COMPACT RANGE PROPERTY AND OPERATORS ON C^*-ALGEBRAS

NARCISSE RANDRIANANTOANINA

Abstract. We prove that a Banach space E has the compact range property (CRP) if and only if for any given C^*-algebra A, every absolutely summing operator from A into E is compact. Related results for p-summing operators ($0 < p < 1$) are also discussed as well as operators on non-commutative L^1-spaces and C^*-summing operators.

1. INTRODUCTION

A Banach space E is said to have the compact range property (CRP) if every E-valued countably additive measure of bounded variation has compact range. It is well known that every Banach space with the Radon-Nikodym property (RNP) has the (CRP) and for dual Banach spaces, the (CRP) were completely characterized as those whose predual do not contain any copies ℓ^1. For more in depth discussions on Banach spaces with the (CRP), we refer to [9].

The following characterization can be found in [9]: A Banach space E has the (CRP) if and only if every 1-summing operator from $C[0,1]$ into E is compact. Since $C[0,1]$ is a (commutative) C^*-algebra, it is a natural question whether $C[0,1]$ can be replaced by any C^*-algebras. Let us recall that in [7], it was shown that if X is a Banach space that does not contain any copies of ℓ^1 then any 1-summing operators from any given C^*-algebra into X^* is compact; hinting that, as in commutative case, the (CRP) is the right condition to provide compactness. The present note is an improvement of [7]. Our main result confirms that, if A is a C^*-algebra and E is a Banach space that has the (CRP) then every 1-summing from A into E is compact. Our proof relies on factorizations of summing operators used in [7] and properties of integral operators.

There is another well known characterization of spaces with the (CRP) in terms of operators defined on $L^1[0,1]$: a Banach space E has the (CRP) if and only every operator T from $L^1[0,1]$ into E is Dunford Pettis (completely continuous) thus the (CRP) is also referred to as the complete continuity property (CCP). Unlike the 1-summing operators on C^*-algebras,
operators defined on non-commutative L^1-spaces do not behave the same way as those defined
on $L^1[0,1]$ do. In the last section of this note, we will discuss these operators along with
C^*-summing operators studied by Pisier in [3].

Our terminology and notation are standard as may be found in [2] and [4] for Banach
spaces, [5] and [8] for C^*-algebras and operator algebras.

2. PRELIMINARIES

In this section, we recall some definitions.

Definition 1. Let X and Y be Banach spaces and $0 < p < \infty$. An operator $T : X \rightarrow Y$ is said to be p-summing if there is a constant C such that for any finite sequence (x_1, x_2, \ldots, x_n) of X, one has
\[
\left(\sum_{i=1}^{n} \|Tx_i\|^p \right)^{\frac{1}{p}} \leq C \sup \left\{ \left(\sum_{i=1}^{n} |\langle x_i, x^* \rangle|^p \right)^{\frac{1}{p}} ; \ x^* \in X^*, \|x^*\| \leq 1 \right\}.
\]

The smallest constant C for which the above inequality holds is denoted by $\pi_p(T)$ and is
called the p-summing norm of T.

Definition 2. We say that an operator $T : X \rightarrow Y$ is an integral operator if it admits a factorization:
\[
\begin{array}{ccc}
X & \xrightarrow{\alpha} & Y^* \\
\downarrow{i} & & \downarrow{\beta}
\end{array}
\]
\[
\begin{array}{ccc}
L^\infty(\mu) & \xrightarrow{J} & L^1(\mu)
\end{array}
\]
where i is the natural inclusion from Y into Y^{**}, μ is a probability measure on a compact
space K, J is the natural inclusion and α and β are bounded linear operators.

We define the integral norm $i(T) : = \inf \left\{ \|\alpha\| \cdot \|\beta\| \right\}$ where the infimum is taken over all such factorizations.

Similarly, we shall say that T is strictly integral if T is integral and on the factorization
above β takes its values in Y.

It is well known that integral operators are 1-summing but the converse is not true.

If $X = C(K)$ where K is a compact Hausdorff space then it is well known that every
1-summing operator from X into Y is integral.

For more details on the different properties of the classes of operators involved, we refer
to [3].

The following simple fact will be needed in the sequel.
Proposition 3. Let $T : X \to Y$ be a strictly integral operator. If Y has the (CRP) then T is compact.

Proof. The operator T has a factorization $T = \beta \circ J \circ \alpha$ where $\alpha : X \to L^\infty(\mu)$, $J : L^\infty(\mu) \to L^1(\mu)$ and $\beta : L^1(\mu) \to Y$ are as in the above definition. Note that J is 1-summing so $\beta \circ J : L^\infty(\mu) \to Y$ is 1-summing and since $L^\infty(\mu)$ is a $C(K)$-space and Y has the (CRP), $\beta \circ J$ (and hence T) is compact. \qed

We recall that a von Neumann algebra \mathcal{M} is said to be σ-finite if the identity is countably decomposable equivalently if there exist a faithful state $\varphi \in \mathcal{M}_*$. As is customary, for every functional $\varphi \in \mathcal{M}_*$ and $x \in \mathcal{M}$, $x\varphi$ (resp. φx) denotes the normal functional $y \to \varphi(yx)$ (resp. $y \to \varphi(xy)$).

3. MAIN RESULT

Theorem 4. For a Banach space E, the following are equivalent:

(1) E has the CRP;
(2) Every 1-summing operator $T : C[0,1] \to E$ is compact;
(3) For any given C^*-algebra \mathcal{A}, every 1-summing operator $T : \mathcal{A} \to E$ is compact.

The equivalence (1) \iff (2) is well known, we refer to \cite{r}, \cite{r} for more details. Clearly (3) \Rightarrow (2) so what we need to show is (1) \Rightarrow (3). For this, it is enough to consider the following particular case (see \cite{r} for this reduction).

Proposition 5. Let E be a Banach space with the (CRP) and \mathcal{M} be a σ-finite von Neumann algebra. If $T : \mathcal{M} \to E$ is 1-summing and is weak* to weakly continuous then T is compact.

Proof. The proof is a refinement of the argument used in Proposition 3.2 of \cite{r}. We will include most of the details for completeness. Without loss of generality, we can assume that E is separable.

Let $\delta > 0$. From Lemma 2.3 of \cite{r},

$$\|Tx\| \leq 2(1 + \delta)\pi_1(T)\|xf + fx\|_{\mathcal{M}_*}$$

for every $x \in \mathcal{M}$, where f is a faithful normal state in \mathcal{M}_*. If $L^2(f)$ is completion of the prehilbertian space $(\mathcal{M}, \langle \cdot, \cdot \rangle)$ where $\langle x, y \rangle = f\frac{xy^* + y^*x}{2}$ then we have the following factorization:
where \(J \) is the inclusion map, \(\theta(Jx) = \langle \cdot, J(x^*) \rangle \) for every \(x \in M \) and \(L(f_x + x) = Tx \). We recall that \(L \) is a well defined bounded linear map since \(\{ xf + fx; x \in M \} \) is dense in \(M_* \) and \(\| L(xf + fx) \| \leq 4(1 + \delta)\pi_1(T)\|xf + fx\|_{M_*} \). Let \(S := J^* \circ \theta \circ J \).

Claim: \(J \circ L^*: E^* \to L^2(f) \) is compact.

For this, let us consider \(L^*: E^* \to M_\ast \). Since \(E \) is separable, it is isometric to a subspace of \(C[0, 1] \). Let \(I_E \) be the isometric embedding of \(E \) in \(C[0, 1] \) and \(i \) be the natural inclusion of \(C[0, 1] \) into \(C[0, 1]^{**} \).

Define the following map \(\tilde{T} \) from \(M \) into \(C[0, 1] \) by setting \(\tilde{T} = I_E \circ T(x^*) \) for every \(x \in M \). (Here, \(\bar{f} \) is the map \(t \to \bar{f}(t) \) for \(f \in C[0, 1] \) with \(\bar{f}(t) \) being the conjugate of the complex number \(f(t) \)).

Clearly, \(\tilde{T} \) is linear and bounded and it can be shown that \(\tilde{T} \) is 1-summing and is weak\(\ast \) to weakly continuous. In fact, if \((x_1, x_2, \ldots, x_n) \) is a finite sequence in \(M \) then

\[
\sum_{i=1}^{n} \| \tilde{T}x_i \| = \sum_{i=1}^{n} \| I_E \circ T(x_i^*) \| \\
= \sum_{i=1}^{n} \| I_E \circ T(x_i^*) \| \\
= \sum_{i=1}^{n} \| T(x_i^*) \| \\
\leq \pi_1(T) \sup \left\{ \sum_{i=1}^{n} |\langle x_i^*, \varphi \rangle|, \varphi \in M^*, \| \varphi \| \leq 1 \right\} \\
\leq \pi_1(T) \sup \left\{ \sum_{i=1}^{n} |\langle x_i, \varphi^* \rangle|, \varphi \in M^*, \| \varphi \| \leq 1 \right\}
\]

so \(\tilde{T} \) is 1-summing with \(\pi_1(\tilde{T}) \leq \pi_1(T) \). Moreover if \((x_\alpha)_{\alpha} \) is a net that converges to zero weak\(\ast \) in \(M \) so does the net \((x_\alpha^*)_{\alpha} \) and since \(T \) is weak\(\ast \) to weakly continuous, \((T(x_\alpha^*))_{\alpha} \) converges to zero weakly in \(E \) and hence \((\tilde{T}(x_\alpha))_{\alpha} \) is weakly null which shows that \(\tilde{T} \) is weak\(\ast \) to weakly continuous.
To complete the proof, consider $E^* \xrightarrow{L^*} M \xrightarrow{i \circ \tilde{T}} C[0,1]^{**}$.

Since $C[0,1]^{**}$ has the Hahn-Banach extension property and $i \circ \tilde{T}$ is 1-summing, $i \circ \tilde{T}$ is an integral operator. Let $K : C[0,1]^* \to M_*$ such that $K^* = i \circ \tilde{T}$ (such operator exists since $i \circ \tilde{T}$ is weak* to weakly continuous); K is integral ([3]) and since M_* is a complemented subspace of its bidual M^* (see for instance [8]), K is strictly integral and therefore $L \circ K : C[0,1]^* \to E$ is strictly integral and by Proposition 3, $L \circ K$ (and hence $(L \circ K)^* = i \circ \tilde{T} \circ L^*$) is compact.

Let (U_n) be a bounded sequence in E^*. There exists a subsequence (U_{n_k}) so that $(i \circ \tilde{T} \circ L^*(U_{n_k}))_k$ is norm convergent in $C[0,1]^{**}$. Since i and I_E are isometries, we get that $(T \circ L^*(U_{n_k}))_k$ is norm convergent so

$$\lim_{k,m} \| T(L^*(U_{n_k}))^* - T(L^*(U_{n_m}))^* \| = 0.$$

As in [4], we get

$$\lim_{k,m} \langle T(L^*(U_{n_k}))^* - T(L^*(U_{n_m}))^*, U_{n_k} - U_{n_m} \rangle = \lim_{k,m} \| J \circ L^*(U_{n_k} - U_{n_m}) \|^2_{L^2(f)} = 0$$

which proves that $(J \circ L^*(U_{n_k}))_k$ is norm-convergent in $L^2(f)$. The proof is complete. \qed

Theorem 6. Let \mathcal{A} be a C^*-algebra, E be a Banach space and $0 < p < 1$. Every p-summing operator from \mathcal{A} into E is compact.

Proof. Let $T : \mathcal{A} \to E$ be an operator with $\pi_p(T) < \infty$. One can choose, by the Pietsch Factorization Theorem, a probability space (Ω, Σ, μ) such that

$$\xymatrix{ \mathcal{A} & E \\
 S & \tilde{\mathcal{T}} \ar^{i_p}[u] \ar^{\tilde{T}}[r] \\
 L^\infty(\mu) & L^p(\mu) \ar^j[u] \ar^{i_p}[u] \ar^{j_p}[u] }$$

where S is a subspace of $L^\infty(\mu)$, S_p is the closure of S in $L^p(\mu)$ and i_p is the restriction of the natural inclusion j_p.

Denote by S_1 the closure of S in $L^1(\mu)$, by i_1 the restriction of the natural inclusion and $i_{1,p}$ the natural inclusion of S_1 into S_p.

Claim: $\tilde{T} \circ i_{1,p} : S_1 \to E$ is weakly compact.

To see this, let $(f_n)_n$ be a bounded sequence in $S_1 \subset L^1(\mu)$. By Komlós’s Theorem, there exists a subsequence $(f_{n_k})_k$ and a function $f \in L^1(\mu)$ such that $\lim_{m \to \infty} \frac{1}{m} \sum_{k=1}^m f_{n_k}(\omega) = ...$
f(ω) for a.e. ω ∈ Ω. Since 0 < p < 1,
\[
\lim_{m \to \infty} \left\| \frac{1}{m} \sum_{k=1}^{m} f_{n_k} - f \right\|_p = 0.
\]
This shows that \(f \in S_p \) and \((\tilde{T} \circ i_{1,p} \left(\frac{1}{m} \sum_{k=1}^{m} f_{n_k} \right))_m \) converges to \(\tilde{T}(f) \) in \(E \) and the claim follows.

Using the factorization of weakly compact operator [1], \(i_{1,p} \circ \tilde{T} \) factors through a reflexive space and since \(i_1 \circ J \) is 1-summing, the theorem follows from Theorem 4.

4. Concluding remarks

Let us recall some definitions

Definition 7. Let \(X \) and \(Y \) be Banach spaces. An operator \(T : X \to Y \) is called Dunford-Pettis if \(T \) sends weakly compact sets into norm compact sets.

The following class of operators was introduced by Pisier in [3] as an extension of the \(p \)-summing operators in the setting of \(C^* \)-algebras.

Definition 8. Let \(A \) be a \(C^* \)-algebra and \(E \) be a Banach space, \(0 < p < \infty \). An operator \(T : A \to E \) is said to be \(p \)-\(C^* \)-summing if there exists a constant \(C \) such that for any finite sequence \((A_1, \ldots, A_n) \) of Hermitian elements of \(A \), one has
\[
\left(\sum_{i=1}^{n} \left\| T(A_i) \right\|_p \right)^{\frac{1}{p}} \leq C \left(\sum_{i=1}^{n} |A_i|^p \right)^{1/p} \left\| A \right\|_A.
\]

Let \(\mathcal{M} \) be a finite von Neumann algebra with a faithful tracial state \(\tau \) and let \(J \) be the canonical inclusion map from \(\mathcal{M} \) into \(L^1(\mathcal{M}, \tau) \). As in the commutative case, we have the following :

Proposition 9. Let \(E \) be a Banach space and \(T : L^1(\mathcal{M}, \tau) \to E \) a bounded linear map. Then the following are equivalent:

(i) \(T \) is Dunford-Pettis;

(ii) \(T \circ J \) is compact.

Proof. (i) \(\implies \) (ii) is trivial. For the converse, let \((a_n)_n \) be a weakly null sequence in the unit ball of \(L^1(\mathcal{M}, \tau) \). It is clear that \((a^*_n)_n \) is also weakly null so without loss of generality, we can
assume that \((a_n)_n\) is a sequence of self-adjoint operators. For each \(n \geq 1\), set \(a_n = \int_{-\infty}^{\infty} t \, d e_t^{(n)}\) the spectral decomposition of \(a_n\) and for every \(N \geq 1\), let
\[
p_{n,N} = \int_{-N}^{N} 1 \, d e_t^{(n)}.
\]
It is clear that for every \(n \geq 1\) and \(N \geq 1\),
\[
\tau(1 - p_{n,N}) = \tau\left(\int_{\{|t|>N\}} 1 \, d e_t^{(n)}\right) \leq \frac{1}{N} \tau(|a_n|).
\]
By the Akeman’s characterization of relatively weakly compact subset in \(L^1(\mathcal{M}, \tau)\) (see for instance [8] Theorem 5.4 p.149), we conclude that for any given \(\epsilon > 0\), there is \(N_0 \geq 1\) such that for every \(n \geq 1\), \(\|a_n(1 - p_{n,N_0})\| \leq \epsilon\). Moreover \((a_n p_{n,N_0})_n\) is a bounded sequence in \(\mathcal{M}\) and since \(T \circ J\) is compact, there is a compact subset \(K_\epsilon\) of \(E\) such that \(\{T(a_n); \, n \in \mathbb{N}\} \subset K_\epsilon + \epsilon B_E\). The proof is complete.

Fix a type \(II_1\) von Neumann algebra \(\mathcal{M}\) such that \(\mathcal{M}\) contains a complemented copy of a Hilbert space \(H\). The space \(H\) is reflexive (and therefore has (CRP)) but the projection map \(P\) from \(L^1(\mathcal{M}, \tau)\) onto \(H\) can not be Dunford-Pettis.

A very well known property of \(p\)-summing operators is that they are Dunford-Pettis. This is not the case for \(C^*\)-summing operators in general. By Proposition 9, \(P \circ J\) is not compact. We remark that the argument used in [7] requires only that the operator is \(C^*\)-summing and Dunford-Pettis hence since \(J\) is clearly \(C^*\)-summing and \(P \circ J\) is not compact, \(P \circ J\) should not be Dunford-Pettis.

Acknowledgments. The author wishes to express his thanks to Patrick Dowling for helpful discussions regarding this note.

References

[1] W. J. Davis, T. Figiel, W. B. Johnson, and A. Pelczyński, Factoring weakly compact operators, J. Funct. Anal. 17 (1974), 311–327.
[2] J. Diestel, Sequences and series in Banach spaces, first ed., Graduate Text in Mathematics, vol. 92, Springer Verlag, New York, (1984).
[3] J. Diestel, H. Jarchow, and A. Tonge, Absolutely summing operators, vol. 43, Cambridge University Press, (1995).
[4] J. Diestel and J.J. Uhl, Jr., Vector measures, Math Surveys, vol. 15, AMS, Providence, RI, (1977).
[5] R. V. Kadison and J. R. Ringrose, Fundamentals of the theory of operator algebras II, first ed., vol. 2, Academic Press, (1986).
[6] G. Pisier, *Grothendieck's theorem for non-commutative C*-algebras with appendix on Grothendieck's constants*, J. Funct. Anal. 29 (1978), 397–415.

[7] N. Randrianantoanina, *Absolutely summing operators on non-commutative C*-algebras and applications*, Houston J. Math. 25 (1999), 745–756.

[8] M. Takesaki, *Theory of operator algebras I*, Springer-Verlag, New York, Heidelberg, Berlin, (1979).

[9] M. Talagrand, *Pettis integral and measure theory*, Mem. Amer. Math. Soc. 51 ((1984)), 307.

Department of Mathematics and Statistics, Miami University, Oxford, Ohio 45056

E-mail address: randrin@muohio.edu