Abstract. The gas-phase reaction of \(\text{NH}_3 \) with HCl in a glass tube (length 150 cm, diameter 1–6 cm) leads to solid depositions of \(\text{NH}_4\text{Cl} \) on the glasswall, with a regular pattern of stripes. The peculiar structure is also observed with other volatile reactants leading to a salt as the only solid product. Variations of tube diameters and temperatures indicate a broad validity of the observations.

1. Einleitung

Die Bildung von regelmässigen Strukturen aus diffusen Zuständen ist im Zusammenhang mit der Chaos-Theorie (z.B. [1]) und der Synergetik [2] zu einer neuen Gruppe von Phänomenen geworden. Besonderheiten sind z.B. Spuren von Translationsschichten an gezogenen Einkristallstäben, welche eine Bandbildung zeigen [3]. Relativ selten sind gut erkennbare Muster bei chemischen Reaktionen wie bei den ossillierenden Reaktionen [4][5], bei strukturierten Fällungen [6][7] oder fraktalen Bildern bei Elektrolysen [8].

Das Prinzip der Abhängigkeit der Diffusionsgeschwindigkeit von der Molmasse, kann mit einem einfachen Experiment demonstriert werden [9][10]. Bei der Durchführung dieses gut bekannten Demonstrationsexperiments zum Thema Gasdiffusion, wurde im Sinne von 'Serendipity' [11] die Bildung regelmässiger Ablagerungsmuster des Reaktionsprodukts gefunden.

2. Experimente

2.1. Basisexperiment

In ein waagrechtes Glasrohr von ca. 150 cm Länge und 1–6 cm Durchmesser, wurden gleichzeitig von der einen Seite ein Porzellanschiffchen mit etwa 2 ml konz. \(\text{NH}_3\text{Lg.} \) (25%), und von der anderen Seite, ein Porzellan Schiffchen mit 2 ml konz. HCl (34%), etwa 5 cm eingeschoben. Die Öffnungen wurden sofort mit Gummi stopfen verschlossen. Der Abstand der beiden Quellen war 123 cm. \(\text{NH}_4\text{Cl} \) in Form von wasseraufgelöstem Nebel bildete sich nach ca. 5 min wesentlich näher bei HCl (Molmasse 37 g/mol), als bei \(\text{NH}_3 \) (Molmasse 17 g/mol). Nach weiteren 1–3 h schob sich die Reaktionsfront in Richtung HCl-Quelle vor. Gleichzeitig schlug sich das feste, weisse Reaktionsprodukt \(\text{NH}_4\text{Cl} \), mit reproduzierbar regelmässigen Streifen auf der Wandoberfläche des Rohres nieder.

2.2. Variationen

Die regelmässigen Strukturen wurden in verschiedenen dicke Glashöhen (61, 37, 23, 11 mm Durchmesser), und selbst in stehenden Glaszyllindern beobach-

*Correspondenz: Dr. P. Blitzer
Chemisches Laboratorium
Kantonsschule Heerbrugg
CH-5435 Heerbrugg

2.3. Thermische Dissociation mit anschliessender Rückreaktion

Mit \(\text{NH}_4\text{Cl} \) wurden auch Versuche mit thermischer Dissociation zu \(\text{NH}_3 \) und HCl und anschliessender Rückreaktion zu \(\text{NH}_4\text{Cl} \) durchgeführt. Treckiges \(\text{NH}_4\text{Cl} \) hat in der Reaktionszone kein \(\text{H}_2\text{O} \), damit ist ein Katalysator dieser Reaktion nicht vorhanden. Bei den Versuchen wurden eine Probe von 1 g \(\text{NH}_4\text{Cl} \) in einem einseitig geschlossenen Glasrohr von 22 mm Durchmesser, über dem Bunsenbrenner mit kleiner Flamme erhitzt. Es bildete sich auch hier eine ähnlich strukturierte Reaktionszone (Wirbeltbildung), wie bei den Versuchen mit getrennten HCl- und \(\text{NH}_3 \)-Quellen. Eine nicht kontinuierliche Ablagerung von Reaktionsprodukt konnte bei diesen Versuchen manchmal vermutet, aber nie reproduzierbar nachgewiesen werden.

3. Beobachtungen

Bei allen Versuchen schied sich das Reaktionsprodukt mit streifenzerteinem Muster ab. Nur am Rohrboden war eine kontinuierliche Ablagerung zu beobachten. Die Streifen waren mit dem oberen Teil der schwereren Komponente zugeneigt.

Die Abstände der Ringe von abgelagertem Produkt wurden mit zunehmender Reaktionsdauer immer kleiner. Bei höheren Temperaturen waren die Strukturen nur ringförmig flacher (kleinerer Winkel der Streifen zur Rohrachse), als bei 20°. Der Abstand des Reaktionsbeginns von der HCl-Quelle verringerte sich, bei der Temperaturerhöhung um 30°, von ca. 40 cm auf ca. 20 cm. Bei der tiefsten Temperatur von +7°

Tab. 1: Untersuchte Kombinationen von Reaktanden

Stärke	Base*	\(\text{NH}_3 \)	\(\text{Me}_2\text{NH} \)	\(\text{Et}_2\text{NH} \)	\(\text{Pyridin} \)
HCl	+	+	+	+	+
HBr	+	+	+	-	-
HNO_3	+	-	-	-	-

*) +: Experiment durchgeführt.

Figur. Strukturierte \(\text{NH}_4\text{Cl} \)-Ablagerungen in einem Glasrohr von 37 mm Durchmesser und 153 cm Länge, nach 120 min bei 20°, bei der Gasphasenreaktion von HCl mit \(\text{NH}_3 \).
waren die Niederschläge ausserordentlich schwach, die Ringbildung wies aber zur Rohrachse einen grösseren Winkel auf. Gleichzeitig war eine stärkere Ablagerung am Rohrboden zu beobachten.

4. Interpretation

Die Bildung von NH₄Cl in der Gasphase ist eine Gleichgewichtsreaktion mit einer Gleichgewichtskonstanten:

\[K = \frac{[NH_3][HCl]}{1,22 \cdot 10^{-5}} \text{ bei } 0^\circ C \] [12]

Die Temperatur der thermischen Dissoziation von Ammonium-Salzen ist umso tiefer, je basischer das Anion ist. Bildung und Zerfall von NH₄Cl sind durch Feuchtigkeit katalysiert. Wasserdampf lag als Katalysator bei allen Experimenten vor, bei welchen die Edukte in der Röhre am Anfang getrennt waren, da mindestens eine Komponente in wässriger Lösung vorlag.

Die Ringe der Ablagerungen des festen Reaktionsprodukts sind schräg zum Reaktanden mit der höheren Molmasse geneigt. Dies zeigt, dass die schwereren Komponenten beim Glasrohr unten rascher diffundieren, als oben. Die leichtere Komponente schiebt sich im oberen Teil der Röhre, wegen der grösseren Diffusionsgeschwindigkeit, schneller vor. Bei der Reaktion kann als Folge ein rollendes Vorwärtsschieben in Form eines Wirbels beobachtet werden. Die Drehrichtung läuft oben von der leichteren, und unten von der schwereren Komponente weg. Die Ringe der Ablagerungen werden mit fortschreitender Reaktion immer flacher. Das deutet darauf hin, dass sich die leichten Komponenten, mit zunehmender Reaktionsdauer, relativ zur schwereren Komponente oben immer rascher vorwärtsbewegt. Die kleiner werdenden Abstände der Ringe könnten damit erklärt werden, dass die Diffusionszeit der schwereren Komponente durch die abnehmende Distanz zur Reaktionszone mit fortschreitender Reaktionsdauer abnimmt. Es kann als Folge rungen angenommen werden, dass die Reaktionsgeschwindigkeit viel grösser sein muss, als die Diffusionsgeschwindigkeit, was zur Folge hat, dass eine Zone bei der Reaktion an Reaktanden verarmt. Trotzdem bleibt unerklärt, weshalb es zu periodischen Ablagerungen des Reaktionsproduktes kommen kann.

Interessant ist die Beobachtung, dass sich der Vergleich zu HCl doppelt so schweres Pyridin, anfänglich unter das HCI-Gas schiebt. Mit der Zeit stellen sich aber die Ablagerungen senkrecht zur Rohrachse ein und zeigen am Schluss wieder, die auch mit NH₃ gefundene Lage. Der Winkel der Ringe, relativer zur Rohrachse, scheint von der Gasdichte nur am Anfang der Reaktion bestimmt zu sein.

[1] P. Davies, 'Prinzip Chaos', C. Bertelsmann Verlag, München, 1988.
[2] H. Haken, 'Erfolgsschienenisse der Natur: Synergetik die Lehre vom Zusammenwirken', Ullstein-Verlag, Frankfurt am Main-Berlin, 1988.
[3] W. Kleber, 'Einführung in die Kristallographie', VEB Verlag Technik, Berlin, 1965, S. 266.
[4] J.F. Lefelhocz, J. Chem. Educ. 1972, 49, 312.
[5] S. Scott, New Scientist, 2. December 1989, 53.
[6] F. Bukatsch, O.P. Krätz, G. Probeck, J. Schwanker, 'So interessant ist Chemie', Aulis Verlag Deubner & Co KG, Köln, 1987, S. 209.
[7] D.M.L. Goodgame, A.M. Khaled, C.A. O'Mahoney, J. Williams, J. Chem. Soc. 1990, 851.
[8] J.R. Melrose, D.B. Hibbert, R.C. Ball, Phys. Rev. Lett. 1990, 3009.
[9] F. Lindeblatt, 'Chemie experimentell', Industrie Druck GmbH Verlag, Göttingen, 1972, S. 58.
[10] K. Häusler, H. Rampf, '270 chemische Schulversuche mit Einführung in die Laborpraxis.', R. Oldenburg Verlag, München, 1976, S. 132.
[11] Serendipity: 'the gift of finding valuable or agreeable things not sought for' aus dem persischen Märchen 'The Tree Princes of Serendip' interpretiert von Hugh Warpole: 'These tree princes on their travel through Serendip (heute Sri Lanka) were always making discoveries by accidents and sagacity, of things they were not in quest of... you must observe that no discovery of any thing you are looking for comes under this description.'
[12] G. Schwarzenbach, 'Allgemeine und anorganische Chemie', Georg Thieme Verlag, Stuttgart, 1950, S. 136.
Two Silver Medals for Switzerland

Unbelievable but true! Little Switzerland has obtained two silver medals in the last International Chemistry Olympiad, in Lodz, Poland, July 7–15, 1991: the best result it has ever achieved in any Olympiad so far. This remarkable performance is due to two extraordinary students: André Rouge from Romans-sur-Lausanne and Marco Ziegler from Sulgen (TG).

Although these friendly competitions exist since 1968, Switzerland has only decided in 1986 to participate. But there was neither any real success until last year in Paris where our country got its first medal, a bronze one, thanks to Marco Ziegler, a brilliant self-made chemistry student, who managed to study chemistry in his own laboratory at home.

The International Chemistry Olympiad is a competition organized so that each country who wants to participate can select, train, and send a national team of 4 students coming from general pre-university classes. There is a competition each year in a different city: Halle (DDR) 1989, Paris 1990, and Lodz (Poland) 1991. Both practical tasks and theoretical problems are presented to the candidates. After the corrections it comes to the final classification: the top ten get gold medals, the next twenty get a silver medal, and finally the following thirty ones get a bronze one. In 1991 120 students took part; 30 different countries were represented, the most from Europe, three from America (Canada, USA, Cuba) and four from the Far East (China, Thailand, Singapore, Australia). The problems are added in the annex to the present report. The first medals went to China, ranks 1, 2, and 5, with 95, 95, and 92 points, respectively. The first Western student is a Dutch in rank 6. André Rouge is the 9th Western student with 83 points, and Marco Ziegler the 10th with 79.5 points. It might be worth noticing that there were no students coming from Lithuania, Latvia, and Slovenia, all for the first time.

Beside of the competitions all other events were present, like Kuwait, Korea, Taiwan, and New-Zealand. Switzerland will also take part. The only trouble is the lack of accompanying teachers. So far the whole training comes from Lausanne, since the only two teachers involved are from this city. It is an absolute must to find at least one other teacher from the German speaking part of Switzerland to help the 'Waadtlander'. Who will accept this task and accompany our team in America next year? Who? Please follow to the list of the two teachers involved:

Dr. Maurice Cosandey, Noyers 2-C, 1131 Tolochenaz, or Dr. Blenda Weibel, Courtezi 14, 1094 Paudex.

Theoretical Task 1

Explain why 0.1 mol of $TiCl_4$ (solubility product 10^{-29}) is not dissolved in 1 dm3 of a 1 mol soln. of any strong non-coordinating mono-acid. Explain why 0.1 mol of CuS (solubility product 10^{-35}) is not dissolved in 1 dm3 of 1 mol HNO$_3$, using the following numerical data:

- Acidity constants: $pK_a(\text{HS}^-) = 7$
- $pK_a(\text{H}_2\text{S}) = 13$
- Standard redox potentials: $E^0(\text{S}^2-/\text{S}) = -0.48 \text{ V}$
- $E^0(\text{NO}_3^-/\text{NO}_2^-) = 0.96 \text{ V}$
- Solubility of NO in water at 298 K is 0.0253 m.

Theoretical Task 2

1. A purified polymer X contains 88.25% C and 11.75% H; it may react with bromine and ozone. Its pyrolysis produces a volatile liquid Y of the same composition (88.25% C and 11.75% H) with a yield of 58%. Other products are also obtained in the decomposition of X or Diels-Alder reaction on Y. Vapor density of Y is 34 times higher than of H$_2$. Y reacts with Br$_2$ and yields a compound containing 82.5% Br. Action of ozone on Y is followed by a soft reduction, yields two compounds A and B, in a ratio $A/B = 2:1$. Only B reacts positively in the iodoform test according to the following equation:

$$\text{R-CO-CH}_3 + 3 \text{ I}_2 + 4 \text{ NaOH} \rightarrow \text{R-COONa} + \text{CH}_3\text{I} + 3\text{H}_2\text{O} + 3\text{NaI}$$

What is the molecular formula and the molar mass of Y?

What is the structural formula of Y, A, and B?

2. Catalytic hydrogenation of 13.6 g of X consumes 0.2 mol of H$_2$. Ozonolysis of X yields after soft reduction a compound Z containing 60% C and 8.0% H. What is the formula for Z and the degree of unsaturation of X?

3. Compound Z reacts positively with Fehling's solution. Oxidation of Z yields an acid C. When dissolved 0.116 g of C is neutralized by 0.001 mol of KOH. What is the molar mass of C?

4. When heated, E loses water and produces F. Both E and F yield the same compound G (C$_4$H$_8$O$_2$) when heated to reflux with ethanol in excess under acidic conditions. What are the structures of C, E, F, G, and how is the reaction scheme for the transformation of E to G?

5. X can show stereoisomerism. Present a part of its structure with at least three monomer units for two stereoisomers of X.

Theoretical Task 3

A silver chloride electrode Ag/AgCl/Cl$^-$/Ag$^+$/Cl$^-$/Cl$_2$ is connected to a calomel electrode HgHg$_2$Cl$_2$/Cl$_2$/HgCl$_2$/Ag$^+$/Cl$^-$/Ag$^+$ whose e.m.f. is 0.054 V at T = 298 K. When T increases the following e.m.f. change is observed: $d\varepsilon/dT = 3.38 \times 10^{-4}$ V/°C.

3.1. What are the equations of the reactions occurring in the cell?

3.2. What is the corresponding free enthalpy change ΔG°?

3.3. What are the corresponding enthalpy and entropy changes ΔH° and ΔS°, using the following relation: $\Delta S^\circ = nF E_{\text{cell}}/d\varepsilon/dT$?

3.4. Knowing the solubility product K_s(AgCl) = 1.73 $\times 10^{-10}$, and the standard potential E^0(Ag/AgCl) = 0.252 V, calculate the standard potential of the silver chloride electrode Ag/AgCl/Cl$^-$. Establish the relation between E°(Ag/Ag$^+$) and E°(Ag/AgCl/Cl$^-$).

3.5. Calculate the solubility product for HgCl$_2$ knowing E^0(Hg/ Hg$^{2+}$) = 0.798 V.

Theoretical Task 4

Stable state energies E_s for H atoms are given by the formula:

$$E_s = -2.18 \times 10^{-11}$ \text{eV}$,$$ in J, if n is the principal quantum number.

4.1. What is the energy difference between the states n = 2 and n = 1, and between the states n = 6 and n = 1?

4.2. In which spectral zone are situated the preceding transitions, called Lyman transitions?

4.3. Can a photon emitted in the transition from $n = 6$ to $n = 1$ ionize another H atom? Can it ionize a Cu atom from solid copper, where the extraction energy of an electron is 7.44 $\times 10^9$ J/mole?

4.4. Calculate the de Broglie wavelength of the electrons emitted from copper.

Theoretical Task 5

0.25 mol of a hydrocarbon A is heated to 1000 K in an iron tube containing pumice. It is decomposed in a main reaction (yield 80%) producing 15.4 g of a cyclic compound B and 2.40 dm3 of H$_2$ (at 295 K and 102 kPa).

In the presence of a Lewis acid, B reacts with halogen and produces halogenated derivatives C, D, E, F, and G. Each member of this series C–G has one halogen more than the preceding one. For C–F only one isomer is obtained. For G three different isomers are obtained: G$_1$, G$_2$, and G$_3$. All these compounds are optically active. But for C to F racemization is so easy that this phenomenon cannot be observed. Racemization is difficult for G$_1$, G$_2$, and above all for G$_3$. The mass spectrum of E shows only three important peaks with intensities in the ratio of 1:1:0.3.

5.1. Determine the structure of A, B, C, D, E, F, G, G$_1$, G$_2$, G$_3$, taking into account the following two informations:

- When B reacts a weak activating effect is observed, and $k(rather)$ is much higher than $k(parachloro)$.
- Compounds D and F have conformations with symmetry centers.

5.2. Which is the halogen involved?

5.3. Draw the rotational isomers for D using different values for the dihedral angle.

5.4. Organize G$_1$, G$_2$, and G$_3$ by increasing the racemization difficulty.

Theoretical Task 6

A catalytic reactor is used to convert SO$_2$ and air into SO$_3$, so that the exit gases contain 10% of SO$_3$ in volume. These gases are then ab-
sorbed so that SO_3 is transformed either into sulfuric acid (98%) or into oleum (pure sulfuric acid containing 20% of SO_3 in mass).

6.1. If oleum is the only final product, how much water is necessary to treat 1000 m3 of gas getting out of the catalytic reactor. What is the mass of the oleum produced?

6.2. Same questions if sulfuric acid (98%) is produced instead of oleum.

6.3. Oleum and sulfuric acid can also be produced as a mixture with a mass ratio m_1/m_2, where m_1 and m_2 are the masses of oleum and sulfuric acid, resp.

6.3.1. Determine the algebraic expression $Y = f(X)$ relating X and the mass Y of water consumed to treat 1000 m3 of gaseous mixture.

6.3.2. Show that the values obtained in Chapt. 6.1 and 6.2 are in agreement with this expression.

Practical Task 1

The student is provided with two eq. solns.: NaOH and a weak monobasic acid H_2A. The student must develop his own method to determine the pK_a value of the unknown acid. Only one measurement can be carried out with a pH meter.

Practical Task 2

The student must build a Daniell cell with Zn, Cu, CuSO$_4$, and ZnSO$_4$ solns., and check its e.m.f. After that he/she must add excess NH$_3$ to the Cu soln., then to the Zn soln., measure all e.m.f. and determine the solubility constants of the complex ions.

Maurice Cosaney

SVCT – Fachtagung 1991

Sicherheit in der chemischen Industrie

Mitwoch, 30. Oktober 1991, Auditorium 510, Sandoz AG Basel

Dr. P. Jakober, Ing.-Schule Burgdorf

Sicherheit: Ein Begriff im Wandel der Zeit

W. Jeter, H. Hoffmann-La Roche AG

Risikoanalyse

Dr. R. Klaus, Sicherheitsinspektorat BL

Risikokataster

Dr. M. Schiess, BUWAL

Störfallverordnung: Betriebe mit Stoffen, Erzeugnissen oder Sonderabfällen

H. Stahel, Koord. für Störfallvorsorge ZH

Vollzug der Störfallverordnung auf Kantonebene

D. Kurz, Krebs & Co. AG

Massnahmen zur Störfallverhinderung in allen Unternehmensbereichen

B. Hersche, GSS Riskmanagement AG

Information – Voraussetzung im Störfall und Führungsinstrument

Dr. B. Glutz, Sandoz Pharma AG

Der Chemiker, Unternehmer zwischen Ehre und Risiko

Dr. J. Randegger, Ciba-Geigy AG

Heutige Anforderungen an das Sicherheitsmanagement in der chemischen Industrie

Dr. P. Marbet, Sandoz AG

Massnahmen im Störfall

Dr. D. Schaub, Anwaltsbüro BS

Haftung für Betriebsunfälle: Wer wird wie zur Verantwortung gezogen?

Dr. H. Fehr

Schadensereignis und Öffentlichkeit, immaterielle Folgen

Dr. D. Mühlemann, Gläser Studer Süssi AG

Was ist zu tun? Sicherheit Leben – Verantwortung übernehmen

Anmeldung und Information: SVCT, Postfach 46, CH-4007 Basel

Telefon 061/688 43 56 und 061/242 11 11
sorbed so that SO₃ is transformed either into sulfuric acid (98%) or into oleum (pure sulfuric acid containing 20% of SO₃ in mass).

6.1. If oleum is the only final product, how much water is necessary to treat 1000 m³ of gas getting out of the catalytic reactor. What is the mass of the oleum produced?

6.2. Same questions if sulfuric acid (98%) is produced instead of oleum.

6.3. Oleum and sulfuric acid can also be produced as a mixture with a mass ratio \(X = \frac{m_1}{m_2} \), where \(m_1 \) and \(m_2 \) are the masses of oleum and sulfuric acid, resp.

6.3.1. Determine the algebraic expression \(Y = f(X) \) relating \(X \) and the mass \(Y \) of water consumed to treat 1000 m³ of gaseous mixture.

6.3.2. Show that the values obtained in Chapt. 6.1 and 6.2 are in agreement with this expression.

Practical Task 1

The student is provided with two aqueous solutions: NaOH and a weak monomeric acid (ca. 0.1 mol). Two indicators are also available: methylorange and phenolphthaleine. The student must develop his own method to determine the pH value of the unknown acid. Only one measurement can be carried out with a pH meter.

Practical Task 2

The student must build a Daniell cell with Zn, Cu, \(\text{CuSO}_4 \), and \(\text{ZnSO}_4 \) solutions, and check its e.m.f. After that he/she must add excess NH₃ to the Cu solution, then to the Zn solution, measure all e.m.f. and determine the solubility constants of the complex ions.

Maurice Cosandey
sorbed so that SO₃ is transformed either into sulfuric acid (98%) or into oleum (pure sulfuric acid containing 20% of SO₃ in mass).

6.1. If oleum is the only final product, how much water is necessary to treat 1000 m³ of gas getting out of the catalytic reactor. What is the mass of the oleum produced?

6.2. Same questions if sulfuric acid (98%) is produced instead of oleum.

6.3. Oleum and sulfuric acid can also be produced as a mixture with a mass ratio \(X = \frac{m_1}{m_2} \), where \(m_1 \) and \(m_2 \) are the masses of oleum and sulfuric acid, resp.

6.3.1. Determine the algebraic expression \(Y = f(X) \) relating \(X \) and the mass \(Y \) of water consumed to treat 1000 m³ of gaseous mixture.

6.3.2. Show that the values obtained in Chapt. 6.1 and 6.2 are in agreement with this expression.

Practical Task 1
The student is provided with twoaq. solns.: NaOH and a weak mononuclear triether: phenolphthaleine. The student must develop his own method to determine the \(pK_a \) value of the unknown acid. Only one measurement can be carried out with a pH meter.

Practical Task 2
The student must build a Daniell cell with Zn, Cu, CuSO₄, and ZnSO₄ solns., and check its e.m.f. After that he/she must add excess NH₃ to the Cu soln., then to the Zn soln., measure all e.m.f. and determine the solubility constants of the complex ions.

Maurice Cosnady

Herbstversammlung in Bern

Asociätierte Sektionen für Anorganische Chemie, Analytische Chemie, Physikalische Chemie und Computerunterstützte Chemie

SVCT – Fachtagung 1991

Sicherheit in der chemischen Industrie

Mittwoch, 30. Oktober 1991, Auditorium 510, Sandoz AG Basel

Dr. P. Jakober, Ing.-Schule Burgdorf: Sicherheit: Ein Begriff im Wandel der Zeit

W. Jecner, Hoffmann-La Roche AG: Risikoanalyse

Dr. R. Klaus, Sichtsinspektorat BL: Risikokataster

Dr. M. Schiess, BUWAL: Störfallverordnung: Betriebe mit Stoffen, Erzeugnissen oder Sonderabfällen

H. Stahel, Coordinating for the Subcommission on Risk Assessment: Vorsorge und Umweltverordnung auf Kantons- und Kantonsebene

D. Kurz, Krebs Co. AG: Massnahmen zur Störfallverhinderung in allen Unternehmensbereichen

B. Hersche, GSS-Risikomanagement AG: Information – Voraussetzung im Störfall und Führungsinstrument

Dr. B. Gute, Sandoz Pharma AG: Der Chemiker, Unternehmer zwischen Ehre und Risiko

Herbstversammlung in Bern

Assemblée d’automne à Berne

Schweizerische Vereinigung dipl. Chemiker HTL

Association Suisse des Chimistes Diplômés ETS

18. Oktober/Octobre 1991

Universität Bern

- Geschäftlicher Teil
- Vorträge und/oder Postersessionen in den Sektionen für Organische Chemie, Medizinische Chemie, Radiochemie, Physikalische Chemie, Computerunterstützte Chemie

Inh.

- Anorganische Chemie und Koordinationchemie
- Analytische Chemie
- Bemerkungen/Remarques

Die Vorträge finden in den Hörsälen U 113, NE 16, S 379, S 481 und im Klubraum der Chemischen Institute der Universität Bern, Freiestrasse 3, sowie im Gemeinschaftshörsaal des Physiologischen Instituts der Universität und in der Aula Muesmatt, beide Gertrud-Woker-Strasse 5 (vis-à-vis Freiestrasse) statt.

Im 1.–4. Stock der Chemischen Institute sind die Poster der Sektion für Anorganische Chemie und Koordinationchemie und die der Analytischen Chemie aufgestellt.

Im 5. Stock präsentiert die Gruppe »Computerunterstützer Unterricht in der Chemie« der Kommission für Unterrichtsfragen im Schweiz, Komitee für Chemie Computerunterstützung in der Chemie, minrale und de coordination et ceux de chimie analytique seront placés au 1er–4e étage des Institutes de Chimie. Le »Study Group on Computer Assisted Teaching« de la Commission pour l'enseignement, Comité Suisse de la Chimie présentera des logiciels pour l'instruction assistée par l'ordinateur au 5e étage.

Während der Mittagspause ist kein gemeinsames Essen vorgesehen.

Il n’aura pas de repas en commun pendant la pause de midi.

Allfällige Anfragen bitten wir an Dr. E. Zess zu richten: ETH Zürich, 8092 Zürich. Telefon 01/256 2964.

Für tous renseignements complémentaires s’adresser au Dr. E. Zess, ETH Zürich, 8092, Zürich, tel. 01/256 2964.

Preannouncement

6th International Seminar on Modern Synthetic Methods

May 4/5, 1992, Interlaken, Switzerland

Chairman: Prof. Rolf Scheffold, University of Bern

Topics in Carbohydrate Chemistry

Topics in Carbohydrate Chemistry

The detailed programme will be available in Dezember 1991

Secretary’s Office for Symposiums

CH Institute of Organic Chemistry, University of Bern

Freiestrasse 3

CH-3012 Bern

Tel. 031 65 43 11, Fax 031 65 44 99

Herbstversammlung in Bern

Assemblée d’automne à Berne
sorbated so that \(\text{SO}_3 \) is transformed either into sulfuric acid (98%) or into oleum (pure sulfuric acid containing 20% of \(\text{SO}_3 \) in mass).

6.1. If oleum is the only final product, how much water is necessary to treat 1000 m\(^3\) of gas getting out of the catalytic reactor. What is the mass of the oleum produced?

6.2. Same questions if sulfuric acid (98%) is produced instead of oleum.

6.3. Oleum and sulfuric acid can also be produced as a mixture with a mass ratio \(X = m_1/m_2 \), where \(m_1 \) and \(m_2 \) are the masses of oleum and sulfuric acid, resp.

6.3.1. Determine the algebraic expression \(Y = f(X) \) relating \(X \) and the mass \(Y \) of water consumed to treat 1000 m\(^3\) of gaseous mixture.

6.3.2. Show that the values obtained in Chapt. 6.1 and 6.2 are in agreement with this expression.

Practical Task 1

The student is provided with two eq. solns.: \(\text{NaOH} \) and a weak monoprotic base \(\text{CO}_2 \). Two indicators are also available: methylorange and phenolphthaleine. The student must develop his own method to determine the \(pK_a \) value of the unknown acid. Only one measurement can be carried out with a pH meter.

Practical Task 2

The student must build a Daniell cell with \(\text{Zn}, \text{CuS}_2 \), and \(\text{ZnSO}_4 \) solns., and check its e.m.f. After that he/she must add excess \(\text{NH}_3 \) to the \(\text{CuSO}_4 \) soln., then to the \(\text{Zn} \) soln., measure all e.m.f. and determine the solubility constants of the complex ions. **Maurice Cosandey**

Schweizerischer Chemiker-Verband

Swiss Chemical Society

Association Suisse des Chimistes

Swiss Association of Chemists

Soci"et"e Suisse de Chimie

Swiss Chemical Society

SVCT – Fachtagung 1991

Sicherheit in der chemischen Industrie

Mitwoc, 30. Oktober 1991, Auditorium 510, Sandoz AG Basel

Dr. P. Jakober, Ing.-Schule Burgdorf

Sicherheit: Ein Begriff im Wandel der Zeit

W. Jeter, Hoffmann-La Roche AG

Risikoanalyse

Dr. R. Klaus, Sicherheitsinspektorat BL

Risikotaster

Dr. M. Schiess, BUWAL

St"offverordnung: Betriebe mit Stoffen, Erzeugnissen oder Sonderabfällen

H. Stahel, Koord. für Störfallvorsorge ZH

Vollzug der St"offverordnung auf Kantonsebene

D. Kurz, Krebs & Co. AG

Massnahmen zur Störfallverminderung in allen Unternehmensbereichen

B. Horch, GSS Riskmanagement AG

Information – Voraussetzung im Störfall und Führungsinstrument

Dr. B. Glutz, Sandoz Pharma AG

Der Chemiker, Unternehmer zwischen Ehre und Risiko

Dr. J. Randegger, Ciba-Geigy AG

Heutige Anforderungen an das Sicherheitsmanagement in der chemischen Industrie

Dr. P. Marbet, Sandoz AG

Massnahmen im Störfall

Dr. D. Schaub, Amtsblatt BS

Haftung für Betriebsunfälle: Wer wird wie zur Verantwortung gezogen?

Dr. H. Fehr

Schadenersatz und Öffentlichkeit; immaterielle Folgen

Dr. D. Mühlemann, Glauet Studer Süss AG

Was ist zu tun? Sicherheit Leben – Verantwortung übernehmen

Anmeldung und Information:

SVCT, Postfach 46, CH-4007 Basel

Telefon 061/688 43 56 und 061/324 11 11
The Section of Medicinal Chemistry of the Swiss Chemical Society cordially invites you to attend the

XIIIth International Symposium on Medicinal Chemistry
Basel, Switzerland, September 13-17, 1992

The European Federation for Medicinal Chemistry, comprised of representatives of national medicinal chemistry organizations in Europe, organizes biennial International Medicinal Chemistry Symposia. Previous symposia were held in Florence (1962), Münster (1968), Milan (1972), Noordwijkhout (1974), Paris (1976), Brighton (1978), Torremolinos (1980), Toronto (1982, in cooperation with the Medicinal Chemistry Divisions of the Chemical Institute of Canada and the American Chemical Society), Uppsala (1984), Berlin/West (1986), Budapest (1988) and Jerusalem (1990).

The Symposium will be held in Basel at the European World Trade and Convention Center, starting on Sunday afternoon (September 13) with the Registration and Inaugural Lecture. The scientific programme will take place from Monday morning (September 14) until Thursday (September 17).

The official language of the Symposium will be English.

Chairman of the Organizing Committee
E. Kyburz (CH)

Chairman of the Scientific Committee
B. Testa (CH)

Scientific Programme
The programme will focus on a number of selected themes of current significance. These will be covered in one inaugural lecture, 4 plenary lectures and 36 main lectures. Special therapeutic areas as well as general methodological approaches will be presented.

Specialized themes according to mechanisms of action:
- Proteases and their inhibitors
- The immune system as a drug target
- Peptidomimetics acting on peptide receptors
- Agents affecting post-receptors events
- Selected enzyme inhibitors
- Drugs acting on neurotransmitter systems
- Drugs acting on nucleic acids and nucleic acid processing enzymes
- Ion channel modulators

General themes:
- Exciting new topics
- Approaches in lead finding and lead optimization
- Molecular toxicology
- Prodrugs and targeted drug delivery

All correspondence should be addressed to:

XIIIth International Symposium on Medicinal Chemistry
Administrative Secretariat
P.O. Box 141
CH-4007 Basel
Switzerland
The Section of Medicinal Chemistry of the Swiss Chemical Society cordially invites you to attend the

XIIth International Symposium on Medicinal Chemistry

Basel, Switzerland, September 13–17, 1992

The European Federation for Medicinal Chemistry, comprised of representatives of national medicinal chemistry organizations in Europe, organizes biennial International Medicinal Chemistry Symposia. Previous symposia were held in Florence (1962), Münster (1968), Milan (1972), Noordwijkhout (1974), Paris (1976), Brighton (1978), Torremolinos (1980), Toronto (1982, in cooperation with the Medicinal Chemistry Divisions of the Chemical Institute of Canada and the American Chemical Society), Uppsala (1984), Berlin/West (1986), Budapest (1988) and Jerusalem (1990).

The Symposium will be held in Basel at the European World Trade and Convention Center, starting on Sunday afternoon (September 13) with the Registration and Inaugural Lecture. The scientific programme will take place from Monday morning (September 14) until Thursday (September 17).

The official language of the Symposium will be English.

Chairman of the Organizing Committee
E. Kyburz (CH)

Chairman of the Scientific Committee
B. Testa (CH)

Scientific Programme
The programme will focus on a number of selected themes of current significance. These will be covered in one inaugural lecture, 4 plenary lectures and 36 main lectures. Special therapeutic areas as well as general methodological approaches will be presented.

Specialized themes according to mechanisms of action:
- Proteases and their inhibitors
- The immune system as a drug target
- Peptidomimetics acting on peptide receptors
- Agents affecting post-receptors events
- Selected enzyme inhibitors
- Drugs acting on neurotransmitter systems
- Drugs acting on nucleic acids and nucleic acid processing enzymes
- Ion channel modulators

General themes:
- Exciting new topics
- Approaches in lead finding and lead optimization
- Molecular toxicology
- Prodrugs and targeted drug delivery

All correspondence should be addressed to:

XIIth International Symposium on Medicinal Chemistry
Administrative Secretariat
P.O. Box 141
CH–4007 Basel
Switzerland

Roussel-Preis 1992

Angesichts der ständig wachsenden Bedeutung der Steroide für die Gesundheit der Menschen, der Tiere und vielleicht bald auch der Pflanzen war es notwendig geworden, einen internationalen Preis zur Förderung der Forschung auf diesem Gebiet zu schaffen.

Der Roussel-Preis, der 1968 auf Initiative von Herrn Prof. J. Mathieu gestiftet wurde, wird alle zwei Jahre von einem Komitee international anerkannter Spezialisten an einen oder zwei Chemiker, Biochemiker oder Physiologen für eine spezielle Leistung auf diesem Gebiet verliehen.

Die bisherigen Preisträger sind:
- 1970, Prof. W.S. Johnson für seine Arbeiten über nicht enzymatische biogenesartige Steroidsynthesen,
- 1972, Prof. J.W. Cornforth für seine Arbeiten über die Enzyme der Cholesterolsynthese,
- 1974, Prof. E. Kodíček und Prof. H.F. DeLuca für ihre Arbeiten über die Metaboliten und den Aktionsmechanismus des Cholecalciferols,
- 1976, Prof. E.E. Basílieu und Prof. E.V. Jensen für ihre Arbeiten über die Hormonrezeptoren,
- 1978, Prof. R.C. Breslow und Prof. G. Stork für ihre Chemie- und Synthese-Arbeiten auf dem Steroid-Gebiet,
- 1980, Prof. K. Arima und Prof. C. J. Sih für ihre Arbeiten über die mikrobiologische Spaltung der Seitenkette der Sterole,
- 1982, Prof. P. Benveniste und Prof. T.W. Goodwin für ihre Arbeiten über die Biosynthese der Phytosterole,
- 1984, Prof. S. Lieberman für seine Arbeiten über Biosynthese, Biochemie und Physiologie der Steroid-Hormone,
- 1986, Dr. P. Albrecht und Prof. G. Ouriasson für ihre Arbeiten über die Identifizierung und Untersuchung der Squalenoide,
- 1988, Prof. C. Djerassi für seine Arbeiten über Isolierung, Strukturbestimmung, Synthese und Biosynthese der Sterole maritimen Ursprungs,
- 1990, Prof. P. Chambon für seine Arbeiten über Klonierung und Struktur der Steroid-Hormonrezeptoren.

Die nächste Preisverleihung, in Höhe von 40 000 $, wird im Herbst 1992 stattfinden. Der Preis soll einen oder mehrere Forscher für herausragende Arbeiten auf dem Gebiet der Steroide und verwandter Squalenoide auszeichnen, deren Ergebnisse vor dem 31. Dezember 1991 veröffentlicht wurden.

Die Jury für das Jahr 1992 setzt sich wie folgt zusammen:
Präsident: Sir Derek Barton
Mitarbeiter: Professoren M. Akhtar, J. Gorski, N. Ikekawa, J. Mathieu, Y. Matz, J. Syväri

Nationalität und Arbeitsplatz haben keinerlei Einfluss auf die Entscheidung der Kommission. Die Kandidaten müssen von einem anerkannten Wissenschaftler, der von zwei weiteren Paten unterstützt wird, auf speziellen Formularen vorgeschlagen werden.

Vorschläge müssen bis zum 1. Januar 1992 dem Präsidenten oder dem Sekretariat des Roussel-Preises eingereicht werden.

Für den Versand der Formulare und für alle weiteren Informationen ist das Sekretariat zuständig.

Sekretariat des Roussel-Preises
Institut Scientifique Roussel, 35, Boulevard des Invalides, F–75007 Paris
Roche übernimmt PCR-Technologie von Cetus und bildet strategische Allianz mit Perkin-Elmer

In einer Reihe von Vereinbarungen erwirbt Roche das Recht auf der brechende Technologie der Polymerase-Kettenreaktion (PCR) von Cetus Corporation, Emeryville, Kalifornien. Damit wird die Roche Diagnostika Division künftig über alle technischen und herstel-
lungsrorientierten Rechte sowie Patentrechte für alle bekannten sowie noch unbekannten PCR-Anwen-
dungsgebiete verfügen. Roche richtet dafür einen Kaufpreis von 300 Mio. US $ sowie umsatzabhän-
gige Lizenzgebühren bis zu maximal 30 Mio. US $. Das Abkommen mit Cetus bedarf noch der Zustimmung der Cetus-Aktionäre sowie der zu-
ständigen US-Behörden.

Roche geht gleichzeitig mit der Perkin-Elmer Corporation in Nor-
walk, Connecticut, eine strategische Allianz ein. Eine der von Roche erworbenen PCR-Rechte werden exklusiv an die Perkin-Elmer Cor-
poration für deren traditionelle Märkte zugeteilt. In einem früheren Abkommen hatte Cetus Rechte für die Märkte in den PCR-Anwen-
dungsgebieten Forschung, Industrie, Umweltschutz und Identitätstests in Lizenz an das Gemeinschaftsunter-
nehmen Perkin-Elmer Cetus Instruments (PECI) vergeben, das zu 51% Perkin-Elmer und zu 49% Cetus gehört. PECI hat in den letzten fünf Jahren die PCR-Technologie er-
folgreich auf verschiedenen Märk-
ten eingeführt. Perkin-Elmer und Cetus sind über verschiedene, PECI
aufzulösen, sobald die Vereinbarung
mit Roche in Kraft tritt. Perkin-Elmer
übernimmt das Geräte-Geschäft von
PECI und schließt ein neues
Abkommen mit Roche ab, wonach
Perkin-Elmer die exklusiven Rech-
te für den Vertrieb von PCR-Geräten
und PCR-Reagenzien auf seinen
traditionellen Märkten erhält. Aus-
serdem wird Perkin-Elmer weiterhin
PCR-Geräte für diese Märkte ent-
wickeln und herstellen.

Roche wird künftig die Geräte
und Reagenzien für alle PCR-An-
wendungen auf dem Gebiet der In
vivo-Diagnostik in der Human- und
Veterinarmedizin entwickeln, her-
stellen und vertreiben. Hierzu wird die Roche Diagnostika Division sämtliche PCR-Aktivitäten in einer neuen Geschäftseinheit zusammen-
fassen. Mit dem vollen Erwerb der PCR-Technologie übernimmt Ro-
che die Absicht, weltweit in eine Spitzenposition auf dem Diagnosti-
ka-Sektor vorzustreben. Heute ist PCR bereits ein erprobtes diagnos-
tisches Werkzeug, aber das volle Potential dieser Technologie zeich-
net sich bei der Diagnose und Be-
handlung von Krankheiten erst in Umrissen ab.

Im Rahmen der anfangs 1989 ge-
wohenen Vereinbarungen zwischen Roche und Cetus über eine Zusam-
menarbeit bei der Entwicklung und Vermarktung von diagnostischen Produkten und Serviceleistungen auf
Basis der »GeneAmp« PCR-
Technologie von Cetus haben Ro-
che Forscher begonnen, die ersten kommerziell genutzten Anwendungen für Infektionskrankheiten wie AIDS, Lyme-Krankheit (Borreliose) und Tuberkulose zu entwickeln. Mit den neuen Vereinbarungen wird Roche auch alle Rechte an der PCR-For-
schung von Cetus übernehmen, die sich auf die Gebiete der Gerichts-
medizin, der Krebstdiagnostik sowie der Erkennung von Erbkrankheiten und verschiedener anderer Infektions-
krankheiten konzentriert.

Von Roche Biomedical Labora-
tories (RBL), dem klinischen Ser-
vice-Laboratorium der Diagnosti-
ka Division in den USA, wird das PCR-Verfahren bereits kommerzi-
el genutzt, so beispielsweise zum Frühnachweis des AIDS-Virus. Im Frühjahr dieses Jahres hat Roche an SmithKline Beecham Clinical La-
boratories und an MediGene, Inc., Lizenzen für den Bereich der in-
vitro PCR-Labortests vergeben.

Die PCR-Methode erlaubt, inner-
halb weniger Stunden ein einzelnes Gen der DNA aus einem Trif-
stionel Grammat Erbmaterial mit Hilfe eines speziellen Polymerase-
Enzymen millionenfach zu kopieren und damit eine genügend Menge für den diagnostischen Nachweis
von biologischem Erbmaterial zu gewinnen, so etwa von Viren oder Krebszellen. Ferner kann die Tech-
nologie zur Bestimmung von Erb-
krankheiten, zum Vaterschafts-
nachweis sowie für die kriminalisti-
sche Spurensuche eingesetzt wer-
den.

Cetus Corporation mit Sitz in Emeryville, Kalifornien, und mit
einer europäischen Niederlassung in Amsterdam, Niederlande, forscht in der modernen Biotechnologie und entwickelt vor allem neuartige im-
munologische Medikamente.

Die Perkin-Elmer Corporation in Norwalk, Connecticut, ist weltweit ein Marktführer auf dem Gebiet der Forschungs- , Analyse- und Über-
wachungs-Geräte für die Biotechnologie, die Chemie und den Um-
weltschutz; ausserdem werden welt-
weit spezielle Lacke und Überzüge für Hochtechnologiebereiche pro-
duziert und vertrieben.
Roche übernimmt PCR-Technologie von Cetus und bildet strategische Allianz mit Perkin-Elmer

In einer Reihe von Vereinbarungen verwirft Roche alle Rechte an der bahnbrechenden Technologie der Polymerase-Kettenreaktion (PCR) von Cetus Corporation, Emeryville, Californien. Damit wird die Roche Diagnostika Division künftig über alle technischen und herstel-

lungsorientierten Rechte sowie Patentrechte für alle bekannten sowie noch unbekannten PCR-Anwen-
dungsbereiche verfügen. Roche ent-
richtet dafür einen Kaufpreis von 300 Mio. US $ sowie umsatzabhängi-
gige Lizenzgebühren bis zum maximal 30 Mio. US $. Das Abkommen mit Cetus bedarf noch der Zustimmung der Cetus-Aktionäre sowie der zu-

ständigen US-Behörden.

Roche geht gleichzeitig mit der Perkin-Elmer Corporation in Nor-

walk, Connecticut, eine strategische Allianz ein. Einige der von Roche erworbenen PCR-Rechte werden exklusiv an die Perkin-Elmer Corporation für deren traditionelle Märkte übergeben. In einem früheren Abkommen hatte Cetus Rechte für die Märkte in den PCR-Anwen-
dungsbereichen Forschung, Industrie, Umweltschutz und Identitätstests in Lizenz an das Gemeinschaftsunter-
nehmer Perkin-Elmer Cetus Instruments (PECI), das zu 51% Perkin-Elmer und zu 49% Cetus gehört. PECI hat in den letzten fünf Jahren die PCR-Technologie er-
folgreich auf verschiedenen Märk-

ten eingeführt. Perkin-Elmer und Cetus sind übereingekommen, PECI aufzulösen, sobald die Vereinbarung mit Roche in Kraft tritt. Perkin-

Elmer übernimmt das Geräte-Geschäft von PECI und schliesst ein neues Abkommen mit Roche ab, wonach Perkin-Elmer die exklusiven Rech-
te für den Vertrieb von PCR-Geräten und PCR-Reagenzien auf seinen traditionellen Märkten erhält. Aus-

serdem wird Perkin-Elmer weiterhin PCR-Geräte für diese Märkte ent-
wickeln und herstellen.

Roche wird künftig die Geräte und Reagenzien für alle PCR-An-
wendungen auf dem Gebiet der In-

vitro-Diagnostik in der Human- und Veterinärmedizin entwickeln, her-
stellen und vertreiben. Hierzu wird die Roche Diagnostika Division sämtliche PCR-Komponenten in einer neuen Geschäftseinheit zusammen-
fassen. Mit dem vollen Erwerb der PCR-Technologie steckt Ro-

che die Absicht, weltweit in eine Spitzenposition auf dem Diagnosti-

ka-Sektor vorzustoßen. Heute ist PCR bereits ein erprobtes diagnosti-

calisches Werkzeug, aber das volle Po-

tential dieser Technologie zeich-

net sich bei der Diagnose und Be-

handlung von Krankheiten erst in Umrissen ab.

Im Rahmen der anfangs 1989 ge-

troffenen Vereinbarungen zwischen Roche und Cetus über eine Zusam-

menarbeit bei der Entwicklung und Vermarktung von diagnostischen Produkten und Serviceleistungen auf der Basis der GeneAmp PCR-

Technologie haben Roche und Cetus Forscher begonnen, die ersten kommerziellen Anwendungen für Infektionskrankheiten wie AIDS, Lyme-Krankheit (Borreliose) und Tuberkulose zu entwickeln. Mit den neuen Vereinbarungen wird Roche auch alle Rechte an der PCR-Forschung von Cetus übernehmen, die sich auf die Gebiete der Gerichts-

medizin, der Krebsdiagnostik sowie der Erkennung von Erbkrankheiten und verschiedener anderer Infektions-

krankheiten konzentriert.

Von Roche Biomedical Laboratories (RBL), dem klinischen Ser-

vice-Laboratorium der Diagnosti-

dika Division in den USA, wird das PCR-Verfahren bereits kommerzi-

ell genutzt, so beispielsweise zum Frühnachweis des AIDS-Virus. Im Frühjahr dieses Jahres hat Roche an SmithKline Beecham Clinical Lab-

oratories und an MediGene, Inc. Lizenzen für den Bereich der in-

vitro PCR-Laboretests vergeben. Die PCR-Methoden erlauben, inner-

halb weniger Stunden ein einzelnes Segment der DNA aus einem Tril-

ion mit Hilfe eines speziellen Polymerase-

Enzymen millionenfach zu kopiern und damit eine genügende Menge für den diagnostischen Nachweis von biologischem Erbmaterial zu gewinnen, so etwa von Viren oder Krebszellen. Ferner kann die Tech-

nologie zur Bestimmung von Erb-

krankheiten, dem Vaterschafts-

nachweis sowie für die kriminalisti-

cche Spurensuche eingesetzt wer-

den.

Cetus Corporation mit Sitz in Emeryville, Californien, und mit mehreren Universitäten und Forschungseinrichtungen weltweit zusammengebracht. Mit dem Erwerb der PCR-Technologie steckt Cetus die Absicht, in einer neuen Geschäftseinheit in die Diagnostika- u.

Eine Strategie der Roche ist es, den heutigen Markt für PCR-Verfahren von der Forschungs- zu einem kommerziell genutzten Branchenbereich zu entwickeln. Die PCR-Methode erlaubt die schnelle und effiziente Darstellung von DNA-Sekvenzen, die für die GeneAmp-Polymerase-Kettenreaktion (PCR) erforderlich sind. Die Firma Roche hat die PCR-Technologie von Cetus erworben und bildet eine strategische Allianz mit Perkin-Elmer. Die PCR-Technologie wird in der Diagnostika Division eingesetzt, um neue Produkte und Dienstleistungen für die medizinische Diagnostik zu entwickeln. Die Allianz mit Perkin-Elmer ermöglicht es Roche, die PCR-Technologie auf ihren traditionellen Markten auszudehnen. Die PCR-Technologie wird in der Human- und Veterinärmedizin eingesetzt, um Erkrankungen wie AIDS, Lyme-Krankheit und Tuberkulose zu diagnostizieren. Die Firma Roche hat die PCR-Technologie von Cetus erworben und bildet eine strategische Allianz mit Perkin-Elmer. Die PCR-Technologie wird in der Diagnostika Division eingesetzt, um neue Produkte und Dienstleistungen für die medizinische Diagnostik zu entwickeln. Die Allianz mit Perkin-Elmer ermöglicht es Roche, die PCR-Technologie auf ihren traditionellen Markten auszudehnen. Die PCR-Technologie wird in der Human- und Veterinärmedizin eingesetzt, um Erkrankungen wie AIDS, Lyme-Krankheit und Tuberkulose zu diagnostizieren.

Bei der Redaktion eingetroffene Bücher

L. Alberghina, R.D. Schmid, R. Verger 'Lipases: Structure, Mechanism and Genetic Engineering' GFB Monographs Volume 16 VCH Verlagsgesellschaft mbH, Weinheim, 1991

Dechema Chemistry Data Series published by DECHEMA, Deutsche Gesellschaft für Chemisches Apparatewesen, Chemische Technik und Biotechnologie e.V., 1991.

Eds.: D. Behrens, R. Eckermann Vol. I, Part 2f
J. Gmehl, U. Okken, J.R. Raye 'Vapor-Liquid Equilibrium Data Collection'

Organic Hydroxy Compounds: Alcohols and Phenols (Supplement 4)

Vol. III, Part 3
J. Gmehl, T. Holderbaum 'Heats of Mixing Data Collection'

Binary and Multicomponent Systems (Supplement 1)

Vol. III, Part 4
J. Gmehl, T. Holderbaum 'Heats of Mixing Data Collection'

Binary and Multicomponent Systems (Supplement 2)

Vol. XI
H. Engels 'Phase Equilibria and Phase Diagrams of Electrolytes'

Personalia

Conrad H. Schneider
Prof. Dr. phil. nat., Hüningen, Mit-

glied des SchV, feiert am 4.10.91 seine 60. Geburtstag.

Hans Zwick
Dr. Chem., Enzigen, Mitglied des SchV, feiert am 11.10.91 seine 70. Geburtstag.

Guido Ebner
Dr. phil. II, Physikochemiker, Enzigen, Mitglied des SchV, feiert am 21.10.91 seine 60. Geburtstag.

Neue Mitglieder

Jean-Marc Leutenegger
Alpenstrasse 87, 2502 Biel
Roche übernimmt PCR-Technologie von Cetus und bildet strategische Allianz mit Perkin-Elmer

In einer Reihe von Vereinbarungen verwirklicht Roche die Rechte an rekombinanter DNA. Damit wird die Roche Diagnostik Division künftig über alle technischen und herstellungsorientierten Rechte sowie Patentrechte für alle bekannterweise noch unbekannter PCR-Anwendungsgebiete verfügen. Roche richtet dafür einen Kaufpreis von 300 Mio. US $ sowie umsatzabhängige Lizenzgebühren bis zu maximal 30 Mio. US $. Das Abkommen mit Cetus bedarf noch der Zustimmung der Cetus-Aktionäre sowie der zuständigen US-Behörden.

Roche geht gleichzeitig mit der Perkin-Elmer Corporation in Norwalk, Connecticut, eine strategische Allianz ein. Einige der von Roche erworbenen PCR-Rechte werden exklusiv an die Perkin-Elmer Corporation für deren traditionelle Märkte vergeben. In einem früheren Abkommen hatte Cetus Rechte für die Märkte in den PCR-Anwendungsgebieten Forschung, Industrie, Umweltschutz und Identitäts tests in Lizenz an das Gemeinschaftsunternehmen Perkin-Elmer Cetus Instruments (PECI) vergeben, das zu 51% Perkin-Elmer und zu 49% Cetus gehört. PECI hat in den letzten fünf Jahren die PCR-Technologie erfolgreich auf verschiedenen Märkten eingesetzt. Perkin-Elmer und Cetus sind übereingekommen, PECI aufzulösen, sobald die Vereinbarung mit Roche in Kraft tritt. Perkin-Elmer übernimmt das Geräte-Geschäft von PECI und schließt ein neues Abkommen mit Roche ab, wonach Perkin-Elmer die exklusiven Rechte für das Vertrieb von PCR-Geräten und PCR-Reagenzen auf seinen traditionellen Märkten erhält. Ausserdem wird Perkin-Elmer weiterhin PCR-Geräte für diese Märkte entwickeln und herstellen. Roche wird künftig die Geräte und Reagenzen für all PCR-Anwendungen auf dem Gebiet der In-vitro-Diagnostik in der Human- und Veterinärmedizin entwickeln, herstellen und vertreiben. Hierzu wird die Roche Diagnostik Division sämtliche PCR-Aktivitäten in einer neuen Geschäftseinheit zusammenfassen. Mit dem vollen Erwerb der PCR-Technologie erweitert Roche die Absicht, weltweit in eine Spitzenposition auf dem Diagnostika-Sektor vorzudringen. Heute ist PCR bereits ein erworbener diagnostischer Werkzeug, aber das volle Potentiel dieser Technologie zeichnet sich bei der Diagnose und Behandlung von Krankheiten erst in Umrissen ab.

Im Rahmen der anfangs 1989 getroffenen Vereinbarungen zwischen Roche und Cetus über eine Zusammenarbeit bei der Entwicklung und Vermarktung von diagnostischen Produkten und Serviceleistungen auf der Basis der »GeneAmp« PCR-Technologie von Cetus haben Roche Forscher begonnen, die ersten kommerziellen Anwendungen für Infektionskrankheiten wie AIDS, Lyme-Krankheit (Borreliose) und Tuberkulose zu entwickeln. Mit den neuen Vereinbarungen wird Roche auch alle Rechte an der PCR-Forschung von Cetus übernehmen, die sich auf die Gebiete der Gerichtsmedizin, der Krebstdiagnostik sowie der Erkennung von Erkran kheiten und verschiedener anderer Infektionskrankheiten konzentriert.

Bei der Redaktion eingetroffene Bücher

L. Alberghina, R.D. Schmidt, R. Verger 'Lipases, Structure, Mechanism and Genetic Engineering' GFB Monographs Volume 16 VCH Verlagsgesellschaft mbH, Weinheim, 1991

Dechema Chemistry Data Series published by DEHEMA, Deutsche Gesellschaft für Chemisches Apparatewesen, Chemische Technik und Biotechnologie e.V., 1991. Eds.: D. Behrens, R. Eckermann Vol. I, Part 2f

J. Gmehl, U. Onken, J.R. Racy 'Vapor-Liquid Equilibrium Data Collection' Organic Hydroxy Compounds: Alcohols and Phenols (Supplement 4)

Vol. III, Part 3

J. Gmehl, T. Holderbaum 'Heats of Mixing Data Collection' Binary and Multicomponent Systems (Supplement 1)

Vol. III, Part 4

J. Gmehl, T. Holderbaum 'Heats of Mixing Data Collection' Binary and Multicomponent Systems (Supplement 2)

Vol. XI

H. Engels 'Phase Equilibria and Phase Diagrams of Electrolytes'

Personalia

Geburtsstage

Conrad H. Schneider
Prof. Dr. phil. nat., Hüsibach, Mitglied des SCHV, feiert am 4.10.91 seinen 60. Geburtstag.

Hans Zwicky
Dr. Chem., Entsingen, Mitglied des SCHV, feiert am 11.10.91 seinen 70. Geburtstag.

Guido Ebner
Dr. phil. II, Physikochemiker, Eiken. Mitglied des SCHV, feiert am 21.10.91 seinen 60. Geburtstag.

Neue Mitglieder

Jean-Marc Leutenegger
Alpenstrasse 87, 2502 Biel