Ras-transformation reduce FAM20C expression and osteopontin phosphorylation

Gitte N. Schytte1, Brian Christensen1, Ida Bregenov1 and Esben S. Sørensen1,2*

1Department of Molecular Biology and Genetics, Science Park, Aarhus University, Denmark
2Interdisciplinary Nanoscience Center, Aarhus University, Denmark.

*Corresponding author: ess@mbg.au.dk
Abstract

Family with sequence similarity 20, member C (FAM20C) is the main kinase of secreted phosphoproteins, including the multifunctional protein and cytokine, osteopontin (OPN). The phosphorylation of OPN varies greatly among cell types, tissues and species, and the different phospho-isoforms contribute to the multifunctionality of the protein. Expression of OPN is increased in human malignancies, and less phosphorylated isoforms of the protein have been associated with this phenotype. Here, we compared OPN from ras-transformed fibroblasts with that from their non-transformed parental cells, and found that OPN was less phosphorylated after ras-transformation. Furthermore, we demonstrated that expression of FAM20C mRNA was reduced five-fold in ras-transformed fibroblasts compared to non-transformed fibroblasts. Transfection with FAM20C of the ras-transformed fibroblasts restored the FAM20C mRNA expression but the phosphorylation of OPN was not increased proportionally. Likewise, the mRNA level of FAM20C was reduced in the malignant ras-transformed mammary cell line MCF10ACA1a compared to its non-transformed parental cell line MCF10A. These results suggest that expression of the FAM20C kinase is reduced after oncogenic ras-transformation, which potentially affects the phosphorylation of secreted phosphoproteins.

Keywords: FAM20C, osteopontin, phosphorylation, ras-transformation.
Introduction

Family with sequence similarity 20 member C (FAM20C) was recently identified as the long sought Golgi kinase that phosphorylates secreted proteins [1,2]. FAM20C is ubiquitously expressed in tissues such as the mammary gland, brain, kidney, spleen, liver and mineralized tissues [1,3]. FAM20C has been characterized as an atypical serine/threonine kinase with the canonical recognition motif SXE/pS (phosphoserine); a unique specificity among known kinases [1,4]. FAM20C is the main kinase of secreted proteins and it phosphorylates proteins participating in a wide variety of physiological processes [4]. Several of these processes are impaired by FAM20C loss-of-function mutations. For instance, abrogated FAM20C phosphorylation of fibroblast growth factor 23 inhibits its proteolytic inactivation which results in a pathological hypophosphatemia condition [5]. Furthermore, FAM20C mediated phosphorylation of oocyte secreted bone morphogenetic protein 15 and growth differentiation factor 9 is essential for regulation of their activity in folliculogenesis and ovulation [6]. Likewise, FAM20C mediated phosphorylation of von Willebrand factor increased platelet adhesion [7], and lack of FAM20C phosphorylation of Histidine-rich calcium binding protein causes ventricular arrhythmia [8].

The multifunctional, integrin-binding and highly phosphorylated protein osteopontin (OPN) is a well-described substrate for FAM20C [1,4]. OPN plays a key role in many physiological processes such as immunological signaling, biomineralization, tissue remodelling and tumorigenesis [9,10]. Many of these processes are affected by phosphorylation of OPN. In biomineralization assays, highly phosphorylated OPN has been shown to promote hydroxyapatite formation and growth, whereas OPN with fewer phosphorylations inhibits hydroxyapatite formation [11]. The ability of OPN to engage in integrin mediated cell adhesion is also dependent on the phosphorylation state. Human melanoma MDA-MB-435 cells only adhere weakly to highly
phosphorylated OPN, whereas they adhere strongly to less phosphorylated murine ras-transformed fibroblast OPN [12]. Likewise, phosphorylation of the N-terminal part of OPN is required for its binding to the β3-integrin receptor on macrophages leading to stimulation of interleukin-12 expression [13].

OPN expression is increased in several human cancers [14–16] and OPN participates in proliferation, migration, adhesion, anti-apoptosis and angiogenesis, which are all processes involved in tumorigenesis and metastasis [17,18]. Likewise, OPN expression is increased in transformations with the common proto-oncogene ras [19,20]. Mutation of the ras gene is observed in approximately 30% of human cancers [21]. The promoter of the OPN gene contains a ras-responsive enhancer element [19] which could explain the increased expression of OPN in cancer. Both cancer cells and macrophages have been suggested to contribute to the increased level of OPN in tumors [16]. However, the OPN isoforms secreted from the two cell types appear to be different, and it has been suggested that the cancer-promoting properties of OPN are mainly related to the tumor-derived isoform of OPN [16,22,23].

Several studies have demonstrated that ras-transformation results in a less phosphorylated isoform of OPN [12,24]. However, the effect of ras-transformation has been deduced from comparisons of OPN from non-transformed cells and ras-transformed cells not originating directly from the parental non-transformed cell [12,24]. The degree of OPN phosphorylation varies significantly among cell types [25–28], therefore it is not possible to determine whether the difference in OPN phosphorylation are caused by the ras-transformation or whether it is simply due to differences among the analyzed cell types.

In this study, we compare OPN phosphorylation in ras-transformed cells with their non-transformed parental cells. Furthermore, we demonstrate for the first time that the expression of
the FAM20C kinase is significantly reduced in ras-transformed cells, and that transfection with FAM20C reestablishes the mRNA expression levels, whereas it does not restore the impaired OPN phosphorylation observed in ras-transformed cells.

Materials and methods

Cell lines and culture conditions

The murine embryonic fibroblast cell line MEF3T3-275 and the ras-transformed derivative MEF3T3-275-3-2 [29] (kind gifts from David T. Denhardt, Rutgers University, NJ) were maintained in Dulbecco’s modified Eagle’s medium (DMEM) with Glutamax supplemented with 10% fetal bovine serum and 1% penicillin/streptomycin (all from Gibco). The human fibrocystic mammary epithelial cell line MCF10A [30] and the fully malignant MCF10ACA1a counterpart [31] (kind gifts from Ernst-Martin Füchtbauer, Aarhus University, Denmark) were cultured in a 1:1 mix of DMEM and Ham’s F12 nutrient mixture medium, 5% horse serum and 1% penicillin/streptomycin (all from Gibco). The MCF10ACA1a cell line was further supplemented with 0.5 µg/mL hydrocortisone (Merck), 10 µg/mL insulin (Gibco) and 20 ng/mL recombinant human epidermal growth factor (Gibco).

Plasmid construction and transfection of cells

FAM20C-pcDNA3.1/myc-His(-)A was generated from human cDNA encoding residues 1-584 of FAM20C (cloneID: 4942737, GE Healthcare). FAM20C cDNA was amplified with the following primers; forward: 5’-ACCCAAGCTGCTATAGATGATGCTGGTCGCGC-3’ and reverse: 5’-GTTCGGGCAGCTTCCCCCGGCTGCTGCTGCTGTCCGCGCC-3’ containing a Nhel and a HindIII restriction site, respectively (LGC Biosearch Technologies). Amplified cDNA was recombined into
pcDNA3.1/myc-His(-)A (Invitrogen) using the InFusion cloning technology (Clontech). Plasmid was propagated in Stellar E.coli (Clontech) followed by purification with the PureLink HiPure Plasmid Filter Maxiprep (Invitrogen). MEF3T3-275-3-2 cells were transfected at approximately 70% confluence where the medium was changed to serum-free medium in T25 culture flasks. Four µg FAM20C-pcDNA3.1/myc-His(-)A was reacted with Lipofectamine LTX and Plus reagent (Invitrogen) and supplied to the cells. Conditioned medium was harvested after 48 h.

SDS-PAGE and western blot analysis

Conditioned medium was subjected to SDS-PAGE on 16% tris-tricine gels or 10% bis-tris gels (Invitrogen). Separated proteins were transferred to polyvinylidene difluoride membranes and incubated with 1 µg/mL monoclonal mouse anti-human OPN antibodies MAB193p (Maine Biotechnology Services), 2A1 (human epitope 190PVA192) or 3D9 (human epitope 283KFRISHELDSASSEVN298) [32] (from David T. Denhardt, Rutgers University, NJ). OPN was detected with alkaline phosphatase-conjugated secondary rabbit anti-mouse antibody (1:5000) (Merck). Dephosphorylation was performed by incubating OPN with bovine alkaline phosphatase (Merck) (1 µg OPN: 30 mU ALP) in 50 mM ammonium bicarbonate at 37 °C overnight. The band intensities of phosphorylated and non-phosphorylated OPN were quantified using ImageJ Software (National Institutes of Health).

MEF3T3-275 and MEF3T3-275-3-2 cells were washed twice with ice-cold PBS and incubated with radioimmunoprecipitation assay buffer (Merck) for 10 min on ice and centrifuged for 5 min at 9000 g. 10 µL cell lysate was separated on 10% bis-Tris gels, followed by western blotting using 1 µg/mL polyclonal rabbit anti-FAM20C (Novus Biologicals) antibodies or a monoclonal mouse β-actin antibody (1:2000) (Merck). 500 ng recombinant human FAM20C (R&D Systems) was loaded.
as control for the kinase. FAM20C was detected with horseradish peroxidase-conjugated secondary immunoglobulins with enhanced chemiluminescence on an ImageQuant LAS 4000 instrument (GE Healthcare) and β-actin was detected with alkaline phosphatase-conjugated secondary rabbit anti-mouse antibodies (1:5000).

Osteopontin ELISA

A MaxiSorp immunoassay plate (ThermoFisher Scientific) was coated overnight at 4 °C with the monoclonal MAB193p antibody (5 μg/mL in 0.1 M of sodium carbonate, pH 9.8). The plate was washed extensively with PBS and blocked with 2% ovalbumin (Merck) in PBS for 1 h at 37 °C and washed three times with the washing buffer (PBS containing 0.1% Tween 20). Conditioned medium from the MEF3T3-275 and MEF3T3-275-3-2 cells was diluted 10-fold in PBS and incubated with biotinylated 2A1 antibody (2.5 µg/ml) for 1 h at 37 °C. Next, the samples were added to the plate and incubated for 1 h at 37 °C followed by extensive washing. Captured OPN was detected by incubation with 100 μL of horseradish peroxidase-conjugated streptavidin (diluted 1:10,000) for 1 h at 37 °C. After the final wash, TMB-one Peroxidase Substrate (Kem-En-Tec Diagnostics) was added and the plate was incubated for 15 min, after which the reaction was quenched by addition of 0.2 M H2SO4. The plate was read at 450 nm using an ELISA reader (Bio-tek Instruments Inc).

Quantitative reverse transcription PCR (qRT-PCR)

Total RNA was isolated using the RNeasy Mini Kit (Qiagen) and cDNA was synthesized using the RevertAid H Minus First Strand cDNA Synthesis Kit (Thermo Scientific). qRT-PCR reactions were performed with the StepOnePlus Real-Time PCR System (Applied Biosystems). TaqMan Fast Advance Master Mix was applied along with the following predesigned primer- and probe sets;
TaqMan Gene Expression Assays (from Applied Biosystems); Mouse FAM20C (Mm00504210_m1), mouse OPN (Mm00436767_m1), mouse β-actin (Mm00607939_s1), human FAM20C (Hs00398243_m1), human β-actin (Hs99999903_m1) and human OPN (Hs00959010_m1). mRNA expression levels of FAM20C and OPN were normalized to the endogenous control β-actin and the relative gene expression was presented as $2^{-\Delta\Delta CT}$.

Statistical analysis

Statistical analysis of qRT-PCR data was performed by Welch’s two-tailed unpaired t-test in GraphPad Prism 6 (GraphPad Software). Calculated differences were considered statistically significant at p-values of ≤ 0.05.

Results

FAM20C mRNA expression and OPN phosphorylation in ras-transformed fibroblasts

To investigate the effect of ras-transformation on OPN phosphorylation, OPN from murine embryo fibroblast 275 cells (fOPN) was compared with OPN from the ras-transformed derivative 275-3-2 (fOPNras). Conditioned medium from the two cell lines was analysed by western blotting with the monoclonal OPN antibodies 193p, 2A1 and 3D9. The epitope recognized by 193p and 2A1 contains no phosphorylation sites and they therefore bind OPN irrespective of phosphorylation [32,33]. The epitope recognized by the 3D9 antibody contains several potential phosphorylation sites and its binding to OPN is abrogated when the epitope is phosphorylated [32]. The 3D9 antibody recognized fOPNras from ras-transformed 275-3-2 cells whereas fOPN from 275 cells was not recognized. Upon dephosphorylation with alkaline phosphatase, fOPN was recognized by the 3D9 antibody (Figure 1A). This indicates that fOPN was phosphorylated, whereas fOPNras was not.
This was further substantiated by differences in migration visualized by western blotting with the 2A1 and 193p antibodies. fOPN migrated at a higher molecular mass compared to fOPN\(^{ras}\), and alkaline phosphatase treatment shifted the migration pattern of fOPN to be similar to that of fOPN\(^{ras}\) (Figure 1B and 1C) indicating that fOPN\(^{ras}\) was less phosphorylated than fOPN.

To investigate whether the OPN mRNA expression was increased after \(ras\)-transformation, qRT-PCR analysis was performed on 275 and \(ras\)-transformed 275-3-2 cells. The mRNA expression of OPN was increased four-fold in \(ras\)-transformed 275 cells compared to 275 cells (Figure 2A). This correlated with a significant increase in the protein levels of OPN in the medium conditioned by the \(ras\)-transformed 275-3-2 cells compared to the 275 cells (Figure 2B). In addition, the FAM20C mRNA expression in \(ras\)-transformed 275-3-2 cells was reduced five-fold compared to the level in the 275 cells (Figure 2C). This could indicate a correlation between a decrease in the mRNA expression of FAM20C and the reduced phosphorylation of OPN in \(ras\)-transformed 275-3-2 cells.

To investigate whether FAM20C mRNA expression was also reduced in another \(ras\)-transformed cell line, expression levels were compared between MCF10A cells and its malignant H-\(ras\) transformed and PIK3CA H1047R mutated counterpart, MCF10ACA1a. The comparison showed that the mRNA expression of FAM20C in malignant MCF10ACA1a cells was reduced four-fold compared to that of the MCF10A cells (Figure 3A). The mRNA expression of OPN was also analysed and found to be approximately two-fold higher relative to that in MCF10A cells (Figure 3B). Only faintly stained OPN fragments migrating below 25 kDa, and no intact OPN, were detected in the medium conditioned by the MCF10A and MCF10ACA1a cells (Supplementary Figure 1).
FAM20C-transfection of ras-transformed 275-3-2 cells

The ras-transformed 275-3-2 cells were transfected with a FAM20C-encoding plasmid, which resulted in an increase in FAM20C expression from 18% to 85% of the level in non-transformed 275 cells (Figure 4A). The OPN mRNA expression was increased ten-fold in the FAM20C transfected ras-transformed 275 cells compared to the 275 cells (Figure 4B).

Next, it was analysed whether the increased FAM20C mRNA expression in these cells resulted in an increased phosphorylation of fOPNras. Conditioned medium from 275, ras-transformed 275-3-2 and FAM20C-transfected ras-transformed 275-3-2 cells was analysed by western blotting. Western blotting using the 193p antibody of the conditioned medium of ras-transformed 275-3-2 cells showed a strong OPN band migrating just below the 50 kDa marker and a fainter band migrating just above 50 kDa (Figure 5A). The bands represent two OPN phosphorylation isoforms, where ALP treatment showed that the higher molecular form contains more phosphorylations than the lower molecular weight form (Figure 5A). Furthermore, the 2A1 antibody, but not the 3D9 antibody, detected the indistinct band above 50 kDa, confirming the phosphorylation of the upper band (Figure 5B). After FAM20C-transfection, the intensity of the upper band detected by 193p and 2A1 representing the more phosphorylated OPN isoform appeared to be higher, but the increase was not significant (Figure 5C).

Discussion

In this study, we show that OPN from ras-transformed fibroblasts is less phosphorylated than OPN from the non-transformed parental cells (Figure 1). It has been shown that ras-transformation and cancerogenity are associated with OPN isoforms that are less phosphorylated compared to OPN from a non-transformed source [12,24,34]. Furthermore, less
phosphorylated OPN and highly phosphorylated OPN have been observed to co-exist in tumor tissue [16]. It has been suggested that the less phosphorylated OPN and highly phosphorylated OPN are secreted from cancer cells and macrophages, respectively [16,22,23]. Different OPN phospho-isoforms have been associated with functional differences as e.g. less phosphorylated OPN from ras-transformed fibroblasts has been shown to promote significantly stronger cell adhesion compared to highly phosphorylated OPN from osteoblasts [12]. The present study compares the phosphorylation level of OPN from ras-transformed fibroblasts and the parental non-transformed cells, and thereby directly analyses the differences in OPN phosphorylation after ras-transformation.

The mRNA expression of OPN was increased four-fold in ras-transformed 275-3-2 cells compared to 275 cells, which correlated with higher OPN protein secretion by the ras-transformed cells (Figure 2A and B). This confirms the well-established observation that OPN mRNA expression is increased in ras-transformed and cancer cells [35]. It could be hypothesized that the increased OPN mRNA expression results in OPN protein levels exceeding what can be correctly phosphorylated by FAM20C. Another explanation for the reduced phosphorylation of OPN could be a decrease in the expression of FAM20C in the transformed cells. The observation that the mRNA expression of FAM20C was reduced in ras-transformed 275-3-2 to only 18% of the level observed in the non-transformed 275 cells supports this hypothesis (Figure 2C). Attempts of comparing FAM20C protein levels between the to cell lines using immunoblotting with specific FAM20C antibodies were unsuccessful (Supplementary Figure 2). This problem has also been reported by others as the amount of endogenous FAM20C kinase is very low [36].

In other studies using cells not influenced by ras-transformation, transfection with FAM20C resulted in increased phosphorylation levels of several FAM20C substrates including OPN [1,2]. To
examine whether increased FAM20C expression in the ras-transformed cells would promote higher OPN phosphorylation levels, the ras-transformed 275-3-2 cells were transfected with FAM20C. This increased the FAM20C mRNA levels from 10% to 85% of the levels in the non-transformed 275 cells (Figure 4A). Based on western blotting, the restored mRNA levels of FAM20C did not not translate into a significant increase in phosphorylation of OPN in the ras-transformed 275-3-2 cells (Figure 5). A possible explanation for this could be the ten-fold increase in the endogenous OPN mRNA levels after FAM20C-transfection of the ras-transformed 275-3-2 cells compared to the 275 cells (Figure 4B). The reason for this dramatic increase in OPN expression after FAM20C transfection is not known. The inefficiency of the FAM20C kinase to increase OPN phosphorylation in FAM20C-transfected ras-transformed 275-3-2 cells could also be due to undiscovered mechanisms in the ras-transformed phenotype. Sphingosine and the pseudokinase Family with sequence similarity, member A (FAM20A) have been identified as activators of FAM20C kinase activity [36,37]. A decreased expression or inhibition of these activators could therefore potentially contribute to a decreased activity of FAM20C.

Comparison of the human mammary epithelial cell line, MCF10A, and its malignant counterpart, MCF10ACA1a, showed that the mRNA expression of FAM20C in MCF10ACA1a was reduced to 24% of the level in MCF10A. Furthermore, the OPN mRNA expression was increased approximately two-fold (Figure 3). However, the expressed OPN from both these cell lines could not be analysed by western blotting, as only low molecular weight OPN fragments and not the intact OPN protein were detected (Supplementary Figure 1). The reduction in FAM20C mRNA expression and the increase in OPN mRNA expression after ras-transformation in both murine fibroblasts cells and in human mammary cells suggests that this could be a general phenomenon of ras-transformed cells. Interestingly, the two cell lines, ras-transformed 275-3-2 and malignant
MCF10ACA1a, were both transformed with H-ras. The cancer phenotype of MCF10ACA1a was further promoted due to a subsequent activating PIK3CA H1047R mutation [31]. However, since H-ras occurred as a proto-oncogene in both cell lines, it could be hypothesized that the FAM20C promoter contains a ras-responsive element that consequently inhibits FAM20C transcription.

FAM20C is responsible for the phosphorylation of the majority of secreted phosphoproteins and impaired activity of FAM20C have been associated with many pathological conditions [4–8]. Hence, reduced expression of FAM20C observed in relation to ras-transformation can likewise be hypothesized to affect the phosphorylation and functions of a plethora of secreted proteins.

In summary, we have shown that OPN is less phosphorylated in ras-transformed 275-3-2 cells compared to the parental 275 cell line. We have shown that FAM20C mRNA expression is significantly decreased after ras-transformation in the two cell lines, 275-3-2 and MCF10ACA1a. This could indicate that part of the oncogenic phenotype generated by ras-transformation includes a reduction in the expression of the FAM20C kinase.

Supporting information
Figure S1. Western blotting of OPN secreted by MCF10A and malignant MCF10ACA1a cells. Figure S2. Western blot analysis of FAM20C in 275 and 275-3-2 cells. Figure S3. Uncropped western blots from figure 1 and figure 5.

Competing Interests
The authors declare that there are no competing interests associated with the manuscript.
Funding

This work was supported by The Danish Council for Independent Research-Natural Sciences (Grant no. 4181-00131). The authors declare no conflicts of interest.

Author Contribution

G.N.S.: Performed experimental work and manuscript preparation; B.C.: Study design and manuscript preparation; I.B.: Performed experimental work; E.S.S.: Manuscript preparation and supervision. All authors have read and approved the final manuscript.

Abbreviations

FAM20C, Family with sequence similarity 20, member C; OPN, osteopontin; ALP, alkaline phosphatase; fOPN, OPN from murine embryo fibroblast 275 cells; fOPNras, OPN from the ras-transformed 275-3-2 cells.
References

1 Tagliabracci, V. S., Engel, J. L., Wen, J., Wiley, S. E., Worby, C. A., Kinch, L. N., Xiao, J., Grishin, N. V and Dixon, J. E. (2012) Secreted kinase phosphorylates extracellular proteins that regulate biomineralization. Science **336**, 1150–1153.

2 Ishikawa, H. O., Xu, A., Ogura, E., Manning, G. and Irvine, K. D. (2012) The Raine syndrome protein FAM20C is a Golgi kinase that phosphorylates bio-mineralization proteins. PloS one **7**, e42988.

3 Nalbant, D., Youn, H., Nalbant, S. I., Sharma, S., Cobos, E., Beale, E. G., Du, Y. and Williams, S. C. (2005) FAM20: an evolutionarily conserved family of secreted proteins expressed in hematopoietic cells. BMC Genomics **6**, 11.

4 Tagliabracci, V. S., Wiley, S. E., Guo, X., Kinch, L. N., Durrant, E., Wen, J., Xiao, J., Cui, J., Nguyen, K. B., Engel, J. L., et al. (2015) A Single Kinase Generates the Majority of the Secreted Phosphoproteome. Cell, Cell Press **161**, 1619–1632.

5 Tagliabracci, V. S., Engel, J. L., Wiley, S. E., Xiao, J., Gonzalez, D. J., Nidumanda Appaiah, H., Koller, A., Nizet, V., White, K. E. and Dixon, J. E. (2014) Dynamic regulation of FGF23 by Fam20C phosphorylation, GalNAc-T3 glycosylation, and furin proteolysis. Proceedings of the National Academy of Sciences of the United States of America **111**, 5520–5525.

6 Tibaldi, E., Arrigoni, G., Martinez, H. M., Inagaki, K., Shimasaki, S. and Pinna, L. A. (2010) Golgi apparatus casein kinase phosphorylates bioactive Ser-6 of bone morphogenetic protein 15 and growth and differentiation factor 9. FEBS Letters **584**, 801–805.

7 Da, Q., Han, H., Valladolid, C., Fernández, M., Khatlani, T., Pradhan, S., Nolasco, J., Matsunami, R. K., Engler, D. A., Cruz, M. A., et al. (2019) In vitro phosphorylation of von Willebrand factor by FAM20c enhances its ability to support platelet adhesion. J. Thromb. Haemost. **17**, 866–877.

8 Pollak, A. J., Haghighi, K., Kunduri, S., Arvanitis, D. A., Bidwell, P. A., Liu, G.-S., Singh, V. P., Gonzalez, D. J., Sanoudou, D., Wiley, S. E., et al. (2017) Phosphorylation of serine96 of histidine-rich calcium-binding protein by the Fam20C kinase functions to prevent cardiac arrhythmia. Proceedings of the National Academy of Sciences of the United States of America, National Academy of Sciences **114**, 9098–9103.

9 Kahles, F., Findeisen, H. M. and Bruemmer, D. (2014) Osteopontin: A novel regulator at the cross roads of inflammation, obesity and diabetes. Mol Metab **3**, 384–393.

10 Lok, Z. S. Y. and Lyle, A. N. (2019) Osteopontin in Vascular Disease. Arterioscler. Thromb. Vasc. Biol. **39**, 613–622.

11 Gericke, A., Qin, C., Spevak, L., Fujimoto, Y., Butler, W. T., Sørensen, E. S. and Boskey, A. L. (2005) Importance of Phosphorylation for Osteopontin Regulation of Biomineralization. Calcified Tissue International **77**, 45–54.

12 Christensen, B., Kazanecki, C. C., Petersen, T. E., Rittling, S. R., Denhardt, D. T. and Sørensen, E. S. (2007) Cell Type-specific Post-translational Modifications of Mouse Osteopontin Are Associated with Different Adhesive Properties. Journal of Biological Chemistry **282**, 19463–19472.

13 Ashkar, S., Weber, G. F., Panoutsakopoulou, V., Sanchirico, M. E., Jansson, M., Zawaideh, S., Rittling, S. R., Denhardt, D. T., Glimcher, M. J. and Cantor, H. (2000) Eta-1 (osteopontin): an early component of type-1 (cell-mediated) immunity. Science (New York, N.Y.) **287**, 860–864.
14. Chien, C.-Y., Su, C.-Y., Chuang, H.-C., Fang, F.-M., Huang, H.-Y., Chen, C.-H., Chen, C.-M. and Huang, C.-C. (2009) Comprehensive study on the prognostic role of osteopontin expression in oral squamous cell carcinoma. Oral oncology 45, 798–802.

15. Hao, C., Wang, Z., Gu, Y., Jiang, W. G. and Cheng, S. (2016) Prognostic Value of Osteopontin Splice Variant-c Expression in Breast Cancers: A Meta-Analysis. BioMed research international, Hindawi Limited 2016, 7310694.

16. Brown, L. F., Papadopoulos-Sergiou, A., Berse, B., Manseau, E. J., Tognazzi, K., Perruzzi, C. A., Dvorak, H. F. and Senger, D. R. (1994) Osteopontin expression and distribution in human carcinomas. The American journal of pathology 145, 610–623.

17. Bellahcene, A., Castronovo, V., Ogbureke, K. U., Fisher, L. W. and Fedarko, N. S. (2008) Small integrin-binding ligand N-linked glycoproteins (SIBLINGs): multifunctional proteins in cancer. Nat Rev Cancer 8, 212–226.

18. Shevde, L. A. and Samant, R. S. (2014) Role of osteopontin in the pathophysiology of cancer. Matrix Biol. 37, 131–141.

19. Guo, X., Zhang, Y. P., Mitchell, D. A., Denhardt, D. T. and Chambers, A. F. (1995) Identification of a ras-activated enhancer in the mouse osteopontin promoter and its interaction with a putative ETS-related transcription factor whose activity correlates with the metastatic potential of the cell. Mol. Cell. Biol. 15, 476–487.

20. Chambers, A. F., Behrend, E. I., Wilson, S. M. and Denhardt, D. T. (1992) Induction of expression of osteopontin (OPN; secreted phosphoprotein) in metastatic, ras-transformed NIH 3T3 cells. Anticancer Research 12, 43–47.

21. Adjei, A. A. (2001) Blocking oncogenic Ras signaling for cancer therapy. Journal of the National Cancer Institute 139, 89–97.

22. Rittling, S. R. and Chambers, A. F. (2004) Role of osteopontin in tumour progression. British journal of cancer 90, 1877–1881.

23. Crawford, H. C., Matrisian, L. M. and Liaw, L. (1998) Distinct roles of osteopontin in host defense activity and tumor survival during squamous cell carcinoma progression in vivo. Cancer research 58, 5206–5215.

24. Kasugai, S., Zhang, Q., Overall, C. M., Wrana, J. L., Butler, W. T. and Sodek, J. (1991) Differential regulation of the 55 and 44 kDa forms of secreted phosphoprotein 1 (SPP-1, osteopontin) in normal and transformed rat bone cells by osteotropic hormones, growth factors and a tumor promoter. Bone and mineral 13, 235–250.

25. Christensen, B., Klaning, E., Nielsen, M. S., Andersen, M. H. and Sorensen, E. S. (2012) C-terminal modification of osteopontin inhibits interaction with the alphaVbeta3-integrin. J Biol Chem 287, 3788–3797.

26. Sørensen, E. S., Højrup, P. and Petersen, T. E. (1995) Posttranslational modifications of bovine osteopontin: identification of twenty-eight phosphorylation and three O-glycosylation sites. Protein science : a publication of the Protein Society 4, 2040–2049.

27. Keykhosravani, M., Doherty-Kirby, A., Zhang, C., Brewer, D., Goldberg, H. A., Hunter, G. K. and Lajoie, G. (2005) Comprehensive Identification of Post-translational Modifications of Rat Bone Osteopontin by Mass Spectrometry. Biochemistry 44, 6990–7003.

28. Christensen, B., Petersen, T. E. and Sorensen, E. S. (2008) Post-translational modification and proteolytic processing of urinary osteopontin. Biochem J 411, 53–61.

29. Wu, Y., Denhardt, D. T. and Rittling, S. R. (2000) Osteopontin is required for full expression of the transformed phenotype by the ras oncogene. British journal of cancer 83, 156–163.
30 Soule, H. D., Maloney, T. M., Wolman, S. R., Peterson, W. D., Brenz, R., McGrath, C. M., Russo, J., Pauley, R. J., Jones, R. F. and Brooks, S. C. (1990) Isolation and characterization of a spontaneously immortalized human breast epithelial cell line, MCF-10. Cancer research, American Association for Cancer Research 50, 6075–86.
31 Santner, S. J., Dawson, P. J., Tait, L., Soule, H. D., Eliason, J., Mohamed, A. N., Wolman, S. R., Heppner, G. H. and Miller, F. R. (2001) Malignant MCF10CA1 Cell Lines Derived from Premalignant Human Breast Epithelial MCF10AT Cells. Breast Cancer Research and Treatment, Kluwer Academic Publishers 65, 101–110.
32 Kazanecki, C. C., Kowalski, A. J., Ding, T., Rittling, S. R. and Denhardt, D. T. (2007) Characterization of anti-osteopontin monoclonal antibodies: Binding sensitivity to post-translational modifications. Journal of Cellular Biochemistry 102, 925–935.
33 Bissonnette, N., Dudemaine, P. L., Thibault, C. and Robitaille, G. (2012) Proteomic analysis and immunodetection of the bovine milk osteopontin isoforms. J. Dairy Sci. 95, 567–579.
34 Nemir, M., DeVouge, M. W. and Mukherjee, B. B. (1989) Normal rat kidney cells secrete both phosphorylated and nonphosphorylated forms of osteopontin showing different physiological properties. The Journal of biological chemistry 264, 18202–18208.
35 Rittling, S. R. and Denhardt, D. T. (1999) Osteopontin Function in Pathology: Lessons from Osteopontin-Deficient Mice. Nephron Experimental Nephrology 7, 103–113.
36 Cozza, G., Salvi, M., Tagliabracki, V. S. and Pinna, L. A. (2017) Fam20C is under the control of sphingolipid signaling in human cell lines. The FEBS Journal 284, 1246–1257.
37 Cui, J., Xiao, J., Tagliabracci, V. S., Wen, J., Rahdar, M. and Dixon, J. E. (2015) A secretory kinase complex regulates extracellular protein phosphorylation. eLife, eLife Sciences Publications Ltd 2015.
Figure legends

Figure 1. Phosphorylation of OPN in 275 and ras-transformed 275-3-2 cells. OPN phosphorylation was examined by separating proteins from conditioned medium on a 16% tris-tricine gel by SDS-PAGE followed by western blotting using the monoclonal OPN antibodies (A) 3D9, (B) 2A1 and (C) 193p. Dephosphorylation using alkaline phosphatase (ALP) is indicated. The western blot is representative of four independent experiments.

Figure 2. Expression of FAM20C and OPN in 275 and ras-transformed 275-3-2 cells. (A) OPN and (C) FAM20C mRNA levels from 275 and ras-transformed 275-3-2 cells. FAM20C mRNA levels from 275 and ras-transformed 275-3-2 cells. Relative levels were quantified by qRT-PCR analysis. Expression from 275 cells is set as reference and expression from ras-transformed 275-3-2 cells is presented as mean ± S.D. (n = 3). ** indicates p < 0.0001. (B) OPN in cell-conditioned medium was detected by biotinylated 2A1 in maxisorp plates coated with the monoclonal 193p antibody. The data are expressed as mean ± S.D. (n = 3). The data is representative of three experiments.

Figure 3. FAM20C and OPN expression in MCF10A and malignant MCF10ACA1a cells. (A) FAM20C mRNA level and (B) OPN mRNA level from MCF10A and MCF10ACA1a cells. Relative FAM20C and OPN mRNA levels were quantified by qRT-PCR analysis. FAM20C and OPN levels from normal MCF10A cells are set as reference and expressions from MCF10ACA1a are presented as mean ± S.D. (n = 3). ** indicates p < 0.0001. The data is representative of two independent experiments.

Figure 4. FAM20C and OPN mRNA expression after transfection with FAM20C. (A) FAM20C and (B) OPN mRNA levels in ras-transformed 275-3-2 cells before and after FAM20C-transfection were quantified by qRT-PCR. The FAM20C and OPN levels in 275 cells are set as reference. The results are shown as mean ± S.D. (n = 3). * and ** indicate p < 0.01 and p < 0.0001, respectively. The experiments were repeated three times.

Figure 5. Phosphorylation of OPN in ras-transformed 275-3-2 cells after transfection with FAM20C.
Conditioned medium from the cells was analysed using SDS-PAGE on a 10 % bis-tris gel and western blotting was performed with the monoclonal OPN antibodies 193p, 2A1 and 3D9 (A and B). Dephosphorylation with alkaline phosphatase (ALP) is indicated. (C) Quantification of the OPN band intensities detected by the 193p and 2A1 antibodies. The ratio between the intensity of phosphorylated OPN (upper band) and the intensity of OPN in both bands is shown as mean ± S.D for three independent western blots.
Figure S1. Western blotting of OPN secreted by MCF10A and malignant MCF10ACA1a cells. OPN from conditioned medium was separated on a 16% tris-tricine gel by SDS-PAGE followed by western blotting using the monoclonal OPN antibodies 2A1 and 3D9.
Figure S2. Western blot analysis of FAM20C in 275 and 275-3-2 cells. Cell lysates from 275 and ras-transformed 275-3-2 cells were analysed by western blotting with a polyclonal FAM20C antibody (A) or a monoclonal β-actin antibody (B). Lane 1, 275 cell lysate; lane 2, 275-3-2 cell lysate and lane 3, Fam20C standard.
Supplementary Figure S3

Uncropped western blots

From Figure 1:

Supplementary Figure S3

From Figure 5:
Supplementary Figure S3

Uncropped western blots

From Figure 1:

From Figure 5: