Cypress (*Cupressus macrocarpa*) Leaf Powder Modulates Metabolism of Maize Weevil *Sitophilus zeamais* Motschulsky (Coleoptera: Curculionidae)

Tange Denis Achiri¹*, Eta Carine Agbor², Ateh Marie Anye², Assan N. Abdulai³, Divine Nsobinenyui⁴ and Mamudou Jallow⁵,⁶

¹Department of Plant Protection, Faculty of Agriculture, Cukurova University, 01330, Adana, Turkey.
²Department of Agronomy and Applied Molecular Studies, Faculty of Agriculture and Veterinary Medicine, University of Buea, P.O. Box. 63 Buea, Cameroon.
³Department of Plant Protection, Faculty of Agronomy and Agricultural Sciences, University of Dschang, P.O. Box 96 Dschang, Cameroon.
⁴Department of Zoology and Animal Physiology, Faculty of Science, University of Buea, P.O. Box 63, Buea, Cameroon.
⁵Department of Crop Protection, Federal University of Agriculture, Abeokuta, P.M.B. 2240, Ogun State, Nigeria.
⁶Department of Biology, University of the Gambia. P.O. Box 3530, Serrekunda, The Gambia.

Authors’ contributions

This work was carried out in collaboration among all authors. Author TDA designed the study, performed the statistical analysis, wrote the protocol and wrote the first draft of the manuscript. Authors ANA, DN and MJ managed the analyses of the study. Authors TDA, ECA and AMA managed the literature searches. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/EJNFS/2020/v12i930279

Editors:
(1) Dr. Adetunji Charles Oluwaseun, Edo University, Nigeria.

Reviewers:
(1) Nora B. Camino, Universidad de La Plata, Argentina.
(2) Anderson Hideo Yokoyama, Universidade Estadual de Londrina, Brazil.

Complete Peer review History: http://www.sdiarticle4.com/review-history/60584

Received 15 June 2020
Accepted 21 August 2020
Published 31 August 2020

Original Research Article

ABSTRACT

Aims: Maize grains are severely damaged by maize weevil *Sitophilus zeamais*. Exploiting botanicals against synthetic insecticides as a control strategy has gained prominence in recent decades. The aim of the study was to investigate the potential of cypress (*Cupressus macrocarpa*) to exert some control on *S. zeamais*.

*Corresponding author: Email: denis_tange2005@yahoo.com;
Methodology: Maize and S. zeamais were collected from Muea market in Buea, Cameroon. The maize was heat sterilized and all debris removed. *Sitophilus zeamais* was reared for three generations before use. Ten S. zeamais were stored with 100 g of maize and 0 g, 2 g, 5 g, and 10 g of shade-dried cypress leaf powder was added in three replicates. Data was collected weekly for 5 weeks and analysis of variance was done. The study was conducted in a laboratory of the Teaching and Research farm in the University of Buea, Cameroon, in a randomized complete design.

Results: Mortality of *S. zeamais* was significantly affected (F = 126.67, df = 3, 8, p < .001) by different doses of cypress leaf powder. The mean mortality was 0%, 40.47%, 50.6% and 70.67% for control, 2 g, 5 g and 10 g of cypress leaf powder, respectively. Grain damaged (%) and holed grain were also influenced by cypress leaf powder. The highest grain damaged and holed grain were from the control treatment. A strong positive correlation (r = 0.814, p < .001) was observed between grain damaged and holed grain while a strong negative correlation was observed between mortality and holed grain (r = -0.926, p < .001), and grain damaged (r = -0.913, p < .001).

Conclusion: It is revealed that cypress leaf powder can alter some metabolic activities of *S. zeamais*, thus it can play a role in an integrated pest management program (IPM) of *S. zeamais* in maize storage.

Keywords: Cameroon; holed grain; damaged grain; IPM; metabolic; mortality; *Sitophilus zeamais*.
bulbs, stems, tree bark, leaves, fruits, seeds) and methods of delivery (ash, powder, fumigant, in solvents) (Table 1). In line with previous studies (e.g Table 1), the current study evaluates the mortality potential of cypress leave powder on the maize grain weevil *Sitophilus zeamais*.

2. MATERIALS AND METHODS

2.1 Local and Experimental Design

This study was conducted in one of the laboratory of the Teaching and Research Farm, House of the Faculty of Agriculture and Veterinary Medicine of the University of Buea. It is located at the foot of mount Cameroon in Fako Division, South West Region of Cameroon, at latitude/longitude 4°9′ 33″ N/9° 14′ 12″ E. It was conducted at an average temperature of 27°C and 65% relative humidity. The experiment was laid out in a complete randomized design (CRD) with 4 treatments and 3 replicates. The study was conducted in 2014.

2.2 Maize and Insect Collection

1.5 kg of dry maize was bought from traders in the Muea market located in Buea municipality, south west region, Cameroon. Cracked, broken grains and other debris were sorted out from the others. The maize grains were heat sterilized at 40-50°C for 20 mins to kill any residual eggs. Adults *Sitophilus zeamais* were obtained from the Muea market and reared under ambient condition of 12:12 photoperiods, temperature of 27°C and humidity of 65%. The insects were stored in sterilized (as above) maize grains for 70 days during which time three generations must have passed.

2.3 Plant Powder Preparations

Fresh plant material (leaves) of *Cupressus macrocarpa* (Pinales: Cupressaceae) were collected from Bamenda, north west region of Cameroon (between latitudes 4°50′ to 5°20′N and longitudes 10°35′ to 11°59′E of the Green Wish Meridian). The leaves were shade-dried in one of the rooms (25°C, 60-65% RH) of the teaching and research farm house of the faculty of agriculture and veterinary medicine of the University of Buea for 2 weeks to avoid volatilization of the active ingredients. On drying, the leaves were ground into powder by a Victoria grinding mill and parked into a black polythene bags for future use.

Table 1. List of some plants in Africa evaluated for their insecticidal properties on *Sitophilus zeamais*

Scientific name	Common name	Family	Part(s) evaluated	Manner of exposure	Reference
Azadirachta indica L.	Neem	Meliaceae	Seeds	Powder	[18]
Jatropha curcas L.	Physic nut	Euphorbiaceae	Leave, bark, seeds	Powder	[19]
Citrus sinensis L.	Orange	Rutaceae	Peels	Powder	[19]
Capsicum frutescens L.	Chilli	Solanaceae	Fruits	Powder	[20,21]
Allium cepa	Onion	Liliaceae	Bulb	Powder	[20]
Piper guineense	Black pepper	Piperaceae	Seeds	Powder	[13,20,21]
Allium sativum L.	Garlic	Liliaceae	Bulb	Powder	[22]
Nicotiana tabacum L.	Tobacco	Solanaceae	Leaves	Powder	[22]
Ageratum conyzoides	Billygoat weed	Asteraceae	Leaves	Solvents	[23]
Lantana camara	Lantana	Verbenaceae	Leaves	Solvents	[23]
Chromolaena odorata	Siam weed	Asteraceae	Leaves	Solvents	[23]
Curcuma longa L.	Turmeric	Zingiberaceae	Rhizome	Solvents	[24]
Gnetum africanum	Eru	Gnetaceae	Leaves	Solvents	[24]
Ocimum basilicum	Basil	Lamiaceae	Leaves	Powder	[25]
Ricinodendron heudelotii	Njangsa	Euphorbiaceae	Leaves, bark, roots	Powder	[26]
2.4 Experimental Setup, Data Collection and Data Analyses

2.4.1 Mortality test

Four different doses of cypress leaf powder (0 g, 2 g, 5 g, and 10 g) were measured in the laboratory using an analytical balance and introduced into different containers holding 100 g of sterilized maize grains. 10 adult weevils were introduced in the grains and mortality was checked weekly for 3 weeks. The insects were considered dead on failure to respond to three probing using a blunt dissecting probe [15]. At the end of the third week, a cumulative mean mortality was calculated using equation 1.

\[
\text{Cumulative mean mortality (\%)} = \frac{\sum x_i}{n} \times 100
\]

Where \(n \) is the number of maize weevil per trial (10) and \(x_i \) is the mean weekly mortality of maize weevil per treatment in the \(i \)th week.

2.4.2 Percent holed and percent damaged grain

Ten unsexed adult weevils were stored in 100 g of maize with the four different doses. Two weeks after treatment (DAT) the adult live insects were removed from treated and control containers. The number of grains adult exit holes and damaged grain was counted after 4 weeks after infestation for the calculation of percentages of grain damaged and holed grains. Percentages were calculated using equation 2 (percent damaged grain) and equation 3 (percent holed grain).

\[
\text{Percent damaged grain} = \frac{\text{Number of damaged grains}}{\text{Total number of grains}} \times 100
\]

\[
\text{Percent Holed grain} = \frac{\text{Number of Holed grains}}{\text{Total number of grains}} \times 100
\]

2.5 Data Analysis

Normality and homogeneity of variance tests were conducted using Kolmogorov-Smirnov test in SPSS (ver 23) and Glantz' modification of Levene’s test on Microsoft Excel add-in Daniel’s XL Toolbox version 7.3.4 (http://www.xltoolbox.net), respectively, prior to one-way Analysis of Variance (ANOVA) test for statistical significance. The Bonferroni-Holm post hoc test on the MS Excel add-in was used separate the significantly different means at an alpha (α) level of 0.05. A correlation analysis was done to ascertain how the parameters vary concurrently. A hierarchical cluster analysis was used to understand to evaluate the similarity of the treatments considering all parameters simultaneously. The Paired group (UPGMA) algorithm and the Euclidean similarity index were used. The correlation and cluster analyses were conducted using Paleontological Statistics (PAST ver. 3.25).

3. RESULTS AND DISCUSSION

3.1 Mortality Test

The weekly mortality of S. zeamais as a result of exposure to different doses of cypress leaf powder is shown in Table 2. The mortality was significantly different (\(F = 14.55, \) df = 3, 8, \(p = .0013 \)) after week 1. About 3, 2, and 1 weevil died in 10 g, 5 g and 2 g of cypress leaf powder, respectively in the first week (Table 2). The number of weevils that died in the second week from cypress leaf powder treatments were not significantly different although different from the control treatment (\(F = 13.83, \) df = 3, 8, \(p = .0016 \)). After week 3, the mean mortality of S. zeamais was significantly highest from 10 g of cypress leaf powder compared to 2 g of cypress leaf powder and control treatments (\(F = 15.0, \) df = 3, 8, \(p = .0012 \)). It is clear from the findings in Table 2 that cypress leaf powder exhibits some significant mortality to S. zeamais. No S. zeamais mortality was recorded from control treatment. [17] reported that cypress leaf powder showed some repellency to maize weevil S. zeamais. The current study suggests that, in addition to repellency effect, cypress leaf powder has some significant mortality potential on S. zeamais. Many botanicals are known to exhibit some mortality and repellency to S. zeamais. For instance, [25] reported that basil (Ocimum basilicum) leaf, bark and an admix of leaf and bark powder killed and repelled S. zeamais.

The cumulative mean percentage mortality of S. zeamais after three weeks of exposure to different doses of cypress leaf powder is shown in Table 2. There was a significant difference in the cumulative mean mortality (%) of S. zeamais (\(F = 126.67, \) df = 3, 8, \(p < .001 \)). The cumulative mean mortality (%) was 0%, 40.47%, 50.70% and 70.67% for control, 2 g, 5 g and 10 g of cypress leaf powder, respectively (Table 2). The cumulative mean mortality revealed that S. zeamais mortality was dose dependent. The higher the dose of the cypress leaf powder, the
higher the cumulative mean mortality of *S. zeamais*. More *S. zeamais* died in 10 g of cypress leaf powder treatment than from the other treatments. In fact, the cumulative mean mortality from 10 g of cypress leaf powder treatment was almost twice that from 2 g of cypress leaf powder treatment. It seems that *S. zeamais* mortality is plant-type, plant-part and dose dependent. Asawalam and Emosairue [27] reported a progressive increase in *S. zeamais* mortality with increasing dose (0.1, 0.2, 0.3 and 0.4 g/50g of maize grain) of powdered seeds of black pepper *Piper guineense* after three weeks of exposure. The current study is on par with those of [23,25].

3.2 Grain Damaged (%)

The percentage maize grain damaged by *S. zeamais* exposed to different doses of cypress leaf powder is shown in Fig. 2. A one-way ANOVA revealed that there was a statistical significant difference (*F* = 32.72, df = 3, 8, *p* < .001) in maize damaged (%) by *S. zeamais*. The highest grain damaged was 71.0% from control treatment, followed by 60.66%, 52.33% and 43.66% from 2 g, 5 g and 10 g of cypress leaf powder, respectively (Fig. 1). Some significant amount of grain damaged was observed from all treatments, although that of 10 g of cypress leaf powder was below 50%. This shows that cypress leaf powder prevented quality degradation of maize grains. The current study is in accordance with that of [9] who reported decreasing maize grain damage by *S. zeamais* with increasing dose of powders of *Lippia javanica* dried leaves and *Spirostachys Africana* wood. According to [20] quality deterioration of maize grains has severe economic implications especially for poor-resource farmers in the developing countries.

Table 2. Mean mortality (±sd) of maize weevil weeks after treatment with cypress leave powder

Dose (g)	Week 1	Week 2	Week 3	Cumulative percentage (%)
0	0 ± 0.0 a	0.0 ± 0.0 a	0.0 ± 0.0 a	0.0 ± 0 a
2	1.3 ± 0.57 b	1.7 ± 0.57 b	2.3 ± 0.57 b	40.47 ± 5.7 b
5	1.7 ± 0.57 bc	1.7 ± 0.57 b	2.7 ± 0.57 bc	50.70 ± 4.7 b
10	2.7 ± 0.58 c	2.0 ± 0.00 b	3.0 ± 0.0 c	70.67 ± 5.8 c

Mean mortality of 10 maize weevil treated with different doses (g) of cypress leaf powder. Means in the same column with the same letter(s) are not significantly different by Bonferroni-Holm post hoc test at *p* < 0.05. *sd* – standard deviation

Fig. 1. Mean maize grain damaged (%) by *Sitophilus zeamais* after five weeks of exposure to different doses of cypress (*Cupressus macrocarpa*) leaf powder. Means with the same letter(s) are not significantly different according Bonferroni-Holm post hoc test (*α* = .05)
3.3 Percent Holed Grain (%)

The percentage of holed maize grains due to S. zeamais activity after exposure to different doses of cypress leaf powder is shown in Fig. 2. There was a significant difference (F = 17.26, df = 3, 8, p = .0007) in holed grains (%). The least holed grain was 49.67% from 10 g of cypress leaf powder treatment. It was followed by 54.67%, 67.0% and 86.0% from 5 g and 2 g of cypress leaf powder, and control treatment, respectively. A similar pattern to grain damage (%) was observed for holed grain (%). A significant percentage of maize grain had holes, although that for 10 g of cypress leaf powder treatment was below 50%; all others were above 50%. Indeed, the percentage holed grains from control treatment was twice that from 10 g of cypress leaf powder treatment. Holed grain (%) showed an inverse relationship to dose of cypress leaf powder. Holed grains is an indication that the grain content has been consumed by S. zeamais. Such holed grains do not eventually germinate. Asawalam and Emosairue [27] reported that germination of stored maize grains increased with increased doses of Piper guineense, due to reduced S. zeamais activity. Inability of stored maize grains to germinate due to holed grains falls short of one of the fundamental principles of storage [5].

3.4 Correlation Matrix for Three Variables Measured

A correlation analysis was conducted to ascertain how the measured parameters vary together. The correlation matrix is show in Fig. 3. A strong positive correlation [r (18) = 0.814, p < .001] between maize grain damaged and holed grain was observed. On the other hand, there was a strong negative correlation between cumulative mortality and grain damaged [r (18) = -0.913, p < .001]. In addition, a strong negative correlation was observed between cumulative mortality and holed grain [r (18) = -0.926, p < .001] (Fig. 3). The correlation matrix reveals two key points; (i) increased mortality of S. zeamais results into less and less maize grain damage (%) and holed grains (%), in other words, there is an indirect proportional relationship between S. zeamais mortality and maize grains (%), and (ii) there is a direct proportional relationship between grain damage (%) and holed grain (%), in other words, any attempt to minimize grain damaged can equally minimize holed grain (%). The finding of the current study is in accordance with that of [27] who reported increased mortality of S. zeamais due to its exposure to powder of Piper guineense resulted into decreased maize grain damaged and eventually higher germination rates. Similar findings have been reported by [28] even though inert materials were used.

Fig. 2. Mean holed grain (%) of maize by Sitophilus zeamais after five weeks of exposure to different doses of cypress (Cupressus macrocarpa) leaf powder. Means with the same letter(s) are not significantly different according Bonferroni-Holm post hoc test (α = .05).
3.5 Similarity

The result of the hierarchical cluster analysis is shown in the dendrogram in Fig. 4. Two distinct clades were observed; one containing cypress leaf powder treatments and the other containing control treatment. The observations of 10 g of cypress leaf powder were most conserved. The dendrogram clearly shows that results from 2 g and 5 g were more similar than 2 g and 10 g of cypress leaf powder. The findings from the similarity study (cluster analysis) further support the idea that an active component or components in the cypress leaf powder actually influenced the metabolism of S. zeamais and is dose-dependent with 10 g of cypress powder being the best dose resulting into higher mortality and a reduced maize grain damaged (%). The results are consistent with those of other studies [10,13,14,17], and purports that cypress leaf powder can play a phenomenal role in the management of S. zeamais.

Fig. 3. Correlation matrix of some measured parameters of *Sitophilus zeamais* activity after exposure to different doses of cypress (*Cupressous macrocarpa*) leaf powder in stored maize

Fig. 4. Similarity between different doses of cypress (*Cupressus macrocarpa*) leaf powder treatments on the activities of maize grain weevil *Sitophilus zeamais*
4. CONCLUSION

The main goal of this study was to evaluate the potential of cypress leaf powder to alter some metabolic processes of *S. zeamais*. The study has shown that mortality of *S. zeamais* due to cypress leaf powder exposure is dose-dependent with 10 g of cypress leaf powder being the preferred dose. In addition, it also demonstrated that increasing mortality of *S. zeamais* will eventually reduce maize grain damage. The evidence from this study suggest that cypress leaves adds to the growing list of botanicals that can play a tremendous role in an integrated pest management program for *S. zeamais*.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Nukenine EN, Monglo B, Awasom I, Ngamo LST, Thenguem FFN, Ngassoum MB. Farmer’s perception on some aspects of maize production and infestation levels of stored maize by *Sitophilus zeamais* in the Ngaoundere region of Cameroon. Cameroon Journal of Biology, and Biochemical Sciences. 2002;12(1):18-30.

2. Ntonfor NN, Oben EO, Konje CB. Use of selected plant-derived powders and their combinations to protect stored cowpea grains damage by *Sitophilus zeamais*. ARPNJ. Agricultural Journal of Biological Science. 2010;5:13-21.

3. Upadhyay RK, Ahmad S. Management strategies for control of stored grain insect pests in farmer stores and public warehouse house. World Journal of Agricultural Science. 2011;7(5):527–549.

4. Owusu EO, Osofo WK, Nutsukpui ER. Bioactivity of candlewood, *Zanthoxylum xanthoxyloides* (LAM.) solvent extracts against two stored-product insect pests. African Journal of Science and Technology. 2007;8:17–21.

5. Lale NES. Stored product entomology and acarology in Tropical Africa. Mole Publications, Nigeria Ltd, Maiduguri, Nigeria. 2002:4-5.

6. Denloye AAB, Makanjuola WA. Insecticidal promises of plant terpenoids for the control of insect pests of stored grains in the 21st Century. Journal of Research Revelations in Science. 2001;2:271–288.

7. Firdissa E, Abraham T. Effect of some botanical and other materials against the maize weevil, *Sitophilus zeamais* Motschulsky on stored maize, In: Maize Production Technology for the Future: Challenge and Opportunities: Proceedings of the Sixth Eastern and Southern Africa Regional Maize Conference, 21 – 25 September 1998, Addis Ababa, Ethiopia. 1999:101–109.

8. Shafique M, Chaudry MA. Susceptibility of maize grains to storage pest. Pakistan Journal of Zoology. 2007;39(2):77–81.

9. Chikukura L, Mvumi BM, Chikonzo R, Chenzara C. Evaluation of selected indigenous pesticidal plant powders against stored maize and cowpeas insect pest. African Crop Science Proceedings. 2011;10:189–192.

10. Zhou HN, Zhao NN, Shu Shan D, Yang K, Cheng FW, Zhi LL, Yan QJ. Insecticidal activity of the essential of *Lonicerajaponica* flower buds and its main constituent compounds against two grain storage insects. Journal of Medicinal Plant Research. 2012;6(5):912–917.

11. Tadesse A, Basedow T. Laboratory and field studies on the effect of natural control measures against insect pests in stored maize in Ethiopia. Journal of Plant Disease Protection. 2005;112(2):156–172.

12. Tripathi AK, Prajapati V, Verma N, Bahl JR, Bansal RP, Khanuja SPS. Bioactivity of the leaf essential oil of *Cuminum longa* (Var. Ch-66) on three species of stored product beetles (Coleoptera). Journal of Economic Entomology. 2002;95(1):183–189.

13. Udo IO, Ekanem MS, Iyang EU. Laboratory evaluation of west African black pepper (*Piper guineense*) seed powder against maize weevil (*Sitophilus zeamais* Mots.). Munis Entomology and Zoology. 2011;6(2):1003–1007.

14. Ogendo JO, Deng AL, Belmain SR, Walker DJ, Musandu AA. Effect of insecticidal plant materials, *Lantana camara* L and *Tephrosia vogelii* Hook, on the quality parameters of stored maize grains. Journal of Food Technology in Africa. 2004;9:29–36.

15. Oben-Ofori D, Reichmuth CH, Bekele J, Hassanali A. Biological activity of 1,8 Cineole, a major component of essential oil of *Ocimum kenyense* (Ayobangira) against stored product beetles. Journal of Applied Entomology. 1997;121:237–243.
16. Achiri DT, Akotsen-Mensah C, Jallow M, Gbewonyo WSK, Afreh-Nuamah K. High levels of some insecticides on cabbage samples (Brassica oleracea L. var Capitata) from rural and urban farmers in Ghana. J. Environmental Sci. Toxicology and Food Technology. 2016; 10(4):97-103.

17. Achiri DT, Njweng MA. Bioactivity of cypress leaf powder (Cupressus macrocarpa) on cowpea weevil (Callosobruchus maculatus Fabr. Coleoptera: Bruchidae) and maize weevil (Sitophilus zeamais Motschulsky, Coleoptera: Curculionidae) in stored maize grains in Cameroon. Inter. J. Interdisciplinary and Multidisciplinary Studies. 2015;2(4):1–10.

18. Parugrug AM, Roxas C. Insecticidal action of five plant against maize weevil, Sitophilus zeamais Motsch. (Coleoptera: Curculionidae). King Mongkut’s Institute of Technology Ladkrabang Science and Technology Journal. 2008;8(10):24–38.

19. Suleiman M, Yusuf MA. The potential of some plant powders as biopesticides against Sitophilus zeamais (Motsch.) (Coleoptera: Curculionidae) and Callosobruchus maculatus (F.) (Coleoptera: Bruchidae) on stored grains: a review. Bayero Journal of Pure and Applied Science. 2011;4(2):204–207.

20. Adedire CO, Ajayi TS. Assessment of the insecticidal properties of some plant extracts as grain protectants against the maize weevil, Sitophilus zeamais Motschulsky. Nigerian Journal of Entomology. 1996;13:93–101.

21. Asawalam EF, Emosairue SO, Ekeleme F, Wokocha RC. Insecticidal effects of powdered parts of eight Nigerian plant species against maize weevil, Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae). Electronic Journal of Environmental, Agricultural and Food Chemistry. 2007;6(11):2526–2533.

22. Danjumma BJ, Majeed Q, Manga SB, Yahaya A, Dike MC, Bamaiyi L. Effect of some plant powders in the control of Sitophilus zeamais Motsch (Coleoptera: Curculionidae) infestation on maize grains. American-Eurasian J. Sci. Res. 2009;4(4):313–316.

23. Bouda H, Tapondjou LA, Fontem DA, Gumedzoe MYD. Effect of essential oils from leaves of Ageratum conyzoides, Lantana camara and Chromolaena odorata on mortality of Sitophilus zeamais (Coleoptera, Curculionidae). Journal of Stored Products Research. 2001;37:103–109.

24. Asawalam EF and Chukwuekezie AL. Control of maize weevil, Sitophilus zeamais (Motschulsky) using extracts of Gnetum africanum (Afang) leaves and Curcuma longa L. (Turmeric) rhizomes. Inter J. Agricultural Sci. 2012;2(9):263-265.

25. Mwanga BM, Mutisya DL. Performance of Basil powder as insecticide against maize weevil, Sitophilus zeamais (Coleoptera: Curculionidae). Discourse Journal of Agriculture and Food Science. 2013;1(11):196–201.

26. Epidi TT, Udo IO, Osakwe JA. Susceptibility of Sitophilus zeamais Motsh. And Callosobruchus maculatus F. to plant parts of Ricinodendron heudeloti. J. Plant Pro. Res. 2009;49(4):411–415.

27. Asawalam EF, Emosairue SO. Comparative efficacy of Piper guineense (Schum and Thonn) and pirimiphos methyl on Sitophilus zeamais (Motsch.). Tropical and Subtropical Agroecosystems. 2006;6: 143–148.

28. Gemu M, Getu E, Tadess T, Yusuf A. Management of Sitophilus zeamais Motshulsky (Coleoptera: Curculionidae) and Sitotroga cerealella (Olivier) (Lepidoptera: Gelechiidae) using locally available inert materials in Southern Ethiopia. Discourse Journal of Agriculture and Food Science. 20.13;1(6):111-117.

© 2020 Achiri et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here: http://www.sdiarticle4.com/review-history/60584