Characterization of a carbapenem-resistant *Escherichia coli* from dairy cattle harbouring *bla*_{NDM-1} in an IncC plasmid

Maitane Tello 1,1, Beatriz Oporto 1,1, José Luis Lavín 2, Medelin Ocejo 1,1 and Ana Hurtado 1,1*

1Animal Health Department, NEIKER—Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Bizkaia Science and Technology Park 812L, 48160 Derio, Bizkaia, Spain; 2Applied Mathematics Department, Bioinformatics Unit, NEIKER—Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA) Bizkaia Science and Technology Park 812L, 48160 Derio, Bizkaia, Spain

*Corresponding author. E-mail: ahurtado@neiker.eus

NDM-producing Enterobacteriaceae have increased worldwide in human infections, but are still rare in food-producing animals. The only NDM type described in cattle so far was NDM-5, always carried by IncX plasmids. To the best of our knowledge, this study represents the first description of a *bla*_{NDM-1} gene in *Escherichia coli* isolated from dairy cattle, carried in an IncC plasmid.

In July 2020, *E. coli* isolates were recovered on ChromID[®] Carba Smart plates (bioMérieux) from rectal faeces collected from dairy calves in the Basque Country (Spain) within a longitudinal study conducted to monitor antimicrobial resistance (AMR) in commensal *E. coli*. MICs determined by broth microdilution (Thermo Scientific[™] Sensititre[™] AST plates EUVSEC1 and EUVSEC2) and interpreted using epidemiological cut-off values as developed by EUCAST (http://www.eucast.org) showed microbiological resistance to all β-lactams tested, including temocillin and carbapenems, and sulfamethoxazole and trimethoprim (Table S1, available as Supplementary data at JAC Online). Genomic DNA from *E. coli* strain EC1110 was extracted using a NZY Microbial gDNA Isolation Kit (NZYtech) and Illumina WGS was performed as previously described⁵ and further complemented by Oxford Nanopore—ONT sequencing (MinION Mk1c, SQK-LSK109 library and R9.4.1 flow-cell). Base-calling of ONT reads on Guppy (HAC mode) was followed by adapter removal with Porechop⁶ and discharge of shorter reads (<1000 bp) by Filtlong retaining only the best 1000 Mbp. A hybrid assembly (Illumina-ONT) was generated with Unicycler⁷ and analysed as described elsewhere.⁵ Details on bioinformatic tools are available in Table S2.

The Illumina-ONT assembly produced two contigs, i.e. the chromosome (4,816,563 bp) and an IncC plasmid (145,165 bp) that contained the *bla*_{NDM-1} gene and nine other AMR genes (GenBank JAWDWP000000000, BioProject PRJNA680938 and BioSample SAM16926619 (Figure 1)). *E. coli* EC1110 belonged to serogroup O74; H23 and was assigned to a novel MLST type (ST-11626; cgST-151275). It carried a fimH605 fimbrial adhesion allele and harboured virulence-associated genes related to adhesion (CFA/I and Type 1 fimbriae), iron uptake (ent and fep) and invasion of brain endothelial cells (ompA, ibeB and ibeC). The IncC plasmid, named pEC1110_NDM-1, was assigned to pST-3 and included genes for the initiation of replication (repA), conjugal transfer (tra) and plasmid partitioning (stb and par) (Figure 1a). AMR genes were located in accessory modules of AMR islands, ARI-A and ARI-B. The *bla*_{NDM-1} gene was in ARI-A flanked upstream by ISAba125 and downstream by the bleomycin resistance gene *ble*_{MBL}, followed by a truncated *Δ*bla_{DHA1}-1 gene (Figure 1b). Other AMR genes in ARI-A were the sulphonamide-resistance sul1 gene (two copies), the trimethoprim-resistance *dfrA12* gene, genes that confer resistance to amikacin (*aph(3′)-VI*) and streptomycin (aadA2), the qacEΔ1 gene (quaternary ammonium compound resistance) and a mercury-resistance operon (merDACPTR). The sulphonamide-resistance gene *sul2* was present in ARI-B, downstream of *sul1* (Figure 1b).

A BLAST search showed that pEC1110_NDM-1 was related to IncC *bla*_{NDM-1}-harbouring plasmids in *Providencia stuartii* (pMR0211; 94% coverage, 99.9% identity), *Salmonella enterica* subsp. *enterica* serovar *Corvallis* (pS5E12-01738-2; 92% coverage, 99.9% identity) and *E. coli* (pMRM214_A2C; 88% coverage, 99.9% identity). Moreover, it was also similar to IncC plasmids in Enterobacteriaceae that do not carry *bla*_{NDM-1} genes, isolated from food-producing animals, like *S. enterica* subsp. *enterica* serovar Newport p34530-1 isolated from cattle in the USA (92% coverage, 99.9% identity) and *E. coli* pEC3-1/2a from a chicken in China (91% coverage, 99.9% identity), or from human cases, like pMRH760 from *Klebsiella pneumoniae* (89% coverage, 99.8% identity), the first IncC plasmid described in detail (Figure S1).

The genetic environment of *bla*_{NDM-1} in pEC1110_NDM-1 had features present in other *bla*_{NDM-1}-harbouring strains. The ISAba125-*bla*_{NDM-1}-*ble*_{MBL}-trpF-Δ*bla*_{DHA1}-1-*ampR* region was conserved in the partial sequence of the plasmid of *E. coli* DVR22 (JF922606; 4036 bp), the first description of an NDM-1 carbapenemase-producing *E. coli* in Spain.⁸ Homology with the PG1–PmPEL genomic island of *Proteus mirabilis* was nearly 100% in the segment that extended from the ISCR1 upstream of *bla*_{NDM-1} to the *ampR* gene (Figure S2). Insertion of *bla*_{NDM-1} from a circular molecule mediated by ISCR1 was proposed and ISCR1 was also associated with acquisition of the *bla*_{DHA1}*-ampR* gene region as part of a class 1 integron.⁸ On the other hand, the gene synteny of ARI-A in pEC1110_NDM-1 was highly conserved compared with the same region in p34530-1 (Figure S2). Despite lacking the 9639 kb fragment from the ISCR1 element to the *ampR* gene where the
Figure 1. (a) Circular representation of the pEC1110_NDM-1 IncC plasmid from *E. coli* strain EC1110 isolated from dairy cattle. (b) Schematic representation of the genetic context of the *bla*_{NDM-1} gene in the ARI-A region of the pEC1110_NDM-1 plasmid and the *sul2* gene in the ARI-B region. The position of the *bla*_{NDM-1} gene is highlighted by a red square. Coding sequences, represented by arrows indicating the translational direction, are named above and coloured according to the key. IS designations are followed by the family name in brackets. Annotations were graphically depicted using SnapGene (v.5.2.4) (http://www.snapgene.com/).

*bla*_{NDM-1} gene is located in pEC1110_NDM-1, both plasmids shared a *sul1*-type class 1 integron structure (intI1-dfrA12-gcuF-aadA2-qacEAl-sul1), suggesting a common origin. Whereas only *sul2* was present in pEC1110_NDM-1 ARI-B, other IncC plasmids usually contain several additional AMR genes, such as *floR*, *strA*, *strB* and *tet(A).*¹⁰ Different-sized deletions reported in ARI-B are considered potentially useful evolutionary and epidemiological markers.¹⁰ pEC1110_NDM-1 ARI-B showed an IS26-mediated deletion of 12451 bp upstream of *parA* and *parB* genes that removed part of the plasmid backbone. The presence of several different mobile genetic elements suggests that a series of recombination events was likely at the origin of the different resistance-gene arrays identified on pEC1110_NDM-1.

In conclusion, to the best of our knowledge, this is the first description of a *bla*_{NDM-1}-harbouring plasmid in an MDR *E. coli* isolated from cattle. This IncC plasmid also carried genes for aminoglycoside,
sulphonamide and trimethoprim resistance. The occurrence of NDM-1 plasmid-mediated carbapenem resistance in E. coli in cattle is worrisome since it might pose a risk for resistance spread in food-producing animals. However, this was the only detection after monitoring the herd for over 2 years, suggesting a sporadic event.

Acknowledgements
We express our thanks to the veterinary clinician who carried out the samplings and to the farmer for their collaboration in this study.

Funding
This work was supported by the Basque Government: the Department of Economic Development, Sustainability and Environment, and the Department of Health (grant number 2019111038). M.T. is the recipient of a predoctoral fellowship from the Basque Government (Department of Economic Development, Sustainability and Environment).

Transparency declarations
None to declare.

Supplementary data
Tables S1 and S2 and Figures S1 and S2 are available as Supplementary data at JAC Online.

References
1 Madec JY, Haenni M, Nordmann P et al. Extended-spectrum β-lactamase/AmpC- and carbapenemase-producing Enterobacteriaceae in animals: a threat for humans? Clin Microbiol Infect 2017; 23: 826–33.
2 Purkait D, Ahuja A, Bhattacharjee U et al. Molecular characterization and computational modelling of New Delhi metallo-β-lactamase-5 from an Escherichia coli isolate (KOE3) of bovine origin. Indian J Microbial 2016; 56: 182–9.
3 Yaici L, Haenni M, Saras E et al. blaNDM-5-carrying IncX3 plasmid in Escherichia coli ST1284 isolated from raw milk collected in a dairy farm in Algeria. J Antimicrob Chemother 2016; 71: 2671–2.
4 He T, Wang Y, Sun L et al. Occurrence and characterization of blaNDM-5-positive Klebsiella pneumoniae isolates from dairy cows in Jiangsu, China. J Antimicrob Chemother 2017; 72: 90–4.
5 Tello M, Ocejo M, Oporto B et al. Prevalence of cefotaxime-resistant Escherichia coli isolates from healthy cattle and sheep in northern Spain: phenotypic and genome-based characterization of antimicrobial susceptibility. Appl Environ Microbiol 2020; 86: e00742-20.
6 Wick RR, Judd LM, Gorrie CL et al. Completing bacterial genome assemblies with multiplex MinION sequencing. Microb Genom 2017; 3: e000132.
7 Wick RR, Judd LM, Garrie CL et al. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 2017; 13: e1005595.
8 Solé M, Pitar C, Rocca I et al. First description of an Escherichia coli strain producing NDM-1 carbapenemase in Spain. Antimicrob Agents Chemother 2011; 55: 4402–4.
9 Hennequin C, Ravet V, Robin F. Plasmids carrying DHA-1 β-lactamases. Eur J Clin Microbiol Infect Dis 2018; 37: 1197–209.
10 Harmer CJ, Hall RM. The A to Z of A/C plasmids. Plasmid 2015; 80: 63–82.