Supporting Information for:

Nanoporous Films with Photoswitchable Absorption Kinetics Based on Polymerizable Columnar Discotic Liquid Crystals

Jody A. M. Lugger1,2,†, Patricia P. Marín San Román1,†, Camiel C. E. Kroonen1, Rint P. Sijbesma1,2*

1Laboratory of Supramolecular Polymer Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

2Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

†These authors contributed equally to this work.

*email: r.p.sijbesma@tue.nl
Table of Contents

Experimental methods .. S3

Supporting figures and tables ... S5

NMR Spectra (Figures S1 to S10) .. S5
FT-IR (Figure S11) .. S10
DSC (Figures S12 and S13) .. S10
X-ray diffraction (Figure S14) .. S11
Half-Life time determination (Figures S15 and S16 and Table S1) S12
UV-Vis Spectra (Figure S17) ... S13
MAXS polymer (Figure S18) ... S13
Absorption of Rhodamine (Figure S19) ... S13
Experimental methods

Methods-Sample preparations
Clean glass substrates (3 x 3 cm) were prepared by washing with acetone and isopropanol and finally dried. The nanoporous materials were made by making a solution of 4-((2,3,4-tris(undec-10-en-1-yloxy)phenyl)diazeyln)-benzoic acid 3 (3.2 equivalents) and 1,10-decane di thiol (4.8 equivalents) in CHCl3/MeOH (9:1 v/v) and adding this solution to the required amount of 1,3,5-tris(5-methyl-1H-benzo[d]imidazol-2-yl)benzene (McTB, 1 equivalent) (50 mg mL-1). Finally, Bis(2,4,6-trimethylbenzoyl)-phenylphosphineoxide (Irgacure 819, 3 wt%) was added as photo-initiator. 100/200 µL of the solution was casted on a clean glass substrate of 3 x 3 cm and spin coated at 2000 rpm for 30 seconds. The temperature was then raised to 70°C and the sample was photo-polymerized using an EXFO Omnicure S2000 lamp with 8 mW/cm2 of intensity, for 10 minutes, resulting in a bright orange non-soluble polymer. Then, the sample was placed in DMSO and shaken for 3h to remove the template. Lastly, the DMSO was extracted and the sample was dried in a vacuum oven at 40°C.

Methods-UV-VIS switching experiment
The photoinitiated switching between trans and cis was measured by making a solution of 3 in 10 mL chloroform (93.01 µM). The UV-VIS spectrum was measured with a baseline set for chloroform. Trans to cis switching was measured by irradiating with 365 nm UV-light (700 mA) for respectively 5, 10, 15, 30, 60 seconds and measuring a new UV-VIS spectrum after each irradiation time. Cis to trans switching was measured by first irradiating the sample for 2 minutes with UV-light (365 nm) and then irradiating the sample 5, 10, 15, 30 and 60 seconds with blue light of 450 nm (350 mA) and measuring the UV-VIS spectra.

The photo and back isomerization between trans and cis of the polymer were measured in solid state onto glass substrates via UV-VIS spectroscopy. The baseline is set for the clean glass. Trans to cis switching was measured by irradiating with 365 nm UV-light (700 mA) for 4h and then a new UV-VIS spectrum every 5, 10 or 20 minutes in the end due to the stabilization. Cis to trans back switching was measured by first irradiating the sample for 4 hours with UV-light (365 nm) and then in the dark a spectrum was taken every 30 minutes for 9 hours.

Methods-Cis to trans decay experiment
Cis to trans decay experiments were performed by irradiating a solution of 3 (13.8 mg) in CDCl3 (0.7 mL) with UV-light of 365 nm (700 mA) for 5 minutes. Then a 1H-NMR was measured after 0, 5, 22 and 27 hours. Integrals were compared to the single proton peak on the benzene ring.

Half-life determination
The graph data of Figure S15 was fitted with the equation for half-life (1):

\[N(t) = N_0 \times (0.5)^{t/t_{0.5}} \]

Where \(N(t) \) represents the amount of cis at time = t, \(N_0 \) the amount at t = 0 (3.92 mM), t the time (h) and \(t_{0.5} \) represents the half-life time (h) at a specific temperature.

Dye-Selectivity tests
Measurements were done in a quartz cuvette and stirred at 400 rpm. Concentrations were calculated from the molar extinction coefficient of Rhodamine 6G at 474 nm using Lambert-Beer’s Law in water. The mass of the films was weighed on a microbalance before the measurement. The volume was kept constant at 3 mL. For absorption measurements, the initial concentration of the dye was 10 µM (40 mg/L) and the absorbance was measured every minute during 10 h. Measurements were done upon time at room temperature for a sample before irradiation (trans isomer) and after irradiated with UV-light during 6 hours (cis isomer).

Fickian diffusion model fitting
Dye uptake for the full-time scale was directly fitted using the Fickian transport model (Equation 2), which correlates the absorption profile of the dye, in this case Rhodamine 6G in a single pore of the porous material with the decrease in concentration in solution.
\[C_b(t) = \int_{x=0}^{x=l/2} C_0 \left(1 - erf \frac{x}{\sqrt{4 \mathcal{D} t}} \right) dx \]

With \(C_b \) as concentration of the dye (mg/L) in the solution at \(y(t) \), \(C_0 \) concentration dye at \(t(0) \), \(t \) time (s), \(x \) the pore length (\(\mu m \)) and \(\mathcal{D} \) the absorption coefficient of the adsorbate.

Eq. 1 was fitted to the batch absorption curves obtained for the cis and the trans isomers (Figure S18) by applying a range of diffusion coefficients. The best fit value was determined by minimizing the sum \(S \) of absolute weighted difference between the measured and fitted data points (Eq. 3)

\[S = \sum_{i=1}^{N} \left| \frac{y_i - f(x_i)}{y_i} \right| \]

With \(y_i \) as concentration of the dye (mg/L) in the solution at \(t \), \(f(x_i) \) concentration dye calculated according to Eq.2, and \(S \) the sum of absolute weighted deviations between \(f(x_i) \) and \(y_i \).

The fitting procedure was performed on a reduced number of data points (20 from initial 100) to shorten the fitting time. The equilibrium concentration of the dye (\(C_{eq} \)) was obtained by extrapolating Eq. 2 to infinite time \(C_0 \) (\(t=\infty \)). Best fit for trans and cis isomers are presented in the report.
Supporting figures and tables

NMR Spectra

Figure S1. 1H-NMR spectrum of alkene ester 2 in CDCl$_3$

Figure S2. 13C-NMR spectrum of alkene ester 2 in CDCl$_3$
Figure S3. 1H-NMR spectrum of azobenzoic acid 3 in CDCl$_3$.
Figure S4: 13C-NMR spectrum of azobenzoic acid 3 in CDCl$_3$

Figure S5. COSY spectrum of alkene ester 2 in CDCl$_3$
Figure S6. COSY spectrum of azobenzoic acid 3 in CDCl₃

Figure S7: COSY spectrum of azobenzoic acid 3 in CDCl₃

Figure S8. HSQC spectrum of azobenzoic acid 3 in CDCl₃
Figure S9. HMBC spectrum of alkene ester 2 in CDCl₃

Figure S10. HMBC spectrum of azobenzoic acid 3 in CDCl₃
Figure S11. FT-IR spectrum of alkene ester 2

Figure S12. DSC trace and POM image of azobenzoic acid 3 at 75°C
Figure S13. DSC 2nd cycle of TB·Azoac₃ complex in a 3.2:1 mixture heating and cooling at 10°C/min

Figure S14. MAXS and WAXS diffractogram of complex TB·Azoac₃ at RT.
Figure S15. 1H-NMR spectra after 0, 5, 22 and 27 hours of thermal relaxation in CDCl$_3$.

Time (h)	Area	Concentration (mM)
0	0.17	3.92
5	0.14	3.31
22	0.07	1.76
27	0.06	1.53

Table S1: Area of 1H-NMR converted to concentrations after different relaxation times

Figure S16. Plot of the concentration for the cis isomer at different relaxation times (black) and plot of the half-life time fitted model (red).
Figure S17: Cis-trans back-isomerization of the polymer accelerated using blue light of 455 nm.

Figure S18: MAXS of the 3:1 polymer before and after UV irradiation corresponding to the Trans and Cis state respectively at room temperature.

Figure S19: Plot of absorption Rhodamine 6G upon time for trans and cis porous polymers.
