The concept of quantization consists in replacing commutative quantities by noncommutative ones. In mathematical language an algebra of continuous functions on a locally compact topological space is replaced with a noncommutative C^*-algebra. Some classical topological notions have noncommutative generalizations. This article is concerned with a generalization of coverings.

Contents

1 Motivation. Preliminaries
 1.1 Prototype. Inverse limits of coverings in topology
 1.1.1 Topological construction
 1.1.2 Algebraic construction in brief
 1.2 Locally compact spaces
 1.3 Hilbert modules
 1.4 C^*-algebras and von Neumann algebras

2 Noncommutative finite-fold coverings
 2.1 Basic construction
 2.2 Induced representation

3 Noncommutative infinite coverings
 3.1 Basic construction
 3.2 Induced representation
1 Motivation. Preliminaries

Gelfand-Naïmark theorem \cite{2} states the correspondence between locally compact Hausdorff topological spaces and commutative C^*-algebras.

Theorem 1.1. \cite{2} (Gelfand-Naïmark). Let A be a commutative C^*-algebra and let \mathcal{X} be the spectrum of A. There is the natural \ast-isomorphism $\gamma : A \rightarrow C_0(\mathcal{X})$.

So any (noncommutative) C^*-algebra may be regarded as a generalized (noncommutative) locally compact Hausdorff topological space. Following theorem yields a pure algebraic description of finite-fold coverings of compact spaces.

Theorem 1.2. \cite{12} Suppose \mathcal{X} and \mathcal{Y} are compact Hausdorff connected spaces and $p : \mathcal{Y} \rightarrow \mathcal{X}$ is a continuous surjection. If $C(\mathcal{Y})$ is a projective finitely generated Hilbert module over $C(\mathcal{X})$ with respect to the action

$$(f \xi)(y) = f(y)\xi(p(y)), \quad f \in C(\mathcal{Y}), \quad \xi \in C(\mathcal{X}),$$

then p is a finite-fold covering.

This article contains pure algebraic generalizations of following topological objects:

- Coverings of noncompact spaces,
- Infinite coverings.
This article assumes elementary knowledge of following subjects:

1. Set theory [9],
2. Category theory [15],
3. Algebraic topology [15],
4. C*-algebras, C*-Hilbert modules [3][13].

The words "set", "family" and "collection" are synonyms.
Following table contains special symbols.

Symbol	Meaning		
\hat{A}	Spectrum of a C^*- algebra A with the hull-kernel topology (or Jacobson topology)		
A_+	Cone of positive elements of C^*- algebra, i.e. $A_+ = \{ a \in A \mid a \geq 0 \}$		
A^G	Algebra of G - invariants, i.e. $A^G = \{ a \in A \mid ga = a, \forall g \in G \}$		
$\text{Aut}(A)$	Group of * - automorphisms of C^*- algebra A		
A''	Enveloping von Neumann algebra of A		
$B(\mathcal{H})$	Algebra of bounded operators on a Hilbert space \mathcal{H}		
C (resp. \mathbb{R})	Field of complex (resp. real) numbers		
$C(\mathcal{X})$	C^*- algebra of continuous complex valued functions on a compact space \mathcal{X}		
$C_0(\mathcal{X})$	C^*- algebra of continuous complex valued functions on a locally compact topological space \mathcal{X} equal to 0 at infinity		
$C_c(\mathcal{X})$	Algebra of continuous complex valued functions on a topological space \mathcal{X} with compact support		
$C_b(\mathcal{X})$	C^*- algebra of bounded continuous complex valued functions on a locally compact topological space \mathcal{X}		
$G \left(\tilde{\mathcal{X}} \mid \mathcal{X} \right)$	Group of covering transformations of covering $\tilde{\mathcal{X}} \to \mathcal{X}$ [15]		
\mathcal{H}	Hilbert space		
$\mathcal{K} = \mathcal{K}(\mathcal{H})$	C^*- algebra of compact operators on the separable Hilbert space \mathcal{H}		
$\mathcal{K}(A)$	Pedersen ideal of C^*-algebra A		
$\lim \sup\limits_{\rightarrow}$	Direct limit		
$\lim \inf\limits_{\leftarrow}$	Inverse limit		
$M(A)$	A multiplier algebra of C^*-algebra A		
$M_n(A)$	The $n \times n$ matrix algebra over C^*-algebra A		
\mathbb{N}	A set of positive integer numbers		
\mathbb{N}^0	A set of nonnegative integer numbers		
$\mathcal{U}(A) \subset A$	Group of unitary operators of algebra A		
\mathbb{Z}	Ring of integers		
\mathbb{Z}_n	Ring of integers modulo n		
$k \in \mathbb{Z}_n$	An element in \mathbb{Z}_n represented by $k \in \mathbb{Z}$		
$X \setminus A$	Difference of sets $X \setminus A = \{ x \in X \mid x \notin A \}$		
$	X	$	Cardinal number of a finite set X
$[x]$	The range projection of element x of a von Neumann algebra.		
$f	_{A'}$	Restriction of a map $f : A \to B$ to $A' \subset A$, i.e. $f	_{A'} : A' \to B$
1.1 Prototype. Inverse limits of coverings in topology

1.1.1 Topological construction

This subsection is concerned with a topological construction of the inverse limit in the category of coverings.

Definition 1.3. [15] Let \(\tilde{\pi} : \tilde{X} \to X \) be a continuous map. An open subset \(U \subset X \) is said to be evenly covered by \(\tilde{\pi} \) if \(\tilde{\pi}^{-1}(U) \) is the disconnected union of open subsets of \(\tilde{X} \) each of which is mapped homeomorphically onto \(U \) by \(\tilde{\pi} \). A continuous map \(\tilde{\pi} : \tilde{X} \to X \) is called a covering projection if each point \(x \in X \) has an open neighborhood evenly covered by \(\tilde{\pi} \). \(\tilde{X} \) is called the covering space and \(X \) the base space of the covering.

Definition 1.4. [15] A fibration \(p : \tilde{X} \to X \) with unique path lifting is said to be regular if, given any closed path \(\omega \) in \(X \), either every lifting of \(\omega \) is closed or none is closed.

Definition 1.5. [15] A topological space \(X \) is said to be locally path-connected if the path components of open sets are open.

Denote by \(\pi_1 \) the functor of fundamental group [15].

Theorem 1.6. [15] Let \(p : \tilde{X} \to X \) be a fibration with unique path lifting and assume that a nonempty \(\tilde{X} \) is a locally path-connected space. Then \(p \) is regular if and only if for some \(\tilde{x}_0 \in \tilde{X} \), \(\pi_1 (p) \pi_1 \left(\tilde{X}, \tilde{x}_0 \right) \) is a normal subgroup of \(\pi_1 (X, p(\tilde{x}_0)) \).

Definition 1.7. [15] Let \(p : \tilde{X} \to X \) be a covering projection. A self-equivalence is a homeomorphism \(f : \tilde{X} \to \tilde{X} \) such that \(p \circ f = p \). This group of such homeomorphisms is said to be the group of covering transformations of \(p \) or the covering group. Denote by \(G \left(\tilde{X} \mid X \right) \) this group.

Proposition 1.8. [15] If \(p : \tilde{X} \to X \) is a regular covering projection and \(\tilde{X} \) is connected and locally path connected, then \(X \) is homeomorphic to space of orbits of \(G \left(\tilde{X} \mid X \right) \), i.e. \(X \approx \tilde{X} / G \left(\tilde{X} \mid X \right) \). So \(p \) is a principal bundle.

Corollary 1.9. [15] Let \(p : \tilde{X} \to X \) be a fibration with a unique path lifting. If \(\tilde{X} \) is connected and locally path-connected and \(\tilde{x}_0 \in \tilde{X} \) then \(p \) is regular if and only if \(G \left(\tilde{X} \mid X \right) \) transitively acts on each fiber of \(p \), in which case

\[
\psi : G \left(\tilde{X} \mid X \right) \approx \pi_1 (X, p(\tilde{x}_0)) / \pi_1 (p) \pi_1 \left(\tilde{X}, \tilde{x}_0 \right).
\]

Remark 1.10. Above results are copied from [15]. Below the covering projection word is replaced with covering.

Definition 1.11. [10] A compactification of a space \(X \) is a compact Hausdorff space \(Y \) containing \(X \) as a subspace and the closure \(\overline{X} \) of \(X \) is \(Y \), i.e \(\overline{X} = Y \).
The algebraic construction requires following definition

Definition 1.12. A covering \(\pi : \tilde{X} \to X \) is said to be a **covering with compactification** if there are compactifications \(X \hookrightarrow Y \) and \(\tilde{X} \hookrightarrow \tilde{Y} \) such that:

- There is a covering \(\tilde{\pi} : \tilde{Y} \to Y \),
- The covering \(\pi \) is the restriction of \(\tilde{\pi} \), i.e. \(\pi = \tilde{\pi}|_\tilde{X} \).

Example 1.13. Let \(g : S^1 \to S^1 \) be an \(n \)-fold covering of a circle. Let \(X = \tilde{X} = S^1 \times [0,1) \). The map

\[
\pi : \tilde{X} \to X, \\
\pi = g \times \text{Id}_{[0,1)}
\]

is an \(n \)-fold covering. If \(Y = \tilde{Y} = S^1 \times [0,1] \) then a compactification \([0,1) \hookrightarrow [0,1] \) induces compactifications \(X \hookrightarrow Y, \tilde{X} \hookrightarrow \tilde{Y} \). The map

\[
\pi : \tilde{Y} \to Y, \\
\pi = g \times \text{Id}_{[0,1]}
\]

is a covering such that \(\tilde{\pi}|_\tilde{X} = \pi \). So if \(n > 1 \) then \(\pi \) is a nontrivial covering with compactification.

Example 1.14. Let \(\mathcal{X} = \mathbb{C} \setminus \{0\} \) be a complex plane with punctured 0, which is parametrized by the complex variable \(z \). Let \(X \hookrightarrow Y \) be any compactification. If both \(\{z'_n \in \mathcal{X} \}_{n \in \mathbb{N}}, \{z''_n \in \mathcal{X} \}_{n \in \mathbb{N}} \) are Cauchy sequences such that \(\lim_{n \to \infty} |z'_n| = \lim_{n \to \infty} |z''_n| = 0 \) then form

\[
x_0 = \lim_{n \to \infty} z'_n = \lim_{n \to \infty} z''_n \in Y.
\]

If \(\tilde{X} = \mathcal{X} \) then for any \(n \in \mathbb{N} \) there is a finite-fold covering

\[
\pi : \tilde{X} \to \mathcal{X}, \\
z \mapsto z^n.
\]

If both \(\mathcal{X} \hookrightarrow Y, \tilde{X} \hookrightarrow \tilde{Y} \) are compactifications, and \(\tilde{\pi} : \tilde{Y} \to Y \) is a covering such that \(\tilde{\pi}|_\tilde{X} = \pi \) then from (1.1) it turns out \(\tilde{\pi}^{-1}(x_0) = \{\tilde{x}_0\} \) where \(\tilde{x}_0 \) is the unique point such that following conditions hold:

\[
\tilde{x}_0 = \lim_{n \to \infty} \tilde{z}_n \in \tilde{Y}, \\
\lim_{n \to \infty} |\tilde{z}_n| = 0.
\]

It turns out \(|\tilde{\pi}^{-1}(x_0)| = 1 \). However \(\tilde{\pi} \) is an \(n \)-fold covering and if \(n > 1 \) then \(|\tilde{\pi}^{-1}(x_0)| = n > 1 \). It contradicts with \(|\tilde{\pi}^{-1}(x_0)| = 1 \), and from the contradiction it turns out that for any \(n > 1 \) the map \(\pi \) is not a covering with compactification.
Definition 1.15. The sequence of regular finite-fold coverings

\[\mathcal{X} = \mathcal{X}_0 \leftarrow \cdots \leftarrow \mathcal{X}_n \leftarrow \cdots \]

is said to be a (topological) finite covering sequence if following conditions hold:

- The space \(\mathcal{X}_n \) is a second-countable \([10]\) locally compact connected Hausdorff space for any \(n \in \mathbb{N}_0 \),
- If \(k < l < m \) are any nonnegative integer numbers then there is the natural exact sequence
 \[\{e\} \to G(\mathcal{X}_m | \mathcal{X}_l) \to G(\mathcal{X}_m | \mathcal{X}_k) \to G(\mathcal{X}_l | \mathcal{X}_k) \to \{e\}. \]

For any finite covering sequence we will use a following notation

\[\mathcal{S} = \{\mathcal{X} = \mathcal{X}_0 \leftarrow \cdots \leftarrow \mathcal{X}_n \leftarrow \cdots\} = \{\mathcal{X}_0 \leftarrow \cdots \leftarrow \mathcal{X}_n \leftarrow \cdots\}, \quad \mathcal{S} \in \mathcal{F}_{\text{inTop}}. \]

Example 1.16. Let \(\mathcal{S} = \{\mathcal{X} = \mathcal{X}_0 \leftarrow \cdots \leftarrow \mathcal{X}_n \leftarrow \cdots\} \) be a sequence of locally compact connected Hausdorff spaces and finite-fold regular coverings such that \(\mathcal{X}_n \) is locally path-connected for any \(n \in \mathbb{N} \). It follows from Lemma \([16]\) that if \(p > q \) and \(f_{pq} : \mathcal{X}_p \to \mathcal{X}_q \) then \(\pi_1(f_{pq}) \pi_1(\mathcal{X}_p, x_0) \) is a normal subgroup of \(\pi_1(\mathcal{X}_q, f_{pq}(x_0)) \). Otherwise from the Corollary \([15]\) it turns out

\[G(\mathcal{X}_p | \mathcal{X}_q) \cong \pi_1(\mathcal{X}_q, f_{pq}(x_0)) / \pi_1(f_{pq}) \pi_1(\mathcal{X}_p, x_0). \]

If \(k < l < m \) then a following sequence

\[\{e\} \to \pi_1(\mathcal{X}_l, f_{ml}(x_0)) / \pi_1(f_{ml}) \pi_1(\mathcal{X}_m, x_0) \to \pi_1(\mathcal{X}_k, f_{mk}(x_0)) / \pi_1(f_{mk}) \pi_1(\mathcal{X}_m, x_0) \to \pi_1(\mathcal{X}_k, f_{mk}(x_0)) / \pi_1(f_{lk}) \pi_1(\mathcal{X}_l, f_{ml}(x_0)) \to \{e\} \]

is exact. Above sequence is equivalent to the following sequence

\[\{e\} \to G(\mathcal{X}_m | \mathcal{X}_l) \to G(\mathcal{X}_m | \mathcal{X}_k) \to G(\mathcal{X}_l | \mathcal{X}_k) \to \{e\} \]

which is also exact. Thus \(\mathcal{S} \in \mathcal{F}_{\text{inTop}}. \)

Definition 1.17. Let \(\{\mathcal{X} = \mathcal{X}_0 \leftarrow \cdots \leftarrow \mathcal{X}_n \leftarrow \cdots\} \in \mathcal{F}_{\text{inTop}} \), and let \(\hat{\mathcal{X}} = \varprojlim \mathcal{X}_n \) be the inverse limit in the category of topological spaces and continuous maps (cf. \([13]\)). If \(\hat{\pi}_0 : \hat{\mathcal{X}} \to \mathcal{X}_0 \) is the natural continuous map then a homeomorphism \(g \) of the space \(\hat{\mathcal{X}} \) is said to be a covering transformation if a following condition holds

\[\hat{\pi}_0 = \hat{\pi}_0 \circ g. \]

The group \(\hat{\mathcal{G}} \) of such homeomorphisms is said to be the group of covering transformations of \(\mathcal{S} \). Denote by \(G(\hat{\mathcal{X}} | \mathcal{X}) \quad \text{def} \quad \hat{\mathcal{G}}. \)
Lemma 1.18. Let \(\{ \mathcal{X} = X_0 \leftarrow ... \leftarrow X_n \leftarrow ... \} \in \mathfrak{InTop} \), and let \(\hat{\mathcal{X}} = \lim^{-} \mathcal{X}_n \) be the inverse limit in the category of topological spaces and continuous maps. There is the natural group isomorphism \(G(\hat{\mathcal{X}} \mid \mathcal{X}) \cong \lim G(\mathcal{X}_n \mid \mathcal{X}) \). For any \(n \in \mathbb{N} \) there is the natural surjective homomorphism \(h_n : G(\hat{\mathcal{X}} \mid \mathcal{X}) \to G(\mathcal{X}_n \mid \mathcal{X}) \) and \(\bigcap_{n \in \mathbb{N}} \ker h_n \) is a trivial group.

Proof. For any \(n \in \mathbb{N} \) there is the natural continuous map \(\hat{\pi}_n : \hat{\mathcal{X}} \to X_n \). Let \(x_0 \in X_0 \) and \(\hat{x}_0 \in \hat{\mathcal{X}} \) be such that \(\hat{\pi}_0(\hat{x}_0) = x_0 \). Let \(\hat{x}' \in \hat{\mathcal{X}} \) be such that \(\hat{\pi}_0(\hat{x}') = x_0 \). If \(x'_n = \hat{\pi}_n(\hat{x}') \) and \(x_n = \hat{\pi}_n(\hat{x}_0) \) then \(\pi_n(x_n) = \pi_n(x'_n) \), where \(\pi_n : \mathcal{X}_n \to \mathcal{X} \) is the natural covering. Since \(\pi_n \) is regular for any \(n \in \mathbb{N} \) there is the unique \(g_n \in G(\mathcal{X}_n \mid \mathcal{X}) \) such that \(x'_n = g_n x_n \). In result there is a sequence \(\{ g_n \in G(\mathcal{X}_n \mid \mathcal{X}) \}_{n \in \mathbb{N}} \) which satisfies to the following condition

\[
g_m \circ \pi^n_m = \pi^n_m \circ g_n
\]

where \(n > m \) and \(\pi^n_m : \mathcal{X}_n \to \mathcal{X}_m \) is the natural covering. The sequence \(\{ g_n \} \) naturally defines an element \(\hat{g} \in \lim G(\mathcal{X}_n \mid \mathcal{X}) \). Let us define an homeomorphism \(\varphi_{\hat{g}} : \hat{\mathcal{X}} \to \hat{\mathcal{X}} \) by a following construction. If \(\hat{x}'' \in \hat{\mathcal{X}} \) is any point then there is a sequence \(\{ x''_n \in \mathcal{X}_n \}_{n \in \mathbb{N}} \) such that

\[
x''_n = \hat{\pi}_n(\hat{x}'').
\]

On the other hand there is the sequence \(\{ x''_n \in \mathcal{X}_n \}_{n \in \mathbb{N}} \)

\[
x''_n = g_n x''
\]

which for any \(n > m \) satisfies to the following condition

\[
\pi^n_m(x''_n) = x''_m.
\]

From the above equation and properties of inverse limits it follows that there is the unique \(\hat{x}''_{\hat{g}} \in \hat{\mathcal{X}} \) such that

\[
\hat{\pi}_n(\hat{x}''_{\hat{g}}) = x''_n, \quad \forall n \in \mathbb{N}.
\]

The required homeomorphism \(\varphi_{\hat{g}} \) is given by

\[
\varphi_{\hat{g}}(\hat{x}') = \hat{x}''_{\hat{g}}.
\]

From \(\hat{\pi} \circ \varphi_{\hat{g}} = \hat{\pi} \) it follows that \(\varphi_{\hat{g}} \) corresponds to an element in \(G(\hat{\mathcal{X}} \mid \mathcal{X}) \) which mapped onto \(g_n \) for any \(n \in \mathbb{N} \). Otherwise \(\varphi_{\hat{g}} \) naturally corresponds to the element \(\hat{g} \in \lim G(\mathcal{X}_n \mid \mathcal{X}) \), so one has the natural group isomorphism \(G(\hat{\mathcal{X}} \mid \mathcal{X}) \cong \lim G(\mathcal{X}_n \mid \mathcal{X}) \).

From the above construction it turns out that any homeomorphism \(\hat{g} \in G(\hat{\mathcal{X}} \mid \mathcal{X}) \) uniquely depends on \(\hat{x}' = \hat{g}\hat{x}_0 \in \hat{\pi}_0^{-1}(x_0) \). It follows that there is the 1-1 map \(\varphi : \hat{\pi}_0^{-1}(x_0) \overset{\approx}{\to} G(\hat{\mathcal{X}} \mid \mathcal{X}) \). Since the covering \(\pi_n : \mathcal{X}_n \to \mathcal{X} \) is regular there is the 1-1 map \(\varphi_n : \pi_n^{-1}(x_0) \overset{\approx}{\to} G(\mathcal{X}_n \mid \mathcal{X}) \). The natural surjective map

\[
\pi_0^{-1}(x_0) \to \pi_n^{-1}(x_0)
\]
induces the surjective homomorphism \(G \left(\hat{X} \mid \mathcal{X} \right) \to G \left(\mathcal{X}_n \mid \mathcal{X} \right) \). If \(\hat{g} \in \bigcap_{n \in \mathbb{N}} \ker h_n \) is not trivial then \(\hat{g} \hat{x_0} \neq \hat{x_0} \) and there is \(n \in \mathbb{N} \) such that \(\hat{\pi}_n (\hat{x}_0) \neq \hat{\pi}_n (\hat{g} \hat{x}_0) = h_n (\hat{g}) \hat{\pi}_n (\hat{x}_0) \), so \(h_n (\hat{g}) \in G \left(\mathcal{X}_n \mid \mathcal{X} \right) \) is not trivial and \(\hat{g} \notin \ker h_n \). From this contradiction it follows that \(\bigcap_{n \in \mathbb{N}} \ker h_n \) is a trivial group.

Definition 1.19. Let \(\mathcal{G} = \{ \mathcal{X}_0 \leftarrow ... \leftarrow \mathcal{X}_n \leftarrow ... \} \) be a finite covering sequence. The pair \((\mathcal{Y}, \{ \pi_n^\mathcal{Y} \}_{n \in \mathbb{N}}) \) of a (discrete) set \(\mathcal{Y} \) with and surjective maps \(\pi_n^\mathcal{Y} : \mathcal{Y} \to \mathcal{X}_n \) is said to be a coherent system if for any \(n \in \mathbb{N}^0 \) a following diagram

\[
\begin{array}{ccc}
\mathcal{Y} & \xrightarrow{\pi_n^\mathcal{Y}} & \mathcal{Y}_{n-1} \\
\downarrow & & \downarrow \\
\mathcal{X}_n & \xrightarrow{\pi_n} & \mathcal{X}_{n-1}
\end{array}
\]

is commutative.

Definition 1.20. Let \(\mathcal{G} = \{ \mathcal{X}_0 \leftarrow ... \leftarrow \mathcal{X}_n \leftarrow ... \} \) be a topological finite covering sequence. A coherent system \((\mathcal{Y}, \{ \pi_n^\mathcal{Y} \}_{n \in \mathbb{N}}) \) is said to be a connected covering of \(\mathcal{G} \) if \(\mathcal{Y} \) is a connected topological space and \(\pi_n^\mathcal{Y} \) is a regular covering for any \(n \in \mathbb{N} \). We will use following notation \((\mathcal{Y}, \{ \pi_n^\mathcal{Y} \}_{n \in \mathbb{N}}) \downarrow \mathcal{G} \) or simply \(\mathcal{Y} \downarrow \mathcal{G} \).

Definition 1.21. Let \((\mathcal{Y}, \{ \pi_n^\mathcal{Y} \}_{n \in \mathbb{N}}) \) be a coherent system of \(\mathcal{G} \) and \(y \in \mathcal{Y} \). A subset \(\mathcal{V} \subset \mathcal{Y} \) is said to be special if \(\pi_n^\mathcal{Y} (\mathcal{V}) \) is evenly covered by \(\mathcal{X}_1 \to \mathcal{X}_0 \) and for any \(n \in \mathbb{N}^0 \) following conditions hold:

- \(\pi_n^\mathcal{Y} (\mathcal{V}) \subset \mathcal{X}_n \) is an open connected set,

- The restriction \(\pi_n^\mathcal{Y} |_\mathcal{V} : \mathcal{V} \to \pi_n^\mathcal{Y} (\mathcal{V}) \) is a bijective map.

Remark 1.22. For any \(n \in \mathbb{N}^0 \) the space \(\mathcal{X}_n \) is second-countable, so from the Theorem 1.32 for any point \(x \in \mathcal{X}_n \) there is an open connected neighborhood \(\mathcal{U} \subset \mathcal{X}_n \).

Remark 1.23. If \((\mathcal{Y}, \{ \pi_n^\mathcal{Y} \}_{n \in \mathbb{N}}) \) is a covering of \(\mathcal{G} \) then the set of special sets is a base of the topology of \(\mathcal{Y} \).

Lemma 1.24. Let \(\hat{X} = \varprojlim \mathcal{X}_n \) be the inverse limit of the sequence \(\mathcal{X}_0 \leftarrow ... \leftarrow \mathcal{X}_n \leftarrow ... \) in the category of topological spaces and continuous maps. Any special set of \(\hat{X} \) is a Borel subset of \(\hat{X} \).

Proof. If \(\mathcal{U}_n \subset \mathcal{X}_n \) is an open set then \(\hat{\pi}_n^{-1} (\mathcal{U}_n) \subset \hat{X} \) is open. If \(\hat{\mathcal{U}} \) is a special set then \(\hat{\mathcal{U}} = \bigcap_{n \in \mathbb{N}} \hat{\pi}_n^{-1} \circ \hat{\pi}_n (\hat{\mathcal{U}}) \), i.e. \(\hat{\mathcal{U}} \) is a countable intersection of open sets. So \(\hat{\mathcal{U}} \) is a Borel subset.

Definition 1.25. Let us consider the situation of the Definition 1.20. A morphism from \((\mathcal{Y}', \{ \pi_n^{\mathcal{Y}'} \}_{n \in \mathbb{N}}) \downarrow \mathcal{G} \) to \((\mathcal{Y}'', \{ \pi_n^{\mathcal{Y}''} \}_{n \in \mathbb{N}}) \downarrow \mathcal{G} \) is a covering \(f : \mathcal{Y}' \to \mathcal{Y}'' \) such that

\[
\pi_n^{\mathcal{Y}''} \circ f = \pi_n^{\mathcal{Y}'}
\]

for any \(n \in \mathbb{N} \).
1.26. There is a category with objects and morphisms described by Definitions 1.20, 1.25. Denote by $\downarrow S$ this category.

Lemma 1.27. There is the final object of the category $\downarrow S$ described in 1.26.

Proof. Let $\hat{X} = \lim X_n$ be the inverse limit of the sequence $X_0 \leftarrow ... \leftarrow X_n \leftarrow ...$ in the category of topological spaces and continuous maps. Denote by \hat{X} a topological space such that

- \hat{X} coincides with \hat{X} as a set,
- A set of special sets of \hat{X} is a base of the topology of \hat{X}.

If $x_n \in X_n$ is a point then there is $\bar{x} \in \hat{X}$ such that $x_n = \hat{\pi}(\bar{x})$ and there is a special subset \mathcal{U} such that $\bar{x} \in \mathcal{U}$. From the construction of special subsets it follows that:

- $U_n = \hat{\pi}(\mathcal{U})$ is an open neighborhood of x_n;
- $\hat{\pi}^{-1}(U_n) = \bigsqcup_{g \in \ker(G(X_n | X) \to G(X_n | X))} g\mathcal{U}$;

- For any $g \in \ker(G(X_n | X) \to G(X_n | X))$ the set $g\mathcal{U}$ mapped homeomorphically onto U_n.

So the natural map $\hat{\pi}_n : \hat{X} \to X_n$ is a covering. If $\tilde{X} \subset \hat{X}$ is a nontrivial connected component then the map $\tilde{X} \to X_n$ is a covering, hence \tilde{X} is an object of $\downarrow \mathcal{S}$. Let $G \subset \hat{G}$ be a maximal subgroup such that $G\tilde{X} = \tilde{X}$. The subgroup $G \subset \hat{G}$ is normal. If $g \in \hat{G}\setminus G$ then $g\tilde{X} \cap \tilde{X} = \emptyset$, however g is a homeomorphism, i.e. $g : \hat{X} \xrightarrow{\sim} g\tilde{X}$. If $\bar{x} \in \tilde{X}$ then there is $\bar{x} \in \hat{X}$ such that $\hat{\pi}_0(\bar{x}) = \hat{\pi}_0(\bar{x})$, hence there is $g \in \hat{G}$ such that $\bar{x} = g\bar{x}$ and $\bar{x} \in g\tilde{X}$. It follows that

$$\hat{X} = \bigsqcup_{g \in J} g\tilde{X}$$

(1.2)

where $J \subset \hat{G}$ is a set of representatives of \hat{G}/G. If $(\mathcal{V}, \{\pi_0^V\})$ is a connected covering of \mathcal{S} then there is the natural continuous map $\mathcal{V} \to \hat{X}$, because \hat{X} is the inverse limit. Since the continuous map $\hat{X} \to \hat{X}$ is bijective there is the natural map $\pi : \mathcal{V} \to \hat{X}$. Let $\bar{x} \in \hat{X}$ be such that $\bar{x} \in \pi(\mathcal{V})$, i.e. $\exists y \in \mathcal{V}$ which satisfies to a condition $\bar{x} = \pi(y)$. Let $G^y \subset G(\mathcal{V} | X)$ be such that $\pi(G^y) = \{\bar{x}\}$. If \mathcal{U} is a special neighborhood of \bar{x} then there is a connected neighborhood \mathcal{V} of y which is mapped homeomorphically onto $\hat{\pi}_0(\mathcal{U}) \subset \mathcal{Y}_0$. It follows that

$$\pi^{-1}(\mathcal{U}) = \bigsqcup_{g \in G^y} g\mathcal{V}$$

(1.3)

i.e. \mathcal{U} is evenly covered by π. It turns out the map $\pi : \mathcal{V} \to \hat{X}$ is continuous. From (1.2) it turns out that there is $g \in \hat{G}$, such that $\bar{x} \in g\tilde{X}$. The space \mathcal{V} is connected so it is mapped
into $g\mathcal{X}$, hence there is a continuous map $\tilde{\pi} = g^{-1} \circ \mathcal{Y} : \mathcal{Y} \to \mathcal{X}$. The set $\tilde{\pi}(\mathcal{Y}) \subset \mathcal{X}$ contains a nontrivial open subset. Denote by $\mathcal{X}_\tilde{\pi} \subset \mathcal{X}$ (resp. $\mathcal{X}_\tilde{\pi} \subset \mathcal{X}$) maximal open subset of $\tilde{\pi}(\mathcal{Y})$ (resp. minimal closed superset of $\tilde{\pi}(\mathcal{Y})$). The space \mathcal{X} is connected (i.e. open and closed), hence from $\tilde{\pi}(\mathcal{Y}) \neq \mathcal{X}$ it turns out $\mathcal{X}_\tilde{\pi} \mathcal{X}_\tilde{\pi} \neq \emptyset$. Let $\bar{x} \in \mathcal{X}_\tilde{\pi} \mathcal{X}_\tilde{\pi}$, and let \mathcal{U} be a special neighborhood of \bar{x}. There is $y \in \mathcal{Y}$ such that $y \in \tilde{\pi}^{-1}(\mathcal{U})$ and there is a special connected neighborhood $\mathcal{V} \subset \mathcal{Y}$ of y such that $\tilde{\pi}(\mathcal{V})$ is mapped homeomorphically onto $\pi_0^-\mathcal{V}(\mathcal{U}) \subset X_0$. Otherwise $\mathcal{U} \subset \mathcal{X}$ is mapped homeomorphically onto $\pi_0^-\mathcal{U}$, it follows that \mathcal{V} is mapped onto \mathcal{U}. The open set \mathcal{U} is such that:

- \mathcal{U} is a neighborhood of \bar{x},
- $\mathcal{U} \subset \tilde{\pi}(\mathcal{Y})$.

From the above conditions it follows that \bar{x} lies in open subset $\mathcal{U} \subset \tilde{\pi}(\mathcal{Y})$, hence $\bar{x} \in \mathcal{X}_\tilde{\pi}$.

This fact contradicts with $\bar{x} \notin \mathcal{X}_\tilde{\pi} \mathcal{X}_\tilde{\pi}$ and from the contradiction it turns out $\tilde{\pi}(\mathcal{Y}) = \mathcal{X}$, i.e. $\tilde{\pi}$ is surjective. From \ref{1.3} it follows that $\tilde{\pi} : \mathcal{Y} \to \mathcal{X}$ is a covering. Thus \mathcal{X} is the final object of the category $\downarrow \mathcal{S}$.

Definition 1.28. The final object $(\tilde{\mathcal{X}}, \{\pi_n\})$ of the category $\downarrow \mathcal{S}$ is said to be the (topological) inverse limit of $\downarrow \mathcal{S}$. The notation $(\tilde{\mathcal{X}}, \{\pi_n\}) = \lim_{\downarrow \mathcal{S}}$ or simply $\tilde{\mathcal{X}} = \lim_{\downarrow \mathcal{S}}$ will be used. The space \mathcal{X} from the proof of the Lemma \ref{1.27} is said to be the disconnected inverse limit of \mathcal{S}.

Lemma 1.29. Suppose $\mathcal{S} = \{\mathcal{X} = X_0 \leftarrow \ldots \leftarrow X_n \leftarrow \ldots \} \in \mathfrak{Fin} \mathfrak{Top}$, and $\tilde{\mathcal{X}} = \lim_{\downarrow \mathcal{S}} \mathcal{X}_n$. If \mathcal{X} a topological space which coincides with $\tilde{\mathcal{X}}$ as a set and the topology on \mathcal{X} is generated by special sets then there is the natural isomorphism $G(\mathcal{X} | \mathcal{X}) \cong G(\tilde{\mathcal{X}} | \mathcal{X})$ induced by the map $\mathcal{X} \to \tilde{\mathcal{X}}$.

Proof. Since \mathcal{X} coincides with $\tilde{\mathcal{X}}$ as a set, and the topology of \mathcal{X} is finer than the topology of $\tilde{\mathcal{X}}$ there is the natural injective map $G(\mathcal{X} | \mathcal{X}) \hookrightarrow G(\tilde{\mathcal{X}} | \mathcal{X})$. If $\tilde{g} \in G(\tilde{\mathcal{X}} | \mathcal{X})$ and \mathcal{U} is a special set, then for any $n \in \mathbb{N}$ following condition holds

$$\tilde{\pi}_n(\tilde{g})(\mathcal{U}) = h_n(\tilde{g}) \circ \tilde{\pi}_n(\mathcal{U}) \quad \text{(1.4)}$$

where $\tilde{\pi}_n : \tilde{\mathcal{X}} \to \mathcal{X}_n$ is the natural map, and $h_n : G(\tilde{\mathcal{X}} | \mathcal{X}) \to G(\mathcal{X}_n | \mathcal{X})$ is given by the Lemma \ref{1.18}. Clearly $h_n(\tilde{g})$ is a homeomorphism of \mathcal{X}_n, so from \ref{1.18} it follows that $\tilde{\pi}_n(\tilde{g})(\mathcal{U})$ is an open subset of \mathcal{X}_n. Hence $\tilde{g}(\mathcal{U})$ is special. So \tilde{g} maps special sets onto special sets. Since topology of \mathcal{X} is generated by special sets the map \tilde{g} is a homeomorphism of \mathcal{X}, i.e. $\tilde{g} \in G(\mathcal{X} | \mathcal{X})$.

\[\Box\]
1.1.2 Algebraic construction in brief

The inverse limit of coverings \(\tilde{X} \) is obtained from inverse limit of topological spaces \(\hat{X} \) by a change of a topology. The topology of \(\tilde{X} \) is finer than topology of \(\hat{X} \), it means that \(C_0 \left(\tilde{X} \right) \) is a subalgebra of \(C_b \left(\hat{X} \right) \). The topology of \(\tilde{X} \) is obtained from topology of \(\hat{X} \) by addition of special subsets. Addition of new sets to a topology is equivalent to addition of new elements to \(C_0 \left(\hat{X} \right) \). To obtain \(C_b \left(\tilde{X} \right) \) we will add to \(C_0 \left(\hat{X} \right) \) special elements (cf. Definition 3.5). If \(\tilde{U} \subset \tilde{X} \) is a special set and \(\tilde{a} \in C_c \left(\tilde{X} \right) \) is positive element such that \(\tilde{a} \mid_{\tilde{X} \setminus \tilde{U}} = \{0\} \), and \(a \in C_c \left(\hat{X}_0 \right) \) is given by \(a = \sum_{\hat{g} \in \hat{G}} \hat{g} \tilde{a} \), then following condition holds

\[
\tilde{a} \left(\tilde{\pi}_n \left(\tilde{x} \right) \right) = \left(\sum_{\hat{g} \in \hat{G}} \hat{g} \tilde{a} \right) \left(\tilde{\pi}_n \left(\tilde{x} \right) \right) = \begin{cases} a \left(\tilde{x} \right) & \tilde{x} \in \tilde{U} \\ 0 & \tilde{x} \notin \tilde{U} \end{cases}
\]

From above equation it follows that

\[
\left(\sum_{\hat{g} \in \hat{G}} \hat{g} \tilde{a} \right)^2 = \sum_{\hat{g} \in \hat{G}} \hat{g} \tilde{a}^2. \tag{1.5}
\]

The equation (1.5) is purely algebraic and related to special subsets. From the Theorem 4.13 it follows that the algebraic condition (1.5) is sufficient for construction of \(C_0 \left(\tilde{X} \right) \). Thus noncommutative inverse limits of coverings can be constructed by purely algebraic methods.

1.2 Locally compact spaces

There are two equivalent definitions of \(C_0 \left(\mathcal{X} \right) \) and both of them are used in this article.

Definition 1.30. An algebra \(C_0 \left(\mathcal{X} \right) \) is the \(C^\ast \)-norm closure of the algebra \(C_c \left(\mathcal{X} \right) \) of compactly supported continuous functions.

Definition 1.31. A \(C^\ast \)-algebra \(C_0 \left(\mathcal{X} \right) \) is given by the following equation

\[
C_0 \left(\mathcal{X} \right) = \{ \varphi \in C_b \left(\mathcal{X} \right) \mid \forall \varepsilon > 0 \ \exists K \subset \mathcal{X} \ (K \text{ is compact}) \ & \forall x \in \mathcal{X} \setminus K \ | \varphi \left(x \right) | < \varepsilon \},
\]

i.e.

\[
\| \varphi \mid_{\mathcal{X} \setminus K} \| < \varepsilon.
\]

Theorem 1.32. [4] For a locally compact Hausdorff space \(\mathcal{X} \), the following are equivalent:

(a) The Abelian \(C^\ast \)-algebra \(C_0 \left(\mathcal{X} \right) \) is separable;

(b) \(\mathcal{X} \) is \(\sigma \)-compact and metrizable;

(c) \(\mathcal{X} \) is second-countable.
Corollary 1.33. If X is a locally compact second-countable Hausdorff space then for any $x \in X$ and any open neighborhood $U \subset X$ there is a bounded positive continuous function $a : X \to \mathbb{R}$ such that $a(x) \neq 0$ and $a(X \setminus U) = \{0\}$.

Definition 1.34. If $\phi : X \to \mathbb{C}$ is continuous then the support of ϕ is defined to be the closure of the set $\phi^{-1}(\mathbb{C}\setminus\{0\})$. Thus if x lies outside the support, there is some neighborhood of x on which ϕ vanishes. Denote by $\text{supp} \phi$ the support of ϕ.

1.3 Hilbert modules

We refer to [3] for definition of Hilbert C^*-modules, or simply Hilbert modules. Let A be a C^*-algebra, and let X_A be an A-Hilbert module. Let $\langle \cdot, \cdot \rangle_{X_A}$ be the A-valued product on X_A. For any $\xi, \zeta \in X_A$ let us define an A-endomorphism $\theta_{\xi, \zeta}$ given by $\theta_{\xi, \zeta}(\eta) = \xi \langle \zeta, \eta \rangle_{X_A}$ where $\eta \in X_A$. The operator $\theta_{\xi, \zeta}$ shall be denoted by $\langle \xi, \zeta \rangle$. The norm completion of a generated by operators $\theta_{\xi, \zeta}$ algebra is said to be an algebra of compact operators $K(X_A)$. We suppose that there is a left action of $K(X_A)$ on X_A which is A-linear, i.e. action of $K(X_A)$ commutes with action of A.

1.4 C^*-algebras and von Neumann algebras

In this section I follow to [13].

Definition 1.35. Let A be a C^*-algebra. The strict topology on the multiplier algebra $M(A)$ is the topology generated by seminorms $\|x\|_a = \|ax\| + \|xa\|, (a \in A)$.

Definition 1.36. Let \mathcal{H} be a Hilbert space. The strong topology on $B(\mathcal{H})$ is the locally convex vector space topology associated with the family of seminorms of the form $x \mapsto \|x\xi\|, x \in B(\mathcal{H}), \xi \in \mathcal{H}$.

Definition 1.37. Let \mathcal{H} be a Hilbert space. The weak topology on $B(\mathcal{H})$ is the locally convex vector space topology associated with the family of seminorms of the form $x \mapsto |\langle x\xi, \eta \rangle|, x \in B(\mathcal{H}), \xi, \eta \in \mathcal{H}$.

Theorem 1.38. Let M be a C^*-subalgebra of $B(\mathcal{H})$, containing the identity operator. The following conditions are equivalent:

- $M = M''$ where M'' is the bicommutant of M;
- M is weakly closed;
- M is strongly closed.

Definition 1.39. Any C^*-algebra M is said to be a von Neumann algebra or a W^*-algebra if M satisfies to the conditions of the Theorem 1.38.

Definition 1.40. Let A be a C^*-algebra, and let S be the state space of A. For any $s \in S$ there is an associated representation $\pi_s : A \to B(\mathcal{H}_s)$. The representation $\bigoplus_{s \in S} \pi_s : A \to \bigoplus_{s \in S} B(\mathcal{H}_s)$ is said to be the universal representation. The universal representation can be regarded as $A \to B(\bigoplus_{s \in S} \mathcal{H}_s)$.
Proposition 1.44. Let A be a C^*-algebra, and let $A \to B(H)$ be the universal representation $A \to B(H)$. The strong closure of $\pi(A)$ is said to be the enveloping von Neumann algebra or the enveloping W^*-algebra of A. The enveloping von Neumann algebra will be denoted by A''.

Proposition 1.42. The enveloping von Neumann algebra A'' of a C^*-algebra A is isomorphic, as a Banach space, to the second dual of A, i.e. $A'' \approx A^{**}$.

Lemma 1.43. Let Λ be an increasing net in the partial ordering. Let $\{x_\lambda\}_{\lambda \in \Lambda}$ be an increasing net of self-adjoint operators in $B(H)$, i.e. $\lambda \leq \mu$ implies $x_\lambda \leq x_\mu$. If $\|x_\lambda\| \leq \gamma$ for some $\gamma \in \mathbb{R}$ and all λ then $\{x_\lambda\}$ is strongly convergent to a self-adjoint element $x \in B(H)$ with $\|x_\lambda\| \leq \gamma$.

For each $x \in B(H)$ we define the range projection of x (denoted by $[x]$) as projection on the closure of xH. If M is a von Neumann algebra and $x \in M$ then $[x] \in M$.

Proposition 1.44. For each element x in a von Neumann algebra M there is a unique partial isometry $u \in M$ and positive $|x| \in M_+$ with $uu^* = [x]$ and $x = |x|u$.

Definition 1.45. The formula $x = |x|u$ in the Proposition 1.44 is said to be the polar decomposition.

1.46. Any separable C^*-algebra A has a state τ which induces a faithful GNS representation [11]. There is a C-valued product on A given by

$$\langle a, b \rangle = \tau(a^*b).$$

This product induces a product on A/I_τ where $I_\tau = \{a \in A \mid \tau(a^*a) = 0\}$. So A/I_τ is a pre-Hilbert space. Let denote by $L^2(A, \tau)$ the Hilbert completion of A/I_τ. The Hilbert space $L^2(A, \tau)$ is a space of a GNS representation of A.

2 Noncommutative finite-fold coverings

2.1 Basic construction

Definition 2.1. If A is a C^*-algebra then an action of a group G is said to be involutive if $g(a^*) = (ga)^*$ for any $a \in A$ and $g \in G$. The action is said to be non-degenerated if for any nontrivial $g \in G$ there is $a \in A$ such that $ga \neq a$.

Definition 2.2. Let $A \hookrightarrow \tilde{A}$ be an injective $*$-homomorphism of unital C^*-algebras. Suppose that there is a non-degenerated involutive action $G \times \tilde{A} \to \tilde{A}$ of a finite group G, such that $A = \tilde{A}^G \overset{\text{def}}{=} \{a \in \tilde{A} \mid a = ga; \forall g \in G\}$. There is an A-valued product on \tilde{A} given by

$$\langle a, b \rangle_{\tilde{A}} = \sum_{g \in G} g(a^*b) \quad (2.1)$$

and \tilde{A} is an A-Hilbert module. We say that a triple (A, \tilde{A}, G) is an unital noncommutative finite-fold covering if \tilde{A} is a finitely generated projective A-Hilbert module.
Remark 2.3. Above definition is motivated by the Theorem 1.2.

Definition 2.4. Let A, \tilde{A} be C*-algebras and let $A \hookrightarrow \tilde{A}$ be an inclusion such that following conditions hold:

(a) There are unital C*-algebras B, \tilde{B} and inclusions $A \subset B, \tilde{A} \subset \tilde{B}$ such that A (resp. B) is an essential ideal of \tilde{A} (resp. \tilde{B}) and $A = B \cap \tilde{A}$,

(b) There is a unital noncommutative finite-fold covering (B, \tilde{B}, G),

(c) $G\tilde{A} = \tilde{A}$.

The triple (A, \tilde{A}, G) is said to be a noncommutative finite-fold covering with compactification. The group G is said to be the covering transformation group (of (A, \tilde{A}, G)) and we use the following notation

$$G \left(\tilde{A} | A \right) \overset{\text{def}}{=} G.$$ (2.2)

Remark 2.5. The Definition 2.4 is motivated by the Lemma 4.1.

Remark 2.6. Any unital noncommutative finite-fold covering is a noncommutative finite-fold covering with compactification.

Definition 2.7. Let A, \tilde{A} be C*-algebras, $A \hookrightarrow \tilde{A}$ an injective *-homomorphism and $G \times \tilde{A} \rightarrow \tilde{A}$ an involutive non-degenerated action of a finite group G such that following conditions hold:

(a) $A \cong \tilde{A}^G \overset{\text{def}}{=} \left\{ a \in \tilde{A} \mid Ga = a \right\}$,

(b) There is a family $\left\{ \tilde{I}_\lambda \subset \tilde{A} \right\}_{\lambda \in \Lambda}$ of closed ideals of \tilde{A} such that

$$G\tilde{I}_\lambda = \tilde{I}_\lambda.$$ (2.3)

Moreover $\bigcup_{\lambda \in \Lambda} \tilde{I}_\lambda$ (resp. $\bigcup_{\lambda \in \Lambda} \left(A \cap \tilde{I}_\lambda \right)$) is a dense subset of \tilde{A} (resp. A), and for any $\lambda \in \Lambda$ there is a natural noncommutative finite-fold covering with compactification $(\tilde{I}_\lambda \cap A, \tilde{I}_\lambda, G)$.

We say that the triple (A, \tilde{A}, G) is a noncommutative finite-fold covering.

Remark 2.8. The Definition 2.7 is motivated by the Theorem 4.3.

Remark 2.9. Any noncommutative finite-fold covering with compactification is a noncommutative finite-fold covering.

Definition 2.10. The injective *-homomorphism $A \hookrightarrow \tilde{A}$ from the Definition 2.7 is said to be a noncommutative finite-fold covering.
Definition 2.11. Let \((A, \tilde{A}, G)\) be a noncommutative finite-fold covering. The algebra \(\tilde{A}\) is a Hilbert \(A\)-module with an \(A\)-valued product given by
\[
\langle a, b \rangle_{\tilde{A}} = \sum_{g \in G} g(a^* b); \ a, b \in \tilde{A}.
\] (2.4)
We say that this structure of Hilbert \(A\)-module is induced by the covering \((A, \tilde{A}, G)\). Henceforth we shall consider \(\tilde{A}\) as a right \(A\)-module, so we will write \(\tilde{A}_A\).

2.2 Induced representation

2.12. Let \((A, \tilde{A}, G)\) be a noncommutative finite-fold covering, and let \(\rho : A \to B(\mathcal{H})\) be a representation. If \(X = \tilde{A} \otimes_A \mathcal{H}\) is the algebraic tensor product then there is a sesquilinear \(\mathbb{C}\)-valued product \((\cdot, \cdot)_X\) on \(X\) given by
\[
(a \otimes \xi, b \otimes \eta)_X = (\xi, \langle a, b \rangle_{\tilde{A}} \eta)_\mathcal{H}
\] (2.5)
where \((\cdot, \cdot)_\mathcal{H}\) means the Hilbert space product on \(\mathcal{H}\), and \(\langle \cdot, \cdot \rangle_{\tilde{A}}\) is given by (2.4). So \(X\) is a pre-Hilbert space. There is a natural map \(p : \tilde{A} \times (\tilde{A} \otimes_A \mathcal{H}) \to \tilde{A} \otimes_A \mathcal{H}\) given by
\[
(a, b \otimes \xi) \mapsto ab \otimes \xi.
\]

Definition 2.13. Use notation of the Definition 2.11, and 2.12. If \(\tilde{\mathcal{H}}\) is the Hilbert completion of \(X = \tilde{A} \otimes_A \mathcal{H}\) then the map \(p : \tilde{A} \times (\tilde{A} \otimes_A \mathcal{H}) \to \tilde{A} \otimes_A \mathcal{H}\) induces the representation \(\tilde{\rho} : \tilde{A} \to B(\tilde{\mathcal{H}})\). We say that \(\tilde{\rho}\) is induced by the pair \((\rho, (A, \tilde{A}, G))\).

Remark 2.14. Below any \(\tilde{a} \otimes \xi \in \tilde{A} \otimes_A \mathcal{H}\) will be regarded as element in \(\tilde{\mathcal{H}}\).

Lemma 2.15. If \(A \to B(\mathcal{H})\) is faithful then \(\tilde{\rho} : \tilde{A} \to B(\tilde{\mathcal{H}})\) is faithful.

Proof. If \(\tilde{a} \in \tilde{A}\) is a nonzero element then
\[
a = \langle \tilde{a} \tilde{a}^*, \tilde{a} \tilde{a}^* \rangle_{\tilde{A}} = \sum_{g \in G} g(\tilde{a}^* \tilde{a} \tilde{a}^*) \in A
\]
is a nonzero positive element. There is \(\xi \in \mathcal{H}\) such that \(\langle \xi, \tilde{a} \xi \rangle_{\mathcal{H}} > 0\). However
\[
\langle \xi, \tilde{a} \xi \rangle_{\mathcal{H}} = \langle \tilde{a} \xi, \tilde{a} \xi \rangle_{\tilde{\mathcal{H}}}
\]
where \(\tilde{\xi} = \tilde{a}^* \otimes \xi \in \tilde{A} \otimes_A \mathcal{H} \subset \tilde{\mathcal{H}}\). Hence \(\tilde{a} \xi \neq 0\). \(\square\)
2.16. Let \((A, \tilde{A}, G)\) be a noncommutative finite-fold covering, let \(\rho : A \to B(\mathcal{H})\) be a faithful representation, and let \(\bar{\rho} : \tilde{A} \to B(\tilde{\mathcal{H}})\) is induced by the pair \((\rho, (A, \tilde{A}, G))\).

There is the natural action of \(G\) on \(\tilde{\mathcal{H}}\) induced by the map

\[g(\tilde{a} \otimes \xi) = (g\tilde{a}) \otimes \xi; \quad \tilde{a} \in \tilde{A}, \ g \in G, \ \xi \in \mathcal{H}. \]

There is the natural orthogonal inclusion \(\mathcal{H} \subset \tilde{\mathcal{H}}\) induced by inclusions

\[A \subset \tilde{A}; \quad A \otimes_A \mathcal{H} \subset \tilde{A} \otimes_A \mathcal{H}. \]

Action of \(g\) on \(\tilde{A}\) can be defined by representation as \(g\tilde{a} = g\tilde{a}g^{-1}\), i.e.

\[(g\tilde{a})\xi = g\left(\tilde{a}\left(g^{-1}\xi\right)\right); \quad \forall \xi \in \tilde{\mathcal{H}}. \]

Definition 2.17. If \(M(\tilde{A})\) is the multiplier algebra of \(\tilde{A}\) then there is the natural action of \(G\) on \(M(\tilde{A})\) such that for any \(\tilde{a} \in M(\tilde{A}), \ \tilde{b} \in \tilde{A}\) and \(g \in G\) a following condition holds

\[(g\tilde{a})\tilde{b} = g\left(\tilde{a}\left(g^{-1}\tilde{b}\right)\right). \]

We say that action of \(G\) on \(M(\tilde{A})\) is induced by the action of \(G\) on \(\tilde{A}\).

Lemma 2.18. If an action of \(G\) on \(M(\tilde{A})\) is induced by the action of \(G\) on \(\tilde{A}\) then

\[M(\tilde{A})^G \subset M(\tilde{A}^G). \quad (2.6) \]

Proof. If \(a \in M(\tilde{A})^G\) and \(b \in \tilde{A}^G\) then \(ab \in \tilde{A}\) is such that \(g(ab) = (ga)(gb) = ab \in \tilde{A}^G\). \(\square\)

3 Noncommutative infinite coverings

3.1 Basic construction

This section contains a noncommutative generalization of infinite coverings.

Definition 3.1. Let

\[\mathcal{G} = \left\{ A = A_0 \xrightarrow{\pi_1} A_1 \xrightarrow{\pi_2} \ldots \xrightarrow{\pi_n} A_n \xrightarrow{\pi^{n+1}} \ldots \right\} \]

be a sequence of \(C^*\)-algebras and noncommutative finite-fold coverings such that:

(a) Any composition \(\pi_{n_1} \circ \ldots \circ \pi_{n_0+1} \circ \pi_{n_0} : A_{n_0} \to A_{n_1}\) corresponds to the noncommutative covering \((A_{n_0}, A_{n_1}, G(A_{n_1} | A_{n_0})�);\)
(b) If \(k < l < m \) then \(G(A_m \mid A_k)A_l = A_l \). (Action of \(G(A_m \mid A_k) \) on \(A_l \) means that
\(G(A_m \mid A_k) \) acts on \(A_m \), so \(G(A_m \mid A_k) \) acts on \(A_l \) since \(A_l \) a subalgebra of \(A_m \)).

(c) If \(k < l < m \) are nonegative integers then there is the natural exact sequence of covering transformation groups

\[
\{e\} \to G(A_m \mid A_l) \xrightarrow{i} G(A_m \mid A_k) \xrightarrow{\pi} G(A_l \mid A_k) \to \{e\}
\]

where the existence of the homomorphism \(G(A_m \mid A_k) \xrightarrow{\pi} G(A_l \mid A_k) \) follows from (b).

The sequence \(S \) is said to be an (algebraical) finite covering sequence. For any finite covering sequence we will use the notation \(S \in \text{FinAlg} \).

Definition 3.2. Let \(\hat{A} = \lim_{\to} A_n \) be the \(C^* \)-inductive limit \([11]\), and suppose that \(\hat{G} = \lim_{\leftarrow} G(A_n \mid A) \) is the projective limit of groups \([15]\). There is the natural action of \(\hat{G} \) on \(\hat{A} \).

A non-degenerate faithful representation \(\hat{A} \to B(\mathcal{H}) \) is said to be equivariant if there is an action of \(\hat{G} \) on \(\mathcal{H} \) such that for any \(\xi \in \mathcal{H} \) and \(g \in \hat{G} \) the following condition holds

\[
(ga)\xi = g\left(a\left(g^{-1}\xi\right)\right).
\]

Example 3.3. Let \(S \) be the state space of \(\hat{A} \), and let \(\hat{A} \to B(\bigoplus_{s \in S} \mathcal{H}_s) \) be the universal representation. There is the natural action of \(\hat{G} \) on \(S \) given by

\[
(gs)\left((a)\right) = s(ga); \ s \in S, \ a \in \hat{A}, \ g \in \hat{G}.
\]

The action of \(\hat{G} \) on \(S \) induces the action of \(\hat{G} \) on \(\bigoplus_{s \in S} \mathcal{H}_s \). It follows that the universal representation is equivariant.

Example 3.4. Let \(s \) be a faithful state which corresponds to the representation \(\hat{A} \to B(\mathcal{H}_s) \) and \(\{\xi_n \in \hat{G}\}_{n \in \mathbb{N}} = \hat{G} \) is a bijection. The state

\[
\sum_{n \in \mathbb{N}} \xi_n^{g_n} \xi^n
\]

corresponds to an equivariant representation \(\hat{A} \to B\left(\bigoplus_{g \in \hat{G}} \mathcal{H}_{gs}\right) \).

Definition 3.5. Let \(\pi : \hat{A} \to B(\mathcal{H}) \) be an equivariant representation. A positive element \(\pi \in B(\mathcal{H})_+ \) is said to be special (with respect to \(\pi \)) if following conditions hold:

(a) For any \(n \in \mathbb{N}^0 \) the following series

\[
a_n = \sum_{g \in \ker(\hat{G} \to G(A_n \mid A))} g\pi
\]

is strongly convergent and the sum lies in \(A_n \), i.e. \(a_n \in A_n \).
If \(f : \mathbb{R} \to \mathbb{R} \) is given by
\[
f(x) = \begin{cases}
0 & x \leq \varepsilon \\
x - \varepsilon & x > \varepsilon
\end{cases}
\]
(3.2)
then for any \(n \in \mathbb{N}^0 \) and for any \(z \in A \) following series
\[
b_n = \sum_{g \in \ker \hat{G} \to G (A_n | A)} g(z\bar{a} z^*) , \quad c_n = \sum_{g \in \ker \hat{G} \to G (A_n | A)} g(z\bar{a} z^*)^2 , \quad d_n = \sum_{g \in \ker \hat{G} \to G (A_n | A)} g f(x)(z\bar{a} z^*)
\]
are strongly convergent and the sums lie in \(A_n \), i.e. \(b_n, c_n, d_n \in A_n \);

For any \(\varepsilon > 0 \) there is \(N \in \mathbb{N} \) (which depends on \(a \) and \(z \)) such that for any \(n \geq N \) a following condition holds
\[
\| b_n^2 - c_n \| < \varepsilon.
\]
(3.3)

An element \(\bar{a} \in B(\mathcal{H}) \) is said to be weakly special if
\[
\bar{a} = x\bar{a} y, \text{ where } x, y \in \hat{A}, \text{ and } \bar{a} \in B(\mathcal{H}) \text{ is special.}
\]

Lemma 3.6. If \(\bar{a} \in B(\mathcal{H})_+ \) is a special element and \(\overline{\mathcal{C}}_n = \ker \hat{G} \to G (A_n | A) \) then from
\[
a_n = \sum_{g \in \mathcal{C}_n} g\bar{a}_n
\]
it follows that \(\bar{a} = \lim_{n \to \infty} a_n \) in the sense of the strong convergence. Moreover one has \(\bar{a} = \inf_{n \in \mathbb{N}} a_n \).

Proof. From the Lemma 3.1 it follows that the decreasing lower-bounded sequence \(\{ a_n \} \) is strongly convergent and \(\lim_{n \to \infty} a_n = \inf_{n \in \mathbb{N}} a_n \). From \(a_n > \bar{a} \) it follows that \(\inf_{n \in \mathbb{N}} a_n \geq \bar{a} \).

If \(\inf_{n \in \mathbb{N}} a_n > \bar{a} \) then there is \(\xi \in \mathcal{H} \) such that
\[
\left(\xi, \inf_{n \in \mathbb{N}} a_n \right) > \left(\xi, \bar{a} \right),
\]
however one has
\[
\left(\xi, \inf_{n \in \mathbb{N}} a_n \right) = \inf_{n \in \mathbb{N}} \left(\xi, a_n \bar{\xi} \right) = \inf_{n \in \mathbb{N}} \left(\xi, \left(\sum_{g \in \mathcal{C}_n} g\bar{a}_n \right) \bar{\xi} \right) = \inf_{n \in \mathbb{N}} \sum_{g \in \mathcal{C}_n} \left(\xi, g\bar{a}_n \bar{\xi} \right) = \left(\xi, \bar{a} \bar{\xi} \right).
\]
It follows that \(\bar{a} = \inf_{n \in \mathbb{N}} a_n \).

\[\square\]
Corollary 3.7. Any weakly special element lies in the enveloping von Neumann algebra \hat{A}'' of $A = \lim\downarrow A_n$. If $\overline{A}_\pi \subset B(\mathcal{H})$ is the C*-norm completion of an algebra generated by weakly special elements then $\overline{A}_\pi \subset \hat{A}''$.

Lemma 3.8. If $\mathbf{\pi} \in B(\mathcal{H})$ is special, (resp. $\mathbf{\pi}' \in B(\mathcal{H})$ weakly special) then for any $g \in \hat{G}$ the element $g\mathbf{\pi}$ is special, (resp. $g\mathbf{\pi}'$ is weakly special).

Proof. If $\mathbf{\pi} \in B(\mathcal{H})$ is special then $g\mathbf{\pi}$ satisfies to (a)-(c) of the Definition 3.5, i.e. $g\mathbf{\pi}$ is special. If $\mathbf{\pi}'$ is weakly special then form

$$\mathbf{\pi}' = x\mathbf{\pi};$$

where $x, y \in \hat{A}$, and $g \pi \in B(\mathcal{H})$ is special,

it turns out that

$$g\mathbf{\pi}' = (gx)(g\mathbf{\pi})(gy),$$

i.e. $g\mathbf{\pi}'$ is weakly special. \hfill \Box

Corollary 3.9. If $\overline{A}_\pi \subset B(\mathcal{H})$ is the C*-norm completion of algebra generated by weakly special elements, then there is a natural action of \hat{G} on \overline{A}_π.

Definition 3.10. Let $\mathfrak{S} = \left\{ A = A_0 \xrightarrow{\pi_1} A_1 \xrightarrow{\pi_2} \cdots \xrightarrow{\pi_n} A_n \xrightarrow{\pi_{n+1}} \cdots \right\}$ be an algebraical finite covering sequence. Let $\mathfrak{S} : \hat{A} \rightarrow B(\mathcal{H})$ be an equivariant representation. Let $\overline{A}_\pi \subset B(\mathcal{H})$ be the C*-norm completion of algebra generated by weakly special elements. We say that \overline{A}_π is the disconnected inverse noncommutative limit of $\downarrow \mathfrak{S}$ (with respect to π). The triple $(A, \overline{A}_\pi, G(\overline{A}_\pi \mid A) \overset{\text{def}}{=} \hat{G})$ is said to be the disconnected infinite noncommutative covering of \mathfrak{S} (with respect to π). If π is the universal representation then “with respect to π” is dropped and we will write $(A, \overline{A}_\pi, G(\overline{A}_\pi \mid A))$.

Definition 3.11. Any maximal irreducible subalgebra $\overline{A}_\pi \subset \overline{A}_\pi$ is said to be a connected component of \mathfrak{S} (with respect to π). The maximal subgroup $G_\pi \subset G(\overline{A}_\pi \mid A)$ among subgroups $G \subset G(\overline{A}_\pi \mid A)$ such that $G\overline{A}_\pi = \overline{A}_\pi$ is said to be the \overline{A}_π-invariant group of \mathfrak{S}. If π is the universal representation then “with respect to π” is dropped.

Remark 3.12. From the Definition 3.11 it follows that $G_\pi \subset G(\overline{A}_\pi \mid A)$ is a normal subgroup.

Definition 3.13. Let

$$\mathfrak{S} = \left\{ A = A_0 \xrightarrow{\pi_1} A_1 \xrightarrow{\pi_2} \cdots \xrightarrow{\pi_n} A_n \xrightarrow{\pi_{n+1}} \cdots \right\} \in \mathfrak{SinAlg},$$

and let $(A, \overline{A}_\pi, G(\overline{A}_\pi \mid A))$ be a disconnected infinite noncommutative covering of \mathfrak{S} with respect to an equivariant representation $\pi : \lim A_n \rightarrow B(\mathcal{H})$. Let $\overline{A}_\pi \subset \overline{A}_\pi$ be a connected component of \mathfrak{S} with respect to π, and let $G_\pi \subset G(\overline{A}_\pi \mid A)$ be the \overline{A}_π-invariant group of \mathfrak{S}. Let $h_n : G(\overline{A}_\pi \mid A) \rightarrow G(A_n \mid A)$ be the natural surjective homomorphism. The representation $\pi : \lim A_n \rightarrow B(\mathcal{H})$ is said to be good if it satisfies to following conditions:
(a) The natural *-homomorphism \(\lim_{\to} A_n \to M (\tilde{A}_\pi) \) is injective,

(b) If \(J \subset G (\tilde{A}_\pi \mid A) \) is a set of representatives of \(G (\tilde{A}_\pi \mid A) / G_\pi \), then the algebraic direct sum

\[
\bigoplus_{g \in J} \tilde{A}_\pi
\]

is a dense subalgebra of \(\tilde{A}_\pi \),

(c) For any \(n \in \mathbb{N} \) the restriction \(h_n \mid G_\pi \) is an epimorphism, i.e. \(h_n (G_\pi) = G (A_n \mid A) \).

If \(\pi \) is the universal representation we say that \(\mathcal{S} \) is good.

Definition 3.14. Let \(\mathcal{S} = \{ A = A_0 \to A_1 \to ... \to A_n \to ... \} \in \mathfrak{FinAlg} \) be an algebraical finite covering sequence. Let \(\pi : \tilde{A} \to B (\mathcal{H}) \) be a good representation. A connected component \(\tilde{A}_\pi \subset \tilde{A}_\pi \) is said to be the inverse noncommutative limit of \(\downarrow \mathcal{S} \) (with respect to \(\pi \)). The \(\tilde{A}_\pi \)-invariant group \(G_\pi \) is said to be the covering transformation group of \(\mathcal{S} \) (with respect to \(\pi \)). The triple \((A, \tilde{A}_\pi, G_\pi) \) is said to be the infinite noncommutative covering of \(\mathcal{S} \) (with respect to \(\pi \)). We will use the following notation

\[
\lim_{\to} \downarrow \mathcal{S} \overset{\text{def}}{=} \tilde{A}_\pi,
G \left(\tilde{A}_\pi \mid A \right) \overset{\text{def}}{=} G_\pi.
\]

If \(\pi \) is the universal representation then "with respect to \(\pi \)" is dropped and we will write \((A, \tilde{A}, G) \), \(\lim_{\to} \downarrow \mathcal{S} \overset{\text{def}}{=} \tilde{A} \) and \(G \left(\tilde{A} \mid A \right) \overset{\text{def}}{=} G \).

Definition 3.15. Let \(\mathcal{S} = \{ A = A_0 \to A_1 \to ... \to A_n \to ... \} \in \mathfrak{FinAlg} \) be an algebraical finite covering sequence. Let \(\pi : \tilde{A} \to B (\mathcal{H}) \) be a good representation. Let \((A, \tilde{A}, G_\pi) \) be the infinite noncommutative covering of \(\mathcal{S} \) (with respect to \(\pi \)). Let \(K (\tilde{A}_\pi) \) be the Pedersen ideal of \(\tilde{A}_\pi \). We say that \(\mathcal{S} \) allows inner product (with respect to \(\pi \)) if following conditions hold:

(a) Any \(\tilde{a} \in K (\tilde{A}_\pi) \) is weakly special,

(b) For any \(n \in \mathbb{N} \), and \(\tilde{a}, \tilde{b} \in K (\tilde{A}_\pi) \) the series

\[
a_n = \sum_{g \in \ker (G \to G (A_n \mid A))} g \left(\tilde{a} \tilde{b} \right)
\]

is strongly convergent and \(a_n \in A_n \).
Remark 3.16. If \mathcal{S} allows inner product (with respect to π) then $K\left(\tilde{A}_\pi\right)$ is a pre-Hilbert A module such that the inner product is given by

$$\langle \tilde{a}, \tilde{b} \rangle = \sum_{g \in \hat{G}} g\left(\tilde{a}^* \tilde{b}\right) \in A$$

where the above series is strongly convergent. The completion of $K\left(\tilde{A}_\pi\right)$ with respect to a norm

$$\|\tilde{a}\| = \sqrt{\|\langle \tilde{a}, \tilde{a} \rangle\|}$$

is an A-Hilbert module. Denote by X_A this completion. The ideal $K\left(\tilde{A}_\pi\right)$ is a left \tilde{A}_π-module, so X_A is also \tilde{A}_π-module. Sometimes we will write $\tilde{A}_\pi X_A$ instead X_A.

Definition 3.17. Let $\mathcal{S} = \{A = A_0 \rightarrow A_1 \rightarrow ... \rightarrow A_n \rightarrow ...\} \in \text{FinAlg}$ and \mathcal{S} allows inner product (with respect to π) then then we say that given by the Remark 3.16 A-Hilbert module $\tilde{A}_\pi X_A$ corresponds to the pair (\mathcal{S}, π). If π is the universal representation then we say that $\tilde{A}_\pi X_A$ corresponds to \mathcal{S}.

3.2 Induced representation

Let $\pi: \hat{A} \rightarrow B\left(\overline{H}_\pi\right)$ be a good representation. Let $(A, \tilde{A}_\pi, G_\pi)$ be an infinite noncommutative covering with respect to π of \mathcal{S}. Denote by $\tilde{W}_\pi \subset B\left(\overline{H}_\pi\right)$ the \hat{A}-bimodule of weakly special elements, and denote by

$$\tilde{W}_\pi = \tilde{W}_\pi \cap \tilde{A}_\pi.$$ (3.4)

If π is the universal representation then we write \tilde{W} instead \tilde{W}_π.

Lemma 3.18. If $\tilde{a}, \tilde{b} \in \tilde{W}_\pi$ are weakly special elements then a series

$$\sum_{g \in G_\pi} g\left(\tilde{a}^* \tilde{b}\right)$$

is strongly convergent.

Proof. From the definition of weakly special element one has

$$\tilde{a}^* = x\tilde{c}y$$

where \tilde{c} is a (positive) special element and $x, y \in \hat{A}$. A series

$$\sum_{g \in G_\pi} g\tilde{c}$$

is strongly convergent.
is strongly convergent. For any \(\xi \in \overline{\mathcal{H}}_{\pi} \) and \(\varepsilon > 0 \) there is a finite subset \(G' \subset G_{\pi} \) such that for any finite \(G'' \) which satisfies to \(G' \subset G'' \subset G_{\pi} \) following condition holds

\[
\left\| \sum_{g \in G'' \setminus G'} (g \tilde{b}) \xi \right\| < \frac{\varepsilon}{\| x \| \| \sum_{g \in G_{\pi}} g \tilde{c} \| \| y \|}.
\]

Hence one has

\[
\left\| \sum_{g \in G'' \setminus G'} \left(g \left(\tilde{a}^* \tilde{b} \right) \right) \xi \right\| < \varepsilon,
\]

i.e. the series

\[
\sum_{g \in G_{\pi}} g \left(\tilde{a}^* \tilde{b} \right)
\]

is strongly convergent and \(\sum_{g \in G_{\pi}} g \left(\tilde{a}^* \tilde{b} \right) \in \tilde{A}'' \).

Definition 3.19. Element \(\tilde{a} \in \tilde{A}_{\pi} \) is said to be square-summable if the series

\[
\sum_{g \in G_{\pi}} g \left(\tilde{a}^* \tilde{a} \right)
\]

is strongly convergent to a bounded operator. Denote by \(L^2 \left(\tilde{A}_{\pi} \right) \) (or \(L^2 \left(\tilde{A} \right) \)) the \(\mathbb{C} \)-space of square-summable operators.

Remark 3.20. If \(\tilde{b} \in \tilde{A} \), and \(\tilde{a} \in L^2 \left(\tilde{A} \right) \) then

\[
\left\| \sum_{g \in G_{\pi}} g \left(\tilde{b} \tilde{a}^* \right) \left(\tilde{b} \tilde{a} \right) \right\| \leq \| \tilde{b} \|^2 \left\| \sum_{g \in G_{\pi}} g \left(\tilde{a}^* \tilde{a} \right) \right\|,
\]

it turns out

\[
\tilde{A} L^2 \left(\tilde{A}_{\pi} \right) \subset L^2 \left(\tilde{A}_{\pi} \right), \quad L^2 \left(\tilde{A}_{\pi} \right) \tilde{A} \subset L^2 \left(\tilde{A}_{\pi} \right),
\]

i.e. there is the left and right action of \(\tilde{A} \) on \(L^2 \left(\tilde{A} \right) \).

Remark 3.21. If \(a, b \in L^2 \left(\tilde{A}_{\pi} \right) \) then sum \(\sum_{g \in G_{\pi}} g \left(\tilde{a}^* \tilde{b} \right) \in \tilde{A}'' \) is bounded and \(G_{\pi} \)-invariant, hence \(\sum_{g \in G_{\pi}} g \left(\tilde{a}^* \tilde{b} \right) \in A'' \).

Remark 3.22. From the Lemma 3.18 it turns out \(\tilde{W}_{\pi} \subset L^2 \left(\tilde{A}_{\pi} \right) \)

3.23. Let \(A \rightarrow B \left(\mathcal{H} \right) \) be a representation. Denote by \(\tilde{\mathcal{H}} \) a Hilbert completion of a pre-Hilbert space

\[
L^2 \left(\tilde{A}_{\pi} \right) \otimes_A \mathcal{H},
\]

with a scalar product \(\left(\tilde{a} \otimes \xi, \tilde{b} \otimes \eta \right)_{\tilde{\mathcal{H}}} = \left(\tilde{x}, \left(\sum_{g \in G_{\pi}} g \left(\tilde{a}^* \tilde{b} \right) \right) \eta \right)_{\mathcal{H}} \).

(3.7)
There is the left action of \(\hat{A} \) on \(L^2 \left(\hat{\mathcal{A}}_\pi \right) \otimes_\mathcal{A} \mathcal{H} \) given by

\[
\tilde{b} (\tilde{a} \otimes \xi) = \tilde{b} \tilde{a} \otimes \xi
\]

where \(\tilde{a} \in L^2 \left(\hat{\mathcal{A}}_\pi \right) \), \(\tilde{b} \in \hat{A} \), \(\xi \in \mathcal{H} \). The left action of \(\hat{A} \) on \(L^2 \left(\hat{\mathcal{A}}_\pi \right) \otimes_\mathcal{A} \mathcal{H} \) induces following representations

\[
\hat{\rho} : \hat{A} \to B \left(\mathcal{H} \right), \\
\hat{\rho} : \hat{\mathcal{A}}_\pi \to B \left(\mathcal{H} \right).
\]

Definition 3.24. The constructed in 3.23 representation \(\hat{\rho} : \hat{\mathcal{A}}_\pi \to B \left(\mathcal{H} \right) \) is said to be induced by \((\rho, \mathcal{G}, \pi)\). We also say that \(\hat{\rho} \) is induced by \((\rho, \hat{\mathcal{A}}_\pi, \mathcal{G}, \hat{\mathcal{A}}_\pi | A)\). If \(\pi \) is an universal representation we say that \(\hat{\rho} \) is induced by \((\rho, \mathcal{G})\) and/or \((\rho, \hat{\mathcal{A}}_\pi, \mathcal{G}, \hat{\mathcal{A}}_\pi | A)\).

Remark 3.25. If \(\rho \) is faithful, then \(\rho \) is faithful.

Remark 3.26. There is an action of \(G_\pi \) on \(\tilde{\mathcal{H}} \) induced by the natural action of \(G_\pi \) on the \(\tilde{\mathcal{A}}_\pi \)-bimodule \(L^2 \left(\tilde{\mathcal{A}}_\pi \right) \). If the representation \(\tilde{\mathcal{A}}_\pi \to B \left(\tilde{\mathcal{H}} \right) \) is faithful then an action of \(\tilde{\mathcal{A}}_\pi \) on \(\tilde{\mathcal{A}}_\pi \) is given by

\[
(g \tilde{a}) \tilde{\pi} = g \left(\tilde{a} \left(g^{-1} \tilde{\pi} \right) \right); \forall g \in G, \forall \tilde{a} \in \tilde{\mathcal{A}}_\pi, \forall \tilde{\pi} \in \tilde{\mathcal{H}}.
\]

3.27. If \(\mathcal{G} \) allows inner product with respect to \(\pi \) then for any representation \(A \to B \left(\mathcal{H} \right) \) an algebraic tensor product \(_{\tilde{\mathcal{A}}_\pi}X_A \otimes_{\mathcal{A}} \mathcal{H} \) is a pre-Hilbert space with the product given by

\[
(a \otimes \xi, b \otimes \eta) = (\xi, (a, b) \eta)
\]

(cf. Definitions 3.17 and 3.18)

Lemma 3.28. Suppose \(\mathcal{G} \) allows inner product with respect to \(\pi \) and any \(\tilde{a} \in K \left(\tilde{\mathcal{A}}_\pi \right) \) is weakly special. If \(\tilde{\mathcal{H}} \) (resp. \(\tilde{\mathcal{H}}' \)) is a Hilbert norm completion of \(W_\pi \otimes \mathcal{A} \mathcal{H} \) (resp. \(\tilde{\mathcal{A}}_\pi X_A \otimes_{\mathcal{A}} \mathcal{H} \)) then there is the natural isomorphism \(\tilde{\mathcal{H}} \cong \tilde{\mathcal{H}}' \).

Proof. From \(K \left(\tilde{\mathcal{A}}_\pi \right) \subset W_\pi \) and taking into account that \(K \left(\tilde{\mathcal{A}}_\pi \right) \) is dense in \(\tilde{\mathcal{A}}_\pi X_A \) it turns out \(\tilde{\mathcal{H}}' \subset \tilde{\mathcal{H}} \). If \(\tilde{a} \in W_\pi \) is a positive element and \(f_\xi \) is given by (3.2) then

1. \(f_\xi \left(\tilde{a} \right) \in K \left(\tilde{\mathcal{A}}_\pi \right) \),
2. \(\lim_{\xi \to 0} f_\xi \left(\tilde{a} \right) = \tilde{a} \).

From (a) it follows that \(f_\xi \left(\tilde{a} \right) \otimes \xi \in \tilde{\mathcal{A}}_\pi X_A \otimes_{\mathcal{A}} \mathcal{H} \) for any \(\xi \in \mathcal{H} \). From (b) it turns out \(\tilde{a} \otimes \xi \in \tilde{\mathcal{H}}' \). From this fact it follows the natural inclusion \(\tilde{\mathcal{H}} \subset \tilde{\mathcal{H}}' \). Mutually inverse inclusions \(\mathcal{H} \subset \mathcal{H}' \) and \(\mathcal{H}' \subset \mathcal{H} \) yield the isomorphism \(\mathcal{H} \cong \mathcal{H}' \).

\[\square\]
3.29. Let \(\mathcal{H}_n \) be a Hilbert completion of \(A_n \otimes_A \mathcal{H} \) which is constructed in the section 2.2. Clearly

\[
L^2 \left(\tilde{\mathcal{A}}_{\pi} \right) \otimes_{A_n} \mathcal{H}_n = L^2 \left(\tilde{\mathcal{A}}_{\pi} \right) \otimes_{A_n} (A_n \otimes_A \mathcal{H}) = L^2 \left(\tilde{\mathcal{A}}_{\pi} \right) \otimes_A \mathcal{H}.
\]

(3.8)

4 Quantization of topological coverings

4.1 Finite-fold coverings

The following lemma supplies the quantization of coverings with compactification.

Lemma 4.1. If \(\mathcal{X}, \tilde{\mathcal{X}} \) are locally compact spaces, and \(\pi : \tilde{\mathcal{X}} \to \mathcal{X} \) is a surjective continuous map, then following conditions are equivalent:

(i) The map \(\pi : \tilde{\mathcal{X}} \to \mathcal{X} \) is a finite-fold covering with compactification,

(ii) There is a natural noncommutative finite-fold covering with compactification \((C_0(\mathcal{X}), C_0(\tilde{\mathcal{X}}), G)\).

Proof. (i)=>(ii) Denote by \(\mathcal{X} \subseteq \mathcal{Y}, \tilde{\mathcal{X}} \subseteq \tilde{\mathcal{Y}} \) compactifications such that \(\pi : \tilde{\mathcal{Y}} \to \mathcal{Y} \) is a finite-fold (topological) covering. Let \(G = G \left(\tilde{\mathcal{Y}} | \mathcal{Y} \right) \) be a group of covering transformations. If \(B = C(\mathcal{Y}) \) and \(\tilde{B} = C \left(\tilde{\mathcal{Y}} \right) \) then \(A = C_0(\mathcal{X}) \) (resp. \(\tilde{A} = C_0 \left(\tilde{\mathcal{X}} \right) \)) is an essential ideal of \(B \) (resp. \(\tilde{B} \)). Taking into account \(A = C_0(\mathcal{X}) = C_0 \left(\tilde{\mathcal{X}} \right) \cap C(\mathcal{Y}) = B \cap \tilde{A} \) one concludes that these algebras satisfy to the condition (a) of the Definition 2.4. From the Theorem 1.2 it turns out that the triple \((B, \tilde{B}, G)\) is an unital noncommutative finite-fold covering. So the condition (b) of the Definition 2.4 holds. From \(G_{\tilde{X}} = \tilde{X} \) it turns out that \(GC_0 \left(\tilde{\mathcal{X}} \right) = C_0 \left(\tilde{\mathcal{X}} \right) \), i.e. the condition (c) of the Definition 2.4 holds.

(ii)=>(i) If \(A = C_0(\mathcal{X}), \tilde{A} = C_0 \left(\tilde{\mathcal{X}} \right) \) and inclusions \(A \subseteq B, \tilde{A} \subseteq \tilde{B} \) are such that \(A \) (resp. \(B \)) is an essential ideal of \(\tilde{A} \) (resp. \(\tilde{B} \)) then there are compactifications \(\mathcal{X} \hookrightarrow \mathcal{Y} \) and \(\tilde{\mathcal{X}} \hookrightarrow \tilde{\mathcal{Y}} \) such that \(B = C(\mathcal{Y}), \tilde{B} = C \left(\tilde{\mathcal{Y}} \right) \). From the condition (b) of the Definition 2.7 it turns out that the triple \((B, \tilde{B}, G) = (C(\mathcal{Y}), C \left(\tilde{\mathcal{Y}} \right), G)\) is an unital noncommutative finite-fold covering. From the Theorem 1.2 it follows that the \(* \)-homomorphism \(C(\mathcal{Y}) \hookrightarrow C \left(\tilde{\mathcal{Y}} \right) \) induces a finite-fold (topological) covering \(\pi : \tilde{\mathcal{Y}} \to \mathcal{Y} \). From condition (c) of of the Definition 2.4 it turns out \(GC_0 \left(\tilde{\mathcal{X}} \right) = C_0 \left(\tilde{\mathcal{X}} \right) \) or, equivalently

\[
G_{\tilde{X}} = \tilde{X}.
\]

(4.1)

From \(A = B \cap \tilde{A} \) or, equivalently \(C_0(\mathcal{X}) = C_0 \left(\tilde{\mathcal{X}} \right) \cap C(\mathcal{Y}) \) and (4.1) it turns out that \(\pi \) is the restriction of finite-fold covering \(\pi \), i.e. \(\pi = \pi |_{\tilde{\mathcal{X}}} \). So \(\pi \) is a finite-fold covering. \(\square \)
Lemma 4.2. Let \(\pi: \widetilde{X} \to X \) be a surjective map of topological spaces such that there is a family of open subsets \(\{ U_\lambda \subset X \} _{\lambda \in \Lambda} \) such that

(a) \(X = \bigcup _{\lambda \in \Lambda} U_\lambda \),

(b) For any \(\lambda \in \Lambda \) the natural map \(\pi ^{-1} (U_\lambda) \to U_\lambda \) is a covering.

Then the map \(\pi: \widetilde{X} \to X \) is a covering.

Proof. For any point \(x_0 \in X \) there is \(\lambda \in \Lambda \) such that \(x_0 \in U_\lambda \). The map \(\pi ^{-1} (U_\lambda) \to U_\lambda \) is a covering, it follows that there is an open neighborhood \(V \) of \(x_0 \) such that \(V \subset U_\lambda \) and \(V \) is evenly covered by \(\pi \).

Theorem 4.3. If \(X, \widetilde{X} \) are locally compact spaces, and \(\pi: \widetilde{X} \to X \) is a surjective continuous map, then following conditions are equivalent:

(i) The map \(\pi: \widetilde{X} \to X \) is a finite-fold regular covering,

(ii) There is the natural noncommutative finite-fold covering \(\left(C_0 (X), C_0 (\widetilde{X}), G \right) \).

Proof. (i)\(\Rightarrow \) (ii) We need check that \(\left(C_0 (X), C_0 (\widetilde{X}), G \right) \) satisfies to condition (a), (b) of the Definition.

(a) Covering \(\pi \) is regular, so from the Proposition it turns out \(X = \widetilde{X} / G \) where \(G = G \left(\widetilde{X} \mid X \right) \) is a covering group. From \(X = \widetilde{X} / G \) it follows that \(C_0 (X) = C_0 \left(\widetilde{X} \right) ^G \).

(b) The space \(X \) is locally compact, so for any \(x \in X \) there is a compact neighborhood \(U \). The maximal open subset \(U \subset \overline{U} \) is an open neighborhood of \(x \). So there is family of open subsets \(\{ U_\lambda \subset X \} _{\lambda \in \Lambda} \) such that

- \(X = \bigcup _{\lambda \in \Lambda} U_\lambda \),

- For any \(\lambda \in \Lambda \) the closure \(\overline{U_\lambda} \) of \(U_\lambda \) in \(X \) is compact.

Since \(\pi \) is a finite-fold covering the set \(\pi ^{-1} (\overline{U_\lambda}) \) is compact for any \(\lambda \in \Lambda \). If \(\overline{U_\lambda} \subset C_0 \left(\widetilde{X} \right) \) is a closed ideal given by

\[
\overline{U_\lambda} \overset{\text{def}}{=} C_0 \left(\pi ^{-1} (U_\lambda) \right) \cong \left\{ \tilde{a} \in C_0 \left(\widetilde{X} \right) \mid \tilde{a} \left(\widetilde{X} \setminus \pi ^{-1} (U_\lambda) \right) = \{ 0 \} \right\}
\]

then \(\overline{U_\lambda} \subset C \left(\overline{U_\lambda} \right) \) is an essential ideal of the unital algebra \(C \left(\pi ^{-1} (U_\lambda) \right) \). From \(G \pi ^{-1} (U_\lambda) = \pi ^{-1} (U_\lambda) \) it follows that \(G \overline{U_\lambda} = \overline{U_\lambda} \). If \(I_\lambda = C_0 (X) \cap \overline{U_\lambda} \) then one has

\[
I_\lambda = C_0 (U_\lambda) \cong \{ a \in C_0 (X) \mid a \left(X \setminus U_\lambda \right) = \{ 0 \} \}
\]

hence \(I_\lambda \) is an essential ideal of an unital algebra \(C \left(\overline{U_\lambda} \right) \). The restriction map

\[
\pi _{\pi ^{-1} (\overline{U_\lambda })}: \pi ^{-1} (\overline{U_\lambda }) \to \overline{U_\lambda}
\]
is a finite-fold covering of compact spaces, so from the Theorem 1.2 it follows that
\[
\left(C \left(U_\lambda \right), C \left(\pi^{-1} \left(U_\lambda \right) \right), G \right)
\]
is an unital noncommutative finite-fold covering. It turns out that
\[
\left(I_\lambda, \tilde{I}_\lambda, G \right) = \left(C_0 \left(U_\lambda \right), C_0 \left(\pi^{-1} \left(U_\lambda \right) \right), G \right)
\]
is a noncommutative finite-fold covering with compactification. From \(X = \bigcup_{\lambda \in \Lambda} U_\lambda \) (resp. \(\tilde{X} = \bigcup_{\lambda \in \Lambda} \pi^{-1} \left(U_\lambda \right) \)) it turns out that \(\bigcup_{\lambda \in \Lambda} I_\lambda \) (resp. \(\bigcup_{\lambda \in \Lambda} \tilde{I}_\lambda \)) is a dense subset of \(C_0 \left(X \right) \) (resp. \(C_0 \left(\tilde{X} \right) \)).

(ii)\(\Rightarrow \) (i) Let \(\left\{ \tilde{I}_\lambda \subset C_0 \left(\tilde{X} \right) \right\}_{\lambda \in \Lambda} \) be a family of closed ideals from the condition (b) of the Definition 2.7, and let \(I_\lambda = \tilde{I}_\lambda \cap C_0 \left(X \right) \). If \(\tilde{U}_\lambda \subset \tilde{X} \) is a given by
\[
\tilde{U}_\lambda \overset{\text{def}}{=} \left\{ \tilde{x} \in \tilde{X} \mid \exists \tilde{a} \in \tilde{I}_\lambda; \tilde{a} \left(\tilde{x} \right) \neq 0 \right\}
\]
then from \(G\tilde{I}_\lambda = \tilde{I}_\lambda \) it turns out \(G\tilde{U}_\lambda = \tilde{U}_\lambda \). If \(U_\lambda \subset X \) is given by
\[
U_\lambda = \left\{ x \in X \mid \exists a \in I_\lambda; a \left(x \right) \neq 0 \right\}
\]
then \(U_\lambda = \pi \left(\tilde{U}_\lambda \right) \), and \(\tilde{U}_\lambda = \pi^{-1} \left(U_\lambda \right) \), hence there is the natural *-isomorphism
\[
\tilde{I}_\lambda \cong C_0 \left(\pi^{-1} \left(U_\lambda \right) \right).
\]

Any covering is an open map, so if \(\tilde{U}_\lambda \) is the closure of \(U_\lambda \) in \(X \) then \(\pi^{-1} \left(\tilde{U}_\lambda \right) \) is the closure of \(\tilde{U}_\lambda \) in \(\tilde{X} \). Following conditions hold:

- \(\tilde{U}_\lambda \) (resp. \(\pi^{-1} \left(\tilde{U}_\lambda \right) \)) is a compactification of \(U_\lambda \), (resp. \(\pi^{-1} \left(U_\lambda \right) \)),
- \(I_\lambda = C_0 \left(U_\lambda \right) \), (resp. \(\tilde{I}_\lambda = C_0 \left(\pi^{-1} \left(U_\lambda \right) \right) \)) is an essential ideal of \(C \left(\tilde{U}_\lambda \right) \) (resp. \(C \left(\pi^{-1} \left(\tilde{U}_\lambda \right) \right) \)),
- The triple \(\left(C \left(U_\lambda \right), C \left(\pi^{-1} \left(U_\lambda \right) \right), G \right) \) is an unital noncommutative finite-fold covering.

It follows that the triple \(\left(I_\lambda, \tilde{I}_\lambda, G \right) = \left(C_0 \left(U_\lambda \right), C_0 \left(\pi^{-1} \left(U_\lambda \right) \right), G \right) \) is a noncommutative finite-fold covering with compactification, hence from the Lemma 4.1 it follows that the natural map \(\pi^{-1} \left(U_\lambda \right) \to U_\lambda \) is a covering. From (b) of the Definition 2.7 it follows that \(\bigcup_{\lambda \in \Lambda} I_\lambda \) is dense subset of \(C_0 \left(X \right) \) it turns out \(X = \bigcup U_\lambda \), hence from the Lemma 4.2 it follows that \(\pi : \tilde{X} \to X \) is a finite-fold covering. \(\square \)
4.2 Infinite coverings

This section supplies a purely algebraic analog of the topological construction given by the Subsection 1.1. Suppose that

\[S = \{ X_0 \leftarrow \ldots \leftarrow X_n \leftarrow \ldots \} \]

is a topological finite covering sequence. From the Theorem 4.3 it turns out that \(S_{\mathcal{C}^0} \left(\mathcal{X} \right) \) is an algebraical finite covering sequence. The following theorem and the corollary give the construction of \(\hat{\mathcal{C}}^0(\mathcal{X}) = \lim_{\leftarrow} \mathcal{C}^0(\mathcal{X}_n) \).

Theorem 4.4. [16] If a \(\mathcal{C}^\ast \)-algebra \(A \) is a \(\mathcal{C}^\ast \)-inductive limit of \(A_\gamma (\gamma \in \Gamma) \), the state space \(\Omega \) of \(A \) is homeomorphic to the projective limit of the state spaces \(\Omega_\gamma \) of \(A_\gamma \) (\(\gamma \in \Gamma \)).

Corollary 4.5. [16] If a commutative \(\mathcal{C}^\ast \)-algebra \(A \) is a \(\mathcal{C}^\ast \)-inductive limit of the commutative \(\mathcal{C}^\ast \)-algebras \(A_\gamma \) (\(\gamma \in \Gamma \)), the spectrum \(\mathcal{X} \) of \(A \) is the projective limit of spectrums \(\mathcal{X}_\gamma \) of \(A_\gamma \) (\(\gamma \in \Gamma \)).

4.6. From the Corollary 4.5 it turns out \(\hat{\mathcal{C}}^0(\mathcal{X}) = \mathcal{C}^0(\hat{\mathcal{X}}) \) where \(\hat{\mathcal{X}} = \lim_{\leftarrow} \mathcal{X}_n \). If \(\mathcal{X} \) is the disconnected inverse limit of \(\mathcal{G}X \) then there is the natural bicontinuous map \(f : \mathcal{X} \rightarrow \hat{\mathcal{X}} \).

The map induces the injective *-homomorphism \(\mathcal{C}^0(\hat{\mathcal{X}}) \rightarrow \mathcal{C}^b(\mathcal{X}) \). It follows that there is the natural inclusion of enveloping von Neumann algebras \(\mathcal{C}^0(\hat{\mathcal{X}})^\prime \rightarrow \mathcal{C}^0(\mathcal{X})^\prime \). Denote by \(G_n = G(\mathcal{X}_n | \mathcal{X}) \) groups of covering transformations and \(\hat{G} = \lim_{\leftarrow} G_n \). Denote by \(\overline{\pi} : \overline{\mathcal{X}} \rightarrow \mathcal{X}, \overline{\pi}_n : \overline{\mathcal{X}} \rightarrow \mathcal{X}_n, \pi^n : \mathcal{X}_n \rightarrow \mathcal{X}, \pi^m_n : \mathcal{X}_m \rightarrow \mathcal{X}_n (m > n) \) the natural covering projections.

Lemma 4.7. Following conditions hold:

(i) If \(\overline{\mathcal{U}} \subset \mathcal{X} \) is a compact set then there is \(N \in \mathbb{N} \) such that for any \(n \geq N \) the restriction \(\overline{\pi}_n|_{\overline{\mathcal{U}}} : \overline{\mathcal{U}} \rightarrow \mathcal{X}_n \) is a homeomorphism,

(ii) If \(\overline{\pi} \in \mathcal{C}_c(\overline{\mathcal{X}}) \) is a positive element then there is \(N \in \mathbb{N} \) such that for any \(n \geq N \) following condition holds

\[a_n(\overline{\pi}_n(\overline{\mathcal{X}})) = \begin{cases} \overline{\pi}(\overline{\mathcal{X}}) & \overline{\mathcal{X}} \in \text{supp} \overline{\pi} \text{ & } \overline{\pi}_n(\overline{\mathcal{X}}) \in \text{supp} a_n \\ 0 & \overline{\pi}_n(\overline{\mathcal{X}}) \notin \text{supp} a_n \end{cases} \quad \text{(4.2)} \]

where

\[a_n = \sum_{g \in \ker(\hat{G} \rightarrow G_n)} g\overline{\pi}. \]

Proof. (i) The set \(\overline{\mathcal{U}} \) is compact, hence \(\text{supp} \overline{\pi} \) is a finite disconnected union of connected compact sets, i.e.

\[\overline{\mathcal{U}} = \bigsqcup_{j=1}^M \overline{\mathcal{U}}_j. \]
It is known \[15\] that any covering is an open map, and any open map maps any closed set onto a closed set, so for any \(n \in \mathbb{N}\) the set \(\pi_n(U)\) is compact. For any \(n \in \mathbb{N}\) denote by \(c_n \in \mathbb{N}\) the number of connected components of \(\pi_n(U)\). If \(n > m\) then any connected component of \(\pi_n(U)\) is mapped into a connected component of \(\pi_m(U)\), it turns out \(c_n \geq c_m\). Clearly \(c_n \leq M\). The sequence \(\{c_n\}_{n \in \mathbb{N}}\) is non-decreasing and \(c_n \leq M\). It follows that there is \(N \in \mathbb{N}\) such that \(c_N = M\). For any \(n > N\) the set \(\pi_n(U)\) is mapped homeomorphically onto \(\pi_N(U)\), hence from the sequence of homeomorphisms it follows

\[
\ldots \cong \pi_n(U) \cong \ldots \cong U
\]

it follows that \(\pi_n|U : \overline{U} \cong \pi_n(U)\) is a homeomorphism.

(ii) The set \(\text{supp} a = U\) is compact, it follows that from (i) and \(a > 0\) that \(\text{supp} a\) is mapped homeomorphically onto \(\text{supp} a\). It turns out that if \(a_n = \sum_{g \in \ker(\hat{G} \to G_n)} g \overline{a}\) and \(n \geq N\) then \(a_n\) is given by (4.2).

\[\text{Lemma 4.8.}\] If \(X\) is a locally compact Hausdorff space then any positive element \(\overline{a} \in C_c(\overline{X})_+\) is special.

\[\text{Proof.}\] From the Lemma \[4.7\] it follows that there is \(N \in \mathbb{N}\) such that the equation (4.2) holds. It turns out that for any \(z \in C_0(X), n \geq N\) and \(f \) given by (3.2) the series

\[
\begin{align*}
 b_n &= \sum_{g \in \ker(\hat{G} \to G_n)} g (z \overline{z}^*), \\
 c_n &= \sum_{g \in \ker(\hat{G} \to G_n)} g (z \overline{z}^*)^2, \\
 d_n &= \sum_{g \in \ker(\hat{G} \to G_n)} f (z \overline{z}^*)
\end{align*}
\]

are given by

\[
\begin{align*}
 b_n (\pi_n(x)) &= 0, & \pi \in \text{supp} \overline{a} & \& \pi_n(x) \in \text{supp} \ a_n, \\
 c_n (\pi_n(x)) &= \begin{cases} (z (\pi_n(x)) \overline{\pi(x)} z^* (\pi_n(x)))^2 & \pi \in \text{supp} \overline{a} & \& \pi_n(x) \in \text{supp} \ a_n, \\
 0 & \pi_n(x) \notin \text{supp} \ a_n. \end{cases}
\end{align*}
\]

From (4.3) it turns out \(b_n^2 = c_n\), i.e. \(\overline{a}\) satisfies to the condition (c) of the Definition 3.5.
Otherwise (4.2), (4.3) from that \(a_n, b_n, c_n, d_n \in C_0(\mathcal{X}_n)\) for any \(n \geq N\). If \(n < N\) then

\[
\begin{align*}
a_n &= \sum_{g \in G(\mathcal{X}_n \mid X_n)} g\bar{a}_N, \\
b_n &= \sum_{g \in G(\mathcal{X}_n \mid X_n)} g\bar{b}_N, \\
c_n &= \sum_{g \in G(\mathcal{X}_n \mid X_n)} g\bar{c}_N, \\
d_n &= \sum_{g \in G(\mathcal{X}_n \mid X_n)} g\bar{d}_N.
\end{align*}
\]

Above sums are finite, it turns out \(a_n, b_n, c_n, d_n \in C_0(\mathcal{X}_n)\) for any \(n \in \mathbb{N}^0\), i.e. \(\bar{a}\) satisfies to conditions (a), (b) of the Definition 3.5.

\[\square\]

Corollary 4.9. If \(\overline{A}\) is a disconnected inverse noncommutative limit of

\[
\mathcal{G}_{C_0(\mathcal{X})} = \{C_0(\mathcal{X}_0) \to \cdots \to C_0(\mathcal{X}_n) \to \cdots\}
\]

then \(C_0(\overline{\mathcal{X}}) \subset \overline{A}\).

Proof. From the Lemma 4.8 it follows that \(C_c(\overline{\mathcal{X}}) \subset \overline{A}\), and taking into account the Definition 1.30 one has \(C_0(\overline{\mathcal{X}}) \subset \overline{A}\). \(\square\)

Lemma 4.10. Suppose that \(\mathcal{X}\) is a locally compact Hausdorff space. Let \(\bar{a} \in C_0(\overline{\mathcal{X}})^{\prime\prime}\) be such that following conditions hold:

(a) If \(f_\varepsilon\) is given by (3.2) then following series

\[
\begin{align*}
a_n &= \sum_{g \in \ker(G \to G_n)} g\bar{a}, \\
b_n &= \sum_{g \in \ker(G \to G_n)} g\bar{b}, \\
c_n &= \sum_{g \in \ker(G \to G_n)} g f_\varepsilon(\bar{a}),
\end{align*}
\]

are strongly convergent and \(a_n, b_n, c_n \in C_0(\mathcal{X}_n)\).

(b) For any \(\varepsilon > 0\) there is \(N \in \mathbb{N}\) such that

\[
\|a_n^2 - b_n\| < \varepsilon, \quad \forall n \geq N.
\]

Then \(\bar{a} \in C_0(\overline{\mathcal{X}})^{\prime\prime}\).
Proof. The dual space $C_0(\overline{X})^*$ of $C_0(\overline{X})$ is a space of Radon measures on \overline{X}. If $\overline{f} : \overline{X} \to \mathbb{R}$ is given by

$$\overline{f}(\overline{x}) = \lim_{n \to \infty} a_n(\pi_n(\overline{x})) = \inf_{n \in \mathbb{N}} a_n(\pi_n(\overline{x}))$$

then from the Proposition 1.42 and the Lemma 3.6 it follows that \overline{f} represents π, i.e. the following conditions hold:

- The function \overline{f} defines a following functional

$$C_0(\overline{X})^* \to \mathbb{C},$$

$$\mu \mapsto \int_{\overline{X}} \overline{f} \, d\mu$$

where μ is a Radon measure on \overline{X},

- The functional corresponds to $\overline{\pi} \in C_0(\overline{X})^{**} = C_0(\overline{X})''$.

If $m > n$ then

$$a_n = \sum_{g \in G(\mathcal{X}_m | \mathcal{X}_n)} g a_m,$$

$$b_n = \sum_{g \in G(\mathcal{X}_m | \mathcal{X}_n)} g b_m. \tag{4.4}$$

Let $M \in \mathbb{N}$ be such that for any $n \geq M$ following condition holds

$$\|a_n^2 - b_n\| < 2\varepsilon^2. \tag{4.5}$$

Let $n > M$, $p_n = \pi^n_M : \mathcal{X}_m \to \mathcal{X}_M$, and let $\overline{x}_1, \overline{x}_2 \in \mathcal{X}_n$ be such that

$$\overline{x}_1 \neq \overline{x}_2,$$

$$p_n(\overline{x}_1) = p_n(\overline{x}_2) = x, \tag{4.6}$$

$$a_n(\overline{x}_1) \geq \varepsilon; \quad a_n(\overline{x}_2) \geq \varepsilon.$$

From (4.4) it turns out

$$a_M(x) = \sum_{\overline{x} \in p_n^{-1}(x)} a_n(\overline{x}),$$

$$b_M(x) = \sum_{\overline{x} \in p_n^{-1}(x)} b_n(\overline{x}).$$

From the above equation and $a_n^2 \geq b_n$ it turns out

$$a_M^2(x) = \sum_{\overline{x} \in p_n^{-1}(x)} a_n^2(\overline{x}) + \sum_{(\overline{x}',\overline{x}'') \in p_n^{-1}(x) \times p_n^{-1}(x)} a_n(\overline{x}') a_n(\overline{x}'') \geq$$

$$\geq \sum_{\overline{x} \in p_n^{-1}(x)} b_n(\overline{x}) + a_n(\overline{x}_1) a_n(\overline{x}_2) + a_n(\overline{x}_2) a_n(\overline{x}_1) =$$

$$= b_M(x) + 2a_n(\overline{x}_1) a_n(\overline{x}_2).$$

31
Taking into account \(a_n (\bar{x}_1) \geq \epsilon, a_n (\bar{x}_2) \geq \epsilon \) one has
\[
a^2_M (x) - b_M (x) \geq 2 \epsilon^2,
\]
\[
\left\| a^2_M - b_M \right\| \geq 2 \epsilon^2.
\]
So (4.6) contradicts with (4.5), it follows that
\[
p_n (\bar{x}_1) = p_n (\bar{x}_2) = x \quad \& \quad a_n (\bar{x}_1) \geq \epsilon \quad \& \quad a_n (\bar{x}_2) \geq \epsilon \Rightarrow \bar{x}_1 = \bar{x}_2.
\]
If \(f_\epsilon \) is given by (3.2) and
\[
c_n = \sum g \in \ker (\hat{G} \to G_n) g f_\epsilon (a)
\]
then
\[
\text{supp} \, c_n = \left\{ x \in X_n \mid \inf_{m > n} \max_{\bar{x} \in \pi_n^M (x)} a_m (\bar{x}) \geq \epsilon \right\}
\]
\[
= \left\{ x \in X_n \mid \exists \bar{x} \in X; \pi_n (\bar{x}) = x \quad \& \quad f (\bar{x}) \geq \epsilon \right\}.
\]
Indeed \(f_\epsilon (a) \) as a functional on \(C_0 (X) \) is represented by the following function
\[
f_\epsilon : X \to \mathbb{R},
\]
\[
\bar{x} \mapsto f_\epsilon (f (\bar{x})).
\]
From \(\bar{x} \in \text{supp} \, c_n \) it turns out \(a_n (\bar{x}) \geq \epsilon \) and taking into account (4.7) one concludes that the restriction \(\pi^M_n |_{\text{supp} \, c_n} \) is an injective map. Clearly \(\pi^M_n (\text{supp} \, c_n) = \text{supp} \, c_M \), so there is a bijection \(\text{supp} \, c_n \xrightarrow{\approx} \text{supp} \, c_M \). The map \(\pi^M_n \) is a covering and it is known [15] that any covering is an open map. Any bijective open map is a homeomorphism, hence one has a sequence of homeomorphisms
\[
\text{supp} \, c_M \leftarrow \ldots \leftarrow \text{supp} \, c_n \leftarrow \ldots
\]
If \(\mathcal{U} \subset X \) is given by
\[
\mathcal{U} = \bigcap_{n=M}^{\infty} \pi_n^{-1} (\text{supp} \, c_n)
\]
then from (4.8) it turns out that \(\pi_M \) homeomorphically maps \(\mathcal{U} \) onto \(\text{supp} \, c_M \). Moreover following condition holds
\[
f_\epsilon (\bar{a}) (\bar{x}) = \begin{cases} c_M (\pi_M (\bar{x})) & \bar{x} \in \mathcal{U} \\ 0 & \bar{x} \notin \mathcal{U} \end{cases}.
\]
From the above equation it follows that \(f_\epsilon (a) \) is a continuous function, i.e. \(f_\epsilon (a) \in C_b (X) \)
From the Definition [1.31] it turns out \(D = \{ x \in X_M \mid a_M (x) \geq \epsilon \} \) is compact, therefore the closed subset \(\text{supp} \, c_M \subset D \) is compact, hence \(\overline{\mathcal{U}} = \text{supp} \, f_\epsilon (a) \approx \text{supp} \, c_M \) is also compact. It turns out \(f_\epsilon (a) \in C_c (X) \). From \(\| f_\epsilon (a) - \bar{a} \| \leq \epsilon \) it follows that \(\bar{a} = \lim_{\epsilon \to 0} f_\epsilon (a) \) and from the Definition [1.30] it turns out \(\bar{a} \in C_0 (X) \).
Corollary 4.11. If $\mathcal{S}_{C_0(\mathcal{X})} = \{C_0(\mathcal{X}_0) \to ... \to C_0(\mathcal{X}_n) \to ...\}$ and $\bar{\mathcal{A}}$ is a disconnected inverse noncommutative limit of $\downarrow \mathcal{S}_{C_0(\mathcal{X})}$ then following conditions hold:

(i) Any special element $\bar{a} \in C_0(\mathcal{X})''$ of $\mathcal{S}_{C_0(\mathcal{X})}$ lies in $C_0(\mathcal{X})$, i.e. $\bar{a} \in C_0(\mathcal{X})$.

(ii) $C_0(\mathcal{X}) \subset \bar{\mathcal{A}}$.

Proof. (i) Let $\{e_\lambda \in C_0(\mathcal{X})\}_{\lambda \in \Lambda}$ be an approximate unit of $C_0(\mathcal{X})$. From the Definition 3.5 it follows that $\overline{b_\lambda} = e_\lambda \bar{a} e_\lambda$ satisfies to conditions of the Lemma 4.10. Otherwise from the Lemma 4.10 it turns out $\overline{b_\lambda} \in C_0(\mathcal{X})$. From the C^*-norm limit $\lim_{\lambda \in \Lambda} \overline{b_\lambda} = \bar{a}$ it follows that $\bar{a} \in C_0(\mathcal{X})$.

(ii) Follows from (i) and the Definitions 3.5, 3.10.

4.12. Let $\bar{\mathcal{X}} \subset \mathcal{X}$ be a connected component of \mathcal{X} and suppose that $G \subset G \left(\lim_{\leftarrow} C_0(\mathcal{X}_n) \mid C_0(\mathcal{X}) \right)$ is the maximal among subgroups G' such that $G' \bar{\mathcal{X}} = \bar{\mathcal{X}}$. If $J \subset \hat{G}$ is a set of representatives of \hat{G} / G then from the (1.2) it follows that

$$\bar{\mathcal{X}} = \bigsqcup_{g \in J} g \bar{\mathcal{X}}$$

and $C_0(\mathcal{X})$ is a C^*-norm completion of the direct sum

$$\bigoplus_{g \in J} C_0(g \bar{\mathcal{X}}). \quad (4.9)$$

Theorem 4.13. If $\mathcal{S}_\mathcal{X} = \{\mathcal{X} = \mathcal{X}_0 \leftarrow ... \leftarrow \mathcal{X}_n \leftarrow ...\} \in \mathfrak{S}\text{InTop}$ and $\mathcal{S}_{C_0(\mathcal{X})} = \{C_0(\mathcal{X}) = C_0(\mathcal{X}_0) \to ... \to C_0(\mathcal{X}_n) \to ...\} \in \mathfrak{S}\text{InAlg}$ is an algebraical finite covering sequence then following conditions hold:

(i) $\mathcal{S}_{C_0(\mathcal{X})}$ is good,

(ii) There are isomorphisms:

- $\lim \downarrow \mathcal{S}_{C_0(\mathcal{X})} \approx C_0 \left(\lim \downarrow \mathcal{S}_\mathcal{X} \right)$;
- $G \left(\lim \downarrow \mathcal{S}_{C_0(\mathcal{X})} \mid C_0(\mathcal{X}) \right) \approx G \left(\lim \downarrow \mathcal{S}_\mathcal{X} \mid \mathcal{X} \right)$.

Proof. The proof of this theorem uses a following notation:

- The topological inverse limit $\bar{\mathcal{X}} = \lim \downarrow \mathcal{S}_\mathcal{X}$;
- The limit in the category of spaces and continuous maps $\bar{\mathcal{X}} = \lim_{\rightarrow} \mathcal{X}_n$.
• The disconnected covering space \(\overline{X} \) of \(\mathcal{G}_X \);
• The disconnected covering algebra \(\mathcal{A} \) of \(\mathcal{G}_{C_0(X)} \);
• A connected component \(\tilde{A} \subset \mathcal{A} \);
• The disconnected \(G_X = \lim_{\leftarrow} (X_n | X) \) and the connected \(\mathcal{G}_X = \mathcal{G} \left(\overline{X} | X \right) = \mathcal{G} \left(\lim_{\leftarrow} \mathcal{G}_X | X \right) \) covering groups of \(\mathcal{G}_X \);
• The disconnected \(G_{C_0(X)} = \lim_{\leftarrow} (C_0(X_n) | C_0(X)) \) and \(\tilde{A} \)-invariant group \(G_A \).

From the Corollary 4.9 it follows that \(\mathcal{A} \subset C_0(X) \). From the Corollary 4.11 it turns out \(C_0(X) \subset A \), hence \(A = C_0(X) \). If \(J \subset G_X \) is a set of representatives of \(G_X / G(\tilde{X} | X) \) then \(\overline{X} = \bigsqcup_{g \in J} g\tilde{X} \) is the disconnected union of connected homeomorphic spaces, i.e. \(\overline{X} \approx \tilde{X} \).

(i) We need check (a) - (c) of the Definition 3.13. \(A = C_0(X) \) is the \(C^* \)-norm completion of the algebraical the direct sum (4.9). Any maximal irreducible subalgebra of \(A \) is isomorphic to \(C_0(\tilde{X}) \). The map \(\tilde{X} \to X_n \) is a covering for any \(n \in \mathbb{N} \), it turns out \(C_0(X_n) \hookrightarrow C_b(\tilde{X}) = M(C_0(\tilde{X})) \) is injective \(*\)-homomorphism. It follows that the natural \(*\)-homomorphism \(C_0(\tilde{X}) = \lim_{n \to \infty} C_0(X_n) \hookrightarrow C_b(\tilde{X}) = M(C_0(\tilde{X})) \) is injective, i.e. the condition (a) holds. The algebraic direct sum \(\bigoplus_{g \in J} gC_0(X) \) is is a dense subalgebra of \(\mathcal{A} \), i.e. condition (b) holds. The homomorphism \(G(\tilde{X} | X) \to G(X_n | X) \) is surjective for any \(n \in \mathbb{N} \). From the following isomorphisms

\[
G_A \cong G(\tilde{X} | X), \\
G(C_0(X_n) | C_0(X)) \cong G(X_n | X),
\]

it turns out that \(G_A \to G(C_0(X_n) | C_0(X)) \) is surjective, i.e. condition (c) holds.

(ii) From the proof of (i) it turns out

\[
\lim_{\leftarrow} \mathcal{G}_X = \tilde{X}; \quad \tilde{A} = C_0(\tilde{X}), \\
\lim_{\leftarrow} \mathcal{G}_{C_0(X)} = \tilde{A} = C_0(\tilde{X}) = C_0(\lim_{\leftarrow} \mathcal{G}_X), \\
G(\lim_{\leftarrow} \mathcal{G}_X | X) = G_X = G_A = G(\lim_{\leftarrow} \mathcal{G}_{C_0(X)} | C_0(X)).
\]

\(\square \)
5 Continuous trace C^*-algebras and their coverings

Let A be a C^*-algebra. For each positive $x \in A_+$ and irreducible representation $\pi : A \to B(\mathcal{H})$ the (canonical) trace of $\pi(x)$ depends only on the equivalence class of π, so that we may define a function $\hat{x} : \hat{A} \to [0,\infty]$ by $\hat{x}(t) = \text{Tr}(\pi(x))$ where \hat{A} is the space of equivalence classes of irreducible representations. From Proposition 4.4.9 [13] it follows that \hat{x} is lower semicontinuous function in the Jacobson topology.

Definition 5.1. [13] We say that element $x \in A$ has continuous trace if $\hat{x} \in C_b(\hat{A})$. We say that C^*-algebra has continuous trace if a set of elements with continuous trace is dense in A.

Definition 5.2. [13] A positive element in C^*-algebra A is Abelian if subalgebra $xAx \subset A$ is commutative.

Definition 5.3. [13] We say that a C^*-algebra A is of type I if each non-zero quotient of A contains a non-zero Abelian element. If A is even generated (as C^*-algebra) by its Abelian elements we say that it is of type I_0.

Proposition 5.4. [13] A positive element x in C^*-algebra A is Abelian if $\dim \pi(x) \leq 1$ for every irreducible representation $\pi : A \to B(\mathcal{H})$.

Theorem 5.5. [13] For each C^*-algebra A there is a dense hereditary ideal $K(A)$, which is minimal among dense ideals.

Definition 5.6. The ideal $K(A)$ from the theorem 5.5 is said to be the Pedersen ideal of A. Henceforth Pedersen ideal shall be denoted by $K(A)$.

Proposition 5.7. [13] Let A be a C^*-algebra with continuous trace. Then

(i) A is of type I_0;

(ii) \hat{A} is a locally compact Hausdorff space;

(iii) For each $t \in \hat{A}$ there is an Abelian element $x \in A$ such that $\hat{x} \in K(\hat{A})$ and $\hat{x}(t) = 1$.

The last condition is sufficient for A to have continuous trace.

Remark 5.8. From [6], Proposition 10, II.9 it follows that a continuous trace C^*-algebra A is always a CCR-algebra, i.e. for every irreducible representation $\rho : A \to B(H)$ following condition hold

$$\rho(A) \approx K$$ (5.1)

Theorem 5.9. (Dixmier–Douady). Any stable separable algebra A of continuous trace over a second-countable locally compact Hausdorff space \mathcal{X} is isomorphic to $\Gamma_0(\mathcal{X})$, the sections vanishing at infinity of a locally trivial bundle of algebras over \mathcal{X}, with fibres K and structure group $\text{Aut}(K) = PU = U/T$. Classes of such bundles are in natural bijection with the Čech cohomology group $H_3(\mathcal{X},\mathbb{Z})$. The 3-cohomology class $\delta(A)$ attached to (the stabilisation of) a continuous-trace algebra A is called its Dixmier–Douady class.
Remark 5.10. Any commutative C^*-algebra has continuous trace. So described in the Section 4 case is a special case of described in the Section 5 construction.

5.11. For any $x \in \hat{A}$ denote by $\rho_x : A \to B(H)$ a representation which corresponds to x. For any $a \in A$ denote by $\text{supp } a \subset \hat{A}$ the closure of the set $\text{supp } a \overset{\text{def}}{=} \{ x \in \hat{A} | \rho_x(a) \neq 0 \}$.

5.1 Basic construction

Let A be a continuous trace C^*-algebra such that the spectrum $\hat{A} = X$ of is a second-countable locally compact Hausdorff space. For any open subset $U \subset X$ denote by $A(U) = \{ a \in A | \rho_x(a) = 0; \forall x \in X \setminus U \}$

where ρ_x is an irreducible representation which corresponds to $x \in X$. If $V \subset U$ then there is a natural inclusion $A(V) \hookrightarrow A(U)$. Let $\pi : \tilde{X} \to X$ be a topological covering. Let $\tilde{U} \subset \tilde{X}$ be a connected open subset homeomorphically mapped onto $U = \pi(\tilde{U})$, and suppose that the closure of \tilde{U} is compact. Denote by $\tilde{A}(\tilde{U})$ the algebra such that $\tilde{A}(\tilde{U}) \cong A(U)$. If $\tilde{V} \subset \tilde{U}$ and $V = \pi(\tilde{V})$ then the inclusion $A(\tilde{V}) \hookrightarrow A(\tilde{U})$ naturally induces an inclusion $i_{\tilde{V}} : \tilde{A}(\tilde{V}) \hookrightarrow \tilde{A}(\tilde{U})$. Let us consider \tilde{U} as indexes, and let

$$A' = \bigoplus_{\tilde{U}} \tilde{A}(\tilde{U}) / I,$$

where \oplus means the algebraic direct sum of C^*-algebras and I is the two sided ideal generated by elements $\tilde{1}_{\tilde{U}_1 \cap \tilde{U}_2}(a) - \tilde{1}_{\tilde{U}_1 \cap \tilde{U}_2}(a)$, for any $a \in A(\tilde{U}_1 \cap \tilde{U}_2)$. There is the natural C^*-norm of the direct sum on $\bigoplus_{\tilde{U}} \tilde{A}(\tilde{U})$ and let us define the norm on $A' = \bigoplus_{\tilde{U}} \tilde{A}(\tilde{U}) / I$ given by

$$\|a + I\| = \inf_{a' \in I} \|a + a'\|; \forall (a + I) \in \bigoplus_{\tilde{U}} \tilde{A}(\tilde{U}) / I \quad (5.2)$$

Definition 5.12. If $A(\tilde{X})$ is completion of A' with respect to the given by (5.2) then we say that $A(\tilde{X})$ is an induced by $\pi : \tilde{X} \to X$ covering of A.

The action of $G(\tilde{X} | X)$ on \tilde{X} induces an action of $G(\tilde{X} | X)$ on A', so there is a natural action of $G(\tilde{X} | X)$ on $A(\tilde{X})$.

Definition 5.13. We say that the action of $G(\tilde{X} | X)$ on \tilde{X} induces the action of $G(\tilde{X} | X)$ on $A(\tilde{X})$.
From the Proposition 5.7 it follows that $A \left(\tilde{X} \right)$ is a continuous trace C^*-algebra, and the spectrum of $A \left(\tilde{X} \right)$ coincides with \tilde{X}. If $G = G \left(\tilde{X} \mid X \right)$ is a finite group then

$$A = A \left(\tilde{X} \right)^G$$

and the above equation induces an injective *-homomorphism $A \hookrightarrow A \left(\tilde{X} \right)$.

Lemma 5.14. Let A be a continuous trace C^*-algebra, and let $\mathcal{X} = \hat{A}$ be a spectrum of A. Suppose that \mathcal{X} is a second-countable locally compact Hausdorff space and B is a C^*-algebra such that

- $A \subset B \subset A''$,
- For any $b \in B_+$ and $x_0 \in \mathcal{X}$ such that $\rho_{x_0}(b) \neq 0$ there is an open neighborhood $W \subset \mathcal{X}$ of x_0 and an Abelian $z \in A$ such that

$$\text{supp } z \subset W,$$

$$\text{tr } (zbz) \in C_0(\mathcal{X}),$$

$$\text{tr } (zbz)(x_0) \neq 0.$$

Then $B = A$.

Proof. The spectrum \hat{B} of B coincides with the spectrum of A as a set. Let $V \subset \mathcal{X}$ be a closed subset with respect to topology of \hat{B}. There is a closed ideal $I \subset B$ which corresponds to V. Denote by I_+ the positive part of I. For any $x_0 \in \mathcal{X}\setminus V$ there is $b \in I_+$ such that $\rho_{x_0}(b) \neq 0$. There is an Abelian element $z \in A$ such that $\text{tr}(\rho_{x_0}(zbz)) \neq 0$. If $W \subset \mathcal{X}$ is an open neighborhood of x_0 then from the Corollary 1.33 it follows that there is a bounded positive continuous function $a : \mathcal{X} \to \mathbb{R}$ such that $a(x_0) \neq 0$ and $a(\mathcal{X}\setminus W) = \{0\}$. If $z = az$ then z is an Abelian document, $\text{tr}(zbz)(x_0) = (\text{tr}(a^2)(x_0))a^2(x_0) \neq 0$ and $\text{supp } z \subset W$. From $\text{tr}(zbz) \in C_0(\mathcal{X})$ it turns out that there is an open (with respect to topology of \hat{A}) neighborhood U of x_0 such that $\text{tr}(\rho_{x}(zbz)) \neq 0$ for any $x \in U$, i.e. $V \cap U = \emptyset$. It follows that V is a closed subset with respect to the topology of \hat{A}. Hence there is a homeomorphism $\hat{A} \approx \hat{B}$. Below we apply the method of proof of the Theorem 6.1.11 [13]. Let us consider the set M of elements in B_+ with continuous trace, M is hereditary and the closure of M is the positive part of an ideal J of B. However for any $x \in \mathcal{X} = \hat{B}$ there is an Abelian $a \in K(A)$ such that $\text{tr}(\rho_{x}(a)) \neq 0$. It turns out J is not contained in any primitive ideal of B, hence $J = B$. It turns out B has continuous trace. From this fact it turns out $\rho_{x}(A) = \rho_{x}(B) \approx \mathcal{K}$ for any $x \in \mathcal{X}$. Taking into account $\rho_{x}(A) = \rho_{x}(B)$, homeomorphism $\mathcal{A} \approx \hat{B}$ and the Theorem 5.9 one has $B = A$.

5.2 Finite-fold coverings

If $\pi : \tilde{\mathcal{X}} \to \mathcal{X}$ is a finite-fold covering, such that \mathcal{X} and $\tilde{\mathcal{X}}$ are compact Hausdorff spaces, then there is a finite family $\{\mathcal{U}_i \subset \mathcal{X}\}_{i \in I_0}$ of connected open subsets of \mathcal{X} evenly covered
by \(\pi \) such that \(\mathcal{X} = \bigcup_{i \in I_0} U_i \). There is a partition of unity subordinated to \(\{U_i\} \), i.e.

\[
1_{C(\mathcal{X})} = \sum_{i \in I_0} a_i
\]

where \(a_i \in C(\mathcal{X})_+ \) is such that \(\text{supp } a_i \subset U_i \). Denote by \(e_i = \sqrt{a_i} \in C(\mathcal{X})_+ \). For any \(i \in I_0 \) we select \(\tilde{U}_i \subset \tilde{\mathcal{X}} \) such that \(\tilde{U}_i \) is homeomorphically mapped onto \(U_i \). If \(\tilde{e}_i \in C(\tilde{\mathcal{X}}) \) is given by

\[
\tilde{e}_i(\tilde{x}) = \begin{cases}
 e_i(\pi(\tilde{x})) & \tilde{x} \in \tilde{U}_i \\
 0 & \tilde{x} \notin \tilde{U}_i
\end{cases}
\]

and \(G = G\left(\tilde{\mathcal{X}} \mid \mathcal{X}\right) \) then

\[
1_{C(\tilde{\mathcal{X}})} = \sum_{(g,i) \in G \times I_0} g\tilde{e}_i^2,
\]

and \(G = G\left(\tilde{\mathcal{X}} \mid \mathcal{X}\right) \) then

If \(I = G \times I_0 \) and \(\tilde{e}_{(g,i)} = g\tilde{e}_i \) the from the above equation it turns out

\[
1_{C(\tilde{\mathcal{X}})} = \sum_{i \in I} \tilde{e}_i(\tilde{e}_i)
\]

where \(\tilde{e}_i(\tilde{e}_i) \) means a compact operator induced by the C*-Hilbert module structure given by (2.1).

Proposition 5.15. If \(B \) is a C*-subalgebra of \(A \) containing an approximate unit for \(A \), then \(M(B) \subset M(A) \) (regarding \(B'' \) as a subalgebra of \(A'' \)).

Lemma 5.16. Let \(A \) be a continuous trace algebra, and let \(\hat{\mathcal{X}} = \mathcal{X} \) be the spectrum of \(A \). Suppose that \(\mathcal{X} \) is a locally compact second-countable Hausdorff space, and let \(\pi : \tilde{\mathcal{X}} \to \mathcal{X} \) be a finite-fold covering. There is the natural *-isomorphism \(M(A) \cong M\left(\tilde{\mathcal{X}} \mid \mathcal{X}\right) \) \(G \) of multiplier algebras.

Proof. For any \(x \in \mathcal{X} \) there is an open neighborhood \(U \) such that \(A(U) \cong C_0(U) \otimes \mathcal{K} \). Since \(\mathcal{X} \) is second-countable there is an enumerable family \(\{U_k\}_{k \in \mathbb{N}} \) such that \(A(U_k) \cong C_0(U_k) \otimes \mathcal{K} \) for any \(k \in \mathbb{N} \). There is a family \(\{a_k \in C_0(\mathcal{X})_+\}_{k \in \mathbb{N}} \) such that

- \(\text{supp } a_k \subset U_k \),
- \(1_{C_b(\mathcal{X})} = \sum_{k=0}^{\infty} a_k \)

where sum of the series means the strict convergence (cf. Definition 1.35).

There is an enumerable family \(\{e_k \in \mathcal{K}\}_{k \in \mathbb{N}} \) of rank-one positive mutually orthogonal operators such that

\[
1_{M(\mathcal{K})} = \sum_{k=0}^{\infty} e_k
\]
where above sum assumes strict topology (cf. Definition 1.35). The family of products \(\{ u_{jk} = a_j \otimes e_k \}_{j,k \in \mathbb{N}} \) is enumerable and let us introduce an enumeration of \(\{ u_{jk} \}_{j,k \in \mathbb{N}} \), i.e. \(\{ u_{jk} \}_{j,k \in \mathbb{N}} = \{ u_p \}_{p \in \mathbb{N}} \). From (5.5) and (5.6) it follows that

\[
1_{M(A)} = \sum_{j=1}^{\infty} u_{jk} = \sum_{p=0}^{\infty} u_p. \tag{5.7}
\]

If \(h \in A \) is given by

\[
h = \sum_{p=0}^{\infty} \frac{1}{2^p} u_p
\]

and \(\tau : A \to \mathbb{C} \) is a state such that \(\tau (h) = 0 \) then from \(u_p > 0 \) for any \(p \in \mathbb{N} \) it follows that \(\tau (u_p) = 0 \) for any \(p \in \mathbb{N} \). However from (5.7) it turns out

\[
1 = \tau \left(1_{M(A)} \right) = \tau \left(\sum_{p=0}^{\infty} u_p \right) = \sum_{p=0}^{\infty} \tau (u_p),
\]

and above equation contradicts with \(\tau (u_p) = 0 \) for any \(p \in \mathbb{N} \). It follows that \(\tau (h) \neq 0 \) for any state \(\tau \), i.e. \(h \) is strictly positive element of \(A \). Similarly one can prove that \(h \) is strictly positive element of \(\tilde{A} (\tilde{X}) \) because

\[
1_{M(A(\tilde{X}))} = \sum_{p=0}^{\infty} u_p.
\]

From the Proposition 5.15 it follows that there is the natural injective *-homomorphism \(f : M(A) \hookrightarrow M \left(\tilde{A} \left(\tilde{X} \right) \right) \). Clearly \(gf(a) = f(ga) = f(a) \) for any \(a \in A \) and \(g \in G \), it follows that \(f \left(M(A) \right) \subset M \left(\tilde{A} \right)^G \), or equivalently \(M(A) \subset M \left(\tilde{A} \right)^G \). Otherwise from the Lemma 2.18 one has \(M \left(\tilde{A} \right)^G \subset M(A) \). Taking into account mutually inverse inclusions \(M \left(\tilde{A} \right)^G \subset M(A) \) and \(M(A) \subset M \left(\tilde{A} \right)^G \) we conclude that

\[
M(A) \cong M \left(A \left(\tilde{X} \right) \right)^G.
\]

Lemma 5.17. Let \(A \) be a continuous trace algebra, and let \(\hat{A} = \mathfrak{X} \) be the spectrum of \(A \). Suppose that \(\mathfrak{X} \) is a locally compact second-countable Hausdorff space, and let \(\pi : \tilde{X} \to \mathfrak{X} \) be a finite-fold covering with compactification. Then the triple \(\left(A, A \left(\tilde{X} \right), G = G \left(\tilde{X} \mid \mathfrak{X} \right) \right) \) is a finite-fold noncommutative covering with compactification.
Proof. We need check conditions (a) - (c) of the Definition \[2.4\]

(a) There is the action of \(G\) on \(A \left(\tilde{X}\right)\) induced by the action of \(G\) on \(\tilde{X}\). From \[5.3\] it turns out that \(A = A \left(\tilde{X}\right)^G\) and there is an injective *-homomorphism \(A \hookrightarrow A \left(\tilde{X}\right)^G\). Denote by \(M\left(A\right)\) and \(M\left(A \left(\tilde{X}\right)\right)\) multiplier algebras of \(A\) and \(A \left(\tilde{X}\right)\). Denote by \(\mathcal{X} \rightarrow \mathcal{Y}\), \(\tilde{X} \rightarrow \tilde{Y}\) compactifications such that \(\tilde{\pi} : \tilde{Y} \rightarrow \mathcal{Y}\) is a (topological) finite covering and \(\pi = \tilde{\pi}|_{\tilde{X}}\). From \(C_b\left(\mathcal{X}\right) \subset M\left(A\right)\), \(C_b\left(\tilde{X}\right) \subset M\left(A \left(\tilde{X}\right)\right)\) and \(C\left(\mathcal{Y}\right) \subset C_b\left(\mathcal{X}\right)\), \(C\left(\tilde{Y}\right) \subset C_b\left(\tilde{X}\right)\) it follows that \(C\left(\mathcal{Y}\right) \subset M\left(A\right)\), \(C\left(\tilde{Y}\right) \subset M\left(A \left(\tilde{X}\right)\right)\). If \(B = C\left(\mathcal{Y}\right)M\left(A\right)\) and \(\tilde{B} = C\left(\tilde{Y}\right)M\left(A \left(\tilde{X}\right)\right)\) then \(\tilde{A}\) (resp. \(A \left(\tilde{X}\right)\)) is an essential ideal of \(\tilde{B}\) (resp. \(B\)). Clearly \(A = \tilde{B} \cap A \left(\tilde{X}\right)\).

(b) Since \(G\tilde{Y} = \tilde{Y}\) the action \(G \times M\left(A \left(\tilde{X}\right)\right) \rightarrow M\left(A \left(\tilde{X}\right)^G\right)\) induces an action \(G \times \tilde{B} \rightarrow \tilde{B}\). From the Lemma \[5.16\] on has the natural *-isomorphism \(M\left(A \left(\tilde{X}\right)^G\right) \cong M\left(A\right)\). It follows that \(B = C\left(\mathcal{Y}\right)M\left(A\right) \cong C\left(\mathcal{Y}\right)M\left(A \left(\tilde{X}\right)\right)^G = \tilde{B}^G\). From \[5.4\] it turns out that there is a finite family \(\{e_i \in C\left(\mathcal{Y}\right)\}_{i \in I}\) such that

\[
1_{C\left(\mathcal{Y}\right)} = 1_{\tilde{B}} = \sum_{i \in I} e_i b_i,
\]

It turns out that any \(\bar{b} \in \tilde{B}\) is given by

\[
\bar{b} = \sum_{i \in I} \bar{e}_i b_i,
\]

i.e. \(\tilde{B}\) is a finitely generated (by \(\{e_i\}_{i \in I}\)) right \(B\)-module. From the Kasparov Stabilization Theorem \[3\] it turns out that \(\tilde{B}\) is a projective \(B\)-module. So \(\left(\tilde{B}, \tilde{B}, G\right)\) is an unital finite-fold noncommutative covering.

(c) Follows from \(G\tilde{X} = \tilde{X}\). \(\square\)

Theorem 5.18. Let \(A\) be a continuous trace algebra, and let \(\tilde{A} = \tilde{X}\) be the spectrum of \(A\). Suppose that \(\tilde{X}\) is a locally compact second-countable Hausdorff space, and let \(\pi : \tilde{X} \rightarrow X\) be a finite-fold covering. Then the triple \((A, A\left(\tilde{X}\right), G = G \left(\tilde{X} \mid X\right))\) is a finite-fold noncommutative covering.

Proof. We need check (a), (b) of the Definition \[2.7\]

(a) Follows from \(\mathcal{X} = \tilde{X}/G\).

(b) Let us consider a family \(\{U_\lambda \subset \mathcal{X}\}_{\lambda \in \Lambda}\) of open sets such that

- \(\mathcal{X} = \bigcup_{\lambda \in \Lambda} U_\lambda\),
- The closure \(\overline{U_\lambda}\) of \(U_\lambda\) in \(\mathcal{X}\) is compact \(\forall \lambda \in \Lambda\).
Clearly \(\pi^{-1} (\mathcal{U}_\lambda) \to \mathcal{U}_\lambda \) is a covering, so \(\pi^{-1} (\mathcal{U}_\lambda) \to \mathcal{U}_\lambda \) is a covering with compactification. If \(\bar{I}_\lambda \equiv A (\pi^{-1} (\mathcal{U}_\lambda)) \subset A (\bar{X}) \) and \(I_\lambda = \bar{I}_\lambda \cap A \) then from \(G\pi^{-1} (\mathcal{U}_\lambda) = \pi^{-1} (\mathcal{U}_\lambda) \) it follows that

\[
G\bar{I}_\lambda = \bar{I}_\lambda, \quad I_\lambda = A (\mathcal{U}_\lambda),
\]

i.e. \(\bar{I}_\lambda \) satisfies to \((2.3) \). From the Lemma \(5.17 \) it follows that there is a finite-fold non-commutative covering with compactification \((I_\lambda, \bar{I}_\lambda, G) = (A (\mathcal{U}_\lambda), A (\pi^{-1} (\mathcal{U}_\lambda)), G) \). From the Definition \(5.12 \) and \(X = \bigcup_{\lambda \in \Lambda} \mathcal{U}_\lambda \) it follows that \(\bigcup_{\lambda \in \Lambda} I_\lambda = \bigcup_{\lambda \in \Lambda} A (\mathcal{U}_\lambda) \) (resp. \(\bigcup_{\lambda \in \Lambda} \bar{I}_\lambda = \bigcup_{\lambda \in \Lambda} A (\pi^{-1} (\mathcal{U}_\lambda)) \)) is dense in \(A \) (resp. \(A (\bar{X}) \)).

5.3 Infinite coverings

Let \(A \) be a continuous trace \(C^* \)-algebra such that the spectrum \(\hat{A} = X \) of is a second-countable locally compact Hausdorff space. Suppose that

\[
\mathcal{S}_X = \{ X = X_0 \leftarrow ... \leftarrow X_n \leftarrow ... \}
\]

is a topological finite covering sequence. From the Theorem \(5.18 \) it turns out that

\[
\mathcal{S}_{A(X)} = \{ A = A (X_0) \to ... \to A (X_n) \to ... \}
\]

is an algebraical finite covering sequence. If \(\hat{A} = \varinjlim A (X_n) \) then from the Theorem \(4.4 \) it follows that there is the spectrum of \(\hat{A} \) is homeomorphic to \(\hat{X} = \varprojlim X_n \).

Lemma 5.19. If \(\mathcal{S}_X = \{ X = X_0 \leftarrow ... \leftarrow X_n \leftarrow ... \} \in \mathcal{F}\mathcal{Top} \) and \(\bar{X} \) is disconnected inverse limit of \(\mathcal{S}_X \), then there is the natural inclusion of \(\hat{A}'' \to A (\bar{X})'' \) of von Neumann enveloping algebras.

Proof. Surjective maps \(\bar{X} \to X_n \) give injective \(*\)-homomorphisms \(A (X_n) \hookrightarrow M (A (\bar{X})) \), which induce the injective \(*\)-homomorphism \(\hat{A} \hookrightarrow M (A (\bar{X})) \). It turns out the injective \(*\)-homomorphism of von Neumann enveloping algebras \(\hat{A}'' \to A (\bar{X})'' \).

5.20. Denote by \(G_n = G (X_n \mid X) \) groups of covering transformations and \(\hat{G} = \varinjlim G_n \). Denote by \(\mathcal{P}_n : \bar{X} \to X_n, \pi^n : X_n \to X, \pi^m_n : X_m \to X_n (m > n) \) the natural covering projections.

Lemma 5.21. If \(\mathcal{U} \subset \bar{X} \) is an open subset mapped homeomorphically onto \(U \subset X \) then any positive element in \(\pi \in A (\mathcal{U})_+ \subset A (\bar{X})_+ \) is special.
Proof. If \(U_n = \pi_n (\overline{U}) \) then there is a *-isomorphism \(\overline{\varphi}_n : A (\overline{U}) \xrightarrow{\cong} A (U_n) \). For any \(n \in \mathbb{N}_0 \) and \(z \in A \) and \(f_\varepsilon \) given by (3.2)

\[
\begin{align*}
 a_n &= \sum_{g \in \ker (\hat{G} \to G_n)} g \overline{a} = \overline{\varphi}_n (\overline{a}) , \\
 b_n &= \sum_{g \in \ker (\hat{G} \to G_n)} g (z \overline{a} z^*) = z \overline{\varphi}_n (\overline{a}) z^* , \\
 c_n &= \sum_{g \in \ker (\hat{G} \to G_n)} g (z \overline{a} z^*)^2 = (z \overline{\varphi}_n (\overline{a}) z^*)^2 , \\
 d_n &= \sum_{g \in \ker (\hat{G} \to G_n)} g f_\varepsilon (z \overline{a} z^*) = f_\varepsilon (z \overline{\varphi}_n (\overline{a}) z^*) .
\end{align*}
\]

From the above equations it follows that \(a_n, b_n, c_n, d_n \in A (X_n) \) and \(b_n^2 = c_n \), i.e. \(\overline{a} \) satisfies to the Definition 3.5.

\[\square \]

Corollary 5.22. If \(\overline{A} \) is the disconnected inverse noncommutative limit of \(\mathcal{S}_A (X^\prime) \), then \(A (\overline{X}) \subset \overline{A} \).

Proof. From the Lemma 5.21 it turns out \(A (\overline{U}) \subset \overline{A} \). However \(A (\overline{X}) \) is the \(C^* \)-norm completion of its subalgebras \(A (\overline{U}) \subset A (\overline{X}) \).

\[\square \]

Lemma 5.23. If \(\overline{a} \in A (\overline{X})'' \) is a special element and \(z \in K (A) \) is an Abelian element then \(\overline{b} = \text{tr} (z \overline{a} z) \in C_0 (\overline{X}) \).

Proof. Any Abelian element is positive, hence \(z = z^* \). If \(f_\varepsilon \) is given by (3.2) and \(\overline{b} = z \overline{a} z \) then from (b) of the Definition 3.5 it turns out

\[
\begin{align*}
 b'_n &= \sum_{g \in \ker (\hat{G} \to G_n)} g \overline{b} \in A (X_n) , \\
 c'_n &= \sum_{g \in \ker (\hat{G} \to G_n)} g \overline{b}^2 \in A (X_n) , \\
 d'_n &= \sum_{g \in \ker (\hat{G} \to G_n)} g f_\varepsilon (\overline{b}) \in A (X_n) .
\end{align*}
\]

From \(z \in K (A) \) it turns out that \(\text{supp} \text{tr} (z) \) is compact. The map \(\pi_n : X_n \to X \) is a finite-fold covering, it turns out \(\pi_n^{-1} (\text{supp} \text{tr} (z)) \) is compact. If \(\text{supp} b'_n, \text{supp} c'_n, \text{supp} d'_n \subset \pi_n^{-1} (\text{supp} \text{tr} (z)) \) it turns out that all sets \(\text{supp} b'_n, \text{supp} c'_n, \text{supp} d'_n \) are compact. Taking into account that all \(b'_n, c'_n, d'_n \) are Abelian one has \(b'_n, c'_n, d'_n \in K (A (X_n)) \) where \(K (A (X_n)) \)
means the Pedersen ideal of $A (\mathcal{X}_n)$. It follows that
\[
b_n = \text{tr} (b'_n) = \sum_{g \in \ker (G \to G_n)} \text{tr} (g \overline{b'}) \in C_c (\mathcal{X}_n),
\]
\[
b_n^2 = \text{tr} \left(b_n^2 \right) = \text{tr} \left((b'_n)^2 \right) \in C_c (\mathcal{X}_n),
\]
\[
c_n = \text{tr} (c'_n) = \sum_{g \in \ker (G \to G_n)} \text{tr} (g \overline{b'}^2) = \sum_{g \in \ker (G \to G_n)} \text{tr} \left(g \overline{b'}^2 \right) \in C_c (\mathcal{X}_n),
\]
\[
d_n = \text{tr} (d'_n) = \sum_{g \in \ker (G \to G_n)} \text{tr} \left(\left(g f_\varepsilon \left(\overline{b'} \right) \right) \right) = \sum_{g \in \ker (G \to G_n)} f_\varepsilon \left(\text{tr} \left(g \overline{b'} \right) \right) \in C_c (\mathcal{X}_n).
\]

From the above equations it follows that b_n, c_n, d_n satisfy to the condition (a) of the Lemma 4.10. From the condition (c) the Definition 3.5 it follows that for any $\varepsilon > 0$ there is $N \in \mathbb{N}$ such that for any $n \geq N$ following condition holds
\[
\left\| b_n^2 - c'_n \right\| < \varepsilon. \tag{5.8}
\]

Both b'_n and c'_n are Abelian and the range projection of b'_n equals to the range projection of c'_n, i.e. $[b'_n] = [c'_n]$, it turns out
\[
\left\| b_n^2 - c_n \right\| = \left\| \text{tr} (b')^2 - \text{tr} (c') \right\| = \left\| b_n^2 - c'_n \right\|.
\]

From (5.8) it follows that $\left\| b_n^2 - c_n \right\| < \varepsilon$ for any $n \geq N$. It means that b_n and c_n satisfy to condition (b) of the Lemma 4.10. From the Lemma 4.10 it turns out that $\overline{b} = \text{tr} (z \overline{a} \overline{z}) \in C_0 (\overline{\mathcal{X}})$.

Lemma 5.24. If \overline{A} is the disconnected inverse noncommutative limit of $\downarrow \mathcal{S}_A (\mathcal{X})$, then $\overline{A} = A (\overline{\mathcal{X}})$.

Proof. From the Corollary 5.22 it follows that $A (\overline{\mathcal{X}}) \subset \overline{A}$. From the Corollary 3.7 it follows that
\[
A (\overline{\mathcal{X}}) \subset \overline{A} \subset A (\overline{\mathcal{X}})''. \tag{5.9}
\]

Let $\overline{\pi} : \overline{\mathcal{X}} \to \mathcal{X}$ and let $\overline{\pi} \in A (\overline{\mathcal{X}})''$. Let $\overline{x} \in \overline{\mathcal{X}}$ be such that $\rho_\pi (\overline{\pi}) \neq 0$ and let \overline{W} be an open neighborhood of x such that $\overline{\pi}$ homeomorphically maps \overline{W} onto $\mathcal{W} = \overline{\pi} (\overline{W})$. If $z \in K (A (\overline{\mathcal{X}}))$ is an Abelian element such that $\text{supp} \overline{z} \subset \overline{W}$ and $\rho_\pi (z \overline{\pi} \overline{z}) \neq 0$ then the element $\overline{z} = \sum_{g \in G} g \overline{z} \in A$ is Abelian and $\text{supp} \overline{z} \subset \mathcal{W}$. If $\overline{\pi}$ is special, then from the Lemma 5.23 it turns out that
\[
\text{tr} (z \overline{\pi} \overline{z}) \in C_0 (\overline{\mathcal{X}}).
\]

However from
\[
\rho_\pi (z \overline{\pi} \overline{z}) (\overline{\pi}) = \begin{cases}
\rho_\pi (z \overline{a} \overline{z}) & \overline{x} \in \overline{W} \\
0 & \overline{x} \notin \overline{W}
\end{cases}
\]

43
it turns out
\[
\begin{align*}
\text{tr} (\pi \varpi) &\in C_0 (\varpi), \\
\text{tr} (\pi \varpi) (x) &\neq 0.
\end{align*}
\] (5.10)

The set of special elements is dense in \(A \), it turns out that any \(a \in A \) satisfies to (5.10). Taking into account this fact and (5.9) it turns out

• \(A (\mathcal{X}) \subset A \subset A (\mathcal{X})'' \),

• For any \(\pi \in \overline{\mathcal{X}} \) and \(x \in \overline{\mathcal{X}} \) such that \(\rho (\pi) \neq 0 \) there is an open neighborhood \(\mathcal{W} \subset \overline{\mathcal{X}} \) of \(x \) and an Abelian \(\varpi \in A (\overline{\mathcal{X}}) \) such that

\[
\text{supp} \varpi \subset \mathcal{W},
\]

\[
\text{tr} (\pi \varpi) \in C_0 (\overline{\mathcal{X}}),
\]

\[
\text{tr} (\pi \varpi) (x) \neq 0.
\]

From the Lemma 5.14 it follows that \(A = A (\overline{\mathcal{X}}) \).

5.25. Let \(\overline{\mathcal{X}} \subset \overline{\mathcal{X}} \) be a connected component and let \(G \subset G \left(\lim \right. C_0 (\mathcal{X}_n) | C_0 (\mathcal{X}) \left. \right) \) be maximal subgroup among subgroups \(G' \subset G \left(\lim \right. C_0 (\mathcal{X}_n) | C_0 (\mathcal{X}) \left. \right) \) such that \(G' \overline{\mathcal{X}} = \overline{\mathcal{X}} \). If \(J \subset \hat{G} \) is a set of representatives of \(\hat{G} / G \) then from the (1.2) it follows that

\[
\overline{\mathcal{X}} = \bigcup_{g \in J} g \overline{\mathcal{X}}.
\]

and the algebraic direct sum
\[
\bigoplus_{g \in J} A (g \overline{\mathcal{X}}) \subset A (\overline{\mathcal{X}}).
\] (5.11)

is a dense subalgebra of \(A (\overline{\mathcal{X}}) \).

Theorem 5.26. Let \(A \) be \(C^* \)-algebra of continuous trace, and let \(\mathcal{X} \) be the spectrum of \(A \). Let

\[
\mathcal{S}_X = \{ \mathcal{X} = \mathcal{X}_0 \leftarrow ... \leftarrow \mathcal{X}_n \leftarrow ... \} \in \text{FinTop}
\]

be a topological finite covering sequence, and let

\[
\mathcal{S}_{A(\mathcal{X})} = \{ A = A (\mathcal{X}_0) \rightarrow ... \rightarrow A (\mathcal{X}_n) \rightarrow ... \} \in \text{FinAlg}
\]

be an algebraical finite covering sequence. Following conditions hold:

(i) \(\mathcal{S}_{A(\mathcal{X})} \) is good,

(ii) There are isomorphisms:

\[
\begin{align*}
\lim \downarrow \mathcal{S}_{A(\mathcal{X})} &\approx A \left(\lim \downarrow \mathcal{S}_X \right), \\
G \left(\lim \downarrow \mathcal{S}_{A(\mathcal{X})} \mid A \right) &\approx G \left(\lim \downarrow \mathcal{S}_X \mid X \right).
\end{align*}
\]

Proof. Similar to the proof of the Theorem 4.13.
6 Noncommutative tori and their coverings

6.1 Fourier transformation

There is a norm on \mathbb{Z}^n given by

$$\|(k_1, \ldots, k_n)\| = \sqrt{k_1^2 + \ldots + k_n^2}. \quad (6.1)$$

The space of complex-valued Schwartz functions on \mathbb{Z}^n is given by

$$S(\mathbb{Z}^n) = \left\{ a = \{a_k\}_{k \in \mathbb{Z}^n} \in C^{\infty}(\mathbb{Z}^n) \mid \sup_{k \in \mathbb{Z}^n} (1 + \|k\|^s |a_k| < \infty, \forall s \in \mathbb{N}\right\}. \quad (6.3)$$

Let T^n be an ordinary n-torus. We will often use real coordinates for T^n, that is, view T^n as $\mathbb{R}^n/\mathbb{Z}^n$. Let $C^\infty(T^n)$ be an algebra of infinitely differentiable complex-valued functions on T^n. There is the bijective Fourier transformations $\mathcal{F}_T : C^\infty(T^n) \xrightarrow{\approx} S(\mathbb{Z}^n); f \mapsto \hat{f}$ given by

$$\hat{f}(p) = \mathcal{F}_T(f)(p) = \int_{T^n} e^{-2\pi i x \cdot p} f(x) \, dx \quad (6.2)$$

where dx is induced by the Lebesgue measure on \mathbb{R}^n and \cdot is the scalar product on the Euclidean space \mathbb{R}^n. The Fourier transformation carries multiplication to convolution, i.e.

$$\hat{f} \hat{g}(p) = \sum_{r+s=p} \hat{f}(r) \hat{g}(s).$$

The inverse Fourier transformation $\mathcal{F}_T^{-1} : S(\mathbb{Z}^n) \xrightarrow{\approx} C^\infty(T^n); \hat{f} \mapsto f$ is given by

$$f(x) = \mathcal{F}_T^{-1} \hat{f}(x) = \sum_{p \in \mathbb{Z}^n} \hat{f}(p) e^{2\pi i x \cdot p}. \quad (6.2)$$

There is the \mathbb{C}-valued scalar product on $C^\infty(T^n)$ given by

$$(f, g) = \int_{T^n} f g \, dx = \sum_{p \in \mathbb{Z}^n} \hat{f}(-p) \hat{g}(p).$$

Denote by $S(\mathbb{R}^n)$ be the space of complex Schwartz (smooth, rapidly decreasing) functions on \mathbb{R}^n.

$$S(\mathbb{R}^n) = \left\{ f \in C^\infty(\mathbb{R}^n) \mid \|f\|_{a,\beta} < \infty \quad \forall a = (a_1, \ldots, a_n), \beta = (\beta_1, \ldots, \beta_n) \in \mathbb{Z}_+^n \right\}, \quad \|f\|_{a,\beta} = \sup_{x \in \mathbb{R}^n} \left| x^a D^\beta f(x) \right| \quad (6.3)$$

where

$$x^a = x_1^{a_1} \cdots x_n^{a_n}, \quad D^\beta = \frac{\partial}{\partial x_1^{\beta_1}} \cdots \frac{\partial}{\partial x_n^{\beta_n}}.$$

The topology on $S(\mathbb{R}^n)$ is given by seminorms $\| \cdot \|_{a,\beta}$.

45
Definition 6.1. Denote by $S' (\mathbb{R}^n)$ the vector space dual to $S (\mathbb{R}^n)$, i.e. the space of continuous functionals on $S (\mathbb{R}^n)$. Denote by $\langle \cdot, \cdot \rangle : S' (\mathbb{R}^n) \times S (\mathbb{R}^n) \to \mathbb{C}$ the natural pairing. We say that $\{a_n \in S' (\mathbb{R}^n)\}_{n \in \mathbb{N}}$ is weakly-* convergent to $a \in S' (\mathbb{R}^n)$ if for any $b \in S (\mathbb{R}^n)$

$$\lim_{n \to \infty} \langle a_n, b \rangle = \langle a, b \rangle .$$

We say that

$$a = \lim_{n \to \infty} a_n$$

in the sense of weak-* convergence.

Let F and F^{-1} be the ordinary and inverse Fourier transformations given by

$$\left(Ff \right) (u) = \int_{\mathbb{R}^n} f(t) e^{-2\pi it \cdot u} dt, \quad \left(F^{-1} f \right) (u) = \int_{\mathbb{R}^n} f(t) e^{2\pi it \cdot u} dt \quad (6.4)$$

which satisfy following conditions

$$F \circ F^{-1} |_{S (\mathbb{R}^n)} = F^{-1} \circ F |_{S (\mathbb{R}^n)} = \text{Id}_{S (\mathbb{R}^n)}.$$

There is the \mathbb{C}-valued scalar product on $S (\mathbb{R}^n)$ given by

$$\langle f, g \rangle_{L^2 (\mathbb{R}^n)} = \int_{\mathbb{R}^n} f g dx = \int_{\mathbb{R}^n} Ff Fg dx. \quad (6.5)$$

which if F-invariant, i.e.

$$\langle f, g \rangle_{L^2 (\mathbb{R}^n)} = \langle Ff, Fg \rangle_{L^2 (\mathbb{R}^n)} . \quad (6.6)$$

There is the action of \mathbb{Z}^n on \mathbb{R}^n such that

$$g x = x + g; \ x \in \mathbb{R}^n, \ g \in \mathbb{Z}^n$$

and $\mathbb{T}^n \approx \mathbb{R}^n / \mathbb{Z}^n$. For any $x \in \mathbb{R}^n$ and $C \in \mathbb{R}$ the series

$$\sum_{k \in \mathbb{Z}^n} \frac{C}{1 + |x + k|^{n+1}}$$

is convergent, and taking into account (6.3) one concludes that for $f \in S (\mathbb{R}^n)$ and $x \in \mathbb{R}^n$ the series

$$\sum_{g \in \mathbb{Z}^n} D^\beta f (x + g) (x) = \sum_{g \in \mathbb{Z}^n} \left(g D^\beta f \right) (x)$$

is absolutely convergent. It follows that the series

$$\tilde{h} = \sum_{g \in \mathbb{Z}^n} g f$$
is point-wise convergent and \tilde{h} is a smooth \mathbb{Z}^n-invariant function. The periodic smooth function \tilde{h} corresponds to an element of $\tilde{h} \in C^\infty (T^n)$. This construction provides a map

$$S(\mathbb{R}^n) \to C^\infty (T^n), \quad f \mapsto \sum_{g \in \mathbb{Z}^n} g f.$$

(6.7)

If $\mathcal{U} = (0, 1)^n \subset \mathbb{R}^n$ is a fundamental domain of the action of \mathbb{Z}^n on \mathbb{R}^n then $\tilde{h}_\mathcal{U}$ can be represented by the Fourier series

$$\tilde{h}_\mathcal{U} (x) = \sum_{p \in \mathbb{Z}^n} c_p e^{2\pi i px}, \quad c_p = \int_{\mathcal{U}} \tilde{h} (x) e^{-2\pi i px} \, dx = \sum_{g \in \mathbb{Z}^n} \int_{\mathcal{U}} f (x + g) e^{-2\pi i px} \, dx = \int_{\mathbb{R}^n} f (x) e^{-2\pi i px} \, dx = \hat{f} (p)$$

where $\hat{f} = \mathcal{F} f$ is the Fourier transformation of f. So if $\hat{h} = \mathcal{F}^T h$ is the Fourier transformation of h then for any $p \in \mathbb{Z}^n$ a following condition holds

$$\hat{h} (p) = \hat{f} (p).$$

(6.8)

6.2 Noncommutative torus T^n_Θ

Denote by $\cdot : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ the scalar product on the Euclidean vector space \mathbb{R}^n. Let Θ be a real skew-symmetric $n \times n$ matrix, we will define a new noncommutative product \ast_Θ on $S (\mathbb{Z}^n)$ given by

$$\left(\hat{f} \ast_\Theta \hat{g} \right) (p) = \sum_{r + s = p} \hat{f} (r) \hat{g} (s) e^{-\pi i r \cdot \Theta s}.$$

(6.9)

and an involution

$$\hat{f}^* (p) = \hat{f} (-p).$$

In result there is an involutive algebra $C^\infty (T^n_\Theta) = (S (\mathbb{Z}^n), +, \ast_\Theta, \ast)$. There is a tracial state on $C^\infty (T^n_\Theta)$ given by

$$\tau (f) = \hat{f} (0).$$

(6.10)

From $C^\infty (T^n_\Theta) \approx S (\mathbb{Z}^n)$ it follows that there is a C-linear isomorphism

$$\varphi_\infty : C^\infty (T^n_\Theta) \xrightarrow{\approx} C^\infty (T^n).$$

(6.11)

such that following condition holds

$$\tau (f) = \frac{1}{(2\pi)^n} \int_{T^n} \varphi_\infty (f) \, dx.$$

(6.12)
Similarly to 1.46 there is the Hilbert space $L^2 \left(C^\infty \left(T^n_\Theta \right), \tau \right)$ and the natural representation $C^\infty \left(T^n_\Theta \right) \to B \left(L^2 \left(C^\infty \left(T^n_\Theta \right), \tau \right) \right)$ which induces the C^*-norm. The C^*-norm completion $C \left(T^n_\Theta \right)$ of $C^\infty \left(T^n_\Theta \right)$ is a C^*-algebra and there is a faithful representation

$$C \left(T^n_\Theta \right) \to B \left(L^2 \left(C^\infty \left(T^n_\Theta \right), \tau \right) \right). \quad (6.13)$$

We will write $L^2 \left(C \left(T^n_\Theta \right), \tau \right)$ instead of $L^2 \left(C^\infty \left(T^n_\Theta \right), \tau \right)$. There is the natural C-linear map $C^\infty \left(T^n_\Theta \right) \to L^2 \left(C \left(T^n_\Theta \right), \tau \right)$ and since $C^\infty \left(T^n_\Theta \right) \approx S \left(Z^n \right)$ there is a linear map $\Psi : S \left(Z^n \right) \to L^2 \left(C \left(T^n_\Theta \right), \tau \right)$. If $k \in Z^n$ and $U_k \in S \left(Z^n \right) = C^\infty \left(T^n_\Theta \right)$ is such that

$$U_k \left(p \right) = \delta_{kp} : \forall p \in Z^n \quad (6.14)$$

then

$$U_k U_p = e^{-\pi ik \cdot \Theta p} U_{k+p}, \quad U_k U_p = e^{-2\pi ik \cdot \Theta p} U_p U_k. \quad (6.15)$$

If $\xi_k = \Psi \left(U_k \right)$ then from (6.9), (6.10) it turns out

$$\tau \left(U_k^* + \Theta U_l \right) = \left(\xi_k, \xi_l \right) = \delta_{kl}, \quad (6.16)$$

i.e. the subset $\{ \xi_k \}_{k \in Z^n} \subset L^2 \left(C \left(T^n_\Theta \right), \tau \right)$ is an orthogonal basis of $L^2 \left(C \left(T^n_\Theta \right), \tau \right)$. Hence the Hilbert space $L^2 \left(C \left(T^n_\Theta \right), \tau \right)$ is naturally isomorphic to the Hilbert space $l^2 \left(Z^n \right)$ given by

$$l^2 \left(Z^n \right) = \left\{ \xi = \{ \xi_k \in C \}_{k \in Z^n} \in C^{Z^n} \mid \sum_{k \in Z^n} |\xi_k|^2 < \infty \right\}$$

and the C-valued scalar product on $l^2 \left(Z^n \right)$ is given by

$$\left(\xi, \eta \right)_{l^2 \left(Z^n \right)} = \sum_{k \in Z^n} \overline{\xi_k} \eta_k.$$

An alternative description of $C \left(T^n_\Theta \right)$ is such that if

$$\Theta = \begin{pmatrix} 0 & \theta_{12} & \ldots & \theta_{1n} \\ \theta_{21} & 0 & \ldots & \theta_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \theta_{n1} & \theta_{n2} & \ldots & 0 \end{pmatrix} \quad (6.17)$$

then $C \left(T^n_\Theta \right)$ is the universal C^*-algebra generated by unitary elements $u_1, \ldots, u_n \in U \left(C \left(T^n_\Theta \right) \right)$ such that following condition holds

$$u_j u_k = e^{-2\pi i \delta_{jk}} u_k u_j. \quad (6.18)$$

Elements u_j are given by

$$u_j = U_j, \quad j = 0, \ldots, 1, \ldots, 0.$$
Definition 6.2. Unitary elements \(u_1, \ldots, u_n \in U \left(C \left(T^n_{\Theta} \right) \right) \) which satisfy the relation (6.18) are said to be generators of \(C \left(T^n_{\Theta} \right) \). The set \(\{ U_l \}_{l \in \mathbb{Z}^n} \) is said to be the basis of \(C \left(T^n_{\Theta} \right) \).

If \(a \in C \left(T^n_{\Theta} \right) \) is presented by a series
\[
a = \sum_{l \in \mathbb{Z}^n} c_l U_l; \quad c_l \in \mathbb{C}
\]
and the series \(\sum_{l \in \mathbb{Z}^n} |c_l| \) is convergent then from the triangle inequality it follows that
\[
\|a\| \leq \sum_{l \in \mathbb{Z}^n} |c_l|.
\]

Definition 6.3. If \(\Theta \) is non-degenerated, that is to say, \(\sigma(s, t) \overset{\text{def}}{=} s \cdot \Theta t \) to be symplectic. This implies even dimension, \(n = 2N \). Then one selects
\[
\Theta = \theta J = \begin{pmatrix} 0 & 1_N \\ -1_N & 0 \end{pmatrix}
\]
where \(\theta > 0 \) is defined by \(\theta^{2N} \overset{\text{def}}{=} \det \Theta \). Denote by \(C^\infty \left(T^n_{\Theta} \right) \overset{\text{def}}{=} C^\infty \left(T_{\Theta}^{2N} \right) \) and \(C \left(T^n_{\Theta} \right) \overset{\text{def}}{=} C \left(T_{\Theta}^{2N} \right) \).

6.3 Finite-fold coverings

In this section we write \(ab \) instead \(a \ast \Theta b \). Let \(\Theta \) be given by (6.17), and let \(C \left(T^n_{\Theta} \right) \) be a noncommutative torus. If \((k_1, \ldots, k_n) \in \mathbb{N}^n \) and
\[
\tilde{\Theta} = \begin{pmatrix} 0 & \tilde{\theta}_{12} & \cdots & \tilde{\theta}_{1n} \\ \tilde{\theta}_{21} & 0 & \cdots & \tilde{\theta}_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \tilde{\theta}_{n1} & \tilde{\theta}_{n2} & \cdots & 0 \end{pmatrix}
\]
is a skew-symmetric matrix such that
\[
e^{-2\pi i \tilde{\Theta}_{rs}} = e^{-2\pi i \tilde{\theta}_{rs}},
\]
then there is a *-homomorphism \(C \left(T^n_{\Theta} \right) \rightarrow C \left(T^n_{\Theta} \right) \) given by
\[
u_j \mapsto v_j^{k_j}; \quad j = 1, \ldots, n
\]
where \(u_1, \ldots, u_n \in C \left(T^n_{\Theta} \right) \) (resp. \(v_1, \ldots, v_n \in C \left(T^n_{\Theta} \right) \)) are unitary generators of \(C \left(T^n_{\Theta} \right) \) (resp. \(C \left(T^n_{\Theta} \right) \)). There is an involutive action of \(G = \mathbb{Z}_{k_1} \times \cdots \times \mathbb{Z}_{k_n} \) on \(C \left(T^n_{\Theta} \right) \) given by
\[
\left(\overline{\nu}_1, \ldots, \overline{\nu}_n \right) v_j = e^{-2\pi i \nu_j^{k_j}} v_j,
\]
and a following condition holds \(C\left(T^n_\Theta\right) = C\left(T^n_\tilde{\Theta}\right)^G \). Otherwise there is a following \(C\left(T^n_\Theta\right) \)-module isomorphism

\[
C\left(T^n_\Theta\right) = \bigoplus_{\{\nu_i\} \in \mathbb{Z}_{k_1} \times \ldots \times \mathbb{Z}_{k_n}} v^{p_1}_1 \cdot \ldots \cdot v^{p_n}_n C\left(T^n_\Theta\right) \approx C\left(T^n_\Theta\right)^{k_1 \ldots k_n}
\]

i.e. \(C\left(T^n_\Theta\right) \) is a finitely generated projective Hilbert \(C\left(T^n_\Theta\right) \)-module. It turns out the following theorem.

Theorem 6.4. The triple \(\left(C\left(T^n_\Theta\right), C\left(T^n_\tilde{\Theta}\right), \mathbb{Z}_{k_1} \times \ldots \times \mathbb{Z}_{k_n}\right) \) is an unital noncommutative finite-fold covering.

6.4 Moyal plane and a representation of the noncommutative torus

Definition 6.5. Denote the Moyal plane product \(\star_\theta \) on \(\mathcal{S}\left(\mathbb{R}^{2N}\right) \) given by

\[
(f \star_\theta h)(u) = \int_{y \in \mathbb{R}^{2N}} f\left(u - \frac{1}{2} \Theta y\right) g\left(u + v\right) e^{2\pi i y \cdot v} dy dv
\]

where \(\Theta \) is given by (6.20).

Definition 6.6. Denote by \(\mathcal{S}'\left(\mathbb{R}^n\right) \) the vector space dual to \(\mathcal{S}\left(\mathbb{R}^n\right) \), i.e. the space of continuous functionals on \(\mathcal{S}\left(\mathbb{R}^n\right) \). The Moyal product can be defined, by duality, on larger sets than \(\mathcal{S}\left(\mathbb{R}^{2N}\right) \). For \(T \in \mathcal{S}'\left(\mathbb{R}^{2N}\right) \), write the evaluation on \(g \in \mathcal{S}\left(\mathbb{R}^{2N}\right) \) as \(\langle T, g \rangle \in \mathbb{C} \); then, for \(f \in \mathcal{S} \) we may define \(T \star_\theta f \) and \(f \star_\theta T \) as elements of \(\mathcal{S}'\left(\mathbb{R}^{2N}\right) \) by

\[
\langle T \star_\theta f, g \rangle \overset{\text{def}}{=} \langle T, f \star_\theta g \rangle \\
\langle f \star_\theta T, g \rangle \overset{\text{def}}{=} \langle T, g \star_\theta f \rangle \\
\]

(6.22)

using the continuity of the star product on \(\mathcal{S}\left(\mathbb{R}^{2N}\right) \). Also, the involution is extended to by \(\langle T^*, g \rangle \overset{\text{def}}{=} \langle T, g^* \rangle \).

Remark 6.7. It is proven in [7] that the domain of the Moyal plane product can be extended up to \(L^2\left(\mathbb{R}^{2N}\right) \).

Lemma 6.8. [7] If \(f, g \in L^2\left(\mathbb{R}^{2N}\right) \), then \(f \star_\theta g \in L^2\left(\mathbb{R}^{2N}\right) \) and \(\| f \|_\text{op} < (2\pi \theta)^{-\frac{N}{2}} \| f \|_2 \).

where \(\| \cdot \|_2 \) is the \(L^2 \)-norm given by

\[
\| f \|_2 \overset{\text{def}}{=} \left| \int_{\mathbb{R}^{2N}} |f|^2 dx \right|^{\frac{1}{2}}.
\]

(6.23)

and the operator norm \(\| T \|_\text{op} \overset{\text{def}}{=} \sup \{ \| T \ast g \|_2 / \| g \|_2 : 0 \neq g \in L^2\left(\mathbb{R}^{2N}\right) \} \).
Definition 6.9. Denote by $\mathcal{S}(\mathbb{R}^2)$ (resp. $L^2(\mathbb{R})^2$) the operator algebra which is C-linearly isomorphic to $\mathcal{S}(\mathbb{R}^2)$ (resp. $L^2(\mathbb{R})^2$) and product coincides with \ast_g. Both $\mathcal{S}(\mathbb{R}^2)$ and $L^2(\mathbb{R}^2)$ act on the Hilbert space $\mathcal{L}(\mathbb{R}^2)$. Denote by

$$\Psi : \mathcal{S}(\mathbb{R}^2) \xrightarrow{\cong} \mathcal{S}(\mathbb{R}^2)$$

(6.24)

the natural C-linear isomorphism.

6.10. There is the tracial property [7] of the Moyal product

$$\int_{\mathbb{R}^2} (f \ast_g g) (x) \, dx = \int_{\mathbb{R}^2} f (x) g (x) \, dx.$$

(6.25)

The Fourier transformation of the star product satisfies to the following condition.

$$\mathcal{F}(f \ast_g g) (x) = \int_{\mathbb{R}^2} \mathcal{F}f (x - y) \mathcal{F}g (y) e^{\pi iy \cdot \Theta x} \, dy.$$

(6.26)

Definition 6.11. [7] Let $\mathcal{S}'(\mathbb{R}^2)$ be a vector space dual to $\mathcal{S}(\mathbb{R}^2)$. Denote by $C_b(\mathbb{R}^2) \overset{\text{def}}{=} \{ T \in \mathcal{S}'(\mathbb{R}^2) : T \ast_g g \in L^2(\mathbb{R}^2) \text{ for all } g \in L^2(\mathbb{R}^2) \}$, provided with the operator norm

$$\|T\|_{\text{op}} \overset{\text{def}}{=} \sup \{ \|T \ast_g g\|_2 / \|g\|_2 : 0 \neq g \in L^2(\mathbb{R}^2) \}.$$

(6.27)

Denote by $C_0(\mathbb{R}^2)$ the operator norm completion of $\mathcal{S}(\mathbb{R}^2)$.

Remark 6.12. Obviously $\mathcal{S}(\mathbb{R}^2) \hookrightarrow C_b(\mathbb{R}^2)$. But $\mathcal{S}(\mathbb{R}^2)$ is not dense in $C_b(\mathbb{R}^2)$, i.e. $C_0(\mathbb{R}^2) \not\subseteq C_b(\mathbb{R}^2)$ (cf. [7]).

Remark 6.13. $L^2(\mathbb{R}^2)$ is the $\| \cdot \|_2$ norm completion of $\mathcal{S}(\mathbb{R}^2)$ hence from the Lemma

6.8 it follows that

$$L^2(\mathbb{R}^2) \subseteq C_0(\mathbb{R}^2).$$

(6.28)

Remark 6.14. Notation of the Definition 6.11 differs from [7]. Here symbols $A_\Theta, A_\theta, A_0^\Theta$ are replaced with $C_b(\mathbb{R}^2), \mathcal{S}(\mathbb{R}^2), C_0(\mathbb{R}^2)$ respectively.

Remark 6.15. The $C_0(\mathbb{R}^2)$ does not isomorphic to $C_0(\mathbb{R}^2)$ (cf. [7]).

6.16. [7] By plane waves we understand all functions of the form

$$x \mapsto \exp(ik \cdot x)$$

for $k \in \mathbb{R}^2$. One obtains for the Moyal product of plane waves:

$$\exp(ik \cdot) \ast_\Theta \exp(ik \cdot) = \exp(ik \cdot) \ast_\Phi \exp(ik \cdot) = \exp(i(k + l) \cdot) e^{-\pi i k \cdot \Theta l}$$

(6.29)

Remark 6.17. [7] The algebra $C_b(\mathbb{R}^2)$ contains all plane waves.

Remark 6.18. If $\{c_k \in \mathbb{C}\}_{k \in \mathbb{N}_0}$ is such that $\sum_{k=0}^{\infty} |c_k| < \infty$ then from $\| \exp(ik \cdot) \|_{\text{op}} = 1$ it turns out $\| \sum_{k=0}^{\infty} \exp(ik \cdot) \|_{\text{op}} < \sum_{k=0}^{\infty} |c_k| < \infty$, i.e. $\sum_{k=0}^{\infty} c_k \exp(ik \cdot) \in C_b(\mathbb{R}^2)$.

51
6.19. The equation (6.29) is similar to the equation (6.15) which defines $C(T^2_{\theta})$. From this fact and from the Remark 6.18 it follows that there is an injective *-homomorphism $C^\infty (T^2_{\theta}) \hookrightarrow C_b (R^2_{\theta})$. An algebra $C^\infty (T^2_{\theta})$ is dense in $C(T^2_{\theta})$ so there is an injective *-homomorphism $C(T^2_{\theta}) \hookrightarrow C_b (R^2_{\theta})$. The faithful representation $C_b (R^2_{\theta}) \to B (L^2 (R^2))$ gives a representation $\pi : C(T^2_{\theta}) \to B (L^2 (R^2))$

$$\pi : C(T^2_{\theta}) \to B \left(L^2 \left(R^2 \right) \right),$$

(6.30)

where $U_k \in C(T^2_{\theta})$ is given by the Definition 6.2.

6.20. Let us consider the unitary dilation operators E_a given by

$$E_a f (x) \overset{\text{def}}{=} a^{N/2} f \left(a^{1/2} x \right).$$

It is proven in [7] that

$$f \circ g = (\theta/2)^{-N/2} E_{\theta/2} f \circ E_{\theta/2} g.$$

(6.31)

We can simplify our construction by setting $\theta = 2$. Thanks to the scaling relation (6.31) any qualitative result can be true if it is true in case of $\theta = 2$. We use the following notation

$$f \times g \overset{\text{def}}{=} f \circ g$$

(6.32)

Lemma 6.21. Let $a, b \in S (R^2)$. For any $\Delta \in R^2$ let $a_\Delta \in S (R^2)$ be such that $a_\Delta (x) = a (x + \Delta)$. For any $m \in N$ there is a constant $C_{a,b}^m$ such that

$$\| a_\Delta \times b \|_2 \leq \frac{C_{a,b}^m}{\left(1 + \| \Delta \| \right)^m}$$

where $\| \cdot \|_2$ is given by (6.23).

Proof. From the definition of Schwartz functions it follows that for any $f \in S (R^2)$ and any $m \in N$ there is $C_{m}^f > 0$ such that

$$\| f (u) \| < \frac{C_{m}^f}{\left(1 + \| u \| \right)^m}.$$

(6.33)

From (6.26) it follows that

$$\mathcal{F} (a_\Delta \times b) (x) = \int_{R^2} F_{a_\Delta} (x - y) F_{b} (y) e^{\pi i y \cdot \Theta x} dy = \int_{R^2} c (y - \Delta - x) d (y) e^{\pi i y \cdot \Theta x} dy$$

where $c (x) = \mathcal{F} a (-x)$, $d (x) = \mathcal{F} b (x)$ If $\xi = \mathcal{F} (a_\Delta \times b)$ then $\xi \in L^2 \left(R^2 \right)$. Let $\xi = \xi_1 + \xi_2$ where $\xi_1, \xi_2 \in L^2 \left(R^2 \right)$ are given by

$$\xi_1 (x) = \begin{cases} \mathcal{F} (a_\Delta b) (x) & \| x \| \leq \frac{\| \Delta \|}{2} \\ 0 & \| x \| > \frac{\| \Delta \|}{2} \end{cases}$$

(6.34)

$$\xi_2 (x) = \begin{cases} 0 & \| x \| \leq \frac{\| \Delta \|}{2} \\ \mathcal{F} (a_\Delta b) (x) & \| x \| > \frac{\| \Delta \|}{2} \end{cases}.$$
From (6.33) it turns out

\[|\xi_1(x)| \leq \int \left| c(t-\Delta-x) d(t) e^{-\frac{\|t\|}{M}} \right| dt \leq \int_{\mathbb{R}^{2N}} \frac{C_M}{(1+\|t-\Delta-x\|)^M} \frac{C_{2M}^d}{(1+\|t\|)^M} dt = \int_{\mathbb{R}^{2N}} \frac{C_M^*}{(1+\|t-\Delta-x\|)^M} \frac{C_{2M}^{d*}}{1+\|t\|^M} dt \leq \sup_{x \in \mathbb{R}^{2N}, \|x\| \leq \frac{\|\Delta\|}{2}, s \in \mathbb{R}^{2N}} \frac{C_M^* C_{2M}^{d*}}{(1+\|s-\Delta-x\|)^M} \frac{C_M^*}{(1+\|s\|)^M} \int_{\mathbb{R}^{2N}} \frac{1}{(1+\|t\|)^M} dt. \]

(6.35)

If \(x, y \in \mathbb{R}^{2N} \) then from the triangle inequality it follows that \(\|x+y\| > \|y\| - \|x\| \), hence

\[(1+\|x\|)^M (1+\|x+y\|)^M \geq (1+\|x\|)^M (1+\max(0,\|y\| - \|x\|))^M. \]

If \(\|x\| \leq \frac{\|y\|}{2} \) then \(\|y\| - \|x\| \geq \frac{\|y\|}{2} \) and

\[(1+\|x\|)^M (1+\|x+y\|)^M > \left(\frac{\|y\|}{2} \right)^M. \]

(6.36)

Clearly if \(\|x\| > \frac{\|y\|}{2} \) then condition (6.36) also holds, hence (6.35) is always true. Clearly if \(\|x\| > \frac{\|y\|}{2} \) then condition 6.36 also holds, hence (6.36) is always true. It turns out from \(\|\Delta-x\| > \frac{\|\Delta\|}{2} \) and (6.36) that

\[\inf_{x \in \mathbb{R}^{2N}, \|x\| \leq \frac{\|\Delta\|}{2}, s \in \mathbb{R}^{2N}} \frac{C_M^*}{(1+\|s-\Delta-x\|)^M} \frac{C_{2M}^{d*}}{(1+\|s\|)^M} > \left(\frac{\|\Delta\|}{4} \right)^M, \]

hence from (6.35) it turns out

\[|\xi_1(x)| \leq \frac{4MC_M^* C_{2M}^{d*}}{\|\Delta\|^M} \frac{1}{(1+\|t\|)^M} dt \]

There is the well known integral

\[\int_{x \in \mathbb{R}^{2N}, \|x\| \leq \frac{\|\Delta\|}{2}} \frac{1}{\Gamma(N+1)} \left(\frac{\|\Delta\|}{2} \right)^{2N} dx, \]

where \(\Gamma \) is the Euler gamma function. If \(M > 2N \) then the integral \(C' = \int_{\mathbb{R}^{2N}} \frac{1}{(1+\|t\|)^M} dt \) is convergent, it turns out

\[|\xi_1|^2 \leq \left(\frac{4MC_M^* C_{2M}^{d*}}{\|\Delta\|^M} \right)^2 \int_{x \in \mathbb{R}^{2N}, \|x\| \leq \frac{\|\Delta\|}{2}} \frac{1}{\Gamma(N+1)} \left(\frac{\|\Delta\|}{2} \right)^{2N} dx = \frac{4MC_M^* C_{2M}^{d*}}{\|\Delta\|^M} \frac{1}{\Gamma(N+1)} \left(\frac{\|\Delta\|}{2} \right)^{2N}. \]

If \(M = 2N + m \) then from the above equation it turns out that there is \(C_1 > 0 \) such that

\[|\xi_1|^2 \leq \frac{C_1}{\|\Delta\|^m}. \]

(6.37)
If \((\cdot, \cdot)_{L^2(\mathbb{R}^N)}\) is the given by (6.5) scalar product then from (6.6) it turns out

\[
|\xi_2(x)| \leq \left| \int c(t - \Delta - x) d(t) e^{\pi ix \Theta t} dt \right| \leq \left| \left(c(\Theta \cdot - \Delta - x) , d(\Theta \cdot) e^{\pi ix \Theta \cdot} \right)_{L^2(\mathbb{R}^N)} \right| = \\
= \left| \left(\mathcal{F}(c(\Theta \cdot - \Delta - x)) , \mathcal{F}(d(\Theta \cdot)) e^{\pi i x \Theta \cdot} \right)_{L^2(\mathbb{R}^N)} \right| = \\
= \left| \int_{\mathbb{R}^N} \mathcal{F}(c)(\Theta \cdot - \Delta - x) (u) \mathcal{F}(d(\Theta \cdot)) (u + \pi \Theta x) du \right| \leq \\
\leq \int_{\mathbb{R}^N} \frac{C^{\mathcal{F}(c)}_{\cdot M}}{(1 + ||u||)^{3M}} \frac{C^{\mathcal{F}(d)}_{\cdot M}}{(1 + ||u - \pi \Theta x||)^{2M}} |\Delta|^M \frac{1}{M} du.
\]

Since we consider the asymptotic dependence \(\|\Delta\| \to \infty\) only large values of \(\|\Delta\|\) are interesting, so we can suppose that \(\|\Delta\| > 2\). If \(\|\Delta\| > 2\) then from \(||x|| > \frac{\|\Delta\|}{2}\) it follows that \(\|\pi \Theta x\| > 1\), and from (6.36) it follows that

\[
\inf_{x \in \mathbb{R}^N, ||x|| > \frac{\|\Delta\|}{2}} \frac{1}{(1 + ||x||)^{2M}} > \frac{\|\pi \Theta x\|}{4},
\]

hence

\[
|\xi_2(x)| \leq \frac{C^{\mathcal{F}(c)}_{\cdot M}}{\|\pi \Theta x\|^M} \int_{\mathbb{R}^N} \frac{1}{(1 + ||u||)^M} du.
\]

If \(m \geq 1\) and \(M = 2N + m\) then the integral \(C' \int_{\mathbb{R}^N} \frac{1}{(1 + ||u||)^M} du\) is convergent and

\[
|\xi_2(x)| \leq \frac{C^{\mathcal{F}(c)}_{\cdot M}}{\|\pi \Theta x\|^M}.
\]

Taking into account (6.20) and \(\theta = 2\) one has

\[
\|\Theta z\| = \|2z\|; \forall z \in \mathbb{R}^{2N}.
\]
It follows that
\[|\xi_1|^2 \leq \int_{x \in \mathbb{R}^{2N}, \|x\| > \|x\|_{\Delta}} \left(\frac{C_{2M}(c) C_{2M}(d)}{2\pi \|\Delta\|^M \|2\pi x\|^M} \right)^2 \, dx. \]

Since above integral is convergent one has there is a constant \(C_2 \) such that
\[|\xi_2|^2 \leq C_2 \left(\frac{\pi^{\frac{1}{2}}}{\pi} \right)^{2M} \]
(6.39)

Since \(\xi_1 \perp \xi_2 \) one has \(|\xi|^2 = |\xi_1|^2 + |\xi_2|^2 \) and taking into account (6.37), (6.39) it follows that for any \(m \in \mathbb{N} \) there is \(C_m > 0 \) such that
\[\|\xi\|^2 = \|F(a_\Delta \times b)\|^2 \leq \frac{C_m^{a,b}}{(1 + \|\Delta\|)^m}. \]

From (6.6) it turns out
\[\|a_\Delta \times b\|^2 = \|F(a_\Delta \times b)\|^2 \leq \frac{C_m^{a,b}}{(1 + \|\Delta\|)^m}. \]

\[\square \]

Proposition 6.22. [7] The algebra \(\mathcal{S}(\mathbb{R}^{2N}, \star_\theta) \) has the (nonunique) factorization property: for all \(h \in \mathcal{S}(\mathbb{R}^{2N}) \) there exist \(f, g \in \mathcal{S}(\mathbb{R}^{2N}) \) that \(h = f \star_\theta g \).

Lemma 6.23. Following conditions hold:

(i) Let \(\{a_n \in C_b(\mathbb{R}^{2N}_\theta)\}_{n \in \mathbb{N}} \) be a sequence such that

- \(\{a_n\} \) is weakly-* convergent (cf. Definition 6.1),
- If \(a = \lim_{n \to \infty} a_n \) in the sense of weak-* convergence then \(a \in C_b(\mathbb{R}^{2N}_\theta) \).

Then the sequence \(\{a_n\} \) is convergent in sense of weak topology \(\{a_n\} \) (cf. Definition 1.37) and \(a \) is limit of \(\{a_n\} \) with respect to the weak topology. Moreover if \(\{a_n\} \) is increasing or decreasing sequence of self-adjoint elements then \(\{a_n\} \) is convergent in sense of strong topology (cf. Definition 1.36) and \(a \) is limit of \(\{a_n\} \) with respect to the strong topology.

(ii) If \(\{a_n\} \) is strongly and/or weakly convergent (cf. Definitions 1.36, 1.37) and \(a = \lim_{n \to \infty} a_n \) is strong and/or weak limit then \(\{a_n\} \) is weakly-* convergent and \(a \) is the limit of \(\{a_n\} \) in the sense of weakly-* convergence.

Proof. (i) If \(\langle \cdot, \cdot \rangle : \mathcal{S}'(\mathbb{R}^{2N}) \times \mathcal{S}(\mathbb{R}^{2N}) \to \mathbb{C} \) is the natural pairing then one has
\[\lim_{n \to \infty} \langle a_n, b \rangle = \langle a, b \rangle \quad \forall b \in \mathcal{S}(\mathbb{R}^{2N}). \] (6.40)
Let $\xi, \eta \in L^2(\mathbb{R}^{2N})$ and let $\{x_j \in \mathcal{S}(\mathbb{R}^{2N})\}_{j \in \mathbb{N}}$, $\{y_j \in \mathcal{S}(\mathbb{R}^{2N})\}_{j \in \mathbb{N}}$ be sequences such that there are following limits

$$
\lim_{j \to \infty} x_j = \xi, \quad \lim_{j \to \infty} y_j = \eta
$$

(6.41)
in the topology of the Hilbert space $L^2(\mathbb{R}^{2N})$. If $(\cdot, \cdot) : L^2(\mathbb{R}^{2N}) \times L^2(\mathbb{R}^{2N}) \to \mathbb{C}$ is the Hilbert pairing then from (6.22), (6.41) it follows that

$$(a_n \xi, \eta) = \lim_{j \to \infty} \langle a_n x_j, y_j \rangle = \lim_{j \to \infty} \langle a_n x_j, y_j \rangle = \lim_{j \to \infty} \langle a_n, x_j * \theta y_j \rangle = (a_n \xi, \eta),$$

(6.42)
hence, taking into account (6.40) one has

$$
\lim_{n \to \infty} (a_n \xi, \eta) = \lim_{n \to \infty} \lim_{j \to \infty} (a_n x_j, y_j) = \lim_{n \to \infty} \lim_{j \to \infty} (a_n, x_j * \theta y_j) = \lim_{j \to \infty} \langle a_n, x_j * \theta y_j \rangle = (a_n, b)
$$

(6.43)
i.e. $\{a_n\}$ is weakly convergent to a. If $\{a_n\}$ is an increasing sequence then $a_n \leq a$ for any $n \in \mathbb{N}$ and from the Lemma [1.43] it turns out that $\{a_n\}$ is strongly convergent. Clearly the strong limit coincides with the weak one. Similarly one can prove that $\{a_n\}$ is an decreasing then $\{a_n\}$ is strongly convergent.

(ii) If $b \in \mathcal{S}(\mathbb{R}^{2N})$ then from the Proposition 6.22 it follows that $b = x * \theta y$ where $x, y \in \mathcal{S}(\mathbb{R}^{2N})$. The sequence $\{a_n\}$ is strongly and/or weakly convergent it turns out that

$$(x, a_n * \theta y) = \langle a_n, x * \theta y \rangle = \langle a_n, b \rangle$$

is convergent. Hence $\{a_n\}$ is weakly-* convergent.

There are elements $f_{mn} \in \mathcal{S}(\mathbb{R}^2)$ which have very useful properties. To present f_{mn} explicitly, we use polar coordinates $q + ip = re^{i\alpha}$, where $p, q \in \mathbb{R}^2$ and $\rho = (p, q) \in \mathbb{R}^2$

Note that $\|\rho\|^2 = |p|^2 + |q|^2$.

$$
f_{mn} = 2 (-1)^n \sqrt{\frac{1}{m!}} \epsilon^{i\alpha(m-n)} \|\rho\|^{|m-n|} L_n^{m-n} \left(\|\rho\|^2\right) e^{-\|\rho\|^2/2},
$$

$$
f_{mn} (\rho, \alpha) = 2 (-1)^n L_n \left(\|\rho\|^2\right) e^{-\|\rho\|^2/2}
$$

where L_n^{m-n}, L_n are Laguerre functions. From this properties it follows that $C_0(\mathbb{R}^2)$ is the C^*-norm completion of linear span of f_{mn} (cf. [3]).

Lemma 6.24. [8] Let $m, n, k, l \in \mathbb{N}$. Then $f_{mn} * \theta f_{kl} = \delta_{mk} f_{ml}$ and $f_{mn} = f_{nm}$. Thus f_{mn} is an orthogonal projection and f_{mn} is nilpotent for $m \neq n$. Moreover, $\langle f_{mn}, f_{kl} \rangle = 2^N \delta_{mk} \delta_{nl}$. The family $\{f_{mn} : m, n \in \mathbb{N} \} \subset \mathcal{S}(\mathbb{R}^2) \subset L^2(\mathbb{R}^2)$ is an orthogonal basis.

Proposition 6.25. [78] Let $N = 1$. Then $\mathcal{S}(\mathbb{R}^{2N}) = \mathcal{S}(\mathbb{R}^2)$ has a Fréchet algebra isomorphism with the matrix algebra of rapidly decreasing double sequences $c = (c_{mn})$ such that, for each $k \in \mathbb{N}$,

$$
r_k(c) = \left(\sum_{m, n=0}^\infty \theta_{2k} \left(m + \frac{1}{2}\right)^k \left(n + \frac{1}{2}\right)^k |c_{mn}|^2 \right)^{1/2}
$$

(6.43)
is finite, topologized by all the seminorms \((r_k)\); via the decomposition \(f = \sum_{m,n=0}^{\infty} c_{mn} f_{mn}\) of \(S(\mathbb{R}^2)\) in the \(\{f_{mn}\}\) basis. The twisted product \(f \ast \theta g\) is the matrix product \(ab\), where

\[
(ab)_{mn} \overset{\text{def}}{=} \sum_{k=0}^{\infty} a_{mk} b_{kn}.
\] (6.44)

For \(N > 1\), \(C^\infty(\mathbb{R}_\theta^{2N})\) is isomorphic to the (projective) tensor product of \(N\) matrix algebras of this kind, i.e.

\[
S(\mathbb{R}_\theta^{2N}) \cong S(\mathbb{R}_\theta^2) \otimes \cdots \otimes S(\mathbb{R}_\theta^2),
\] (6.45)

with the projective topology induced by seminorms \(r_k\) given by (6.43).

Remark 6.26. If \(A\) is \(C^*\)-norm completion of the matrix algebra with the norm (6.43) then \(A \cong \mathcal{K}\), i.e.

\[
C_0(\mathbb{R}_\theta^2) \cong \mathcal{K}.
\] (6.46)

Form (6.45) and (6.46) it follows that

\[
\underbrace{C_0(\mathbb{R}_\theta^2)}_{N\text{-times}} \cong \underbrace{\mathcal{K} \otimes \cdots \otimes \mathcal{K}}_{N\text{-times}} \approx \mathcal{K} \otimes \cdots \otimes \mathcal{K} \approx \mathcal{K}
\] (6.47)

where \(\otimes\) means minimal or maximal tensor product (\(\mathcal{K}\) is nuclear hence both products coincide).

6.5 Infinite coverings

Let us consider a sequence

\[
\mathfrak{G}_{C(T_\theta^0)} = \left\{ C\left(T_\theta^0 \right) = C\left(T_\theta^0 \right) \overset{\pi^1}{\rightarrow} \ldots \overset{\pi^j}{\rightarrow} C\left(T_\theta^0 \right) \overset{\pi^{j+1}}{\rightarrow} \ldots \right\}
\] (6.48)

of finite coverings of noncommutative tori. The sequence (6.48) satisfies to the Definition 3.1 i.e. \(\mathfrak{G}_{C(T_\theta^0)} \in \mathfrak{FinAlg}\).

6.27. Let \(\Theta = J\theta\) where \(\theta \in \mathbb{R}\setminus \mathbb{Q}\) and

\[
J = \begin{pmatrix} 0 & 1_N \\ -1_N & 0 \end{pmatrix}.
\]

Denote by \(C(T_\theta^{2N}) \overset{\text{def}}{=} C(T_\Theta^{2N})\). Let \(\{p_k \in \mathbb{N}\}_k \in \mathbb{N}\) be an infinite sequence of natural numbers such that \(p_k > 1\) for any \(k\), and let \(m_j = \prod_{k=1}^{j} p_k\). From the (6.3) it follows that there is a sequence of *-homomorphisms

\[
\mathfrak{G}_\theta = \left\{ C\left(T_\theta^{2N} \right) \rightarrow C\left(T_\theta^{2N} / m_j^2 \right) \rightarrow C\left(T_\theta^{2N} / m_j^2 \right) \rightarrow \ldots \right\}
\] (6.49)

such that...
(a) For any $j \in \mathbb{N}$ there are generators $u_{j-1,1}, \ldots, u_{j-1,2N} \in U \left(C \left(T^{2N}_{\theta/m_j^2} \right) \right)$ and generators $u_{j,1}, \ldots, u_{j,2N} \in U \left(C \left(T^{2N}_{\theta/m_j} \right) \right)$ such that the $*$-homomorphism $C \left(T^{2N}_{\theta/m_j^2} \right) \to C \left(T^{2N}_{\theta/m_j} \right)$ is given by $u_{j-1,k} \mapsto u_{j,k'}^{p_j} \quad \forall k = 1, \ldots, 2N.$ There are generators $u_1, \ldots, u_{2N} \in U \left(C \left(T^{2N}_{\theta} \right) \right)$ such that $*$-homomorphism $C \left(T^{2N}_{\theta} \right) \to C \left(T^{2N}_{\theta/m_j^2} \right)$ is given by $u_j \mapsto u_{1,j}^{p_j} \quad \forall j = 1, \ldots, 2N,$

(b) For any $j \in \mathbb{N}$ the triple $\left(C \left(T^{2N}_{\theta/m_j^2} \right), C \left(T^{2N}_{\theta/m_j} \right), Z_{p_j} \right)$ is a noncommutative finite-fold covering.

(c) There is the sequence of groups and epimorphisms

$$\mathbb{Z}_{m_1}^{2N} \twoheadrightarrow \mathbb{Z}_{m_2}^{2N} \twoheadrightarrow \cdots$$

which is equivalent to the sequence

$$G \left(C \left(T^{2N}_{\theta/m_1^2} \right) \mid C \left(T^{2N}_{\theta/m_1} \right) \right) \leftarrow G \left(C \left(T^{2N}_{\theta/m_2^2} \right) \mid C \left(T^{2N}_{\theta/m_2} \right) \right) \leftarrow \cdots$$

The sequence (6.49), is a specialization of (6.48), hence $\mathcal{G}_\theta \in \mathfrak{Nil}_{\mathfrak{Alg}}.$ Denote by $C \left(T^{2N}_{\theta/m_j^2} \right) \defeq \lim_{\longrightarrow} C \left(T^{2N}_{\theta/m_j} \right), \quad \mathcal{G} \defeq \lim_{\leftarrow} G \left(C \left(T^{2N}_{\theta/m_j^2} \right) \mid C \left(T^{2N}_{\theta/m_j} \right) \right).$ The group \mathcal{G} is Abelian because it is the inverse limit of Abelian groups. Denote by $0_{\mathcal{G}}$ (resp. "$+"") the neutral element of \mathcal{G} (resp. the product operation of \mathcal{G}).

6.28. For any $\tilde{a} \in \mathcal{S} \left(\mathbb{R}^{2N}_\theta \right)$ from (6.7) it turns out that the series

$$a_j = \sum_{g \in \ker \left(\mathbb{Z}^{2N} \rightarrow \mathbb{Z}_{m_j}^{2N} \right)} \tilde{a}$$

is point-wise convergent and a_j satisfies to following conditions:

- $a_j \in \mathcal{S}' \left(\mathbb{R}^{2N} \right),$
- a_j is a smooth m_j - periodic function.

58
It follows that the above series is weakly-* convergent (cf. Definition 6.1) and from the Lemma 6.23 it turns out that the series is weakly convergent. From (6.8) it follows that

\[a_j = \sum_{k \in \mathbb{Z}^{2N}} c_k \exp \left(2\pi i \frac{k}{m_j} \cdot \right) \]

where \(\{c_k \in \mathbb{C} \}_{k \in \mathbb{Z}^{2N}} \) are rapidly decreasing coefficients given by

\[c_k = \frac{1}{m_j^{2N}} \int_{\mathbb{R}^{2N}} \tilde{a}(x) \exp \left(2\pi i \frac{k}{m_j} \cdot x \right) dx = \frac{1}{m_j^{2N}} \mathcal{F}\tilde{a} \left(\frac{k}{m_j} \right). \quad (6.50) \]

On the other hand

\[\tilde{a} = \lim_{j \to \infty} a_j \quad (6.51) \]

in sense of weakly-* convergence, and from the Lemma 6.23 it follows that (6.51) is a limit in sense of the weak topology.

Lemma 6.29. Let \(G_j = \ker \left(\mathbb{Z}^{2N} \to \mathbb{Z}^{2N}_{m_j} \right) \). Let \(\tilde{a} \in S \left(\mathbb{R}^{2N}_b \right) \) and let

\[a_j = \sum_{g \in G_j} g\tilde{a} \quad (6.52) \]

where the sum the series means weakly-* convergence. Following conditions hold:

(i) \(a_j \in C^\infty (\mathbb{R}^{2N}) \),

(ii) The series (6.52) is convergent with respect to the strong topology (cf. Definition 1.36),

(iii) There is a following strong limit

\[\tilde{a} = \lim_{j \to \infty} a_j. \quad (6.53) \]

Proof. (i) From (6.50) it turns out that

\[a_j = \sum_{k \in \mathbb{Z}^{2N}} c_k U_k \]

where \(\{c_k\} \) is a rapidly decreasing sequence, hence \(a_j \in C^\infty (\mathbb{R}^{2N}) \).

(ii) From the Lemma 6.23 it turns out that the series

\[c = \sum_{g \in \mathbb{Z}^{2N}} g (\tilde{a}^* \tilde{a}) \]

is strongly convergent, and the series (6.52) is weakly convergent. If \(k = \max \left(1, \sqrt{\|c\|} \right) \) then for any \(\eta \in L^2 (\mathbb{R}^{2N}) \) and any subset \(G \subset \mathbb{Z}^{2N} \) following condition holds

\[\left\| \left(\sum_{g \in G} g\tilde{a} \right) \eta \right\|_2 \leq k \|\eta\|_2 \]
that

Proof. (iii) If \(\eta \in L^2(\mathbb{R}^{2N}) \) then for any \(\epsilon > 0 \) there is \(\bar{b} \in S(\mathbb{R}^{2N}) \) such that

\[
\| \eta - \bar{b} \|_2 < \frac{\epsilon}{2k} \quad (6.54)
\]

From the Lemma 6.21 it follows that for any \(m \in \mathbb{N} \) there is a constant \(C_m > 0 \) such that

\[
\| (g\bar{a}) \bar{b} \|_2 < \frac{C_m}{(1 + \| g \|)^m}; \quad \forall g \in \mathbb{Z}^{2N} \quad (6.55)
\]

where \(\| g \| \) is given by (6.1). If \(m > 2N \) then there is \(M \in \mathbb{N} \) such that if \(G_0 = \{-M, \ldots, M\}^{2N} \subset \mathbb{Z}^{2N} \) such that

\[
\sum_{g \in \mathbb{Z}^{2N} \setminus G_0} \frac{C_m}{(1 + \| g \|)^m} < \frac{\epsilon}{2} \quad (6.56)
\]

It follows that

\[
\left\| \left(\sum_{\gamma \in \mathcal{G}_j} \bar{a} - \sum_{\gamma \in \mathcal{G}_j \cap G_0} \bar{a} \right) \bar{b} \right\|_2 = \left\| \left(\sum_{\gamma \notin \mathcal{G}_j \setminus (\mathcal{G}_j \cap G_0)} \bar{a} \right) \bar{b} \right\|_2 < \sum_{g \notin \mathcal{G}_j \setminus (\mathcal{G}_j \cap G_0)} \frac{C_m}{(1 + \| g \|)^m} < \frac{\epsilon}{2}.
\]

Otherwise from (6.54)-(6.56) one has

\[
\left\| \left(\sum_{\gamma \in \mathcal{G}_j} \bar{a} - \sum_{\gamma \in \mathcal{G}_j \cap G_0} \bar{a} \right) \xi \right\|_2 < \left\| \left(\sum_{\gamma \notin \mathcal{G}_j \setminus (\mathcal{G}_j \cap G_0)} \bar{a} \right) \bar{b} \right\|_2 + \left\| \left(\sum_{\gamma \in \mathcal{G}_j \setminus G_0} \bar{a} \right) (\xi - \bar{b}) \right\|_2 < \frac{\epsilon}{2} + k \| \xi - \bar{b} \|_2 < \epsilon.
\]

Above equation means that the series (6.52) is strongly convergent.

(iii) If \(j \in \mathbb{N} \) is such that \(m_j > M \) then

\[
\| (a_j - \bar{a}) \xi \|_2 = \| \sum_{\gamma \in \mathcal{G}_j} g\bar{a} - \bar{a} \|_2 = \| \sum_{\gamma \notin \mathcal{G}_j \setminus \{0\}} g\bar{a} \|_2 \]

where 0 is the neutral element of \(\mathbb{Z}^{2N} \). However from \(m_j > M \) it turns out \(G_0 \cap (\mathcal{G}_j \setminus \{0\}) = \emptyset \), so from (6.54)-(6.56) one has

\[
\| (a_j - \bar{a}) \xi \|_2 < \| (a_j - \bar{a}) \bar{b} \|_2 + k \| \xi - \bar{b} \|_2 < \left\| \sum_{\gamma \in \mathcal{G}_j} g\bar{a} - \bar{a} \right\|_2 + \frac{\epsilon}{2} < \epsilon.
\]

Above equation means that there is the strong limit (6.53).

\[\square\]

Corollary 6.30. Any \(\bar{a} \in S(\mathbb{R}^{2N}) \) lies in \(C(\mathbb{T}^{2N}_\theta)^\prime \).

Proof. There is a strong limit (6.52), i.e. \(\bar{a} = \lim_{j \to \infty} a_j \). For any \(j \in \mathbb{N} \) one has \(a_j \in C(\mathbb{T}^{2N}_\theta) \) it turns out \(\bar{a} = \lim_{j \to \infty} a_j \in C(\mathbb{T}^{2N}_\theta)^\prime \).

\[\square\]
6.5.1 Equivariant representation

Denote by \(\{ U_{\theta}^{g/mj} \} \) the basis of \(C(T^{2N}_\theta) \). Similarly to (6.30) there is the representation \(\pi_j : C(T^{2N}_\theta) \rightarrow B(L^2(R^{2N})) \) given by

\[
\pi_j(U_{\theta}^{g/mj}) = \exp \left(2\pi i \frac{k}{m_j} \cdot g \right).
\]

There is a following commutative diagram.

\[
\begin{array}{ccc}
C(T^{2N}_\theta) & \xrightarrow{\pi_j} & C(T^{2N}_\theta) \\
\downarrow & & \downarrow \\
B(L^2(R^{2N})) & \xrightarrow{\pi_j+1} & B(L^2(R^{2N}))
\end{array}
\]

This diagram defines a faithful representation \(\hat{\pi} : C(T^{2N}_\theta) \rightarrow B(L^2(R^{2N})) \). There is the action of \(\mathbb{Z}^{2N} \times R^{2N} \rightarrow R^{2N} \) given by

\[
(k, x) \mapsto k + x.
\]

The action naturally induces the action of \(\mathbb{Z}^{2N} \) on both \(L^2(R^{2N}) \) and \(B(L^2(R^{2N})) \). Otherwise the action of \(\mathbb{Z}^{2N} \) on \(B(L^2(R^{2N})) \) induces the action of \(\mathbb{Z}^{2N} \) on \(C(T^{2N}_\theta) \). There is the following commutative diagram

\[
\begin{array}{ccc}
\mathbb{Z}^{2N} & \rightarrow & G \left(C(T^{2N}_\theta) \mid C(T^{2N}_\theta) \right) \\
\downarrow & & \downarrow \\
G_j = G \left(C(T^{2N}_\theta) \mid C(T^{2N}_\theta) \right) \approx \mathbb{Z}^{2N}_{m_j}
\end{array}
\]

From the above diagram it follows that there is the natural homomorphism \(\mathbb{Z}^{2N} \rightarrow \hat{G} \), and \(\mathbb{Z}^{2N} \) is a normal subgroup. Let \(J \subset \hat{G} \) be a set of representatives of \(\hat{G}/\mathbb{Z}^{2N} \), and suppose that \(0_{\hat{G}} \in J \). Any \(g \in \hat{G} \) can be uniquely represented as \(g = g_j + g_z \) where \(g \in J \), \(g_z \in \mathbb{Z}^{2N} \). For any \(g_1, g_2 \in \hat{G} \) denote by \(\Phi_j(g_1, g_2) \in J \), \(\Phi_z(g_1, g_2) \in \mathbb{Z}^{2N} \), such that

\[
g_1 + g_2 = \Phi_j(g_1, g_2) + \Phi_z(g_1, g_2).
\]

Let us define an action of \(\hat{G} \) on \(\bigoplus_{g \in J} L^2(R^{2N}) \) given by

\[
g_1 \left(0, ..., \underbrace{\xi}_{\text{\(g_2 \)th place}}, ..., 0, ... \right) = \left(0, ..., \underbrace{\Phi_z(g_1, g_2) \xi}_{\text{\(g_1 \)th place}}, ..., 0, ... \right).
\]
Let $X \subset \bigoplus_{g \in J} L^2(\mathbb{R}^{2N})$ be given by

$$X = \left\{ \eta \in \bigoplus_{g \in J} L^2(\mathbb{R}^{2N}) \mid \eta = \left(0, \ldots, \zeta, \ldots, 0, \ldots \right) \right\}.$$

Taking into account that $X \approx L^2(\mathbb{R}^{2N})$, we will write $L^2(\mathbb{R}^{2N}) \subset \bigoplus_{g \in J} L^2(\mathbb{R}^{2N})$ instead of $X \subset \bigoplus_{g \in J} L^2(\mathbb{R}^{2N})$. This inclusion and the action of \hat{G} on $\bigoplus_{g \in J} L^2(\mathbb{R}^{2N})$ enable us write $\bigoplus_{g \in J} g L^2(\mathbb{R}^{2N})$ instead of $\bigoplus_{g \in J} L^2(\mathbb{R}^{2N})$. If $\hat{\pi}^{\oplus} : C(\mathbb{T}_{\theta}^{2N}) \to B\left(\bigoplus_{g \in J} g L^2(\mathbb{R}^{2N}) \right)$ is given by

$$\hat{\pi}^{\oplus} (a) (g \xi) = g \left(\hat{\pi} \left(g^{-1}a \right) \xi \right); \quad \forall a \in \mathcal{C}(\mathbb{T}_{\theta}^{2N}), \quad \forall g \in J, \quad \forall \xi \in L^2(\mathbb{R}^{2N})$$

then $\hat{\pi}^{\oplus}$ is an equivariant representation.

6.5.2 Inverse noncommutative limit

If $\tilde{a} \in \mathcal{S}(\mathbb{R}^{2N})$ then from the Corollary 6.30 it turns out $\tilde{a} \in \mathcal{C}(\mathbb{T}_{\theta}^{2N})''$. Since $\hat{\pi}^{\oplus}$ is a faithful representation of $\mathcal{C}(\mathbb{T}_{\theta}^{2N})$, one has an injective homomorphism $\mathcal{S}(\mathbb{R}^{2N}) \hookrightarrow \hat{\pi}^{\oplus} \left(\mathcal{C}(\mathbb{T}_{\theta}^{2N}) \right)''$ of involutive algebras.

For any $\tilde{a} \in \mathcal{S}(\mathbb{R}^{2N})$ following condition holds

$$\sum_{\tilde{g} \in \ker(G \to G)} g \hat{\pi}^{\oplus} (\tilde{a}) = \sum_{g' \in J} g' \left(\sum_{g'' \in \ker(\mathbb{Z}^{2N} \to G)} g'' \hat{\pi} (\tilde{a}) \right) = \sum_{g \in J} g P.$$

where

$$P = \sum_{\tilde{g} \in \ker(\mathbb{Z}^{2N} \to G)} g \hat{\pi} (\tilde{a}).$$

If $J \subset G$ is a set of representatives of G/\mathbb{Z}^{2N} and $g', g'' \in J$ are such that $g' \neq g''$ then operators $g' P, g'' P$ act on mutually orthogonal Hilbert subspaces $g' L^2(\mathbb{R}^{2N}), g'' L^2(\mathbb{R}^{2N})$ of the direct sum $\bigoplus_{g \in J} g L^2(\mathbb{R}^{2N})$, and taking into account $\| P \| = \| g P \|$ one has

$$\left\| \sum_{\tilde{g} \in \ker(G \to G)} \hat{\pi}^{\oplus} (\tilde{a}) \right\| = \left\| \sum_{\tilde{g} \in \ker(G \to G)} \hat{\pi} (\tilde{a}) \right\| = \left\| \sum_{g \in J} g P \right\| = \left\| \sum_{\tilde{g} \in \ker(\mathbb{Z}^{2N} \to G)} \hat{\pi} (\tilde{a}) \right\|. \quad (6.57)$$

Lemma 6.31. Let $a \in \mathcal{S}(\mathbb{R}^{2N})$, and let $a_{\Delta} \in \mathcal{S}(\mathbb{R}^{2N})$ be given by

$$a_{\Delta} (x) = a(x + \Delta); \quad \forall x \in \mathbb{R}^{2N} \quad (6.58)$$
where $\Delta \in \mathbb{R}^{2N}$. For any $m \in \mathbb{N}$ there is a dependent on a real constant $C_m > 0$ such that for any $j \in \mathbb{N}$ following condition holds

$$
\left\| \sum_{g \in \ker(G \to G_j)} \hat{\pi}^j (a_\Delta a) \right\| \leq \frac{C_m}{\|\Delta\|^m}.
$$

Proof. From (6.57) it follows that

$$
\left\| \sum_{g \in \ker(G \to G_j)} \hat{\pi}^j (a_\Delta a) \right\| = \left\| \sum_{g \in \ker(\mathbb{Z}^{2N} \to \mathbb{Z}_j^{2N})} \hat{\pi}^j (a_\Delta a) \right\|.
$$

From (6.53) it follows that for any $f \in \mathcal{S}(\mathbb{R}^{2N})$ and any $m \in \mathbb{N}$ there is C_m such that

$$
|f(u)| < \frac{C_m}{(1 + |u|)^m}.
$$

Let $M = 2N + 1 + m$. From (6.19) and (6.50) it follows that

$$
\left\| \sum_{g \in \ker(\mathbb{Z}^{2N} \to \mathbb{Z}_j^{2N})} g \hat{\pi}^j (a_\Delta a) \right\| \leq \frac{1}{m_j^N} \sum_{l \in \mathbb{Z}^{2N}} \left| \mathcal{F} (a_\Delta a) \left(\frac{1}{m_j} \right) \right|.
$$

Otherwise from (6.26) it follows that

$$
\mathcal{F} (a_\Delta a) (x) = \int_{\mathbb{R}^{2N}} \mathcal{F} a_\Delta (x - y) \mathcal{F} a (y) e^{\pi i y \cdot \Theta x} dy.
$$

From the above equations it turns out

$$
\frac{1}{m_j^N} \sum_{l \in \mathbb{Z}^{2N}} \left| \mathcal{F} (a_\Delta a) \left(\frac{1}{m_j} \right) \right| = \\
= \frac{1}{m_j^{2N}} \sum_{l \in \mathbb{Z}^{2N}} \left| \int \mathcal{F} a \left(\frac{1}{m_j} + \Delta - t \right) \mathcal{F} a (t) e^{\pi i \Theta t} dt \right| \leq \\
\leq \frac{1}{m_j^{2N}} \sum_{l \in \mathbb{Z}^{2N}} \int \left| b \left(t - \Delta - \frac{l}{m_j} \right) c (t) e^{\pi i \Theta t} \right| dt = \\
= \frac{1}{m_j^{2N}} \sum_{l \in \mathbb{Z}^{2N}, \left\| l \right\| \leq \frac{\|\Delta\|}{m_j}} \int \left| b \left(t - \Delta - \frac{l}{m_j} \right) c (t) e^{\pi i \Theta t} \right| dt + \\
+ \frac{1}{m_j^{2N}} \sum_{l \in \mathbb{Z}^{2N}, \left\| l \right\| > \frac{\|\Delta\|}{m_j}} \int \left| b \left(t - \Delta - \frac{l}{m_j} \right) c (t) e^{\pi i \Theta t} \right| dt
$$

63
where \(b(u) = F a(-u) \), \(c(u) = F a(u) \). From (6.33) it turns out

\[
\frac{1}{m_j^{2N}} \sum_{l \in \mathbb{Z}^{2N}, \frac{l}{m_j} < \frac{\|\Delta\|}{2}} \int \left| \frac{b \left(t - \Delta - \frac{l}{m_j} \right) c(t) e^{\frac{\|\Theta\|}{2}}}{M} \right| dt \leq
\]

\[
\leq \frac{1}{m_j^{2N}} \sum_{l \in \mathbb{Z}^{2N}, \frac{l}{m_j} < \frac{\|\Delta\|}{2}} \int_{\mathbb{R}^{2N}} \frac{C_b^M}{\left(1 + \|t - \Delta - \frac{l}{m_j}\| \right)^M (1 + \|t\|)^M} \frac{C_{cM}^2}{dt} \leq
\]

\[
= \frac{1}{m_j^{2N}} \sum_{l \in \mathbb{Z}^{2N}, \frac{l}{m_j} < \frac{\|\Delta\|}{2}} \int_{\mathbb{R}^{2N}} \frac{C_b^M}{\left(1 + \|t - \Delta - \frac{l}{m_j}\| \right)^M (1 + \|t\|)^M} \frac{C_{cM}^2}{dt} \leq
\]

\[
\leq \frac{N_{m_j}^\Delta}{m_j^{2N}} \sup_{l \in \mathbb{Z}^{2N}, \frac{l}{m_j} < \frac{\|\Delta\|}{2}} \frac{C_b^M C_{cM}^2}{\left(1 + \|s - \Delta - \frac{l}{m_j}\| \right)^M (1 + \|s\|)^M} \times \int_{\mathbb{R}^{2N}} \frac{1}{(1 + \|t\|)^M} dt.
\]

where \(N_{m_j}^\Delta = \left\{ l \in \mathbb{Z}^{2N} \mid \frac{l}{m_j} < \frac{\|\Delta\|}{2} \right\} \). The number \(N_{m_j}^\Delta \) can be estimated as a number of points with integer coordinates inside \(2N \)-dimensional cube

\[
N_{m_j}^\Delta < \|m_j\|^{2N}.
\]

From \(M > 2N \) it turns out the integral \(\int_{\mathbb{R}^{2N}} \frac{1}{(1 + \|t\|)^M} dt \) is convergent, hence

\[
\frac{1}{m_j^{2N}} \sum_{l \in \mathbb{Z}^{2N}, \frac{l}{m_j} < \frac{\|\Delta\|}{2}} \int \left| \frac{b \left(t - \Delta - \frac{l}{m_j} \right) c(t) e^{\frac{\|\Theta\|}{2}}}{M} \right| dt \leq
\]

\[
\leq C_1^M \sup_{l \in \mathbb{Z}^{2N}, \frac{l}{m_j} < \frac{\|\Delta\|}{2}} \frac{\|\Delta\|^{2N}}{\left(1 + \|s - \Delta - \frac{l}{m_j}\| \right)^M (1 + \|s\|)^M} \int_{\mathbb{R}^{2N}} \frac{1}{(1 + \|t\|)^M} dt.
\]

where

\[
C_1^M = C_b^M C_{cM}^2 \int_{\mathbb{R}^{2N}} \frac{1}{(1 + \|t\|)^M} dt.
\]

It turns out from the (6.36) that

\[
\inf_{l \in \mathbb{Z}^{2N}, \frac{l}{m_j} < \frac{\|\Delta\|}{2}, s \in \mathbb{R}^{2N}} \left(1 + \|s - \Delta - \frac{l}{m_j}\| \right)^M (1 + \|s\|)^M > \left\| \frac{\Delta}{4} \right\|^M.
\]
From $M = 2N + 1 + m$ it turns out

$$
\frac{1}{m_j^2} \sum_{l \in \mathbb{Z}^{2N}, \|l\| > \frac{|A_1|}{2}} \left| \int b \left(t - \Delta - \frac{1}{m_j} \right) c(t) e^{\frac{\pi i}{m_j} \cdot \Theta t} dt \right| \leq C_1 \Delta^{-m}
$$

where $C_1 = C_1' / 4^m$. Clearly

$$
\frac{1}{m_j^2} \sum_{l \in \mathbb{Z}^{2N}, \|l\| > \frac{|A_1|}{2}} \left| \int b \left(t - \Delta - \frac{1}{m_j} \right) c(t) e^{\frac{\pi i}{m_j} \cdot \Theta t} dt \right| =
$$

$$
= \frac{1}{m_j^2} \sum_{l \in \mathbb{Z}^{2N}, \|l\| > \frac{|A_1|}{2}} \left| \left(b \left(\cdot - \Delta - \frac{1}{m_j} \right), c(\cdot) e^{\frac{\pi i}{m_j} \cdot \Theta \cdot} \right) \right|
$$

where (\cdot, \cdot) means the given by (6.5) scalar product. From the \mathcal{F}-invariance of (\cdot, \cdot) it follows that

$$
\frac{1}{m_j^2} \sum_{l \in \mathbb{Z}^{2N}, \|l\| > \frac{|A_1|}{2}} \left| \int_{\mathbb{R}^{2N}} \mathcal{F}(b) \left(\cdot - \Delta - \frac{1}{m_j} \right)(u) \mathcal{F}(c(\cdot) e^{\frac{\pi i}{m_j} \cdot \Theta \cdot})(u) du \right| \leq
$$

$$
\leq \frac{1}{m_j^2} \sum_{l \in \mathbb{Z}^{2N}, \|l\| > \frac{|A_1|}{2}} \int_{\mathbb{R}^{2N}} e^{-i \left(\Delta - \frac{1}{m_j} \right) u} \mathcal{F}(b)(u) \mathcal{F}(c(u + \Theta \frac{\pi i}{m_j}))(u) du \leq
$$

$$
\leq \frac{1}{m_j^2} \sum_{l \in \mathbb{Z}^{2N}, \|l\| > \frac{|A_1|}{2}} \int_{\mathbb{R}^{2N}} \frac{C_{3M}^{(b)}}{(1 + \|u\|)^M} \frac{C_{2M}^{(c)}}{(1 + \|\Theta \frac{\pi i}{m_j}\|)^M} \frac{1}{(1 + \|u\|)^M} du \leq
$$

$$
\leq \sup_{l \in \mathbb{Z}^{2N}, \|l\| > \frac{|A_1|}{2}} \sum_{s \in \mathbb{R}^{2N}} \frac{C_{3M}^{(b)}}{(1 + \|s\|)^M} \frac{C_{2M}^{(c)}}{(1 + \|s - \Theta \frac{\pi i}{m_j}\|)^M} \frac{1}{(1 + \|u - \Theta \frac{\pi i}{m_j}\|)^M} \frac{1}{(1 + \|u\|)^M} \times
$$

$$
\times \sum_{l \in \mathbb{Z}^{2N}, \|l\| > \frac{|A_1|}{2}} \frac{1}{(1 + \|u\|)^M} du.
$$
Since we consider the asymptotic dependence \(\| \Delta \| \to \infty \) only large values of \(\| \Delta \| \) are interesting, so we can suppose that \(\| \Delta \| > 2 \). If \(\| \Delta \| > 2 \) then from \(\| \frac{I_m}{m_j} \| > \frac{\| \Delta \|}{2} \) it follows that \(\| \Theta \frac{\Delta}{m_j} \| > 1 \), and from (6.36) it follows that

\[
(1 + \| u \|)^M \left(1 + \left\| u - \Theta \frac{\pi l m_j}{m_j} \right\| \right)^M > \left\| \Theta \frac{\pi l m_j}{m_j} \right\|^M,
\]

\[
\inf_{l \in \mathbb{Z}^{2N}, \| u \| > \| \Delta \|} (1 + \| s \|)^M \left(1 + \left\| s - \Theta \frac{\pi l m_j}{m_j} \right\| \right)^M > \left\| \Delta \right\|^M / 4,
\]

hence, taking into account (6.38), one has

\[
\frac{1}{m_j^{2N}} \sum_{l \in \mathbb{Z}^{2N}, \| u \| > \| \Delta \|} \left| \left(b \left(\bullet + \Delta - \frac{l}{m_j} \right), c \left(\bullet \right) e^{\pi \Theta l \bullet} \right) \right| \leq \frac{1}{m_j^{2N}} C'_2 \sum_{l \in \mathbb{Z}^{2N}, \| u \| > 1} \int_{\mathbb{R}^{2N}} \frac{1}{m_j^M} \left(1 + \| u \| \right)^M = \frac{C'_2}{\| \Delta \|^M m_j^{2N}} \left(\sum_{l \in \mathbb{Z}^{2N}, \| u \| > 1} \left\| \frac{\pi \Theta l}{m_j} \right\|^M \left(\int_{\mathbb{R}^{2N}} \frac{1}{m_j^M} \left(1 + \| u \| \right)^M d u \right) \right),
\]

where \(C'_2 = C_3^{(b)} C_2^{(c)} \). Since \(M \geq 2N + 1 \) the integral \(\int_{\mathbb{R}^{2N}} \frac{1}{m_j^M} \left(1 + \| u \| \right)^M d u \) is convergent. The infinite sum in the above equation can be represented as an integral of step function, in particular following condition holds

\[
\frac{1}{m_j^{2N}} \sum_{l \in \mathbb{Z}^{2N}, \| u \| > 1} \left\| \frac{\pi \Theta l}{m_j} \right\|^M = \int_{\mathbb{R}^{2N} - \{ x \in \mathbb{R}^{2N} | \| x \| > 1 \}} f_{m_j}(x) \, dx
\]

where \(f_{m_j} \) is a multidimensional step function such that

\[
f_{m_j} \left(\frac{2\pi l m_j}{m_j} \right) = \frac{1}{\| \frac{2\pi l m_j}{m_j} \|^M}
\]

From

\[
f_{m_j}(x) < \frac{2}{\| \frac{2\pi x m_j}{m_j} \|^M}
\]
it follows that
\[\int_{\mathbb{R}^{2N} - \{ x \in \mathbb{R}^{2N} | \|x\| > 1 \}} f_{m_j}(x) \, dx < \int_{\mathbb{R}^{2N} - \{ x \in \mathbb{R}^{2N} | \|x\| > 1 \}} \frac{2}{\|2\pi x\|^M} \, dx. \]

From \(m > 2N + 1 \) it turns out the integral
\[\int_{\mathbb{R}^{2N} - \{ x \in \mathbb{R}^{2N} | \|x\| > 1 \}} \int_{\mathbb{R}^{2N} - \{ x \in \mathbb{R}^{2N} | \|x\| > 1 \}} \frac{2}{\|2\pi x\|^M} \, dx \]
is convergent, hence
\[\frac{1}{m_j^{2N}} \sum_{l \in \mathbb{Z}^{2N}, \|l\| > \frac{1}{m_j}} \frac{1}{m_j^M} < C_2'' = \int_{\mathbb{R}^{2N} - \{ x \in \mathbb{R}^{2N} | \|x\| > 1 \}} \frac{2}{\|2\pi x\|^M} \, dx. \]

From above equations it follows that
\[\frac{1}{m_j^{2N}} \sum_{l \in \mathbb{Z}^{2N}, \|l\| > \frac{1}{m_j}} \left\| \int_{\mathbb{R}^{2N}} b \left(\frac{w}{m_j} - l \right) c(w + \Delta) e^{i \frac{1}{m_j} \frac{w}{m_j}} \right\| \leq \frac{C_2}{\|\Delta\|^M}, \]
where \(M = 2N + 1 + m \) and \(C_2 = C_2' C_2'' \int_{\mathbb{R}^{2N}} \frac{1}{(1 + \|u\|)^M} \, du \). In result for any \(m > 0 \) there is \(C_m \in \mathbb{R} \) such that
\[\left\| \sum_{g \in \ker(G \to G_j)} \hat{\pi}^{\oplus}(a) \right\| < \frac{1}{m_j^{2N}} \sum_{l \in \mathbb{Z}^{2N}} \int_{\mathbb{R}^{2N}} b \left(\frac{t + \Delta - l}{m_j} \right) c(t) e^{i \frac{\pi}{m_j} \Theta t} \, dt < \frac{C_m}{\|\Delta\|^M}. \]

\[\square \]

Lemma 6.32. If \(\pi \) in \(\mathcal{S}(\mathbb{R}_0^{2N}) \) is positive then following conditions hold:

(i) For any \(j \in \mathbb{N}^0 \) the following series
\[a_j = \sum_{g \in \ker(G \to G_j)} g \bar{a}, \]
\[b_j = \sum_{g \in \ker(G \to G_j)} g \bar{a}^2 \]
are strongly convergent and the sums lie in \(C^\infty \left(T_{\sigma/m_j}^{2N} \right) \), i.e. \(a_j, b_j \in C^\infty \left(T_{\sigma/m_j}^{2N} \right) \); (ii) For any \(\epsilon > 0 \) there is \(N \in \mathbb{N} \) such that for any \(j \geq N \) the following condition holds
\[\|a_j^2 - b_j\| < \epsilon. \]
Proof. (i) Follows from the Lemmas 6.23 and/or 6.29.
(ii) Denote by \(J_j = \ker (\mathbb{Z}^{2N} \to G_j) = m_j \mathbb{Z}^{2N} \). If
\[
a_j = \sum_{g \in I_j} g \bar{a},
b_j = \sum_{g \in I_j} g \bar{a}^2
\]
then
\[
a_j^2 - b_j = \sum_{g \in I_j} g \bar{a} \left(\sum_{g' \in I_j \setminus \{g\}} g' \bar{a} \right).
\]
From (6.58) it follows that \(g \bar{a} = \bar{a}_g \) where \(\bar{a}_g (x) = \bar{a} (x + g) \) for any \(x \in \mathbb{R}^{2N} \) and \(g \in \mathbb{Z}^{2N} \). Hence the equation (6.59) is equivalent to
\[
a_j^2 - b_j = \sum_{g \in I_j} \bar{a}_g \left(\sum_{g' \in I_j \setminus \{g\}} \bar{a}_g' \right).
\]
Let \(m > 1 \) and \(M = 2N + 1 + m \). From the Lemma 6.31 it follows that there is \(C \in \mathbb{R} \) such that
\[
\left\| \sum_{g \in I_j} g (aa_\Delta) \right\| < \frac{C}{\| \Delta \|^M}.
\]
From the triangle inequality it follows that
\[
\left\| a_j^2 - b_j \right\| \leq \sum_{g' \in \mathbb{Z}^{2N \setminus \{0\}}} \left\| \sum_{g \in I_j} g (aa_\Delta) \right\| \leq \sum_{g' \in \mathbb{Z}^{2N \setminus \{0\}}} C \frac{\| m_j g' \|^M}{\| m_j g' \|^M}.
\]
From \(M > 2N \) it turns out that the series
\[
C' = \sum_{g' \in \mathbb{Z}^{2N \setminus \{0\}}} \frac{C}{\| m_j g' \|^M}
\]
is convergent and
\[
\sum_{g \in \mathbb{Z}^{2N \setminus \{0\}}} \frac{C}{\| m_j g \|^M} = \frac{C'}{m_j^M}.
\]
If $\varepsilon > 0$ is a small number and $N \in \mathbb{N}$ is such $m_N > \frac{M}{\varepsilon}$ then from above equations it follows that for any $j \geq N$ the following condition holds

$$\|a_j^2 - b_j\| < \varepsilon.$$

Lemma 6.33. Let us consider a dense inclusion

$$S\left(\mathbb{R}^2_\theta\right) \otimes \cdots \otimes S\left(\mathbb{R}^2_\theta\right) \subset S\left(\mathbb{R}^{2N}_\theta\right) \quad \text{N-times}$$

of algebraic tensor product which follows from (6.45). If $\overline{\sigma} \in S\left(\mathbb{R}^{2N}_\theta\right)$ is a positive such that

- $\overline{\sigma}$ is a rank-one operator.

then $\overline{\sigma}$ is special.

Proof. Clearly $\overline{\sigma}$ is a rank-one operator. If $\overline{\sigma} \in S\left(\mathbb{R}^{2N}_\theta\right)$ then from the Lemmas 6.23 and/or 6.29 it turns out that $\overline{\sigma}$ satisfies to (a) of the Definition 3.5. If $z \in C\left(\mathbb{T}^{2N}_\theta\right)$ then from the injective *-homomorphism $C\left(\mathbb{T}^{2N}_\theta\right) \hookrightarrow C\left(\mathbb{T}^{2N}_\theta \otimes \mathbb{M}_2\right)$ it follows that z can be regarded as element of $C\left(\mathbb{T}^{2N}_\theta \otimes \mathbb{M}_2\right)$, i.e. $z \in C\left(\mathbb{T}^{2N}_\theta \otimes \mathbb{M}_2\right)$. Denote by

$$b_j = \sum_{g \in \text{ker}(G \rightarrow G_j)} g \left(z \overline{\sigma} z^*\right) = z \left(\sum_{g \in \text{ker}(G \rightarrow G_j)} g \overline{\sigma}\right) z^*,$$

$$c_j = \sum_{g \in \text{ker}(G \rightarrow G_j)} g \left(z \overline{\sigma} z^*\right)^2 = z \left(\sum_{g \in \text{ker}(G \rightarrow G_j)} g \left(z \overline{\sigma} z^*\right)\right) z^*,$$

$$d_j = \sum_{g \in \text{ker}(G \rightarrow G_j)} g f_\varepsilon(z \overline{\sigma} z^*)$$

where f_ε is given by (3.2). From $\overline{\sigma}$ in $S\left(\mathbb{R}^{2N}_\theta\right)$ it turns out $a_j = \sum_{g \in \text{ker}(G \rightarrow G_j)} g \overline{\sigma} \in C\left(\mathbb{T}^{2N}_\theta \otimes \mathbb{M}_2\right)$, hence $b_j = z a_j z^* \in C\left(\mathbb{T}^{2N}_\theta \otimes \mathbb{M}_2\right)$. If $\xi \in \mathcal{H}$ is eigenvector of $\overline{\sigma}$ such that
that follows that \(\parallel \) then \(\eta = z_\xi \) is an is eigenvector of \(\eta = z\xi \) such that \(z\xi \eta = \parallel z\xi \parallel \eta \). It follows that \((z\xi)^2 = kz\xi \) where \(k \in \mathbb{R}_+ \) is given by

\[
k = \frac{\parallel z\xi \parallel^2}{\parallel z\xi \parallel}.
\]

Hence \(c_j = kb_j \) and \(c_j \in C^\infty (T_{\theta/m}^N) \). Similarly \(f_\varepsilon (z\xi) = k' (z\xi) \) where

\[
k' = \max \left(0, \frac{\parallel z\xi \parallel - \varepsilon}{\parallel z\xi \parallel} \right).
\]

Hence \(d_j = k'b_j \) and \(d_j \in C^\infty (T_{\theta/m}^N) \), it follows that \(\pi \) satisfies to the condition (b) of the Definition 3.5. Let \(\varepsilon > 0 \), and let \(\delta > 0 \) be such that

\[
\delta^4 \left(\sum_{g \in \hat{G}} \parallel \pi \parallel^2 \right)^2 + 2\delta^2 \left(\sum_{g \in \hat{G}} \parallel \xi \parallel \right) \left(\sum_{g \in \hat{G}} z\xi \right) < \frac{\varepsilon}{4}.
\]

\[
\delta^2 \sum_{g \in \hat{G}} g (\xi z\xi) < \frac{\varepsilon}{4}.
\]

\[
\left(\parallel \zeta \parallel + \delta \right)^2 \left(\delta^2 + 2\delta \parallel \zeta \parallel \right) \sum_{g \in \hat{G}} \parallel \xi \parallel^2 < \frac{\varepsilon}{4}.
\]

The algebra \(C^\infty (T_{\theta}^N) \) is a dense subalgebra of \(C (T_{\theta}^N) \), so there is \(y \in C^\infty (T_{\theta}^N) \) such that \(\parallel \zeta - y \parallel < \delta \). From

\[
\left\| b_j - y \left(\sum_{g \in \ker (G \rightarrow G_j)} g \pi \right) y^* \right\| \leq \left\| (z - y) \left(\sum_{g \in \hat{G}} g \pi \right) (z - y)^* \right\| < \delta^2 \left\| \sum_{g \in \hat{G}} \pi \right\|
\]

and taking into account \(\delta^4 \left(\sum_{g \in \hat{G}} \parallel \pi \parallel^2 \right)^2 + 2\delta^2 \left(\sum_{g \in \hat{G}} \parallel \xi \parallel \right) \left(\sum_{g \in \hat{G}} z\xi \right) < \frac{\varepsilon}{4} \) one has

\[
\left\| b_j^2 - \left(y \left(\sum_{g \in \ker (G \rightarrow G_j)} g \pi \right) y^* \right) \right\|^2 < \frac{\varepsilon}{4}.
\]

From

\[
\left\| c_j - y \left(\sum_{g \in \ker (G \rightarrow G_j)} g (\xi z\xi) \right) y^* \right\| \leq \left\| (z - y) \left(\sum_{g \in \hat{G}} g (\xi z\xi) \right) (z - y)^* \right\| < \delta^2 \left\| \sum_{g \in \hat{G}} (\xi z\xi) \right\|
\]

\[
< \frac{\varepsilon}{4}.
\]

\[70\]
and taking into account \(\| \sum_{g \in \hat{G}} g (\pi z^* \pi) \| \delta^2 < \frac{\varepsilon}{4} \) one has

\[
\left\| c_j - y \left(\sum_{g \in \text{ker}(G \to G_j)} g (\pi z^* \pi) \right) y^* \right\| < \frac{\varepsilon}{4} \quad (6.61)
\]

From \(\| y \| < \| z \| + \delta \) it turns out

\[
\left\| y \left(\sum_{g \in \text{ker}(G \to G_j)} g (\pi z^* \pi) \right) y^* - y \left(\sum_{g \in \text{ker}(G \to G_j)} g (\pi y^* \pi) \right) y^* \right\| \leq (\| z \| + \delta)^2 \left(\delta^2 + 2\delta \| \pi \| \right) \left\| \sum_{g \in \hat{G}} \delta^2 \right\|
\]

and taking into account \((\| z \| + \delta)^2 (\delta^2 + 2\delta \| \pi \|) \left\| \sum_{g \in \hat{G}} \delta^2 \right\| < \frac{\varepsilon}{4} \) one has

\[
\left\| y \left(\sum_{g \in \text{ker}(G \to G_j)} g (\pi z^* \pi) \right) y^* - y \left(\sum_{g \in \text{ker}(G \to G_j)} g (\pi y^* \pi) \right) y^* \right\| < \frac{\varepsilon}{4} \quad (6.62)
\]

From \(y \in C^\infty (T^2N) \) and \(\alpha \in S (\mathbb{R}_\theta^2 \times \cdots \times \mathbb{R}_\theta^2) \) it follows that \(\pi y^* \in S (\mathbb{R}_\theta^2) \), hence from the Lemma 6.32 it turns out the existence of \(N \in \mathbb{N} \) such that for any \(j \geq N \) following condition holds

\[
\left\| \left(\sum_{g \in \text{ker}(G \to G_j)} g (\pi y^*) \right)^2 - \sum_{g \in \text{ker}(G \to G_j)} (g (\pi y^*))^2 \right\| < \frac{\varepsilon}{4} \quad (6.63)
\]

From (6.60)-(6.63) it follows than for any \(j \geq N \) following condition holds

\[
\left\| b_j^2 - c_j \right\| < \varepsilon,
\]

i.e. \(\pi \) satisfies to the condition (c) of the Definition 3.5.

\[\square\]

Corollary 6.34. If \(\overline{A_{\hat{\pi}^0}} \) is the disconnected inverse noncommutative limit of \(S_\theta \) with respect to \(\hat{\pi}^0 \) then

\[
\bigoplus_{g \in I} gC_0 \left(\mathbb{R}_\theta^2 \right) \subset \overline{A_{\hat{\pi}^0}}
\]

Proof. From the Lemma 6.33 it turns out that \(\overline{A_{\hat{\pi}^0}} \) contains all elements

\[
f_{j_1 k_1} \otimes \cdots \otimes f_{j_N k_N} \in S (\mathbb{R}_\theta^2) \otimes \cdots \otimes S (\mathbb{R}_\theta^2) \subset S (\mathbb{R}_\theta^2) \quad (6.64)
\]

\[\text{N-times}\]
where \(f_{j,k_l} \) \((l = 1, \ldots, N)\) are given by the Lemma 6.24. However the linear span of given by (6.64) elements is dense in \(C_0 \left(\mathbb{R}_\theta^{2N} \right) \), hence \(C_0 \left(\mathbb{R}_\theta^{2N} \right) \subset \mathcal{A}_{\pi^\oplus} \). From the Corollary 3.9 it turns out
\[
\bigoplus_{g \in J} g C_0 \left(\mathbb{R}_\theta^{2N} \right) \subset \mathcal{A}_{\pi^\oplus}.
\]

6.35. From the Lemma 6.8 it turns out that \(L^2 \left(\mathbb{R}_\theta^{2N} \right) \subset B \left(L^2 \left(\mathbb{R}^{2N} \right) \right) \) is a Hilbert space with the norm \(\| \cdot \|_2 \) given by (6.23). One can construct the Hilbert direct sum
\[
X = \bigoplus_{g \in J} g L^2 \left(\mathbb{R}_\theta^{2N} \right) \subset \prod_{g \in J} B \left(g L^2 \left(\mathbb{R}_\theta^{2N} \right) \right),
\]
\[
X = \left\{ \overline{\pi} \in \prod_{g \in J} B \left(g L^2 \left(\mathbb{R}_\theta^{2N} \right) \right) \mid \| (\ldots, x_{g_k}, \ldots) \|_2 = \sqrt{\sum_{g \in J} \| x_g \|_2^2} < \infty \right\}.
\]

If \(\overline{\pi} \in X \) is a special element and \(b = \sum_{g \in \hat{G}} g \overline{\pi} \in C \left(\mathbb{T}^{2N}_\theta \right) \) then
\[
\tau \left(b \right) = \int_{\mathbb{R}_\theta^{2N}} \overline{\pi}^2 dx = \| \overline{\pi} \|_2^2
\]
where \(\tau \) is given by (6.10), or (6.11). On the other hand \(| \tau \left(b \right) | < \infty \) for any \(b \in C \left(\mathbb{T}^{2N}_\theta \right) \) it follows that \(\| \overline{\pi} \|_2^2 < \infty \) for a special element \(\overline{\pi} \). In result we have the following lemma.

Lemma 6.36. The special element \(\overline{\pi} \in \lim_{\rightarrow} C \left(\mathbb{T}^{2N}_{\theta/m^n} \right) \) lies in \(X = \bigoplus_{g \in J} g L^2 \left(\mathbb{R}_\theta^{2N} \right) \). Moreover if \(b = \sum_{g \in \hat{G}} g \left(\overline{\pi}^2 \right) \in C \left(\mathbb{T}^{2N}_\theta \right) \) then
\[
\| \overline{\pi} \|_2^2 = \tau \left(b \right) < \infty
\]
where \(\tau \) is the tracial state on \(C \left(\mathbb{T}^{2N}_\theta \right) \) given by (6.10), 6.12 and \(\| \cdot \|_2 \) is given by (6.23).

Remark 6.37. From \(L^2 \left(\mathbb{R}_\theta^{2N} \right) \subset C_0 \left(\mathbb{R}_\theta^{2N} \right) \) it follows that any special element in \(B \left(L^2 \left(\mathbb{R}_\theta^{2N} \right) \right) \) lies in \(C_0 \left(\mathbb{R}_\theta^{2N} \right) \).

6.38. Let \(\mathcal{A}_{\pi^\oplus} \) be the disconnected inverse noncommutative limit of \(\mathcal{G}_\theta \) with respect to \(\pi^\oplus \) of \(\mathcal{G}_\theta \). From the Corollary 6.34 it follows that
\[
C_0 \left(\mathbb{R}_\theta^{2N} \right) \subset \mathcal{A}_{\pi^\oplus} \cap B \left(L^2 \left(\mathbb{R}^{2N} \right) \right).
\]
From the Remark 6.37 it follows that
\[
\mathcal{A}_{\pi^\oplus} \cap B \left(L^2 \left(\mathbb{R}^{2N} \right) \right) \subset C_0 \left(\mathbb{R}_\theta^{2N} \right).
\]
In result we have
\[
\mathcal{A}_{\pi^\oplus} \cap B \left(L^2 \left(\mathbb{R}^{2N} \right) \right) = C_0 \left(\mathbb{R}_\theta^{2N} \right).
\]
Similarly for any \(g \in J \) on has
\[
\mathcal{A}_{\mathcal{R}^\oplus} \cap B \left(gL^2 \left(\mathcal{R}^{2N} \right) \right) = gC_0 \left(\mathcal{R}_g^{2N} \right).
\]
The algebra \(C_0 \left(\mathcal{R}_g^{2N} \right) \) is irreducible. Clearly \(C_0 \left(\mathcal{R}_g^{2N} \right) \subset \mathcal{A}_{\mathcal{R}^\oplus} \) is a maximal irreducible subalgebra.

Theorem 6.39. Following conditions hold:

(i) The representation \(\mathcal{R}^\oplus \) is good,

(ii) \[
\lim_{\mathcal{R}^\oplus} \downarrow \mathcal{S}_\theta = C_0 \left(\mathcal{R}_g^{2N} \right);
\]

\[
G \left(\lim_{\mathcal{R}^\oplus} \downarrow \mathcal{S}_\theta \mid C \left(\mathcal{T}_g^{2N} \right) \right) = \mathbb{Z}^{2N},
\]

(iii) The triple \(\left(C \left(\mathcal{T}_g^{2N} \right), C_0 \left(\mathcal{R}_g^{2N} \right), \mathbb{Z}^{2N} \right) \) is an infinite noncommutative covering of \(\mathcal{S}_\theta \) with respect to \(\mathcal{R}^\oplus \).

Proof. (i) There is the natural inclusion \(\mathcal{A}_{\mathcal{R}^\oplus} \hookrightarrow \prod_{g \in J} B \left(gL^2 \left(\mathcal{R}^{2N} \right) \right) \) where \(\prod \) means the Cartesian product of algebras. This inclusion induces the decomposition
\[
\mathcal{A}_{\mathcal{R}^\oplus} \hookrightarrow \prod_{g \in J} \left(\mathcal{A}_{\mathcal{R}^\oplus} \cap B \left(gL^2 \left(\mathcal{R}^{2N} \right) \right) \right).
\]
From (6.65) it turns out \(\mathcal{A}_{\mathcal{R}^\oplus} \cap B \left(gL^2 \left(\mathcal{R}^{2N} \right) \right) = gC_0 \left(\mathcal{R}_g^{2N} \right) \), hence there is the inclusion
\[
\mathcal{A}_{\mathcal{R}^\oplus} \hookrightarrow \prod_{g \in J} gC_0 \left(\mathcal{R}_g^{2N} \right).
\]

From the above equation it follows that \(C_0 \left(\mathcal{R}_g^{2N} \right) \subset \mathcal{A}_{\mathcal{R}^\oplus} \) is a maximal irreducible subalgebra. From the Lemma 6.36 it turns out that algebraic direct sum \(\bigoplus_{g \in J} gC_0 \left(\mathcal{R}_g^{2N} \right) \) is a dense subalgebra of \(\mathcal{A}_{\mathcal{R}^\oplus} \), i.e. the condition (b) of the Definition 3.13 holds. Clearly the map \(C \left(\mathcal{T}_g^{2N} \right) \to M \left(C_0 \left(\mathcal{R}_g^{2N} \right) \right) \) is injective, i.e. the condition (a) of the Definition 3.13 holds. If \(G \subset \hat{G} \) is the maximal group such that \(GC_0 \left(\mathcal{R}_g^{2N} \right) = C_0 \left(\mathcal{R}_g^{2N} \right) \) then \(G = \mathbb{Z}^{2N} \). The homomorphism \(\mathbb{Z}^{2N} \to \mathbb{Z}^{2N}_{m_j} \) is surjective, it turns out that the condition (c) of the Definition 3.13 holds.

(ii) and (iii) Follows from the proof of (i).

7 Isospectral deformations and their coverings

A very general construction of isospectral deformations of noncommutative geometries is described in [3]. The construction implies in particular that any compact spin-manifold
\(M \) whose isometry group has rank \(\geq 2 \) admits a natural one-parameter isospectral deformation to noncommutative geometries \(M_\gamma \). We let \((C^\infty(M), \mathcal{H} = L^2(M, S), \mathcal{D})\) be the canonical spectral triple associated with a compact spin-manifold \(M \). We recall that \(\mathcal{A} = C^\infty(M) \) is the algebra of smooth functions on \(M \), \(S \) is the spinor bundle and \(\mathcal{D} \) is the Dirac operator. Let us assume that the group \(\text{Isom}(M) \) of isometries of \(M \) has rank \(r \geq 2 \).

Then, we have an inclusion
\[
\mathbb{T}^2 \subset \text{Isom}(M),
\]
with \(\mathbb{T}^2 = \mathbb{R}^2/2\pi\mathbb{Z}^2 \) the usual torus, and we let \(U(s), s \in \mathbb{T}^2 \), be the corresponding unitary operators in \(\mathcal{H} = L^2(M, S) \) so that by construction
\[
U(s) \mathcal{D} = \mathcal{D} U(s).
\]

Also,
\[
U(s) a U(s)^{-1} = a_s(a), \quad \forall a \in \mathcal{A}, \tag{7.1}
\]
where \(a_s \in \text{Aut}(\mathcal{A}) \) is the action by isometries on the algebra of functions on \(M \).

We let \(p = (p_1, p_2) \) be the generator of the two-parameters group \(U(s) \) so that
\[
U(s) = \exp(i(s_1 p_1 + s_2 p_2)).
\]

The operators \(p_1 \) and \(p_2 \) commute with \(D \). Both \(p_1 \) and \(p_2 \) have integral spectrum,
\[
\text{Spec}(p_j) \subset \mathbb{Z}, \quad j = 1, 2.
\]

One defines a bigrading of the algebra of bounded operators in \(\mathcal{H} \) with the operator \(T \) declared to be of bidegree \((n_1, n_2)\) when,
\[
\alpha_s(T) = U(s) T U(s)^{-1} \quad \text{as in} \quad (7.1),
\]
where \(\alpha_s(T) = U(s) T U(s)^{-1} \) as in (7.1).

Any operator \(T \) of class \(C^\infty \) relative to \(\alpha_s \) (i.e. such that the map \(s \to \alpha_s(T) \) is of class \(C^\infty \) for the norm topology) can be uniquely written as a doubly infinite norm convergent sum of homogeneous elements,
\[
T = \sum_{n_1, n_2} \tilde{T}_{n_1, n_2},
\]
with \(\tilde{T}_{n_1, n_2} \) of bidegree \((n_1, n_2)\) and where the sequence of norms \(||\tilde{T}_{n_1, n_2}|| \) is of rapid decay in \((n_1, n_2)\). Let \(\lambda = \exp(2\pi i \theta) \). For any operator \(T \) in \(\mathcal{H} \) of class \(C^\infty \) we define its left twist \(l(T) \) by
\[
l(T) = \sum_{n_1, n_2} \tilde{T}_{n_1, n_2} \lambda^{n_2 p_1}, \tag{7.2}
\]
and its right twist \(r(T) \) by
\[
r(T) = \sum_{n_1, n_2} \tilde{T}_{n_1, n_2} \lambda^{n_1 p_2},
\]
Since \(|\lambda| = 1\) and \(p_1, p_2 \) are self-adjoint, both series converge in norm. Denote by \(C^\infty(M)_{n_1, n_2} \subset C^\infty(M) \) the \(\mathbb{C} \)-linear subspace of elements of bidegree \((n_1, n_2)\).

One has,
Lemma 7.1.

a) Let x be a homogeneous operator of bidegree (n_1, n_2) and y be a homogeneous operator of bidegree (n'_1, n'_2). Then,

$$l(x) r(y) - r(y) l(x) = (xy - yx) \lambda'^1 n_2 \lambda^{n_2 \mu_1 + n'_1 \mu_2}$$

(7.3)

In particular, $[l(x), r(y)] = 0$ if $[x, y] = 0$.

b) Let x and y be homogeneous operators as before and define

$$x * y = \lambda'^1 n_2 xy;$$

then $l(x)l(y) = l(x * y)$.

The product $*$ defined in (7.4) extends by linearity to an associative product on the linear space of smooth operators and could be called a $*$-product. One could also define a deformed ‘right product’. If x is homogeneous of bidegree (n_1, n_2) and y is homogeneous of bidegree (n'_1, n'_2) the product is defined by

$$x * r y = \lambda'^1 n_2 xy.$$

Then, along the lines of the previous lemma one shows that $r(x)r(y) = r(x * r y)$.

We can now define a new spectral triple where both \mathcal{H} and the operator D are unchanged while the algebra $C^\infty (M)$ is modified to $l(C^\infty (M))$. By Lemma 7.1b) one checks that $l(C^\infty (M))$ is still an algebra. Since D is of bidegree $(0, 0)$ one has,

$$[D, l(a)] = l([D, a])$$

which is enough to check that $[D, x]$ is bounded for any $x \in l(A)$. There is a spectral triple $(l(C^\infty (M)), \mathcal{H}, D)$.

Denote by $C(M_\theta)$ the operator norm completion (equivalently C^*-norm completion) of $l(C^\infty (M))$, and denote by $\rho : C(M) \to L^2 (M, S)$ (resp. $\pi_\theta : C(M_\theta) \to B (L^2 (M, S))$) natural representations.

7.1 Finite-fold coverings

Let M be a spin-manifold with the smooth action of \mathbb{T}^2. Let $\pi : \tilde{M} \to M$ be a finite-fold covering. Let $\tilde{x}_0 \in \tilde{M}$ and $x_0 = \pi (\tilde{x}_0)$. Denote by $\varphi : \mathbb{R}^2 \to \mathbb{R}^2 / \mathbb{Z}^2 = \mathbb{T}^2$ the natural covering. There are two closed paths $\omega_1, \omega_2 : [0, 1] \to M$ given by

$$\omega_1 (t) = \varphi (t, 0) x_0, \omega_2 (t) = \varphi (0, t) x_0.$$

There are lifts of these paths, i.e. maps $\tilde{\omega}_1, \tilde{\omega}_2 : [0, 1] \to \tilde{M}$ such that

$$\tilde{\omega}_1 (0) = \tilde{\omega}_2 (0) = \tilde{x}_0,$$

$$\pi (\tilde{\omega}_1 (t)) = \omega_1 (t),$$

$$\pi (\tilde{\omega}_2 (t)) = \omega_2 (t).$$
Since π is a finite-fold covering there are $N_1, N_2 \in \mathbb{N}$ such that if
\[
\gamma_1(t) = \varphi(N_1 t, 0) x_0, \quad \gamma_2(t) = \varphi(0, N_2 t) x_0.
\]
and $\tilde{\gamma}_1$ (resp. $\tilde{\gamma}_2$) is the lift of γ_1 (resp. γ_2) then both $\tilde{\gamma}_1, \tilde{\gamma}_2$ are closed. Let us select minimal positive values of N_1, N_2. If $pr_n : S^1 \to S^1$ is an n listed covering and pr_{N_1, N_2} the covering given by
\[
\tilde{T}^2 = S^1 \times S^1 \xrightarrow{pr_{N_1} \times pr_{N_2}} S^1 \times S^1 = T^2
\]
then there is the action $\tilde{T}^2 \times \tilde{M} \to \tilde{M}$ such that
\[
\tilde{T}^2 \times \tilde{M} \xrightarrow{pr_{N_1} \times \pi} \tilde{M}
\]
\[
\tilde{T}^2 \times M \xrightarrow{pr_{N_1, N_2} \times \pi} M
\]
where $\tilde{T}^2 \approx T^2$. Let $\tilde{p} = (\tilde{p}_1, \tilde{p}_2)$ be the generator of the associated with \tilde{T}^2 two-parameters group $\tilde{U}(s)$ so that
\[
\tilde{U}(s) = \exp(i(s_1 \tilde{p}_1 + s_2 \tilde{p}_2)).
\]
The covering $\tilde{M} \to M$ induces an involutive injective homomorphism
\[
\varphi : C^\infty(M) \hookrightarrow C^\infty(\tilde{M}).
\]
Since $\tilde{M} \to M$ is a covering $C^\infty(\tilde{M})$ is a finitely generated projective $C^\infty(M)$-module, i.e. there is the following direct sum of $C^\infty(\tilde{M})$-modules
\[
C^\infty(\tilde{M}) \bigoplus P = C^\infty(M)^n
\] (7.5)
such that
\[
\varphi(C^\infty(M))_{n_1, n_2} \subset C^\infty(\tilde{M})_{n_1 N_1, n_2 N_2}.
\]
Let $\theta, \tilde{\theta} \in \mathbb{R}$ be such that
\[
\tilde{\theta} = \theta + n \frac{\pi}{N_1 N_2}, \text{ where } n \in \mathbb{Z}.
\]
If $\lambda = e^{2\pi i \theta}$, $\tilde{\lambda} = e^{2\pi i \tilde{\theta}}$ then $\lambda = \tilde{\lambda}^{N_1 N_2}$. There are isospectral deformations $C^\infty(M_\theta), C^\infty(\tilde{M}_\tilde{\theta})$ and C-linear isomorphisms $I : C^\infty(M) \to C^\infty(M_\theta), \tilde{I} : C^\infty(\tilde{M}) \to C^\infty(\tilde{M}_\tilde{\theta})$. These isomorphisms and the inclusion φ induce the inclusion
\[
\varphi_\theta : C^\infty(M_\theta) \to C^\infty(\tilde{M}_\tilde{\theta}),
\]
\[
\varphi_{\tilde{\theta}}(C^\infty(M_\theta))_{n_1, n_2} \subset C^\infty(\tilde{M}_\tilde{\theta})_{n_1 N_1, n_2 N_2}.
\]
From (7.5) it follows that
\[\tilde{I} \left(C^\infty \left(\tilde{M} \right) \right) \oplus I \left(P \right) = I \left(C^\infty \left(M \right) \right)^n, \]
or equivalently \(C^\infty \left(\tilde{M}_\theta \right) \oplus I \left(P \right) = C^\infty \left(M_\theta \right)^n, \)
i.e. \(C^\infty \left(\tilde{M}_\theta \right) \) is a finitely generated projective \(C^\infty \left(M_\theta \right) \) module. There is a projection \(p \in M_n \left(C^\infty \left(M_\theta \right) \right) \) such that
\[C^\infty \left(\tilde{M}_\theta \right) = pC^\infty \left(M_\theta \right)^n. \]
If \(C \left(\tilde{M}_\theta \right) \) (resp. \(C \left(M_\theta \right) \)) is the operator norm completion of \(C^\infty \left(\tilde{M}_\theta \right) \) (resp. \(C^\infty \left(M_\theta \right) \)) then
\[C \left(\tilde{M}_\theta \right) = pC \left(M_\theta \right)^n, \]
i.e. \(C \left(\tilde{M}_\theta \right) \) is a finitely generated projective \(C \left(M_\theta \right) \) module. Denote by \(G = G \left(\tilde{M} \mid M \right) \) the group of covering transformations. Since \(\tilde{I} \) is a \(C \)-linear isomorphism the action of \(G \) on \(C^\infty \left(\tilde{M} \right) \) induces a \(C \)-linear action \(G \times C^\infty \left(\tilde{M}_\theta \right) \to C^\infty \left(M_\theta \right) \). According to the definition of the action of \(\tilde{T}^2 \) on \(\tilde{M} \) it follows that the action of \(G \) commutes with the action of \(\tilde{T}^2 \). It turns out
\[gC^\infty \left(\tilde{M} \right)_{n_1,n_2} = C^\infty \left(\tilde{M} \right)_{n_1,n_2} \]
for any \(n_1, n_2 \in \mathbb{Z} \) and \(g \in G \). If \(\tilde{a} \in C^\infty \left(\tilde{M} \right)_{n_1,n_2}, \tilde{b} \in C^\infty \left(\tilde{M} \right)_{n'_1,n'_2} \) then \(g \left(\tilde{a} \tilde{b} \right) = \left(g\tilde{a} \right) \left(g\tilde{b} \right) \in C^\infty \left(\tilde{M} \right)_{n_1+n'_1,n_2+n'_2} \). One has
\[\tilde{I} \left(\tilde{a} \right) \tilde{I} \left(\tilde{b} \right) = \tilde{\lambda}^{n_1+n_2} \tilde{I} \left(\tilde{a} \tilde{b} \right), \]
\[\tilde{\lambda}^{n_2} \tilde{I} \left(\tilde{b} \right) = \tilde{\lambda}^{n_1+n_2} \tilde{I} \left(\tilde{b} \right) \tilde{\lambda}^{n_2}, \]
\[\tilde{I} \left(g\tilde{a} \right) \tilde{I} \left(g\tilde{b} \right) = g\tilde{a} \tilde{\lambda}^{n_2} \tilde{I} \left(g\tilde{a} \tilde{b} \right) = \tilde{\lambda}^{n_1+n_2} g \left(\tilde{a} \tilde{b} \right) \tilde{\lambda} \left(n_2+n_2' \right) \tilde{I}. \]
On the other hand
\[g \left(\tilde{I} \left(\tilde{a} \right) \tilde{I} \left(\tilde{b} \right) \right) = \tilde{I} \left(\tilde{a} \tilde{b} \right) = \tilde{\lambda}^{n_1+n_2} g \left(\tilde{a} \tilde{b} \right) \tilde{\lambda} \left(n_2+n_2' \right) \tilde{I}. \]
From above equations it turns out
\[\tilde{I} \left(g\tilde{a} \right) \tilde{I} \left(g\tilde{b} \right) = g \left(\tilde{I} \left(\tilde{a} \right) \tilde{I} \left(\tilde{b} \right) \right), \]
i.e. \(g \) corresponds to automorphism of \(C^\infty \left(\tilde{M}_\theta \right) \). It turns out that \(G \) is the group of automorphisms of \(C^\infty \left(\tilde{M}_\theta \right) \). Clearly form \(\tilde{a} \in C^\infty \left(\tilde{M}_\theta \right)_{n_1,n_2} \) it follows that \(\tilde{a}^* \in \).
One has
\[g \left(\tilde{I} \tilde{a} \right)^* = g \left(\tilde{\lambda}^{-n_2\tilde{p}_1} \tilde{a}^* \right) = g \left(\tilde{\lambda}^{n_1n_2} \tilde{a}^* \tilde{\lambda}^{-n_2\tilde{p}_1} \right) = \tilde{\lambda}^{n_1n_2} g \left(\tilde{I} \tilde{a}^* \right). \]

On the other hand
\[\left(g \tilde{I} (\tilde{a}) \right)^* = \left((ga^*) \tilde{\lambda}^{-n_2\tilde{p}_1} \right)^* = \tilde{\lambda}^{-n_2\tilde{p}_1} \left(ga^* \right) = \tilde{\lambda}^{n_1n_2} \left(ga^* \tilde{\lambda}^{-n_2\tilde{p}_1} \right) = \tilde{\lambda}^{n_1n_2} g \left(\tilde{I} \tilde{a}^* \right), \]
i.e. \(g \left(\tilde{I} (\tilde{a}) \right)^* = \left(g \tilde{I} (\tilde{a}) \right)^* \). It follows that \(g \) corresponds to the involutive automorphism of \(C^\infty(\tilde{M}_\theta) \). Since \(C^\infty(\tilde{M}_\theta) \) is dense in \(C(\tilde{M}_\theta) \) there is the unique involutive action \(G \times C(\tilde{M}_\theta) \to C(\tilde{M}_\theta) \). From the above construction it turns out the following theorem.

Theorem 7.2. The triple \((C(M_\theta), C(\tilde{M}_\theta), G(\tilde{M} | M)) \) is an unital noncommutative finite-fold covering.

7.2 Infinite coverings

Let \(\mathcal{S}_M = \{ M = M^0 \leftarrow M^1 \leftarrow \ldots \leftarrow M^n \leftarrow \ldots \} \in \mathfrak{FinTop} \) be an infinite sequence of spin-manifolds and regular finite-fold covering. Suppose that there is the action \(\mathbb{T}^2 \times M \to M \) given by (7.1). From the Theorem 7.2 it follows that there is the algebraical finite covering sequence

\[\mathcal{S}_{C(M_\theta)} = \{ C(M_\theta) \to \ldots \to C(M^n_\theta) \to \ldots \}. \]

So one can calculate a finite noncommutative limit of the above sequence. This article does not contain detailed properties of this noncommutative limit, because it is not known yet by the author of this article.

Acknowledgment

Author would like to acknowledge members of the Moscow State University Seminar “Algebras in analysis” leaded by professor A. Ya. Helemskii and others for a discussion of this work.

References

[1] Charles A. Akemann, Gert K. Pedersen, Jun Tomiyama. *Multipliers of C*-algebras*. Journal of Functional Analysis Volume 13, Issue 3, July 1973, Pages 277-301, 1973.

[2] W. Arveson. *An Invitation to C*-Algebras*, Springer-Verlag. ISBN 0-387-90176-0, 1981.

[3] B. Blackadar. *K-theory for Operator Algebras*, Second edition. Cambridge University Press 1998.
[4] Chun-Yen Chou. *Notes on the Separability of C*-Algebras*. TAIWANESE JOURNAL OF MATHEMATICS Vol. 16, No. 2, pp. 555-559, April 2012 This paper is available online at http://journal.taiwanmathsoc.org.tw, 2012.

[5] Alain Connes, Giovanni Landi. *Noncommutative Manifolds the Instanton Algebra and Isospectral Deformations*, arXiv:math/0011194, 2001.

[6] J. Dixmier. *Traces sur les C*-algebras*. Ann. Inst. Fourier, 13, 1(1963), 219-262, 1963.

[7] V. Gayral, J. M. Gracia-Bondía, B. Iochum, T. Schücker, J. C. Varilly. *Moyal Planes are Spectral Triples*. arXiv:hep-th/0307241, 2003.

[8] José M. Gracia-Bondía, Joseph C. Varilly. *Algebras of Distributions suitable for phase-space quantum mechanics. I*. Escuela de Matemática, Universidad de Costa Rica, San José, Costa Rica J. Math. Phys 29 (1988), 869-879, 1988.

[9] Paul R. Halmos *Naive Set Theory*. D. Van Nostrand Company, Inc., Prineston, N.J., 1960.

[10] James R. Munkres. *Topology*. Prentice Hall, Incorporated, 2000.

[11] G.J. Murphy. *C*-Algebras and Operator Theory*. Academic Press 1990.

[12] Alexander Pavlov, Evgenij Troitsky. *Quantization of branched coverings*. arXiv:1002.3491, 2010.

[13] Pedersen G.K. *C*-algebras and their automorphism groups*. London ; New York : Academic Press, 1979.

[14] Jonathan Rosenberg. *Continuous-trace algebras from the bundle theoretic point of view*. Journal of the Australian Mathematical Society, Volume 47, Issue 3 December 1989, pp. 368-381, 1989.

[15] E.H. Spanier. *Algebraic Topology*. McGraw-Hill. New York 1966.

[16] Zirô Takeda. *Inductive limit and infinite direct product of operator algebras*. Tohoku Math. J. (2) Volume 7, Number 1-2 (1955), 67-86. 1955.