IN SILICO ELUCIDATION OF SOME QUINOLINE DERIVATIVES WITH POTENT ANTI-BREAST CANCER ACTIVITIES

M. O. IDRIS1, E. S. ABECHI1, G. A. SHALLANGWA1 and A. UZAIRU1

1 Ahmadu Bello University, Department of Chemistry, Zaria City, Kaduna, Nigeria

ARTICLE INFO
Article history:
Received 2019-07-10
Accepted 2020-01-03
Available online 2020-02-15

ABSTRACT
The toxicity and high resistance to the commercially sold breast-cancer drugs have become more alarming and the demand to produce new and less toxic breast-cancer drugs arises. In silico studies was carried out on some quinoline derivatives to investigate their reported activities against breast cancer and thereby generate a model with a better activity against breast cancer. The chemical structures of the compounds were optimized using Spartan software at Density Functional Theory (DFT) level, utilizing the B3LYP/ 6-31G* basis set. Four QSAR models were generated using Multi-Linear Regression (MLR) and Genetic Function Approximation (GFA) method. Equation one was chosen as the best model based on the validation parameters. The validation parameters was found to be statistically significant with square correlation coefficient (R^2) of 0.9853, adjusted square correlation coefficient (R_{adj}^2) of 0.9816, cross validation coefficient (Q_{cv}^2) of 0.9727 and an external correlation coefficient square (R_{test}^2) of 0.6649 was used to validate the model. The built model was a good and robust one for it passed the minimum requirement for generating a QSAR model.
1. INTRODUCTION

Cancer is a term used to describe the abnormal or irregular growths that occur in the cell. It follows the circulatory diseases when it comes to health issues that take lives. The World Health Organization (WHO) forecast that if a new preventive measure is not adapted, the world may experience about 15 million death case by the year 2020 (Frankish, 2003).

Breast cancer is an irregular growth of the breast cell. It is found mostly in women but in some cases, men can also get it. It is the commonest cancer amongst women; about 1.4 million new breast cancer cases were reported in 2008 to have been diagnosed. Countries with low income were reported to have about 60% death cases resulting from breast cancer (Ferlay et al., 2008). The survival rate of breast cancer cases differs from country to country. An estimated 5 years survival case show that only 40% can survive in low income countries and 60% in high income countries (Coleman et al., 2008).

Quinoline is an aromatic heterocyclic compound having a double ring structure with a fused benzene ring at the two adjacent carbon atoms. It is also referred to as benzo pyridine, benzo[b]pyridine, 1-benzazine. It is a hygroscopic yellowish oily liquid that is slightly soluble in water, alcohol, ether and many other organic solvents (Ferlin et al., 2005). Quinoline derivatives are widely used in the field of medicine and medicinal chemistry because of their anti-malarial, antimicrobial, antitumor, antifungal, antihypertensive, anti-HIV, analgesics and anti-inflammatory activities. Quinoline derivatives represent a large number of anti-proliferative agents exhibiting cytotoxicity through DNA intercalation, causing interference in the replication process (Gasparotto et al., 2006). For the treatment of breast cancer, commercially sold drugs like fulvestrant, lapatinib, eribulin mesylate, pertuzumab, everolimus, doxorubicin and other numerous agents have been approved by the Food and Drugs (FDA) for subtypes treatment. Efforts have been put in place to develop a new and more effective cancer drugs through synthesis and structure modification.

QSAR is a computational technique that shows mathematically the relationship between the inhibitory activity of molecules and their chemical structures. It is the commonly used computational technique for predicting the physicochemical properties of molecules (Wong et al., 2014). QSAR method save cost and resources when developing or designing new drugs and other related substances like fungicides and herbicides (Larif et al., 2013). The aim of this research was to build a QSAR model with improved activity against breast cancer from quinoline derivatives that would give the pharmacologist and pharmacists an insight when to in the design of new breast cancer drugs.

2. MATERIALS AND METHOD

2.1. Data collection:
The quinoline derivatives used in this study were collected from the literature.

2.2. Biological Activities (pIC50)
The biological activities of the compounds were measured and reported in the literature as IC50, it was then converted to logarithm unit (pIC50) using the equation 1 below for simplicity and avoidance of negative IC50 value. The IUPAC name of the compounds and their biological activities is presented in Table 1.

\[pIC_{50} = -\log (IC_{50} \times 10^6) \]

(1)

S/N	IUPAC name of compounds	Activities /μmolL \(^{-1}\)
1	2-cyano-3-phenyl-N-(quinolin-3-yl) acrylamide	29.70 4.6345
2	2-cyano-N-(quinolin-3-yl)-3-p-tolyacrylamide	79.20 4.1013
3	2-cyano-3-(4-fluorophenyl-N-(quinolin-3-yl) acrylamide	74.40 4.1134
4	2-cyano-5-phenyl-N-(quinolin-3-yl) penta-2,4-dienamide	40.00 4.3799
5	3-(2-chlorophenyl)-2-cyano-N-(quinolin-3-yl) acrylamide	53.50 4.2716
6	3-(benzo[d][1,3]dioxol-5-yl)-2cyano-N-(quinolin-3-yl) acrylamide	57.10 4.2434
7	2-cyano-3-(3-nitrophenyl)-N-(quinolin-3-yl) acrylamide	65.20 4.1857
8	2-cyano-3-(4-hydroxy-3-methoxyphenyl)-N-(quinolin-3-yl) acrylamide	63.00 4.2007
9	2-cyano-3-(4-hydroxy-3-methoxyphenyl)-N-(quinolin-3-yl) acrylamide	29.80 4.5258
10	2-cyano-3-(3,4-dimethoxyphenyl)-N-(quinolin-3-yl) acrylamide	64.60 4.1898
11	2-cyano-N-(quinolin-3-yl)-3-(2,3,4-trimethoxyphenyl) acrylamide	49.80 4.3028
12	2-cyano-3-(2,4-dichlorophenyl)-N-(quinolin-3-yl) acrylamide	57.60 4.2396
13	2-cyano-5-(4-(dimethyl amino)phenyl)-N-(quinolin-3-yl) penta-2,4-dienamide	40.40 4.3936
14	2-cyano-3-(2methoxynaphthalen-1-yl)-N-(quinolin-3-yl) acrylamide	57.50 4.2403
15	7-(trifluoromethyl)N-(3,4,5-trimethoxyphenyl) quinolin-4-amine	9.380 5.0278
16	N-(3-methyl bicyclo[3.3.1]nonan-3-yl)-7-(trifluoromethyl)quinolin-4-amine	24.10 6.4180
17	1-chloro-N-(4-morpholinophenyl)quinolin-4-amine	31.50 4.5017
18	N-(4-morpholinophenyl)-7-(trifluoromethyl)quinolin-4-amine	23.30 6.4326
19	5-(7-(trifluoromethyl)quinolin-4-ylamino) pyrimidin-2,4-(1H,3H)-dione	21.40 6.4996
20	1,3-dimethyl-6-(7-(trifluoromethyl)quinolin-4-ylamino) pyrimidin-2,4-(1H,3H)-dione	23.30 6.4326
21	N-benz[d][1,3]dioxol-5-ylmethyl)-7-chloroquinolin-4-amine	21.10 4.6757
22	N-(benzo[d][1,3]dioxol-5-ylmethyl)-7-chloroquinolin-4-amine	26.20 4.5817
23	N-(5,6-dimethyl-1,2,4-triazin-3-yl)-7-(trifluoromethyl)quinolin-4-amine	21.80 6.4615
24	N-(7-(trifluoromethyl)quinolin-4-yl)-quinolin-3-amine	14.20 4.8377
25	2-methyl-N-(7-(trifluoromethyl)quinolin-4-yl)-quinolin-3-amine	16.30 4.7878
26	N-(4-(4-aminophenylsulfonyl) phenyl)-7-chloroquinolin-4-amine	18.80 4.7258
27	N-(4-(4-aminophenylsulfonyl) phenyl)-7-chloroquinolin-4-amine	23.50 4.6289
28	N,N′-(4,4′-sulfonfonylbis(4,1-phenylene)bisis(7-chloroquinolin-4-amine)	23.20 6.4345
29	N,N′-(4,4′-sulfonfonylbis(4,1-phenylene)bisis(7-chloroquinolin-4-amine)	24.00 6.4198
30	N′-(4-aminophenylsulfonyl)phenyl)-N-(7-chloroquinolin-4-yl)-carbamimidothioic acid	22.40 6.4498
31	N′-(4-aminophenylsulfonyl)phenyl)-N-(7-chloroquinolin-4-yl)-carbamimidothioic acid	22.70 6.4640

2.3 Data optimization

2D structures of the compounds were drawn with ChemDraw software. The structures were imported into Spartan 14 V1.1.4 Wave Function programming software to obtain the spatial
conformation structures. The software minimizes the energy of the molecules by optimization at Density Functional Theory (DFT) level, utilizing the (B3LYP/6-31G^*) basis set. The optimized molecules in Spartan format were then converted to an SD format and were saved, this is because PaDEL-Descriptor software only recognizes SD file format. The saved SD file format was also imported into the PaDEL descriptor software V2.20 to calculate the molecular descriptors.

2.4 Molecular Descriptor Calculation and data pre-treatment

The chemical characteristic of a compound is best described by its descriptors in the form of numerical values. The PaDEL descriptor software V2.20 was therefore used to calculate the descriptors of the compounds and a total number of 931 descriptors were calculated.

2.5 Data Pre-treatment and division

The data was first normalized to give the descriptors equal chance of occurrence using equation 2, after which the data was pre-treated (Singh 2013).

\[
X = \frac{x_i - x_{\text{min}}}{x_{\text{max}} - x_{\text{min}}}
\]

Where \(X_i\) is the value of each descriptor, \(X_{\text{max}}\) and \(X_{\text{min}}\) is the maximum and minimum value of the descriptors in each column \(X\).

The data pre-treatment was carried out using the data pre-treatment software in the DTC lab, this was done solely to remove any redundant descriptor and non-informative descriptors (Shola et al., 2018). The pre-treated data set was then divided into two sub-sets namely, training and test set by employing Kennard and Stone algorithm method (Kennard et al., 1969). The training set contains 70% of the total compounds and was used to build the model while the remaining compounds (test set) were used to validate the built model.

2.6. Internal Validation of Model

The internal validation of the model was carried out with the Materials Studio V.8.0 software, employing the Genetic Function Approximation (GFA) method. The models were estimated using the LOF (Friedman 1991) which is expressed in equation 3:

\[
\text{LOF} = \frac{\text{SSE}}{(1 - \frac{\text{p}d}{\text{M}})^2}
\]

Where \(\text{SSE}\) is the sum of squares of errors, \(C\) is the number of terms in the model, \(d\) is a user-defined smoothing parameter, \(P\) is the total number of descriptors in the model, and \(M\) is the amount of data in the training set. \(\text{SSE}\) is defined by equation 4.

\[
\text{SSE} = \sqrt{\frac{(Y_{\text{exp}} - Y_{\text{pred}})^2}{n-\text{p}-1}}
\]

2.6.1 Correlation coefficient \((R^2)\) and adjusted correlation coefficient \((R_{\text{adj}})^2\)

The correlation coefficient square \((R^2)\) is the plot of predicted activity against the experimental activity which shows the potency of the model and the efficiency of the selected descriptors. A close value of \(R^2\) to 1.0 indicates a good model. This can be calculated as follows.

\[
R^2 = 1 - \frac{\sum(Y_{\text{exp}} - Y_{\text{pred}})^2}{\sum(Y_{\text{exp}} - \bar{Y}_{\text{training}})^2}
\]

Where \(Y_{\text{exp}}\) , \(Y_{\text{pred}}\) and \(\bar{Y}_{\text{training}}\) , are respectively the experimental activity, the predicted activity, and the mean experimental activity of the compounds in the training set. The \(R^2\) value alone cannot be used to affirm the goodness of the model, so \(R^2\) was adjusted for the number of variables in the model. The adjusted \(R^2\) is given as:

\[
R_{\text{adj}}^2 = \frac{R^2 - k(n-1)}{n-p+1}
\]

Where \(k\) is the number of independent variables in the model and \(n\) is the number of descriptors.

The QSAR equation used to predict the biological activity of the compounds was determined using the leave-one-out cross validation equation \((Q^2_{\text{cv}})\), given as:

\[
Q^2_{\text{cv}} = 1 - \frac{\sum(Y_{\text{exp}} - Y_{\text{pred}})^2}{\sum(Y_{\text{exp}} - \bar{Y}_{\text{training}})^2}
\]

Where \(Y_{\text{exp}}\) , \(Y_{\text{pred}}\) and \(\bar{Y}_{\text{training}}\) , are respectively the experimental activity, the predicted activity, and the mean experimental activity of the training set.

2.7. External validation of the model

The external validation of the model was carried out on the test set to ensure the selected descriptors are appropriate and to also confirm the model’s robustness. This can be expressed using equation 8.

\[
R_{\text{test}}^2 = 1 - \frac{\sum(Y_{\text{predtest}} - Y_{\text{exp}})^2}{\sum(Y_{\text{predtest}} - \bar{Y}_{\text{training}})^2}
\]

Where \(Y_{\text{pred}}\) , \(Y_{\text{exp}}\) is predicted, experimental activity of the test respectively, and \(\bar{Y}_{\text{training}}\) is the mean activity of the training set. A good and robust model will have \(R_{\text{test}}^2\) value \(\geq 0.6\).

2.8. Y-randomization test

The Y-Randomization test is an external validation test performed on the training set to confirm the strength of the built model (Tropsha et al., 2003). For a QSAR model to pass Y-Randomization test the \(cR_p^2\) value must be more than 0.5. The below equation is used for the calculation.

\[
cR_p^2 = R[R^2 - (R_2)^2]
\]

2.9. Variance Inflation Factor (VIF).

The VIF is a measure of the multi-collinearity among the descriptors used in the model and is expressed as:

\[
\text{VIF} = \frac{1}{1-R^2}
\]

\(R^2\) is the multiple regression correlation coefficients of the variables within the model. If the VIF value falls in the range of 1-5, the model is good and acceptable, if the value is 1, it shows no collinearity among the descriptors and if is above 10, it shows that the model is not good and cannot be accepted.
2.10. Applicability Domain.
Applicability domain was performed on the compounds to detect an outlier and influential molecules. The leverage approach was employed to describe the applicability domain of the QSAR model (Tropsha et al., 2003). Leverage of a given chemical compound is defined as follows:

\[l_i = X_i(X'X)^{-1}X_i^T \] (11)

Where \(n \) is the number of total training set compounds and \(k \) is the number of descriptors in the model. The Williams plot is a plot of standardized residual against leverage employed to elucidate the relevance area of the model in terms of chemical space. Data is said to be an outlier if the standardized cross-validation residual value generated by the model is greater than ±3.

2.11. Mean Effect of the model (ME).
The mean effect was carried out on the training set to know the relative importance of each descriptors in the model built. This is defined as follows:

\[ME = \frac{B_j}{\sum_j B_j} \] (13)

\(B_j \) is the coefficient of the descriptor \(j \) in the model, \(D_j \) is the value of each descriptors in the data matrix for each molecule in the training set, \(m \) and \(n \) are respectively the number of descriptors that appears in the model and the number of molecules in the training set (Minovski et al., 2013).

2.12. Strength of the Model.
The strength of the built model was evaluated using both the internal and external validation parameters. Table 2 below show clearly the standard validation parameters for a generally acceptable QSAR model (Veerasamy et al., 2011).

Table 2: Standard Validation Parameters for a good QSAR model.

Parameter	Meaning	Values
\(R^2 \)	Coefficient of determination	\(\geq 0.6 \)
\(P_{95\%} \)	Confidence interval at 95% confidence level	\(<0.06 \)
\(Q_{cv}^2 \)	Cross-validation coefficient	\(\geq 0.5 \)
\(R^2 - Q_{cv}^2 \)	Difference between \(R^2 \) and \(Q_{cv}^2 \)	\(\leq 0.3 \)
\(N_{ext_test_set} \)	Minimum number of external test sets	\(\geq 5 \)
\(R_{test}^2 \)	Coefficient of determination for external test set	\(\geq 0.06 \)
\(cR_{yp}^2 \)	Coefficient of determination for Y-randomization	\(\geq 0.5 \)

3. RESULTS AND DISCUSSION
Thirty-one compounds were subjected to an in silico studies to develop a QSAR model with a better activity against breast cancer. The compounds were drawn using ChemDraw and optimized using Spartan software 14.1.14 version to obtain the three-dimensional spatial conformers, after which the molecular descriptors were calculated with PaDEL descriptor software V.2.20 and 931 descriptors were calculated. The data were pre-treated to remove those with repeated or same activity and those with empty columns. They were then divided into training and test set. 70% of the total compounds (2, 4, 5, 8 10, 12, 13, 14, 19, 20, 21, 24, 25, 26, 27, 28, 30, 32, 33, 34) make up the training set while the remaining 30% (1, 3, 6, 7, 9, 11, 18, 23, 29, 31) were the test set. The model was built with the training set utilizing the GFA-MLR from the material studio software, the model was validated with the test set. Four models were generated and the first model was chosen as the optimum model because of its high potency, affinity, efficacy and selectivity (PAES). Table 3 shows the four equations and their definitions.

Table 3: Models equations and descriptors.

S/N	Equations	Definitions
1	\[pIC_50 = \] 0.071169725*X050+0.009132493*X751-0.037064666*X758-0.023009669*X845+4.93312035	X505: SL; mmHBI1nt2 X751: ABX; WPSA3 X758: ACE; RNCS X845: AUF; RDF85e
2	\[pIC_50 = \] 0.075172920*X050+0.033710209*X58-0.036091445*X505-0.043694487*X845+4.17297083	X505: SL; mmHBI1nt2 X58: VI; ETA_Eta_F X505: ACE; RNCS X845: AUF; RDF85e
3	\[pIC_50 = \] 0.072027698*X050+0.006497927*X580-0.038716412*X758+0.024063316*X845+4.95539179	X505: SL; mmHBI1nt2 X580: VI; ETA_Eta_F X758: ACE; RNCS X845: AUF; RDF85e
4	\[pIC_50 = \] 0.070391288*X050+0.000127795*X741-0.039221060*X758-0.023538322*X845+4.99297466	X505: SL; mmHBI1nt2 X741: ABN; DPSA2 X758: ACE; RNCS X845: AUF; RDF85e

Model one was found to have \(pIC_{50} = -0.071169725*\text{miniHBI1nt2} + 0.009132493*\text{WPSA3} - 0.037064666*\text{RNCS} - 0.023009669*\text{RDF85e} + 4.93312035 \). The descriptors used in the model were \(\text{mmHBI1nt2} \) which is a 2D structure and is Minimum E-State descriptors of strength for potential Hydrogen Bonds of path length 2. \(\text{WPSA3} \) is a PPSA-3 * total molecular surface area / 1000, \(\text{RNCS} \) is a 3D Relative negative charge on average and those negative surface area * RNCG and \(\text{RDF85e} \) which is also a 3D molecule which means Radial distribution function - 085 / weighted by relative Sanderson electronegativities. The validation parameters presented in table 4 passed the recommendations for building a good QSAR model when compared to the standard validation parameters; this indicate how potent and robust the model is.

Table 4: Validation parameters (VP).

Validation parameter	Equations	1	2	3	4
Friedman LOF	0.0042	0.0045	0.0047	0.0050	
R-squared (R^2)	0.9853	0.9842	0.9835	0.9827	
Adjusted R-squared (R_{adj}^2)	0.9816	0.9803	0.9793	0.9784	
Cross validated R-squared (R_{ cv}^2)	0.9727	0.9719	0.9708	0.9688	
Significance-of-regression F-value	268.4242	249.5214	237.7687	227.6479	
Min exp. error for none-significant LOF(95%)	0.0238	0.0247	0.0253	0.0258	
The Y-randomization result presented in table 5 was a test conducted on the training set to show the robustness of the model. The low values of both R^2 (0.2258) and Q^2 (-0.3757) for several trials affirm that the built model is stable, robust and reliable. While the <3 value (0.8780) greater than 0.5 confirm that the built model is powerful and was not deduced by chance.

Other statistical analyses carried out on the model’s descriptors are Pearson’s correlation (PC), mean effect (ME) and the Variance inflation Factor (VIF). The PC shows the inter-correlation between each descriptor, the ME indicates the relative importance of each descriptor on the built model while the VIF shows that the model is strong and statistically acceptable. There was no inter-correlation between the descriptors because all the paired values were less than 1.0. The positive and negative value of the mean effect shows the strength of the model based on their magnitude and signs. Table 6 present this analysis.

Table 5: Y- Randomization.

Model	R	R^2	Q^2
Original	0.9926	0.9853	0.9727
Model 1	0.3946	0.1557	-0.4277
Model 2	0.6179	0.3818	-0.2281
Model 3	0.5382	0.2895	-0.4008
Model 4	0.6202	0.3846	-0.1050
Model 5	0.4260	0.1815	0.4988
Model 6	0.6586	0.4338	-0.1035
Model 7	0.4171	0.1740	-0.3489
Model 8	0.4058	0.1647	0.3681
Model 9	0.2344	0.0550	-0.5589
Model10	0.1926	0.0371	-0.7175

Average randomized model

Average R	0.4505
Average R^2	0.2258
Average Q^2	-0.3757
cR_p^2	0.8780

The Y-randomization result presented in table 5 was a test conducted on the training set to show the robustness of the model. The low values of both R^2 (0.2258) and Q^2 (-0.3757) for several trials affirm that the built model is stable, robust and reliable. While the cR_p^2 value (0.8780) greater than 0.5 confirm that the built model is powerful and was not deduce by chance. Other statistical analyses carried out on the model’s descriptors are Pearson’s correlation (PC), mean effect (ME) and the Variance inflation Factor (VIF). The PC shows the inter-correlation between each descriptor, the ME indicates the relative importance of each descriptor on the built model while the VIF shows that the model is strong and statistically acceptable. There was no inter-correlation between the descriptors because all the paired values were less than 1.0. The positive and negative value of the mean effect shows the strength of the model based on their magnitude and signs. Table 6 present this analysis.

Table 6: Pearson’s correlation matrix, VIF and mean effect for the QSAR model descriptors.

Descriptors	Inter-correlation	VIF	Mean Effect
munHBint2	1	1.0510	0.3973
WPSA-3	-0.0748	-0.4453	
RNCS	0.1683	2.2078	0.3013
RDF85e	-0.1786	-0.7467	

The univariant statistical analysis presented in table 7 below shows that there is no significant difference in the mean, standard deviation and median values of the compounds. This indicates that the inhibitory activity of both training and test set are similar when compared. The insignificant difference in the range values of the two set indicates that the inhibitory activity of the two set are similar. The maximum values (4.8477 -5.27) and the minimum values (4.1284 - 4.1013) of the training and test set respectively confirmed that the compounds are within the same range and the inhibitory activity of the compounds are interpolative.

Table 7: Statistical analysis.

Statistical Analysis	Activity	Training set	Test set
Number of compounds	21	10	
Confidence level (95%)	0.1026	0.2040	
Mean	4.4943	4.4772	
Median	4.6180	4.4619	
Maximum	4.8477	5.0278	
Minimum	4.1284	4.1013	
Kurtosis	-1.3909	0.1187	
Range	0.7193	0.9265	
Skewness	-1.3909	0.1187	
Standard deviation	0.2254	0.2852	
Sample variance	0.0508	0.0814	

Table 8 and 9 illustrate the low residual activity values for both training and test set, this confirmed the high predictive power of the built model.

Table 8: Experimental, predicted, residual and standard residual activity for training set.

S/N	Experimental activity	Predicted activity	Residual activity	Standardized Residual
2	4.1284	4.1612	-0.0328	-1.1999
10	4.1880	4.1923	-0.0025	-0.0917
4	4.1965	4.2109	-0.0144	-0.5256
12	4.2396	4.2270	0.0126	0.4597
24	4.6757	4.6928	-0.0171	-0.6259
5	4.2716	4.2742	-0.0026	-0.0945
8	4.2007	4.1803	0.0204	0.7458
19	4.6180	4.6773	-0.0593	-2.1731
20	4.5017	4.5122	-0.0106	-0.3866
21	4.6326	4.5946	0.0381	1.3935
22	4.6696	4.6617	0.0079	0.2891
13	4.3936	4.4191	-0.0254	-0.9315
14	4.2403	4.1992	0.0412	1.5071
26	4.6615	4.6923	-0.0307	-1.1248
27	4.8477	4.8075	0.0402	1.4728
30	4.6289	4.5907	0.0382	1.3996
32	4.6198	4.6173	0.0025	0.0907
33	4.6498	4.6498	-0.0001	-0.0025
34	4.6440	4.6391	0.0049	0.1789
25	4.5817	4.6111	-0.0294	-1.0749
28	4.7878	4.7689	0.0190	0.6943
Table 9: Experimental, predicted, residual and standard residual activity for the test set.

S/N	Experimental activity	Predicted activity	Residual activity	Standardized Residual
1	4.1013	4.9957	-0.8944	-1.3558
23	4.6326	4.4106	0.2220	0.7424
6	4.2434	4.8327	-0.5893	-0.8358
29	4.7258	4.2333	0.4925	1.2101
3	4.3979	4.9089	-0.5109	-0.6628
31	4.6289	4.2268	0.4022	1.1071
18	5.0278	4.4661	0.5617	1.3089
7	4.1858	4.9269	-0.7412	-0.9058
9	4.5258	4.7537	-0.2280	-0.1251
11	4.3028	4.5810	-0.2783	-0.4830

Figures 1 and 2 display the plot of experimental activity against the predicted activity for both training and test set. The two plots have R² value greater than 0.6 which indicate a strong and reliable model. Figure 3 display the plot of standardize residual against the experimental activities, all the compounds were found to be within the range value of ±2, this confirmed the strength and robustness of the model.

The Williams plot in figure 4 above is a plot of standardized residual against leverage to know the influential compounds and outliers in the model. The result shows that all the compounds were within the limits square of ±3 except compounds 18, 23 and 31 from the test set that exceeded the calculated warning leverage (l1 = 0.7). This could be attributed to the difference in the chemical structure of those compounds and as such those compounds are said to be structurally influential compounds.

4. CONCLUSION
The result of this work in all ramification passed the minimum recommendation for building a good QSAR model, with values of R² = 0.9853, adjusted R² = 0.9816, QCV² = 0.9727 and an external validated R² = 0.6649. The applicability domain and the low residual values both confirmed that the built model is robust and has a high predictive power which satisfies the research aim. Conclusively, this work would give first-hand information to the medicinal chemist, pharmacist and pharmacologist when developing a new anti-breast cancer agents.

REFERENCES

COLEMAN, M. P.; QUARESMA, M.; BERRINO, F.; LUTZ, J. M.; DE ANGELIS, R.; CAPOCACCA, R.; BAILI, P.; RACHET, B.; GATT, G.; HAKULINEN, T.; MICHELI, A.; SANT, M.; WEIR, H. K.; ELWOOD, J. M.; TSUKUMA, H.; KOIFFMAN, S.; SILVA, G. A.; FRANCISCI, S.; SANTAQUILANI, M.; VERDECCHIA, A. STORM, H. H.; YOUNG, J. L. Cancer survival in five
continents. A worldwide population-based study
Lancet Oncol. 2008, 9:730-756 [PMID: 18639491
DOI:10.1016/S1470-2045(08)70179-7].

FERLAY, J.; SHINH, R.; BRAY, F.; FORMAN, D.; MATHERS, C.; PARKIN, D. M. Estimates of
worldwide burden of cancer in 2008. *Int J Cancer.* 2010, 127: 2893-2917 [PMID: 21351
DOI: 10.1002/ijc.25516]

FERLIN, M. G.; CHIARELotto, G.; GASPAROTTO, V.; DALLA, V. L.; PEZZI, V.; BARZON, L.; PALU’,
G.; CASTAGLIOLO, I. *J. Med. Chem.* 2005, 48, 3417, DOI: 10.1021/jm049387.

FRANKISH H. 15 Million new cancer cases per year by 2020, says WHO, *Lancet.* 361.2003,
1278–1287, DOI: 10.1016/S0140-6736(03)13038-3.

FRIEDMAN, J. H. Multivariate adaptive regression splines. *Ann. Stat.* 1991, 1-67.

GASPAROTTO, V.; CASTAGLIOLO, I.; CHIARELotto, G.; PEZZI, V.; MONTANARO, D.; BRUN P.; PALU,
G.; VIOLA, G.; FERLIN, M. G. *J. Med. Chem.* 2006, 49, 1910 DOI:10.1021/jm0510676.

KENNARD, R. W.; STONE, L. A. Computer aided design of experiments. *Technometrics.* *J. Sci. Res.*
1969, 11, 137-48, DOI: 10.1080/00401706.1969.10490666.

LARIF, M.; CHTITA, S.; ADAD, A.; HMAMOUCHI, R.; BOUACHRINE, M.; LAKHLIFI, T. Predicting
biological activity of Anticancer Molecules 3-ary hydroxyquinolin-2 (1H)-one by DFT-QSAR
models, *International Journal of Clinical and Experimental Medicine.* 2013, vol.3, pp.32–42, ISSN: 2319-8753.

MINOVSKI, N.; ZUPERL, S. DRGAN, V.; NOVIT’C M. Assessment of applicability domain for
multivariate Counter propagation artificial neural network predictive models by minimum Euclidean
distance space analysis. A case study, *Analytica Chimica Acta.* 20 vol. 759, pp. 28–42, DOI:10.1016/j.aca.2012.11.002.

SINGH, P. Quantitative Structure-activity relationship study of substituted-[1,2,4] oxadiazoles as S1P
agonists, *J. Curr. Chem. Pharm. Sci.* 2013, 3, 64–79, ISSN: 2277-2871.

SHOLA, E. A.; UBA, S.; UZAIRU A.. QSAR Modeling and Molecular Docking Analysis of Some Active compou-
against Mycobacterium tuberculosis Receptor (MtbC YP121), *J. Pathog.* 2018, DOI:10.1155/2018/1018694.

TROPSHA, A.; GRAMATICA, P.; GOMBAR, V. K. The importance of being earnest: validation is the abs-
olute essential for successful application and interpret-
tation of QSAR models. *M Inform.* 2003, 22, 69-77,
DOI:10.1002/qsar.200390007.

VEERASAMY, R.; RAJAK, H.; JAIN, A.; SIVADASAN, S.; VARGHESE, C. P.; AGRAWAL, R. K. Validation of
QSAR models-strategies and importance, *International Journal of Drug Design and Discovery.* 2011, vol. 3, pp.
511–519.

WONG, K. Y.; MERCADER, A. G.; SAAVEDRA, L. M.; HO NARPARKVAR, B.; ROMANELLI, G. P.; DUCHDU-
CHOWICZ, P. R. *QSAR analysis on related acetyl cholinesterase inhibitors, Journal of Biomedical science*
2014, vol. 21, no.1, DOI: 10.1186/s12929-0140084-0.