Genetic predisposition for the development of complications in patients after coronary artery stenting

Dana Taizhanova, Akerke Kalimbetova, Aliya Toleuova, Roza Bodaubay, Olga Visternichan, Aigul Kurmanova

Abstract
In the review the authors analyzed the literature data on the state of knowledge of the problems of genetic polymorphisms CYP2C19 gene response to clopidogrel in patients with acute coronary syndrome. Despite on the technological advances and the widespread use of coronary stenting, restenosis at the site of angioplasty remains the main factor limiting its long-term effectiveness.

We made the literature review of the state of the study of the genetic polymorphism of the CYP2C19 gene for a response to clopidogrel in patients with acute coronary syndrome and percutaneous coronary intervention. To achieve this goal, a systematic search and subsequent analysis of publications and online resources were carried out. All publications are indexed in the PubMed, Medline, e-Library, CoogleScholar.

Key words: coronary heart disease, percutaneous coronary angioplasty, stenting, restenosis, clopidogrel, CYP2C19, acute coronary syndrome, gene polymorphism
Introduction

The problem of treatment of coronary heart disease (CHD) is one of the top priorities of the world and national healthcare, as it is on the first place among the causes of cardiovascular mortality [1].

Endovascular interventions have opened a new stage in cardiology, significantly expanding the possibilities of CHD treating. According to the intensity of development, coronary stenting outstripped all previous technologies of coronary angioplasty [2]. Despite significant initial success, the widespread introduction of coronary stenting into clinical practice led to not so optimistic long-term results obtained in the first randomized trials. Long-term results forced cardiologists to change their attitude to coronary stenting and approach to endovascular treatment more differentially [3].

This method has revealed a number of factors limiting its effectiveness and application, the main one of which remains restenosis of the coronary arteries, which occurs in 6-12 months after stent implantation [2].

In general, cardiovascular diseases in Kazakhstan are responsible for almost one-third of all deaths. In the structure of mortality from diseases of the circulatory system, 34% are the patients with coronary heart disease (CHD), of whom more than 30% are active working age persons (18-65 years) [4]. The prognosis and outcome of the disease is directly influenced by timely diagnosis, prevention of complications and early conduction of myocardial revascularization [5].

In large-scale clinical trials [6], it was found that asymptomatic restenosis occurs in approximately 48-58% of patients with Percutaneous Coronary Intervention (PCI). P. Ruygrok et al. (2001) evaluated clinical and angiographic factors associated with asymptomatic restenosis. Restenosis developed in 16% from 1 469 stented patients, while in 58% of them it was asymptomatic. Multivariate analysis of this group showed that male sex prevails among restenotic patients, and predictors of asymptomatic restenosis may have a minor degree of lesion during the first 6 months [6].

Genetic factors associated with complications while taking clopidogrel

Clopidogrel is a prodrug derived from thienopyridine, which requires biotransformation in the liver to the active metabolite. Clopidogrel selectively and irreversibly inhibits the purinergic receptor P2RY12 and, thus, leads to the loss of platelet function (*2/*2) or complex heterozygotes (*2/*3) [16]. The frequency of occurrence of these variants, as a rule, is less than 1% [15, 16] and their definition is of no clinical significance.

According to other sources [14], the prevalence of the allele with CYP2C19*2 genotype is about 25-30% in Europeans and 50-60% in Asians. Alleles with reduced or absent enzyme activity (for example, *3 – *8) were also detected. The frequency of CYP2C19*3 allele in most populations is below 1%; this allele is most common among Asians (2-9%) [15]. The less common CYP2C19 alleles associated with the lack or decreased activity of the enzyme are CYP2C19*4 (rs28399504), *5 (rs5637013), *6 (rs72552267), *7 (rs72558186), and *8. Frequency of occurrence of these variants, as a rule, is less than 1% [15, 16] and their definition is of no clinical significance.

CYP2C19 alleles with functions loss are inherited in an autosomal-dominant type. Thus, heterozygotes (for example, or *1/*2 and *1/*3) have a response to clopidogrel, which is intermediate, between the response of wild-type homozygotes (eg, *1/*1) and the homozygous response of alleles to loss of function (*2/*2) or complex heterozygotes (*2/*3) [16].

The first meta-analysis of Russian studies of clopidogrel pharmacogenetics in 2015 revealed that the presence of CYP2C19*2 polymorphism significantly increases the risk of complications such as cardiovascular mortality / myocardial infarction / stent thrombosis / ischemic stroke / transient ischemic attack (Chernov A.A., 2015). The data obtained are consistent with foreign meta-analyses on relevant topics (T. Bauer, 2011; Mao L., 2013).

Based on the ability of CYP2C19 substrates to metabolize people can be classified as enhanced metabolizers (UM), extensive metabolizers (EM), intermediate metabolizers (IM) and attenuated metabolizers (AM). Extensive metabolizers are homozygous for the CYP2C19*1 allele, which are associated with functional (physiological) metabolism mediated by CYP2C19. The genotype of the intermediate metabolizers have
Although studies show, that CYP2C19*17 carriers have lower residual platelet activity during clopidogrel treatment in comparison with non-carriers [15, 16], a 22% reduction in recurrent ACS and a 37% reduction of need in revascularization (PCI or CAPIB) in patients with acute myocardial infarction [17], as well as a significantly lower risk of recurrent ischemic cardiovascular events [18], other studies do not support such increased efficiency [10, 12, 19]. Moreover, a correlation between CYP2C19*17 presence and fatal cardiovascular events [12] or stent thrombosis was not observed [3]. Some of the inconsistencies in CYP2C19*17 data may be associated with small sample size of studies, a difference in study design, the studied population heterogeneity, different methodologies for genotyping and testing platelet functions, and partial conjunction CYP2C19*17 with CYP2C19*2 [12, 18, 20-22].

In his basic study, Sim et al. [9] reported a low frequency of the CYP2C19*17 allele in Chinese population (4%) in comparison to the Ethiopians and Swedes, who had the same distribution (18% in both). This broad interethnic variation in the allele frequency has now been confirmed in several studies [8, 13-14, 16-17, 21, 23-27]. The allele prevalence was usually <5% in Asians and about four times higher in the white and African populations. The frequency of CYP2C19*17 alleles in the Iranian population is 21.6% and is similar to the Middle East countries or Europe. The high frequency of the CYP2C19*17 allele in the Iranian population underlines this new allele variant importance in the metabolism of CYP2C19 substrates [29].

Conclusion

Thus, a review of literature data has shown the need for a genetic study (CYP2C19 genotyping) responsible for the metabolism of clopidogrel in patients with ACS/PCA to improve their clinical outcome.

Despite a large number of studies showing a decrease in the effectiveness of clopidogrel in patients with ACS/PCA from different ethnic groups with CYP2C19 genetic polymorphism, the role of genetic factors in individuals of the Kazakh population remains unclear. The studies on identification of the status of metabolizers in individuals with risk of stents thrombosis early developing are few and contradictory in accessible national literature.

Disclosures: There is no conflict of interest for all authors.

References

1. Shalnova S.A. Analysis of mortality from cardiovascular diseases in 12 regions of the Russian Federation participating in the study "Epidemiology of cardiovascular diseases in various regions of Russia". *Russian cardiol. journal*. 2012; 5(97):1-11.
2. Babunashvili A.M., Ivanov V.A., Biryukov S.A.Endoprosthetics (stenting) of coronary arteries of the heart. *ASV*. 2001; 699.
3. Ma X., Wu T., Robich M.P., Wang X., Wu H., Buchholz B., McCarthy S. Drug-eluting stents. *Int. J. Clin. Exp. Med.* 2010; 3(3):192-201.
4. Simonenko VB, Borisov IA, Bletkin AN, et al. Myocardial revascularization: coronary artery bypass grafting or stenting? *Clinical medicine*. 2008; 3:13-17.
5. Marchenko AB, Laryushina EM. Role of N-oxide trimethylamine in the pathogenesis, diagnosis and prognosis of cardiovascular diseases. *Medicine and Ecology*. 2017; 1:41-47.
6. Ruygrok PN., Webster M.W.L., de Valk V. Clinical and angiographic factors associated with asymptomatic restenosis after percutaneous coronary intervention. *Circulation*. 2001; 104 (19): 2289-2294. https://doi.org/10.1161/hc401.098294
7. Scott SA., Sangkuhl K, Gardner EE, Stein CM, Hulot JS, Johnson JA, Roden DM, Klein TE, Shuldiner AR. Clinical Pharmacogenetics Implementation Consortium. Clinical Pharmacogenetics Implementation Consortium guidelines for cytochrome P450-2C19 (CYP2C19) genotype and clopidogrel therapy. *Clin. Pharmacol. Ther.* 2011; 90(2):328-332 https://doi.org/10.1038/clpt.2011.132
8. Brozen K. Some aspects of genetic polymorphism in the biotransformation of antidepressants. *Therapie*. 2004; 59 (1):5-12 https://doi.org/10.1055/s-2004-804003
9. Zhou H.H., Anthony L.B., Wood A.J., Wilkinson G.R. Induction of polymorphic 4’-hydroxylation of S-mephentoin by rifampicin. *Br J Clin Pharmacol*. 1990; 30:471-475 https://doi.org/10.1111/j.1365-2125.1990.tb03799.x

10. de Morais S.M., Wilkinson G.R., Blaisdell J., Nakamura K., Meyer U.A., Goldstein J.A. The major genetic defect responsible for the polymorphism of S-mephyton metabolism in humans. *J Biol. Chem*. 1994; 269(22):15419-15422

11. Li X.Q., Andersson T.B., Ahlstrom M., Weidolf L. Comparison of inhibitory effects of the proton pump-inhibiting drugs omeprazole, esomeprazole, lansoprazole, pantoprazole, and rabeprazole on human cytochrome P450 activities. *Drug MetabDispos*. 2004; 2:821-827 https://doi.org/10.1124/dmd.32.8.821

12. Hulot J.S., Bura A., Villard E., Azizi M., Remones V., Goyenvalle C., et al. Cytochrome P450 2C19 loss-of-function polymorphism is a major determinant of clopidogrel responsiveness in healthy subjects. *Blood*. 2006; 108:2244-2247 https://doi.org/10.1182/blood-2006-04-013052

13. Abraham N.S., Hlatky M.A., Antman E.M., Bhatt D.L., Bjorkman D.J., Clark C.B. et al. A Report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents. ACCF/ACG/AHA 2010 expert consensus document on the concomitant use of proton pump inhibitors and thienopyridines: a focused update of the ACCF/ACG/ AHA 2008 expert consensus document on reducing the gastrointestinal risks of antiplatelet therapy and NSAID use. *J Am Coll Cardiol*. 2010; 56(24):2051-2066 https://doi.org/10.1016/j.jacc.2010.09.010

14. Sibbing D. et al. Cytochrome P450 2C19 loss-of-function polymorphism and stent thrombosis following percutaneous coronary intervention. *Eur Heart J*. 2009; 30:916-922 https://doi.org/10.1093/eurheartj/ehp041

15. Desta Z., Zhao X., Shin J.G., Flockhart DA. Clinical significance of the cytochrome P450 2C19 genetic polymorphism. *Clin Pharmacokinet*. 2002; 41:913-958. https://doi.org/10.2165/00003088-200241120-00002

16. Hulot J., Collet J., Silvain J. et al. Cardiovascular Risk in Clopidogrel-Treated Patients According to Cytochrome P450 2C19*2 Loss-of-Function Allele or Proton PumpInhibitor Coadministration: A Systematic Meta-Analysis. *J Am Coll Cardiol*. 2010; 56(2):134-143. https://doi.org/10.1016/j.jacc.2009.12.071

17. Mega J., Close S., Wiviott S., Shen L., Hockett R., Brandt J., Walker J., Antman 114 E., Macias W., Braunwald, Sabatine M. Cytochrome p-450 polymorphisms, response to clopidogrel. *N Engl J Med*. 2009; 360:354-362. https://doi.org/10.1056/NEJMoa0809171

18. Hulot J.S., Bura A., Villard E., Azizi M., Remones V., Goyenvalle C., et al. Cytochrome P450 2C19 loss-of-function polymorphism is a major determinant of clopidogrel responsiveness in healthy subjects. *Blood*. 2006; 108:2244-2247 https://doi.org/10.1182/blood-2006-04-013052

19. Desta Z., Zhao X., Shin J.G., Flockhart DA. Clinical significance of the cytochrome P450 2C19 genetic polymorphism. *Clin Pharmacokinet*. 2002; 41:913-958 https://doi.org/10.2165/00003088-200241120-00002

20. Frère, C., Cuisset, T., Gaborit B., Alessi, M.C. &Hulot, J.S. The CYP2C19*17 allele is associated with better platelet response to clopidogrel in patients admitted for non-ST acute coronary syndrome. *J. Thromb. Haemost*. 2009; 7:1409-1411 https://doi.org/10.1111/j.1538-7836.2009.03500.x

21. Wortham M., Czerwinski M., He L., Parkinson A., Wan Y.J. Expression of constitutive androstane receptor, hepatic nuclear factor 4 alpha, and P450 oxidoreductase genes determines interindividual variability in basal expression and activity of abroad scope of xenobiotic metabolism genes in the human liver. *Drug Metab Dispos*. 2007; 35(9):1700-1710. https://doi.org/10.1124/dmd.107.016436

22. Li Y., Tang H., Hu Y.F., Xie H.G. The gain-of-function variant allele CYP2C19*17: a double edged sword between thrombosis and bleeding in clopidogrel-treated patients. *J. Thromb. Haemost*. 2012; 10:199-206 https://doi.org/10.1111/j.1538-7836.2011.04570.x

23. Sibbing D. et al. Cytochrome 2C19*17 allelic variant, platelet aggregation, bleeding events, and stent thrombosis in clopidogrel-treated patients with coronary stent placement. Circulation. 2010; 121: 512-518 https://doi.org/10.1161/CIRCULATIONAHA.109.885194

24. Geisler T. et al. CYP2C19 and nongenetic factors predict poor responsiveness to clopidogrel loading dose after coronary stent implantation. *Pharmacogenomics*. 2008; 9:1251-1259 https://doi.org/10.2217/14624216.9.1251

25. Lewis J. et al. The CYP2C19*17 variant is not independently associated with responsiveness to clopidogrel. *J. Thromb. Haemost*. 2013; e-pub ahead of print. https://doi.org/10.1111/jth.12342

26. Simon T. et al. French Registry of Acute ST-Elevation and Non-ST-Elevation Myocardial Infarction (FAST-MI) Investigators. Genetic determinants of response to clopidogrel and cardiovascular events. *N. Engl. J. Med*. 2009; 360:363-375

27. Sorich M.J., Polasek T.M. & Wiese M.D. Systematic review and meta-analysis of the association between cytochrome P450 2C19 genotype and bleeding. *Thromb. Haemost*. 2012; 108(1):199-200 https://doi.org/10.1160/TH12-02-0095

28. Sibbing D., Gebhard D., Koch W., Braun S., Steg hern J., Morath T. et al. Isolated and interactive impact of common CYP2C19 genetic variants on the antiplatelet effect of chronic clopidogrel therapy. *J Thromb Haemost*. 2010; 8(8):1685-1693 https://doi.org/10.1111/j.1538-7836.2010.03921.x

29. Payan M, Tajik N, Rouini MR, Ghahremani MH. Genotype and allele frequency of CYP2C19*17 in a healthy Iranian population. *Med J Islam Repub Iran*. 2015; 29:269.

30. Collet JP, Hulot JS, Cayla G et al: 067 CYP2C19 but not PON1 genetic variants influence clopidogrel pharmacokinetics, pharmacodynamics and clinical efficacy in post-myocardial infarction patients. *Arch Cardiovasc Dis Supplements*. 2012; 4:22 https://doi.org/10.1016/S1878-6480(12)70463-9

How to cite this article: Dana Taizhanova, Akerke Kalimbetova, Aliya Toleuova, Roza Bodaubay, Olga Visternichan, Aigul Kurmanova. Genetic predisposition for the development of complications in patients after coronary artery stenting. *J Clin Med Kaz*. 2019; 4(54):6-9