Morse-Novikov cohomology of locally conformally Kähler manifolds

Liviu Ornea Misha Verbitsky

Kühlungsborn, April 2008
(\(M, J\)) complex manifold, \(\dim_{\mathbb{C}} M \geq 2\), connected.

\((M, J)\) is LCK if it admits a Kähler covering

\[\Gamma \to (\tilde{M}, J, \Omega) \to (M, J) \]

such that \(\Gamma\) acts by holomorphic homotheties.

Equivalent definition:
\((M, J)\) admits a Hermitian metric \(\omega\) on \(M\) such that

\[d\omega = \theta \wedge \omega, \quad d\theta = 0 \]

\(\theta\) is called the *Lee form*.
(\(M, J\)) complex manifold, \(\dim_{\mathbb{C}} M \geq 2\), connected.

(\(M, J\)) is LCK if it admits a K"ahler covering

\[\Gamma \to (\tilde{M}, J, \Omega) \to (M, J) \]

such that \(\Gamma\) acts by holomorphic homotheties.

Equivalent definition:

(\(M, J\)) admits a Hermitian metric \(\omega\) on \(M\) such that

\[d\omega = \theta \wedge \omega, \quad d\theta = 0 \]

\(\theta\) is called the Lee form.
Definitions

- (M, J) complex manifold, $\dim_{\mathbb{C}} M \geq 2$, connected.
- (M, J) is LCK if it admits a Kähler covering
 \[\Gamma \to (\tilde{M}, J, \Omega) \to (M, J) \]
 such that Γ acts by holomorphic homotheties.
- Equivalent definition:
 (M, J) admits a Hermitian metric ω on M such that
 \[d\omega = \theta \wedge \omega, \quad d\theta = 0 \]
 θ is called the Lee form.
\((M, J) \) complex manifold, \(\dim_{\mathbb{C}} M \geq 2 \), connected.

\((M, J) \) is LCK if it admits a Kähler covering

\[\Gamma \to (\tilde{M}, J, \Omega) \to (M, J) \]

such that \(\Gamma \) acts by holomorphic homotheties.

Equivalent definition:
\((M, J) \) admits a Hermitian metric \(\omega \) on \(M \) such that

\[d\omega = \theta \wedge \omega, \quad d\theta = 0 \]

\(\theta \) is called the Lee form.
 Definitions

- \((M, J)\) complex manifold, \(\dim_{\mathbb{C}} M \geq 2\), connected.
- \((M, J)\) is LCK if it admits a Kähler covering

\[\Gamma \rightarrow (\tilde{M}, J, \Omega) \rightarrow (M, J) \]

such that \(\Gamma\) acts by holomorphic homotheties.
- Equivalent definition:
 \((M, J)\) admits a Hermitian metric \(\omega\) on \(M\) such that

\[d\omega = \theta \wedge \omega, \quad d\theta = 0 \]

\(\theta\) is called the Lee form.
The weight bundle

- Real line bundle $L_{\mathbb{R}} \longrightarrow M$ associated to the representation

$$\text{GL}(2n, \mathbb{R}) \ni A \mapsto |\det A|^{\frac{1}{n}}.$$

- The Lee form induces a connection $\nabla = d - \theta$ in $L_{\mathbb{R}}$.

- ∇ is associated to the Weyl covariant derivative determined on M by the LCK metric and the Lee form.

- the Weyl covariant derivative is uniquely defined by the properties $\nabla J = 0$, $\nabla g = \theta \otimes g$; in this context, θ is called the Higgs field.

- As $d\theta = 0$, then $\nabla^2 = d\theta = 0$, and hence $L_{\mathbb{R}}$ is flat.
Real line bundle $L_{\mathbb{R}} \longrightarrow M$ associated to the representation

$$\text{GL}(2n, \mathbb{R}) \ni A \mapsto |\det A|^\frac{1}{n}.$$

The Lee form induces a connection $\nabla = d - \theta$ in $L_{\mathbb{R}}$.

∇ is associated to the Weyl covariant derivative determined on M by the LCK metric and the Lee form.

the Weyl covariant derivative is uniquely defined by the properties $\nabla J = 0$, $\nabla g = \theta \otimes g$; in this context, θ is called the Higgs field.

As $d\theta = 0$, then $\nabla^2 = d\theta = 0$, and hence $L_{\mathbb{R}}$ is flat.
The weight bundle

- Real line bundle $L_{\mathbb{R}} \longrightarrow M$ associated to the representation

$$\text{GL}(2n, \mathbb{R}) \ni A \mapsto |\det A|^\frac{1}{n}.$$

- The Lee form induces a connection $\nabla = d - \theta$ in $L_{\mathbb{R}}$.

- ∇ is associated to the Weyl covariant derivative determined on M by the LCK metric and the Lee form.

- the Weyl covariant derivative is uniquely defined by the properties $\nabla J = 0$, $\nabla g = \theta \otimes g$; in this context, θ is called the Higgs field.

- As $d\theta = 0$, then $\nabla^2 = d\theta = 0$, and hence $L_{\mathbb{R}}$ is flat.
The weight bundle

- Real line bundle $L_{\mathbb{R}} \longrightarrow M$ associated to the representation
 \[\text{GL}(2n, \mathbb{R}) \ni A \mapsto |\det A|^{\frac{1}{n}}. \]

- The Lee form induces a connection $\nabla = d - \theta$ in $L_{\mathbb{R}}$.
- ∇ is associated to the Weyl covariant derivative determined on M by the LCK metric and the Lee form.
 - the Weyl covariant derivative is uniquely defined by the properties $\nabla J = 0, \nabla g = \theta \otimes g$; in this context, θ is called the Higgs field.
 - As $d\theta = 0$, then $\nabla^2 = d\theta = 0$, and hence $L_{\mathbb{R}}$ is flat.
The weight bundle

- Real line bundle \(L_\mathbb{R} \longrightarrow M \) associated to the representation

\[
\text{GL}(2n, \mathbb{R}) \ni A \mapsto |\det A|^{\frac{1}{n}}.
\]

- The Lee form induces a connection \(\nabla = d - \theta \) in \(L_\mathbb{R} \).

- \(\nabla \) is associated to the Weyl covariant derivative determined on \(M \) by the LCK metric and the Lee form.

- the Weyl covariant derivative is uniquely defined by the properties \(\nabla J = 0, \nabla g = \theta \otimes g \); in this context, \(\theta \) is called the Higgs field.

- As \(d\theta = 0 \), then \(\nabla^2 = d\theta = 0 \), and hence \(L_\mathbb{R} \) is flat.
The weight bundle

- Real line bundle $L_{\mathbb{R}} \longrightarrow M$ associated to the representation
 \[
 \text{GL}(2n, \mathbb{R}) \ni A \mapsto | \det A |^{1 \over n}.
 \]

- The Lee form induces a connection $\nabla = d - \theta$ in $L_{\mathbb{R}}$.
- ∇ is associated to the Weyl covariant derivative determined on M by the LCK metric and the Lee form.
- the Weyl covariant derivative is uniquely defined by the properties $\nabla J = 0$, $\nabla g = \theta \otimes g$; in this context, θ is called the Higgs field.
- As $d\theta = 0$, then $\nabla^2 = d\theta = 0$, and hence $L_{\mathbb{R}}$ is flat.
Real line bundle $L_{\mathbb{R}} \rightarrow M$ associated to the representation

$$\text{GL}(2n, \mathbb{R}) \ni A \mapsto |\det A|^\frac{1}{n}.$$

The Lee form induces a connection $\nabla = d - \theta$ in $L_{\mathbb{R}}$.

∇ is associated to the Weyl covariant derivative determined on M by the LCK metric and the Lee form.

the Weyl covariant derivative is uniquely defined by the properties $\nabla J = 0$, $\nabla g = \theta \otimes g$; in this context, θ is called the Higgs field.

As $d\theta = 0$, then $\nabla^2 = d\theta = 0$, and hence $L_{\mathbb{R}}$ is flat.
Let $L = L_\mathbb{R} \otimes_\mathbb{R} \mathbb{C}$.

- The Weyl connection extends naturally to L.
- Its $(0, 1)$-part endows L with a holomorphic structure.
- As L is flat, one can pick a nowhere degenerate section λ satisfying
 \[\nabla(\lambda) = \lambda \otimes (-\theta). \]

Hence, one chooses a Hermitian structure on L such that $|\lambda| = 1$ and considers the associated Chern connection.

- The curvature of the Chern connection on L with respect to the above holomorphic and Hermitian structure is $-2\sqrt{-1}d^c\theta$.
- L determines a local system on M associated to the character $\chi : \pi_1(M) \to \mathbb{R}^{>0}$.

Let $L = L_R \otimes_R \mathbb{C}$.

- The Weyl connection extends naturally to L.
- Its $(0, 1)$-part endows L with a holomorphic structure.
- As L is flat, one can pick a nowhere degenerate section λ satisfying
 \[\nabla(\lambda) = \lambda \otimes (-\theta). \]

Hence, one chooses a Hermitian structure on L such that $|\lambda| = 1$ and considers the associated Chern connection.

The curvature of the Chern connection on L with respect to the above holomorphic and Hermitian structure is $-2\sqrt{-1}d^c \theta$.

L determines a local system on M associated to the character $\chi : \pi_1(M) \to \mathbb{R}_{>0}$.
The complexified weight bundle

- Let $L = L_\mathbb{R} \otimes_\mathbb{R} \mathbb{C}$.
- The Weyl connection extends naturally to L.
 - Its $(0, 1)$-part endows L with a holomorphic structure.
 - As L is flat, one can pick a nowhere degenerate section λ satisfying
 $$\nabla(\lambda) = \lambda \otimes (-\theta).$$
- Hence, one chooses a Hermitian structure on L such that $|\lambda| = 1$ and considers the associated Chern connection.
- The curvature of the Chern connection on L with respect to the above holomorphic and Hermitian structure is $-2\sqrt{-1}d\theta$.
- L determines a local system on M associated to the character $\chi : \pi_1(M) \to \mathbb{R}^{>0}$.
The complexified weight bundle

- Let $L = L_R \otimes_R \mathbb{C}$.
- The Weyl connection extends naturally to L.
 - Its $(0, 1)$-part endows L with a holomorphic structure.
 - As L is flat, one can pick a nowhere degenerate section λ satisfying
 \[\nabla(\lambda) = \lambda \otimes (-\theta). \]

- Hence, one chooses a Hermitian structure on L such that $|\lambda| = 1$ and considers the associated Chern connection.
- The curvature of the Chern connection on L with respect to the above holomorphic and Hermitian structure is $-2\sqrt{-1}d^c \theta$.
- L determines a local system on M associated to the character $\chi : \pi_1(M) \to \mathbb{R}^{>0}$.
The complexified weight bundle

- Let $L = L_{\mathbb{R}} \otimes_{\mathbb{R}} \mathbb{C}$.
- The Weyl connection extends naturally to L.
- Its $(0, 1)$-part endows L with a holomorphic structure.
 - As L is flat, one can pick a nowhere degenerate section λ satisfying
 $$\nabla(\lambda) = \lambda \otimes (-\theta).$$
 - Hence, one chooses a Hermitian structure on L such that $|\lambda| = 1$
 and considers the associated Chern connection.
 - The curvature of the Chern connection on L with respect to the above holomorphic and Hermitian structure is $-2\sqrt{-1}d\theta$.
 - L determines a local system on M associated to the character
 $\chi : \pi_1(M) \to \mathbb{R}^{>0}$.

The complexified weight bundle

- Let $L = \mathbb{L}_R \otimes \mathbb{R} \mathbb{C}$.
- The Weyl connection extends naturally to L.
- Its $(0, 1)$-part endows L with a holomorphic structure.
- As L is flat, one can pick a nowhere degenerate section λ satisfying
 \[\nabla(\lambda) = \lambda \otimes (-\theta). \]
- Hence, one chooses a Hermitian structure on L such that $|\lambda| = 1$
 and considers the associated Chern connection.
- The curvature of the Chern connection on L with respect to the
 above holomorphic and Hermitian structure is $-2\sqrt{-1}d\theta$.
- L determines a local system on M associated to the character
 \[\chi : \pi_1(M) \to \mathbb{R}^{>0}. \]
The complexified weight bundle

- Let $L = L_\mathbb{R} \otimes_\mathbb{R} \mathbb{C}$.
- The Weyl connection extends naturally to L.
- Its $(0, 1)$-part endows L with a holomorphic structure.
- As L is flat, one can pick a nowhere degenerate section λ satisfying
 \[\nabla(\lambda) = \lambda \otimes (-\theta). \]

- Hence, one chooses a Hermitian structure on L such that $|\lambda| = 1$ and considers the associated Chern connection.
- The curvature of the Chern connection on L with respect to the above holomorphic and Hermitian structure is $-2\sqrt{-1} d\theta$.
- L determines a local system on M associated to the character $\chi : \pi_1(M) \to \mathbb{R}^\times$.
The complexified weight bundle

- Let $L = L^\mathbb{R} \otimes_{\mathbb{R}} \mathbb{C}$.
- The Weyl connection extends naturally to L.
- Its $(0, 1)$-part endows L with a holomorphic structure.
- As L is flat, one can pick a nowhere degenerate section λ satisfying
 \[\nabla(\lambda) = \lambda \otimes (-\theta). \]
- Hence, one chooses a Hermitian structure on L such that $|\lambda| = 1$ and considers the associated Chern connection.
- The curvature of the Chern connection on L with respect to the above holomorphic and Hermitian structure is $-2\sqrt{-1}d^c\theta$.
- L determines a local system on M associated to the character $\chi : \pi_1(M) \to \mathbb{R}^{>0}$.

\[\text{The complexified weight bundle} \]
The complexified weight bundle

- Let $L = L_{\mathbb{R}} \otimes_{\mathbb{R}} \mathbb{C}$.
- The Weyl connection extends naturally to L.
- Its $(0, 1)$-part endows L with a holomorphic structure.
- As L is flat, one can pick a nowhere degenerate section λ satisfying
 \[\nabla(\lambda) = \lambda \otimes (-\theta). \]

- Hence, one chooses a Hermitian structure on L such that $|\lambda| = 1$ and considers the associated Chern connection.
 - The curvature of the Chern connection on L with respect to the above holomorphic and Hermitian structure is $-2\sqrt{-1}d\theta$.
 - L determines a local system on M associated to the character $\chi: \pi_1(M) \to \mathbb{R}^+$.
The complexified weight bundle

- Let $L = L_\mathbb{R} \otimes_{\mathbb{R}} \mathbb{C}$.
- The Weyl connection extends naturally to L.
- Its $(0, 1)$-part endows L with a holomorphic structure.
- As L is flat, one can pick a nowhere degenerate section λ satisfying
 \[\nabla(\lambda) = \lambda \otimes (-\theta). \]
- Hence, one chooses a Hermitian structure on L such that $|\lambda| = 1$ and considers the associated Chern connection.
- The curvature of the Chern connection on L with respect to the above holomorphic and Hermitian structure is $-2\sqrt{-1}d\psi\theta$.
- L determines a local system on M associated to the character $\chi : \pi_1(M) \to \mathbb{R}^{>0}$.
The complexified weight bundle

- Let $L = L_R \otimes_R \mathbb{C}$.
- The Weyl connection extends naturally to L.
- Its $(0, 1)$-part endows L with a holomorphic structure.
- As L is flat, one can pick a nowhere degenerate section λ satisfying
 \[\nabla(\lambda) = \lambda \otimes (-\theta). \]

- Hence, one chooses a Hermitian structure on L such that $|\lambda| = 1$
 and considers the associated Chern connection.
- The curvature of the Chern connection on L with respect to the
 above holomorphic and Hermitian structure is $-2\sqrt{-1} d^c \theta$.
- L determines a local system on M associated to the character
 $\chi : \pi_1(M) \to \mathbb{R}^>0$.
Let $L = L_\mathbb{R} \otimes_\mathbb{R} \mathbb{C}$.

The Weyl connection extends naturally to L.

Its $(0, 1)$-part endows L with a holomorphic structure.

As L is flat, one can pick a nowhere degenerate section λ satisfying

$$\nabla(\lambda) = \lambda \otimes (-\theta).$$

Hence, one chooses a Hermitian structure on L such that $|\lambda| = 1$ and considers the associated Chern connection.

The curvature of the Chern connection on L with respect to the above holomorphic and Hermitian structure is $-2\sqrt{-1} d^c \theta$.

L determines a local system on M associated to the character $\chi : \pi_1(M) \to \mathbb{R}^{>0}$.
The complexified weight bundle

- Let \(L = L_\mathbb{R} \otimes_\mathbb{R} \mathbb{C} \).
- The Weyl connection extends naturally to \(L \).
- Its \((0, 1)\)-part endows \(L \) with a holomorphic structure.
- As \(L \) is flat, one can pick a nowhere degenerate section \(\lambda \) satisfying
 \[
 \nabla(\lambda) = \lambda \otimes (-\theta).
 \]
- Hence, one chooses a Hermitian structure on \(L \) such that \(|\lambda| = 1 \) and considers the associated Chern connection.
- The curvature of the Chern connection on \(L \) with respect to the above holomorphic and Hermitian structure is \(-2\sqrt{-1}d^c \theta\).
- \(L \) determines a local system on \(M \) associated to the character \(\chi : \pi_1(M) \to \mathbb{R}^>0 \).
Vaisman manifolds

- LCK + $\nabla^g \theta = 0$.

- Properties:
 - θ^\sharp is Killing and real holomorphic ($L_{\theta^\sharp} J = 0$).
 - Conversely (Kamishima, O): A compact LCK manifold admits a LCK metric with parallel Lee form if its Lie group of holomorphic conformalities has a complex one-dimensional Lie subgroup, acting non-isometrically on its Kähler covering.
 - If $F := \{\theta^\sharp, J\theta^\sharp\}$ has compact leaves, then M/F is Kähler orbifold.
 - If θ^\sharp has compact orbits, then M/θ^\sharp is Sasakian orbifold.
 - $\|\theta^\sharp\|^2$ is a potential for the Kähler form of the universal cover.
Vaisman manifolds

\[\text{LCK} \quad + \quad \nabla^g \theta = 0. \]

Properties:

1. \(\theta^\sharp \) is Killing and real holomorphic (\(\mathcal{L}_{\theta^\sharp} J = 0 \)).
2. Conversely (Kamishima, O): A compact LCK manifold admits a LCK metric with parallel Lee form if its Lie group of holomorphic conformalities has a complex one-dimensional Lie subgroup, acting non-isometrically on its Kähler covering.
3. If \(F := \{ \theta^\sharp, J\theta^\sharp \} \) has compact leaves, then \(M/F \) is Kähler orbifold.
4. If \(\theta^\sharp \) has compact orbits, then \(M/\theta^\sharp \) is Sasakian orbifold.
5. \(\|\theta^\sharp\|^2 \) is a potential for the Kähler form of the universal cover.
Vaisman manifolds

- **LCK** $+$ $\nabla^g \theta = 0$.
- **Properties:**
 1. $\theta^\#$ is Killing and real holomorphic ($\mathcal{L}_{\theta^\#} J = 0$).
 2. Conversely (Kamishima, O): A compact LCK manifold admits a LCK metric with parallel Lee form if its Lie group of holomorphic conformalities has a complex one-dimensional Lie subgroup, acting non-isometrically on its Kähler covering.
 3. If $\mathcal{F} := \{ \theta^\#, J \theta^\# \}$ has compact leaves, then M/\mathcal{F} is Kähler orbifold.
 4. If $\theta^\#$ has compact orbits, then $M/\theta^\#$ is Sasakian orbifold.
 5. $\|\theta^\#\|^2$ is a potential for the Kähler form of the universal cover.
LCK \(+ \) \(\nabla^g \theta = 0 \).

Properties:

1. \(\theta^\# \) is Killing and real holomorphic \((\mathcal{L}_{\theta^\#} J = 0)\).

2. Conversely (Kamishima, O): A compact LCK manifold admits a LCK metric with parallel Lee form if its Lie group of holomorphic conformalities has a complex one-dimensional Lie subgroup, acting non-isometrically on its Kähler covering.

3. If \(F := \{ \theta^\#, J \theta^\# \} \) has compact leaves, then \(M / F \) is Kähler orbifold.

4. If \(\theta^\# \) has compact orbits, then \(M / \theta^\# \) is Sasakian orbifold.

5. \(\| \theta^\# \|^2 \) is a potential for the Kähler form of the universal cover.
Vaisman manifolds

- LCK \(+ \nabla^g \theta = 0 \).

- Properties:
 1. \(\theta^\# \) is Killing and real holomorphic \((\mathcal{L}_{\theta^\#} J = 0) \).
 2. Conversely (Kamishima, O): A compact LCK manifold admits a LCK metric with parallel Lee form if its Lie group of holomorphic conformalities has a complex one-dimensional Lie subgroup, acting non-isometrically on its Kähler covering.
 3. If \(F := \{ \theta^\#, J\theta^\# \} \) has compact leaves, then \(M/F \) is Kähler orbifold.
 4. If \(\theta^\# \) has compact orbits, then \(M/\theta^\# \) is Sasakian orbifold.
 5. \(\| \theta^\# \|^2 \) is a potential for the Kähler form of the universal cover.
Vaisman manifolds

- LCK $\nabla^g \theta = 0$.
- Properties:
 1. $\theta^\#$ is Killing and real holomorphic ($\mathcal{L}_{\theta^\#} J = 0$).
 2. Conversely (Kamishima, O): A compact LCK manifold admits a LCK metric with parallel Lee form if its Lie group of holomorphic conformalities has a complex one-dimensional Lie subgroup, acting non-isometrically on its Kähler covering.
 3. If $\mathcal{F} := \{ \theta^\#, J\theta^\# \}$ has compact leaves, then M/\mathcal{F} is Kähler orbifold.
 4. If $\theta^\#$ has compact orbits, then $M/\theta^\#$ is Sasakian orbifold.
 5. $\|\theta^\#\|^2$ is a potential for the Kähler form of the universal cover.
Vaisman manifolds

- LCK + $\nabla^g \theta = 0$.

Properties:

1. $\theta^\#$ is Killing and real holomorphic ($\mathcal{L}_{\theta^\#} J = 0$).
2. Conversely (Kamishima, O): A compact LCK manifold admits a LCK metric with parallel Lee form if its Lie group of holomorphic conformalities has a complex one-dimensional Lie subgroup, acting non-isometrically on its Kähler covering.
3. If $\mathcal{F} := \{\theta^\#, J\theta^\#\}$ has compact leaves, then M/\mathcal{F} is Kähler orbifold.
4. If $\theta^\#$ has compact orbits, then $M/\theta^\#$ is Sasakian orbifold.
5. $\|\theta^\#\|^2$ is a potential for the Kähler form of the universal cover.
Vaisman manifolds

- LCK manifold: $\nabla^g \theta = 0$.

Properties:
1. $\theta^\#$ is Killing and real holomorphic ($\mathcal{L}_{\theta^\#} J = 0$).
2. Conversely (Kamishima, O): A compact LCK manifold admits a LCK metric with parallel Lee form if its Lie group of holomorphic conformalities has a complex one-dimensional Lie subgroup, acting non-isometrically on its Kähler covering.
3. If $\mathcal{F} := \{\theta^\#, J\theta^\#\}$ has compact leaves, then M/\mathcal{F} is Kähler orbifold.
4. If $\theta^\#$ has compact orbits, then $M/\theta^\#$ is Sasakian orbifold.
5. $\|\theta^\#\|^2$ is a potential for the Kähler form of the universal cover.
Vaisman manifolds

- LCK + \nabla^g \theta = 0.
- Properties:
 1. \theta^\# is Killing and real holomorphic (\mathcal{L}_{\theta^\#} J = 0).
 2. Conversely (Kamishima, O): A compact LCK manifold admits a LCK metric with parallel Lee form if its Lie group of holomorphic conformalities has a complex one-dimensional Lie subgroup, acting non-isometrically on its Kähler covering.
 3. If \mathcal{F} := \{\theta^\#, J \theta^\#\} has compact leaves, then \(M/\mathcal{F} \) is Kähler orbifold.
 4. If \theta^\# has compact orbits, then \(M/\theta^\# \) is Sasakian orbifold.
 5. \|\theta^\#\|^2 is a potential for the Kähler form of the universal cover.
Vaisman manifolds

- $\text{LCK} \quad + \quad \nabla^g \theta = 0$.

Properties:

1. $\theta^\#$ is Killing and real holomorphic ($\mathcal{L}_{\theta^\#} J = 0$).
2. Conversely (Kamishima, O): A compact LCK manifold admits a LCK metric with parallel Lee form if its Lie group of holomorphic conformalities has a complex one-dimensional Lie subgroup, acting non-isometrically on its Kähler covering.
3. If $\mathcal{F} := \{\theta^\#, J\theta^\#\}$ has compact leaves, then M/\mathcal{F} is Kähler orbifold.
4. If $\theta^\#$ has compact orbits, then $M/\theta^\#$ is Sasakian orbifold.

$\|\theta^\#\|^2$ is a potential for the Kähler form of the universal cover.
Vaisman manifolds

- LCK + $\nabla^g \theta = 0$.

- Properties:
 1. $\theta^\#$ is Killing and real holomorphic ($\mathcal{L}_{\theta^\#} J = 0$).
 2. Conversely (Kamishima, O): A compact LCK manifold admits a LCK metric with parallel Lee form if its Lie group of holomorphic conformalities has a complex one-dimensional Lie subgroup, acting non-isometrically on its Kähler covering.
 3. If $\mathcal{F} := \{\theta^\#, J\theta^\#\}$ has compact leaves, then M/\mathcal{F} is Kähler orbifold.
 4. If $\theta^\#$ has compact orbits, then $M/\theta^\#$ is Sasakian orbifold.
Vaisman manifolds

- LCK + $\nabla^g \theta = 0$.

- Properties:
 1. $\theta^\#$ is Killing and real holomorphic ($\mathcal{L}_{\theta^\#} J = 0$).
 2. Conversely (Kamishima, O): A compact LCK manifold admits a LCK metric with parallel Lee form if its Lie group of holomorphic conformalities has a complex one-dimensional Lie subgroup, acting non-isometrically on its Kähler covering.
 3. If $\mathcal{F} := \{\theta^\#, J\theta^\#\}$ has compact leaves, then M/\mathcal{F} is Kähler orbifold.
 4. If $\theta^\#$ has compact orbits, then $M/\theta^\#$ is Sasakian orbifold.
 5. $\|\theta^\#\|^2$ is a potential for the Kähler form of the universal cover.
Vaisman manifolds

Structure Theorem

- The monodromy of L is \mathbb{Z}.
- Compact Vaisman manifolds are suspensions over S^1 with Sasakian fibre:
 - M is a metric cone $N \times \mathbb{R}$.
 - N is Sasaki.
 - Γ is \mathbb{Z} generated by $(x, t) \mapsto (\lambda(x), t + q)$ for some $\lambda \in \text{Aut}(N)$, $q \in \mathbb{R}$.
Vaisman manifolds

Structure Theorem

- The monodromy of L is \mathbb{Z}.
- Compact Vaisman manifolds are suspensions over S^1 with Sasakian fibre:
 - \tilde{M} is a metric cone $N \times \mathbb{R}$
 - N is Sasaki
 - Γ is \mathbb{Z} generated by $(x, t) \mapsto (\lambda(x), t + q)$ for some $\lambda \in \text{Aut}(N)$, $q \in \mathbb{R}_+$.
Vaisman manifolds

Structure Theorem

- The monodromy of L is \mathbb{Z}.
- Compact Vaisman manifolds are suspensions over S^1 with Sasakian fibre:
 - \tilde{M} is a metric cone $N \times \mathbb{R}$
 - N is Sasaki
 - Γ is \mathbb{Z} generated by $(x, t) \mapsto (\lambda(x), t + q)$ for some $\lambda \in \text{Aut}(N)$, $q \in \mathbb{R}_{>0}$
Vaisman manifolds

Structure Theorem

- The monodromy of L is \mathbb{Z}.
- Compact Vaisman manifolds are suspensions over S^1 with Sasakian fibre:
 - \tilde{M} is a metric cone $N \times \mathbb{R}$
 - N is Sasaki.
 - Γ is \mathbb{Z} generated by $(x, t) \mapsto (\lambda(x), t + q)$ for some $\lambda \in \text{Aut}(N)$, $q \in \mathbb{R}_+$.

Structure Theorem

- The monodromy of L is \mathbb{Z}.
- Compact Vaisman manifolds are suspensions over S^1 with Sasakian fibre:
 - \tilde{M} is a metric cone $N \times \mathbb{R}$
 - N is Sasaki.
 - Γ is \mathbb{Z} generated by $(x, t) \mapsto (\lambda(x), t + q)$ for some $\lambda \in \text{Aut}(N)$, $q \in \mathbb{R}_+$.
Structure Theorem

- The monodromy of L is \mathbb{Z}.
- Compact Vaisman manifolds are suspensions over S^1 with Sasakian fibre:
 - \tilde{M} is a metric cone $N \times \mathbb{R}$
 - N is Sasaki.
 - Γ is \mathbb{Z} generated by $(x, t) \mapsto (\lambda(x), t + q)$ for some $\lambda \in \text{Aut}(N)$, $q \in \mathbb{R}_+$.
Vaisman manifolds

Structure Theorem

- The monodromy of L is \mathbb{Z}.
- Compact Vaisman manifolds are suspensions over S^1 with Sasakian fibre:
 - \tilde{M} is a metric cone $N \times \mathbb{R}$
 - N is Sasaki.
 - Γ is \mathbb{Z} generated by $(x, t) \mapsto (\lambda(x), t + q)$ for some $\lambda \in \text{Aut}(N)$, $q \in \mathbb{R}_+$.
Structure Theorem

- The monodromy of L is \mathbb{Z}.
- Compact Vaisman manifolds are suspensions over S^1 with Sasakian fibre:
 1. \tilde{M} is a metric cone $N \times \mathbb{R}$
 2. N is Sasaki.
 3. Γ is \mathbb{Z} generated by $(x, t) \mapsto (\lambda(x), t + q)$ for some $\lambda \in \text{Aut}(N)$, $q \in \mathbb{R}_+$.
Structure Theorem

- The monodromy of L is \mathbb{Z}.
- Compact Vaisman manifolds are suspensions over S^1 with Sasakian fibre:
 1. \tilde{M} is a metric cone $N \times \mathbb{R}$
 2. N is Sasaki.
 3. Γ is \mathbb{Z} generated by $(x, t) \mapsto (\lambda(x), t + q)$ for some $\lambda \in \text{Aut}(N)$, $q \in \mathbb{R}_+$.

Vaisman manifolds
Structure Theorem

- The monodromy of L is \mathbb{Z}.
- Compact Vaisman manifolds are suspensions over S^1 with Sasakian fibre:
 1. \tilde{M} is a metric cone $N \times \mathbb{R}$
 2. N is Sasaki.
 3. Γ is \mathbb{Z} generated by $(x, t) \mapsto (\lambda(x), t + q)$ for some $\lambda \in \text{Aut}(N)$, $q \in \mathbb{R}_+$.
Examples of Vaisman manifolds

- Diagonal Hopf manifolds (generalizations of the rank 1 Hopf surfaces.): $H_A := \mathbb{C}^n / \langle A \rangle$ with $A = \text{diag}(\alpha_i), |\alpha_i| > 1$, with:
 - Complex structure: projection of the standard one of \mathbb{C}^n.
 - LCK metric constructed as follows:
 - Let $C > 1$ be a constant and $\phi(z_1, \ldots, z_n) = \sum |z_i|^{\beta_i}$, $\beta_i = \log |\alpha_i| - 1$, a potential on \mathbb{C}^n.
 - Then $A^* \phi = C^{-1} \phi$.
 - Hence: $\Omega = \sqrt{-1} \partial \bar{\partial} \phi$ is Kähler and $\Gamma \cong \mathbb{Z}$ acts by holomorphic homotheties with respect to it.
 - The Lee field: $\theta^\# = - \sum z_i \log |\alpha_i| \partial z_i$ is parallel.
- Some compact complex surfaces (the whole list given by Belgun).
Examples of Vaisman manifolds

- **Diagonal Hopf manifolds (generalizations of the rank 1 Hopf surfaces.):** $H_A := \mathbb{C}^n / \langle A \rangle$ with $A = \text{diag}(\alpha_i)$, $|\alpha_i| > 1$, with:
 - Complex structure: projection of the standard one of \mathbb{C}^n.
 - LCK metric constructed as follows:
 - Let $C > 1$ be a constant and

 \[\varphi(z_1, \ldots, z_n) = \sum |z_i|^\beta, \quad \beta_i = \log |\alpha_i| - 1 - C \]

 a potential on \mathbb{C}^n.
 - Then $A^* \varphi = C^{-1} \varphi$.

 Hence: $\Omega = \sqrt{-1} \partial \bar{\partial} \varphi$ is Kähler and $\Gamma \simeq \mathbb{Z}$ acts by holomorphic homotheties with respect to it.

 The Lee field: $\theta^\# = - \sum z_i \log |\alpha_i| \partial z_i$ is parallel.

- Some compact complex surfaces (the whole list given by Belgun).
Examples of Vaisman manifolds

- Diagonal Hopf manifolds (generalizations of the rank 1 Hopf surfaces.): $H_A := \mathbb{C}^n / \langle A \rangle$ with $A = \text{diag}(\alpha_i), |\alpha_i| > 1$, with:
 - Complex structure: projection of the standard one of \mathbb{C}^n.
 - LCK metric constructed as follows:
 - Let $C > 1$ be a constant and

 $\varphi(z_1, \ldots, z_n) = \sum |z_i|^\beta_i, \quad \beta_i = \log |\alpha_i| - C$

 a potential on \mathbb{C}^n.
 - Then $A^* \varphi = C^{-1} \varphi$.
 - Hence: $\Omega = \sqrt{-1} \partial \bar{\partial} \varphi$ is Kähler and $\Gamma \cong \mathbb{Z}$ acts by holomorphic homotheties with respect to it.
 - The Lee field: $\theta^\# = - \sum z_i \log |\alpha_i| \partial z_i$ is parallel.

- Some compact complex surfaces (the whole list given by Belgun).
Examples of Vaisman manifolds

- Diagonal Hopf manifolds (generalizations of the rank 1 Hopf surfaces.): $H_A := \mathbb{C}^n/\langle A \rangle$ with $A = \text{diag}(\alpha_i)$, $|\alpha_i| > 1$, with:
 - Complex structure: projection of the standard one of \mathbb{C}^n.
 - LCK metric constructed as follows:
 - Let $C > 1$ be a constant and
 $\phi(z_1, \ldots, z_n) = \sum |z_i|^{\beta_i}$, $\beta_i = \log |\alpha_i| - C$ a potential on \mathbb{C}^n.
 - Then $A^* \phi = C^{-1} \phi$.
 - Hence: $\Omega = \sqrt{-1} \partial \bar{\partial} \phi$ is Kähler and $\Gamma \cong \mathbb{Z}$ acts by holomorphic homotheties with respect to it.
 - The Lee field: $\theta^\# = -\sum z_i \log |\alpha_i| \partial z_i$ is parallel.
- Some compact complex surfaces (the whole list given by Belgun).
Examples of Vaisman manifolds

- Diagonal Hopf manifolds (generalizations of the rank 1 Hopf surfaces.): $H_A := \mathbb{C}^n / \langle A \rangle$ with $A = \text{diag}(\alpha_i), |\alpha_i| > 1$, with:
 - Complex structure: projection of the standard one of \mathbb{C}^n.
 - LCK metric constructed as follows:
 - Let $C > 1$ be a constant and
 \[
 \varphi(z_1, \ldots, z_n) = \sum |z_i|^\beta_i, \quad \beta_i = \log |\alpha_i| - 1 - C
 \]
 a potential on \mathbb{C}^n.
 - Then $A^* \varphi = C^{-1} \varphi$.
 - Hence: $\Omega = \sqrt{-1} \partial \bar{\partial} \varphi$ is Kähler and $\Gamma \cong \mathbb{Z}$ acts by holomorphic homotheties with respect to it.
 - The Lee field: $\theta^\# = - \sum z_i \log |\alpha_i| \partial z_i$ is parallel.
 - Some compact complex surfaces (the whole list given by Belgun).
Examples of Vaisman manifolds

- Diagonal Hopf manifolds (generalizations of the rank 1 Hopf surfaces.): $H_A := \mathbb{C}^n / \langle A \rangle$ with $A = \text{diag}(\alpha_i)$, $|\alpha_i| > 1$, with:
 - Complex structure: projection of the standard one of \mathbb{C}^n.
 - LCK metric constructed as follows:
 - Let $C > 1$ be a constant and
 $$\varphi(z_1, \ldots, z_n) = \sum |z_i|^\beta_i, \quad \beta_i = \log |\alpha_i| - \frac{1}{C}$$
 a potential on \mathbb{C}^n.
 - Then $A^* \varphi = C^{-1} \varphi$.
 - Hence: $\Omega = \sqrt{-1} \partial \bar{\partial} \varphi$ is Kähler and $\Gamma \cong \mathbb{Z}$ acts by holomorphic homotheties with respect to it.
 - The Lee field: $\theta^i = - \sum z_i \log |\alpha_i| \partial z_i$ is parallel.
- Some compact complex surfaces (the whole list given by Belgun).
Examples of Vaisman manifolds

- Diagonal Hopf manifolds (generalizations of the rank 1 Hopf surfaces.): $H_A := \mathbb{C}^n/\langle A \rangle$ with $A = \text{diag}(\alpha_i), |\alpha_i| > 1$, with:
 - Complex structure: projection of the standard one of \mathbb{C}^n.
 - LCK metric constructed as follows:
 - Let $C > 1$ be a constant and
 $\varphi(z_1, \ldots, z_n) = \sum |z_i|^{\beta_i}, \quad \beta_i = \log |\alpha_i| - 1$.

 a potential on \mathbb{C}^n.
 - Then $A^* \varphi = C^{-1}\varphi$.

 Hence: $\Omega = \sqrt{-1} \partial \bar{\partial} \varphi$ is Kähler and $\Gamma \cong \mathbb{Z}$ acts by holomorphic homotheties with respect to it.
 - The Lee field: $\theta^i = -\sum z_i \log |\alpha_i| \partial z_i$ is parallel.

- Some compact complex surfaces (the whole list given by Belgun).
Examples of Vaisman manifolds

- Diagonal Hopf manifolds (generalizations of the rank 1 Hopf surfaces.): $H_A := \mathbb{C}^n / \langle A \rangle$ with $A = \text{diag}(\alpha_i)$, $|\alpha_i| > 1$, with:
 - Complex structure: projection of the standard one of \mathbb{C}^n.
 - LCK metric constructed as follows:
 - Let $C > 1$ be a constant and
 \[
 \varphi(z_1, \ldots, z_n) = \sum |z_i|^\beta_i, \quad \beta_i = \log|\alpha_i|^{-1} C
 \]
 a potential on \mathbb{C}^n.
 - Then $A^* \varphi = C^{-1} \varphi$.
 - Hence: $\Omega = \sqrt{-1} \partial \bar{\partial} \varphi$ is Kähler and $\Gamma \cong \mathbb{Z}$ acts by holomorphic homotheties with respect to it.
 - The Lee field: $\theta^\sharp = - \sum z_i \log |\alpha_i| \partial z_i$ is parallel.
- Some compact complex surfaces (the whole list given by Belgun).
Examples of Vaisman manifolds

- Diagonal Hopf manifolds (generalizations of the rank 1 Hopf surfaces.): $H_A := \mathbb{C}^n / \langle A \rangle$ with $A = \text{diag}(\alpha_i), \ |\alpha_i| > 1$, with:
 - Complex structure: projection of the standard one of \mathbb{C}^n.
 - LCK metric constructed as follows:
 - Let $C > 1$ be a constant and
 \[
 \varphi(z_1, \ldots, z_n) = \sum |z_i|^{\beta_i}, \quad \beta_i = \log_{|\alpha_i|}^{-1} C
 \]
 a potential on \mathbb{C}^n.
 - Then $A^* \varphi = C^{-1} \varphi$
 - Hence: $\Omega = \sqrt{-1} \partial \bar{\partial} \varphi$ is Kähler and $\Gamma \cong \mathbb{Z}$ acts by holomorphic homotheties with respect to it.
 - The Lee field: $\theta^\# = - \sum z_i \log |\alpha_i| \partial z_i$ is parallel.
- Some compact complex surfaces (the whole list given by Belgun).
Examples of Vaisman manifolds

- Diagonal Hopf manifolds (generalizations of the rank 1 Hopf surfaces.): $H_A := \mathbb{C}^n / \langle A \rangle$ with $A = \text{diag}(\alpha_i)$, $|\alpha_i| > 1$, with:
 - Complex structure: projection of the standard one of \mathbb{C}^n.
 - LCK metric constructed as follows:
 - Let $C > 1$ be a constant and
 \[
 \varphi(z_1, \ldots, z_n) = \sum |z_i|^{\beta_i}, \quad \beta_i = \log |\alpha_i|^{-1} \cdot C
 \]
 a potential on \mathbb{C}^n.
 - Then $A^* \varphi = C^{-1} \varphi$
 - Hence: $\Omega = \sqrt{-1} \partial \bar{\partial} \varphi$ is Kähler and $\Gamma \cong \mathbb{Z}$ acts by holomorphic homotheties with respect to it.
 - The Lee field: $\theta^i = - \sum z_i \log |\alpha_i| \partial z_i$ is parallel.
 - Some compact complex surfaces (the whole list given by Belgun).
Diagonal Hopf manifolds (generalizations of the rank 1 Hopf surfaces.): $H_A := \mathbb{C}^n / \langle A \rangle$ with $A = \text{diag}(\alpha_i)$, $|\alpha_i| > 1$, with:

- Complex structure: projection of the standard one of \mathbb{C}^n.
- LCK metric constructed as follows:

 - Let $C > 1$ be a constant and

 $$\varphi(z_1, \ldots, z_n) = \sum |z_i|^{\beta_i}, \quad \beta_i = \log |\alpha_i|^{-1} C$$

 a potential on \mathbb{C}^n.

 - Then $A^* \varphi = C^{-1} \varphi$.

 Hence: $\Omega = \sqrt{-1} \partial \bar{\partial} \varphi$ is Kähler and $\Gamma \simeq \mathbb{Z}$ acts by holomorphic homotheties with respect to it.

 - The Lee field: $\theta^\sharp = - \sum z_i \log |\alpha_i| \partial z_i$ is parallel.

Some compact complex surfaces (the whole list given by Belgun).
Diagonal Hopf manifolds (generalizations of the rank 1 Hopf surfaces.): $H_A := \mathbb{C}^n/\langle A \rangle$ with $A = \text{diag}(\alpha_i), \mid\alpha_i\mid > 1$, with:

- Complex structure: projection of the standard one of \mathbb{C}^n.
- LCK metric constructed as follows:
 - Let $C > 1$ be a constant and
 \[
 \varphi(z_1, \ldots, z_n) = \sum |z_i|^{\beta_i}, \quad \beta_i = \log_{|\alpha_i|}^{-1} C
 \]
a potential on \mathbb{C}^n.
 - Then $A^* \varphi = C^{-1} \varphi$.
- Hence: $\Omega = \sqrt{-1} \partial \bar{\partial} \varphi$ is Kähler and $\Gamma \cong \mathbb{Z}$ acts by holomorphic homotheties with respect to it.
 - The Lee field: $\theta^i = - \sum z_i \log |\alpha_i| \partial z_i$ is parallel.
- Some compact complex surfaces (the whole list given by Belgun).
Examples of Vaisman manifolds

- Diagonal Hopf manifolds (generalizations of the rank 1 Hopf surfaces.): \(H_A := \mathbb{C}^n / \langle A \rangle \) with \(A = \text{diag}(\alpha_i), |\alpha_i| > 1 \), with:
 - Complex structure: projection of the standard one of \(\mathbb{C}^n \).
 - LCK metric constructed as follows:
 - Let \(C > 1 \) be a constant and

 \[
 \varphi(z_1, \ldots, z_n) = \sum |z_i|^{\beta_i}, \quad \beta_i = \log |\alpha_i| - 1 \quad C
 \]

 a potential on \(\mathbb{C}^n \).
 - Then \(A^* \varphi = C^{-1} \varphi \).

 Hence: \(\Omega = \sqrt{-1} \partial \bar{\partial} \varphi \) is Kähler and \(\Gamma \cong \mathbb{Z} \) acts by holomorphic homotheties with respect to it.
 - The Lee field: \(\theta^\# = - \sum z_i \log |\alpha_i| \partial z_i \) is parallel.

- Some compact complex surfaces (the whole list given by Belgun).
Examples of Vaisman manifolds

- Diagonal Hopf manifolds (generalizations of the rank 1 Hopf surfaces.): $H_A := \mathbb{C}^n / \langle A \rangle$ with $A = \text{diag}(\alpha_i), |\alpha_i| > 1$, with:
 - Complex structure: projection of the standard one of \mathbb{C}^n.
 - LCK metric constructed as follows:
 - Let $C > 1$ be a constant and
 $$\varphi(z_1, \ldots, z_n) = \sum |z_i|^{\beta_i}, \quad \beta_i = \log |\alpha_i| - 1 - C$$
 a potential on \mathbb{C}^n.
 - Then $A^* \varphi = C^{-1} \varphi$.
 - Hence: $\Omega = \sqrt{-1} \partial \bar{\partial} \varphi$ is Kähler and $\Gamma \simeq \mathbb{Z}$ acts by holomorphic homotheties with respect to it.
 - The Lee field: $\theta^\# = - \sum z_i \log |\alpha_i| \partial z_i$ is parallel.

- Some compact complex surfaces (the whole list given by Belgun).
Examples of Vaisman manifolds

- Diagonal Hopf manifolds (generalizations of the rank 1 Hopf surfaces.): \(H_A := \mathbb{C}^n / \langle A \rangle \) with \(A = \text{diag}(\alpha_i), |\alpha_i| > 1 \), with:
 - Complex structure: projection of the standard one of \(\mathbb{C}^n \).
 - LCK metric constructed as follows:
 - Let \(C > 1 \) be a constant and
 \[
 \varphi(z_1, \ldots, z_n) = \sum |z_i|^\beta_i, \quad \beta_i = \log|\alpha_i| - 1 \quad C
 \]
 a potential on \(\mathbb{C}^n \).
 - Then \(A^* \varphi = C^{-1} \varphi \).
 - Hence: \(\Omega = \sqrt{-1} \partial \bar{\partial} \varphi \) is Kähler and \(\Gamma \cong \mathbb{Z} \) acts by holomorphic homotheties with respect to it.
 - The Lee field: \(\theta^\# = - \sum z_i \log|\alpha_i| \partial z_i \) is parallel.
- Some compact complex surfaces (the whole list given by Belgun).
Examples of non-Vaisman manifolds

- Some of the Inoue surfaces (Tricerri, Belgun) and their generalizations to higher dimensions (Oeljeklaus-Toma), rank 0 Hopf surfaces (Gauduchon-O).
- Non-diagonal Hopf manifolds (to be continued...)
- Non-compact examples by J. Renaud.
Examples of non-Vaisman manifolds

- Some of the Inoue surfaces (Tricerri, Belgun) and their generalizations to higher dimensions (Oeljeklaus-Toma), rank 0 Hopf surfaces (Gauduchon-O).
- Non-diagonal Hopf manifolds (to be continued...)
- Non-compact examples by J. Renaud.
Examples of non-Vaisman manifolds

- Some of the Inoue surfaces (Tricerri, Belgun) and their generalizations to higher dimensions (Oeljeklaus-Toma), rank 0 Hopf surfaces (Gauduchon-O).
- Non-diagonal Hopf manifolds (to be continued...)
- Non-compact examples by J. Renaud.
Examples of non-Vaisman manifolds

- Some of the Inoue surfaces (Tricerri, Belgun) and their generalizations to higher dimensions (Oeljeklaus-Toma), rank 0 Hopf surfaces (Gauduchon-O).
- Non-diagonal Hopf manifolds (to be continued...)
- Non-compact examples by J. Renaud.
Examples of non-Vaisman manifolds

- Some of the Inoue surfaces (Tricerri, Belgun) and their generalizations to higher dimensions (Oeljeklaus-Toma), rank 0 Hopf surfaces (Gauduchon-O).
- Non-diagonal Hopf manifolds (to be continued...)
- Non-compact examples by J. Renaud.
Some of the Inoue surfaces (Tricerri, Belgun) and their generalizations to higher dimensions (Oeljeklaus-Toma), rank 0 Hopf surfaces (Gauduchon-O).

Non-diagonal Hopf manifolds (to be continued...)

Non-compact examples by J. Renaud.
Examples of non-Vaisman manifolds

- Some of the Inoue surfaces (Tricerri, Belgun) and their generalizations to higher dimensions (Oeljeklaus-Toma), rank 0 Hopf surfaces (Gauduchon-O).
- Non-diagonal Hopf manifolds (to be continued...)
- Non-compact examples by J. Renaud.
• (M, J) is **LCK with potential** if it admits a Kähler cover (\tilde{M}, Ω) with global potential $\varphi : \tilde{M} \to \mathbb{R}_+$ satisfying the following conditions:

 1. φ is proper (i.e. it has compact level sets).
 2. The monodromy map τ acts on φ by multiplication with a constant: $\tau(\varphi) = const \cdot \varphi$.

• On compact manifolds, (1) is equivalent to the deck group being isomorphic to \mathbb{Z} (a condition satisfied by compact Vaisman manifolds).

• All Vaisman manifolds are LCK with potential, but not conversely.
(M, J) is LCK with potential if it admits a Kähler cover (\(\tilde{M}, \Omega\)) with global potential \(\varphi: \tilde{M} \to \mathbb{R}_+\) satisfying the following conditions:

1. \(\varphi\) is proper (i.e. it has compact level sets).
2. The monodromy map \(\tau\) acts on \(\varphi\) by multiplication with a constant: \(\tau(\varphi) = \text{const} \cdot \varphi\).

On compact manifolds, (1) is equivalent to the deck group being isomorphic to \(\mathbb{Z}\) (a condition satisfied by compact Vaisman manifolds).

All Vaisman manifolds are LCK with potential, but not conversely.
(\(M, J\)) is \textit{LCK with potential} if it admits a Kähler cover \((\tilde{M}, \Omega)\) with global potential \(\varphi : \tilde{M} \to \mathbb{R}_+\) satisfying the following conditions:

1. \(\varphi\) is proper (i.e. it has compact level sets).
2. The monodromy map \(\tau\) acts on \(\varphi\) by multiplication with a constant: \(\tau(\varphi) = const \cdot \varphi\).

On compact manifolds, (1) is equivalent to the deck group being isomorphic to \(\mathbb{Z}\) (a condition satisfied by compact Vaisman manifolds).

All Vaisman manifolds are LCK with potential, but not conversely.
(\(M, J\)) is **LCK with potential** if it admits a Kähler cover (\(\tilde{M}, \Omega\)) with global potential \(\varphi : \tilde{M} \to \mathbb{R}_+\) satisfying the following conditions:

1. \(\varphi\) is proper (i.e. it has compact level sets).

\[\tau(\varphi) = \text{const} \cdot \varphi.\]

On compact manifolds, (1) is equivalent to the deck group being isomorphic to \(\mathbb{Z}\) (a condition satisfied by compact Vaisman manifolds).

All Vaisman manifolds are LCK with potential, but not conversely.
LCK manifolds with potential

- (M, J) is \textit{LCK with potential} if it admits a Kähler cover (\tilde{M}, Ω) with global potential $\varphi : \tilde{M} \to \mathbb{R}_+$ satisfying the following conditions:

 1. φ is proper (i.e. it has compact level sets).
 2. The monodromy map τ acts on φ by multiplication with a constant: $\tau(\varphi) = \text{const} \cdot \varphi$.

- On compact manifolds, (1) is equivalent to the deck group being isomorphic to \mathbb{Z} (a condition satisfied by compact Vaisman manifolds).

- All Vaisman manifolds are LCK with potential, but not conversely.
(\(M, J\)) is LCK with potential if it admits a Kähler cover (\(\tilde{M}, \Omega\)) with global potential \(\varphi : \tilde{M} \to \mathbb{R}_+\) satisfying the following conditions:

1. \(\varphi\) is proper (i.e. it has compact level sets).
2. The monodromy map \(\tau\) acts on \(\varphi\) by multiplication with a constant: \(\tau(\varphi) = const \cdot \varphi\).

On compact manifolds, (1) is equivalent to the deck group being isomorphic to \(\mathbb{Z}\) (a condition satisfied by compact Vaisman manifolds).

All Vaisman manifolds are LCK with potential, but not conversely.
(\(M, J\)) is \textit{LCK with potential} if it admits a Kähler cover \((\tilde{M}, \Omega)\) with global potential \(\varphi : \tilde{M} \to \mathbb{R}_+\) satisfying the following conditions:

1. \(\varphi\) is proper (i.e. it has compact level sets).
2. The monodromy map \(\tau\) acts on \(\varphi\) by multiplication with a constant: \(\tau(\varphi) = \text{const} \cdot \varphi\).

On compact manifolds, (1) is equivalent to the deck group being isomorphic to \(\mathbb{Z}\) (a condition satisfied by compact Vaisman manifolds).

All Vaisman manifolds are LCK with potential, but not conversely.
(\(M, J\)) is \textit{LCK with potential} if it admits a Kähler cover (\(\tilde{M}, \Omega\)) with global potential \(\varphi : \tilde{M} \to \mathbb{R}_+\) satisfying the following conditions:

1. \(\varphi\) is proper (i.e. it has compact level sets).
2. The monodromy map \(\tau\) acts on \(\varphi\) by multiplication with a constant: \(\tau(\varphi) = \text{const} \cdot \varphi\).

On compact manifolds, (1) is equivalent to the deck group being isomorphic to \(\mathbb{Z}\) (a condition satisfied by compact Vaisman manifolds).

All Vaisman manifolds are LCK with potential, but not conversely.
(\(M, J\)) is **LCK with potential** if it admits a Kähler cover \((\widetilde{M}, \Omega)\) with global potential \(\varphi : \widetilde{M} \rightarrow \mathbb{R}_+\) satisfying the following conditions:

1. \(\varphi\) is proper (i.e. it has compact level sets).
2. The monodromy map \(\tau\) acts on \(\varphi\) by multiplication with a constant: \(\tau(\varphi) = const \cdot \varphi\).

On compact manifolds, (1) is equivalent to the deck group being isomorphic to \(\mathbb{Z}\) (a condition satisfied by compact Vaisman manifolds).

All Vaisman manifolds are LCK with potential, but not conversely.
Properties

- The class of compact LCK manifolds with potential is stable to small deformations.
 - Hence: the Hopf manifold \((\mathbb{C}^n \setminus 0)/\Gamma\), with \(\Gamma\) cyclic group generated by a non-diagonal linear operator, is LCK with potential. This is a generalization of the (non–Vaisman) rank 0 Hopf surface.

- A compact LCK manifold with potential of complex dimension at least 3 can be holomorphically embedded in a Hopf manifold.
 - A compact Vaisman manifold of complex dimension at least 3 can be holomorphically embedded in a diagonal Hopf manifold.
Properties

- The class of compact LCK manifolds with potential is stable to small deformations.
 - Hence: the Hopf manifold \((\mathbb{C}^N \setminus 0)/\Gamma\), with \(\Gamma\) cyclic group generated by a non-diagonal linear operator, is LCK with potential. This is a generalization of the (non–Vaisman) rank 0 Hopf surface.

- A compact LCK manifold with potential of complex dimension at least 3 can be holomorphically embedded in a Hopf manifold.

- A compact Vaisman manifold of complex dimension at least 3 can be holomorphically embedded in a diagonal Hopf manifold.
Properties

- The class of compact LCK manifolds with potential is stable to small deformations.
 - Hence: the Hopf manifold $(\mathbb{C}^N \setminus 0)/\Gamma$, with Γ cyclic group generated by a *non-diagonal* linear operator, is LCK with potential. This is a generalization of the (non–Vaisman) rank 0 Hopf surface.

- A compact LCK manifold with potential of complex dimension at least 3 can be holomorphically embedded in a Hopf manifold.
 - A compact Vaisman manifold of complex dimension at least 3 can be holomorphically embedded in a diagonal Hopf manifold.
The class of compact LCK manifolds with potential is stable to small deformations.

Hence: the Hopf manifold \((\mathbb{C}^N \setminus 0)/\Gamma\), with \(\Gamma\) cyclic group generated by a non-diagonal linear operator, is LCK with potential. This is a generalization of the (non–Vaisman) rank 0 Hopf surface.

A compact LCK manifold with potential of complex dimension at least 3 can be holomorphically embedded in a Hopf manifold.

A compact Vaisman manifold of complex dimension at least 3 can be holomorphically embedded in a diagonal Hopf manifold.
Properties

- The class of compact LCK manifolds with potential is stable to small deformations.
 Hence: the Hopf manifold $(\mathbb{C}^N \setminus 0)/\Gamma$, with Γ cyclic group generated by a non-diagonal linear operator, is LCK with potential. This is a generalization of the (non–Vaisman) rank 0 Hopf surface.

- A compact LCK manifold with potential of complex dimension at least 3 can be holomorphically embedded in a Hopf manifold.

- A compact Vaisman manifold of complex dimension at least 3 can be holomorphically embedded in a diagonal Hopf manifold.
Properties

- The class of compact LCK manifolds with potential is stable to small deformations.
 - Hence: the Hopf manifold $(\mathbb{C}^N \setminus 0)/\Gamma$, with Γ cyclic group generated by a *non-diagonal* linear operator, is LCK with potential. This is a generalization of the (non–Vaisman) rank 0 Hopf surface.

- A compact LCK manifold with potential of complex dimension at least 3 can be holomorphically embedded in a Hopf manifold.
 - A compact Vaisman manifold of complex dimension at least 3 can be holomorphically embedded in a diagonal Hopf manifold.
The class of compact LCK manifolds with potential is stable to small deformations. Hence: the Hopf manifold $(\mathbb{C}^N \setminus 0)/\Gamma$, with Γ cyclic group generated by a non-diagonal linear operator, is LCK with potential. This is a generalization of the (non–Vaisman) rank 0 Hopf surface.

A compact LCK manifold with potential of complex dimension at least 3 can be holomorphically embedded in a Hopf manifold.

A compact Vaisman manifold of complex dimension at least 3 can be holomorphically embedded in a diagonal Hopf manifold.
Properties

- The class of compact LCK manifolds with potential is stable to small deformations.
 - Hence: the Hopf manifold \((\mathbb{C}^N \setminus 0)/\Gamma\), with \(\Gamma\) cyclic group generated by a \textit{non-diagonal} linear operator, is LCK with potential. This is a generalization of the (non–Vaisman) rank 0 Hopf surface.

- A compact LCK manifold with potential of complex dimension at least 3 can be holomorphically embedded in a Hopf manifold.
 - A compact Vaisman manifold of complex dimension at least 3 can be holomorphically embedded in a diagonal Hopf manifold.
Associated to the operator $d - \theta$. Since $d\theta = 0$, $d_{\theta}^2 = 0$. Denote it $H_{\theta}^\ast(M)$.

- Some call it Lichnerowicz–Poisson (in Poisson and Jacobi geometry).

Clearly $d_{\theta}\omega = 0$.
$[\omega] \in H_{\theta}^2(M)$ is called the Morse–Novikov class.

- Analogue of the Kähler class.

- The cohomology of the local system L is naturally identified with the cohomology of the Morse–Novikov complex $(\Lambda^\ast(M), d_{\theta})$ (Novikov).
Associated to the operator $d - \theta$. Since $d\theta = 0$, $d^2\theta = 0$. Denote it $H^*_\theta(M)$.

- Some call it Lichnerowicz–Poisson (in Poisson and Jacobi geometry).

- Clearly $d\theta \omega = 0$.

- $[\omega] \in H^2_\theta(M)$ is called the Morse–Novikov class.

- Analogue of the Kähler class.

- The cohomology of the local system L is naturally identified with the cohomology of the Morse–Novikov complex $(\Lambda^*(M), d_\theta)$ (Novikov).
Associated to the operator $d - \theta$. Since $d\theta = 0$, $d^2 \theta = 0$. Denote it $H_\theta^*(M)$.

- Some call it Lichnerowicz–Poisson (in Poisson and Jacobi geometry).

- Clearly $d_\theta \omega = 0$.
- $[\omega] \in H_\theta^2(M)$ is called the Morse–Novikov class.
- Analogue of the Kähler class.

- The cohomology of the local system L is naturally identified with the cohomology of the Morse–Novikov complex $(\Lambda^*(M), d_\theta)$ (Novikov).
Associated to the operator $d - \theta$. Since $d\theta = 0$, $d_\theta^2 = 0$. Denote it $H^*_\theta(M)$.

- Some call it Lichnerowicz–Poisson (in Poisson and Jacobi geometry).

Clearly $d_\theta \omega = 0$.

$[\omega] \in H^2_\theta(M)$ is called the Morse–Novikov class.

- Analogue of the Kähler class.

The cohomology of the local system L is naturally identified with the cohomology of the Morse–Novikov complex $(\Lambda^*(M), d_\theta)$ (Novikov).
Associated to the operator $d - \theta$. Since $d\theta = 0$, $d^2_\theta = 0$. Denote it $H^*_\theta(M)$.

- Some call it Lichnerowicz–Poisson (in Poisson and Jacobi geometry).

- Clearly $d\theta \omega = 0$.

$[\omega] \in H^2_\theta(M)$ is called the Morse–Novikov class.

- Analogue of the Kähler class.

- The cohomology of the local system L is naturally identified with the cohomology of the Morse–Novikov complex $(\Lambda^*(M), d_\theta)$ (Novikov).
Morse–Novikov cohomology of LCK manifolds

- Associated to the operator $d - \theta$. Since $d\theta = 0$, $d^2\theta = 0$. Denote it $H^*_\theta(M)$.
 - Some call it Lichnerowicz–Poisson (in Poisson and Jacobi geometry).

- Clearly $d\theta\omega = 0$.
 - $[\omega] \in H^2_\theta(M)$ is called the Morse–Novikov class.
 - Analogue of the Kähler class.

- The cohomology of the local system L is naturally identified with the cohomology of the Morse–Novikov complex $(\Lambda^*(M), d_\theta)$ (Novikov).
Associated to the operator $d - \theta$. Since $d\theta = 0$, $d^2_\theta = 0$. Denote it $H^*_\theta(M)$.

- Some call it Lichnerowicz–Poisson (in Poisson and Jacobi geometry).

Clearly $d_\theta \omega = 0$.

$[\omega] \in H^2_\theta(M)$ is called the Morse–Novikov class.

- Analogue of the Kähler class.

- The cohomology of the local system L is naturally identified with the cohomology of the Morse–Novikov complex $(\Lambda^*(M), d_\theta)$ (Novikov).
Morse–Novikov cohomology of LCK manifolds

- Associated to the operator $d - \theta$. Since $d\theta = 0$, $d_\theta^2 = 0$. Denote it $H_{\theta}^*(M)$.
 - Some call it Lichnerowicz–Poisson (in Poisson and Jacobi geometry).

- Clearly $d_\theta \omega = 0$.

 $[\omega] \in H^2_{\theta}(M)$ is called the **Morse–Novikov class**.
 - Analogue of the Kähler class.

- The cohomology of the local system L is naturally identified with the cohomology of the Morse–Novikov complex $(\Lambda^*(M), d_\theta)$ (Novikov).
Associated to the operator $d - \theta$. Since $d\theta = 0$, $d_\theta^2 = 0$. Denote it $H^*_\theta(M)$.

- Some call it Lichnerowicz–Poisson (in Poisson and Jacobi geometry).

Clearly $d_\theta \omega = 0$.

$[\omega] \in H^2_\theta(M)$ is called the Morse–Novikov class.

- Analogue of the Kähler class.

The cohomology of the local system L is naturally identified with the cohomology of the Morse–Novikov complex $(\Lambda^*(M), d_\theta)$ (Novikov).
Morse–Novikov cohomology of compact Vaisman manifolds is trivial.

- Follows from the Structure theorem.
- Previously proven for locally conformally symplectic manifolds which admit a compatible metric for which the Lee form is parallel (de Leon, Lopez, Marrero, Padron).

More generally: on compact Vaisman manifolds, the Morse–Novikov class of any LCK form vanishes. Precisely:
Morse–Novikov cohomology of compact Vaisman manifolds is trivial.

- Follows from the Structure theorem.
- Previously proven for locally conformally symplectic manifolds which admit a compatible metric for which the Lee form is parallel (de Leon, Lopez, Marrero, Padron).

More generally: on compact Vaisman manifolds, the Morse–Novikov class of any LCK form vanishes. Precisely:
Morse–Novikov cohomology of compact Vaisman manifolds is trivial.

Follows from the Structure theorem.

Previously proven for locally conformally symplectic manifolds which admit a compatible metric for which the Lee form is parallel (de Leon, Lopez, Marrero, Padron).

More generally: on compact Vaisman manifolds, the Morse–Novikov class of any LCK form vanishes. Precisely:
Morse–Novikov cohomology of compact Vaisman manifolds is trivial.

Follows from the Structure theorem.

- Previously proven for locally conformally symplectic manifolds which admit a compatible metric for which the Lee form is parallel (de Leon, Lopez, Marrero, Padron).

More generally: on compact Vaisman manifolds, the Morse–Novikov class of any LCK form vanishes. Precisely:
Morse–Novikov cohomology of compact Vaisman manifolds is trivial.

- Follows from the Structure theorem.
- Previously proven for locally conformally symplectic manifolds which admit a compatible metric for which the Lee form is parallel (de Leon, Lopez, Marrero, Padron).

More generally: on compact Vaisman manifolds, the Morse–Novikov class of any LCK form vanishes. Precisely:
Morse–Novikov cohomology of compact Vaisman manifolds is trivial.

- Follows from the Structure theorem.
- Previously proven for locally conformally symplectic manifolds which admit a compatible metric for which the Lee form is parallel (de Leon, Lopez, Marrero, Padron).

More generally: on compact Vaisman manifolds, the Morse–Novikov class of any LCK form vanishes. Precisely:
Morse–Novikov cohomology of compact Vaisman manifolds is trivial.

- Follows from the Structure theorem.
- Previously proven for locally conformally symplectic manifolds which admit a compatible metric for which the Lee form is parallel (de Leon, Lopez, Marrero, Padron).

More generally: on compact Vaisman manifolds, the Morse–Novikov class of any LCK form vanishes. Precisely:
Theorem 1

Let M be a compact Vaisman manifold, $\dim_{\mathbb{C}} M \geq 3$, ω_1 an LCK-form (not necessarily Vaisman), and θ_1 its Lee form. Then θ_1 is cohomologous with the Lee form of a Vaisman metric, and the Morse–Novikov class of ω_1 vanishes.
Proof of Theorem 1

- Let ρ be the Lee flow corresponding to the Vaisman structure ω.
 - Modulo a deformation, it can be supposed with compact leaves.
 - By averaging over ρ, θ_1 and ω_1 can be supposed ρ-invariant. The cohomology class does not change.
 - Let G_0 be the closure of the group of holomorphic and conformal automorphisms of M generated by $J(\theta^\natural)$: compact and commutative.
 - As above, θ_1 and ω_1 can be supposed G_0-invariant.
Let ρ be the Lee flow corresponding to the Vaisman structure ω.

- Modulo a deformation, it can be supposed with compact leaves.
- By averaging over ρ, θ₁ and ω₁ can be supposed ρ-invariant. The cohomology class does not change.
- Let G_0 be the closure of the group of holomorphic and conformal automorphisms of M generated by $J(\theta^\ast)$: compact and commutative.
- As above, θ₁ and ω₁ can be supposed G_0-invariant.
Proof of Theorem 1

- Let \(\rho \) be the Lee flow corresponding to the Vaisman structure \(\omega \).
 - Modulo a deformation, it can be supposed with compact leaves.
- By averaging over \(\rho \), \(\theta_1 \) and \(\omega_1 \) can be supposed \(\rho \)-invariant. The cohomology class does not change.
- Let \(G_0 \) be the closure of the group of holomorphic and conformal automorphisms of \(M \) generated by \(J(\theta^\natural) \): compact and commutative.
- As above, \(\theta_1 \) and \(\omega_1 \) can be supposed \(G_0 \)-invariant.
Proof of Theorem 1

- Let ρ be the Lee flow corresponding to the Vaisman structure ω.
 - Modulo a deformation, it can be supposed with compact leaves.

- By averaging over ρ, θ_1 and ω_1 can be supposed ρ-invariant. The cohomology class does not change.

- Let G_0 be the closure of the group of holomorphic and conformal automorphisms of M generated by $J(\theta^\sharp)$: compact and commutative.

- As above, θ_1 and ω_1 can be supposed G_0-invariant.
Proof of Theorem 1

- Let ρ be the Lee flow corresponding to the Vaisman structure ω.
 - Modulo a deformation, it can be supposed with compact leaves.
- By averaging over ρ, θ_1 and ω_1 can be supposed ρ-invariant. The cohomology class does not change.
- Let G_0 be the closure of the group of holomorphic and conformal automorphisms of M generated by $J(\theta^\#)$: compact and commutative.
- As above, θ_1 and ω_1 can be supposed G_0-invariant.
Proof of Theorem 1

- Let ρ be the Lee flow corresponding to the Vaisman structure ω. Modulo a deformation, it can be supposed with compact leaves.

- By averaging over ρ, θ_1 and ω_1 can be supposed ρ-invariant. The cohomology class does not change.

- Let G_0 be the closure of the group of holomorphic and conformal automorphisms of M generated by $J(\theta^w)$: compact and commutative.

- As above, θ_1 and ω_1 can be supposed G_0-invariant.
Proof of Theorem 1

- Let \(\rho \) be the Lee flow corresponding to the Vaisman structure \(\omega \).
 - Modulo a deformation, it can be supposed with compact leaves.

- By averaging over \(\rho \), \(\theta_1 \) and \(\omega_1 \) can be supposed \(\rho \)-invariant. The cohomology class does not change.

- Let \(G_0 \) be the closure of the group of holomorphic and conformal automorphisms of \(M \) generated by \(J(\theta^\#) \): compact and commutative.

- As above, \(\theta_1 \) and \(\omega_1 \) can be supposed \(G_0 \)-invariant.
Proof of Theorem 1

- Let ρ be the Lee flow corresponding to the Vaisman structure ω.
 - Modulo a deformation, it can be supposed with compact leaves.
- By averaging over ρ, θ_1 and ω_1 can be supposed ρ-invariant. The cohomology class does not change.
- Let G_0 be the closure of the group of holomorphic and conformal automorphisms of M generated by $J(\theta^\#)$: compact and commutative.
 - As above, θ_1 and ω_1 can be supposed G_0-invariant.
Proof of Theorem 1

- Let ρ be the Lee flow corresponding to the Vaisman structure ω.
 - Modulo a deformation, it can be supposed with compact leaves.
- By averaging over ρ, θ_1 and ω_1 can be supposed ρ-invariant. The cohomology class does not change.
- Let G_0 be the closure of the group of holomorphic and conformal automorphisms of M generated by $J(\theta^\#)$: compact and commutative.
- As above, θ_1 and ω_1 can be supposed G_0-invariant.
Proof of Theorem 1

- Let \tilde{M} be a Kähler covering on which $\tilde{\theta}$ is exact.

- Fact: If θ^\sharp and $J(\theta^\sharp)$ act conformally and holomorphically and θ^\sharp cannot be lifted to an isometry of \tilde{M}, then M is Vaisman (K–O).

- Hence: suppose $\tilde{\omega}_1$ is $\tilde{\rho}$–invariant.

- Show that θ_1 is basic wrt the foliation ρ.

- Hence: $d^c \theta_1 = 0$ (Tsukada), thus:

 - $0 = \int_M dd^c \omega_1^{n-1} = \int_M (n-1)^2 \theta_1 \wedge J(\theta_1) \wedge \omega_1^{n-1}$,
 - $\theta_1 \wedge J(\theta_1) \wedge \omega^{n-1} > 0$ unless $\theta_1 = 0$.

- We obtain $\theta_1 = 0$ and M is Kähler.

- But a compact Kähler manifold cannot support a Vaisman structure (different topology).
Proof of Theorem 1

- Let \(\tilde{M} \) be a Kähler covering on which \(\tilde{\theta} \) is exact.
- Fact: If \(\theta^\# \) and \(J(\theta^\#) \) act conformally and holomorphically and \(\theta^\# \) cannot be lifted to an isometry of \(\tilde{M} \), then \(M \) is Vaisman (K–O).
- Hence: suppose \(\tilde{\omega}_1 \) is \(\tilde{\rho} \)-invariant.
- Show that \(\theta_1 \) is basic wrt the foliation \(\rho \).
- Hence: \(d^c \theta_1 = 0 \) (Tsukada), thus:
- \[0 = \int_M dd^c \omega_1^{n-1} = \int_M (n-1)^2 \theta_1 \wedge J(\theta_1) \wedge \omega_1^{n-1}, \]
- \(\theta_1 \wedge J(\theta_1) \wedge \omega^{n-1} > 0 \) unless \(\theta_1 = 0 \).
- We obtain \(\theta_1 = 0 \) and \(M \) is Kähler.
- But a compact Kähler manifold cannot support a Vaisman structure (different topology).
Proof of Theorem 1

- Let \(\widetilde{M} \) be a Kähler covering on which \(\widetilde{\theta} \) is exact.
- **Fact:** If \(\theta^\# \) and \(J(\theta^\#) \) act conformally and holomorphically and \(\theta^\# \) cannot be lifted to an isometry of \(\widetilde{M} \), then \(M \) is Vaisman (K–O).

Hence: suppose \(\tilde{\omega}_1 \) is \(\tilde{\rho} \)-invariant.

Show that \(\theta_1 \) is basic wrt the foliation \(\rho \).

Hence: \(d^c \theta_1 = 0 \) (Tsukada), thus:

\[
0 = \int_M dd^c \omega_1^{n-1} = \int_M (n-1)^2 \theta_1 \wedge J(\theta_1) \wedge \omega_1^{n-1},
\]

\(\theta_1 \wedge J(\theta_1) \wedge \omega^{n-1} > 0 \) unless \(\theta_1 = 0 \).

We obtain \(\theta_1 = 0 \) and \(M \) is Kähler.

But a compact Kähler manifold cannot support a Vaisman structure (different topology).
Proof of Theorem 1

- Let \(\tilde{M} \) be a Kähler covering on which \(\tilde{\theta} \) is exact.

- **Fact:** If \(\theta^\# \) and \(J(\theta^\#) \) act conformally and holomorphically and \(\theta^\# \) cannot be lifted to an isometry of \(\tilde{M} \), then \(M \) is Vaisman (K–O).

 Hence: suppose \(\tilde{\omega}_1 \) is \(\tilde{\rho} \)-invariant.

 Show that \(\theta_1 \) is *basic* wrt the foliation \(\rho \).

 Hence: \(d^c \theta_1 = 0 \) (Tsukada), thus:

 \[
 0 = \int_M dd^c \omega_1^{n-1} = \int_M (n - 1)^2 \theta_1 \wedge J(\theta_1) \wedge \omega_1^{n-1},
 \]

 \(\theta_1 \wedge J(\theta_1) \wedge \omega^{n-1} > 0 \) unless \(\theta_1 = 0 \).

 We obtain \(\theta_1 = 0 \) and \(M \) is Kähler.

 But a compact Kähler manifold cannot support a Vaisman structure (different topology).
Proof of Theorem 1

Let \(\tilde{M} \) be a Kähler covering on which \(\tilde{\theta} \) is exact.

Fact: If \(\theta^\# \) and \(J(\theta^\#) \) act conformally and holomorphically and \(\theta^\# \) cannot be lifted to an isometry of \(\tilde{M} \), then \(M \) is Vaisman (K–O).

Hence: suppose \(\tilde{\omega}_1 \) is \(\tilde{\rho} \)-invariant.

- Show that \(\theta_1 \) is basic wrt the foliation \(\rho \).
- Hence: \(d^c \theta_1 = 0 \) (Tsukada), thus:
 - \(0 = \int_M d^c \omega_1^{n-1} = \int_M (n-1)^2 \theta_1 \wedge J(\theta_1) \wedge \omega_1^{n-1} \),
 - \(\theta_1 \wedge J(\theta_1) \wedge \omega^{n-1} > 0 \) unless \(\theta_1 = 0 \).
- We obtain \(\theta_1 = 0 \) and \(M \) is Kähler.
- But a compact Kähler manifold cannot support a Vaisman structure (different topology).
Proof of Theorem 1

- Let \tilde{M} be a Kähler covering on which $\tilde{\theta}$ is exact.
- **Fact**: If $\theta^\#$ and $J(\theta^\#)$ act conformally and holomorphically and $\theta^\#$ cannot be lifted to an isometry of \tilde{M}, then M is Vaisman (K–O).
- Hence: suppose $\tilde{\omega}_1$ is $\tilde{\rho}$–invariant.
 - Show that θ_1 is *basic* wrt the foliation ρ.
 - Hence: $d^c\theta_1 = 0$ (Tsukada), thus:
 - $0 = \int_M dd^c \omega_1^{n-1} = \int_M (n-1)^2 \theta_1 \wedge J(\theta_1) \wedge \omega_1^{n-1}$,
 - $\theta_1 \wedge J(\theta_1) \wedge \omega^{n-1} > 0$ unless $\theta_1 = 0$.
 - We obtain $\theta_1 = 0$ and M is Kähler.
 - But a compact Kähler manifold cannot support a Vaisman structure (different topology).
Proof of Theorem 1

- Let \tilde{M} be a Kähler covering on which $\tilde{\theta}$ is exact.
- **Fact:** If $\theta^\#$ and $J(\theta^\#)$ act conformally and holomorphically and $\theta^\#$ cannot be lifted to an isometry of \tilde{M}, then M is Vaisman (K–O).
- Hence: suppose $\tilde{\omega}_1$ is $\tilde{\rho}$–invariant.
- Show that θ_1 is *basic* wrt the foliation ρ.
 - Hence: $d^c\theta_1 = 0$ (Tsukada), thus:
 - $0 = \int_M dd^c\omega_1^{n-1} = \int_M (n-1)^2\theta_1 \wedge J(\theta_1) \wedge \omega_1^{n-1}$,
 - $\theta_1 \wedge J(\theta_1) \wedge \omega^{n-1} > 0$ unless $\theta_1 = 0$.
 - We obtain $\theta_1 = 0$ and M is Kähler.
 - But a compact Kähler manifold cannot support a Vaisman structure (different topology).
Proof of Theorem 1

- Let \tilde{M} be a Kähler covering on which $\tilde{\theta}$ is exact.
- **Fact**: If $\theta^\#$ and $J(\theta^\#)$ act conformally and holomorphically and $\theta^\#$ cannot be lifted to an isometry of \tilde{M}, then M is Vaisman (K–O).
- Hence: suppose $\tilde{\omega}_1$ is $\tilde{\rho}$–invariant.
- Show that θ_1 is *basic* wrt the foliation ρ.
 - Hence: $d^c\theta_1 = 0$ (Tsukada), thus:
 - $0 = \int_M dd^c\omega_1^{n-1} = \int_M (n-1)^2\theta_1 \wedge J(\theta_1) \wedge \omega_1^{n-1}$,
 - $\theta_1 \wedge J(\theta_1) \wedge \omega^{n-1} > 0$ unless $\theta_1 = 0$.
 - We obtain $\theta_1 = 0$ and M is Kähler.
 - But a compact Kähler manifold cannot support a Vaisman structure (different topology).
Proof of Theorem 1

- Let \tilde{M} be a Kähler covering on which $\tilde{\theta}$ is exact.
- **Fact:** If $\theta^#$ and $J(\theta^#)$ act conformally and holomorphically and $\theta^#$ cannot be lifted to an isometry of \tilde{M}, then M is Vaisman (K–O).
- Hence: suppose $\tilde{\omega}_1$ is $\tilde{\rho}$–invariant.
- Show that θ_1 is basic wrt the foliation ρ.
- Hence: $d^c \theta_1 = 0$ (Tsukada), thus:
 - $0 = \int_M dd^c \omega_1^{n-1} = \int_M (n-1)^2 \theta_1 \wedge J(\theta_1) \wedge \omega_1^{n-1},$
 - $\theta_1 \wedge J(\theta_1) \wedge \omega^{n-1} > 0$ unless $\theta_1 = 0$.
 - We obtain $\theta_1 = 0$ and M is Kähler.
 - But a compact Kähler manifold cannot support a Vaisman structure (different topology).
Proof of Theorem 1

- Let \(\tilde{M} \) be a Kähler covering on which \(\tilde{\theta} \) is exact.
- **Fact:** If \(\theta^\# \) and \(J(\theta^\#) \) act conformally and holomorphically and \(\theta^\# \) cannot be lifted to an isometry of \(\tilde{M} \), then \(M \) is Vaisman (K–O).
- Hence: suppose \(\tilde{\omega}_1 \) is \(\tilde{\rho} \)-invariant.
- Show that \(\theta_1 \) is basic wrt the foliation \(\rho \).
- Hence: \(d^c \theta_1 = 0 \) (Tsukada), thus:
 \[0 = \int_M dd^c \omega_1^{n-1} = \int_M (n - 1)^2 \theta_1 \wedge J(\theta_1) \wedge \omega_1^{n-1}, \]
 \[\theta_1 \wedge J(\theta_1) \wedge \omega^{n-1} > 0 \text{ unless } \theta_1 = 0. \]
- We obtain \(\theta_1 = 0 \) and \(M \) is Kähler.
- But a compact Kähler manifold cannot support a Vaisman structure (different topology).
Proof of Theorem 1

- Let \tilde{M} be a Kähler covering on which $\tilde{\theta}$ is exact.
- **Fact:** If $\theta^\#$ and $J(\theta^\#)$ act conformally and holomorphically and $\theta^\#$ cannot be lifted to an isometry of \tilde{M}, then M is Vaisman (K–O).
- Hence: suppose $\tilde{\omega}_1$ is $\tilde{\rho}$–invariant.
- Show that θ_1 is basic wrt the foliation ρ.
- Hence: $d^c\theta_1 = 0$ (Tsukada), thus:
- $0 = \int_M dd^c\omega_1^{n-1} = \int_M (n - 1)^2\theta_1 \wedge J(\theta_1) \wedge \omega_1^{n-1}$,
- $\theta_1 \wedge J(\theta_1) \wedge \omega^{n-1} > 0$ unless $\theta_1 = 0$.
- We obtain $\theta_1 = 0$ and M is Kähler.
- But a compact Kähler manifold cannot support a Vaisman structure (different topology).
Let \tilde{M} be a Kähler covering on which $\tilde{\theta}$ is exact.

Fact: If $\theta^\#$ and $J(\theta^\#)$ act conformally and holomorphically and $\theta^\#$ cannot be lifted to an isometry of \tilde{M}, then M is Vaisman (K–O).

Hence: suppose $\tilde{\omega}_1$ is $\tilde{\rho}$–invariant.

Show that θ_1 is basic wrt the foliation ρ.

Hence: $d^c \theta_1 = 0$ (Tsukada), thus:

$$0 = \int_M dd^c \omega_1^{n-1} = \int_M (n - 1)^2 \theta_1 \wedge J(\theta_1) \wedge \omega_1^{n-1},$$

$$\theta_1 \wedge J(\theta_1) \wedge \omega^{n-1} > 0 \text{ unless } \theta_1 = 0.$$

We obtain $\theta_1 = 0$ and M is Kähler.

But a compact Kähler manifold cannot support a Vaisman structure (different topology).
Let \tilde{M} be a Kähler covering on which $\tilde{\theta}$ is exact.

Fact: If $\theta^\#$ and $J(\theta^\#)$ act conformally and holomorphically and $\theta^\#$ cannot be lifted to an isometry of \tilde{M}, then M is Vaisman (K–O).

Hence: suppose $\tilde{\omega}_1$ is $\tilde{\rho}$–invariant.

Show that θ_1 is *basic* wrt the foliation ρ.

Hence: $d^c\theta_1 = 0$ (Tsukada), thus:

\[0 = \int_M dd^c\omega_1^{n-1} = \int_M (n - 1)^2 \theta_1 \wedge J(\theta_1) \wedge \omega_1^{n-1}, \]

\[\theta_1 \wedge J(\theta_1) \wedge \omega^{n-1} > 0 \text{ unless } \theta_1 = 0. \]

We obtain $\theta_1 = 0$ and M is Kähler.

But a compact Kähler manifold cannot support a Vaisman structure (different topology).
Proof of Theorem 1

- Let \tilde{M} be a Kähler covering on which $\tilde{\theta}$ is exact.
- **Fact:** If $\theta^\#$ and $J(\theta^\#)$ act conformally and holomorphically and $\theta^\#$ cannot be lifted to an isometry of \tilde{M}, then M is Vaisman (K–O).
- Hence: suppose $\tilde{\omega}_1$ is $\tilde{\rho}$–invariant.
- Show that θ_1 is basic wrt the foliation ρ.
- Hence: $d^c \theta_1 = 0$ (Tsukada), thus:
 - $0 = \int_M dd^c \omega_1^{n-1} = \int_M (n - 1)^2 \theta_1 \wedge J(\theta_1) \wedge \omega_1^{n-1}$,
 - $\theta_1 \wedge J(\theta_1) \wedge \omega^{n-1} > 0$ unless $\theta_1 = 0$.
- We obtain $\theta_1 = 0$ and M is Kähler.
 - But a compact Kähler manifold cannot support a Vaisman structure (different topology).
Proof of Theorem 1

- Let \(\tilde{M} \) be a Kähler covering on which \(\tilde{\theta} \) is exact.
- \textbf{Fact}: If \(\theta^\# \) and \(J(\theta^\#) \) act conformally and holomorphically and \(\theta^\# \) cannot be lifted to an isometry of \(\tilde{M} \), then \(M \) is Vaisman (K–O).
- Hence: suppose \(\tilde{\omega}_1 \) is \(\tilde{\rho} \)-invariant.
- Show that \(\theta_1 \) is basic wrt the foliation \(\rho \).
- Hence: \(d^c\theta_1 = 0 \) (Tsukada), thus:
 - \(0 = \int_M dd^c\omega_1^{n-1} = \int_M (n - 1)^2 \theta_1 \wedge J(\theta_1) \wedge \omega_1^{n-1}, \)
 - \(\theta_1 \wedge J(\theta_1) \wedge \omega^{n-1} > 0 \) unless \(\theta_1 = 0 \).
- We obtain \(\theta_1 = 0 \) and \(M \) is Kähler.
- But a compact Kähler manifold cannot support a Vaisman structure (different topology).
- Main problem with non–Kähler manifolds: do not satisfy the global $\partial \overline{\partial}$-lemma.
- One considers the Bott–Chern complex:
 \[\cdots \to \Lambda^{p-1,q-1}(M) \xrightarrow{\partial \overline{\partial}} \Lambda^{p,q}(M) \xrightarrow{\partial \overline{\partial}} \Lambda^{p+1,q}(M) \oplus \Lambda^{p,q+1}(M) \to \cdots \]
- Its cohomology groups $H_{\partial \overline{\partial}}^{p,q}(M)$ are
 \[
 \ker \left(\Lambda^{p,q}(M) \xrightarrow{\partial} \Lambda^{p+1,q}(M) \right) \cap \ker \left(\Lambda^{p,q}(M) \xrightarrow{\overline{\partial}} \Lambda^{p,q+1}(M) \right)
 \]
 \[
 \text{im} \left(\Lambda^{p-1,q-1}(M) \xrightarrow{\partial \overline{\partial}} \Lambda^{p,q}(M) \right)
 \]
- For compact manifolds, $H_{\partial \overline{\partial}}^{p,q}(M) \cong R_{\partial \overline{\partial}}^{p,q}(M) \iff$ global $\partial \overline{\partial}$-lemma.
Main problem with non–Kähler manifolds: do not satisfy the global $\partial \bar{\partial}$-lemma.

One considers the Bott–Chern complex:

$$
\cdots \to \Lambda^{p-1,q-1}(M) \xrightarrow{\partial \bar{\partial}} \Lambda^{p,q}(M) \xrightarrow{\partial \bar{\partial}} \Lambda^{p+1,q}(M) \oplus \Lambda^{p,q+1}(M) \to \cdots
$$

Its cohomology groups $H_{\partial \bar{\partial}}^{p,q}(M)$ are

$$
\ker \left(\Lambda^{p,q}(M) \xrightarrow{\partial} \Lambda^{p+1,q}(M) \right) \cap \ker \left(\Lambda^{p,q}(M) \xrightarrow{\bar{\partial}} \Lambda^{p,q+1}(M) \right)
$$

$$
\text{im} \left(\Lambda^{p-1,q-1}(M) \xrightarrow{\partial \bar{\partial}} \Lambda^{p,q}(M) \right)
$$

For compact manifolds, $H_{\partial \bar{\partial}}^{p,q}(M) = H^{p,q}(M) \iff$ global $\partial \bar{\partial}$-lemma.
Main problem with non–Kähler manifolds: do not satisfy the global $\partial \overline{\partial}$-lemma.

One considers the Bott–Chern complex:

$$\rightarrow \Lambda^{p-1,q-1}(M) \xrightarrow{\partial \overline{\partial}} \Lambda^{p,q}(M) \xrightarrow{\partial \oplus \overline{\partial}} \Lambda^{p+1,q}(M) \oplus \Lambda^{p,q+1}(M) \rightarrow$$

Its cohomology groups $H_{\partial \overline{\partial}}^{p,q}(M)$ are

\[
\ker \left(\Lambda^{p,q}(M) \xrightarrow{\partial} \Lambda^{p+1,q}(M) \right) \cap \ker \left(\Lambda^{p,q}(M) \xrightarrow{\overline{\partial}} \Lambda^{p,q+1}(M) \right)
\]

\[
\operatorname{im} \left(\Lambda^{p-1,q-1}(M) \xrightarrow{\partial \overline{\partial}} \Lambda^{p,q}(M) \right)
\]

For compact manifolds, $H_{\partial \overline{\partial}}^{p,q}(M) \cong H_{\partial \overline{\partial}}^{p,q}(\overline{M})$ \iff global $\partial \overline{\partial}$-lemma.
Main problem with non–Kähler manifolds: do not satisfy the global $\partial \bar{\partial}$-lemma.

One considers the Bott–Chern complex:

$$
\Lambda^{p-1,q-1}(M) \xrightarrow{\partial \bar{\partial}} \Lambda^{p,q}(M) \xrightarrow{\partial \oplus \bar{\partial}} \Lambda^{p+1,q}(M) \oplus \Lambda^{p,q+1}(M) \xrightarrow{\partial \bar{\partial}}
$$

Its cohomology groups $H^{p,q}_{\partial \bar{\partial}}(M)$ are

$$
\ker \left(\Lambda^{p,q}(M) \xrightarrow{\partial} \Lambda^{p+1,q}(M) \right) \cap \ker \left(\Lambda^{p,q}(M) \xrightarrow{\bar{\partial}} \Lambda^{p,q+1}(M) \right)
$$

$$
\text{im} \left(\Lambda^{p-1,q-1}(M) \xrightarrow{\partial \bar{\partial}} \Lambda^{p,q}(M) \right)
$$

For compact manifolds, $H^{p,q}_{\partial \bar{\partial}}(M) = H^{p,q}_{\partial \bar{\partial}}(M) \iff$ global $\partial \bar{\partial}$-lemma.
Main problem with non–Kähler manifolds: do not satisfy the global $\partial\bar{\partial}$-lemma.

One considers the Bott–Chern complex:

$$\rightarrow \Lambda^{p-1,q-1}(M) \xrightarrow{\partial\bar{\partial}} \Lambda^{p,q}(M) \xrightarrow{\partial\oplus\bar{\partial}} \Lambda^{p+1,q}(M) \oplus \Lambda^{p,q+1}(M) \rightarrow$$

Its cohomology groups $H^{p,q}_{\partial\bar{\partial}}(M)$ are

$$\text{ker} \left(\Lambda^{p,q}(M) \xrightarrow{\partial} \Lambda^{p+1,q}(M) \right) \cap \text{ker} \left(\Lambda^{p,q}(M) \xrightarrow{\bar{\partial}} \Lambda^{p,q+1}(M) \right)$$

$$\text{im} \left(\Lambda^{p-1,q-1}(M) \xrightarrow{\partial\bar{\partial}} \Lambda^{p,q}(M) \right)$$

For compact manifolds, $H^{p,q}_{\partial\bar{\partial}}(M) \cong H^{p,q}(M) \iff$ global $\partial\bar{\partial}$-lemma.
Main problem with non-Kähler manifolds: do not satisfy the global $\partial\bar{\partial}$-lemma.

One considers the Bott–Chern complex:

$$
\rightarrow \Lambda^{p-1,q-1}(M) \xrightarrow{\partial\bar{\partial}} \Lambda^{p,q}(M) \xrightarrow{\partial\oplus\bar{\partial}} \Lambda^{p+1,q}(M) \oplus \Lambda^{p,q+1}(M) \rightarrow
$$

Its cohomology groups $H^{p,q}_{\partial\bar{\partial}}(M)$ are

$$
\ker \left(\Lambda^{p,q}(M) \xrightarrow{\partial} \Lambda^{p+1,q}(M) \right) \cap \ker \left(\Lambda^{p,q}(M) \xrightarrow{\bar{\partial}} \Lambda^{p,q+1}(M) \right)
$$

$$
\text{im} \left(\Lambda^{p-1,q-1}(M) \xrightarrow{\partial\bar{\partial}} \Lambda^{p,q}(M) \right)
$$

For compact manifolds, $H^{p,q}_{\partial\bar{\partial}}(M) \cong H^{p,q}_{\bar{\partial}\partial}(M) \iff$ global $\partial\bar{\partial}$-lemma.
Main problem with non–Kähler manifolds: do not satisfy the global \(\partial \bar{\partial} \)-lemma.

One considers the Bott–Chern complex:

\[
\rightarrow \Lambda^{p-1,q-1}(M) \xrightarrow{\partial \bar{\partial}} \Lambda^{p,q}(M) \xrightarrow{\partial \oplus \bar{\partial}} \Lambda^{p+1,q}(M) \oplus \Lambda^{p,q+1}(M) \rightarrow
\]

Its cohomology groups \(H^{p,q}_{\partial \bar{\partial}}(M) \) are

\[
\ker \left(\Lambda^{p,q}(M) \xrightarrow{\partial} \Lambda^{p+1,q}(M) \right) \cap \ker \left(\Lambda^{p,q}(M) \xrightarrow{\bar{\partial}} \Lambda^{p,q+1}(M) \right)
\]

\[
\text{im} \left(\Lambda^{p-1,q-1}(M) \xrightarrow{\partial \bar{\partial}} \Lambda^{p,q}(M) \right)
\]

For compact manifolds, \(H^{p,q}_{\partial \bar{\partial}}(M) \cong H^{p,q}_{\partial}(M) \iff \) global \(\partial \bar{\partial} \)-lemma.
Bott–Chern cohomology of LCK manifolds

- Same complex, but for d_θ:

\[
\Lambda^{p-1,q-1}(M) \xrightarrow{\partial_\theta \bar{\partial}_\theta} \Lambda^{p,q}(M) \xrightarrow{\partial_\theta \oplus \bar{\partial}_\theta} \Lambda^{p+1,q}(M) \oplus \Lambda^{p,q+1}(M)
\]

- Cohomology groups $H^{p,q}_{\partial_\theta \bar{\partial}_\theta}(M) \cong H^{p,q}_{\partial \bar{\partial}}(M, L)$.

- $[\omega] \in H^{1,1}_{\partial \bar{\partial}}(M, L)$ is called Bott–Chern class.
Bott–Chern cohomology of LCK manifolds

- Same complex, but for d_θ:

\[\Lambda^{p-1,q-1}(M) \xrightarrow{\partial_\theta \overline{\partial}_\theta} \Lambda^{p,q}(M) \xrightarrow{\partial_\theta \oplus \overline{\partial}_\theta} \Lambda^{p+1,q}(M) \oplus \Lambda^{p,q+1}(M) \]

- Cohomology groups $H^{p,q}_{\partial_\theta \overline{\partial}_\theta}(M) \cong H^{p,q}(M, L)$.

- $[\omega] \in H^{1,1}_{\partial \overline{\partial}}(M, L)$ is called Bott–Chern class.
Same complex, but for d_θ:

$$
\Lambda^{p-1,q-1}(M) \xrightarrow{\partial_\theta \bar{\partial}_\theta} \Lambda^{p,q}(M) \xrightarrow{\partial_\theta \oplus \bar{\partial}_\theta} \Lambda^{p+1,q}(M) \oplus \Lambda^{p,q+1}(M)
$$

Cohomology groups $H^{p,q}_{\partial_\theta \bar{\partial}_\theta}(M) \cong H^{p,q}_{\bar{\partial} \partial}(M, L)$.

$[\omega] \in H^{1,1}_{\bar{\partial} \partial}(M, L)$ is called Bott–Chern class.
Bott–Chern cohomology of LCK manifolds

- Same complex, but for d_θ:

$$\Lambda^{p-1,q-1}(M) \xrightarrow{\partial_\theta \overline{\partial}_\theta} \Lambda^{p,q}(M) \xrightarrow{\partial_\theta \oplus \overline{\partial}_\theta} \Lambda^{p+1,q}(M) \oplus \Lambda^{p,q+1}(M)$$

- Cohomology groups $H^{p,q}_{\partial_\theta \overline{\partial}_\theta}(M) \cong H^{p,q}_{\overline{\partial} \overline{\partial}}(M, L)$.

- $[\omega] \in H^{1,1}_{\overline{\partial} \overline{\partial}}(M, L)$ is called Bott–Chern class.
Bott–Chern cohomology of LCK manifolds

- Same complex, but for d_θ:

\[
\begin{align*}
\Lambda^{p-1, q-1}(M) & \xrightarrow{\partial_\theta \bar{\partial}_\theta} \Lambda^{p, q}(M) \\
\Lambda^{p, q}(M) & \xrightarrow{\partial_\theta \oplus \bar{\partial}_\theta} \Lambda^{p+1, q}(M) \oplus \Lambda^{p, q+1}(M)
\end{align*}
\]

- Cohomology groups $H^{p, q}_{\partial_\theta \bar{\partial}_\theta}(M) \cong H^{p, q}_{\partial \bar{\partial}}(M, L)$.

- $[\omega] \in H^{1, 1}_{\partial \bar{\partial}}(M, L)$ is called Bott–Chern class.
Same complex, but for d_θ:

$$
\Lambda^{p-1,q-1}(M) \xrightarrow{\partial_\theta \bar{\partial}_\theta} \Lambda^{p,q}(M) \xrightarrow{\partial_\theta \oplus \bar{\partial}_\theta} \Lambda^{p+1,q}(M) \oplus \Lambda^{p,q+1}(M)
$$

Cohomology groups $H^{p,q}_{\partial_\theta \bar{\partial}_\theta}(M) \cong H^{p,q}_{\partial \bar{\partial}}(M, L)$.

$[\omega] \in H^{1,1}_{\partial \bar{\partial}}(M, L)$ is called Bott–Chern class.
Bott–Chern cohomology of LCK manifolds

- Same complex, but for d_θ:

\[
\Lambda^{p-1,q-1}(M) \xrightarrow{\partial_\theta \bar{\partial}_\theta} \Lambda^{p,q}(M) \xrightarrow{\partial_\theta \oplus \bar{\partial}_\theta} \Lambda^{p+1,q}(M) \oplus \Lambda^{p,q+1}(M)
\]

- Cohomology groups $H^{p,q}_{\partial_\theta \bar{\partial}_\theta}(M) \cong H^{p,q}_{\partial \bar{\partial}}(M, L)$.

- $[\omega] \in H^{1,1}_{\partial \bar{\partial}}(M, L)$ is called Bott–Chern class.
Meaning of the Bott–Chern class

- \([\omega] = 0 \in H^{1,1}_{\bar{\partial}\partial}(M, L) \Leftrightarrow \tilde{M} \text{ admits an automorphic potential.}
 - \(H^{1,1}_{\bar{\partial}\partial}(M, L) = 0\) is implied by \(H^1(M, L) = 0\) and \(H^2_\theta(M) = 0\) (easier to control).

- Hence: If the Bott–Chern class of an LCK-manifold \(M\) vanishes and the monodromy of \(L\) is \(\mathbb{Z}\), then \(M\) is LCK with potential (will be generalized).

- If \(\omega_1, \omega_2\) are LCK-metrics having the same Lee form \(\theta\), then the following conditions are equivalent:
 - The Bott–Chern classes of \(\omega_1, \omega_2\) are equal.
 - The LCK-structures \(\omega_1\) and \(\omega_2\) are equivalent up to a potential (on a Kähler covering, \(\tilde{\omega}_1 = \tilde{\omega}_2 = \partial\partial\phi\) with automorphic \(\phi\)).
Meaning of the Bott–Chern class

- \([\omega] = 0 \in H^{1,1}_{\partial\bar{\partial}}(M, L) \iff \tilde{M} \text{ admits an automorphic potential.}

- \(H^{1,1}_{\partial\bar{\partial}}(M, L) = 0\) is implied by \(H^1(M, L) = 0\) and \(H^2_{\theta}(M) = 0\) (easier to control).

Hence: If the Bott–Chern class of an LCK-manifold \(M\) vanishes and the monodromy of \(L\) is \(\mathbb{Z}\), then \(M\) is LCK with potential (will be generalized).

- If \(\omega_1, \omega_2\) are LCK-metrics having the same Lee form \(\theta\), then the following conditions are equivalent:
 - The Bott–Chern classes of \(\omega_1, \omega_2\) are equal.
 - The LCK-structures \(\omega_1\) and \(\omega_2\) are equivalent up to a potential (on a Kähler covering, \(\tilde{\omega}_1 - \tilde{\omega}_2 = \partial\bar{\partial}\phi\) with automorphic \(\phi\)).
Meaning of the Bott–Chern class

- $[\omega] = 0 \in H^{1,1}_{\partial\bar{\partial}}(M, L) \iff \tilde{M}$ admits an *automorphic* potential.

 - $H^{1,1}_{\partial\bar{\partial}}(M, L) = 0$ is implied by $H^1(M, L) = 0$ and $H^2_\theta(M) = 0$ (easier to control).

- Hence: If the Bott–Chern class of an LCK-manifold M vanishes and the monodromy of L is \mathbb{Z}, then M is LCK with potential (will be generalized).

- If ω_1, ω_2 are LCK-metrics having the same Lee form θ, then the following conditions are equivalent:

 1. The Bott–Chern classes of ω_1, ω_2 are equal.
 2. The LCK-structures ω_1 and ω_2 are equivalent up to a potential (on a Kähler covering, $\tilde{\omega}_1 - \tilde{\omega}_2 = \partial\bar{\partial}\phi$ with automorphic ϕ).
Meaning of the Bott–Chern class

- \([\omega] = 0 \in H^{1,1}_{\partial\bar{\partial}}(M, L) \iff \tilde{M} \text{ admits an } \textit{automorphic} \text{ potential.}
 - \(H^{1,1}_{\partial\bar{\partial}}(M, L) = 0\) is implied by \(H^1(M, L) = 0\) and \(H^2_\theta(M) = 0\) (easier to control).

Hence: If the Bott–Chern class of an LCK-manifold \(M\) vanishes and the monodromy of \(L\) is \(\mathbb{Z}\), then \(M\) is LCK with potential (will be generalized).

If \(\omega_1, \omega_2\) are LCK-metrics having the same Lee form \(\theta\), then the following conditions are equivalent:
 1. The Bott–Chern classes of \(\omega_1, \omega_2\) are equal.
 2. The LCK-structures \(\omega_1\) and \(\omega_2\) are equivalent up to a potential (on a Kähler covering, \(\tilde{\omega}_1 = \tilde{\omega}_2 = \partial\bar{\partial}\phi\) with automorphic \(\phi\)).
Meaning of the Bott–Chern class

- \([\omega] = 0 \in H^{1,1}_{\partial \bar{\partial}}(M, L) \Leftrightarrow \tilde{M} \text{ admits an } automorphic \text{ potential.}
 - \(H^{1,1}_{\partial \bar{\partial}}(M, L) = 0\) is implied by \(H^1(M, L) = 0\) and \(H^2_\theta(M) = 0\) (easier to control).

- Hence: If the Bott–Chern class of an LCK-manifold \(M\) vanishes and the monodromy of \(L\) is \(\mathbb{Z}\), then \(M\) is LCK with potential (will be generalized).

- If \(\omega_1, \omega_2\) are LCK-metrics having the same Lee form \(\theta\), then the following conditions are equivalent:
 - The Bott–Chern classes of \(\omega_1, \omega_2\) are equal.
 - The LCK-structures \(\omega_1\) and \(\omega_2\) are equivalent up to a potential (on a Kähler covering, \(\tilde{\omega}_1 = \tilde{\omega}_2 = 0\) with automorphic \(\phi\)).
Meaning of the Bott–Chern class

- $[\omega] = 0 \in H^{1,1}_{\partial\bar{\partial}}(M, L) \iff \tilde{M}$ admits an automorphic potential.
 - $H^{1,1}_{\partial\bar{\partial}}(M, L) = 0$ is implied by $H^1(M, L) = 0$ and $H^2_\theta(M) = 0$ (easier to control).

Hence: If the Bott–Chern class of an LCK-manifold M vanishes and the monodromy of L is \mathbb{Z}, then M is LCK with potential (will be generalized).

- If ω_1, ω_2 are LCK-metrics having the same Lee form θ, then the following conditions are equivalent:
 1. The Bott–Chern classes of ω_1, ω_2 are equal.
 2. The LCK-structures ω_1 and ω_2 are equivalent up to a potential (on a Kähler covering, $\tilde{\omega}_1 - \tilde{\omega}_2 = \partial\bar{\partial}\phi$ with automorphic ϕ).
Meaning of the Bott–Chern class

- \([\omega] = 0 \in H^{1,1}_{\partial \bar{\partial}}(M, L) \iff \tilde{M} \text{ admits an automorphic potential.}

- \(H^{1,1}_{\partial \bar{\partial}}(M, L) = 0\) is implied by \(H^1(M, L) = 0\) and \(H^2_\theta(M) = 0\) (easier to control).

- Hence: If the Bott–Chern class of an LCK-manifold \(M\) vanishes and the monodromy of \(L\) is \(\mathbb{Z}\), then \(M\) is LCK with potential (will be generalized).

- If \(\omega_1, \omega_2\) are LCK-metrics having the same Lee form \(\theta\), then the following conditions are equivalent:

 1. The Bott–Chern classes of \(\omega_1, \omega_2\) are equal.
 2. The LCK-structures \(\omega_1\) and \(\omega_2\) are equivalent up to a potential (on a Kähler covering, \(\tilde{\omega}_1 - \tilde{\omega}_2 = \partial \bar{\partial} \varphi\) with automorphic \(\varphi\)).
Meaning of the Bott–Chern class

- \([\omega] = 0 \in H^{1,1}_{\partial \bar{\partial}}(M, L) \iff \tilde{M} \text{ admits an } \textit{automorphic} \text{ potential.}

- \(H^{1,1}_{\partial \bar{\partial}}(M, L) = 0\) is implied by \(H^1(M, L) = 0\) and \(H^2_\theta(M) = 0\) (easier to control).

Hence: If the Bott–Chern class of an LCK-manifold \(M\) vanishes and the monodromy of \(L\) is \(\mathbb{Z}\), then \(M\) is LCK with potential (will be generalized).

- If \(\omega_1, \omega_2\) are LCK-metrics having the same Lee form \(\theta\), then the following conditions are equivalent:

 1. The Bott–Chern classes of \(\omega_1, \omega_2\) are equal.
 2. The LCK-structures \(\omega_1\) and \(\omega_2\) are equivalent up to a potential (on a Kähler covering, \(\tilde{\omega}_1 - \tilde{\omega}_2 = \partial \bar{\partial} \varphi\) with automorphic \(\varphi\)).
Meaning of the Bott–Chern class

- \([\omega] = 0 \in H^{1,1}_{\partial\bar{\partial}}(M, L) \iff \tilde{M} \text{ admits an automorphic potential.}
 - \(H^{1,1}_{\partial\bar{\partial}}(M, L) = 0\) is implied by \(H^1(M, L) = 0\) and \(H^2_\theta(M) = 0\) (easier to control).

- Hence: If the Bott–Chern class of an LCK-manifold \(M\) vanishes and the monodromy of \(L\) is \(\mathbb{Z}\), then \(M\) is LCK with potential (will be generalized).

- If \(\omega_1, \omega_2\) are LCK-metrics having the same Lee form \(\theta\), then the following conditions are equivalent:
 1. The Bott–Chern classes of \(\omega_1, \omega_2\) are equal.
 2. The LCK-structures \(\omega_1\) and \(\omega_2\) are equivalent up to a potential (on a Kähler covering, \(\tilde{\omega}_1 - \tilde{\omega}_2 = \partial\bar{\partial}\varphi\) with automorphic \(\varphi\)).
[\omega] = 0 \in H^{1,1}(M, L) \iff \tilde{M} \text{ admits an } \textit{automorphic} \text{ potential.}

H^{1,1}(M, L) = 0 \text{ is implied by } H^1(M, L) = 0 \text{ and } H^2_\theta(M) = 0 \text{ (easier to control).}

Hence: If the Bott–Chern class of an LCK-manifold \(M \) vanishes and the monodromy of \(L \) is \(\mathbb{Z} \), then \(M \) is LCK with potential (will be generalized).

If \(\omega_1, \omega_2 \) are LCK-metrics having the same Lee form \(\theta \), then the following conditions are equivalent:

1. The Bott–Chern classes of \(\omega_1, \omega_2 \) are equal.

The LCK-structures \(\omega_1 \) and \(\omega_2 \) are equivalent up to a potential (on a Kähler covering, \(\tilde{\omega}_1 - \tilde{\omega}_2 = \partial \bar{\partial} \varphi \text{ with automorphic } \varphi \)).
Meaning of the Bott–Chern class

- \([\omega] = 0 \in H^{1,1}_{\partial \bar{\partial}}(M, L) \Leftrightarrow \tilde{M} \text{ admits an } \textit{automorphic} \text{ potential.}
- \(H^{1,1}_{\partial \bar{\partial}}(M, L) = 0\) is implied by \(H^1(M, L) = 0\) and \(H^2_\theta(M) = 0\) (easier to control).

Hence: If the Bott–Chern class of an LCK-manifold \(M\) vanishes and the monodromy of \(L\) is \(\mathbb{Z}\), then \(M\) is LCK with potential (will be generalized).

If \(\omega_1, \omega_2\) are LCK-metrics having the same Lee form \(\theta\), then the following conditions are equivalent:

1. The Bott–Chern classes of \(\omega_1, \omega_2\) are equal.
2. The LCK-structures \(\omega_1\) and \(\omega_2\) are equivalent up to a potential (on a Kähler covering, \(\tilde{\omega}_1 - \tilde{\omega}_2 = \partial \bar{\partial} \varphi\) with automorphic \(\varphi\)).
The space of LCK structures

Analogy between Kähler and LCK

- Kähler structures on a complex manifold are determined by:
 - a Kähler class in $H^1(M)$;
 - a choice of a Kähler metric in this Kähler class, obtained by choosing an element in a cone locally modeled on $C^\infty(M)$.

- LCK-structures on a complex manifold with prescribed conformal structure are determined by:
 - a Bott–Chern class in $H^1(\partial\partial(M,L))$;
 - a choice of an LCK-metric with a prescribed Bott–Chern class, obtained by choosing an element in a cone locally modeled on $C^\infty(M)$.
The space of LCK structures

Analogy between Kähler and LCK

- Kähler structures on a complex manifold are determined by:
 - a Kähler class in $\Omega^{1,1}(M)$;
 - a choice of a Kähler metric in this Kähler class, obtained by choosing an element in a cone locally modeled on $\mathcal{C}^\infty(M)/\text{const.}$

- LCK-structures on a complex manifold with prescribed conformal structure are determined by:
 - a Bott–Chern class in $H^{1,1}(M)$;
 - a choice of an LCK-metric with a prescribed Bott–Chern class, obtained by choosing an element in a cone locally modeled on $\mathcal{C}^\infty(M)/\ker(\partial/\partial)$.
The space of LCK structures

An analogy between Kähler and LCK

- Kähler structures on a complex manifold are determined by:
 1. a Kähler class in $H^{1,1}(M)$;
 2. a choice of a Kähler metric in this Kähler class, obtained by choosing an element in a cone locally modeled on $C^\infty(M)/\text{const.}$

- LCK-structures on a complex manifold with prescribed conformal structure are determined by:
 1. a Bott–Chern class in $H^{1,1}(\partial\partial(M), L)$;
 2. a choice of an LCK-metric with a prescribed Bott–Chern class, obtained by choosing an element in a cone locally modeled on $C^\infty(M)/\ker(\partial\partial)$.
The space of LCK structures

Analogy between Kähler and LCK

- Kähler structures on a complex manifold are determined by:
 1. a Kähler class in $H^{1,1}(M)$;
 2. a choice of a Kähler metric in this Kähler class, obtained by choosing an element in a cone locally modeled on $C^\infty(M)/\text{const.}$

- LCK-structures on a complex manifold with prescribed conformal structure are determined by:
 1. a Bott–Chern class in $H^{1,1}(\partial M, L)$;
 2. a choice of an LCK-metric with a prescribed Bott–Chern class, obtained by choosing an element in a cone locally modeled on $C^\infty(M)/\ker(\partial/\partial)$.
The space of LCK structures

Analogy between Kähler and LCK

- Kähler structures on a complex manifold are determined by:
 1. a Kähler class in $H^{1,1}(M)$;
 2. a choice of a Kähler metric in this Kähler class, obtained by choosing an element in a cone locally modeled on $\mathcal{C}^\infty(M)/\text{const.}$

- LCK-structures on a complex manifold with prescribed conformal structure are determined by:
 1. a Bott–Chern class in $H^{1,1}\partial\partial(M,L)$;
 2. a choice of an LCK-metric with a prescribed Bott–Chern class, obtained by choosing an element in a cone locally modeled on $\mathcal{C}^\infty(M)/\text{ker}\left(\partial\partial\right)$.
The space of LCK structures

Analogy between Kähler and LCK

- Kähler structures on a complex manifold are determined by:
 1. a Kähler class in $H^{1,1}(M)$;
 2. a choice of a Kähler metric in this Kähler class, obtained by choosing an element in a cone locally modeled on $C^\infty(M)/\text{const.}$

- LCK-structures on a complex manifold with prescribed conformal structure are determined by:
 1. a Bott–Chern class in $H^{1,1}(M)$;
 2. a choice of an LCK-metric with a prescribed Bott–Chern class, obtained by choosing an element in a cone locally modeled on $C^\infty(M)/\text{ker}(\partial\partial)$.
The space of LCK structures

Analogy between Kähler and LCK

- Kähler structures on a complex manifold are determined by:
 1. a Kähler class in $H^{1,1}(M)$;
 2. a choice of a Kähler metric in this Kähler class, obtained by choosing an element in a cone locally modeled on $\mathcal{C}^\infty(M)/\text{const.}$

- LCK-structures on a complex manifold with prescribed conformal structure are determined by:
 1. a Bott–Chern class in $H^{1,1}(\partial\partial(M,L))$;
 2. a choice of an LCK-metric with a prescribed Bott–Chern class, obtained by choosing an element in a cone locally modeled on $\mathcal{C}^\infty(M)/\ker(\partial\partial)$.
The space of LCK structures

Analogy between Kähler and LCK

- Kähler structures on a complex manifold are determined by:
 1. a Kähler class in $H^{1,1}(M)$;
 2. a choice of a Kähler metric in this Kähler class, obtained by choosing an element in a cone locally modeled on $C^\infty(M)/\text{const.}$

- LCK-structures on a complex manifold with prescribed conformal structure are determined by:
 1. a Bott–Chern class in $H^{1,1}(\partial\partial M)$;
 2. a choice of an LCK-metric with a prescribed Bott–Chern class, obtained by choosing an element in a cone locally modeled on $C^\infty(M)/\ker(\partial\partial)$.
The space of LCK structures

Analogy between Kähler and LCK

Kähler structures on a complex manifold are determined by:

1. a Kähler class in $H^{1,1}(M)$;
2. a choice of a Kähler metric in this Kähler class, obtained by choosing an element in a cone locally modeled on $C^\infty(M)/\text{const.}$

LCK-structures on a complex manifold with prescribed conformal structure are determined by:

1. a Bott-Chern class in $H^{1,0}(M, L)$;
2. a choice of an LCK-metric with a prescribed Bott-Chern class, obtained by choosing an element in a cone locally modeled on $C^\infty(M)/\ker(\partial)$.
The space of LCK structures

Analogy between Kähler and LCK

- Kähler structures on a complex manifold are determined by:
 1. a Kähler class in $H^{1,1}(M)$;
 2. a choice of a Kähler metric in this Kähler class, obtained by choosing an element in a cone locally modeled on $\mathcal{C}^\infty(M)/\text{const}$.

- LCK-structures on a complex manifold with prescribed conformal structure are determined by:
 1. a Bott–Chern class in $H^{1,1}_{\partial\bar\partial}(M, L)$;
 2. a choice of an LCK-metric with a prescribed Bott–Chern class, obtained by choosing an element in a cone locally modeled on $\mathcal{C}^\infty(M)\chi/\ker(\partial\bar\partial)$.
The space of LCK structures

Analogy between Kähler and LCK

- Kähler structures on a complex manifold are determined by:
 1. a Kähler class in $H^{1,1}(M)$;
 2. a choice of a Kähler metric in this Kähler class, obtained by choosing an element in a cone locally modeled on $\mathcal{C}^\infty(M)/\text{const}$.

- LCK-structures on a complex manifold with prescribed conformal structure are determined by:
 1. a Bott–Chern class in $H^{1,1}_{\partial\bar{\partial}}(M, L)$;
 2. a choice of an LCK-metric with a prescribed Bott–Chern class, obtained by choosing an element in a cone locally modeled on $\mathcal{C}^\infty(M)\chi/\ker(\partial\bar{\partial})$.
The space of LCK structures

Analogy between Kähler and LCK

- Kähler structures on a complex manifold are determined by:
 1. a Kähler class in $H^{1,1}(M)$;
 2. a choice of a Kähler metric in this Kähler class, obtained by choosing an element in a cone locally modeled on $\mathcal{C}^\infty(M)/\text{const.}$

- LCK-structures on a complex manifold with prescribed conformal structure are determined by:
 1. a Bott–Chern class in $H^{1,1}_{\partial \bar{\partial}}(M, L)$;
 2. a choice of an LCK-metric with a prescribed Bott–Chern class, obtained by choosing an element in a cone locally modeled on $\mathcal{C}^\infty(M)_\chi/\ker(\partial \bar{\partial})$
The space of LCK structures

Analogy between Kähler and LCK

- Kähler structures on a complex manifold are determined by:
 1. a Kähler class in $H^{1,1}(M)$;
 2. a choice of a Kähler metric in this Kähler class, obtained by choosing an element in a cone locally modeled on $C^\infty(M)/\text{const.}$

- LCK-structures on a complex manifold with prescribed conformal structure are determined by:
 1. a Bott–Chern class in $H_{\partial\bar{\partial}}^{1,1}(M, L)$;
 2. a choice of an LCK-metric with a prescribed Bott–Chern class, obtained by choosing an element in a cone locally modeled on $C^\infty(M)_\chi/\ker(\partial\bar{\partial})$
The space of LCK structures

Analogy between Kähler and LCK

- Kähler structures on a complex manifold are determined by:
 1. a Kähler class in $H^{1,1}(M)$;
 2. a choice of a Kähler metric in this Kähler class, obtained by choosing an element in a cone locally modeled on $\mathcal{C}^\infty(M)/\text{const.}$

- LCK-structures on a complex manifold with prescribed conformal structure are determined by:
 1. a Bott–Chern class in $H_{\partial\bar{\partial}}^{1,1}(M, L)$;
 2. a choice of an LCK-metric with a prescribed Bott–Chern class, obtained by choosing an element in a cone locally modeled on $\mathcal{C}^\infty(M)_X/\ker(\partial\bar{\partial})$
Theorem 2

Any compact LCK manifold with vanishing Bott–Chern class admits an LCK metric with potential.

Hence, if $\dim_{\mathbb{C}} M \geq 3$, it is embeddable in a Hopf manifold.

Our supposition, connected also with Theorem 1: Let M be a Vaisman manifold, equipped with an additional LCK-form ω_1 (not necessarily Vaisman). Then the Bott–Chern class of ω_1 vanishes; equivalently, ω_1 is an LCK-structure with potential.
Theorem 2

Any compact LCK manifold with vanishing Bott–Chern class admits an LCK metric with potential.

Hence, if $\text{dim}_\mathbb{C} M \geq 3$, it is embeddable in a Hopf manifold.

- Our supposition, connected also with Theorem 1: Let M be a Vaisman manifold, equipped with an additional LCK-form ω_1 (not necessarily Vaisman). Then the Bott–Chern class of ω_1 vanishes; equivalently, ω_1 is an LCK-structure with potential.
Proof of Theorem 2

- \([\omega] = 0 \in H^{1,1}_{\partial\bar{\partial}}(M, L) \iff \tilde{M} \text{ admits an automorphic potential.}\)
- The weight bundle \(L\) is associated to the monodromy of this covering and the monodromy can be a priori a subgroup of \((\mathbb{R}^+, \cdot) \cong (\mathbb{R}, +)\), which is not necessarily discrete.
- Consider \(L\) as a trivial line bundle with connection \(\nabla_{\text{triv}} - \theta\) and deform \(L\) by adding a small term to \(\theta\) to obtain a bundle \(L'\) with monodromy \(\mathbb{Z}\).
- A local system on \(M\) is defined by a group homomorphism \(H_1(M, \mathbb{Z}) \to \mathbb{R}\). Its monodromy is \(\mathbb{Z}\) if this map is rational. Each real homomorphism from \(H_1(M, \mathbb{Z})\) can be approximated by a rational one.
Proof of Theorem 2

- \([\omega] = 0 \in H^{1,1}_{\partial\bar{\partial}}(M, L) \iff \tilde{M} \text{ admits an automorphic potential.}\)
- The weight bundle \(L\) is associated to the monodromy of this covering and the monodromy can be a priori a subgroup of \((\mathbb{R}^+ , \cdot) \cong (\mathbb{R}, +)\), which is not necessarily discrete.
- Consider \(L\) as a trivial line bundle with connection \(\nabla_{\text{triv}} - \theta\) and deform \(L\) by adding a small term to \(\theta\) to obtain a bundle \(L'\) with monodromy \(\mathbb{Z}\).
- A local system on \(M\) is defined by a group homomorphism \(H_1(M, \mathbb{Z}) \to \mathbb{R}\). Its monodromy is \(\mathbb{Z}\) if this map is rational.
- Each real homomorphism from \(H_1(M, \mathbb{Z})\) can be approximated by a rational one.
Proof of Theorem 2

- $[\omega] = 0 \in H^{1,1}_{\partial\bar{\partial}}(M, L) \iff \tilde{M}$ admits an automorphic potential.
- The weight bundle L is associated to the monodromy of this covering and the monodromy can be a priori a subgroup of $(\mathbb{R}^>0, \cdot) \cong (\mathbb{R}, +)$, which is not necessarily discrete.

- Consider L as a trivial line bundle with connection $\nabla_{\text{triv}} = \theta$ and deform L by adding a small term to θ to obtain a bundle L' with monodromy \mathbb{Z}.

- A local system on M is defined by a group homomorphism $H_1(M, \mathbb{Z}) \to \mathbb{R}$. Its monodromy is \mathbb{Z} if this map is rational. Each real homomorphism from $H_1(M, \mathbb{Z})$ can be approximated by a rational one.
Proof of Theorem 2

- $[\omega] = 0 \in H^{1,1}_{\partial\bar{\partial}}(M, L) \iff \tilde{M}$ admits an automorphic potential.
- The weight bundle L is associated to the monodromy of this covering and the monodromy can be a priori a subgroup of $(\mathbb{R}^+, \cdot) \cong (\mathbb{R}, +)$, which is not necessarily discrete.
- Consider L as a trivial line bundle with connection $\nabla_{\text{triv}} = \theta$ and deform L by adding a small term to θ to obtain a bundle L' with monodromy \mathbb{Z}.
- A local system on M is defined by a group homomorphism $H_1(M, \mathbb{Z}) \to \mathbb{R}$. Its monodromy is \mathbb{Z} if this map is rational. Each real homomorphism from $H_1(M, \mathbb{Z})$ can be approximated by a rational one.
Proof of Theorem 2

- $[\omega] = 0 \in H^{1,1}_{\partial \bar{\partial}}(M, L) \iff \tilde{M}$ admits an automorphic potential.
- The weight bundle L is associated to the monodromy of this covering and the monodromy can be a priori a subgroup of $(\mathbb{R}^+, \cdot) \cong (\mathbb{R}, +)$, which is not necessarily discrete.
- Consider L as a trivial line bundle with connection $\nabla_{\text{triv}} - \theta$ and deform L by adding a small term to θ to obtain a bundle L' with monodromy \mathbb{Z}.
 - A local system on M is defined by a group homomorphism $H_1(M, \mathbb{Z}) \longrightarrow \mathbb{R}$. Its monodromy is \mathbb{Z} if this map is rational. Each real homomorphism from $H_1(M, \mathbb{Z})$ can be approximated by a rational one.
Proof of Theorem 2

- $[\omega] = 0 \in H^{1,1}_{\partial \bar{\partial}}(M, L) \Leftrightarrow \tilde{M}$ admits an automorphic potential.
- The weight bundle L is associated to the monodromy of this covering and the monodromy can be a priori a subgroup of $(\mathbb{R}^+, \cdot) \cong (\mathbb{R}, +)$, which is not necessarily discrete.
- Consider L as a trivial line bundle with connection $\nabla_{\text{triv}} - \theta$ and deform L by adding a small term to θ to obtain a bundle L' with monodromy \mathbb{Z}.
 - A local system on M is defined by a group homomorphism $H_1(M, \mathbb{Z}) \rightarrow \mathbb{R}$. Its monodromy is \mathbb{Z} if this map is rational. Each real homomorphism from $H_1(M, \mathbb{Z})$ can be approximated by a rational one.
Proof of Theorem 2

- \([\omega] = 0 \in H^{1,1}_{\partial\bar{\partial}}(M, L) \iff \tilde{M} \text{ admits an automorphic potential.}\)
- The weight bundle \(L\) is associated to the monodromy of this covering and the monodromy can be a priori a subgroup of \((\mathbb{R}^+ \times \cdot) \cong (\mathbb{R}, +)\), which is not necessarily discrete.
- Consider \(L\) as a trivial line bundle with connection \(\nabla_{\text{triv}} - \theta\) and deform \(L\) by adding a small term to \(\theta\) to obtain a bundle \(L'\) with monodromy \(\mathbb{Z}\).
 - A local system on \(M\) is defined by a group homomorphism \(H_1(M, \mathbb{Z}) \twoheadrightarrow \mathbb{R}\). Its monodromy is \(\mathbb{Z}\) if this map is rational. Each real homomorphism from \(H_1(M, \mathbb{Z})\) can be approximated by a rational one.
Proof of Theorem 2

- Deforming the monodromy ⇔ deforming $\theta = d \log \varphi$ ⇔ deforming the potential φ.

- We deform the pair (L, φ) to a pair (L', φ') in which φ' is automorphic function on \tilde{M}, with monodromy determined by L'.
 - φ' stays plurisubharmonic if θ' is sufficiently close to θ in the norm:
 \[
 |\theta - \theta'|_{L^\infty} = \sup_{M} |\theta - \theta'| + \sup_{\tilde{M}} |\nabla \theta - \nabla \theta'|.
 \]
Deforming the monodromy \iff deforming $\theta = d \log \varphi \iff$ deforming the potential φ.

We deform the pair (L, φ) to a pair (L', φ') in which φ' is an automorphic function on \tilde{M}, with monodromy determined by L'.

- φ' stays plurisubharmonic if θ' is sufficiently close to θ in the norm:

$$\|\theta - \theta'\|_{\psi'} = \sup_{\tilde{M}} |\theta - \theta'| + \sup_{\tilde{M}} |\nabla \theta - \nabla \theta'|,$$
Deforming the monodromy ⇔ deforming $\theta = d \log \varphi$ ⇔ deforming the potential φ.

We deform the pair (L, φ) to a pair (L', φ') in which φ' is automorphic function on \tilde{M}, with monodromy determined by L'.

φ' stays plurisubharmonic if θ' is sufficiently close to θ in the norm:

$$|\theta - \theta'|_{L^\infty} = \sup_M |\theta - \theta'| + \sup_M |\nabla \theta - \nabla \theta'|,$$
Deforming the monodromy ⇔ deforming $\theta = d \log \varphi$ ⇔ deforming the potential φ.

We deform the pair (L, φ) to a pair (L', φ') in which φ' is automorphic function on \tilde{M}, with monodromy determined by L'.

φ' stays plurisubharmonic if θ' is sufficiently close to θ in the norm:

$$|\theta - \theta'|_{L^\infty} = \sup_M |\theta - \theta'| + \sup_M |\nabla \theta - \nabla \theta'|,$$
Deforming the monodromy \Leftrightarrow deforming $\theta = d \log \varphi \Leftrightarrow$ deforming the potential φ.

We deform the pair (L, φ) to a pair (L', φ') in which φ' is automorphic function on \tilde{M}, with monodromy determined by L'.

- φ' stays plurisubharmonic if θ' is sufficiently close to θ in the norm:

$$|\theta - \theta'|_{L_1} = \sup_M |\theta - \theta'| + \sup_M |\nabla \theta - \nabla \theta'|,$$
Problem 1
Determine all 1-forms θ for which there exists a Hermitian two-form ω having θ as its Lee form, and all the Morse–Novikov classes which can be realized by an LCK-form.

Problem 2
Let M be a compact complex manifold, admitting an LCK-metric, and $[\theta] \in H^1(M)$ its Lee class. Determine the set of all classes $[\omega] \in H^1\partial\bar{\partial}_\theta(M)$ such that $[\omega]$ is the Bott–Chern class of an LCK-structure with the Lee class $[\theta]$.

Question
Is there a global $\partial\bar{\partial}$–lemma?
Problem 1
Determine all 1-forms θ for which there exists a Hermitian two-form ω having θ as its Lee form, and all the Morse–Novikov classes which can be realized by an LCK-form.

Problem 2
Let M be a compact complex manifold, admitting an LCK-metric, and $[\theta] \in H^1(M)$ its Lee class. Determine the set of all classes $[\omega] \in H^{1,1}_{\partial\bar{\partial}\theta}(M)$ such that $[\omega]$ is the Bott–Chern class of an LCK-structure with the Lee class $[\theta]$.

Question
Is there a global $\partial\theta\bar{\partial}\theta$–lemma?
Problem 1
Determine all 1-forms θ for which there exists a Hermitian two-form ω having θ as its Lee form, and all the Morse–Novikov classes which can be realized by an LCK-form.

Problem 2
Let M be a compact complex manifold, admitting an LCK-metric, and $[\theta] \in H^1(M)$ its Lee class. Determine the set of all classes $[\omega] \in H^{1,1}_{\partial \bar{\partial}}(M)$ such that $[\omega]$ is the Bott–Chern class of an LCK-structure with the Lee class $[\theta]$.

Question
Is there a global $\partial_\theta \bar{\partial}_\theta$–lemma?
Problem 1
Determine all 1-forms θ for which there exists a Hermitian two-form ω having θ as its Lee form, and all the Morse–Novikov classes which can be realized by an LCK-form.

Problem 2
Let M be a compact complex manifold, admitting an LCK-metric, and $[\theta] \in H^1(M)$ its Lee class. Determine the set of all classes $[\omega] \in H^{1,1}_{\partial\bar{\partial}}(M)$ such that $[\omega]$ is the Bott–Chern class of an LCK-structure with the Lee class $[\theta]$.

Question
Is there a global $\partial\bar{\partial}$-lemma?
Problem 1
Determine all 1-forms θ for which there exists a Hermitian two-form ω having θ as its Lee form, and all the Morse–Novikov classes which can be realized by an LCK-form.

Problem 2
Let M be a compact complex manifold, admitting an LCK-metric, and $[\theta] \in H^1(M)$ its Lee class. Determine the set of all classes $[\omega] \in H^{1,1}_{\partial\theta\bar{\partial}\theta}(M)$ such that $[\omega]$ is the Bott–Chern class of an LCK-structure with the Lee class $[\theta]$.

Question
Is there a global $\partial\theta\bar{\partial}\theta$–lemma?