Abstract

Lung cancer is a major health burden and early detection only bears the possibility of curative treatment. Screening with computed tomography (CT) recently demonstrated a mortality reduction in selected patients and has been incorporated in clinical guidelines. Problems of screening with CT are the excessive number of false positive findings, costs, radiation burden and from a global point of view shortage of CT capacity. In contrast, chest radiography could be an ideal screening tool in the early detection of lung cancer. It is widely available, easy to perform, cheap, the radiation burden is negligible and there is only a low rate of false positive findings. In contrast to randomized controlled trials different large population-based cohort studies have shown a lung cancer mortality reduction using chest radiography. In conclusion, early detection of lung cancer is also possible with chest radiography.

Key words: Lung cancer; Screening; Mortality; Chest radiograph

Core tip: Screening with computed tomography (CT) recently demonstrated a mortality reduction in selected patients with lung cancer, but there are several shortcomings of screening with CT (false positive findings, high costs, radiation burden, shortage of capacity). In contrast, chest radiography could be an ideal screening tool in the early detection of lung cancer. It is widely available, its radiation burden is negligible and there is only a low rate of false positive findings. In contrast to randomized controlled trials different large population-based cohort studies have shown a lung cancer mortality reduction using chest radiography. In conclusion, early detection of lung cancer is also possible with chest radiography.
smokers with a 30-pack year history beginning at the age of 55[10]. The main problem with CT screening is the excessive number of false positive findings. In the first two screening rounds of the NLST 27.3% and 27.8% of participants showed suspect findings (i.e., a nodule measuring at least 4 mm). Of these nodules only 3.8% turned out to be lung cancers (230 out of 7731 positive results). This leads to high costs with further diagnostics and causes considerable anxiety in affected individuals with a suspect nodule. CT is also expensive per se and from a global point of view not readily available everywhere. Most health care systems will not be able to finance such a CT-based screening program. The radiation burden due to repeated CT scans should also be taken into account.

In contrast, chest radiography could be an ideal screening tool in the early detection of lung cancer. It is widely available, easy to perform, cheap, its radiation burden is negligible and there is only a low rate of false positive findings. As randomized controlled trials (RCT) have shown no reduction in lung cancer mortality compared to control groups it has been concluded by most investigators that screening with chest radiography is ineffective[11]. This view has been repeatedly challenged: most RCT have shown a survival advantage for screened individuals because of a stage shift in diagnosed cancers[12,13]. Because RCT are prone to selection bias (selection of highly motivated individuals and problem of generating two comparable groups) population based cohort studies may give a more realistic view of the situation in medical care[5,6]. Recently, a group of Italian investigators presented their follow-up data of a large population based cohort study[14]. Participation in this trial was offered to all patients at risk for lung cancer (smokers with more than 10 pack years between 45 and 75 years of age) by their general practitioner. The trial consisted of a baseline two view chest radiography and an annually repeated examination (single view) for the following four years. Five thousand eight hundred and fifteen subjects participated and follow up was 8 years. Compared to a statistical control population derived from the national health services data there was a lung cancer mortality reduction of 18% (172 deaths to lung cancer instead of 210 expected). Interestingly, there where only 3.4% false positive findings and only 0.16% unnecessary invasive procedures[15]. There are also several case-control studies from Japan showing a reduction of lung cancer mortality between 40% and 60% using screening with chest radiography and sputum cytology[6,16]. One population based case-control study from Japan used X-ray screening only and found a lung cancer mortality reduction of more than 20%[17]. Newer technologies like digital radiography, bone suppression or computer-aided nodule detection may further enhance the sensitivity of chest radiography in the detection of early lung cancer, but have not been adopted in the studies mentioned above[18,19]. Caro et al.[20] calculated cost-effectiveness of lung cancer screening with chest radiography. They concluded that even an achieved mortality reduction of 6% could be cost-effective.

In conclusion, radiologists should realize that screening with chest radiography leads to reduced lung cancer mortality in population-based cohort studies. Radiologists should be aware that early detection of lung cancer is possible when reading their daily chest radiographs. And in the clinically common scenario of a worried middle aged smoker asking for lung cancer “screening” a chest radiograph is still justified.

Despite the exiting results of the NLST there are many unresolved issues with CT-based screening for lung cancer (how to reduce false-positive findings, optimal patient selection, long term outcome of screened patients, transferability of the results of the NLST to other populations)[21,22]. Until more data from ongoing trials is available, CT-based screening should therefore not be advocated and used cautiously only.

REFERENCES
1. Humphrey LL, Teutsch S, Johnson M. Lung cancer screening with sputum cytologic examination, chest radiography, and computed tomography: an update for the U.S. Preventive Services Task Force. Ann Intern Med 2004; 140: 740-753 [PMID: 15126259 DOI: 10.7326/0003-4819-140-9-20040504-00015]
2. Aberle DR, Adams AM, Berg CD, Black WC, Clapp JD, Fagerstrom RM, Green IF, Gatsonis C, Marcus PM, Sicks JD. Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med 2011; 365: 395-407 [PMID: 21714641 DOI: 10.1056/NEJMoai102873]
3. Jaklitsch MT, Jacobson FL, Austin JH, Field JK, Jett JR, Keshavjee S, MacMahon H, Mulshine JL, Munden RF, Salgia R, Strauss GM, Swanson SJ, Travis WD, Sugarbaker DJ. The American Association for Thoracic Surgery guidelines for lung cancer screening using low-dose computed tomographic scans for lung cancer survivors and other high-risk groups. J Thorac Cardiovasc Surg 2012; 144: 33-38 [PMID: 22701039 DOI: 10.1016/j.jtcvs.2012.05.060]
4. Strauss GM, Gleason RE, Sugarbaker DJ. Chest X-ray screening improves outcome in lung cancer. A reappraisal of randomized trials on lung cancer screening. Chest 1995; 107: 2705-2795 [PMID: 7781405 DOI: 10.1378/chest.107.6.Suppl ment.270S]
5. Strauss GM, Dominioni L. Chest X-ray screening for lung cancer: overdiagnosis, endpoints, and randomized population trials. J Surg Oncol 2013; 108: 294-300 [PMID: 23982825]
6. Dominioni L, Rotolo N, Mantovani W, Poli A, Pisani S, Conti V, Paolucci M, Sessa F, Paddeu A, D’Ambrosio V, Imperatori A. A population-based cohort study of chest x-ray screening in smokers: lung cancer detection findings and follow-up. BMC Cancer 2012; 12: 18 [PMID: 22251777 DOI: 10.1186/1471-2407-12-18]
7. Dominioni L, Poli A, Mantovani W, Pisani S, Rotolo N, Paolucci M, Sessa F, Conti V, D’Ambrosio V, Paddeu A, Imperatori A. Assessment of lung cancer mortality reduction after chest x-ray screening in smokers: a population-based cohort study in Varese, Italy. Lung Cancer 2013; 80: 50-54 [PMID: 23294502 DOI: 10.1016/j.lungcan.2012.12.014]
8. Sagawa M, Nakayama T, Tsukada H, Nishii K, Baba T, Kunita Y, Saito Y, Kaneko M, Sakuma T, Suzuki T, Fujimura S. The efficacy of lung cancer screening conducted in 1990s: four case-control studies in Japan. Lung Cancer 2003; 41: 29-36 [PMID: 12926309 DOI: 10.1016/S0169-5002(03)00197-1]
9. Nakayama T, Baba T, Suzuki T, Sagawa M, Kaneko M. An evaluation of chest x-ray screening for lung cancer in gunma prefecture, Japan: a population-based case-control study. Eur J Cancer Prev 2002; 11: 1380-1387 [PMID: 12091070]
10. Freedman M. State-of-the-art screening for lung cancer (part 1): the chest radiograph. Thorac Surg Clin 2004; 14: 43-52
Gossner J. Lung cancer screening with radiography

11 Caro JJ, Klittich WS, Strauss G. Could chest X-ray screening for lung cancer be cost-effective? Cancer 2000; 89: 2502-2505 [PMID: 11147636 DOI: 10.1002/1097-0142(20001201)89:11]

12 Zompatori M, Mascalchi M, Ciccarese F, Sverzellati N, Pastorino U. Screening for lung cancer using low-dose spiral CT: 10 years later, state of the art. Radiol Med 2013; 118: 51-61 [PMID: 22744348 DOI: 10.1007/s11547-012-0843-5]

P- Reviewers: Ng SH, Razek AAKA, Sijens PE
S- Editor: Qi Y E- Editor: Liu SQ