Cohomological Splitting of Coadjoint Orbits

Andrés Viña
Departamento de Física Universidad de Oviedo
email: avinae@correo.uniovi.es

Abstract

The rational cohomology of a coadjoint orbit O is expressed as tensor product of the cohomology of other coadjoint orbits O_k, with $\dim O_k < \dim O$.

Key words: Hamiltonian fiber bundles, Coadjoint orbits
MSC 2000: 53D30, 53D35, 57T15

1 C-splitting of coadjoint orbits

The purpose of this note is to express the rational cohomology of a given coadjoint orbit of a compact Lie group in terms of the cohomology of “smaller” coadjoint orbits. Our result is based upon two facts: The coadjoint orbit hierarchy, and the cohomological splitting of certain Hamiltonian bundles.

The coadjoint orbit hierarchy.

Let G be a compact and connected Lie group. We consider the coadjoint action of G on \mathfrak{g}^*. By X_A is denoted the vector field on \mathfrak{g}^* generated by $A \in \mathfrak{g}$. If $\mu \in \mathfrak{g}^*$, we denote by $O = G \cdot \mu$ the coadjoint orbit of μ. Then $O = G/G_\mu$, where G_μ is the subgroup of isotropy of μ. The manifold O possesses a natural symplectic structure defined by the 2-form ω, with $\omega_\nu(X_A, X_B) = \nu([A, B])$, for any $\nu \in O$. If l_g denotes the left multiplication by $g \in G$; that is, $l_g : \nu \in O \mapsto g \cdot \nu \in O$, then $l_g^* \omega = \omega$. Moreover $\iota_{X_A} \omega = d h_A$, with h_A the function on O defined by $h_A(\nu) = \nu(A)$. Therefore the action of G on O is Hamiltonian; that is, G is a subgroup of the group $\text{Ham}(O)$ of Hamiltonian symplectomorphisms of O. And using Morse theory one can prove that O is simply-connected.

On the other hand, if $\mu_1, \mu_2 \in \mathfrak{g}^*$ and $G_1 := G_{\mu_1} \subset G_{\mu_2} =: G_2$, then the orbits $O_j = G \cdot \mu_j$, $j = 1, 2$ are in the following hierarchy: There is a
symplectic fibration of \mathcal{O}_1 over \mathcal{O}_2. In fact $\mathcal{O}_1 = G \times_{G_2} (G_2 : \mu_1)$. So \mathcal{O}_1 is a fiber bundle over G/G_2 with fiber the orbit of $G_2 : \mu_1$ of G_2. Thus the fiber is in turn a symplectic manifold, and on it the group G_2 acts as a group of Hamiltonian symplectomorphisms, if G_2 is connected (for details see [2]).

Cohomological splitting of Hamiltonian bundles. Let $P \to B$ be a fiber bundle, with fiber a symplectic manifold M. This bundle is said to be Hamiltonian if its structural group reduces to the group $\text{Ham}(M)$ of Hamiltonian symplectomorphisms of M [5]. Lemma 4.11 of [4] states that the rational cohomology of any Hamiltonian fiber bundle $M \to P \to \mathcal{O}$, whose base is a coadjoint orbit, splits additively as the tensor product of the cohomology of the fiber by the one of \mathcal{O}; that is, $H^*(P) \cong H^*(M) \otimes H^*(\mathcal{O})$.

If we apply the result of Lalonde and McDuff to our Hamiltonian fibration

\[G_2 : \mu_1 \to \mathcal{O}_1 \to \mathcal{O}_2, \]

we obtain an additive isomorphism

\[H^*(\mathcal{O}_1, \mathbb{Q}) \cong H^*(\mathcal{O}_2, \mathbb{Q}) \otimes H^*(G_2/G_1, \mathbb{Q}), \]

in other words

Theorem 1 If $G_1 \subset G_2$ are stabilizers of the coadjoint action of the compact, connected Lie group G and G_2 is connected, then there is an additive isomorphism

\[H^*(G/G_1, \mathbb{Q}) \cong H^*(G/G_2, \mathbb{Q}) \otimes H^*(G_2/G_1, \mathbb{Q}). \]

Corollary 2 If μ_1, \ldots, μ_k are points of g^*, such that

\[G_{\mu_1} \subset G_{\mu_2} \subset \ldots \subset G_{\mu_k} \neq G, \]

and the G_{μ_j} are connected, then

\[H^*(G/G_{\mu_1}) \cong H^*(G/G_{\mu_k}) \otimes \bigotimes_{j=2}^{k} H^*(G_{\mu_j}/G_{\mu_{j-1}}). \]

This formula expresses the rational cohomology of the orbit $\mathcal{O}_1 = G/G_{\mu_1}$ in terms of the cohomology of orbits whose dimensions are less than $\dim \mathcal{O}_1$. 2
2 Cohomological splitting of flag manifolds

A partition p of an integer n is an unordered sequence i_1, \ldots, i_s of positive integers with sum n. This partition of n determines the subgroup

$$G_p := U(i_1) \times \ldots \times U(i_s)$$

of $U(n)$. Moreover this subgroup is a stabilizer for the coadjoint action of $U(n)$. The partitions $(11 \ldots 1), (1 \ldots 12), \ldots, (1n - 1)$ of n determine a tower of subgroups

$$G_1 \subset G_2 \subset \ldots \subset G_{n-1}$$

of $U(n)$. The quotient $U(n)/G_1$ is the flag manifold F_n, i.e. the manifold of complete flags in \mathbb{C}^n, and $G_j/G_{j-1} \simeq U(j)/(U(1) \times U(j-1)) = \mathbb{C}P^{j-1}$.

From Corollary 2 we deduce

Corollary 3 If F_n denotes the flag manifold in \mathbb{C}^n, then

$$H^*(F_n, \mathbb{Q}) \simeq \bigotimes_{j=1}^{n-1} H^*(\mathbb{C}P^j, \mathbb{Q}).$$

As particular case we consider the group $G := U(4)$ and its subgroups

$$G_1 := U(1) \times \ldots \times U(1) \subset U(2) \times U(2) =: G_2.$$

Then by Theorem 1

$$H^*(F_4) \simeq H^*(G_{2,2}(\mathbb{C})) \otimes H^*(G_2/G_1) \simeq H^*(G_{2,2}(\mathbb{C})) \otimes H^*(\mathbb{C}P^1) \otimes H^*(\mathbb{C}P^1),$$

where $G_{2,2}(\mathbb{C})$ is the corresponding Grassman manifold in \mathbb{C}^4. So by Corollary 3

$$H^*(G_{2,2}(\mathbb{C})) \otimes H^*(\mathbb{C}P^1) \otimes H^*(\mathbb{C}P^1) \simeq H^*(\mathbb{C}P^1) \otimes H^*(\mathbb{C}P^2) \otimes H^*(\mathbb{C}P^3).$$

The existence of this isomorphism can be checked directly. The cohomology $H^*(G_{2,2})$ is generated by $\{c_1, c_2\}$, where c_i is the corresponding Chern class of the 2-plane universal bundle over $G_{2,2}(\mathbb{C})$ (see 1). Moreover c_1, c_2 are algebraically independent up to dimension 4. So $\dim H^4(G_{2,2}) = 2$ and $\dim H^{2j}(G_{2,2}) = 1$, for $j \neq 2, 0 \leq j \leq 4$. Therefore it is possible to identify the graded vector spaces $H^*(G_{2,2}) \otimes H^*(\mathbb{C}P^1)$ and $H^*(\mathbb{C}P^3) \otimes H^*(\mathbb{C}P^2)$. This identification allows us to construct the isomorphism (2).

In general, a partition p of n determines the manifold of partial flags $F_p = U(n)/G_p$. The following corollary is a consequence of Theorem 1.
Corollary 4 If $p = \{i_1, \ldots, i_s\}$ and $p' = \{j_1, \ldots, j_r\}$ are partitions of n with $r < s$ and $G_p \subset G_{p'}$, then

$$H^*(\mathcal{F}_p, \mathbb{Q}) = H^*(\mathcal{F}_{p'}, \mathbb{Q}) \otimes H^*(G_{p'}/G_p, \mathbb{Q}).$$

Acknowledgments

The author was partially supported by Universidad de Oviedo, grant NP-01-514-4

References

[1] A. Dold, *Lectures on Algebraic Topology*, Springer, Berlin. (1980)

[2] V. Guillemin, E. Lerman, S. Sternberg, *Symplectic Fibrations and Multiplicity Diagrams*, Cambridge U. P., Cambridge. (1996)

[3] A. A. Kirilov *Elements of the Theory of Representations*, Springer-Verlag, Berlin. (1976)

[4] F. Lalonde, D. McDuff, *Symplectic Structures on Fiber Bundles* Topology 42(2) (2002) 309-347

[5] D. McDuff, D. Salamon, *Introduction to Symplectic Topology*, Clarenton Press, Oxford. (1998)

[6] L. Polterovich, *The Geometry of the Group of Symplectic Diffeomorphisms*, Birkhäuser, Basel. (2001)