Central limit approximations for Markov population processes with countably many types

Barbour, A D; Luczak, Malwina

Abstract: When modelling metapopulation dynamics, the influence of a single patch on the metapopulation depends on the number of individuals in the patch. Since there is usually no obvious natural upper limit on the number of individuals in a patch, this leads to systems in which there are countably infinitely many possible types of entity. Analogous considerations apply in the transmission of parasitic diseases. In this paper, we prove central limit theorems for quite general systems of this kind, together with bounds on the rate of convergence in an appropriately chosen weighted ℓ_1 norm.

DOI: https://doi.org/10.1214/EJP.v17-1760
Central limit approximations for Markov population processes with countably many types∗

A. D. Barbour† ‡ M. J. Luczak†

Abstract

When modelling metapopulation dynamics, the influence of a single patch on the metapopulation depends on the number of individuals in the patch. Since there is usually no obvious natural upper limit on the number of individuals in a patch, this leads to systems in which there are countably infinitely many possible types of entity. Analogous considerations apply in the transmission of parasitic diseases. In this paper, we prove central limit theorems for quite general systems of this kind, together with bounds on the rate of convergence in an appropriately chosen weighted ℓ₁ norm.

Keywords: Epidemic models ; metapopulation processes ; countably many types ; central limit approximation ; Markov population processes.

AMS MSC 2010: 92D30 ; 60J27 ; 60B12.

1 Introduction

Metapopulations, introduced by Levins (1969), are used to describe the evolution of the population of a species in a fragmented habitat. The metapopulation consists of a number of distinct patches, together with (a summary of) the population present in each patch, and its development over time is governed by specified within and between patch dynamics. In the Markovian structured mean-field metapopulation model of Arrigoni (2003), the state of the system consists simply of the numbers of individuals in each patch. Individuals reproduce within patches and migrate between patches, and each patch is subject to random catastrophes, which reduce its population to zero. Letting \(N \) be the total number of patches, thought of as being large, and letting \(X_{t \in \mathbb{Z}^+}^{N,i} \) denote the number of patches with \(i \) individuals at time \(t \), the transitions out of state \(X \in \mathbb{Z}^+_N \).

∗ADB was supported in part by Schweizerischer Nationalfonds Projekt Nr. 20–107935/1 and by Australian Research Council Grants Nos DP120102728 and DP120102398. MJL was supported in part by an EPSRC Leadership Fellowship and by Australian Research Council Grant No DP120102398.

†Universität Zürich, Switzerland. E-mail: a.d.barbour@math.uzh.ch
‡University of Sheffield, England. E-mail: m.luczak@qmul.ac.uk
Central limit approximations

to states $X + J$ in her model are as follows:

$$
\begin{align*}
J &= e^{(i-1)} - e^{(i)} & \text{at rate } Nix^i(d_i + \gamma(1 - \rho)), & i \geq 2; \\
J &= e^{(0)} - e^{(1)} & \text{at rate } Nx^1(d_1 + \gamma(1 - \rho) + \kappa); \\
J &= e^{(i+1)} - e^{(i)} & \text{at rate } Nix^ib_i, & i \geq 1; \\
J &= e^{(0)} - e^{(i)} & \text{at rate } Nx^i\kappa, & i \geq 2; \\
J &= e^{(k+1)} - e^{(k)} + e^{(i-1)} - e^{(i)} & \text{at rate } Nix^k\rho_j, & k \geq 0, \; i \geq 1;
\end{align*}
$$

here, $x := N^{-1}X$, and $e^{(i)}$ denotes the unit vector along the i coordinate. The total number $N := \sum_{j \geq 0} X^Nj$ of patches remains constant throughout, and each transition involves at most 4 components of X. The per capita death and birth rates $(d_i), (b_i)$ within each patch are allowed to vary with the current population size i, but in the same way in all patches. They would usually be chosen to correspond to one of the traditional single species demographic models. We shall always assume that the b_i are bounded above, which is a biologically realistic requirement, and excludes the possibility that the population in a patch could become infinite in finite time. The per capita migration rate γ is taken to be the same for all individuals, as is the probability ρ that a migration is successful, and a successful migrant chooses its new patch uniformly at random.

Each patch is independently subject to catastrophes at the same rate κ. If there were an absolute upper limit for the number of individuals in each patch, the model would be a finite dimensional Markov population process. The behaviour of these finite dimensional models can be approximated using the methods pioneered by Kurtz (1970, 1971), who was able to establish a law of large numbers approximation, in the form of a system of ordinary differential equations, and a corresponding diffusion approximation. However, there are no upper limits on population number in the usual single population models, and it is the stochastic evolution according to the rules of the model that dictates the region in which population numbers typically lie. Thus it seems unnatural to introduce an a priori upper limit in the system above, just because more than one population is being modelled. Similar considerations surface in a number of other population models, including the epidemic models of Luchsinger (2001a,b) and Kretzschmar (1993), and models involving the copy number of genes in cells in Kimmel & Axelrod (2002, Chapter 7). Instead, it makes sense to consider Markov population processes with a countably infinite number of dimensions as models in their own right.

A law of large numbers in a general setting of this kind was first established by Eibeck & Wagner (2003). Under appropriate conditions, Barbour & Luczak (2008, 2011) strengthened the law of large numbers by providing an error bound, in a weighted ℓ_1 norm, that is close to optimal order in N. In this paper, these latter results are complemented by a central limit approximation, together with a corresponding error estimate.

Our general setting, as in Barbour & Luczak (2011) [BL], is that of families of Markov population processes $X^N := (X^Nt, t \geq 0), \; N \geq 1$, taking values in the countable space $X^N := \{ X \in \mathbb{Z}^+; \sum_{m \geq 0} X^m < \infty \}$. The component X^Nj of X^N represents the number of individuals of type j that are present at time t, and there are countably many types possible; however, at any given time, there are only finitely many individuals in the system. The process evolves as a Markov process with state–dependent transitions

$$
X \rightarrow X + J \quad \text{at rate } N_\alpha J(N^{-1}X), \quad X \in X^+, \; J \in J,
$$

(1.1)

where each jump is of bounded influence, in the sense that

$$
J \subset \left\{ X \in \mathbb{Z}^+; \sum_{m \geq 0} |X^m| \leq J_\ast < \infty \right\}, \quad \text{for some fixed } J_\ast < \infty,
$$

(1.2)
Central limit approximations

so that the number of individuals affected at each transition is uniformly bounded. Density dependence is reflected in the fact that the arguments of the functions \(\alpha_J \) are counts normalised by the ‘typical size’ \(N \). Write \(\mathcal{R} \subset R^Z \) for the domain of the functions \(\alpha_J \), which are assumed to satisfy

\[
\sum_{J \in \mathcal{J}} \alpha_J(\xi) < \infty, \quad \xi \in \mathcal{R}_0, \quad (1.3)
\]

where \(\mathcal{R}_0 := \{ \xi \in \mathcal{R} : \xi_i = 0 \text{ for all but finitely many } i \} \); this assumption implies that the processes \(X^N \) are indeed pure jump processes, at least for some (possibly random) non-zero length of time. To prevent the paths leaving \(X^N \), we also assume that \(J^l \geq -1 \) for each \(l \), and that \(\alpha_J(\xi) = 0 \) if \(\xi^l = 0 \) for any \(J \in \mathcal{J} \) such that \(J^l = -1 \).

In the finite dimensional case, the law of large numbers is expressed in terms of the system of deterministic equations

\[
\frac{d\xi}{dt} = \sum_{J \in \mathcal{J}} J \alpha_J(\xi). \quad (1.4)
\]

In [BL], it is assumed that

\[
\sum_{J \in \mathcal{J}} J \alpha_J(\xi) = A \xi + F(\xi), \quad (1.5)
\]

where \(A \) is a constant \(Z_+ \times Z_+ \) matrix, and (1.4) is then treated as a perturbed linear system (Pazy 1983, Chapter 6). Under suitable assumptions on \(A \), there exists a measure \(\mu \) on \(Z_+ \), defining a weighted \(\ell_1 \) norm \(\| \cdot \|_\mu \) on \(\mathcal{R} \), and a strongly \(\| \cdot \|_\mu \)-continuous semigroup \(\{ R(t), t \geq 0 \} \) of transition matrices having pointwise derivative \(R'(0) = A \). If \(F \) is locally \(\| \cdot \|_\mu \)-Lipschitz, the solution \(x \) of the integral equation

\[
 x_t = R(t)x_0 + \int_0^t R(t-s)F(x_s) \, ds, \quad (1.6)
\]

for \(\| x_0 \|_\mu < \infty \), replaces that of (1.4) as an approximation to \(x^N := N^{-1}X^N \).

Under suitable conditions, it is shown in [BL, Theorem 4.7] that

\[
\sup_{0 \leq t \leq T} \| x^N_t - x_t \|_\mu = O(N^{-1/2} \sqrt{\log N}),
\]

except on an event of probability of order \(O(N^{-1} \log N) \), provided that \(\| x^N_0 - x_0 \|_\mu = O(N^{-1/2} \sqrt{\log N}) \). The conditions under which this approximation holds can be divided into three categories: growth conditions on the transition rates, so that the \(a \) priori bounds, which have the character of moment bounds, can be established; conditions on the matrix \(A \), sufficient to limit the growth of the semigroup \(R \), and (together with the properties of \(F \)) to determine the weights defining the metric in which the approximation is to be carried out; and conditions on the initial state of the system. The conditions are described in the next section. They are all needed in the current paper, too, in which we investigate the difference \(x^N_t - x_t \) in greater detail.

Our main result, Theorem 6.1, shows that, under some extra conditions, it is possible to construct a diffusion process \(Y \) on the same probability space as \(X^N \) in such a way that

\[
\sup_{0 \leq t \leq T} \| N^{1/2}(x^N_t - x_t) - Y_t \|_\mu = O(N^{-b_1}), \quad (1.7)
\]

except on an event of probability of order \(O(N^{-b_2}) \), for specific values of \(b_1 \) and \(b_2 \). With the best possible control of moments, as for the model of Arrigoni (2003) mentioned above, one can take any \(b_1 < 1/4 \) and any \(b_2 < 1 \), provided that the initial conditions are appropriately chosen. The process \(Y \) can be interpreted as the infinite dimensional
analogue of the diffusion approximation in Kurtz (1971), satisfying the formal stochastic differential equation
\[dY_t = \{A + DF(x_t)\}Y_t dt + dW_t. \quad (1.8) \]
Here, \(dW\) is a time–inhomogeneous white noise process with infinitesimal covariance matrix \(\sigma^2(t) := \sum_{j \in \mathcal{J}} JJ^T \alpha_j(x_t)\), and \(Y\) has time–inhomogeneous linear drift with coefficient matrix \(A + DF(x_t)\). In particular, if \(\tilde{x}\) is an equilibrium of the deterministic equations, satisfying \(A \tilde{x} + F(\tilde{x}) = 0\), then \(Y\) is an infinite dimensional Ornstein–Uhlenbeck process, with constant drift coefficient matrix \(A + DF(\tilde{x})\) and infinitesimal covariance matrix \(\sum_{j \in \mathcal{J}} JJ^T \alpha_j(\tilde{x})\).

Basic approach

The structure of the argument is as follows. It is shown in [BL, (4.8)] that, under suitable conditions, the process \(x_N^N\) satisfies an equation very similar to (1.6):
\[x_t^N = R(t)x_0^N + \int_0^t R(t-s)F(x_s^N)\,ds + \tilde{m}_t^N, \quad (1.9) \]
where
\[\tilde{m}_t^N := \int_0^t R(t-s)\,dm_s^N = m_t^N + \int_0^t R(t-s)Am_s^N\,ds, \quad (1.10) \]
and
\[m_t^N := x_t^N - x_0^N - \int_0^t \{Ax_s^N + F(x_s^N)\}\,ds, \quad (1.11) \]
is a local martingale. Taking the difference between (1.9) and (1.6), and multiplying by \(\sqrt{N}\), gives
\[U_t^N = R(t)U_0^N + \int_0^t R(t-s)\,DF(x_s^N[U_s^N]ds + \eta_t^N + N^{1/2}\tilde{m}_t^N, \quad (1.12) \]
with \(U_t^N := N^{1/2}(x_t^N - x_t)\) and
\[\eta_t^N := N^{1/2} \int_0^t R(t-s)\{F(x_s^N) - F(x_s) - DF(x_s)[N^{-1/2}U_s^N]\}\,ds. \quad (1.13) \]

Starting with this representation of \(U_N\), the first step is to show that \(\eta_N\) is uniformly small with high probability, so that the randomness in \(U_N\) is driven principally by the process \(N^{1/2}\tilde{m}_N\). This quantity is in turn determined, through (1.10), by the local martingale \(N^{1/2}m_N\). The next step is to show that \(N^{1/2}m_N\) is close to a diffusion \(W\), formally expressible as
\[W_t := \sum_{j \in \mathcal{J}} JW_j(A_j(t)), \quad (1.14) \]
where the \(\{W_j, J \in \mathcal{J}\}\) are independent standard Brownian motions, and we define \(A_j(t) := \int_0^t \alpha_j(x_s)\,ds\); this is the diffusion appearing in (1.8). Analogously to (1.10), we then show that we can define a process \(\tilde{W}\) such that
\[\tilde{W}_t := W_t + \int_0^t R(t-s)AW_s\,ds, \quad (1.15) \]
and that \(\tilde{W}\) is close to \(N^{1/2}\tilde{m}_N\). Finally, returning to (1.12), we show that \(U_N\) is close to the solution \(Y\) to the analogous equation
\[Y_t = R(t)Y_0 + \int_0^t R(t-s)\,DF(x_s)[Y_s]ds + \tilde{W}_t, \quad (1.16) \]
which in turn can be shown to exist and be unique. The random process solving (1.16) at first sight seems rather mysterious. However, partial integration represents W_1 in the form $\int_0^s R(t-s) \, dW_s$, and so the expression for Y can indeed be interpreted as the variation of constants representation of the solution to the formal stochastic differential equation (1.8).

In the remaining sections, this programme is carried out in detail. Section 2 is concerned with specifying the conditions under which the main theorem is true, and with recalling the results from [BL] that are needed here. In the subsequent sections, the steps sketched above are examined in turn.

2 Assumptions and preliminaries

We assume henceforth that (1.2) and (1.3) are satisfied. Since the index $j \in \mathbb{Z}_+$ is symbolic in nature, we fix an $\nu \in \mathcal{R}$, such that $\nu(j)$ reflects in some sense the ‘size’ of j:

$$\nu(j) \geq 1 \text{ for all } j \geq 0 \quad \text{and} \quad \lim_{j \to \infty} \nu(j) = \infty. \tag{2.1}$$

We then assume that most indices are large and that most transitions involve some large indices, in the sense that, for $T_M := \{ j : \nu(j) \leq M \}$ and $J_M := \{ J : J^i = 0 \text{ for all } j \notin T_M \}$, we have

$$|T_M| \leq n_1 M^{\beta_1}; \quad |J_M| \leq n_2 M^{\beta_2}, \quad M \geq 1, \tag{2.2}$$

for some n_1, n_2 and $\beta_1 \leq \beta_2$; note that in fact $\beta_2 \leq 2\beta_1 J$, also. As a consequence of these assumptions, for any $s > \beta_1$, there exists $K_s < \infty$ such that

$$\sum_{j \geq 0} \nu(j)^{-s} < \infty; \quad \sum_{j \notin T_M} \nu(j)^{-s} < K_s M^{-s+\beta_1}; \tag{2.3}$$

moreover, if $\nu(J) := \max_{j : \nu(j) > 0} \nu(j)$, then, for any $s > \beta_2$,

$$\sum_{j \in J} \nu(j)^{-s} < \infty; \quad \sum_{j \notin J_M} \nu(J)^{-s} < K'_s M^{-s+\beta_2}, \tag{2.4}$$

for some $K'_s < \infty$.

Moment assumptions

In the proofs that follow, it is important to be able to show that x^N is largely concentrated on indices j with $\nu(j)$ not too large. This is shown to be the case in [BL, Section 2], under the following ‘moment’ assumptions. Defining $S_r(x) := \sum_{j \geq 0} x^{j} \{ \nu(j) \}^r$, $x \in \mathcal{R}$, $r \geq 0$, and then

$$U_r(x) := \sum_{j \in J} \alpha_j(x) \left(\sum_{j \geq 0} J^j \{ \nu(j) \}^r \right); \quad V_r(x) := \sum_{j \in J} \alpha_j(x) \left(\sum_{j \geq 0} J^j \{ \nu(j) \}^r \right)^2, \tag{2.5}$$

$x \in \mathcal{R}$, the assumptions that we need are as follows.

Assumption 2.1. For ν as above, assume that there exist $r_{\max}^{(1)}, r_{\max}^{(2)} \geq 1$ such that, for all $\xi \in \mathcal{R}$,

$$\sum_{j \in J} \alpha_j(\xi) \left| \sum_{j \geq 0} J^j \{ \nu(j) \}^r \right| < \infty, \quad 0 \leq r \leq r_{\max}^{(1)}, \tag{2.6}$$

and also that, for some non-negative constants k_{r_1}, the inequalities

$$U_0(x) \leq k_{01} S_1(x) + k_{04},$$

$$U_1(x) \leq k_{11} S_1(x) + k_{14}, \quad 2 \leq r \leq r_{\max}^{(1)}, \tag{2.7}$$

$$U_r(x) \leq \{ k_{r_1} + k_{r_2} S_1(x) \} S_r(x) + k_{r_4},$$
Central limit approximations

and
\[V_0(x) \leq k_{03}S_1(x) + k_{05}, \quad 1 \leq r \leq r_{\text{max}}, \tag{2.8} \]
\[V_r(x) \leq k_{r3}S_p(r)(x) + k_{r5}, \quad 1 \leq r \leq r_{\text{max}}. \]
are satisfied, where \(1 \leq p(r) \leq (1) \leq r_{\text{max}} \) for \(1 \leq r \leq r_{\text{max}}. \)

As a result of these assumptions, it is shown in [BL, Lemma 2.3 and Theorem 2.4] that, if \(r \) is such that \(1 \leq r \leq r_{\text{max}} \) and \(\max\{S_r(x_0^N), S_{p(r)}(x_0^N)\} \leq C \) for some \(C \), then there are constants \(C_1 \) and \(C_2 \), depending on \(C, r \) and \(T \), such that
\[P \left[\sup_{0 \leq t \leq T} S_r(x_t^N) > C_1 \right] \leq N^{-1}C_2. \tag{2.9} \]

Semigroup assumptions

In order to make sense of (1.6), we need some assumptions about \(A \). We assume that
\[A_{ij} \geq 0 \text{ for all } i \neq j \geq 0; \quad \sum_{j \neq i} A_{ji} < \infty \text{ for all } i \geq 0, \tag{2.10} \]
and that, for some \(r \in R^+_+ \) such that \(\mu(m) \geq 1 \) for each \(m \geq 0 \), and for some \(w \geq 0 \),
\[A^T \mu \leq w \mu. \tag{2.11} \]
We then use \(\mu \) to define the \(\mu \)-norm
\[\|\xi\|_\mu := \sum_{m \geq 0} \mu(m)|\xi^m| \text{ on } \mathcal{R}_\mu := \{ \xi \in \mathcal{R}: \|\xi\|_\mu < \infty \}, \tag{2.12} \]
and, under these assumptions, the transition semigroup \(R \) is well defined [BL, Section 3], and
\[\sum_{i \geq 0} \mu(i)R_{ij}(t) \leq \mu(j)e^{wt} \quad \text{for all } j \text{ and } t. \tag{2.13} \]
Note that there may be many possible choices for \(\mu \), but that we also require that \(F \) is locally Lipschitz in the \(\mu \)-norm, in order to ensure that (1.6) has a \(\mu \)-continuous solution: we assume that, for any \(z > 0 \),
\[\sup_{x \neq y: \|x\|_\mu = z} \|F(x) - F(y)\|_\mu / \|x - y\|_\mu \leq K(\mu, F; z) < \infty, \tag{2.14} \]
and this should be borne in mind when choosing \(\mu \). We further assume that, for some \(0 < \beta_3, \beta_4 \),
\[\mu(j) \leq \nu(j)^{\beta_3} \quad \text{and} \quad |A_{jj}| \leq \nu(j)^{\beta_4}. \tag{2.15} \]

Transition rate assumptions

We need to ensure that the sum of the transition rates, even when weighted by large powers of \(\nu(j) \), remains bounded. To ensure this, we assume that, for some \(\alpha_0 > 0 \), there exist \(r_1 \leq r_{\text{max}}, b \geq 1 \) and \(k_1, k_2 > 0 \) such that
\[\sum_{j \in J} \alpha_J(x) \sum_{j \geq 0} [J^j\{\nu(j)\}]^{r_0} \leq \{k_1S_{r_1}(x) + k_2\}^b; \tag{2.16} \]
this assumption is a specialized version of [BL, (2.25)]. In view of (2.9), this implies that, if \(\max\{S_{r_1}(x_0^N), S_{p(r_1)}(x_0^N)\} \leq C \), then there are constants \(C_1 \) and \(C_2 \) depending on \(C \) and \(T \), such that
\[P \left[\sup_{0 \leq t \leq T} \sum_{j \in J} \alpha_J(x_t^N) \sum_{j \geq 0} [J^j\{\nu(j)\}]^{r_0} > C_1 \right] \leq N^{-1}C_2. \tag{2.17} \]
Central limit approximations

We shall therefore assume that the initial condition needed for (2.17) is indeed satisfied: that, for some $C < \infty$,

$$\max\{S_{x_0}^{(N)}, S_{p(r_1)}(x_0^{(N)})\} \leq C. \quad (2.18)$$

It can be seen from the statement of Theorem 6.1 that the larger we can take r_0 in (2.16), the sharper the approximation bound that we get in (1.7), in that ζ can be taken smaller for a given value of the product ζr_0, resulting in larger values of $b_1(\zeta)$.

Since it is immediate that

$$\sum_{j \in J} \sum_{j \in J} |J|\{\nu(j)\}^r \alpha_j(x) \geq \sum_{j \in J} \{\nu(j)\}^r \alpha_j(x),$$

it follows that, for any $r, s \geq 0$,

$$\sum_{j \notin J_{st}} \{\nu(j)\}^r \alpha_j(x) \leq M^{-s} \sum_{j \notin J_{st}} \{\nu(j)\}^{r+s} \alpha_j(x) \leq M^{-s} \sum_{j \in J} \sum_{j \in J} |J|\{\nu(j)\}^{r+s} \alpha_j(x),$$

so that, if $r + s \leq r_0$, (2.17) implies that

$$\sup_{0 \leq t \leq T} \sum_{j \notin J_{st}} \{\nu(j)\}^r \alpha_j(x_T^N) \leq C_1 M^{-s}, \quad (2.19)$$

except on an event of probability at most $C_2 N^{-1}$.

Smoothness assumptions

We need some smoothness conditions on the rates near the deterministic path x. First, for some $\delta > 0$, we assume that F has second order partial derivatives in the tube

$$B(t, x, \delta) := \{z \in \mathcal{R} : \|z - x\|_\mu \leq \delta \text{ for some } 0 \leq s \leq t\}, \quad (2.20)$$

where x solves (1.6), and that, for any j, k, l,

$$\sup_{z \in B(x, t, \delta)} |D_k F^j(z)| \leq v_{jkl}, \quad (2.21)$$

where the v_{jkl} are such that

$$\sum_{j \geq 0} \mu(j) v_{jkl} \leq K_{F2} \mu(k) \mu(l), \quad (2.22)$$

for some $K_{F2} < \infty$. Note that (2.22) is satisfied if

$$v_{jkl} \leq \mu(j) \mu(l), \quad \text{where} \quad \|v\|_\mu < \infty. \quad (2.23)$$

It is also true under the following condition: that, for each k, there exists $N(k) \subset \mathbb{Z}_+$ with $|N(k)| \leq n_0$ and $\max_{j \in N(k)} \mu(j) \leq K_0 \mu(k)$ such that

$$v_{jkl} \leq K_1 \{\mu(l) 1_{\{N(k)\}(j)} + \mu(k) 1_{\{N(l)\}(j)}\}; \quad v_{jkl} = 0 \quad \text{otherwise}, \quad (2.24)$$

for suitable n_0, K_0 and K_1, all finite. The function F has already been assumed to be μ-Lipschitz in (2.14); with the assumption (2.21), F becomes continuously μ-differentiable in the tube, so that, for some constant K_{F1},

$$\sup_{0 \leq t \leq T} \sum_{j \geq 0} \mu(j) |D_k F^j(x_t)| \leq K_{F1} \mu(k) \text{ for all } k. \quad (2.25)$$
Central limit approximations

We also assume that the individual transition rates α_j are uniformly μ-Lipschitz in $B(T, x, \delta)$, with

$$\sup_{z_1, z_2 \in B(T, x, \delta)} |\alpha_j(z_1) - \alpha_j(z_2)|/\|z_1 - z_2\|_\mu \leq K_\alpha(\nu(J))^{\beta_5}$$ \hspace{1cm} (2.26)

for some $K_\alpha, \beta_5 > 0$. This assumption, and those on the second derivatives of F, go beyond what is required for the law of large numbers in [BL]; the same is true of the assumptions (2.2) and (2.15).

Preliminary conclusions

We now assume, in addition, that we can take

$$r_0 > 2(\beta_1 + \beta_3 + \beta_4)$$ \hspace{1cm} (2.27)

in (2.16). Then, under the assumptions of this section, it follows from [BL, Theorem 4.7], with $\zeta(j) := \{\nu(j)\}^{r_0}$, that the following result holds: for each $T > 0$, there exist constants $K_T^{(1)}, K_T^{(2)}$ and $K_T^{(3)}$ such that, for all N large enough, if

$$\|x_N^0 - x_0\|_\mu \leq K_T^{(1)} \sqrt{\frac{\log N}{N}},$$ \hspace{1cm} (2.28)

then

$$P\left(\sup_{0 \leq t \leq T} \|x_t^N - x_t\|_\mu > K_T^{(2)} \sqrt{\frac{\log N}{N}} \right) \leq K_T^{(3)} \frac{\log N}{N}.$$ \hspace{1cm} (2.29)

We shall from now on also assume that (2.18) holds with x_0 for x_N^0. Since then x can be represented as a limit of processes x^M satisfying (2.18), because of (2.29), it follows in view of (2.17) and (2.26) that we also have

$$\sup_{0 \leq t \leq T} \sum_{j \in J} \alpha_j(x_t) \sum_{j \geq 0} |J|^\nu(\nu(j))^{r_0} \leq C_1,$$ \hspace{1cm} (2.30)

and therefore, as for (2.19), for $r + s \leq r_0$,

$$\sup_{0 \leq t \leq T} \sum_{j \in J} \nu(\nu(j))^r \alpha_j(x_t) \leq C_1 M^{-s}.$$ \hspace{1cm} (2.31)

When approximating x^N by a deterministic path x, it is natural to choose their initial values to be close, as in (2.28). The impact of also assuming (2.18) is to force the initial values of both paths to put very little weight on components whose indices j have $\nu(j)$ large.

Example

In the model of Arrigoni (2003) presented in the introduction, we can take $\nu(j) = j + 1$, in which case $\beta_1 = 1$ and $\beta_2 = 2$, the latter because of the migration transition. Calculation shows that (2.7) is satisfied for all r, in particular because the b_i are assumed to be uniformly bounded. (2.8) also holds, if the d_i are at most polynomially growing in i; if the d_i grow like i^{m_d}, we can take $p(r) = \max\{2r, 2r - 1 + m_d\}$, and then $r_{\max}^{(1)} = r_{\max}^{(2)} = \infty$. Furthermore, (2.16) is then satisfied for any r_0, with $r_1 = r_0 + 1 + m_d$. The quantities A and F are given by

$$A_{ii} = -\{\kappa + i(b_i + d_i + \gamma)\}; \hspace{1cm} A_{i, t-1}^T = i(d_i + \gamma); \hspace{1cm} A_{i, t+1}^T = ib_i, \hspace{1cm} i \geq 1;$$

$$A_{00} = -\kappa,$$

with all other elements of A equal to zero, and, writing $s(x) := \sum_{j \geq 1} j x^j$,

$$F^1(x) = \rho(\rho^{x^j} - x^j) s(x), \hspace{1cm} i \geq 1; \hspace{1cm} F^0(x) = -\rho^{x^0} s(x) + \kappa.$$
Central limit approximations

where we have used the fact that ∑_{j≥0} x^j = 1. Hence Assumption (2.10) is immediate, and Assumption (2.11) holds for μ(j) = j + 1 (so that β₂ = 1), with w = maxₖ(bᵢ − dᵢ − γ – κ)ₖ; the value of β₂ is m₄ + 1. For instance, the stochastic version of Ricker’s (1954) model has both the bᵢ and the dᵢ uniformly bounded, in which case we can take β₂ = 1. However, in the stochastic analogue of Verhulst’s (1838) logistic model, the dᵢ grow linearly with i, and then one needs β₂ = 2.

With the above choice of μ, F can easily be seen to be locally Lipschitz in the μ-norm, with K(μ, F; z) ≤ 4ργz. The partial derivatives of F are given by

\[D_k F^i(x) = \rho \gamma k(x^{i-1} - x^i) + \rho \gamma s(x)[\mathbf{1}_{\{k\}}(i - 1) - \mathbf{1}_{\{k\}}(i)]; \]

\[D_k F^j(x) = \rho \gamma \{k[\mathbf{1}_{\{j\}}(i - 1) - \mathbf{1}_{\{j\}}(i)] + [\mathbf{1}_{\{k\}}(i - 1) - \mathbf{1}_{\{k\}}(i)], \]

for any i, k, l ≥ 0 (we take x⁻¹ = 0). From this, it follows (using the elementary bound j + 1 ≤ 2j if j ≥ 1) that we can take K_F₁ = 6ργ supp|₀≤ₜ≤T ∥xₜ∥, in (2.25), and that (2.24) is satisfied with n₀ = 2, K₀ = 2 and K₁ = ργ, so that (2.22) is also satisfied (one can in fact take Kₐ₂ = 4ργ). Finally, (2.26) is satisfied, with β₅ = max{1, m₄} and with Kₐ of the form K'(1 + sup₀≤ₜ≤T ∥xₜ∥).

The models of Kimmel & Axelrod (2002, p.157) and Kretzschmar (1993), and that of Luchsinger (2001a,b) with Poisson infection distribution, can also be treated in much the same way.

3 Controlling η^N

From now on, we assume that all the assumptions of Section 2 are in force. We first show that the effect of the perturbation η^N is negligible. For η^N, from (1.13), we need to consider the difference

\[\int_0^t R(t - s)\{F(x^N_s) - F(x_s) - DF(x_s)[x^N_s - x_s]\} ds. \]

We note first that, if ∥h∥ ≤ δ for δ as in Condition (2.20), then, from (2.22),

\[\|F(x + h) - F(x) - DF(x)[h]\| ≤ \sum_{j≥0} \mu(j) \sum_{k≥0} \sum_{l≥0} |h_k h_l| v_{jkl} ≤ K_F₂ \|h\|^2. \]

Hence, from (2.29) and from (2.13), for all N large enough so that K^{(2)} T N⁻¹/₂ √log N ≤ δ, we have

\[\sup_{0≤s≤t} \|η^N_s\| ≤ K_F₂ t \{K^{(2)} T \}^2 e^{wt} N⁻¹/₂ log N, \]

(3.1)

for all 0 < t ≤ T, except on a set of probability at most K^{(3)} T N⁻¹ log N.

4 Discrete to diffusion

We now show that N^{1/2} m^N is close in the μ-norm to the diffusion W, given by

\[W_t := \sum_{J∈J} JW_J(A_J(t)), \]

as in (1.14). We first need to show that this W indeed has paths in R_μ. For this, it is enough to show that

\[\sum_{j≥0} \mu(j) \sum_{J∈J} |J|^||W_J(A_J(t))| < ∞ \]

(4.1)

for all t.
Central limit approximations

We begin by noting that, using the reflection principle, if B is standard Brownian motion, then there exists a constant $\gamma < \infty$ such that, for all $a > 0$,

$$P\left[\sup_{0 \leq x \leq 1} |B(x)| > a\gamma \right] \leq e^{-a^2}. \quad (4.2)$$

Thus, from (4.2), for any $C > 1$ and $p, T > 0$, we have

$$|W_j(A_j(t))| = \sigma A_j(T)^{1/2} |B(A_j(t)/A_j(T))| \leq A_j(T)^{1/2} \gamma \sqrt{p \log(C\nu(J))},$$

for all $0 \leq t \leq T$, except on a set of probability at most $e^{-C\nu(J)}$. Hence it follows that, for all $0 \leq t \leq T$ and for all $J \in \mathcal{J}$, by (2.4),

$$|W_j(A_j(t))| \leq A_j(T)^{1/2} \gamma \sqrt{p \log(C\nu(J))}, \quad (4.3)$$

except on a set of probability at most $e^{C^{-p}} \sum_{j \in \mathcal{J}} \nu(J)^{-p} < \infty$, if $p > \beta_2$.

For $x, y \geq 0$, one has $\sqrt{x + y} \leq (1 + \sqrt{x})(1 + \sqrt{y})$. Substituting from (4.3) into (4.1) shows that $||W_j||_\mu < \infty$ a.s. for all $0 \leq t \leq T$, provided that

$$\sum_{j \geq 0} \mu(j) \sum_{J \in \mathcal{J}} |J|^\nu(J)\varepsilon A_j(t)^{1/2} < \infty,$$

since C can be chosen arbitrarily in (4.3). However, by (2.15) and recalling the definition of J_α, we have, for any $\varepsilon > 0$,

$$\sum_{j \geq 0} \mu(j) \sum_{J \in \mathcal{J}} |J|^\nu(J)\varepsilon A_j(t)^{1/2} \leq \sum_{J \in \mathcal{J}} \sum_{j \geq 0} |J|^\nu(J)^{-\beta_2/2-\varepsilon} \nu(J)^{\beta_2+2\varepsilon+4} A_j(t)^{1/2} \varepsilon \left(\sum_{J \in \mathcal{J}} \int_0^T \nu(J)^{\beta_2+2\varepsilon+4} \alpha_j(x_s) ds \right)^{1/2}, \quad (4.4)$$

and both sums in the final expression are finite, by (2.4) and (2.30), provided that ε is small enough and that $\beta_2 + 2\beta_3 < r_0$.

Having established that W indeed has paths in \mathcal{R}_μ, we now need to show that it is close to $N^{1/2}m^N$ in the μ-norm, if the Brownian motions W_j are suitably chosen. The relationship between $N^{1/2}m^N$ and W arises because $N^{1/2}m^N$ can be represented in the form

$$Nm^N_t := N \left\{ x_1^N - x_0^N - \int_0^t \sum_{J \in \mathcal{J}} J \alpha_j(x_s) ds \right\} = \sum_{J \in \mathcal{J}} J \{ P_J(NA_j^N(t)) - NA_j^N(t) \}, \quad (4.5)$$

where $A_j^N(t) := \int_0^t \alpha_j(x_s) ds$, and the P_J’s are independent unit rate Poisson processes. Now $\{ N^{-1/2}(P_J(Nt) - Nt), t \geq 0 \}$ can be well approximated by a Brownian motion, and $A_j^N(t)$ is close to $A_j(t) := \int_0^t \alpha_j(x_s) ds$, by (2.26) and (2.29).

Having established that W_j can be chosen in such a way that

$$\sup_{0 \leq t \leq T} \sum_{j \geq 0} \mu(j) \sum_{J \in \mathcal{J}} |J|^\beta \left| J^Z_j(A_j^N(t)) - \sum_{J \in \mathcal{J}} J^W_j(A_j(t)) \right| < \infty, \quad (4.6)$$

is small, where we define

$$Z_j^N(s) := N^{-1/2} \{ P_J(Ns) - Ns \}. \quad (4.7)$$
Central limit approximations

For use in the next section, in bounding (5.2), we prove somewhat more: that, under appropriate conditions, we can replace $\mu(j)$ in (4.6) by the larger quantity $\nu_j(j) := \{\nu(j)\}^{\beta_3 + \beta_4}$, and still obtain something that is small. To do so, we begin by bounding the sum by $T_1(t) + T_2(t) + T_3(t)$, where

\[
T_1(t) := \sum_{J \notin J_M} \sum_{j \geq 0} |J| |\nu_j(j)||Z_{\nu_j(t)}(A_{\nu_j}(t)) - W_j(A_{\nu_j}(t))|;
\]

\[
T_2(t) := \sum_{J \notin J_M} \sum_{j \geq 0} |J| |\nu_j(j)||Z_{\nu_j(t)}(A_{\nu_j}(t))|;
\]

(4.8)

\[
T_3(t) := \sum_{J \notin J_M} \sum_{j \geq 0} |J| |\nu_j(j)||W_j(A_{\nu_j}(t))|.
\]

Here, M is to be chosen later as N^ζ, for some suitable small $\zeta > 0$.

We begin with $T_2(t)$, which we deal with by showing that, for suitable choice of M, $N \sum_{J \notin J_M} A_{\nu_j}^N(T)$ is small. Indeed,

\[
N \sum_{J \notin J_M} A_{\nu_j}^N(T) = N \int_0^T \sum_{J \notin J_M} A_{\nu_j}^N(x_0^N) \, du,
\]

which is bounded by using (2.19) with $r = 0$ and $s \leq r_0$, together with (2.17); the quantity is of order $N M^{-s}$ for any $s \leq r_0$, except on an event of probability of order $O(N^{-1})$. Thus, except on an event with probability of order $O(N^{-1} + N M^{-r_0})$, $N^{-1/2} P_j(N A_{\nu_j}^N(T)) = 0$ for all $J \notin J_M$. Furthermore, the contribution from the compensators is bounded by

\[
N^{1/2} \sum_{J \notin J_M} \nu_j(j)|J| A_{\nu_j}^N(T) \leq N^{1/2} \sup_{0 \leq t \leq T} \sum_{J \notin J_M} \nu_j(j)|J| A_{\nu_j}^N(x_0^N)
\]

\[
= O(N^{1/2} M^{-s'}),
\]

(4.9)

by (2.19), if $\beta_3 + \beta_4 + s' \leq r_0$, except on an event whose probability is of order $O(N^{-1})$. Recalling (2.27), this proves that, for any $s' \leq r_0 - \beta_3 - \beta_4$,

\[
\sup_{0 \leq t \leq T} T_2(t) = O(N^{1/2} M^{-s'}),
\]

(4.10)

except on an event of probability of order $O(N^{-1} + N M^{-r_0})$.

For $T_3(t)$, we use (4.2) to give

\[
P \left[\sup_{0 \leq t \leq T} |W_j(A_j(t))| > \{A_j(T)\}^{1/2} \gamma \sqrt{p \log \nu(J)} \right] \leq e \{\nu(J)\}^{-p},
\]

(4.11)

for any $p > 0$. Hence, for any $p > \beta_2$, it follows that $|W_j(A_j(t))| \leq \{A_j(T)\}^{1/2} \gamma \sqrt{p \log \nu(J)}$ for all $J \notin J_M$ and for all $0 \leq t \leq T$, except on an event E_3 of probability of order $O(M^{-p + \beta_2})$, from (2.4). But then, except on E_3, for all $0 \leq t \leq T$,

\[
\sum_{J \notin J_M} \sum_{j \geq 0} |J| |\nu_j(j)||W_j(A_j(t))| \leq \sum_{J \notin J_M} \sum_{j \geq 0} |J| |\nu_j(j)||A_j(T)|^{1/2} \gamma \sqrt{p \log \nu(J)}
\]

\[
\leq K_\epsilon \sqrt{p} \sum_{J \notin J_M} J \nu(J)^{\beta_3 + \beta_4 + \epsilon} \{A_j(T)\}^{1/2},
\]
Central limit approximations

for any \(\varepsilon > 0 \), with suitable choice of \(K' \). But now, for any \(r > 0 \),
\[
\sum_{J \notin \mathcal{J}_M} \nu(J)^{\beta_3 + \beta_4 + \varepsilon} \{ A_J(T) \}^{1/2} \leq \left\{ \sum_{J \notin \mathcal{J}_M} \nu(J)^{-2(r - \beta_3 - \beta_4 - \varepsilon)} \right\}^{1/2} \left\{ \sum_{J \notin \mathcal{J}_M} \nu(J)^{2r} A_J(T) \right\}^{1/2} \leq \left\{ K'_{\beta_3 + \beta_4 + \varepsilon} \right\}^{1/2} \left\{ M^{-2(r - \beta_3 - \beta_4 - \varepsilon) + \beta_2} \right\}^{1/2} \left\{ T M^{-2r'} \right\}^{1/2}, \tag{4.12}
\]
by (2.4) and (2.31), so long as \(r > \beta \), except on an event \(E \).

We use Komlós, Major & Tusnády (1975, Theorem 1 (ii)), together with (4.2) to interpo-
late between integer time points, applied to the centred unit rate Poisson process. This
implies that, for any \(p > \beta \),
\[
\sup_{0 \leq t \leq T} T_3(t) = O(M^{-r'}), \tag{4.13}
\]
with an implied constant uniform for all \(p > \beta_2 \), except on an event with probability of
order \(O(M^{-p + \beta_2}) \).

So far, the bounds have been achieved without any specific choice of the Brownian
motions \(W_J \), but, for \(T_1(t) \), we need to be more precise. We treat each \(J \) separately,
since the underlying Poisson processes \(P_J \) are independent, and match the centred and
normalized Poisson process \(Z_N^J \) to a Brownian motion \(W_J \) using the KMT construction.
We need only to do this over a limited time interval, since, from (2.17),
\[
\sup_{0 \leq t \leq T} \sum_{J \in \mathcal{J}} \alpha_J(x_t^N) \leq C_1,
\]
except on an event \(E_0 \) of probability of order \(O(N^{-1}) \), so that, off \(E_0 \),
\[
A_J^N(T) \leq TC_1 \quad \text{for all } J. \tag{4.14}
\]

We use Komlós, Major & Tusnády (1975, Theorem 1 (iii)), together with (4.2) to interpo-
late between integer time points, applied to the centred unit rate Poisson process. This
implies that, for any \(p > 0 \), we can choose \(W_J \) in such a way that
\[
\sup_{0 \leq t \leq T C_1} \{ N^{-1/2}(P_J(Nt) - Nt) - W_J(t) \} \leq k_p N^{-1/2} \log N,
\]
for a constant \(k_p \), except on an event \(E_{1,p} \) of probability of order \(O(N^{-p}) \). Thus the same
bound holds for all \(J \in \mathcal{J}_M \) except on an event \(E_{1,p} \) of probability of order \(O(M^{\beta_2} N^{-p}) \).
Hence, except on \(E_0 \cup E_{1,p} \), an event of probability of order \(O(N^{-1} + M^{\beta_2} N^{-p}) \), we have
\[
T_{11}(t) := \sum_{J \in \mathcal{J}_M} \sum_{j \geq 0} |J^i| \nu_*(j) |Z_N^J(A_J^N(t)) - W_J(A_J^N(t))| \leq J_* \sum_{J \in \mathcal{J}_M} \nu(J)^{\beta_3 + \beta_4} k_p N^{-1/2} \log N
\]
\[
= O(M^{\beta_2 + \beta_3 + \beta_4} N^{-1/2} \log N), \tag{4.15}
\]
for all \(0 \leq t \leq T \). To bound \(T_1(t) \) from (4.8), it thus remains to consider
\[
T_{12}(t) := \sum_{J \in \mathcal{J}_M} \sum_{j \geq 0} |J^i| \nu_*(j) |W_J(A_J^N(t)) - W_J(A_J(t))|.
\tag{4.16}
\]

First, note that, by (2.26),
\[
\sup_{0 \leq t \leq T} |A_J^N(t) - A_J(t)| \leq T K_\alpha \{ \nu(J) \}^{\beta_3} \sup_{0 \leq t \leq T} \| x_t^N - x_t \|_\mu, \tag{4.17}
\]
EJP 17 (2012), paper 90.
Central limit approximations

and that

\[\sup_{0 \leq t \leq T} \| x_t^N - x_t \|_\mu \leq K^{(2)}_T N^{-1/2} \sqrt{\log N}, \tag{4.18} \]

by (2.29), except on an event with probability of order \(O(N^{-1/2} \log N) \). Furthermore, by (2.30), \(A_j(T) \leq TC_1 \) for all \(J \). Then, for a Brownian motion \(W \) and for \(0 < \delta < 1 \), by a standard argument based on (4.2),

\[\mathbb{P} \left[\sup_{0 \leq u \leq \varepsilon, |s| \leq \delta} |W(u + s) - W(u)| > 3 \gamma \delta^{1/2} \sqrt{T \log(1/\delta)} \right] \leq (A \delta^{-1} + 2) \varepsilon \delta^r, \tag{4.19} \]

for any \(r > 0 \), with \(\gamma \) chosen as for (4.2). Hence, taking \(W = W_j \) and, in view of (4.17) and (4.18), taking

\[\delta = \delta_j = TK_\alpha K^{(2)} \nu(J) \beta_5 N^{-1/2} \sqrt{\log N} \]

and \(A = TC_1 \) in (4.19), it follows that, for any \(\varepsilon, r' > 0 \), there is a \(K_{r' \varepsilon} < \infty \) such that

\[\sup_{0 \leq t \leq T} |W_j(A_j^N(t)) - W_j(A_j(t))| \leq K_{r' \varepsilon} M^{\beta_{5/2} N^{-1/4 + \varepsilon}} \text{ for all } J \in J_M, \]

except on an event of probability of order \(O(N^{-1/2} \log N + M^{\beta_{5/2} N}) \). Off the exceptional event, we have

\[\sup_{0 \leq t \leq T} T_{12}(t) \leq J \sum_{J \in J_M} \nu_a(J) K_{r' \varepsilon} M^{\beta_{5/2} N^{-1/4 + \varepsilon}} = O(M^{\beta_2 + \beta_3 + \beta_4 + \beta_{5/2} N^{-1/4 + \varepsilon}}), \tag{4.20} \]

for any \(\varepsilon > 0 \), and, by choosing \(r' \) large enough, the exceptional event can be made to have probability of order \(O(N^{-1} \log N) \), provided that \(M \) is bounded by a small enough power of \(N \).

Combining (4.10), (4.13), (4.15) and (4.20), and choosing \(M = N^\zeta \), we see that we have no useful bound unless \(\zeta r_0 > 1 \) (because of the exceptional event in (4.10)) and also \(\zeta < 1/\{4(\beta_2 + \beta_3 + \beta_4) + 2\beta_5 \} \) (in view of (4.20)), so that \(r_0 > 4(\beta_2 + \beta_3 + \beta_4) + 2\beta_5 \) is a minimal requirement. Note that this assumption on \(r_0 \) is more restrictive than that assumed in Section 2. The error bound in (4.15) is always smaller than that in (4.20), and with \(\zeta r_0 > 1 \), the error bound in (4.10) is smaller than that in (4.13). This translates into the following conclusion: if \(r_0 > 4(\beta_2 + \beta_3 + \beta_4) + 2\beta_5 \), then for any \(1/r_0 < \zeta < 1/\{4(\beta_2 + \beta_3 + \beta_4) + 2\beta_5 \} \) we have

\[\sup_{0 \leq t \leq T} \left\| N^{1/2} m_t^N - W_t \right\|_\mu \]

\[\leq \sup_{0 \leq t \leq T} \sum_{J \in J_M} \left\langle \nu(j) \right\rangle^{\beta_3 + \beta_4} \sum_{J \in J} J^j Z^N_j(A_j^N(t)) - \sum_{J \in J} J^j W_j(A_j(t)) \]

\[= O(N^{-b_1}), \tag{4.21} \]

except on an event of probability of order \(O(N^{-b_2}) \), for any

\[b_1 < b_1(\zeta) := \min \left\{ \frac{1}{4} - \zeta(\beta_2 + \beta_3 + \beta_4 + \beta_5/2), \frac{3}{2} \zeta r_0 - 2(\beta_3 + \beta_4)/r_0 \right\}; \tag{4.22} \]

\[b_2 < b_2(\zeta) := \min \{ \zeta r_0 - 1, 1 \}. \]
Central limit approximations

5 The existence of \tilde{W}, and its approximation

The next step in the argument is to show that the process \tilde{W} in (1.15), related to W exactly as \tilde{m}^N is related to m^N through (1.10), is well defined, and that it is indeed the limiting analogue of the process $N^{1/2} \tilde{m}^N_t$. For its existence, recalling (1.15), it is enough to show that $R(t − s)AW^t_s$ exists for each s, t, and belongs to \mathcal{R}_μ. For this, it is enough to show that

\[\sum_{i \geq 0} \mu(i) \sum_{j \geq 0} R_{ij} (t − s) \sum_{k \geq 0} |A_{jk}| \sum_{J \in \mathcal{J}} |J_k| |W_J(A_J(s))| \]

is a.s. bounded, uniformly for $s \in [0, t]$. Now, in view of (2.11), (2.13) and (2.15) and recalling that the off-diagonal entries of A are non-negative, this will be the case if we can bound

\[\sum_{k \geq 0} \mu(k)(1 + |A_{kk}|) \sum_{J \in \mathcal{J}} |J_k||W_J(A_J(s))| \leq J_s \sum_{J \in \mathcal{J}} \{\nu(J)\}^{\beta_3 + \beta_4} |W_J(A_J(s))| \tag{5.1} \]

uniformly in s. Now, once again from (4.2), for any $C, r > 0$,

\[\mathbf{P} \left[\sup_{0 \leq t \leq T} |W_J(A_J(t))| > \{A_J(T)\}^{1/2} \gamma \sqrt{r \log(C\nu(J))} \right] \leq e^{C\nu(J)} \gamma^{-r}, \]

so that, in view of (2.4), taking any $r > \beta_2$, there is a (random) C such that

\[\sup_{0 \leq t \leq T} |W_J(A_J(t))| \leq \gamma \sqrt{T} \{A_J(T)\}^{1/2} \sqrt{\log(C\nu(J))} \]

a.s. for all J. But now, returning to (5.1), we just need to show that the quantity

\[\sum_{J \in \mathcal{J}} \{\nu(J)\}^{\beta_3 + \beta_4} \{A_J(T)\}^{1/2} \]

is finite for some $\varepsilon > 0$, and this is achieved as in (4.12), if $r_0 > \beta_2 + 2(\beta_3 + \beta_4)$.

To show that \tilde{W} is a good approximation to $N^{1/2} \tilde{m}^N_t$, we begin with the result proved in (4.21) above: that $\sup_{0 \leq t \leq T} \|N^{1/2} \tilde{m}^N_t − W_t\|_\mu = O(N^{-b_0})$ except on an event of probability of order $O(N^{-b_2})$, for any $b_1 < b_1(\zeta)$ and $b_2 < b_2(\zeta)$. This quantity is one element of $\|N^{1/2} \tilde{m}^N_t − W_t\|_\mu$; the other is

\[\int_0^t R(t − s)A(N^{1/2} m_s^N − W_s) \, ds. \]

Arguing much as in the previous paragraph, we need to bound

\[\sup_{0 \leq t \leq T} \sum_{J \in \mathcal{J}} \{\nu(J)\}^{\beta_3 + \beta_4} |W_J(A_J(t)) − Z_J(A_J^N(t))|. \tag{5.2} \]

But this is exactly what we achieved in (4.21). Hence, for any $b_1 < b_1(\zeta)$ and $b_2 < b_2(\zeta)$, where ζ is such that $1/r_0 < \zeta < 1/\{4(\beta_2 + \beta_3 + \beta_4) + 2\beta_5\}$, we have

\[\sup_{0 \leq t \leq T} \|\tilde{W}_t − N^{1/2} \tilde{m}^N_t\|_\mu = O(N^{-b_1}), \tag{5.3} \]

except on an event of probability of order $O(N^{-b_2})$.
6 The final approximation

The final step in the argument is to compare the solution U^N to (1.12) with the solution Y to (1.16). Both satisfy the general equation

$$Z_t = R(t)Z_0 + \int_0^t R(t-s)DF(x_s)_s Z_s + z_t,$$

(6.1)

but with different initial conditions Z_0 and forcing functions z, and their difference $Y - U^N$ also satisfies (6.1), with initial conditions and forcing functions subtracted. Now, for U^N, the forcing function $\eta^N + N^{1/2}\tilde{m}^N$ is close to the forcing function \tilde{W} for Y, because of (3.1) and (5.3), and we shall assume that U^N and Y are also close to one another, so that both differences are small. We now show that this implies that the difference between Y and U^N is also small.

First, the assumption (2.25) implies that, for $w \in \mathcal{R}_\mu$, $\|DF(x_s)_s w\|_\mu \leq KF_1 \|w\|_\mu$. It is then immediate from (2.13) that

$$\left\| \int_0^t R(t-s)DF(x_s)_s Z_s ds \right\|_\mu \leq KF_1 e^{\mu t} \int_0^t e^{-\mu s} \|Z_s\|_\mu ds,$$

and that $\|R(t)Z_0\|_\mu \leq \|Z_0\|_\mu e^{\mu t}$. Hence, for $0 \leq t \leq T$, it follows that

$$e^{-\mu t} \|Z_t\|_\mu \leq \|Z_0\|_\mu + e^{-\mu t} \sup_{0 \leq s \leq T} \|z_s\|_\mu + KF_1 \int_0^t e^{-\mu s} \|Z_s\|_\mu ds,$$

and hence that

$$\|Z_t\|_\mu \leq \{\|Z_0\|_\mu + \sup_{0 \leq s \leq T} \|z_s\|_\mu\} e^{CT},$$

(6.2)

with $C = KF_1 + \omega$. Applying (6.2) to $Z = Y - U^N$, and using the bounds in (3.1) and (5.3), it follows that, except on an event of probability of order $O(N^{-b_2})$,

$$\sup_{0 \leq t \leq T} \|Y_t - U^N_t\|_\mu = O(N^{-b_1}),$$

where $U^N := N^{1/2}(x^N - x)$ and Y is the solution to (1.16), provided that $\|Y_0 - U^N_0\|_\mu = O(N^{-b_1})$ also. This proves the main theorem of the paper:

Theorem 6.1. Suppose that the assumptions of Section 2 are satisfied, and that we can take $r_0 > 4(\beta_2 + \beta_3 + \beta_4) + 2\beta_5$ in (2.16). For any ζ such that $1/r_0 < \zeta < 1/\{4(\beta_2 + \beta_3 + \beta_4) + 2\beta_5\}$, define

$$b_1(\zeta) := \min\{\frac{1}{2} - \zeta(\beta_2 + \beta_3 + \beta_4\beta_22), \frac{1}{2} - \zeta(\beta_2 - 2(\beta_3 + \beta_4))\},$$

and $b_2(\zeta) := \min\{r_0 - 1, 1\}$. Suppose that $\|Y_0 - U^N_0\|_\mu \leq KN^{-b_1(\zeta)}$. Then, for any $b_1 < b_1(\zeta)$, $b_2 < b_2(\zeta)$, we can construct copies of Y and U^N on the same probability space, in such a way that

$$\sup_{0 \leq t \leq T} \|Y_t - U^N_t\|_\mu = O(N^{-b_1}),$$

except on an event whose probability is of order $O(N^{-b_2})$.

So, for example, in the model of Arrigoni (2003), we can take r_0 as big as we wish, and then $\zeta r_0 = 2$, allowing $b_1 = 1/4 - \epsilon$ and $b_2 = 1 - \epsilon$ for any $\epsilon > 0$. However, these rates can only be attained for correspondingly well controlled initial conditions: in addition to (2.28), it is necessary to ensure that (2.18) is satisfied, so that $S_{d(r_0+1)}(x^N_0) \leq C$ for some $C < \infty$ and for all N, and that $S_{d(r_0+1)}(x_0) \leq C$ also. For stochastic logistic dynamics within the patches, with $b_1 = b$ and $d_i = d + ci$, we need to take r_0 to exceed $4(\beta_2 + \beta_3 + \beta_4) + 2\beta_5 = 22$ to yield an error bound that converges to zero with N, and thus require the initial conditions to have uniformly bounded $(4\delta + \delta)$-th moments for some $\delta > 0$.

EJP 17 (2012), paper 90.
Central limit approximations

References

[1] Arrigoni, F.: Deterministic approximation of a stochastic metapopulation model. Adv. Appl. Probab. 35, (2003), 691–720. MR-1990610
[2] Barbour, A. D. and Luczak, M. J.: Laws of large numbers for epidemic models with countably many types. Ann. Appl. Probab. 18, (2008), 2208–2238. MR-2473655
[3] Barbour, A. D. and Luczak, M. J.: A law of large numbers approximation for Markov population processes with countably many types. Prob. Theory Rel. Fields 153, (2012), 727–757. MR-2948691
[4] Eibeck, A. and Wagner, W.: Stochastic interacting particle systems and non-linear kinetic equations. Ann. Appl. Probab. 13, (2003), 845–889. MR-1994039
[5] Kimmel, M. and Axelrod, D. E.: Branching processes in biology. Springer, Berlin, 2003. MR-1903571
[6] Komlós, J., Major, P. and Tusnády, G.: An approximation of partial sums of independent RV’-s, and the sample DF. I Z. Wahrscheinlichkeitstheorie verw. Geb. 32, (1975), 111–131. MR-0375412
[7] Kretzschmar, M.: Comparison of an infinite dimensional model for parasitic diseases with a related 2-dimensional system. J. Math. Analysis Appli. 176, (1993), 235–260. MR-1222167
[8] Kurtz, T. G.: Solutions of ordinary differential equations as limits of pure jump Markov processes. J. Appl. Probab. 7, (1970), 49–58. MR-0254917
[9] Kurtz, T. G.: Limit theorems for sequences of jump Markov processes approximating ordinary differential processes. J. Appl. Probab. 8, (1971), 344–356. MR-0287609
[10] Levins, R.: Some demographic and genetic consequences of environmental heterogeneity for biological control. Bull. Entomol. Soc. Amer. 15, (1969), 237–240.
[11] Luchsinger, C. J.: Stochastic models of a parasitic infection, exhibiting three basic reproduction ratios. J. Math. Biol. 42, (2001a), 532–554. MR-1845591
[12] Luchsinger, C. J.: Approximating the long term behaviour of a model for parasitic infection. J. Math. Biol. 42, (2001b), 555–581. MR-1845592
[13] Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, Berlin, 1983. MR-0710486
[14] Ricker, W. E.: Stock and Recruitment. J. Fisheries Res. Board Canada 11, (1954), 559–623.
[15] Verhulst, P.-F.: Notice sur la loi que la population poursuit dans son accroissement. Correspondance Mathématique et Physique 10, (1838), 113–121.

Acknowledgments. The authors express their warm thanks to two referees, for their detailed and thoughtful reading of the original version of the paper. They also wish to thank the Institute for Mathematical Sciences of the National University of Singapore and the University of Melbourne for providing welcoming environments while part of this work was accomplished. MJL also thanks the University of Zürich and ADB Monash University for their hospitality on a number of visits.