Finite groups with permutable Hall subgroups

Xia Yin, Nanying Yang*
School of Science, Jiangnan University
Wuxi 214122, P. R. China
E-mail:yangny@jiangnan.edu.cn

Abstract

Let \(\sigma = \{ \sigma_i | i \in I \} \) be a partition of the set of all primes \(\mathbb{P} \) and \(G \) a finite group. A set \(\mathcal{H} \) of subgroups of \(G \) is said to be a complete Hall \(\sigma \)-set of \(G \) if every member \(\neq 1 \) of \(\mathcal{H} \) is a Hall \(\sigma_i \)-subgroup of \(G \) for some \(i \in I \) and \(\mathcal{H} \) contains exactly one Hall \(\sigma_i \)-subgroup of \(G \) for every \(i \) such that \(\sigma_i \cap \pi(G) \neq \emptyset \).

In this paper, we study the structure of \(G \) assuming that some subgroups of \(G \) permutes with all members of \(\mathcal{H} \).

1 Introduction

Throughout this paper, all groups are finite and \(G \) always denotes a finite group. We use \(\pi(G) \) to denote the set of all primes dividing \(|G| \). A subgroup \(A \) of \(G \) is said to permute with a subgroup \(B \) if \(AB = BA \). In this case they say also that the subgroups \(A \) and \(B \) are permutable.

Following [1], we use \(\sigma \) to denote some partition of \(\mathbb{P} \). Thus \(\sigma = \{ \sigma_i | i \in I \} \), where \(\mathbb{P} = \cup_{i \in I} \sigma_i \) and \(\sigma_i \cap \sigma_j = \emptyset \) for all \(i \neq j \).

A set \(\mathcal{H} \) of subgroups of \(G \) is a complete Hall \(\sigma \)-set of \(G \) [2, 3] if every member \(\neq 1 \) of \(\mathcal{H} \) is a Hall \(\sigma_i \)-subgroup of \(G \) for some \(\sigma_i \in \sigma \) and \(\mathcal{H} \) contains exactly one Hall \(\sigma_i \)-subgroup of \(G \) for every \(i \) such that \(\sigma_i \cap \pi(G) \neq \emptyset \). If every two members of \(\mathcal{H} \) are permutable, then \(\mathcal{H} \) is said to be a \(\sigma \)-basis [4] of \(G \). In the case when \(\mathcal{H} = \{ \{2\}, \{3\}, \ldots \} \) a complete Hall \(\sigma \)-set \(\mathcal{H} \) of \(G \) is also called a complete set of Sylow subgroups of \(G \).

We use \(\mathcal{H}_\sigma \) to denote the class of all soluble groups \(G \) such that every complete Hall \(\sigma \)-set of \(G \) forms a \(\sigma \)-basis of \(G \).

*Research is supported by a NNSF grant of China (Grant #11301227) and Natural Science Foundation of Jiangsu Province (grant # BK20130119).

Keywords: finite group, Hall subgroup, complete Hall \(\sigma \)-set, permutable subgroups, supersoluble group.

Mathematics Subject Classification (2010): 20D10, 20D15
A large number of publications are connected with studying the situation when some subgroups of G permute with all members of some fixed complete set of Sylow subgroups of G. For example, the classical Hall’s result states: *G is soluble if and only if it has a Sylow basis, that is, a complete set of pairwise permutable Sylow subgroups.* In [5] (see also Paragraph 3 in [6, VI]), Huppert proved that G is a soluble group in which every complete set of Sylow subgroups forms a Sylow basis if and only if the automorphism group induced by G on every its chief factor H/K has the order divisible by at most one different from p prime, where $p \in \pi(H/K)$. In the paper [7], Huppert proved that if G is soluble and it has a complete set S of Sylow subgroups such that every maximal subgroup of every subgroup in S permutes with all other members of S, then G is supersoluble.

The above-mentioned results in [5, 6, 7] and many other related results make natural to ask:

(I) Suppose that G has a complete Hall σ-set H such that every maximal subgroup of any subgroup in H permutes with all other members of H. What we can say then about the structure of G? In particular, does it true then that G is supersoluble in the case when every member of H is supersoluble?

(II) Suppose that G possesses a complete Hall σ-set. What we can say then about the structure of G provided every complete Hall σ-set of G forms a σ-basis in G?

Our first observation is the following result concerning Question (I).

Theorem A. Suppose that G possesses a complete Hall σ-set H all whose members are supersoluble. If every maximal subgroup of any non-cyclic subgroup in H permutes with all other members of H, then G is supersoluble.

In the classical case, when $\sigma = \{\{2\}, \{3\}, \ldots\}$, we get from Theorem A the following two known results.

Corollary 1.1 (Asaad M., Heliel [8]). If G has a complete set S of Sylow subgroups such that every maximal subgroup of every subgroup in S permutes with all other members of S, then G is supersoluble.

Note that Corollary 1.1 is proved in [8] on the base of the classification of all simple non-abelian groups. The proof of Theorem A does not use such a classification.

Corollary 1.2 (Huppert [6, VI, Theorem 10.3]). If every Sylow subgroup of G is cyclic, then G is supersoluble.

The class $1 \in \mathcal{F}$ of groups is said to be a *formation* provided every homomorphic image of $G/\Phi(G)$ belongs to \mathcal{F}. The formation \mathcal{F} is said to be: *saturated* provided $G \in \mathcal{F}$ whenever $G/\Phi(G) \leq \Phi(G)$; *hereditary* provided $G \in \mathcal{F}$ whenever $G \leq A \in \mathcal{F}$.

Now let $p > q > r$ be primes such that qr divides $p - 1$. Let P be a group of order p and $QR \leq \text{Aut}(P)$, where Q and R are groups with order q and r, respectively. Let $G = P \rtimes (QR)$. Then, in view of the above-mentioned Hupper’s result in [5], G is not a group such that every complete set of Sylow subgroups forms a Sylow basis of G. But it is easy to see that every complete
Hall σ-set of G, where $\sigma = \{\{2,3\}, \{7\}, \{2,3,7\}'\}$, is a σ-basis of G. This elementary example is a motivation for our next result, which gives the answer to Question (II) in the universe of all soluble groups.

Theorem B. The class \mathfrak{H}_σ is a hereditary formation and it is saturated if and only if $|\sigma| \leq 2$. Moreover, $G \in \mathfrak{H}_\sigma$ if and only if G is soluble and the automorphism group induced by G on every its chief factor of order divisible by p is either a σ_i-group, where $p \notin \sigma_i$, or a $(\sigma_i \cup \sigma_j)$-group for some different σ_i and σ_j such that $p \in \sigma_i$.

In the case when $\sigma = \{\{2\}, \{3\}, \ldots\}$ we get from Theorem B the following

Corollary 1.3 (Huppert [5]). Every complete set of Sylow subgroups of a soluble group G forms a Sylow basis of G if and only if the automorphism group induced by G on every its chief factor H/K has order divisible by at most one different from p prime, where $p \in \pi(H/K)$.

2 Proof of Theorem A

Lemma 2.1 (See Knyagina and Monakhov [12]). Let H, K and N be pairwise permutable subgroups of G and H is a Hall subgroup of G. Then $N \cap HK = (N \cap H)(N \cap K)$.

Proof of Theorem A. Assume that this theorem is false and let G be a counterexample of minimal order. Let $\mathfrak{H} = \{H_1, \ldots, H_t\}$. We can assume, without loss of generality, that the smallest prime divisor p of $|G|$ belongs to $\pi(H_1)$. Let P be a Sylow p-subgroup of H_1.

(1) If R is a minimal normal subgroup of G, then G/R is supersoluble. Hence R is the unique minimal normal subgroup of G, R is not cyclic and $R \notin \Phi(G)$.

We show that the hypothesis holds for G/R. First note that

$$\mathfrak{H}_0 = \{H_1R/R, \ldots, H_tR/R\}$$

is a complete Hall σ-set of G/R, where $H_iR/R \simeq H_i/H_i \cap R$ is supersoluble since H_i is supersoluble by hypothesis for all $i = 1, \ldots, t$.

Now let V/R be a maximal subgroup of H_iR/R, so $|(H_iR/R) : (V/R)| = p$ is a prime. Then $V = R(V \cap H_i)$ and hence

$$p = |(H_iR/R) : (V/R)| = |(H_iR/R) : (R(V \cap H_i)/R)| = |H_iR : R(V \cap H_i)| =$$

$$= |H_i||R||R \cap (V \cap H_i)| : |V \cap H_i||R||H_i \cap R| = |H_i| : |V \cap H_i| = |H_i : (V \cap H_i)|,$$

so $V \cap H_i$ is a maximal subgroup of H_i. Assume that H_iR/R is not cyclic. Then H_i is not cyclic, so

$$(V \cap H_i)H_j = H_j(V \cap H_i)$$

for all $j \neq i$ by hypothesis and hence

$$(V/R)(H_jR/R) = (R(V \cap H_i)/R)(H_jR/R) = (H_jR/R)((V \cap H_i)R/R) = (H_jR/R)(V/R).$$
Consequently the hypothesis holds for \(G/R \), so \(G/R \) is supersoluble by the choice of \(G \). Moreover, it is well known that the class of all supersoluble groups is a saturated formation (see Ch. VI in [5] or ?? in [?]). Hence the choice of \(G \) implies that \(R \) is the unique minimal normal subgroup of \(G \), \(R \) is not cyclic and \(R \not\in \Phi(G) \).

(2) \(G \) is not soluble. Hence \(R \) is not abelian and \(2 \in \pi(R) \).

Assume that this is false. Then \(R \) is an abelian \(q \)-group for some prime \(q \). Let \(q \in \pi_k \). Since \(R \) is non-cyclic by Claim (1) and \(R \leq H_k \), \(H_k \) is non-cyclic. Hence every member of \(\mathcal{H} \) permutes with each maximal subgroup of \(H_k \). Since \(R \not\in \Phi(G) \), \(R \not\in \Phi(H_k) \) and so there exists a maximal subgroup \(V \) of \(H_k \) such that \(R \not\in V \) and \(RV = H_k \). Hence \(E = R \cap V \neq 1 \) since \(|R| > q \) and \(H_k \) is supersoluble. Clearly, \(E \) is normal in \(H_k \). Now assume that \(i \neq k \). Then \(V \) permutes with \(H_i \) by hypothesis, so \(VH_i \) is a subgroup of \(G \) and

\[
R \cap VH_i = (R \cap V)(R \cap H_i) = R \cap V = E
\]

by Lemma 2.1 and so \(H_i \leq N_G(E) \). Therefore \(H_i \leq N_G(E) \) for all \(i = 1, \ldots, t \). This implies that \(E \) is normal in \(G \), which contradicts the minimality of \(R \). Hence we have (2).

(3) If \(R \) has a Hall \(\{2, q\} \)-subgroup for each \(q \) dividing \(|R| \), then a Sylow 2-subgroup \(R_2 \) of \(R \) is non-abelian.

Assume that this is false. Then by Claim (2) and Theorem 13.7 in [9, XI], the composition factors of \(R \) are isomorphic to one of the following groups: a) \(PSL(2, 2^f) \); b) \(PSL(2, q) \), where \(8 \) divides \(q - 3 \) or \(q - 5 \); c) The Janko group \(J_1 \); d) A Ree group. But with respect to each of these groups it is well-known (see, for example [10, Theorem 1]) that the group has no a Hall \(\{2, q\} \)-subgroup for at least one odd prime \(q \) dividing its order. Hence we have (3)

(4) If at least one of the subgroups \(H_i \) or \(H_k \), say \(H_i \), is non-cyclic, then \(H_i H_k = H_k H_i \) (This follows from the fact that every maximal subgroup of \(H_i \) permutes with \(H_k \)).

(5) \(H = H_1 \) is not cyclic (This directly follows from Claim (2), [9, IV, 2.8] and the Feit-Thompson theorem).

In view of Claim (5), \(\mathcal{H} \) contains non-cyclic subgroups. Without loss of generality, we may assume that \(H_1, \ldots, H_r \) are non-cyclic groups and all groups \(H_{r+1}, \ldots, H_t \) are cyclic.

(6) Let \(E_{\{i,j\}} = H_i H_j \) where \(i \leq r \). If \(r \) is the smallest prime dividing \(|E_{\{i,j\}}| \), then \(E_{\{i,j\}} \) is \(p \)-nilpotent, so it is soluble. Therefore \(E_{\{i,j\}} \neq G \).

Clearly, the hypothesis holds for \(E_{\{i,j\}} \). Hence if \(E_{\{i,j\}} < G \), then this subgroup is supersoluble by the choice of \(G \), and so it is \(p \)-nilpotent. Now assume that \(E_{\{i,j\}} = G \). Then \(r = p = 2 \) and \(E_{\{i,j\}} = H_i H_j = H_j H_i \). Let \(V_1, \ldots, V_t \) be the set of all maximal subgroups of \(H_j \) of \(H \). Since \(H \) is supersoluble, it has a normal 2-complement \(S \). Then \(SV_i \) is a maximal subgroup of \(H_j \), so \(SV_i H_j = H_j SV_i \) is a subgroup of \(G \) by hypothesis. Moreover, this subgroup is normal in \(G = E_{\{i,j\}} \) since \(|G : H_j SV_i| = 2 \). Now let \(E = SV_i H_j \cap \cdots \cap SV_i H_j \). Then \(E \) is normal in \(G \) and clearly \(E \cap P \leq \Phi(P) \).
Now we show that for any prime q dividing $|H_j|$, there are a Sylow q-subgroup Q of H_j and an element $h \in H$ such that $P \leq N_G(Q^h)$. Indeed, by the Frattini argument, $G = EN_G(Q)$. Hence by [6 VI, 4.7], there are Sylow 2-subgroups G_2, E_2 and N_2 of G, E and $N_G(Q)$ respectively such that $G_2 = E_2 N_2$. Let $P = (G_2)^x$. Then $P = (E_2)^x (N_2)^x$, where $(E_2)^x$ is a Sylow 2-subgroup of E and $(E_2)^x$ is a Sylow 2-subgroup of $(N_G(Q))^x = N_G(Q^x)$. Since $G = HH_j$, $x = hw$ for some $h \in H$ and $w \in H_j$. Hence

$$N_G(Q^x) = N_G(Q^{wh}) = N_G((Q^w)^h),$$

where Q^w is a Sylow q-subgroup of H_j. Therefore $(E_2)^x = E \cap P \leq \Phi(P)$. Consequently, $P \leq N_G((Q^w)^h)$. This shows that for any prime q dividing $|H_j|$, there is a Sylow q-subgroup Q of H_j and an element $h \in H$ such that $P \leq N_G(Q^h)$. Thus G has a Hall $\{2,q\}$-subgroup PQ^h for each q dividing $|H_j|$. Moreover, since H is supersoluble by hypothesis, G has a Hall $\{2,s\}$-subgroup for each s dividing $|H|$. Hence in view of Claim (3), P is not abelian. Then $P \cap F(H) \neq 1$, so $P \cap F(H) \leq Z_\infty(H)$ since H is supersoluble. Let Z be a group of order 2 in $Z(H)$. Since $Z \leq P \leq N_G((Q^h))$, $Z = Z^{h^{-1}} \leq N_G(Q)$. It follows that $Z \leq N_G(H_j)$. Thus $Z^G = Z^{HH_j} = Z^{H_j} \leq ZH_j$. This shows that a Sylow 2-subgroup of Z^G has order 2. Hence Z^G is 2-nilpotent. Let S be the 2-complement of Z^G. It is clear that $S \neq 1$. Since S is characteristic in Z^G, it is normal in G. On the other hand, S is soluble by the Feit-Thompson theorem. This induces that G has an abelian minimal normal subgroup, which contradicts Claim (2). Thus (6) holds.

(7) $E_i = HH_i$ is supersoluble for all $i = 2, \ldots, t$ (Since the hypothesis holds for E_i and $E_i < G$ by Claim (5), this follows from the choice of G).

(8) $E = H_1 \ldots H_r$ is soluble.

We argue by induction on r. If $r = 2$, it is true by Claim (5). Now let $r > 2$ and assume that the assertion is true for $r - 1$. Then by Claim (4), E has at least three soluble subgroups E_1, E_2, E_3 whose indices $E : E_1$, $|E : E_2|$, $|E : E_3|$ are pairwise coprime. But then E is soluble by the Wielandt theorem [11 I, 3.4].

(9) R has a Hall $\{2,q\}$-subgroup for each q dividing $|R|$.

It is clear in the case when $q \in \pi(H)$. Now assume that $q \notin \pi(H)$ for some $i > 1$. Then Claim (6) implies that $B = HH_i$ is a Hall soluble subgroup of G. Hence B has a Hall $\{2,q\}$-subgroup V and so $V \cap R$ is a Hall $\{2,q\}$-subgroup of R.

(10) A Sylow 2-subgroup R_2 of R is non-abelian (This follows from Claims (3) and (9)).

(11) If $q \in \pi(H_k)$ for some $k > r$, then q does not divide $|R : N_R((R_2)'|)$.

By Claim (7), $B = HH_k$ is supersoluble. Hence there is a Sylow q-subgroup of Q of B such that PQ is a Hall $\{2,q\}$-subgroup of B. Then $U = PQ \cap R = (P \cap R)(Q \cap R) = R_2(Q \cap R)$ is a Hall supersoluble subgroup of R with cyclic Sylow q-subgroup $Q \cap R$. By [6 VI, 9.1], $Q \cap R$ is normal in U, and $U/C_U(Q \cap R)$ is an abelian group by [13 Ch. 5, 4.1]. Hence

$$R_2C_U(Q \cap R)/C_U(Q \cap R) \simeq R_2/R_2 \cap C_U(Q \cap R)$$
is abelian and so $(R_2)' \leq C_U(Q \cap R)$. Consequently, $Q \cap R \leq N_R((R_2)')$.

The final contradiction. In view of Claim (11), $R = (E \cap R)N_R((R_2)')$. Hence

$$((R_2)')^R = ((R_2)')^{(E \cap R)N_R((R_2)'}) = ((R_2)')^{E \cap R} \leq E \cap R.$$ But by Claim (8), $E \cap R$ is soluble. On the other hand, Claim (10) implies that $(R_2)' \neq 1$ and so R is soluble, contrary to Claim (2). The theorem is thus proved.

3 Proof of Theorem B

The following lemma can be proved by the direct calculations on the base of well-known properties of Hall subgroups of soluble subgroups.

Lemma 3.1. The class \mathcal{H}_σ is closed under taking homomorphic images, subgroups and direct products.

Proof of Theorem B. Firstly, from Lemma 3.1, \mathcal{H}_σ is a hereditary formation.

Now we prove that $G \in \mathcal{H}_\sigma$ if and only if G is soluble and the automorphism group induced by G on every its chief factor of order divisible by p is either a σ_i-group, where $p \not\in \sigma_i$, or a $(\sigma_i \cup \sigma_j)$-group for some different σ_i and σ_j such that $p \in \sigma_i$.

Necessity. Assume that this is false and let G be a counterexample of minimal order. Then G has a chief factor H/K of order divisible by p such that $A = G/C_G(H/K)$ is neither a σ_i-group, where $p \not\in \sigma_i$, nor a $(\sigma_i \cup \sigma_j)$-group, where $\sigma_i \neq \sigma_j$ and $p \in \sigma_i$. Since

$$G/C_G(H/K) \simeq (G/K)/(C_G(H/K)/K) = (G/K)/C_{G/K}(H/K)$$

and the hypothesis holds for G/K by Lemma 3.1, the choice of G implies that $K = 1$.

First we show that $H \neq C_G(H)$. Indeed, assume that $H = C_G(H)$. By hypothesis, every complete Hall σ-set $W = \{W_1, \ldots, W_t\}$ of G forms a σ-basis of G. Without loss of generality, we can assume that $p \in \pi(W_1)$. It is clear that $t \geq 2$. Since $H = C_G(H)$, H is the unique minimal normal subgroup of G and $H \not\leq \Phi(G)$ by [11] Ch.A, 9.3(c)] since G is soluble. Hence $H = O_p(G) = F(G)$ by [11] Ch.A, 15.6]. Then for some maximal subgroup M of G we have $G = H \ltimes M$. Let $V = W_3$. We now show that $V^x \leq C_G(W_2)$ for all $x \in G$. First note that $W_2V^x = V^xW_2$ is a Hall $(\sigma_2 \cup \sigma_3)$-subgroup of G. Since $|G : M|$ is a power of p, any Hall σ_0-subgroup of M, where $p \not\in \pi_0$, is a Hall π_0-subgroup of G. Hence we can assume without loss of generality that $W_2V^x \leq M$ since G is soluble. By hypothesis, $W_2(V^x)y = (V^x)^yW_2$ for all $y \in G$, so

$$D = \langle (W_2)^{V^x} \rangle \cap \langle (V^x)^{W_2} \rangle$$

is subnormal in G by [11], 1.1.9(2)]. But $D \leq \langle W_2, V^x \rangle \leq M$, so

$$D^G = D^{HM} = D^M \leq M_G = 1$$

6
by [11, Ch. A, 14.3], which implies that $[W_2, V^x] = 1$. Thus $V^x \leq C_G(W_2)$ for all $x \in G$. It follows that $H \leq (W_3)^G \leq N_G(W_2)$ and therefore $W_2 \leq C_G(H) = H$, a contradiction. Hence $H \neq C_G(H)$.

Finally, let $D = G \times G$, $A^* = \{(g, g) | g \in G\}$, $C = \{(c, c) | c \in C_G(H)\}$ and $R = \{(h, 1) | h \in H\}$. Then $C \leq C_D(R)$, R is a minimal normal subgroup of A^*R and the factors $R/1$ and RC/C are (A^*R)-isomorphic. Moreover,

$$C_{A^*R}(R) = R(C_{A^*R}(R) \cap A^*) = RC,$$

so

$$A^*R/C = (RC/C) \rtimes (A^*/C),$$

where $A^*/C \simeq A$ and RC/C a minimal normal subgroup of A^*R/C such that $C_{A^*R/C}(RC/C) = RC/C$. As $H < C_G(H)$, we see that $|A^*R/C| < |G|$. On the other hand, by Lemma 3.1, the hypothesis holds for A^*R/C, so the choice of G implies that $A \simeq A^*/C$ is either a σ_i-group, where $p \not\in \sigma_i$, or a $(\sigma_i \cup \sigma_j)$-group for some different σ_i and σ_j such that $p \in \sigma_i$. This contradiction completes the proof of the necessity.

Sufficiency. Assume that this is false and let G be a counterexample of minimal order. Then G has a complete Hall set $W = \{W_1, \ldots, W_t\}$ of type σ such that for some i and j we have $W_iW_j \neq W_jW_i$. Let R be a minimal normal subgroup of G. Then:

1. $G/R \in \mathcal{H}_\sigma$, so R is a unique minimal normal subgroup of G.

 It is clear that the hypothesis holds for G/R, so $G/R \in \mathcal{H}_\sigma$ by the choice of G. If G has a minimal normal subgroup $L \neq R$, then we also have $G/L \in \mathcal{H}_\sigma$. Hence G is isomorphic to some subgroup of $(G/R) \rtimes (G/L)$ by [6, I, 9.7]. It follows from Lemma 3.1 that $G \in \mathcal{H}_\sigma$. This contradiction shows that we have Claim (1).

2. The hypothesis holds for any subgroup E of G.

 Let H/K be any chief factor of G of order divisible by p such that $H \cap E \neq K \cap E$. Then $G/C_G(H/K)$ is either a σ_i-group, where $p \not\in \sigma_i$, or a $(\sigma_i \cup \sigma_j)$-group for some different σ_i and σ_j such that $p \in \sigma_i$. Let H_1/K_1 be a chief factor of E such that $K \cap E \leq K_1 < H_1 \leq H \cap E$. Then H_1/K_1 is a p-group and

$$EC_G(H/K)/C_G(H/K) \simeq E/(E \cap C_G(H/K))$$

is either a σ_i-group or a $(\sigma_i \cup \sigma_j)$-group. Since

$$C_G(H/K) \cap E \leq C_E(H \cap E/K \cap E) \leq C_E(H_1/K_1),$$

$E/C_E(H_1/K_1)$ is also either a σ_i-group or a $(\sigma_i \cup \sigma_j)$-group. Therefore the hypothesis holds for every factor H_1/K_1 of some chief series of E. Now applying the Jordan-Hölder Theorem for chief series we get Claim (2).

3. R is a Sylow p-subgroup of G.

Since $G/R \in \mathcal{F}_\sigma$ by Claim (1),

$$(W_i R/R)(W_j R/R) = (W_j R/R)(W_i R/R),$$

so $W_i W_j R$ is a subgroup of G. Assume that R is not a Sylow p-subgroup of G and let $B = W_i W_j R$. Then $B \neq G$. On the other hand, the hypothesis holds for B by Claim (2). The choice of G implies that $B \in \mathcal{F}_\sigma$, so $W_i W_j = W_j W_i$, a contradiction. Hence Claim (3) holds.

Final contradiction for sufficiency. In view of Claims (1) and (3), there is a maximal subgroup M of G such that $G = R \times M$ and $M_G = 1$. Hence $R = C_G(R) = O_p(G)$ by [11] Ch.A, 15.6]. Since p does not divide $|G : R| = |G : C_G(R)|$ by Claim (3), the hypothesis implies that $M \cong G/R$ is a Hall σ_k-group for some $\sigma_k \in \sigma$, so one of the subgroups W_i or W_j coincides with R. Thus $G = W_i W_j = W_j W_i$. This contradiction completes the proof of the sufficiency.

Finally we prove that \mathcal{F}_σ is saturated if and only if $|\sigma| \leq 2$. It is clear that \mathcal{F}_σ is a saturated formation for any σ with $|\sigma| \leq 2$. Now we show that for any σ such that $|\sigma| > 2$, the formation \mathcal{F}_σ is not saturated.

Indeed, since $|\sigma| > 2$, there are primes $p < q < r$ such that for some distinct σ_i, σ_j and σ_k in σ we have $p \in \sigma_i$, $q \in \sigma_j$ and $r \in \sigma_k$. Let C_q and C_r be groups of order q and r, respectively. Let P_1 be a simple $\mathbb{F}_p C_q$-module which is faithful for C_q, P_2 be a simple $\mathbb{F}_p C_r$-module which is faithful for C_r. Let $H = P_1 \times C_q$ and Q be a simple $\mathbb{F}_q H$-module which is faithful for H. Let $E = (Q \times H) \times (P_2 \times C_r)$.

Let $A = A_p(E)$ be the p-Frattini module of E ([11] p.853)), and let G be a non-splitting extension of A by E. In this case, $A \subseteq \Phi(G)$ and $G/A \cong E$. Then $G/\Phi(G) \in \mathcal{F}_\sigma$, where $\sigma = \{\sigma_i, \sigma_j, \sigma_k\}$. By Corollary 1 in [15], $QP_1 P_2 = O_{p'}(E) = C_E(A/\text{Rad}(A))$. Hence for some normal subgroup N of G we have $A/N \not\cong \Phi(G/N)$ and $G/C_G(A/N) \cong C_q \times C_r$ is a $(\sigma_i \cup \sigma_j)$-group. But neither $p \not\in \sigma_i$ nor $p \in \sigma_j$. Hence $G \not\in \mathcal{F}_\sigma$ by the necessity. The theorem is proved.

References

[1] A.N. Skiba, On σ-subnormal and σ-permutable subgroups of finite groups, *J. Algebra*, 436 (2015), 1–16.

[2] A.N. Skiba, On some results in the theory of finite partially soluble groups, *Commun. Math. Stat.*, 4(3) (2016), 281–309.

[3] W. Guo, A.N. Skiba, On Π-quasinormal subgroups of finite groups, *Monatsh. Math.*, DOI: 10.1007/s00605-016-1007-9.

[4] A.N. Skiba, A generalization of a Hall theorem, *J. Algebra and its Application*, 15(5) (2016), DOI: 10.1142/S0219498816500857.

[5] Huppert B.: Zur Sylowstruktur Auflösbare Gruppen, II. *Arch. Math.*, 15, 251–257 (1964).
[6] Huppert B.: Endliche Gruppen I, Springer-Verlag, Berlin-Heidelberg-New York, 1967.

[7] Huppert B.: Zur Sylowstruktur Auflösbarer Gruppen, Arch. Math., 12, 161–169 (1961).

[8] Asaad M., Heliel A. A.: On permutable subgroups of finite groups, Arch. Math., 80, 113–118 (2003).

[9] Huppert B., Blackburn N.: Finite Groups III, Springer-Verlag, Berlin-New York, 1982.

[10] Tyutyantov V. N.: On the Hall conjecture (Russian. English, Ukrainian summary) Ukrain. Mat. Zh. 54(7), 981-990 (2002); translation in Ukrainian Math. J., 54(7), 1181-1191 (2002).

[11] Doerk K., Hawkes T.: Finite Soluble Groups, Walter de Gruyter, Berlin, New York, 1992.

[12] B.N. Knyagina, V.S. Monakhov. On \(\pi'\)-properties of finite groups having a Hall \(\pi\)-subgroup, Siberian Math. J., 522 (2011), 398–309.

[13] Gorenstein D.: Finite Groups, Harper & Row Publishers, New York-Evanston-London, 1968.

[14] A. Ballester-Bolinches, R. Esteban-Romero, M. Asaad, Products of Finite Groups, Walter de Gruyter, Berlin-New York, 2010.

[15] R. Griess, P. Schmid, The Frattini module, Arch. Math., 30, 256–266 (1978).