Synthesis by a cost-effective method and electroluminescence of a novel efficient yellowish-green thermally-activated delayed fluorescent molecule

Ikbal Marghada,b, Dae Hyeon Kima, Xiaohui Tianc, Fabrice Mathevetd, Corinne Gosminib, Jean-Charles Ribierrea,c and Chihaya Adachia,e

a Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, Motoooka 744, Nishi, Fukuoka 819-0395, Japan
b Laboratoire de chimie moléculaire LCM Ecole Polytechnique, CNRS, 91128 Palaiseau Cedex, France
c Department of polymer science and engineering, Zhejiang University, Hangzhou 310027, China
d Sorbonne Universités, UPMC Univ Paris 06, CNRS, Institut Parisien de Chimie Moléculaire (IPCM), Chimie des Polymères, 75005 Paris, France
e Japan Science and Technology Agency (JST), ERATO, Adachi Molecular Exciton Engineering Project, Fukuoka 819-0395, Japan

Contents

Figure S1: 1H-NMR, 13C-NMR and 19F-NMR spectra of the 2,4,6-tris(4-fluorophenyl)-1,3,5-triazine (2).

Figure S2: 1H-NMR, 13C-NMR and FTIR spectra of the 2,4,6-tris(4-(10H-phenothiazin-10-yl)phenyl)-1,3,5-triazine (TRZ 3(Ph-PTZ)).

Figure S3: Advantage of the 2,4,6-tris(4-fluorophenyl)-1,3,5-triazine (2).

Figure S4: Energy diagram of the fabricated OLEDs

Figure S5: Reproducibility of the EL properties of the TADF OLEDs

Tables S1, S2, S2 and S4: Quantum chemistry calculation results.
Figure S1: 1H-NMR, 13C-NMR, 19F-NMR spectra of the 2,4,6-tris(4-fluorophenyl)-1,3,5-triazine (2).
Figure S2: 1H-NMR, 13C-NMR and FTIR spectra of the 2,4,6-tris(4-(10H-phenothiazin-10-yl)phenyl)-1,3,5-triazine (TRZ 3(Ph-PTZ)).
Figure S3: Advantage of the 2,4,6-tris(4-fluorophenyl)-1,3,5-triazine (2).

The S3 scheme shows that the 2,4,6-tris(4-fluorophenyl)-1,3,5-triazine enables us to synthesis with a simple reaction the molecule (1), (2), (3) or (4) (for respectively: 2,4,6-tri(4-carbazolephenyl)-1,3,5-triazine; 2,4,6-tri(4-phenoazinophenyl)-1,3,5-triazine; 2,4,6-tri(4-phenothiazinephenyl)-1,3,5-triazine; 2,4,6-tri(4-(9,9-dimethyl-9,10-dihydroacridine) phenyl)-1,3,5-triazine).
Figure S4: Energy diagram of the fabricated OLEDs with the HOMO and LUMO values (in eV) of each organic layer.
Figure S5: Reproducibility of the EL properties of the TADF OLEDs

TRZ$_3$(Ph-PTZ):mCBP (6 wt.%)	EQE (%)
Device 1	17.4
Device 2	16.8
Device 3	17.2
Table S1: B3LYP/6-31G(d) computed Cartesian coordinates of the conformers of 2,4,6-tris(4-(10H-phenothiazin-10-yl)phenyl)-1,3,5-triazine (TRZ 3(Ph-PTZ)).

Conformer A-1
Total energy: E(RB3LYP) = -3716.76685191 a.u.

Center Number	Atomic Number	Coordinates (Angstroms)	X	Y	Z
1	6	-1.26543	-0.355	-0.37015	
2	7	-0.33958	-1.32918	-0.3705	
3	6	0.939651	-0.91837	-0.36972	
4	6	0.324565	1.272746	-0.37016	
5	7	-0.98156	0.957751	-0.37106	
6	7	1.31992	0.370269	-0.37054	
7	6	-2.68607	-0.75423	-0.36972	
8	6	-3.06221	-2.10559	-0.36395	
9	6	-3.71032	0.204181	-0.36326	
10	6	-4.39615	-2.48742	-0.37157	
11	1	-2.28701	-2.86354	-0.34708	
12	6	-5.04817	-0.16369	-0.37089	
13	1	-3.44262	1.254767	-0.34591	
14	6	-5.42538	-1.52286	-0.39161	
15	1	-4.6374	-3.54223	-0.34469	
16	1	-5.80294	0.611163	-0.34326	
17	6	1.995414	-1.94919	-0.36888	
18	6	3.353689	-1.59888	-0.36296	
19	6	1.677868	-3.31552	-0.3624	
20	6	4.351601	-2.56291	-0.37063	
21	1	3.622199	-0.5485	-0.34596	
22	6	2.665658	-4.28992	-0.37003	
23	1	0.634247	-3.60922	-0.34496	
24	6	4.031253	-3.93659	-0.39087	
25	1	5.385624	-2.24416	-0.3435	
26	1	2.371964	-5.33133	-0.34249	
27	6	0.689537	2.702425	-0.36972	
28	6	2.03166	3.110288	-0.36382	
29	6	-0.29277	3.703797	-0.36333	
30	6	2.381934	4.452848	-0.37145	
31	1	2.807647	2.353161	-0.34675	
32	6	0.043464	5.049953	-0.37099	
33	1	-1.33675	3.411352	-0.34599	
34	6	1.393382	5.459055	-0.39167	
35	1	3.430739	4.718948	-0.34433	
36	1	-0.74938	5.786271	-0.34345	
37	7	5.042501	-4.92363	-0.40689	
---	---	------------	------------	------------	------------
38	6	4.743777	-6.31309	-0.25631	
39	6	6.42441	-4.59111	-0.2575	
40	6	5.251195	-7.00275	0.856677	
41	6	4.009521	-7.01528	-1.21937	
42	6	7.127046	-5.08088	0.855297	
43	6	7.107902	-3.84079	-1.21162	
44	6	4.981697	-8.36391	1.026467	
45	6	6.264683	-6.11472	2.029454	
46	6	3.719938	-8.36651	-1.03507	
47	6	3.657861	-6.48854	-2.10095	
48	6	8.481408	-4.77836	1.024014	
49	6	8.45184	-3.51833	-1.03854	
50	1	6.572146	-3.50266	-2.10308	
51	6	4.197575	-9.03908	0.092427	
52	1	5.392338	-8.88799	1.884764	
53	1	3.133477	-8.89654	-1.78002	
54	1	9.015956	-5.17558	1.881995	
55	6	9.136654	-3.97872	0.088743	
56	1	8.966903	-2.91967	-1.78429	
57	1	3.981252	-10.0943	0.232793	
58	1	10.18638	-3.73677	0.228147	
59	7	1.743084	6.828213	-0.40746	
60	6	3.096124	7.263449	-0.258	
61	6	0.764795	7.859086	-0.25623	
62	6	3.441246	8.046825	0.855137	
63	6	4.070246	6.978733	-1.22222	
64	6	0.839186	8.711496	0.857208	
65	6	-0.22775	8.076998	-1.21908	
66	6	4.755185	8.493312	1.023978	
67	16	2.16695	8.480184	2.029679	
68	6	5.385636	7.402801	-1.03904	
69	1	3.788753	6.411363	-2.1038	
70	6	-0.09945	9.733331	1.027823	
71	6	-1.17839	9.079854	-1.03411	
72	1	-0.25393	7.444662	-2.101	
73	6	5.730814	8.151929	0.088513	
74	1	5.004936	9.110339	1.882209	
75	1	6.136999	7.159942	-1.78489	
76	1	-0.02155	10.39412	1.886277	
77	6	-1.12055	9.90212	0.093826	
78	1	-1.95515	9.227504	-1.77887	
79	1	6.753094	8.491632	0.227984	
80	1	-1.85452	10.69037	0.234707	
81	7	-6.78595	-1.90454	-0.40709	
82	6	-7.83947	-0.95049	-0.25737	
83	6	-7.18968	-3.26725	-0.25704	
84	6	-8.69069	-1.04396	0.855533	
85	6	-8.07997	0.035842	-1.2212	
Center Number	Atomic Number	X	Y	Z	
---------------	---------------	------------	----------	----------	
86	6	-7.96551	-3.62975	0.85589	
87	6	-6.88202	-4.23511	-1.2205	
88	6	-9.73441	-0.12945	1.024683	
89	16	-8.42909	-2.36501	2.029211	
90	6	-9.10502	0.962818	-1.0377	
91	1	-7.44793	0.076088	-2.1028	
92	6	-8.3815	-4.95356	1.02537	
93	6	-7.27557	-5.55987	-1.03666	
94	1	-6.32102	-3.9411	-2.10207	
95	6	-9.9265	0.886621	0.089711	
96	1	-10.3938	-0.22217	1.882766	
97	1	-9.27037	1.735245	-1.78325	
98	1	-8.99307	-5.21697	1.883423	
99	6	-8.01706	-5.92163	0.090742	
100	1	-7.015	-6.30585	-1.78194	
101	1	-10.7319	1.602001	0.229435	
102	1	-8.33302	-6.95142	0.230702	

Conformer A-2
Total energy: \(E(RB3LYP) = -3716.76674964 \) a.u
21	1	-3.15215	1.837928	-0.35948
22	6	-0.88932	4.965548	-0.2512
23	1	0.742038	3.586364	-0.08705
24	6	-2.28354	5.138553	-0.37902
25	1	-4.16433	4.062985	-0.45955
26	1	-0.23651	5.826403	-0.18585
27	6	-1.62199	-2.26379	-0.2372
28	6	-3.01607	-2.15086	-0.34434
29	6	-1.0785	-3.5561	-0.17815
30	6	-3.83177	-3.27138	-0.40991
31	1	-3.45961	-1.16177	-0.37027
32	6	-1.88249	-4.68461	-0.24279
33	1	-0.00491	-3.6664	-0.07411
34	6	-3.28213	-4.57021	-0.37718
35	1	-4.90369	-3.13396	-0.47012
36	1	-1.41914	-5.6602	-0.17173
37	7	-2.85704	6.427916	-0.45405
38	6	-2.08052	7.612092	-0.26096
39	6	-4.27141	6.628871	-0.41295
40	6	-3.3805	8.454984	0.821338
41	6	-1.06988	7.98215	-1.15617
42	6	-4.82572	7.357419	0.651869
43	6	-5.10887	6.169811	-1.43649
44	6	-1.64326	9.624088	1.031033
45	16	-3.73379	8.01735	1.902231
46	6	-0.31863	9.134736	-0.93075
47	1	-0.8715	7.351168	-2.01689
48	6	-6.20496	7.576475	0.714918
49	6	-6.48684	6.366725	-1.35866
50	1	-4.67079	5.64682	-2.28082
51	6	-0.5985	9.951077	0.167881
52	1	-1.89559	10.27409	1.863792
53	1	0.475417	9.401897	-1.62207
54	1	-6.61843	8.153852	1.536708
55	6	-7.03652	7.061564	-0.27849
56	1	-7.12869	5.989744	-2.14968
57	1	-0.02081	10.85482	0.339475
58	1	-8.10893	7.224536	-0.22119
59	7	-4.10631	-5.71572	-0.45166
60	6	-5.53212	-5.62363	-0.41882
61	6	-3.58884	-7.03274	-0.2512
62	6	-6.22947	-6.22029	0.643994
63	6	-6.25252	-5.00668	-1.44845
64	6	-4.0606	-7.79301	0.831062
65	6	-2.67005	-7.60437	-1.13935
66	6	-7.62473	-6.1532	0.698879
67	16	-5.30224	-7.08485	1.902539
68	6	-7.6421	-4.91807	-1.37879
Center Atomic Coordinates (Angstroms)

Number	Number	X	Y	Z
1	6	-5.71219	-4.58673	2.29106
70	6	-3.57862	-9.0872	1.047938
71	6	-2.17105	-8.8852	-0.90669
72	1	-2.3424	-7.03019	-2.00033
73	6	-8.32812	-5.48269	-0.30069
74	1	-8.15194	-6.63144	1.519243
75	1	-8.18902	-4.42062	-2.17456
76	1	-3.96292	-9.66916	1.880587
77	6	-2.61772	-9.62347	0.192028
78	1	-1.4444	-9.31113	-1.59252
79	1	-9.41153	-5.4233	-0.24974
80	1	-2.23754	-10.6255	0.369233
81	7	6.991238	-0.71912	0.497831
82	6	7.8758	0.40082	0.423042
83	6	7.632828	-1.993	0.408219
84	6	8.825666	0.451189	-0.60995
85	6	7.858689	1.416524	1.386283
86	6	8.554204	-2.22055	-0.62682
87	6	7.411495	-2.99615	1.359261
88	6	9.709687	1.530038	-0.70412
89	16	8.89686	-0.89839	-1.77824
90	6	8.723401	2.504506	1.275869
91	1	7.153395	1.35076	2.208802
92	6	9.20348	-3.45378	-0.73552
93	6	8.040098	-4.23426	1.234246
94	1	6.733535	-2.79998	2.183986
95	6	9.642622	2.566621	0.225664
96	1	10.44878	1.548805	-1.49978
97	1	8.688285	3.295837	2.019076
98	1	9.924436	-3.61092	-1.53252
99	6	8.928774	-4.46703	0.181744
100	1	7.846243	-5.01133	1.967982
101	1	10.32398	3.408624	0.143791
102	1	9.427113	-5.4277	0.088524

Conformer E-1

Total energy: $E(RB3LYP) = -3716.78099676$ a.u.
5	7	1.328953	0.32816	-5E-06	
6	7	-0.3805	-1.3155	0.000023	
7	6	0.776	2.685338	-4.2E-05	
8	6	-0.18961	3.704281	-6.4E-05	
9	6	2.135198	3.03364	-4.2E-05	
10	6	0.196555	5.041265	-8.6E-05	
11	1	-1.23926	3.43432	-5.8E-05	
12	6	2.520832	4.371075	-6.3E-05	
13	1	2.879915	2.246306	-2.6E-05	
14	6	1.55916	5.383086	-8.6E-05	
15	1	-0.5513	5.828842	0.0001	
16	1	3.570738	4.646761	-0.0006	
17	6	-2.71412	-0.67072	0.00003	
18	6	-3.1137	-2.01645	0.000339	
19	6	-3.69537	0.332208	-0.00033	
20	6	-4.46464	-2.35052	0.000334	
21	1	-2.35507	-2.79047	0.00061	
22	6	-5.04644	-0.00254	-0.00036	
23	1	-3.38586	1.370816	-0.00059	
24	6	-5.44037	-1.3442	-3.3E-05	
25	1	-4.77275	-3.39197	0.000632	
26	1	-5.81016	0.768844	-0.00064	
27	6	1.937387	-2.01518	0.000036	
28	6	1.559539	-3.36646	-8E-06	
29	6	3.302609	-1.68832	0.000103	
30	6	2.525042	-4.36909	0.00013	
31	1	0.505345	-3.61782	-6.6E-05	
32	6	4.267437	-2.69117	0.000126	
33	1	3.593582	-0.6443	0.000135	
34	6	3.883897	-4.03937	0.000081	
35	1	2.238906	-5.4162	-2.2E-05	
36	1	5.323399	-2.43719	0.00018	
37	7	-6.84339	-1.65417	-5.1E-05	
38	6	-7.46543	-1.97204	-1.23829	
39	6	-7.46565	-1.97106	1.238325	
40	6	-8.86879	-1.93417	-1.35433	
41	6	-6.71754	-2.31688	-2.37476	
42	6	-8.86904	-1.93313	1.354071	
43	6	-6.71795	-2.31499	2.375204	
44	6	-9.49316	-2.27448	-2.555	
45	16	-9.85619	-1.33154	-0.00044	
46	6	-7.34797	-2.61431	-3.58353	
47	1	-5.63603	-2.34231	-2.32035	
48	6	-9.49361	-2.27255	2.554893	
49	6	-7.3486	-2.61151	3.584079	
50	1	-5.63643	-2.34043	2.321002	
51	6	-8.73743	-2.60475	-3.68009	
52	1	-10.5783	-2.25675	-2.60611	
---	---	-------	-------	-------	-------
53	1	-6.7395	-2.86575	-4.44779	
54	1	-10.5787	-2.25482	2.605782	
55	6	-8.73809	-2.60193	3.680378	
56	1	-6.74029	-2.86224	4.448658	
57	1	-9.23141	-2.84806	-4.616	
58	1	-9.23223	-2.84456	4.616372	
59	7	4.853894	-5.0994	0.000106	
60	6	5.440246	-5.47906	-1.23818	
61	6	5.440147	-5.47908	1.238426	
62	6	6.109745	-6.71302	-1.35403	
63	6	5.36433	-4.65926	-2.37483	
64	6	6.109637	-6.71305	1.354311	
65	6	5.364141	-4.6593	2.375087	
66	6	6.716666	-7.08355	-2.55472	
67	16	6.082382	-7.86913	0.000126	
68	6	5.937178	-5.05648	-3.58358	
69	1	4.845106	-3.71019	-2.32058	
70	6	6.716462	-7.0836	2.555035	
71	6	5.936893	-5.05655	3.58388	
72	1	4.844923	-3.71023	2.320815	
73	6	6.624247	-6.26424	-3.67998	
74	1	7.244352	-8.03187	-2.60567	
75	1	5.850232	-4.40406	-4.44798	
76	1	7.244143	-8.03193	2.606017	
77	6	6.623953	-6.26431	3.680304	
78	1	5.849879	-4.40415	4.448285	
79	1	7.081989	-6.57034	-4.61588	
80	1	7.08162	-6.57043	4.616234	
81	7	1.989073	6.753085	-0.00011	
82	6	2.025278	7.450585	-1.23842	
83	6	2.025226	7.45064	1.238175	
84	6	2.759988	8.646868	-1.35432	
85	6	1.35293	6.97532	-2.37503	
86	6	2.759929	8.646929	1.354051	
87	6	1.352834	6.975422	2.374777	
88	6	2.777916	9.357639	-2.55505	
89	16	3.775193	9.200584	-0.00012	
90	6	1.411023	7.669906	-3.58383	
91	1	0.789954	6.05153	-2.32068	
92	6	2.777804	9.357753	2.55475	
93	6	1.410875	7.670062	3.583554	
94	1	0.789865	6.051626	2.320448	
95	6	2.114273	8.868307	-3.68029	
96	1	3.335975	10.28841	-2.60606	
97	1	0.889223	7.268705	-4.44822	
98	1	3.33586	10.28853	2.605746	
99	6	2.114116	8.86847	3.679986	
100	1	0.889042	7.268897	4.447935	
Conformer E-2
Total energy: E(RB3LYP) = -3716.78134568 a.u.

Center Number	Atomic Number	X	Y	Z
1	6	0.299563	1.252114	-9.3E-05
2	7	1.296958	0.354727	-0.00013
3	6	0.922452	-0.93381	-0.00022
4	6	-1.28204	-0.38029	-0.00026
5	7	-1.00319	0.932219	-0.00013
6	7	-0.35329	-1.3484	-0.00027
7	6	0.66057	2.69087	0.000049
8	6	2.007628	3.085846	-0.00001
9	6	-0.33887	3.67565	0.000229
10	6	2.346434	4.435607	0.000116
11	1	2.778961	2.324467	-0.00019
12	6	0.000558	5.025593	0.000377
13	1	-1.37853	3.369698	0.000269
14	6	1.343532	5.414844	0.00035
15	1	3.388908	4.740304	0.000001
16	1	-0.76818	5.791987	0.000536
17	6	1.987315	-1.96625	-0.00027
18	6	1.656583	-3.32984	-0.00043
19	6	3.340365	-1.59223	-0.00014
20	6	2.656355	-4.29834	-0.00049
21	1	0.611778	-3.61772	-0.00053
22	6	4.339446	-2.56094	-0.00018
23	1	3.594886	-0.53872	0.000015
24	6	4.002928	-3.92167	-0.00038
25	1	2.406548	-5.3547	-0.00064
26	1	5.386001	-2.27056	-0.00004
27	6	-2.70827	0.786822	-0.00019
28	6	-3.06142	-2.14479	-0.00018
29	6	-3.72362	0.182602	-0.00014
30	6	-4.4003	-2.52546	-0.00014
31	1	-2.27689	-2.89246	-0.00022
32	6	-5.06197	-0.19864	-0.00009
33	1	-3.44986	1.231268	-0.00013
34	6	-5.4087	-1.5568	-9.9E-05
35	1	-4.67975	-3.57436	-0.00014
36	1	-5.84682	0.552066	-2.5E-05
37	7	5.009313	-4.94723	-0.0004
38	6	5.608467	-5.30648	-1.23858
39	6	5.607509	-5.30727	1.23802
40	6	6.320068	-6.51666	-1.35453
41	6	5.504553	-4.48962	-2.37513
42	6	6.318973	-6.51755	1.353801
43	6	5.502796	-4.49104	2.374947
44	6	6.939513	-6.86587	-2.5552
45	16	6.332216	-7.67341	-0.00073
46	6	6.090826	-4.86672	-3.58389
47	1	4.952701	-3.55915	-2.32077
48	6	6.93745	-6.8675	2.554753
49	6	6.088098	-4.86889	3.583945
50	1	4.951093	-3.56047	2.320665
51	6	6.819083	-6.05009	-3.68037
52	1	7.499427	-7.79553	-2.60624
53	1	5.981311	-4.21773	-4.4483
54	1	7.497282	-7.79722	2.605689
55	6	6.816179	-6.05237	3.68031
56	1	5.977976	-4.22038	4.448651
57	1	7.287023	-6.34024	-4.6163
58	1	7.283357	-6.34311	4.616444
59	7	-6.78037	-1.98469	-2.3E-05
60	6	-7.47764	-2.01868	1.238455
61	6	-7.47816	-2.01777	-1.23822
62	6	-8.67731	-2.74789	1.354312
63	6	-6.9988	-1.3495	2.375451
64	6	-8.67791	-2.74685	-1.35406
65	6	-6.99978	-1.34788	-2.37498
66	6	-9.3877	-2.76336	2.555299
67	16	-9.23623	-3.75986	-0.00013
68	6	-7.69318	-1.40528	3.584483
69	1	-6.0723	-0.79101	2.321296
70	6	-9.38885	-2.76144	-2.55473
71	6	-7.6947	-1.40277	-3.58374
72	1	-6.07318	-0.78952	-2.32089
73	6	-8.89486	-2.1029	3.680873
74	1	-10.321	-3.31718	2.606226
75	1	-7.28908	-0.88618	4.449149
76	1	-10.322	-3.31517	-2.60562
77	6	-8.89649	-2.10021	-3.68007
78	1	-7.29094	-0.88313	-4.44824
79	1	-9.44401	-2.13772	4.617012
80	1	-9.44607	-2.13434	-4.61598
81	7	1.658629	6.816719	0.000415
82	6	1.97939	7.43736	1.238601
83	6	1.97769	7.437619	-1.23807
84	6	1.948476	8.840922	1.354561
Conformers	1 (Ha)	2 (Ha)	∆E* (eV)	∆E(E-A)** (eV)
------------	------------	------------	----------	----------------
Equatorial	-3716.864284	-3716.864231	-0.0014	0.051
Axial	-3716.866069	-3716.866167	-0.0027	

* Energy difference between conformers with similar structure. ** Energy difference between equatorial-1 and axial conformer-1.

Table S3 Energies (in eV) of the frontier molecular orbitals for the E-1 and A-1 conformers. This was calculated at the B3LYP/6-31G* level of theory.

Conformers	HOMO-2	HOMO-1	HOMO	LUMO	LUMO+1
E-1	-5.07	-5.07	-5.07	-2.33	-2.33
A-1	-5.20	-5.20	-5.18	-1.25	1.25
Table S4: Configuration interaction descriptions of S1 and T1 for the E-1 and A-1 conformers. This was calculated at the B3LYP/6-31G* level of theory.

Conformer	State	Initial → Final	Contribution%
E-1			
	T1	HOMO → LUMO	78.98
		HOMO → LUMO+1	13.26
		HOMO-1 → LUMO+1	4.49
		HOMO → LUMO	70.44
	S1	HOMO-1 → LUMO+1	12.34
		HOMO → LUMO+1	12.18
A-1			
	T1	HOMO-1 → LUMO	30.15
		HOMO-2 → LUMO+1	30.09
		HOMO-2 → LUMO	8.55
		HOMO-1 → LUMO+1	8.54
	S1	HOMO-2 → LUMO	37.67
		HOMO-1 → LUMO+1	37.63
		HOMO-1 → LUMO	10.71
		HOMO-2 → LUMO+1	10.64