Abstract. Choreographies prescribe the rendez-vous synchronisation of messages in a communicating system. Such a system is called realisable, if the traces of the prescribed communication coincide with those of the asynchronous system of peers, where the communication channels either use FIFO queues or multiset mailboxes. It has recently been shown that realisability can be characterised by two necessary conditions that together are also sufficient, whereas in general the synchronisability of communicating peers is undecidable. The sufficiency of the conditions permits the construction of correct communicating systems; their necessity shows that all choreography-defined communicating system can be obtained in this way. This article provides an integrated framework based on Event-B for such a construction with a major emphasis on Rodin-based proofs of correctness and completeness.

Keywords: Event-B · Choreography · Realisability · Correctness proof · Completeness proof

1 Introduction

In a communicating system peers communicate asynchronously through messages. If the computations performed by the peers are disregarded and only the sequences of messages sent and received are considered, the system becomes a system of communicating FSMs with a semantics defined by the traces of sent messages. In addition, only those traces may be taken into account in which all sent messages have also been received.

Such a trace semantics can be defined in various ways using channels organised as FIFO queues for each pair of peers [6] or just for each receiver [1]. Alternatively, channels may be organised as multisets [8]. Naturally, one may also consider the possibility of messages being lost [7]. The synchronisability problem for such communicating systems is to decide whether the traces remain the same,
if a rendez-vous synchronisation of sending and receiving of messages is considered. This was proven to be undecidable in general [9]. The picture changes in the presence of choreographies which prescribe the rendez-vous synchronisation [2]. In this case the peers are projections of a choreography, and synchronisability becomes realisability of the given choreography. Recently it was shown that in this case the rendez-vous composition of the projected peers coincides with the choreography, and language synchronisability based only on the message traces coincides with synchronisability based in addition on the stable configurations reached [10]. This further enabled the characterisation of realisability of choreographies by two necessary conditions on a communication choreography, which together are sufficient.

A constructive Event-B-based approach to develop realisable choreographies and consequently communicating systems was brought up in [4,5]. The general idea is to exploit construction operators, by means of which realisable choreographies can be built out of a primitive base [11]. This already contains a hint on the sufficient conditions used in the associated proofs that were conducted using Rodin [3]. As the sufficiency proof in [10] removes some unnecessary assumptions, this approach becomes general. More importantly, the necessity of the conditions shows that all choreography-defined communicating systems can be obtained in this way. In this paper we continue this route and show that also the necessity proof for realisable choreographies can be supported by Event-B and Rodin. This further gives us means for repairing choreographies.

The remainder of this article is organised as follows. Section 2 is dedicated to theoretical foundations, where we review the fundamental definitions around peer-to-peer (P2P) systems and choreographies as well as the theory of realisable choreographies developed in [10]. Different to previous work we concentrate only on the most restrictive composition using a single message queue per peer. In Sect. 3 we briefly review our previous work on the Event-B-based construction of choreography-defined P2P systems with a slight extension of the Rodin-based proofs based on our newer insights. Section 4 is the core of this paper emphasising the necessary conditions for realisable choreographies and the Rodin-based proof. We conclude with a brief summary and outlook in Sect. 5.

2 Theoretical Background of Realisable Choreographies

Let M and P be finite, disjoint sets, elements of which are called messages and peers, respectively. Each message $m \in M$ has a unique sender $s(m) \in P$ and a unique receiver $r(m) \in P$ with $s(m) \neq r(m)$. We use the notation $i \xrightarrow{m} j$ for a message m with $s(m) = i$ and $r(m) = j$. We also use the notation $!m \xrightarrow{i} j$ and $?m \xrightarrow{i} j$ for the event of sending or receiving the message m, respectively. Write M_p and M'_p for the sets of messages, for which the sender or the receiver is p, respectively.

Let $s(M)$ and $r(M)$ denote the sets of send and receive events defined by a set M of messages. A P2P system over M and P is a family $\{P_p\}_{p \in P}$ of finite
state machines (FSMs) \mathcal{P}_p over an alphabet $\Sigma_p = s(M^*_p) \cup r(M^*_p)$. By abuse of terminology \mathcal{P}_p is also called a peer.

We write $\mathcal{P}_p = (Q_p, \Sigma_p, q_0, F_p, \delta_p)$, where Q_p is the finite set of states of the FSM, $q_0, p \in Q_p$ is the start state, $F_p \subseteq Q_p$ is the set of final states, and δ_p is the transition function, i.e. $\delta_p : Q_p \times \Sigma_p \rightarrow Q_p$. Without loss of generality we may concentrate on deterministic FSMs (see [10, Prop.1]).

2.1 Composition of Peers

A composition of a P2P system over M and P will be another automaton, the alphabet of which will be either M or $s(M) \cup r(M)$.

The rendez-vous composition of a P2P system $\{\mathcal{P}_p\}_{1 \leq p \leq n}$ with $\mathcal{P}_p = (Q_p, \Sigma_p, q_0, Q_p, \delta_p)$ is the FSM $C_{rv} = (Q, M, q_0, Q, \delta)$ with $Q = Q_1 \times \cdots \times Q_n$, $q_0 = (q_01, \ldots, q_0n)$, and $\delta((q_1, \ldots, q_n), i \overset{m}{\rightarrow} j) = (q'_1, \ldots, q'_n)$ holds if $\delta_i(q_i, l^{m_{i-j}}) = q'_i$ and $\delta_j(q_j, r^{m_{j-i}}) = q'_j$ hold, and $q_x = q'_x$ for all $x \neq \{i, j\}$.

The mailbox composition of a P2P system $\{\mathcal{P}_p\}_{1 \leq p \leq n}$ with $\mathcal{P}_p = (Q_p, \Sigma_p, q_0, Q_p, \delta_p)$ is the automaton $C_m = (Q, \Sigma, q_0, Q, \delta)$ satisfying the following conditions:

- The set of states is $Q = Q_1 \times \cdots \times Q_n \times (c_j)_{1 \leq j \leq n}$, where each c_j is a finite queue with elements in M.
- The alphabet is $\Sigma = s(M) \cup r(M)$.
- The initial state is $q_0 = (q_01, \ldots, q_0n, (\underline{\varepsilon})_{1 \leq j \leq n})$, i.e. initially all channels are empty.
- The transition function is defined by $\delta((q_1, \ldots, q_n, (c_j)_{1 \leq j \leq n}), e) = (q'_1, \ldots, q'_n, (c'_j)_{1 \leq j \leq n})$ if there exists i such that $\delta_i(q_i, e) = q'_i$ holds, $q_x = q'_x$ for all $x \neq i$, and
 - either $e \neq l^{m_{j-i}}$ for some j, $c'_j = c_j \cup \{i \overset{m}{\rightarrow} j\}$, and $c_k = c_k$ for all $k \neq j$.
 - or $e \neq r^{m_{i-j}}$ for some j and $c_i = \{j \overset{m}{\rightarrow} i\} \cup c'_i$ and $c_k = c_k$ for all $k \neq i$.

As above we call a state $(q_1, \ldots, q_n, (c_j)_{1 \leq j \leq n})$ stable if and only if all channels c_j are empty.

Peers as well as any composition of a P2P system are defined by automata, so their semantics is well defined by the notion of language accepted by them. It is common to consider just sequences of sending events, i.e. for a word $w \in M^*$ let $\sigma(w)$ denote its restriction to its sending events. Formally, we have $\sigma(\varepsilon) = \varepsilon$, $\sigma(i \overset{m}{\rightarrow} j) = l^{m_{j-i}}$, and $\sigma(w_1 \cdot w_2) = \sigma(w_1) \cdot \sigma(w_2)$, where \cdot denotes concatenation. Analogously, for words in $(s(M) \cup r(M))^*$ we have $\sigma(\varepsilon) = \sigma(r^{m_{j-i}}) = \varepsilon$, $\sigma(l^{m_{j-i}}) = r^{m_{j-i}}$, and $\sigma(w_1 \cdot w_2) = \sigma(w_1) \cdot \sigma(w_2)$.

If L is the language accepted by an FSM A with alphabet M or $\Sigma = s(M) \cup r(M)$, then $L(A) = \sigma(L)$ is the trace language of A. This applies for the cases where A is a peer \mathcal{P}_p or a composition C_{rv} or C_m. We use the notation $L_0(\mathcal{P}) = L(C_{rv}), L_\omega(\mathcal{P}) = L(C_m)$.

If we restrict final states to be stable, we obtain a different language $\hat{L}(C_m) \subseteq L(C_m)$, which we call the stable trace language of C_m.
A P2P system \(P = \{ P_p \}_{1 \leq p \leq n} \) is called **language-synchronisable**, if \(L_0(P) = L_\omega(P) \) holds. \(P = \{ P_p \}_{1 \leq p \leq n} \) is called **synchronisable**, if \(L_0(P) = L_\omega(P) = \hat{L}_\omega(P) \) holds.

2.2 Choreography-Defined P2P Systems

Let us now look into choreographies. We define a choreography by an FSM \(C = (Q, M, q_0, F, \delta) \), where \(M \) is again a set of messages. As before we ignore final states and assume \(F = Q \). Then every rendez-vous composition of a P2P system \(P = \{ P_p \}_{1 \leq p \leq n} \) defines a choreography.

Let \(C = (Q, M, q_0, Q, \delta) \) be a choreography with messages \(M \) and peers \(P \). For \(p \in P \) the projection \(\pi_p(C) \) is the FSM \((Q, \Sigma, q_0, Q, \delta_p) \) with \(\Sigma = s(M) \cup r(M) \) and \(\delta_p(q, e) = q' \) if \(e = !m_{p\to j} \) for some \(j \) with \(\delta(q, p \to m_j) = q' \), \(e = ?m_{i\to p} \) for some \(i \) with \(\delta(q, i \to m_j) = q' \) or \(e = \epsilon \) for \(\delta(q, i \to m_j) = q' \) with \(p \notin \{ i, j \} \).

The peer \(P_p \) defined by \(C \) is the FSM without \(\epsilon \)-transitions corresponding to \(\pi_p(C) \). A P2P system \(P = \{ P_p \}_{1 \leq p \leq n} \) is choreography-defined if there exists a choreography with peers \(P_p \) for all \(p \).

There is a close relationship between rendez-vous compositions and choreography-defined P2P systems. In [10] we proved that each choreography \(C \) coincides (up to isomorphism) with the rendez-vous composition of its peers. Thus, not all P2P systems are choreography-defined. In fact, if a P2P system is choreography-defined, then it must consist of the peers defined by its rendez-vous composition.

For choreography-defined P2P systems the synchronisability problem is much simpler than in the general case. In [10] we proved that a choreography-defined P2P system \(P = \{ P_p \}_{1 \leq p \leq n} \) is synchronisable if and only if it is language-synchronisable.

Therefore, we may focus only on language-synchronisability: if a trace is accepted, then it will be accepted in a stable configuration. We may also identify the rendez-vous composition with the given choreography. Therefore, a choreography \(C \) is called **realisable**, if \(L_0(P) = L_\omega(P) \) holds for the P2P system \(P \) defined by the projections of \(C \).

2.3 Characterisation of Realisability

The main result from [10] states that there are two necessary conditions for realisability, which together are sufficient. The sequence condition expresses that if two messages appear in a sequence, the sender of the second message must coincide with either the sender or the receiver of the preceding message. The choice condition expresses that if there is a choice of continuation with two different messages, then these messages must have the same sender.

Sequence Condition. Whenever there are states \(q_1, q_2, q_3 \in Q \) with \(\delta(q_1, i \to m_{j} j) = q_2 \) and \(\delta(q_2, k \to m_\ell \ell) = q_3 \) for non-independent messages \(i \to m_{j} j \) and \(k \to m_\ell \ell \), we must have \(k \in \{ i, j \} \).
Choice Condition. Whenever there are states $q_1, q_2, q_3 \in Q$ with $\delta(q_1, i \xrightarrow{m_1} j) = q_2$, $\delta(q_1, k \xrightarrow{m_2} \ell) = q_3$ and $q_2 \neq q_3$ for non-independent messages $i \xrightarrow{m_1} j$ and $k \xrightarrow{m_2} \ell$, we must have $k = i$.

Both conditions establish constraints on δ for two messages $i \xrightarrow{m_1} j$ and $k \xrightarrow{m_2} \ell$, but in both cases we need to exclude that these two messages are independent in the sense that they may appear in any order, i.e. we request that if there are states q_1, q_2, q_3 with $\delta(q_1, i \xrightarrow{m_1} j) = q_2$ and $\delta(q_2, k \xrightarrow{m_2} \ell) = q_3$, then we cannot have both $\delta(q_1, k \xrightarrow{m_2} \ell) = q_2$ and $\delta(q_2, i \xrightarrow{m_1} j) = q_3$. The following theorem is the main result in [10].

Theorem 1. A choreography C is a realisable with respect to P2P, queue or mailbox composition if and only if it satisfies the sequence and choice conditions.

3 Correctness by Construction

We now address the construction of realisable choreographies. For this we will first introduce several composition operators in Subsect. 3.1. We can easily define composition will satisfy the choice and sequence conditions and thus are realisable by Theorem 1. However, following [3, 4] we will actually redo the (sufficiency) proof using specifications of the constructors in Event-B and the Rodin prover.

3.1 Composition Operators

In the following we use the notation CP to refer to a choreography, and we add indices to distinguish different choreographies, whenever the need arises. Without loss of generality we also introduce distinguished final states q_{CP}^f, which ease the proofs. We define three composition operators: sequence composition $\otimes(\Rightarrow, q_{CP}^f)$, branching composition $\otimes(+, q_{CP}^f)$, and loop composition $\otimes(\circ, q_{CP}^f)$.

Each expression of the form $\otimes_{(op, q_{CP}^f)}(CP, CP_b)$ assumes that the initial state of CP_b is fused with the final state s_{CP}^f. Informally, we can say that CP_b is appended to CP at state s_{CP}^f.

Definition 1 (Sequential Composition). Given a choreography CP with final state $q_{CP} \in Q_{CP}^f$ and a choreography CP_b with a single transition $\delta_{CP_b}(q_{CP_b}, l_{CP_b}) = q_{CP_b}'$, the sequential composition $CP_{\Rightarrow} = \otimes(\Rightarrow, q_{CP}^f)(CP, CP_b)$ is defined by $Q_{CP_{\Rightarrow}} = Q_{CP} \cup \{q_{CP_b}'\}$, $M_{CP_{\Rightarrow}} = M_{CP} \cup \{m_{CP_b}\}$, $Q_{CP_{\Rightarrow}}^f = (Q_{CP}^f \setminus \{q_{CP}\}) \cup \{q_{CP_b}'\}$ and $\delta_{CP_{\Rightarrow}} = \delta_{CP} \cup \{((q_{CP}, l_{CP_b}), q_{CP_b}')\}$.

Definition 2 (Branching Composition). Given a choreography CP with final state $q_{CP} \in Q_{CP}^f$ and a family of choreographies $\{CP_{bi}\}_{1 \leq i \leq n}$, each comprising a single transition $\delta_{CP_{bi}}(q_{CP_{bi}}, l_{CP_{bi}}) = q_{CP_{bi}}'$, the branching composition $CP_{+} = \otimes(+, q_{CP})(CP, \{CP_{bi}\})$ is defined by
- \(Q_{CP^+} = Q_{CP} \cup \{ q_{CP_1}', \ldots, q_{CP_{bn}}' \} \)
- \(M_{CP^+} = M_{CP} \cup \{ l_{CP_{bi}}, \ldots, l_{CP_{bn}} \} \)
- \(\delta_{CP^+} = \delta_{CP} \cup \{ ((q_{CP}, l_{CP_{bi}}), q_{CP_{bi}}') | 1 \leq i \leq n \} \), and
- \(Q^f_{CP^+} = (Q^f_{CP} \setminus \{ q_{CP} \}) \cup \{ q_{CP_{bi}}', \ldots, q_{CP_{bn}}' \} \).

Definition 3 (Loop Composition). Given a choreography \(CP \) with final state \(q_{CP} \in Q^f_{CP} \) and a choreography \(CP_b \) with a single transition \(\delta_{CP_b}(q_{CP_b}, l_{CP_b}) = q_{CP_b}' \) such that \(q_{CP_b}' \in Q_{CP} \) holds, the loop composition \(CP \otimes (\otimes, s_{CP})(CP, CP_b) \) is defined by \(Q_{CP} = Q_{CP}, M_{CP} = M_{CP} \cup \{ l_{CP_b} \}, \delta_{CP} = \delta_{CP} \cup \{ ((q_{CP}, l_{CP_b}), q_{CP_b}') \} \), and \(Q^f_{CP} = Q^f_{CP} \).

Clearly, according to Theorem 1 we must require that in a sequence the sender of the added message equals the sender or receiver of any message associated with a transition to \(q_{CP} \in Q^f_{CP} \). The same must hold for the new messages introduced by a branching composition. In addition, the senders associated with the new messages must be pairwise different. In case of a loop composition we must in addition require that the sender of any message associated with a transition from \(q_{CP_b}' \in Q_{CP} \) equals the sender or receiver of the newly introduced message.

3.2 Correctness Proof

We use Event-B to prove the correctness of the compositions thereby giving an alternative Rodin-based proof of Theorem 1. An Event-B model (see Table 1) is defined to encode this incremental process.

Table 1. An excerpt of the LTS_model.

INITIALISATION
Events
Add_{Seq} & Any Some_{cp,b}
Where
grd1: Some_{cp,b} \in cps_b
grd2: MESSAGE(Some_{cp,b}) \neq End
grd3: Some_{cp,b} \in ISeqF
grd4: SOURCE_STATE(Some_{cp,b}) \in CP_Finale
...
Then
act1: BUILT_{CP} := BUILT_{CP} \cup (Some_{cp,b})
act3: CP_Finale states := (CP_Finale states \cup
(DESTINATION_STATE(Some_{cp,b})) \setminus
(SOURCE_STATE(Some_{cp,b}))
...
End

Once initialisation (INITIALISATION) is performed, three events (Add_{Sequence}, Add_{Choice} and Add_{Loop}) for sequence, choice and loop are interleaved to build a choreography \(CP \). All these events are guarded by the identified
Table 2. An excerpt of the LTS_CONTEXT.

LTS_CONTEXT
SETS PEERS, MESSAGES, CP_STATES.
CONSTANTS CP_B, DC, ISeqF, NDC, ...
AXIOMS
axm1: CP_B \subseteq CP_STATES \times PEERS \times MESSAGES \times PEERS \times CP_STATES \times N
- Deterministic CP definition DC
axm2_Cond1: \forall Trans1, Trans2. (Trans1 \in CP_B \land Trans2 \in CP_B \land SOURCE_STATE(Trans1) = SOURCE_STATE(Trans2) \land LABEL(Trans1) = LABEL(Trans2) \land DESTINATION_STATE(Trans1) \neq DESTINATION_STATE(Trans2)) \Rightarrow \{Trans1, Trans2\} \subseteq NDC
axm3_Cond1: DC = CP_B \setminus NDC
axm4_Cond1: DC = CP_B \setminus NDC
- Independent sequence freeness definition ISeqF
axm5_Cond2: ISeqF \subseteq CP_B
axm6_Cond2: \forall cp_b. (cp_b \in CP_B \land PEER_SOURCE(cp_b) = LAST_SENDER_PEERS(SOURCE_STATE(cp_b)) \lor PEER_SOURCE(cp_b) = LAST_RECEIVER_PEERS(SOURCE_STATE(cp_b))) \Rightarrow \{cp_b\} \subseteq ISeqF
axm7_Cond3: PCF \subseteq CP_B
axm8_Cond3: \forall cp_b. (cp_b \in CP_B \land PEER_SOURCE(cp_b) = BRANCHES_PEERS_SOURCE(cp_b)) \Rightarrow \{cp_b\} \subseteq PCF
End

conditions deterministic, sequence and choice conditions defined in the context LTS_CONTEXT of Table 2.

In this context (see Table 2), we introduce using sets and constants, the whole basic definitions of messages, choreography states, basic choreographies (i.e. choreographies with a single transition as used in the definitions of the composition operators), etc. A set of axioms is used to define the relevant properties of these definitions. For example, in Axiom axm1, a choreography CP is defined as a set of transitions with a source and target state, a message and a source and target peers. Axiom axm3_Cond1 defines that a non-deterministic choreography is using the NDC set. This NDC set characterises all the non-deterministic choices in a choreography CP. Note that Axiom axm4_Cond1 defines the assumed deterministic choice condition. The capture of sequence conditions is given by Axioms axm5_Cond2 and axm6_Cond2. It compares the source peer PEER_SOURCE(cp_b) with the sender peer LAST_SENDER_PEERS or with the receiver peer LAST_RECEIVER_PEERS of the last transition of the choreography.

Similarly, to define the choice condition, in Axioms axm7_Cond3 and axm8_Cond3 the sender peers PEER_SOURCE(Trans) of the transitions involved in a branch are compared.

The correctness proof rebuilds the three decisive parts of the proof of Theorem 1:

1. It shows that the trace language of the choreography coincides with the one of the rendez-vous composition of its projected peers. This property was called equivalence in earlier work [2].
2. It shows the language synchronisability between the rendez-vous composition and the mailbox composition, which was referred to as synchronisability in [2].

3. It shows that all accepted sequence of messages of the mailbox composition system are accepted in a state, where the mailboxes are empty. This property was called well-formedness in earlier work [2].

4 Completeness Proof: A Correct-by-Construction Approach with Event-B

To prove that all the choreographies CP built using the previously defined events, encoding the composition operators, we rely on refinement offered by Event-B. As indicated above we can decomposed the realisability property into three properties, namely equivalence, synchronisability and well-formedness. The Event-B context in Table 3 defines these properties.

Table 3. An excerpt of the LTS_{SYNC_CONTEXT}.

LTS_SYNC_CONTEXT: EXTENDS LTS_CONTEXT
SETS ACTIONS: CONSTANTS CPs_{B}, EQUIV, ...
AXIOMS
axm1: \(CPs_{SYNC_{B}} \subseteq CPs_{B} \times ACTIONS \times MESSAGES \times PEERS \times ACTIONS \times MESSAGES \times CPs_{B} \times N \)
axm2: \(CPs_{ASYNC_{B}} \subseteq (A_{STATES} \times ETIQ \times \eta) \rightarrow A_{STATES} \)
axm_1.a: EQUIV \in CPs_{B} \rightarrow CPs_{SYNC_{B}}
axm_1.a1: EQUIV = \{ Trans \rightarrow S_{Trans} \mid Trans \in CPs_{B} \land S_{Trans} \in CPs_{SYNC_{B}} \land SOURCE_STATE(Trans) = S_SOURCE_STATE(S_{Trans}) \land DESTINATION_STATE(Trans) = S_DESTINATION_STATE(S_{Trans}) \land PEER_SOURCE(Trans) = S_PEER_SOURCE(S_{Trans}) \land PEER_DESTINATION(Trans) = S_PEER_DESTINATION(S_{Trans}) \land MESSAGE(Trans) = S_MESSAGE(S_{Trans}) \land INDEX(Trans) = S_INDEX(S_{Trans}) \}
axm_1.b: SYNCHRONISABILITY \in CPs_{SYNC_{B}} \rightarrow R_TRACES
axm_1.b1: SYNCHRONISABILITY = \{ S_{Trans} \rightarrow R_{Trans} \mid S_{Trans} \in CPs_{SYNC_{B}} \land R_{Trans} \in R_TRACES \land S_INDEX(S_{Trans}) = R_INDEX(R_{Trans}) \land S_SOURCE_STATE(S_{Trans}) = R_SOURCE_STATE(R_{Trans}) \land S_PEER_SOURCE(S_{Trans}) = R_PEER_SOURCE(R_{Trans}) \land S_PEER_DESTINATION(S_{Trans}) = R_PEER_DESTINATION(R_{Trans}) \land S_DESTINATION_STATE(S_{Trans}) = R_DESTINATION_STATE(R_{Trans}) \}
axm_1.c: WF \in A_TRACES \rightarrow QUEUE
axm_1.c1: \forall A_TR, queue \cdot (A_TR \in A_TRACES \land queue \in QUEUE \land queue = 0)
\Rightarrow A_TR \rightarrow queue \in WF

Each property is formalised by a set of choreographies satisfying the corresponding property. These definitions use the rendez-vous composition \(CP_{rv} \) defined as set \(CPs_{SYNC_{B}} \) and the mailbox composition \(CP_{m} \) defined as set \(CPs_{ASYNC_{B}} \) in context \(LTS_SYNC_CONTEXT \) of Table 3.
4.1 An Event-B Context for the Realisability Property

The definition of the state-transitions system corresponding to the synchronous projection is given by the set CPs_{SYNC_B} defined by Axiom $axm1$ in Table 3. Actions (send ! and receive ?) are introduced. Then two other important axioms, namely $axm_1.a$ and $axm_1.a1$, are given to define the equivalence between a choreography CP and its synchronous projection. The $EQUIV$ relation is introduced. It characterises the set of CPs that are equivalent to their synchronous projection. Axiom $axm_1.a1$ formalises equivalence. The properties related to synchronisability are captured by Axioms $axm_1.b$ and $axm_1.b1$. Well-formedness is captured by Axioms $axm_1.c$ and $axm_1.c1$.

4.2 Refinement

We exploit the characterisation of realisability by three properties in a refinement strategy, which establishes the necessity step-by-step. These properties are introduced as invariants and inductively proven for each composition operator (sequence, choice and loop). That is, two refinements of the initial machine of Table 1 are defined:

- The first refinement introduces the equivalence property by defining the (synchronous) rendez-vous projection of the initial choreography CP.
- Synchronisability and well-formedness properties are proven in the second refinement.

Below we present a sketch of this development focusing on the definition of the sequence operator. The complete development can be accessed from http://yamine.perso.enseeiht.fr/ABZ2020EventBModels.pdf.

Table 4. An excerpt of the LTS_Synchronous_model.
First Refinement: Equivalence. The first refinement introduces the synchronous projection of the $BUILT_CP$ defined by variable $BUILT_SYNC$ in Table 4.

The event Add_Seq or sequence operator (Table 4) refines the same event of the root model of Table 1. It introduces the $BUILT_SYNC$ set corresponding to the synchronous projection as given in Sect. 2.1. Here, again, the Add_Seq applies only if the conditions in the guards hold. The With clause provides a witness to glue $Some_cp_b$ CP with its synchronous version.

Second Refinement: Synchronisability and Well-Formedness. The second refinement introduces the asynchronous projection with sending and receiving peers actions.

Well-formedness and synchronisability remain to be proven in order to complete realisability preservation. At this level each event corresponding to a composition operator is refined by three events: one to handle sending of messages (Add_Seq_send), one for receiving messages ($Add_Seq_receive$), and a third one ($Add_Seq_send_receive$) refining the abstract Add_seq event. Queues are introduced as well.

Table 5 defines these events. Sending and receiving events are interleaved in an asynchronous manner. Once a pair of send and receive events has been triggered, the event $Add_Seq_send_receive$ records that the emission-reception is completed. This event increases the number of received messages (Action $act5$). Traces are updated accordingly by the events, they are used for proving the invariants.

4.3 Completeness Proof

The proof of completeness consists in proving a choreography is realisable if and only if it is built using the defined composition operators. The Rodin-based proofs exploits that realisability can be equivalently expressed by equivalence, synchronisability and well-formedness. Note that the proof strategy with the sufficiency and necessity parts is quite similar, as the same development and refinement steps are used in both cases. The main difference resides in the definition of two invariants, which correspond to each direction of the implication corresponding to the necessity and sufficiency conditions.

Sufficiency. Sufficiency consists in proving that, if a choreography is built using the defined composition operator, then it is realisable. This property has been proven by proving the invariants described in Table 6.

These invariants state that for each CP built using the composition operators, the obtained CP fulfils Equivalence, Synchronisability and WF by set belonging property. Table 6 introduces the equivalence property through invariant $inv_1.a$. The invariant requires equivalence between a CP and its synchronous projection. $inv_1.b$ and $inv_1.c$ introduce respectively the synchronisability and well-formedness properties.
Table 5. An excerpt of the LTS_Asyncrnonous model.

Event Add_Seq_Send \(\hat{=} \)	Any
send, lts_d, lts_d, msg, index	Where
	grd1: \(send_{st,src}, send_{st,src} \in A_{GS} \) \& \((send_{st,src} \Rightarrow (Send \Rightarrow msg \Rightarrow lts_d \Rightarrow index) \Rightarrow send_{st,dest}) \in CPS_{ASYNC,B} \) ...
	Then
	act1: \(A_{TRACE} := A_{TRACE} \cup \{Reduce_{Trace,states} \Rightarrow St_{Num} \Rightarrow Send \Rightarrow lts_d \Rightarrow msg \Rightarrow lts_d \Rightarrow Reduce_{Trace,states} \Rightarrow (St_{Num} + 1) \Rightarrow A_{Trace,Index} \} \)
	act2: queue, back := queue \& \{lts_d \Rightarrow msg \Rightarrow back\}, back + 1
	act3: \(A_{GS} := A_{Next,States}(send) \Rightarrow A_{GS} \Rightarrow \text{queue} \) ...
	End
Event Add_Seq_Receive \(\hat{=} \)	Any
send, receive, lts_d, lts_d, msg, index	Where
	grd1: \(\text{queue} \neq \emptyset \Rightarrow lts_d \Rightarrow msg \Rightarrow \text{front} \in \text{queue} \)
	grd2: \(receive_{st,src}, receive_{st,dest} \in (lts_d \Rightarrow receive_{st,src} \in A_{GS}) \) \& \((receive_{st,src} \Rightarrow (Receive \Rightarrow msg \Rightarrow \{lts_d \Rightarrow index\} \Rightarrow receive_{st,dest}) \in CPS_{ASYNC,B} \) ...
	Then
	act1: \(A_{TRACE} := A_{TRACE} \cup \{Reduce_{Trace,states} \Rightarrow St_{Num} \Rightarrow Receive \Rightarrow lts_d \Rightarrow msg \Rightarrow lts_d \Rightarrow Reduce_{Trace,states} \Rightarrow (St_{Num} + 1) \Rightarrow A_{Trace,Index} \} \)
	act2: queue := \text{queue} \setminus \{lts_d \Rightarrow \text{msg} \Rightarrow \text{front}\} ...
Event Add_Seq_Send – Receive : Reduces Add_Seq \(\hat{=} \)	Any
\(A_{Some, cp, b} \), \(A_{Some, cp, sync, b} \), Send_{cp, async, b} , Receive_{cp, async, b} , R_{trace, b}	Where
	grd1: \(A_{MESSAGE}(Send_{cp, async, b}) = A_{MESSAGE}(Receive_{cp, async, b}) \)
	grd2: \(ACTION(Receive_{cp, async, b}) = Receive \land ACTION(Send_{cp, async, b}) = Send \)
	grd3: \(A_{Some, cp, b} \in ISeq \)
	grd4: \(MESSAGE(A_{Some, cp, b}) = A_{MESSAGE}(Send_{cp, async, b}) \) ...
	With \(S_{Some, cp, b} : S_{Some, cp, b} = A_{Some, cp, b} \), \(Some_{cp, sync, b} : Some_{cp, sync, b} = A_{Some, cp, sync, b} \)
	Then
	act1: \(BUILT_CP := BUILT_CP \cup \{A_{Some, cp, b}\} \)
	act2: \(BUILT_SYNC := BUILT_SYNC \cup \{A_{Some, cp, sync, b}\} \)
	act3: \(BUILTASYNC := BUILTASYNC \cup \{Send_{cp, async, b}\} \cup \{Receive_{cp, async, b}\} \)
	act4: \(REDUCED_TRACE := REDUCED_TRACE \cup \{R_{trace, b}\} \) ...
	End
	...

Necessity. Necessity consists in proving that if a CP is realisable, then it is built using the defined composition operator.

This property has been established by proving the invariants described in Table 7. Invariant inv2.a states that any CP belonging to the equivalence set is a peer to peer CP, inv2.b states that any synchronisable CP belongs to the set of built CP and finally inv2.c states that all the well formed CP exchanging the ending message is built at the asynchronous level.

Proof Statistics. Table 8 gives the results of our experiments. We can observe that all the proof obligations (POs) have been proved. A large amount of these
Table 6. An excerpt of sufficient model invariants.

Invariant	Expression
inv1	\(\text{BUILT}_\text{SYNC} \subseteq \text{CPs}_\text{SYNC}_B \)
inv2	\(\text{BUILT}_\text{ASYNC} \subseteq \text{CP}_\text{ASYNC}_B \)
inv3	\(\text{REDUCED}_\text{TRACE} \subseteq \text{R}_\text{TRACE}_B \)
inv4	\(\text{A}_\text{TRACE} \subseteq \text{A}_\text{TRACES} \)

\[\text{inv1}.a: \forall \text{Trans} \cdot \exists \text{S}_\text{Trans} \cdot (\text{Trans} \in \text{BUILT}_\text{CP} \land \text{S}_\text{Trans} \in \text{BUILT}_\text{SYNC} \land \text{BUILT}_\text{CP} \neq \emptyset) \Rightarrow \text{Trans} \mapsto \text{S}_\text{Trans} \in \text{EQUIV} \]

\[\text{inv1}.b: \forall \text{S}_\text{Trans} \cdot \exists \text{R}_\text{Trans} \cdot (\text{S}_\text{Trans} \in \text{BUILT}_\text{SYNC} \land \text{R}_\text{Trans} \in \text{REDUCED}_\text{TRACE}) \Rightarrow \text{S}_\text{Trans} \mapsto \text{R}_\text{Trans} \in \text{SYNCHRONISABILITY} \]

\[\text{inv1}.c: \forall \text{A}_\text{Trans} \cdot (\text{A}_\text{Trans} \in \text{A}_\text{TRACES} \land \text{MESSAGE}(\text{Last}_\text{cp}_\text{trans}) = \text{End}) \land \text{A}_\text{TRACE} \neq \emptyset) \Rightarrow \text{A}_\text{Trans} \mapsto \text{queue} \in \text{WF} \]

Table 7. An excerpt of necessary and sufficient model invariants.

Invariant	Expression
inv2.a	\(\forall \text{Trans} \cdot \exists \text{S}_\text{Trans} \cdot (\text{Trans} \mapsto \text{S}_\text{Trans} \in \text{EQUIVALENCE} \land \text{BUILT}_\text{CP} \neq \emptyset) \Rightarrow \text{Trans} \in \text{BUILT}_\text{CP} \land \text{S}_\text{Trans} \in \text{BUILT}_\text{SYNC} \)
inv2.b	\(\forall \text{S}_\text{Trans} \cdot \exists \text{R}_\text{Trans} \cdot (\text{S}_\text{Trans} \mapsto \text{R}_\text{Trans} \in \text{SYNCHRONISABILITY} \land \text{BUILT}_\text{SYNC} \neq \emptyset \land \text{REDUCED}_\text{TRACE} \neq \emptyset) \Rightarrow \text{S}_\text{Trans} \in \text{BUILT}_\text{SYNC} \land \text{R}_\text{Trans} \in \text{REDUCED}_\text{TRACE} \)
inv2.c	\(\forall \text{A}_\text{Trans} \cdot (\text{A}_\text{Trans} \mapsto \text{queue} \in \text{WF}) \Rightarrow (\text{A}_\text{Trans} \in \text{A}_\text{TRACES} \land \text{queue} = \emptyset \land \text{MESSAGE}(\text{Last}_\text{cp}_\text{trans}) = \text{End}_\text{message}) \)

Table 8. Rodin proofs statistics

Event-B model	Interactive proofs	Automatic proofs	Proof Obligations
Abstract context	06 (100%)	0 (0%)	06 (100%)
Synchronous context	02 (100%)	0 (0%)	02 (100%)
Asynchronous context	01 (33.33%)	02 (66.67%)	03 (100%)
Abstract model	28 (58.33%)	20 (41.67%)	48 (100%)
Synchronous model	43 (41.34%)	61 (58.65%)	104 (100%)
Asynchronous model	81 (41.32%)	115 (58.67%)	196 (100%)
Total	161 (100%)	198 (100%)	359 (100%)

POs has been proved automatically using the different provers associated to the Rodin platform. Interactive proofs of POs required to combine some interactive deduction rules and the automatic provers of Rodin. Few steps were required in most of the cases, and a maximum of 15 steps was reached.

5 Conclusion

In this article we extended the Event-B-based approach to the construction of realisable choreographies [4,5] based on recent new insights into choreography-
defined P2P systems. In [10] we proved that under the presence of a choreography that prescribes the rendez-vous synchronisation of the peers there are two necessary conditions on realisable choreographies which together guarantee realisability. A consequence is decidability of realisability in the presence of a choreography. We removed unnecessary assumptions in the Event-B-based proofs and extended them to cover also necessity of the conditions. In doing so we demonstrated the power of the Rodin tool. All the models are accessible through http://yamine.perso.enseeiht.fr/ABZ2020EventBModels.pdf.

Naturally, using Event-B in this context provides an open invitation for a refinement-based approach taking choreographies to communicating systems that do not just emphasise the flow of messages. As we are now able to detect violations of a necessary condition, it allows us to find minimal repairs to the choreography to restore realisability. Such repairs have to be validated by a designer. In addition, we need a systematic investigation of refinements based on Event-B. In this context an analysis of the realisation of the messaging channels is due, for which we expect the most natural semantics using mailboxes to be the simplest to be realised. This refinement method provides an open invitation for the continuation of this research towards a verifiable method for the specification and refinement of correct P2P systems.

References

1. Basu, S., Bultan, T.: On deciding synchronizability for asynchronously communicating systems. Theor. Comput. Sci. 656, 60–75 (2016)
2. Basu, S., Bultan, T., Ouederni, M.: Deciding choreography realizability. In: Field, J., Hicks, M. (eds.) Proceedings of the 39th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL 2012), pp. 191–202. ACM, New York (2012)
3. Benyagoub, S., Aït-Ameur, Y., Ouederni, M., Mashkoor, A., Medeghri, A.: Formal design of scalable conversation protocols using Event-B: validation, experiments and benchmarks. J. Softw.: Evol. Process 23(2), 129–145 (2019)
4. Benyagoub, S., Ouederni, M., Aït-Ameur, Y., Mashkoor, A.: Incremental construction of realizable choreographies. In: Dutle, A., Muñoz, C., Narkawicz, A. (eds.) NFM 2018. LNCS, vol. 10811, pp. 1–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77935-5_1
5. Benyagoub, S., Ouederni, M., Singh, N.K., Aït-Ameur, Y.: Correct-by-construction evolution of realisable conversation protocols. In: Bellatreche, L., Pastor, Ó., Almendros Jiménez, J.M., Aït-Ameur, Y. (eds.) MED’16. LNCS, vol. 9893, pp. 260–273. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45547-1_21
6. Brand, D., Zafiropulo, P.: On communicating finite-state machines. J. ACM 30(2), 323–342 (1983)
7. Chambart, P., Schneebelen, P.: Mixing lossy and perfect FIFO channels. In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 340–355. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85361-9_28
8. Clemente, L., Herbreteau, F., Sutre, G.: Decidable topologies for communicating automata with FIFO and bag channels. In: Baldan, P., Gorla, D. (eds.) CONCUR 2014. LNCS, vol. 8704, pp. 281–296. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44584-6_20
9. Finkel, A., Lozes, É.: Synchronizability of communicating finite state machines is not decidable. In: Chatzigiannakis, I., et al. (eds.) 44th International Colloquium on Automata, Languages, and Programming (ICALP 2017), volume 80 of LIPIcs, pp. 122:1–122:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2017)

10. Schewe, K.-D., Aït-Ameur, Y., Benyagoub, S.: Realisability of choreographies. In: Herzig, A., Kontinen, J. (eds.) FoIKS 2020. LNCS, vol. 12012, pp. 263–280. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-39951-1_16

11. Farah, Z., Ait-Ameur, Y., Ouederni, M., Tari, K.: A correct-by-construction model for asynchronously communicating systems. Int. J. Softw. Tools Technol. Transf. 19(4), 465–485 (2016). https://doi.org/10.1007/s10009-016-0421-6