Affordability, cost and cost-effectiveness of universal anti-retroviral therapy for HIV

Brian G. Williams* and Eleanor Gouws†

* South African Centre for Epidemiological Modelling and Analysis, Stellenbosch, South Africa
† Joint United Nations Programme on HIV/AIDS (UNAIDS), Geneva, Switzerland

Correspondence to BrianGerardWilliams@gmail.com

Abstract

If people at risk of HIV infection are tested annually and started on treatment as soon as they are found to be HIV-positive it should be possible to reduce the case reproduction number for HIV to less than one, eliminate transmission and end the epidemic. If this is to be done it is essential to know if it would be affordable, and cost effective. Here we show that in all but eleven countries of the world it is affordable by those countries, that in these eleven countries it is affordable for the international community, and in all countries it is highly cost-effective.

Introduction

The science behind Treatment-as-Prevention is clear.1 Annual testing and immediate ART can stop transmission2-7 and at the same time gives people infected with HIV the best prognosis.8-16 Furthermore, a number of studies have shown that ART is cost-effective17-19 even in poorly resourced countries. Here we use data on the number of people living with HIV and the gross domestic product (GDP), for all countries, to explore the affordability, cost and cost-effectiveness of putting all HIV-positive people onto ART.

Methods

To estimate the affordability of ART we calculate, for each country in the world, an affordability index, AI, which is the cost of giving all HIV-positive people ART expressed as a percentage of GDP. If the AI is greater than 2% we regard universal ART as unaffordable, between 1% and 2% as marginal and less than 1% as affordable. To calculate the affordability if funding in resource limited countries is provided by the international community, we compare the cost of ART to current global spending on ART in lower and middle income countries. Since there is no universally agreed definition of affordability we also compare the cost of universal ART to the cost of spending on the military in each country. To estimate the cost-effectiveness we calculate the cost-effectiveness ratio, CER, as the cost of maintaining one person on ART as a proportion of the per capita GDP. If the cost per life year saved is less then three times per capita GDP we regard it is cost-effective, if it is less than the per capita GDP we regard it as highly cost-effective.20

We use data on the number of people living with HIV for each country in the world from UNAIDS.21 We use data on the GDP from Knoema,22 on the per capita GDP from Wikipedia23 and on military spending from The Guardian.24

We assume that the cost of maintaining one person on ART for one year is US$500: half for drugs and half for monitoring, care and support.25

Figure 1. Red and green bars, upper axis: affordability index, AI: the cost of universal ART as a percentage of GDP. Blue bars, lower axis: cumulative cost of universal ART. Shaded areas: AI 5% to 8%, 2% to 5%, 1% to 2% and 0.1% to 1%. In all other countries the AI is less than 0.1%. Embedded numbers: military spending divided by the cost of universal ART. Red bars military spending greater than the cost of universal ART; green bars military spending less than the cost of universal ART.
In all but eleven countries universal ART should be affordable by the governments of those countries although support for technical assistance will still be needed. In the eleven countries in which universal ART is probably not affordable by their governments, the total cost of universal ART is only 29% of current global expenditure on HIV so that with international assistance universal ART is affordable in these countries as well. Even if the international community were to pay for ART in all those countries of the world where the AI is greater than 0.1% the total cost would only amount to 68% of current global expenditure on HIV and to 40% if we exclude Nigeria and South Africa. Since universal ART is highly cost-effective in every country in the world, based on the definition used by the World Health Organization, financial considerations should not deter the world from working towards universal ART.

Finally, it is worth noting that the cost of ART in the United States is one hundred times the cost of ART in middle and lower income countries. Even allowing for this the AI in the United States is 0.2% making it affordable. The CER is 0.5 making it highly cost effective but the total cost is US$ 30 billion per year, one third more than the current spending on HIV in the United States of US$22 billion.

Universal ART is affordable, cost-effective and within current global funding commitments. Since universal ART would also stop transmission steps should be taken to start implementing universal ART as soon as possible.

References

1. Williams B, Lima V, Gouws E. Modelling the impact of antiretroviral therapy on the epidemic of HIV. Curr HIV Res. 2011; 9: 367-82
2. Montaner JS, Hogg R, Wood E, Kerr T, Tyndall M, Levy AR, et al. The case for expanding access to highly active antiretroviral therapy to curb the growth of the HIV epidemic. Lancet. 2006; 368: 531-6.
3. Ho DD. Time to hit HIV, early and hard. N Engl J Med. 1995; 333: 450-1.
4. Granich RM, Gilks CF, Dye C, De Cock KM, Williams BG. Universal voluntary HIV testing with immediate antiretroviral therapy as a strategy for elimination of HIV transmission: a mathematical model. Lancet. 2008; 373: 48-57.
5. Lima VD, Johnston K, Hogg RS, Levy AR, Harrigan PR, Anema A, et al. Expanded Access to Highly Active Antiretroviral Therapy: A Potentially Powerful Strategy to Curb the Growth of the HIV Epidemic. J Infect Dis. 2008; 198: 59-67.
6. Cohen MS, Gay C, Kashuba AD, Blower S, Paxton L. Narrative review: antiretroviral therapy to prevent the sexual transmission of HIV-1. Ann Intern Med. 2007; 146: 591-601.
7. Barth RE, van der Loeff MF, Schuurman R, Hoepelman AI, Wensing AM. Virological follow-up of adult patients in
antiretroviral treatment programmes in sub-Saharan Africa: a systematic review. Lancet Infect Dis. 2010; 10: 155-66.
8. Cohen MS, Chen YQ, McCAuley M, Gamble T, Hosseinipour MC, Kumsarasamy N, et al. Prevention of HIV-1 infection with early antiretroviral therapy. N Engl J Med. 2011; 365: 493-505.
9. Gras L, Kesselring AM, Griffin JT, van Sighem AI, Fraser C, Ghani AC, et al. CD4 cell counts of 800 cells/mm3 or greater after 7 years of highly active antiretroviral therapy are feasible in most patients starting with 350 cells/mm3 or greater. J Acquir Immune Defic Syndr. 2007; 45: 183-92.
10. Williams BG, Hargrove JW, Humphrey JH. The benefits of early treatment for HIV. AIDS. 2010; 24: 1790-1.
11. Williams BG, Granich R, De Cock K, Glaziou P, Sharma A, Dye C. Anti-retroviral therapy for the control of HIV-associated tuberculosis: modelling the potential effects in nine African countries. Proc Nat Acad Sc USA. 2010; 107: 17853-4.
12. Zwahlen M, Harris R, May M, Hogg R, Costagliola D, de Wolf F, et al. Mortality of HIV-infected patients starting potent antiretroviral therapy: comparison with the general population in nine industrialized countries. Int J Epidemiol. 2009; 38: 1624-33.
13. Sterne JA, May M, Costagliola D, de Wolf F, Phillips AN, Harris R, et al. Timing of initiation of antiretroviral therapy in AIDS-free HIV-1-infected patients: a collaborative analysis of 18 HIV cohort studies. Lancet. 2009; 373: 1352-63.
14. Lewden C, Chene G, Morlat P, Raffi F, Dupon M, Dellamonica P, et al. HIV-infected adults with a CD4 cell count greater than 500 cells/mm3 on long-term combination antiretroviral therapy reach same mortality rates as the general population. J Acquir Immune Defic Syndr Hum Retrovirol. 2007; 46: 72-7.
15. Hargrove JW, Humphrey JH. Mortality among HIV-positive postpartum women with high CD4 cell counts in Zimbabwe. AIDS. 2010; 24: F11-4.
16. Holmberg SD, Palella FJ Jr., Lichtenstein KA, Havlir DV. The case for earlier treatment of HIV infection. Clinical Infectious Diseases. 2004; 39: 1699-704.
17. Bendavid E, Wood R, Katzenstein DA, Bayoumi AM, Owens DK. Expanding Antiretroviral Options in Resource-Limited Settings-A Cost-Effectiveness Analysis. J Acquir Immune Defic Syndr Hum Retrovirol. 2009; 52: 106-13.
18. Granich R, Kahn JG, Bennett R, Holmes CB, Garg N, Serenata C, et al. Expanding ART for Treatment and Prevention of HIV in South Africa: Estimated Cost and Cost-Effectiveness 2011-2030. PLoS ONE. 2012; 7: e30216.
19. Resch S, Korenromp E, Stover J, Blakley M, Krubiner C, Thorien K, et al. Economic returns to investment in AIDS treatment in low and middle income countries. PLoS ONE. 2011; 6: e25310.
20. Sachs J 2001. Report of the Commission on Macroeconomics and Health. Geneva: World Health Organization December 2001.
21. UNAIDS. Report on the Global AIDS Epidemic. 2010; Available at: http://www.unaids.org/documents/20101123_GlobalReport_en.pdf.
22. Anonymous. GDP Ranking. Accessed 24 June 2012; Available at: http://knoema.com/wnf/kne.
23. Anonymous. List of countries by GDP (PPP) per capita. Accessed 24 June 2012; Available at: http://en.wikipedia.org/wiki/List_of_countries_by_GDP_(PPP)_per_capita.
24. Anonymous. The Guardian. Accessed 19 October 2012; Available at: http://www.guardian.co.uk/news/datablog/2012/apr/17/military-spending-countries-list/data.
25. Schwartlander B, Stover J, Hallett T, Atun R, Avila C, Gouws E, et al. Towards an improved investment approach for an effective response to HIV/AIDS. Lancet. 2011; 377: 2031-41.
26. UNAIDS 2012. Global AIDS Response: Progress, reporting 2012 Geneva Available at: http://www.unaids.org/en/media/unaids/contentassets/documents/document/2011/JC2215_Global_AIDS_Response_Progress_Reporting_en.pdf.
27. Anonymous 2012. US Federal Funding for HIV/AIDS: the Presidents FY 2013 budget request. Washington, D.C.: Henry J. Kaiser Family Foundation Available at: www.kff.org/hivaids/upload/7029-08.pdf.