A study of deep neck spaces infection in present era at tertiary care teaching hospital

Paresh J. Khavdu*, Alpesh D. Fefar, Sejal N. Mistry, Payal S. Chavada

Department of Otorhinolaryngology, P.D.U. Medical College, Rajkot, Gujarat, India

Received: 23 June 2018
Accepted: 27 July 2018

*Correspondence:
Dr. Paresh J. Khavdu,
E-mail: khadvdup@yahoo.com

ABSTRACT

Background: Deep neck spaces infection is a common challenging condition for otolaryngologist in day to day practice even after availability of higher antibiotics. It may leads to considerable morbidity and complications. The aim of the study was to find out prevalence, predisposing factors and changing trend of deep neck spaces infection in this broad spectrum antibiotics era.

Methods: This prospective study was carried out at P.D.U. Medical College and Hospital, Rajkot. 120 Patients were studied who came with deep neck space infection.

Results: In this study majority of patient were in the age group of 41-60 year. Odontogenic and oropharyngeal infection are the most common etiologies. Staphylococcus aureus, Streptococcus, E. coli, Klebsiella and anaerobes were the microorganisms commonly isolated in pus culture and sensitivity test.

Conclusions: In spite of availability of broad spectrum antibiotics in present day deep neck spaces infection is the most commonly noticeable condition in developing countries and may lead to considerable morbidity and complications. Inadequate nutritional status, poor oral hygiene and lack of awareness in dental health are common predisposing factors for deep neck spaces infection.

Keywords: Deep neck spaces infection, Odontogenic infection, Incision and drainage

INTRODUCTION

Deep neck spaces infection defined as an infection in the potential spaces and fascial planes of the neck either with cellulitis or abscess formation.1 There is confusion about the number of neck spaces that varies 13-20. A fascial space is an area of loose connective tissue bounded by dense connective tissue called fascia.2 These potential spaces are important because they determine the spread of infection. The most important of these are suprahyoid spaces like submandibular, peritonsillar, parapharyngeal, buccal, parotid, masticatorand infrahyoid spaces like retropharyngeal, prevertebral, carotidand pretracheal. Knowledge of the anatomy of the areas in which infection tended spread was important in the pre-antibiotic days from the point of view of routes of spread, complications and surgical drainage but nowadays knowledge of three spaces (submandibular, parapharyngeal, retropharyngeal) will allow management of 90% of patients.3

Deep neck spaces infections are bacterial infections that primarily originate from teeth, tonsils and impacted foreign bodies in upper aero digestive tract.

Deep neck spaces infections arising from the dental carries are known as odontogenic infection. Now-a-day it is the commonest cause of deep neck space infection.4 Previously before the availability of antibiotics tonsillar and peritonsillar infections were the most common cause of deep neck space infection.5 Nowadays abscess usually occur in the submandibular space, parapharyngeal space...
RESULTS

Table 1: Age and sex distribution of patients.

Age (in years)	Male	Female	Percentage (%)
1–10	13	09	18.3
11–20	04	03	5.8
21–30	03	02	4.1
31–40	10	06	13
41–50	21	08	24.1
51–60	21	10	25.8
61–70	05	03	6.6
71–80	01	01	1.6
Total	78	42	100

Total 120 patients were evaluated in this study. As shown in Table 1, 78 patients (65%) were male and 42 patients (35%) were female. Age groups considered ranged from 1 year to 80 years. Most commonly affected age groups were between 41-60 years involving 60 (50%) followed by 22 patients (18.3%) were less than 11 years. Majority of them belongs to poor and low socioeconomic condition. Mean of the age is 38.67 years.

Table 2: Symptoms of deep neck spaces infection.

Symptoms	No of patient	Percentage (%)
Pain	117	97.5
Neck swelling	116	96.6
Fever	98	81.6
Trismus	78	65
Toothache	63	52.5
Odynophagia	37	30.8
Dysphagia	18	15
Airway difficulty	05	12.5

Almost all patients were presented with chief complain of pain in neck (97.6%) and neck swelling (96.5%). Others symptoms were fever (81.6%), trismus (65%), toothache (52.5%), odynophagia (30.8%), dysphagia (15%) and airway difficulty (12.5%).

Table 3: Aetiology.

Aetiology	No of patients	%		
	Male	Female	Total	
Odontogenic	43	20	63	52.5
Tonsillitis	15	07	22	18.3
Salivary gland infection	11	06	17	14.1
Infected lymph nodes	04	08	12	10
Foreign body	03	00	03	2.2
Infected cyst	02	01	03	2.5

The most common cause of deep neck abscess in our study was Odontogenic (52.5%), followed by tonsillitis.
Out of 22 patients with tonsillitis, 17 patients developed peritonsillar abscess. Salivary gland infection was seen in 17(14.1%) cases. Amongst them parotid gland abscess was found in 12 patients and submandibular abscess was found in 5 patients. Infected lymph nodes were the cause in 12 (10%) patients where 7 patients have cold abscess (Koch’s abscess) and all of them were under the age of ten years. Less common causes include foreign body (meat bone impaction) in posterior pharyngeal wall in 3(2.5%) patients who developed retropharyngeal abscess and infected cyst (2.5%).

Table 4: Site of involvement.

Location	No of patient	Percentage (%)
Submandibular space	69	57.5
Parapharyngeal space	21	17.5
Parotid space	12	10
Retropharyngeal space	03	2.5
Anterior/Posterior triangle of neck	12	10
2 or more spaces involved	03	2.5

Involvement of neck spaces was diagnosed by clinical examination and radiological investigations like X-ray neck, ultrasonography, CT scan. Involvement of submandibular space was in 69 patients (57.5%), followed by parapharyngeal space (17.5%), parotid space (10%), retropharyngeal space (2.5%), anterior/posterior triangle of neck (12%), two or more spaces involved (2.5%) as shown in table 5.

Out of 120 patients 104 patients were treated with incision and drainage, aspiration or both along with broad spectrum antibiotics and dressing. Drained pus of every patients was sent for culture and sensitivity test. Later on antibiotics and antitubercular drugs were changed and added depending upon culture and sensitivity report whenever required. All patients with dental carries were sent to the dentist.

Table 5: Organism isolated.

Organisms	No. of patient	Percentage (%)
Streptococcus species	40	33.3
Anaerobes	17	14.1
Staphylococcus aureus	13	10.8
Klebsiella	05	4.1
Tubercular bacillus	06	5
Pseudomonas aeruginosa	04	3.3
No growth of pathogen	35	29.1

The most common organism isolated were *Streptococcus* (33.3%) followed by anaerobes (14.1%), *Staphylococcus* (10.8%), *Klebsiella* (4.1%) and *Pseudomonas* (3.3%). *M. tuberculosis* was found in 6(5%) cases. No organisms were isolated in 35 (29.1%) cases.

Table 6: Co morbid conditions.

Co morbid conditions	No of patient	Percentage (%)
Anaemia	50	41.6
Diabetes mellitus	25	20.8
Renal failure	05	4.1
PLHA	02	1.6

82 patients have associated co morbid conditions like anaemia 50 (41.6%), diabetes mellitus 25 (20.8%), renal failure 5 (4.1%), PLHA 2 (1.6%). These co morbid conditions were also treated accordingly. 7 patients had airway obstruction required tracheostomy and 1 patient had skin necrosis. Overall most of patients were required 7-10 days stay in hospital. 2 patients died due to septicaemia and air way obstruction.
Infections are severe and should be considered tracheostomy first in patients with such conditions.

In this study we performed a sensitivity report. In this study, 120 patients with deep neck spaces infection were studied and data was analysed. The study reveals affection of all age group patients commonly affected age group being 1-10 and 41-60 years. Maximum numbers of cases were found in the age group of 41-60 years. Mean age of affected patients was 38.67 and is similar to other studies were mean age varied from 36 to 57 years.\(^\text{10,11}\) Men (65%) were affected more than women (35%). In study done by Kataria et al and Sharma et al 55.26% males and 44.74% females and 71.11% males and 28.89% females affected respectively which is similar to our study.\(^\text{12,13}\) Out of 120 cases of deep neck spaces infection sixty three (52.5%) were Odontogenic in origin. This is followed by tonsillitis (18.3%), salivary gland infection (14.1%), infected lymphadenopathy (10%), infected cyst (2.5%) and foreign body (2.2%). In studies done by Huang et al, Parhiscar et al, Thimappa et al, Eftekharian et al, Meher et al requiring surgical intervention which correlates with the studies of Parhiscar et al, Eftekharian et al, Mumtaz et al, Parhiscar et al requiring surgical intervention in 100%, 79%, 78% and 90% respectively.\(^\text{10,12,13,22}\) Surgical drainage of abscess and daily dressing with antiseptic solution and saline is equally important to clean pus and slough from abscess cavity for faster healing. Maintenance of hydration, haemoglobin level and nutritional status of patient and control of diabetes is also important. In this study we found 50 patients (41.6%) with anaemia and out of these 10 patients (8.3%) required blood transfusion.

Pus drained from abscess was sent for culture and sensitivity test in every patient. Later antibiotics were modified accordingly to sensitivity report. In this study organisms isolated are Streptococcus 40 (33.3%), Anaerobes 17 (14.1%), Staphylococcus aureus 13 (10.8%), M. tuberculosis 6 (5%), Klebsiella 5 (4.1%) and Pseudomonas aeruginosa 4 (3.3%). Organism could not be isolated in 35 patients (29.2%). This may be due to liberal use of antibiotic before surgical drainage of the abscess. In studies done by Parhiscar et al and Kataria et al the most common organism isolated was Streptococcus being 39% and 23.8%.\(^\text{10,12}\)

Management of airway obstruction in deep neck spaces infection is challenging. In this study we noticed 7 patients (5.8%) with airway obstruction who required tracheostomy. This correlates with study of Eftekharian et al requiring tracheostomy in 8.5% cases.\(^\text{16}\) Because of trismus, laryngeal oedema and possibility of distortion of airway anatomy rigid laryngoscopy and intubation is difficult or it may even worsen the condition.\(^\text{22}\) There is risk of bursting of retropharyngeal abscess and aspiration, always consider tracheostomy first in patient with sign and symptoms of airway obstruction.

DISCUSSION

Now a day’s with the advent of higher antibiotics, the incidence of deep neck spaces infection have reduced but not obsolete. The diagnosis and management of deep neck spaces infection is still a challenge for otolaryngologist. Deep neck spaces infections are severe in cases with co morbid condition like poor nutrition, anaemia, diabetes, renal failure immune compromised condition, etc. Evaluation of this life threatening conditions is very important. In this study, 120 patients with deep neck spaces infection were studied and data was analysed. The study reveals affection of all age group patients commonly affected age group being 1-10 and 41-60 years. Maximum numbers of cases were found in the age group of 41-60 years. Mean age of affected patients was 38.67 and is similar to other studies were mean age varied from 36 to 57 years.\(^\text{10,11}\) Men (65%) were affected more than women (35%). In study done by Kataria et al and Sharma et al 55.26% males and 44.74% females and 71.11% males and 28.89% females affected respectively which is similar to our study.\(^\text{12,13}\) Out of 120 cases of deep neck spaces infection sixty three (52.5%) were Odontogenic in origin. This is followed by tonsillitis (18.3%), salivary gland infection (14.1%), infected lymphadenopathy (10%), infected cyst (2.5%) and foreign body (2.2%). In studies done by Huang et al, Parhiscar et al, Thimappa et al, Tschissny et al, Eftekharian et al, Meher et al requiring surgical intervention which correlates with the studies of Parhiscar et al, Eftekharian et al, Mumtaz et al, Har-El et al requiring surgical intervention in 100%, 79%, 78% and 90% respectively.\(^\text{10,12,13,22}\) Surgical drainage of abscess and daily dressing with antiseptic solution and saline is equally important to clean pus and slough from abscess cavity for faster healing. Maintenance of hydration, haemoglobin level and nutritional status of patient and control of diabetes is also important. In this study we found 50 patients (41.6%) with anaemia and out of these 10 patients (8.3%) required blood transfusion.

Intravenous antibiotics in cellulitis and surgical drainage of abscess cavity are the mainstay of deep neck spaces infection management.\(^\text{10,12,16}\) Broad spectrum antibiotics and anti anaerobic metronidazole along with anti inflammatory and analgesic were used to reduce oedema, pain and associated symptoms. In this study one hundred two patients (85%) required surgical intervention which correlates with the studies of Parhiscar et al, Eftekharian et al, Mumtaz et al, Har-El et al requiring surgical intervention in 100%, 79%, 78% and 90% respectively.\(^\text{10,12,13,22}\) Surgical drainage of abscess and daily dressing with antiseptic solution and saline is equally important to clean pus and slough from abscess cavity for faster healing. Maintenance of hydration, haemoglobin level and nutritional status of patient and control of diabetes is also important. In this study we found 50 patients (41.6%) with anaemia and out of these 10 patients (8.3%) required blood transfusion.

Pus drained from abscess was sent for culture and sensitivity test in every patients. Later antibiotics were modified accordingly to sensitivity report. In this study organisms isolated are Streptococcus 40 (33.3%), Anaerobes 17 (14.1%), Staphylococcus aureus 13 (10.8%), M. tuberculosis 6 (5%), Klebsiella 5 (4.1%) and Pseudomonas aeruginosa 4 (3.3%). Organism could not be isolated in 35 patients (29.2%). This may be due to liberal use of antibiotic before surgical drainage of the abscess. In studies done by Parhiscar et al and Kataria et al the most common organism isolated was Streptococcus being 39% and 23.8%.\(^\text{10,12}\)

Management of airway obstruction in deep neck spaces infection is challenging. In this study we noticed 7 patients (5.8%) with airway obstruction who required tracheostomy. This correlates with study of Eftekharian et al requiring tracheostomy in 8.5% cases.\(^\text{16}\) Because of trismus, laryngeal oedema and possibility of distortion of airway anatomy rigid laryngoscopy and intubation is difficult or it may even worsen the condition.\(^\text{22}\) There is risk of bursting of retropharyngeal abscess and aspiration, always consider tracheostomy first in patient with sign and symptoms of airway obstruction.

Figure 3: Ludwig’s angina.
CONCLUSION

In spite of availability of higher antibiotics in present era management of deep neck abscess is still a challenge for otorhinolaryngologist. Deep neck spaces infection is most common in 41–60 years of age mainly in males. Odontogenic and tonsillitis are the most common etiology. The most common is submandibular abscess. Diabetes, elderly age and poor dental hygiene are the precipitating factor for deep neck spaces infection. In developing countries lack of nutrition, lack of awareness, poor oral hygiene, smoking, tobacco and beetle nut chewing increase the prevalence of odontogenic and periodontal diseases that may lead to deep neck spaces infection. Early surgical intervention is required in case of deep neck abscess along with broad spectrum antibiotics according to sensitivity along with control of co morbid conditions remains the mainstay of treatment. Special attention is required in cases of airway obstruction. Tracheostomy is advisable in patients with air way obstruction. CT scan is useful tool in patients with airway obstruction and huge abscesses. This condition can be prevented by creating awareness of oral and dental hygiene, smoking and tobacco chewing prevention along with regular dental check-ups.

Funding: No funding sources
Conflict of interest: None declared
Ethical approval: The study was approved by the Institutional Ethics Committee

REFERENCES

1. Wang LF, Kuo WR, Tsai Sm, Huang KJ. Characterization of life threatening deep cervical infections: A review of one hundred ninety six cases. Am J Otolaryngol. 2003;24(2):111-7.
2. Maran AGD. Benign diseases of neck. Scott-Brown’s Otorhinolaryngology, Head and Neck surgery. Chapter 15. Volume 5. Fifth edition. 2008: 297-298.
3. Vieira F, Allen SM, Stocks RSM, Thompson JW. Deep neck infections. Otolaryngol Clin N Am. 2008;12:459-83.
4. Wong TY. Nation wide survey of deaths from oral and maxillofacial infections: the Taiwanese experience. J Oral Maxillofac Surg. 1999;57:1297-9.
5. Weed H. Forest L. Deep neck infection. J Otolaryngol Head Neck Surg. 1998;3:2515-24.
6. Hasegawa J, Hidaka H, Tateda M. An analysis of clinical risk factors of deep neck infection. Auris Nasus Larynx. 2011;38:101-7.
7. Ungkanont K, Yellon RF, Weissman JL, Casselbrant ML, Gonzalez VH, Bluestone CD. Head and neck space infections in infant and children. Otolaryngol Head Neck Surg. 1995;112:375-82.
8. Huang TT, Liu TC, Chen PR, Tseng FY, Yeh TH, Chen YS. Deep neck infection: analysis of 185 cases. J Otolaryngol Head Neck Surg. 2004;26:854-60.
9. Mayor GP, Milian JMS, Martinez VA. Is conservative treatment of deep neck space infections appropriate? J Head Neck. 2001;23:126-33.
10. Parhisar A, Harel G. Deep neck abscess: a retrospective review of 210 cases. Ann Otol RhinoLaryngol. 2001;110:1051-4.
11. BehuSj, Shubuya TY, Meleca RJ, Mathog RH, YooGh, et al. Cranio cervical necrotising fasciitis- An 11 years experience. Otolaryngol Head Neck Surg. 2001;125:245-52.
12. Kataria G, Saxena A, Bhagat S, Singh B, Goyal I, Vijayvergia S, et al. Int J Otorhinolaryngal Head Neck Surg. 2015;11(1):11-6.
13. Sharma S, Das D, Joshi M, Burman D, Sharma AJ. Deep neck spaces infection – A study in diabetic population in tertiary care centre. Indian J Otorhinolaryngol Head Neck Surg. 2018;70(1):22-7.
14. Thimmappa TD, Ramesh S, Nagraj M, Gangadhar KS. Int J Otorhinolaryngol Head Neck Surg. 2017;3(1):116-21.
15. Tschiassny K. Ludwig’s angina: an anatomic study of the role of the lower molar teeth in its pathogenesis. Arch Otolaryngol. 1943;38:485-96.
16. Eftekharian A, Rookbahany NA, Vaezeafshar R, Narimani N. Deep neck infections: A retrospective review of 112 cases. Eur Arch Otorhinolaryngol. 2009;266:273-7.
17. Sethi DS, Stanley RE. Deep neck abscesses: challenging trends. JLO. 1994;108:138-43.
18. Muntaz RM, Arain AA, Suhail A, Rajput SA, Mohammad A, Nabeel H. Deep neck space infections: Retrospective review of 46 patients. J Cranio Max Dis. 2014;3(1):21-5.
19. Zamiri B, Hashemi SB, Haeshami SH, Rafiee Z, Elsani S. Prevalence of odontogenic deep head and neck space infection and its correlation with length of hospital stay. Shiraz Univ Dent. 2012;13(1):29-35.
20. Meher R, Jain A, Sabharwal A, Gupta B, Singh I, Agarwal I. Deep neck abscess: a prospective study of 54 cases. JLO. 2005;119:299-302.
21. Bottin R, Marioni G, Rinaldi R, Boninsegna M, Salvadori L, Staffieri A. Deep neck infection: a present day complication. A retrospective review of 83 cases. Eur Arch Otorhinolaryngol. 2003;260:576-9.
22. Har-El G, Aroesty JH, Shaha A, Lucente FE. Changing trends in deep neck abscess: a retrospective study of 110 patients. Oral Surg Med. 1994;77:446-50.
23. Osborn TM, Assael LA, Bell RB. Deep space neck infection: principles of surgical management. Oral Maxillofacial Surg Clin N Am. 2008;20:353-65.

Cite this article as: Khavdu PJ, Fefar AD, Misty SN, Chavada PS. A study of deep neck spaces infection in present era at tertiary care teaching hospital. Int J Otorhinolaryngol Head Neck Surg 2018;4:1276-80.