Application of Certainty Factor Method to Identify Pests in Crystal Jamboo Plants

Hendry Fonda1, Yulanda2, Muhammad Ikhsanudin1, Muhardi2, Yuda Irawan1

1Information Systems, STMIK Hang Tuah Pekanbaru
2Informatics, STMIK Hang Tuah Pekanbaru

*Corresponden Email: fondaanda@gmail.com

Abstract. Indonesia is an agricultural country with agriculture as one of the main sources of livelihood and a source of income for the people of Indonesia. One of them is the agriculture sector of guava crystal, guava crystal is one of the fruit plants that are already popular in the community. One potential problem in the cultivation of guava crystal is the presence of pests. The presence of pests in crystal guava plants can interfere with the health side of this crystal herbal medicine plant, where pests can attack the leaves, stems to fruit on the guava plants so that they can affect development and losses in the agricultural sector. As is the case in the Yellow River Crystal Guava Plantation Tourism which is still very difficult to detect pests. The results obtained from the calculation of identification of pests are 96% shoots caterpillars, caterpillars 92%, fire caterpillars 52%, caterpillars caterpillar 96%, caterpillars 84%, keket caterpillars 84%, grasshoppers 96%, fruit borer beetles 92%, White Aphids 92%, Aphids 88%, Shield Aphids 84%, and Fruit Flies 96%. That indicates the accuracy of the certainty factor is over 80% accurate.

1. Introduction
Guava (Psidium guajava L) is one of the many types of fruit produced in Indonesia. [1-2]. Crystal guava is one of the most popular fruit crops. Guava in Indonesia has many varieties including Red Guava, Wijaya Merah, Deli, and Crystal[3]. The guava is subject to attack by several kinds of insects. Detailed life history and effective control measures for most of these pests still remain to be worked out.[4] One of the potential problems in crystal guava culture is the presence of pests. Pests are organisms or disturbances, which is meant by parasites, namely plants or animals that live on the outside or inside the body of the crystal guava plant. The existence of pests on crystal guava plants can interfere with the health of the crystal guava plant, where the pests can attack the leaves, stems, and fruit of the crystal guava plant so that they can reduce development and losses in the agricultural sector[5].

The factor of certainty can be used as an inference engine, and make independent causal assumption[6] and by single or multiple rules for resulting final conclusion[7]. Using the certainty factor method can state the proportion of the level of certainty of an expert regarding the identification of pests in crystal guava plants based on evidence or characteristics of pest attacks on this plant. So that farmers no longer have difficulty distinguishing pests in crystal plants and can immediately take actions properly and appropriately. The objectives of this study are: Provide an alternative
management of problems regarding pests which is one of the potentials in the crystal guava plant management system.

2. Methodology
In this research, the following stages are displayed, namely: 1. Collection of needs, 2. Build prototyping certainty Factor Method, 3. Inference Process, and 4. Test and Implementation -System.

![Figure 1. System Review Diagram](image)

3. Result and Discussion
The stages in the Certainty factor are as follows:

Collection of needs
The data obtained during the data collection process consisted of pest data, symptom data, pest and symptom relationship data, and case sample data.

a. Pest Data
The pest data used in the expert system for identifying pests in crystal guava plants is 12 pests. The pest data can be seen in the table below[8]:

Code	Pests Name	Code	Pests Name
HJK01	Top Caterpillar (Lepidoptera: Pyralidae)	HJK07	Grasshopper (Orthoptera: Acrididae)
HJK02	Sac Caterpillar (Lepidoptera: Psychidae)	HJK08	Fruit Borer (Coleoptera: Nitidulidae)
HJK03	Fire Caterpillar (Lepidoptera: Limacodidae)	HJK09	White Fleas (Hemiptera: Pseudococcidae)
HJK04	Jengkal Caterpillar (Lepidoptera: Geometridae)	HJK10	Aphids (Hemiptera: Aphididae)
HJK05	Caterpillar (Lepidoptera: Lasiocampidae)	HJK11	Shield Lice (Hemiptera: Diaspididae)
HJK06	Keket Caterpillar (Lepidoptera: Saturniidae)	HJK12	Fruit Fly (Diptera: Tephritidae)

b. Symptom Data
Symptom data used in the expert system for identifying pests in this guava plant consists of 25 symptoms, in the table below[8]:

Code	Symptom	Code	Symptom
GHJK01	Young leaves become curly and folded	GHJK14	The bite marks on the leaves dry up
GHJK02	Leaflets curly and folded	GHJK15	Small holes colored in fruit
GHJK03	The presence of white fine threads	GHJK16	Fruit rot with wide holes
GHJK04	Petiole with bite marks	GHJK17	White spots on leaves
GHJK05	Flowers that have not yet bloomed have	GHJK18	White spots on fruit
	holes in the bite marks		
GHJK06	Young fruit brown on the surface	GHJK19	White spot on stalk
Build prototyping certainty Factor Method

The Certainty Factor (CF) theory was proposed by Shorliffe and Buchanan in 1975 to accommodate the uncertainty of an expert's thought (inexact reasoning). To accommodate this, it is used to describe the level of expert confidence in the problem at hand[9]. In expressing the degree of confidence, certainty theory uses a value called certainty factor to assume the degree of an expert's confidence in a data. There are two ways to get a certainty factor (CF) from a rule, namely: Method “Net Belief”[10].

\[
CF(Rule) = MB(H, E) \times MD(H, E)
\]

\[
MB(H, E) = \{ \max \{ P(H|E), P(H) \} - P(H) \} \quad P(H) = 1,
\]

\[
\max [1,0] - P(H)
\]

\[
MD(H, E) = \{ \min \{ P(H|E), P(H) \} - P(H) \} \quad P(H) = 0,
\]

\[
\min [1,0] - P(H)
\]

Notes:

\[
CF(Rule) = \text{Certainly Factor}
\]

\[
MB(H,E) = \text{Measure of Belief} \text{ to hypothesis } H, \text{ if value of evidence } E \text{ (between 0 and 1)}
\]

\[
MD(H,E) = \text{Measure of Disbelief} \text{ to evidence } H, \text{ if value of evidence } E \text{ (between 0 and 1)}
\]

\[
P(H) = \text{The probability of the truth of the hypothesis } H
\]

\[
P(H|E) = \text{The probability that } H \text{ is true because of fact } E
\]

The CF (Rule) value is obtained from the expert's interpretation of terms, which is converted into a certain CF value. The certainty term used in the certainty factor method to determine the value of CF can be seen from the following table[11]:

Term certainty	MD/MB
definitely not	-0,1
Almost Certainty Not	-0,8
probably not	-0,6
maybe not	-0,4
Unknown	0,2
maybe	0,4
Probably	0,6
Almost certainty	0,8
definitely	1,0

So that the final value of CF can be taken using the following formula:

\[
MB2^* = \frac{MB2}{MB1} \quad (1 - MB1)
\]
CF MB M MD2* \((1- = CF MD D1 MD1) = CF \text{final} = MB(H,E) \times MD(H,E) \\

Notes:

\(CF (H,e) \) = Certainty factor evidence H which is influenced by evidence e
\(MB(H,E) \) = Measure of Belief on hypothesis H, if given evidence E (between 0 and 1)
\(MD(H,E) \) = Measure of Disbelief on evidence H, if given evidence E (between 0 and 1)

Inference Process

Inference is: The process used in an Expert System to generate new information from already known information[12]. In case of uncertain knowledge, the methodology of rule-based systems, logic, and logic programming cannot be transferred in a straightforward manner[13]. To produce a special tool for farmers in the form of an expert system to identify pests in crystal guava plants, it is necessary to create a complete knowledge base and rule base so that the pest identification process runs well. The knowledge base is in the form of the relationship between symptoms and pests in guava plants. The basis for the rules is taken from the existing knowledge base and then arranged in the form of rules. These rules can be seen in the following table:

Table 4 Compound Rules Table

No	IF	Symptom Code	Pest Code	No	IF	Symptom Code	Pest Code
1	IF	GHJK01		6	IF	GHJK08	
		AND GHJK02				AND GHJK13	HJK06
		AND GHJK03				GHJK13	
		AND GHJK04				AND GHJK14	HJK07
		AND GHJK05				GHJK15	
		AND GHJK06				AND GHJK16	HJK08
		AND GHJK08	HJK01	9	IF	GHJK17	
2	IF	GHJK04				AND GHJK18	
		AND GHJK07				AND GHJK19	
		AND GHJK08	HJK02			AND GHJK20	
3	IF	GHJK08				AND GHJK21	HJK09
		AND GHJK09	HJK03	10	IF	GHJK01	
4	IF	GHJK08				AND GHJK02	HJK10
		AND GHJK10	HJK04	11	IF	GHJK22	
		GHJK07				AND GHJK23	HJK11
		AND GHJK08	HJK05	12	IF	GHJK24	
5	IF	GHJK12				AND GHJK25	HJK12

4. Test and Implementation

From the results of the inference table above, the accuracy of the certainty factor method can be tested on crystal guava fruit as follows:

Selected Symptoms

Selected Symptoms	MD
Young leaves become curly and folded	0.6
Flowers that have not yet bloomed have holes in the bite marks	0.8
Branch with bite marks	0.6

Relationship of Pests and Symptoms

selected symptoms	Pest	MB	MD
Young leaves become curly and folded	Top Caterpillar (Lepidoptera: Pyralidae)	0.8	0.6
Flowers that have not yet bloomed	Top Caterpillar (Aphids (Hemiptera: Aphididae))	0.4	0.6
Flowers that have not yet bloomed	Top Caterpillar (Aphids (Hemiptera: Aphididae))	0.8	0.8
have holes in the bite marks (Lepidoptera: Pyralidae)
Branch with bite marks Caterpillar (Lepidoptera: Lasiocampidae) 0.2 0.6

Calculates CF

\[
\begin{align*}
CF MB &= M \cdot MB2^* \cdot (1 - MB1) \\
CF MD &= M \cdot MD2^* \cdot (1 - MD1) \\
CF end &= MB(H,E) \cdot MD(H,E)
\end{align*}
\]

Top Caterpillar (Lepidoptera: Pyralidae)
- \(CF_{MB1} = 0.8 + 0.8 \cdot (1 - 0.8) = 0.96 \)
- \(CF_{MD1} = 0.6 + 0.6 \cdot (1 - 0.6) = 0.84 \)
- \(CF_{end} = 0.96 \cdot 0.92 \cdot 100\% = 80.64\% \)

Top Caterpillar (Lepidoptera: Lasiocampidae)
- \(CF_{end} = 0.2 \cdot 0.6 \cdot 100\% = 12\% \)

From that case we find the result of calculating certainty factor method with accuracy as shown in Table 8.

NO	Symptoms	Pest
1	GHJK01 : Young leaves become curly and folded	HJK01 : Top Caterpillar (Lepidoptera: Pyralidae) 96%
	GHJK02 : Leaflets curly and folded	
	GHJK03 : The presence of white fine threads	
	GHJK08 : Leaf with holes in bite marks	
	GHJK04 : Petiole with bite marks	
	GHJK05 : Flowers that have not yet bloomed	
	GHJK06 : Young fruit brown on the surface	
	GHJK04 : Petiole with bite marks	
2	GHJK07 : Bite marks perforated leaf bone	HJK02 : Sac Caterpillar (Lepidoptera: Psychidae) 92%
	GHJK08 : Leaf with holes in bite marks	
	GHJK08 : Leaf with holes in bite marks	
3	GHJK09 : Leaves used up bite marks	HJK03 : Fire Caterpillar (Lepidoptera: Limacodidae) 52%
	GHJK08 : Leaf with holes in bite marks	
4	GHJK10 : The bark peels off the bite mark	HJK04 : Jengkal Caterpillar (Lepidoptera: Geometridae) 96%
	GHJK08 : Leaf with holes in bite marks	
5	GHJK07 : Bite marks perforated leaf bone	HJK05 : Caterpillar (Lepidoptera: Lasiocampidae) 84%
	GHJK12 : Branch with bite marks	
	GHJK08 : Leaf with holes in bite marks	
6	GHJK13 : Leaves exhausted and the remaining	HJK06 : Keket Caterpillar (Lepidoptera: Saturniidae) 84%
	bone leaves	
	GHJK14 : The bite marks on the leaves dry up	
	GHJK13 : Leaves exhausted and the remaining	
	bone leaves	
	GHJK25 : Fruit rot and there is lava in it	
4. Conclusion

The Certainty Factor method is one of the expert system methods by using a certainty factor from an expert, the results obtained from the calculation of pest identification in the application of 96% shoot caterpillar, 92% pouch caterpillar, 52% fire caterpillar, 96% jengkal caterpillar, caterpillar fur 84%, caterpillars 84%, grasshoppers 96%,. That indicates the accuracy of the certainty factor is over 80% accurate.

References
1. E. Kamsiati, “Postharvest Handling Practices in Maintaining Quality and Shelf Life of Guava (Psidium guajava),” *Indonesian Agricultural Agency for Research and Development (IAARD)*, pp. 363–374, 2016.
2. S. Susanto, M. Melati, and S. A. Aziz, “Pruning to improve flowering and fruiting of ‘crystal’ Guava,” *Agrivita*, vol. 41, no. 1, pp. 48–54, 2019, doi: 10.17503/agrivita.v41i1.1954.
3. A. Guntarti and E. N. Hutami, “Validation and Vitamin C Testing in Crystal Guava (Psidium guajava L.) With Variations of Origin With the HPLC Method (High Performance Liquid Chromatography),” *International Journal of Chemistry*, vol. 11, no. 1, p. 52, 2019, doi: 10.5539/ijc.v11n1p52.
4. D. Carrillo, J. Peña, and R. Duncan, “Guava Pests and Beneficial Insects 1 Insects on Flowers and Fruits,” pp. 1–7, 2017.
5. I. S. Setiasih, T. Rialita, D. M. Sumanti, and I. Hanidah, “Characteristics of Guava (Psidium guajava L.) Treated With Ozonation During Ambient Storage,” *KnE Life Sciences*, vol. 2, no. 6, p. 448, 2017, doi: 10.18502/klsl.2016.1066.
6. P. Lucas, “Certainty-factor-like structures in Bayesian networks,” *Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)*, vol. 1792 LNAI, no. February, pp. 25–36, 2000, doi: 10.1007/3-540-46238-4-3.
7. T. A. Munandar, Suherman, and Sumiati, “The Use of Certainty Factor with Multiple Rules for Diagnosing Internal Disease,” *Ijaiem*, vol. 1, no. 1, pp. 58–64, 2012.
8. A. S. Eriza, K. H. Mutaqin, and R. Anwar, “Hama Dan Penyakit Tanaman Jambu Kristal (Psidium Guajava L.) Di Agribusiness Development Station Cikarawang Bogor,” *IPB Repository*, 2015, [Online]. Available: https://repository.ipb.ac.id/handle/123456789/79548.
9. T. D. Raharjo, “Sistem Pakar Diagnosa Penyakit Pada Ayam Dengan Metode Certainty Factor Berbasis Android,” *International Journal of Application or Innovation in Engineering & Management (IJAEM)*, 2018.
10. P. S. Bandyopadhyay, Belief, Evidence, and Uncertainty Problems of Epistemic Inference, no. March 2016. 2017.
11. Sutojo, Kecerdasan Buatan. Yogyakarta: Andi, 2015.
12. H. Fonda, and R. Amelia, “Penentuan Kelayakan Penerimaan Dosen Tetap STIKES Hang Tuah Pekanbaru dengan Menggunakan Fuzzy Inferece System (Fis),” *Jurnal Ilmu Komputer*, vol. 6, no. 2, pp. 109–115, 2017.
13. T. Mellouli, “Complex Certainty Factors for Rule Based Systems – Detecting Inconsistent Argumentations. CEUR Workshop Proceedings, 2014”