Study of Red Mud Desulfurization and External Field Action

Xueke Li
Northeastern University

Yan liu (✉️ liuyan@smm.neu.edu.cn)
Northeastern University

Ting-an Zhang
Northeastern University

Research Article

Keywords: red mud, desulfurization, desulfurization mechanism, ball mill machinery outfield, ultrasonic outfield, outfield

Posted Date: January 25th, 2022

DOI: https://doi.org/10.21203/rs.3.rs-1180976/v1

License: Creative Commons Attribution 4.0 International License. Read Full License
Abstract

To further enhance red mud desulfurization, this paper analyzes red mud desulfurization under the action of ball mills and ultrasonic external fields and studies the red mud desulfurization mechanism. In this study, experiments were conducted using a bottom-blow stirred reactor device. The results show that the suitable red mud slurry concentration is 10 g/L. The raw red mud desulfurization can reach 100% absorption in the first 25 min, and the absorption capacity decreases gradually with the reaction time. The red mud desulfurization is mainly due to the dissolution of free alkali and metal oxides in the red mud. Under the action of the external field of the ball mill, the red mud particles can be refined to prolong the desulfurization time. Under the action of the external field of ultrasonic waves, the red mud slurry is dispersed more uniformly, which can accelerate the reaction rate. Under the effect of an ultrasonic external field, the red mud slurry is dispersed more uniformly, which can accelerate the reaction rate and dissolve more metal substances in the liquid phase.

1 Introduction

Red mud is an alkaline solid waste produced in the process of producing alumina from bauxite. The amount of red mud produced by alumina is determined by the taste of bauxite and the efficiency of alumina production (Xue et al. 2016). For every 1 ton of alumina produced, 1-2 tons of red mud is generated (Zhang et al. 2021; Pei et al. 2021). The production of red mud is growing at approximately 120 million tons per year (Power et al. 2011). Currently, most of the red mud is disposed of by stockpiling. Long-term storage of highly alkaline red mud will not only waste land resources but also cause environmental pollution (Zhu et al. 2015; Xue et al. 2019).

According to the characteristics of red mud, it is of great significance to reasonably treat and reuse red mud resources. Red mud has high surface reactivity, a large specific surface area, and a porous structure, which can adsorb or acidify red mud to adsorb harmful metals, phosphates, and other inorganic salts and organic matter in aqueous solutions (Guo et al. 2018; Nadaroglu et al. 2010; Smičiklas et al. 2014). Red mud contains a large amount of Al, Fe, Ti, Na, and other metal elements, and valuable metal elements in red mud can be recovered (Liu et al. 2012; Maria et al. 2002). The residual iron oxide, quartz, and sodium silica-aluminate in red mud can be used as additives to condition and improve the soil. It fixes metals and reduces soil pH through adsorption physical and chemical mechanisms (Lockwood et al. 2014; Hua et al. 2016; Feigl et al. 2012; Gray et al. 2006). Red mud is used to construct ceramics (Sglayo et al. 2000), ceramic glazes (Yalcin et al. 2000), bricks, roof tiles (Akinci et al. 2008; Piskin et al. 2013), cement (Tsakiridis et al. 2004), geopolymers (Li et al. 2019), and other building materials. The characteristics of red mud, such as strong alkalinity, fine particles, and large specific surface area, allow for mineralized sequestration of CO₂ (Yadav et al. 2010). It can also be used to absorb and treat acidic waste gases such as nitrides (Xiao et al. 2019; Apeksha et al. 2018), H₂S (Ramesh et al. 2011), SO₂, fluoride, etc. (Nath et al. 2018).
SO₂, as an irritant gas, is harmful to the human body and the environment. Flue gas desulfurization technologies are dry desulfurization, semidry desulfurization, and wet desulfurization (Li 2022). Red mud desulfurization technology can be used for dry adsorption desulfurization by using the characteristics of red mud, such as a large specific surface area and porous structure. At present, research on the dry desulfurization of red mud is shown as follows. Jin Yan (2021) used red mud instead of CaO for desulfurization in a circulating fluidized bed with the highest desulfurization rate of more than 94%. Hongtao Liu (2011) used red mud-modified limestone for desulfurization by adsorption in a tube furnace. Jian Niu (2021) used red mud as an additive to activated carbon to improve the desulfurization capacity of activated carbon, and the maximum sulfur capacity was increased by 17.9% compared with activated carbon alone. Red mud is highly alkaline, and the slurry made from red mud for desulfurization is a wet desulfurization process. In red mud slurry desulfurization, Xinke Wang (2014) studied the effect of red mud slurry desulfurization and decarbonization on red mud dealkalization. The main components of red mud residue after desulfurization and decarbonization are SiO₂, Fe₂O₃, and AlOOH. Wei Peng (2012) obtained the optimal operating conditions for desulfurization of an absorption tower with red mud slurry in an absorption tower. The desulfurization rate was above 95%, and the red mud slurry lost its desulfurization capacity after 10 h. Jinji Yang (2012) performed red mud slurry desulfurization in a desulfurization absorption tower and obtained the optimum operating conditions with a maximum desulfurization rate of 98.8%. Bin Li (2020) used ozone preoxidation of red mud slurry desulfurization and denitrification in a spray absorption tower, and the desulfurization rate was stabilized at 98% within 1 h. The reaction mechanism of desulfurization and denitrification was investigated. Lei Tao (2019) used red mud slurry desulfurization in a bubbling reactor and found that the liquid/solid ratio had the most significant effect on the desulfurization process. Yu Liu (2022) used a yellow phosphorus emulsion coupled with red mud for desulfurization and denitrification to optimize the reaction conditions. Under the optimized conditions, the optimal desulfurization and denitrification rates were as high as 97.9% and 100%, respectively. Yuwei Zhang (2021) established an industrial demonstration of red mud limestone with a desulfurization rate of 98.9%, which can meet ultra-low emissions requirements.

In this paper, red mud slurry wet desulfurization is used to study the desulfurization mechanism in a bottom-blow stirred reactor. The existing studies on red mud desulfurization are all about the process of desulfurization, and there is no research on red mud desulfurization under the action of external field intensification. Therefore, to better enhance the promotion of red mud slurry desulfurization, the external field of mechanical energy of the ball mill and the external field of the ultrasonic mechanical wave were used in this paper. The effect of the external field on the desulfurization of red mud slurry was studied.

2 Experimental Section

2.1 Experimental procedures

In this study, the red mud slurry desulfurization reaction was carried out in a bottom-blow stirred reactor. The experimental setup is shown in Fig. 1. It mainly includes a gas supply device, absorption device, and
analysis device. The specific experimental process is as follows: \(\text{SO}_2 \) gas is supplied by a compressed stainless steel bottle, controlled by a gas flow meter, and the \(\text{SO}_2 \) inlet flow rate is 400 ml/min. \(\text{SO}_2 \) is refined by aeration stones, and bubbles escape at the bottom of the reactor to react with the red mud slurry. The stirring paddle in the reactor continuously disperses the red mud and renews the absorption reaction interface. The speed of the stirring paddle was controlled at 350 r/min. The pH change of the slurry was measured by a Thunder Magnetic pH Meter (PHSJ-3F, Shanghai Jingke Company) during the absorption reaction. The \(\text{SO}_2 \) gas after the reaction was measured by a \(\text{SO}_2 \) detector (Leibo 3040, Jiangsu Leibo Scientific Instruments Co., Ltd.) for concentration. The unreacted \(\text{SO}_2 \) tail gas is passed into the NaOH solution. The desulfurized red mud residue was filtered and dried for characterization and determination.

The absorption reactor was a 1 L four-neck flask with a red mud slurry volume of 700 mL. The red mud is mechanically refined by a planetary high-energy ball mill (Fritz Instrument Equipment Co., Ltd., Germany) to refine the particles. The ball milling speed was 300 r/min, and the ball milling time was 1 h. The ultrasonic mechanical wave for the reaction process was provided by a 40 kHz ultrasonic cleaner (CJ-060B, Shenzhen Super Clean Technology Industrial Co., Ltd.).

There are also some testing devices as follows: X-ray fluorescence spectrometer (XRF, ZSXPrimus, Rigaku Corporation, Japan), Specific surface area physical adsorption instrument (ASAP2020, Micromeritics Instrument Company, America), X-ray diffractometer (XRD, Bruker, Germany), Field emission scanning electron microscope (SEM, ZEISS Sigma 300, UK), Fourier transform infrared spectrometer (Nicolet IS 50, Thermo Fisher, America).

2.2 Experimental materials

The concentration of \(\text{SO}_2 \) gas used in the experiment was 5%, balanced with \(\text{N}_2 \) (Shenyang Shuntai Special Gas Co., Ltd.). The red mud used in the experiment came from an aluminum factory in Shanxi. The ingredients of the raw materials are listed in Table 1, and the main components are shown in Fig. 7. To better promote the absorption of \(\text{SO}_2 \) in red mud, the red mud particles were broken by mechanical ball milling. The absorption reaction rate can be improved by refining the particles and increasing the specific surface area of the particles from a macroscopic point of view. The adsorption-desorption isotherms before and after ball milling are shown in Fig. 2. The curves of the red mud samples before and after ball milling showed a typical type IV adsorption-desorption isothermal curve. According to the adsorption-desorption isotherm, the specific surface area of the raw red mud is 98.3489 m\(^2\)/g, and the specific surface area after ball milling is 32.4629 m\(^2\)/g by the Brunauer–Emmett–Teller (BET) gas adsorption method (1990).
Table 1
Compositions of raw red mud

	Al$_2$O$_3$	SiO$_2$	Fe$_2$O$_3$	TiO$_2$	Na$_2$O	CaO	SO$_3$
Raw red mud	17.78	11.88	39.82	6.93	5.94	2.38	0.48

From Fig. 3, it can be seen that the original red mud is formed by cohesions, agglomerates, and agglomerates to form a loose structure. There are spherical particles of Na$_2$O and other substances attached to the surface. In addition, some particles have agglomeration behavior. After ball milling, the red mud agglomerates with sphere-like particles. After ball milling, the particles are tighter, more uniform, and have smaller pores. The collision of steel balls in the ball mill, which transmits more mechanical energy to the particles, can crush and refine the particles.

3 Results And Discussion

3.1 The effect of red mud slurry concentration on desulfurization

The influence of slurry concentration on the desulfurization process was characterized by the change in slurry pH value. As shown in Fig. 4, in the red mud slurry desulfurization process, the pH value changes over time into three stages: a rapid decline stage, a slow decline stage, and a basically unchanged stage. When the concentration of red mud slurry increases from 7 g/L to 10 g/L, the time of pH drop is prolonged. This means that an increase in concentration can prolong the absorption reaction time and absorb and process more SO$_2$. When the slurry concentration of red mud increases from 10 g/L to 15 g/L, the increase in slurry concentration does not prolong the absorption reaction time in the first 10 min. With the increase in slurry concentration, the free alkali in red mud and other substances that react with SO$_2$ cannot be dissolved in a short time. With increasing time, 15 g/L red mud can have a longer absorption reaction time. However, as its absorption reaction time is not much different from that of 10 g/L red mud, the red mud slurry concentration is selected as 10 g/L in the following experiments after comprehensive consideration.

3.2 The effect on desulfurization under the strengthening of the external field

3.2.1 Changes in slurry pH and desulfurization efficiency during red mud desulfurization

As shown in Fig. 5, the change trend of the red mud after ball milling is the same as that of the raw red mud. The raw red mud can completely absorb low-concentration SO$_2$ in the first 25 min, and the desulfurization rate is maintained at 100%. After 25 min, the absorption of SO$_2$ in red mud gradually
reaches saturation, and the concentration of SO\textsubscript{2} in tail gas increases continuously. After ball milling, red mud desulfurization uses mechanical energy to refine the red mud particles, promote the decomposition of the red mud particles, and prolong the desulfurization time. It can completely absorb low concentrations of SO\textsubscript{2} in the first 33 min, and the desulfurization rate is maintained at 100%. After 33 min, the absorption capacity of SO\textsubscript{2} decreases gradually, and the concentration of SO\textsubscript{2} in the tail gas increases continuously.

As a kind of high-frequency mechanical wave, ultrasonication provides a cavitation effect, thermal effect and mechanical effect, which can accelerate desulfurization efficiency. Under the effect of an ultrasonic field, the desulfurization rate of raw red mud reached 100% in the first 23 min, and the desulfurization ability gradually decreased after 23 min. Under the action of an ultrasonic field, the desulfurization rate of ball milled red mud was 100% in the first 29 min, and the desulfurization capacity decreased gradually after 29 min. The SO\textsubscript{2} in the exhaust gas was detected earlier in the presence of an ultrasonic field, considering that cavitation of the ultrasonic frequency can accelerate the gas–liquid-solid three-phase reaction rate. At the same reaction time, the pH of the slurry in the presence of ultrasound is significantly higher than that in the absence of ultrasound, which indicates that ultrasonic frequency accelerates the reaction rate and the escape of SO\textsubscript{2} gas from the slurry. The existence of ball mills and ultrasonic fields can refine the red mud particles better and can make full use of the field to achieve a better desulfurization effect.

3.2.2 Changes in red mud composition during red mud desulfurization

XRF was used to detect the composition changes of red mud in the desulfurization process under various conditions, and the detection results are shown in Table 2.

	Al\textsubscript{2}O\textsubscript{3}	SiO\textsubscript{2}	Fe\textsubscript{2}O\textsubscript{3}	TiO\textsubscript{2}	Na\textsubscript{2}O	CaO	SO\textsubscript{3}
RR t=20 min	19.24	12.23	42.13	7.39	5.02	0.69	0.82
RR t=40 min	18.89	6.41	47.94	8.58	1.07	0.11	2.32
RR t=60 min	16.63	4.91	52.73	9.53	0.8	0.07	1.55
RR t=80 min	14.44	3.75	55.25	10.31	0.45	-	1.01
BR t=20 min	19.33	12.72	42.08	7.63	4.02	0.36	0.9
BR t=40 min	18.03	4.6	49.98	9.25	0.42	-	2.24
BR t=60 min	14.95	3.66	54.77	10.45	0.4	-	1.49
BR t=80 min	13.56	3.31	56.42	10.94	0.39	-	0.97
RU t=20 min	19.76	12.29	41.5	7.34	4.29	0.57	0.86
RU t=40 min	21.12	7.26	43.89	7.66	1.16	-	3.2
RU t=60 min	16.95	4.41	52.25	9.43	0.41	-	1.54
BU t=20 min	19.56	12.71	40.94	7.32	4.27	0.75	0.91
BU t=40 min	20.76	8.11	43.6	7.78	1.19	-	2.58
BU t=60 min	17.42	5.19	47.27	8.71	0.41	-	3.14

From the XRF results of the red mud in the desulfurization process in Table 1 and Table 2, it is clear that Al and Na are more easily dissolved in the initial stage of the reaction. As the desulfurization reaction...
proceeds, the slurry becomes more acidic, and the aluminum and silicon in the red mud begin to dissolve in large amounts (Nie et al. 2019). The iron minerals are relatively stable, and the Fe$_2$O$_3$ content is almost unaffected by the desulfurization reaction. With the continuous dissolution of Na, Al and Si, the mass of red mud decreases, which is also the reason for the increase in Fe$_2$O$_3$ content. CaO and TiO$_2$ were partially dissolved with the reaction. The dissolution rate of Fe, Ti and Ca metal substances increased with the intensification of ultrasonication (Agrawal et al. 2021). The Na$_2$O content in the red mud of the desulfurization process in Table 2 is represented in Fig. 6. Fig. 6 clearly shows the decreasing content of Na$_2$O in the red mud as desulfurization proceeds. For the red mud after 60 min of desulfurization under the above conditions, the content of Na$_2$O is <1%, which can meet the composition requirements of cement, brick, geopolymer and other construction materials (Wang et al. 2018). The S content in the desulfurized red mud did not increase significantly, indicating that the red mud is mainly dissolved in the liquid phase under the condition of oxidation without the addition of oxygen.

3.2.3 Changes in the morphology of desulfurized red mud

Figure 7 shows the SEM image of the red mud with desulfurization time $t = 60$ min. Compared with the undesulfurized SEM image in Fig. 3, the microscopic morphology of the red mud changed significantly after desulfurization. In red mud desulfurization, the solid phase material in the red mud is involved in the reaction, while it is continuously consumed. After desulfurization, the red mud is broken down into many small spherical particles, and the microstructure of the red mud becomes loose as a result. The microstructure of red mud is more fluffy after desulfurization by ball milling. The ultrasonically dispersed particles are more uniform, and the desulfurized red mud has more small spherical particles and smaller pores. In short, the ball mill machinery outfeld is able to extend the desulfurization time by refining the red mud particles. The ultrasonic external field disperses the red mud particles, which can improve the reaction rate and promote the dissolution of metals such as Ti and Fe. However, it also accelerates the escape of SO$_2$ gas, resulting in no longer absorbing SO$_2$ at slurry pH = 4. Combining the ball mill and ultrasonic external field can both accelerate the reaction rate and extend the reaction time compared to generating the external field alone.

3.3 Mechanism of red mud desulfurization

As shown in Fig. 8, the diffraction peaks of sodium aluminosilicate hydrate and calcium aluminosilicate hydrate mainly change during the desulfurization of red mud. In the initial stage of the reaction, hydrated sodium aluminosilicate first decomposes and dissolves aluminum and sodium. As the desulfurization reaction proceeds, the XRD diffraction peaks of both sodium aluminosilicate hydrate and calcium aluminosilicate hydrate gradually weaken. When desulfurization was carried out for 40 minutes, the pH was approximately 4, and the phases of sodium aluminosilicate and calcium aluminosilicate hydrate were not observed in the desulfurization red mud. The raw red mud will have decomposed Al$^{3+}$ combined with OH$^-$ in the form of Al(OH)$_3$ in the desulfurized red mud. Some of the Si is present as a stable structure of amorphous SiO$_2$, which is also detected in the desulfurized red mud. After 20 min of reaction, CaCO$_3$ in the red mud decomposed, and the final desulfurized red mud did not contain Ca$^{2+}$, which was
consistent with the XRF results in Table 2. Part of the hematite (Fe₂O₃) in the red mud is reduced to Fe²⁺ by reaction with sulfur dioxide. Fe²⁺ is unstable and easily oxidized. Eventually, a part of Fe is present in the desulfurized red mud in the form of titanium iron oxide.

Figure 9 shows the infrared spectra of the raw red mud desulfurization process. As shown in Fig. 9, the main mid-infrared band that appears at 900-1000 cm⁻¹ is the stretching vibration of the Si-O-Si bond (Lipinska-Kalita et al. 1990). The main mid-infrared band that appears at approximately 802 cm⁻¹ is the bending vibration of the Si-O bond (He et al. 2001). The reason is that as the desulfurization reaction proceeds, a large amount of Si in sodium aluminosilicate hydrate (1.08Na₂O·Al₂O₃·1.68SiO₂·1.8H₂O) and hydrated garnet (CaO·Al₂O₃·SiO₂·2H₂O) dissolves in the aqueous solution, resulting in a weaker absorption band for the Si-O bond. The infrared band near 1410 cm⁻¹ is the bending vibration of the C-O-C bond in the CO₃²⁻ group of the red mud (Lodeiro et al. 2008; Shi et al. 2018; Brzezińska-Miecznik et al. 2017). This is consistent with the XRD results, which prove the presence of CaCO₃ in the raw red mud. The IR peak gradually decreases to disappear, and there is no CO₃²⁻ in the desulfurized red mud, indicating the participation of CaCO₃ in the desulfurization reaction. The infrared band at 1636-1640 cm⁻¹ is the bending vibration of the H-OH bond. This indicates that there is more free water interacting with the reaction products to become bound water in the desulfurization process (Yu et al. 1999; García-Lodeiro et al. 2008). The infrared band at 2100 cm⁻¹ is the stretching vibration of the Si-H bond (Maley et al. 1989; Chen et al. 1989). The broader infrared absorption band at 3140 cm⁻¹ is the absorption peak of the interlayer molecule H₂O (Yu et al. 1999).

In summary, the process of red mud slurry desulfurization is divided into three steps: (1) SO₂ gas is dissolved in the slurry. At this point, the dissolution of SO₂ in water to form H₂SO₃ and the ionization of H₂SO₃ to produce SO₃²⁻ and H⁺ mainly occur. The unstable H₂SO₃ decomposes to produce HSO₃⁻ and H⁺. (2) The free alkali in the red mud slurry reacts with H⁺ to neutralize it. Neutralization and oxidation reactions of alkaline metal compounds with H⁺ also occur at this time. Al³⁺ metal ions combine with OH⁻ to generate precipitates. (3) Dissolution of insoluble sodium salts of red mud (sodium aluminosilicate hydrate, hydrated garnet) and the physical phase transfer of reaction products. The main reactions occurring in the red mud desulfurization process are shown in equations (1)-(10), where OH⁻ is provided by the free base (Li et al. 2020; Tao et al. 2019; Liu et al. 2022; Zhang et al. 2021). The dissolution of the red mud desulfurization process and the reaction mechanism are shown in Fig. 10.

\[\text{SO}_2 + \text{H}_2\text{O} = \text{H}_2\text{SO}_3 \] (1)

\[\text{H}_2\text{SO}_3 = \text{HSO}_3^- + \text{H}^+ \] (2)

\[\text{HSO}_3^- = \text{SO}_3^{2-} + 2\text{H}^+ \] (3)

\[\text{Na}_2\text{O} + 2\text{H}^+ \rightarrow 2\text{Na}^+ + \text{H}_2\text{O} \] (4)
\[\text{Al}_2\text{O}_3 + 6\text{H}^+ \rightarrow 2\text{Al}^{3+} + 3\text{H}_2\text{O} \] (5)

\[\text{Fe}_2\text{O}_3 + 6\text{H}^+ \rightarrow 2\text{Fe}^{3+} + 3\text{H}_2\text{O} \] (6)

\[\text{CaCO}_3 + 2\text{H}^+ \rightarrow \text{Ca}^{2+} + \text{CO}_2\uparrow + \text{H}_2\text{O} \] (7)

\[2\text{OH}^- + \text{SO}_2 \rightarrow \text{Na}_2\text{SO}_3 + \text{H}_2\text{O} \] (8)

\[2\text{Fe}^{3+} + \text{SO}_2 + 2\text{H}_2\text{O} \rightarrow 2\text{Fe}^{2+} + \text{SO}_4^{2-} + 4\text{H}^+ \] (9)

\[\text{Al}^{3+} + 3\text{OH}^- \rightarrow \text{Al(OH)}_3 \] (10)

4 Conclusion

In this study, the use of red mud desulfurization is an economic technology to treat waste with waste. It can not only solve the industrial flue gas \(\text{SO}_2\) pollution problem but also reduce the stockpiling of red mud. In the bottom-blown stirred reactor, the appropriate slurry concentration for red mud desulfurization is 10 g/L. The raw red mud can absorb 100% of \(\text{SO}_2\) in the first 25 min, and the ability of red mud to absorb \(\text{SO}_2\) decreases as the reaction time increases. The red mud is mainly free alkali involved in the reaction at the beginning stage. Sodium aluminosilicate hydrate \((1.08 \text{Na}_2\text{O} \cdot \text{Al}_2\text{O}_3 \cdot 1.68 \text{SiO}_2 \cdot 1.8 \text{H}_2\text{O})\), hydrated garnet \((\text{CaO} \cdot \text{Al}_2\text{O}_3 \cdot \text{SiO}_2 \cdot 2 \text{H}_2\text{O})\), and part of the \(\text{Fe}^{3+}\) in \(\text{Fe}_2\text{O}_3\) dissolved into the liquid phase in the solid phase. The metal oxides react with \(\text{H}^+\) to form metal ions. \(\text{Al}^{3+}\) metal ions combine with \(\text{OH}^-\) to generate precipitates. Under the present experimental conditions, \(\text{S}\) is mainly present in the liquid phase after the reaction. After 60 min of red mud desulfurization, the \(\text{Na}_2\text{O}\) in red mud is < 1%. This can meet the highly stringent requirements for the production of cement, geopolymers, etc. The use of a ball mill external field can prolong the desulfurization reaction time. An ultrasonic external field can accelerate the reaction rate.

Declarations

Ethics approval and consent to participate

Ethics approval was not required for this research.

Consent for publication

Not applicable.

Funding

This study was financially supported by the National Key R&D Program of China (grant numbers 2017YFC0210404 and 2017YFC0210403) and the National Natural Science Foundation of China (grant
Competing Interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Author Contributions

All authors (Xueke Li (doctoral student), Yan Liu (Professor), Ting-an Zhang (Professor)) contributed to the study conception and design. Material preparation, data collection and analysis were performed by Xueke Li. The first draft of the manuscript was written by Xueke Li, and all authors commented on previous versions of the manuscript.

Availability of data and material

All data generated or analysed during this study are included in this published article.

References

1. Akinci A, Artir R (2008) Characterization of trace elements and radionuclides and their risk assessment in red mud. Materials Characterization 59(4): 417-421. https://doi.org/10.1016/j.matchar.2007.02.008
2. Agrawal S, Dhawan N (2021) Microwave acid baking of red mud for extraction of titanium and scandium values. Hydrometallurgy 204: 105704. https://doi.org/10.1016/j.hydromet.2021.105704
3. Apeksha M, Rajanikanth BS (2018) Plasma/adsorbent system for NOx treatment in diesel exhaust: a case study on solid industrial wastes. International journal of Environmental Science and Technology 16: 2973–2988. https://doi.org/10.1007/s13762-018-1776-x
4. Brzezińska-Miecznik J, Jelen P, Haberko K, Sitarz WMM (2017) The effect of NaOH and KOH treatment on the behavior of CO$_3^{2-}$ and OH$^-$ groups in natural origin hydroxyapatite. Ceramics International 43(15): 12540-12545. https://doi.org/10.1016/j.ceramint.2017.06.127
5. Chen YF (1989) Association of 2100 cm$^{-1}$ infrared spectra with microstructure in hydrogenated amorphous silicon. Solid State Communications 71(12):1127-1130. https://doi.org/10.1016/0038-1098(89)90724-2
6. Feigl V, Anton A, Uzigner N, Gruiz K (2012) Red Mud as a Chemical Stabilizer for Soil Contaminated with Toxic Metals. Water Air and Soil Pollution 223(3): 1237-1247. https://doi.org/10.1007/s11270-011-0940-4
7. García-Lodeiro I, Fernández-Jiménez A, Blanco MT, Palomo A (2008) FTIR study of the sol–gel synthesis of cementitious gels: C–S–H and N–A–S–H. Journal of Sol-Gel Science and Technology, 45(1):63-72. https://doi.org/10.1007/s10971-007-1643-6
8. Guo TF, Yang HQ, Liu QY, Gu HN, Wang N, Yu WB, Dai Y (2018) Adsorptive removal of phosphate from aqueous solutions using different types of red mud. Water Science & Technology (2): 570–577. https://doi.org/10.2166/wst.2018.182

9. Gray CW, Dunham SJ, Dennis PG, Zhao FJ, McGrath SP (2006) Field evaluation of in situ remediation of a heavy metal contaminated soil using lime and red-mud. Environmental Pollution 142(3):530-539. https://doi.org/10.1016/j.envpol.2005.10.017

10. He LN (2001) Plasma-enhanced chemical vapor deposition amorphous SiOx:H (0≤x≤2.0) films by infrared absorption spectroscopy. Journal of Semiconductors 22(5): 587-593. (in Chinese)

11. Hua YM, Heal KV, Hanl WF (2016) The use of red mud as an immobilizer for metal/metalloid-contaminated soil: A review. Journal of Hazardous Materials, 325: 17-30. https://doi.org/10.1016/j.jhazmat.2016.11.073

12. Li B, Wu H, Liu XL, Zhu TY, Liu FG, Zhao XT (2020) Simultaneous removal of SO2 and no using a novel method with red mud as absorbent combined with O3 oxidation. Journal of Hazardous Materials 392: 12270. https://doi.org/10.1016/j.jhazmat.2020.122270

13. Li XK, Han JR, Liu Y, Dou ZH, Zhang TA (2022) Summary of Research Progress on Industrial Flue Gas Desulfurization Technology. Separation and Purification Technology 281: 119849. https://doi.org/10.1016/j.seppur.2021.119849

14. Li YC, Min XB, Ke Y, Liu DG, Tang CJ (2019) Preparation of red mud-based geopolymer materials from MSWI fly ash and red mud by mechanical activation. Waste Management 83: 202-208. https://doi.org/10.1016/j.wasman.2018.11.019

15. Lipinska-Kalita KE (1990) Infrared spectroscopic investigation of structure and crystallization of aluminosilicate glasses. Journal of Non-Crystalline Solids 119(3): 310-317. https://doi.org/10.1016/0022-3093(90)90304-5

16. Liu HT, Han KH, Niu SL, Lu CM, Liu MQ, Li H (2011) Experimental Study and Mechanism Analysis of Modified Limestone by Red Mud for Improving Desulfurization[C]//International Symposium on Coal Combustion. Springer, Berlin, Heidelberg 465-477. https://doi.org/10.1007/978-3-642-30445-3_65

17. Liu Y, Li B, Lei XL, Liu S, Zhu BX, Ding E, Ning P (2022) Novel method for high-performance simultaneous removal of NOx and SO2 by coupling yellow phosphorus emulsion with red mud. Chemical Engineering Journal 428: 131991. https://doi.org/10.1016/jcej.2021.131991

18. Liu WC, Sun SY, Zhang L, Jahanshahi S, Yang JK (2012) Experimental and simulative study on phase transformation in Bayer red mud soda-lime roasting system and recovery of Al, Na and Fe. Minerals Engineering 39: 213-218. https://doi.org/10.1016/j.mineng.2012.05.021

19. Lockwood CL., Mortimer RJG, Stewart DI, Mayes WM, Peacock CL, Polya DA, Lythgoe PR, Lehoux AP, Gruiz K, Burke IT (2014) Mobilization of arsenic from bauxite residue (red mud) affected soils: Effect of pH and redox conditions. Applied Geochemistry 51(3): 268-277. https://doi.org/10.1016/j.apgeochem.2014.10.009

20. Lodeiro G, Fernández-Jiménez A, Blanco MT, Palomo A (2008) FTIR study of the sol–gel synthesis of cementitious gels: C–S–H and N–A–S–H. Journal of Sol-Gel Science and Technology 45(1): 63-72.
21. Maley N, Szafranek I, Mandrell L, Katiyar M, Abelson JR, Thornton JA (1989) Infrared reflectance spectroscopy of very thin films of a-SiH. Journal of Non-Crystalline Solids 114(1): 163-165. https://doi.org/10.1016/0022-3093(89)90100-2

22. Maria TH, Konstantinos SH, Mendrinos LN, Constantinos ES (2002) Pilot-Plant Investigation of the Leaching Process for the Recovery of Scandium from Red Mud. Industrial & Engineering Chemistry Research 41(23): 5794–5801. https://doi.org/10.1021/ie011047b

23. Nadaroglu H, Kalkan E, Demir N (2010) Removal of copper from aqueous solution using red mud. Desalination 251(1-3): 90-95. https://doi.org/10.1016/j.desal.2009.09.138

24. Nath H, Schoo A (2018) Red Mud and Its Applicability in Fluoride Abatement. Materials Today: Proceedings 5(1, 2): 2207-2215. https://doi.org/10.1016/j.matpr.2017.09.220

25. Nie QK, Hu W, Huang BS, Shu X, He Q (2019) Synergistic utilization of red mud for flue-gas desulfurization and fly ash-based geopolymer preparation. Journal of Hazardous Materials 369: 503-511. https://doi.org/10.1016/j.jhazmat.2019.02.059

26. Niu J, Zhang HR, Li LB, Guo YX (2021) Cost-effective activated carbon (AC) production from partial substitution of coal with red mud (RM) as additive for SO₂ and NOx abatement at low temperature. Fuel 293: 120448. https://doi.org/10.1016/j.fuel.2021.120448

27. Pei JN, Pan XL, Zhang YM, Yu HY, Tu GF (2021) A novel process to fully utilize red mud based on low-calcium sintering. Journal of Environmental Chemical Engineering 9(6): 106754. https://doi.org/10.1016/j.jece.2021.106754

28. Piskin S, Figen AK, Ozkan E, Ozcay ünal (2013) Structural Characterization of Seydiehir Red Mud to Utilization in Roof Tile Manufacturing. IFAC Proceedings Volumes 46(16): 484-487. https://doi.org/10.3182/20130825-4-US-2038.00010

29. Power G, Grafe M, Klauber C (2011) Bauxite residue issues: I. Current management, disposal and storage practices. Hydrometallurgy 108(1-2): 33-45. https://doi.org/10.1016/j.hydromet.2011.02.006

30. Ramesh CS, Patel R, Ray BC (2011) Removal of hydrogen sulfide using red mud at ambient conditions. Fuel Processing Technology 92(8): 1587-1592. https://doi.org/10.1016/j.fuproc.2011.04.002

31. Sglayo VM, Stefano M, Alexia, Salviati A, Giovanni C, Giorgio C (2000) Bauxite ‘red mud’ in the ceramic industry. Part 2: production of clay-based ceramics. Journal of the European Ceramic Society 20(3): 245-252. https://doi.org/10.1016/S0955-2219(99)00156-9

32. Shi ZG, Shi CJ, Wan S, Li N, Zhang ZH (2018) Effect of alkali dosage and silicate modulus on carbonation of alkali-activated slag mortars. Cement and Concrete Research 113: 55-64. https://doi.org/10.1016/j.cemconres.2018.07.005

33. Sing KSW (1990) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure and Applied Chemistry 57(4): 603-619. https://doi.org/10.1351/pac198557040603
34. Smičiklas I, Smiljanić S, Perić-Grubić A, Šljivić-Ivanović M, Mitrića M, Antonović D (2014) Effect of acid treatment on red mud properties with implications on Ni(II) sorption and stability. Chemical Engineering Journal 242: 27-35. https://doi.org/10.1016/j.cej.2013.12.079

35. Tao L, Wu H, Wang J, Li B, Wang XQ, Ning P (2019) Removal of SO2 from flue gas using bayer red mud: influence factors and mechanism. Journal of Central South University 26(2): 467-478. https://doi.org/10.1007/s11771-019-4019-5

36. Tsakiridis PE, Agatzini-Leonardou S, Oustadakis P (2004) Red mud addition in the raw meal for the production of Portland cement clinker. Journal of Hazardous Materials 116(1-2): 103-110. https://doi.org/10.1016/j.jhazmat.2004.08.002

37. Wang XK, Zhang YH, Lv FZ, An Q, Lu RR, Hu PH, Jiang SB (2014) Removal of alkali in the red mud by SO2 and simulated flue gas under mild conditions. Environmental Progress & Sustainable Energy 34(1): 81-87. https://doi.org/10.1002/ep.11958

38. Wang YX, Zhang TA, Lyu GZ, Guo FF, Zhang WG, Zhang YH (2018) Recovery of alkali and alumina from bauxite residue (red mud) and complete reuse of the treated residue. Journal of Cleaner Production 188: 456-465. https://doi.org/10.1016/j.jclepro.2018.04.009

39. Wei P (2012) Research of Industrial Flue Gas Desulfurization by Alumina Red Mud. Dissertation, Zhengzhou University.

40. Xiao KK, Guan RN, Yang JK, Li HS, Yu ZC, Liang S, Yu WB, Hu JP, Hou HJ, Liu BC (2019) Effects of red mud on emission control of NOx precursors during sludge pyrolysis: A protein model compound study. Waste Management 85: 452-463. https://doi.org/10.1016/j.wasman.2019.01.014

41. Xue SG, Kong XF, Zhu F, Hartley W, Li XF, Li YW (2016) Proposal for management and alkalinity transformation of bauxite residue in China. Environmental Science and Pollution Research 23(13): 12822-12834. https://doi.org/10.1007/s11356-016-6478-7

42. Xue SG, Wu YJ, Li YW, Kong XF, Zhu F, William H, Li XF, Ye YZ (2019) Industrial wastes applications for alkalinity regulation in bauxite residue: A comprehensive review. Journal of Central South University 26(2):268-288. https://doi.org/10.1007/s11771-019-4000-3

43. Yadav VS, Prasad M, Khan J, Amritpale SS, Singh M, Raju CB (2010) Sequestration of carbon dioxide (CO2) using red mud. Journal of hazardous materials 176(1-3): 1044-1050. https://doi.org/10.1016/j.jhazmat.2009.11.146

44. Yalcin N, Sevinc V (2000) Utilization of bauxite waste in ceramic glazes. Ceramics International, 26(5): 485-493. https://doi.org/10.1016/S0272-8842(99)00083-8

45. Yan J, Lu XF, Sun RY, Zheng X (2021) An experimental study on the feasibility of in situ desulfurization performance in a CFB combustor co-burning red mud and coal. Fuel Processing Technology 223: 106985. https://doi.org/10.1016/j.fuproc.2021.106985

46. Yang JJ (2012). Experimental Study of Red Mud for Industrial Flue Gas Desulfurization. Dissertation, Zhengzhou University.

47. Yu P, Kirkpatrick RJ, POE B, Mcmillan PF, Cong XD (1999) Structure of Calcium Silicate Hydrate (C-S-H): Near-, Mid-, and Far-Infrared Spectroscopy. Journal of the American Ceramic Society, 82(3):742–
48. https://doi.org/10.1111/j.1151-2916.1999.tb01826.x
48. Zhang X, Huang R, Cao YJ, Wang CQ (2021) Rapid conversion of red mud into soil matrix by cohydrothermal carbonization with biomass wastes. Journal of Environmental Chemical Engineering 9(5): 106039. https://doi.org/10.1016/j.jece.2021.106039
49. Zhang YW, Qian WM, Zhou PX, Liu Y, Lei XL, Li B, Ning P (2021) Research on red mud-limestone modified desulfurization mechanism and engineering application. Separation and Purification Technology 272(1): 118867. https://doi.org/10.1016/j.seppur.2021.118867
50. Zhu XB, Li W, Guan XM (2015) An active dealkalization of red mud with roasting and water leaching. Journal of Hazardous Materials 286: 85-91. https://doi.org/10.1016/j.jhazmat.2014.12.048

Figures

Figure 1
Experimental setup diagram

Figure 2
Adsorption-desorption isotherms before and after ball milling

Figure 3
10K magnification SEM images of raw red mud and red mud after ball milling ((a) raw red mud, (b) red mud after ball milling)

Figure 4
Changes in pH with red mud slurry concentration

Figure 5
Slurry pH and SO₂ concentration in tail gas during red mud desulfurization
Figure 6

Changes in Na$_2$O content in red mud during desulfurization

Figure 7

10k SEM image of desulfurized red mud ((a) raw red mud desulfurization, (b) ball mill red mud desulfurization, (c) desulfurization of raw red mud under ultrasonication, (d) desulfurization of ball-milled red mud under ultrasonication)

Figure 8

XRD of raw red mud desulfurization process

Figure 9

Infrared spectrum of the raw red mud desulfurization process

Figure 10

Mechanism of red mud desulfurization in the reactor