Hepatitis B infection among adults in the Philippines: A national seroprevalence study

Stephen N Wong, Janus P Ong, Madalinee Eternity D Labio, Oscar T Cabahug, Maria Lourdes O Daez, Erlinda V Valdellon, Jose D Sollano Jr, Marilyn O Arguillas

Abstract

AIM: To determine the prevalence of hepatitis B surface antigen (HBsAg) seropositivity among adult Filipinos.

METHODS: Testing for HBsAg was performed on serum samples from persons aged ≥ 20 years old who participated in the National Nutrition and Health Survey (NNHeS) conducted in 2003. Information on age, sex, marital status, educational attainment, employment status, and income were collected. For this study, marital status was classified as never married or otherwise (i.e., married, divorced, separated, widowed); educational attainment was classified as high school graduate or below or at least some tertiary education; and employment status was classified as currently employed or currently unemployed. Annual income was divided into 4 quartiles in Philippine pesos (PhP): Q1, ≤ PhP 53064; Q2, PhP 53065-92192; Q3, PhP 92193-173387; and Q4, ≥ PhP 173388. Prevalence estimates were weighted so that they represented the general population. Social and demographic factors were correlated with HBsAg seropositivity. Multivariate analysis was used to determine independent predictors of HBsAg seropositivity.

RESULTS: A total of 2150 randomly selected adults, 20 years and over, out of the 4753 adult participants of NNHeS were tested for HBsAg. The HBsAg seroprevalence was 16.7% (95% CI: 14.3%-19.1%), which corresponded to an estimated 7278968 persons infected with hepatitis B. There was no significant difference between males and females (17.5% vs 16.0%; P = 0.555). This corresponded to an estimated 3721775 men and 3557193 women infected with hepatitis B. The HBsAg seroprevalence peaked at age 20-39 years old, with declining prevalence in the older age groups. The only independent predictor of HBsAg seropositivity was the annual income, with persons in the highest income quartile being less likely to be HBsAg positive (age-adjusted OR = 0.51; 95% CI: 0.30-0.86) compared to subjects in the lowest income quartile. Sex, marital status, educational attainment, and employment status were not found to be independent predictors of HBsAg seropositivity.

CONCLUSION: The high HBsAg seroprevalence among adults in the Philippines classifies the country as hyperendemic for HBV infection and appears unchanged over the last few decades.
© 2013 Baishideng. All rights reserved.

Key words: Prevalence; Hepatitis B; Survey; Philippines; Asia

Core tip: Chronic hepatitis B has a significant public health impact in the Philippines because it is a common cause of end stage liver disease and is the leading cause of hepatocellular carcinoma, the latter being the fourth leading cancer and the second leading cause of cancer death in the country. However, an accurate estimate of the national prevalence of hepatitis B infection in the Philippines is lacking. To determine the national prevalence of hepatitis B infection in the Philippines, testing for hepatitis B surface antigen was undertaken on serum samples collected from subjects included in the National Nutrition and Health Survey.

Wong SN, Ong JP, Labio MED, Cabahug OT, Daez MLO, Valdellon EV, Sollano Jr JD, Arguillas MO. Hepatitis B infection among adults in the Philippines: A national seroprevalence study. *World J Hepatol* 2013; 5(4): 214-219 Available from: URL: http://www.wjgnet.com/1948-5182/full/v5/i4/214.htm DOI: http://dx.doi.org/10.4254/wjh.v5.i4.214

INTRODUCTION

Chronic hepatitis B (CHB) remains to be a significant public health burden affecting 400 million people worldwide, and is most prevalent in the Asia Pacific region[6]. The disease is estimated to account for 30% of cirrhosis and 53% of hepatocellular carcinoma (HCC) cases worldwide. As such, it is responsible for a staggering half a million deaths every year from hepatitis B virus (HBV)-related cirrhosis and HCC[7].

The Philippines is considered an endemic country for hepatitis B. Chronic hepatitis B has a significant public health impact in the Philippines because it is a common cause of end stage liver disease and is the leading cause of HCC[3,4], the latter being the fourth leading cancer and the second leading cause of cancer death in the country[5]. However, an accurate estimate of the national prevalence of hepatitis B infection in the Philippines is lacking. Although many prevalence studies have been done earlier, they either included small sample sizes, or were done only in select populations (i.e., overseas employment applicants, certain ethnic groups, limited locality, institutional, etc)[6-9]. Accurate prevalence estimates in the general population are important in the control of HBV infection and its complications, and may especially be instrumental in shaping health policies on primary and secondary prevention of this infection.

To determine the national prevalence of hepatitis B infection in the Philippines, testing for hepatitis B surface antigen (HBsAg) was undertaken on serum samples collected from subjects included in the National Nutrition and Health Survey (NNHeS).

MATERIALS AND METHODS

NNHeS and data collection

NNHeS was conducted in 2003 as a collaborative effort among the Food and Nutrition Research Institute of the Department of Science and Technology (FNRI-DOST), the department of health, and fourteen medical specialty associations in the country. The NNHeS was conducted in conjunction with the 6th National Nutrition Survey of the FNRI-DOST. The study protocol was approved by the Technical Committee and Ethical Review Board of the DOST. Studies on the prevalence and risk factors of atherosclerosis-related diseases and metabolic syndrome have been published using the data from the survey[10,11].

The survey utilized the National Statistics Office Master Sample with household listing taken from the Family Income and Expenditure Survey. A stratified multi-stage sampling design was employed to represent each of the 17 regions in the country. The sampling method utilized the “Barangay” which is the basic political unit in the Philippines that serves as the primary planning and implementing unit of government policies and programs and which is created out of a contiguous territory with at least 2000 inhabitants[10]. The first stage involved the selection of the Primary Sampling Units (PSUs) in a barangay or contiguous barangays with at least 500 households with probability proportional to the estimated number of households. The second stage involved selection of Enumeration Areas (EAs) within sampled PSUs with 150-200 households serving as the Secondary Sampling Units. The last stage was the selection of housing units within the sampled EAs which served as the ultimate sampling unit. As such, the household was considered as a cluster in which all the units became part of the survey. The clinical component of the NNHeS covered only one of the four replicates of the Master Sample and 25% of the households. A replicate was a sub-sample that possessed the properties of the full master sample such that each replicate was able to generate national level estimates of adequate precision. Adults 20 years and over served as participants of the study.

Information on age, sex, marital status, educational attainment, employment status, and income were collected. For this study, marital status was classified as never married or otherwise (i.e., married, divorced, separated, widowed); educational attainment was classified as high school graduate or below or at least some tertiary education; and employment status was classified as currently employed or currently unemployed. Annual income was divided into 4 quartiles in Philippine pesos (PhP): Q1, ≤ PhP 53064; Q2, PhP 53065-92192; Q3, PhP 92193-173387; and Q4, ≥ PhP 173388 according to categories of income used in a World Health Organization publication on non-communicable diseases and socioeconomic inequalities[15].

Laboratory methods

HBsAg testing was performed on serum samples col-
The high HBsAg seroprevalence in the Philippines in 2003 is in contrast to other countries in the Asia Pacific.
The continued high HBsAg seroprevalence probably explains why the yearly incidence of HCC for both males (20-21 per 100000) and females (7-8 per 100000) in the Philippines has not changed over the past 20 years[20]. The burden of CHB infection expectedly spills over into the public health arena because of the high cost of taking care of one patient with CHB. In Asia, the cost can range from United States Dollar 185-1321 per year for patients with compensated CHB-related cirrhosis, to United States Dollar 49000-66000 for every CHB patient needing a liver transplant[21,22]. In countries like the Philippines where there is very little government assistance for healthcare, the cost for CHB care falls squarely on the shoulders of the patients themselves. Therefore, the finding that persons in the lower income brackets are more likely to be infected with HBV makes the impact of this infection on the utilization of healthcare resources in the Philippines even more significant.

Our study has several limitations. We did not include adults younger than 20 years old and children. Thus, the current estimate may consequently not be reflective of the true national HBsAg seroprevalence. However, while universal infant HBV vaccination was first introduced into the national immunization program as early as 1992[15], due to insufficient funds, the program was never fully implemented until January 2007[19]. Therefore, since fully funded efforts to curb the perinatal transmission of HBV started only after the study was made, the HBsAg seroprevalence of adults younger than 20 years old and children is not expected to be very different from the estimates in this study. A study evaluating the seroprevalence of HBV in children is needed and is expected to be conducted in the immediate future as the Philippines together with countries in the World Health Organization Western Pacific Region have adopted a region-wide goal to reduce the seroprevalence of HBV in children 5 years old.

Table 2 Prevalence of hepatitis B surface antigen seropositivity and population estimates according to age group and gender n (%)

Age group	Total	95% CI	Estimated number	Males	95% CI	Estimated number	Females	95% CI	Estimated number
20-29	329 (18.1)	13.6-22.6	2580340	170 (19.5)	13.1-25.9	1392647	159 (16.6)	10.5-22.8	1187693
30-39	314 (17.6)	13.2-22.0	1960314	163 (20.2)	13.6-26.8	1137688	151 (14.9)	9.0-20.7	822626
40-49	252 (16.0)	11.2-20.9	1314240	112 (13.4)	7.2-19.7	567308	140 (18.2)	11.4-25.1	746932
50-59	162 (14.3)	9.0-19.5	715781	66 (10.1)	3.2-16.9	265155	96 (17.2)	9.3-25.0	450626
60-69	638 (14.3)	11.4-17.2	443882	267 (17.6)	12.7-22.6	254760	371 (19.9)	8.3-15.5	189122
70 and over	455 (13.6)	10.0-17.3	264411	178 (12.4)	8.1-16.8	104217	277 (14.4)	9.5-19.2	160394

region where the latest estimates show that the prevalence of HBV infection has already fallen below previous estimates. In Northeast China and South Korea, recent seroprevalence surveys indicate a two- to threefold decrease in HBsAg seroprevalence in the last 1-2 decades[13,14]. Both countries adopted universal infant vaccination and attributed the declines in HBsAg seroprevalence to the effect of vaccination programs. The current study did not include adults younger than 20 years old and children. Thus, it is not possible to make a complete assessment of the effectiveness of the universal infant vaccination program that was introduced in 1992[13].

The highest prevalence of HBV infection is seen in the 20-39 year-old age group with decreasing HBsAg seroprevalence in the older age groups. This trend is similar to data from other countries in the Asia-Pacific region. While this may be due to older patients with HBV infection dying from cirrhosis and HCC, there is also evidence that even in countries where the predominant mode of HBV transmission is perinatal, HBsAg seroclearance can occur in up to 28% of CHB patients by the time they reach 60 years of age, with a median age of 48 years at the time of HBsAg seroclearance[16]. A lower annual income was the only independent predictor of HBsAg seropositivity in our study, and may reflect inequity in the access to health care, including preventive programs such as vaccination, among the different socioeconomic levels. This is not surprising since studies have shown that patients with lower socioeconomic status are more likely to have delayed and missed vaccinations[17], and are more likely to be ignorant of how HBV is transmitted[18]. Moreover, it is also important to note that a low educational status was associated with a higher HBsAg seroprevalence on univariate analysis. The results of the study highlights the importance of a government-subsidized immunization program and a grassroots HBV education program in a nation where the poverty level still hovers around 27%/19.

Table 3 Relative odds of hepatitis B surface antigen positivity among adults by selected demographic variables

Variable	Adjusted OR	95% CI
Sex		
Females	1.00	
Males	1.06	0.76-1.45
Marital status		
Never married	1.00	
Otherwise	0.75	0.48-1.16
Educational attainment		
High school	1.00	
At least some tertiary	0.78	0.55-1.13
Employment status		
Unemployed	1.00	
Employed	1.18	0.85-1.71
Income		
Q1	1.00	
Q2	0.94	0.59-1.50
Q3	0.82	0.51-1.31
Q4	0.51	0.30-0.86
ACKNOWLEDGMENTS

This manuscript was produced in collaboration with the Philippine Society of Gastroenterology Liver Council, Hepatology Society of the Philippines, and the NNHeS 2003 Group. The HBsAg testing for the study was funded by the Philippine Society of Gastroenterology and the Philippine Cancer Society.

The NNHeS 2003 was funded through major contributions from the Department of Health of the Philippines, Philippine Heart Association, Philippine Lipid Society, Philippine Society of Hypertension, Philippine Diabetes Association, and the Food and Nutrition Research Institute of the Department of Science and Technology. Other contributions came from the Philippine Pediatric Society, Philippine Society of Nephrology, Philippine Society of Endocrinology and Metabolism, Osteoporosis Society of the Philippines, Philippine Association for the Study of Overweight and Obesity, Philippine Neurological Association, Philippine Rheumatology Association, Philippine College of Physicians, Philippine Society of Gastroenterology, and the Philippine Society of Asthma, Allergy and Immunology.

The NNHeS 2003 Group is comprised of the following: (Steering Committee) Dante D Morales (Chairman), Esperanza I Cabral, Rosa Allyn Sy, Mariano B Lopez, Romeo J Santos, Corazon VC Barba, and Rolando Enrique Domingo; (Technical Working Committee) Antonio Dans (Chairman), Lourdes Amarillo, Charmaine Duante, Felix Eduardo Punzalan, Felicidad Velandria, Maria Vanessa C Villarruz; (Members) Milagros S Bautista, Lyn Almazan-Gomez, Elizabeth Paz-Pacheco, Julie Li-Yu, Rodolfo F Florentino, Raymond I. Espinosa, Sandra Tankeh Torres, Vicente Jose Y Velez, Milagros S Bautista, Oscar Cabahug, and Jovilia M Abong.

REFERENCES

1 Lavanchy D. Hepatitis B virus epidemiology, disease burden, treatment, and current and emerging prevention and control measures. J Viral Hepat 2004; 11: 97-107 [PMID: 14996343]
2 Perz JF, Armstrong GL, Farrington LA, Hutin YJ, Bell BP. The contributions of hepatitis B virus and hepatitis C virus infections to cirrhosis and primary liver cancer worldwide. J Hepatol 2006; 45: 529-538 [PMID: 16879891]
3 Ong A, Andrada P, Dy F, Dalupang C, Chan M, Ismael A, Carpio R, Tady C, Solano J, Wong SN. Quality of life among patients with untreated hepatocellular carcinoma. Phil J Intern Med 2009; 47: 107-116
4 Lucas ZF, Pangan CP, Patal PC, Ong J. The clinical profile of hepatocellular carcinoma patients at the Philippine general hospital. Phil J Intern Med 2009; 47: 1-9
5 Philippine Cancer Facts and Estimates. Available from: UTL: http://www.cnetwork.org.ph/resources.asp?cat=4
6 Dalmacio LM, Evangelista KV, Kemp K, Campos JR, Kron MA, Domingo EO, Ramirez BL. Prevalence of hepatitis B virus infection among healthy adults and high-risk groups. Phil J Intern Med 2005; 43: 301-306
7 Evangelista KV, Dalmacio LMM, Wells J, Kron MA, Ramirez BL. Prevalence of hepatitis B virus (HBV) infection among Tagalogs and Mangyans in Oriental Mindoro, Philippines. Phil J Intern Med 2006; 44: 161-166
8 Yanase Y, Ohida T, Kaneita Y, Agdamag DM, Leaho PS, Gill CJ. The prevalence of HIV, HBV and HCV among Filipino
blood donors and overseas work visa applicants. *Bull World Health Organ* 2007; 85: 131-137 [PMID: 17308734]

9 Lingao AL, Domingo EO, West S, Reyes CM, Gasmen S, Viterbo G, Tiu E, Lansang MA. Seroepidemiology of hepatitis B virus in the Philippines. *Am J Epidemiol* 1986; 123: 473-480 [PMID: 3946393]

10 Morales DD, Punzalan FE, Paz-Pacheco E, Sy RG, Duante CA. Metabolic syndrome in the Philippine general population: prevalence and risk for atherosclerotic cardiovascular disease and diabetes mellitus. *Diab Vasc Dis Res* 2008; 5: 36-43 [PMID: 18398811]

11 Sy RA, Punzalan FE, Roxas A, Abola MT, Velandria FV, Morales DD, Dangs AL, Villaruz MV, Amarillo L, Paz-Pacheco E. National Nutrition And Health Survey (NNHeS): Atherosclerosis - related diseases and risk factors. *Phil J Intern Med* 2005; 43: 103-115

12 WHO Regional Office for the Western Pacific. Noncommunicable disease risk factors and socioeconomic inequalities - what are the links? A multicountry analysis of noncommunicable disease surveillance data. Available from: UTL: http://www.wpro.who.int/publications/PUB_9789290614746.htm

13 Zhang H, Li Q, Sun J, Wang C, Gu Q, Feng X, Du B, Wang W, Shi X, Zhang S, Li W, Jiang Y, Feng J, He S, Niu J. Seroprevalence and risk factors for hepatitis B infection in an adult population in Northeast China. *Int J Med Sci* 2011; 8: 321-331 [PMID: 21611114]

14 Lee DH, Kim JH, Nam JJ, Kim HR, Shin HR. Epidemiological findings of hepatitis B infection based on 1998 National Health and Nutrition Survey in Korea. *J Korean Med Sci* 2002; 17: 457-462 [PMID: 12172038]

15 Implementing Guidelines on the Integration of Hepatitis B into the Expanded Program on Immunization, Department Circular No. 242. Republic of the Philippines. Department of Health, December 1990. Available from: URL: http://www.wpro.who.int/philippines/areas/immunization/hepatitis_b_vaccination/en/index.html

16 Chu CM, Liaw YF. HBsAg seroclearance in asymptomatic carriers of high endemic areas: appreciably high rates during a long-term follow-up. *Hepatology* 2007; 45: 1187-1192 [PMID: 17465003]

17 Akmatov MK, Mikolajczyk RT. Timeliness of childhood vaccinations in 31 low and middle-income countries. *J Epidemiol Community Health* 2012; 66: e14 [PMID: 21551179 DOI: 10.1136/jech.2010.124651]

18 Lu W, Mak B, Lim SG, Aung MO, Wong ML, Wai CT. Public misperceptions about transmission of hepatitis B virus in Singapore. *Ann Acad Med Singapore* 2007; 36: 797-800 [PMID: 17987226]

19 2009 Official Poverty Statistics. Available from: UTL: http://www.nscb.gov.ph/poverty/2009/Presentation_RAVirola.pdf

20 Laudico AV, Mirasol-Lumague MR, Mapua CA, Uy GB, Toral JA, Medina VM, Pukkala E. Cancer incidence and survival in Metro Manila and Rizal province, Philippines. *Jpn J Clin Oncol* 2010; 40: 603-612 [PMID: 20385654]

21 Li SC, Ong SC, Lim SG, Yeoh KG, Kwong KS, Lee V, Lee W, Lau J, Wong J, Kung N, Leung WT, Chan HL, Chan FK, Sung J, Lee KK. A cost comparison of management of chronic hepatitis B and its associated complications in Hong Kong and Singapore. *J Clin Gastroenterol* 2004; 38: S136-S143 [PMID: 15602161]

22 Zhiqiang G, Zhohui D, Qinhuan W, Dexian C, Yunyun F, Hongtao L, Iloeje UH. Cost of chronic hepatitis B infection in China. *J Clin Gastroenterol* 2004; 38: S175-S178 [PMID: 15602167]

23 Implementing Guidelines on Hepatitis B Immunization for Infants, Administrative Order No. 2006-0015. Republic of the Philippines. Department of Health, June 2006

24 Rani M, Yang B, Nesbit R. Hepatitis B control by 2012 in the WHO Western Pacific Region: rationale and implications. *Bull World Health Organ* 2009; 87: 707-713 [PMID: 19784451]