Effect of external electric field on spin-orbit splitting of the two-dimensional tungsten dichalcogenides WX_2 ($X = S, Se$)

Y Affandi1, M A U Absor1* and K Abraha1

1Department of Physics, Universitas Gadjah Mada, BLS 12 Yogyakarta, Indonesia

*Email: adib@ugm.ac.id

Abstract. Tungsten dichalcogenides WX_2 ($X = S, Se$) monolayer (ML) attracted much attention due to their large spin splitting, which is promising for spintronics applications. However, manipulation of the spin splitting using an external electric field plays a crucial role in the spintronic device operation, such as the spin-field effect transistor. By using first-principles calculations based on density functional theory (DFT), we investigate the impact of external electric field on the spin splitting properties of the WX_2 ML. We find that large spin-splitting up to 441 meV and 493 meV is observed on the K point of the valence band maximum, for the case of the WS$_2$ and WSe$_2$ ML, respectively. Moreover, we also find that the large spin-orbit splitting is also identified in the conduction band minimum around Q points with energy splitting of 285 meV and 270 meV, respectively. Our calculation also show that existence of the direct semiconducting \rightarrow indirect semiconducting \rightarrow metallic transition by applying the external electric field. Our study clarify that the electric field plays a significant role in spin-orbit interaction of the WX_2 ML, which has very important implications in designing future spintronic devices.

1. Introduction

Recent discovery of graphene as a pioneer of a two-dimensional material with an extraordinary electronic, optical and magnetic properties motivates researchers to find new materials of two-dimensional structures. Especially in spintronics applications, these new materials are including topological insulators, Dirac materials and majorana fermions [1–3]. In addition to these materials, the two-dimensional material of transition metal dichalcogenides (TMDs) has also attracted much attention recently due to its unique properties such as large spin-splitting, spin-valley coupling and the sensitivity of its electronic structure [4–6]. Bulk TMDs have a MX_2 stoichiometry with M is a transition metal atoms and X is a chalcogen atoms. In contrast to bulk TMDs which have an indirect band gap with valence band maximum (VBM) at the Γ point and conduction band minimum (CBM) at the Q point, monolayer (ML) TMDs has a direct band gap with VBM and CBM are centered at the K point. This transition from indirect to direct band gap is due to missing of van der Waals interactions [4,7,8], which has important implications in photonics, optoelectronics, and sensing devices [7].

Another unique phenomenon in ML TMDs is emergence of spin-splitting in the VBM and CBM. Especially the WS$_2$ and WSe$_2$ ML which attracted much attention since their spin-splitting are predicted to be the largest among the ML families of TMDs [4]. In the WX_2 ($X = S, Se$) ML, the maximum spin-splitting is observed at K point of the VBM, which varies from 426 to 463 meV [4,6]. This large spin-splitting is believed to be responsible for inducing some interesting phenomena such as spin Hall effect, spin-dependent selection rule for optical transition, and magnetoelectric effect in
TMDs [9]. It is also reported that the large spin-splitting is also observed at the Q point of the CBM, which is from ranging 200 to 330 meV. This splitting is also plays important role in the properties of spintronics such as spin-conserving scattering [5]. However, the electronic structure of WX_2 ML is sensitive to some external treatments such as external electric field [10]. Therefore it is important to clarify the electric field effect on the spin-splitting properties of the WX_2 ML material, which is expected to be useful for designing spintronic devices.

In this paper, we report fully relativistic calculations within density functional theory on electronic properties of the WS$_2$ and WSe$_2$ ML. For all such systems, we clarified the emergence of spin splitting in the VBM and CBM. We have also examined the electronic structure and the spin-splitting properties of the WX_2 ML by applying electric field. Finally, the possibility of implementing such systems for spintronics will be discussed.

2. Computational Method

Crystal structure of the bulk WX_2 ($X = \text{S, Se}$) has a hexagonal structure (2H) with P63/mmc (D_{6h}^3) point group symmetry. It consists of several layers X-W-X characterized by a weak van der Waals interaction. Each layer consists of W atom layer that is sandwiched by two X atoms with a strong covalent bonding. Due to the weak van der Waals interaction, it is possible to create WX_2 ML by using micromechanical cleavage and liquid exfoliation [11].

In contrast to the bulk WX_2, inversion symmetry is broken in the WX_2 ML (figure 1. (a)), thus reduces its symmetry becomes P6m2 (D_{3h}^2). The D_{3h}^2 symmetry itself consists of C_{3v} and mirror symmetry M_{3y} (figure 1. (a)). The k space in first Brillouin zone characterizing the crystal structures of the WX_2 ML is shown in figure 1. (b). Electronic structure calculations are carried-out using density functional theory within the generalized gradient approximation (GGA) [12] as implemented in the OpenMX code [13]. We use norm-conserving pseudo-potentials, and the wave functions are expanded by the linear combination of multiple pseudo-atomic orbitals (LCPAOs) generated using a confinement scheme [14,15]. The orbitals are specified by W7.0-$s^2p^2d^4$, S9.0-$s^1p^1d^1$ and Se9.0-$s^1p^1d^1$, which means that the cut off radii are 7.0, 9.0, and 9.0 bohr for the W, S and Se atoms, respectively. A $12 \times 12 \times 1$ k-point grid and energy cutoff 200 Ry are used. Spin orbit coupling (SOC) was also included in these fully relativistic calculations. The WX_2 ML are modelled as a periodic slab with a sufficiently large vacuum layer (24 Å) in order to avoid interaction between another layers. The structures are relaxed until the force acting on each atom was less than 0.5×10$^{-3}$ eV/Å. The external electric field are applied in the direction of the positive z axis.

3. Result and discussion

3.1. Electronics structures of the WX_2 ($X = \text{S, Se}$) ML

First, we optimize lattice parameter, with the result shown in table 1. Consistent with previous calculation results [4], we find that optimized in-plane lattice constants are 3.194 Å and 3.4 Å for the case of WS$_2$ and WSe$_2$ ML, respectively. However, these values are slightly larger than that of the experiment [16,17].

System	Calculated Lattice constant (Å)	Experiment Lattice constant (Å)	Previous Calculation (Å)
WS$_2$ ML	3.194	3.154a	3.197c
WSe$_2$ ML	3.401	3.280b	3.310c

a Experimental value for WS$_2$ ML [16]
b Experimental value for WSe$_2$ ML [17]
c Previous calculation result [4]
Next, we investigate the electronic properties of W\textsubscript{X} \textsubscript{2} ML. As shown in figure 2, both WS\textsubscript{2} and WSe\textsubscript{2} ML show a direct-gap where the VBM and CBM are centered at the K point. We find that the energy gap obtained from our calculations are 1.53 eV and 1.00 eV for WS\textsubscript{2} and WSe\textsubscript{2} ML, respectively. Our partial density of state (PDOS) analysis show that at the K point of the VBM is dominated by W\textsubscript{d}_{x^2-y^2}\textsubscript{+d}_{xy} orbitals, while at the K point of CBM mainly originated from W\textsubscript{d}_{3z^2-r^2} orbitals (figure 1. (c) and (d)).

By concerning to the spin-splitting, we find that a substantial spin-splitting is visible along M-K-\Gamma as show in figure 2. The energy of spin-splitting at VBM (K point) are identified to be 441 meV and 492 meV for WS\textsubscript{2} and WSe\textsubscript{2} ML, respectively (figure 2 (a) and (c)). These results are in a good agreement with previous experimental result [18,19]. In addition, the spin-splitting is also observed at Q point in the CBM for both WS\textsubscript{2} and WSe\textsubscript{2} ML, which is found to be 285 meV and 270 meV, respectively (figure 2 (b) and (d)). The origin of the spin-splitting is due to the presence of the broken inversion symmetry. In bulk W\textsubscript{X} \textsubscript{2} Kramer’s degeneracy \[E^\dagger(\tilde{k}) = E^\dagger(-\tilde{k})\] is suppressed by the existence of the time reversal symmetry \[E^\dagger(\tilde{k}) = E^\dagger(-\tilde{k})\] and inversion symmetry \[E^\dagger(\tilde{k}) = E^\dagger(-\tilde{k})\].
However, the inversion symmetry is broken in the monolayer, thus spin degeneracy is lifted, inducing the spin-splitting. Because the monolayer has in-plane dipole moment, the spin-splitting is established on the band except for the Γ-M direction (figure 2(a) and (b)). Moreover, at Γ point, the spin degeneracy is due to time reversal symmetry alone, whereas at the M point, the spin degeneracy suppressed by the combination of time reversal symmetry and translation symmetry [4].

3.2. The electric field effect on the electronic structure of the WX_2 ML

Next, we study the effect of the electric field on the electronic properties of the WX_2 ML. We introduce the electric field ranging from 0.2 to 0.6 V/Å. As show in figure 3, we find direct semiconducting - indirect semiconducting - metallic transition, when the electric field increases. Consequently, the shifting of the VBM and CBM appears, which effects to the spin-splitting energy.
Interestingly, we find new spin-splitting along Γ–M direction, which is not found in the system without the electric field. As a result, the Rashba-type spin-splitting is induced around the Γ point as show in figure 4.

4. Conclusion

In summary, we report fully relativistic calculations within density functional theory to study the spin-splitting band in VBM and CBM of WS$_2$ and WSe$_2$ ML. We found that substantial spin-splitting bands are identified in VBM and CBM of WS$_2$ and WSe$_2$ ML. In VBM around K point, we obtained the energy of spin-splitting are 441 meV and 492 meV for WS$_2$ and WSe$_2$ ML. Meanwhile, in CBM around Q point, we found the large spin-splitting energy are 285 meV and 270 meV for WS$_2$ and WSe$_2$ ML, respectively. The spin-splitting bands is due to a loss of the inversion symmetry in the ML case. Those results make the WS$_2$ and WSe$_2$ ML exhibits great potential for application, e.g. spin field-effect transistor. Applied electric field also appears direct semiconducting – indirect semiconducting – metallic transition of electronics structure. Controlling electronics structures by external electric field, makes WX$_2$(X = S, Se) ML potential candidates for future spintronic devices.

Acknowledgments

This work was supported by the Fundamental Research Grant (No.2237/UN1.PIII-DITLIT-LT/2017) funded by ministry of research and technology and higher education, Republic of Indonesia. The computations in this research were performed using high computer (laboratory of material and instrumentation physics) at Universitas Gadjah Mada, Indonesia.

References

1. Alicea J 2010 Phys. Rev. B 81 1–10
2. Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045–67
3. Wehling T O, Black-Schaffer A M and Balatsky A V 2014 Adv. Phys. 63 1–76
4. Zhu Z Y, Cheng Y C and Schwingenschlögl U 2011 Phys. Rev. B 84 1–5
5. Absor M A U, Kotaka H, Ishii F and Saito M 2016 Phys. Rev. B 94 115131
6. Komider K, González J W and Fernández-Rossier J 2013 Phys. Rev. B 88 1–7
7. Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotechnol. 7 699–712
8. Lv R, Terrones H, Laura A, Perea-lópez N, Gutiérrez H R, Cruz-silva E, Pulickal L, Dresselhaus M S and Terrones M 2015 Nano Today 10 559–92
9. Gong Z, Liu G, Yu H, Xiao D, Cui X, Xu X and Yao W 2013 Nat. Commun. 4 1–6
10. Yuan H, Bahramy M S, Morimoto K, Wu S, Nomura K, Yang B, Shimotani H, Suzuki R, Toh M, Kloch X, Arita R, Nagaosa N and Iwasa Y 2013 Nat. Phys. 9 563–9
11. Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V and Geim A K 2005 Proc. Natl. Acad. Sci. U. S. A. 102 10451–3
12. Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
13. Ozaki T, Kino H, Yu J, Han M J, Ohfuchi M, Ishii F, Sawada K, Kubota Y, Ohwaki T, Weng H, Toyoda M, Okuno Y, Perez R, Bell P P, Duy T V T, Xiao Y, Ito A M and Terakura K 2013 User’s manual of OpenMX Ver. 3.7 (http://www.openmx-square.org/)
14. Ozaki T 2003 Phys. Rev. B 67 1–5
15. Ozaki T and Kino H 2004 Phys. Rev. B 69 1–19
16. Wilson J A and Yoffe A D 1969 Adv. Phys. 18 193–335
17. Benhida S, Bernède J C, Pouzet J and Barreau A 1993 Thin Solid Films 224 39–45
18. Zhang Y, Ugeda M M, Jin C, Shi S F, Bradley A J, Martin-Recio A, Ryu H, Kim J, Tang S, Kim Y, Zhou B, Hawg C, Chen Y, Wang F, Crommie M F, Hussain Z, Shen Z X and Mo S K 2016 Nano Lett. 16 2485–91
19. Dendzik M, Michiardi M, Sanders C, Bianchi M, Miwa J A, Gronborg S S, Lauritsen J V., Bruix A, Hammer B and Hofmann P 2015 Phys. Rev. B 92 1–7