Observation of $X(2370)$ and search for $X(2120)$ in $J/\psi \rightarrow \gamma K \bar{K} \eta'$

BESIII Collaboration
Abstract Using a sample of 1.31×10^9 ψ events collected with the BESIII detector, we perform a study of $J/\psi \rightarrow \gamma KK'\eta'$. $X(2370)$ is observed in the $KK'\eta'$ invariant-mass distribution with a statistical significance of 8.3σ. Its resonance parameters are measured to be $M = 2341.6 \pm 6.5$ (stat.) ± 5.7 (syst.) MeV/c^2 and $\Gamma = 117 \pm 10$ (stat.) ± 8 (syst.) MeV. The product branching fractions for $J/\psi \rightarrow \gamma X(2370)$, $X(2370) \rightarrow K^+ K^- \eta'$ and $J/\psi \rightarrow \gamma X(2370)$, $X(2370) \rightarrow K_0^0 \bar{K}_0^0 \eta'$ are determined to be $(1.79 \pm 0.23$ (stat.) ± 0.65 (syst.)) $\times 10^{-5}$ and $(1.18 \pm 0.32$ (stat.) ± 0.39 (syst.)) $\times 10^{-5}$, respectively. No evident signal for $X(2120)$ is observed in the $KK'\eta'$ invariant-mass distribution. The upper limits for the product branching fractions of $B(J/\psi \rightarrow \gamma X(2120) \rightarrow \gamma K^+ K^- \eta')$ and $B(J/\psi \rightarrow \gamma X(2120) \rightarrow \gamma K_0^0 \bar{K}_0^0 \eta')$ are determined to be 1.49×10^{-3} and 6.38×10^{-4} at the 90% confidence level, respectively.

1 Introduction

Quantum chromodynamics (QCD), a non-Abelian gauge field theory, predicts the existence of new types of hadrons with explicit gluonic degrees of freedom (e.g., glueballs, hybrids) [1–3]. The search for glueballs is an important field of research in hadron physics. It is, however, challenging since possible mixing of pure glueball states with nearby $q\bar{q}$ nonet mesons makes the identification of glueballs difficult in both experiment and theory. Lattice QCD (LQCD) predicts the lowest-lying glueballs which are scalar (mass 1.5–1.7 GeV/c^2), tensor (mass 2.3–2.4 GeV/c^2), and pseudoscalar (mass 2.3–2.6 GeV/c^2) [4]. Radiative J/ψ decay is a gluon-rich process and it is therefore regarded as one of the most promising hunting grounds for glueballs [5,6]. Recent LQCD calculations predict that the partial width of J/ψ radiatively decaying into the pure gauge pseudoscalar glueball is 0.0215(74) keV which corresponds to a branching ratio 2.31(80) $\times 10^{-4}$ [7]. Recently, three states, $X(1835)$, $X(2120)$ and $X(2370)$, were observed in the BESIII experiment in the $\pi^+ \pi^- \eta'$ invariant-mass distribution through the decay of $J/\psi \rightarrow \gamma \pi^+ \pi^- \eta'$ with statistical significances larger than 20σ, 7.2σ and 6.4σ, respec-
tively [8]. The measured mass of $X(2370)$ is consistent with the pseudoscalar glueball candidate predicted by LQCD calculations [4]. In the case of a pseudoscalar glueball, the branching fractions of $X(2370)$ decaying into $KK\eta'$ and $\pi\pi\eta'$ are predicted to be 0.011 and 0.090 [9], respectively, in accordance with calculations that are based upon the chiral effective Lagrangian. Study on the decays to $KK\eta'$ of the glueball candidate X states is helpful to identify their natures.

In this paper, $X(2370)$ and $X(2120)$ are studied via the decays of $J/\psi \to \gamma K^+K^-\eta'$ and $J/\psi \to \gamma K_S^0K_S^0\eta'(K_0^{\mp} \to \pi^+\pi^-)$ using $(1310.6 \pm 7.0) \times 10^6 J/\psi$ decays [10] collected with the BESIII detector in 2009 and 2012. Two η' decay modes are used, namely $\eta' \to \gamma \rho^0(\rho^0 \to \pi^+\pi^-)$ and $\eta' \to \pi^+\pi^-\eta(\eta \to \gamma\gamma)$.

2 Detector and Monte Carlo simulations

The BESIII detector is a magnetic spectrometer [11] located at the Beijing Electron Positron Collider II (BEPCII) [12]. The cylindrical core of the BESIII detector consists of a helium-based multilayer drift chamber (MDC), a plastic scintillator time-of-flight system (TOF), and a CsI(Tl) electromagnetic calorimeter (EMC), which are all enclosed in a superconducting solenoidal magnet providing a 1.0 T (0.9 T in 2012) magnetic field. The solenoid is supported by an octagonal flux-return yoke with resistive plate counter muon identifier modules interleaved with steel. The acceptance of charged particles and photons is 93% over 4π solid angle. The charged-particle momentum resolution at 1 GeV/c is 0.5%, and the dE/dx resolution is 6% for the electrons from Bhabha scattering. The EMC measures photon energies with a resolution of 2.5% (5%) at 1 GeV in the barrel (end cap) region. The time resolution of the TOF barrel part is 68 ps, while that of the end cap part is 110 ps.

Simulated samples produced with the GEANT4-based [13] Monte Carlo (MC) package which includes the geometric description of the BESIII detector and the detector response, are used to determine the detection efficiency and to estimate the backgrounds. The simulation includes the beam energy spread and initial-state radiation (ISR) in the e^+e^- annihilations modeled with the generator KKMC [14,15]. The inclusive MC sample consists of the production of the J/ψ resonance, and the continuum processes incorporated in KKMC [14,15]. The known decay modes are modeled with EVTGEN [16,17] using branching fractions taken from the Particle Data Group [18], and the remaining unknown decays from the charmonium states are generated with LUNDCHARM [19,20]. The final-state radiations (FSR) from charged final-state particles are incorporated with the PHOTOS package [21]. Background is studied using a sample of 1.2×10^9 simulated J/ψ events. Phase-space (PHSP) MC samples of $J/\psi \to \gamma K^+K^-\eta'$ and $J/\psi \to \gamma K_S^0K_S^0\eta'$ are generated to describe the non-resonant contribution. To estimate the selection efficiency and to optimize the selection criteria, signal MC events are generated for $J/\psi \to \gamma X(2120)/X(2370) \to \gamma K^+K^-\eta'$ and $J/\psi \to \gamma X(2120)/X(2370) \to \gamma K_S^0K_S^0\eta'$ channel. The polar angle of the photon in the J/ψ center-of-mass system, θ_γ, follows a $1+\cos^2\theta_\gamma$ function. For the process of $\eta' \to \gamma \rho^0, \rho^0 \to \pi^+\pi^-$, a generator taking into account both the $\rho-\omega$ interference and the box anomaly is used [22]. The analysis is performed in the framework of the BESIII offline software system (BOSS) [23] incorporating the detector calibration, event reconstruction and data storage.

3 Event selection

Charged-particle tracks in the polar angle range $|\cos \theta| < 0.93$ are reconstructed from hits in the MDC. Tracks (excluding those from K_0^{\mp} decays) are selected that extrapolated to be within 10 cm from the interaction point in the beam direction and 1 cm in the plane perpendicular to the beam. The combined information from energy-loss (dE/dx) measurements in the MDC and time in the TOF is used to obtain confidence levels for particle identification (PID) for π, K and p hypotheses. For $J/\psi \to \gamma K^+K^-\eta'$ decay, each track is assigned to the particle type corresponding to the highest confidence level; candidate events are required to have four charged tracks with zero net charge and with two opposite charged tracks identified as kaons and the other two identified as pions. For the $J/\psi \to \gamma K_S^0K_S^0\eta'$ decay, each track is assumed to be a pion and no PID restrictions are applied; candidate events are required to have six charged tracks with zero net charge. K_S^0 candidates are reconstructed from a secondary vertex fit to all $\pi^+\pi^-$ pairs, and each K_S^0 candidate is required to satisfy $|M_{\pi^+\pi^-} - m_{K_S^0}| < 9 \text{ MeV}/c^2$, where $m_{K_S^0}$ is the nominal mass of K_S^0 [18]. The reconstructed K_S^0 candidates are used as input for the subsequent kinematic fit.

Photon candidates are required to have an energy deposition above 25 MeV in the barrel region ($|\cos \theta| < 0.80$) and 50 MeV in the end cap ($0.86 < |\cos \theta| < 0.92$). To exclude showers from charged tracks, the angle between the shower position and the charged tracks extrapolated to the EMC must be greater than 5°. A timing requirement in the EMC is used to suppress electronic noise and energy deposits unrelated to the event. At least two (three) photons are required for the $\eta' \to \gamma \rho^0(\eta' \to \pi^+\pi^-\eta)$ mode. For the $J/\psi \to \gamma K^+K^-\eta'(\eta' \to \gamma \rho^0)$ channel, a four-constraint (4C) kinematic fit is performed to the hypoth-
basis of $J/\psi \rightarrow \gamma K^+ K^- \eta'$. Plots a, b are invariant-mass distributions of $\gamma \pi^+ \pi^-$ and $K^+ K^- \eta'$ for $\eta' \rightarrow \rho^0$, $\rho^0 \rightarrow \pi^+ \pi^-$, respectively; plots c, d are the invariant-mass distributions of $\pi^+ \pi^- \eta$ and $K^+ K^- \eta'$ for $\eta' \rightarrow \pi^+ \pi^- \eta$, $\eta \rightarrow \gamma \gamma$, respectively. The dots with error bars correspond to data and the histograms are the results of PHSP MC simulations (arbitrary normalization).

Fig. 1 Invariant-mass distributions for the selected candidates of $J/\psi \rightarrow \gamma K^+ K^- \eta'$. Plots a, b are invariant-mass distributions of $\gamma \pi^+ \pi^-$ and $K^+ K^- \eta'$ for $\eta' \rightarrow \rho^0$, $\rho^0 \rightarrow \pi^+ \pi^-$, respectively; plots c, d are the invariant-mass distributions of $\pi^+ \pi^- \eta$ and $K^+ K^- \eta'$ for $\eta' \rightarrow \pi^+ \pi^- \eta$, $\eta \rightarrow \gamma \gamma$, respectively. The dots with error bars correspond to data and the histograms are the results of PHSP MC simulations (arbitrary normalization).

4 Signal extraction

Potential backgrounds are studied using an inclusive MC sample of $1.2 \times 10^9 J/\psi$ decays. No significant peaking background is identified in the invariant-mass distributions of $K^+ K^- \eta'$ and $K_0^0 K_0^0 \eta'$. Non-η' processes are studied using the η mass sidebands. The major background in the decay $J/\psi \rightarrow \gamma K^+ K^- \eta'$ stem from $J/\psi \rightarrow K^{*+} K^- \eta'(K^{*+} \rightarrow K^+ \rho^0) + c.c.$ The contribution of $J/\psi \rightarrow K^{+} K^- \eta'(K^{*+} \rightarrow K^+ \rho^0) + c.c.$ is esti-
mated by the background-subtracted K^+K^- spectrum of \(J/\psi \to K^+K^0\bar{\eta}' \) and \(K^0S\eta \) for \(\eta' \to \gamma\rho^0, \rho^0 \to \pi^+\pi^- \), respectively; c, d Invariant-mass distribution of \(\pi^+\pi^- \) and \(K^0S\eta \) for \(\eta' \to \pi^+\pi^- \), respectively. The dots with error bars represent the data and the histograms are the results of PHSP MC simulations (arbitrary normalization).

Fig. 2 Invariant-mass distributions for the selected \(J/\psi \to \gamma K^0S\eta' \) candidate events. a, b Invariant-mass distributions of \(\gamma\pi^+\pi^- \) and \(K^0S\eta \) for \(\eta' \to \gamma\rho^0, \rho^0 \to \pi^+\pi^- \), respectively; c, d Invariant-mass distribution of \(\pi^+\pi^- \) and \(K^0S\eta \) for \(\eta' \to \pi^+\pi^- \), respectively. The dots with error bars represent the data and the histograms are the results of PHSP MC simulations (arbitrary normalization).

Sample of \(J/\psi \to \gamma K^0S\eta' \) and its absolute yield is set as a free parameter in the fit; the remaining background is described by a second order Chebychev polynomial function and its parameters are left to be free. In the simultaneous fit, the resonance parameters are free parameters and constrained to be the same for all four channels. The signal ratio for the two \(\eta' \) decay modes is fixed with a factor calculated by their branching fractions and efficiencies. The signal ratio between \(J/\psi \to \gamma X(2370) \to \gamma K^+K^-\eta' \) and \(J/\psi \to \gamma X(2370) \to \gamma K^0S\eta \) is a free parameter in the fit. The obtained mass, width and the number of signal events for \(X(2370) \) are listed in Table 1. A variety of fits with different fit ranges, \(\eta' \) sideband regions and background shapes are performed; after considering the systematic uncertainties like quantum number of \(X(2370) \) and the presence of \(X(2120) \), the smallest statistical significance among these fits is found to be 8.3\(\sigma \). With the detection efficiencies listed in Table 2, the product branching fractions for \(X(2120) \) are determined to be \((1.79 \pm 0.23) \times 10^{-5} \) and \((1.18 \pm 0.32) \times 10^{-3} \), respectively, where the uncertainties are statistical only.

No obvious signal of \(X(2120) \) is found in the \(K^0S\eta' \) invariant-mass distribution. We performed a simultaneous unbinned maximum-likelihood fit to the \(K^0S\eta' \) invariant-mass distribution in the range of \([2.0, 2.7]\) GeV/c\(^2\). The signal, \(X(2120) \), is described with an efficiency-weighted BW function convolved with a double Gaussian function. The mass and width of the BW function are fixed to previously published BESIII results [8]. The backgrounds are modeled with the same components as used in the fit of \(X(2370) \) as mentioned above. The contribution from \(X(2370) \) is included in the fit and its mass, width and the numbers of events are set free. The distribution of normalized likelihood values for a series of input signal event yields is taken as the probability-density function (PDF) for the expected number of events. The number of events at 90% of the integral of the PDF from zero to the given number of events is defined as the upper limit, \(N_{UL} \), at the 90% confidence level (CL). We repeated this procedure with different signal shape parameters of \(X(2120) \) (by varying the values of mass and width with 1\(\sigma \) of the uncertainties cited from [8]), fit ranges, \(\eta' \) sideband regions and background shapes, and the maximum upper limit among these cases is selected. The statistical significance of \(X(2120) \) is determined to be 2.2\(\sigma \). To calculate \(N_{UL} \) for the \(J/\psi \to \gamma X(2120) \to \gamma K^+K^-\eta' \) channel, the number of signal events for \(J/\psi \to \gamma X(2120) \to \gamma K^0S\eta \) channel is left free. The obtained upper limits of the signal yields are listed in Table 1, and the upper limit for the product branching fractions are calculated to be \(B(J/\psi \to \gamma X(2120) \to \gamma K^+K^-\eta') < 1.41 \times 10^{-5} \).
are investigated using nearly background-free (clean) con-
The MDC tracking efficiencies of charged pions and kaons are considered.

5.1 Efficiency estimation

The MDC tracking efficiencies of charged pions and kaons are investigated using nearly background-free (clean) con-

5 Systematic uncertainties

Several sources of systematic uncertainties are considered for the determination of the mass and width of $X(2370)$ and the product branching fractions. These include the efficiency differences between data and MC simulation in the MDC tracking, PID, the photon detection, K_S^0 reconstruction, the kinematic fitting, and the mass-window requirements of π^0, η, ρ and η'. Furthermore, uncertainties associated with the fit ranges, the background shapes, the sideband regions, the signal shape parameters of $X(2120)$, intermediate resonance decay branching fractions and the total number of J/ψ events are considered.

and $B(J/\psi \to \gamma X(2370) \to \gamma K_S^0 K_S^0 \eta') < 6.15 \times 10^{-6}$, respectively.

$\eta' \to \gamma \rho^0$	$\eta' \to \pi^+ \pi^- \eta$
$M_X(2370)$ (MeV/c²)	2341.6 ± 6.5
$\Gamma_X(2370)$ (MeV)	117 ± 10
$N(J/\psi \to \gamma X(2370)^{\eta})$	882 ± 112
$N(J/\psi \to \gamma X(2370)^{\rho})$	174 ± 47
$N(J/\psi \to \gamma X(2120)^{\eta})$	< 553.5
$N(J/\psi \to \gamma X(2120)^{\rho})$	< 88.7

Table 1 Fit results for the structure around 2.34 GeV/c² and 2.12 GeV/c². The superscripts a and b represent the decay modes of $X \to K^+ K^- \eta'$ and $X \to K_S^0 K_S^0 \eta'$, respectively. The uncertainties are statistical only

trol samples of $J/\psi \to p \bar{p} \pi^+ \pi^-$ and $J/\psi \to K_S^0 K^\mp \pi^\mp$ [24, 25], respectively. The difference in tracking efficiencies between data and MC is 1.0% for each charged pion and kaon. The photon detection efficiency is studied with a clean sample of $J/\psi \to \rho^0 \pi^0$ [26], and the result shows that the difference of photon detection efficiencies between data and MC simulation is 1.0% for each photon. The systematic uncertainty from K_S^0 reconstruction is determined from the control sam-

Fig. 3 The fit result for $X(2370)$ in the invariant-mass distribution of $K K \eta'$ for the decays: a $J/\psi \to \gamma X(2370)$, $X(2370) \to \gamma K^+ K^- \eta'$, $\eta' \to \pi^+ \pi^- \eta$, $\eta \to \gamma \gamma$, b $J/\psi \to \gamma X(2370)$, $X(2370) \to \gamma K^+ K^- \eta'$, $\eta' \to \gamma \rho^0$, $\rho^0 \to \pi^+ \pi^-$, c $J/\psi \to \gamma X(2370)$, $X(2370) \to \gamma K_S^0 K_S^0 \eta'$, $\eta' \to \pi^+ \pi^- \eta$, $\eta \to \gamma \gamma$, and d $J/\psi \to \gamma X(2370)$, $X(2370) \to \gamma K_S^0 K_S^0 \eta'$, $\eta' \to \gamma \rho^0$, $\rho^0 \to \pi^+ \pi^-$. The dots with error bars represent the data; the solid curves show the fit results; the grid areas represent the signal of $X(2370)$; the dotted lines are the background shapes from $J/\psi \to K^+ K^- \eta'+ c.c.$; the short dashed double dotted lines show the η' sidebands; the long dashed lines represent the Chebychev polynomial function; the gray short dashed lines are the contribution from PHSP MC and the dashed dotted lines show the sum of all backgrounds.
null
Table 4 Systematic uncertainties for determination of the branching fraction of $J/\psi \rightarrow \gamma X(2370) \rightarrow \gamma K\bar{K}\eta'$ (in %). The items with * are common uncertainties of both η' decay modes. I and II represent the decay modes of $\eta' \rightarrow \gamma\rho^0, \rho^0 \rightarrow \pi^+\pi^-$ and $\eta' \rightarrow \pi^+\pi^-\eta, \eta \rightarrow \gamma\gamma$, respectively.

Source	$K^+K^0\eta'$	$K^0_K^0\eta'$
	I	II
MDC tracking*	4.0	4.0
Photon detection*	2.0	3.0
K^0_S reconstruction*	–	3.0
PID*	4.0	–
Kinematic fit	1.7	3.8
ρ mass window	0.2	–
η' mass window	0.1	0.3
Veto π^0	1.2	0.6
Veto η	1.0	1.7
Fit range	2.4	1.7
Sideband region	5.4	1.2
Chebychev function	4.9	1.7
$J/\psi \rightarrow K^+K^0\eta' + \text{c.c.}$	4.0	2.2
$B(\eta' \rightarrow \gamma\rho^0 \rightarrow \gamma\pi^+\pi^-)$	1.7	–
$B(\eta' \rightarrow \eta\pi^+\pi^-)$	–1.6	–
$B(\eta \rightarrow \gamma\gamma)$	–0.5	–
$B(K^0_S \rightarrow \pi^+\pi^-)$*	–	0.1
Number of J/ψ events*	0.5	0.5
Quantum number of X	16.7	19.0
$X(2120)*$	33.7	30.5
Total	39.2	35.3

Table 5 Systematic uncertainties for determination of the upper limit of the branching fraction of $J/\psi \rightarrow \gamma X(2120) \rightarrow \gamma K\bar{K}\eta'$ (in %). The items with * are common uncertainties of both η' decay modes. I and II represent the decay modes of $\eta' \rightarrow \gamma\rho^0, \rho^0 \rightarrow \pi^+\pi^-$ and $\eta' \rightarrow \pi^+\pi^-\eta, \eta \rightarrow \gamma\gamma$, respectively.

Source	$K^+K^0\eta'$	$K^0_K^0\eta'$
	I	II
MDC tracking*	4.0	2.0
Photon detection*	2.0	3.0
K^0_S reconstruction*	–	3.0
PID*	4.0	–
Kinematic fit	1.7	4.0
ρ mass window	0.2	0.3
η' mass window	0.1	0.2
Veto π^0	0.8	1.5
Veto η	0.8	1.4
$B(\eta' \rightarrow \gamma\rho^0 \rightarrow \gamma\pi^+\pi^-)$	1.7	–
$B(\eta' \rightarrow \eta\pi^+\pi^-)$	–1.6	–
$B(\eta \rightarrow \gamma\gamma)$	–0.5	–
$B(K^0_S \rightarrow \pi^+\pi^-)$*	–	0.1
Number of J/ψ events*	0.5	0.5
Quantum number of X	18.2	19.3
Total	19.3	21.8

5.3 Others

Since no evident structures are observed in the invariant-mass distributions of $M(K\eta'), M(K\bar{K}\eta')$ and $M(K\bar{K})$ for the events with a $K\bar{K}\eta'$ invariant mass within the $X(2370)$ mass region (2.2 GeV/$c^2 < M_{K\bar{K}\eta'} < 2.5$ GeV/c^2), the systematic uncertainties of the reconstruction efficiency due to the possible intermediate states on the $K\eta'$, $\bar{K}\eta'$ and $K\bar{K}$ mass spectra are ignored. The uncertainties on the intermediate decay branching fractions of $\eta' \rightarrow \gamma\rho^0 \rightarrow \gamma\pi^+\pi^-$, $\eta' \rightarrow \pi^+\pi^-\eta, \eta \rightarrow \gamma\pi^+\pi^-$ and $K^0_S \rightarrow \pi^+\pi^-$ are taken from the world average values [18], which are 1.7%, 1.6%, 0.5% and 0.1%, respectively. The systematic uncertainty due to the number of J/ψ events is determined as 0.5% according to Ref. [10].

A summary of all the uncertainties is shown in Tables 3, 4 and 5. The total systematic uncertainties are obtained by adding all individual uncertainties in quadrature, assuming all sources to be independent.

$X(2120)$ and $X(2370)$ are studied via $J/\psi \rightarrow \gamma K^+K^-\eta'$ and $J/\psi \rightarrow \gamma K^0_S\bar{K}^0_S\eta'$ with two η' decay modes, respectively. The measurements from the two η' decay modes are, therefore, combined by considering the difference in uncertainties of these two measurements. The combined systematic uncertainties are calculated with the weighted least squares method [28] and the results are shown in Table 6.

6 Results and summary

Using a sample of $1.31 \times 10^9 J/\psi$ events collected with the BESIII detector, the decays of $J/\psi \rightarrow \gamma K^+K^-\eta'$ and $J/\psi \rightarrow \gamma K^0_S\bar{K}^0_S\eta'$ are investigated using the two η' decay modes, $\eta' \rightarrow \gamma\rho^0 (\rho^0 \rightarrow \pi^+\pi^-)$ and $\eta' \rightarrow \pi^+\pi^-\eta (\eta \rightarrow \gamma\gamma)$. $X(2370)$ is observed in the $K\bar{K}\eta'$ invariant-mass distribution with a statistical significance of 8.3σ. The mass and width are determined to be

$$M_X(2370) = 2341.6 \pm 6.5 \text{ (stat.)} \pm 5.7 \text{ (syst.)} \text{ MeV}/c^2,$$

$$\Gamma_X(2370) = 117 \pm 10 \text{ (stat.)} \pm 8 \text{ (syst.) MeV},$$

which are found to be consistent with those of $X(2370)$ observed in the previous BESIII results [8]. The product branching fractions of $B(J/\psi \rightarrow \gamma X(2370) \rightarrow \gamma K^+K^-\eta')$ and $B(J/\psi \rightarrow \gamma X(2370) \rightarrow \gamma K^0_S\bar{K}^0_S\eta')$ are measured to be $(1.79 \pm 0.23 \text{ (stat.)} \pm 0.65 \text{ (syst.)}) \times 10^{-5}$ and $(1.18 \pm 0.32 \text{ (stat.)} \pm 0.39 \text{ (syst.)}) \times 10^{-5}$, respectively. No evident signal for $X(2120)$ is observed in the

Table 6 Combined results of the structure around 2.34 GeV/c^2, the measured branching fractions and the upper limits

$M_{X(2370)}$ (MeV/c^2)	$\Gamma_X(2370)$ (MeV)	$B(J/\psi \to \gamma X(2370) \to \gamma K^+K^-\eta')$	$B(J/\psi \to \gamma X(2370) \to \gamma K^0_SK^0_S\eta')$	$B(J/\psi \to \gamma X(2120) \to \gamma K^+K^-\eta')$	$B(J/\psi \to \gamma X(2120) \to \gamma K^0_SK^0_S\eta')$
2341.6 ± 6.5(stat.) ± 5.7(syst.)	117 ± 10(stat.) ± 8(syst.)	(1.79 ± 0.23 (stat.) ± 0.65 (syst.)) $\times 10^{-5}$	(1.18 ± 0.32 (stat.) ± 0.39 (syst.)) $\times 10^{-5}$	< 1.49 $\times 10^{-5}$	< 6.38 $\times 10^{-6}$

$K\bar{K}\eta'$ invariant-mass distribution. For a conservative estimate of the upper limits of the product branching fractions of $J/\psi \to \gamma X(2120) \to K^+K^-\eta'$ and $J/\psi \to \gamma X(2120) \to K^0_SK^0_S\eta'$, the multiplicative uncertainties are considered by convolving the normalized likelihood function with a Gaussian function. The upper limits for product branching fractions at 90% C. L. are determined to be $B(J/\psi \to \gamma X(2120) \to \gamma K^+K^-\eta') < 1.49 \times 10^{-5}$ and $B(J/\psi \to \gamma X(2120) \to \gamma K^0_SK^0_S\eta') < 6.38 \times 10^{-6}$.

To understand the nature of $X(2120)$ and $X(2370)$, it is critical to measure their spin and parity and to search for them in more decay modes. A partial-wave analysis is needed to determine their masses and widths more precisely, and to determine their spin and parity. This might become possible in the future with the foreseen higher statistics of J/ψ data samples.

Acknowledgements The BESIII Collaboration thanks the staff of BEPCII and the IHEP computing center for their strong support. This work is supported in part by National Key Basic Research Program of China under Contract no. 2015CB856700; National Natural Science Foundation of China (NSFC) under Contracts nos. 11625523, 11635010, 11675183, 11675184, 11947413, 11705078, 11735014; National Natural Science Foundation of China (NSFC) under Contract nos. 11835012, 11905092; the Chinese Academy of Sciences (CAS) Large-Scale Scientific Facility Program; Joint Large-Scale Scientific Facility Funds of the NSFC and CAS under Contracts Nnos. U1532257, U1533258, U1732263, U1832207; CAS Key Research Program of Frontier Sciences under Contracts nos. QYZDY-SSW-LH003, QYZDY-SSW-LH040; 100 Talents Program of CAS; INPAC and Shanghai Key Laboratory for Particle Physics and Cosmology; German Research Foundation DFG under Contract no. Collaborative Research Centre CRC 1044; Istituto Nazionale di Fisica Nucleare, Italy; Koninklijke Nederlandse Akademie van Wetenschappen (KNAW) under Contract no. 530-4CDP03; Ministry of Development of Turkey under Contract no. DPT2006K-120470; National Science and Technology fund; The Knut and Alice Wallenberg Foundation (Sweden) under Contract no. 2016.0157; The Royal Society, UK under Contract no. DH160214; The Swedish Research Council; U.S. Department of Energy under Contracts nos. DE-FG02-05ER41374, DE-SC-0010118, DE-SC-0012069; University of Groningen (RuG) and the Helmholzzentrum fuer Schwerionenforschung GmbH (GSI), Darmstadt.

Data Availability Statement This manuscript has associated data in a data repository. [Authors’ comment: The correlation function data can be obtained from the authors upon request.]

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Funded by SCOAP3.

References

1. C. Amsler, N.A. Tornqvist, Phys. Rep. 389, 61 (2004)
2. E. Klempt, A. Zaitsev, Phys. Rep. 454, 1 (2007)
3. V. Crede, C.A. Meyer, Prog. Part. Nucl. Phys. 63, 74 (2009)
4. Y. Chen et al., Phys. Rev. D 73, 014516 (2006)
5. M.B. Cakir, G.R. Farrar, Phys. Rev. D 50, 3268 (1994)
6. F.E. Close, G.R. Farrar, Z.P. Li, Phys. Rev. D 55, 5749 (1997)
7. L.C. Gui, J.M. Dong, Y. Chen, Y.B. Yang, Phys. Rev. D 100, 054511 (2019)
8. M. Ablikim et al. (BESIII Collaboration), Phys. Rev. Lett. 106, 072002 (2011)
9. W.I. Eshraim, S. Janowski, F. Giacosa, D.H. Rischke, Phys. Rev. D 87, 054036 (2013)
10. M. Ablikim et al. (BESIII Collaboration), Chin. Phys. C 41, 013001 (2017)
11. M. Ablikim et al. (BESIII Collaboration), Nucl. Instrum. Methods Phys. Res. Sect. A 614, 345 (2010)
12. C.H. Yu et al., Proceedings of IPAC2016, Busan, Korea (2016). https://doi.org/10.18429/JACoW-IPAC2016-TUYA01
13. S. Agostinelli et al. (GEANT4 Collaboration), Nucl. Instrum. Methods Phys. Res. Sect. A 506, 250 (2003)
14. S. Jadach, B.F.L. Ward, Z. Was, Phys. Rev. D 63, 113009 (2001)
15. S. Jadach, B.F.L. Ward, Z. Was, Comput. Phys. Commun. 130, 260 (2000)
16. D.J. Lange, Nucl. Instrum. Methods Phys. Res. Sect. A 462, 152 (2001)
17. R.G. Ping, Chin. Phys. C 32, 599 (2008)
18. C. Patrignani et al. (Particle Data Group), Chin. Phys. C 40, 100001 (2016)
19. J.C. Chen, G.S. Huang, X.R. Qi, D.H. Zhang, Y.S. Zhu, Phys. Rev. D 62, 034003 (2000)
20. R.L. Yang, R.G. Ping, H. Chen, Chin. Phys. Lett. 31, 061301 (2014)
21. E. Richter-Was, Phys. Lett. B 303, 163 (1993)
22. M. Ablikim et al. (BESIII Collaboration), Phys. Rev. Lett. 120, 242003 (2018)
23. W.D. Li et al., Proceeding of CHEP06, Mumbai, India, 2006 edited by Sunanda Banerjee (Tata Institute of Fundamental Researc, Mumbai, 2006)
24. M. Ablikim et al. (BESIII Collaboration), Phys. Rev. D 85, 092012 (2012)
25. M. Ablikim et al. (BESIII Collaboration), Phys. Rev. D 83, 112005 (2011)
26. M. Ablikim et al. (BESIII Collaboration), Phys. Rev. D 81, 052005 (2010)
27. M. Ablikim et al. (BESIII Collaboration), Phys. Rev. D 87, 012002 (2013)
28. G. D’Agostini, Nucl. Instrum. Methods Phys. Res. Sect. A 346, 306 (1994)