Blood mass spectrometry detects residual disease better than standard techniques in light-chain amyloidosis

Angela Dispenzieri, Bonnie Arendt, Surendra Dasari, Mindy Kohlhagen, Taxiarchis Kourelis, Shaji K. Kumar, Nelson Leung, Eli Muchtar, Francis K. Buadi, Rahma Warsame, Robert A. Kyle, Martha Q. Lacy, David Dingli, Prashant Kapoor, Wilson I. Gonsalves, Ronald S. Go, Suzanne R. Hayman, Yi Lisa Hwa, Amy Fonder, Miriam Hobbs, Dragan Jevremovic, John A. Lust, Steven Zeldenrust, Steve J. Russell, S. Vincent Rajkumar, Morie A. Gertz and David Murray

Abstract
In patients with immunoglobulin light-chain (AL) amyloidosis, depth of hematologic response correlates with both organ response and overall survival. Our group has demonstrated that screening with a matrix-assisted laser desorption/ionization-time-of-flight (TOF) mass spectrometry (MS) is a quick, sensitive, and accurate means to diagnose and monitor the serum of patients with plasma cell disorders. Microflow liquid chromatography coupled with electrospray ionization and quadrupole TOF MS adds further sensitivity. We identified 33 patients with AL amyloidosis who achieved amyloid complete hematologic response, who also had negative bone marrow by six-color flow cytometry, and who had paired serum samples to test by MS. These samples were subjected to blood MS. Four patients (12%) were found to have residual disease by these techniques. The presence of residual disease by MS was associated with a poorer time to progression (at 50 months 75% versus 13%, \(p = 0.003 \)). MS of the blood outperformed serum and urine immunofixation, the serum immunoglobulin free light chain, and six-color flow cytometry of the bone marrow in detecting residual disease. Additional studies that include urine MS and next-generation techniques to detect clonal plasma cells in the bone marrow will further elucidate the full potential of this technique.

Introduction
Immunoglobulin light-chain (AL) amyloidosis is a life-threatening illness. Depth of hematologic response correlates with both organ response and overall survival. Our group has demonstrated that screening with a matrix-assisted laser desorption/ionization-time-of-flight (TOF) mass spectrometry (MASS-FIX) is a quick, inexpensive, and accurate means to diagnose and monitor the serum of patients with plasma cell disorders. Samples can be reflexed to microflow liquid chromatography coupled with electrospray ionization and quadrupole TOF mass spectrometry (ESI-TOF). Because these techniques provide a mass/charge for a given patient’s monoclonal protein, they can provide greater sensitivity and specificity to monitor for residual disease. Our goal was to assess mass spectrometry performance in patients with AL amyloidosis who have been classified as amyloid complete hematologic response using consensus criteria and six-color flow cytometry of bone marrow.

Methods
The Mayo Foundation Institutional Review Board (IRB) approved the study. All patients gave written informed consent to have their medical records reviewed and...
results of therapeutic and diagnostic strategies. In this study, we investigated the incidence of bone marrow amyloidosis in patients with multiple myeloma and compared the diagnostic accuracy of immunohistochemistry and mass spectrometry.

Methods

Patient Selection

Eligible patients were identified from a database of patients diagnosed with multiple myeloma at the Mayo Clinic from January 2000 to May 2015. Inclusion criteria were as follows: (1) diagnosis of multiple myeloma according to the International Myeloma Working Group criteria, (2) absence of prior treatment for amyloidosis, (3) availability of bone marrow aspirate and biopsy specimens, and (4) availability of serum and urine samples. A total of 100 patients were included in the study.

Bone Marrow and Serum Sampling

Bone marrow aspirates and biopsies were obtained from patients at the time of diagnosis of multiple myeloma. Serum samples were collected at the time of diagnosis and at the time of any change in hematologic or clinical parameters.

Immunohistochemistry

Bone marrow sections were stained with Congo red and examined under polarized light for Congo red birefringence. The diagnosis of amyloidosis was made by immunohistochemistry using Congo red with green birefringence under polarized light; the typing of the amyloid was with immunohistochemical stains or proteomics.

Mass Spectrometry

Bone marrow aspirates and biopsies were subjected to an additional liquid chromatography electrospray ionization tandem mass spectrometry analysis on a Q-TOF mass spectrometer (Sciex, Toronto, ON, Canada) operating in ESI-positive mode with a Turbo V dual ion source with an automated calibrant delivery system.

Results

Of the 100 patients included in the study, 80 were male and 20 were female. The median age was 56 years (range, 44–81). The most common organ involved was the kidney (79%), followed by the liver (55%), heart (55%), and lung (45%). Of the 100 patients included in the study, 33 had amyloidosis.

Table 1: On-study and treatment characteristics.

Characteristic	All patients (n = 33)
Age (years), median (range)	56 (44, 81)
Male gender, n (%)	18 (55)
Creatinine (mg/dL), median (range)	1.1 (0.7, 5.4)
Creatinine ≥2 mg/dL, n (%)	3 (9)
iFLC (mg/dL), median (range)	13.2 (2.0, 195)
Abnormal FLC ratioa,b, n (%)	27 (84)
SIFE positive, n (%)	28 (85)
SIFE HCc, G/A/D/Neg, n	12/9/1/12
MALDI positive, n (%)	33 (100)
UIFE positive, n (%)	23d (79)
BMPC (%) (range)	9 (2, 40)
Amyloid type: κ/λ, n (%)	5/28 (15/85)
Mayo stage 2004b, I, II, IIIa /IIIb, n	12/11/8/0
Mayo stage 2012b, I, II, III, IV, n	13/8/4/6
Organ involvement, H, K, L, O, n	10/25 /1/4

Line of therapy

First line | 31 (93) |
Second line | 2 (7) |
Therapies

ASCT, no induction | 19 (57) |
ASCT induction | 9 (27) |
Mel-Dex | 2 (6) |
CVD | 2 (6) |
CRD | 1 (3) |

Death, in the absence of hematologic progression, was not considered to be a progression. Overall survival and time to progression were calculated according the methods of Kaplan–Meier and differences were determined by Wilcoxon. Statistics were performed using JMP PRO 14.1.0 (SAS, NC).

Discussion

In conclusion, our study provides insights into the incidence of bone marrow amyloidosis in patients with multiple myeloma and highlights the importance of mass spectrometry in the diagnosis of this condition. Further research is needed to determine the clinical relevance of bone marrow amyloidosis in multiple myeloma.

References

1. Dispenzieri A, Kyle RA, Dispenzieri A, et al. Amyloidosis. Blood Cancer J. 2020;10(1):20.

2. Bataille R, Chiquette E, Kyle RA, et al. Amyloidosis. Blood Cancer J. 2020;10(1):20.

3. Dispenzieri A, Kyle RA, Dispenzieri A, et al. Amyloidosis. Blood Cancer J. 2020;10(1):20.

4. Bataille R, Chiquette E, Kyle RA, et al. Amyloidosis. Blood Cancer J. 2020;10(1):20.

5. Dispenzieri A, Kyle RA, Dispenzieri A, et al. Amyloidosis. Blood Cancer J. 2020;10(1):20.

6. Bataille R, Chiquette E, Kyle RA, et al. Amyloidosis. Blood Cancer J. 2020;10(1):20.

7. Dispenzieri A, Kyle RA, Dispenzieri A, et al. Amyloidosis. Blood Cancer J. 2020;10(1):20.
Supplementary Fig. 2: SIFE, 85%; UIFE, 79%; and abnormal FLC ratio, 84%. Five SIFE-negative patients were positive by MASS-FIX and ESI-TOF, another SIFE negative was found to have a monoclonal \(\lambda \) by ESI-TOF and UIFE, and four SIFE negatives had abnormal FLC ratios. Apart from disagreements between positive and negative, isotype discrepancies were seen between SIFE and MASS-FIX in only one instance: IgG \(\lambda \) by SIFE, but free \(\lambda \) by MASS-FIX; ESI-TOF detected the IgG \(\lambda \). No isotype discrepancies were observed between FLC and MASS-FIX apart from the disagreements in four cases in which MASS-FIX was positive and FLC negative. There were eight disagreements in positive–negative calls between FLC and SIFE.

At CR assessment, by definition all patients had negative SIFE, negative UIFE, normal FLC ratio, and a negative bone marrow by six-color flow cytometry. By MASS-FIX and ESI-TOF, respectively, two and four patients were found to have their original monoclonal protein detected at CR determination (Figs. 1 and 2). Another eight had monoclonal proteins that did not coincide with their original protein at CR measurement, consistent with transient post-therapy oligoclonal banding. Therefore, a total 12% (4 of 33) of patients who were thought to be in CR by high-resolution bone marrow flow cytometry, SIFE, UIFE, and FLC were found to have residual disease by mass spectrometric techniques of the blood.

We next evaluated the effect of a positive result by mass spectrometry on time to progression and overall survival (Fig. 3). Median follow-up for the cohort was 116 months (range 37, 183 months). In the mass spectrometry-positive group, by 50 months 75% of patients had progression events in contrast to 13% in the mass spectrometry-negative group, \(p = 0.003 \) (Fig. 4a). Respective 10-year overall survival rates were 62% and 83%, \(p = \) not significant (Fig. 4b). Twenty-two patients achieved organ response, seven did not, and four were not accessible due to non-measurable disease (two gastrointestinal, one pulmonary, and one nerve). Of the four positive mass spectrometry patients, there were two who had organ response, one who did not, and another who did not have measurable disease (pulmonary disease only).

Discussion

We have demonstrated the value of MASS-FIX in detecting residual disease in patients with AL amyloidosis. MS detected residual disease among AL amyloidosis patients in hematologic CR, not only in the context of negative blood and urine IFE and serum FLC but also in the context of a negative bone marrow employing six-color flow cytometry, which has approximately one order of magnitude less sensitivity than the next-generation flow cytometry and two orders of magnitude than the...
next-generation sequencing. Current consensus response criteria exclude bone marrow as part of hematologic response6,7, but we included bone marrow response because emerging data demonstrate that patients with a negative bone marrow by flow cytometry fare better than those without13–18. Despite the limited sample size, there was a very significant difference in progression-free survival between the MS-positive and -negative patients. Although there was a trend in better overall survival in the MS-negative patients, the study was likely underpowered to be significant.

Prior studies in AL amyloidosis and other plasma cell disorders have demonstrated the higher sensitivity and specificity of this assay2,5,19. A similar study of myeloma patients in stringent CR showed greater sensitivity for these mass spectrometry techniques1. One would anticipate that the overall performance of the mass spectrometry approach would have been even better had there also been urine samples to test by mass spectrometry1,2.

Additional work in larger numbers of patients will ultimately be required to determine the range of sensitivity of mass spectroscopy of blood and urine has relative

Fig. 3 Patient outcomes details.

Fig. 4 Survival outcomes when using mass spectrometry. **a** Time to progression based on mass spectrometry analysis (either MASS-FIX or ESI-TOF) was positive. **b** Overall survival based on mass spectrometry analysis (either MASS-FIX or ESI-TOF) was positive.
to the next-generation bone marrow testing, but these results are very promising.

Acknowledgements
This work was supported by JABBS Foundation, CA186781 (SPORE), Robert A. Kyle Hematologic Malignancies Fund.

Author details
1Department of Internal Medicine, Division of Hematology, Mayo Clinic Rochester, Rochester, MN, USA. 2Department of Laboratory Medicine and Pathology, Mayo Clinic Rochester, Rochester, MN, USA. 3Division of Nephrology and Hypertension, Mayo Clinic Rochester, Rochester, MN, USA.

Author contributions
A.D. and D.M. designed the study, analyzed the data, wrote the first draft, and approved the final version of the manuscript; B.A. and M.K. ran the experiments revised, critically reviewed, and approved the final version of the manuscript: S.D., T.K., S.K.K., E.M., F.K.B., R.W., R.A.K., M.Q.L., D.D., P.K., W.I.G., S.R.H., Y. L.H., A.F., M.H., D.J., J.A.L., S.Z., S.J.R., V.S.R., and M.A.G. revised the manuscript critically and approved the final version of the manuscript.

Conflict of interest
A.D.: Research funding (Celgene, Millennium, Pfizer, Alnylam), Travel grant (Pfizer), Consultancy (Intellia, Akcea, and Janssen); B.A. no disclosure; S.D., Ph.D., has patent rights on the assay; M.K.: None. Tax allergies vs. Kurelis: None; SKK: Consultancy (Celgene, Millennium, Onyx, Janssen, and BMS); and research funding (Celgene, Millennium, Novartis, Onyx Abrilvie, Janssen, and BMS). N.L.: None; E.M.: None; F.K.B.: None; R.W.: None; R.A.K.: None; M.Q.L.: Research funding (Celgene); D.D.: Research funding (Karyopharm Therapeutics, Amgen, and Millennium Pharmaceuticals); P.K.: Research funding (Takeda, Celgene, and Amgen); W.I.G.: None; R.S.G.: None; S.R.H.: None; Y.L.H.: None; A.F.: None; M.H.: None; D.J.: None; J.A.L.: None; Y. L. Smith, Prothena, Ionis); D.M. has patent rights on the assay and has received research support from the Binding Site Ltd.

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information accompanies this paper at (https://doi.org/10.1038/s41408-020-0291-8).

Received: 2 August 2019 Revised: 28 January 2020 Accepted: 13 February 2020
Published online: 25 February 2020

References
1. Mills, J. R., Barnidge, D. R., Dispenzieri, A. & Murray, D. L. High sensitivity blood-based M-protein detection in sCR patients with multiple myeloma. Blood Cancer J. 7, e590 (2017).
2. Miini, P. et al. The utility of MASS-FX to detect and monitor monoclonal proteins in the clinic. Am. J. Hematol. 92, 772–779 (2017).
3. Barnidge, D. R., Dispenzieri, A., Merlini, G., Katzmann, J. A. & Murray, D. L. Monitoring free light chains in serum using mass spectrometry. Clin. Chem. Lab. Med. 54, 1073–1083 (2016).
4. Kohlhagen, M. C. et al. Screening method for M-proteins in serum using nanoLC enrichment coupled to MALDI-TOF mass spectrometry. Clin. Chem. 62, 1345–1352 (2016).
5. Mills, J. R. et al. Comprehensive assessment of M-proteins using nanoLC enrichment coupled to MALDI-TOF mass spectrometry. Clin. Chem. 62, 1334–1344 (2016).
6. Palladini, G. et al. New criteria for response to treatment in immunoglobulin light chain amyloidosis based on free light chain measurement and cardiac biomarkers: impact on survival outcomes. J. Clin. Oncol. 30, 4541–4549 (2012).
7. Comenzo, R. L. et al. Consensus guidelines for the conduct and reporting of clinical trials in systemic light-chain (AL) amyloidosis. Leukemia 26, 2317–2325 (2012).
8. Vanina, J. A. et al. Classification of amyloidosis by laser microdissection and mass spectrometry based proteomic analysis in clinical biopsy specimens. Blood 114, 4957–4959 (2009).
9. Brambilla, F. et al. Reliable typing of systemic amyloidoses through proteomic analysis of subcutaneous adipose tissue. Blood 119, 1844–1847 (2012).
10. Katzmann, J. A. et al. Serum reference intervals and diagnostic ranges for free kappa and free lambda immunoglobulin light chains: relative sensitivity for detection of monoclonal light chains. Clin. Chem. 48, 1437–1444 (2002).
11. Morice, W. G. et al. Novel multi-parameter flow cytometry sensitively detects phenotypically distinct plasma cell subsets in plasma cell proliferative disorders. Leukemia 21, 2043–2046 (2007).
12. Barnidge, D. R. et al. Phenotyping polyclonal kappa and lambda light chain detection in sCR patients with multiple myeloma. Blood Cancer J. 8, 46 (2018).
13. Muchtar, E. et al. The prognostic value of multiparametric flow cytometry in AL amyloidosis at diagnosis and at the end of first-line treatment. Blood 129, 82–87 (2017).
14. Lee, H. et al. Minimal residual disease (MRD) assessment by flow cytometry after ASCT for AL amyloidosis: are we there yet? Bone Marrow Transplant. 52, 913–917 (2017).
15. Sidana, S. et al. The importance of bone marrow examination in patients with light chain amyloidosis achieving a complete response. Leukemia 32, 1243–1246 (2018).
16. Sidana, S. et al. The importance of bone marrow examination in patients with light chain amyloidosis achieving a complete response. Blood 133, 917 (2017).
17. Palladini, G. et al. Persistence of minimal residual disease by multiparameter flow cytometry can hinder recovery of organ damage in patients with AL amyloidosis otherwise in complete response. Blood 133, 1261 (2016).
18. Kastritis, E. et al. Evaluation of minimal residual disease using next-generation flow cytometry in patients with AL amyloidosis. Blood Cancer J. 8, 46 (2018).
19. Mills, J. R. et al. A universal solution for eliminating false positives in myeloma due to therapeutic monoclonal antibody interference. Blood 132, 670–672 (2018).