EXCEPTIONAL LOCI IN LEFSCHETZ THEORY

SAM RASKIN AND GEOFFREY SMITH

Abstract. Let $\phi : X \to \mathbb{P}^n$ be a morphism of varieties. Given a hyperplane H in \mathbb{P}^n, there is a Gysin map from the compactly supported cohomology of $\phi^{-1}(H)$ to that of X. We give conditions on the degree of the cohomology under which this map is an isomorphism for all but a low-dimensional set of hyperplanes, generalizing results due to Skorobogatov, Benoist, and Poonen-Slavov. Our argument is based on Beilinson’s theory of singular supports for étale sheaves.

1. Introduction and statement of results

In this note, we prove a generalization of the following theorem due to Benoist and written here in a form due to [7].

Theorem 1.1 ([2], Théorème 1.4). Let $X \subset \mathbb{P}^N$ be a geometrically irreducible quasiprojective variety over a field k. Define $M_{\text{bad}} \subset \mathbb{P}^N$ as the locus of hyperplanes H such that $X_H := X \cap H$ is not geometrically irreducible. Then $\text{codim } M_{\text{bad}} \geq \dim X - 1$.

This result is geometric, but has a cohomological reformulation: the top degree compactly supported cohomology groups of X and X_H are isomorphic. In this note, we prove a similar result for all cohomology of sufficiently high degree on X.

Theorem 1.2. Let X be a separated scheme of finite type over a separably closed field k, let $\phi : X \to \mathbb{P}^n$ be a morphism, and let $\Lambda = \mathbb{Z}/\ell\mathbb{Z}$ for ℓ a prime power not divisible by the characteristic of k. Set $r = \dim X \times_{\mathbb{P}^n} X$.

Then for each $c \geq 1$, there is a closed subscheme $Z_c \subset \mathbb{P}^n$ of dimension at most $n - c$ such that for $H \in \mathbb{P}^n \setminus Z_c$ and $q > c + r$ (resp. $q = c + r$), the Gysin map

$$H^{q-2}_{c}(\phi^{-1}(H), \Lambda(-1)) \to H^{q}_{c}(X, \Lambda)$$

is an isomorphism (resp. surjective).

In the setting of Theorem 1.1, taking $q = 2\dim X$, we see that $M_{\text{bad}} \subset Z_{\dim X - 1}$, which has dimension $\leq n - \dim X + 1$, recovering the assertion of loc. cit.

We remind the construction of Gysin maps in Section 2.

Remark. If X, ϕ, and H are defined over an arbitrary field k' with separable closure k, then our construction shows that Z_c is naturally defined over k'. Moreover, a Gysin map $H^{q-2}_{c}(\phi^{-1}(H) \times_{\text{Spec}(k')} \text{Spec}(k), \Lambda(-1)) \to H^{q}_{c}(X \times_{\text{Spec}(k')} \text{Spec}(k), \Lambda)$ is compatible.
with the action of $\text{Gal}(k/k')$, so if $H \not\in Z_c$ is defined over k' and q is as in Theorem 1.2, the Gysin map is an isomorphism or surjection of Galois representations.

The main new tool in the proof of this result is Beilinson and Saito’s works [1, 8] on the singular support of constructible sheaves in arbitrary characteristic. In Section 2, we will use their work to prove a result, Theorem 2.2, that is at the core of the argument; we will also collect a couple lemmas we will need. In Section 3, we will use these tools to prove Theorem 1.2.

1.1. Past results. Theorem 1.2 generalizes a number of results beyond Theorem 1.1. Poonen-Slavov [7] establish the $q = 2 \dim X$ case of Theorem 1.2 under the additional assumption that ϕ has equidimensional fibers. If ϕ is the immersion of a normal projective complex variety and $c = 1$, Theorem 1.2 is Corollary 7.4.1 of [5], and is proven as a special case of the paper’s Lefschetz hyperplane theorem for intersection homology.

And if ϕ is the closed immersion of a smooth projective variety, this result is known; by [9, Theorem 2.1], there exists an isomorphism $H^{q-2}_c(\phi^{-1}(H), \Lambda(-1)) \to H_q^c(X, \Lambda)$ so long as $q \geq n + s + 3$, where s is the dimension of the singular locus of $\phi^{-1}(H)$. So the locus where there exists no isomorphism $H^{q-2}_c(\phi^{-1}(H), \Lambda(-1)) \to H_q^c(X, \Lambda)$ is contained in the locus of hyperplanes such that $\phi^{-1}(H)$ is singular in dimension at least $q - n - 2$. This locus in turn has codimension at least $q - n - 1$.

Acknowledgements. We would like to thank Sasha Beilinson, Robert Cass, Joe Harris, Bjorn Poonen, and Alexander Smith for helpful conversations.

2. The Gysin map for bounded complexes

2.1. Notation and the basic setup. Let k be a separably closed field, let ℓ be a prime power not divisible by the characteristic of k, and set $\Lambda = \mathbb{Z}/\ell\mathbb{Z}$. For the remainder of this paper, sheaves will be constructible étale sheaves of Λ-modules, and for any variety V we will use $D(V)$ to denote the bounded derived category of constructible sheaves of Λ-modules on V. Given a k-point $H \in \mathbb{P}^n$, let $i : H \to \mathbb{P}^n$ denote the corresponding inclusion, and let $j : \mathbb{P}^n \setminus H \to \mathbb{P}^n$ be the inclusion of the complement. For the remainder of the paper, all functors will be derived; for instance, we will use j_* to denote the derived pushforward associated to j. Finally, we will use the notation $\mathbb{H}^q(\mathcal{F})$ to denote the hypercohomology of $\mathcal{F} \in D(V)$ in degree q.

On the level of sheaves, the map in Theorem 1.2 is induced by applying $R\Gamma$ to a composition of two arrows in $D(\mathbb{P}^n)$. Given a bounded complex of sheaves \mathcal{F} on \mathbb{P}^n, the two maps we will use are:

- The counit map $i_!i^! \mathcal{F} \to \mathcal{F}$, which appears in the localization triangle

 \[i_! i^! \mathcal{F} \to \mathcal{F} \to j_*j^* \mathcal{F} \xrightarrow{+1}. \]

- The Gysin map $i^* \mathcal{F}(-1)[-2] \to i^! \mathcal{F}$, as discussed in [4].
Applying $R\Gamma$ to these two maps produces maps

$$H^q(H, i^! F) \to H^q(F)$$

and

$$H^q-2(H, i^* F(-1)) \to H^q(H, i^1 F)$$

respectively. Our main effort will be proving that these maps are isomorphisms or surjections assuming certain hypotheses on F and H.

2.2. The counit map.

Of the two maps above, the counit map is the easier one to understand, as its cone is $j^* j^* F$.

Lemma 2.1. Let $F \in D(\mathbb{P}^n)$. Fix an integer r. Suppose that for all p, the sheaf $\mathcal{H}^p(F)$ has support of dimension at most $r - p$. Then the sheaf $\mathcal{H}^p(j_* j^* F)$ has support of dimension at most $r - p$ and we have $H^q(\mathbb{P}^n, j^* j^* F) = 0$ for $q > r$.

Proof. Let F and r satisfy the hypotheses of the lemma. For each p, the support of $\mathcal{H}^p(j^* F) \cong j^* \mathcal{H}^p(F)$ has dimension at most $r - p$. Since $\mathbb{P}^n \setminus H$ is affine, we then have that affine vanishing [6, Theorem VI.7.3] implies that $R^s j_*(\mathcal{H}^p(j^* F))$ is supported in dimension at most $r - p - s$ and $H^s(\mathcal{H}^p(j^* F)) = 0$ if $s + p > r$. The results follow by applying a spectral sequence to the filtered complex $\tau_{\geq p} F$. □

Remark. The hypothesis of the lemma is equivalent to asking that F sit in perverse degrees $\leq r$. From this perspective, the claim follows from right exactness of affine pushforwards with respect to the perverse t-structure.

2.3. The Gysin map.

The following result is the most nonstandard ingredient of the proof of Theorem 1.2.

Theorem 2.2. Let F be an object of $D(\mathbb{P}^n)$, let $\Phi \subset \mathbb{P}^n \times \mathbb{P}^n$ be the universal hyperplane, and let π_1, π_2 denote the projections. Then there is a closed subscheme $Z \subset \Phi$ of dimension $\leq n - 1$ such that for $H \in \mathbb{P}^n$, the cone of the Gysin map

$$i^* F(-1)[-2] \to i_! F,$$

associated to $i : H \to \mathbb{P}^n$ is supported on $\pi_1(Z \cap \pi_2^{-1}(H))$.

In the proof of Theorem 1.2 we will use the following corollary of this theorem.

Corollary 2.3. With F as in Theorem 2.2, for any positive integer c there is a closed subscheme $Z_c \subset \mathbb{P}^n$ of dimension at most $n - c$ such that for any $H \in \mathbb{P}^n \setminus Z_c$ the cone of the Gysin map associated to $i : H \to \mathbb{P}^n$ is supported on a subscheme of dimension at most $c - 2$.

Proof. Take Z as in Theorem 2.2. Let $Z_c \subset \mathbb{P}^n$ be the closed subscheme where the fibers of the projection $Z \to \mathbb{P}^n$ have dimension $\geq c - 1$. As $\dim Z = n - 1$, we have $\dim Z_c \leq n - c$, and it satisfies the conclusion by definition of Z. □
The theory of singular support for étale sheaves was developed by Beilinson [1] and Saito [8]. We use it in the following form.

Theorem 2.4 (Theorem 1.3, [1]). Let X be a smooth variety of dimension n and let \mathcal{F} be a bounded constructible complex on it.

Then there exists a closed, conical subscheme $SS(\mathcal{F}) \subset T^*X$ of dimension n such that for every pair $h : U \to X$ smooth and $f : U \to Y$ a morphism to a smooth variety Y such that $df(T^*Y) \cap dh(SS(\mathcal{F}))$ is contained in the zero section $U \subset T^*U$, the map f is locally acyclic with respect to $h^*(\mathcal{F})$ (in the sense of [3], 2.12).

Remark. The most serious part of the theorem is the calculation of the dimension of $SS(\mathcal{F})$.

Lemma 2.5. Suppose X is smooth and let $i : D \to X$ be the embedding of a smooth divisor. Suppose $\mathcal{F} \in D(X)$ has the property that the intersection

$$SS(\mathcal{F})|_D \cap N^*_X/D \subset T^*_X \times D$$

is contained in the zero section.

Then the Gysin map

$$i^*\mathcal{F}(-1)[-2] \to i^!\mathcal{F}$$

is an isomorphism.

Proof. This result is a special case of [8] Proposition 7.13. We outline a direct proof below.

The assertion is local on X, so we may assume there is a map $f : X \to \mathbb{A}^1$ with $D = f^{-1}(0)$.

By assumption, the image of $\mathbb{P}(SS(\mathcal{F}) \cap df(X)) \to X$ avoids D, so we may assume this intersection is zero. Then taking $U = X$ and $Y = \mathbb{A}^1$ in the definition of singular support, we see that \mathcal{F} is locally acyclic with respect to f by hypothesis, so its vanishing cycles $\phi_f(\mathcal{F})$ are 0.

In general, recall that we have exact triangles

$$i^*(\mathcal{F}) \to \psi_f(\mathcal{F}) \xrightarrow{can} \phi_f(\mathcal{F}) \xrightarrow{+1}$$

$$\phi_f(\mathcal{F}) \xrightarrow{\varphi} \psi_f(\mathcal{F})(-1) \to i^!(\mathcal{F})[2] \xrightarrow{+1}$$

such that the composition

$$i^*(\mathcal{F})(-1)[-2] \to \psi_f(\mathcal{F})(-1)[-2] \to i^!(\mathcal{F})$$

is the Gysin map. As $\phi_f(\mathcal{F}) = 0$ by the above, we obtain our claim. □
Proof of Theorem 2.2. Recall that Φ is canonically isomorphic to $\mathbb{P} \mathbb{T}^* \mathbb{P}^n$. Let $Z = \mathbb{P} SS(\mathcal{F})$ as in Theorem 2.4. By the theorem, it has dimension $n - 1$.

Fix $H \in \mathbb{P}^n$, and let $B \subset H$ be the subscheme $\pi_1(Z \cap \pi_2^-(H))$. By construction, the closed embedding $H \setminus B \to \mathbb{P}^n \setminus B$ satisfies the hypotheses of Lemma 2.5 so the cone of the Gysin map is supported on B as desired.

3. Proof of Theorem 1.2

In this section, we continue to use notation from the previous section. Let $\phi : X \to \mathbb{P}^n$ be a morphism of separated schemes of finite type over k. In this section we establish Theorem 1.2 for the map ϕ. Let Λ_X denote the constant sheaf on X with fiber Λ.

We first note that $R^p \phi_* \Lambda_X$ is supported at points over which ϕ has fiber dimension at least $\frac{n}{2}$, because the stalk of $R^p \phi_* \Lambda_X$ at a point x is just $H^p_\phi(\phi^{-1}(X), \Lambda)$ by [10, Lemma 0F7L]. As a consequence, if $X \times_{\mathbb{P}^n} X$ has dimension r, we have that $H^p(\phi_* \Lambda_X)$ has support in dimension at most $r - p$. So by Lemma 2.1 we have that for any inclusion of a hyperplane $i : H \to \mathbb{P}^n$, the hypercohomology groups $\mathbb{H}^q(\mathbb{P}^n, j_* j^* \phi_* \Lambda_X)$ vanish for $q > r$. So we have that the counit map $\mathbb{H}^q(H, i^* \phi_* \Lambda_X) \to H^q_\phi(X, \Lambda)$ is an isomorphism if $q \geq r + 2$ and is a surjection if $q = r + 1$.

We now show that the Gysin map induces an isomorphism or surjection on cohomology. Fixing $c \geq 1$, let Z_c be the exceptional set in Corollary 2.3 relative to the complex of sheaves $\phi_* \Lambda_X$. Fix some k-point $H \in \mathbb{P}^n \setminus Z_c$, and let $Q \in D(H)$ denote the cone of the morphism

$$i^* \phi_* \Lambda_X(-1)[-2] \to i^! \phi_* \Lambda_X.$$

By Corollary 2.3 Q is supported on a closed subscheme B of dimension at most $c - 2$. Moreover, $\mathcal{H}^p(j_* j^* \phi_* \Lambda_X)$ has support of dimension at most $\min(r - p, n)$ by Lemma 2.1. Since we also have that $R^p \phi_* \Lambda_X$ is supported in dimension $\min(r - p, n)$, the distinguished triangle $i^! \phi_* \Lambda_X \to \phi_* \Lambda_X \to j_* j^* \phi_* \Lambda_X \to$ gives the bound on the dimension of the support of $\mathcal{H}^p(i^! \phi_* \Lambda_X)$,

$$\dim \text{supp}(\mathcal{H}^p(i^! \phi_* \Lambda_X)) \leq \min(r - p + 1, n).$$

Likewise, $\mathcal{H}^p(i^* \phi_* \Lambda_X(-1)[-2])$ is supported on a set of dimension at most $\min(r - p + 2, n - 1)$. From these two observations and the defining triangle for Q, we see that $\mathcal{H}^p(Q)$ is supported on a subscheme of dimension at most $\min(r - p + 1, c - 2)$. Therefore, $\mathbb{H}^{q-p}(H, \mathcal{H}^p(Q)) = 0$ for $q - p > 2 \min(r - p + 1, c - 2)$. Observe that if $q - p \leq 2 \min(r - p + 1, c - 2)$, then $2(q - p) \leq 2(r - p + 1) + 2(c - 2)$, so $q \leq r + c - 1$. Therefore, whenever $q > r + c - 1$, $\mathbb{H}^{q-p}(H, \mathcal{H}^p(Q)) = 0$. Applying the Grothendieck spectral sequence, we find that $\mathbb{H}^q(H, Q) = 0$ for $q > r + c - 1$.

From this, we conclude that the Gysin map
\[
H^q_c(\varphi^{-1}(H), \Lambda(-1)) \cong \mathbb{H}^{q-2}(H, i^*\varphi!\Lambda_X(-1)) \to \mathbb{H}^q(H, i^!\varphi!\Lambda_X)
\]
is an isomorphism for \(q > r + c\) and a surjection if \(q = r + c\). Combining this with the counit map above, and noting \(c \geq 1\), we have that the map on cohomology
\[
H^q_c(\varphi^{-1}(H), \Lambda(-1)) \to H^q_c(X, \Lambda)
\]
is an isomorphism for \(q > r + c\) and a surjection if \(q = r + c\), proving Theorem 1.2 for \(X\).

Remark. In the above setting, note that \(\varphi!(\Lambda_X) \in D(P^n)\) is in perverse degrees \(\leq r\). The argument shows that, suitably understood, the conclusion of Theorem 1.2 holds for any \(F \in D(P^n)\) a bounded complex of constructible sheaves in perverse degrees \(\leq r\).

References

[1] Alexander Beilinson. Constructible sheaves are holonomic. *Selecta Mathematica*, 22(4):1797–1819, 2016.
[2] Olivier Benoist. Le théorème de Bertini en famille. *Bulletin de la Société Mathématique de France*, 139(4):555–569, 2011.
[3] Pierre Deligne. Théorèmes de finitude en cohomologie ℓ-adique. In *Cohomologie étale: Séminaire de Géométrie Algébrique du Bois-Marie SGA 4 1/2*, pages 233–251. Springer, 1977.
[4] Kazuhiro Fujiwara. A proof of the absolute purity conjecture (after Gabber). In *Algebraic Geometry 2000, Azumino*, pages 153–183, Tokyo, Japan, 2002. Mathematical Society of Japan.
[5] Mark Goresky and R MacPherson. Intersection homology II. *Inventiones Mathematicae*, 72:77, 1983.
[6] James S. Milne. *Étale Cohomology*. Princeton University Press, 1980.
[7] Bjorn Poonen and Kaloyan Slavov. The exceptional locus in the Bertini irreducibility theorem for a morphism. *arXiv preprint arXiv:2001.08672*, 2020.
[8] Takeshi Saito. The characteristic cycle and the singular support of a constructible sheaf. *Inventiones Mathematicae*, 207:597–695, 2017.
[9] Alexei N Skorobogatov. Exponential sums, the geometry of hyperplane sections, and some Diophantine problems. *Israel Journal of Mathematics*, 80(3):359–379, 1992.
[10] The Stacks Project Authors. *Stacks Project*. https://stacks.math.columbia.edu 2020.

Department of Mathematics, The University of Texas at Austin, RLM 8.100, 2515 Speedway Stop C1200, Austin, TX 78712

Email address: sraskin@math.utexas.edu

Department of Mathematics, Stat. and CS, University of Illinois at Chicago, Chicago, IL 60607

Email address: geoff@uic.edu