (S,S)-41) állítottam elő, lítium-alumínium-hidridre végzett redukcióval (16. ábra).

16. Ábra. Szekunder foszfin-oxid egységet tartalmazó koronaéterek előállítása

Az újonnan szintetizált makrociklusokat ((S,S)-21 - (S,S)-28) sztirol hidroformilezési reakciójában teverezzük katalizátor ligandumként alkalmaztuk. Így vizsgálhatóvá válik a ligandumok szerkezetének a választott modellreakció szelektivitására gyakorolt hatása.

6. Összefoglalás

Kutatómunkám során előállítottam két új, lipofil, diäril-foszfinsav egységet tartalmazó királi koronaétert ((R,R)-5 – (S,S)-6), melyekkel aktiv, enantioomerszelektív transzportot valósítottam meg és bizonyítottam, hogy a transzportfolyamat kimenetében nagymértékben függ a transzportáló makrociklus és a transzportáló amin szerkezetétől is. Egy esetben növeltem a transzportfolyamat során ilyen típusú makro-ciklusokkal eddig érlelt enantiomerfelség értéket. Ezen kívül előállítottam új, foszfór atomot tartalmazó fluorescens szenzormolekulát ((R,R)-13 és (S,S)-13) is. Vizsgálva a szenzormolekula felismerőképességét négy királi, protonált primer amin enantioërejére vonatkozóan megállapítottam, hogy az gyenge enantiomerfelismerő-képességgel rendelkezik. A szakirodalomban közölt szintészeti szerint nagyobb mennyiségben előállított trifenil-foszfín egységet tartalmazó makro-ciklusokkal ((R,R)-19 és (S,S)-20), sikerült bizonyítanom, hogy ezek koronaéterek alkalmazását szturol enantioëmerszelektív hidroformilezési reakciójában katalizátor ligandumként. Ezen kutatás kiterjesztéseként hat új foszfín ((S,S)-21 – (S,S,S,S)-26), és két új szekunder-foszfin-oxid egységet tartalmazó koronaétert szintetizáltam ((S,S)-27 – (S,S)-28), melyekkel a későbbiében vizsgálni szeretnénk a ligandumok szerkezetének a választott modellerek szelektivitására gyakorolt hatását.

Köszönnetnyilvánítás

A szerzők köszönik a Nemzeti Kutatófejlesztési és Innovációs Hivatal (K112289 és K128473), az Új Nemzeti Kiválóság Program (ÚNKP-19-3) és az Új Széchenyi Terv TAMOP-4.2.1/B-09/1/KMR-2010-0002 program anyagi támogatását.

Hivatkozások

1. Lehnh J.M. Supramolecular Chemistry; Wiley-VCH: Weinheim, 1995. ISBN: 3-527-2931 1-6
2. Pedersen, C.J. Journal of the American Chemical Society 1967, 89, 2495. https://doi.org/10.1021/ja00986a052 https://doi.org/10.1021/ja001002a035
3. Szabó-Szentjóbi, H.; Szabó, T.; Tóth, T.; Huszthy, P. Crown ethers containing phosphorus in the macroring, Chapter 15. Organophosphorus Chemistry. (ed.: Gy. Keglevich) 2018. ISBN: 978-3-11-05435-3 https://doi.org/10.1515/978311053839-015
4. Huszthy, P.; Farkas, V.; Tóth, T.; Székely, G.; Hollósi, M. Tetrahedron 2008, 64, 10107. https://doi.org/10.1016/j.tet.2008.07.111
5. Székely, Gy.; Csordás, B.; Farkas, V.; Kupai, J.; Pogany, P.; Sánta, Z.; Szakács, Z.; Tóth, T.; Hollósi, M.; Nyitrai, J.; Huszthy, P. European Journal of Organic Chemistry 2012, 3396. https://doi.org/10.1002/ejoc.201101769
6. Szabó, T.; Hirsch, E.; Tóth, T.; Huszthy, P. Tetrahedron: Asymmetry 2014, 25, 1443. https://doi.org/10.1016/j.tetasy.2014.10.006
7. Szabó, T.; Hirsch, E.; Tóth, T.; Müller, J.; Riethmüller, E.; Balogh, G. T.; Huszthy, P. Tetrahedron: Asymmetry 2015, 26, 650. https://doi.org/10.1016/j.tetasy.2015.04.015 DOI:10.1016/j.tetasy.2015.04.015
8. Szabó, T.; Petri, L.; Gergely, S.; Huszthy, P. Arkivo 2015, 20, https://doi.org/10.3998/ark.5550190.p009.075
9. Szabó-Szentjóbi, H.; Tóth, T.; Huszthy, P. Phosphorus, Sulfur and Silicon and the Related Elements, 2018, 194, 364. https://doi.org/10.1080/10426507.2018.1544131
10. Szabó-Szentjóbi, H.; Bagi P.; Müller, J.; Balogh, Gy. T.; Tóth, T.; Huszthy, P. Tetrahedron, 2019, 73, 1275. https://doi.org/10.1016/j.tet.2019.01.039
11. Szabó-Szentjóbi, H.; Márton, A.; Pál, D.; Dargó, G.; Szigetvári, Á.; Szántay, Cs.; Balogh, Gy., Tóth, T.; Huszthy, P. Periodica Polytechnica Chemical Engineering 2020, 1, 37. https://doi.org/10.3311/PPch.4646
12. Van de Weert, M.; Stella, L., Journal of Molecular Structure 2011, 998, 144. https://doi.org/10.1016/j.molstruc.2011.05.023
13. Pongrácz, P.; Szentjóbi H.; Tóth, T.; Huszthy, P.; Kollár, L., Molecular Catalysis, 2017, 439, 128. https://doi.org/10.1016/j.mcat.2017.06.037
14. Szabó-Szentjóbi, H., Majors, I. Márton, A., Leveles, I. Vértessy, B. G., Dékany, M., Tóth, T., Huszthy, P. Synthesis, közlésre elfogadva. 2020. 32. https://doi.org/10.1055/s-0040-1707854
15. Christiansen, A.; Li, C.; Garland, M.; Selent, D.; Ludwig, R.; Spannenberg, A.; Baumann, W.; Franke, R.; Boerner, A. European Journal of Organic Chemistry 2018, 2733. https://doi.org/10.1002/ejoc.201000037
16. Tanke, R. S.; Holt, E. M.; Crabtree, R. H. Inorganic Chemistry 1991, 30, 1714. https://doi.org/10.1021/ic00008a009

126. évfolyam, 2. szám, 2020.
Synthesis and examination of the possibility for application of crown ethers containing phosphorus in the macroring

Nowadays supramolecular chemistry has become an important area of research. Its basic phenomenon is the molecular recognition. Acting by this phenomenon a host molecule (a crown ether for example) selects a guest molecule from the surrounding molecules, and they form a complex stabilized by secondary binding forces. This phenomenon had been regarded for a long time as a unique one in Nature. Among many examples the antibody–antigen interaction or the formation of the DNA double helix can be mentioned. The study of molecular recognition using synthetic host molecules started by C. J. Pedersen who accidentally prepared a crown ether and realized that these types of macrocycles have unusual complexing properties.

Phosphorus can be found in extremely diverse chemical environments, occurs in many organic and inorganic compounds. Because of this, it is not surprising, that there are also a great number of reported examples in the field of research on crown ethers too, in which the phosphorus atom is bound to the macrocycles in certain form. The aim of many researches is to prepare compounds in which the phosphorus atom plays some coordination role as a phosphine derivative, in other cases it appears as a phosphate or phosphonic acid derivative in heterocycles. Figure 1 shows the schematics of some macrocycles containing phosphorus and also their various applications.

Studies on the synthesis and properties of crown ethers containing a triarylphosphine or diaryl-phosphinic acid moiety were the background of my research work. One of the aims of my PhD work was to elaborate the synthesis of new, enantiopure lipophilic crown ethers containing diarylphosphinic acid unit ((R,R)-5 - (S,S)-6, Fig. 2), and examine these compounds as transport ligands. With the newly synthesized proton-ionizable macrocycles enantio-selective transport of chiral protonated amines was examined in a system previously developed in our research group. I was able to achieve better enantioselectivity than before using similar macrocycles ((R,R)-7 - (S,S)-8, Fig. 2). The results show that the outcome of the transport depends significantly on the structure of the transport macroring and the transported amine. The results are summarized in a table (Fig 4), where the data of the transport for the reported macrocycles are also indicated for the sake of comparison. In the case of protonated phenylglycinol, increased enantioselectivity was obtained in the applied system. In the latter case I also examined the time dependence of the transport proving the feature of its active behaviour (Fig 5).

The synthesis of fluorescent sensor molecules has a long tradition in our research group. Crown ethers with various structures are able to recognize the enantiomers of chiral protonated amines with different enantioselectivity values. I aimed to prepare both enantiomers of a fluorescent sensor molecule containing phosphorus ((S,S)-13 and (R,R)-13, Fig. 6) and also to study their enantio-meric recognition for phenylethylamine hydrogen perchlorate (PEA), 1-(1-naphthyl)ethyl amine hydrogen perchlorate (NEA), phenylglycine methyl ester hydrogen perchlorate (PGME) and phenylalanine methyl ester hydrogen perchlorate (PAME) (Fig. 7) by fluorescent spectroscopy. Gergő Dargó and György Tibor Balogh performed the calculations for the complex stability constants (Fig. 9). The results show that macrocycles (R,R)-13 and (S,S)-13 form thermodynamically stable complexes with the enantiomers of the chiral protonated amines, but the macrocycles exhibited moderate enantiomeric differentiation abilities.

A few years ago small amounts of macrocycles 18, (R,R)-19 and (S,S)-20 (Fig. 10) containing a triphenylphosphine unit were prepared in our research group. During my work, I was able to prepare these crown ethers in larger quantities by reproducing the described synthetic routes and this way it was possible to study these compounds as catalyst ligands in the hydroformylation reaction of styrene, which were performed by Péter Pongrácz and László Kollár (Fig. 10). The effect of platinum-ligand ratio, reaction time and temperature for the reaction was investigated during the experiments. The chemoselectivity was between 63 and 90%, the regioselectivity was around 60%, and the branched aldehyde was formed in the largest quantity. If chiral ligand was used, moderate enantioselectivities were achieved, 2-phenylpropanol was formed with the highest (52%) enantiomeric excess when the (S,S)-20 macrocycle was used.

In order to extend this research, I prepared six new macrocycles (S,S)-21 – (S,S,S,S)-26 containing triphenylphosphine units, and two crown ethers (S,S)-27 and (S,S)-28 containing a secondary phosphine oxide unit (Fig. 11). Secondary phosphate oxides exist in an equilibrium between the pentavalent phosphine oxide and the trivalent phosphinous acid forms. In the presence of a transition metal, the equilibrium is shifted to the phosphinous acid form through coordination of the phosphorus atom giving a rich family of potential catalysts, which are less sensitive to oxidation. With the help of the newly synthesized macrocycles, the relationship between the structure of the ligands and the selectivity values of the chosen model reaction can be investigated.