The Role of Diet Diversity and Diet Indices on Allergy Outcomes

Enza D’Auria1*, Diego G. Peroni2, Marco Ugo Andrea Sartorio1, Elvira Verduci1, Gian Vincenzo Zuccotti1 and Carina Venter3

1 Pediatric Department, Vittore Buzzi Children’s Hospital, Università degli Studi di Milano, Milan, Italy, 2 Clinical and Experimental Medicine Department, Section of Pediatrics, University of Pisa, Pisa, Italy, 3 Section of Allergy and Immunology, Children Hospital Colorado, University of Colorado, Denver, CO, United States

Nutrients in foods are not eaten in isolation and food intake interacts in a complex manner, affecting health and disease outcomes. For this reason, focusing on the whole “pattern” of dietary intake instead of the single nutrients or groups of nutrients when studying diseases outcomes is increasingly appealing and growing. Diet diversity refers to the variety of foods being eaten, and the terms, diversity or variety, are often used interchangeably. When the overall diet is characterized by healthy foods, diet diversity will reflect a diversity/variety of healthy foods eaten over a period of time. The introduction of solid foods in the 1st year of life is considered a measure of increased diet diversity. Consuming a diverse range of foods and food allergens in the first year of life may increase intake of important nutrients and positively affect the gut microbiome structure and function. Intake of omega-3 fatty acids and fibers/prebiotics may be particularly important but more information is required about dose and which individuals are most likely to benefit. Increased diet diversity in the first year of life is also associated with reduced food allergy outcomes. In addition to diet diversity, diet indices are considered measures of overall diet quality and can be used as a simple assessment of dietary intake. The focus of this paper is to review and critically address the current knowledge of the association between diet diversity and diet indices and allergy outcomes. Based on the current evidence, we recommend the introduction of solid foods, including common allergenic solids, during the 1st year of life, according to the infant’s neuro-developmental abilities and familial or cultural habits. For infants with severe AD and/or FA, medical assessment may be advisable before introducing common food allergens into the diet. Limited evidence exist about the role of diet indices in pregnancy and allergic disease in the offspring, and the most promising results indicate a reduction in childhood wheeze and/or asthma intake.

Keywords: diet diversity, diet indices, pregnancy, allergy outcomes, microbiome

INTRODUCTION

Diet diversity is defined as the variety of food being eaten; the term “variety” can be used instead of “diversity” (1). If the diet consists of healthy foods, diet diversity will reflect a diversity/variety of healthy foods eaten over a period of time. Diet diversity may include the number of foods/food groups and the period and the frequency of consumption (2). In this review, we consider the introduction of solid foods in the first year of life as a measure of increased diet diversity. A more
diverse diet in the 1st years of life may increase exposure to food allergens, thereby promoting tolerance development (3–7). Diet diversity may also promote an increased intake of nutrients which can be associated with allergic disease prevention. Finally, diet diversity may play a role in allergy prevention by modifying the gut microbiome. During introduction of solid food in the weaning period, higher diet diversity may increase gut microbiome diversity (8). Data regarding the effect of diet diversity in the 1st year of life and atopic dermatitis, rhinitis, and asthma development are conflicting (2).

In this review, we include studies investigating diet diversity, the development of clinical allergy outcomes, and sensitization to Aeroallergens and/or foods. In addition to diet diversity, diet indices are considered measures of overall diet quality and offer a simple assessment of dietary intake. In the few last decades, several indices have been developed and employed (9). We focus on diet indices and subsequent development of allergy, with particular emphasis on the Mediterranean diet. We used a combined search strategy using search terms from three EAACI papers (2, 10, 11).

Aim of the Review
In part 1, we summarize the road map leading to current recommendations on food allergen introduction in the 1st year of life. In part 2, we focus on the effect of diet diversity and diet indices in pregnancy, lactation, and 1st year of life on allergy development.

INTRODUCTION OF SOLID FOODS IN THE FIRST YEAR OF LIFE
History of Introduction of Solid Foods and Food Allergens
Recommendations regarding solid food introduction in early life have changed dramatically in the past two decades. In the early 2000s, the American Academy of Pediatrics (AAP) proposed commencing complementary feeding after first six months and to delay introduction of food allergens until after one year of age in infants considered at high risk for allergy development, such as those having a first-degree relative with a history of allergic diseases. The AAP suggested introduction of milk containing foods after the age 1 year, egg after age two years, and peanuts, tree nuts, and fish after age 3 years (12).

This advice was mainly based on the evidence from two studies; the former (13) showed that early introduction of allergenic foods at 3 months increased risk of atopic disease, and the latter demonstrated a correlation existing between diet diversity before 4 months of life and risk of developing eczema later (14).

In 2006, the American College of Allergy, Asthma, and Immunology (ACAAI) suggested delayed introduction of potential allergic foods also for children without a risk of atopy/allergic diseases (15). Despite these recommendations, the prevalence of food allergy (FA) continued to increase in Western countries (16). Many observational studies highlighted that postponing the introduction into the diet of foods with an allergic potential may cause an increased risk of IgE-sensitization and FA (3, 17–22), especially to peanut (3) and egg (19). In support of these studies, the dual allergen hypothesis proposed that early oral food allergen introduction opposed to exposure via the skin might be protective against food allergy (23). This hypothesis is sustained by the fact that skin exposure to food allergens in infants with eczematous skin may favor a Th2 response leading to allergic sensitization (24), whereas oral exposure leads to tolerance.

In 2008, the AAP updated their previous recommendations highlighting that there was not sufficient evidence to postpone introduction into the infants’ diet of potential allergenic foods (25). No recommendations were made at that stage about the timing of the introduction of foods. The lack of clear information about food allergen intake at the time was addressed by a number of randomized controlled trials.

Early Introduction of Allergenic Foods and Food Allergy Prevention
Single Allergenic Foods
The Learning Early About Peanut Allergy (LEAP) study by Du Toit et al. (4) demonstrated that introduction of peanut in high-risk atopic infants younger than 1 year old suffering from severe atopic dermatitis and/or egg allergy could reduce the development of peanut allergy. In this study, 640 infants were randomly divided into two groups: some were assigned to consume peanuts, other to avoid peanuts up to 60 months of age. Development of peanut allergy was then tested by an oral food challenge.

The intention to threat analysis showed a significantly lower prevalence of PA in the intervention group than in the control group both in the group with a negative SPT to peanut at the beginning of the study and in children with SPT results of 1–4 mm. Noteworthy, infants (7/640) who had never been fed peanuts previously had positive oral peanut challenge at enrolment both in the case of positive SPTs (6 out of 47, 12.8%) and negative SPTs (1 out of 272, 0.4%).

The authors used the term “early introduction” reflecting introduction between 4 and 11 months, differently from the delayed introduction (after 2 years of age), previously recommended in international guidelines (12), indicating the importance of introducing peanut in the 1st year of life and continuing with regular peanut intake once introduced.

The LEAP-On follow-up study showed that cessation of peanut intake for 1 year, after consumption for 5 years, did not lead to a significant increase of peanut allergy by 6 years of age (26).

The ongoing Preventing Peanut Allergy in Atopic Dermatitis (PEAAD) trial is evaluating if peanut ingestion for one year, in infants and children aged 5–30 months and suffering from AD, may have an effect on the development of peanut allergy (27).

Several randomized controlled trials (RCTs) focused on clarifying whether the earlier introduction (before 6 months of age) of other potential allergenic foods (e.g., egg) into diet may prevent the occurrence of developing allergic sensitization.
Trial, Year, Country	Study type	Food type	Inclusion criteria	Type of intervention (no. of subjects)	Outcomes	Results
STAR (33), 2013, Australia	DBPORCT	Egg (raw white pasteurized)	4 m.o. infants at risk for allergy (moderate-severe eczema—SCORAD ≥15)	Intervention (33): 0.9 g of egg protein per day from 4 to 8 months Control (34): placebo	Primary: prevalence of OFC-diagnosed EA at 1 year of age	A lower but not significant proportion of infants in the egg group (33%) had EA compared with the control group (51%; relative risk, 0.65; 95% CI, 0.38–1.11; \(P = 0.11 \))
EAT (32), 2014, UK	RCT	Milk (yogurt), cooked egg, wheat, peanut, sesame, fish	3 m.o. infants exclusively breastfed, not at risk for allergy	Intervention (652): from 3 to 6 months sequential introduction of the six foods (milk always first) 4 g proteins/week Control (651): only breastfed from birth to 6 months of age	Primary: prevalence of OFC-diagnosed EA to one of the six foods at 1–3 years of age	In the intention-to-treat analysis, no statistically significant difference between early introduction group and standard introduction group
LEAP (4), 2015, UK	RCT	Peanut (snack/butter)	4–11 m.o. infants at risk for allergy (moderate-severe eczema and/or EA, SPT ≤4 mm)	Intervention (319): 6 g peanut protein/week, ≥3 times/week, up to 5 years of age Control (321): peanut avoidance	Primary: prevalence of OFC-diagnosed PA at 5 years of age	Among SPT-negative infants, prevalence of PA at 60 months of age was 13.7% in the avoidance group and 1.9% in the consumption group (\(P < 0.001 \)) Among SPT-positive infants, prevalence of PA was 35.3% in the avoidance group and 10.6% in the consumption group (\(P = 0.004 \)) 5.6% of the children in the egg group were hen’s egg sensitized and 2.1% were confirmed to have hen’s EA vs. 2.6 and 0.6%, respectively, in the placebo group (For sensitization: RR, 2.20; 95% CI, 0.68–7.14; \(P = 0.24 \)) (For allergy: RR, 3.30; 95% CI, 0.35–31.32; \(P = 0.39 \))
HEAP (23), 2017, Germany	DBPORCT	Egg (raw white pasteurized)	4–6 m.o. infants at risk for allergy (egg s-IgE <0.35 kU/L)	Intervention (184): 2.5 g of egg protein at least 3 times per week starting from 4 to 6 months until 12 months of age Control (199): placebo	Primary: egg s-IgE positivity Secondary: prevalence of OFC-diagnosed EA at 1 year of age	5.6% of the children in the egg group were hen’s egg sensitized and 2.1% were confirmed to have hen’s EA vs. 2.6 and 0.6%, respectively, in the placebo group (For sensitization: RR, 2.20; 95% CI, 0.68–7.14; \(P = 0.24 \)) (For allergy: RR, 3.30; 95% CI, 0.35–31.32; \(P = 0.39 \))
STEP (31), 2017, Australia	DBPORCT	Egg (raw whole pasteurized)	4–6 m.o. infants at risk for allergy (maternal atopy history, no eczema), who have never taken egg	Intervention (407): 0.4 g of egg protein per day starting from 4 to 6 months until 10 months of age Control (413): placebo From 10 months, no restriction for egg introduction in both intervention and placebo groups	Primary: prevalence of OFC-diagnosed EA at 1 year of age	No difference in term of IgE-mediated EA (egg 7.0% vs. control 10.3%; adjusted relative risk, 0.75; 95% CI, 0.48–1.17; \(P = 0.20 \))
BEAT (35), 2017, Australia	DBPORCT	Egg (raw whole pasteurized)	4 m.o. infants at risk for allergy (≥1 first degree relative with allergy)	Intervention (165): 0.35 g of egg protein per day starting from 4 to 8 months of age Control (154): placebo From 8 months, no restriction for egg introduction in both intervention and placebo groups	Primary: egg white SPT positivity Secondary: prevalence of OFC-diagnosed EA at 1 year of age.	Sensitization to EW at 12 months was 20 and 11% in infants randomized to placebo and egg, respectively (odds ratio, 0.48; 95% CI, 0.22–0.95; \(P = 0.03 \), \(\chi^2 \) test)
PETIT (56), 2017, Japan	DBPORCT	Egg (cooked lyophilized)	4–6 m.o. infants at risk (eczema), who have never taken egg	Intervention (37): 0.025 g of egg protein per day between 6 and 9 months, followed by 0.12 g between 9 and 12 months of age Control (38): placebo	Primary: prevalence of OFC-diagnosed EA at 1 year of age	8% of egg group had an EA compared to 38% of placebo group (RR 0.221 [0.090–0.543]; \(P = 0.0001 \))

DBPC, Double-blind, placebo-controlled; EA, Egg allergy; EW, Egg White; OFC, Oral Food Challenge; PA, Peanut allergy; RCT, Randomized Clinical Trial; RR, Relative risk.
and FA (4, 26, 28–32). These RCTs are summarized in Table 1.

Studies evaluating the effects of early introduction of egg gave contrasting results, probably related to variation in the study design (populations, outcomes) and in the dose and the form of egg used (i.e., cooked vs. raw egg; Table 1).

The Solid Timing for Allergy Research (STAR Study) (30) trial reported that early introduction of egg had no protective effect on the development of EA in high risk infants who had never eaten egg. The study was discontinued because of a high rate of allergic reactions to pasteurized raw egg. Since then, two RCTs showed no difference in the development of egg sensitization or EA in high risk infants consuming or avoiding egg.

The Australian Study Starting Time of Egg Protein (STEP) trial (31) considered 820 at risk infants (e.g., infants with atopic mothers) who had never consumed egg and did not show allergic symptoms. Infants were randomly allocated to consume pasteurized raw egg or placebo from 4 to 6 months of life until 10 months. No differences were found at the intention-to-treat (ITT) analysis between the active and placebo groups in terms of OFC-diagnosed EA development (7% active vs. 10.3% control) and in cutaneous sensitization, defined by positive egg SPT (10.8% active vs. 15.1% control, \(p = 0.15\)) at 12 months.

The Beat Egg Allergy Trial (BEAT) (35) randomized children at high risk (having at least a first-degree relative with atopic disease), not sensitized, to receive pasteurized whole raw egg powder or placebo from 4 to 8 months of age. At 12 months, no difference was observed for the percentages of positive challenge between the two groups (10.5% active vs. 6.2% placebo), despite a lower prevalence of sensitization to egg white in the active group.

In the Hen’s Egg Allergy Prevention (HEAP) (28) infants aged 4–6 months without risk factors for allergy development were recruited and randomly assigned to be fed pasteurized raw egg white powder or placebo. At 12 months of age, no difference was observed in the prevalence of EA or egg specific-IgE between the two groups.

The most recent Prevention of Egg allergy with Tiny Amount Intake (PETITT) (36) trial assessed the safety and efficacy of a step-wise introduction of heated egg (equivalent to 0.2 g of whole egg boiled for 15 min) in a sample of infants with mild to severe atopic dermatitis, no immediate allergic reaction to egg, and no history of immediate allergic reaction to egg or to any type of food. All infants were treated with topical treatment for AD during the study.

The results of the study showed a statistically significant decrease of OFC-diagnosed EA at 12 months of age in the study group (8% intervention vs. 38% control, \(p < 0.0001\)).

However, it should be pointed out that only per protocol analysis was conducted and the primary outcome (OFC-diagnosed EA) was not established in 26 (17%) infants; thus, these findings need to be treated with caution.

A recent meta-analysis of RCTs (39) (Table 1) showed with moderate evidence that egg introduction at the age of 4–6 months reduces EA occurrence. However, the conclusions of this meta-analysis mainly relied on the results of the PETITT study (36), in which the stepwise introduction of cooked egg from six months of age seemed to be effective in reducing EA prevalence.

A recent RCT showed that avoiding cow’s milk formula supplementation in newborns for the first 3 days of life reduce sensitization to cow’s milk and food allergy (40).

Similarly, a Finnish cohort study \((n = 6,200\) infants), with a follow-up of 18–34 months, found that exposure to cow’s milk (CM) proteins within the first few days of life increased the risk for CM allergy (34). In contrast, a cohort study from Israel reported that the introduction of CM proteins within the first 2 weeks of life was associated to a lower risk of CM allergy development, and introduction between 4 and 6 months of life was associated to a higher risk (40).

Omega-3 fatty acids (present in fatty fish) have anti-inflammatory properties. Observational studies investigated if a relationship exists between the timing of fish introduction and the risk of subsequent asthma and atopic diseases (41–45). Pooling the results of these studies showed that there is limited evidence to support early fish introduction (before 9 months of life) for reducing the risk of allergic sensitization, rhinitis (35), and asthma (46). Nevertheless, fish contains important nutrients and omega-3 fatty acids play an important role in development of the central nervous system (47, 48). We feel reasonable to recommend fish introduction during the second semester of life, timing based on local tradition, weaning approach, and family preferences (49, 50).

In summary, the introduction of peanuts from 4 to 11 months of age in infants at high risk of developing PA may be beneficial to prevent peanut allergy. The same may be true for introduction of heated egg. With regard to early introduction of other allergenic foods (milk, fish, and cereals) most of the available data are from observational studies and do not prove a cause-effect relationship.

Multiple Allergenic Foods
The Enquiring About Tolerance (EAT) is the only intervention trial which aimed to investigate the effects on allergy development of early ingestion of different food allergens (i.e., milk, peanut, egg, wheat, fish, and sesame) in exclusively breastfed infants with unknown risk of allergy status (32).

The per protocol analysis revealed a statistically significant decrease of overall FA (2.4 vs. 7.3%, \(p = 0.01\)), PA (0 vs. 2.5%, \(p = 0.003\); NNT 40) in the early introduction group compared to the control; the ITT analysis did not show a different occurrence of FA to at least one of the six foods at three years follow-up. In the per protocol analysis, the NNT was very high. The findings of this study suggested a possible effect on FA prevention with introduction of foods and food allergens between 3 and 6 months of age. However, non-adherence rate in the intervention group was substantial (68.1%) and may lead to bias in the per-protocol analysis (51). It also indicated the difficulty for parents to introduce so many allergens at such an early age (33). Of note, the lowest adherence rate was reported for the introduction of egg (43.1%).

In many of these studies, infants were sensitized just before introducing the allergenic food/s (4, 24, 26, 27). This suggests that other factors, including genetics, epigenetics, and gut flora, could take part in FA development before weaning (52–56).
Current Recommendations

In response to the Learning Early About Peanut (LEAP) study (4) and a number of RCTs on egg and multiple allergen introductions, guidelines around the world were adapted. The first were the ASCIA (57) guidelines suggesting that peanut, cooked egg, wheat, and dairy foods should be introduced into infants’ diet in the 1st year of life. The NIAID (USA) guidelines (2017) (58) suggested different peanut introduction schedules depending on the degree of risk: in infants affected by severe atopic dermatitis and/or EA from 4 to 6 months while around 6 months in infants with mild to moderate eczema and that family and cultural feeding practices should be followed in infants with no eczema or any food allergies. The latest COT report (UK) (59) and BSACI guidance (60) suggest to introduce complementary foods, in the general population, from around 6 months of age, including peanut and egg. The BSACI guidance suggests that in high risk infants, parents may wish to start complementary feeding around 4 months of age. Parents may also consider to include egg and peanut, but current guidelines are in disagreement about the feasibility and need for assessment prior to introduction.

The most recent update AAP guidelines (61) state that there is no evidence for postponing food allergen introduction beyond 4–6 months, including allergenic foods.

In summary: Evidence suggests introduction of peanut and egg before 11 months of age in high risk infants, after medical assessment. These foods can be given also as part of the weaning diet in low risk infants, ideally before 1 year. There is no/limited evidence regarding the other food allergens but it does not suggest to delay introduction of these foods unnecessarily (Table 2).

DIET DIVERSITY IN PREGNANCY

The role of diet diversity in pregnancy and offspring outcomes has not been studied.

DIET DIVERSITY IN THE 1ST YEAR OF LIFE AND ALLERGY OUTCOMES

The PASTEUR/EFRAIM Study by Carole Roduit et al. (37) is the first study specifically describing the role of diet variety in early life and its effect on food allergy development. This prospective, multicenter study evaluated the association between complementary food introduction in the 1st year of life and allergy sensitization or clinical outcomes up to 6 years of age. In this study, diet variety was defined by investigators in two ways: Definition 1: group of 15 different foods frequently assumed (45) and a number of RCTs on egg and multiple allergen introductions, guidelines around the world were adapted. The first were the ASCIA (57) guidelines suggesting that peanut, cooked egg, wheat, and dairy foods should be introduced into infants’ diet in the 1st year of life. The NIAID (USA) guidelines (2017) (58) suggested different peanut introduction schedules depending on the degree of risk: in infants affected by severe atopic dermatitis and/or EA from 4 to 6 months while around 6 months in infants with mild to moderate eczema and that family and cultural feeding practices should be followed in infants with no eczema or any food allergies. The latest COT report (UK) (59) and BSACI guidance (60) suggest to introduce complementary foods, in the general population, from around 6 months of age, including peanut and egg. The BSACI guidance suggests that in high risk infants, parents may wish to start complementary feeding around 4 months of age. Parents may also consider to include egg and peanut, but current guidelines are in disagreement about the feasibility and need for assessment prior to introduction.

The most recent update AAP guidelines (61) state that there is no evidence for postponing food allergen introduction beyond 4–6 months, including allergenic foods.

In summary: Evidence suggests introduction of peanut and egg before 11 months of age in high risk infants, after medical assessment. These foods can be given also as part of the weaning diet in low risk infants, ideally before 1 year. There is no/limited evidence regarding the other food allergens but it does not suggest to delay introduction of these foods unnecessarily (Table 2).
Study/Author, Year, Country	Study type	Sample size	Food diversity assessment	Outcomes	Results
PASTURE (37), 2014, Austria, Finland, France, Germany, Switzerland	Prospective birth cohort	Baseline: 1,133 Analytic: 856	Parent self-administered questionnaire on dietary intake at 2, 12, 18, and 24 months of age and then yearly up to age 6 years	Food allergy (parental report of ever doctor-diagnosed food allergy up to 6 years of life) Asthma (at least one either doctor-diagnosed asthma or at least 2 doctor-diagnosed episodes of obstructive bronchitis in the last 12 months in the year 4, 5, or 6 questionnaires independent of a diagnosis reported in the first 3 years of life) Allergic rhinitis (reported presence of symptoms or doctor-diagnosed allergic rhinitis in the 6-year questionnaire)	Increased DD in the 1st year of life associated with reduced risk of reported doctor-diagnosed food allergy up to 6 years Increased DD in first year of life associated with reduction of reported asthma (for each successive food introduced: 26% reduction)
Finnish Type 1 Diabetes Prediction and Prevention Study (67), 2014, Finland	Prospective Cohort Study	Baseline: 4,074 Analytic: 3,781	Age-specific dietary questionnaires at ages 3, 4, 6, and 12 months	Atopic dermatitis (parental report of doctor-diagnosis up to 4 years and/or positive SCORAD score during medical examination at the age of 1 year)	No effects of DD on allergic rhinitis development
LISA Study, 2006-2008 (21, 22), Germany	Prospective birth cohort study	2612 up to 2 years, 2073 up to 6 years	Parental interview on infant’s diet at 6 and 12 months	Atopic dermatitis (parental reports of doctor-diagnosis ever up to 5 years)	Increased DD within first year of life associated with reduction of AD development up to 4 years of age (for each successive food introduced in 1st year: 25% reduction)
GINI Study (17), 2007, Germany	Prospective Birth Cohort Study	4,753	Parental interview on infant’s diet at 12 months	Atopic dermatitis (parental reports on doctor-diagnosis and symptoms of AD, questionnaires at birth, 0.5, 1, 1.5, 2, 4, and 6 years)	No significant association between AD (both doctor-diagnosed or symptomatic) and diversity of solids No association between DD at the age of 4 and 6 months and AD (doctor-diagnosed) in the first 4 y of life High DD before 17 weeks of age may be associated with an increased allergy development Increased DD at 4 months associated with higher risk of symptomatic AD at 2 years, doctor-diagnosed AD at 6 years, but not at 4 years
GINIplus and LISAplus study (68), 2011, Germany	Prospective Birth Cohort Study	9,088	Parental report at 4 and 6 months	Parental reports on doctor—diagnosis and symptoms of AD, yearly up to 4 year See LISA and GINA study	Excluded infants/children with early symptoms of allergy, increased DD associated with an increased risk of doctor-diagnosis of AD, but no symptoms of AD at 6 years No significant association between DD and AD (both doctor-diagnosed or symptomatic) and diversity of solids No association between DD at the age of 4 and 6 months and AD (doctor-diagnosed) in the first 4 y of life High DD before 17 weeks of age may be associated with an increased allergy development Increased DD at 4 months associated with higher risk of symptomatic AD at 2 years, doctor-diagnosed AD at 6 years, but not at 4 years
LISAplus (69), 2017, Germany	Prospective Birth Cohort Study	Baseline: 3,097 Analytic: 2,518	Self-administered parental questionnaires from birth to 2 years of age and at 4 and 6 years	Doctor-diagnosed eczema, asthma, and allergic rhinitis assessed at 1 year of age	Children in the highest quartile who were introduced to all eight food groups during the 1st year of life had lower odds of developing eczema up to age 15 years compared with children in the lowest quartile with a maximum of five food groups
significant reduction of 33.2% in the likelihood of food allergy over the first 10 years of life. These studies may indicate that diet diversity is associated with increased nutrient intake, including those nutrients which could have a protective role on allergy development (omega-3 fatty acids and non-digestible fibers) (65, 66). Other studies investigated the effect of diet diversity in early life and allergy outcomes are summarized in Table 3.

Omega-3 Fatty Acids

Omega-3 long-chain polyunsaturated fatty acids (LCPUFAs) are essential nutrients found in many foods such as fatty/oily fish, fish oil, and nuts (66, 74, 75). Evidence from in vitro and in vivo studies have shown that omega-3 fatty acids are able to lower pro-inflammatory cytokines and antagonize IgE responses and mast cells degranulation (66, 74). An imbalance in omega-6 fatty acid intake vs. omega-3 fatty acid in people eating a Western Diet (76, 77) has been considered as a possible reason for the increase in allergic diseases. This may be due to the pro-inflammatory activity of omega-6 fatty which favors a Th2 immune response (78).

However, other than some effect on allergen sensitization, evidence from RCTS is not conclusive to support omega-3 fatty acid supplementation for offspring allergy prevention during pregnancy and/or lactation (65, 66). Omega-3 fatty acid supplementation has also been studied in infancy and childhood with conflicting results. Using house dust mite (HDM) avoidance and dietary fatty acid modification during the first 5 years of life, the Childhood Asthma Prevention Study (CAPS) showed modification of the plasma fatty acids status (increasing omega-3/omega-6 ratio) at age 5 years, but no clinical effects (79).

D’Vaz et al. (80) showed that in infants at high risk of atopy, supplementation of omega 3 fatty acids for the first 6 months of life had beneficial effects on preventing sensitization, eczema, and food allergy. Similarly, Birch et al. (81) demonstrated that infant formula supplemented with omega-3 fatty acids in healthy infants is protective against allergic disease (wheezing/asthma, wheezing/asthma/atopic dermatitis, or any allergy) throughout three years of life. The difference in findings of these studies may be explained by differences in the underlying diet, high risk/low risk populations, dose of supplements used, timing and duration of supplementation, or serum levels of omega-3 intake at the start of the trial (75, 79, 80, 82, 83).

Non Digestible Fibers/Prebiotics

Prebiotics are defined as a “substrate that is selectively utilized by host microorganisms conferring a health benefit” (84). They naturally occur in foods or can be artificially produced as galactooligosaccharides (GOS) and fructooligosaccharides (FOS). In the large bowel, prebiotics undergo fermentation by local bacteria modulating the microbiota composition. Microbiota can, in turn, produce beneficial metabolites such as short-chain fatty acids with known anti-inflammatory effects. Human milk contains more than different 400 oligosaccharides which act also as prebiotics (66) and can shape infant gut microbiota composition (85). Following from this, prebiotics have been added to infant formula trying to mimic the beneficial effect of breastmilk (85).
A recent metaanalysis including 22 studies assessed the effect of supplementing prebiotics in infants on the risk of development of allergic symptoms. Studies on infants at high risk and normal risk of allergy were included. Most of these studies evaluated FOS with GOS supplementation added to infant formula. The authors concluded that the evidence for supplementation of prebiotics for the prevention of allergies are not strong enough to make any clear recommendations (86).

Focusing on the whole “pattern” of dietary intake instead of the single nutrients or groups of nutrients when studying diseases outcomes is therefore increasingly appealing and growing. This is because nutrients and foods are not eaten in isolation. All food intake interacts in a complex manner to determine well-being or disease.

DIET DIVERSITY AND THE MICROBIOME

If there is a place for diet diversity in allergy prevention, then the mechanisms of action need to be clarified. Diet diversity may affect the gut microbiome by providing a more diverse food intake which may increase intake of fiber and other nutrients affecting the gut microbiome. Very few studies have compared diet diversity to gut microbiome diversity. The first study conducted by Claesson et al. (87) showed that increased diet diversity in the elderly was associated with increased gut microbial diversity. If introduction of solid food is considered an increase in diet diversity, then this would be another example of how diet diversity increases gut microbiome diversity. This was reflected by increased protein intake, carbohydrate, and fiber intake, as well as in increased intake of family foods (88). Increased gut microbial diversity has been related to reduced

TABLE 4 | Diet indices in pregnancy and allergy outcomes in the offspring.

References	Exposure	Outcomes
Castro-Rodriguez et al. (97)	Mediterranean diet score Spain	Current wheezing, rhinitis, and dermatitis
	N = 1,000	MedDiet scores during pregnancy was not a protective factor for current wheezing, rhinitis, or dermatitis in preschoolers.
	Age assessed: 1.5 and 4 years	
Chatzi et al. (99)	EPIC scores used with the addition of milk and removal of alcohol Spain, Greece	Wheeze and Eczema
	N = 1,771	EPIC scores was not associated with the risk of wheeze and eczema in any cohort.
	Age assessed: 1 year	
Chatzi et al. (99)	EPIC scores used with the addition of milk and removal of alcohol Spain	Persistent wheeze, atopic wheeze, atopy (sensitization to ≥1/6 common aeroallergens)
	N = 460	Higher EPIC scores were negatively associated with persistent wheeze OR 0.23 (0.09–0.60), atopic wheeze OR 0.34 (0.12–0.97) and atopy OR 0.55 (0.32–1.97)
	Age assessed: 6.5 years	
Bedard et al. (100)	Mediterranean diet score	Asthma, eczema, maximal mid-expiratory flow
	United Kingdom Avon Longitudinal Study of Parents and Children (ALSPAC)	THE maternal Mediterranean diet score was not associated with asthma or other allergic outcomes
	N = 8,907	Weak positive associations were found between maternal Mediterranean diet score and childhood maximal mid-expiratory flow after controlling for confounders
	Age assessed: 7.5 years	Higher Mediterranean diet scores were associated with increased FEF
		0.25–0.75; Z-scores adjusted for age, height, and sex (P = 0.06, 95% CI 0.01–0.12; ρ = 0.03, comparing a score of 4–7 vs. a score of 0–3)
Lang et al. (93)	Mediterranean diet score and Alternate Healthy Eating Index modified for pregnancy (AHEI-P) USA	Recurrent wheeze
	N = 1,376	None of these indices, recurrent wheeze in children
	Age assessed: 3 years	Secondary outcomes:
		Doctor’s diagnosis of asthma, eczema, lower respiratory tract infections, or atopy at any time (0–3 years); in the adjusted models, neither diet score was associated with any of the secondary outcomes
Moonesinghe et al. (94)	Alternate Healthy Eating Index modified for pregnancy (AHEI-P) UK	Atopy (sensitization to any food and/or aero-allergens), reported allergic diseases (asthma, eczema, allergic rhinitis, and food allergy)
	N = 937	AHEI-P was not associated with atopy or allergic diseases
	Age assessed: 3 and 10 years	
Chen et al. (95)	Diet inflammatory index and Healthy Eating index (HEI-2015) Ireland	Asthma for the first 10 years of life: Higher diet inflammatory diet scores were associated with higher risk of offspring asthma (OR: 1.35; 95% CI: 1.10, 1.65). Higher HEI-2015 scores were associated with lower risk of asthma (OR: 0.77; 95% CI: 0.64, 0.93) (both P < 0.01); persisted in adjusted models
	N = 862	
	Age assessed: first 10 years of life	
Hanson et al. (96)	Diet inflammatory index USA	Ever asthma and wheezing in the past year (early childhood and mid childhood); current asthma and lung function (mid childhood), and wheeze trajectory during 1–9 years
	N = 1,424	Higher diet inflammatory scores were associated with an early vs. never wheeze trajectory (OR, 1.89; 95% CI, 1.14–3.13) (adjusted models) and lower forced expiratory flow (forced expiratory flow at 25–75%) in mid childhood (beta, −132 mL; 95% CI, −249 to −14). Ever asthma, were not related to diet inflammatory scores
	Age assessed: first 9 years of life	
TABLE 5 | Diet indices in childhood and allergy outcomes.

References	Exposure	Outcomes
KIDMED—Mediterranean Diet Quality Index for children and teenagers		
Grigoropoulou et al. (106)	Greece	Asthma
N = 1,125	1-unit increase in the Kidmed index was associated with 16% lower likelihood of having asthma symptoms	
Age assessed: 10–12 years	Greater adherence to MD was inversely associated with "ever wheeze" (OR: 0.88; 95% CI, 0.78, 0.98) and wheeze when exercise w (OR: 0.79; 95% CI, 0.67, 0.93).	
Chatzi et al. (99)	Spain	Persistent wheeze, atopic wheeze (current wheeze and atopy), atopy (sensitization to ≥ 1/6 common aeroallergens)
N = 460	No statistical significant effect was seen.	
Age assessed: 6.5 years		
Alphantonogeorgos et al. (101)	Greece	Adherence to the Kidmed index was negatively associated with asthma symptoms (standardized beta = −0.224, p < 0.001).
Urban (Athens, n = 700) or rural environment (n = 425)	Ever asthma, any asthmatic symptom	
Age assessed: 10–12 years	Greater adherence to MD inversely associated with ever asthma (p = 0.002), any asthma symptoms (P < 0.001), ever wheeze (p = 0.001), exercise induced wheeze (p = 0.004).	
Arvaniti et al. (102)	Greece	Respiratory and allergic symptoms over the past 12 months, skin prick tests to 10 aeroallergens, any wheezing in the past, atopic wheeze, current wheezing, nocturnal dry cough, any rhinitis in the past, atopic rhinitis, current allergic rhinitis, current seasonal rhinitis, atopy
N = 700	One-unit increase in KidMed score was associated with 14% lower likelihood of having asthma.	
Age assessed: 10–12 years		
Chatzi et al. (104)	Greece	Adherence to the Kidmed index was negatively associated with asthma symptoms (standardized beta = −0.224, p < 0.001).
N = 690	Ever asthma, any asthmatic symptom	
Age assessed: 7–18 years	Greater adherence to MD inversely associated with "ever wheeze" (OR: 0.88; 95% CI, 0.78, 0.98) and	
EPIC—European Prospective Investigation into Cancer and Nutrition Cohort—Mediterranean diet score		
Castro-Rodriguez et al. (107)	Spain	Current wheezing
N = 1,784	Highest quartile of EPIC scores associated with a reduction in current wheeze 0.54 (0.33–0.88)	
Age assessed: 08 ± 0.8 years		
de Batlle et al. (109)	Mexico	Asthma ever, wheeze ever, current wheeze, rhinitis ever, sneezing ever, current sneezing, current itchy-watery eyes, rhinitis related outcomes by ISAAC questionnaire
N = 1,476 Age assessed: 6–7 years	Adherence to the EPIC scores (2nd and 3rd tertile compared with 1st tertile) inversely associated with asthma ever OR 0.60 (0.40–0.91), wheezing ever OR 0.64 (0.47–0.87), current Sneezing OR 0.71 (0.52–0.96) and current itchy-watery eyes OR 0.63 (0.42–0.95)	
Garcia-Marcos L et al. (109)	Spain	Current occasional asthma, current severe asthma, rhinoconjunctivitis
N = 20,106	Every 1 unit increase in EPIC score showed a protective effect on current severe asthma in girls (adjusted OR 0.90, 95% CI: 0.82–0.98)	
Age assessed: 6–7 years		
Suarez-Varela et al. (110)	Spain	Atopic dermatitis
N = 20,106	No association between EPIC diet scores and atopic dermatitis	
Age assessed: 6–7 years		
Tamay et al. (111)	Turkey	Allergic rhinitis, lifetime rhinitis, current rhinitis, current rhinoconjunctivitis, physician-diagnosed allergic rhinitis
N = 9,875 Age assessed: 6–7 years	No association between EPIC diet scores and any of the outcomes studied	
Akcay et al. (112)	Turkey	Wheeze ever, wheezing in last 12 months, lifetime doctor diagnosed asthma prevalence
N = 9,991	No association between EPIC diet scores and any of the outcomes studied	
Age assessed: 13–14 years		
Rice et al. (113)	Peru	Asthma status (asthma control, FEV1), allergic rhinitis, atopy
N = 287 asthmatic + 96 controls	No association between EPIC scores and asthma control, FEV1, allergic rhinitis, atopy status	
Age assessed: 9–19 years		
Romieu et al. (114)	Mexico	Pulmonary function was measured and nasal lavage collected and analyzed.
N = 158 asthmatic + 50 controls	No significant difference between the asthmatic and the non-asthmatic children.	
Age assessed: 6–14 years		
Gonzalez et al. (115)	Spain	6–7 years: Asthma current asthma, severe asthma, and exercise-induced asthma
N = 7,454	13–14 years: Asthma current asthma, severe asthma, and exercise-induced asthma	
Age assessed: 6–7 years	6–7 years: Increased EPIC diet scores were associated with a higher risk of severe asthma (odds ratios = 2.26, 95% CI: 1.21–4.22 in the 2nd quartile, but not in the 3rd and 4th) in girls. There was no significant relationship for the other asthma categories	
N = 7,391		
Age assessed: 13–14 years		

(Continued)
allergen sensitization (89) and allergy outcomes in both children and adults (90–92).

DIET INDICES IN PREGNANCY

Three diet indices in pregnancy have been studied in relation to allergy outcomes in infants, the healthy eating index (93–95), the diet inflammatory index (95, 96), and the Mediterranean diet index (93, 97–100) (Table 4).

The Healthy Eating Index

Three studies have studied the role of healthy eating in pregnancy and childhood allergy outcomes. In one study (Food Allergy and Research Study, UK), the Alternate Healthy Eating Index modified for pregnancy (AHEI-P) was used to examine associations with allergic outcomes in the offspring at 3 and 10 years (94). This study found no association between the AHEI-P and atopy (defined as sensitization to any food and/or aero-allergen) or reported allergic diseases at 3 or 10 years. Lange et al. (93) used data from the Project Viva cohort (US) and found no association between the HEI and recurrent wheeze in infants at the age of 3 years. In contrast, Chen et al. (95) using data from an Irish cohort found that higher HEI-2015 scores were associated with lower risk of asthma (OR: 0.77; 95% CI: 0.64, 0.93) (both P < 0.01) and the effect persisted in adjusted models.

The Diet Inflammatory Index

Two studies have looked at the association between a pro-inflammatory diet in pregnancy and asthma, wheeze, or lung function outcomes through childhood (95, 96). One recent study from Ireland (95) showed an association between DII scores and asthma outcomes over 10 years. The Project viva (US) study showed an association of DII scores with wheeze trajectories, but not asthma, up to 7.5 years of age (96).

The Mediterranean Diet Index

The associations between the Mediterranean diet index and allergy outcomes have been studied in by five cohorts (93, 97–99) (two from Spain, one from Greece, one from the USA, and one from the UK). Four studies investigated wheeze in the infant (93, 97–99), four studies investigated rhinitis, atopic dermatitis, and/or eczema (97–100), two studies included sensitization to food/aero-allergens (93, 99), and two studies investigated asthma in the child (93). Four of the five studies found no association between the Mediterranean diet index and the allergic outcomes studied (93, 97, 98, 100). Childhood persistent wheeze, atopic wheeze, and atopy was associated with the Mediterranean diet index in only one of the studies (99). One study (100) found an association between the Mediterranean diet score and childhood maximal mid-expiratory flow as well as FEF25–75% z-scores.

Based on the current evidence, limited recommendations can be made about the role of diet indices in pregnancy and allergy outcomes in the offspring. The most potential of these indices may be in the prevention of lung function, wheeze, or asthma outcomes in the offspring.

DIET INDICES IN CHILDHOOD

The role of diet indices in infancy vs. subsequent development of allergic outcomes in later childhood have not been conducted. A number of studies have however looked at the Mediterranean diet in childhood vs. allergy outcomes, using either the KIDMED mediterranean score (99, 101–106) or the adult EPIC score (107–115) and the diet inflammatory index (116, 117) (Table 5).

The Diet Inflammatory Index

Two studies investigated the role of the diet inflammatory index on allergy development in the children (116, 117) and neither one of these could find an association between diet inflammatory scores and asthma in the child. One study found that indoor pollution on asthma outcomes was more severe in those with a pro-inflammatory diet than those following an anti-inflammatory diet (116).

The Mediterranean Diet Index

Three studies found reduced allergy outcomes with an increase in mediterranean diet scores: reduced current wheeze (107), asthma ever, wheezing ever, current sneezing, and current itchy-watery eyes (108), and severe asthma in girls (109). Five studies found no effect on any of the outcomes studied (110–114) and one study found an increased risk of severe asthma, with increased mediterranean diet scores (115).

CONCLUSIONS

Based on the current evidence, we recommend the introduction of solid foods, including common allergenic foods, during the
first year of life, according to the infant's neuro-developmental abilities and familiar or cultural habits.

In infants with severe AD and/or FA, medical assessment may be advisable before introducing common food allergens into the diet. Consuming a diverse range of foods in the first year of life may increase intake of nutrients and positively affect the gut microbiome composition. Intake of omega-3 fatty acids and fibers/prebiotics may be particularly important, but more evidence exists about the role of diet indices in pregnancy and allergic disease in the offspring. The most promising results indicate a reduction in childhood wheeze and/or asthma. Further studies are warranted to investigate the effects of diet diversity during pregnancy and lactation and diet indices in early life on the development of allergic diseases in infants and children.

AUTHOR CONTRIBUTIONS

ED'A conceptualized the paper, wrote the introduction, and the section on diet diversity. DP critically reviewed the draft and proofread the paper. MS wrote the abstract and made tables on diet diversity. EV contributed to write the section on diet diversity. GZ made final revisions of the draft. CV wrote the section on diet indices, made tables on diet indices, and critically reviewed the paper. All authors contributed to the article and approved the submitted version.

REFERENCES

1. Ruel MT. Is dietary diversity an indicator of food security or dietary quality? A review of measurement issues and research needs. *Food Nutr Bull.* (2003) 24:231–2. doi: 10.1177/156482650302400217

2. Venter C, Meyer RW, Nwaru BI, Roduit C, Untersmayr E, Adel-Patient K, et al. EAACI position paper: influence of dietary fatty acids on asthma, food allergy, and atopic dermatitis. *Allergy.* (2019) 74:1249–44. doi: 10.1111/all.13764

3. Du Toit G, Katz Y, Sasieni P, Mesher D, Maleki SJ, Fisher HR, et al. Early consumption of peanuts in infancy is associated with a low prevalence of peanut allergy. *J Allergy Clin Immunol.* (2008) 122:984–91. doi: 10.1016/j.jaci.2008.08.039

4. Du Toit G, Roberts G, Sayre PH, Bahnsen HT, Radulovic S, Santos AF, et al. Randomized trial of peanut consumption in infants at risk for peanut allergy. *N Engl J Med.* (2015) 372:803–13. doi: 10.1056/NEJMoa1414850

5. Lundell AC, Hesselmar B, Nordström I, Adlerberth I, Wold AE, Rudin A. Higher B-cell activating factor levels at birth are positively associated with maternal dairy farm exposure and negatively related to allergy development. *J Allergy Clin Immunol.* (2013) 136:1074–82.e3. doi: 10.1016/j.jaci.2015.03.022

6. Matricardi PM. 99th Dahlem conference on infection, inflammation and chronic inflammatory disorders: controversial aspects of the ‘hygiene hypothesis’. *Clin Exp Immunol.* (2010) 160:98–105. doi: 10.1111/j.1365-2249.2010.04130.x

7. Perkin MR, Logan K, Marrs T, Radulovic S, Craven J, Flohr C, et al. Enquiring about tolerance (EAT) study: feasibility of an early allergenic food introduction regimen. *J Allergy Clin Immunol.* (2016) 137:1477–86.e8. doi: 10.1016/j.jaci.2015.12.1322

8. Savage JH, Lee-Sarwar KA, Sordillo JE, Lange NE, Zhou Y, O’Connor GT, et al. Diet during pregnancy and infancy and the infant intestinal microbiome. *J Pediatr.* (2018) 203:47–54.e4. doi: 10.1016/j.jpeds.2018.07.066

9. Fransen HP, Ocké MC. Indices of diet quality. *Carr Opin Clin Nutr Metab Care.* (2008) 11:559–65. doi: 10.1097/MCO.0b013e3283a49db

10. de Silva D, Geromi M, Halken S, Host A, Panesar SS, Muraro A, et al. Primary prevention of food allergy in children and adults: systematic review. *Allergy.* (2014) 69:581–9. doi: 10.1111/all.12334

11. Venter C, Greenhawt M, Meyer RW, Agostoni C, Reese I, du Toit G, et al. EAACI position paper on diet diversity in pregnancy, infancy and childhood: novel concepts and implications for studies in allergy and asthma. *Allergy.* (2020) 75:497–523. doi: 10.1111/all.14051

12. American Academy of Pediatrics. Committee on Nutrition. Hypoallergenic infant formulas. *Pediatrics.* (2000) 106:346–9. doi: 10.1542/peds.106.6.346

13. Kajosaari M. Atopy prevention in childhood: the role of diet. Prospective 5-year follow-up of high-risk infants with six months exclusive breastfeeding and solid food elimination. *Pediatr Allergy Immunol.* (1994) 5:26–8. doi: 10.1111/j.1399-3038.1994.tb00344.x

14. Ferguson DM, Horwood LJ, Shannon FT. Early solid feeding and recurrent childhood eczema: a 10-year longitudinal study. *Pediatrics.* (1990) 86:541–6.

15. Fiocchi A, Assaad A, Bahna S. Food allergy and the introduction of solid foods to infants: a consensus document. *J Allergy Clin Immunol.* (2016) 138:671–8. doi: 10.1016/j.jaci.2015.11.023

16. Prescott SL, Pawankar R, Allen KJ, Campbell DE, Sinn J, Fiocchi A, et al. A global survey of changing patterns of food allergy burden in children. *World Allergy Organ J.* (2013) 6:21. doi: 10.1186/1939-4551-6-21

17. Filipiak B, Zutavern A, Koletzko S, von Berg A, Brockow I, Gruhl A, et al. Solid food introduction in relation to eczema: results from a four-year prospective birth cohort study. *J Pediatr.* (2007) 151:352–8. doi: 10.1016/j.jpeds.2007.05.018

18. Koplin JJ, Osborne NJ, Wake M, Martin PE, Gurrin LC, Robinson MN, et al. Can early introduction of egg prevent egg allergy in infants? A population-based study. *J Allergy Clin Immunol.* (2010) 126:807–13. doi: 10.1016/j.jaci.2010.07.028

19. Nwaru BI, Erkkola M, Lumia M, Kronberg-Kippilä C, Ahonen S, Kaila M, et al. Maternal intake of fatty acids during pregnancy and allergies in the offspring. *Br J Nutr.* (2012) 108:720–32. doi: 10.1017/S0007114511005940

20. Tromp IJM, Kieffe-de Jong JC, Lebon A, Renders CM, Jaddoe VW, Hofman A, et al. The introduction of allergenic foods and the development of reported wheezing and eczema in childhood: the Generation R study. *Arch Pediatr Adolesc Med.* (2011) 165:933–8. doi: 10.1001/archpediatrics.2011.93

21. Zutavern A, Brockow I, Schaaf B, Bolte G, von Berg A, Diez U, et al. Timing of solid food introduction in relation to atopic dermatitis and atopic sensitization: results from a prospective birth cohort study. *Pediatrics.* (2006) 117:601–11. doi: 10.1542/peds.2004-2521

22. Zutavern A, Brockow I, Schaaf B, von Berg A, Diez U, Borte M, et al. Timing of solid food introduction in relation to eczema, asthma, allergic rhinitis, and food and inhalant sensitization at the age of 6 years: results from the prospective birth cohort study LISA. *Pediatrics.* (2008) 121:e44–52. doi: 10.1542/peds.2006-3553

23. Lack G. Epidemiologic risks for food allergy. *J Allergy Clin Immunol.* (2008) 121:1331–6. doi: 10.1016/j.jaci.2008.04.032

24. Noti M, Kim BS, Sracusa MC, Rak GD, Kubo M, Moghaddam AE, et al. Exposure to food allergens through ingested skin promotes intestinal food allergy through the thymic stromal lymphopoietin-basophil axis. *J Allergy Clin Immunol.* (2014) 133:1390–9.9.e1–6. doi: 10.1016/j.jaci.2014.01.021

25. Greer FR, Sicherer SH, Burks AW. Effects of early nutritional interventions on the development of atopic disease in infants and children: the role of maternal dietary restriction, breastfeeding, timing of introduction of complementary foods, and hydrolyzed formulas. *Pediatrics.* (2008) 121:183–91. doi: 10.1542/peds.2007-3022

26. Du Toit G, Sayre PH, Roberts G, Sever ML, Lawson K, Bahnsen HT, et al. Effect of avoidance on peanut allergy after early peanut consumption. *N Engl J Med.* (2016) 374:1435–43. doi: 10.1056/NEJMoa1514209

Frontiers in Pediatrics | www.frontiersin.org 11 September 2020 | Volume 8 | Article 545
27. Caffarelli C, Di Mauro D, Mastorrelli C. Solid food introduction and the development of food allergies. *Nutrients*. (2018) 10:1790. doi: 10.3390/nu10111790

28. Bellach J, Schwarz V, Ahrens B, Trendelenburg V, Aksünger Ö, Kalb B, et al. Randomized placebo-controlled trial of hen’s egg consumption for primary prevention in infants. *J Allergy Clin Immunol*. (2017) 139:1591–9.e2. doi: 10.1016/j.jaci.2016.06.045

29. Lodrup Carlsen KC, Rehbinder EM, Skjerven HO, Carlsen MH, Fatnes TA, Fugelli P, et al. Preventing Atopic Dermatitis and Allergies in Children—the PreventADALL study. *Allergy*. (2018) 73:2063–70. doi: 10.1111/all.13468

30. Palmer DJ, Metcalfe J, Makrides M, Gold MS, Quinn P, West CE, et al. Early regular egg exposure in infants with eczema: a randomized controlled trial. *J Allergy Clin Immunol*. (2013) 132:387–92.e1. doi: 10.1016/j.jaci.2013.05.002

31. Palmer DJ, Sullivan TR, Gold MS, Prescott SL, Makrides M. Randomized controlled trial of early regular egg intake to prevent egg allergy. *J Allergy Clin Immunol*. (2017) 139:1600–7.e2. doi: 10.1016/j.jaci.2016.06.052

32. Perkin MR, Logan K, Tseng A, Raji B, Ayis S, Peacock J, et al. Randomized trial of introduction of allergenic foods in breast-fed infants. *N Engl J Med*. (2016) 374:1733–43. doi: 10.1056/NEJMoa1514210

33. Voorheis P, Bell S, Cornelsen L, Quaiife M, Logan K, Mars T, et al. Challenges experienced with early introduction and sustained consumption of allergenic foods in the Enquiring About Tolerance (EAT) study: a qualitative analysis. *J Allergy Clin Immunol*. (2019) 144:1615–23. doi: 10.1016/j.jaci.2019.09.004

34. Saatinen KM, Juntunen-Backman K, Jarvenpaa AL, Kuutinen P, Lope L, Renlund M, et al. Supplementary feeding in maternity hospitals and the risk of cow’s milk allergy: a prospective study of 6209 infants. *J Allergy Clin Immunol*. (1999) 104:457–61. doi: 10.1016/S0091-6749(99)70939-3

35. Wei-Liang Tan J, Valerio C, Barnes EH, Turner PJ, Van Asperen PA, Kakakios AM, et al. A randomized trial of egg introduction from 4 months of age in infants at risk for egg allergy. *J Allergy Clin Immunol*. (2017) 139:1621–8.e8. doi: 10.1016/j.jaci.2016.08.035

36. Natsume O, Kabashima S, Nakazato J, Yamamoto-Hanada K, Narita M, Kondo M, et al. Two-step egg introduction for prevention of egg allergy in high-risk infants with eczema (PETIT): a randomised, double-blind, placebo-controlled trial. *Lancet*. (2017) 389:276–86. doi: 10.1016/S0140-6736(16)31418-0

37. Roduit C, Frei R, Depner M, Schaub B, Loss G, Genuneit J, et al. Increased food diversity in the first year of life is inversely associated with diseases. *J Allergy Clin Immunol*. (2014) 133:1056–64. doi: 10.1016/j.jaci.2013.12.1044

38. Meyer R, Chebar Lozinasky A, Fleischer DM, Vieira MC, Du Toit G, Vandenplas Y, et al. Diagnosis and management of non-IgE gastrointestinal allergies in breastfed infants-An EAACI Position Paper. *Allergy*. (2020) 75:14–32. doi: 10.1111/all.13947

39. Erdokouou D, Garcia-Larsen V, Logan A, Groome A, Cunha S, Chivinge S, et al. Timing of allergenic food introduction to the infant diet and risk of allergic or autoimmune disease: a systematic review and meta-analysis. *JAMA*. (2016) 316:1181–92. doi: 10.1001/jama.2016.12623

40. Urashima M, Mezawa H, Okuyama M, Urashima T, Hirano D, Gocho N, et al. Primary prevention of cow’s milk sensitization and food allergy by avoiding supplementation with cow’s milk formula at birth: a randomized clinical trial. *JAMA Pediatr*. (2019) 173:1137–45. doi: 10.1001/jamapediatrics.2019.3544

41. Hesselmar B, Saalmon R, Rudin A, Adlerberth I, Wold A. Early fish consumption during the first year of life and development of allergic or autoimmune disease: a systematic review and meta-analysis. *Br J Nutr*. (2010) 103:266–73. doi: 10.1017/S0007114509991541

42. Papamichael MM, Shrestha SK, Isiopoulos C, Erbas B. The role of fish intake on asthma in children: A meta-analysis of observational studies. *Pediatr Allerg Immunol*. (2018) 29:350–60. doi: 10.1111/pai.12889

43. D’Auria E, Pendezza E, Zuccotti GV. Personalized nutrition in food allergy: tips for clinical practice. *Front Pediatr*. (2020) 8:113. doi: 10.3389/fped.2020.00113

44. Martinez M. Tissue levels of polyunsaturated fatty acids during early human development. *Pediatr*. (1992) 120:S129–38. doi: 10.1016/S0022-3476(05)81247-8

45. Virtanen SM, Kaila M, Pekkanen J, Kenward MG, Uusitalo U, Pietinen P, et al. Early introduction of oats associated with decreased risk of persistent asthma and early introduction of fish with decreased risk of allergic rhinitis. *Br J Nutr*. (2010) 103:266–73. doi: 10.1017/S0007114509991541

46. British Society for Allergy and Clinical Immunology/British Dietetic Association. Preventing Food Allergy in Higher Risk Infants: Guidance for
Healthcare Professionals. (2018). Available online at: https://www.bscsi.org/about/early-feeding-guidance (accessed May 04, 2020).

65. García-Larsen V, Ierodiakonou D, Jarrold K, Cunha S, Chivinge J, Robinson Z, et al. Diet during pregnancy and infancy and risk of allergic or autoimmune disease: a systematic review and meta-analysis. *PLoS Med.* (2018) 15:e1002507. doi: 10.1371/journal.pmed.1002507

66. Venter C, Brown KR, Maslin K, Palmer DJ. Maternal dietary intake in pregnancy and lactation and allergic disease outcomes in offspring. *Pediatr Allergy Immunol.* (2017) 28:135–43. doi: 10.1111/pai.12682

67. Nwaru BI, Takkinen HM, Kaila M, Erkkola M, Ahonen S, Pekkanen J, et al. Food diversity in infancy and the risk of childhood asthma and allergies. *J Allergy Clin Immunol.* (2014) 133:1084–91. doi: 10.1016/j.jaci.2013.12.1069

68. Sausenthaler S, Heinrich J, Koletzko S. Early diet and the risk of allergy: what can we learn from the prospective birth cohort studies GINIplus and LISAplus? *Am J Clin Nutr.* (2011) 94:2421–7. doi: 10.3945/ajcn.110.111880

69. Markovych I, Standl M, Lehmann I, von Berg A, Heinrich J. Food diversity during the first year of life and allergic diseases until 15 years. *J Allergy Clin Immunol.* (2017) 140:751–4.e4. doi: 10.1016/j.jaci.2017.08.011

70. Turati F, Bertuccio P, Galeone C, Pelucchi C, Naldi L, Bach J, et al. Early weaning is beneficial to prevent atopic dermatitis occurrence in young children. *Allergy.* (2016) 71:878–88. doi: 10.1111/all.12864

71. Fergusson DM, Horwood LJ. Early solid food diet and eczema in childhood: a 10-year longitudinal study. *Pediatr Allergy Immunol.* (1994) 5:44–7. doi: 10.1111/j.1399-3038.1994.tb00347.x

72. Fergusson DM, Horwood LJ, Beautrais AL, Shannon FT, Taylor BE, Eczema and infant diet. *Clin Allergy.* (1981) 11:325–31. doi: 10.1111/j.1365-2222.1981.tb01602.x

73. Fergusson DM, Horwood LJ, Shannon FT. Risk factors in childhood eczema. *J Epidemiol Community Health.* (1982) 36:118–22. doi: 10.1136/jech.36.2.118

74. Hoppenbrouwers T, Cvejic Hogervorst JH, Garssen J, Wichers HJ, Willemsen LEM. Long Chain Polyunsaturated Fatty Acids (LCPUFAs) in the prevention of food allergy. *Front Immunol.* (2019) 10:1118. doi: 10.3389/fimmu.2019.01118

75. Muley P, Shah M, Muley A. Omega-3 fatty acids supplementation in children to prevent asthma: is it worthy? a systematic review and meta-analysis. *J Allergy.* (2015) 2015:312052. doi: 10.1155/2015/312052

76. Simopoulos AP. The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. *Exp Biol Med.* (2008) 233:674–88. doi: 10.3181/0711-MR-311

77. Simopoulos AP. An increase in the omega-6/omega-3 fatty acid ratio increases the risk for obesity. *Nutrients.* (2016) 8:128. doi: 10.3390/nu8030128

78. Willemsen LEM. Dietary n-3 long chain polyunsaturated fatty acids in allergy prevention and asthma treatment. *Eur J Pharmacol.* (2016) 785:174–86. doi: 10.1016/j.ejphar.2016.03.062

79. Marks GB, Mihrshahi S, Kemp AS, Tovey ER, Webb K, Power SE, O’Connor EM, Cusa ck S, et al. Maternal dietary inflammatory potential and quality are associated with offspring asthma risk over 10-year follow-up: the lifeways cross-generation cohort study. *Am J Clin Nutr.* (2020) 111:440–7. doi: 10.1093/ajcn/nqz297

80. Bisgaard H, Li N, Bonde JP, Skov T, Paludan-Muller G, et al. Reduced diversity of the intestinal microbiota during infancy is associated with increased risk of allergic disease at school age. *J Allergy Clin Immunol.* (2011) 128:646–52.e1–5. doi: 10.1016/j.jaci.2011.04.060

81. Dong P, Feng JJ, Yan DY, Lyu YJ, Xu X. Early-life gut microbiome and cow’s milk allergy- a prospective case - control 6-month follow-up study. *Saudi J Biol Sci.* (2018) 25:875–80. doi: 10.1016/j.sjbs.2017.11.051

82. Hua X, Goodert JF, Li N, Yu G, Shi J. Allergy associations with the adult fecal microbiota: analysis of the American gut project. *EliMedicine.* (2016) 3:172–9. doi: 10.3390/ymed.2015.11.038

83. Lange NE, Rifas-Shiman SL, Camargo CA Jr, Gold DR, Gillman MW, Litonjua AA, et al. Maternal dietary pattern during pregnancy is not associated with recurrent wheeze in children. *J Allergy Clin Immunol.* (2010) 126:250–3. doi: 10.1016/j.jaci.2010.05.009

84. Moonesinghe R, Patil VK, Dean T, Arshad SH, Gladsby G, Grundy J, et al. Association between healthy eating in pregnancy and allergic status of the offspring in childhood. *Ann Allergy Asthma Immunol.* (2016) 116:163–5. doi: 10.1016/j.anai.2015.11.005

85. Forsberg A, West CE, Prescott SL, Jenmalm MC. Pre- and probiotics for allergy prevention: time to revisit recommendations? *Clin Exp Allergy.* (2016) 46:1306–21. doi: 10.1111/cea.12838

86. Cuello-Garcia C, Fiocchi A, Pawankar R, Yepes-Nuñez JJ. Prebiotics for the prevention of allergies: A systematic review and meta-analysis of randomized controlled trials. *Clin Exp Allergy.* (2017) 47:1488–77. doi: 10.1111/1399-3038.13042

87. Claesson MJ, Jeffery IB, Conde S, Power SE, O’Connor EM, Cusack S, et al. Gut microbiota composition correlates with diet and health in the elderly. *Nature.* (2012) 488:178–84. doi: 10.1038/nature11319

88. Laursen MF, Andersen LB, Michaelsen KF, Molgaard C, Trolle E, Bahl JF, et al. Associations of prenatal dietary inflammatory potential with childhood asthma using path analysis. *Mediterranean diet, physical activity and living environment with childhood respiratory outcomes in project viva. J Allergy Clin Immunol Pract.* (2019) 7:845–52.e4. doi: 10.1016/j.jaip.2019.10.010

89. Castro-Rodriguez JA, Ramirez-Hernandez M, Padilla O, Pacheco-Gonzalez RM, Perez-Fernandez V, Garcia-Marcos L. Effect of foods and Mediterranean diet during pregnancy and first years of life on wheezing, rhinitis and dermatitis in preschoolers. *Allergol Immunopathol (Madr).* (2016) 44:400–9. doi: 10.1016/j.allerg.2015.12.002

90. Chatzi I, Garcia R, Roumeliotaki T, Basterrechaa M, Beggartian H, Inguez C, et al. Mediterranean diet adherence during pregnancy and risk of wheeze and eczema in the first year of life: INMA (Spain) and RHEA (Greece) mother-child cohorts studies. *Br J Nutr.* (2013) 110:2058–68. doi: 10.1017/S0007114513001426

91. Chatzi I, Torrent M, Romieu I, Garcia-Esteban R, Ferrer C, Vioque J, et al. Mediterranean diet in pregnancy is protective for wheeze and atopy in childhood. *Thorax.* (2008) 63:507–13. doi: 10.1136/thx.2007.081745

92. Bedard A, Northstone K, Henderson AJ, Shaheen SO. Mediterranean diet during pregnancy and childhood respiratory and atopic outcomes: birth cohort study. *Eur Respir J.* (2020) 55. doi: 10.1183/13993003.01215-2019

93. Alphantonogeorgos G, Panagiotakos DB, Grigoropoulou D, Yfantis K, Papoutsakis C, Papadimitriou A, et al. Investigating the associations between Mediterranean diet, physical activity and living environment with childhood asthama using path analysis. *Endocr Metab Immune Disord Drug Targets.* (2014) 14:226–35. doi: 10.2174/1871530314666140826102514

94. Arvanitis E, Priftis KN, Papadimitriou A, Papadopoulos M, Roma E, Kanoskoufali M, et al. Adherence to the Mediterranean type of diet is associated with lower prevalence of asthma symptoms, among 10-12 years old children: the PANACEA study. *Pediatr Allergy Immunol.* (2011) 22:283–9. doi: 10.1111/j.1399-3038.2010.01113.x
103. Arvaniti F, Priftis KN, Papadimitriou A, Yiallouros P, Kapsokefalou M, Anthracopoulos MB, et al. Salty-snack eating, television or video-game viewing, and asthma symptoms among 10- to 12-year-old children: the PANACEA study. J Am Diet Assoc. (2011) 111:251–7. doi: 10.1016/j.jada.2010.10.051

104. Chatzi L, Apostolaki G, Bibakis I, Skypala I, Bibaki-Liakou V, Tzanakis N, et al. Protective effect of fruits, vegetables and the Mediterranean diet on asthma and allergies among children in Crete. Thorax. (2007) 62:677–83. doi: 10.1136/thx.2006.069419

105. Chatzi L, Torrent M, Romieu I, Garcia-Esteban R, Ferrer C, Vioque J, et al. Diet, wheeze, and atopy in school children in Menorca, Spain. Pediatr Allergy Immunol. (2007) 18:480–5. doi: 10.1111/j.1399-3038.2007.00596.x

106. Grigoropoulou D, Priftis KN, Yannakoulia M, Papadimitriou A, Anthracopoulos MB, Yfanti K, et al. Urban environment adherence to the Mediterranean diet and prevalence of asthma symptoms among 10- to 12-year-old children: the physical activity, nutrition, and allergies in children examined in Athens study. Allergy Asthma Proc. (2011) 32:351–8. doi: 10.2500/aap.2011.32.3463

107. Castro-Rodriguez JA, Garcia-Marcos L. What are the effects of a Mediterranean diet on allergies and asthma in children? Front Pediatr. (2017) 5:72. doi: 10.3389/fped.2017.00072

108. de Batlle J, Garcia-Aymerich J, Barraza-Villarreal A, Anto JM, Romieu I. Mediterranean diet is associated with reduced asthma and rhinitis in Mexican children. Allergy. (2008) 63:1310–6. doi: 10.1111/j.1399-3038.2008.01722.x

109. Garcia-Marcos L, Robertson CF, Ross Anderson H, Ellwood P, Williams HC, Wong GW, et al. Does migration affect asthma, rhinoconjunctivitis and eczema prevalence? Global findings from the international study of asthma and allergies in childhood. Int J Epidemiol. (2014) 43:1846–54. doi: 10.1093/ije/dyu145

110. Suarez-Varela MM, Alvarez LG, Kogan MD, Ferreira JC, Martinez Gimeno A, Aguinaga Ontoso I, et al. Diet and prevalence of atopic eczema in 6 to 7-year-old schoolchildren in Spain: ISAAC phase III. J Investig Allergol Clin Immunol. (2010) 20:469–75.

111. Tarnay Z, Akcay A, Ergin A, Guler N. Dietary habits and prevalence of allergic rhinitis in 6 to 7-year-old schoolchildren in Turkey. Allergol Int. (2014) 63:553–62. doi: 10.2332/allergolint.13-OA-0661

112. Akcay A, Tamay Z, Hocaoglu AB, Ergin A, Guler N. Risk factors affecting asthma prevalence in adolescents living in Istanbul, Turkey. Allergol Immunopathol (Madrid). (2014) 42:449–58. doi: 10.1016/j.aller.2013.05.005

113. Rice JL, Romero KM, Galvez Davila RM, Meza CT, Bilderback A, Williams DL, et al. Association between adherence to the Mediterranean diet and asthma in Peruvian children. Lung. (2015) 193:893–9. doi: 10.1007/s00408-015-9792-9

114. Romieu I, Barraza-Villarreal A, Escamilla-Nunez C, Texcalac-Sangrador JL, Hernandez-Cadena L, Díaz-Sánchez D, et al. Dietary intake, lung function and airway inflammation in Mexico City school children exposed to air pollutants. Respir Res. (2009) 10:122. doi: 10.1186/1465-9921-10-122

115. Gonzalez Barcala FJ, Pertega S, Bamonde L, Garnelo L, Perez Castro T, Sampedro M, et al. Mediterranean diet and asthma in Spanish schoolchildren. Pediatr Allergy Immunol. (2010) 21:1021–7. doi: 10.1111/j.1399-3038.2010.01080.x

116. de Castro Mendes F, Pacienda I, Cavaleiro Rufo J, Silva D, Cunha P, Farraia M, et al. The inflammatory potential of diet impacts the association between air pollution and childhood asthma. Pediatr Allergy Immunol. (2019) 31:290–6. doi: 10.1111/pai.13185

117. Han YY, Forno E, Shivappa N, Wirth MD, Hebert JR, Celedon JC. The dietary inflammatory index and current wheeze among children and adults in the United States. J Allergy Clin Immunol Pract. (2018) 6:834–41.e2. doi: 10.1016/j.jaip.2017.12.029

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 D’Auria, Peroni, Sartorio, Verduci, Zuccotti and Venter. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.