APPENDIX: LOCAL INTEGRATED INFORMATION

A natural way to extend IIT 2.0 for complex systems analysis is to consider local versions of Φ, which can be built via the framework introduced by Lizier. Local (or pointwise) information measures are able to identify coherent, emergent structures known as particles, which have been shown to be the basis of the distributed information processing that takes place in systems such as cellular automata.11,24

One of the most basic pointwise information metrics is the local mutual information, which is defined as

$$i(x; y) := \log \frac{p(x, y)}{p(x)p(y)}$$ \hspace{1cm} (A1)

so that $\mathbb{E}[i(X, Y)] = I(X; Y)$ is the usual mutual information. By evaluating i on every x, y pair, one can determine which particular combinations of symbols play a predominant role for the observed interdependency between X and Y. (More specifically, the local mutual information captures specific deviations between the joint distribution and the product of the marginals.) Building on these ideas, Lizier proposed a taxonomy of distributed information processing as composed of storage, transfer, and modification.21 For this, consider a bivariate stochastic process (X_t, Y_t) with $t \in \mathbb{Z}$ and introduce the shorthand notation $X_{t:k} = (X_{t-k}, \ldots, X_t)$ and $X_{t+k} = (X_t, \ldots, X_{t+k-1})$ for the corresponding past and future embedding vectors of length k. In this context, storage within the subprocess X_t is identified with its excess entropy $E_t = I(X_{t-k}^{x_k}; X_t^{+k})$ and transfer from Y_t to X_{t+1} with the transfer entropy $TE_t = I(X_{t+1}; X_t^{+k} | Y_t^{k})$.22 Interestingly, both quantities have corresponding local versions,

$$e_t(x_t) := \log \frac{p(x_t^{+k} | X_t^{k})}{p(x_t^{+k}) p(x_t^{k})}$$ \hspace{1cm} (A2)

$$t_t(y_t \rightarrow x_t) := \log \frac{p(x_{t+1} | x_t^{k}, y_t^{k})}{p(x_{t+1} | x_t^{k})}$$ \hspace{1cm} (A3)

such that, as expected, $\mathbb{E}[e_t] = E_t$ and $\mathbb{E}[t_t] = TE_t$. Note that to measure transfer in either direction for the results in Fig. 9, we compute the local TE from a cell to its left and right neighbors and take the maximum of the two.

These ideas can be used to extend the standard formulation of integrated information measures in two ways. First, by using embedding vectors, the IIT metrics are applicable to non-Markovian systems.23 Second, by formulating pointwise measures, one can capture spatiotemporal variations in Φ. Mathematically, we reformulate Eq. (2) introducing these modifications as

$$\psi_k[X; \tau, B] = I(X_{t-k}^{k}; X_t) - \sum_{j=1}^{N} I(M_j^{t-k+1}; M_j^{t-k})$$ \hspace{1cm} (A4)

and apply the same partition scheme described in Sec. II A to obtain an “embedded” integrated information, Φ_k. Then, the equation above can be readily made into a local measure by replacing mutual information with its local counterpart,

$$\phi_k[x_t; \tau, B] = \mathbb{E}[\phi_k[x_t; \tau, B]]$$ \hspace{1cm} (A5)

such that, as expected, $\psi_k[X; \tau, B] = \mathbb{E}[\phi_k[x_t; \tau, B]]$.

REFERENCES

1. S. Wolfram, *A New Kind of Science* (Wolfram Media, 2002), p. 1197.
2. A. Pikovsky, M. Rosenblum, and J. Kurths, *Synchronization: A Universal Concept in Nonlinear Sciences* (Cambridge University Press, 2001), p. 432.
3. J. A. Fodor, *The Language of Thought* (Harvard University Press, 1975), Vol. 5.
4. Z. Pylyshyn and W. Turnbull, “Computation and cognition: Toward a foundation for cognitive science,” *Can. Psychol.* 27, 85–87 (1986).
5. M. Roeschla, “From Ockham to Turing—And back again,” in *Philosophical Explorations of the Legacy of Alan Turing* (Springer, 2017), pp. 279–304.
6. M. Mill丏owski, *Explaining the Computational Mind (MIT Press, 2013).*
7. T. Van Gelder, “What might cognition be, if not computation?”, *J. Philos.* 92, 345–381 (1995).
8. T. Van Gelder, “The dynamical hypothesis in cognitive science,” *Behav. Brain Sci.* 21, 615–628 (1998).
9. R. Smith, “Cognition as a dynamic system: Principles from embodiment,” *Dev. Rev.* 25, 278–298 (2005).
10. M. L. Minsky, “Logical versus analogical or symbolic versus connectionist or neat versus scruffy,” *AI Mag.* 12, 34–51 (1991).
11. M. Gareno and M. Shanahan, “Reconciling deep learning with symbolic artificial intelligence: Representing objects and relations,” *Carr. Optim. Behav. Sci.* 29, 17–23 (2019).
12. D. Beer and P. L. Williams, “Information processing and dynamics in minimally cognitive agents,” *Cogn. Sci.* 39, 1–38 (2015).
13. S. Wolfram, “Universality and complexity in cellular automata,” *Physica D* 10, 1–35 (1984).
14. G. E. Langton, “Computation at the edge of chaos: Phase transitions and emergent computation,” *Physica D* 42, 12–37 (1990).
15. G. Tononi and O. Sporns, “Measuring information integration,” *BMC Neurol.* 4, 31 (2003).
16. D. Balduzzi and G. Tononi, “Integrated information in discrete dynamical systems: Motivation and theoretical framework,” *PLoS Comput. Biol.* 4, e1000091 (2008).
17. M. Oizumi, L. Albantakis, and G. Tononi, “From the phenomenology to the mechanisms of consciousness: Integrated Information Theory 3.0,” *PLoS Comput. Biol.* 10, e1003588 (2014).
18. P. Mediano, F. Rosas, R. L. Carhart-Harris, A. K. Seth, and A. B. Barrett, “Beyond integrated information: A taxonomy of information dynamics phenomena,” arXiv:1909.02297 (2019).
19. G. Tononi and C. Koch, “Consciousness: Here, there and everywhere?,” *Philos. Trans. R. Soc. B* 370, 20140167 (2015).
20. G. Tononi, M. Boly, M. Massimini, and C. Koch, “Integrated information theory: From consciousness to its physical substrate,” *Nat. Rev. Neurosci.* 17, 450 (2016).
21. A. B. Barrett and P. Mediano, “The Phi measure of integrated information is not well-defined for general physical systems,” *J. Conscious. Stud.* 26, 11–20 (2019).
APPENDIX: LOCAL INTEGRATED INFORMATION

A natural way to extend IIT 2.0 for complex systems analysis is to consider local versions of Φ, which can be built via the framework introduced by Lizier.24 Local (or pointwise) information measures are able to identify coherent, emergent structures known as particles, which have been shown to be the basis of the distributed information processing that takes place in systems such as cellular automata.11,25

One of the most basic pointwise information metrics is the local mutual information, which is defined as

$$ i(x; y) := \log \frac{p(x, y)}{p(x)p(y)} \quad (A1) $$

so that $\mathbb{E}[i(X; Y)] = I(X; Y)$ is the usual mutual information. By evaluating i on every x, y pair, one can determine which particular combinations of symbols play a predominant role for the observed interdependency between X and Y. (More specifically, the local mutual information captures specific deviations between the joint distribution and the product of the marginals.) Building on these ideas, Lizier proposed a taxonomy of distributed information processing as composed of storage, transfer, and modification.24 For this, consider a bivariate stochastic process (X_t, Y_t) with $t \in \mathbb{Z}$ and introduce the shorthand notation $X_t^k = (X_{t-k}, \ldots, X_t)$ and $X_t^{k+1} = (X_{t}, \ldots, X_{t+k+1})$ for the corresponding past and future embedding vectors of length k. In this context, storage within the subprocess X_t is identified with its excess entropy $E_k = I(X^k_t; X^{k+1}_t)$.24 And transfer from Y_t to X_{t+1} with the transfer entropy $T_k = I(X_{t+1}; X^k_t | Y_{t+1})$.23 Interestingly, both quantities have corresponding local versions,

$$ e_k(x_t) := \log \frac{p(x_t, x_{t+k})}{p(x_t) p(x_{t+k})} \quad (A2) $$

$$ t_k(y_t \rightarrow x_t) := \log \frac{p(x_{t+1} | x_t, y_t)}{p(x_{t+1} | x_t)} \quad (A3) $$

such that, as expected, $\mathbb{E}[e_k] = E_k$ and $\mathbb{E}[t_k] = T_k$. Note that to measure transfer in either direction for the results in Fig. 9, we compute the local TE from a cell to its left and right neighbors and take the maximum of the two.

These ideas can be used to extend the standard formulation of integrated information measures in two ways. First, by using embedding vectors, the IIT metrics are applicable to non-Markovian systems.2 Second, by formulating pointwise measures, one can capture spatiotemporal variations in Φ. Mathematically, we reformulate Eq. (2) introducing these modifications as

$$ \psi_k[X; \tau, B] = I(X^k_{t-1}; X_t) - \sum_{j=1}^{2} I(M^j_{t-1}; M^j_t) \quad (A4) $$

and apply the same partition scheme described in Sec. II A to obtain an “embedded” integrated information, Φ_k. Then, the equation above can be readily made into a local measure by replacing mutual information with its local counterpart,

$$ \phi_k[x_t; \tau, B] = i(x^k_{t-1}; x_t) - \sum_{j=1}^{2} i(n^j_{t-1}; n^j_t) \quad (A5) $$

such that, as expected, $\psi_k[X; \tau, B] = \mathbb{E}[\phi_k[x_t; \tau, B]]$.

REFERENCES

1S. Wolfram, A New Kind of Science (Wolfram Media, 2002), p. 1197.
2A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences (Cambridge University Press, 2001), p. 432.
3J. A. Fodor, The Language of Thought (Harvard University Press, 1975), Vol. 5.
4Z. Pylyshyn and W. Turbinn, “Computation and cognition: Toward a foundation for cognitive science,” Can. Psychol. 27, 85–87 (1986).
5M. Rescorla, “From Ockham to Turing—And back again,” in Philosophical Explorations of the Legacy of Alan Turing (Springer, 2017), pp. 279–304.
6M. Milkowski, Explaining the Computational Mind (MIT Press, 2013).
7T. Van Gelder, “What might cognition be, if not computation?”, J. Philos. 92, 345–381 (1995).
8T. Van Gelder, “The dynamical hypothesis in cognitive science,” Behav. Brain Sci. 21, 615–628 (1998).
9B. Smith, “Cognition as a dynamic system: Principles from embodiment,” Dev. Rev. 25, 278–298 (2005).
10M. L. Minsky, “Logical versus analogical or symbolic versus connectionist or neat versus scruffy,” AI Mag. 12, 34–51 (1991).
11M. Gareno and M. Shanahan, “Reconciling deep learning with symbolic artificial intelligence: Representing objects and relations,” Curr. Opin. Behav. Sci. 29, 17–23 (2019).
12E. D. Beer and P. L. Williams, “Information processing and dynamics in minimally cognitive agents,” Cogn. Sci. 39, 1–38 (2015).
13S. Wolfram, “Universality and complexity in cellular automata,” Physica D 10, 1–35 (1984).
14C. G. Langton, “Computation at the edge of chaos: Phase transitions and emergent computation,” Physica D 42, 12–37 (1990).
15G. Tononi and O. Sporns, “Measuring information integration,” BMC Neurosci. 4, 31 (2003).
16D. Baldetti and G. Tononi, “Integrated information in discrete dynamical systems: Motivation and theoretical framework,” PLoS Comput. Biol. 4, e1000991 (2008).
17M. Oizumi, L. Albantakis, and G. Tononi, “From the phenomenology to the mechanisms of consciousness: Integrated Information Theory 3.0,” PLoS Comput. Biol. 10, e1003588 (2014).
18P. Mediano, P. Rosas, R. L. Carhart-Harris, A. K. Seth, and A. B. Barrett, “Beyond integrated information: A taxonomy of information dynamics phenomena,” arXiv:1909.02297 (2019).
19G. Tononi and C. Koch, “Consciousness: Here, there and everywhere?”, Philos. Trans. R. Soc. B 370, 2014017 (2015).
20G. Tononi, M. Boly, M. Massimini, and C. Koch, “Integrated information theory: From consciousness to its physical substrate,” Nat. Rev. Neurosci. 17, 450 (2016).
21A. B. Barrett and P. Mediano, “The Phi measure of integrated information is not well-defined for general physical systems,” J. Conscious. Stud. 26, 11–20 (2019).