Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Comparison of Abbott ID NOW, a novel isothermal amplification based COVID-19 diagnostic method with RTPCR

Smriti Srivastava a, Parul Singh a, Rajesh Malhotra b, Purva Mathur a, *

a Department of Microbiology, Jai Prakash Narayan Apex Trauma Centre, All India Institute of Medical Sciences, New Delhi, India
b Department of Orthopaedics, All India Institute of Medical Sciences New Delhi, India

ARTICLE INFO

Keywords: SARS-CoV-2 COVID-19 Abbott ID NOW

ABSTRACT

Background: The emergent crisis of the COVID-19 pandemic has posed enormous challenges for clinical laboratories to speed up diagnostics. The current reference standard for the diagnosis of COVID-19 is real time reverse transcriptase PCR on various platforms. However, even with automation, the turnaround time is huge enough to keep up with ever increasing numbers of patients. With increasing surge of COVID cases we need rapid diagnostic tests with good sensitivity and specificity.

Objectives: Comparison between Abbott ID NOW COVID-19 and real time reverse transcriptase PCR as a reference method.

Materials and methods: Specimens from seventy-two individuals were obtained over a period of two months which were processed for ID NOW and RTPCR at a dedicated COVID-19 centre of AIIMS. Dry nasal swabs were used for ID NOW while nasopharyngeal swabs along with throat swab were used for RTPCR. Among the participants, 15 were healthcare workers. Mild COVID was seen in 36 participants, moderate in 19 and severe in 9. Eight participants had non COVID illness.

Results: From the given samples, we observed that ID NOW has a sensitivity of 93.22% (55/59) specificity 100% (13/13), PPV 100% (55/55) and NPV 76.47% (13/17).

Conclusion: ID NOW is a convenient, rapid molecular test which makes it suitable for both in laboratory use and as a point of care test. It can be a rapid rule-in test for COVID-19. Negative results, however, have to be interpreted as per the context.

1. Introduction

The severe acute respiratory syndrome corona virus 2 (SARS-CoV-2), first identified in Wuhan, China, in December 2019, eventually spread across the globe and was given pandemic status by World Health Organization on 11 March 2020. The cumulative number of cases reported globally now exceeds 400 million and the number of global deaths is above 5 million. (WHO (COVID-19) Dashboard). A cumulative of 4,26,92,943 confirmed cases and 5,09,358 deaths have been recorded in India till February 2022 World Health Organization, 2020).

This rapidly evolving crisis in the India has led us to prioritize the expansion of diagnostic testing, more so towards rapid testing platforms in order to minimize turnaround times and help clinical decision making.

The other rapid molecular testing platform used in various Laboratories is Cepheid Xpert SARS CoV2. Xpert SARS CoV2 carries out the detection of E gene and N2 gene in the patient sample. The limits of detection of SARS-CoV-2 viral RNA, is 250 copies/ml (Xpert Xpress SARS-CoV-2 Assay). However, the assay run times of 45 min still has scope of shortening. Shorter turnaround time would help timely decision making in situations like screening area testing, cohorting, bed assignments for patients admitted in the emergency department (ED) and transferring to other departments following COVID status update. Hence, we evaluated the recently released Abbott ID NOW COVID-19 assay (ID NOW) which has the USFDA EUA status. In this study we evaluated the performance of the ID Now test by using the real time reverse transcriptase PCR (RTPCR) as the comparator reference method.

* Correspondence to: Department of Microbiology, 3rd floor, Jai Prakash Narayan Apex Trauma Centre, All India Institute of Medical Sciences, New Delhi 110029 India.
E-mail address: purvamathur@yahoo.co.in (P. Mathur).

https://doi.org/10.1016/j.jviromet.2022.114521
Received 5 October 2021; Received in revised form 23 February 2022; Accepted 7 March 2022
Available online 9 March 2022
2. Methods

2.1. Study setting and design

A prospective study, conducted at the department of Microbiology of Jaiprakash Narayan Apex Trauma Centre, AIIMS, New Delhi, a dedicated COVID Center in north India, from April to May 2021. A total of 72 individuals were included. Informed consent was taken prior to sample collection.

2.2. Inclusion criteria

Patients and HCWs with mild, moderate and severe COVID were included in the study. (Case definitions applied as described by the AIIMS/ICMR COVID-19 National Task Force/ Joint Monitoring Group, Ministry of Health and Family Welfare (Clinical Guidance for Management of Adult Covid-19 Patients, 2021)

Mild COVID- upper respiratory tract infection, mild symptoms such as fever, cough, sore throat, nasal congestion, malaise, headache, without shortness of breath or hypoxia.

Moderate COVID- Adults with presence of clinical features of dyspnea and or hypoxia, SpO2 90 to <93% on room air, Respiratory rate ≥ to 24 per minute.

Severe COVID- Adults with clinical signs of Pneumonia plus one of the following; respiratory rate >30 breaths/min, severe respiratory distress, SpO2 < 90% on room air.

2.3. Demographic and comorbidity profile of participants

The patients included 38 females and 34 males, with an age range of 2–90 years. The clinical details and associated comorbidities of patients were obtained from hospital information system.

2.4. Sample collection

Nasal, throat and nasopharyngeal swabs were collected from patients. Nasopharyngeal and throat swabs were collected in viral transport medium (VTM) for the purpose of RTPCR. Dry nasal swabs were obtained from hospital information system.

2.5. Specimen transportation and processing

The swabs provided in the test kit were used for collecting nasal specimen and were transported immediately to the Laboratory in a dry sterile screw capped tube at room temperature. The components of the kit were stored at 4–8 °C and they were brought to room temperature before use. Processing was performed as per instructions from manufacturer within an hour of sample collection.

Principle of the test- Detection of SARS CoV2 RNA is carried out on an instrument based isothermal nucleic acid amplification for the qualitative detection and diagnosis of SARS-CoV-2 RNA from nasal, nasopharyngeal and throat swabs. The ID NOW COVID-19 kit contains all components required to carry out an assay for SARS-CoV-2 on the ID NOW Instrument. It is comprised of a Sample Receiver, containing elution/lysis buffer, a Test Base, comprising two sealed reaction tubes, each containing a lyophilized pellet, a Transfer Cartridge for transfer of the eluted sample to the Test Base, and the ID NOW Instrument. The Test Base contains the reagents required for amplification of SARS-CoV-2, as well as an internal control. The templates (similar to primers) designed to target SARS-CoV-2 RNA amplify a region of the RdRp gene. Fluorescently-labelled molecular beacons are used to specifically identify each of the amplified RNA targets. The internal control is designed to control for sample inhibition and assay reagent function. The positive and negative control swabs provided with the kit are to be used with a new lot (ID NOW package insert, 2020).

Table 1

	IDNOW POSITIVE (RTPCR)	IDNOW NEGATIVE (RTPCR)	Total
TRUE POSITIVE	55	0	55
TRUE NEGATIVE	4	13	17
Total	59	13	72

The reference test was done on Nasopharyngeal and throat swabs collected in Viral Transport Medium (VTM) and transported at 4–8 °C for RTPCR testing. Total nucleic acid was extracted from the samples, using the MagMAX Viral Isolation Kit (Thermo Fisher Scientific, USA). A commercial rRT-PCR kit (BGI Genomics Co. Ltd., China, which has EUA from the US FDA and approval from the ICMR), was used to detect the SARS-CoV-2 ORF 1ab region of the genome by amplification of E gene and RdRp gene and human RNP as internal control., in an AriaMx real-time PCR instrument (Agilent, USA).

3. Statistical analysis

Statistical analysis was performed on MS Excel 2010 to determine the descriptive statistics.

4. Results

4.1. Participant profile

The patients included (38, 52.8%) females and 34 (47.2%) males, age range was 2–90 years (median =44 years). The diagnosis of COVID at admission was based on a rapid test such as Cepheid Xpert SARS CoV-2 (n = 27). Fifteen of the participants (20.83%) were healthcare workers who developed signs and symptoms such as fever, cough, sore throat, nasal congestion, malaise and headache.

4.2. Distribution of COVID categories among the participants

Overall, 36 participants had mild COVID, 19 had moderate and 9 had severe, and 8 had non COVID illness. Amongst the admitted patients (n = 57), thirty had mild disease, 18 had moderate disease and 9 had severe disease. Whereas, among the HCWs (n = 15), 6 had mild COVID and 1 had moderate COVID. Eight health care workers had febrile episodes without COVID.

4.3. Vaccination status

All the healthcare workers had received at least one dose of either of the available COVID-19 vaccines. Among the remaining patients only one was fully vaccinated.

4.4. Overall comorbidities involvement

Twenty-eight (38.8%) patients had one or a combination of comorbidities, which included type2 diabetes mellitus, hypertension, bronchial asthma, chronic kidney disease, malignancy and trauma. Four patients (5.55%) had fatal outcomes.

4.5. Comparison of results between Abbott ID NOW and RTPCR

As RTPCR is the current reference method in the diagnosis of COVID-19, the following statistical parameters were addressed. (Table 1).

Sensitivity was found to be 93.22% (55/59), 95% CI: 83.82–97.93%; Specificity was 100% (13/13), 95% CI: 77.19–100%; PPV was 100% (55/55), 95% CI: 94–100% and NPV was 76.47% (13/17), 95% CI: 50–93%.
Journal of Virological Methods 304 (2022) 114521

S. Srivastava et al.

Table 2
A list of studies evaluating ID NOW.

Location	Sample size	Comparator test	Sensitivity/ PPA (%)	Specificity/ NPA (%)	Comments	Reference
USA	812	RT PCR	73	99.7	Review and meta-analysis of 4 evaluations	Dinnes et al., 2021
USA	113	Xpert Xpress	54.8	98.6	Dry nasal swabs used	Ismailghall et al., 2020
USA	108	RT PCR	88	100	Naso-pharyngeal swabs transported in VTM	Zhen et al., 2020 Jul
USA	101	RTPCR	79	100	Naso-pharyngeal swabs transported in VTM	Jin et al., 2020
USA	74	RTPCR	74	100	Naso-pharyngeal swabs transported in VTM	Mitchell and George, 2020
USA	61	RTPCR	72	100	Naso-pharyngeal swabs transported in VTM	Smithgall et al., 2020
USA	184	RTPCR	91	100	Dry nasal swabs and nasopharyngeal swabs in VTM	Smithgall et al., 2020
USA	198	RTPCR	79	100	Naso-pharyngeal swabs transported in VTM	Smithgall et al., 2020
USA	113	RTPCR	95	99	Dry nasal-pharyngeal swabs transported in VTM	Dinnes et al., 2021
USA	524	RTPPCR	75	99	Dry nasal swabs used	Harrington et al., 2020
France	48	RTPCR	94.9	100	Naso-pharyngeal swabs transported in VTM	Farfour et al., 2021
USA	974	RTPPCR	91.3	100	Dry nasal swab from one anterior nare used for IDNOW and that from the other for RTPCR	Tu et al., 2021
USA	117	RTPPCR	67	100	Naso-pharyngeal swabs transported in VTM	Jin et al., 2020
USA	88	Composite reference standard (CRS)	48	100	Dry nasal swabs kept at 4 °C and processed within 24 h	LeHarpe et al., 2021 Jan
USA	108	RTPCR	88	100	Naso-pharyngeal swabs transported in VTM	Zhen et al., 2020 Jul
USA	184	RTPCR	91	100	Dry nasal swabs transported in VTM	Smithgall et al., 2020
USA	198	RTPPCR	79	100	Naso-pharyngeal swabs transported in VTM	Smithgall et al., 2020

5. Discussion

In the study we evaluated nasal swabs from the participants for the presence of SARS CoV2 RNA and compared the results with RT-PCR. As per the manufacturer’s instructions, nasal swab, nasopharyngeal swab and throat swab can be used. We used nasal swabs which are more acceptable to patients and have an easier procedure of collection. The swabs provided in the test kit were used in the study, however rayon, foam, HydraFlock® Flocked swab (standard tip), HydraFlock® Flocked swab (mini tip), Copan Mini Tip Flocked Swab, or Copan Standard Flocked swabs can also be used to collect nasal swab samples. The sensitivity, specificity, PPV and NVP were found to be 93.22%, 100%, 100% and 76.47% respectively. The evaluation of diagnostic performance of ID NOW on account of false negative results has been recommended by the USFDA in the past, for investigating into variations caused by swabs, viral transport media, and proficiency in following manufacturer’s instructions (U.S. Food Drug Administration, 2020). A number of studies have been done, mostly in the USA, comparing the performance of ID NOW with RTPCR on various platforms. The sensitivity/ Positive percent agreement (PPA) determined in these studies ranged from 48% to 95%, while the specificity/ Negative percent agreement (NPA) ranges from 99% to 100%. In a recent Cochrane review and metaanalysis the sensitivity and specificity were found to be 73% and 99.7% (Dinnes et al., 2021). The broad variation in sensitivity is likely because of differences in protocols right from sample collection to transportation and storage. VTM/ universal transport medium (UTM) has been used for sample collection, until in April 2020, when the manufacturer’s recommendation changed in favor of dry swabs. (ID NOW COVID-19 product insert, IN190000 Rev.3 2020/04:6-8). Consequently, many authors have not used dry swabs in their studies. The other problem is the high cost of each test that makes it unaffordable to smaller Laboratories.

The strength of this study is the inclusion of diverse patient profile which includes healthcare workers who were partially or fully vaccinated which implies the application to extend to vaccinated individuals, who are expected to have lower viral loads or milder symptoms. This can be consequent to the lower limit of detection (LOD).

5.1. Limitations

One major limitation for ID NOW usage is to process swabs within an hour of collection. We processed the samples within the recommended time. The other problem is the high cost of each test that makes it unaffordable to smaller Laboratories.

Concluding this, Abbott ID NOW is a convenient, rapid molecular test with sensitivity somewhat less than other cartridge based or chipbased platforms, such as Xpert Xpress (97.8%) (Xpert Xpress SARS- CoV-2 Assay, ENGLISH Package insert) and TRUENAT Beta CoV (100%) (TRuenat COvid 19 packinsert VER 04.3). Specificity was found to be same (100%). The ID NOW Instrument occupies little space and is easy to use, making it suitable for a busy laboratory or as a POC test. The short turnaround time, which is about 5–13 min for Positive results and 13 min for Negative results makes this an attractive alternative for COVID-19 diagnosis. ID Now has utility as a rapid rule-in test for COVID-19, however, caution to be maintained for use as a single rule-out test, especially when the clinico-epidemiolocal findings suggest otherwise.

Ethics approval and consent to participate

Ethical Approval to carry out this research was obtained by Institute ethics committee, AIIMS, New Delhi Reference number (IEC 668/ 03.07.2020).

CRediT authorship contribution statement

Smriti Srivastava, Parul Singh contributed toward study design, conceptualization, literature search, figures, study design, patient...
recruitment, testing of samples, data collection, data analysis, data interpretation, writing & revision of all drafts of the manuscript. Rajesh Malhotra, Purva Mathur contributed toward the statistical data analysis data interpretation & revision of the draft. Smriti Srivastava, Parul Singh contributed toward patient recruitment, testing of samples, and data collection. All authors have read & agreed to the submission of this version of the manuscript.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgment

We are thankful to our laboratory staff and fellow doctors for their cooperation and support.

References

Basu, A., Zinger, T., Inglima, K., Woo, K.M., Atie, O., Yusafis, L., et al., 2020. Performance of Abbott ID Now COVID-19 rapid nucleic acid amplification test using nasopharyngeal swabs transported in viral transport media and dry nasal swabs in a New York City academic institution. J. Clin. Microbiol. 58 (8), e01136–20. https://doi.org/10.1128/JCM.01136-20.

Clinical Guidance For Management Of Adult Covid-19 patients . [May 17, 2021]. AIIMS/ICMR COVID-19 National Task Force. Accessed 25 July 2021.

Cradic, K., Lockhart, M., Ozbolt, P., Fatou, L., Landou, L., Lieber, M., Yang, D., Swickard, J., Wongchawat, N., Fuhrman, S., Antonara, S., 2020. Clinical evaluation and utilization of multiple molecular in vitro diagnostic assays for the detection of SARS-CoV-2. Am. J. Clin. Pathol. 154 (2), 201–207.

Dines, J., Deeks, J.J., Berhane, S., Taylor, M., Adriano, A., Davenport, C., et al., 2021. Rapid, point-of-care antigen and molecular-based tests for diagnosis of SARS-CoV-2 infection. Cochrane Database Syst. Rev. 3 https://doi.org/10.1002/14651858.CD0013755.pub2. Accessed 28 July 2021.

Farfour, E., Asso-Bonnet, M., Vasse, M., et al., 2021. The ID NOW COVID-19, a high-speed high-performance assay. Eur. J. Clin. Microbiol. Infect. Dis. 1183. https://doi.org/10.1007/s10096-021-04243-0.

Ghofrani M., Casas M.T., Pelz R.K., Kroll C., Blum N., Foster S.D. Performance characteristics of the ID NOW COVID-19 assay: A regional health care system experience. medRxiv 2020.06.03.20116327; doi: (https://doi.org/10.1101/2020.06.03.20116327). Accessed 28 July 2021.

Harrington, A., Cox, B., Snowdon, J., Bakst, J., Ley, E., Grajales, P., et al., 2020. Comparison of Abbott ID Now and Abbott m2000 methods for the detection of SARS-CoV-2 from nasopharyngeal and nasal swabs from symptomatic patients. J. Clin. Microbiol. 58 (8), e00798–20. https://doi.org/10.1128/JCM.00798-20.

ID NOW [package insert], Maine (USA): Abbott Diagnostics Scarborough, Inc.; 2020. https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-informs-public-about-possible-accuracy-concerns-abbott-id-now-point.

Tu, Y.P., Iqbal, J., O’Leary, 2021. Sensitivity of ID NOW and RT-PCR for detection of SARS-CoV-2 in an ambulatory population. Elife 10, e65726. https://doi.org/10.7554/elif.e65726.

WHO, Geneva, Switzerland. [Internet] Accessed 25 July 2021.

WHO corona virus (COVID-19) DASHBOARD. [https://covid19.who.int/2022]; WHO, Geneva, Switzerland. [Internet] Accessed 22 February 2022.

World Health Organization. 2020. Coronavirus disease (COVID-19) pandemic. [https://www.who.int/emergencies/coronavirus-disease-(covid-19)]/India-situation-report.WHO, Geneva, Switzerland. [Internet] Accessed 22 February 2022.

Zhen, W., Smith, E., Manji, R., Schron, D., Berry, G.J., 2020. Clinical evaluation of three commercial molecular tests and a laboratory-developed modification of the CDC 2019-nCoV reverse transcriptase PCR assay for the detection of SARS-CoV-2. J. Clin. Microbiol. 58 (8), e00938–20.

Smithgall, M.C., Scherberkovka, I., Whittier, S., Green, D.A., 2020. Comparison of Cepheid Xpert Xpress and Abbott ID Now to Roche cobas for the rapid detection of SARS-CoV-2. J. Clin. Virol. 128, 104428.

U.S. Food Drug Administration , 2020. Coronavirus (COVID-19) Update: FDA informs public about possible accuracy concerns with Abbott ID NOW Point-of-Care Test FDA [Internet]. [https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-informs-public-about-possible-accuracy-concerns-abbott-id-now-point]. Accessed 26 July 2021.

WHO corona virus (COVID-19) DASHBOARD. [https://covid19.who.int/2022]; WHO, Geneva, Switzerland. [Internet] Accessed 22 February 2022.