Fabrication of a Ceramic Foam Catalyst Using Polymer Foam Scrap via the Replica Technique for Dry Reforming

Rungsimaya Yeetsorn,* Sabaithip Tungkamani, and Yaowaret Maiket

ABSTRACT: Megapores with spherical-like cells connected through windows and high porosities make up catalyst supports in the form of ceramic foams. These characteristics provide significant benefits for catalytic processes that are limited by mass or heat transport. This study focuses on the manufacture of ceramic foam using a polymeric sponge replica process and polymer foams as a template for catalyst supports, which are industrial waste from the packaging sector. To make ceramic foam catalysts, they were dipped in a catalyst solution, followed by a breakdown stage and a sintering process. Experiments focused on determinants that affect the desired characteristics of ceramic foams, such as the types of polymer foams that affect foam morphology, the rheology of catalyst solution that affects catalyst dispersion, and the polymer decomposition rate that affects catalytic performance during dry reforming of the methane process. The cell architectures of polyurethane and polyvinyl alcohol foams are attractive for catalyst support preparation because they have 98−99% porosity and typical cell sizes of 200 and 50 μm, respectively. The polyurethane performance was superior to the performance of polyvinyl alcohol in terms of higher porosity and better catalytic-solution absorption offering high catalyst active areas. The catalyst prepared from concentrated 10 wt % Ni/Al₂O₃−MgO (10NAM) slurry had the highest surface area (59.18 m²/g) and the highest metal oxide dispersion (5.65%). These results are relevant to the flow behavior of catalyst slurry which plays a key role in coating the catalyst gel on the polymer template. The thermal decomposition rate used to remove the polymer template from the catalyst structure is proportional to the ceramic foam structure (catalyst support structure). The slow decomposition rate bent and fractured foam-cell struts more than the faster rate. On the other hand, achieving good catalyst dispersion on catalyst supports necessitated a high sintering rate. When sintering was adjusted at a high sintering rate, the metal−particle dispersion was relatively high, around 7.44%, and the surface area of ceramic foam catalysts was 64.61 m²/g. Finally, the catalytic behavior toward hydrogen production through the dry reforming of methane using a fixed-bed reactor was evaluated under certain operating conditions.

INTRODUCTION

Unlike most industries during the COVID-19 outbreak, plastic manufacturers saw production increase in the midst of a global economic downturn, especially plastic packaging demand for logistics and delivery related to e-commerce sales. These situational sudden changes resulted in around 12% increase in industrial scrap and domestic waste generation,¹,² thus adequate waste management procedures are required. Polymer foams¹ are the most versatile plastics used for logistics and delivery processes. They are an interesting material to be applied as a template for ceramic foam production due to their cellular structure. Ceramic foams are produced as positive images of synchronous polymer foam structures and show bed porosities as high as 85−90% that make them interesting as catalyst
supports compared to conventional heterogeneous catalysts. Ceramic foams typically retain a large number of pores and a high geometric surface area, good thermal properties, high strength, and resistance to chemical attacks. In a reactor containing ceramic foam cartridges rather than packed particles, the high bed porosity allows for a low pressure drop, increased turbulence, and improved heat transfer and mass transmission. Furthermore, the interconnectedness of the ideal pore structure of typical catalysts should be high. High convection in the tortuous megapores improves mass and heat transport, whereas the degree of interconnectedness corresponds to a decrease in pressure drop. Highly endothermic and exothermic reactions in long, thin reactor tubes, as well as selective partial oxidation with short contact durations, require these advantages. The characteristics of ceramic foams are similar to those of monolithic structures containing thousands of parallel channels defined by many thin walls in a honeycomb structure. High-flow resistance and back pressure will arise within the system if undesired mass transfer and heat transfer happen in a catalyst structure due to its limited surface area and porosity, resulting in increased power loss and less retention time of reactants on catalyst surfaces. Many industrial catalysts, such as pellets, are frequently used in heat transfer-limited conditions. To provide the requisite heat transfer surfaces, many long reactor tubes with a small diameter are often used to assist heat transfer in the process. The use of lengthy, narrow tubes may result in a significant pressure drop penalty. Creating larger catalyst pellets is a strategy to reduce the pressure drop; however, this situation may cause an increase in radial heat transfer, a decrease in efficiency, and a requirement of more catalyst volume. To relieve all these problems, fabricating ceramic foams in the form of cylindrical cartridges precisely inside the reactor tube is one of the good solutions. The ceramic foam can be produced using various methods, such as the polymeric sponge replica method, the direct foaming method, and the pore-forming method. The replica sponge technique is the most conventional procedure to create ceramic cellular structures because the ceramic structure is stabilized and failure of smaller pores can be prevented. Prior to the polymeric sponge replica process, a catalyst solution was prepared via the sol−gel process, involving conversion of monomers into a colloidal solution (sol) that acts as the precursor for an integrated network (or gel) of discrete particles. For the design of catalytic formulations based on metals and metal oxides with a high degree of structural and compositional uniformity, the sol−gel method is used. The hydrolysis and condensation of metal alkoxides gave rise to this process, and the sol−gel chemistry has a plethora of techniques for producing catalysts from solution state precursors. Low-temperature chemistry, repeatability, and high surface-to-volume ratios of produced products are some of the remarkable features of this fascinating technique for modifying the physicochemical properties of catalysts. The replication of a polymeric template includes the immersion of a polymeric sponge in a ceramic or metallic suspension with a solid content. Next, the impregnated polymer template is transposed from the slurry, and the excess slurry is squeezed out. The polymer template and organic substances will be burnt out via drying and thermal treatment processes, and then ceramic skeletons will be obtained after ceramic particles are sintered at a high temperature. The shrinkage of ceramic catalyst supports linked to the thermal treatment and sintering steps is carefully considered to obtain ceramic skeletons structured like a template. Ceramic foams have typically been applied to several industrial catalytic processes, namely, methane reforming, Fischer−Tropsch synthesis, carbon dioxide methanation, ethylene epoxidation, and catalytic combustion. Since most hydrogen can be generated through methane reforming, a high-temperature process in which steam combines with a hydrocarbon fuel to produce hydrogen, this work focuses on methane reforming to produce hydrogen for additional hydrogen energy applications. Hydrogen energy is a type of energy that has high energy efficiency, a wide range of environmental and social benefits, and is economically competitive. It is a viable transportation and power generation fuel that may be utilized in automobiles, portable power supplies, and stationary applications. Additionally, an increase in hydrogen demand as a feedstock for various processes can be continuously found. This work is interested in developing ceramic foam for dry reforming of methane (DRM), attractive from an environmental point of view because it consumes two major greenhouse gases (CH$_4$ and CO$_2$). DRM is a hydrogen production process that converts greenhouse gases (methane and carbon dioxide) to synthesized gas or syngas (carbon monoxide and hydrogen).

Even though ceramic foam generation has been documented throughout literature, there have been few systematic studies of the idea of repurposing industrial waste to generate clean energy that can be utilized as a precursor for fuel cell, petrochemical, or chemical processes. A regenerative strategy toward replacing the traditional linear economy is to create a circularity to eliminate waste and ensure the continued use of resources. Detailed research on the selection of polymer foam for use as a catalyst template and the manufacture of a nickel-alumina magnesium catalyst utilizing the reticulated sponge technique and a polymeric template is presented in this paper. In addition, the viability of using newly developed catalysts was assessed by observing their potential throughout the DRM reaction. To develop ceramic foams with the same structure as the employed polymeric foam template, researchers looked into catalyst suspension viscosity, polymer foam absorption ability, active metal dispersion, and thermal treatment and sintering process parameters.

RESULTS AND DISCUSSION

Polymer Foam Selection for Applying as a Catalyst Template

Cell characteristics play an imperative role in transport phenomena and foam properties; especially regarding elasticity, permeability, and fluid absorption. The microstructures of polymer foam scraps, polyurethane (PU), polyvinyl alcohol (PVA), expanded polyethylene (EPE), and expanded polypropylene (EPP) foams, supplied by furniture and packaging factories are given in Figure 1. The polymer foams have interconnectivity between both solid faces (closed-cell structure) and open interconnecting faces (open-cell structure). Closed cells critically absorb slurry, while the slurry effortlessly transfers into the foam pores containing interconnecting open cells. Therefore, EPE and EPP owned relatively closed cells that are not suitable for the ceramic foam preparation. Considering the open interconnecting porosity of polymer cells analyzed using a gas pycnometer, it was found that PU and PVA possessed the highest porosities, which varied from 98 to 99%, followed by 69 and 43% of the porosities of EPP and EPE, respectively. Consequently, PU and PVA were handpicked for further exploration. The cell size, strut size, and cell density of polymer foams were observed from optical microscope (OM) images and calculated using SemaFare 5.2.1 software; these values are presented in Table 1. The results indicated that both PU and
PVA have comparable porosity values, but the average cell size of PVA is significantly smaller than that of PU. A smaller pore size brings about smaller transport of fluid permeation and higher flow resistance of slurry. Furthermore, a large strut size may be realized with sufficient strength of ceramic foam products.

Figure 2 illustrates the morphology of polymer foams structured with three components: (1) struts which act as a structural support for the foam, (2) cells which are voids enclosed by struts, and (3) windows which are open/closed, interconnecting cells to each other.

The removal of the polymer foam template by calcination is a key stage in the manufacturing of foam ceramics; hence, the decomposition temperature of the polymer foam template is required for optimizing an operating condition. The thermal behavior of polymeric foam was analyzed using the thermogravimetric analyzer (TGA) under air flow and temperature sweep from 30 to 800 °C with the heating rate at 5 °C/min; the results are presented in Figure 3. The urethane bonds of the PU foam initially degrade at a decomposition temperature of 228 °C, and then isocyanate gas is generated with a 28.36% weight loss. At the temperature of 331 °C, which is the second transition, the decomposition of monomers and polyol molecules was completed with a 65.01% weight loss. In terms of the PVA foam, the preliminary degradation occurred at approximately 50 °C when small molecules were produced. Hydroxyl groups and polymer chains were decomposed at 320 °C of the decomposition temperature. The main decomposition happens at 390 °C where carbon oxide molecules and volatile hydrocarbons decompose. According to the analyzed results of the polymer foam characteristics, PU and PVA foams were chosen to be catalyst templates. The catalyst slurry of 10NAM was prepared as described in the experimental section, and the temperature profile as a function of time for eliminating a polymer template and sintering was composed as shown in Figure 4. To make sure that the polymer template was completely removed, the temperature range applied to the template elimination step was 250–650 °C with a 5 °C/min heating rate related to decomposition temperatures of PU and PVA foams. The discussion about overall heating steps for ceramic foam fabrication will be stated in the further section, “effect of thermal treatment on the ceramic foam structure”. Prepared ceramic foam features were preliminarily investigated through scanning electron microscopy (SEM) images (Figure 5). CF-10NAM/PU exhibited open cells consisting of uniform open interconnecting pores, while CF-10NAM/PVA showed a rather non-uniform structure and a smaller number of open cells than those of CF-10NAM/PU. The CF-10NAM/PU structure looks quite similar to the original polymer foam template, and its features are comparable to those of a conventional ceramic foam. The undesirable morphology of CF-10NAM/PVA was due to the 10NAM slurry not impregnated into the cell and the solid particles in the slurry agglomerated on the surfaces of the foam template. This configuration leads to poor heat and mass transfer.

Nitrogen physisorption was used to establish the isotherms of adsorption, the distribution of pore size, pore geometry, connectivity, and the specific surface area. These values theoretically play a crucial role in determining the diffusion and transport of molecules in the heterogeneous catalytic reaction. Adsorption hysteresis (Figure 6) is a correlation between the shape of the hysteresis loop and the textures of a mesoporous (pore sizes between 2.0 and 50.0 nm) material. Similar adsorption—desorption isotherms were investigated with explicit hysteresis loops at a slightly lower relative pressure (P/P₀) for CF-10NAM/PVA and CF-10NAM/PU in comparison to the supports. The catalysts occupied normal porous networks of isotherms type V with narrow H3-type hysteresis loops with regard to hysteresis loop types categorized by IUPAC.

The H3 hysteresis is attributed to slit-shaped pores, and the isotherms do not indicate any limiting adsorption at high P/P₀. The isotherms are observed with non-rigid aggregates of plate-like particles. The ceramic catalyst using PU foam as the template shows a nano-pore size (12.96), pore volume (0.19 cm³/g), and high surface area (59.18 m²/g), as shown in Table 2. These values can be interpreted that the PU foam, having more open cells and a larger cell size than those values of the PVA foam, was able to adsorb gas more than the PVA foam. Moreover, it provided a higher surface area than that of the PVA foam. According to the consideration of cell morphology, the isotherms of adsorption, and the surface area of catalysts, the PU foam template was selected for the catalytic performance test.

To set up the testing set for the subsequent catalytic performance test, catalyst reducibility was assessed using

Table 1. Cell Size, Strut Size, and Cell Density of PU and PVA Foams

polymeric foam	cell size (μm)	strut size (μm)	cell density (no. of cell/1.89 × 10⁶ μm²)
PU	220.40	50.70	11
PVA	68.50	25.29	283

Figure 1. Optical microscopic images (magnified 5×) of polymeric foams PU (a), PVA (b), EPE (c), and EPP (d).

Figure 2. SEM micrographs of PU (a) and PVA foams (b).
temperature-programmed reduction (TPR). TPR is a technique that is extensively used in catalysis research to investigate the surface chemistry of metals and metal oxides at various thermal settings. TPR collects quantitative and qualitative data on reducing gas mixes that are used to flow over metal oxide samples. It offers accurate insights into catalyst reducibility and reaction rates in the presence of metal surfaces. The reduction profiles (Figure 7) illustrate two main areas of interest in which many H₂-consumption peaks can be detected. The first series of peaks occur at temperatures between 400 and 600 °C. The second part indicates that the H₂ consumption appears at higher temperatures from 600 to 780 °C.
interaction of H₂ with supported Ni catalysts. The H₂-TPD profiles of 10NAM ceramic foam catalysts (Figure 8) were investigated from three temperature ranges. The temperature at which H species are released helps to comprehend the nature of these species. The H₂-desorption at a temperature below 420 °C is ascribed to the adsorbed H₂ on metal Ni sites, whereas the H₂ desorption between 420 and 800 °C accounts for the H₂ from the metal–support interface. The desorption at higher temperatures is typically attributed to the H₂ spillover hydrogen adsorbed on the surface of the oxide. The H₂-TPD peak of 10-NAM/PVA cannot be found in the temperature range of 420–800 °C, since the catalyst support did not interact well with the metal catalyst. This particular reason is supported by the dispersion of active metals on the 10NAM/PU and 10NAM/PVA ceramic foam catalysts. The dispersion of active metals on the 10NAM/PU and 10NAM/PVA ceramic foam catalysts is 5.65 and 1.43%, respectively. Ni loading and dispersion typically influence the % conversion of the DRM reaction. The % conversion increases with the growth of metal content due to good catalytic activity. Nevertheless, undesired metal dispersion may occur if the Ni loading is higher than 15%. This is due to metal sintering, which is created at high Ni content, and the metal sintering leads to carbon formation. Therefore, it is necessary to optimize the Ni loading to achieve good catalytic activity. The Ni loading (10 wt %) was determined from the previous work of our research group, as described in the section “catalytic performance test.”

Based on the current findings, PU foam’s performance as a catalyst template is superior to that of PVA foam because it has a higher porosity and greater ability to absorb catalytic solutions than PVA foam. When comparing the properties of catalysts made with different polymer templates, the PU template produced a catalyst with a greater surface area and better catalyst dispersion on the catalyst support.

Rheological Measurements of Aqueous Oxide Slurry.

The rheological measurements of slurry play a key role in the coating of polymeric foam in the replica technique. In general, the solid content affects the rheology of ceramic slurry and the final structure of the ceramic foam; therefore, the viscosity values of the ceramic slurry prepared through the sol–gel process with different concentrations were measured.

The viscosity results in Table 3 agree with the typical reason to decrease the flow resistance of catalyst slurry via water dilution. 100CF-10NAM/PU or CF-10NAM/PU occupied the highest

ceramic foam catalyst	surface area (m²/g)	pore volume (cm³/g)	average pore size (nm)
CF-10NAM/PU	59.18	0.19	12.96
CF-10NAM/PVA	48.68	0.24	19.83

The viscosity results in Table 3 agree with the typical reason to decrease the flow resistance of catalyst slurry via water dilution. 100CF-10NAM/PU or CF-10NAM/PU occupied the highest
surface area (59.18 m²/g), while the surface area (33.47 m²/g) of 25CF-10NAM/PU was inferior to the others. The 100CF-10NAM slurry had higher apparent viscosity, obviously for suspensions with higher solid concentrations. There seems to be a particular reason to ascribe transport rationality; high viscosity allowed catalyst solids to be efficiently carried into pores of a foam template. This phenomenon corresponds to high relative density and low foaming capacity resulting in a smaller average pore size. Even though the slurry viscosity is important for the ceramic coating process, metal dispersion was parallelly concerned in terms of the reactivity, which directly impacts catalyst performance.

TPR of ceramic foam catalysts with various concentrations under H₂ flow gas is shown in Table 4. Peaks of all samples were evidently perceived in the temperature range of 400–600 °C, relating to the reduction of Ni oxide aggregates. The second broad peak appeared around 700 °C, corresponding to the reduction of the Ni species that strongly interacted with the Mg(Al)O support. The metal dispersion of the ceramic foam catalyst with different water contents was monitored via H₂-TPD analysis, as shown in Figure 8. Areas under the peaks of TPD profiles illustrate that the efficiency of metal dispersion on the catalyst support decreased with a decrease in viscosity, from 44.83 to 0.94 cP. The 100CF-10NAM/PU with the highest viscosity generated a uniform ceramic foam structure and good dispersion of solid particles. It is worth mentioning that the low-viscous slurry brought about better solid distribution than the one with higher viscosity did. The active metals will be able to distribute throughout the surface area of a polymer foam template. It is difficult to achieve a good dispersion; plenty of slurries deposited on the bottom portion of the sponge are regularly found. A dense microstructure may develop as a result of the failure of impregnation of high-viscous slurry into the foam template, and it stays on its surface. The TPD behavior of hydrogen on the ceramic foam catalysts was studied via the reduction process in order to obtain information on the Ni surface area and dispersion. The hydrogen consumption peak can be separated into two temperature ranges which are 120–400 and 400–900 °C (Table 5).

The low temperature is typically attributed to the physical adsorption of H₂ weakly adsorbed on the metal surface, and it indicates the exposed fraction of Ni atoms. The high temperature is originated from chemisorbed H₂ in the subsurface layers and from spillover H₂. The data provides compelling evidence, 5.65% of the metal dispersion degree and 51.12 m²/g of the surface area, indicating that the 100CF-10NAM provided superior performance than the others.

Table 3. Properties of the Ceramic Foam Catalyst with Different Water Dilution

ceramic foam catalyst	slurry viscosity (cP)	surface area (m²/g)	pore volume (cm³/g)	average pore size (nm)	metal oxide dispersion (%)
100CF-10NAM/PU (CF-10NAM/PU)	44.83	59.18	0.19	12.96	5.65
75CF-10NAM/PU	32.37	44.96	0.21	21.17	4.66
50CF-10NAM/PU	9.21	44.96	0.19	16.80	2.98
25CF-10NAM/PU	0.94	33.47	0.17	19.36	2.90

Table 4. H₂ Consumption was Observed via H₂-TPR of Ceramic Foam Catalysts

samples	1st peak temperature (°C)	2nd peak temperature (°C)	H₂ consumption (a.u.)
25CF-10NAM/PU	440	675	266.64
50CF-10NAM/PU	450	680	433.14
75CF-10NAM/PU	485	709	614.90
100CF-10NAM/PU	550	714	728.18

Table 5. Dispersibility Observed via H₂-TPD of Ceramic Foam Catalysts

samples	1st peak temperature (°C)	2nd peak temperature (°C)	dispersion (%)
25CF-10NAM/PU	300	750	2.80
50CF-10NAM/PU	350	820	2.98
75CF-10NAM/PU	300	800	4.66
100CF-10NAM/PU	330	740	5.65

Effect of Thermal Treatment on Ceramic Foam Efficiency. To optimize overall porosity and foam microstructure, the sintering temperature should be carefully imposed in addition to the ceramic slurry concentration and operating conditions for the sol–gel reaction. To develop a successful structure with an increase in the mechanical properties of ceramic foams, the sintering schedules must be modified to become thick and strong struts and cell walls. The decomposition temperature of polymer foam was used as a benchmark for removing a polymer template from the catalyst support, and an appropriate heating rate to decay the polymer foam had an impact on the microstructures of ceramic foam. As a result, discussion of the influence of various heating rates, 0.5, 2, and 5 °C/min, on the ceramic foam structure and H₂ reduction efficiency has been included in the article. Figure 4 exhibits the thermal treatment program including two major steps: the foam decomposition stage at 250–650 °C and the sintering stage under isothermal conditions at 1050 °C. The heat treatment was first scheduled by heating the resulting catalyst with a heating rate of 5 °C/min from 80–250 °C to remove the residue water, and then the temperature was raised to 650 °C for burn-out PU support. Three different heating rates applied at the stage were investigated, as mentioned above. Subsequently, the sample was heated to 1050 °C at 5 °C/min with 4 h of soaking for sintering of the created ceramic foam. After the thermal cycle was completed, the samples were left in the furnace for cooling down to room temperature. The morphology of the sintered ceramic foams was investigated by SEM, as illustrated in Figure 5. The SEM images present the structure of CF-10NAM/PU observed to be of a typical cellular nature. The cells appear to be nearly spherical in shape and connected to each other. Based on the decomposition temperature of PU foam (Figure 3), an abrupt burn-out of the PU template may generate cracks in the porous framework. Hence, an optimal heating rate is very much crucial to prevent cracks and other defects.

Based on the theoretical hypothesis, the ceramic catalyst can possibly create a dense structure at a slow heating rate better than forming ceramic foam at a high heating rate. Nevertheless, the bent and failure struts were found when 0.5 °C/min of the heating rate was applied. The particular reason may be associated with degradation of significant portions of the PU sponge. According to TGA results of PU foam, the PU was
degraded by approximately 28% with weight loss at around 228 °C and mainly degraded at roughly 331 °C. PU deterioration was occurring at 0.5 °C/min at those temperatures, with a significant weight loss, but the ceramic particles had not evenly fused into a ceramic foam structure because the microstructure temperature had not yet reached the fusing temperature. As a result, the density and heat conductivity in various sections of the ceramic structure were not homogeneous, resulting in partial stress accumulation in the microstructure. Struts and the plateau border structure tighten as a result of the stress; further shrinking causes strut bending and cracking (Figure 9).

The features of catalysts influenced by the heating rate were investigated by the Brunauer–Emmett–Teller (BET) technique (Table 6). The results showed that the average pore volume of all 100CF-10NAM/PU catalysts was equivalent. In terms of surface area, average pore size, and metal oxide dispersion, the 100CF-10NAM/PU catalyst prepared via 5 °C/min of heating rate indicated the best characteristics among other catalysts in this series (Table 6). In the scenario of a TPR profile, the results of all catalysts presented a main area of interest in which several H2-consumption peaks can be observed in the temperature range of 500 to 700 °C. It means that the H2 reduction of finely dispersed NiO and/or Ni-species is in tight interaction with the catalyst support. The H2 consumption of the produced 100CF-10NAM/PU catalyst with 5 °C/min of heating rate was obviously predominant compared to the rest of the catalysts (Figure 10). The 100CF-10NAM/PU_5 °C/min used hydrogen for reducing oxides in a wide range of 200–700 °C, and the optimum reducing temperature was found at 620 °C which was the peak of the H2 consumption curve. The 100CF-10NAM/PU using the heating rate of 0.5 and 2 °C/min showed two reduction intervals. The reducing temperature ranges of 100CF-10NAM/PU_0.5 °C/min were 300–430 and 430–750 °C, while the suitable temperature for reducing was 650 °C. According to previous publications related to the reducibility of nickel in the Ni/MA catalyst, three reduction peaks were typically observed in the Ni/MA catalyst. The lowest reduction temperature peak can occur in the range of 150–350 °C, corresponding to the reduction of free NiO or NiO which possesses weak integration between NiO and Al2O3 support. The second peak is typically in the temperature range of 370–500 °C, which is attributed to the reduction of NiO interacting with Al2O3–MgO support. The last peak generally exists at a temperature higher than 600 °C, since the peak is caused by the reduction of Ni2+ in the spinel phase, the form of strong metal–support interaction. However, there is tendency for an increase in the reducibility of nickel in the 10NAM catalyst (Figures 7 and 10). It is possibly due to some interaction between NiO and PU or PVA support; thus, H2-TPR at a higher temperature and using CuO as a standard for TPR to determine the amount of H2 should be studied in future work.

Figure 11 demonstrates three zones of hydrogen desorption of the H2-TPD profile of the 100CF-10NAM ceramic foam catalyst with different decomposition rates. The H2-desorption below 450 °C was attributed to the H2 adsorption on metal Ni sites, while the H2 desorption between 450 and 750 °C corresponds to the reduction of free NiO or NiO which possesses weak integration between NiO and Al2O3 support. The second zone is typically in the temperature range of 370–500 °C, which is attributed to the reduction of NiO interacting with Al2O3–MgO support. The last zone generally exists at a temperature higher than 600 °C, since the peak is caused by the reduction of Ni2+ in the spinel phase, the form of strong metal–support interaction. However, there is tendency for an increase in the reducibility of nickel in the 10NAM catalyst (Figures 7 and 10). It is possibly due to some interaction between NiO and PU or PVA support; thus, H2-TPR at a higher temperature and using CuO as a standard for TPR to determine the amount of H2 should be studied in future work.

Table 6. Characterizations of Ceramic Foam Catalysts Related to Decomposition Rates of PU Foam Templates

catalyst	surface area (m²/g)	pore volume (cm³/g)	average pore size (nm)	metal oxide dispersion (%)
100CF-10NAM/PU_0.5 °C/min	51.00	0.20	15.76	3.28
100CF-10NAM/PU_2.0 °C/min	53.00	0.22	16.92	4.67
100CF-10NAM/PU_5.0 °C/min	65.00	0.21	18.97	7.44
described about the H₂ from the metal—support interface. The temperature higher than 750 °C was related to H₂ spillover species. In the first region, 100CF-10NAM/PU_5 °C/min provided the best H₂ adsorption on Ni active sites, whereas the 100CF-10NAM/PU_2 °C/min was as effective as the 100CF-10NAM/PU_5 °C/min in terms of H₂ consumption related to a metal—support interface. The 100CF-10NAM/PU_2.0 °C/min seemed to have more impact on hydrogen spillover as indicated in the last region. The hydrogen spillover is a phenomenon investigated characteristically at transition metal nanoparticle support interfaces and is a well-recognized phenomenon defined as the transport of adsorbed dissociated hydrogen from one surface to another by surface diffusion. From the experimental results in this part, it can be concluded that the reducing temperature of 620 °C is a benchmark for the operating temperature of further performance tests in dry reforming reaction. The various heating rates for foam removal were observed with regard to reaction performance as well.

Catalytic Performance Test. The authors would like to explain a conceptual idea to select CF-10NAM for this research before criticizing the experimental results concerning the reaction efficiency. Nickel (Ni) is an attractive metal because it is economical compared to noble metals, and it is efficient in catalysis in the methane gas conversion process, with high reactivity and selectivity. The selection of a catalyst support is imperative for the reaction that occurs between a metal surface and a catalyst support. The prevailing catalyst supports are metal oxides with high surface areas such as silica (SiO₂), alumina (Al₂O₃), zeolites, and so forth. Al₂O₃ and SiO₂ types are preferred in industry, especially for their use as the nickel metal support in methane-reforming processes. CF-10NAM is an abbreviation for 10 % wt of nickel oxide on ceramic foam made from alumina magnesium support. This formulation was previously developed and studied by our research group. According to the experimental activities, the catalytic activity of 100CF-10NAM ceramic foam catalysts for DRM (CH₄) at 620 °C under atmospheric pressure was investigated and the results were summarized in Table 7.

All catalysts can maintain stable CH₄ conversion after 50 min, the 100CF-10NAM/PU_5 °C/min catalyst provided the highest CH₄ consumption followed by 100CF-10NAM/PU_2 °C/min and 100CF-10NAM/PU_0.5 °C/min, in which the conversions were 74, 63, and 56%, respectively (Figure 12). The H₂ and CO yields of those created catalysts are displayed in Figure 13. The H₂ percentage yields of 100CF-10NAM/PU_2.0 °C/min were considerably higher than the theoretical value that may be caused by side reactions producing hydrogen and carbon dioxide, for example, the decomposition of CH₄ and disproportionation of CO, as shown in eqs 1 and 2, respectively:

\[
\text{CH}_4 \rightarrow \text{C} + 2\text{H}_2 \Delta H^\circ = +75 \text{ kJ/mol} \quad (1)
\]
The decomposition of methane occurred at reaction temperatures above 553 °C, while at the reaction temperature below 674 °C, occurred the Boudouard reaction. Consequently, coke deposition would promptly generate temperatures in the range of 553–674 °C, as shown in eqs 3 and 4, respectively.\(^\text{74–76}\)

\[
\begin{align*}
\text{CO}_2 + C &\rightarrow 2\text{CO} \quad \Delta H^\circ = -171 \text{ kJ/mol} \quad (2) \\
\text{CO}_2 + C &\rightarrow 2\text{CO} \quad \Delta H^\circ = +171 \text{ kJ/mol} \quad (3) \\
\text{CO}_2 + \text{H}_2 &\rightarrow \text{CO} + \text{H}_2\text{O} \quad \Delta H^\circ = +41 \text{ kJ/mol} \quad (4)
\end{align*}
\]

CONCLUSIONS

The technique of converting industrial foam scrap into a value-added product as a catalyst template for ceramic foam support production is demonstrated in this study. This project is a case study to see if it is possible to make a ceramic foam catalyst for the DRM reaction. A replication method was used to successfully prepare the 10NAM ceramic foam catalyst by utilizing a PU foam template. The following are the key findings of this study: with its linked open-cell architecture and fluid absorption ability, PU foam was an attractive candidate for the template. A sol–gel approach was used to generate the catalyst fluid or slurry, and the slurry viscosity had a substantial impact on ceramic foam parameters such as density, cell structure strength, Ni catalyst dispersion, and catalyst surface area. The best 10NAM slurry was made with 100CF-10NAM and no dilution. It had the best Ni dispersion and surface area of any of the catalysts. The rate of polymer decomposition in relation to the rate of heating during the decomposition stage is critical for cell-structure shaping. The correct rate of heating was 5 °C/min. The temperature for hydrogen reduction was obtained by investigating the catalyst properties during the reaction. The optimum temperature for the DRM reaction was 620 °C, which was imposed. The issue that is a necessity to pay attention to the development of our future work is the reducibility of nickel in the 10NAM catalyst at a temperature higher than 850 °C to investigate the effect of interaction between the polymer template and the catalyst. The metal oxide dispersion on ceramic foam materials dominates the activity of ceramic foam catalysts for DRM. The best catalytic performance was associated with a heating rate of 5.0 °C/min and a metal dispersion of 7.44%. 74% CH\(_4\) conversion, 46% CO\(_2\) conversion, 64% H\(_2\) yield, 88% CO yield, and 0.72 H\(_2\)/CO ratio were the best results for driving the DRM reaction (Figures 14 and 15). However, by optimizing an operating state, the response performance can be improved and side reactions can be avoided.

To develop ceramic foam, diverse foam features from various types of industrial PU wastes are being investigated.

EXPERIMENTAL METHODOLOGY

Polymeric Foam Selection and Characterization. Four types of polymer foams: PU, PVA, EPE, and EPP, from furniture and packaging factories in Bangkok were used as a template. They were cut into a geometric size of 25 × 25 × 25 mm for the determination of the cell content by the gas pycnometer technique under 3 psig of atmospheric pressure and 23 °C of system temperature according to ASTM D6226. The surface morphology and microstructure of the surplus foams were observed via scanning electron microscope (JSM 7600 F, JEOL) and OM (BH2-UMA, Olympus). Microscopic images were interpreted via analysis software (SemAfore 5.21) for determining the cell size, cell density, and strut size. Twenty specimens of each sample were cut into a geometric size of 10 × 10 × 10 mm to determine those values from OM images. The thermal degradation behavior of polymeric foams was studied using TGA (TGA/DSC1, Mettler Toledo) to impose an operating condition for the thermal treatment and sintering process. The operating condition was controlled at 30–800 °C of the testing temperature and 5 °C/min of the heating rate according to ASTM E1131-03.

Fabrication of the Ceramic Foam-Supported Catalyst. The experimental activities of catalyst preparation can be separated into two main parts: catalyst slurry preparation and catalyst support formation. First of all, the Al\(_2\)O\(_3\)–MgO-supported nickel catalyst (10NAM) was prepared via the sol–gel method. 10.016 g of alumina isopropoxide [Al(O\(_2\)C\(_2\))\(_3\)]; Acros Organics] and 25.00 mL of deionized water were mixed in a round-bottom flask, and the solution was mixed for 20 min to achieve well dissolution. The round-bottom flask was installed into a reflux condenser for continuous stirring at 85 °C for 1 h; note that the water circulating system was not operated during this period. At the end of 1 h, 10 mL of 1 M nitric acid (HNO\(_3\); Carlo Erba) was added into the flask, and then the solution turned to give a milky slurry appearance. The reflux condensation of the slurry was consequently manipulated at 85 °C for 20 h. The aqueous solution containing 7.098 g of magnesium ethoxide (Mg(O\(_2\)C\(_2\))\(_2\); Aldrich) and 27.00 mL of

\[
\text{H}_2/\text{CO} \text{ ratio of DRM over the 100CF-10NAM catalyst with decomposition rates of 0.5, 2, and 5 °C/min.}
\]
heating rate of 10 °C/min for 30 min. The final slurry was cooled down to room temperature, and 2.50 mL of nickel(II) nitrate hexahydrate (Ni(NO₃)₂·6H₂O; QReCMTM) was introduced into the slurry. When the slurry became light green, 50.00 mL of deionized water was added for 1 h mixing. The foam templates with a geometric size of 20.0 mm x 20.0 mm x 20.0 mm were cut for the 10NAM slurry coating. The templates were completely immersed in ceramic slurry and freed from the excess slurry by manual squeezing. The squeezed foams were aged at room temperature for 48 h before they were dried in an oven at 80 °C for 24 h; afterward, the polymer foams were calcined by sintering at temperatures above 1000 °C in air. The polymer templates decomposed during the calcination, whereas the ceramic particles were sintering. Finally, the ceramic foam structure replaced the polymer foam scaffold.

Rheological Measurements. As previously stated, the flow behavior of the manufactured catalyst slurry has a direct impact on coating performance; thus, the rheological behavior of catalyst slurries containing various concentrations of formulated 10NAM catalysts (Table 8) was examined using a rotational viscometer (Brookfield programmable V-II). The active metal distribution on the catalyst support and the absorption ability of the foam templates was linked to the viscosity tendency.

Characterizations of Ceramic Foam Catalysts. The characteristics and properties of created catalysts were evaluated to ensure reliability for a ceramic foam application. The morphology and geometric characteristics of 10NAM ceramic foam catalysts were measured by a scanning electron microscope (JSM 7600 F, JEOL), while the specific surface area of ceramic foam catalysts was determined using a nitrogen adsorption technique (BET) on the BET device (BELSORP mini-II, BEL). The gaseous mixture was analyzed using a thermal conductivity detector [gas chromatography (GC) model 6820, Agilent]. The metal dispersion of ceramic foam catalysts was characterized using temperature-programmed desorption of hydrogen (H₂-TPD). The catalyst sample was pre-reduced in 30 mL/min of hydrogen (H₂) atmosphere at 700 °C for 4 h with a heating rate of 1 °C/min, and then it was cooled down to 100 °C with Ar flow at a heating rate of 10 °C/min. Hydrogen desorption was carried out in the temperature range of 40–900 °C with Ar flow at a heating rate of 10 °C/min.

Catalytic Performance Test. A fixed-bed stainless-steel reactor was used to test the effectiveness of a 10NAM ceramic foam catalyst for DRM. Before the reaction, the catalyst was pretreated for 30 min at ambient temperature with a N₂ stream to eliminate additional impurities and then reduced for 20 h with a 30 mL/min H₂ flow at 620 °C. The gaseous mixture was permitted to pass through the catalytic bed at a total flow of 60 mL/min (CH₄/CO₂/N₂ = 15:25:20 mL/min) until the temperature in the reactor reached 620 °C with a heating rate of 7 °C/min at atmospheric pressure. On-line GC (model 6890 N, Agilent) with TCD detectors was used to determine the product compositions. Helium (He) was used as the carrier gas. Figure 16 illustrates the setup for the DRM experiment. The bed was at a total flow of 60 mL/min (CH₄/CO₂/N₂ = 15:25:20 mL/min) until the temperature in the reactor reached 620 °C with a heating rate of 7 °C/min at atmospheric pressure.

Table 8. Composition of Ceramic Slurry with Different Water Content

sample ID	composition (%)	10NAM (%)
100CF-10NAM	100	
75CF-10NAM	75	
50CF-10NAM	50	
25CF-10NAM	25	

Note: 10NAM = 10 wt % Ni/Al₂O₃–MgO.

Figure 16. Schematic diagram of the DRM process.

AUTHOR INFORMATION

Corresponding Author

Rungsima Yeetsorn — The Sirindhorn International Thai-German Graduate School of Engineering, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand; orcid.org/0000-0002-8029-0305; Phone: +66 2555 2000 ext. 1504; Email: rungsima.y@ktmu.ac.th

Authors

Sabaiithip Tungkamani — Research and Development Center for Chemical Engineering Unit Operation and Catalyst Design (RCC), King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand

Yaowaret Maiket — Thai-French Innovation Institute, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand

Complete contact information is available at: https://pubs.acs.org/10.1021/acsomega.1c05841
Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS
The authors gratefully acknowledge financial support from the National Science Research and Innovation Fund (NSRF) (grant no. KMUTNB-BasicR-64-28-1) and PTT Public Company Limited. We also would like to express our appreciation for research assistance from Anucha Sangsuriyan.

REFERENCES
(1) Wichai-utcha, N.; Chavalparit, O. 3Rs Policy and plastic waste management in Thailand. J. Mater. Cycles Waste Manag. 2018, 21, 10–22.
(2) McCue, A.; Elizalde, B.; Kometsopha, P.; Cui, M. B.; Gillies, P. M. Scaling Up Circular Strategies to Achieve Zero Plastic Waste in Thailand; Gland: World Wide Fund for Nature, 2020.
(3) Jin, F.-L.; Zhao, M.; Park, M.; Park, S.-J. Recent trends of foaming in polymer processing: A review. Polymers 2019, 11, 953.
(4) Twigg, M. V.; Richardson, J. T. Theory and applications of ceramic foam catalysts. Trans. Inst. Chem. Eng. 2002, 80, 183–189.
(5) Richardson, J. T.; Remue, D.; Hung, J.-K. Properties of ceramic foam catalyst supports: mass and heat transfer. Appl. Catal., A 2003, 250, 319–329.
(6) Cordier, A.; Rossignon, F.; Laurent, C.; Chartier, T.; Peigné, A. A new fast method for ceramic foam impregnation: Application to the CCVD synthesis of carbon nanotubes. Appl. Catal., A 2007, 319, 7–13.
(7) Nor, M. A. A. M.; Hong, L. C.; Ahmad, Z. A.; Md Akil, H. Preparation and characterization of ceramic foam produced via polymeric foam replication method. J. Mater. Process. Technol. 2008, 207, 235–239.
(8) Faure, R.; Rossignon, F.; Chartier, T.; Bonhomme, C.; Maitre, A.; Etchegoyen, G.; Del Gallo, P.; Gary, D. Alumina foam catalyst supports for industrial steam reforming processes. J. Eur. Ceram. Soc. 2011, 31, 303–312.
(9) Calati, M.; De Monte, E.; Mancin, S. Numerical Analysis of the Effects of the Structure Shape and Orientation of Kelvin Cell Porous Structures during Air Forced Convection. Appl. Sci. 2021, 11, 6189.
(10) Ghoneim, S. A.; El-Salamony, R. A.; El-Temtamy, S. A. Review on innovative catalytic reforming of natural gas to syngas. World J. Eng. Technol. 2016, 04, 116.
(11) Carty, W. M.; Lednor, P. W. Monolithic ceramics and heterogeneous catalysts: honeycombs and foams. Curr. Opin. Solid State Mater. Sci. 1996, 1, 88–95.
(12) Allison, C. B. The effects of turbulence structures on the air-side performance of compact tube-fin heat exchangers, Doctoral Dissertation, Adelaide Research & Scholarship, 2006.
(13) Nor, M. A. A. M.; Hong, L. C.; Ahmad, Z. A.; Akil, H. M. Preparation and characterization of ceramic foam produced via polymeric foam replication method. J. Mater. Process. Technol. 2008, 207, 235–239.
(14) Ahmad, S.; Latif, M. A.; Taib, H.; Ismail, A. F. Short review: Ceramic foam fabrication techniques for wastewater treatment application. Adv. Mater. 2013, 795, 5–8.
(15) Miao, X. Processing of ceramic foams. Recent Advances in Porous Ceramics IntechOpen. 2018, 31, 47. DOI: 10.5772/intechopen.71006
(16) Wang, M.; Xu, S. Preparation and applications of foam ceramics. Earth Environ. Sci. 2018, 186, 012066.
(17) Owens, G. J.; Singh, R. K.; Foroutan, F.; Alqaysi, M.; Han, C.-M.; Mahapatra, C.; Kim, H.-W.; Knowles, J. C. Sol–gel based materials for biomedical applications. Prog. Mater. Sci. 2016, 77, 1–79.
(18) Esposito, S. Traditional sol-gel chemistry. American Chemical Society 2009, 12, 668.
(19) Drioli, E.; Giorno, L. Basic Aspects of Membrane Science and Engineering; Science Press, 2012.
(20) Chen, Y.; Wang, N.; Ola, O.; Xia, Y.; Zhu, Y. Porous ceramics: Light in weight but heavy in energy and environment technologies. Mater. Sci. Eng. R Rep 2021, 143, 100589.
(21) Twigg, M. V.; Richardson, J. T. Fundamentals and applications of structured ceramic foam catalysts. Ind. Eng. Chem. Res. 2007, 46, 4166–4177.
(22) Ambrosio, G.; Bianco, N.; Chiu, W. K. S.; Iasiello, M.; Nasso, V.; Oliviero, M. The effect of open-cell metal foams strut shape on convection heat transfer and pressure drop. Appl. Therm. Eng. 2016, 103, 333–343.
(23) Ahmad, H.; Saeid, B.; Rahmatolah, E.; Shirin, N. Different pore size alumina foams and study of their physical and mechanical properties. Ceram.-Silik. 2015, 59, 6–9.
(24) Faure, R.; Rossignon, F.; Chartier, T.; Bonhomme, C.; Maitre, A.; Etchegoyen, G.; Gary, D. Alumina foam catalyst supports for industrial steam reforming processes. J. Eur. Ceram. Soc. 2001, 31, 303–312.
(25) Krämer, R.; Zammaranono, M.; Linteris, G. T.; Gedde, U.; Gilman, J. Heat release and structural collapse of flexible polyurethane foam. Polym. Degrad. Stab. 2010, 95, 1115–1122.
(26) Hakim, A. A.; Nassar, M.; Emam, A.; Sultan, M. Preparation and characterization of rigid polyurethane foam prepared from sugar-cane bagasse polyol. Mater. Chem. Phys. 2011, 129, 301–307.
(27) Gu, R.; Sain, M. M. Effects of wood fiber and microcell in the performance of soy based polyurethanes foams. J. Polym. Environ. 2013, 21, 30–38.
(28) Es-saheb, M.; Elzatary, A. Post-heat treatment and mechanical assessment of polyvinyl alcohol nanofiber sheet fabricated by electrospinning technique. Int. J. Polym. Sci. 2014, 1–6. DOI: 10.1155/2014/605938
(29) Pique, T. M.; Pérez, C. J.; Alvarez, V. A.; Vázquez, A. Water soluble nanocomposite films based on poly(vinyl alcohol) and chemically modified montmorillonites. J. Compos. Mater. 2014, 48, 545–553.
(30) Ghalaia, M. A.; Dahman, Y. Radiation crosslinking polymerization of poly (vinyl alcohol) and poly (ethylene glycol) with controlled drug release. J. Polym. Res. 2015, 22, 218–226.
(31) Kang, X.; Kuga, S.; Wang, C.; Zhao, Y.; Wu, M.; Huang, Y. Green preparation of cellulose nanocrystal and its application. ACS Sustain. Chem. Eng. 2018, 6, 2954–2960.
(32) Nor, M. A. A. M.; Hong, L. C.; Ahmad, Z. A.; Akil, H. M. Preparation and characterization of ceramic foam produced via polymeric foam replication method. J. Mater. Process. Technol. 2008, 207, 235–239.
(33) Cychoś, K. A.; Thommes, M. Progress in the physisorption characterization of nanoporous gas storage materials. Engineering 2018, 4, 559–566.
(34) Guerra-Que, Z.; Pérez-Vidal, H.; Torres-Torres, G.; Arévalo-Pérez, J. C.; Pavón, A. A. S.; Cervantes-Uribe, A.; de los Monteros, A. E.; Lunagómez-Rocha, M. A. Treatment of phenol by catalytic wet air oxidation: a comparative study of copper and nickel supported on γ-alumina, ceria and γ-alumina–ceria. RSC Adv. 2019, 9, 8463–8479.
(35) Alothman, Z. A. Review: Fundamental aspects of silicate mesoporous. Materials 2012, 5, 2874–2902.
(36) Yurdakal, S.; Gåhrs, C.; Özcan, L.; Bellardita, M.; Palmsimo, G. (Photo) catalyst characterization techniques: adsorption isotherms and BET, SEM, FTIR, UV–Vis, photoluminescence, and electrochemical characterization. Heterog. Photocatal. 2019, 1, 87–152.
(37) Hurst, N. W.; Gentry, S. J.; Jones, A.; McNicol, B. D. Temperature programmed reduction. Catal. Rev.: Sci. Eng. 1982, 24, 233–309.
(38) Liu, H.; Da Costa, P.; Taief, H. B. H.; Benzaïn, M.; Gálvez, M. E. Mg-promotion of Ni natural clay-supported catalysts for dry reforming of methane. RSC Adv. 2018, 8, 19627–19634.
(39) Znak, L.; Jerzy, Z. Effects of support on hydrogen adsorption/ desorption on nickel. Appl. Catal. Gen. 2008, 334, 268–276.
(40) Villa, R.; Cinzia, G.; Gianpietro, G.; Luca, L.; Pio, F.; Ugo, C.; Stefano, R. Ni based mixed oxide materials for CH4 oxidation under redox cycle conditions. J. Mol. Catal. A: Chem. 2003, 204–205, 637–646.

https://doi.org/10.1021/acsomega.1c05841

ACS Omega 2022, 7, 4202–4213
(41) Ciambelli, P.; Palma, V.; Palo, E. Comparison of ceramic honeycomb monolith and foam as Ni catalyst carrier for methane autothermal reforming. Catal. Today 2010, 155, 92–100.

(42) Liu, J.; Li, C.; Wang, F.; He, S.; Chen, H.; Zhao, Y.; Wei, M.; Evans, D. G.; Duan, X. Enhanced low-temperature activity of CO2 methanation over highly-dispersed Ni/TiO2 catalyst. Catal. Sci. Technol. 2013, 3, 2627–2633.

(43) Liu, Q.; Gao, J.; Zhang, M.; Li, H.; Gu, F.; Xu, G.; Zhong, Z.; Su, F. Highly active and stable Ni/γ-Al2O3 catalysts selectively deposited with CeO2 for CO methanation. RSC Adv. 2014, 4, 16094–16103.

(44) Smeds, S.; Salmi, T.; Lindfors, L. P.; Krause, O. Chemisorption and TPD studies of hydrogen on Ni/Al2O3. Appl. Catal. Gen. 1996, 144, 177–194.

(45) Ewald, S.; Standl, S.; Hinrichsen, O. Characterization of nickel catalysts with transient methods. Appl. Catal. Gen. 2018, 549, 93–101.

(46) Infantes-Molina, A.; Gralberg, E.; Cecilia, J. A.; Finocchio, E.; Rodríguez-Castellón, E. Nickel and cobalt phosphides as effective catalysts for oxygen removal of dibenzofuran: role of contact time, hydrogen pressure and hydrogen/feed molar ratio. Catal. Sci. Technol. 2019, 9, 73–84.

(47) Santos, D. C. R. M.; Lisboa, J. S.; Passos, F. B.; Noronha, F. B. Characterization of steam-reforming catalysts. Braz. J. Chem. Eng. 2006, 23, 203–209.

(48) Zhang, H.; Dong, Y.; Fang, W.; Lian, Y. Effects of composite oxide supports on catalytic performance of Ni-based catalysts for CO methanation. Chin. J. Catal. 2013, 34, 330–335.

(49) Nguyen, L. Q.; Abella, L. C.; Gallardo, S. M.; Hinode, H. Effect of nickel loading on the activity of Ni/ZeO for methane steam reforming at low temperature. React. Kinet. Catal. Lett. 2018, 93, 227–232.

(50) Zhu, X.; Jiang, D.; Tan, S. The control of slurry rheology in the processing of reticulated porous ceramics. Mater. Res. Bull. 2002, 37, 541–553.

(51) Jiang, D. L.; Zhu, X. W. Preparation and properties of silicon carbide reticulated porous ceramics. Key Eng. Mater. 2003, 247, 19–26.

(52) Ohji, T.; Fukushima, M. Macro-porous ceramics: processing and properties. Key Eng. Mater. 2012, 57, 115–131.

(53) Voigt, C.; Aneziris, C. G.; Hubšlíková, J. Rheological characterization of slurries for the preparation of alumina foams via replica technique. J. Am. Ceram. Soc. 2015, 98, 1460–1463.

(54) Mao, X. Processing of ceramic foams. IntechOpen 2018, 1, 1–47.

(55) Gómez, S. Y.; Alvarez, O. A.; Escobar, J. A.; Neto, J. B. R.; Rambo, C. R.; Hotza, D. Relationship between rheological behavior and final structure of Al2O3 and YSZ foams produced by replica. Adv. Mater. Sci. Eng. 2012, 2012, 1–9.

(56) Wojcieszak, R.; Jasik, A.; Moreverdi, S.; Ziolek, M.; Bettahar, M. M. Nickel–niobia interaction in non-classical Ni/Nb2O5 catalysts. J. Mol. Catal. Chem. 2006, 256, 225–233.

(57) Chettihi, S.; Benguedouar, Y.; Keghouche, N. The metal-support interaction in the oxide supported nickel nanoparticles synthesized by radiolysis. Phys. Procedia 2009, 2, 707–712.

(58) Millet, M.-M.; Tarasov, A. V.; Girgsdies, F.; Algara-Siller, G.; Schrögl, R.; Frei, E. Highly Dispersed NiO/NiX/MgL−xO catalysts derived from solid solutions: how metal and support control the CO2 hydrogenation. ACS Catal. 2019, 9, 8534–8546.

(59) Abu-Jdayil, B.; Al-Nakoua, M. A.; El-Naas, M. H.; Khaleel, A. R. Rheological characteristics of nickel alumina sol–gel catalyst. Fuel Process. Technol. 2012, 102, 85–89.

(60) Zhu, X.; Jiang, D.; Tan, S. The control of slurry rheology in the processing of reticulated porous ceramics. Mater. Res. Bull. 2002, 37, 541–553.

(61) Velu, S.; Gangwal, S. Synthesis of alumina supported nickel nanoparticle catalysts and evaluation. Solid State Ionics 2006, 177, 803–811.

(62) Yang, W.; Feng, Y.; Chu, W. Promotion effect of CaO modification on mesoporous Al2O3-supported Ni catalysts for CO2 methanation. Int. J. Chem. Eng. 2016, 2016, 1–7.