Compound decision in the presence of proxies with an application to spatio-temporal data.

N. Cohen, E. Greenshtein, and Y. Ritov

December 8, 2010

Abstract

We study the problem of incorporating covariates in a compound decision setup. It is desired to estimate the means of \(n \) response variables, which are independent and normally distributed, and each is accompanied by a vector of covariates. We suggest a method that involves non-parametric empirical Bayes techniques and may be viewed as a generalization of the celebrated Fay-Herriot (1979) method.

Some optimality properties of our method are proved. We also compare it numerically with Fay-Herriot and other methods, using a ‘semi-real’ data set that involves spatio-temporal covariates, where the goal is to estimate certain proportions in many small areas (Statistical-Areas).

1 Introduction

The main purpose of this paper is to study and demonstrate how to incorporate compound decision techniques (CD), or almost equivalently, empirical Bayes (EB) methods, in the presence of explanatory variables. The ideas of CD/EB were developed in the 1950’s by Robbins (1951, 1955, 1964), see the review papers by Copas (1969) and Zhang (2003). Compound decision (or Empirical Bayes) procedures, were shown to produce very efficient estimators in the simple setup where we have independent observations, \(Y_1, \ldots, Y_n, Y_i \sim F_{\mu_i} \), and it is desired to estimate \(\mu_i, i = 1, \ldots, n \). A major case, on which we will concentrate, is when \(F_{\mu_i} = N(\mu_i, 1) \).

We will focus on two types of EB procedures. One type is Parametric Empirical Bayes (PEB) procedure, where \(\mu_i, i = 1, \ldots, n \) are assumed to be realizations of independent random variables \(M_i, i = 1, \ldots, n, M_i \sim G, G = N(0, \tau^2) \), where \(\tau^2 \) is unknown and should be estimated from the data. When \(n \) is large, the corresponding estimator (note, the exact variant of the corresponding estimator, depends on the method of estimating \(\tau^2 \)), resembles the James-Stein estimator, see e.g., Efron and Morris (1973). The other type is the Non-Parametric Empirical Bayes (NPEB) procedure, where the above distribution \(G \) is a member of a large non parametric family \(\mathcal{G} \) of distributions. Two recent NPEB methods and approaches are Brown and Greenshtein (2009) and Jiang and Zhang (2009).
The advantage of EB procedures, relative to more elementary (e.g., mle) procedures, occurs as \(n \) grows, and may become very significant in high dimensional problems when \(n \) is large (e.g., \(n \geq 3 \) is needed for “Stein’s paradox” to hold). A special advantage of NPEB procedures is expected in situations where the vector \(\mu = (\mu_1, \ldots, \mu_n)' \) is sparse, see e.g., Greenshtein, Park and Ritov (2008), Brown and Greenshtein (2009).

Since modern statistical problems often involve high dimensional and sparse estimation problems, EB techniques should be embraced for such purposes, see, e.g., Efron (2003). However, apart from literature in small area estimation, e.g., Rao (2003), which follows the seminal paper of Fay and Herriot (1979), EB is hardly used in modern data analysis. One reason is that in most applied problems, we have explanatory variables \(X_{i1}, \ldots, X_{ip} \) for each observation \(Y_i \) and in such cases EB has no appeal, since simple symmetric decision procedures have no appeal. We elaborate in the following.

In our motivating example \(Y_i \sim B(m_i, p_i) \), the binomial distribution, and we need to estimate \(p_1, \ldots, p_n \), certain proportions, in \(n \) (small) areas. The values of \(p_1, \ldots, p_n \) are unknown constants to be estimated. In addition to the sample \(Y_1, \ldots, Y_n \), we have a set of variables \(X_1, \ldots, X_n \) (fixed or random, but independent of \(Y_1, \ldots, Y_n \)) and hopefully \(X_i \) can serve as proxies to \(p_i \), \(i = 1, \ldots, n \). For example one dimensional covariates \(X_i \sim B(k_i, \tilde{p}_i) \) where \(\tilde{p}_i \) are “typically” close to \(p_i \); alternatively \(X_i \) may be a vector of known parameters of area \(i \), that might be “relevant” to the parameter of interest \(p_i \), for example the socio-economic level of the region, its size, or mean age. We emphasize two elements. First, because of the proxies, \(Y_1, \ldots, Y_n \) cannot be considered as “permutation invariants” or “exchangeable”. Second, we do not believe that the observations follow standard regression models. The covariates are considered as proxies to \(p_i \), but they are statistically independent of the \(Y \)’s (whose only stochastic aspect comes from the binomial sampling), and may be only a rough approximation to \(p_1, \ldots, p_n \).

Simple symmetric and permutation invariant procedures. In cases of total ignorance regarding the parameters of the variables in relation to their identity, e.g., a situation where \(Y_i \sim N(\mu_i, 1) \) and there is an exchangeable multivariate prior on \((\mu_1, \ldots, \mu_n) \), procedures which are permutation invariant have a special appeal. Permutation invariant procedures \(\Delta \) are such that for every permutation \(\pi \),

\[
\Delta(Y_1, \ldots, Y_n) = (a_1, \ldots, a_n) \iff \Delta(Y_{\pi(1)}, \ldots, Y_{\pi(n)}) = (a_{\pi(1)}, \ldots, a_{\pi(n)});
\]

here \(a_i \in A \), where \(A \) is the (abstract) action space. A simple class of exchangeable priors is where \(\mu_i \) are realizations of i.i.d \(M_i \sim G, \ i = 1, \ldots, n \). The optimal procedures then belong to the class of ‘simple symmetric decision functions’, i.e., procedures \(\Delta \) which are of the form:

\[
\Delta(Y_1, \ldots, Y_n) = (\delta(Y_1), \ldots, \delta(Y_n)),
\]

for a given \(\delta \). For natural losses, given \(G \), the optimal \(\delta \) corresponds to the one dimensional Bayes procedure. On the relation and asymptotic equivalence between the above two classes, see Greenshtein and Ritov (2009). Given a loss function, consider an ‘oracle’ who knows the values of \(\mu_1, \ldots, \mu_n \), but is required to use a permutation invariant procedure. EB and CD
procedures may be viewed as an attempt to imitate the (unknown) procedure that an oracle would use. This is a very natural goal under ‘total ignorance’ or ‘exchangeability’.

The appeal in using permutation invariant procedures and consequently EB procedures, is lost when exchangeability is lost, as in cases where there are explanatory variables. Assume \(n_n = n_1 + n_2 \) and it is known that the first \(n_1 \) observations (say, hormone measurements), were taken from men, while the last \(n_2 \) were taken from women. Applying a permutation invariant procedure is equivalent to ignoring this potentially important information/explanatory-variable. However not all is lost, one may still apply EB procedure separately on the first \(n_1 \) observations and on the last \(n_2 \) observations. The idea is that after accounting for the explanatory variable in this trivial manner, we arrive into (two groups of) exchangeable variables and applying EB procedures separately on each group becomes appealing. In a similar manner, we will account for the information in the explanatory variables and then, after the information from the explanatory variables is accounted for and the “accounted observations” are closer to being exchangeable, we apply an EB procedure.

EB and CD are closely related notions and approaches. Under an EB formulation the parameters \(\mu_i, i = 1, \ldots, n \) are independent realizations from an unknown distribution \(G \) and the aim is to approximate the corresponding Bayes rule; under a CD formulation the aim is to approximate the best decision rule within a class of procedures (e.g., simple-symmetric, permutation invariant), for the given \(\mu = (\mu_1, \ldots, \mu_n)' \). In this paper we emphasize the CD approach. However, we will often use the more familiar EB notion, motivation and terminology.

Applying a (variant of) PEB method after accounting for the covariates, is in the spirit of the paper of Fay and Herriot, as shown in sub-section 2.2; it is currently the most common practice. Another approach for inference in the presence of explanatory variables is that of Lindley and Smith (1972); it is a parametric empirical Bayes approach, though different than that of Fay and Herriot.

In Section 2, we will suggest how EB could naturally be incorporated in problems with explanatory variables. We extend the Fay-Herriot approach and present its PEB and NPEB versions. We show asymptotic optimality of NPEB. In section 3, we demonstrate the application of our suggested methods on a “semi-real” data, which is based on the recent Israeli census. The application involves estimation of certain population’s proportions in small areas (Statistical Areas). The explanatory variables available when estimating the proportion \(p_i \) in statistical area \(i \), are ‘Spatial’ and ‘Temporal’, based on historical data, and data from neighbors. We elaborate on comparing PEB procedures, versus the more recent NPEB procedure, suggested by Brown and Greenshtein (2009).

Our ideas and techniques are meaningful in a general setup where \(Y_i \sim F_{\mu_i} \), but will be presented for the case \(F_{\mu_i} \equiv N(\mu_i, 1), i = 1, \ldots, n \). In fact, as mentioned we will apply our method for estimating proportions in the setup where \(Y_i \sim B(m_i, p_i) \), but applying an arcsin transformation will bring us to the normal setup.
2 Collections of estimators induced by affine transformations

The setup we consider is where we observe vectors $V_i = (Y_i, X_{i1}, \ldots, X_{ip}), i = 1, \ldots, n$, where $Y_i \sim N(\mu_i, 1)$ are independent response variables, and X_{ij} are explanatory variables independent of $Y_i, i = 1, \ldots, n, j = 1, \ldots, p$. Denote by $X_{n \times p}$ the matrix of the explanatory variables. Denote, $Y' = (Y_1, \ldots, Y_n)$. The goal is to find a 'good' estimator $\hat{\mu} = \hat{\mu}(V_1, \ldots, V_n)$, under the risk

$$E\|\hat{\mu} - \mu\|_2^2$$

In a nutshell the motivation and approach are as follows. Ideally it could be desired to approximate the Bayes procedure, assuming (at least tactically) that $\mu_i \sim \Gamma$ for $i = 1, \ldots, n$. However, this goal may be too ambitious for $p + 1$ dimensional observations V_i when n is moderate due to the "curse of dimensionality". A possible approach, in the spirit of Lindley and Smith (1972), is to assume that Γ belongs to a convenient parametric family, and this way the "curse of dimensionality" and other difficulties are circumvented. The approach of Fay and Herriot (1979) may also be interpreted this way. We, on the other hand, aim for the best permutational invariant estimator with respect to Z_1, \ldots, Z_n, where Z_i are one dimensional random variables which are obtained by a suitable transformation of (V_1, \ldots, V_n). This transformation is estimated from the data.

2.1 preliminaries and definitions

We start from a general point of view, where initially there are no covariates. We observe independent $Y_i \sim N(\mu_i, 1), i = 1, \ldots, n$. Let $\{T\}$ be a collection of affine transformations $T(Y) = T_{AB}(Y) = AY - B$, where A is an orthonormal matrix and B is a vector. Then $Z = T(Y)$ is distributed as a multivariate normal with mean vector denoted $\nu, \nu = A\mu - B$, and covariance matrix the identity. Let $\Delta = \Delta(Y)$ be a fixed estimator of the vector μ, which is not invariant under the group of affine transformations, i.e., $\Delta(T(Y)) \neq T(\Delta(Y))$. Then, the pair Δ and $\{T\}$ defines a (non-trivial) class of decision functions $\{\Delta_T\}, T \in \{T\}$,

$$\Delta_T(Y) = T^{-1}(\Delta(T(Y))).$$

Let

$$T^{opt} = \arg\min_{T \in \{T\}} E_\mu \|\Delta_T(Y) - \mu\|_2^2 \equiv \arg\min_{T \in \{T\}} R(T, \mu);$$

here $R(T, \mu)$ is implicitly defined.

Our goal is to approximate T^{opt}, and then estimate μ by an approximation of $\Delta_{T^{opt}}(Y)$.

For every $T \in \{T\}$, suppose we have a good estimator $\hat{R}(T, \mu)$ for $R(T, \mu)$. Let $\hat{T} = \arg\min_{T \in \{T\}} \hat{R}(T, \mu)$. The usual approach, which we will follow, is to use the estimator
\(\hat{\mu} = \Delta_{\hat{T}}(Y) \). When the class \{\(T\)\} is not too large, we expect only a minor affect of overfitting, i.e., \(R(\hat{T}, \mu) \approx R(T_{\text{opt}}, \mu) \).

Example 1 (Wavelet transform) The above formulation describes many standard techniques. In fact any harmonic analysis of the data that starts with transforming the data by a standard transformation (e.g., Fourier transform) follows this outline. A special case is when \(T(Y) = AY \), where \(A \) is the matrix which transforms \(Y \) to a certain wavelet representation, then, typically, the mean of the transformed vector is estimated and transformed back, see Donoho and Johnstone (1994). Suppose that, \(\{T\} = \{A\} \) is a collection of matrices that correspond to a collection of wavelet bases/"dictionaries". The problem of finding the most appropriate basis/transformation, is related to that of basis-pursuit, see e.g., Chen, et.al. (2001). The permutational invariant and non-linear decision functions \(\Delta \) in those studies is soft/hard-thresholds, Lasso, etc. As mentioned, procedures of a special interest for us are parametric and non-parametric EB.

Example 2 (Regression) Suppose that in addition to \(Y \) there is a fixed (deterministic!) matrix \(X \in \mathbb{R}^{n \times p} \). Consider the class of transformations \(T(Y) = Y - B, B \in \{B\} \), where \(\{B\} \) is the collection of all vectors of the form \(B = X\beta, \beta \in \mathbb{R}^{p} \). Note, in particular, that our transformations are non-random.

Remark 1 The formulation for a random set \(\{T\} \), which is independent of \(Y \) is just the same. In the last example when \(X_{n \times p} \) is random, we condition on the explanatory variables and arrive to a conditional inference version of the development in the sequel. From a Bayesian perspective, assuming a joint distribution \(\Gamma \) as above, conditional independence of the random set \(\{T\} \) and \(Y \), conditional on the covariates, follows when we assume that \(Y \) and \(X_{n \times p} \) are independent conditional on \(\mu \). We will remark later on the case where the random set of transformations is ‘weakly dependent’ on \(Y \).

The following fact is useful. Let \(Z = Z(T) = \Delta_{T}(Y) \). Then \(Z_i \sim N(\nu_i, 1) \) where \(\nu = \nu(T) = \Delta_{T}(\mu) \), and

\[
R(T, \mu) = E_{\mu}||\Delta_{T}(Y) - \mu||^2_2 = E_{\nu}||\Delta(Z) - \nu||^2_2 = R(I, \nu).
\]

(1)

In the last equality \(I \) represents the identity transformation. When there is no real danger of confusion, the dependence on \(T \) is suppressed. We will use equation (1) later to establish an estimator \(\hat{R}(T, \mu) \) for \(R(T, \mu) \).

The following general three steps method, for estimating \(\mu \), suggests itself.

Step I: For every \(T \), estimate \(R(T, \mu) \) by \(\hat{R}(T, \mu) \).

Step II: Find \(\hat{T} = \text{argmin}_{T} \hat{R}(T, \mu) \).

Step III: Get the estimator: \(\hat{\mu} = \hat{T}^{-1}(\Delta(\hat{T}(Y))) = \Delta_{\hat{T}}(Y) \).
We summarize. The idea in this subsection is that by an appropriate affine transformation, that may depend on explanatory variables, we will arrive to a problem which is ‘easier’ for the procedure Δ to handle. For example, by choosing an appropriate wavelet basis we will arrive to a sparse ν, which, roughly, is easier to handle/estimate the sparser it is. More generally, in a rough sense, good permutation invariant procedures Δ, “prefer” to estimate sparse vectors ν, hence transforming the original problem to a sparse problem is useful. Indeed accounting for the explanatory variables in a ‘good’ way, often brings us to a corresponding sparse ν. Moreover, by accounting for explanatory variables in a good way through a suitable transformation, we may obtain (nearly) exchangeable variables; whence, applying a permutation invariant procedure Δ on the transformed variables becomes natural and appealing.

2.2 The case where Δ is parametric empirical Bayes and the Fay-Herriot procedure.

In this subsection we study the case where Δ is a parametric empirical Bayes that corresponds to the prior $N(0, \tau^2)$, where τ^2 is unknown. When τ^2 is known the corresponding Bayes estimator for μ_i is $\hat{\mu}_i = \frac{\tau^2}{\tau^2 + 1} Y_i$, and its risk is $\frac{\tau^2}{\tau^2 + 1}$. When τ^2 is unknown, we replace τ^2 by its estimate. For our level of asymptotics all consistent estimators $\hat{\tau}^2$ induce equivalent estimators $\hat{\mu}_i = \frac{\hat{\tau}^2}{\hat{\tau}^2 + 1} Y_i$, and the corresponding estimators are asymptotically equivalent to James-Stein estimator up to $o(n)$, see Efron and Morris (1973). By working in this level of asymptotic, the considerations in this subsection are valid for a wide class of PEB procedures, corresponding to various consistent methods of estimating τ^2, including the J-S procedure. In particular, the risk in estimating a (deterministic) vector μ by PEB (or James-stein’s) method equals:

$$\frac{n||\mu||_2^2}{||\mu||_2^2 + n} + o(n).$$

We now examine our three steps estimation scheme, adapted for parametric Empirical Bayes (or, for a James-Stein estimator Δ). Note that, for every T and the corresponding ν and Z_i we have: $R(I, \nu) = \frac{n||\nu||_2^2}{||\nu||_2^2 + n} + o(n)$. Hence a plausible estimator for $R(T, \mu)$ is

$$\hat{R}(T, \mu) = \hat{R}(I, \nu) = \max\left\{0, \frac{n(\sum Z_i^2 - n)}{(\sum Z_i^2 - n) + n}\right\} = \max\left\{0, \frac{n(\sum Z_i^2 - n)}{\sum Z_i^2}\right\} \quad (2)$$

Our three steps scheme adapted for parametric empirical Bayes Δ is the following.

Step I: For every T estimate $R(T, \mu)$ by (2).

Step II: Find $\hat{T} = \arg\min_T \hat{R}(T, \mu)$.

Step III: Get the estimator: $\hat{\mu} = \hat{T}^{-1}(\Delta(\hat{T}(Y))) \equiv \Delta(\hat{T}(Y))$.

Remark 2 In the case where $\{T\}$ corresponds to $\{B = X\beta : \beta \in \mathbb{R}^p\}$, the optimization step II is trivial. We want to minimize the residuals $\sum Z_i^2$. This is achieved for B which is
the projection of \(Y \) on the span of the columns of \(X \), i.e., for \(\hat{T}(Y) = Y - X\hat{\beta} \), where \(\hat{\beta} \) is the ordinary least squares estimator. Upon realizing the last fact, it is easy to see that our above suggested method is the method of Fay and Herriot.

2.3 A nonparametric empirical Bayes \(\Delta \)

The statements and development in this sub-section are for nonparametric empirical Bayes procedure \(\Delta \), as in Brown Greenshtein (2009), see appendix.

Let \(Z_i \sim N(\nu_i, 1) \) be independent. Denote by \(R(\nu) \), the Bayes risk that corresponds to the prior which is defined by the empirical distribution of \(\nu \). Let \(f_\nu = \frac{1}{n} \sum \phi(z - \nu_i) \), where \(\phi \) is the density of a standard normal distribution. Then

\[
R(\nu) = 1 - \int \left(\frac{f'_\nu(z)}{f_\nu(z)} \right)^2 dz = 1 - E_\nu \left(\frac{f'_\nu(Z)}{f_\nu(Z)} \right)^2, \tag{3}
\]

see Bickel and Collins (1983).

The following theorem follows from Brown and Greenshtein (2009). It is stated for a triangular array set up, in order to cover situations of sparse \(\nu \equiv \nu^n \). At stage \(n \), \(Y_i \sim N(\mu_i, 1) \) are independent and for any corresponding sequence \(T^n, T^n \in \{T^n\} \), \(Z_i \sim N(\nu_i^n, 1) \) are independent, \(i = 1, \ldots, n \).

Assumption 1 For every \(\alpha > 0 \) and every sequence \(T^n \) and the corresponding \(\nu^n \) we have

\[
\max_i(\nu_i^n) - \min_i(\nu_i^n) = o(n^\alpha).
\]

Assumption 2 For some \(\alpha_0 > 0 \), \(n^{(1-\alpha_0)}R(\nu^n) \to \infty \) for every \(T^n \) and corresponding \(\nu^n \).

Theorem 1 Under Assumptions 1 and 2, for every sequence \(T^n \),

\[
R(I, \nu^n) = E_{\nu^n}||\Delta(Z) - \nu^n||_2^2 = (1 + o(1))nR(\nu^n) \tag{4}
\]

As explained in the appendix, the procedure \(\Delta \) in Brown and Greenshtein requires a bandwidth \(h = h_n \), which approaches slowly to zero. The rate that implies the result in Theorem (4) is \(h_n \sqrt{\log(n)} \to \infty \).

Given \(Y_i \sim N(\mu_i, 1) \), and a transformation \(T, T \in \{T\} \). Let \(Z_i \) be the \(i \)th coordinate of \(Z = T(Y) \). The last theorem, and equations (1) and (3) suggest the following estimator \(\hat{R}(T, \mu) \) for \(R(T, \mu) \),

\[
\hat{R}(T, \mu) = n - \sum \left(\frac{f'_\nu(Z_i)}{f_\nu(Z_i)} \right)^2, \tag{5}
\]

where the density \(f_\nu \) and its derivative are estimated, for example, by appropriate kernel estimates.

Only step I of our general three steps procedure should be adapted, and replaced by:

Step I: For every \(T \) and corresponding \(\nu = \nu(T) \), estimate \(R(T, \mu) \) by (5).
Remark 3 Step II could be computationally very complicated when the set \(\{T\} \) is large. In the case where \(\{T\} \) corresponds to \(\{B = X\beta : \beta \in \mathbb{R}^p\} \), a plausible choice, which is computationally convenient is to use the least-squares residuals for \(T(Y) \), as in the PEB case. This choice could be far from optimal as will be demonstrated in the following Examples 3 and 4 and in the simulations section.

Note, minimizing \(\mathcal{R}(I, \nu) \) with respect to \(\nu = \nu(T) \) is equivalent to finding the “most favorable” prior, rather than the more conventional task of finding the least favorable prior.

The above method is reasonable when the class \(\{T\} \) is not too large (in a VC dimension sense) and the overfit affect is not significant, otherwise regularization may be required. Those considerations are beyond the scope of our paper.

Choosing the least squares residuals, as mentioned in the remarks above, may be very inefficient, since it might cause “smoothing” of the empirical distribution and low values of \((f_2')^2 \), which by (3) implies high risk. This could be caused, e.g., by transforming a sparse structure into a non-sparse one, as in the following Example 3, or by transforming a structure with well separated groups into a mixed structure, as in the Example 4.

Example 3 \(Y_i \sim N(1,1), i = 1, \ldots, 2m, 2m = n \). Suppose we have only one (useless) explanatory variable \(X_i = 1 \) if \(i \leq m \) and 0 otherwise. Projecting \(Y \) on \(X \), we get \(\hat{B} \approx (1, \ldots, 1, 0, \ldots, 0)' \) and \(\nu = \mu - \hat{B} \approx (0, \ldots, 0, -1, \ldots, -1)' \), which is much worst for empirical Bayes estimation than the original \(\mu \): It is easy to see that \(n\mathcal{R}(\nu) = O(n) \), while \(n\mathcal{R}(\mu) = 0 \). From Theorem 2 we conclude that as \(n \to \infty \) the advantage of the latter (trivial) transformation compared to the least squares residuals in terms of the risk is \(o(n) \) compared to \(O(n) \).

Example 4 Let \(Y_i \sim N(\mu_i, 1) \) are independent, where \(\mu_i = \mu_1 \) for \(i = 1, \ldots, m \) and \(\mu_i = -\mu_1 \) for \(i = m + 1, \ldots, 2m = n \). Suppose \(X_i = (\mu_i + W_i) \sim N(\mu_i, 1) \), independent of \(Y_i, i = 1, \ldots, n \). Let \(\tilde{\nu} = \mu - \tilde{B} \) where \(\tilde{B} \) is the projection of \(Y \) on the (random) vector \(X = (X_1, \ldots, X_n)' \). It easy to check that \(\tilde{\nu}_i \to \mu_1/(\mu_1^2 + 1) - \mu_1^2 W_i/(\mu_1^2 + 1) \) as \(n \to \infty \). When \(\mu_1 \to \infty \), the empirical distribution of \(\tilde{\nu} \equiv \nu^n \) converges to that of a standard normal. The corresponding Bayes risk \(\mathcal{R}(\nu^n) \) converges to 0.5. Obviously the Bayes risk that corresponds to the trivial transformation, for which \(\nu^n = \mu^n \), converges to zero.

2.4 Optimality of NPEB \(\Delta \).

Until this point the treatment was for a concrete procedure \(\Delta \) and a class \(\{T\} \) of transformations. The purpose of this section is to advocate the choice of a non-parametric empirical Bayes \(\Delta \), which is denoted \(\Delta_{NP} \).

However, as noted, the optimization step (Step II) in the non-parametric approach may be computationally intensive, so such dominance result might not be enough to persuade that the non-parametric approach might be a good alternative to the parametric approach and to the Fay Herriot procedure. In Theorem 2 below we show that for every two sequences
\(\mu^n \) and \(T^n \), the sequence of estimators, that is obtained by coupling \(T^n \) with \(\Delta_{NP} \), asymptotically dominates the sequence which is obtained when coupling the same \(T^n \) with any other sequence of permutation invariant procedures \(\Delta^n \).

Given a procedure \(\Delta \), a transformation \(T \), and a mean vector \(\mu \), the corresponding risk is denoted for simplicity as \(R(\Delta, T, \mu) \equiv R(\Delta^n(T, \mu)) \) as before; for the case of nonparametric EB procedure \(\Delta_{NP} \), the corresponding risk is denoted \(R_{NP}(T, \mu) \). Similarly to the previous sub-section our asymptotic analysis is of a triangular array setup.

Theorem 2 Let \(\mu^n, \Delta^n \) and \(T^n \) be arbitrary sequences. Assume that for each \(n \) the procedure \(\Delta_n \) is simple symmetric. Further assume Assumptions 1, 2. Then:

\[
\limsup R_{NP}(T^n, \mu^n) \leq 1.
\]

Proof: Follows from Brown and Greenshtein (2009) and Theorem 1. Note that, the risk of the optimal simple symmetric procedure equals \(nR(\nu) \).

Conjecture: It seems that in Theorem 2, the condition that \(\Delta_n \) are simple symmetric for every \(n \), may be replaced by the weaker condition, that \(\Delta_n \) are permutation invariant for every \(n \). This should follow by an equivalence result in the spirit of Greenshtein and Ritov (2009), though stronger. Note, the equivalence result in Greenshtein and Ritov (2009) would suffice under the assumption that \(\max_i(\nu^n_i) - \min_i(\nu^n_i) = O(1) \); however, Assumption 1 allows a higher order.

2.5 Remark

The following remark is for the case in which we are mainly interested, where \{\(T \)\} corresponds to \{\(B = X\beta \)\}. Denote \(B = (B_1, \ldots, B_n)' \). In the application we have in mind the set \{\(T \)\} may be random since \(X_{ij} \) could be random. When the random set of transformations is independent of \(Y \), our above treatment applies by conditioning on the explanatory variables. We will be interested in situations where the random set \{\(T \)\} may depend on \(Y \), however we will require that \(Y_i \) is independent of \(X_{i1}, \ldots, X_{ip} \) for each \(i \). Then the conditional distribution of \(Z_i \) conditional on \(X_{i1}, \ldots, X_{ip} \) is \(N(\nu_i, 1) \), where \((\nu_1, \ldots, \nu_n)' = \nu = A\mu - B \) as before. When the dependence of \(Y_i \) on \(X_{j1}, \ldots, X_{jp}, j \neq i \) is not too heavy, a natural goal is still to try to approximate the best decision function for estimating \(\nu_i \) among the decision functions which are simple symmetric with respect to \(Z_1, \ldots, Z_n \). The conditional marginal distribution of \(Z_i, i = 1, \ldots, n \) is still \(N(\nu_i, 1) \) (i.e., the conditional distribution of \(Z_i = Y_i - B_i \) conditional upon \((X_{i1}, \ldots, X_{ip}) \)); however, we may not treat them as independent observations. Thus, the rates of estimating \(f_\nu \) and its derivative may become slower, and for heavy dependence, Theorems 1 and 2 might not hold. Similarly, rates of estimation of \(\tau^2_n \) in order to apply the PEB procedure, could be slow. However, when the dependence is not “too heavy” we may expect Theorems 1 and 2 to hold under the assumption that \(Y_i \) is independent of \(X_{i1}, \ldots, X_{ip} \) for each \(i \).
3 Simulation

3.1 Preliminaries

The city of Tel Aviv is divided into 161 small areas called “statistical areas”, each area belongs to a sub-quarter that includes about four additional statistical areas. In the recent Israeli census the following proportion p_i of people who are registered in area i among those who live in area i, $i = 1, \ldots, 161$, were of interest as part of the process of estimating the population in each statistical area. The estimated p_i, $i = 1, \ldots, n$ are used in order to adjust the administrative-registration counts and get population estimates for each area. We will not elaborate on it. In our simulation we use as p_1, \ldots, p_n their value as estimated in the recent census (where about 20% of the population was sampled). The mean of p_i, $i = 1, \ldots, 161$, is 0.75 and their standard deviation is 0.13, their histogram is roughly bell shaped.

We will present a simulation study in which p_1, \ldots, p_n are estimated based on samples of size m_i and corresponding simulated independent $Y'_i, Y'_i \sim B(m_i, p_i)$. Here Y'_i is the number of people in the sample from area i, which are registered to area i.

In addition we will simulate covariates. We will simulate temporal variables that correspond to historical data from each area i, and spatial covariates, that correspond to samples from the neighboring areas of each area i. In the following we will explore simulations and scenarios for the cases of: only temporal covariates, only spatial covariates, and both temporal and spatial covariates. We will compare the performance of PEB, NPEB and other methods. In all the analyzed situations, we will simulate binomial observations with sample size $m_i \equiv m$, for $m = 25, 50, 100$.

In order to reduce this setup to the above normal case, we apply an arcsin transformation on our binomial observations Y_i, $i = 1, \ldots, n$, as in Brown (2008). Specifically, let

$$Y_i = \sqrt{4m} \arcsin \left(\sqrt{\frac{Y_i + 0.25}{m + 0.5}} \right). \quad (6)$$

Then, Y_i are distributed approximately as $N(\sqrt{4m} \arcsin(\sqrt{p_i}), 1)$. We estimate $\mu_i = E(Y_i)$, by $\hat{\mu}_i$, $i = 1, \ldots, n$, as explained in sub-sections 2.3 and 2.3, and then let the estimate of p_i, $i = 1, \ldots, 161$ equal,

$$\hat{p}_i = (\sin(\frac{\hat{\mu}_i}{\sqrt{4m}}))^2. \quad (7)$$

Let $p = (p_1, \ldots, p_n)$ and $\hat{p} = (\hat{p}_1, \ldots, \hat{p}_n))$. We evaluate the performance of an estimator according to the risk

$$E_p ||\hat{p} - p||_2^2.$$

The risk is approximated through 1000 simulations for each entry in the tables in the sequel. A different parametric EB approach for estimating proportions in small areas, that involves a logistic regression model, may be found in Farell, et.al.
3.2 Temporal Covariates

We introduce now simulated scenarios with only Temporal covariates. We think of a process
where each year a sample of size m is taken from each area. Suppose we use the records
of the previous three years as covariates. Let \tilde{T}_i be the number of people among the $3m$
that were sampled in the previous three years from area i, which were registered to the
area. Although \tilde{T}_i might be better modeled as a binomial mixture, we will model \tilde{T}_i as
$B(3m, p_{it})$ for simplicity. In order to (hopefully) have a linear relation between the response
and explanatory variable, we define our temporal covariates as:

$$T_i = \sqrt{4m} \arcsin\left(\sqrt{\frac{\tilde{T}_i + 0.25}{3m + 0.5}} \right).$$

(8)

Note, if there is hardly any change from the previous three years to the current year in area
i, we will have $p_i \approx p_{it}$ and $E(T_i) \approx E(Y_i)$.

In the following we will simulate two scenarios. One scenario is of no-change where
$p_{it} = p_i, i = 1, \ldots, 161$. The other scenario is of a few abrupt changes; specifically, $p_i =
17, \ldots, 161$, however $p_{it} = 0.3 < p_i$ for $i = 1, \ldots, 16$. Such abrupt changes could
occur in areas that went in previous years through a lot of building, internal immigration
and other changes.

Since the empirical distribution of $E(Y_i)$ is roughly bell-shaped it is expected that the
PEB method will work well in the no-change scenario. Under the few abrupt changes, an
advantage of the NPEB procedure will be observed.

As mentioned in Section 2, the optimization step of the NPEB procedure is difficult.
We will try two candidate transformations $Y - B^i, i = 1, 2$, coupled with the NPEB,
the corresponding methods are denoted NPEB1 and NPEB2. NPEB1 corresponds to the
least-squares/Fay-Herriot transformation, while NPEB2 corresponds to the transformation
$Z_i = Y_i - T_i$ (i.e., $B^2 = (T_1, \ldots, T_n)'$). The later transformation, although still sub-
optimal when coupled with a NPEB Δ, could occasionally perform better than the former,
as also indicated by Examples 3 and 4. In addition to comparing the risks of the PEB and
NPEBi, $i = 1, 2$ methods, we will also compare the the risk of the naive estimator, and of
the regression estimator. The regression estimator estimates $\hat{\mu}_i$ through the least squares
predictor (i.e., $\hat{\mu} = X\hat{\beta}$), however it does not apply an additional PEB or NPEB stage. The
Naive estimator simply estimates p_i by the corresponding sample proportion.

The no-change scenario is presented in Table 1. Each entry is based on 1000 simulated
realizations. Under no-change the temporal covariate is very helpful, and even the regression-
estimate, i.e. least squares linear predictor is doing very well. Over all, the Naive estimator is
the worst, NPEB1, NPEB2 and Regression are about the same, while the PEB is moderately
better than the other methods.

Next we consider the scenario of a few abrupt changes. In this scenario the regression by
itself is performing the worst, however an additional EB step is helpful. Here the NPEB2
procedure is the best, see Table 2.
Table 1:

	Naive	Reg	NPEB1	NPEB2	PEB
$m = 25$	1.12	0.33	0.35	0.37	0.27
$m = 50$	0.56	0.17	0.18	0.18	0.14
$m = 100$	0.28	0.092	0.093	0.093	0.073

Table 2:

	Naive	Reg	NPEB1	NPEB2	PEB
$m = 25$	1.12	1.66	0.75	0.49	0.68
$m = 50$	0.56	1.64	0.46	0.22	0.42
$m = 100$	0.28	1.62	0.26	0.11	0.24
Table 3:

	Naive	Reg	NPEB1	NPEB2	PEB
$m = 25$	1.12	1.41	0.72	0.75	0.64
$m = 50$	0.56	1.34	0.44	0.44	0.40
$m = 100$	0.28	1.31	0.26	0.28	0.23

3.3 Spatial Covariates

In this section we simulate a scenario with spatial covariates. Tel-Aviv is divided into sub-quarters, where a few statistical areas define a sub-quarter. Each sub-quarter is defined by about 5 statistical areas. For every $i = 1, \ldots, 161$, we define the neighborhood of area i'', as all the statistical areas other than area i', that belong to the same sub-quarter as area i.

Based on the census we have good estimates for p_{is}—the proportion of people living in the neighborhood of area i, who are registered to their areas. Those estimates are treated as the “real” values in our simulations. The correlation between p_i and p_{is}, $i = 1, \ldots, 161$ is 0.62.

For simplicity we will assume that for each i, the size of the sample from the neighborhood of area i is $4m$. Let \tilde{S}_i be the number of people sampled from the neighborhood of i, who are registered to their area. Although \tilde{S}_i might be better modeled as a binomial mixture, we will model \tilde{S}_i as $\tilde{S}_i \sim B(4m, p_{is})$ for simplicity. As in the case of Temporal covariates we define the Spatial covariate for area i as:

$$S_i = \sqrt{4m \arcsin\left(\sqrt{\frac{\tilde{T}_i + 0.25}{4m + 0.5}}]\right). \quad (9)$$

As in the temporal case we will consider two NPEB estimates, corresponding to the projection/Fay-Herriot and to the $Z_i = Y_i - S_i$ transformations. The results of our simulations are summarized in Table 3. The advantage of the EB procedures is more noticeable for small $m = 25$. The explanation is the following. Since the temporal covariate is not very strong, ν—the mean of the transformed variables is not too sparse. When m is large, under the scale which is induced by the variance of Z_i, the points ν_i, $i = 1, \ldots, n$, may be viewed as isolated (i.e., extremely non sparse) and the smoothing of the EB is hardly effective. Hence the EB methods behave roughly like the Naive estimator.

One could wonder whether the spatial covariates are helpful at all, for the non parametric empirical Bayes, i.e., may be it is better not to transform the data at all and to apply Δ_{NP} on the original data taking $T = I$ and $\nu = \mu$. However this option is slightly worst than the above ones. The simulated risks that correspond to $m = 25, 50, 100$ are 0.84 , 0.5 and 0.28.
Table 4:

	Naive	Reg	NPEB1	NPEB2	NPEB3	NPEB4	PEB
$m = 25$	1.12	1.13	0.65	0.49	0.54	0.55	0.58
$m = 50$	0.56	1.06	0.4	0.22	0.28	0.38	0.37
$m = 100$	0.28	1.03	0.24	0.11	0.15	0.22	0.22

3.4 Spatial and Temporal Covariates.

In this sub-section we study the performances of our estimators when both the temporal and spatial variables are introduced. As before we will apply the projection transformation for the NPEB estimator. However, we will also try the transformations $Z_i = Y_i - (\alpha S_i + (1 - \alpha) T_i)$, for $\alpha = 0, 0.3, 0.6$. The corresponding estimators are denoted: NPEB1 (for the projection), NPEB2, NPEB3 and NPEB4 correspondingly. For the temporal covariates we simulate the scenario of 16 abrupt changes, the spatial covariates are as before. As may be expected, since the spatial covariate is weak relative to the temporal, accounting for it causes extra unnecessary smoothing. For the non-parametric EB procedure, indeed NPEB2 that corresponds to $\alpha = 0$ has the best performance, which is also the optimal among all the seven methods.

4 Appendix

NPEB procedure. We will follow the approach of Brown and Greenshtein (2009), see that paper for further details.

Assume $Z_i \sim N(\nu_i, \sigma^2)$, $i = 1, \ldots, n$, where $\nu_i \sim G$.

Let

$$f(z) = \int \frac{1}{\sigma} \varphi \left(\frac{z - \nu}{\sigma} \right) dG(\nu).$$

It may be shown that the normal Bayes procedure denoted δ^G_N, satisfies:

$$\delta^G_N(z) = z + \sigma^2 \frac{f'(z)}{f(z)}.$$ \hspace{1cm} (10)

The procedure studied in Brown and Greenshtein (2009), involves an estimation of δ^G_N, by replacing f and f' in (10) by their kernel estimators which are derived through a normal kernel with bandwidth h. Denote the kernel estimates by \hat{f}_h and \hat{f}'_h we obtain the decision
function, \((Z_1, \ldots, Z_n) \times z \mapsto R:\)

\[
\delta_{N,h}(z) = z + \sigma^2 \frac{\hat{f}'_h(z)}{\hat{f}_h(z)}.
\]

(11)

A suitable (straightforward) truncation is applied when estimating the corresponding mean of points \(Z_i\) for which \(\hat{f}(Z_i)\) is too close to zero and consequently \(|\delta_{N,h}(Z_i) - Z_i| > 2 \log(n)\). We did not apply such truncation in our simulations in this paper. The default choice for the bandwidth \(h \equiv h_n\), suggested by Brown and Greenshtein is \(1/\sqrt{\log(n)}\). See also, a cross-validation method for choosing \(h\), suggested by Brown, et.al., (2010), together with some suggested improvements of the above procedure. In our numerical study, \(n = 161\) and we chose \(h = 0.4\). The procedure is not too sensitive to the choice of \(h\).

References

Bickel, P. J. and Collins, J.R. (1983). Minimizing Fisher information over mixtures of distributions. *Sankhya* Vol 45, No. 1, p 1-19.

Brown, L. D. (2008). In-Season Prediction of Bating Averages: A field test of Simple Empirical Bayes and Bayes Methodologies. *Ann. of App. Stat.* 2 113-152.

Brown, L.D. and Greenshtein, E. (2009). Non parametric empirical Bayes and compound decision approaches to estimation of high dimensional vector of normal means. *Ann. Stat.* 37, No 4, 1685-1704.

Brown, L.D, Greenshtein, E. and Ritov, Y. (2010). The Poisson compound decision problem revisited. Manuscript.

Chen, S.S, Donoho, D.L., Saunders, M. A (2001). Atomic decomposition by basis pursuit. *SIAM Rev.* Vol 43, Issue 1, 129-159.

Copas, J.B. (1969). Compound decisions and empirical Bayes (with discussion). *JRSSB* 31 397-425.

Donoho, D.L. and Johnstone, I.M (1994). Ideal spatial adaptation by wavelet shrinkage. *Biometrika* 81 No. 3, 425-455.

Efron, B. and Morris, C. (1973). Stein’s estimation rule and its competitors- an Empirical Bayes approach. *JASA* 68 117-130.

Efron, B. (2003). Robbins, Empirical Bayes, and Microarrays (invited paper). *Ann.Stat* 31, No. 2, 364-378.

Fay, R.E. and Herriot, R. (1979). Estimates of income for small places: An application of James-Stein procedure to census data. *JASA*, 74, No. 366, 269-277.
Farrell, P.J., MacGibbon, B., Tomberlin, T.J. (1997). Empirical Bayes estimators of small area proportions in multistage designs. Stat. Sinica 7 1065-1083.

Greenshtein, E., Park, J., Ritov, Y. (2008). Estimating the mean of high valued observations in high dimensions. Journal of Stat. theory and pract. 2 No.3, 407-418.

Greenshtein, E. and Ritov, Y. (2009). Asymptotic efficiency of simple decisions for the compound decision problem. The 3’rd Lehmann Symposium. IMS Lecture Notes Monograph Series, J.Rojo, editor.

Lindley, D.V. and Smith, A.F.M. (1972). Bayes estimates for the linear model. JRSSB 34, No.1, 1-41.

Rao, J.N.K. (2003). Small area estimation. Wiley & Sons, New Jersey.

Robbins, H. (1951). Asymptotically subminimax solutions of compound decision problems. Proc. Second Berkeley Symp. 131-148.

Robbins, H. (1955). An Empirical Bayes approach to statistics. Proc. Third Berkeley Symp. 157-164.

Robbins, H. (1964). The empirical Bayes approach to statistical decision problems. Ann.Math.Stat. 35, 1-20.

Jiang, W. and Zhang, C.-H. (2009). General maximum likelihood empirical Bayes estimation of normal means. Ann. Stat. 37, No 4, 1647-1684.

Zhang, C.-H.(2003). Compound decision theory and empirical Bayes methods.(invited paper). Ann. Stat. 31 379-390.