Charge non-conservation, dequantisation, and induced electric dipole moments in varying-\(\alpha\) theories

Douglas J. Shaw,

DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK

Abstract

We note that in extensions of the Standard Model that allow for a varying fine structure constant, \(\alpha\), all matter species, apart from right-handed neutrinos, will gain an intrinsic electric dipole moment (EDM). In a large subset of varying-\(\alpha\) theories, all such particle species will also gain an effective electric charge. This charge will in general not be quantised and can result in macroscopic non-conservation of electric charge.

Key words: varying fine-structure constant, electroweak theory, charge non-conservation

PACS: 98.80.Cq, 06.20.Jr, 98.80.Es

1 Introduction

Motivated by the studies of fine-structure in the absorption lines of dust-clouds about quasars by Webb *et al.*, [1], recent years have seen a growing interest in the possibility that the fine-structure constant, \(\alpha_{em} = e^2/\hbar c\), can vary in space and time. The observations of Webb *et al.* favour a value of \(\alpha_{em}\) at redshifts 1-3.5 that is lower that it is today: \(\Delta \alpha_{em}/\alpha_{em} \equiv [\alpha_{em}(z) - \alpha_{em}(0)]/\alpha_{em}(0) = -0.57 \pm 0.10 \times 10^{-5}\). A similar observational study using a different data set did not however see a variation in \(\alpha_{em}\), [2]. There is no shortage of other astrophysical, geological, and experimental bounds on the time-variation of \(\alpha_{em}\). An excellent review of these matters has been given by Uzan in ref. [4]. There has also been a great deal of effort concentrated on constructing and

Email address: D.Shaw@damtp.cam.ac.uk (Douglas J. Shaw).
constraining a self-consistent theoretical framework to explain α_{em}'s apparent cosmological change [5,6]. It has been noted by several authors that, if α_{em} can vary, then other Standard Model gauge coupling ‘constants’ should also be able to change, [3]. Indeed, as a result of electroweak unification a change in α_{em} implies that at least one of the weak coupling constants, g_W and g_Y, must also change, [7,9]. In this letter we will show that, with the exception of the cases where the ratio $g_Y/g_W := \tan \theta_W$ is a true constant, charge non-conservation, dequantisation and a charged neutrino are generic features of almost all varying-coupling electroweak theories. Such theories will ensure that all matter species gain an electric dipole moment (EDM).

2 General theory

The electroweak couplings, g_W and g_Y, are made spacetime dependent by the definitions: $g_W := e^\varphi$ and $g_Y := e^\chi$; $\varphi(x)$ and $\chi(x)$ are scalar fields. We do not exclude the possibility that they may be functions of each other. In general we assume $\nabla_\mu \varphi \neq 0$ and $\nabla_\mu \chi \neq 0$. It is not necessary for what follows to say anything more specific about the dynamics of the dilaton fields, χ and φ. Gauge-invariance fixes the gauge-kinetic sector of such a theory to be:

$$\mathcal{L}_g = -\frac{1}{4} \text{tr} \mathcal{F}_{W \mu \nu} \mathcal{F}^{\mu \nu}_W - \frac{1}{4} \mathcal{F}_{Y \mu \nu} \mathcal{F}^{\mu \nu}_Y$$

where the field strengths, $\mathcal{F}^{\mu \nu}_W$ and $\mathcal{F}^{\mu \nu}_Y$ are given by:

$$\mathcal{F}^{\mu \nu}_W = \mathcal{F}^{\mu \nu}_W + \partial^\mu \varphi \mathbf{W}^\nu - \partial^\nu \varphi \mathbf{W}^\mu,$$
$$\mathcal{F}^{\mu \nu}_Y = \mathcal{F}^{\mu \nu}_Y + \partial^\mu \chi \mathbf{Y}^\nu - \partial^\nu \chi \mathbf{Y}^\mu.$$ (2)

The $\mathcal{F}^{\mu \nu}_W$ and $\mathcal{F}^{\mu \nu}_Y$ are respectively given by standard expressions for the $SU(2)$ and $U(1)$ Yang-Mills field strengths; \mathbf{W}^μ and \mathbf{Y}^μ are the gauge fields. In all but the special case where $\varphi \equiv \chi + const$, the ratio of g_W and g_Y, and hence $\theta_W := \arctan (g_Y/g_W)$ will not be constant. Moreover, as a result of renormalisation, even if θ_W is spacetime independent at one particular energy scale it will not be at all others. The fine structure constant is given by:

$$\alpha = g_W^2 \sin^2 \theta_W := e^{2\phi}; \quad \phi = \phi(\varphi, \chi).$$ (4)
3 Charge non-conservation and simple varying-\(\alpha\) theories

It follows from Noether’s principle that any gauge-invariant varying-alpha theory contains a conserved current. The class of theories described above is symmetric under modified \(U(1)_{\text{em}}\) gauge transformations \(A_\mu \rightarrow A_\mu + e^{-\phi} \nabla_\mu \Lambda\), where \(\alpha = e^{2\phi}\). The rest of the gauge symmetry must be broken by a Higgs sector if it is to describe our universe. The conserved current however is not the one conjugate to \(A_\mu\), i.e. \(J^\mu(x) := \frac{\delta S_{\text{matter}}}{\delta A_\mu(x)}\) (with \(S_{\text{matter}}\) being the matter action). Noether’s principle says \(\nabla_\mu \left(e^\phi J^\mu \right) = 0\) so it is \(j^\mu := e^\phi J^\mu\) that is conserved. The question of which of \(J^\mu\) and \(j^\mu\) should be considered physical rests in the form of the dilaton-to-matter coupling. Refs. [8] and [9] respectively take different stances on the issue. In ‘\(j^\mu\)-physical’ theories charge is clearly conserved.

If \(J^\mu\) is naturally interpreted as the physical current then there is a form of non-conservation of charge. The total charge, \(Q\), in a volume \(V\) is:

\[
Q := \int_V j_0 e^{\phi(t,x)} \, dV = \int_V j_0 \left(e^{\phi(t,0)} + x \cdot \nabla e^{\phi(t,0)} + \ldots \right) = e^{\phi(t,0)} q + \nabla e^{\phi(t,0)} \cdot d + \ldots + \nabla^i \nabla^j \ldots \nabla^k e^{\phi(t,0)} d_{ij..k}^{(n)} + \ldots
\]

where \(d_{ij..k}^{(n)}\) is the \(n\)th electric multipole moment w.r.t. to the conserved current \(j^\mu\). A collection of neutral particles cannot develop an electric charge in such theories. Similarly an initially electrically neutral, perfect fluid (containing a mixture of negatively and positively charged components) cannot become charged since all multipole moments will vanish for such a fluid. This implies that cosmologically, at least, charge will be conserved to a very good approximation. The universe cannot develop a non-negligible overall charge in this way. Particle level interactions will also conserved charge at each vertex as a result of the conservation of \(j^\mu\).

We will now show that when \(\theta_W\) and \(\alpha\) vary then a stronger form of non-conservation of charge arises in ‘\(J^\mu\)-physical’ theories, and that even in ‘\(j^\mu\)-physical’ theories the fermions develop an EDM.

4 A new interaction from varying-\(\theta_W\)

A Higgs sector must break the \(SU(2)_L \times U(1)_Y\) symmetry down to the \(U(1)\) of electromagnetism. The physically propagating fields, the photon, \(A^\mu\), and the Z-boson, \(Z^\mu\), are given in terms of \(Y^\mu\) and \(W_3^\mu\) in the usual way. Their field strengths are:
\[F_{\mu\nu}^A = 2e^{-1}\partial[\mu (eA^\nu)] , \]
\[F_{\mu\nu}^Z = 2(g_W \cos \theta_W)^{-1}\partial[\mu (g_W \cos \theta_W Z^\nu)] , \]
(6)

where \(e = g_W \sin \theta_W := e^\phi \) is the fundamental electric charge. The kinetic terms for \(W^3 \) and \(Y \) now become:

\[L_{Z,A} := -\frac{1}{4}F_{W3}^2 - \frac{1}{4}F_Y^2 = -\frac{1}{4}F_A^2 - \frac{1}{4}F_Z^2 + 2F_{\mu\nu}^A \partial_\mu \theta_W \partial_\nu \theta_W - 2 \tan \theta_W F_{\mu\nu}^Z \partial_\mu \theta_W \partial_\nu \theta_W Z^\nu - \frac{2}{\sin^2 \theta_W \cos^2 \theta_W} \left[(\partial \theta_W)^2 Z^2 - \partial_\mu \theta_W \partial_\nu Z^\mu Z^\nu \right] \]

(8)

The first two terms are the standard kinetic terms for the photon and \(Z^- \) boson. The term in square brackets and the one before provide only minor corrections to the \(Z^- \) boson propagator. The third term, \(2F_{\mu\nu}^A \partial_\mu \theta_W \partial_\nu \theta_W Z^\nu \), is the one that interests us. It produces a coupling between the photon and the \(Z^- \) boson that was not previously present. It means that all particle species with weak neutral charge will induce an electric current density.

5 Induced currents

At energies well below the \(Z^- \) boson mass, \(M_Z \sim 91 \text{ GeV} \), \(Z^\mu \approx J^\mu_N/M_Z^2 ; J_N^\mu \) the weak neutral current density. The interaction term of section 4 therefore produces an effective electromagnetic current density, \(\hat{J}^\mu \), given by:

\[\hat{J}^\mu \equiv e^\phi \hat{j}^\mu := 2e^\phi \nabla_\nu \left(\frac{\nabla[\mu \theta_W J_N^\nu - \nabla[\mu \theta_W J_N^\nu]}{e^\phi M_Z^2} \right) . \]

(7)

The nature of the physical electric potential depends on whether \(J^\mu \) or \(j^\mu \) is the physical current density. When the magnetic field vanishes, \(B = 0 \), the physical potential is defined by the condition that the electric field \(E \) should vanish if and only if the potential is constant. When \(B = 0 \), the modified Maxwell equations are:

\[e^\phi \nabla \cdot (e^{-\phi}E) = \rho := J^0 \]
\[\nabla \times (e^\phi E) = 0 \]

(8)

So long as the gradients in \(\phi \) varying only very slightly within the region of space where \(\rho(x) \) has support, then \(\mu = \left(\nabla \phi \right)^2 - \nabla^2 \phi \approx \text{const} \). The electric field is given by \(E := e^{-\phi} \nabla \left(e^\phi \Psi \right) \) where:
\[\Psi(x) = -\frac{1}{4\pi} \int d^3x' \text{Re} \left(\frac{e^{-\sqrt{M|x-x'|}}}{|x-x'|} \right) \rho(x') \] (10)

This case is the one that corresponds to \(J^\mu \) being the physical current density. Here, \(\Phi := e^\phi \Psi(x) \) is deemed to be the physical potential.

This is not the only possibility. If the \(\phi \) equation of motion is such that \(\vec{\nabla} \phi \times \textbf{E} = 0 \) whenever \(\textbf{B} = 0 \), then \(\textbf{E} = e^\phi \vec{\nabla} \Upsilon \) with:

\[\Upsilon(x) = -\frac{1}{4\pi} \int d^3x' \frac{e^{-\phi} \rho(x')}{|x-x'|} . \] (11)

It is clear that here \(e^{-\phi} \rho(x) = j^0 \) is the physical charge density; \(\Upsilon(x) \) is identified as the physical potential. The requirement that \(\vec{\nabla} \phi \times \textbf{E} = 0 \) might seem quite contrived. It might, however, arise as an integrability condition for the \(\phi \)-equation of motion; for example as in ref. [8]. This condition defines how the mass of any charged particle should depend on \(\alpha \). All charged particles must develop this \(\alpha \)-dependent mass through photon and dilaton loop corrections. Chiral fermions are protected against becoming massive in this way, therefore all viable ‘\(j^\mu \)-physical’ theories cannot contain charged chiral fermions. This statement applies equally to all charges associated with varying-gauge couplings. Weakly charged neutrinos must therefore be massive in ‘\(j^\mu \)-physical’ varying-\(\alpha \) theories.

Consider a point particle, weak neutral charge \(Q_N \), at \(x = 0 \). In a ‘\(J^\mu \)-physical’ theory the new interaction term described above makes the following contribution to the physical electric potential \(\Phi(x) \):

\[\Phi(x) \approx \left(-\frac{Q_N \vec{\nabla} \theta_W \cdot \vec{\nabla} \phi}{M_Z^2} \right) \frac{e^{\phi(x)}}{2\pi r} + \frac{Q_N \vec{\nabla} \theta_W}{M_Z^2} \cdot \frac{x e^{\phi(x)}}{2\pi r^3} , \] (12)

where \(r = |x| \). The first term in \(\Phi \) represents a point electric charge \(q_{eff} = \frac{2Q_N \vec{\nabla} \theta_W \cdot \vec{\nabla} \phi}{M_Z^2} \). The second term is the potential of an electric-dipole moment \(d_{eff} = \frac{-2Q_N \vec{\nabla} \theta_W}{M_Z^2} \). In ‘\(J^\mu \)-physical’ theories all weak neutrally-charged particles will become effectively electrically charged when \(\theta_W \) varies. Such particles will also develop an effective EDM. The form of \(q_{eff} \) means that it will not be quantised in units of \(e \). There is effective dequantisation of electric charge in these theories. In ‘\(j^\mu \)-physical’ theories we do not see an induced charge effect. Weak neutrally-charged particles will still develop an EDM. The electric potential, \(\Upsilon(x) \), is:
\[\Upsilon(x) = \frac{Q_N \vec{\nabla} \theta_W}{e^{\phi(0)} M_Z^2} \cdot \frac{x}{2\pi r^3}. \]

(13)

The induced EDM is

\[d'_{eff} := -\frac{2Q_N \vec{\nabla} \theta_W}{e^{\phi(0)} M_Z^2}. \]

(14)

Order of magnitude estimates for \(q_{eff}, d_{eff} \) and \(d'_{eff} \) are given in the section 6 below.

6 Discussion

The weak neutral current, \(J_{\mu}^N \), is not conserved. In general, massive bodies such as our Sun, and the universe as a whole, have a large net weak-neutral charge density compared to their net electric charge density. In ‘\(J^\mu \)-physical’ electroweak theories of varying-\(\alpha \), particles develop an electric charge proportional to their weak-neutral charge. It is possible then to have non-conservation of electric charge. The universe develops a non-negligible overall charge in this way. The charges that are induced are in general not quantised in units of the fundamental charge \(e \). Spatial variations in \(\theta_W \) also induce EDMs on the fundamental fermion species. The EDMs all point in the direction of \(\vec{\nabla} \theta_W \). In a region where \(\vec{\nabla} \theta_W \approx const \), therefore, these EDMs will line up and produce an overall macroscopic EDM. Numerically the sizes of the effective charges and EDMs are:

\[q_{eff} \approx 10^{-31} e \left(\| \nabla \theta_W \| \cdot \| \nabla \ln \alpha \| \text{ cm}^2 \right) \]

(15)

\[d_{eff} \approx d'_{eff} \sim 10^{-31} e - \text{cm} \left(\| \nabla \theta_W \| \text{ cm} \right) \]

(16)

In many varying-\(\alpha \) theories one finds \(\vec{\nabla} \ln \alpha \approx \zeta_\alpha \vec{\nabla} \phi_N, \vec{\nabla} \theta_W \approx \zeta_\theta \vec{\nabla} \phi_N \), where \(\phi_N = GM/r^2 \) is the Newtonian gravitational potential. We expect \(\zeta_\alpha, \zeta_\theta \ll 1 \). Near the surface of Earth such theories would induce \(q_{eff} \sim \zeta_\alpha \zeta_\theta 10^{-66} e \), \(d_{eff} \approx d'_{eff} \sim \zeta_\theta 10^{-48} e \text{-cm} \).

Any physically viable, varying-\(\alpha \) and varying-\(\theta_W \) theory must satisfy all relevant bounds on the neutrino and neutron charges and on the EDMs of the fundamental particles. The most restrictive upper bound on the electron-neutrino charge, \(q_\nu \), has been given by Caprini and Ferreira in ref. [12]. They considered the isotropy of the Cosmic Microwave Background (CMB) and found: \(q_\nu < 4 \times 10^{-35} e \). In the same way they also bounded the charge difference between a proton and an electron: \(q_{e-p} < 10^{-26} e \). An upper bound on the neutron charge, \(q_n \), is given by Baumann et al. in [10].
The Particle Data Group, see ref. [11], gives the upper bound on the electron EDM as $d_e < 6.9 \pm 7.4 \times 10^{-28} \text{ e-cm}$. Experiments are planned that would be able to detect any electron EDM at the 10^{-31} e-cm level, [13]. Ref. [11] also gives upper bounds on the EDMs of the proton, $d_p < 0.54 \times 10^{-23} \text{ e-cm}$, and the neutron, $d_n < 0.63 \times 10^{-25} \text{ e-cm}$. It is clear that all current bounds will be easily satisfied by most varying-α theories.

It is normally the case that intrinsic EDMs on Dirac fermions are indicators of CP-violation. In varying-α theories we have seen that it possible to induce such EDMs without adding any explicit CP-violating term to the Lagrangian and that varying-α theories generically result in some manner of charge non-conservation and effective dequantisation of charge without breaking the $U(1)_{em}$ symmetry. These effects, if detectable in the context of a given theory, could provide us with a new way of probing the rate of spatial variation in θ_W and α.

Acknowledgements DS is supported by a PPARC studentship. I would like to thank J. D. Barrow for reading a preprint of this letter and for making helpful suggestions, and to thank J. Magueijo for helpful discussions.

References

[1] J.K. Webb, V.V. Flambaum, C.W. Churchill, M.J. Drinkwater and J.D. Barrow, Phys. Rev. Lett. 82, 884 (1999); J.K. Webb, M.T. Murphy, V. Flambaum, V. Dzuba, J.D. Barrow, C. Churchill, J. Prochaska, and A. Wolfe, Phys. Rev. Lett. 87, 091301 (2001); M.T. Murphy et al., Mon. Not. R. astron. Soc.. 327, 1208 (2001).

[2] H. Chand et al., Astron. Astrophys. 417, 853 (2004); R. Srianand et al., Phys. Rev. Lett. 92, 121302 (2004).

[3] M.J. Drinkwater, J.K. Webb, J.D. Barrow and V.V. Flambaum, Mon. Not. R. Astron. Soc. 295, 457 (1998); W.J. Marciano, Phys. Rev. Lett. 52, 489 (1984).

[4] J.P. Uzan, Rev. Mod. Phys. 75, 403 (2003); J.-P. Uzan, astro-ph/0409424

[5] J.D. Bekenstein, Phys. Rev. D 25, 1527 (1982).

[6] H. Sandvik, J.D. Barrow and J. Magueijo, Phys. Rev. Lett. 88, 031302 (2002); J.D. Barrow, H. Sandvik, and J. Magueijo, Phys. Rev. D 65, 063504 (2002); J.D. Barrow, H. Sandvik, and J. Magueijo, Phys. Rev. D 65, 123501 (2002); J.D. Barrow, J. Magueijo and H. Sandvik, Phys. Rev. D 66, 043515 (2002); J. Magueijo J.D. Barrow and H. Sandvik, Phys. Lett. B 549 284 (2002); J.D. Barrow, J. Magueijo and H. Sandvik, Phys. Lett. B 541, 201 (2002).

[7] D. Kimberly and J. Magueijo, Phys. Lett. B 548, 8 (2004).
[8] J.D. Bekestein, Phys Rev D 66, 123514 (2002).

[9] D.J. Shaw and J.D. Barrow, Phys. Rev. D. 71, 063525 (2005).

[10] J. Baumann, J. Kalus, R. Gahler and W. Mampe, Phys. Rev. D 37, 3107 (1988).

[11] Particle Data Group, S. Eidelman, K. G. Hayes, K. A. Olive, M. Aguilar-Benitez, C. Amsler, D. Asner, K. S. Babu, R. M. Barnett, J. Beringer et al., Phys. Lett. B. 592, 31-88 (2004).

[12] C. Caprini, S. Biller and P. G. Ferreira, JCAP 0502, 006 (2005).

[13] D. Kawall, F. Bay, S. Bickman, Y. Jiang and D. DeMille, AIP Conf. Proc. 698, 192 (2004).