Indigenous uses of wild and tended plant biodiversity maintain ecosystem services in agricultural landscapes of the Terai Plains of Nepal

CURRENT STATUS: UNDER REVIEW

Journal of Ethnobiology and Ethnomedicine • BMC

Jessica P. R. Thorn
University of York

jessica.thorn@york.ac.uk Corresponding Author
ORCiD: https://orcid.org/0000-0003-2108-2554

Thomas F. Thornton
University of Oxford School of Geography and Environment

Ariella Helfgott
University of Oxford

Katherine J. Willis
University of Oxford Department of Zoology, University of Bergen Department of Biology, Kew Royal Botanical Gardens

DOI: 10.21203/rs.2.18028/v2

SUBJECT AREAS
Agroecology Botany

KEYWORDS
agrobiodiversity conservation; ethnopharmacology; ethnobotany; ethnoecology; ethnomedicine; food security; indigenous knowledge; medicinal plants; traditional ecological knowledge
Abstract

Background Despite a rapidly accumulating evidence base quantifying ecosystem services, the role of biodiversity in the maintenance of ecosystem services in shared human-nature environments is still understudied, as is how indigenous and agriculturally dependent communities perceive, use and manage biodiversity. The present study aims to document traditional ethnobotanical knowledge of the ecosystem service benefits derived from wild and tended plants in rice-cultivated agroecosystems, compare this to botanical surveys, and analyse the extent to which ecosystem services contribute social-ecological resilience in the Terai Plains of Nepal.

Method Sampling was carried out in four landscapes, 22 Village District Committees and 40 wards in the monsoon season. Data collection was based on transects walks to collect plant specimens, structured and semi-structured interviews, and participatory fieldwork in and around home gardens, farms, and production landscapes. We asked 180 farmers to free-list vernacular names and describe use-value of wild and tended plants in rice-cultivated agroecosystems. Uses were categorized into eight broad groupings, and 61 biomedical ailment classifications. We assessed if knowledge of plant species diversity and abundance differed with regard to caste, age and gender.

Results Nepalese farmers have a deep knowledge of the use and management of the 391 vascular plant specimens identified, which provide key provisioning, regulating, supporting and cultural ecosystem services. Altogether, plants belong to 76 distinct plant species from 49 phylogenetic families: 56 are used to cure 61 ailments, 27 for rituals, 25 for food, 20 for timber, 17 for fuel, 17 for fodder, 11 for soil enhancement, and 8 for pesticides. Four caste groups have statistically different knowledge, and younger informants report a lower average number of useful plants.

Conclusion Agricultural landscapes in Nepal are reservoirs of biodiversity. The knowledge of the use of wild and tended plant species in and around these farms differs by the caste and age group of land manager. Conducting research on agroecosystems will contribute to a deeper understanding of how nature is perceived by locals, to more efficient management and conservation of the breadbasket of Nepal, and to the conservation of valuable, but disappearing traditional knowledge and practice.

1. Background
As the costs of agricultural expansion and land conversion begin to accumulate (e.g., habitat destruction and fragmentation, changes in hydrological and biogeochemical cycles, land use change emissions [1]), and other pressures on biodiversity escalate (e.g., overharvesting, invasive species, increased extinction rates), a realization in the fields of conservation and agricultural sciences has developed regarding the indispensable role that biodiversity plays in food security and the wider provisioning of crucial goods and services [2, 3]. This is particularly the case for the livelihoods of many indigenous communities that have limited access to external production inputs [4, 5].

Moreover, in a world with a global population growing toward 10 billion people, land is a fixed resource, and land use change today has implications for the services it can provide in subsequent decades [6]. Increased evidence shows that continued ecosystem degradation will likely lead to negative feedbacks that reduce agricultural yields and increase the likelihood of abrupt system change [7]. Yet, in practice, this recognition has consistently been ignored [8]. In light of these challenges, the Sustainable Development Goals (SDGs) call for a comprehensive new approach to “ensure sustainable consumption and production patterns” (12) and “protect, restore and promote the sustainable use of terrestrial ecosystems” (5) [9]. Although dietary change [10-12], increased investment, policy reform [13], biotechnology, and many other proposed solutions hold promise, understanding changing local ethnobotanical knowledge, and how communities facilitate ecosystem service delivery can substantially help turn farmer’s skills at biomanipulation to work for biodiversity conservation, and appropriately account for multiplicity of values inherent in diverse, cultivated landscapes [14-16].

A growing body of literature suggests small- to medium-sized farming communities in remote, marginal areas may support among the highest overall biodiversity levels of any agricultural system [4]. For example, farmers maintain multiple layered systems of trees, herbs, climbers, grasses and herbs in and around their farms [17, 18]. These farming systems typically have higher variation in plant community abundance compared to monoculture croplands [19] and include wild relative species often considered more resilient than modern cultivars [20, 21]. Moreover, landscapes are often configured as multifunctional and relational mosaics, with crops situated according to both their
utility and complementarity with other biota [22-24]. Such landscape heterogeneity and connectivity between croplands and native vegetation can encourage the recolonization of disturbed habitats, and counterbalance degraded ecosystem function [25, 26]. Understanding local agricultural traditions and preferences for wild and tended plant species[1] is important because processes of planting, extraction and domestication of plant populations influence the community structure, rate of species turnover [18], genetic makeup [27], as well as local responses to environmental change and degradation [28, 29]. This is particularly the case in Nepal, which has a long historical tradition of farming, with an estimated 78% of the current population actively engaged in the management of agro-biodiverse landscapes. Indeed, the region has been a rich source of valuable plant species since Vedic periods (3400-1600BC) [50]. Even today, many small- to medium farmers still continue to rely heavily on provisioning ecosystem services provided by plants around farms for their basic necessities [67, 68]. Meanwhile, indigenous knowledge of plant utilisation is rapidly changing, with the increased availability of substitutes, synthetic inputs, changing vocations and more affluent lifestyles [50].

Despite a rapidly accumulating evidence base quantifying ecosystem services, uncertainties remain about the role of biodiversity in the maintenance of ecosystem services in variable human-dominated landscapes, humans contributions to biodiversity maintenance, and the extent to which such services contribute to social-ecological resilience [25, 26, 28, 29]. Furthermore, precise information of local ethnobotanical knowledge, including how communities facilitate ecosystem service delivery at the landscape and community level to benefit from genetic resources remains limited [8, 11, 25, 26]. In Nepal, most studies have focused only on ecological structure or specific ecosystem services [31], while ethnobotanical studies have tended to focus on plants with pharmacological value [32-34] or cultural keystone species [35], neglecting a more comprehensive assessment of ecosystem goods and services values at the landscape scale. In the Terai, although a few scholars have studied the traditional knowledge systems of the Tharu [42], many regions remain understudied. No studies have considered how small- to medium-sized farmers mediate non-agricultural wild and tended plant species community composition in and around farms.
Here, we explore the role of biodiversity in maintaining ecosystem services in the Terai Plains of Nepal by investigating the composition and use of wild and tended plant material found in and around rice production landscapes. Specifically, the paper is founded on the following objectives: first, to survey wild and tended plant abundance and diversity; second, to capture local ethnobotanical knowledge including use, source and administration of plants and determine if knowledge of use differs according to caste, gender and age; and third, identify what factors incentivise the maintenance of biodiversity in and around farms.

[1] Given the domestic origin of plants is difficult to determine, as is what constitutes cultivated or uncultivated, the term ‘tended’ is used to infer a lower level of cultivation of ‘wild species’. For example, farmers may manage the habitat of useful plants that naturally occur, support growth and reproduction through trimming, protect plants from animal, wind or water damage, or monitor harvesting levels.

2. Materials And Methods

2.1. Study area

Study sites spanned the Central and Western zones of the Terai Plains (hereafter referred to as the Terai), a unique physio-geographic zone along the foothill of the Himalayas across the South of Nepal, stretching 1360km East-West and 25-32km North-South. Elevation ranges from 108 – 658 masl (a 550 masl range) and soils are laterite. The climate is the warm-temperate Indo-Malayan Tropical Monsoon zone, with a mean annual temperature of 24.6°C (min = 18.2°C, max = 31°C), while rainfall ranges from 1000 - 2100 mm/year. Despite its relatively small area, the area provides a unique assemblage of very different habitats and holds high levels of biodiversity [36]. Similarly, the Terai accounts for 68% of the country’s agricultural output [30], 43% of total cultivated land, 21% of land cover and supports much of the country’s population [28]. This is largely due to fertile soils from flat alluvial deposits and has led to the region being described as the ‘food basket’ or ‘granary’ [29, 30] of the country. Yet, production does not meet the demands of the population, with only 16% of the land under arable cultivation [37], contributing to food insecurity and malnutrition rates of ~43% [38]. Concurrently, inhabitants are prone to frequent risks, such as flooding, sediment accumulation, and
inundation over large stretches of land adjoining banks of rivers which debouch in the Terai from higher Himalayas [29].

The region is also home to the Tharu, which represent the largest ethnic indigenous minority of Nepal - comprising of over 2000 subdivisions. Historically, the Tharu were semi-nomadic, practicing short fallow shifting rice cultivation with livestock, however today many are increasingly sedentary. Most people farm rice (*Oryza sativa* L.), lentils (*Lens culinaris* Medic), maize (*Zea mays* L.), wheat (*Triticum aestivum*) and mustard (*Brassica juncea*) using rainfed irrigation (73.5%); whilst some are also labourers, community workers or small business owners but still keep livestock at home) as part of their livelihood strategy [29]. Few public health dispensaries provide basic facilities but people living in more remote locations have limited access to them. They mainly depend on herbal remedies prepared at home or by traditional healers.

As is common in many rural agroecosystems across the globe [39], significant change has occurred in the Terai in the last fifty years: with the advent of Dichlorodiphenyltrichloroethane, the eradication of malaria and 1964 Land Act, where land was made freely available for people from the Mid-Hills region. As a result, rice production increased with concomitant deforestation and biodiversity loss [40]. During the resettlement programme, the cultural-demographic profile shifted from small pockets of Tharu to a mixture of Brahmin, Chettri, other castes, and Indian migrants [41]. This amalgamation, in turn, has led to homogenization of culture and knowledge, resulting in a loss of ethnobotanical knowledge, identities, and agricultural practices which sustain Tharu livelihoods. Changing land rights, urbanization, and new income streams have also contributed to these shifts [42].

2.2. Sampling and plant identification

Field sampling was conducted during the monsoon season (May – September) in 2012-2014. Sampling was carried out in four landscapes, 22 VDCs and 40 wards (Figure 1): (1) four village district committees (VDCs) in Madi Valley, Chitwan district (N27°28.305’ E084°17.244’, 204masl), (2) six VDCs in Rupandehi district (N27°35.414’ E083°31.180’, 138masl), (3) six VDCs surrounding Gohari, Dang district (N27°50.783’ E082°30.068’, 256masl) (referred to hereafter as Dang), and (4) six VDCs in the Deukhuri Valley, Dang district (N28°03.086’ E082°18.712’, 597masl) (Deukhuri). Standardized
sampling procedures were used to collect specimens [43] involving transects walks in homegardens, farms, and the surrounding landscape within 250m of homesteads (one sample/species/farm). To identify Scientific and English names of species, the nomenclature followed was that employed by Press et al. (2000) [44]. To verify uses, we consulted previous studies. We were limited to collecting predefined ‘key’ parts of the plant (e.g., leaf, fruit, stem), rather than the entire plant. Yield was not recorded. All biological material was photographed for further reference. For the purpose of this paper, biological material’ refers to wild and tended plants found in and around farms within rice-cultivated agroecosystems. They are natural materials that comprise part of or a whole living organism. Unidentified species were identified and deposited in the National Herbarium and Plant Laboratories Godawari, Lalitpur in Kathmandu.

Figure 1. Map of study area in the Central and Western zones of the Terai Plains of Nepal (n=40 villages). A ‘site’ is a rice farm (5.78±2.33ha) where terraced rice is cultivated during the monsoon season, when 80% of rain falls. In each region, ten farms were surveyed across the hydro shed catchment within 200km² using regional topographical maps of Nepal (1:25 000), sourced in 2012 from East View Cartographic Inc., Minneapolis in the USA, and the Ministry of Land Reform and Survey, Government of Nepal in Kathmandu [29].

2.3. Ethnobotanical data collection
Ethnobotanical data were gathered from 180 informants using semi-structured interviews, questionnaire, focus group discussion, rapid participant observation and field observation. As far as possible, the sample was randomly stratified across age (25–67 years), gender (72.5% male, 27.5% female), and caste (n=10). 82.5% of the study population own land through inheritance, 12.5% through procurement, and 5% through government provision [29]. Farmers (n=40) managing the farms surveyed were asked to free-list vernacular names in Nepali (N) or Tharu (Th), rather than using predefined categories to reduce researcher bias [45], and describe use-value of biological material (e.g., medicine for humans/livestock, fodder, fuel, building material, biocides, food additives, fertilizers, or cultural, religious, aesthetic, ornamental and ritual purposes). Community members,
rather than specialist practitioners were interviewed to assess widely available knowledge [46]. Uses were then categorized into eight broad uses, and for plants with medicinal value into 61 ailment groupings using biomedical terminology. For each species, informants were asked to identify the part of the plant used (e.g., bark, root), the plant’s source (e.g., hedgerow, forest, riparian buffer zone), preparation and administration (e.g., decoction), timing of harvest (e.g., season), and growth form of the plant (e.g., grass, tree, shrub). Multipurpose tree species found on farms and around homesteads were recorded through visual observations. Data inconsistencies were verified through focus groups and semi-structured interviews (n=140). In addition, participant observation involved observation of cultivation techniques, ritual celebrations, daily worship, indigenous folklore expressing societal cultural ties to the crop, and food traditions including preparation and occasions of consumption [47]. The results presented in this study are derived from these surveys and comprise original data.

2.4. Statistical analysis

Plant diversity was calculated using the Shannon–Weaver diversity index: a measure of biodiversity which accounts for species dominance (richness and proportion of each species) within the community, in which \(s \) is the number of individuals, \(p_i \) is the relative proportion of individuals belonging total \((i)\) individuals [48].

\[
S \quad \text{Shannon Weaver: } H' = - \sum (p_i \times \ln p_i) \quad \text{Eqn.1}
\]

Across all and each region, one-way analysis of variance (ANOVA) compared means of diversity and absolute abundance and Pearson’s chi-squared goodness of fit tests compared proportional plant abundance, as well as knowledge of diversity and abundance with regard to caste, age and gender. Multivariate statistics were used to assess the relationship between plant abundance and caste, using hierarchical cluster analysis using the group average, and the corresponding SIMPROF test for non-metric multidimensional scaling. Shapiro Wilk tests were performed to assess whether data met
assumptions of normality and were log/log10 transformed where necessary. Unique species found in each region were then tabulated. Data were analyzed in RStudio V.3.1.1. [49], using the Lattice package [50] and Primer-E [51].

3. Results

3.1. Plant diversity and abundance

Overall, 391 vascular plant specimens were collected and identified as belonging to 75 distinct plant species from 49 phylogenetic families. Individual farms have between 1 and 27 useful (i.e., important and commonly used) plants. Across the study area, species diversity (H’) is 3.09±0.09 (mean±SE), species abundance is 9.75±0.74 and the average number of useful plant species/farm is 9.75±4.71 (Table 1).

3.2. Plant utilisation

Of the 75 plant species collected, 56 are used for medicine, 27 for spiritual or ritual purposes, 25 for food, 20 for timber, 17 for fuel, 16 for fodder, 11 for soil enhancement, and 8 for pesticides. Most plants (73.3%) have multiple uses: between two (29.3%) up to six (2.7%) purposes. Eight species are considered to have disservices (e.g., invasive weeds). The most dominant plant families are *Euphorbiaceae* (5 families), *Fabaceae* (4), *Moraceae* (4), *Anacardiaceae*, *Lamiaceae*, and *Rutaceae* (3). The most common species are *Shorea robusta* (Sal tree) (6.7%), *Dalbergia sisoo* (Indian rosewood) (6.4%), *Azadirachta indica* (Mugwort) (6.4%), *Melia azedarach* (Persian lilac) (5.1%), *Leucaena leucocephala* (Leucaena) (4.4%), *Ficus religiosa* (Banaya tree) (4.4%), *Dendrocalamus strictus* (Bamboo) (4.4%), *Ocimum tenuiflorum* (Holy basil) (4.4%), *Mangifera indica* (Mango) (3.9%), and *Jatropha curcas* (Physic nut) (3.1%) [52-54]. Figure 2 illustrates how use differed across the landscapes sampled.
Table 1. Relative diversity, abundance and use categories of plant species. The table presents the results of our analysis of (i) species diversity; (ii) absolute abundance; and (iii) the relative constitution of number of plant species, according to use categories. Unique plant species are found in each of region, and the highest number is found in Rupandehi. (Values show the mean ± SE; sp.: species).

Figure 2. Multiple uses of wild and tended plants across four landscapes in the Terai Plains of Nepal. The figure shows medicinal use emerged as the dominant use category across all landscapes. Numbers refer to percentage.

3.3. Source of biological material

Biological material is collected from farm boundaries, around homesteads, home gardens, or uncultivated patches, such as wetlands, small woodlands or riverbanks. Farmed areas are typically adjacent to homesteads, around which farmers maintain wind and shade barriers, nurseries, fruit orchards, ornamentals, spices, vegetables, multi-storied crops (e.g., grasses, herbs, shrubs, trees), and sometimes zero-grazing pens (Figure 3). Biological material is also collected on moderately sloping land from contour hedgerows along terraced ridges and intercropped hedgerows. Plants growing in these areas help to soil erosion, conserve soil nutrients and limit competition with crops.
for water and sunlight [22]. Fuel wood is typically sourced from trees around homes (in 41% of cases), from community forests and national parks (71%) or bought from traders (19.4%). In 25% of cases, fuel wood comes from two or three sources, but in some cases, material cultivated around homes is sufficient.

3.4. Processing and administration

Of the 75 species recorded in the study area, the most commonly used growth forms are trees (51% of species), herbs (24%) and shrubs (16%). Ten parts of the plant are used – most commonly the leaf (23%), fruit or stem (14%), flower (10%) or bark (9%). Other parts used are the root, flower, bark, seed, latex, shoot, and resin. The entire plant is rarely used (3%). Generally, fresh plant parts are collected and used immediately. Alternatively, plants are stored in the shade or dry places in their original form, powdered or used as an ash. Plants are consumed directly, roasted, juiced or pickled, or applied externally using the paste of leaves or milky latex. Administration of most medicinal plants is via decoction (mashing, and boiling the plant in water to extract oils, volatile organic compounds, and other chemical substances), although dermatological ailments are usually treated topically. For example, the leaves of *Azadirachta indica* (Margosa tree) are used to wash the skin to treat scabies [52-54].

Administration of biological material varies both daily and seasonally. For example, on Tuesdays and Thursdays, women practice a ritual that involves grinding and eating the root of *Mimosa pudica* (Touch-me-not plant) or chew the stem of *Calotropis gigantea* (Crown flower) to promote their husbands’ wellbeing. Other species are regularly ingested, such as *Aegle marmelos* (Bengal quince), the leaves (‘beal patra’) and fruit pulp of which are used as an offering to Lord Shiva [53, 54]; *Asparagus racemosus* (Asparagus), which is used to prepare alcohol in August, and *Paris polyphylla* (Herb paris), the fruit of which is used for worship in mid-April. Although most Community Forestry User Groups officially restrict the harvest of fuel wood between December – February and during festivals in November (e.g., *Daishan*, *Tihar*), in 48% of cases fuel wood is collected throughout the year.
Figure 3. Composite schematic view illustrating a typical multi-layered, heterogeneous, integrated cropping system in the Terai. (a) road, (b) pathway, (c) rice paddy fields (d) lentil and soya bean grown along boundaries, (e) tube wells, or slurry processing for biogas, (f) vegetable garden (e.g., bottle gourd, cucumber, tomato, beans, okra, sesame), spices (e.g., ginger, turmeric) and cosmetics (e.g., aloevera) with mulched patches and ridges/bunds for water efficiency, (g) buffalo, goat or pig pen and fuel wood storage, (h) cluster of trees alongside boundary for windbreaks (e.g., Dendro clamus strictus), fuel wood and timber (e.g., Dalbergia sisoo, Shorea robusta, Melia azedarach), fruit (e.g., Psidium guajava), fodder (e.g., Azadirachta indica, Abizia lebbeck), religious value (e.g., Aegle marmelos), or shade (e.g., Magnifera indica), (i) house roof made of reed thatch, covered with creepers and gourds for aesthetic value, insulation, temperature regulation and food (Adapted from [31]).

3.5. Knowledge of plant use

The Nepalese are a culturally diverse population, as such we set out to assess whether knowledge of use and maintenance of species on farms differed according to caste[1]. The caste system is a traditional classification system of 36 hereditary groups of hierarchical social classes, which are defined through a combination of elements of birthright, ethnicity and financial acumen. This may determine one’s education, income, occupation, and social standing [55]. While recognizing social classifications are socially constructed and evolving, broadly defined there are four social classes if one follows the Chaturvarnamashram model: Brahmin, Kshatriya, Vaishya and Sudra.

Of the ten castes are represented, SIMPROF tests identified four statistically different caste groups in similarity of knowledge: Chettri, Brahmin and Tharu had the most diverse (H’) knowledge of plant uses and had a 40% similarity in knowledge of species. Dura and Gurung had a 30% similarity in knowledge, as did Chaudhury, Teli, Dalit and Magar, while Sanyasi had a unique knowledge base endogenous to the region (Figure 4). No significant relationships between absolute ($F_{(9,30)}=0.87$, $p=0.56$) or proportional abundance ($x^2_{(167)}=155.65$, $p=0.108$) of plant species and caste were found.

All three analyses indicated Brahmin, Tharu and Chhetri generally had the most diverse knowledge,
but Sanyasi, Magar and Chaudhury had higher scores when controlling for the number of respondents representing each caste in the sample (Figure 4). Males reported more plants (10±0.87) than women (9.09±1.51), however, the difference in the knowledge of plants between genders was not significant ($x^2(15) = 15.45, p = 0.420$). No significant differences in species diversity according to age ($x^2(330) = 356.78, p = 0.149$) were observed (Table 2).

Figure 4. Cluster analysis of caste and plant species abundance. The figure shows knowledge is clustered around four statistically dissimilar groups. Black lines indicate relationships that are significantly supported, while red lines indicate no significant difference was detected.

[1] Ensuring we were being sensitive to social norms of disclosure and using reported definitions

No. medicinal plants reported	Female (age category in years)	Male (age category in year)				
	18-39 years	40+ years	Total	18-39 years	40+ years	Total
	(33.57±1.54)	(50.73±1.64)	(38.73±1.47)	(35.86±0.88)	(43.75±1.93)	(46.59±2.01)
1 - 5	1	0	1	2	1	3
6 - 10	4	2	6	2	14	
11 - 15	1	2	3	3	4	
16 - 20	1	0	1	0	2	
21 - 25	0	0	0	0	0	
26 - 30	0	0	0	0	1	
Total	7	4	11	7	22	

Table 2. The number of useful plants reported by female and male informants in the Terai Plains of Nepal (Values show the mean ± SE).

3.6. Reasons for use

Interviews revealed that use depends on availability of nearby resources and alternatives or supplements (e.g., synthetic building material, electricity infrastructure), affordability, available travel or collection time, effectiveness of use (e.g., for medicinal purposes), and appropriateness based on traditional customs, spiritual beliefs and livelihood strategies. Plants are generally used for domestic
purposes in the household economy, rather than for commercial sale. Key plant species and their major uses are presented in Table 3.

Scientific name, voucher and authority no.	Family	English name	Common name	Type	Part used	Uses
Achyranthes bidentate Blume, Rupandehi N110-36	Amaranthaceae	Hill chaff flower	Datiwan (N)	Shrub	Leaves, stem	• Household (toothbrush - stem)
• Spiritual (In Teej festival, women use leaves to welcome the monsoon season, bathe in the leaves as an act of purification, in Chitwan harvested for festival ‘Rishi Tarpani’)						
Acorus calamus L., Rupandehi N106-37	Acoraceae	Sweet flag	Bojho (N)	Herb/Monocot	Root	• Medicine (cough, common cold, increases internal heat, chronic fever, juice of root given orally or chewed to clear the throat)
• Medicine (Three leaves are used weekly for diabetes, root juice given orally for asthma and cold)						
• Spiritual (fruit pulp offered to Lord Shiva, women e fast on Mondays and use it the leaf with the Dubo leaf for the wellbeing of husbands, Newari’s marry the fruit)						
Aegle marmelos, Chitwan N304-01	Rutaceae	Bengal Quince	Bael, Bel (N)	Tree	Root, leaves, fruit	• Medicine (stomach pains, digestion – tender root, antibiotic for cuts)
• Spiritual (flower used for worship offering)						
• Medicine (stomach pains, digestion – tender root, antibiotic for cuts)						
• Pesticide						
• Compost manure						
• Pesticide						
• Rice diseases						
Albizia lebbeck Chitwan N304-03	Fabaceae	Black siris	Kalo Siris (N)	Tree	Bark, stem, leaves, seeds	• Timber
• Compost						
• Fodder (sweet seeds)						
• Medicine (reduces inflammation using bark)						
• Fuel (cooking)						
Aloevera L., Rupandehi N103-05	Xanthorrhoeaceae	Aloevera	Kumari, Ghyekumari (N)	Herb	Leaves, root	• Medicine (Cooling burns on skin, jaundice)
• Cosmetic (face cream)						
Artemisia indica, Dang N209-06	Compositae	Mugwort	*Tite pati* (N), *Pati* (Th)	Herb	Leaves, flowers, roots	• Spiritual (flower used for worship offering)
• Medicine (stomach pains, digestion – tender root, antibiotic for cuts)						
• Fodder (leaves)						
• Compost manure						
• Pesticide						
• Rice diseases						
Artocarpus	Moraceae	Jackfruit	Rukh	Tree	Fruit,	• Food (fruit, seed is
Scientific Name	Family	Common Name	Part Used	Uses		
----------------	--------	-------------	-----------	------		
heterophyllus, Rupandehi N101-07		Katahar (N), Badahar (Th)	stem, leaves	eaten, roasted or cooked as a vegetable		
Asparagus racemosus, Rupandehi N102-08	Asparagaceae	Asparagus Kurilo (N), Satavari, Santawar (Th)	Herb, Root	Pesticide		
				Household (wood is used for a pot used to make yoghurt, called 'taki')		
Azadirachta indica, Rupandehi N106-10	Malvaceae	Margosa Neem (N), Topre voltabre (Th)	Tree	Leaves, bark		
				Medicine (cough, gastritis, arthritis, wounds - and tender twigs paste, high blood pressure and high uric acid - fresh leaves given orally, scabies - fresh leaves used to wash skin, fever - bath in water boiled with neem leaves, pneumonia - boil 2-3 leaves and drink water)		
Bombax ceiba, Dang N204-12	Malvaceae	Silk cotton Simal (N), Semar (Th)	Tree	Flowers, root		
		tree		Household (mattresses, cotton)		
Borassus flabellifer, Chitwan N303-13	Arecales	Coconut Nariwal (N)	Tree	Bark, fruit		
				Household (young stem used to brush teeth)		
				Pesticide		
Butea monosperma, Rupandehi N108-15	Fabaceae	Flame of Palans, Dhak, Paras (N)	Tree	Entire tree		
		the forest		Medicine (diuretic)		
				Pesticide to kill mosquitos		
Calotropis gigantean, Rupandehi - N108-11	Asclepiadaceae	Crown flower Aak, Aankh (N), Madar (Th)	Shrub	Latex		
				Medicine (Massage milk into sprained areas (muscles/joints)		
				Disservice (if the...		
Scientific Name	Family	Common Name	Use(s)			
---	-----------------	------------------------------	--			
Cannabis sativa, Dang N201-16	Cannabaceae	Cannabis	Bhang (N), Entire plant, Food, Medicine (headache, dysestery, asthma)			
Carica papaya L., Dang N204-17	Caricaceae	Papaya	Mewa (N), Entire plant, Food, Veterinary (diarrhea, abscess of goats)			
Carum persicum, Dang N204-20	Apiaceae	Black cumin	Himali, Kalo jeera, Entire plant, Medicine (cold-infused)			
Centella asiatica (L.) Urb., Rupandehi N109-22	Apiaceae	Indian pennywort	Ghod tapre (N), Entire plant, Medicine (fever, chest and urinary tract infections, typhoid blood purifier, pneumonia-infused)			
Cinnamomum tamala (Buch.-Ham.) T. Nees & Eberm, Dang N202-23	Lauraceae	Indian cassia	Tejaat (N), Dalchini (Th), Entire plant, Medicine (sore throat-infused)			
Citrus hystrix DC, Chitwan N303-24	Rutaceae	Makrut lime	Nibuwa (N), Tree, Stem, Timber			
Colocasia affinis, Dang N201-25	Araceae	Taro or Elephant ear	Pindalu, Karkalo (N), Ghuliya (Th), Entire plant, Food (leaves, root, stem or corn eaten as a vegetable)			
Crateva unilocularis Buch.-Ham., Rupandehi N101-28	Capparaceae	Garlic pear	Siplikan (N), Tree, Fruit, Medicine (rheumatism, kidney, bladder stones, tonic)			
Curcuma angustifolia, Rupandehi N101-29	Zingiberaceae	Black turmeric	Haledo (N), Entire plant, Medicine (stomach ailments, natural antibiotic for colds-infused)			
Cuscuta reflexa, Deukhuri N402-30	Convolvulaceae	Mistletoe	Aakashbeli (N), Baora (Th), Entire plant, Medicine (fever - juice of plant given orally, rheumatism and jaundice - plant paste applied externally)			
Cymbopogon flexuosus, Dang N206-31	Poaceae	Lemongrass	Ushir (N), Grass, Leaves, Medicine (aromatic stimulant, oil, colds-infused)			
Cynodon dactylon, Rupandehi N109-32	Poaceae	Bermuda or Dog tooth’s grass	Dubo (N), Dub (Th), Entire plant, Spiritual (green grass used to decorate garlands)			
Scientific Name	Family	Common Name	Part Used	Uses		
--	----------------------	----------------------	---------------	--		
Dalbergia sissoo DC, Deukhuri N404-39	Fabaceae	Indian rosewood	Tree, Bark,	• Fodder		
		Sisau (N) Sisava (Th)	stem	• Fodder		
				• Timber (house, furniture)		
				• Fuel (cooking)		
Dendrocalamus strictus, Dang N207-19	Graminacea	Feathery bamboo	Grass	• Fodder		
			Entire plant	• Timber (Fences for farms and livestock, windbreaks, houses)		
				• Fuel (cooking)		
Duranta repens, Rupandehi N108-40	Verbenaceae	Golden dewdrop	Shrub	• Ornamental (grown for decoration along roadsides)		
		or Forgetmenot				
		Nil kanda (N)				
Eucalyptus robusta, Dang N202-41	Myrtaceae	Gum tree	Tree	• Timber (furniture)		
		Masala (N)	Stem			
Chromolaena odoratum L., Dang N210-26	Compositae	Croftonweed or	Shrub	• Invasive weed, plant around the house and it prevents snakes from		
		sticky snakeroott	Flowers	coming in, flower is used for worship, invasive species seeds used		
				for making antibiotic, fodder, pesticide, compost		
Euphorbia hirta L., Deukhuri N406-42	Euphorbiaceae	Asthma plant	Herb	• Fodder		
			Entire plant	• Cosmetic (seed used to wash hair)		
				• Medicine (plant, juice applied to wounds)		
Euphorbia royleana., Rupandehi N101-43	Euphorbiaceae	Cactus, Royles' or	Tree	• Timber (fences, have thorns to protect from wild animal raids)		
		or Sullu spurge	Entire plant			
		Siundi (N)		• Medicine (ground material is used for coughs)		
Ficus bengalensis, Dang N201-44	Moraceae	Banaya fig, or	Tree	• Medicine (milky latex applied on muscular pain, infused barks given		
		Indian Banyan	Bark (N),	orally for diabetes)		
			Bargad (Th)	• Fodder		
				• Food (fruit)		
				• Timber		
Ficus racemosa, Chitwan N301-45	Moraceae	Cluster fig, or	Tree	• Medicine (cuts, cough – bark)		
		Indian fig tree	Fruit, stem	• Spiritual (sacred tree in Hinduism, Jainism and Buddhism)		
Ficus religiosa L., Rupandehi N107-46	Moraceae	Bhodi or Peepal tree	Tree	• Veterinary (medicine)		
			Entire plant	• Fodder		
				• Food (fruit)		
Ficus auriculate Lour., Chitwan N301-21	Moraceae	Roxburgh fig	Tree	• Fodder		
			Leaves, fruit	• Food (fruit)		
Garuga pinnata, Rupandehi N104-14	Bursaraceae	Garuga	Tree	• Fodder		
		Ramsing, Dabdabi (N),	Leaves	• Veterinary (medicine)		
		Dabdaai (Th)		• Fodder		
				• Food (fruit)		

Note: The table includes information about the uses of various plants, categorized by type of use (fodder, timber, fuel, ornament, medicine, etc.). The table also includes the family name, common name, and parts of the plant that are used.
Jacaranda mimosifolia, Rupandehi N101-48	Bignoniaceae	Jacaranda	Jacaranda (N)	Tree	Flowers	
	Euphorbiaceae	Physic nut	Sajwan, Sajiba (N) (Th)	Tree	Seeds, stems	
	Justicia adhatoda L., Deukhuri N408-50	Acanthaceae	Malabar nut	Asero (N) Osuro, Ross (Th)	Shrub	Entire plant
Lannea coromandelica (Houtt.) Merr, Dang N206-51	Anacardiaceae	Indian ash tree	Jinghat (N)	Tree	Leaves	
Lantana camara L., Deukhuri N401-52	Verbenaceae	Lantana Ban fanda, Masino kanda (N)	Herb	Flowers		
Leucaena leucocephala, Rupandehi N103-33	Leguminosae	Leucaena Ipin-ipin (N) (Th)	Tree	Stem, leaves		
Litchi chinensis, Deukhuri N406-53	Sapindaceae	Litchi Litchi (N) (Th)	Tree	Fruit		
Mangifera indica L., Rupandehi N104-54	Anacardiaceae	Mango Amp (N)	Tree	Fruit, bark		
Melia azedarach L., Rupandehi N110-55	Meliaceae	Persia Bakaino/a (N), Bakain (Th)	Tree	Leaves, Flowers and fruit		

- **Ornamental**
- **Spiritual** (flowers placed in entrance to homes as offerings)
- **Timber** (fences, livestock pens)
- **Household** (biodiesel produced on a small-scale, seeds used for burning candles, brushing the teeth - shoot)
- **Medicine** (prevents gingivitis)
- **Pesticide**
- **Compost for seedlings in rice fields**
- **Timber** (windbreaks, fences, houses)
- **Fodder**
- **Food (vegetable)**
- **Fodder**
- **Spiritual** (ornamental flower)
- **Disservice** (invasive species, toxic to livestock)
- **Fuel** (cooking)
- **Soil** (erosion prevention along riverbanks)
- **Food** (fruit)
- **Medicine** (tonic, bites of animals)
- **Food** (fruit)
- **Shade**
- **Medicine** (stomach pains, fever – bath in cool water)
- **Fuel** (heating)
- **Timber** (house, furniture)
- **Fodder**
- **Pesticides** (leaves stored in airtight container and left to decay, and sprayed on leaves)
- **Fuel** (cooking)
- **Medicine** (blood purifier - root, nausea, worms, leaf paste)
| Plant Name | Family | Common Name | Species | Use(s) | |
|---|---|---|---|---|---|
| Mentha arvensis L., Chitwan N304-27 | Labiatae | Peppermint | Pudina (N), Baabari (Th) | Herb, Entire plant • Medicine (nausea, painkiller for headaches, neck pain, joint/back pain – applied externally with four parts oil and one part of crushed mint) |
| Michelia champaca, N302-35 | Magnoliaceae | Champak | Champaa (N), Chuwa (Th) | Tree, Flowers, leaves • Medicine (blood pressure, diabetes) • Spiritual (offering in temples and homes) |
| Mimosa pudica L., Chitwan N301-56 | Leguminosae | Touch-me-not | Lajjawati (N) | Shrub, Leaves • Medicine (constipation, extended stomach – roots ground and is mixed with Tulsi, Rudilo, Beloti leaves, Titepati and the root of Datiwan – eaten on Tuesdays and Thursdays) • Fodder |
| Musa paradisiac L., Dang N203-57 | Musaceae | Banana | Kera (N) (Th) | Shrub, Entire plant • Food (fruit) • Soil (soil potassium input) • Household (leaf used to place meat which is cut on top) • Medicine (dysentery – fruit roasted) |
| Neolamarckia cadamba, Deukhuri N401-58 | Rubiceae | Kadamba tree | Kadam, Kadamba (N) | Tree, Stem, leaves • Timber (low-grade wood used for light construction) • Fuel (cooking, heating) • Medicine (mouth gargle – extract of leaves) • Fodder (cattle) • Spiritual (In Hinduism the sacred couple of Shiva and Parvati came to Sahyadr, and gave birth to a child under the Kadam tree) |
| Nyctanthes arbor-tris L., Chitwan N304-59 | Oleaceae | Coral jasmine | Parijat, Paarijaat (N), Raatki rani, Hasna (Th) | Shrub, Flowers, seeds, leaves • Spiritual (flower used in several Hindu religious stories and is often related to the Kalpavriksha) • Medicine (cough, asthma, diuretic) |
| Ocimum tenuiflorum L., Rupandehi N103-60 | Lamiaceae | Holy or Sacred basil | Krishna tulsi (N), Kalo tulasi (Th) | Herb, Entire plant • Medicine (cough, fever, immune booster – infused daily with turmeric) • Spiritual (grown in homes for daily offering) • Soil (ground cover to retain moisture) |
| Oxalis corniculata L., Dang N201-76 | Oxalidaceae | Creeping sorrel | Caremala (N), Carii Amilo, Carimalaa (N) | Creeper, Flowers, leaves • Food (leaves edible, with tangy taste of lemon) • Disservice (invasive weed in fallow land) |
| Bryophyllum | Crassulacea | Life | Ajambari/a (N) | Herb, Root, • Compost manure |
| Common Name | Family | Scientific Name | Use |
|-------------------------------------|--------------------|--------------------------------|--|
| Pinnatum (Kalanchoe pinnata), Dang | 301-18 | | - Timber (fences, canals) |
| | | | - Disservice (if the leaves are eaten by the livestock they die) |
| | | | - Fuel (cooking) |
| | | | - Medicine (fever, headache – mix with tobacco) |
| | | | - Veterinary (medicine for livestock) |
| | | | - Spiritual (Gurungs (a caste) harvest the fruit on Tuesdays of mid April) |
| | | | - Household (used in soaps and cosmetics) |
| | | | - Medicine (gastric problems including dysentery, constipation, stomach tumours and back pain – bark juice given orally, sore throat and colds – decoction) |
| | | | - Household (used in soaps and cosmetics) |
| | | | - Compost manure |
| | | | - Spiritual (flowers used for garlands) |
| | | | - Household (used in soaps and cosmetics) |
| | | | - Medicine (for sprains – seed oil or leaves heated and massaged, rheumatic pain – given orally) |
| Dang N208-04 | | | - Food (fruit) |
| | | | - Fuel (cooking, heating) |
| | | | - Medicine (relieves constipation, eases bowel movement, boosts immunity) |
| | | | - Medicine (for sprains – seed oil or leaves heated and massaged, rheumatic pain – given orally) |
| | | | - Spiritual (used in meditation) |
| | | | - Ordnamental |
| | | | - Timber |
| | | | - Shade |
| | | | - Fodder |
| | | | - Medicine (for sprains – seed oil or leaves heated and massaged, rheumatic pain – given orally) |
| | | | - Household (nut used for soap, leaves) |
| | | | - Household (nut used for soap, leaves) |
| | | | - Household (nut used for soap, leaves) |
| | | | - Household (nut used for soap, leaves) |
| | | | - Household (nut used for soap, leaves) |
| | | | - Household (nut used for soap, leaves) |
| | | | - Household (nut used for soap, leaves) |
| | | | - Household (nut used for soap, leaves) |
| | | | - Household (nut used for soap, leaves) |
| | | | - Household (nut used for soap, leaves) |
| | | | - Household (nut used for soap, leaves) |
| Common Name | Family | Scientific Name | Description | Uses |
|-------------|--------|-----------------|-------------|------|
| **Semecarpus anacardium**, Deukhuri | Anacardiaceae | Sal (N) | Tree | Fruit, nuts used for skin allergies, ash used for scorpion or snake bites |
| **Shorea robusta**, Deukhuri | Dipterocarpaceae | Sal (N) | Tree | Root, bark, resin, seed, ash used for scorpion or snake bites |
| **Syzygium cumini L.**, Dang | Myraceae | Black plum or Indian blackberry | Tree | Fruit, bark, seed, leaf |
| **Terminalia bellirica**, Rupandehi | Combretaceae | Barro (N) | Tree | Seeds, household, medicine (gastric, dry cough, cold – roast the seed and chew) |
| **Terminalia chebula**, Deukhuri | Combretaceae | Yellow or Chebulic myrobalan | Tree | Fruit, household, medicine (compounds of chebulic acid inhibit the growth of malignant tumours, cures blindness) |
| **Themeda triandra**, Dang – N201-09 | Gramineae | Kangaroo or Rui grass | Tree | Stem, leaves, timber (furniture) |
| **Thysanolaena maxima**, Chitwan | Poaceae | Broom or Bouquet grass | Herb | Leaf, stem, household (used to make brooms) |
| **Tinospora sinensis**, Dang N204-71 | Menispermaceae | Guduchi | Shrub | Leaves, medicine (fever, maintains thermal balance) |
| **Vitex negundo L.**, Rupandehi | Verbenaceae | Chaste tree | Shrub | Leaves, medicine (stomach pain, juice given orally) |
| Plant Name | Family | Common Name | Type | Part Used | Uses |
|-----------------------------|-------------|-------------------|-------|-----------|---|
| Zanthoxylum armatum DC. | Rutaceae | Winged prickly ash | Tree | Fruit | Medicine (toothache, common cold, cough, fever - particularly for children) |
| Zingiber officinale | Zingiberaceae | Ginger | Herb | Root | Medicine (sore throat, cough) |

Table 3. Key plant species and their major uses in Central and Western Terai Plains of Nepal. The table summarizes the Scientific name, family, common name, type, part used and uses of the 76 species identified. Plant specimens were collected using standardized sampling procedures and farmers were asked to free-list vernacular names and other information (n=40 sites). Scientific and English names and family were identified or corroborated using reference material (listed in column 8). All of the data represents original findings. The status of plants is determined according to the World Flora Online Consortium [56].

3.6.1. Multipurpose woodlots

Multipurpose woodlots (known as ‘Bagaincha’ (N), or ‘Fulbari’ (Th)) provide fuel, fodder, timber, food, fertilizers, pesticides and control erosion. In total, 33 multipurpose tree species found on farms and around homesteads were recorded through visual observation. The average number of trees grown around farms is 6.03±4.35, ranging from 1-26. Ten tree species are used for fodder, six of which are found around homesteads (i.e., Dalbergia sisoo (Indian rosewood) (62.5%), Melia azedarach (Persian lilac) (50%), Leucaena eucosmophala (Leucaena) (42.5%), Garuga pinnata (Garuga) (12.5%), Artocarpus interga/heterophyllus (Jackfruit), Artemisia indica (Mugwort). Fifteen tree species are used for food (mostly fruit), ten of which are found around homesteads (e.g., Mangifera indica (Mango), Syzygium cumini (Black plum), Psidium guajava (Guava) and Phyllanthus emblica (Indian gooseberry). Three tree species are used to improve soil nutrient levels and prevent erosion, two of which are found around homesteads (i.e., Leucaena leucoxophala (Leucaena), Albizia lebbeck (Black siris). Four tree species are used for pesticides, all of which are found around homesteads (i.e., Melia composite/azedarach (Persian lilac), Azadirachta indica (Margosa tree), Artocarpus heterophyllus (Jackfruit), Artemisia indica (Mugwort). Fourteen tree species are used for fuel wood, nine of which are found around homesteads. Fifteen tree species are used for timber, eleven of which are found around...
homesteads [52-54].

3.6.2. Energy use

The top ten species used for fuel wood are *Shorea robusta* (used by 65% of households), *Dalbergia sisoo* (Indian rosewood) (62.5%), *Melia azedarach* (Persian lilac) (50%), *Dendrocalamus strictus* (Bamboo), *Leucaena leucocephala* (Leucaena) (42.5%), *Mangifera indica* (Mango), *Jatropha curcas* (Physic nut), *Psidium guajava* (Guava), *Phyllanthus emblica* (Indian gooseberry) and *Garuga pinnata* (Garuga) [57]. Some species of wood have cultural significance, used especially during festivals or for cremation (refer to section 3.6.4.). Wood is the main source of household energy (97%), with electrical connections and frequent power outages. However, wood not the only source of energy for these households: biogas (i.e., ox, cow or human) (70%), liquefied petroleum gas (22%), solar (8%), crop residue (e.g., maize husks (8%)), or kerosene, candles or battery lamps for lighting are also used.

3.6.3. Medicinal use

The collection of medicinal and aromatic plants is vital to Tharu human and animal healthcare, in combination with modern remedies. Plant medicine is preventative, curative, soporific, or stimulatory. Respondents reported 61 ailments that are treated with medicinal plants, including: gastro-intestinal, dermatological, cardio-vascular, ureno-genital, respiratory, skeleto-muscular, mental disorders, or dental, eye, ear, nose, throat, birthing or lactation issues. Medicinal plants are most commonly used for fever (*n*=9), cough (*n*=9) and cold (*n*=8) and are often mixed in combination. For example, for constipation and a distended stomach, the root of *Mimosa pudica* (Touch-me-not plant) [53, 58] is ground and mixed with the root of *Achyranthes bidentata* (Hill chaff flower) [53, 54], and the leaves of *Pogostemon benghalensis* (Bengal pogostemon) [59], *Psidium guajava* (Guava) [60] and *Artemisia indica* (Mugwort) [53, 54]. Many remedies are influenced by *Ayurveda* used in India, and the *Bhaidya* system used in far-western Nepal [33]. Table 4 presents the plants used to remedy 61 ailments, with number of uses and taxa.

Ailment category	Biomedical term	Species used	No uses
Gastro-intestinal illness	Stomach pain	*Magnifera indica, Artemisia indica, Vitex negundo, Acorus calamus, Curcuma angustifolia*	11
	Dysentery	*Musa paradisica, Cannabis sativa, Shorea robusta, Phyllanthus emblica,*	
Symptom	Medicines		
---------	-----------		
Intestinal worms	Acorus calamus		
Diarrhea	Psidium guajava, Shorea robusta, Syzygium cumini		
Indigestion	Artemisia indica, Syzygium cumini		
Vomiting	Psidium guajava		
Nausea	Melia azedarach, Mentha arvensis		
Gastritis	Azadirachta indica		
Constipation	Syzygium cumini, Phyllanthus emblica, Acorus calamus, Pueraria tuberosa, Mimos pudica		
Stomach tumours	Phyllanthus emblica		
Extended stomach	Mimos pudica		
Fever	Magnifera indica, Ocimum tenuiflorum, Cinnamomum tamala, Centella asiatica, Acorus calamus, Paris polyphylla, Cuscuta reflexa, Pogostemon benghalensis, Zanthoxylum armatum DC.		
Typhoid	Centella asiatica		
Malaria	Crateva unilocularis, Butea monosperma		
Scabies	Melia azedarach, Azadirachta indica		
Cut	Ficus religiosa		
Skin allergies	Semecarpus anacardium		
Scorpion/snake bites	Semecarpus anacardium		
Burns	Aloevera		
Styptic	Pogostemon benghalensis		
Wounds	Euphorbia hirta		
Itching	Colocasia affinis		
Blood purifier	Melia azedarach, Centella asiatica		
Blood pressure	Azadirachta indica, Michelia champaca		
Jaundice	Aloevera, Cuscuta reflexa		
Throat	Psidium guajava, Acorus calamus, Zingiber officinale		
Salivation	Sapindus mukorossi		
Bronchitis	Syzygium cumini		
Sinus infection	Pogostemon benghalensis		
Urinary tract infections	Bombas ceiba, Centella asiatica		
Diuretic	Bombas ceiba, Butea monosperma, Nyctanthes arbor-trisaa		
High uric acid	Azadirachta indica		
Bladder stones	Crateva unilocularis		
Kidney stones	Crateva unilocularis		
Cough	Terminalia bellirica, Azadirachta indica, Ficus religiosa, Ocimum tenuiflorum, Crateva unilocularis, Acorus calamus, Zanthoxylum armatum DC, Nyctanthes arbor-trisaa, Zingiber officinale		
Common cold	Terminalia bellirica, Acorus calamus, Curcuma angustifolia, Ageratina adenophororum syn. Eupatorium adenophorum, Euphorbia royleana, Pogostemon benghalensis, Zanthoxylum armatum DC., Cymbopogon flexuosus		
Asthma	Cannabis sativa, Nyctanthes arbor-trisaa		
Pneumonia	Azadirachta indica, Centella asiatica		
Swelling	Crateva unilocularis		
Arthritis	Azadirachta indica		
Muscular pain	Carica papaya, Ficus bengalensis		
Neck pain	Mentha arvensis		
Headache	Cannabis sativa, Syzygium cumini, Crateva unilocularis, Mentha arvensis, Paris polyphylla		
Sprains	Ricinus communis, Calotropis gigantea		
Back pain	Phyllanthus emblica, Mentha arvensis, Themeda Triandra		
Inflammation	Albizia lebbeck		
Joint pain	Mentha arvensis, Themeda Triandra Calotropis gigantea		
Rheumatic pain	Ricinus communis, Crateva unilocularis, Crateva unilocularis, Cuscuta reflexa		
Toothache	Zanthoxylum armatum DC.		
Blindness	Terminalia chebula		
Epilepsy	Sapindus mukorossi		
Dizziness	Crateva unilocularis		
Stimulant	Carica papaya, Pogostemon benghalensis, Cymbopogon flexuosus		
Diabetes	Ficus bengalensis, Syzygium cumini, Michelia champaca		
Tonic	Litchi chinesis, Crateva unilocularis		
Immune booster	Ocimum tenuiflorum, Pueraria tuberosa, Asparagus racemosus		
Hypertension	Acorus calamus		
Ailment categories of medicinal plants identified during interviews. Respondents free-listed medicinal uses, which were then categorized into the listed medical terms. Many taxa are used for more than one ailment category. Categories used are based on a previous ethno-pharmacological study from the Terai [33], rather than that specified by informants.			

Table 4. Ailment categories of medicinal plants identified during interviews.

Ailment categories	Medicinal plants
1. Sedative	Acorus calamus, Pogostemon benghalensis
2. Tumours	Terminalia chebula
3. Lactation	Asparagus racemosus
4. Tonic after delivery	Asparagus racemosus

3.6.4. Cultural use

Twenty-seven plants have cultural, spiritual or religious significance and are associated with cultivation practices. Plants are used in symbolic rituals, offerings, religious occasions, marriage ceremonies, fasting, or acts of purification. For example, various flowers are used for worship in homes and temples as a ritualistic expression of reverence or adoration for deities, present daily offerings (e.g., *Jacaranda mimosifolium* (Jacaranda) [53], *Lantana camara* (Lantana) [61], *Michelia champaca* (Champak) [52] and *Nyctanthes arbor-tris* (Coral jasmine) [58]), or to make garlands for celebrations and welcome visitors (e.g., *Pogostemon benghalensis* (Bengal pogostemon) [59]).

Women bathe in the leaves of *Achyranthes bidentata* (Hill chaff flower) during the festival of Teej to welcome the monsoon and as an act of purification [53, 54]. Traditionally, female Newaris (a caste) at the age of six months perform a symbolic marriage ceremony with *Aegle marmelos* (Bengal quince), and the size and morphology of the fruit is used to predict the character of the child’s future husband [53, 54]. Similarly, Hindu women fast on Mondays and offer the leaf of *Cynodon dactylon* (Dog tooth’s grass) [54] to Lord Ganesh for the wellbeing of one’s husband. On religious celebrations the leaves of *Butea monosperma* (Flame of the forest) and *Shorea robusta* (Sal) [52, 53] are pieced together or used singly to make a leaf-plate on which to serve meals (‘*patravali*’ (N)). In many villages, the leaves of *Musa paradisica* (Banana) are used as a surface to cut communal meat shared with every village member for religious occasions [54]. Various trees considered sacred in Buddhist, Jain and Hindu traditions are planted along roadsides, public areas, villages and temples. For example, *Neolamarckia cadamba* (Kadamba) [62] is associated with a tree deity called ‘*Kadambariyamman*’ and according to

25
folklore, the sacred couple of Shiva and Parvati gave birth to a child under the tree. During a harvest festival on the eleventh moon day in the month of Bhadra (August/September), a twig is brought and worshipped in the courtyard of the house.

Three species of indigenous fig possess high religious value [63, 64]: *Ficus religiosa* (Pipal), *Ficus benghalensis* (Bar), and *Ficus racemosa* (Dumri) [52, 53] - and are often found in the centre of villages next each other or at shrines. In Buddhism, Buddha attained enlightenment underneath the Pipal tree [65]. *Ocimum tenuiflorum* (or *Ocimum sanctum* L., *Tulsi* or Holy basil) [53, 54] is planted outside the homes of Hindus, often in masonry structures to indicate religious inclination of a family. The offering of its leaves is mandatory in the daily ritualistic worship of Lord Vishnu. The plant also has diverse healing properties and is used as an essential oil [66].

3.6.5. Veterinary use

For veterinary use, plant material is used for livestock medicine, fodder, shelter, and fences to deter wild animals. Livestock medicinal plants include *Cannabis sativa* (Cannabis) [57], used for diarrhea in ox, cattle and buffalo, *Dendrocalamus strictus* (Bamboo) [52], used to treat abscesses in goats, and *Litchi chinensis* (Litchi) [60], used to treat animal bites. Common plants used for fences and pens include *Jatropha curcas* and *Dendrocalamus strictus* [52]. Plants are used to deter wild animals from raiding crops, such as *Euphorbia royleana* (Cactus spurge) [53] planted as a thorny fence to repel largest Asian antelope, the blue bull (*Boselaphus tragocamelus*), or *Eupatorium odoratum* (Crofton weed) [67] is planted around houses to deter snakes. Sixteen fodder species are collected on a daily basis.

3.6.6. Timber and building material use

Shorea robusta (Sal) is the most common species used for timber (used in 65% of cases), followed by *Dalbergia sisoo* (Indian rosewood) (62.5%), *Melia azedarach* (Persian lilac) (50%) and *Mangifera indica* (Mango) (32.5%). Timber products include both low-grade (e.g., *Neolamarckia cadamba* (Kadamba)) and hard woods (e.g., *Shorea robusta* (Sal)), used for constructing housing, livestock sheds, furniture, ladders, stairs, doors, and farm equipment. Eight types of grasses, herbs and shrubs are similarly used for constructing houses. Around homes, plants are grown for windbreaks (e.g., *Dendrocalamus*
strictus (Bamboo)), fences (e.g., *Euphorbia royleana* (Cactus spurge)) or shade (e.g., *Mangifera indica* (Mango)). Plants are used for ornamental purposes along roadsides (e.g., *Duranta repens* (Golden dewdrop)), and homes (e.g., *Dendrocalamus strictus* (Bamboo)) [52].

3.6.7. Household use

Soap is made from the latex of *Carica papaya* (Paw paw), or nuts and seeds of *Sapindus mukorossi* (Soap nut), also used to weave baskets and mats. *Aloevera L.* (Aloevera) is used as a face cream and *Euphorbia hirta* (Asthma plant) is used to wash hair. *Bombax ceiba* (Silk cotton tree) is used to make cotton for mattresses and *Themeda Triandra* (Rui grass) is used as a clothing dye. Brooms are made of *Thysanolaena maxima* (Broom grass). Pots used for cultivating yoghurt, called ‘taki’ (*N*), are made of *Artocarpus heterophyllus* (Jackfruit). The seed of *Jatropha curcas* (Physic nut) is burnt for fuel for transport and lighting, and the stem is used as a toothbrush. Plants are also used to make musical instruments, fishing baskets, toys, jewellery and containers to carry wild harvested goods [52].

3.6.8. Wild edible plant use

Wild edible plants have noteworthy roles and contributions in Nepalese diets and food security, particularly for many indigenous, rural, ethnic and marginalized people in Nepal [69,70]. Wild edible plants are uncultivated plants found in the wild, with nutritious value for fulfilling dietary requirements. A number of agricultural crops, and their wild relatives and edible plants enrich the species and diversity of Nepal [69]. Twenty-five unique species are used as wild edible plants for food across the study. Vegetables are obtained from some plants, such as *Crataeva unilocularis* (Garlic pear) which is high in iron, *Justicia adhatoda* (Malabar nut) and *Artocarpus heterophyllus* (Jackfruit). Others are used for pickle, such as *Mentha arvensis* (Peppermint), or *Terminalia chebula* (Yellow myrobalan). Plant’s edible seeds are either consumed after boiling or roasting, such as *Cannabis sativa* (Bhang) and *Artocarpus heterophyllus* (Jackfruit). Some plants are rich in nectar in the flower, such as *Hibiscus rosa-sinensis* (Chinese hibiscus). Some leaves are edible, such as *Oxalis corniculate* (Creeping sorrel). Others are used for fermenting substrates or alcohol, such as *Syzygium cumini* (Indian blackberry), or to make preserves when boiled with sugar, such as *Terminalia chebula* (Yellow myrobalan). Plants are also used for spices and herbs.
4. Discussion

4.1. Factors that incentivise the maintenance of ecosystem services in and around farms

Results offer evidence to support emerging claims that as agriculture intensifies and expands, farmers may increasingly play an important role in conservation beyond protected areas [68, 71]. Communities have a comprehensive understanding of the structure and function of the interconnected human-environmental systems in which they live, allowing them to secure necessities from ecosystem services [72, 73]. The utilization of local plant material is cost-effective, time-tested, situation-specific, practical and flexible. Modifying or transforming existing norms and behaviors to deal with emerging stressors [74]. For example, traditional multi-cropping systems are maintained for various subsistence priorities, such as providing timber, fuel, medicine, organic fertilizer, and pesticides. Farmers maintain plants not only for economic reasons, but to conserve soil, prevent erosion, fix nitrogen, and decompose organic matter. They maintain trees, shrubs and herbs to support photosynthesis, evapotranspiration, watershed regulation, carbon sequestration, and protect against crop raiding by animals [75]. Plants provide livestock fodder, and in turn, plowing power for cultivation, milk, meat, and manure [27]. Plants are cultivated in rotation plots, fallows, forests, home garden, and multistoried cropped to efficiently use space [73, 76]. Furthermore plants have aesthetic and ornamental value, interlinked with tradition, religious, and cultural heritage [77, 78].

In addition to these services, farmers manage ‘disservices’. For example, *Lantana camara* (Lantana) [79], is used as an ornamental and offering, but forms dense thickets, reduces farmland productivity, prevents the growth of new trees, and is toxic to livestock [80]. *Oxalis corniculata* (Creeping soral), is used for food, but is considered an invasive species that occupies fallow land [53]. *Calotropis gigantea* (Crown flower) has milky latex that is massaged into muscles to relieve sprains, but can cause blindness [54]. *Kalanchoe piñata* (Life plant), is used for compost and timber, but is also toxic for livestock [81]. As such, farmers’ practices are geared toward augmenting such services, and reducing disservices from and related to wild and tended plants in and around farms. This results in a restructuring of the agroecosystems in terms of diversity and abundance of wild plant species [82]. This is what can be termed ‘servicing ecosystems’ [83]. Much of this agricultural knowledge and
practice can be integrated into scientific knowledge.

4.2. Ethnobotanical knowledge associated with the maintenance of ecosystem services on farms

Local knowledge, practice and beliefs, have accumulated over generations of living in particular environments, handed down through cultural transmission [84], including apprenticeships [33]. In this study, the average number of useful plants reported by informants of 18-39 years of age (8.64±1.23) was lower compared to that reported by informants of ≥40 years (10.35±0.93). This may suggest the beginnings of a potential loss of traditional ethnobotanical knowledge in the younger generation, which aligns with farmers’ perceptions of declining transmission of local knowledge. This is particularly significant because most botanical knowledge is acquired by young adults [85]. Young farmers have fewer elderly mentors, and agricultural livelihoods are increasingly discouraged in favour of new forms of service employment. Farmers associate this trend with observed declines or disappearance in the last ten years of formerly tended plants, such as *Pueraria tuberosa* (Indian kudzu) [53], a climber, the root and fruit of which is used to relieve constipation and boost immunity; or *Kalanchoe piñata* (Life plant) [81], used for compost. This finding is consistent with previous findings showing [54] youngsters of both Tharu and migrant societies are less aware of plant use in the Terai, than previous generations. On the other hand, the higher number of plants reported by informants of ≥40 years of age corroborates the long-standing local belief that elders possess more botanical knowledge than other segments of society.

Ethnobotanical knowledge and practice within any culture varies according to geographic origin, residence, religion, age, gender, and ethnicity [86]. Nevertheless, some other explanations for differences in knowledge of plant use could be that: (i) Brahmin and Chettri castes tend towards more secure land tenure and higher education, leading to a more diverse knowledge of plant use, (ii) the Tharu and Dura castes have a heritage of subsistence agriculture in the Terai, leading to a greater understanding of plant use, and (iii) the unique knowledge of the Sanyasi stems from Hindu Ayurvedic tradition [42]. However, the fact that social groups are geographically close, exposed to similar environments, and able to exchange knowledge readily could act as compounding factors [87].
4.3. Medicinal plant use

Perhaps unsurprisingly, our analysis reveals a large proportion of plants with documented uses are utilized as medicines: from dermatological to gastrological. Despite the reported increased number of healthcare clinics in the last 15 years, most respondents have a high reliance on, and prefer to use, plant-based remedies. Eighty per cent of respondents consult herbalists or folk healers, often in combination with consultations with health workers (97%), visiting health clinics (80%), or hospitals (40%). This finding is supported by previous studies in other regions in Nepal, which suggest two thirds of the rural population relies on traditional herbal medicine [33, 54]. Reasons for this include cultural acceptance, a long history of traditional medicinal use, the cheapness of traditional remedies compared to modern healthcare, and limited alternatives (i.e., the patient ratio in Nepal is 1:20000 for medical professionals verses 1:100 for traditional healers [88-90]).

4.4. Richness of plant use

When comparing the richness the plant use to other parts of Nepal, results were similar. For example, in Kunwar et al. (2006) studied four districts in Nepal in Dolpa, Jumla, Humla and Mustang. They found 84 common species, which compares to 76 common species that were found in four districts in the Terai [91]. Richness of plant use could not be compared with other countries due the fact that our study was not national, but focused on one agroecological zone of Nepal. Our study also found fewer plants are used than reported in previous studies. For example, Dangol et al. (2017) found 396 wild edible plants are collected [67]. Similarly a study by Manandhar (1997) found 444 wild edible plants [92]. In a study in southwestern China found 103 wild edible plants are collected [93], while a study in southern Ethiopia found 66 species [94]. On the one hand, this may be due to a factor of the study design, which excluded cultivated edible plants in the livestock grazing and agricultural landscape. On the other, it may also be an indication of a decline in diversity in the face of global environmental change, as seen in many other parts of the world. It may also indicate that food resources are becoming increasingly dependent on markets in the Terai, especially in areas with convenient transportation and tourism activities. This finding resonates with other studies that suggest, collecting wild edible plants is becoming increasingly rare, and the younger generation appears to be losing or
even disregarding the traditional knowledge and use of wild edible plants. Nevertheless, eating wild plant foods can help relieve food shortages in drought years, reduce dependence on markets, or increase nutritional diversity [93].

4.5. Building the evidence base

The continued contribution of plant agro-biodiversity to the maintenance of agroecosystem services will depend on how farmers gear management toward augmenting particular services, as well as the extent to which local knowledge is preserved, which will vary across types of crops, altitudes, seasons and cultural needs [95]. In each context, evaluations of the optimal species mix or ecosystem type under multiple possible futures in particular locales are needed, along with approximations of substitutability. Future longitudinal research, across seasons or years, could consider how the knowledge and use of high-value species that provide ecosystem services is changing, such as species with high nutritional benefits, and commercialization viability (e.g., *Azadirachta indica* (Margosa tree), or *Artocarpus heterophyllus* (Jackfruit) [52, 53]. Agricultural and agroforestry landscapes represent a largely unexplored source for pharmacological and phytochemical studies of new bioactive compounds for treating illnesses [33, 95-102]. Indeed, conserving medicinal plants for treating human illness is recognised as an important component of the Sustainable Development Goal (SDG) 3, and many opportunities exist to build evidence of the effectiveness of herbal remedies compared to modern methods [103, 104]. Relatedly, maintaining the integrity of the associated local ecological knowledge, considered critical in achieving many of the SDGs, is also essential. In this context, documentation may also provide a useful safeguard for the sovereignty of traditional knowledge and protect knowledge from being exploited and misappropriated by Big Pharma [96]. Moreover, further in-depth anthropological analysis may help to validate and explain cultural differences in plant use knowledge. For example, by assessing the knowledge of particular caste groups (e.g., Sanyasi), or considering the influence of other factors such as income, landholding size etc. on biodiversity, ecosystem services, or services to ecosystems at landscape and regional scales.

4.6. Implications for adaptive planning, policy and management

Our evidence indicates a high prevalence of autochthonous, low-cost, small-scale ethnobotanical
practices employed to enhance social-ecological resilience to global environmental change. Mobilising and harnessing this knowledge could build common ground for new partnerships between conservation planners and land managers. Among other co-benefits, cultivating wild and tended plant species can help: prevent erosion by erratic and intense rainfall (e.g., *Leucaena leucocephala* (Leucaena)); retain soil moisture during droughts by growing groundcover and enhancing soil fertility (e.g., *Ocimum tenuiflorum* (Sacred basil), *Albizia lebbeck* (Black siris)); serve as windbreaks (e.g., *Dendrocalamus strictus* (Feathery bamboo or various other species of bamboo), *Justicia adhatoda* (Malabar nut)); boost immunity amongst food insecure communities where malnutrition is high (e.g., *Pueraria tuberosa* (Indian Kudzu)); treat human fever and malaria (e.g., *Centella asiatica* (Indian pennywort), *Crataeva unilocularis* (Garlic pear), *Butea monosperma* (Flame of the forest)); treat livestock fever and colds (e.g., *Paris polyphylla* (Herb paris), *Terminalia bellirica* (Yellow myrobalan)); use as pesticides (e.g., *Azadirachta indica* (Neem or Margosa Tree), *Melia azedarach* (Persian lilac)); support alternative livelihoods (e.g., *Bombax ceiba* (Silk cotton tree); or have multiple uses (e.g., *Eupatorium odoratum* (Crofton weed) used for fodder, pest control, medical and religious purposes) [32, 52-54, 57, 58, 105].

Translating best practices from other developing countries could provide useful insights for Nepalese farmers to harness ecosystem service benefits from non-agricultural plants. There is significant potential to reinvest revenue generated from genetic resources in conservation, such as cosmetics, botanical medicines, and pharmaceuticals. Safeguards against Big Pharma expropriation could be strengthened by updating national records of the status and distribution range of non-charismatic protected and threatened species according to IUCN lists (e.g., volumes of Flora of Nepal), or establishing a Traditional Knowledge Digital Library of Nepal, following the example of India [83]. There is a need to up-scale local seed warehouses of useful plants that can withstand dry years, saturation, or invasive populations, as well as increase public spending in purchasing native seeds [88]; and explicitly incorporate the utilization of material on farms in adaptation plans [91].

Tightening legislative controls on access to genetic resources could be supported by becoming a signatory of the Nagoya Protocol on Access to Genetic Resources and Benefit Sharing - a legally
binding instrument which aims to monitor, support long-term use and ensure equitable access for indigenous and future generations [84, 88, 89]. Such local and national initiatives could further tie into the ongoing thematic assessment of the sustainable use of wild species of the International Science-Policy Panel on Biodiversity and Ecosystem Services.

5. Conclusion

This research provides an original contribution to a growing discourse articulating the role plant biodiversity plays in maintaining ecosystem services and humans’ contributions to biodiversity maintenance. Local knowledge, beliefs and practices, which has accumulated over generations, support a high diversity of non-agricultural plant communities in the Terai Plains of Nepal. A total of 391 vascular plant specimens belong to 76 distinct plant species from 49 phylogenetic families. This high level of plant agrobiodiversity provides a rich source of ecosystem services that contributes to the social, cultural, environmental and economic enrichment of Nepalese rice farming communities. Farmers’ knowledge-belief-practice complexes [106], which differ by the caste and age group, assist communities to adapt to emerging risks by enhancing adaptive capacity of both ecosystems and the livelihood resources they provide [72]. However, there appears to be a declining transmission of ethnobotanical knowledge to the younger generation, and farmers associate this trend with declines or loss of formerly tended plants. Results can serve as baseline data to initiate further research, be used to plan for a range of potential development trajectories, and be used to conserve valuable, but disappearing, traditional knowledge and practices.

6. Declarations

6.1. Ethics approval and consent to participate

Methods of obtaining data during fieldwork followed the Ethical guidelines of the International Society of Ethnobiology (http://www.ethnobiology.net/). Free prior informed consent was obtained from all study participants in accordance with the Declaration of Helsinki. Ethical committee permissions were rendered by the University of Oxford. Site access was facilitated via a local organisation with permissions from local communities. No permits were required to collect voucher specimens.

6.2. Consent for publication
This manuscript does not contain any individual person’s data, and further consent for publication is not required.

6.3. Availability of data and materials

Voucher specimens for species were deposited in the National Herbarium and Plant Laboratories in Godawari, Lalitpur in Kathmandu. Other

6.4. Competing interests

The authors declare that they have no competing interests (both financial and non-financial).

6.5. Funding

This work was funded by Climate Change Agriculture and Food Security research program on Systemic Integrated Adaptation of the Consultative Group of International Agricultural Research, and the Biodiversity Institute, Long-term Ecology and Resource Stewardship Lab, Merton College at the University of Oxford, the University of York Department of Environment and Geography, and the York Institute of Tropical Ecology. This output has also been funded in part by the UK Research and Innovation’s Global Challenges Research Fund under the Development Corridors Partnership project (project number ES/P011500/1).

6.6. Author’s contributions

All authors designed the study. JPRT conducted the fieldwork, identified the plant specimens, ran the data analysis, and wrote the manuscript. All authors read, corrected and approved the final manuscript.

6.7. Acknowledgements

We gratefully acknowledge the Terai rural communities for generously sparing their time to share their knowledge with us, and in particular Bhim Chaudhury, Rhada Chaudhury, Mangu Chaudhury, Shem Narayan Chaudhary, Laksmi Chaudhury, Jhup Lal Bhudhathoki, Chandra Kumari Mahata, Hiramati Grau, Kopila Paudel, and Garima Women Farmers’ Cooperative and Sagarmatha’s Women’s Group. Many thanks to Surya Bahadur Thapa of the Friends Service Council Nepal (FSCN), Ugan Manandhar of WWF Nepal, and the Nepal Agricultural Research Council for providing in-country institutional support. Anita Bake and Dev Kala Dumre (FSCN) and Renu Shakya (independent
translator) assisted in fieldwork translation. Assistance in identifying plant specimens was provided by Narayan Panday and Mitra Pathak of the National Herbarium Laboratories, Godawari, Lalitpur. We thank Adam Hejnowicz and the anonymous reviewers for their valuable comments on the earlier versions of the manuscript.

7. References

1. Rockström J, Steffen W, Noone K, Persson Å, Chapin F S, Lambin E, Lenton T M, Scheffer M, Folke C, Schellnhuber H, Nykvist B, De Wit C A , Hughes R, van der Leeuw S, Rodhe H, Sörlin S, Snyder P K, Costanza R, Svedin U, Falkenmark M, Karlberg L, Corell R W, Fabry V J, Hansen J, Walker B, Liverman D, Richardson K, Crutzen P, and Foley J. Planetary boundaries: exploring the safe operating space for humanity. Ecology and Society.2009;14(2):32

2. IPBES. Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. Díaz S, Brondizio ES, Ngo HT, Gueze M, Agard J, Arneth A, Balvanera P, Brauman KA, Butchart SHM, Chan KMA, Garibaldi LA, Ichii K, Liu J, Subramanian SM, Midgley GF, Miloslavich P, Molnár Z, Obura D, Pfaff A, Polasky S, Purvis A, Razzaque J, Reyes B, Chowdhury R, Shin YJ, Visseren-Hamakers IJ, Willis KJ, and Zayas CN (eds.). 2019, International Science-Policy Panel on Biodiversity and Ecosystem Services (IPBES) secretariat: Germany.

3. Mace, GM. Whose conservation? 2014;345(6204):1558-1560

4. FAO. The state of the world’s biodiversity for food and agriculture, in FAO commission on genetic resources for food and agriculture assessments, J Belanger and D Pilling (eds.) 2019; Rome. 572.

5. Dangi MB, Chaudhary RP. Impacts of environmental change on agroecosystems and livelihoods in Annapurna Conservation Area, Nepal. Environmental Development.
6. Obersteiner M, Walsh B, Frank S, Havlik P, Cantele M, Liu J, Palazzo A, Herrero M, Lu Y, Mosnier A, Valin H, Riahi K, Kraxner F, Fritz S, van Vuuren D. Assessing the land resource–food price nexus of the Sustainable Development Goals. 2016;2(9):e1501499

7. Hossain MS, Dearing JA, Rahman MM, Salehin M. Recent changes in ecosystem services and human well-being in the Bangladesh coastal zone. Regional Environmental Change. 2016;16(2):429-443

8. Daily GC. Nature's services: Societal dependence on natural ecosystems 1997, Washington, DC: Island.

9. Assembly, U.G. Transforming our world: the 2030 Agenda for Sustainable Development, 21 October 2015, A/RES/70/1, [cited 2019 25 November]. 2015 available at: https://www.refworld.org/docid/57b6e3e44.html

10. Springmann M, Godfray CJ, Rayner M, Scarborough P. Analysis and valuation of the health and climate change cobenefits of dietary change. 2016;113(15):4146-4151.

11. Foley JA, Ramankutty N, Brauman KA, Cassidy ES, Gerber JS, Johnston M, Mueller ND, O'Connell C, Ray DK, West PC, Balzer C, Bennett EM, Carpenter SR, Hill J, Monfreda C, Polasky S, Rockstrom J, Sheehan J, Siebert S, Tilman D, Zaks DPM. Solutions for a cultivated planet. Nature. 2011;478(7369): 337-342.

12. Aleksandrowicz L, Green R, Smith P, Haines A. The impacts of dietary change on Greenhouse Gas Emissions, land use, water use, and health: A systematic review. PLOS ONE. 2016;11(11): e0165797

13. Rosegrant MW, Cline SA. Global food security: challenges and policies. Science. 2003;302(5652):1917-9

14. Bhattarai KR, Ghimire MD. Commercially important medicinal and aromatic plants of
Nepal and their distribution pattern and conservation measure along the elevation gradient of the Himalayas. Banko Janakari. 2006, 16: 3-13

15. Burlakoti C, Kunwar RM. Folk herbal medicines of Mahakali Watershed Area, Farwest Nepal. Medicinal Plants in Nepal: an anthology of contemporary research. Edited by: Jha PK, Karmacharya SB, Chettri MK, Thapa CB, Shrestha BB. 2008, Ecological Society, Kathmandu, Nepal, 187-193

16. Kunwar RM, Mahat L, Acharya RP, Bussman RW. Medicinal plants, traditional medicine, markets and management in far-west Nepal. 2013; Journal of Ethnobiology and Ethnomedicine. 9(24)

17. Kumar BM, Nair PKR. The enigma of tropical homegardens. Agroforestry Systems. 2004;61:135-152

18. Clarke LW, Li L, Jenerette GD, Yu Z. Drivers of plant biodiversity and ecosystem service production in home gardens across the Beijing Municipality of China. Urban Ecosystems. 2014;17(3):741-760

19. Lubbe CS, Siebert SJ, Cilliers SS. Floristic analysis of domestic gardens in the Tlokwe City Municipality, South Africa. Bothalia. 2011;41(2): 351-361

20. International Institute for Environment and Development. Smallholder innovation for resilience: promoting resilient farming systems and local economies. 2015; [cited 2019 25 November] [Available from: http://www.biocultural.iied.org/smallholder-innovation-resilience-sifor .

21. Seto KC, Güneralp B, Hutyra LR. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proceedings of the National Academy of Sciences. 2012;109(40): 16083-16088.

22. Haenke S, Kovacs-Hostyanszki A, Freund J, Batary P, Jauker B, Tscharntke T, Holzschuh A. Landscape configuration of crops and hedgerows drives local syrphid fly
abundance. Journal of Applied Ecology. 2014;(15):505-513.

23. Ford A, Nigh R. The Maya forest garden: Eight millennia of sustainable cultivation of the tropical woodlands. 2015; Left Coast Press; USA. 192.

24. Grieg-Gran M, Gemmill-Herren B. Handbook for participatory socio-economic evaluation of pollinator-friendly practices. 2011; FAO: Italy.

25. Elmqvist T, Folke C, Nystrom M, Peterson G, Bengtsson J, Walker B, Norberg J. Response diversity, ecosystem change, and resilience. Frontiers in Ecology and the Environment. 2003;1(9): 488–494

26. Fahrig L. Relative effects of habitat loss and fragmentation on population extinction. The Journal of Wildlife Management. 1997; 61(3):603–610

27. Acharya KP. Linking trees on farms with biodiversity conservation in subsistence farming systems in Nepal. Biodiversity and Conservation 2006;15:631-646

28. Thorn JPR, Thornton TF, Helfgott A. Autonomous adaptation to global environmental change in peri-urban settlements: Evidence of a growing culture of innovation and revitalisation in Mathare Valley Slums, Nairobi. Global Environmental Change. 2015;31: 121-131

29. Thorn JPR. Adaptation “from below” to changes in species distribution, habitat and climate in agro-ecosystems in the Terai Plains of Nepal. Ambio. 2019;1-16

30. Guo Z, Zhang L, Li Y. Increased dependence of humans on ecosystem services and biodiversity. PLoS ONE. 2010;5(10):1-8

31. Mohri H, Lahoti S, Saito O, Mahalingam A, Gunatilleke N, Irham, Hoang VT, Hitinayake G, Takeuchi K, Herath S. Assessment of ecosystem services in homegarden systems in Indonesia, Sri Lanka, and Vietnam. Ecosystem Services. 2013;5:124-136

32. Bhattarai S, Chaudhary RP, Taylor RS. Ethnomedicinal plants used by the people of Manang district, central Nepal. Journal of Ethnobiology and Ethnomedicine 2006;2(41)
33. Kunwar RM, Shrestha KP, Bussmann RW. Traditional herbal medicine in Far-west Nepal: a pharmacological appraisal. Journal of Ethnobiology and Ethnomedicine. 2010; 6(35):1-18

34. Manandhar NP. Native phytotherapy among the Raute tribe of Dadeldhura district, Far-west Nepal. Journal of Ethnopharmacology. 1998;60:199-206

35. Garibaldi A, Turner N. Cultural keystone species: implications for ecological conservation and restoration. Ecology and Society. 2004; 9(3):1

36. Paudel PK, Bhattarai BP, Kindlmann P. An overview of the biodiversity in Nepal, in Himalayan biodiversity in the changing world, Kindlmann P (ed.). 2011; Springer: Dordrecht.

37. World Bank. Climate risk and adaptation country profiles. 2015;World Bank: USA.

38. World Food Programme. Country Overview Nepal, World Food Programme (ed.). 2010;WFP: Italy.

39. Luitel DR, Rokaya MB, Timsina B, Münzbergová Z. Medicinal plants used by the Tamang community in the Makawanpur district of central Nepal. Journal of Ethnobiology and Ethnomedicine. 2014;10(5):1-11

40. Government of Nepal. Nepal Census of Agriculture 2001/2. 2002 [cited 2014 26 December]; Available from: https://cbs.gov.np

41. Regmi RR. Deforestation and rural society in the Nepalese Terai. Occasional Papers in Sociology and Anthropology. 1994;4:72-89

42. Guneratne A. Many tongues, one people: The making of Tharu identity in Nepal. 2002, Cornell University Press: USA.

43. Bridson DM, Forman L. The herbarium handbook. 1998, Kew Royal Botanic Gardens: United Kingdom.

44. Press JR, Shrestha KK, and Sutton DA. Annotated checklist of the flowering plants of
Nepal. 2000, Natural History Museum, United Kingdom and Central Department of Botany, Tribhuvan University: Nepal.

45. Bernard HR, Gravlee CC. Handbook of methods in cultural anthropology. 2014; Rowman & Littlefield: USA.

46. Brush SB. Is common heritage outmoded? in Valuing local knowledge: indigenous people and intellectual property rights Brush SB, Stabinsky D (eds). 1996, Island Press: USA. p. 143-164

47. Olango TM, Tesfaye B, Catellani M, Pe ME. Indigenous knowledge, use and on-farm management of enset (Ensete ventricosum (Welw.) Cheesman) diversity in Wolaita, Southern Ethiopia. Journal of Ethnobiology and Ethnomedicine. 2014; 10(41):1-18

48. Shannon C, Weaver W. The mathematical theory of communication. 1949; University of Illinois Press: USA.

49. R Development Core Team. R: A Language and environment for statistical computing. 2005; R Foundation for Statistical Computing: Austria.

50. Sarkar D. Lattice: Multivariate data visualization. 2008. R. Springer: USA.

51. Clarke KR, Gorley RN. PRIMER v6: User Manual/Tutorial. 2006: United Kingdom. p192.

52. Storrs A, Storrs J. Trees and shrubs of Nepal and the Himalayas. 1998; Books Faith India: India.

53. IUCN Nepal. National register of medicinal and aromatic plants (Revised and updated). 2004; The World Conservation Union: Nepal.

54. Singh AG, Kumar A, Tewari DD. An ethnobotanical survey of medicinal plants used in Terai forest of western Nepal. Journal of Ethnobiology and Ethnomedicine. 2012;8:19

55. Pigg SL. Inventing social categories through place: Social representations and development in Nepal. Comparative Studies in Society and History. 1992;34(3): 491-513
56. World Flora Online (WFO). World Flora Online. Available online: http://www.worldfloraonline.org. Accessed on 22 March 2020; 2020.

57. Mishra B. Scientific name agro-forestry crops of Nepal. 2003 [cited 2015 25 March 2015]; Available from: https://bijeshmishra.wordpress.com/2012/04/01/scientific-name-agro-forestry-crops-of-nepal/.

58. Government of Nepal. Plant resources (a scientific publication). 2014; Bulletin of Department of Plant Resources: Nepal.

59. Dangol DR. Traditional uses of plants of commonland habitats in Western Chitwan, Nepal. Journal of the Institute of Agriculture and Animal Science. 2008;29: 71-78

60. Kerkhoff EE. Sustainable sloping lands and watershed management conference. 2003; ICIMOD: Nepal.

61. Chatterjee K, Ali KM, De D, Panda DK, Ghosh D. Anti diabetic and anti oxidative potencies study of ethyl acetate fraction of hydromethanolic (40:60) extract of seed of Eugenia jambolana Linn and its chromatographic purification. Journal of Pharmacy Research. 2012;5(1): 696-703

62. Kew Royal Botanic Gardens. World checklist of selected plant families. Facilitated by the Royal Botanic Gardens, Kew. 2015; [cited 10 October 2015]; Available from: http://apps.kew.org/wcsp/

63. Subedi BP, Chintamani LD, Messeschmidt DA. Tree and land tenure in the Eastern Terai, Nepal: A case study from the Siraha and Saptari districts, Nepal. 1998; FAO: Italy.

64. Kunwar RM, Bussmann RW. Ficus (Fig) species in Nepal: a review of diversity and indigenous uses. Iyonia: a journal of ecology and application. 2006;11(1):85-97

65. Chisholm H. Encyclopædia Britannica 4. Vol. 11th edition. 1911; Cambridge University Press: United Kingdom.
66. Pattanayak BP, Das D, Panda SK. Ocimum sanctum Linn. A reservoir plant for therapeutic applications: An overview. Pharmacognosy Reviews. 2010;4(7):95-105

67. United States Department of Agricultural Resources Natural Resources Conservation Science. Plants database. 2015; [cited 2019 25 November 2019]; Available from: https://www.nrcs.usda.gov/wps/portal/nrcs/site/national/home/

68. Ehrlich PR, Ehrlich AH. Can a collapse of global civilization be avoided? Proc R Soc B. 2014;280: 20122845

69. Dangol DR, Maharjan KL, Maharjan SK, Acharya, AK. Wild edible plants of Nepal. In: Joshi BK, KC HB, Acharya AK, eds. Conservation and Utilization of Agricultural Plant Genetic Resources in Nepal. 2017. Proceedings of 2nd National Workshop, 22-23 May 2017 Dhulikhel; NAGRC, FDD, DoA and MoAD; Kathmandu, Nepal

70. Kunwar RM, Duwadee NPS: Ethnobotanical notes on flora of Khaptad national park, far western Nepal. Himalayan Journal of Sciences. 2003, 1 (1): 25-30

71. UK Government Office for Science. Foresight. The future of food and farming: Challenges and choices for global sustainability (Executive summary). 2011; Government Office for Science: United Kingdom.

72. Government of Nepal Ministry of Science Technology and Environment. Indigenous and local knowledge and practices for climate resilience in Nepal, mainstreaming climate change risk management in development. 2015; Ministry of Science, Technology and Environment: Nepal.

73. Ingold T. Perception of the environment: Essays on livelihood, dwelling and skill. 2000; Routledge: United Kingdom.

74. Gurung B. A cultural approach to natural resource management: A case study from Eastern Nepal. Summary report of FAO regional expert consultation on non-wood forest products: social, economic and cultural dimensions. 1994; FAO: Italy.
75. Del Angel-Perez AL, Mendoza MA. Totonac homegardens and natural resources in Veracruz, Mexico. Agriculture and Human Values. 2004;21(4):329-346

76. Salas M. Seed songs - reflections on swidden agriculture agrobiodiversity and food sovereignty. Indigenous Affairs. 2005; 2:14-21

77. UNEP. Guidelines for the rapid assessment of inland, coastal and marine wetland biodiversity, in 9th Meeting of the Conference of the Parties to the Convention on Wetlands (Ramsar, Iran, 1971): Wetlands and water: supporting life, sustaining livelihoods. 2006: UNEP: Uganda.

78. Boelee E, Chiramba T, Khaka E. An ecosystem services approach to water and food security in An ecosystem services approach to water and food security, International Water Management Institute and United Nations Environment Programme. 2011; UNEP: Kenya.

79. Kunwar R, Thapa K, Shrestha R, Shrestha P, Bhattarai N, Tiwari N, Shrestha K. Medicinal and Aromatic Plants Network (MAPs-Net) Nepal: An open access digital database. Banko Janakari. 2013; 21(1), 48-50.

80. Bhagwat SA, Breman E, Thekaekara T, Thornton TF, Willis KJ. A Battle Lost? Report on two centuries of invasion and management of Lantana camara L. in Australia, India and South Africa. PLoS ONE. 2012;7(3): 32407

81. Mandal D, Panda AK, Rana M. Medicinal plants used in folk medicinal practice available in rich biodiversity of Sikkim. Environment & Ecology. 2013;31(3A):1445—1449

82. Ango TG, Börjeson L, Senbeta F, Hylander K. Balancing ecosystem services and disservices: smallholder farmers’ use and management of forest and trees in an agricultural landscape in southwestern Ethiopia. Ecology and Society. 2014;19(1):30

83. Comberti C, Thornton TF, Wyllie de Echeverria V, Patterson T. Ecosystem services or
services to ecosystems? Valuing cultivation and reciprocal relationships between humans and ecosystems. Global Environmental Change. 2015;34:247-262

84. Berkes F. Sacred ecology: Traditional ecological knowledge and resource management. 1999; Taylor and Francis: USA.

85. Hunn ES. Evidence for the precocious acquisition of plant knowledge by Zapotec children. Ethnobiology and biocultural diversity. 2002; 604:13-31

86. Pfeiffer JM, Butz RJ. Assessing cultural and ecological variation in ethnobiological research: the importance of gender. Journal of Ethnobiology. 2005;25: 240-278

87. Saslis-Lagoudakis CH, Hawkins JA, Greenhill SJ, Pendry CA, Watson MF, Tuladhar-Douglas W, Baral SR, Savolainen V. The evolution of traditional knowledge: environment shapes medicinal plant use in Nepal. Proceedings of the Royal Society B. 2014;281(1780) https://doi.org/10.1098/rspb.2013.2768

88. World Resources Institute. World Resources - 2005. The wealth of the poor: managing ecosystems to fight poverty. 2005, WRI: USA.

89. Poudel S, Kotani K. Climatic impacts on crop yield and its variability in Nepal: do they vary across seasons and altitudes? Climatic Change. 2012;116(2): 327-355

90. Ghimire SK. Medicinal plants in the Nepal Himalaya: current issues, sustainable harvesting, knowledge gaps and research priorities. Medicinal Plants in Nepal: an anthology of contemporary research. Edited by: Jha PK, Karmacharya SB, Chettri MK, Thapa CB, Shrestha BB. 2008, Ecological Society, Kathmandu, Nepal, 187-193.

91. Kunwar RM, Nepal BK, Kshetri HB, Rai SK, Bussmann RW. Ethnomedicine in Himalaya: a case study from Dolpa, Humla, Jumla and Mustang districts of Nepal. Journal of Ethnobiology and Ethnomedicine. 2006, 2: 27-10.1186/1746-4269-2-27.

92. Manandhar NP. Role of ethnobotany in the context of Nepal; Paper presented on National Training Workshop on “Application of ethnobotany to community...
“development” held in Sauraha, Chitwan from January 6-13, 1997; 1997.

93. Zhang L, Chai Z, Zhang Z, Geng Y, Wang Y. 2016. Ethnobotanical study of traditional edible plants used by the Naxi people during drought. Journal of Ethnobiology and Ethnomedicine. 2016, 12(39)1-16.

94. Balemie K, Kebebew F. Ethnobotanical study of wild edible plants in Derashe and Kucha Districts, South Ethiopia. Journal of Ethnobiology and Ethnomedicine. 2006; 2 (53)1-9

95. Government of India. Traditional knowledge digital library. 2016 [cited 2016; Available from: http://www.tkdl.res.in/tkdl/langdefault/common/Home.asp?GL=Eng.

96. Royal Botanical Gardens Kew. The state of the world’s plants report – 2016. 2016; Royal Botanic Gardens, Kew: United Kingdom.

97. Nair KPP. The agronomy and economy of turmeric and ginger: the invaluable medicinal spice crops. 2013; Elsevier: United Kingdom.

98. Wynberg R, van Niekerk J. Global ambitions and local realities: achieving equity and sustainability in two high-value natural product trade chains. Forests, trees and livelihoods. 2014;23 (1-2):19-35

99. Twilley N. Who owns the patent on nutmeg? in The New Yorker. 2015.

100. Convention of Biological Diversity. Nepal overview. 2016 [cited 2016 12 May]; Available from: https://www.cbd.int/countries/profile/default.shtml?country=np#measures.

101. Prip C, Rosendal K. Access to genetic resources and benefit-sharing from their use (ABS) – State of implementation and research gaps, 2015; PBLNetherlands Environmental Assessment Agency and Fridtjof NansensInstitute: Netherlands.

102. Madhav KC, Phoboo S, Jha PK. Ecological study of Paris Polyphylla Sm. Ecoprint. 2010;17(87-93) https://doi.org/10.3126/eco.v17i0.4121
103. Kunwar RM, Nepal BK, Kshhetri HB, Rai SK, Bussman RW. Ethnomedicine in Himalaya: a case study from Dolpa, Humla, Jumla and Mustang districts of Nepal. 2006: Journal of Ethnobiology and Ethnomedicine.2:27.

104. Kunwar RM, Adhikari N. Ethnomedicine of Dolpa district, Nepal: the plants, their vernacular names and uses. Lyonia. 2005, 8 (1): 43-49.

105. Regmi B, Paudyal A. Climate change and agrobiodiversity in Nepal: Opportunities to include agrobiodiversity maintenance to support Nepal’s National Adaptation Programme of Action (NAPA), P. Bordoni (ed.) 2009. FAO, LI-BIRD: Nepal.

106. Berkes F. Sacred ecology: Traditional ecological knowledge and management systems. 1999; Taylor & Francis: United Kingdom.

Figures
Map of study area in the Central and Western zones of the Terai Plains of Nepal (n=40 villages). A ‘site’ is a rice farm (5.78±2.33ha) where terraced rice is cultivated during the monsoon season, when 80% of rain falls. In each region, ten farms were surveyed across the hydro shed catchment within 200km2 using regional topographical maps of Nepal (1:25 000), sourced in 2012 from East View Cartographic Inc., Minneapolis in the USA, and the Ministry of Land Reform and Survey, Government of Nepal in Kathmandu [35].
Figure 2

Multiple uses of wild and tended plants across four landscapes in the Terai Plains of Nepal.

The figure shows medicinal use emerged as the dominant use category across all landscapes. Numbers refer to percentage.
Composite schematic view illustrating a typical multi-layered, heterogeneous, integrated cropping system in the Terai. (a) road, (b) pathway, (c) rice paddy fields (d) lentil and soya bean grown along boundaries, (e) tube wells, or slurry processing for biogas, (f) vegetable garden (e.g., bottle gourd, cucumber, tomato, beans, okra, sesame), spices (e.g., ginger, turmeric) and cosmetics (e.g., aloe vera) with mulched patches and ridges/bunds for water efficiency, (g) buffalo, goat or pig pen and fuel wood storage, (h) cluster of trees alongside boundary for windbreaks (e.g., Dendro clamus strictus), fuel wood and timber (e.g., Dalbergia sisoo, Shorea robusta, Melia azedarach), fruit (e.g., Psidium guajava), fodder (e.g., Azadirachta indica, Abizia lebbeck), religious value (e.g., Aegle marmelos), or shade (e.g., Magnifera indica), (i) house roof made of reed thatch, covered with creepers and gourds for aesthetic value, insulation, temperature regulation and food (Adapted from [27]).
Figure 4

Cluster analysis of caste and plant species abundance. The figure shows knowledge is clustered around four statistically dissimilar groups. Black lines indicate relationships that are significantly supported, while red lines indicate no significant difference was detected.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

Additional file 1.pdf