Efficient fluctuation exchange approach to low-temperature spin fluctuations and superconductivity: from the Hubbard model to Na$_x$CoO$_2$ \cdot yH$_2$O

Niklas Witt,1,2 Erik G. C. P. van Loon,1,2 Takuya Nomoto,3 Ryotaro Arita,3,4 and Tim O. Wehling1,2

1 Institut für Theoretische Physik, Universität Bremen, Otto-Hahn-Allee 1, 28359 Bremen, Germany
2 Bremen Center for Computational Materials Science, Universität Bremen, Am Fallturm 1a, 28359 Bremen, Germany
3 Department of Applied Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
4 RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan

(Dated: January 19, 2022)

Superconductivity arises mostly at energy and temperature scales that are much smaller than the typical bare electronic energies. Since the computational effort of diagrammatic many-body techniques increases with the number of required Matsubara frequencies and thus with the inverse temperature, phase transitions that occur at low temperatures are typically hard to address numerically. In this work, we implement a fluctuation exchange (FLEX) approach to spin fluctuations and superconductivity using the "intermediate representation basis" (IR) [Shinaoka et al., PRB 96, 2017] for Matsubara Green functions. This FLEX+IR approach is numerically very efficient and enables us to reach temperatures on the order of 10^{-4} in units of the electronic band width in multi-orbital systems. After benchmarking the method in the doped repulsive Hubbard model on the square lattice, we study the possibility of spin-fluctuation-mediated superconductivity in the hydrated sodium cobalt material Na$_x$CoO$_2$ \cdot yH$_2$O reaching the scale of the experimental transition temperature $T_c = 4.5$ K and below.

I. INTRODUCTION

The physics of unconventional superconductivity has been a longstanding problem in condensed matter physics. Over the course of decades many different systems have been discovered, like heavy fermion compounds [1, 2], cuprates [3, 4], iron-based superconductors [5, 6], twisted two-dimensional (2D) materials [7, 8], and infinite-layer nickelate [9].

Finding a microscopical description for these materials is a difficult task since correlations as well as complexity need to be accounted for appropriately. The inherent complexity of real materials arises from the interplay of many internal degrees of freedom and typically covering multiple energy scales. For instance, screening of the Coulomb interaction often involves electronic bands reaching up to 100 eV in energy. On the other side, superconductivity emerges when thermal energies are on a scale of 10 meV for T_c cuprate systems down to a few 10 µeV in several heavy fermion systems. Hence, four or even more orders of magnitude of electronic energies are typically involved in the electronic structure of superconducting materials. For the theoretical modeling this has practical consequences. Distinct energy scales require large but accurate frequency grid sampling and processing. This frequently limits the phase space that can be studied by diagrammatic many-body methods.

One particular material example for this complex interplay of different degrees of freedom and energy scales is given by the water intercalated sodium cobalt oxide, Na$_x$CoO$_2$ \cdot yH$_2$O, which features superconductivity with transition temperatures reaching $T_c = 4.5$ K [10]. This material consists of layered cobalt oxide planes being separated by sodium ions and water molecules. The Co atoms are arranged on a triangular lattice and hole doped, rendering it a possible realization of a resonating-valence-bond state, related to high-temperature superconductivity [11, 12]. However, until now neither an experimental nor a theoretical consensus has been reached on the origin of the superconducting pairing.

Theoretically proposed pairing types include a spin triplet p- or f-wave driven by ferromagnetic fluctuations [13, 14], a spin singlet extended s-wave [15, 16], a chiral $d+id'$-wave [17, 18], an odd frequency gap [15, 21], or conventional phonon-assisted s-wave pairing [22, 23]. For each of them, experimental results can be found that support or deny their realization [24], making the analysis quite delicate. This controversy about the pairing type originates from several problems. They include a general instability of the Na$_x$CoO$_2$ \cdot yH$_2$O compound due to water evaporation with an accompanying large dependence on sample conditions [24]. On the theoretical side, a multi-orbital model is necessary to accurately describe the electronic structure [25], which makes computational studies very challenging. It might be one of the reasons why no microscopic studies of the superconducting instability have been reported on the temperature scale of $T_c \sim 5$ K.

In this work, we implement a fluctuation exchange (FLEX) approach [11, 20, 22] using the intermediate representation (IR) basis [33, 34] and study the possibility of spin-fluctuation-mediated superconductivity in Na$_x$CoO$_2$ \cdot yH$_2$O. The IR basis provides a compact representation of imaginary-time quantities that additionally
enables the usage of sparsely sampled data grids \cite{37}. As a result, the numerical cost of calculations can be considerably reduced permitting, e.g., new ab initio approaches \cite{38}. Here, we use this combined FLEX + IR approach to perform calculations at very low temperatures. We study the magnetic properties of Na$_x$CoO$_2 \cdot y$H$_2$O and investigate the possibility of triplet superconductivity occurring on the scale of the experimental T_c.

The remainder of this work is structured as follows: In Sec. II we will briefly review the FLEX approximation and explain the application of the IR basis. To illustrate the accuracy and efficiency of our approach, we first show benchmark studies on the single-orbital Hubbard model in Sec. III. Subsequently, we use our method to research the possibility of spin-fluctuation-driven superconductivity in the Na$_x$CoO$_2 \cdot y$H$_2$O system at very low temperatures. For this, we study the Fermi surface, filling and interaction dependence of the spin susceptibility and superconducting instability in Sec. IV.

II. METHODS

A. Fluctuation exchange approximation

The FLEX approximation introduced by Bickers et al. \cite{28,27} is a perturbative diagrammatic approach that treats spin and charge fluctuations self-consistently. It can be derived from a Luttinger-Ward functional \cite{39} containing an infinite series of closed bubble and ladder diagrams. As such it is a conserving approximation \cite{40,41}. Due to its perturbative nature, FLEX cannot capture strongly coupled physics but it performs well in the weak-coupling regime. It is suitable for studying systems with strong spin fluctuations in Fermi liquids and near quantum critical points.

In this paper we employ the multi-orbital extension of FLEX \cite{29,12} for which we consider the (antisymmetrized) local interaction Hamiltonian

$$
H_{\text{int}} = \frac{1}{4} \sum_i \sum_{\xi_1,\xi_2} \sum_{\xi_3} \sum_{\xi_4} \Gamma_{\xi_1,\xi_2,\xi_3,\xi_4}^0 c_{\xi_1}^\dagger c_{\xi_2}^\dagger c_{\xi_3} c_{\xi_4}$$

(1)

where the operators c_{ξ}^\dagger (c_{ξ}) create (destroy) an electron at site i in a state $\xi = (l, \sigma)$, which is a combined orbital and spin index. The bare vertex Γ^0 is expressed as

$$
\Gamma_{\xi_1,\xi_2}^0 = -\frac{1}{2} U_{14}^S \delta_{\sigma_1,\sigma_4} \cdot \delta_{\sigma_2,\sigma_3} + \frac{1}{2} U_{14}^C \delta_{\sigma_1,\sigma_3} \delta_{\sigma_2,\sigma_3}$$

(2)

with the interaction matrices

$$
U_{ij,kl}^S = \begin{cases} U & \text{if } i = j = k = l \\ -U' + 2J & \text{if } i \neq j \neq k \neq l \\ J' & \text{if } i = j = k \neq l \\ 2U' - J & \text{if } i \neq j \neq l = k \\ J' & \text{if } i = j \neq k = l \\ J' & \text{if } i \neq j \neq k \neq l
\end{cases}
$$

$$
U_{ij,kl}^C = \begin{cases} U' & \text{if } i = j = k = l \\ -U' + 2J & \text{if } i \neq j \neq k \neq l \\ 2U' - J & \text{if } i = j \neq k = l \\ J' & \text{if } i \neq j \neq l = k \\ J' & \text{if } i = j \neq k \neq l \\ J' & \text{if } i \neq j \neq k \neq l
\end{cases}
$$

(3)

where U and U' are the local intra- and inter-orbital interactions, J is the inter-orbital exchange interaction and Hund’s coupling, and J' is the pair-hopping between two orbitals. Due to symmetry, they are related by $U = U' + J + J'$ and $J = J'$.

In FLEX, the self-energy can be calculated from

$$
\Sigma_{im}(k) = \frac{T}{N} \sum_q \sum_{\nu',m'} V_{\nu',mm'}(q) G_{\nu'm'}(k-q)
$$

(4)

where $k = (i\omega_n, k)$ and $q = (i\nu_m, q)$ denote crystal momentum and Matsubara frequencies $\omega_n = (2n + 1)\pi T$ ($\nu_m = 2m\pi T$) for fermions (bosons), T is the temperature, and N is the number of sites. The interaction consists of contributions from the spin and charge channel as

$$
V(q) = \frac{2}{3} U^S \left[\chi^S(q) \right] + \frac{3}{2} \frac{U^S}{U^C} + \frac{1}{2} U^C \left[\chi^C(q) \right] U^C - \frac{1}{2} U^C\cdot
$$

(5)

The charge and spin susceptibility entering Eq. (4) are defined by

$$
\chi^C(q) = \frac{\chi^S(q)}{1 + \chi^S(q)U^C}, \quad \chi^S(q) = \frac{\chi^0(q)}{1 - \chi^0(q)U^S}
$$

(6)

with the unity operator $\mathds{1}$ and the irreducible susceptibility

$$
\chi_{\nu,m',m}(q) = -\frac{T}{N} \sum_k G_{\nu,m+k}G_{m',v}(k).
$$

(7)

We use Eqs. (3)-(6) to self-consistently solve the Dyson equation

$$
G(k)^{-1} = G^0(k)^{-1} - \Sigma(k)
$$

(8)

with the bare Green function given by

$$
G^0(i\omega_n, k) = \frac{1}{i\omega_n - (H^0(k) - \mu)\mathds{1}}.
$$

(9)

$H^0(k)$ is the non-interacting Hamiltonian and μ denotes the chemical potential which needs to be adjusted in every iteration to keep the electron density n fixed. The fractions in Eqs. (5) and (8) are to be understood as inversions.

In the presence of strong magnetic fluctuations, it is possible to study the superconducting phase transition within FLEX. For this purpose, we consider the linearized Eliashberg theory with the gap equation reading

$$
\lambda \Delta^\eta_{im}(k) = \frac{T}{N} \sum_{q} \sum_{\nu',m'} V^\eta_{\nu',mm'}(q) F^\eta_{\nu'm'}(k-q).
$$

(10)

It is diagonal in the spin singlet- and triplet-pairing channel ($\eta = s, t$) with the anomalous Green function.
\[F^\alpha(k) = -G(k)\Delta^\alpha(k)G^T(-k) \] and respective interactions

\[V^\alpha(q) = \frac{3}{2}U^S\chi^S(q)U^S - \frac{1}{2}U^C\chi^C(q)U^C + \frac{1}{4}(3U^S + U^C), \]
\[V^\alpha(q) = -\frac{1}{2}U^S\chi^S(q)U^S - \frac{1}{2}U^C\chi^C(q)U^C - \frac{1}{4}(U^S - U^C). \]

(10)

\(\lambda \) and \(\Delta \) in the linearized gap equation [2] represent an eigenvalue and eigenvector of the Bethe-Salpeter equation, respectively [28, 43]. We solve this eigenvalue problem by using the power iteration method. The superconducting transition temperature is found if the eigenvalue \(\lambda \) reaches unity.

B. Intermediate representation basis

The basic objects of diagrammatic many-body methods like FLEX are Green functions and derived quantities which are computed numerically on finite imaginary-time and Matsubara frequency grids. Using conventional uniform grids to represent Green functions, calculations require grid sizes that increase linearly with inverse temperature upon cooling the system. In practice, this prohibits calculations at low temperatures as the required amount of data becomes too large to be stored or processed. One of several approaches [44, 46] to tackle these problems is to use a compact representation of Green functions as given by (orthogonal) continuous basis functions, like Legendre polynomials [47, 48], Chebyshev polynomials [49] or numerical basis functions [50].

The IR basis [33–36] is such an orthogonal numerical basis in which Green functions can be efficiently and compactly represented. The basis functions are defined by the singular value expansion of the kernel that connects Green function and spectral function [51]:

\[K^\alpha(\tau, \omega) = \omega^{\delta_{\alpha, B}} \frac{e^{-\omega \tau}}{I_{\tau} + e^{-\beta \tau}} = \sum_{l=0}^{\infty} S_l^\alpha U_l^\alpha(\tau)V_l^\alpha(\omega) \]

(11)

Here, \(\{U_l^\alpha(\tau)\}, \{V_l^\alpha(\omega)\} \) denote the IR basis functions and \(S_l^\alpha \) are the exponentially decaying singular values. The expansion is uniquely defined by fermionic or bosonic statistics \(\alpha \in \{F, B\} \) and a dimensionless parameter \(\Lambda = \omega_{\text{max}}/\Delta \), where \(\beta \) is the inverse temperature and \(\omega_{\text{max}} \) a cutoff frequency which captures the spectral width of the system.

The representation within the IR basis provides a controlled way to store Green functions. This means that the truncation error \(\delta \) of the expansion

\[G^\alpha(x) = \sum_{l=0}^{l_{\text{max}}} G_l^\alpha U_l^\alpha(x) \quad |x = \tau, i\omega_n| \]

(12)

with \(N_{\text{IR}}^\alpha = l_{\text{max}} + 1 \) basis functions is controllable. It is determined from the singular values by \(\delta \leq S_{l_{\text{max}}}/S_0 \).

Due to their exponential decay, only a small number \(N_{\text{IR}}^\alpha \) is necessary to compactly represent Green function data with high accuracy as is shown in Fig. 1. Compared to other basis sets like Legendre or Chebyshev polynomials, the IR basis holds a superior compactness, especially at low temperatures.

Another advantage of the IR basis is the possibility to generate sparse imaginary-time and frequency grids with a size equal to the number of basis functions \(\Lambda \). This scheme ideally requires an even (odd) number for fermionic (bosonic) quantities because of which the lines in Fig. 1 are step functions. The sparse grids offer the benefit of decreased data storage while performing intermediate steps of solving diagrammatic calculations efficiently, like computing Fourier transformation by simple matrix multiplications [52].

In practical calculations, a desired accuracy \(\delta \) is chosen and \(\Lambda \) is set such that \(\Lambda \geq \beta \omega_{\text{max}} \) holds for a fixed \(\omega_{\text{max}} \). Then, the \(\{U_l^\alpha\} \) functions are precomputed on imaginary-time and Matsubara frequency grids. The evaluation of Eq. (11) is numerically expensive. However, the open-source \texttt{irbasis} software package [35] provides numerical basis functions as solutions to Eq. (11) which can be quickly accessed and implemented easily. Throughout this paper we employed \(\Lambda = 10^4 \) and \(\delta = 10^{-8} \) which corresponds to small basis and grid sizes of \(N_{\text{IR}}^\alpha = 62 \) and \(N_{\text{IR}}^\alpha = 57 \).
III. BENCHMARK: SINGLE-ORBITAL SQUARE LATTICE HUBBARD MODEL

The Hubbard model is a fundamental model used to study correlated electron physics, particularly the interplay of magnetism and unconventional superconductivity. Despite its simplicity it captures many essential physics important to interacting quantum systems. Thus, a multitude of many-body approaches has been developed to simulate the properties of the Hubbard model \[\text{[33]}\] \[\text{[34]}.\] Therefore, it constitutes an excellent system to benchmark our FLEX+IR approach to former FLEX and further studies of magnetism and superconductivity.

In this regard, we consider the repulsive single-orbital Hubbard model on a square lattice, which also serves as a relevant study case for cuprates \[\text{[4]}.\] Taking into account nearest and next-nearest-neighbor hoppings \(t\) and \(t'\), the single-particle dispersion is given by

\[
\varepsilon_k = 2\left[\cos(k_x) + \cos(k_y)\right] + 4t'\cos(k_x)\cos(k_y). \tag{13}\]

In the following \(t\) is the unit of energy. We set the local interaction to an intermediate value of \(U/t = 4\). For an assessment of the performance of the FLEX+IR method introduced, here we first compare to an earlier FLEX work of one of the current authors \[\text{[28]}.\] To this end, we adapted the \(N = 64^2\) lattice sites in our calculations and replaced the uniform 2048 Matsubara frequency grid of Ref. \[\text{[28]}\] with the IR basis sampling.

The Hubbard model contains different magnetic fluctuations whose relative strength can be controlled by the Fermi surface shape, i.e., by changing \(t'\) and the electron filling \(n\). To contemplate different physical situations, we inspect the possibility of both dominant antiferromagnetism (AF) and ferromagnetism (F) by using the parameters \(t'/t = 0, n = 0.85\) and \(t'/t = 0.5, n = 0.3\), respectively.

First we examined the spin susceptibility \(\chi^s\). The results for the static spin susceptibility \(\chi^s(i\nu_0 = 0, q)\) are shown along high-symmetry paths in the Brillouin zone in the left column of Fig. 2. For a direct comparison, we also included the results of Ref. \[\text{[28]}\]. Clearly, the agreement between both data sets is excellent. The dominant structures and magnitude of the incommensurate antiferromagnetic and the weaker ferromagnetic fluctuations are reproduced exactly.

The presence of strong magnetic fluctuations can drive unconventional superconductivity. To study its appearance, we calculated the superconducting eigenvalue \(\lambda\). In the case of dominant AF fluctuations, we consider a singlet-pairing gap with \(d_{x^2-y^2} \equiv d\)-symmetry while we choose the degenerate triplet \(p\)-wave state for dominant F fluctuations. Their respective eigenvalues are shown in the right column of Fig. 2 together with the inverse of \(\chi^s(0, Q)\) at the wave vector \(Q\) of the leading instability, which signifies magnetic ordering. As can be seen, the AF fluctuations are strong enough to enable \(d\)-wave superconductivity with a \(T_c \approx 0.02t\), whereas the \(p\)-wave solution is not realized. This is mainly due to stronger self-energy renormalization for \(t' > 0\) and a smaller prefactor in the triplet-pairing potential \(V^t(q)\) in Eq. \[\text{[10]}\]. Once again, we included data from Ref. \[\text{[28]}\], which are in very good agreement despite the necessary frequency points by a factor of \(\sim 33\) while achieving the same results under persistent accuracy.

In a second step, we use our FLEX+IR approach to study the superconducting and magnetic phase diagram of the square lattice Hubbard model with \(t'/t = 0\). An additional comparison to numerical methods beyond FLEX will be made.

In order to map out the phase diagram, we performed calculations for different fillings and temperatures. Regions of strong magnetic and superconducting fluctuations can be identified by analyzing and extrapolating the corresponding magnetic \(\lambda_m = U\chi_{\text{max}}\) and superconducting \(\lambda_d\) eigenvalues. In Fig. 3(a) we show the \(n-T\) diagram for two extracted values of \(\lambda_m\) and \(\lambda_d\) to indicate the evolution of the phase boundaries for \(\lambda \to 1\). Additionally, we included independent FLEX results by Kitatani et al. \[\text{[35]}\] \((\lambda_{m,d} = 0.99)\) to verify our accuracy. This latter comparison yields an excellent agreement.

The results show that \(T_c\) grows monotonically with the electron filling with some flattening of the curve around a hole doping of 0.15 as has been reported previously \[\text{[56]}\]. We cannot, however, make a statement about the under-doped region near half-filling due to strong AF fluctua-
tions preventing the FLEX cycle from converging. This can be seen from $\lambda_m \to 1$, which masks the superconducting domain below 0.1 hole doping. This issue is inherently a part of the theory due to the diverging denominator of the spin susceptibility. Here, the strong fluctuations result from better nesting conditions on the Fermi surface with less doping which becomes even more profound for larger U.

At this point, we should comment on the designation of phase boundaries at finite temperatures, since the Mermin-Wagner theorem [57, 58] actually prohibits the formation of (perfect) long-range ordered phases associated with spontaneous breaking of continuous symmetries at finite temperatures in two dimensions. The results shown here are best understood in the context of quasi-two-dimensional systems: It has been shown that purely two-dimensional systems show very similar results to quasi-two-dimensional systems with a weak but finite three-dimensional character as long as the out-of-plane coherence length is large [28].

In Fig. 3(b) we compare our phase diagram obtained from FLEX for $\lambda_{m,d} = 0.99$ with phase diagrams reported in the literature which have been calculated using DMFT+FLEX (Dynamical Mean-Field) [55], Two-Particle Self-Consistency (TPSC) [59], Diagrammatic Cluster Approximation (DCA) on a 16 site cluster [60], and DCA+ [61]. On a qualitative level all approaches under consideration yield maximally achievable superconducting critical temperatures on the same order of magnitude. Also the shape of the phase boundary of the AF region agrees between FLEX and FLEX+DMFT.

On a close, more quantitative level, however, there are profound differences between the phase diagrams revealed by the different methods: The most prevalent difference between all methods lies in the structures of the superconducting dome in the phase diagram. The filling dependence of this dome shape varies significantly. Due to the reasons of the previous discussion, FLEX does not establish this dome structure. It can be retrieved by incorporating strong correlation effects as contained in DMFT, DCA, and also in TPSC. The level at which correlations are incorporated, however, strongly influences the exact doping dependence.

IV. SODIUM COBALT OXIDE

The pairing type of superconductivity and its interplay with magnetism in Na$_2$CoO$_2$·yH$_2$O is a very controversial issue as we have elucidated in the Introduction. In the following, we apply the FLEX+IR approach to study this problem.

A. Crystal and electronic structure

Na$_x$CoO$_2$ · yH$_2$O is commonly synthesized by soft-chemical methods from the parent compound Na$_{0.7}$CoO$_2$. The latter is a layered material consisting of cobalt oxide planes which are separated by sodium ions, c.f. Fig. 4(a). The CoO$_2$ planes are composed of edge-shared CoO$_6$ octahedras that place the Co ions on a perfect triangular lattice as depicted in Figs. 4(b) and 4(c). During hydration, water molecules and hydronium ions are intercalated between the CoO$_2$ planes. As a consequence, the separation between the CoO$_2$ planes in the c-direction increases while the CoO$_6$ octahedra contract in that direction. The material becomes thus more anisotropic, i.e., H$_2$O intercalation enhances two-dimensionality in the CoO$_2$ planes.

The Co atoms have partially filled t$_{2g}$ bands which are electron doped by the Na ions. In the simplest approximation, their filling is $n = 5 + x$ where x is the Na content. Upon Na doping, a rich phase diagram [24, 25] with weak correlations for low dopings ($x \sim 0.3$) and strong correlations for high dopings ($x \sim 0.7$) emerges. In this phase characterization, the superconducting re-
FIG. 4. Crystal and electronic structure of the Na$_x$CoO$_2$·yH$_2$O compound. (a) Vertical layered structure of CoO$_2$ planes (light and dark gray) with intercalated Na$^+$, H$_2$O, and H$_3$O$^+$. (b) Top view on CoO$_2$ planes showing triangular sublattice of Co ions with surrounding O ions. (c) CoO$_6$ octahedron which is trigonally deformed by the layered structure. (d) Electronic band structure with orbital character projections indicated by surrounding color patches. Model details are given in Appendix A. Energies are measured with respect to the chemical potential $\xi_k = \varepsilon_k - \mu$. (e) Fermi surface corresponding to the band structure of panel (d).

Region is placed around $x \approx 0.3$. However, this classification had been made without consideration of possible additional doping from the H$_3$O$^+$ ions because their presence was only discovered at a later time [24]. Due to this, the filling of the t_{2g}-bands might be larger in the superconducting phase, locating it in the strongly correlated region [16, 63].

To model the electronic structure, we use a three-band tight-binding model for the t_{2g} bands as formulated by Mochizuki et al. [14] which describes the low-energy characteristics of LDA band structure calculations [64] quite well. This model includes a crystal field term accounting for the trigonal deformation of the CoO$_6$ octahedra because of the plane height reduction. It leads to a splitting of the t_{2g} orbitals into a higher a_{1g} and lower twofold e'_g levels. The exact details on this model are presented in Appendix A. The corresponding band structure is shown orbitally resolved for a Co valence of $s = 3.645$ or respective electron filling of $n = 5.355$ in Fig. 4(d). Panel (e) contains the associated Fermi surface. It consists of one large a_{1g} hole pocket around the Brillouin zone center and six elliptically shaped e'_g hole pockets near the K points. The latter play an important role in creating strong ferromagnetic fluctuations since they have a large density of states and offer good nesting conditions for $Q \approx (0, 0)$ [14, 21, 25].

There has been much discussion on the actual existence of the e'_g pockets on the Fermi surface in the literature. It stems from the fact that ARPES measurements [65–69] locate them below the Fermi level. However, these results might be due to surface effects [70] since PES [71] and Shubnikov-de Haas measurements [72] seem to support their existence. Theoretical studies showed that the e'_g pockets are suppressed in charge self-consistent LDA+DMFT calculations [73], while LDA+DFMT performed with a realistic Hund’s coupling J can stabilize them [74]. The problem of locating the e'_g pockets in energy is very delicate since variations in the crystal field splitting (layer height), electron filling, and band width renormalization influence the Fermiology of Na$_x$CoO$_2$·yH$_2$O. In this work, we study the interplay of spin fluctuations and superconductivity for different models of the Fermi surface. We start with the type of Fermi surface considered also in Ref. [14] and vary the Fermi surface shape and topology afterward.

To this end, we first reproduce the results given in Ref. [14] within FLEX+IR and then extend the calculations to lower temperatures. We adapted the interaction strength of $U = 6$ in units of the hopping t_3 ($U \sim 1.1$ eV, see appendix A) and we vary the Hund’s coupling J as a ratio...
of U. For the initial comparison, we use a k-mesh of 32×32 as in Ref. [14], but the low-temperature calculations demand a denser grid sampling for which we found $N_k = 210^2$ lattice sites to be converged.

B. Spin Susceptibilities

To check the accuracy of our implementation, we calculated the static spin susceptibility and compare our results to Ref. [14], where calculations were carried out for a temperature of $T/t_3 = 0.02$ and different J/U values. It should be noted that a different second-order correction $V^{(2)}(q)$ to the FLEX interaction has been employed in Ref. [14] which is given by

$$V^{(2)}(q) = -\frac{1}{4}(U_S + U_C)\chi^0(q)(U_S + U_C).$$ \hspace{1cm} (14)

Comparing it to the second-order contribution from Refs. [12, 75, 78] as implemented in our code

$$V^{(2)}(q) = \frac{3}{4}U_S\chi^0(q)U_S - \frac{1}{4}U_C\chi^0(q)U_C$$ \hspace{1cm} (15)

it becomes evident that $V^{(2)}(q)$ incorrectly includes mixing between spin and charge channel contributions. In Fig. 5 we show the largest eigenvalue of the static spin susceptibility $\hat{\chi}^s$ for both interactions together with data by Mochizuki et al. from Ref. [14]. It can be seen that the results are very well reproduced if $V^{(2)}(q)$ is implemented (left panel). Comparing it to the implementation of $V^{(2)}$ (right panel) shows that the incorrect mixing of fluctuation channels leads to a reduction of fluctuation strength.

Generally, the system contains F as well as AF fluctuations. By increasing J, ferromagnetism is strongly enhanced while the AF fluctuations are slightly decreased. The latter are generated by scattering on the a_1g surface as well as between different e_g' pockets, whereas the F fluctuations emerge mostly from intra-pocket scattering.

![Comparison of largest eigenvalue of the static spin susceptibility to results from Ref. [14] at $T/t_3 = 0.02$ using a $32 \times 32 k$-mesh. The second-order correction used in the calculations is different between both panels.](image)

The previously discussed results were at a relatively high temperature of $T/t_3 = 0.02$, which corresponds to ~ 50 K. In order to properly understand the superconducting transition, a lower temperature range on the order of the experimental critical temperatures needs to be investigated. In Fig. 6 we show the temperature evolution of the largest eigenvalues of static irreducible susceptibility $\hat{\chi}^0$ and spin susceptibility $\hat{\chi}^s$ for two exchange interaction ratios J/U. $\hat{\chi}^0$ does not show a strong dependence on T. The peak at the M point becomes slightly enhanced while the structure around the Γ point changes a bit.

Contrary to this, $\hat{\chi}^s$ shows a strong T dependence. By cooling the system, the ferromagnetic fluctuation strength exhibits a non-monotonous behavior with a strong enhancement of the peak at $Q = (0,0)$ for $T/t_3 \approx 0.02$. This non-monotonous evolution traces back to an almost divergent χ^s stemming from the denominator in Eq. (4) approaching zero. In other words, the simulated case is close of a ferromagnetic instability. Indeed, we could not converge calculations for larger Hund’s couplings $J/U \geq 0.22$ since J favors the formation of ferromagnetic order. For $J/U = 0.2$ we find that the maximum in $\hat{\chi}^s$ jumps at some intermediate temperature $T \sim 0.01$ from having an absolute maximum at $Q = (0,0)$ to an absolute maximum at finite q-vectors. Hence, some long-wavelength spin waves are the favored type of fluctuation in this regime. The q-vectors associated with these spin waves match well to the minor and major axes of the e_g' pockets. Since the Fermi surface becomes less thermally smeared out, the scattering between opposite edges is favored.

C. Triplet superconductivity possible?

The ferromagnetic fluctuations investigated in the previous section seem promising to mediate triplet superconductivity in Na$_x$CoO$_2 \cdot y$H$_2$O. To address this question, we solve the Eliashberg equation for different pairing symmetries. Possible triplet pairings compatible with the point group of the triangular lattice are $f_1 \equiv f_y(x^2−3y^2)^\gamma$, $f_2 \equiv f_y(x(z^2−y^2))^\gamma$, and p-wave, for which p_x and p_y are degenerate. The k-dependence of the respective order parameter is depicted in Fig. 7(a).

The temperature dependence of the corresponding superconducting eigenvalues is shown in Fig. 7(b) for three different Hund’s couplings. At high temperatures, the p- and f_1-wave solutions coexist with a near degeneracy that is lifted for low T. There, the f_1-gap clearly shows up as the dominant pairing symmetry. Since it has line nodes between the Γ and M points, the f_1-gap fits well to the e_g' pockets of the Fermi surface in the sense that the nodes do not intersect them. Contrarily, the f_2-gap has line nodes that intersect also the e_g' pockets, which explains why the f_2-symmetric gap appears unfavorable.
in our calculations.

While we do find an enhancement in the f_1- (dominant) and p-wave (subdominant) superconducting eigenvalues of the linearized Eliashberg equation upon lowering the temperature, we do not find triplet superconductivity to be realized on the order of experimental T_c. The eigenvalue of the leading f_1-symmetric gap stays below 0.6 at $T/t_3 = 10^{-3}$ corresponding to approximately 2 K. Comparing λ_{f_1} for different J/U indicates an increase of superconducting pairing strength since the F fluctuations are enhanced. Therefore, it might be possible that the f_1-pairing is realized for larger J/U but we cannot access this regime, since it is masked in our FLEX calculations by the magnetic instability.

D. Influence of the Fermi Surface

The Fermi surface topology naturally affects the magnetic and superconducting fluctuations, whereas the exact shape of the Fermi surface for Na$_{x}$CoO$_2 \cdot y$H$_2$O is an open question, as explained in Sec. [IVA]. Therefore, it is insightful to investigate how the magnetism and superconductivity depend on Fermi surface topology. We compare the situation with a_{1g} and e'_g pockets present [Fig. 1c] considered so far to the cases in which either the a_{1g} or e'_g pockets are absent (Fig. 3). The Fermi surface with suppressed e'_g pockets corresponds to the results observed in ARPES measurements [65, 69]. The latter case, on the other hand, avoids any nodes of the f_1-symmetric gap on the Fermi surface which leads to the realization of f-wave superconductivity in the single-band case [13].

We control the Fermi surface shape in our model via the filling n and crystal field splitting Δ_{CF}. In the following, calculations we set the filling to $n = 5.6$. If we consider the Fermi surface with only the e'_g pockets being present, then their effective hole doping of 0.4 is equal to the hole doping of the e'_g pockets in our previous calculation for $n = 5.355$ and $\Delta_{CF} = 0.4$. By this, we can directly estimate the influence of neglecting the a_{1g} pocket. Furthermore, $n = 5.6$ corresponds to the t_{2g} filling reported for measurements of superconductivity when considering the additional H$_2$O$^+$ doping [24]. We choose the crystal field splitting as $\Delta_{CF} = -1.2, 0.4, 9.0$ to create the three different Fermi surface topologies as shown in the left column of Fig. 8. For each, we performed calculations with different interaction parameters U and J.

In the remaining panels of Fig. 8 we present $\hat{\chi}^0$ and $\hat{\chi}^s$ at $T/t_3 = 0.003$ and the superconducting eigenvalue λ_k for the maximal values of U and J for which we were able to converge the FLEX loop. In the case of a single a_{1g} Fermi sheet, strong magnetic fluctuations do not emerge. If e'_g pockets exist, intra-pocket scattering strongly enhances F fluctuations. This can be seen both in the case with a_{1g} and e'_g pockets being present and in the case of only e'_g pockets existing, where we can stabilize FLEX solutions with sizable F or more generally long-wavelength spin fluctuations.

Evaluating the eigenvalues of the linearized Eliashberg equation shows that any spin-fluctuation-induced superconducting pairing is strongly suppressed in the absence of the e'_g pockets. Since the AF fluctuations are dominant in this scenario, we also tried to solve the Eliashberg equation for d-wave symmetry. However, we could not find a converged solution. If the material actually exhibits an a_{1g} Fermi surface only, a different mechanism has to be considered to explain the superconductivity. In

FIG. 6. Evolution of the largest eigenvalues of static ($\nu_0 = 0$) irreducible susceptibility $\hat{\chi}^0$ and spin susceptibility $\hat{\chi}^s$ for two exchange interactions J/U.

FIG. 7. (a) Possible triplet-pairing symmetries of the superconducting gap. Shown is the orbital trace of the converged order parameter $\Delta(\omega_n, \mathbf{k})$ for $T/t_3 = 0.003$ and $J/U = 0.2$. The line nodes (solid white) intersect differently with the Fermi surface (dashed black) depending on the gap symmetry. (b) Temperature dependence of the superconducting eigenvalue λ_κ for different gap symmetries $\kappa = f_1, f_2, p$. The panels show different exchange interactions J/U. Note that the T-axis is logarithmic.

In summary, we have shown that the FLEX+IR approach enables the study of complex multi-orbital systems at low-temperature scales not accessible with conventional Matsubara frequency grid sampling. This should bring further systems featuring possibly an interplay of spin fluctuations and superconductivity into the reach of FLEX calculations at experimentally relevant temperature scales. Since another limiting factor of Green function methods is the momentum integration in the Brillouin-zone, a combination with e.g. adaptive k-space sampling methods [79–81] could further extend the range of possible systems. Interesting grounds to be explored range from moiré superlattice systems to realistic multi-band models of infinite-layer nickelate compounds.

ACKNOWLEDGMENTS

NW thanks the University of Tokyo for hospitality during his research stay, where ideas presented in this work were conceived. N.W. and T.W. acknowledge support by the Deutsche Forschungsgemeinschaft (DFG) via RTG 2247 (QM3) (Project number 286518848) and European Commission via the Graphene Flagship Core Project 3 (Grant agreement ID: 881603). E.v.L. is supported by the Central Research Development Fund of the University of Bremen. The authors acknowledge the North-German Supercomputing Alliance (HLRN) for providing computing resources that have contributed to the research results reported in this paper.
FIG. 8. Dependence of magnetic fluctuations and eigenvalues of the superconducting Eliashberg equation on Fermi surface topology. Each row shows the non-interacting Fermi surface, maximal eigenvalue of irreducible and spin susceptibility, and superconducting eigenvalue at $T/t_3 = 0.003$ for the maximally convergable interaction parameters. The top row corresponds to a Fermi surface composed of the a_1g pocket only ($\Delta_{CF} = 1.2$), the middle row to both pocket types being present ($\Delta_{CF} = 0.4$), and the bottom row to only the e'_g pockets existing ($\Delta_{CF} = 9.0$).

Appendix A: Tight-binding model for Na$_2$CoO$_2$·yH$_2$O

The tight-binding model to describe the electronic structure of Na$_2$CoO$_2$·yH$_2$O is constructed following Ref. [14] and reads:

$$H_{TB} = \sum_{\gamma \gamma', \sigma} \left(\varepsilon_{\gamma} + \frac{\Delta_{CF}}{3} (1 - \delta_{\gamma \gamma'}) \right) e_{\gamma \sigma}^\dagger e_{\gamma' \sigma} \quad (A1)$$

Here, the summation goes over spin σ and the d-orbitals γ of the t_{2g} manifold. The first term describes the kinetic energy and the second term includes the crystal electric field Δ_{CF} due to the trigonal distortion of the CoO$_6$ octahedra (cf. Fig. 4(c)). The band dispersion is given by

$$\varepsilon_{\gamma} = 2t_1 \cos k_{\alpha}^{\gamma} + 2t_2 \cos k_{\beta}^{\gamma} + \cos \left(k_{\alpha}^{\gamma} + k_{\beta}^{\gamma} \right)$$

$$+ 2t_4 \cos \left(2k_{\alpha}^{\gamma} + k_{\beta}^{\gamma} \right) + 2t_5 \cos (2k_{\alpha}^{\gamma})$$

$$+ 2t_6 \cos (2k_{\beta}^{\gamma})$$

$$\varepsilon_k^{\gamma'} = 2t_3 \cos k_{\beta}^{\gamma'} + 2t_6 \cos k_{\beta}^{\gamma'} + 2t_7 \cos \left(k_{\alpha}^{\gamma'} + 2k_{\beta}^{\gamma'} \right)$$

$$+ 2t_8 \cos \left(k_{\alpha}^{\gamma'} - k_{\beta}^{\gamma'} \right) + 2t_9 \cos \left(2k_{\alpha}^{\gamma'} + k_{\beta}^{\gamma'} \right)$$

where $k_{\alpha}^{xy,zy} = k_{\beta}^{xy,zy} = k_1$, $k_{\alpha}^{xy,yx} = k_{\beta}^{xy,yx} = k_2$, $k_{\alpha}^{x,zx} = k_{\beta}^{x,zx} = -(k_1 + k_2)$, $k_{\alpha}^{x,xx} = k_{\beta}^{x,xx} = -(k_1 + k_2)$ and $k_{\alpha}^{z,xx} = k_{\beta}^{z,xx} = k_1$ with k_1 and k_2 being the reciprocal lattice vectors defined by the triangular lattice in Fig. 4(a).

We employ the hopping parameters $t_1 = 0.45$, $t_2 = 0.05$, $t_3 = 1$, $t_4 = 0.2$, $t_5 = -0.15$, $t_6 = -0.05$, $t_7 = 0.12$, $t_8 = 0.12$ and $t_9 = -0.45$ where t_3 is the unit of energy. Setting $\Delta_{CF} = 0.4$ and $t_3 \equiv 0.18$ eV reproduces LDA band structure calculations [64] well, particularly around the Fermi level. The value of Δ_{CF} significantly influences the Fermi surface toplogy.
[1] F. Steglich, J. Aarts, C. D. Bredl, W. Lieke, D. Meschede, W. Franz, and H. Schäfer, Superconductivity in the Presence of Strong Pauli Paramagnetism: CeCu$_2$Si$_2$, Physical Review Letters 43, 1892 (1979).

[2] B. D. White, J. D. Thompson, and M. B. Maple, Unconventional superconductivity in heavy-fermion compounds, Physica C: Superconductivity and its Applications 514, 246 (2015).

[3] J. G. Bednorz and K. A. Müller, Possible high Tc superconductivity in the Ba-La-Cu-O system, Zeitsschrift für Physik B Condensed Matter 64, 189 (1986).

[4] B. Keimer, S. A. Kivelson, M. R. Norman, S. Uchida, and J. Zaanen, From quantum matter to high-temperature superconductivity in copper oxides, Nature 518, 179 (2015).

[5] Y. Kamihara, H. Hiramatsu, M. Hirano, R. Kawamura, H. Yamauchi, T. Kamiya, and H. Hosono, Iron-Based Layered Superconductor: LaOFeP, J. Am. Chem. Soc. 128, 10012 (2006).

[6] G. R. Stewart, Superconductivity in iron compounds, Reviews of Modern Physics 83, 1589 (2011).

[7] Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras, and P. Jarillo-Herrero, Unconventional superconductivity in magic-angle graphene superlattices, Nature 556, 43 (2018), arxiv:1803.02342.

[8] L. Balents, C. R. Dean, D. K. Efetov, and A. F. Young, Evidence of an Anisotropic Chiral d + id-Wave Pairing State for the Water-Intercalated Na$_x$CoO$_2$yH$_2$O Superconductor, Physical Review Letters 111, 097001 (2013), arxiv:1301.5662.

[9] M. D. Johannes, I. I. Mazin, D. J. Singh, and D. A. Papaconstantopoulos, Nesting, Spin Fluctuations, and Odd-Gap Superconductivity in Na$_x$CoO$_2$yH$_2$O, Physical Review Letters 93, 097005 (2004).

[10] K. Yada and H. Kontani, Electron-Phonon Mechanism for Superconductivity in Na$_{0.35}$CoO$_2$: Valence-Band Suhl–Kondo Effect Driven by Shear Phonons, Journal of the Physical Society of Japan 75, 033705 (2006), arxiv:cond-mat/0512440.

[11] K. Yada and H. Kontani, s-wave superconductivity due to Suhl-Kondo mechanism in Na$_x$CoO$_2$yH$_2$O: Effect of Coulomb interaction and trigonal distortion, Physical Review B 77, 184521 (2008), arxiv:0801.3495.

[12] H. Sakurai, Y. Iihara, and K. Takada, Superconductivity of cobalt oxide hydrate, Na$_x$(H$_2$O)$_4$CoO$_2$yH$_2$O, Physica C: Superconductivity and its Applications 514, 378 (2015).

[13] Y. Yama, M. Mochizuki, and M. Ogata, Multi-orbital Analysis on the Superconductivity in Na$_x$CoO$_2$yH$_2$O, Journal of the Physical Society of Japan 74, 430 (2005), arxiv:cond-mat/0407563.

[14] N. E. Bickers, D. J. Scalapino, and S. R. White, Conserving Approximations for Strongly Correlated Electron Systems: Bethe-Salpeter Equation and Dynamics for the Two-Dimensional Hubbard Model, Physical Review Letters 62, 961 (1989).

[15] N. E. Bickers and D. J. Scalapino, Conserving approximations for strongly fluctuating electron systems. I. Formalism and calculational approach, Annals of Physics 193, 206 (1989).

[16] R. Arita, K. Kuroki, and H. Aoki, d- and p-Wave Superconductivity Mediated by Spin Fluctuations in Two- and Three-Dimensional Single-Band Repulsive Hubbard Model, Journal of the Physical Society of Japan 69, 1181 (2000), arxiv:cond-mat/0002440.

[17] T. Takimoto, T. Hotta, and K. Ueda, Strong-coupling theory of superconductivity in a degenerate Hubbard model, Physical Review B 69, 104504 (2004), arxiv:cond-mat/0309575.

[18] K. Yamazaki, M. Ochi, D. Ogr, K. Kuroki, H. Eisaki, S. Uchida, and H. Aoki, Superconducting mechanism for the cuprate Ba$_2$CuO$_{2+x}$, based on a multiorbital Lieb lattice model, Phys. Rev. Research 2, 033356 (2020).

[19] H. Sakakibara, H. Usui, K. Suzuki, T. Kotani, H. Aoki, and K. Kuroki, Model Construction and a Possibility of Cuprate Familie Pairing in a New d$_0$ Nickelate Superconductor (Nd, Sr)NiO$_2$, Phys. Rev. Lett. 125, 077003 (2020), arxiv:1909.00060.
K. Björnson, A. Kreisel, A. T. Rømer, and B. M. Andersen, Orbital-dependent self-energy effects and consequences for the superconducting gap structure in multiorbital correlated electron systems, Physical Review B 103, 024508 (2021) [arxiv:2011.04243]

H. Shinaoka, J. Otsuki, M. Ohzeki, and K. Yoshimi, Compressing Green’s function using intermediate representation between imaginary-time and real-frequency domains, Physical Review B 96, 035147 (2017) [arxiv:1702.03054]

N. Chikano, J. Otsuki, and H. Shinaoka, Performance analysis of a physically constructed orthogonal representation of imaginary-time Green’s function, Physical Review B 98, 035104 (2018) [arxiv:1803.07257]

N. Chikano, K. Yoshimi, J. Otsuki, and H. Shinaoka, irbasis: Open-source database and software for intermediate-representation basis functions of imaginary-time Green’s function, Computer Physics Communications 240, 181 (2019) [arxiv:1807.05237]

J. Otsuki, M. Ohzeki, H. Shinaoka, and K. Yoshimi, Sparse Modeling In Quantum Many-body Problems, Journal of the Physical Society of Japan 89, 012001 (2020) [arxiv:1911.04116]

J. Li, M. Wallerberger, N. Chikano, C.-N. Yeh, E. Gull, and H. Shinaoka, Sparse sampling approach to efficient ab initio calculations at finite temperature, Physical Review B 101, 035144 (2020) [arxiv:1908.07576]

T. Wang, T. Nomoto, Y. Nomura, H. Shinaoka, J. Otsuki, T. Koresitsune, and R. Arita, Efficient ab initio Migdal-Eliashberg calculation considering the retardation effect in phonon-mediated superconductors, Physical Review B 102, 134503 (2020) [arxiv:2004.08501v1]

J. M. Luttinger and J. C. Ward, Ground-State Energy of a Many-Fermion System. II, Physical Review 118, 1417 (1960)

G. Baym and L. P. Kadanoff, Conservation Laws and Correlation Functions, Physical Review 124, 287 (1961)

G. Baym, Self-Consistent Approximations in Many-Body Systems, Physical Review 127, 1391 (1962)

K. Kubo, Pairing symmetry in a two-orbital Hubbard model on a square lattice, Physical Review B 75, 224509 (2007) [arxiv:cond-mat/0702624]

N. Bulut, D. J. Scalapino, and R. T. Scalettar, Nodeless d-wave pairing in a two-layer Hubbard model, Physical Review B 45, 5577 (1992)

C.-H. Pao and N. E. Bickers, Renormalization-group acceleration of self-consistent field solutions: Two-dimensional Hubbard model, Physical Review B 49, 1586 (1994) [arxiv:1810.01601]

L. Takeuchi, Y. Yamakawa, and H. Kontani, Self-energy driven resonancelike inelastic neutron spectrum in the s++ orbital state in Fe-based superconductors, Physical Review B 98, 165143 (2018) [arxiv:1805.09716]

F. Schrodi, A. Aperis, and P. M. Oppeneer, Increased performance of Matsubara space calculations: A case study within Eliashberg theory, Physical Review B 99, 184508 (2019)

L. Boehnke, H. Hafermann, M. Ferrero, F. Lechermann, and O. Parcollet, Orthogonal polynomial representation of imaginary-time Green’s functions, Physical Review B 84, 075145 (2011) [arxiv:1104.3215]

X. Dong, D. Zgid, E. Gull, and H. U. R. Strand, Legendre-spectral Dyson equation solver with super-exponential convergence, The Journal of Chemical Physics 152, 134107 (2020) [arxiv:2001.11603]

E. Gull, S. Iskakov, I. Krivenko, A. A. Rusakov, and D. Zgid, Chebyshev polynomial representation of imaginary-time response functions, Physical Review B 98, 075127 (2018) [arxiv:1805.03521]

M. Kaltak and G. Kresse, Minimax isometry method: A compressive sensing approach for Matsubara summation in many-body perturbation theory, Physical Review B 101, 205145 (2020) [arxiv:1909.01740]

The additional factor ω in the bosonic case prevents divergence for $\omega \rightarrow 0$. The spectral function needs to be redefined as well, see Ref. [33].

For a technical comparison of the IR basis based sparse sampling approach and other methods see Table 1 of Ref. [48].

J. LeBlanc, A. E. Antipov, F. Becca, I. W. Bulik, G. K.-L. Chan, C.-M. Chung, Y. Deng, M. Ferrero, T. M. Henderson, C. A. Jiménez-Hoyos, E. Kozik, X.-W. Liu, A. J. Millis, N. Prokof’ev, M. Qin, G. E. Scuseria, H. Shi, B. Svistunov, L. F. Tocchio, I. Tupitsyn, S. R. White, S. Zhang, B.-X. Zheng, Z. Zhu, and E. G. and, Solutions of the Two-Dimensional Hubbard Model: Benchmarks and Results from a Wide Range of Numerical Algorithms, Physical Review X 5, 041014 (2015)

T. Schäfer, N. Wentzell, F. Simkovic, Y.-Y. He, C. Hille, M. Klett, C. J. Eckhardt, B. Arzhang, V. Harlov, F.-M. L. Régent, A. Kirsch, Y. Wang, A. J. Kim, E. Kozik, E. A. Stepanov, A. Kauch, S. Andergassen, P. Hansmann, D. Rohe, Y. M. Vilk, J. P. LeBlanc, S. Zhang, A.-M. Tremblay, M. Ferrero, O. Parcollet, and A. Georges, Tracking the Footprints of Spin Fluctuations: A Multi-Method, MultiMessenger Study of the Two-Dimensional Hubbard Model, Physical Review X 11, 011058 (2021)

M. Kitatani, N. Tsuji, and H. Aoki, FLEX+DMFT approach to the d-wave superconducting phase diagram of the two-dimensional Hubbard model, Physical Review B 92, 085104 (2015) [arxiv:1505.04865]

Y. Yanase, T. Jujo, T. Nomura, H. Ikeda, T. Hotta, and K. Yamada, Theory of superconductivity in strongly correlated electron systems, Physics Reports 387, 1 (2003) [arxiv:cond-mat/0300994]

N. D. Mermn and H. Wagner, Absence of Ferromagnetism or Antiferromagnetism in One- or Two-Dimensional Isotropic Heisenberg Models, Physical Review Letters 17, 1307 (1966)

P. C. Hohenberg, Existence of Long-Range Order in One and Two Dimensions, Physical Review 158, 383 (1967)

B. Kyung, J.-S. Landry, and A.-M. S. Tremblay, Antiferomagnetic fluctuations and d-wave superconductivity in electron-doped high-temperature superconductors, Physical Review B 68, 174502 (2003) [arxiv:cond-mat/0205165]

E. Gull, O. Parcollet, and A. J. Millis, Superconductivity and the Pseudogap in the Two-Dimensional Hubbard Model, Physical Review Letters 110, 216405 (2013) [arxiv:1207.2490]

P. Staar, T. Maier, and T. C. Schulthess, Two-particle correlations in a dynamic cluster approximation with continuous momentum dependence: Superconductivity in the two-dimensional Hubbard model, Physical Review B 89, 195133 (2014) [arxiv:1402.4329]
of the Layered Na$_3$CoO$_2$. Physical Review Letters 92, 247001 (2004), arxiv:cond-mat/0312174.

63] A. Wilhelm, F. Lechermann, H. Hafermann, M. I. Katsnelson, and A. I. Lichtenstein, From Hubbard bands to spin-polaron excitations in the doped Mott material Na$_3$CoO$_2$. Physical Review B 91, 155114 (2015).

64] D. J. Singh, Electronic structure of NaCo$_2$O$_4$. Physical Review B 61, 13397 (2000).

65] M. Z. Hasan, Y.-D. Chuang, D. Qian, Y. W. Li, Y. Kong, A. Kuprin, A. V. Fedorov, K. M. R. Kimmerling, E. Rotenberg, K. Rossnagel, Z. Hussain, H. Koh, N. S. Rogado, M. L. Foo, and R. J. Cava, Fermi Surface and Quasiparticle Dynamics of Na$_{0.7}$CoO$_2$ Investigated by Angle-Resolved Photoemission Spectroscopy, Physical Review Letters 92, 246402 (2004), arxiv:cond-mat/0308438.

66] H.-B. Yang, S.-C. Wang, A. K. P. Sekharan, H. Matsui, S. Souma, T. Sato, T. Takahashi, T. Takeuchi, J. C. Campuzano, R. Jin, B. C. Sales, D. Mandrus, Z. Wang, and H. Ding, ARPES on Na$_{0.6}$CoO$_2$: Fermi Surface and Unusual Band Dispersion. Physical Review Letters 92, 246403 (2004), arxiv:cond-mat/0310532.

67] H.-B. Yang, Z.-H. Pan, A. K. P. Sekharan, T. Sato, S. Souma, T. Takahashi, R. Jin, B. C. Sales, D. Mandrus, A. V. Fedorov, Z. Wang, and H. Ding, Fermi Surface Evolution and Luttinger Theorem in Na$_2$CoO$_2$: A Systematic Photoemission Study, Physical Review Letters 95, 146401 (2005), arxiv:cond-mat/0501403.

68] T. Shimomura, K. Ishizaka, S. Tsuda, T. Kiss, T. Yokoya, A. Chainani, S. Shin, P. Badica, K. Yamada, and K. Togano, Angle-Resolved Photoemission Study of the Two-dimensional Triangular Lattice Superconductor Na$_{0.35}$CoO$_2$·1.3H$_2$O. Physical Review B 70, 012508 (2004).

69] N. Oeschler, R. A. Fisher, N. E. Phillips, J. E. Gordon, M.-L. Foo, and R. J. Cava, Specific heat of Na$_{0.3}$CoO$_2$·1.3H$_2$O: Two energy gaps, nonmagnetic pair breaking, strong fluctuations in the superconducting state, and effects of sample age. Physical Review B 78, 054528 (2008), arxiv:cond-mat/0503690.

70] L. Boehnke and F. Lechermann, Getting back to Na$_2$CoO$_2$: Spectral and thermoelectric properties, Physical review B 98, 014502 (2018), arxiv:cond-mat/0412654.

71] H. Ishida, M. D. Johannes, and A. Liebsch, Effect of Dynamical Coulomb Correlations on the Fermi Surface of Na$_{0.3}$CoO$_2$, Physical Review Letters 94, 196401 (2005), arxiv:cond-mat/0412654.

72] K. Yada and H. Kontani, Origin of Weak Pseudogap Behavior in Na$_{0.35}$CoO$_2$: Absence of Small Hole Pockets, Journal of the Physical Society of Japan 74, 2161 (2005), arxiv:cond-mat/0505747.

73] R. Sknepnek, G. Samolyuk, Y. bin Lee, and J. Schmalian, Anisotropy of the pairing gap of FeAs-based superconductors induced by spin fluctuations. Physical Review B 79, 054511 (2009).

74] Y. Yanagi and O. Ono, Effects of fermomagnetic fluctuations on the electric and thermal transport properties in Na$_3$CoO$_2$. Journal of Physics: Conference Series 200, 012235 (2010), arxiv:0906.0618.

75] B. Horváth, B. Lazarovits, and G. Zaránd, Fluctuation-exchange approximation theory of the nonequilibrium singlet-triplet transition, Physical Review B 84, 205117 (2011), arxiv:1012.5326.

76] A. Eiguren and I. G. Gurtubay, Helmholtz Fermi surface harmonics: an efficient approach for treating anisotropic problems involving Fermi surface integrals, New Journal of Physics 16, 063014 (2014), arxiv:1404.6906.

77] J. Lafuente-Bartolome, I. G. Gurtubay, and A. Eiguren, Symmetric Helmholzt Fermi-surface harmonics for an optimal representation of anisotropic quantities on the Fermi surface: Application to the electron-phonon problem, Physical Review B 102, 165113 (2020), arxiv:2010.06899.

78] K. Zantout, S. Backes, and R. Valentí, Effect of Nonlocal Correlations on the Electronic Structure of LiFeAs. Physical Review Letters 123, 256401 (2019), arxiv:1906.11853.