RATIONAL POINTS ON ELLIPTIC CURVES

\[y^2 = x^3 + a^3 \text{ IN } \mathbb{F}_p \text{ WHERE } p \equiv 1 \pmod{6} \text{ IS PRIME}^* \]

Musa Demirci, Gökhan Soydan, Ismail Naci Cangül

Abstract

In this work, we consider the rational points on elliptic curves over finite fields \(\mathbb{F}_p \). We give results concerning the number of points on the elliptic curve \(y^2 \equiv x^3 + a^3 \pmod{p} \) where \(p \) is a prime congruent to 1 modulo 6. Also some results are given on the sum of abscissae of these points. We give the number of solutions to \(y^2 \equiv x^3 + a^3 \pmod{p} \), also given in [1], p.174, this time by means of the quadratic residue character, in a different way, by using the cubic residue character. Using the Weil conjecture, one can generalize the results concerning the number of points in \(\mathbb{F}_p \) to \(\mathbb{F}_p^r \).

1 Introduction

Let \(F \) be a field of characteristic not equal to 2 or 3. An elliptic curve \(E \) defined over \(F \) is given by an equation

\[y^2 = x^3 + Ax + B \in \mathbb{F}[x] \] (1)

where \(A, B \in \mathbb{F} \) so that \(4A^3 + 27B^2 \neq 0 \) in \(\mathbb{F} \). The set of all solutions \((x, y)\in \mathbb{F} \times \mathbb{F} \) to this equation together with a point \(\mathcal{O} \), called the point at infinity, is denoted by \(E(\mathbb{F}) \), and called the set of \(\mathbb{F} \)-rational points on \(E \). The value \(\Delta(E) = -16(4A^3 + 27B^2) \) is called the discriminant of the elliptic curve \(E \). For a more detailed information about elliptic curves in general, see [3].

The \(E(\mathbb{F}) \) forms an additive abelian group having identity \(\mathcal{O} \). Here by definition, \(-P = (x, -y)\) for a point \(P = (x, y) \) on \(E \).

It has always been interesting to look for the number of points over a given field \(\mathbb{F} \). In [5], three algorithms to find the number of points on an elliptic curve over a finite field are given.

*This work was supported by the research fund of Uludag University project no: F-2003/63

AMS 2000 Subject Classification Number : 11G20, 14H25, 14K15, 14G99

Keywords: Elliptic curves over finite fields, rational points
2 The Group $E(F_p)$ of Points Modulo $p, p \equiv 1 \pmod{6}$

It is interesting to solve polynomial congruences modulo p. Clearly, it is much easier to find solutions in F_p for small p, than to find them in Q. Because, in F_p, there is always a finite number of solutions.

Let $\alpha \in F_p$ and let p be as stated earlier, then the number of solutions to $x^3 = \alpha$ is given by $1 + \chi_3(\alpha) + \chi_3^2(\alpha)$ for a cubic character χ_3 (so $\chi_3 : F_p^* \to \{1, \omega, \omega^2\}$ where ω is a non-trivial cubic root of unity). Likewise, let $\chi(a) = (a \mid p)$ denote the Legendre symbol which is equal to $+1$ if a is a quadratic residue modulo p; -1 if not; and 0 if $p|a$. The number of solutions to $x^2 = \alpha$ is then $1 + \chi(\alpha)$.

In this work, we consider the elliptic curve (1) in modulo p, for $A = 0$ and $B = a^3$, and denote it by E_a. We try to obtain results concerning the number of points on E_a over F_p, and also their orders.

Let us denote the set of F_p-rational points on E_a by $E_a(F_p)$, and let $N_{p,a}$ be the cardinality of the set $E_a(F_p)$. It is known that the number of solutions of $y^2 = u (\pmod{p})$ is $1 + \chi(u)$, and so the number of solutions to $y^2 \equiv x^3 + a^3 (\pmod{p})$, counting the point at infinity, is

$$N_{p,a} = 1 + \sum_{x \in F_p} (1 + \chi(x^3 + a^3)) = p + 1 + \sum_{x \in F_p} \chi(x^3 + a^3).$$

It can easily be seen that an elliptic curve

$$y^2 = x^3 + a^3$$

(2)

can have at most $2p + 1$ points in \mathbb{Z}_p; i.e. the point at infinity along with $2p$ pairs (x, y) with $x, y \in F_p$, satisfying the equation (2). This is because, for each $x \in F_p$, there are at most two possible values of $y \in F_p$, satisfying (2).

But not all elements of F_p have a square root. In fact, only half of the elements in $F_p^* = F_p \setminus \{0\}$ have square roots. Therefore the expected number of points on $E(F_p)$ is about $p + 1$.

It is known, as a more precise formula, that the number of solutions to (2) is

$$p + 1 + \sum \chi(x^3 + a^3).$$

The following theorem of Hasse quantifies this result:

Theorem 1 (Hasse, 1922) An elliptic curve (2) has

$$p + 1 + \delta$$

solutions (x, y) modulo p, where $|\delta| < 2\sqrt{p}$.

Equivalently, the number of solutions is bounded above by the number $(\sqrt{p} + 1)^2$.

2
From now on, we will only consider the case where \(p \) is a prime congruent to 1 modulo 6. We begin by some calculations regarding the number of points on (2). First we have

Theorem 2 Let \(p \equiv 1 \pmod{6} \) be a prime. The number of points \((x, y) \) on the curve \(y^2 = x^3 + a^3 \) modulo \(p \) is given by

\[
4 + \sum_{x \in \mathbb{F}_p} \rho(x)
\]

where

\[
\rho(x) = \begin{cases}
2 & \text{if } \chi(x^3 + a^3) = 1 \\
0 & \text{if } \chi(x^3 + a^3) \neq 1
\end{cases}
\]

Also the sum of such \(y \) is \(p \).

Proof. For \(x = 0, 1, 2, \ldots, p-1 \pmod{p} \), find the values \(y^2 = x^3 + a^3 \pmod{p} \). Let \(Q_p \) denote the set of quadratic residues modulo \(p \). When \(y^2 \in Q_p \), then there are two values of \(y \in U_p \), the set of units in \(\mathbb{F}_p \); which are \(x_0 \) and \(p - x_0 \). When \(y = 0 \), there are three more points which are \(x = a \), \(x = wa \) and \(x = w^2a \) where \(w^2 + w + 1 = 0 \). (Here \(w \in \mathbb{F}_p \) since \(p \equiv 1 \pmod{6} \)). Finally considering the point at infinity, the result follows. \(\blacksquare \)

We now consider the points on (2) lying on the \(y \)-axis.

Theorem 3 Let \(p \equiv 1 \pmod{6} \) be prime. For \(x \equiv 0 \pmod{p} \), there are two points on the curve \(y^2 \equiv x^3 + a^3 \pmod{p} \), when \(a \in Q_p \), while when \(a \notin Q_p \), there is no point with \(x \equiv 0 \pmod{p} \).

Proof. For \(x \equiv 0 \pmod{p} \), we have \(y^2 \equiv a^3 \pmod{p} \). First consider \(y^2 \equiv a^3 \pmod{p} \). This congruence has a solution if and only if \(\left(\frac{a^3}{p} \right) = \left(\frac{a}{p} \right) = 1 \); i.e. if and only if \(a \) is a quadratic residue modulo \(p \). \(\blacksquare \)

Let us now denote by \(K_p \), the set of cubic residues modulo \(p \). We can now restate the result given just before Hasse’s theorem in terms of cubic residues modulo \(p \), instead of quadratic residues.

Theorem 4 Let \(p \equiv 1 \pmod{6} \) be prime. Let \(t = y^2 - a^3 \). Then the number of points on the curve \(y^2 \equiv x^3 + a^3 \pmod{p} \) is given by the sum

\[
1 + \sum f(t)
\]

where

\[
f(t) = \begin{cases}
0 & \text{if } t \notin K_p, \\
1 & \text{if } p | t, \\
3 & \text{if } t \in K_p^*,
\end{cases}
\]

and the sum is taken over all \(y \in \mathbb{F}_p \).
Proof. Let $p|t$. Then the equation $x^3 \equiv t \pmod{p}$ becomes $x^3 \equiv 0 \pmod{p}$. Then the unique solution is $x \equiv 0 \pmod{p}$. Therefore $f(t) = 1$.

Let secondly $t \notin K_p$. Then t is not a cubic residue and the congruence $x^3 \equiv t \pmod{p}$ has no solutions. If $t \in K_p^*$, then $x^3 \equiv t \pmod{p}$ has three solutions since $p \equiv 1 \pmod{6}$ and $(p-1, 3) = 3$.

We can also give a result about the sum of abscissae of the rational points on the curve:

Theorem 5 Let $p \equiv 1 \pmod{6}$ be prime. The sum of abscissae of the rational points on the curve $y^2 \equiv x^3 + a^3 \pmod{p}$ is

$$\sum_{x \in \mathbb{F}_p} (1 + \chi_p(x^3 + a^3)).x.$$

Proof. Since

$$\chi_p(t) = \begin{cases} +1 & \text{if } x^2 \equiv t \pmod{p} \text{ has a solution,} \\ 0 & \text{if } p|t, \\ -1 & \text{if } x^2 \equiv t \pmod{p} \text{ has no solutions,} \end{cases}$$

we know that $1 + \chi_p(t) = 0, 1$ or 2. When $y \equiv 0 \pmod{p}$, $x^3 + a^3 \equiv 0 \pmod{p}$ and hence as $p|0$, $\chi_p(x^3 + a^3) = 0$. For each such point $(x, 0)$ on the curve, $(1+0).x = x$ is added to the sum.

Let $x^3 + a^3 = t$. If $(\frac{1}{p}) = +1$, then for each such point (x, y) on the curve, the point $(x, -y)$ is also on the curve. Therefore for each such t, $(1+1).x = 2x$ is added to the sum.

Finally if $(\frac{1}{p}) = -1$, then the congruence $x^2 \equiv t \pmod{p}$ has no solutions, and such points (x, y) contribute to the sum as much as $(1 + (-1)).x = 0$.

As we can see from the following result, the above sum is always congruent to 0 modulo p.

Theorem 6 Let $p \equiv 1 \pmod{6}$ be prime. Then the sum of the integer solutions of $x^3 \equiv t \pmod{p}$ is congruent to 0 modulo p.

Proof. The solutions of the congruence $x^3 \equiv 1 \pmod{p}$ are $x \equiv 1, w$ and $w^2 \pmod{p}$, where $w = \frac{-1 + \sqrt{3}}{2}$ is the cubic root of unity. In general, the solutions of $x^3 \equiv t \pmod{p}$ are $x \equiv x_0, x_0 w$ and $x_0 w^2 \pmod{p}$, where x_0 is a solution. This is because $(x_0 w)^3 \equiv x_0^3 w^3 \equiv x_0^3 \equiv t \pmod{p}$ and similarly $(x_0 w^2)^3 \equiv x_0^3 w^6 \equiv x_0^3 (w^3)^2 \equiv x_0^3 \equiv t \pmod{p}$. Therefore the sum of these solutions is

$$x_0 + x_0 w + x_0 w^2 = x_0 + x_0 w + x_0(-1 - w) = 0$$

If there is no solution, the sum can be thought of as 0.
Theorem 7 Let \(p \equiv 1 \pmod{6} \) be prime. Let \(0 \leq x \leq p - 1 \) be an integer. Then for any \(1 \leq a \leq p - 1 \), the sum (which is an integer)

\[
j(p) = \sum_{x=0}^{p-1} (1 + \chi(x^3 + a^3))x
\]

is divisible by \(p \). In particular

\[
s(p) = \sum_{x=0}^{p-1} \chi(x^3 + a^3)x
\]

is divisible by \(p \).

Proof. For every value of \(y \), let \(y^2 - a^3 = t \). Then the sum of the solutions of the congruence \(x^3 \equiv t \pmod{p} \) is congruent to 0 by Theorem 6.

For all values of \(y \), this is valid and hence the sum of all these abscissae is congruent to 0.

The hypothesis \(p \equiv 1 \pmod{6} \) is essential in this Theorem 7, as the following counterexample shows: take \(a = 1, \ p = 11 \). Then the first sum is easily seen to be 56 and the second is easily seen to be 1 and clearly neither of them is divisible by 11.

We now look at the points on the curve having the same ordinate:

Theorem 8 Let \(p \equiv 1 \pmod{6} \) be prime. The sum of the abscissae of the points \((x, y) \) on the curve \(y^2 \equiv x^3 + a^3 \pmod{p} \) having the same ordinate \(y \), is congruent to zero modulo \(p \).

Proof. Let \(y \) be given. Then the congruence

\[
x^3 \equiv y^2 - a^3 \pmod{p}
\]

becomes

\[
x^3 \equiv t \pmod{p}
\]

after a substitution \(t = y^2 - a^3 \). The result then follows by Theorem 6.

Finally we consider the total number of points on a family of curves \(y^2 \equiv x^3 + a^3 \pmod{p} \), for \(a \equiv 0, 1, \ldots, p - 1 \pmod{p} \) and \(p \equiv 1 \pmod{6} \) is prime. We find that when \((a, p) = 1 \), there are \(p + 1 - 2k \) or \(p + 1 + 2k \) points on a curve \(y^2 \equiv x^3 + a^3 \pmod{p} \), for a suitable integer \(k \).

Theorem 9 Let \(p \equiv 1 \pmod{6} \) be prime and let \(1 \leq a \leq p - 1 \). Let \(N_{p,a} = \#E(\mathbb{F}_p) \). Then

\[
\sum_{a=1}^{p-1} N_{p,a} = p^2 - 1.
\]
Proof. Since $1 \leq a \leq p - 1$, we have $(a, p) = 1$. Then the set of elements a^3x^3 modulo p is the same as the set of x^3 modulo p. Then

$$\sum_{x \in \mathbb{F}_p} \chi(x^3 + a^3) = \sum_{x \in \mathbb{F}_p} \chi(a^3x^3 + a^3) = \chi(a^3) \sum_{x \in \mathbb{F}_p} \chi(x^3 + 1).$$

By the discussion at the beginning of section 2, we get

$$N_{p,a} - p - 1 = \chi(a^3)(N_{p,1} - p - 1).$$

Then by taking sum at both sides, we obtain

$$\sum_{a=1}^{p-1} (N_{p,a} - p - 1) = \sum_{a=1}^{p-1} \chi(a^3)(N_{p,1} - p - 1).$$

Then

$$\sum_{a=1}^{p-1} N_{p,a} - \sum_{a=1}^{p-1} (p + 1) = (N_{p,1} - p - 1) \sum_{a=1}^{p-1} \chi(a^3) = (N_{p,1} - p - 1) \sum_{a=1}^{p-1} \chi(a)$$

using $\chi(a^3) = \chi(a)$ as both sides are 1 or -1. Finally as there are as many residues as non residues, we know that

$$\sum_{a=1}^{p-1} \chi(a) = 0$$

and by means of it, we conclude

$$\sum_{a=1}^{p-1} N_{p,a} = p^2 - 1,$$

as required. □

Conclusion 10 All the results concerning the number of points on \mathbb{F}_p obtained here for prime $p \equiv 1 \pmod{6}$ can be generalized to \mathbb{F}_{p^r}, for a natural number $r > 1$, using the following result:

Theorem 11 (Weil Conjecture) The Zeta-function is a rational function of T having the form

$$Z(T; E/\mathbb{F}_q) = \frac{1 - aT + qT^2}{(1 - T)(1 - qT)}$$

where only the integer a depends on the particular elliptic curve E. The value a is related to $N = N_1$ as follows:

$$N = q + 1 - a.$$
In addition, the discriminant of the quadratic polynomial in the numerator is negative, and so the quadratic has two conjugate roots \(\frac{1}{\alpha} \) and \(\frac{1}{\beta} \) with absolute value \(\frac{1}{\sqrt{q}} \). Writing the numerator in the form \((1 - \alpha T)(1 - \beta T)\) and taking the derivatives of logarithms of both sides, one can obtain the number of \(F_{q^r} \)-points on \(E \), denoted by \(N_r \), as follows:

\[
N_r = q^r + 1 - \alpha^r - \beta^r, \quad r = 1, 2, ...
\]

Example 12 Let us find the \(F_7 \)-points on the elliptic curve \(y^2 = x^3 + 4 \). There are \(N_1 = 12 \) \(F_7 \)-points on the elliptic curve:

\[(0, 1), (0, 6), (1, 3), (1, 4), (2, 3), (2, 4), (3, 0), (4, 3), (4, 4), (5, 0), (6, 0) \text{ and } \circ.\]

Now as \(r = 2 \), we have \(a = -4 \). Then from the quadratic equation

\[
1 + 4T + 7T^2 = 0,
\]

\(\alpha = -2 - \sqrt{3}i \) and \(\beta = -2 + \sqrt{3}i \) and finally \(N_2 = 48 \). Similarly \(N_3 = 324 \) can be calculated.

References

[1] Koblitz, N., *A Course in Number Theory and Cryptography*, Springer-Verlag, (1994), ISBN 3-540-94293-9.

[2] Mollin, R. A., *An Introduction to Cryptography*, Chapman&Hall/CRC, (2001), ISBN 1-58488-127-5.

[3] Silverman, J. H., *The Arithmetic of Elliptic Curves*, Springer-Verlag, (1986), ISBN 0-387-96203-4.

[4] Silverman, J. H., Tate, J., *Rational Points on Elliptic Curves*, Springer-Verlag, (1992), ISBN 0-387-97825-9.

[5] Schoof, R., *Counting points on elliptic curves over finite fields*, Journal de Théorie des Nombres de Bordeaux, 7 (1995), 219-254.

Musa Demirci, Gökhan Soydan, Ismail Naci Cangül
Department of Mathematics
Uludağ University
16059 Bursa, TURKEY
mdemirci@uludag.edu.tr, gsoydan@uludag.edu.tr, cangul@uludag.edu.tr