Data Article

Dataset of AMBER force field parameters of drugs, natural products and steroids for simulations using GROMACS

Jennifer Loschwitza,b, Anna Jäckeringa, Monika Keutmanna,b, Maryam Olagunjua, Olujide O. Olubiyia,c,*, Birgit Strodela,b,*

a Institute of Biological Information Processing: Structural Biochemistry (IBI-7), Forschungszentrum Jülich, Jülich 52428, Germany
b Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
c Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Nigeria

\textbf{A R T I C L E I N F O}

Article history:
Received 30 November 2020
Revised 3 March 2021
Accepted 8 March 2021
Available online 15 March 2021

Keywords:
force field parameterization
AMBER force field
MD simulations
GROMACS
Quantum mechanics
drugs
natural products

\textbf{A B S T R A C T}

We provide general AMBER force field (GAFF) parameters for 160 organic molecules including drugs, natural products, and steroids, which can be employed without further processing in molecular dynamics (MD) simulations using GROMACS. We determined these parameters based on quantum mechanical (QM) calculations involving geometry optimization at the HF6-31G* level of theory. For each molecule we provide a coordinate file of the three-dimensional molecular structure, the topology and the parameter file. The applicability of these parameters was demonstrated by MD simulations of these molecules bound to the active site of the main protease of the coronavirus SARS-CoV-2, 3CLpro, which is a main player during viral replication causing COVID-19.

© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

* Corresponding authors.
\textit{E-mail addresses:} olubiyioo@oauife.edu.ng (O.O. Olubiyi), b.strodel@fz-juelich.de (B. Strodel).
Social media: \textsuperset{1}(B. Strodel)

https://doi.org/10.1016/j.dib.2021.106948
2352-3409/© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Specifications Table

Subject	Physical and Theoretical Chemistry
Specific subject area	Computational biochemistry, Drug discovery, Computer-aided drug design
Type of data	PDB files, topology and parameter files in GROMACS format, Gaussian 09 and GROMACS code used for generating the data
How data were acquired	Quantum mechanics (QM) at the HF6-31G* level of theory, explicit-solvent molecular dynamics (MD) simulations
Data format	Raw
Parameters for data collection	Software used: Gaussian 09 for QM, GROMACS 2018 for MD
Description of data collection	Force field parameters were derived from QM calculations and assembled in the required files for MD simulations with GROMACS.
Data source location	Institute of Biological Information Processing: Structural Biochemistry (IBI-7), Forschungszentrum Jülich, 52428 Jülich, Germany
Data accessibility	Dataset is uploaded on Mendeley Data: https://doi.org/10.17632/phxtv76n5s.3
Related research article	Olubiyi et al., Molecules 25, 3193 (2020) [1]

Value of the Data

- GAFF parameters of 160 organic molecules ready for use in MD simulations employing GROMACS.
- The parameters given here are compatible with AMBER force fields, allowing to study the interactions of these molecules with proteins.
- Easy identification of the molecules via their ZINC or PubChem accession identifiers and, if available, their trivial names.

1. Data Description

In Table 1, the 160 molecules for which GAFF parameters were derived are listed. The compounds include 62 drugs approved by the FDA (U.S. Food and Drug Administration), 44 drugs approved by other countries’ national regulatory agencies (non-FDA) and investigational drugs, 39 natural products, 10 steroids, and 5 other molecules. Most of these molecules are included in the ZINC database [2–4], which is a curated collection of more than 230 million commercially available chemical compounds prepared for virtual screening. The molecules in Table 1 are therefore denoted by their ZINC database accession identifier (ID). For the few cases where a ZINC accession ID is not available, we provide the one from PubChem (starting with CID), which is a database of chemical molecules and their activities against biological assays. For the five molecules which are not yet found in the ZINC or the PubChem database, the reference where information about the molecule in question can be found is provided. In addition to the respective database accession ID we provide, if available, the trivial names of the compounds. For an easy identification of the molecules in MD simulations, we invented a 3-letter code for each molecule, that is also shown in Table 1 and is used as molecular identifier in the PDB and GROMACS files provided here.

For each of the molecules, we supply four files containing the raw data, which are compatible with the GROMACS format and allow the performance of MD simulations without further processing:

1. A PDB file containing three-dimensional coordinates of the molecule.
2. A top file containing the topology of the molecule.
3. An itp file containing the force field parameters, including the atomic charges as well as the \(\sigma \) and \(\varepsilon \) values.
4. An itp file with position restraints involving the heavy atoms as needed by an equilibration MD run.
Table 1
Identification details of the 160 molecules parameterized in this work.

Accession ID	Trivial Name	3-Letter Code	Accession ID	Trivial Name	3-Letter Code
ZINC000072318121	Abemaciclib	AMB	ZINC00003922429	Adzelesin	AZL
ZINC000039768338	Afatinib	AFB	ZINC00003780800	Amrubcin	ARC
ZINC00001677837	Apixaban	APX	ZINC00006717782	BMS-599626	BMS
ZINC00000897240	Azelastine	ALT	ZINC00001542916	Carmofur	CMF
ZINC000014210642	Azilsartan	AZT	ZINC000254071113	Ciluprevir	CPV
ZINC000037828121	Candesartan	CDT	ZINC0000174738	Cinanserin	CNS
ZINC000085537017	Cangrelor	CGL	ZINC00004215648	Dihydroergocornine	DHC
ZINC00001552174	Ciclosporin	CLT	ZINC00014880002	Dihydroergotoxine	DHE
ZINC000060325170	Cobimetinib	COB	CID3194	Ebselen	EBS
ZINC00012503187	Conivaptan	CVT	ZINC00004215770	Elsamitrucin	ETC
ZINC00035902489	Crizotinib	CZB	ZINC00098208742	Entosplatinib	EPB
ZINC00001530788	Cromolyn	CML	ZINC00001494900	Enzastaurin	EFS
ZINC00003986735	Dasatinib	DSB	ZINC00019899628	Fenoverine	FNV
ZINC00001481815	Deferasirox	DFX	ZINC00059185874	GDC-0834	GDC
ZINC00003827556	Delafloxacin	DFC	ZINC0003780340	Hypericin	HPC
ZINC00001529268	Disulfiram	DSR	ZINC0003781738	Lestaurnitbin	LTB
ZINC00058581064	Dolutegravir	DLV	ZINC0003950115	Lonafernia	LFB
ZINC00003932831	Dutasteride	DUS	ZINC0003817327	Ly2090314	LY2
ZINC00022733806	Enasidenib	ESB	ZINC00043203371	MK-3207	MK3
ZINC00052955754	Ergotamine	ETM	ZINC00100001820	PF-00477736	PF0
ZINC00003918453	Ertapenem	EPN	ZINC00013209429	PX-12	P12
ZINC00003938684	Etoposide	ETP	ZINC00038576002	R-343	NI3
ZINC00003860453	Fluorescein	FRC	ZINC00059749972	Radotinib	RDB
ZINC000100001976	Glimepiride	GLP	ZINC00063933734	Rebastinib	RBB
ZINC00003532804	Ibrutinib	IRB	CID121304016	Remdesivir	RDV
ZINC00003920266	Idarubicin	IRC	ZINC00003812168	Ruboxistaurin	RXS
ZINC000013986658	Idelalisib	IDB	ZINC00095533868	Rwj-58259	RJW
ZINC000008101127	Indocyanine	IDC	ZINC00003973984	Sotrastraurin	STS
ZINC000022448696	Indinavir	IDV	ZINC0003975327	Telomestatin	TMS
ZINC000019632618	Imatinib	IMB	ZINC00028827350	Telcagepant	TCG
ZINC000027990463	Lomitapide	LTP	ZINC0001385228	Tideglusib	TDG
ZINC000064033452	Lumacaftor	LMC	ZINC00043133316	Tirilazad	TAD
ZINC00003927822	Lurasidone	LRD	ZINC00084726167	TMC647055	TMC

(continued on next page)
Accession ID	Trivial Name	3-Letter Code	Accession ID	Trivial Name	3-Letter Code
ZINC00000003902	Maraviroc	MVC	ZINC00000397803	Tubocurarine	TBC
ZINC000000381151	Montelukast	MTL	ZINC000068250462	Tucatinib	TCB
ZINC0000010378061	Naldemedine	NMD	ZINC0000095539256	UK-432,097	UK4
ZINC000005844788	Nebivolol	NBL	ZINC000001490807	—	N15
ZINC000006769597	Nilotinib	NLI	ZINC000001539348	—	N14
ZINC0000043206370	Niraparib	NPB	ZINC000003930598	—	N17
ZINC0000040430143	Olaparib	OPB	ZINC000018710085	—	TFB
ZINC000003812865	Olsalazine	OSZ	ZINC000021290045	—	N11
ZINC000003938686	Palbociclib	PBB	ZINC000049888572	—	N12
ZINC000004214700	Paliperidone	PLP	ZINC000095092808	—	N16
ZINC000011617039	Pazopanib	PZB	ZINC000100029945	Zosuquidar	ZSQ
ZINC0000030691797	Perampanel	PRP			
ZINC000004175630	Pimozide	PMZ	ZINC000003984030	Amentoflavone	AMF
ZINC000013831130	Raltegravir	RTV	CID5321811	Bavacoumestan A	BCA
ZINC000003818943	Regadenoson	RDS	ZINC000004098612	Corilagin	CRG
ZINC000003944422	Ritonavir	RNV	ZINC00018847034	Daidzein	DDZ
ZINC000003816514	Rolapitant	RLT	CID12443227	Epitaraxerol	ETX
ZINC000029416466	Saquinavir	SQV	ZINC00003870412	Epigallocatechin gallate	EGC
ZINC000019796168	Sildenafil	SDF	ZINC00001531664	Ginkgetin	GKT
ZINC000253632686	Simprevir	SPP	ZINC0001077667	Glabrolide	GBL
ZINC00000489478	Sitagliptin	STG	ZINC00004098322	Homoeriodictyol	HMR
ZINC000049036447	Suvorexant	SVX	CID10077799	Isocorilagin	ICL
ZINC000003938355	Tadalafil	TDF	ZINC000003197535	Isoginkgetin	IGK
ZINC000001530886	Telmisartan	TMT	ZINC000100828606	Neodiosmin	NDS
ZINC000004099008	Teniposide	TNP	ZINC000044351169	Proanthocyanidin A1	PA1
ZINC000001530948	Thalidomide	THD	ZINC00004098619	Proanthocyanidin A2	PA2
ZINC0000100016058	Tipranavir	TFP	ZINC000095619717	Proanthocyanidin A5'	PA5
ZINC000043100709	Trametinib	TMB	ZINC00000978800	Rhodofolin	RHL
ZINC000018324776	Vardenafil	VDF	ZINC00002015152	Shikonin	SKN
ZINC000003815419	2-Hydroxyestradiol	HED	ZINC0000230071666	Theacitrin A	TCA
ZINC000004096681	2-Hydroxyestrone	HES	ZINC000003978446	Theacitrin C	TCC
CID91451	17-α-hydroxyprogrenolone	AHP	ZINC000169372863	Theasinensin A	TSA

(continued on next page)
Accession ID	Trivial Name	3-Letter Code	Accession ID	Trivial Name	3-Letter Code
ZINC0000004081043	Allopregnanolone	APG	ZINC0000008214976	Theasinensin B	TSB
ZINC0000004428526	Androstenedione	ASD	ZINC0000169333962	Theasinensin F	TSB
ZINC0000004340309	Cortisol	CTS	ZINC000002107922	—	N14
ZINC0000003807917	Dehydroepiandrosterone	DHE	ZINC000002114470	—	N09
CID5757	Estradiol	ESD	ZINC000002125422	—	N10
CID27125	Estetrol	ESO	ZINC000002147804	—	N02
ZINC000118912393	Testosterone	TST	ZINC000002148919	—	N01
PDB 6LU7[19]	N3	N3P	ZINC000002161217	—	N08
α-Ketoamide [20]	Inhibitor 11R	11R	ZINC000004235306	—	N15
α-Ketoamide [20]	Inhibitor 13A	13A	ZINC000006624329	—	N12
α-Ketoamide [20]	Inhibitor 13B	13B	ZINC000008297065	—	N16
α-Ketoamide [20]	Inhibitor 14B	14B	ZINC000008764269	—	N11
	Other	Others	ZINC000008789992	—	N03
			ZINC000011865175	—	N06
			ZINC00012296408	—	N04
			ZINC00012881832	—	N05
			ZINC000014887561	Zeylanone	ZYL
All files are assembled into one zip file, which is supplied via Mendeley Data, https://doi.org/10.17632/phxtv76n5s.3. Unpacking the zip file yields five folders: FDA, Non-FDA_and_Investigational, Natural_Products, Steroids, and Others. In each of them, one finds further directories, which are named according to the accession ID listed in Table 1. In these subdirectories there are the four files per molecule located, which all start with the 3-letter code as listed in the Table.

2. Experimental Design, Materials and Methods

To determine the GAFF parameters of the 160 molecules, we used the PDB files that we obtained from docking of these compounds bound to the crystal structure of 3CLpro in our previous study [1] as starting point. We isolated the molecules from the protein in order to have only the ligand in the PDB file, which was processed using the GROMACS tool gmx editconf to enter the CONECT records specifying the connectivity between atoms in the PDB file. This is needed by Open Babel [5], which was applied afterwards to add missing hydrogen atoms. We then utilized Antechamber [6,7] as available in AmberTools 19 [8] to generate the input gcrf file for Gaussian, which contains the coordinates and net charge of the molecule in question. This format was selected since it guarantees that the atom order as present in the PDB file is not changed by Gaussian. These preparatory steps were followed by the QM calculations at the HF6-31G* level of theory, including a geometry optimization and the determination of the electrostatic potential using Gaussian 09 [9]. Antechamber was then employed to extract the force field parameters from the output file called gout, involving bond lengths, bond angles, and torsion angles as well as Lennard-Jones (LJ) interaction parameters. Furthermore, Antechamber also allows to calculate the restrained electrostatic potential (RESP) for determining partial charges [10,11]. Afterwards, we created a mol2 file containing all necessary parameters, which was analyzed by ACYPYE [12] to generate the required GROMACS input files with extensions .gro, .top, and .itp.

To this procedure two exceptions had to be made: (1) In the case that the molecule in question contains an iodine atom, the basis set CEP-31G was used because at the 6-31G* level this atom is not included. This change is automatically accomplished by Antechamber. (2) Since ebselen contains a selenium atom which is not defined in Antechamber, we had to use a workaround. We performed the parameterization with sulfur, which exhibits similar properties like selenium, replacing the selenium atom. After the ACYPYE step, the sulfur atom was converted back to selenium in the affected GROMACS files. In addition, we changed the Se–N bond parameters in the itp file to the ones that were optimized for the MD software AMBER [13,14], which are $R_{\text{min}} = 2.12$ Å and $\varepsilon = 0.2910$ kcal/mol and can be converted into the GROMACS format using

$$
\sigma_{\text{GROMACS}} \text{[nm]} = 2 \cdot R_{\text{min}} \text{[Å]} \cdot 2^{-1/6} \cdot 0.1 = 3.77741 \times 10^{-1} \text{ nm}
$$

$$
\epsilon_{\text{GROMACS}} \text{[kJ/mol]} = 4.184 \cdot \varepsilon_{\text{AMBER}} \text{[kcal/mol]} = 1.21754 \text{ kJ/mol}
$$

To test the reliability of the resulting force field parameters, we applied them in energy minimizations of the 160 molecules using their structures as obtained from docking to 3CLpro [15], which were also used for the force field parameterization as starting structures. These calculations were realized with GROMACS 2018 [16]. The energy minimizations were performed using the steepest descent algorithm until all forces were less than 10 kJ mol\(^{-1}\) nm\(^{-1}\). The resulting energy-minimized structures were compared to the corresponding geometry-optimized conformations from the QM calculations by determining their root mean square deviation (RMSD) after structural superposition using PyMOL [17]. If the RMSD was ≤ 4 Å, then no further checks were applied. If this cutoff was exceeded, which happened for only few of the molecules, the structural reorientations were inspected in more detail. However, in none of the cases severe structural rearrangements had occurred. The increased RMSD values could be explained with local rotations of rings or alkyl groups. Afterwards, we applied the newly derived force field parameters in 20 ns MD simulations of the molecules docked to 3CLpro using GROMACS 2018 and
AMBER14SB [18] as force field for the protein. For 99 of the ligands that fulfilled specific structural requirements for inhibitor design reported in [15], the MD simulations were extended to 100 ns. All MD simulations (whether 20 ns or 100 ns) finished successfully without any stability or incompatibility issues arising.

Via the already mentioned Mendeley dataset (https://doi.org/10.17632/phxtv76n5s.3), a zip file is provided that contains all Gaussian and GROMACS input files used for generating the force field parameters, along with bash scripts for automating the parameterization procedure as much as possible.

CRediT Author Statement

Jennifer Loschwitz: Methodology, Software, Data curation, Validation, Writing - original draft; Anna Jäckering: Formal analysis, Visualization, Writing - original draft; Monika Keutmann: Investigation, Data curation, Validation; Maryam Olagunju: Investigation, Data curation; Olujide O. Olubiyi: Conceptualization, Supervision, Writing - review & editing; Birgit Strodel: Conceptualization, Supervision, Project administration, Resources, Writing - review & editing.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships which have, or could be perceived to have, influenced the work reported in this article.

Acknowledgments

The authors gratefully acknowledge computing time granted through JARA-HPC (project COVID19MD) on the supercomputer JURECA at Forschungszentrum Jülich [21], the hybrid computer cluster purchased from funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) project number INST 208/704-1 FUGG, and the Centre for Information and Media Technology at Heinrich Heine University Düsseldorf.

References

[1] O. Olubiyi, M. Olagunju, M. Keutmann, J. Loschwitz, B. Strodel, High throughput virtual screening to discover inhibitors of the main protease of the coronavirus sars-cov-2, Molecules 25 (2020) 3193.
[2] J. Irwin, B. Shoichet, ZINC—a free database of commercially available compounds for virtual screening, J. Chem. Inf. Model. 45 (2005) 177–182.
[3] J. Irwin, T. Sterling, M. Mysinger, E. Bolstad, R. Coleman, ZINC: a free tool to discover chemistry for biology, J. Chem. Inf. Model. 52 (2012) 1757–1768.
[4] T. Sterling, J. Irwin, Zinc 15 – ligand discovery for everyone, J. Chem. Inf. Model. 55 (2015) 2324–2337.
[5] N. O’Boyle, M. Banck, C. James, C. Morley, T. Vandermeersch, G. Hutchison, Open babel: an open chemical toolbox, J. Cheminfomatics 3 (2011) 33.
[6] J. Wang, R. Wolf, J. Caldwell, P. Kollman, D. Case, Development and testing of a general amber force field, J. Comput. Chem. 25 (2004) 1157–1174.
[7] J. Wang, W. Wang, P. Kollman, D. Case, Automatic atom type and bond type perception in molecular mechanical calculations, J. Mol. Graphics Modell. 25 (2006) 247–260.
[8] D. Case, I. Ben-Shalom, S. Brozell, D. Cerutti, T. Cheatham, V. Cruzeiro, III, T. Darden, R. Duke, D. Gobreishi, G. Giambasi, T. Giese, M. Gilson, H. Gohlke, A. Goetz, D. Greene, R. Harris, N. Homeyer, Y. Huang, S. Izadi, A. Kovalenko, R. Krasny, T. Kurtzman, T. Lee, S. LeGrand, P. Li, C. Lin, J. Liu, T. Luchko, R. Luo, V. Man, D. Mermelstein, K. Merz, Y. Miao, G. Monard, C. Nguyen, H. Nguyen, A. Onufriev, F. Pan, R. Qi, D. Roe, A. Rotberg, C. Sagui, S. Schott-Verdugo, J. Shen, C. Simmerling, J. Smith, J. Swails, R. Walker, J. Wang, H. Wei, L. Wilson, R. Wolf, X. Wu, L. Xiao, Y. Xiong, D. York, P. Kollman, Amber 2019, 2019. University of California, San Francisco.
[9] M. Frisch, G. Trucks, H. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. Hratchian, A. Izmaylov, J. Bloino, G. Zheng, J. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. Montgomery, J. Peralta, F. Ogliaro, M. Bearpark, J. Heyd, E. Brothers, K. Kudin, V. Staroverov, R. Kobayashi, J. Normand, K.
Raghavachari, A. Rendell, J. Burant, S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. Millam, M. Klene, J. Knox, J. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. Stratmann, O. Yazyev, A. Austin, R. Cammi, C. Pomelli, J. Ochterski, R. Martin, K. Morokuma, V. Zakrzewski, G. Voth, P. Salvador, J. Dannenberg, S. Dapprich, A. Daniels, O. Farkas, J. Foresman, J. Ortiz, J. Cioslowski, D. Fox, Gaussian 09 Revision E.01, 2009. Gaussian Inc. Wallingford CT.

10. C. Bayly, P. Cieplak, W. Cornell, P. Kollman, A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model, J. Phys. Chem. 97 (1993) 10269–10280.

11. W. Cornell, P. Cieplak, C. Bayly, P. Kollman, Application of RESP charges to calculate conformational energies, hydrogen bond energies, and free energies of solvation, J. Phys. Chem. 115 (1993) 9620–9631.

12. A.S.d. Silva, W. Vranken, ACYPYPE – antechamber PYthon parser interface, BMC Res. Notes 5 (2012) 367.

13. M. Torsello, A. Pimenta, L. Wolters, I. Moreira, L. Orian, A. Polimeno, General amber force field parameters for diphenyl diselenides and diphenyl ditellurides, J. Phys. Chem. A 120 (2016) 4389–4400.

14. T. Fellowes, J. White, Simulating chalcogen bonding using molecular mechanics: a pseudoatom approach to model ebselen, ChemRxiv (2020), doi:10.26434/chemrxiv.12345434.v1.

15. J. Loschwitz, A. Jäckering, M. Keutmann, M. Olagunju, R.J. Eberle, M.A. Coronado, O.O. Olubiyi, B. Strodel, Novel inhibitors of the main protease of SARS-cov-2 identified via a molecular dynamics simulation-guided in vitro assay, ChemRxiv (2020), doi:10.26434/chemrxiv.13200281.v1.

16. M. Abraham, T. Murtola, R. Schulz, S. Páll, J. Smith, B. Hess, E. Lindahl, GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers, SoftwareX 1–2 (2015) 19–25.

17. L. Schrödinger, The PyMOL molecular graphics system, version 1.8, 2015.

18. J.A. Maier, C. Martinez, K. Kasavajhala, L. Wickstrom, K.E. Hauser, C. Simmerling, ff14sb: improving the accuracy of protein side chain and backbone parameters from ff99sb, J. Chem. Theory Comput. 11 (2015) 3696–3713.

19. Z. Jin, X. Du, Y. Xu, Y. Deng, M. Liu, Y. Zhao, B. Zhang, X. Li, L. Zhang, C. Peng, Y. Duan, J. Yu, L. Wang, K. Yang, F. Liu, R. Jiang, X. Yang, T. You, X. Liu, X. Yang, F. Bai, H. Liu, X. Liu, L.W. Guddat, W. Xu, G. Xiao, C. Qin, Z. Shi, H. Jiang, Z. Rao, H. Yang, Structure of MP130 from COVID-19 virus and discovery of its inhibitors, Nature (2020).

20. L. Zhang, D. Lin, Y. Kusov, Y. Nian, Q. Ma, J. Wang, A. von Brunn, P. Leyssen, K. Lanko, J. Neyts, A. de Wilde, E.J. Sni- jder, H. Liu, R. Hilgenfeld, α-ketoamides as broad-spectrum inhibitors of coronavirus and enterovirus replication: structure-based design, synthesis, and activity assessment, J. Med. Chem. 63 (2020) 4562–4578.

21. D. Krause, P. Thörmig, JURECA: modular supercomputer at Jülich supercomputing centre, JLSRF 4 (2018) A132.