Disruption of the *protein kinase N* gene of *Drosophila melanogaster* Results in the Recessive *delorean* Allele (*pkn*^{dln}) With a Negative Impact on Wing Morphogenesis

Georgette L. Sass
Grand Valley State University, sassg@gvsu.edu

Bruce D. Ostrow
Grand Valley State University, ostrowb@gvsu.edu

Follow this and additional works at: https://scholarworks.gvsu.edu/oapsf_articles

ScholarWorks Citation
Sass, Georgette L. and Ostrow, Bruce D., "Disruption of the *protein kinase N* gene of *Drosophila melanogaster* Results in the Recessive *delorean* Allele (*pkn*^{dln}) With a Negative Impact on Wing Morphogenesis" (2014). *Funded Articles*. 17.
https://scholarworks.gvsu.edu/oapsf_articles/17

This Article is brought to you for free and open access by the Open Access Publishing Support Fund at ScholarWorks@GVSU. It has been accepted for inclusion in Funded Articles by an authorized administrator of ScholarWorks@GVSU. For more information, please contact scholarworks@gvsu.edu.
Disruption of the protein kinase N gene of Drosophila melanogaster Results in the Recessive delorean Allele (pkndln) With a Negative Impact on Wing Morphogenesis

Georgette L. Sass1 and Bruce D. Ostrow
Department of Biology, Grand Valley State University, Allendale, Michigan 49401

ABSTRACT We describe the delorean mutation of the Drosophila melanogaster protein kinase N gene (pkndln) with defects in wing morphology. Flies homozygous for the recessive pkndln allele have a composite wing phenotype that exhibits changes in relative position and shape of the wing blade as well as loss of specific vein and bristle structures. The pkndln allele is the result of a P-element insertion in the first intron of the pkn locus, and the delorean wing phenotype is contingent upon the interaction of insertion-bearing alleles in trans. The presence of the insertion results in production of a novel transcript that initiates from within the 3’ end of the P-element. The delorean-specific transcript is predicted to produce a wild-type PKN protein. The delorean phenotype is not the result of a reduction in pkn expression, as it could not be recreated using a variety of wing-specific drivers of pkn-RNAi expression. Rather, it is the presence of the delorean-specific transcript that correlates with the mutant phenotype. We consider the delorean wing phenotype to be due to a pairing-dependent, recessive mutation that behaves as a dosage-sensitive, gain of function. Our analysis of genetic interactions with basket and nemo reflects an involvement of pkn and Jun-terminal kinase signaling in common processes during wing differentiation and places PKN as a potential effector of Rho1’s involvement in the Jun-terminal kinase pathway. The delorean phenotype, with its associated defects in wing morphology, provides evidence of a role for PKN in adult morphogenetic processes.

KEYWORDS PKN wing morphology Rho effector signal transduction JNK pathway

A cell’s ability to receive information and respond appropriately requires a process of signal transduction, whereby an external stimulus is coupled to transducers that relay information from the cell surface. Signaling pathways often connect stimuli with specific protein modifications that ultimately alter protein function to mediate the desired response. Any given cell type uses many pathways, often with cross talk between them. Despite such complexity, components of signal transduction pathways have been highly conserved (Pires-da-Silva and Sommer 2006).

Rho family GTPases are one such conserved family of proteins, which belong to the Ras-like GTPase superfamily (Wennerberg et al. 2005; Bourreux et al. 2007), acting as signal transducers that regulate and integrate a wide range of cellular processes, including actin reorganization, cell adhesion, cell polarity, cell-cycle progression, and apoptosis (Coleman and Olson 2002; Bustelo et al. 2007; Guilluy et al. 2011; Spiering and Hodgson 2011; Ridley 2012). Rho GTPases are monomeric guanosine-5’-triphosphate (GTP)-binding proteins (G proteins) that act as molecular switches, cycling between a GDP-bound inactive state and GTP-bound active state in response to external stimuli. In their active GTP-bound configuration, Rho GTPases bind to and activate downstream effectors. More than 60 effector proteins have been identified based on their interaction with the three
best-studied members of the Rh GTPase family: Rho, Rac, and Cdc42 (Bishop and Hall 2000; Iden and Collard 2008; Hall 2012). The considerable interest in understanding Rh GTPase family members and their effectors is warranted, given their pivotal role in cellular processes, including establishing and maintaining cell polarity and cell adhesion, and because altered activity of Rh GTPases helps drive malignant transformations (Iden and Collard 2008; Vega and Ridley 2008; Karlsson et al. 2009; Provenzano and Keeley 2011; Ünsal-Kacmaz et al. 2012).

Protein kinase N (PKN) is a downstream effector of both Rac1 and Rho1 that interacts directly with these GTPases in their active, GTP-bound state (Vincent and Settleman 1997; Lu and Settleman 1999). Activation by either Rac1 or Rho1 occurs via association with distinct regulatory sequences found at the N-terminus of PKN, known as HR1 repeats. HR1 repeats exhibit similarity to the leucine zipper structural motif and adopt an antiparallel coiled-coil structure (Maesaki et al. 1999). Within its kinase domain, PKN is highly similar to protein kinase C (Mukai and Ono 1994) and, as such, is a member of the larger AGC kinase subfamily of serine-threonine protein kinases (Pearce et al. 2010). PKN homologs are found in invertebrates and vertebrates (Palmer et al. 1995; Kitagawa et al. 1995; Mukai et al. 1995; Ueno et al. 1997; Stapleton et al. 1998). In mammals, PKN has demonstrated involvement in the regulation of cytoskeletal reorganization (Mukai et al. 1997; Vincent and Settleman 1997), cell adhesion (Calaufi et al. 2002), cell-cycle regulation (Mukai 2003), and tumorigenesis (Metsger et al. 2003; Leenders et al. 2004). There are three mammalian paralogs of PKN (Mukai 2003), presented in the literature under various names (PKN1, PKN2, PKN3, PKN4, PRK1, PRK2). PKN1 and PKN2 are expressed widely, whereas the expression of PKN3 is more restricted (Mukai and Ono 2006; Lachmann et al. 2008; Karlsson et al. 2009; Provenzano and Keely 2011; Unsal-Kacmaz et al. 2012).

The loss-of-function, dorsal closure phenotype associated with pkn06736 is relatively mild (~10% of embryos with the phenotype) and may reflect functional redundancy with components of the Jun-terminal kinase (JNK) pathway, which is also required for dorsal closure in Drosophila. Previous work has suggested that in its capacity as a Rho1 effector, PKN is involved in a JNK-independent instructive signal for dorsal closure (Lu and Settleman 1999). PKN function is required for viability in Drosophila, as evidenced by a multiphasic lethal phenotype that fails to generate homozygous pkn06736 adults (Lu and Settleman 1999). However, this does not provide the insight needed to determine the nature of PKN’s effector function. For this reason, we sought to analyze additional mutant alleles of the pkn gene to better understand the function of the PKN protein. Here we describe a new allele of Drosophila pkn we called delorean (pkn4iso), which was identified from the Kiss P-element mutagenesis stock collection of P[acmanW] transposon insertions on the second chromosome (Torok et al. 1993). The delorean phenotype, with its associated defects in wing morphology, provides evidence for a novel role of PKN in morphogenetic processes and provides new insights into the effector function of PKN.

MATERIALS AND METHODS

Fly stocks and genetics

Fly stocks were maintained at 25°C on hydrated fly food (Carolina Biological Supply) supplemented with live yeast. Flies were anesthetized using carbon dioxide. Where heteroallelic interactions were studied for phenotypic analysis, matings between strains were carried out at 25°C using reciprocal crosses.

The stock y¹w²¹, P[w¹w²¹mc = lacW]|(2)k06808/Cyo (referred to as P[lacW]k06808) was obtained from the Kiss P-element mutagenesis stock collection (Torok et al. 1993). The basket (bsk¹) pkn4iso chromosome was generated in our lab by recombinating bsk¹ (using Bloomington stock #3088) and pkn4iso alleles. All other stocks used in this study were obtained from Bloomington and Umeå stock centers or created in our lab. The P[lacW]k06808 insertion chromosome was initially outcrossed for eight generations to a Bloomington stock isogenic for chromosome 2 (y¹w²¹, iso-2) and rebalanced over y¹Cyo (kindly provided by Karen Blochlinger). Subsequently, the P[lacW]k06808 insertion chromosome was outcrossed for >40 generations to a w¹¹¹¹ strain (w¹¹¹¹, iso-2) and maintained by selection for the mini-white marker of P[lacW].

Transposon excision

P[lacW]k06808/Cyo individuals were crossed to w¹; Sp/Cyo; Δ2-3 Dr/TM6. Dyssgenic P[lacW]k06808/Cyo; Δ2-3 Dr/+ offspring were mated to y¹w²¹/FM6; Pn¹/Cyo flies. Individual white-eyed y¹w²¹/Y; ΔP/Cyo males were backcrossed to P[lacW]k06808/Cyo virgins to test for genetic interaction and to establish individual balanced revertant stocks.

Wing morphology analysis

Wings were dissected dry, transferred to glass microscope slide with isopropanol and mounted in AquaPolymount (Polysciences, Inc.). Anterior wing margin bristles and sensillae were viewed under brightfield optics using a Nikon E200 microscope at 400× magnification. For each wing, we counted the number of twin campaniform sensillae, stout bristles, dorsal recurved bristles, ventral recurved bristles, ventral slender bristles, and domed sensillae on longitudinal vein L3 and on the anterior crossvein. Sample size for each genotype varied from 5 to 32. Median values were subjected to a Kruskal-Wallis test.
For those traits with a P-value < 0.001, a Mann-Whitney U test was performed on paired combinations of all genotypes.

Determination of delorean homozygote viability
Virgins of the genotype pkr

*The homogenate was incubated at 63°C for 5 min. Primers used were plac4 5'CAGCGGAGCTATTGCGA3', placWFor1 5'CAGCGGAGCTATTGCGA3', and plac7 5'CGTGGTGTGACCGCTGTCGTGTT3'. PCR products were size selected in an agarose gel, purified using MinElute columns (QIAGEN), and sequenced as described previously.

Polytene chromosome in situ hybridization
In situ hybridization was carried out essentially according to Pardue (1986) with the following exceptions: Salivary glands were dissected from wandering third instar larvae in 50% acetic acid and squashed in 45% acetic acid, 18% lactic acid on glass microscope slides. Hybridization was performed overnight at 55°C in hybridization solution (0.6 M NaCl; 50 mM NaPO₄, pH 7.2; 500 µg/mL salmon sperm DNA; 5X Denhardt’s solution) containing 3 µg/mL digoxigenin-labeled XbaI-linearized P[lacW] probe (kindly provided by Ed Giniger). Bound probe was detected using an alkaline phosphatase-based detection kit (Boehringer Mannheim). Chromosomes were counterstained with Giemsa (Fluka) and viewed in phase contrast through a Nikon Axiopt microscope.

Genomic analysis of transposon insertion alleles and derivative alleles
Genomic DNA (gDNA) was prepared from 50 homozygous P[lacW] k06808 adults according to Ashburner (1989). Frozen flies were homogenized in buffer (0.1 M Tris-HCl, pH 9; 0.1 M ethylenediaminetraacetic acid; 1% sodium dodecyl sulfate; 0.5% diethylpyrocarbonate). The homogenate was incubated at 63°C for 30 min, clarified with 1 M potassium acetate, and precipitated with isopropanol. Then, 1 µg of gDNA was digested individually with restriction endonucleases BamHI or EcoRI (New England Biolabs) and phenol/chloroform extracted and ethanol precipitated. Digested gDNA preparations were individually diluted to 1 µg/mL in TE (0.01 M Tris-HCl, pH 8.0; 0.001 M ethylenediaminetetraacetic acid), self-ligated with T4 ligase (Promega), and precipitated with isopropanol. Then, 1 µL of each gDNA sample was sub-

Rapid amplification of 5’ CDNA ends (5’ RACE)
The pkr

DISCUSSION
delorean mutants have defects in wing development
In a screen of a second chromosome P-element insertion collection (Torok et al. 1993), we identified one line, y w; P[lacW]/k06808/CyO, with a mutant phenotype that we named delorean. Flies homozygous for the P[lacW]/k06808 insertion are unable to fly and their wings are held up from the thorax and curve ventrally (Figure 1, B and C), similar to the open doors of a Delorean automobile. The extent of curvature is variable, from a slight smooth curve to a severe folded-over phenotype. The anterior wing margin is also defective: there are gaps in marginal tissue, excessive spacing between stout mechanosensory bristles (Figure 1, E and G), and fewer sensilla and bristles relative to heterozygous siblings (Table 1). Occasionally, two or three stout bristles share
a common socket, and sometimes a stout bristle appears in the margin tissue without a socket (Supporting Information, Figure S1A, Figure S1B, and Figure S1D). A total of 95% of homozygous delorean flies analyzed (n = 67) had one or more double-stout bristle clusters, and 15% had triple-stout bristle clusters. We also noted defects in wing veins in homozygous delorean flies such as ectopic vein material surrounding the longitudinal vein L2 (Figure 1E) and/or extending from the posterior crossvein (Figure S1C) (females 69.0%, SD 11.8%, n = 163 and males 56.9%, SD 18.7%, n = 116).

A quantitative analysis focusing on specific anterior wing margin structures (Figure S1E) of the delorean wing phenotype was conducted (Table 1). Three of the traits analyzed showed significant differences between delorean homozygotes and either their heterozygous siblings or wild-type flies (w1118), regardless of sex. Reduced numbers of twin campaniform sensillae, stout bristles, and ventral recurved bristles were observed in delorean homozygotes (Table 1). We did not detect significant differences in the average number of slender bristles, dorsal recurved bristles, sensillae on vein L3 nor the anterior crossvein. Therefore, some sensory structures are affected by the delorean mutation whereas others are not. We consider the delorean wing phenotype to be a composite of a held-up position, ventral curvature, reduced sensory structures, and venation defects, suggesting that the affected gene plays diverse roles in wing development.

The delorean phenotype results from a mutation in the pkn gene
To determine the cause of this interesting phenotype, we defined the insertion site of the P[lacW] transposon. Polytene chromosomes from the original y; P[lacW]68080/CyO stock were analyzed using in situ hybridization with a DNA probe containing sequence from the mini-white protein kinase N allele.
component of the P[lacW] transposon. The only hybridization signal found outside of the white gene on the X chromosome was at region 45C on chromosome 2 (data not shown). This indicates that the P[lacW] transposon is present only once in the y w; P[lacW] k06808/CyO genome. We next characterized the insertion site using gDNA from homozygous y w; P[lacW]k06808 individuals. A total of 7 kb of gDNA flanking both sides of the P[lacW] insertion site was cloned. We sequenced three distinct clones and obtained 2.7 kb of genomic sequence flanking the P[lacW] insertion site. A BLAST search of the Drosophila genome identified this region as the 5’ end of the pkn gene, which maps to 45C. Sequence analysis revealed that the P[lacW] transposon is inserted in the first intron of pkn (at nucleotide position 5172249 of the Drosophila genomic sequence; http://www.flybase.org) and its orientation is identical to the transcribed strand (Figure 2A). Thus, P[lacW]k06808 is an allele of the pkn gene, and we designate this allele as pkndis.

To verify that this insertion causes the delorean phenotype, we outcrossed the original y w; P[lacW]k06808/CyO stock to w118 iso-2 for more than 40 generations and have maintained the pkndis allele as an unbalanced stock by following the mini-white marker of the P[lacW] transposon. Flies from these stocks that are made homozygous for pkndis allele display the complete delorean phenotype described previously. These findings indicate that the delorean phenotype is associated with the presence of the P[lacW] element in the pkn gene on the second chromosome and is not the result of other mutations in the genetic background of the original P-element insertion line from the Kiss collection. We also recovered 36 lines that had lost the mini-white+ eye color marker associated with the P[lacW] transposon of pkndis after a standard transposase-mediated mobilization procedure (see the Materials and Methods). When these lines were examined, most (34) exhibited a wild-type phenotype when heterozygous with either the pkndis allele or a deficiency of the pkn gene region (data not shown), suggesting that there had been a precise excision of the P[lacW] transposon. This further confirms that the delorean phenotype is caused by the P[lacW] transposon insertion in the pkn gene and that loss of this insertion returns the phenotype to wild type. To see whether a wild-type allele of pkn and the surrounding region can rescue this phenotype, we used a duplication of cytological region 44B–46D on chromosome 3 (derived as a separable component of Tp(2;3)jeve1-18; http://www.flybase.org), pkndis/pkndis; Dp(2;3)jeve1-18/+ wings do not exhibit ventral curvature and flies no longer have anterior wing margin bristle defects or ectopic veins associated with the delorean phenotype (Figure S1F, Table 1), indicating that a single dose of region 45C suppressed these aspects of the delorean phenotype. Taken together, these results demonstrate that the delorean phenotype is due to the transposon insertion in pkn.

The delorean phenotype is not a simple recessive, loss-of-function mutation

The previously characterized, loss-of-function pkn06736 allele has a demonstrated multiphasic lethal phenotype (Lu and Settleman 1999), and we wanted to examine whether pkndis also affected viability. The delorean mutation does not cause a reduction in viability when pkndis/pkndis offspring are compared with pkndis/pkn+ siblings from a cross of pkndis/pkn+ mothers to pkndis/pkndis fathers. We saw no significant difference from the expected equal proportions.
We used the GAL4/UAS ectopic expression system to gain-of-function. Furthermore, the wing shape, anterior wing margin structures, and venation patterns of pknR-G232/Df(2R)w45-30n flies were wild type (Figure S1G and Table 1), suggesting that the pknR allele is not a simple, recessive loss-of-function mutation. This was seen for all deficiencies of 45C examined [Df(2R)Np3, Df(2R)Np5, and Df(2R)wunc91G; data not shown]. Furthermore, pknR complements the pkn alleles pkn06736 and pkn2 (Table 2 and data not shown). These data suggest that the delorean phenotype is recessive, as it takes two copies of the pknR allele to give the full delorean wing phenotype. In addition, we did see occasional pknR/Df(2R)w45-30n individuals that carry their wings held up from the thorax similar to pknR homoygotes (31.5% for males; 19.0% for females) consistent with the idea of a dose-sensitive, gain-of-function.

To further elucidate the nature of the pknR allele we decided to look at the phenotypic consequence of reducing pkn expression in wing tissue. We used the GALA/UAS ectopic expression system to drive tissue-specific production of a pkn double-stranded RNA that would specifically degrade pkn messenger RNA by RNA interference. Several different wing-specific GAL4 drivers were examined (Table S1), each in combination with the same UAS-pkn-RNAi transgene on the third chromosome. This UAS-pkn-RNAi construct causes lethality when a GAL4 driver that is ubiquitously expressed due to the presence of either the α-tubulin or actin5C promoter is used (data not shown). This is expected, given the multiphasic lethality associated with the null allele, pkn06736 (Lu and Settlement 1999), and indicates that loss of pkn RNA can be achieved using this system. The reduction of pkn using wing-specific GAL4 drivers does not generate a mutant phenotype (Figure S2). All wings examined exhibit wild-type anterior wing margin bristle numbers consistent with values reported for Canton-S (Table S2; Hartenstein and Posakony 1989). For this reason, we are able to rule out the possibility that the delorean phenotype is due to a loss of function mutation in the pkn gene.

The delorean phenotype is shared by other transposon insertions in the first intron of pkn

There are several transposon insertions in region 45C (Figure 2B) for which stocks are available. Two of these transposon insertions, P[lacW]l(2)k11209 and P[PZ]l(2)rG232, are in close proximity to P[lacW]k06808 within a ~140-bp region of the first intron of the pkn gene. We designate these alleles as pknR11209 and pknR2G232, respectively (l(2)k11209 and l(2)rG232 were mapped to 45C in Spradling et al. 1999; we mapped l(2)rG232 to genomic position 5172186). We note that the insertions of P[lacW]l(2)k11209 in pknR11209 and P[lacW]k06808 in pknR are in the same orientation such that the 5’终止和3’终止 of the P[lacW] element have the same relative orientation as transcription from the pkn gene (Figure 2A). The P-element of P[PZ]l(2)rG232 is in the opposite orientation. Individuals homozygous for the pknR11209 and pknR2G232 alleles exhibit a similar delorean wing phenotype, and all are able to complement null alleles of the pkn gene (Table 2). Both pknR11209 and pknR2G232 fail to complement pknR as heterozygous individuals have a delorean wing phenotype similar to that of pknR homoygotes (Table 2). We conclude that these P-element insertion alleles exhibit a delorean phenotype because of a similar disruption of pkn gene expression. In addition, the close proximity of the insertion sites indicates that the relative location of the insertions within the first intron is a more important determinant of the mutant phenotype than the type and orientation of the transposon.

Table 2 Quantitative analysis of wing sensory structures in various genetic combinations of pkn alleles

Genotype	pknR	pknR11209a	pknR2G232a	pknR	pknR	pknR11209a
Twin sensilla	2.0 ± 0 (8)	1.07 ± 0.7 (15)	1.36 ± 0.5 (11)	2.0 ± 0 (5)	0.45 ± 0.69 (11)	2.0 ± 0 (5)
Stout	2.0 ± 0 (8)	1.41 ± 0.61 (32)	1.7 ± 0.48 (10)	1.86 ± 0.38 (7)	0.83 ± 0.41 (6)	1.17 ± 0.98 (6)
Ventral recurved	82.1 ± 21.7 (8)	48 ± 13.9 (15)	63.27 ± 6.32 (11)	55.9 ± 23.9 (7)	46.7 ± 5.8 (11)	70.8 ± 5.07 (5)
	76.2 ± 32.4 (10)	53 ± 12.1 (32)	63.2 ± 6.18 (9)	62.9 ± 12.8 (10)	49.8 ± 4.21 (5)	60.7 ± 11.3 (7)

| Genotype | pknR | pknR11209a | pknR2G232a |
|-----------------|-----------------|-----------------|
| Twin sensilla | 1.89 ± 0.33 (9) | 2 ± 0 (10) |
| Stout | 81.2 ± 3.36 (10) | 76.6 ± 5.48 (10) |
| Ventral recurved | 77.6 ± 6.38 (10) | 68.75 ± 5.85 (8) |

Genotypes are in a w1118 background except for pknR2G232 homozygotes, which are in a y1;5 background. The P-element insertion alleles, pknR11209a, pknR11209a, and pknR2G232a, are located in the same intron of the pkn gene (see Figure 2). Homoygotes of the three insertions show the delorean phenotype although to a variable extent. pkn, protein kinase N.

nd = not determined; could not be scored unequivocally because wings were too distorted.
A deletion derivative of the \(P[\text{lacW}]k06808\) insertion exhibits a less-severe \textit{delorean} phenotype

Most of the transposase-induced excisions of the \(P[\text{lacW}]\) element of \(pkn^{\text{dis}}\) resulted in reversion to wild type due to complete loss of the \(P\)-element. However one excision event was imprecise and generated a line (designated \(pkn^{\text{disAS}}\)) that had lost the mini-white\(^{+}\) eye color marker associated with \(P[\text{lacW}]\). This \(pkn^{\text{disAS}}\) derivative was found to have a milder \textit{delorean} phenotype when heterozygous with \(pkn^{\text{dis}}\) (Table 2). gDNA was extracted from individuals homozygous for \(pkn^{\text{disAS}}\) and the region surrounding the \(P[\text{lacW}]\) insertion site was amplified by PCR. DNA sequencing of the PCR product revealed that the \(pkn\) gDNA and most of the \(P[\text{lacW}]\) element was intact, but a 1874-bp deletion had removed part of the mini-white\(^{+}\) cassette of \(P[\text{lacW}]\), hence its white-eyed phenotype.

We found that homozygous \(pkn^{\text{disAS}}\) individuals have a less severe phenotype than \(pkn^{\text{dis}}\) homozygotes (\(P < 0.05\), Table 2). However the \(pkn^{\text{disAS}}\) allele behaves similarly in its interaction with either the loss-of-function allele \(pkn^{\text{dis}}\) or with \(D(2R)w45\) in heterozygous flies, resulting in a wild-type wing phenotype (Table 2). This deletion derivative of the \(P[\text{lacW}]k06808\) insertion also behaves as a recessive mutation, with the only difference between \(pkn^{\text{disAS}}\) and the original \(pkn^{\text{dis}}\) allele being a reduction in the severity of the wing phenotype (Table 2). Of particular note with respect to the \(pkn^{\text{disAS}}\) allele is its ability to increase the expression of the intact mini-white\(^{+}\) marker of \(P[\text{lacW}]\) present in \(pkn^{\text{dis}}\) when flies are heterozygous for these alleles are examined (\(pkn^{\text{disAS}}/pkn^{\text{dis}}\), Figure 3A). This "trans-allelic" interaction does not require the presence of extensive homology between paired transposons or a precisely shared insertion site. This conclusion is based on the elevated expression of the mini-white\(^{+}\) marker of \(pkn^{\text{dis}}\) when heterozygous with \(pkn^{\text{G232}}\) (Figure 3B), an allele caused by the insertion of the \(P[PZ]\) transposon that carries the rosy gene as a marker and contains only the \(P\)-element ends and the \(lacZ\) gene in common with \(P[\text{lacW}]\).

Molecular analysis of expression from the \textit{delorean} allele

To better understand the molecular basis of the \textit{delorean} phenotype, we wanted to determine the nature of transcription from the \(pkn^{\text{dis}}\) allele. An examination of the modENCODE Temporal Expression Data (flybase; http://flybase.org/reports/FBGn0020621.html) informed our choice of the white pupae stage as the source of RNA to be analyzed. We reasoned that this stage of development had moderate levels of expression and would also be undergoing significant development of the wing discs. \(5^\prime\) RACE on total RNA isolated from 1-d-old pupae resulted in two products in \(pkn^{\text{dis}}\) homozygotes and \(pkn^{\text{dis}}/D(2R)w45\) hemizygotes (Figure 4A). The smaller of the two products was found to comigrate with the wild-type product. Sequencing of the RACE products revealed that this smaller \(pkn^{\text{dis}}\) product is equivalent to the wild-type transcript (Figure 4B), demonstrating that the intron containing the \(P\)-element insertion can be recognized and excised in both \(pkn^{\text{dis}}\) homozygotes and \(pkn^{\text{dis}}/D(2R)w45\) hemizygotes. Sequencing of the larger of the two \(pkn^{\text{dis}}\)-derived RACE products indicates that transcription from the \(pkn^{\text{dis}}\) allele initiates within the \(3^\prime\) end of the \(P\)-element (P3'; Figure 4C). The \(5^\prime\) end of the \textit{delorean}-specific transcript begins with 63 nucleotides derived from the P3' end of \(P[\text{lacW}]\), followed by 122 nucleotides of the first intron immediately downstream of the insertion site that are then spliced to the \(5^\prime\) end of exon 2. Thus, the \(pkn\) transcripts in \(pkn^{\text{dis}}\) flies represent a mixture of wild-type and aberrant messenger RNAs. The protein made using the \textit{delorean}-specific transcript is predicted to be identical to that made by the wild-type transcripts. These results confirm our genetic analyses characterizing the \textit{delorean} phenotype as a gain-of-function mutation.

The \textit{delorean} phenotype can be enhanced by loss of JNK pathway components

To better understand the cell biological basis of the \textit{delorean} phenotype, we examined its genetic interaction with mutations that have been previously identified to interact with the \(pkn\) loss-of-function allele \(pkn^{\text{dis}}\) during embryonic development. We looked specifically at the \textit{Drosophila} homolog of mammalian Jun-N-terminal kinase (D-JNK), encoded by \(bsk\). The loss-of-function \(bsk^{l}\) allele increased the frequency of embryos with dorsal closure defects derived from \(pkn^{\text{dis}}\) germ line clones (Lu and Settleman 1999). We found that the \textit{delorean} wing phenotype is enhanced upon reduction of D-JNK when we observed the anterior wing margin of \textit{delorean} homozygotes that carry one copy of the \(bsk^{l}\) allele (genotype: \(bsk^{l}\) \(pkn^{\text{dis}}\) / \(pkn^{\text{dis}}\), Figure 5). Compared with \(pkn^{\text{dis}}/pkn^{\text{dis}}\) homozygotes alone, the average numbers of twin sensillae (0.43 vs. 1.07), stout bristles (42.5 vs. 48), and ventral recurved bristles (5.86 vs. 6.57) in females are reduced in
bsk\(^{pkndln}\) / \(pkndln\) flies (see Table 3). This suggests that the \textit{delorean} mutation causes a disruption in some aspect of wing morphogenesis that may be related to a function also mediated by the JNK pathway.

The parallel nature of the interaction between a component of the JNK signaling pathway and the \(pkndln\) and \(pkn06736\) alleles as observed in two different morphogenetic processes prompted us to examine other participants in JNK signaling. We examined the \textit{Drosophila} Nemo-like kinase (\textit{nmo}) because of its potential role in the integration of signaling pathways involved in regulation of wing patterning (\textit{wg} and \textit{dpp} signaling) with JNK-mediated programmed cell death (Mirkovic \textit{et al.} 2002). Defects associated with the anterior wing margin and wing crossveins are enhanced upon reduction of \textit{Nmo} (Figure 6A, genotype: \(pkndln/pkndln; nmo^{P}/nmo^{+}\)). We found that 50% of flies with the genotype \(pkndln/pkndln; nmo^{P}/nmo^{+}\) exhibit complete or partial loss of anterior or posterior crossveins, or both. Loss of crossvein structure is not typically seen in \(pkndln/pkndln\) flies but is a reported consequence of expressing \textit{nmo} in the wing using an epidermal Gal4 driver (Verheyen \textit{et al.} 2001; Mirkovic \textit{et al.} 2002). The extreme loss of anterior wing margin material in \(pkndln/pkndln; nmo^{P}/nmo^{+}\) flies made it difficult to complete our standard quantitative analysis without a bias in the samples analyzed. Nonetheless, it is clear that a reduction in the level of \textit{Nmo} dramatically affects the \textit{delorean} phenotype and our analysis of the wings from \(pkndln/pkndln; nmo^{P}/nmo^{+}\) individuals suggests that the balance between JNK signaling and signaling pathways involved in patterning of the wing is also compromised in \(pkndln\) homozygotes.

We also wanted to explore interactions with Rho pathway components that have been found to be involved in wing morphogenesis. Expression of a kinase-deficient form of LIM-kinase 1 (\textit{LIMK1}) results in wing and leg malformations that can be suppressed if the levels of \textit{Rho1} are reduced (Chen \textit{et al.} 2004). This genetic interaction is not seen with \textit{PKN} however as the loss-of-function allele \(pkndln\) does not have the same ability to suppress the effects of the kinase-deficient \textit{LIMK1} (Chen \textit{et al.} 2004). We examined whether \textit{LIMK\(^{Y807S}\)} affected the \textit{delorean} phenotype using flies of the genotype \(y^{w67c23}; P\{EPgy2\}LIMK1\(^{EY08757}\); \(pkndln\) / \(pkndln\). We did not find
a significant difference in phenotype relative to pkndln/pkndln homozygotes (Figure 5 and Table 3). This informs us that PKN’s effector function is not likely to be related to that of LIMK1.

DISCUSSION

Characterization of the pkndln allele

We have characterized the delorean mutation that causes defects in wing morphology due to a P[lacW] insertion in the protein kinase N (pkn) gene of Drosophila melanogaster. An essential function of the pkn gene is not disrupted by the P[lacW] insertion because individuals homozygous for the pkndln allele can be recovered in expected numbers. Although the wing phenotype of heterozygous pkndln/pkndln individuals is wild type in all respects, the effect of the transposon insertion cannot be classified as a loss-of-function mutation. This is shown by the wild-type wing morphology of individuals that are hemizygous for the pkndln allele (pkndln/Df(2R)w45-30n) and because the reduction of pkn RNA in wing tissue using RNA interference has no phenotypic consequence. Moreover, it is clear that the delorean wing phenotype is only seen when both alleles present contain a transposon insertion (or a derivative of this transposon) within a 140-bp region of the first intron of the pkn gene. For these reasons, we consider the delorean phenotype to be caused by a recessive mutation.

A model of the molecular structure of the pkn gene based on annotated transcripts that have been identified to date indicates that there are a number of alternative transcription start sites as well as alternate exon usage (Figure 2A; http://www.ifybase.org). Of the four predicted alternative transcription start sites, there are three that would generate a transcript capable of encoding the amino-terminal domain of PKN required for both Rho binding and the ability to rescue the loss-of-function pkndln allele (Lu and Settleman 1999). The position of the P[lacW] insertion of pkndln reflects the bias that P-elements have for insertion near promoters and 5’ regulatory regions (Berg and Spradling 1991) and would likely have an impact on one of the more well-supported transcripts (indicated by darker shading in Figure 2A) that uses the 5’ most transcription start site. Our molecular analysis of the delorean allele using 5’ RACE aimed to determine how a transposon insertion within the first intron of the pkn gene could generate a mutant phenotype. The presence of P[lacW] does not prevent the proper splicing of the first two pkn exons and indicates that the predicted, wild-type transcript can be generated using the 5’ most transcription start site. Our 5’ RACE analysis also identified a transcript specific to the delorean allele that is the result of initiation from within the 3’ end of the P[lacW] transposon and includes intron sequence spliced to the second exon of the pkn gene. The predicted PKN protein produced from the delorean transcript is the same as that from the wild-type transcript. Given our determination that the composite delorean phenotype is not the result of a loss-of-function mutation, it

Figure 5 The delorean mutation interacts with basket but not with LIMK1. (A-A’): Dissected wing of pkndln/pkndln shows the delorean phenotype. (B, B’) Dissected wing of bsk1 pkndln/pkndln shows a more severe delorean phenotype. (C, C’) Dissected wing of LIMK1EY08757/LIMK1*; pkndln/pkndln shows the delorean phenotype. See Table 3 for quantitative analysis. Left panels (A, B, C) are whole wings, scale bar = 0.2 mm. Right panels (A’, B’, C’) are close-ups of anterior wing margins, bar = 0.1 mm.

Table 3 Quantitative analysis of wing sensory structures of pkndln homozygotes in combination with basket or LIMK1 indicate that bsk can enhance the severity of the delorean mutation

| Genotype | pkn
|---------|---------|---------|---------|
genotype	pkndln	bsk1 pkndln	LIMK1EY08757/ pkndln	LIMK1* pkndln
Twin	1.07 ± 0.7 (15)	0.43 ± 0.51 (14)	1 ± 0 (6)	
sensillae	1.41 ± 0.61 (32)	0.75 ± 0.75 (12)	1.33 ± 0.82 (6)	
Stout	48 ± 13.9 (15)	42.5 ± 11.9 (20)	53.6 ± 8.92 (7)	
Ventral	53 ± 12.1 (32)	42.4 ± 8.23 (13)	57.3 ± 3.67 (6)	
recurred	6.57 ± 2.9 (12)	5.86 ± 1.95 (7)	4.25 ± 2.22 (4)	

| | 5.69 ± 2.35 (29) | 4.18 ± 1.94 (11) | 7.17 ± 1.17 (6) |

Format is same as in Table 1 and Table 2. Flies that are heterozygous for a loss-of-function allele of basket (bsk1) in a pkndln homologous background have on average significantly fewer twin campaniform sensillae than flies that are homozygous for the pkndln insertion alone and flies heterozygous for a loss of function allele of LIMK1 in a pkndln homologous background (P < 0.05). The same significant reduction is found when comparing average number of stout mechano-sensory bristles in male flies but not in females. Average number of ventral recurred bristles was significantly different between bsk1 pkndln/pkndln and LIMK1*; pkndln/pkndln flies (P < 0.05) but not between bsk1 pkndln/pkndln and pkndln/pkndln flies. Data were analyzed by Kruskal-Wallis tests followed by Tukey’s HSD.
is reasonable to assume that the identified delorean-specific transcript generated from the pkndln allele is the cause of the mutant phenotype. Our finding that reducing the levels of pkn transcript using RNAi has no effect on wing morphology is in support of this conclusion. For these reasons it is likely that the delorean phenotype is due to altered regulation or ectopic expression of the delorean-specific transcript. A similar situation has been described previously (LaFave and Sekelsky 2011) whereby initiation of transcription was found to occur from within a F-element. The authors conclude that an outcome of such cryptic transcription would likely be altered expression of the gene under study.

Our genetic analysis indicates that the pairing context of the pkndln allele is an important determinant of the delorean phenotype. This is demonstrated by our observations of the pkndln allele, an imprecise excision derivative of pknd that has a deletion within the mini-white gene marker of P[lacW] and is as a result white-eyed. Expression of the intact mini-white reporter in the pkndln allele is elevated in pkndln/pkndln heterozygotes as revealed by their eye phenotype, which is darker than pkndln/pkn+ individuals. Transcription from the mini-white gene is correlated with the degree of pigmentation (Silicheva et al. 2010). An increase in expression of the mini-white reporter may reflect the creation of a local chromosomal environment that is favorable for transcription in this heteroallelic state due to the presence of paired insertion-bearing alleles. The responsiveness of the mini-white gene to the chromatin environment is well known (Bier et al. 1989; Zhang and Odenwald 1995). It follows that the paired state of the delorean allele (or its derivative) as is found in pkndln/pkndln, represents an optimized conditions for expression of both the mini-white reporter and the delorean-specific pkn transcript that generates the mutant wing phenotype. We consider it reasonable that the delorean phenotype in pkndln/pkndln, Dp(2;3)eve1.18 individuals that are wild type in all respects except for the held up position of their wings (also seen in pkndln homozygotes). The lack of rescue by an additional copy of the pkn gene present in Dp(2;3)eve1.18 is not unexpected in the case of a mutant phenotype caused by misexpression of a pkn transcript, as we have argued to be the case for the pkndln allele. In fact the observation that there is suppression at all argues the amount of misexpressed pkn has been reduced. The presence of an additional homologous pairing partner could influence the interaction between the pkndln alleles. Somatic pairing of homologous chromosomal regions is robust in Drosophila (Apte and Meller 2012) and the local chromosomal interactions that result are not only common (Chen et al. 2002; Mellert and Truman 2012) but with profound influence on expression (Sass and Henikoff 1999; Wu and Morris 1999; Ou et al. 2009). We postulate that in an unpaired state the pkndln allele in pkndln/pkndln; Dp(2;3)eve1.18 individuals would still be able to express the delorean-specific transcript, albeit at lower levels due to asynapsis (Goldsborough and Kornberg 1996), and thereby with reduced phenotypic impact (i.e., result in a held-up wing phenotype but a wild-type anterior wing margin, for example). The pkndln allele would also be in an “unpaired” state when hemizygous with a deficiency of the pkn gene. We observed that wings of pkndln/Df(2R) w45-30n hemizygotes are also on occasion held up vertically and a similar phenotype has been reported for pkn5232/ Df(2R)w45-30n hemizygotes (Zhang et al. 1996). The absence of the pkn gene region in trans to the insertion-bearing pkndln chromosome may favor a change in the topology of the region such that the transcription of a wild-type pkn product is favored over that of the delorean-specific transcript. Changes in topology have also been suggested to mediate the “enhancer bypass” mechanism underlying specific cases of transvection (Morris et al. 1998). The “held-up” wing phenotype seen in pkndln/pkndln; Dp(2;3)eve1.18 and pkndln/Df(2R) individuals would then reflect a sensitivity to low levels of misexpression from the pkndln allele that persists in an unpaired state (see Model, Figure 7). Thus we consider the delorean wing phenotype to be due to a pairing-dependent, recessive mutation that behaves as a dose-sensitive, gain-of-function due to misexpression.

Figure 6 The delorean mutation interacts with nemo. (A, A’) Dissected wing of pkndln/pkndln; nmo+/nmo+ shows a more extreme delorean phenotype than wings of pkndln siblings without nmo+. Gaps in crossveins are indicated by arrows. (B, B’) Dissected wing of pkndln/pkndln shows the delorean phenotype. (C, C’) Dissected wing of pkndln/pkndln; nmo/nmo shows a wild-type phenotype. Left panels (A, B, C) are whole wings, scale bar = 0.2 mm, and right panels (A’, B’, C’) are close-ups of anterior wing margins, bar = 0.1 mm.
Comparative analysis of the delorean phenotype

We have described the wing phenotype associated with the \textit{pkn}^{\text{dim}} allele as a composite of several morphological defects. Changes in the overall position and structure of the wing are seen in \textit{delorean} homozygotes as a held up wing and a ventral curvature of the wing, respectively. The flightless, held up wing phenotype of \textit{delorean} flies resembles that of known \textit{Drosophila} mutants with defects in flight muscles (vertical wings, Deak 1977; \textit{upheld}, Deak \textit{et al}. 1982; \textit{wings up} \textit{A}——a mutation in the muscle protein troponin, Barbas \textit{et al}. 1993). The curved wing phenotype of \textit{pkn}^{\text{dim}} homozygotes suggests a disruption of epithelial cell morphology or changes in cell growth that would alter the relationship between the dorsal and ventral surfaces of the adult wing. Also associated with the \textit{delorean} phenotype is a reduction in sensory structures and venation defects. The loss of a subset of anterior wing margin bristles suggests a patterning defect whereby external sensory organ structures are transformed to internal structures. Errors in patterning could also explain the ectopic veins formed in \textit{delorean} mutants as epithelial cells of the developing wing disc fail to make the appropriate choice between a vein or intervein fate. Such a varied response within a single tissue provides a unique opportunity to establish a mechanism by which misexpression of \textit{pkn} mediates these apparently diverse effects and in turn determine the genetic interactions that are required for PKN involvement in wing morphogenesis.

Previous studies of the \textit{pkn} gene in \textit{Drosophila} have used a loss-of-function mutation that is the result of a \textit{P[PZ]} transposon insertion in the fifth intron of the \textit{pkn} gene generating the embryonic lethal, \textit{pkn}^{96736} allele (Lu and Settleman 1999; see Figure 2A). The embryonic lethality of \textit{pkn}^{96736} can be rescued with a \textit{pkn} cDNA that is expressed using a heat shock promoter (Benton and Settleman 2007). Rescued individuals exhibit a mild adult wing phenotype that exhibits considerable variability that may reflect a functional redundancy in PKN function at later stages of development. The absence of a loss-of-function phenotype due to functional redundancy has been argued to be the case for at least 60% of genes in \textit{Drosophila} (Miklos and Rubin 1996) and places constraints on the use of the \textit{pkn}^{96736} allele in an analysis of PKN function. For this reason, our analysis of the \textit{delorean} wing phenotype was undertaken to better understand the molecular lesion associated with \textit{pkn}^{\text{dim}} as it represents a unique allele of \textit{pkn} that is adult viable and not the result of a loss-of-function mutation. Furthermore, our characterization of the molecular structure of \textit{pkn}^{\text{dim}} indicates that this particular allele represents an opportunity to study the effects of misexpression of the \textit{pkn} gene.

Figure 7 Pairing dependence of \textit{pkn}^{\text{dim}} expression as a working model to explain the \textit{delorean} phenotype. The model depicts the 5’ end of the \textit{pkn} gene showing only the affected region of the gene (first two exons and intron 1; refer to Figure 2). Thickness of arrows represents assumed relative levels of transcription. Transcription of the wild-type transcript (\textit{pkn}+) begins at the first exon. Initiation of the \textit{delorean}-specific transcript, referred to as \textit{pkn}^{\text{dim}}, from within the \textit{P}-element generates a transcript that is either expressed ectopically or regulated differently than \textit{pkn}+. Relative levels of \textit{pkn}+ and \textit{pkn}^{\text{dim}} transcripts are given with the “+” symbol. The schematic in the far right column depicts the position and shape of the wing for each genotype. (A) A reduction in the expression of wild-type \textit{pkn} and an increase in the expression of \textit{pkn}^{\text{dim}}, occurs when the \textit{pkn}^{\text{dim}} allele is homozygous. The level of \textit{pkn}^{\text{dim}} expression is elevated as a result of pairing thereby causing the composite wing defects of the \textit{delorean} phenotype.

level of wild-type transcript may be reduced due to the additional sequence in the form of the \textit{P}-element in the first intron that must be removed by splicing. (B) Levels of the \textit{delorean}-specific transcript are reduced in \textit{pkn}^{\text{dim}}/\textit{pkn}+ heterozygotes due to the absence of \textit{P}[lacW] in trans to the \textit{pkn}^{\text{dim}} allele. The reduction in the level of \textit{pkn}^{\text{dim}} transcript is below a threshold needed to generate a phenotype. (C, D) Our analysis of heteroallelic combinations of \textit{pkn} alleles also lead us to the conclusion that a reduction in the level of \textit{delorean}-specific transcript occurs in the absence of either any homology-based pairing in trans (\textit{C}; \textit{pkn}^{\text{dim}}/\textit{Df(2R)}) or when pairing is disrupted (\textit{D}; \textit{pkn}^{\text{dim}}/\textit{pkn}+; \textit{Dp(2:3)}). In the case of \textit{pkn}^{\text{dim}}/\textit{Df(2R)} there would be a reduction in the level of both \textit{pkn}^{\text{dim}} and \textit{pkn}+ transcripts. Reduced levels of \textit{pkn}^{\text{dim}} transcript can suppress the \textit{delorean} phenotype. In the case of \textit{pkn}^{\text{dim}}/\textit{pkn}+; \textit{Dp(2:3)}, the transposed sequence present in the duplication (\textit{Dp}) is able to disrupt pairing between the \textit{pkn}^{\text{dim}} alleles due to homology resulting in decreased \textit{pkn}^{\text{dim}} transcript levels. It is also likely that the level of wild-type \textit{pkn} transcription is affected by the pairing state at the \textit{pkn} gene. We consider it reasonable to infer that the relative levels of a \textit{delorean}-specific transcript are involved in determining the extent of the \textit{delorean} phenotype.
That the delorean phenotype represents a misexpression of PKN in affected tissues is supported by the observation of Betson and Settleman (2007) that overexpression of the kinase domain of PKN specifically in the wing margin generates a wing phenotype that is analogous to the anterior wing margin defects of delorean flies. Loss of sensory bristles along the anterior wing margin as well as alteration of posterior wing hairs was associated with expression of the PKN kinase domain in the wing margin (Betson and Settleman 2007). We note that posterior wing margin defects are not seen in delorean mutants and this may reflect an anterior wing-specific expression pattern of the pknallele. Nonetheless, the correspondence of the anterior wing margin phenotypes demonstrates that misexpression of the delorean-specific transcript behaves similarly to the overexpression of the PKN kinase domain lacking the normal amino-terminal regulatory domains that mediate Rho-GTPase binding (Betson and Settleman 2007). The N-terminal region of PKN is autoinhibitory and it is thought to restrict the kinase activity of the catalytic domain in the absence of activators such as Rho1 (Yoshinaga et al. 1999). If the kinase activity of ectopically expressed pkn can be activated (by Rho1 or another putative activator Rac1), it would be equivalent to overexpression of the kinase domain. Thus misexpression of the pkn transcript, like overexpression of the kinase domain of PKN, can cause alterations in anterior wing margin morphogenesis.

Involvement of pkn in wing morphogenesis

Genetic interactions between pkn and the bsk and LIMK1 genes have previously been examined in the context of the loss-of-function allele pknmutant (Lu and Settleman 1999; Chen et al. 2004). Our examination reveals that the essential nature of these interactions is maintained in the context of the pknmutant allele and can be expanded to include the process of wing morphogenesis. We observed that reduction of Lim Kinase 1 has no significant effect on the delorean wing phenotype. Lack of a notable interaction between pknmutant and overexpression of LIMK1 was previously observed and found to be in contrast to the considerable impact that loss of Rho1 had on suppression of the wing phenotype associated with overexpression of LIMK1 (Chen et al. 2004). This finding is consistent with the notion that PKN is just one of multiple target effectors that function downstream of Rho1 in any given process or tissue, especially one that would involve a diverse array of responses as needed during wing morphogenesis.

Lu and Settleman (1999) found that reduced levels of a component of the JNK signaling pathway (bsk; D-JNK) causes an increase in the dorsal closure defects associated with loss of PKN function in germ-line clones. We see a similar enhancement of the delorean wing phenotype when the dose of bsk is reduced. This extends the observation that the function of the Rho1-PKN and JNK signaling cascades converge at some point in their function as regulators during embryogenesis (Lu and Settleman 1999) to processes occurring during wing morphogenesis. The enhancement of the delorean phenotype upon reduction of Nmo, the founding member of the Nemo-like kinase family of kinases, adds additional evidence in this regard. Nemo-like kinases coordinate the activity of multiple signals as they mediate cross talk between various pathways (Ishitani and Ishitani 2013). In such a capacity, Drosophila Nmo plays a key regulatory role as an antagonist of the Wingless signaling pathway during patterning of the developing wing (Zeng and Verheyen 2004). It has also been implicated in the regulation of the JNK pathway and programmed cell death (Mirkovic et al. 2002) probably by a process of “morphogenetic apoptosis,” whereby JNK-mediated apoptosis is activated to correct developmental patterning errors (Igaki 2009). Thus, simultaneous reduction of Nmo and misexpression of PKN could have disruptive effects on the integration of a number of signaling pathways involved in wing morphogenesis—Wingless, Rho1, JNK. The observed enhancement of the delorean phenotype upon reduction of a regulator (Nmo) and component (D-JNK) of the JNK pathway leads us to speculate about the possibility that PKN may be involved in mediating the previously established dynamic relationship between Rho1 and activation of apoptosis via the JNK pathway (Neisch et al. 2010). We note that in this role PKN might not be the only downstream effector target of Rho1 given the observation that dorsal closure defects in Rho1 mutants cannot be rescued by elevated levels of PKN (Lu and Settleman 1999). Nonetheless, our results add weight to the argument that PKN acts as an effector of Rho1 signaling and expands its possible function to wing morphogenesis.

The role of Pkn as a Rho1 effector

Rho GTPases are critical participants in the orchestration of modifications to cell architecture that must occur during tissue morphogenesis. The array of different biological processes that can be regulated by Rho GTPases coupled with the significant degree of coordination that occurs between them makes an analysis of Rho GTPase signaling pathways a challenge. One approach to understanding the function of Rho GTPases is to determine key effectors in a given signaling event, in a specific tissue. We report here on the development of such a system in Drosophila that will allow us to more fully examine the role of the Rho1-Pkn pathway in wing morphogenesis.

ACKNOWLEDGMENTS

We thank Mark Peifer, Martin Burg, and two anonymous reviewers for critical reading of the manuscript. B.D.O. thanks Karen Blochinger and John Luechies for lab space and support and Ed Ginger for the P[lacW] probe. Support for this project was provided to G.L.S. in part by Grand Valley State University’s Center for Creative and Scholarly Excellence. We thank GVSU’s Statistical Consulting Center for help with data analysis and GVSU’s Annis Water Resources Institute Sequencing Facility for assistance with sequence analysis.

LITERATURE CITED

Apte, M. S., and V. H. Meller, 2012 Homologue pairing in flies and mammals: gene regulation when two are involved. Genet. Res. Int. 2012:e430587.
Ashburner, M., 1989 Drosophila A Laboratory Manual. Cold Spring Harbor Press, New York.
Baek, S. H., Y. C. Kwon, H. Lee, and K. M. Choe, 2010 Rho-family small GTPases are required for cell polarization and directional sensing in Drosophila wound healing. Biochem. Biophys. Res. Commun. 394: 488–492.
Bahri, S., S. Wang, R. Conder, J. Choy, S. Vlachos et al., 2010 The leading edge during dorsal closure as a model for epithelial plasticity: Pak is required for recruitment of the Scribble complex and septate junction formation. Development 137: 2023–2032.
Barbas, J. A., J. Galceran, L. Torroja, A. Prado, and A. Ferrus, 1993 Abnormal muscle development in the heldup mutant of Drosophila melanogaster is caused by a splicing defect affecting selected troponin I isoforms. Mol. Cell. Biol. 13: 1433–1439.
Berg, C. A., and A. C. Spradling, 1991 Studies on the rate and site-specificity of P element transposition. Genetics 127: 515–524.
Betson, M., and J. Settleman, 2007 A Rho-binding protein kinase C-like activity is required for the function of protein kinase N in Drosophila development. Genetics 176: 2201–2212.
Bier, E., H. Vaessen, S. Shepherd, K. Lee, K. McCall et al., 1989 Searching for pattern and mutation in the Drosophila genome with P-lacZ vector. Genes Dev. 3: 1273–1287.
Bishop, A. L., and A. Hall, 2000 Rho GTPases and their effector proteins. Biochem. J. 348: 241–255.

Boureux, A., E. Vignal, S. Faure, and P. Fort, 2007 Evolution of the Rho family of Ras-like GTPases in eukaryotes. Mol. Biol. Evol. 24: 203–216.

Bustelo, X. R., V. Sauzeau, and I. M. Berenjeno, 2007 GTP-binding proteins of the Rho/Rac family: regulation, effectors and functions in vivo. Bioessays 29: 356–370.

Calautti, E., M. Grossi, C. Mammacari, Y. Aoyama, M. Pirro et al., 2002 Fyn tyrosine kinase is a downstream mediator of Rho/PRK2 function in keratinocyte cell-cell adhesion. J. Cell Biol. 156: 137–148.

Chen, G.-C., P. Gajowniczek, and J. Settleman, 2004 Rho-LIM kinase signaling regulates ec dysome-induced gene expression and morphogenesis during Drosophila metamorphosis. Curr. Biol. 14: 309–313.

Chen, J. L., K. L. Huisinga, M. M. Viering, S. A. Ou, C. T. Wu et al., 2002 Enhancer action in trans is permitted throughout the Drosophila genome. Proc. Natl. Acad. Sci. USA 99: 3723–3728.

Coleman, M. L., and M. F. Olson, 2002 Rho GTPase signalling pathways in the morphological changes associated with apoptosis. Cell Death Differ. 9: 493–504.

Deak, I. I., 1977 Mutations of Drosophila melanogaster that affect muscles. J. Embryol. Exp. Morphol. 40: 35–63.

Deak, I. I., P. R. Bellamy, M. Bienz, Y. Dubuis, E. Fenner et al., 1982 Mutations affecting the indirect function in Drosophila fl. J. Embryol. Exp. Morphol. 40: 1378–1384.

Deak, I. I., 2012 Rho family GTPases. Biochem. Soc. Trans. 40: 1378–1384.

Guilluy, C., R. Garcia-Mata, and K. Burridge, 2011 Rho protein crosstalk: the structural basis of Rho effector recognition revealed by the crystal structural of RhoA complexed with the effector domain of PKN/PRK1. Mol. Cell. 4: 793–803.

Mellert, D. J., and J. W. Truman, 2012 Transcription is common throughout the Drosophila genome. Genetics 191: 1129–1141.

Metzger, E., J. M. Muller, S. Ferrari, R. Buettner, and R. Schule, 2003 A novel inducible transactivation domain in the androgen receptor: implications for PRK in prostate cancer. EMBO J. 22: 270–280.

Miklos, G. L., and G. M. Rubin, 1996 The role of the genome project in determining gene function: insights from model organisms. Cell 86: 521–529.

Mirkovic, I., K. Charish, S. M. Gorski, K. McKnight, and E. M. Verheyen, 2002 Drosophila nemo is an essential gene involved in the regulation of programmed cell death. Mech. Dev. 119: 9–20.

Mukai, H., K. Morii, H. Hatakanaga, M. Kitagawa, H. Shibata et al., 1995 Xenopus PKN: cloning and sequencing of the cDNA and identification of conserved domains. Biochim. Biophys. Acta 1261: 296–300.

Mukai, H., M. Miyahara, H. Sunakawa, H. Shibata, M. Toshimori et al., 1996 Translocation of PKN from the cytosol to the nucleus induced by stress. Proc. Natl. Acad. Sci. USA 93: 10195–10199.

Mukai, H., M. Toshimori, H. Shibata, H. Hatakanaga, M. Kitagawa et al., 1997 Interaction of PKN with alpha-actinin. J. Biol. Chem. 272: 4740–4746.

Neisch, A. L., O. Speck, B. Stronach, and R. G. Fehon, 2010 Rho1 regulates apoptosis via activation of the JNK signaling pathway at the plasma membrane. J. Cell Biol. 189: 311–323.

Ou, S. A., E. Chang, S. Lee, K. So et al., 2009 Effects of chromosomal rearrangements on transcription at the yellow gene of Drosophila melanogaster. Genetics 183: 483–496.

Palmer, R. H., J. Ridden, and P. J. Parker, 1995 Cloning and expression patterns of two members of a novel protein-kinase-C-related kinase family. Eur. J. Biochem. 227: 344–351.

Pardue, M. L., 1986 In situ hybridization to DNA of chromosomes and nuclei, pp. 111–137 in Drosophila: A Practical Approach, edited by D. B. Roberts. IRL Press, Oxford.

Pearce, L. R., D. Komander, and D. R. Alessi, 2010 The nuts and bolts of AGC protein kinases. Nat. Rev. Mol. Cell Biol. 11: 9–22.

Pires-daSilva, A., and R. J. Sommer, 2006 The evolution of signalling pathways in animal development. Nat. Rev. Genet. 4: 39–49.

Provenzano, P. P., and P. J. Keely, 2011 Mechanical signaling through the cytoskeleton regulates cell proliferation by coordinated focal adhesion and Rho GTPase signaling. J. Cell Sci. 124: 1195–1205.

Ridley, A. J., 2012 Historical overview of Rho GTPases. Methods Mol. Biol. 827: 3–12.

Sass, G. L., and S. Henikoff, 1999 Pairing-dependent mislocalization of a Drosophila brown gene reporter to a heterochromatin environment. Genetics 152: 595–604.

Siličheva, M., A. Golovnin, E. Pomerantseva, A. Parshikov et al., 2010 Drosophila mini-white model system: new insights into positive position effects and the role of transcriptional terminators and gypsy insulator in transgene shielding. Nucleic Acids Res. 38: 39–47.

Speierding, D., and L. Hodgson, 2011 Dynamics of the Rho-family small GTPases in actin regulation and motility. Cell Adhes. Migr. 5: 170–180.

Spradling, A. C., D. Stern, A. Beaton, E. J. Rhem, T. Laverty et al., 1999 The Berkeley Drosophila Genome Project gene disruption project: single P-element insertions mutating 25% of the vital Drosophila genes. Genetics 153: 135–177.
Stapleton, G., C. P. Nguyen, K. A. Lease, and M. B. Hille, 1998 Phosphorylation of protein kinase C-related kinase PRK2 during meiotic maturation of starfish oocytes. Dev. Biol. 193: 36–46.

Torok, T., G. Tick, M. Alvarado, and I. Kiss, 1993 P-lacW insertional mutagenesis on the second chromosome of Drosophila melanogaster: isolation of lethals with different overgrowth phenotypes. Genetics 135: 71–80.

Ueno, N., I. Oishi, S. Sugiyama, Y. Nishida, Y. Minami et al., 1997 Identification of a novel Drosophila protein kinase highly homologous to protein kinase N (PKN). Biochem. Biophys. Res. Commun. 232: 126–129.

Unsal-Kacmaz, K., S. Raganathan, E. Rosfjord, S. Dann, E. Upeslacis et al., 2012 The interaction of PKN3 with RhoC promotes malignant growth. Mol. Oncol. 6: 284–298.

Vega, F. M., and A. J. Ridley, 2008 Rho GTPases in cancer cell biology. FEBS Lett. 582: 2093–2101.

Verheyen, E. M., I. Mirkovic, S. J. MacLean, C. Langmann et al., 2001 The tissue polarity gene nemo carries out multiple roles in patterning during Drosophila development. Mech. Dev. 101: 119–132.

Vincent, S., and J. Settleman, 1997 The PRK2 kinase is a potential effector target of both Rho and Rac GTPases and regulates actin cytoskeletal organisation. Mol. Cell. Biol. 17: 2247–2256.

Wennerberg, K., K. Rossman, and C. Der, 2005 The Ras superfamily at a glance. J. Cell Sci. 118: 843–846.

Wu, C. T., and J. R. Morris, 1999 Transvection and other homology effects. Curr. Opin. Genet. Dev. 9: 237–246.

Yoshinaga, C., H. Mukai, M. Toshimori, M. Miyamoto, and Y. Ono, 1999 Mutational analysis of the regulatory mechanism of PKN: the regulatory region of PKN contains an arachidonic acid-sensitive auto-inhibitory domain. J. Biochem. 126: 475–484.

Zeng, Y. A., and E. M. Verheyen, 2004 Nemo is an inducible antagonist of Wingless signaling during Drosophila wing development. Development 131: 2911–2920.

Zhang, N., J. Zhang, Y. Cheng, and K. Howard, 1996 Identification and genetic analysis of wunen, a gene guiding Drosophila melanogaster germ cell migration. Genetics 143: 1231–1241.

Zhang, S. D., and W. F. Odenwald, 1995 Misexpression of the white (w) gene triggers male-male courtship in Drosophila. Proc. Natl. Acad. Sci. USA 92: 5525–5529.

Communicating editor: H. D. Lipshitz