Light hadron production in $B_c \to J/\psi + X$ decays

A. K. Likhodey and A. V. Luchinsky

Institute for High Energy Physics, Protvino, Russia

Decays of ground state B_c-meson $B_c \to J/\psi + n\pi$ are considered. Using existing parametrizations for $B_c \to J/\psi$ form-factors and $W^* \to n\pi$ spectral functions we calculate branching fractions and transferred momentum distributions of $B_c \to J/\psi + n\pi$ decays for $n = 1, 2, 3, 4$. Inclusive decays $B_c \to J/\psi + ud$ and polarization asymmetries of final charmonium are also investigated. Presented in our article results can be used to study form-factors of $B_c \to J/\psi$ transitions, π-meson system spectral functions and give the opportunity to check the factorization theorem.

I. INTRODUCTION

Recent measurements of B_c-meson mass and lifetime in CDF [1] and D0 [2] experiments allow us to hope that more detailed investigation of this particle on LHC collider, where about 10^{10} B_c-events per year are expected, would clarify mechanisms of B_c production and decay modes. Currently only products of B_c-meson production cross section and branching fractions of decays $B_c \to J/\psi \pi$, $J/\psi \ell \nu$ are known experimentally. For example, the following ratios are measured [3]:

$$
\frac{\sigma_{B_c} Br (B_c \to J/\psi e^+ \nu_e)}{\sigma_B Br (B_c \to J/\psi K)} = 0.282 \pm 0.038 \pm 0.074
$$

for positron in the final state and

$$
\frac{\sigma_{B_c} Br (B_c \to J/\psi \mu^+ \nu_\mu)}{\sigma_B Br (B_c \to J/\psi K)} = 0.249 \pm 0.045 \pm 0.107
$$

for muon. These ratios are about an order of magnitude higher than the theoretical predictions based on current estimates of B_c-meson production cross section and branching fraction $Br(B_c \to J/\psi \ell \nu) \approx 2\%$ [4]. The mode $B_c \to J/\psi \pi$ was used mainly to determine precisely B_c-meson mass. No information on production cross section, decay branching fraction, and even the product of these quantities was determined in this experiment.

Investigation of other B_c-meson decay channels and determination of their branching fractions will be one of interesting tasks of future experiments on LHC. Weak B_c decays can be caused by decays of both constituent quarks. Dominant are c-quark decay modes, which amount to $\sim 70\%$ of all B_c-meson decays. Unfortunately, none of such reactions were observed, although large branching fractions are expected for some of these decay modes (for example, for $B_c \to B_s \rho$ we have approximately 16% branching fraction). Mentioned above decays $B_c \to J/\psi \ell \nu$ and $B_c \to J/\psi \pi$ are examples of other class, caused by b-quark decay. Total branching fraction of this process is about 20%.

In the present paper we will fill the gap in existing theoretical predictions of B_c-meson decay branching fractions [4] and consider multi-particle processes $B_c \to J/\psi + n\pi$ with $n = 1, 2, 3, 4$. These reactions are caused by weak b-quark decay $b \to c W^* \to cud$ and clean analogy with similar τ-lepton decays ($\tau \to \nu_\tau + n\pi$) can be easily seen. This analogy allows us to use existing experimental data on τ-lepton decays and give reliable predictions of $B_c \to J/\psi + n\pi$ branching fractions.

In the next section we give analytical expressions for distributions of $B_c \to J/\psi + n\pi$ decays branching fractions over invariant mass of the light hadron system and study different asymmetries of final J/ψ-meson polarization as a function of this kinematic variable. In section III we use existing experimental data on τ-lepton decays calculate branching fractions of $B_c \to J/\psi + n\pi$ decays for $n = 1, 2, 3, 4$. In section IV inclusive reaction $B_c \to J/\psi ud$ is considered in connection with duality relation. Short results of our work are given in the final section.

*Electronic address: Anatoli.Likhoded@ihep.ru

\^Electronic address: Alexey.Luchinsky@ihep.ru
II. ANALYTIC RESULTS

B_c-meson decays into light hadrons with vector charmonium J/ψ production are caused by b-quark decay $b \to W^* \to c\bar{u}d$ (see diagram shown in fig.1). The effective lagrangian of the latter process reads

$$\mathcal{H}_{\text{eff}} = \frac{G_F}{2\sqrt{2}} V_{cb} V_{ud}^* \left[C_+(\mu) O_+ + C_-(\mu) O_- \right],$$

where G_F is Fermi coupling constant, V_{ij} are the elements of CKM mixing matrix, $C_{\pm}(\mu)$ are Wilson coefficients, that take into account higher QCD corrections and operators O_{\pm} are defined according to

$$O_{\pm} = (\bar{d}_i u_j) V_{-A}(\bar{c}_i b_j) V_{-A} \pm (\bar{d}_j u_i) V_{-A}(\bar{c}_i b_j) V_{-A}.$$

In this expression i,j are color indexes of quarks and $\langle \bar{q}_1 q_2 \rangle_{V-A} = \bar{q}_1 \gamma_\mu (1 - \gamma_5) q_2$. Since in our decays light quark pair should be in color-singlet state, the amplitude of the considered here processes is proportional to

$$a_1(\mu) = \frac{1}{2N_c} [(N_c - 1) C_+(\mu) + (N_c - 1) C_-(\mu)].$$

If QCD corrections are neglected, one should set $a_1(\mu) = 1$. Leading logarithmic strong corrections lead to dependence of this coefficient on the renormalization scale μ [8], and on $\mu \sim m_b$ it is equal to

$$a_1(m_b) = 1.17.$$

The matrix element of the decay $B_c \to J/\psi + \mathcal{R}$, where \mathcal{R} is some set of light hadrons, has the form

$$\mathcal{M} [B_c \to W^* J/\psi \to \mathcal{R} J/\psi] = \frac{G_F V_{cb}}{\sqrt{2}} a_1 \mathcal{H}_\mu \epsilon_\mathcal{R}^\mu.$$

In this expression $\epsilon_\mathcal{R}$ is the effective polarization vector of virtual W-boson and

$$\mathcal{H}_\mu = \langle J/\psi | \bar{c} \gamma_\mu (1 - \gamma_5) b | B_c \rangle = \mathcal{V}_\mu - \mathcal{A}_\mu.$$

Vector and axial currents are equal to

$$\mathcal{V}_\mu = \langle J/\psi | \bar{c} \gamma_\mu b | B_c \rangle = i\epsilon^{\mu\nu\alpha\beta} \epsilon_\nu^\psi (p + k)_\alpha q_\beta F_V (q^2),$$

$$\mathcal{A}_\mu = \langle J/\psi | \bar{c} \gamma_\mu \gamma_5 b | B_c \rangle = \epsilon_\mu^\psi F_0^A (q^2) + (\epsilon_\nu^\psi) (p + k)_\mu F_+^A (q^2) + (\epsilon_\nu^\psi) q_\mu F_-^A (q^2).$$

Figure 1: $B_c \to J/\psi + \mathcal{R}$
where \(p \) and \(k \) are the momenta of \(B_c^- \) and \(J/\psi \)-mesons, \(q = p - k \) is the momentum of virtual \(W \)-boson, and \(F_V(q^2) \), \(F_{V,0}^A(q^2) \) are form-factors of \(B_c \rightarrow J/\psi W^* \) decay. Due to vector current conservation and partial axial current conservation the contribution of the form-factor \(F^A_\perp \) are suppressed by small factor \(\sim (m_u + m_d)^2/M_{B_c}^2 \), so we will neglect it in the following.

One can use different approaches when deriving the form of the form-factors \(F(q^2) \). First of all, it is clear, that quark velocity in heavy quarkonia is small in comparison with \(c \), so one can describe heavy quarkonia in the terms of non-relativistic wave-functions. This fact was used on the so called Quark Models [4, 5, 9–14]. In the following we will refer to this set of form-factors as \(QM \). The speed of the final charmonium in \(B_c \)-meson rest frame, on the other hand, is large, so one can expand the amplitude of the considered here process in the powers of small parameter \(M_{J/\psi}/M_{B_c} \), as it was done in papers [15–20]. In what follows, we will refer to this set of form-factors as \(LC \). One can also use 3-point QCD sum rules to obtain the information on \(B_c \rightarrow J/\psi W^* \) form-factors [4, 11, 21, 22] (SR).

In our paper we use the following simple parametrization of form-factors

\[
F(q^2) = \frac{F(0)}{1 - q^2/M_{pole}^2},
\]

where numerical values of parameters \(F_i(0) \) and \(M_{pole} \) are presented in Table I.

The width of the \(B_c \rightarrow J/\psi R \) decay is

\[
d\Gamma(B_c \rightarrow J/\psi R) = \frac{1}{2M} \frac{G_F^2 V_{cb}^2}{2} \frac{u_i^2}{u_1^2} H^{\mu\nu} H^{\ast \mu\nu} \epsilon_\mu^* \epsilon_\nu^* d\Phi (B_c \rightarrow J/\psi R),
\]

where Lorentz-invariant phase space is defined according to

\[
d\Phi (Q \rightarrow p_1 \ldots p_n) = (2\pi)^4 \delta^4 (Q - \sum p_i) \prod \frac{d^3 p_i}{2E_i (2\pi)^3}.
\]

It is well known, that the following recurrent expression holds for this phase space:

\[
d\Phi (B_c \rightarrow J/\psi R) = \frac{d q_R^2}{2\pi} d\Phi (B_c \rightarrow J/\psi W^*) d\Phi (W^* \rightarrow R).
\]

Using this expression one can perform the integration over phase space of the final state \(R \):

\[
\frac{1}{2\pi} \int d\Phi (W^* \rightarrow R) \epsilon_\mu^R \epsilon_\nu^{R*} = (q_\mu q_\nu - q^2 g_{\mu\nu}) \rho^R_T (q^2) + q_\mu q_\nu \rho^R_L (q^2),
\]

where spectral functions \(\rho^R_T, L (q^2) \) are universal and can be determined from theoretical and experimental analysis of some other processes, for example \(\tau \rightarrow \nu R \) decay or electron-positron annihilation \(e^+ e^- \rightarrow R \). Due to vector current conservation and partial axial current conservation spectral function \(\rho^R_T \) is negligible on almost whole kinematical region, so we will neglect is in our paper. Explicit expressions for spectral function \(\rho^R_T \) for different final states \(R \) are given in the next section.
Differential distributions of longitudinally and transversely polarized J/ψ-meson in $B_c \rightarrow J/\psi + R$ decays can easily be obtained from presented above expressions. In the case of longitudinal polarization the polarization vector ϵ_ψ is equal to

$$e_\psi^\lambda (\lambda = 0) = \frac{M}{2M_V} \left\{ \beta, 0, 0, \frac{M^2 + M_V^2 - q^2}{M^2} \right\},$$

where z-axes is chosen in the direction of J/ψ movement, M and M_V are B_c- and J/ψ-meson masses and

$$\beta = \sqrt{\frac{(M + M_V)^2 - q^2}{M^2}} \sqrt{\frac{(M - M_V)^2 - q^2}{M^2}}.$$

Differential distribution has the form

$$\frac{d\Gamma [B_c \rightarrow J/\psi^{\lambda=0} + R]}{dq^2} = \frac{G_F^2 M^3 V_{cb}^2 a_0^2}{128\pi M_V^2} \rho^R (q^2) \frac{M^4}{4M_V^2} \left\{ \left(\beta^2 + \frac{4M_V^2 q^2}{M^4} \right) |F_0^A|^2 + M^4 \beta^4 |F_+^A|^2 \right. + \left. 2\beta^2 (M^2 - M_V^2 - q^2) F_0^A F_+^A \right\}.$$

In the case of transversely polarized vector meson e_ψ^λ has the form

$$e_\psi^\lambda (\lambda = \pm 1) = \left\{ 0, \frac{1}{\sqrt{2}}, \frac{\pm i}{\sqrt{2}}, 0 \right\},$$

and the corresponding differential distribution is

$$\frac{d\Gamma [B_c \rightarrow J/\psi^{\lambda=\pm 1} + R]}{dq^2} = \frac{G_F^2 V_{cb}^2 a_0^2}{32\pi M^2} \beta q^2 \rho^R (q^2) \left\{ |F_0^A|^2 + M^4 \beta^2 |F_V|^2 + \frac{2\beta M_V^2}{M_V^2} \Re (F_0^A F_+^A) \right\}.$$

It should be stressed, that the above expressions are universal and spectral function $\rho^R (s)$ depends on the final state R.

If the polarization if final vector meson is not observed, the q^2-distribution is, obviously,

$$\frac{d\Gamma [B_c \rightarrow J/\psi + R]}{dq^2} = \sum_{\lambda=0,\pm 1} \frac{d\Gamma [B_c \rightarrow J/\psi^{\lambda} + R]}{dq^2}. \tag{2}$$

It is also useful to study some polarization asymmetries. For example, polarization degree α is defined according to

$$\alpha = \frac{d\Gamma_{\lambda=+1} + d\Gamma_{\lambda=-1} - 2d\Gamma_{\lambda=0}}{d\Gamma_{\lambda=+1} + d\Gamma_{\lambda=-1} + 2d\Gamma_{\lambda=0}}.$$
Production of transversely polarized, longitudinally polarized and unpolarized \(J/\psi \)-meson corresponds to \(\alpha = 1 \), \(\alpha = -1 \) and \(\alpha = 0 \) respectively. We would like to note, that in the framework of factorization model this asymmetry does not depend on final state \(R \). So, experimental investigation of this asymmetry can be used for determination of \(B_c \)-meson form factors and test of QCD factorization. In fig.2 we show \(q^2 \)-dependence of this asymmetry for different sets of \(B_c \)-meson form-factors. One can easily explain qualitatively the behavior of these curves. Let us consider \(q^2 \)-dependence of asymmetry \(\alpha \) in \(B_c \to J/\psi \bar{u}d \) decay. At low \(q^2 \) the direction of \(\bar{u} \)- and \(d \)-quarks momenta in \(B_c \)-meson rest frame will be close to each other and opposite to the direction of the momentum of \(J/\psi \)-meson. The spin of light \(\bar{u} \)-antiquark (\(d \)-quark) is directed along (opposite to) its momentum (see fig.3a), so quark-antiquark pair has \(\lambda = 0 \) projection on \(O_z \) axis. From angular momentum conservation it follows, that \(J/\psi \)-meson should also be longitudinally polarized. This can be observed in figure 2, where at low \(q^2 \) we have \(\alpha = -1 \) for all sets of \(B_c \)-meson form-factors. In high \(q^2 \)-region, on the contrary, direction of quark and antiquark momenta are opposite to each other and \(J/\psi \)-meson stay at rest in \(B_c \)-meson rest frame (see fig.3b). As a result, final \(J/\psi \)-meson is unpolarized in this region and \(\alpha = 0 \).

Another example is transverse asymmetry

\[
\alpha_T = \frac{d\Gamma_{\lambda = 1} - d\Gamma_{\lambda = -1}}{d\Gamma}
\]

This asymmetry also depends only on \(B_c \)-meson form-factors and its dependence on squared transferred momentum is shown in fig.4.

III. EXCLUSIVE DECAYS

In this section we present differential widths and branching fractions of the decays \(B_c \to J/\psi + n\pi \) using presented above universal formula (2) and specific expressions for spectral function \(\rho^R_T (q^2) \).
A. $B_c \to J/\psi \pi$

Let us first of all consider two-particle decays $B_c \to J/\psi \pi$ and $B_c \to J/\psi \rho$.

In the case of $B_c \to J/\psi \pi$ decay the $W^* \to \pi$ transition is expressed through leptonic constant f_π:

$$\langle \pi | \bar{u} \gamma_\mu \gamma_5 d | 0 \rangle = \sqrt{2} f_\pi \eta_\mu.$$ \hspace{1cm} (3)

The numerical value of this constant can be determined from $\pi \to \mu \nu$ decay width: $f_\pi \approx 140 \text{ MeV}$. The spectral function, that corresponds to vertex (3) is

$$\rho_T^\pi (q^2) = 2 f_\pi^2 \delta (q^2).$$

Using this spectral function it is easy to obtain the following values of $B_c \to J/\psi \pi$ decay branching fractions for different sets of form-factors:

- $\text{Br}_{LC} (B_c \to J/\psi \pi) = 0.13\%$
- $\text{Br}_{QM} (B_c \to J/\psi \pi) = 0.17\%$
- $\text{Br}_{SR} (B_c \to J/\psi \pi) = 0.17\%$

B. $B_c \to J/\psi + 2\pi$

The 2π channel is saturated mainly by $B_c \to J/\psi \rho$ decay. The $W^* \to \rho$ transition vertex is also expressed through ρ-meson leptonic constant

$$\langle \rho | \bar{u} \gamma_\mu d | 0 \rangle = \sqrt{2} f_\rho M_\rho \epsilon_\mu$$

where $f_\rho \approx 150 \text{ MeV}$. If one neglects the width of ρ-meson, the corresponding spectral function has the form

$$\rho_T^\rho (q^2) = 2 f_\rho^2 \delta (q^2 - m_\rho^2).$$ \hspace{1cm} (4)

The branching fractions of $B_c \to J/\psi \rho$ for different sets of form-factors are:

- $\text{Br}_{LC} (B_c \to J/\psi \rho) = 0.38\%$
- $\text{Br}_{QM} (B_c \to J/\psi \rho) = 0.44\%$
- $\text{Br}_{SR} (B_c \to J/\psi \rho) = 0.48\%$

In order to take ρ-meson width into account, one can use experimental data on $\tau \to \nu_\tau + 2\pi$ decay. The differential branching ratio of this reaction is equal to

$$\frac{d\Gamma (\tau \to \nu_\tau R)}{dq^2} = \frac{G_F^2}{16\pi m_\tau} \left(\frac{m_\tau^2 - q^2}{m_\tau^2} \right)^2 \left(m_\tau^2 + 2q^2 \right) \rho_T^\pi (q^2).$$

This method was used by ALEPH collaboration to measure the spectral function $\rho_T^{2\pi} (q^2)$ in the kinematically allowed region $q^2 < m_\tau^2$ and can be approximated by the expression (see fig.5)

$$\rho_T^{2\pi} (s) \approx 1.35 \times 10^{-3} \left(\frac{s - 4m_\pi^2}{s} \right)^2 \frac{1 + 0.64s}{(s - 0.57)^2 + 0.013},$$

where s is measured in GeV2. In fig.5 we show corresponding distributions $d\Gamma (B_c \to J/\psi + 2\pi) / dq^2$. Solid, dashed and dash-dotted lines in this figure correspond to form-factors SR, QM, and LC respectively. The branching fractions of the decay $B_c \to J/\psi + 2\pi$ are almost equal to $B_c \to J/\psi \rho$ decay branching fractions:

- $\text{Br}_{LC} (B_c \to J/\psi \pi \pi) = 0.35\%$
- $\text{Br}_{QM} (B_c \to J/\psi \pi \pi) = 0.44\%$
- $\text{Br}_{SR} (B_c \to J/\psi \pi \pi) = 0.48\%$.
C. $B_c \to J/\psi + 3\pi$

In the case of $B_c \to J/\psi + 3\pi$ decay (where 3π stands for the sum of $\pi^-\pi^0\pi^0$ and $\pi^-\pi^+\pi^-$ decay modes) the G-parity of the final state is negative. So we can expect, that this mode is saturated by axial-vector resonance a_1. The width of this state is too large to neglect it, so we cannot use the expression similar to (4) for $W^* \to 3\pi$ transition. The corresponding spectral function can be determined from experimental and theoretical data on $\tau \to \nu_\tau + 3\pi$ decay. In our article we use the following expression to approximate this function (see. fig.6a):

$$
\rho_T^{3\pi}(s) \approx 5.86 \times 10^{-5} \left(\frac{s - 9 m_\pi^2}{s} \right)^4 \frac{1 + 190 s}{(s - 1.06)^2 + 0.48^2}.
$$

Distributions over q^2 for different sets of B_c-meson form factors are shown in fig.6b. The branching fractions of $B_c \to J/\psi + 3\pi$ decay are

$$
\text{Br}_{LC}(B_c \to J/\psi + 3\pi) = 0.52\%,
\text{Br}_{QM}(B_c \to J/\psi + 3\pi) = 0.64\%,
\text{Br}_{SR}(B_c \to J/\psi + 3\pi) = 0.77\%.
$$

D. $B_c \to J/\psi + 4\pi$

In the decay $B_c \to J/\psi + 4\pi$ both $\pi^-\pi^0\pi^0\pi^0$ and $\pi^-\pi^+\pi^-\pi^-$ modes are possible in the following we consider the sum of these states. The kinematically allowed region in $\tau \to \nu_\tau + 4\pi$ decay is too small to determine the form of spectral function $\rho_T^{4\pi}$, so it is more convenient to use energy dependence of 4π production cross section in
electron-positron annihilation. It is easy to obtain the following expression for this cross section:

$$\sigma \left(e^+e^- \rightarrow 4\pi \right) = \frac{4\pi\alpha^2}{s}\rho_{4\pi T}^2(s).$$

Spectral function $\rho_{4\pi T}^2$, calculated from experimental data \cite{24} is shown in fig.7a and later we use the following parametrization:

$$\rho_{4\pi T}^2(s) \approx 1.8 \times 10^{-4} \left(\frac{s - 16m_\pi^2}{2} \right) \left[(s - 1.83)^2 + 0.61 \right].$$

The distributions corresponding to this spectral function are shown in fig.7b. The branching fraction for different sets of B_c-meson form-factors are

$$\text{Br}_{LC}(B_c \rightarrow J/\psi + 4\pi) = 0.26\%,$$
$$\text{Br}_{QM}(B_c \rightarrow J/\psi + 4\pi) = 0.33\%,$$
$$\text{Br}_{SR}(B_c \rightarrow J/\psi + 4\pi) = 0.40\%.$$
Figure 8: Differential $B_c \rightarrow J/\psi \bar{u}d$ branching fractions for different sets of B_c-meson form-factors. Notations are the same as in fig [5].

π	2π	3π	4π	$\bar{u}d$	
LC	0.13	0.35	0.52	0.26	7
QM	0.17	0.44	0.64	0.33	8.6
SR	0.17	0.48	0.77	0.40	12

Table II: $B_c \rightarrow J/\psi R$ decays branching fractions (in %) for different sets of B_c-meson form-factors

where Δ is the duality window. If we restrict ourselves to $n \leq 4$ in the right-hand side of this relation, it is valid for

$$\Delta \approx 0.6 \text{ GeV}.$$

It is interesting to note that this value is almost independent on the choice of B_c-meson form-factors and close to the value of duality parameter in $gg \rightarrow J/\psi c\bar{c}$ and $\chi_b \rightarrow J/\psi c\bar{c}$ reactions [25, 26].

V. CONCLUSION

In our paper we study exclusive and inclusive decays of B_c-meson into light hadrons and vector charmonium J/ψ, that is the processes $B_c \rightarrow J/\psi + \bar{u}d$ and $B_c \rightarrow J/\psi + n\pi$ where $n = 1, 2, 3, 4$. According to QCD factorization theorem the amplitude of these processes splits into two independent parts. The first factor describes the decay $B_c \rightarrow J/\psi W^*$ and one can use existing parametrizations of B_c-meson form-factors to calculate this amplitude. The second factor describes the fragmentation of virtual W-boson. The information about these processes was taken from experimental distributions of multi-pion production in τ-lepton decays and electron-positron annihilation.

Our results are gathered in table [II] where branching fractions of multi-pion production in $B_c \rightarrow J/\psi + n\pi$ for different B_c-meson form-factors are presented. The last column of this table contains the branching fraction of the inclusive decay $B_c \rightarrow J/\psi + \bar{u}d$. It is clear that up to KK-production threshold only π-mesons could be produced in $B_c \rightarrow J/\psi + X$ decay, so some duality relation should hold. In our article it is shown, that to satisfy this relation it is sufficient to integrate the inclusive spectrum up to square transferred momentum $q^2 = (2m_K + \Delta)^2$. It turns out, that Δ is almost independent on the choice of B_c-meson form-factors and equals to $\sim 0.6 \text{ GeV}$.

The other interesting point are the polarization asymmetries of final J/ψ-meson. In the framework of factorization model these asymmetries do not depend on the final state R, so one can use them to investigate form-factors of B_c-meson and to test the factorization theorem. In our paper we present the polarization degree $\alpha = (d\Gamma_T/dq^2 - 2d\Gamma_L/dq^2)/(d\Gamma_T/dq^2 + 2d\Gamma_L/dq^2)$ and transverse polarization asymmetry $\alpha_T = (d\Gamma_{\lambda=1}/dq^2 - d\Gamma_{\lambda=-1}/dq^2)/(d\Gamma/dq^2)$ for different sets of form-factors.

The authors would like to thank V.V. Kiselev for fruitful discussions. This work was financially supported by Russian Foundation for Basic Research (grants #09-02-00132-a and 07-02-00417-a). One of the author (A.V.L.) was also
supported by President grant (#MK-110.2008.2), grant of Russian Science Support Foundation and noncommercial foundation "Dynasty".

[1] T. Aaltonen and C. Collaboration, Phys. Rev. Lett., 100 (2008), 182002, arXiv:0712.1506 [hep-ex].
[2] V. M. Abazov et al., Phys. Rev. Lett., 102 (2009), 092001, 0805.2614.
[3] V. Papadimitriou, AIP Conf. Proc., 815 (2006), 157, hep-ex/0511043.
[4] S. S. Gershtein, V. V. Kiselev, A. K. Likhoded, and A. V. Tkabladze, Phys. Usp., 38 (1995), 1, hep-ph/9504319.
[5] S. S. Gershtein et al., (1997), hep-ph/9803433.
[6] V. V. Kiselev, A. E. Kovalsky, and A. K. Likhoded, (2000), hep-ph/0006104.
[7] V. V. Kiselev, A. E. Kovalsky, and A. K. Likhoded, Nucl. Phys., B585 (2000), 353, hep-ph/0002127.
[8] G. Buchalla, A. J. Buras, and M. E. Lautenbacher, Rev. Mod. Phys., 68 (1996), 1125, hep-ph/9512380.
[9] V. V. Kiselev, A. K. Likhoded, and A. V. Tkabladze, Phys. At. Nucl., 56 (1993), 643.
[10] P. Colangelo and F. De Fazio, Phys. Rev., D61 (2000), 034012, hep-ph/9909423.
[11] V. V. Kiselev, A. K. Likhoded, and A. I. Onishchenko, Nucl. Phys., B569 (2000), 473, hep-ph/9905359.
[12] M. A. Ivanov, J. G. Korner, and P. Santorelli, Phys. Rev., D71 (2005), 094006, hep-ph/0501051.
[13] E. Hernandez, J. Nieves, and J. M. Verde-Velasco, Phys. Rev., D74 (2006), 074008, hep-ph/0607150.
[14] M. A. Ivanov, J. G. Korner, and P. Santorelli, Phys. Rev., D73 (2006), 054024, hep-ph/0602050.
[15] A. Y. Anisimov, P. Y. Kulikov, I. M. Narodetsky, and K. A. Ter-Martirosian, Phys. Atom. Nucl., 62 (1999), 1739, hep-ph/9809249.
[16] A. Y. Anisimov, I. M. Narodetsky, C. Semay, and B. Silvestre-Brac, Phys. Lett., B452 (1999), 129, hep-ph/9812514.
[17] T. Huang, Z.-H. Li, X.-G. Wu, and F. Zuo, Int. J. Mod. Phys., A23 (2008), 3237, arXiv:0801.0473 [hep-ph].
[18] H.-M. Choi and C.-R. Ji, (2009), 0909.5028.
[19] H.-M. Choi and C.-R. Ji, (2009), 0903.0455.
[20] X.-X. Wang, W. Wang, and C.-D. Lu, Phys. Rev., D79 (2009), 114018, 0901.1934.
[21] V. V. Kiselev, (2002), hep-ph/0211021.
[22] K. Azizi and M. Bayar, Phys. Rev., D78 (2008), 054011, 0806.0578.
[23] S. Schael et al., Phys. Rept., 421 (2005), 191, hep-ex/0506072.
[24] H. Czyz and J. H. Kuhn, Eur. Phys. J., C18 (2001), 497, hep-ph/0008262.
[25] A. V. Berezhnoy and A. K. Likhoded, (2006), hep-ph/0602041.
[26] V. V. Braguta, A. K. Likhoded, and A. V. Luchinsky, Phys. Rev., D73 (2006), 034021, hep-ph/0510060.