Characteristics of deslanoside-induced modulation on jejunal contractility

Da-Peng Chen, Yong-Jian Xiong, Ze-Yao Tang, Qi-Ying Yao, Dong-Mei Ye, Sha-Sha Liu, Yuan Lin

Da-Peng Chen, Yong-Jian Xiong, Ze-Yao Tang, Qi-Ying Yao, Dong-Mei Ye, Sha-Sha Liu, Yuan Lin, Department of Pharmacology, Dalian Medical University, Dalian 116044, Liaoning Province, China

Author contributions: Chen DP designed and performed the research and wrote the paper; Tang ZY, Yao QY and Ye DM designed the research; Liu SS and Xiong YJ performed the research; Lin Y supervised the study and revised the paper.

Supported by National Natural Science Foundation of China, No. 30772601

Correspondence to: Yuan Lin, PhD, Department of Pharmacology, Dalian Medical University, Dalian 116044, Liaoning Province, China. linyuandmu2008@qq.com

Received: April 22, 2012

Revised: July 3, 2012

Accepted: August 14, 2012

Published online: November 7, 2012

Abstract

AIM: To characterize the dual effects of deslanoside on the contractility of jejunal smooth muscle.

METHODS: Eight pairs of different low and high contractile states of isolated jejunal smooth muscle fragment (JSMF) were established. Contractile amplitude of JSMF in different low and high contractile states was selected to determine the effects of deslanoside, and Western blotting analysis was performed to measure the effects of deslanoside on myosin phosphorylation of jejunal smooth muscle.

RESULTS: Stimulatory effects on the contractility of JSMF were induced (45.3% ± 4.0% vs 87.0% ± 7.8%, P < 0.01) by deslanoside in 8 low contractile states, and inhibitory effects were induced (180.6% ± 17.8% vs 109.9% ± 10.8%, P < 0.01) on the contractility of JSMF in 8 high contractile states. The effect of deslanoside on the phosphorylation of myosin light chain of JSMF in low (78.1% ± 4.1% vs 96.0% ± 8.1%, P < 0.01) and high contractile state (139.2% ± 8.5% vs 105.5 ± 7.34, P < 0.01) was also bidirectional. Bidirectional regulation (BR) was abolished in the presence of tetrodotoxin. Deslanoside did not affect jejunal contractility pretreated with the Ca²⁺ channel blocker verapamil or in a Ca²⁺-free assay condition. The stimulatory effect of deslanoside on JSMF in a low contractile state (low Ca²⁺ induced) was abolished by atropine. The inhibitory effect of deslanoside on jejunal contractility in a high contractile state (high Ca²⁺ induced) was blocked by phentolamine, propranolol and L-NG-nitroarginine, respectively.

CONCLUSION: Deslanoside-induced BR is Ca²⁺ dependent and is related to cholinergic and adrenergic systems when JSMF is in low or high contractile states.

© 2012 Baishideng. All rights reserved.

Key words: Deslanoside; Bidirectional regulation; Contractile state; Jejunal smooth muscle

Peer reviewers: Dr. John R Grider, PhD, Professor, Department of Physiology and Biophysics, Virginia Commonwealth University, PO Box 980551, Richmond, VA 23298, United States; Angelo A Izzo, Professor, Department of Experimental Pharmacology, University of Naples Federico II, Via D Monte Sano 49, 80131 Naples, Italy; Oliver Grundmann, PhD, Clinical Assistant Professor, Department of Medicinal Chemistry, College of Pharmacy, University of Florida, 1600 SW Archer RD, Room P6-20, Gainesville, FL 32610-0484, United States

Chen DP, Xiong YJ, Tang ZY, Yao QY, Ye DM, Liu SS, Lin Y. Characteristics of deslanoside-induced modulation on jejunal contractility. World J Gastroenterol 2012; 18(41): 5889-5896

Available from: URL: http://www.wjgnet.com/1007-9327/full/v18/i41/5889.htm DOI: http://dx.doi.org/10.3748/wjg.v18.i41.5889

INTRODUCTION

More than 200 naturally occurring cardiotonic glycosides (CGs, cardiac glycosides) have been identified to date[1].
CGs have long been and will continue to be used in the treatment of congestive heart failure and have entered the clinical trial phase for treating cancer[25,26]. CGs enhance the myocardial contraction by increasing intracellular Ca$^{2+}$ via inhibiting the activities of Na$^+$/K$^+$-ATPase[6,8]. CGs ouabain has been found to induce excitation on colonic smooth muscle[6,8]. Toxic effects of CGs are observed in clinics, e.g., atrioventricular block, bradycardia, and gastrointestinal irritation[6]. Probably due to the fact that no therapeutic applications are yet known, the characteristics of CGs on the intestinal motility have rarely been investigated.

Intestinal motility is mainly modulated by neurotransmitters and hormones; the neuronal regulation of intestinal motility involves intrinsic, e.g., enteric nervous system (ENS), as well as extrinsic nerves, e.g., the sympathetic and parasympathetic nervous system (SPNS)[10,12]. The central nervous system is able to modulate, but not entirely control, the motor activity by sending instructions via SPNS, and ENS modulates the motility of intestinal smooth muscle even when isolated from the body to fulfill pivotal functions[10,11]. In this study, we proposed a hypothesis that inducible bidirectional regulation (BR) is the major autonomous control of intestinal motility in the absence of CNS control, and that both low and high contractile states of intestinal smooth muscle can be regulated back toward normal contractile state by a single CGs deslanoside-induced BR. To test the hypothesis, different low and high contractile states of intestinal smooth muscle were established. Considering both colon and small intestine are sites of “abnormal” motility in intestinal smooth muscle disorders, e.g., irritable bowel syndrome (IBS)[10-14], and that the jejenum is a “typical” region of the small intestine, we chose to investigate the contractility of isolated jejunal smooth muscle fragment (JSMF) and its underlying mechanisms involved in deslanoside-induced BR.

MATERIALS AND METHODS

Experimental models of diarrhea and constipation

The animal protocol was approved by Dalian Medical University Animal Care and Ethics Committee, and all experimental procedures described were carried out in accordance with the Declaration of Helsinki. Sprague-Dawley rats (200-250 g) were used in the assay. Constipation-predominant (CP) rats were established by daily gavage with cool water (0°C) for 14 d, and the control rats were prepared by daily gavage with water at room temperature[11,12]. Diarrhea-predominant (DP) rats were established by intracolonic instillation of acetic acid (10.0 mmol/L)-erythromycin (150 mmol/L) Krebs buffer, and control rats received intracolonic instillation with saline[17,18]. The granule number and the moisture content of the feces from the control group and the model group were measured daily, and the body mass was recorded once every 3 d.

Tissue preparation

Tissue fragments from the intact tubular jejunum were prepared according to the methods described previously[20,21]. Jejunum was isolated from normal, CP and DP rats. Jejunal fragments were cut into approximately 2 cm in length (tubes). One end of the jejunal fragment in longitudinal direction was fixed to the wall of a tissue bath chamber (20 mL volume), and the other end was connected to a force-displacement transducer. This montage measured the contractile response of JSMF.

Contractility determination

The organ bath was maintained at 37 °C, and the resting tension was set optimally at 1.0 g. Preliminary experiments showed that this load stretched tissues to their optimal length for force development during contraction. JSMF was allowed to equilibrate in aerated Krebs buffer for 50 min and the bath solution was replaced every 10 min. Contractile amplitude of JSMF was measured from the baseline to the peak and was expressed as a percentage of normal contractile amplitude. Contractile amplitude was recorded and identical time-interval of each assay with the same start and stop time was chosen to compare the amplitude before and after drug treatment in different assay conditions. The mean amplitude was calculated from six independent assays.

Ex vivo assay condition

The contractility of JSMF was measured in Krebs buffer (118 mmol/L NaCl, 4.7 mmol/L KCl, 1.2 mmol/L KH2PO4, 1.2 mmol/L MgSO4, 4.2 mmol/L NaHCO3, 2.5 mmol/L CaCl2, 10 mmol/L glucose; pH 7.4) and selected as the normal contractile state (NCS). The jejunal contractility measured in modified low Ca$^{2+}$ (1.25 mmol/L) and high Ca$^{2+}$ (5.0 mmol/L) Krebs buffer was selected as the representative low contractile state (RLCS) and representative high contractile state (RHCS), respectively, since spontaneous contractions of intestinal smooth muscle were paralleled to intracellular Ca$^{2+}$ concentration[22,23]. One pair of low-high contractile states was established from jejunal smooth muscle isolated from CP and DP rats. The other six pairs of low-high contractile states were generated by incubating JSMF in modified low K$^+$ (2.5 mmol/L)-high K$^+$ (10.0 mmol/L) Krebs buffer, low Na$^+$ (100 mmol/L)-high Na$^+$ (150 mmol/L) Krebs buffer, high Mg$^{2+}$ (3.0 mmol/L)-low Mg$^{2+}$ (1.0 mmol/L) Krebs buffer, adrenaline (5.0 µmol/L)-ACh (5.0 µmol/L) Krebs buffer, quercetin (10.0 µmol/L)-capsaicin (10.0 µmol/L) and nitric oxide (NO) donor sodium nitroprusside (SNP) (5 µmol/L)-erythromycin (10 µmol/L) Krebs buffer[24,25]. After the stable contractile state of jejunal contraction was obtained, deslanoside was added to the bath to make a final concentration of 20 µmol/L, unless otherwise indicated.

Western blotting analysis

The phosphorylation of myosin light chain (PMLC) in jejenum was examined by Western blotting as described previously[26,27]. JSMF was immediately treated with low Ca$^{2+}$ or high Ca$^{2+}$ Krebs buffer for 1 min in the absence or presence of 20 µmol/L deslanoside, and then were
frozen and stored in liquid nitrogen. Ground product was incubated for 30 min in ice-cold homogenization buffer. The blots on nitrocellulose filter membrane were probed with phosphor-myosin light chain 2 (Ser 19) antibody (1:1000) [No. 3672, CST, United States] and myosin light chain 2 (total myosin light chain) antibody (1:1000) (No. 3671, Cell Signaling Technology, Inc (CST), United States) at 4 °C with gentle shaking overnight. Anti-rabbit IgG secondary antibodies were used at 1:2500 for 60 min at room temperature and bands were detected and quantified using Multispectral imaging system (UVP, United States).

Drugs

Injectable deslanoside was obtained from Sine Pharmaceutical (Shanghai, China). Capsaicin and quercetin were purchased from Chengdu Biopurify Phytochemicals Co. Ltd, China. Tetrodotoxin (TTX) was a product of Aladdin Chemistry Co. Ltd, China. Tetrodotoxin (TTX) was a product of Aladdin Chemistry Co. Ltd, China. Deslanoside, at bath concentrations of 5 µmol/L, 20 µmol/L and 80 µmol/L, did not affect jejunal contractility in a Ca²⁺-free assay condition, and 20 µmol/L deslanoside did not stimulate the contractility of JSMF pre-incubated with the Ca²⁺ channel blocker verapamil at normal, low and high contractile states (Figure 4).

RESULTS

Deslanoside-induced BR on the contractility of JSMF

Deslanoside exerted stimulatory effects on JSMF in NCS in a dose range of 5-160 µmol/L (Figure 1A).

Eight low and 8 high contractile states of jejunal smooth muscle were established as described in Materials and Methods. The contractility of JSMF in both low and high contractile states was statistically different from that of normal control (Figure 1). Deslanoside (20 µmol/L) was used in all the assays based on the fact that deslanoside-induced BR on jejunal contractility was observed in a dose range of 10-40 µmol/L. Deslanoside produced significant stimulatory effects (45.3% ± 4.0% vs 87.0% ± 7.8%, P < 0.01) on the contractility of JSMF in all 8 low contractile states (Figure 1B), and produced significant inhibitory effects (180.6% ± 17.8% vs 109.9% ± 10.8%, P < 0.01) on the contractility of JSMF in all 8 high contractile states (Figure 1C).

Western blotting analysis

The PMLC in jejunum was significantly decreased in RLCS in comparison with that in NCS (100.0% ± 9.4% vs 78.1% ± 4.1%, P < 0.01), and was significantly increased at RHCS in comparison with that in NCS (100.0% ± 6.7% vs 139.2% ± 8.5%, P < 0.01) (Figure 2). Deslanoside significantly increased the PMLC in RLCS (78.1% ± 4.1% vs 96.0% ± 8.1%, P < 0.01), and significantly decreased the PMLC in RHCS (139.2% ± 8.5% vs 105.5 ± 7.34, P < 0.01).

Effects of deslanoside on the contractility of JSMF in the presence of TTX

In the presence of TTX, BR was not observed when deslanoside was tested on the contractility of JSMF in RLCS and RHCS (Figure 3).

Underlying mechanisms involved in deslanoside-induced BR

Deslanoside, at bath concentrations of 5 µmol/L, 20 µmol/ L and 80 µmol/L, did not affect jejunal contractility in a Ca²⁺-free assay condition, and 20 µmol/L deslanoside did not stimulate the contractility of JSMF pre-incubated with the Ca²⁺ channel blocker verapamil at normal, low and high contractile states (Figure 4).

The underlying mechanisms involved in deslanoside-induced BR were investigated. Mucarnic receptor antagonist atropine abolished the stimulatory effect of deslanoside on the contractility of JSMF in RLCS (Table 1; Figure 5A). Neither histamine H1-receptor antagonist diphenhydramine nor histamine H2-receptor antagonist cimetidine blocked deslanoside-induced stimulatory effects on the contractility of JSMF in RLCS (Table 1; Figure 5A). α-adrenergic receptor antagonist phentolamine, β-adrenergic receptor antagonist propranolol and NO synthase inhibitor L-NNa abolished deslanoside-induced inhibitory effect on the contractility of JSMF in RHCS (Table 1; Figure 5B).

DISCUSSION

Eight pairs of low-high contractile states were established to imitate intestinal hyper- and hypomotility and

Agents	Normal contractile state	Low contractile state	High contractile state	
	Pre-deslanoside	Post-deslanoside	Pre-deslanoside	
	Krebs buffer	100.0 ± 12.1	93.4 ± 8.1	177.7 ± 16.0
	Atropin	93.3 ± 6.3	29.1 ± 1.1	149.7 ± 11.0
	Diphenhydramine	109.0 ± 14.3	46.5 ± 3.8	169.6 ± 15.2
	Cimetidine	100.0 ± 11.8	42.9 ± 3.9	180.1 ± 17.4
	Phenotamine	92.5 ± 6.5	55.4 ± 5.5	189.3 ± 19.2
	Propranolol	89.4 ± 9.8	33.2 ± 2.6	163.1 ± 16.1
	L-NNa	103.0 ± 11.3	51.3 ± 4.6	190.5 ± 18.2
		149.0 ± 13.0	89.1 ± 5.1	109.3 ± 11.9
		155.0 ± 15.1	32.4 ± 3.3	100.3 ± 11.2
		145.2 ± 13.1	94.0 ± 4.9	108.5 ± 11.6
		153.4 ± 13.0	93.4 ± 8.1	113.3 ± 12.1
		160.6 ± 16.2	90.6 ± 5.2	184.5 ± 17.2
		145.5 ± 14.2	95.6 ± 7.8	161.7 ± 17.3
		150.0 ± 13.2	119.6 ± 12.5	195.1 ± 19.1
to evaluate the characteristics of deslanoside-induced BR and potential clinical implication. IBS is known as one of the major functional gastrointestinal disorders, affecting approximately 10% of all adults worldwide. IBS is usually categorized into three subclasses: IBS with constipation (hypo-motility), IBS with diarrhea (hyper-motility), and IBS with alternating symptoms of both constipation and diarrhea (IBS-A). None of the currently available drugs are globally effective in treating all IBS symptoms, and developing treatment strategies...
for patients with IBS has been difficult because of the lack of pharmacological targets and the wide range of symptomatology[31]. Considering that the precise cause of IBS is unknown and it is unlikely that one single factor could explain all instances of IBS[32], we established various assay conditions to mimic the possible intestinal hyper- and hypo-motility. These low and high contractile states of isolated intestinal smooth muscle were established (1) by changing ionic concentration in assay buffers; (2) using inhibitory and stimulatory neurotransmitters, or using exog-

Figure 2 Western blotting analysis of the phosphorylation of myosin light chain. A: Representative images of Western blotting of the phosphorylation of myosin light chain (PMLC) of jejenum; B: Statistical analysis of band intensities of the PMLC in 4 independent experiments in normal contractile state (NCS, control), representative low contractile state (RLCS), and representative high contractile state (RHCS). To correct for loading variations, the result is expressed as a ratio of phosphor-myosin light chain to myosin light chain and as (B). The mean contractile amplitude of JSMF without drug treatment in normal contractile state (NCS, control) is defined as 100%. Data represent mean ± SE from 4 independent experiments; ⁵P < 0.01 vs RLCS; ⁶P < 0.01 vs RHCS. D: Deslanoside.

Figure 3 Effects of deslanoside on the contractility of jejunal smooth muscle fragment pretreated with tetrodotoxin. A: Representative traces of deslanoside (5-80 μmol/L) on the contractility of jejunal smooth muscle fragment (JSMF) pre-treated with verapamil (0.1 μmol/L) in normal contractile state (NCS), representative low contractile state (RLCS) and representative high contractile state (RHCS); B: Representative traces of deslanoside (5-80 μmol/L) on the contractility of JSMF pre-treated with Ca²⁺-free Krebs buffer; C: Statistical analysis obtained from 6 independent assays in identical assay conditions as (A) and as (B). The mean contractile amplitude of JSMF without drug treatment in NCS is set to a relative value of 100%, other data are expressed as mean ± SE (% NCS, n = 6); ⁵P < 0.01 vs the control group.

Figure 4 Effects of deslanoside on the contractility of jejunal smooth muscle fragment in Ca²⁺-free conditions. A: Representative traces of deslanoside (20 μmol/L) on the contractility of jejunal smooth muscle fragment (JSMF) pre-treated with verapamil (0.1 μmol/L) in normal contractile state (NCS), representative low contractile state (RLCS) and representative high contractile state (RHCS); B: Representative traces of deslanoside (5-80 μmol/L) on the contractility of JSMF pre-treated with Ca²⁺-free Krebs buffer; C: Statistical analysis obtained from 6 independent assays in identical assay conditions as (A) and as (B). The mean contractile amplitude of JSMF without drug treatment in NCS is set to a relative value of 100%, other data are expressed as mean ± SE (% NCS, n = 6); ⁵P < 0.01 vs the control group.
Chen DP et al. Deslanoside induced bidirectional regulation

Figure 5 Effects of deslanoside on the contractility of jejunal smooth muscle fragment pretreated with receptor antagonist. A: Effects of deslanoside on the contractility of jejunal smooth muscle fragment (JSMF) pretreated with 10 μmol/L atropine, 10 μmol/L diphenhydramine and 10 μmol/L cimetidine in the representative low contractile state (RLCS), respectively; B: Effects of deslanoside on the contractility of JSMF pretreated with 10 μmol/L phentolamine, 5 μmol/L propranolol and 10 μmol/L L-NG-nitroarginine (L-NNA) in the representative high contractile state (RHCS), respectively.

It is known that ENS is highly interconnected and responsible for secreting at least 50 different modulators, regulating intestinal motility and other functions. We are still not clear about the diverse mechanisms for BR induction, including how dozens of neurotransmitters in intestinal smooth muscle are interrelated in normal contractile state, and how they correlate with BR in both the low and high contractile states. Although we have partially revealed the characteristics of deslanoside-induced BR, further study is still required to identify the detailed mechanisms.

ACKNOWLEDGMENTS
The authors wish to thank Zhi Lin and Fan Yuan for their comments.

COMMENTS

Background
Irritable bowel syndrome (IBS) is known as one of major functional gastro-
intestinal disorders, contracting approximately 10% of all adults worldwide. Cardiotonic glycosides (CGs) have long been and continue to be used in the treatment of congestive heart failure and have entered clinical trials for treating cancer. Gastrointestinal irritation of CGs has been reported, however, the characteristics of CGs on intestinal motility remain unknown.

Research frontiers
Developing treatment strategies for patients with IBS has been difficult because of the lack of pharmacological targets and the wide range of symptomatology, especially in the alternating-type IBS (IBS-A) which is a functional gastrointestinal disorder with alternating symptoms of both constipation and diarrhea.

Innovations and breakthroughs
The present study established 8 pairs of low-high contractile states to mimic the possible intestinal smooth muscle disorders. These different low and high contractile states of isolated intestinal smooth muscle were established by changing ionic concentration in assay buffers; using inhibitory and stimulatory neurotransmitters; exogenous inhibitors and stimulators, respectively in the assays; and isolated intestinal smooth muscle was obtained from both constipation-prominent rat model and diarrhea-prominent rat model. The results indicate that the contractile state determines deslanoside-induced effects to be stimulatory or inhibitory, namely, stimulatory effects on the contractility of intestinal fragment were induced by deslanoside in all low contractile states, and inhibitory effects were induced on the contractility of jejunal smooth muscle fragment (JSMF) in all high contractile states. The present study indicates that deslanoside-induced Bidirectional regulation (BR) requires the presence of enteric nervous system and is Ca2+ dependent. The possible mechanism of deslanoside-induced BR is related to cholinergic system when jejunal smooth muscle is in a low contractile state, and related to adrenergic system and nitric oxide relaxing mechanism when in a high contractile state.

Applications
The results implicate that deslanoside-induced BR on jejunum is informative for preclinical investigation of a drug with potential value for the modulation of both abnormally low and high contractility of intestinal smooth muscles. To relieve the symptoms of functional bowel disorders, such as IBS-A, BR-inducer deslanoside could be considered for the potential future clinical application.

Terminology
IBS is usually classified into three subclasses: IBS with constipation (hypomotility), IBS with diarrhea (hypermotility), and IBS with alternating symptoms of both constipation and diarrhea.

Peer review
This is a well done study that provides interesting insight into the action of deslanoside. The study is complete, well-written and suitable for publication.

REFERENCES
1. Froberg B, Ibrahim D, Furbée RB. Plant poisoning. Emerg Med Clin North Am 2007; 25: 375-433; abstract ix
2. Mijatovic T, Van Quaquebeke E, Delest B, Debeir O, Darro F, Kiss R. Cardiotonic steroids on the road to anti-cancer therapy. Biochim Biophys Acta 2007; 1776: 32-57
3. Prassas I, Diamandis EP. Novel therapeutic applications of cardiotonic steroids. Nat Rev Drug Discov 2008; 7: 926-935
4. Winnicka K, Bielawski K, Bielawska A. Cardiac glycosides in cancer research and cancer therapy. Acta Pol Pharm 2006; 63: 109-115
5. Yang P, Menter DG, Cartwright C, Chan D, Dixon S, Su-raokar M, Mendoza G, Llanas N, Newman RA. Oleandrin-mediated inhibition of human tumor cell proliferation: importance of Na,K-ATPase alpha subunits as drug targets. Mol Cancer Ther 2009; 8: 2319-2329
6. Arispe N, Diaz JC, Simakov O, Pollard HB. Heart failure drug digoxin induces calcium uptake into cells by forming transmembrane calcium channels. Proc Natl Acad Sci USA 2008; 105: 2610-2615
7. Liu J, Tian J, Haas M, Shapiro JI, Askari A, Xie Z. Obuain interaction with cardiac Na+/K+-ATPase initiates signal cascades independent of changes in intracellular Na+ and Ca2+ concentrations. J Biol Chem 2000; 275: 27608-27644
8. Saunders R, Scheiner-Bobis G. Obuain stimulates endothelial release and expression in human endothelial cells without inhibiting the sodium pump. Eur J Biochem 2004; 271: 1054-1062
9. Barajas-López C, Huizinga JD. Ouabain-induced excitation of colonic smooth muscle due to block of K+ conductance by intracellular Na+ ions. Eur J Pharmacol 1992; 221: 51-58
10. Hansen MB. Neurohumoral control of gastrointestinal motility. Physiol Rev 2003; 52: 1-30
11. Schemann M. Control of gastrointestinal motility by the “gut brain”--the enteric nervous system. J Pediatr Gastroenterol Nutr 2005; 41 Suppl 1: S4-S6
12. Pimentel M. The Treatment of Patients With Irritable Bowel Syndrome: Review of the Latest Data From the 2010 DDW Meeting. Gastroenterol Hepatol (N Y) 2010; 6: 1-15
13. Ringel Y, Sperber AD, Drossman DA. Irritable bowel syndrome. Annu Rev Med 2001; 52: 319-338
14. Tack J, Fried M, Houghton LA, Spick J, Fisher G. Systematic review: the efficacy of treatments for irritable bowel syndrome--a European perspective. Aliment Pharmacol Ther 2006; 24: 183-205
15. Zou BC, Dong L, Wang Y, Wang SH, Cao MB. Expression and role of 5-HT7 receptor in brain and intestine in rats with irritable bowel syndrome. Chin Med J (Engl) 2007; 120: 2069-2074
16. Peng LH, Yang YS, Sun G, Wang WF. A new model of Constipation-predominant irritable bowel syndrome in rats. Shijie Huaren Xiaohua Zazhi 2004; 12: 112-116
17. La JH, Kim TW, Sung TS, Kang JW, Kim HJ, Yang IS. Visceral hypersensitivitiy and altered colonic motility after subdural inmaflamation in a rat model of colitis. World J Gastroenterol 2003; 9: 2791-2795
18. Mozaffari S, Esmaily H, Rahimi R, Baerei M, Sanei Y, Asadi-Shahmirzadi A, Salehi-Surmahi MH, Abdollahi M. Effects of Hypericum perforatum extract on rat irritable bowel syndrome. Pharmacogn Mag 2011; 7: 213-223
19. La JH, Kim TW, Sung TS, Kim HJ, Kim YJ, Yang IS. Increase in neurokinin-1 receptor-mediated colonic motor response in a rat model of irritable bowel syndrome. World J Gastroenterol 2005; 11: 237-241
20. Mathison R, Shaffer E. Increased cholinergic contractions of jejunal smooth muscle caused by a high cholesterol diet are prevented by the 5-HT4 agonist--tegaserod. BMC Gastroenterol 2006; 6: 8
21. Zhu J, Chen L, Xia H, Luo HS. Mechanisms mediating CCK-8S-induced contraction of proximal colon in guinea pigs. World J Gastroenterol 2010; 16: 1076-1085
22. Frings M, Haschke G, Heinke B, Schäfer KH, Diener M. Spontaneous contractions of intestinal smooth muscle aggregates from the new-born rat triggered by thromboxane A2. J Vet Med A Physiol Pathol Clin Med 2000; 47: 469-475
23. Karaki H, Ozaki H, Hori M, Mitsui-Saito M, Amano K, Harada K, Miyamoto S, Nakazawa H, Won KJ, Sato K. Calcium movements, distribution, and functions in smooth muscle. Pharmacol Rev 1997; 49: 157-230
24. Scarpignato C, Pelosini I. Management of irritable bowel syndrome: novel approaches to the pharmacology of gut motility. Can J Gastroenterol 1999; 13 Suppl A: 50A-65A
25. Chen D, Xiong Y, Wang L, Lv B, Lin Y. Characteristics of emodin on modulating the contractility of jejunal smooth muscle. Can J Physiol Pharmacol 2012; 90: 455-462
26. Kobayashi K, Murata T, Hori M, Ozaki H. Prostaglandin E2-panostioan EP3 signal induces vascular contraction via nPKC and ROCK activation in rat mesentery. Acta Physiol Scand 2011; 200: 375-380
27. Iwabu A, Tian J, Haas M, Shapiro JI, Askari A, Xie Z. Ouabain-induced bidirectional regulation on jejunal smooth muscle is informative for preclinical investigation of a drug with potential value for the modulation of both abnormally low and high contractility of intestinal smooth muscles. To relieve the symptoms of functional bowel disorders, such as IBS-A, BR-inducer deslanoside could be considered for the potential future clinical application.

Innovations and breakthroughs
The present study established 8 pairs of low-high contractile states to mimic the possible intestinal smooth muscle disorders. These different low and high contractile states of isolated intestinal smooth muscle were established by changing ionic concentration in assay buffers; using inhibitory and stimulatory neurotransmitters; exogenous inhibitors and stimulators, respectively in the assays; and isolated intestinal smooth muscle was obtained from both constipation-prominent rat model and diarrhea-prominent rat model. The results indicate that the contractile state determines deslanoside-induced effects to be stimulatory or inhibitory, namely, stimulatory effects on the contractility of intestinal fragment were induced by deslanoside in all low contractile states, and inhibitory effects were induced on the contractility of jejunal smooth muscle fragment (JSMF) in all high contractile states. The present study indicates that deslanoside-induced Bidirectional regulation (BR) requires the presence of enteric nervous system and is Ca2+ dependent. The possible mechanism of deslanoside-induced BR is related to cholinergic system when jejunal smooth muscle is in a low contractile state, and related to adrenergic system and nitric oxide relaxing mechanism when in a high contractile state.

Applications
The results implicate that deslanoside-induced BR on jejunum is informative for preclinical investigation of a drug with potential value for the modulation of both abnormally low and high contractility of intestinal smooth muscles. To relieve the symptoms of functional bowel disorders, such as IBS-A, BR-inducer deslanoside could be considered for the potential future clinical application.

Terminology
IBS is usually classified into three subclasses: IBS with constipation (hypomotility), IBS with diarrhea (hypermotility), and IBS with alternating symptoms of both constipation and diarrhea.

Peer review
This is a well done study that provides interesting insight into the action of deslanoside. The study is complete, well-written and suitable for publication.
Chen DP et al. Deslanoside induced bidirectional regulation

30 Chang FY, Lu CL. Treatment of irritable bowel syndrome using complementary and alternative medicine. J Chin Med Assoc 2009; 72: 294-300
31 Dunphy RC, Verne GN. Drug treatment options for irritable bowel syndrome: managing for success. Drugs Aging 2001; 18: 201-211
32 Kraneveld AD, Rijnierse A, Nijkamp FP, Garssen J. Neuro-immune interactions in inflammatory bowel disease and irritable bowel syndrome: future therapeutic targets. Eur J Pharmacol 2008; 565: 361-374
33 Mang CF, Truempler S, Erbelding D, Kilbinger H. Modulation by NO of acetylcholine release in the ileum of wild-type and NOS gene knockout mice. Am J Physiol Gastrointest Liver Physiol 2002; 283: G1132-G1138
34 Li M, Johnson CP, Adams MB, Sarna SK. Cholinergic and nitrergic regulation of in vivo giant migrating contractions in rat colon. Am J Physiol Gastrointest Liver Physiol 2002; 283: G544-G552
35 Lu CL, Chen CY, Chang FY, Lee SD. Characteristics of small bowel motility in patients with irritable bowel syndrome and normal humans: an Oriental study. Clin Sci (Lond) 1998; 95: 165-169
36 Goldstein AM, Nagy N. A bird’s eye view of enteric nervous system development: lessons from the avian embryo. Pediatr Res 2008; 64: 326-333

S- Editor Shi ZF L- Editor Ma JY E- Editor Lu YJ