Early spin determination at the LHC?

Krzysztof Rolbiecki
DESY

in collaboration with:
G. Moortgat-Pick and J. Tattersall
Phys. Lett. B699 (2011) 158; arXiv:1102.0293

SUSY 2011
28 Aug - 2 Sep 2011, Fermilab
Motivation

- Spin and mass are the fundamental properties of particles.
- Different models of new physics predict different spins for newly discovered particles (and also different mass patterns).
- Though many features could hint at the particular model, measurement of spins will be crucial for establishing a new theory.
- Recall great importance of Stern-Gerlach experiment for quantum mechanics.
1. Introduction

2. Slepton case

3. Spin determination with squarks and gluinos

4. Summary
Outline

1. Introduction
2. Slepton case
3. Spin determination with squarks and gluinos
4. Summary
- spins and couplings fixed by construction
- more freedom with masses as these are fixed by mechanism of SUSY breaking
- typically quite a large mass differences up to a few 100s GeV
Extra dimensions models

- extend the spacetime by one or more (compactified) extra dimensions (ED)
- allow some or all of SM to propagate in ED
- SM will be accompanied by a tower of heavy Kaluza-Klein states of the same spin
- many extensions of SM possible, also predicting different spins (e.g. 5D vs. 6D models)
we focus here on Universal Extra Dimensions (5D)

particle content very similar to SUSY

but spins different by 1/2, i.e. the same as in SM

simplest models predict compressed mass spectrum, but extensions/complications are possible

this type of spectrum will be in any case challenging!
In the following we will assume that the lightest neutralino in SUSY and the lightest KK-particle (KK-photon) are stable. This provides a dark matter candidate and gives a characteristic signature at the LHC – missing transverse energy.
How can we get a handle on spins?

- angular distribution in the center of mass of initially produced particles: \(P \)-wave vs \(S \)-wave
- threshold behavior of cross-section: \(\sim \beta \) vs. \(\sim \beta^3 \)
- angular distributions in rest frames of decaying particles
 \(\Rightarrow \) requires reconstruction of invisible particles
- invariant masses of decay products
- quantum interference effects of different helicity states
Methods discussed in literature

- The total cross section Datta ea, hep-ph/0510204
- Observation of higher KK modes Datta ea, PhysRev,D72,096006
- Kinematic distributions of quarks from quark partners decays Nojiri, Shu, arXiv:1101.2701; Hallenbeck ea, PhysRev,D79,075024
- Particle production in vector boson fusion Buckley, Ramsey-Musolf arXiv:1008.5151
- Invariant masses of lepton-jet and lepton-photon pairs in squark/KK-quark and gluino/KK-gluon decay chains Barr, PhysLett,B596,205; Smillie, Webber, JHEP,0510,069; Wang, Yavin, JHEP,0704,032; Burns ea, JHEP,0810,081; Ehrenfeld ea, JHEP,0907,056; Alves ea, PhysRev,D74,095010
- Kinematic reconstruction of missing momentum Cho ea PhysRev,D79; Cheng ea JHEP,1011,122; Moortgat-Pick ea in preparation
- Angular distributions of leptons from sleptons decays and jets from squarks decays Barr, JHEP,0602,042; Horton arXiv:1006.0148; Alves, Eboli, PhysRev,D74,115013; Moortgat-Pick ea, arXiv:1102.0293
Methods discussed in literature

- The total cross section Datta ea, hep-ph/0510204
- Observation of higher KK modes Datta ea, PhysRev,D72,096006
- Kinematic distributions of quarks from quark partners decays Nojiri, Shu, arXiv:1101.2701; Hallenbeck ea, PhysRev,D79,075024
- Particle production in vector boson fusion Buckley, Ramsey-Musolf arXiv:1008.5151
- Invariant masses of lepton-jet and lepton-photon pairs in squark/KK-quark and gluino/KK-gluon decay chains Barr, PhysLett,B596,205; Smillie, Webber, JHEP,0510,069; Wang, Yavin, JHEP,0704,032; Burns ea, JHEP,0810,081; Ehrenfeld ea, JHEP,0907,056; Alves ea, PhysRev,D74,095010
- Kinematic reconstruction of missing momentum Cho ea PhysRev,D79; Cheng ea JHEP,1011,122; Moortgat-Pick ea in preparation
- Angular distributions of leptons from sleptons decays and jets from squarks decays Barr, JHEP,0602,042; Horton arXiv:1006.0148; Alves, Eboli, PhysRev,D74,115013; Moortgat-Pick ea, arXiv:1102.0293
Outline

1. Introduction
2. Slepton case
3. Spin determination with squarks and gluinos
4. Summary
Consider the process of sleptons/KK-leptons production.

\[q \bar{q} \rightarrow Z^0/\gamma \rightarrow \tilde{\ell}^+\tilde{\ell}^- \]
SUSY

\[q \bar{q} \rightarrow Z^0/\gamma \rightarrow \ell_1^+\ell_1^- \]
UED

- In SUSY, scalar sleptons are exclusively produced in \(P \)-wave.
- In UED, fermionic KK-leptons are produced in \(S \)-wave.
- This results in a different angular behavior in the center of mass frame.

Barr: JHEP 02 (2006) 042, hep-ph/0511115.
Angular behavior

\[
\left(\frac{d\sigma}{d \cos \theta^*} \right)_{\text{SUSY}} \propto 1 - \cos^2 \theta^*
\]

\[
\left(\frac{d\sigma}{d \cos \theta^*} \right)_{\text{UED}} \propto 1 + \left(\frac{E_{\ell_1}^2 - M_{\ell_1}^2}{E_{\ell_1}^2 + M_{\ell_1}^2} \right) \cos^2 \theta^*
\]

\[
\left(\frac{d\sigma}{d \cos \theta^*} \right)_{\text{PS}} \propto \text{constant}
\]
Spin sensitive observable

- Production angles of sleptons/KK-leptons are not directly accessible due to particles escaping detection in the final state.
- However, decay products carry some information about the production angle,

\[\tilde{\ell}^+ \tilde{\ell}^- \rightarrow \tilde{\chi}_1^0 \ell^+ \tilde{\chi}_1^0 \ell^- \quad \text{SUSY} \]
\[\ell_1^+ \ell_1^- \rightarrow \gamma_1 \ell^+ \gamma_1 \ell^- \quad \text{UED} \]

- Use longitudinally boost invariant observable,

\[\cos \theta^*_\ell \ell = \tanh \left(\frac{\Delta \eta_{\ell\ell}}{2} \right) \]

\[\Delta \eta_{\ell\ell} = \eta_{\ell^+} - \eta_{\ell^-} \]

\[\Rightarrow \cos \theta^*_\ell \ell \text{ is cosine of the polar angle between leptons and the beam axis in the frame where pseudo-rapidities of the leptons are equal and opposite.} \]
Simulation results

- slepton production cross section is rather low at the LHC (electroweak process)
- large luminosity required to obtain significant result
- however, determination is unambiguous
Outline

1. Introduction
2. Slepton case
3. Spin determination with squarks and gluinos
4. Summary
Coloured Production

Similar analysis in case of squark/KK-quarks and gluino/KK-gluon production.

Moortgat-Pick, KR, Tattersall, arXiv:1102.0293
Spin determination with squarks and gluinos

Squark spin measurement

- enhanced cross section
 ⇒ earliest discovery channel for many models
- applicable for many decay chains/models
 ⇒ independent of the coupling structure
- consider production process like

\[pp \rightarrow \tilde{q}_i \tilde{q}_j^{(r)} \]
\[pp \rightarrow \tilde{q}_i \tilde{q}_j^{*(r)} \]
\[pp \rightarrow \tilde{g} \tilde{g} \]
\[pp \rightarrow \tilde{g} \tilde{q}_i \]

angular distributions in the center of mass frame

UED production significantly more in forward direction

Moortgat-Pick, KR, Tattersall, arXiv:1102.0293
Spin determination with squarks and gluinos

Spin sensitive observable at the parton level

- Production angles of squarks/KK-quarks are not directly accessible due to particles escaping detection in the final state.

- Include decays, e.g.

 \[pp \rightarrow \tilde{q}_R \tilde{q}_R \rightarrow q q \bar{\chi}^0_1 \bar{\chi}^0_1 \]
 \[pp \rightarrow q_{R1} q_{R1} \rightarrow q q \gamma_1 \gamma_1 \]

Rapidity difference as the spin sensitive observable:

\[
\cos \theta_{qq}^* = \tanh \left(\frac{\Delta \eta_{qq}}{2} \right)
\]

\[
\Delta \eta_{qq} = \eta_{q1} - \eta_{q2}
\]
Scenario chosen: SU6, $m_{\tilde{q}, \tilde{g}} \sim 850$ GeV

Cuts used:
- At least two jets with $p_T^{j_1} > 150$ GeV and $p_T^{j_2} > 100$ GeV for the hardest and second-hardest jet, respectively.
- No electrons and muons with $p_T > 15$ GeV and $|\eta_\ell| < 2.5$.
- $\Delta \phi(j_1, E_T^{\text{miss}}) > 0.2$, $\Delta \phi(j_2, E_T^{\text{miss}}) > 0.2$
- $E_T^{\text{miss}} > 0.3 M_{\text{eff}}$, $M_{\text{eff}} > 800$ GeV

Event simulation:
- BSM signal: Herwig++
- SM background: Sherpa ($W + \text{jets}$, $Z + \text{jets}$, $t\bar{t}$)
- detector effects: Delphes
hints of spin structure can be seen already with integrated luminosity of $\mathcal{O}(1 \text{ fb}^{-1})$ at $\sqrt{s} = 14 \text{ TeV}$

this assumes SUSY mass spectrum

cuts and SM background included, hardest jets taken to construct spin observable $\cos \theta_{jj}^*$
Spin determination with squarks and gluinos

High luminosity limit

Define an asymmetry

\[A = \frac{N(| \cos \theta_{jj}^* | > 0.5) - N(| \cos \theta_{jj}^* | < 0.5)}{N_{tot}} \]

For SU6 scenario:

- \(A_{\text{SUSY}}^{hl} = -0.226 \)
- \(A_{\text{UED}}^{hl} = 0.016 \)

Those values only weakly depend on the overall mass scale
Spin determination with squarks and gluinos

Heavy mass scenario

The method works also with significantly heavier particles

⇒ \(m_{\tilde{q}, \tilde{g}} \sim 1.3 \text{ TeV} \); SUG5 scenario from Cassel ea, arXiv:1101.4664

⇒ \(\sigma(14 \text{ TeV}) = 0.4 \text{ pb} \)

⇒ modify the cuts: \(p_{\mathbf{T}}^{j_1} > 400 \text{ GeV} \) and \(p_{\mathbf{T}}^{j_2} > 200 \text{ GeV} \)

Observed asymmetry

\[A_{\text{SUSY}}^{10 \text{ fb}^{-1}} = -0.28 \pm 0.05 \]
\[A_{\text{UED}}^{10 \text{ fb}^{-1}} = -0.01 \pm 0.05 \]

High lumi expectation

\[A_{\text{SUSY}}^{\text{hl}} = -0.32 \]
\[A_{\text{UED}}^{\text{hl}} = -0.02 \]
small mass differences $m_{\tilde{q}, \tilde{g}} \sim 600$ GeV, $m_{\text{LSP}} \sim 500$ GeV
jets from decay chains typically soft
⇒ background from fragmentation, ISR, etc.
select softer jets for the analysis: here 3rd and 4th in p_T

Observed asymmetry

$$A_{\text{SUSY}}^{10 \text{ fb}^{-1}} = -0.15$$
$$A_{\text{UED}}^{10 \text{ fb}^{-1}} = -0.05$$
1. Introduction

2. Slepton case

3. Spin determination with squarks and gluinos

4. Summary
New models of physics can share many similar properties.

We must determine the spin of any new states to determine the model.

Aim to be as model independent as possible.

Production distributions are a spin sensitive observable.
 \[\Rightarrow\] Hints of the spin structure maybe seen with early data.

A linear collider will provide the final word!
BACKUP
Comparison of different mass hierarchies

\[
\frac{\tilde{m}_q}{m_g} \sim 0 \quad \frac{m_{\tilde{q}}}{m_{\tilde{g}}} \sim 0
\]

\[
\frac{\tilde{m}_q}{m_g} \sim 1 \quad \frac{m_{\tilde{q}}}{m_{\til{g}}} \sim 0
\]

\[
\frac{\tilde{m}_q}{m_g} \sim \infty \quad \frac{m_{\tilde{q}}}{m_{\til{g}}} \sim \infty
\]
$\mathcal{A}_{\text{SUSY}}^{\text{hl}} = -0.32$

$\mathcal{A}_{\text{UED}}^{\text{hl}} = -0.02$
Cuts for the UED masses

- require at least 4 jets
- event selection based on radiation jets: $p_{T}^{j_1} > 150 \text{ GeV}$ and $p_{T}^{j_2} > 100 \text{ GeV}$
- distributions of radiation jets will have different behavior wrt cuts compared to jets from decay chains
 - \Rightarrow a way to distinguish different mass hierarchies?
- two additional jets with $50 < p_{T} < 100 \text{ GeV}$
 - \Rightarrow used in the spin analysis
- the rest of the cuts as for SU6 scenario