A Layer-by-Layer Approach To Retain a Fluorescent Glucose Sensing Assay within the Cavity of a Hydrogel Membrane

Andrea K. Locke, † Anna Kristen Means,‡ Ping Dong, † Tyler J. Nichols, † Gerard L. Cote, †∥ and Melissa A. Grunlan†‡∥

†Department of Biomedical Engineering, †Department of Materials Science and Engineering, ‡Department of Chemistry, and ∥Center for Remote Healthcare Technologies, Texas A&M University, College Station, Texas 77843-3120, United States

ABSTRACT: A continuous glucose monitoring device that resides fully in the subcutaneous tissue has the potential to greatly improve the management of diabetes. Toward this goal, we have developed a competitive binding glucose sensing assay based on fluorescently labeled PEGylated concanavalin-A (PEGylated-TRITC-ConA) and mannotetraose (APTS-MT). In the present work, we sought to contain this assay within the hollow central cavity of a cylindrical hydrogel membrane, permitting eventual subcutaneous implantation and optical probing through the skin. A “self-cleaning” hydrogel was utilized because of its ability to cyclically deswell/reswell in vivo, which is expected to reduce biofouling and therefore extend the sensor lifetime. Thus, we prepared a hollow, cylindrical hydrogel based on a thermoresponsive electrostatic double network design composed of N-isopropylacrylamide and 2-acrylamido-2-methylpropanesulfonic acid. Next, a layer-by-layer (LbL) coating was applied to the inner wall of the central cavity of the cylindrical membrane. It consisted of 5, 10, 15, 30, or 40 alternating bilayers composed of positively charged poly(diallyldimethylammonium chloride) and negatively charged poly(sodium 4-styrenesulfonate). With 30 bilayers, the leaching of the smaller-sized component of the assay (APTS-MT) from the membrane cavity was substantially reduced. Moreover, this LbL coating maintained glucose diffusion across the hydrogel membrane. In terms of sensor functionality, the assay housed in the hydrogel membrane cavity tracked changes in glucose concentration (0 to 600 mg/dL) with a mean absolute relative difference of ~11%.

KEYWORDS: layer-by-layer, hydrogel, thermoresponsive, biosensor, glucose

INTRODUCTION

Diabetes mellitus affects more than 29 million people in the U.S. and over 300 million people worldwide.1 Tight glycemic control is of critical importance, as hyper- and hypoglycemic states can lead to short and long-term complications as well as morbidity.1,2 The commonly used finger-prick test provides only intermittent monitoring and is associated with poor testing compliance stemming from its inconvenience and discomfort. Continuous glucose monitors (CGMs), by providing real-time glycemic monitoring, have the potential to improve diabetes management and health outcomes.3−5 Current FDA-approved CGMs are based on an enzymatic sensor consisting of a needle-type probe comprised of an electrode and embedded glucose oxidase enzyme. The probe is transdermally inserted, and the glycemic level in the interstitial fluid (ISF) is monitored via amperometric signals from the glucose oxidation reaction. While some newer CGMs have eliminated finger-prick test calibrations, the sensors must be replaced every 7−10 days. Their transdermal nature is required for frequent removal and replacement but also is associated with irritation and infection at the insertion site.6 A CGM that could achieve a longer lifetime and thus be implanted fully subcutaneously would represent a significant advancement. To achieve this, progress must be made to improve glucose sensing as well as to reduce sensor biofouling.

Toward the realization of a subcutaneous CGM, we have conducted independent studies on an optical glucose sensing assay and a self-cleaning sensor membrane as described below and in Figure 1.

Optical glucose biosensors are advantageous over electrochemical sensors because they do not rely on the placement of a transducer or other hardware components in direct contact with the specimen during sensing, thereby allowing for the potential development of non- or minimally invasive biosensors. Various optical glucose monitoring approaches have been reviewed in the literature.7−9 Those based on the use of optical modalities include Raman spectroscopy,10−14 optical coherence tomography (OCT),15,16 photoacoustic spectroscopy,17−19 optical polarimetry,20−22 infrared spectroscopy,23,24 and fluorescence spectroscopy.25−31 Competitive binding assays to track glucose levels using Förster resonance energy transfer (FRET) as the transduction mechanism that are based on concanavalin A (ConA) (a glucose receptor) and a glucose-like competing ligand have been described.32−37 At pH 7.4, ConA comprises four identical monomeric subunits,38 each of which has a single carbohydrate...
binding site. ConA is able to reversibly bind to glucose (with high affinity) and a fluorescently labeled competing ligand (presenting multiple low-affinity moieties) (e.g., fluorescein isothiocyanate (FITC)-dextran). Thus, changes in the fluorescence signal at equilibrium can be used to observe the concentration of glucose. However, these assays are prone to aggregation in free solution, a result of extensive cross-linking between the multiple binding sites of ConA and the multivalent competing ligand, as well as the inherent thermal instability of ConA.31,39,40 Thus, we recently reported the use of a new type of competing ligand, aminopyrene trisulfonate mannopentaose (APTS-MT), which presents a single high-affinity trimannose moiety that utilizes the full binding site of ConA and thus avoids aggregation.41 Additionally, we demonstrated that tethering of poly(ethylene glycol) (PEG) to ConA (i.e., PEGylation) improved ConA’s thermal stability and resistance to electrostatic binding.42 Finally, we demonstrated improved FRET efficiency leading to enhanced sensitivity to changes in glucose levels.43 Compared with APTS-dextran, the close proximity of APTS-MT’s core trimannose structure and donor fluorophore decreases the distance between the FRET donor and FRET acceptor on ConA to maximize the FRET efficiency upon binding of the ligand to ConA. Thus, as the glucose concentration increases, the ratio of the fluorescence intensities of the two dyes (520 to 580 nm) would be expected also to increase because of an increase in the Förster radius during the competition between glucose and APTS-MT for the binding sites of ConA (Figure 1a). Thus, in free solution the FRET efficiency of the assay increased from ~25% with APTS-dextran to ~89% with APTS-MT across the physiologically relevant glucose range and thus had 4 times more sensitivity.43 This PEGylated-TRITC-ConA/APTS-MT assay in free solution also displayed a mean absolute relative difference (MARD) of 5% across the physiologically relevant glucose concentration range.

We have also previously described “self-cleaning” membranes directed at reducing biofouling on implanted glucose biosensors (Figure 1b).44,46 These membranes are based on poly(N-isopropylacrylamide) (PNIPAAm) hydrogels, which are known to undergo reversible deswelling/reswelling when cycled above/below their volume phase transition temperature (VPTT).47,48 This process has been applied to thermally control the removal of cultured cells in vitro.49–51 Transdermal heating/cooling or body temperature fluctuations may affect thermal cycling of such an implanted membrane. Most recently, we reported double network (DN) thermoresponsive membranes that incorporated a negatively charged comonomer, 2-acrylamido-2-methylpropane sulfonic acid (AMPS), to improve the mechanical robustness.46,52 Specifically, these DN hydrogels consist of a tightly cross-linked, negatively charged first network [P(NIPAAm-co-AMPS)] containing variable levels of AMPS (NIPAAm:AMPS weight ratio = 100:0 to 25:75) and a loosely cross-linked, interpenetrating second network [PNIPAAm]. In addition, N-vinylpyrrolidone (NVP) (~15 wt % based on NIPAAm weight) was incorporated into the second network to increase the DN VPTT from ~35 to ~38 °C. Thus, when implanted into the subcutaneous tissue, this P(NIPAAm-co-AMPS)/P(NIPAAm-co-NVP) DN membrane would be quite swollen (to maximize glucose diffusion) but cyclical increases/decreases in the temperature of the tissue would cause relative deswelling/reswelling of the membrane to limit cell attachment and to remove adhered cells, as was demonstrated in vitro. Additionally, these membranes demonstrated increased modulus and strength as well as glucose diffusion coefficients ($D = 1.8–2.2 \times 10^{-6}$ cm2/s) in the functional range for dermal and epidermal tissues ($D = (2.64 \pm 0.42) \times 10^{-6}$ and $(0.075 \pm 0.05) \times 10^{-6}$ cm2/s, respectively).53

In this work, we sought to house the fluorescent competitive binding assay within the hollow cavity of a cylindrical self-cleaning membrane, toward creating a subcutaneous CGM...
with long-term efficacy (Figure 1c). The P(NIPAAm-co-AMPS)/P(NIPAAm-co-NVP) DN membrane was prepared with a cylindrical geometry (~5 mm × ~2.5 mm, length × diameter), conducive to implantation via simple subcutaneous injection, and with a hollow central cavity (diameter = 600 μm; volume = 1 μL) to house the assay. As shown herein, the mean size of the membrane exceeded that of the APTS-MT assay component, leading to its rapid leaching from the central cavity. Thus, we evaluated the ability of a layer-by-layer (LbL) coating applied to the surface of the membrane cavity to limit assay diffusion but still permit glucose diffusion. LbL coatings have been explored as semipermeable diffusion barriers on drug-containing microspheres and microcapsules.54–57 Additionally, LbL coatings have been applied to temporary calcium carbonate microsphere templates containing embedded optical sensing assays for the detection of oxygen, glucose, and urea.58–61 However, this approach presents challenges in terms of dissolving the template and achieving optimal loading efficiency of the assay. In contrast, the approach reported here, in which the assay is directly housed in a hollow cavity of a membrane rather than loaded onto a template, provides a route for more efficient loading and control of the assay concentration.

Herein we report the use of a LbL coating to inhibit the leaching of a fluorescent competitive binding assay (mPEG-TRITC-ConA/APTS-MT) from the central cavity of a PNIPAAm-based self-cleaning membrane. The negative charge of the P(NIPAAm-co-AMPS)/P(NIPAAm-co-NVP) DN membrane, stemming from the highly ionized nature of the AMPs comonomer,62 provided an excellent substrate on which to build a LbL coating. The LbL coating comprised bilayers of positively charged poly(diallyldimethylammonium chloride) (PDADMAC) and negatively charged poly(sodium 4-styrenesulfonate) (PSS). The extent of assay leaching and rate of glucose diffusion as functions of the number of PDADMAC/PSS bilayers (5, 10, 15, 30, or 40) were investigated. Additionally, biosensors (i.e., assay-loaded membranes) were evaluated for their sensitivity to track glucose levels across a physiological range.

Materials and Methods

2.1. Materials

NIPAAm (97%), AMPS (97%), NVP, PEG-DA (~99%; Mn = 575 g/mol), Trizma hydrochloride (Trizma-HCl), manganese(II) chloride (MnCl2), sodium bicarbonate, methyl α,ω-mannopranoside (MaM), PDADMAC solution (MW = 100–200 kDa), PSS (MW ≈ 70 kDa), and FITC-dextran (MW = 4, 10, 20, or 40 kDa) were obtained from Sigma-Aldrich (St. Louis, MO). Rhodamine B isothiocyanate poly(allylamine hydrochloride) (RITC-PAH) was prepared by reacting PAH hydrochloride (MW = 15 kDa) and RITC at a RITC:PAH molar ratio of 20:1 per analogous report.63 N,N’-Methylenebis(acrylamide) (BIS) (99%) was purchased from Acros. 2-Hydroxy-2-methyl-1-phenylpropan-1-one (AROCUR 1173) was purchased from Ciba Specialty Chemicals (Basel, Switzerland). 1-[4-(2-Hydroxyphenoxy)phenyl]-2-hydroxy-2-methylpropan-1-one (Irgacure 2959) was purchased from BASF. Calcium chloride dihydrate (CaCl2) was purchased from J.T. Baker (Center Valley, PA). Sodium chloride (NaCl) was obtained from Mallinkrodt Chemical (St. Louis, MO). Methoxyl-polylethylene glycol-N-hydrosulfinicimide-succinimidyl carbonate (mPEG-NHS (SC), 5 kDa) was purchased from Nanocs (New York, NY). Anhydrous dextrose (r-glucose) was purchased from Fisher Scientific (Pittsburgh, PA). Cona labeled with tetramethylrhodamine fluorescent dye (TRITC-ConA) and RITC was purchased as a lyophilized powder from Life Technologies (Grand Island, NY). The Tris-buffered saline (TBS) (pH 7.4, 10 mM Trizma-HCl, 0.15 M NaCl, 1 mM MnCl2, and 1 mM CaCl2) and 0.1 M sodium bicarbonate buffer (pH 8.5, 0.15 M NaCl) were prepared with deionized (DI) water (18 MΩ cm). Glass beads (70–80 μm diameter) were purchased from Cospheric LLC (Santa Barbara, CA). The dialysis membrane tubes (20 kDa molecular weight cutoff) were purchased from Spectrum Laboratories (Rancho Dominguez, CA).

2.2. Synthesis of Assay Components

PEGylated-TRITC-ConA and APTS-MT were prepared according to our prior reports.41,42 In this way, PEGylated-TRITC-ConA was formed with an average of ~5 mPEG chains grafted per ConA monomer.42

2.3. Membrane Fabrication

The “first network precursor solution” was formed with NIPAAm and AMPS monomer (NIPAAm:AMPS weight ratio = 75:25, total weight = 1.0 g), BIS cross-linker (0.04 g), Irgacure 2959 photoinitiator (0.08 g), and DI water (7.0 mL). The “second network precursor solution” was formed by combining NIPAm (6.0 g), NVP (0.96 g), Bis (0.012 g), Irgacure 2959 (0.24 g), and DI water (21.0 mL). Planar Sheets. Planar sheets (~1.5 mm thickness) were prepared by pipetting the first network precursor solution into a rectangular mold consisting of two glass slides separated by 1 mm thick Teflon spacers. The mold was immersed in an ice–water bath and exposed for 30 min to UV light (UV transilluminator, 6 mW cm−2, 365 nm). The resulting single network (SN) hydrogel was removed from the mold, soaked in DI water for 2 days, and then transferred to the second network precursor to soak for 2 days at 4 °C. The hydrogels were then sandwiched between two glass slides with 1.25 mm thick Teflon spacers enclosing the edges for support. The molds were immersed in an ice–water bath and exposed for 30 min to UV light. The DN hydrogels were removed from the mold and soaked in DI water as before. These specimens were used to measure glucose diffusion.

Hollow Cylindrical Rods. Hollow cylindrical SN rods were prepared by pipetting the first network solution into a cylindrical glass mold (outer diameter = 1 mm, length = 10 mm) fitted with custom Teflon end caps to secure a steel wire (diameter = 300 μm) through the center of the mold and to seal the mold. The mold was immersed in an ice–water bath and exposed for 30 min to UV light as above. To remove the SN hydrogel rods, the Teflon caps were detached, and the molds were heated in an oven (~1 h at 120 °C) to dehydrate and subsequently shrink the rods so that they easily slid out of the mold intact. The SN hydrogels were soaked in DI water for 2 days at room temperature and then transferred into the second network precursor solution for 2 days at 4 °C. Next, a steel wire (~300 μm diameter, representing the new cavity diameter of ~600 μm postswelling) was inserted into the hollow cavity. The construct was wrapped in transparent plastic wrap (Saran), submerged in an ice–water bath, exposed for 10 min to UV light, and finally soaked in DI water as above. The steel wire was removed, and a clean razor blade was used to trim the ends, resulting in hollow rods (5 mm × 2.5 mm × 600 μm, length × outer diameter × inner diameter).

2.4. Membrane Mesh Size

Discs (~13 mm diameter) were harvested from the uncoated hydrogel slabs (~1.5 mm thickness) with a biopsy punch. Each disc was immersed in 0.01 mg/mL FITC-dextran solution for 2 days and then rinsed with DI water, blotted with a Kimwipe, and placed in 1 mL of DI water. The fluorescence intensity of the DI water (due to diffusion of FITC-dextran from the disc) was monitored at different time points (5 min, 24 h, and 48 h) starting from the time the sample was placed in DI water. The percent intensity ratio (%I) was determined by eq 1,

\[\% I = \frac{I_{\text{final}}}{I_{\text{initial}}} \times 100 \]

where Iinitial is the intensity of DI water at a given time point and Ifinal is the intensity of the 0.01 mg/mL stock solution. A %I value of <5% indicated that a trace amount of FITC-dextran could diffuse into the sample, indicating that the particular FTIC-dextran was larger than the hydrogel’s mesh size.

2.5. Hydrodynamic Radii of Assay Components

The hydrodynamic radii of PEGylated-TRITC-ConA and APTS-MT were determined by...
were previously determined to be -15 and -1-2 nm, respectively, via
dynamic light scattering measurements.22,23 The hydrodynamic radius
glucose is reported to be ∼0.4 nm.24

2.6. Deposition of an LBL Coating onto the Inner Cavity
Walls of Membrane Rods and onto Planar Slabs. The
polyelectrolytes PDDMAC, PSS, and RITC-PAH2 were prepared at
pH 8 in 5 mM sodium bicarbonate buffer at a concentration of 2
mg/mL. The hollow membrane rod was connected to the inlet and
outlet needles (gauge = 30), which were then connected via Teflon
tubing (i.d. = 1/32”) to a plastic syringe with the designated
polyelectrolyte solution or DI water. The syringe was used to dispense
1 mL of solution into the hollow rod cavity, and the solutions were
sequentially rinsed through the cavity with short (∼1 min) delays
between: DI water (5 mL, 3×), positively charged polyelectrolyte (1
mL, 1×), DI water (5 mL, 1×), negatively charged polyelectrolyte (1
mL, 1×) and DI water (5 mL, 1×). After all of the bilayers had been
deposited, the cavity was rinsed again with DI water (5 mL, 3×). The
portions of the rods that were not coated because the needle was
previously been coated with 0, 5, 15, 30, or 40 PDDMAC/PSS
bilayers was filled with 1 μL of the glucose sensing assay solution. The
assay solution consisted of 10 μM mPEG-TRITC-ConA and 2 μM
APTS-MT prepared in TBS. After injection of the assay via the open
cavity, each end of the hollow cavity was first capped with a glass bead
and then secured by applying ∼0.5 μL of a PEG-DA solution (575 g/
ml; ∼99 wt %) and cured by exposure to UV light (20 s). The sealed
rods were thoroughly rinsed with DI water. Each resulting “biosensor”
was individually submerged in 150 μL of TBS solution inside a 200
μL PCR centrifuge tube. After 10 min, a small volume of high-
concentration glucose solution (glucose dissolved in TBS) was
pipetted into the tube to achieve a final glucose concentration of 1000
mg/dL, and the sealed tube (additionally wrapped with Parafilm) was
incubated at room temperature. After 24 h, 50 μL of the supernatant
surrounding a biosensor was removed and transferred to a microplate
reader, and fluorescence measurements were recorded (Tecan
microplate reader; excitation wavelength (λex) = 450 nm; emission
wavelength (λem) range = 480 to 680 nm). The emission peak at
∼520 nm was recorded as it pertained to the presence of APTS-MT
in the supernatant. Three different biosensors with the designated
number of bilayers were used for these measurements.

Next, a more in depth leaching study of both assay components
was conducted for biosensors coated LbL with 0 or 30 PDDMAC/
PSS bilayers. Biosensors were likewise prepared and individually
submerged in 150 μL of glucose solution (1000 mg/dL) inside a 200
μL PCR centrifuge tube. After 1 h, 50 μL of the supernatant
surrounding a biosensor were removed and transferred to a microplate
reader, and fluorescence measurements were recorded (Tecan
microplate reader, excitation wavelength (λex) = 450 nm, λem range = 480 to 680 nm). The peak emissions at ∼520 and ∼580 nm, indicative of the presence
of APTS-MT and PEGylated-TRITC-ConA, respectively, were rec-
corded. The supernatant was then transferred back to the respective
PCR tubes. Fluorescence measurements were repeated at times of 2,
3, 4, 5, 8, and 12 h. Three different biosensors with the designated
number of bilayers were used for these measurements. To determine
the corresponding percent loss of each assay component, 1 μL of the
glucose sensing assay solution was pipetted directly into 150 μL of
1000 mg/dL glucose solution in TBS to simulate complete leaching of
the assay from the membrane cavity. Then 50 μL of this free assay
solution was subjected to fluorescence measurements as above
(APTS-MT: λex = 450 nm, λem range = 480 to 680 nm, peak λem ≈ 520
nm; PEGylated-TRITC-ConA: λex = 540 nm, λem = 560 to 620 nm, peak
λem ≈ 580 nm). The percent lost was calculated as the ratio of the
measured peak emission for each assay component present in the
biosensor’s supernatant and the initial intensity for each assay
component from the above free assay solution measurement.

2.9. Glucose Response of the Assay-Containing Membrane
(“Biosensor”). An initial 24 h glucose response study was conducted for
biosensors whose hollow cavity was coated LbL with 0, 5, or 30
PDDMAC/PSS bilayers. Each biosensor was individually placed
horizontally in a 96-well plate (Greiner Bio-One), and 200 μL of TBS
solution was pipetted into each well. After 10 min, fluorescence
measurements were recorded (Tecan microplate reader, λex = 450 nm, λem range = 480 to 680 nm), and the FRET ratio (520 nm/600 nm)
was recorded as noted above. Next, the biosensor was transferred to a
200 μL PCR centrifuge tube containing 150 μL of high glucose
concentration (1000 mg/dL) solution. After 24 h, fluorescence
measurements were again taken, and the FRET ratio was likewise
recorded. Three different biosensors with the designated number of
bilayers were used for these measurements.

Next, a temporal glucose response study was likewise conducted for
biosensors whose cavities were coated LbL with 30 PDDMAC/PSS
bilayers and exposed to physiologically relevant glucose levels
(50–600 mg/dL). A given biosensor was progressively transferred to
the well containing a solution of the next highest glucose
concentration. After 15 min, the FRET ratio (520 nm/600 nm) was
recorded. To determine the percent MARD, the FRET ratio was then
plotted as a function of the glucose concentration and fitted to a
standard competitive binding curve based on the Boltzmann equation.
Three different biosensors were used for these measurements.
2.10. Statistical Analysis. All of the data results are reported as mean ± standard deviation. For each set of data, mean values were compared via GraphPad Prism using analysis of variance (ANOVA) followed by a Tukey post hoc test to determine p values.

RESULTS AND DISCUSSION

Mesh Size of Self-Cleaning DN Membrane. The thermoresponsive, electrostatic P(NIPAAm-co-AMPS)/P-(NIPAAm-co-NVP) DN membrane was previously shown to exhibit resistance to cell adhesion and accumulation and to display robust mechanical properties. The mesh size of the membrane was evaluated herein and determined to be ∼6.5 to 10 nm. The hydrodynamic radius of PEGylated-TRITC-ConA (∼15 nm) thus exceeds the membrane mesh size, and thus, PEGylated-TRITC-ConA was not anticipated to diffuse from the membrane cavity and through the membrane wall. However, diffusion of APTS-MT would be expected on the basis of its much lower hydrodynamic radius (∼1–2 nm). Thus, to prevent leaching of the assay from the hollow cavity of the membrane, we proceeded with application of LbL coatings onto the cavity wall.

Imaging of an LbL Coating Applied to a Membrane Hollow Cavity Wall. To confirm the ability of an LbL coating to line the inner cavity wall of the DN membrane rod, six bilayers of a fluorescently labeled PAH+ (RITC-PAH+) and PSS− were applied. The fluorescence images distinctly confirm the presence of the fluorescent LbL coating (Figure 2). Thus, the negative charge stemming from the AMPS comonomer of the DN membrane provided the necessary charged substrate on which the initial, positively charged polyelectrolyte layer (RITC-PAH+) could be applied, and the LbL coating withstood successive washes with DI water. Moreover, the corresponding bright-field image shows the absence of fluorescence within the middle and outer parts of the walls of the membrane, confirming that the polyelectrolytes did not appreciably diffuse into the membrane walls (Figure 2, inset).

Glucose Diffusion Test. To determine whether the presence of the LbL coatings hindered glucose diffusion, studies were conducted on planar DN membranes coated with 0, 10, 20, or 30 PDADMAC+/PSS− bilayers. As shown in Figure 3, there were no statistical differences in the measured glucose diffusion coefficients. This is attributed to the small hydrodynamic radius of glucose (∼0.4 nm).

Leaching of APTS-MT versus Number of Bilayers. Biosensors were created by coating the hollow cavities of DN membrane rods with 0, 5, 15, 30, or 40 PDADMAC+/PSS− bilayers and subsequently filling the cavities with 1 μL of the glucose sensing assay solution. Each biosensor was submerged in a solution with a high glucose concentration (1000 mg/dL). This high concentration of glucose leads to the unbound states of PEGylated-TRITC-ConA and APTS-MT (Figure 1a) and thus maximizes the potential of assay components to diffuse through the membrane. As noted above, in the unbound state only APTS-MT was expected to be able to diffuse through the membrane. Thus, for initial fluorescence measurements of the liquid surrounding each biosensor, the emission peak at ∼520 nm was recorded at 24 h to detect APTS-MT that had leached from the cavity (Figure 4). The fluorescence intensity of APTS in the supernatant surrounding the biosensor progressively decreased as the number of PDADMAC+/PSS− bilayers increased from 5 to 15 and 30 but did not decrease significantly further with 40 bilayers. On the basis of their superior retention of the APTS-MT assay component, biosensors with 30 bilayers were evaluated intermittently over a period of 12 h when exposed to 1000 mg/dL glucose solution. The fluorescence at both λem ≈ 520 nm and λem ≈ 580 nm from the supernatant surrounding a biosensor were recorded to detect the presence of APTS-MT.
and PEGylated-TRITC-ConA, respectively. On the basis of a hydrodynamic radius (∼15 nm) that exceeds the membrane’s mesh size (∼6.5 to 10 nm), mPEG-TRITC-ConA was retained even in the absence of the LbL coating (Figure 5a).

Over all of the time points, it was calculated that less than 6% of the PEGylated-TRITC-ConA housed in the biosensor cavity had leached through the membrane wall and into the surrounding supernatant. In contrast, because of its very low hydrodynamic radius (∼1−2 nm), APTS-MT readily diffused from the uncoated biosensor cavity, with the level increasing progressively over 12 h (Figure 5b). This diffusion resulted in losses of 13% and 64% of APTS-MT at 1 and 12 h, respectively. However, for a biosensor whose cavity was coated with 30 bilayers, diffusion of APTS-MT was substantially diminished, leading to losses of 4% and 24% after 1 and 12 h.

Glucose Response of Biosensors. The potential impact of the LbL coating on the glucose responsivity of the biosensor was initially evaluated by comparing the FRET ratios of biosensors with no bilayers (“0 bilayers”) and low (“5 bilayers”) and high (“30 bilayers”) numbers of bilayers applied to the cavity wall before and after 24 h exposure to a solution with a high glucose concentration (Figure 6). Upon exposure to a high glucose level, the FRET response of the assay system should increase (Figure 1a). However, for biosensors with 0 or 5 bilayers, this was not observed. On the basis of the glucose diffusion studies, an LbL coating (even at 30 bilayers) does not inhibit glucose diffusion through the membrane (Figure 3).

Over all of the time points, it was calculated that less than 6% of the PEGylated-TRITC-ConA housed in the biosensor cavity had leached through the membrane wall and into the surrounding supernatant. In contrast, because of its very low hydrodynamic radius (∼1−2 nm), APTS-MT readily diffused from the uncoated biosensor cavity, with the level increasing progressively over 12 h (Figure 5b). This diffusion resulted in losses of 13% and 64% of APTS-MT at 1 and 12 h, respectively. However, for a biosensor whose cavity was coated with 30 bilayers, diffusion of APTS-MT was substantially diminished, leading to losses of 4% and 24% after 1 and 12 h.

Figure 5. Cumulative fluorescence of the supernatant surrounding assay-filled biosensors (whose cavities were coated with 0 or 30 bilayers) during 12 h exposure to a solution of high glucose concentration (1000 mg/dL): (a) normalized fluorescence (λ_em ≈ 580 nm) due to TRITC of PEGylated-TRITC-ConA and (b) normalized fluorescence (λ_em ≈ 520) due to APTS of APTS-MT.

Thus, this compromised FRET response can be attributed to the loss of APTS-MT from the biosensors whose cavities were coated with 0 or 5 bilayers (Figures 4 and 5b). In contrast, because of its retention of APTS-MT, a biosensor whose cavity was coated with 30 bilayers exhibited the expected increase in FRET response.

Because of its retention of APTS-MT and subsequent increased FRET response to high glucose levels, biosensors with 30 bilayers were sequentially exposed to increasing physiologically relevant glucose concentrations (50 to 600 mg/dL) for 15 min intervals (Figure 7). Across this range, the biosensors exhibited the expected progressive increase in FRET response, indicating their responsivity to different glucose levels after only short time intervals.

For these biosensors with 30 bilayers, the % MARD was determined by plotting the FRET ratio as a function of the glucose concentration and fitting to a standard competitive binding curve (Figure 8). The results indicated that these biosensors are able to track changes in glucose concentration across the physiologic range with a MARD of 11 ± 0.9%. Our group has previously reported that the glucose response of this assay in free solution resulted in a MARD of ∼5% across a physiological relevant glucose range.43 While the % MARD increased upon housing of the assay in the biosensor cavity, this is expected because glucose must now diffuse across the membrane wall to reach the assay.
Figure 8. Predicted versus actual glucose response of three assay-filled biosensors whose cavities were coated with 30 bilayers, corresponding to a calculated MARD of ~11%.

CONCLUSIONS

Toward the development of a CGM with an extended lifetime and the ability to be implanted fully subcutaneously, we have reported the incorporation of a fluorescent competitive binding glucose sensing assay within the central cavity of a cylindrical “self-cleaning” membrane. The assay comprised PEGylated-TRITC-ConA and APTS-MT, and the membrane was a thermoresponsive, electrostatic P(NIPAAm-co-AMPS)/P(NIPAAm-co-NVP) DN hydrogel. Of central importance was reducing the leaching of the assay from the membrane cavity. Therefore, an LbL coating comprising PDADMAC+/PSS bilayers was applied to the biosensor cavity walls. The negatively charged nature of the membrane imparted by the AMPS comonomer provided a suitable substrate for the LbL coating. The membrane’s determined mesh size (~6.5 to 10 nm) indicated that the necessary diffusion of glucose (~0.4 nm) would not be inhibited and that undesired assay component leaching would not be expected for PEGylated-TRITC-ConA (~15 nm) but would be for APTS-MT (~1–2 nm). Indeed, even a 30 bilayer LbL coating was shown not to diminish glucose diffusion, and PEGylated-TRITC-ConA leaching was limited (<6%) for even uncoated membranes. However, uncoated membrane cavities permitted the loss of 64% of APTS-MT (under high glucose concentration conditions) in just 12 h. When the cavity was coated with 30 bilayers, loss of APTS-MT from the cavity was reduced to 24%. Such biosensors also exhibited the expected increase in FRET response upon successive exposure to increasing concentrations of glucose (50 to 600 mg/dL) over brief time intervals (15 min). Moreover, these biosensors were able to track changes in physiological glucose concentrations with a MARD of 11 ± 0.9%. Thus, an LbL coating shows potential to realize the effective housing of this optical glucose sensing assay in a self-cleaning membrane. Further refinement of the LbL coating or the membrane mesh size (e.g., through cross-linking density) may afford further diminished assay diffusion.

AUTHOR INFORMATION

Corresponding Author
E-mail: mgrunlan@tamu.edu.

ORCID
Melissa A. Grunlan: 0000-0002-5428-0461

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors thank Dr. Ashvin Nagaraja (Texas A&M University) and Prof. Gyula Vigh (Texas A&M University) for assisting with the preparation of RITC-PAH and APTS-MT, respectively. Funding from the NIH/NIDDK (1R01DK095101-01A1) is gratefully acknowledged. This work was supported in part by funding from the National Science Foundation Engineering Research Center for Precise Advanced Technologies and Health Systems for Underserved Populations (PATHS-UP) (Award 1648451).

REFERENCES

(1) American Diabetes Association. Diabetes Basics. http://www.diabetes.org/diabetes-basics/ (accessed June 25, 2018).
(2) American Diabetes Association. Economic Costs of Diabetes in the U.S. in 2012. Diabetes Care 2013, 36, 1033–1046.
(3) Bode, B.; Battelino, T. Continuous Glucose Monitoring. Int. J. Clin. Pract. 2010, 64, 11–15.
(4) Beck, R. W.; et al. The Effect of Continuous Glucose Monitoring in Well-controlled Type 1 Diabetes. Diabetes Care 2009, 32, 1378–1383.
(5) Klonoff, D. C. Continuous Glucose Monitoring Roadmap for 21st Century Diabetes Therapy. Diabetes Care 2005, 28, 1231–1239.
(6) Damiano, E. R.; El-Khatib, F. H.; Zheng, H.; Nathan, D. M.; Russell, S. J. A Comparative Effectiveness Analysis of Three Continuous Glucose Monitors. Diabetes Care 2013, 36, 251–259.
(7) McNichols, R. J.; Coté, G. L. Optical Glucose Sensing in Biological Fluids: An Overview. J. Biomed. Opt. 2000, 5, 5–16.
(8) Oliver, N. S.; Toumazou, C.; Cass, A. E. G.; Johnston, D. G. Glucose Sensors: A Review of Current and Emerging Technology. Diabet. Med. 2009, 26, 197–210.
(9) Wang, J. Glucose Biosensors: 40 Years of Advances and Challenges. Electroanalysis 2001, 13, 983–988.
(10) Shafer-Peltier, K. E.; Haynes, C. L.; Glucksberg, M. R.; Van Duyne, R. P. Toward a Glucose Biosensor based on Surface-enhanced Raman Scattering. J. Am. Chem. Soc. 2005, 125, 588–593.
(11) Barman, I.; Kong, C. R.; Dingari, N. C.; Dasari, R. R.; Feld, M. S. Development of Robust Calibration Models Using Support Vector Machines for Spectroscopic Monitoring of Blood Glucose. Anal. Chem. 2010, 82, 9719–9726.
(12) Enejder, A. M.; Scicina, T. G.; Oh, J.; Hunter, M.; Shih, W. C.; Sasic, S.; Horowitz, G. L.; Feld, M. S. Raman Spectroscopy for Noninvasive Glucose Measurements. J. Biomed. Opt. 2005, 10, 031114.
(13) Lambert, J. L.; Morookian, J. M.; Sirks, S. J.; Borchert, M. S. Measurement of Aqueous Glucose in a Model Anterior Chamber Using Raman Spectroscopy. J. Raman Spectrosc. 2002, 33, 524–529.
(14) Qi, D.; Berger, A. J. Chemical Concentration Measurement in Blood Serum and Urine Samples Using Liquid-core Optical Fiber Raman Spectroscopy. Appl. Opt. 2007, 46, 1726–1734.
(15) Esenaliev, R. O.; Larin, K. V.; Larina, I. V.; Motamed, M. Noninvasive Monitoring of Glucose Concentration with Optical Coherence Tomography. Opt. Lett. 2001, 26, 992–994.
(16) Sapozhnikova, V. V.; Prough, D.; Kuranov, R. V.; Cicenaite, I.; Esenaliev, R. O. Influence of Osmolytes on in vivo Glucose Monitoring Using Optical Coherence Tomography. Exp. Biol. Med. 2006, 231, 1323–1332.
(17) MacKenzie, H. A.; Ashton, H. S.; Shen, Y. C.; Lindberg, J.; Rae, P.; Qian, K. M.; Spiers, S. Blood Glucose Measurements by Photocoustic. OSA Trends Opt. Photonics 1998, 22, BTuC1.
(18) Weiss, R.; Yegorchikov, Y.; Shusterman, A.; Raz, I. Noninvasive Continuous Glucose Monitoring Using Photoacoustic Technology - Results from the First 62 Subjects. Diabetes Technol. Ther. 2007, 9, 68–74.
(19) Zeng, L.; Liu, G.; Yang, D.; Ren, Z.; Huang, Z. Design of a Portable Noninvasive Photocoustic Glucose Monitoring System
Polarimetric-based Glucose Sensor.

ACS Applied Bio Materials

Affinity Assay.

John Wiley & Sons: London, 1976.

Corneal Birefringence Compensated Glucose Sensing Polarimeter.

Engineered Binding Polypeptides Towards

P.; Daunert, S. Continuous Glucose Sensor Using Novel Genetically

Wavelength.

Assay within Microporated Poly(ethylene glycol) Microspheres

G. L. Encapsulation of a Concanavalin A/dendrimer Glucose Sensing

Hydrogel.

Cote

Glucose Transport Time Delay Between the Blood and Aqueous

Diabetes Care

New Technique for Developing Implantable Sensors for Glucose and

Nanoengineered Fluorescent Biosensors.

2002

2011

16.

Neudecker, S.; Pucci, A.; Petrich, W. Continuous Glucose Monitoring

term Performance Study of a Near-infrared Fluorescence Affinity

J. Biomed. Opt.

Birefringence.

Blood Glucose Measurements by Near-infrared Transmission Spec-

troscopy Across Human Tongues. Diabetes Technol. Ther.

20, 5–16.

(25) Burmeister, J. J.; Arnold, M. A.; Small, G. W. Noninvasive Blood Glucose Measurements by Near-infrared Transmission Spectroscopy Across Human Tongues. Diabetes Technol. Ther. 2000, 2, 533–538.

(26) Vranic, C.; Fomicheva, A.; Gretta, N.; Herrmann, C.; Neudecker, S.; Pucic, A.; Petrich, W. Continuous Glucose Monitoring by means of Mid-infrared Transmission Laser Spectroscopy in vitro. Analyst 2011, 136, 1192–1198.

(27) McShane, M. J. Potential for Glucose Monitoring with Nanoengineered Fluorescent Biosensors. Diabetes Technol. Ther. 2002, 4, 533–538.

(28) Ballerstadt, R.; Polak, A.; Beuhler, A.; Frie, J. In vitro Long-term Performance Study of a Near-infrared Fluorescence Affinity Sensor for Glucose Monitoring. Biosens. Bioelectron. 2004, 19, 905–914.

(29) D’Auria, S.; Di Cesare, N.; Gryczynski, Z.; Gryczynski, I.; Rossi, M.; Lakowicz, J. R. A thermophlic Apogologue Dehydrogenase as Nonconsuming Glucose Sensor. Biochem. Biophys. Res. Commun. 2000, 274, 727–731.

(30) Siegrist, J.; Kazarin, T.; Ensor, C.; Joel, S.; Madou, M.; Wang, P.; Daenert, S. Continuous Glucose Sensor Using Novel Genetically Engineered Binding Polypeptides Towards in vivo Applications. Sens. Actuators, B 2010, 149, 51–58.

(31) Tolosa, L.; Malak, H.; Raob, G.; Lakowicz, J. R. Optical Assay for Glucose Based on the Luminescence Decay Time of the Long Wavelength. Sens. Actuators, B 1997, 45, 93–99.

(32) Schultz, J. S.; Mansouri, S.; Goldstein, I. J. Affinity sensor: A New Technique for Developing Implantable Sensors for Glucose and Other Metabolites. Diabetes Care 1982, 5, 245–253.

(33) Ballerstadt, R.; Schultz, J. S. A Fluorescence Affinity Hollow Fiber Sensor for Continuous Transdermal Glucose Monitoring. Anal. Chem. 2000, 72, 4185–4192.

(34) Ibej, B. L.; Beier, H. T.; Yadavalli, V. K.; Rounds, R. M.; Pishko, M. V.; Coté, G. L. Competitive Binding Assay For Glucose Based on Glycodendrimer-fluorophore Conjugates. Anal. Chem. 2005, 77, 7039–7046.

(35) Liao, K-C.; Hogen-Ensch, T.; Richmond, F. J.; Marcu, L.; Clifton, W.; Loeb, G. E. Percutaneous Fiber-optic Sensor for Chronic Glucose Monitoring in vivo. Biosens. Bioelectron. 2008, 23, 1458–1465.

(36) Cummins, B. M.; Lim, J.; Simanek, E. E.; Pishko, M. V.; Coté, G. L. Encapsulation of a Concanavalin A/dendrimer Glucose Sensing Assay within Microporated Poly(ethylene glycol) Microspheres Biomed. Biomed. Opt. Express 2011, 2, 1243–1257.

(37) Russell, R. J.; Pishko, M. V.; Gefrides, C. C.; McShane, M. J.; Coté, G. L. R. Fluorescence-based Glucose Biosensor Using Concanavalin A and Dextran Encapsulated in a Poly(ethylene glycol) Hydrogel. Anal. Chem. 1999, 71, 3126–3132.

(38) Concanavalin A as a Tool; Bittiger, H., Schnebli, H. P., Eds.; John Wiley & Sons: London, 1976.

(39) Ewahld, R.; Ballerstädt, R.; Dautzenberg, H. Viscosimetric Affinity Assay. Anal. Biochem. 1996, 234, 1–8.

(40) McCartney, L. J.; Pickup, J. C.; Rolinski, O. J.; Birch, D. J. S. Near-Infrared Fluorescence Lifetime Assay for Serum Glucose Based on Allophycocyanin-Labeled Concanavalin A. Anal. Biochem. 2001, 292, 216–221.

(41) Cummins, B. M.; Li, M.; Locke, A. K.; Birch, D. J. S.; Vigh, G.; Coté, G. L. Overcoming the Aggregation Problem: A New Type of Fluorescent Ligand for ConA-based Glucose Sensing. Biosens. Bioelectron. 2015, 63, 53–60.

(42) Locke, A. K.; Cummins, B. M.; Abraham, A. A.; Coté, G. L. PEGylation of Concanavalin A to Improve Its Stability for An in vitro Glucose Sensing Assay. Anal. Chem. 2014, 86, 9901–9907.

(43) Locke, A. K.; Cummins, B. M.; Coté, G. L. High Affinity Mannosetraose as an Alternative to Dextran in ConA Based Fluorescent Affinity Glucose Assay Due to Improved FRET Efficiency. ACS Sensors 2016, 1, 584–590.

(44) Gant, R.; Hou, Y.; Granulan, M. A.; Coté, G. L. Development of a Self-Cleaning Sensor Membrane for Implantable Biosensors. J. Biomed. Mater. Res., Part A 2009, 90A, 695–701.

(45) Abraham, A. A.; Fei, R.; Coté, G. L.; Granulan, M. A. Self-cleaning Membrane to Extend the Lifetime of An Implanted Glucose Biosensor. ACS Appl. Mater. Interfaces 2013, 5, 12832–12838.

(46) Fei, R.; Means, A. K.; Abraham, A. A.; Locke, A. K.; Coté, G. L.; Granulan, M. A. Self-cleaning, Thermoresponsive PNIPAAm-co-AMPS) Double Network Membranes for Implanted Glucose Biosensors. Macromol. Mater. Eng. 2016, 301, 935–943.

(47) Huffman, A. S.; Afrassibi, A.; Dong, L. C. Thermally Reversible Hydrogels: II. Delivery and Selective Removal of Substances from Aqueous Solution. J. Controlled Release 1986, 4, 213–222.

(48) Zhang, J.; Pelton, R.; Deng, Y. Temperature-dependent Contact Angles of Water on Poly(N-isopropylacrylamide) Gels. Langmuir 1995, 11, 2301–2302.

(49) Okano, T.; Yamada, N.; Okuhara, M.; Sakai, H.; Sakurai, Y. Mechanism of Cell Detachment from Temperature-modulated, Hydrophilic-hydrophobic Polymer Surfaces. Biomaterials 1995, 16, 297–303.

(50) Yamato, M.; Akiyama, Y.; Kobayashi, J.; Yang, J.; Kikuchi, A.; Okano, T. Temperature-responsive Cell Culture Surfaces for Regenerative Medicine with Cell Sheet Engineering. Prog. Polym. Sci. 2007, 32, 1123–1133.

(51) Kobayashi, J.; Okano, T. Fabrication of a Thermoresponsive Cell Culture Dish: A Key Technology for Cell Sheet Tissue Engineering. Sci. Technol. Adv. Mater. 2010, 11, 014111.

(52) Fei, R.; George, J. T.; Park, J.; Means, A. K.; Granulan, M. A. Ultra-strong Thermoresponsive Double Network Hydrogels. Soft Matter 2013, 9, 2912–2919.

(53) Khalil, E.; Kretsos, K.; Kasting, G. B. Glucose Partition Coefficient and Diffusivity in the Lower Skin Layers. Pharm. Res. 2006, 23, 1227–1234.

(54) Decher, G.; Hong, J. D.; Schmitl, J. Buildup of Ultrathin Alternating Adsorption of Anionic and Cationic Polyelectrolytes on Charged Surfaces. Thin Solid Films 1992, 210-211, 831–835.

(55) Iost, R. M.; Crespolin, F. N. Layer-by-layer Self-assembly and Electrochemistry: Applications in Biosensing and Bioelectronics. Bioins. Bioelectron. 2012, 31, 1–10.

(56) Tong, W.; Song, X.; Gao, C. Layer-by-layer Assembly of Microcapsules and Their Biomedical Applications. Chem. Soc. Rev. 2012, 41, 6103–6124.

(57) Swati, M.; Srivastava, R. Polyelectrolyte-Coated Alginite Microspheres for Optical Urea Sensing. In Proceedings of the 2009 9th IEEE Conference on Nanotechnology (IEEE NANO); IEEE: New York, 2010; pp 846–849.

(58) Stein, E. W.; Volodkin, D. V.; McShane, J. M.; Sukhorukov, G. B. Real-time Assessment of Spatial and Temporal Coupled Catalysis within Polyelectrolyte Microcapsules Containing Coinmobilized Glucose Oxidase and Peroxidase. Biomacromolecules 2006, 7, 710–719.
(59) Sato, K.; Takahashi, S.; Anzai, J. Layer-by-layer Thin Films and Microcapsules for Biosensors and Controlled Release. *Anal. Sci.* **2012**, *28*, 929−938.

(60) Chinnayelka, S.; McShane, M. J. Glucose Sensors Based on Microcapsules Containing an Orange/red Competitive Binding Resonance Energy Transfer Assay. *Diabetes Technol. Ther.* **2006**, *8*, 269−278.

(61) Chinnayelka, S.; Zhu, H.; McShane, M. Near-Infrared Resonance Energy Transfer Glucose Biosensors in Hybrid Microcapsule Carriers. *J. Sens.* **2008**, *2008*, 346016.

(62) Travas-Sejdic, J.; Eastal, A. Swelling Equilibria and Volume Phase Transition of Polyelectrolyte Gel with Strongly Dissociated Groups. *Polym. Gels Networks* **1998**, *5*, 481−502.

(63) Reibetanz, U.; Lessig, J.; Hoyer, J.; Neundorf, I. Surface Functionalized Colloidal Microparticles for Fast Endocytotic Cell Uptake. *Adv. Eng. Mater.* **2010**, *12*, B488–B495.

(64) Schultz, S. G.; Solomon, A. K. Determination of the Effective Hydrodynamic Radii of Small Molecules by Viscometry. *J. Gen. Physiol.* **1961**, *44*, 1189−1199.

(65) Werner, J.; Buse, M. Temperature Profiles with Respect to Inhomogeneity and Geometry of the Human Body. *J. Appl. Physiol.* **1988**, *65*, 1110−1118.

(66) Zhang, W.; Furusaki, S. On the Evaluation of Diffusivities in Gels Using the Diffusion Cell Technique. *Biochem. Eng. J.* **2001**, *9*, 73−82.

(67) Teixeira, J.; Mota, M.; Venâncio, A. Model Identification and Diffusion Coefficients Determination of Glucose and Malic Acid in Calcium Alginate Membranes. *Chem. Eng. J. and Biochem. Eng. J.* **1994**, *56*, B9−B14.