IL-27 promotes NK cell effector functions via Maf-Nrf2 pathway during influenza infection

Pawan Kumar1, Kamalakannan Rajasekaran1, Arash Nanbakhsh1, Jack Gorski2, Monica S. Thakar1,3 & Subramaniam Malarkannan1,3,4,5

Influenza virus targets epithelial cells in the upper respiratory tract. Natural Killer (NK) cell-mediated early innate defense responses to influenza infection include the killing of infected epithelial cells and generation of anti-viral cytokines including interferon gamma (IFN-γ). To date, it is unclear how the underlying cytokine milieu during infection regulates NK cell effector functions. Our data show during influenza infection myeloid cell-derived IL-27 regulates the early-phase effector functions of NK cells in the bronchioalveolar and lung tissue. Lack of IL-27R (Il27ra−/−) or IL-27 (Ebi3−/−) resulted in impaired NK cell effector functions including the generation of anti-viral IFN-γ responses. We identify CD27+CD11b+ NK cells as the primary subset that expresses IL-27R, which predominantly produces IFN-γ within the upper respiratory tract of the infected mice. IL-27 alone was incapable of altering the effector functions of NK cells. However, IL-27 sensitizes NK cells to augment both in vitro and in vivo responses mediated via the NKG2D receptor. This ‘priming’ function of IL-27 is mediated partly via transcriptional pathways regulated by MafS and Nrf2 transcriptionally regulating TFAM and CPT1. Our data for the first time establishes a novel role for IL-27 in regulating early-phase effector functions of NK cells during influenza infection.

Effect of cytokines in modulating NK cell responses has been an area of intense research. The common gamma receptor (γcR)-interacting cytokines IL-2, IL-7, IL-15, and IL-21 have been used to expand NK cells for adoptive transfer experiments in the clinical setting. Unique α-chains define the receptors for these cytokines. IL-2 and IL-15 share a β-chain and the γcR along with cytokine-specific IL-2Rα and IL-15Rα, respectively. IL-2 and IL-15 has been extensively used to expand murine and human NK cells. IL-15 activates PI(3)K-mediated mTORC1 pathway. IL-12 is a heterodimeric cytokine consists of p35 and p40 subunits, and it binds to the IL-12 receptor (IL-12Rβ1 and IL-12Rβ2). IL-18 belongs to an IL-1 family that interacts with a heterodimeric receptor composed of IL-18Rα and IL-18Rβ. IL-12 and IL-18 enhance NK cell effector functions including IFN-γ production. However, IL-12 or IL-18 responses are acute and independent of NK cell activating and inhibitory receptors. IL-23 is another heterodimeric cytokine composed of p19 and p40 subunits, and its

1Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, 8727 Watertown Plank Road, Milwaukee, WI, 53226, United States. 2Laboratory of Molecular Genetics, Blood Research Institute, 8727 Watertown Plank Road, Milwaukee, WI, 53226, United States. 3Departments of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, 53226, United States. 4Departments of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI, 53226, United States. 5Departments of Medicine, Medical College of Wisconsin, Milwaukee, WI, 53226, United States. Correspondence and requests for materials should be addressed to S.M. (email: Subra.malar@bcw.edu)
IL-27 and has been shown to modulate NK cells anti-tumor cytotoxicity responses. These studies demonstrate that IL-27 augments NK cells cytoxic responses to a variety of tumor cell lines in perforin, granzyme, TRAIL, and Fc-γR-III-dependent mechanisms. The role of IL-27 in NK cell-mediated anti-tumor immunity has been defined. However, the underlying molecular mechanism is not well-defined. Notably, the mechanism by which IL-27 regulate NK cells effector functions during viral infections is yet to be fully understood.

In this study, we determined the role of IL-27 signaling in regulating NK cells effector responses during influenza infection as well as dissecting molecular mechanism of its action. Our data show that NK cells upregulate IL-27R following influenza infection. IL-27 but not IL-12 or IL-35 is obligatory for promoting the early NK cell-mediated responses. Ebi3−/− and Il27ra−/− mice exhibited significantly reduced NK cell effector functions (IFN-γ and cytotoxicity) during influenza infection. Our in vivo and in vitro findings strongly suggest that defect in effector responses were NK cells intrinsic and involve CD27+CD11b− subset. Mechanistically, IL-27 regulates NK cells effector functions via small Maf-F and Nfr2. Expressions of γ-glutamylcysteine ligase catalytic (GCLC), mitochondrial transcription factor A (TFAM), and carnitine palmitoyltransferase 1 (CPT1) were significantly reduced in NK cells derived from Ebi3−/− mice, demonstrating a unique and exclusive functional role for IL-27.

These findings provide a novel insight into how IL-27 plays a central role in containing viral infections by sensitizing NK cells to recognize infected cells and provide protective immunity to the host.

Results

Influenza infection leads to IL-27 generation and induction of IL-27R. Activation of innate and adaptive immune responses is natural host defense against influenza infection. The innate immune response includes infiltration of myeloid cells and NK cells in the upper respiratory tract. To determine the functional relevance of NK cells during influenza infection, we intranasally infected C57BL/6 (wild-type, WT) mice with 500 PFU of mouse-adapted human A/PR/8/34 H1N1 (PR8) influenza virus. The lumen side of the trachea consists of a thick layer of columnar epithelial cells that are exposed to and are the targets of influenza virus. Our earlier study has shown that effector lymphocytes including NK cells infiltrate into the epithelial layer via the basement membrane. We found only fewer NK cells were present on days post-infection (DPI) 0 and their number steadily increased on DPI 2 and DPI 4 (Fig. 1A). Expression of CD107a (LAMP1), which is a surrogate marker for cytotoxicity peaked on DPI 4 (Fig. 1B).

We next analyzed the expression of the IL-27 receptor (IL-27R) temporally during influenza infection. The IL-27R is composed of IL-27Rα (Wsx1) and the shared IL-6 family receptor subunit, gp130. We performed confocal analyses of NK cells from infected mice from different DPIs. Our data reveal expression of IL-27Rα in NK cells peaked on DPI 4 coinciding with the production of IL-27. Next, we characterized the cell type that produces the IL-27. Cells from both BAL and lung tissues were stained define Ly6G+ myeloid population as the predominant producer of IL-27 during this early period of influenza infection (Supplementary Fig. 1A and B). Consistent with published data, production of IL-27 by Ly6G+ cells temporally aligned with the expression of IL-27Rα on NK cells during influenza infection.

IL-27 augments NKG2D but not IL-12-mediated IFN-γ production. Proinflammatory cytokines IL-12 and IL-18 can stimulate the production of IFN-γ. IL-23 is primarily responsible for the production of IL-22 from effector lymphocytes including NK cells. Generation of IL-12 during the early phase of influenza infection indicates that these cytokines may play a role in regulating the IFN-γ gene transcription in NK cells during the early phase of infection. Influenza infection also leads to the expression of inducible stress proteins such as H60, Rae-1, and Mult1 in infected cells that are the cognate ligands for the activation receptor NKG2D. Infected epithelial cells also express viral haemagglutinin, which is one of the defined ligands of the activating NK cell receptor, NCR1 (Nkp46). To distinguish the role of IL-27 on activation receptor (such as NKG2D or Ly49D) and cytokine receptors (such as IL-12 or IL-18), we stimulated IL-2-cultured NK cells with combinations of stimuli (Fig. 3). Recombinant IL-27 (rIL-27) augmented only NKG2D-but not IL-12 or IL-18-mediated activation (Fig. 3A). Although IL-12 is a potent stimulator of IFN-γ, the presence of exogenous IL-27 did not augment IFN-γ production. In contrast, the presence of IL-18 along with IL-12 resulted in the maximal production of intracellular IFN-γ (Fig. 3B). These observations were further validated for other cytokines and chemokines including GM-CSF, RANTES, and MIP1-α by testing the culture supernatants via multiplex assays (Fig. 3C).

To further corroborate these findings, we stimulated IL-2-cultured splenic NK cells from WT and Il27ra−/− mice with anti-NKG2D or anti-Ly49D mAbs in the presence or absence of recombinant IL-27. IL-27 alone was
not able to induce the generation of IFN-γ (Fig. 3D). However, IL-27 significantly augmented anti-NKG2D mAb-mediated production of cytokines and chemokines in NK cells from WT mice. Role of exogenous IL-27 on anti-Ly49D mAb-mediated generation of GM-CSF and RANTES was significant; however, its effect on IFN-γ and MIP-1α was only moderate in NK cells from the WT. Importantly, the addition of rIL-27 did not have any effect on NK cells from Il27ra−/− mice confirming the specific role of IL-27 on activation receptor-mediated cytokine and chemokine production (Fig. 3D). IL-12 and IL-18 together promote optimal production of IFN-γ. rIL-27 along with IL-12 did not significantly augment the production of IFN-γ. Therefore, we next tested whether the combination of IL-12, IL-18, and IL-27 has an additive effect on NK cells. There were no significant differences between IL-12 and IL-18 or the combination of all three cytokines in the production of IFN-γ (Fig. 3E). These observations confirm that IL-27 plays a central role in the co-stimulation activation receptor (such as NKG2D)-mediated NK cell effector functions.

IL27R and IL-35R belong to the IL-6R family, and they utilize a common receptor chain, gp130 (Ref). Also, to distinguish the functional role of IL-27 from IL-12 and IL-35, we infected Il27ra−/− (Wsx1−/−) or Il12a−/− (Il12p35−/−) mice with influenza virus. Lack of IL-27Rα receptor subunit significantly reduced the levels of IFN-γ production in NK cells on DPI 4 (Fig. 4A) and a moderate reduction in LAMP1 expression (Fig. 4B). Alterations in the percent IFN-γ-positive NK cells were further validated by analyzing the absolute number of NK cells in both BAL and lung tissues (Supplementary Fig. 2A and B). NK cells from both Il27ra−/− mice, NK cells from the BAL or lung tissue of Il12a−/− mice generated comparable levels of IFN-γ on DPI 4, to that of WT (Supplementary Fig. 3A–C). This suggests a unique role of IL-27 in augmenting NK cells responses during the early phase (DPI 0–4) of influenza infection.

IL-27 but not IL-35 regulates NK cells effector function in vivo. IL-35 is a heterodimeric cytokine that shares the EB13 subunit with IL-27 and p35 (IL-12α) with IL-12. IL-35 signals through a receptor composed of IL-12Rβ2 and gp130 (Ref). To differentiate the functional role of IL-27 from IL-12 and IL-35, we infected Il27ra−/− (Wsx1−/−) or Il12a−/− (Il12p35−/−) mice with influenza virus. Lack of IL-27Rα receptor subunit significantly reduced the levels of IFN-γ production in NK cells on DPI 4 (Fig. 4A) and a moderate reduction in LAMP1 expression (Fig. 4B). Alterations in the percent IFN-γ-positive NK cells were further validated by analyzing the absolute number of NK cells in both BAL and lung tissues (Supplementary Fig. 2A and B). NK cells from both Il27ra−/− mice, NK cells from the BAL or lung tissue of Il12a−/− mice generated comparable levels of IFN-γ on DPI 4, to that of WT (Supplementary Fig. 3A–C). This suggests a unique role of IL-27 in augmenting NK cells responses during the early phase (DPI 0–4) of influenza infection.

Figure 1. NK cell infiltration and function coincides with IL-27p28 expression in the BAL and lung tissue of mice during the early phase influenza infection. (A) Production of IFN-γ peaks on DPI 4. Intracellular IFN-γ was analyzed in gated the lung tissue or spleens from the infected mice on indicated DPs. (B) Expression of CD107a, a surrogate marker for the release of cytolytic granules including granzyme B peaks on DPI 4 in both lung tissue and spleens of the infected mice. (C) Expression of Il12p35, Il12p40, Il23p19, and Il27p28 transcripts in the BAL cells and lung tissue on different DPs. Data shown are from two or three independent experiments with 4–7 mice (A), 3–4 mice (B) or 4 mice (C except for DPI7). DPI = Days post infection
Importantly, NK cells from DPI 2 that express the IL-27R (Wsx-1) are the ones that also produced IFN-γ and granzyme B demonstrating a causal relationship between the expression of IL-27R and NK cell effector functions during influenza infection (data not shown).

Figure 2. Expression of IL-27R (Wsx-1) on NK cells during influenza infection. (A) Confocal analyses of IL-27R expression in NCR1+ NK cells in the lung tissue on indicated DPIs. Lung sections from infected mice were stained with anti-NCR1 and anti-Wsx-1 mAbs. (B) Flow cytometric analyses of IL-27R expression among CD3−NK1.1+ NK cells obtained from BAL, lung tissue, or spleens of influenza-infected mice on different days of post-infection. Percent IL-27R (Wsx-1) positive cells are shown. Three mice each for A and B are analyzed, and representative images or data are presented.
To eliminate the possibility of an NK cell extrinsic defect in the observed effector functions in mice lacking IL-27R (Il27ra−/−) mice, we performed adoptive transfer experiments. Splenocytes from WT (B6.SJL, CD45.1+) and Il27ra−/− (CD45.2+) mice were isolated, and a mixture (1:1) of these cells were adoptively transferred into lymphocytes-deficient Rag2−/−γc−/−mice on DPI 2. Host mice were infected with influenza. On DPI 2, we were able to detect NCR1+ WT and Il27ra−/− NK cells in the lung tissue of Rag2−/−γc−/−mice (Fig. 4D). The percentages of NK cells transferred from Il27ra−/− mice that produced IFN-γ were significantly lower compared to that of B6.SJL (Fig. 4E,F). However, the overall percentages of LAMP1+ NK cells did not vary between the B6.SJL (CD45.1) and Il27ra−/−CD45.2) mice. Collectively these data suggest IL-27 plays a primary role in the production of IFN-γ from NK cells during the early phase of influenza infection in vivo.

IL-27 regulates CD27+CD11b+ effector NK cell population in vivo. Expression of CD27 on T cells along with CD44 marks the onset of early effector memory phenotype. The absence of CD27 on CD44+CD62L−T cells define the late effector memory and effector T cell subsets. In the case of NK cells, expression of CD27 and CD11b define functional subsets of NK cells. CD27+CD11b+ and CD27−CD11b− NK cells are specialized to secrete cytokines, whereas CD27−CD11b+ NK cells are more cytotoxic. To identify the primary subset of NK cells that produces IFN-γ during the early phase of influenza infection, we analyzed the lungs of the WT mice on DPI 2. Lung-derived NK cells were gated based on their CD27/CD11b positivity (Fig. 5A). However, the overall percentages of LAMP1+ NK cells did not vary between the B6.SJL (CD45.1) and Il27ra−/− CD45.2) mice. Collectively these data suggest IL-27 plays a primary role in the production of IFN-γ from NK cells during the early phase of influenza infection in vivo.

Figure 3. IL-27 regulates NKG2D and Ly49D-mediated effector functions of NK cells. (A) IL-27 augments NKG2D-, but not IL-12-mediated IFN-γ production. NK cells were cultured with IL-12 (10 ng/ml), IL-18 (10 ng/ml), or plate-bound anti-NKG2D mAb (5 ng/ml) for 12 hours and the production of IFN-γ was examined by intracellular staining. (B) IL-12 (1 ng/ml) in combination with IL-18 (10 ng/ml) stimulate NK cells to produce a significant amount of intracellular IFN-γ. (C) IL-27 regulates the production of multiple cytokines and chemokines. NK cells from WT mice were stimulated with IL-27 (10 ng/ml), IL-12 (10 ng/ml), or IL-27+IL-18 (10 ng/ml each) for 18 hours and the supernatants were tested for the presence of indicated cytokines and chemokines. (D) Activation receptor-mediated inflammatory cytokine and chemokine production are regulated by IL-27. NK cells from WT or Il27ra−/− were stimulated with anti-NKG2D (5 ng/ml) or anti-Ly49D mAb (5 ng/ml) in the presence or absence of rIL-27 (10 ng/ml). (E) IL-27 does not mediate additive effect on IL-12 and IL-18-mediated IFN-γ production in NK cells. Purified NK cells were cultured with indicated individual or combinations of cytokines (10 ng/ml each) for 12 hours and the IFN-γ was examined by intracellular staining among CD3ε−NK1.1+ NK cells. (F) rIL-6 do not play a similar role as that of IL-27. Titrated concentrations rIL-6 (1.25 to 10 ng/ml) were used in the presence of mitogenic anti-NKG2D mAb (5 ng/ml). IL-2-cultured NK cells were used (A–E). Data presented are a representative of 3–4 independent experiments generated from 3–4 mice per group per experiment.
CD27

were proportionately most positive for intracellular IFN-γ compared any other subsets (Fig. 5B). Also, among the IL-27R−/− NK cells, CD27+CD11b− NK cells were predominant in producing IFN-γ (Fig. 5B). Our data suggest that the CD27+CD11b− NK cell subset may have an inherent maturation or recruitment defect in IL27ra−/− mice.

Distinct stages of development and acquisition of unique functional receptors characterize NK cell maturation in the BM. CD27+CD11b− subset represents the earliest stage of functional maturation of NK cell development in the BM. These single positive subset transition into the CD27−CD11b+ intermediate stage and eventually into CD27−CD11b− NK cells. CD27+CD11b− NK cells were predominant in circulation as well as in the lung tissue49. Furthermore, CD27−CD11b+, as well as CD27−CD11b− NK cells, have the more proliferative capacity50,52. Irrespective of this knowledge, it is not clear if NK cells subset specification changes under inflammatory condition. To define this, we analyzed the BAL and the lung tissues of influenza-infected WT and IL27ra−/− mice different DPI are shown. (C) The schematic for the adoptive transfer of splenocytes from WT (CD45.1) and IL27ra−/− (CD45.2) mice into Rag2−/−−γ−/− mice. Host Rag2−/−−γ−/− mice were infected with influenza virus, and their splenocytes were analyzed on DPI 2. (D) Lungs from Rag2−/−−γ−/− mice isolated and the CD3−NCR1+ NK cells were analyzed. (E) Percent IFN-γ or CD107a (LAMP1)-positive NK cells from one representative mouse each are shown. (F) Average percent positive cells from four mice per genotype are shown. Data in A, B, D–F are averages with standard deviation and are obtained from a minimum of four individual mice and are representatives of at least two independent experiments.

Lack of EBI3 reduces the ability of NK cells to produce IFN-γ during influenza infection. IL-27 cytokine consists of two subunits, EBI3, and IL-27p28. To further confirm the role of IL-27 in regulating NK cells

Figure 4. IL-27 regulates NK cells effector function during influenza infection. (A) Lack of IL-27Rα significantly reduces the percentages of intracellular IFN-γ+ NK cells. Bar diagram of IFN-γ+ NK cells from BAL and lung tissues of WT and IL27ra−/− mice different DPI are shown. (B) Lack of IL-27Rα does not affect the cytotoxic potentials of NK cells as measured by its surrogate marker CD107a (Lamp1). NK cells from BAL and lung tissues of WT and IL27ra−/− mice different DPI are shown. (C) The schematic for the adoptive transfer of splenocytes from WT (CD45.1) and IL27ra−/− (CD45.2) mice into Rag2−/−−γ−/− mice. Host Rag2−/−−γ−/− mice were infected with influenza virus, and their splenocytes were analyzed on DPI 2. (D) Lungs from Rag2−/−−γ−/− mice isolated and the CD3−NCR1+ NK cells were analyzed. (E) Percent IFN-γ or CD107a (LAMP1)-positive NK cells from one representative mouse each are shown. (F) Average percent positive cells from four mice per genotype are shown. Data in A, B, D–F are averages with standard deviation and are obtained from a minimum of four individual mice and are representatives of at least two independent experiments.
effector functions in vivo, we infected WT and Ebi3−/− (the critical subunit of both IL-27 and IL-35 cytokines) mice with influenza virus. NK cells upregulate IL-27R in WT mice in response to influenza infection (Fig. 2A,B). Our data suggests Ebi3−/− mice are more susceptible to influenza infection as revealed by weight loss (Fig. 6A), mortality curve (Fig. 6B) and increased collagen deposition in the lung tissue as detected by Masson’s trichrome staining (Fig. 6C). Interestingly, lymphocytes (Fig. 6D) and specifically NK and T cells (Fig. 6E) recruitment to the bronchoalveolar space (BAL), but not lung tissue/parenchyma were significantly reduced in Ebi3−/− mice early point of infection. In line with these observations, NK cells in the bronchoalveolar space were not capable of mounting early-phase anti-viral effector functions as revealed by reduced intracellular IFN-γ in Ebi3−/− mice at the early time point of infection (Fig. 6F).

IL-27 regulates NKG2D-dependent cytotoxicity. Our data suggest IL-27 enhance NKG2D-mediated cytokines generation. Earlier work suggested that IL-27-augmented cytotoxicity of NK cells is dependent on the upregulation of NKG2D ligands on the epithelial tumor and via ADCC53. We next examined the requirement of IL-27 in regulating NKG2D-mediated NK cells cytotoxicity. We used two stable EL4 cell lines (induced-self), RMA-S (missing-self) and YAC1 (non-self) in cytotoxicity assays. IL-2-cultured NK cells from Ebi3−/− or Il27ra−/− mice have shown similar cytotoxicity towards EL4-H60low, EL4-H60high, RMA-S, and YAC1 cell lines as compared to WT mice, suggesting there is no inherent defect in the cytotoxic potentials of NK cells (Supplementary Fig. 5A). We found that recombinant IL-27 enhances the cytotoxic capacity of NKG2D-mediated WT and Ebi3−/− but not Il27ra−/− mice IL-2-cultured NK cells (Supplementary Fig. 5B).

IL-27-dependent activation of NF-κB, T-bet, MafF, and Nrf2 regulates NK cells effector function. Our data strongly suggest a critical role of IL-27 in regulating NK cells effector functions in vivo and in vitro.
next investigated the molecular mechanisms by which IL-27 regulate the effector functions of NK cells. Towards this, we purified NK cells from WT, and $Ebi3^{-/-}$ mice on DPI 4 following influenza infection, purified mRNA, and performed gene array analyses for a panel of 48 transcription factors using Biomark chips. We found transcript levels of Ahr (Aryl hydrocarbon receptor), $Ccnd1$ (Cyclin D1), $Elk1$ (ETS domain-containing protein), and $cKit$ (CD117) were considerably increased (Fig. 7A). In contrast, $Foxo1$ (Forkhead box 1), $Foxo4$ (Forkhead box 4), $Irf4$ (Interferon regulatory factor 4), Myc (bHLH transcription factor), $Nfatc1$ (NF-AT), $cRel$ (NF-κB subunit), $Rela$ (NF-κB subunit), and $Tbx21$ (T-bet) were substantially reduced (Fig. 7A). Among these, transcription factors such as c-Rel, Rel-a, T-bet are known to play a direct role in the transcription of IFN-γ and thus providing a mechanistic explanation of how IL-27 regulates cytokine production in NK cells. Also, our data showed a reduction in the expression of v-Maf musculoaponeurotic fibrosarcoma oncogene (Maf) homolog F (MafF) but not c-Maf in NK cells from $Ebi3^{-/-}$ mice (Fig. 7A).

Nuclear factor E2–related factor 2 (Nrf2) binds to the ARE sequence as a heterodimer with one of the small bZIP proteins, Mafs, and activates specific gene transcriptions. We confirmed gene array data using RT-qPCR analyses of c-Maf, MafF, and MafK expression in sorted NK cells from influenza-infected WT and $Ebi3^{-/-}$ mice (Fig. 7B). The gene array data also show that the expressions Nrf1 and Nrf2 were significantly reduced in $Ebi3^{-/-}$ mice sorted NK cells (Fig. 7B), suggesting IL-27 stimulate NK cells through MafF/MafG-Nrf2 pathways. Nrf2 plays an indispensable role in augmenting the expression of Phase-II detoxifying and the anti-oxidant enzymes. Therefore, we investigated the expressions of quinone oxidoreductase (NQO1) and γ-glutamylcysteine ligase catalytic (GCLC). Although the transcript levels of $Nqo1$ did not change, levels of $Gclc$ was significantly reduced in $Ebi3^{-/-}$ mice sorted NK cells (Fig. 7C). In addition, we found that transcripts encoding both mitochondrial transcription factor A (TFAM) and carnitine palmitoyltransferase 1 (CPT1) were also significantly reduced in NK cells from $Ebi3^{-/-}$ mice compared to that of WT (Fig. 7C). Our study demonstrates that IL-27 has an augmenting...
effect on NKG2D-mediated IFN-γ production from NK cells (Fig. 3). To define whether Nrf2 gene was a direct target of this combined activation, we stimulated NK cells with anti-NKG2D mAb in the presence or absence of IL-27. Presence of IL-27 significantly augmented the expression of Nrf2 (Fig. 7D). Collectively, these findings provide a novel insight into the stimulatory functions of IL-27 on NK cells in the trachea and alveolar space of the lungs during influenza infections. Role of these changes should be further explored and could partially be responsible for the reduction in the production of IFN-γ in NK cells from Ebi3−/− mice. Consistent with Ebi3−/− mice data, NK cells from Il27ra−/− mice (Fig. 8A) but not Il12a−/− mice (Fig. 8B) also have reduced expression of MafF. Nrf2 can form a heterodimer with small Mafs, specifically MafF and MafG. To further explore the relevance of reductions in Nrf2 and MafF, we stimulated NK cells using plate-bound anti-NKG2D mAb along with small molecule compounds AI-1 (activates Nrf2 by covalently modifying Keap1, a negative regulator of Nrf2 and Oltipraz that activate anti-oxidant response element, Nrf2). Presence of either AI-1 or Oltipraz enhanced the IFN-γ generation following NKG2D stimulation (Fig. 8C) validating the ability of IL-27 activating a proinflammatory cascade via MafF/MafG-Nrf2 pathways.

Discussion

NK cells provide the early line of defense against viral infections. NK cells execute effector functions through their non-clonotypic activating receptors such as NKG2D, NCR1, and Ly49D. Cytokines are required to regulate the initiation, amplification, and the maintenance of transcriptional memory of an immune response. Cytokines also play a crucial role in establishing ‘immunological priming.’ This phenomenon has been well-documented for over two decades for B, and T cells that form the basis for the adaptive immunity. However, the occurrence of similar functional adaptations for NK cells is not yet fully understood. Myeloid cell-derived cytokines such as IL-12, IL-15, IL-18, and IL-27 coordinate the receptor-mediated activation of NK cells. IL-27 coordinate the receptor-mediated activation of NK cells, in vivo, remains a paradox. Whether and how the IL-12 family of cytokines plays an essential role in transcriptionally-priming NK cells are of active investigations. IL-12 transcriptionally-prime both T and NK cells. In T cells, cytokines function as a ‘third signal’ along with the activation receptor (primary signal) and co-stimulation (second signal). Although IL-2, IL-15, IL-12, and IL-18 are widely used to expand and activate NK cells, their in vivo role in...
coordinating the activation via receptors such as NKG2D or NCR1 is not clear. In this study, we utilized an influenza infection model and examined the role of IL-12 cytokine family in coordinating the activation of NK cells, which trafficked into the alveolar space (BAL) and lung tissue within 2–4 days post-infection. Entry of NK cells into the lumen-side of the trachea coincided with the destruction of epithelial cell layer40,45. Importantly, a significant percentage of NK cells in the lung tissue produced IFN-γ compared to that of spleens between DPIs 2–4, within the same mice. However, expression of CD107a (Lamp1) a surrogate marker for the release of the enzyme, granzyme B, peaked between DPIs 4–7. Through our earlier work, we showed that this increase in cytotoxic granules coincided with significant damage to the epithelial cell layer between DPIs 4–740. Damage to the ciliary structure of the epithelial cells and an injury to the epithelial layer can make patients susceptible to secondary bacterial infections leading to developing pneumonia and death. Therefore, an efficient immune response to clear the pathogens and rapid regeneration of the epithelial layer is essential to re-establish this protective barrier.

Analyses of transcripts encoding Il12p35, Il12p40, Il23p19, and Il27p28 indicated that IL-27 was produced during the early phase of influenza infection between DPIs 4–7 both in the alveolar space and lung tissues. IL-27 is one of the IL-12 family members and a proinflammatory cytokine70–72. Further analyses demonstrated that a Ly6G+ myeloid population was the predominant cell type that produced IL-27 as described earlier43. We predict that these Ly6G+ myeloid cells are neutrophils and the support for this notion is coming from the findings that human neutrophils along with monocytes/macrophages in patients with melioidosis, a severe form of septicemia caused by the gram-negative bacterium, Burkholderia pseudomallei73. Production of IL-27 concurred with the expression of IL-27Rα (Wsx1) in NK cells on DPI 4 both in the alveolar space (BAL) and within the lung tissues. Earlier studies have demonstrated that IL-27 reduced lung inflammation by dampening neutrophil recruitment and TH1 and TH17 functions during influenza infection43. However, compared our study that focuses on the early phase of infection, this study explored the role of IL-27-induced IL-10 on T cells at DPI 843.

Myeloid populations including dendritic cells produce IL-12, IL-18, and IL-27 that can function as the ‘third’ signal to prime effector lymphocytes74,75. In CD8+ T cells, IL-12 can open Ifng gene open along with select few hundred genes by chromatin remodeling, relieving gene repression, and allowing continued transcription by promoting augmented histone acetylation74. IL-12 along with IL-18 can promote the production of IFN-γ in T and NK cells68–78. However, the role of these cytokines in transcriptionally-priming NK cells and to augment NKG2D-dependent effector functions has not been investigated. Our data strongly suggest the presence of IL-27 during the activation of NK cells via NKG2D or Ly49D significantly augmented the production of IFN-γ, GM-CSF, RANTES, and MIP-1α. However, a similar additive effect was not observed when NK cells were stimulated with IL-27 along with IL-12 or IL-18, demonstrating a unique transcriptional and functional role of IL-27. Similarly, IL-6, another proinflammatory cytokine that shares its receptor subunit with the IL-27 receptor, did not augment IFN-γ production either alone or along with anti-NKG2D mAb-mediated activation of NK cells. Thus, it

Figure 8. Lack of IL-27Ra but not IL-12Ra results in reduced MAF activation during influenza infection. (A) RT-qPCR data shows expression of cMaf, Maff, Mafg, and Mafk in sorted NK cells from WT and Il27ra−− (IL-27Rα−−) mice on DPI 4. (B) RT-qPCR data shows expression of neither cMaf nor Maff are altered in sorted NK cells from WT and Il12ra−− (IL-12Rα−−) mice on day four post influenza infection. (C) ELISA data showing the production of IFN-γ from NK cells stimulated with anti-NKG2D mAb in the presence or absence of Oltipraz Data in B and C generated from 4 mice per genotype (except mock-infected mice).
is possible that during an acute viral infection, neutrophils and monocytes/macrophages may provide the ‘third’ signal to NK cells at the site of infection through the production of IL-27. This function may be distinct from the role of dendritic cells that produce both IL-12 and IL-18 within the secondary lymphoid organs (draining lymph nodes) that is to provide a full-fledged activation of NK cells to mediate effector functions. Detailed transcriptional and genomic analyses are required to further define the temporal and independent roles of these cytokines and their producers.

Earlier reports have suggested that IL-27 can selectively regulate NK cell subsets in human\(^8\). Through this study, we have found that IL-27 regulates the development of CD27\(^+\)CD11b\(^−\) NK cell subset. Based on CD27 and CD11b expression, different organs of the body has unique NK cells subset repertoire\(^9\). Lung NK cells are largely CD27\(^−\)CD11b\(^+\), whereas BM NK cells are mainly CD27\(^+\)CD11b\(^−\). These subsets define maturation stages of NK cells\(^49,79,80\). CD27\(^+\)highCD11b\(^low\) define the earliest stage of NK cells maturation. Our data show that after influenza infection CD27\(^+\)CD11b\(^+\) effector NK cells appear in the alveolar space and lung tissue of WT mice but not in Il27ra\(^−/−\) mice, suggesting a critical role for IL-27 in regulating this NK subset. We found a defect in CD27\(^+\)CD11b\(^+\) population; however, no changes were seen in the expression of NK cells activating or inhibitory receptor in the BM of naïve Il27ra\(^−/−\) mice. It is possible that myeloid cells in the BM constitutively produce a low level of IL-27 to regulate NK cells maturation, thereby modulates NK effector function. It could also be possible that CD27\(^+\)CD11b\(^−\) subset may be recruited to lung tissue from BM after influenza infection. It has also been shown that CD27 expression on NK cells determines migratory capacity and thus IL-27 may play a selective role in promoting the trafficking of a subset of NK cells to the site of infection\(^8,80\).

Lack of IL-27Rα (Wss1) or IL-27 subunit Ebi3 resulted in impaired NK cell-mediated effector functions and ineffective clearance of influenza infection. In line with earlier work using influenza infection on Il27ra\(^−/−\) mice\(^48\), we found similar weight loss and mortality trend in Ebi3\(^−/−\) mice. Mixed chimera experiments using splenocytes from WT (CD45.1) and Il27ra\(^−/−\) (CD45.2) further provide strong support that the reduced production of IFN-γ in NK cells from Il27ra\(^−/−\) mice are cell-intrinsic. Our study strongly suggests that IL-27 plays a crucial role during the early phase of influenza infection (DPI 1–4). After DPI 5, the requirement for IL-27 decreased. On DPI 7, the absolute numbers of NK cells and their effector responses were comparable in WT and Ebi3\(^−/−\) or Il27ra\(^−/−\) mice, suggesting a possible role of other cytokines/factors in regulating NK cells functions. It is also important to note, the adaptive immune response by T cells against infected epithelial cells and the B cells producing neutralizing antibody start to occur after DAP 7. Indeed, IL-27 is known to regulate cytoprotective IL-10 generation from T cells\(^82\). NK cells from CD27\(^−/−\) mice develop phenotypically normal with a similar or enhanced expression of activating or inhibitory receptor\(^81\). This observation is in line with our Il27ra\(^−/−\) mice data, where there is no defect in NK cells activating or inhibitory receptor expression. Thus, IL-27 plays an essential role in the early NK cell-mediated functions as well as regulates adaptive immune response determining the pathophysiological outcome of influenza infection.

Transcriptional priming of effector lymphocytes by cytokines lead to genomic imprinting, resulting in unique cell fate decisions, and distinct functional outcomes. IL-12 mediates such prototypical chromatin modifications on signature cytokine genes such as Ifng and Il4 in T cells primarily via signal transducer and activator of transcription 4 (STAT4)-dependent chromatin remodeling\(^83,84\). Earlier studies have shown that the interaction of IL-27 with IL-12, IL-18, and IL-15. Given these premier roles of STAT proteins in the transcription of signature cytokines are well-established, we next focused on the role of IL-27 on MaF proteins. We found that NK cells from Ebi3\(^−/−\) as well as Il27ra\(^−/−\) mice have reduced MaF expression with the highest fold change during influenza infection. MaF-F belongs to small MaF family which are basic-region and basic-leucine zipper (bZIP)-type transcription factors. Nuclear factor E2-related factor 2 (Nrf2) heterodimerizes with small bZIP protein, MaF-F, and activates specific gene transcription. This notion is confirmed by our findings that the expression Nrf2 is also reduced in Ebi3\(^−/−\) mice, suggesting IL-27 is also functioning through these transcription factors. These findings are further validated by the earlier observation that Nrf2 indeed interacts with MaF-F and MaF-G\(^84\). In summary, our findings demonstrate the crucial role played by IL-27 during the early phase of influenza infection. IL-27 plays a central role in augmenting the NK cell-mediated functions as well as regulates adaptive immune response determining the pathophysiological outcome of influenza infection.

Methods

Mice and stable cell lines. C57BL/6, B6.SJL (H-2b CD45.1\(^+\)), Il12a\(^−/−\) mice and Ebi3\(^+/+\) (Ebi3\(^−/−\)) mice were purchased from Jackson Laboratory (Bar Harbor, ME) and maintained in pathogen-free conditions at the Medical College of Wisconsin. Rag2\(^−/−\) mice were purchased from Jackson Laboratory (Bar Harbor, ME). Generation of Il27ra\(^−/−\) gene knockout mice has been described earlier\(^87\). Female and male mice between the ages of 6 and 12 weeks were used. EL4 (ATCC, Manassas, VA), EL4H60 (a derivative of EL4 and was generated by our laboratory), RMA/S (a kind gift from Dr Nilabh Shastri, UC Berkeley), and YAC1 (ATCC, Manassas, VA) cells were maintained in RPMI-1640 medium containing 10% heat-inactivated FBS (Life Technologies, Carlsbad, CA). Those cell lines were periodically tested to exclude the possibility of mycoplasma contamination. The generation of stable H60-expressing EL4 cell lines has been described\(^88\).

Ethics Statement. All animal experiments in this study were conducted in accordance with the guidelines of the US Government Animal Welfare Act (AWA) 7 U.S.C. § 2131. Institutional Animal Care approved all animal
protocols and Use Committees of the IACUC at the Medical College of Wisconsin, Milwaukee, WI. Medical College of Wisconsin is formally accredited by AAALAC and all the animal care and use-protocols used in this study fully adhere to the specified guidelines of AAALAC. The unique animal protocols that are approved by the IACUC and used in this study are AUA1500 and AUA1512.

Reagents. Recombinant IL-27p28 was purchased from Shennadoah Biotechnology Inc (Warwick, PA). Al-1 and Oltipraz were purchased from Sigma-Aldrich (St. Louis, MO).

In vivo infection. WT mice 6–8 weeks of age were deeply anesthetized and were intranasally challenged with 500 plaque-forming unit of PR8 virus in sterile phosphate-buffered saline in a total volume of 30 μl through one nostril as described. Mock infections were carried out using only sterile phosphate-buffered saline without the virus. After infections, mice were observed for weight loss and mortality for two weeks.

BAL fluid collection. Mice were euthanized, and thoracic cavity was cut open, and a 1 cm incision was made parallel to the trachea through the fur of the mouse to expose it. A midline incision was made on the ventral aspect of the trachea slightly above the thoracic inlet 0.3 ml of phosphate-buffered saline 1% bovine serum albumin was infused into the lung through the thoracic inlet using a sterile 1 ml syringe. Lavage fluid was aspirated, aliquoted, and frozen until use.

Antibodies. Anti-NK1.1 (PK136), anti-NKG2D (A10), CD27 (LG.7F9), CD11b (M1/70), Ly6G (RB6-8C5) LAM1 (4D1B), IFN-γ anti-NK1.1 (PK136), anti-NKG2D (A10), CD27 (LG.7F9), CD11b (M1/70), Ly6G (RANti-Ly49A (A1), Anti-Ly49D (4E5), anti-Ly49C/I (SW5E6), and anti-Ly49G (4D11) were obtained from BD Pharmingen, (San Diego, CA). Anti-NCR1 (MAB2225) were from R&D Systems (Minneapolis, MN).

NK cell preparation. Single-cell suspensions from spleen were passed through nylon wool columns for depletion of adherent populations consisting of B cells and macrophages. Cells that did not adhere to nylon wool were cultured with 1000 U/ml of IL-2 (NCI-BRB-Preclinical Repository, Bethesda, DC). The purity of the NK cultures was checked, and preparations with more than 95% of NK1.1+ cells were used on day 7 for in vitro experiments.

Lymphocyte preparations. Lungs were minced into pieces and digested with 500 μl of 10 mg ml−1 collagenase (C5138, 100 mg, Sigma-Aldrich, St Louis, MO) and 50 μl of 200 IU of DNase I from bovine pancreas (D4527-20KU, Sigma-Aldrich, St Louis, MO) in total volume of 5 ml of RPMI1640 complete medium for 1 h at 37°C. Lymphocytes from the lung were isolated by Ficoll–Hypaque density gradient (Sigma–Aldrich, St Louis, MO).

Flow cytometry. Single-cell preparations from spleen, lung, and BAL lymphocyte were surface stained with CD3ε (145-2C11), NK1.1 (PK136) and NCR1 (29A1.4) (eBioscience, San Diego, CA). For intracellular staining, single-cell suspensions from lung or BAL or spleen or trachea were the first stain for the surface receptor for 30 min followed by fixation (Fixation buffer, Bio Legend, San Diego, CA), and permeabilization (permeabilization wash buffer, Bio Legend) steps for additional 20 min. Cells were stained intracellularly with phycoerythrin-indo tricarbocyanine (PE-TR)–conjugated mAb to IFN-γ (XM1G1.2; eBioscience, San Diego, CA) in permeabilization wash buffer and analyzed in LSR-II (BD Biosciences, San Jose, CA).

Adoptive transfer. Single-cell suspensions from the splenocytes of B6.SJL (H-2b CD45.1+) and Il27ra−/− (H-2b, CD45.2+) mice were mixed 1:1 and adaptively transferred into Rag2−/−c−/− (CD45.2+) intravenously as described earlier. Donor CD45.1+ and CD45.2+ NK cells were detected, and the generation of IFN-γ was analyzed by flow cytometry following day two post adoptive transfer.

Cytotoxicity assays. WT, Ebi3−/− and Il27ra−/− derived NK cell-mediated cytotoxicity against EL4 cells, EL4I60, RMA-S and YAC1 cells was quantified by 51Cr-release assays at a varied ratio of effector to target cells. Cytotoxicity was also performed in the presence or absence of recombinant IL-27p28 (10 ng/ml, Shennadoah Biotechnology, Warwick, PA). Specific lysis was calculated by the amount of absolute, spontaneous and experimental release of 51Cr from target cells.

Quantification of cytokines and chemokines. NK cells from WT, Ebi3−/−, and Il27ra−/− were cultured in IL-2, Fc receptors were blocked with mAb to CD16-CD32 (2.4G2; BD Pharmingen) and cells were activated for 18 h with plate-bound anti-NKG2D (A10; eBioscience) or Ly49D (4E5; BD Pharmingen, San Jose CA) mAbs in presence or absence of recombinant IL-27 (20 ng/ml). Culture supernatants were analyzed by Bioplex assay (Bio-Rad, Hercules CA) as described. NK cells that had been cultured in IL-2 were also treated with IL-12 (1 ng/ml; R&D Systems, Minneapolis, MN) or IL-18 (10 ng/ml; R&D Systems, Minneapolis, MN) in the presence or absence of recombinant IL-27 (10 ng/ml) for 18 h, and the supernatants were analyzed similarly.

RT-qPCR. For quantification of Ilfng mRNA, sorted NK cells from influenza-infected mice lysed, and total RNA was purified with an RNAeasy Mini Kit (Qiagen). Real-time PCR was done with SYBR green protocol and an ABI7900 HT thermal cycler. Transcripts in each sample were assayed in triplicate, and the mean cycling threshold was used for calculation of the change in expression. The control (housekeeping) gene Gapdh (5’ CCT GCA CCA CCA ACT GCT TAG 3’; sense and 5’ GTG GAT GCA GGG ATG ATG TTC 3’; anti-sense) was used for global normalization in each experiment. Primer sequences for Il12p35: 5’ CGG GTG CAT GTG TCA A 3’ (sense) and 5’ CAG GTT CTG GGA CAT GCT AAG A 3’ (anti-sense); Il12p40: 5’ ACT CAT ATC TGC TGT GCC ACA AG 3’ (sense) and 5’ CAG GTG AAG CTC CCG GAG TA 3’ (anti-sense); Il23p19: 5’ TGT GCC CGG TAT CCA GTG T 3’ (sense) and 5’ CGG ATC CTI TGC AAG CAA 3’ (anti-sense); Il27p28: 5’ ATG TCC ACA
GCT TTG CTG AAT CT 3 (sense) and 5′ CGG CAG CCA CCT GAA AG 3 (anti-sense); Ifng: 5′ GAC TGT GAT TTG GG GTT GT 3 (sense) and 5′ GCC CCG GAG TGT AGA CAT CT 3 (anti-sense); Nf2: 5′ CCT GCT GTC ACT CCA CA 3 (sense) and 5′ GCC AGA GTG TGG CAG CT 3 (sense); and 5′ CTG AGT CGC TGT ATT TAC TTC CAT 3 (anti-sense); Ifng: 5′ CGT CCT GGA AAA AGA AGT G 3 (sense) and 5′ CCG TCC AGG AGT TCA GAG G 3 (anti-sense); Nf2: 5′ GCA GGA GGA AAA CGA GGA A 3 (sense) and 5′ GCC CAG TGT AGA TGA TGG CTC TGG 3 (anti-sense); c-Maf: 5′ ACT GAA CCG CAG CTG CCG GGG GTC AG 3 (sense) and 5′ CT TCT CCT GTA TTT CTC CTT GTA GGC GTC C 3 (anti-sense); Maff: 5′ AGC AGC ATC ACC ATC GTC AA 3 (sense) and 5′ GTC ACT ACA ACG AGT GCC AG 3 (anti-sense); Mafl: 5′ CGA GAG TGG AAC CAG CAC CT 3 (sense) and 5′ GCA ACT CCT GTC GCT ACT CT 3 (anti-sense); Mafk: 5′ TAG CCG CGT AGC TCT GGT T 3 (sense) and 5′ CCC CTG TTC TTA GCG ATG ATG 3 (anti-sense); Nqo1: 5′ AGC CAA TCA CGC TGC TGT GGT A 3 (sense) and 5′ GAA TGC GGG GTT GT 3 (anti-sense); Gclc: 5′ CTA CCA CGC AGT CAA GGA CC 3 (sense) and 5′ CTC CGA TTT TCG ATG AAC AC 3 (anti-sense); Tjfm: 5′ GTC GCA TCC CCT GCT GTA TC 3 (sense) and 5′ GCT GGA AAA ACA CTT CGG AAT AC 3 (anti-sense); Cpt1a: 5′ TGG CAT CAT CAC TGG TGTT G 3 (sense) and 5′ GTC TAG GGT CCG ATT GAT CTT TG 3 (anti-sense).

Experimental data and statistical analysis. A paired, two-sample Student’s t-test was used for statistical analysis, with equal or unequal variance, depending on the type of data. *P* values of 0.05 or less were considered significant. Normal distribution of sample variance was assumed by earlier studies from other laboratories with data sets similar to ours.

References

1. Ennis, F. A. et al. Interferon induction and increased natural killer–cell activity in influenza infections in man. *Lancet* 2, 891–893 (1981).
2. Santoli, D., Trinchieri, G. & Koprowski, H. Cell-mediated cytotoxicity against virus-infected target cells in humans. II. Interferon induction and activation of natural killer cells. *J Immunol* 121, 532–538 (1978).
3. Malarkannan, S. The balancing act: inhibitory Ly49 regulate NKG2D-mediated NK cell functions. *Seminars in immunology* 18, 186–192, https://doi.org/10.1016/j.smim.2006.04.002 (2006).
4. Hasen, M. et al. Selective down-regulation of the NGK2D ligand H60 by mouse cytomegalovirus m155 glycoprotein. *J Virol* 79, 2920–2930, https://doi.org/10.1128/JVI.79.5.2920-2930.2005 (2005).
5. Guo, H., Samarakoon, A., Vanhasebroeck, B. & Malarkannan, S. The p110 delta of PI3K plays a critical role in NK cell terminal maturation and cytokine/chemokine generation. *J Exp Med* 205, 2419–2435, https://doi.org/10.1084/jem.20072327 (2008).
6. Rajasekaran, K. et al. Signaling by Fyn-ADAP via the Carma1-Bcl-10-MAP3K7 signalsome exclusively regulates inflammatory cytokine production in NK cells. *Nat Immunol* 14, 1127–1136, https://doi.org/10.1038/ni.2708 (2013).
7. Jonic, S., Babic, M., Polic, B. & Krmpotic, A. Immune evasion of natural killer cells by viruses. *Curr Opin Immunol* 20, 30–38, https://doi.org/10.1016/j.coi.2007.11.002 (2008).
8. Satterly, N. et al. Influenza virus targets the mRNA export machinery and the nuclear pore complex. *Proceedings of the National Academy of Sciences of the United States of America* 104, 1853–1858, https://doi.org/10.1073/pnas.0610977104 (2007).
9. Dunne, J. et al. Selective expansion and partial activation of human NK cells and NK receptor-positive T cells by IL-2 and IL-15. *J Immunol* 167, 3129–3138 (2001).
10. Carson, W. E. et al. Interleukin (IL) 15 is a novel cytokine that activates human natural killer cells via components of the IL-2 receptor. *J Exp Med* 180, 1395–1403 (1994).
11. Giri, J. G. et al. Utilization of the beta and gamma chains of the IL-2 receptor by the novel cytokine IL-15. *EMBO J* 13, 2822–2830 (1994).
12. Kuribayashi, K., Gillis, S., Kern, D. E. & Henney, C. S. Murine NK cell cultures: effects of interleukin-2 and interferon on cell growth and cytokine reactivity. *J Immunol* 126, 2321–2327 (1981).
13. Henney, C. S., Kuribayashi, K., Kern, D. E. & Gillis, S. Interleukin-2 augments natural killer cell activity. *Nature* 291, 335–338 (1981).
14. Marcais, A. et al. The metabolic checkpoint kinase mTOR is essential for IL-15 signaling during the development and activation of NK cells. *Nat Immunol* 14, 1127–1136, https://doi.org/10.1038/ni.2708 (2013).
15. Yang, M. et al. NK cell development requires Tsc1-dependent negative regulation of IL-15–triggered mTORC1 activation. *Nat Commun* 7, 12730, https://doi.org/10.1038/ncomms12730 (2016).
16. Chizzonite, R. et al. IL-12: monoclonal antibodies specific for the 40-kDa subunit block receptor binding and biologic activity on activated human lymphoblasts. *J Immunol* 147, 1548–1556 (1991).
17. Chizzonite, R. et al. IL-12 receptor. I. Characterization of the receptor on phytohemagglutinin-activated human lymphoblasts. *J Immunol* 148, 3117–3124 (1992).
18. Torigoe, K. et al. Purification and characterization of the human interleukin-18 receptor. *J Biol Chem* 272, 25737–25747 (1997).
19. Ando, S. et al. Natural human interferon-gamma-derivative from lipopolysaccharide-stimulated human myelomonocytic HBL-38 cells. *Jpn Cancer Res* 79, 757–765 (1988).
20. Putchar, R., Dierksheide, J., Hu, Y. & Carson, W. E. IL-12 enhances the natural killer cell cytokine response to Ab-coated tumor cells. *J Clin Invest* 110, 983–992, https://doi.org/10.1172/JCI115950 (2002).
21. Chaix, J. et al. Cutting edge: Priming of NK cells by IL-18. *J Immunol* 181, 1627–1631 (2008).
22. Ortaldo, J. R. et al. Regulation of ITAM-positive receptors: role of IL-12 and IL-18. *Blood* 107, 1468–1475, https://doi.org/10.1182/blood-2005-04-1579 (2006).
23. Parham, C. et al. A receptor for the heterodimeric cytokine IL-23 is composed of IL-12Rbeta1 and a novel cytokine receptor subunit, IL-23R. *J Immunol* 168, 5699–5708 (2002).
24. Colonna, M. Interleukin-22-producing natural killer cells and lymphoid tissue inducer-like cells in mucosal immunity. *Immunity* 31, 15–23 (2009).
25. Cella, M. et al. A human natural killer cell subset provides an innate source of IL-22 for mucosal immunity. *Nature* 457, 722–725 (2009).
26. Collison, L. W. et al. The inhibitory cytokine IL-35 contributes to regulatory T-cell function. *Nature* 450, 566–569, https://doi.org/10.1038/nature06306 (2007).
27. Niedbala, W. et al. IL-35 is a novel cytokine with therapeutic effects against collagen-induced arthritis through the expansion of regulatory T cells and suppression of Th17 cells. *Eur J Immunol* 37, 3021–3029, https://doi.org/10.1002/eji.200737810 (2007).
28. Collison, L. W. et al. The composition and signaling of the IL-35 receptor are unconventional. *Nat Immunol* 13, 290–299, https://doi.org/10.1038/ni.2227 (2012).
29. Presky, D. H. et al. A functional interleukin 12 receptor complex is composed of two beta-type cytokine receptor subunits. *Proc Natl Acad Sci USA* 93, 14002–14007 (1996).
30. Pfanz, S. et al. IL-27, a heterodimeric cytokine composed of EBI3 and p28 protein, induces proliferation of naïve CD4(+) T cells. *Immunity* **16**, 779–790 (2002).

31. Villarino, A. et al. The IL-27R (WSX-1) is required to suppress T cell hyperactivity during infection. *Immunity* **19**, 645–655 (2003).

32. Matsui, M. et al. Interleukin-27 activates natural killer cells and suppresses NK-resistant head and neck squamous cell carcinoma through inducing antibody-dependent cellular cytotoxicity. *Cancer Res* **69**, 2523–2530 (2009).

33. Laroni, A., Gandhi, R., Beynon, L. & Weiner, H. L. IL-27 imparts immunoregulatory function to human NK cell subsets. *PLoS One* **6**, e26173, https://doi.org/10.1371/journal.pone.0026173 (2011).

34. Wei, J. et al. Critical role of dendritic cell-derived IL-27 in antitumor immunity through regulating the recruitment and activation of NK and NKT cells. *ImmunoL* **191**, 500–508, https://doi.org/10.4049/immunol.1300328 (2013).

35. Li, Q. et al. Administration of DNA encoding the interleukin-27 gene augments anti-tumor responses through non-adaptive immunity. *Scandinavian journal of immunology*. https://doi.org/10.1111/sji.12321 (2013).

36. Crabe, S. et al. The IL-27P80 subunit binds cytokine-like factor 1 to form a cytokine regulating NK and T cell activities requiring IL-6R for signaling. *J Immunol* **183**, 7692–7702, https://doi.org/10.4049/immunol.0901464 (2009).

37. Chong, W. et al. NK-DC crosstalk controls the autopathogenic Th17 response through an innate IFN-gamma–IL-27 axis. *J Exp Med* **212**, 1739–1752, https://doi.org/10.1084/jem.20141678 (2015).

38. Ziblat, A. et al. IL-27 stimulates human NK-cell effector functions and primes NK cells for IL-18 responsiveness. *Eur J Immunol* **45**, 192–202, https://doi.org/10.1002/eji.201444699 (2015).

39. Zwirner, N. W. & Ziblat, A. Regulation of NK Cell Activation and Effector Functions by the IL-12 Family of Cytokines: The Case of IL-27. *Front Immunol* **8**, 25, https://doi.org/10.3389/fimmu.2017.00025 (2017).

40. Kumar, P., Thakar, M. S., Ouyang, W. & Malarkanan, S. IL-22 from conventional NK cells is epithelial regenerative and inflammation protective during influenza infection. *Mucosal Immunol.* **(2012).**

41. Awasthi, A. et al. Deletion of PI3K-p85alpha gene impairs lineage commitment, terminal maturation, cytokine generation and cytotoxicity of NK cells. *Genes Immun* **9**, 522–535 (2008).

42. Guo, H. et al. The functional impairment of natural killer cells during influenza virus infection. *Immunol. Cell Biol* **87**, 579–589 (2009).

43. Liu, F. D. et al. Timed action of IL-27 protects from immunopathology while preserving defense in influenza. *PLoS Pathog* **10**, e1004110, https://doi.org/10.1371/journal.ppat.1004110 (2014).

44. Kreyberg, K. et al. IL-22 is expressed by Th17 cells in an IL-23-dependent fashion, but not required for the development of autoimmune encephalomyelitis. *J Immunol* **179**, 8098–8104 (2007).

45. Kumar, P., Rajaesekaran, K., Palmer, J. M., Thakar, M. S. & Malarkanan, S. IL-22: An Evolutionary Missing-Link Authenticating the Role of the Immune System in Tissue Regeneration. *J Cancer* **4**, 57–65 (2013).

46. Borchers, M. T. et al. Sustained CTL activation by murine pulmonary epithelial cells promotes the development of COPD-like disease. *J. Clin. Invest* (2009).

47. Baeten, B. J. et al. CD44 regulates survival and memory development in Th1 cells. *Immunity* **32**, 104–115, https://doi.org/10.1016/j.immuni.2009.10.011 (2010).

48. Fu, B. et al. CD11b and CD27 reflect distinct population and functional specialization in human natural killer cells. *Immunology* **133**, 350–359, https://doi.org/10.1111/j.1365-2567.2011.04346.x (2011).

49. Hayakawa, Y. & Smyth, M. J. CD27 Dissects Mature NK Cells into Two Subsets with Distinct Responsiveness and Migratory Capacity. *The Journal of Immunology* **176**, 1517–1524, https://doi.org/10.4049/jimmunol.176.3.1517 (2006).

50. Silva, A., Andrews, D. M., Brooks, A. G., Smyth, M. J. & Hayakawa, Y. Application of CD27 as a marker for distinguishing human NK cell subsets. *Int. Immunol.* **20**, 625–630 (2008).

51. Hayakawa, Y., Watt, S. V., Takeda, K. & Smyth, M. J. Distinct receptor repertoire formation in mouse NK cell subsets regulated by MHC class I expression. *J. Leukoc. Biol* **83**, 106–111 (2008).

52. Plpic, M., Blazar, B. R., Farrar, M. A. & Jameson, S. C. In Vivo Survival and Homeostatic Proliferation of Natural Killer Cells. *The Journal of Experimental Medicine* **197**, 967–976, https://doi.org/10.1084/jem.20021847 (2003).

53. Dibra, D., Catrera, J. J., Xia, X., Birkenbach, M. P. & Li, S. Expression of WSX1 in tumors sensitizes IL-27 signaling-independent natural killer cell surveillance. *Cancer Res* **69**, 5505–5513 (2009).

54. Motohoshi, H., Katsuoka, F., Engel, J. D. & Yamamoto, M. Small Maf proteins serve as transcriptional cofactors for keratinocyte differentiation in the Keap1–Nrf2 regulatory pathway. *Proc Natl Acad Sci USA* **101**, 6379–6384, https://doi.org/10.1073/pnas.0305902101 (2004).

55. Mitsuishi, Y., Motohoshi, H. & Yamamoto, M. The Keap1–Nrf2 system in cancers: stress response and anabolic metabolism. *Front Oncol* **2**, 200, https://doi.org/10.3389/fonc.2012.00200 (2012).

56. Stein-Streilein, J., Bennett, M., Mann, D. & Kumar, V. Natural killer cells in mouse lung: surface phenotype, target preference, and cytotoxicity of NK cells. *J. Immunol* **162**, 309–316, https://doi.org/10.4049/jimmunol.0900042 (2009).

57. Jordan, S. et al. Induction of IgG2a class switching in B cells by IL-27. *J Immunol* **173**, 2479–2485 (2004).

58. Trinchieri, G., Pfanz, S. & Kastelein, R. A. The IL-12 family of heterodimeric cytokines: new players in the regulation of T cell responses. *Immunity* **19**, 641–644 (2003).

59. Watford, W. T., Moriguchi, M., Morinobu, A. & O'Shea, J. J. The biology of IL-12: coordinating innate and adaptive immune responses. *Cytokine Growth Factor Rev* **14**, 361–368 (2003).

60. Behzadi, P., Behzadi, E. & Ranjbar, R. IL-12 Family Cytokines: General Characteristics, Pathogenic Microorganisms, Receptors, and Signalling Pathways. *Acta Microbiol Immunol Hung* **63**, 1–25, https://doi.org/10.1556/03.63.2016.1.1 (2016).

61. Azzoni, L., Kanakaraj, P., Zatsępina, O. & Persuella, B. IL-12-induced activation of NK and T cells occurs in the absence of immediate-early activation gene expression. *J Immunol* **157**, 3235–3241 (1996).

62. Yu, Q. et al. T cell factor 1 initiates the T helper type 2 fate by inducing the transcription factor GATA-3 and repressing interferon-gamma. *Nat. Immunol* **10**, 992–999 (2009).

63. Curtiss, D. J. et al. Inflammatory cytokines provide a third signal for activation of naïve CD4+ and CD8+ T cells. *J Immunol* **162**, 3256–3262 (1999).

64. Curtiss, D. J., Lins, D. C. & Mescher, M. F. Signal 3 determines tolerance versus full activation of naïve CD8+ T cells dissociating proliferation and development of effector function. *J Exp Med* **197**, 1141–1151, https://doi.org/10.1084/jem.20021910 (2003).

65. Curtiss, D. J. & Mescher, M. F. Inflammatory cytokines as a third signal for T cell activation. *Curr Opin Immunol* **22**, 333–340, https://doi.org/10.1016/j.coi.2010.02.013 (2010).
88. Regunathan, J., Chen, Y., Wang, D. & Malarkannan, S.
89. Mason, L. H.
76. Yoshimoto, T.
75. Agnello, D.
87. Chen, Q.
86. Owaki, T.
73. Rinchai, D.
71. Iwasaki, Y., Fujio, K., Okamura, T. & Yamamoto, K. Interleukin-27 in T cell immunity.
72. Wang, Q. & Liu, J. Regulation and Immune Function of IL-27. *Adv Exp Med Biol* 941, 191–211, https://doi.org/10.1007/978-94-024-0921-5_9 (2016).
Rinchai, D. *et al.* Production of interleukin-27 by human neutrophils regulates their function during bacterial infection. *Eur J Immunol* 42, 3280–3290, https://doi.org/10.1002/eji.201242526 (2012).
Agarwal, P. *et al.* Gene regulation and chromatin remodeling by IL-12 and type I IFN in programming for CD8 T cell effector function and memory. *J Immunol* 183, 1695–1704, https://doi.org/10.4049/jimmunol.0900592 (2009).
Agnello, D. *et al.* Cytokines and transcription factors that regulate T helper cell differentiation: new players and new insights. *J Clin Immunol* 23, 147–161 (2003).
Yoshimoto, T. *et al.* IL-12 up-regulates IL-18 receptor expression on T cells, Th1 cells, and B cells: synergism with IL-18 for IFN-gamma production. *J Immunol* 161, 3400–3407 (1998).
Tominaga, K. *et al.* IL-12 synergizes with IL-18 or IL-1beta for IFN-gamma production from human T cells. *Int Immunol* 12, 151–160 (2000).
Nakahira, M. *et al.* Synergy of IL-12 and IL-18 for IFN-gamma gene expression: IL-12-induced STAT4 contributes to IFN-gamma promoter activation by up-regulating the binding activity of IL-18-induced activator protein 1. *J Immunol* 168, 1146–1153 (2002).
Hayakawa, Y., Huntington, N. D., Nutt, S. L. & Smyth, M. J. Functional subsets of mouse natural killer cells. *Immunol. Rev* 214, 47–55 (2006).
Hayakawa, Y., Andrews, D. M. & Smyth, M. J. Subset analysis of human and mouse mature NK cells. *Methods Mol. Biol.* 612, 27–38, https://doi.org/10.1007/978-1-60761-362-6_3 (2011).
De Colvenaer, V. *et al.* CD27-deficient mice show normal NK-cell differentiation but impaired function upon stimulation. *Immunol Cell Biol* 89, 803–811, http://www.nature.com/icb/journal/v89/n7/suppinfo/icb2010171s1.html (2011).
Sun, J., Dodd, H., Moser, E. K., Sharma, R. & Raciale, T. J. CD4+ T cell help and innate-derived IL-27 induce Blimp-1-dependent IL-10 production by antiviral CTLs. *Nat Immunol* 12, 327–334, http://www.nature.com/ni/journal/v12/n4/sbs/n1996.html#supplementary-information (2011).
Berenson, L. S., Farrar, J. D., Murphy, T. L. & Murphy, K. M. Frontline: absence of functional STAT4 activation despite detectable tyrosine phosphorylation induced by murine IFN-alpha. *Eur. J. Immunol* 34, 2365–2374 (2004).
Watford, W. T. *et al.* Signaling by IL-12 and IL-23 and the immunoregulatory roles of STAT4. *Immunol Rev* 202, 139–156 (2004).
Yoshimoto, T. *et al.* Antiproliferative activity of IL-27 on melanoma. *J Immunol* 180, 6527–6533 (2008).
Owaki, T. *et al.* STAT3 is indispensible to IL-27-mediated cell proliferation but not to IL-12-induced Th1 differentiation and suppression of proinflammatory cytokine production. *J Immunol* 180, 2903–2911 (2008).
Chen, Q. *et al.* Development of Th1-type immune responses requires the type 1 cytokine receptor TCCR. *Nature* 407, 916–920, http://www.nature.com/nature/journal/v407/n6806/suppinfo/407916a_S1.html (2000).
Regnathun, J., Chen, Y., Wang, D. & Malarvanan, S. NKG2D receptor–mediated NK cell function is regulated by inhibitory Ly49 receptors. *Vol. 105 (2005).
Mason, L. H. *et al.* The Ly-49D Receptor Activates Murine Natural Killer Cells. *The Journal of Experimental Medicine* 184, 2119–2128, https://doi.org/10.1084/jem.184.6.2119 (1996).

Acknowledgements

We thank Lucia Sammarco and her Lulu’s Lemonade Stand for inspiration, motivation, and support. This work was supported in part by NIH R01 AI102893 (S.M.) and NCI R01 CA179363 (S.M. and M.S.T.); Alex Lemonade Stand Foundation (S.M.); HRHM Program of MACC Fund (S.M.), Nicholas Family Foundation (S.M.); Gardetto Family (S.M.); Hyundai Scholars Program (M.S.T.); Pavlove Foundation (M.S.T.); Rebecca Jean Shye Endowment (M.S.T.); MCW-Cancer Center-Large Seed Grant (S.M. & M.S.T.); MACC Fund (M.S.T. and S.M.); Ann’s Hope Melanoma Foundation (S.M. and M.S.T.); and Advancing Healthier Wisconsin (S.M. & M.R.).

Author Contributions

P.K. conceived the concepts, performed the experiments, assessed the data, and contributed to the writing of the manuscript. K.R. performed contributed in part with performing experiments. A.N. performed experiments and processed data. J.G. contributed in designing experiments and reagents. M.S.T. contributed towards editing of the text. S.M. conceived the concepts, designed experiments, and wrote the manuscript.

Additional Information

Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-019-41478-6.

Competing Interests: The authors declare no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.