On The Analytical Solutions of Nonhomogeneous Heat equations

Mustafa A. Sabri

mustafasabri.edbs@uomustansiriyah.edu.iq
College of Education, Department of Mathematics, University of Mustansiriyah, Baghdad – Iraq

Abstract:
In this paper, we consider the analytical solution of Nonhomogeneous mixed problem of Heat equation. Namely, we use separation of variable and Duhamel’s principle to derive the formula of the general solution to this problem. Moreover, we find the solution for a special case of this problem as an application to our result.

Keywords: Heat equations, Mixed problem, Separation of variables and Duhamel’s principle.

1. Introduction
Over the last decades, the solutions of partial differential equations have been considered by many authors; see for instance [1-4].
The nonhomogeneous heat equation with n space variables takes the form [1]:

\[
\frac{\partial u(x,t)}{\partial t} = c^2 \Delta u(x,t) + h(x,t), \quad (t > 0, x \in \mathbb{R}^n).
\]

It is well known that heat equation is a special case of a class of equations called parabolic type equations. Heat equation can model heat conduction, diffusion, etc. In this paper, we will study the analytical solution of the case when \(n = 1\). (With non-zero initial – boundary conditions)

2. Mixed problem: Separation of variables
Consider the following mixed problem [2]:

\[
\begin{cases}
    u_t = c^2 u_{xx} + h(x,t), & (t > 0, 0 < x < l), \\
    u(0,x) = f(x), & (0 < x < l), \\
    u(0,t) = 0, u(l,t) = 0, & (t > 0).
\end{cases}
\] (2.1)

Since the equation and the initial and boundary conditions are linear, we may split the problem into three simpler problems and then use superposition’s to get a solution of the original problem. We have

\[
\begin{cases}
    u_t = c^2 u_{xx}, & (t > 0, 0 < x < l), \\
    u(x,0) = f(x), & (0 < x < l), \\
    u(0,t) = 0, u(l,t) = 0, & (t > 0).
\end{cases}
\] (I)
On The Analytical Solutions of Nonhomogeneous Heat equations

Mustafa A. Sabri

\[
\begin{aligned}
&u_t = c^2 u_{xx} + h(x, t), \quad (t > 0, 0 < x < l), \\
&u(x, 0) = 0, \quad (0 < x < l), \quad (I) \\
&u(0, t) = 0, \quad u(l, t) = 0, \quad (t > 0). \\
&v_t = c^2 v_{xx}, \quad (t > 0, 0 < x < l), \\
&v(x, 0) = 0, \quad (0 < x < l), \quad (II) \\
&u(0, t) = \phi(t), \quad u(l, t) = \psi(t), \quad (t > 0). \\
\end{aligned}
\]

Suppose \( u_1, u_2 \) and \( u_3 \) are solutions of (I), (II) and (III) respectively, \( u_1 + u_2 + u_3 \) is a solution of (2.1). We can see that (III) can be reduced to (I) and (II). Indeed, letting

\[
U(x, t) = \phi(t) + \frac{x}{l} (\psi(t),
\]

We see that \( U(0, t) = \phi(t) \) and \( U(l, t) = \psi(t) \).

Let \( u \) be a solution of (III) and define \( V(x, t) = u(x, t) - U(x, t) \). Then \( V(x, t) \) is a solution of the following problem

\[
\begin{aligned}
&V_t - c^2 V_{xx} = -\left( \phi'(t) + \frac{x}{l} (\psi'(t) - \phi'(t)) \right), \quad (t > 0, 0 < x < l), \\
&V(x, 0) = -\left( \phi(0) + \frac{x}{l} (\psi(0) - \phi(0)) \right), \quad (0 < x < L) \\
&V(0, t) = 0, \quad V(l, t) = 0, \quad (t > 0). \\
\end{aligned}
\]

We have \( u(x, t) = V(x, t) \) is a solution of (III). Therefore, if we can solve (I) and (II), we can solve (I) first. We can solve this problem by using separation of variables.

**Solution of (I)** We first find a solution of the equation in the form \( u(x, t) = X(x) T(t) \) satisfying the boundary conditions \( u(0, t) = u(l, t) = 0 \). Then we use superpositions to find a solution of the original problem by matching the initial condition. Substitute the function in this special form to the equation and the boundary condition,

\[
X(x)T'(t) = c^2 X''(x)T(t), \quad X(0) = X(l) = 0
\]

Rewrite the equation in the form

\[
\frac{T'(t)}{c^2 T(t)} = \frac{X''(x)}{X(x)} = -\lambda
\]

(Because the left hand side is a function of \( l \) while the right hand side is a function of \( x \)).

Therefore we have the following two problems

\[
\begin{aligned}
&A) \quad X''(x) + \lambda X(x) = 0, \\
&\quad X(0) = X(l) = 0, \quad (A) \\
&B) T'(t) + \lambda c^2 T(t) = 0.
\end{aligned}
\]
On The Analytical Solutions of Nonhomogeneous Heat equations

Mustafa A. Sabri

To find a non-trivial solution of (A) we must have \( \lambda > 0 \) and then we may find that \( \lambda_k = \frac{k^2 \pi^2}{l^2} \) for \( k = 1, 2, \ldots \) and the solution of (A) is in the form

\[
X_k(x) = C_k \sin \frac{k \pi x}{l},
\]

where \( C_k \) is a constant to be determined. Substitute \( \lambda_k \) into (B) we can solve it and the solution is

\[
T_k(t) = B_k e^{-\frac{c^2 k^2 \pi^2 t}{l^2}},
\]

where \( B_k \) is a constant. Hence we have

\[
u_k(x, t) = A_k e^{-\frac{c^2 k^2 \pi^2 t}{l^2}} \sin \frac{k \pi x}{l},
\]

Where \( A_k \) is a constant to be determined. Using superpositions, we obtain

\[
u(x, t) = \sum_{k = 1}^{\infty} A_k e^{-\frac{c^2 k^2 \pi^2 t}{l^2}} \sin \frac{k \pi x}{l}.
\]

(2.2)

\[
u(x, 0) = \sum_{k = 1}^{\infty} A_k \sin \frac{k \pi x}{l} = f(x)
\]

(2.3)

To make (2.3) an equality, \( A_k \) must be the Fourier coefficient of the Fourier-sine series expansion of \( f \), i.e.,

\[
A_k = \frac{2}{l} \int_0^l f(x) \sin \frac{k \pi x}{l} dx
\]

(2.4)

Theorem 2.1. Assume that \( f \in C^1 \), \( f(0) = f(l) = 0 \). Then the solution of (I) is given by (2.2) with \( A_k \) given by (2.4), [2]

Example 2.1. (a) Find all values of \( \mu \) for which the problem

\[
\begin{cases}
X''(x) - \mu X(x) = 0, & 0 < x < 1, \\
X(0) = 0 = X(1)
\end{cases}
\]

Has non-trivial solutions (i.e. \( X \neq 0 \)). Find these non-trivial solutions. (b) Using the result of (a) solve the following initial-boundary value problem by the method of separation of variables

\[
\begin{aligned}
\frac{\partial u(x, t)}{\partial t} - \frac{\partial^2 u(x, t)}{\partial x^2} &= 0, & 0 < x < 1, 0 < t < +\infty,\\
u(0, t) = 0 = u(1, t), & 0 \leq t < +\infty,\\
u(x, 0) = 9 \sin 2\pi x + 7 \sin 5\pi x, & 0 < x < 1.
\end{aligned}
\]

(c) Using the result of (b) solve the following initial-boundary value problem

\[
\begin{aligned}
\frac{\partial \omega(x, t)}{\partial t} - \frac{\partial^2 \omega(x, t)}{\partial x^2} &= 0, & 0 < x < 1, 0 < t < +\infty,\\
\omega(0, t) = 1, & \omega(1, t) = 0, & 0 \leq t < +\infty,\\
\omega(x, 0) = 1 - 9\sin 2\pi x + 7\sin 5\pi x, & 0 < x < 1.
\end{aligned}
\]

Solution (a) If \( \mu = 0 \) the general solution of the equation is \( X(x) = a_1 + a_2 x \). The boundary conditions are equivalent to \( a_1 = 0, a_1 + a_2 = 0 \). Therefore \( X(x) = 0 \), i.e. there are no non-trivial solutions.

If \( \mu > 0 \) the general solution of the equation is

\[
X(x) = a_1 e^{-\sqrt{\mu} x} + a_2 e^{-\sqrt{\mu} x}.
\]

Solution (b) The solution is

\[
X(x) = a_1 e^{-\sqrt{\mu} x} + a_2 e^{-\sqrt{\mu} x}.
\]

Solution (c) The solution is

\[
X(x) = a_1 e^{-\sqrt{\mu} x} + a_2 e^{-\sqrt{\mu} x}.
\]
On The Analytical Solutions of Nonhomogeneous Heat equations

Mustafa A. Sabri

The boundary conditions are equivalent to
\[
\begin{align*}
  a_1 + a_2 &= 0 \\
  a_1 e^{\sqrt{\mu}} + a_2 e^{\sqrt{\mu}} &= 0
\end{align*}
\]
i.e. to
\[
\begin{align*}
  a_1 &= -a_2 \\
  a_1 (e^{\sqrt{\mu}} - e^{\sqrt{\mu}}) &= 0
\end{align*}
\]
This system has only the trivial solution.

Finally, consider \( \mu < 0 \). Then the general solution is
\[
X(x) = a_1 \cos\left(\sqrt{-\mu}x\right) + a_2 \sin\left(\sqrt{-\mu}x\right).
\]
The boundary conditions are equivalent to
\[
\begin{align*}
  a_1 &= 0 \\
  a_1 \cos\sqrt{-\mu} + a_2 \sin\sqrt{-\mu} &= 0,
\end{align*}
\]
i.e. to
\[
\begin{align*}
  a_1 &= 0, \\
  a_2 \sin\sqrt{-\mu} &= 0.
\end{align*}
\]
This system has a non-trivial solution if and only if \( \sin\sqrt{-\mu} = 0 \), i.e. \( \mu = -\pi^2 k^2, k \in \mathbb{N} \). The corresponding non-trivial solution of our boundary-value problem is \( X(x) = \text{const} \sin\pi k x \). Thus, the non-trivial solutions are \( \mu_k = -\pi^2 k^2, X_k(x) = c_k \sin\pi k x, k \in \mathbb{N} \).

(b) Let us find a non-trivial solution of the heat equation which satisfies the boundary condition \( u(0,t) = 0 = u(1,t), 0 \leq t < +\infty \) and has the form \( X(x) M(t) \). From the heat equation we have
\[
M'(t)X(x) - M(t)X''(x) = 0 \Rightarrow \frac{X''(x)}{X(x)} = \frac{M'(t)}{M(t)} \Rightarrow
\]
\[
\frac{X'(x)}{X(x)} = M(t) = \text{const} =: \mu \Rightarrow
\]
\[
X'(x) - \mu X(x) = 0, \quad M'(t) - \mu M(t) = 0.
\]
The boundary condition is equivalent to
\[
M(t)X(0) = 0, M(t)X(1) = 0.
\]
Since \( M \neq 0 \), we obtain for \( X \) the problem from (a). Its non-trivial solutions are found above.

The general solution of \( M \mu M(t) = 0 \) is \( M(t) = \text{const} e^{\mu t} \).
\[
c_k e^{-\pi^2 k^2 t} \sin \pi k x, k \in \mathbb{N},
\]
Are non-trivial solutions of the heat equation which satisfy the boundary condition. Hence, a linear combination
\[
u(x,t) = \sum_k c_k e^{-\pi^2 k^2 t} \sin \pi k x,
\]
Is also such a solution
Now the initial condition implies
On The Analytical Solutions of Nonhomogeneous Heat equations

Mustafa A. Sabri

\[ \sum_{k} c_k \sin \pi k x = 9 \sin 2\pi x + 7 \sin 5\pi x. \]
i.e.

And all other coefficients \( c_k \) equal 0. Thus

\[ u(x, t) = 9e^{-4\pi^2t} \sin 2\pi x + 7e^{-25\pi^2t} \sin 5\pi x \]

Is the solution of the initial-boundary value problem?

(c) It is clear that the solution \( w \) has the form \( w = u + v \), where \( u \) is the solution from (b) and \( v \) is the solution of the following initial-boundary value problem

\[
\begin{cases}
\frac{\partial v(x, t)}{\partial t} - \frac{\partial^2 v(x, t)}{\partial x^2} = 0, & 0 < x < 1, \quad 0 < t < +\infty, \\
v(0, t) = 1, & v(1, t) = 0, \quad 0 \leq t < +\infty \\
v(x, 0) = 1 - x, & 0 < x < 1.
\end{cases}
\]

It is easy to see that \( v(x, t) := 1 - x \) solves the last problem. Therefore

\[ \omega(x, t) = 1 - x + 9e^{-4\pi^2t} \sin 2\pi x + 7e^{-25\pi^2t} \sin 5\pi x. \]

3. Non-homogeneous problem: Duhamel’s principle

Theorem 3.1. [2] (Duhamel) assume that

\( h(x, t) \) in (II) satisfies \( h \in C^1 \) and \( h(0, t) = h(1, 0) = 0 \). Let \( W(t, x, \tau) \) be a solution of

\[
\begin{align*}
W_c &= c^2 W_{xx}(t, x, \tau) \quad 0 < x < l, \\
W |_{x=\tau} &= h(x, \tau), \quad 0 < x < l, \\
W |_{x=0} &= 0, \quad W |_{x=l} = 0, \quad (t > \tau).
\end{align*}
\] (3.1)

Then

\[ u(x, t) = \int_0^t W(t, x, \tau) \, d\tau \]

Is a solution of (II)

Proof the solution of (3.1) is

\[ W(t, x, \tau) = \sum_{k=1}^{\infty} A_k(\tau) e^{\frac{\xi^2 \pi^2 (x-\tau)}{l^2}} \frac{k\pi x}{l}, \quad (3.2) \]

Where

\[ A_k(\tau) = \frac{2}{l} \int_0^l h(x, \tau) \frac{k\pi x}{l} \, dx, (3.3) \]

\[ W(t, x, t) = \sum_{k=1}^{\infty} A_k(t) e^{\frac{\xi^2 \pi^2 (x-t)}{l^2}} \frac{k\pi x}{l} = \sum_{k=1}^{\infty} A_k(t) \frac{k\pi x}{l} = h(x, t) \]
On The Analytical Solutions of Nonhomogeneous Heat equations

Mustafa A. Sabri

Therefore
\[
\frac{\partial u(x,t)}{\partial t} = \frac{\partial}{\partial t} \int_0^t W(t,x,\tau) \, d\tau
\]
\[= W(t,x,t) + \int_0^t \frac{\partial}{\partial t} W(t,x,\tau) \, d\tau = h(x,t) + \int_0^t \frac{\partial}{\partial \tau} W(t,x,\tau) \, d\tau;
\]
\[c^2 \frac{\partial^2 u(x,t)}{\partial x^2} = \int_0^t c^2 \frac{\partial^2}{\partial x^2} W(t,x,\tau) \, d\tau
\]
\[u_x - c^2 u_{xx} = h(x,l) + \int_0^t [W_x - c^2 W_{xx}] \, d\tau = h(x,l),
\]
(W is a solution of (3.1)). The boundary conditions can be easily checked.

4. Application

In this section, we solve the following two mixed problems by separation of variables and Duhamel's principle.

Examples 1:
\[
\begin{cases}
u_t = c^2 u_{xx} + tx(1-x), & (t > 0, 0 < x < l), \\
ux(0) = 0, & (0 < x < l), \\
ux(t) = 0, u(l, t) = 0, & (t > 0)
\end{cases}
\]
Since \( h(x,t) \) satisfies the hypotheses of Theorem 3.1 we calculate \( A_k(\tau) \), noting that
\[\int x^2 \sin(\alpha x) \, dx = \frac{-a^2 x^2 \cos(\alpha x) + 2 \cos(\alpha x) + 2 ax \sin(\alpha x)}{a^2} \]
\[\int x \sin(\alpha x) \, dx = \frac{\alpha x - \cos(\alpha x)}{a^2} + C.
\]
Thus with \( a = \frac{k\pi}{l} \) we have \( \sin(al) = 0 \) and \( \cos(al) = \cos(k\pi) \). Hence,
\[A_k(\tau) = \frac{2}{l} \int_0^1 \tau x(1-x) \sin \frac{k\pi x}{l} \, dx
\]
\[= \frac{2\pi}{l a^3} \left[ a^2 x^2 \cos(\alpha x) - 2 \cos(\alpha x) - 2 ax \sin(\alpha x) + a l \sin(\alpha x) - a^2 l^2 \cos(\alpha x) \right] \bigg|_0^l
\]
\[= \frac{2\pi}{l a^3} \left[ a^2 l^2 \cos(k\pi) - 2 \cos(k\pi) - a^2 l^2 \cos(k\pi) + 2 \right]
\]
\[= \frac{4\pi l^2}{k^3 \pi^3} \left[ 1 - \cos(k\pi) \right]
\]
\[= \begin{cases}
\frac{8I_2}{l^2 \tau}, & k = 2n + 1, n = 0,1, \ldots \\
0, & k = 2n, \quad n = 1,2, \ldots
\end{cases}
\]
Therefore
\[u(x,t) = \int_0^t \sum_{n=0}^{\infty} A_k(\tau) e^{\frac{c^2 (2n+1)^2 \pi^2 (x-x)}{t^2}} \sin \frac{(2n+1)\pi x}{l}
\]
On The Analytical Solutions of Nonhomogeneous Heat equations

Mustafa A. Sabri

\[ u_t = c^2 u_{xx} + t \sin x, \quad (t > 0, 0 < x < \pi), \]
\[ u(x, 0) = 0, \quad (0 < x < \pi), \]
\[ u(0, t) = 0, \quad u(\pi, t) = 0, \quad (t > 0). \]

Since \( h(x,t) \) satisfies the hypotheses of Theorem 3.1 we calculate \( A_k(\tau) \), noting that

\[ \int x^2 \sin(ax) \, dx = \frac{-a^2 x^2 \cos(ax) + 2a x \sin(ax)}{a^3} + C. \]

Thus with \( a = \frac{k \pi}{l} \) we have \( \sin (al) = 0 \) and \( \cos (al) = \cos(kn) \). Hence,

\[ A_k(\tau) = \frac{2}{l} \int_0^\tau \sin x \sin \frac{k \pi x}{l} \, dx \]
\[ = \frac{2 \tau}{l} \left[ \sin \left( \frac{1 - k \pi}{l} \right) x - \frac{\sin \left( \frac{1 + k \pi}{l} \right) x}{1 + \frac{k \pi}{l}} \right]_0^\tau \]
\[ = \frac{\tau}{l} \left[ \sin \left( \frac{1 - a}{1 + a} \right) l x - \frac{\sin \left( 1 + a \right) l x}{1 + a} \right] \]
\[ = \frac{2 \tau k \pi}{l^2 - k^2 \pi^2} \sin \left( l \cos kl \right) \]

Therefore

\[ u(x, t) = \int_0^\infty \sum_{n=0}^\infty A_k(\tau) e^{\frac{-c^2 k^2 \pi^2 (t-\tau)}{l^2}} \sin \frac{k \pi x}{l} \, d\tau \]
\[ = \sum_{n=0}^\infty \left[ \int_0^\tau e^{\frac{-c^2 k^2 \pi^2 (t-\tau)}{l^2}} \frac{2 \tau k \pi}{l^2 - k^2 \pi^2} \left[ \sin \left( l \cos kl \right) \right] \, d\tau \sin \frac{k \pi x}{l} \right] \]
\[ = \sum_{n=0}^\infty \left[ \frac{l^4}{c^4 k^4} \left( \frac{e^{\frac{c^2 k^2 \pi^2}{l^2}} + 1}{1} + \frac{e^{\frac{c^2 k^2 \pi^2}{l^2}}}{1} \right) \frac{2 \tau k \pi}{l^2 - k^2 \pi^2} \sin \left( l \cos kl \right) \right] \boldsymbol{\sin \frac{k \pi x}{l}}. \]
On The Analytical Solutions of Nonhomogeneous Heat equations

Mustafa A. Sabri

5. Conclusion
In this paper, we have used both the separation of variables method and Duhamel’s principle to solve the non-homogeneous heat equation with non-zero initial-boundary conditions. We conclude that this technique is robust and it can be used efficiently to obtain the solution on time-depended problems, such as heat equation.

Acknowledgment
The author would like to thank Mustansiriyah University - www.uomustansiriyah.edu.iq - (Baghdad – Iraq) for its support in the present work.

References
1. L.C. Evans, “Partial Differential Equations”, American Mathematical Society, 1998.
2. P. Giesl, “Partial Differential Equation”, Special Lectures, university of Sussex, 2010
3. O. A. Ladyzenskaja, V.A.Solonnikov and N.N.Uralceva, Linear and Quasilinear Equations of Parabolic Type, Translations of Mathematical Monographs, American Mathematical Society, 23, 1968.
4. M. A. Rasheed, Y. H. Mohammed, On the Analytical and Numerical Solutions of Heat Equation, J. colle. Basic edu. , 24(101), 49-61. (2018).
On The Analytical Solutions of Nonhomogeneous Heat equations

Mustafa A. Sabri

ملخص:
في البحث، نستخدم حلية حل المتغيرات ومبدأ دو هاميل لاستخلاص صيغة الحل العام لهذه المشكلة. على ذلك، نجد الحل لحالة خاصة من هذه المشكلة كتطبيق نتائجنا.

الكلمات المفتاحية: معادلات الحرارة، مشكلة مختلطة، فصل المتغيرات ومبدأ دو هاميل.