QUANTUM VERIFICATION OF MINIMUM SPANNING TREE

MARK HEILIGMAN

January 29, 2011

Abstract. Previous studies has shown that for a weighted undirected graph having n vertices and m edges, a minimal weight spanning tree can be found with $O^*(\sqrt{mn})$ calls to the weight oracle. The present note shows that a given spanning tree can be verified to be a minimal weight spanning tree with only $O(n)$ calls to the weight oracle and $O(n + \sqrt{m\log n})$ total work.

Introduction

Problem Statement.
The determination of a minimal weight spanning tree of a weighted undirected graph is a central problem in computational graph theory and a number of well known classical algorithms address the problem quite efficiently. This problem has also shown up in the realm of quantum algorithms and the paper [DHHM] provides nearly matching upper and lower bounds for the problem. (The term “nearly matching” as used here means that the upper and lower bounds agree to within a power of the logarithm of the problem size.) The algorithm in [DHHM] uses some of the constructs that occur in the classical minimal spanning tree algorithms, along with a somewhat sophisticated version of the quantum minimum algorithm (which itself is based on Grover’s algorithm).

A closely related problem deals with the verification of minimal spanning tree. In this formulation of the problem, both a weighted graph and a spanning tree of that graph are given as inputs, and the problem is to decide whether the given spanning tree is of minimal weight (and if not to give a lower weight spanning tree). Based on work of [Ko], a simple classical verification algorithm was given in [Ki].

Problem. Given a graph $G = (V, E)$ consisting of $n = |G|$ vertices and $m = |E|$ edges along with a weight function on the edges $w : E \rightarrow \mathbb{R}^+$, and a spanning tree $T = (V, F)$ with $F \subseteq E$ and $|F| = n - 1$, verify that T is a minimal weight spanning tree.

Key words and phrases. quantum algorithms, graph theory, spanning tree.

Disclaimer. All statements of fact, opinion, or analysis expressed in this paper are solely those of the author and do not necessarily reflect the official positions or views of the Office of the Director of National Intelligence (ODNI), the Intelligence Advanced Research Projects Activity (IARPA), or any other government agency. Nothing in the content should be construed as asserting or implying U.S. Government authentication of information or ODNI endorsement of the author’s views.

Typeset by A4AS-TEX
The goal of this paper is to develop a quantum algorithm for the verification problem. We build heavily on the graph theory methods given in [Ki] and [KPRS]. Our quantum tool in this case is a fairly simple version of Grover’s algorithm. Nevertheless we are able to show that verification is simpler than finding the solution \textit{ab initio}.

\textbf{Computational Models.}

There is a basic question of how the graphs G and T are presented, and this can critically affect the efficiency of the algorithm. A graph can be presented by an adjacency matrix or by a simple listing of its edges (and this may be either a sorted or an unsorted list).

In the classical world, the problem statement is fairly simple. In the quantum world, the graph is presented to the algorithm as an oracle, and the complexity of the algorithm is measured in the number of oracle calls necessary to solve the problem.

Oracles can be applied in the classical world, as well, but they are less indicative of the computational complexity of the problem than in the quantum world. In the classical world, the entire graph needs to be made available to the algorithm, so in the adjacency matrix model there would be $O(n^2)$ calls to the oracle specifying the graph, while in the edge list model there would be m calls to the oracle simply to get the entire graph into the computer.

There also has to be an oracle that gives the weight of an edge, and in the adjacency matrix model or the edge list model, there would be m calls to the weight oracle. It is useful to combine the graph oracle with the weight oracle. In the adjacency matrix model, the graph is extended to a complete graph and weight $+\infty$ is assigned to all non-graph edges, with the oracle being given as a function $w : V \times V \rightarrow \mathbb{R}^+ \cup \{+\infty\}$. In the edge list model the oracle is a function, $e : [1, m] \rightarrow V \times V \times \mathbb{R}^+$ where the first two components give the endpoints of the i^{th} edge of the graph G and the last component gives the weight of that edge.

In this note, we consider both of these models, but from the quantum perspective, the oracle has to be viewed as a reversible function that then operates on quantum states. The two models to be considered here are:

1. There is the weight oracle in the adjacency matrix model. For this model, a call to the quantum weight oracle is $|a, b, x\rangle \rightarrow |a, b, x \oplus w(a, b)\rangle$ where $a, b \in V$ are a pair of vertices. (Note that x here is just some arbitrary initial bit string.) For finding minimum weight spanning trees, this is bad if the graph is moderately sparse. For checking the minimality of a spanning tree, the input would consist of a simple listing of the edges and would be of length $n - 1$.

2. There is the combined edge list and edge weight in the edge list model. For this model, a call to the quantum oracle is $|i, x, y, z\rangle \rightarrow |i, x \oplus a, y \oplus b, z \oplus w\rangle$ where $a, b \in V$ are a pair of vertices such that (a, b) is the i^{th} edge of the graph G and $w = w(a, b)$ is its weight. (Note that $x, y,$ and z here is just some arbitrary initial bit strings.)

Note that the result for model (1) above will give an upper bound for model (2), but both models will be considered in this note. Thus in the adjacency matrix model, there will be a weight oracle given $w : V \times V \rightarrow \mathbb{R}^+ \cup \{+\infty\}$ and the spanning tree to be checked for minimality will be (classically) input as a list of edges $T = \{(a_1, b_1), (a_2, b_2), \ldots, (a_{n-1}, b_{n-1})\}$ with $(a_i, b_i) \in V \times V$ for $i = 1, \ldots, n - 1$. We will also consider the e oracle in the edge list model. However, even there, the
spanning tree to be checked for minimality will still be classically input as a list of edges, only now the spanning tree to be checked for minimality will be (classically) input as a list of edge indices \(T = \{ e_1, e_2 \ldots e_{n-1} \} \) with \(e_i \in [1, m] \).

In both of the above formulations, the subtree to be tested for minimality by the quantum algorithm is input classically. This gives a lower bound for the complexity of the quantum algorithm of \(O(n) \), since the algorithm has to at least read in all the (classical) input. However, there are other possible statements of the problem.

(3) Given an oracle for the weights of \(G \) (which is by default, also an oracle for querying whether a given pair of points of \(V \) is an edge of \(G \)), the input could be by an oracle for the putative minimal spanning tree. Thus, in the adjacency matrix model, there is a function \(mst : V \times V \rightarrow \{0, 1\} \) where \(mst(a, b) = 1 \) if \((a, b)\) is an edge in \(T \) and \(mst(a, b) = 0 \) if \((a, b)\) is not an edge in \(T \), while in the edge list model, there is a function \(mst : V \times [1, m] \rightarrow \{0, 1\} \) where \(mst(i) = 1 \) if \(i \) is an edge index in \(T \) and \(mst(i) = 0 \) if \(i \) is not an edge in \(T \). In either case, the problem then becomes to determine whether \(mst \) is a correct oracle. The complication is that there are now two oracles to count calls to, and in principle there could be an operation curve of tradeoffs.

In fact, this is almost certainly the case, because on one extreme the minimal spanning tree can be found simply by computing it with a quantum algorithm and then checking the \(mst \) oracle for mismatches with the minimal spanning tree found. This reduces to the problem: Given a set \(S \) and a subset \(U \subset S \) and a (quantum) oracle \(p : S \rightarrow \{0, 1\} \), is it the case that \(p(s) = 1 \) if and only if \(s \in U \)? Counting oracle calls here would seem to be a simple application of Grover’s algorithm.

Minimal Weight Spanning Trees

Checking a Spanning Tree.

The key observation from [Ki] is the following. For a graph \(G = (V, E) \) and any spanning tree \(T \) of \(G \), there is a unique path between any two edges \(u, v \in V \). \(T \) is a minimal weight spanning tree if and only if the weight of each edge \((u, v) \in E - T \) is greater than or equal to the the heaviest edge in the path in \(T \) between \(u \) and \(v \).

What is needed is an easy way to find the weight of the heaviest edge in the path in \(T \) between \(u \) and \(v \).

The idea for checking a putative spanning tree \(T \) for minimality is to show that for any other edge of \(G \) not in \(T \), in the cycle formed by including this edge, the highest weight edge in the cycle is exactly this edge. There is no way that this edge can be part of a minimum weight spanning tree.

This is to be checked for all edges of \(G \), so by invoking Grover’s algorithm in the quantum setting, the total work is \(O(\sqrt{m}) \) times the work of checking an edge. The problem is that for checking an edge \((u, v) \in E - T \), the length of the path in \(T \) between \(u \) and \(v \) could be very large, perhaps even as big as \(n - 1 \), so even using Grover’s algorithm to find the maximal weight edge on this path is not adequately efficient.

Boruvka Trees.

What is needed is a new data structure that allows the maximal weight edge on any path in \(T \) to be found efficiently. The basic idea for this comes from one of the earliest papers in computational graph theory [B], that was the forerunner of several modern spanning tree algorithms. The key properties of the Boruvka tree
built from a putative minimal spanning tree come from [Ki] and will be summarized here without proof.

The idea of a Boruvka tree built from a spanning tree T is that B_T is a tree whose leaves are the vertices V and whose internal nodes are to be viewed as subsets of V.

In general for any graph $G = (V, E)$ and any spanning tree T of G, the Boruvka graph is a rooted tree of depth at most $\lceil \log_2(|V|) \rceil$. This Boruvka graph consists of successively larger aggregations of elements of V. All nodes in a Boruvka tree are subsets of V. The leaves are all the singleton sets $\{v_i\}$ as v_i runs over all the elements of V, and eventually the root is formed, which will be V itself. Any intermediate node in a Boruvka tree is the union of its children.

A Boruvka tree is built from the bottom up. At each stage or level, every node computes its nearest neighbor (i.e. the node that it is closest to), and an edge is formed for all such nodes. The nodes of the next level up are then the connected components of the graph of the previous level. The weight of each branch is just the weight of the edge of G that was just added. The result is a rooted tree with at most $2n$ nodes and n leaves.

The key property of B_T is that if $u, v \in V$ are a pair of vertices and if $B_T(u, v)$ is the smallest subtree of B_T that has both u and v as leaves, then the weight of the heaviest edge that connects u and v in the original spanning tree T is equal to the weight of the heaviest edge in $B_T(u, v)$. The Boruvka tree B_T is a full branching tree, which means that it has a specified root, all its leaves are at the same level, and each internal node has at least two children.

The height of B_T is at most $\lceil \log_2 n \rceil$. Therefore once B_T has been constructed, finding the heaviest edge in $B_T(u, v)$ costs at most $O(\log n)$ operations. In fact, if B_T has already been built, then finding the heaviest edge in $B_T(u, v)$ requires no queries of the edge weight oracle. Therefore, to check any edge in the original graph requires only one oracle query, and total work at most $O(\log n)$.

The Quantum Algorithm

The Boruvka tree B_T can be made with work $O(n)$, (not just $O(n \log n)$ work), and can be done classically (see [Ki] and [Ko]), the total number of oracle queries of the weight function being $O(n)$, as well. This is what makes this algorithm so effective. Once the Boruvka tree of the input spanning tree has been formed, it is possible to check whether the input spanning tree is minimal.

To check any edge $(a, b) \in E$ from the original graph G, the maximal weight of the edge in the path in T that connects a and b is easily found. Simply start with the leaves a and b and go up B_T one level at a time until they meet at a common internal node (which might be the root). Recording the maximal weight found in the set of edges traversed in B_T up the their common internal node gives the maximal weight of the edge in the path that connects a and b. Since the height of B_T is bounded by $\lceil \log_2 n \rceil$, the total work for this is $O(\log n)$, and no oracle calls are required since B_T is already built classically. To check if (a, b) is of lower weight than the maximal weight of the edge in the path in T that connects a and b only require one invocation of the weight oracle. Of course, if this weight is less, then a lower weight spanning tree than T has been found by swapping out the maximum weight edge in the path that connects a and b in T with the edge (a, b).

Using Grover’s algorithm over all vertex pairs $V \times V$ for the weight oracle,
therefore requires $O(n)$ oracle queries, and $O(n \log n)$ total work.

If an edge weight oracle is given, then it is possible to run Grover’s algorithm over the original edge set E, which only requires $O(\sqrt{m})$ oracle queries, and $O(\sqrt{m} \log n)$ total work. Since $m < n^2$, it follows that the number of oracle queries for the quantum part of the algorithm is less than the number of classical oracle queries needed to construct B_T. Therefore the total number of oracle queries is $O(n)$ and the total work is $O(n + \sqrt{m} \log n)$.

In conclusion, it is interesting that the verification of a putatively correct answer can be accomplished with considerably less work than that of finding the answer.

References

[B] Otakar Borůvka, O jistém problému minimálním (About a certain minimal problem), Práca Moravské Přírodovědecké Společnosti 3, 37-58. (in Czech, with German summary)

[DHHM] Christoph Dürr, Mark Heiligman, Peter Høyer, and Mehdi Mhalla, Quantum query complexity of some graph problems, SIAM Journal on Computing 35(6), 1310–1328, see also http://xxx.lanl.gov/abs/quant-ph/0401091.

[Ki] Valerie King, A simpler minimum spanning tree verification algorithm., Algorithmica 18, 263-270.

[KPRS] V. King, C.K. Poon, V. Ramachandran, and S. Sinha, An optimal EREW PRAM algorithm for minimum spanning tree verification., Information Processing Letters 62, 153-159.

[Ko] Komlos, Linear verification for spanning trees, Combinatorica 5, 57-65.