Inhibitory Effect of Epinastine on Superoxide Generation
by Rat Neutrophils

Nobuyuki Fukuishi¹, Tomoko Kan¹, Kimihisa Hirose¹, Reiko Akagi² and Masaaki Akagi¹

¹Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770, Japan
²Department of Nutritional Science, Faculty of Health and Welfare Science, Okayama Prefectural University, Okayama 700, Japan

Received April 12, 1995 Accepted June 8, 1995

ABSTRACT—We studied the effects of antiallergic drugs, epinastine, ketotifen, oxatomide, mequitazine and cromolyn sodium on superoxide anion (O₂⁻) generation from rat neutrophils. Epinastine, ketotifen, oxatomide and mequitazine dose-dependently prevented the N-formyl-Met-Leu-Phe- and phorbol 12-myristate 13-acetate-induced O₂⁻ generation, but cromolyn sodium did not prevent it. When membrane and cytosol fractions were incubated with each drug, epinastine, ketotifen and mequitazine prevented O₂⁻ generation. On the other hand, when only the membrane fraction was incubated with each drug, ketotifen and mequitazine prevented O₂⁻ generation, but epinastine did not. Epinastine may inhibit the NADPH oxidase system through the obstruction of NADPH oxidase-associated cytosol components.

Keywords: O₂⁻ generation, Epinastine, Neutrophil (rat)

Epinastine (WAL 801 CL) has been reported to show a potent inhibitory effect on the immediate type hypersensitivity reaction and antigen-induced histamine or SRS-A release from the lung pieces of actively sensitized guinea pigs (1, 2). Epinastine may be more potent than terfenadine or oxatomide in inhibiting the histamine-induced contraction of isolated guinea pig ileum. Furthermore, epinastine is more effective than ketotifen and terfenadine in inhibiting histamine-induced skin wheal in rats, when the drugs were administered intravenously. However, epinastine has been reported to be less effective than ketotifen and mepyramine in inhibiting anaphylactic histamine release from rat peritoneal mast cells (3).

The activated neutrophils generate superoxide anion (O₂⁻). O₂⁻ is generated primarily through the activation of the plasma membrane-bound NADPH oxidase system containing FAD, cytochrome b₅₅₈ (4) and other cytosolic soluble proteins (5). There is some evidence that O₂⁻ may be responsible for allergic reactions such as asthma (6). There are only a few reports that have examined the relationship between O₂⁻ and antiallergic drugs. In this study, we examined the effects of epinastine, ketotifen, oxatomide, mequitazine and cromolyn sodium on the O₂⁻ generation from the rat neutrophils, using cypridina luciferin analog (MCLA)-dependent chemiluminescence as a probe for O₂⁻ generation.

Male Wistar rats (SLC, Hamamatsu), each weighing 300 to 400 g, were used. Under ether anesthesia, whole blood was collected from the carotid artery and diluted twice with Hanks' balanced salt solution (HBSS) (pH 7.4). Neutrophils were purified to a level higher than 85% by Percoll (Pharmacia Biotech, Uppsala, Sweden) density gradient centrifugation. O₂⁻ generation by rat neutrophils was measured by the MCLA (Tokyo Kasei Kogyo Co., Ltd., Tokyo)-dependent chemiluminescence method (7). Neutrophil suspensions (10⁶ cells/ml) were incubated for 3 min in HBSS containing 0.4 mM of MCLA and various concentrations of antiallergic drugs at 37°C in the dark. Cell suspensions were transferred into a glass vial, and then photon counting was started. Five seconds later, N-formyl-Met-Leu-Phe (fMLP; Sigma Chemical Co., Ltd., St. Louis, MO, USA) (2.5 μM) or phorbol 12-myristate 13-acetate (PMA; Sigma Chemical Co., Ltd.) (20 μg/ml) was added into the vial. MCLA-dependent chemiluminescence was monitored with a Lumicounter ATP-237 (Advantec Co., Ltd., Tokyo).

Cell disruption was carried out according to the previously described method (8). Disrupted cells were centrifuged at 1,000 x g for 10 min at 4°C to remove unbroken cells, nuclei and large debris. The supernatant was centrifuged at 135,000 x g for 1 hr at 4°C. The pellet containing the membrane fraction was incubated with each

* To whom correspondence should be addressed.
drug for 3 min at 37°C and then centrifuged at 135,000 × g for 1 hr at 4°C. The pellet was mixed with the 135,000 × g supernatant. FAD (Sigma Chemical Co., Ltd.), sodium dodecyl sulfate (SDS; Sigma Chemical Co., Ltd.) and MCLA were added, and photon counting was started. Five seconds later, 10 mM NADPH (Sigma Chemical Co., Ltd.) was added to initiate O₂⁻-generation. The assay was done in the Lumicounter ATP-237.

The results are reported as the means ± standard error of the means (S.E.). Statistical significance was evaluated by the unpaired Student’s t-test, with P < 0.05 being regarded as significant. IC₅₀ values were calculated according to the method of Litchfield-Wilcoxon.

Addition of fMLP at concentrations between 0.4 and 40 μM increased the peak photon counts of MCLA-dependent chemiluminescence in a dose-dependent fashion (9045–42780 cpm). Pretreatment with superoxide dismutase (SOD, 1–100 U/ml) dose-dependently inhibited these increases (3860–2415 cpm vs 30885 cpm at SOD(−)). Figure 1A shows the inhibitory effects by epinastine, oxatomide, mequitazine and ketotifen on

Fig. 1. Effects of epinastine (○), oxatomide (●), cromolyn sodium (△), mequitazine (□) and ketotifen (■) on the generation of superoxide anion (O₂⁻) induced by N-formyl-Met-Leu-Phe (fMLP) and phorbol 12-myristate 13-acetate (PMA) by rat neutrophils. Neutrophil suspensions (10⁶ cells/ml) were incubated for 3 min in Hanks’ balanced salt solution (HBSS) containing MCLA (0.4 μM) and various concentrations of anti-allergic drugs at 37°C, and fMLP (2.5 μM) (A) or PMA (20 μg/ml) (B) was added. A: Epinastine, oxatomide, mequitazine and ketotifen dose-dependently inhibited fMLP-induced O₂⁻ generation. The IC₅₀ was 0.03, 0.27, 14.59 and 0.03 μM, respectively. B: Epinastine, oxatomide, mequitazine and ketotifen also dose-dependently inhibited PMA-induced O₂⁻ generation. The IC₅₀ was 5.23, 49.41, 6.09 and 0.76 mM, respectively. Each point indicates the mean ± S.E. (n = 8). *P < 0.05, **P < 0.01 vs control.

Fig. 2. Effects of epinastine, ketotifen, mequitazine and oxatomide on sodium dodecyl sulfate (SDS)-induced O₂⁻ generation in the reconstructed NADPH oxidase system by rat neutrophils. Drugs were used at the maximal inhibitory concentration in the intact cells. A: Membrane and cytosol fractions were preincubated with each drug for 3 min at 37°C, and FAD, MCLA, SDS and NADPH were added. B: The membrane fraction was incubated with each drug for 3 min at 37°C and then centrifuged at 135,000 × g for 1 hr at 4°C. The pellet was mixed with the cytosol fraction, FAD, MCLA, SDS and NADPH. Each point indicates the mean ± S.E. (n = 8). *P < 0.05, **P < 0.01 vs control.
fMLP-induced O_2^- generation from rat neutrophils. The IC_{50} was 0.03, 0.27, 14.59 and 0.03 μM, respectively. However, cromolyn sodium could not prevent O_2^- generation. On the other hand, epinastine, oxatomide, mequitazine and ketotifen also prevented PMA-induced O_2^- generation in a dose-dependent fashion (Fig. 1B), with an IC_{50} of 0.52, 49.41, 6.09 and 0.76 μM, respectively. Cromolyn sodium was also unable to prevent PMA-induced O_2^- generation.

The 1,000 x g supernatant of the disrupted neutrophils could generate O_2^- when it was stimulated by SDS (100 μM: 16137 ± 1289 cpm vs 645 ± 58 cpm), but the 135,000 x g supernatant could not generate O_2^-. When the membrane and cytosol fractions were pretreated with antiallergic drugs, O_2^- generation was significantly prevented by epinastine, ketotifen and mequitazine. However, oxatomide did not inhibit it (Fig. 2A). On the other hand, when only the membrane fraction was pretreated, O_2^- generation was not prevented by epinastine, but prevented by ketotifen and mequitazine (Fig. 2B).

Nakano showed that MCLA reacted with O_2^- or $^{1}O_2$ to emit light, probably via the dioxetanone analog (7). SOD or NaNO$_3$ can be used to differentiate between O_2^- and $^{1}O_2$-dependent luminescence (7). In this experiment, we examined the effect of antiallergic drugs on the O_2^- generation by rat neutrophils using MCLA-dependent chemiluminescence as a probe of O_2^- generation. fMLP increased MCLA-dependent chemiluminescence in a dose-dependent fashion, which was extinguished by SOD, and the luminescence was not affected by the presence of NaNO$_3$ (1 mM), a quencher of $^{1}O_2$ (data not shown). These findings suggested that this assay system using MCLA could measure only O_2^-, and MCLA-dependent chemiluminescence were not contaminated with $^{1}O_2$.

Antiallergic drugs with H$_1$-receptor antagonism, epinastine, oxatomide, mequitazine and ketotifen, abolished the MCLA-dependent luminescence from rat neutrophils induced by fMLP and PMA in a dose-dependent fashion, but cromolyn sodium, without H$_1$-receptor antagonism, did not abolish it. These findings suggest 1) that these drugs trap O_2^- from neutrophils in the medium or 2) that the drugs inhibit the O_2^--generating NADPH-oxidase system. To determine whether these drugs act as a scavenger or not, we examined the effect of KO$_2$ that generates O_2 chemically. Consequently, it was found that epinastine, oxatomide, mequitazine and ketotifen have no effect on O_2^- itself (data not shown), and these drugs may not be able to trap O_2^-. Therefore, we studied whether these drugs might affect NADPH oxidase directly or not. The 1,000 x g supernatant of the disrupted neutrophils containing the membrane and cytosol fractions could generate O_2^- when it was stimulated by SDS, but the 135,000 x g supernatant containing only the cytosol fraction could not. However, when the 135,000 x g pellet was mixed with the supernatant, the O_2^- generation was elicited (9). The NADPH-oxidase system contains membrane associated proteins such as cytochrome b$_{558}$ and cytosolic proteins such as p47-phox and p67-phox (5, 10-12), and the activation of NADPH oxidase in the cell-free system requires the association of several cytosolic components together with membrane associated cytochrome b$_{558}$ (5). Therefore, using a 1,000 x g supernatant, FAD, NADPH and SDS as both membrane solubilizer and stimulant of this system, we examined the direct inhibitory effect of these drugs on the NADPH-oxidase system. When both membrane and cytosolic components were pretreated with epinastine, ketotifen, mequitazine and oxatomide, epinastine, ketotifen and mequitazine inhibited O_2^- generation by the SDS-stimulated NADPH-oxidase system, but oxatomide did not. Epinastine, ketotifen and mequitazine might have a direct inhibitory effect on the O_2^- generating-NADPH oxidase system. Ketotifen and mequitazine inhibited superoxide generation from the NADPH-oxidase system that was reconstructed from the membrane fraction exposed to the drug, the cytosol fraction, FAD, NADPH and SDS, but epinastine and oxatomide did not affect this NADPH oxidase system. Ketotifen and mequitazine have been shown to decrease membrane fluidity (13). The NADPH-oxidase system may be partially inhibited due to the membrane stabilizing action of these drugs. However, epinastine had no influence on the membrane fluidity (2). Epinastine augmented the adenylate cyclase activity, and inhibited Ca$^{2+}$ release from the intracellular Ca store of rat peritoneal mast cells and calmodulin activity (2). The increase in cyclic AMP content prevents O_2^- generation from neutrophils (unpublished data, N. Fukuishi and M. Akagi), and the initiation of O_2^- generation may be attributable to the Ca$^{2+}$-calmodulin dependent process(es) (14). Therefore, epinastine may partially inhibit O_2^- generation through the increase in cyclic AMP content and the inhibition of a Ca$^{2+}$-calmodulin dependent process(es).

In conclusion, our studies suggest that epinastine may inhibit NADPH oxidase through the inhibition of cytosolic proteins, p67-phox and p47-phox, and ketotifen and mequitazine, through the obstruction of membrane-associated factors, cytochrome b$_{558}$. On the other hand, oxatomide may inhibit superoxide generation through an indirect influence on the NADPH oxidase system.

Acknowledgments
This research was supported in part by a Grant-in-Aid from the Ministry of Education, Science and Culture, Japan (No. 05671858).
REFERENCES

1. Tasaka K, Akagi M, Izushi K and Aoki I: Antiallergic effect of epinastine: the elucidation of the mechanism. Pharmacometrics 39, 365–373 (1990)

2. Kamei C, Akagi M, Mio M, Kitazumi K, Izushi K, Masaki S and Tasaka K: Antiallergic effect of epinastine (WAL 801 CL) on immediate hypersensitivity reactions: (I) Elucidation of the mechanism for histamine release inhibition. Immunopharmacocol Immunotoxicol 14, 191–205 (1992)

3. Fugster A, Bechtel WD, Kuhn FJ and Mierau J: In vitro and in vivo studies of the non-sedating antihistamine epinastine. Arzneimittel Forschung 38, 1446–1453 (1988)

4. Babior BM and Kipness RS: Superoxide-forming enzyme from human neutrophils: Evidence for a flavin requirement. Blood 50, 517–524 (1977)

5. Abo A, Boyhan A, West I, Thrasher AG and Segal AW: Reconstitution of neutrophil NADPH oxidase activity in the cell-free system by four components: p67-phox, p47-phox, p21rac1, and cytochrome b245. J Biol Chem 267, 16767–16770 (1992)

6. Oyanagui Y: Participation of superoxide anions at the prostaglandin phase of carrageenan foot-oedema. Biochem Pharmacol 25, 1465–1472 (1976)

7. Nakano M: Determination of superoxide radical and singlet oxygen based on chemiluminescence of luciferin analogs. Methods Enzymol 186, 585–591 (1990)

8. Bromberg Y and Pick E: Activation of NADPH-dependent superoxide production in a cell-free system by sodium dodecyl sulfate. J Biol Chem 260, 13539–13545 (1985)

9. Seligmann EB, Fletcher PM and Gallin IJ: Histamine modulation of human neutrophil oxidative metabolism, locomotion, degranulation and membrane potential changes. J Biol Immunol 130, 1902–1909 (1983)

10. Knaus UG, Heyworth PG, Evans T, Curnutte JT and Bokoch GM: Regulation of phagocyte oxygen radical production by the GTP-binding protein rac 2. Science 254, 1512–1515 (1991)

11. Abo A, Pick E, Hall A, Totty N, Teahan CG and Segal AW: Activation of the NADPH oxidase involves the small GTP-binding protein p-21 rac-1. Nature 353, 668–670 (1991)

12. Parkand AW and Babior BM: The translocation of respiratory burst oxidase components from cytosol to plasma membrane is regulated by guanine nucleotides and diacylglycerol. J Biol Chem 267, 19901–19906 (1992)

13. Akagi M, Mio M and Tasaka K: Antiallergic effects of terfenadine on immediate type hypersensitivity reactions. Immunopharmacocol Immunotoxicol 9, 257–279 (1983)

14. Al-Mohanna FA and Hallett MB: The use of fura-2 to determine the relationship between cytoplasmic free Ca2+ and oxidase activation in rat neutrophils. Cell Calcium 9, 17–26 (1988)