Torelli Theorem of ALH^* Gravitational Instantons

Yu-Shen Lin

Boston University

BU-Keio-Tsinghua Workshop 2022
Jul 28, 2022
Outline of the Talk

- Gravitational Instantons and their Classifications
- ALH^* Gravitational Instantons
- From SYZ Conjecture to Gravitational Instantons
- Torelli Theorem of ALH^* Gravitational Instantons
- Compactification Result of ALH^* Gravitational Instantons
Gravitationally Instantons

- Gravitational instantons are introduced by Hawking as the building block of his quantum gravity theory.
- Mathematically, gravitational instantons are non-compact complete hyperKähler 4-manifolds with L^2 curvature.
Gravitaional Instantons

- Gravitational instantons are introduced by Hawking as the building block of his quantum gravity theory.
- Mathematically, gravitational instantons are non-compact complete hyperKähler 4-manifolds with L^2 curvature.
- A 4-manifold X is hyperKähler if it admits
 1. a Kähler form ω and
 2. a holomorphic volume form Ω

 s.t. the complex Monge-Ampere equation $2\omega^2 = \Omega \wedge \bar{\Omega}$ holds.
- They arise as the blow up limits of hyperKähler metrics.

Ref: Foscolo’16, HSVZ ’18, SZ’19, CVZ ’19.
Classification of Gravitational Instantons
From the volume growth, people found gravitational instantons of type $ALE(r^4), ALF(r^3), ALG(r^2), ALH(r)$. ALE stands for asymptotically locally Euclidean, F for flat and the rest by induction.
Classification of Gravitational Instantons I

- From the volume growth, people found gravitational instantons of type $ALE(r^4), ALF(r^3), ALG(r^2), ALH(r)$.
- ALE stands for asymptotically locally Euclidean, F for flat and the rest by induction.
- (Hein ’12) constructed two new gravitational instantons ALG^*, ALH^* with volume growth $r^2, r^{4/3}$. The former has a different curvature decay from ALG.
- (Sun-Zhang ’21) The above are the exhaustive list of gravitational instantons.
Rational elliptic surfaces (RES) are projective rational surface with an elliptic fibration structure. They are always realized as blow up of the base points (9 point, possibly infinitely near) of a cubic pencil in \mathbb{P}^2.
Rational elliptic surfaces (RES) are projective rational surface with an elliptic fibration structure. They are always realized as blow up of the base points (9 point, possibly infinitely near) of a cubic pencil in \mathbb{P}^2.

(Hein '12) ALH, ALG, ALG^*, ALH^* gravitational instantons can be realized on the complement of a fibre in a rational elliptic surface, with the fibre is of type I_0, finite monodromy, I_k^* or I_k.

(Kroheimer ’89) Torelli theorem for \(ALE \) and period domain. Two \(ALE \) gravitational instantons with the HK triples in the same cohomology class, the HK triples are the same.

(Chen-Chen ’15 ’16) \(ALF, ALH \) case.

Theorem (Collins-Jacob-L’21) \((X_i, \omega_i, \Omega_i)\) \(ALH \) gravitational instantons. If \(f: X_2 \rightarrow X_1 \) diffeo. s.t.

\[
\begin{align*}
 f^* \left[\omega_1 \right] &= \left[\omega_2 \right], \\
 f^* \left[\Omega_1 \right] &= \left[\Omega_2 \right].
\end{align*}
\]

Then \(\exists F: X_2 \rightarrow X_1 \) s.t.

\[
\begin{align*}
 F^* \omega_1 &= \omega_2, \\
 F^* \Omega_1 &= \Omega_2.
\end{align*}
\]

(Chen-Viaclovsky-Zhang ’21) \(ALG, ALG^* \) case.
(Kroheimer ’89) Torelli theorem for ALE and period domain. Two ALE gravitational instantons with the HK triples in the same cohomology class, the HK triples are the same.

(Chen-Chen ’15 ’16) ALF, ALH case.

Theorem (Collins-Jacob-L’21)

\((X_i, \omega_i, \Omega_i) \) ALH* gravitational instantons. If \(f : X_2 \rightarrow X_1 \) diffeo.
s.t. \(f^*[\omega_1] = [\omega_2], f^*[\Omega_1] = [\Omega_2] \).

Then \(\exists F : X_2 \rightarrow X_1 \) s.t. \(F^*\omega_1 = \omega_2, F^*\Omega_1 = \Omega_2 \).

(Chen-Viaclovsky-Zhang ’21) ALG, ALG* case.
Calabi-Yau Manifolds and SYZ Conjecture
Calabi-Yau Manifolds

- **Calabi-Yau \(n \)-fold \(X \)**
 - higher dimension analogue of elliptic curves.
 - complex manifold \(X \) with
 1. nowhere vanishing holomorphic \(n \)-form \(\Omega \)
 2. \(d \)-closed non-degenerate positive \((1, 1)\)-form \(\omega \) such that
 \[
 \omega^n = c \Omega \wedge \bar{\Omega}.
 \]
Calabi-Yau Manifolds

Calabi-Yau n-fold X
- higher dimension analogue of elliptic curves.
- complex manifold X with
 1. nowhere vanishing holomorphic n-form Ω
 2. d-closed non-degenerate positive $(1, 1)$-form ω such that $\omega^n = c\Omega \wedge \bar{\Omega}$.

Examples:
- degree 5 hypersurface in \mathbb{P}^4 (quintic 3-fold).
- (Tian-Yau) complement of a smooth anti-canonical divisor in a Fano manifold.
Conjecture (Strominger-Yau-Zaslow '96)

- **Calabi-Yau manifolds admit special Lagrangian torus fibration** near large complex structure limit.

- **Mirror Calabi-Yau are constructed by dual torus fibration.**
Strominger-Yau-Zaslow Conjecture

Conjecture (Strominger-Yau-Zaslow ’96)

- *Calabi-Yau manifolds admit special Lagrangian torus fibration near large complex structure limit.*
- *Mirror Calabi-Yau are constructed by dual torus fibration.*

1. *(Harvey-Lawson ’82)* A submanifold L in X is special Lagrangian if $\omega|_L = 0$, $\text{Im}\Omega|_L = 0$.
2. *(Duistermaat ’80)* Any compact fibre of a Lagrangian fibration is topologically a torus.
Why SYZ Conjecture?

The SYZ conjecture is important in various aspects:

- It gives a geometric description of Calabi-Yau manifolds.
- It provides a recipe to construct the mirror \tilde{X}.
- (Leung-Yau-Zaslow, FLTZ, CPU, FHL, CHL,...) It gives a guidance of how branes mirror to each other in the homological mirror symmetry.
- It motivates the method of family Floer mirror and Gross-Siebert program in mirror symmetry.
ALH^* Gravitational Instantons
Calabi Model and ALH^* Gravitational Instantons

- D elliptic curve, L line bundle on D w/ $\text{deg} L = k > 0$.
- $Y_C =$ neighborhood of zero section of L, $\pi : Y_C \to D$.
- $X_C = Y_C \setminus D$.
- $\Omega_C = \frac{dw}{w} \wedge \pi^* \Omega_D$.
- $\omega_C = \sqrt{-1} \frac{2}{3} \partial \bar{\partial} (\log |\xi| h^2)^{\frac{3}{2}}$, where $\omega_D = \sqrt{-1} \partial \bar{\partial} h$.
- Set $l_0 = (\log |\xi| h^2)^{\frac{1}{4}}$. Then
 1. $|\nabla^k Rm| \leq C_k l_0^{-(k+2)}$ has good control and
 2. $C_\iota^{-1} l_0^{-1} \leq \text{inj} \leq C_\iota l_0^{-1}$ degenerates.

(Sun-Zhang ’21) ALH^* gravitational instantons are exponentially decay to the Calabi model at infinity.
Examples of ALH^* Gravitational Instantons

- (Tian-Yau ’90) Y weak del Pezzo surface, D smooth anti-canonical, then $X = Y \setminus D$ is ALH^*.
- (Hein ’12) \check{Y} rational elliptic surface, \check{D} I_k-fibre, then $\check{X} = \check{Y} \setminus \check{D}$ is ALH^*.
Examples of ALH^* Gravitational Instantons

- (Tian-Yau ’90) Y weak del Pezzo surface, D smooth anti-canonical, then $X = Y \setminus D$ is ALH^*.

- (Hein ’12) \mathring{Y} rational elliptic surface, \mathring{D} I_k-fibre, then $\mathring{X} = \mathring{Y} \setminus \mathring{D}$ is ALH^*.

- (Hein ’12) They have the same asymptotics of inj, Rm, volume growth,... are all the same.

- Are these two examples related by HK rotation?
The hyperKähler triple \((\omega, \Omega)\) induces an \(S^2\)-family of complex structures on the underlying space of \(X\).

Then holomorphic curves in \(X \iff\) special Lagrangians in \(X_\vartheta\).
Q: Are two ALH^* gravitational instantons related by HK rotation?

Theorem (CJL '19)
Suitable HK rotation $\tilde{\mathbf{X}}$ of \mathbf{X} can be compactified to a rational elliptic surface $\tilde{\mathbf{Y}}$.

Q: Is the metric on $\tilde{\mathbf{X}}$ the one constructed by Hein?

Theorem (CJL '20)
There exists a R-family of HK metrics on $\tilde{\mathbf{X}}$ with $Z \subseteq R$ corresponds Hein's metric.

Discovery of “non-standard semi-flat metric”, new ansatz for HK metrics.
Relations between Two ALH^* Gravitational Instantons

Q: Are two ALH^* gravitational instantons related by HK rotation?

Theorem (CJL '19)

Suitable HK rotation \tilde{X} of X can be compactified to a rational elliptic surface \tilde{Y}.

Q: Is the metric on \tilde{X} the one constructed by Hein?
Relations between Two ALH^* Gravitational Instantons

Q: Are two ALH^* gravitational instantons related by HK rotation?

Theorem (CJL ’19)

Suitable HK rotation \check{X} of X can be compactified to a rational elliptic surface \check{Y}.

Q: Is the metric on \check{X} the one constructed by Hein?

Theorem (CJL ’20)

There exists a \mathbb{R}-family of HK metrics on \check{X} with $\mathbb{Z} \subseteq \mathbb{R}$ corresponds Hein’s metric.

Discovery of ”non-standard semi-flat metric”, new ansatz for HK metrics.
Uniformization of ALH^* Gravitational Instantons

Theorem (CJL’ 21, HSVZ ’21)

Up to HK rotation, any ALH^* gravitational instanton X can be compactified to a rational elliptic surface.

- Special Lagrangian tori fibration in X_C.
- Lagrangian mean curvature flow the ansatz fibration to a special Lagrangian near infinity of X.
- \check{X} HK rotation of X can be compactified to a compact complex surface \check{Y}.
- Enrique-Kodaira classification \Rightarrow \check{Y} is RES.

(Persson) Classification of singular fibres in RES \Rightarrow $1 \leq k \leq 9$.

10 different diffeomorphism types of ALH^* gravitational instantons.
Let L be a graded Lagrangian submanifold in X, i.e.,
\exists the phase $\theta : L \to \mathbb{R}$ is the function such that

$$\Omega|_L = e^{i\theta} \text{vol}_L.$$

L is a special Lagrangian if θ is a constant.
Lagrangian Mean Curvature Flow

- Let L be a graded Lagrangian submanifold in X, i.e.,
 \exists the phase $\theta : L \to \mathbb{R}$ is the function such that
 \[\Omega|_L = e^{i\theta} \text{vol}_L. \]

 L is a special Lagrangian if θ is a constant.

- The mean curvature $\vec{H} = J\nabla \theta$ and the mean curvature flow is given by evolving family of immersions $F_t : L \to X$ with
 \[\frac{\partial}{\partial t} F_t = \vec{H}. \]

 (Smoczyk) **Maslov zero Lagrangian condition** is preserved under mean curvature flow in Kähler–Einstein manifolds.

- **Smooth Convergent Limit** of LMCF gives Special Lagrangians.
The Torelli Theorem
K3 surfaces are simply connected, compact surface with trivial canonical bundles.

\[\mathbb{L}_{K3} := H^2(K3) \cong U^3 \oplus E_8^2, \text{ where } U = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}. \]

\([\Omega] \in \mathbb{P}(\mathbb{L}_{K3} \otimes \mathbb{C})\) determines the complex structure if
\([\Omega] \wedge [\Omega] = 0, [\Omega] \wedge [\bar{\Omega}] > 0.\]

(Yau ’76) Unique Ricci-flat metric in each Kähler class.

We will follow the same idea to prove the Torelli theorem of ALH^* gravitational instantons.
Theorem (Gross-Hacking-Keel ’15)

\((\check{Y}_i, \check{D})\) log Calabi-Yau surfaces w/ isom. \(\mu : \text{Pic}(\check{Y}_1) \to \text{Pic}(\check{Y}_2)\),

1. \(\mu\) preserves the periods \(\phi_i \in \text{Hom}(\check{D}^\perp, \text{Pic}^0(\check{D}))\),

\[\phi_i : L \mapsto L|_{\check{D}}. \]

2. \(\mu\) preserves \((-2)\)-curve classes

3. \(\mu\) sends one Kähler class to a Kähler class.

Then \(\mu = F^*\), w/ isomorphism of pairs \(F : (\check{Y}_2, \check{D}) \to (\check{Y}_1, \check{D})\).

Without the 3rd assumption, \(F^*\) may be differed by an element in the Weyl group.
Proof of Torelli theorem for ALH^* Gravitational Instantons

- Construct an isometry of lattices $\text{Pic}(\tilde{Y}_1) \rightarrow \text{Pic}(\tilde{Y}_2)$ from f^*.
 1. Suitable homotopic modification of f to preserve sections.
 2. Computation of $MCG(X_C)$.
- GHK'15 $\Rightarrow \exists F : (\tilde{Y}_2, \tilde{D}) \cong (\tilde{Y}_1, \tilde{D})$.
 1. (Looijenga) $\phi_i = \exp(2\pi i \int \tilde{\Omega})$.
 2. Discrepancy of Kähler classes on \tilde{X} and \tilde{Y}.

Theorem (CJL '20)

HK metrics on \tilde{X} with non-standard semi-flat metrics asymptotics and the same cohomology class are differed by translation of sections.

Replace F by composition w/ translation of sections.
It still remains to ask given cohomology class of $[\omega], [\Omega]$, is there a gravitational instantons to realize the triple for the case of ALG, ALG^*, ALH^*?

Obvious obstruction is $[\omega], [\Omega]$ can not simultaneously vanish on (-2)-classes.

Chen-Viaclovsky-Zhang '21 conjectured no other obstruction.
Period Domain of Gravitational Instantons

- It still remains to ask given cohomology class of $[\omega], [\Omega]$, is there a gravitational instantons to realize the triple for the case of ALG, ALG^*, ALH^*?
- Obvious obstruction is $[\omega], [\Omega]$ can not simultaneously vanish on (-2)-classes.
- Chen-Viaclovsky-Zhang '21 conjectured no other obstruction.

Theorem (Lee-Lin, work in progress)

Period doemain for ALG, ALG^, ALH^* gravitational instantons.*
Applications
Recall that given a primitive element in \(H_1(D, \mathbb{Z}) \), there is a corresponding SYZ fibration in \(X = Y \setminus D \).

(Hacking-Keating '21) study the symplectomorphism of Looijenga pairs. Conjecture that the monodromy of the moduli of paris \((Y, D)\) sends Lagrangian fibration to Lagrangian fibration.

Theorem (Lau-Lee-L.- '22)

Given a monodromy action on \(H_2(X, \mathbb{Z}) \), there exists an isometry of \(X \) realizing the monodromy and sending one SYZ fibration to another.

Maybe there is some application of lattice theory on this geometry?
Theorem (Collins-Jacob-L.-'21)

Let Y be a weak del Pezzo surface, D be a smooth anti-canonical divisor and $X = Y \setminus D$. Fix a meromorphic 2-form Ω on Y with a simple pole along D. For each Kähler class of X, there exists a unique hyperKähler metric ω in the given Kähler class with L^2 curvature.

This partially answers a question of Tian-Yau but can the L^2-condition be removed?
Compactification to Weak Del Pezzo Surfaces

Consider the HK rotation map

$$\Psi : \mathcal{M}_k \rightarrow \tilde{\mathcal{M}}_k$$

$$(((Y, D), \mu, c, [\omega], \gamma) \mapsto ((\tilde{Y}, \tilde{D}), \tilde{\mu}, [\tilde{\omega}], \alpha)$$

- $\text{Im}\Psi$ is open.
 - construct log CY pairs with perturbed periods.
- $\text{Im}\Psi$ is closed.
 - Ψ continuous, some structure of moduli space of log CY pairs.
Consider the HK rotation map

\[\Psi : \mathcal{M}_k \rightarrow \tilde{\mathcal{M}}_k \]

\[((Y, D), \mu, c, [\omega], \gamma) \mapsto ((\tilde{Y}, \tilde{D}), \tilde{\mu}, [\tilde{\omega}], \alpha) \]

- Im\(\Psi\) is open.
 - construct log CY pairs with perturbed periods.
- Im\(\Psi\) is closed.
 - \(\Psi\) continuous, some structure of moduli space of log CY pairs.
- \(\Psi\) is surjective and Torelli theorem \(\Rightarrow\) \(X\) compactified to \(Y\).

Theorem (HSVZ '21, CL'22)

Every ALH* gravitational instanton (up to HK rotation) can be compactified to a weak del Pezzo surface.
The compactification result further motivates the question:

Question

Can ALG, ALG^-gravitaional instantons compactified to algebraic surfaces other than rational elliptic surfaces after suitable HK rotations?*

Theorem (Collins-L.-, in progress)

True for gravitational instantons of second Betti number 5.

This has further applications in mirror symmetry: for instance how Gross-Hacking-Keel mirror symmetry is compatible with SYZ mirror symmetry, computation of certain local open GW invariants, how SYZ fibration detects the superpotentials...etc.
THANK YOU!