Study of $B \rightarrow X(3872) \, K$, with $X(3872) \rightarrow J/\psi \, \pi^+ \pi^-$

B. Aubert, M. Bona, Y. Karyotakis, J. P. Lees, V. Poireau, E. Principe, X. Prudent, V. Tisserand, J. Garra Tico, E. Grauges, L. Lopez, A. Palano, M. Pappagallo, G. Eigen, B. Stugu, L. Sun, G. S. Abrams, M. Battaglia, D. N. Brown, J. Button-Shaffer, R. N. Cahn, R. G. Jacobsen, J. A. Kadyk, L. T. Kerth, Yu. G. Kolomensky, G. Kukartsev, G. Lynch, I. L. Ospienkov, M. T. Ronan, K. Taekman, T. Tanabe, W. A. Wenzel, C. M. Hawkes, N. Soni, A. T. Watson, H. Koch, T. Schroeder, D. Walker, J. D. Asgeirsson, T. Cuhadar-Donszelmann, B. G. Fulsom, C. Hearty, S. T. Mattison, J. A. McKenna, M. Barrett, A. Khan, M. Saleem, L. Teodorescu, V. E. Blinov, A. D. Bukin, A. R. Buzykaev, V. P. Druzhinin, V. B. Gohubev, A. P. Onuchin, S. I. Seredyukov, Yu. I. Skovsky, E. P. Solodov, K. Yu. Todyshev, M. Bondioli, S. Curry, I. Eschrich, D. Kirkby, A. J. Lankford, P. Lund, M. Mandelkern, E. C. Martin, D. P. Stoker, S. Abachi, C. Buchanan, J. W. Gary, F. Liu, O. Long, B. C. Shen, G. M. Vitug, Z. Yasin, V. Sharma, C. Campagnari, T. M. Hong, K. Kovalskyi, M. A. Mazur, J. D. Richman, T. W. Beck, A. M. Eisner, C. J. Flacco, C. A. Heusch, J. Kroseberg, W. S. Lockman, T. Schalk, B. A. Schumm, A. Seiden, L. Wang, M. G. Wilson, L. O. Winstrom, C. H. Cheng, D. A. Doll, E. Echenard, F. Fang, D. G. Hitlin, I. Narsky, T. Piatenko, F. C. Porter, R. Andreassen, G. Mancinelli, B. T. Meadows, K. Mishra, M. D. Sokoloff, F. Blanc, P. C. Bloom, W. T. Ford, A. Gaz, J. F. Hirschauer, A. Kreisel, M. Nagel, U. Nauenberg, A. Olivias, J. G. Smith, K. A. Ulmer, S. R. Wagner, R. Ayad, A. M. Gabareen, A. Soffer, W. H. Toki, R. J. Wilson, D. D. Altenburg, E. Feltresi, A. Hauke, H. Jasper, M. Karbach, J. Merkel, A. Petzold, B. Spaan, K. Wacker, V. Kloze, M. J. Kobel, H. M. Lacker, W. F. Mader, R. Nogowski, K. R. Schubert, R. Schwierz, J. E. Sundermann, A. Volk, D. Bernard, G. R. Bonneau, E. Latour, Ch. Thiebaux, M. Verderi, P. J. Clark, W. Gradl, S. M. Playfer, J. E. Watson, M. Andreotti, D. Bettoni, C. Bozzi, R. Calabrese, A. Cecchi, G. Cibenito, P. Franchini, E. Luppi, M. Negrini, A. Petrella, L. Piemontese, V. Santoro, F. Ammilli, R. Baldini-Ferrioli, A. Calcaterra, R. de Sangro, G. Finocchiaro, S. Pacetti, P. Patteri, I. M. Peruzzi, M. Piccolo, M. Rama, A. Zallo, A. Buzzo, R. Contri, M. Lo Vetere, M. M. Macri, M. R. Monge, S. Passaggio, C. Patrignani, E. Robutti, A. Santroni, S. Tosi, K. S. Chaisanguanthum, M. Morii, R. S. Dubitzky, J. Marks, S. Schenk, U. Uwer, D. J. Bard, P. D. Dauncey, J. A. Nash, W. Panduro Vazquez, M. Tibbetts, X. Chai, M. J. Charles, U. Mallik, J. Cochran, H. B. Crawley, L. Dong, W. T. Meyer, S. Prell, E. I. Rosenberg, A. E. Rubin, Y. Y. Gao, A. V. Gritsan, J. Z. Guo, C. K. Lao, A. G. Denig, M. Fritsch, G. Schott, A. K. Arnaud, J. Béquéville, A. D’Orazio, M. Davier, J. Firmino da Costa, G. Grosdidier, A. Höcker, V. Lepeltier, F. Le Diberder, A. M. Lutz, S. Pruvot, P. Roudrou, M. H. Schune, J. Serrano, S. Vordoni, A. Stocchi, W. F. Wang, G. Wormser, D. J. Lange, D. M. Wright, I. Bingham, J. P. Burke, C. A. Chavez, J. R. Fry, E. Gabathuler, R. Ganet, D. E. Hutchcroft, D. J. Payne, C. Touramanis, A. J. Bevan, R. A. Monge, F. Di Lodovico, R. Sacco, M. Sigamani, G. Cowan, H. U. Fleaecher, D. A. Hopkins, S. Parameswaran, F. Salvatore, A. C. Wren, D. N. Brown, C. L. Davis, K. E. Alwyn, N. R. Barlow, R. J. Barlow, Y. M. Chia, C. L. Edgar, G. D. Lafferty, T. J. West, J. I. Yi, J. Anderson, C. Chen, A. Jawahery, D. A. Roberts, G. Simi, J. M. Tuggle, C. Dallapiccola, S. S. Hertzbach, X. Li, E. Salvari, S. Sarem, R. Cowan, D. Dujmic, P. H. Fisher, K. Koenneke, G. Sciolla, M. Spitznagel, F. Taylor, R. K. Yamamoto, M. Zhao, S. E. Melachrinoudis, P. M. Patel, S. H. Robertson, A. Lazzaro, V. Lombardo, F. Palumbo, J. M. Bauer, L. Cremaldi, V. Eschenburg, R. Godang, K. Kroeger, D. A. Sanders, D. J. Summers, H. W. Zhao, S. Brunet, D. Côté, M. Simard, P. Taras, F. B. Viala, H. Nicholson, G. De Nardo, L. Lista, M. Monorchio, C. Sciacca, M. A. Baak, G. Raven, H. L. Snoek, C. P. Jessop, K. J. Knoepfel, J. M. LoSecco, G. Benelli, L. A. Corwin, K. Honscheid, H. Kagan, R. Kass, J. P. Morris, A. M. Rahimi, J. J. Regensburger, J. S. Sekula, Q. K. Wong, N. L. Blount, J. Brau, R. Frey, O. Igonkina, J. A. Koll, M. Lu, R. Rahmat, N. B. Sinev, D. Strom, J. Strube, E. Torrence, G. Castelli, G. Nagliardi, M. Margoni, M. Morandin.
M. Posocco, M. Rotondo, F. Simonetto, R. Stroili, C. Voci, P. del Amo Sanchez, E. Ben-Haim, H. Briand, G. Calderini, J. Chauveau, P. David, L. Del Buono, O. Hamon, Ph. Leruste, J. Ocariz, A. Perez, J. Prendki, L. Gladney, M. Biasini, R. Covarelli, E. Manoni, C. Angelini, G. Batignani, S. Bettarini, M. Carpinelli, A. Cervelli, F. Forti, M. A. Giorgi, A. Lusiani, G. Marchiori, M. Morganti, N. Neri, E. Paoloni, G. Rizzo, J. J. Walsh, J. Biesiada, D. Lopes Pegna, C. Lu, J. Olsen, A. J. S. Smith, A. V. Tehovn, E. Baracchini, G. Cavoto, D. Del Re, E. Di Marco, R. Faccini, F. Ferrarotto, F. Ferroni, M. Gaspero, P. D. Jackson, L. Li Gioi, M. A. Mazzoni, S. Morganti, G. Piredda, F. Polci, F. Renga, C. Voena, M. Ebert, T. Hartmann, H. Schröder, R. Waldi, T. Adye, B. Franek, E. O. Olaiya, W. Roethel, F. F. Wilson, S. Emery, M. Escalier, L. Esteve, A. Gaidot, S. F. Ganzhur, R. Cenci, M. R. Convery, B. Pan, M. A. Saeed, S. B. Zain, S. Dasu, H. Liu, W. Park, M. V. Purohit, R. M. White, J. R. Wilson, M. T. Allen, D. Aston, R. Bartoldus, P. Bechtle, J. F. Benitez, R. Cenci, J. P. Coleman, M. R. Convery, J. C. Dingfelder, J. Dorfan, G. P. Dubois-Felsmann, W. Dunwoodie, R. C. Field, S. J. Gowdy, M. T. Graham, P. Grenier, C. Hast, W. R. Innes, J. Kaminski, M. H. Kelsey, H. Kim, P. Kim, M. L. Kocian, D. W. G. S. Leith, S. Li, B. Lindquist, S. Luitz, V. Luth, H. L. Lynch, D. B. MacFarlane, H. Marsiske, R. Messner, D. R. Muller, H. Neal, S. Nelson, C. P. O’Grady, I. Ofte, A. Perazzo, M. Perl, B. N. Ratcliff, A. Roodman, A. A. Salnikov, R. H. Schindler, J. Schwiening, A. Snyder, D. Su, M. K. Sullivan, K. Suzuki, S. K. Swain, J. M. Thompson, J. Va’vra, A. P. Wagner, M. Weaver, C. A. West, W. J. Wisniewski, M. Wittgen, D. H. Wright, H. W. Wulsin, A. K. Yarritu, K. Yl, C. C. Young, V. Ziegler, P. R. Burchat, A. J. Edwards, S. A. Majewski, T. S. Miyashita, B. A. Petersen, L. Wilden, S. Ahmed, M. S. Alam, R. Bula, J. A. Ernst, B. Pan, M. A. Saeed, S. B. Zain, S. M. Spanier, B. J. Wogslan, R. Eckmann, J. L. Ritchie, A. M. Ruland, C. J. Schilling, R. F. Schwitters, B. W. Drummond, J. M. Izen, X. C. Lou, S. Ye, F. Bianchi, D. Gamba, M. Pelliccioni, M. Bomben, L. Bosio, C. Cartaro, G. Della Ricca, L. Lanceri, L. Vitale, V. Azzolini, N. Lopez-March, F. Martinez-Vidal, D. A. Milanes, O. Yagnure, J. Albert, Sw. Banerjee, B. Bhuyan, H. H. F. Choi, K. Hamano, R. Kowalewski, J. M. Lewczuk, I. M. Nugent, J. M. Roney, R. J. Sobie, T. J. Gershon, P. F. Harrison, J. Ilic, T. E. Latham, G. B. Mohanty, H. R. Band, X. Chen, S. Dasu, K. T. Flood, Y. Pan, M. Pierini, R. Prepost, C. O. Vuosalo, and S. L. Wi.

(The BABar Collaboration)

1 Laboratoire de Physique des Particules, IN2P3/CNRS et Université de Savoie, F-74941 Annecy-Le-Vieux, France
2 Universitat de Barcelona, Facultat de Fisica, Departament ECM, E-08028 Barcelona, Spain
3 Università di Bari, Dipartimento di Fisica and INFN, I-70126 Bari, Italy
4 University of Bergen, Institute of Physics, N-5007 Bergen, Norway
5 Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA
6 University of Birmingham, Birmingham, B15 2TT, United Kingdom
7 Ruhr Universität Bochum, Institut für Experimentalphysik 1, D-44780 Bochum, Germany
8 University of Bristol, Bristol BS8 1TL, United Kingdom
9 University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
10 Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom
11 Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia
12 University of California at Irvine, Irvine, California 92697, USA
13 University of California at Los Angeles, Los Angeles, California 90024, USA
14 University of California at Riverside, Riverside, California 92521, USA
15 University of California at San Diego, La Jolla, California 92093, USA
16 University of California at Santa Barbara, Santa Barbara, California 93106, USA
17 University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, California 95064, USA
18 California Institute of Technology, Pasadena, California 91125, USA
19 University of Cincinnati, Cincinnati, Ohio 45221, USA
20 University of Colorado, Boulder, Colorado 80309, USA
21 Colorado State University, Fort Collins, Colorado 80523, USA
22 Technische Universität Dortmund, Fakultät Physik, D-44221 Dortmund, Germany
23 Technische Universität Dresden, Institut für Kern- und Teilchenphysik, D-01062 Dresden, Germany
24 Laboratoire Leprince-Ringuet, CNRS/IN2P3, Ecole Polytechnique, F-91128 Palaiseau, France
25 University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
26 Università di Ferrara, Dipartimento di Fisica and INFN, I-44100 Ferrara, Italy
27 Laboratori Nazionali di Frascati dell’INFN, I-00044 Frascati, Italy
We present measurements of the decays $B^+ \to X(3872)K^+$ and $B^0 \to X(3872)K^0$ with $X(3872) \to J/\psi \pi^+ \pi^-$. The data sample used, collected with the BABAR detector at the PEP-II e^+e^- asymmetric-energy storage ring, corresponds to $455 \times 10^6 BB$ pairs. Branching fraction measurements of $B(B^+ \to X(3872)K^+) \times B(X(3872) \to J/\psi \pi^+ \pi^-) = (8.4 \pm 1.5 \pm 0.7) \times 10^{-6}$ and $B(B^0 \to X(3872)K^0) \times B(X(3872) \to J/\psi \pi^+ \pi^-) = (3.5 \pm 1.9 \pm 0.4) \times 10^{-6}$ are obtained. We set an upper limit on the natural width of the $X(3872)$ of $\Gamma < 3.3$ MeV/c2 at the 90% confidence level.

PACS numbers: 13.25.Hw, 12.15.Hh, 11.30.Er
The X(3872) was discovered in 2003 by the Belle Collaboration [1] which reported the observation of a narrow resonance in exclusive B^\pm decays to $K^\pm (J/\psi \pi^+ \pi^-)$. The new state was then confirmed by CDF [2], D0 [3], and BaBar [4, 5].

There has been great interest in this narrow state, with numerous theoretical interpretations having been proposed, including a $D^0 D^{*0}$ molecule, a diquark-antidiquark, a tetraquark state, a hybrid charmonium or a classical charmonium state. The diquark-antidiquark model [6] predicts the X(3872) states to be produced at equal rates in B^0 and B^{*0} decays with a mass difference of (8 ± 3) MeV/c^2. The S-wave molecule model [6] predicts the neutral B branching fraction to be much smaller than the charged B one.

Studies of angular distributions by CDF [8] favor the quantum number assignment $J^{PC} = 1^{++}$ or 2^{-+}.

The X(3872) has also been observed in the $X(3872) \rightarrow J/\psi \pi^+ \pi^-$ decay mode by BaBar [6], indicating that it must have positive C-parity. Therefore, the $\pi^+ \pi^-$ pair in the $X(3872) \rightarrow J/\psi \pi^+ \pi^-$ must have a negative C-parity and an odd orbital angular momentum L, to satisfy $C(\pi^+ \pi^-) = -1 = (-)^L$, with $S = 0$. The $\pi^+ \pi^-$ invariant mass distribution has been studied by CDF [10], and found to be consistent with a ρ^0 meson, where the J/ψ and the ρ^0 are in a relative S-wave.

Both BaBar [11] and Belle [12] have observed the $X(3872) \rightarrow D^0 D^{*0}$ decay. These searches were motivated by the fact that the X(3872) was barely above the $D^0 D^{*0}$ mass threshold. The mass measurement results are very consistent between the two experiments but are about 3 MeV/c^2 (representing ± 4 standard deviations) above the mass measured in the $J/\psi \pi^+ \pi^-$ decay mode.

We report herein an analysis of $B^+ \rightarrow X(3872) K^+$ and $B^0 \rightarrow X(3872) K^0$, with $X(3872) \rightarrow J/\psi \pi^+ \pi^-$, where charge conjugation is implied throughout. We present updated branching fractions for the two channels and extract the mass and width of the X(3872) state. The data sample used for this analysis, collected by the BaBar detector at the PEP-II asymmetric-energy e^+e^- storage ring operated at the Stanford Linear Accelerator Center, corresponds to a total integrated luminosity of 413 fb$^{-1}$, recorded at the $\Upsilon(4S)$ resonance.

The BaBar detector is described in detail in Ref. [13]. Charged particle momenta are measured with a 5-layer double-sided silicon vertex tracker (SVT) and a 40-layer drift chamber (DCH) inside a 1.5-T superconducting solenoidal magnetic field. A calorimeter consisting of 6580 CsI(Tl) crystals (EMC) is used to measure electromagnetic energy. A ring-imaging Cherenkov detector (DIRC) is used to identify charged hadrons, aided by the dE/dx measurement in SVT and DCH. Muons are identified by the instrumented magnetic flux return (IFR). Particle attributes are reconstructed in the laboratory frame and then boosted to the e^+e^- center-of-mass (CM) frame using the asymmetric beam energy information. We use a GEANT 4 [14] Monte Carlo simulation (MC) to estimate the signal efficiencies, employing a sample in which one of the generated B mesons decays to the signal mode and the other to a representative sample of B decays.

Charged particles are required to have transverse momenta greater than 100 MeV/c in the laboratory frame. The distance of closest approach of charged tracks must be within ± 10 cm of the z coordinate (along the beam axis) of the primary vertex and within a circle of radius 1.5 cm in the $x-y$ plane. Kaons, electrons and muons are separated from pions based on information from the IFR and DIRC, energy loss in the SVT and DCH (dE/dx), and the ratio of the associated EMC energy deposition (E_{cal}) to its momentum (E_{cal}/p).

The $B^+ \rightarrow J/\psi \pi^+ \pi^- K^+$ and $B^0 \rightarrow J/\psi \pi^+ \pi^- K^0$ decays are reconstructed as follows. Electrons and bremsstrahlung photons satisfying $2.95 < m(e^+e^-(\gamma)) < 3.14$ GeV/c^2 are used to form $J/\psi \rightarrow e^+ e^-$ candidates. A pair of muons within the mass interval $3.06 < m(\mu^+\mu^-) < 3.14$ GeV/c^2 is required for a $J/\psi \rightarrow \mu^+\mu^-$ candidate. A mass constraint to the nominal J/ψ mass 1065 MeV/c^2 is imposed in the fit of the lepton pairs. We reconstruct $K^0_S \rightarrow \pi^-\pi^+$ candidates from pairs of oppositely charged tracks forming a vertex with a χ^2 probability greater than 0.1%, a flight-length (l) significance $l/\sigma(l) > 16$ (where $\sigma(l)$ is the measurement error) and an invariant mass within 15 MeV/c^2 of the nominal K^0_S mass 497.6. We form $X(3872)$ candidates by combining J/ψ candidates with two oppositely charged pion candidates, all fitted to a common vertex. Finally, we form $B^+(B^0)$ candidates by combining $X(3872)$ candidates with $K^+(K^0_S)$ candidates. To suppress continuum background, we select only events with a ratio of the second to the zeroth Fox-Wolfram moment [10] less than 0.5.

We use two kinematic variables to identify signal events coming from B decays: the difference between the energy of the B candidate and the beam energy, $\Delta E = E_B - \sqrt{s}/2$, and the energy-substituted mass $m_{ES} = \sqrt{(s/2 + p_i \cdot p_B)^2/E_B^2 - p_B^2}$. Here (E_i, p_i) is the four-vector (in the laboratory frame) and \sqrt{s} is the center-of-mass (CM) energy of the e^+e^- system, E_B is the energy of the B candidate in the CM system and p_B the momentum in the laboratory frame. The signature of signal events is $\Delta E \approx 0$, and $m_{ES} \approx m_B$, where m_B is the nominal mass of the B meson [15].

If there are multiple candidates in a single event (about 9% of the events), we select the candidate with the smallest value of $|\Delta E|$. We optimize the signal selection criteria by maximizing the ratio $n_{MC}/(a + \sqrt{n_{MC}^2})$ [17], where $a = 3$ represents the desired significance of signal-to-background ratio in number of signal events and n_{MC} (n_{MC}) are the number of reconstructed Monte Carlo signal (background) events. The optimization is performed by varying the selected ranges of ΔE, $|m_{ES} - m_B|$, $X(3872)$ and K^0_S candidate masses, the K^0_S flight significance and the particle identification (PID) selection requirements
for the leptons, pions and charged kaons. The criteria $|\Delta E| < 20$ MeV and $|m_{E\!S} - m_B| < 6$ MeV/c^2, which represent about three standard deviations of the resolution of the quantities, were found to be optimal for selecting signal events.

We extract the number of signal events with an extended, unbinned maximum-likelihood fit to the m_X distribution, where m_X is the $J/\psi \pi^+ \pi^-$ invariant mass.

The probability density function (PDF), normalized to the total number of events, is $P(m_X) = \sum_t n_t P_t(m_X)$ where n_t is the number of events of category t and P_t is the associated PDF. We consider only two different event categories: signal and combinatorial background (which arises mainly from B decays). The signal PDF is modelled by a Lorentzian function that describes both the natural width and the experimental resolution. We model combinatorial background events by a linear function in m_X. For the neutral mode fit, the width of the Lorentzian has been fixed to the value obtained from the charged mode fit.

The fit is performed in the region $3.8 < m_X < 4.0$ GeV/c^2, after applying the optimized selection criteria on all other variables. The signal region projections of the one-dimensional fit to the data are shown in Fig. 1 for the B^+ (top) and B^0 (bottom) modes. We obtain 93.4 ± 17.2 signal events for the B^+ mode (n^+_1) and 9.4 ± 5.2 signal events for the B^0 mode (n^0_1). We interpret the observed events in each mode as the $X(3872)$. Results are summarized in Table 1. We fit the $J/\psi \pi^+ \pi^-$ system invariant mass in the $m_{E\!S}$ side band region ($m_{E\!S} < 5.27$ GeV/c^2) and observe no signal.

The efficiency is determined from MC samples with a $X(3872)$ signal of zero natural width at 3.872 GeV/c^2. The decay model consists of the sequential isotropic decays $B \rightarrow X(3872)K$, $X(3872) \rightarrow J/\psi \rho^0$, and $\rho \rightarrow \pi^+ \pi^-$. This yields a more accurate description of the observed $\pi^+ \pi^-$ invariant mass distribution [4], compared to a three-body decay. Efficiencies are corrected for the small differences in K^0_s reconstruction efficiencies that are found by comparing data and MC control samples. The final reconstruction efficiencies are $(20.60 \pm 0.10)\%$ for the $B^+ \rightarrow X(3872)K^+$ mode and $(14.50 \pm 0.09)\%$ for the $B^0 \rightarrow X(3872)K^0_S$ mode, where the errors are dominated by the size of the signal MC samples.

The fit is validated with MC experiments, where we embed samples of the number of expected signal events into MC background samples. On average, the number of signal events found is in good agreement with the signal sample size. The fit is further validated with a set of parameterized MC experiments, based on the signal PDF parameters, which return the number of input signal events with no significant bias.

The systematic errors on the branching fraction are summarized in Table 1. They include uncertainties in the number of BB events, secondary branching fractions [15], efficiency calculations due to limited MC statistics, the MC decay model of the $X(3872)$, PID, charged particle tracking, K^0_s reconstruction, background modelling (BM) and those arising from fixing the width in the $B^0 \rightarrow X(3872)K^0_S$ mode. The production ratio of B^0 and B^+ mesons in $T(4S)$ decays is taken to be 1.031 ± 0.033 [15].

The total fractional errors, 8.8% and 11.7% for the B^+ and B^0 modes, respectively, are obtained by adding the uncertainties in Table 1 in quadrature.

The significance is estimated as $\sqrt{-2 \ln (L_0/L_{\text{max}})}$ where L_{max} and L_0 are likelihoods returned by the nominal fit and by the fit with the signal yield fixed at zero. The estimated statistical significance of each signal is 8.6σ and 2.3σ, for the B^+ and B^0 modes respectively.

Using n^+_1 and n^-_1, the efficiencies, the secondary branching fractions and the number of BB events, we obtain the branching fractions $B(B^0 \rightarrow X(3872)K^0_S) \times B(X \rightarrow J/\psi \pi^+ \pi^-) = (3.5 \pm 1.9 \pm 0.4) \times 10^{-6}$ and $B(B^+ \rightarrow X(3872)K^+) \times B(X \rightarrow J/\psi \pi^+ \pi^-) = (8.4 \pm 1.5 \pm 0.7) \times 10^{-6}$. We also calculate a 90% confidence level
TABLE I: Fit results for both $B^+ \to X(3872)K^+$ and $B^0 \to X(3872)K_S^0$ modes. In the fit to the B^0 mode, the width is fixed to the value obtained from the B^+ mode. Errors are statistical only. The mass measurements are subsequently corrected.

Parameters	$B^+ \to X(3872)K^+$	$B^0 \to X(3872)K_S^0$
$m_{X,\text{fit}}$	3870.86 ± 0.60	3868.13 ± 1.53
m_X Lorentz Γ_{fit}	5.43 ± 1.52	Fixed to 5.43
Linear Background slope	−0.30 ± 0.04	−0.28 ± 0.03
Yields		
signal n_S	93.4 ± 17.2	9.4 ± 5.2

TABLE II: Summary of (fractional) systematic uncertainties on the branching fraction measurements for both modes.

	$B^+ \to X(3872)K^+$	$B^0 \to X(3872)K_S^0$
Tracking	1.8	1.4
K_S^0 correction	n/a	0.7
PID	1.9	1.4
MC Model	1.3	0.9
B counting	1.1	1.1
MC statistics	0.5	0.6
Secondary BF	3.3	3.3
BM	7.5	4.2
Fixed width	n/a	10.1
Total Fractional Error	8.8	11.7

(C.L.) upper limit on the neutral branching fraction as $B(B^0 \to X(3872)K^0) \times B(X \to J/\psi\pi^+\pi^-) < 6.0 \times 10^{-6}$ (90%, C.L.). For the ratio of branching fractions, in which most of the systematic errors cancel, we obtain

$$R(X) = \frac{B(B^0 \to X(3872)K^0)}{B(B^+ \to X(3872)K^+)} = 0.41 \pm 0.24 \pm 0.05,$$

where the first(second) uncertainty is statistical(systematic). Assuming Gaussian errors, we calculate the upper limit $R(X) < 0.73$ at 90% C.L.

We use the $B^+ \to \psi(2S)K^+$ and $B^0 \to \psi(2S)K^0$ decays, with $\psi(2S) \to J/\psi\pi^+\pi^-$, in the $\psi(2S)$ mass region [13] as control modes. We measure the branching fractions and obtain the ratio of neutral to charged branching fractions $R(\psi(2S)) = 0.81 \pm 0.05 \pm 0.01$, in agreement with the world average of 0.96 ± 0.11. We also use these control modes to correct the $X(3872)$ mass.

We fit the $J/\psi\pi^+\pi^-$ invariant mass in the $\psi(2S)$ and $X(3872)$ region. We correct the $X(3872)$ mass measurement, $m_{X,\text{fit}}$, by the difference between the $\psi(2S)$ world average mass [14], $m_{\psi(2S)}$, and its measured mass, $m_{\psi(2S),\text{fit}}$, which yields $m_X = m_{X,\text{fit}} - m_{\psi(2S),\text{fit}} + m_{\psi(2S)}$. The result for the B^+ mode is $(3871.4 \pm 0.6 \pm 0.1) \text{ MeV}/c^2$ and $(3868.7 \pm 1.5 \pm 0.4) \text{ MeV}/c^2$ for the B^0 mode, where the first error is the statistical uncertainty on $m_{X,\text{fit}}$ and the second is the uncertainty on $m_{\psi(2S),\text{fit}}$ and $m_{\psi(2S)}$. In the neutral mode we have also included an uncertainty that arises from fixing the width to the value obtained from the charged mode. The mass difference of the $X(3872)$ states produced in B^0 and B^+ decays is $\Delta m = (2.7 \pm 1.6 \pm 0.4) \text{ MeV}/c^2$.

The natural width Γ_X of the $X(3872)$ is obtained using the B^+ mode by subtracting the full width at half maximum of the resolution function measured from Monte Carlo Γ_{Res} from the data Γ_{fit}, $\Gamma_X = \Gamma_{\text{fit}} - \Gamma_{\text{Res}}$, with both the resolution and the natural width of the $X(3872)$ parameterized by a Lorentzian function. We estimate a systematic error on the width by comparing the nominal value to the value determined when using a two-Gaussian resolution function. We determine the natural width of the $X(3872)$ to be $(1.1 \pm 1.5 \pm 0.2) \text{ MeV}/c^2$, where the first uncertainty is statistical and the second systematic. From this result we calculate the 90% C.L. upper limit on the natural width $\Gamma_X < 3.3 \text{ MeV}/c^2$.

In summary, we have performed an updated study of the decays $B^+ \to X(3872)K^+$ and $B^0 \to X(3872)K^0$ with $X(3872) \to J/\psi\pi^+\pi^-$. The branching fraction measurements in the B^+ and B^0 modes are in good agreement with previous results, with comparable or better errors. The ratio of the branching fractions is $R = 0.41 \pm 0.24 \pm 0.05$ and the observed mass difference is $\Delta m = (2.7 \pm 1.6 \pm 0.4) \text{ MeV}/c^2$, consistent with either the molecular or diquark-antidiquark model within two standard deviations. Finally, we provide an updated upper limit of the natural width of the $X(3872)$, $\Gamma_X < 3.3 \text{ MeV}/c^2$ (90%, C.L.).

We are grateful for the extraordinary contributions of our PEP-II colleagues in achieving the excellent luminosity and machine conditions that have made this work possible. The success of this project also relies critically on the expertise and dedication of the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and the kind hospitality extended to them. This work is supported by the US Department of Energy and National Science Foundation, the Natural Sciences and Engineering Research Council (Canada), the Commissariat à l’Energie Atomique and Institut National de Physique Nucléaire et de Physique des Particules (France), the Bundesministerium für Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany), the Istituto Nazionale di Fisica Nucleare (Italy), the Foundation for Fundamental Research on Matter (The Netherlands), the Research Council of Norway, the Ministry of Education and Science of the Russian Federation, Ministerio de Educación y Ciencia (Spain), and the Science and Technology Facilities Council (United Kingdom). Individuals have received support from the Marie-Curie IEF program (European Union) and the A. P. Sloan Foundation.
Deceased
† Now at Temple University, Philadelphia, Pennsylvania 19122, USA
‡ Now at Tel Aviv University, Tel Aviv, 69978, Israel
§ Also with Università di Perugia, Dipartimento di Fisica, Perugia, Italy
¶ Also with Università di Sassari, Sassari, Italy

[1] S.K. Choi et al. (Belle Collaboration), Phys. Rev. Lett. 91, 262001 (2003).
[2] D. Acosta et al. (CDF Collaboration), Phys. Rev. Lett. 93, 072001 (2004).
[3] V. M. Abazov et al. (D0 Collaboration), Phys. Rev. Lett. 93, 162001 (2004).
[4] B. Aubert et al. (BABAR Collaboration), Phys. Rev. D71, 071103 (2005).
[5] B. Aubert et al. (BABAR Collaboration), Phys. Rev. D73, 011101(R) (2006).
[6] L. Maiani, F. Piccinini, A. D. Polosa and V. Riquer, Phys. Rev. D71, 014028 (2005).
[7] E. Braaten and M. Kusunoki, Phys. Rev. D71, 074005 (2005).
[8] D. Acosta et al. (CDF Collaboration), Phys. Rev. Lett. 98, 132002 (2007).
[9] B. Aubert et al. (BABAR Collaboration), Phys. Rev. D74, 071101 (2006).
[10] D. Acosta et al. (CDF Collaboration), Phys. Rev. Lett. 96, 102002 (2006).
[11] B. Aubert et al. (BABAR Collaboration), Phys. Rev. D77, 011102 (2008).
[12] S.K. Choi et al. (Belle Collaboration), Phys. Rev. Lett. 97, 162002 (2006).
[13] B. Aubert et al. (BABAR Collaboration), Nucl. Inst. Methods Phys. Res., Sect. A 479, 1 (2002).
[14] S. Agostinelli et al. (GEANT4 Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 462, 152 (2001).
[15] W.-M. Yao et al. (Particle Data Group), J. Phys. G 33, 1 (2006).
[16] S. Wolfram and G.C. Fox, Nucl. Phys. B149, 413 (1979).
[17] G. Punzi, in Proceedings of the Conference on Statistical Problems in Particle Physics, Astrophysics and Cosmology, PHYSSTAT2003, September 8-11, 2003, L. Lyons, R. Mount, and R. Reitmeyer, eds, eConf C030908, pp 79-83.