Regulation of bone metabolism mediated by β-adrenergic receptor and its clinical application

Xue-Ping Zhong, Wen-Fang Xia

ORCID number: Xue-Ping Zhong 0000-0003-0251-4294; Wen-Fang Xia 0000-0003-3988-6745.

Author contributions: Zhong XP performed the majority of the writing, prepared the figure; Xia WF designed the research study and coordinated the writing of the paper; All authors have read and approve the final manuscript.

Supported by National Natural Sciences Foundation of China, No. 81200649; Natural Sciences Foundation of Hubei Province of China, No. 2016CFB425; and Fundamental Research Funds for the Central University, No. 2016YXMS236.

Conflict-of-interest statement: The authors declare that they have no conflicting interest.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and

Xue-Ping Zhong, Wen-Fang Xia, Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China

Corresponding author: Wen-Fang Xia, MD, Associate Professor, Doctor, Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, China. xiwenfang@hust.edu.cn

Abstract

Recent studies have confirmed that β-adrenergic receptors (β-ARs) are expressed on the surface of osteoblasts and osteoclasts, and that the sympathetic nervous system can regulate bone metabolism by activating them. β-AR blockers (BBs) are commonly used in the treatment of cardiovascular diseases in the elderly. It is important to investigate whether BBs have a beneficial effect on bone metabolism in the treatment of cardiovascular diseases, so as to expand their clinical application. This article reviews the effects of BB on bone metabolism and the progress of clinical research.

Key Words: β-Adrenergic receptors; Bone metabolism; β-Adrenergic receptor blocker; β-Adrenergic; Skeletal system

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: β-Adrenergic receptors (β-ARs) are widely used clinically in senile cardiovascular diseases. As β-AR blockers (BBs) are involved in the regulation of bone metabolism, it is worth exploring they have beneficial effects on bone metabolism in the treatment of cardiovascular diseases. This article reviews the mechanisms of BBs in bone metabolism and its clinical applications.

Citation: Zhong XP, Xia WF. Regulation of bone metabolism mediated by β-adrenergic receptor and its clinical application. World J Clin Cases 2021; 9(30): 8967-8973
URL: https://www.wjgnet.com/2307-8960/full/v9/i30/8967.htm
DOI: https://dx.doi.org/10.12998/wjcc.v9.i30.8967
INTRODUCTION

Numerous recent studies have proven that β-adrenergic receptors (β-ARs) have an important role in the metabolism of the skeletal system. As a target organ of the nervous system, bones are innervated by sympathetic nerves. Postsynaptic ganglion neurons release catecholamines that bind to β-ARs on the surface of osteoblasts. After a series of reactions, the activity of osteoclasts is increased, resulting in faster bone resorption compared with bone formation, thereby leading to reduced bone mass and increased risk of fracture. As the increased sympathetic activity has harmful effects on bones, pharmacological destruction of sympathetic signals has become a viable option for improving bone health.

Many common diseases, such as postmenopausal osteoporosis, chronic stress, depression, and others are related to increased bone loss or increased risk of fracture because of increased sympathetic nerve activity. As one of the ideal drugs for the treatment of cardiovascular diseases in the elderly, it is worth exploring whether BBs have a beneficial effect on bone metabolism. With the advent of an aging society and the emergence of important public health issues for the prevention and treatment of osteoporosis, the relationship of β-blockers, antiosteoporosis, and fracture risk has become a research hotspot, which provides new ideas for the treatment of osteopenia.

β-ARS AND BONE METABOLISM

The innervation of bone cells and bone tissue by the sympathetic nervous system (SNS) is the anatomical basis of bone metabolism. The SNS is an important part of the autonomic nervous system, which is widely distributed in peripheral tissues and organs. It mainly participates in the regulation of bone metabolism through adrenergic receptors (ARs) on tissues and organs. ARs are G protein-coupled receptors, and there are two types: α and β. β-ARs have three subtypes (β1-AR, β2-AR, and β3-AR). The SNS can complete its regulation of osteoblasts and osteoclasts by activating β-AR on the cell surface, thereby affecting the metabolic reconstruction of bone tissue. As the main neurotransmitter of the SNS, catecholamines transmit signals from the cell membrane to cytoplasmic G protein. During G protein signal transduction, activated β-ARs are phosphorylated and combine with β-arrestin to initiate β2-AR desensitization, endocytosis, and β-arrestin-dependent signal transduction[1]. A previous study reported the existence of parallel pathways for G protein and β-arrestin signaling[2]. In the skeletal system, β2-AR is the main mediator of catecholamine activation in bone remodeling units[3]; β1-AR and β3-AR are also related to the regulation of bone metabolism. Many studies have shown that β-ARs have a significant regulatory role in bone turnover, and their expression has different effects on osteoblasts and osteoclasts.

Regulation of osteoclasts by β-Ars

Osteoblasts are the main cell types involved in molecular events triggered by sympathetic nerves in regulating bone mass[4]. Recent studies have found that β2-AR mainly has an inhibitory role in the regulation of bone formation, and is the main receptor for sympathetic nerves. When the β2-AR pathway on the surface of osteoblasts is activated, it blocks the phosphorylation of cyclic adenosine monophosphate (cAMP)-responsive element binding protein (CREB) by cAMP[5] and promotes the expression of Clock genes, such as PER1 and PER2, which in turn downregulate bone formation by downregulating c-myc and cyclin D1, an important regulator of osteoblast proliferation. Meanwhile, the activation of β2-AR induces an increase of cAMP level and activation of the PKA pathway, which then upregulates the expression of the c-fos gene. Subsequently, c-fos in combination with c-jun form the transcription factor AP-1, which regulates the production of osteocalcin, alkaline phosphatase, and type I collagen, thus affecting bone formation[6].

Animal experiments have also shown similar results. β2-AR gene-deficient mice had high bone mass secondary to increased osteoblast proliferation and bone formation, and decreased bone resorption[7,8]. Similarly, Sato et al[9] found that β-blockers improved bone loss and bone fragility caused by the blocking effect of β2-AR. The above findings demonstrate the inhibitory effect of β2-AR in increasing bone formation. Therefore, selective blocking of β2-AR may be a viable antiosteoporosis option.
Regulation of osteoclasts by β-ARs

β-ARs directly or indirectly act on osteoclasts to participate in bone metabolism, and the effect is mainly realized by β2-AR. The combination of catecholamines with β2-AR on the surface of osteoclast precursor cells induces the maturation of osteoclasts, thereby affecting osteoclast function[10]. Catecholamines activate β2-AR and alter the expression of osteoclast maturation-specific factors such as synthyn, carbonic anhydrase II, and protein kinase K, and increase the bone resorption activity of osteoclasts[11]. Meanwhile, β-ARs can indirectly modulate osteoclasts by regulating the secretion of cytokines by osteoblasts. The activation of β2-AR on the surface of osteoblasts inhibits the phosphorylation of CREB and the proliferation of osteoblasts, and subsequently promotes the phosphorylation of activated transcription factor-4, thereby increasing the expression of nuclear factor kappa B receptor activator ligand (RANKL) and stimulating osteoclast differentiation[4]. In addition, animal studies have shown that β-receptor agonists increase the synthesis of prostaglandin E2 and interleukin-6 in the skulls of mice, thereby increasing osteoclasts activity and reducing bone mass. The above studies demonstrated that β-ARs participate in sympathetic nerve-mediated regulation of osteoclasts through various mechanisms that directly or indirectly promote osteoclast activity and reduce bone mass and bone mineral density (BMD, Figure 1). However, excess catecholamines and overstimulation of the SNS may lead to adverse effects, including bone loss, especially trabecular bone, and increased bone resorption[12,13].

Regulation of bone marrow mesenchymal stem cells (osteogenic precursor cells) by β-ARs

β2-AR and β3-AR are involved in the process of bone marrow mesenchymal stem cell (BMSC) osteogenic differentiation and regulation. Animal studies have shown that both β2-AR and β3-AR are involved in mouse mesenchymal stem cell (MSC) osteogenesis, in which β2-AR has the dominant role. The underlying mechanism involves activation of β-ARs by the SNS, which inhibits BMSC osteogenic differentiation through the cAMP/PKA signaling pathway. Therefore, β-ARs agonists have a negative effect on BMSC osteogenesis. In contrast, BBs have a positive effect on BMSC osteogenesis[14]. Similarly, another animal experiment found that propranolol (PRO), a nonselective BB, promoted osteogenic differentiation and migration of rat BMSCs in vitro and inhibited osteoclast formation by inhibiting β-AR activation. The above studies suggest that BB might become an alternative antiosteoporosis drug to prevent osteoporosis and increase bone mass[15].

BB AND BONE METABOLISM

Nonselective and selective BBs are commonly used in the clinical treatment of cardiovascular diseases. Recent studies have shown that elderly patients with cardiovascular disease have a reduced risk of osteoporosis and fracture after taking BBs. In contrast, other studies have shown the opposite results. Hence, whether BB can improve osteoporosis remains controversial, and the underlying mechanism remains elusive.

Nonselective BBs

Nonselective BBs simultaneously block β1-AR and β2-AR. Many animal experiments have shown that nonselective BBs are beneficial for the maintenance of bone mass. Sliwiński et al.[16] established animal models and found that PRO increased transverse growth of the endostem and the cross-sectional area of tibia in sham operated and ovariectomized rats, indicating that PRO promoted bone formation. Similarly, another study also demonstrated that nonselective BBs such as PRO promoted bone healing and osseointegration by downregulating the number of osteoclasts, upregulating collagen formation, and promoting mineralization[17]. In addition, low-dose PRO improved bone loss and bone fragility in spontaneously hypertensive rats[9], and inhibit bone resorption by inhibiting RANKL-mediated osteoclastogenesis and inflammatory markers[18]. The above studies have shown that nonselective BBs can reduce bone loss, control bone homeostasis, and may help to prevent diseases such as osteoporosis while treating cardiovascular diseases.

In contrast, some studies have proven that nonselective BBs do not have a beneficial effect on bone metabolism and have negative effect that are correlated with dosage. The results of animal experiments showed that low-dose PRO had no significant
positive or negative effects on bone healing and callus strength in a rodent osteotomy model[19]. Another study found that the antiosteoporosis effect of PRO was dose-dependent, showing that 1.0 mg/kg PRO increased the histomorphometric index of bone formation, while 0.1 mg/kg, 1.0 mg/kg, and 10.0 mg/kg decreased the index. In addition, the antiosteoporotic effect of PRO was weakened when 10 mg/kg was given [9]. Moreover, when exploring the effects of PRO on glucocorticoid-induced osteoporosis in male rats, it was found that 10 mg/kg PRO did not improve bone parameters, but had harmful effects on the bone system[20]. Given the differences and limitations in research methods in animal studies, the above results suggest that the antiosteoporotic effect of nonselective BB remains controversial and its mechanism and clinical benefits need further exploration.

Similar to animal studies, there is no consensus on whether nonselective BBs can prevent fractures and increase bone mass in humans in vivo. Some studies have shown that nonselective BB can be used for the clinical treatment of osteoporosis, indicating that they may have an important preventive effect on osteopenia. The results of a case-control study of osteoporosis showed that the hip and forearm BMD of women over 50 years of age who used PRO was higher than that of a control group, and their fracture risk was reduced by 30%, suggesting that nonselective BBs is associated with a decrease in fracture risk and an increase in BMD[21]. Similarly, a cross-sectional study showed that BBs increased the average lumbar BMD in hypertensive postmenopausal women older than 40 years of age[22]. Moreover, PRO improved fracture healing in patients with post-traumatic stress disorder[23]. The above studies have proven the positive effect of nonselective BBs on osteogenesis and increased bone mass.

In contrast, some studies have shown that nonselective BB may not have a positive effect on the skeletal system, and that the effect may be negatively correlated with dosage. A randomized controlled trial (RCT) involving 32 healthy postmenopausal women found no significant differences in serum bone formation marker levels after 12 wk of continuous use of 80 mg/d PRO compared with the control group, indicating that the treatment had no significant regulatory effect on bone metabolism[24]. Other studies have shown that BBs did not stimulate bone formation, and may reduce osteoblast activity. In a placebo-controlled RCT in postmenopausal women, serum osteocalcin decreased by nearly 20% in the first 2 wk of 160 mg/d PRO treatment, and increased over time, suggesting that the nonselective BB had a negative effect on bone formation and bone mass[25]. The above results indicate a lack of consensus on whether nonselective BBs can be safely and effectively used as clinical antiosteoporosis therapy, and that more evidence is needed to support and guide its use.

Selective BBs

Compared with nonselective BBs, selective BBs have a more definite promoting effect on the skeletal system, and also have a certain dose effect. Animal experiments have shown that low-dose selective BBs had a preventive effect on osteoporosis, while high-dose BBs had a certain degree of inhibition. Arai et al[26] treated spontaneously hypertensive rats with various doses of butoxamine, a selective β2-AR blocker. The results showed that low-dose butoxamine improved osteoporosis caused by SNS hyperactivity by blocking β2-AR. Conversely, high-dose β2-AR blocker had an
inhibitory effect on osteoblast activity. Similarly, selective β1-AR blockers also promote osteoporosis. A study that established an ovariectomized rat model showed that metoprolol, a selective β1-AR blocker, significantly promoted the proliferation, differentiation, and mineralization of osteoblasts, and reversed the decrease of BMD, microstructure, and biomechanical properties induced by osteoporosis. Metoprolol had a significant antosteoporotic effect, suggesting that it might become an alternative treatment of postmenopausal osteoporosis in patients with hypertension[27]. These studies have shown that selective BBs are beneficial in reducing bone loss and increasing bone mass, and can be used as an alternative clinical treatment of osteopenia diseases.

Human studies have shown that selective β1-AR blockers promote bone formation. The first RCT conducted in humans to explore the effect of selective β1-AR blockers on bone metabolism found that they decreased bone resorption markers and increased the bone density of the distal radius[28]. The selective β1-AR blocker has an important effect in promoting bone formation and increasing bone density. Similarly, Yavuz Keleş et al[29] found that the use of selective β1-AR blockers was associated with increased BMD at the waist in postmenopausal women. In addition, β1-AR blockers also reduced the risk of human bone fractures. Song et al[30] found that after correcting confounding variables, β-blockers reduced the risk of fracture in people over 65 years of age, and selective β1-blockers had a role in reducing the risk of fracture. Similarly, another study showed that patients treated with selective β1-AR blockers had a 15% lower risk of fracture compared with a control group. The difference was independent of sex, fracture site, and dosage[31]. Therefore, β1-AR blockers can promote osteogenesis, and help to prevent fractures and osteoporosis. Moreover, the use of selective BBs is associated with increased BMD, and may be independently associated with lower fracture risk[32]. In summary, the clinical benefits of nonselective BBs in humans and the underlying mechanism remain unclear. However, selective BBs have antiosteoporosis benefits, and more studies are required to identify the most suitable dosage.

Role of BBs in osteoporosis and fracture

Osteoporosis is a systemic bone disease characterized by reduction of bone mass, destruction of bone trabecular structure, and decrease of BMD. Whether BBs can effectively and safely treat osteoporosis and fracture remains unknown. The reason may be that the majority of clinical studies exploring the relationship between BBs and osteoporosis and fracture were observational studies and there were differences in research methods. There is some evidence that the use of BBs reduces the risk of fracture. Toulis et al[33] found that BBs, especially selective BBs, was associated with a reduced risk of fracture in men and women, which is consistent with the results of Yang et al[31]. A study reported that participants who did not use a BB had a lower bone density than those who did not use it, and the difference was equivalent to about 4.5 years of bone loss[34]. In contrast, some studies have shown that BBs had no significant effect on bone formation and bone density increase. A meta-analysis by Yang et al[35] found that BBs were associated with a reduced risk of fracture in the elderly, but that the effect may not be significant. Similarly, another study found that the use of BBs did not improve BMD[36]. As the mechanism of β-AR in regulating bone metabolism in the human body and the clinical effects of BB are not fully understood, there can be no definitive conclusion about the effects of BBs on BMD and fracture risk[37]. Moreover, there is not enough evidence to prove that the use of BBs for the treatment of osteoporosis is reasonable[25], or to support BBs as a drug for the treatment of osteoporosis[38]. Therefore, an antosteoporosis role for BB and reducing the risk of fracture needs additional support from RCTs.

CONCLUSION

The activity of β-ARs is closely related to bone metabolism, inhibiting bone formation, and reducing bone mass and BMD. β1-AR and β3-AR participate in bone metabolism in different ways. Selective BBs promote osteogenesis, increase bone mass, contribute to antosteoporosis, and prevent fracture, but there is not enough evidence to support nonselective BBs for the clinical treatment of osteoporosis and fracture. More interventional and observational studies are needed to confirm the antosteoporotic effect of BBs and identify a safe and effective dose range.
REFERENCES

1. Rajagopal K, Leftkowitz RJ, Rockman HA. When 7 transmembrane receptors are not G protein-coupled receptors. J Clin Invest 2005; 115: 2971-2974 [PMID: 16276410 DOI: 10.1172/JCI26950]

2. Liu JJ, Horst R, Katrich V, Stevens RC, Wüthrich K. Biased signaling pathways in β2-adrenergic receptor characterized by 19F-NMR. Science 2012; 335: 1106-1110 [PMID: 22267580 DOI: 10.1126/science.1215802]

3. Motyl KJ, Rosen CJ. The skeleton and the sympathetic nervous system: it's about time! J Clin Endocrinol Metab 2012; 97: 3908-3911 [PMID: 23129593 DOI: 10.1210/jc.2012-2305]

4. Kajimura D, Hinoe E, Ferron M, Kode A, Riley KJ, Zhou B, Guo XF, Karsenty G. Genetic determination of the cellular basis of the sympathetic regulation of bone mass accrual. J Exp Med 2011; 208: 841-851 [PMID: 21444660 DOI: 10.1084/jem.20102608]

5. Dimitri P, Rosen C. The Central Nervous System and Bone Metabolism: An Evolving Story. Calcif Tissue Int 2017; 100: 476-485 [PMID: 27501818 DOI: 10.1007/s00223-016-0179-6]

6. Kellenberger S, Muller K, Richener H, Bilge G. Formoterol and isoprotenerol induce c-fos gene expression in osteoblast-like cells by activating beta2-adrenergic receptors. Bone 1998; 22: 471-478 [PMID: 9600780] DOI: 10.1016/s8756-3282(98)00026-x

7. Takeda S, Ellefriero F, Levasseur M, Liu X, Zhao L, Parker KL, Armstrong D, Ducy P, Karsenty G. Leptin regulates bone formation via the sympathetic nervous system. Cell 2002; 111: 305-317 [PMID: 12419242 DOI: 10.1016/s0092-8674(02)01049-8]

8. Ellefriero F, Ahn JD, Takeda S, Starbuck M, Yang X, Liu X, Kondo H, Richards WG, Bannow TW, Noda M, Clement K, Vaisse C, Karsenty G. Leptin regulation of bone resorption by the sympathetic nervous system and CART. Nature 2005; 434: 514-520 [PMID: 15724149 DOI: 10.1038/nature03398]

9. Sato T, Arai M, Goto S, Togari A. Effects of propranolol on bone metabolism in spontaneously hypertensive rats. J Pharmacol Exp Ther 2010; 334: 99-105 [PMID: 20404011 DOI: 10.1124/jpet.110.167683]

10. Frediani U, Becherini L, Lasagni L, Tanini A, Brandi ML. Catecholamines modulate growth and differentiation of human preosteoclastic cells. Osteoporos Int 1996; 6: 14-21 [PMID: 8845594 DOI: 10.1007/BF02162532]

11. Arai M, Nagasawa T, Koshihara Y, Yamamoto S, Togari A. Effects of beta-adrenergic agonists on bone-resorbing activity in human osteoclast-like cells. Biochim Biophys Acta 2003; 1640: 137-142 [PMID: 12729923 DOI: 10.1016/S0006-8072(02)01049-8]

12. Kim BJ, Kwak MK, Ahn SH, Kim H, Lee SH, Song KH, Suh S, Kim JH, Koh JM. Lower Bone Mass and Higher Bone Resorption in Pheochromocytoma: Importance of Sympathetic Activity on Human Bone. J Clin Endocrinol Metab 2017; 102: 2711-2718 [PMID: 28582552 DOI: 10.1210/jc.2017-00169]

13. Kim BJ, Lee SH, Koh JM. Effects of Sympathetic Activity on Human Skeletal Homeostasis: Clinical Evidence from Pheochromocytoma.Clin Rev Bone Miner Metab 2019; 17: 40-47 [DOI: 10.1007/s12185-019-0257-4]

14. Li H, Fong C, Chen Y, Cai G, Yang M. beta2- and beta3-, but not beta1-adrenergic receptors are involved in osteogenesis of mouse mesenchymal stem cells via cAMP/PKA signaling. Arch Biochem Biophys 2010; 496: 77-83 [PMID: 20138019 DOI: 10.1016/j.abb.2010.01.016]

15. Wu H, Song Y, Li J, Lei X, Zhang S, Gao Y, Cheng P, Liu B, Miao S, Li J, Pei G. Blockade of adrenergic β-receptor activation through local delivery of propranolol from a 3D collagen/polyvinyl alcohol/hydroxyapatite scaffold promotes bone repair in vivo. J Cell Physiol 2020; 21: 135-156 [PMID: 24399731 DOI: 10.1172/JCI26950]

16. Sliwinski L, Folwarczna J, Pytlík M, Ciegiela U, Nowińska B, Trzeciak H, Trzeciak HI. Do effects of propranolol on the skeletal system depend on the estrogen status? Pharmacol Rep 2013; 65: 1345-1356 [PMID: 24399731 DOI: 10.1172/JCI26950]

17. Al-Subaie AE, Laurenti M, Abdallah MN, Tamimi I, Yaghoubi F, Eimar H, Makhoul N, Tamimi F. Propranolol enhances bone healing and implant osseointegration in rats tibiae. J Clin Periodontol 2016; 43: 1160-1170 [PMID: 27706837 DOI: 10.1111/jcpe.12632]

18. Rodrigues WF, Madeira MF, da Silva TA, Clemente-Napimoga JT, Miguel CB, Dias-da-Silva VJ, Barbosa-Neto O, Lopes AH, Napimoga MH. Low dose of propranolol down-modulates bone resorption by inhibiting inflammation and osteoclast differentiation. Br J Pharmacol 2012; 165: 2140-2151 [PMID: 21950592 DOI: 10.1111/j.1365-2176.2011.08683.x]

19. Smitham P, Crossfield L, Hughes G, Goodship A, Blunn G, Chen C. Low dose of propranolol does not affect rat osteotomy healing and callus strength. J Orthop Res 2014; 32: 887-893 [PMID: 24710688 DOI: 10.1002/jor.22619]

20. Folwarczna J, Pytlík M, Sliwinski L, Ciegiela U, Nowińska B, Rajda M. Effects of propranolol on the development of glucocorticoid-induced osteoporosis in male rats. Pharmacol Rep 2011; 63: 1040-1049 [PMID: 22001992 DOI: 10.1016/j.pharmrep.2011.06.020]

21. Pasco JA, Henry MJ, Sanders KM, Kotowicz MA, Seeman E, Nicholson GC; Geelong Osteoporosis Study. Beta-adrenergic blockers reduce the risk of fracture partly by increasing bone mineral density: Geelong Osteoporosis Study. J Bone Miner Res 2004; 19: 19-24 [PMID: 14753732 DOI: 10.1359/JBMR.0301214]

22. Hijazi N, Alourfi Z. Association between Hypertension, Antihypertensive Drugs, and Osteoporosis in Postmenopausal Syrian Women: A Cross-Sectional Study. Adv Med 2020; 2020: 7014212 [PMID: 32532124]
Zhong XP et al. Regulation of bone metabolism mediated by β-AR

32149161 DOI: 10.1155/2020/7014212

23 Haffner-Lunzer M, Foerstch S, Fischer V, Prystaz K, Tschaffon M, Mödinger Y, Bahney CS, Marcucio RS, Miclau T, Ignatiu A, Reber SO. Chronic psychosocial stress compromises the immune response and endochondral ossification during bone fracture healing via β-AR signaling. *Proc Natl Acad Sci U S A* 2019; 116: 8615-8622 [PMID: 30948630 DOI: 10.1073/pnas.1819218116]

24 Veldhuis-Vlug AG, Tanck MW, Limonard EJ, Endert E, Heijboer AC, Lips P, Fliers E, Bissachop PH. The effects of beta-2 adrenergic agonist and antagonist on human bone metabolism: a randomized controlled trial. *Bone* 2015; 71: 196-200 [PMID: 25453321 DOI: 10.1016/j.bone.2014.10.024]

25 Reid IR, Lucas J, Wattie D, Horne A, Bolland M, Gamble GD, Davidson JS, Grey AB. Effects of a beta-blocker on bone turnover in normal postmenopausal women: a randomized controlled trial. *J Clin Endocrinol Metab* 2005; 90: 5212-5216 [PMID: 15998769 DOI: 10.1210/jc.2005-0573]

26 Arai M, Sato T, Takeuchi S, Goto S, Togari A. Dose effects of butoxamine, a selective β2-adrenoceptor antagonist, on bone metabolism in spontaneously hypertensive rat. *Eur J Pharmacol* 2013; 701: 7-13 [PMID: 23321373 DOI: 10.1016/j.ejphar.2012.12.016]

27 Zang Y, Tan Q, Ma X, Zhao X, Lei W. Osteogenic actions of metoprolol in an ovariectomized rat model of menopause. *Menopause* 2016; 23: 1019-1025 [PMID: 27300117 DOI: 10.1097/GME.0000000000000680]

28 Khosla S, Drake MT, Volkman TL, Thicke BS, Achenbach SJ, Atkinson EJ, Rosen CJ, Monroe DG, Farr JN. Sympathetic β1-adrenergic signaling contributes to regulation of human bone metabolism. *J Clin Invest* 2018; 128: 4832-4842 [PMID: 30153111 DOI: 10.1172/JCI122151]

29 Yavuz Keleş B, Vural M, Önder B, Oneş K. Evaluation of the effects of β1-selective beta-blockers on bone mineral density and fracture risk in postmenopausal women. *Turk J Med Sci* 2020; 50: 994-998 [PMID: 32283907 DOI: 10.3906/sag-1907-187]

30 Song HJ, Lee J, Kim YJ, Jung SY, Kim HJ, Choi NK, Park BJ. The effects of β1-selectivity of β-blockers and reduced risk of fractures in elderly hypertension patients. *Bone* 2012; 51: 1008-1015 [PMID: 22960238 DOI: 10.1016/j.bone.2012.08.126]

31 Yang S, Nguyen ND, Center JR, Eisman JA, Nguyen TV. Association between beta-blocker use and fracture risk: the Dubbo Osteoporosis Epidemiology Study. *Bone* 2011; 48: 451-455 [PMID: 21047567 DOI: 10.1016/j.bone.2010.10.170]

32 Ghosh M, Majumdar SR. Antihypertensive medications, bone mineral density, and fractures: a review of old cardiac drugs that provides new insights into osteoporosis. *Endocrine* 2014; 46: 397-409 [PMID: 24504763 DOI: 10.1007/s12020-014-0167-4]

33 Touliks KA, Hemming K, Stergianos S, Nirantharakumar K, Bilezikian JP. β-Adrenergic receptor antagonists and fracture risk: a meta-analysis of selectivity, gender, and site-specific effects. *Osteoporos Int* 2014; 25: 121-129 [PMID: 24114396 DOI: 10.1007/s00198-013-2498-z]

34 Nevola KT, Kiel DP, Zullo AR, Weiss S, Homuth G, Obermayer-Pietsch B, Motyl KJ, Lary J, Lee J, Kim YJ, Jung SY, Kim HJ, Choi NK, Park BJ. β1-adrenoceptor antagonist on bone metabolism in spontaneously hypertensive rat. *Endocrine* 2017; 994-998 [PMID: 32786095 DOI: 10.1002/jbmr.4160]

35 Yang S, Nguyen ND, Eisman JA, Nguyen TV. Association between beta-blocker use and fracture risk: a Bayesian meta-analysis. *Bone* 2012; 51: 969-974 [PMID: 22842220 DOI: 10.1016/j.bone.2012.07.013]

36 Solomon DH, Ruppert K, Zhao Z, Liu YJ, Kuo IH, Greendale GA, Finkelstein JS. Bone mineral density changes among women initiating blood pressure lowering drugs: a SWAN cohort study. *Osteoporos Int* 2016; 27: 1181-1189 [PMID: 26449354 DOI: 10.1007/s00198-015-3323-6]

37 Barzilay JI, Davis BR, Pressel SL, Ghosh A, Putnam R, Margolis KL, Whelton PK. The Impact of Antihypertensive Medications on Bone Mineral Density and Fracture Risk. *Curr Cardiol Rep* 2017; 19: 76 [PMID: 28752275 DOI: 10.1007/s11886-017-0888-0]

38 Walsh JS, Newman C, Eastell R. Heart drugs that affect bone. *Trends Endocrinol Metab* 2012; 23: 163-168 [PMID: 22136934 DOI: 10.1016/j.tem.2011.10.002]
