Levofloxacinar Resistant Haemophilus influenzae, Taiwan, 2004–2010

Shu-Chen Kuo, Pei-Chen Chen, Yih-Ru Shiau, Hui-Ying Wang, Jui-Fen Lai, I-Wen Huang, and Tsai-Ling Yang Lauderdale

Levofloxacin resistance in Haemophilus influenzae has increased significantly in Taiwan, from 2.0% in 2004 to 24.3% in 2010 (p<0.001). Clinical and molecular investigations of 182 levofloxacin-resistant isolates revealed that the increase was mainly the result of the spread of several clones in the elderly population in different regions.

Since their first introduction in 1980s, fluoroquinolones have been used extensively (1). The wide use of these antimicrobial drugs has been attributed to the emergence of resistance in several bacterial species (1,2). Respiratory tract infection (RTI) is one of the most common conditions for which fluoroquinolones are used (1,3). Haemophilus influenzae is a major bacterial pathogen causing RTIs. Globally, fluoroquinolone resistance in H. influenzae has remained sporadic and uncommon, and international surveillance data showed the resistance rate to be <1% (4–6). However, emergence of fluoroquinolone-resistant H. influenzae strains has been reported in elderly patients and in those in long-term care facilities (7–9).

The Taiwan Surveillance of Antimicrobial Resistance (TSAR) is a biennial nationwide surveillance program of inpatient and outpatient clinical isolates (10). Levofloxacin-resistant H. influenzae isolates were not detected in the TSAR collection before 2002 but emerged in 2004, and prevalence increased rapidly. We conducted a study to delineate the clinical and molecular characteristics of emerging levofloxacin-resistant H. influenzae in Taiwan.

The Study

H. influenzae isolates were collected from 26 hospitals during 2004–2010 by the TSAR program, following previously described protocols (10). After species identification was confirmed, MICs were determined by reference broth microdilution method according to Clinical and Laboratory Standards Institute guidelines (11). Sensititre Standard HPB panels (ThermoFisher Scientific, East Grinstead, UK) were used. The MICs of levofloxacin, ciprofloxacin, moxifloxacin, gatifloxacin, and gemifloxacin of the levofloxacin-resistant isolates identified by broth microdilution were further determined by Etest (bioMérieux, Marcy l’Etoile, France). Pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) were performed on levofloxacin-resistant isolates following published protocols (12,13). Mutations in the quinolone resistance-determining regions (QRDR) of the drug targets gyrA and parC were determined by PCR and sequencing (14).

A total of 1,462 nonduplicate H. influenzae isolates were collected during the study period. Hospitals in the northern (32.1%), central (47.7%), and southern (18.7%) regions of Taiwan provided nearly all of the isolates. Specimens of respiratory origin (88.8%) comprised the largest proportion; few isolates (1.4%) came from blood specimens. Most (77.1%) patients were adults, and half (50.0%) were ≥65 years of age.

Among the 16 antibacterial agents tested (Table 1), nonsusceptibility to levofloxacin, sparfloxacin, and trimethoprim/sulfamethoxazole increased steadily and significantly over the study period (p<0.05). Significant increases in levofloxacin and sparfloxacin resistance were the most prominent (p<0.001). The overall levofloxacin resistance rate increased from 2.0% (7/344) in 2004 to 10.6% (52/490) in 2006, 15.2% (49/323) in 2008, and 24.3% (74/305) in 2010 (p<0.001) (Table 1). In 2004, levofloxacin-resistant isolates were detected in 6 hospitals (2 in the south and 4 in the central region), but by 2010, isolates were detected in 19 hospitals in all 4 regions of Taiwan. The MIC90 of the 5 fluoroquinolones tested by broth microdilution was >32 μg/mL for the 182 levofloxacin-resistant isolates detected by broth microdilution.

Levofloxacin-resistant H. influenzae isolates were more commonly found in elderly patients, from respiratory origins, from regional hospitals and inpatient settings, and from central and southern Taiwan (Table 2). Multivariate analysis revealed that elderly patients (OR 3.601, 95% CI 2.435–5.325), regional hospitals (OR 2.054, 95% CI 1.379–3.059), geographic region (OR 3.656, 95% CI 2.214–6.038 for central; OR 5.428, 95% CI 3.050–9.611 for southern), and later study year (OR 2.13, 95% CI 1.379–3.059), geographic region (OR 3.656, 95% CI 2.214–6.038 for central; OR 5.428, 95% CI 3.050–9.611 for southern), and later study year (OR 2.13, 95% CI 1.692–2.395) were independent factors associated with levofloxacin resistance (Table 2).

Among the 182 levofloxacin-resistant isolates, 153 could be grouped into 19 distinct clusters (A to S) (Figure). MLST was performed on 160 isolates, and a total of 50 sequence types (STs; ST630, ST787–ST802, ST90, ST115, ST153) could be grouped into 19 distinct clusters (A to S) (Figure). MLST was performed on 160 isolates, and a total of 50 sequence types (STs; ST630, ST787–ST802,
ST1079–ST1095, and ST1097–ST1112) were identified. All but 1 ST, ST630, were new STs that had not been reported previously. However, most of the identified STs were single-locus variants (SLVs) of 7 ST types: ST788, ST790, ST792, ST793, ST795, ST799, and ST802. Some isolates of the same ST belonged to different PFGE clusters (Figure). PFGE and MLST results revealed emergence and regional predominance of some clones (Figure). For example, in the predominant STs (ST788 and its SLVs) in clusters A to F (n = 54, 29.7%), cluster A isolates were mostly from southern Taiwan and found in all study years, whereas cluster B isolates were mostly from central Taiwan and found in later years (2008–2010). All but 1 of the isolates of ST799 and its SLV (n = 19) in clusters G–I were from central Taiwan, and most were from 2008–2010. Isolates of ST799 and its SLVs (n = 17) belonged to 3 clusters, were from central and northern Taiwan, and were recovered in later years (2008–2010).

All levofloxacin-resistant *H. influenzae* isolates had >2 mutations in the QRDR of gyrA and parC. A total of 25 QRDR mutation patterns were found (Table 3, http://wwwnc.cdc.gov/EID/article/20/8/14-0341-T3.htm). The amino acid changes at residues 84 and 88 in GyrA and ParC that we found are the same as those found in previous reports (1,4,15). Most isolates of the same PFGE cluster had similar QRDR mutation patterns. However, isolates within the same PFGE cluster that had the same ST or its SLV but different QRDR mutation patterns were also found (Figure).

Conclusions

Our study indicates that levofloxacin-resistant *H. influenzae* emerged in Taiwan around 2004 and increased over the next 6 years, especially in elderly patients, regional hospitals, and central and southern Taiwan. We found age and regional differences in this resistance phenotype, which might have resulted from differences in fluoroquinolone use and patient populations.

Longitudinal and international surveillance data from North America, Europe, and other regions have found low fluoroquinolone resistance in *H. influenzae* (<1%) (4–6). However, emergence and spread of fluoroquinolone-resistant *H. influenzae* have been reported. In 2001,
Figure. Dendrogram showing pulsed-field gel electrophoresis (PFGE) results for levofloxacin-resistant *Haemophilus influenzae* isolates digested by SmaI. *Salmonella enterica* serovar Braenderup strain H9812 (ATCC BAA664) was used as standard for DNA pattern normalization. PFGE patterns were analyzed by using BioNumerics software (Applied Maths NV, Sint-Martens-Latem, Belgium). For mutation profiles of the quinolone-resistance determining regions (QRDR) in GyrA and ParC, see Table 3 (http://wwwnc.cdc.gov/EID/article/20/8/14-0341-T3.htm).

*Isolates having >80% similarity or <6 band differences were assigned a PFGE cluster if there were ≥3 isolates within the cluster; †region of hospital location: C, central; N, north; S, south. –, no isolates found. (n), number of isolates having the same PFGE pattern; MLST, multilocus sequence typing; (N), number of isolates on which MLST was performed; SLV, single locus variant, DLV, double locus variant.
fluoroquinolone-resistant *H. influenzae* spread in a hospital-affiliated long-term care facility in New York, NY, USA, and almost all resistant isolates belonged to 1 clone (8). From 2002 to 2004, the rate of fluoroquinolone resistance in *H. influenzae* in hospitals in the Hokkaido Prefecture in Japan increased from 0.5% to 2.6%, and the resistant isolates were found only in elderly patients (9). In 2007, a high rate of levofloxacin resistance (41.7%, 20/48 isolates) was found in *H. influenzae* that was colonizing 4 nursing home residents in southern Taiwan, and 2 major clones accounted for 90% (18/20) of the resistant isolates (7).

In our study, isolates of the same PFGE cluster mostly had similar mutation patterns. Therefore, the emergence of fluoroquinolone-resistant isolates may be the result of several clones spreading in the same region. However, isolates within the same PFGE cluster having the same ST but different QRDR mutation patterns were also found. In addition, nearly all the levofloxacin-resistant *H. influenzae* isolates belong to 7 previously unreported STs or their SLVs. This finding indicates that the emergence of levofloxacin-resistant isolates likely occurred through spontaneous mutation of hypermutable clones under selective pressure (8,14), and these clones then disseminated locally in each region.

In summary, our study revealed the emergence and spread of levofloxacin-resistant *H. influenzae* in different regions of Taiwan, with regional predominance of certain STs. We studied a large number of levofloxacin-resistant *H. influenzae* from clinical diagnostic samples of multiple hospitals in different regions of Taiwan, so physicians should take into account the high rate of fluoroquinolone resistance when they prescribe empirical therapy for *H. influenzae* infections. Surveillance and intervention measures should be directed at the risk groups identified in this study to halt the increase in fluoroquinolone resistance in *H. influenzae*.

Acknowledgments
We thank the following 26 hospitals for their participation in the 2004–2010 Taiwan Surveillance of Antimicrobial Resistance program: Buddhist Tzu Chi General Hospital, Cathay General Hospital, Changhua Christian Hospital, Cheng-Ching Hospital, Chung Shan Medical University Hospital, Ditzmanson Medical Foundation Chia-Yi Christian Hospital, Far Eastern Memorial Hospital, Hua-Lien Hospital, Jen-Ai Hospital, Kaohsiung Armed Forces General Hospital, Kaohsiung Chang Gung Memorial Hospital of the C. G. M. F, Kaohsiung Medical University Chung-Ho Memorial Hospital, Kaohsiung Veterans General Hospital, Kuang Tien General Hospital, Lo-Hsu Foundation, Inc., Lotung Poh-Ai Hospital, Menonite Christian Hospital, Min-Sheng Healthcare, National Cheng Kung University Hospital, Saint Mary’s Hospital, Taialong, Show Chwan Memorial Hospital, Tungs’ Taichung MetroHarbor Hospital, Taichung Veterans General Hospital, Tainan Sin-Lau Hospital—the Presbyterian Church in Taiwan, Taipei City Hospital Heping Fuyou Branch, Taipei City Hospital Zhongxiao Branch, Tri-Service General Hospital.

This project was supported by intramural grants from the National Health Research Institutes (IV-101-PP-01 and IV-102-PP-01).

Dr Kuo is an attending physician at the National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Taiwan. His primary research interest involves resistance mechanisms and pathophysiology of antimicrobial drug-resistant pathogens.

References
1. Hooper DC. Emerging mechanisms of fluoroquinolone resistance. Emerg Infect Dis. 2001;7:337–41. http://dx.doi.org/10.3201/eid0702.010239
2. Cuevas O, Oteo J, Lazaro E, Arcil B, de Abajo F, Garcia-Cobos S, et al. Significant ecological impact on the progression of fluoroquinolone resistance in *Escherichia coli* with increased community use of moxifloxacin, levofloxacin and amoxicillin/clavulanic acid. J Antimicrob Chemother. 2011;66:664–9. http://dx.doi.org/10.1093/jac/dko471
3. Mandell LA, Wunderink RG, Anzueto A, Bartlett JG, Campbell GD, Dean NC, et al. Infectious Diseases Society of America/American Thoracic Society consensus guidelines on the management of community-acquired pneumonia in adults. Clin Infect Dis. 2007;44:S27–72. http://dx.doi.org/10.1086/511597
4. Darabi A, Hoquet D, Dowzicky MJ. Antimicrobial activity against *Streptococcus pneumoniae* and *Haemophilus influenzae* collected globally between 2004 and 2008 as part of the Tigecycline Evaluation and Surveillance Trial. Diagn Microbiol Infect Dis. 2010;67:78–86. http://dx.doi.org/10.1016/j.diagmicrobio.2009.12.009
5. Jones RN, Farrell DJ, Mendes RE, Sader HS. Comparative ceftaroline activity tested against pathogens associated with community-acquired pneumonia: results from an international surveillance study. J Antimicrob Chemother. 2011;66:iii69–80. http://dx.doi.org/10.1093/jac/dkr101
6. Pfaffer MA, Farrell DJ, Sader HS, Jones RN. AWARE Ceftaroline Surveillance Program (2008–2010): trends in resistance patterns among Streptococcus pneumoniae, *Haemophilus influenzae*, and *Moraxella catarrhalis* in the United States. Clin Infect Dis. 2012;55:S187–93. http://dx.doi.org/10.1093/cid/cis561
7. Chang CM, Lauderdale TL, Lee HC, Lee NY, Wu CJ, Chen PL, et al. Colonisation of fluoroquinolone-resistant *Haemophilus influenzae* among nursing home residents in southern Taiwan. J Hosp Infect. 2010;75:304–8. http://dx.doi.org/10.1016/j.jhin.2009.12.020
8. Nazir J, Urban C, Mariano N, Burns J, Tommasulo B, Rosenberg C, et al. Quinolone-resistant *Haemophilus influenzae* in a long-term care facility: clinical and molecular epidemiology. Clin Infect Dis. 2004;38:1564–9. http://dx.doi.org/10.1086/420820
9. Yokota S, Okhosi Y, Sato K, Fujii N. Emergence of fluoroquinolone-resistant *Haemophilus influenzae* strains among elderly patients but not among children. J Clin Microbiol. 2008;46:361–5. http://dx.doi.org/10.1128/JCM.01561-07
10. Kuo S-C, Chang S-C, Wang H-Y, Lai J-F, Chen P-C, Shiu Y-R, et al. Emergence of extensively drug-resistant *Acinetobacter baumannii* complex over 10 years: nationwide data from the Taiwan Surveillance of Antimicrobial Resistance (TSAR) program. BMC Infect Dis. 2012;12:200. http://dx.doi.org/10.1186/1471-2334-12-200
11. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing: 22nd informational supplement. M100–S22. Wayne (PA); The Institute; 2012.

12. Hunter SB, Vauterin P, Lambert-Fair MA, Van Duyne MS, Kubota K, Graves L, et al. Establishment of a universal size standard strain for use with the PulseNet standardized pulsed-field gel electrophoresis protocols; converting the national databases to the new size standard. J Clin Microbiol. 2005;43:1045–50. http://dx.doi.org/10.1128/JCM.43.3.1045-1050.2005

13. Meats E, Feil EJ, Stringer S, Cody AJ, Goldstein R, Kroll JS, et al. Characterization of encapsulated and noncapsulated Haemophilus influenzae and determination of phylogenetic relationships by multilocus sequence typing. J Clin Microbiol. 2003;41:1623–36. http://dx.doi.org/10.1128/JCM.41.4.1623-1636.2003

14. Pérez-Vázquez M, Roman F, Garcia-Cobos S, Campos J. Fluoroquinolone resistance in Haemophilus influenzae is associated with hypermutability. Antimicrob Agents Chemother. 2007;51:1566–9. http://dx.doi.org/10.1128/AAC.01437-06

15. Georgiou M, Munoz R, Roman F, Canton R, Gomez-Lus R, Campos J, et al. Ciprofloxacin-resistant Haemophilus influenzae strains possess mutations in analogous positions of GyrA and ParC. Antimicrob Agents Chemother. 1996;40:1741–4.

Address for correspondence: Tsai-Ling Yang Lauderdale, National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, No. 35 Keyan Road, Zhunan 35053, Taiwan; email: lauderdale@nhri.org.tw

etymologia

Borrelia miyamotoi [bə-rel′e-ma-mo-to ′e]

A genus of gram-negative, anaerobic spirochete bacteria, *Borrelia* was named after French biologist Amédée Borrel. In 1995, Masahito Fukunaga et al. isolated a novel *Borrelia* species and named it *Borrelia miyamotoi*, in honor of Kenji Miyamoto, who first isolated spirochetes from ixodid ticks in Hokkaido, Japan. Human cases of *B. miyamotoi* infection were subsequently found in Russia in 2011 and North America in 2013.

Sources

1. Branda JA, Rosenberg ES. *Borrelia miyamotoi*: a lesson in disease discovery. Ann Intern Med. 2013;159:61–2. http://dx.doi.org/10.7326/0003-4819-159-1-201307020-00009

2. Dorland’s Illustrated Medical Dictionary. 32nd ed. Philadelphia: Elsevier Saunders; 2012.

3. Fukunaga M, Takahashi Y, Tsuruta Y, Matsushita O, Ralph D, McClland M, et al. Genetic and phenotypic analysis of *Borrelia miyamotoi* sp. nov., isolated from the ixodid tick *Ixodes persulcatus*, the vector for Lyme disease in Japan. Int J Syst Bacteriol. 1995;45:804–10. http://dx.doi.org/10.1099/00207713-45-4-804

Address for correspondence: Ronnie Henry, Centers for Disease Control and Prevention, 1600 Clifton Rd NE, Mailstop E03, Atlanta, GA 30333, USA; email: boq3@cdc.gov

DOI: http://dx.doi.org/10.3201/eid2008.EET2008