Nebulized dexmedetomidine improves pulmonary shunt and lung mechanics during one-lung ventilation: a randomized clinical controlled trial

Bo Xu 1,2, Hong Gao 1, Dan Li 1, Chunxiao Hu Corresp., 1, Jianping Yang Corresp. 2

1 Department of Anesthesiology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu, China
2 Department of Anesthesiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China

Corresponding Authors: Chunxiao Hu, Jianping Yang
Email address: huchunxiao91211@163.com, szjpyang@126.com

Background. Dexmedetomidine (Dex), a selective α₂-adrenergic receptor agonist, has been previously reported to attenuate intrapulmonary shunt during one-lung ventilation (OLV) and to alleviate bronchoconstriction. However, the therapeutic effects of nebulized Dex on pulmonary shunt and lung mechanics during OLV have not been evaluated. Here we determine whether nebulized dexmedetomidine improved pulmonary shunt and lung mechanics in patients undergoing elective thoracic surgery in a prospective randomized controlled clinical trial.

Methods. One hundred and twenty-eight patients undergoing elective thoracoscopic surgery were included in this study and randomly divided into four groups: 0.9% saline (Placebo group), 0.5 μg/kg (Dex₀·₅ group), 1 μg/kg (Dex₁ group) and 2 μg/kg (Dex₂ group) dexmedetomidine. After bronchial intubation, patients received different nebulized doses of dexmedetomidine (0.5 μg/kg, 1 μg/kg and 2 μg/kg) or 0.9% saline placebo during two-lung ventilation (TLV). OLV was initiated 15 min after bronchial intubation. Anesthesia was maintained with intravenous infusion of cisatracurium and propofol. Bispectral Index values were maintained within 40–50 by adjusting the infusion of propofol in all groups. Arterial blood gas samples and central venous blood gas samples were taken as follows: 15 min after bronchial intubation during two-lung ventilation (TLV₁₅), after 30 and 60 min of OLV (OLV₃₀ and OLV₆₀, respectively) and 15 min after reinstitution of TLV (ReTLV). Dynamic compliance was also calculated at TLV₁₅, OLV₃₀, OLV₆₀ and ReTLV.

Results. Dex decreased the requirement of propofol in a dose-dependent manner (P=0.000). Heart rate (HR) and mean arterial pressure (MAP) displayed no significant difference among groups (P=0.397 and 0.863). Compared with placebo group, Dex administered between 0.5 and 2 μg/kg increased partial pressure of oxygen (PₐO₂) significantly at OLV₃₀ and OLV₆₀ (P=0.000), however Dex administered between 1 and 2 μg/kg decreased pulmonary shunt fraction (Qₛ/Qₜ) at OLV₃₀ and OLV₆₀ (P=0.000).
with the placebo group, there were significant increases with dynamic compliance (Cdyn) after OLV in Dex\textsubscript{0.5}, Dex\textsubscript{1} and Dex\textsubscript{2} group ($P=0.000$). **Conclusions.** Nebulized dexmedetomidine improved oxygenation not only by decreasing pulmonary shunt but also by improving lung compliance during OLV, which may be effective in managing OLV.
Nebulized dexmedetomidine improves pulmonary shunt and lung mechanics during one-lung ventilation: a randomized clinical controlled trial

Bo Xu 1,2, Hong Gao 1, Dan Li 1, Chunxiao Hu 1, Jianping Yang 2

1 Department of Anesthesiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China

2 Department of Anesthesiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China

Corresponding Author:

Chunxiao Hu 1

299 Qingyang road, Wuxi, Jiangsu, 214023, China

Email address: huchunxiao91211@163.com

Jianping Yang 2

188 Shizi Street, Suzhou, Jiangsu, 215006, China

Email address: szjpyang@126.com
Abstract

Background. Dexmedetomidine (Dex), a selective α2-adrenergic receptor agonist, has been previously reported to attenuate intrapulmonary shunt during one-lung ventilation (OLV) and to alleviate bronchoconstriction. However, the therapeutic effects of nebulized Dex on pulmonary shunt and lung mechanics during OLV have not been evaluated. Here we determine whether nebulized dexmedetomidine improved pulmonary shunt and lung mechanics in patients undergoing elective thoracic surgery in a prospective randomized controlled clinical trial.

Methods. One hundred and twenty-eight patients undergoing elective thoracoscopic surgery were included in this study and randomly divided into four groups: 0.9% saline (Placebo group), 0.5 μg/kg (Dex0.5 group), 1 μg/kg (Dex1 group) and 2 μg/kg (Dex2 group) dexmedetomidine. After bronchial intubation, patients received different nebulized doses of dexmedetomidine (0.5 μg/kg, 1 μg/kg and 2 μg/kg) or 0.9% saline placebo during two-lung ventilation (TLV). OLV was initiated 15 min after bronchial intubation. Anesthesia was maintained with intravenous infusion of cisatracurium and propofol. Bispectral Index values were maintained within 40–50 by adjusting the infusion of propofol in all groups. Arterial blood gas samples and central venous blood gas samples were taken as follows: 15 min after bronchial intubation during two-lung ventilation (TLV15), after 30 and 60 min of OLV (OLV30 and OLV60, respectively) and 15 min after reinstitution of TLV (ReTLV). Dynamic compliance was also calculated at TLV15, OLV30, OLV60 and ReTLV.

Results. Dex decreased the requirement of propofol in a dose-dependent manner (P=0.000). Heart rate (HR) and mean arterial pressure (MAP) displayed no significant difference among groups (P=0.397 and 0.863). Compared with placebo group, Dex administered between 0.5 and 2 μg/kg increased partial pressure of oxygen (PₐO₂) significantly at OLV30 and OLV60 (P=0.000), however Dex administered between 1 and 2 μg/kg decreased pulmonary shunt fraction (Qₛ/Qₜ) at OLV30 and OLV60 (P=0.000). Compared with the placebo group, there were significant increases with dynamic compliance (Cdyn) after OLV in Dex0.5, Dex1 and Dex2 group (P=0.000).
Conclusions. Nebulized dexmedetomidine improved oxygenation not only by decreasing pulmonary shunt but also by improving lung compliance during OLV, which may be effective in managing OLV.

Introduction
Thoracic surgical procedure frequently requires one-lung ventilation (OLV) to improve the operational field of vision and access to the operative space. However, OLV is commonly associated with hypoxemia due to intrapulmonary shunt in the nonventilated collapsed lung. Hypoxemia, defined as a drop in arterial hemoglobin oxygen saturation (S_aO_2), therefore leads to acute hypoxic pulmonary vasoconstriction (HPV) (Cheng et al., 2017). HPV is an important protective mechanism by which blood flow is diverted from the nonventilated lung toward a better-ventilated region, thereby maintaining adequate arterial oxygenation. However, many anesthetics, such as inhalation anesthetics and propofol, have shown positive evidence of inhibiting HPV and increasing hypoxemia (Lumb & Slinger, 2015).

Dexmedetomidine (Dex) is an a_2-adrenoreceptor agonist that has found increasing clinical use – for lung protection, for gentle emergence from anesthesia, as an analgesic, as an adjuvant to local anesthetics during regional anesthesia, and even as a supplemental sedative/anxiolytic (Barends et al., 2017; Nguyen et al., 2017). In the last few years, some studies have shown that nebulized Dex administration may allow minimal systemic effects and rapid drug absorption through the respiratory mucosa (Zanaty & El Metainy, 2015; Abdel-Ghaffar et al., 2018). Although nebulized drug administration may be preferred through pulmonary delivery, there are currently no data describing the nebulized effects of Dex on arterial oxygenation during OLV. This study was designed to test the hypothesis that nebulized Dex may improve arterial oxygenation during OLV. Additionally, this study was meant to explore the feasibility of the application of nebulized Dex in OLV during elective thoracic surgery.

Materials & Methods
Study design and participants
This study was a prospective, randomized controlled clinical trial, performed in Wuxi People’s Hospital in China. These researchers obtained ethical approval for the study protocol from the Medical Ethics Committee of Wuxi People’s Hospital (Ethical Application Ref: KYuKS201816). This study was registered at the Chinese Ethics Committee of Registering Clinical Trials (ChiCTR1800020112). One hundred and fifty patients undergoing elective thoracoscopic surgery were approached and 128 of them completed the study (Fig. 1). Written informed consent was taken from all participants. The inclusion criteria were as follows: an American Society of Anesthesiologists Physical Status rating of I to II, aged 20-80 years and height 150-180 cm. Patients with the following conditions were excluded from participation: previous allergic reaction to Dex, serious cardiovascular disorders, liver or kidney dysfunction, arrhythmia, hypertensive patients, severe neuropsychiatric disease, long-term alcohol dependence, or other drug addiction. Patients were randomly allocated into four study groups: 0.9% saline (placebo group), 0.5 μg/kg (Dex₀.₅ group), 1 μg/kg (Dex₁ group) or 2 μg/kg (Dex₂ group). Randomization was performed by a computer-generated randomization table, with group allocation concealed in sealed opaque envelopes. An anesthesia nurse who was not involved in the research study was tasked with opening the envelopes 1 h prior to induction of anesthesia and preparation of dexmedetomidine (Jiangsu Hengrui Medicine Co., Ltd) or placebo in identical nebulizer with matching randomization codes. Dexmedetomidine (0.5 μg/kg, 1 μg/kg and 2 μg/kg) was diluted with 0.9% saline into 5 ml and an equal volume of 0.9% saline was used as a control in the placebo group. All preoperative and intraoperative management was performed by the same anesthesiologist who was blinded to the study drug. All the data analysis and statistical evaluation was completed by a professional assistant who was blinded to the patient group allocation.

Study protocol

Patients were monitored by standard monitoring devices upon arrival at the operating room. A 22-gauge arterial catheter (Braun Co.) was inserted in the right or left radial artery. A central
A venous catheter was placed through the right internal jugular vein and therefore the tip would lie near the right atrium. After anesthesia was induced with midazolam (0.05 mg/kg), sufentanil (0.3-0.4 μg/kg), propofol (1.5-2 mg/kg) and cisatracurium (0.15 mg/kg), bronchial intubation was performed with a left-sided double lumen tube (size 37/35 for males and 35/33 for females), then the correct position was confirmed using fiberoptic bronchoscopy. Mechanical ventilation is used in a pressure-controlled mode for protective ventilation during the study. The ventilator parameters were as follow: inspiratory pressure (P_{insp}) 20 cmH$_2$O, respiratory quotient (I:E) 1:2, oxygen concentration (F$_{O_2}$) 100% and respiratory rate adjusted to maintain end-tidal carbon dioxide partial pressure (P$_{ETCO_2}$) between 30 and 35 mmHg. 5 ml of the study drug was immediately administered via the ventilator circuit (Fig. 2) over 10 min after bronchial intubation during two-lung ventilation. OLV was initiated 15 min after bronchial intubation. During the study, anesthesia was maintained within a bispectral index (BIS) range of 40 to 50 using continuously infused propofol and intermittent administration of cisatracurium. Positive end expiratory pressure (PEEP) to the ventilated lung during OLV was applied in patients who failed to maintain adequate oxygenation (S$_p$O$_2$ >92%). Patients requiring PEEP or other recruitment maneuvers for oxygenation were excluded from final analysis. Atropine was administered if heart rate (HR) was less than 50, and ephedrine was required to maintain hemodynamic stability if mean arterial pressure (MAP) had more than 20% decrease from baseline.

Outcome Measures

Arterial and central venous samples were obtained for blood gas analysis at four time points: 15 min after bronchial intubation during two-lung ventilation (TLV$_{15}$), 30 min and 60 min after OLV (OLV$_{30}$ and OLV$_{60}$) and 15 min after reinstitution of TLV (ReTLV). Pulmonary shunt fraction (Q_s/Q_t) was calculated using the following formula:

$Q_s/Q_t = (C_aO_2 - C_vO_2)/(C_cO_2 - C_vO_2) \times 100\%$.

Whereby C_aO_2 (oxygen content of arterial blood) = ($P_aO_2 \times 0.0031$) + ($Hb \times 1.34 \times S_aO_2$).

C_vO_2 (oxygen content of venous blood) = ($P_vO_2 \times 0.0031$) + ($Hb \times 1.34 \times S_vO_2$).
\[C_cO_2= ([F_iO_2 \times (PB - \rho H_2O) - (P_aCO_2/RQ)] \times 0.0031) + (Hb \times 1.34). \]

PB – Barometric pressure (760 mmHg), \(\rho H_2O = 47 \) mmHg,
Hb – Hemoglobin, RQ – Respiratory quotient (0.8).

Dynamic compliance (Cdyn) was obtained from the Primus ventilator at TLV, OLV, OLV, and ReTLV. HR and MAP were recorded at these different times.

Statistical analysis

Sample size calculation was based on the difference of \(P_aO_2 \) by 40 mmHg between groups with a power of 90% and two-sided \(\alpha \) of 0.05 by repeated measures analysis of variance (Lee et al., 2016). The enumeration data (gender, ASA and operative site) were measured by \(\chi^2 \) test. Data with normal distributions were presented as mean \(\pm \) standard deviation. Intergroup comparisons were determined by LSD test. Variables with repeated measures such as \(PaO_2, Cdyn, Q_s/Q_t, HR, \) MAP and BIS were analyzed using repeated measures analysis of variance. All statistical analyses were performed with SPSS version 23.0 (IBM Inc., Armonk, NY, USA) and \(P < 0.05 \) was considered statistically significant.

Results

Here we enrolled and completed studies of total 128 patients during this study. The CONSORT flow diagram is shown in Fig. 1.

Demographic and perioperative data are detailed in Table 1. Overall, there were no differences among groups regarding age (\(P=0.960 \)), ASA (\(P=0.982 \)), gender (\(P=0.919 \)), weight (\(P=0.204 \)), height (\(P=0.259 \)), operative site (\(P=0.988 \)), operational time (\(P=0.648 \)), crystalloid (\(P=0.611 \)), colloid (\(P=0.675 \)), urine (\(P=0.291 \)), \(pH \) (\(P=0.978 \)), \(PaO_2 \) (\(P=0.547 \)), \(P_aCO_2 \) (\(P=0.791 \)), Hb (\(P=0.934 \)), FEV\(_1\) (\(P=0.705 \)), FVC (\(P=0.417 \)) and FEV\(_1\)/FVC (\(P=0.809 \)).

The values of HR, MAP and BIS weren’t significantly different among groups (\(P=0.397, 0.863 \) and 0.815, respectively). During the transition from TLV\(_{15}\) to OLV, \(PaO_2 \) and Cdyn decreased and \(Q_s/Q_t \) increased significantly in the four groups (\(P=0.000 \)). During OLV, \(PaO_2 \) and Cdyn had a significant increase in Dex\(_{0.5}\), Dex\(_1\) and Dex\(_2\) groups compared with the placebo group.
Patients in the Dex_1 and Dex_2 group required significantly less propofol during surgery than
patients in the placebo group to maintain BIS values between 40 and 50 \((P=0.000)\) (Tables 2 and
3). However, the requirement of sufentanil, cisatracurium, ephedrine and atropine did not differ
significantly among groups \((P=0.728, 0.204, 1.0 \text{ and } 1.0, \text{ respectively})\) (Table 3).

Discussion

Intraoperative hypoxemia can lead to long term complications including end organ failure and
increased mortality. One two-center study of a large non-cardiac surgical population estimated
that one in fifteen patients experienced hypoxemia for at least 2 minutes and that one in sixty-
four patients experienced hypoxemia for a minimum of 5 minutes (Ehrenfeld et al., 2010). The
decreased arterial oxygen tension \((\text{PaO}_2)\) may be a reliable indicator of abnormal lung function
and predict intraoperative hypoxemia during OLV (Karzai & Schwarzkopf, 2009). Anesthetics
may negatively impact the hemodynamic changes that influence \text{PaO}_2. For instance, isoflurane
and halothane reduce HPV by up to 50% at 2 MAC and increase the shunt fraction and risk of
hypoxia (Saraswat V, 2015). Since a majority of intraoperative hypoxemia occurs during OLV,
emphasis remains on the discovery and development of appropriate anesthetic agents.

Dex was applied to produce a level of sedation during the perioperative period and in
mechanically ventilated patients (Chen & Shen, 2014; Saraswat, 2015). In a recent meta-analysis
of 14 randomized controlled trials, Dex was found to increase oxygenation index in seven
studies, decrease intrapulmonary shunt in five studies, decrease perioperative HR and MAP in
nine studies, and reduce the concentration of the inflammatory factors TNF-\(\alpha\) and IL-6 in four
studies during OLV (Huang et al., 2017). Intravenous Dex along with isoflurane inhalation was
shown to increase \(\text{P}_a\text{O}_2\) and significantly decrease \(Q_s/Q_t\), compared to a saline + isoflurane group
in a population of adults undergoing elective thoracic surgery (Xia et al., 2013), indicating its
safety and feasibility during OLV.
Dex is commonly delivered intravenously but can also be administered as a nebulized premedication in uncooperative children. Inhalation of nebulized Dex is an alternative method of administration, which is related to high bioavailability of Dex (Anttila et al., 2003; McCormick et al., 2008). Nebulized respiratory administration may results in maximizing the surface area of absorption, less drug loss and increased clinical effectiveness (Wolfe & Braude, 2010). In pediatric populations, it has been demonstrated nebulized Dex (as a premedicant) significantly improved cannulating conditions such as parental separation, face mask acceptance and IV placement (Zanaty & El Metainy, 2015), with no hemodynamic side-effects (Zanaty & El Metainy, 2015; Abdel-Ghaffar et al., 2018). However, these studies were often applied to pediatric populations.

In the present study, we evaluated whether nebulized Dex could improve oxygenation in adult patients undergoing thoracic surgery. The major finding of this study was that nebulized Dex increased P_aO_2 during OLV. This is consistent with the results of previous study done by Kerman et al. and Xia et al. (Kernan et al., 2011; Xia et al., 2013). We surmise this finding may be associated with the fact that intravenous Dex improved oxygenation and improved lung mechanics during OLV. Additionally, there was no marked systemic hemodynamic change in our study. This may be due to the tiny systemic effect of nebulized Dex. In contrast, Nguyen et al. found that intravenous Dex can cause hypotension and bradycardia (Nguyen et al., 2017). Thus, this is especially meaningful as nebulized Dex is superior to standard intravenous route.

We also found that 0.5-2 $\mu g/kg$ nebulized Dex significantly increased dynamic compliance during OLV. These results were in line with intravenous administration in chronic obstructive pulmonary disease (COPD) patients undergoing lung cancer surgery (Lee et al., 2016). Similar results have been reported in a study of morbidly obese patients with restrictive lung disease undergoing bariatric surgery (Hasanin et al., 2018). However, Groeben has been previously reported that inhalation of Dex caused significant bronchoconstriction in an animal study in contrast to intravenous administration (Groeben, Mitzner & Brown, 2004).
bronchoconstriction is because of a variety of factors. Firstly, aerosols of water generated ultrasonically to provoke bronchoconstriction in persons without asthma (Gonzalez et al., 1994; Groeben et al., 2000). Secondly, the initial bronchoconstriction may result from release of inflammatory mediators on airway smooth muscle or activating reflexes mediated via afferent fibers of the vagus nerve (Gonzalez et al., 1994; Bulut, Hirshman & Brown, 1996). Nevertheless, subsequent bronchodilation can be demonstrated after airway was irritated by aerosolized drugs. Thus, it should be likely that Dex may directly improve oxygenation by stimulating bronchodilation to increase dynamic compliance during OLV, though this remains to be substantiated in future studies.

Another finding of this study was that the utilization of nebulized Dex significantly reduced the requirements of anesthetic, specifically propofol. This phenomenon has been previously characterized in intravenous Dex, which decreased the need of isoflurane (Xia et al., 2013) and propofol (Sen et al., 2013) during elective spinal surgery. Although bradycardia and hypotension have been reported in the adult population, patients receiving nebulized Dex did not require more atropine and ephedrine to maintain adequate hemodynamic stability. Thus it’s likely that nebulized Dex may reduce haemodynamic changes related to propofol (Sherman & Barrick, 2019).

Interestingly, 1-2 μg/kg Dex reduced Qs/Qt and improved oxygenation during OLV. This may be due to a variety of factors. Firstly, the attenuation of local inflammation factors contributing to the hypoxic vasodilator effect of OLV may have been influenced by Dex as has been characterized to diminish the production of these pro-inflammatory factors (Zhang et al., 2018; Meng et al., 2018). Secondly, Dex may have played a direct role in pulmonary artery mechanics, promoting the occurrence of HPV by directly impacting bronchodilation (Lee et al., 2016).

Finally, reduction in the requirement of propofol, which has been shown to attenuate HPV in a dose-dependent manner, may have contributed to decreased pulmonary shunt and improved HPV
All of the above mechanisms are based solely on pathophysiologic speculations and remain to be further ascertained. Despite the novel findings of the present study, there are several limitations to consider. Firstly, this study used central venous samples instead of mixed venous samples as pulmonary catheter placement isn’t routine in thoracotomy cases at the participating hospital. However, this technique has been validated and used in many earlier studies (Turnaoglu et al., 2001; Ozcan et al., 2007). Secondly, both left and right thoracotomies and multiple lung pathologies were included in the study. In the future, designing a study aimed at patients with shared trauma and sided thoracotomy may bring to light more accurate results. Thirdly, studies with larger sample sizes are warranted to analyze the safety of nebulized Dex.

Conclusion

Nebulized dexmedetomidine improved oxygenation not only by reducing intrapulmonary shunt but also by increasing lung compliance during OLV. This strategy simultaneously decreased the requirement of propofol without hemodynamic instability. Thus, this study demonstrated that nebulized dexmedetomidine can be used as a feasible strategy for improving oxygenation during OLV in patients undergoing thoracotomy. Nonetheless, studies with larger sample sizes are necessary to clarify the effects and the safety of nebulized Dex used.

Acknowledgements

The authors would like to thank the nurse anesthetists in the operating room of the Wuxi People’s Hospital, Jiangsu, Republic of China, for their involvement and support.

References

1. Cheng HY, Croft QPP, Frise MC, Talbot NP, Petousi N, Robbins PA, Dorrington KL. 2017. Human hypoxic pulmonary vasoconstriction is unaltered by 8 h of preceding isocapnic hyperoxia. Physiol Rep 5(17): e13396 DOI: 10.14814/phy2.13396
2. Lumb AB, Slinger P. 2015. Hypoxic pulmonary vasoconstriction: physiology and anesthetic implications. Anesthesiology 122(4):932-46 DOI: 10.1097/ALN.0000000000000569.
3. Barends CR, Absalom A, van Minnen B, Vissink A, Visser A. 2017. Dexmedetomidine versus Midazolam in Procedural Sedation. A Systematic Review of Efficacy and Safety. PLoS One 12(1): e0169525 DOI: 10.1371/journal.pone.0169525

4. Nguyen V, Tiemann D, Park E, Salehi A. 2017. Alpha-2 Agonists. Anesthesiol Clin 35(2):233-245 DOI: 10.1016/j.anclin.2017.01.009

5. Abdel-Ghaffar HS, Kamal SM, El Sherif FA, Mohamed SA. 2018. Comparison of nebulised dexmedetomidine, ketamine, or midazolam for premedication in preschool children undergoing bone marrow biopsy. Br J Anaesth 121(2):445-452 DOI: 10.1016/j.bja.2018.03.039

6. Zanaty OM, El Metainy SA. 2015. A comparative evaluation of nebulized dexmedetomidine, nebulized ketamine, and their combination as premedication for outpatient pediatric dental surgery. Anesth Analg 121(1):167-71 DOI: 10.1213/ANE.0000000000000728

7. Ehrenfeld JM, Funk LM, Van Schalkwyk J, Merry AF, Sandberg WS, Gawande A. 2010. The incidence of hypoxemia during surgery: evidence from two institutions. Can J Anaesth 57: 888-897 DOI: 10.1007/s12630-010-9366-5

8. Karzai W, Schwarzkopf K. 2009. Hypoxemia during one-lung ventilation: prediction, prevention, and treatment. Anesthesiology 110: 1402-1411 DOI: 10.1097/ALN.0b013e31819fb15d

9. Saraswat V. 2015. Effects of anaesthesia techniques and drugs on pulmonary function. Indian journal of anaesthesia 59(9):557–64 DOI:10.4103/0019-5049.165850.

10. Chen K, Shen X. 2014. Dexmedetomidine and Propofol total intravenous anesthesia for airway foreign body removal. Ir J Med Sci 183(3):481-4 DOI: 10.1007/s11845-014-1105-4.

11. Huang SQ, Zhang J, Zhang XX, Liu L, Yu Y, Kang XH, Wu XM, Zhu SM. 2017. Can Dexmedetomidine Improve Arterial Oxygenation and Intrapulmonary Shunt during One-lung Ventilation in Adults Undergoing Thoracic Surgery? A Meta-analysis of Randomized,
Placebo-controlled Trials. Chin Med J (Engl) 30(14):1707-1714 DOI: 10.4103/0019-
5049.165850

12. Xia R, Yin H, Xia ZY, Mao QJ, Chen GD, Xu W. 2013. Effect of intravenous infusion of
dexmedetomidine combined with inhalation of isoflurane on arterial oxygenation and
intrapulmonary shunt during single-lung ventilation. Cell Biochem Biophys 67(3):1547–50
DOI: 10.1007/s12013-013-9659-8.

13. McCormick ASM, Thomas VL, Berry D, Thomas PW. 2008. Plasma concentrations and
sedation scores after nebulized and intranasal midazolam in healthy volunteers. Br J Anaesth
100(5):631-6 DOI: 10.1093/bja/aen072

14. Anttila M, Penttilä J, Helminen A, Vuorilehto L, Scheinin H. 2003. Bioavailability of
dexmedetomidine after extravascular doses in healthy subjects. Br J Clin Pharmacol
56(6):691-3 DOI: 10.1046/j.1365-2125.2003.01944.x

15. Wolfe TR, Braude DA. 2010. Intranasal medication delivery for children: a brief review and
update. Pediatrics 126(3):532-7 DOI: 10.1542/peds.2010-0616

16. Kernan S, Rehman S, Meyer T, Bourbeau J, Caron N, Tobias JD. 2011. Effects of
dexmedetomidine on oxygenation during one-lung ventilation for thoracic surgery in adults.
J Minim Access Surg 7(4):227-31 DOI: 10.4103/0972-9941.85645

17. Lee SH, Kim N, Lee CY, Ban MG, Oh YJ. 2016. Effects of dexmedetomidine on
oxygenation and lung mechanics in patients with moderate chronic obstructive pulmonary
disease undergoing lung cancer surgery. Eur J Anaesthesiol 33(4):275-82 DOI:
10.1097/EJA.0000000000000405

Hasanin A, Taha K, Abdelhamid B, Abougabal A, Elsayad M, Refaie A, Amin S, Wahba S,
Omar H, Kamel MM, Abdelwahab Y, Amin SM. 2018. Evaluation of the effects of
dexmedetomidine infusion on oxygenation and lung mechanics in morbidly obese patients
with restrictive lung disease. BMC Anesthesiol 18(1):104 DOI: 10.1186/s12871-018-0572-y
19. Groeben H, Mitzner W, Brown RH. 2004. Effects of the a2-Adrenoceptor Agonist Dexmedetomidine on Bronchoconstriction in Dogs. Anesthesiology 100(2):359-63 DOI: 10.1097/00000542-200402000-00026

20. Gonzalez RM, Bjerke RJ, Drobycki T, Stapelfeldt WT, Green JM, Janowitz MJ, Clark M. 1994. Prevention of endotracheal tube-induced coughing during emergence from general anesthesia. Anesth Analg 79(4):792-5 DOI: 10.1213/00000539-199410000-00030

21. Bulut Y, Hirshman CA, Brown RH. 1996. Prevention of lidocaine aerosol-induced bronchoconstriction with intravenous lidocaine. Anesthesiology 85(4):853-9 DOI: 10.1097/00000542-199610000-00021

22. Groeben H, Großwendt T, Silvanus MT, Beste M, Peters J. 2000. Lidocaine inhalation for local anesthesia and attenuation of bronchial hyperreactivity with least airway irritation: Effect of three different dose regimens. Eur J Anaesthesiol 17(11):672-9 DOI: 10.1046/j.1365-2346.2000.00745.x

23. Sen S, Chakraborty J, Santra S, Mukherjee P, Das B. 2013. The effect of dexmedetomidine infusion on propofol requirement for maintenance of optimum depth of anaesthesia during elective spine surgery. Indian journal of anaesthesia 57(4):358–363 DOI:10.4103/0019-5049.118558

24. Sherman JD, Barrick B. 2019. Total intravenous anesthetic versus inhaled anesthetic: pick your poison. Anesthesia and Analgesia 128 (1): 13-15 DOI: 10.1213/ANE.0000000000003898

25. Zhang W, Zhang S, Li B, Sun M, Zhang J. 2018. Paravertebral dexmedetomidine as an adjuvant to ropivacaine protects against independent lung injury during one-lung ventilation: a preliminary randomized clinical trial. BMC Anesthesiol 18(1):67 DOI: 10.1186/s12871-018-0532-6.

26. Meng L, Li L, Lu S, Li K, Su Z, Wang Y, Fan X, Li X, Zhao G. 2018. The protective effect of dexmedetomidine on LPS induced acute lung injury through the HMGB1-mediated
336 TLR4/NF-κB and PI3K/Akt/mTOR pathways. Mol Immunol 94:7–17 DOI:
337 10.1016/j.molimm.2017.12.008
338 27. Ozcan PE, Sentürk M, Sungur Ulke Z, Toker A, Dilege S, Ozden E, Camci E. 2007. Effects
339 of thoracic epidural anaesthesia on pulmonary venous admixture and oxygenation during
340 one-lung ventilation. Acta Anaesthesiol Scand 51(8):1117-22 DOI: 10.1111/j.1399-
341 6576.2007. 01374. x
342 28. Turnaoglu S, Tugrul M, Camci E, Cakar N, Akinci O, Ergin P. 2001. Clinical applicability
343 of the substitution of mixed venous oxygen saturation with central venous oxygen saturation.
344 J Cardiothorac Vasc Anesth 15(5):574-9. DOI: https://doi.org/10.1053/jcan.2001.26534
Figure 1

CONSORT flow diagram among four groups

Placebo group, 0.9% saline. Dex₀.₅ group, 0.5 μg/kg Dex. Dex₁ group, 1 μg/kg Dex. Dex₂ group, 2 μg/kg Dex.
Patients approached (n=150)

Patients enrolled (n=135)

Baseline characteristics

Randomization

Placebo group
n=38

Analyzed (n=32)
Failed P_O2 (n=6)

Dex_{65} group
n=33

Analyzed (n=32)

Dex group
n=32

Analyzed (n=32)
Failed BIS (n=1)

Dex_{30} group
n=32

Analyzed (n=32)
Figure 2

The ventilator circuit

The vibrating mesh nebulizer (Aeroneb Solo, Aerogen, Galway, Ireland) was connected to the circuit with adult T-piece. The devices were placed in the inspiratory limb before the Y-piece.
Table 1 (on next page)

Demographic and perioperative data (N=32)

All measurement data are expressed as means ± SD.

Compared with Placebo group, *P<0.05.
Parameters	Placebo	Dex0.5	Dex1	Dex2	Significance (P)
Age(year)	55.5 ± 11.9	55.6 ± 13.0	56.9 ± 8.9	56.3 ± 12.3	0.960
ASA I/II(n)	27/5	26/6	27/5	27/5	0.982
Gender(male/female)	15/17	17/15	17/15	15/17	0.919
Weight(kg)	62.8 ± 11.4	65.0 ± 11.5	60.1 ± 9.6	60.1 ± 10.4	0.204
Height(cm)	164.4 ± 7.6	167.3 ± 7.7	165.1 ± 5.6	164.4 ± 5.2	0.259
Operative site(Right/Left)	14/18	13/19	14/18	13/19	0.988
Operational time(min)	117.9 ± 25.8	116.3 ± 25.9	112.3 ± 21.8	111.8 ± 19.0	0.648
Crystalloid(ml)	571.9 ± 172.7	521.9 ± 131.3	562.5 ± 164.1	553.1 ± 158.6	0.611
Colloid(ml)	440.6 ± 126.6	462.5 ± 100.8	435.9 ± 133.3	425.6 ± 128.4	0.675
Urine(ml)	168.1 ± 38.1	184.1 ± 43.5	168.1 ± 53.5	163.4 ± 45.6	0.291
PH	7.41 ± 0.03	7.41 ± 0.02	7.40 ± 0.03	7.40 ± 0.02	0.978
P_aO_2(mmHg)	84.3 ± 5.8	83.6 ± 6.3	82.9 ± 4.8	82.3 ± 6.2	0.547
P_aCO_2(mmHg)	35.3 ± 1.5	35.3 ± 1.5	35.2 ± 1.4	35.0 ± 1.0	0.791
Hb(mg l$^{-1}$)	117.2 ± 12.0	117.2 ± 11.7	118.3 ± 12.5	118.8 ± 11.9	0.934
FEV$_1$(%)	80.5 ± 10.3	82.0 ± 9.5	79.2 ± 10.4	80.0 ± 8.5	0.705
FVC(%)	88.2 ± 8.5	88.8 ± 7.8	86.1 ± 8.9	86.2 ± 6.9	0.417
FEV$_1$/FVC(%)	84.3 ± 8.5	85.6 ± 8.2	83.7 ± 8.7	84.0 ± 7.5	0.809

1 Note:
2 ASA, American society of anesthesiologists physical status; PH, Hydrogen ion concentration; P_aO_2, Arterial oxygen partial pressure;
3 P_aCO_2, Arterial partial pressure of carbon dioxide; Hb, Hemoglobin concentrations; FEV$_1$, Forced expiratory volume in one second;
4 FVC, Forced vital capacity.
Table 2 (on next page)

Changes of hemodynamics and respiratory mechanics (N=32)

All data are expressed as means ± SD.

Compared with Placebo group, *P<0.05;

^P value of main effect(group); ^P value of main effect(time); ^P value of crossover effect.
Parameters	Groups	TLV_{15 min}	OLV_{30 min}	OLV_{60 min}	ReTLV	P value
P_aO₂ (mmHg)	Placebo	431.8 ± 54.3	168.6 ± 43.6	178.5 ± 41.3	402.1 ± 42.1	0.000^b
	Dex_{0.5}	435.8 ± 44.1	217.9 ± 43.5[*]	255.6 ± 47.0[*]	418.7 ± 33.2	0.000
	Dex₁	424.5 ± 38.7	242.5 ± 60.8[*]	281.2 ± 54.6[*]	405.8 ± 37.8	0.000
	Dex₂	423.4 ± 53.3	262.7 ± 53.6[*]	298.6 ± 38.4[*]	409.1 ± 51.6	0.000
P value		0.691	0.000	0.000	0.429	0.000^(P=0.000^c)
Cdyn (ml/cmH₂O)	Placebo	43.4 ± 7.1	21.0 ± 2.8	19.7 ± 2.8	32.4 ± 2.7	0.000^b
	Dex_{0.5}	42.8 ± 6.0	26.7 ± 2.4[*]	26.2 ± 2.4[*]	38.7 ± 2.6[*]	0.000
	Dex₁	42.2 ± 5.3	26.4 ± 2.6[*]	25.5 ± 2.6[*]	37.8 ± 1.8[*]	0.000
	Dex₂	41.5 ± 4.3	26.9 ± 3.2[*]	26.2 ± 2.9[*]	38.5 ± 2.5[*]	0.000
P value		0.619	0.000	0.000	0.000^(P=0.000^c)	0.000^(P=0.000^c)
Q_s/Q_t (%)	Placebo	9.9 ± 2.2	30.4 ± 2.3	27.5 ± 1.4	9.5 ± 0.5	0.000^b
	Dex_{0.5}	9.8 ± 1.2	30.0 ± 3.0	27.2 ± 2.5	9.4 ± 0.7	0.000
	Dex₁	9.4 ± 2.0	24.6 ± 2.2[*]	22.3 ± 3.6[*]	9.4 ± 0.6	0.000
	Dex₂	9.7 ± 2.3	22.6 ± 2.5[*]	21.6 ± 3.1[*]	9.8 ± 0.6	0.000
P value		0.789	0.000	0.000	0.112^(P=0.000^c)	0.000^(P=0.000^c)
HR (bpm)	Placebo	68.9 ± 9.3	74.6 ± 11.4	76.0 ± 10.3	79.3 ± 10.9	0.002
	Dex_{0.5}	70.4 ± 11.9	73.6 ± 13.2	72.8 ± 12.3	74.3 ± 13.1	0.640
	Dex₁	72.1 ± 10.3	71.6 ± 11.0	71.0 ± 11.5	74.9 ± 9.7	0.478
	Dex₂	68.3 ± 8.4	73.0 ± 10.0	70.3 ± 8.0	72.6 ± 9.0	0.121
P value		0.424	0.772	0.143	0.086^(P=0.064^c)	0.397^(P=0.064^c)
MAP (mmHg)	Placebo	82.0 ± 8.2	84.1 ± 9.5	83.0 ± 9.2	92.0 ± 10.2	0.000^b
	Dex_{0.5}	83.3 ± 10.6	81.5 ± 9.8	84.4 ± 8.7	88.3 ± 9.3	0.043
	85.6 ± 18.1	84.2 ± 8.5	83.6 ± 9.3	90.0 ± 9.1	0.132	
--------	-------------	------------	------------	------------	-------	
Dex₂	84.7 ± 6.8	82.2 ± 11.0	83.0 ± 9.3	90.7 ± 10.8	0.002	
P value	0.633	0.611	0.914	0.502	0.863*(P=0.580 c)*	

	45.6 ± 2.9	43.5 ± 2.2	44.1 ± 2.0	47.5 ± 2.0	0.000
Placebo	45.4 ± 2.4	43.2 ± 2.4	43.9 ± 2.3	47.2 ± 1.3	0.000
Dex₀.₅	45.6 ± 2.9	43.0 ± 2.4	44.8 ± 2.0	47.6 ± 2.0	0.000
Dex₁	45.3 ± 2.8	42.9 ± 2.2	44.9 ± 2.3	47.8 ± 2.5	0.000
Dex₂	45.6 ± 2.9	43.0 ± 2.4	44.8 ± 2.0	47.6 ± 2.0	0.000
P value	0.974	0.727	0.171	0.759	0.815*(P=0.650 c)*

1. Note:
2. TLV₁₅, 15 min after intubation during two-lungs ventilation; OLV₃₀, after 30 min of one-lung ventilation; OLV₆₀, after 60 min of one-lung ventilation; PₐO₂, arterial oxygen tension/mmHg; Cdyn, dynamic compliance/ml/cmH₂O; Qs/Qt (%), pulmonary shunt fraction/%; HR, heart rate/bpm; MAP, mean artery pressure/mmHg; BIS, bispectral index.
Table 3 (on next page)

Amount of anesthetic and hemodynamic agents administrated during OLV (N=32)

All data are expressed as means ± SD.

Compared with Placebo group, *P<0.05.
Parameters	Placebo	Dex₀·₅	Dex₁	Dex₂	Significance (P)
Propofol (mg)	491.3 ± 25.6	494.5 ± 28.3	444.1 ± 20.8*	388.3 ± 23.7*	0.000
Sufentanil (µg)	48.3 ± 6.4	47.5 ± 6.3	47.0 ± 5.3	46.8 ± 5.2	0.728
Cisatracurium (mg)	24.4 ± 1.7	24.8 ± 1.7	24.0 ± 1.4	24.0 ± 1.6	0.204
Ephedrine (mg)	0.3 ± 1.3	0.3 ± 1.2	0.3 ± 1.2	0.3 ± 1.2	1.0
Atropine (mg)	0.0 ± 0.1	0.0 ± 0.1	0.0 ± 0.1	0.0 ± 0.1	1.0