Swept Source Optical Coherence Tomography Compared to Ultrasound and Biomicroscopy for Diagnosis of Posterior Vitreous Detachment

Marlene D Wang*

Department of Ophthalmology, Columbia University Irving Medical Center, New York, USA

ABSTRACT

Background: Biomicroscopy, B-scan ultrasound imaging, and SD-OCT are all modalities used to characterize a Posterior Vitreous Detachment (PVD). Our objective is to assess the precision of the diagnosis of PVD by SS-OCT.

Methods: This prospective observational study examines ninety-five eyes of forty-nine patients with biomicroscopy, B-scan ultrasound, and SS-OCT for the presence or absence of a complete PVD. All SS-OCT images were reviewed by two retina specialists (RWSC, ZM). All three diagnostic methods were evaluated for agreement by Cohen’s kappa statistic.

Results: The inter-rater reliability between retina specialists reading the SS-OCT images was 97.9% (k=0.957). Agreement on PVD status between SS-OCT and biomicroscopy was 85.3% (k=0.711). Agreement between SS-OCT and B-scan ultrasound was 83.2% (k=0.667). Agreement between B-scan ultrasound and biomicroscopy was 87.4% (k=0.743).

Conclusion: For the diagnosis of complete PVD, SS-OCT allows for high reproducibility and agreement between graders.

Keywords: Optical coherence tomography; Swept source; Posterior vitreous detachment

INTRODUCTION

The advent of Swept-Source Optical Coherence Tomography (SS-OCT) has allowed for more detailed imaging of the vitreous and vitreoretinal interface through improved depth of imaging and scan speed. The relationship between the vitreous and the retina can have implications for the treatment of associated retinal pathology including vitreomacular traction syndrome, macular holes, epiretinal membranes, high myopia, and retinal tears [1]. In particular, a partial Posterior Vitreous Detachment (PVD) may be related to progression of vitreoretinal disease, whereas a complete PVD may serve as a protective element. Biomicroscopy and B-scan ultrasound imaging are limited by lower resolution, the experience of the operator, and patient cooperation. Time domain and Spectral-Domain Optical Coherence Tomography (SD-OCT) have proven invaluable in the evaluation of the vitreoretinal interface, but can be limited due to challenges with resolution, depth, and window size [2]. A recent study examining SD-OCT macular images before and after vitrectomy concluded that this modality has a high negative predictive value (detects attached vitreous accurately), but has a low positive predictive value (detects a complete PVD less accurately). However, there is also recent evidence suggesting that SD-OCT images including the peri-papillary region have higher levels of inter-rater agreement than those of ultrasonography [3].

SS-OCT has improved depth imaging primarily by using a longer wavelength of 1050 nm, and faster scan speeds, with commercially available instruments starting at an axial scan rate of 100,000 A-scans/second. These improvements allow for improved depth resolution and the simultaneous detailed imaging of the macula, optic nerve head, choroid, and vitreous structures [4]. SS-OCT has been used to characterize the vitreous structures in healthy adults and children, high myopes, and patients after cataract surgery. Widefield OCT imaging has been used to characterize the PVD status throughout various decades of life, suggesting that PVD usually starts in the periphery and progresses towards the fovea. However, studies evaluating PVD...
detection with SS-OCT compared to B-scan ultrasound imaging and biomicroscopy are limited [5]. We propose that SS-OCT has high inter-rater reliability, is non-inferior to B-scan ultrasound imaging and biomicroscopy for the diagnosis of PVD, and may be particularly useful for characterizing and detecting a partial PVD due to the enhanced detail of the vitreous-retina interface.

MATERIALS AND METHODS

This is a prospective observational study conducted according to the tenets of the Declaration of Helsinki, and approval was obtained by the Institutional Review Board (IRB) of Columbia University. All patients gave informed consent to be imaged, and to have deidentified data used for publication. Patients were enrolled from March 2018 to August 2018 [6]. Consecutive patients at Columbia Doctors’ retina practice were included in the study. Patients with media opacity (such as a dense cataract or vitreous hemorrhage), or a history of a previous vitrectomy were excluded from the study. All eyes that were included in the study underwent an examination first by biomicroscopy at the slit lamp using a Volk 90 D lens, and then subsequently by 10-MHz B-scan ultrasonography by one retinal specialist (RWSC) [7]. A determination of PVD status was made at the conclusion of the biomicroscopic exam. A kinetic ultrasound examination by B-scan was then performed in the axial plane under high gain (90 dB) to maximize visualization of the cortical vitreous. A separate determination of PVD status was made at the conclusion of the kinetic ultrasound.

A PVD was considered complete by biomicroscopy if a Weiss ring was visualized. The PVD was considered complete by B-scan if the posterior hyaloid was detached at the optic nerve head. Each patient separately had a SS-OCT 16 mm horizontal line scan including the optic nerve head and macula which focused on the vitreo-retinal interface (Plex Elite 9000, Carl Zeiss Meditec Inc. Hacienda Drive, Dublin, CA, USA), and was performed by a trained photographer [8]. The brightness of the SS-OCT images was enhanced to optimize visualization of the cortical vitreous. All SS-OCT images were subsequently evaluated for the presence or absence of a complete PVD by two retina specialists (RWSC, ZM) in a masked fashion [9]. Eyes were considered to have a complete PVD by SS-OCT imaging if the posterior hyaloid was detached at the fovea and the optic nerve head. Our sample size achieves 80% power to detect a true positive with SS-OCT imaging and biomicroscopy for the diagnosis of PVD. Agreement among the three modalities was also measured using Cohen’s kappa statistic. All statistical analysis was carried out with SPSS statistical software version 25.0 (SPSS Inc, Chicago, Illinois, USA).

RESULTS

Rate of PVD diagnosis. SS-OCT diagnosed a complete PVD at a significantly higher rate than ultrasound or biomicroscopy. Ninety-five eyes of forty-nine subjects (18 men and 31 women) were included in the study (mean 63.7 range 18-92 years).

SS-OCT detected a complete PVD at a significantly greater rate than B-scan (p=0.012) or biomicroscopy (p=0.0001) (Table 1). There was no statistically significant difference between the rate of PVD detection between B-scan and biomicroscopy (p=0.250). In 44.2% of SS-OCT images, the vitreous was clearly adherent to the retina, and a complete PVD was not identified (Figure 1).

Table 1: Rate of PVD diagnosis. SS-OCT diagnosed a complete PVD at a significantly higher rate than ultrasound or biomicroscopy.

	Ultrasound	Biomicroscopy	SS-OCT
Rate	45.30%	41.10%	55.80%
Eyes	43/95 eyes	39/95 eyes	53/95 eyes

The inter-rater reliability between retina specialists reading the SS-OCT images was 97.9% (k=0.957). The level of agreement was not significantly different among the modalities (p=0.250). A high level of agreement on PVD status between SS-OCT and biomicroscopy was achieved (85.3%, p=0.711), and agreement between SS-OCT and B-scan ultrasound was similarly high (83.2%, k=0.667). Agreement between B-scan ultrasound and biomicroscopy was found to be comparable at 87.4% (k=0.743) [10].

SS-OCT has improved depth imaging primarily by using a longer wavelength of 1050 nm, and faster scan speeds, with commercially available instruments starting at an axial scan rate of 100,000 A-scans/second. These improvements allow for improved depth resolution and the simultaneous detailed imaging of the macula, optic nerve head, choroid, and vitreous structures. SS-OCT has been used to characterized the vitreous of structures in healthy adults and children, high myopes, and patients after cataract surgery. Widefield OCT imaging has been used to characterize the PVD status throughout various decades.
Figure 2: 2A) A PVD was identified by ultrasound, however the SS-OCT revealed adhesions of the vitreous at the fovea and the optic nerve head. The optically empty pockets seen within the vitreous of the SS-OCT image may represent a situation that is not easily identified with ultrasound. 2B) SS-OCT revealed a small residual adhesion of the vitreous to the optic nerve head that was not identified by ultrasound.

In the 16 cases where there were disagreements between SS-OCT and B-scan, the SS-OCT images were reviewed and found to provide more detailed information that could definitively determine presence (13/16) or absence (3/16) of a complete PVD (Table 2). Figure 2 shows an instance of complete separation between the vitreous at the optic nerve head and the fovea, although no PVD was detected by B-scan or biomicroscopy. In three cases, a complete PVD was diagnosed by B-scan although SS-OCT identified persistent vitreoretinal adhesions (Figures 2). When biomicroscopy was compared to SS-OCT, all of the disagreements (14/14) were due to PVD being undetectable on slit lamp exam, but detectable on SS-OCT (Figure 3). There was no association between the disagreement among the three diagnostic modalities and the lens status of the eye (p=0.987). Every PVD that was identified by clinical examination was also diagnosed by SS-OCT.

Figure 3: A complete PVD was identified by SS-OCT and ultrasound, but not by biomicroscopy.

Table 2: Cases with Discrepancies between SS-OCT and Ultrasound.

Refractive Error	Uveitis	Retinal Tear	SS-OCT Status	Biomicroscopy Status	Ultrasound Status
No	No	No	Pseudophakic	No	No
No	Yes	Yes	Phakic -6.25	No	No
No	Yes	Yes	Phakic -6.25	No	No
No	Yes	Yes	Phakic -10	No	No
No	Yes	Yes	Phakic +2.25	No	No
No	No	Yes	Phakic +3	No	No
No	No	Yes	Phakic -1.25	No	No
No	No	Yes	Phakic -1.25	No	No
No	No	Yes	Phakic +2.75	No	No
No	No	Yes	Phakic +1.5	No	No
No	No	Yes	Phakic -1.25	No	No
No	No	Yes	Phakic -3.25	No	No

DISCUSSION

OCT is a powerful diagnostic tool for evaluating the vitreoretinal interface. Past studies have suggested concerns of a high rate of false positive PVD diagnoses due to a small window size. A study by Bertelmann et al. suggested that a PVD could be falsely diagnosed by SS-OCT when using a 6 mm window (which does not include the optic nerve head), but refuted by a 12 mm scan because of persistent vitreous adhesion to the optic nerve head. In some cases, a hyporeflective premacular bursa can be mistaken for a PVD. Inclusion of the areas peripheral to the fovea, including the optic nerve head, are critical to determining the true PVD status [11]. A study by Uchino et al. examining 209 eyes classifies five stages of a PVD; stage 1, no PVD; stage 2, perifoveal detachment in the superior quadrant; stage 3, perifoveal detachment superior and inferior to the fovea with persistent attachment at the fovea and optic nerve head; stage 4, with detachment from the fovea, but persistent attachment at the optic nerve head; and stage 5, with complete release of the vitreopapillary adhesion. A recent study examines macular SD-OCT images before and after vitrectomy, concluding that this modality has a high negative predictive value (detects attached vitreous accurately), but has a low positive predictive value (detects a complete PVD less accurately). Our SS-OCT images included a 16 mm window which extended past both the perifoveal region as well as the optic nerve head. The size of these images allowed the raters to confidently and reproducibly identify a complete PVD (no
persistent adhesion of the vitreous to either the fovea or the optic nerve head).

In the present study, the level of agreement regarding PVD status was similar for biomicroscopy, B-scan ultrasound, and SS-OCT. In the majority of cases of discrepancies, a complete PVD was visualized on SS-OCT, but no complete PVD was detected by the other methods [12]. On B-scan, this situation occurred when, despite high gain, the posterior hyaloid could not be visualized floating freely over the retina and optic nerve. On biomicroscopy, the PVD could not be detected perhaps because the vitreous was more liquefied, and no clear glial cells could be seen to delineate a Weiss ring. In the 3 cases where B-scan falsely identified a complete PVD, we reviewed the SS-OCT images and found that the vitreous body contained dense opacities compared to the less reflective cortical vitreous. This anatomical difference on ultrasound appeared as a freely mobile hyper-reflective posterior vitreous interface that simulated a complete PVD (Figure 3). Every complete PVD that was identified by ultrasound or biomicroscopy was also diagnosed by SS-OCT. In a few cases, a PVD was seen on ultrasound, but persistent vitreoretinal adhesions were seen on SS-OCT, revealing additional, more granular information about the vitreoretinal interface that could not otherwise be detected.

CONCLUSION

Our study had several limitations that may be addressed in future trials. Due to time constraints, the clinical examination and the ultrasound examination were performed by the same examiner. Ideally, these exams would be carried out by separate examiners. In order to introduce as much standardization as possible to the evaluation process, all biomicroscopic exams were performed and graded prior to ultrasound examination and grading, and SS-OCT was performed separately by the ophthalmic imaging department. Future studies may also look to compare the interrater reliability of ultrasound, clinical examination, and SD-OCT imaging to that of SS-OCT imaging. We chose our binary grading scheme (complete PVD versus no PVD) as an initial study, but future studies regarding SS-OCT may look to characterize a partial PVD and correlate with clinical, ultrasound, and SD-OCT findings, both pre and post vitrectomy. Because it produces a greater level of detail of the vitreoretinal interface, SS-OCT precisely detects the presence or absence of complete PVD. The excellent agreement between the two independent raters (RWSC, ZM) of the SS-OCT images suggests high precision, reproducibility, and a more objective method of evaluation than either biomicroscopy or ultrasound. SS-OCT can therefore be used as a rapid, precise, and reliable method to diagnose PVD in patients with clear media in future studies and practice.

REFERENCES

1. Lavinsky F, Lavinsky D. Novel perspectives on swept-source optical coherence tomography. Int J Retina Vitreous. 2016;2:25.
2. Barteselli G, Bartsch DU, Weinreb RN, Camacho N, Nezgoda JT, Marvasti AH, et al. Real-time full-depth visualization of posterior ocular structures: Comparison between full-depth imaging spectral domain optical coherence tomography and swept-source optical coherence tomography. retina. 2016;36(6):1153-1161.
3. Kishi S. Impact of swept source optical coherence tomography on ophthalmology. Taiwan J Ophthalmol. 2016;6(2):58-68.
4. Itakura H, Kishi S, Li D, Nitta K, Akiyama H. Vitreous changes in high myopia observed by sweptsource optical coherence tomography. Invest Ophthalmol Vis Sci. 2014;55(3):1447-1452.
5. Johnson MW. Posterior vitreous detachment: Evolution and complications of its early stages. Am J Ophthalmol. 2010;149(3):371-382.
6. Uchino E, Uemura A, Ohba N. Initial stages of posterior vitreous detachment in healthy eyes of older persons evaluated by optical coherence tomography. Arch Ophthalmol. 2001;119(10):1475-1479.
7. Mojana F, Kozak I, Oster SF, Cheng L, G Bartsch DU, Brar M, et al. Observations by spectral-domain optical coherence tomography combined with simultaneous scanning laser ophthalmoscopy: Imaging of the vitreous. Am J Ophthalmol. 2010;149(4):641-650.
8. Pang CE, Freund KB, Engelbert M. Enhanced vitreous imaging technique with spectral-domain optical coherence tomography for evaluation of posterior vitreous detachment. JAMA Ophthalmol. 2014;132(9):1148-1150.
9. Hwang ES, Kraker JA, Griffin KJ, Sebag J, Weinberg DV, Kim JE, et al. Accuracy of spectral-domain oct of the macula for detection of complete posterior vitreous detachment. Ophthalmol Retina. 2020;4(2):148-151.
10. Moon SY, Park SP, Kim YK. Evaluation of posterior vitreous detachment using ultrasonography and optical coherence tomography. Acta Ophthalmol. 2020;98(1):e29-e35.
11. Li D, Kishi S, Itakura H, Ikeda F, Akiyama H. Posterior precortical vitreous pockets and connecting channels in children on swept-source optical coherence tomography. Invest Ophthalmol Vis Sci. 2014;55(4):2412-2416.
12. Tsukahara M, Mori K, Gehlabach PL, Mori K. Posterior vitreous detachment as observed by wide-angle oct imaging. Ophthalmol. 2018;125(9):1372-1383.