A Compact High Isolation Four Elements MIMO Antenna System for 5G Mobile Devices

Muhammad Y. Muhsin*, Jawad K. Ali, Ali J. Salim

Electrical Engineering Dept., University of Technology-Iraq, Alsina’a Street, 10066 Baghdad, Iraq.

*Corresponding author Email: muhammad.y.muhsin@uotechnology.edu.iq

1. Introduction

Recently, with the increasing growth of wireless communication technologies, the demand for high transmission rates and smart services has been very requested. Because of their advantages of high transmission rate, high access rate, short latency, and high spectral efficiency, the 5G wireless communication systems have attracted increasing attention in both academic and industrial fields [1]. To improve the channel capacity and spectrum efficiency without needing more bandwidth and/or transmitting power, the MIMO antenna approach has been adopted in 5G mobile handsets [2]. The MIMO antenna systems can be utilized in two scenarios. The first one is called a spatial diversity technique since the same data stream is sent over the various antennas to propagate across uncorrelated propagation (spatial) paths. This technique improves the system’s reliability and makes it immune to a multipath fading environment. The second scenario is a so-called spatial multiplexing technique. The data stream is divided into parts. Each piece of data is placed on an antenna to send across different propagation paths. This is an interesting technique used in modern communication systems to increase the transmitted data rate without more bandwidth and/or transmitting power [3]. It is noteworthy that using one of these two techniques is governed by the status of the wireless fading environments. Since the MIMO system with spatial multiplexing technique is powerfully used in a rich multipath wireless channel (high SNR) and in a poor multipath wireless channel (low SNR), the spatial diversity technique is the solution [4]. However, because of the limited space of the mobile terminal device, the isolation problem will be appeared by increasing the number of antennas. Hence, this problem impact will strictly affect the antenna system performance [5]. So the achievement of a better MIMO antenna system performance in terms of low Envelope correlation coefficients (ECCs) and
High isolation with a compact antenna size is still a challenge. Many efforts have been made to improve the isolation and achieve the desired performance of MIMO antenna systems. A two-element MIMO antenna system employing the decoupling network isolation technique was reported in [6-9]. In contrast, the hybrid electric and magnetic coupling technique was adopted in a two elements MIMO antenna system [10]. In [11], a four antenna elements MIMO system based on self-decoupled antenna pairs has been presented. Furthermore, the spatial diversity technique was used for the four elements MIMO antenna system [12]. In addition, other techniques have also been adopted, such as the polarization diversity technique [13], hybrid decoupling (ground slot and neutralization line) [14], neutralization line [15], and self-isolated technique [16, 17].

This paper presents a compact high, isolation four elements antenna system operating on 3.5 GHz (3400-3600) MHz for 5G MIMO mobile phone devices. High isolation (better than 16.3 dB) and very low Envelope correlation coefficients (ECCs) are obtained based on the spatial diversity and self-isolated techniques. Furthermore, desirable antenna miniaturization and simple structure of the proposed antennae are achieved where the overall antenna size printed on the side-edge mobile frame is (9.72 mm × 5.99 mm). Besides, the proposed antenna system has a good antenna and MIMO performances. The CST Microwave studio software (version 2019) is employed for modeling and simulating the proposed four antennas MIMO system.

2. Proposed Four Elements MIMO Antenna System

The geometry and the detailed dimensions of the proposed four-element compact MIMO antenna system for the 5G mobile phone devices are presented in Figure 1. The proposed MIMO system’s four antennas are located at the top four corners of the mobile device, and they have the same structures and dimensions. Each antenna element is printed on the inner and outer surfaces of the two long side edges mobile frame substrate, which meets the present trend requirement of a full-screen mobile phone device. To meet a slim smartphone device requirement, the mobile’s frame side edges located vertically on the main system board are selected to be 7 mm in height. A double-sided FR4 substrate of 0.8 mm height, which has 4.3 relative permittivities and 0.02 loss tangent, is used for designing the main mobile circuit board and its frame. Figure 2 shows the structure and dimensions of a single antenna element, divided into front and back parts. As shown in Figure 2-a, the front part consists of a modified Hilbert fractal monopole antenna and an I-shaped feeding line. The adorable Hilbert space-filling property is utilized for attaining very good antenna compactness. Since the overall planer antenna dimension printed on the long side frame is (9.72 mm × 5.99 mm) working on the (3.4-3.6) GHz interested band. Figure 2-b depicts the antenna back part, an L-shaped connected by a 0.5 mm short stub directly under the L-shape’s vertical stub to the main system ground. The coupling capacitance generated by the antenna back part is behind the proposed antenna’s desirable impedance matching. To feed the antenna elements, a 50 Ω SMA connector is employed and connected to the antenna feeding lines via holes from the backside of the main system’s ground.
3. Results and Discussion

3.1 Antenna performance

Figure 3 depicts the simulated S parameters results of the proposed four antenna elements MIMO system. As observed in Figure 3-a, a desirable impedance matching is achieved overall the band of interest (3400-3600) MHz. The reflection coefficients of all four antennas verify less than -10 dB (2:1 VSWR). Because of the similarity and abbreviation, only the necessary transmission coefficients of the proposed antenna system are shown in Figure 3-b. As a result, high isolation between antennas is obtained. The transmission coefficients $S_{2,1}$ and $S_{3,3}$ are better than 16.3 dB, $S_{3,1}$ and $S_{4,2}$ are better than 27.5 dB (diagonal distance between the specified antennas), and the coefficients $S_{4,1}$ and $S_{3,2}$ are better than 18.2 dB along with the working band. The self-isolated and spatial diversity techniques are behind the desirable isolation of the proposed four-element MIMO antenna system. The optimal orientation and location of the antenna elements at the top four corners of the mobile device have been chosen to adopt the spatial diversity technique and utilize the mobile’s space as much as possible. The miniaturization of the proposed antenna plays a vital role in isolation enhancement which can provide more space between antennas. In addition, the compact antenna elements have the self-isolated property where the current flowing through the excited antenna element and the main system’s ground plane is bounded under the antenna region.

To further explain the proposed antenna element working principle, the surface current distributions at 3.5 GHz resonance frequency are presented in Figure 4. The antenna front side’s surface current distributions are depicted in Figure 4-a. The main current concentration is along the current flowing path (ABCDEFGH) and surely on the feeding line. The current path’s length is about 23 mm, representing 0.268 λ_0 (λ_0 acts as the 3.5 GHz free space wavelength). Thus, the 0.25 λ_0 monopole-like mode working on 3.5 GHz is represented by this path. In addition, the intensity current of the KL and IJ sections is very weak, and the points O, M, and N are treated as the null points of the current. The surface current distributions of the antenna element’s backside (shorted-stub L-shaped) and the related part of the proposed system’s ground plane are illustrated in Figure 4-b. One can observe from the figure that the current concentration is focused on the area under the antenna, which is the reason behind the antenna’s self-isolated property.

The total and radiation antenna efficiencies of the proposed MIMO systems’ four antennas are exhibited in Figure 5. Desirable antenna efficiencies are achieved along with the operating band, which are between (64%-74%) for total efficiencies and (72%-81%) for radiation efficiencies. The four antennas’ gain over the working band is depicted in Figure 6. As it is seen, the gains are almost stable along with the operating band, and high gains of all antennas are obtained where the maximum gains are about 5.1 dB. Figure 7-a and 7-b show all antennas’ three-dimensional and two-dimensional radiation patterns at 3.5 GHz resonance frequency. Each antenna element has a maximum gain direction different from other antennas’ maximum gain directions, indicating a very good pattern diversity feature of the proposed 4-element MIMO antenna system. Moreover, all sides of the mobile device board are completely covered by these four antennas’ radiation patterns. So a desirable radiation coverage performance is obtained by the proposed MIMO antenna system.
3.2 MIMO performance

Important metrics, which are the ECCs and Mean effective gains (MEGs), are used to evaluate the MIMO performance of the proposed antenna array. The ECC is defined as measuring the antennas’ radiation patterns independency [18]. Depending on the far-field radiation patterns, the ECC is determined using Eq. (1) [19].

\[
\rho_e = \frac{\left| \int_{4\pi} F_\theta(\theta, \phi) \times \tilde{F}_\varphi(\theta, \phi) \, d\Omega \right|^2}{\int_{4\pi} \vert F_\theta(\theta, \phi) \vert^2 \, d\Omega \int_{4\pi} \vert F_\varphi(\theta, \phi) \vert^2 \, d\Omega}
\]

(1)

Where the \(F_\theta(\theta, \phi) \) is the three-dimensional far-field radiation, the solid angle is defined by \((\Omega) \), and the Hermitian product operator is denoted by \((*) \). Figure 8 demonstrates the ECCs between antennas of the proposed 4-element MIMO antenna system, calculated based on Eq. (1) under the hypothesis of uniform channel propagation (due to the similarity, only the necessary ECCs are plotted). All ECCs of the proposed system are less than 0.017 overall for the interested band. As it is known, the accepted ECC value is less than 0.5. So the proposed four elements MIMO antenna system has a very small ECCs value compared with the acceptance criteria. Thus, the proposed MIMO antenna system realizes a high diversity performance.

The other important parameter is the MEG which can be demonstrated as the ratio of the antenna’s mean received powers to the total mean incident power when the antenna is moved over a random mobile environment route. Equation (2) can obtain the MEG value [20].

\[
MEG = \frac{2\pi}{\int_0^{\pi} \int_0^{2\pi} XPR \, G_\theta(\theta, \phi)P_\theta(\theta, \phi) + \frac{1}{1+XPR} G_\varphi(\theta, \phi)P_\varphi(\theta, \phi) \, (\sin \theta) \, d\theta \, d\varphi}
\]

(2)

The XPR denotes the cross-polarization power ratio, and the theta and phi components of the incoming plane waves are indicated as \(P_\theta \) and \(P_\varphi \) respectively, and the antenna gain components are described by \(G_\theta \) and \(G_\varphi \). Respectively. To obtain a desirable MIMO antenna system performance, the criteria of Eq. (3) should satisfy the MIMO antennas’ MEGs [21].

\[
\frac{MEG_i}{MEG_j} \approx 1
\]

(3)

Where the MEGs of the \(i \) and \(j \) antennas are indicated by \(MEG_i \) and \(MEG_j \), respectively. The MEGs of all the four MIMO systems' antennas are presented in Figure 9. Equation (2) is used to evaluate the antennas’ MEGs under the propagation channel assumption of the Gaussian distribution for the elevation direction and uniform distribution for the azimuth direction. One can see that the criteria mentioned in Eq. (3) are confirmed by the proposed MIMO antenna system. In addition to that, the MEGs of all four antennas are stable over the working band of interest.

A summary performance comparison of the proposed four elements MIMO antenna system with some other recent MIMO antenna systems reported for the 5G mobile terminals is presented in Table 1. Compared with other MIMO antenna systems, the proposed one has a smaller size and lower ECC. Furthermore, good system isolation and eight antenna total efficiencies are obtained by adopting the self-isolation property and spatial diversity technique. There is no additional antenna efficiency loss by adding parasitic decoupling elements. So it can be seen from Table 1 that the proposed four elements MIMO antenna system can provide a MIMO system with a very comparable antenna and MIMO performance.
Figure 6: Antenna gain

Figure 7: Antennas’ radiation patterns at 3.5 GHz resonance frequency (a) 3-D radiation patterns (b) 2-D radiation patterns

Figure 8: ECCs of the proposed MIMO antenna system
4. Conclusion

A four-element MIMO antenna system is proposed for the 5G mobile phone devices. The adorable space-filling feature of the Hilbert fractal geometry is utilized to attain very good antenna compactness. Furthermore, by adopting the spatial and self-isolated techniques, desirable isolation (better than 16.3 dB) is obtained by the proposed four antennas MIMO system. Again, very low ECCs are achieved (lower than 0.017), making the proposed antenna system work on high diversity performance. In addition to that, good MEGs are attained, and the optimal MIMO performance criteria of the MEGs MIMO antennas are confirmed. As a result, desirable antenna performance is obtained, including scattering parameters, antenna gains, antenna efficiencies, and antenna radiation characteristics. Due to the good antenna and MIMO performance results, the proposed four antenna elements MIMO system can be considered a good candidate for the future 5G mobile phone terminals.

Author contribution

All authors contributed equally to this work.

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Data availability statement

The data that support the findings of this study are available on request from the corresponding author.

Conflicts of interest

The authors declare that there is no conflict of interest.

References

[1] C. Z. Han, L. Xiao, Z. Chen and T. Yuan, Co-Located Self-Neutralized Handset Antenna Pairs with Complementary Radiation Patterns for 5G MIMO Applications, IEEE Access, 8(2020) 73151–73163. doi:10.1109/ACCESS.2020.2988072.

[2] A. Zhao and Z. Ren, Size Reduction of Self-Isolated MIMO Antenna System for 5G Mobile Phone Applications, IEEE Antennas and Wireless Propagation Letters, 18 (2019) 152–156. doi:10.1109/LAWP.2018.2883428.
[3] J. Sui and K. L. Wu, Self-Curing Decoupling Technique for Two Inverted-F Antennas with Capacitive Loads, IEEE Transactions on Antennas and Propagation, 66 (2018) 1093–1101. doi:10.1109/TAP.2018.2790041.

[4] Y. Wu, C. Xiao, Z. Ding, X. Gao and S. Jin, A Survey on MIMO Transmission with Finite Input Signals: Technical Challenges, Advances, and Future Trends, in: Proceedings of the IEEE, 106 (2018) 1779–1833. doi:10.1109/JPROC.2018.2848363.

[5] Y. Li, C. Sim, Y. Luo and G. Yang, High-Isolation 3.5 GHz Eight-Antenna MIMO Array Using Balanced Open-Slot Antenna Element for 5G Smartphones, IEEE Transactions on Antennas and Propagation, 67 (2019) 3820–3830. doi:10.1109/TAP.2019.2902751.

[6] C. Wu, C. Chiu and T. Ma, Very Compact Fully Lumped Decoupling Network for a Coupled Two-Element Array, IEEE Antennas and Wireless Propagation Letters, 15 (2015) 158–161. doi:10.1109/LAWP.2015.2435793.

[7] L. Zhao, L. K. Yeung, and K. Wu, A Coupled Resonator Decoupling Network for Two-Element Compact Antenna Arrays in Mobile Terminals, IEEE Transactions on Antennas and Propagation, 62 (2014) 2767–2776. doi:10.1109/TAP.2014.2308547.

[8] L. Zhao and K. Wu, A Dual-Band Coupled Resonator Decoupling Network for Two Coupled Antennas, IEEE Transactions on Antennas and Propagation, 63 (2015) 2843–2850. doi:10.1109/TAP.2015.2421973.

[9] K. Qian, L. Zhao and K. Wu, An LTCC Coupled Resonator Decoupling Network for Two Antennas, IEEE Transactions on Microwave Theory and Techniques, 63 (2015) 3199–3207. doi:10.1109/TMTT.2015.2464816.

[10] C. Xue, Y. Y. Zhang, Y. F. Cao, Z. Hou and C. F. Ding, MIMO Antenna Using Hybrid Electric and Magnetic Coupling for Isolation Enhancement, IEEE Transactions on Antennas and Propagation, 65 (2017) 5162–5170. doi:10.1109/TAP.2017.2738033.

[11] Z. Ren and A. Zhao, Dual-Band MIMO Antenna With Compact Self-Decoupled Antenna Pairs for 5G Mobile Applications, IEEE Access, 7 (2019) 82288–82296. doi:10.1109/ACCESS.2019.2923666.

[12] A. J. Salim, R. S. Fyath and J. K. Ali, A New Miniaturized Folded Fractal Based PIFA Antenna Design for MIMO Wireless Applications, in: Proceedings of the International Conference on Information and Communication Technology, (2019) 36–40. doi:10.1109/3321289.3321298.

[13] M. Y. Li, Z. Q. Xu, Y. L. Ban, C. Y. D. Sim and Z. F. Yu, Eight-Port Orthogonally Dual-Polarised MIMO Antennas Using Loop Structures for 5G Smartphone, IET Microwaves, Antennas Propagation, 11 (2017) 1810–1816. doi:10.1049/iet-map.2017.0230.

[14] W. Jiang, B. Liu, Y. Cui and W. Hu, High-Isolation Eight-Element MIMO Array for 5G Smartphone Applications, IEEE Access, 7 (2019) 34104–34112. doi:10.1109/ACCESS.2019.2904647.

[15] J. Guo, L. Cui, C. Li and B. Sun, Side-Edge Frame Printed Eight-Port Dual-Band Antenna Array for 5G Smartphone Applications, IEEE Transactions on Antennas and Propagation, 66 (2018) 7412–7417. doi:10.1109/TAP.2018.2872130.

[16] A. Zhao and Z. Ren, Multiple-Input and Multiple-Output Antenna System with Self-Isolated Antenna Element for Fifth-Generation Mobile Terminals, Microwave and Optical Technology Letters, 61(2019) 20–27. doi:10.1002/mop.31515.

[17] M. Y. Muhsin, A. J. Salim and J. K. Ali, An Eight-Element MIMO Antenna system for 5G Mobile Handsets, in: 2021 International Symposium on Networks, Computers and Communications (ISNCC), (2021) 1–4. doi:10.1109/ISNCC52172.2021.9615663.

[18] J. Li et al., Dual-Band Eight-Antenna Array Design for MIMO Applications in 5G Mobile Terminals, IEEE Access, 7 (2019) 71636–71644. doi:10.1109/ACCESS.2019.2908969.

[19] H. Zou et al., Dual-Functional MIMO Antenna Array With High Isolation for 5G/WLAN Applications in Smartphones, IEEE Access, 7 (2019) 167470–167480. doi:10.1109/ACCESS.2019.2953311.

[20] Z. Qin, W. Geyi, M. Zhang and J. Wang, Printed Eight-Element MIMO System for Compact and Thin 5G Mobile Handset, Electronics Letters, 52 (2016) 416–418. doi:10.1049/el.2015.3960.

[21] K. L. Wong, C. Y. Tsai and J. Y. Lu, Two Asymmetrically Mirrored Gap-Coupled Loop Antennas as a Compact Building Block for Eight-Antenna MIMO Array in the Future Smartphone, IEEE Transactions on Antennas and Propagation, 65 (2017) 1765–1778. doi:10.1109/TAP.2017.2670534.

[22] I. R. R. Barani, K. Wong, Y. Zhang and W. Li, Low-Profile Wideband Conjoined Open-Slot Antennas Fed by Grounded Coplanar Waveguides for 4 × 4 5G MIMO Operation, IEEE Transactions on Antennas and Propagation, 68 (2020) 2646–2657. doi:10.1109/TAP.2019.2957967.

[23] A. Zhao and Z. Ren, 5G MIMO Antenna System for Mobile Terminals, in: IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, (2019) 427–428. doi:10.1109/APUSNCURSINRS.2019.8888835.