Genetics of Parkinson’s Disease - A Clinical Perspective

Sang-Myung Cheon a
Lilian Chan b
Daniel Kam Yin Chan b
Jae Woo Kim a

a Department of Neurology, Dong-A University School of Medicine, Busan, Korea
b Department of Aged Care and Rehabilitation, University of New South Wales, Bankstown Hospital, Bankstown, NSW, Australia

Key Words: Parkinson’s disease, Genetics.

Discovering genes following Mendelian inheritance, such as autosomal dominant-synuclein and leucine-rich repeat kinase 2 gene, or autosomal recessive Parkin, P-TEN-induced putative kinase 1 gene and Daisuke-Junko 1 gene, has provided great insights into the pathogenesis of Parkinson’s disease (PD). Genes found to be associated with PD through investigating genetic polymorphisms or via the whole genome association studies suggest that such genes could also contribute to an increased risk of PD in the general population. Some environmental factors have been found to be associated with genetic factors in at-risk patients, further implicating the role of gene-environment interactions in sporadic PD. There may be confusion for clinicians facing rapid progresses of genetic understanding in PD. After a brief review of PD genetics, we will discuss the insight of new genetic discoveries to clinicians, the implications of ethnic differences in PD genetics and the role of genetic testing for general clinicians managing PD patients.

Park Genes Following Mendelian Inheritance

The loci, under the name “PARK gene,” have been assigned to facilitate the diagnostic ap-
proach for the clinician. The phenotype of some of the PARK genes shows a rather limited resemblance to PD. For example, the **ATP13A2** gene (PARK9) is associated with recessively-inherited early-onset atypical parkinsonism, showing pyramidal signs of dementia and supranuclear gaze palsy.4 A clinical presentation of the **PLA2G5** gene (PARK14) mutation carriers is adult-onset parkinsonism with dystonia and complicated pyramidal involvement.5 Although these genes are of monogenic etiology under the PARK loci, we will focus on the conditions presenting symptoms and signs similar to classical parkinsonism.

SNCA, PARK1/4

SNCA is located in the long arm of chromosome 4, and three missense mutations have been identified in the etiology of dominantly-inherited familial parkinsonism: A53T, E46K, and A30P.1,3,5 Carriers of A53T mutation experience an earlier onset of the disease, often presenting in their mid-forties, and demonstrate levodopa responsiveness, more severe and rapid progression of parkinsonian symptoms, frequent dementia, and prominent autonomic dysfunction in selected cases.8

Families with E46K mutations experience similar clinical pictures of dementia with Lewy Body disease, but A30P mutation carriers show typical late-onset parkinsonism with relatively mild dementia.6,7

Multiplications of **SNCA** (PARK4) have also been associated with PD.5,10 The clinical phenotype of triplicated cases shows an earlier onset and more rapid course of the disease than that of duplicated families, suggesting a dosage effect of **SNCA**.11 Penetrance in the families of abnormal **SNCA** is age-dependent and generally complete, but it appears to be slightly lower in A30P and duplicated cases.12

Lewy bodies and neurites are key pathological abnormalities of all cases with **SNCA** mutations, and they are found not only in the substantia nigra, but also in mesocortical and neocortical neurons in the autopsy of A53T cases. This is compatible with a diagnosis of Dementia with Lewy bodies.5

Alpha-synuclein is a 140-amino acid protein expressed presynaptically in neurons and is suggested to have a role in synaptic plasticity and neurotransmission.13,14 Genetic alterations of **SNCA** lead to the formation of mutated alpha-synuclein proteins, which are more likely to oligomerise and aggregate, preventing degradation by the ubiquitine-proteasome pathway.15

Familial cases of **SNCA** mutation are extremely rare (up to 2.5% of all unrelated carriers), but findings of the alpha-synuclein protein as a principal component of key pathology and the pathogenic role of excessive wild-type alpha-synuclein have provided great insights into the pathogenesis of PD. Pathologic staging, based on the alpha-synuclein pathology, has been made, and it has proposed that the pathology spreads throughout the nervous system, possibly via the alpha-synuclein protein, as a seed molecule aggregated from mutated or excessive protein, like prion protein.16,17

Parkin, PARK2

The Parkin mutation was first described in young-onset

Table 1. PARK genes

Locus	Gene	Inheritance	Clinical presentation	Pathology
PARK1/4	SNCA	AD	Typical parkinsonism with early-onset, rapid progression, and sometimes associated with dementia	Lewy bodies
PARK2	Parkin	AR	Early-onset parkinsonism with very slow progression, sleep benefit, and sometimes dystonia	Usually no Lewy bodies
PARK6	PINK-1	AR	Early-onset parkinsonism with slow progression	Unknown
PARK7	DJ-1	AR	Similar to Parkin mutation	Unknown
PARK8	LRRK-2	AD	Typical parkinsonism (incomplete penetrance)	Usually Lewy bodies, sometimes tangles
PARK9	ATP13A2	AR	Early-onset parkinsonism with pyramidal sign, dementia, and gaze palsy	Unknown
PARK14	PLAG2G5	AR	Adult-onset parkinsonism with dystonia and pyramidal sign	Lewy bodies

AD: autosomal dominant, AR: autosomal recessive.
familial parkinsonism in Japan and has been regarded as the most common cause of autosomal-recessive juvenile parkinsonism.20,21 The locus is mapped to the telomeric region of the long-arm of chromosome 6. More than 100 mutations are associated with Parkin, ranging from point mutations and deletions to rearrangements and duplications.20,21 Clinically, affected families show parkinsonism similar to sporadic cases, except for the age of onset, which occurs from childhood to age 40 years and is rarely seen in individuals over 50 years of age.22 More symmetric motor symptoms, excellent levodopa responsiveness, frequent dystonia in the legs, hyperreflexia, diurnal fluctuation, sleep benefit, no dementia, mild autonomic symptoms, and severe treatment-related motor complications are also reported, but the general course of the disease looks more benign than typical PD.23,24 Initial pathologic studies reported a selective loss of dopaminergic neurons of substantia nigra and a loss of adrenergic neurons of locus ceruleus without Lewy Body, but a few cases of Lewy pathology have been reported recently.25-26

The Parkin protein is a cytosolic protein and is associated with the cell membrane.27,28 It is known that the protein functions as an E3 ubiquitin ligase, which tags dysfunctional or excessive proteins for degradation in the ubiquitin proteasome system.25,29 The elimination of damaged mitochondria is one of the most important roles of Parkin protein.30-32 PINK1 and Parkin appear to act together in this pathway.33,34 Mutations of Parkin induce loss or decrease in the role of protein degradation and mitochondrial maintenance, leading to the cytotoxic accumulation of abnormal proteins and mitochondrial dysfunction.

Homozygous Parkin mutations are found in most patients, but compound heterozygotes have also been reported. Because recessively inherited genetic disorders often appear sporadically, many sporadic cases of juvenile-onset appear to be associated with Parkin mutations.35 A significant proportion of sporadic cases have been found to have heterozygous Parkin mutations, suggesting these mutations may be a disease-modifying risk factor.36 This is supported by a report of decreased dopamine activity in striatum of mutation carriers.37 However, a subsequent large case-control study found no significant difference in the frequency of heterozygous Parkin mutations in patients and controls.38 Therefore, there is insufficient evidence that Parkin mutations are a risk for sporadic PD.

PINK1, PARK6

The PINK1 mutation is another rare cause of autosomal-recessive early-onset parkinsonism. The PINK1 gene is located in the short arm of chromosome 1.39,40 The majority of the PINK1 mutations associated with parkinsonism are missense or nonsense mutations, but rare deletion mutations are also reported.41 Although the age of onset is between 20 and 50 years of age, most affected cases show phenotype of late-onset cases, such as the mild and slow progression of motor symptoms, good levodopa responsiveness, and mild dementia in some cases.39,42,43 Atypical features, including dystonia and psychiatric disturbances, are also reported in a few families.40,41 The pathology of PINK1-associated parkinsonism is still not known.

PINK1 protein is an active mitochondrial kinase, protecting cells against apoptotic or mitochondrial stressors and maintaining mitochondrial function.33,44,45 The localization and function of PINK1 in mitochondria is quite interesting in that PD has been assumed to be associated with mitochondrial dysfunction and oxidative stress. Phenotype due to loss of PINK1 function is rescued by an over-expression of Parkin, suggesting that both proteins are involved in the same genetic pathway and PINK1 is upstream of Parkin. The exact pathogenic mechanism is largely unknown, but recently it has been found that PINK1 regulates mitochondrial Ca2+ efflux, and the loss of PINK1 is associated with mitochondrial Ca2+ overload and dysfunction of mitochondria.46 As with Parkin, heterozygous PINK1 mutations may also be a genetic risk factor, based on the increased frequency of PINK1 mutations in sporadic cases and decreased dopaminergic activity in healthy carriers, as shown in functional-imaging study.47-49 Its exact role in sporadic PD also remains elusive, demanding further studies.

DJ-1, PARK7

DJ-1-associated parkinsonism is found in only a few families and is another rare cause of recessively-inherited parkinsonism.31 The locus is mapped to the short arm of chromosome 1, and studies have found that missense mutations and whole exonic deletion are associated with parkinsonism.31,32 The age of onset is from 20 to 40 years in most families, and the clinical phenotype of affected cases is similar to that of Parkin and PINK1 cases.33 In addition to parkinsonism, some patients showed peculiar characteristics, such as psychiatric symptoms, short stature, and brachydactyly.34 Currently, there is no pathologic report of DJ-1-associated parkinsonism.

DJ-1 protein has H2O2 responsiveness, functioning as a sensor for oxidative stress, and is an antioxidant.55,56 It has been suggested that DJ-1 could be a part of novel E3 ligase complex with Parkin and PINK1, but the pathogenic role of DJ-1 mutations is still unknown.57 Both homozygous and compound heterozygous mutations are found in affected families, and the possibility of DJ-1 as a risk factor for sporadic disease has also been suggested like other recessive genetic etiologies.58

LRRK2, PARK8

LRRK2 is another genetic cause of dominantly-inherited familial parkinsonism, and it is located in the short arm of chromosome 12.59 LRRK2 protein is a large, multi-domain
protein, and over 40 pathologic mutations have been reported, although only five missense mutations have been proven to have a causative role (R1441C, R1441G, Y1699C, G2019S and I2020T). G2019S mutation is the most common, and the phenotype in families is similar to late onset sporadic cases. Onset occurs in patients aged in their 60s, with asymmetry of motor symptoms, and levodopa responsiveness is seen in two-thirds of cases, with slightly more frequent resting tremor (75%). A more complex presentation of dystonia, amyotrophy, postural tremor, and restless legs syndrome is also described. Most families with other mutations of \(LRRK2 \) show a similar phenotype to typical sporadic cases. However, the age at onset, as well as the severity of motor symptoms, may be highly variable, even within families.

The penetrance of the \(LRRK2 \) mutation is age-dependent, but it is quite different according to mutations. The penetrance seems incomplete in the mutation of G2019S, which was reported at 28% at the age of 59 years, 51% at 69, 74% at age 79, and more than 90% at the age of 75 in R1441C. It also appears to be varied between the ethnicities and is higher in Arab Berber than Ashkenazi Jews. The penetrance reported in initial family-based studies may be overestimated, and the corrected overall penetrance is 67%.

Although limited pathologic studies of \(LRRK2 \) mutation carriers reported Lewy pathology, in most cases different \(LRRK2 \) mutations showed variable results. Autopsy of G2019S-mutations cases showed a relatively consistent pattern of neurodegeneration with Lewy bodies, but others (R1441C, Y1699C, and I2020T) showed pure nigral degeneration without Lewy pathology or pleomorphic findings, including tau pathology. \(LRRK2 \) is placed genetically upstream of deposited proteins, such as alpha-synuclein or tau, so mutations of \(LRRK2 \) might induce different outcomes depending on the course the disease takes. Although \(LRRK2 \) protein is reported to have kinase and GTPase features, its pathogenic role in parkinsonism is largely unknown. Evidences suggest that the mutant \(LRRK2 \) impacts the morphology and the possible function of the neurotic/synaptic compartment.

Monogenic Etiologies Other than PARK Genes

The naming of the PARK gene is historical, and there are currently no well-defined clinical or pathological inclusion criteria. Therefore, other genetic conditions, which can present primarily as parkinsonism, should be considered in the differential diagnosis.

Spinocerebellar ataxia (SCA) represents inherited ataxias encompassing a variety of clinical and genetic characteristics. There have been at least 29 gene loci reported to date, and parkinsonism has also been described in some genotypes. Of the 29 reported gene loci, SCA2 mutations (CAG/CAA repeat) may cause levodopa-responsive parkinsonism, manifesting with resting tremors, rigidity, and bradykinesia as well as mild dysthria and ataxic gait. Most patients with an SCA2 mutation have a family history of ataxia with or without parkinsonism. Pure parkinsonian families are rarely reported. It seems more frequent in families of Asian background, accounting for as high as 10% of familial parkinsonism.

Monogenic forms of dystonia (dystonia-parkinsonism) can also show signs of parkinsonism, including DYT3 (X-linked dystonia-parkinsonism), DYT5 (dopa-responsive dystonia), and DYT12 (rapid-onset dystonia-parkinsonism). Of these, patients with DYT5 mutations can present as typical autosomal-recessive juvenile parkinsonism, because of mutations in the tyrosine hydroxylase (TH) gene (DYT5b). Another condition associated with mutation in GTP cyclohydrolase 1 gene (GTPH1, DYT5a) may show more typical and late-onset parkinsonism. The clinical phenotype of DYT5-mutation carriers includes early onset of dystonia, a diurnal fluctuation of symptoms, and an excellent response to low-dose levodopa. Patients with Parkin mutations also frequently show early dystonia; however, a differential diagnosis based on a clinical phenotype can be difficult. The DYT5 mutation is a biochemical defect in the pathway of dopamine synthesis, and does not cause widespread neurodegeneration, as shown in limited pathologic reports, with no evidence of Lewy Body pathology and a normal number of dopaminergic neurons (though severely hypomelanized).

Genetic Risk Factors Associated with PD

Many genes have been studied to identify an association with sporadic and late-onset PD. Genetic polymorphisms increase the susceptibility of developing sporadic PD, but do not cause the disease. Associations can be established when polymorphisms in candidate genes are found in significantly higher rates in patients with classical PD. Efforts have failed to find conclusive evidences for an association of underpowered results in relation to the small increase in the risk of a small number of subjects or an arbitrary choice of candidate genes or genetic variants. It also remains to be elucidated if some of the monogenic etiologies for familial parkinsonism have a clear association with sporadic PD. Studies using advanced technologies overcoming the caveats of classical methods, such as genome-wide association studies, have confirmed already suggested associations and found several new genetic risk factors.
Proven Etiologies as a Genetic Risk

Polymorphisms in the non-coding promoter region (Rep1) and 3’ end of the SNCA gene have been repeatedly associated with sporadic PD. There seem to be ethnic differences in Rep1 polymorphisms, which have found an association with allele length in Caucasians, but that neither the 259 nor 263 polymorphisms of Rep1 were associated with sporadic PD in Asians.94,95 These polymorphisms of SNCA may correlate with higher expression of alpha-synuclein, and the lifetime risk of PD might be raised by 25% to 30% in carriers.

LRRK2 polymorphisms (G2385R and R1628P) are associated with sporadic PD in Asian populations but this finding has not been replicated in patients of European descent.96,97 G2385R polymorphism was found in 6.7% of typical late-onset Japanese patients, 9.4% of early-onset patients, and 23.1% of familial patients (compared with 3% in controls).98 This polymorphism has also been reported by other studies which found a prevalence of 8-9% in sporadic cases from East Asia and probably can explain 10% of the risk of sporadic PD in these countries.99,100

H1 haplotype of microtubule-associated protein Tau (MAPT; associated with Tau pathology) is also associated with PD, and it increases the disease risk by nearly 50% in populations of European ancestry.101

Parkinsonism has been reported in patients and carriers of Gaucher’s disease (the most common lipid storage disease caused by homozygous glucocerebrosidase (GBA) mutation).102 The loss of GBA function has been proven to be associated with PD (6.9% in PD vs. 1.3% in control), and loss of GBA function is especially prevalent in Ashkenazi Jews (19.3% vs. 4.1%).103

Genome-Wide Association Studies

In recent years, there have been efforts to overcome the caveats of the association studies, which usually require sufficient genetic variation around a specific gene to be measurable in a given population. Genome-wide association studies (GWAS) can genotype large numbers of common variations in a large numbers of cases and controls without any prespecification to a particular gene. GWAS has the potential to find loci where common, normal genetic variability contributes to disease risk. Several such studies have found that genes for α-synuclein, microtubule-associated protein tau, LRRK2, and HLA-DRB5 are associated with the PD.104,105 Recent meta-analysis of GWAS involving 5233 cases and 12019 controls has confirmed the associations and identified several new loci.107 We should be cautious not to ascribe disease risk to any specific gene suggested by such studies in the absence of further biological evidence. However, GWAS have revealed stronger genetic components in sporadic PD than our expectations, and there is hope to identify additional common genetic risks for PD.

Genetic Frequency and Ethnic Difference in PD

As we know, the first gene for PD, α-synuclein, was found in Italian families. Although several point mutations were discovered after the first report, these mutations are still rare (-2.5% of known unrelated, affected carriers), and this is definitely true for Asian populations.108

The most frequently found genetic cause in PD is LRRK2, corresponding to about 50% of all reported unrelated carriers of mutations, and 5% to15% of dominant families. Ethnic differences have been demonstrated more dramatically in LRRK2. The G2019S mutation is found in about 5% of familial Caucasian patients.85 In contrast, it is much more prevalent in Ashkenazi Jews and African Arabs (20% and 40%, respectively).108 The G2385R variant is more common in Asian populations (23.1% of familial PD and 6.7% of typical sporadic cases).109

Parkin mutations are also commonly found in genetic etiologies, especially in juvenile-onset cases. These mutations comprised 40% of reported unrelated mutation carriers, and more than 50% of cases onset before the age of 20.109,111 Though mutations of the Parkin are more frequently reported in Asia, these mutations are also frequently found in Caucasian and Latin-American patients.

The other gene for PD that expresses dependency on ethnicity is PINK1. PINK1 mutations account for approximately 6.5% of known unrelated mutation carriers, comprising 1% to 3% of early onset patients in Caucasian populations,40,42 9% of autosomal-recessive patients in Japanese families,112 and 2.5% of early onset cases in a sample of Chinese, Malay, and Indian patients.109 Relative frequencies of prevalent genes for PD according to ethnicity are summarized in Table 2.

Clinical Relevance of Genetics for the Diagnosis of PD

Genetic testing is not routinely performed in patients presenting to a clinician with symptoms and signs of PD. The yield is likely to be very low and hence, genetic testing is not currently recommended for patients with a negative family history.

The possibility of an underlying genetic etiology should also not influence therapeutic treatment options as patients with genetic monogenic etiologies or polymorphism associations typically demonstrate levodopa responsiveness although some genotypes, for example, Parkin mutations may be associated with a higher risk of treatment-related motor complications.

In patients with a positive family history, determination of
an underlying genetic etiology may be of value with family planning, understanding of prognosis and associated clinical features including rate of progression and risk of dementia.

It is expensive and time consuming to examine all possible mutant genes in a particular patient even if testing for mutations may be relevant. By utilizing the knowledge of frequency of genetic mutations among different ethnic groups, the pattern of inheritance and the clinical pattern in presentation, clinicians can limit the tests required to yield a specific answer relevant to the patient.

For example, we can consider Parkin/PINK1/DJ-1 mutations in early-onset parkinsonism with slower disease course and SNCA mutations in a case with dementia and rapid progression in a Caucasian subject. In the case of typical parkinsonism with a positive family history in Asian populations, LRRK2 mutations should be considered, and Parkin/PINK1 can be considered in earlier-onset cases.

Table 2. Relative frequencies of genes dependent on ethnicity and familial history

Ethnicity	SNCA (%)	LRRK2 (%)	Parkin (%)	PINK1 (%)	DJ-1 (%)						
	Classic	CNV	Classic	Mixed	CNV	Classic	CNV				
Caucasian F	4.13	2.07	67.36	0	10.12	3.51	7.44	3.93	0.21	0.83	0.41
S	0.99	0.33	52.48	0	18.15	2.97	11.88	10.89	0.33	0.99	0.66
Asian F	1.01	8.08	9.09	0	10.10	10.10	42.42	17.17	0	3.03	0
S	0	3.13	10.42	0	28.13	1.04	38.54	17.71	1.04	0	0
Arab F	0	0	88.61	0	1.27	1.27	3.80	3.80	1.27	0	0
S	0	0	97.06	0	1.47	0.74	0	0	0.74	0	0
Latin-American F	0	0	57.14	0	14.29	4.76	23.81	0	0	0	0
S	0	0	41.67	0	41.67	8.33	0	8.33	0	0	0
Ashkenazi Jews F	0	0	100.00	0	0	0	0	0	0	0	0
S	0	0	98.04	0	0	0	0	0	0	1.96	0

CNV: copy number variation, F: familial cases, S: sporadic cases (adapted from Nuytemans et al., 2010).

REFERENCES

1. Polymeropoulos MH, Higgins JJ, Golbe LI, Johnson WG, Ide SE, Di Iorio G, et al. Mapping of a gene for Parkinson’s disease to chromosome 4q21-q23. Science 1996;274:1197-1199.
2. Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M. Alpha-synuclein in Lewy bodies. Nature 1997;388:839-840.
3. Lesage S, Brice A. Parkinson’s disease: from monogenic forms to genetic susceptibility factors. Hum Mol Genet 2009;18(R1):R48-R59.
4. Ramirez A, Heimbach A, Gründermann J, Stiller B, Hampshire D, Cid LP, et al. Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase. Nat Genet 2006;38:1184-1191.
5. Paisan-Ruiz C, Bhatia KP, Li A, Hernandez D, Davis M, Wood NW, et al. Characterization of PLA2G6 as a locus for dystonia-parkinsonism. Ann Neurol 2009;65:19-23.
6. Krüger R, Kuhn W, Müller T, Woitalla D, Graeber M, Kösel S, et al. Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease. Nat Genet 1998;18:106-108.
7. Spira PJ, Sharpe DM, Halliday G, Cavanagh J, Nicholson GA. Clinical and pathological features of a Parkinsonian syndrome in a family with an Ala53Thr alpha-synuclein mutation. Ann Neurol 2001;49:313-319.
8. Singleton AB, Farrer M, Johnson J, Singleton A, Hague S, Kachergus J, et al. alpha-Synuclein locus triplication causes Parkinson’s disease. Science 2003;302:841.
9. Ibáñez P, Bonnet AM, Débarges B, Lohmann E, Tison F, Pollak P, et al. Causal relation between alpha-synuclein gene duplication and familial Parkinson’s disease. Lancet 2004;364:1169-1171.
10. Fuchs J, Nilsson C, Kachergus J, Munz M, Larsson EM, Schilé B, et al. Phenotypic variation in a large Swedish pedigree due to SNCA duplication and triplication. Neurology 2007;68:916-922.
11. Cookson MR. Unravelling the role of defective genes. Prog Brain Res 2010;183:43-57.
12. Morris HR. Genetics of Parkinson’s disease. Ann Med 2005;37:86-96.
13. Hardy J, Cai H, Cookson MR, Gwinn-Hardy K, Singleton A. Genetics of Parkinson’s disease and Parkinsonism. Ann Neurol 2006;60:389-398.
14. Cordato DJ, Chan DK. Genetics and Parkinson’s disease. J Clin Neurol 2004;11:119-123.
15. Braak H, Ghebremedhin E, Rüb U, Bratzke H, Del Tredici K. Stages of Parkinson’s disease-related pathology. Cell Tissue Res 2004;318:121-134.
16. Angot E, Steiner JA, Hansen C, Li JY, Brundin P. Are synucleinopathies prion-like disorders? Lancet Neurol 2010;9:1128-1138.
17. Kitada T, Asakawa S, Hattori N, Matsuzime H, Yamamura Y, Minoshima S, et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 1998;392:605-608.
18. Lücking CB, Dürr A, Bonifati V, Vaughan J, De Michele G, Gasser T, et al. Association between early-onset Parkinson’s disease and mutations in the parkin gene. N Engl J Med 2000;342:1560-1567.
19. Hattori N, Matsuzime H, Asakawa S, Kitada T, Yoshino H, Elibol B, et al. Point mutations (Thr240Arg and Gln311Stop) [correction of Thr240Arg and Ala311Stop] in the parkin gene. Biochem Biophys Res Commun 1998;249:754-758.
20. Hedrich K, Eskelson C, Wilmot B, Marder K, Harris J, Garrels J, et al. Distribution, type, and origin of Parkin mutations: review and case studies. Mov Disord 2004;19:1146-1157.
21. Klein C, Hedrich K, Wellenbrock C, Kann M, Harris J, Marder K, et al. Frequency of parkin mutations in late-onset Parkinson’s disease. Ann Neurol 2003;54:415-416; author reply 416-417.
22. Yamasawa Y, Sobe I, Ando K, Iida M, Yanagi T. Paralysis agitans: prion-like disorders? Lancet Neurol 2010;9:1128-1138.
23. Ichikawa A, Tsuji S. Clinical analysis of 17 patients in 12 Japanese families with autosomal-recessive type juvenile parkinsonism. J Neurol Sci 2004;218:119-123.
25. Pramstaller PP, Schlossmacher MG, Jacques TS, Scaravilli F, Eskelsson C, Pepivani I, et al. Lewy body Parkinson’s disease in a large pedigree with 77 Parkinson mutation carriers. Ann Neurol 2000;58:411-422.

26. Shimura H, Hattori N, Kubo S, Mizuno Y, Akasaki S, Minoshima S, et al. Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nat Genet 2000;25:302-305.

27. Kuo SI, Kitami T, Noda S, Shimizu H, Uchiyama Y, Akasaki S, et al. Parkin is associated with cellular vesicles. J Neurochem 2001;78: 42-54.

28. Dodson MW, Guo M. Pink1, Parkin, DJ-1 and mitochondrial dysfunction in Parkinson’s disease. Curr Opin Neurobiol 2007;17:331-337.

29. Narenda D, Tanaka A, Suen DF, Youle RJ. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol 2008;183:795-803.

30. Poole AC, Thomas RE, Andrews LA, McBride HM, Whitworth AJ, Pallancz LJ. The PINK1/Parkin pathway regulates mitochondrial morphology. Proc Natl Acad Sci U S A 2008;105:1638-1643.

31. Weihsenf, Thomas KJ, Ostaszewski BL, Cookson MR, Selkoe DJ. Pink1 forms a multiprotein complex with Miro and Milton, linking Pink1 function to mitochondrial trafficking. Biochemistry 2009;48: 2045-2052.

32. Clark IE, Dodson MW, Jiang C, Cao JH, Huh JR, Seol JH, et al. Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature 2006;441:1162-1166.

33. Park J, Lee SB, Lee S, Kim Y, Song S, Kim S, et al. Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature 2006;441:1157-1161.

34. Gasser T. Identifying PD-causing genes and genetic susceptibility factors: current approaches and future prospects. Prog Brain Res 2010; 183:3-20.

35. Klein C, Lohmann-Hedrich K, Rogaeva E, Schlossmacher MG, Lang BJ, Rogaeva E, Schlossmacher MG, Lang BJ. Deciphering the role of heterozygous mutations in genes associated with parkinsonism. Lancet Neurol 2007;6:652-662.

36. Khan NL, Jain S, Lynch JM, Pavese N, Abou-Sleiman PM, Holton JL, et al. Mutations in the gene LRK2 encoding dardarin (PARK8) cause familial Parkinson’s disease: clinical, pathological, olfactory and functional imaging and genetic data. Brain 2005;128(Pt 12):2786-2796.

37. Kay DM, Stevens CF, Hamza TH, Montimurro JS, Zabetian CP, Factor SA, et al. A comprehensive analysis of deletions, multiplications, and copy number variations in PARK2. Neurology 2010;75:1189-1194.

38. Valente EM, Bentivoglio AR, Wood NW, Albanese A, Brooks DJ, et al. Clinical and subclinical dopaminergic dysfunction in PARK6-linked Parkinsonism: an 18F-dopa PET study. Ann Neurol 2002;52:849-853.

39. Bonifati V, Rizzu P, Squitieri F, Krieger E, Vanacore N, van Swieten JC, et al. DJ-1 (PARK7), a novel gene for autosomal recessive, early onset parkinsonism. Nature Sci 2003;24:159-160.

40. Hering R, Strauss KM, Tan O, Bauer A, Woitalla D, Mietz EM, et al. Novel homozygous p.6464 mutation in DJ1 in early onset Parkinson disease (PARK7). Hum Mutat 2004;24:321-329.

41. van Duijn CM, Dekker MC, Bonifati V, Galjaard RJ, Hoving-Duiserman M, Snijders PJ, et al. PARK7, a novel locus for autosomal recessive early-onset parkinsonism, on chromosome 1p36. Am J Hum Genet 2001;69:629-634.

42. Dekker MC, Galjaard RJ, Snijders PJ, Heutink P, Oostra BA, van Duijn CM. Brachydactyly and short stature in a kindred with early-onset parkinsonism. Am J Med Genet A 2004;130:102-104.

43. Andres-Mateos E, Perier C, Zhang L, Blanchard-Fillion B, Greco TM, Thomas B, et al. DJ-1 gene deletion reveals that DJ-1 is an atypical peroxiredoxin-like peroxidase. Proc Natl Acad Sci U S A 2007;104: 14807-14812.

44. Lev N, Ickowicz D, Barhum Y, Lev S, Melamed E, Offen D. DJ-1 protects against dopamine toxicity. J Neural Transm 2009;116:151-160.

45. Xiong H, Wang D, Chen L, Choo YS, Ma H, Tang C, et al. Parkin, PINK1, and DJ-1 form a ubiquitin E3 ligase complex promoting unfolded protein degradation. J Clin Invest 2009;119:650-660.

46. Abou-Sleiman PM, Healy DG, Quinn N, Lees AJ, Wood NW. The role of pathogenic DJ-1 mutations in Parkinson’s disease. Ann Neurol 2003;54:283-286.

47. Funayama M, Hasegawa K, Kowa H, Saito M, Tsuji S, Obata F. A new locus for Parkinson’s disease (PARK8) maps to chromosome 12p12.1-12q13.1. Am J Hum Genet 2002;51:296-301.

48. De Fonzo A, Rohé CF, Ferreira J, Chien HF, Vacca L, Stocchi F, et al. A frequent LRK2 gene mutation associated with autosomal dominant Parkinsonian disease. Lancet 2005;365:412-415.

49. Funayama M, Hasegawa K, Ohta E, Kawashima N, Komiyama M, Kowa H, et al. An LRK2 mutation as a cause for the parkinsonism in the original PARK8 family. Ann Neurol 2005;57:918-921.

50. Gilks WP, Abou-Sleiman PM, Gandhi S, Jain S, Singleton A, Aasly J, et al. A common LRK2 mutation in idiopathic Parkinson’s disease. Lancet 2005;365:415-416.

51. Kachergus J, Mata IF, Hulihan M, Taylor JP, Lincoln S, Aasly J, et al. Identification of a novel LRK2 mutation linked to autosomal dominant parkinsonism: evidence of a common founder across European populations. Am J Hum Genet 2005;76:672-680.

52. Nichols WC, Pankratz N, Hernandez D, Pášín-Ruiz C, Jain S, Halter CA, et al. Genetic screening for a single common LRK2 mutation in familial Parkinson’s disease. Lancet 2005;365:410-412.

53. Pášín-Ruiz C, Jain S, Evans EW, Gilks WP, Simón J, van der Brug M, et al. Cloning of the gene containing mutations that cause PARK8-linked Parkinson’s disease. Neuroen 2004;44:595-600.
66. Zimprich A, Müller-Myhsok B, Farrer M, Leitner P, Sharma M, Hulihan M, et al. The PARK8 locus in autosomal dominant parkinsonism: confirmation of linkage and further delineation of the disease-containing interval. Am J Hum Genet 2004;74:11-19.

67. Nichols WC, Elsasser VE, Pankratz N, Pauciulo MW, Marek DK, Halter CA, et al. LRRK2 mutation analysis in Parkinson disease families with evidence of linkage to PARK8. Neurology 2007;69:1737-1744.

68. Haugarvoll K, Wszolek ZK. Clinical features of LRRK2 parkinsonism. Parkinsonism Relat Disord 2009;15 Suppl 3:S205-S208.

69. Healy DG, Falchi M, O’Sullivan SS, Bonifati V, Durr A, Bressman S, et al. Phenotype, genotype, and worldwide genetic penetrance of LRRK2-associated Parkinson’s disease: a case-control study. Lancet Neurol 2008;7:583-590.

70. Haugarvoll K, Rademakers R, Kachergus JM, Nuytemans K, Ross OA, Gibson JM, et al. Lrrk2 R1441C parkinsonism is clinically similar to sporadic Parkinson disease. Neurology 2008;70(16 Pt 2):1456-1460.

71. Ozelius LJ, Senthil G, Saunders-Pullman R, Ohmann E, Deligtisch A, Tagliati M, et al. LRRK2 G2019S as a cause of Parkinson’s disease in Ashkenazi Jews. N Engl J Med 2006;354:424-425.

72. Hulihan MM, Ishihara-Paul L, Kachergus J, Warren L, Amouri R, Elango R, et al. LRRK2 Gly2019Ser penetrance in Arab-Berber patients from Tunisia: a case-control genetic study. Lancet Neurol 2008;7:591-594.

73. Latourelle JC, Sun M, Lew MF, Suchowersky O, Klein C, Golbe LI, et al. The Familial Parkinson’s gene LRRK2 regulates neurite process morphology. J Neurochem 2008;105:1048-1056.

74. Roos OA, Toft M, Whittle AJ, Johnson JL, Papapetropoulos S, Mash DC, et al. Lrrk2 and Lewy body disease. Ann Neurol 2006;59:389-393.

75. Taylor JP, Mata IF, Farrer MJ. LRRK2: a common pathway for parkinsonism, pathogenesis and prevention? Trends Mol Med 2006:12:76-82.

76. Giasson BI, Covy JP, Bonini NM, Hurtig HI, Farrer MJ, Trojanowski JQ, et al. Biochemical and pathological characterization of Lrrk2. Ann Neurol 2006;59:315-322.

77. Wszolek ZK, Pfeffler RF, Tsuibo Y, Uitti RJ, Stoessl AJ, et al. Autosomal dominant parkinsonism associated with variable synuclein and tau pathology. Neurology 2004;62:1619-1622.

78. Dauer W, Ho CC. The biology and pathology of the familial Parkinson’s disease protein LRRK2. Mov Disord 2010;25 Suppl 1:S40-S43.

79. Smith WW, Pei Z, Jiang H, Dawson VL, Dawson TM, Ross CA. Kinase activity of mutant LRRK2 mediates neuronal toxicity. Nat Neurosci 2006;9:1231-1233.

80. Ito G, Oka T, Fujino G, Takeda K, Ichijo H, Katada T, et al. GTP binding is essential to the protein kinase activity of LRRK2, a causative gene product for familial Parkinson’s disease. Biochemistry 2007;46:1380-1388.

81. MacLeod D, Dowman J, Hammonds R, Leete T, Inoue K, Abieliovich A. The familial Parkinsonism gene LRRK2 regulates neurite process morphology. Neuroeur 2006;52:587-593.

82. Plowey ED, Cherra SJ 3rd, Liu YJ, Chu CT. Role of autophagy in G2019S-LRRK2-associated neurite shortening in differentiated SH-SY5Y cells. J Neurochem 2008:105:1048-1056.

83. Shin N, Jeong H, Kwon J, Heo HY, Kwon JJ, Yun HJ, et al. LRRK2 regulates synaptic vesicle endocytosis. Exp Cell Res 2008;314:2055-2065.

84. Orr HT, Zoghbi HY. Trinucleotide repeats. Annu Rev Neurosci 2006;29:1231-1233.

85. Lu CS, Wu Chou YH, Kuo PC, Chang HC, Weng YH. The parkinsonian phenotype of spinocerebellar ataxia type 2. Arch Neurol 2004;61:35-38.

86. Furtado S, Payami H, Lockhart PJ, Hanson M, Nutt JG, Singleton AA, et al. Profile of families with parkinsonism-predominant spinocerebellar ataxia type 2 (SCA2). Mov Disord 2004;19:622-629.

87. Grattan-Smith PJ, Wevers RA, Steenbergen-Spanjers GC, Fung VS, Earl J, Wilken B. Tyrosine hydroxylase deficiency: clinical manifestations of catecholamine insufficiency in infancy. Mov Disord 2002;17:354-359.

88. Ngyaad TG, Trumgan JM, de Yebevnes JG, Fahn S. Dopa-responsive dystonia: the spectrum of clinical manifestations in a large North American family. Neurology 1990;40:66-69.

89. Segawa M, Hosaka A, Miyagawa F, Nomura Y, Imai H. Hereditary progressive dystonia with marked diurnal fluctuation. Adv Neurol 1976:14:215-233.

90. Tassin J, Diur A, Bonnet AM, Gil R, Vidalenst M, Lucking CB, et al. Levodopa-responsive dystonia. GTP cyclohydrolase I or parkin mutations? Brain 2000;123(6 Pt 6):1112-1121.

91. Grötzsch H, Pizzolato GP, Gioka J, Schorderet D, Vingerhoets FJ, Landis T, et al. Neuropathology of a case of dopa-responsive dystonia associated with a new genetic locus, DYT14. Neurology 2002;58:1839-1842.

92. Paviour DC, Surtess RA, Lees AJ. Diagnostic considerations in juvenile parkinsonism. Mov Disord 2004;19:123-135.

93. Maraganore DM, de Andrade M, Elbaz A, Farrer MJ, Ioannidis JP, Krüger R, et al. Collaborative analysis of alpha-synuclein gene promoter variability and Parkinson disease. JAMA 2006:296:661-670.

94. Kay DM, Factor SA, Samii A, Higgins DS, Griffith A, Roberts JW, et al. Genetic association between alpha-synuclein and idiopathic Parkinson’s disease. Am J Med Genet B Neuropsychiatr Genet 2008;147B:1222-1230.

95. Di Fonzo A, Wu-Chou YH, Lu CS, van Doeselaar M, Simons EJ, Rohd CF, et al. A common missense variant in the LRRK2 gene, Gly 2385Arg, associated with Parkinson’s disease risk in Taiwan. Neurogenetics 2006;7:133-138.

96. Ross OA, Wu YR, Lee MC, Funayama M, Chen ML, Soto AI, et al. Analysis of Lrrk2 R1628P as a risk factor for Parkinson’s disease. Ann Neurol 2008;64:88-92.

97. Zabetian CP, Yamamoto M, Lopez AN, Uijke H, Mata IF, Izumi Y, et al. LRRK2 mutations and risk variants in Japanese patients with Parkinson’s disease. Mov Disord 2009;24:1034-1041.

98. Chan DK, Ng PW, Mok V, Yeung J, Fang ZM, Clarke R, et al. LRRK2 Gly2385Arg mutation and clinical features in a Chinese population with early-onset Parkinson’s disease compared to late-onset patients. J Neural Transm 2008;115:1275-1277.

99. Kim JM, Lee JY, Kim HJ, Shim ES, Cho JH, et al. The LRRK2 G2385R variant is a risk factor for sporadic Parkinson’s disease in the Korean population. Parkinsonism Relat Dis 2010;16:85-88.

100. Zabetian CP, Hutter CM, Factor SA, Nutt JG, Higgins DS, Griffith A, et al. Association analysis of MAPT H1 haplotype and subhaplotypes in Parkinson’s disease. Ann Neurol 2007;62:137-144.

101. Halperin A, Elstein D, Zimran A. Increased incidence of Parkinson disease among relatives of patients with Gaucher disease. Blood Cells Mol Dis 2006:36:426-428.

102. Sidransky E, Nalls MA, Aasly JO, Aharon-Peretz J, Annesi G, Barboza ER, et al. Multicenter analysis of glucocerebrosidase mutations in Parkinson’s disease. Mov Disord 2010;25:1048-1056.

103. Hamza TH, Zabetian CP, Tenesa A, Laederach A, Montimurro J, Earout D, et al. Common genetic variation in the HLA region is associated with late-onset sporadic Parkinson’s disease. Nat Genet 2010;42:781-785.

104. Satake W, Nakabayashi Y, Mizuta I, Hirot N, Ita C, Kubo M, et al. Genome-wide association study identifies common variants at four loci as genetic risk factors for Parkinson’s disease. Nat Genet 2009;41:1303-1307.

105. Simón-Sánchez J, Schulte C, Bras JM, Sharma M, Gibbs JR, Berg D,
et al. Genome-wide association study reveals genetic risk underlying Parkinson’s disease. Nat Genet 2009;41:1308-1312.

107. International Parkinson Disease Genomics Consortium, Nalls MA, Plagnol V, Hernandez DG, Sharma M, Sheerin UM, et al. Imputation of sequence variants for identification of genetic risks for Parkinson’s disease: a meta-analysis of genome-wide association studies. Lancet 2011;377:641-649.

108. Nuytemans K, Theuns J, Cruts M, Van Broeckhoven C. Genetic etiology of Parkinson disease associated with mutations in the SNCA, PARK2, PINK1, PARK7, and LRRK2 genes: a mutation update. Hum Mutat 2010;31:763-680.

109. Lesage S, Dürr A, Tazir M, Lohmann E, Leutenegger AL, Janin S, et al. LRRK2 G2019S as a cause of Parkinson’s disease in North African Arabs. N Engl J Med 2006;354:422-423.

110. Farrer MJ, Stone JT, Lin CH, Dächsel JC, Hulihan MM, Haugarvoll K, et al. Lrrk2 G2385R is an ancestral risk factor for Parkinson’s disease in Asia. Parkinsonism Relat Disord 2007;13:89-92.

111. Periquet M, Latouche M, Lohmann E, Rawal N, De Michele G, Ricard S, et al. Parkin mutations are frequent in patients with isolated early-onset parkinsonism. Brain 2003;126(Pt 6):1271-1278.

112. Li Y, Tomiyama H, Sato K, Hatano Y, Yoshino H, Atsumi M, et al. Clinicogenetic study of PINK1 mutations in autosomal recessive early-onset parkinsonism. Neurology 2005;64:1955-1957.