Improving combination antiretroviral therapy by targeting HIV-1 gene transcription

Valentin Le Doucea,b,c, Amina Ait-Amara, Faezeh Forouzan Fara, Faiza Fahmia, Jose Quiela, Hala El Mekdada, Fadoua Daoudd, Céline Marbane, Olivier Rohra,b,e and Christian Schwartza,b

aInstitut de Parasitologie et de Pathologie Tropicale, EA7292, Université de Strasbourg, Strasbourg, France; bIUT de Schiltigheim, Schiltigheim, France; cUCD Centre for Research in Infectious Diseases (CRID) School of Medicine and Medical Science, University College Dublin, Dublin 4, Ireland; dFaculté de Chirurgie Dentaire, Inserm UMR 1121, Strasbourg, France; eInstitut Universitaire de France, Paris, France

ABSTRACT

Introduction: Combination Antiretroviral Therapy (cART) has not allowed the cure of HIV. The main obstacle to HIV eradication is the existence of quiescent reservoirs. Several other limitations of cART have been described, such as strict life-long treatment and high costs, restricting it to Western countries, as well as the development of multidrug resistance. Given these limitations and the impetus to find a cure, the development of new treatments is necessary. Areas covered: In this review, we discuss the current status of several efficient molecules able to suppress HIV gene transcription, including NF-\kappa B and Tat inhibitors. We also assess the potential of new proteins belonging to the intriguing DING family, which have been reported to have potential anti-HIV-1 activity by inhibiting HIV gene transcription. Expert opinion: Targeting HIV-1 gene transcription is an alternative approach, which could overcome cART-related issues, such as the emergence of multidrug resistance. Improving cART will rely on the identification and characterization of new actors inhibiting HIV-1 transcription. Combining such efforts with the use of new technologies, the development of new models for preclinical studies, and improvement in drug delivery will considerably reduce drug toxicity and thus increase patient adherence.

1. Introduction

Introduction of combination antiretroviral therapy (cART) in 1996 has dramatically improved the management of HIV-1 infection and decreased both morbidity and mortality. However, despite initial hopes to cure HIV, the treatment is unable to eradicate the virus [1,2]. Very sensitive methods always detect a residual viremia in patients on cART [3,4]. Moreover, HIV RNAs return to a measurable plasma level when cART is interrupted [5,6]. The origin of the persistent viremia is still debated [7–9]. In the latent phase, HIV proviruses persist in long lived cells such as the central memory CD4+ T cells, hematopoietic stem cells, dendritic cells, and cells from the monocyte–macrophages lineage including the microglial cells, i.e. the resident macrophages of the central nervous system (CNS) (reviewed in [10]). For example, latently infected cells reactivated by pro-inflammatory cytokines that produce HIV particles at low levels (well known as ‘Blips’) could explain persistent viremia. An alternative theory, the cryptic ongoing replication states that HIV persists in cells continuously producing low levels of HIV despite cART. The inefficient treatment of ongoing replication supporting cells could either be due to poor drug penetration into sanctuaries as the brain [11] or to cell-to-cell transfer of the virus [12]. The resistance against drugs in cART arising during ongoing replication has profound therapeutic implications. We therefore expect that intensification of cART reduces persistent viremia.

The various limitations of the current antiretroviral therapy makes cART unable to achieve a cure. The combination of drugs used in cART acts at different stages of the viral life cycle; cART needs lifelong drug adherence since ultimately HIV rebounds after cART interruption; there are severe side effects of the treatment including neurocognitive disorders, hyperlipidemia, nephrotoxicity, hepatotoxicity, lipodystrophy. Finally, the cost of the treatment is still excessive and therefore access is limited in poor countries. The latter is a major problem; more than 7000 new HIV infections occur everyday, and the number of newly diagnosed infections remains far greater than the number of people who have access to cART. Another major concern is the emergence of drug resistance that arises from the extreme mutability of the virus [13–16]. Overall, the life expectancy of infected patients on cART is still reduced compared to noninfected individuals [17]. Indeed, chronic inflammation from residual viremia leads to several non-AIDS-related complications, i.e. cardiopathy, nephropathy, faster progression toward hepatitis C complications, and cancer [18]. Moreover, extracellular Tat resulting from residual viremia is responsible for Tat-associated cancer and HIV-associated neurocognitive disorder (HAND) [19].

In view of these limitations, new classes of drugs which preferably act on new targets of HIV replication should replace or partially substitute the existing ones. Original strategies focusing on the purge of quiescent reservoirs are also needed to completely eradicate the virus (reviewed in [20]). It was
suggested that intensifying cART effects residual viremia and prevents the development of non-AIDS events. Except in one case \[21\], the benefit of the intensification of cART on residual viremia was not conclusive in the studies (reviewed in \[9\]).

Recently, cART has been somewhat improved. New antiretroviral drugs and drug combinations, with good tolerability and efficiency against drug resistant viruses, are currently tested in clinical trials \[22\]. Drugs used in combinations in cART target four stages of the cycle: viral entry, reverse transcription of the viral genome, integration into the genome of the host cell, and maturation of viral proteins. However, to date, no drug developed so far, targets the first step of the production phase, HIV gene transcription. Besides transcription, other processes of viral gene expression, i.e. splicing, polyadenylation, RNA nuclear export, translation, packing, dimerization, etc., also deserve attention (Figure 1). Targeting these processes can all inhibit virus production or produce noninfectious particles. A recent study suggests that the drug ABX464 targeting the viral protein Rev involved in RNA export has a sustained antiviral effect in a

Figure 1. HIV-1 replication cycle. Mature HIV-1 particles attach to target cells by binding its envelope proteins to the CD4 receptor and, based on its tropism, to the co-receptor CXCR4 or CCR5 (1). Following attachment, the cell membrane and viral envelope fuse allowing the virus to release its content into the cytoplasm (2 & 3). During that process the HIV RNA molecules are uncoated and reverse transcribed (3). The newly synthesized double stranded DNA associated with viral and host proteins, the pre-integration complex (4), is imported into the nucleus through nuclear pores and is integrated within the host cell genome (in red – 5). During the early phase of viral transcription, the promoter activity is driven by host transcriptional activators and lead to the production of singly-spliced, multiplicd and unspliced viral RNA (5). The latter, are however retained into the nucleus, while the two formers are able to leave the nucleus and be translated (6). These early transcripts will generate key viral proteins such as TAT and REV, allowing the virus to enter the late phase of transcription (6). TAT recruits key components of RNA polymerase II mediated transcription – like P-TEFb- and increases the production of unspliced viral RNA transcripts (7). These unspliced RNA transcripts are actively exported by the viral protein REV in the cytoplasm (8). The unspliced mRNA will either serve as template for the translation of the full repertoire of viral proteins or be packed into new virions. Viral proteins and viral genome assemble at the plasma membrane and trigger the budding of immature viral particles (9).
humanized mouse model [23]. This striking observation needs however further investigation; one cannot exclude that it arises from an artifact of the animal model (comments in [24]).

We focus in this review on HIV transcriptional inhibitors. We believe that targeting HIV-1 gene transcription is an alternative approach that could overcome cART-related issues such as the emergence of multidrug resistance or the progression to HAND and therefore should be seriously considered. After a brief description of the mechanisms involved in HIV-1 transcription, we discuss recent advances in the discovery of HIV inhibitors of the two main targets for HIV-1 transcription control, i.e. NF-KB and Tat. We then discuss a new family of promising targets, the DING protein family. These drugs repress HIV-1 transcription and have anti-inflammatory properties. Finally, we discuss routes to improve cART, with a special focus on drugs targeting HIV-1 transcription. The new therapeutic methods might reinforce current cART and at the same time prevent chronic inflammation and some pathologies related to extra cellular Tat such as HAND and Tat-related cancer.

2. Regulation of HIV-1 gene transcription

Once the HIV provirus is integrated into the host-cell genome, virus transcription can occur (Figure 1). HIV-1 gene transcription is a critical step in infected cells where the virus exploits the cellular environment in order to maximize gene expression. Transcription is regulated by the interplay of distinct viral and cellular transcription factors that bind the long terminal repeat (LTR) region of HIV-1 (reviewed in [25,26]). This LTR region comprises of four functional regions related to HIV-1 transcription regulation: (1) the transactivator response (TAR) binds Tat; (2) the core promoter contains a TATA-box, an initiator and three Sp1 binding sites; (3) the core enhancer contains NF-AT and NF-KB motifs. According to previous reports, the three Sp1 binding sites and the two NF-KB motifs play important roles in the regulation of HIV-1 transcription; (4) the modulatory region harbors numerous target sequences for cellular transcription factors such as c-Myc, COUP-TF, NF-IL6, nuclear hormone responses [26]. Deletion of this region enhances HIV-1 transcription and replication suggesting the presence of a negative regulatory element [26,27].

Infected cells have two fates depending on the local state of chromatin structure and on the cellular environment [10]. On the one hand, in the relaxed state of chromatin, i.e. euchromatin, there is an active transcription and infected cells are productive. On the other hand, in the compact and very structured state of chromatin, i.e. heterochromatin, there is no transcription and infected cells become latent and/or quiescent.

2.1. Transcriptional status in productively infected cells

2.1.1. The early phase of transcription

Once the HIV-1 promoter is open to the transcriptional machinery, a cellular-dependent early phase complex initiates gene transcription (Figures 1 and 2). Multi-spliced RNAs encoding viral regulatory proteins including Tat, Rev, and Nef are then transcribed. Reference [26] reviews the mechanism by which transcription of the viral genome adjusts to specific cell types. NF-KB and NF-AT translocate into the nucleus upon activation in T lymphocytes [28]. Binding of NF-KB and NF-AT to the promoter is a prerequisite for activation of transcription. In contrast, Sp1 and other general transcription factors bind to the core region. Additional factors such as NF-IL6, CREB, USF, and Ets are however required for full activation [26]. On the other hand, in microglial cells, the core region and the NF-KB sites are sufficient for transcription. The inhibition of NF-KB activation and its signaling pathway offers therefore a promising strategy for anti-HIV therapy [29].

2.1.2. The late phase of transcription

The late phase of transcription is under the control of the viral protein Tat. Tat amplifies gene expression by affecting the initiation and elongation phases of transcription (Figures 1 and 2). The scheme of Tat induced gene expression is as follows: Tat together with cyclin T1 bind to the TAR RNA structure. This complex subsequently recruits the cyclin dependent kinase 9 (Cdk9) to form the positive transcription factor b (p-TEFb) [30,31]. The p-TEFb complex induces the phosphorylation of the carboxyl-terminal domain (CTD) of RNA polymerase II and the phosphorylation of the negative elongation factors NELF and NSF therefore circumventing their inhibitory effect [32,33]. Interestingly, Tat exists in two p-TEFb-associated complexes [34]. Tat-com1 includes mixed-lineage leukemia fusion partners and the PAF1 complex and potentiates Tat-mediated transactivation, while Tat-com2 contains the p-TEFb, the 7SK small nuclear RNA (snRNA), LARP7, MEPCE, and represses Tat functions. Indeed, association of the snRNA 7K and the RNA-binding proteins HEXIM1, HEXIM2, LARP7, and MEPCE to the p-TEFb complex reversibly inhibit p-TEFb activity [35-38]. This large, inactive form of p-TEFb (in contrast to its free, active form) is thought to be involved in HIV-1 transcription. HIV-1 evades normal cellular control since Tat selectively recruits free p-TEFb complexes from the large pool of inactive p-TEFb complexes [39-42]. In turn, the active p-TEFb promotes the transition of RNA pol II from abortive to productive elongation. Tat may also play an important role in the initiation of transcription and in the assembly of the general transcription factors [43]. In fact, chromatin immunoprecipitation analyses revealed that Tat increases the binding of several general transcription factors, including RNA pol II, TATA box-binding protein, and transcription factor IIIb [44]. Tat also requires the presence of Sp1 and NF-KB sites and direct interaction with Sp1 protein for transactivation [45-47]. Moreover, Tat can modulate the expression of various cellular factors involved in the regulation of the HIV-1 gene transcription such as the cytokines TNFa, TGFr, IL2, IL6, and IL10 [48,49]. Recently, a genome-wide binding map of Tat has been performed. It showed that Tat was associated to several promoters involved in immune response and T-cell functions with important implications for the HIV-1 life cycle [50-52]. The precise mechanism of action of Tat on the regulation of cellular gene is not fully understood. A recent work using a global analysis of chromatin shred light on how Tat could modulate cellular gene expression. They showed that Tat is recruited on many promoter sites occupied by the transcription factor ETS1 [53]. Apart from its role in HIV-1 and cellular gene expression, many other functions of Tat have been described [54]. Notably, extra cellular Tat has been involved to the development of HANDs [19]. The precise mechanism of HIV-1 Tat neurotoxicity remains unclear. It involves deregulation of calcium homeostasis, oxidative stress, altered mitochondrial biogenesis [19], alteration of autophagy function [55], deregulation of pathway that involved p53 and...
p73 [56]. Extracellular Tat constitutes a key molecule in HIV pathogenesis even if the exact mechanism of action inducing neuronal dysfunction is still debated. Furthermore, inhibition of extracellular Tat activity might also help to reduce Tat-associated pathologies such as AIDS-associated cancer and HAND.

All in all, the remarkable advances in recent years in the comprehension of Tat functions make it a potential therapeutic target for HIV-1.

2.2. Transcriptional status in abortively infected cells

The switch from active to repressive transcription of HIV depends on chromatin-modifying agents. These molecules modify the epigenetic marks of DNA and histone proteins. Indeed, heterochromatin is associated with CpG islands methylation and histone lysine trimethylation such as H3K9me3 and H3K27me3 [57–59]. In microglial cells, a new level of eukaryotic gene regulation was suggested. It was shown that LSD1 and Bcl11b (CTIP2) were associated with the epigenetic marks H3K4me3 and H3K9me3 [60]. Numerous cellular factors have been characterized in the establishment and persistence of HIV latency in the main cellular reservoirs including CD4+ T cells and microglial cells [61]. In this latter, our laboratory has demonstrated the importance of Bcl11b in inducing both establishment and persistence of HIV latency (reviewed in [62,63]).

Figure 2. Early and late transcription phase of HIV-1. This figure displays the two transcription phases of HIV-1 transcription. 1. The early phase is cellular dependent. The cellular factors in green such as NF-IL6, NF-KB and P-TEFb (cyclinT1-CDK9) are activators and the cellular factors in red such as C/EBPγ are inhibitors. The outcome of early phase of HIV-1 transcription is multi-spliced viral mRNA which led to the translation of viral protein such as Nef, Rev and Tat. 2. The late phase of transcription is viral dependent and involves Tat which interacts with numerous host factors including P-TEFb (cyclinT1-CDK9). Acetylation of Tat is crucial for efficient transcription. The red boxes indicate the way to inhibit HIV-1 transcription. The early phase might be inhibited by using inhibitors of NF-KB translocation from cytoplasm to nucleus. The late phase might be targeted by preventing Tat-host factors interactions such as CyclinT1 and/or CDK9 but also by preventing Tat interaction with the TAR RNA. The Ding proteins might inhibit both early and late phase by not fully understood mechanisms. Recent reports suggest that X-DING CD4+ protein might inhibit NF-KB through inhibition of its recruitment on the LTR promoter.
The control of HIV-1 progression by transcriptional inhibitors is of great interest since no drugs have been developed to date to target this step. To achieve this, one should design drugs targeting cellular cofactors involved in the activation of transcription. The strategy has to bypass drug-resistance problems that arise with viral proteins. Numerous transcriptional inhibitors have been studied and demonstrated their efficacy in suppressing HIV transcription and/or inducing latency [70]. Strategies which affect transcriptional activators such as NFAT or NF-IL6 also deserve attention. It has been shown that NF-IL6 is crucial for HIV-1 transcription in the monocyte-macrophage cell lineage including microglial cells [71]. C/EBPγ, a truncated form of NF-IL6, acts as a transdominant negative repressor of HIV transcription (Figure 2). Activation of C/EBPγ might be interesting and deserves further evaluation. Nevertheless, NF-kB and Tat are the two main targets that control HIV progression by inhibiting transcription. Transcriptional gene silencing based on RNA interference (RNAi) is an alternative strategy [72,73]. Combinatorial gene therapy using three siRNAs targeting Tat and Rev holds promise in achieving a functional cure. A nucleolar TAR decoy has been tested as part of this initial combinatorial gene therapy but didn’t provide yet additional benefit in inhibiting HIV replication [73]. This RNAi-based approach provides a new way to combat HIV-1 infection and merits more attention.

3.1. NF-κB inhibitors

Among other candidates, the inducible transcription factor NF-κB deserves attention since it initiates the early phase of HIV transcription leading to the synthesis of the Tat transactivator. Inhibition of the NF-κB signaling pathway by various molecules has been reported in the literature [74]. However, to date, none of these molecules have been approved for clinical trials due to their ineffectiveness and/or potential toxicities. A major limitation of these drugs is that they target the NF-κB signaling pathway upstream to IκB degradation. Development of new inhibitors that target the late steps of the NF-κB signaling pathway, i.e. IκB degradation and DNA binding of NF-κB, is in progress. Among these molecules, quinoline derivatives are of interest since some of these inhibit HIV transcription [75–78]. Among 18 tested quinoline-based compounds, 3 were very active in vitro and ex vivo. Moreover, they indirectly affected HIV transcription by blocking the nuclear translocation of NF-κB and inhibiting Sp1 [79]. A new series of natural and substituted olean-18-ene triterpenoids were recently isolated from Celastraceae species and their structures elucidated. These displayed potent antiviral activities [80]. Interestingly, the molecules inhibited HIV-1 transcription by targeting both Sp1 and NF-κB, as reported for the quinolone derivatives as well. Another newly discovered NF-κB inhibitor, dehydroxymethylpyoxquinimycin (DHMEQ) is also promising since it decreases HIV-LTR transcriptional activity mediated by external stimuli such as TNFα or Tat [81]. DHMEQ inhibits NF-κB by specifically binding to it, and inhibiting its subsequent nuclear translocation [82,83]. Natural compounds are another source of drug discovery [84]. A screening program to isolate natural compounds with anti-HIV activities has identified the molecule denubin from a variety of Cannabis sativa [85]. This phenanthrene (1,4-phenanthrenequinone) molecule inhibits HIV transcription by preventing NF-κB binding to DNA and by affecting IKK phosphorylation and its subsequent degradation [86]. Lignins and small molecules having lignin-like structural functional groups also inhibit NF-κB and HIV-1 transcription [87]. A high-throughput RNAi screening has recently identified a deubiquitinase named CYLD which has the property to repress HIV-1 transcription in a NF-AT/NF-κB dependent manner [88]. Finally, a specific myeloid cell factor, COMMD1/murr1 has been recently described as a new inhibitor of the HIV-1 transcription factor [89]. This factor inhibits NF-κB activity by stabilizing IKK thus promoting HIV-1 latency. All these newly identified NF-κB inhibitors constitute potential anti-HIV-1 drugs and can pave the way to the development of new classes of drugs. Moreover, targeting NF-κB possibly reduces chronic inflammation (non-AIDS-associated pathologies) [90,91].

However, some limitations of the NF-κB inhibitors should be mentioned. One may expect side effects when targeting cellular factors involved in numerous cellular processes. Furthermore, according to reports, HIV-1 subtypes differ in the basic transcription factor binding sites and this may affect their responsiveness to drugs. Indeed, the conversion of the NF-κB binding site into a GABP binding site has been described in subtype E of HIV. This caused severe loss of NF-κB binding [92]. Response to these NF-κB inhibitors may not work in patients infected with this subtype of HIV-1.

3.2. Tat inhibitors

The viral protein Tat associated to the elongation factor pTEF-b plays a critical role in transcription and constitutes a major therapeutic target of the HIV replication [93,94]. The recent determination of the crystal structure of Tat-pTEFb has given new insights of the mechanism of Tat activation and may help in the design of new Tat inhibitors [95,96]. Targeting pTEFb could also lead to the inhibition of HIV transcription and the decrease of resistance to the virus. There are several ways to inhibit Tat functions: (1) targeting the elongation complex pTEFb mainly by inhibiting the catalytic subunit CDK9 of pTEFb (2) targeting the Tat-pTEFb interaction, (3) directly targeting Tat, or (4) targeting the Tat-TAR association.

3.2.1. Targeting pTEFb

Several inhibitors of components from the pTEFb complex, i.e. cyclin T1 and the catalytic subunit CDK9 that includes the nucleotide analog DRB, flavopiridol, and R-roscovitine have been described [97]. However, due to the low-therapeutic
index, these molecules need further optimization before clinical trials. A recently designed derivative of 2-phenylquinazolinone, a potent CDK9 inhibitor, has shown interesting properties [98]. The probable side effects are another major limitation to the development of pTEFb inhibitors since pTEFb is a master regulator of gene transcription.

3.2.2. Targeting the Tat-pTEFb interaction

Targeting specifically the Tat-pTEFb interaction appears more promising. Several inhibitors of the Tat-pTEFb interaction including celastrol [99] and cyclopentenone prostaglandin 15d PGJ$_2$ have been described [100]. These two inhibitors interact with Tat and induce covalent bond formation with the cysteine thiols of Tat preventing pTEFb recruitment. However, their therapeutic indexes were too low, essentially due to high toxicity. Structure-based analysis of CDK9 along with published Tat derivatives showed that short Tat peptides can prevent Tat–CDK9 interaction. New drug mimetics inhibiting CDK9 and inhibitors targeting the Cyclin T1–Tat interaction were found by in silico analysis [101,102]. Finally, recent advances such as nuclear magnetic resonance (NMR) and circular dichroism (CD) have allowed the synthesis of a series of new Tat/TAR inhibitors [103]. A series of pentameric ‘poly amino acids’ (PAAs) molecules have been shown to interact with Tat on the same TAR binding site. However, according to a comparative thermodynamic study of PAA/TAR, there are two different TAR binding modes for Tat (the competitor and the noncompetitor modes). Fragment-based screening is another new way to design drugs (reviewed in [104]). This approach aims to target the Tat–TAR interaction. Protein fragments bound to a target (the TAR RNA for example) are screened by various methods such as X-ray crystallography, NMR, surface plasmon resonance (SPR) and differential scanning fluorimetry. These methods alone or in combination have already led to the discovery of novel inhibitory sites within HIV protease, reverse transcriptase, and integrase. The fragment-based screening is now used to explore new inhibiting sites of the Tat/TAR interaction [105]. Although in its early stage, these studies illustrate the efficacy of modern spectroscopic technologies for the design of new drugs.

3.2.3. Targeting Tat

A derivative of coumarin was found to inhibit HIV-1 Tat-mediated transcription. The inhibitory mechanism involves the repression of the Akt pathway which leads to the decrease of p300 stability, a protein known to modulate Tat activity by acetylation [106]. Another very promising Tat inhibitor has been recently isolated from the plant *Triplophygium wilfordii* [107]. The molecule named triptolide is a diterpenoid epoxide that inhibits both HIV replication and transcription by increasing the proteasomal degradation of Tat. This molecule is currently in phase III of a clinical trial. Another natural product derivative, tashinone from the root of *Salvia miltiorrhiza* deserves attention. It inhibits Tat-regulated transcription by inhibiting the AMPK/Namt/Sirt1 pathway [108]. Using a high-throughput screening assay, a new Tat inhibitor named 6 bromoindirubin 3’ oxime has been recently isolated [109]. This small molecule and its derivatives named 18BIOder inhibit a GSK-3β kinase. Interestingly, this kinase is found in the GSK-3β complex only in HIV infected cells. 18BIO derivatives are very promising since they inhibit HIV-1 Tat-dependent transcription at the nanomolar level with less toxicity than the original molecule 18BIO. These molecules also confer neuronal and microglial protection by reducing both Tat production and release and prevent or reduce HAND.

3.2.4. Targeting Tat–TAR interaction

A much more promising approach is to inhibit binding of Tat on the RNA TAR which is unique for lentiviruses such as HIV-1. However, although many candidates were tested, all failed in clinical trials [110–116]. A series of linear polypeptide analogs has been shown to impede the Tat–TAR interaction [117,118]. Unfortunately, these molecules also bound cellular host RNAs. Constrained cyclic peptidomimetics derived from HIV-1 Tat have been used to reduce the nonspecific binding to RNAs, which is mainly due to a conformational flexibility. Using this method, a series of competitive inhibitors of the Tat–TAR interaction have been identified and tested in vitro and ex vivo [119–122]. It appears that these molecules play a dual role as they inhibit both HIV gene transcription and HIV reverse transcription [123]. The dual inhibitory mechanism of these compounds could increase their efficiency and selectivity compared to other molecules and therefore deserves further attention. Finally, dCA, a chemical derivative of corticostatin, a natural steroidal alkaloid isolated from a marine sponge is also very promising [124]. This drug prevents Tat–TAR interaction at a very low concentration with a very high therapeutic index (over 8000). These results raise the possibility of the design of new drugs belonging to the dCA family that are capable to inhibit transcription of the virus in latent reservoirs. Importantly, a reduction of deleterious effects of chronic inflammation associated with residual viremia in patients on cART is expected [125]. Moreover, one study shows that dCA pretreated infected cells were never reactivated when treated with latency-reversing agents (LRAs) [126]. This recent work needs further investigation since dCA might induce the formation of new epigenetic modifications that mediate a very strong state of latency called ‘deep latency’ [127].

All these promising molecules need far more investigation before inclusion in current drug regimens. Preclinical and clinical trials are needed to assess the mode of action and to define the adverse clinical effects that might preclude their use in treatments aiming to manage HIV infection.

4. DING proteins: potential therapeutic agents against HIV-1

Proteins from the DING family have potential anti-HIV-1 activities. These proteins are involved in HIV gene transcription inhibition [128–132]. DING proteins are widely distributed in prokaryotes and eukaryotes [133,134]. Their name comes from the well-conserved N-terminus region beginning DINGG [135]. Surprisingly, genes encoding DING proteins are lacking from eukaryotic databases [136]. In human, DING proteins have been associated with several pathologies including rheumatoid arthritis, lliasis, atherosclerosis, and cancer [136]. The DING protein p27β, isolated from the plant *Hypericum perforatum*, inhibits the HIV-1 gene transcription [128]. This protein inhibits LTR-driven transcription in several human cell lines,
including microglial cells, by inhibiting the interactions of two well-known activators of HIV gene transcription, the cellular factor NF-IL6, and the viral transactivator Tat. Darbinian et al. reported that p27\textregistered exhibits phosphatase activity dephosphorylating the CTD domain of RNA polymerase II [137,138]. Another DING protein, named X-DING CD4, isolated from human sera also has anti-HIV activity. This protein has been characterized as a human resistant factor secreted by HIV-1 resistant cells [139,140]. Furthermore, the purified X-DING CD4 protein was able to block LTR-driven expression of a reporter gene as well as HIV-1 replication [129]. The Human Phosphate Binding Protein (HPBP), a further member of the human DING protein family, has also been identified as a potent anti-HIV-1 factor [130]. HPBP strongly inhibits HIV-1 replication and the IC\textsubscript{50} value is in the range of 5 nM while the index of selectivity is in the range of 30–40. In this range of concentration, HPBP is also a potent anti-HIV-1 molecule in peripheral blood lymphocytes and in primary macrophages, unlike other anti-HIV-1 drugs. Interestingly, HPBP not only targets transcription, it is equally effective against drug-resistant HIV strains and wild-type strains. It will be important to investigate these molecules and their peptide derivatives in animal models for drug resistance. Recently, a DING protein from Pseudomonas aerobacter PA14 was identified and its structure solved [141]. This protein also suppresses HIV-1 transcription and replication in microglial cells. The inhibition of the interaction between NF-κB and the HIV-1 promoter DING proteins is a common mechanism of action of all these DING proteins [142,143] that could also be used to treat chronic inflammation leading to non-AIDS events [144,145]. As suggested for X-DING-CD4 [129], their functions could also uncover a role in the innate response to infections including HIV-1 [146].

However, results obtained with DING proteins are still preliminary and await preclinical and clinical trials to assess their specificity of action and the adverse clinical effects. A pharmacophore model could be useful in the design of peptide derivatives of DING proteins. We discuss these aspects in more details in the following sections.

5. How can one improve cART?

To date, vaccination is unavailable and cART is the only efficient treatment for HIV infection until eradication of latent reservoirs is not possible. Introduction of cART in 1996 has profoundly changed prospects of HIV infection; it transformed the lethal disease into a chronic pathology that enables infected patients a nearly normal life span. The development of drug resistance remains however one of the main problems encountered with cART. It is estimated that resistance to at least one drug of the cART cocktail develops in 10–17% of new infections [147]. Further improvement of cART remains crucial, even if some improvements are available to prevent virus resistance (mainly a better treatment adherence as a result of once a day regimen). One way would be to target HIV transcription. Although some new drugs were studied for their efficiency to inhibit HIV transcription and others are under investigation, currently, no drug is available on the market. One might promote discovery and design of transcriptional inhibitors by efforts in the following areas: (1) new target identification, (2) introduction of new technologies, (3) development of new models to test drugs, and (4) improvement of drug delivery.

5.1. Identifying new targets

Deciphering the molecular mechanisms underlying transcriptional regulation is fundamental since it allows the characterization of potential targets that regulate HIV-1 transcription. We already pointed out the importance of this approach. Indeed, several cellular factors are involved in the establishment and the persistence of HIV-1 latency [61]. Targeting these factors reinforces the state of latency. An alternative strategy is to target these factors in order to reactivate HIV-1 transcription and replication. Here, the idea is to deplete HIV-1 from latent cells and concomitantly eliminate HIV by cART and immunotherapy [61,148,149]. Numerous cellular factors have been involved in HIV-1 transcription (e.g. ZACS1 [150] and members of the super elongation complex [34,151,152]) and many others remain to be discovered. Indeed, all these known and not yet discovered factors constitute potential targets to silence HIV-1 transcription. A strategy using miRNA combined with cell-based gene therapy also deserves attention [153,154]. This strategy permits to specifically target cellular factors involved in the control of HIV transcription in infected cells. The knock-out of the cellular cofactor Tat-SF1, i.e. known to decrease HIV-1 replication in a T-cell line, is an example for its application [155].

5.2. Exploiting new technologies

An increasing number of new technologies such as bioengineering, high-throughput screening, computer-aided drug design, and combinatorial chemistry completed with NMR, SPR, or CD measurements (reviewed in [104]) will considerably improve the chances for discovery of new drugs. New bioengineering processes based on engineered zinc finger transcription factors are now emerging. These proteins are attractive candidates for antiretroviral therapy since they repress LTR activity by binding to HIV-1 LTR in a sequence specific manner [156,157].

In silico screening of peptides or small molecules targeting newly identified cellular factors involved in HIV-1 transcription may also help to identify new inhibitors of HIV-1 transcription. Freely available databases of small molecules and peptides will ease the selection and the design of new antiretroviral agents [158]. This approach has allowed the identification of new inhibitors targeting the cyclin T1–Tat interaction in the pTEFb complex [102] and a HIV-1 transcription inhibitor peptide targeting the cellular phosphatase PP1 [159]. Small molecule inhibitors of HIV-1 gene expression identified by elegant cell-based and fluorescence-based high-throughput screening assays are promising antiretroviral drugs [160,161].

A major limitation of peptide derivatives is that they have to be injected. Alternatively, these potent HIV peptides could be used in emergency e.g. in patients on cART infected with multidrug resistant strains.

The pharmacophore model might also help to design rational treatment and allow synthesis of new active drugs. This approach has been used in cancer and HIV-1 therapy.
Indeed, this new technology allowed the development of HIV-1 integrase inhibitors [162] and might be extended to other transcriptional inhibitors. Substituted guanidine indole derivatives, also designed by the pharmacophore model, are potential inhibitors of HIV-1 transcription [163].

In addition, several inhibitors of specific protein–protein interactions have been discovered by computer-aided design which could be used in HIV-1 treatments as well [164]. A new class of CDK9 inhibitors, 2 phenyl fragments, has been identified and characterized by this technique [98]. Optimization of these new compounds is necessary.

Another interesting approach is to use combination of existing active molecules. Such combinations include a quinolone derivative identified as a Tat-mediated transcription inhibitor together with the tricyclic core of nevirapine and non-nucleoside reverse transcriptase inhibitors (NNRTIs). Among all the combinations tested, a transcriptional inhibitor in combination with NNRTIs efficiently inhibited HIV-1 reactivation [165]. Further investigations are needed to obtain powerful derivatives.

Finally, screening natural products is also an option in the design of transcriptional inhibitors since several natural compounds repress HIV transcription. Natural products are one of the most important sources of new drugs [166,167]. Once an effective natural compound is identified, potent derivatives might be synthesized by combinatorial chemical approaches.

Exploring all these new resources helps to select and design new anti-HIV agents. Translational approaches using computational tools and pharmacophore models are very promising and are used more and more to design rational treatments.

5.3. Development of new models

Drug resistance to HIV-1 subtypes is a major problem in HIV-1 treatment [168,169]. A T-cell line has been selected to test drugs on various HIV subtypes [170]. The T-cell line has also been used to test the safety and the efficacy of RNAi-based gene therapies but should be extended to alternative strategies.

Rhesus macaque monkeys and mice are largely used in animal models for preclinical trials [171]. However, studies with monkeys are time-consuming and very costly. On the other hand, HIV-1 is not infectious in mice because the virus envelope glycoprotein does not bind to the CD4 receptor and the CCR5 coreceptor [172,173]. Moreover, in mice Tat induced LTR transcription is 10–25 fold less active than in humans, since the transactivator Tat is unable to recruit the elongation factor p-TEFb on the TAR-RNA [174,175]. The development of humanized mouse models, such as severe combined immunodeficient mice, provides a powerful way to circumvent these problems. Several improvements have been made in the last 20 years in the development of such humanized models [176,177]. In BLT mice, the best model used to date, the thymus, liver, and hematopoietic stem cells are humanized by a triple xenograft procedure [178]. This is currently, one of the best models for HIV infection and allows to study HIV pathogenesis and to test drugs in preclinical trials (reviewed in [179]). Interestingly, these mouse models may also be used for the ‘shock and kill strategy’ [180]. However, these models have to be generated de novo for each experiment. Moreover, their handling in specific facilities is difficult and therefore costly. In addition, only some parts of the human system can be reconstituted in these mice and this limits their use. For example, human myeloid cells cannot be fully reconstituted in mice. While lymphoid CD4+ cells are the main reservoir of HIV, cells from the myeloid lineage, e.g. the microglial cells, are also important reservoirs. Although existing mouse models cannot be used to evaluate treatments targeting these cells [177,181], several improvements of the humanized mouse models have been developed recently [182]. Producing transgenic mice expressing CD4, CCR5, and cyclin T1, which render mouse cells (both lymphoid and myeloid cells) susceptible to HIV infections, should help to overcome these limitations and greatly facilitate preclinical studies [183].

5.4. Improving drug delivery

Tolerance and patient adherence have significantly increased with the introduction of the single-tablet regimen. More efficient drug delivery and thus increasing patient adherence is another method to increase treatment efficiency and tolerance. Several advances have been made in this field, e.g. intracellular delivery of peptides that inhibit the Tat–TAR interaction [184].

The use of 1–1000 nm nanoparticles constitutes a promising tool to reduce toxicity and facilitate treatment adherence [185,186]. HIV therapy may improve by specifically targeting infected cells and tissues with the possibility to reach sanctuaries e.g. in the brain. The nanotechnology-based delivery system could also permit to modulate drug release and to prevent drug degradation. These emerging approaches improve bioavailability and therefore reduce toxicity [187–189]. Nanotechnology allowed several advances in the combat against HIV-1 [188,190]. The treatment of HIV in the brain is still a major challenge since most antiretroviral drugs cannot cross the blood brain barrier [187,190,191]. Several nano-vehicles of drugs such as liposomes, dendrimers, synthetic polymeric nanoparticles, micelles, inorganic nanoparticles, and natural polymers are available [187,190–195]. A summary of antiretroviral drugs used in HIV-1 nanotherapeutics is presented in a recent review [196]. Still in the early stage, nanotechnologies await preclinical trials in animal models and clinical trials in humans before utilization in HIV treatment.

The adherence to treatment also depends significantly on good oral bioavailability of the drug. In silico models to test the human oral bioavailability of drugs are under development. These computational chemical approaches work as filters to optimize high-throughput screening of libraries. This method is able to predict the pharmacokinetics (absorption, distribution, metabolism, excretion) and toxicities of a drug [197]. Although still in its initial phase, it will certainly improve cART by increasing patient adherence to therapy and drastically reducing the drug development cost.
6. Expert opinion

There are several reasons to be optimistic about achieving a cure for HIV infection, even if not in a short term [20]. The introduction of cART in 1996, drastically improved the management of HIV-1 infection. Unfortunately, the treatment requires lifelong adherence; quiescent reservoirs constitute the obstacle for a full HIV eradication. Side effects to cART and multidrug resistance against all drugs used in cART emerge because of lifelong adherence. Moreover, the development of a residual viremia, whatever its origin, is associated with a chronic inflammation that leads to non-AIDS-associated pathologies and a shorter life expectancy for infected patients compared to healthy individuals. Taken together, the remedy of all these issues relies on the development of new drugs improving cART. Challenges and requirements for a modified cART to better manage HIV infection are discussed in this review and elsewhere [17,198,199].

We believe that new classes of drugs should target new molecular mechanisms involved in the regulation of viral gene expression. This may lead to the absence of virus production or to the production of noninfectious particles. We focused in the review on transcriptional inhibitors since these can prevent the synthesis of viral proteins such as Rev and Tat. The design of new treatments is essential for at least three purposes:

(i) Will improve cART and hence by intensifying cART which is initiated early during acute HIV infection may contribute to reduce the size of latent/quiescent reservoirs.

(ii) By preventing synthesis of neurotoxic viral proteins, it will reduce the outcome of milder form of HAND (reviewed in [200]).

(iii) Reactivation of the virus with LRA will lead to the synthesis of neurotoxic viral proteins and is often associated with CNS inflammation through macrophage/microglial activation. Targeting transcription may prevent the outcome of brain injuries associated with this ‘shock and kill strategy’ (comments in [201]).

There are currently several candidates with potent anti-HIV activities that inhibit gene transcription in vitro and ex vivo, which deserve attention. However, further investigations are needed to test them in vivo. To date, all molecules, except one, targeting HIV transcription have failed or did not reach clinical trial. No doubt, the new approaches discussed in this review will optimize the potential candidates capable to inhibit specifically HIV transcription. The main challenge for the next 10 years will be to assess these new transcriptional inhibitors and to find methods to deliver them in preclinical and clinical trials. For example, the application of nanotechnologies in trials is presently in an early stage, their wider use will improve both bioavailability and bio-distribution of drugs.

Finally, we point out that several potential drugs targeting HIV transcription have been isolated or derived from natural compounds like P27[^3] from the plant Hypericum perforatum, PA14 from the bacteria P. aerobacter, and corticostamine from the marine sponge Corticium simplex. Natural compounds are still a major source of new drugs; they benefit from technical advances in the field of high-throughput screening [202]. As a corollary, this is one more good reason to preserve biodiversity.

Acknowledgments

We are grateful to Andras and Andrea Janossy for a careful and critical reading of the manuscript.

Declaration of interest

This work was supported by grants from the Agence Nationale de Recherches sur le SIDA (ANRS) to O Rohr, C Schwartz, and Y Le Douce, from the Sidaction, Ligue contre le cancer to O Rohr and C Schwartz, and from Institut Universitaire de France to O Rohr. Additional funding was received from the Marie Sklodowska-Curie Research and Innovation Staff Exchange (MSCA-Rise; EU4HIVCURE; call for proposal: H2020-MSCA-RISE; project reference: 691119). The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.

References

Papers of special note have been highlighted as:
- of interest
- of considerable interest

1. Chun TW, Stuyver L, Mizell SB, et al. Presence of an inducible HIV-1 latent reservoir during highly active antiretroviral therapy. Proc Natl Acad Sci U S A. 1997;94(24):13193–13197.

 This paper describes the existence of HIV-1 latent reservoirs which persist during cART. This result stresses the point that current CART was not efficient to eradicate the virus from infected patients.

2. Zhang L, Ramratnam B, Tenner-Racz K, et al. Quantifying residual HIV-1 replication in patients receiving combination antiretroviral therapy. N Engl J Med. 1999;340(21):1605–1613.

3. Di Mascio M, Dornadula G, Zhang H, et al. In a subset of subjects on highly active antiretroviral therapy, human immunodeficiency virus type 1 RNA in plasma decays from 50 to <5 copies per milliliter, with a half-life of 6 months. J Virol. 2003;77(3):2271–2275.

4. Dornadula G, Zhang H, VanUitert B, et al. Residual HIV-1 RNA in blood plasma of patients taking suppressive highly active antiretroviral therapy. JAMA. 1999;282(17):1627–1632.

5. Harrigan PR, Whaley M, Montaner JS. Rate of HIV-1 RNA rebound upon stopping antiretroviral therapy. Aids. 1999;13(8):F59–F62.

 This paper demonstrates that after cessation of cART, we noticed a virus rebound. As an outcome cART has to be taken all lifelong.

6. Zhang L, Chung C, Hu BS, et al. Genetic characterization of rebounding HIV-1 after cessation of highly active antiretroviral therapy. J Clin Invest. 2000;106(7):839–845.

7. Crowe S, Zhu T, Muller WA. The contribution of monocyte infection and trafficking to viral persistence, and maintenance of the viral reservoir in HIV infection. J Leukoc Biol. 2003;74(5):635–641.

8. Shen L, Siliacoo RF. Viral reservoirs, residual viremia, and the potential of highly active antiretroviral therapy to eradicate HIV infection. J Allergy Clin Immunol. 2008;122(1):22–28.

9. Maldarelli F. Targeting viral reservoirs: ability of antiretroviral therapy to stop viral replication. Curr Opin HIV AIDS. 2010;5(1):49–56.

10. Redel L, Le Douce V, Cherrier T, et al. HIV-1 regulation of latency in the monocyte-macrophage lineage and in CD4+ T lymphocytes. J Leukoc Biol. 2010;87(4):575–588.

11. Varatharajan L, Thomas SA. The transport of anti-HIV drugs across blood-CNS interfaces: summary of current knowledge and recommendations for further research. Antiviral Res. 2009;82(2):A99–109.
This article describes one of the major problems encountered during HIV treatment which is the development of drug resistance.

12. Vella S, Palmisano L. The global status of resistance to antiretroviral drugs. Clin Infect Dis. 2005;41(Suppl 4):S239–S246.

13. Vella S, Palmisano L. The global status of resistance to antiretroviral drugs. Clin Infect Dis. 2005;41(Suppl 4):S239–S246.

14. Kozal MJ. Drug-resistant human immunodeficiency virus. Clin Microbiol Infect. 2009;15(Suppl 1):69–73.

15. Griffiths PD. A perspective on antiviral resistance. J Clin Virol. 2009;46(1):3–8.

16. Nijhuis M, van Maarseveen NM, Boucher CA. Antiviral resistance and impact on viral replication capacity: evolution of viruses under antiviral pressure occurs in three phases. Handb Exp Pharmacol. 2009;189:299–320.

17. Volberding PA, Deeks SG. Antiretroviral therapy and management of HIV infection. Lancet. 2010;376(9734):49–62.

18. Deeks SG, Phillips AN. HIV infection, antiretroviral treatment, age- ing, and non-AIDS related morbidity. BMJ. 2009;338:a3172.

19. Bagashev A, Sawaya BE. Roles and functions of HIV-1 Tat protein in the CNS: an overview. Virol J. 2013;10:338. doi:10.1186/1743-422X-10-338.

20. Le Douce V, Janossy A, Hallay H, et al. Achieving a cure for HIV infection: do we have reasons to be optimistic? J Antimicrob Chemother. 2012;67(5):1063–1074. doi:10.1093/jac/dkr599.

21. Lewin SR, Rouzioux C. HIV cure and eradication: how will we get from the laboratory to effective clinical trials? Aids. 2011;25(7):885–897.

22. Lichterfeld M, Zachary KC. Treating HIV-1 infection: what might the future hold? Ther Adv Chronic Dis. 2011;2:293–305.

23. Campos N, Myburgh R, Garcel A, et al. Long lasting control of viral rebound with a new drug ABX464 targeting Rev - mediated viral RNA biogenesis. Retrovirology. 2015;12:30. doi:10.1186/s12977-015-0189-x.

24. Berkhout B, van der Velden YU. ABX464: a good drug candidate instead of a magic bullet. Retrovirology. 2009;6:30. doi:10.1186/1742-4690-6-30.

25. Kilareski EM, Shah S, Nonnemacher MR, et al. Regulation of HIV-1 transcription in cells of the monocyte-macrophage lineage. Retrovirology. 2009;6:118.

26. Rohr O, Marban C, Aunis D, et al. Regulation of HIV-1 gene transcription: from lymphocytes to microglial cells. J Leukoc Biol. 2003;74(5):736–749.

27. Schwartz C, Canonne-Hergaux F, Aunis D, et al. Characterization of nuclear proteins that bind to the regulatory TGATTGGC motif in the human immunodeficiency virus type 1 long terminal repeat. Nucleic Acids Res. 1997;25(6):1177–1184.

28. Rabson AB, Lin HC. NF-kappa B and HIV: linking viral and immune activation. Adv Pharmacol. 2000;48:161–207.

29. Mingyán Y, Xinyong L, De Clercq E. NF-kappaB: the inducible factors of HIV-1 transcription and their inhibitors. Mini Rev Med Chem. 2009;9(1):60–69.

30. Peterlin BM, Price DH. Controlling the elongation phase of transcription with P-TEFb. Mol Cell. 2006;23(3):297–305.

31. Bres V, Yoh SM, Jones KA. The multi-tasking P-TEFb complex. Curr Opin Cell Biol. 2008;20(3):334–340.

32. Ping YH, Rana TM. DSIF and NELF interact with RNA polymerase II elongation complex and HIV-1 Tat stimulates P-TEFb-mediated phosphorylation of RNA polymerase II and DSIF during transcription elongation. J Biol Chem. 2001;276(16):12951–12958.

33. Zhang Z, Klatt A, Gilmour DS, et al. Negative elongation factor NELF represses human immunodeficiency virus type 1 transcription by pausing the RNA polymerase II complex. J Biol Chem. 2007;282(23):16981–16988.

34. Sobhian B, Lagutte N, Yatim A, et al. HIV-1 Tat assembles a multifunctional transcription elongation complex and stably associates with the 7SK snRNP. Mol Cell. 2010;38(3):439–451.

35. Lu H, Li Z, Xue Y, et al. Viral-host interactions that control HIV-1 transcriptional elongation. Chem Rev. 2013;113(11):8567–8582. doi:10.1021/cr400120z.

36. Zhou Q, Yik JH. The Yin and Yang of P-TEFb regulation: implications for human immunodeficiency virus gene expression and global control of cell growth and differentiation. Microbiol Mol Biol Rev. 2006;70(3):646–659.

37. Krueger BJ, Jeronimo C, Roy BB, et al. LARP7 is a stable component of the 7SK snRNP while P-TEFb, HEXIM1 and hnRNP A1 are reversibly associated. Nucleic Acids Res. 2008;36:2219–2229.

38. Dribarne G, Bensaude O. 7SK RNA, a non-coding RNA regulating P-TEFb, a general transcription factor. RNA Biol. 2009;6(2):122–128.

39. Lu H, Li Z, Xue Y, et al. AFF1 is a ubiquitous P-TEFb partner to enable Tat extraction of P-TEFb from 7SK snRNP and formation of SECs for HIV transcription. Proc Natl Acad Sci U S A. 2014;111(1):E15–24. doi:10.1073/pnas.1318503111.

40. A recent review which emphasizes the importance of virus-host interaction in the control of the HIV transcription elongation. The crucial roles of the elongation factor P-TEFb which belongs to various complexes are well described.

41. Sedore SC, Byers SA, Biglione S, et al. Manipulation of P-TEFb control machinery by HIV: recruitment of P-TEFb from the large form by Tat and binding of HEXIM1 to TAR. Nucleic Acids Res. 2007;35(13):4347–4358.

42. D’Orso I, Frankel AD. RNA-mediated displacement of an inhibitory snRNP complex activates transcription elongation. Nat Struct Mol Biol. 2010;17(7):815–821.

43. Barboric M, Yik JH, Czudnochowski N, et al. Tat competes with HEXIM1 to increase the active pool of P-TEFb for HIV-1 transcription. Nucleic Acids Res. 2007;35(6):2003–2012.

44. Brady J, Khashanchi F. Tat gets the “green” light on transcription initiation. Retrovirology. 2005;2:69.

45. Raha T, Cheng SW, Green MR. HIV-1 Tat stimulates transcription complex assembly through recruitment of TBP in the absence of TAFs. PLoS Biol. 2005;3(2):e44.

46. Sune C, Garcia-Blanco MA. Transcriptional trans activation by human immunodeficiency virus type 1 Tat requires specific coactivators that are not basal factors. J Virol. 1995;69(5):3089–3107.

47. Kamine J, Chinnadurai G. Synergistic activation of the human immunodeficiency virus type 1 promoter by the viral Tat protein and cellular transcription factor Sp1. J Virol. 1992;66(6):3932–3936.

48. Jeang KT, Chun R, Lin NH, et al. In vitro and in vivo binding of human immunodeficiency virus type 1 Tat protein and Sp1 transcription factor. J Virol. 1993;67(10):6224–6233.

49. Johi MK, Mishra R, Chhatbar C, et al. Titos and bits of HIV Tat control of cell growth and differentiation. Microbiol Mol Biol Rev. 2007;71(4):927–940.
These two papers show for the first time the importance of the methyltransferase Suv39H1 in inducing HIV transcriptional silencing. Identification of such factor constitutes potential target for HIV treatment.

Le Douce V, Colin L, Redel L, et al. LSD1 cooperates with CTIP2 to promote HIV-1 transcriptional silencing. Nucleic Acids Res. 2011;5:1904–1915.

Van Lint C, Bouchat S, Marcello A. HIV-1 transcription and latency: an update. Retrovirology. 2013;10:67. doi:10.1186/1742-4690-10-67.

An excellent review up to date on HIV latency and the therapeutic options we have to get a cure.

Le Douce V, Cherrier T, Riclet R, et al. The many lives of CTIP2: from AID to cancer and cardiac hypertrophy. J Cell Physiol. 2014;229(5):533–537. doi:10.1002/jcp.24490.

Le Douce V, Herbein G, Rohr O, et al. Molecular mechanisms of HIV-1 persistence in the monocyte-macrophage lineage. Retrovirology. 2010;7(1):32.

Marban C, Redel L, Suzanne S, et al. COUP-TF interacting protein 2 represses the initial phase of HIV-1 gene transcription in human microglial cells. Nucleic Acids Res. 2005;33(7):2318–2331.

Cherrier T, Le Douce V, Ellebrecht S, et al. CTIP2 is a negative regulator of P-TEFb. Proc Natl Acad Sci U S A. 2013;110(31):12655–12660. doi:10.1073/pnas.1220136110.

This paper shows for the first time that the cellular factor CTIP2 represses P-TEFb and participates in the maintenance of HIV-1 latency in the microglial cells.

Ellebrecht S, Le Douce V, Riclet R, et al. HMGA1 recruits CTIP2-repressed P-TEFb to the HIV-1 and cellular target promoters. Nucleic Acids Res. 2014;42(8):4962–4971. doi:10.1093/nar/gku168.

Kumar A, Darcis G, Van Lint C, et al. Epigenetic control of HIV-1 post integration latency: implications for therapy. Clin Epigenetics. 2015;7(1):103–116. doi:10.1186/s13148-015-0137-6.

Darcis G, Kula A, Bouchat S, et al. An in-depth comparison of latency-reversing agent combinations in various in vitro and ex vivo HIV-1 latency models identified brystatin-1+JQ1 and ingenol-B+JQ1 to potentely reactivate viral gene expression. PLoS Pathog. 2015;11(7):e1005063. doi:10.1371/journal.ppat.1005063.

Sivpak AM, Planelles V. HIV-1 eradication: early trials and tribulations. Trends Mol Med. 2016;22(1):10–27. doi:10.1016/j.molmed.2015.11.004.

Dahiya S, Nonnemacher MR, Wigdahl B. Deployment of the human immunodeficiency virus type 1 protein arsenal: combating the host to enhance viral transcription and providing targets for therapeutic development. J Gen Virol. 2012;93(Pt 6):1151–1172. doi:10.1099/vir.0.041186-0.

Schwartz C, Catez P, Rohr O, et al. Functional interactions between C/EBP, Sp1, and COUP-TF regulate human immunodeficiency virus type 1 gene transcription in human brain cells. J Virol. 2000;74(1):65–73.

Méndez C, Ahlenstiel CL, Kelleher AD. Post-transcriptional gene silencing, transcriptional gene silencing and human immunodeficiency virus. World J Virol. 2015;4(3):219–244. doi:10.5055/wjv4.i3.219.

Chung J, Scherer LJ, Gu A, et al. Optimized lentiviral vectors for HIV gene therapy: multiplexed expression of small RNAs and inclusion of MGMT(P140K) drug resistance gene. Mol Ther. 2014;22(5):952–963. doi:10.1038/mt.2013.32.

Baba M. Recent status of HIV-1 gene expression inhibitors. Antiviral Res. 2006;71(2–3):301–306.

Tabarinni O, Massari S, Daelemans D, et al. Structure-activity relationship study on anti-HIV 6-desfluoroquinolones. J Med Chem. 2008;51(17):5454–5458.

Steven S, Pollicita M, Pannecoque C, et al. Novel in vivo model for the study of human immunodeficiency virus type 1 transcription inhibitors: evaluation of new 6-desfluoroquinolone derivatives. Antimicrob Agents Chemother. 2007;51(4):1407–1413.

Steven S, Balzarini J, Tabarrini O, et al. Cell-dependent interference of a series of new 6-aminoguinoquinolones with viral (HIV/CMV) transactivation. J Antimicrob Chemother. 2005;56(5):847–855.

Tabarinni O, Steven S, Cecchetti V, et al. Structure modifications of 6-aminoguinoquinolones with potent anti-HIV activity. J Med Chem. 2004;47(22):5567–5578.

Bedoya LM, Abad MJ, Calonge E, et al. Quinoline-based compounds as modulators of HIV transcription through NF-kappaB and Sp1 inhibition. Antiviral Res. 2010;87(3):338–344.

This paper illustrates the combinatorial chemistry approach following a preliminary screen of potent antiviral compound in order to synthetize derivatives with higher antiviral activity.

Osorio AA, Muñoz A, Torres-Romero D, et al. Olean-18-ene triterpenoids from Celastraceae species inhibit HIV replication targeting NF-κB and Sp1 dependent transcription. Eur J Med Chem. 2012;52:295–303. doi:10.1016/j.ejmech.2012.03.035.

Miyake A, Ishida T, Yamagishi M, et al. Inhibition of active HIV-1 replication by NF-kappaB inhibitor DHMEQ. Microbes Infect. 2010;12(5):400–408.

Watanabe M, Nakashima M, Togano T, et al. Identification of the RelA domain responsible for action of a new NF-kappaB inhibitor DHMEQ. Biochem Biophys Res Commun. 2008;376(2):310–314.

Yamamoto M, Horie R, Takeini M, et al. Inactivation of NF-kappaB components by covalent binding of (−)-dehydroxymethylpoxyquiminoic to specific cysteine residues. J Med Chem. 2008;51(18):5780–5788.

Molinari G. Natural products in drug discovery: present status and perspectives. Adv Exp Med Biol. 2009;655:13–27. doi:10.1007/978-1-4419-1132-2_2.

Sánchez-Duffhues G, Calzado MA, de Vinuesa AG, et al. Denbinobin, a naturally occurring 1,4-phenanthrenequinone, inhibits HIV-1 replication through an NF-kappaB-dependent pathway. Biochem Pharmacol. 2008;76(10):1240–1250. doi:10.1016/j.bcp.2008.09.006.

Sánchez-Duffhues G, Calzado MA, de Vinuesa AG, et al. Denbinobin inhibits nuclear factor-kappaB and induces apoptosis via reactive oxygen species generation in human leukemic cells. Biochem Pharmacol. 2009;77(8):1401–1409. doi:10.1016/j.bcp.2009.01.004.

Mitsushashi S, Kishimoto T, Uraki Y, et al. Low molecular weight lignin suppresses activation of NF-kappaB and HIV-1 promoter. Bioorg Med Chem. 2008;16(5):2645–2650. doi:10.1016/j.bmc.2007.11.041.

Manganaro L, Pache L, Herrmann T, et al. Tumor suppressor cylindromatosis (CYLD) controls HIV transcription in an NF-kB-dependent manner. J Virol. 2014;88(13):7528–7540. doi:10.1128/JVI.00239-14.

Taura M, Kudo E, Kariya R, et al. COMMD1/murr1 reinforces HIV-1 gene expression by suppressing NF-κB and BCL-2 expression. J Med Chem. 2011;54(24):8082–8093. doi:10.1021/jm2013837.

Pateras I, Giaginis C, Tsigris C, et al. NF-κB promotes HIV-1 transcription in an NF-kB-dependent manner. Exp Biol Med. 2012;237(10):1262–1270. doi:10.1177/1535370212454683.

Verhoef K, Sanders RW, Fontaine V, et al. Evolution of the human immunodeficiency virus type 1 long terminal repeat promoter by conversion of an NF-kappaB enhancer element into a GABP binding site. J Virol. 1999;73(2):1331–1340.
An excellent example of a natural compound with very potent inhibitor restricts Tat-mediated HIV-1 replication. J Virol. 2004;336(3):625–638.

This paper shows for the first time the crystal structure of HIV Tat complexed with human P-TEFB. Nature. 2010;465(7299):747–751. doi:10.1038/nature09131.

This paper describes the dual effect of cyclic peptide on two inhibitors on HIV-1-activated transcription. J Mol Biol. 2010;391(4):972–983. doi:10.1016/j.jmb.2010.04.013.

In this paper they used an in silico screening to target the interaction between Tat and p-TEFB which has allowed the identification of new HIV transcriptional inhibitors.

In this study describes a new class of Tat inhibitors which work in microglial cells and a allow neurons neuroprotection.

This paper describes the identification of new HIV transcriptional inhibitors with anti-HIV-1 Tat-mediated transcription activity. ChemMedChem. 2013;8(12):1941–1953. doi:10.1002/cmdc.201300287.

This paper describes the dual effect of cyclic peptide on two inhibitors on HIV-1-activated transcription. J Mol Biol. 2010;391(4):972–983. doi:10.1016/j.jmb.2010.04.013.

In this paper used an in silico screening to target the interaction between Tat and p-TEFB which has allowed the identification of new HIV transcriptional inhibitors.

In this study describes a new class of Tat inhibitors which work in microglial cells and a allow neurons neuroprotection.

This is the first report which describes that a member of the intriguing DING family has potent anti-HIV activity.
An example of the use of siRNA in order to target cellular and IL-8 gene activity in quiescent and mitogen- or HIV-infected cells.

In this paper, the authors used a computer-aided design of a prokaryotic phosphate-binding protein superfamily which extends into the eukaryotic kingdom. Int J Biochem Cell Biol. 2008;40(2):170–175.

Berna A, Bernier F, Chabrière E, et al. For whom the bell tolls? DING proteins in health and disease. Cell Mol Life Sci. 2009;66(14):2205–2218.

Berna A, Bernier F, Chabrière E, et al. DING proteins; novel members of a prokaryotic phosphate-binding protein superfamily which extends into the eukaryotic kingdom. Int J Biochem Cell Biol. 2008;40(2):170–175.

Berna A, Bernier F, Chabrière E, et al. DING proteins: numerous functions, elusive genes, a potential for health. Cell Mol Life Sci. 2013;70(17):3045–3056. doi:10.1007/s00018-013-1377-2.

An excellent review describing the high potential of a cell-based gene therapy to treat HIV/AIDS. Expert Opin Ther Targets. 2015;19(2):245–263. doi:10.1517/17472222.2014.980236.

An excellent review describing the high potential of a cell-based gene therapy to combat HIV.

An example of the use of siRNA in order to target cellular factors involved in the control of HIV transcription.

Verschure PJ, Visser AE, Rots MG. Step out of the groove: epigenetic gene control systems and engineered transcription factors. Nat Genet. 2006;38:163–204.

Eberhardt SR, Goncalves J, Coelho S, et al. Inhibition of human immunodeficiency virus type 1 replication with artificial transcription factors targeting the highly conserved primer-binding site. J Virol. 2006;80(6):2873–2883.

An example of the use of siRNA in order to target cellular factors involved in the control of HIV infection.

Verschure PJ, Visser AE, Rots MG. Step out of the groove: epigenetic gene control systems and engineered transcription factors. Nat Genet. 2006;38:163–204.

Eberhardt SR, Goncalves J, Coelho S, et al. Inhibition of human immunodeficiency virus type 1 replication with artificial transcription factors targeting the highly conserved primer-binding site. J Virol. 2006;80(6):2873–2883.

An excellent review describing the high potential of a cell-based gene therapy to treat HIV/AIDS. Expert Opin Ther Targets. 2015;19(2):245–263. doi:10.1517/17472222.2014.980236.

An example of the use of siRNA in order to target cellular factors involved in the control of HIV transcription.

A novel cell-based high-throughput screening assay to identify HIV-1 inhibitors. Methods Mol Biol. 2013;1030:3–9. doi:10.1007/978-1-62703-484-1_1.

Laird GM, Eisele EE, Rabi SA, et al. A novel cell-based high-throughput screen for inhibitors of HIV-1 gene expression and budding identifies the cardiac glycosides, J Antimicrob Chemother. 2014;69(4):988–994. doi:10.1093/jac/dkt471.

These two papers described elegant and original cell-based high-throughput screening of inhibitors of HIV gene expression.

Kumar SP, Jasrai YT, Mehta VP, et al. Development of pharmacophore similarity-based quantitative activity hypothesis and its applicability domain: applied on a diverse data-set of HIV-1 integrase inhibitors. J Biomol Struct Dyn. 2015;33(4):706–722. doi:10.1080/07391102.2014.908142.

Wang J, Wang Y, Li Z, et al. Design, synthesis and biological evaluation of substituted guaifenesin indole derivatives as potential inhibitors of HIV-1 Tat-TAR interaction. Med Chem. 2014;10(7):738–746.

Veselovsky AV, Zharkova MS, Porokov VV, et al. Computer-aided design and discovery of protein-protein interaction inhibitors as agents for anti-HIV therapy. SAR QSAR Environ Res. 2014;25(6):457–471. doi:10.1080/10692936.2014.898689.

In this paper, the authors used a computer-aided design of new CDK9 inhibitors.
This review highlights the importance of nanotechnology in AIDS therapy to viral reservoir sites. Expert Opin Drug Deliv. 2006;3(5):613–628. doi:10.1517/1745247.3.5.613.

This review highlights the importance of nanotechnology in drugs delivery to viral reservoirs such as the brain.

das Neves J, Amiji MM, Bahia MF, et al. Nanotechnology-based systems for the treatment and prevention of HIV/AIDS. Adv Drug Deliv Rev. 2010;62(4–5):458–477.

Sharma P, Garg S. Pure drug and polymer based nanotechnologies for the improved solubility, stability, bioavailability and targeting of anti-HIV drugs. Adv Drug Deliv Rev. 2010;62(4–5):491–502.

Sagar V, Pilakka-Kanthikeel S, Pottathil R, et al. Towards nanomedicines for neuroAIDS. Rev Med Virol. 2014;24(2):103–124. doi:10.1002/rmv.1778.

Gomes MJ, das Neves J, Sarmento B. Nanoparticle-based drug delivery to improve the efficacy of antiretroviral therapy in the central nervous system. Int J Nanomedicine. 2014;9:1757–1769. doi:10.2147/INJ.N54586.

Vyasa TK, Shahiwal A, Amiji MM. Improved oral bioavailability and brain transport of Saquinavir upon administration in novel nanoemulsion formulations. Int J Pharm. 2008;347(1–2):93–101. doi:10.1016/j.ijpharm.2007.06.016.

Lanao JM, Briones E, Colino CJ. Recent advances in delivery systems for anti-HIV-1 therapy. J Drug Target. 2007;15(1):21–36. doi:10.1080/10611860600942178.

Lenjisa JL, Woldiu MA, Satesa GD. New hope for eradication of HIV from the body: the role of polymeric nanomedicines in HIV/AIDS pharmacotherapy. J Nanobiotechnol. 2014;12:9. doi:10.1186/1477-3155-12-9.

Ojewole E, Mackraj I, Naidoo P, et al. Exploring the use of novel drug delivery systems for antiretroviral drugs. Eur J Pharm Biopharm. 2008;70(3):697–710. doi:10.1016/j.ejpb.2008.06.020.

Mahajan SD, Aalinkeel R, Law W-C, et al. Anti-HIV-1 nanotherapeutics: promises and challenges for the future. Int J Nanomedicine. 2012;7:5301–5314. doi:10.2147/INJ.N255871.

Wang J, Hou T. Advances in computationally modeling human oral bioavailability. Adv Drug Deliv Rev. 2015;86:11–16. doi:10.1016/j.addr.2015.01.001.

A study which showed how to use new approach in order to modelize human oral bioavailability.

Moreno S, Lopez-Aldeguer J, Arribas JR, et al. The future of anti- retroviral therapy: challenges and needs. J Antimicrob Chemother. 2010;65(5):827–835.

Taiwo B, Hicks C, Eron J. Unmet therapeutic needs in the new era of combination antiretroviral therapy for HIV-1. J Antimicrob Chemother. 2010;65(6):1100–1107.

Saylor D, Dickens AM, Sacktor N, et al. HIV-associated neurocognitive disorder - pathogenesis and prospects for treatment. Nat Rev Neurol. 2016;12:309. doi:10.1038/nrneurol.2016.27.

Nath A, Clements JE. Eradication of HIV from the brain: reasons for pause. AIDS (London, England). 2011;25(5):577–580. doi:10.1097/QAD.0b013e3283437df2.

Li JW-H, Vederas JC. Drug discovery and natural products: end of an era or an endless frontier? Science (New York, N.Y.). 2009;325 (5937):161–165. doi:10.1126/science.1168243.