DUBROVIN EQUATIONS AND INTEGRABLE SYSTEMS ON HYPERELLIPTIC CURVES

FRITZ GESZTESY AND HELGE HOLDEN

Abstract. We introduce the most general version of Dubrovin-type equations for divisors on a hyperelliptic curve K_g of arbitrary genus $g \in \mathbb{N}$, and provide a new argument for linearizing the corresponding completely integrable flows. Detailed applications to completely integrable systems, including the KdV, AKNS, Toda, and the combined sine-Gordon and mKdV hierarchies, are made. These investigations uncover a new principle for $1 + 1$-dimensional integrable soliton equations in the sense that the Dubrovin equations, combined with appropriate trace formulas, encode all hierarchies of soliton equations associated with hyperelliptic curves. In other words, completely integrable hierarchies of soliton equations determine Dubrovin equations and associated trace formulas and, vice versa, Dubrovin-type equations combined with trace formulas permit the construction of hierarchies of soliton equations.

1. Introduction

The purpose of this paper is to re-examine Dubrovin equations for divisors on hyperelliptic Riemann surfaces and to underscore their exceptional role in connection with completely integrable hierarchies of soliton equations.

Starting from four representative hierarchies, the Korteweg–de Vries (KdV), Ablowitz–Kaup–Newell–Segur (AKNS), Toda lattice (Tl), and the combined sine-Gordon and mKdV (sGmKdV) hierarchy, we derive a new argument for linearizing the corresponding completely integrable flows. As a result of these investigations we show that a proper combination of Dubrovin equations and trace formulas involving auxiliary divisors on hyperelliptic curves encodes all information on the underlying completely integrable hierarchy of soliton equations.

In Section 2 we briefly review some basic facts on hyperelliptic curves and establish the notation used throughout this paper. Section 3 provides a “crash course” into the four different hierarchies closely following the detailed accounts in [11], [33], [34], [35], and [36]. In particular, we outline an elementary polynomial, recursive approach to these hierarchies, as originally developed by S. I. Al’ber [1], [2] in the KdV context, and introduce the corresponding divisors on K_g associated with their algebro-geometric solutions. Section 4 relates the polynomial recursion relation approach with elementary symmetric functions (and functions derived from them) of $\mu_1(x, t_r), \ldots, \mu_g(x, t_r)$, where $\mu_j(x, t_r)$ are certain analogs of Dirichlet-type eigenvalues of the corresponding Lax operator. In Section 5 we study Dubrovin equations and, based on the results of Section 4, provide a new proof of the fundamental fact that a change of coordinates effected by the Abel map straightens out the flows on the Jacobi variety $J(K_g)$ of K_g. In Section 6 we briefly recall the theta function representations of algebro-geometric solutions and Section 7 illustrates our results by deriving interesting connections between the KdV$_g$ and sG equations, and AKNS and Toda hierarchies, respectively. These connections establish the fundamental role played by the Dubrovin equations as the common underlying principle for hierarchies of soliton equations. In particular, our formalism establishes an isomorphism between the class of algebro-geometric solutions of these integrable systems. Finally, Appendix A collects some useful results in connection with Lagrange interpolation formulas.

Date: November 20, 2018.
1991 Mathematics Subject Classification. Primary 35Q53, 35Q55, 39A10, 58F07; Secondary 35Q51, 35Q82.
Research supported in part by the Research Council of Norway under grant 107510/410, the US National Science Foundation under grant DMS-9623121, and the University of Missouri Research Board grant RB-97-086.
We emphasize that our results are not necessarily restricted to hyperelliptic curves. In particular, the approach of this paper applies to Boussinesq-type curves using the polynomial recursion formalism for the Boussinesq hierarchy developed in [19], [20].

Depending perhaps a bit on one’s taste, the results of this paper may at first sight appear somewhat discouraging as they clearly shift the emphasis from individual hierarchies of soliton equations toward Dubrovin-type equations. On the positive side, however, they establish the Dubrovin equations as a universal object underlying all hierarchies.

We note that our approach to completely integrable soliton equations is close in spirit to that developed by M. S. Al’ber and S. I. Al’ber in a series of papers (see, e.g., [1]–[7] and the references therein). While their approach focuses on algebraically integrable systems and hence on a Hamiltonian formalism with associated action and angle variables, our approach concentrates on how a combination of elementary symmetric functions of \(\mu_1(x, t_1), \ldots, \mu_g(x, t_r) \) and certain trace formulas generate completely integrable hierarchies of soliton equations and their algebro-geometric solutions.

A different series of papers closely related to our investigations and focusing on characterizing real-valued solutions of various soliton equations was published by Chen, Chin, Lee, Neil, Ting, and Tracy [59]–[61], [63]–[65]. These authors, however, appear to be unaware of the prior work of M. S. Al’ber and S. J. Al’ber in this field.

Finally, we stress that the use of elementary symmetric functions and hence of trace formulas in terms of Dirichlet eigenvalues has a long history in the context of integrable equations. In fact, as early as 1975, Flaschka [30] characterized the real-valued periodic potentials \(q \) with finitely many stability intervals of the associated Schrödinger operator \(-d^2/dx^2 + q \in L^2(\mathbb{R}; dx)\) as stationary solutions of the KdV hierarchy using (regularized) trace relations for Dirichlet eigenvalues associated with \(q \) and the underlying periodicity interval.

2. Hyperelliptic curves

Fix \(N \in \mathbb{N}_0 \). We briefly review hyperelliptic Riemann surfaces of the type,

\[
\mathcal{F}_N(z, y) = y^2 - R_{N+1}(z) = 0, \quad R_{N+1}(z) = \prod_{m=0}^{N} (z - E_m),
\]

The material of this section is standard and can be found, for instance, in [29]. The curve (2.1) is compactified by adding one point \(P_\infty \) at infinity if \(N \) is even, and two points \(P_\infty^+ \) and \(P_\infty^- \) if \(N \) is odd.

One introduces an appropriate set of \(\lfloor (N + 1)/2 \rfloor \) nonintersecting cuts \(C_j \) joining \(E_{m(j)} \) and \(E_{m'(j)} \) and \(C_\infty \) joining \(E_N \) and \(\infty \) if \(N \) is even. Denote

\[
\mathcal{C} = \bigcup_{j \in J \cup \{\infty\}} C_j, \quad C_j \cap C_k = \emptyset, \quad j \neq k,
\]

where \(J \subseteq \{1, \ldots, \lfloor (N + 1)/2 \rfloor \} \). Define the cut plane

\[
\Pi = \mathbb{C} \setminus \mathcal{C},
\]

and introduce the holomorphic function

\[
R_{N+1}(\cdot)^{1/2}: \Pi \to \mathbb{C}, \quad z \mapsto \left(\prod_{m=0}^{N} (z - E_m) \right)^{1/2}
\]

on \(\Pi \) with an appropriate choice of the square root branch in \((2.4) \). Define

\[
\mathcal{M}_g = \{(z, \sigma R_{N+1}(z)^{1/2}) \mid z \in \mathbb{C}, \sigma \in \{\pm 1\}\} \cup \begin{cases} \{P_\infty\} & \text{for } N \text{ even}, \\ \{P_\infty^+, P_\infty^-\} & \text{for } N \text{ odd}, \end{cases}
\]

\[1[x] = \sup\{y \in \mathbb{Z} \mid y \leq x\}.\]
by extending $R_{N+1}(\cdot)^{1/2}$ to C. The hyperelliptic curve K_g is then the set \mathcal{M}_g with its natural complex structure obtained upon gluing the two sheets of \mathcal{M}_g crosswise along the cuts. Finite points P on K_g are denoted by $P = (z, y)$, where $y(P)$ denotes the meromorphic function on K_g satisfying $F_N(z, y) = y^2 - R_{N+1}(z) = 0$; K_g has genus $g = \lfloor (N + 1)/2 \rfloor$.

A basis of \mathfrak{g} linearly independent holomorphic differentials on K_g is given by $z^{\ell-1} \frac{dz}{y(P)}$ for $\ell = 1, \ldots, g$, and we introduce

$$\omega_j(P) = \sum_{\ell=1}^{g} c_{j,\ell} z^{\ell-1} \frac{dz}{y(P)}, \quad j = 1, \ldots, g,$$

with normalization,

$$\int_{a_k} \omega_j = \delta_{j,k},$$

where $\{a_j, b_j\}_{j=1}^{g}$ is a homology basis for K_g.

Define the matrix $\tau = (\tau_{j,\ell})$ by

$$\tau_{j,\ell} = \int_{b_j} \omega_\ell.$$

Then $\text{Im}(\tau) > 0$ and $\tau_{j,\ell} = \tau_{\ell,j}$.

The Riemann theta function associated with K_g and the given homology basis $\{a_j, b_j\}_{j=1}^{g}$, by definition, reads

$$\theta(z) = \sum_{\nu \in \mathbb{Z}^g} \exp \left(2\pi i (\nu, z) + \pi i (\nu, \tau \nu) \right), \quad z \in \mathbb{C}^g.$$ (2.9)

We fix a base point P_0 on K_g and define the Abel map A_{P_0} by

$$A_{P_0}(P) = (\int_{P_0}^P d\omega_1, \ldots, \int_{P_0}^P d\omega_g) \pmod{L_g}, \quad P \in K_g,$$ (2.10)

with period lattice

$$L_g = \{n + \tau m \mid n, m \in \mathbb{Z}^g\}.$$ (2.11)

Similarly, we introduce

$$\alpha_{P_0} : \text{Div}(K_g) \to J(K_g), \quad \mathcal{D} \mapsto \alpha_{P_0}(\mathcal{D}) = \sum_{P \in \mathcal{K}_g} \mathcal{D}(P) A_{P_0}(P),$$ (2.12)

where $\text{Div}(K_g)$ and $J(K_g) = \mathbb{C}^g/L_g$ denote the set of divisors on K_g and the Jacobi variety of K_g, respectively.

In connection with divisors on K_g we shall employ the following (additive) notation,

$$\mathcal{D}_{\underline{Q}} = \mathcal{D}_Q + \mathcal{D}_{\overline{Q}}, \quad \mathcal{D}_{\underline{Q}} = \mathcal{D}_{Q_1} + \cdots + \mathcal{D}_{Q_n},$$

for $\underline{Q} = (Q_1, \ldots, Q_n) \in \sigma^n K_g,$ (2.13)

where for any $Q \in K_g$,

$$\mathcal{D}_Q : K_g \to \mathbb{N}_0, \quad P \mapsto \mathcal{D}_Q(P) = \begin{cases} 1 & \text{for } P = Q, \\ 0 & \text{for } P \in K_g \setminus \{Q\}, \end{cases}$$ (2.14)

and $\sigma^n K_g$ denotes the nth symmetric product of K_g.
3. The hierarchies

We give a brief presentation of the KdV, AKNS, sGmKdV, and Toda hierarchies based on a polynomial, recursive approach. The material of this section originated with work of S. I. Al’ber [1, 2] (see also [3–6]). It has been further developed in [1, 8, 9, 12, 13], and we closely follow the latter sources. Common to all these hierarchies is that one can naturally associate with each one of them a hyperelliptic curve as described in the previous section.

The KdV hierarchy. The Lax pair consists of a second-order linear differential expression \(L \) of Schrödinger-type,

\[
L(t_{g}) = -\frac{d^{2}}{dx^{2}} + V(x, t_{g}), \quad t_{g} \in \mathbb{R}
\]

(3.1)

and a differential expression \(P_{2g+1}(t_{g}) \) of order \(2g + 1 \) defined recursively as follows. Let \(\{f_{j}\}_{j \in \mathbb{N}_{0}} \) be given by

\[
f_{0} = 1, \quad f_{j,x} = -\frac{1}{4} f_{j-1,x,x,x} + V f_{j-1,x} + \frac{1}{2} V_{x} f_{j-1}, \quad j \in \mathbb{N}.
\]

(3.2)

Explicitly \((f_{j} = f_{j}(x, t_{g}), (x, t_{g}) \in \mathbb{R}^{2})\),

\[
f_{1} = \frac{1}{2} V + c_{1}, \quad f_{2} = -\frac{1}{8} V_{xx} + \frac{3}{8} V^{2} + c_{1} \frac{1}{2} V + c_{2}, \quad \text{etc.},
\]

(3.3)

where \(c_{j} \in \mathbb{C} \) are integration constants. Then one defines

\[
P_{2g+1}(t_{g}) = \sum_{j=0}^{g} (f_{j}(t_{g}) \frac{d}{dx} - \frac{1}{2} f_{j,x}(t_{g})) L(t_{g})^{g-j}, \quad g \in \mathbb{N}_{0},
\]

(3.4)

and using the definition of \(f_{j} \) in (3.2), one finds that the commutator of \(L(t_{g}) \) and \(P_{2g+1}(t_{g}) \) is in fact a multiplication operator. Indeed, the Lax commutator representation reads

\[
L_{t_{g}}(t_{g}) - [P_{2g+1}(t_{g}), L(t_{g})] = V_{t_{g}} - 2 f_{g+1,x}(x, t_{g}) = \text{KdV}_{g}(V) = 0.
\]

(3.5)

Explicitly, one obtains for the first few KdV equations,

\[
\begin{align*}
\text{KdV}_{0}(V) &= V_{t_{0}} - V_{x} = 0, \\
\text{KdV}_{1}(V) &= V_{t_{1}} + \frac{1}{4} V_{xxx} - \frac{3}{2} V_{x} - c_{1} V_{x} = 0, \\
\text{KdV}_{2}(V) &= V_{t_{2}} - \frac{1}{16} V_{xxxx} + \frac{3}{8} V_{xx} V_{x} + \frac{1}{4} V_{x} V_{xx} \\
&\quad - \frac{15}{8} V^{2} V_{x} - c_{2} V_{x} + c_{1} \left(\frac{1}{4} V_{xxx} - \frac{3}{2} V V_{x} \right) = 0, \quad \text{etc.,}
\end{align*}
\]

(3.6)

where, of course, KdV\(_{1}(V)\) is the KdV equation.

Next define the polynomial \(F_{g}(z, x, t_{g}) \) of degree \(g \) in \(z \)

\[
F_{g}(z, x, t_{g}) = \sum_{j=0}^{g} f_{g-j}(x, t_{g}) z^{j} = \prod_{j=1}^{g} (z - \mu_{j}(x, t_{g}))
\]

(3.7)

implying

\[
-2 V_{t_{g}} = F_{g,xxx} - 4 (V - z) F_{g,x} - 2 V_{x} F_{g}.
\]

(3.8)

In the special stationary case, defined by \(V_{t_{g}} = 0 \), this integrates to

\[
\frac{1}{2} F_{g,xx} F_{g} - \frac{1}{4} F_{g,x}^{2} - (V - z) F_{g}^{2} = R_{2g+1}(z).
\]

(3.9)

Here \(R_{2g+1} \) is a monic polynomial of degree \(2g + 1 \) with zeros \(\{E_{0}, \ldots, E_{2g}\} \). Hence,

\[
R_{2g+1}(z) = \prod_{m=0}^{2g} (z - E_{m}), \quad \{E_{m}\}_{m=0,...,2g} \subset \mathbb{C}.
\]

(3.10)

\(^{2}\)The zeros \(\mu_{j}(x, t_{g}) \) of \(F_{g} \) turn out to be eigenvalues associated with \(L(t_{g}) \) and a Dirichlet boundary condition at the point \(x \in \mathbb{R} \).
The hyperelliptic curve K_g is defined in terms of the stationary KdV hierarchy obtained by considering a t_g-independent function $V = V(x)$, resulting in

$$[P_{2g+1}, L] = 2f_{g+1,x} = 0. \tag{3.11}$$

The classical Burchnall–Chaundy theorem \cite{12, 13, 14} (see also \cite{16}, \cite{17}) states that commuting differential operators are algebraically related. In the present context one finds

$$P_{2g+1}^2 = R_{2g+1}(L) \tag{3.12}$$

and thus the hyperelliptic curve K_g of genus g is of the type $y^2 = R_{2g+1}(z)$, with $N = 2g$ even when compared to Section 2.

For later purpose we quote the following asymptotic high-energy expansion \cite{31, 32, 57}

$$\frac{iF_g(z,x,t_g)}{2R_{2g+1}(z)^{1/2}} \approx \frac{i}{2z^{1/2}} \sum_{j=0}^{\infty} \hat{f}_j(x,t_g) z^{-j}, \tag{3.13}$$

where \hat{f}_j denotes the homogeneous coefficients f_j with all integration constants equal to zero, $c_\ell = 0$, $\ell \geq 1$, that is,

$$\hat{f}_0 = f_0 = 1, \quad \hat{f}_j = f_j|_{c_\ell=0}, \quad \ell = 1, \ldots, j, j \in \mathbb{N}. \tag{3.14}$$

We also introduce the following fundamental meromorphic function on K_g,

$$\phi(P, x, t_g) = \frac{i\gamma(P) + \frac{1}{2} F_{g,x}(z,x,t_g)}{F_g(z,x,t_g)} = \frac{-H_{g+1}(z,x,t_g)}{i\gamma(P) - \frac{1}{2} F_{g,x}(z,x,t_g)}, \quad (x,t_g) \in \mathbb{R}^2 \tag{3.15}$$

(the second equality in (3.13) serving as a definition of the polynomial H_{g+1} of degree $g+1$ with respect to z) and the time-dependent Baker–Ackiezer function $\psi(P, x_0, t_g, t_0, g)$ on $K_g \setminus \{P_\infty\}$,

$$\psi(P, x_0, t_g, t_0, g) = \exp \left(\int_{t_0}^{t_g} ds \left(F_g(z, x_0, s) \phi(P, x_0, s) - \frac{1}{2} F_{g,x}(z, x_0, s) \right) + \int_{x_0}^{x} dx' \phi(P, x', t_g) \right), \quad (x,x_0,t_g,t_0,g) \in \mathbb{R}^4. \tag{3.16}$$

The divisor $(\phi(P, x, t_g))$ of $\phi(P, x, t_g)$ is given by

$$(\phi(P, x, t_g)) = D_{\mu_0(x,t_g)} \hat{\omega}(x, t_g) - D_{\nu_0(x,t_g)} \hat{\nu}(x, t_g), \tag{3.17}$$

where

$$\hat{\mu}(x, t_g) = (\hat{\mu}_1(x, t_g), \ldots, \hat{\mu}_g(x, t_g)) \in \sigma^g K_g, \quad \hat{\mu}_j(x, t_g) = (\mu_j(x, t_g), -\frac{1}{2} F_{g,x}(\mu_j(x, t_g), x, t_g)), \quad j = 1, \ldots, g \tag{3.18}$$

denote the Dirichlet divisors\footnote{For an appropriate choice of the sign of the square roots in (3.13), the left-hand side of (3.13) equals the Green’s function on the diagonal (i.e., for $x = x'$) of $L(t_g)$.} and

$$\hat{\nu}(x, t_g) \hat{\nu}(x, t_g) = (\hat{\nu}_0(x, t_g), \ldots, \hat{\nu}_g(x, t_g)) \in \sigma^{g+1} K_g, \quad \hat{\nu}_\ell(x, t_g) = (\nu_\ell(x, t_g), 1/2 F_{g,x}(\nu_\ell(x, t_g), x, t_g)), \quad \ell = 0, \ldots, g \tag{3.19}$$

abbreviate the Neumann divisors\footnote{The zeros $\nu_\ell(x, t_g)$ of H_{g+1} turn out to be eigenvalues associated with $L(t_g)$ and a Neumann boundary condition at the point $x \in \mathbb{R}$.} derived from the zeros of $H_{g+1}(z, x, t_g)$,

$$H_{g+1}(z, x, t_g) = \prod_{\ell=0}^{g} (z - \nu_\ell(x, t_g)). \tag{3.20}$$

The importance of ϕ in connection with divisors on hyperelliptic curves was recognized by Jacobi \cite{41}, \cite{42} and applied to the KdV case by Mumford \cite{33}, Sect. IIIa.1 and McKean \cite{49} (see also \cite{28}, \cite{30}).
The AKNS hierarchy. The Lax pair consists of a Dirac-type matrix-valued differential expression
\[
M(t_g) = i \left(\frac{d}{dx} - q(x, t_g) \right), \quad t_g \in \mathbb{R},
\]
and a matrix-valued differential operator \(Q_{g+1}(t_g) \) of order \(g + 1 \). To define \(Q_{g+1}(t_g) \) we proceed as follows. Define \(\{ f_\ell(x, t_g) \} \), \(\{ g_\ell(x, t_g) \} \), and \(\{ h_\ell(x, t_g) \} \) recursively by ((\((x, t_g) \in \mathbb{R}^2\)),
\[
f_0 = -i q, \quad g_0 = 1, \quad h_0 = ip,
\]
\[
f_{\ell+1} = \frac{i}{2} f_{\ell,x} - i q g_{\ell+1}, \quad g_{\ell+1,x} = p f_{\ell} + q h_{\ell}, \quad h_{\ell+1} = -\frac{i}{2} h_{\ell,x} + i p g_{\ell+1}, \quad \ell \in \mathbb{N}_0.
\]
The \(2 \times 2 \) matrix \(Q_{g+1}(t_g) \) is then defined by
\[
Q_{g+1}(t_g) = i \sum_{\ell=0}^{g+1} \begin{pmatrix} -g_{\ell+1}-\ell(t_g) & f_{\ell,-\ell}(t_g) \\ -h_{\ell+1}-\ell(t_g) & g_{\ell+1}-\ell(t_g) \end{pmatrix} M(t_g)^\ell, \quad g \in \mathbb{N}_0, \quad f_{-1} = h_{-1} = 0,
\]
and one verifies that the commutator of \(Q_{g+1}(t_g) \) and \(M(t_g) \) becomes
\[
[Q_{g+1}(t_g), M(t_g)] = \begin{pmatrix} 0 & -2i f_{g+1}(t_g) \\ 2ih_{g+1}(t_g) & 0 \end{pmatrix}, \quad g \in \mathbb{N}_0.
\]
Consequently, the Lax commutator representation for the AKNS hierarchy reads
\[
\frac{d}{dt_g} M(t_g) - [Q_{g+1}(t_g), M(t_g)] = \begin{pmatrix} p_{g}(x, t_g) - 2h_{g+1}(x, t_g) \\ q_{g}(x, t_g) - 2f_{g+1}(x, t_g) \end{pmatrix} = \text{AKNS}_g(p, q) = 0, \quad g \in \mathbb{N}_0.
\]

The first few equations equal,
\[
\text{AKNS}_0(p, q) = \begin{pmatrix} p_0 - p_x + c_1(-2ip) \\ q_0 - q_x + c_1(2iq) \end{pmatrix} = 0,
\]
\[
\text{AKNS}_1(p, q) = \begin{pmatrix} p_1 + \frac{1}{2} p_{xx} - ip^2 q + c_1(-p_x) + c_2(-2ip) \\ q_1 - \frac{1}{2} q_{xx} + ipq^2 + c_1(-q_x) + c_2(2iq) \end{pmatrix} = 0, \quad \text{etc.}
\]

Next, define polynomials \(F_g, G_{g+1}, \) and \(H_g \) with respect to \(z \in \mathbb{C} \),
\[
F_g(z, x, t_g) = \sum_{\ell=0}^{g} f_{\ell}(x, t_g) z^\ell = -i q(x, t_g) \prod_{j=1}^{g}(z - \mu_j(x, t_g)),
\]
\[
G_{g+1}(z, x, t_g) = \sum_{\ell=0}^{g+1} g_{\ell+1}(x, t_g) z^\ell,
\]
\[
H_g(z, x, t_g) = \sum_{\ell=0}^{g} h_{\ell}(x, t_g) z^\ell = ip(x, t_g) \prod_{j=1}^{g}(z - \nu_j(x, t_g)).
\]

In the special stationary case, where \(p_x = q_x = 0 \), we infer from the recursion (3.22) that
\[
(C^2_{g+1} - F_g H_g)_x = 0
\]
and hence
\[
G^2_{g+1} - F_g H_g = R_{2g+2}(z),
\]
where \(R_{2g+2} \) is a monic polynomial of degree \(2g + 2 \) with zeros \(\{E_0, \ldots, E_{2g+1}\} \). Thus,
\[
R_{2g+2}(z) = \prod_{m=0}^{2g+1} (z - E_m), \quad \{E_m\}_{m=0,\ldots,2g+1} \subset \mathbb{C}.
\]
The stationary case determines the hyperelliptic curve \(\mathcal{K}_g \) of genus \(g \) of the type \(y^2 = R_{2g+1}(z) \), with \(N = 2g + 1 \) when compared to Section 3. If \(p = p(x) \) and \(q = q(x) \) are stationary solutions of the AKNS equation,

\[
[Q_{g+1}, M] = 0, \quad \text{that is,} \quad f_{g+1} = h_{g+1} = 0,
\]

Burchnall–Chaundy’s theorem implies that

\[
Q_{g+1}^2 + R_{2g+2}(M) = 0.
\]

By studying the Green’s matrix of \(M \) one finds the following asymptotic high-energy expansion.

\[
\begin{align*}
\frac{F_g(z, x, t_g)}{R_{2g+2}(z)^{1/2}} &= \frac{1}{z} \sum_{k=0}^{\infty} \hat{f}_k(x, t_g) z^{-k}, \\
\frac{H_g(z, x, t_g)}{R_{2g+2}(z)^{1/2}} &= \frac{1}{z} \sum_{k=0}^{\infty} \hat{h}_k(x, t_g) z^{-k}
\end{align*}
\]

for an appropriate determination of the square roots in (3.33) and (3.34). Here \(\hat{f}_j \) and \(\hat{h}_j \) denote the homogeneous quantities with vanishing integration constants \(c_\ell, \ell \geq 1 \), that is,

\[
\begin{align*}
\hat{f}_0 &= f_0 = -i q, & \hat{f}_j &= f_{j|c_\ell=0}, & \ell = 1, \ldots, j, j \in \mathbb{N}, \\
\hat{h}_0 &= h_0 = i p, & \hat{h}_j &= h_{j|c_\ell=0}, & \ell = 1, \ldots, j, j \in \mathbb{N}.
\end{align*}
\]

We also record the functions

\[
\phi(P, x, t_g) = \frac{y(P) + G_{g+1}(z, x, t_g)}{F_g(z, x, t_g)} = \frac{-H_g(z, x, t_g)}{y(P) - G_{g+1}(z, x, t_g)},
\]

\(P = (z, y) \in \mathcal{K}_g \)

and the Baker-Akhiezer vector,

\[
\Psi(P, x, x_0, t_g, t_{0,g}) = \begin{bmatrix} \psi_1(P, x, x_0, t_g, t_{0,g}) \\ \psi_2(P, x, x_0, t_g, t_{0,g}) \end{bmatrix},
\]

\[
\psi_1(P, x, x_0, t_g, t_{0,g}) = \exp \left(\int_{x_0}^{x} dx' \left(-i z + q(x', t_g) \phi(P, x', t_g) \right) \right)
\]

\[
+ i \int_{t_{0,g}}^{t_g} ds (F_g(z, x_0, s) \phi(P, x_0, s) - G_{g+1}(z, x_0, s)) \right),
\]

\[
\psi_2(P, x, x_0, t_g, t_{0,g}) = \phi(P, x, t_g) \psi_1(P, x, x_0, t_g),
\]

\(P \in \mathcal{K}_g \setminus \{ P_{\infty_x} \}, (x, t_g) \in \mathbb{R}^2 \).

The divisor of \(\phi(P, x, t_g) \) is given by

\[
(\phi(P, x, t_g)) = D_{P_{\infty_x}} \hat{\chi}(x, t_g) - D_{P_{\infty_x}} \hat{\chi}(x, t_g),
\]

where

\[
\hat{\mu}(x, t_g) = (\hat{\mu}_1(x, t_g), \ldots, \hat{\mu}_g(x, t_g)) \in \sigma^\mathbb{K}_g,
\]

\[
\hat{\mu}_j(x, t_g) = (\mu_j(x, t_g), G_{g+1}(\mu_j(x, t_g), x, t_g)), \quad j = 1, \ldots, g
\]

and

\[
\hat{\nu}(x, t_g) = (\hat{\nu}_1(x, t_g), \ldots, \hat{\nu}_g(x, t_g)) \in \sigma^\mathbb{K}_g,
\]

\[
\hat{\nu}_j(x, t_g) = (\nu_j(x, t_g), -G_{g+1}(\nu_j(x, t_g), x, t_g)), \quad j = 1, \ldots, g.
\]

The Toda hierarchy. Let \((S^\pm f)(n) = f^\pm(n) = f(n \pm 1), \ n \in \mathbb{Z}\) denote the shift operation on the lattice \(\mathbb{Z} \). The equations in the Toda hierarchy are continuous in time and discrete in the space variable. The Lax pair consists of the second-order difference operator

\[
L(t_g) = a(t_g) S^+ + a^-(t_g) S^- - b(t_g), \quad t_g \in \mathbb{R}
\]
and a difference operator $P_{2g+2}(t_g)$ of order $2g + 1$

$$P_{2g+2}(t_g) = -L(t_g)^{g+1} + \sum_{j=0}^{g} \left(g_j(t_g) + 2a(t_g)f_j(t_g)S^+ \right) L(t_g)^{g-j} + f_{g+1}(t_g),$$

$g \in \mathbb{N}_0.$ \hfill (3.44)

Here $\{f_j(n, t_g)\}_{j \in \mathbb{N}_0}$ and $\{g_j(n, t_g)\}_{j \in \mathbb{N}_0}$ satisfy the recursion relations,

$$f_0 = 1, \quad g_0 = -c_1,$$
$$2f_{j+1} + g_j + g_j^- + 2bf_j = 0, \quad j \in \mathbb{N}_0,$$
$$g_{j+1} - g_{j+1}^- + 2(a^2f_j^+ - (a^-)^2f_j^-) + b(g_j - g_j^-) = 0, \quad j \in \mathbb{N}_0. \hfill (3.45)$$

The Lax commutator representation of the Toda hierarchy then reads

$$L(t_g) - [P_{2g+2}(t_g), L(t_g)] = \mathcal{T}_0(a, b), S^+ - \mathcal{T}_0(a, b)T + \mathcal{T}_0(a, b^-)S^- = 0,$$

$g \in \mathbb{N}_0,$ \hfill (3.46)

where

$$\mathcal{T}_0(a, b)_1 = at_a + a(g_a^+ + g_a + f_{g+1} + f_{b+1} + 2b^+f_g^+) = 0,$$
$$\mathcal{T}_0(a, b)_2 = bt_a + 2(b(g_a + f_{b+1}) + a^2f_g^+ - (a^-)^2f_g^- + b^2f_g) = 0. \hfill (3.47)$$

This is equivalent to

$$\mathcal{T}_0(a, b) = (\mathcal{T}_0(a, b)_1, \mathcal{T}_0(a, b)_2)^t = 0, \quad g \in \mathbb{N}_0. \hfill (3.48)$$

The first few equations of the Toda hierarchy equal,

$$\mathcal{T}_0(a, b) = \begin{pmatrix} at_a - a(b - b^+) \\ bt_a - 2((a^-)^2 - a^2) \end{pmatrix} = 0, \hfill (3.49)$$

$$\mathcal{T}_1(a, b) = \begin{pmatrix} at_a - a((a^+)^2 - (a^-)^2 + (b^+)^2 - b^2) \\ bt_a - 2a^2(b^+ + b) + 2(a^-)^2(b+b^-) \end{pmatrix} + c_1 \begin{pmatrix} -a(b - b^+) \\ -2((a^-)^2 - a^2) \end{pmatrix} = 0,$$

etc.

Next, define

$$F_g(z, n, t_g) = \sum_{j=0}^{g} z^j f_{g-j}(n, t_g) = \prod_{j=1}^{g} (z - \mu_j(n, t_g)), \hfill (3.50)$$

$$G_{g+1}(z, n, t_g) = -z^{g+1} + \sum_{j=0}^{g} z^j g_{g-j}(n, t_g) + f_{g+1}(n, t_g). \hfill (3.51)$$

In the special stationary case, defined by $at_a = bt_a = 0$, the recursion formulas (3.43) then imply

$$G_{g+1} - 4a^2F_g F_g^+ = G_{g+1} - 4(a^-)^2F_g^- F_g^- = R_{2g+2}(z), \hfill (3.52)$$

where $R_{2g+2}(z)$ is a lattice constant. By inspection, $R_{2g+2}(z)$ is a polynomial in z of degree $2g + 2$ with zeros $\{E_0, \ldots, E_{2g+1}\}$, that is,

$$R_{2g+2}(z) = \prod_{m=0}^{2g+1} (z - E_m), \quad \{E_m\}_{m=0, \ldots, 2g+1} \subset \mathbb{C}. \hfill (3.53)$$

Consider now the stationary hierarchy where $a = a(n)$ and $b = b(n)$ satisfy $[P_{2g+2}, L] = 0$, or

$$g^+_a + g_a + f_{g+1} + f_{b+1} + 2b^+f_g^+ = 0, \hfill (3.54)$$
$$b(g_a + f_{b+1}) + a^2f_g^+ - (a^-)^2f_g^- + b^2f_g = 0. \hfill (3.55)$$

Buchmann–Chaudhry’s theorem then states that

$$P^2_{2g+2} = R_{2g+2}(L). \hfill (3.55)$$
Hence the hyperelliptic curve K_g of genus g reads $y^2 = R_{2g+2}(z)$, and thus $N = 2g + 1$ is odd in the terminology of Section 3.

Studying the diagonal Green's function of $L(t_g)$ yields the high-energy expansion

$$\frac{F_g(z,n,t_g)}{R_{2g+2}(z)^{1/2}} = \sum_{j=0}^{\infty} \tilde{f}_j(n,t_g)z^{-j-1} \text{ for } |z| > \|L\|,$$

(3.56)

with an appropriate choice of the radial in (3.56). Here \tilde{f}_j and similarly \hat{g}_j, denote the homogeneous coefficients f_j and g_j with vanishing integration constants $c_\ell = 0$, $\ell \geq 1$, that is,

$$f_0 = 1, \quad \tilde{f}_j = f_j|_{c_\ell=0}, \quad \ell = 1, \ldots, j, \quad j \in \mathbb{N},$$

(3.57)

$$\hat{g}_0 = 0, \quad \hat{g}_j = g_j|_{c_\ell=0}, \quad \ell = 1, \ldots, j + 1, \quad j \in \mathbb{N}.$$

(3.58)

Furthermore, define the meromorphic function $\phi(P,n,t_g)$ on K_g by

$$\phi(P,n,t_g) = \frac{-G_{g+1}(z,n,t_g) + \gamma(P)}{2a(n,t_g)F_g(z,n,t_g)} = -\frac{2a(n,t_g)F_g(z,n+1,t_g)}{G_{g+1}(z,n,t_g) + \gamma(P)}, \quad P = (z,y)$$

(3.59)

using relation (3.53). With the help of $\phi(P,n,t_g)$ we define another meromorphic function $\psi(P,n,n_0,t_g,t_0,g)$ on K_g, the Baker–Akhiezer function, by

$$\psi(P,n,n_0,t_g,t_0,g) = \exp\left(\int_{t_0,g}^{t} ds\left(2a(n_0,s)F_g(z,n_0,s)\phi(P,n_0,s) + G_{g+1}(z,n_0,s)\right)\right) \times$$

$$\times \left\{ \begin{array}{ll} \prod_{m=n_0}^{m-n_0-1} \phi(P,m,t_g) & \text{for } n \geq n_0 + 1, \\ 1 & \text{for } n = n_0, \\ \prod_{m=n}^{m-n-1} \phi(P,m,t_g)^{-1} & \text{for } n \leq n_0 - 1. \end{array} \right. \right.$$

(3.60)

The divisor $(\phi(P,n,t_g))$ of $\phi(P,n,t_g)$ is given by

$$(\phi(P,n,t_g)) = D_{P_n} - \hat{\omega}(n+1,t_g) - D_{P_{g+n}} - \hat{\omega}(n,t_g),$$

(3.61)

where

$$\hat{\mu}(m,t_g) = (\hat{\mu}_1(m,t_g), \ldots, \hat{\mu}_g(m,t_g)) \in \sigma^gK_g, \quad m \in \mathbb{Z},$$

(3.62a)

$$\hat{\mu}_j(n,t_g) = (\mu_j(n,t_g), -G_{g+1}(\mu_j(n,t_g), n,t_g)), \quad j = 1, \ldots, g,$$

(3.62b)

$$\hat{\mu}_j(n+1,t_g) = (\mu_j(n+1,t_g), G_{g+1}(\mu_j(n+1,t_g), n,t_g)), \quad j = 1, \ldots, g.$$

(3.62c)

The sGmKdV hierarchy. The combined sine-Gordon and mKdV hierarchy is defined in terms of a zero curvature formalism as follows. Introduce the 2×2 matrices

$$U(z,x,t_g) = -i\begin{pmatrix} \frac{1}{2}u_x(x,t_g) & 1 \\ z & -\frac{1}{2}u_x(x,t_g) \end{pmatrix}, \quad (x,t_g) \in \mathbb{R}^2,$$

(3.63)

and

$$V_g(z,x,t_g) = \begin{pmatrix} -G_{g-1}(z,x,t_g) & \frac{1}{2}F_g(z,x,t_g) \\ H_g(z,x,t_g) & G_{g-1}(z,x,t_g) \end{pmatrix}, \quad (x,t_g) \in \mathbb{R}^2, \quad g \in \mathbb{N}_0.$$

(3.64)

Then the zero curvature relation reads

$$U_t - V_{g,x} + [U,V_g] = 0, \quad g \in \mathbb{N}_0,$$

(3.65)

resulting in the equations

$$u_{xt_g}(x,t_g) = -2iG_{g-1,x}(x,t_g) - 2(H_g(x,t_g) - F_g(x,t_g)),$$

(3.66a)

$$F_{g,x}(x,t_g) = -iu_x(x,t_g)F_g(x,t_g) - 2izG_{g-1}(x,t_g),$$

(3.66b)

$$H_{g,x}(x,t_g) = iu_x(x,t_g)H_g(x,t_g) + 2izG_{g-1}(x,t_g).$$

(3.66c)
Making the following polynomial ansatz

\[F_g(z, x, t_\theta) = \sum_{j=0}^{g} f_{g-j}(x, t_\theta) z^j = \prod_{j=1}^{g} (z - \mu_j(x, t_\theta)), \]

(3.67a)

\[H_g(z, x, t_\theta) = \sum_{j=0}^{g} h_{g-j}(x, t_\theta) z^j = \prod_{j=1}^{g} (z - \nu_j(x, t_\theta)), \]

(3.67b)

\[G_{-1}(z, x, t_\theta) = 0, \quad G_{g-1}(z, x, t_\theta) = \sum_{j=0}^{g-1} g_{g-1-j}(x, t_\theta) z^j, \]

(3.67c)

one concludes\(^5\) (see [33] for a detailed discussion) \((f_j = f_j(x, t_\theta), \text{ etc.})\)

\[f_\theta = \alpha e^{-iu}, \quad h_\theta = \beta e^{iu}, \quad \alpha, \beta \in \mathbb{C}, \quad g \in \mathbb{N}_0. \]

(3.68a)

\[f_0 = 1, \quad f_j, x = -\frac{1}{4} f_{j-1,xxx} + w_j f_{j-1,xx} + \frac{1}{2} w_{j,x} f_{j-1}, \quad j = 1, \ldots, g, \quad g \in \mathbb{N}, \]

(3.68b)

\[h_0 = 1, \quad h_j, x = -\frac{1}{4} h_{j-1,xxx} + w_h h_{j-1,xx} + \frac{1}{2} w_{h,x} h_{j-1}, \quad j = 1, \ldots, g, \quad g \in \mathbb{N}, \]

(3.68c)

where

\[w_\pm = -\frac{1}{4} (u_{xx}^2 \pm 2iu_{xx}), \]

(3.69)

and

\[g_{-1} = 0, \quad g_j = \frac{i}{2} (f_{j,x} + iu_j f_j) = \frac{i}{2} (-h_{j,x} + iu_j h_j), \quad j = 0, \ldots, g-1, \quad g \in \mathbb{N}. \]

(3.70)

Explicitly,

\[g_0 = -\frac{1}{4} u_x, \quad g_1 = \frac{1}{16} u_x^3 + \frac{1}{8} u_{xxx} - \frac{3}{2} u_x, \quad \text{etc.} \]

(3.71)

We also list a few coefficients in the homogeneous case where all integration constants \(c_\ell, \ell \geq 1\) vanish,

\[\hat{f}_0 = f_0 = 1, \quad \hat{g}_0 = g_0 = -\frac{1}{4} u_x, \quad \hat{h}_0 = h_0 = 1, \quad g \in \mathbb{N}, \]

(3.72)

\[\hat{f}_j = f_j|_{c_\ell=0}, \quad \hat{g}_j = g_j|_{c_\ell=0}, \quad \hat{h}_j = h_j|_{c_\ell=0}, \quad \ell = 1, \ldots, j, \quad j = 1, \ldots, g-1, \quad g \geq 2, \]

(3.73)

Remark 3.1. The recursion for the sGmKdV hierarchy is anomalous compared to the other hierarchies studied in this paper. For the KdV, AKNS as well as the Tl hierarchies the functions \(f_j\) (and \(g_j\) and \(h_j\) where applicable) are defined by the same recursion formula for all \(j \in \mathbb{N}\) irrespective of the given genus \(g\). However, for the sG hierarchy \(f_\theta\) and \(h_\theta\) are always given by (3.68a) for \(g \in \mathbb{N}_0\). This raises a compatibility problem in the recursion formalism. A proof of the solvability of the recursion can be found in [33], Appendix C.

The \(g\)th sGmKdV equation is then defined by

\[\text{sGmKdV}_g(u(x, t_\theta)) = u_{xt_\theta}(x, t_\theta) + 2g_{g-1,x}(x, t_\theta) + 2(\beta e^{iu(x,t_\theta)} - \alpha e^{-iu(x,t_\theta)}) = 0, \]

(3.74)

Explicitly, the first few equations read

\[\text{sGmKdV}_0(u) = u_{xt} + 2(\beta e^{iu} - \alpha e^{-iu}) = 0, \]

(3.75)

\[\text{sGmKdV}_1(u) = u_{xt} - iu_{xx} + 2(\beta e^{iu} - \alpha e^{-iu}) = 0, \]

(3.75)

\[\text{sGmKdV}_2(u) = u_{xt} + \frac{1}{2} (u_x^3 + 2u_{xxx}) - c_1 iu_{xx} + 2(\beta e^{iu} - \alpha e^{-iu}) = 0, \quad \text{etc.} \]
Observe that $\alpha = \beta = i/4$ and $g = 0$ yields the well-known sine-Gordon equation in light-cone coordinates. Appropriate choices of α and β in (3.74) include the sinh-Gordon hierarchy, the corresponding elliptic equations, the Liouville model, as well as the modified KdV hierarchy (taking $\alpha = \beta = 0$).

In the stationary case, where $u_{x_t}=0$, we find

$$\frac{d}{dx} \left(zG_{g-1}(z,x)^2 + F_g(z,x)H_g(z,x) \right) = 0$$

(3.76)

and hence

$$zG_{g-1}(z,x)^2 + F_g(z,x)H_g(z,x) = P_{2g}(z),$$

(3.77)

where $P_{2g}(z)$ is x-independent. It is more convenient to define $R_{2g+1}(z) = zP_{2g}(z)$ so that (3.77) becomes

$$z^2G_{g-1}(z,x)^2 + zF_g(z,x)H_g(z,x) = R_{2g+1}(z),$$

(3.78)

where R_{2g+1} is a monic polynomial in z of degree $2g + 1$ of the form

$$R_{2g+1}(z) = \prod_{m=0}^{2g} (z - E_m), \quad E_0 = 0, E_1, \ldots, E_{2g} \in \mathbb{C}.$$

(3.79)

This polynomial defines the hyperelliptic curve K_g of genus g by the relation $y^2 - R_{2g+1}(z) = 0$ and hence $N = 2g$ in the terminology of Section 2. K_g is compactified by adding a point P_∞.

Remark 3.2. Observe that the sGmKdV-curve is a special case of the KdV curve with the additional constraint $E_0 = 0$.

Remark 3.3. In the stationary case the choice of α and β is constrained by the relation

$$\alpha \beta = \prod_{j=1}^{2g} E_j,$$

(3.80)

as can be seen by inserting $z = 0$ in (3.78), using (3.68a) and (3.79).

We now return to the time-dependent formalism. Let $\phi(P,x,t_g)$ be the meromorphic function on K_g given by

$$\phi(P,x,t_g) = \frac{y(P) - zG_{g-1}(z,x,t_g)}{F_g(z,x,t_g)} = \frac{zH_g(z,x,t_g)}{y(P) + zG_{g-1}(z,x,t_g)},$$

(3.81)

$$\quad (x,t_g) \in \mathbb{R}^2, \quad P = (z,y) \in K_g \setminus \{P_\infty\}.$$

Hence the divisor $(\phi(P,x,t_g))$ of $\phi(P,x,t_g)$ reads

$$(\phi(P,x,t_g)) = D_{Q_\infty}(x,t_g) - D_{P_\infty}(x,t_g),$$

(3.82)

with

$$\hat{\mu}(x,t_g) = (\hat{\mu}_1(x,t_g), \ldots, \hat{\mu}_g(x,t_g)) \in \sigma^g K_g,$$

(3.83a)

$$\hat{\mu}_j(x,t_r) = (\mu_j(x,t_r), -\mu_j(x,t_r)G_{g-1}(\mu_j(x,t_r), x, t_r)) \in K_g, \quad j = 1, \ldots, g,$$

$$\hat{\nu}(x,t_g) = (\hat{\nu}_1(x,t_g), \ldots, \hat{\nu}_g(x,t_g)) \in \sigma^g K_g,$$

(3.83b)

$$\hat{\nu}_j(x,t_r) = (\nu_j(x,t_r), \nu_j(x,t_r)G_{g-1}(\nu_j(x,t_r), x, t_r)) \in K_g, \quad j = 1, \ldots, g.$$

The time-dependent Baker–Akhiezer function

$$\Psi(P,x,x_0,t_g,t_0,g) = \begin{pmatrix} \psi_1(P,x,x_0,t_g,t_0,g) \\ \psi_2(P,x,x_0,t_g,t_0,g) \end{pmatrix}$$

(3.84)

is defined by

$$\psi_1(P,x,x_0,t_g,t_0,g) = \exp \left(-\frac{i}{2} (u(x,t_g) - u(x_0,t_g)) \right)$$

(3.85)
Combining relations (3.67a), (3.67b), and (3.68a) one concludes

\[\psi_2(P, x, t_g) = -\psi_1(P, x, t_g) \phi(P, x, t_g), \]

where \(P \in K_0 \setminus \{ P_0 \} \), \((x, t_g) \in \mathbb{R}^4 \).

We will also need the following asymptotic high-energy expansion

\[\frac{F_g(z, t_g)}{R_{2g+1}(z)^{1/2}} \approx \sum_{j=0}^{\infty} j! \frac{1}{z^{j/2}} f_j(x, t_g) z^{-j}. \]

4. Symmetric functions

Let \(g \in \mathbb{N} \) be fixed and define

\[S_k = \{ \ell = (\ell_1, \ldots, \ell_k) \in \mathbb{N}^k \mid \ell_1 < \cdots < \ell_k \leq g \}, \quad k \leq g. \]

(4.1a)

\[T_k = \{ \ell = (\ell_1, \ldots, \ell_k) \in S_k \mid \ell_m \neq j \}, \quad k \leq g - 1. \]

(4.1b)

Define

\[\Psi_0(\mu) = 1, \quad \Psi_k(\mu) = (-1)^{k} \sum_{\ell \in S_k} \mu_{\ell_1} \cdots \mu_{\ell_k}, \quad k \leq g. \]

(4.2a)

\[\Phi_0(j)(\mu) = 1, \quad \Phi_k(j)(\mu) = (-1)^{k} \sum_{\ell \in T_k} \mu_{\ell_1} \cdots \mu_{\ell_k}, \quad k \leq g - 1, \quad \Phi_g(j)(\mu) = 0. \]

(4.2b)

where \(\mu = (\mu_1, \ldots, \mu_g) \in \mathbb{C}^g \). One recognizes the simple pattern,

\[\Psi_1(\mu) = -\sum_{\ell_1} \mu_{\ell_1}, \quad \Psi_2(\mu) = \sum_{\ell_1, \ell_2} \mu_{\ell_1} \mu_{\ell_2}, \text{ etc.}, \]

(4.3a)

\[\Phi_1(j)(\mu) = -\sum_{\ell \neq j} \mu_{\ell}, \quad \Phi_2(j)(\mu) = \sum_{\ell_1, \ell_2 \neq j} \mu_{\ell_1} \mu_{\ell_2}, \text{ etc.} \]

(4.3b)

Let \(E_0, \ldots, E_N \) be \(N + 1 \) complex numbers, where \(N = 2g \) or \(N = 2g + 1 \) depending on the underlying hierarchy of soliton equations. For brevity we introduce

\[\mathcal{E} = (E_0, \ldots, E_N). \]

(4.4)

We will need the following elementary result.

Lemma 4.1. For \(z \in \mathbb{C} \) such that \(|z| > \max\{|E_0|, \ldots, |E_N|\} \) we have

\[\left(\prod_{m=0}^{N} \left(1 - \frac{E_m}{z} \right) \right)^{-1/2} = \sum_{k=0}^{\infty} c_k(\mathcal{E}) z^{-k}, \]

(4.5)

where

\[c_0(\mathcal{E}) = 1, \quad c_k(\mathcal{E}) = \sum_{j_0 \ldots j_N = 0}^{k} \frac{(2j_0 - 1)!! \cdots (2j_N - 1)!!}{2^{j_0} \cdots j_N!} E_{j_0}^{j_0} \cdots E_{j_N}^{j_N}, \quad k \in \mathbb{N}. \]

(4.6)

Proof. It suffices to apply the binomial expansion. \qeda

\[6(2n - 1)!! = 1 \cdot 3 \cdots (2n - 1), \text{ and } (-1)!! = 1. \]
The few first terms read
\[c_1(E) = \frac{1}{2} \sum_{j=0}^{N} E_j, \quad c_2(E) = \frac{1}{4} \sum_{j,k=0}^{N} E_j E_k + \frac{3}{8} \sum_{j=0}^{N} E_j^2, \]

etc. (4.7)

Next, assuming \(\mu_j \neq \mu_{j'} \) for \(j \neq j' \), introduce the \(g \times g \) matrix \(U_g(\mu) \) by
\[U_1(\mu) = 1, \quad U_g(\mu) = \left(\frac{\mu_j^{j-1}}{\prod_{m \neq k} (\mu_k - \mu_m)} \right)_{j,k=1}^\theta. \] (4.8)

Lemma 4.2. Suppose \(\mu_j \neq \mu_{j'} \) for \(j \neq j' \). Then
\[U_g(\mu)^{-1} = \left(\Phi_{g}^{(j)}(\mu) \right)_{j,k=1}^\theta. \] (4.9)

Proof. Observe that we may write
\[U_g(\mu) = \left(\frac{\mu_j^{j-1}}{F_g^{(j)}(\mu)} \right)_{j,k=1}^\theta. \] (4.10)

Using Lagrange’s interpolation result, Theorem A.1 (replacing \(k \) by \(g - k \) in (A.3)), proves the result.

Of crucial importance for our approach is the fact that we are able to express \(f_j \) and \(F_r \) in terms of elementary symmetric functions of \(\mu_1, \ldots, \mu_g \). The expression is given below for the homogeneous case only, denoted by \(\hat{f}_j \) and \(\hat{F}_r \), where the integration constants \(c_{\ell} \) for \(\ell \in \mathbb{N} \) vanish. We start with \(\hat{f}_j \).

Lemma 4.3. Let \(c_j(E) \) be defined as in (4.4). Then we infer the following results for the KdV and the Toda hierarchies:
\[\hat{f}_j = \sum_{k=0}^{\jcap g} c_{j-k}(E) \Psi_k(\mu). \] (4.11)

For the AKNS hierarchy we obtain
\[\hat{f}_j = -iq \sum_{k=0}^{\jcap g} c_{j-k}(E) \Psi_k(\mu), \quad \hat{h}_j = i\rho \sum_{k=0}^{\jcap g} c_{j-k}(E) \Psi_k(\nu), \] (4.12)

where \(\nu = (\nu_1, \ldots, \nu_g) \).

In the sGmKdV case we have
\[\hat{f}_j = \sum_{k=0}^j c_{j-k}(E) \Psi_k(\mu), \quad \hat{h}_j = \sum_{k=0}^j c_{j-k}(E) \Psi_k(\nu), \quad j = 0, \ldots, g - 1, g \in \mathbb{N}, \] (4.13)

and
\[\hat{f}_g = \Psi_g(\mu), \quad \hat{h}_g = \Psi_g(\nu), \quad g \in \mathbb{N}_0. \] (4.14)

Proof. The proof is identical in all cases, and is based on the high-energy expansion of the Green’s function of the corresponding linear operator \(L \) or \(M \) in the Lax pair or zero curvature formulation of the hierarchy considered. We provide the details for the KdV hierarchy only.

Using Lemma 4.3 we find
\[
\frac{F_g(z)}{R_{2g+1}(z)^{1/2}} = \frac{\prod_{j=1}^{g}(z - \mu_j)}{R_{2g+1}(z)^{1/2}} \frac{1}{\prod_{j=1}^{g}\left(1 - \frac{\mu_j}{z}\right)^{1/2}}. \\
= \frac{1}{z^{1/2}} \left(\sum_{j=0}^{g} \Psi_j(\mu) z^{-j} \right) \left(\sum_{m=0}^{\infty} c_m(E) z^{-m} \right) = \frac{1}{z^{1/2}} \sum_{m=0}^{\infty} z^{-m} \sum_{k=0}^{m\wedge g} c_{m-k}(E) \Psi_k(\mu).
\]

\(^7 n \wedge m = \min\{n, m\} \).
Combining this result with the high-energy expansion \(^{(3.13)}\) proves the result. \(\square\)

Remark 4.4. Observe that the right-hand side of \(^{(4.13)}\) is defined for all \(x \in \mathbb{R}\), but when we sample it at integer values \(x = n \in \mathbb{Z}\), it coincides with \(f_j(n)\) for the Toda lattice. Thus we have in some sense a continuous extension of the Toda hierarchy (cf. also Lemma 5.6).

Theorem 4.5. Let \(r \in \mathbb{N}_0\). For both the KdV and the Ti case one derives\(^7\)

\[
\widehat{F}_r(\mu_j) = \sum_{p=(r-g)\vee 0}^{r} c_p(E)\Phi^{(j)}_{r-p}(\mu).
\]

For the AKNS hierarchy one infers

\[
\widehat{F}_r(\mu_j) = -iq \sum_{p=(r-g)\vee 0}^{r} c_p(E)\Phi^{(j)}_{r-p}(\mu), \quad \widehat{H}_r(\nu_j) = ip \sum_{p=(r-g)\vee 0}^{r} c_p(E)\Phi^{(j)}_{r-p}(\nu).
\]

For the sGmKdV hierarchy one concludes\(^6\)

\[
\widehat{F}_r(\mu_j) = \sum_{p=(r-1-g)\vee 0}^{r-1} c_p(E)\Phi^{(j)}_{r-1-p}(\mu) - \frac{\tilde{\alpha}}{\alpha} \Phi^{(j)}_{g-1}(\mu),
\]

\[
\widehat{H}_r(\nu_j) = \sum_{p=(r-1-g)\vee 0}^{r-1} c_p(E)\Phi^{(j)}_{r-1-p}(\nu) - \frac{\tilde{\beta}}{\beta} \Phi^{(j)}_{g-1}(\nu).
\]

Proof. It suffices to consider the KdV and sG cases. By definition

\[
\widehat{F}_r(z) = \sum_{\ell=0}^{r} \hat{f}_{r-\ell}z^\ell = \sum_{\ell=0}^{r} z^\ell \sum_{m=0}^{(r-\ell)\wedge a} \Psi_m(\mu)c_{r-\ell-m}(E).
\]

Consider first the case \(r \leq g\). Then

\[
\widehat{F}_r(z) = \sum_{p=0}^{r} c_p(E)\sum_{\ell=0}^{r-p} z^\ell \Psi_{r-\ell-p}(\mu)
\]

and hence

\[
\widehat{F}_r(\mu_j) = \sum_{p=0}^{r} c_p(E)\Phi^{(j)}_{r-p}(\mu),
\]

using \(^{(A.13)}\). In the case when \(r \geq g + 1\) we find

\[
\widehat{F}_r(z) = \sum_{m=0}^{g} \Psi_m(E) \sum_{p=0}^{r-m} z^{r-m-p}c_p(E)
\]

\[
= \sum_{p=0}^{r-g} c_p(E)\left(\sum_{\ell=0}^{g} \Psi_{\ell}(\mu)z^{g-\ell} \right)z^{r-g-p} + \sum_{p=r-g+1}^{r} c_p(E) \sum_{\ell=0}^{r-p} \Psi_{\ell}(\mu)z^{r-p-\ell}
\]

\[
= F_g(z) \sum_{p=0}^{r-g} c_p(E)z^{r-g-p} + \sum_{p=r-g+1}^{r} c_p(E) \sum_{\ell=0}^{r-p} \Psi_{\ell}(\mu)z^{r-p-\ell}
\]

\[
= F_g(z) \sum_{p=0}^{r-g} c_p(E)z^{r-g-p} + \sum_{p=r-g+1}^{r} c_p(E) \sum_{m=0}^{r-p-m} \Psi_{r-p-m}(\mu)z^m.
\]

\(^8n \vee m = \max\{n, m\}.

\(^9\)Since \(r\) is independent of \(g\), one obtains \(\hat{f}_r = \tilde{\alpha}e^{-iu}, \hat{h}_r = \tilde{\beta}e^{iu}\) with \(\tilde{\alpha}, \tilde{\beta} \in \mathbb{C}\) independent of \(\alpha, \beta\), and \(\hat{f}_q, \hat{h}_q, q = 1, \ldots, r - 1\) constructed as in \(^{(4.72)}\).
Hence

$$
\widehat{F}_r(\mu_j) = \sum_{p=r-g+1}^{r} c_p(\Phi)\Phi_{r-p}(\mu_j),
$$

(4.22)

by using (A.13) again.

In the sGmKdV case we first observe the identity

$$
\widehat{F}_r(z) = z\widehat{F}_{r-1}(z) + \tilde{f}_r,
$$

(4.23)

which implies

$$
\frac{\widehat{F}_r(\mu_j)}{\mu_j} = \widehat{F}_{r-1}(\mu_j) + \frac{\tilde{f}_r}{\mu_j} = \sum_{p=(r-1-g)\vee 0}^{r-1} c_p(\Phi)\Phi_{r-1-p}(\mu_j) - \frac{\alpha}{\mu_j} \Phi_{r-1}(\mu_j),
$$

(4.24)

using \(\tilde{f}_r = \alpha e^{-iu}\) and the trace relation (3.87).

\[\square\]

5. Dubrovin equations and linearized flows

Dubrovin [21] made the fundamental observation that the Dirichlet divisors for the KdV equation satisfy a first-order system of differential equations. Solving this system can then be used to recover the function \(V\) by appealing to a trace formula (cf. (3.28)).

Before we state the Dubrovin equations we need some notation. Let \(g \in \mathbb{N}\). We start by constructing the hierarchies as explained in Section 3. In particular, we construct the function \(F_g\) with its zeros \(\underline{\nu} = (\nu_1, \ldots, \nu_g)\), and define the corresponding hyperelliptic curve \(K_g\). (In the AKNS case we also construct the function \(H_g\).) Next, fix an \(r \in \mathbb{N}_0\), and construct the function \(F_r\). The integration constants in the definition of \(F_r\) are assumed to be independent of those used to construct \(F_g\), and to emphasize this fact we denote it by \(\widehat{F}_r\) and the corresponding constants by \(\alpha\). The Dubrovin equations give the evolution of \(\mu = (\mu_1, \ldots, \mu_g)\) in terms of the deformation (time) parameter \(t_r\) according to the \(r\)th equation in the hierarchy considered.

The KdV hierarchy. In our setting the Dubrovin equations for the KdV hierarchy read [16], [18], Sect. 12.3, [32], [36], [15], Chs. 10, 12, [17], Ch. 4,

$$
\frac{\partial}{\partial x} \mu_j(x, t_r) = -2i \frac{y(\mu_j(x, t_r))}{\prod_{\ell \neq j} (\mu_j(x, t_r) - \mu_\ell(x, t_r))},
$$

(5.1a)

$$
\frac{\partial}{\partial t_r} \mu_j(x, t_r) = \widehat{F}_r(\mu_j(x, t_r), x, t_r) \frac{\partial}{\partial x} \mu_j(x, t_r)
$$

(5.1b)

$$
= -2i \frac{y(\mu_j(x, t_r))}{\prod_{\ell \neq j} (\mu_j(x, t_r) - \mu_\ell(x, t_r))} \widehat{F}_r(\mu_j(x, t_r), x, t_r),
$$

for \(j = 1, \ldots, g\). The initial data for (5.1a) on \(K_g\) equal

$$
\hat{\mu}(x, t_{0,r}) = \hat{\mu}^{(0)}(x),
$$

(5.2)

where \(\hat{\mu} = (\hat{\mu}_1, \ldots, \hat{\mu}_g)\) denotes

$$
\hat{\mu}_j(x, t_r) = (\mu_j(x, t_r), -\frac{i}{2} F_{g,x}(\mu_j(x, t_r)), t_r) \in K_g, \quad j = 1, \ldots, g.
$$

(5.3)

We remark that (5.1b) is an immediate consequence of (6.7) and (5.18), while (5.11) follows from (5.18) and

$$
F_{g,t_r} = \widehat{F}_r F_{g,x} - \widehat{F}_{g,x} F_g
$$

(5.4)

upon taking \(z = \mu_j(x, t_r)\).

The AKNS hierarchy. In this case the Dubrovin equations for \(\hat{\mu} = (\hat{\mu}_1, \ldots, \hat{\mu}_g)\) are given by [15], [33],

$$
\frac{\partial}{\partial x} \mu_j(x, t_r) = -2i \frac{y(\mu_j(x, t_r))}{\prod_{\ell \neq j} (\mu_j(x, t_r) - \mu_\ell(x, t_r))},
$$

(5.5a)
\[
\frac{\partial}{\partial t_r} \mu_j(x, t_r) = -\frac{F_r(\mu_j(x, t_r), x, t_r)}{iq(x, t_r)} \frac{\partial}{\partial x} \mu_j(x, t_r) \tag{5.5b}
\]
\[
= 2 \frac{y(\mu_j(x, t_r))}{q(x, t_r) \prod_{\ell \neq j} (\mu_j(x, t_r) - \mu_\ell(x, t_r))} F_r(\mu_j(x, t_r), x, t_r),
\]
for \(j = 1, \ldots, g\), with initial data on \(K_g\)
\[
\hat{\mu}(x, t_{0,r}) = \hat{\mu}^{(0)}(x),
\]
where
\[
\hat{\mu}_j(x, t_r) = (\mu_j(x, t_r), G_{g+1}(\mu_j(x), x, t_r)) \in K_g, \quad j = 1, \ldots, g.
\]

For the corresponding evolution of \(\hat{\nu} = (\hat{\nu}_1, \ldots, \hat{\nu}_g)\) we have
\[
\frac{\partial}{\partial x} \nu_j(x, t_r) = -2i \frac{y(\nu_j(x, t_r))}{\prod_{\ell \neq j} (\nu_j(x, t_r) - \nu_\ell(x, t_r))}, \tag{5.8a}
\]
\[
\frac{\partial}{\partial t_r} \nu_j(x, t_r) = H_r(\nu_j(x, t_r), x, t_r) \frac{\partial}{\partial x} \nu_j(x, t_r)
\]
\[
= -2 \frac{y(\nu_j(x, t_r))}{p(x, t_r) \prod_{\ell \neq j} (\nu_j(x, t_r) - \nu_\ell(x, t_r))} H_r(\nu_j(x, t_r), x, t_r),
\]
for \(j = 1, \ldots, g\), with initial data on \(K_g\)
\[
\hat{\nu}(x, t_{0,r}) = \hat{\nu}^{(0)}(x),
\]
where
\[
\hat{\nu}_j(x, t_r) = (\nu_j(x, t_r), -G_{g+1}(\nu_j(x), x, t_r)) \in K_g, \quad j = 1, \ldots, g. \tag{5.10}
\]

The Toda hierarchy. Here the Dubrovin equations for \(\hat{\mu} = (\hat{\mu}_1, \ldots, \hat{\mu}_g)\) read \[11\], \[17\], \[51\], \[52\] Ch.4,
\[
\frac{\partial}{\partial t_r} \mu_j(n, t_r) = 2 \frac{y(\mu_j(n, t_r))}{\prod_{\ell \neq j} (\mu_j(n, t_r) - \mu_\ell(n, t_r))} F_r(\mu_j(n, t_r), n, t_r), \tag{5.11}
\]
for \(j = 1, \ldots, g\), with initial data on \(K_g\)
\[
\hat{\mu}(n, t_{0,r}) = \hat{\mu}^{(0)}(n),
\]
where
\[
\hat{\mu}_j(n, t_r) = (\mu_j(n, t_r), -G_{g+1}(\mu_j(n), n, t_r)) \in K_g, \quad j = 1, \ldots, g.
\]

We note that \eqref{5.5a} and \eqref{5.8a} formally coincide with \eqref{5.1a}. The case of the Toda hierarchy, however, is quite different since \eqref{5.11} concerns the \(t_r\)-dependence of \(\hat{\mu}(n, t_r)\) and no analogous first-order nonlinear difference equation concerning the \(n\)-dependence of \(\hat{\mu}(n, t_r)\) (i.e., an analog of \eqref{5.1a} or \eqref{5.5a}) appears to be known. In this context we refer the reader to Lemma 5.6 where we continue this discussion.

The sGmKdV hierarchy. Finally, in the case of the sGmKdV hierarchy the equations for \(\mu\) read \[53\]
\[
\mu_{j,t_r}(x, t_r) = -2i \frac{y(\hat{\mu}_j(x, t_r))}{\prod_{\ell \neq j} (\hat{\mu}_j(x, t_r) - \mu_\ell(x, t_r))}, \tag{5.14}
\]
\[
\mu_{j,t_r}(x, t_r) = 2 \frac{F_r(\mu_j(x, t_r), x, t_r)}{\mu_j(x, t_r)} \frac{y(\hat{\mu}_j(x, t_r))}{\prod_{\ell \neq j} (\hat{\mu}_j(x, t_r) - \mu_\ell(x, t_r))}, \tag{5.15}
\]
with initial data
\[
\hat{\mu}_j(x, t_{0,r}) \in K_g, \quad j = 1, \ldots, g. \tag{5.16}
\]
The corresponding equations for ν_j equal
\[
\nu_{j,x}(x,t_r) = -2i \frac{\gamma(\nu_j(x,t_r))}{\nu_j(x,t_r)} \prod_{\ell \neq j}^{\theta} (\nu_j(x,t_r) - \nu_\ell(x,t_r)),
\]
(5.17)
\[
\nu_{j,t_r}(x,t_r) = 2 \frac{\tilde{H}_r(\nu_j(x,t_r),x,t_r)}{\nu_j(x,t_r)} \frac{\gamma(\nu_j(x,t_r))}{\prod_{\ell \neq j}^{\theta} (\nu_j(x,t_r) - \nu_\ell(x,t_r))},
\]
(5.18)
with initial conditions
\[
\nu_j(x_0,t_{0,r}) \in K_g, \quad j = 1, \ldots, g.
\]
(5.19)

Next we will prove that the Abel map provides a clever change of coordinates that linearizes the Dubrovin flows. This will turn out to be a consequence of the fact that $\tilde{F}_r(\mu_j)$ can be expressed as a linear combination of the functions $\Phi_k^{(j)}$. Using Theorem 4.5 it is immediate that this is not only the case for the KdV hierarchy, but also for all the other hierarchies discussed in this paper.

Theorem 5.1. Suppose $\mu(x,t_r) = (\mu_1(x,t_r), \ldots, \mu_g(x,t_r))$ satisfies the Dubrovin equations (5.1) and assume that $\mu_j \neq \mu_j'$ for $j \neq j'$. Let $r \in \mathbb{N}_0$ and introduce
\[
\tilde{F}_r(\mu_j) = \sum_{k=0}^{r \wedge g} d_{r,k} \Phi_k^{(j)}(\mu), \quad d_{r,0}, \ldots, d_{r,r \wedge g} \in \mathbb{C}.
\]
Then the Abel map
\[
\Delta_{r_0}(\tilde{\mu}_j(x,t_r)) = (\Delta_{r_0,1}(\tilde{\mu}_j(x,t_r)), \ldots, \Delta_{r_0,g}(\tilde{\mu}_j(x,t_r)))
\]
(5.21)
linearizes the Dubrovin flows (5.2) in the sense that
\[
\frac{\partial}{\partial t_r} \sum_{j=1}^{g} \Delta_{r_0,k}(\tilde{\mu}_j(x,t_r)) = -2i \sum_{\ell = 1 \vee (g-r)}^{g} c_{k,\ell} d_{r,g-\ell}
\]
(5.22)
and hence
\[
\Delta_{r_0}(D_{\mu}(x,t_r)) = \Delta_{r_0}(D_{\mu(x_0,t_{0,r})}) - 2i(x-x_0) c_{k,\ell} d_{0,0} - 2i(t_r - t_{0,r}) \sum_{\ell = 1 \vee (g-r)}^{g} c_{k,\ell} d_{r,g-\ell}.
\]
(5.23)

Proof. One computes,
\[
\frac{\partial}{\partial t_r} \sum_{j=1}^{g} \Delta_{r_0,k}(\tilde{\mu}_j(x,t_r)) = \frac{\partial}{\partial t_r} \sum_{j=1}^{g} \int_{\rho_0} \frac{\gamma(\mu_j(x,t_r))}{\nu_j(x,t_r)} d\omega_k
\]
\[
= \frac{\partial}{\partial t_r} \sum_{j=1}^{g} \sum_{\ell=1}^{g} c_{k,\ell} \int_{\rho_0} \frac{\gamma(\mu_j(x,t_r))}{\nu_j(x,t_r)} \frac{\partial}{\partial t_r} \mu_j(x,t_r)
\]
\[
= \frac{\partial}{\partial t_r} \sum_{j=1}^{g} \sum_{\ell=1}^{g} c_{k,\ell} \frac{\gamma(\mu_j(x,t_r))}{\nu_j(x,t_r)} \frac{\partial}{\partial t_r} \mu_j(x,t_r)
\]
\[
= -2i \sum_{j=1}^{g} \sum_{\ell=1}^{g} c_{k,\ell} \frac{\gamma(\mu_j(x,t_r))}{\nu_j(x,t_r)} \frac{\partial}{\partial t_r} \mu_j(x,t_r)
\]
\[
= -2i \sum_{j=1}^{g} \sum_{\ell=1}^{g} c_{k,\ell} U_g(\mu(x,t_r)) \tilde{F}_r(\tilde{\mu}_j(x,t_r)) = -2i \sum_{\ell = 1 \vee (g-r)}^{g} c_{k,\ell} d_{r,g-\ell},
\]
(5.24)
using Lemma 4.3 in the final step. As for the x-variation, we observe that t_0-derivative of μ_j coincides with the x-derivative in (5.1), and hence it is a special case of (5.24). This proves the theorem.\[\square\]

\[\text{The situation here resembles the one in classical mechanics where, by a canonical change to cyclic coordinates, the momentum } p_j \text{ becomes a constant of motion and thus } q_j(t) = q_j(t_0) + p_j(t - t_0) \text{ is linear in time.}\]
Corollary 5.2. The Abel map linearizes the Dubrovin flows for the KdV, AKNS, Tl, as well as the sGmKdV hierarchies.

Proof. Theorem 4.5 shows that $\tilde{F}_r(\mu_j)$ (and $\tilde{H}_r(\nu_j)$ in the AKNS case) indeed satisfies the assumption (5.20) of Theorem 5.1, and hence the key calculation (5.24) carries over to the AKNS, Tl, and sGmKdV systems. The special case $r = 0$ gives the x-variation in all but the sGmKdV case which, however can easily be verified by explicit computation.

Remark 5.3. We provide a few more details in the AKNS case. Suppose $\mu(x, t_r)$ satisfies (5.3) and similarly, $\nu(x, t_r)$ satisfies (5.8), with $\mu_j \neq \mu_{j'}$ and $\nu_j \neq \nu_{j'}$ for $j \neq j'$. Let $r \in \mathbb{N}_0$ and introduce

$$\tilde{F}_r(\mu_j) = -i q \sum_{k=0}^{r \wedge q} d_{r, k} \Phi_k^{(j)}(\mu), \quad \tilde{H}_r(\nu_j) = i p \sum_{k=0}^{r \wedge q} c_{r, k} \Phi_k^{(j)}(\nu).$$

Then (5.22) and (5.23) hold. In addition, one obtains the following results for the analog of Neumann divisors $\nu(x, t_r)$.

$$\frac{\partial}{\partial t_r} \sum_{j=1}^{g} A_{\nu_0, k}(\tilde{\nu}_j(x, t_r)) = -2i \sum_{\ell=1 \vee (g-r)}^{g} c_{k, \ell} e_{r, g-\ell}$$

and hence

$$\omega_{\nu_0}(D_{\tilde{\nu}(x, t_r)}) = \omega_{\nu_0}(D_{\tilde{\nu}(x_0, t_0, r)}) - 2i(x - x_0) c_{k, g} e_{0, 0} - 2i(t_r - t_0, r) \sum_{\ell=1 \vee (g-r)}^{g} c_{k, \ell} e_{r, g-\ell}. \quad (5.27)$$

Necessary and sufficient conditions on Lax pairs to linearize the flow $t \to L_t$ on $J(C)$, where $\{L_t\}$ represents a dynamical system on the Jacobi variety $J(C)$, with C the underlying spectral curve, have been considered by Griffiths [37]. While he considers Lax equations within a cohomological framework, our approach is much more modest in scope but in turn reduces the linearization problem to an elementary exercise in symmetric functions.

Solving these equations we can recover the solution of the integrable equation using trace formulas. For the KdV hierarchy we have the classical trace formula

$$V(x, t_r) = \sum_{m=0}^{2g} E_m - 2 \sum_{j=1}^{g} \mu_j(x, t_r). \quad (5.28)$$

For the AKNS hierarchy we have

$$p_x(x, t_r) = i \sum_{m=0}^{2g+1} E_m - 2i \sum_{j=1}^{g} \nu_j(x, t_r), \quad (5.29a)$$

$$q_x(x, t_r) = -i \sum_{m=0}^{2g+1} E_m + 2i \sum_{j=1}^{g} \mu_j(x, t_r), \quad (5.29b)$$

while for the Toda hierarchy one obtains

$$a(n, t_r) = -\frac{1}{2} \sum_{j=1}^{g} \frac{G_{q+1}(\mu_j(n, t_r), n, t_r)}{\prod_{k \neq j}(\mu_j(n, t_r) - \mu_k(n, t_r))} \quad \text{and} \quad b(n, t_r) = \frac{1}{2} \sum_{m=0}^{2g+1} E_m + \sum_{j=1}^{g} \mu_j(n, t_r). \quad (5.30a,b)$$
The “trace” relation for the sGmKdV hierarchy (it would be more appropriate to call this a “determinant” relation) was given in \[(3.87),\]
\[u(x, t_g) = i \ln \left((-1)^g \alpha^{-1} \prod_{j=1}^g \mu_j(x, t_g) \right) = -i \ln \left((-1)^g \beta^{-1} \prod_{j=1}^g \nu_j(x, t_g) \right). \tag{5.31} \]

\textbf{Remark 5.4.} It is important to observe that if one postulates the Dubrovin equations \[(5.1),\] and defines \(V\) using the trace formula \[(5.23),\] one could show by a long and tedious calculation that \(V\) indeed satisfies the \(r\)th KdV equation with the correct initial condition. The same applies, of course, to the AKNS, Toda, and sGmKdV hierarchies.

\textbf{Remark 5.5.} For simplicity we assumed \(\mu_j(x, t_r) \neq \mu_j'(x, t_r)\) for \(j \neq j'\) in Theorem 5.1. In the self-adjoint cases, where \(\{E_m\}_{m=0,\ldots,N} \subset \mathbb{R}\), this condition is automatically fulfilled for all \((x, t_r) \in \mathbb{R}^2\) since then all \(\mu_j(x, t_r)\) are separated from each other by spectral gaps of \(L(t_r)\) or \(M(t_r)\). In the general nonself-adjoint case this is no longer true and collisions between the \(\mu_j\)'s become possible. Nevertheless the Dubrovin equations, properly desingularized near such collision points, stay meaningful as demonstrated in detail by Birnir \[3, \hspace{0.5em} 10\] in the case of complex-valued KdV solutions. In particular, \[(5.23)\] (and \[(5.27)\]) remain valid in the presence of such collisions due to the continuity of \(\mu_{\nu_k}(\cdot)\).

We already mentioned in the paragraph following \[(5.13),\] that the Dubrovin equations for the Toda hierarchy differ from the ones associated with the remaining soliton hierarchies in the sense that they do not seem to govern the \(n\)-dependence of \(\tilde{\mu}(n, t_r)\). We now show how to use Theorem 5.1 to obtain a first-order Dubrovin system for \(\tilde{\mu}(x, t_r)\) in \(x\), whose solution coincides with \(\mu_{\nu_k}(n, t_r)\) at the integer points \(x = n \in \mathbb{Z}\). Since the \(t_r\)-dependence of \(\tilde{\mu}\) plays no role for this argument, we ignore this dependence in the following result.

\textbf{Lemma 5.6.} Abbreviate \(\mathcal{A} = (A_1, \ldots, A_g) = \mathcal{A}_{P_{\infty^-}}(P_{\infty^+})\) and \(\hat{\mu}(n) = \hat{\mu}^{(0)}(n)\), with \(\hat{\mu}(n)\) defined in \[(5.62a).\] Consider the Dubrovin-type system
\begin{equation}
\frac{\partial}{\partial x} \mu_j(x) = 2g \hat{\mu}_j(x) \frac{\sum_{m=1}^g \phi_{\nu_m}(\mu_j(x) - \mu_k(x))}{\prod_{k \neq j} (\mu_j(x) - \mu_k(x))} \sum_{n=1}^g c_{m,n} A_n, \quad j = 1, \ldots, g, \tag{5.32a} \end{equation}
\begin{equation}
\hat{\mu}_0(n) = \hat{\mu}^{(0)}(n), \tag{5.32b} \end{equation}
with \(c_{m,n}\) defined in \[(2.1).\] Denote the solution of \[(5.32)\] by \(\tilde{\mu}_0(x)\). Then \(\hat{\mu}(n)\) coincides with \(\tilde{\mu}_0(x)\) at integer values \(x = n \in \mathbb{Z}\), that is,
\begin{equation}
\hat{\mu}(n) = \tilde{\mu}_0(n), \quad n \in \mathbb{Z}. \tag{5.33} \end{equation}

\textbf{Proof.} First we recall the well-known result (see, e.g., \[11], Sect. 3)
\begin{equation}
\mathcal{A}_{P_0}(D_{\tilde{\mu}(n)}) - \mathcal{A}_{P_0}(D_{\hat{\mu}(n)}) = (n - n_0) \mathcal{A}_{P_{\infty^-}}(P_{\infty^+}) = (n - n_0) \mathcal{A}. \tag{5.34} \end{equation}
In order to complete the proof we only need to establish that \(\tilde{\mu}_0(x)\) satisfies
\begin{equation}
\mathcal{A}_{P_0}(D_{\tilde{\mu}_0}(x)) - \mathcal{A}_{P_0}(D_{\hat{\mu}_0}(x)) = (x - x_0) \mathcal{A}_{P_{\infty^-}}(P_{\infty^+}) = (x - x_0) \mathcal{A}. \tag{5.35} \end{equation}
that is, we need to show
\begin{equation}
\frac{\partial}{\partial x} \mathcal{A}_{P_0}(D_{\tilde{\mu}_0}(x)) = \mathcal{A}. \tag{5.36} \end{equation}
But equation \[(5.34)\] follows immediately from \[(5.11),\] (identifying \(t_r\) with \(x\) and ignoring its \(n\)-dependence), \[(5.20),\] \[(5.24)\] (multiplied by \(i\)), and \[(5.32).\]

Thus, the solution \(\tilde{\mu}_0(x)\) of \[(5.32),\] provides a continuous interpolation for \(\hat{\mu}(n)\). In fact, it was our attempt to prove a result like Lemma 5.6 which led us to reconsider Dubrovin equations and ultimately resulted in Theorem 4.5 (the explicit connection between \(\Phi^{(j)}(\mu)\) and the polynomials \(\tilde{F}_r(z, x)\) defining the hierarchy in question.

Toda systems as integrable discretizations of continuous systems are also studied in \[3].
6. Theta function representations

The fundamental problem in the construction of algebro-geometric solutions of soliton hierarchies is the following. Fix \(g \in \mathbb{N} \), and pick a stationary solution of the \(g \)th equation in the hierarchy. Then solve the \(r \)th time-dependent equation (for any \(r \in \mathbb{N} \)) with the given stationary solution as initial datum and express the solution in terms of the Riemann theta function associated with \(K_g \). In the KdV case this procedure has been pioneered by Its and Matveev in their celebrated paper [40]. Subsequently, the algebro-geometric approach to integrable equations was developed in papers by Date, Dubrovin, Krichever, Matveev, Novikov, Tanaka, and others [16, 17, 23, 24, 26, 12, 13, 14]. We briefly recall the results for the hierarchies studied in this paper. Detailed discussions for the KdV, AKNS, and Toda hierarchies as well as the sG equation and other completely integrable systems can be found, for instance, in [2] Ch. 4, Sect. 12.4, [27, 22, 24, 25, 27, 29, 20, 10, 5], Sect. 4.4, [18], [24, 26, 22, 21, 54, 55, 62, 62], Ch. 4 and the references therein. (Without explicitly repeating this in each case below, we exclude collision points for \(\mu_j(x, t_r) \), that is, we will always assume \(\mu_j \neq \mu_{j'} \) for \(j \neq j' \).

The KdV hierarchy. Let \(V^{(0)}(x) \) be a stationary solution of the \(g \)th KdV equation associated with divisor \(\mathcal{D}_L^{(0)(x)} \). We seek the \(r \)th KdV flow

\[
\text{KdV}_r(V) = 0, \quad V(x, t, 0) = V^{(0)}(x), \quad x \in \mathbb{R}. \tag{6.1}
\]

The solution is given by the Its–Matveev formula [41]

\[
V(x, t_r) = \Lambda - 2\partial_x^2 \ln \left(\theta(\hat{\mu}(x, t_r)) \right), \quad (x, t_r) \in \mathbb{R}^2, \tag{6.2}
\]

where

\[
\hat{\mu}(x, t_0) = \mu^{(0)}(x) \tag{6.3}
\]

and

\[
\hat{\mu}(x, t_r) = \mathcal{A}_0(\mathcal{D}_L^{(x, t_r)}) - \mathcal{A}_0(P_\infty) + \Xi_0, \tag{6.4}
\]

with \(\Xi_0 \) the vector of Riemann constants and \(\Lambda \) a \(K_g \)-dependent constant.

The AKNS hierarchy. Let \((p^{(0)}, q^{(0)}) \) be a stationary solution of the \(g \)th AKNS equation associated with divisors \(\mathcal{D}_L^{(0)(x)} \) and \(\mathcal{D}_L^{(0)(x)} \). We want to construct the \(r \)th AKNS flow

\[
\text{AKNS}_r(p, q) = 0, \quad (p(x, t, 0), q(x, t, 0)) = (p^{(0)}(x), q^{(0)}(x)), \quad x \in \mathbb{R}. \tag{6.5}
\]

The solution reads

\[
p(x, t_r) = p(x_0, t_0) \frac{\theta(\hat{z}_+(\hat{\mu}(x_0, t_0))) \theta(\hat{z}_-(\hat{\mu}(x_0, t_0)))}{\theta(\hat{z}_+(\hat{\mu}(x, t_0))) \theta(\hat{z}_-(\hat{\mu}(x, t_0)))} \times \exp(-2i(x - x_0)c_0 - 2i(t_r - t_0)r) \hat{e}_r, \tag{6.6a}
\]

\[
q(x, t_r) = q(x_0, t_0) \frac{\theta(\hat{z}_+(\hat{\mu}(x_0, t_0))) \theta(\hat{z}_-(\hat{\mu}(x_0, t_0)))}{\theta(\hat{z}_+(\hat{\mu}(x, t_0))) \theta(\hat{z}_-(\hat{\mu}(x, t_0)))} \times \exp(2i(x - x_0)c_0 + 2i(t_r - t_0)r) \hat{e}_r, \tag{6.6b}
\]

where \(\hat{e}_r \) is a \(K_g \)-dependent constant, and

\[
\hat{\mu}(x, t_0) = \mu^{(0)}(x), \quad \hat{\mu}(x, t_0) = \mu^{(0)}(x) \tag{6.7}
\]

and

\[
\hat{z}_\pm(Q) = \mathcal{A}_0(\mathcal{D}_Q) - \mathcal{A}_0(P_\infty) + \Xi_0, \quad Q = (Q_1, \ldots, Q_g), \tag{6.8}
\]

with \(c_0, \hat{e}_r \) are \(K_g \)-dependent constants.

The Toda hierarchy. Let \((a^{(0)}, b^{(0)}) \) be a stationary solution of the \(g \)th Toda equation associated with divisor \(\mathcal{D}_L^{(0)(n)} \). We are interested in the solution of the \(T_l \) flow

\[
T_l(a, b) = 0, \quad (a(n, t_0), b(n, t_0)) = (a^{(0)}(n), b^{(0)}(n)), \quad n \in \mathbb{Z}. \tag{6.9}
\]
Here the solution equals
\[
a(n, t_r) = \tilde{a} \left(\left(\frac{\theta(z_+ (\mu(n,1-t_r))) - \theta(z_+ (\mu(n+1, t_r)))}{\theta(z_+ (\mu(n, t_r)))^2} \right)^{1/2} \right),
\]
(6.10a)
\[
b(n, t_r) = \sum_{j=1}^{\vartheta} \lambda_j - \frac{1}{2} \sum_{m=0}^{\vartheta} E_m - \sum_{j=1}^{\vartheta} c_j(g) \frac{\partial}{\partial w_j} \ln \left(\frac{\theta(w + z_+ (\mu(n, t_r)))}{\theta(w + z_+ (\mu(n-1, t_r)))} \right) \bigg|_{w=0},
\]
(6.10b)
where
\[
\tilde{\mu}(n, t_0, r) = \tilde{\mu}^{(0)}(n)
\]
(6.11)
and
\[
z_+(\tilde{\mu}(n, t_r)) = \alpha P_0 (D_{\tilde{\mu}(n, t_r)}) - \Delta P_0 (P_{\infty}) + \Xi P_0,
\]
(6.12)
with \(\tilde{a} \neq 0 \) a \(\kappa_g \)-dependent constant.

The sGmKdV hierarchy. Let \(u^{(0)}(x) \) be the solution of the \(g \)th stationary sGmKdV equation, that is,
\[
g_{g-1, x} - i(\beta e^{iu^{(0)}} - \alpha e^{-iu^{(0)}}) = 0, \quad g \in \mathbb{N},
\]
(6.13)
such that the constraints
\[
\alpha \beta = \prod_{j=1}^{2g} E_j, \quad E_0 = 0.
\]
(6.14)

Let \(r \in \mathbb{N}_0 \). We are seeking the solution \(u \) of sGmKdV\(_r\)(\(u \)) = 0 with \(u(x, t_0, r) = u^{(0)}(x) \). Here the solution reads
\[
u(x, t_r) = u(x_0, t_r)
\]
(6.15)
\[
+ 2i \ln \left(\frac{\theta(z(\tilde{\mu}(x, t_r))) + \Delta \theta(z(\tilde{\mu}(x_0, t_0, r)))}{\theta(z(\tilde{\mu}(x_0, t_0, r))) + \Delta \theta(z(\tilde{\mu}(x, t_r)))} \right) \exp \left(-ie_0(x - x_0) \right),
\]
where \(P_0 = (0, 0), \Delta \) is a half-period,
\[
\Delta = \Delta P_0 (P_{\infty}),
\]
(6.16)
c\(_0\) a \(\kappa_g \)-dependent constant, and
\[
z(Q) = \alpha P_0 (D_Q) - \Delta P_0 (P_{\infty}) + \Xi P_0.
\]
(6.17)
The linear equivalence of \(D_{P_{\infty}(x, t_r)} \) and \(D_{Q_{\infty}(x, t_r)} \), that is,
\[
\alpha P_0 (D_{\tilde{\mu}(x, t_r)}) = \alpha P_0 (D_{\tilde{\mu}(x, t_r)}) + \Delta
\]
(6.18)
shows that
\[
z(\tilde{\mu}(x, t_r)) = z(\tilde{\mu}(x, t_r)) + \Delta.
\]
(6.19)

In each of the theta function representations of this section one should keep in mind that the change of coordinates effected by the Abel map straightens out all Dirichlet and Neumann flows on the Jacobi variety \(J(\kappa_q) \) of \(\kappa_q \), that is, \(z(\tilde{\mu}(x, t_r)) \) and \(z(\tilde{\mu}(x, t_r)) \) in \((6.1) \), \((6.10) \) and \((6.13) \) are linear in \(x \) (respectively, \(n \)) and \(t_r \).
7. Examples

KdV and sG. Pick $E_0 = 0$ and $E_1, \ldots, E_{2g} \in \mathbb{C}$, $E_m \neq E_{m'}$ for $m \neq m'$ and solve

$$\frac{\partial}{\partial x} \mu_j(x, t_g) = -2i \frac{y(\mu_j(x, t_g))}{\prod_{l \neq j} (\mu_j(x, t_g) - \mu_l(x, t_g))},$$ \hfill (7.1a)

$$\frac{\partial}{\partial t_g} \mu_j(x, t_g) = \frac{\partial}{\partial x} \mu_j(x, t_g) \frac{1}{16Q^{1/2}} \prod_{l \neq j} \mu_l, \quad j = 1, \ldots, g,$$ \hfill (7.1b)

with $Q = \prod_{m=1}^{2g} E_m$ and $R_{2g+1}(z) = z \prod_{m=1}^{2g}(z - E_m)$. Define

$$u(x, t_g) = i \ln(\prod_{j=1}^{g} \mu_j(x, t_g)),$$ \hfill (7.2)

$$V(x, t_g) = \sum_{m=0}^{2g} E_m - 2 \sum_{j=1}^{g} \mu_j(x, t_g).$$ \hfill (7.3)

Then u and V satisfy the sG equation and gth KdV equation, respectively, that is,

$$4u_{x,t_g} = \sin(u), \quad \text{KdV}_g(V) = 0$$ \hfill (7.4)

for the following choice of c_j,

$$c_0 = 1, \quad c_1 = \frac{(-1)^{g-1}}{16Q^{1/2}} - c_1(E), \quad c_\ell = - \sum_{p=0}^{\ell-1} c_p c_{\ell-p}(E), \quad \ell = 2, \ldots, g.$$ \hfill (7.5)

The isomorphism between algebro-geometric KdV \(_g\) and sG equations is of course well-known and has been discussed, for instance, in \cite{5, 6}.

AKNS and Tl. Pick $E_0, \ldots, E_{2g+1} \in \mathbb{C}$, $E_m \neq E_{m'}$ for $m \neq m'$ and solve

$$\frac{\partial}{\partial x} \nu_j(x, t_r) = -2i \frac{y(\nu_j(x, t_r))}{\prod_{l \neq j} (\nu_j(x, t_r) - \nu_l(x, t_r))},$$ \hfill (7.6a)

$$\frac{\partial}{\partial t_r} \nu_j(x, t_r) = \frac{\partial}{\partial x} \nu_j(x, t_r) \sum_{n=(r-g)\vee 0}^{r} d_n \Phi_n^{(j)}(\mu), \quad j = 1, \ldots, g$$ \hfill (7.6b)

and

$$\frac{\partial}{\partial x} \nu_j(x, t_r) = -2i \frac{y(\nu_j(x, t_r))}{\prod_{l \neq j} (\nu_j(x, t_r) - \nu_l(x, t_r))},$$ \hfill (7.7a)

$$\frac{\partial}{\partial t_r} \nu_j(x, t_r) = - \frac{\partial}{\partial x} \nu_j(x, t_r) \sum_{n=(r-g)\vee 0}^{r} d_n \Phi_n^{(j)}(\mu), \quad j = 1, \ldots, g,$$ \hfill (7.7b)

where $R_{2g+2}(z) = \prod_{m=0}^{2g+1}(z - E_m)$ and $d_n \in \mathbb{C}$. Define

$$\frac{p(x, t_r)}{p(x, t_r)} = \frac{2g+1}{2} \sum_{m=0}^{2g+1} E_m - 2i \sum_{j=1}^{g} \nu_j(x, t_r),$$ \hfill (7.8a)

$$\frac{q(x, t_r)}{q(x, t_r)} = -i \sum_{m=0}^{2g+1} E_m + 2i \sum_{j=1}^{g} \mu_j(x, t_r)$$ \hfill (7.8b)

and

$$a(n, t_r)^2 = \frac{1}{2} \sum_{j=1}^{g} \frac{y(\mu_j(n, t_r))}{\prod_{k \neq j} (\mu_j(n, t_r) - \mu_k(n, t_r))} - \frac{1}{4} b(n, t_r)^2 - \frac{1}{4} \sum_{j=1}^{g} \mu_j(n, t_r)^2 + \frac{1}{8} \sum_{m=0}^{2g+1} E_m^2,$$ \hfill (7.9a)
Theorem A.1. \[b(n, t_r) = -\frac{1}{2} \sum_{m=0}^{2g+1} E_m + \sum_{j=1}^{g} \mu_j(n, t_r). \] (7.9b)

Then \((p, q)\) and \((a, b)\) satisfy the \(r\)th AKNS equation and the \(r\)th Toda lattice (Tl) equation, respectively, that is,

\[\text{AKNS}_r(p, q) = 0, \quad \text{Tl}_r(a, b) = 0 \] (7.10)

for the same choice of \(c_\ell, \ell = 1, \ldots, r\) in both equations (7.10) (depending on the choice of \(d_n\) in (7.6b), (7.7b)).

Remark 7.1. These examples provide interesting connections between the KdVg and sG equation (where \(N\) is even and \(0 \in \{E_m\}_{m=0, \ldots, N}\)), and AKNS and Toda hierarchies (where \(N\) is odd), respectively, and illustrate the fundamental role of the Dubrovin equations as the common underlying principle for hierarchies of soliton equations. In particular, our approach establishes an isomorphism between the classes of algebro-geometric solutions of these pairs of integrable systems. Indeed, once the hyperelliptic curve \(K_g\) is fixed, algebro-geometric solutions of the KdVg and sG (respectively, algebro-geometric solutions of the \(r\)th AKNS and \(r\)th Tl equation) are just certain symmetric functions (i.e., “trace” relations) of the solutions \(\mu_1(x, t_g), \ldots, \mu_g(x, t_g)\) (resp. \(\mu_1(x, t_r), \ldots, \mu_g(x, t_r)\)) of the corresponding Dubrovin equations on \(K_g\). Analagous considerations apply to the nonlinear Schrödinger equation and the (continuum) Heisenberg chain (see, e.g., [27]). The interesting problem which types of symmetric functions of \(\mu_1, \ldots, \mu_g\) (i.e., which types of “trace” formulas) actually lead to completely integrable hierarchies is currently under investigation.

Appendix A. Lagrange Interpolation Formulas

In the following we suppress the \((x, t_r)\)-dependence as it will be of no importance in this appendix.

Fix \(g \in \mathbb{N}\) and recall that

\[F_g(z) = \prod_{j=1}^{g} (z - \mu_j), \] (A.1)

which implies that \(F'_g = \partial F_g / \partial z\)

\[F'_g(\mu_k) = \prod_{j=1, j \neq k}^{g} (\mu_k - \mu_j). \] (A.2)

The general form of Lagrange’s interpolation theorem then reads as follows. (For convenience of the reader we supply its proof even though the result is well-known.)

Theorem A.1. Assume that \(\mu_1, \ldots, \mu_g\) are \(g\) distinct complex numbers. Then

\[\sum_{j=1}^{g} \frac{\mu_j^{m-1}}{F'_g(\mu_j)} q^{(j)}(\mu) = \delta_{m,g-k} - \Psi_{k+1}(\mu) \delta_{m,g+1}, \]

\[m = 1, \ldots, g + 1, \quad k = 0, \ldots, g - 1. \] (A.3)

Proof. Let \(C_R\) be a circle with center at the origin and radius \(R\) that contains the zeros \(\mu_j\) of the polynomial \(F_g\) and which is oriented clockwise. Cauchy's theorem then yields

\[\frac{1}{2\pi i} \oint_{C_R} d\zeta \frac{\zeta^{m-1}}{F'_g(\zeta)(\zeta - z)} = \frac{z^{m-1}}{F'_g(z)} + \sum_{k=1}^{g} \frac{\mu_k^{m-1}}{F'_g(\mu_j)(\mu_j - z)}, \]

\[z \neq \mu_1, \ldots, \mu_g, \quad m = 1, \ldots, g + 1. \] (A.4)

However, by letting \(R \to \infty\) we infer that

\[\frac{1}{2\pi i} \oint_{C_R} d\zeta \frac{\zeta^{m-1}}{F'_g(\zeta)(\zeta - z)} = \lim_{R \to \infty} R^{m-1} F'_g(R) = \delta_{m,g+1}, \quad m = 1, \ldots, g + 1, \] (A.5)
which implies
\[z^{m-1} - \sum_{k=1}^{g} \frac{\mu_k^{m-1} F_{g}(z)}{F_{g}(\mu_k)(z - \mu_k)} = F_{g}(z)\delta_{m,g+1}. \]
(A.6)

Using the symmetric functions \(\Psi_j \) we may write
\[F_{g}(z) = \sum_{j=0}^{g} z^{g-j} \Psi_j(\mu) \]
(A.7)

and
\[\frac{F_{g}(z)}{z - \mu_j} = \sum_{k=0}^{g} z^{g-1-k} \Phi_{k}^{(j)}(\mu). \]
(A.8)

Expanding both sides of equation (A.6) in powers in \(z \), using (A.7) on the right-hand side and (A.8) on the left-hand side, proves (A.3).

The simplest Lagrange interpolation formula reads in the case \(k = 0 \),
\[\sum_{j=1}^{g} \frac{\mu_j^{m-1}}{F_{g}(\mu_j)} = \delta_{m,g}, \quad m = 1, \ldots, g. \]
(A.9)

For use in the main text we finally observe the following equalities. Adding (A.7) to \(\mu_j \) times (A.8) we find
\[F_{g}(z) + \mu_j F_{g}(z) = \sum_{k=0}^{g-1} z^{g-k-1} (\Psi_{k+1} + \mu_j \Phi_{k}^{(j)}) + z^{g}. \]
(A.10)

However, we also have
\[F_{g}(z) + \mu_j F_{g}(z) = z \frac{F_{g}(z)}{z - \mu_j} = \sum_{k=0}^{g-1} z^{g-k-1} \Phi_{k+1}^{(j)} + z^{g}, \]
(A.11)

using (A.8) and recalling \(\Phi_{g}^{(j)} = 0 \). Thus we conclude
\[\Psi_{k+1}(\mu) + \mu_j \Phi_{k}^{(j)}(\mu) = \Phi_{k+1}^{(j)}(\mu), \quad k = 0, \ldots, g - 1. \]
(A.12)

Finally, we will show
\[\sum_{\ell=0}^{k} \mu_j^\ell \Psi_{k-\ell}(\mu) = \Phi_{k}^{(j)}(\mu), \quad k = 0, \ldots, g, \]
(A.13)

by induction. Equation (A.13) clearly holds for \(k = 0 \); next assume that
\[\sum_{\ell=0}^{k-1} \mu_j^\ell \Psi_{k-\ell} = \Phi_{k}^{(j)} \]
(A.14)

holds. Then
\[\sum_{\ell=0}^{k} \mu_j^\ell \Psi_{k-\ell} = \Psi_{k} + \mu_j \sum_{\ell=1}^{k} \mu_j^{\ell-1} \Psi_{k-\ell} \]
(A.15)

\[= \Psi_{k} + \mu_j \sum_{\ell=0}^{k-1} \mu_j^{\ell} \Psi_{k-\ell-\ell} = \Psi_{k} + \mu_j \Phi_{k-1}^{(j)} = \Phi_{k}^{(j)}, \]

using first the induction hypothesis and then (A.12).

Acknowledgments. H.H. is indebted to the Department of Mathematics at the University of Missouri, Columbia for the great hospitality extended to him during his sabbatical 1996–97 when major parts of this work were done.
References

[1] S. I. Al’ber, Investigation of equations of Korteweg-de Vries type by the method of recurrence relations, J. London Math. Soc. 19, 467–480 (1979). (Russian)

[2] S. I. Al’ber, On stationary problems for equations of Korteweg-de Vries type, Commun. Pure Appl. Math. 34, 259–272 (1981).

[3] S. J. Alber, Associated integrable systems, J. Math. Phys. 32, 916–922 (1991).

[4] S. I. Al’ber and M. S. Al’ber, Formalisme hamiltonien pour les solutions “finite zone” d’équations intégrables, C. R. Acad. Sc. Ser. I 301, 777–780 (1985).

[5] S. I. Al’ber and M. S. Al’ber, Hamiltonian formalism for nonlinear Schrödinger equations and sine-Gordon equations, J. London Math. Soc. (2) 36, 176–192 (1987).

[6] S. J. Al’ber and M. S. Al’ber, Hamiltonian formalism for finite-zone solutions of non-linear integrable equations, in “VIIIth International Congress on Mathematical Physics, M. Mekhkhout and R. Sénéor (eds.), World Scientific, Singapore, 1987, pp. 447–462.

[7] M. S. Alber, G. G. Luther, and J. E. Marsden, Complex billiard Hamiltonian systems and nonlinear waves, in “Algebraic Aspects of Integrable Systems. In Memory of Irene Dorfman”, A. S. Fokas and I. M. Gelfand (eds.), Birkhäuser, Boston, 1997, pp. 1–16.

[8] E. D. Belokolos, A. I. Bobenko, V. Z. Enol’skii, A.R. Its, and V. B. Matveev, Algebro-Geometric Approach to Nonlinear Integrable Equations, Springer, Berlin, 1994.

[9] B. Birnir, Complex Hill’s equation and the complex periodic Korteweg-de Vries equations, Commun. Pure Appl. Math. 39, 1–49 (1986).

[10] B. Birnir, Singularities of the complex Korteweg-de Vries flows, Commun. Pure Appl. Math. 39, 283–305 (1986).

[11] W. Bulla, F. Gesztesy, H. Holden, and G. Teschl, Algebro-geometric quasi-periodic finite-gap solutions of the Toda and Kac-van Moerbeke hierarchies, Memoirs Amer. Math. Soc., to appear.

[12] J. L. Burchnall and T. W. Chaundy, Commutative ordinary differential operators, Proc. London Math. Soc. Ser. 2, 21, 420–440 (1923).

[13] J. L. Burchnall and T. W. Chaundy, Commutative ordinary differential operators, Proc. Roy. Soc. London A 118, 557–583 (1928).

[14] J. L. Burchnall and T. W. Chaundy, Commutative ordinary differential operators II. The identity $P^m = Q^m$, Proc. Roy. Soc. London A134, 471–485 (1932).

[15] C. De Concini and R. A. Johnson, The algebraic-geometric AKNS potentials, Ergod. Th. & Dynam. Sys. 7, 1–24 (1987).

[16] E. Date and S. Tanaka, Periodic multi-soliton solutions of Korteweg-de Vries equation and Toda lattice, Progr. Theoret. Phys. Suppl. 59, 107–125 (1976).

[17] E. Date and S. Tanaka, Analogue of inverse scattering theory for the discrete Hill’s equation and exact solutions for the periodic Toda lattice, Progr. Theoret. Phys. 56, 457–465 (1976).

[18] L.A. Dickey, Soliton Equations and Hamiltonian Systems, World Scientific, Singapore, 1991.

[19] R. Dickson, F. Gesztesy, and K. Unterkofler, A new approach to the Boussinesq hierarchy, Math. Nachr., to appear.

[20] R. Dickson, F. Gesztesy, and K. Unterkofler, Algebro-geometric solutions of the Boussinesq hierarchy, preprint, 1998.

[21] B. A. Dubrovin, Periodic problems for the Korteweg-de Vries equation in the class of finite band potentials, Funct. Anal. Appl. 9, 215–223, (1975).

[22] B. A. Dubrovin, Completely integrable Hamiltonian systems associated with matrix operators and Abelian varieties, Funct. Anal. Appl. 11, 265–277 (1977).

[23] B. A. Dubrovin, Theta functions and non-linear equations, Russian Math. Surv. 36:2, 11–92 (1981).

[24] B. A. Dubrovin, Matrix finite-zone operators, Revs. Sci. Tech. 23, 20–50 (1983).

[25] B. A. Dubrovin, I. M. Krichever, and S. P. Novikov, Integrable Systems. I, in “Dynamical Systems IV”, V. I. Arnol’d and S. P. Novikov (eds.), Springer, Berlin, 1990, pp. 173–280.

[26] B. A. Dubrovin, V. B. Matveev, and S. P. Novikov, Non-linear equations of Korteweg-de Vries type, finite-zone linear operators, and Abelian varieties, Russian Math. Surv. 31:1, 59–146 (1976).

[27] J. N. Elgin, Comments on the periodic nonlinear Schrödinger equation, in “Nonlinear Evolution Equations: Integrability and Spectral Methods”, A. Degasperis, A. P. Fordy, and M. Lakshmanan (eds.), Manchester University Press, Manchester, 1990, pp. 279–285.

[28] N. M. Ercolani and H. Flaschka, The geometry of the Hill equation and of the Neumann system, Phil. Trans. Roy. Soc. London A 315, 405–422 (1985).

[29] H. M. Farkas and I. Kra, Riemann Surfaces, 2nd ed., Springer, New York, 1992.

[30] H. Flaschka, On the inverse problem for Hill’s equation, Arch. Rat. Mech. Anal. 59, 293–309 (1975).

[31] I. M. Gel’fand and L. A. Dikii, Asymptotic behavior of the Resolvent of Sturm-Liouville equations and the algebra of the Korteweg-de Vries equations, Russ. Math. Surv. 30:5, 77–113 (1975).

[32] I. M. Gel’fand and L. A. Dikii, Integrable nonlinear equations and the Liouville theorem, Funct. Anal. Appl. 13, 6–15 (1979).

[33] F. Gesztesy and H. Holden, A combined sine-Gordon and modified Korteweg-de Vries hierarchy and its algebro-geometric solutions, preprint, 1997.
[34] F. Gesztesy and H. Holden, *Hierarchies of Soliton Equations and their Algebraic-Geometric Solutions*, monograph in preparation.

[35] F. Gesztesy and R. Ratnaseelan, *An alternative approach to algebro-geometric solutions of the AKNS hierarchy*, Rev. Math. Phys., to appear.

[36] F. Gesztesy, R. Ratnaseelan, and G. Teschl, *The KdV hierarchy and associated trace formulas*, in proceedings of the “International Conference on Applications of Operator Theory”, I. Gohberg, P. Lancaster, P. N. Shivakumar (eds.), Operator Theory: Advances and Applications, Vol. 87, Birkhäuser, 1996, pp. 125–163.

[37] P. A. Griffiths, *Linearizing flows and a cohomological interpretation of Lax equations*, Amer. J. Math. **107**, 1445–1483 (1985).

[38] P. G. Grinevich and I. M. Krichever, *Algebraic-geometry methods in soliton theory*, in “Soliton Theory: A Survey of Results”, A. P. Fordy, (ed.), Manchester Univ. Press, Manchester, 1990, pp. 354–400.

[39] A. R. Its, *Inversion of hyperelliptic integrals and integration of nonlinear differential equations*, Vestnik Leningrad Univ. Math. **9**, 121–129 (1981).

[40] A. R. Its and V. B. Matveev, *Schrödinger operators with finite-gap spectrum and N-soliton solutions of the Korteweg-de Vries equation*, Theoret. Math. Phys. **23**, 343–355 (1975).

[41] C. G. T. Jacobi, *Über eine neue Methode zur Integration der hyperelliptischen Differentialgleichungen und über die rationale Form ihrer vollständigen algebraischen Integralgleichungen*, J. Reine Angew. Math. **32**, 220–226 (1846).

[42] I. M. Krichever, *Algebraic-geometric construction of the Zakharov-Shabat equations and their periodic solutions*, Sov. Math. Dokl. **17**, 394–397 (1976).

[43] I. M. Krichever, *Integration of nonlinear equations by the methods of algebraic geometry*, Funct. Anal. Appl. **11**, 12–26 (1977).

[44] I. M. Krichever, *Methods of algebraic geometry in the theory of non-linear equations*, Russ. Math. Surv. **32:6**, 185–213 (1977).

[45] B. M. Levitan, *Inverse Sturm-Liouville Problems*, VNU Science Press, Utrecht, 1987.

[46] Y.-C. Ma and M. J. Ablowitz, *The periodic cubic Schrödinger equation*, Stud. Appl. Math. **65**, 113–158 (1981).

[47] V. A. Marchenko, *Schrödinger Operators and Applications*, Birkhäuser, Basel, 1986.

[48] H. P. McKean, *Integrable systems and algebraic curves*, in “Global Analysis”, M. Gromov and J. E. Marsden (eds.), Lecture Notes in Mathematics **755**, Springer, Berlin, 1979, pp. 83–200.

[49] H. P. McKean, *Variation on a theme of Jacobi*, Commun. Pure Appl. Math. **38**, 669–678 (1985).

[50] J. Mertsching, *Quas periodic solutions of the non-linear Schrödinger equation*, Fortschr. Phys. **85**, 519–536 (1987).

[51] P. van Moerbeke, *The spectrum of Jacobi matrices*, Invent. Math. **37**, 45–81 (1976).

[52] P. van Moerbeke and D. Mumford, *The spectrum of difference operators and algebraic curves*, Acta Math. **143**, 93–154 (1979).

[53] D. Mumford, *Tata Lectures on Theta II*, Birkhäuser, Boston, 1984.

[54] S. Novikov, S. V. Manakov, L. P. Pitaevskii, and V. E. Zakharov, *Theory of Solitons*, Consultants Bureau, New York, 1984.

[55] E. Previato, *Hyperelliptic quasi-periodic and soliton solutions of the nonlinear Schrödinger equation*, Duke Math. J. **52**, 329–377 (1985).

[56] E. Previato, *Seventy years of spectral curves: 1923–1993*, in “Integrable Systems and Quantum Groups”, M. Francaviglia and S. Greco (eds.), Lecture Notes in Math., Vol. 1620, Springer, Berlin, 1996, pp. 419–481.

[57] R. Schimming, *An explicit expression for the Korteweg-de Vries hierarchy*, Acta Appl. Math. **39**, 489–505 (1995).

[58] G. Segal and G. Wilson, *Loop groups and equations of KdV type*, Publ. Math. IHES **61**, 5–65 (1985).

[59] A. C. Ting, H. H. Chen, and Y. C. Lee, *Exact 2-vortex solutions of two-dimensional guiding-center plasmas*, Phys. Rev. Lett. **53**, 1348–1351 (1984).

[60] A. C. Ting, H. H. Chen, and Y. C. Lee, *Exact solutions of a nonlinear boundary value problem: the vortices of the two-dimensional sinh-Poisson equation*, Physica **26D**, 37–66 (1987).

[61] E. R. Tracy, H. H. Chen, and Y. C. Lee, *Reality constraints for the periodic sinh-Gordon equation*, Phys. Rev. **30A**, 3355–3358 (1984).

[62] M. Toda, *Theory of Nonlinear Lattices*, 2nd enlarged ed., Springer, Berlin, 1989.

[63] E. R. Tracy, H. H. Chen, and Y. C. Lee, *Study of quasiperiodic solutions of the nonlinear Schrödinger equation and the nonlinear modulational instability*, Phys. Rev. Lett. **53**, 218–221 (1984).

[64] E. R. Tracy, C. H. Chin, and H. H. Chen, *Real periodic solutions of the Liouville equation*, Physica **23D**, 91–101 (1986).

[65] E. R. Tracy, A. J. Neil, H. H. Chen, and C. H. Chin, *Investigation of the periodic Liouville equation*, in “Topics in Soliton theory and Exactly Solvable Nonlinear Equations”, M. Ablowitz, B. Fuchssteiner, and M. Kruskal (eds.), World Scientific, Singapore, 1987, pp. 263–276.

[66] G. Wilson, *Algebraic curves and soliton equations*, in “Geometry Today”, E. Arbarello, C. Procesi, and E. Strickland (eds.), Birkhäuser, Boston, 1985, pp. 303–329.
