Enhanced Electric Power Transmission by Hybrid Compensation Technique

C Palanichamy and GQ Kiu
Dept. of Electrical and Computer Engineering, School of Engineering and Science, Curtin University, Miri, Sarawak, Malaysia.

E-mail: drcpc@curtin.edu.my, 7e1b8907@student.curtin.edu.my

Abstract. In today’s competitive environment, new power system engineers are likely to contribute immediately to the task, without years of seasoning via on-the-job training, mentoring, and rotation assignments. At the same time it is becoming obligatory to train power system engineering graduates for an increasingly quality-minded corporate environment. In order to achieve this, there is a need to make available better-quality tools for educating and training power system engineering students and in-service system engineers too. As a result of the swift advances in computer hardware and software, many windows-based computer software packages were developed for the purpose of educating and training. In line with those packages, a simulation package called Hybrid Series-Shunt Compensators (HSSC) has been developed and presented in this paper for educational purposes.

1. Introduction
The increasing load demand has necessitated the development of new generating facilities, transmission and distribution networks. However the construction of new transmission lines [1, 2] has been limited due to economic and environmental constraints. Therefore, in a competitive market milieu due to the challenges associated with the construction of new transmission lines, it is desirable to apply the existing transmission systems to the fullest possible extent without compromising quality and reliability [3-6]. Moreover, growth of different commercial schemes for the electric power industry, particularly deregulation of market, has made this requirement even stronger [7-9]. In developing countries, the optimized use of transmission system investments is also important to support industry, create employment, and employ efficiently the scarce economic resources [10-12].

The use of series and shunt compensation schemes [5, 6, 13-16] to increase the power transfer capability of long transmission line is well-known. The advent and development of power electronics resulted in the introduction of Flexible AC Transmission System (FACTS) controllers such as Thyristor Controlled Series Compensators (TCSC), Unified Power Flow Controllers (UPFC) and Static Var Compensators (SVC) for transmission line compensation [17-19]. The TCSC is a series connected device used to regulate the reactance of a transmission line thereby controls the real and reactive power flow and redistributes power flow even under highly loaded conditions. Hence FACTS controllers can be used to increase system load ability and the available transfer capacity as situation demands. Steady state and transient stability is also improved with the help of FACTS controller. SVC is a shunt connected device which regulates the transmission system voltage by reactive power injections. UPFC is a combination of static synchronous compensators (STATCOM) and static synchronous series compensators (SSSC) coupled through a common DC voltage link used for controlling active and reactive power flow through the transmission lines.
In recent years, computer-aided instruction has been extensively used in electrical and power engineering education [20]. Computer simulation models have been employed to support and improve power engineering courses [21-23]. In this paper, an educational software package called Hybrid Series-Shunt Compensators (HSSC) for enhanced electric power transmission has been developed. The design and simulations of HSSC are proposed by using the Matlab R2013b and Matlab GUI. Windows based Graphical User Interface (GUI) concept is used, which gives the advantages of interactive visual communication between users and computer processes and quick interpretation of test results.

2. **Compensated Transmission Line**

Transmitted real and reactive power of the transmission line, which is shown in Fig. 1, can be derived in terms of the ABCD parameters of the line using the following notations:

- $l = \text{length of transmission line}$
- $Z_0 = \text{characteristic impedance of transmission line}$
- $V_S = \text{sending end voltage}$
- $I_S = \text{sending end current}$
- $V_R = \text{receiving end voltage}$
- $I_R = \text{receiving end current}$
- $Z_{sc} = \text{series capacitor compensation}$
- $Y_{sh} = \text{shunt reactor/capacitor compensation}$
- $P_S = \text{sending end real power/operating power}$
- $P_{S-max} = \text{maximum sending end real power}$
- $Q_S = \text{sending end reactive power}$
- $S_S = \text{sending end apparent power}$
- $\alpha = \text{argument of TL parameter A}$
- $\beta = \text{argument of TL parameter B}$
- $\delta = \text{power angle}$

![Figure 1](image-url)

Figure 1. Compensated transmission line.
For the compensated lines, the degree of series (K_{se}) and shunt (K_{sh}) compensation, respectively, is defined by

$$K_{se} = \frac{\text{Total capacitive reactance of series compensators}}{\text{Total inductive reactance of the line}}$$

And

$$K_{sh} = \frac{\text{Total inductive susceptance of shunt compensators}}{\text{Total charging susceptance of the line}}$$

Following the notations defined above, the ABCD constants of the two port network representation of the compensated transmission line as depicted in Fig.2 are derived as

\begin{align*}
V_S &= (\cosh \gamma l) V_{R1} + (Z_0 \sinh \gamma l) I_{R1} \\
I_S &= \left(\frac{1}{Z_0} \sinh \gamma l\right) V_{R1} + (\cosh \gamma l) I_{R1} \\
V_R &= (\cosh \gamma l) V_{R2} + (Z_0 \sinh \gamma l) I_{R1} + \left(\frac{Z_{se}}{2}\right) I_{S1} \\
&= (\cosh \gamma l) V_{R2} + (Z_0 \sinh \gamma l) I_{R1} + \left(\frac{Z_{se}}{2}\right) \left(\frac{1}{Z_0} \sinh \gamma l\right) V_{R1} + (\cosh \gamma l) I_{R1} \\
&= (\cosh \gamma l) V_{R2} + (Z_0 \sinh \gamma l) I_{R1} + \left(\frac{Z_{se}}{2Z_0} \sinh \gamma l\right) V_{R1} + (\frac{Z_{se}}{2} \cosh \gamma l) I_{R1} \\
&= \left(\frac{Z_{se} \sinh \gamma l}{2Z_0} + \cosh \gamma l\right) V_{R1} + \left(\frac{Z_{se} \cosh \gamma l}{2} + Z_0 \sinh \gamma l\right) I_{R1} \\
I_R &= V_{R2} - \left(\frac{Y_{sh}}{2} V_S\right) \\
I_{R1} &= I_{R1} - \left(\frac{Y_{sh}}{2} V_S\right)
\end{align*}

Figure 2. Two port network.
\[V_R = V_{R1} - \frac{Z_{se} I_R}{2} \]
\[= V_{R1} - \frac{Z_{se}}{2} \left(I_R + \frac{Y_{sh} V_R}{Z_{se}} \right) \]
\[V_{R1} = V_R + \frac{Z_{se} Y_{sh}}{4} V_R + \frac{Z_{se}}{2} I_R \]
\[(6) \]

\[V_s = \frac{Z_{se}}{2} \sinh y I + \cosh y I \left(V_R + \frac{Z_{se} Y_{sh} V_R}{4} + \frac{Z_{se}}{2} I_R \right) + \frac{Z_{se}}{2} \cosh y I + Z_o \sinh y I \left(I_R + \frac{Y_{sh} V_R}{2} \right) \]
\[= \frac{Z_{se}}{2} \sinh y I + \frac{Z_{se} Y_{sh}}{4} \sinh y I + \frac{Z_{se}}{2} \sinh y I + \cosh y I + \frac{Z_{se} Y_{sh}}{2} \cosh y I \]
\[+ \left(\frac{Z_{se}}{4Z_0} \sinh y I + Z_o \sinh y I + \frac{Z_{se}}{2} \cosh y I \right) I_R \]
\[(7) \]

\[I_s = \left(\frac{Y_{sh} Z_{se}}{4Z_0} \sinh y I + \frac{Y_{sh}}{2} \cosh y I + \frac{1}{Z_0} \sinh y I \right) \left(V_R + \frac{Z_{se} Y_{sh} V_R}{4} + \frac{Z_{se}}{2} I_R \right) + \frac{Y_{sh} Z_{se}}{4Z_0} \cosh y I + \frac{Y_{sh}}{2} \cosh y I \left(I_R + \frac{Y_{sh} V_R}{Z_{se}} \right) \]
\[= \frac{Y_{sh} Z_{se}}{4Z_0} \sinh y I V_R + \frac{Y_{sh}}{2} \cosh y I V_R + \frac{1}{Z_0} \sinh y I V_R + \frac{Z_{se} Z_{se}}{16Z_0} \sinh y I V_R + \frac{Z_{se}}{4Z_0} \cosh y I V_R + \frac{Y_{sh} Z_{se}}{4Z_0} \cosh y I \]
\[+ \frac{Z_{se} Z_{se}}{8Z_0} \cosh y I I_R + \frac{Z_{se}}{4Z_0} \cosh y I I_R + \frac{Z_{se} Z_{se}}{8Z_0} \cosh y I \]
\[(8) \]

Comparing with the standard equations of the two port network, we get the A B C D constants as

\[A = \left(1 + \frac{Z_{se} Z_{se}}{2} \right) \cosh y I + \left(\frac{Z_{se} Z_{se}}{2Z_0} + \frac{Z_{se} Z_{se}}{6Z_0} + \frac{Z_{se} Z_{se}}{2} \right) \sinh y I \]
\[(9) \]

\[B = \frac{Z_{se}}{2} \cosh y I + \left(\frac{Z_{se} Z_{se}}{4Z_0} + \frac{Z_{se}}{2} \right) \sinh y I \]
\[(10) \]

\[C = \left(\frac{Y_{sh} Z_{se}}{4Z_0} \right) \cosh y I + \left(\frac{Y_{sh} Z_{se}}{2Z_0} + \frac{1}{Z_0} \right) \frac{Z_{se} Z_{se}}{16Z_0} + \frac{Z_{se} Z_{se}}{4Z_0} \sinh y I \]
\[(11) \]

\[D = \frac{A}{2} \]
\[(12) \]

Also the equations of the operating power \(P_S \) and the maximum power \(P_{S\text{-max}} \) of the compensated transmission line are obtained as

\[P_S = \frac{|A||V_R|^2}{|B|} \cos(\beta - \alpha) - \frac{|V_R|^2}{|B|} \cos(\delta + \beta) \]
\[(13) \]

When \(\delta + \beta = \pi \), \(P_S = P_{S\text{-max}} \cdot \)

\[P_{S\text{-max}} = \frac{|A||V_R|^2}{|B|} \cos(\beta - \alpha) + \frac{|V_R||V_R|}{|B|} \]
\[(14) \]
3. Hybrid Series-Shunt Compensators Package

3.1. HSSC Working Main Screen & User Manual
The Working Main Screen of the HSSC package and the HSSC User Manual are shown in Fig. 3 & 4 respectively.

Figure 3. HSSC working main screen.
3.2. Program Coding
The program coding of HSSC by using the Matlab R2013b and Matlab GUI is given in two segments as shown below.
function caio_Callback(hObject, eventdata, handles)

% hObject handle to caio (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

length=str2double(get(handles.length,'String'));
r=str2double(get(handles.resistance,'String'));
i=str2double(get(handles.inductance,'String'));
g=str2double(get(handles.conductance,'String'));
c=str2double(get(handles.capacitance,'String'));
f=str2double(get(handles.freq,'String'));
Vc=str2double(get(handles.volt_nom,'String'));
d=str2double(get(handles.delta,'String'));
Kee=str2double(get(handles.Kee,'String'));
Ksh=str2double(get(handles.Ksh,'String'));

L=length*r;
G=length*g;
C=length*c;
d=pi/150;
i=sqrt(-1);
XL=2*pi*f*L;
XC=(1/(2*pi*f*C));
Bc=1/XC;

Z=R+XL+I;
T=2*BC;
Z0=sqrt(Z+Y);
gamma=sqrt(Z+Y);
Xc=Kee*KL;
Zc=Zc+I;
Bsh=Bsh+BC;

paraA=j((Zc*Z)+(Zc*Y))*200*gamma+i*(Zc*Y/beta);

paraB=((paraA)/(4*Z0))*Z0+sinh(gamma)+Zc*cosh(gamma);

beta=sin(gamma);
alpha=angle(paraA);

if (abs(alpha)/pi)<0.005
 set(handles.text_ps,'String','Ps max (Nm)');
else
 set(handles.text_ps,'String','Ps (Nm)');
end

set(handles.Ai,'String',Ai);
set(handles.Bj,'String',Bj);
set(handles.Cj,'String',Cj);
set(handles.Aj,'String',Aj);
set(handles.Bi,'String',Bi);
set(handles.Ci,'String',Ci);
set(handles.Dj,'String',Dj);
set(handles.Di,'String',Di);
set(handles.ta,'String',ta);
set(handles.theta,'String',theta);
set(handles.theta180/360);
The above section is intended for calculating the sending end real power/operating power, the reactive power, the apparent power and the power factor. The apparent power is represented in rectangular as well as polar forms for through understanding of the concept. The user input choice of calculation 1 displays the said results.

```matlab
function calc_pmax_Callback(hObject, eventdata, handles)

% hObject    handle to calc_pmax (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)

% length=str2double(get(handles.length,'String'));
% r=str2double(get(handles.resistance,'String'));
% l=str2double(get(handles.inductance,'String'));
% g=str2double(get(handles.conductance,'String'));
% c=str2double(get(handles.capacitance,'String'));
% f=str2double(get(handles.freq,'String'));
% Vc=str2double(get(handles.volt_nom,'String'));
% d=str2double(get(handles.delta,'String'));
% Ee=str2double(get(handles.Ee,'String'));
% Kb=str2double(get(handles.Kb,'String'));

P=length*r;
I=length*I;
V=length*V;
% d=deg2rad(180);
I=ang2rad(-1);
XL=2*pi*r*l;
XC=(2*pi*r*c);
Zc=1/XC;
Zs=1/XL;
V0=ang2rad(2*y);
gamma=ang2rad(2*y);
Xc=Xc*Xc;
Zc=Xc*Xc;
Be=Bc+Sc;
Be=Bc+Sc;
parac=((%c0^2+4*I0^2)*10+)/((2*y^2)+(y^2)+tanh(gamma)^2+1);
A=real(parac);
Ang=imag(parac);
Alpha=angle(parac);
parab=(((Vc^2)/((4*I0^2)+10)))*sinh(gamma)+Vc*cosh(gamma);
B=real(parab);
Bimag=imag(parab);
Balpha=angle(parab);

d=beta*
Pre=-A^2/Bl^2*cos(b-2-alpha)-((Vc^2)/Bl^2)*cos(d*beta);

Qs=(A^2*Vc^2)/Bl-sin(b+2-alpha) *(Vc^2)/Bl +sin(d*beta);
s=Vc^2/Bl^2*cos(t+2-alpha) -(Vc^2)/Bl^2*cos(t+2*beta);
Sc=real(sc);
Scimag=imag(sc);
Sc=abs(sc);
theet=angle(sc);
pf=cos(theet);
d=deg2rad(180);
set(handles.delta,'String','d');
set(handles.Ee,'String','Ee');
set(handles.Kb,'String','Kb');
set(handles.tau,'String','tau');
set(handles.Pa,'String','Pa');
set(handles.Pmax,'String','Pmax');
set(handles.Pa,'String','Pmax');
set(handles.Gk,'String','Gk');
set(handles.Vc,'String','Vc');
set(handles.Vs,'String','Vs');
set(handles.delta,'String','delta');
set(handles.phi,'String','phi');

d=deg2rad(180);
set(handles.tau,'String','tau');
set(handles.Pa,'String','Pmax');
set(handles.Pa,'String','Pmax');
set(handles.Gk,'String','Gk');
set(handles.Vc,'String','Vc');
set(handles.Vs,'String','Vs');
set(handles.delta,'String','delta');
set(handles.phi,'String','phi');
The above program section is intended for calculating the maximum sending end real power/operating power in addition to displaying the already calculated reactive power, the apparent power and the power factor as in the previous section. Here also the apparent power is represented in rectangular as well as polar forms for through understanding of the concept. The user input choice of calculation 2 displays the said results. The user input choice of calculation 3 resets all the data to facilitate new computations.

4. An Illustrative Example
The suitability of the developed package has been ascertained by applications to various transmission study systems and it is found to be technically sound. The application to a prototype transmission system is presented here.

4.1. System Data
The sample transmission line considered [24] in this study has the following data:
\[ l = 550 \text{ miles} \]
\[ V_0 = 500 \text{ kV (line to line), double circuit} \]
\[ f = 60 \text{ Hz} \]
\[ R = 0.02495 \text{ ohm/mile/phase/circuit} \]
\[ G = 2 \times 10^{-12} \text{ mho/mile/circuit} \]
\[ L = 1.3925 \text{ mH/mile/phase/circuit} \]
\[ C = 0.020885 \mu \text{F/mile/phase to neutral/circuit} \]

4.2. Program Output
The line parameters are entered in the HSSC Working Main Screen Data column. The package is designed such that both series and shunt compensation is possible at a time. The degree of series as well as shunt compensation can be varied from 0% to 100% (i.e. 0 to 1 p.u.); however due to stability reasons, it is limited to a maximum of 70%. As an illustration, the degree of shunt compensation is kept fixed at 50% and the series compensation is varied from 0% to 70% for a power angle of 30 degrees and the results are shown in Table 1.

**Table 1. Fixed Shunt & Variable Series Compensation.**

| Degree of Compensation (p.u.) | \( P_s \) (MW) | \( Q_s \) (MVar) | \( P_{s_{max}} \) (MW) |
|------------------------------|--------------|----------------|------------------|
| \( k_{se} \) \( k_{sh} \) |              |               |                  |
| 0.0 0.5                      | 546.10       | -210.83        | 1118.26          |
| 0.1 0.5                      | 579.53       | -185.93        | 1191.91          |
| 0.2 0.5                      | 621.79       | -161.54        | 1285.46          |
| 0.3 0.5                      | 675.98       | -137.52        | 1406.28          |
| 0.4 0.5                      | 746.89       | -113.84        | 1566.06          |
| 0.5 0.5                      | 842.41       | -90.84         | 1784.54          |
| 0.6 0.5                      | 976.45       | -69.91         | 2097.63          |
| 0.7 0.5                      | 1175.73      | -55.64         | 2577.88          |

From the results of Table 1, for the given transmission line configuration, for every degree of compensation, the real power, reactive power and the maximum power transfer are increasing as the degree of series compensation increases. For series and shunt compensation of each 0.5 p.u. (50%),
Fig. 5 shows the screen shot of “choosing user input choice of calculation 1” and Fig. 6 shows the “screen shot of choosing user input choice of calculation 2”.

As a second illustration, the degree of series compensation is kept fixed at 50% and the shunt compensation is varied from 0% to 70% for a power angle of 30 degrees and the results are shown in Table 2. From the results of Table 2, for the same transmission line configuration, for every degree of shunt compensation, the reactive power gets varied whereas the real power and the maximum power transfer remain constant irrespective of the variations in shunt compensation. That means, reactive shunt compensation affects the reactive power and the series compensation affects the real power transfer.

![Figure 5. User input choice of calculation 1.](image)

CUTSE2014 IOP Publishing
IOP Conf. Series: Materials Science and Engineering 78 (2015) 012014
doi:10.1088/1757-899X/78/1/012014
Figure 6. User input choice of calculation 2.

Table 2. Fixed Series & Variable Shunt Compensation.

| Degree of Compensation (p.u.) | Ps (MW)  | Qs (MVar) | Ps max (MW) |
|-------------------------------|----------|-----------|-------------|
| k_{sc} k_{sh}                 |          |           |             |
| 0.5 0.0                       | 842.41   | -361.49   | 1784.54     |
| 0.5 0.1                       | 842.41   | -307.36   | 1784.54     |
| 0.5 0.2                       | 842.41   | -253.23   | 1784.54     |
| 0.5 0.3                       | 842.41   | -199.10   | 1784.54     |
| 0.5 0.4                       | 842.41   | -144.97   | 1784.54     |
| 0.5 0.5                       | 842.41   | -90.84    | 1784.54     |
| 0.5 0.6                       | 842.41   | -36.71    | 1784.54     |
| 0.5 0.7                       | 842.41   | 17.42     | 1784.54     |

As a third illustration, the degrees of series and shunt compensations are varied from 0% to 70% for a power angle of 30 degrees and the results are shown in Table 3. From the results of Table 3, it is seen that, for every degree of compensation, the real, reactive and maximum power transfer gets varied following the variations in compensation.
Table 3. Variable Series & Shunt Compensation.

| Degree of Compensation (p.u.) | Ps (MW) | Qs (MVar) | Psmax (MW) | |
|---|---|---|---|---|
| kse                         | ksh    | Pse       | Qsh       | PSmx     |
| 0.0                          | 0.0    | 546.10    | -481.48   | 1118.26  |
| 0.1                          | 0.1    | 579.53    | -402.44   | 1191.91  |
| 0.2                          | 0.2    | 621.79    | -323.93   | 1285.46  |
| 0.3                          | 0.3    | 675.98    | -245.78   | 1406.28  |
| 0.4                          | 0.4    | 746.89    | -167.97   | 1566.06  |
| 0.5                          | 0.5    | 842.41    | -90.84    | 1784.54  |
| 0.6                          | 0.6    | 976.45    | -15.78    | 2097.63  |
| 0.7                          | 0.7    | 1175.73   | 52.62     | 2577.88  |

From the above three illustrations, it could be seen that compensation techniques especially series and shunt compensation (hybrid) is quite effective for enhancing electric power transfer of transmission lines and simple packages such as the developed one will be very useful for educating students as well as power engineers.

5. Conclusions

This paper has deliberated the application of series and shunt compensation of transmission lines for enhanced real and reactive power transfer. A programmable approach is used to quantify the amount of power transfers for various compensation levels and based on that a user friendly educative software package is developed and presented. Due to the graphical user interface approach, the data manipulation task and output task have been made simple and the program part is also very flexible for modifications when demanded. The series and shunt compensation techniques result in transmission line relaying and protection issues, and adverse effect on the power system stability, etc. and all these issues are not under the concern of this paper.

References

[1] Roberto Benato and Antonio Paolucci 2008 Operating capability of ac EHV mixed lines with overhead and cables links Electric Power Systems Research 78 584–594
[2] Planichamy C et al 2006 Transmission System Upgrading - Analyzing the Alternatives for Final Decision Making International Journal of Emerging Electric Power Systems 6
[3] Series Compensation | ABB developments and achievements A02-0135 E, 2010-12, Elanders Sverige AB, www.abb.com/FACTS
[4] Palanichamy C and Sri Krishna K 1991 Simple Algorithm for Economic Power Dispatch Electrical Power Systems Research 121 147-153
[5] Shafiu Alam M, Md Abdur Razzak, Md Nazmul Hasan and Hasib Chowdhury A 2012 Transmission Capacity Enhancement of East-West Interconnectors Using Series-Shunt Compensation 7th International Conference on Electrical and Computer Engineering, 20-22 December, 2012, Dhaka, Bangladesh, 579-582
[6] Shubhanga KN and Anil Kulkarni 2002 Application of Structure Preserving Energy Margin Sensitivity to Determine the Effectiveness of Shunt and Series FACTS Devices IEEE Transactions on Power Systems 17 730-738
[7] Naveen P and Palanichamy C 2014 A Sustainable Renewable Energy Mix Option for the Secluded Society Journal of Renewable and Sustainable Energy 6 023124
[8] Palanichamy C 2004 Renewable energy investment opportunities in Mauritius-an investor’s perspective Renewable Energy - An international journal 29 703-716
[9] Palanichamy C et al 2001 Budget Constrained Energy Conservation-An Experience with a Textile Industry IEEE Transactions on Energy Conversion 16 340-345

[10] ThanhLong Duong, Yao JianGang and VietAnh Truong 2014 Application of min cut algorithm for optimal location of FACTS devices considering system loadability and cost of installation Electrical Power and Energy Systems 63 979–987

[11] Alabduljabbar AA and Milanovic JV 2010 Assessment of techno-economic contribution of FACTS devices to power system operation Electric Power Systems Research 80 1247-1255

[12] Palanichamy C et al 1999 Restructuring the Indian power sector with energy conservation as the motive for economic and environmental benefits IEEE Transactions Energy Conversion 14 1589-1596

[13] Taghavi R and Seifi A 2012 Optimal reactive power control in hybrid power systems Electr Power Compon Syst 40 741–58

[14] Shrestha GB and Wang Feng 2005 Effects of series compensation on spot price power markets Electrical Power and Energy Systems 27 428-436

[15] Safari A, Shayanfar HA and Kazemi A 2013 Optimal location of PWM based series compensator in a power system Electrical Power and Energy Systems 51 127-133

[16] Leonidaki EA, Manos GA and Hatziargyriou ND 2005 An effective method to locate series compensation for voltage stability enhancement Electric Power Systems Research 74 73-81

[17] Basu M 2011 Multi-objective optimal power flow with FACTS devices Energy Conversion and Management 52 903-910

[18] Orfanogianni T and Bacher R 2003 Steady-state optimization in power systems with series FACTS devices IEEE Trans Power Syst 18 19-26

[19] Stéphane Gerbex, Rachid Cherkouki and Alain Germond 2001 Optimal Location of Multi-Type FACTS Devices in a Power System by Means of Genetic Algorithms IEEE Trans. Power Systems 16 537-544

[20] Palanichamy C et al 2003 An educational package for environmentally friendly, economic operation of power systems International Journal of Electrical Engineering Education 40 130-143

[21] Shaheen HI, Rashed GI and Cheng SJ 2010 Application and comparison of computational intelligence techniques for optimal location and parameter setting of UPFC Eng Appl Artif Intell. Elsevier 23 203-216

[22] Palanichamy C et al 2005 A Visual Package for Educating Preparatory Transmission Line Series Compensation IEEE Transactions on Education 48 16-22

[23] Ayetül Gelen and Tankut Yalcinoz 2010 An educational software package for Thyristor Switched Reactive Power Compensators using Matlab/Simulink Simulation Modelling Practice and Theory 18 366-377

[24] Magdy El Marsafaway 1991 Economical Design of Series Capacitor Compensation for Long Transmission Power Systems Electrical Power & Energy Systems 13