Running Head: Diploid vs. tetraploid R gene evolution

Research Area: Plants Interacting with Other Organisms

*For correspondence: Roger Innes, Department of Biology, Indiana University, Bloomington, IN 47405-7107
Phone: 1-812-855-2219; fax: 1-812-855-6082; email: rinnes@indiana.edu
Evolution of a Complex Disease Resistance Gene Cluster in Diploid

Phaseolus and Tetraploid *Glycine*¹

Tom Ashfield², Ashley N. Egan², Bernard E. Pfeil²,³, Nicolas W.G. Chen, Ram Podicheti,
Milind B. Ratnaparkhe⁴, Carine Ameline-Torregrosa, Roxanne Denny, Steven Cannon,
Jeff J. Doyle, Valérie Geffroy, Bruce A. Roe, M.A. Saghai Maroof, Nevin D. Young,
Roger W. Innes*

Department of Biology, Indiana University, Bloomington, Indiana 47405 (T.A., R.W.I.,
R.P.); Department of Biology, East Carolina University, Greenville, NC 27858 (A.N.E.);
L.H. Bailey Hortorium, Department of Plant Biology, Cornell University, Ithaca, New York
14853 (B.E.P., J.J.D.); Institut de Biotechnologie des Plantes, Université Paris Sud, Saclay
Plant Sciences, Orsay, France (N.W.G.C., V.G.); Department of Crop and Soil
Environmental Sciences, Virginia Tech, Blacksburg, Virginia 24061 (M.B.R., M.A.S.M.);
Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota 55108 (C.A.-
T., R.D., N.D.Y.); USDA-ARS and Department of Agronomy, Iowa State University, Ames,
Iowa 50011 (S.C.); Unité Mixte de Recherche de Génétique Végétale, Institut National de la
Recherche Scientifique, Gif-sur-Yvette, France (V.G.); Department of Chemistry and
Biochemistry, University of Oklahoma, Norman, Oklahoma 73019 (B.A.R.)
This work was supported by the National Science Foundation (NSF) Plant Genome Research Program (grant no. DBI-0321664 to R.W.I, M.A.S.M., N.D.Y., B.A.R., and J.J.D.), the National Institute of General Medical Sciences at the National Institutes of Health (grant no. R01GM046451 to R.W.I), and a grant from Genoscope/CEA-Centre National de Séquençage (V.G.). A.N.E. was supported by a National Science Foundation Systematics Award (grant number DEB–0516673).

These authors contributed equally to this work.

Present address: Dept. of Plant & Environmental Sciences, University of Gothenburg, Sweden.

Present address: Plant Genome Mapping Laboratory, University of Georgia, Athens, GA 30602

*Corresponding author; email rinnes@indiana.edu; fax 1-812-855-6082

The author responsible for distribution of materials integral to the findings presented in this article in accordance with the policy described in the Instructions for Authors (www.planphysiol.org) is: Roger Innes (rinnes@indiana.edu)

[W] The online version of this article contains Web-only data.

www.planphysiol.org/cgi/doi/#######
Abstract

We used a comparative genomics approach to investigate the evolution of a complex NB-LRR gene cluster found in soybean (Glycine max) and common bean (Phaseolus vulgaris) that is associated with several disease resistance (R) genes of known function including Rpg1b, an R gene effective against specific races of bacterial blight. Analysis of domains revealed that the N-terminal coiled-coil (CC) domain, central nucleotide binding (NB-ARC), and C-terminal leucine-rich repeat (LRR) domains have undergone distinct evolutionary paths. Sequence exchanges within the NB-ARC domain were rare. In contrast, inter-paralogue exchanges involving the CC and LRR domains were common, consistent with both of these regions co-evolving with pathogens. Residues under positive selection were over-represented within the predicted solvent-exposed face of the LRR domain, although several also were detected within the CC and NB-ARC domains. Superimposition of these latter residues onto predicted tertiary structures revealed that the majority are located on the surface, suggestive of a role in interactions with other domains or proteins. Following polyploidy in the Glycine lineage, NB-LRR genes have been preferentially lost from one of the duplicated chromosomes (homoeologues), and there has been partitioning of NB-LRR clades between the two homoeologues. The single orthologous region in Phaseolus contains approximately the same number of paralogues as found in the two Glycine homoeologues combined. We conclude that while polyploidization in Glycine has not driven a stable increase in family size for NB-LRR genes, it has generated two recombinationally isolated clusters, one of which appears to be in the process of decay.
The nucleotide binding-leucine rich repeat (NB-LRR) family of plant disease resistance genes (R) is known for both its size and its rapid evolution (Meyers et al., 2003; Leister, 2004). The products of these genes mediate detection of pathogen virulence proteins via both direct and indirect mechanisms (DeYoung and Innes, 2006; Jones and Dangl, 2006; Eitas and Dangl, 2010). NB-LRR genes can be subdivided into two classes based on their N-terminal domains, the CC class (for coiled-coils) and TIR class (for Toll, Interleukin 1 Receptor, and Resistance genes). The NB domains from both CC and TIR class genes share a strong similarity to the NB domains of the mammalian APAF1 protein and Caenorhabditis elegans CED4 protein (van der Biezen and Jones, 1998). Because of this sequence similarity, this type of NB domain is often referred to as an NB-ARC domain (for APAF1, resistance genes, and CED4).

Current models predict that the NB-ARC domain functions as a molecular switch, with the ATP-bound form representing the ‘on’ state (activating defenses) and the ADP-bound form the ‘off’ state (Takken et al., 2006). Crystal structures of the APAF1 and CED4 proteins revealed that the NB-ARC can be further subdivided into a subdomain containing the nucleotide binding pocket and two additional subdomains referred to as ARC1 and ARC2, which appear to interact with the nucleotide binding subdomain to regulate nucleotide exchange (Albrecht and Takken, 2006). This supposition is supported by the identification of autoactivating mutations in numerous plant NB-LRR genes that map to the ARC1 and ARC2 domains and which are predicted to increase the rate of nucleotide exchange by disrupting interactions between the nucleotide binding and ARC subdomains (Takken et al., 2006; van Ooijen et al., 2007).

Intramolecular interactions between NB-LRR functional domains have been demonstrated (Moffett et al., 2002; Leister et al., 2005) and progress made towards delimiting the regions involved (Rairdan 2008). However, the precise nature and role of these inter-domain contacts remains incompletely understood. The structure of the CC domain from the barley MLA R protein has recently been solved and the domain shown to form a homodimer, with dimerization being functionally important (Maekawa 2011).

It is generally assumed that the rapid evolution of R genes is driven by an evolutionary arms race between pathogens and their hosts in which changes in the repertoire of pathogen virulence proteins selects for the creation of new R gene specificities. Defining the molecular mechanisms underpinning this arms race is central to our understanding of the evolution of disease resistance, and to the development of crop plants with durable resistance.
Recombination, positive selection, and local duplications / deletions have all been shown to have important roles in R gene evolution (reviewed in Bent and Mackey, 2007).

Another mechanism impacting R gene evolution is whole genome duplication (WGD). WGD events should enable the evolution of new traits by relaxing selective pressures on gene duplicates, freeing them to evolve new functions and/or expression patterns (Lynch and Katju, 2004; Adams and Wendel, 2005). Genome duplication thus might be expected to cause an increase in R gene number and diversity. However, analyses of the

\textit{Arabidopsis thaliana} (L.) Heynh. genome, which is believed to have undergone at least two WGD events (Bowers et al., 2003), indicate that R genes were preferentially lost following polyploidy (Cannon et al., 2004; Nobuta et al., 2005), leading to retention of almost no duplicated R genes following whole genome duplication. This enhanced loss of R genes suggests there may be a fitness cost associated with R genes following duplication. In cases where genome duplication is the result of allopolyploidy (i.e., combining genomes from two different species or subspecies), fitness costs could stem in part from autoimmune-type responses in which R genes from one genome are activated in the genomic context of the other genome (Bomblies and Weigel, 2007).

We have been evaluating the impact of WGD on the evolution of a complex R gene cluster in soybean ($\textit{Glycine max}$ (L.) Merr.) (Innes et al., 2008). The genome of the ancestor of extant $\textit{Glycine}$ species, including soybean, underwent a WGD, likely as a consequence of allopolyploidy (Gill et al., 2009), and is therefore an excellent species with which to investigate the consequences of this type of event. Analysis of silent site substitution rates (Ks) between gene duplicates has been used to estimate a homoeologue divergence time of approximately 13 million years (Schlueter et al., 2004; Egan and Doyle, 2010; Schmutz et al., 2010), which thus provides a maximum age for this WGD event (Gill et al. 2009).

Prior to the release of the complete soybean genome sequence (Schmutz et al., 2010), we sequenced an approximately 1 megabase (Mb) region of soybean cultivar Williams 82 centered on the $Rpg1b$ disease resistance gene on chromosome 13 (Innes et al., 2008). This region contains numerous NB-LRR type genes, one of which encodes $Rpg1b$, a gene effective against certain races of bacterial blight ($\textit{Pseudomonas syringae}$ pv. $\textit{glycinea}$) (Ashfield et al., 2004). Also mapping to the vicinity are other R genes of known function including those effective against bacterial, viral and oomycete pathogens (Diers et al., 1992; Yu et al., 1994; Ashfield et al., 1998; Sandhu et al., 2005).

To allow us to assess the impact of polyploidy on the $Rpg1b$ region, we also sequenced the homoeologous (duplicated by polyploidy) segment on chromosome 15 (Innes
et al. 2008). This allowed us to compare the evolution of this R gene rich region in the two duplicated segments generated by polyploidy. In addition, to gain information on the likely ancestral state of this region prior to polyploidy, we sequenced the single orthologous (separated by speciation) region from common bean (*Phaseolus vulgaris* L.) (Innes et al. 2008), which diverged from *Glycine* approximately 19 million years ago (mya) (Lavin et al., 2005) and has not undergone the ≤13 mya whole genome duplication event. In common bean, this region is referred to as the Co-2 locus and contains R genes effective against diverse pathogens, including the fungus *Colletotrichum lindemuthianum* (Geffroy et al., 1998) and *P. syringae* pv. *phaseolicola* expressing AvrRpm1 (Chen et al., 2010). Finally, to allow us to assess more recent changes within the *Glycine* homoeologues, we sequenced the orthologous regions in a second *G. max* accession (PI 96983) and also in a perennial *Glycine* species, *G. tomentella* Hayata (Innes et al. 2008). The *G. max* and *G. tomentella* lineages are thought to have diverged about 6 mya (Egan and Doyle, 2010). The phylogenetic relationships among these taxa are shown in Fig. 1A.

Comparison of the *Glycine* homoeologues revealed a remarkably high retention of non-NB-LRR gene duplicates in this region following polyploidy (~77%), most of which are still expressed (Innes et al., 2008). This was interesting given that the target region in *Glycine* homoeologue 2 now resides in a percentromeric region rich in retrotransposons and displaying suppressed recombination (Innes et al., 2008; Wawrzynski et al., 2008). In contrast, although NB-LRRs have been retained in both the duplicated regions, we found evidence for partitioning of ancestral NB-LRR lineages (lineages defined by phylogenetic analysis of the NB-ARC region (van der Biezen and Jones, 1998)) between the two homoeologues in *Glycine*. Also apparent was relatively recent species / homoeologue-specific expansion of individual lineages (Innes et al., 2008).

Although we reported an initial analysis of the above genomic regions (Innes et al. 2008), we now have expanded our analysis by delving further into the evolutionary history of the NB-LRR genes in this region of the *Glycine* genome. In particular, we now ask: (1) Following polyploidy, are NB-LRRs generally lost to bring copy number back to the diploid state? (2) What do phylogenetic analyses and physical arrangements reveal about the duplication history of NB-LRR sequences in *Glycine* and *Phaseolus*? (3) How frequent is recombination among loci and which parts of the NB-LRRs are more prone to recombination? (4) Do NB-LRR genes on separate homoeologues recombine? (5) Does partitioning of NB-LRR lineages between homoeologues in *Glycine* reduce concerted
evolution of the family and therefore facilitate generation/retention of greater diversity as compared to that in a diploid ancestor? (6) Is there evidence for diversifying selection acting on specific codons of NB-LRR genes, and if so, can combining this information with modeling of R protein tertiary structure provide insights into NB-LRR protein function?

RESULTS
Different Fates of the NB-LRR Family in the Two Homoeologous Regions Derived from the Ancestral \textit{Rpg1b} Region Following Polyploidization

To better understand the evolutionary processes that have driven the divergence of the CC-NB-LRR genes (henceforth referred to simply as NB-LRR ORFs) found in the \textit{Rpg1b} region in soybean and its relatives, we first defined ten physical intervals within the \(~1\text{Mb}\) target region centered on the soybean \textit{Rpg1b} gene, and the corresponding orthologous and homoeologous regions that contained NB-LRR ORFs (s) (A–J in Fig. 1B). Each interval is defined by flanking low-copy gene(s) conserved in most/all of the homologous regions being compared.

Although NB-LRR ORFs are present in both \textit{Glycine} homoeologous regions H1 and H2, these ORFs display only limited conservation of synteny based on alignments of flanking low-copy genes (Fig. 1B and Table I). This lack of co-linearity suggests that the NB-LRR genes have undergone many deletions and/or duplications following the divergence of the homoeologous segments in the presumed allopolyploid (Gill et al., 2009)(Fig. 1B, Table I). Of the nine intervals represented in both \textit{G. max} cv. Williams82 (\textit{Gmw}) H1 and \textit{Gmw} H2, seven contain NB-LRR ORFs in H1 versus five intervals in H2. However, only four intervals contain NB-LRR ORFs in both \textit{Gmw} H1 and \textit{Gmw} H2. If duplications are at least partially responsible for this pattern, there must have also been translocations to account for the presence of homoeologue-specific NB-LRR ORF locations.

We have previously shown that, contrary to our expectations, most of the low-copy, non NB-LRR genes in this region appear to be expressed in both \textit{G. max} homoeologues, despite the fact that the target region in H2 is found in the pericentromeric region of chromosome 15 (Innes et al., 2008). To assess the expression pattern of the NB-LRR family in the pericentromeric H2 region, we used the \textit{G. max} EST-dataset to estimate what proportion of the NB-LRR genes in \textit{Gmw} H1 and \textit{Gmw} H2 are expressed (Table II; Supplemental Table S1). Unlike the low-copy genes (Innes et al., 2008), very few of the predicted NB-LRR ORFs in \textit{Gmw} H2 are expressed, with only three out of the 18 predicted
ORFs having matching ESTs (17%). This contrasts with 12 out of 15 ORFs (80%) having EST-support in Gmw H1, which is not in a pericentromeric region.

We further investigated the fate of the NB-LRR genes in Gmw H2 by partitioning the family into ORFs that appear to encode intact NB-LRR genes versus those encoding disrupted and/or truncated genes (Table II). Consistent with the EST-analysis, even though numerous NB-LRR ORFs are distributed across the target region in Gmw H2, few appear to correspond to intact, full-length genes (Table II; Supplemental Table S1). In fact, of the 18 predicted NB-LRR ORFs within Gmw H2, only four appear to encode full-length genes with no obvious deletions of key domains or motifs (22% of the total). This compares to 13 out of the 15 NB-LRR ORFs in Gmw H1 appearing to be full-length and intact (87%). There is substantial, but not complete, overlap between the sets of paralogues that appear to be intact with those having EST-support (Supplemental Table S1).

Interestingly, of the 30 predicted NB-LRR ORFs found in the single orthologous region in Phaseolus, only 12 (40%) appear to be intact (Table II). In reality, the actual number of intact NB-LRRs in Phaseolus is probably somewhat larger because gaps in the BAC contig for this species may harbor additional paralogues (two NB-LRR genes at the end of BAC contigs were not included in these totals as we could not determine whether they were intact). Given that the total number of intact NB-LRR genes in both Gmw H1 and Gmw H2 combined is 17, it is apparent that the polyploidization event in the Glycine lineage does not correlate with a large, stable increase in the number of intact NB-LRR genes derived from the ancestral Rpg1b region over that seen in Phaseolus. As described later, this observation was investigated further by assessing the relative importance of polyploidy, versus rates of local duplications and deletions, in the evolution of the NB-LRR family in Glycine and Phaseolus.

Sequence Exchanges Between Paralogues are Common within the CC and LRR Domains and Less Common in the NB-ARC

NB-LRR gene clusters are thought to undergo frequent unequal crossing over events, leading to expansion and contraction of copy number within a cluster, and likely giving rise to recombinant NB-LRR genes with novel specificities for pathogen recognition (Collins et al., 1999; McDowell and Simon, 2008). In addition, gene conversion events among NB-LRR genes may also give rise to new specificities by shuffling sub-regions of NB-LRR sequence (Dodds et al., 2001; Mondragon-Palomino and Gaut, 2005). Both unequal crossing over and gene conversion create chimeric sequences that cannot be meaningfully analyzed in a tree-
building framework, such as traditional phylogenetic analysis (Huson and Bryant, 2006). To assess the frequency of recombination among NB-LRR genes in our dataset, we aligned them using a combination of automated and manual alignment tools (see Methods), and then detected likely recombination break points using several methods implemented in Recombination Detection Program v.3.15 (Martin et al., 2005). As expected, these analyses uncovered multiple NB-LRR genes with strong evidence of recombination. Plotting the positions of the recombination breakpoints relative to the conserved domains of NB-LRR genes revealed a strong bias against recombination within the NB-ARC domain (Fig. 2), with only three of 38 (8%) defined breakpoints falling within the NB-ARC, although this stretch represents about 25% of the total sequence length. In contrast the LRR region, which is generally considered a zone of high recombination, contains 68% of the break points while only representing approximately 58% of the gene sequence. Interestingly, recombination events are also over-represented in the CC domain, which contains 24% of the breakpoints while only representing 17% of the gene. However, no defined breakpoints were detected in the first 300nt of the CC, suggesting that recombination is poorly tolerated in this region.

The paucity of recombination breakpoints within the NB-ARC domain raised the question of whether reduced DNA polymorphism in this domain might be limiting our ability to detect such events. We therefore determined the total DNA polymorphism levels in the CC, NB-ARC and LRR domains separately. Despite higher amino acid sequence conservation in the NB-ARC domain (Supplemental Table S2), compared to the CC and LRR domains, the level of nucleotide polymorphism per site (Theta) was only slightly lower in the NB-ARC domain. Overall, we identified 539 polymorphic sites in the NB-ARC domain compared to only 279 in the CC domain, indicating that our failure to detect recombination breakpoints within the NB-ARC domain was not due to a lack of polymorphism. We thus conclude that the lack of recombination breakpoints within the NB-ARC domain is real, and likely reflects functional constraints.

The length of sequence exchange events detected was highly variable, ranging from 71 nt (event 23) to 1166 nt (event 6) for events in which both breakpoints could be defined (Supplemental Table S3). It should be noted that in many cases the position of the breakpoints could not be accurately determined (indicated by asterisks in Fig. 2A), so some exchange events may be even longer. Interestingly, most of the events are confined predominantly to the CC or LRR domains with several possibly extending into the flanking 5' and 3' regions. Only one event extends completely across the NB-ARC (Fig. 2A, event 6). Also striking is the absence of events that extend from the LRRs into the NB-ARC domain.
Overall, these observations suggest that events leading to chimeric NB-ARC domains are poorly tolerated.

For a subset of the recombination events shown in Figure 2, RDP was able to identify both of the likely parent sequences and their genomic locations (Table III). In all such cases these sequences were within the same physical region (Table III). Events involving sequence transfer within *Glycine* H1, *Glycine* H2, and the single orthologous region in *Phaseolus*, were detected (9, 1 and 2 events, respectively), but no unambiguous exchanges between the *Glycine* homoeologous regions were identified (Table III; Supplemental Table S3). So while a similar number of intact NB-LRR paralogues have been maintained in the *G. max* and *Phaseolus* accessions studied, in *Glycine* the paralogues are distributed between two recombinationally isolated clusters that are free to evolve independently.

A Subset of NB-LRR Paralogues Display No Evidence of Recombination or Recent Duplications

Using the stringent criteria used to detect recombinant paralogues described here, most, but not all, paralogues were found to be recombinant in at least one of their three domains. For example, in *Gmw* H1 only two out of the 12 NB-LRR genes included in the analyses contain no detectable recombination events. Both of the non-recombinant genes (Gmw21f22_7 and Gmw221b6_15) are intact, expressed and contain NB-ARC domains that are relatively isolated in the NB-ARC phylogenetic tree (Fig. 3, described below). Their sequence divergence likely accounts for their lack of recombination with other genes in this region.

Phylogenetic Analysis Reveals Homoeologue-Specific Expansions of NB-ARC Clades

To avoid the errors introduced by chimeric sequences, we focused our phylogenetic analyses on the NB-ARC region, which displayed the lowest levels of sequence exchange. The recombination test was repeated on this region alone and any recombinant NB-LRR sequences, or sequences missing most or all of this region, were excluded, leaving 72 of 93 sequences. These 72 sequences were then subjected to Bayesian analysis to construct a phylogenetic tree (Fig. 3).

Prominent features of the resulting tree include the identification of several NB-ARC lineages that predate the *Glycine / Phaseolus* split, together with terminal clades consisting exclusively of groups of relatively similar paralogues from individual species or homoeologous regions. This pattern of recent, species-specific duplications is particularly
striking in *Phaseolus*, where all but one of the paralogues are found in three well supported clades containing sequences only from this species. Consistent with rampant species-specific local duplications, we observed only a single orthologous gene pair, even when comparing paralogues from *G. max* and *G. tomentella*, while multiple groups of likely co-orthologous genes are present (Fig. 3). Taken together, these observations suggest that a rapid turn-over (i.e., local duplications and deletions) of paralogues within each species has resulted in groups of co-orthologous genes while still preserving a limited number of ancestral NB-ARC lineages over a substantial evolutionary time period (i.e., prior to the *Phaseolus / Glycine* split).

Also striking is the apparent partitioning of ancestral NB-ARC lineages between the two *Glycine* homoeologous regions. As discussed in the section below, this partitioning of lineages between the homoeologous regions points to deletions subsequent to the polyploidization event (or more accurately, subsequent to the separation of the parental lineages as recent evidence indicates this was likely an allopolyploid event (Gill et al., 2009) eliminating the majority of NB-LRR gene duplicates generated by the whole genome duplication.

Gene and Species Tree Reconciliation Reveals Partitioning of Ancestral NB-ARC Lineages Between the *Glycine* Homoeologous Regions

To more accurately define how many loci were present in the common ancestor of *Glycine* and *Phaseolus*, we re-examined the NB-ARC phylogeny to look for putatively orthologous groups of sequences. The number of these groups indicates how many loci (at a minimum) would have been present prior to divergence of *Glycine* and *Phaseolus*, thereby providing an indication of the diversity that existed prior to this speciation event, which occurred approximately 19 mya (Lavin et al., 2005). We used the program GeneTree (Page, 1998) to reconcile the species and gene trees, while minimizing gene duplications and losses required to account for the observed data.

Using the consensus Bayesian tree (Fig. 3) as input for GeneTree, an estimate of 10 NB-ARC lineages in this genomic location in the most recent common ancestor (MRCA) of *Phaseolus* and *Glycine* was obtained (Supplemental Fig. S1). However, when weakly supported nodes were resolved in favor of fewer duplications and losses (the optimized tree), only nine loci were predicted in the MRCA of these taxa (Fig. 4).

Interestingly, only four of the nine ancestral NB-ARC lineages have been retained in *Glycine* H2, whereas seven have been retained in H1. Only two clades are represented in both
homoeologues (Fig. 4, clades e and i). The partitioning of clades between the homoeologues is even more striking when only intact paralogues are considered. Neither the single *Gmw* H1 parologue (Gmw21f22_26) found in clade e, nor the single *Gmw* H2 parologue found in clade i (GmwGap1_106) are intact, or have EST-support, so it appears that no clade has functional representatives in both homoeologues (Supplemental Table S1). Further examination of the data reveals that all four of the intact paralogues in *Gmw* H2 belong to a single clade (Table I, clade e), whereas *Gmw* H1 contains intact paralogues from six different clades (Table I, clades b, c, f, g, h and i) (Supplemental Table S1). Thus, while the ancestral clades have been partitioned between the two homoeologous regions, all nine clades have been retained in *Glycine*, seven of them represented by at least one intact parologue in the accessions studied here.

In contrast, all of the paralogues from the single orthologous region in *Phaseolus* are found within three ancestral clades (Fig. 4, Table I). However, caution must be used when interpreting this observation as our sequence coverage in *Phaseolus* is incomplete and additional clades may be represented by paralogues present in contig gaps.

As noted earlier, although sequence exchanges within the NB-ARC domain are rare, events within the CC and LRR domains are more common. We find that sequence exchanges are not restricted to transfers between paralogues that share the same NB-ARC ancestral lineage. Although two events were detected involving parental paralogues sharing the same class of NB-ARC, eight events occurred between paralogues containing NB-ARCs belonging to different lineages (Table III; Supplemental Table S3). So while several distinct lineages of NB-ARC domains have been maintained since before *Glycine* and *Phaseolus* diverged (this likely facilitated by the rarity of inter-paralogue recombination involving this domain), sequence exchanges within the CC and LRR domains are still occurring between paralogues containing different NB-ARC lineages. As a result, gene trees based on just the NB-ARC domain do not necessarily reflect the relatedness of the CC and LRR domains from the same genes.

Duplications and Deletions of NB-LRR Genes in the *Rpg1b* Region are Ongoing

The GeneTree analysis also allowed us to estimate the number of duplications and deletions that have occurred in the different orthologous and homoeologous segments derived from the ancestral *Rpg1b* region. Using the optimized tree, eight duplications of NB-LRR loci are suggested to have occurred in the *Phaseolus*+*Glycine* lineage after its divergence from the *Medicago* lineage, but before these two genera diverged, creating the nine labeled
clades shown in Figure 4. In contrast, at least 53 duplications (including both local
duplications and those resulting from polyploidy) are suggested to have occurred in total in
the *Phaseolus* and *Glycine* lineages after their divergence (Fig. 4). However, the number of
loci and therefore duplications that have occurred prior to the *Phaseolus*+*Glycine* divergence
from *Medicago* is probably underestimated due to losses that may occur without leaving any
obvious trace. Clearly duplications and deletions of NB-LRR loci have been ongoing
throughout the history of these legumes.

In all, the GeneTree analysis indicates that at least 25 duplications occurred in the *G.
max* lineage subsequent to the split from *Phaseolus*. Of these, 10 duplications were the result
of the *Glycine*-specific polyploidization event, whereas 15 were "local" duplications (i.e.,
occurred within one of the homoeologous regions examined here or in the ancestral sequence
after divergence from *Phaseolus* but prior to polyploidization) (Fig. 4). It is worth noting that
at least one of these apparent local duplications likely reflects conversion of a pre-existing
paralogue rather than a whole gene duplication, as this event (Gmw52d1_8, Fig. 2A, event 6)
spans the entire NB-ARC region. If only intact paralogues are considered, there is no
evidence that any of the nine ancestral lineages have been retained in both *G. max*
homoeologous regions following the polyplidization event (although the possibility cannot be
excluded based on analysis of only two accessions). So although polyploidization has been
responsible for ~ 40% of the NB-LRR duplication events that have occurred in the *G. max*
lineage, subsequent loss of lineages has prevented the whole genome duplication from
driving a sustained increase in family size.

Local duplications that have occurred subsequent to polyploidization are observed in
both the *Glycine* homoeologues and have occurred at a similar rate in the two locations. This
is an interesting observation as the target region in H2 is found in a pericentromeric location
known to exhibit suppressed recombination (Innes et al., 2008; Schmutz et al., 2010).
Recombination would be required for unequal exchange, one mechanism proposed to
generate local duplications in NB-LRR clusters (Leister, 2004). Considering the *G. max*
sequences alone, six duplications among H2 sequences were found (all in clade e) versus
eight duplications among H1 sequences (three each in clades c and f and two in clade i) (Fig.
4). However, as noted earlier, in contrast to the situation observed in *Glycine* H1, few of the
paralogues generated by the local duplications in H2 have remained expressed or intact
(Table II).
Interestingly, local duplication rates associated with specific NB-ARC lineages in *Phaseolus* and *Glycine* appear to have differentiated following speciation. *P. vulgaris* NB-LRR genes within the target region have duplicated at least 22 times since divergence (the actual number of duplications may be higher due to unobserved losses, and unsampled paralogues in contig gaps), while also having been lost at least six times. Excluding duplications caused by polyploidy, *G. max* NB-LRRs have duplicated only 15 times. When specific NB-ARC lineages are considered the difference is even more striking (e.g. Fig. 4, clades c and i).

In conclusion, although polyploidization accounts for a significant proportion of the NB-LRR duplications that have occurred during the evolution of the *Glycine* lineage, subsequent deletion of most the duplicated NB-LRR lineages has ensured that it has not driven a large, sustained increase in family size over that seen in *Phaseolus*. Instead, the genome duplication in *Glycine* has partitioned the ancestral NB-ARC families between two genomic locations that appear to be recombinationally isolated from one another.

Positive Selection is Acting on Predicted Solvent-exposed Residues in the CC, NB-ARC and LRR domains

From the above analyses it is clear that a rapid turnover of NB-LRR paralogues, primarily as a consequence of local duplications and deletions, is one factor driving evolution of the NB-LRR gene family in the vicinity of *Rpg1b*. To investigate further the evolutionary forces driving changes in the family, we attempted to identify what role positive selection has played.

We first investigated the NB-ARC region utilizing the large set of aligned non-recombinant sequences used to generate the Bayesian phylogeny shown in Figure 3. Sites under either negative or positive selection were identified using three different methods implemented by the DataMonkey server (Fig. 5; see Materials and Methods; SLAC p<0.05, FEL p<0.05, REL bf>50). These analyses identified 12 codons under positive selection and 92 codons under negative selection as determined by the FEL method (Fig. 5B and Supplemental Table S4, Supplemental Material online). Using the more stringent criteria of requiring support by all three methods, 5 and 71 codons were still found to be under positive and negative selection, respectively, within the NB-ARC domain (Fig. 5C).

Not surprisingly, the five codons experiencing positive selection (as defined by the more stringent criteria, Fig. 5C) are located outside the several previously defined conserved motifs (P loop, kin2, GLPL, NBS-D, MHD) (Meyers et al., 1999) characteristic of the NB-
ARC domain (Fig. 6). To gain insights into the possible functional significance of the codons under positive selection, the tertiary structure of the NB-ARC domain from a representative paralogue (Gmw52d1-8) was modeled. Interestingly, analysis of the predicted structure indicates that the majority of the sites under positive selection are located on the surface of the folded protein, consistent with a role in interactions with the CC or LRR domains, or with other proteins (Fig. 7A; Supplemental Movie S1).

To identify codons under selection within the CC and LRR domains, we partitioned the master, full-length NB-LRR ORF alignment containing the entire set of NB-LRR sequences from this study into three regions corresponding to the CC, NB-ARC, and LRR domains. The parts of the alignment corresponding to the CC and LRR domains were then screened for recombination events individually using RDP 3.44 and recombinant sequences removed. The resulting alignments were then subjected to SLAC, FEL and REL analyses to detect sites under selection. Numerous sites in both the CC and LRR domains were found to be under selection, although the overall trend was for the strength of selection, both positive and negative, to be stronger within the LRRs (Fig. 5A).

To investigate the functional significance of the sites under selection within the CC domain, the COILs program was used to screen the region for the presence of coiled-coils. The software predicted two intervals encoding coiled-coils when a consensus sequence from the N-terminal alignment was used as the input (Supplemental Fig. S2). As might be expected, several of the predicted locations for conserved hydrophobic residues within the CC heptad repeats are predicted to be under purifying (negative) selection (Fig. 6A). Such purifying selection likely reflects a requirement of the CC domain to fold into a coiled-coil structure, similar to that recently described for the CC domain of MLA10, which forms a homodimer (Maekawa et al., 2011). We thus used the Mla10 CC domain as a template to create a structural model for the Rpg1b CC domain (Fig. 7B; Supplemental Movie S2). Using this structure, we next asked whether the sites under positive selection within the CC domain preferentially localized to the surface. Intriguingly, all sites under positive selection (indicated in blue in Fig. 7B and Supplemental Movie S2) appeared to be on the surface and all map to the same face, opposite to the face occupied by the conserved EDVID motif (indicated in orange in Fig. 7B and Supplemental Movie S2). This motif has been implicated in mediating interaction between the CC and NB-ARC domain (Rairdan et al., 2008; Maekawa et al., 2011), suggesting that the sites under positive selection may mediate interaction with other proteins rather than with the NB-ARC domain.
The LRR regions of NB-LRR genes have been implicated in recognition specificity and previous studies have reported a bias for the predicted solvent-exposed residues within these regions to be under positive selection (Bittner-Eddy et al., 2000; Mondragon-Palomino et al., 2002). We therefore investigated whether positive selection may also be driving divergence within the solvent exposed faces of the NB-LRR genes from the \textit{Rpg1b} region. A consensus sequence was derived from the alignment of non-recombinant sequences corresponding to the LRR region and putative repeat units identified and aligned. As can be seen in Fig. 6C, a high percentage of the residues under positive selection within the LRR domain are found within the predicted solvent exposed face (“x” residues printed in blue within the xxLxLxx consensus).

DISCUSSION

Whole genome duplication should initially result in a doubling of gene number in a polyploid relative to its diploid progenitor(s). This is certainly true of an autopolyploid; the prediction for an allopolyploid would be the sum of the two progenitors. In this study we compared the evolution of an NB-LRR gene cluster in two homoeologous segments found in \textit{Glycine} with its evolution in the single orthologous region found in the diploid \textit{P. vulgaris}, a stand-in for the ancestor(s) of \textit{Glycine}. We found that while NB-LRRs have been retained in both \textit{Glycine} homoeologous regions, this does not result in a large stable increase in functional parologue number over that seen in \textit{P. vulgaris} (17 full-length paralogues in \textit{G. max cv. W82 H1 + H2} versus at least 12 paralogues in \textit{Phaseolus}). Instead, the polyploidy event in \textit{Glycine} most likely has resulted in the partitioning of ancestral NB-ARC lineages between two physically and recombinationally isolated clusters that are now evolving independently.

These observations are consistent with previous whole-genome studies of the NB-LRR family in \textit{A. thaliana}, cotton, rice and soybean that indicate that, at least in these species, polyploid events have not driven a stable increase in gene family size (Cannon et al., 2004; Nobuta et al., 2005; Schmutz et al., 2010; Zhang et al., 2010; Zhang et al., 2011). In fact, it appears that few duplicated NB-LRRs in \textit{Arabidopsis} have been retained in both homoeologous (duplicated) segments following the most recent genome doubling (thought to have occurred 20-40 mya (Bowers et al., 2003). Of 153 segmental duplication events found to contain NB-LRR gene(s) in at least one of the duplicated segments, only 22 (14%) of these events have NB-LRR genes retained in both homoeologous segments in \textit{Arabidopsis}, and in
only one of these did phylogenetic analyses support the hypothesis that homoeologous NB-LRR lineages were retained in both duplicated segments (Nobuta et al., 2005).

Together, these observations suggest that there is no selective advantage to maintaining a doubled number of NB-LRR genes following polyploidization, and thus whole-genome duplications are not a key mechanism determining family size. Furthermore, NB-LRR family size appears to be highly variable within a species, with the estimated gene number in soybean ranging from 501-1801 among 11 accessions analyzed (Zhang et al. 2010). Such large variation in gene content is consistent with our phylogenetic analyses that show many duplication and loss events when comparing species, and when comparing the two soybean accessions Williams 82 and PI96983. Intriguingly, there is a positive correlation between warmer climates and NB-LRR family size in both soybean and rice, suggesting that selection by pathogens may lead to rapid increases in NB-LRR number (Zhang et al. 2010).

The lack of conservation of NB-LRR genes between the Rpg1 region and its homoeologous region in soybean stands in striking contrast to the low copy genes that are interspersed throughout the Rpg1 region. We previously determined that 77% of single copy genes in the Rpg1 region have been retained in soybean following the 13 mya polyploidy event (Innes et al. 2008). The retention of these low copy genes in syntenic order between the two soybean homoeologues and Phaseolus (Figure 1) indicates that unequal crossing-over between NB-LRR clusters in the Rpg1 region has not occurred, as this would have resulted in deletion or duplication of intervening low copy genes. Despite this lack of unequal cross-over events, we detected sequence exchange between NB-LRR genes in separate clusters. We infer from this observation that gene conversion between NB-LRR genes is more readily tolerated than unequal crossovers, presumably due to a need to retain the low copy genes. It is also notable that many NB-LRR clusters have been entirely lost in homoeologue 2 (see intervals C, E, and F in Fig. 1), while synteny has been retained, suggesting that NB-LRRs can be lost by mechanisms other than unequal crossing over.

The large intraspecies variation in NB-LRR copy number also implies that in the absence of pathogen pressure there may be rapid loss of NB-LRR genes. Several lines of evidence suggest that a large increase in NB-LRR paralogue number following a polyploid event could impose a significant cost on the host plant. For example, in one landmark study, transgenic expression of the Arabidopsis thaliana RPM1 NB-LRR gene in an ecotype that normally does not express this gene resulted in a 9% decrease in seed number (Tian et al., 2003). It should be noted, however, that as A. thaliana expresses more than 150 NB-LRR
genes, this cost cannot be typical of all \(R \) genes and perhaps reflects auto-activation of \(RPM1 \) in a novel genetic background. An even more dramatic cost could result from inappropriate activation of NB-LRRs following the combination of genomes by an allopolyploid event, the likely origin of the \(Glycine \) genome (Gill et al., 2009). Supporting this hypothesis, Bomblies and Weigel (2007) observed that in 2% of \(A. \) \(thaliana \) intraspecific crosses, hybrid-necrosis was triggered in the F1 generation. In at least one instance this phenotype was shown to be dependent on an epistatic interaction between an NB-LRR gene and a second, unlinked gene. One explanation for these observations could be provided by the "Guard Model", which proposes that at least some NB-LRRs monitor/guard the plant proteins targeted by pathogen virulence factors (van der Biezen and Jones, 1998; Dangl and Jones, 2001; Innes, 2004). The NB-LRRs and the proteins they monitor presumably coevolve and it is possible that when NB-LRRs are introduced into a novel genetic background some will auto-activate in response to inappropriate alleles of the guarded proteins.

As mentioned above, our data indicate a high rate of "birth and death" of NB-LRR paralogues as the result of local duplications and deletions ("local" defined in our study as occurring within one of the \(\sim 1 \) Mb homoeologous or orthologous regions analyzed). For example, eight local duplications were identified in \(G. \) \(max \) H1 and six in H2. The duplications in \(Glycine \) H2 are especially interesting as this region resides in a pericentromeric location that is strongly suppressed for recombination and therefore unlikely to experience unequal exchange events (Innes et al., 2008; Schmutz et al., 2010). Strikingly, in \(P. \) \(vulgaris \), the rate of local duplications appears to be significantly higher than in either of the \(Glycine \) homoeologues, with 22 duplications detected within the available sequence. This increased rate of local duplications presumably reflects an increased rate of unequal crossing over that can lead to expansion of gene clusters. Consistent with this hypothesis, this NB-LRR cluster in \(P. \) \(vulgaris \) is located in a subtelomeric region, which are known to display elevated recombination rates in soybean and maize (Gore et al., 2009; Schmutz et al., 2010).

Our observations are consistent with several whole-genome studies in \(A. \) \(thaliana \) that indicate that most NB-LRR paralogues found in this species were generated by local duplications (Richly et al., 2002; Baumgarten et al., 2003; Cannon et al., 2004). For example, Cannon et al (2004) combined phylogenetic analyses with the identification of segmental duplication events to investigate the relative importance of tandem/local and "segmental" (the result of polyploidy or duplication of large chromosomal segments) duplications in the evolution of 50 large gene families in \(A. \) \(thaliana \) (Cannon et al., 2004). In all, 54 local and only six segmental duplication events were identified involving the NB-LRR family. It is
thought that the A. thaliana lineage includes at least two polyploidization events (Bowers et al. 2003) so it is clear that the vast majority of NB-LRRs duplicated by these events have subsequently been lost. From these data, the authors concluded that the rate of local duplications and losses, not polyploidy, has been the key factor in determining NB-LRR family size. Our results echo these findings for a more recent polyploidy event. Notably, our identification of numerous NB-LRR pseudogenes at the tips of the phylogenetic tree suggests that gene loss is ongoing and can occur shortly after duplication. These pseudogenes may provide some selective advantage, however, in functioning as a sequence reservoir for gene conversion events that could give rise to new specificities in nearby functional NB-LRR genes.

A second possible beneficial role for polyploid events in NB-LRR evolution could be in creating recombinationally isolated NB-LRR clusters (Baumgarten et al., 2003; Leister, 2004). Following a polyploid event, the number of NB-LRR genes/clusters will initially be increased (doubled in the case of an autopolyploid event). Subsequent deletions of the duplicated NB-LRR paralogues may then result in a return to the original NB-LRR family size. However, for the minority of clusters surviving in both duplicated segments, partitioning of the remaining paralogues between the homoeologues has the potential to distribute genes between an increased number of genomic locations (as compared to the pre-polyploid state). Providing that sequence exchanges between unlinked NB-LRR loci are rare, the duplicated loci should be free to evolve independently, potentially permitting maintenance of greater NB-LRR diversity in the genome. Furthermore, this could provide a mechanism by which R genes encoding novel recognition specificities are separated from closely related paralogues and so can be protected from disruption by the recombination events that are often common within complex R gene loci. Our observation that ancestral NB-ARC lineages from the $R_{p}g_{1}b$ cluster have been partitioned between the two homoeologues segments supports this model.

In support of the above model, we found that while interparalogue sequence exchange has occurred within each of the two Glycine homoeologous regions, no convincing inter-homoeologue events could be detected. Numerous previous studies have identified sequence exchanges between linked paralogues within NB-LRR clusters, and it has been reported that the frequency of events correlates with physical distance (negatively), sequence similarity, gene orientation and recombination rate (Mondragon-Palomino and Gaut, 2005). It is thought that such recombination may be important for shuffling accumulated sequence diversity within the cluster to facilitate the evolution of new recognition specificities. It is interesting that we observe recombination tracts in Glycine H2 paralogues, as the target region in
homoeologue 2 is located in a pericentromeric region that displays suppressed recombination (Innes et al., 2008; Schmutz et al., 2010). However, this apparent paradox can be explained by the observation that while crossovers are suppressed within pericentromeric regions, gene conversion is not (Shi et al., 2010; Talbert and Henikoff, 2010).

Although physical proximity is a key factor modulating rates of sequence exchange between NB-LRR genes, rare recombination events have been detected between paralogues found in different NB-LRR clusters (Kuang et al., 2008), and even between genes located on different chromosomes (Baumgarten et al., 2003; Kuang et al., 2005; Mondragon-Palomino and Gaut, 2005). It has been noted, however, that at least some of these apparent inter-chromosomal events could reflect recombination between linked genes prior to polyploidy and subsequent losses of parental sequences (Baumgarten et al., 2003; Kuang et al., 2005). Our failure to detect inter-homoeologue exchanges between NB-LRR paralogues in Glycine H1 and H2 could reflect the high density of retrotransposons in, and associated expansion of, Glycine H2 which might be expected to inhibit inter-homoeologue pairing (Innes et al., 2008; Wawrzynski et al., 2008; Wang and Paterson, 2011).

Significantly, we observed exchanges between paralogues that contain NB-ARC domains belonging to different ancestral lineages. This observation is in contrast to a previous report that, at least in some clusters, exchanges only occur between NB-LRRs that are highly similar in sequence, irrespective of physical proximity, permitting the independent evolution of subfamilies of NB-LRRs within a single cluster (Kuang et al., 2005). Our finding of interlineage exchange among NB-LRR genes highlights the need to exclude recombinant sequences from phylogenetic analyses as such sequences will make it impossible to construct a tree that reflects ancestral relationships. Indeed, many of the genes included in the tree shown in Fig. 3 contain recombination sites outside the NB-ARC domain, thus trees based on just the CC domain or LRR domain of this gene set would look quite different.

In addition to a rapid rate of paralogue turnover and gene conversion, we also find evidence that positive selection has helped drive evolution of the Rpg1b-associated NB-LRR cluster. Strong diversifying selection provides one possible explanation for the retention of paralogue diversity in NB-LRR clusters and has been previously implicated in NB-LRR evolution in plants and the mammalian MHC cluster (Hughes and Yeager, 1998, 1998; Mondragon-Palomino et al., 2002; Zhang et al., 2011). As has been observed for other NB-LRR proteins (Mondragon-Palomino et al. 2002; Geffroy et al. 2009; Zhang et al. 2011), many of the sites under positive selection in the Rpg1b cluster are located within the
predicted solvent exposed face of the LRR domain. These observations are consistent with the model that the solvent exposed residues interact with pathogen derived ligands or other components of the recognition complex. Evidence to support this hypothesis has been provided by structural modeling of the interaction between the flax L5 / L6 R proteins with the corresponding Avr proteins from flax rust (Dodds et al., 2006; Wang et al., 2007).

Interestingly, we also identified several sites under positive selection in the NB-ARC domain. Although similar observations have been made before (Mondragon-Palomino et al., 2002; Zhang et al., 2011), this was a somewhat surprising finding as the NB-ARC domain has not been implicated in determining recognition specificity. A possible explanation is provided by the discovery that intramolecular interactions can occur between the NB-ARC, CC and LRR domains (Moffett et al., 2002; Ade et al., 2007). Furthermore, these interactions appear to be a key factor in maintaining the R protein in an inactive state in the absence of a corresponding pathogen-dependent signal. It seems plausible that as the LRRs evolve to acquire the ability to detect new pathogen signals, the NB-ARC domain must co-evolve to maintain the required intramolecular interactions, perhaps explaining the presence of sites under positive selection in both R protein domains. Consistent with this hypothesis, domain swaps between the tomato *Mi1.1* and *Mi1.2* genes, which are 91% identical, generated an auto-active allele that triggered cell death (Hwang and Williamson, 2003). A similar finding has also been described for the potato *Rx* gene (Rairdan and Moffett, 2006). Modeling of the tertiary structure of the Rpg1b NB-ARC domain suggests that the majority of residues under positive selection are located on the surface of the folded protein where they would be available to interact with other domains (Figure 7).

We also identified several sites under positive selection within the CC domain. Mapping of these residues onto a predicted tertiary structure of an *Rpg1b* homodimer revealed that all sites were in the α_1 helix facing outward, and were on the side opposite to the conserved EDVID motif (Fig. 7B). The EDVID motif is required for interaction between the CC and NB-ARC domain in the potato Rx protein (Rairdan et al, 2008), and participates in formation of homodimers in the barley Mla10 protein (Maekawa et al., 2011). The face opposite to the EDVID domain would thus not be expected to interact with the NB-ARC domain. We speculate that this surface of the CC domain may be interacting with another host protein such as RIN4, which has been shown to interact with the CC domain of Rpg1b (Selote et al., 2010), or a downstream signalling protein. In support of the latter hypothesis, the α_1 helix of Mla10 has been shown to interact with WRKY transcription factors
(Maekawa et al., 2011; Shen et al., 2007). If this face of the CC homodimer does indeed interact with other host proteins, our finding that positive selection is occurring on this face implies that such protein:protein interactions are rapidly evolving. The Arabidopsis RIN4 protein is modified by at least three different bacterial effector proteins, and it is these modifications that appear to activate the RPM1 or RPS2 NB-LRR proteins (Axtell and Staskawicz, 2003; Chung et al. 2011). It is thus plausible that evolution of new ways to modify RIN4 by pathogens selects for changes in RIN4:CC interactions.

In summary, we propose a model for the evolution of the Rpg1b cluster in Glycine in which a relatively rapid deletion of duplicated NB-LRR paralogues followed polyploidization, but in a manner that resulted in partitioning of most of the ancestral lineages between two sister clusters. The H2 cluster became subsumed within a pericentromeric region. Low levels of unequal crossing over in this region removed a key driver of NB-LRR gene births at the same time that transposon insertions led to gene deaths; the associated accumulation of retrotransposons in H2 may have also suppressed inter-homoeologue sequence exchanges with H1. Subsequently the two sister clusters evolved independently with local duplications (deletions of paralogues, sequence exchange, and positive selection, all playing roles in the divergence of the NB-LRR family. While the cluster in Glycine H1 has retained much of the diversity found in the ancestral cluster, only a few, closely related paralogues have survived in H2. In comparison to Glycine, Phaseolus has likely lost diversity in terms of extant NB-LRR lineages in this region, possibly due to an enhanced rate of gene birth and death resulting from unequal crossover events, and frequent gene conversion, both of which will lead to homogenization of NB-LRR sequences in the absence of strong diversifying selection.

MATERIALS AND METHODS
DNA Sequence Sources

Our analyses focused on CC-NB-LRR genes localized within a 1-Megabase (Mb) genomic region around the soybean Rpg1b disease resistance gene, located in molecular linkage group F on chromosome 13 in Glycine max cultivar Williams 82 (Gmw) and the region homoeologous to it (on linkage group E / chromosome 15) produced by polyploidy within the last ~13 million years (Innes et al., 2008; Schmutz et al., 2010). These regions were compared to orthologous regions in a second soybean (G. max accession PI96983) (Gmp), in a congener, G. tomentella (diploid accession G1403) (Gtd), that shares the ≤13 mya polyploidy event with soybean, in the common bean, Phaseolus vulgaris (Andean
accession G19833) (Pva), and in the model legume *Medicago truncatula* Gaertn. (accession A17 Jemalong) (Mt). Assembly of BAC contigs, DNA sequencing, and gene identification have been described previously (Innes et al., 2008). For purposes of discussing homoeologues, we refer to the reference sequence of *G. max* Williams 82 containing *Rpg1b* and its corresponding regions in *G. max* PI96983 and *G. tomentella* as homoeologue 1 (H1) and the duplicated region that arose from the ≤13 mya polyploid event as homoeologue 2 (H2). The majority of the low-copy genes used to define the physical intervals shown in Fig. 1 have been previously analyzed phylogenetically to confirm the predicted orthologous and homoeologous relationships (Innes et al., 2008).

Expression and Gene Fragmentation Analyses

Previously identified *G. max* fgenesh-predicted open reading frames (ORFs) from *Gmw* H1 and *Gmw* H2 with significant sequence similarity to CC-NB-LRR genes (Innes et al., 2008) were compared to the *G. max* expressed sequence tag (EST) dataset maintained at NCBI, the *G. max* Transcript Assembly database at TIGR (http://plantta.jcvi.org/), and the set of predicted soybean genes (Glyma) from the soybean genome project (http://www.phytozome.net/soybean; Schmutz et al. 2010) using the BLASTN algorithm (Altschul et al., 1990). ORFs were recorded as EST-supported when matches were ≥98% nt identity over ≥100nt and the BLAST score was 1e-10 or better. Matches were further verified by querying the soybean whole genome proteome (gene set Glyma1.0) with the ESTs using BLASTX and confirming that the expected NB-LRR paralogues were the top hits. CC-NB-LRR genes were considered “intact” (full-length) when the predicted ORF was encoded by a single exon, all three major domains (CC, NB-ARC, LRR) were represented, and the P-loop, kin2, GLPL, NBSD_D and MHD motifs within the NB-ARC domain (Albrecht and Takken, 2006) were not obviously deleted.

DNA Sequence Polymorphism Analysis

We estimated polymorphism statistics for each of the CC, NB-ARC, and LRR domains using DNAsp v5 using default parameters (Librado and Rozas, 2009). We also estimated synonymous and nonsynonymous substitution rates, as well as the Ks/Ka ratio, in DNAsp v5. Most analyses in DNAsp remove columns with gaps and/or missing data. Therefore, we removed sequences from each region that included a large string of gaps or missing data.
Phylogenetic and Recombination Analyses

Multiple sequence alignments at the amino acid level were generated using Clustal X (Larkin et al., 2007) and BLAST (Altschul et al., 1997). Aligned protein sequences were used as a guide to align the corresponding DNA sequences, and alignments maximized by manual editing. Recombination among loci was assessed using several methods implemented in RDP v.3.15 (Martin et al., 2005): RDP (Martin and Rybicki, 2000), Geneconv (Padidam et al., 1999), Chimaera (Posada and Crandall, 2001) and Bootscan (Martin et al., 2005). Default parameter settings were used for each method except as follows: RDP (internal reference sequence), Bootscan (window=150, step=20, NJ trees, 200 replicates, 95% cutoff, J&N model with Ti:Tv=2, coefficient of variation=2). The maximum p-value for accepting recombination was set at 0.001 (after Bonferroni correction).

After finding a high degree of recombination in the CC and LRR domains, the alignment was trimmed to the NB-ARC domain from the P loop motif to the MHD motif (i.e., from amino acids VGMGG to MHDLL in AY452685). Recombination testing was repeated (as above) and any remaining recombined sequences were also excluded, leaving a subset of 72 out of 93 sequences.

Phylogenetic analyses were performed using MrBayes v. 3.1.2 (Ronquist and Huelsenbeck, 2003). Two runs using ten chains each were analyzed to five million generations, sampling every 10 K generations for each analysis. Trees sampled from the first four million generations were discarded as the burn in and in each case were found to have reached stability by examining the likelihood versus generation plots. Convergence between runs using the remaining 200 trees within an analysis was checked by three methods: a visual inspection of mixing of samples from each run in the aforementioned plot; that the potential scale reduction factor was at or close to one; that the average standard deviation of split frequencies was ≤ 0.01.

We explored the affect of model choice on trees produced by MrBayes using four different models: (1) HKY, (2) HKY+G, (3) GTR+I+G, (4) GTR+I+G with codons. Each analysis, except the codon model, was repeated a total of three times and trees and posterior probabilities of clades checked for consistency among analyses. Model likelihood scores (the best of three replicates) are given in Supplemental Table S5. Within each model, the three replicates did not differ in qualitative results. Supported clades (p ≥ 0.95) differed in posterior probabilities by between 0 – 0.03, although some poorly supported clades differed by more than this. Differences among models were of similar magnitude, suggesting that model fit is not critical for these data. The codon model analysis was performed only once,
because of computing restrictions, but failed to better the likelihood score of the simpler models described above and therefore was not pursued.

Gene Tree/Species Tree Reconciliation

GeneTree v.1.3.0 (Page, 1998) was used to plot the position of gene duplications and losses in the course of evolutionary history (phylogeny) and within the framework of assumed relationships of the taxa (i.e., the species tree). This program incorporates gene duplications and losses as well as speciation events for large gene families and attempts to reduce the number of events required to explain the observed data (i.e., extant genes present in the genomes of the sampled species). This program also provided an estimate of the number of NB-LRR loci present prior to the divergence of *Phaseolus* and *Glycine* approximately 19 mya (Lavin et al., 2005). We used the species tree shown in Fig. 1A. For simplicity, *Glycine max* accessions were coded as separate species, but this distinction was ignored for the counts of gene duplications within *G. max* listed in the Results. The model allowing gene duplications and losses was used.

Selection Analyses

Selection acting on individual codons within the NB-LRR genes was assessed using packages available through the DataMonkey server (http://www.datamonkey.org/) (Pond and Frost, 2005; Pond et al., 2005; Delport et al., 2010). These analyses required alignments of non-recombinant sequences. Because few of the NB-LRR genes from the *Rpg1b* region are non-recombinant across their entire ORFs, the master alignment of full-length ORFs was divided into three segments representing the CC, NB-ARC and LRR domains that were then analyzed separately.

Selection within the NB-ARC domain was assessed using the set of non-recombinant NB-ARC sequences used for the phylogenetic analyses described above. Using DataMonkey, we determined that the closely related sequence pairs W10N21_4 / P77K19_10 and W52D1_5B / P92I7_20 were non-informative and removed one sequence from each before initiating analyses using the Single Likelihood Ancestor Counting (SLAC), Fixed Effects Likelihood (FEL) and Random Effects Likelihood (REL) methods (Pond and Frost, 2005) implemented on the DataMonkey server and performed using the Bayesian tree presented in Fig. 3 and the default settings with DataMonkey selecting the optimum nucleotide substitution model.
To identify sets of non-recombinant sequences for selection analyses within the CC and LRR domains, the sections of the full-length master alignment (93 sequences) corresponding to these domains were screened for recombinant sequences using RDP v. 3.44 and the parameters described earlier (Phylogenetic and Recombinational analyses). All recombinant sequences were then removed. In this manner alignments of non-recombinant sequences containing 53 and 20 sequences were identified for the CC and LRR domains, respectively. These alignments were then used as input to MrBayes (v. 3.1.2) for generating Bayesian trees (nst=6 rates=invgamma, 1000000 generations, samplefreq 100, Nchains=4 Nruns=2). These alignments and phylogenetic trees were then used as inputs for selection analyses using the DataMonkey server as described above.

Prediction of Coiled Coils

A consensus sequence was generated from the alignment of 53 non-recombinant sequences corresponding to the CC domain (selected as described above) such that only specific amino acids present in greater than 50% of the sequences represented at a given position in the alignment were retained. This consensus was then used as input for the COILS server (http://www.ch.embnet.org/software/COILS_form.html) (Lupas et al., 1991) using the MTIDK matrix. The analysis was repeated with and without weighting (2.5 fold weighting for positions a and d of the heptad repeat) to facilitate the identification of false positives.

Comparative Modeling of the Rpg1b CC and NB-ARC Tertiary Structures

To examine the position of positively-selected sites within the NB-ARC domain in the context of tertiary structure, the Rpg1b Williams 82 allele (referred to as paralogue W52d1-8 elsewhere in this manuscript) (Ashfield et al., 2004) and APAF1 (Uniprot sequence O14727) amino acid sequences were aligned using ClustalX (Larkin et al., 2007) and the alignment trimmed to positions 108–450 in APAF1. Secondary structure was predicted for both proteins using the PSIPRED Protein Structure Prediction Server (http://bioinf.cs.ucl.ac.uk/psipred/) (Jones, 1999; Bryson et al., 2005) to help validate the alignment. The previously described structure for APAF1 (PDB code 1Z6T) (Riedl et al., 2005) was obtained from the RCSB PDB database (www.pdb.org) (Berman et al., 2000). The tertiary structure for Rpg1b was then modeled using the MODELLER software (http://www.salilab.org/modeller/) (Eswar et al., 2006) as implemented through the UCSF Chimera interface.
(http://www.cgl.ucsf.edu/chimera/) (Pettersen et al., 2004) and using APAF1 as the known structure for comparison. Structures were visualized and manipulated using UCSF Chimera. Modeling of the Rpg1b CC domain was accomplished using a similar approach, but using the known structure of the MLA10 CC domain as reference (PDB code 3QFL; Maekawa et al., 2011). The Rpg1b CC monomer structure was first modeled and the dimer structure subsequently inferred by applying the symmetry matrix present in the MLA10 PDB file. The Rpg1b and MLA CC domains display a similar pattern of secondary structures but only share 14.9% AA identity (41% similarity) over the modeled region. While the presence of conserved "EDVID" and heptad repeat regions facilitated the sequence alignment, alternative structures cannot be excluded due to ambiguities in the alignment. The structure shown was the one most similar to the MLA10 structure.

Supplemental Data

The following materials are available in the online version of this article.

Supplemental Table S1. NB-LRR genes characterized in this study.

Supplemental Table S2. Polymorphism statistics for the CC, NB-ARC, and LRR domains.

Supplemental Table S3. Recombination events.

Supplemental Table S4. Selection analysis statistics.

Supplemental Table S5. Bayesian analyses model likelihood scores, tree length (TL) variance and standard deviation of split frequencies (SD) between runs.

Supplemental Figure S1. GeneTree Analyses of the NB-ARC domain. Non-optimized tree.

Supplemental Figure S2. COILS analysis of a consensus sequence derived from the alignment of non-recombinant sequences corresponding to the CC domain.

Supplemental Movie S1. Predicted tertiary structure of the Rpg1b NB-ARC domain showing amino acids under positive selection.

ACKNOWLEDGMENTS

Computer support was provided by the Indiana University Information Technology Services Research Database Complex, the Computational Biology Service Unit from Cornell University, which is partially funded by Microsoft Corporation, and the Oklahoma University Advanced Center for Genome Technology. Molecular graphics images were produced using
the UCSF Chimera package from the Resource for Biocomputing, Visualization, and Informatics at the University of California, San Francisco (supported by NIH P41 RR001081).

LITERATURE CITED

Adams KL, Wendel JF (2005) Polyploidy and genome evolution in plants. Curr Opin Plant Biol 8: 135-141

Ade J, DeYoung BJ, Golstein C, Innes RW (2007) Indirect activation of a plant nucleotide binding site-leucine-rich repeat protein by a bacterial protease. Proc Natl Acad Sci USA 104: 2531-2536

Albrecht M, Takken FL (2006) Update on the domain architectures of NLRs and R proteins. Biochem Biophys Res Commun 339: 459-462

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. Journal of molecular biology 215: 403-410

Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl. Acids Res. 25: 3389-3402

Ashfield T, Danzer JR, Held D, Clayton K, Keim P, Saghai Maroof MA, Webb PM, Innes RW (1998) Rpg1, a soybean gene effective against races of bacterial blight, maps to a cluster of previously identified disease resistance genes. Theor. Appl. Genet. 96: 1013-1021

Ashfield T, Ong LE, Nobuta K, Schneider CM, Innes RW (2004) Convergent evolution of disease resistance gene specificity in two flowering plant families. Plant Cell 16: 309-318

Axtell MJ, Staskawicz BJ (2003) Initiation of RPS2-specified disease resistance in Arabidopsis is coupled to the AvrRpt2-directed elimination of RIN4. Cell 112: 369-377

Baumgarten A, Cannon S, Spangler R, May G (2003) Genome-level evolution of resistance genes in Arabidopsis thaliana. Genetics 165: 309-319

Bent AF, Mackey D (2007) Elicitors, effectors, and R genes: the new paradigm and a lifetime supply of questions. Annu Rev Phytopathol 45: 399-436
Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The Protein Data Bank. Nucleic acids research 28: 235-242

Bittner-Eddy PD, Crute IR, Holub EB, Beynon JL (2000) RPP13 is a simple locus in *Arabidopsis thaliana* for alleles that specify downy mildew resistance to different avirulence determinants in *Peronospora parasitica*. Plant J 21: 177-188

Bomblies K, Weigel D (2007) Hybrid necrosis: autoimmunity as a potential gene-flow barrier in plant species. Nat Rev Genet 8: 382-393

Bowers JE, Chapman BA, Rong J, Paterson AH (2003) Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature 422: 433-438

Bryson K, McGuffin LJ, Marsden RL, Ward JJ, Sodhi JS, Jones DT (2005) Protein structure prediction servers at University College London. Nucleic Acids Res 33: W36-38

Cannon SB, Mitra A, Baumgarten A, Young ND, May G (2004) The roles of segmental and tandem gene duplication in the evolution of large gene families in *Arabidopsis thaliana*. BMC Plant Biol 4: 10

Chen NW, Sevignac M, Thareau V, Magdelenat G, David P, Ashfield T, Innes RW, Geffroy V (2010) Specific resistances against *Pseudomonas syringae* effectors AvrB and AvrRpm1 have evolved differently in common bean (*Phaseolus vulgaris*), soybean (*Glycine max*), and *Arabidopsis thaliana*. New Phytol 187: 941-956

Chung EH, da Cunha L, Wu AJ, Gao Z, Cherkis K, Afzal AJ, Mackey D, Dangl JL (2011) Specific threonine phosphorylation of a host target by two unrelated type III effectors activates a host innate immune receptor in plants. Cell Host Microbe 9: 125-136

Collins N, Drake J, Ayliffe M, Sun Q, Ellis J, Hulbert S, Pryor T (1999) Molecular characterization of the maize Rp1-D rust resistance haplotype and its mutants. Plant Cell 11: 1365-1376

Dangl JL, Jones JD (2001) Plant pathogens and integrated defence responses to infection. Nature 411: 826-833

Delport W, Poon AF, Frost SD, Kosakovsky Pond SL (2010) Datamonkey 2010: a suite of phylogenetic analysis tools for evolutionary biology. Bioinformatics 26: 2455-2457

DeYoung BJ, Innes RW (2006) Plant NBS-LRR proteins in pathogen sensing and host defense. Nature Immunology 7: 1243-1249
Diers BW, Mansur L, Imsande J, Shoemaker RC (1992) Mapping phytophthora resistance loci in soybean with restriction fragment length polymorphism markers. Crop Science 32: 377-383

Dodds PN, Lawrence GJ, Catanzariti AM, Teh T, Wang CI, Ayliffe MA, Kobe B, Ellis JG (2006) Direct protein interaction underlies gene-for-gene specificity and coevolution of the flax resistance genes and flax rust avirulence genes. Proc Natl Acad Sci USA 103: 8888-8893

Dodds PN, Lawrence GJ, Ellis JG (2001) Contrasting modes of evolution acting on the complex N locus for rust resistance in flax. Plant J 27: 439-453

Egan AN, Doyle J (2010) A comparison of global, gene-specific, and relaxed clock methods in a comparative genomics framework: dating the polyploid history of soybean (Glycine max). Systematic biology 59: 534-547

Eitas TK, Dangl JL (2010) NB-LRR proteins: pairs, pieces, perception, partners, and pathways. Curr Opin Plant Biol 13: 472-477

Eswar N, Webb B, Marti-Renom MA, Madhusudhan MS, Eramian D, Shen MY, Pieper U, Sali A (2006) Comparative protein structure modeling using Modeller. Curr Protoc Bioinformatics Chapter 5: Unit 5 6

Geffroy V, Creusot F, Falquet J, Sévignac M, Adam-Blondon AF, Bannerot H, Gepts P, Dron M (1998) A family of LRR sequences in the vicinity of the Co-2 locus for anthracnose resistance in Phaseolus vulgaris and its potential use in marker-assisted selection. Theor. Appl. Genet. 96: 494-502

Geffroy V, Macadre C, David P, Pedrosa-Harand A, Sevignac M, Dauga C, Langin T (2009) Molecular analysis of a large subtelomeric nucleotide-binding-site-leucine-rich-repeat family in two representative genotypes of the major gene pools of Phaseolus vulgaris. Genetics 181:405-419

Gill N, Findley S, Walling JG, Hans C, Ma J, Doyle J, Stacey G, Jackson SA (2009) Molecular and chromosomal evidence for allopolyploidy in soybean. Plant Physiol 151: 1167-1174

Gore MA, Chia JM, Elshire RJ, Sun Q, Ersoz ES, Hurwitz BL, Peiffer JA, McMullen MD, Grills GS, Ross-Ibarra J, Ware DH, Buckler ES (2009) A first-generation haplotype map of maize. Science 326: 1115-1117

Hughes AL, Yeager M (1998) Natural selection and the evolutionary history of major histocompatibility complex loci. Front Biosci 3: d509-516
Hughes AL, Yeager M (1998) Natural selection at major histocompatibility complex loci of vertebrates. Annu Rev Genet 32: 415-435

Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23: 254-267

Hwang CF, Williamson VM (2003) Leucine-rich repeat-mediated intramolecular interactions in nematode recognition and cell death signaling by the tomato resistance protein Mi. Plant J 34: 585-593

Innes RW (2004) Guarding the goods. New insights into the central alarm system of plants. Plant Physiol 135: 695-701

Innes RW, Ameline-Torregrosa C, Ashfield T, Cannon E, Cannon SB, Chacko B, Chen NW, Couloux A, Dalwani A, Denny R, Deshpande S, Egan AN, Glover N, Hans CS, Howell S, Ilut D, Jackson S, Lai H, Mammadov J, Del Campo SM, Metcalf M, Nguyen A, O'Bleness M, Pfeil BE, Podicheti R, Ratnaparkhe MB, Samain S, Sanders I, Seguens R, Sevignac M, Sherman-Broyles S, Thareau V, Tucker DM, Walling J, Wawrzynski A, Yi J, Doyle JJ, Geoffroy V, Roe BA, Maroof MA, Young ND (2008) Differential accumulation of retroelements and diversification of NB-LRR disease resistance genes in duplicated regions following polyploidy in the ancestor of soybean. Plant Physiol 148: 1740-1759

Jones DT (1999) Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol 292: 195-202

Jones JD, Dangl JL (2006) The plant immune system. Nature 444: 323-329

Kuang H, Caldwell KS, Meyers BC, Michelmore RW (2008) Frequent sequence exchanges between homologs of RPP8 in Arabidopsis are not necessarily associated with genomic proximity. Plant J 54: 69-80

Kuang H, Wei F, Marano MR, Wirtz U, Wang X, Liu J, Shum WP, Zaborsky J, Tallon LJ, Rensink W, Lobst S, Zhang P, Tornqvist CE, Tek A, Bamberg J, Helgeson J, Fry W, You F, Luo MC, Jiang J, Robin Buell C, Baker B (2005) The R1 resistance gene cluster contains three groups of independently evolving, type I R1 homologues and shows substantial structural variation among haplotypes of Solanum demissum. Plant J 44: 37-51

Kuang H, Woo SS, Meyers BC, Nevo E, Michelmore RW (2004) Multiple genetic processes result in heterogeneous rates of evolution within the major cluster disease resistance genes in lettuce. Plant Cell 16: 2870-2894
Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947-2948

Lavin M, Herendeen PS, Wojciechowski MF (2005) Evolutionary rates analysis of *Leguminosae* implicates a rapid diversification of lineages during the tertiary. Syst Biol 54: 575-594

Leister D (2004) Tandem and segmental gene duplication and recombination in the evolution of plant disease resistance gene. Trends Genet 20: 116-122

Leister RT, Dahlbeck D, Day B, Li Y, Chesnokova O, Staskawicz BJ (2005) Molecular genetic evidence for the role of SGT1 in the intramolecular complementation of Bs2 protein activity in *Nicotiana benthamiana*. Plant Cell 17: 1268-1278

Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25: 1451-1452

Lupas A, Van Dyke M, Stock J (1991) Predicting coiled coils from protein sequences. Science 252: 1162-1164

Lynch M, Katju V (2004) The altered evolutionary trajectories of gene duplicates. Trends Genet 20: 544-549

Maekawa T, Cheng W, Spiridon LN, Toller A, Lukasik E, Saijo Y, Liu P, Shen QH, Micluta MA, Somssich IE, Takken FL, Petrescu AJ, Chai J, Schulze-Lefert P (2011) Coiled-coil domain-dependent homodimerization of intracellular barley immune receptors defines a minimal functional module for triggering cell death. Cell Host Microbe 9: 187-199

Martin D, Rybicki E (2000) RDP: detection of recombination amongst aligned sequences. Bioinformatics 16: 562-563

Martin DP, Posada D, Crandal KA, Williamson C (2005) A modified bootscan algorithm for automated identification of recombinant sequences and recombination breakpoints. AIDS Res Hum Retroviruses 21: 98-102

Martin DP, Williamson C, Posada D (2005) RDP2: recombination detection and analysis from sequence alignments. Bioinformatics 21: 260-262

McDowell JM, Simon SA (2008) Molecular diversity at the plant-pathogen interface. Dev Comp Immunol 32: 736-744

Meyers BC, Dickerman AW, Michelmore RW, Sivarmanakrishnan S, Sobral BW, Young ND (1999) Plant disease resistance genes encode members of an ancient and diverse protein family within the nucleotide-binding superfamily. Plant J 20: 317-332
Meyers BC, Kozik A, Griego A, Kuang H, Michelmore RW (2003) Genome-wide analysis of NBS-LRR-encoding genes in Arabidopsis. The Plant cell 15: 809-834

Moffett P, Farnham G, Peart J, Baulcombe DC (2002) Interaction between domains of a plant NBS-LRR protein in disease resistance-related cell death. EMBO J 21: 4511-4519

Mondragon-Palomino M, Gaut BS (2005) Gene conversion and the evolution of three leucine-rich repeat gene families in Arabidopsis thaliana. Mol Biol Evol 22: 2444-2456

Mondragon-Palomino M, Meyers BC, Michelmore RW, Gaut BS (2002) Patterns of positive selection in the complete NBS-LRR gene family of Arabidopsis thaliana. Genome Res 12: 1305-1315

Nobuta K, Ashfield T, Kim S, Innes RW (2005) Diversification of non-TIR class NB-LRR genes in relation to whole-genome duplication events in Arabidopsis. Mol Plant Microbe Interact 18: 103-109

Padidam M, Sawyer S, Fauquet CM (1999) Possible emergence of new geminiviruses by frequent recombination. Virology 265: 218-225

Page RD (1998) GeneTree: comparing gene and species phylogenies using reconciled trees. Bioinformatics 14: 819-820

Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem 25: 1605-1612

Pond SL, Frost SD (2005) Datamonkey: rapid detection of selective pressure on individual sites of codon alignments. Bioinformatics 21: 2531-2533

Pond SL, Frost SD, Muse SV (2005) HyPhy: hypothesis testing using phylogenies. Bioinformatics 21: 676-679

Pond SLK, Frost SDW (2005) Not so different after all: A comparison of methods for detecting amino acid sites under selection. Molecular biology and evolution 22: 1208-1222

Posada D, Crandall KA (2001) Evaluation of methods for detecting recombination from DNA sequences: computer simulations. Proc Natl Acad Sci U S A 98: 13757-13762

Rairdan GJ, Collier SM, Sacco MA, Baldwin TT, Boettrich T, Moffett P (2008) The coiled-coil and nucleotide binding domains of the Potato Rx disease resistance protein function in pathogen recognition and signaling. Plant Cell 20: 739-751
Rairdan GJ, Moffett P (2006) Distinct domains in the ARC region of the potato resistance protein Rx mediate LRR binding and inhibition of activation. Plant Cell 18: 2082-2093

Richly E, Kurth J, Leister D (2002) Mode of amplification and reorganization of resistance genes during recent Arabidopsis thaliana evolution. Mol Biol Evol 19: 76-84

Riedl SJ, Li W, Chao Y, Schwarzenbacher R, Shi Y (2005) Structure of the apoptotic protease-activating factor 1 bound to ADP. Nature 434: 926-933

Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572-1574

Sandhu D, Schallock KG, Rivera-Velez N, Lundeen P, Cianzio S, Bhattacharyya MK (2005) Soybean phytophthora resistance gene Rps8 maps closely to the Rps3 region. J Hered 96: 536-541

Schlueter JA, Dixon P, Granger C, Grant D, Clark L, Doyle JJ, Shoemaker RC (2004) Mining EST databases to resolve evolutionary events in major crop species. Genome 47: 868-876

Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Thelen JJ, Cheng J, Xu D, Hellsten U, May GD, Yu Y, Sakurai T, Umezawa T, Bhattacharyya MK, Sandhu D, Valliyodan B, Lindquist E, Peto M, Grant D, Shu S, Goodstein D, Barry K, Futrell-Griggs M, Abernathy B, Du J, Tian Z, Zhu L, Gill N, Joshi T, Libault M, Sethuraman A, Zhang XC, Shinozaki K, Nguyen HT, Wing RA, Cregan P, Specht J, Grimwood J, Rokhsar D, Stacey G, Shoemaker RC, Jackson SA (2010) Genome sequence of the palaeopolyploid soybean. Nature 463: 178-183

Shen QH, Saijo Y, Mauch S, Biskup C, Bieri S, Keller B, Seki H, Ulker B, Somssich IE, Schulze-Lefert P (2007) Nuclear activity of MLA immune receptors links isolate-specific and basal disease-resistance responses. Science 315: 1098-1103

Shi J, Wolf SE, Burke JM, Presting GG, Ross-Ibarra J, Dawe RK (2010) Widespread gene conversion in centromere cores. PLoS Biol 8: e1000327

Selote D, Kachroo A (2010) RPG1-B-derived resistance to AvrB-expressing Pseudomonas syringae requires RIN4-like proteins in soybean. Plant Physiol 153: 1199-1211

Takken FL, Albrecht M, Tameling WI (2006) Resistance proteins: molecular switches of plant defence. Curr Opin Plant Biol 9: 383-390

Talbert PB, Henikoff S (2010) Centromeres convert but don't cross. PLoS Biology 8: e1000326
Tian D, Traw MB, Chen JQ, Kreitman M, Bergelson J (2003) Fitness costs of R-gene-mediated resistance in Arabidopsis thaliana. Nature 423: 74-77

van der Biezen EA, Jones JDG (1998) The NB-ARC domain: a novel signalling motif shared by plant resistance gene products and regulators of cell death in animals. Curr. Biol. 8: R226-R227

van der Biezen EA, Jones JDG (1998) Plant disease-resistance proteins and the gene-for-gene concept. Trends Biochem. Sci. 23: 454-456

van Ooijen G, van den Burg HA, Cornelissen BJC, Takken FLW (2007) Structure and function of resistance proteins in solanaceous plants. Ann. Rev. Phytopath. 45: 43-72

Wang CI, Guncar G, Forwood JK, Teh T, Catanzariti AM, Lawrence GJ, Loughlin FE, Mackay JP, Schirra HJ, Anderson PA, Ellis JG, Dodds PN, Kobe B (2007) Crystal structures of flax rust avirulence proteins AvrL567-A and -D reveal details of the structural basis for flax disease resistance specificity. Plant Cell 19: 2898-2912

Wang X, Paterson AH (2011) Gene conversion in angiosperm genomes with an emphasis on genes duplicated by polyploidization. Genes 2: 1-20

Wawrzynski A, Ashfield T, Chen NW, Mammadov J, Nguyen A, Podicheti R, Cannon SB, Thareau V, Ameline-Torregrosa C, Cannon E, Chacko B, Couloux A, Dalwani A, Denny R, Deshpande S, Egan AN, Glover N, Howell S, Ilut D, Lai H, Del Campo SM, Metcalf M, O’Bleness M, Pfeil BE, Ratnaparkhe MB, Samain S, Sanders I, Segurens B, Sevignac M, Sherman-Broyles S, Tucker DM, Yi J, Doyle JJ, Geffroy V, Roe BA, Maroof MA, Young ND, Innes RW (2008) Replication of nonautonomous retroelements in soybean appears to be both recent and common. Plant Physiol 148: 1760-1771

Yu YG, Saghai Maroof MA, Buss GR, Maughan PJ, Tolin SA (1994) RFLP and microsatellite mapping of a gene for soybean mosaic virus resistance. Phytopathology 84: 60-64

Zhang M, Wu YH, Lee MK, Liu YH, Rong Y, Santos TS, Wu C, Xie F, Nelson RL, Zhang HB (2010) Numbers of genes in the NBS and RLK families vary by more than four-fold within a plant species and are regulated by multiple factors. Nucleic Acids Res 38: 6513-6525

Zhang X, Feng Y, Cheng H, Tian D, Yang S, Chen JQ (2011) Relative evolutionary rates of NBS-encoding genes revealed by soybean segmental duplication. Mol Genet Genomics 285: 79-90
Figure Legends

Figure 1. Distribution of NB-LRR genes across the homoeologous and orthologous sequences corresponding to the Rpg1b region in Glycine max (soybean). A, Species tree of the legume species included in this study. B, Alignment of predicted genes across Rpg1b homologous regions. Gray horizontal lines represent the available sequence with gaps indicated by vertical blue lines. Sequence derived from the soybean whole genome sequencing project is indicated with a horizontal green line. Vertical red rectangles positioned on the horizontal lines represent predicted CC-NB-LRR genes and vertical gray rectangles represent all other genes. Putative low-copy orthologous / homoeologous genes are linked by blue lines and where these relationships have been confirmed phylogenetically (Innes et al. 2008) a black letter is assigned to the gene set. Orthologous/homoeologous intervals containing CC-NB-LRR genes in at least one of the plants sequenced are indicated by red letters over red double-ended arrows. mya = million years ago. This figure is adapted from Innes et al. 2008.

Figure 2. Sequence exchanges between the NB-LRR paralogues are common in the CC and LRR domains while being comparatively rare within the NB-ARC. A, Positions of the 30 events detected by RDP analyses are shown. Each horizontal line represents a distinct event. One event (number 6) resulted in the transfer of the complete NB-ARC domain between paralogues. The events are drawn relative to the W52d1_8 sequence and the position in this sequence is shown on the X-axis. Asterisks indicate the ends of sequence exchanges in which the actual breakpoint position could not be determined by RDP. B, Frequency (Y-axis) of break points among all sequences plotted against nucleotide position in the alignment (X-axis). Events are supported by at least two of four methods utilized within RDP v3.15 at p < 0.001.

Figure 3. Bayesian phylogeny of NB-ARC domains derived from the Rpg1b region. Bold branches indicate posterior probabilities of 0.95 or greater. Sequences derived from G. max Williams 82 WGS scaffolds (7x draft assembly) are preceded by “GmwRF” or “GmwGap1”. The remaining sequences are BAC-derived and are labeled with the BAC name and gene number corresponding to those described in Innes et al. (2008). # indicates a G. max or P. vulgaris NB-ARC sequence from an intact NB-LRR parologue (i.e. not a psuedogene). Note
that sequences from two *G. max* accessions are included (with prefixes Gmw and Gmp) and putatively allelic pairs should not be confused with local duplications. The sequences printed in gray are derived from *Gmw*H1 but are outside the 1Mb target region.

Figure 4. Reconciled trees based on the optimized phylogeny. Squares at the nodes represent hypothesized duplication events within the evolutionary history of the sampled *R* genes. Dashed lines and gray text represent lineages that theoretically exist(ed) as a result of hypothesized duplication events but are otherwise missing due to being unsampled or through gene loss. Extant genes and taxa are color coded as in Fig. 3. H1 and H2 refer to homoeologue 1 and 2, respectively. The right-hand column provides gene names labeled with BAC name and gene number as in Innes et al. (2008).

Figure 5. Distinct patterns of selection detected in the CC, NB-ARC, and LRR domains. Graphs represent standardized dN-dS values calculated using the FEL method (Pond and Frost, 2005), plotted against the position of each codon in the alignment. The Y-axis scale is limited from -1 to 1, although some standardized dN-dS values extend beyond this range. A, Standardized dN-dS values for all codons. B, Only those codons where non-neutral selection is supported by FEL (p<0.05). C, Only those codons where non-neutral selection is supported by FEL (p<0.05), SLAC (p<0.05) and REL (BF>50) methods.

Figure 6. Sites under positive (diversifying) selection are over-represented in the predicted solvent-exposed surface of the LRRs. Residues under selection are indicated in the consensus sequences corresponding to the alignments used in the selection analysis. Sites under overall positive selection are shown in blue, those under negative selection in red. Where selection is supported by FEL (p<0.05) the colored residue is printed in normal type, when the prediction is also supported by SLAC (p<0.05) and REL (BF>50) the residue is printed in bold. A specific amino acid is shown in the consensus sequence when it is present in at least 51% of the sequences represented at that location in the alignment (gaps excluded). x indicates all other sites in the alignment. A, CC Domain. Underlined residues are predicted to form coiled-coils (probabilities of >95% and >89% for the 1st and 2nd underlined regions, respectively). The predicted position of amino acids within each CC heptad repeat is indicated with lowercase letters. B, NB-ARC Domain. Boxed residues indicate previously defined conserved motifs (from N-terminal end: P loop, kin2, GLPL, RNBS-D, MHD). C, LRR Domain. Individual leucine-rich repeats shown on separate lines. The predicted solvent-
exposed face is boxed. D, Consensus sequence for intracellular LRRs. The region predicted to form part of a solvent-exposed face is underlined.

Figure 7. Comparative modeling of the tertiary structures of the Rpg1b CC and NB-ARC domains suggest that the majority of residues under positive selection are located on the surface. A, Predicted tertiary structure of the Rpg1b NB-ARC domain modeled after the APAF-1 NB-ARC domain (PDB: 1Z6T). The NB, ARC1 and ARC2 subdomains are shown in red, yellow and purple, respectively. Previously defined conserved motifs are shown in green. B, Predicted tertiary structure of the Rpg1b CC domain homodimer modeled after the MLA10 CC domain (PDB: 3QFL). The conserved EDVID motif is shown in orange. Residues with statistical support for positive selection in the NB-ARC and CC structures are indicated in blue in both panels (dark blue and bold labels where supported by FEL, SLAC and REL; light blue and regular type when supported by at least FEL). Residue numbers correspond to the position in the full-length Rpg1b protein (Williams 82 allele).
Table 1. Distribution of NB-LRR Genes, and Ancestral NB-ARC Clades, Across the ~1Mb Rpg1b Study Region in Soybean and the Corresponding Homologous Regions.

A B C D E F G H I J	Totals[^d]:
Gm H1 CNL[^b]:	yes[^c] no[^com] no[^com] yes[^com] yes[^com] yes[^com] yes[^com] yes[^com] yes[^com]
clades[^c]:	c - - i c,f f g b,c,e c,h c b,c,e,f, g,h,i
Gm H2 CNL[^b]:	gap[^none] gap[^none] gap[^none] gap[^none] gap[^percent] gap[^percent] no[^com] gap[^percent] gap[^none]
clades[^c]:	- - - - - - d e - - d,e
Gm H2 CNL[^b]:	gap[^none] yes[^com] no[^com] yes[^com] no[^com] no[^com] yes[^com] yes[^com] yes[^com] no[^com]
clades[^c]:	- - - - - i - - - e a,e - - a,e,i

[^a]: The ten physical intervals (labeled A - J) as defined in Figure 1B.

[^b]: Presence or absence of CNL (CC-NB-LRR) genes within the physical interval.

[^c]: Identity of ancestral NB-ARC clades conserved since before the *Glycine / Phaseolus* split (as defined in Figure 4) within the physical interval.

[^d]: Sum all ancestral NB-ARC clades distributed across each homologous region.
Table II. Abundance of Intact and Expressed NB-LRR Genes in *Glycine max* (cv. Williams82) Homoeologous Regions 1 and 2, and in the Orthologous Region in *Phaseolus vulgaris*.

NB-LRR-Containing Interval^g	A	B	C	D	E	F	G	H	I	J	Totals^h:
Gm H1 - T^a	1	0	0	3	3	1	1	3	2	1	**15**
- I^b	1	0	0	2	3	1	1	2	2	1	**13 (87%)**
- EST^c	1	0	0	2	2	1	1	2	2	1	**12 (80%)**
- I/EST^d	1	0	0	2	3	1	1	2	2	1	**13 (87%)**
Pra - T^e	gap	0	5	7^{c, e}	gap	0	14^e	4^{c, e}	gap	gap	**30**
- I^b	gap	0	1	3	gap	0	7	1	gap	gap	**12 (40%)**
- EST^c	gap	0	0	0	gap	0	0	0	gap	gap	**0**
- I/EST^d	gap	0	1	3	gap	0	7	1	gap	gap	**12 (40%)**
Gm H2 - T^f	gap	1^f	0	1	0	0	2	9	5	0	**18**
- I^b	gap	0	0	0	0	0	0	2	2	0	**4 (22%)**
- EST^c	gap	0	0	0	0	0	0	2	1	0	**3 (17%)**
- I/EST^d	gap	0	0	0	0	0	0	3	2	0	**5 (28%)**

^a all NB-LRR ORFS (intact NB-LRR genes and pseudogenes) predicted by the fgenesh gene-prediction software, not counting partial NB-LRRs at the end of contigs.

^b intact NB-LRR genes (defined as containing a single exon encoding CC, NB-ARC, and LRR domains with no obvious deletions of the P loop, kin2, GLPL, NBSD, or MHD motifs).

^c corresponding EST available in database (matches greater than 98% nt identity over a minimum of 100 nt in length with the supported NB-LRR paralogue being the top BLAST hit in the soybean whole genome predicted proteome).

^d number of NB-LRR genes reported as intact and/or with EST-support.

^e actual number of NB-LRRs in the interval may be higher as there is a gap in the available sequence.

^f two NB-LRR fragments with different domains, separated by less than 2 kb, reported as a single gene.

^g the ten physical intervals (labeled A - J) as defined in Figure 1B.

^h total for entire homologous region.
Table III. Sequence Exchanges Detected Between NB-LRR ORFS.

Description	Number
Total number of recombinant sequences detected	208
Total number of independent events	31
Events in which a parental sequence is unknown	19
Events exclusively represented in *Glycine* H1	13
Events exclusively represented in *Glycine* H2	8
Events represented exclusively in *Phaseolus*	8
Events represented in both *Glycine* H1 and H2	0
Events involving exchanges within *Glycine* H1	9
Events involving exchanges within *Glycine* H2	1
Events involving exchanges within *Phaseolus*	2
Events involving exchanges between *Glycine* (max) H1 and H2	0
Events involving exchanges within the same ancestral clade	2
Events involving exchanges between different ancestral clades	8
Events involving only the CC domain	6
Events involving only the NB-ARC domain	1
Events involving only the LRR domain	18
Events involving both CC and NB-ARC	4
Events involving both NB-ARC and LRRs	0
Events involving CC, NB-ARC and LRRs	1
Figure 1. Distribution of NB-LRR genes across the homoeologous and orthologous sequences corresponding to the Rpg1b region in *Glycine max* (soybean). A, Species tree of the legume species included in this study. B, Alignment of predicted genes across Rpg1b homologous regions. Gray horizontal lines represent the available sequence with gaps indicated by vertical blue lines. Sequence derived from the soybean whole genome sequencing project is indicated with a horizontal green line. Vertical red rectangles positioned on the horizontal lines represent predicted CC-NB-LRR genes and vertical gray rectangles represent all other genes. Positive low-copy orthologous/homeologous genes are linked by blue lines and where these relationships have been confirmed phylogenetically (Innes et al. 2008) a black letter is assigned to the gene set. Orthologous/homeologous intervals containing CC-NB-LRR genes in at least one of the plants sequenced are indicated by red double-ended arrows. mya = million years ago.
Figure 2. Sequence exchanges between the NB-LRR paralogues are common in the CC and LRR domains while being comparatively rare within the NB-ARC. A, Positions of the 30 events detected by RDP analyses are shown. Each horizontal line represents a distinct event. One event (number 6) resulted in the transfer of the complete NB-ARC domain between paralogues. The events are drawn relative to the W52d1_8 sequence and the position in this sequence is shown on the X-axis. Asterisks indicate the ends of sequence exchanges in which the actual breakpoint position could not be determined by RDP. B, Frequency of breakpoints in the aligned sequences plotted against nucleotide position in the alignment (X-axis). Events were identified by at least 10 discontinuities utilized within RDP v3.15 at p < 0.001.
Figure 3. Bayesian phylogeny of NB-ARC domains derived from the Rpg1b region. Bold branches indicate posterior probabilities of 0.95 or greater. Sequences derived from G. max Williams 82 WGS scaffolds (7x draft assembly) are preceded by “GmwRF” or “GmwGap1”. The remaining sequences are BAC-derived and are labeled with the BAC name and gene number corresponding to those described in Innes et al. (2008). # indicates a G. max or P. vulgaris NB-ARC sequence from an intact NB-LRR parologue (i.e. not a pseudogene). Note that sequences from two G. max accessions are included (with prefixes Gmw and Gmp) and putatively allelic pairs should not be confused with local duplications. The sequences printed in gray are GmwH1 but are outside the 1Mb target region.

Glycine tomentella Homoeologue 1
Glycine max W82 Homoeologue 1
Glycine max PI96983 Homoeologue 1
Glycine max W82 Homoeologue 2
Glycine max PI96983 Homoeologue 2
Phaseolus vulgaris
Figure 4. Reconciled trees based on the optimized phylogeny. Squares at the nodes represent hypothesized duplication events within the evolutionary history of the sampled \(R \) genes. Dashed lines and gray text represent lineages that theoretically existed as a result of hypothesized duplication events but are otherwise missing due to being unsampled or through gene loss. Extant genes and taxa are color coded as in Fig. 3. \(\text{HI and H2 refer to homoeologue 1 and 2, respectively. The right-hand column provides gene names labeled with BAC name and gene number as in Innes et al. (2008).} \)
Figure 5. Distinct patterns of selection detected in the CC, NB-ARC, and LRR domains. Graphs represent standardized dN-dS values calculated using the FEL method (Pond and Frost, 2005), plotted against the position of each codon in the alignment. The Y-axis scale is limited from -1 to 1, although some standardized dN-dS values extend beyond this range.

A. Standardized dN-dS values for all codons.
B. Only those codons where non-neutral selection is supported by FEL (p<0.05).
C. Only those codons where non-neutral selection is supported by FEL (p<0.05), SLAC (p<0.05) and REL (BF>50) methods.
Figure 6. Sites under positive (diversifying) selection are over-represented in the predicted solvent-exposed surface of the LRRs. Residues under selection are indicated in the consensus sequences corresponding to the alignments used in the selection analysis. Sites under overall positive selection are shown in blue, those under negative selection in red. Where selection is supported by FEL (p<0.05) the colored residue is printed in normal type, when the prediction is also supported by SLAC (p<0.05) and REL (BF>50) the residue is printed in bold. A specific amino acid is shown in the consensus sequence when it is present in at least 51% of the sequences represented at that location in the alignment (gaps excluded). x indicates all other sites in the alignment. A, CC Domain. Underlined residues are predicted to form coiled-coils (probabilities of >95% and >89% for the 1st and 2nd underlined regions, respectively). The predicted position of amino acids within each CC heptad repeat is indicated with lowercase letters. B, NB-ARC Domain. Boxed residues indicate CC heptad repeats and defined conserved motifs (from N-terminal end: P loop, kinase-like, GLPL, RNBSD-M, MHD). C, C2H2 Domain. Individual leucine-rich repeats shown on separate lines. The predicted solvent-exposed face is boxed. D, Consensus sequence for intracellular LRRs. The region predicted to form part of a solvent-exposed face is underlined.

LxxLXLxxL LxxLxxLxx Cxx LxxIPxx
Predicted solvent exposed face
Figure 7. Comparative modeling of the tertiary structures of the Rpg1b CC and NB-ARC domains suggest that the majority of residues under positive selection are located on the surface. A, Predicted tertiary structure of the Rpg1b NB-ARC domain modeled after the APAF-1 NB-ARC domain (PDB: 1Z6T). The NB, ARC1 and ARC2 subdomains are shown in red, yellow and purple, respectively. Previously defined conserved motifs are shown in green. B, Predicted tertiary structure of the Rpg1b CC domain homodimer modeled after the MLA10 CC domain (PDB: 3QFL). The conserved EDVID motif is shown in orange. Residues with statistical support for positive selection in the NB-ARC and CC domains are represented in blue in both panels (dark blue and bold labels when supported by at least REL; light blue and regular type when supported by at least FEL). Residue numbers correspond to the position in the full-length Rpg1b protein (Williams 82 allele).