Clinicopathological impacts of c-Met overexpression in bladder cancer: evidence from 1,336 cases

Xin Xu1,*
Guanjun Zhang2,*
Liujia He1,*
Yi Zhu1

1Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, People’s Republic of China; 2Department of Urology, Hospital of Traditional Chinese Medicine of Shangyu, Shangyu 312300, Zhejiang, People’s Republic of China

*These authors contributed equally to this work

Background: The clinicopathological impacts of c-Met overexpression in bladder cancer have been investigated in several studies with conflicting results. We performed this systematic review and meta-analysis to assess the pathologic and prognostic roles of c-Met status in bladder cancer patients.

Methods: Eligible studies were searched and identified from the PubMed and China National Knowledge Infrastructure (CNKI) databases (up until October 4, 2018). The DerSimonian-Laird random-effects model was used to calculate the pooled risk estimates.

Results: Eight studies including 1,336 bladder cancer cases were eventually included in this meta-analysis. We detected a significantly increased risk of poor overall survival (OS) associated with the high expression of c-Met (HR=2.42, 95% CI 1.36–4.32). There was no association between c-Met status and nuclear grade (OR=0.82, 95% CI 0.29–2.31) or tumor stage (OR=1.42, 95% CI 0.41–4.89).

Conclusion: This study shows that the overexpression of c-Met in primary cancer tissues is associated with a worse OS in human bladder cancer. However, larger studies using standardized methods and criteria are warranted to verify these findings.

Keywords: bladder cancer, c-Met, overall survival, meta-analysis

Introduction
Bladder cancer is the ninth most common cancer worldwide and the thirteenth leading cause of global cancer mortality.1 Emerging studies have revealed that various human genes, including dysregulated lncRNAs and circRNAs, participate in the genesis and progression of bladder cancer.2,3 Although multiple and diverse therapeutic strategies have been utilized in recent years,4 radical cystectomy remains the standard curative treatment for muscle-invasive bladder cancer; this treatment has a 5-year overall survival (OS) rate of 45.9% when combined with chemotherapy.5 Therefore, the development of novel biomarkers is urgent to improve bladder cancer management and personalized therapy.6

The tyrosine kinase c-Met, which is encoded by the proto-oncogene MET located on chromosome 7, is the receptor for hepatocyte growth factor (HGF). c-Met participates in various cellular processes, including differentiation, proliferation, invasion and angiogenesis, by regulating PI3K/AKT, Ras/MAPK, JAK/STAT, SRC and Wnt/β-catenin signaling.7,8 Agents targeting HGF/c-MET signaling have been tested in various human cancers and have shown promising results in advanced non-small
cell lung cancer and hepatocellular carcinoma. The role of c-Met in bladder cancer has also been investigated in many studies, and the results have been conflicting. Certain studies reported either a favorable association or an unfavorable association, while others showed no association between c-Met overexpression and the clinicopathological features of bladder cancer. Therefore, we performed this systematic review and meta-analysis to comprehensively assess the pathologic and prognostic roles of c-Met status in bladder cancer patients.

Methods

Search strategy

This meta-analysis was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. Studies focusing on the clinicopathological impacts of c-Met expression in bladder cancer were identified from the PubMed and China National Knowledge Infrastructure (CNKI) databases (up until October 4, 2018) using the following keywords: “bladder cancer or bladder carcinoma or bladder neoplasm or bladder tumor” and “c-Met or hepatocyte growth factor receptor or HGFR”. To expand our search, cited references of the identified articles and reviews were manually searched to identify additional relevant studies. The titles and abstracts of the retrieved studies were initially reviewed to exclude obviously unrelated papers. Then, the full texts of the potentially relevant studies were reviewed. The eligible articles were selected by two independent reviewers (XX and GZ), and controversial articles were discussed with a third reviewer (LH). The complete full search strategy is provided in Supplementary material.

Inclusion criteria

Eligible studies met all the following criteria: 1) study population was bladder cancer patients; 2) pathological features or OS were analyzed according to c-Met expression status; 3) adequate data were provided to calculate odds ratios (ORs) or hazard ratios (HRs) and their 95% confidence intervals (CIs) and 4) articles were published in English or Chinese. For overlapped studies, the study with the largest sample size or most complete information was included in this meta-analysis. Several potentially eligible studies did not provide enough data to calculate risk estimates. We attempted to contact the corresponding authors of these papers; however, the response rate was very low, and the majority of these articles had to be excluded.

Data extraction

The following information was extracted from each eligible study independently by two reviewers (XX and GZ): first author’s surname, publication year, country, sample size, age of patients, nuclear grade, tumor stage, methods used to analyze c-Met expression, cut-off value and clinicopathologic data. Any discrepancies were solved by consensus.

Quality assessment

The quality of each study was assessed by two independent reviewers (XX and GZ) using the Newcastle-Ottawa Scale (NOS) with reasonable modifications. NOS is an eight-item instrument that is used for assessment of the study population, study comparability, follow-up and outcome of interest. We assigned scores of <7 and ≥7 for low- and high-quality studies, respectively.

Statistical methods

The impact of c-Met expression on clinicopathologic characteristics was quantified by the pooled ORs or HRs and their 95% CIs. Data on the pathological features were extracted from studies in which the ORs were available. Values that were calculated with the multivariate Cox proportional hazard model were used for OS. If not directly available, these values were calculated using the methods described by Parmar et al. The DerSimonian-Laird random-effects model was used to calculate the pooled risk estimates. The impact of c-Met expression on the pathology and prognosis was considered statistically significant if the 95% CI did not exceed 1.

Statistical heterogeneity across studies was tested using the Q statistic and I² statistic. A P-value of <0.10 for the Q statistic was considered statistically significant. The value of I² was used to evaluate the degree of heterogeneity (weak heterogeneity: I²<25%; moderate heterogeneity: I²=25–50%; large heterogeneity: I²>50%). Publication bias was assessed using Begg’s funnel plot and Egger’s test. All statistical analyses were performed with STATA 11.0 (StataCorp, College Station, Texas USA), using two-sided P-values. P<0.05 was considered statistically significant.
Results
Literature search and study characteristics
Figure 1 shows the flow diagram of the literature search process. Eight studies\(^{10–12,19–23}\) were eventually included in this meta-analysis evaluating the association between c-Met status and the clinicopathological features of bladder cancer. These studies were performed retrospectively in the following regions: China (n=5), Japan (n=1), South Korea (n=1) and Germany (n=1). All the included studies were published between 2002 and 2016, and a total of 1,336 cases were included. Except for one study that used real-time PCR (RT-PCR), information on c-Met expression was obtained using immunohistochemistry (IHC). The study quality scores, which were assessed by the NOS, ranged from 5 to 7 (with a mean score of 6). Table 1 shows the primary characteristics of each study included in this meta-analysis.

c-Met expression and OS of bladder cancer
Three studies were eligible to be included in the OS analysis of high c-Met expression versus low expression. The HRs for each study and for the combination of all the studies are shown in Figure 2. We detected a significantly increased risk of poor OS associated with high expression of c-Met (HR=2.42, 95% CI 1.36–4.32). There was no obvious heterogeneity among the studies (\(P=0.289\) for heterogeneity; \(I^2=19.3\%\)).

c-Met expression and nuclear grade of bladder cancer
Five articles reported data on the correlation between c-Met expression and the nuclear grade of bladder cancer. The pooled data from all these studies indicated that c-Met expression was not related to nuclear grade with a pooled OR of 0.82 (95% CI 0.29–2.31) (Figure 3). Obvious heterogeneity was observed across studies (\(I^2=83.4\%, P<0.001\)).

c-Met expression and tumor stage of bladder cancer
The relationship between c-Met expression and primary tumor stage of bladder cancer was analyzed in six published studies. The pooled OR (95% CI) for all these studies was 1.42 (0.41–4.89) (Figure 4), and there was significant heterogeneity among studies (\(I^2=89.4\%, P<0.001\)).

Publication bias
There was no evidence of publication bias according to Begg’s funnel plot (Figure 5, \(P=0.806\) for grade, \(P=0.707\) for stage) or Egger’s test (\(P=0.586\) for grade, \(P=0.167\) for stage).

Figure 1 Flow diagram of search process. **Abbreviation:** CNKI, China National Knowledge Infrastructure.
Discussion

This meta-analysis summarizes the results of eight studies that evaluated the relationship between c-Met status and the clinicopathological features of bladder cancer. To the best of our knowledge, this is the first meta-analysis on this topic. The results indicate that high c-Met expression is positively associated with a poor OS in bladder cancer patients.

The biological function of c-Met in bladder cancer cells has been widely studied in previous publications, including several papers published by our team. The overexpression of c-Met may promote migration and invasion by regulating Akt/GSK-3β/Snail signaling12,24,25 in bladder cancer cells. In addition, phosphor-c-Met also plays important roles for malignant aggressiveness and prognosis in cancer patients. The phosphorylation of c-MET contributes to the activation of a variety of intracellular signaling pathways that eventually promote cell proliferation, motility, invasiveness, epithelial-mesenchymal transition (EMT) and drug resistance.26,27 High expression of phospho-c-MET was significantly associated with poor prognosis in invasive bladder cancer.28 Urine c-Met status was reported as a promising diagnostic marker for urothelial carcinoma of the bladder.29 The expression of c-Met was shown to be post-translationally regulated by many non-coding RNAs, including miR-409,30
miR-433,12 miR-323,24 miR-10131 and miR-38125 in bladder cancer. Overall, the oncogene c-Met plays a crucial role in the progression and metastasis of human bladder cancer.

In this meta-analysis, we found that c-Met expression was not associated with nuclear grade or tumor stage. In fact, the role of c-Met in the progression of bladder cancer is still unclear. Although most published studies indicated that c-Met status was positively related to the malignant biological behavior of bladder cancer cells,11,20 some studies reported that c-Met overexpression may primarily occur in early-stage tumors and play a more important role in the progression of early-stage bladder cancer.10

Because the sample size of our meta-analysis is limited, further prognostic study is warranted to confirm the exact role of c-Met in bladder cancer.

This study had some important strengths. Emerging studies have indicated that c-Met overexpression is significantly associated with worse clinicopathological features in various human cancers, including renal cell cancer,32 breast cancer,33 colorectal cancer34 and others. However, the exact effects of c-Met expression on the pathologic and prognostic features in bladder cancer
patients are still unclear. Several previous studies have been performed to evaluate the relationship between c-Met status and the clinicopathological features of bladder cancer, but the results were inconsistent and conflicting. As individual studies had limited statistical power, this systematic review and meta-analysis of eight studies included enormous bladder cancer cases, which improved the power to detect a potential association and allowed for more reliable estimates.

However, several important limitations should be considered when interpreting the results of this meta-analysis. First, although neither Begg’s test nor Egger’s test revealed any evidence of publication bias, some inevitable publication bias may exist as only articles published in English or Chinese were searched and included in this meta-analysis. Second, limited studies were eligible for the OS analysis, which may affect the reliability of the pooled risk estimate. Third, different methods were used to evaluate the expression of c-Met and there was a wide range of values for the cut-off points across the included studies, which may lead to heterogeneity and distort the summary analysis.

Conclusion
This study shows that the overexpression of c-Met in primary cancer tissues is associated with a worse OS in human bladder cancer. However, larger studies using standardized methods and criteria are warranted to verify the prognostic roles of c-Met status in bladder cancer patients.

Acknowledgment
This study was supported by grants from the National Natural Science Foundation of China (81702500 and 81802520).

Disclosure
The authors report no conflicts of interest in this work.

References
1. Yumba Mpanga A, Siluk D, Jacyna J, et al. Targeted metabolomics in bladder cancer: from analytical methods development and validation towards application to clinical samples. Anal Chim Acta. 2018;1037:188–199. doi:10.1016/j.aca.2018.01.055
2. Li M, Liu Y, Zhang X, Liu J, Wang P. Transcriptomic analysis of high-throughput sequencing about circRNA, IncRNA and mRNA in bladder cancer. Gene. 2018;677:189–197. doi:10.1016/j.gene.2018.07.041
3. Li J, Shen H, Xie H, et al. Dysregulation of ncRNAs located at the DLK1-DIO3 imprinted domain: involvement in urological cancers. Cancer Manag Res. 2019;11:777–787. doi:10.2147/CMAR.S190764
4. Aoun F, Rassy EE, Assi T, Albisinni S, Katan J. Advances in urothelial bladder cancer immunotherapy, dawn of a new age of treatment. Immunotherapy. 2017;9(5):451–460. doi:10.2217/imt-2017-0004
5. Lin HY, Ye H, Kernen KM, Hafron JM, Krauss DJ. National cancer database comparison of radical cystectomy vs chemoradiotherapy for muscle-invasive bladder cancer: implications of using clinical vs pathologic staging. Cancer Med. 2018. doi:10.1002/cam4.1684
6. Bruchbacher A, Soria F, Hassler M, Shariat SF, D’Andrea D. Tissue biomarkers in nonmuscle-invasive bladder cancer: any role in clinical practice? Curr Opin Urol. 2018;28(6):584–590.
7. Conoglio PM, Trusolino L, Boccaccio C. Known and novel roles of the MET oncogene in cancer: a coherent approach to targeted therapy. Nat Rev Cancer. 2018;18(6):341–358. doi:10.1038/s41568-018-0002-5
8. Zhang Y, Xia M, Jin K, et al. Function of the c-Met receptor tyrosine kinase in carcinogenesis and associated therapeutic opportunities. Mol Cancer. 2018;17(1):45. doi:10.1186/s12943-018-0796-9
9. Mo HN, Liu P. Targeting MET in cancer therapy. Chronic Dis Transl Med. 2017;3(3):148–153.
10. Kluth M, Reynolds K, Rink M, et al. Reduced membranous MET expression is linked to bladder cancer progression. Cancer Genet. 2014;207(4):147–152. doi:10.1016/j.cancergen.2014.03.008
11. Cheng HL, Trink B, Tzai TS, et al. Overexpression of c-met as a prognostic indicator for transitional cell carcinoma of the urinary bladder: a comparison with p53 nuclear accumulation. J Clin Oncol. 2002;20(6):1544–1550. doi:10.1200/JCO.2002.20.6.1544

Figure 5 Funnel plots for publication bias.
Xu et al

12. Xu X, Zhu Y, Liang Z, et al. c-Met and CREB1 are involved in miR-433-mediated inhibition of the epithelial-mesenchymal transition in bladder cancer by regulating Akt/GSK-3beta/Snail signaling. *Cell Death Dis.* 2016;7:e2088. doi:10.1038/cddis.2015.274

13. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *PLoS Med.* 2009;6(7):e1000097. doi:10.1371/journal.pmed.1000097

14. Parmar MK, Torri V, Stewart L. Extracting summary statistics to perform meta-analyses of the published literature for survival endpoints. *Stat Med.* 1998;17(24):2815–2834. doi:10.1002/(SICI)1097-0258(19981230)17:24<2815::AID-SIM110>3.0.CO;2-8

15. DerSimonian R, Laird N. Meta-analysis in clinical trials. *Control Clin Trials.* 1986;7(3):177–188. doi:10.1016/0197-2456(86)90046-2

16. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. *Stat Med.* 2002;21(11):1539–1558. doi:10.1002/sim.1186

17. Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. *Biometrics.* 1994;50(4):1088–1101. doi:10.2307/2533446

18. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. *BMJ.* 1997;315(7109):629–634. doi:10.1136/bmj.315.7109.629

19. Jiang HG, Huang X, Yang LY. Expression and significance of hepatocyte growth factor and c-Met in bladder transitional cell carcinoma. *Chin J Urol.* 2006;27(Suppl 12):18–20.

20. Kim YW, Yun SJ, Jeong P, et al. The c-MET network as novel prognostic marker for predicting bladder cancer patients with an increased risk of developing aggressive disease. *PLoS One.* 2015;10(7):e0134552. doi:10.1371/journal.pone.0134552

21. Long JR, Dong ZQ, Xiong F, Hu JZ, Hou Y, Han Y. Expression and significance of MACC1 and c-Met in bladder cancer tissues. *Shandong Med J.* 2012;52(18):74–75.

22. Miyata Y, Sagara Y, Kanda S, Hayashi T, Kanetake H. Phosphorylated hepatocyte growth factor receptor/c-Met is associated with tumor growth and prognosis in patients with bladder cancer: correlation with matrix metalloproteinase-2 and ~7 and E-cadherin. *Hum Pathol.* 2009;40(4):496–504. doi:10.1016/j.humpath.2009.01.003

23. Zhou W, Zhang YY. Expression and significance of c-Met in bladder cancer tissue. *Chin Prac Med.* 2016;11(14):45–47.

24. Li J, Xu X, Meng S, et al. MET/SMAD3/SNAIL circuit mediated by miR-323a-3p is involved in regulating epithelial-mesenchymal transition progression in bladder cancer. *Cell Death Dis.* 2017;8(8):e3010. doi:10.1038/cddis.2017.518

25. Li J, Ying Y, Xie H, et al. Dual regulatory role of CCNA2 in modulating CDK6 and MET-mediated cell-cycle pathway and EMT progression is blocked by miR-381-3p in bladder cancer. *FASEB J.* 2019;33(1):1374–1388. doi:10.1096/ftf.201800667R.

26. Benvenuti S, Comoglio PM. The MET receptor tyrosine kinase in invasion and metastasis. *J Cell Physiol.* 2007;213(2):316–325. doi:10.1002/jcp.20196

27. Trusolino L, Bertotti A, Comoglio PM. MET signalling: principles and functions in development, organ regeneration and cancer. *Nat Rev Mol Cell Biol.* 2010;11(12):834–848. doi:10.1038/nrm3012

28. Yamasaki K, Mukai S, Nagai T, et al. Matrixase-induced phosphorylation of MET is significantly associated with poor prognosis in invasive bladder cancer; an immunohistochemical analysis. *Int J Mol Sci.* 2018;19:12. doi:10.3390/ijms19123708

29. McNeil BK, Sorbellini M, Grubb RL 3rd, et al. Preliminary evaluation of urinary soluble Met as a biomarker for urothelial carcinoma of the bladder. *J Transl Med.* 2014;12:199. doi:10.1186/1479-5876-12-199

30. Xu X, Chen H, Lin Y, et al. MicroRNA-409-3p inhibits migration and invasion of bladder cancer cells via targeting c-Met. *Mol Cells.* 2013;36(1):62–68. doi:10.1007/s10059-013-0044-7

31. Hu Z, Lin Y, Chen H, et al. MicroRNA-101 suppresses motility of bladder cancer cells by targeting c-Met. *Biochem Biophys Res Commun.* 2013;435(1):82–87. doi:10.1016/j.bbrc.2013.04.041

32. Kim JH, Kim BJ, Kim HS. Clinicopathological impacts of high c-Met expression in renal cell carcinoma: a meta-analysis and review. *Oncotarget.* 2017;8(43):75478–75487.

33. Zhao X, Qu J, Hui Y, et al. Clinicopathological and prognostic significance of c-Met overexpression in breast cancer. *Oncotarget.* 2017;8(34):56758–56767.

34. Liu Y, Yu XF, Zou J, Luo ZH. Prognostic value of c-Met in colorectal cancer: a meta-analysis. *World J Gastroenterol.* 2015;21(12):3706–3710. doi:10.3748/wjg.v21.i10.2937
Supplementary material

Search strategy for meta-analysis evaluating clinico-pathological impacts of c-Met overexpression in bladder cancer

#1 urinary bladder neoplasms [MeSH]

#2 malign* [tiab] OR neoplasm* [tiab] OR carcinoma* [tiab] OR cancer* [tiab] OR tumor* [tiab] OR tumour* [tiab]

#3 bladder [tiab] OR urinary [tiab] OR urothelial [tiab]

#4 #1 OR (#2 AND #3)

#5 Proto-Oncogene Proteins c-met [MeSH]

#6 c-Met [tiab] OR hepatocyte growth factor receptor [tiab] OR HGFR [tiab] OR HGF Receptor [tiab] OR scatter factor [tiab]

#7 #5 OR #6

#8 #4 AND #7