Sufficient conditions on planar graphs to have a relaxed DP-3-colorability

Pongpat Sittitrai

Department of Mathematics, Faculty of Science, Khon Kaen University, 40002, Thailand
E-mail address: pongpat.skkumail.com

Kittikorn Nakprasit *

Department of Mathematics, Faculty of Science, Khon Kaen University, 40002, Thailand
E-mail address: kitnak@hotmail.com

Abstract

It is known that DP-coloring is a generalization of a list coloring in simple graphs and many results in list coloring can be generalized in those of DP-coloring. In this work, we introduce a relaxed DP-coloring which is a generalization if a relaxed list coloring. We also shows that every planar graph G without 4-cycles or 6-cycles is DP-$(k,d)^*$-colorable. It follows immediately that G is $(k,d)^*$-choosable.

1 Introduction

Every graph in this paper is finite, simple, and undirected. Embedding a graph G in the plane, we let $V(G)$, $E(G)$, and $F(G)$ denote the vertex set, edge set, and face set of G. For $U \subseteq V(G)$, we let $G[U]$ denote the subgraph of G induced by U. For $X, Y \subseteq V(G)$ where X and Y are disjoint, we let $E_G(X,Y)$ be the set of all edges in G with one endpoint in X and the other in Y.

The concept of choosability was introduced by Vizing in 1976 [15] and by Erdős, Rubin, and Taylor in 1979 [9], independently. A k-list assignment L of a graph G assigns a list

*Corresponding Author
L(v) (a set of colors) with |L(v)| = k to each vertex v. A graph G is L-colorable if there is a proper coloring f where f(v) ∈ L(v). If G is L-colorable for every k-assignment L, then we say G is k-choosable.

Dvořák and Postle [7] introduced a generalization of list coloring in which they called a correspondence coloring. But following Bernshteyn, Kostochka, and Pron [3], we call it a DP-coloring.

Definition 1. Let L be an assignment of a graph G. We call H a cover of G if it satisfies all the followings:
(i) The vertex set of H is \[\bigcup_{u \in V(G)} \{\{u\} \times L(u)\} = \{(u, c) : u \in V(G), c \in L(u)\}\];
(ii) H[\{u \times L(u)\}] is a complete graph for every u \in V(G);
(iii) For each uv ∈ E(G), the set E_H(\{u\} \times L(u), \{v\} \times L(v)) is a matching (maybe empty).
(iv) If uv /∈ E(G), then no edges of H connect \{u\} \times L(u) and \{v\} \times L(v).

Definition 2. An (H, L)-coloring of G is an independent set in a cover H of G with size |V(G)|. We say that a graph is DP-k-colorable if G has an (H, L)-coloring for every k-assignment L and every cover H of (G. The DP-chromatic number of G, denoted by \(\chi_{DP}(G)\), is the minimum number k such that G is DP-k-colorable.

If we define edges on H to match exactly the same colors in L(u) and L(v) for each uv ∈ E(H), then G has an (H, L)-coloring if and only if G is L-colorable. Thus DP-coloring is a generalization of list coloring. This also implies that \(\chi_{DP}(G) \geq \chi_l(G)\). In fact, the difference of these two chromatic numbers can be arbitrarily large. For graphs with average degree d, Bernshteyn [2] showed that \(\chi_{DP}(G) = \Omega(d/\log d)\), while Alon [1] showed that \(\chi_l(G) = \Omega(\log d)\).

Dvořák and Postle [7] showed that \(\chi_{DP}(G) \leq 5\) for every planar graph G. This extends a seminal result by Thomassen [13] on list colorings. On the other hand, Voigt [16] gave an example of a planar graph which is not 4-choosable (thus not DP-4-colorable). It is of interest to obtain sufficient conditions for planar graphs to be DP-4-colorable. Kim and Ozeki [10] showed that planar graphs without k-cycles are DP-4-colorable for each k = 3, 4, 5, 6. Kim and Yu [11] extended the result on 3- and 4-cycles by showing that planar graphs without triangles adjacent to 4-cycles are DP-4-colorable.

The concept of improper choosability was independently introduced by Škrekovski [12], and Eaton and Hull [8]. A graph G is (L, d)^∗-colorable if there is a coloring f where f(v) ∈ L(v) such that every subgraph induced by vertices with the same color has maximum degree...
at most d. If G is $(L,d)^*$-colorable for every k-assignment L, then we say G is $(k,d)^*$-choosable.

In 1986, Cowen, Cowen, and Woodall [6] constructed a planar graph that is not $(3,1)^*$-choosable. Many sufficient conditions for planar graphs to be $(3,1)^*$-choosable are studied. Zhang [17] showed that every planar graph without 5-cycles or 6-cycles is $(3,1)^*$-choosable. Chen and Raspaud [4] proved that every planar graph without 4-cycles adjacent to 3- or 4-cycles is $(3,1)^*$-choosable. Chen, Raspaud, and Wang [5] proved that every planar graph without adjacent triangles or 6-cycles is $(3,1)^*$-choosable.

Inspired by DP-coloring, we define a generalization of a relaxed list coloring as follows.

Definition 3. Let H be a cover of a graph G with respect to a list assignment L. A d-representative set of G is a set of vertices S in H such that

1. $|S| = |V(G)|$,
2. $u \neq v$ for any two different members (u,c) and (v,c') in S, and
3. $H[S]$ has maximum degree at most d.

An (H,L,d)-coloring of G is a d-representative set. We say that a graph is $DP-(k,d)^*$-colorable if G has an (H,L,d)-coloring for every k-assignment L and every cover H of G. Since only $d = 1$ is considered in this paper, we write a representative set instead of a 1-representative set.

If we define edges on H to match exactly the same colors in $L(u)$ and $L(v)$ for each $uv \in E(H)$, then G has an (H,L,d)-coloring if and only if G is $(L,d)^*$-colorable. This follows immediately that G is $DP-(k,d)^*$-colorable implies G is $(k,d)^*$-choosable.

In this work, we have the following result.

Theorem 1. Every planar graph without 4-cycles or 6-cycles is $DP-(3,1)^*$-colorable.

2 Structure Obtained from Condition on Cycles

First, we introduce some notations and definitions. A k-vertex (k^+-vertex, k^--vertex, respectively) is a vertex of degree k (at least k, at most k, respectively). The same notations are applied to faces. A (d_1,d_2,\ldots,d_k)-face f is a face of degree k where vertices on f have degree d_1,d_2,\ldots,d_k in a cyclic order. A (d_1,d_2,\ldots,d_k)-vertex v is a vertex of degree k where faces incident to v have degree d_1,d_2,\ldots,d_k in a cyclic order. A $(3,4^+,4^+)$-face f is called a pendant 3-face of v if v is not a vertex of f but adjacent to a 3-vertex of f.

Let G be a graph without 4-cycles or 6-cycles. The following property is straightforward.
Proposition 4. A 3-face in G does not share exactly one edge with 6$^-$-faces.

Proposition 4 yields the following two Propositions.

Proposition 5. If f is a pendant 3-face of v where u is a 3-vertex in f, then two faces that are incident to both v and u are 7$^+$-faces.

Proposition 6. Every vertex v is incident to at most $\lfloor \frac{d(v)}{2} \rfloor$ 3-faces.

3 Structure of Minimal Non DP-(3,1)-colorable Graphs

Definition 7. Let H be a cover of G with a list assignment L. Let $G' = G - F$ where F is an induced subgraph of G. A list assignment L' is a restriction of L on G' if $L'(u) = L(u)$ for each vertex in G'. A graph H' is a restriction of H on G' if $H' = H[\{v \times L(v) : v \in V(G')\}]$. Assume G' has an $(H', L', 1)$-coloring with a representative set R' in H' such that $|R'| = |V(G)| - |V(F)|$.

A residual list assignment L^* of F is defined by

$$L^*(x) = L(x) - \bigcup_{ux \in E(G)} \{c' \in L(x) : (u, c)(x, c') \in E(H) \text{ and } (u, c) \in I'\}$$

for each $x \in V(F)$.

A residual cover H^* is defined by $H^* = H[\{x \times L^*(x) : x \in V(F)\}]$.

From above definitions, we have the following fact.

Lemma 8. Assume G has an induced subgraph G' and a cover H with a list assignment L. Let H' be a restriction of H on G'. If G' has an $(H', L', 1)$-coloring with a representative set R' in H' such that $|R'| = |V(G)| - |V(F)|$, then a residual cover H^* is a cover of F with an assignment L^*. Furthermore, if F is $(H^*, L^*, 1)$-colorable, then G is $(H, L, 1)$-colorable.

Proof. One can check from the definitions of a cover and a residual cover that H^* is a cover of F with an assignment L^*.

Suppose that F is $(H^*, L^*, 1)$-colorable. Then H^* has a representative set R^* with $|R^*| = |F|$. It follows from Definition 7 that no edges connect H^* and R'. Additionally, R' and R^* are disjoint. Altogether, we have that $R = R' \cup R^*$ is a representative set in H with $|R| = (|V(G)| - |V(F)|) + |V(F)| = |V(G)|$. Thus G is $(H, L, 1)$-colorable.

From now on, let G be a minimal non DP-4-colorable graph.
Lemma 9. Each vertex in G is a 3^+-vertex.

Proof. Suppose to the contrary that G has a vertex x degree at most 2. Let L be a 3-assignment and let H be a cover of G such that G has no $(H, L, 1)$-coloring. By the minimality of G, the subgraph $G' = G - x$ admits $(H', L', 1)$-coloring where L' (and H') is a restriction of L (and H, respectively) in G'. Thus there is a representative set R' with $|R'| = |G'|$ in H'. Consider a residual list assignment L^* on x. Since $|L(x)| = 3$ and $d(x) \leq 2$, we obtain $|L^*(x)| \geq 1$. Clearly, $\{(x, c)\}$ where $c \in L^*(x)$ is a representative set in $G[\{x\}]$. Thus $G[\{x\}]$ is $(H^*, L^*, 1)$-colorable. It follows from Lemma 8 that the graph G is $(H, L, 1)$-colorable, a contradiction. \qed

Lemma 10. Each neighbor of 3-vertex in G is a 4^+-vertex.

Proof. Suppose to the contrary that there are adjacent 3-vertices u and v. Let L be a 3-assignment and let H be a cover of G such that G has no $(H, L, 1)$-coloring. By the minimality of G, the subgraph $G' = G - \{u, v\}$ admits an $(H', L', 1)$-coloring where L' (and H', respectively) is a restriction of L (and H, respectively) in G'. Thus there is a representative set R' with $|R'| = |G'|$ in H'. Consider a residual list assignment L^* on $G[\{u, v\}]$. We have $|L^*(u)|$ and $|L^*(v)| \geq 1$. Clearly, $\{(v, c), (u, c')\}$ where $c \in L^*(v)$ and $c' \in L^*(u)$ is a representative set in $G[\{u, v\}]$. We obtain a representative set R^* with $|R^*| = 2$. Thus $G[\{u, v\}]$ is $(H^*, L^*, 1)$-colorable. It follows from Lemma 8 that G is $(H, L, 1)$-colorable, a contradiction. \qed

Lemma 11. Each 4-vertex in G is adjacent to at most two 3-vertices.

Proof. Suppose to the contrary that a 3-vertex v is adjacent to three 3-vertices, $u_1, u_2,$ and u_3. It follows from Lemma 10 that u_i is not adjacent to u_j for $i, j \in \{1, 2, 3\}$. Let L be a 3-assignment and let H be a cover of G such that G has no $(H, L, 1)$-coloring. By the minimality of G, the subgraph $G' = G - \{v, u_1, u_2, u_3\}$ admits an $(H', L', 1)$-coloring where L' (and H', respectively) is a restriction of L (and H, respectively) in G'. Thus there is a representative set R' with $|R'| = |G'|$ in H'. Consider a residual list assignment L^* on $G[\{v, u_1, u_2, u_3\}]$. Since $|L(v)| = 3$ for every $v \in V(G)$, we have $|L^*(v)| \geq 2$ and $|L^*(u_i)| \geq 1$ for $i \in \{1, 2, 3\}$. Let H^* be an residual cover of $G[\{v, u_1, u_2, u_3\}]$. First of all, we choose a color c_i from $L^*(u_i)$. So there is a color c in $L^*(v)$ such that (v, c) is adjacent to at most one of $\{(u_i, c_i)\}$ for $i \in \{1, 2, 3\}$. Clearly, $\{(v, c), (u_1, c_1), (u_2, c_2), (u_3, c_3)\}$ where $c \in L^*(v)$ and $c_i \in L^*(u_i)$ for $i \in \{1, 2, 3\}$ is a representative set in $G[\{v, u_1, u_2, u_3\}]$. Thus we
obtain a representative set \(R^* \) with \(|R^*| = 4 = |G[\{v, u_1, u_2, u_3\}]| \). Thus \(G[\{v, u_1, u_2, u_3\}] \) is \((H^*, L^*, 1)\)-colorable. It follows from Lemma 8 that \(G \) is \((H, L, 1)\)-colorable, a contradiction. \(\square \)

From Lemma 10 we obtain the upper bound of the number of incident 3-vertices of a face in \(G \).

Corollary 12. Each face in \(G \) is incident to at least \(\frac{d(f)}{2} \) 3-vertices.

4 Main Result

Theorem 2. Every planar graph without 4-cycles or 6-cycles is DP-(3,1)*-colorable.

Proof. Suppose that \(G \) is a minimal counterexample. Then each vertex in \(G \) is a \(3^+ \)-vertex by Lemma 9. The discharging process is as follows. Let the initial charge of a vertex \(u \) in \(G \) be \(\mu(u) = 2d(u) - 6 \) and the initial charge of a face \(f \) in \(G \) be \(\mu(f) = d(f) - 6 \). Then by Euler’s formula \(|V(G)| - |E(G)| + |F(G)| = 2 \) and by the Handshaking lemma, we have

\[
\sum_{u \in V(G)} \mu(u) + \sum_{f \in F(G)} \mu(f) = -12.
\]

Now, we establish a new charge \(\mu^*(x) \) for all \(x \in V(G) \cup F(G) \) by transferring charge from one element to another and the summation of new charge \(\mu^*(x) \) remains \(-12\). If the final charge \(\mu^*(x) \geq 0 \) for all \(x \in V(G) \cup F(G) \), then we get a contradiction and the proof is completed.

The discharging rules are

(R1) Every \(4^+ \)-vertex sends charge 1 to each incident 3-face.

(R2) Every \(4^+ \)-vertex sends charge \(\frac{1}{3} \) to each incident 5-face.

(R3) Every \(4^+ \)-vertex sends charge \(\frac{1}{3} \) to each pendent 3-face.

(R4) Every \(7^+ \)-face sends charge \(\frac{1}{3} \) to each incident 3-vertex.

(R5) Every 3-vertex sends charge \(\frac{2}{3} \) to each incident 3-face.

Next, we show that the final charge \(\mu^*(u) \) is nonnegative.

CASE 1: A 3-vertex \(v \).

If \(v \) is not incident to any 3-face, then \(\mu^*(v) \geq 0 \). If \(v \) is incident to a 3-face, then \(v \) is a \((3,7^+,7^+)\)-vertex by Proposition 4. Thus \(\mu^*(v) \geq \mu(v) - \frac{2}{3} + 2 \times \frac{1}{3} = 0 \) by (R4) and (R5).

CASE 2: A 4-vertex \(v \).

It follows from by Proposition 6 that \(v \) is incident to at most two 3-faces. If \(v \) is incident
to two 3-faces, then \(v \) is a \((3, 7^+, 3, 7^+)\)-vertex by Proposition 4 and \(v \) has no any pendent 3-faces by Lemma 5. Thus \(\mu^*(v) \geq \mu(v) - 2 \times 1 = 0 \) by (R1). If \(v \) is incident to exactly one 3-face, then \(v \) is a \((3, 7^+, 5^+, 7^+)\)-vertex by Proposition 4. Moreover, \(v \) has at most two pendent 3-faces by Lemma 11. Thus \(\mu^*(v) \geq \mu(v) - 1 - 3 \times \frac{1}{3} = 0 \) by (R1), (R2), and (R3).

If \(v \) is not incident to any 3-face, then \(v \) has at most two pendent 3-faces by Lemma 11. Thus \(\mu^*(v) \geq \mu(v) - 6 \times \frac{1}{3} = 0 \) by (R2) and (R3).

\[\text{CASE 3: A } 5^+-\text{vertex } v. \]

To facilitate the calculation, we redefine the discharging rule for \(v \) and its incident faces \(f_1, f_2, \ldots, f_{d(v)} \). Let \(v \) send charge \(\frac{2}{3} \) to each incident face. We have \(\mu^*(v) \geq (2d(v) - 6) - d(v) \times \frac{2}{3} \geq 0 \). Now, let each non 3-face \(f_i \) send charge \(\frac{1}{6} \) to each adjacent 3-face of \(v \) and each adjacent pendent 3-face of \(v \). That means the remaining charge is received by \(v \) as follows,

(1) Each 3-face of \(v \) receive charge at least \(\frac{2}{3} + 2 \times \frac{1}{6} = 1 \) by Proposition 4.

(2) Each 5+-face of \(v \) receive charge at least \(\frac{2}{3} - 2 \times \frac{1}{6} = \frac{1}{3} \) by Proposition 5.

(3) Each pendant 3-face of \(v \) receive charge at least \(2 \times \frac{1}{6} = \frac{1}{3} \) by Proposition 5.

One can see that charge of each \(f_i \) is at least that obtains from (R1), (R2), and (R3). Thus \(\mu^*(v) \geq 0 \).

\[\text{CASE 4: A 3-face } f. \]

It follows from Lemma 10 that \(f \) is a \((3^+, 4^+, 4^+)\)-face. If \(f \) is a \((3, 4^+, 4^+)\)-face, then \(f \) is a pendant 3-face of some 4+-vertex by Lemma 10. Thus \(\mu^*(f) \geq \mu(f) + 2 \times 1 + \frac{2}{3} + \frac{1}{3} = 0 \) by (R1), (R3), and (R5). If \(f \) is a \((4^+, 4^+, 4^+)\)-face, then \(\mu^*(f) \geq \mu(f) + 3 \times 1 = 0 \) by (R1).

\[\text{CASE 5: A } 5^+-\text{face } f. \]

If \(f \) is a 5-face, then \(f \) is incident to at least three 4+-vertices by Corollary 12. Thus \(\mu^*(f) \geq \mu(f) + 3 \times \frac{1}{3} = 0 \) by (R2). If \(f \) is a 7-face, then \(f \) is incident to at most three 3-vertices by Corollary 12. Thus \(\mu^*(f) \geq \mu(f) - 3 \times \frac{1}{3} = 0 \) by (R4). If \(f \) is a 8+-face, then \(f \) is incident to at most \(\frac{d(f)}{2} \) 3-vertices by Corollary 12. Thus \(\mu^*(f) \geq \mu(f) - \frac{d(f)}{2} \times \frac{1}{3} > 0 \) from (R4).

This completes the proof.

\[\square \]

5 Acknowledgments

The first author is supported by Development and Promotion of Science and Technology talents project (DPST).
References

[1] N. Alon. Degrees and choice numbers, Random Structures and Algorithms 16(2000) 364–368.

[2] A. Bernshteyn, The asymptotic behavior of the correspondence chromatic number, Discrete Math. 339(2016) 2680–2692.

[3] A. Bernshteyn, A. Kostochka, S. Pron, On DP-coloring of graphs and multigraphs, Sib. Math.J. 58(2017) 28–36.

[4] M. Chen, A. Raspaud, On (3, 1)*-choosability of planar graphs without adjacent short cycles, Discrete Appl. Math., 165(2014) 159-166.

[5] M. Chen, A. Raspaud, W. Wang, A (3, 1)*-choosable theorem on planar graphs, J. Comp. Optim., 32(2016) 927-940.

[6] L. Cowen, R. Cowen, D. Woodall, Defective colorings of graphs in surfaces: partitions into subgraphs of bounded valency, J. Graph Theory, 10(1986) 187-195.

[7] Z. Dvořák , L. Postle, Correspondence coloring and its application to list-coloring planar graphs without cycles of lengths 4 to 8, J. Comb. Theory, Ser. B. (2017) In press.

[8] N. Eaton, T. Hull, Defective list colorings of planar graphs, Bull. Inst. Combin. Appl., 25(1999) 40.

[9] P. Erdős, A.L. Rubin, H. Taylor, Choosability in graphs, in: Proceedings, West Coast Conference on Combinatorics, Graph Theory and Computing, Arcata, CA., Sept. 5-7, in: Congr. Numer., vol. 26, 1979.

[10] S.-J. Kim, K. Ozeki, A sufficient condition for DP-4-colorability, arXiv:1709.09809 (2017) preprint.

[11] S.-J. Kim, X. Yu, Planar graphs without 4-cycles adjacent to triangles are DP-4-colorable, arXiv:1712.08999 (2017) preprint.

[12] R. Škrekovski, List improper colourings of planar graphs, Combin. Probab. Comput., 8(1999) 293-299.

[13] C. Thomassen, Every planar graph is 5-choosable, J. Combin. Theory Ser. B 62(1994) 180-181.
[14] R. Xu, J.L. Wu, A sufficient condition for a planar graph to be 4-choosable, Discrete App. Math. 224(2017)120-122.

[15] V.G. Vizing, Vertex colorings with given colors, Metody Diskret. Analiz. 29(1976) 3-10 (in Russian).

[16] M. Voigt, List colourings of planar graphs, Discrete Math. 120(1993) 215-219.

[17] L. Zhang, A (3, 1)*-choosable theorem on toroidal graphs, Discrete Appl. Math., 160(2012) 332-338.