Retrieval-Augmented Generative Question Answering for Event Argument Extraction

Xinya Du
Department of Computer Science
The University of Texas at Dallas
xinya.du@utdallas.edu

Heng Ji
Department of Computer Science
University of Illinois Urbana-Champaign
hengji@illinois.edu

Abstract

Event argument extraction has long been studied as a sequential prediction problem with extractive-based methods, tackling each argument in isolation. Although recent work proposes generation-based methods to capture cross-argument dependency, they require generating and post-processing a complicated target sequence (template). Motivated by these observations and recent pretrained language models’ capabilities of learning from demonstrations, we propose a retrieval-augmented generative QA model (R-GQA) for event argument extraction. It retrieves the most similar QA pair and augments it as prompt to the current example’s context, then decodes the arguments as answers. Our approach outperforms substantially prior methods across various settings (i.e. fully supervised, domain transfer, and few-shot learning). Finally, we propose a clustering-based sampling strategy (JointEnc) and conduct a thorough analysis of how different strategies influence the few-shot learning performance.1

1 Introduction

Many documents report sequences of events corresponding to common situations in the real world. Arguments of different roles provide fine-grained understanding of the event (e.g. INDIVIDUALS, ORGANIZATIONS, LOCATIONS) and also influence the determination of the event type (Grishman, 2019). As compared to detecting the trigger (usually verbs) of an event, extracting arguments involves recognizing mention spans (consisting of multiple words) of various roles across sentences (Jurafsky and Martin, 2018). We list an example in Figure 1, given the context and the event type (nomination), all arguments for the three roles (i.e PERSON, POSITION, AGENT) should be extracted.

1The implementations will be released at https://github.com/xinyadu/RGQA.

Figure 1: Current/test example’s context and question for each role have great similarities to the retrieved demonstrations (context and QA pairs).

To overcome the error propagation of extractive models (Li et al., 2013; Du and Cardie, 2020b) and efficiently capture the cross-role dependencies, end-to-end template generation-based information extraction approaches (Li et al., 2021; Huang et al., 2021; Du et al., 2021) have been proposed. However, they (1) suffer from the dense output template format (fewer training instances) and cannot fully exploit semantic relations between roles with the constrained templates; (2) are unable to unleash the excellent analogical capability of large pre-trained models (Brown et al., 2020) on similar input-output
pairs to produce extraction results.

Based on our observations in the real circumstances, examples often bear great similarities (in terms of both syntax and semantics) with other examples (Figure 1). In this Figure, we have current input context “... difficult judges John M. is nominated ...” for a nomination event. When searching through examples in the large store (e.g. training set) for demonstrations (input-output pairs), the two most similar examples’ input-output pairs are presented. Both of the retrieved examples’ contexts have large semantic similarities with the context of the current example. The first retrieved example’s questions (for each role) also match the input examples’. The second example’s questions do not. Thus, to help the model determine “how much” to learn from the demonstrations is also important.

Motivated by the weaknesses of previous methods and our observations, we introduce a retrieval-augmented generative question answering model (R-GQA) for event argument extraction. Firstly, our formulation for event extraction as a generative question answering task enables the model to take advantage of both question answering (exploiting label semantics) and text generation, and there’s no need for threshold tuning. We conduct experiments on two settings (1) fully-supervised setting and (2) domain transfer setting. Empirically, our method outperforms previous methods (extraction QA and template generation-based methods) substantially (Contribution 1).

To enable our generative model based on large pretrained model to explicitly learn (“reason”) from similar demonstrations as prompt, we add to our model a retrieval component. It uses similarity/analogy score to decide how much to rely on retrieved demonstrations. It significantly outperforms the generative QA model (our proposed baseline without the retrieval component) in both settings (Contribution 2). What’s more, we also investigate various models’ performance in the few-shot extraction setting. As far as we know, there’s a large variance in terms of performance when the examples for training/evaluation are randomly sampled, causing different methods not comparable. Thus (1) we investigate models’ behavior in the few-shot event extraction setting on different sampling strategies (e.g. random, clustering-based) and how the model performance and distribution distance (between true data and sampled data) correspond; (2) we design a clustering-based sampling strategy (JointEnc), which selects the most representative (unlabeled) examples by leveraging both context & trigger embedding. It is better than random sampling and one-round active learning. Our discussions on sampling methods help improve benchmarking models’ few-shot setting performance (Contribution 3).

2 Problem and Definitions

Event Ontology, Templates, and Questions We focus on extracting event arguments from a sequence of words. An event consists of (1) a trigger and the type (E) of the event; (2) corresponding arguments \{arg^E_1, arg^E_2, ...\} for event type E. Both the event type and argument roles are pre-defined in the ontology. Apart from the event types and argument roles, the ontology also provides definitions and templates for the argument roles. For example, when \(E = \text{Movement-Transportation-Evacuation} \), the template for the argument roles is provided,

\[\text{[arg}_1\text{] transported [arg}_2\text{] in [arg}_3\text{]} \]

\[\text{from [arg}_4\text{]} \text{place to [arg}_5\text{]} \text{place}. \]

Based on the definitions of argument roles and the templates in the ontology, we can generate the natural questions for each argument role based on the mechanism proposed in Du and Cardie (2020b). For example, in this example, \(arg_1 \) (TRANSPORTER):“who is responsible for transport”, \(arg_2 \) (PASSENGER):“who is being transported”, \(arg_3 \) (VEHICLE):“what is the vehicle used”, \(arg_4 \) (ORIGIN):“where the transporting originated”, \(arg_5 \) (DESTINATION):“where the transporting is directed”.

Demonstrations Store Brown et al. (2020) proposed to use in-context demonstrations (input-output pairs) as prompt to test the zero-shot performance of large pretrained language models. For our retrieval-augmented approach, we denote the set of demonstrations/prompts to choose from \(ST \). In this work, we initiate \(ST \) with the training set.

Data and Sampling Strategy In the fully-supervised setting, we use the entire training set (1) to train the models; (2) as the demonstration store.

2In our QA setting, input consists of the context and question (for each argument role), output consists of the arguments.
3train and test both on ACE05 (Doddington et al., 2004).
4train on ACE05 and test on WikiEvent (Li et al., 2021).
5For the full list of questions for WikiEvent argument roles, please refer to the Appendix Sec E.
6Other external resources can also be added to \(ST \).
In the few-shot setting, motivated by the need to reduce annotation cost, we assume that there is only a fixed budget for annotating K examples’ arguments for training, and call the annotated subset S_{few}. Then we use S_{few} as both the training set and demonstration store.

3 Methodology

We first describe the retrieval-augmented generative question answering model (Figure 2), including (1) the generation model and how to construct the demonstration (prompt) as well as the final input&target sequence; (2) training, decoding, post-processing details; and how they differ from template-generation based models. Then we introduce our clustering-based sampling strategy to diversify the training examples for the few-shot setting.

3.1 Retrieval-Augmented Generative QA

BART (Lewis et al., 2020a) is a large pre-trained encoder-decoder transformer architecture based on Vaswani et al. (2017). Its pretraining objective is to reconstruct the original input sequence (denoising autoencoder). Prior work reports that this objective helps the extraction problems (Li et al., 2021; Du et al., 2022). Thus we use pre-trained BART as our base model. It is presented in Figure 2. For each argument role, the R-GQA model’s input x is conditioned on (1) the current example’s context; (2) question for the role and (3) the demonstration store ST. We will explain the details below.

The ground truth sequence y is based on the gold-standard argument spans for the current training instance. The goal is to find \hat{y} such that,

$$\hat{y} = \arg \max_y p(y|x)$$ \hspace{1cm} (1)

where $p(y|x)$ is the conditional log-likelihood of the predicted argument sequence y given input x.

To construct x and y, apart from the special tokens in the vocabulary of BART – including the separation token `sep`, and start/end token of a sequence (i.e. `<S>` and `<S>`), we add three new tokens: `$demo$`, `trg` and `sep_arg`. More specifically, `$demo$` denotes which part of the input sequence is the demonstration/prompt, `trg` marks the trigger of the event in the input context, `sep_arg` is used as the separator token gold arguments.

Given an example (including context and the event trigger), for each argument role of the event type E, the input format is as follows, where we instantiate all components to obtain the final input sequence:

$$x = <S> [demo] \text{ Demonstration } [demo] \text{ Question } [sep] \text{ Input Context } <S>$$

where “Question” is from the question set derived from respective ontology (Section 2); for “Input Context”, we mark up the current example’s trigger word with `[trg]` token for emphasizing. For the example in Figure 2, the input context would be “... judge John M is `[trg]` nominated `[trg]` by ...”.

As for the “Demonstration”, we first retrieve it from the demonstration store ($ST = \{d_1, d_2, \ldots\}$) d_r which is most similar to current question and input context, it is a `<Question, Context, Arguments>` pair. We concatenate the components (with...
the separation tokens in between them) as the final demonstration sequence.

Demonstration $d_r = Q_r [sep] C_r [sep]

The answer is: A_r

We use S-BERT (Reimers and Gurevych, 2019) to calculate the similarity scores between the current instance and all demonstrations in S. S-BERT is a modification of the BERT model (Devlin et al., 2019) that uses siamese and triplet network structures to obtain semantically meaningful embeddings for word sequences.

To construct the target (sequence), we first determine how much to learn from the demonstration – if the similarity score is above a threshold (determined on the development set), and the demonstration and current instance both have a non-empty answer, then we assign 1 (Yes) to y_analogy, otherwise 0 (No). Then we concatenate all argument spans of the role with $[sep_arg]$ to construct $y_{seq2seq}$,

$$y_{seq2seq} = \langle s \rangle \quad \text{Argument}_1 [sep_arg] \quad \text{Argument}_2 [sep_arg] \quad ... \quad \langle /s \rangle$$

The final y includes $y_{seq2seq}$ and y_analogy.

3.2 Training and Inference

Training

After the preparation for $S = \{(x^{(i)}, y^{(i)})\}_{i=1}^{|S|}$, we minimize the joint loss function during training,

$$L = L_{seq2seq} + L_{analogy}$$

$$L_{seq2seq} = - \sum_{i=1}^{|S|} \log p(y_{seq2seq}^{(i)} | x^{(i)}; \theta)$$

$$= - \sum_{i=1}^{|S|} \sum_{j=1}^{|y_{seq2seq}^{(i)}|} \log p(y_j^{(i)} | x^{(i)}, y_{<j}^{(i)}; \theta)$$

where $L_{seq2seq}$ is the cross-entropy loss between the decoder’s output and the target sequence $y_{seq2seq}$. $L_{analogy}$ is the binary cross-entropy loss calculated with the final hidden state of the final decoder token.

Inference and Post-processing

At test time, we conduct greedy decoding to obtain the target sequence, then we split the decoded sequence with respect to $[seq_arg]$. Since it is also required to obtain the offsets of the argument in the input context, we automatically match the candidate argument’s span with the input context. Then, if there’s no matched span, we discard the candidate argument; if there are multiple matches, we select the one closest to the trigger word. For example, if the input context is “One of those difficult judges [John M.] is nominated (Type: nomination) by Adam to be chief justice in 2000. [John M.] started office on ...” and there are two appearances of the candidate argument (in brackets) for the role PERSON, then we use the first candidate’s offsets. Different from our methods, the template-based generation method generates a sequence similar to the one in Section 2 – causing the model to (1) not fully exploit the semantic relations of roles across event types; (2) require more complicated post-processing including an additional step to obtain arguments from the generated template.

3.3 Few-shot Setting and Sampling Strategy

Algorithm 1: Our Strategy for Obtaining S_{few}

```plaintext
Input: | Unlabeled Examples, Sample Size $N$
1 $k \leftarrow \# \text{event types (based on ontology)}$
2 $S_{few} \leftarrow [\, ]$
3 // obtain embeddings for all unlabeled instances
4 for $i \leftarrow 1$ to $|S|$ do
5   rep, \leftarrow \text{enc(context}_i\text{, enc(trigger\_text}_i\text{)}$
6   add rep, to all_reps$
7 end
8 clusters = k\_means(all_reps)$
9 // add instances to samples
10 for $i \leftarrow 1$ to $k$ do
11   #instance = \text{length(clusters}_i\text{)} * $N$
12   instances = \text{sample(clusters}_i\text{, #instances)}
13   add instances to $S_{few}$
14 end
```

In the few-shot setting, we assume that we have a budget to obtain annotations for a limited number of examples’ arguments (5%-20% of all examples) for training. We denote the set of few training examples as S_{few}. We study (1) how different sampling strategies affect the S_{few}’s distributions and models’ performance; (2) how to select the best set of examples (in zero or one round) and have them annotated for training, to achieve better performance at test time.

We propose a sampling method called JointEnc. It uses k-means clustering upon the embeddings

7The SentenceTransformer library (https://www.sbert.net/docs/quickstart.html) supports calculations in batch.

8One-round active learning setting (Wang et al., 2021).
of both input context and trigger text. This is easier to implement as compared to the one-round active learning setting since our method does not require iterative training/testing for selecting unlabeled examples. Details of how we obtain S_{few} are illustrated in Algorithm 1. Specifically, we first obtain embeddings of context and trigger text for each unlabeled example (line 3-6). Then we conduct k_means based clustering upon the embeddings (line 7). Finally, we calculate the proportions of examples across all clusters; and add the corresponding number of examples of each cluster to S_{few} (line 8-12).

4 Experiments and Analysis

We conduct experiments and compare our model to baselines in three settings on two datasets: (1) full supervision setting; domain transfer setting; as well as (3) few-shot training setting (Section 4.5).

4.1 Datasets Statistics and Evaluation

For the fully-supervised experiments, we use ACE 2005 corpus for evaluation, it contains documents crawled between year 2003 and 2005 from a variety of areas. We use the same data split and preprocessing steps as in previous work (Wadden et al., 2019; Du and Cardie, 2020b). For the domain transfer setting, we conduct training on the ACE05 training set and test on the WikiEvent test set. WikiEvent contains real-world news articles annotated with the DARPA KAIROS ontology. Most of the event/argument types of WikiEvent’s ontology do not appear in the ontology of ACE05 (e.g. Disaster, Cognitive, Disease).

The statistics of the datasets are shown in Table 1. We use the same test set as in Li et al. (2021) in the domain transfer setting. As for the preprocessing step of WikiEvent, since we train the models on the ACE05 (including only arguments in the sentence where each trigger appears), we also use arguments within a maximum context window of the length equal to the average of ACE05 sentence length).

As for the evaluation, we use the same criteria as in previous work (Li et al., 2013) to judge whether an extracted argument is correct. We consider an argument mention to be correctly identified if its offsets match any of the reference arguments of the current event (i.e. argument identification, or Arg Id. for short); and an argument is correctly classified if its role also matches (i.e. argument classification or Arg C.).

When comparing the extracted argument spans with the gold-standard ones, in addition to using extract match (EM), we also consider head noun phrase match (HM). It is more lenient than EM since it does not require the boundary/offsets to be matched correctly (Huang and Riloff, 2012; Du and Cardie, 2020a). For example, “the John M.” and “John M.” match under the HM metric. Our results are reported with Precision (P), Recall (R), and F-measure (F1) scores.

4.2 Baselines

We compare our model to several representative and competitive baselines (extractive methods and generation-based methods). EEQA (Du and Cardie, 2020b) uses the pretrained BERT as the base model and add a linear layer on top, to obtain the beginning and end offsets of the answer/argument spans in the input context for each role. GenIE (Li et al., 2021) use template-based generation for argument extraction. Its objective is to generate the template (including the arguments) and post-process the generated template to obtain the argument mentions (Section 2). Sometimes the generated sequences don’t conform to the original template thus affecting the performance. Generative QA is our own baseline without the retrieval component – it directly encodes the question for the current argument role and input context to generate the candidate argument spans.

4.3 Fully-Supervised Setting Results

In Table 2, we report results for the fully-supervised setting. The score for Argument identification is strictly higher than Arg. classification since it only requires both the mention span match and role match. We denote our proposed framework as R-GQA. To find out how the explicit modeling of the analogical relations (semantic relatedness)
between the demonstration and the current instance helps, we also report ablation study results. More specifically, we use BART-Large for all methods that use BART as the base model to ensure they are comparable. For our own model and its variations, we conduct three runs, and calculate the average of their performance and standard deviations.

We observe that: (1) all the text generation-based approaches outperform substantially EEQA (the extractive question answering based approach) in both precision&recall; Plus, generation-based methods require only one pass and are faster than extractive-based method which has $O(n^2)$ complexity for span enumeration; (2) Our methods based on generative QA (with 17621 gold QA pairs) substantially improve over the pure template-generation based method (with 4419 gold templates), we see that the better F1 mainly comes over the pure template-generation based method (with 4419 gold templates), we see that the better F1 mainly comes from consistently increase of precision&recall (~3%-4% for EM, ~1.5%-2% for HM). It makes sense considering in the template generation setting (I) hallucination happens; and (II) the generation sequence is longer, as compared to generating arguments for only one role in one pass; (3) Our R-GQA method benefits greatly from the retrieved demonstrations (prompts). We see that the better performance mainly comes from the increase in recall (smaller variance). Moreover, as for the functionality of explicitly model analogy relation ($L_{analogy}$), we find that it provides a boost of recall of around 3% without sacrificing precision. These to a certain extent prove that the demo’s QA pair encourages the model to generate more arguments for the current instance.

4.4 How Does R-GQA perform in the domain transfer setting

To mimic the real-world setting, we examine the portability of the models to test set of a new ontology (event types and argument types) such as in Li et al. (2021). More specifically, we conduct training on ACE05 (with 33 event types) and test on WikiEvent dataset (with 50 event types).

In Table 3, we present the domain transfer results. For this new setting, the best methods’ performance on WikiEvent are around 20% lower (F1) as compared to the fully supervised setting (Du et al., 2022). Mainly because: (1) the WikiEvent dataset is harder as compared to ACE05 – with a performance drop around 5-10% F1 across models; (2) the test set of WikiEvent includes many event/argument types that are distinct from existing ones from ACE05. Accordingly, we find that performance on the subset of data of distinctly event types largely drops. We list the types in Appendix B. When comparing QA-based generation model and GenIE, we observe that (1) recall of the QA-based models is substantially higher (>10%) – leading to large argument identification performance improvement; while our models do not have

Table 2: Fully-supervised setting experimental results (in %) on ACE05 data. The upper table is based on Exact Match (EM) and the bottom table is based on Head Head (HM).

	Arg Identification	Arg Classification				
	P	R	F1	P	R	F1
EM						
EEQA (Du and Cardie, 2020b)	69.16	62.65	65.74	66.51	60.47	63.34
GenIE (Li et al., 2021)	71.13	68.75	69.92	67.82	65.55	66.67
Generative QA	75.40 ± 0.70	72.10 ± 0.26	73.71 ± 0.20	71.92 ± 0.88	69.09 ± 0.59	70.47 ± 0.12
R-GQA	76.90 ± 1.04	74.17 ± 0.73	75.51 ± 0.58	74.10 ± 0.97	71.46 ± 0.47	72.75 ± 0.36
Ablations						
w/o analogy loss	76.20 ± 1.27	72.04 ± 0.97	74.06 ± 0.33	73.90 ± 1.39	69.87 ± 0.73	71.82 ± 0.32

	Arg Identification	Arg Classification				
	P	R	F1	P	R	F1
HM						
GenIE (Li et al., 2021)	72.85	69.12	70.94	69.92	66.50	68.17
Generative QA	75.45 ± 0.58	73.70 ± 0.21	74.56 ± 0.18	71.88 ± 0.76	70.20 ± 0.00	71.03 ± 0.37
R-GQA	76.95 ± 1.34	74.93 ± 0.52	75.93 ± 0.91	74.04 ± 1.00	72.10 ± 0.21	73.05 ± 0.59
Ablations						
w/o analogy loss	77.04 ± 1.32	71.88 ± 0.52	74.36 ± 0.34	74.86 ± 1.26	69.84 ± 0.51	72.26 ± 0.31
Table 3: Domain transfer setting results (in %).

Models	Arg Id.	Arg C.								
	P	R	F1	P	R	F1	P	R	F1	
GenIE	49.96	23.47	31.88	44.92	21.09	28.66	52.87	24.84	33.74	
(Li et al., 2021)										
Generative QA	47.12	35.61	40.57	32.32	24.42	27.82	49.71	37.57	42.79	34.20
R-GQA	44.88	40.68	**42.63**	31.42	28.42	**29.82**	47.65	43.17	**45.25**	33.10

Table 4: Few-shot performance comparison (F1 in %).

Models	200 (4.8%)	300 (7.1%)	400 (9.5%)	500 (11.9%)	600 (14.3%)	700 (16.7%)	800 (19.0%)	900 (21.4%)	1000 (23.8%)
GenIE	29.13	38.19	44.19	49.09	50.26	46.85	54.41	58.47	59.94
Ours (R-GQA)	38.79	47.64	52.55	56.97	56.40	58.90	61.24	58.77	61.41

an advantage in precision and even drops a bit, but the general performance (F1) is consistently higher; (2) Our R-GQA model’s retrieval component helps the model generate more arguments and improves R and F1.

4.5 How Does R-GQA Perform in Few-shot Setting and What is Sampling Strategy’s Influence

Firstly, in Table 4, we present comparisons between GenIE and R-GQA in the few-shot setting on ACE05. To obtain the few-shot training examples, we use the sampling strategy proposed in Section 3.3. The # examples varies from 200 (5%) to 1k (20%). We observe the trend that when the number of examples is smallest, the performance gap is largest (around 10% F1). While as the example number grows, generally the gap minimizes – from 10% (200), to 6% (600), to around 2% (1k).

Next, we report results for different sampling methods (including the one-round active learning setting) to find out what are the more important factors for the event argument extraction task’s annotation (with a fixed budget). Namely, we sample from “unlabeled” examples with the following strategies: **Random** picks the examples randomly which (nearly) match the distribution of event types in the test set; **AL** is the one-round active learning based approach – basically, a model is trained on the 100 examples with annotations and unlabeled examples that are most challenging (model most uncertain about) are selected. Our **JointEnc** strategy first conducts clustering on unlabeled examples (based on both input context and trigger text) and selects from each cluster # examples proportional to the size of each cluster; **Context** also conducts clustering based sampling similar to JointEnc but only embeds each example based on its context.

For the few-shot setting with increasing sampling size, we calculate the Hellinger distance (Beman, 1977) between distributions of examples sampled from each strategy and the true data distribution (represented by training data with labels). The distances are presented in Figure 3. We observe that (1) the distances between distributions of sampled examples and true data distribution decrease, as the sampling size grows; (2) sampled data based on JointEnc is generally closest to true data distribution across different sampling sizes. Correspondingly, Figure 4 reports the performances of R-GQA trained on samples from each strategy. The model trained on examples from our JointEnc outperforms other strategies’, demonstrating the benefit of JointEnc. Moreover, we find that there is
a correlation between distribution distances and few-shot experimental results — the smaller the distances are, models trained on the sampled set have better performance. This phenomenon is especially obvious when the sampling size is small (5%–10% of training data). We also provide an analysis of each event type in Appendix (Section D).

5 Related Work

Event Extraction and Extractive&Generation-based Approaches Traditionally, researchers have been investigating extractive approaches for event/information extraction. Specifically, one branch of work use B-I-O sequence labeling based approaches using CRF or structured SVM models (Björne et al., 2009; Yang and Mitchell, 2016; Lin et al., 2020), and more recently with neural networks (Chen et al., 2015; Nguyen et al., 2016). Another branch of extractive approaches includes using span enumeration (Wadden et al., 2019), as well as using question answering to encourage transfer between argument roles (Du and Cardie, 2020b).

Recently, generation-based approaches have been proposed. Among them more generally, TANL (Paolini et al., 2020) proposes to use translation-based approaches for structured prediction. More specifically, it constructs decoding targets by inserting text markers and labels around entity mentions in the input sentence. To better capture cross-entity dependencies. Huang et al. (2021); Li et al. (2021); Du et al. (2021); Huang et al. (2022) propose template-generation based approaches. They fill in the role slots in the template (e.g. Sec 2) with arguments to construct the gold sequences. As compared to TANL and template generation-based methods, our R-GQA is designed to be a QA-based generative model with a simpler generation objective. Plus, it augments the current example’s context with the most similar demonstration in the training set as prompt. It gets the best of both worlds (i.e. question answering and generative models).

Retrieval-augmented Text Generation and In Context Learning Recent studies have shown the effectiveness of retrieval augmentation in many generative NLP tasks, such as knowledge-intensive question answering (Lewis et al., 2020b; Guu et al., 2020) and dialogue response generation (Cai et al., 2019). They mainly retrieve additional knowledge or relevant information, but not demonstrations (input-output pairs). Another closely relevant branch of work is in-context learning, it’s a tuning-free approach that adapts to a new task by providing demonstrations (input-output pairs) as prompts to generate the “answer” (Brown et al., 2020). GPT-3 proposes to use random examples as demonstrations. Liu et al. (2022) refines the strategy by proposing to retrieve demonstrations that are semantically-similar to the current example as prompt. They show the capability of PLM to learn from similar examples.

Different from the work above, our work draws insights from both retrieval-augmented text generation and in-context learning. It (1) retrieves from the training set the most similar demonstration (QA pair) and uses it as a prompt; (2) uses gradient descent to optimize the model. Plus, it focuses on the specific argument extraction problem – our model not only augments the input context with demonstration but also determines how much to learn from it (by training with analogical loss).

6 Conclusions

In this work, we introduce a retrieval-augmented generative question answering framework (R-GQA) for event argument extraction. Our model generates arguments (answers) for each role, conditioned on both the current input context and the analogical demonstration prompt (based on their semantic similarity). Empirically, we show that R-GQA outperforms current competitive baselines with large margins in fully-supervised, cross-domain and few-shot learning settings. We conduct a thorough analysis and benchmark how different
sampling strategies influence models’ performance in the few-shot learning setting. We find that for event argument extraction, diversifying the examples makes the sampling distribution closer to the true distribution and contributes to models’ better performance.

Limitations

This work has certain limitations.

- Firstly, since the pre-trained model we use (BART-Large) has many parameters, one model’s training will nearly occupy one NVIDIA Tesla V100 16GB GPU; As for inference, it takes about 1GB of space.

- Although the BART-based models (GenIE and R-GQA) are end-to-end and have a great performance boost, the inference time (about 2 examples/s) is slightly longer as compared to manual-feature based approaches.

- In the real domain transfer setting, the general performance of models is still lower than 40% (F1), making the systems not competitive in real circumstances. In the future, it is worth investigating how to tackle this challenge by both more general ontology designing and stronger&robust methods.

Acknowledgement

We thank the anonymous reviewers helpful suggestions. This research is based upon work supported by U.S. DARPA KAIROS Program No. FA8750-19-2-1004, U.S. DARPA AIDA Program No. FA8750-18-2-0014 and LORELEI Program No. HR0011-15-C-0115. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of DARPA, or the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for governmental purposes notwithstanding any copyright annotation therein.

References

Rudolf Beran. 1977. Minimum hellinger distance estimates for parametric models. *The annals of Statistics*, pages 445–463.

Jari Björne, Juho Heimonen, Filip Ginter, Antti Airola, Tapio Pahikkala, and Tapio Salakoski. 2009. Extracting complex biological events with rich graph-based feature sets. In *Proceedings of the BioNLP 2009 Workshop Companion Volume for Shared Task*, pages 10–18.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. 2020. Language models are few-shot learners. *Advances in neural information processing systems*, 33:1877–1901.

Deng Cai, Yan Wang, Wei Bi, Zhaopeng Tu, Xiaojiang Liu, and Shuming Shi. 2019. Retrieval-guided dialogue response generation via a matching-to-generation framework. In *Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)*, pages 1866–1875.

Yubo Chen, Liheng Xu, Kang Liu, Daojian Zeng, and Jun Zhao. 2015. Event extraction via dynamic multi-pooling convolutional neural networks. In *Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)*, Beijing, China. Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of deep bidirectional transformers for language understanding. In *Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)*, pages 4171–4186, Minneapolis, Minnesota. Association for Computational Linguistics.

George Doddington, Alexis Mitchell, Mark Przybocki, Lance Ramshaw, Stephanie Strassel, and Ralph Weischedel. 2004. The automatic content extraction (ACE) program – tasks, data, and evaluation. In *Proceedings of the Fourth International Conference on Language Resources and Evaluation (LREC’04)*, Lisbon, Portugal. European Language Resources Association (ELRA).

Xinya Du and Claire Cardie. 2020a. Document-level event role filler extraction using multi-granularity contextualized encoding. In *Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics*, pages 8010–8020, Online. Association for Computational Linguistics.

Xinya Du and Claire Cardie. 2020b. Event extraction by answering (almost) natural questions. In *Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)*, pages 671–683, Online. Association for Computational Linguistics.

Xinya Du, Sha Li, and Heng Ji. 2022. Dynamic global memory for document-level argument extraction. In *Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1:
Xinya Du, Alexander Rush, and Claire Cardie. 2021. Template filling with generative transformers. In Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 909–914, Online. Association for Computational Linguistics.

Ralph Grishman. 2019. Twenty-five years of information extraction. Natural Language Engineering, 25(6):677–692.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Ming-Wei Chang. 2020. Realm: retrieval-augmented language model pre-training. In Proceedings of the 37th International Conference on Machine Learning, pages 3929–3938.

Kuan-Hao Huang, I-Hung Hsu, Prem Natarajan, Kai-Wei Chang, and Nanyun Peng. 2022. Multilingual generative language models for zero-shot cross-lingual event argument extraction. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 4633–4646, Dublin, Ireland. Association for Computational Linguistics.

Ruihong Huang and Ellen Riloff. 2012. Modeling textual cohesion for event extraction. In Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence, July 22-26, 2012, Toronto, Ontario, Canada. AAAI Press.

Daniel Jurafsky and James H Martin. 2018. Speech and language processing. preparation [cited 2020 June 1] Available from: https://web.stanford.edu/~jurafsky/slp3.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Veselin Stoyanov, and Luke Zettlemoyer. 2020a. BART: Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 7871–7880, Online. Association for Computational Linguistics.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. 2020b. Retrieval-augmented generation for knowledge-intensive nlp tasks. Advances in Neural Information Processing Systems, 33:9459–9474.
AHyperparameters

Parameter	Value
train batch size	4
eval batch size	4
learning rate	3e-5
accumulate grad batches	4
training epoches	6
warmup steps	0
weight decay	0
# gpus	1

Table 5: Hyperparameters for Training R-GQA.

BDistinct Event Types in WikiEvent Ontology (as Compared to ACE05)

Hierarchy L1	Hierarchy L2	Hierarchy L3	
ArtifactExistence	DamageDestroy	DisableDismantle	Damage
ArtifactExistence	DamageDestroy	DisableDismantle	Destroy
ArtifactExistence	DamageDestroy	DisableDismantle	DisableDefuse
ArtifactExistence	DamageDestroy	DisableDismantle	Dismantle
ArtifactExistence	ManufactureAssemble	Unspecified	
Cognitive	IdentifyCategorize	Unspecified	
Cognitive	Inspection	SensoryObserve	
Cognitive	Research	Unspecified	
Cognitive	TeachingTrainingLearning	Unspecified	
Disaster	DiseaseOutbreak	Unspecified	
Disaster	FireExplosion	Unspecified	
GenericCrime	GenericCrime	GenericCrime	
Justice	InvestigateCrime	Unspecified	
Life	Consume	Unspecified	
Life	Illness	Unspecified	
Life	Infect	Unspecified	
Medical	Diagnosis	Unspecified	
Medical	Intervention	Unspecified	
Medical	Vaccinate	Unspecified	
Movement	Transportation	PreventPassage	
Transaction	Donation	Unspecified	
C Further Findings and (Error) Analysis

Error Cases and Remaining Challenges We conduct an analysis on the error cases and summarize representative causes and provide examples below:

• Lack of contextual understanding. For example, “Earlier documents in the case have included embarrassing details about perks [Welch]PERSON received as part of his retirement package from GE .”. The model predicts the pronoun “his” which is closer to the trigger word as the final PERSON argument for the retiring event, ignoring the better option “Welch” which is more informative. Also with the document-level contextual knowledge of the person “Welch” that appears frequently, it would be easier for the model to decide.

• Complex language usage such as idioms and metaphors (e.g. for the event with “swept out of power” as the trigger, the arguments’ recall is very low). Addressing these phenomena is difficult since it requires richer knowledge about the background/culture. Plus, the special tokenization process further (e.g. BPE: Byte-Pair Encoding) further hurts the performance of extracting certain words that rarely appear.

• Inherent imperfectness of the datasets. The inter-annotator agreement for ACE05/WikiEvent is limited (under 85%), so theoretically there is an upper bound for human performance as well. For example, we see that the head noun match (HM) score is strictly higher than the exact match (EM) in Section 4, and the gap mitigates as the performance gets higher (over 70% F1). This demonstrates there is an ambiguity in determining the argument’s boundary. Moreover, for the example in the first bullet point, predicting pronoun does not get credit – while in a certain amount of training data it’s permitted.

Influence of Similarity-based Retrieval In Figure 5, we provide insights on how the similarity between the demonstration and current context affects the model’s performance. We divide the original test set into five subsets, corresponding to the example’s similarity score. It is observed there is a trend that when the similarity score grows, performance of the model also grows, especially when the similarity is over 0.7. This to a certain extent shows the benefits of augmenting the current context with a more similar demonstration as the prompt.

![Figure 5: R-GQA’s performances on subsets of dataset (as the similarity scores grow).](image-url)
Distribution Distances for Each Event Type (ACE05)

Event Type	Random	AL	Context	JointEnc
Movement: Transport	0.38	1.21	0.37	0.28
Personnel: Elect	0.38	0.75	0.18	0.26
Personnel: Start-Position	0.34	0.78	0.39	0.46
Personnel: Nominate	0.43	0.52	0.49	0.31
Personnel: End-Position	0.66	0.99	0.23	0.34
Conflict: Attack	0.30	0.16	0.34	0.23
Contact: Meet	0.40	0.20	0.43	0.40
Life: Marry	0.54	0.32	0.25	0.24
Transaction: Transfer-Money	0.38	0.38	0.41	0.42
Conflict: Demonstrate	0.26	0.53	0.43	0.37
Business: End-Org	0.67	0.25	0.64	0.28
Justice: Sue	0.63	1.09	0.47	0.48
Life: Injure	0.37	0.46	0.47	0.32
Life: Die	0.32	0.94	0.34	0.22
Justice: Arrest-Jail	0.42	0.29	0.45	0.46
Contact: Phone-Write	0.24	0.31	0.33	0.23
Transaction: Transfer-Ownership	0.24	0.32	0.30	0.22
Business: Start-Org	0.78	0.86	0.45	0.30
Justice: Execute	0.72	0.32	0.81	0.32
Justice: Trial-Hearing	0.20	0.38	0.46	0.28
Life: Be-Born	0.77	0.31	0.41	0.28
Justice: Charge-Indict	0.27	0.68	0.44	0.27
Justice: Convict	0.47	0.55	0.49	0.48
Justice: Sentence	0.13	0.41	0.34	0.57
Business: Declare-Bankruptcy	0.27	0.84	0.37	0.30
Justice: Release-Parole	0.38	0.22	0.46	0.46
Justice: Fine	0.42	0.22	0.43	0.41
Justice: Pardon	0.41	0.45	0.43	0.48
Justice: Appeal	0.62	0.35	0.31	0.63
Justice: Extradite	0.37	0.83	0.55	0.56
Life: Divorce	0.32	1.01	0.30	0.20
Business: Merge-Org	0.60	0.47	0.73	0.42
Justice: Acquit	0.59	0.71	0.49	0.57

Sum | 14.65 | 19.36 | 14.39 | 12.31

Average | 0.43 | 0.55 | 0.42 | 0.36
Generated Questions for Argument Roles in WikiEvent Ontology

Event Type	Argument Role	Question
ArtifactExistenceDamageDestroyDisableDismantleDamage	Damager	who is the damaging agent?
ArtifactExistenceDamageDestroyDisableDismantleDestroy	Destroyer	who is the destroying agent?
ArtifactExistenceDamageDestroyDisableDismantleDisableDefuse	Disable	who is the disable agent?
ArtifactExistenceDamageDestroyDisableDismantleDismantle	Dismantler	who is the dismantle agent?
ArtifactExistenceDamageDestroyDisableDismantleUnspecified	DamagerDestroyer	who is the damaging agent?
ArtifactExistenceManufactureAssembleUnspecified	ManufacturerAssembler	who is the manufacturing agent?
BusinessDeclare-Bankruptcy	Org	What declare bankruptcy?
BusinessEnd-Org	Org	What is ended?
BusinessMerge-Org	Org	What is merged?
BusinessStart-Org	Agent	Who is the founder?
CognitiveIdentifyCategorizeUnspecified	Identifier	who is the identifier?
CognitiveInspectionSensoryObserve	Observer	who is the observer?
CognitiveResearchUnspecified	Researcher	who is the researcher?
CognitiveTeachingTrainingLearningUnspecified	TeacherTrainer	who is the teaching agent?
ConflictAttackDetonateExplode	Attacker	Who is the denoting agent?

4662
Event Type	Role	Agent/Actor	Attribute	Place/Location
Conflict.Demonstrate.DemonstrateWithViolence	Demonstrator	who is demonstrating agent?		Place where the demonstration takes place?
	Regulator	who is the regulator?		
	VisualDisplay	what is the visual display?		
	Topic	what is the topic for the demonstration?		
	Target	who is the target of the demonstration?		
Conflict.Demonstrate.Unspecified	Demonstrator	who is demonstrating agent?		
	Regulator	who is the regulator?		
	VisualDisplay	what is the visual display?		
	Topic	what is the topic for the demonstration?		
	Target	who is the target of the demonstration?		
	Place	where the demonstration takes place?		
Conflict.Attack	Attacker	Who is the attacking agent?		Place where the attack takes place?
	Instrument	What is the instrument used in the attack?		
	Place	Where the attack takes place?		
	Target	Who is the target of the attack?		
	Victim	Who is the target of the attack?		
Conflict:Demonstrate	Entity	Who is demonstrating agent?		
	Place	where the demonstration takes place?		
Contact.Contact.Broadcast	Communicator	who is communicating agents?		Place where it takes place?
	Recipient	who is the recipient?		
	Instrument	What is the instrument used in the communication?		
	Topic	what is the communicating topic?		
Contact.Contact.Correspondence	Participant	who is communicating agents?		Place where it takes place?
	Instrument	What is the instrument used in the communication?		
	Topic	what is the communicating topic?		
Contact.Contact.Meet	Participant	Who are meeting?		Place where it takes place?
	Topic	what is the topic of the meeting		
Contact.Contact.Unspecified	Participant	who is communicating agents?		Place where it takes place?
	Topic	what is the communicating topic?		
Contact.Prevarication.Unspecified	Communicator	who is communicating agents?		Place where it takes place?
	Recipient	who is communicating agents?		
	Topic	what is the communicating topic?		
Contact.RequestCommand.Unspecified	Communicator	who is communicating agents?		Place where it takes place?
	Recipient	who is communicating agents?		
	Topic	what is the communicating topic?		
Contact.ThreatenCoerce.Unspecified	Communicator	who is communicating agents?		Place where it takes place?
	Recipient	who is communicating agents?		
	Topic	what is the communicating topic?		
Contact:Meet	Entity	Who are meeting?		Place where it takes place?
Contact:Phone-Write	Entity	Who is communicating agents?		Place where it takes place?
Control.ImpedeInterfereWith.Unspecified	Impeder	who is the impeder agent?		Place where the impede takes place?
	ImpededEvent	what is the impede event?		
Disaster.Crash.Unspecified	DriverPassenger	Who is responsible for the transport event?		
	Vehicle	What is the vehicle used to transport the person or artifact?		
	CrashObject	what is being crashed into?		
Disaster.DiseaseOutbreak.Unspecified	Disease	what broke out?		Place where the transport takes place?
	Victim	Who is the harmed person?		
Disaster.FireExplosion.Unspecified	FireExplosionObject	what caught fire?		Place where the explosion takes place?
	Instrument	What is the instrument used in the explosion?		
GenericCrime.GenericCrime.GenericCrime	Perpetrator	who committed a crime?		Place where the crime takes place?
	Victim	Who is the target of the crime?		
	Place	Where the crime takes place?		

4663
Event Type	Role	Agent	Location	Details
Justice.Acquit.Unspecified	JudgeCourt	Who is the judge?	Place	Where the acquit takes place?
	Defendant	Who is the defendant?	Crime	What is the crime being acquitted?
	Place	Where the acquit takes place?		
Justice.ArrestJailDetain.Unspecified	Jailer	Who is the arresting agent?	Place	Where the person is arrested?
	Detainee	Who is jailed or arrested?	Crime	What is the crime being arrested?
	Place	Where the person is arrested?		
Justice.ChargeIndict.Unspecified	Prosecutor	Indicated by whom?	Place	Where the indictment takes place?
	Defendant	Who is indicted?	Crime	What is the crime being charged?
	JudgeCourt	Who was the judge or court?		
Justice.Convict.Unspecified	JudgeCourt	Who is the judge or court?	Place	Where the conviction takes place?
	Defendant	Who is convicted?	Crime	What is the crime being convicted?
Justice.InvestigateCrime.Unspecified	Investigator	Who is the investigator?	Place	Where the investigation takes place?
	Defendant	Who is investigated?	Crime	What is the crime being investigated?
	Place	Where the investigation takes place?		
Justice.ReleaseParole.Unspecified	JudgeCourt	Who will release?	Place	Where the release takes place?
	Defendant	Who is released?	Crime	What is the crime being released?
JusticeSentence.Unspecified	JudgeCourt	Who is the judge or court?	Place	Where the sentencing takes place?
	Defendant	Who is sentenced?	Crime	What is the crime being sentenced?
	Sentence	What is the sentence?		
Justice.TrialHearing.Unspecified	Prosecutor	Who is the prosecuting agent?	Place	Where the trial takes place?
	Defendant	Who is on trial?	Crime	What is the crime being tried?
	JudgeCourt	Who is the judge or court?		
Justice.Acquit	Adjudicator	Who was the judge or court?	Place	Where the trial takes place?
	Defendant	Who was acquitted?		
Justice.Appeal	Adjudicator	Who was the judge or court?	Place	Where the appeal takes place?
	Plaintiff	What is the plaintiff?		
Justice.Arrest-Jail	Agent	Who is the arresting agent?	Place	Where the person is arrested?
	Person	Who is jailed or arrested?		
Justice.Charge-Indict	Adjudicator	Who was the judge or court?	Place	Where the indictment takes place?
	Defendant	Who is indicted?	Crime	What is the crime being indicted?
	Place	Where the indictment takes place?		
Justice.Convict	Adjudicator	Who is the judge or court?	Place	Where the conviction takes place?
	Defendant	Who is convicted?	Crime	What is the crime being convicted?
Justice.Execute	Agent	Who carry out the execution?	Place	Where the execution takes place?
	Person	Who was executed?		
Justice.Extradite	Agent	Who is the extraditing agent?	Place	Where the extradition takes place?
	Person	Who is being extradited	Destination	Where the person is extradited to?
	Origin	Where is original location of the person being extradited?		
Justice.Fine	Adjudicator	Who do the fining?	Place	Where the fining Event takes place?
	Entity	What was fined?		
Justice.Pardon	Adjudicator	Who do the pardoning?	Place	Where the pardon takes place?
	Defendant	Who was pardoned?		
Justice.Release-Parole	Entity	Who will release?	Place	Where the release takes place?
	Person	Who is released?		
Justice.Sentence	Adjudicator	Who is the judge or court?	Place	Where the sentencing takes place?
	Defendant	Who is sentenced?		
Justice.Sue	Adjudicator	Who is the judge or court?	Place	Where the suit takes place?
	Defendant	Who is sued against?	Plaintiff	Who is the suing agent?
	Place	Where the suit takes place?		

4664
Domain	Role	Question
Justice:Trial-Hearing	Adjudicator	Who is the judge or court?
	Defendant	Who is on trial?
	Place	Where the trial takes place?
	Prosecutor	Who is the prosecuting agent?
	ConsumingEntity	what is the consuming agent?
	ConsumedThing	what is consumed?
	Place	where the consuming takes place?
Life.Consume.Unspecified	Victim	Who died?
	Place	Where the death takes place?
	Killer	Who is the attacking agent?
	MedicalIssue	what is the medical issue?
Life.Die.Unspecified	Victim	who is victim?
	DeliberateInjuror	who is the deliberate injurer
	Disease	what is the disease or sickness?
	Place	where the event takes place?
Life.Illaas.Unspecified	Victim	who is victim?
	InfectingAgent	who infected?
	Place	where the event takes place?
Life.Infect.Unspecified	Victim	who is victim?
	Source	what is the infect from?
	Place	where the event takes place?
Life.Injure.Unspecified	Victim	Who is the harmed person?
	Injurer	Who is the attacking agent?
	Instrument	what is the device used to inflict the harm?
	BodyPart	what is the body part being harmed?
	MedicalCondition	what is the medical issue?
	Place	where the injuring takes place?
Life:Be-Born	Person	Who is born?
	Place	Where the birth takes place?
Life:Die	Agent	Who is the attacking agent?
	Instrument	what is the device used to kill?
	Place	Where the death takes place?
	Victim	Who died?
Life:Divorce	Person	Who are divorced?
	Place	Where the divorce takes place?
Life:Injure	Agent	Who is the attacking agent?
	Instrument	what is the device used to inflict the harm?
	Place	Where the injuring takes place?
	Victim	Who is the harmed person?
Life:Marry	Person	Who are married?
	Place	Where the marriage takes place?
Medical.Diagnosis.Unspecified	Treater	who diagnosed the patient?
	Patient	who is diagnosed?
	SymptomSign	what is the symptom?
	MedicalCondition	what is the medical condition?
	Place	where the event takes place?
Medical.Intervention.Unspecified	Treater	what treated the patient?
	Patient	who is treated?
	MedicalIssue	what is the medical issue?
	Instrument	What is the instrument used in the treatment?
	Place	Where the treatment takes place?
Medical.Vaccinate.Unspecified	Treater	who treated the patient?
	Patient	who is treated?
	VaccineTarget	who is the target of the vaccination?
	VaccineMethod	what is the method of the vaccination?
	Place	Where the vaccination takes place?
Movement.Transportation.Evacuation	Transporter	Who is responsible for the transport event?
	PassengerArtifact	Who is being transported?
	Vehicle	What is the vehicle used to transport the person or artifact?
	Origin	Where the transporting originated?
Movement.Transportation.IllegalTransportation	Transporter	Who is responsible for the transport event?
	PassengerArtifact	Who is being transported?
	Vehicle	What is the vehicle used to transport the person or artifact?
	Origin	Where the transporting originated?
	Destination	Where the transporting is directed?
Movement.Transportation.PreventPassage	Transporter	Who is responsible for the transport event?
	PassengerArtifact	Who is being transported?
	Vehicle	What is the vehicle used to transport the person or artifact?
	Preventer	who is preventing the transport?
	Origin	Where the transporting originated?
	Destination	Where the transporting is directed?
Movement.Transportation.Unspecified	Transporter	Who is responsible for the transport event?
	PassengerArtifact	Who is being transported?
	Vehicle	What is the vehicle used to transport the person or artifact?
	Origin	Where the transporting originated?
	Destination	Where the transporting is directed?
EventType	Attribute	Question
-----------------------------------	-----------------------------	--
Movement:Transport	Agent	Who is responsible for the transport event?
	Artifact	Who is being transported?
	Destination	Where the transporting is directed?
	Origin	Where the transporting originated?
	Vehicle	What is the vehicle used to transport the person or artifact?
Personnel:EndPosition.Unspecified	Employee	Who is the employee?
	PlaceOfEmployment	Who is the employer?
	Position	what is the position?
	Place	Where the employment relationship ends?
Personnel:StartPosition.Unspecified	Employee	Who is the employee?
	PlaceOfEmployment	Who is the employer?
	Position	what is the position?
	Place	Where the employment relationship begins?
Personnel:Nominate	Entity	Who voted?
	Person	Who was elected?
	Place	Where the election takes place?
Personnel:End-Position	Entity	Who is the employer?
	Person	Who is the employee?
	Place	Where the employment relationship begins?
Personnel:Nominate	Agent	Who is the nominating agent?
	Person	Who are nominated?
	Place	Where the employment relationship ends?
Personnel:Start-Position	Entity	Who is the employer?
	Person	Who is the employee?
	Place	Where the employment relationship begins?
Transaction:Donation.Unspecified	Giver	Who is the donating agent?
	Recipient	Who is the recipient?
	Beneficiary	Who benefits from the transfer?
	ArtifactMoney	what is being donated?
	Place	Where the transaction takes place?
Transaction:ExchangeBuySell.Unspecified	Giver	Who is the selling agent?
	Recipient	Who is the buying agent?
	AcquiredEntity	Who was bought or sold?
	PaymentBarter	how much was the selling?
	Beneficiary	Who benefits from the transaction?
	Place	Where the sale takes place?
Transaction:Transfer-Money	Beneficiary	Who benefits from the transfer?
	Giver	Who is the donating agent?
	Place	Where the transaction takes place?
	Recipient	Who is the recipient?
Transaction:Transfer-Ownership	Artifact	Who was bought or sold?
	Beneficiary	Who benefits from the transaction?
	Buyer	Who is the buying agent?
	Place	Where the sale takes place?
	Seller	Who is the selling agent?