STAR FORMATION IN AEGIS FIELD GALAXIES SINCE Z=1.1: THE DOMINANCE OF GRADUALLY DECLINING STAR FORMATION, AND THE MAIN SEQUENCE OF STAR-FORMING GALAXIES

K.G. Noeske1, B.J. Weiner2, S.M. Faber3, C. Papovich4, D.C. Koo5, R.S. Somerville6, K. Bundy4, C.J. Conselice7, J.A. Newman8, D. Schiminovich9, E. Le Floc’h2, A.L. Coil2,8, G.H. Rieke10, J.M. Lotz10, J.R. Primack10, P. Barmby11, M.C. Cooper12, M. Davis13, R.S. Ellis1, G.G. Fazio11, P. Guhathakurta11, J. Huang11, S.A. Kassim1, D.C. Martin4, A.C. Phillips5, R.M. Rich11, T.A. Small1, C.N.A. Willmer5, and G. Wilson14

ABSTRACT

We analyze star formation (SF) as a function of stellar mass (M_*) and redshift z in the All Wave-length Extended Groth Strip International Survey (AEGIS). For 2905 field galaxies, complete to $10^{10}(10^{10.8})M_\odot$ at $z < 0.7(1)$, with Keck spectroscopic redshifts out to $z = 1.1$, we compile SFR rates (SFR) from emission lines, GALEX, and Spitzer MIPS 24µm photometry, optical-NIR M_* measurements, and HST morphologies. Galaxies with reliable signs of SF form a distinct “main sequence (MS)”, with a limited range of SFR at a given M_* and z (1σ ≲ ±0.3dex), and log(SFR) approximately proportional to log(M_*). The range of log(SFR) remains constant to $z > 1$, while the MS as a whole moves to higher SFR as z increases. The dominant mode of the evolution of SFR since $z \sim 1$ is apparently a gradual decline of the average SFR in most individual galaxies, not a decreasing frequency of starburst episodes, or a decreasing factor by which SFR are enhanced in starbursts. LIRGs at $z \sim 1$ seem to mostly reflect the high SFR typical for massive galaxies at that epoch. The smooth MS may reflect that the same set of few physical processes governs star formation prior to additional quenching processes. A gradual process like gas exhaustion may play a dominant role.

Subject headings: galaxies: evolution — galaxies: formation — galaxies: high-redshift — galaxies: starburst

1. INTRODUCTION

Deep galaxy surveys have found consistently that the star formation rate (SFR) per unit stellar mass (M_*) depends strongly on both M_* and redshift z, with the bulk of star formation (SF) occurring earlier in massive galaxies than in less massive systems (e.g. Guzmán et al. 1997, Brinchmann & Ellis 2000, Juneau et al. 2005, Bauer et al. 2005, Bell et al. 2005, Pérez-Gonzalez et al. 2005, Feulner et al. 2005, Papovich et al. 2006, Caputi et al. 2006, Reddy et al. 2006). High-SFR objects are observed to be more abundant at higher z; it is often assumed that a part of these reflect a greater frequency of merger-driven starburst episodes at earlier times. However, a comprehensive observational picture of the relationship between SF and mass to $z \sim 1$, including objects with a wide range of both masses and SF rates, has been lacking.

This Letter is part of a series of papers that study the evolution of SFR and M_* in field galaxies out to $z = 1.1$ in the All Wave-length Extended Groth Strip International Survey (AEGIS). We combine SFR measurements from deep Spitzer MIPS 24µm imaging, Keck/DEEP2 spectra, and GALEX UV photometry, allowing us both to recover obscured SF in IR-luminous galaxies and to include lower-SFR objects not detected at 24µm. Using optical-NIR derived M_* measurements, we analyze the evolution of SFR as a function of M_* and z; we also analyze HST/ACS imaging and rest-frame colors to support the interpretation of SFR indicators.

We adopt a a concordance cosmology ($H_0 = 70\text{km s}^{-1}\text{Mpc}^{-1}, \Omega_M = 0.3, \Omega_{\Lambda} = 0.7$). Values of M_* and SFR are based on a Kroupa (2001) IMF, following recent results by Hopkins & Beacom (2006).

2. DATA SET

Our sample includes all field galaxies with DEEP2 spectroscopic redshifts $z \leq 1.1$, in the area where Spitzer MIPS 24µm photometry and K band imaging to 22 AB mag are available; see Davis et al. 2006 (this volume). Stellar masses were obtained from SED fits to optical/NIR photometry by Bundy et al. (2006); errors
are < 0.3 dex, with a mean and rms of 0.1 and 0.05 dex and $< 4\%$ of errors > 0.2 dex. Fig. 1 shows data in the M_* range where the sample is $> 80\%$ complete, adopting the completeness analysis by Bundy et al. (2006; see also Cimatti et al. 2006), for a total of 2005 galaxies. We draw conclusions only where the sample is $> 95\%$ complete ($M_* \geq 10(10.8) \times 10^{10} M_\odot$ for $z < 0.7(1)$, see vertical lines in Fig. 1). For galaxies with robust 24μm detections ($f > 60 \mu$Jy), SFRs were derived following Le Floc’h et al. (2005), using Charry & Elbaz (2001) SED templates; using templates from Dale & Helou (2002) yields no significant differences. We then add to the 24μm-based SFR the SFR estimated from DEEP2 emission lines (H_α, H_β, or [OII]/H_α), or [OII]/3727, depending on z with no extinction correction, to account for SF from unobscured regions. This approach is similar to that employed by Bell et al. 2005; utilizing rest-frame UV continuum SFRs (as they did) in place of emission-line fluxes yields consistent results. Galaxies below the 24μm detection limit are not dominated by highly extincted SF; for these, we use extinction-corrected SFR from emission lines; these can probe to roughly 10\times lower SFR than the 24μm data, and are slightly more sensitive at high z and cover a larger area than GALEX data. Emission line luminosities (as calculated in Weiner et al. 2006) were transformed to an H_α luminosity using average line ratios measured from DEEP2 data ($\text{H}_\beta/\text{H}_\alpha = 0.198$, [OII]/$\text{H}_\alpha = 0.69$; Weiner 2006, private communication), and transformed to SFR using the H_α calibration of Kennicutt (1998). The DEEP2 $\text{H}_\beta/\text{H}_\alpha$ ratio corresponds to an extinction of 1.30 mag at H_α assuming case B recombination, which was applied to correct the emission line SFRs. We use fixed rather than M_H_β-dependent line ratios (as la Weiner et al.), because these predict extinction-corrected SFR slightly in excess of the 24μm derived SFR for high mass galaxies. Our simple but robust approach yields results in good agreement with SFR derived from GALEX data, extinction-corrected based on UV spectral slopes.

For objects with both $f_{24 \mu m} < 60 \mu$Jy and emission-line $S/N < 2$, we estimate a 2-σ upper limit on SFR from the most sensitive emission line available, by adding 2σ to the measured uncertain SFR, or, for non-detections, to the limit of $S/N > 2$-detectable emission line SFR at the galaxy’s redshift. We again apply $A_{\mu_\alpha} = 1.30$ for extinction corrections, certainly an overestimate since extinction is lower in more weakly SF galaxies (Hopkins et al. 2001).

We have performed a suite of tests of these SFR estimates, finding that adopting different SFR tracers changes results moderately (Noeske et al. 2007, in prep.): qualitative results are unaffected. Random errors in our 24μm-based SFRs are $\lesssim 0.1$ dex from photometry and ~ 0.15 dex from scatter in the $f(24 \mu m)$ to L(IR) conversion (see Marcillac et al. 2006), yet total random errors are expected to be $0.3-0.4$ dex (see Bell et al. 2005). For extinction-corrected emission line SFRs, random errors are ~ 0.35 dex, including scatter about the assumed mean extinction.

3. RESULTS

Fig. 1 shows SFR as a function of M_* in four independent redshift bins. The following discussion refers only to the stellar mass range where the sample is $> 95\%$ complete, marked by the vertical dotted lines in each redshift bin. We identify three different categories of galaxies:

(1) The majority of galaxies show clear signs of SF, either robust 24μm detections, or, at lower M_*, blue colors and emission lines (blue symbols in Fig. 1). Quantitative HST morphologies (Gini/M20, Lotz et al. 2006; CAS, Conselice 2003) classify $\lesssim 25\%$ of these galaxies as early types (ES0, Sa), and $\gtrsim 90\%$ show visual signs of SF such as blue regions and dust lanes. Most of them lie on the “blue cloud”, (e.g. Willmer et al. 2006), though some of the massive ones are red, likely dusty, star-forming galaxies (Bell et al. 2005). This category (blue symbols in Fig. 1) comprises 67(56)$\%$ of the sample at $z < (>) 0.7$ in the M_* range where the sample is complete.

(2) Clearly separated are galaxies without robust 24μm ($> 60 \mu$Jy) or emission line ($S/N > 2$) detections (orange arrows in Fig. 1). The upper limits on their SFR are conservatively high ($\S2$), such that the true separation between the sequence and the other galaxies is likely larger than it appears here. Almost all ($> 95\%$) of these galaxies are on the red sequence, and $\gtrsim 90(80)$$\%$ at $z < (>) 0.7$ have early-type quantitative morphologies including early-type mergers, while $\gtrsim 90\%$ at $z > 0.7$ have early-type visual morphologies with no hints of current SF. These galaxies contribute 29(30)$\%$ of the sample at $z < (>) 0.7$.

(3) Scattered below the star-forming sequence are galaxies with robust emission line detections but no significant 24μm emission, 5(14)$\%$ of the sample at $z < (>) 0.7$. All of these galaxies (green crosses in Fig. 1) are on the red sequence and their H_α, H_β emission line equivalent widths tend to be low (few Å). Yan et al. (2006) and Weiner et al. (2006) showed that the bulk of the line emission in red galaxies out to intermediate redshifts is due to LINER/AGN emission, not SF. We find that 75$\%$ of those galaxies with [OII] and H_β detections show LINER-like line ratios, and $\gtrsim 55(70)$$\%$ at $z < (>) 0.7$ have early-type quantitative and visual morphologies that are typical for local LINERs (Yan et al. 2006). Line emission in these red galaxies thus appears to be dominated by LINERs/AGN, particularly at $z > 0.7$ where they are more frequent. Their SFR, derived from emission lines (Fig. 1), will mostly be overestimated. However, we find visual signs of SF in the HST images in $\lesssim 30\%$ of these galaxies, comparable to the fraction of non-early quantitative morphologies; these may be dominated by SF.

The star forming galaxies form a distinct sequence of SFR with M_*, which we term the “main sequence” (MS). The red lines in Fig. 1 enclose 34$\%$ of galaxies both above and below the median (red points), and thus indicate the equivalent of $\pm 1\sigma$ for a Gaussian distribution. The width of the MS measured in this way (the range in SFR about the median at a given M_*) is about $\sigma_{MS} = 0.35$ dex, and seems to remain approximately constant in our sample over the redshift range $0.20 < z < 1.1$. Subtracting a lower limit of non-systematic scatter in SFR (~ 0.2 dex, $\S2$) in quadrature yields an upper limit of ~ 0.3 dex on the intrinsic scatter, which is still broadened by the width of the z bins, and by additional spread from combining different SFR tracers. Errors in M_* hardly affect σ_{MS}.

The slope of the MS is shallower than unity,
log(SFR) = (0.67 ± 0.08) log(M*) - (6.19 ± 0.78) for M* between 10^{10} and 10^{11} \, M_\odot, and z = 0.2 - 0.7. There is a trend for the slope to flatten to higher z, but the completeness limits do not allow a robust quantification. A further important result is that the normalization of the main sequence evolves strongly over the redshift range of our sample; the median SFR at fixed M* evolves downwards by a factor of 3, measured at 10^{11} \, M_\odot, from the our highest (median z = 0.98) to our lowest (median z = 0.36) redshift bin. Importantly, it appears that the whole of the main sequence shifts downwards with time, rather than just the upper envelope decreasing, which was also reported by a recent GALEX study at z = 0.7 (Zamojski et al. 2007). A straightforward interpretation of these observations is that normal star-forming galaxies possess a limited range of SFR at a given M* and z, which is presumably set by whatever physical processes regulate SF in quiescent disks. Galaxies that are not on the main sequence, in categories (2) and (3) above, are observed during or after quenching of the SF activity, with either low-level or no current SF, or LINER/AGN activity.

4. DISCUSSION

4.1. Completeness: Is the Main Sequence Real?

It is obviously crucial to determine whether the “main sequence” that we have identified is real, or could be caused by selection effects or observational biases. We address the following possible causes of incompleteness or bias in our sample, again restricting the discussion to the M* range where we claim that the sample is > 95% complete:

1. Could the optically selected DEEP2 parent sample be missing a significant number of galaxies, or are there galaxies in the DEEP2 sample that lack a successful redshift determination because of low S/N? 2. Could we be significantly underestimating the SFR in galaxies in our sample due to biases in our SF indicators?

1. The DEEP2 spectroscopic selection (R_{AB} < 24.1) has been shown to be complete in the M* ranges indicated in Fig. 1 (vertical lines), from comparisons to various surveys with spectroscopic and deep photometric redshifts, including in particular the K-selected K20 survey, which should be less affected by extinction (Willmer et al. 2006, Bundy et al. 2006, Cimatti et al. 2006). For galaxies that are below our 24\,\mu m detection limit, we expect the extinction to be moderate, and would expect these galaxies to be picked up in K-selected surveys, but no such population is found to be missed by DEEP2.

More obscured populations can be probed through the deep Spitzer IRAC 3.6\,\mu m data in AEGIS, which at a given redshift are a proxy for M*, yet are barely affected by extinction. We have compared the distribution of f(24\,\mu m) at a given f(3.6\,\mu m) and z in the DEEP2 R_{AB}-selected sample and an IRAC f(3.6\,\mu m)-selected sample with IRAC-based photometric redshifts. We find no evidence that DEEP2 misses a significant population of heavily obscured, star-forming galaxies at z < 1, which could populate the area above the upper boundary of the MS. This agrees with the results of Houck et al. (2005) and Weedman et al. (2006) in the large area NDWFS, which indicate that such missed f(24\,\mu m)-bright, optically faint galaxies at z < 1 would contribute < 1% of our sample.

2. The 24\,\mu m completeness limit (horizontal black dashed line in Fig. 1) intersects the main sequence in each redshift bin. As discussed in §3, most galaxies below the MS are red, early type, non-SF, and/or LINER/AGN dominated (shown as orange arrows and green crosses). However, a fraction show spiral/late-type morphologies or visual signs of possible SF (§3). In principle, these red galaxies could have dust-obscured SF, unrecovered by emission lines, yet lie below the 24\,\mu m detection limit. Their true SFRs could then be anywhere up to the 24\,\mu m limit, in which case they may not be a distinct population, but rather a downward continuation of the MS. If this were the case, these galaxies would make up \lesssim 10(20)\% of the MS at z < (>)0.7. We can constrain the maximal effect of missed, dust-obscured SF in these galaxies on the 1\sigma range of SFR along the MS by including in the calculation of \sigma_{MS} all red, 24\,\mu m-detected galaxies with spiral/late-type morphologies,
and Hα, Hβ, and/or [OII] line emission down to spurious detections (i.e., 100% error in EW). For the extremes of either only the emission line SFR or the maximal SFR, corresponding to the 24μm limit, the measured width of the MS increases by ~0.05 dex or not at all, respectively.

Thus we argue that the relatively sharp upper limit of the MS is real, as our selection does not miss obscured sources with high SFR. The sharpness of the lower limit is more uncertain with our current data, but we find that only a small fraction of galaxies that we placed below the MS could have underestimated SF rates which would “blur out” the lower edge of the MS. Very deep 24μm data at z ∼ 1 from GOODS (Elbaz 2006, private communication) unambiguously confirm this result, particularly a well-defined lower boundary to the sequence.

4.2. Constraints on Episodic Star Formation

Studies based on local samples (Brinchmann et al. 2004, Salim et al. 2005 for SDSS; Lee 2006) have illustrated a relationship between SFR and M_*, and have identified two populations: galaxies on a star-forming sequence, and “quenched” galaxies with little or no detectable SF. At higher z, previous studies (see §1) had merely described an upper envelope of SFR in the SFR-M_* diagrams. We have employed a variety of SFR tracers and other evidence from AEGIS to show that the SF sequence persists out to z ∼ 1, with a similar dispersion in log(SFR) at fixed M_* but with a decrease in normalization of a factor of 3 from z = 0.98 to z = 0.36, measured at M_* = 10^{11} M_⊙. The global star formation rate density has also decreased by a factor of 3 over this same interval (Hopkins et al. 2004, Eq. 3). One possible physical explanation for this decline is a decreasing contribution from starbursts in gas-rich galaxy mergers. However, if this were the dominant factor causing the decline, we would expect to see the upper envelope of the main sequence move downwards with time, with the region populated by “normal” galaxies maintaining the same normalization. This is contrary to what we see in AEGIS: the region of the SFR-M_* space populated by main sequence galaxies at z = 0 (Brinchmann et al. 2004) is nearly empty at z ∼ 0.7–1, though these galaxies should be detectable in our survey.

We can use our observed MS to quantitatively constrain the duty cycle of episodic variations of SFR around an average level. We adopt the densely populated peak of the SFR distribution (the median) as this baseline level. The 1(2)σ ranges about the median of log(SFR), ±0.3(0.6) dex, include 68(95)% of the galaxies. We can hence infer that SFR variations exceeding ±0.3(0.6) dex, factors of 2(4), have duty cycles <32(5)%: these correspond to total times of <2.5(0.4) Gyr since z = 1. The amplitude of these variations ($\lesssim 4$) is consistent with gas-poor or minor mergers, rather than the peak SFR of gas-rich major mergers (Springel 2000, Cox et al. 2006). Excursions in SFR > 5× above the median are rare, ~1%, consistent with galaxies spending $\lesssim 100$ Myr in such strong burst episodes since z = 1. Of course these arguments are only valid in a statistical sense: a fraction of galaxies could have a lower average level of SF and undergo larger excursions, but at the expense of reducing the allowed range of SFR for the remainder of the population.

Previous studies have found that $\lesssim 30$% of SF at z ∼ 0.7 occurs in morphologically disturbed galaxies (Wolf et al. 2005; Bell et al. 2005) or close pairs (Lin et al. 2006). Semi-analytic models predict that about 5% of the SF at z ∼ 0.7 is due to major mergers, with the contribution due to minor mergers being more uncertain, but ranging from ~11–45% (Somerville et al. 2001; Wolf et al. 2005). These direct constraints and theoretical expectations are consistent with the conclusions that we have drawn here from the SFR-M_* distributions. A related comment pertains to the nature of Luminous Infrared Galaxies (LIRGs, $L(8-1000μm) > 10^{11} L_⊙$). LIRGs at z ∼ 0 are rare, mostly interacting galaxies (Sanders & Mirabel 1996) with strong starbursts (SFR $\gtrsim 5×$ above those of typical spirals). At z ∼ 1, LIRGs seem to mostly represent the high level of SFR in almost all massive SF galaxies, rather then extreme starbursts (Fig. 1).

In summary, we suggest a picture in which we are witnessing a gradual decline in the SFR of most galaxies since z ∼ 1, accompanied by rapid quenching in a fraction of (massive) galaxies. Presumably the regularity and constant dispersion of the main sequence out to z ∼ 1 means that the same physics that regulates SF in local disk galaxies is operating, indicating significant evolution either in the gas supply or SF efficiencies over this interval.

In the accompanying Letter (Noeske et al. 2007, this volume), we show that the slope and evolution of the MS can be understood as gradual gas exhaustion in a model in which galaxy age and SF timescales are a function of galaxy mass, and the dispersion of the MS is interpreted as resulting from a spread in age and SF timescales at a given mass.

See the survey summary paper (Davis et al. 2006, this volume) for full acknowledgments. This work is based on observations with the W.M. Keck Telescope, the Hubble Space Telescope, the Galaxy Evolution Explorer, the Canada France Hawaii Telescope, and the Palomar Observatory, and was supported by NASA and NSF grants. We wish to recognize the cultural role that the summit of Mauna Kea has within the Hawaiian community. This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Support for this work was provided by NASA through contract numbers 1256790, 960785, and 1255094 issued by JPL/Caltech. KGN acknowledges support from the Aspen Center for Physics. We wish to thank the referee for very valuable comments, and D. Elbaz and J. Lee for helpful discussions.

REFERENCES

Bauer, A. E., Drory, N., Hill, G. J., & Feulner, G. 2005, ApJ, 621, L89
Bell, E. F., et al. 2005, ApJ, 625, 23
Brinchmann, J., Charlot, S., White, S. D. M., Tremonti, C., Kauffmann, G., Heckman, T., & Brinchmann, J. 2004, MNRAS, 351, 1151
Star formation to $z > 1$ in AEGIS field galaxies

Brinchmann, J., & Ellis, R. S. 2000, ApJ, 536, L77
Bundy, K., et al. 2006, ApJ, 651, 120
Caputi, K. I., et al. 2006, ApJ, 637, 727
Chary, R., & Elbaz, D. 2001, ApJ, 556, 562
Cimatti, A., Daddi, E., & Renzini, A. 2006, A&A, 453, L29
Conselice, C. J. 2003, ApJS, 147, 1
Cox, T. J., Jonsson, P., Primack, J. R., & Somerville, R. S. 2006, MNRAS, 373, 1013
Dale, D. A., & Helou, G. 2002, ApJ, 576, 159
Feulner, G., Gabasch, A., Salvato, M., Drory, N., Hopp, U., & Bender, R. 2005, ApJ, 633, L9
Guzman, R., Gallego, J., Koo, D. C., Phillips, A. C., Lowenthal, J. D., Faber, S. M., Illingworth, G. D., & Vogt, N. P. 1997, ApJ, 489, 559
Hopkins, A. M., Connolly, A. J., Haarsma, D. B., & Cram, L. E. 2001, AJ, 122, 288
Hopkins, A. M. 2004, ApJ, 615, 209
Hopkins, A. M., & Beacom, J. F. 2006, ApJ, 651, 142
Houck, J. R., et al. 2005, ApJ, 622, L105
Juneau, S., et al. 2005, ApJ, 619, L135
Kennicutt, R. C., Jr. 1998,ARA&A, 36, 189
Kroupa, P. 2001, MNRAS, 322, 231
Lee, J.C. 2006, PhD thesis, University of Arizona
Le Floc’h, E., et al. 2005, ApJ, 632, 169
Lin, L., et al. 2006, ApJ, in press (astro-ph/0607272
Lotz, J.M., et al. 2006, ApJ, submitted (astro-ph/0602088
Marcillac, D., Elbaz, D., Chary, R. R., Dickinson, M., Galliano, F., & Morrison, G. 2006, A&A, 451, 57 A&A, 361, 33
Papovich, C., et al. 2006, ApJ, 640, 92
Pérez-González, P. G., et al. 2005, ApJ, 630, 82
Reddy, N. A., Steidel, C. C., Fadda, D., Yan, L., Pettini, M., Shapley, A. E., Erb, D. K., & Adelberger, K. L. 2006, ApJ, 644, 792
Salim, S., et al. 2005, ApJ, 619, L39
Somerville, R. S., Primack, J. R., & Faber, S. M. 2001, MNRAS, 320, 504
Springel, V. 2000, MNRAS, 312, 859
Weedman, D. W., et al. 2006, ApJ, 651, 101
Weiner, B.J., et al. 2006, ApJ, in press (astro-ph/0610842
Willmer, C. N. A., et al. 2006, ApJ, 647, 853
Wolf, C. et al. 2005, ApJ, 630, 771
Yan, R., Newman, J. A., Faber, S. M., Konidaris, N., Koo, D., & Davis, M. 2006, ApJ, 648, 281
Zamojski, M.A., et al. 2007, in press (astro-ph/0701478)