Unsteady flow and particle migration in dense, non-Brownian suspensions

Michiel Hermes,¹ Ben M. Guy,¹ Guilhem Poy,² Michael E. Cates,³ Matthieu Wyart,⁴ and Wilson C. K. Poon¹

¹School of Physics and Astronomy, The University of Edinburgh, King’s Buildings, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, United Kingdom.
²Université de Lyon, École Normale Supérieure de Lyon, Laboratoire de physique, 46 Allée d’Italie, 69364 Lyon, Cedex 07, France.
³DAMTP, University of Cambridge, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WA, United Kingdom.
⁴EPFL SB ITP PCSL, BSP 29 (Cubotron UNIL), Rte de la Sorge, CH-1015 Lausanne, Switzerland.

(Dated: May 19, 2016)

We present experimental results on dense corn-starch suspensions as examples of non-Brownian, nearly-hard particles that undergo continuous and discontinuous shear thickening (CST and DST) at intermediate and high densities respectively. Our results offer strong support for recent theories involving a stress-dependent effective contact friction among particles. We show however that in the DST regime, where theory might lead one to expect steady-state shear bands oriented layerwise along the vorticity axis, the real flow is unsteady. To explain this, we argue that steady-state banding is generically ruled out by the requirement that, for hard non-Brownian particles, the solvent pressure and the normal-normal component of the particle stress must balance separately across the interface between bands. (Otherwise there is an unbalanced migration flux.) However, long-lived transient shear bands remain possible.

I. INTRODUCTION

Newtonian liquids, such as water, ethanol or honey, are each characterized by a well defined, shear-rate-independent viscosity η. In contrast, many complex fluids, such as particulate suspensions, surfactant solutions and polymer solutions, show shear thinning and/or shear thickening, so that their steady-state viscosity depends on the shear rate $\dot{\gamma}$. The shear stress plotted as a function of shear rate $\sigma(\dot{\gamma}) = \eta(\dot{\gamma}) \dot{\gamma}$, known as the flow curve, then has a slope less than or greater than unity, for shear thinning or shear thickening respectively, when plotted on logarithmic axes.

In extreme shear thinning or thickening systems, there can in principle appear regions of the flow curve where $\partial \sigma(\dot{\gamma})/\partial \dot{\gamma} < 0$ for a range of flow rates. Homogeneous flow is then mechanically unstable [1]. In many such cases there exist inhomogeneous, shear-banded states that allow the system to flow steadily in time despite this instability. These involve either bands oriented layerwise along the vorticity direction with the same shear rate but different shear stresses (vorticity banding), or bands oriented in the gradient direction with the same shear stress but different shear rates (gradient banding). There are cases, however, where such banded flows are themselves unstable, giving rise to time-dependent flows with fluctuating shear stresses and rates. These unsteady flows vary from relatively simple oscillations to fully-developed chaos; shear-band-like features may or may not remain detectable.

These chaotic flows arise from viscoelastic instabilities at essentially zero Reynolds number (negligible inertia), in contrast to conventional fluid turbulence; they are sometimes called ‘rheochaos’. Viscoelastic instabilities are relatively well studied in entangled micellar systems.

In that context, they are often interpreted in terms of an interplay between a slow fluid relaxation time (Maxwell time, τ_M) and an even slower process that modulates τ_M [2]. However, rheochaos can equally arise in systems without this timescale separation, such as simple nematic fluids [3].

In this paper, we present detailed experimental evidence for unsteady flow (leading to rheochaos) in a shear-thickening suspension, and explore the various regimes that emerge. The suspension is granular, rather than colloidal, comprising particles that are large enough for Brownian motion to be negligible. Its flow curve is predicted theoretically to be non-monotonic, in a way that might normally be expected to support steady shear bands. Without Brownian motion, however, we will argue that such bands are generically disallowed, so that the flow is unsteady.

Perfectly hard spheres have functioned as a conceptual model for the rheology of particulate suspensions for a long time [4, 5], and continue to yield many insights, e.g., in the study of viscosity divergence near glassy arrest [6]. As two idealized hard spheres approach each other through a fluid with no-slip boundary conditions, the time taken to drain the layer of fluid between them (the lubrication film) diverges, and large ‘lubrication forces’ prevent the particles from ever making contact. However, if the particles are slightly rough, or have a finite slip length, they can come into contact when the lubrication film reaches a thickness comparable to the surface roughness, or the slip length. In practice therefore, direct contact forces certainly play a role in real “hard-sphere” suspensions [7], and these contact forces can be expected, in general, to include static friction.

Surprisingly, at low volume fraction, ϕ, the viscosity of a suspension of spheres in frictional contact is lower
than that of an identical suspension of smooth spheres [8]. The opposite holds at high \(\phi \), where frictional contacts have recently been demonstrated by experiments [9, 10], simulations [11–14] and theory [15] to play a crucial role in shear thickening, and ultimately jamming.

These recent advances formalize and develop earlier insights from Melrose and Ball (MB). In their simulations of non-Brownian spheres [16], MB found that the gap between the surface of particles, \(d \), could fall to molecular dimensions in a real suspension, giving rise to numerically diverging lubrication forces (which scale as \(d^{-1} \)). MB overcame this problem by introducing a short range repulsive force that stops these pathologically small gaps from forming [17]. In a real suspension, such repulsion can arise from stabilising polymers and/or charges on particle surfaces. Significantly, MB pointed out that the ‘small gap problem’ would recur above a stress \(\sigma^* \) at which the stresses in the system overcome these stabilising repulsions. Crucial to recent advances is the realization that, when the force threshold for a particular contact is exceeded, its lubrication film may fail immediately (due to roughness or a finite slip length) allowing the particles to come into direct frictional contact. Thus the ‘onset stress’ \(\sigma^* \) marks a crossover from open, well lubricated (or sliding) contacts between particles to direct, frictional (or rolling) contacts.

Developing this insight, Wyart and Cates [15] (WC) have constructed a phenomenological theory for the steady flow of shear-thickening particulate suspensions. They take all particle interactions to be lubricated (frictionless) when \(\sigma \ll \sigma^* \), so that the system is quasi-Newtonian with a viscosity that diverges at random close packing \(\phi_0 \approx 0.64 \). However, when \(\sigma \gg \sigma^* \), all contacts are frictional and the system is again quasi-Newtonian, but now with a viscosity diverging at some lower volume fraction, \(\phi_m < \phi_0 \), whose value depends on the inter-particle static friction coefficient, \(\mu_p \) [12]. The transition between these two regimes on increasing \(\sigma \) causes shear thickening.

This scenario resolves a longstanding puzzle in dense suspension theory. Strictly hard particles can have no stress scale \(\sigma^* \), and, without Brownian motion, also have no time scale at rest. Hence, all stresses must scale linearly with \(\dot{\gamma} \) [18]. (This includes nonvanishing normal stresses, which is why we describe the two limiting branches as quasi-Newtonian, not Newtonian.) Thus, in the absence of Brownian motion and inertia, shear-thickening requires some deviation from strict hard sphere behavior. The key idea of recent work is that this deviation provides, in effect, a stress-dependent inter-particle friction [11, 15, 19].

In this paper, we study the rheology of corn-starch suspensions below and above \(\phi_m \). Above \(\phi_m \), complete jamming is expected, surprisingly, however, we show that flow is still observed, but is always unsteady, and shows rheochaos at high enough stress. This relates to the fact that you can run, but not stand still, on a pool of corn starch. Similar unsteadiness is seen for \(\phi_c < \phi < \phi_m \), so that the entire DST region is affected. After describing these results we give arguments that unsteady flow should, on theoretical grounds, be a generic feature of dense particulate suspensions in the DST regime.

II. METHODS AND SET UP

Rheological measurements were performed with a stress-controlled rheometer (DHR-2, TA Instruments) with hatched parallel plates, \(R = 40 \text{ mm diameter (Figure 1(a) and Figure 2)} \) or with a Couette cell (inner diameter of 18 mm, outer diameter 21 mm) and roughened boundaries (Figure 1(b)) at a temperature of 20\(^\circ\)C. We obtained the raw torque and strain data at a rate of \(\sim 10^3 \) Hz using the TA software tool “ARG2AuxiliarySample”. The sample was imaged from the side using a digital camera at a frame rate of 30 fps using a 16 mm macro objective.

We performed experiments on corn starch (Sigma Aldrich, unmodified regular corn starch containing approx. 73\% amylopectin and 27\% amylose [S4126]; diameter \(\approx 14 \mu\text{m} \), polydispersity \(\approx 40\% \) from static light scattering) dispersed in a mixture of 50wt% water and 50wt% glycerol (viscosity \(\eta_s = 6 \text{ mPa-s}, \) density \(\rho_s = 1.17 \text{ g-cm}^{-3} \)) at various concentrations. The particles swell in our solvent, so that we cannot access the volume fraction \(\phi \). We therefore quote mass fractions \(\phi^w \). Samples were freshly mixed for each experiment and rested for several minutes before loading into the rheometer. Sedimentation and evaporation begin to influence the rheology after \(\sim 30 \text{ min} \) with parallel plates; we discard data taken after this time.

Flow curves, Figure 1, were obtained by increasing the torque, \(M \), continuously with a logarithmic rate from 0.1 Pa to 1000 Pa over 300 s. Most samples show edge fracture at stresses between 100 Pa and 1000 Pa, we do not show any data points for which this has happened. In parallel plate work we report the shear rate at the rim of the plates \(\dot{\gamma} = R \omega / H \), where \(H \) is the gap height, and the apparent shear stress, \(\sigma = 2M/(\pi R^2) \).

III. RESULTS

Figure 1 shows flow curves measured at different mass fractions, \(\phi^w \) (see caption), reported as the reduced shear stress \(\sigma/p^* \), versus the reduced shear rate, \(\dot{\gamma} \eta_s/p^* \). Here \(p^* \) is the onset pressure for the formation of frictional contacts, related to the onset stress through \(\sigma^* = \mu(\phi)p^* \), see Section IV. (Note that we control the shear stress, plotted on the vertical axis, and measure the shear rate, on the horizontal axis.) At \(\phi^w < \phi_c^w \approx 0.465 \), we observe continuous shear thickening above an onset pressure \(p^* = 20.0 \pm 5 \text{ Pa} \) to a high-viscosity quasi-Newtonian state (blue curves in Figure 1). The steepness of the shear-thickening part of the flow curve increases with \(\phi^w \) until, at \(\dot{\gamma} \), \(d\dot{\gamma}/d\sigma = 0 \) beyond which the sample discontinu-
Just above \(\phi^w \) (black curve, Figure 1(a), measured between hatched parallel plates), there is a narrow concentration range in which the system can reach a flowing quasi-Newtonian state at high stresses, as previously reported [20], although we observe severe deformations of the meniscus in this regime. Above a second critical concentration \(\phi^w_m \approx 0.47 \) (red curve, Figure 1(a) and (b)), no such quasi-Newtonian regime is found even at the highest observable stresses; instead the flow is always erratic. We observe very similar behaviour in a Couette geometry, Figure 1(b). These time-averaged observations map rather directly onto the WC theory of steady-state shear thickening if we identify \(\phi^w_c \) with \(\phi_c \), the point where sigmoidal flow curves emerge, and \(\phi^w_m \) with \(\phi_m \), the jamming point for frictional particles. On the other hand, the theory does not capture the magnitude of the shear thickening completely, most likely due to the wide size and shape dispersity in corn-starch, or non-hard interactions, which also give rise to a small yield stress (not shown).

Significant differences between experiments and theoretical expectations (see section IV) arise for \(\phi > \phi_m \). Here, WC theory leads us to expect that no steady flow is possible above a threshold of stress, even with shear bands present, because there is no upper branch to the flow curve. However, at low stresses, steady flow is possible on the lower branch, but beyond it the only steady state either has coexistence of low and high stress bands, both at \(\dot{\gamma} = 0 \), or is jammed homogeneously (again with \(\dot{\gamma} = 0 \)). Thus one might expect the system to be able to support a relatively modest static load without flowing at all.

However these WC scenarios refer to steady states. Experimentally we find instead that the system does flow at high stresses in this regime, but flows unsteadily. The phenomenology of this ‘unexpected’ flow at \(\phi > \phi_m \) is complex. To begin to explore it, Figure 2(f) shows the time-averaged flow curve, as well as the measured fluctuations, in a sample at \(\phi^w = 0.50 \), corresponding to a volume fraction just above \(\phi_m \). At the lowest applied shear stresses, \(\sigma < 0.1 \sigma^* \), the shear rate fluctuates only a little around a well-defined average (see Figure 2(a)). The axial stress measured on the top plate, \(\sigma \), is close to the noise level of the transducer [21]. The meniscus at the air-sample interface remains smooth, shiny and undisturbed. We observe a drift in the shear rate after long times (hours), presumably due to particle migration, sedimentation or evaporation.

For \(0.1 \sigma^* < \sigma < 0.2 \sigma^* \), region B in Figure 2(f), the flow is steady for seconds, but is punctuated by sudden drops in \(\dot{\gamma}(t) \), Figure 2(b). We refer to these events as “jams”, and argue that they are related to the formation of locally-solid regions within the suspension. During a jamming event, \(\dot{\gamma} \) (purple and red lines) drops rapidly, with a concomitant positive spike in the axial stress (black lines), before increasing slowly back to the steady-state value.

While the jamming events in region B are sparsely distributed and seem to occur randomly in time, they become very regular with a well-defined frequency at
$\sigma \gtrsim 0.2p^*$, regime C Figure 2(f). This is visible macro-
scopically as periodic jerks of the rheometer top plate.
The minimum shear rate reached during a jamming event is variable, Figure 2(c), while the shear rate in the flow-
ing state is approximately the same and corresponds to the
right-hand limit of the horizontal lines in Figure 2(f).
These oscillations remain over long times and only change
over the course of hours (presumably as the sample dries out).
The frequency of the oscillations increases linearly
with the applied stress, Figure 2(a). Each sudden de-
crease in $\dot{\gamma}$ is accompanied by a localised deformation of
the air-sample interface. A small area of the interface
comparable to the gap height bulges out slightly, while
the surrounding area curves slightly inward. The inter-
face recovers a smooth profile as the plate accelerates
back to the steady state value. Note that these localised
jams are not an artifact of the cross-hatched plates; they
start to appear at the same stresses with smoother sur-
faces, albeit in the presence of significant wall slip, as
well as in Couette geometries (Figure 4(b)).

In region D, Figure 2(f), periodic jamming coexists
temporarily with bursts of unpredictable fluctuations, as
shown in Figure 2(e). During the periodic intervals, the
air-sample interface behaves the same as in region C, with
short-lived, static jammed regions appearing at the same
time as the drop in shear rate. During the random bursts,
more irregular surface deformations are observed that are
long-lived and move around the interface opposite to the
direction of flow (see Figure 3b-d). Usually, only one or
two transient deformations appear during each intermit-
tent event and disappear when the periodic oscillations
resume.

At the highest stresses $\sigma/p^* \gtrsim 1$, in region E, Fig-
ure 2(f), the periodic jamming and unjamming is absent, and
only random-looking fluctuations are observed, Figure 2(e).
This behavior, and the series of events at lower stresses that precede it, are similar to the development of
rheochaos as observed in micellar systems [2]. We leave
it to future work to establish whether the flow is really
chaotic in a technical sense; for our purposes what mat-
ters is that it is unsteady, not readily predictable, and
without obvious periodic features. In region E, the first
normal stress difference is permanently large and positive
and anti-correlated with the shear rate. Very recently,
unstable flow, sudden jams and a transition to what ap-
pears to be rheochaos have been observed in 2D computer
simulations of inertial frictional grains [22]. Although the
origin of the sigmoidal flow curves is different, the types
of unstable flow observed there are very similar to the
ones reported here.

We observe the same transition sequence in a Cou-
ette geometry as with parallel plates, although the onset
stress for unsteady flow is lower in a Couette geometry
than between parallel plates Figure 4(a-e). We observe
the same sequence of phenomena for other volume frac-
tions above ϕ_m, whereas for samples just below ϕ_m we
IV. THEORY

In this section we will summarise the steady-flow theory outlined by [15]. We will then explore what this means for the stability of the flow of shear thickening suspensions. WC describe the rheology of dense non-Brownian suspensions with a jamming volume fraction, \(\phi_J(p) \), that depends on \(p \), the particle pressure, defined via the trace of the particle contribution to the stress. This \(\phi_J(p) \) evolves smoothly from \(\phi_J(0) = \phi_0 \) to \(\phi_J(\infty) = \phi_m \) as the fraction of frictional contacts \(f \) goes from 0 to 1:

\[
\phi_J(p) = \phi_m f(p/p^*) + \phi_0[1 - f(p/p^*)]. \tag{1}
\]

Here \(f \), which is dimensionless, can depend only on the ratio of \(p \) to the onset stress, as written above. The precise form of \(f \) is inessential, but a stretched exponential

\[
f = \exp \left[(-p^*/p)^\beta \right], \tag{2}
\]

gives good agreement with experiments [9] and simulations.

At the macroscopic level, the particle pressure \(p \) is related to the shear stress \(\sigma \) through a stress ratio or macroscopic friction coefficient \(\mu(\phi) \) (not to be confused with \(\mu_p \) as defined above):

\[
\sigma = \mu(\phi)p, \tag{3}
\]

where \(\mu \) is taken by WC to depend only on \(\phi \). This involves a simplification, since in principle the macroscopic friction coefficient \(\mu \) could certainly also depend on the state of microscopic friction and hence on \(f \) [15, 23, 25]. We return to this issue below. This relation between stress and pressure allows us to write Equation 1 as function of stress instead of pressure

\[
\phi_J(\sigma) = \phi_m f(\sigma/\sigma^*) + \phi_0[1 - f(\sigma/\sigma^*)], \tag{4}
\]

where \(\sigma^* = \mu(\phi)p^* \).

Finally, the suspension viscosity \(\eta = \sigma/\dot{\gamma} \) is known to diverge as the jamming transition is approached [23]. This divergence is related to the explosion of velocity fluctuations caused by excessive crowding [26, 27], and can be computed in simple models [28]. In WC this effect leads to a divergence of viscosity at \(\phi_J(P) \) modeled as

\[
\eta(\sigma, \dot{\gamma}) = \eta_\infty \left[1 - \frac{\phi}{\phi_J(\sigma/\mu(\phi))} \right]^{-\alpha}, \tag{5}
\]

with an exponent estimated as \(\alpha = 2 \). This leads to \(S \)-shaped flow curves, whose likely role in shear thickening was earlier identified by [29].

Figure 5(a) shows the reduced suspension viscosity, \(\eta(\sigma, \phi)/\eta_\infty \), predicted by the WC model as a function of reduced shear rate \(\dot{\gamma}/\dot{\gamma}_\infty \) using \(\phi_0 = 0.64, \phi_m = 0.56 \) and \(\beta = 1 \). For \(\phi \) somewhat less than \(\phi_m \), the system shear thickens continuously between the two quasi-Newtonian regimes. The slope \(d\eta/d\dot{\gamma} \) increases with \(\phi \) until, at a critical \(\phi = \phi_c \approx 0.55, \eta(\dot{\gamma}) \) becomes vertical. For \(\phi > \phi_c \), \(\eta(\dot{\gamma}) \) contains a region of negative slope and develops a sigmoidal shape, while tending towards quasi-Newtonian regimes at both low and high stresses.

![Image](image_url)
Above a second critical volume fraction set by $\phi = \phi_m$, the backward-bending part of the flow curve meets the vertical axis and there is no longer a flowing branch at high stresses. The corresponding $\sigma(\dot{\gamma})$ curves are shown in Figure 5(b).

As ϕ is increased, the theory predicts first continuous shear thickening, then discontinuous shear thickening (DST) between two flowing branches each of finite viscosity [20], and finally DST from a flowing branch to a jammed branch that cannot flow at finite $\dot{\gamma}$ without some sort of fracture [30]. This last regime, which arises for $\phi > \phi_m$, is called ‘complete jamming’ [31]; in it, the putative upper branch of the flow curve $\sigma(\dot{\gamma})$ runs straight up the vertical axis. The WC model fits recent $\eta(\sigma, \phi)$ data on suspensions of sterically stabilized polymethylmethacrylate (PMMA) particles whose interactions closely approach the hard-sphere limit [9]. The predicted sigmoidal flow curves, although pre-empted by instability in bulk steady flows, have since been observed, at least transiently, in experiments and simulations of nearly-hard non-Brownian particles [13, 32].

At high volume fractions, in the complete jamming regime, the WC theory requires that any high-stress shear band must have zero flow rate, $\dot{\gamma} = 0$. This is because the only other frictional states on the flow curve have $d\sigma/d\dot{\gamma} < 0$ and are themselves unstable. Thus, any steady banded state comprises coexistence, layerwise along the vorticity direction, of a jammed state at finite stress and a fluid state at zero stress (since with this orientation, $\dot{\gamma}$ is equal in both bands). Thus, no steady flow is possible even with shear bands present; the only steady flow states for $\phi > \phi_m$ are homogeneous and lie on the low-friction branch. Dynamically, if the mean shear stress is increased beyond the stability limit of that branch, one might then expect its local value to become increasingly heterogeneous along the vorticity direction until flow stops altogether for the reasons just described.

V. ABSENCE OF STEADY SHEAR BANDS

It is notable that in our experiments, we observe unsteady flow at all concentrations $\phi > \phi_c$ where stable banded flow may, at least at first sight, be expected. We now turn to explore the origins of these instabilities in our system.

Flow instability, oscillation, and rheological chaos has been fairly widely reported in both shear-thinning and shear-thickening viscoelastic materials (particularly but not exclusively micellar solutions [2]). Given the presence of highly nonlinear constitutive equations that relate stress to strain-rate history, one might expect instability to be more common. Mathematically, unsteady solutions can either arise ‘directly’ from the instability of a steady homogeneous flow, or through a similar instability within one of the shear-bands that would otherwise allow steady but inhomogeneous flow [33].

Although in general one does not expect simple rules to govern whether flows are steady or unsteady, dense non-Brownian shear-thickening suspensions present a somewhat special case in relation both to vorticity bands and to gradient bands. Below we deal with these two cases in turn. We consider the case where the flow curve has a
sigmoidal shape, which occurs for $\phi_c \leq \phi < \phi_m$, as well as the regime $\phi > \phi_m$ (with no upper flow branch), which applies in most of the experiments presented above. We refer to the flow-, gradient- and vorticity-directions as x, y and z, respectively.

Let us consider the diagonal components of the stress tensor, which comprise an isotropic solvent pressure $-p_\delta \delta_{ij}$ plus the three normal stresses $\sigma_{uu} = -p_{uu}$ caused by the presence of particles. (Here $u = x, y, z$ is a generic, but not summed, Cartesian index; recall the stress and pressure tensors have opposite signs.) For strictly hard spheres with fixed frictional properties, each normal stress is linear in $\dot{\gamma}$. More generally we are dealing with a manifold of steady states in which the ratio of shear to normal stresses (i.e., the macroscopic friction constant) depends on both volume fraction and the state of contact friction captured by $f(\sigma)$:

$$-\sigma_{uu} = p_{uu} = \sigma_{xy}/\mu_{uu}(\phi, f(\sigma)).$$

(6)

Generically, the μ_{uu} are unequal, causing normal stress differences $N_1 = \sigma_{xx} - \sigma_{yy}$, and $N_2 = \sigma_{yy} - \sigma_{zz}$.

A simplification made by WC was to suppress the dependence of μ_{uu} on the state of contact friction, so that it is a function of ϕ only. This is pursued in Figure 5(c),(d) where $\mu_{uu}(\phi)$ is estimated as described in Appendix A, which also gives further information about what is known of the μ_{uu}’s in granular systems. More generally, however, the μ_{uu} must depend on σ via $f(\sigma)$ as well as on ϕ; hence the macroscopic friction will have different values on the lower and upper limiting branches of the flow curve. Therefore each of the normal stresses has a shear rate dependence $p_{uu}(\dot{\gamma})$ that qualitatively resembles the shear stress $\sigma_{xy}(\dot{\gamma})$, but is not quantitatively proportional.
to it as was assumed in Figure 5(d). This will prove important in the discussion of gradient bands below. First, however, we address vorticity bands.

Vorticity bands

![Diagram of vorticity bands](image)

FIG. 6. (a) A Schematic of vorticity banding as it could hypothetically occur for a homogeneous volume fraction. (b) A schematic of gradient banding as it could hypothetically occur in an inhomogeneous sample.

We consider flow between infinite parallel plates so that homogeneous flow is possible in principle. Steady vorticity bands are expected to arise when the applied steady shear stress σ_{xy} falls within a window $\sigma_{xy}^{(1)} < \sigma_{xy} < \sigma_{xy}^{(2)}$ that includes all part of the flow curve with negative slope. (Vorticity bands are not expected to arise in experiments at controlled γ [1].) The vorticity bands have a common shear rate, $\gamma_1 = \gamma_2$, but different shear stresses $\sigma_{xy}^{(1)}$ and $\sigma_{xy}^{(2)}$. As σ_{xy} is varied, the fraction of the sample occupied by each type of band adjusts so that the space-averaged shear stress is $\sigma_{xy}^{(2)}$.

Mechanical stability then requires equality between bands of the normal stress normal to the band interface, σ_{zz}. We thus have $p_s^{(1)} + p_{zz}^{(1)} = p_s^{(2)} + p_{zz}^{(2)}$. The particle contribution p_{zz} is mediated by forces (perhaps including lubrication forces) which are in effect transferred directly from particle to particle through a network of contacts. The fluid pressure p_s is carried by solvent molecules that can move freely through the pores of this network. Without Brownian motion to create an osmotic reaction force, any difference in fluid pressure between bands should drive the solvent to flow from high to low p_s, with mass balance maintained by a flux of particles in the opposite direction, from high to low p_{zz}.

Thus, p_s and p_{zz} must be separately equal in shear-banded non-Brownian suspensions. Though the argument is general, it is particularly transparent for $\phi > \phi_m$, when coexisting vorticity bands are in fact at rest, as previously explained. No lubrication (or other hydrodynamic) forces then remain, so the fluid and particle mechanics are completely decoupled. It is quite clear in this case that the solvent and particle pressures must be separately equal between bands. The same argument extends to flowing bands, at least if the system is treated as two continua (solvent and particles) with a drag term coupling their two velocities (i.e., a two-fluid model) [34].

Steady vorticity bands thus require not only equal strain rate but also equal particle pressure p_{zz}. Since f is only a function of the particles pressure p_{zz} (Equation 2) the fraction of frictional contacts and thus the frictional states of the two bands must be identical (note that ϕ itself can be be seen as a function of f and p_{zz} [23]). However, if the frictional state has to be the same in both bands then the suspension is identical to one with a fixed microscopic friction coefficient μ_p. Therefore for vorticity bands to be stable they also need to be stable for a system with a fixed friction coefficient. However, suspensions at fixed friction are well studied and shear banding has not been observed [23, 25]. A supplementary argument, starting from the same premise and leading to the same conclusion that vorticity banding is prohibited in dense non-Brownian suspensions, is provided in Appendix B.

It is helpful to discuss separately the case when $\phi > \phi_m$ so that the bands are not flowing. The particle stresses in the fluid band vanish. In this case, equality of p_{zz} would require μ_{zz} to diverge on the frictional branch so that there is a large shear stress at vanishing normal stress. However, the frictional branch at $\phi > \phi_m$ is a jammed solid. Such materials can support only a finite stress anisotropy without flowing, so that μ_{zz} cannot become infinite as required. Hence coexistence of non-flowing vorticity bands is ruled out.

Gradient bands

We now argue that static gradient bands are also ruled out in steady state once particle migration is allowed for. We do not rule these out entirely, but analogous with the vorticity bands, we show that they should only arise under conditions where a system of fixed microscopic friction coefficient would also show gradient banding. This statement again relies on the fact that the state of friction, represented by f can be viewed as a function of p_{yy} only. But separate equality of the fluid pressure and the normal-normal stress requires that p_{yy} and hence f is the same in coexisting gradient bands [35]. Accordingly, such bands can only exist if they would also do so in a system of fixed friction. As far as is known, this does not happen for hard particles (but might do, very close to jamming, for deformable ones). A supplementary argument for the prohibition of gradient bands is provided in Appendix C.
Discussion

We have argued that neither vorticity nor gradient banding is generically sustainable in steady state for dense, shear-thickening suspensions of hard particles in which mechanical contact and viscous stresses remain unopposed by Brownian motion. Avoidance of mechanically-induced particle migration then requires that the particle normal stress contributions \(p_{\text{uu}} \), with \(u \) normal to the interface between bands, and the solvent pressure \(p_s \), are separately equal in coexisting shear bands.

This condition holds only in strict steady state where all fluxes between bands must vanish. Quasi-steady shear bands could however be sustained under transient conditions by a nonzero flux of particles across the interface. One possible explanation of the flow-NMR data in [36], which apparently show static gradient-bands, is that these represent a snapshot of the system while such fluxes remain transiently present [1, 37]. (Note, however, that [36] used a wide-gap Couette system. In this geometry banding is expected even for fixed-friction materials because the imposed ratio of shear to normal stress varies with radius, and may thus be unrelated to shear thickening.

The experimental fact, in any case, is that steady flow is not seen in our system whenever shear banding would be needed to create it. We have made similar observations on other materials than corn starch and we believe this to be the generic outcome for shear-thickening materials under conditions of imposed stress. We leave open the question of what to expect under conditions of imposed strain rate; since in fact only the average strain rate gets imposed, it is quite possible that an unsteady stress response will again arise close to the DST transition.

When steady banding is not possible, our experiments suggest that the dynamical outcome is as follows. The system jams locally (near the edge of our geometry, because the stress is largest at the edge of our parallel plates). The particles migrate away from the jammed region due to the unequal particle pressure in the jammed region. It is this local increase in particle pressure that drives particle migration that also deforms the meniscus. This migration continues until the pressures balance and locally the flow is no longer unstable and the system is unjammed. These jams always form at the edge of our sample, in a parallel plate geometry, due to the stress gradient over the sample. This explains how the system is able to flow deep into the regime where it would be expected to jam.

While we have ruled out stable bands in suspensions of non-Brownian hard particles, in Brownian suspensions stable shear bands might be possible. For stable bands the solvent pressure difference across the interface between the bands needs to be maintained. Without this the particle pressures must be equal and the argument for non-Brownian systems forbids stable bands. In Brownian systems, such as micellar solutions and small hard-sphere colloids, osmotic forces can maintain an osmotic and thus a solvent pressure difference across an interface. For micelles it is known that these these unequal pressures cause differences in Laplace curvature at the external menisci of the two bands (which may fail if inequalities become large) [38]. In the non-Brownian suspensions studied here the meniscus deforms (Figure 3), indicating differences in pressure, however, these deformations are not stable. To stabilize the frictional shear band the system needs to maintain a higher particle pressure (and thus a lower solvent pressure) in the frictional band than in the frictionless band. The mechanism required to stabilise the bands has to push particles from the frictionless band towards the frictional band and it has to do this against the particle pressure. Although Brownian motion is required it might not be sufficient for the formation of stable bands. Equilibrium effects such as diffusion will never push hard colloidal particles against a pressure gradient. One way this can happen is through an out of equilibrium mechanism such as flow concentration coupling as in shear thickening micelles solutions [2, 39]. Whether this is also possible for Brownian hard spheres remains to be investigated.

VI. CONCLUSION

The phenomenology of continuous shear thickening (CST) of non-Brownian suspensions is well described by the WC theory [9, 15]. In this work, we have shown that the same applies in the discontinuous shear-thickening (DST) regime, so long as one allows that the instability connected with a sigmoidal flow curve need not lead to the formation of steady-state vorticity bands. The steady banding picture would give two regimes with DST; one in which the bands comprise two different flowing states (the upper and lower quasi-Newtonian branches of the flow curve), at \(\phi < \phi_m \); and one in which both the low-friction and the high-friction branch are not flowing, at \(\phi > \phi_m \).

The latter is a strong prediction of any steady banding hypothesis since it implies that, above a relatively modest stress threshold \(\sim 5\sigma^* \), a static load can be supported indefinitely even though only part of the structure (the jammed bands) are contributing to its support. If true, this should presumably also be the case in other geometries of inhomogeneous stress, such as a person standing on a pool of corn starch suspension. If particle migration did not matter, the person should be able to stand still indefinitely without sinking in.

Contrary to the expectations based on any hypothesis of time-independent shear bands, we find that flow (although not steady) is possible even in this regime of very high density. The reason that the system is still capable of flow for \(\phi > \phi_m \) is that it only spends part of its time in a jammed state. Whenever bands are present, particle migration allows the jammed regions to dilate and un-
jam. A new jam then forms somewhere else; bands are unsteady, and a finite average rate of flow is achieved. Even if the local stress exceeds the highest threshold calculated by WC, beyond which one expects homogeneous complete jamming rather than shear bands, particle migration into regions of lower stress will always allow motion to occur. This concurs with the observation that a pool of corn starch cannot in fact support a localized static weight for very long times [40]. According to our arguments, however, if this high threshold is exceeded across the entire sample, flow would finally cease. Hence, although one cannot stand still on an infinite pool of corn-starch suspension, it should be possible to do so on a finite bucket of the material. If steady shear bands are indeed ruled out by our arguments, the ubiquitous unsteady flows the we observe stem naturally from the large, unstable, negative-slope region in the flow curves, predicted by the WC theory at φ values close to and beyond φc. We observed a transition from periodically jammed via intermittent to rheochaotic flows upon increasing the stress. Comparable behavior, while differing from system to system in the particular route to chaos (e.g., [41]), is well known for viscoelastic micellar solutions. It has even been observed for shear-thickening suspensions before, but was attributed then to wall slip [42]. This explanation is ruled out by the fact that we see the same phenomenology with and without hatched plates. Combining the theoretical arguments leading to sigmoidal flow curves [15], with the case made above for the generic inadmissibility of shear-banded steady states, there is every reason to believe that our observations represent the inherent bulk rheology of very dense suspensions. Of course, the details of each unsteady flow, particularly in the chaotic regimes, may depend on the precise sample geometry. In particular it may be influenced by the finite stress and/or strain-rate gradients imposed by all real rheometers. Nonetheless, it seems clear that unsteady flow is an intrinsic element of the rheology of very dense shear-thickening suspensions.

Acknowledgements

We thank Suzanne Fielding, Peter Olmsted, and Romain Mari for discussions. This work was funded in part by EPSRC Grant EP/J007404. MEC holds a Royal Society Research Professorship. BG was funded by a CASE scholarship with Johnson Matthey. M.W. thanks the Swiss National Science Foundation for support under Grant No. 200021-165509 and the Simons Collaborative Grant “Crackling the glass problem.”

Data

Data relevant to this work have been archived and can be accessed http://dx.doi.org/10.7488/ds/1393.

References

[1] Peter D. Olmsted, “Perspectives on shear banding in complex fluids,” Rheologica Acta 47, 283–300 (2008).
[2] M. E. Cates and S. M. Fielding, “Rheology of giant micelles,” Advances in Physics 55, 799–887 (2006).
[3] Buddhapiya Chakrabarti, Moumita Das, Chandan Dasgupta, Sriram Ramaswamy, and A. K. Sood, “Spatiotemporal Rheochaos in Nematic Hydrodynamics,” Physical Review Letters 92, 055501 (2004).
[4] A. Einstein, “über die von der molekularkinetischen theorie der wärme geforderte bewegung von in ruhenden Flüssigkeiten suspendierten teilchen,” Ann. Phys. 322, 549–560 (1905).
[5] G. K. Batchelor, “The effect of Brownian motion on the bulk stress in a suspension of spherical particles,” J. Fluid Mech. 83, 97–117 (1977).
[6] W. Götte, Complex Dynamics of Glass-Forming Liquids: A Mode-Coupling Theory (Oxford University Press, Oxford, 2012).
[7] F. GadalaMaria and Andreas Acrivos, “ShearInduced Structure in a Concentrated Suspension of Solid Spheres,” Journal of Rheology (1978-present) 24, 799–814 (1980).
[8] Helen J. Wilson and Robert H. Davis, “The viscosity of a dilute suspension of rough spheres,” J. Fluid Mech. 421, 339–367 (2000).
[9] BM Guy, M Hermes, and WCK Poon, “Towards a unified description of the rheology of hard-particle suspensions,” Phys. Rev. Lett. 115, 088304 (2015).
[10] Neil YC Lin, Ben M Guy, Michiel Hermes, Chris Ness, Jin Sun, Wilson CK Poon, and Itai Cohen, “Hydrodynamic and contact contributions to continuous shear thickening in colloidal suspensions,” Physical review letters 115, 228304 (2015).
[11] Ryohei Seto, Romain Mari, Jeffrey F. Morris, and Morton M. Denn, “Discontinuous Shear Thickening of Frictional Hard-Sphere Suspensions,” Phys. Rev. Lett. 111, 218301 (2013).
[12] Romain Mari, Ryohei Seto, Jeffrey F. Morris, and Morton M. Denn, “Shear thickening, frictionless and frictional rheologies in non-brownian suspensions,” J. Rheol. 58, 1693–1724 (2014).
[13] Romain Mari, Ryohei Seto, Jeffrey F. Morris, and Morton M. Denn, “Nonmonotonic flow curves of shear thickening suspensions,” Phys. Rev. E 91, 052302 (2015).
[14] Christopher Ness and Jin Sun, “Shear thickening regimes of dense non-brownian suspensions,” Soft matter 12, 914–924 (2016).
[15] M. Wyart and M. E. Cates, “Discontinuous Shear Thickening without Inertia in Dense Non-Brownian Suspensions,” Phys. Rev. Lett. 112, 098302 (2014).
[16] J. R Melrose and R. C Ball, “The Pathological Behaviour of Sheared Hard Spheres with Hydrodynamic Interactions,” Europhys. Lett. 32, 535–540 (1993).
Recall that the normal-normal component of the particle stress is (minus) the diagonal component of the stress tensor. Thus if the \(z \) direction is the direction normal to the interface the normal-normal component is the \(z-z \) component of the stress tensor.

Frans\c{c}ois Boyer, El\'isabeth Guazzelli, and Olivier Pouliquen, "Unifying Suspension and Granular Rheology," *Phys. Rev. Lett.* **111**, 108301 (2013).

Jonathan Bender, "Reversible shear thickening in monodisperse and bidisperse colloidal dispersions," *J. Rheol.* **40**, 899 (1996).

Note that the stress measured on the top plate is a combination of the of the first and second normal stress differences and not a measurement of the particles pressure as measured by [23].

Matthias Grob, Annette Zippelius, and Claus Heussinger, "Rheo-chaos of frictional grains," *arXiv* preprint arXiv:1507.07421 (2015).

Jonathan Bender, "Reversible shear thickening in monodisperse and bidisperse colloidal dispersions," *J. Rheol.* **40**, 899 (1996).

Note that the stress measured on the top plate is a combination of the of the first and second normal stress differences and not a measurement of the particles pressure as measured by [23].

Matthias Grob, Annette Zippelius, and Claus Heussinger, "Rheo-chaos of frictional grains," *arXiv* preprint arXiv:1507.07421 (2015).

Note that the stress measured on the top plate is a combination of the of the first and second normal stress differences and not a measurement of the particles pressure as measured by [23].

Matthias Grob, Annette Zippelius, and Claus Heussinger, "Rheo-chaos of frictional grains," *arXiv* preprint arXiv:1507.07421 (2015).

Note that the stress measured on the top plate is a combination of the of the first and second normal stress differences and not a measurement of the particles pressure as measured by [23].

Matthias Grob, Annette Zippelius, and Claus Heussinger, "Rheo-chaos of frictional grains," *arXiv* preprint arXiv:1507.07421 (2015).

Note that the stress measured on the top plate is a combination of the of the first and second normal stress differences and not a measurement of the particles pressure as measured by [23].

Matthias Grob, Annette Zippelius, and Claus Heussinger, "Rheo-chaos of frictional grains," *arXiv* preprint arXiv:1507.07421 (2015).
Appendix A: Macroscopic Friction Coefficients

The detailed form of $\mu(\sigma_{xy}, \phi)$ has not been reported for shear thickening systems although some work exists for viscous granular systems, which permanently occupy the high-σ shear-thickened state [9]. Imposed-pressure measurements on frictional non-Brownian spheres [23] and 2D simulations of circular discs [24] found $\mu_{yy}(\phi)$ to be a monotonically decreasing function of ϕ, tending to a non-zero value μ_c at the jamming volume fraction ϕ_m, itself a function of the particle friction coefficient μ_p. Data for different μ_p, including $\mu_p = 0$, collapse onto the same master curve in the 2D simulations. Since varying σ_{xy} essentially shifts the jamming volume fraction $\phi_j(\sigma_{xy})$ between ϕ_0 and ϕ_m, this collapse implies that $\mu = \mu(\phi)$ only. A σ_{xy}-dependence may exist in 3D, but we assume that this is small.

[43] and [44] have measured the ϕ-dependence of the particle normal stress in the vorticity direction σ_{zz}, but did not report $\mu_{zz}(\phi)$. We can obtain μ_{zz} indirectly via the second normal stress difference, N_2:

$$\frac{N_2}{\sigma_{xy}} = \frac{1}{\mu_{yy}} - \frac{1}{\mu_{zz}}. \quad (A1)$$

For shear thickening dispersions, N_2 is typically small in magnitude and scales approximately with the shear stress for both continuous [45] and discontinuous [30] thickening, implying that the ratio μ_{zz}/μ_{yy} is independent of σ_{xy}. In granular suspensions, N_2/σ_{xy} has been found to vary only weakly with ϕ close to ϕ_m [46]. Together these observations suggest that, in the range of ϕ we are considering, μ_{zz} is proportional to μ_{yy} and thus also slowly varying and monotonic.

When plotting Figure 5(d) we took empirical expressions for $\mu_{yy}(\phi, \phi_m)$ from [23] up to ϕ_m, using our value of $\phi_m = 0.56$ (solid line, Figure 5(b), inset); above ϕ_m we use the form in Figure 5(c) (dashed line), which is a plausible extension of the curve given results from 2D simulations [24]. The curves for σ_{zz} (not shown) are qualitatively similar.

Appendix B: Supplementary argument for prohibition of vorticity bands

Separate equality of p_s and p_{zz} between bands implies that for steady-state vorticity banding

$$\frac{\sigma_{xy}^{(1)}}{\mu_{zz}^{(1)}}(\phi_1, f(\sigma_{xy}^{(1)})) = \frac{\sigma_{xy}^{(2)}}{\mu_{zz}^{(2)}}(\phi_2, f(\sigma_{xy}^{(2)})). \quad (B1)$$

Suppose first that $\phi_1 = \phi_2$. The impossibility of Equation B1 being obeyed is then easily seen by thinking about the special case of σ-independent friction depicted in Figure 5(d). With vorticity bands a vertical line segment must be found connecting two different points on the same blue curve (common γ and ϕ but unequal shear stress). But this implies the existence of a similar line segment on the corresponding curve for p_{zz} (which closely resembles the red curve shown for p_{yy}) so that that the relevant normal stress is also unequal.

A little thought shows the same to hold generically even when μ_{zz} depends on stress via $f(\sigma)$, so long as this dependence is reasonable, such as the expected smooth evolution between two order-unity limits as f varies from 0 to 1 [15]. Although exceptions might be created by fine-tuning the stress dependence of μ_{zz} in an exotic way, the generic physics is as follows. Steady vorticity bands are precluded because they need to be at the same particle pressure; but if they were, their frictional state and hence shear state would also be the same, leaving no difference between the bands.

Vorticity bands with unequal concentration, $\phi_1 \neq \phi_2$, can be excluded by a slight generalization of the same approach. Such bands require us to construct a vertical line connecting two blue curves such that the corresponding red curves are coincident at the chosen γ. μ is a slowly-varying function of ϕ then no two red curves ever coincide except at the origin (see Figure 1(d)). If $\mu_{zz}(\phi)$ is strongly decreasing close to ϕ_m then one could construct a situation in which a high-σ_{xy}, low-ϕ phase coexists with a low-σ_{xy}, high-ϕ phase. (The converse situation arises when $\mu_{zz}(\phi)$ increases rapidly close to ϕ_m.) But in that case, the ratio of μ_{zz} at ϕ_1 and $\phi_2 < \phi_1$ must be comparable to the ratio of the viscosities of the limiting quasi-Newtonian regimes at ϕ_2:

$$\frac{\mu_{zz}(\phi_2)}{\mu_{zz}(\phi_1)} \sim \frac{\eta(\sigma_{xy} \ll \sigma^*, \phi_2)}{\eta(\sigma_{xy} \gg \sigma^*, \phi_2)} \quad (B2)$$

For the parameters used to generate the flow curves in figures 5 this requires $\mu_{zz}(\phi)$ to jump by a factor of $\mu_{zz}(0.553)/\mu_{zz}(0.558) \sim 10^2$ over a ϕ-range of 0.005. In the data of [23], Figure 5(b), the change in $\mu_{yy}(\phi)$ is at most 10% over the same range. By this argument, even allowing for particle migration, steady-state vorticity bands are physically precluded by equality of p_{zz}.

Appendix C: Supplementary argument for prohibition of gradient bands

Gradient bands coexist at a common shear stress $\sigma_{xy}^{(1)} = \sigma_{xy}^{(2)}$ but different shear rates $\dot{\gamma}_1 \neq \dot{\gamma}_2$. The shear-thickening flow curves of interest have multi-valued $\sigma(\dot{\gamma})$ but single-valued $\dot{\gamma}(\sigma)$. Crucially, this requires gradient bands always to have different concentrations, $\phi_1 \neq \phi_2$.

Mechanical stability now demands that the normal stress component in the velocity gradient direction is continuous across the band interface, $\sigma_{yy}^{(1)} = \sigma_{yy}^{(2)}$. Using the same arguments as before to rule out spatial variations in solvent pressure p_s, we find the condition

$$\mu_{yy}(\phi_1, f(\sigma_{xy}^{(1)})) = \mu_{yy}(\phi_2, f(\sigma_{xy}^{(2)})) = \mu_{yy}(\phi_2, f(\sigma_{xy}^{(1)})), \quad (C1)$$

where the last equality follows from the common shear stress in the two bands. Graphically, in reference to Figure 5(d), steady gradient bands require us to find a horizontal line that connects two flow curves at different ϕ (blue lines) such that the corresponding σ_{yy} values (red lines) are also equal. The latter is true if μ_{yy} is independent of ϕ (as was assumed for simplicity by WC and in Figure 5(d)) but is otherwise ruled out for monotonic but non-constant $\mu_{yy}(\phi)$ of the kind generically expected in practice (compare Figure 5(c)).

A possible exception again arises for the coexistence of a fully jammed state ($\phi > \phi_m, \dot{\gamma} = 0$) with a flowing one ($\phi < \phi_m, \dot{\gamma} > 0$). This outcome was reported by [36]; however these authors used a wide-gap Couette system. In this geometry “banding” is expected even for fixed-friction materials because the imposed ratio of shear to normal stress varies with radius. The interface between static and flowing “bands” is where this ratio crosses the static friction threshold set by the repose angle in the material.

Assuming a constant ratio $\sigma_{xy}/\sigma_{yy} = \mu_j$ within the jammed band, then our argument still holds so long $\mu_j - \lim_{\phi \to \phi_m} \mu_{yy}(\phi \to \phi_m)$ is either zero (as expected by continuity arguments), or has the same sign as $d\mu_{yy}/d\phi$ (in effect, maintaining monotonicity). However if μ_j is not constant but depends on other variables in the jammed state (such as a prior transient flow history, or an elastic strain) gradient banding is not necessarily ruled out. Yet it would require the dense, frictional, jammed band to maintain as low a normal stress as a more dilute, less frictional, flowing one of equal σ_{xy}. As discussed above for the case of vorticity bands, this reverses the usual expectation concerning the relative dilatancy and/or friction of these two types of packing.