f(R)-gravity from Killing tensors

Andronikos Paliathanasis

Instituto de Ciencias Físicas y Matemáticas, Universidad Austral de Chile, Valdivia, Chile

E-mail: anpaliat@phys.uoa.gr

Received 10 December 2015, revised 14 January 2016
Accepted for publication 27 January 2016
Published 11 March 2016

Abstract

We consider $f(R)$-gravity in a Friedmann–Lemaître–Robertson–Walker spacetime with zero spatial curvature. We apply the Killing tensors of the minisuperspace in order to specify the functional form of $f(R)$ and for the field equations to be invariant under Lie–Bäcklund transformations, which are linear in momentum (contact symmetries). Consequently, the field equations to admit quadratic conservation laws given by Noether’s theorem. We find three new integrable $f(R)$-models, for which, with the application of the conservation laws, we reduce the field equations to a system of two first-order ordinary differential equations. For each model we study the evolution of the cosmological fluid. We find that for each integrable model the cosmological fluid has an equation of state parameter, in which there is linear behavior in terms of the scale factor which describes the Chevallier, Polarski and Linder parametric dark energy model.

Keywords: cosmology, $f(R)$-gravity, Noether symmetries, Killing tensors

1. Introduction

The source of late-time cosmic acceleration [1–5] has been attributed to an unidentified type of matter with a negative parameter in the equation of state; dark energy. The cosmological constant, Λ, leading to Λ-cosmology, is the simplest candidate for the source of dark energy. In Λ-cosmology the Universe consists of two perfect fluids, namely dust fluid (dark matter) with zero pressure, and dark energy fluid, which corresponds to the cosmological constant Λ, with parameter $w_\Lambda = -1$ in the equation of state. The terms, which correspond to the cosmological constant in the field equations, can be seen in two ways: as a cosmic fluid with constant energy density and a constant negative parameter in the equation of state, or as an additional component that follows from the modification of the Einstein–Hilbert action in general relativity. However, Λ-cosmology suffers from two major problems, fine tuning and coincidence [6–8].
In recent years other cosmological models have been introduced in order to explain the acceleration phase of the Universe. Some of them introduce a cosmic fluid into Einstein’s general relativity [9–17], while some other models modify the Einstein–Hilbert action [18–24].

In this work we are interested in \(f(R) \)-gravity in Friedmann–Lemaître–Robertson–Walker (FLRW) spacetime with zero spatial curvature. \(f(R) \)-gravity is a modified theory of gravity in which the action integral of the field equations is a function, \(f \), of the Ricci scalar, \(R \), of the underlying geometry [19] (see [20, 21]). In the case for which \(f(R) \) is a linear function, \(f(R) \)-gravity reduces to standard general relativity, with or without the term due to the cosmological constant. The functional form of \(f(R) \) is still unknown and different forms for \(f(R) \) provide us with different dynamics, i.e. evolution of the Universe. The well-known Starobinsky model, with \(f(R) = R + \alpha R^2 \), has been proposed as an inflationary model of gravity [25]. A class of viable models that describe the accelerated expansion of the Universe can be found in [26]. Other models that have been proposed in the literature can be found in [27–35] and references cited therein, while some cosmological data analysis of \(f(R) \)-models can be found in [36, 37].

The purpose of this paper is to determine the functional form of \(f(R) \) in order for the modified field equations to admit quadratic conservation laws. To perform this analysis we use the method of group invariant transformations. Specifically, the selection rule that we assume is that the field equations are invariant under a contact transformation that is defined as a one-parameter transformation in the tangent bundle of the dynamical system.

According to the well-known Noether’s theorem, the existence of a group invariant transformation in the field equations is equivalent to the existence of conservation flow. Noether’s theorem states that for every one-parameter transformation of the action integral of a Lagrangian function that transforms the action integral in such a way that the Euler–Lagrange equations are invariant, a conservation flow corresponds to the transformation. Contact transformations are important in physical science as they are related to important conservation laws such as the Runge–Lenz vector and the Lewis invariant. Contact transformations also provide the conservation law in the MICZ-Kepler problem [58, 59].

Group invariant transformations cover a range of applications in gravitational physics and cosmology. For instance, Lie point symmetries have been used for the determination of closed-form solutions in a model with charged perfect fluids in spherically symmetric spacetimes [38, 39]. On the other hand, Noether point symmetries have been introduced as a selection rule for the determination of the functional form of the potential in scalar field cosmology in [40]. Since then, that method has been applied in various cosmological models and new solutions have been found (for instance see [41–50] and references cited therein). In [51] Noether symmetries were applied in the scalar field cosmological scenario as a geometric selection rule for the determination of the functional form of the potential. In theories with minisuperspace, Noether point symmetries are generated by collineations of the minisuperspace. Collineations are the generators of one-parameter transformations that transform geometric objects under a certain rule [52]. However, the minisuperspace is defined by the cosmological model and the existence of collineations depends upon the model. Hence the requirement of the existence of Noether point symmetry in the cosmological Lagrangian is also a self-criterion because we allow the theory to select the functional form of the model. This selection rule is consistent with the geometric character of gravity. This geometric approach has been applied in various cosmological models and new integrable cosmologically viable models have arisen [53–55].

The application of Noether (point) symmetries, which are the generators of one-parameter point transformation for \(f(R) \)-cosmology in an FLRW spacetime, in which the
spacetime comprises a perfect fluid with zero pressure, has been performed before in [56]. Recently the same analysis has been performed for a general perfect fluid with a nonzero equation of state parameter [57], whereas for some locally rotational spacetimes the Noether point symmetry classification of \(f(R) \)-cosmology can be found in [60]. Some other \(f(R) \)-models with closed-form solutions can be found in [61], while the application of point transformations in \(f(R) \)-gravity in static spherically symmetric spacetimes can be found in [62, 63].

Another geometric selection rule that is based upon the group invariant transformations of the Wheeler–DeWitt equations was introduced in [64]. It was shown that the existence of Lie point symmetry for the Wheeler–DeWitt equation is equivalent to the existence of a Noetherian conservation law for the classical field equations. The main result was applied in a scalar field cosmological model with a perfect fluid for which a new integrable scalar field model was derived and it has been shown that the model provide us with a viable inflationary scenario [65].

The application of contact symmetries in cosmological studies is not new. Contact symmetries have been applied for the determination of conservation laws in various models in [41]. In [66] contact symmetries have been applied for the determination of the potential in scalar field cosmology. As in the case of point symmetries, contact symmetries (or dynamical Noether symmetries) are also a geometric selection rule because they follow from a class of collineations of the minisuperspace that are called Killing tensors. Following the method that was presented in [66], we apply the same selection rule for the determination of the unknown functional form, \(f \), in modified \(f(R) \)-cosmology in the metric formalism. The plan of this paper is as follows.

In section 2 we present the field equations in \(f(R) \)-gravity and we define our model, which is a spatially flat FLRW spacetime and contains a dust-like fluid that is not interacting with gravity in the action integral. The basic properties of the Lie–Bäcklund symmetries and Noether’s theorem for contact transformations are given in section 3. In section 4, we use the Killing tensors of the minisuperspace in order to determine the \(f(R) \)-models in which the field equations are invariant under contact transformations. For each model we give the corresponding quadratic conservation law. We find five models that admit quadratic conservation laws. Two of these were found from the application of Noether’s theorem for one-parameter point transformations.

In section 5 we apply the extra conservation laws in order to reduce the order of the dynamical system, which is defined by the field equations. For the three new integrable models we show that two of the models are supported by Lie surfaces, while the third model is supported by a Liouville surface. For each of the models we study the evolution of the equation of state parameter for the cosmological fluid, which corresponds to \(f(R) \)-gravity. Appendix A completes our results where we present the quadratic conservation laws of \(f(R) \)-gravity in a spatially nonflat FLRW spacetime. Finally in section 6, we draw our conclusions.

2. Field equations in \(f(R) \)-gravity

We consider a FLRW Universe with zero spatial curvature in which the fundamental line element is given by the following expression

\[
d s^2 = -dt^2 + a^2(t)(dx^2 + dy^2 + dz^2).
\]

(1)
The line element (1) describes an isotropic Universe and admits as Killing algebra the Killing vectors (KVs) of the three-dimensional Euclidean space, that is the $T_3 \otimes_j SO(3)$ Lie algebra consisting of the three translations and the three rotation symmetries of E^3.

For the gravitation action integral we consider that of $f(R)$-gravity, that is

$$S = \int dx^4 \sqrt{-g} \frac{1}{2k} f(R) + S_m,$$

(2)

where $S_m = \int dx^4 \sqrt{-g} L_m$ corresponds to the matter term, R is the Ricci scalar of the underlying geometry and $k = 8\pi G$. We assume that S_m describes a dust-like fluid minimally coupled to gravity.

Variation of the action integral (2) with respect to the metric leads to the following field equation [20]

$$f' R_{\mu \nu} - \frac{1}{2} f g_{\mu \nu} - (\nabla_\mu \nabla_\nu - g_{\mu \nu} \nabla^2) f' = k T_{\mu \nu},$$

(3)

where prime, $f'(R)$, denotes total differentiation with respect to R, and ∇_μ is the covariant derivative associated with the Levi–Civita connection of the underlying Riemannian space with metric tensor $g_{\mu \nu}$. Furthermore $R_{\mu \nu}$ is the Ricci tensor of $g_{\mu \nu}$ and $T_{\mu \nu}$ is the energy–momentum tensor for the matter component.

Furthermore the energy–momentum tensor, $T_{\mu \nu}$, satisfies the Bianchi identity $\nabla^\nu T_{\mu \nu} = 0$. From field equation (3) we observe that in the case for which $f(R)$ is a linear function, standard general relativity is fully recovered.

In the context of the FLRW spacetime (1), in which the Ricci scalar is

$$R = 6 \left(\frac{\dot{a}}{a} + \frac{\dot{a}^2}{a} \right),$$

(4)

and for a dust-like fluid with energy–momentum tensor $T_{\mu \nu} = \rho_m u_\mu u_\nu$, where $u_\mu = \delta_\mu^t$, is the comoving observer, $u^\mu u_\mu = -1$. Furthermore, from the Bianchi identity for the tensor, $T_{\mu \nu}$, we derive the conservation law

$$\dot{\rho}_m + 3 H \rho_m = 0,$$

(5)

the solution of which is $\rho_m = \rho_{m0} \alpha^{-3}$, where ρ_{m0} is the energy density for the dust-like fluid at the present time.

Hence from (3) we derive the following (modified) Friedmann’s equations

$$3f' H^2 = k \rho_m + \frac{f'R}{2} - f - 3H f' R,$$

(6)

and

$$2f' H + 3f' H^2 = -2H f' R - (f''R^2 + f''R) - \frac{f - Rf'}{2},$$

(7)

where $H = \dot{a}/a$ is the Hubble parameter.

Equations (6) and (7) can be written as follows

$$3 H^2 = k_{\text{eff}} (\rho_m + \rho_f),$$

(8)

1 The overdot denotes total differentiation with respect to ‘τ’.
and
\[2\dot{H} + 3H^2 = -k_{\text{eff}}\rho_f, \]
where \(k_{\text{eff}} = k(f')^{-1} \) is the effective gravitational parameter and \(\rho_f, p_f \) are the fluid components of \(f(R) \)-gravity, that is
\[\rho_f = \frac{f' R - f}{2} - 3Hf'' R \]
and
\[p_f = 2Hf'' R + (f'' R^2 + f'''' R) + \frac{f - Rf'}{2}. \]

Therefore the parameter of the equation of state (EoS) for the fluid components of \(f(R) \)-gravity, \(w_f = p_f/\rho_f \), has the following expression
\[w_f = \frac{P_f}{\rho_f} = \frac{(f - Rf') + 4Hf'' R + 2(f'' R^2 + f'''' R)}{(f - Rf') + 6Hf'' R}, \]
from where we can see that when \(f(R) = R - 2\Lambda \) expression (12) gives \(w_f = -1 \). In order for \(k_{\text{eff}} \) be a positive function, \(f' > 0 \), should hold. This is also required in order for the final attractor of the field equations to be a de Sitter point (for details see [35]). Furthermore, condition \(f' > 0 \) is necessary in order to avoid the existence of ghosts. Another important constraint that the \(f(R) \) function should satisfy is \(f'' > 0 \), for \(R \geq R_0 \), where \(R_0 \) is the Ricci scalar here, in order for the theory to be consistent with local gravity tests. On the other hand, the violation of the latter constraint introduce tachyonic instability, and a nonwell-defined post-Newtonian limit [67, 68]. Furthermore, from solar system tests we have that \(f(R) \approx R - 2\Lambda \), which means that \(f(R) \) should reduce to general relativity. Finally, if we assume that the at the late-time the model has stable de Sitter behavior then the following condition should be satisfied \(0 < \frac{R''}{f'}(r) < 1 \) at \(r = -\frac{R'}{f} = -2 \) [35].

2.1. Lagrange multiplier and minisuperspace

In contrast to general relativity, which is a second-order theory, \(f(R) \)-gravity is a fourth-order theory. This can be seen by substituting the Ricci scalar (4) into (7). Another way to derive the modified Friedmann’s equations (6), (7) and (4) is with the use of a Lagrange multiplier\(^2\) [69]. Lagrange multipliers are useful for reducing the order of the differential equations. However, at the same time the dimension of the space of the dependent variables is increased.

With the use of a Lagrange multiplier, \(\lambda \), in the gravitational action integral (2), we have
\[S = \frac{1}{2k} \int \! dx^4 \sqrt{-g} \left[f(R) - \lambda \left(R - 6 \left(\frac{\dot{a}}{a} + \left(\frac{\dot{a}}{a} \right)^2 \right) \right) \right] + \int \! dx^4 \sqrt{-g} \rho_{\text{mf}}a^{-3} \]
where we have used equation (4) and the solution of the Bianchi identity (5) for the perfect fluid. Furthermore, the condition \(\frac{\partial S}{\partial \dot{R}} = 0 \) gives \(\lambda = f'(R) \).

Hence we find that the Lagrangian of the modified Friedmann equations is
\[L(a, \dot{a}, R, \dot{R}) = 6a f' \dot{a}^2 + 6a^2 f'' \dot{a} \dot{R} + a^3 (f'R - f) + \rho_{\text{mf}}. \]

Therefore, the field equations can be seen as the Euler–Lagrange equation of (14) with respect to the variables \([a, R] \), and the first modified Friedmann equation (6) can be seen as

\(^2\) For applications of the Lagrange multipliers in high-order theories of gravity see [70–73].
the Hamiltonian constraint of the dynamical system with Lagrangian (14), that is
\[\mathcal{E} = 6a f' a^2 + 6a f'' a R - a^3 (f'R - f), \] (15)
where the constant \(\mathcal{E} \) is related to \(\rho_{a0} \) as follows \(\mathcal{E} = 2k \rho_{a0} \) or \(\mathcal{E} = 6 \Omega_m H_0^2 \). In the last expression \(\Omega_m = k \rho_{a0}/(3H_0^2) \) and \(H_0 \) is the Hubble constant.

We observe that Lagrangian (14), describes the motion of a particle in the space of variables \(\{a, R\} \), and it is in the form \(L = K + U \), where \(K \) is the kinetic energy, which defines the minisuperspace with line element
\[ds^2 = 12a f' da^2 + 6a f'' da dR, \] (16)
and \(U = a^3 (f'R - f) + \rho_{a0} \) is the effective potential.

On the other hand, field equation (3) describes the evolution of the scale factor \(a(t) \) in a fourth-order theory. The latter means that the introduction of the Lagrange multiplier, \(\lambda \), in the gravitational action integral reduced the order of the theory to that of a second-order theory, whereas in the same time the degrees of freedom increased. For an extensive discussion on the degrees of freedom in modified theories of gravity see [75].

In the following sections we discuss the application of contact transformations of differential equations. We apply, as a selection rule for the determination of the unknown function \(f(R) \), the requirement that the action integral of the dynamical system be invariant under contact transformations, consequently, quadratic conservation laws. Below we assume that \(f''(R) = 0 \), otherwise Lagrangian (14) is that of general relativity.

3. Killing tensors and Noether’s theorem

By definition a vector field \(X \) is called a Lie–Bäcklund symmetry of a second-order differential equation \(\Xi(t, x^k, \dot{x}^k) = 0 \), when \(X \) is the generator of the infinitesimal transformation [76, 77],
\[t' = t + \varepsilon \xi(t, x^k, \dot{x}^k), \]
\[x'^i = x^i + \varepsilon \eta^i(t, x^k, \dot{x}^k), \] (18)
that is \(X = \frac{\partial \xi}{\partial t} \partial_t + \frac{\partial \eta^i}{\partial t} \partial_i \), which leaves invariant the differential equation \(\Xi \), i.e. \(\Xi(t', x^{k'}, \dot{x}^{k'}) = 0 \), or \(X^{[2]}(\Xi) = 0 \), where \(X^{[2]} \) is the second prolongation of \(X \) [78].

Infinitesimal transformations of special interest are the (Lie) point transformations, i.e. \(\frac{\partial \xi}{\partial t} = \frac{\partial \eta^i}{\partial t} = 0 \), and the contact transformations in which \(\xi, \eta \) are linear functions of the first derivatives of the dependent variables. For the Lie–Bäcklund transformations (except the point transformations) it has been shown that transformation (17), (18), is equivalent to the transformation [78, 79]
\[x'^i = x^i + \varepsilon \zeta^i(t, x^k, \dot{x}^k), \] (19)
with generator \(\hat{X} = \zeta(t, x^k, \dot{x}^k) \partial_i \). Transformation (19) is called the canonical transformation of (17), (18) and \(\hat{X} \) is the canonical form of \(X \).

In this work we are interested in contact transformations for which the generator, \(\hat{X} \), has the following form

\[\text{Alternatively equation (6) can be derived from the Euler–Lagrange equation with respect to a new variable, } \mathcal{N}, \] which arises from the lapsed time \(dt = N \, dr \) [74].
\[\dot{X} = K^i_j(t, x^k) \dot{x}^i \partial_i, \]
where the second-rank tensor, \(K_{ij} \), is symmetric on the indices, i.e. \(K_{ij} = 0 \).

For differential equations that arise from a variational principle there are the two well-known Noether theorems [80]. The first theorem relates the action of the transformation (17), (18) to the action integral for the Lagrangian \(L = L(t, x^k, \dot{x}^k) \) of the differential equations, \(\Xi \), in order for the latter to be invariant. Specifically, if there exists a function \(\sigma \) such that

\[X^{[1]} L + L \dot{\xi} = \sigma, \]
then the Euler–Lagrange equations of Lagrangian \(L \) are invariant under the action of the transformation (17), (18) and the generator \(X \) is called a Noether symmetry. \(X^{[1]} \) denotes the first prolongation of \(X \).

Condition (21) is that which was originally introduced by Noether in her original paper [80]. It is incorrectly termed the Noether gauge symmetry condition [81–83]. Function \(\sigma \) is not a gauge function, but a boundary term introduced to allow for the infinitesimal changes in the value of the action integral produced by the infinitesimal change in the boundary of the domain caused by the infinitesimal transformation of the variables in the action integral.

The second Noether theorem relates the existence of Noether symmetries to the existence of conservation laws. Hence, if \(X \) is the generator of the infinitesimal transformation (17), (18) which satisfies the symmetry condition (21) for a specific function \(\sigma \), then the function

\[I = \xi \left(\frac{\partial L}{\partial \dot{x}^k} \dot{x}^k - L \right) - \eta \frac{\partial L}{\partial \ddot{x}^k} + \sigma \]
is a conservation law for the dynamical system with Lagrangian \(L \). However, for nonpoint transformations we can always apply the canonical transformation (20) and condition (21) takes the simple form

\[\dot{X}^{[1]} L = \dot{\sigma}. \]

As we discussed above, Lagrangian (14) describes an autonomous dynamical system and it is in the form

\[L(x^i, \dot{x}^j) = \frac{1}{2} \gamma_{ij} \dot{x}^i \dot{x}^j + V_{\text{eff}}(x^k), \]
where, \(\gamma_{ij} \), is the minisuperspace of the field equations with line element (16), or equivalently,

\[ds^2_{\gamma} = 12a^4 da^2 + 12a^2 d\phi^2, \]
and effective potential \(V_{\text{eff}}(x^k) = a^2 V(\phi) + \rho_{\text{eff}}, \) where now the new variable \(\phi \), is \(\phi = f'(R) \), and

\[V(\phi) = (f' R - f). \]

We remark that in the coordinates \(\{ a, \phi \} \) the Lagrangian (14), is that of a Brans–Dicke scalar field with zero Brans–Dicke parameter [20, 67], which is also called O’Hanlon massive dilaton gravity [90]. Note that equation (26) is the first-order Clairaut equation.

For the space of the dependent variables \(\{ a, \phi \} \) we have that the general form of the contact symmetry (20) has the following form
\[\ddot{X} = (K^a_{\alpha}(t, a, \phi) \dot{\alpha} + K^a_{\phi}(t, a, \phi) \dot{\phi}) \partial_a \\
+ (K^0_{\alpha}(t, a, \phi) \dot{\alpha} + K^0_{\phi}(t, a, \phi) \dot{\phi}) \partial_0. \] (27)

The contact transformations with generator (20), which are Noether symmetries\(^4\) for Lagrange functions of the form (24), have been studied previously in the literature and it has been shown that the tensor field \(K'_i \) of (20) is time-independent, and is a Killing tensor (KT) for the metric \(\gamma_{ij} \), that is \([K, \gamma]_{SN} = K_{ij,k} = 0\), where \([,]_{SN} \) denotes the Schouten–Nijenhuis Bracket\(^5\) and the following condition holds,

\[K^{\alpha}_{ij} \dot{V}_{\alpha,i} + \sigma_{i0} = 0, \] (28)

in which \(\sigma = \sigma(x^2) \), [84–86]. Furthermore, from (22) it follows that the corresponding Noether conservation law (22) is time-independent and quadratic in the momentum.

For the space (25), the vector field (27) is time-independent, that is \((K^a_{\alpha})_t = (K^a_{\phi})_t = (K^0_{\alpha})_t = 0\), and \(K_{ij} \) is a KT of the minisuperspace (25). Furthermore condition (28) gives the following system

\[K^a_{\alpha}(a \dot{V}_{\alpha,\phi}) + (3V_{\phi} - 2\phi \dot{V}_{\phi})K^a_{\phi} + a^{-2}\sigma_{0} = 0, \] (29)

\[V_{\phi}(aK^0_{\phi} - 2\phi K^0_{\phi}) + 3VK^0_{\phi} + a^{-2}\sigma_{\phi} - 2a^{-3}\phi\dot{\sigma}_{\phi,\phi} = 0. \] (30)

Hence in order to solve the system (29), (30) and determine the functions \(V(\phi) \), in which the modified field equations admit quadratic conservation laws, we have to find the KTs, \(K_{ij} \), of the two-dimensional metric (25). It is easy to see that the Ricci scalar of (25) vanishes which means that \(\gamma_{ij} \) is a flat space. However, the signature of \(\gamma_{ij} \) is Lorentzian, that is the Lagrangian (28) describes the motion of a particle in \(M^2 \) space. Moreover, because \(\ gamma_{ij} \) is the flat space, the KTs are reducible [91, 92]. The latter gives that the KTs are constructed by the tensor product of the Killing vectors (KVs) of \(\gamma_{ij} \). The KVs and the KTs of the two-dimensional space (26) are given in appendix B.

In the following we give the form of the potential \(V(\phi) \), the corresponding function \(f(R) \) and the quadratic conservation law that follows from the symmetry conditions (29), (30).

4. \(f(R) \)-gravity with quadratic conservation laws

The requirement of the existence of group invariant transformations and symmetries in theories of gravity is twofold: symmetries can be used as a geometric selection rule to constrain the unknown parameters of the models and to derive new analytical solutions. Furthermore this selection rule is consistent with the geometric character of gravitational theories. The reason is that the group invariant transformation of the field equations is related to the geometry that the dependent variables define; in our consideration with the minisuperspace (25). There exists a unique connection between the collineations of the minisuperspace and the symmetries of the field equations. In particular Noether point symmetries are related to the elements of the conformal algebra of the minisuperspace [51], whereas, as we discussed before, contact symmetries are generated by the KTs of the minisuperspace. Hence, by using as a selection rule the existence of a group invariant transformation in the field equations we let the theory select the corresponding model.

On the other hand, analytical solutions are important in order to understand the evolution of the Universe. For instance, the field equations in \(\Lambda \)-cosmology are maximally symmetric

\(^4\) Usually these transformations are called dynamical Noether symmetries.

\(^5\) For some applications of the Killing tensors in general relativity see, for instance, [87–89].
and are invariant under the same group of invariant transformations as that of the linear second-order differential equation\(^6\). Therefore symmetries can be used in order to recognize, or define, well-known systems in gravity.

In our consideration the solution of the system (29), (30), provides us with the function form of \(V(\phi)\), and consequently the \(f(R)\) theory, in which the field equations admit quadratic conservation laws. There exists a conservation law, which is in involution and independent of the Hamiltonian, for the field equations in which Lagrangian (14) defines the evolution of the system in the phase-space, that is the field equations form an integrable dynamical system.

From the system (29), (30) we find that the only KT that produces a contact symmetry for arbitrary function \(V(\phi)\) is the metric tensor \(\gamma_{ij}\). The contact symmetry is the Hamiltonian flow and the corresponding Noetherian conservation law is the Hamiltonian (15). However, for specific \(V(\phi)\), i.e. \(f(R)\) function, the Lagrangian (14) is invariant under additional contact symmetries. We have the following cases\(^7\).

I. When \(V_I(\phi) = V_1 \phi + V_2 \phi^3\), the field equations admit the quadratic conservation law

\[
I_I = 3(\dot{\phi} \ddot{a} + a \ddot{\phi})^2 - V_1 a^2 \dot{\phi}^2
\]

generated by the KT \(K^I_{22}\).

II. If \(V_{II}(\phi) = V_1 \phi - V_2 \phi^{-7}\), the field equations admit the Noetherian conservation law

\[
I_{II} = 3a^4(\ddot{\phi} \dot{a} - a \ddot{\phi})^2 + 4V_2 a^6 \dot{\phi}^{-6},
\]

which follows from \(K^II_{14}\).

III. For \(V_{III}(\phi) = V_1 - V_2 \phi^{-7}\), the KT \(K^III_{13}\) generates a contact transformation for the field equations in which the corresponding conservation law is

\[
I_{III} = 6a^3 \dot{a}(a \ddot{\phi} - \dot{\phi} a) - a^4 \left(\frac{3}{5} V_1 - V_2 \phi^{-2} \right).
\]

IV. When \(V_{IV}(\phi) = V_1 \phi^3 + V_2 \phi^4\), the contact symmetry of the field equations follows from the KT \(K^IV_{12}\), which produces the conservation law

\[
I_{IV} = 12a^2(\dot{\phi}^2 \ddot{a}^2 - \dot{\phi}^2 a^2) + (a \dot{\phi})^2(3V_1 + 4V_2 \phi).
\]

V. Finally, for \(V_{V}(\phi) = V_1 (\phi^3 + \beta \phi) + V_2 (\phi^4 + 6 \beta \phi^2 + \beta^2)\), the field equations admit the Noetherian conservation law

\[
I_V = 12a^2[(\dot{\beta} - \phi^2) \ddot{a}^2 + a^2 \ddot{\phi}^2] \\
- a^4(\beta - \phi^2)[V_1(\beta + 3 \phi^2) + 4V_2(3 \beta \phi + \phi^3)],
\]

which follows from the linear combination of the two KTs \(K^V_{12} + \beta K^V_{13}\).

We continue with the solution of the Clairaut equation (26), which provides us with the corresponding \(f(R)\) functions.

4.1. \(f(R)\)-models

In order to determine the form of function \(f(R)\), from the potentials \(V_I - V_V\) we have to solve the Clairaut equation (26). The Clairaut equation always admits the linear solution \(f\)

\[\text{Specifically the dynamical system of } \Lambda\text{-cosmology is that of the 'hyperbolic oscillator'.}\]

\[\text{Recall that we consider } f''(R) = 0, \text{ that is } V_{,\phi\phi} = 0.\]
(R) = f_0 R + f_1, and a singular solution is given by the differential equation \(V_\phi - R = 0 \) \cite{93}. In our consideration we are interested in the singular solution which provides us with the functional form of \(f(R) \) for each potential.

Hence, for \(V_I(\phi) \), we find that the corresponding \(f(R) \) function is

\[
 f_I(R) = f'_I(R - V_I R^2),
\]

in which \(f_0 = \frac{\sqrt{2}}{V_I} \).

Moreover from \(V_{II}(\phi) \) we have

\[
 f_{II}(R) = f''_I(R - V_I R^2),
\]

where \(f''_0 = \frac{8}{7} (V_I R^2) \).

For \(V_{III}(\phi) \) the corresponding \(f(R) \) function is

\[
 f_{III}(R) = f'''_I R^4 - V_I,
\]

where \(f'''_0 = 3 (2^{-1} V_I R^2) \).

The \(f(R) \) function that corresponds to the potential \(V_{IV}(\phi) \) is given by

\[
 f_{IV}(R) = \frac{1}{4 V_I} \int \left(\frac{(F(R))^2 + V_I}{F(R)} - V_I \right) dR,
\]

where

\[
 (F(R))^3 = 8 V_I^2 R - V_I^3 + 4 V_I \sqrt{4 V_I^2 R^2 - R V_I^3}. \tag{40}
\]

For \(V_I = 0 \), \eqref{39} gives \(f_{IV}^I(R) = \frac{2 \sqrt{2}}{5 V_I^2} R^4 \), whereas for \(V_I = 0 \) we have the closed-form solution \(f_{II}^I(R) = \frac{3}{8} (2 V_I^{-1})^{1/3} R^4 \). Furthermore from \eqref{40} we have that \(\text{Im} F^3(R) = 0 \) when \(R(4 V_I^2 R - V_I^3) > 0 \). Moreover, for \(R \gg V_I^3 / V_I^2 \), we have that \(F(R) \approx g_R R^{1/3} \). Hence from \eqref{39} we find that

\[
 f_{III}^I(R) \approx \frac{V_I}{4 V_I^2} R + \frac{3}{16 V_I^2} (2 V_I g_R)^{2/3} + (g_R R)^{4/3} \tag{41}.
\]

However, for \(R \ll V_I^3 / V_I^2 \), \(F(R) \) is constant which gives the limit of general relativity.

Finally from \(V_V(\phi) \) we have that

\[
 f_{V_V}(R) = \frac{1}{4 V_I} \int \left[\frac{(F(R))^2 + \Sigma_0}{F(R)} - V_I \right] dR. \tag{42}
\]

In the last expression \(\Sigma_0 = (V_I^2 - 16 \beta^2 V_I^2) \) and the function \(\tilde{F}(R) \) is given by

\[
 \tilde{F}(R) = \frac{V_I^2 R - \Sigma_0}{4 V_I^2 R^2 - V_I R \Sigma_0 + \beta \Sigma_0^2}. \tag{43}
\]

We can see that again, for \(R \gg (V_I^2 - 16 \beta^2 V_I^2) / V_I^2 \), function \(f_{V_V}(R) \) is given by \eqref{41}.

In the case for which \(\Sigma_0 = 0 \), i.e. \(V_I = \pm 4 V_I \sqrt{\beta} \), the potential \(V_V(\phi) \) becomes \(V_V(\phi) \approx (\phi \pm \sqrt{\beta})^4 \), whereas from expressions \eqref{42} and \eqref{26} we derive that

\[
 f_{IV}(R) = \mp \sqrt{3} R + f_1 R^3, \tag{44}
\]

in which the new constant is \(f_1 = 3 (2^{-1} V_I R^2) \).
Furthermore, the quadratic conservation laws, \(I_{f-V} \), are independent of the Hamiltonian (15) and it holds that \(\{ I_{f-V} , \mathcal{E} \} = 0 \), where \(\{ , \} \) is the Poisson bracket. Hence the models, \(f_{f-V} \), are integrable.

In section 2 we discussed some conditions in which the \(f(R) \) theory should satisfy in order to be viable. It is easy to see that the analytical \(f(R) \)-models \(f_R, f_{III}, f_{IV} \) and \(f_{V} \) satisfy the condition \(f' > 0 \), which indicates that the theories are ghost free. As far as the stability condition \(f'' > 0 \) is concerned, the models \(f_{II} \) and \(f_{III} \) violate the condition, hence tachyonic instability is presented.

However another important constraint on \(f(R) \)-models is that at the limit \(R \to 0 \) the theory has similar behavior to that of general relativity. From the above models only the \(f_{V} \)-model gives that \(f(R \to 0) \simeq R \), while for the \(f_{V} \)-model \(f_{V} (R \to -) \simeq R^{2/3} \) holds, which means that the model is not consistent with the local gravity tests.

In figure 1 we give the evolution of \(f_{II} \) for different values of \(V_1 \) in the same range as \(R \). From the figure we observe that when \(V_1 \) increases the evolution of \(f_{II} \) (R) is almost linear. Specifically the dotted line, which denotes \(V_1 = 1, V_1 = -5, R \in [0, 25] \), is approximated very well by the quadratic polynomial \(f(R) = a_1 R + a_2 R^2 + a_0 \), where the constants \(a_{1-3} \) are \(a_1 \simeq 3.7, a_2 \simeq 8 \times 10^{-3} \) and \(a_3 \simeq -2.5 \times 10^{-2} \). For higher-order polynomials of the form \(f(R) = \sum_{k=0}^{K} a_k R^k \), we find that for \(K > 2 \), \(|a_k| \lesssim 10^{-3} \). Furthermore we observe that \(f_{II} \) as \(f_{II} > 0, f_{II}'' > 0 \), which indicates that the model is ghost free. We note that the same results hold for the \(f_{f-V} \)-model.

The \(f_{f-V} \) - and \(f_{f-V} \)-models for \(V_1 = 0 \), or \(V_1 \neq 0 \), are not new and have previously been found in [56], the application of Noether’s theorem for point transformations to the Lagrangian, (14), of the field equations, and belong to the family of models \(f(R) = R^\nu (R^b - 2 \Lambda)^\nu \) [29]. The field equations for those models admit Noether point symmetries which form\(^8\) the \(A_2 \) and the \(A_{2,8} \) (or \(sl(2, R) \) Lie algebras, respectively. Moreover the \(f_{f-V} \)-model is the Ermakov–Pinney system, in \(M^2 \), and the quadratic conservation law, (32), is the Ermakov–Lewis invariant. The closed-form solutions of the \(f_{f-V} \) and \(f_{f-V} \) models can be found in [56, 98]. For both models, for \(V_1 = 0 \), the closed-form solution for the scale factor is a power law, whereas for \(V_1 = 0 \) the scale factor has exponential expansion in which the late-time solution describes the de Sitter Universe.

4.2. Existence of de Sitter solutions

In [99], it was shown that for a flat FLRW spacetime, \(f(R) \) gravity (without a matter source) provide de Sitter solutions, that is \(R = R_0, \) when the following expression holds

\[
R_0 f'(R_0) - 2 f(R_0) = 0. \tag{45}
\]

Note that from the power law model \(f(R) = R^n \), only the quadratic model, \(n = 2 \), satisfies identically condition (45). Moreover, since \(f' = \phi, \) and \(V' = R, \) expression (45) can be written as follows

\[
2 V(\phi_0) - \phi_0 V_{\phi = \phi_0} = 0 \tag{46}
\]

where \(\phi_0 = f'(R_0) \). We apply the last condition to find de Sitter solutions for the models that followed from the application of the group invariants.

For the potential \(V_I(\phi) \), the application of (46) gives that \((\phi_0)^2 = (V_1/V_2), \) while from the potential \(V_{II}(\phi) \), we find that the only real solution is \((\phi_0)^2 = \sqrt{3} (V_2/V_1)^1/2. \) Furthermore, for \(V_{III}(\phi), \) from (46) we have that it provides a de Sitter solution for \(\phi_0 = \frac{25}{16} (V_2/V_1)^2, \) whereas

\(^8\) In the Mubarakzyanov classification scheme [94–97].
the $V_{IV}(\phi)$ model gives a de Sitter solution for $\phi_0 = -\frac{1}{2}(V_4/V_2)$. Here we would like to remark that condition (46) for the $V_4(\phi)$ and $V_{IV}(\phi)$ models holds, and for $\phi_0 = 0$, however that leads to solutions that are not physically accepted.

Finally for the $f_3(R)$ model, i.e. potential $V_3(\phi)$, the application of condition (46) gives four points which are

$$ (\phi_0)^2 = \beta, \quad \phi_0 = -\frac{V_4 \pm \sqrt{V_4^2 - 16\beta V_2^2}}{4V_2}. \quad (47) $$

In the de Sitter solution, $a(t) = \exp(H_0t)$, from (4) we have that $R_0 = 12H_0^2$. Hence by using the relation $V_4(\phi_0) = R_0$ we can derive the value of the Ricci scalar. This provides us with information about the possible values of the free parameters of the models.

For the $f_4(R)$- and $f_6(R)$-models, we find that $R_0 \approx V_4$, which indicates that $V_4 \approx H_0^2$. For the third model, namely $f_3(R)$, we find that $R_0 = \frac{32}{125}(V_4^3V_2)^{-2}$, that is $(V_4)^3 = \frac{125}{32}(V_2H_0)^2$, while for the $f_3(R)$ model we have that in the de Sitter point $(V_4)^3 = 48(V_2H_0)^2$.

Finally for the $f_4(R)$-model, which provides us with four possible points with a de Sitter expansion, the corresponding values of the Ricci scalar are

$$ R_0 = 4\beta(V_4 \mp 4V_2\sqrt{\beta}), \quad (48) $$

for $\phi_0 = \pm\sqrt{\beta}$, and

$$ R_0 = \frac{V_4}{8V_2^2}(V_4^2 - 16V_2^2\beta) \mp \frac{(V_4^2 - 16V_2^2\beta)^2}{8V_2^2}. \quad (49) $$

Figure 1. Evolution of the function $f_{IV}(R)$, (39), for different values of the constant V_4 in the range $R \in [0, 25]$. For the plot we select $V_2 = 1$ with $f_{IV}(0) \simeq 0$. The solid line denotes $V_4 = -0.1$, the dash-dot line denotes $V_4 = -1.5$, and the dotted line denotes $V_4 = -5.0$. From the plot it is easy to see that $f_{IV}'' > 0$ and $f_{IV}'' > 0$ hold.
for the last two points. Since $R_0 > 0$, in the de Sitter point, expressions (48), (49) provide us with constraints for the possible physical accepted values of the free parameters of the model.

In the following section we use the extra conservation laws in order to reduce the order of the field equations for the three new integrable models, $V_{II} (\phi)$, $V_{IV} (\phi)$ and $V_{V} (\phi)$. We do that by using the Hamilton–Jacobi theory.

5. Solutions of the field equations

In the coordinate system $\{a, \phi\}$, the Lagrangian (14) of the field equations is as follows

$$L(a, \dot{a}, \phi, \dot{\phi}) = 6a^2\dot{\phi}^2 + 6a^2\ddot{\phi} + a^3V(\phi).$$

(50)

From the last expression we define the momenta, $p_a = \frac{\partial L}{\partial \dot{a}}$, $p_\phi = \frac{\partial L}{\partial \dot{\phi}}$, as follows

$$p_a = 12a\dot{\phi} + 6a^2\ddot{\phi}, \quad p_\phi = 6a^2\ddot{a}.$$

(51)

The Hamiltonian, (15), in terms of the momentum has the following expression

$$\mathcal{E} = \frac{1}{6a^2}\left(p_a p_\phi - \frac{\phi}{a} p_\phi^2\right) - a^3V(\phi).$$

(52)

Moreover the field equations (4) and (7) are equivalent to the following Hamiltonian system

$$\dot{a} = \frac{1}{6a^2} p_a, \quad \dot{\phi} = \frac{1}{6a^2} p_\phi - \frac{\phi}{3a^3} p_\phi,$$

(53)

$$\dot{p}_a = \frac{p_a p_\phi}{3a^3} - \frac{\phi}{2a^2} p_\phi^2 + 3a^2 V(\phi) \quad \text{and}$$

(54)

$$\dot{p}_\phi = \frac{p_\phi^2}{6a^3} + a^3 V,_{\phi}.$$

(55)

From Hamiltonian (52) we define the Hamilton–Jacobi Equation as

$$\frac{1}{6a^2}\left(\frac{\partial S}{\partial a}\left(\frac{\partial S}{\partial a}\right) - \frac{\phi}{a}\left(\frac{\partial S}{\partial \phi}\right)^2\right) - a^3V(\phi) - \left(\frac{\partial S}{\partial t}\right) = 0.$$

(56)

in which $p_a = \frac{\partial S}{\partial a}$, $p_\phi = \frac{\partial S}{\partial \phi}$ and $S = S(t, a, \phi)$. Equation (56) provides us with the action S, which helps us to reduce the dimension of the Hamiltonian system (53), (54). In the following we use the classification of Darboux [100] for the integrable systems in a two-dimensional manifold by following the notation of [101].

Before we proceed, as a final remark we would like to express the EoS which corresponds to the f(R) terms in the coordinates $[a, \phi]$. From expression (12) we have that

$$w_I = -\frac{4H\ddot{\phi} + 2\dot{\phi} - V(\phi)}{6H\dot{\phi} - V(\phi)}.$$

(57)

However, from (50) we calculate the ‘Klein–Gordon’ equation for the field ϕ, namely

$$2\dddot{\phi} + 4H\ddot{\phi} - 2\phi H^2 - V(\phi) + \frac{1}{3} \phi V,_{\phi} = 0.$$

(58)
by replacing $\dot{\phi}$ in (57) from (58). We find

$$w_f = -\frac{6\phi H^2 - 2\phi V_{,\phi}}{18 H^2 - 3 V(\phi)},$$

(59)

that is the parameter in the EoS is expressed only in terms of the first derivatives of $[a, \phi]$.

5.1. $\fIII(R)$-model

For the $\fIII(R)$-model with effective potential $V_{\text{eff}} = a^3V_{\text{III}}(\phi)$, we define the new coordinates

$$a = \sqrt{u}, \quad \phi = \frac{1}{6}\frac{v^3}{\sqrt{u}}$$

(60)

in which Hamiltonian (52) becomes

$$\mathcal{E} = \frac{p_u p_v}{v} - \left(V_1 u^2 - \sqrt{6} V_2 \frac{u^2}{v}\right)$$

(61)

In the new coordinates conservation law (33) has the following expression

$$I_{\text{III}} = p_u^2 - 2u \frac{p_u p_v}{v} + \frac{6}{5} V_1 a^2 - 2\sqrt{6} V_2 \frac{u^2}{v},$$

(62)

that is the field equations form an integrable dynamical system where the supporting manifold is a Lie surface [101, 102]. We recall that another cosmological model, which is integrable and for which the supporting manifold is a Lie surface, is a specific case of the early dark energy model of a minimally coupled scalar field; for details see [66].

Therefore we have that the action, S, in the new coordinates, $[u, v]$, has the following form

$$S(t, u, v) = -\mathcal{E} \left(v S_0(u) + \int \sqrt{6} V_2 \frac{u^2}{S_0(u)} du\right) - \mathcal{E}_t,$$

(63)

where $S_0(u) = \sqrt{2\mathcal{E}t + I_{\text{III}} + \frac{3}{5} V_1 a^2}$, and $\varepsilon = \pm 1$.

Using (63) the field equations are reduced to the following two first-order ordinary differential equations

$$v \dot{u} = -\varepsilon S_0(u),$$

(64)

and

$$v \dot{v} = \varepsilon \left(-v \mathcal{E} + V_1 u^2 + \sqrt{6} V_2 \frac{u^2}{S_0(u)}\right)$$

(65)

Dynamical systems supported by a Lie surface cannot necessarily be solved by the method of separation of variables. However, the importance of the existence of the Lie surface is that we can solve the reduced system and express the one dependent variable in terms of the other. From (64) we have $\frac{dv}{dr} = -\varepsilon \frac{S_0}{S_0^2} \frac{dv}{du}$. Hence equation (65), becomes,

$$\frac{dv}{du} = \varepsilon \left(-v \mathcal{E} + V_1 u^2 + \sqrt{6} V_2 \frac{u^2}{(S_0(u))^2} \right)$$

(66)

The solution of the latter is

$$v(u) = \left[\int B(u)e^{-\int \frac{1}{F_0(u)} du} + v_0\right] e^{\frac{1}{F_0(u)} du},$$

(67)
where

$$A(u) = \frac{\mathcal{E} + V_1 u^2}{(S_0(u))^2}, \quad B(u) = -\frac{\sqrt{6} V_2 u^2}{(S_0(u))^2}.$$ \hspace{1cm} (68)

For instance, when $I_3 = 0$ and $\mathcal{E} = 0$, the closed-form solution of (67) in terms of the scale factor is

$$v(a) = v_1 a^2 + v_0 a^2,$$ \hspace{1cm} (69)

where $v_1 = \frac{5\sqrt{6} V_1}{4 V_0}$. Hence from (60) for the field $\phi = f(R)$ we have the following expression

$$\phi(a) = \frac{1}{6} (v_1 + 2v_0 v_1 a^2 + v_0^2 a^4).$$ \hspace{1cm} (70)

From (60) and (64) the Hubble function, (67), is

$$H(a) = \frac{1}{2} \frac{S_0(u)}{u} \left[\int B(u)e^{-\int A(a)da}da + v_0 \right]^{-1} e^{-\int A(a)da},$$ \hspace{1cm} (71)

in which for solution (69), the Hubble function is

$$H(a) = \sqrt{\frac{4}{5} V_1 a^{-4}(v_1 + v_2 a^2)^{-1}}.$$ \hspace{1cm} (72)

\footnote{We note that for $I_3 = 0$ and $V_1 = 0$ the closed-form solution of (67) is expressed in terms of the Whittaker function.}
In order to study the behavior of the cosmological fluid, in figure 2 we give the evolution of the EoS parameter (59), which follows from the solution (67) for the $f_{III}(R)$ model. We observe that the effective perfect fluid which follows from the terms which arise from the modified Friedmann equations has an EoS parameter $w_f \leq \frac{1}{3}$ which can cross the phantom-divide line, $w_f < -1$, in the late Universe for different values of the free parameters. The values of the free parameters V_1, V_2 have been chosen such as to approximate the condition that follows from section 4.2 and the solution to give a de Sitter Universe. Note that the Hubble constants which are provided by the models are $H_0 \approx 69.6 \text{ km/s/Mpc}$.

5.2. $f_{IV}(R)$-model

For the $f_{IV}(R)$ model we define the new variable $w = 6a\phi$. Hence the Hamiltonian, (52), and the quadratic conservation law, (34), are written as follows,

$$\mathcal{E} = \frac{p_a p_w}{a} - \left(\dot{V}_1 w^3 + \dot{V}_2 \frac{w^4}{a} \right),$$

$$I_{IV} = p_a^2 - 2\frac{w}{a} p_a p_v + \frac{3}{2} \dot{V}_1 w^4 + 2\dot{V}_2 \frac{w^5}{a},$$

where $M_1 = 6^{-3}V_1$ and $M_2 = 6^{-4}V_2$. We can easily see that the f_{IV}-model is integrable in which the supporting manifold is a Lie surface, similar to the f_{III}-model.

From (73) with the use of (74) we find that the solution of the Hamilton–Jacobi equation is

$$S(t, a, w) = \varepsilon \left(\frac{a}{2} S_1(w) - 2 \int \frac{\dot{V}_2 w^4}{S_1(w)} \right) - \mathcal{E}t,$$

where $\varepsilon = \pm 1$ and $S_1(w) = \sqrt{2M_1 w^4 + 8\mathcal{E}w + 4I_{IV}}$.

Therefore the field equations are reduced to the following system

$$a \dot{a} = -2\varepsilon \frac{a(\mathcal{E} + M_1 w^3) + M_2 w^4}{S_1(w)},$$

and

$$aw = -\frac{\varepsilon}{2} S_1(w).$$

Moreover in the limit for which $\mathcal{E} = 0$, $I_{IV} = 0$ and $M_2 = 0$, the closed-form solution of the scale factor is $a(t) = a_0 t^2$ in which we have applied the initial condition $a(t \to 0) = 0$. That solution corresponds to the $f_{IV}(R) \approx R^3$ model and we can see that the solution describes a Universe with a perfect fluid in which the parameter in the EoS is $w_f = -\frac{1}{3}$.

Similar to the $f_{III}(R)$-model we can solve the one dependent parameter of the system (76), (77) in terms of the other. However, for the $f_{IV}(R)$-model we do that by expressing the new variable, v, in terms of the scale factor. In this model we can express the scale factor in terms of the new variable, w, i.e. $a(w)$.

Hence with the use of (77) equation (76) becomes

$$\frac{da}{dw} = \tilde{A}(w)a + \tilde{B}(w),$$

where

$$\tilde{A}(w) = \frac{a(\mathcal{E} + M_1 w^3) + M_2 w^4}{S_1(w)}$$

and

$$\tilde{B}(w) = \frac{\varepsilon}{2} S_1(w).$$
where
\[\tilde{A}(w) = \frac{4(\mathcal{E} + M_1 w^3)}{(S_1(w))^2}, \quad \tilde{B}(w) = \frac{4M_2 w^4}{(S_1(w))^2}, \] (79)
that is the solution of \(a(w) \) is given by formula (67).

We continue to the analysis of the last integrable model, namely the \(f^\nu(R) \)-model.

5.3. \(f^\nu(R) \)-model

For the last model, which is given by the application of Killing tensors and contact symmetries to the Lagrangian of the field equations, we can see that the supporting manifold of the dynamical system is a Liouville surface. Hence the Hamilton–Jacobi equation can be solved with the method of separation of variables.

Under the coordinate transformation
\[\alpha = x + y, \quad \phi = \sqrt{\beta} \frac{x - y}{x + y} \] (80)
the Hamiltonian function (52) is
\[\mathcal{E} = \frac{1}{12\sqrt{\beta}(x + y)} \left(\frac{\dot{p}_x^2}{\beta} - \frac{\dot{p}_y^2}{\beta} - U_1 x^4 - U_2 y^4 \right) \] (81)
where the constants \(U_1 \) and \(U_2 \) are \(U_1 = 12\beta^2(V_1 + 4V_2\sqrt{\beta}) \) and \(U_2 = -12\beta^2(V_1 - 4V_2\sqrt{\beta}) \). We see that when \(V_1^2 = 16\beta V_2^2 \) we have that \(U_1 = 0 \) or \(U_2 = 0 \).

Furthermore the quadratic conservation law (35) in the new coordinates has the following form
\[I_V = \frac{yp_x^2 + xp_y^2 - 2(U_1 y^4 - U_2 y^4)}{x + y} \] (82)

Therefore the solution of the Hamilton–Jacobi equation is
\[S(t, x, y) = \tilde{\alpha} \int \sqrt{I_5 - 24\sqrt{\beta}Ex + 2U_1 x^4} \, dx \]
\[+ \varepsilon_2 \int \sqrt{I_5 + 24\sqrt{\beta}Ey - 2U_2 y^4} \, dy, \] (83)
whereas the field equations reduce to the following system of first-order ordinary differential equations
\[12\sqrt{\beta}(x + y)\dot{x} = \varepsilon_1 \sqrt{I_5 - 24\sqrt{\beta}Ex + 2U_1 x^4} \] (84)
and
\[12\sqrt{\beta}(x + y)\dot{y} = -\varepsilon_2 \sqrt{I_5 + 24\sqrt{\beta}Ey - 2U_2 y^4} \] (85)
where \(\varepsilon_{1,2} = \pm 1 \).

Under the change of variable, \(dt = \frac{1}{a} d\tau \), the closed-form solution of the system (84), (85) is given in terms of elliptic functions.

From (80), with the use of (84) and (85), we derive the Hubble function
\[12\sqrt{\beta}H(a) = \tilde{\alpha} \sqrt{I_5 - 24\sqrt{\beta}Ex + 2U_1 x^2} \]
\[-\varepsilon_2 \sqrt{I_5 + 24\sqrt{\beta}Ey - 2U_2 y^4}, \] (86)
In the limit for which \(\dot{a} = 0, x + y \simeq y, ~ \dot{a}_2 < 0 \), that is \(V_1 > 4V_2 \sqrt{\beta} \), the latter equation can take the following form

\[
\left(\frac{H(a)}{H_0} \right)^2 \simeq \Omega_m a^{-4} + \Omega_{m0} a^{-3} + \Omega_\Lambda
\]

in which \(H_0 = 144/\Omega_m H_0^2 \) and \(\Omega_1 \simeq U_2 \). The last equation describes a Universe in general relativity with cosmological constant, dark matter and radiation fluid. We can see that the density of the radiation term, which is provided by the \(f(R) \)-theory is related to the value of the Noetherian conservation law \(I_5 \). However this is only a particular solution and the general behavior of the Hubble function is different.

From the system (84), (85) we observe that the free parameters of the model that we have to determine are \(\mathcal{E} = 6\Omega_{m0} H_0^2, ~ \beta, ~ V_1, ~ V_2 \), the value of the conservation law \(I_5 \), the initial conditions \((x_0, y_0) = (x, y)|_{t=0} \), and \(\varepsilon_1, ~ \varepsilon_2 \). In order to reduce the number of free parameters we apply the initial condition \(a(t \to 0) \simeq 0^+ \), which gives that \(x_0 \simeq y_0 \). Moreover in the de Sitter points, in which the Ricci scalar is given by expressions (48) and (49), we observe that if we set \(\beta = H_0^2, ~ \beta V_1 \simeq H_0^2 \) and \(\beta V_2 \simeq H_0^2 \), then \(R_0 \simeq H_0^2 \). As we discussed earlier, the value of the conservation law \(I_5 \) can be related to the energy density of the radiation fluid that is introduced by the theory; in the present era \(\Omega_r \) is small, which is we can assume that \(I_5 \simeq 0 \).

Furthermore we select that \(\beta = H_0^2, ~ V_2 = \gamma H_0^{-1} \) and \(V_1 = 4\alpha \gamma \), with \(\alpha > 1, \gamma > 0 \), and the initial conditions \((x_0, y_0) \) are in order for the present value of the Hubble constant to be \(H_0 = 69.6 \text{ km/s/Mpc} \) [103]. Finally we choose the solution in which \(\varepsilon_{1,2} = +1 \), and the free parameters of the problem to be \(\{ \alpha, \gamma, \Omega_{m0} \} \).

For \(\gamma = 1, \Omega_{m0} = 0.28 \), and for \(\alpha \in (1, 2) \), in figure 3 the numerical evolution for the equation of state parameter \(w_f \) for the \(f(R) \)-model is given. From the figure we observe that
$w_f \leq 1/3$ and w_f can cross the phantom-barrier. In particular, the EoS parameter w_f decreases rapidly and takes a negative value. Then the rate of decrease becomes slower where it has a linear behavior of the form $w_f (a) = w_1 a + w_0$, $w_1 < 0$, which is the CPL parametric dark energy model introduced by Chevallier and Polarski [104], and Linder [105].

In order to test the viability of the $f_V(R)$-model we perform a joint likelihood analysis using the type Ia supernova data set of Union 2.1 [106], and the BAO data [107, 108] in which we select the free parameters of the model to be $(\alpha, \gamma, \Omega_m)$. We fit the model with the data using the gradient-search method [109] for different sets of random numbers in the space of the free parameters in order to avoid a local minimum in the chi-square space. For the free parameters we select the range $\alpha \in (1, 2)$, $\gamma \in (0.5, 1.2)$ and $\Omega_m = (0.25, 0.35)$. We find that the best fit parameters are $(\alpha, \gamma, \Omega_m) = (1.24, 0.8, 0.28)$, in which $(\chi^2_{\text{min}})_{\text{total}} = \min (\chi^2_{\text{SNIa}} + \chi^2_{\text{BAO}}) \approx 559$, while with the same algorithm, for Λ-cosmology we find that $(\chi^2_{\text{min}})_{\text{total}} = \min (\chi^2_{\text{SNIa}} + \chi^2_{\text{BAO}}) \approx 560$. The small difference in the minimum chi-square value between the two models, $|\Delta \chi^2_{\text{min}}| \approx 1$, indicates that the two models fit the data in a similar way. In figure 4 we plot the theoretical parameter $d_{\text{th}} = l_{\text{BAO}}(z_{\text{drag}}) D_V(z)$ parameter for the $f_V(R)$-model, for the free parameters $(\alpha, \gamma, \Omega_m) = (1.24, 0.8, 0.28)$ in which $(\chi^2_{\text{min}})_{\text{total}} \approx 559$.

6. Conclusions

In this work we considered an FLRW spacetime in which the gravitational action integral is that of $f(R)$-gravity with a dust-like fluid. In order to determine the functional form of the $f(R)$ function we applied as selection rule the existence of Noether symmetries for the field.

10 Recall that in Λ-cosmology, the Hubble function is $H(z) = H_0[(1 - \Omega_m) + \Omega_m(1 + z)^3]^{1/2}$.

11 Where $l_{\text{BAO}}(z_{\text{drag}})$ is the BAO scale at the drag redshift, and $D_V(z)$ is the volume distance.
equations, which are followed by Lie–Bäcklund transformations linear in the momentum and contact transformations. The importance of these types of symmetry is that they provide us with quadratic conservation laws.

As the Lagrangian of the field equations is in the form of classical physical dynamical systems of the form \(L(x^i, \dot{x}^i) = T - V \), where \(T \) is the kinetic energy and \(V \) the potential, we were able to apply the existence results in the literature in order to perform our classification. Hence there are contact symmetries if \(f(R) \)-gravity is generated by the Killing tensors of the minisuperspace; that is the theory. In fact the KTS of the minisuperspace select the model.

For a spatially flat Universe we found five models which admit quadratic conservation laws, where for a spatially nonflat Universe we found only three models, which are included in the five models of the spatially flat FLRW spacetime. From the five models, two models are well-known in the literature and they have been found from the application of Noether’s theorem for point transformations. Moreover the quadratic conservation laws that correspond to the five models are in involution with the Hamiltonian function, i.e. the field equations are integrable.

For the three new models, with the use of the extra quadratic conservation laws we reduced the field equations to a system of two nonlinear first-order ordinary differential equations. We performed numerical simulations for the models and we studied the evolution of the parameter in the EoS for the fluid components that correspond to the \(f(R) \)-theory. For all the models we show that the parameter in the EoS has an upper bound, which is \(w_f \leq 1/3 \). There is no lower bound, which means that \(w_f \) can cross the phantom-divide line. Furthermore, for the \(f_{\mu\nu}(R) \)- and the \(f_{\nu}(R) \)-models, the cosmological fluid follows from the additional terms of the Friedmann equations in the present time, and the parameter in the EoS has a linear behavior given by the linear function \(w_f(a) = w_1a + w_0 \). Furthermore, for the \(f_{\nu}(R) \)-model, and from (86), we showed that the value of the second conservation law is related to the fluid components which are introduced by \(f(R) \)-gravity and, specifically, it is related to the density of the radiation fluid. This is an important result that indicates a relationship between the conservation laws and physical observable quantities. However, the exact physical properties of the conservation laws of the field equations are still unknown. Furthermore, for the \(f_{\nu}(R) \)-model we showed that it can fit the cosmological data in a similar way to that of \(\Lambda \)-cosmology.

Another issue that we have not discussed in this work is the connection between these \(f(R) \)-models with other conformally equivalent theories. The reason we restricted our analysis is because we considered that the dust-like fluid does not interact with gravity. Of course if we relaxed this restriction, or there is no dust-like fluid, i.e., \(\mathcal{E} = 0 \), then the solutions we have found also hold for conformally equivalent theories. However, in that case the application of contact transformations would need to be extended, which leaves invariant the field equations that not only follow from the KTs, but also to conformal KTs. For a discussion on the relation of symmetries and conservation laws of conformal equivalence theories see [110].

This work extends the analysis of group invariant transformations in gravitational physics and cosmology, and shows that the application of group invariants in modified theories provides us with models that can describe the late-time acceleration phase of the Universe.

Acknowledgments

The author thanks Professor P G L Leach for a useful discussion on the application of contact symmetries in physical science, Professor F Garufi for a fruitful discussion on the statistical analysis, Dr S Pan for useful comments and suggestions, and Professor M Tsamparlis for a
careful reading of the manuscript and useful comments which improved the quality of the present work. The work was supported by FONDECYT postdoctoral grant no. 3160121.

Appendix A. Quadratic conservation laws in spatially nonflat \(f(R) \)-models

In this appendix we complete our analysis of the \(f(R) \)-models, which admit quadratic conservation laws if FLRW spacetime has nonvanishing spatial curvature. Above we considered that the FLRW had zero spatial curvature. In the case where the spatial curvature is \(K \), with \(K \neq 0 \), from the action integral (2) and with the use of the Lagrange Multiplier we find the following Lagrangian for the field equations

\[
L(a, \dot{a}, \phi, \dot{\phi}) = 6a\dot{\phi}a^2 + 6a^2\ddot{\phi} + a^3V(\phi) - 6Ka\phi. \tag{A.1}
\]

We can see that this Lagrangian admits the same minisuperspace as Lagrangian (50). Therefore in order to apply the method of section (3) to the existence of a contact transformation that leaves the action integral (2), invariant with Lagrangian (A.1), we use the KTs of appendix B.

Hence, when \(V(\phi) = V_I(\phi) \), the modified field equations admit the conservation law

\[
\bar{I}_l = I_l(a, \dot{a}, \phi, \dot{\phi}). \tag{A.2}
\]

Moreover, in the case for which \(V(\phi) = V_{IV}(\phi) \), the quadratic conservation law of the field equations is

\[
\bar{I}_{IV} = I_{IV}(a, \dot{a}, \phi, \dot{\phi}) - 6K(\alpha\phi)^2, \tag{A.3}
\]

whereas for \(V_I(\phi) \) the quadratic conservation law is

\[
\bar{I}_I = I_I(a, \dot{a}, \phi, \dot{\phi}) - 3Ka(\phi^2 - \beta). \tag{A.4}
\]

Functions \(I_I, I_{IV} \) and \(I_{IV} \) are given by expressions (31), (34) and (35), respectively.

Appendix B. Killing vectors and Killing tensors

The minisuperspace, (25), is the \(M^2 \) space, which means that it admits three-dimensional Killing algebra. The KVs in the coordinates \(\{a, \phi\} \) are:

\[
K^i_1 = a\partial_a - 3\phi\partial_\phi, \quad K^i_3 = \frac{1}{a}\partial_\phi \quad \text{and} \quad K^i_0 = \frac{1}{a}\left(\partial_a - \frac{\phi}{a}\right)\partial_\phi. \tag{B.1}
\]

Moreover, \(M^2 \) admits five KTs (except the metric tensor \(\gamma_{ij} \)), which are of the form \(K^{ij}_{AB} = K^{ij}_A \otimes K^{ij}_B \), where \(A, B = 1, 2, 3 \). Hence the five KTs in the coordinates \(\{a, \phi\} \) are

\[
K^{ij}_{11} = \begin{pmatrix} a^2 & -3a\phi \\ -3a\phi & 9\phi^2 \end{pmatrix}, \quad K^{ij}_{22} = \begin{pmatrix} 1/a^2 & -\phi/a^3 \\ -\phi/a^3 & 3\phi^2/a^4 \end{pmatrix}, \tag{B.3}
\]

\[
K^{ij}_{33} = \begin{pmatrix} 0 & 0 \\ 0 & a^{-2} \end{pmatrix}, \quad K^{ij}_{12} = \begin{pmatrix} 1 \quad -2a/\phi \\ -2a/\phi \quad 3\phi^2/a^2 \end{pmatrix} \quad \text{and} \quad \tag{B.4}
\]

\[
K^{ij}_{13} = \begin{pmatrix} 0 & 0 \\ 0 & a^{-2} \end{pmatrix}. \]
and
\[
K^{ij}_{\text{3D}} = \frac{1}{2} \left(\begin{array}{cc}
0 & 1 \\
1 & -6\phi / a^2
\end{array} \right)
\]
(B.5)

Recall that \(K^{ij}_{\text{3D}} = K^i_s \otimes K^j_t \) is the metric tensor \(\gamma^{ij} \).

References

[1] Tegmark M et al 2004 Astrophys. J. 606 702
[2] Kowalski M et al 2008 Astrophys. J. 686 749
[3] Komatsu E et al 2009 Astrophys. J. Suppl. Ser. 180 330
[4] Ade P A R et al 2014 Astron. Astroph. 571 A15
[5] Ade P A R et al (Planck Collaboration) 2015 arXiv:1502.01589
[6] Weinberg S 1989 Rev. Mod. Phys. 61 1
[7] Padmanabhan T 2003 Phys. Rept. 380 235
[8] Perivolaropoulos L 2008 arXiv:0811.4684
[9] Ratra B and Peebles P J E 1988 Phys. Rev. D 37 3406
[10] Barrow J D and Saich P 1993 Class. Quant. Grav. 10 279
[11] Linder E V 2004 Phys. Rev. D 70 023511
[12] Copeland E J, Sami M and Tsujikawa S 2006 Int. J. Mod. Phys. D 15 1753
[13] Overduin J M and Cooperstock F I 1998 Phys. Rev. D 58 043506
[14] Basilakos S, Plionis M and Sola J 2009 Phys. Rev. D 80 083511
[15] Yu A, Kamenshchik U, Moschella and Pasquier V 2001 Phys. Lett. B 511 265
[16] Bento M C, Bertolami O and Sen A A 2002 Phys. Rev. D 66 043507
[17] Pan S, Bhattacharya S and Chakraborty S 2015 Mon. Not. Roy. Astron. Soc. 452 3038
[18] Brans C and Dicke R H 1961 Phys. Rev. 124 195
[19] Buchdahl H A 1970 Not. Roy. Astron. Soc. 150 1
[20] Sotiriou T P and Faraoni V 2010 Rev. Mod. Phys. 82 451
[21] Nojiri S and Odintsov S D 2011 Phys. Rep. 505 59
[22] Ferraro R and Fiorini F 2007 Phys. Rev. D 75 084031
[23] Ferraro R and Fiorini F 2008 Phys. Rev. D 78 124019
[24] Maartens R 2004 Living Rev. Rel. 7 7
[25] Starobinsky A A 1980 Phys. Lett. B 91 99
[26] Cognola G, Elizalde E, Nojiri S, Odintsov S D, Sebastiani L and Zerbini S 2007 Phys. Rev. D 77 046009
[27] Tsujikawa S 2008 Phys. Rev. D 77 023507
[28] Hu W and Sawicki I 2007 Phys. Rev. D 76 064004
[29] Amendola L and Tsujikawa S 2008 Phys. Lett. B 660 125
[30] Nojiri S and Odintsov S D 2003 Phys. Rev. D 68 123512
[31] Carroll S M, Duvvuri V, Trodden M and Turner M S 2004 Phys. Rev. D 70 043528
[32] Capozziello S, Carloni S and Troisi A 2003 Recent Res. Dev. Astron. Astrophys. 1 625 (arXiv: astro-ph/0303041)
[33] Capozziello S 2002 Int. J. Mod. Phys. D 11 483
[34] Capozziello S and Laurentis M De 2011 Phys. Reports 509 167
[35] Amendola L and Tsujikawa S 2010 Dark Energy Theory and Observations (Cambridge: Cambridge University Press)
[36] Gironés Z, Marchetti A, Mena O, Pénab-Garay C and Rius N 2010 J. Cosmol. Astropart. Phys. JCAP10(2010)011
[37] Bel J, Brax P, Marini C and Valageas P 2015 Phys. Rev. D 91 103503
[38] Kweyama M C, Govinder K S and Maharaj S D 2011 Class. Quantum Grav. 18 105005
[39] Kweyama M C, Govinder K S and Maharaj S D 2012 J. Math. Phys. 53 033707
[40] de Ritis R, Marmo G, Platania G, Rubano C, Scudellaro P and Stornaiolo C 1990 Phys. Rev. D 42 1091
[41] Rosquist K and Uggla C 1991 J. Math. Phys. 32 3412
[42] Capozziello S, Marmo G, Rubano C and Scudellaro P 1997 Int. J. Mod. Phys. D 6 491
[43] Capozziello S, Piedipalumbo E, Rubano C and Scudellaro P 2009 Phys. Rev. D 80 104030

22
[44] Cotsakis S, Leach P G L and Pantazi H 1998 *Grav. Cosm.* 4 314

[45] Capozziello S and De Laurentis M 2014 *Int. J. Geom. Meth. Mod. Phys.* 11 1460004

[46] Capozziello S, Piedipalumbo E, Rubano C and Scudellaro P 2009 *Phys. Rev.* D 80 104030

[47] Terzis P A, Dimakis N and Christodoulakis T 2014 *Phys. Rev.* D 90 123543

[48] Christodoulakis T, Dimakis N, Terzis P A and Doulis G 2014 *Phys. Rev.* D 90 024052

[49] Vakili B and Khaizade F 2012 *Class. Quant. Grav.* 29 035015

[50] Vakili B 2014 *Phys. Lett.* B 738 488

[51] Basilakos S, Tsamparlis M and Paliathanasis A 2011 *Phys. Rev.* D 83 103512

[52] Yano K 1956 *The Theory of Lie Derivatives and Its Applications* (Amsterdam: North Holland)

[53] Paliathanasis A, Tsamparlis M, Basilakos S and Capozziello S 2014 *Phys. Rev.* D 89 063532

[54] Paliathanasis A and Tsamparlis M 2014 *Phys. Rev.* D 90 043529

[55] Paliathanasis A, Basilakos S, Saridakis E N, Capozziello S, Atazadeh K, Darabi F and Tsamparlis M 2014 *Phys. Rev.* D 89 104042

[56] Paliathanasis A, Tsamparlis M and Basilakos S 2011 *Phys. Rev.* D 84 123514

[57] Dimakis N, Christodoulakis T and Terzis P A 2014 *J. Geom. Phys.* 77 97

[58] Zwanziger D 1968 *Phys. Rev.* 176 1480

[59] McIntosh H and Cisneros A 1970 *J. Math. Phys.* 11 896

[60] Tsamparlis M and Paliathanasis A 2012 *J. Math. Phys.* 45 275202

[61] Domazet S, Rodovanovic V, Simonovic M and Stefancic H 2013 *Int. J. Mod. Phys.* D 22 1350066

[62] Darabi F, Atazadeh K and Rezaei-Aghdam A 2013 *Eur. Phys. J.* 73 2657

[63] Capozziello S, Frusciante N and Vernieri D 2012 *Gen. Relativ. Grav.* 44 1881

[64] Paliathanasis A, Tsamparlis M, Basilakos S and Barrow J D 2015 *Phys. Rev.* D 91 123535

[65] Basilakos S and Barrow J D 2015 *Phys. Rev.* D 91 103517

[66] Paliathanasis A, Tsamparlis M and Basilakos S 2014 *Phys. Rev.* D 90 103524

[67] De Felice A and Tsujikawa S 2010 *Living Rev. Rel.* 13 3

[68] Olmo G J 2005 *Phys. Rev. Lett.* 95 261102

[69] Capozziello S, Matsumoto J, Nojiri S and Odintsov S D 2010 *Phys. Lett.* B 693 198

[70] Saez-Gomez D 2012 *Phys. Rev.* D 85 023009

[71] Cid A and Labrana P 2012 *Phys. Lett.* B 717 10

[72] Capozziello S, Makarenko A N and Odintsov S D 2013 *Phys. Rev.* D 87 084037

[73] Myrzakulov R, Sebastiani L and Vagnozzi S 2015 *Eur. Phys. J.* C 75 444

[74] Ryan M P Jr, and Shepley L C 1975 *Homogeneous Relativistic Cosmologies* (Princeton, NJ: Princeton University Press)

[75] Sotiriou T P 2015 Gravity and Scalar fields *Proceedings of the VII Aegean Summer School: Beyond Einstein’s Theory of Gravity, Modifications of Einstein’s Theory of Gravity at Large Distances, Paros, Greece* (Lecture Notes in Physics vol 892) ed E Papantonopoulos

[76] Ibragimov N H, Kara A H and Mahomed F M 1998 *Nonlinear Dyn.* 15 115

[77] Ibragimov N H and Anderson R L 1977 *J. Math. Anal. Appl.* 59 145

[78] Bluman G and Kumei S 1989 *Symmetries and Differential Equations* (New York: Springer-Verlag)

[79] Sarlet W and Cantrijn F 1981 *SIAM Rev.* 23 467

[80] Noether E 1918 *Kgl. Ges. Wiss. Nachrichten Math.-Phys. Klasse* Heft 2 235

[81] Aslam A, Jamil M, Momeni D, Myrzakulov R, Rashid M A and Raza M 2013 *Astrophys. Space Sci.* 348 533

[82] Gemin G, Kucukakca Y and Sucu Y 2015 *Advances in High Energy Physics* 2015 567395

[83] Jamil M, Ali S, Momeni D and Myrzakulov R 2012 *Eur. Phys. J.* C 72 1998

[84] Crampin M 1977 *Int. J. Theor. Physics.* 16 741

[85] Crampin M 1984 *Rep. Math. Phys.* 20 31

[86] Kalotas T M and Wybourne B G 1982 *J. Phys. A: Math. Gen.* 15 2077

[87] Dolan P, Kladouchou A and Card C 1989 *Gen. Relativ. Gravit.* 21 427

[88] Garfinkle D and Glass E N 2010 *Class. Quantum Grav.* 27 095004

[89] Hughston L P and Sommers P 1973 *Comm. Math. Phys.* 32 147

[90] O’Hanlon J 1972 *Phys. Rev. Lett.* 29 137

[91] Weir G J 1977 *J. Math. Phys.* 18 1782

[92] Rani R, Edgar S B and Barnes A 2003 *Class. Quantum Grav.* 20 1929

[93] Zwilinger D 1989 *Handbook of Differential Equations* III edn (New York: Academic)

[94] Morozov V V 1958 *Izvestia Vysshikh Uchebn Zavedenii Matematika* 5 161
[95] Mubarakzyanov G M 1963 Izvestia Vysshikh Uchebn Zavendenii Matematika 32 114
[96] Mubarakzyanov G M 1963 Izvestia Vysshikh Uchebn Zavendenii Matematika 34 99
[97] Mubarakzyanov G M 1963 Izvestia Vysshikh Uchebn Zavendenii Matematika 35 104
[98] Paliathanasis A 2013 J. Phys.: Conf. Ser. 453 012009
[99] Barrow J D and Ottewill A C 1983 J. Phys. A: Math. Gen. 16 2757
[100] Darboux G 1989 Leçons sur la théorie générale des surfaces et les applications géométriques du calcul infinitésimal, University of Michigan Historical Math Collection
[101] Daskaloyannis C and Ypsilantis K 2006 J. Math. Phys. 47 042904
[102] Kalnins E G, Kress J M and Winternitz P 2002 J. Math. Phys. 43 970
[103] Bennet C L, Larson D, Weiland J L and Hinshaw G 2014 Ap. J. 794 135
[104] Chevalier M and Polarski D 2001 Int. J. Mod. Phys. D 10 213
[105] Linder E V 2003 Phys. Rev. Lett. 90 091301
[106] Suzuki N et al 2012 Astrophys. J. 746 85
[107] Percival W J et al 2010 Mon. Not. R. Astron. Soc. 401 2148
[108] Blake C et al 2011 Mon. Not. R. Astron. Soc. 418 1707
[109] Bevington P R and Robinson D K 2003 Data Reduction and Error Analysis for the Physical Sciences (New York: McGraw-Hill)
[110] Tsamparlis M, Paliathanasis A, Basilakos S and Capozziello S 2013 Gen. Relativ. Gravit. 45 2003