Title
Search for the decays $B_0 \rightarrow e^+ e^- \gamma$ and $B_0 \rightarrow \mu^+ \mu^- \gamma$

Permalink
https://escholarship.org/uc/item/09v5r553

Journal
Physical Review D - Particles, Fields, Gravitation and Cosmology, 77(1)

ISSN
1550-7998

Authors
Aubert, B
Bona, M
Boutigny, D
et al.

Publication Date
2008-01-11

DOI
10.1103/PhysRevD.77.011104

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed
Search for the decays $B^0 \to e^+ e^- \gamma$ and $B^0 \to \mu^+ \mu^- \gamma$
SEARCH FOR THE DECAYS ... PHYSICAL REVIEW D 77, 011104(R) (2008)

Imperial College London, London, SW7 2AZ, United Kingdom

University of Iowa, Iowa City, Iowa 52242, USA

Iowa State University, Ames, Iowa 50011-3160, USA

Johns Hopkins University, Baltimore, Maryland 21218, USA

Universität Karlsruhe, Institut für Experimentelle Kernphysik, D-76021 Karlsruhe, Germany

Laboratoire de l’Accélérateur Linéaire, IN2P3/CNRS et Université Paris-Sud 11, Centre Scientifique d’Orsay, B. P. 34, F-91898 ORSAY Cedex, France

Lawrence Livermore National Laboratory, Livermore, California 94550, USA

University of London, Royal Holloway and Bedford New College, Egham, Surrey TW20 0EX, United Kingdom

University of Louisville, Louisville, Kentucky 40292, USA

University of Massachusetts, Amherst, Massachusetts 01003, USA

Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, Massachusetts 02139, USA

McGill University, Montréal, Québec, Canada H3A 2T8

Universitá di Milano, Dipartimento di Fisica and INFN, I-20133 Milano, Italy

University of Mississippi, University, Mississippi 38677, USA

Université de Montréal, Physique des Particules, Montréal, Québec, Canada H3C 3J7

Mount Holyoke College, South Hadley, Massachusetts 01075, USA

Università di Napoli Federico II, Dipartimento di Scienze Fisiche and INFN, I-80126, Napoli, Italy

NIKHEF, National Institute for Nuclear Physics and High Energy Physics, NL-1009 DB Amsterdam, The Netherlands

University of Notre Dame, Notre Dame, Indiana 46556, USA

Ohio State University, Columbus, Ohio 43210, USA

University of Oregon, Eugene, Oregon 97403, USA

Università di Padova, Dipartimento di Fisica and INFN, I-35131 Padova, Italy

Laboratoire de Physique Nucléaire et de Hautes Energies, IN2P3/CNRS, Université Pierre et Marie Curie-Paris6, Université Denis Diderot-Paris7, F-75252 Paris, France

University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA

Università di Perugia, Dipartimento di Fisica and INFN, I-06100 Perugia, Italy

Università di Pisa, Dipartimento di Fisica, Scuola Normale Superiore and INFN, I-56127 Pisa, Italy

Prairie View A&M University, Prairie View, Texas 77446, USA

Princeton University, Princeton, New Jersey 08544, USA

Università di Roma La Sapienza, Dipartimento di Fisica and INFN, I-00185 Roma, Italy

Università Rostock, D-18051 Rostock, Germany

Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, United Kingdom

DSM/Dapnia, CEA/Saclay, F-91191 Gif-sur-Yvette, France

University of South Carolina, Columbia, South Carolina 29208, USA

Stanford Linear Accelerator Center, Stanford, California 94309, USA

Stanford University, Stanford, California 94305-4060, USA

State University of New York, Albany, New York 12222, USA

University of Tennessee, Knoxville, Tennessee 37996, USA

University of Texas at Austin, Austin, Texas 78712, USA

University of Texas at Dallas, Richardson, Texas 75083, USA

Università di Torino, Dipartimento di Fisica Sperimentale and INFN, I-10125 Torino, Italy

Università di Trieste, Dipartimento di Fisica and INFN, I-34127 Trieste, Italy

IFIC, Universitat de Valencia-CSIC, E-46071 Valencia, Spain

University of Victoria, Victoria, British Columbia, Canada V8W 3P6

Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom

University of Wisconsin, Madison, Wisconsin 53706, USA

Yale University, New Haven, Connecticut 06511, USA

(Received 19 June 2007; published 11 January 2008)

*Deceased.
† Also with Università di Perugia, Dipartimento di Fisica, Perugia, Italy.
‡ Also with Università della Basilicata, Potenza, Italy.
§ Also with Universitat de Barcelona, Facultat de Fisica, Departament ECM, E-08028 Barcelona, Spain.
¶ Also with IPPP, Physics Department, Durham University, Durham DH1 3LE, United Kingdom.
Radiative leptonic decays of neutral B mesons, $B^0 \rightarrow \ell^+ \ell^- \gamma$ with $\ell = e$ or μ [1], are flavor-changing neutral-current transitions that are forbidden at the tree level in the standard model (SM). In the SM, such processes are described by penguin and box diagrams to leading order, as shown in Fig. 1. The largest contributions arise from processes in which a photon is emitted from one of the initial quarks, thus avoiding the helicity suppression of the purely leptonic decays $B^0 \rightarrow \ell^+ \ell^-$. A search for the processes $B^0 \rightarrow \ell^+ \ell^-$ has been performed by the BABAR collaboration and others [2], but there is no previous search for the $B^0 \rightarrow \ell^+ \ell^- \gamma$ decays. The expected branching fraction for $B^0 \rightarrow \ell^+ \ell^- \gamma$ processes is of order 10^{-10} [3]. A measured branching fraction bigger than this would be evidence for new physics.

The analysis described in this paper uses a sample of 320 × 10^6 BB pairs recorded with the BABAR detector at the PEP-II asymmetric energy e^+e^- storage rings. This corresponds to an integrated luminosity of 292 fb$^{-1}$ collected at the Y(4S) resonance.

A detailed description of the BABAR detector can be found elsewhere [4]. Charged-particle trajectories are measured by a five-layer silicon vertex tracker and a 40-layer drift chamber operating in a 1.5 T magnetic field. A detector of internally reflected Cherenkov light is used for charged hadron identification. Surrounding this is an electromagnetic calorimeter (EMC) consisting of 6580 CsI(Tl) crystals, and the instrumented flux return for the solenoid, which consists of layers of steel interspersed with resistive plate chambers or limited streamer tubes.

A full BABAR Monte Carlo (MC) simulation using GEANT4 [5] is used to evaluate signal efficiencies and to identify and study background sources. The signal MC sample is based on a calculation where the $B^0 \rightarrow \ell^+ \ell^- \gamma$ transitions depend on three Wilson coefficients $C_7, C_9,$ and C_{10} at leading order [6].

We reconstruct the B^0 signal candidates by combining two oppositely charged leptons and a photon. The B^0 vertex is fitted using a Kalman Filter method [7]. The leptons are required to originate from a common vertex, and the B^0 candidate is required to be consistent with coming from the beam interaction point.

To minimize the number of misidentified particles, the leptons are required to satisfy stringent particle identification criteria [8]. For the electron candidates, bremsstrahlung photons are detected as energy deposits (clusters) in the EMC close to the intersection of their tracks with the EMC and the electron momentum is corrected for this energy loss. The corrected electron momentum is used in the calculation of the invariant mass of the reconstructed B mesons. For photon clusters, the transverse shower shape is required to be consistent with an electromagnetic shower. Leptons and photons are required to reside fully in the geometric acceptance of the detector.

Since the signal event contains two neutral B mesons and no additional particles, the total energy of each B meson in the center-of-mass (CM) frame must be equal to half of the total beam energy in the CM frame. We define $m_{ES} = \sqrt{(E_{beam})^2 - (\sum p_i^2)^2}$ and $\Delta E = \sum_i \sqrt{m_i^2 + (p_i^2) - E_{beam}}$, where E_{beam} is the beam energy in the CM frame, p_i and m_i are the momenta in the CM frame, and the masses of the daughter particles $i (i = \ell^+, \ell^-, \gamma)$, respectively. E_{beam} is used instead of the measured B meson energy in the CM frame because E_{beam} is more precisely known. For correctly reconstructed B^0 mesons, the m_{ES} distribution has a maximum at the B^0 mass with a standard deviation of about 3 MeV/c^2 and the ΔE distribution has a maximum near zero with a standard deviation of about 30 MeV.

The $B^0 \rightarrow \ell^+ \ell^- \gamma$ candidates are selected by requiring $-0.5 \leq \Delta E \leq 0.5$ GeV and $5.0 \leq m_{ES} \leq 5.3$ GeV/c^2. These ranges include both background- and signal-dominated regions. As shown in Fig. 2, five background-dominated regions (sideband areas) are used for the background estimation. To avoid experimenter’s bias, the events in the signal-dominated region (signal box) and in the shaded area covering the signal box are not included in the analysis until the final selection criteria have been

FIG. 1. The penguin (top) and box (bottom) Feynman diagrams for $B^0 \rightarrow \ell^+ \ell^- \gamma (\ell = e, \mu)$ decays. The photon can be emitted from any of the quarks or leptons, but the amplitudes are largest if the photon is emitted from one of the initial quarks.
optimized and the background estimation has been finalized. The size of the signal box is chosen to contain more than 80% of the signal: $-0.146(-0.112) \leq \Delta E \leq 0.082$ GeV for the $e^+e^-\gamma (\mu^+\mu^-\gamma)$ mode, and $5.270 \leq m_{ES} \leq 5.289$ GeV/c2 for both modes. The asymmetry in ΔE is due to the unrecovered energy losses of the charged leptons and the photon in the detector.

To select particles inside the detector volume, we apply the following fiducial requirements on the polar angles in the laboratory frame: $-0.74 \leq \cos \theta \leq 0.93$ (0.92) and $-0.79 \leq \cos \theta \leq 0.89$.

The dominant backgrounds are: (1) unmodeled higher-order QED and hadron production by two-photon processes for the $e^+e^-\gamma$ mode; (2) B decays where the photon comes from a π^0 decay, or one or both leptons are from a J/ψ or $\psi(2S)$ decay; and (3) continuum background from $e^+e^- \rightarrow f\bar{f}$ (where $f = u, d, s, c, \tau$) processes at the parton level.

To suppress higher-order QED processes and hadron production by two-photon annihilation, we tighten the fiducial requirements for electrons and photons and introduce additional selection criteria for the $e^+e^-\gamma$ candidates: we require the cosine of the polar angle of $e^-(\gamma)$ to be between $-0.74 \leq \cos \theta \leq 0.81$ (0.80) in the laboratory frame, the energy of the photon to be ≥ 0.3 GeV also in the laboratory frame, the number of charged tracks (EMC clusters) in the event to be $\leq 5(10)$, and the ratio of the second-to-zeroth order Fox-Wolfram moments (R_2) [9], which is calculated with the charged tracks and neutral clusters in the rest of the event (ROE), to be ≤ 0.7.

To reduce the number of events where the photon is from a π^0 decay, we veto photon candidates that can be combined with any other photon in the event to form a π^0 candidate with a mass within 3 standard deviations (~ 20 MeV/c2) of the nominal π^0 mass.

We veto lepton candidates that form a suitable J/ψ or $\psi(2S)$ using the invariant mass of the lepton pair and ΔE, as described in Ref. [10].

To suppress the continuum background, we require R_2, calculated from all charged tracks and neutral clusters, to be less than 0.35, and the absolute value of the cosine of the angle between the thrust axis of the B^0 candidate and that of the ROE to be less than 0.8. These variables are used in a neural network combined with the following variables: (1) the absolute value of the cosine of the angle between the B^0 direction and the beam axis, (2) the absolute value of the cosine of the angle between the thrust axis of the B^0 candidate’s decay products and the beam axis, (3) the ratio of second order to zeroth order Legendre moments of all charged tracks and neutral clusters, and (4) the invariant mass of the dileptons. The neural network rejects 20(36)% of the background while keeping 95(89)% of the signal, for the $e^+e^-\gamma (\mu^+\mu^-\gamma)$ mode. All the selection criteria are optimized with MC samples to discriminate signal from background.

After all requirements are applied, there are on average 1.01(1.07) candidates per event for the $e^+e^-\gamma (\mu^+\mu^-\gamma)$ mode. In events with multiple candidates, the one with the highest probability for the vertex fit is retained. The signal efficiency is 7.4(5.2)% for the $e^+e^-\gamma (\mu^+\mu^-\gamma)$ mode. The $e^+e^-\gamma$ mode has higher efficiency because electrons have higher detection efficiency than muons.

To assess possible background contributions that peak in the signal box, we examined 32 exclusive hadronic and semileptonic B decays using MC, including events where both B mesons decay semileptonically, and found no significant contribution.

A variety of methods to estimate the background in the signal box have been studied, including fitting and counting methods in various m_{ES} and ΔE sideband areas with different conditions. All methods yield results that are compatible within uncertainties.

The chosen method is model independent, is based on data only, and has a small systematic uncertainty. To estimate the background level in the signal box, five different sideband areas are used, as indicated in Fig. 2. The ratio R_{est} is the estimated ratio of the yield in the signal box to the yield in the M1 box. The expected background in the signal box (n_{bg}) is calculated by multiplying R_{est} by the yield in the M1 box. We estimate R_{est} as the mean of two ratios R_U and R_L, where $R_U(L) = N^{U(L)} / N^{U(L)}$, and where N_X is the yield in box X. This assumes that the changes in the ratio R_L, R_{est}, and R_U are linear in ΔE.

To test our assumption of this linearity, we use MC samples and calculate the ratio R^M by dividing the yield.
The differential branching fraction for the $B^0 \rightarrow e^+ e^- \gamma$ decay can be calculated from the signal yield in the signal box by the yield in the M1 box. The relative difference between R^M and R_{est} in MC samples is assigned as a systematic uncertainty. The estimated background is $1.75 \pm 1.38 \pm 0.36$ ($2.66 \pm 1.40 \pm 1.58$) events for the $e^+ e^- \gamma (\mu^+ \mu^- \gamma)$ mode, where the stated errors represent the statistical and systematic uncertainties, respectively.

The dominant source of systematic uncertainty in the signal yield is the calculation used for the signal MC [6]. The three theoretical input parameters, the Wilson coefficients C_7, C_9, and C_{10}, used in the calculation are varied by ±10%, as recommended by the authors of Ref. [6]. This variation changes the kinematics of the signal events and can thereby impact the detection efficiency. The largest relative change in signal efficiency by this variation is assigned as a systematic uncertainty.

The uncertainty in the branching fraction $\mathcal{B}(Y(4S) \rightarrow B^0 \bar{B}^0)^{[11]}$ is taken as systematic uncertainty. We have studied $e^+ e^- \rightarrow \mu^+ \mu^- \gamma$ decays in data to assess the systematic uncertainty in photon reconstruction. The systematic uncertainty from the lepton identification has been determined using an independent control sample of J/ψ decays. The uncertainty in the number of $B \bar{B}$ events is 1.1% [12].

The systematic uncertainty related to an imperfect simulation of the ROE is studied using a control sample of $B^0 \rightarrow J/\psi K_S^0$ events. The same continuum background suppression requirements are applied on this sample and the signal efficiency is calculated. The relative difference in the signal efficiencies between data and MC samples is assigned as a systematic uncertainty.

The systematic uncertainty related to the tracking efficiency is determined from $e^+ e^- \rightarrow \tau^+ \tau^-$ interactions, with one τ decaying leptonically and the other to three charged hadrons. All the contributions to the systematic uncertainties are added in quadrature and summarized in Table I.

After applying the selection criteria we find one event in the signal box for each mode, as shown in Fig. 3 and Table II. These numbers are compatible with the expected background for both modes.

An upper limit on the branching fraction is computed from

$$\mathcal{B}_{UL}(B^0 \rightarrow \ell^+ \ell^- \gamma) = \frac{N_{UL}}{N_{B^0}} \cdot e_{\text{sig}}.$$

where N_{UL} is the 90% confidence level (C.L.) upper limit for the signal yield, determined by taking into account the one observed event in the signal box and the estimated background, using the frequentist method described in Ref. [13] including both statistical and systematic uncertainties, N_{B^0} is the number of neutral B mesons and e_{sig} is the signal reconstruction efficiency. The systematic uncertainties are included in e_{sig}. We used $\mathcal{B}(Y(4S) \rightarrow B^0 \bar{B}^0) = (49.4 \pm 0.8\%)^{[11]}$. The 90% C.L. branching fraction upper limits obtained are $\mathcal{B}(B^0 \rightarrow e^+ e^- \gamma) < 1.2 \times 10^{-7}$ and $\mathcal{B}(B^0 \rightarrow \mu^+ \mu^- \gamma) < 1.6 \times 10^{-7}$.

In summary, a search for $B^0 \rightarrow \ell^+ \ell^- \gamma$ ($\ell = e$ or μ) decays has been performed based on $320 \times 10^6 B \bar{B}$ events. We obtain 90% C.L. upper limits for the branching fractions of $\mathcal{B}(B^0 \rightarrow e^+ e^- \gamma) < 1.2 \times 10^{-7}$ and $\mathcal{B}(B^0 \rightarrow \mu^+ \mu^- \gamma) < 1.6 \times 10^{-7}$, which represent the first limits placed on these decay channels. These are well above the SM expectations.

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC

Table I. Summary of the systematic uncertainties in the signal yields.

Source	$e^+ e^- \gamma$ (%)	$\mu^+ \mu^- \gamma$ (%)
Signal calculation	2.3	3.8
$\mathcal{B}(Y(4S) \rightarrow B^0 \bar{B}^0)$	1.6	1.6
Photon reconstruction	1.6	1.6
Lepton identification	0.7	1.3
Number of $B \bar{B}$ pairs	1.1	1.1
Data/MC comparison	1.3	0.4
Tracking efficiency	0.9	0.9
Total	3.8	4.8

Table II. Summary of the results where n_{obs} (n_{exp}^{γ}) is the number of observed (expected background) events in the signal box, e_{sig} is the efficiency, N_{UL} is the 90% C.L. upper limit for the signal yield, and \mathcal{B}_{UL} is the upper limit on the branching fraction at the 90% C.L. The stated uncertainties in n_{exp} are statistical and systematic, and the uncertainty in e_{sig} is systematic.

Mode	n_{obs}	n_{exp}^{γ}	e_{sig} (%)	N_{UL}	\mathcal{B}_{UL}
$e^+ e^- \gamma$	1	1.75 ± 1.38 ± 0.36	7.4 ± 0.3	2.82	1.2 \times 10^{-7}
$\mu^+ \mu^- \gamma$	1	2.66 ± 1.40 ± 1.58	5.2 ± 0.3	2.56	1.6 \times 10^{-7}
SEARCH FOR THE DECAYS ... PHYSICAL REVIEW D 77, 011104(R) (2008)

(Canada), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MIST (Russia), MEC (Spain), and STFC (United Kingdom). Individuals have received support from the Marie Curie EIF (European Union) and the A. P. Sloan Foundation.

[1] Throughout the paper the charge-conjugate modes are included implicitly.
[2] B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 94, 221803 (2005); M.-C. Chang et al. (Belle Collaboration), Phys. Rev. D 68, 111101 (2003); T. Bergfeld et al. (CLEO Collaboration), Phys. Rev. D 62, 091102 (2000).
[3] G. Eliam et al., Phys. Lett. B 391, 461 (1997); T. M. Aliiev et al., Phys. Rev. D 55, 7059 (1997).
[4] B. Aubert et al. (BABAR Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 479, 1 (2002).
[5] S. Agostinelli et al., Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 (2003).
[6] Y. Dincer and L. M. Sehgal, Phys. Lett. B 521, 7 (2001).
[7] P. Billoir, Nucl. Instrum. Methods Phys. Res., Sect. A 225, 352 (1984); D. N. Brown, E. A. Charles, and D. A. Roberts (BABAR track fitting algorithm), Proceedings of CHEP 2000, Padova, Italy, 2000 (unpublished).
[8] See, for instance, B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 66, 032003 (2002).
[9] G. Fox and S. Wolfram, Phys. Rev. Lett. 41, 1581 (1978).
[10] B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 73, 092001 (2006).
[11] W.-M. Yao et al., J. Phys. G 33, 1 (2006).
[12] B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 67, 032002 (2003).
[13] R. Barlow, Comput. Phys. Commun. 149, 97 (2002).