Flux period, spin gap, and pairing in the one-dimensional $t-J-J'$-model

Alexander Seidel1,2 and Dung-Hai Lee1,2

1Department of Physics, University of California at Berkeley, Berkeley, CA 94720, USA
2Materials Sciences Division, Lawrence Berkeley National Laboratory

(Dated: March 22, 2022)

Using the factorization of the wavefunction in the t-J-J'-model at small exchange couplings, we demonstrate the connection between the existence of a spin gap and an $\hbar c/2e$ flux periodicity of the ground state energy. We conjecture that all spin-gapped SU(2)-invariant Luttinger liquids have $\hbar c/2e$ flux periodicity, and that this is connected to the fact that a gapped spin-$\frac{1}{2}$ chain always breaks translational symmetry by doubling the unit cell.

PACS numbers: 74.72.-h, 75.10.JM

Soon after the discovery of high-T_c superconductivity, Anderson proposed that the basic physics of the cuprates is that of a doped two-dimensional Mott-insulator.[1] In particular, the Cooper pairs of the superconducting state are viewed as the “liberated spin singlet pairs” of the insulating host material. While this picture is very attractive, it has been difficult to find an explicit model for which the proclaimed behavior can be shown to occur unequivocally.

Searching for models of Mott insulators that show superconductivity upon doping has been the motivation for many studies of one-dimensional systems.[2, 3, 4, 5, 6, 7] Thanks to methods such as perturbative renormalization group and bosonization, considerable knowledge has been acquired on the weak coupling phase diagram of both strictly one-dimensional[8] and ladder systems[9]. The acquired on the weak coupling phase diagram of both group and bosonization, considerable knowledge has been

Many strong coupling models cannot be solved analytically. A notable exception is the Luther-Emery action[10] which describes an electronic liquid with a spin gap. Another interesting analytic method which describes an electronic liquid with a spin gap is the Luther-Emery action[10] which describes an electronic liquid with a spin gap. A notable exception is the Luther-Emery action[10] which describes an electronic liquid with a spin gap.

Using the factorization of the wavefunction in the t-J-J'-model at small exchange couplings, we demonstrate the connection between the existence of a spin gap and an $\hbar c/2e$ flux periodicity of the ground state energy. We conjecture that all spin-gapped SU(2)-invariant Luttinger liquids have $\hbar c/2e$ flux periodicity, and that this is connected to the fact that a gapped spin-$\frac{1}{2}$ chain always breaks translational symmetry by doubling the unit cell.

PACS numbers: 74.72.-h, 75.10.JM

In superconductivity the hallmark of electron pairing is

the $\Phi_0/2 \equiv \hbar c/2e$ flux period. In three dimensions, if one plots the ground state energy $E(\Phi)$ of a solid superconducting torus as a function of the Aharonov-Bohm (AB) flux Φ through the hole, one finds a periodic function with period $\Phi_0/2$. Moreover the energy barrier separating the successive minima is extensive. In two and one dimensions the flux period is the same. However the energy barrier becomes intensive for two dimensions, and vanishes as the inverse circumference for one dimension.

In one dimension the spin and charge degrees of freedom decouple in the low energy and long wavelength limit. According to common wisdom, the presence of a spin gap implies pairing. It is thus natural to draw a connection between the existence of a spin gap and a $\Phi_0/2$ flux period. However, since the vector potential only enters in the charge action, it is not obvious how the presence of a spin gap may affect the flux period. The purpose of this paper is to clarify this issue in the context of a strongly correlated 1D system.

In the following we study the one-dimensional t-J-J'-model, making use the degenerate perturbation approach introduced in Ref.[3]. The model is defined by the Hamiltonian

$$H = -t \sum_i \mathcal{P}(\epsilon \xi_{i,\sigma}^\dagger c_{i,\sigma} + h.c.) \mathcal{P} = -t \sum_i (S_i - S_{i+1} - \frac{1}{4} n_i n_{i+1}) + J' \sum_i (S_i S_{i+2} - \frac{1}{4} n_i n_{i+2}),$$

(1)

describing N electrons on a ring of L sites in the presence of an Aharonov-Bohm flux Φ. Here, the projection operator \mathcal{P} excludes states with doubly occupied sites, and the S_i are spin-1/2 operators. At $J = J' = 0$ the model corresponds to the $U = \infty$ Hubbard model. As pointed out in Ref.[11], in this limit the eigenstates factorize into products of pure charge and spin states. This property has been used extensively to study the large (but finite) U Hubbard model[11, 12, 13], which is related to the small J t-J model. Much less analytic work has been done on the t-J-J' model with a finite $\alpha \equiv J'/J$, because the model is no longer integrable. In this case, however, the
degenerate perturbation approach introduced in Ref. [3] still allows one to determine the ground state properties.

In the following we will use this method to study the ground state energy of Eq. (1) as a function of the AB-flux \(\Phi \). We begin by defining the \(N \)-particle wavefunction of the system

\[
\Psi(x_1, \sigma_1, \ldots, x_N, \sigma_N) = \langle 0 | c_{x_1 \sigma_1} \cdots c_{x_N \sigma_N} | \Psi \rangle \quad (2)
\]
on the domain

\[
D := \{(x_1 \ldots x_N) \in \mathbb{Z}^N | x_1 < x_2 < \ldots x_N < x_1 + L \}.
\]

Here \(|\Psi\rangle \) and \(|0\rangle \) are the state of the system and the vacuum of the fermionic operators \(c_{x, \sigma} \equiv c_{x+L, \sigma} \), respectively. The fermion antisymmetry and the periodic boundary condition imply

\[
\Psi(x_1, \sigma_1, \ldots, x_N, \sigma_N) = (-1)^{(N-1)} \Psi(x_2, \sigma_2, \ldots, x_N, \sigma_N, (x_1 + L), \sigma_1) \quad (3)
\]

At \(J = J' = 0 \), each eigen wavefunction of Eq. (1) factorizes into a product of a charge and a spin wavefunction [11],

\[
\Psi(x_1, \sigma_1, \ldots, x_N, \sigma_N) = f(x_1 \ldots x_N) g(\sigma_1 \ldots \sigma_N) \quad (4)
\]

where

\[
f(x_1 \ldots x_N) = \frac{1}{\sqrt{L^N}} \det \left[\exp(ik_i x_j) \right] \quad (5)
\]
is a Slater determinant constructed from \(N \) plane waves. It is of central importance here to observe that for a finite ring with periodic boundary conditions, the spin part and the charge part of the wavefunction [11] are not completely independent. Specifically if we quantize the \(N \) momenta in Eq. (1) according to

\[
k_j = \frac{2\pi}{L} q_j + \frac{K}{L}
\]

where \(q_j \in \mathbb{Z} \) and \(K \in [0, 2\pi) \),

then the condition [8] requires the spin wavefunction to satisfy

\[
g(\sigma_1 \ldots \sigma_N) = e^{iK} g(\sigma_2 \ldots \sigma_N, \sigma_1), \quad (7)
\]

which implies that \(K \) is the “spin momentum” on the squeezed lattice. Thus by means of [8], the momentum \(K \) of the spin wavefunction injects a twist into the charge wave function. For large but finite \(U \) the exact ground state wavefunction of the Hubbard model remains of the form given by Eq. (1), and the same relation between charge twist and spin momentum is observed [11].

Within the degenerate perturbation approach introduced in Ref. [3] the same still applies to the ground state of Eq. (1) for any value of \(\alpha = J' / J \) in the limit of vanishing exchange couplings. In this limit, all solutions of the form Eq. (1) are degenerate in the spin wavefunction, which is only required to have the spin momentum \(K \) determined by the twist of the charge wavefunction.

To first order in the exchange couplings, this degeneracy is lifted by an effective Hamiltonian acting in the “squeezed” space of \(N \) spins [2]:

\[
H_{\text{eff}} = \frac{L}{N} \left(J_{\text{eff}} \sum_{j=1}^{N} S_j \cdot S_{j+1} + J'_{\text{eff}} \sum_{j=1}^{N} S_j \cdot S_{j+2} \right)
\]

\[
J_{\text{eff}} = J \langle n_i n_{i+1} \rangle_f + J' \langle n_i (1 - n_{i+1}) n_{i+2} \rangle_f
\]

\[
J'_{\text{eff}} = J' \langle n_i n_{i+1} n_{i+2} \rangle_f \quad (8)
\]

Here, \(\langle \rangle_f \) denotes a spinless fermion expectation value with respect to the wavefunction \(f \) displayed in [4].

We now focus on the case of constant \(\alpha \) where \(\alpha > \alpha_c \approx 0.241 \). In this regime numerical and analytical works suggest the phase diagram shown in Fig. [1]. At zero doping the spin chain corresponding to the model [1] at half filling \((N = L) \) is gapped. The spin gap will survive for a finite range of doping \(x = 1 - N/L < x_c \) (Fig. [1]), and the effective spin Hamiltonian [8] may be used to calculate \(x_c \) exactly in the limit \(J/t \to 0 \). This was first proposed by Ogata et al. [3] and has been confirmed numerically in Ref. [12]. Thus the validity of degenerate perturbation theory is well established. (We will give a detailed discussion of the involved subtleties elsewhere [16] (see also [2]).)

To first order in \(J/t \) and \(J'/t \), the ground state energy of Eq. (1) takes the form

\[
E_{\text{tot}} = E_c + E_s \quad (9)
\]

where \(E_c \) is the kinetic energy associated with the charge wavefunction \(f_0 \), and \(E_s \) is the ground state energy of [8] with the spin momentum \(K \). For any given AB-flux, \(f_0 \) will be of the form given in [3], where the \(N \) consecutively occupied momenta \(k_j \) are given by [10] with

\[
q_j = q_0 + j - 1, \quad j = 1 \ldots N \quad (10)
\]

FIG. 1: Sketch of the zero temperature phase diagram of [4] as obtained in [2] [12] for \(\alpha = 1 \). The spin-gapped region is divided by a crossover (dashed) between regions of dominant singlet superconducting (SS) and charge-density-wave (CDW) correlations.
owing to the existence of two different types of branches. Periodic pattern of branches with \(K = 0 \) and \(K = \pi \) separated by half a flux quantum. The thick line represents the ground state energy at given \(\Phi \). The ground state momentum \(P \) changes by \(k_f \) between adjacent branches. b) \(x > x_c \) (no spin gap). The \(\frac{\Phi}{\Phi_0} \)-periodicity is destroyed by a relative shift of order \(J/L \) between \(K = 0 \) and \(K = \pi \) branches.

and \(q_0 \) is an integer. The kinetic energy is given by

\[
E_c(q_0, K, \Phi) = -2t \sum_j \cos \left(k_j + \frac{2\pi}{L} \Phi \right) \\
= -2t \frac{\sin(k_f)}{\sin(\frac{\pi}{L})} \cos \left(k_f + \frac{2\pi}{L} q_0 + \frac{K - \pi}{L} + \frac{2\pi}{L} \Phi \right)
\]

(11)

In Eq. (11) \(k_f \) is defined as \(k_f \equiv \pi N/L \). Note that for all charge wavefunctions characterized by Eq. (9), (11) with different \(q_0 \) and \(K \), the effective couplings appearing in (8) are the same.

We will consider an even number of particles \(N \) from now on. In the spin-gapped regime \(0 < x < x_c \), the effective Hamiltonian (8) has two lowest-energy states with spin momenta \(K = 0 \) and \(K = \pi \). These two states are separated from other spin states by an energy gap of order \(J \) or \(J' \). For a finite ring, the energy difference between these two lowest spin states vanishes exponentially with the circumference of the ring. Thus in the thermodynamic limit these two states become degenerate.

For fixed \(\Phi \), we choose \(K \) and \(q_0 \) so that the total energy is minimized. This minimization can be achieved by first minimizing \(E_c \) by varying \(q_0 \) for fixed \(K \), then minimizing \(E_s + E_c \) with respect to \(K \). When the first minimization is achieved the argument of the cosine is always of order \(1/L \) regardless of the values of \(K \). Hence the effect of varying \(K \) in the second minimization can only result in \(O(t/L) \) modulations in \(E_c \). We consider the limit \(t/L \ll J \) here. It then follows that the value of \(K \) must be either 0 or \(\pi \). Other choices of \(K \) would increase \(E_s \) by the spin gap of order \(J \), which cannot be compensated by the possible lowering of \(E_c \).

After substituting the optimum value of \(q_0 \) for \(K = 0 \) or \(K = \pi \) back into Eq. (11) we obtain two branches of energy versus \(\Phi \) curves shown in Fig. 2b). The lower envelope of these curves is the ground state energy as a function of \(\Phi \) for small \(J/t \) and \(J'/t \). One observes that this function does indeed show a period of \(\Phi_0/2 \), owing to the existence of two different types of branches corresponding to \(K = 0 \) and \(K = \pi \), respectively. This structure is reminiscent of that proposed for the dimer model [17, 18]. It is also interesting to note that \(K = \pi \) is the analogy of the “vison” flux [10] in 1D.

The situation is fundamentally different in the regime \(x > x_c \) (Fig. 1), where the spin gap vanishes. Here the ground state of the effective spin Hamiltonian (5) has \(K = 0 \) or \(K = \pi \) depending on whether \(N = 4m \) or \(N = 4m + 2 \) (see e.g. [20]). For a finite chain of length \(N = O(L) \) the first spin excited states at \(K = \pi \) or \(K = 0 \) (i.e. whose momenta differ by \(\pi \) from that of the respective ground state) have excitation energies of order \(J/L \). This energy gives rise to the relative shift between the \(K = 0 \) and \(K = \pi \) branches shown in Fig. 2b)) for \(N = 4m \). The resulting lower envelope is illustrated for a small but finite \(J/t \), where the flux period is now \(\Phi_0 \). For \(N = 4m + 2 \) the shift between the \(K = 0 \) and \(K = \pi \) branches is opposite in sign. This behavior is well demonstrated in the large repulsive \(U \) Hubbard model [21], where no spin gap is present.

It is sometimes felt that the existence of metastable minima of \(E(\Phi) \) at \(\Phi_0/2 \) intervals is the sign of a pairing tendency, even though \(\Phi_0/2 \) is strictly not the flux period. Fig. 2b) presents a clear counter example of this type of reasoning. Indeed according to Fig. 2b) this can happen in a regime of the phase diagram where the ground state is neither spin-gapped, nor features a dominance of superconducting pairing correlations.

On the other hand, for \(x < x_c \), there is a spin gap but no charge gap, and the ground state energy is a periodic function of \(\Phi \) with period \(\Phi_0/2 \). It has thus all the characteristics of a superconductor. However for \(J/t \ll 1 \) the superconducting correlations (SS) are weaker than the charge density wave (CDW) correlations (Fig. 1). In this regime we can think of the system as being close to a superconductor-(Cooper pair) insulator transition due to strong quantum fluctuation of the phase of the superconducting order parameter. Here, a weak external perturbation such as disorder can easily localize the Cooper pairs and drive the system insulating. As the system crosses the crossover line in (Fig. 1), the phase fluctuations become much less severe so that the SS correlations become dominant over the CDW correlations.
We expect the appearance of a $\Phi_0/2$ flux period to hold in the entire spin gapped regime. Indeed, more detailed considerations show that the arguments given here are not limited to first order perturbation theory \[12\]. In particular, we find that second order contributions to the ground state energy may be incorporated into the effective spin Hamiltonian. The latter will then also depend on the twist of the zeroth order wave function and on flux, yet $H_{eff}(K, \Phi) = H_{eff}(K = \pi, \Phi + \Phi_0/2)$ continues to hold. Furthermore, we have shown that all the results presented here also follow from a weak coupling/bosonization procedure \[22\].

The analysis presented here can be applied to a wide class of models of the form Eq. \[1\] where the second line is replaced by a more general spin-chain type of Hamiltonian. Most features of the phase diagram shown in Fig. \[1\] will likely survive as long as the spin chain at half filling is gapped. In particular, the spin gap will survive for a range of doping, and phase separation will occur at sufficiently large values of J/t, where J is an appropriate energy scale for the spin couplings. As the phase separation line is approached, the charge compressibility diverges, and Luttinger liquid physics then implies a regime of dominant SS correlations. Our analysis on flux period will then carry over to this more generic case, regime of dominant SS correlations. Our analysis on the rungs, which does not require symmetry breaking.

For a range of doping, and phase separation will occur in the ground state energy and the existence of a spin gap in the small exchange limit of the t-J-J' model. Based on these findings, we conjecture that the observed $\Phi_0/2$ flux period is a universal property of spin-gapped SU(2) invariant one-dimensional systems of spin-$\frac{1}{2}$ particles with gapless charge degrees of freedom. In particular, the value of the charge Luttinger parameter is not a determining factor of the flux periodicity, as our result did not require the predominance of singlet superconducting correlations. Our findings further suggest an intimate relation between the proposed universality of the $\Phi_0/2$ flux period and the fact that all gapped SU(2)-invariant spin-$\frac{1}{2}$ chains feature broken translational symmetry with a doubling of the unit cell.

This work has been supported by DOE grant DE-AC03-76SF00098.

\[1\] P. W. Anderson, Science 235, 1196 (1987).
\[2\] M. Ogata, M. U. Luchini, S. Sorella, and F. F. Assaad, Phys. Rev. Lett. 66, 2388 (1991).
\[3\] M. Ogata, M. U. Luchini, and T. M. Rice, Phys. Rev. B 44, 12085 (1991).
\[4\] M. Imada, Phys. Rev. B 48, 550 (1993).
\[5\] M. Fabrizio, Phys. Rev. B 54, 10054 (1996).
\[6\] E. Dagotto and T. M. Rice, Science 271, 618 (1996).
\[7\] A. Seidel and P. A. Lee, Phys. Rev. B 69, 094419 (2004).
\[8\] J. Sólyom, Adv. Phys. 28, 201 (1979).
\[9\] H.-H. Lin, L. Balents, and M. P. A. Fisher, Phys. Rev. B 56, 6569 (1997).
\[10\] A. Luther and V. J. Emery, Phys. Rev. Lett. 33, 589 (1974).
\[11\] M. Ogata and H. Shiba, Phys. Rev. B 41, 2326 (1990).
\[12\] A. Parola and S. Sorella, Phys. Rev. Lett. 64, 1831 (1990).
\[13\] M. Ogata, T. Sugiymama, and H. Shiba, Phys. Rev. B 43, 8401 (1991).
\[14\] R. Julienne and F. D. M. Haldane, Bull. Am. Phys. Soc. 28, 344 (1983).
\[15\] M. Nakamura, J. Phys. Soc. Jpn. 67, 717 (1998).
\[16\] A. Seidel and D.-H. Lee, in preparation.
\[17\] S. A. Kivelson, D. S. Rokhsar, and J. P. Sethna, Phys. Rev. B 35, 8865 (1987).
\[18\] D. J. Thouless, Phys. Rev. B 36, 7187 (1987).
\[19\] T. Senthil and M. P. A. Fisher, Phys. Rev. B 62, 7850 (2000).
\[20\] T. Tonegawa and I. Harada, J. Phys. Soc. Jpn. 56, 2153 (1987).
\[21\] A. Ferretti, I. O. Kulik, and A. Lami, Phys. Rev. B 45, 5486 (1992).
\[22\] A. Seidel and D.-H. Lee, cond-mat/0402663 (2004), to be published.
\[23\] V. Ferrari and G. Chiappe, J. Phys.: Condens. Matter 8, 8583 (1996).
\[24\] E. H. Lieb, T. D. Schultz, and D. C. Mattis, Ann. Phys. 16, 407 (1961).
\[25\] C. A. Hayward, D. Poilblanc, R. M. Noack, D. J. Scalapino, and W. Hanke, Phys. Rev. Lett. 75, 926 (1995).