Abstract: In this critical review, plant sources used as effective antibacterial agents against *Helicobacter pylori* infections are carefully described. The main intrinsic bioactive molecules, responsible for the observed effects are also underlined and their corresponding modes of action specifically highlighted. In addition to traditional uses as herbal remedies, in vitro and in vivo studies focusing on plant extracts and isolated bioactive compounds with anti-*H. pylori* activity are also critically discussed. Lastly, special attention was also given to plant extracts with urease inhibitory effects, with emphasis on involved modes of action.

Keywords: plant products; *Helicobacter pylori*; opportunistic colonization; phytopharmacology; in vitro/in vivo findings; anti-urease activity
1. Introduction

Plant products, their enriched-derived extracts, and their isolated bioactive molecules have been increasingly studied due to their renowned health attributes, largely used in folk medicine over centuries for multiple purposes [1–9]. Indeed, phytomedicine is garnering much attention among the medical and scientific communities [10–12]. Commercially available synthetic drugs have often been negatively pointed out due to their side effects and related toxicity [13]. In fact, the active molecules used in pharmaceutical formulation are formerly derived from bioactive molecules extracted from plants and other living organisms [14]. Also, a growing number of studies have progressively underlined the multiple bioactive properties conferred by plant formulations [15,16]. Specifically, the antimicrobial effects of multiple plant preparations have been progressively confirmed and supported by both in vitro and in vivo studies and clinical trials [17–21]. Thus, their lower costs, high effectiveness, bioavailability, bioefficacy, and few to no adverse effects have led to intensive research on this topic [22–28].

Among the various opportunistic infections, those caused by Helicobacter pylori, a human opportunistic pathogen, is attracting much attention [29]. In fact, it is widely recognized that this bacterium plays an important role in the etiology of peptic and gastric ulcers and even gastric cancers and gastric lymphomas [29]. About half of the worldwide population is colonized by this bacterium, but there are only about 20% who manifest clinical symptoms, which has been linked to the ability of some H. pylori strains to both adapt to host’s immunological responses and to support an ever-changing gastric environment [29]. Relatedly, increasing rates of antibiotic-resistant H. pylori strains have been found, and therefore, the search for new eradication strategies and effective antibiotic therapies has become an issue of crucial importance [30]. Hence, research effort is focused on exploring plants as sources of anti-H. pylori agents.

Based on these findings, the present report aims to provide an extensive overview of Helicobacter pylori infections, namely describing its involvement in triggering gastric cancer and the most common antimicrobials used in H. pylori eradication. Special attention is also given to medicinal plants and their corresponding extracts and isolated constituents used as anti-H. pylori agents and urease inhibitors. This review was performed by consulting the databases of PubMed, Web of Science, Embase, and Google Scholar (as a search engine); only full-text available articles were considered, and articles published from 2008 to 2018 were prioritized. The search strategy included the combination of following keywords: “Helicobacter pylori”, “anti-Helicobacter”, “medicinal plant”, “plant extract”, “essential oil”, “bioactive”, “phytochemical”, “antimicrobial”, and “eradication”.

2. Helicobacter pylori and Gastric Cancer

H. pylori infection has been implicated in the development of gastric cancer, a multifactorial disease and a leading cause of mortality. The risk factors for gastric cancer have been shown to include environmental factors and factors that influence host–pathogen interaction, as well as the complex interplay between these factors [31]. Modern lifestyle, high stress levels, smoking and excessive alcohol consumption, nutritional deficiencies, and prolonged use of non-steroidal anti-inflammatory drugs (NSAIDs) are amongst the most relevant etiological environmental factors [32].

This bacterial infection has been linked to the initiation of chronic gastritis that could later lead to adenocarcinoma of the intestine [33]. However, several mechanisms have been proposed to represent the involvement of H. pylori infection in tumorigenesis. Several bacterial virulence factors, such as the cytotoxin-associated gene A (CagA) protein, present in the DNA insertion element Cag pathogenicity island (CagPAI), were found to be of prominent importance in carcinogenesis [34]. Likewise, bacterial peptidoglycan can be delivered into gastric epithelial cells, where it activates a phosphoinositide 3-kinase (PI3K)-Akt pathway leading to cell proliferation, migration, and prevention of apoptosis [35]. Furthermore, H. pylori-induced gastric inflammation involves the cyclooxygenase-2 (COX2)/prostaglandin E2 (PGE2) pathway and inflammatory marker interleukin 1β (IL-1β), which are important factors triggering chronic active gastritis and
adenocarcinoma [31]. Studies have also shown that *H. pylori* infection-induced oxidative stress and DNA damage coupled with dysregulation of E-cadherin/β-catenin/p120 interactions also play critical roles in tumorigenesis [31]. Several environmental and dietary factors have also been suggested to modify *H. pylori*-induced adenocarcinoma [36]. Gastric adenocarcinoma is strongly influenced by dietary salt intake, with high salt intake aggravating tumorigenesis [37].

3. Antimicrobials for *H. pylori* Eradication

The success of *H. pylori* eradication markedly depends on the type and duration of treatment, patient compliance to therapy, and antibiotic resistance. For example, because it is difficult to achieve optimal eradication of *H. pylori* infection in patients with peptic ulcers, combinational regimens using two or three antibiotics in addition to a proton pump inhibitor or bismuth are often prescribed to achieve higher eradication rates and to prevent antibiotic resistance emergence [38,39]. These regimens, also known as triple therapies, have cure rates of around 85–90%. They are usually administered for a period of about 10–14 days, in which treatment regimens include the following: (A) bismuth subsalicylate, metronidazole, and tetracycline for 14 days; (B) omeprazole, amoxicillin, and clarithromycin for 10 days; and (C) lansoprazole, amoxicillin, and clarithromycin for either 10 or 14 days.

Unfortunately, the heightening of antimicrobial resistance has been associated with increases in the standard triple therapies failure to eradicate *H. pylori* infection [40]. Hence, research is focusing on developing potent and effective antibacterial regimens that will favor total eradication of the infection. Nonetheless, any eradication treatment comes with some degree of adverse effects, such as nausea, metallic taste, vomiting, skin rash, and diarrhea. Therefore, efforts are being channeled towards the development of effective treatments with few to no side effects.

In the Maastricht V/Florence Consensus Report, 43 experts from 24 countries provided recommendations on the basis of the best available evidence and relevance to the current therapeutic options of management of *H. pylori* infection in the various clinical scenarios [41].

4. Plant Extracts and Phytochemicals with Anti-*Helicobacter pylori* Activity

Considering that *H. pylori* infection has been associated with gastrointestinal diseases, including chronic gastritis, peptic ulcer, gastric carcinoma, and mucosa-associated lymphoid tissue lymphoma [42], and that, due to the widespread use of therapeutic agents for the eradication of this bacterium and associated-side effects, increasing rates of *H. pylori* strains with acquired resistance have been discovered. So, the urgent need for alternative has been rekindled and aided by the use of natural drugs [32].

Despite, the newly proposed and used tri-therapy regimens, the cost of acid suppressors and stomach protectors make it inaccessible to the majority of the population [43]. Naturally-derived drugs, including herbs, have been shown to display anti-*H. pylori* activities with minimal side effects, easy accessibility, and affordability [42,44]. In fact, many medicinal plants have been reported in the traditional management of gastrointestinal disorders. Many of these medicinal plants have gone through bioassays to assess their potency against *H. pylori*. Here, the anti-*H. pylori* activity of medicinal plants and isolated bioactive molecules is discussed [45].

Almost all plant parts have been tested for anti-*H. pylori* activity. Plant extract preparations include water (Table 1), essential oils (Table 2), or organic solvents, such as the following: ethanol (Table 3); methanol (Table 4); acetone (Table 5); chloroform (Table 6); petroleum ether (Table 7); methanol/water, ethanol/water, methanol/petroleum, and methanol/dichloromethane extracts (Table 8); and other plant extracts (Table 9).
The susceptibility of *H. pylori* isolates and strains to 543 extracts from 246 plant species was tested by disc diffusion, agar diffusion, agar dilution, and broth microdilution assays. Activity ranged from 1.56–100,000 µg/mL for minimal inhibitory concentration (MIC) and 7–42 mm for inhibition zone diameters (IZDs). However, disparities were observed among the methods used and the tested concentrations: some extracts were tested at very high concentrations (100,000 µg/mL) that might have resulted in biased conclusions. Though many plants (246 species) showed anti-*H. pylori* activity in vitro, very few have been screened for activity in animal models.

Organic extracts of *Carum carvi*, *Xanthium brasiliicum*, and *Trachyspermum copticum* have demonstrated antibacterial activity against 10 clinical isolates of *H. pylori* [46]. In addition, ethanolic extracts of *Cuminum cyminum* and propolis exhibited significant in vitro inhibitory effect against *H. pylori* and, therefore, could be considered a valuable support in the treatment of infection, even contributing to the development of new and safer agents for inclusion in anti-*H. pylori* therapy regimens [47]. Some popular plant species used in Brazilian cuisine and folk medicine in the treatment of gastrointestinal disorders were also investigated for their antibacterial effects, among which *Bixa orellana*, *Chamomilla recutita*, *Ilex paraguariensis*, and *Malva sylvestris* were the most effective against *H. pylori* [48].

Bioactive plant compounds were also tested for their anti-*H. pylori* potency (Table 10), namely those isolated from the *Allium sativum* (clove), *Convolvulus austro-aegyptiacus* (aerial parts), *Glycyrrhiza glabra* (roots), *Hydrastis canadensis* (rhizomes), *Sanguinaria canadensis* (rhizomes), and *Tinospora sagittata* (aerial parts) species. Berberine, a benzylisoquinoline alkaloid, isolated from *Hydrastis canadensis*, revealed the lowest MIC value (0.78 µg/mL), being therefore considered the most effective bioactive compound, followed by diallyl tetrasulfide (3–6 µg/mL), allicin (4 µg/mL), and palmatine (3.12–6.25 µg/mL) isolated from *Allium sativum* and *Tinospora sagittata*, respectively.
Table 1. Plant aqueous extracts with anti-*Helicobacter pylori* activity.

Species	Family	Parts	Anti-*H. pylori* Potency	Ref.
Acacia nilotica (L.) Delile	*Leguminosae*	Flowers	MIC = 8–64 µg/mL	[49]
Adhatoda vasica Nees	*Acanthaceae*	Whole plant	MIC = 16–512 µg/mL	[49]
Alepidea anatombica Eckl. and Zeyh	*Apiaceae*	Roots/Rhizomes	IZD = 8.0 ± 8.2 mm	[50,51]
Amphipterygium adstringens (Schldtl.) Standl.	*Anacardiaceae*	Aerial parts	MIC = 62.5–125 µg/mL	[52]
Annona cherimola Mill.	*Annonaceae*	Leaves/Stem	MIC = 125 µg/mL	[52]
Artemisia ludoviciana Nutt. subsp. mexicana (Willd. ex Spreng.) Fernald	*Compositae*	Leaves/stems	MIC = 125 µg/mL	[52]
Buddleia perfoliata Kunth	*Scrophulariaceae*	Aerial parts	MIC = 500 µg/mL	[52]
Calandrinia ciliata (Ruiz and Pav.) DC. (cited as Calandrinia micrantha Schldtl.)	*Portulacaceae*	Leaves/Stems	MIC = 1000 µg/mL	[52]
Calotropis procera (Aiton) W.T. Aiton	*Apocynaceae*	Leaves	MIC = 16–256 µg/mL	[49]
Cassiphoineum amphostenon (Kunze ex Klotzsch) Fée	*Polypoideae*	Flowers	MIC = 8–256 µg/mL	[49]
Casuarina equisetifolia L.	*Cassidineae*	Aerial parts	MIC = 1000 µg/mL	[52]
Chenopodium incisum Poir. (cited as *Teloxys graveolens* (Willd.) W. A. Weber)	*Amaranthaceae*	Aerial parts	MIC = 250 µg/mL	[52]
Cichorium intybus L.	*Asteraceae*	Root	IZD < 9 mm	[47]
Cinnamomum zeylanicum Blume	*Lauraceae*	Bark	IZD < 9 mm	[47]
Cistus laurifolius L.	*Cistaceae*	Flowers	MIC = 62.5–125 µg/mL	[54]
Citrus reticulata Blanco	*Rutaceae*	Fruit shell	MIC = 100 µg/mL	[55]
Cocculus hirsutus (L.) Diels.	*Menispermeae*	Leaves	IZD = 22 mm (200–1000 µg/mL)	[56]
Combretum molle R. Br. Ex G. Don	*Combretaceae*	Bark	IZD = 2.7 ± 5.5 mm	[50,51]
Coriandrum sativum L.	*Apiaceae*	Seed	IZD = 9 mm; MIC = 1.25–5 mg/mL	[47]
Corydalis yanhusuo W.T. Wang	*Papaveraceae*	Stem	MIC = 100 µg/mL	[55]
Cuminum cyminum L.	*Apiaceae*	Seed	IZD < 9 mm	[47]
Cuphea aequipetala Cav.	*Lythraceae*	Aerial parts	MIC = 125 µg/mL	[52]
Cynara scolymus L.	*Asteraceae*	Leaves	MIC = 125 µg/mL	[52]
Cytocarpa procera Kunth	*Anacardiaceae*	Bark	MIC = 250 µg/mL	[52]
Table 1. Cont.

Species	Family	Parts	Anti-\textit{H. pylori} Potency	Ref.
Desmos cochinchinensis Lour.	Annonaceae	Leaves	IZD = 10.0 ± 0.6 mm (240 \(\mu \text{g/disc} \))	[59]
\textit{Dysphania ambrosioides} (L.) Mosyakin and Clemants (cited as \textit{Teloxys ambrosioides} (L.) W. A. Weber)	Amaranthaceae	Aerial parts	MIC = 1000 \(\mu \text{g/mL} \)	[52]
Elettaria cardamomum (L.) Maton.	Zingiberaceae	Seeds	IZD < 9 mm	[47]
Eurynga caroliniæ F. Delaroche	Apicaeae	Aerial parts	MIC = 1000 \(\mu \text{g/mL} \)	[52]
Eugenia Caryophyllata Thunb	Myrtaceae	Flower	MIC = 60 \(\mu \text{g/mL} \)	[55]
Eupatorium petiolare Moc. ex DC.	Compositae	Aerial parts	MIC = 500 \(\mu \text{g/mL} \)	[52]
Fagoniaar abica L.	Zygophyllaceae	Whole plant	MIC = 16–256 \(\mu \text{g/mL} \)	[49]
\textit{Foeniculum vulgare} Mill. var. dulce DC	Apicaeae	Seed	IZD < 9 mm; MIC = 5–10 mg/mL	[47]
Fritillaria thunbergii Miq.	Liliaceae	Stem	MIC = 40 \(\mu \text{g/mL} \)	[55]
\textit{Garcinia kola} Heckel	Guttiferae	Seeds	IZD = 1.0 ± 2.6 mm	[50, 51]
Geum iranicum Khatamsaz	Rosaceae	Root	IZD = 24–35 mm (100 \(\mu \text{g/mL} \))	[60]
\textit{Gnaphalium canescens} DC.	Compositae	Aerial parts	MIC = 500 \(\mu \text{g/mL} \)	[52]
\textit{Grindelia inuloides} Willd.	Compositae	Aerial parts	MIC = 500 \(\mu \text{g/mL} \)	[52]
\textit{Hesperozygis marifolia} Epling	Lamiaceae	Aerial parts	MIC = 500 \(\mu \text{g/mL} \)	[52]
\textit{Heterotheca inuloides} Cass.	Compositae	Aerial parts	MIC = 500 \(\mu \text{g/mL} \)	[52]
\textit{Juniperus communis} L.	Compositae	Aerial parts	MIC = 500 \(\mu \text{g/mL} \)	[52]
\textit{Larrea tridentata} (Sessé and Moc. ex DC.) Coville	Zygophyllaceae	Aerial parts	MIC = 500 \(\mu \text{g/mL} \)	[52]
\textit{Ligusticum striatum} DC (cited as \textit{Ligusticum chuanxiong} Hort.)	Apiaceae	Root	MIC = 100 \(\mu \text{g/mL} \)	[55]
\textit{Lippia graveolens} Kunth (cited as \textit{Lippia berlandieri} Schauer)	Verbenaceae	Aerial parts	MIC = 1000 \(\mu \text{g/mL} \)	[52]
\textit{Ludwigia repens} J. R. Forst.	Onagraceae	Aerial parts	MIC = 125 \(\mu \text{g/mL} \)	[52]
\textit{Machaeranthera riparia} (Kunth) A.G. Jones	Compositae	Aerial parts	MIC = 1000 \(\mu \text{g/mL} \)	[52]
\textit{Machaeranthera tanacetifolia} (Kunth) Nees	Compositae	Aerial parts	MIC = 1000 \(\mu \text{g/mL} \)	[52]
\textit{Mentha × piperita} L.	Lamiaceae	Leaves	IZD < 9 mm	[47]
\textit{Mirabilis jalapa} L.	Nyctaginaceae	Aerial parts	MIC = 250 \(\mu \text{g/mL} \)	[52]
\textit{Monarda citriodora} var. austromontana (Epling) B. L. Turner (cited as \textit{Monarda austromontana} Epling)	Lamiaceae	Aerial parts	MIC = 500 \(\mu \text{g/mL} \)	[52]
\textit{Olea europaea} L.	Oleaceae	Leaves/Stem	MIC = 125 \(\mu \text{g/mL} \)	[52]
\textit{Oregano vulgare} L.	Lamiaceae	Leaves	IZD = 25 mm; MIC = 0.6–2.5 mg/mL	[47]
\textit{Orthosiphon aristatus} (Blume) Miq. (cited as \textit{Orthosiphon stamineus} Benth)	Lamiaceae	Leaves	IZD = 9.0 ± 1.3 mm (240 \(\mu \text{g/disc} \))	[59]
	Lamiaceae	Stem	IZD = 8.0 ± 0.1 mm (240 \(\mu \text{g/disc} \))	[59]
Table 1. Cont.

Species	Family	Parts	Anti-\textit{H. pylori} Potency	Ref.
\textit{Peumus boldus} Mol.	Monimiaceae	Leaves	>1500 µg/mL	[61]
\textit{Plantago major} L.	Plantaginaceae	Aerial parts	MIC = 1000 µg/mL	[52]
\textit{Priva grandiflora} (Ortega) Moldenke	Verbenaceae	Aerial parts	MIC = 250 µg/mL	[52]
\textit{Prunus avium} L.	Rosaceae	Peduncles	IZD = 9 mm; MIC = 5–10 mg/mL	[47]
\textit{Rosmarinus officinalis} L.	Lamiaceae	Leaves	IZD < 9 mm	[47]
\textit{Ruta chalepensis} L.	Rutaceae	Leaves	MIC = 1000 µg/mL	[52]
\textit{Salvia officinalis} L.	Lamiaceae	Leaves	IZD = 10 mm; MIC = 1.25–10 mg/mL	[47]
\textit{Sclerocarya birrea} A. Rich Hochst	Anacardiaceae	Stem bark	MIC = 0.16–2.5 mg/mL	[50,51]
\textit{Tagetes lucida} Cav.	Compositae	Aerial parts	MIC = 500 µg/mL	[65]
\textit{Tecomia stans} (L.) Juss. ex Kunth	Bignoniaceae	Aerial parts	MIC = 1000 µg/mL	[52]
\textit{Terminalia catappa} L.	Combretaceae	Aerial parts	MIC = 125 µg/mL	[62]
\textit{Terminalia chebula} Retz	Combretaceae	Fruit	MIC = 125 mg/mL	[63]
\textit{Thymus serpyllum} L.	Lamiaceae	Aerial parts	IZD = 10 mm; MIC = 1.25–10 mg/mL	[47]
\textit{Tillandsia usneoides} L.	Bromeliaceae	Aerial parts	MIC = 1000 µg/mL	[52]
\textit{Tinospora sagittata} Gagnep.	Menispermaceae	Root	MIC = 100 µg/mL	[55]
\textit{Tithonia diversifolia} (Hemsl.) A.G.	Compositae	Aerial parts	MIC = 500 µg/mL	[52]
\textit{Verbena carolina} L.	Verbenaceae	Aerial parts	MIC = 62.5–125 µg/mL	[52]
\textit{Zingiber officinale} Roscoe	Zingiberaceae	Rhizome	IZD = 9 mm; MIC = 2.5–3 mg/mL	[47]

MIC, minimal inhibitory concentration; IZD, inhibition zone diameter; MBC, minimal bactericidal concentration.

Table 2. Plant essential oils with anti-\textit{H. pylori} activity.

Species	Family	Parts	Anti-\textit{H. pylori} Potency	Ref.
\textit{Abies mariesii} Mast. (cited as \textit{Abies maritima})	Pinaceae	Pine	IZD = 22 ± 2 mm (500 µg/disc)	[64]
\textit{Allium sativum} L.	Amaryllidaceae	Cloves	IZD = 14 ± 1 mm (500 µg/disc)	[64]
\textit{Artemisia dracunculus} L.	Compositae	Tarragon	8–32 µg/mL	[65]
\textit{Carum carvi} L.	Apiaceae	Caraway	IZD = 7 ± 0 mm (500 µg/disc)	[64]
\textit{Carum carvi} L.	Apiaceae	Caraway	IZD = 12 ± 0 mm (500 µg/disc)	[64]
Table 2. Cont.

Species	Family	Parts	Anti-*H. pylori* Potency	Ref.
Cinnamomum zeylanicum Blume	Lauraceae	Bark	MIC = 0.3 µL/mL; IZD = 24.8 mm	[66]
Cistus ladanifer L.	Cistaceae	Cistus	IZD = 10 ± 1 mm (500 µg/disc)	[64]
Citrus aurantium L.	Rutaceae	Orange blossom	IZD = 12 ± 0 mm (500 µg/disc)	[64]
Citrus limon (L.) Burm. f.	Rutaceae	Lemon	IZD = 16 ± 0 mm (500 µg/disc)	[64]
Citrus paradise Macfady	Rutaceae	Grapefruit	IZD = 13 ± 0.5 mm (500 µg/disc)	[64]
Cupressus sempervirens L.	Cupressaceae	Cypress	IZD = 19 ± 3.5 mm (500 µg/disc)	[64]
Cymbopogon citratus (DC.) Stapf	Poaceae	Lemongrass	IZD = 17 ± 0.5 mm (500 µg/disc)	[64]
Daucus carota L.	Apiaceae	Carrot seed	IZD = 16 ± 1.5 mm (500 µg/disc)	[64]
Dittrichia viscosa (L.) Greuter subsp. revoluta	Asteraceae	Aerial parts	IZD = 10 ± 1 mm (500 µg/disc)	[64]
Eucalyptus globulus L.	Myrtaceae	Eucalyptus	IZD = 12 ± 10 mm (500 µg/disc)	[64]
Eugenia caryophyllus (Spreng.) Bullock and S. G. Harrison	Myrtaceae	Clove-bud	IZD = 13 ± 2.5 mm (500 µg/disc)	[64]
Heracleum persicum L.	Apiaceae	Fruits	>88% inhibition (0.3 µL/mL)	[66]
Juniperus communis L.	Cupressaceae	Berry	IZD = 14 ± 0.5 mm (500 µg/disc)	[64]
Leptospermum scoparium J. R. Forst and G. Forst	Myrtaceae	Manuka	IZD = 23 ± 3 mm (500 µg/disc)	[64]
Aloysia citriodora Palau (cited as *Lippia citriodora*)	Verbenaceae	Aerial parts	IZD = 29 ± 2 mm (500 µg/disc)	[64]
Matricaria chamomilla L. (cited as *Matricaria recutita*)	Compositae	Flowers	IZD = 15 ± 10 mm (500 µg/disc)	[64]
Melaleuca alternifolia Cheel.	Myrtaceae	Tea tree	IZD = 9 ± 0.3 mm (500 µg/disc)	[64]
Table 2. Cont.

Species	Family	Parts	Anti-\textit{H. pylori} Potency	Ref.
\textit{Ocimum basilicum} L.	Lamiaceae	Aerial parts	IZD = 9 ± 0.3 mm (500 µg/disc)	[64]
\textit{Origanum vulgare} L.	Lamiaceae	Leaves	IZD = 19 ± 4 mm (500 µg/disc)	[64]
\textit{Pimpinella anisum} L.	Apiaceae	Anise	IZD = 12 ± 10 mm (500 µg/disc)	[64]
\textit{Salvia sclarea} L.	Lamiaceae	Aerial parts	IZD = 10 ± 2 mm (500 µg/disc)	[64]
\textit{Salvia officinalis} L.	Lamiaceae	Leaves	IZD = 10 ± 2 mm (500 µg/disc)	[64]
\textit{Sassafra} sieckii Siebold	Lauraceae	Aerial parts	IZD = 10 ± 2 mm (500 µg/disc)	[64]
\textit{Satureja montana} L.	Lamiaceae	Savory	IZD = 10 ± 2 mm (500 µg/disc)	[64]
\textit{Syzygium aromaticum} (L.) Merr. and L. M. Perry	Myrtaceae	Buds	>88% inhibition (0.3 µL/mL)	[66]
\textit{Thymus vulgaris} L.	Lamiaceae	Thyme	IZD = 15 ± 5 mm (500 µg/disc)	[64]
\textit{Thymus zygis} L.	Lamiaceae	Red thyme	IZD = 12 ± 10 mm (500 µg/disc)	[64]
\textit{Zataria multiflora} Boiss.	Lamiaceae	Aerial parts	IZD = 19 ± 0.5 mm (500 µg/disc)	[64]

* Initial population of 8.52 ± 0.30 log10 colony forming unit (CFU)/mL reduced to 7.67 ± 0.22 log10 CFU/mL; MIC, minimal inhibitory concentration; IZD, inhibition zone diameter.

Table 3. Plant ethanolic extracts with anti-\textit{H. pylori} activity.

Species	Family	Parts	Anti-\textit{H. pylori} Potency	Ref.
\textit{Abrus cantoniensis} Bge.	Leguminosae	Aerial parts	MIC = 40 µg/mL	[55]
\textit{Alepidea Amatymbica} Eckl. and Zeyh	Apiaceae	Roots/rhizomes	IZD = 6.7 ± 6.7 mm	[50,51]
\textit{Anomum villosum} Lour.	Zingiberaceae	Fruit	MIC = 100 µg/mL	[55]
\textit{Bixa orellana} L.	Bixaceae	Seed	MIC = 625–1250 µg/mL	[48]
\textit{Bupleurum chinense} DC.	Apiaceae	Aerial parts	MIC = 60 µg/mL	[53]
\textit{Chamomilla recutita} (L.) Rauschert	Compositae	Inflorescences	MIC ≤ 625 µg/mL	[48]
\textit{Cichorium intybus} L.	Asteraceae	Root	IZD = 12 mm; MIC = 1.25–10 mg/mL	[47]
\textit{Cinnamomum zeylanicum} Blume	Lauraceae	Bark	IZD = 20 mm; MIC = 1.25–5 mg/mL	[47]
\textit{Citrus reticulata} Blanco	Rutaceae	Fruit shell	MIC = 60 µg/mL	[55]
\textit{Combretum molle} R. Br. Ex G. Don	Combretaceae	Bark	IZD = 12.9 ± 4.7 mm	[50,51]
Table 3. Cont.

Species	Family	Parts	Anti-\(H.\) pylori Potency	Ref.
Convolvulus austro-aegyptiacu Abdallah and Saad	Convolvulaceae	Aerial parts	MIC = 100–200 µg/mL	[67]
Coriandrum sativum L.	Apiaceae	Seed	IZD = 12 mm; MIC = 5–10 mg/mL	[47]
Coryalis yanhusuo W.T. Wang	Papaveraceae	Stem	MIC = 60 µg/mL	[55]
Cuminum cyminum L.	Apiaceae	Seed	IZD = 0.075–0.6 mg/mL	[47]
Elettaria cardamomum (L.) Maton.	Asteraeae	Leaves	IZD = 25 mm; MIC = 0.6–2.5 mg/mL	[47]
Eugenia caryophyllata Thunb	Myrtaceae	Flower	MIC = 40 µg/mL	[55]
Foeniculum vulgare Mill. var. dulce DC	Apiaceae	Seed	IZD < 9 mm	[47]
Fritillaria thunbergii Miq.	Liliaceae	Stem	MIC = 40 µg/mL	[55]
Garcinia kola Heckel	Guttiferae	Seeds	MIC = 0.63–5 mg/mL; IZD = 9.2 ± 7.2 mm	[30,51]
Hippophae rhamnoides L.	Elaeagnaceae	Leaves	MIC = 60 µg/mL	[55]
Ilex paraguariensis A. St.-Hil.	Aquifoliaceae	Green leaves	MIC ≤ 625–5000 µg/mL	[48]
Juniperus communis L.	Cupressaceae	Berry	IZD = 10 mm; MIC = 1.25–10 mg/mL	[47]
Ligusticum striatum DC (cited as *Ligusticum chuanxiong*)	Apiaceae	Green leaves	MIC ≤ 625–5000 µg/mL	[48]
Lysimachia christinae Hance	Prinulacae	Whole plant	MIC = 100 µg/mL	[55]
Magnolia officinalis Rehd. et Wils.	Magnoliaceae	Bark	MIC = 60 µg/mL	[55]
Malva sylvestris L.	Malvaceae	Leaves and	MIC ≤ 625–5000 µg/mL	[48]
Melia azedarach L. (cited as *Melia toosendan*)	Meliaceae	Fruit	MIC = 100 µg/mL	[55]
Mentha × piperita L.	Lamiaceae	Leaves	IZD < 9 mm	[47]
Piper longum L.	Piperaceae	Spike	MIC = 100 µg/mL	[55]
Prunus aruti L.	Rosaceae	Peduncles	IZD = 10 mm; MIC = 1.25–10 mg/mL	[47]
Rosmarinus officinalis L.	Lamiaceae	Leaves	IZD = 20 mm; MIC = 1.25–10 mg/mL	[47]
Salvia officinalis L.	Lamiaceae	Leaves	IZD = 14 mm; MIC = 1.25–5 mg/mL	[47]
Saussurea costus (Falc.) Lipsch. (cited as *Saussurea lappa*)	Compositae	Root	MIC = 40 µg/mL	[55]
Schisandra chinensis Baill.	Schisandraceae	Fruit	MIC = 60 µg/mL	[55]
Sclerocarya birrea A. Rich Hochst	Anacardiaceae	Stem bark	IZD = 3.3 ± 5.0 mm	[30,51]
Thymus serpyllum L.	Lamiaceae	Aerial parts	IZD = 22 mm; MIC = 1.25–10 mg/mL	[47]
Tinospora sagittata Gagnep.	Menispermaceae	Aerial parts	MIC/MBC = 6250 µg/mL	[42]
Trigonella foenum-graecum L.	Leguminosae	Seed	MIC = 40 µg/mL	[55]
Zingiber officinale Roscoe	Zingiberaceae	Rhizome	IZD = 25 mm; MIC = 0.075–0.6 mg/mL	[47]

MIC, minimal inhibitory concentration; IZD, inhibition zone diameter.
Table 4. Plant methanolic extracts with anti-\textit{H. pylori} activity.

Species	Family	Parts	\textit{H. pylori} Potency	Ref.
\textit{Acacia nilotica} (L.) Delile	Leguminosae	Leaves	MIC = 8–128 \textmu g/mL	[49]
		Flowers	MIC = 8–64 \textmu g/mL	[49]
\textit{Acanthus montanus} (Nees) T. Anders	Acanthaceae	Leaves stalk	IZD = 6–22 mm (25 \textmu g/disc)	[68]
\textit{Achillea millefolium} L.	Compositae	Aerial parts	MIC = 1.56–100 \textmu g/mL	[69]
\textit{Adhatoda vasica} Nees	Compositae	Whole plant	MIC = 64–512 \textmu g/mL	[49]
\textit{Aframomum pruinoseum} Gagnepain	Zingiberaceae	Seed	MIC = 128 \textmu g/mL	[70]
			IZD = 6–22 mm (25 \textmu g/disc);	[68]
\textit{Ageratum conyzoides} L.	Compositae	Aerial parts	MIC = 1.56–100 \textmu g/mL	[69]
			MBC = 195–12,500 \textmu g/mL	[72]
\textit{Alchemilla fissa} Günther and Schummel	Rosaceae	Aerial parts	MIC = 4–32 \textmu g/mL	[71]
\textit{Alchemilla glabra} Neygenf.	Rosaceae	Aerial parts	MIC = 4–32 \textmu g/mL	[71]
\textit{Alchemilla monticola} Opiz.	Rosaceae	Aerial parts	MIC = 4–32 \textmu g/mL	[71]
\textit{Alchemilla viridisflora} Rothm.	Rosaceae	Aerial parts	MIC = 4–16 \textmu g/mL	[71]
\textit{Alchornea triplinervia} (Spreng.) Müll.Arg.	Euphorbiaceae	Aerial parts	MIC = 250 \textmu g/mL	[72]
\textit{Ampelidea amatymbica} Eckl. and Zeyh	Apiaceae	Roots/rhizomes	IZD = 6.1 ± 6.4 mm	[50,51]
\textit{Alpinia galanga} (L.) Willd. (cited as \textit{Languas galanga})	Zingiberaceae	Tuber	IZD = 21.5 ± 1.9 mm (240 \textmu g/disc)	[59]
\textit{Anoda cristata} (L.) Schltdl. Standl.	Malvaceae	Aerial parts	MIC = 250 \textmu g/mL	[52]
\textit{Artemisia ludoviciana} Nutt. subsp. mexicana (Willd. ex Spreng.) Fernald	Compositae	Leaves/stem	MIC = 500 \textmu g/mL	[52]
\textit{Aulotandria kamerunensis} (Loes)	Apocynaceae	Aerial parts	MIC = 128–512 \textmu g/mL	[73]
\textit{Bryophyllum pinnatum} (Lam.) Kurz	Crassulaceae	Leaves	MBC = 256 \textmu g/mL	[74]
\textit{Calandrinia ciliata} (Ruiz and Pav.) DC. (cited as \textit{Calandrinia micrantha})	Portulacaceae	Leaves/Stem	MIC = 250 \textmu g/mL	[52]
\textit{Calopilygium adstringens} (Schltdl.) Standl.	Anacardiaceae	Aerial parts	MIC = 31 \textmu g/mL	[75]
\textit{Calotropis gigantea} (L.) W.T. Aiton	Apocynaceae	Leaves	IZD = 7–8 mm (62.5–1000 \textmu g/disc)	[59]
\textit{Calotropis procera} W.T. Aiton	Apocynaceae	Flowers	IZD = 9.8 ±1.2 mm (240 \textmu g/disc)	[59]
\textit{Capsella bursa-pastoris} (L.) Medik.	Brassicaceae	Aerial parts	MIC = 64–256 \textmu g/mL	[49]
\textit{Carum carvi} L.	Apiaceae	Seeds	MIC = 100 \textmu g/mL	[69]
\textit{Casuarina equisetifolia} L.	Casuarinaceae	Fruit	MIC = 128–512 \textmu g/mL	[49]
\textit{Centella asiatica} (L.) Urb.	Apiaceae	Whole plant	IZD = 13.0 ± 0.9 mm (240 \textmu g/disc)	[59]
Species	Family	Parts	Anti-\(H. pylori \) Potency	Ref.
--	-----------------	----------------	--	------
Chenopodium incisum Poir. (cited as Teloxyx graveolens)	Amaranthaceae	Aerial parts	MIC = 62.5 µg/mL	[52]
Chromolaena odorata (L.) R.M. King and H. Rob.	Asteraceae	Leaves	IZD = 25.3 ± 1.6 mm (240 µg/disc)	[59]
Cistus laurifolius L.	Cistaceae	Flowers	MIC = 62.5–125 µg/mL	[54]
Colubrina asiatica (L.) Brongn.	Rhamnaceae	Leaves	IZD = 16.3 ± 2.1 mm (240 µg/disc)	[59]
Combretum molle R. Br. Ex G. Don	Combretaceae	Bark	IZD = 13.1 ± 5.3 mm	[50,51]
Cosmos caudatus Kunth	Asteraceae	Leaves	IZD = 23.0 ± 0.9 mm (240 µg/disc)	[59]
Cuminum cyminum L.	Apiaceae	Seed	MIC = 100 µg/mL	[69]
Curcuma longa L.	Zingiberaceae	Rhizome	MIC = 12.5–100 µg/mL	[69]
Curcuma longa L./Zingiber officinale L.				
Cymbopogon citratus (DC.) Stapf	Poaceae	Aerial parts	MIC = 31.2 µg/mL	[52]
Cytocarpa procera Kunth	Compositae	Bark	MIC = 62.5 µg/mL	[58]
Dysphania ambrosioides (L.) Mosyakin and Clements (cited as Teloxyx ambrosioides)	Amaranthaceae	Aerial parts	MIC = 250–500 µg/mL	[52]
Elettaria cardamomum (L.) Maton.	Zingiberaceae	Seed	MIC = 3.125-100 µg/mL	[69]
Emilia coccinea (Sims) G. Don	Compositae	Whole plant	IZD = 6–22 mm (25 µg/disc)	[68]
Eryngium carinatum F. Delaroche	Apiaceae	Aerial parts	MIC = 31.2 µg/mL	[52]
Eryngium foetidium L.	Apiaceae	Whole plant	IZD = 6–18 mm (25 µg/disc)	[68]
Eucalyptus terebelliana F. Muell.	Myrtaceae	Leaves	MIC = 64–512 µg/mL	[73]
Eupatorium petiolare Moc. ex DC.	Compositae	Aerial parts	MIC = 12.5–200 µg/mL	[76]
Euphorbia hirta L.	Euphorbiaceae	Whole plant	IZD = 6–18 mm (25 µg/disc)	[68]
Euphorbia umbellata (Pax) Bruyns	Euphorbiaceae	Bark	44.6% inhibition (256 µg/mL)	[77]
Fagonia gabica L.	Zygophyllaceae	Whole plant	MIC = 32–256 µg/mL	[49]
Ficus deltoidea Jack	Apiales	Leaves	IZD = 12.0 ± 0.6 mm (240 µg/disc)	[59]
Foeniculum vulgare Mill. var. dulce DC	Compositae	Seeds	MIC = 50–100 µg/mL	[69]
Galinsoga ciliata (Raf.) S. F. Blake	Compositae	Leaves	MIC = 128–512 µg/mL	[73]
Gentiana lutea L.	Gentianaceae	Root	MIC = 3.125–100 µg/mL	[69]
Ginkgo biloba L.	Ginkgoaceae	Leaves	MIC = 100 µg/mL	[69]
Glycerrhiza glabra L.	Leguminosae	Root	IDZ = 19 mm (10 mg/mL)	[78]
Species	Family	Parts	Anti- *H. pylori* Potency	Ref.
---------------------------------------	--------------	-------------	--------------------------	-----
Gnaphalium canescens DC.	Compositae	Aerial parts	MIC = 62.5 µg/mL	[52]
Grindelia inuloides Willd.	Compositae	Aerial parts	MIC = 62.5 µg/mL	[52]
Haplopappus spinulosus (Pursh) DC.	Compositae	Aerial parts	MIC = 125 µg/mL	[52]
Hesperozygis marifolia Epling	Lamiaceae	Aerial parts	MIC = 62.5 µg/mL	[52]
Heterotheca inuloides Cass.	Compositae	Aerial parts	MIC = 31.25 µg/mL	[52]
Hibiscus rosa-sinensis L.	Malvaceae	Stem	IZD = 13.7 ± 1.2 mm (240 µg/disc)	[59]
		Leaves	IZD = 14.3 ± 1.0 mm (240 µg/disc)	[59]
Hippocratea celastroides HBK	Hippocrateace	Leaves	MIC = 7.81–125 µg/mL	[79]
Hydrastis canadensis L.	Ranunculaceae	Rhizome	MIC = 0.78–50 µg/mL	[80]
Illicium verum Hook. f.	Schisandraceae	Fruit	MIC = 50–100 µg/mL	[69]
Jatropha podagrica Hook.	Euphorbiaceae	Stem	IZD = 8.0 ± 0.7 mm (240 µg/disc)	[59]
Juniperus communis L.	Cupressaceae	Leaves	MIC = 25–100 µg/mL	[69]
Kaempferia galanga	Zingiberaceae	Leaves	IZD = 46.0±0.1 mm (240 µg/disc)	[59]
Larrea tridentata (Sessé and Moc. ex DC.) Coville	Zygophyllaceae	Aerial parts	MIC = 62.5 µg/mL	[52]
Lauris nobilis L.	Lauraceae	Leaves	MIC = 50–100 µg/mL	[69]
Lavandula angustifolia Mill.	Lamiaceae	Flower	MIC = 100–1000 µg/mL	[69]
Limnocharis flava (L.) Buchenau	Alismataceae	Leaves	IZD = 11.0 ± 1.1 mm (240 µg/disc)	[59]
Lippia graveolens Kunth (cited as Lippia berlandieri)	Verbenaceae	Aerial parts	MIC = 31.2 µg/mL	[52]
Lithraea molleoides (Vell.) Engl.	Anacardiaceae	Aerial parts	MIC = 18–125 µg/mL	[81]
Ludwigia repens J. R. Forst.	Onagraceae	Aerial parts	MIC = 500 µg/mL	[52]
Lycopodium cernua (L.) Pic. Serm	Lycopodiaceae	Whole plant	IZD = 16–22 mm (25 µg/disc); MBC = 195–12500 µg/mL	[68]
Machaeranthera parviflora A. Gray	Compositae	Aerial parts	MIC = 31.2 µg/mL	[52]
Machaeranthera riparia (Kunth) A.G. Jones	Compositae	Aerial parts	MIC = 62.5 µg/mL	[52]
Machaeranthera tanacetifolia (Kunth) Nees	Compositae	Aerial parts	MIC = 125 µg/mL	[52]
Marantodes pumilum (Blume) Kuntze (cited as Labisia pumila)	Primulaceae	Root	IZD = 8.0 ± 0.5 mm (240 µg/disc)	[59]
Marrubium vulgare L.	Lamiaceae	Leaves/stem	MIC = 31.2 µg/mL	[52]

Table 4. Cont.
Species	Family	Parts	Anti-\(H. \text{pylori}\) Potency	Ref.
Melastoma malabathricum L. (blue variety)	Melastomataceae	Leaves	\(\text{IZD} = 25.7 \pm 0.8 \text{ mm} (240 \mu\text{g/disc})\)	[59]
Melissa officinalis L.	Lamiaceae	Stem	\(\text{IZD} = 18.0 \pm 0.6 \text{ mm} (240 \mu\text{g/disc})\)	[59]
Mentha × piperita L.	Lamiaceae	Leaves	\(\text{MIC} = 100 \geq 100 \mu\text{g/mL}\)	[59]
Mimosa pudica L.	Loganiaceae	Leaves/Stem	\(\text{MIC} = 500 \mu\text{g/mL}\)	[52]
Mitrasacme indica Wight (cited as *Mitrasacme alsinoides*)	Loganiaceae	Leaves	\(\text{IZD} = 14.2 \pm 1.9 \text{ mm} (240 \mu\text{g/disc})\)	[59]
Neptunia oleracea Lour.	Leguminosae	Whole plant	\(\text{IZD} = 13.3 \pm 2.3 \text{ mm} (240 \mu\text{g/disc})\)	[59]
Ocimum basilicum L.	Lamiaceae	Leaves	\(\text{MIC} = 100 \geq 100 \mu\text{g/mL}\)	[69]
Origanum vulgare L.	Lamiaceae	Aerial parts	\(\text{MIC} = 50–100 \mu\text{g/mL}\)	[69]
Orthosiphon aristatus (Blume) Miq. (cited as *Orthosiphon stamineus*)	Lamiaceae	Leaves	\(\text{IZD} = 22.0 \pm 2.4 \text{ mm} (240 \mu\text{g/disc})\)	[59]
Parkia speciosa Hassk.	Leguminosae	Root Cortex	\(\text{IZD} = 16.0 \pm 0.9 \text{ mm} (240 \mu\text{g/disc})\)	[59]
Passiflora edulis Sims (cited as *Passiflora incarnata*)	Passifloraceae	Aerial parts	\(\text{MIC} = 3.125–25 \mu\text{g/mL}\)	[69]
Persicaria minor (Huds.) Opiz (cited as *Polygonum minus*)	Polygonaceae	Leaves	\(\text{MIC} = 50–100 \mu\text{g/mL}\)	[69]
Phlox subulata L.	Scrophulariaceae	Flowers	\(\text{MIC} = 100 \geq 100 \mu\text{g/mL}\)	[59]
Petroselinum crispum (Mill.) Fuss	Apiaceae	Aerial parts	\(\text{MIC} = 15.5 \pm 1.1 \text{ mm} (240 \mu\text{g/disc})\)	[59]
Phyllanthus niruri L.	Phyllanthaceae	Whole plant	\(\text{MIC} = 100 \geq 100 \mu\text{g/mL}\)	[59]
Priva grandiflora (Ortega) Moldenke	Verbenaceae	Aerial parts	\(\text{MIC} = 25.0 \mu\text{g/mL}\)	[52]
Psidium guajava L.	Myrtaceae	Leaves	\(\text{MIC} = 250 \mu\text{g/mL}\)	[52]
Quercus rugosa Née	Fagaceae	Leaves	\(\text{MIC} = 125 \mu\text{g/mL}\)	[52]
Species	Family	Parts	Anti-*H. pylori* Potency	Ref.
--------------------------	-----------------	----------------	-------------------------	-------
Rosmarinus officinalis L.	Lamiaceae	Leaves	MIC = 12.5–100 µg/mL	[69]
Ruta chalepensis L.	Rutaceae	Leaves	MIC = 62.5 µg/mL	[52]
Salvia officinalis L.	Lamiaceae	Leaves	MIC = 25–100 µg/mL	[69]
Sanguinaria canadensis L.	Papaveraceae	Rhizome	MIC = 12.5–50 µg/mL	[80]
Scleria woodii var. ornata (Cherm.) J. Schultze-Motel (cited as *Scleria striatonixa*)	Cyperaceae	Root	IZD = 6–30 mm (25 µg/disc); MIC = 63–1000 µg/mL; MBC = 195–12,500 µg/mL	[68]
Scleria verrucossa (Wild)	Cyperaceae	Root	IZD = 4–20 mm (25 µg/disc)	[68]
Sclerocarya birrea A. Rich Hochst	Anacardiaceae	Stem bark	IZD = 3.0 ± 4.4 mm	[50,51]
Solanum torvum Sw.	Solanaceae	Seed	IZD = 17.3 ± 1.6 mm (240 µg/disc)	[59]
Tagetes lucida Cav.	Compositae	Aerial parts	MIC = 500 µg/mL	[52]
Tanacetum partshenium (L.) Sch. Bip.	Compositae	Aerial parts	MIC = 62.5 µg/mL	[52]
Tapingonchilos annuus (Hassk.) K. Schum.	Costaceae	Rhizome	IZD = 6–18 mm (25 µg/disc)	[68]
Tecoma stans (L.) Juss. ex Kunth	Bignoniaceae	Aerial parts	MIC = 500 µg/mL	[52]
Tillandsia usneoides L.	Menispermacae	Stem	IZD = 13.7 ± 2.7 mm (240 µg/disc)	[59]
Tinospora sinensis (Lour.) Merr. (cited as *Tinospora cordifolia*)	Menispermacae	Stem	IZD = 13.7 ± 2.7 mm (240 µg/disc)	[59]
Tithonia diversifolia (Hemsl.) A.G.	Compositae	Aerial parts	MIC = 62.5 µg/mL	[52]
Verbena carolina L.	Verbenaceae	Aerial parts	MIC = 500–1000 µg/mL	[52]
Zingiber officinale Roscoe	Zingiberaceae	Rhizome	MIC = 6.25–50 µg/mL	[69]

Table 5. Plant acetone extracts with anti-*H. pylori* activity.

Species	Family	Parts	Anti-*H. pylori* Potency	Ref.
Acacia nilotica (L.) Delile	Leguminosae	Leaves	MIC = 8–128 µg/mL	[49]
Adhatoda vasica Nees	Acanthaceae	Whole plant	MIC = 16–512 µg/mL	[49]
Aleuridea Amatymbica Eckt. and Zeyh	Apiaceae	Roots/Rhizomes	IZD = 7.0 ± 6.5 mm	[50,51]
Bridelia micrantha (Hochst.) Baill.	Phyllanthaceae	Bark	IZD = 16–23 mm	[53]
Calotropis procera W.T. Aiton	Apocynaceae	Leaves	MIC = 32–256 µg/mL	[49]

MIC, minimal inhibitory concentration; MBC, minimal bactericidal concentration; IZD, inhibition zone diameter.
Table 5. Cont.

Species	Family	Parts	Anti-\(H.\) pylori Potency	Ref.
Casuarina equisetifolia L.	Casuarinaceae	Fruit	\(\text{MIC} = 128.0–1024 \, \mu g/mL}\)	[49]
Cocculus hirsutus (L.) Diels.	Menispermae	Leaves	\(\text{IZD = 22–24 mm (200–1000} \, \mu g/mL)\)	[56]
Combretum molle R. Br. Ex G. Don *	Combretaceae	Bark	\(\text{MIC}_{50} = 0.08–1.25 \, \text{mg/mL; }\text{IZD = 10.7 \pm 4.7 mm; }\)	[50,51]
Desmostachya bipinnata (L.) Stapf.	Gramineae	Whole plant	\(\text{MIC = 1.3 mg/mL}\)	[84]
Fagonia arabaica L.	Zygophylaceae	Whole plant	\(\text{MIC = 16–128} \, \mu g/mL\)	[49]
Garcinia kola Heckel	Guttiferae	Seeds	\(\text{IZD = 8.8 \pm 5.2 mm}\)	[50,51]
Sclerocarya birrea A. Rich Hochst *	Anacardiaceae	Stem bark	\(\text{MIC}_{50} = 0.06–1.25 \, \text{mg/mL; }\text{IZD = 14.7 \pm 2.5 mm}\)	[50,51]

* Exhibited remarkable bactericidal activity against \(H.\) pylori, killing more than 50% of the strains within 18 h at 4\(\times \) MIC and led to complete elimination within 24 h; MIC, minimal inhibitory concentration; \(\text{MIC}_{50}\), minimal inhibitory concentration required to inhibit 50% of cells growth; \(\text{IZD}\), inhibition zone diameter.

Table 6. Plant chloroform extracts with anti-\(H.\) pylori activity.

Species	Family	Parts	Anti-\(H.\) pylori Potency	Ref.
Calotropis gigantea (L.) W.T. Aiton	Apocynaceae	Leaves	\(\text{IZD = 14.0 \pm 0.9 mm (240} \, \mu g/disc)\)	[59]
Cedrus libani A. Rich	Pinaceae	Cones	\(\text{MIC = 31.2} \, \text{kg/mL}\)	[54]
Centaurea solstitialis L.	Asteraceae	Aerial parts	\(\text{MIC = 1.95} \, \mu g/mL\)	[54]
Centella asiatica (L.) Urb.	Apiaceae	Whole plant	\(\text{IZD = 8.2 \pm 0.4 mm (240} \, \mu g/disc)\)	[59]
Chromolaena odorata (L.) R.M. King and H. Rob.	Asteraceae	Leaves	\(\text{IZD = 27.5 \pm 1.0 mm (240} \, \mu g/disc)\)	[59]
Cistus laurifolius L.	Cistaceae	Flowers	\(\text{MIC = 1.95} \, \mu g/mL\)	[54]
Colubrina asiatica (L.) Brongn.	Rhamnaceae	Leaves	\(\text{IZD = 10.0 \pm 0.9 mm (240} \, \mu g/disc)\)	[59]
Cosmos caudatus Kunth	Asteraceae	Leaves	\(\text{IZD = 11.7 \pm 0.5 mm (240} \, \mu g/disc)\)	[59]
Cymbopogon citratus (DC.) Stapf	Poaceae	Stem	\(\text{IZD = 18.0 \pm 1.4 mm (240} \, \mu g/disc)\)	[59]
Derris trifoliata Lour.	Leguminosae	Stem	\(\text{MIC}_{50} = 2 \, \mu g/mL}\)	[59]
\(\text{MIC}_{90} = 4 \, \text{mg/L}\)			\(\text{IZD = 38.0 \pm 1.0 mm (240} \, \mu g/disc)\)	[59]
Desmos cochinchinensis Lour.	Annonaceae	Leaves	\(\text{IZD = 30.0 \pm 2.1 mm (240} \, \mu g/disc)\)	[59]
Desmostachya bipinnata (L.) Stapf.	Gramineae	Whole plant	\(\text{MIC = 5} \, \text{mg/mL}\)	[84]
Eucalyptus camaldulensis Dehnh	Myrtaceae	Stem bark	\(\text{MIC = 25–100} \, \mu g/mL\)	[76]
Eucalyptus tereticornis Sm.	Myrtaceae	Leaves	\(\text{MIC = 50} \, \mu g/mL\)	[76]
Species	Family	Parts	Anti-*H. pylori* Potency	Ref.
---	-------------------	---------------------	-------------------------	------
Eucalyptus torelliana F. Muell.	Myrtaceae	Leaves	MIC = 25–400 µg/mL	[76]
Ficus deltoidea Jack	Moraceae	Leaves	IZD = 10.0 ± 0.6 mm (240 µg/disc)	[59]
Heterotheca inuloides Cass.	Composite	Leaves	IZD = 11.2 ± 1.2 mm (240 µg/disc)	[59]
Hypericum perforatum L.	Hypericaceae	Aerial parts	MIC = 7.8–31.2 µg/mL	[54]
Jatropha podagrica Hook.	Euphorbiaceae	Leaves	IZD = 10.0 ± 0.5 mm (240 µg/disc)	[59]
Kaempferia galanga Hook.	Zingiberaceae	Stem	IZD = 9.6 ± 0.6 mm (240 µg/disc)	[59]
Alpinia galanga (L.) Willd. (cited as *Languas galanga*)	Zingiberaceae	Tuber	IZD = 24.2 ± 1.6 mm (240 µg/disc)	[59]
Hypericum perforatum L.	Hypericaceae	Aerial parts	MIC = 7.8–31.2 µg/mL	[54]
Jatropha podagrica Hook.	Euphorbiaceae	Leaves	IZD = 10.0 ± 0.5 mm (240 µg/disc)	[59]
Kaempferia galanga Hook.	Zingiberaceae	Stem	IZD = 9.6 ± 0.6 mm (240 µg/disc)	[59]
Garcinia indica Wight (cited as *Mitrasacme alsinoides*)	Loganiaceae	Leaves	IZD = 10.7 ± 2.0 mm (240 µg/disc)	[59]
Orthosiphon aristatus (Blume) Miq. (cited as *Orthosiphon stamineus*)	Lamiaceae	Whole plant	IZD = 10.7 ± 2.0 mm (240 µg/disc)	[59]
Paonia × suffruticosa Andrews	Paeoniaceae	Root Cortex	IZD = 23.9–26.7 mm (1–10 mg/disc)	[82]
Parkia speciosa Hassk.	Leguminosae	Leaves	IZD = 19.3 ± 2.2 mm (240 µg/disc)	[59]
Phaeomeria imperialis (Roscoe) Lindl.	Zingiberaceae	Flowers	IZD = 14.0 ± 0.6 mm (240 µg/disc)	[59]
Phyllanthus niruri L.	Phyllanthaceae	Whole plant	IZD = 9.8 ± 0.8 mm (240 µg/disc)	[59]
Piper betle L.	Piperaceae	Leaves	IZD = 25.8 ± 0.8 mm (240 µg/disc)	[59]
Piper betle L.	Piperaceae	Leaves	IZD = 11.0 ± 0.6 mm (240 µg/disc)	[59]
Persicaria minor (Huds.) Opiz (cited as *Polygonum minus*)	Polygonaceae	Leaves	IZD = 12.3 ± 0.8 mm (240 µg/disc)	[59]
Psidium guajava L.	Myrtaceae	Leaves	IZD = 10.0 ± 0.6 mm (240 µg/disc)	[59]
Sambucus ebulus	Adoxaceae	Aerial parts	MIC = 31.2 µg/mL	[54]
Sesbania grandiflora (L.) Pers.	Leguminosae	Leaves	IZD = 8.8 ± 1.1 mm (240 µg/disc)	[59]
*Solanum tourneui Sw.	Solanaceae	Seed	IZD = 8.7 ± 0.0 mm (240 µg/disc)	[59]
Tinospora sinensis (Lour.) Merr. (cited as *Tinospora cordifolia*)	Menispermaceae	Stem	IZD = 19.2 ± 5 mm (240 µg/disc)	[59]
Zingiber officinale Roscoe	Zingiberaceae	Rhizome	IZD = 41.5 ± 7.0 mm (240 µg/disc)	[59]

MIC, minimal inhibitory concentration; MIC_{50} and MIC_{90}, minimal inhibitory concentration required to inhibit 50% and 90% of cells growth, respectively; IZD, inhibition zone diameter.
Table 7. Plant petroleum ether extracts with anti-\(H. pylori\) activity.

Species	Family	Parts	Anti-\(H. pylori\) Potency	Ref.
Calotropis gigantea (L.) W.T. Aiton	Apocynaceae	Leaves	IZD = 13.2 ± 0.8 mm (240 µg/disc)	[59]
Centella asiatica (L.) Urb.	Apiaceae	Whole plant	IZD = 8.5 ± 0.6 mm (240 µg/disc)	[59]
Chromolaena odorata (L.) R.M. King and H. Rob.	Asteraceae	Leaves	IZD = 20.3 ± 1.4 mm (240 µg/disc)	[59]
Colubrina asiatica (L.) Brongn.	Rhamnaceae	Leaves	IZD = 11.0 ± 0.9 mm (240 µg/disc)	[59]
Cosmos caudatus Kunth	Asteraceae	Leaves	IZD = 16.0 ± 0.6 mm (240 µg/disc)	[59]
Cymbopogon citratus (DC.) Stapf	Poaceae	Stem	IZD = 29.5 ± 1.5 mm (240 µg/disc)	[59]
Derris trifoliata Lour.	Leguminosae	Stem	IZD = 42.0 ± 0.9 mm (240 µg/disc); MIC\(_{50}\) = 1 mg/mL; MIC\(_{90}\) = 2 mg/L	[59]
Desmostachya bipinnata (L.) Stapf.	Gramineae	Whole plant	IZD = 42.0 ± 1.0 mm (240 µg/disc)	[59]
Ficus deltoidea Jack	Moraceae	Leaves	IZD = 8.0 ± 0.1 mm (240 µg/disc)	[59]
Heterotheca inuloides Cass.	Compositae	Stem	IZD = 13.2 ± 0.1 mm (240 µg/disc)	[59]
Jatropha podagrica Hook.	Euphorbiaceae	Root	IZD = 47.3 ± 3.1 mm (240 µg/disc)	[59]
Kaempferia galanga L.	Zingiberaceae	Tuber	IZD = 18.3 ± 1.0 mm (240 µg/disc)	[59]
Alpinia galanga (L.) Willd. (cited as Languas galanga)	Zingiberaceae	Tuber	IZD = 39.3 ± 2.1 mm (240 µg/disc)	[59]
Limnocharis flava (L.) Buchenau	Alismataceae	Leaves	IZD = 24.0 ± 0.6 mm (240 µg/disc)	[59]
Melastoma malabathricum L. (blue variety)	Melastomataceae	Stem	IZD = 10.5 ± 0.8 mm (240 µg/disc)	[59]
Mimosa pudica L.	Leguminosae	Whole plant	IZD = 8.5 ± 0.6 mm (240 µg/disc)	[59]
Mitrasacme indica Wight (cited as Mitrasacme alsinoidea R. Br.)	Loganiaceae	Leaves	IZD = 11.0 ± 0.6 mm (240 µg/disc)	[59]
Neptunia oleracea Lour.	Leguminosae	Leaves	IZD = 10.5 ± 0.8 mm (240 µg/disc)	[59]
Orthosiphon aristatus (Blume) Miq. (cited as Orthosiphon stamineus)	Lamiaceae	Stems	IZD = 12.7 ± 0.5 mm (240 µg/disc)	[59]
Parkia speciosa Hassk.	Leguminosae	Seeds	IZD = 10.5 ± 0.8 mm (240 µg/disc)	[59]
Pereskia scharosara Griseb.	Cactaceae	Leaves	IZD = 13.3 ± 0.5 mm (240 µg/disc)	[59]
Etlingera elatior (Jack) R.M.Sm. (cited as Phloeomeria imperialis)	Zingiberaceae	Flowers	IZD = 18.0 ± 1.1 mm (240 µg/disc)	[59]
Phyllanthus niruri L.	Phyllanthaceae	Whole plant	IZD = 14.0 ± 1.6 mm (240 µg/disc)	[59]
Piper betle L.	Piperaceae	Leaves	IZD = 54.2 ± 0.8 mm (240 µg/disc)	[59]
Table 7. Cont.

Species Family	Parts	Anti-\(H.\) pylori Potency
Pluchea indica (L.) Less.	Compositae Leaves	\(IZD = 13.7 \pm 1.9 \text{ mm} (240 \mu\text{g/disc})\) [59]
Persicaria minor (Huds.) Opiz (cited as Polygonum minus)	Polygonaceae Leaves	\(IZD = 15.5 \pm 0.6 \text{ mm} (240 \mu\text{g/disc})\) [59]
Psidium guajava L.	Myrtaceae Leaves	\(IZD = 8.5 \pm 0.8 \text{ mm} (240 \mu\text{g/disc})\) [59]
Sesbania grandiflora (L.) Pers.	Leguminosae Leaves	\(IZD = 10.8 \pm 1.0 \text{ mm} (240 \mu\text{g/disc})\) [59]
Solanum torvum Sw.	Solanaceae Seeds	\(IZD = 11.0 \pm 0.9 \text{ mm} (240 \mu\text{g/disc})\) [59]
Tinospora sinensis (Lour.) Merr. (cited as Tinospora cordifolia)	Menispermaceae Stems	\(IZD = 10.7 \pm 0.8 \text{ mm} (240 \mu\text{g/disc})\) [59]
Zingiber officinalis Roscoe	Zingiberaceae Rhizome	\(IZD = 33.3 \pm 1.6 \text{ mm} (240 \mu\text{g/disc})\) [59]

MIC, minimal inhibitory concentration; MIC\(_{50}\), minimal inhibitory concentration required to inhibit 50% of cells growth; IZD, inhibition zone diameter.

Table 8. Plant methanol/water, ethanol/water, methanol/petroleum, and methanol/dichloromethane extracts with anti-\(H.\) pylori activity.

Species	Family	Parts	Anti-\(H.\) pylori Potency
Acacia seyal Delile	Leguminosae Stem	MIC = 20 mg/mL [84]	
Allagi maurorum Medik.	Leguminosae Leaves	MIC = 20 mg/mL [84]	
Bidens bipinnata L.	Compositae Whole plant	MIC = 0.79 mg/mL [84]	
Capparis spinose L.	Capparaceae Aerial parts	MIC = 25 mg/mL [84]	
Casimiroa edulis Llave and Lex	Rutaceae Unripe fruit	MIC = 20 mg/mL [84]	
Centaurea alexandrina Delile	Compositae Whole plant	MIC = 80 mg/mL [84]	
Centaurea pelia DC.	Compositae ND	MIC = 0.625–5 mg/mL [85]	
Centaurea thessala Hausskn. ssp. drakensis (Freyn and Sint.) Georg	Compositae ND	MIC = 0.625–5 mg/mL [85]	
Cerastium candidissimum L.	Carophyllaceae ND	MIC = 0.625–2.5 mg/mL [85]	
Chamaemilla recutita (L.) Rauschert	Compositae ND	MIC = 0.625–2.5 mg/mL [85]	
Cleome africana Botsch.	Cleomaceae Whole plant	MIC = 0.158 mg/mL [84]	
Conyza albida Willd. ex Spreng.	Asteraceae ND	MIC = 0.625–2.5 mg/mL [85]	
Conyza bonariensis (L.) Cronquist.	Asteraceae ND	MIC = 0.625–2.5 mg/mL [85]	
Cota palatistina Reut. ex Unger and Kotschy (cited as Anthemis melanolepis)	Compositae ND	MIC = 0.625–2.5 mg/mL [85]	
Desmostachya bipinnata (L.) Stapf.	Gramineae Whole plant	MIC = 0.040 mg/mL [84]	
Dittrichia viscosa (L.) Greuter subsp. revoluta	Asteraceae ND	MIC = 0.625–2.5 mg/mL [85]	
Euphorbia retusa Forssk.	Euphorbiaceae Root	MIC = 2.5 mg/mL [84]	
Glossostemon brugueirii Desf.	Sterculiaceae Leaves	MIC = 25 mg/mL [84]	
Table 8. Cont.

Species	Family	Parts	Anti-\textit{H. pylori} Potency	Ref.
\textit{Hamada elegans} (Bunge) Botsch.	Chenopodiaceae	Whole plant	MIC = 10 mg/mL	[84]
\textit{Haplophyllum tuberculatum} (Forsk.) A. Juss.	Rutaceae	Whole plant	MIC = 1.58 mg/mL	[84]
Lythrum salicaria L.*	Lythraceae	Aerial parts	IZD = 17 \pm 0.08 mm (500 mg/mL)	[86]
\textit{Marrubium vulgare} L.	Lamiaceae	Whole plant	MIC = 0.251 mg/mL	[84]
\textit{Ocinum basilicum} L.	Lamiaceae	Aerial parts	MIC = 0.625–5 mg/mL	[85]
\textit{Origanum dictamnus} L.	Lamiaceae	Whole plant	MIC = 0.625–5 mg/mL	[85]
\textit{Origanum majorana} L.	Lamiaceae	Aerial parts	MIC = 0.625–5 mg/mL	[85]
\textit{Origanum vulgare} L.	Lamiaceae	Leaves	MIC = 0.625–2.5 mg/mL	[85]
\textit{Schausia thebaica} Webb.	Brassicaceae	Whole plant	MIC = 25 mg/mL	[84]
\textit{Sisymbrium irio} L.	Lamiaceae	Whole plant	MIC = 0.074 mg/mL	[84]
\textit{Stachys alopecuros} (L.) Benth.	Lamiaceae	Aerial parts	MIC = 0.625–2.5 mg/mL	[85]
\textit{Thymbra capitata} (L.) Cav. (cited as \textit{Thymus capitatus})	Lamiaceae	Whole plant	MIC = 12.5 mg/mL	[84]
\textit{Trifolium alexandrinum} L.	Leguminosae	Whole plant	MIC = 25 mg/mL	[84]

\textbf{Ethanol/Water (70:30, v/v)}

Species	Family	Parts	Anti-\textit{H. pylori} Potency	Ref.
\textit{Calophyllum brasiliense} Cambess.	Clusiaceae	Bark	MIC = 31 µg/mL; IZD = 8–14 mm (62.5–1000 µg/disc)	[75]
\textit{Cocculus hirsutus} (L.) Diels.	Menispermaceae	Leaves	IZD = 26 mm (200–1000 µg/mL)	[56]
\textit{Fridericia chica} (Bonpl.) L. G. Lohmann (cited as \textit{Arrabidaea chica})	Bignoniaceae	Fresh leaves	12.5	[87]
\textit{Hancornia speciosa} Comuzo	Apocynaceae	Bark	MIC = 125 µg/mL	[88]

\textbf{Methanol/Petroleum (1:1)}

Species	Family	Parts	Anti-\textit{H. pylori} Potency	Ref.
\textit{Carum bulbocastanum} (L.) Koch.	Apiaceae	Fruit	MIC = 31.25–250 µg/mL	[46]
\textit{Carum carvi} L.	Apiaceae	Fruit	MIC = 31.25–125 µg/mL	[46]
\textit{Glycyrrhiza glabra} Linn	Leguminosae	Root	MIC = 15.6–250 µg/mL	[46]
\textit{Mentha longifolia} (L.) Huds.	Lamiaceae	Aerial parts	MIC = 31.25–125 µg/mL	[46]
\textit{Salvia limbata} C. A. Mey.	Lamiaceae	Aerial parts	MIC = 125–250 µg/mL	[46]
Salvia sclarea L.	Lamiaceae	Aerial parts	MIC = 125–500 µg/mL	[46]
\textit{Trachyspermum amni} (L.) Sprague (cited as \textit{Trachyspermum copticum})	Apiaceae	Aerial parts	MIC = 31.25–250 µg/mL	[46,89]
\textit{Xanthium strumarium} subsp. \textit{brasilicum} (Vell.) O. Bolos and Vigo (cited as \textit{Xanthium brasiliicum})	Compositae	Aerial parts	MIC = 31.25–250 µg/mL	[46,89]
\textit{Ziziphora clinopodioides} Lam.	Lamiaceae	Aerial parts	MIC = 31.25–125 µg/mL	[46]

\textbf{Methanol/Dichloromethan}

Species	Family	Parts	Anti-\textit{H. pylori} Potency	Ref.
\textit{Cyrtocarpa procera} Kunth	Anacardiaceae	Bark	MIC = 62.5 µg/mL	[58]

* Methanol/water (80:20, v/v); ND, not defined; MIC, minimal inhibitory concentration; IZD, inhibition zone diameter.
Table 9. Plant cyclohexane, dichloromethane, ethyl acetate, n-Butanol, n-Hexane, and other extracts with anti-*H. pylori* activity.

Species	Family	Parts	Anti-*H. pylori* Potency	Ref.
Cyclohexane				
Alchemilla fissa Günther and Schummel	Rosaceae	Aerial parts	MIC = 64–256 µg/mL	[71]
Alchemilla glabra Neygenf.	Rosaceae	Aerial parts	MIC = 64–256 µg/mL	[71]
Alchemilla monticola Opiz	Rosaceae	Aerial parts	MIC = 16–64 µg/mL	[71]
Alchemilla viridiflora Rothm.	Rosaceae	Aerial parts	MIC = 64–256 µg/mL	[71]
Alchemilla fissa Günther and Schummel	Rosaceae	Aerial parts	MIC = 16–128 µg/mL	[71]
Calophyllum brasiliense Cambess.	Clusiaceae	Bark	IZD = 7–10 mm (62.5–1000 µg/disc)	[75]
Cyrtocarpa procera Kunth	Anacardiaceae	Bark	MIC = 15.6 µg/mL	[58]
Dichloromethane				
Alchemilla fissa Günther and Schummel	Rosaceae	Aerial parts	MIC = 64–256 µg/mL	[71]
Alchemilla glabra Neygenf.	Rosaceae	Aerial parts	MIC = 64–256 µg/mL	[71]
Alchemilla monticola Opiz	Rosaceae	Aerial parts	MIC = 16–64 µg/mL	[71]
Alchemilla viridiflora Rothm.	Rosaceae	Aerial parts	MIC = 64–256 µg/mL	[71]
Calophyllum brasiliense Cambess.	Clusiaceae	Bark	MIC = 125 µg/mL	[71]
Cyrtocarpa procera Kunth	Anacardiaceae	Bark	IZD = 7–10 mm (62.5–1000 µg/disc)	[75]
Ethyl acetate				
Alepidea Amatyynbica Eckl. and Zeyh	Apiaceae	Roots/rhizomes	IZD = 8.5 ± 4.8 mm	[50,51]
Bidens pilosa L.	Compositae	Leaves	MIC = 128–512 µg/mL	[75]
Bridelia micrantha (Hochst.) Baill.	Phyllanthaceae	Bark	IZD = 12–20 mm;	[53]
Combretum molle R. Br. Ex G. Don	Combretaceae	Bark	MIC = 0.79 mg/mL	[50,51]
Desmostachya bipinnata (L.) Stapf.	Graminaceae	Whole plant	MIC = 128–512 µg/mL	[75]
Eryngium foetidium (Linn)	Apiaceae	Leaves	IZD = 5.1 ± 4.6 mm	[50,51]
Garcinia kola Heckel	Guttiferae	Seeds	MIC = 128–512 µg/mL	[75]
Galinsoga ciliata (Raf.) S. F. Blake	Compositae	Leaves	MIC = 128–512 µg/mL	[75]
Geranium wilfordii Maxim	Geraniaceae	Aerial parts	MIC = 30 µg/mL	[90]
Paeonia × suffruticosa Andrews	Paeoniaceae	Root Cortex	IZD = 14.1–19.9 mm (1–10 mg/disc)	[82]
Physalis alkekengi L. var. franchetii* (Mast.) Makino	Solanaceae	Aerial parts	MIC = 500 µg/mL	[91]
Sclerocarya birrea A. Rich Hochst	Anacardiaceae	Stem bark	IZD = 13.2 ± 2.8 mm	[50,51]
Table 9. Cont.

Species	Family	Parts	Anti-\textit{H. pylori} Potency	Ref.
\textit{Centaurea solstitialis}	\textit{Asteraceae}	Aerial parts	MIC = 31.2 µg/mL	[54]
subsp. \textit{solstitialis}				
\textit{Cistus laurifolius}	\textit{Cistaceae}	Flowers	MIC = 62.5–125 µg/mL	[54]
\textit{Hypericum perforatum}	\textit{Hypericaceae}	Aerial parts	MIC = 15.6–31.2 µg/mL	[54]
\textit{Momordica charantia}	\textit{Cucurbitaceae}	Fruits	MIC = 62.5 µg/mL	[54]

\textit{n-Butanol}

Calophyllum brasiliense Cambess.	\textit{Clusiaceae}	Bark	IZD = 7–14 mm (100–400 µg/disc)	[92]
			IZD = 7–8 mm (62.5–1000 µg/disc)	[75]
			IZD = 14 mm (400 mg/mL)	[75]
			MIC = 31 µg/mL	
\textit{Cyrtocarpa proceria}	\textit{Anacardiaceae}	Bark	MIC = 7.81 µg/mL	[58]
Kunth				
\textit{Eucalyptus camaldulensis}	\textit{Myrtaceae}	Stem bark	MIC = 25–200 µg/mL	[76]
Dehnh		Leaves	MIC = 50 µg/mL	[76]
\textit{Eucalyptus torelliana}	\textit{Myrtaceae}	Leaves	MIC = 25–50 µg/mL	[76]
F. Muell.		Stem bark	MIC = 25–200 µg/mL	[76]
Mitrella kentii (Bl.) Miq	\textit{Annonaceae}	Bark	MIC = 125 µg/mL	[93]
\textit{Paeonia \times}	\textit{Paeoniacae}	Root Cortex	IZD = 29.9–31.3 mm (1–10 mg/disc)	[82]
suffruticosa Andrews				

\textit{n-Hexane}

\textit{Others}

\textit{Camellia sinensis} (L.) Kuntze	\textit{Theaceae}	Young shoots	IZD = 22.5 mm (20–60 µg/disc)	[94]
			MBC = 4 mg/mL	
\textit{Chenopodium ambrosioides} L.	\textit{Amaranthaceae}	Aerial parts	IZD = 18 mm (20–60 µg/disc)	[94]
			MBC = 5.5 mg/mL	
			MIC = 16 mg/L *	[95]

* 1 and 2 × MIC completely inhibited \textit{H. pylori} growth at 24 h; MIC, minimal inhibitory concentration; \textit{MIC}_{50}, minimal inhibitory concentration required to inhibit 50% of cells growth; MBC, minimal bactericidal concentration; IZD, inhibition zone diameter.
Table 10. Bioactive compounds with anti-\textit{H. pylori} activity.

Plant Species	Bioactive Compounds	Anti-\textit{H. pylori} Potency (MIC)	Ref.
\textit{Allium sativum} L. (cloves)	Allicin (garlic poder) 4 µg/mL [96]		
	Allicin 6 µg/mL [96]		
	Diallyl disulfide 100–200 µg/mL [96]		
	Diallyl tetrasulfide 3–6 µg/mL [96]		
\textit{Convolvulus austro-aegyptiacu} Abdallah and Saad (aerial parts)	Scopoletin 50–200 µg/mL [67]		
	Scopolin 50–100 µg/mL [67]		
\textit{Glycyrrhiza glabra} L. (roots)	Licoricidin 6.25–12.5 µg/mL [78]		
	Licoisoflavone 6.25 µg/mL [78]		
	Fuscaxanthone I 15.2–122.0 µM [97]		
	Beta-Mangostin 18.3–147.3 µM [97]		
	Fuscaxanthone A 16.3–131.2 µM [97]		
	Cowanin 16.3–130.6 µM [97]		
	Cowaxanthone 4.6–152.3 µg/mL [97]		
	Alpha-Mangostin 19.0–76.1 µM [97]		
	Cowanol 15.7–126.4 µM [97]		
	Isojacareubin 23.9 µM [97]		
	Fuscaxanthone G 16.3–130.6 µM [97]		
	Nigrolineabiphenyl B 56.5–226.3 µM [97]		
	1,3,5,6-Tetrahydroxyxanthone 29.9–240.3 µM [97]		
	Vokensiflavone 14.4–115.7 µg/mL [97]		
	Morelloflavone 14.0–112.3 µM [97]		
\textit{Hydrastis canadensis} L. (rhizomes)	Berberine 0.78–25 µg/mL [80]		
	β-Hydrastine 25–100 µg/mL [80]		
\textit{Sanguinaria canadensis} L. (rhizomes)	Sanguinarine 6.25–50 µg/mL [80]		
	Chelerythrine 25–100 µg/mL [80]		
	Protopine 25 ≥ 100 µg/mL [80]		
\textit{Tinospora sagittata} Gagnep. (aerial parts)	Palmatine 3.12–6.25 µg/mL [42]		

MIC, minimal inhibitory concentration.
5. In Vivo Findings

H. pylori colonization is increasingly being associated with a heightened risk of developing upper gastrointestinal tract diseases. Despite many plant extracts having demonstrated a prominent _H. pylori_ inhibition capacity in culture, it is of crucial importance to assess their in vivo efficacy, because it is pivotal to ascertain their effective antibacterial potency. However, a relatively low number of medicinal plants have been investigated to date for in vivo activity, as discussed below.

Paeonia lactiflora root extract (100 µg/mL) showed a complete inhibition of _H. pylori_ colonization (4–5 × 10⁵ colony forming unit (CFU)), being the antibacterial potential equivalent to of ampicillin used as positive control (10 µg/mL) (2–4 × 10⁵ CFU) [98]. Time course viability experiments were also performed in simulated gastric environments to assess the anti-_H. pylori_ activity of garlic (_Allium sativum_) oil (16 and 32 µg/mL). A rapid anti-_H. pylori_ action in artificial gastric juice was found. Nevertheless, the anti-_H. pylori_ activity displayed by garlic oil was noticeably affected by food materials and mucin, despite the fact that a substantial activity remained under simulated gastric conditions [65]. Also, _H. pylori_-inoculated Swiss mice receiving 125, 250, or 500 mg/kg of _Bryophyllum pinnatum_ or ciprofloxacin (500 mg/kg) for 7 days, showed a significant reduction of _H. pylori_ colonization on gastric tissue from 100% to 17%. In addition, the highest _B. pinnatum_ extract tested (85.91 ± 52.91 CFU) and standard drug ciprofloxacin (25.74 ± 16.15 CFU) also reduced significantly (_p_ < 0.05) the bacterial load of gastric mucosa as compared with untreated infected mice (11883 ± 1831 CFU) [74]. On the other hand, _Eryngium foetidum_ methanol extract (381.9 ± 239.5 CFU) and positive control ciprofloxacin (248 ± 153.2 CFU) significantly reduced the bacterial load in gastric mucosa at the same dose (500 mg/kg) compared with untreated and inoculated mice (14350 ± 690 CFU) [73].

Hippocratea celastroides hydroethanolic root-bark extract, a widely used plant against gastric and intestinal infections, also showed anti-_H. pylori_ efficacy in naturally infected dogs. In a study of 18 experimental dogs treated with a dose of 93.5–500 mg/kg of _H. celastroides_ extract in weight and 19 infected dogs receiving amoxicillin–clarithromycin–omeprazole (control treatment), the results showed effectiveness of 33.3 and 55% in the experimental and control groups, respectively [99]. On the other hand, Ye et al. [95], aiming to investigate the in vivo bactericidal effects of _Chenopodium ambrosioides_ L. against _H. pylori_, randomly assigned _H. pylori_-infected mice into plant extract group, triple therapy control (lansoprazole, metronidazole, and clarithromycin), blank control, and _H. pylori_ control groups. The obtained eradication ratios, determined by rapid urease tests (RUTs) and histopathology, were, respectively, 60% (6/10) using RUT and 50% (5/10) using histopathology for the test group and both 70% (7/10) for the control group. In addition, the histopathologic evaluation revealed a massive bacterial colonization on the gastric mucosa surface and slight mononuclear cells infiltration after _H. pylori_ inoculation, but no obvious inflammation or other pathologic changes in gastric mucosa were stated between the _C. ambrosioides_-treated mice and the standard therapy.

Tinospora sagittata and its main component, palmatine, showed in vitro bactericidal effects on _H pylori_ strains, with both MIC and minimal bactericidal concentration (MBC) values of 6250 µg/mL, whereas palmatine’s MIC value against _H. pylori_ SCYA201401 was 6.25 µg/mL and against _H. pylori_ SS1 was 3.12 µg/mL. The time-kill kinetic study evidenced a dose-dependent and progressive decline in the numbers of viable bacteria up to 40 h. _H. pylori_-infected mice treated with extract, palmatine, or control therapy (omeprazole, clarithromycin, and amoxicillin), presented eradication ratios of, respectively, 80%, 50%, and 70%. The anti-_H. pylori_ activity found in _T. sagittata_ extracts and its major constituent, palmatine, both in culture and animal models, clearly highlights the antibacterial potential of this plant in the treatment of both infected humans and animals [42].
Total alkaloids fraction activity (TASA) of *Sophora alopecuroides* L., widely used in herbal remedies against stomach-associated diseases, were also investigated on 120 *H. pylori*-infected BALB/c mice mouse gastritis. A total of 100 infected mice were randomly assigned into 10 treatment groups: group I (normal saline); group II (bismuth pectin); group III (omeprazole); group IV (TASA 2 mg/day); group V (TASA 4 mg/day); group VI (TASA 5 mg/day); group VII (TASA + bismuth pectin); group VIII (TASA + omeprazole); group IX (bismuth pectin + clarithromycin + metronidazole); and group X (omeprazole + clarithromycin + metronidazole). The mice were sacrificed 4 weeks after treatment. Real-time PCR was used to detect 16sDNA of *H. pylori* to test both the colonization and mice clearance of bacteria of each treatment. Hematoxylin and eosin staining and immunostaining of mice gastric mucosa were also used to observe the general inflammation and related factors: IL-8, COX2, and nuclear factor-kappa B (NF-κB) expression changed after treatments. TASA combined with omeprazole or bismuth pectin showed promising antimicrobial activity against *H. pylori*, as well as conventional triple therapy. Indeed, hematoxylin and eosin staining and immune-staining of mice gastric mucosa evidenced that the inflammation on mice gastric mucosal membrane were also clearly relieved in TASA combined treatments and conventional triple therapy compared with normal saline-treated mice. Accordingly, from immunohistochemistry results, *H. pylori*-induced IL-8, COX2, and NF-κB were consistently suppressed in the seventh, eighth, ninth, and tenth groups to a certain extent \[100\].

Pastene et al. \[101\] investigated the inhibitory effects of a standardized apple peel polyphenol-rich extract (*Malus pumila* Mill., cited as *Malus domestica*) against *H. pylori* infection and vacuolating bacterial toxin (VacA)-induced vacuolation and found that the preparation significantly prevented vacuolation in HeLa cells with an IC$_{50}$ value of 390 µg gallic acid equivalents (GAE)/mL and an in vitro anti-adhesive effect against *H. pylori*. A significant inhibition was also stated with 20–60% reduction of *H. pylori* attachment at concentrations between 0.250 and 5 mg GAE/mL. In a short-term infection model (C57BL6/J mice), doses of 150 and 300 mg/kg/day showed an inhibitory effect on *H. pylori* attachment. Orally administered apple peel polyphenols also showed an anti-inflammatory effect on *H. pylori*-associated gastritis, lowering malondialdehyde levels and gastritis scores.

Kim et al. \[102\] investigated the GutGard™ ability (a flavonoid rich, *Glycyrrhiza glabra* root extract) to inhibit *H. pylori* growth both in Mongolian gerbils and C57BL/6 mouse models. Infected male Mongolian gerbils were orally treated once daily 6 times/week for 8 weeks with 15, 30, and 60 mg/kg GutGard™. Bacterial identification in the biopsy samples of gastric mucosa, via urease, catalase, and ELISA, as well as immunohistochemistry revealed a dose-dependent inhibition of *H. pylori* colonization in gastric mucosa by GutGard™. As well, the administration of 25 mg/kg GutGard™ in *H. pylori*-infected C57BL/6 mice significantly reduced *H. pylori* colonization in gastric mucosa, suggesting its usefulness in *H. pylori* infection prevention.

Calophyllum brasiliense stem bark preparations are popular remedies for the treatment of chronic ulcers. A current report evidenced gastroprotective, gastric acid inhibitory properties and anti-*H. pylori* activity in culture (MIC = 31 µg/mL) \[75\]. Hydroethanolic (50, 100, and 200 mg/kg) and dichloromethane (100 and 200 mg/kg) fractions-treated Wistar rats ulcerated by acetic acid and inoculated with *H. pylori* showed a marked delay in ulcer healing and reduced the ulcerated area in a dose-dependent manner \[75\]. While the dichloromethane fraction, at 200 mg/kg, increased PGE2 levels, both the hydroethanolic and dichloromethane fractions decreased the number of urease-positive animals, as confirmed by the reduction of the *H. pylori* presence in histopathological analysis. This aspect suggests that the antulcer activity of *C. brasiliense* is partly linked with its anti-*H. pylori* efficacy \[75\]. Also, phenolic-rich oregano (*Origanum vulgare*) and cranberry (*Vaccinium macrocarpon*) extracts showed a prominent ability to inhibit *H. pylori* through urease inhibition and disruption of energy production by inhibition of proline dehydrogenase at the plasma membrane \[103\].
6. Urease Inhibition

The current therapies are challenged by the considerable number of emerging *H. pylori*-resistant strains. This fact has driven the need for alternative anti-*H. pylori* therapies that ideally should have good stability and low toxicity and to be able to inhibit urease activity [62]. It has been shown that *H. pylori* urease activity is crucial in bacterial survival and pathogenesis [104].

The inhibitory potency of some anti-*H. pylori* medicinal plants has been reported [62] and even investigated by some authors in the involved mechanisms of antibacterial action of those plant products [63].

Table 11 briefly shows the studied plant extracts with prominent anti-urease activity. Amin et al. [49] demonstrated that the methanolic and acetone extracts of some medicinal plants were able to inhibit urease activity. In fact, *Acacia nilotica* flower methanol and acetone extracts evidenced anti-*H. pylori* activity, being MIC values of 8–64 µg/mL and 4–64 µg/mL, respectively. Both extracts inhibited urease activity at 8.2–88.2% and 9.2–86.6%. *Calotropis procera* leaf and flower methanol and acetone extracts, with MIC values of 16–256 µg/mL, 32–256 µg/mL, and 8–128 µg/mL also displayed urease inhibitory effects, being, respectively, 12.2–48.2% and 7.2–58.2% for leaf and 9.3–68.2% for flower acetone extracts [49]. While *A. nilotica* extract exerted a competitive inhibition, that of *C. procera* extract displayed a mixed type of inhibition [49]. In addition, *Casuarina equisetifolia* fruit methanol extract, with MIC values varying from 128–512 µg/mL, also displayed 12.2–86.2% inhibition of urease activity [49].

In another study, *Camellia sinensis* young non-fermented and semi-fermented shoot extracts, presented inhibition zone diameter (IZD) and MBC of, respectively, 22.5 mm at 20–60 µg/disk and 4 mg/mL, and 18 mm at 20–60 µg/disk and 5.5 mg/mL. They both inhibited Ure A and Ure B subunits production at 2.5 and 3.5 mg/mL [94]. Also, the *Chamomilla recutita* flower extract, which inhibited *H. pylori* growth at an MIC90 value of 125 mg/mL and a MIC50 value of 62.5 mg/mL, was able to inhibit the urease production [105]. In the same line, the methanol fraction of *Euphorbia umbellata* bark extract inhibited both *H. pylori* growth (44.6% inhibition) at 256 µg/mL and urease activity (78.6% inhibition) at 1024 µg/mL [77]. Moreover, the *Peumus boldus* flower aqueous extract showed anti-adherent activity against *H. pylori* and inhibited urease activity with an IC50 value of 23.4 µg GAE/mL [61]. The aqueous extract of *Terminalia chebula* fruit showed activity with MIC and MBC values of 125 mg/mL and 150 mg/mL, respectively, and inhibited *H. pylori* urease activity at a concentration of 1–2.5 mg/mL [63].
Table 11. Urease inhibitory potential of plant extracts.

Plant Species	Parts	Extraction Solvent	Concentration Tested	Urease Inhibition	Ref.
Acacia nilotica (L.) Delile	Leaves	Methanol	8–128 µg/mL	8.21–88.21%	[49]
	Flowers	Acetone	8–128 µg/mL	9.20–86.56%	[49]
Calotropis procera (Aiton) W.T. Aiton	Leaves	Methanol	16–256 µg/mL	12.23–48.22%	[49]
	Flowers	Acetone	32–256 µg/mL	7.23–58.21%	[49]
Camellia sinensis (L.) Kuntze	Young shoots	Methanol: water (62.5:37.5 v/v)	2.5 mg/mL	100% Ure A and B	[94]
		Methanol: water (62.5:37.5 v/v)	3.5 mg/mL	100% Ure A and B	[94]
Casuarina equisetifolia L.	Fruit	Methanol	128–512 µg/mL	12.21–86.21%	[49]
Chamomilla recutita (L.) Rauschert	Flowers	Olive oil	31.25–250 mg/mL	Inhibited urease production	[105]
Euphorbia umbellata (Pax) Bruyns	Bark	Methanol	1024 µg/mL	78.6%	[77]
Peumus boldus Mol.	Leaves	Water		IC50 = 23.4 µg GAE/mL	[61]
Terminalia chebula Retz	Fruit	Water	1–2.5 mg/mL	Inhibited urease activity	[63]

IC50, 50% inhibitory concentration. GAE, gallic acid equivalents.
7. Conclusions and Future Perspectives

Overall, the report suggests that the studied plant extracts possess anti-
\(H. \text{ pylori} \) activity, strengthening the claims made by traditional medicine practitioners about their putative anti-ulcerative properties. However, very few of them were investigated for efficacy in animal models or the ability to inhibit urease activity. Further studies are warranted for efficacy studies in animal models, elucidation of effective modes of action (including urease inhibition), and clinical trials in human being.

Author Contributions: All authors contributed equally to this work. B.S., J.S.-R., P.V.T.F., and N.M. critically reviewed the manuscript. All the authors read and approved the final manuscript.

Funding: The APC was funded by N Martins.

Acknowledgments: N. Martins would like to thank the Portuguese Foundation for Science and Technology (FCT–Portugal) for the Strategic project ref. UID/BIM/04293/2013 and “NORTE2020—Programa Operacional Regional do Norte” (NORTE-01-0145-FEDER-000012).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Sharifi-Rad, M.; Nazaruk, J.; Polito, L.; Morais-Braga, M.F.B.; Rocha, J.E.; Coutinho, H.D.M.; Salehi, B.; Tabanelli, G.; Montanari, C.; del Mar Contreras, M.; et al. *Matricaria* genus as a source of antimicrobial agents: From farm to pharmacy and food applications. *Microbiol. Res.* 2018, 215, 76–88. [CrossRef]

2. Sharifi-Rad, M.; Roberts, T.H.; Matthews, K.R.; Bezerra, C.F.; Morais-Braga, M.F.B.; Coutinho, H.D.M.; Sharopov, F.; Salehi, B.; Yousaf, Z.; Sharifi-Rad, M.; et al. Ethnobotany of the genus *Taraxacum*–Phytochemicals and antimicrobial activity. *Phytother. Res.* 2018. [CrossRef] [PubMed]

3. Salehi, B.; Zucca, P.; Sharifi-Rad, M.; Pezzani, R.; Rajabi, S.; Setzer, W.N.; Varoni, E.M.; Iriti, M.; Kobarfard, F.; Sharifi-Rad, J. Phytotherapeutics in cancer invasion and metastasis. *Phytother. Res.* 2018, 32, 1425–1449. [CrossRef] [PubMed]

4. Sharifi-Rad, J.; Iriti, M.; Setzer, W.N.; Sharifi-Rad, M.; Rooointan, A.; Salehi, B. Antiviral activity of *Veronica persica* Poir. on herpes virus infection. *Cell. Mol. Biol. (Noisy-le-Grand France)* 2018, 64, 11–17. [CrossRef]

5. Mishra, A.P.; Saklani, S.; Salehi, B.; Parcha, V.; Sharifi-Rad, M.; Milella, L.; Iriti, M.; Sharifi-Rad, J.; Srivastava, M. *Satyrium nepalense*, a high altitude medicinal orchid of Indian Himalayan region: Chemical profile and biological activities of tuber extracts. *Cell. Mol. Biol. (Noisy-le-Grand France)* 2018, 64, 35–43. [CrossRef]

6. Mishra, A.P.; Sharifi-Rad, M.; Shariati, M.A.; Makhgot, Y.N.; Al-Showiman, S.S.; Rauf, A.; Salehi, B.; Župunski, M.; Sharifi-Rad, M.; Gussain, P.; et al. Bioactive compounds and health benefits of edible *Rumex* species-A review. *Cell. Mol. Biol. (Noisy-le-Grand France)* 2018, 64, 27–34. [CrossRef]

7. Monjazeb Marvdashti, L.; Abdolshahi, A.; Hedayati, S.; Sharifi-Rad, M.; Iriti, M.; Salehi, B.; Sharifi-Rad, J. Pullulan gum production from low-quality fig syrup using *Aureobasidium pullulans*. *Cell. Mol. Biol. (Noisy-le-Grand France)* 2018, 64, 22–26. [CrossRef]

8. Salehi, B.; Anil Kumar, N.V.; Şener, B.; Sharifi-Rad, M.; Kluç, M.; Mahady, G.B.; Vlaisavljevic, S.; Iriti, M.; Kobarfard, F.; Setzer, W.N.; et al. Medicinal plants used in the treatment of human immunodeficiency virus. *Int. J. Mol. Sci.* 2018, 19, 1459. [CrossRef] [PubMed]

9. Bagheri, G.; Mirzaei, M.; Mehrabi, R.; Sharifi-Rad, J. Cytotoxic and antioxidant activities of *Alstonia scholaris*, *Alstonia venenata* and *Moringa oleifera* plants from India. *Jundishapur J. Nat. Pharm. Prod.* 2016, 11, e31129. [CrossRef]

10. Sharifi-Rad, M.; Salehi, B.; Sharifi-Rad, J.; Setzer, W.N.; Iriti, M. *Pulicaria vulgaris* Gaertn. essential oil: An alternative or complementary treatment for Leishmaniasis. *Cell. Mol. Biol. (Noisy-le-Grand France)* 2018, 64, 18–21. [CrossRef]

11. Sharifi-Rad, J.; Tayeboon, G.S.; Niknam, F.; Sharifi-Rad, M.; Mohajeri, M.; Salehi, B.; Iriti, M.; Sharifi-Rad, M. *Veronica persica* Poir. extract-antibacterial, antifungal and scolicidal activities, and inhibitory potential on acetylcholinesterase, tyrosinase, lipooxygenase and xanthine oxidase. *Cell. Mol. Biol. (Noisy-le-Grand France)* 2018, 64, 50–56. [CrossRef]
12. Sharifi-Rad, J.; Sharifi-Rad, M.; Salehi, B.; Iriti, M.; Rooointan, A.; Mnayer, D.; Soltani-Nejad, A.; Afshari, A. In vitro and in vivo assessment of free radical scavenging and antioxidant activities of *Veronica persica* Poir. *Cell. Mol. Biol. (Noisy-le-Grand France)* **2018**, *19*, 2361–29 of 34. [CrossRef]

13. Martins, N.; Barros, L.; Ferreira, I.C. In vivo antioxidant activity of phenolic compounds: Facts and gaps. *Trends Food Sci. Technol.* **2016**, *48*, 1–12. [CrossRef]

14. Sharifi-Rad, J.; Ayatollahi, S.A.; Varoni, E.M.; Salehi, B.; Kobarfard, F.; Sharifi-Rad, M.; Iriti, M.; Sharifi-Rad, M. Chemical composition and functional properties of essential oils from *Nepeta schiraziana* Boiss. *Farmacia* **2017**, *65*, 802–812.

15. Salehi, B.; Mishra, A.P.; Shukla, I.; Sharifi-Rad, M.; Contreras, M.d.M.; Segura-Carretero, A.; Fathi, H.; Nasrabadi, N.N.; Kobarfard, F.; Sharifi-Rad, J. Thymol, thyme, and other plant sources: Health and potential uses. *Phytother. Res.* **2018**. [PubMed]

16. Sharifi-Rad, M.; Varoni, E.M.; Iriti, M.; Martorell, M.; Setzer, W.N.; del Mar Contreras, M.; Salehi, B.; Soltani-Nejad, A.; Rajabi, S.; Tajbaksh, M.; et al. Carvacrol and human health: A comprehensive review. *Phytother. Res.* **2018**. [PubMed]

17. Martins, N.; Barros, L.; Henriques, M.; Silva, S.; Ferreira, I.C. In vivo anti-candida activity of phenolic extracts and compounds: Future perspectives focusing on effective clinical interventions. *BioMed Res. Int.* **2015**, 2015, 247382. [PubMed]

18. Sharifi-Rad, M.; Naserabadi, N.N.; Kobarfard, F.; Sharifi-Rad, J. Anti-methicillin-resistant *Staphylococcus aureus* (MRSA) activity of Rubiaceae, Fabaceae and Poaceae plants: A search for new sources of useful alternative antibacterials against MRSA infections. *Cell. Mol. Biol. (Noisy-le-Grand France)* **2018**, *64*, 39–45. [CrossRef]

19. Snow Setzer, M.; Sharifi-Rad, J.; Setzer, W.N. The search for herbal antibiotics: An in-silico investigation of antibacterial phytochemicals. *Antibiotics* **2016**, *5*, 30. [CrossRef] [PubMed]

20. Sharifi-Rad, J.; Salehi, B.; Schnitzler, P.; Ayatollahi, S.A.; Kobarfard, F.; Sharifi-Rad, M.; Ali-Afshari, A.; et al. Plants of the *Echinacea* Genus as Antimicrobial Agents: From Farm to Pharmacy. *Phytother. Res*. **2018**. [PubMed]

21. Sharifi-Rad, J.; Salehi, B.; Varoni, E.M.; Salehi, B.; Soltani-Nejad, A.; Roointan, A.; Shahri, F.; Ayatollahi, S.A.; Fathi, M.; Soltani-Nejad, A.; et al. Medicinal plants used in the treatment of tuberculosis—Ethnobotanical and ethnopharmacological approaches. *Biotechnol. Adv.* **2017**. [CrossRef] [PubMed]

22. Sharifi-Rad, J.; Salehi, B.; Stojanović-Radić, Z.Z.; Fokou, P.V.T.; Sharifi-Rad, M.; Mahādy, G.B.; Sharifi-Rad, M.; Masjedi, M.R.; Lawal, T.O.; Ayatollahi, S.A.; et al. Medicinal plants used in the treatment of tuberculosis—Ethnobotanical and ethnopharmacological approaches. *Biotechnol. Adv.* **2017**. [CrossRef] [PubMed]

23. Sharifi-Rad, J.; Salehi, B.; Stojanović-Radić, Z.Z.; Fokou, P.V.T.; Sharifi-Rad, M.; Mahādy, G.B.; Sharifi-Rad, M.; Masjedi, M.R.; Lawal, T.O.; Ayatollahi, S.A.; Salehi, B.; Soltani-Nejad, A.; et al. Anti-bacterial activity of some Lamiaceae species against *Staphylococcus aureus* in yoghurt-based drink (Doogh). *Cell. Mol. Biol. (Noisy-le-Grand France)* **2018**, *64*, 71–77. [CrossRef]
28. Sharifi-Rad, J.; Rooitann, A.; Setzer, W.N.; Sharifi-Rad, M.; Iriti, M.; Salehi, B. Susceptibility of Leishmania major to Veronica persica Poir. extracts-In vitro and in vivo assays. Cell. Mol. Biol. (Noisy-le-Grand France) 2018, 64, 44–49. [CrossRef] [PubMed]

29. Percival, S.L.; Suleman, L. Biofilms and Helicobacter pylori: Dissemination and persistence within the environment and host. World J. Gastrointest. Pathophysiol. 2014, 5, 122. [CrossRef] [PubMed]

30. Modolo, L.V.; de Souza, A.X.; Horta, L.P.; Araujo, D.P.; de Fátima, Â. An overview on the potential of natural products as ureases inhibitors: A review. J. Adv. Res. 2015, 6, 35–44. [CrossRef] [PubMed]

31. Zhang, X.-Y.; Zhang, P.-Y.; Aboul-Soud, M.A. From inflammation to gastric cancer: Role of Helicobacter pylori. Oncol. Lett. 2017, 13, 543–548. [CrossRef] [PubMed]

32. Sharifi-Rad, M.; Fokou, P.; Sharopov, F.; Martorell, M.; Ademiluyi, A.; Rajkovic, J.; Salehi, B.; Martins, N.; Iriti, M.; Sharifi-Rad, J. Antiulcer Agents: From Plant Extracts to Phytochemicals in Healing Promotion. Molecules 2018, 23, 1751. [CrossRef] [PubMed]

33. Sipponen, P.; Marshall, B.J. Gastritis and gastric cancer: Western countries. Gastroenterol. Clin. N. Am. 2000, 29, 579–592. [CrossRef]

34. Park, J.Y.; Forman, D.; Waskito, L.A.; Yamaoka, Y.; Crabtree, J.E. Epidemiology of Helicobacter pylori and CagA-Positive Infections and Global Variations in Gastric Cancer. Toxins 2018, 10, 163. [CrossRef] [PubMed]

35. Nagy, T.A.; Frey, M.R.; Yan, F.; Israel, D.A.; Polk, D.B.; Peek, R.M. Helicobacter pylori regulates cellular migration and apoptosis by activation of phosphatidylinositol 3-kinase signaling. J. Infect. Dis. 2009, 199, 641–651. [CrossRef] [PubMed]

36. Wroblewski, L.E.; Peek, R.M.; Wilson, K.T. Helicobacter pylori and gastric cancer: Factors that modulate disease risk. Clin. Microbiol. Rev. 2010, 23, 713–739. [CrossRef] [PubMed]

37. Tsugane, S. Salt, salted food intake, and risk of gastric cancer: Epidemiologic evidence. Cancer Sci. 2005, 96, 1–6. [CrossRef] [PubMed]

38. Gisbert, J.; Gonzalez, L.; Calvet, X.; García, N.; López, T.; Roque, M.; Gabriel, R.; Pajares, J. Proton pump inhibitor, clarithromycin and either amoxicillin or nitroimidazole: A meta-analysis of eradication of Helicobacter pylori. Aliment. Pharmacol. Ther. 2000, 14, 1319–1328. [CrossRef] [PubMed]

39. Molina-Infante, J.; Gisbert, J.P. Optimizing clarithromycin-containing therapy for Helicobacter pylori in the era of antibiotic resistance. World J. Gastroenterol. 2014, 20, 10338–10347. [CrossRef] [PubMed]

40. Hsu, P.-I.; Wu, D.-C.; Chen, W.-C.; Tseng, H.-H.; Yu, H.-C.; Wang, H.-M.; Kao, S.-S.; Lai, K.-H.; Chen, A.; Tsay, F.-W. Randomized controlled trial comparing 7-day triple, 10-day sequential, and 7-day concomitant therapies for Helicobacter pylori infection. Antimicrob. Agents Chemother. 2014, 58, 5936–5942. [CrossRef] [PubMed]

41. Malfertheiner, P.; Megraud, F.; O’Morain, C.A.; Gisbert, J.P.; Kuipers, E.J.; Axon, A.T.; Bazzoli, F.; Gasbarrini, A.; Atherton, J.; Graham, D.Y.; et al. Management of Helicobacter pylori infection-the Maastricht V/Florence Consensus Report. Gut 2017, 66, 6–30. [CrossRef] [PubMed]

42. Rong, Q.; Xu, M.; Dong, Q.; Zhang, Y.; Li, Y.; Ye, G.; Zhao, L. In vitro and in vivo bactericidal activity of Tinospora sagittata (Oliv.) Gagnep. var. craveniana (S.Y.Hu) Lo and its main effective component, palmatine, against porcine Helicobacter pylori. BMC Complement. Altern. Med. 2016, 16, 331. [CrossRef] [PubMed]

43. Landsdorp-Vogelaar, I.; Sharp, L. Cost-effectiveness of screening and treating Helicobacter pylori for gastric cancer prevention. Best Pract. Res. Clin. Gastroenterol. 2013, 27, 933–947. [CrossRef] [PubMed]

44. Wang, Y.C. Medicinal plant activity on Helicobacter pylori related diseases. World J. Gastroenterol. 2014, 20, 10368–10382. [CrossRef] [PubMed]

45. Vale, F.F.; Oleastro, M. Overview of the phytomedicine approaches against Helicobacter pylori. World J. Gastroenterol. 2014, 20, 5594–5609. [CrossRef] [PubMed]

46. Nariman, F.; Eftekhar, F.; Habibi, Z.; Massarrat, S.; Malekzadeh, R. Antibacterial activity of twenty Iranian plant extracts against clinical isolates of Helicobacter pylori. Iran. J. Basic Med. Sci. 2009, 12, 105–111.

47. Nostro, A.; Cellini, L.; Bartolomeo, S.D.; Campi, E.D.; Grande, R.; Cannatelli, M.; Marzio, L.; Alonzo, V. Antibacterial effect of plant extracts against Helicobacter pylori. Phytother. Res. 2005, 19, 198–202. [CrossRef] [PubMed]
48. Cogo, L.L.; Monteiro, C.L.B.; Miguel, M.D.; Miguel, O.G.; Cunico, M.M.; Ribeiro, M.L.; de Camargo, E.R.; Kussen, G.M.B.; Nogueira, K.d.S.; Costa, L.M.D. Anti-Helicobacter pylori activity of plant extracts traditionally used for the treatment of gastrointestinal disorders. Braz. J. Microbiol. 2010, 41, 304–309. [CrossRef] [PubMed]
49. Amin, M.; Anwar, F.; Naz, F.; Mehmoood, T.; Saari, N. Anti-Helicobacter pylori and urease inhibition activities of some traditional medicinal plants. Molecules 2013, 18, 2135–2149. [CrossRef] [PubMed]
50. Njume, C.; Afolayan, A.J.; Samie, A.; Ndip, R.N. Inhibitory and Bactericidal Potential of Crude Acetone Extracts of Combretum molle (Combretaceae) on Drug-resistant Strains of Helicobacter pylori. J. Health Popul. Nutr. 2011, 29, 438–445. [CrossRef]
51. Njume, C.; Jide, A.A.; Ndip, R.N. Aqueous and Organic Solvent-Extracts of Selected South African Medicinal Plants Possess Antimicrobial Activity against Drug-Resistant Strains of Helicobacter pylori: Inhibitory and Bactericidal Potential. Int. J. Mol. Sci. 2011, 12, 5652–5665. [CrossRef] [PubMed]
52. Castillo-Juarez, I.; Gonzalez, V.; Jaime-Aguilar, H.; Martinez, G.; Linares, E.; Bye, R.; Romero, I. Anti-Helicobacter pylori activity of plants used in Mexican traditional medicine for gastrointestinal disorders. J. Ethnopharmacol. 2009, 122, 402–405. [CrossRef] [PubMed]
53. Okeleye, B.I.; Bessong, P.O.; Ndip, R.N. Preliminary phytochemical screening and in vitro anti-Helicobacter pylori activity of extracts of the stem bark of Bridelia micrantha (Hochst., Baill., Euphorbiaceae). Molecules 2011, 16, 6193–6205. [CrossRef] [PubMed]
54. Yesilada, E.; Gurbuz, I.; Shibata, H. Screening of Turkish anti-ulcerogenic folk remedies for anti-Helicobacter pylori activity. J. Ethnopharmacol. 1999, 66, 289–293. [CrossRef]
55. Li, Y.; Xu, C.; Zhang, Q.; Liu, J.Y.; Tan, R.X. In vitro anti-Helicobacter pylori action of 30 Chinese herbal medicines used to treat ulcer diseases. J. Ethnopharmacol. 2005, 98, 329–333. [CrossRef] [PubMed]
56. Poovendran, P.; Kalaiagndhi, V.; Poongunran, E. Antimicrobial activity of the leaves of Cocculus hirsutus against gastric ulcer producing Helicobacter pylori. J. Pharm. Res. 2011, 4, 4294–4295.
57. Palacios-Espinosa, J.F.; Arroyo-Garcia, O.; Garcia-Valencia, G.; Linares, E.; Bye, R.; Romero, I. Evidence of the anti-Helicobacter pylori, gastroprotective and anti-inflammatory activities of Cuphea acquipetala infusion. J. Ethnopharmacol. 2014, 151, 990–998. [CrossRef] [PubMed]
58. Escobedo-Hinojosa, W.I.; Del Carpio, J.D.; Palacios-Espinosa, J.F.; Romero, I. Contribution to the ethnopharmacological and anti-Helicobacter pylori knowledge of Cyrtocarpus procera Kunth (Anacardiaceae). J. Ethnopharmacol. 2012, 143, 363–371. [CrossRef] [PubMed]
59. Uyub, A.M.; Nwachukwu, I.N.; Azlan, A.A.; Fariza, S.S. In-vitro antibacterial activity and cytotoxicity of selected medicinal plant extracts from Penang Island Malaysia on metronidazole-resistant-Helicobacter pylori and some pathogenic bacteria. Etnobot. Res. Appl. 2010, 8, 095–106. [CrossRef]
60. Shahani, S.; Monsef-Esfahani, H.R.; Saeidnia, S.; Saniee, P.; Siavoshi, F.; Foroumadi, A.; Samadi, N.; Gohari, A.R. Anti-Helicobacter pylori activity of the methanolic extract of Geum iranicum and its main compounds. Z. Naturforsch. C J. Biosci. 2012, 67, 172–180. [CrossRef]
61. Pastene, E.; Parada, V.; Avello, M.; Ruiz, A.; Garcia, A. Catechin-based procyanidins from Peumus boldus Mol. aqueous extract inhibit Helicobacter pylori urease and adherence to adenocarcinoma gastric cells. Phytother. Res. 2014, 28, 1637–1645. [CrossRef] [PubMed]
62. Pinheiro Silva, L.; Damacena de Angelis, C.; Bonamin, F.; Kushima, H.; José Mininel, F.; Campaner dos Santos, L.; Karina Delella, F.; Luis Felisbino, S.; Vilegas, W.; Regina Machado da Rocha, L.; et al. Terminalia catappa L.: A medicinal plant from the Caribbean pharmacopeia with anti-Helicobacter pylori and antiulcer action in experimental rodent models. J. Ethnopharmacol. 2015, 159, 285–295. [CrossRef] [PubMed]
63. Malekzadeh, F.; Ehsanifar, H.; Shahamat, M.; Levin, M.; Colwell, R.R. Antibacterial activity of black myrobalan (Terminalia chebula Retz) against Helicobacter pylori. Int. J. Antimicrob. Agents 2001, 18, 85–88. [CrossRef] [PubMed]
64. Bergonzelli, G.E.; Dondicola, D.; Porta, N.; Corthéis-Theulaz, I.E. Essential Oils as Components of a Diet-Based Approach to Management of Helicobacter Infection. Antimicrob. Agents Chemother. 2003, 47, 3240–3246. [CrossRef] [PubMed]
65. O’Gara, E.A.; Maslin, D.J.; Nevill, A.M.; Hill, D.J. The effect of simulated gastric environments on the anti-Helicobacter activity of garlic oil. J. Appl. Microbiol. 2008, 104, 1324–1331. [CrossRef] [PubMed]
66. Mahady, G.B.; Pendland, S.L.; Stoia, A.; Chadwick, L.R. In vitro susceptibility of Helicobacter pylori. *Int. J. Mol. Sci.* **2018**, *19*, 2361.

67. Awaad, A.S.; Al-Rifai, A.A.; El-Meligy, R.M.; Alafeefy, A.M.; Zain, M.E. New Activities for Isolated Compounds from Convolvulus astro-aegyptiacus as Anti-ulcerogenic, Anti-Helicobacter pylori and Their Mimic Synthesis Using Bio-guided Fractionation. *Phytother. Res.* **2015**, [CrossRef] [PubMed]

68. Ndip, R.N.; Malange Tarkang, A.E.; Mbullah, S.M.; Luna, H.N.; Malongue, A.; Ndip, L.M.; Nyongbela, K.; Wirmum, C.; Efange, S.M. In vitro anti-Helicobacter pylori activity of extracts of selected medicinal plants from North West Cameroon. *J. Ethnopharmacol.* **2007**, *114*, 452–457. [CrossRef] [PubMed]

69. Mahady, G.B.; Pendland, S.L.; Stoia, A.; Hamill, F.A.; Fabricant, D.; Dietz, B.M.; Chadwick, L.R. In vitro anti-Helicobacter pylori activity of extracts of selected medicinal plants. *J. Ethnopharmacol.* **2005**, *109*, 473–481. [CrossRef] [PubMed]

70. Lima, Z.P.; Calvo, T.R.; Silva, E.F.; Pellizzon, C.H.; Vilegas, W.; Brito, A.R.; Bauab, T.M.; Hiruma-Lima, C.A. Anti-Helicobacter pylori and antiulcerogenic activity of *Aframomum pruninum* seeds on indomethacin-induced gastric ulcer in rats. *Pharm. Biol.* **2017**, *55*, 929–936. [CrossRef] [PubMed]

71. Krivokuca, M.; Niketic, M.; Milenkovic, M.; Golic, N.; Masia, C.; Scaltrito, M.M.; Sisto, F.; Kundakovic, T. Anti-Helicobacter pylori Activity of Four Alchemilla Species (Rosaceae). *Nat. Prod. Commun.* **2015**, *10*, 1369–1371. [PubMed]

72. Awaad, A.S.; Al-Rifai, A.A.; El-Meligy, R.M.; Alafeefy, A.M.; Zain, M.E. New Activities for Isolated Compounds from Convolvulus astro-aegyptiacus as Anti-ulcerogenic, Anti-Helicobacter pylori and Their Mimic Synthesis Using Bio-guided Fractionation. *Phytother. Res.* **2015**, [CrossRef] [PubMed]

73. Kouitcheu Mabeku, L.B.; Eyoum Bille, B.; Tchouenguem Tchuenteu, R.; Nguepi, E. In vivo anti-Helicobacter pylori activity and antiulcerogenic activity of *Aframomum pruninum* seeds on indomethacin-induced gastric ulcer in rats. *Pharm. Biol.* **2017**, *55*, 929–936. [CrossRef] [PubMed]

74. Miguel, G.; Faleiro, L.; Cavelheiro, C.; Salgueiro, L.; Casanova, J. Susceptibility of Helicobacter pylori to essential oil of *Dictrichia viscosa* subsp. revoluta. *Phytother. Res.* **2008**, *22*, 259–263. [CrossRef] [PubMed]

75. Minozzo, B.R.; Lemes, B.M.; Justo, A.D.S.; Lara, J.E.; Petry, V.E.K.; Fernandes, D.; Bello, C.; Velloso, J.C.R.; Campagnoli, E.B.; Nunes, O.C.; et al. Anti-ulcer mechanisms of polyphenols extract of *Euphorbia umbellata* (Pax) Bruyns (Euphorbiaceae). *J. Ethnopharmacol.* **2016**, *191*, 29–40. [CrossRef] [PubMed]

76. Miguel, G.; Faleiro, L.; Cavelheiro, C.; Salgueiro, L.; Casanova, J. Susceptibility of Helicobacter pylori to essential oil of *Dictrichia viscosa* subsp. revoluta. *Phytother. Res.* **2008**, *22*, 259–263. [CrossRef] [PubMed]

77. Minozzo, B.R.; Lemes, B.M.; Justo, A.D.S.; Lara, J.E.; Petry, V.E.K.; Fernandes, D.; Bello, C.; Velloso, J.C.R.; Campagnoli, E.B.; Nunes, O.C.; et al. Anti-ulcer mechanisms of polyphenols extract of *Euphorbia umbellata* (Pax) Bruyns (Euphorbiaceae). *J. Ethnopharmacol.* **2016**, *191*, 29–40. [CrossRef] [PubMed]

78. Minozzo, B.R.; Lemes, B.M.; Justo, A.D.S.; Lara, J.E.; Petry, V.E.K.; Fernandes, D.; Bello, C.; Velloso, J.C.R.; Campagnoli, E.B.; Nunes, O.C.; et al. Anti-ulcer mechanisms of polyphenols extract of *Euphorbia umbellata* (Pax) Bruyns (Euphorbiaceae). *J. Ethnopharmacol.* **2016**, *191*, 29–40. [CrossRef] [PubMed]

79. Minozzo, B.R.; Lemes, B.M.; Justo, A.D.S.; Lara, J.E.; Petry, V.E.K.; Fernandes, D.; Bello, C.; Velloso, J.C.R.; Campagnoli, E.B.; Nunes, O.C.; et al. Anti-ulcer mechanisms of polyphenols extract of *Euphorbia umbellata* (Pax) Bruyns (Euphorbiaceae). *J. Ethnopharmacol.* **2016**, *191*, 29–40. [CrossRef] [PubMed]

80. Minozzo, B.R.; Lemes, B.M.; Justo, A.D.S.; Lara, J.E.; Petry, V.E.K.; Fernandes, D.; Bello, C.; Velloso, J.C.R.; Campagnoli, E.B.; Nunes, O.C.; et al. Anti-ulcer mechanisms of polyphenols extract of *Euphorbia umbellata* (Pax) Bruyns (Euphorbiaceae). *J. Ethnopharmacol.* **2016**, *191*, 29–40. [CrossRef] [PubMed]

81. Minozzo, B.R.; Lemes, B.M.; Justo, A.D.S.; Lara, J.E.; Petry, V.E.K.; Fernandes, D.; Bello, C.; Velloso, J.C.R.; Campagnoli, E.B.; Nunes, O.C.; et al. Anti-ulcer mechanisms of polyphenols extract of *Euphorbia umbellata* (Pax) Bruyns (Euphorbiaceae). *J. Ethnopharmacol.* **2016**, *191*, 29–40. [CrossRef] [PubMed]

82. Minozzo, B.R.; Lemes, B.M.; Justo, A.D.S.; Lara, J.E.; Petry, V.E.K.; Fernandes, D.; Bello, C.; Velloso, J.C.R.; Campagnoli, E.B.; Nunes, O.C.; et al. Anti-ulcer mechanisms of polyphenols extract of *Euphorbia umbellata* (Pax) Bruyns (Euphorbiaceae). *J. Ethnopharmacol.* **2016**, *191*, 29–40. [CrossRef] [PubMed]
84. Ramadan, M.A.; Safwat, N.A. Antihelicobacter Activity of a Flavonoid Compound Isolated from Desmostachya Bipinnata. *Aust. J. Basic Appl. Sci.* 2009, 3, 2270–2277.

85. Stamatis, G.; Kyriazopoulos, P.; Golegou, S.; Basayiannis, A.; Skaltsas, S.; Skaltsa, H. In vitro anti-Helicobacter pylori activity of Greek herbal medicines. *J. Ethnopharmacol.* 2003, 88, 175–179. [CrossRef]

86. Manayi, A.; Khanavi, M.; Saiednia, S.; Azizi, E.; Mahmooodpour, M.R.; Vafi, F.; Malmir, M.; Siavashi, F.; Hadiakhoondi, A. Biological activity and microscopic characterization of *Lythrum salicaria* L. *DARU J. Pharm. Sci.* 2013, 21, 61. [CrossRef] [PubMed]

87. Mafioleti, L.; da Silva Junior, I.F.; Colodel, E.M.; Flach, A.; Martins, D.T. Evaluation of the toxicity and antimicrobial activity of hydroethanolic extract of *Arrabidaea chica* (Humb. & Bonpl.) B. Verl. *J. Ethnopharmacol.* 2013, 150, 576–582. [PubMed]

88. Moraes Tde, M.; Rodrigues, C.M.; Kushima, H.; Bauab, T.M.; Villegas, W.; Pellizzon, C.H.; Brito, A.R.; Hiruma-Lima, C.A. Hancornia speciosa: Indications of gastroprotective, healing and anti-Helicobacter pylori actions. *J. Ethnopharmacol.* 2008, 120, 161–168. [CrossRef] [PubMed]

89. Nariman, F.; Eftekhar, F.; Habibi, Z.; Falsafi, T. Anti-Helicobacter pylori activities of six Iranian plants. *Heliobacter* 2004, 9, 146–151. [CrossRef] [PubMed]

90. Zhang, X.Q.; Gu, H.M.; Li, X.Z.; Xu, Z.N.; Chen, Y.S.; Li, Y. Anti-Helicobacter pylori compounds from the ethanol extracts of *Geranium wilmotii*. *J. Ethnopharmacol.* 2013, 147, 204–207. [CrossRef] [PubMed]

91. Wang, Y.; Wang, S.L.; Zhang, J.Y.; Song, X.N.; Zhang, Z.Y.; Li, J.F.; Li, S. Anti-ulcer and anti-Helicobacter pylori potentials of the ethyl acetate fraction of *Physalis alkekengi* L. var. franchetii (Solanaceae) in rodent. *J. Ethnopharmacol.* 2017, 211, 197–206. [CrossRef] [PubMed]

92. Lemos, L.M.S.; Martins, T.B.; Tanajura, G.H.; Gazoni, V.F.; Bonaldo, J.; Strada, C.L.; Silva, M.G.D.; Dall’Oglio, E.L.; de Sousa Junior, P.T.; Martins, D.T.D.O. Evaluation of antiulcer activity of chromone fraction from *Calophyllum brasiliense* Camb. *J. Ethnopharmacol.* 2012, 141, 432–439. [CrossRef] [PubMed]

93. Sidahmed, H.M.A.; Azizan, A.H.S.; Mohan, S.; Abdulla, M.A.; Abdelwahab, S.I.; Taha, M.M.E.; Hadi, A.H.A.; Ketuly, K.A.; Hashim, N.M.; Loke, M.F.; et al. Gastroprotective effect of desmosdumotin C isolated from *Mitrella kentii* against ethanol-induced gastric mucosal hemorrhage in rats: Possible involvement of glutathione, heat-shock protein-70, sulphydryl compounds, nitric oxide, and anti-Helicobacter pylori activity. *BMC Complement. Altern. Med.* 2013, 13, 183. [PubMed]

94. Hassani, A.R.; Ordouzadeh, N.; Ghaemi, A.; Amirmozafari, N.; Hamdi, K.; Nazari, R. In vitro inhibition of Helicobacter pylori urease with non and semi fermented *Camellia sinensis*. *Indian J. Med. Microbiol.* 2009, 27, 30–34. [PubMed]

95. Ye, H.; Liu, Y.; Li, N.; Yu, J.; Cheng, H.; Li, J.; Zhang, X.-Z. Anti-Helicobacter pylori activities of *Chenopodium ambrosioides* L. in vitro and in vivo. *World J. Gastroenterol.* 2015, 21, 4178–4183. [CrossRef] [PubMed]

96. O’Gara, E.A.; Hill, D.J.; Maslin, D.J. Activities of Garlic Oil, Garlic Powder, and Their Diallyl Constituents against Helicobacter pylori. *Appl. Environ. Microbiol.* 2000, 66, 2269–2273. [CrossRef] [PubMed]

97. Nontakham, J.; Charoenram, N.; Upamai, W.; Taweewootpat, M.; Suksamrarn, S. Anti-Helicobacter pylori xanthones of *Garcinia fuscá* from *Garcinia fuscá* var. *franchetii* (Solanaceae) in rodent. *Arch. Pharm. Res.* 2014, 37, 972–977. [CrossRef] [PubMed]

98. Jung, J.; Bae, K.H.; Jeong, C.-S. Anti-Helicobacter pylori and Antiulcerogenic Activities of the Root Cortex of *Paonia suffruticosa*. *J. Ethnopharmacol.* 2013, 16, 1535–1539. [CrossRef] [PubMed]

99. Garcia-Alonso, G.; Monroy-Noyola, A.; Contreras-Arellano, A.; Mariscal-Durand, J.F.; Galvez-Molina, Y.; Vázquez-Velazquez, A.; Garcia-Jimenez, S.; Nunez, P.; Cardoso-Taketa, A.; Villarreal, M.L. Preclinical evaluation of anti-Helicobacter spp. activity of *Hippocratea cælastroides* Kunth and its acute and sub-acute toxicity. *BMC Complement. Altern. Med.* 2016, 16, 445. [CrossRef] [PubMed]

100. Tian, A.; Xu, T.; Liu, K.; Zou, Q.; Yan, Y. Anti-Helicobacter pylori effect of total alkaloids of sophora alopecuroides in vivo. *Chin. Med. J.* 2014, 127, 2484–2491. [PubMed]

101. Pastene, E.; Speisky, H.; Garcia, A.; Moreno, J.; Troncoso, M.; Figueroa, G. In Vitro and in Vivo Effects of Apple Peel Polyphenols against Helicobacter pylori. *J. Agric. Food Chem.* 2010, 58, 7172–7179. [CrossRef] [PubMed]

102. Kim, J.M.; Zheng, H.M.; Lee, B.Y.; Lee, W.K.; Lee, D.H. Anti-Helicobacter pylori Properties of GutGard. *Prev. Nutr. Food Sci.* 2013, 18, 104–110. [CrossRef] [PubMed]
103. Lin, Y.; Kwon, Y.; Labbe, R.; Shetty, K. Inhibition of Helicobacter pylori and associated urease by oregano and cranberry phytochemical synergies. *Appl. Environ. Microbiol.* 2005, 71, 8558–8564. [CrossRef] [PubMed]

104. Kuwahara, H.; Miyamoto, Y.; Akaike, T.; Kubota, T.; Sawa, T.; Okamoto, S.; Maeda, H. Helicobacter pylori Urease Suppresses Bactericidal Activity of Peroxynitrite via Carbon Dioxide Production. *Infect. Immun.* 2000, 68, 4378–4383. [CrossRef] [PubMed]

105. Shikov, A.N.; Pozharitskaya, O.N.; Makarov, V.G.; Kvetnaya, A.S. Antibacterial activity of *Chamomilla recutita* oil extract against *Helicobacter pylori*. *Phytother. Res.* 2008, 22, 252–253. [CrossRef] [PubMed]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).