REVIEW

Metabolic interactions between *Toxoplasma gondii* and its host
[version 1; referees: 2 approved]

Martin Blume¹, Frank Seeber²

¹NG2 - Metabolism of Microbial Pathogens, Robert Koch-Institute, Berlin, Germany
²FG16 - Mycotic and Parasitic Agents and Mycobacteria, Robert Koch-Institute, Berlin, Germany

Abstract

*Toxoplasma gondii* is an obligate intracellular parasite belonging to the phylum Apicomplexa that infects all warm-blooded animals, including humans. *T. gondii* can replicate in every nucleated host cell by orchestrating metabolic interactions to derive crucial nutrients. In this review, we summarize the current status of known metabolic interactions of *T. gondii* with its host cell and discuss open questions and promising experimental approaches that will allow further dissection of the host–parasite interface and discovery of ways to efficiently target both tachyzoite and bradyzoite forms of *T. gondii*, which are associated with acute and chronic infection, respectively.

Keywords

Metabolism, intracellular parasite, metabolomics, bradyzoite
**Introduction**

*Toxoplasma gondii* is an obligate intracellular parasite that infects all warm-blooded animals, including birds and humans, where it can replicate in all nucleated cells within a non-fusogenic compartment termed the parasitophorous vacuole (PV). The fast-replicating tachyzoites cause the acute phase of the infection. However, in response to immune pressure, differentiation into the slow-growing or quiescent bradyzoites, which is accompanied by the transformation of the PV membrane (PVM) into a cyst wall, marks the onset of the chronic phase. In general, *T. gondii* transmission to humans occurs via ingestion of tissue cysts contained in contaminated undercooked meat products. In addition, humans can be infected following exposure to oocysts shed by the definitive feline host via contaminated food or water. *T. gondii* infections are largely asymptomatic during both the acute and chronic phases, and the chronic stage persists for the life of the host. However, upon severe immunosuppression, rapid replication of *T. gondii* tachyzoites, derived from the reactivation of encysted bradyzoites, can cause severe symptoms such as encephalitis, which is potentially fatal. Additionally, primary infection during pregnancy is associated with serious consequences for newborns, ranging from blindness and deafness to mental retardation and stillbirth. However, as is the case with many other intracellular pathogens, the intruder is not unnoticed, as evidenced by transcriptomic and metabolomic disturbances within the host. The latter uses these cues to counteract the infection on biochemical as well as immunological levels (for review, see 1–3).

Both tachyzoites in PVs and bradyzoites in cysts integrate tightly with their host cells to ensure nutrient supply for optimal proliferation and persistence, which define the characteristics of the specific life cycle stage. In this review, we will briefly outline recent findings of how *T. gondii* tachyzoites and bradyzoites interact with their host cells for the acquisition of essential nutrients. Recent progress in molecular genetics as well as biochemical and metabolomic methods has resulted in a better understanding of the competition for the shared pool of nutrients. In many respects, *T. gondii* exhibits metabolic traits similar to those of *Plasmodium* species, the causative agents of malaria, particularly with regard to the understudied hepatic stage. Therefore, insights from this pathogen’s metabolism can also instruct efforts to exploit metabolic dependencies as drug targets in more than one apicomplexan parasite.

**Nutrient acquisition from the host cell: not only a transporter issue**

*T. gondii* tachyzoites and bradyzoites replicate intracellularly and therefore need to acquire nutrients from their host cells. The parasite establishes a vacuole that is initially composed of host lipids but during its active invasion process excludes most host proteins. The PVM is then heavily modified by parasite proteins that mediate protein export and the import of lipidic and polar metabolites. It has long been known that the PVM is freely permeable for molecules as large as 1,300 Da, but only recently were two parasite proteins—GRA17 and GRA24—defined as the molecular constituents of this pore. It is thought to be permissive for non-directional passive transport of small nutrients, such as vitamins, sugars, amino acids, nucleobases, nucleosides, and nucleotides. It provides a putative mechanism for the export of catabolites, such as lactic acid and, to a lesser extent, alanine and bicarbonate. Besides this pore, an intra-vacuolar membranous tubulo-vesicular network (membranous tubules and vesicles that are bridging the PVM with the parasite) has been shown to be involved in the uptake of host proteins and lipids. Whether other host metabolites can enter the PV via this route and likewise whether it is used on the other hand by the parasite as a “waste pipe” are unknown.

Most polar metabolites are imported through a range of transporters in both the PVM and the parasite’s plasma membrane. To date, a small subset has been functionally characterized; hence, there likely exists a larger interaction surface and undiscovered redundancy. Strikingly, however, there are lower numbers of computationally annotated transporter families in the genomes of parasitic protozoa when comparing both intracellular and extracellular living parasites with unicellular free-living organisms. This is despite the need to scavenge as many nutrients as possible from the environment. Explanations for these lower numbers could include a broader substrate specificity of individual transporters combined with a minimal need for diversification due to host niches with complex but predictable compositions. Several recent studies have started to shed light on the importance of transporter families and channels for parasite survival. Consequently, these molecular entities constitute potential drug targets, some of which are currently being exploited.

**Ingredients to make a tachyzoite**

Global genome-based models of *T. gondii* metabolism can provide an estimated minimal set of required nutrients. These flux balance models (FBMs) use gene annotations to predict the presence of metabolic pathways and use estimated parasite biomass composition and ATP consumption rates to model corresponding fluxes. To date, two FBMs of *T. gondii* metabolism have been generated and published: iCS382 and ToxoNet1. The recent, more comprehensive study by Tymoshenko et al. resulted in a proposed minimal set of required nutrients for tachyzoite growth that are illustrated in Figure 2. It should be emphasized that validation of nutrient dependencies is no easy feat for intracellular parasites, as they are in constant competition with the host and no apicomplexan parasite has yet been reported to replicate indefinitely in axenic media. In addition nutrients are conditionally dependent on the presence of other nutrients and environmental conditions.

In accordance with ToxoNet1 predictions, tachyzoite growth depends on successful competition for a number of co-factors and vitamins with the host cell. These small molecules fulfill vital metabolic functions in the parasite (Figure 2). We linked these nutrient-dependent pathways with the set of essential metabolic pathways as identified through FBM modelling and assigned the respective “phenotype scores” of the genome-wide CRISPR (clustered regularly interspaced short palindromic repeats) screen of Sidik et al. to the respective enzymes (Table S1). As
Figure 1. Quantitative comparison of computationally annotated transporters between parasitic and non-parasitic unicellular organisms. Data were extracted from TransportDB 2.0\textsuperscript{20}. Dark-colored bars represent the numbers of different transporter families per given genome, whereas the light-colored bars give the percentage of all predicted transporter proteins per entirety of open reading frames (ORFs). Green indicates parasitic organisms and black indicates free-living organisms. *Data are from 15 since Toxoplasma gondii is absent in the current release of TransportDB 2.0. The inlet provides the mean ± standard deviation of the number of families of both groups. For comparison, intracellular bacteria (red) and humans (blue) are also shown.

expected, these pathways contain mostly essential genes with exceptions such as putative phosphatidylinositol synthetase, NAD\textsuperscript{+} synthetase, and a sphingolipid desaturase, a loss of which do not cause significant fitness penalties\textsuperscript{19}. This may indicate that \textit{T. gondii} is able to scavenge products of these enzymes in some form; it might also reflect incorrect gene annotations or insufficient time elapsed between gene knockout and expression of a fitness defect in those experiments\textsuperscript{19}.

The major carbon sources of \textit{T. gondii} are glucose and glutamine\textsuperscript{21}. In addition, the parasite can use exogenous acetate to elongate fatty acids if available\textsuperscript{10,22}.

Amino acid auxotrophies of \textit{T. gondii} tachyzoites have been a long recurring subject of research but, to our knowledge, have not been systematically and comprehensively tested. As is true for many unicellular pathogens, \textit{T. gondii} requires exogenous tryptophan\textsuperscript{23,24}. It is also auxotroph for arginine\textsuperscript{25} and tyrosine\textsuperscript{26}. Besides glutamine, a range of amino acids are imported, as shown recently by gas chromatography–coupled mass spectrometry (GC/MS). These include alanine, valine, leucine, isoleucine, proline, glycine, serine, threonine, methionine, and tyrosine\textsuperscript{21,27}. Phenylalanine import\textsuperscript{28} was observed by using Raman spectroscopy. Complementarily, \textit{T. gondii} has been shown to be able to synthesize alanine, glutamine, and aspartate by stable isotope-resolved GC/MS\textsuperscript{10}. Recently, several amino acid transporters have been identified as part of a transporter family that appears to be specific to apicomplexans\textsuperscript{24}. Arginine and tyrosine transport activity has been assigned to \textit{T. gondii} apicomplexan amino acid transporter 1 and 5-3 (TgApiAT1 and TgApiAT5-3), respectively\textsuperscript{24,27,29}. Other amino acids such as histidine, lysine, branched-chain amino acids, and cysteine or methionine have been considered to be essential\textsuperscript{18} but this remains to be experimentally verified.

In addition to proteinogenic amino acids, \textit{T. gondii} tachyzoites are thought to rely on uptake of ornithine and spermine to reverse-synthesize polyamines\textsuperscript{30}. The metabolic roles that are fulfilled by these compounds in \textit{T. gondii} are still ill defined\textsuperscript{30,31}.
Figure 2. Currently known or predicted dependencies of Toxoplasma gondii tachyzoites on host cell–derived metabolites. Based on data from 4,18. Two T. gondii tachyzoites within a parasitophorous vacuole (light blue) are shown within a fibroblast host cell (gray). Red arrowheads indicate uptake of compounds that can be synthesized by mammalian cells, whereas brown arrowheads mark uptake of those substances for which both organisms are auxotrophic and thus they compete. Metabolites in black are scavenged when available but are not strictly essential whereas the pathways they are involved in are. Blue arrowheads denote the end products for which the imported metabolites are precursors or essential co-factors (or both) for their synthesis. Lipoic acid (pink) is special since it is synthesized in one compartment of the parasite (apicoplast) but apparently unable to reach another organelle (mitochondrion) where it is also required; thus, it has to be scavenged from the host.

Besides amino acids, purines are a major nutrient for T. gondii and required for nucleic acid synthesis (reviewed in 33). As a purine auxotroph, T. gondii imports purines in various forms through three transporters. TgAT1 is a low-affinity nucleoside transporter for adenosine and inosine. Furthermore, the existence of two uncloned transporters has been postulated by detailed radiolabeling experiments. TgNBT1 is a high-affinity purine base transporter that accepts hypoxanthine, xanthine, and guanine as substrates. TgAT2 is a broad-spectrum nucleoside transporter.

T. gondii imports a number of vitamins that are needed as co-factors for essential enzymes.

Biotin is a co-factor for several carboxylase reactions, including the acetyl-CoA carboxylase (ACCase), which is essential for de novo fatty acid synthesis in the apicoplast (FAS2), a relict plastid (Table S1). Biotin was not mentioned as an essential co-factor in previous lists, but T. gondii appears to lack the canonical biotin synthesis pathway. It is readily taken up through the host cell as indicated by its use for tagging proteins via a promiscuous ubiquitin ligase BirA. The qualification of biotin as an essential vitamin for T. gondii is supported by recent data showing that a biotin ligase of Plasmodium falciparum is required for the development of liver stages. Accordingly, we added the respective homolog of T. gondii to the list of essential genes in Table S1.

Folates take part in the synthesis of pyrimidines and amino acids and presumably are taken up through the putative TgBT1 transporter and are also synthesized (reviewed in 33).

Thiamine is a co-factor for transketolases and dehydrogenases that act on pyruvate, alpha-ketoglutarate, and branched-chain keto amino acids. To date, there is no biochemical evidence of thiamine uptake. Interestingly, T. gondii and the related apicomplexan P. falciparum are sensitive to the analog oxythiamine, indicating that this co-factor can be salvaged and is incorporated into enzymes.

Similarly, lipoic acid is an essential co-factor for a number of dehydrogenases and is being scavenged from the host cell in spite of being synthesized by the parasite in the apicoplast (Figure 2).

In contrast to these co-factors, tachyzoites appear unable to scavenge pantothenate, a precursor for coenzyme A, in significant amounts. Instead, they possess the entire synthesis machinery for pantothenate and parasite growth is sensitive to its pharmacological inhibition.
The uptake of nicotinate or nicotinamide and riboflavin has been proposed to be required for growth of *T. gondii*; however, to date, no biochemical evidence has been reported. Not surprisingly, FBMs also predict that *T. gondii* requires inorganic ions such as iron and phosphates. Also, their uptake mechanisms remain unknown.

In addition to importing small molecules that act as building blocks, *T. gondii* imports proteins from the cytosol of its host cell and digests them in its endolysosomal system via cathepsin L and other proteases. The underlying uptake mechanism is unclear but may involve the intracellular network of tubular membranes as a potential delivery route. Interestingly, a transient endocytic structure in the parasite plasma membrane that can be triggered by excess supply of oleic acid has been implicated in lipid droplet uptake from the host and may also be responsible for import of host proteins.

**Lipid uptake: the dose is the poison**

To sustain its rapid replication, *T. gondii* tachyzoites need to synthesize large amounts of lipids and import precursors. Exciting new research has established that host lipid droplets present a mobilizable source of neutral lipids and fatty acids for tachyzoites. Infected cells exhibit an increased abundance of lipid droplets which can be further increased by exogenous oleic acid. Under these conditions, *T. gondii* scavenges oleic acid or neutral lipids (or both) from Rab7-positive host lipid droplets and stores excess lipids in deposits as triacylglycerides in its cytosol. The disruption of this storage pathway has been shown to be detrimental to tachyzoites and bradyzoites in vitro. Under normal culture conditions, fatty acid import results in an even cellular distribution of the acquired fatty acids and confers enhanced growth. Interestingly, the fusion of host mitochondria around the PV has been shown to limit access of *T. gondii* to host fatty acids and decrease its replication rate. These studies report different intracellular distributions of internalized fatty acids that indicate distinct fates of host lipid droplet content. However, it is important to note that the employed fluorophore-linked lipids such as C4-BODIPY-C9 or BODIPY-FL-C12, though conceptually attractive, differ substantially in their biophysical properties from the lipids of interest. These include altered flip-flop rate and transfer between organelles compared with their parental lipids. Regardless, these studies suggest that the parasite undertakes largely unregulated import of lipids and depends on control mechanisms from its host cell instead. There appears to be a need to fine-tune the fatty acid supply of *T. gondii* since fatty acid scavenging is supportive of growth only in low doses and becomes harmful at higher concentrations. Shielding parasites from fatty acid uptake by enwrapping their PV in host mitochondria appears to be a defense mechanism. It will be important to see how general this proposed mechanism is operating since, in the low virulence type II strains, the host mitochondria do not associate with the PVM.

The uptake of fatty acids is complemented by *T. gondii*’s comprehensive capabilities to produce fatty acids on its own. GC/MS-based methods revealed that the parasite can synthesize myristic and palmitic acid *de novo* via the FAS2 pathway in the apicoplast and also possesses a set of elongases and the FAS1 pathway. In addition, GC/MS-resolved stable isotope labelling patterns revealed salvage of unsaturated long chain and very long chain fatty acids from its host.

Other precursors for major lipids include choline, which is needed for phosphorylcholine synthesis, and this pathway can be poisoned with the choline analog di-methylethanolamine. Phosphatidylcholinositol is part of the lipidome of *T. gondii* but its synthase appears non-essential (Table S1). Also, its precursor myo-inositol is not synthesized from glucose, indicating that *T. gondii* can access exogenous inositol and may also import this phospholipid. In addition, *T. gondii* acquires several other lipids directly from its host. These include low-density lipoprotein-derived host cholesterol for which the parasite is auxotrophic (reviewed in ) and sphingolipids from Golgi-derived vesicles.

Another important class of lipidic molecules are isoprenoids. These are implicated in a number of essential processes that include signaling, trafficking, energy metabolism, and protein translation (reviewed in ). *T. gondii* synthesizes the precursors isopentenyl pyrophosphate and dimethylallyl pyrophosphate in its apicoplast via the non-mevalonate pathway. These molecules are the building blocks for terpenoids via a multi-functional farnesyl diphosphate synthase (*TgFPPS*). Interestingly, *T. gondii* also scavenges products of this enzyme, including farnesyl- and geranylgeranyl-pyrophosphates from its host, making *TgFPPS* knockout mutants dependent on corresponding host isoprenoid synthesis.

**The state of bradyzoite–host interactions: initial insights into a black box**

Owing to their ease in cultivation, tachyzoites are clearly the most investigated stage of *T. gondii*. However, the vast majority of *T. gondii*’s lifetime in intermediate hosts is spent in the bradyzoite stage. Much less is known about how these stages interact with their host cell and which metabolic factors permit persistence. *T. gondii* tissue cysts are frequently found in brain, muscle, eye, and cardiac tissue. It is unclear whether the parasite displays tropism toward particular cell types or whether some are more permissive for long-term residence. Interestingly, *in vitro* parasites display elevated spontaneous stage conversions in cell cycle–arrested fibroblasts and terminally differentiated skeletal muscle cells. This suggests that non-proliferating cells express an as-yet-unknown effector or provide a generally stressful environment. In this respect, it is noteworthy that proliferating cells maintain a glycolytic metabolic profile, with large pools of glycolytic intermediates and high rates of lactic acid production, to support their biosynthetic activities. This environment may equally favor the biosynthetic activity of growing *T. gondii* tachyzoites. Consistently, host cells that produce high levels of lactic acid promote tachyzoite growth over bradyzoite formation. The induction of bradyzoites *in vitro* is considered to work by slowing down tachyzoite growth via a range of stressors, such as limitation of arginine and bicarbonate as well as basic and acidic pH stress. The resulting encysted bradyzoites adopt a spectrum of cell division rates that may introduce a degree of...
flexibility in their need for pyrimidines for nucleic acid synthesis and consequently contribute to their resistance to antifolates such as pyrimethamine. However, bradyzoites appear sensitive to inhibition of nutrient storage and turnover pathways including autophagy, lipid storage, and carbohydrate storage. These findings may reflect the fact that *T. gondii* deals with oversupply of nutrients by storage rather than by regulating respective import pathways. In particular, slowly dividing bradyzoites appear to depend on the integrity of the regulation of these storage pathways to avoid detrimental accumulation of material.

**Future methods to study host–parasite interactions**

As outlined above, comprehensive metabolomic approaches were instrumental in defining metabolic interactions as well as synthesis and import capabilities of fatty acids and amino acids in tachyzoites. A similar approach with bradyzoites requires the development of efficient methods for the in vitro culture and purification of tissue cysts in their natural metabolic state. Strategic introduction of stable isotopes into parasite polymers such as DNA and proteins might be helpful to measure the activity of metabolic pathways and decrease the number of cysts needed.

Comprehensive liquid chromatography–coupled mass spectrometry (LC/MS)–based metabolic approaches will also help to define which amino acid synthesis pathways are active in *T. gondii*. By measuring the levels and turnover of intermediates directly, metabolomics can bridge the gap that exists between annotated gene sets and a functional pathway. Such associations are very indirect since function will depend on regulatory mechanisms at the transcriptomic, proteomic, and metabolic levels. In addition, the accuracy of functional predictions based on homology are limited. For instance, a putative lysine decarboxylase implicated in lysine degradation has been shown to act as a glutamate decarboxylase within the GABA shunt instead.

Similar limitations apply to conclusions based on transcriptomic and proteomic data. While these approaches are powerful to functionally associate genes and resolve differences of physiological states of the parasite under different conditions, such as host environments and stage conversion states, functional implications on the phenotype level and mechanistic insights are constrained by functional gene annotations. Combined multi-omics approaches might provide insights beyond the metabolic dimension of host–parasite interactions in the future.

In addition to the use of metabolomic techniques to study parasite–host interactions, the use of more sophisticated cellular systems such as neurons and myotubes, organoids, or mice holds great potential. This is illustrated by the fact that *T. gondii* and coccidian-specific genes are the least fitness-conferring ones for the survival in fibroblasts.

In conclusion, there remain many open questions about how parasite and host metabolism interact, in particular with respect to dormant bradyzoites that are key to transmission and global prevalence of *T. gondii*. Future metabolomic approaches will be instrumental in further dissecting the host–parasite interface and discovering ways to efficiently target both tachyzoite and bradyzoite forms of *T. gondii*.

**Abbreviations**

ACCase, acetyl-CoA carboxylase; FAS2, fatty acid synthesis in the apicoplast; FBM, flux balance model; GC/MS, gas chromatography-coupled mass spectrometry; PV, parasitophorous vacuole; PVM, parasitophorous vacuole membrane; TgFPPS, farnesyl diphosphate synthase from *Toxoplasma gondii*

**Grant information**

MB is funded by the Federal Ministry of Education and Research (BMBF) under project number 01KI1715 as part of the “Research Network Zoonotic Infectious Diseases”. FS is a senior member of the Research Training Group 2046 “Parasite Infections: From Experimental Models to Natural Systems” and the International Research Training Group (IRTG) 2290 of the Alliance Berlin Canberra “Crossing Boundaries: Molecular Interactions in Malaria”, funded by the Deutsche Forschungsgemeinschaft (German Research Foundation) under project number/GRK2046 and 2112830102/IRTG2290, respectively. Both authors are supported by the Robert Koch Institute.

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

**Acknowledgments**

We thank Michael Laue and Florian Müller for providing the electron microscope image for Figure 2.

**Supplementary material**

**Supplementary File 1.** Table S1. Essential metabolic pathways and associated genes based on FBM Toxonet1.

Click here to access the data
1. Olive AJ, Sassetti CM: Metabolic crosstalk between host and pathogen: sensing, adapting and competing. Nat Rev Microbiol. 2016; 14(4): 221–34. PubMed Abstract | Publisher Full Text | F1000 Recommendation

2. Ren W, Rajendran R, Zhao Y, et al.: Amino acids as mediators of metabolic cross talk between host and pathogen. Front Immunol. 2018; 9: 319. PubMed Abstract | Publisher Full Text | Free Full Text

3. F1000 recommended

4. Coppeys I: Exploitation of auxotrophies and metabolic defects in Toxoplasma as therapeutic approaches. Int J Parasitol. 2014; 44(2): 109–20. PubMed Abstract | Publisher Full Text | Free Full Text

5. Gazanion E, Vergnes B: Protozoan parasite auxotrophies and metabolic dependencies. In: Metabolic Interaction in Infection. Edited by Silvestre R, Torrado E. Cham: Springer International Publishing; 2018; 109: 351–375. PubMed Abstract | Publisher Full Text | Free Full Text

6. Moreira D, Estajquier J, Cordeiro-da-Silva A, et al.: Metabolic crosstalk between host and parasitic pathogens. In: Metabolic Interaction in Infection. Edited by Silvestre R, Torrado E. Cham: Springer; 2018; 421–458. Publisher Full Text

7. Morode DG, Desai N, Dustin M, et al.: Invasion by Toxoplasma gondii establishes a moving junction that selectively excludes host cell plasma membrane proteins on the basis of their membrane anchoring. J Exp Med. 1999; 190(2): 1783–92. PubMed Abstract | Publisher Full Text | Free Full Text

8. Schwab JC, Beckers CJ, Joiner KA: The parasitophorous vacuole membrane surrounding intracellular Toxoplasma gondii functions as a molecular sieve. Proc Natl Acad Sci U S A. 1994; 91(2): 509–13. PubMed Abstract | Publisher Full Text | Free Full Text

9. Gold DA, Kaplan AD, Lis A, et al.: The Toxoplasma dense granule proteins GRA17 and GRA32 mediate the movement of small molecules between the host and the parasitophorous vacuole. Cell Host Microbe. 2015; 17(5): 642–52. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

10. MacRae JI, Sheiner L, Nahid A, et al.: Mitochondrial metabolism of glucose and glutamine is required for intracellular growth of Toxoplasma gondii. Cell Host Microbe. 2012; 12(5): 682–92. PubMed Abstract | Publisher Full Text | Free Full Text

11. Zuzarte-Luís V, Mota MM: TransportDB 2.0: a database for exploring membrane transporters in sequenced genomes from all domains of life. Nucleic Acids Res. 2017; 45(D1): D320–D334. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

12. Blume M, Rodríguez-Contreras D, Landtsev S, et al.: Host-derived glucose and its transporter in the obligate intracellular pathogen Toxoplasma gondii are dispensable by glucanaminolysis. Proc Natl Acad Sci U S A. 2009; 106(31): 12938–3903. PubMed Abstract | Publisher Full Text | Free Full Text

13. Nitzsche R, Zagory V, Lucius R, et al.: Metabolic cooperation of glucose and glutamine is essential for the lytic cycle of obligate intracellular parasite Toxoplasma gondii. J Biol Chem. 2016; 291(1): 126–41. PubMed Abstract | Publisher Full Text | Free Full Text

14. Pfeifferkorn ER: Interferon gamma blocks the growth of Toxoplasma gondii in human fibroblasts by inducing the host cells to degrade trypanothione. Proc Natl Acad Sci U S A. 1984; 81(3): 908–12. PubMed Abstract | Publisher Full Text | Free Full Text

15. Parker KE, Fairweather SJ, Rajendran E, et al.: Characterization of the apicomplexan amino acid transporter (AiapAT) family in Toxoplasma gondii. bioRxiv. 2018. Publisher Full Text

16. Kanno H, Nozawa M: Interferon gamma blocks the growth of Toxoplasma gondii in human fibroblasts by inducing the host cells to degrade trypanothione. Proc Natl Acad Sci U S A. 1984; 81(3): 908–12. PubMed Abstract | Publisher Full Text | Free Full Text

17. Donnellan JR, Boothroyd JC: Toxoplasma gondii growth in vitro is dependent on exogenous tyrosine and is independent of AAH2 even in tyrosine-limiting conditions. Exp Parasitol. 2017; 176: 52–8. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

18. Wallbank BA, Dominicus CS, Broncle M, et al.: Phosphorylation of a Toxoplasma gondii tyrosine transporter by calcium-dependent kinase 3 is important for parasite fitness. bioRxiv. 2018. Publisher Full Text

19. Naemaat A, Elshiekh HM, Boitza RA, et al.: Tracing amino acid exchange during host-parasite interaction by combined stable-isotope time-resolved Raman spectral imaging. Sci Rep. 2016: 6: 20811. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

20. Rajendran E, Happarachchi SV, Miller CM, et al.: Cationic amino acid transporters play key roles in the survival and transmission of apicomplexan parasites. Nat Commun. 2017; 8: 14455. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

21. MacRae JI, Sheiner L, Nahid A, et al.: Mitochondrial metabolism of glucose and glutamine is required for intracellular growth of Toxoplasma gondii. Cell Host Microbe. 2012; 12(5): 682–92. PubMed Abstract | Publisher Full Text | Free Full Text

22. Hyde JE: Targeting purine and pyrimidine metabolism in human apicomplexan parasites. Curr Drug Targets. 2007; 8(1): 31–47. PubMed Abstract | Publisher Full Text | Free Full Text

23. Vannier-Santos MA, Suarez-Fontes AM: Role of polyamines in parasite cell architecture and function. Curr Pharm Des. 2017; 23(23): 2542–58. PubMed Abstract | Publisher Full Text | Free Full Text

24. Crawford MJ, Thomsen-Zieger N, Ray M, et al.: Toxoplasma gondii scavenges host-derived lipoic acid despite its de novo synthesis in the apicoplast. EMBO J. 2006; 25(13): 3514–22. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

25. Libby DP, Bogenhagen DF, Atreya CA, et al.: Transport of thiamin diphosphate-dependent enzymes from enzymology to metabolic regulation, drug design and disease models. Int J Parasitol. 2009; 39(8): 889–906. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

26. Shinouchi N, Oshida M, Ikebuchi Y, et al.: ABC transporters as targets for chemotherapeutic agents. Proc Natl Acad Sci U S A. 2002; 99(17): 11192–7. PubMed Abstract | Publisher Full Text | Free Full Text

27. Zuzarte-Luís V, Mota MM: TransportDB 2.0: a database for exploring membrane transporters in sequenced genomes from all domains of life. Nucleic Acids Res. 2017; 45(D1): D320–D334. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

28. Blume M, Rodríguez-Contreras D, Landtsev S, et al.: Host-derived glucose and its transporter in the obligate intracellular pathogen Toxoplasma gondii are dispensable by glucanaminolysis. Proc Natl Acad Sci U S A. 2009; 106(31): 12938–3903. PubMed Abstract | Publisher Full Text | Free Full Text

29. Cobbold SA, Vaughan AM, Lewis IA, et al.: Kinetic flux profiling elucidates two pathways...
independent acetyl-CoA biosynthetic pathways in Plasmodium falciparum. J Biol Chem. 2013; 288(1): 36308–50. Published Abstract | Publisher Full Text | Free Full Text

44. Mageed SN, Cunningham F, Hung AW, et al.: Pantothenic acid biosynthesis in the parasite Toxoplasma gondii: a target for chemotherapy. Antimicrob Agents Chemother. 2014; 58(11): 6345–53. Published Abstract | Publisher Full Text | Free Full Text

45. Dimier IH, Bout DT: Interferon-gamma-activated primary enterocytes inhibitory Toxoplasma gondii replication: a role for intracellular iron. Immunology 1998; 94(4): 488–95. Published Abstract | Publisher Full Text | Free Full Text

46. Gail M, Gross U, Bohme W. Transferrin receptor induction in Toxoplasma gondii-infected HFF is associated with increased iron-responsive protein 1 activity and is mediated by secreted factors. Parasitol Res. 2004; 94(3): 233–9. Published Abstract | Publisher Full Text

47. Mota LA, Roberto Neto J, Monteiro VG, et al.: Culture of mouse peritoneal macrophages with mouse serum induces lipid bodies that associate with the parasitophorous vacuole and decrease their microbical capacity against Toxoplasma gondii. Mem Inst Oswaldo Cruz. 2014; 109(6): 767–74. Published Abstract | Publisher Full Text | Free Full Text

48. Gomes AF, Magalhães KG, Rodrigues RM, et al.: Toxoplasma gondii-skeletal muscle cells interaction increases lipid droplet biogenesis and positively modulates the production of IL-12, IFN-g and PGE2. Parasit Vectors. 2014; 7: 47. Published Abstract | Publisher Full Text | Free Full Text

49. Hu X, Binnie D, Reese ML: The coccidian parasites Toxoplasma and Neospora dysregulate mammalian lipid droplet biogenesis. J Biol Chem. 2017; 292(26): 11099–20. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

50. Pemsa L, Bean C, Boothroyd JC, et al.: Mitochondria restrict growth of the intracellular parasite Toxoplasma gondii by limiting its uptake of fatty acids. Cell Metab. 2018; 27(4): 886–897.e4. Published Abstract | Publisher Full Text | F1000 Recommendation

51. Mekawa M, Fain GD: Molecular probes to visualize the location, organization and dynamics of lipids. J Cel Sci. 2014; 127(22): 4801–12. Published Abstract | Publisher Full Text

52. Pemsa L, Adomako-Ankomah Y, Shasti AJ, et al.: Toxoplasma effector MAF1 mediates recruitment of host mitochondria and impacts the host response. PLoS Biol. 2014; 12(4): e1001845. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

53. Ramakrishnan S, Docampo MD, MacRae JI, et al.: Apicoplast and endoplasmic reticulum cooperate in fatty acid biosynthesis in apicoplastosin parasite Toxoplasma gondii. J Biol Chem. 2012; 287(7): 4997–71. Published Abstract | Publisher Full Text | Free Full Text

54. Ramakrishnan S, Docampo MD, MacRae JI, et al.: The intracellular parasite Toxoplasma gondii depends on the synthesis of long-chain and very long-chain unsaturated fatty acids not supplied by the host cell. PLoS Biol. 2015; 13(1): 28–39. Published Abstract | Publisher Full Text | Free Full Text

55. Charron AJ, Sibley LD: Host cells: mobilizable lipid resources for the intracellular parasite Toxoplasma gondii. J Cell Sci. 2002; 115(Pt 15): 3049–59. Published Abstract

56. Gupta N, Zahn MM, Coppen S, et al.: Selective disruption of phosphatidylcholine metabolism of the intracellular parasite Toxoplasma gondii arrests its growth. J Biol Chem. 2006; 281(16): 16345–53. Published Abstract | Publisher Full Text

57. Coppen S: Targeting lipid biosynthesis and salvage in apicomplexan parasites for improved chemotherapies. Nat Rev Microbiol. 2013; 11(12): 829–35. Published Abstract | Publisher Full Text

58. Romano JD, Sonda S, Bergbower E, et al.: Toxoplasma gondii salivary sphingolipids from the host Golgi through the rerouting of selected Rab vesicles to the parasitophorous vacuole. Mol Biol Cell. 2013; 24(12): 1974–95. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

59. Imai Y, Odor AM: Isoprenoid metabolism in apicomplexan parasites. Curr Clin Microbiol Rep. 2014; 1(3–4): 37–50. Published Abstract | Publisher Full Text | Free Full Text

60. Nair SC, Brooks CF, Goodman CD, et al.: Apicoplast isoprenoid precursor synthesis and the molecular basis of fosmidomycin resistance in Toxoplasma gondii. J Exp Med. 2011; 208(7): 1547–59. Published Abstract | Publisher Full Text | Free Full Text

61. Ling Y, Li ZH, Miranda K, et al.: The farnesyl-diphosphate/geranylgeranyl-diphosphate synthase of Toxoplasma gondii is a bifunctional enzyme and a molecular target of biphenophosphonates. J Biol Chem. 2007; 282(42): 30804–16. Published Abstract | Publisher Full Text

62. Li ZH, Ramakrishnan S, Striepen B, et al.: Toxoplasma gondii relies on both host and parasite isoprenoids and can be rendered sensitive to atorvastatin. PLoS Pathog. 2013; 9(10): e1003865. Published Abstract | Publisher Full Text | Free Full Text

63. Jeffers V, Tampaki Z, Kim K, et al.: A latent ability to persist: differentiation in Toxoplasma gondii. Cell Mol Life Sci. 2015; 72(13): 2353–73. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

64. Swierzy U, Lüder CG: Withdrawal of skeletal muscle cells from cell cycle progression triggers differentiation of Toxoplasma gondii towards the bradyzoite stage. Cell Microbiol. 2015; 17(1): 2–17. Published Abstract | Publisher Full Text

65. Fereira-da-Silva Mda F, Takács AC, Barbosa HS, et al.: Primary skeletal muscle cells trigger spontaneous Toxoplasma gondii tachyzoite-to-bradyzoite conversion at higher rates than fibroblasts. Int J Med Microbiol. 2020; 299(5): 381–8. Published Abstract | Publisher Full Text

66. Lunt SY, Vander Heiden MG: Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Biol. 2011; 27: 41–64. Published Abstract | Publisher Full Text

67. Wehhammer DP, Iannone AT, Villages EN, et al.: Host metabolism regulates growth and differentiation of Toxoplasma gondii. Int J Parasitol. 2012; 42(10): 947–59. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

68. Watts E, Zhao Y, Dhara A, et al.: Novel approaches reveal that Toxoplasma gondii bradyzoites within tissue cysts are dynamic and replicating entities in vivo. mBio. 2015; 6(5): e01555–15. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

69. Di Cristina M, Dou Z, Lunghi M, et al.: Toxoplasma depends on lysosomal consumption of autophagosomes for persistent infection. Nat Microbiol. 2017; 2: 17096. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

70. Nolan SJ, Romano JD, Kline JT, et al.: Novel approaches to kill Toxoplasma gondii by exploiting the uncontrolled uptake of unsaturated fatty acids and vulnerability to lipid storage inhibition of the parasite. Antimicrob Agents Chemother. 2018; 62(10): pii: e00347-18. Published Abstract | Publisher Full Text | Free Full Text

71. Ubokiri AD, McCoy JM, Blume M, et al.: Regulation of starch stores by a Car−dependent protein kinase is essential for viable cyst development in Toxoplasma gondii. Cell Host Microbe. 2015; 18(6): 670–81. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

72. McConville MJ, Saunders EC, Kloehn J, et al.: Leishmania carbon metabolism in the macrophage phagolysosome: feast or famine? [version 1; referees: 3 approved] F1000Res. 2015; 6: 938. Published Abstract | Publisher Full Text | Free Full Text

73. Kloehn J, Saunders EC, O’Callaghan S, et al.: Characterization of metabolically quiescent Leishmania parasites in murine lesions using heavy water labeling. PLoS Pathog. 2015; 11(2): e1004683. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

74. Blume M, Nitsche R, Sternberg U, et al.: A Toxoplasma gondii gluconeogenic enzyme contributes to robust central carbon metabolism and is essential for replication and virulence. Cell Host Microbe. 2015; 18(2): 210–20. Published Abstract | Publisher Full Text

75. Chen LF, Han XL, Li FX, et al.: Comparative studies of Toxoplasma gondii transcriptomes: insights into stage conversion based on gene expression profiling and alternative splicing. Parasit Vectors. 2018; 11(1): 402. Published Abstract | Publisher Full Text | Free Full Text

76. Crocken MM, Qi W, White MW, et al.: Gene Set Enrichment Analysis (GSEA) of Toxoplasma gondii expression datasets links cell cycle progression and the bradyzoite developmental program. BMC Genomics. 2014; 15: 515. Published Abstract | Publisher Full Text | Free Full Text

77. Lindeboom RG, van Voorhuisjes L, Oost KC, et al.: Integrative multi-omics analysis of intestinal organoid differentiation. Mol Syst Biol. 2018; 14(6): e8227. Published Abstract | Publisher Full Text | Free Full Text

78. Chen XQ, Elsheikh Ha, Hu RS, et al.: Hepatic metabolomics investigation in acute and chronic murine toxoplasmosis. Front Cell Infect Microbiol. 2018; 8: 189. Published Abstract | Publisher Full Text | Free Full Text

Page 9 of 10
Open Peer Review

Current Referee Status:

Editorial Note on the Review Process

F1000 Faculty Reviews are commissioned from members of the prestigious F1000 Faculty and are edited as a service to readers. In order to make these reviews as comprehensive and accessible as possible, the referees provide input before publication and only the final, revised version is published. The referees who approved the final version are listed with their names and affiliations but without their reports on earlier versions (any comments will already have been addressed in the published version).

The referees who approved this article are:

**Version 1**

1. **Anthony P Sinai** Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Kentucky, USA  
   *Competing Interests:* No competing interests were disclosed.

2. **Vernon Carruthers** Department of Microbiology and Immunology, University of Michigan School of Medicine, Michigan, USA  
   *Competing Interests:* No competing interests were disclosed.

The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com