Sectoral Analysis of Bombay Stock Exchange – Application of Garch Models

Prof. Pushpa M. Savadatti,
Department of Economic Studies & Planning,
Central University of Karnataka, Kalburgi, Karnataka, India.

ABSTRACT

The present work used GARCH (1,1), TGARCH (1,1) and EGARCH (1,1) models for studying the volatility persistence and volatility clustering behaviour and leverage effect for the daily returns of the five sectoral indices of BSE Sensex mainly FMCG, I&T, Auto, Healthcare, Oil & Gas along with BSE Sensex. The results revealed that the news about the volatility in the previous period and lagged conditional variance impact significantly the volatility of the daily return series (of the five sectoral indices and BSE Sensex) in the current period. The leverage effect showed that bad news impact significantly the current volatility than the good news of the same magnitude. Oil & Gas and I&T sectors have shown more volatility persistence behaviour and slower decay of volatility compared to the Auto, FMCG and Healthcare. It is suggested that the government and regulatory bodies of stock markets need to take necessary steps to avoid the high volatility behaviour of the stock indices of Bombay Stock Exchange in order to protect the interest of the foreign and domestic investors.

Keywords: Volatility Clustering, Leverage effect, GARCH, ARCH, BSE Sensex.

INTRODUCTION:

Financial Market plays a very important role in financial health of an economic system as it is the primary source of capital required for varied economic activities. The importance of the financial markets has become all the more significant due to Liberalisation and Globalisation policies encouraging players from all over the world to participate in the financial markets. In view of this financial markets are considered as the economic barometer of a country. Stock markets are influenced by numerous socio-economic and political factors which are interacting with each other continuously and simultaneously all over the world. As a result of this volatility has become a common phenomenon of the financial markets reflecting the happenings around the world. But volatility in stock markets influence the various stake holders like, domestic and foreign investors, companies, governments and policy makers by impacting the asset pricing, returns on assets, portfolio management and risk associated with the volatility. This volatility feature of stock markets has caught the attention of researchers resulting into development of various models to analyse the volatility dynamics of financial markets. The important and popular models developed in the process are Auto Regressive Conditional Heteroscedasticity (ARCH) by Robert Engle (1982) and Generalised Auto Regressive Conditional Heteroskedastic (GARCH) by Bollerslev (1986) which are very widely used in the literature for understanding the volatility dynamics in terms of volatility clustering and persistence behaviour and leverage effect. The present study aims to study the volatility dynamics present in the Bombay Stock Market (BSE). BSE is an Indian Stock Market located at Mumbai, which is known as the financial capital of the country. BSE is considered as an important stock exchange in terms of market capitalisation more than $ 2 trillion in 2017 (Wikipedia). During 2015 S&P Dow Jones and BSE together launched S&P BSE All Cap Index Family in response to the market need (bseimida.com). The BSE All Cap index is comprising of ten sub-indices based on the different sectors. The main purpose of these indices is to facilitate the investors with an instrument to analyse market movements.
across different sectors so as to enable them to make effective investment decisions. The sectoral indices launched are Basic Materials, Auto, Healthcare, FMCG, Information Technology, etc. In the present analysis an effort has been made to study the volatility dynamics of five sub sectors mainly Auto, FMCG, Healthcare, Oil & Gas and I&T along with the BSE main index Sensex using GARCH models. Lot of policy changes have been taken place in these sectors over a period of time. In view of this the current analysis will be of immense help to the investors, regulators and policy makers in understanding the sectoral movements.

LITERATURE REVIEW:

This section discusses the various studies done in the literature on volatility dynamics of stock markets using GARCH models which have paved the way for our analysis in the present study.

Srinivasan & Ibrahim (2010) forecasted Stock Market Volatility of BSE-30 Index with the help of GARCH models based on the daily data and results led to the conclusion that symmetric GARCH (1,1) model performed better in forecasting the conditional variance of the Sensex daily returns compared to EGARCH (1,1) and TGARCH (1,1) models. Khemiri (2011) analysed the dynamics of four international stock indices by applying Smooth Transition GARCH (STGARCH) model. The results showed that in Logistic Smooth Transition GARCH (LSTGARCH) model return shock’s sign on asymmetric conditional volatility is stressed and Exponential Smooth Transition GARCH (ESTGARCH) model highlighted the price shock’s magnitude effect on the subsequent volatility. Ahmed & Suliman (2011) used GARCH models to study the conditional variance volatility in the daily returns of the Khartoum Stock Exchange of Sudan. The study done the analysis based on the both symmetric and asymmetric models of GARCH. Empirical analysis indicated that the conditional variance process followed the explosive process and their existed risk premium for the return series. Further it was found that the asymmetric models fitted better to the data compared to symmetric models. Takaishi (2013) used GARCH model to investigate the volatility of a financial spin model with three stages. For this purpose, author used Bayesian Inference performed by the Markov Chain Monte Carlo (MCMC) Method. The analysis indicated the volatility clustering exhibited by the volatility of the spin financial market, the situation often found in the real financial markets. Savadatti (2018) analysed the pattern of volatility in daily returns of the BSE index employing symmetric and asymmetric GARCH models and results revealed the existence of volatility clustering behaviour and leverage effect. Malik & Hassan (2004) studied how different events influence the volatility pattern of assets in the financial markets and persistence of volatility was impacted by the unanticipated shocks over time using Iterated Cumulated Sum of Squares (ICSS) algorithm for five major sectors and authors opined that their results had important implications for financial market functioning. Many studies have used the family of GARCH models to study the volatility dynamics of different stock indices (Adson, 2013, Singh & Teena, 2018). Based on the literature review keeping in view the objective, the theoretical underpinning of the present analysis has been discussed in the next section.

RESEARCH METHODOLOGY:

Data:
The present study used daily closing prices of the five sectoral indices of the S&P BSE and Sensex for the data analysis. The data pertained to seventeen years three months 12 days (03-01-2000 to 12-04-2018) resulting into 4553 observations excluding public holidays, for six indices each namely S&P BSE FMCG, S&P BSE I & T, S&P BSE Auto, S&P BSE Health care, S&P BSE Oil & Gas and S&P BSE main index Sensex. The required data were collected from BSE website – bseindica.com. The time series analysis is carried out with the help of statistical software e-views 9. For the time series analysis, the daily closing prices of all the six indices are converted into daily return series using the following formula

\[R_t = \log \left(\frac{P_t}{P_{t-1}} \right) \]

(1)

Where \(R_t \) indicates the daily returns of the six indices of BSE at time ‘t’. \(P_t \) and \(P_{t-1} \) are daily closing prices of the selected six indices at time ‘t’ and ‘t-1’ respectively.

Theoretical Framework:
The theoretical framework essential for the analysis is detailed in this section.

Descriptive Statistics:
To study the properties of the series under consideration the descriptive statistics comprising of mean, standard deviation, skewness, kurtosis, Jarque-Berra tests have been used.
Unit Root Test:
Once distributional features of the series are made to be known with the help of descriptive statistics next step is to test for stationarity properties of series. The further analysis of the data requires that the series under consideration have to be stationary. Hence, Augmented Dicky Fuller Test (ADF, 1979) has been used for the purpose of testing the stationarity of the series.

ARCH-LM Test:
Auto Regressive Conditional Heteroscedasticity –Lagrange Multiplier test is employed to exam the presence of heteroscedasticity in residual series of the daily returns of the six indices of BSE respectively. The presence of heteroscedasticity is a pre-requisite for using the GARCH model to capture the volatility behaviour present in the selected indices’ daily returns. For this purpose, the residuals of the return series are obtained by running the mean equation as stated in equation (2) for daily closing prices of selected six indices of BSE.

GARCH Models:
The present paper’s main objective is to analyse the sectoral volatility of S&P BSE Indices. For this purpose, the time series technique called Generalised Conditional Auto Regressive Conditional Heteroscedasticity (GARCH) Technique is used to analyse the data pertaining to daily return series of the five sectoral indices of S&P BSE along with Sensex index. GARCH models are used extensively in literature to study the volatility analysis of financial time series data. GARCH models are categorised into two, symmetric and asymmetric models. In symmetric models the good and bad news are treated symmetrically hence, both the news has same effect on the conditional volatility. The important symmetric GARCH models are GARCH and GARCH in Mean (GARCH-M) model. In asymmetric models the effect of bad news and good news on the conditional variance is considered since, it is perceived that in financial markets negative shocks have greater effect on the volatility than the positive shocks. Hence, leverage effects are observed in stock returns which are captured by asymmetric models. The important asymmetric models are T-GARCH, E-GARCH and P-GARCH models. In the present paper GARCH (1,1), T-GARCH (1,1) and E-GARCH (1,1) models have been used for the data analysis. The details of these models are discussed below.

In GARCH models two equations have to be estimated one is mean equation and other is conditional variance equation. The mean equation used for all GARCH models is specified as below

\[R_t = \delta + \varepsilon_t; \text{Mean Equation} \] \hspace{1cm} (2)

Where \(R_t \) is the daily return series of an index under consideration at time ‘t’, \(\delta \) is the mean returns and \(\varepsilon_t \) is the residual return. The conditional variance equation for the different GARCH models used in the present analysis are explained below.

GARCH (1,1) Model:
The above equation is the conditional variance equation used to study the symmetric behaviour of volatility (irrespective of signs) in daily returns of different sectoral indices of BSE during the study period (Bollerslev,1986). Here \(\sigma_t^2 \) is the dependent variable –conditional variance term and independent variables are, \(\varepsilon_{t-1} \) is the squared error term at ‘t-1’ time (lagged ARCH term) and \(\sigma_{t-1}^2 \) is the lagged conditional variance (GARCH) term. \(\alpha_1 \) is the ARCH parameter and \(\beta \) is the GARCH parameter and \(\alpha_0 \) is the intercept. If \((\alpha_1 + \beta) > 1 \) means volatility is not converging over a period of time, if \((\alpha_1 + \beta) < 1 \) then volatility is a mean reverting process and converges over a period of time and if the sum is close to 1 it implies volatility is persistent and clustering behaviour. Here the coefficients have to satisfy the condition of \(\alpha_0 > 0, \alpha_1 \geq 0, \beta \geq 0 \).

T-GARCH (1,1) Model:
In symmetric GARCH models squared of the residuals are taken as independent variable resulting into ignoring the signs. But, it is observed that the volatility in stock markets are influenced more by bad news (negative shocks) than the good news (positive shocks) hence, to capture the leverage effect observed in financial time series specially in stock returns the asymmetric GARCH models are used very widely. Threshold GARCH (T-GARCH) model is an asymmetric model used in the present study to capture the effect of leverage on the volatility of the daily returns of the different indices of BSE. The mean equation is as stated in (2). The conditional variance equation of the model is detailed below (Glosten, Jagannathan &Reunke, 1993; Zakoian, 1994).

\[\sigma_t^2 = \alpha_0 + \alpha_1 \varepsilon_{t-1}^2 + \beta \sigma_{t-1}^2 + \gamma I_{t-1} \varepsilon_{t-1}^2 \] \hspace{1cm} (4)

Where, \(\alpha_1 > 0, \beta > 0, \gamma > 0 \) and \(\alpha_1 \) & \(\beta \) are ARCH and GARCH coefficients respectively and \(\gamma \) is the
parameter which captures the leverage effect. If the shock is positive (good news) then the effect on volatility is α_1 ($I_{t-1} = 0$) and if the shock is negative (bad news) the effect on volatility is $\alpha_1 + \gamma$ ($I_{t-1} = 1$). If $\gamma > 0$ then it is said that there is leverage effect on the volatility.

E-GARCH (1,1) Model:

The conditional variance equation of the Exponential GARCH (E-GARCH) model is given as (Nelson, 1991)

$$\ln(\sigma^2_t) = \alpha_0 + \alpha_1 \left| \frac{\epsilon_{t-1}}{\sigma_{t-1}} \right| + \beta \ln \sigma^2_{t-1} - \gamma \frac{\epsilon_{t-1}}{\sigma_{t-1}} \quad (5)$$

Here, α_1 is ARCH parameter, β is GARCH parameter and γ is parameter capturing the leverage effect. If γ is less than zero means there is leverage effect in the return series. Negative shocks’ influence is larger than the positive shocks on the conditional variance.

RESULTS AND DISCUSSIONS:

Descriptive Statistical Analysis:

The plots of the closing prices of the selected six indices of BSE are presented Figure 1. The figure shows that lot of volatility is observed in the closing prices of FMCG, I&T, Auto, Health care, Oil & Gas and Sensex revealing that closing price series may not be stationary. All the series portrayed increasing trend in closing prices during the study period with lot of fluctuations. Hence, closing prices of various indices have been converted to return series using the formula presented in equation (1) and then the plots of the return series are presented in Figure 2. It is very clear from the figure that all the return series pertaining to six indices exhibiting lot of sustained high volatility followed by the sustained low volatility indicating volatility clustering in the return series. To understand the distributional properties of the return series of the selected indices various descriptive statistics have been calculated and shown in the Table 1.

| Table 1: Descriptive Statistics for Daily Returns of Sectoral Indices of BSE |
|---------------------------------|--------|--------|--------|--------|--------|--------|
| Mean | FMCG | Health care | I & T | Oil & Gas | Auto | Sensex |
| Median | 0.000485 | 0.000396 | 0.000240 | 0.000503 | 0.000640 | 0.000406 |
| Maximum | 0.083990 | 0.077494 | 0.145016 | 0.174845 | 0.106266 | 0.159900 |
| Minimum | -0.111474 | -0.086753 | -0.222984 | -0.162111 | -0.110126 | -0.118092 |
| Skewness | -0.216088 | -0.537721 | -0.467801 | -0.370240 | -0.343566 | -0.204381 |
| Kurtosis | 7.529377 | 8.067879 | 11.18253 | 11.60952 | 6.668940 | 10.70883 |
| Jarque-Bera | 3925.623 | 5089.531 | 12862.11 | 14159.71 | 2642.096 | 11302.83 |
| Probability | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| Observations | 4551 | 4551 | 4551 | 4551 | 4551 | 4552 |

It may be seen from the Table 1 that the mean return is highest for Auto followed by Oil & Gas, FMCG, Sensex, Health care and I & T respectively. Mean return is lowest for I & T index. The standard deviation which measures the volatility in the return series show that highest volatility is observed in I&T sectoral index followed by Oil & Gas, Auto, Sensex, FMCG and Health care. The volatility clustering can be seen from the Figure 2 which shows the volatility persistence behaviour of the return series for all the six indices during the study period. Skewness calculations for all the six indices are having negative sign and Kurtosis are much above 3 indicating that the return series for all the six indices are not normally distributed but

Figure 1: Daily Closing Prices of S&P BSE Sectoral Indices
Figure 2: Daily Returns of S&P BSE Sectoral Indices

leptokurtic with left tail. Jarque-Bera Statistics calculated for all the indices are also indicative of the decision that series are not normally distributed as the probability is low resulting into rejection of null hypothesis of normality assumption. The Quantile-Quantile graph presented in Figure 3 validates the inference drawn on the results of descriptive statistics as the blue lines shown in the Figure are following S shape rather than the 45-degree straight line confirming that return series are not normal.
Figure 3: Quantile – Quantile Plot of Daily Returns (S&P BSE Sectoral Indices)
In order to apply GARCH model for studying the volatility pattern present in daily returns of the six selected indices of BSE it is necessary to ensure that the series under consideration are stationary and for which ADF test has been used and the results of the same are shown in the Table 2.

Table 2: ADF Unit Root Test Results (Daily Returns of BSE Sectoral Indices)

Sector	Augmented Dickey-Fuller test statistic	t-Statistic	Prob.*
FMCG		-64.66059	0.0001
Test critical values:		1% level	-3.431604
		5% level	-2.861979
		10% level	-2.567047
I & T		-62.14793	0.0001
Test critical values:		1% level	-3.431604
		5% level	-2.861979
		10% level	-2.567047
Auto		-58.89785	0.0001
Test critical values:		1% level	-3.431604
		5% level	-2.861979
		10% level	-2.567047
Health Care		-59.84649	0.0001
Test critical values:		1% level	-3.431604
		5% level	-2.861979
		10% level	-2.567047
Oil & Gas		-47.53589	0.0001
Test critical values:		1% level	-3.431604
		5% level	-2.861979
		10% level	-2.567047
BSE Sensex		-62.77124	0.0001
Test critical values:		1% level	-3.431604
		5% level	-2.861979
		10% level	-2.567047

MacKinnon (1996) one-sided p-values.
It may be seen from the Table 2 that all the six indices’ return series are stationary as the ADF test statistics calculated for all the indices are higher than the critical values at 1% significance level. Hence, it may be concluded that the daily return series of the selected indices of BSE are stationary. Next it is necessary to check for the existence of ARCH effect if any in the residuals of the daily return series of the selected indices and the residuals are derived by running the mean equation for return series. ARCH –LM test is used to test for the presence of heteroscedasticity in residuals of return series and the results of the same are contained in Table 3.

Table 3: Heteroscedasticity Test – ARCH (Residuals of daily returns)

Sectoral Index	F-statistic	Obs*R-squared	Prob. F(5,4540)	Prob. Chi-Square(5)
FMCG	109.9881	491.1708	0.0000	0.0000
I & T	157.7218	672.7866	0.0000	0.0000
Auto	137.2372	596.8791	0.0000	0.0000
Health Care	145.2601	626.9604	0.0000	0.0000
Oil & Gas	92.82811	421.6474	0.0000	0.0000
BSE Sensex	106.8870	478.7918	0.0000	0.0000

It is revealed from the results presented in Table 3 that Chi-Square probability is quite low i.e., lower than 0.05 indicating the rejection of null hypothesis in all the six selected indices hence, to be concluded that there exist ARCH effects in the residuals of the daily return series of all the indices. This paves the way for using the GARCH models for the analysis of the pattern of volatility present in the daily return series of the six selected indices of BSE.

GARCH (1,1) Model:
The results of the GARCH (1,1) model of all the indices are presented in Table 4. All the estimated coefficients of mean and conditional variance equations are statistically significant. Especially ARCH and GARCH coefficients are significant and having expected sign in case of all the six indices of BSE. This indicates that news about previous period’s volatility and previous periods’ volatility significantly impacting the volatility pattern in the return series during the current period in all the selected indices. The sum of ARCH and GARCH coefficients is highest for the BSE Sensex (0.990084) followed by Oil & Gas (0.983043), I&T (0.983043), Auto (0.965496), FMCG (0.957359) and Health care (0.956821) respectively. The values of $\alpha_1 + \beta$ (ARCH+GARCH) are less than one indicating mean reverting process but since the sums are close to 1 indicating a slow convergence of the volatility. The model adequacy requires that the residuals are to be tested for the presence of ARCH effect which has been done with the help of ARCH-LM test and the results of the same for the Sensex and five sectoral indices are presented in the Table 4. The probability value for Sensex and all other five indices are higher than 0.05 causing the acceptance of null hypothesis of no ARCH effect hence, concluded that estimated GARCH models are adequately explaining the volatility behaviour of the five sectoral indices and Sensex.

Sectoral Index	Equation/Test	Variable	Coefficient	Std. Error	z-Statistic	Prob.#	Inference
FMCG	Mean Variance	δ	0.000707	0.000165	4.292229	0.0000	
		α_0	7.71E-06	7.43E-07	10.37977	0.0000	
		α_1 (ARCH)	0.116978	0.006609	17.69856	0.0000	
		β (GARCH)	0.840381	0.008550	98.29533	0.0000	
	ARCH-LM Test	F-statistic	1.338144	Prob. F(5,4540)	0.2449	No ARCH	
		Obs*R-squared	6.689702	Prob. Chi-Square(5)	0.2448		
T-GARCH (1,1) Model:
Threshold GARCH model is estimated in order to capture the leverage effect in selected five sectoral indices and BSE Sensex. T-GARCH is an asymmetric model. The estimated model results along with ARCH–LM test results are reported in Table 5.

Table 5: T-GARCH (1,1) Model Results

Sectoral Index	Equation/Test	Variable	Coefficient	Std. Error	z-Statistic	Prob.#	Inference
I & T	Mean Variance	δ	0.000987	0.000224	4.414166	0.0000	
		a_0	9.36E-06	6.38E-07	14.67254	0.0000	
		a_1 (ARCH)	0.122902	0.005430	22.63513	0.0000	
		β (GARCH)	0.860141	0.006106	140.8702	0.0000	
	ARCH-LM Test	F-statistic	0.711203	Prob. F(5,4540)	0.6150	No ARCH	
		Obs*R-squared	3.557929	Prob. Chi-Square(5)	0.6146		
Auto	Mean Variance	δ	0.001064	0.000178	5.959423	0.0000	
		a_0	8.17E-06	2.10E-06	3.891595	0.0001	
		a_1 (ARCH)	0.115377	0.019472	5.925275	0.0000	
		β (GARCH)	0.850119	0.025175	33.76814	0.0000	
	ARCH-LM Test	F-statistic	1.568323	Prob. F(5,4540)	0.1654	No ARCH	
		Obs*R-squared	7.838441	Prob. Chi-Square(5)	0.1654		
Health Care	Mean Variance	δ	0.000712	0.000147	4.830101	0.0000	
		a_0	7.05E-06	7.63E-07	9.240032	0.0000	
		a_1 (ARCH)	0.124662	0.007980	15.62253	0.0000	
		β (GARCH)	0.832159	0.010222	81.40625	0.0000	
	ARCH-LM Test	F-statistic	1.470635	Prob. F(7,4536)	0.1728	No ARCH	
		Obs*R-squared	10.28925	Prob. Chi-Square(7)	0.1728		
Oil & Gas	Mean Variance	δ	0.000632	0.000207	3.053376	0.0023	
		a_0	4.32E-06	5.24E-07	8.244463	0.0000	
		a_1 (ARCH)	0.087889	0.004515	19.46421	0.0000	
		β (GARCH)	0.900503	0.004443	202.6705	0.0000	
	ARCH-LM Test	F-statistic	1.448722	Prob. F(5,4540)	0.2034	No ARCH	
		Obs*R-squared	7.241629	Prob. Chi-Square(5)	0.2033		
BSE Sensex	Mean Variance	δ	0.000831	0.000158	5.244973	0.0000	
		a_0	2.49E-06	5.93E-07	4.201077	0.0000	
		a_1 (ARCH)	0.101278	0.013655	7.417158	0.0000	
		β (GARCH)	0.888847	0.012901	68.89965	0.0000	
	ARCH-LM Test	F-statistic	1.646870	Prob. F(5,4541)	0.1440	No ARCH	
		Obs*R-squared	8.230303	Prob. Chi-Square(5)	0.1440		

: all ARCH & GARCH parameters are statistically significant at 1% level
It is noticeable from the Table 5 that all the ARCH coefficients (α_1) are having positive sign and statistically significant implying that the news about previous period volatility is impacting significantly the volatility in the current period. The GARCH coefficients (β) are also having positive sign and statistically significant in all the five sectoral indices and in case of Sensex suggesting that the previous period’s volatility impacting current period’s conditional variance significantly. The sums of β and α_1 are less than 1 in all the five sectoral indices and for Sensex specifying that the volatility decays over a period of time. The sum of ARCH and GARCH coefficient is highest for daily returns of Oil & Gas (0.976758) followed by I & T (0.940278), Sensex (0.933045), Health care (0.924486), Auto (0.919741), FMCG (0.918782). Volatility persistence behaviour more pronounced in case of Oil & Gas and I&T compared to other sectors of BSE. The leverage effects are shown by the coefficient γ which is positive and statistically significant at 1% level in case of all the five sectoral indices.
and for Sensex, suggesting that the bad news have greater influence on volatility than good news. Among sectoral indices the value of the coefficient of leverage effect is highest for I&T followed by Auto sector, FMCG, Health care and Oil & Gas sector. The value for BSE Sensex is 0.101881. The model diagnostic check done with the help of ARCH-LM test indicated absence of Heteroscedasticity in the residuals of all the six indices denoting that the fitted models are adequate technically.

E-GARCH Model:
The results of Exponential GARCH models are shown in the Table 6. In this case also all the ARCH (α₁) coefficients are having expected positive sign and statistically significant for all the selected six indices specifying that news about previous period’s volatility influences the current period conditional variance significantly and positively in case of all the indices. Similarly all the GARCH (β) coefficients are also positive and statistically significant for all the five sectoral indices and BSE Sensex suggesting the volatility clustering and that the previous period’s conditional variance influences the current period’s conditional variance positively and significantly. The leverage effects given by γ are all negative and statistically significant specifying that negative shocks have greater impact on the current period’s conditional variance than the positive shocks in case of all the six indices. The ARCH- LM tests conducted for testing the presence of heteroscedasticity show that the probability is higher than 0.05 revealing the absence of ARCH effect in the residuals of the estimated E- GARCH models hence, it may be inferred that the estimated models fitted well to the data.

Table 6: E-GARCH (1,1) Model Results

Sectoral Index	Equation/Test	Variable	Coefficient	Std. Error	z-Statistic	Prob.#	Inference
FMCG Mean Variance	δ	0.000490	0.000162	3.029606	0.0024		
	α₀	-0.525634	0.039056	-13.45836	0.0000		
	α₁ (ARCH)	0.206582	0.011214	18.42108	0.0000		
	γ (leverage)	-0.052153	0.005968	-8.738268	0.0000		
	β (GARCH)	0.957908	0.003999	239.5138	0.0000		
ARCH-LM Test	F-statistic	1.627503	Prob. F(13,4524)	0.0703	No ARCH		
	Obs*R-squared	21.12422	Prob. Chi-Square(13)	0.0705			
I & T Mean Variance	δ	0.000781	0.000210	3.727361	0.0002		
	α₀	-0.258534	0.014901	-17.35069	0.0000		
	α₁ (ARCH)	0.161605	0.006672	24.21964	0.0000		
	γ (leverage)	-0.047757	0.004960	-9.592461	0.0000		
	β (GARCH)	0.982811	0.001483	662.5370	0.0000		
ARCH-LM Test	F-statistic	1.238431	Prob. F(5,4540)	0.2882	No ARCH		
	Obs*R-squared	6.191892	Prob. Chi-Square(5)	0.2880			
Auto Mean Variance	δ	0.000773	0.000185	4.174128	0.0000		
	α₀	-0.537051	0.098520	-5.451164	0.0000		
	α₁ (ARCH)	0.219155	0.029275	7.486073	0.0000		
	γ (leverage)	-0.061703	0.016980	-3.633797	0.0003		
	β (GARCH)	0.957061	0.009739	98.26949	0.0000		
ARCH-LM Test	F-statistic	1.880365	Prob. F(6,4538)	0.0803	No ARCH		
	Obs*R-squared	11.27157	Prob. Chi-Square(6)	0.0803			
Health care Mean Variance	δ	0.000601	0.000147	4.099848	0.0000		
	α₀	-0.536865	0.044628	-12.02984	0.0000		
	α₁ (ARCH)	0.221113	0.012412	17.81461	0.0000		
	γ (leverage)	-0.029762	0.005596	-5.317924	0.0000		
	β (GARCH)	0.958549	0.004493	213.3379	0.0000		
ARCH-LM Test	F-statistic	1.461814	Prob. F(20,4510)	0.0839	No ARCH		
	Obs*R-squared	29.18323	Prob. Chi-Square(20)	0.0842			
Ahmed, A.E.M., & Suliman, S.Z. (2011). Modelling Stock Market Volatility using GARCH Models Evidence from Sudan. *International Journal of Business and Social Science*, 2(23), 114-128. DOI: www.ijbssnet.com/journals

Adesina, K.S. (2013). Modelling Stock Market Return Volatility: GARCH Evidence from Nigerian Stock Exchange. *International Journal of Financial Management*, 3(3).DOI: www.publishingindia.com/GetBrochure.aspx.

CONCLUSIONS AND RECOMMENDATIONS:

In the present paper volatility persistence and volatility clustering behaviour and leverage effect of the daily returns of the five sectoral indices of BSE Sensex mainly FMCG, I&T, Auto, Health care, Oil & Gas along with BSE Sensex have been analysed with the help of GARCH analysis. Both symmetric GARACH (1,1) and asymmetric GARCH models like T-GARCH (1,1) and E-GARCH (1,1) have been used for the analysis. The results indicated that all ARCH and GARCH estimated coefficients have expected sign and statistically significant in all the asymmetric and symmetric GARCH models thus suggesting that the news about the volatility in the previous period and lagged conditional variance impact significantly the volatility of the daily return series in the current period (of the five sectoral indices and BSE Sensex). The leverage effect is captured by the coefficient γ in both asymmetric models T-GARCH and E-GARCH have expected sign and significant showing that bad news impact significantly the current volatility than the good news of the same magnitude. Oil & Gas and I &T sectors have shown more volatility persistence behaviour and slower decay of volatility compared to the Auto, FMCG and Health care. Hence, risk avert investors may invest in Auto, FMCG and Health care sectors compared to other two sectors. And investors who are interested in more returns (risk lovers) may invest in Oil & Gas and I&T as more risk (volatility) normally may result into more returns. Investors are also required to be vigilant about the positive and negative shocks that entre the BSE stock market as the results showed that these shocks impact the selected sectoral indices significantly. This watchfulness might help the investors to take appropriate investment decisions at the right time to avoid the losses. The government and regulatory bodies of stock markets also need to take necessary steps to avoid the high volatility behaviour of the stock indices in Bombay Stock Exchange (as evidenced by the results) in order to protect the interest of the foreign and domestic investors.

LIMITATIONS OF THE STUDY:

The present study is restricted to the analysis of volatility behaviour and leverage effect among the five sectors of the BSE along with the Sensex. Further research may be required to understand the causes of volatility with the help of techniques like Cointegration and Error Correction Models. This kind of analysis may give a better understanding of the Stock markets’ functioning and enable the investors and regulatory authorities in understanding the movements of different stock indices of BSE.

REFERENCES:

Adesina, K.S. (2013). Modelling Stock Market Return Volatility: GARCH Evidence from Nigerian Stock Exchange. *International Journal of Financial Management*, 3(3).DOI: www.publishingindia.com/GetBrochure.aspx.

Ahmed, A.E.M., & Suliman, S.Z. (2011). Modelling Stock Market Volatility using GARCH Models Evidence from Sudan. *International Journal of Business and Social Science*, 2(23), 114-128. DOI: www.ijbssnet.com/journals

Variable	Coefficient	Std. Error	z-Statistic	Prob.
δ	0.000607	0.000200	3.036930	0.0024
α0	-0.329028	0.023300	-14.12162	0.0000
αγ (ARCH)	0.200154	0.008589	23.30370	0.0000
γ (leverage)	-0.021418	0.004528	-4.730652	0.0000
β (GARCH)	0.978744	0.002477	395.1896	0.0000

ARCH-LM Test

F-statistic	Prob. F(8,4534)	Obs*R-squared	Prob. Chi-Square(5)
1.265433	0.2568	10.12096	0.2566

BSE Sensex

Variable	Coefficient	Std. Error	z-Statistic	Prob.
δ	0.000472	0.00166	2.845528	0.0044
α0	-0.363305	0.048782	-7.447460	0.0000
αγ (ARCH)	0.202047	0.026307	7.680253	0.0000
γ (leverage)	-0.076446	0.014518	-5.265689	0.0000
β (GARCH)	0.976358	0.004681	208.5794	0.0000

ARCH-LM Test

F-statistic	Obs*R-squared	Prob. Chi-Square(5)
1.240805	6.203746	0.2869

: All the ARCH & GARCH terms, constants and leverage effects are statistically significant
Bollerslev, T. (1986). Generalised Conditional Auto Regressive Conditional Heteroscedasticity, 31(3), *Journal of Econometrics*, 307-327.

Dickey, D.A., Fuller, W.A. (1979). Distribution of the Estimators for Autoregressive Time Series with a Unit Root. *Journal of the American Statistical Association*, 74(366), 427-431. DOI: 10.2307/2286348.

Engel, R.F. (1982). Autoregressive Conditional Heteroscedasticity with Estimates of Variance of UK Inflation. *Econometrica*, 50(4), 987-1008.

Glosten, L.R., Jagannathan, R., & Runkle, D.E. (1993). On the Relation between the Expected Valued and the Volatility of the Nominal Excess Return on Stocks. *Journal of Finance*, 48(5), 1779-1801.

Khemiri, R. (2011). The Smooth Transition GARCH Model: Application to International Stock Indexes. *Applied Financial Economics*, 21(8), 555-562. DOI: http://doi.org/10.1080/09603107.2010.533998

Mallik, F. & Hassan, S.A. (2004). Modelling Volatility in Sector Index Returns with GARCH Models using an Integrated Algorithm. *Journal of Economics and Finance*, 28(2), 211-225. DOI: https://link.springer.com/content/pdf/10.1007%2FBF02761612.pdf

Nelson, D.B. (1991). Conditional Heteroscedasticity in Asset Returns. A New Approach. *Econometrica*, 59(2), 347-370.

Savadatti, P.M. (2018). Analysis of Stock Market Volatility using Symmetric and Asymmetric GARCH Models. *International Journal of Research in Economics and Social Sciences*, 8(3), 55-66.

Singh, S. & Teena (2018). Analysis of Volatility Dynamics in Selected Sectoral Indices of National Stock Exchange. *International Journal of Management & Commerce*, 5(2), 238-260.

Srinivasan, P. & Ibrahim, P. (2010). Forecasting Stock Market Volatility of BSE-30 Index using GARCH Models. *Asia Pacific Business Review*, VI(3), 47-60. DOI: http://journals.sagepub.com/doi/pdf/10.1177/097324701000600304

Takaishi, T. (2013). Analysis of Spin Financial Markets by GARCH Model. *Journal of Physics*, Conf Ser. 454 012041, DOI: 10.1088/172-6596/454/1/012041

Zakoian, J.M. (1994). Threshold Heteroskedastic Models. *Journal of Dynamics and Control*, 18, 931-944.
