Surgical Outcomes of Anterior Cervical Fusion Using Demineralized Bone Matrix as Stand-Alone Graft Material: Single Arm, Pilot Study

Ho-Jung Chung, Jung-Woo Hur, Kyeong-Sik Ryu, Jin-Sung Kim, Ji-Hoon Seong

Department of Neurosurgery, Seoul St. Mary’s Hospital, The Catholic University of Korea College of Medicine, Seoul, Korea

Objective: To investigate the safety and efficacy of demineralized bone matrix (DBM) as a bone graft substitute for anterior cervical discectomy and fusion (ACDF) surgery.

Methods: Twenty consecutive patients treated with ACDF using stand-alone polyetheretherketone (PEEK) cages (Zero-P) with DBM (CGDBM100) were prospectively evaluated with a minimum of 6 months of follow-up. Radiologic efficacy was evaluated with a 6-point scoring method for osseous fusion using plain radiograph and computed tomography scans. Clinical efficacy was evaluated using the visual analogue scale (VAS), Oswestry disability index (ODI), and short-form health questionnaire-36. The safety of the bone graft substitute was assessed with vital sign monitoring and a survey measuring complications at each follow-up visit.

Results: There were significant improvements in VAS and ODI scores at a mean 6-month follow-up. Six months after surgery, solid fusion was achieved in all patients. Mean score on the 6-point scoring system was 5.1, and bony formation was found to score at least 4 points in all patients. There was no case with implant-related complications such as cage failure or migration, and no complications associated with the use of CGDBM100.

Conclusion: ACDF using CGDBM100 demonstrated good clinical and radiologic outcomes. The fusion rate was comparable with the published results of traditional ACDF. Therefore, the results of this study suggest that the use of a PEEK cage packed with DBM for ACDF is a safe and effective alternative to the gold standard of autologous iliac bone graft.

Key Words: Anterior cervical diskectomy and fusion · Polyesteretherketone cage · Demineralized bone matrix · Bone grafting
ACDF Using DBM as Stand-Alone Graft Material

Korean J Spine 13(3) September 2016 115

Fig. 1. Zero-P cage (Depuy-Synthes Spine Inc., Raynham, MA, USA) was impacted with putty foam of CGDMB100 and inserted into the disc space under fluoroscopic guidance. (A) Lateral view of postoperative plain radiograph. (B) Anteroposterior view of postoperative plain radiograph.

Table 1. Patient demographics and intraoperative data

Characteristic	Value
Sex	
Male	12 (60)
Female	8 (40)
Age (yr)	50.0±10.3
Body mass index (kg/m²)	23.2±4.4
Preoperative symptoms	
Visual analogue scale	6.3±1.1
Oswestry disability index	20.2±8.1
Duration of pain (mo)	14.9±6.2
Symptomatic level	
C3–C4	1 (5)
C4–C5	7 (35)
C5–C6	7 (35)
C6–C7	5 (25)
Intraoperative blood loss (mL)	41±23
Operating time (min)	63±14
Length of hospital stay (day)	3.4±0.5

Values are presented as number (%) or mean±standard deviation.

Fig. 2. Evaluation of bone fusion by “6-point scoring” system. Imaging studies of a patient with C6–7 ACDF with Zero-P stand-alone cage with CGDBM100 in putty form and inserted into the disc space under fluoroscopic guidance (Fig. 1). The height of the cage (5, 6, or 7 mm) was determined after considering the stability of overdistraction. No additional bone graft was inserted anterior or lateral to the cage. After removing the Caspar screw, screws in the stand-alone cage were inserted into the vertebral body in an oblique upward and downward fashion. All patients were reviewed at 1, 3, and 6 months postoperatively in order to evaluate the efficacy and safety of the procedure.

Radiologic efficacy was evaluated with a 6-point scoring method for osseous fusion at 1, 3, and 6 months postoperatively using plain radiograph and computed tomography (CT) scans (Fig. 2). We considered a bridging bone between the cage and the adjacent endplate of the vertebral body on each of six surfaces (anterior, posterior, superior, inferior, and both lateral sides) as one indicator point. Bridging bone formation on more than three surfaces was considered to be solid fusion with stability. Formation of bridging bone was examined on 6 surfaces around the graft using axial, coronal, and sagittal CT images. Additionally, stability on dynamic X-ray (motion between the adjacent spinous process <2 mm) was assessed for fusion status. The intervertebral disk space height (DSH) was calculated as the mean value of the anterior and posterior intervertebral disk heights as measured on plain lateral radiography. The measurements were performed by a single inde-
Table 2. Mean Values of clinical parameters

Parameter	Preoperative	1 Month	3 Months	6 Months	p-value
VAS	6.3±1.1	3.1±2.1	2.2±0.8	1.3±1.4	<0.05
ODI	20.2±8.1	7.6±5.7	6.2±3.1	4.1±3.4	<0.05
NDI (%)	67.2±21.7	35.5±18.4	32.1±9.8	21.9±11.3	<0.05
SF-36 (%)	30.4±6.6	51.4±8.5	58.2±11.3	60.6±13.2	<0.05

Values are presented as mean±standard deviation.

VAS, visual analogue scale; ODI, Oswestry disability index; NDI, neck disability index; SF-36, short-form health questionnaire-36.

*Comparison of preoperative and last follow-up mean values.

Pendent observer who was not involved in the surgery or care of the patients.

Clinical efficacy was evaluated using visual analogue scale (VAS) score, Oswestry disability index (ODI), neck disability index, and short-form health questionnaire-36 (SF-36) at 1, 3, and 6-month follow-up visits. The safety of the bone graft substitute was assessed with vital sign monitoring and a survey regarding complications at each follow-up visit.

Data were analyzed using the SPSS ver. 12.0 (SPSS Inc., Chicago, IL, USA); the paired Student t-test was used for the analyses. Data are presented as the mean with standard deviation. For all analyses, p<0.05 was considered statistically significant.

This study was approved by a Catholic Medical College Clinical Research Coordinating Center (CMC CRCC) (approval number: KIRB-00355_31-002)

RESULTS

The intraoperative data are shown in Table 1. The mean duration of the operation was 63±14 minutes and mean intraoperative blood loss was 41±23 mL. There were no surgery-related complications such as hoarseness, dysphagia, or hematoma in any patients.

There were significant improvements in VAS and ODI scores after a mean 6 months of follow-up. The mean VAS score decreased from 6.3±1.1 to 1.3±1.4 and the mean ODI score decreased from 20.2±8.2 to 4.1±3.4 (p<0.05 preoperative vs. final follow-up). The mean neck disability index score decreased significantly at the first 3 months after surgery and remained steady until 6 months postoperatively. Quality of life was notably improved, as the mean SF-36 score went from 30.4% before surgery to 60.6% at the last follow-up. A summary of the clinical data is shown in Table 2. Neurologic deterioration related to the fusion segment was not observed in any patients.

In all patients, stability of the graft was confirmed by plain radiograph and CT scan at 1, 3, and 6 months after surgery. At 6 months after the surgery, solid fusion was achieved in all patients as evidenced by formation of bridging bone on the surface of the graft on CT scans. The mean score in the 6-point scoring system was 4.3 and bony formation achieved at least 4 point in all patients. Six of 20 fusion levels (30%) showed 5- to 6-point fusion (Table 3). In addition, no mobility was observed on the dynamic radiograph in any operated segment. When the clinical outcome parameters were compared between the point groups, there were no significant statistical differences.

Intervertebral DSH was significantly improved after surgery and well maintained over the next 6 months. The mean preoperative DSH was 3.5±1.2 mm. The mean DSH at 1 month after surgery was 7.2±0.9 mm; at the final follow-up it was 6.9±1.8 mm (p<0.05 before surgery vs. after surgery, p<0.05 before surgery vs. final follow-up).

There was no case of implant-related complications such as dysphagia, cage failure, or migration, and there were no complications associated with the use of CGDBM100 during the follow-up period.

DISCUSSION

ACDF surgery is a well-established gold standard treatment for cervical degenerative disease. Solid bony fusion is essential for positive outcomes following ACDF surgery as it prevents foraminal stenosis and late angulation deformity. However, the choice of optimal fusion material is still controversial; various fusion materials have been claimed to promote superior outcomes.

In this study, we attempted to analyze the clinical and radiologic efficacy of DBM as a stand-alone fusion material in single-level ACDF surgery.

Although use of an autograft harvested from the iliac crest as an interbody fusion material provides satisfactory clinical results and fusion rates, the rate of donor-site morbidity has been reported to be as high as 20% to 30% and can often reduce patient satisfaction and quality of life. Various materials have been proposed as interbody grafts for ACDF surgery to avoid the problems associated with autologous bone grafts. The characteristics of an ideal graft material include immediate structural biomechanical stability and the capacity for sub-
sequent osteogenesis. Titanium, carbon fiber, and PEEK are the most commonly used materials for cervical interbody cages. A titanium cage may lead to vertebral body collapse if the end plate is damaged during disectomy and has been associated with high degree of subsidence. Moreover, radiological metallic artifacts may complicate postoperative radiologic imaging. Transparent carbon fiber cages have been used widely, but a high rate of pseudoarthrosis, unexpected local connective tissue formation, and a risk of systemic uptake have frequently been reported.

In most prior studies on allograft fusion materials, a cage packed with allogeneic cancellous bone chips was used to avoid donor-site complications. We used DBM as a stand-alone graft material and packed the PEEK cage for maximal contact with a prepared endplate on either side of the cage. DBM has been demonstrated to have both osteoinductive and osteoconductive properties. The principal components of DBM are BMPs, which are responsible for its osteoinductive activity, and the organic portions of bone, such as collagen, provide osteoconductive activity. Recent studies advocate the use of DBM as a potential graft substitute or enhancer, but there was no prior clinical evidence to support its use as a stand-alone graft material. Moreover, DMB must be used in combination with other types of grafts because of its amorphous consistency; many spine surgeons prefer structural graft materials.

There have been a few clinical trials on DBM as a fusion material in ACDF surgery. One of the first reports, a 2-center prospective randomized controlled clinical trial comparing allograft mixed with DBM and iliac crest autograft, showed no significant difference in the rate of pseudoarthrosis. However, graft collapse was significantly more likely in the allograft-DBM group and the authors suggested the use of an autograft for better outcomes. In another level 3 study comparing the use of PEEK cages packed with morphogenic protein-2 (rhBMP-2) against allograft spacers with DBM, there was no significant difference in clinical outcomes or fusion rates between the two groups. The DBM group demonstrated a significantly lower rate of postoperative swallowing difficulty, and the cost of implants was more than three times greater in the rhBMP-2 group. Those authors advocated the use of DBM over rhBMP-2 for anterior cervical fusion. Another four studies investigated the use of PEEK cages and DBM (Grafton, Medtronic Sofamor Danek USA, Inc., Memphis, MN, USA) in patients undergoing ACDF surgery. The authors advocated the use of PEEK cages packed with DBM as interbody fusion materials for the treatment of degenerative cervical diseases, as satisfactory fusion rates and clinical results were achieved in long-term follow-ups.

In the present study, the fusion rate of ACDF surgery using DBM alone as a fusion material was comparable with that of published results of ACDF using an autologous bone graft. The PEEK cage provides immediate structural support and its hollow center allows a graft-host interface that facilitates adequate bone fusion. We experienced excellent short-term clinical outcomes and high patient satisfaction with the elimination of donor-site morbidity and anterior plating. No cage- or graft material-related complications were encountered, and DSH was well-preserved during the follow-up period. Therefore, the results of present study suggest that use of a stand-alone cage packed with DBM in ACDF surgery is a safe and effective alternative to conventional autologous iliac bone grafts.

In the present study, stand-alone PEEK cages were used in all operations. PEEK is a semicrystalline polyaromatic linear polymer that provides a good combination of strength, stiffness, toughness, and environmental resistance with biocompatible, nonabsorbable, and corrosion-resistant abilities. Furthermore, the cage structure, which consists of (1) 2 titanium spikes on the upper and lower frames anchoring the vertebral body, providing immediate solid fixation, and (2) 4 holes with screw treads for screw fixation, 2 inferior medial ones and 2 lateral ones, giving passages for cranial screws, offers a fixation mechanism similar to that of an anterior plate and screw system. In addition, the PEEK cage is radiolucent and does not produce an imaging artifact, which enables convenient evaluation of fusion status.

Cervical interbody cages have been developed to provide immediate stability and high fusion rates with and without supplemental fixation. Augmentation with plate fixation may seem preferable owing to higher fusion and lower reoperation rates and better pain relief. In spite of these benefits, anterior plating is associated with a morbidity rate of 2.2% to 24.0% according to previously published literature. Complications include screw pullout, screw breakage, injury to neurovascular structures, injury to the esophagus, prolonged dysphagia, and wound infection. Additionally, the operative time is usually longer because of the need for additional retraction to apply the anterior plate and the asymmetry of the anterior cervical surface, which is related to the presence of osteophyte secondary to degenerative changes. In contrast to plate fixation, stand-alone cages are recessed below the margin of the anterior vertebral body, providing no-profile internal fixation, which avoids such complications. Moreover, stand-alone cages possess the advantage of a reduced risk of adjacent level degeneration and spondylitic changes.

Many studies on ACDF using stand-alone cages have demonstrated a high rate of cage subsidence resulting in sagittal imbalance and segmental height loss. However, using a zero-profile PEEK cage with additional screw augmentation, we did not observe any cage relate-complications. Moreover, our study showed that the DSH of the index level was significantly improved postoperatively and well-preserved during the follow-up period.

This study has several limitations, including a small number of study subjects, nonrandomized case selection, and a relatively short follow-up duration. Although well-designed randomized controlled studies with comparison groups are required for confirmation, our results suggest that stand-alone PEEK cages packed with DBM are a promising alternative fusion material for patients undergoing ACDF surgery.
CONCLUSION

ACDF using DBM as a stand-alone graft material demonstrated good clinical and radiologic outcomes at a minimum 6-month follow-up. The fusion rate was comparable to that of published results on traditional ACDF surgery using tricortical iliac crest grafts. With the use of the stand-alone cage and DBM, donor-site morbidity is eliminated, resulting in reduced postoperative pain. Therefore, the results of this study suggest that the use of DBM alone in ACDF surgery is a safe and effective alternative to the gold standard of autologous iliac bone graft.

CONFLICT OF INTEREST

No potential conflict of interest relevant to this article was reported.

REFERENCES

1. An HS, Simpson JM, Glover JM, Stephany J: Comparison between allograft plus demineralized bone matrix versus autograft in anterior cervical fusion. A prospective multicenter study. Spine (Phila Pa 1976) 20:2211-2216, 1995
2. Barbagallo GM, Romano D, Certo F, Milone P, Albanese V: Zero-P: a new zero-profile cage-plate device for single and multi-level ACDF. A single institution series with four years maximum follow-up and review of the literature on zero-profile devices. Eur Spine J 22 Suppl 6:S868-878, 2013
3. Barsa P, Sachomel P: Factors affecting sagittal malalignment due to cage subsidence in standalone cage assisted anterior cervical fusion. Eur Spine J 16:1395-1400, 2007
4. Bartels RH, Donk R, van Aan RD: Height of cervical foramina after anterior discectomy and implantation of a carbon fiber cage. J Neurosurg 95(1 Suppl):40-42, 2001
5. Bartels RH, Donk RD, Feuth T: Subsidence of stand-alone cervical carbon fiber cages. Neurosurgery 58:502-508, 2006
6. Bazaz R, Lee MJ, Yoo JU: Incidence of dysphagia after anterior cervical spine surgery: a prospective study. Spine (Phila Pa 1976) 27:2453-2458, 2002
7. Bishop RC, Moore KA, Hadley MN: Anterior cervical interbody fusion using autogenous and allogeneic bone graft substrate: a prospective comparative analysis. J Neurosurg 85:206-210, 1996
8. Böhm B, Gaudernak T: Subsidence after instrumented anterior cervical disectomy. Med Sci Monit 11:57-64, 2005
9. Bough R, Lee SJ, Yoo JU: Incidence of dysphagia after anterior cervical spine surgery: a prospective study. Spine (Phila Pa 1976) 27:2453-2458, 2002
10. Cho DY, Liu WR, Lee WY, Liu JT, Chiu CL, Shew PC: Preliminary experience using a polyetheretherketone (PEEK) cage in the treatment of cervical disc disease. Neurosurgery 51:1343-1349, 2002
11. Connolly PJ, Esses SI, Kostaik JP: Anterior cervical fusion: outcome analysis of patients fused with and without anterior cervical plates. J Spinal Disord 9:202-206, 1996
12. Cook SD, Dalton JE, Tan EH, Tejeiro WV, Young MJ, Whitecloud TS 3rd: In vivo evaluation of anterior cervical fusions with hydroxylapatite graft material. Spine (Phila Pa 1976) 19:1856-1866, 1994
13. Demircan MN, Kurlat AM, Colak A, Kaya S, Tekin T, Kibici K, et al: Multilevel cervical fusion without plates, screws or autogenous iliac crest bone graft. J Clin Neurosci 14:723-728, 2007
14. Fielding JW: Complications of anterior cervical fusion associated with hardware. Clin Orthop Relat Res (284):10-13, 1992
15. Floyd T, Ohnmeiss D: A meta-analysis of autograft versus allograft in anterior cervical fusion. Eur Spine J 9:389-403, 2000
16. Fountas KN, Kapsalaki EZ, Nikolakakos LG, Smisson HF, Johnston KW, Grigorian AA, et al: Anterior cervical disectomy and fusion associated complications. Spine (Phila Pa 1976) 32:2310-2317, 2007
17. Fraser J, Hård R: Anterior approaches to fusion of the cervical spine: a metaanalysis of fusion rates. J Neurosurg Spine 6:298-303, 2007
18. Gereck A, Arlet V, Delisle J, Marchesi D: Subsidence of stand-alone cervical cages in anterior interbody fusion: warning. Eur Spine J 12:513-516, 2003
19. Goldberg VM, Stevenson S: Natural history of autografts and allografts. Clin Orthop Relat Res (225):7-16, 1987
20. Hacker RJ, Cauthen JC, Gilbert TJ, Griffith SL: A prospective randomized multicenter clinical evaluation of an anterior cervical fusion cage. Spine (Phila Pa 1976) 25:2646-2654, 2000
21. Han B, Tang B, Nimmi ME: Combined effects of phosphatidylcholine and demineralized bone matrix on bone induction. Connect Tissue Res 44:160-166, 2003
22. Kaiser MG, Haid RW Jr, Subach BR, Barnes B, Rodts GE Jr: Anterior cervical plating enhances arthrodesis after discectomy and fusion with cortical allograft. Neurosurgery 50:229-236, 2002
23. Kang J, An H, Hilibrand A, Yoon ST, Kavanagh E, Boden S: Grafton and local bone have comparable outcomes to iliac crest bone in instrumented single-level lumbar fusions. Spine (Phila Pa 1976) 37:1083-1091, 2012
24. Kasimatis GB, Paragiotopoulos E, Gliatis J, Tylianakis M, Zouboulis P, Lambiris E: Complications of anterior surgery in cervical spine trauma: an overview. Clin Neurol Neurosurg 111:1827, 2009
25. Katzer A, Marquardt H, Westendorf J, Wening JV, von Foerster BO, Gerdin G, et al: Cervical disc disease. Kaohsiung J Med Sci 19:208-216, 2003
26. Kerkhofs H, Nys GM, Gits HD, Vos RC, et al: Preliminary experience using a polyetheretherketone (PEEK) cage filled with cancellous allograft in anterior cervical disectomy and fusion. Int Orthop 32:643-648, 2008
27. Lin CN, Wu YC, Wang NP, Howng SL: Preliminary experience with anterior interbody titanium cage fusion for treatment of cervical disc disease. Kaohsiung J Med Sci 19:208-216, 2003
28. Matge G: Anterior interbody fusion with the BAK-cage in cervical spondylosis. Acta Neurochir (Wien) 140:1-8, 1998

118 www.e-kjs.org
31. Maio J, Shen Y, Kuang Y, Yang L, Wang X, Chen Y, et al: Early follow-up outcomes of a new zero-profile implant used in anterior cervical discectomy and fusion. J Spinal Disord Tech 26: E193-197, 2013

32. Moon HJ, Kim JH, Kim JH, Kwon TH, Chung HS, Park YK: The effects of anterior cervical discectomy and fusion with stand-alone cages at two contiguous levels on cervical alignment and outcomes. Acta Neurochir (Wien) 153:559-565, 2011

33. Park HW, Lee JK, Moon SJ, Seo SK, Lee JH, Kim SH: The efficacy of the synthetic interbody cage and Grafton for anterior cervical fusion. Spine (Phila Pa 1976) 34:E591-595, 2009

34. Park JB, Cho YS, Riew KD: Development of adjacent-level ossification in patients with an anterior cervical plate. J Bone Joint Surg Am 87:558-563, 2005

35. Park JH, Roh SW: Anterior cervical interbody fusion using polyetheretherketone cage filled with autologous and synthetic bone graft substrates for cervical spondylosis: comparative analysis between PolyBone® and iliac bone. Neurol Med Chir (Tokyo) 53:85-90, 2013

36. Pitzen TR, Chrobok J, Stulik J, Ruffing J, Sova L, et al: Implant complications, fusion, loss of lordosis, and outcome after anterior cervical plating with dynamic or rigid plates: two-year results of a multi-center, randomized, controlled study. Spine (Phila Pa 1976) 34:641-646, 2009

37. Profeta G, de Falco R, Ianniciello G, Profeta L, Giggiano A, Raja AI: Preliminary experience with anterior cervical microdiscectomy and interbody titanium cage fusion (Novus CT-Ti) in patients with cervical disc disease. Surg Neurol 53:417-426, 2000

38. Riley LH 3rd, Skolasky RL, Albert TJ, Vaccaro AR, Heller JG: Dysphagia after anterior cervical decompression and fusion: prevalence and risk factors from a longitudinal cohort study. Spine (Phila Pa 1976) 30:2564-2569, 2005

39. Riley LH Jr, Robinson RA, Johnson KA, Walker AE: The results of anterior interbody fusion of the cervical spine. Review of ninety-three consecutive cases. J Neurosurg 30:127-133, 1969

40. Sampath P, Bendebba M, Davis JD, Ducker TB: Outcome of patients treated for cervical myelopathy: A prospective, multicenter study with independent clinical review. Spine (Phila Pa 1976) 25:670-676, 2000

41. Shad A, Leach JC, Teddy PJ, Cadoux-Hudson TA: Use of the Solis cage and local autologous bone graft for anterior cervical discectomy and fusion: early technical experience. J Neurosurg Spine 2:116-122, 2005

42. Shin JS, Oh SH, Cho PG: Surgical outcome of a Zero-profile Device comparing with stand-alone cage and anterior cervical plate with iliac bone graft in the anterior cervical discectomy and fusion. Korean J Spine 11:169-177, 2014

43. Shono Y, McAfee PC, Cunningham BW, Brantigan JW: A biomechanical analysis of decompression and reconstruction methods in the cervical spine. Emphasis on a carbon-fiber-composite cage. J Bone Joint Surg Am 75:1674-1684, 1993

44. Song KJ, Taghavi CE, Lee KB, Song JH, Eun JP: The efficacy of plate construct augmentation versus cage alone in anterior cervical fusion. Spine (Phila Pa 1976) 34:2886-2892, 2009

45. Steffen T, Tsantrizos A, Fruth I, Aebi M: Cages: designs and concepts. Eur Spine J 9 Suppl 1:589-94, 2000

46. Tilkneridis K, Touzopoulos P, Ververidis A, Christodoulou S, Kazakos K, Drosos GI: Use of demineralized bone matrix in spinal fusion. World J Orthop 5:30-37, 2014

47. Topuz K, Colak A, Kaya S, Simsek H, Kutlasy M, Demircan MN, et al: Two-level contiguous cervical disc disease treated with peek cages packed with demineralized bone matrix: results of 3-year follow-up. Eur Spine J 18:238-243, 2009

48. Tortolani PJ, Cunningham BW, Vigna F, Wu N, Zorn CM, McAfee PC: A comparison of retraction pressure during anterior cervical plate surgery and cervical disc replacement: a cadaveric study. J Spinal Disord Tech 19:312-317, 2006

49. Vaccaro AR, Stubbs HA, Block JE: Demineralized bone matrix composite grafting for posterior cervical spinal fusion. Orthopedics 30:567-570, 2007

50. Wang JC, Alany A, Mark D, Kanim LE, Campbell PA, Dawson EG, et al: A comparison of commercially available demineralized bone matrix for spinal fusion. Eur Spine J 16:1233-1240, 2007

51. Wang JC, McDonough PW, Kanim LE, Endow KK, Delamarter RB: Increased fusion rates with cervical plating for three-level anterior cervical discectomy and fusion. Spine (Phila Pa 1976) 26:643-646, 2001

52. Wenz LM, Merritt K, Brown SA, Moet A, Steffee AD: In vitro biocompatibility of polyetheretherketone and polysulfone composites. J Biomed Mater Res 24:207-215, 1990

53. Yang JY, Song HS, Lee M, Bohlman HH, Riew KD: Adjacent level ossification development after anterior cervical fusion without plate fixation. Spine (Phila Pa 1976) 34:30-33, 2009

54. Yue WM, Loc K, Brown SA, Moet A, Steffee AD: In vitro biocompatibility of polyetheretherketone and polysulfone composites. J Biomed Mater Res 24:207-215, 1990

55. Yang JY, Song HS, Lee M, Bohlman HH, Riew KD: Adjacent level ossification development after anterior cervical fusion without plate fixation. Spine (Phila Pa 1976) 34:30-33, 2009

56. Yue WM, Loc K, Brown SA, Moet A, Steffee AD: In vitro biocompatibility of polyetheretherketone and polysulfone composites. J Biomed Mater Res 24:207-215, 1990