The prevalence of extramedullary acute myeloid leukemia detected by 18FDG-PET/CT: final results from the prospective PETAML trial

Friedrich Stölzel,1 Tors Lüer,1 Steffen Löck,2 Stefani Parmentier,3 Friederike Kuithan,4 Michael Kramer,4 Nael S. Alakel,1 Katja Sockel,1 Franziska Taube,1 Jan M. Middeke,1 Johannes Schetelig,1 Christoph Röllig,1 Tobias Paulus,5 Jörg Kotzerke,6 Gerhard Ehninger,1 Martin Bornhäuser,1,7,8 Markus Schaich3# and Klaus Zoephel1#

1Department of Internal Medicine I, University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, Dresden, Germany; 2OncoRay - National Center for Radiation Research in Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz Zentrum, Dresden Rossendorf, Germany; 3Department of Haematology and Oncology, Rems-Murr-Hospital, Winnenden, Germany; 4Department of Pathology, University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, Dresden, Germany; 5Department of Radiology, Städtisches Klinikum Dresden, Dresden, Germany; 6Department of Nuclear Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; 7National Center for Tumor Diseases NCT, Partner site Dresden, Dresden, Germany; 8Department of Haematological Medicine, The Rayne Institute, King’s College London, London, UK

#MS and KZ contributed equally as co-senior authors.

©2020 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol.2019.223032

Received: March 31, 2019.
Accepted: August 27, 2019.
Pre-published: August 29, 2019.
Correspondence: FRIEDRICH STÖLZEL - friedrich.stoelzel@uniklinikum-dresden.de
Supplemental Table 1. Patients undergoing biopsy for diagnosis of EM AML in both cohorts of the PETAML trial.

PETAML PATIENT COHORT	n = 93	Baseline 18FDG-PET/CT positive (n = 21)	Baseline 18FDG-PET/CT negative (n = 72)
No. of patients undergoing biopsy after baseline 18FDG-PET/CT	12	3	
No. of patients with confirmed EM AML in biopsy	10	3	
No. of patients with different tumor (other than EM AML) in biopsy	2	0	
Supplementary Table S2. Patients undergoing biopsy for diagnosis of EM AML in both cohorts of the PETAML trial.

PETAML PATIENT COHORT	n = 93	Baseline 18FDG-PET/CT positive (n = 21)	Baseline 18FDG-PET/CT negative (n=72)
No. of patients undergoing biopsy after baseline 18FDG-PET/CT	12	3	
No. of patients with confirmed EM AML in biopsy	10	3	
No. of patients with different tumor (other than EM AML) in biopsy	2	0	
Supplemental Figure 1A.
Supplemental Figure 1B.
Supplemental Figure 1A

Metabolic activity (SUVmax) of extramedullary AML in patients with EM AML at baseline (and confirmed EM AML as per biopsy) and at follow-up 18FDG-PET/CT. Note: Patient 1 and patient 6 have the same SUVmax for both time points which is the reason for exact superimposition of diagrams. Patients number 3, 9, 10, and 12 represent those patients who remained 18FDG-PET/CT positive but achieved a CR in their bone marrow at the same time, respectively.

Supplemental Figure 1B

Number of extramedullary AML manifestations in patients with EM AML at baseline (and confirmed EM AML as per biopsy) and at follow-up 18FDG-PET/CT. Note: three patients pairs have the same number of extramedullary AML manifestations for both time points which is the reason for exact superimposition of diagrams. Patients number 3, 9, 10, and 12 represent those patients who remained 18FDG-PET/CT positive but achieved a CR in their bone marrow at the same time, respectively.