Electronic Structure and Donor Ability of an Unsaturated Triphosphorus-Bridged Dimolybdenum Complex

M. Angeles Alvarez, Melodie Casado-Ruano, M. Esther García, Daniel García-Vivó,* Ana M. Guerra, and Miguel A. Ruiz*

ACCESS Metrics & More Article Recommendations Supporting Information

ABSTRACT: The triphosphorus complex \([\text{Mo}_2\text{Cp}_2(\mu-\eta^3-\eta^3-P_3)(\mu-P\text{Bu}_2)]\) was prepared in 83% yield by reacting the methyl complex \([\text{Mo}_2\text{Cp}_2(\mu-\eta^3-\eta^3-\text{CH}_3)(\mu-P\text{Bu}_2)(\mu-\text{CO})]\) with \(P_4\) at 333 K, a process also giving small amounts of the methylidiphosphenyl complex \([\text{Mo}_2\text{Cp}_2(\mu-\eta^3-\eta^3-P_2\text{Me})(\mu-P\text{Bu}_2)(\text{CO})_2]\). The latter could be better prepared by first reacting the anionic complex \(\text{Na}[\text{Mo}_2\text{Cp}_2(\mu-\text{CO})_2]\) with \(P_4\) to give the diphosphorus derivative \(\text{Na}[\text{Mo}_2\text{Cp}_2(\mu-\eta^3-\eta^3-P_2)(\mu-P\text{Bu}_2)(\text{CO})_2]\) and further reaction of the latter with MeI. Density functional theory calculations on the title complex revealed that its triphosphorus group can be viewed as an allylic-like \(\eta^3-P_3\) ligand acting as a six-electron donor via its external \(P_3\) atoms, while coordination of the internal \(P_3\) atom involves donation from the \(\pi^*\) orbital of the ligand and back-donation to its \(\pi\) orbital, both interactions having a weakening effect on the Mo–Mo and P–P connections. The reactivity of the title compound is dominated by the electron-donor ability associated with the lone pairs located at the \(P_3\) atoms. Its reaction with \(\text{CF}_3\text{SO}_3\text{Me}\) gave \([\text{Mo}_2\text{Cp}_2(\mu-\eta^3-\eta^3-P_2\text{Bu}_2)(\text{CO})_2]\) as a result of methylation at an external atom of the \(P_3\) ligand, while its reaction with \([\text{Fe}_2(\text{CO})_8]\) enabled the addition of one, two, or three \(\text{Fe}(\text{CO})_4\) fragments at these \(P_3\) atoms, but only the diron derivative \([\text{Mo}_2\text{Fe}_2\text{Cp}_2(\mu-\eta^3-\eta^3-P_2\text{Bu}_2)(\text{CO})_8]\) could be isolated. This complex bears a \(\text{Fe}(\text{CO})_4\) fragment at each of the external atoms of the \(P_3\) ligand, and the central \(P_3\) atom of the latter displays the lowest \(\delta^{31}\text{P}\) chemical shift reported to date (371.8 ppm). The related complexes \([\text{Mo}_2\text{M}_2\text{Cp}_2(\mu-\eta^3-\eta^3-P_2\text{Bu}_2)(\mu-P\text{Bu}_2)(\text{CO})_2]\) (\(M = \text{Mo}, \text{W}\)) were prepared by reacting the title compound with the corresponding \([\text{M}(\text{CO})_n(\text{THF})_2]\) complexes in toluene, while reaction with \([\text{Mo}(\text{CO})_2(\text{THF})_2]\) also enabled the formation of the heptanuclear derivative \([\text{Mo}_2\text{Cp}_2(\mu-\eta^3-\eta^3-P_2)(\mu-P\text{Bu}_2)(\text{CO})_4]\) \((\text{M} = \text{Mo}, \text{W})\). The interatomic distances in the above compounds indicate that the central \(\text{Mo}_2P_3\) skeleton of these molecules is little modified by the attachment of 16-electron \(\text{M}(\text{CO})_n\) fragments at the external atoms of the \(P_3\) ligand.

INTRODUCTION

White phosphorus, an air-sensitive solid made up of tetrahedral \(P_4\) molecules, is the most important allotrope of phosphorus because most \(P\)-containing products manufactured today at the industrial scale, with the exception of fertilizers, are made ultimately from it. The production of all these molecular derivatives usually relies on intermediates and reagents environmentally unfriendly (e.g., chlorine to prepare \(\text{PCl}_3\) or \(\text{PCl}_4\)), and this is why there is much current interest in finding ways to activate and functionalize the \(P_4\) molecule to yield useful derivatives, particularly organophosphorus compounds, by using more benign procedures. The main approaches to achieve this goal involve the use of either main-group reagents or suitable transition-metal complexes. Reactions of the latter complexes with \(P_4\) may yield derivatives containing a plethora of \(P_n\) ligands \((n = 1–24)\), often displaying fascinating structures and unusual reactivity. However, these reactions many times require the use of strong thermal or photochemical activation to degrade the \(P_4\) molecule, then achieving this target with poor selectivity.

Recently, we found that the unsaturated methyl-bridged complex \([\text{Mo}_2\text{Cp}_2(\mu-\eta^3-\eta^3-\text{CH}_3)(\mu-P\text{Bu}_2)(\mu-\text{CO})]\) \((\text{I})\) reacted selectively with \(P_4\) under relatively mild conditions \((333 \text{ K})\) to give the triphosphorus-bridged derivative \([\text{Mo}_2\text{Cp}_2(\mu-\eta^3-\eta^3-P_3)(\mu-P\text{Bu}_2)(\mu-\text{CO})]\) \((\text{II})\) in good yield, in a process formally involving the elimination of methylphosphinidene \((\text{PMe})_4\). There are two main points of interest concerning this compound: in the first place, we note that \(\text{II}\) is a rare example of a complex bearing a noncyclic \(P_3\) ligand bridging a dimetal...
center in a symmetrical \(\eta^3\eta^3 \) mode. The only previously reported complexes of this type are the phosphorus sulfide complexes \([\text{Mo}_2\text{Cp}_2(\mu-\eta^3:\eta^3-P_3)(\mu-\text{PS})]\) (\(\text{Cp}' = \text{C}_5\text{Me}_5,\text{C}_5\text{H}_5\text{Bu}_3 \)) and the diron radical \([\text{Fe}_2(\text{C}_5\text{H}_5\text{Bu}_3)_2(\mu-\eta^3:\eta^3-P_3)](\text{P-C}^3\text{Bu})\) in refluxing toluene,\(^7\) and its anionic derivative \([\text{Fe}_2(\text{C}_5\text{H}_5\text{Bu}_3)_2(\mu-\eta^3:\eta^3-P_3)]^-\), a complex recently prepared by degrading the above \(P_4 \)-bridged complex with a NHCl ligand and thought to contain no metal–metal bond.\(^8\) As a result of all of the above, only very limited chemistry of the acyclic \(P_3 \) ligand in such a coordination mode has been explored to date, it being restricted to some reactions of the mentioned dimolybdenum complexes with \([\text{Cr}(\text{CO})_5(\text{THF})]\)\(^5\) and with different \(M(1) \)-based electrophiles (\(M = \text{Cu}, \text{Ag} \)).\(^6,9\) On the other hand, a description of the chemical bonding in \(P_2 \) was not obvious itself because application of the 18-electron rule to this molecule, if considering the \(P \)–\(\text{Bu}_3 \) and \(P_3 \) ligands as three- and five-electron donors, respectively (neutral counting scheme), would lead to the formulation of a \(\text{Mo}–\text{Mo} \) triple bond for this molecule (A in Chart 1). However, this was rather inconsistent with the actual intermetallic separation of 2.6221(3) Å in 2, significantly longer than expected for a 3-electron complex with \(P \)-bridging ligands (cf. ca. 2.51 Å in \([\text{Mo}_2\text{Cp}_2(\mu-P\text{Ph}_2)_2(\mu-\text{CO})]\)).\(^10\) On the basis of these considerations, we decided to analyze in more detail the electronic structure of this unusual complex by using density functional theory (DFT) methods, while also broadly exploring its chemical behavior by reacting it with some \(p \)-block molecules and different transition-metal carbonyl complexes, all of which is the subject of the present paper. The latter reactions were of particular interest because previous work from our lab has proven that addition of \(M(\text{CO})_5 \) fragments could ultimately induce \(P–P \) bond cleavage processes on the related \(\eta^3:\eta^3 \)-bridged diphosphinophenyl complex \([\text{Mo}_2\text{Cp}_2(\mu-\eta^3:\eta^3-P_2\text{Me})(\mu-\text{PCy}_2)](\text{CO})_2\),\(^11\) although not on its anionic diphosphorus-bridged precursor \([\text{Mo}_2\text{Cp}_2(\mu-\eta^3:\eta^3-P_2)](\mu-\text{PCy}_2)(\text{CO})_2]^-\).\(^12\) As discussed below, our calculations on 2 indicate that its triphosphorus ligand can be viewed as an allylic-like \(P_3 \) anion contributing with six electrons to the dimetal center via the external \(P \) atoms, while coordination of the internal \(P \) atom has a weakening effect on both the \(\text{Mo–Mo} \) and \(P–P \) bonds. As a result, the intermetallic and \(P–P \) bond orders become lower than 3 and 1.5, respectively (B in Chart 1). In spite of the electronic unsaturation of the molecule, the chemical behavior of 2 is dominated by the electron-donor ability associated with the lone pairs located at the \(P \) atoms of the triphosphorus ligand, which can actually bind up to three metal–carbonyl fragments.

RESULTS AND DISCUSSION

Synthesis and Molecular Structure of the Triphosphorus Complex 2. Compound 1 reacts with stoichiometric amounts of white phosphorus under a gentle heating (333 K) in toluene solution to give the dark blue triphosphorus-bridged complex \([\text{Mo}_2\text{Cp}_2(\mu-\eta^3:\eta^3-P_3)(\mu-P\text{Bu}_3)](\text{CO})_2\) (2) as a major product (83% yield after chromatographic work-up) along with small amounts (ca. 5%) of the methylidiphosphinophenyl complex \([\text{Mo}_2\text{Cp}_2(\mu-\eta^3:\eta^3-P_2\text{Me})(\mu-P\text{Bu}_3)(\text{CO})_2]\) (3) (Scheme 1).

![Scheme 1. Preparation of Compound 2](image1)

The formation of 2 formally results from elimination of methylphosphinidene (“\(\text{PMe}^- \)”) between 1 and \(P_4 \), a rare process itself for which we cannot quote a precedent, and decarbonylation; unfortunately, NMR analysis of the crude reaction mixture did not enable us to determine the fate of this unstable phosphinidene. As for the formation of 3, first unnoticed in our preliminary study of this reaction,\(^3\) one might be tempted to think it as derived from reaction of white phosphorus with the dicarbonyl complex \([\text{Mo}_2\text{Cp}_2(\mu-\eta^3:\eta^3-\text{CH}_3)(\mu-P\text{Bu}_3)(\text{CO})_2]\), which is the actual precursor of compound 1,\(^13\) therefore a potential contaminant of the starting material in this reaction. However, separated experiments revealed that the above dicarbonyl complex does not react with \(P_4 \) at 333 K. It did it, however, in toluene solution at ca. 405 K, but then no detectable amounts of 3 were formed either. Instead, a mixture of the new diphosphorus complex \([\text{Mo}_2\text{Cp}_2(\mu-\eta^3:\eta^3-P_2\text{Me})(\text{CO})_2]\) (Chart 2)\(^14,15\) and other yet uncharacterized products was formed. Thus, it is concluded that 3 is formed genuinely from 1 and \(P_4 \), even if through a minor reaction pathway also involving reaction with part of the carbon monoxide released in the formation of the main product 2. A more specific method to prepare the diphosphinophenyl complex 3 is discussed below.

The structure of 2 in the crystal (Figure 1) was determined during our preliminary study of the reactivity of the methyl complex 1.\(^7\) The acyclic \(P_3 \) ligand bridges symmetrically the dimetal center, with the external \(P \) atoms being tightly bound to the \(\text{Mo} \) atoms, as judged from the short \(\text{Mo–P} \) distances of ca. 2.40 Å, actually a bit shorter than the \(\text{Mo–P} \) distances involving the \(P\text{Bu}_3 \) ligand (ca. 2.41 Å). In contrast, the interaction of the internal \(P \) atom with the metal atoms is much weaker, as expected (\(\text{Mo–P} \) ca. 2.63 Å). The \(P–P \) bond lengths of ca. 2.15 Å in 2 are shorter than the interatomic separation in the \(P_4 \) molecule (2.21 Å), which is indicative of...
the presence of some multiplicity in these bonds, a matter to be discussed below, and also are shorter than those recently measured in the anionic complex \([\text{Fe}_2(\text{C}_5\text{H}_2\text{Bu}_3)(\mu-\eta^1\text{Bu}_2\text{P})]\). As noted above, the intermetallic separation of 2.622(3) \(\text{Å}\) in this complex is 2.71 Å in \([\text{Mo}_2\text{Cp}_2(\mu-\eta^1\text{Bu}_2\text{P})]\), or 2.749(2) Å in \([\text{Mo}_2\text{Cp}_2(\mu-\eta^1\text{Bu}_2\text{P})]\) \((\text{CO})_2\), a matter also to be discussed below.

Spectroscopic data in solution for 2 (Table 1 and Experimental Section) are consistent with the symmetrical structure found in the crystal. In particular, we note that the \(^1\text{H}\) and \(^13\text{C}\{^1\text{H}\}\) NMR spectra display single resonances for the Cp and \(\text{Bu}\) groups, which remained unchanged down to 193 K. In addition, the \(^31\text{P}\) spectrum displays a single and strongly deshielded doublet resonance for the external atoms of the P3 chain (\(\delta_1 = 412, J_{PP} = 405\) Hz), whereas the central P atom gives rise to an extremely deshielded triplet resonance at \(-626.5\) ppm. The large P–P coupling in 2 exceeds the usual values of ca. 160–370 Hz found in diphosphines having conventional alkyl or aryl substituents and approaches the figures of 510–670 Hz found in diphosphines, this being again indicative of multiplicity in the P–P bonding at the P3 chain. Besides this, we should remark that the chemical shift for the central P atom in 2 is far lower (by some 250 ppm) than the ones previously determined for the few \(\eta^1\text{Bu}_2\text{P}\)-bridged complexes reported to date (ca. \(-375\) ppm in \([\text{Mo}_2\text{Cp}_2(\mu-\eta^1\text{Bu}_2\text{P})]\)). Finally, we note that the \(^{31}\text{P}\) chemical shift of the P2Bu ligand in 2 (\(\delta_1 = 176.1\) ppm) is significantly lower than those typically found for related complexes with Mo–Mo double bonds (ca. 266.2 ppm in 1) but is actually similar to those found for complexes of type \([\text{Mo}_2\text{Cp}_2(\mu-\eta^1\text{Bu}_2\text{P})]\) (ca. 172 ppm), for which a Mo–Mo double bond is to be proposed according to the 18-electron rule. All of this in agreement with the results of DFT calculations discussed below.

Electronic Structure of Compound 2

To better understand the geometry and chemical behavior of compound 2, we analyzed its geometric and electronic structure using DFT methods (see the Experimental Section and the Supporting Information). First we note that the optimized structure of 2 was in excellent agreement with the one determined in the crystal, with the P3 ligand symmetrically bridging the dimetal center and displaying P–P distances (ca. 2.17 Å) shorter than expected for single bonds, while the value of the Mo–Mo separation (2.633 Å) can be considered intermediate between the figures expected for triple and double bonds, as discussed above (Table 2).

The frontier Kohn–Sham molecular orbitals computed for 2 (Figure 2) show an extensive mixing of Mo–P and Mo–Mo bonding as well as mixing with the P-based nonbonding orbitals representing the expected lone electron pairs at the P atoms. The latter can be recognized particularly in the HOMO–2, –3, and –4 orbitals, the first of them and the

Table 1. Selected \(^{31}\text{P}\{^1\text{H}\}\) NMR Data for New Compounds

compound	\(\delta (\text{P}^3\text{Bu}_2)\)	\(\delta (\text{P})\)	\(\delta (\text{P}^3)\)	\(\delta (\text{P}^3)\)	\(J(\text{P}^3\text{P}^3)\)	\(J(\text{P}^3\text{P}^3)\)
\([\text{Mo}_2\text{Cp}_2(\mu-\eta^1\text{Bu}_2\text{P})]\) \((2)\)	176.1	412.0	\(-626.5\)	405	423	
\([\text{Mo}_2\text{Cp}_2(\mu-\eta^1\text{Bu}_2\text{P})]\)(\text{Me}) \((3)\)	223.5	\(-286.0\)	\(-84.9\)	524	405	
\([\text{Na}_2\text{Mo}_2\text{Cp}_2(\mu-\eta^1\text{Bu}_2\text{P})]\)(\text{CO})_2 \((5)\)	222.9	\(-156.9\)	\(-55.6\)	444.3	410	
\([\text{Mo}_2\text{Cp}_2(\mu-\eta^1\text{Bu}_2\text{P})]\)(\text{CO})_2 \((6)\)	175.8	315.4	\(-699.5\)	443	405	
\([\text{Mo}_2\text{Cp}_2(\mu-\eta^1\text{Bu}_2\text{P})]\)(\text{CO})_2 \((7)\)	188.7	377.6	\(-648.5\)	453.2	420	
\([\text{Mo}_2\text{Cp}_2(\mu-\eta^1\text{Bu}_2\text{P})]\)(\text{CO})_2 \((9)\)	185.7	417.8	\(-721.8\)	422		
\([\text{Mo}_2\text{Cp}_2(\mu-\eta^1\text{Bu}_2\text{P})]\)(\text{CO})_2 \((9)\)	182.4	391.6	\(-687.3\)	394		
\([\text{Mo}_2\text{Cp}_2(\mu-\eta^1\text{Bu}_2\text{P})]\)(\text{CO})_2 \((9)\)	185.2	354.3	\(-689.8\)	91		
\([\text{Mo}_2\text{Cp}_2(\mu-\eta^1\text{Bu}_2\text{P})]\)(\text{CO})_2 \((10)\)	177.0	404.3	\(-552.0\)	445		
\([\text{Mo}_2\text{Cp}_2(\mu-\eta^1\text{Bu}_2\text{P})]\)(\text{CO})_2 \((11)\)	183.7	383.8	403.8	380	414	

\(^{\text{a}}\)NMR data recorded in C\(_2\)D\(_6\) solution at 121.48 MHz and 293 K, with chemical shifts \((\delta)\) in ppm relative to external 85% aqueous H\(_3\)PO\(_4\) and P–P couplings \((J_{PP})\) in hertz. Labels according to the figure shown above (E = electrophile). \(^{\text{b}}\)Data taken from ref. 4. \(^{\text{c}}\)In tetrahydrofuran solution; averaged resonance for P\(^3\) and P\(^3\) atoms; see text. \(^{\text{d}}\)Resonance for the PH\(_3\) ligand. \(^{\text{e}}\)In CD\(_3\)Cl\(_2\) solution. \(^{\text{f}}\)Assignment of the P\(^3\) and P\(^3\) resonances might be exchanged; see text. \(^{\text{g}}\)In toluene solution.
interactions of the phosphorus orbitals perpendicular to the P3 should be lower than 3. It is interesting to analyze the HOMO one used for case. According to a DFT calculation at the same level as the each and the central P atom just one. However, this is not the assume that the terminal P atoms bear two lone electron pairs

weakening e

the internal P atom of the triphosphorus chain, but have a

character, can be viewed as representing a back-donation from

latter one also having σ(Mo–Mo) bonding character. The intermetallic bonding is completed with a hybrid π/δ bonding interaction, actually the HOMO of the molecule, of which the LUMO is the corresponding antibonding combination. Other intermetallic interactions can be recognized in the HOMO–14 orbital (π bonding character), HOMO–13 (σ* character), and HOMO–1 (δ* character), so the intermetallic bond order should be lower than 3. It is interesting to analyze the interactions of the phosphorus orbitals perpendicular to the P3 plane. The classical combinations expected for an angular P3 unit (ozonelike or allylic-like) involves bonding, nonbonding, and antibonding combinations. These can be recognized in orbitals HOMO–13, −6, and −1, respectively. The HOMO–13 has positive overlaps with acceptor orbitals of the metals in the MoP2Bu3 plane and represents a bonding interaction of the central P atom of the P3 ligand with the metal atoms, with some σ*(Mo–Mo) character, as noted above. On the other hand, the HOMO–1 involves the π(P–P) antibonding combination of the P3 unit, which is empty in the free P3 ligand; accordingly, this orbital, which also has δ*(Mo–Mo) character, can be viewed as representing a back-donation from the dimeral center to the P3 ligand. These two orbitals would then account for the bonding between the dimeral center and the internal P atom of the triphosphorus chain, but have a weakening effect on the P–P bonds (also on the Mo–Mo bond). In agreement with this, the experimental P–P distance in 2 of ca. 2.15 Å is significantly lower than the one in white phosphorus (2.21 Å), but still far from the reference length of 2.05 Å for P–P double bonds. Finally, the HOMO–6 orbital represents a bonding interaction between the external atoms of the P3 chain and the dimeral center. This orbital follows from interaction of metal orbitals with the nonbonding π orbital of the P3 ligand, which is at first surprising since the latter is expected to be empty in the free P3 ligand; if we assume that the terminal P atoms bear two lone electron pairs each and the central P atom just one. However, this is not the case. According to a DFT calculation at the same level as the one used for 2, a P3–ion with an imposed P–P–P angle identical with the one determined for 2 (107.35°, dP3 = 2.062 Å) has a configuration of type (σ1)2(σ2)2(σ3)2·(σ3)2(σ1)2(σ2)2(σ3*)(2)2 (see the Supporting Information). The population of the π* orbital is somewhat unexpected on simple electron counting (allocating five lone pairs at the P atoms would leave only two electrons for the π manifold) and perhaps is favored to reduce repulsions with other nonbonding electron pairs. In any case, this filled π* orbital has the right angular distribution to interact efficiently with acceptor orbitals of the dimeral center as in the HOMO–6 and ultimately enables the P3–ligand to act as a six-electron donor via the external P atoms, in agreement with the short Mo–P distances observed, which are comparable to the ones involving the P3Bu4 ligand, as noted above.

Analysis of the electron densities at the different bond critical points (bcp) of 2 under the atoms in molecules (AIM) scheme (Table 2) renders a picture essentially consistent with the above MO analysis but additionally gives a

distance/angle	expt	ρ	ρ2ρ	
Mo–Mo	2.633	2.622(3)	0.516	1.262
Mo–P*Bu	2.424	2.418(1)	0.554	2.948
Mo–P1	2.413	2.397(1)	0.573	2.245
Mo–P2	2.654	2.632(1)	0.378	2.374
P1–P2	2.167	2.150(1)	0.725	−1.911
P1–P2–P3	107.35	107.47(4)	0.725	2.374

Average values for the nearly equivalent bonds of each type, with labeling scheme as for Table 1. Values of the electron density at the bond critical points (ρ) are given in e Å−3; values of the Laplacian of ρ at these points (∇2ρ) are given in e Å−5.

Figure 2. Selected M06L-DFT computed molecular orbitals of compound 2 viewed from a point close to the Mo–P3(Bu3)3–Mo plane, with their energies (in eV) and main bonding character indicated below (LP stands for lone pair character at the P atoms). A view of these orbitals from a plane perpendicular to the above one can be found in the Supporting Information.
more precise picture of the result of mutually canceling bonding and antibonding interactions operating in the molecule. The electron density at the intermetallic bcp (0.516 e Å⁻³) has a value intermediate between the figures previously computed by us at a similar level for related dimolybdenum species bearing Mo–Mo triple (ca. 0.60 e Å⁻³),25 and double bonds (0.43 e Å⁻³),26 and the electron densities at the Mo–P bcp’s of the external atoms of the P₃ ligand (ca. 0.57 e Å⁻³) are comparable to those involving the P₂Bu₃ ligand. As expected, the latter figures nearly double the values for the connections between the central P atom and the molybdenum atoms (0.378 e Å⁻³). As for the P–P bonding in 2, we note that the electron densities of ca. 0.725 e Å⁻³ at the corresponding bcp’s are lower than the value of 0.912 e Å⁻³ computed for the free P₃⁻ anion under imposed geometry (P–P = 107.35°) and approach the electron densities computed at the same level for the bcp’s of P₄ (0.715 e Å⁻³, see the Supporting Information).27 This suggests that the π(P–P) bonding interaction in complex 2 represented by the HOMO–13 is canceled to a significant extent by the antibonding interaction implied by the HOMO–1.

In summary, on the basis of the above MO and AIM analysis, we conclude that the triphosphorus ligand in 2 can be viewed as an allylic-like P₃⁻ ligand acting as a six-electron donor via the external P atoms, while the binding of the central P atom involves donation from the π orbital of the P₃⁻ ligand to the dimetal center, and back-donation of the latter to the πⁿ orbital of the P₃⁻ ligand, these orbital interactions having a weakening effect on both the Mo–Mo and P–P connections. As a result of all of this, the intermetallic bond in 2 displays geometric and topological properties intermediate between those of double and triple bonds, while the properties of the P–P bond are intermediate between those of single and allylic-like (bond order 1.5) interactions. We have tried to illustrate this intermediate bonding situation in 2 by using the chemical diagram B of Chart 1.

Preparation of the Diphosphenyl Complex 3. To prepare complex 3 in significant amounts, we followed the route previously developed by us to synthesize related PCy₂-bridged dimolybdenum28 and ditungsten complexes.29 This starts with the room temperature reaction of the unsaturated anion [Mo₂CP₂(μ-P₂Bu₃)(μ-CO)₄]⁻ (4) (Na⁺ salt) with white phosphorus to give the Na⁺ salt of the diphosphorous-bridged complex [Mo₂CP₂(μ-P₂Bu₃)(μ-P₂Bu₃)(CO)₂]⁻ (5) almost quantitatively (Scheme 2). In a second step, the latter complex is reacted with methyl iodide at 273 K to give the desired diphosphenyl-bridged complex 3, which can be isolated in ca. 60% yield upon chromatographic work-up. In this reaction, however, significant amounts of the PH₂-bridged complex [Mo₂CP₂(μ-P₂H₂)(μ-P₂Bu₃)(CO)₂] (6) were also formed, likely resulting from a side hydrolytic process, not investigated. We note that Mays and co-workers have shown previously that reacting the neutral diphosphorous-bridged complexes [M₂CP₂(μ-P₂H₂)(CO)₂] with MeOH (M = Mo; W; M’ = Na, K), in tetrahydrofuran–H₂O (400/1) at 353 K, yields the corresponding PH₂-bridged anions [M₂CP₂(μ-P₂H₂)(CO)₂]⁻ in good yield.30 The presence of water is clearly critical in this P₂ to PH₂ conversion, since recent work by Scheer and co-workers has shown that reaction of the above dimolybdenum complex with KOH in pure tetrahydrofuran is very slow, it only being completed after 7 days in tetrahydrofuran solution at 333 K.31

Spectroscopic data for 5 are comparable to those of its PCy₂-bridged Mo and W analogues28,29 and only deserve a few comments. In particular, its IR spectrum displays three rather than two C–O stretches, at 1833 (vs), 1758 (w), and 1695 (s) cm⁻¹, which is indicative of the presence of more than one species in solution. The most prominent bands are assigned to a tight ion pair involving the Na⁺ cation and the O atom of one of the carbonyl ligands of the anion, while the weak band at 1758 cm⁻¹ is assigned to the asymmetric C–O stretch of the solvent-separated anion; the symmetric C–O stretch expected for this minor species would be obscured by the strong 1883 cm⁻¹ band of the dominant ion pair. Both species interconvert in solution rapidly on the NMR time scale, as the ³¹P NMR spectrum of 5 at room temperature displays single resonances for both the P₂Bu₃ and P₂ ligands, at 222.9 and −156.9 ppm, respectively. The latter is in turn an average resonance of the two resonances expected for the inequivalent P atoms of the diphosphorus ligand in this fluxional complex, as shown by theoretical and experimental work on the PCy₂-bridged Mo₃ analogue of 5. Indeed, the Li⁺ salt of the latter complex gives an averaged P₃ resonance at −176.5 ppm at room temperature, which splits into resonances at −90.0 and −273.0 ppm upon cooling.28

Spectroscopic data for 3 (Table 1 and Experimental Section) also are compatible to those of its PCy₂-bridged Mo and W analogues, with only a few significant differences. In particular, we note that its IR spectrum displays two C–O stretches at 1884 (s) and 1801 (vs) cm⁻¹. The symmetric stretch here is more intense than in the case of the PCy₂-bridged analogues (there being of just medium intensity), which denotes a stronger deviation of the CO ligands from an ideal antiparallel arrangement.32 This is a structural difference that we attribute to the steric effect of the bulky P₂Bu₃ ligand, which would promote a larger puckering of the central Mo₅PX skeleton of the molecule (compared to the PCy₂-bridged complex), whereby one carbonyl ligand would point further away from the dimetal unit (Mo–Mo–CO > 90°) while the other one would lean to the intermetallic bond (Mo–Mo–CO < 90°). As a result, the angle defined by the CO ligands would be lower than in the PCy₂-bridged complex (144.4°).28 This sort of geometrical distortion has been previously observed by us in other dicarbonyl complexes of the type [M₂CP₂(μ-PCy₂)(μ-P₂H₂)(CO)₂] bearing space-demanding bridging groups (M = Mo, W; X = SnPh₃, HCN’Bu, SCPh₂, etc.).33

Scheme 2. Preparation of Compound 3

![Scheme 2](https://example.com/scheme2.png)
As for the NMR parameters of 3, we note that the strong coupling between the inequivalent atoms of the diphosphenyl ligand (\(\delta_p = 84.9\) and \(-286.0\) ppm, \(J = 524\) Hz), close to the values measured for free diphosphanes (510–670 Hz),\(^{17}\) is therefore indicative of retention of substantial multiplicity in that bond, a matter already analyzed by us for the PCy\(_2\) analogue.\(^{25}\) Finally, we note that each of the inequivalent carbynol ligands displays one quite large (40/28 Hz) and two small P–C couplings. This is consistent with the structure determined for the PCy\(_2\)-bridged analogue of 3 and the known dependence of two-bond P–M–C couplings with the corresponding angle in this type of complex,\(^{34}\) whereby the largest carbynol couplings in 3 can be assigned to couplings with the apical P atom of the diphosphenyl ligand, as these involve the most extreme angles (ca. 67° and 131° in the PCy\(_2\) complex).

Spectroscopic data for 6 are comparable to those of the large family of mixed-phosphanyl complexes of type trans-\(\{\mu\text{-P}_2\text{R}_2\}^+\text{(}\mu\text{-PR}_2\text{)}\text{(CO)}_2\} (M = Mo, W) previously prepared by us\(^{15}\) and then deserve only a few comments. We just note that the bridging PH\(_2\) group gives rise to a diagnostic highly shielded \(^{31}\)P NMR resonance (\(\delta_p = -55.5\) ppm) strongly coupled to two equivalent H atoms (\(\delta_H = 4.71\) ppm; \(J_{PH} = 363\) Hz) and very weakly coupled to the P atom of the PPh\(_2\) group (\(J_{PP} = 7\) Hz). The latter is a persistent spectroscopic feature found for all these trans-dicarbonyl complexes displaying an essentially flat MoP\(_2\) central core. Another characteristic feature of these complexes, for which a metal–metal double bond is to be formulated according to the 18-electron rule and DFT calculations,\(^{28}\) is the relatively poor deshielding of their P atoms (compared with PR\(_3\) ligands bridging single or triple bonds). Indeed, the \(^{31}\)P chemical shift of the PPh\(_2\) ligand in 6 (\(\delta_p = 175.8\) ppm) compares well with the observed shift for the isoelectronic complex \(\text{[Mo}_2\text{Cp}_2(\mu\text{-PPh}_2)(\mu\text{-PR}_2\text{)}(\text{CO})_2]\) (174.1 ppm)\(^{18}\) and is significantly lower than the chemical shifts of the PPh\(_2\) ligands in complexes \(\text{[Mo}_2\text{Cp}_2(\mu\text{-H})(\mu\text{-PPh}_2\text{)}(\text{CO})_2]\) (Mo–Mo single bond, \(\delta_p = 267.5\) ppm)\(^ {29,30}\) and \(\text{[Mo}_2\text{Cp}_2(\mu\text{-PPh}_2\text{)}(\mu\text{-CO})](\text{Mo–Mo triple bond, } \delta_p = 288.9\) ppm).\(^{30}\) An analogous comment can be made on the PH\(_2\) resonance of 6 (\(\delta_p = -55.5\) ppm), which appears some 90 ppm upfield from the one observed for the electron-precise complex \(\text{[Mo}_2\text{Cp}_2(\mu\text{-H})(\mu\text{-PPh}_2\text{)}(\text{CO})_2]\) (\(\delta_p = +33.7\) ppm).\(^ {30}\)

Acid–Base Chemistry of Complex 2. Methylation Reactions. By considering the electronic unsaturation of 2, discussed above, and particularly the Mo–Mo antibonding nature of the LUMO of the molecule, we would expect it to easily add at the dimetal site simple donors such as CO or isocyanide ligands, so as to give electron-precise derivatives. However, such reactions do not take place under ordinary conditions, perhaps due to the steric shielding that the Cp and bridging ligands of 2 provide to the unsaturated dimetal center of the molecule. Reactions that aimed to check possible insertions into the P–P or Mo–P bonds of the triphosphorus ligand of 2 (activated alkynes such as RC\(\equiv\text{CCO}_2\text{Me},\) with R = H, \(\text{CO}_2\text{Me}\) also failed to occur even in refluxing toluene solution or under UV–vis irradiation. In fact, the chemistry of 2 seems to be dominated by the nucleophilic properties associated with the lone electron pairs at the P atoms of the triphosphorus ligand, as shown by its easy methylation, discussed below, and addition of 16-electron metal carbonyl fragments, to be discussed separately. Surprisingly, however, no reaction was observed between 2 and a prototypical Lewis acid such as borane (no reaction with BH\(_3\)·THF in toluene solution).

Compound 2 does not react with MeI at room temperature. However, reaction of 2 with methyl triflate takes place rapidly at 253 K to give the salt \(\text{[Mo}_2\text{Cp}_2(\mu\text{-H})(\mu\text{-PMe})(\mu\text{-PPh}_2\text{)}(\text{CF}_3\text{SO}_3\text{)})](\text{CF}_3\text{SO}_3\text{)}\) (7) in an almost quantitative way as a result of the incorporation of a methyl cation at one of the external P atoms of the triphosphorus ligand (Chart 3). Such a stereoselectivity is immediately deduced from the presence, in the \(^{31}\)P NMR spectrum of 7, of three mutually coupled resonances corresponding to the former P\(_3\) ligand and from the fact that only one of them is significantly broadened upon switching off the \(^1\)H decoupler. This circumstance, along with the number of large one-bond P–P couplings (410 and 423 Hz), enable full assignment of the \(^{31}\)P resonances of 7 (Table 1).

Attachment of the Me\(^+\) cation at the external P atom of the P\(_3\) chain has little effect on the P–P couplings but implies a strong shielding for the P atom involved (by some 100 ppm) and the central P atom (by some 75 ppm), while the remaining P atom is deshielded by 40 ppm. These shielding effects are different from those observed for the diphosphorus complex 5 and their PCy\(_2\) analogues, which upon methylation undergo a strong deshielding of some 200 ppm at the P atom involved and a shielding of some 200 ppm at the remaining P atom of the diphosphorus ligand. In addition, we note that the \(^{31}\)P chemical shift of the PPh\(_2\) ligand in 7 (188.7 ppm) is comparable to the one in 2, which suggests that the intermetallic interaction of 2 remains in the range of double bonds upon methylation. Actually, the structure computed for this cation (Figure 3) displays an intermetallic separation of 2.711 Å, longer than the one computed for 2 (2.633 Å). This lengthening effect can be understood by recalling that the frontier molecular orbital of 2 most likely involved in the formation of 7 (HOMO–2) has some \(\sigma(\text{Mo–Mo})\) bonding character. Noticeably, the added Me group lies in the

![Figure 3. M06L-DFT optimized structure of the cation in compound 7, with H atoms omitted for clarity. Selected bond lengths (Å, labels as in Table 1): Mo–Mo = 2.711; Mo–P1 = 2.343; Mo–P2 = 2.698; Mo–P3 = 2.431; Mo–P(Ph2) = 2.447; P1–P2 = 2.182; P2–P3 = 2.152.](https://doi.org/10.1021/acs.inorgchem.1c01552)
corresponding Mo$_2$P plane, which renders a distorted trigonal-pyramidal geometry at the corresponding P atom, an effect previously observed upon alkylation of the PCy$_2$ analogue of the diporphorus complex 5.38 We finally note that we also computed the structure of an isomer of the cation in 7 having the Me group bound to the central atom of the triphosphorus ligand (7', see the Supporting Information). This P atom might be viewed as sterically more accessible for binding to an external electrophile. However, the computed Gibbs free energy for such an isomer was 54 kJ/mol higher than that of 7, this suggesting that the observed site preference in the methylation of 2 has an electronic origin, not obvious to us at the moment.

Addition of Fe(CO)$_4$ Fragments to Complex 2. The reaction of 2 with [Fe$_2$(CO)$_9$], a well-established precursor of the 16-electron fragment Fe(CO)$_6$, turned out to be quite sensitive to the relative amount of the diiron reagent used and in all cases proceeded rapidly in toluene solution at room temperature. When using stoichiometric or under-stoichiometric amounts of the diiron reagent, the major product was formed as expected, the diiron complex was the major product formed

The corresponding 31P NMR spectra and the conditions under which each of them is best formed, already noted above. Compound 8 displays a P(Bu$_3$) resonance similar to that of 2 and three strongly coupled resonances for the P$_3$ ligand at 455.2, 377.6, and -648.5 ppm ($J_{PP} = 420$ and 405 Hz, Table 1). These spectroscopic data are qualitatively similar to those of the methylation product 7 and are thus indicative of the attachment of a single Fe(CO)$_4$ fragment to one of the external P atoms of the triphosphorus ligand. In this case we could not identify spectroscopically the resonance for the Fe-bound P atom, and we propose it to be the one being shielded with respect to the corresponding resonance in the parent compound ($\delta_P = 377.6$ ppm) by analogy with the changes observed in the formation of 7. In the case of compound 10, the assignment of P$_3$ resonances is straightforward, as it displays a doublet resonance at 404.3 ppm ($J = 445$ Hz) for the external atoms and a triplet resonance at -552.0 ppm corresponding to the central P atom. We notice that while the attachment of Fe(CO)$_4$ or M$^+$ fragments at the external P atom of the triphosphorus ligand in 2 causes a shielding effect on the central P atom, attachment of a Fe(CO)$_4$ fragment at the latter site has a strong deshielding effect on it (by some 170 ppm, if compared with 9-Fe; see below). This effect largely exceeds the coordination shifts for conventional PR$_3$ donors, which usually fall within the range of +20 to +70 ppm.36

The presence of two Fe(CO)$_4$ fragments in compound 9-Fe is first indicated by its IR spectrum, which displays two high-frequency bands at 2046 (sh, m) and 2038 (vs) cm$^{-1}$ corresponding to symmetric stretches of these fragments,32 in addition to the asymmetric ones (see the Experimental Section). Moreover, because the 31P NMR spectrum of this complex displays one doublet resonance at 417.8 ppm for the external P atom of the P$_3$ ligand, it is concluded that both iron fragments are bound to these atoms, as substantiated crystallographically for the related W(CO)$_5$ derivative of 2 (see below). The binding of these iron fragments at the external P atoms of the P$_3$ chain of 2 causes a large shielding effect of almost 100 ppm on the central P atom, which now gives rise to a triplet resonance at -721.8 ppm. To our knowledge, this is the lowest chemical shift reported to date for a phosphorus-containing compound of any kind.37 As observed for compounds 8 and 10, neither the P–P couplings in the P$_3$ ligand nor the chemical shift of the P(Bu$_3$) ligand in 9-Fe has been much affected by the attachment of the Fe fragments. All of this suggests that the binding of Fe(CO)$_4$ fragments at either the terminal or central P atoms of the triphosphorus ligand of 2 has only a modest effect on the P–P and Mo–Mo bonding of the complex. We finally note that the 13C NMR spectrum of 9-Fe, in addition to the expected resonances for the equivalent pairs of Cp and Bu groups, displays just a doublet resonance at 214.8 ppm ($J_{PC} = 6$ Hz) for the Fe-bound carbonyls. This indicates the operation of fast local exchange between the axial and equatorial carbonyls at the trigonal-pyramidal Fe(CO)$_4$P fragments of the molecule, not investigated.

Addition of M(CO)$_5$ and M(CO)$_4$ Fragments (M = Mo, W) to Complex 2. To prepare molybdenum and tungsten analogues of compounds 8, 9-Fe, and 10, we investigated the reactions of 2 with the tetrahydrofuran complexes [M(CO)$_5$(THF)] (M = Mo, W). These reactions take place rapidly in toluene solution (see the Experimental section) to give the corresponding tetranuclear derivatives [Mo$_3$M$_3$P$_8$(μ-η3-η5-x2-x2-P$_3$)(μ-P(Bu)$_3$)(CO)$_5$] (M = Mo(W), W(W)) in all cases (Scheme 4). Attempts to even detect analogues of...
could only isolate a new product incorporating a M(CO)4
P
Table 3) can be derived from that of W(CO)5 fragment at each of the external P atoms of the P3
denoting some steric pressure from the bulky P
[Mo2WCp2(CO)2].11 Unfortunately, reaction of the tetranuclear derivative of type
the diphosphenyl complex [Mo2Cp2(M(CO)4)
fragments M(CO)4 can eventually insert into the P
from our lab have shown that 14-electron metal carbonyl
adducts [M(CO)4(THF)2] gave in both cases the corresponding
The molecular structure of 9-Mo and 9-W.
Figure 4. ORTEP diagram (30% probability) of compound 9-W, with
'Bu groups (except their C1 atoms) and H atoms omitted for clarity.
Table 3. Selected Bond Lengths (Å) and Angles (deg) for Compound 9-W

Bond Lengths (Å)	Angles (deg)
Mo1–Mo2	2.6558(5)
Mo1–P1	2.440(1)
Mo2–P1	2.432(1)
Mo1–P2	2.675(1)
Mo2–P2	2.672(2)
Mo1–P3	2.3754(8)
Mo2–P3	2.3708(9)
W1–P3	2.4927(6)
P2–P3	2.169(1)
P3–P2–P3	103.65(7)

Spectroscopic data in solution for compounds 9-Mo and 9-W (Table 1 and Experimental Section) are consistent with the symmetrical structure found in the crystal for 9-W. The presence of two M(CO)5 fragments attached to the triphosphorus ligand is first indicated by its IR spectrum, which displays two high-frequency bands at ca. 2071 (sh) and 2064 (m) cm−1 corresponding to symmetric C–O stretches of these fragments, in addition to the asymmetric ones (see the Experimental Section). Besides this, the 31P NMR spectra of these complexes display in each case just one doublet resonance for the external atoms of the P3 ligand, with a chemical shift expectedly sensitive to the metal in the carbonyl fragment (δ(P) 391.6 and 354.3 ppm for the Mo and W derivatives, respectively). In contrast, the central atom of the P3 ligand gives rise to a triplet resonance at ca. −690 ppm in both complexes, a position ca. 65 ppm more shielded than in the parent compound 2. The P–P coupling (ca. 390 Hz) is only marginally lower than in the parent complex (405 Hz), which is in agreement with the very modest lengthening of ca. 0.02 Å observed for the P–P bonds in 9-W. Finally, we note that the resonance for the PBr2 group in these complexes appears at ca. 185 ppm, as also observed for 9-Fe and for compounds 8 and 10, and not far from the position observed for the parent 2. This suggests that the intermetallic interaction is not severely modified by the coordination of the M(CO)4.
fragments at the triphosphorus ligand in these species, in agreement with the very modest lengthening of just 0.03 Å observed for the intermetallic separation in 9-W, when compared to the parent complex 2.

Structure of the Heptanuclear Derivative 11. The molecular structure of compound 11 in the crystal (Figure 5)

![ORTEP diagram (30% probability) of compound 11, with 'Bu groups (except their C^1 atoms) and H atoms omitted for clarity.](image)

Spectroscopic data in solution for compound 11 (Table 1 and Experimental Section) are consistent with retention of the structure found in the crystal. First, its IR spectrum now displays, in addition to a high-frequency band at 2068 cm^{-1} to be expected for the symmetric C=O stretch of the Mo(CO)$_6$ fragments, a medium-intensity band at 2015 cm^{-1} that we can assign to the symmetric C=O stretch of a cisoid or C$_2$ M(CO)$_4$ fragment. Moreover, the 31P spectrum of 11 indicates that both Mo$_2$P$_3$ subunits are equivalent in solution, with chemical shifts and P-P couplings comparable to those measured for the tetracnuclear molybdenum complex 9-Mo. Of course, the external atoms of the P$_3$ ligand are now inequivalent, but their chemical shifts (δ 383.8 and 403.8 ppm) are similar to each other, so assignment of these resonances to either Mo(CO)$_3$- or Mo(CO)$_4$-bound P atoms is not obvious. Other spectroscopic features for 11 are as expected and deserve no particular comment.

CONCLUDING REMARKS

Reaction of the methyl-bridged complex [Mo$_2$Cp$_2$(μ-κ2-η2-CH$_3$)(μ-PBu$_3$)(μ-CO)] (1) with P$_4$ at 333 K involves formal elimination of methylphosphinidene as the dominant process, to give the triphosphorus-bridged complex [Mo$_2$Cp$_2$(μ-η3-η3-P$_3$)(μ-PBu$_3$)] (2), but there is also a minor side process involving insertion of a P$_3$ unit into the Mo-Mo bond of 1 that yields the diphosphonyl-bridged complex [Mo$_2$Cp$_2$(μ-η3-η3-P$_2$P$_2$Me)(μ-PBu$_3$)(CO)$_2$]. The latter is more conveniently prepared by using the synthetic procedure previously developed by us for related P$_2$C$_2$-bridged complexes, which in this case involves the room temperature reaction between the unsaturated anion Na[Mo$_2$Cp$_2$(μ-η3-P$_3$)] with P$_4$ to give a diphosphorus-bridged intermediate Na[Mo$_2$Cp$_2$(μ-η3-η3-P$_3$)(μ-PBu$_3$)(CO)$_2$], which is then reacted with MeI. According to our DFT calculations, the triphosphorus ligand in 2 can be described as an allylic-like P$_3$-ligand acting as a six-electron donor via the external P atoms, while the binding of the central P atom to the metal atoms, much weaker, derives from ligand-to-metal and metal-to-ligand interactions involving the π and π* orbitals of the P$_3$ ligand, both of them having a weakening effect on both the Mo-Mo and P-P connections. As result of all of it, the intermetallic bond in 2 has geometric and topological properties intermediate between those of double and triple bonds, while the properties of the P-P bonds are intermediate between those of single and allylic-like interactions. In spite of the electronic unsaturation of the molecule, the chemical behavior of 2 is dominated by the electron-donor ability associated with the lone pairs located at the central P atom of the triphosphorus ligand, which can be easily methylated, and can also bind up to three metal–carbonyl fragments M(CO)$_n$ (M = Fe, Mo, W), as shown by the formation of the triiron derivative [Mo$_2$Fe$_4$Cp$_2$(μ-η3-η3-κ2-κ2-P$_3$)(μ-PBu$_3$)(CO)$_{12}$]. In all these reactions, attachment of the corresponding electrophile at the external P atoms of the P$_3$ chain is preferred. This causes little geometrical modifications on the Mo$_2$P$_3$ skeleton of the molecule but causes a considerable nuclear shielding of ca. 60–100 ppm on the central P atom of the ligand, maximum for the diiron derivative [Mo$_2$Fe$_4$Cp$_2$(μ-η3-η3-κ2-κ2-P$_3$)(μ-PBu$_3$)(CO)$_{12}$], which displays the corresponding resonance at −721.8 ppm, the lowest 31P chemical shift reported to date for a P-containing species.

Table 4. Selected Bond Lengths (Å) and Angles (deg) for Compound 11

Bond Lengths (Å)	Bond Angles (deg)
Mo1–Mo2: 2.6561(7)	Mo1–P1–Mo2: 59.63(3)
Mo1–P1: 2.6701(1)	Mo1–P2–Mo2: 67.63(3)
Mo1–P2: 2.3921(1)	Mo3–P3–Mo2: 68.04(3)
Mo1–P3: 2.3751(1)	Mo3–P3–P1: 116.09(6)
Mo1–P4: 2.4311(1)	Mo7–P2–P1: 120.82(6)
Mo3–P3: 2.4841(1)	P4–Mo1–P1: 117.14(4)
Mo7–P2: 2.4771(1)	P4–Mo1–P2: 93.11(5)
P1–P2: 2.1491(2)	P4–Mo1–P3: 92.16(4)
P1–P3: 2.1561(2)	P2–P1–P3: 104.56(7)
Mo4–P5–Mo5: 2.6545(5)	Mo4–P5–Mo5: 60.01(3)
Mo4–P5: 2.6641(1)	Mo4–P6–Mo5: 67.79(3)
Mo4–P6: 2.3761(1)	Mo4–P7–Mo5: 67.38(3)
Mo4–P7: 2.3841(1)	Mo6–P6–P5: 114.82(6)
Mo4–P8: 2.4181(1)	Mo7–P7–P5: 121.94(6)
Mo6–P6: 2.5291(1)	P8–Mo4–P5: 116.93(4)
Mo7–P7: 2.5091(1)	P8–Mo4–P6: 92.33(4)
P5–P6: 2.1641(2)	P8–Mo4–P7: 93.70(4)
P5–P7: 2.1481(2)	P6–P5–P7: 105.50(7)
P2–Mo7–P7: 95.78(4)	
Experimental Section

General Procedures and Starting Materials. All manipulations and reactions were performed under an argon (99.995%) atmosphere by using standard Schlenk techniques. Solvents were purified according to the literature procedures and distilled prior to use.38 Compound [Mo₂Cp₂(μ₆-η⁶-C₆H₆)(μ₅-P₅Bu₃)(μ-CO)] (1) was prepared in situ through a slight modification of the method described previously,12 now involving irradiation with UV–vis light of toluene solutions of [Mo₂Cp₂(μ₆-η⁶-C₆H₆)(μ₅-P₅Bu₃)(μ-CO)] (4) and [Mo₂Cp₂(μ₅-P₅Bu₃)(μ-CO)] (2) and further purified by chromatographic techniques. The operations were performed by using jacketed columns cooled by tap water (ca. 50 min for 0.100 g of dicarbonyl [Mo₂Cp₂(μ₆-η⁶-C₆H₆)(μ₅-P₅Bu₃)(μ-CO)] (6)). In order to minimize the risk of oxygen uptake, the reactions were performed under an argon (99.995%) atmosphere.

Preparation of [M(CO)₄(THF)] (1). Solid [Fe₂(CO)₉] (0.041 g, 0.113 mmol) was added to a Schlenk tube equipped with a K⁺Cl⁻ valve. The solvent was removed under vacuum, and the residue was washed with petroleum ether (5 mL). The residue was mixed under argon with the appropriate amount of water to reach a 0.18 M solution, 0.135 mmol) was added to a Schlenk tube equipped with a K⁺Cl⁻ valve. The solvent was removed under vacuum, and the residue was washed with petroleum ether (5 mL). The compound was then precipitated from a dichloromethane solution (8 mL) of compound [Mo₂Cp₂(μ₆-η⁶-C₆H₆)(μ₅-P₅Bu₃)(μ-CO)] (7). Neat CF₃SO₃Me (10 mL, 0.088 mmol) was added to a dichloromethane solution (using CaF₂ windows), are termed μ(CO), and are given in wavenumbers (cm⁻¹). Nuclear magnetic resonance (NMR) spectra were routinely recorded at 295 K unless otherwise stated. Chemical shifts (δ) are given in ppm, relative to internal tetramethylenediamine (H, 11C), or external 85% aqueous H₃PO₄ (δ). Coupling constants (J) are given in hertz. Labels for P atoms in P₃ units are given according to the figure in Table 1.

Preparation of [Mo₂Cp₂(μ₆-η⁶-P₃Me)(μ₅-P₅Bu₃)(μ-CO)] (2). A toluene solution of P₅Bu₃ (1.5 mL of a 0.18 M solution, 0.27 mmol) was added to a toluene solution (5 mL) containing ca. 0.186 mmol of compound 1, prepared in situ from [Mo₂Cp₂(μ₆-η⁶-C₆H₆)(μ₅-P₅Bu₃)(μ-CO)] (1) (0.100 g, 0.186 mmol), and the mixture was stirred at 333 K for 15 min to yield a brown-black solid. The solvent was then removed under vacuum, and the residue was washed with petroleum ether (5 × 3 mL) and dried under vacuum to yield compound 7 as a pure green solid (0.022 g, 84% yield). The compound was characterized by using standard Schlenk techniques. Solvents were purified by distillation, and reactions were performed under an argon (99.995%) atmosphere.

Preparation of Tetrahydrofuran Solutions of Na₅[Mo₂Cp₂(μ₆-η⁶-P₃Me)(μ₅-P₅Bu₃)(μ-CO)] (5). A solution of P₅Bu₃ (0.75 mL of a 0.18 M solution, 0.135 mmol) was added to a Schlenk tube equipped with a Young’s valve. The solvent was removed under vacuum, and then 15 mL of a tetrahydrofuran suspension of freshly prepared compound 4 (ca. 0.50 mL) was added by using a cannula; the mixture was stirred at room temperature for 4 h to give an orange-brown solution containing compound 5 as a unique organometallic species. This air-sensitive solution was used without further purification. μ(CO) (THF): 1833 (vs.), 1758 (w.), 1695 (s.) 31P{1H} NMR (THF): 222.9 (s., μ₅-P₅Bu₃), -156.9 (s., μ₅-P₅Bu₃). Preparation of [Mo₅Cp₂(μ₆-η⁶-P₃Me)(μ₅-P₅Bu₃)(μ-CO)] (3). Neat MeI (50 μL, 0.803 mmol) was added to the tetrahydrofuran solution of compound 5 (ca. 0.1 mmol) prepared as described above and cooled to 273 K, and the mixture was stirred at this temperature for 40 min to give a brown-yellowish solution. The solvent was then removed under vacuum, the residue was extracted with dichloromethane/petroleum ether (1/4), and the extracts were chromatographed on alumina at 253 K. Elution with the same solvent mixture gave a minor yellow fraction yielding, after removal of solvents, compound 3 (ca. 0.008 g, 14%) and then a major orange fraction yielding compound 3 as a red-orange solid (0.035 g, 58%) yield. The compound was characterized by using standard Schlenk techniques. Solvents were purified by distillation, and reactions were performed under an argon (99.995%) atmosphere.
yielding, after removal of solvents, complex 9-Fe as a green solid (0.045 g, 93%). Data for compound 9-Fe: Anal. Calcd for C50H34Mo2O8P4: C, 32.81; H, 2.10. 31P{1H} NMR (121.48 MHz, CD2Cl2): δ 36.5 (s, C1 (C2, C3)), 186.7 (s, C4 (C5, C6)), -72.8 (s, C7 (C8, C9)).

Preparation of [Mo4(CO)6] (0.051 g, 91%). Anal. Calcd for C28H28Mo4O10P4: C, 32.58; H, 2.73.

Preparation of [Mo4(CO)6] (0.030 g, 0.114 mmol) and then P1(P3) gave a green fraction yielding, after removal of solvents, complex 9-Mo. The solvent was again removed under vacuum, the residue was dissolved in toluene (5 mL), and the mixture was stirred at room temperature for 5 min to give a green solution. The solvent was then removed under vacuum, the residue was dissolved in toluene (5 mL), and the mixture was stirred at room temperature for 5 min to give a green solution. The solvent was again removed under vacuum, the residue was extracted with dichloromethane/petroleum ether (1/4) to give a green fraction yielding, after removal of solvents, complex 9-Mo. The solvent was again removed under vacuum, the residue was dissolved in toluene (5 mL), and the mixture was stirred at room temperature for 5 min to give a green solution. The solvent was then removed under vacuum, the residue was dissolved in toluene (5 mL), and the mixture was stirred at room temperature for 5 min to give a green solution. The solvent was then removed under vacuum, the residue was dissolved in toluene (5 mL), and the mixture was stirred at room temperature for 5 min to give a green solution.

Preparation of [Mo5CP4]PF6 (9-W). A tetrahydrofuran solution (10 mL) of [Mo5CP4]PF6 was prepared in situ from [Mo5CP4]PF6 (0.044 g, 0.168 mmol) and then P1(P3) gave a green fraction yielding, after removal of solvents, complex 9-W as a green solid (0.051 g, 91%). Anal. Calcd for C28H28Mo4O10P4: C, 32.58; H, 2.73. The procedure is analogous to the one described above for 9-Mo, but now with a tetrahydrofuran solution (5 mL) of [W(CO)5](THF)5 was prepared in situ from [W(CO)5](THF)5 (0.040 g, 0.114 mmol) and then P1(P3) gave a green fraction yielding, after removal of solvents, complex 9-W as a green solid (0.057 g, 87%). The crystals used in the X-ray diffraction study were grown by the slow diffusion of a layer of ether over a concentrated tetrahydrofuran solution of the complex at 253 K.

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.inorgchem.1c01552.

Crystal data for compounds 9-W and 11 (CCDC 2083094 and 2083095), results of DFT calculations, and IR and NMR spectra for all new compounds (PDF). Cartesian coordinates for all computed species (XYZ).

ASSOCIATED CONTENT

Supporting Information

Accession Codes

CCDC 2083094−2083095 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.
orcid.org/0000-0002-3313-1467
orcid.org/0000-0002-9185-0099

(c) Scheer, M.; Balázs, G.; Seitz, A. P4 activation by main group 2011
compounds of the 1987 elements and compounds.

https://pubs.acs.org/10.1021/acs.inorgchem.1c01552
Complete contact information is available at:

Melodie Casado-Ruano — Departamento de Química Orgánica e Inorgánica/IOUQOE, Universidad de Oviedo, E-33071 Oviedo, Spain; orcid.org/0000-0002-3313-1467
M. Esther García — Departamento de Química Orgánica e Inorgánica/IOUQOE, Universidad de Oviedo, E-33071 Oviedo, Spain
Ana M. Guerra — Departamento de Química Orgánica e Inorgánica/IOUQOE, Universidad de Oviedo, E-33071 Oviedo, Spain

Authors

Notes

Acknowledgments

We thank the MICIU and AEI of Spain and FEDER for financial support (Project PGC2018-097366-B-100), the SCBI of the Universidad de Málaga, Spain, for access to computing facilities, and the X-ray unit of the Universidad de Oviedo for acquisition of diffraction data.

References

(1) For some reviews on main group element-mediated activation and functionalization of P4, see: (a) Borger, J. E.; Ehlers, A. W.; Sloughteg, J. C.; Lamer:Keva, Functionalization of P4 through direct P–C bond formation. Chem. - Eur. J. 2017, 23, 11738–11746. (b) Gifflin, N. A.; Masuda, J. D. Reactivity of white phosphorus with compounds of the p-block. Coord. Chem. Rev. 2011, 25, 1342–1359. (c) Scheer, M.; Balázs, G.; Seitz, A. P4 activation by main group elements and compounds. Chem. Rev. 2010, 110, 4236–4256.

(4) Alvarez, M. A.; García, M. E.; García-Vivó, D.; Lozano, R.; Ramos, A.; Ruiz, M. A. Mild P–P bond cleavage in the methylphosphonyl complex [Mo4P3(μ-PCy2)(μ-κ-x3-P2-Me)-CO]- to give novel phosphide-bridged trinuclear derivatives. Inorg. Chem. 2014, 53, 11261–11273. (b) Alvarez, M. A.; García, M. E.; Lozano, R.; Ramos, A.; Ruiz, M. A. Tetranuclear phosphide-and phosphinodine-bridged derivatives of the diphosphonyle complex [Mo4P3(μ-PCy2)(μ-κ-x3-P2-Me)-CO]-. Inorg. Chem. 2015, 54, 2455–2466.

(6) Alvarez, M. A.; Casado-Ruano, M.; García, M. E.; García-Vivó, D.; Ruiz, M. A. Structural and chemical effects of the PPBu4 bridge at unsymmetrical dimolybdenum complexes having hydride and hydrocarbonyl ligands. Inorg. Chem. 2017, 56, 11336–11351.

(11) (a) Alvarez, M. A.; García, M. E.; García-Vivó, D.; Lozano, R.; Ramos, A.; Ruiz, M. A. Reactivity of the anionic diphosphorus complex [Mo4P3(μ-PCy2)(μ-κ-x3-P2-Me)-CO]- toward phosphorus- and transition metal-based electrophiles. Inorg. Chem. 2013, 52, 9005–9018. (b) Alvarez, M. A.; García, M. E.; Lozano, R.; Ramos, A.; Ruiz, M. A. Diphosphorus-bridged heterometallic anions and hydrides derived from reactions of complex [Mo4P3(μ-PCy2)(μ-κ-x3-Ph2)-CO]- with precursors of 16-electron metal carbonyl fragments. J. Organomet. Chem. 2015, 791, 279–288.

(13) Alvarez, M. A.; Casado-Ruano, M.; García, M. E.; García-Vivó, D.; Ruiz, M. A. Structural and chemical effects of the PPh2Bu bridge at unsymmetrical dimolybdenum complexes having hydride and hydrocarbonyl ligands. Inorg. Chem. 2017, 56, 351–353. (b) Scherer, O. J.; Sitzmann, H.; Wolmershäuser, G. Hexaphosphabenzenes as complex ligand. Angew. Chem., Int. Ed. Engl. 1985, 24, 351–353. (b) Scherer, O. J.; Sitzmann, H.; Wolmershäuser, G. (E)-1,3-Einheiten (E = F, As) als clustebrausbende: J. Organomet. Chem. 1986, 309, 77–86.

(15) The related C2Me3 complex has been reported previously. See: (a) Scherer, O. J.; Sitzmann, H.; Wolmershäuser, G. Hexaphosphabenzenes as complex ligand. Angew. Chem., Int. Ed. Engl. 1985, 24, 351–353. (b) Scherer, O. J.; Sitzmann, H.; Wolmershäuser, G. (E)-1,3-Einheiten (E = F, As) als clustebrausbende: J. Organomet. Chem. 1986, 309, 77–86.

(16) (c) Zykowicz, N.; Poniński, L.; Grubba, R. Symmetrical and unsymmetrical diphosphenes with diversified allyl, aryl, and amino substituents. Dalton Trans. 2018, 47, 16885–16894. (b) Harris, R. K.; Norval, E. M.; Fild, M. Nuclear magnetic resonance studies of scrambling reactions in solutions of tetra-alkyl- and tetra-aryl-diphosphenes. J. Chem. Soc., Dalton Trans. 1979, 826–831.

(17) Weber, L. The chemistry of diphosphenes and their heavy congeners: synthesis, structure, and reactivity. Chem. Rev. 1992, 92, 1839–1906.

(18) García, M. E.; Riera, V.; Ruiz, M. A.; Rueda, M. T.; Sáez, D. Dimolybdenum and ditungsten cyclopentadienyl carbonyls with electron-rich phosphido bridges: synthesis of the hydrido phosphido complexes [M2P3(μ-H)(μ-PR’)(μ-PR’)(CO)] and unsaturated bis(phosphido) complexes [M2P3(μ-H)(μ-PR’)(μ-P3R’)(CO)] (x = 1, 2; R, R’ = Et, Cy, Bu). Organometallics 2002, 21, 5515–5525.

(19) (a) Cramer, C. J. Essentials of Computational Chemistry, 2nd ed.; Wiley: Chichester, UK, 2004. (b) Koch, W.; Holthausen, M. C. A
Chemist’s Guide to Density Functional Theory, 2nd ed.; Wiley-VCH: Weinheim, 2002.
(20) Greenwood, N. N.; Earnshaw, A. Chemistry of the Elements; Pergamon Press: Oxford, UK, 1984; Chapter 14.

(21) Jean, Y.; Volutran, F. An Introduction to Molecular Orbitals; Oxford University Press: Oxford, UK, 1993; Chapter 8.

(22) The $P^\text{−}$ anion is isoelectronic with the recently reported ECX anions ($E = Nb, As$; $X = S, Se$). See: (a) Hou, G.-L.; Chen, B.; Ramos, A.; Ruiz, M. A. Dimolybdenum-tin derivatives of the anionic diphosphorus 5-C$_5$H$_5$)(CO)$_2$: X-ray structures of [Mo(η^5-C$_5$H$_5$)][Mo(η^5-C$_5$H$_5$)](μ-PC$_3$)$_2$ and [Mo(η^5-C$_5$H$_5$)][Mo(η^5-C$_5$H$_5$)](μ-PC$_3$)$_2$: Tungsten makes a difference. Organometallics 2010, 29, S12−S15.

(23) Ruiz, M. A.; García, M. E.; García-Vivó, D.; Ruiz, M. A.; Vega, M. F. Synthesis and reactivity of the triply bonded binuclear anion [W$_3$(η-2-C$_5$H$_5$)(μ-PC$_3$)(μ-CO)$_2$]: π-donor complexes increase algebraically with P−X−π angle and therefore are quite sensitive to the relative positioning of P and X. Their absolute values for piano-stool complexes of type MCnPX$_2$, usually follow the order |$P^\text{−}$| > |$P^\text{−}$| > |$P^\text{−}$|. See, for instance: Jameson, C. J. In Phosphorus-31 NMR Spectroscopy in Stereochemical Analysis; Verkade, J. G.; Quin, L. D., Eds.; VCH: Deerfield Beach, FL, 1987; Chapter 6, and Wrackmeyer, B.; Alt, H. G.; Maisel, H. E. Ein- and zwei- dimensionale multikern NMR-spektroskopie an den isomeren halbsandwich-komplexen cis- und trans-[(h$_2$-C$_5$H$_5$)W(CO)$_2$(H)-PMe$_3$]. J. Organomet. Chem. 1990, 399, 125−130.

(24) Good, Y. G.; Shmelyov, S. Triply bonded binuclear π-donor complexes. Inorg. Chem. 2005, 44, 7865−7875.

(25) Jones, R. A.; Schwab, S. T.; Stuart, A. Li; Whittlesey, B. R.; White, T. C. Synthesis of dinuclear phosphido or arsenido bridged complexes of molydenum via reaction of secondary phosphines or arsines with $\text{Mo}(\eta^2$-C$_5$H$_5$)$_2$CO]$_2$: X-ray structures of [[Mo(η^2-2-C$_5$H$_5$)$_2$(μ-π-ER)]$_2$]+ (E = P; $\text{R} = t$-Bu; or $\text{R} = \text{Et}$). Polhedron 1985, 4, 1669−1695.

(26) Pregosin, P. S. NMR in Organometallic Chemistry; Wiley-VCH: Weinheim, Germany, 2012; Chapter 6.

(27) This chemical shift is ca. 200 ppm lower than the one reported for the Pt$_4^+$ cation (δ_p = −520 ppm). See: Kaupp, M.; Aubauer, C.; Engelhardt, G.; Klapotke, T. M.; Malkina, O. L. The Pt$_4^+$ cation has an extremely large negative 3^{13}P nuclear magnetic resonance chemical shift, due to spin−orbit coupling: A quantum-chemical prediction and its confirmation by solid-state nuclear magnetic resonance spectroscopy. J. Chem. Phys. 1999, 110, 3897−3902.

(28) Armarego, W. L. F.; Chai, C. Purification of Laboratory Chemicals, 7th ed.; Butterworth-Heinemann: Oxford, UK, 2012.

(29) Strohmeier, W. Photochemische Substitutionen an metalakarbonylen und deren Derivaten. Angew. Chem. 1964, 76, 873−881.

(30) Sellmann, D.; Brandl, A.; Endell, R. Reaktionen komplexegebundener liganden: XV. Dimin-, hydrizin- and aminooxo-complexes des molybdands; Synthese und Eigenschaften von μ-n-H_2[Mo(CO)$_2$]μ-n-H_5[Mo(CO)$_2$]$_2$[μ-n-H_5][Mo(CO)$_2$]$_2$[Mo(CO)$_2$$_2H_2$]$_2H_2$ und [Mo(CO)$_2$$_2H_2$]$_2$NH. J. Organomet. Chem. 1975, 97, 229−243. (b) Gibson, V. C.; Long, N. J.; Long, R. J.; White, A. J. P.; Williams, C. K.; Williams, D. J.; Grigiotti, E.; Zanello, P. Synthesis, characterization, and metal complexation of unsymmetrical 1,1'-bis(organylthiolato)ferrocenecarboxylates. Organometallics 2004, 23, 957−967.

(31) Crayls, A. Crayls Pro; Oxford Diffraction Limited, Ltd.: Oxford, UK, 2006.

(32) Farrugia, L. J. WinGX suite for small-molecule single-crystal crystallography. J. Appl. Crystalogr. 1999, 32, 837−838.

(33) Sheldrick, G. M. A short history of SHELXL. Acta Crystallogr., Sect. A: Found. Crystallogr. 2008, 64, 112−122.

(34) Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr., Sect. C: Struct. Chem. 2015, 71, 3−8.

(35) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision A02; Gaussian, Inc.: Wallingford, CT, 2009.

https://doi.org/10.1021/acs.inorgchem.1c01552
Inorg. Chem. 2021, 60, 11548−11561
(45) Zhao, Y.; Truhlar, D. G. A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. *J. Chem. Phys.* 2006, 125, 194101.

(46) Hay, P. J.; Wadt, W. R. Ab initio effective core potentials for molecular calculations. Potentials for potassium to gold including the outermost core orbitals. *J. Chem. Phys.* 1985, 82, 299–310.

(47) (a) Hariharan, P. C.; Pople, J. A. Influence of polarization functions on MO hydrogenation energies. *Theor. Chim. Acta* 1973, 26, 213–222. (b) Petersson, G. A.; Al-Laham, M. A. A complete basis set model chemistry. II. Open-shell systems and the total energies of the first-row atoms. *J. Chem. Phys.* 1991, 94, 6081–6090. (c) Petersson, G. A.; Bennett, A.; Tensfeldt, T. G.; Al-Laham, M. A.; Shirley, W. A.; Mantzaris, J. A complete basis set model chemistry. I. The total energies of closed-shell atoms and hydrides of the first-row elements. *J. Chem. Phys.* 1988, 89, 2193–2218.

(48) Portmann, S.; Luthi, H. P. MOLEKEL: An Interactive Molecular Graphics Tool. *CHIMIA* 2000, 54, 766.

(49) Lu, T.; Chen, F. MultiWFN: A multifunctional wavefunction analyzer. *J. Comput. Chem.* 2012, 33, 580–592.