Comparative analysis of magnetized partially ionized copper, copper oxide–water and kerosene oil nanofluid flow with Cattaneo–Christov heat flux

Nomana Abid1, Muhammad Ramzan1,2, Jae Dong Chung2, Seifedine Kadry3 & Yu-Ming Chu4,5 *

This comparative analysis studies the impact of two different nanoparticles Copper and Copper Oxide in two different partially ionized magnetofluid (water and kerosene oil mixed with Copper/Copper Oxide) flows over a linearly stretching surface. The impacts of electrons and ions collisions in the presence of the Cattaneo-Christov heat transfer model are also investigated. The effects of prominent parameters on velocity and temperature fields are depicted through graphical illustrations. A similarity transformation procedure is applied to transform the nonlinear partial differential equations to the ordinary one. Our numerical methodology is based upon the Finite difference method that is the default method in the bvp4c built-in function of the MATLAB scheme. Nusselt number and Skin drag coefficient are computed numerically and presented in tabular form for both types of nanofluids over a linear stretched surface. Our results demonstrate that the effects of CuO are dominant in comparison to the Cu on fluid velocity. The fluid temperature is more prominent in the case of Cu-water nanofluid when we increase nanoparticles concentration.

List of symbols

Abbreviations
CC Cattaneo–Christov
Nu Local Nusselt number

Symbols
\( b, c \) Positive dimensional constants
\( C_x \) Skin friction coefficient in the \( x \)-direction (dimensionless)
\( C_y \) Skin friction coefficient in the \( y \)-direction (dimensionless)
\( C_p \) Specific heat capacity (\( J kg^{-1} K^{-1} \))
\( C_{pf} \) Specific heat capacity of fluid (–)
\( C_{pf} \) Specific heat capacity of nanofluid (–)
\( C_{pn} \) Specific heat capacity of nanoparticles (–)
\( f'(\eta) \) Dimensionless velocity in the \( x \)-direction
\( g'(\eta) \) Dimensionless velocity in the \( y \)-direction
\( Ha \) Hartmann number (Dimensionless)
\( k \) Thermal conductivity (\( W K^{-1} m^{-1} \))

1Department of Computer Science, Bahria University, Islamabad Campus, Islamabad 44000, Pakistan. 2Department of Mechanical Engineering, Sejong University, Seoul 143-747, Korea. 3Department of Mathematics and Computer Science, Faculty of Science, Beirut Arab University, Beirut 115020, Lebanon. 4Department of Mathematics, Huzhou University, Huzhou 313000, People’s Republic of China. 5Hunan Provincial Key Laboratory of Mathematical Modeling and Analysis in Engineering, Changsha University of Science and Technology, Changsha 410114, People’s Republic of China. *email: chuyuming@zjhu.edu.cn
Having high thermal conductivity as compared to liquids, solids are used as nanoparticles to enhance the thermal properties of the base fluids. Nanoparticles with size less than a hundred nanometers in the base fluid are the most conversed topic of today’s technological and engineering fields. Copper has been an important solid material to man since ancient times. Copper (Cu) is the oldest metal with ductile nature and has high thermal and electrical properties in comparison to other metals. At room temperature, the thermal conductivity of pure copper is 401 W/m·K, which shows that a one-meter copper sheet or wall can conduct heat at a rate of 401 W/m². Copper-oxide (CuO) is produced when the copper reacts with the oxygen. The metal oxides used as catalysts in photonic and electronic devices are significant technology materials. Cu has a pinkish-orange color whereas CuO arises as a black-brownish powder. Researchers have paid more attention to the study of Cu and Cu-based nanoparticles due to their innovative technological applications. CuO nanoparticles are used in a wide range of applications i.e., batteries, catalysis, magnetic storage media, gas sensors, semiconductors, and solar energy transformer. For diverse applications, several methods have been developed to produce Cu and CuO nanoparticles. Many researchers worked on the thermal conductivity of CuO nanoparticles for heat transfer applications. Lee et al. dispersed CuO nanoparticles of the size 30–80 nm in the base fluids and discovered that CuO nanofluids exhibited higher thermal conductivity in comparison to the model of Hamilton and Crosser, in which the size effect of nanoparticles was neglected. Bachok et al. studied the stagnation-point flow within the copper–water nanofluid past a stretching sheet. Hassnain et al. analyzed the comparative study of Cu/Ag-water and Cu/Ag-kerosene oil nanofluids over a stretching surface. They found that Cu/Ag-kerosene oil nanofluid has a high rate of heat transfer and skin friction as compared to Cu/Ag-water nanofluid. Hayat et al. investigated the rate of heat transfer in CuO-Ag water-based hybrid nanofluid past a linearly stretching surface. Some more nanofluid flows highlighting Cu–CuO amalgamation with base fluids may be found in.

The process of heat transport is basically the transmission of heat from the surface with high temperatures to the surface with low temperatures. Attention is paid to predicting the behavior of heat transport in numerous situations, owing to its significance in innumerable engineering applications, for example in the bio-medical sector for magnetic drug targeting, nuclear reactor cooling, and energy production. The law of heat conduction was first proposed by Fourier in 1822. This law provides a basic understanding of the heat transmission phenomenon and became the basis for learning on heat conduction in the next two centuries. However, the deficiency of this law was that during the heat transmission, any small disturbance is sensed immediately by the whole system which contradicts the causality principle. To tackle this deficiency, Cattaneo added a thermal time relaxation parameter.
Table 1. Literature survey for the uniqueness of the presented mode.

| Reference no. | 3D model | Cu/CuO-water/kerosene oil | Hall and ion slip |
|----------------|----------|--------------------------|------------------|
| 12             | ×        | √                        | ×                |
| 13             | ×        | √                        | ×                |
| 14             | ×        | √                        | ×                |
| 15             | ×        | √                        | ×                |
| 16             | ×        | √                        | ×                |
| Present        | √        | √                        | √                |

Mathematical modeling

We consider 3D Cu/CuO-water and Cu/CuO-kerosene oil partially ionized magnetized nanofluid flow over a horizontal stretching sheet within a constant magnetic field $B_0$ and CC heat flux. Magnetized partially ionized nanofluid is flowing with the velocity $V_w = \beta(x+y), c (x + y), 0$. The geometrical form of our problem is represented in Fig. 1. $T_s$ is the temperature at the surface and $T_a$ is the ambient temperature. The effects of viscous and ohmic dissipations are not taken into consideration. As current charges are in motion so there is no applied electric field. The high-velocity flow implies a very small Reynolds number and therefore we have neglected induced magnetic field. MHD (magnetohydrodynamic) equations for incompressible time-independent flow of Newtonian fluid comprising invariable properties are

$$\nabla \cdot V = 0, \quad (1)$$

$$\frac{\rho_{nf}}{dt} \frac{dV}{dt} = -\nabla P + \mu_{nf} \nabla^2 V + \rho_{nf} (J \times B), \quad (2)$$

$$\nabla \cdot B = 0, \nabla \times E = \frac{\partial B}{\partial t}, \nabla \times B = \mu_0 J,$$
Equations (1) and (2) are the continuity, momentum equations and we get energy Eq. (5) using CC heat flux model. Invoking boundary layer approximations for 3D incompressible steady fluid flow, above Eqs. (1), (2), and (5) reduce to

\[
\begin{align*}
J & = \sigma_{nf} \left[ \frac{\beta_H B_0}{|B|^2} (J \times B) - \frac{\beta_H}{|B|} (J \times B) + (E + V \times B) \right], \\
q + \tau_0 \left( \frac{\partial q}{\partial t} + (\nabla \cdot q) + V \cdot \nabla q - q \nabla V \right) & = -\kappa_{nf} \nabla T, \\
(\rho C_p)_{nf} \frac{dT}{dt} + \tau_0 \{V \nabla (V \cdot \nabla T)\} & = \kappa_{nf} \nabla^2 T + \frac{1}{\sigma_{nf}} JJ.
\end{align*}
\]

Equations (1) and (2) are the continuity, momentum equations and we get energy Eq. (5) using CC heat flux model Eq. (4). Invoking boundary layer approximations for 3D incompressible steady fluid flow, above Eqs. (1), (2), and (5) reduce to

\[
\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0,
\]

\[
\rho_{nf} \left( \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z} \right) = \mu_{nf} \frac{\partial^2 u}{\partial z^2} - \frac{\sigma_{nf} B_0^2}{(1 + \beta_H \beta_i)^2 + \beta_H^2} [(1 + \beta_H \beta_i) u - \beta_H v],
\]

\[
\rho_{nf} \left( \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + w \frac{\partial v}{\partial z} \right) = \mu_{nf} \frac{\partial^2 v}{\partial z^2} - \frac{\sigma_{nf} B_0^2}{(1 + \beta_H \beta_i)^2 + \beta_H^2} [(1 + \beta_H \beta_i) v + \beta_H u],
\]

\[
(\rho C_p)_{nf} \left( \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} + w \frac{\partial T}{\partial z} \right)
+ \tau_0 \left\{ \frac{u^2 \partial^2 T}{\partial x^2} + v^2 \frac{\partial^2 T}{\partial y^2} + w^2 \frac{\partial^2 T}{\partial z^2} + 2uv \frac{\partial^2 T}{\partial x \partial y} + 2vw \frac{\partial^2 T}{\partial x \partial z} + 2wu \frac{\partial^2 T}{\partial y \partial z} \right\}
\]

\[
= \kappa_{nf} \frac{\partial^2 T}{\partial z^2}.
\]

The following BC's are used to interpret the above problem

\[
\begin{align*}
u & = b(x + y), v = c(x + y), w = 0, T = T_w \text{ at } z = 0, \\
u & \to 0, v \to 0, w = 0, T \to T_{\infty} \text{ as } z \to \infty.
\end{align*}
\]

Table 2 represents the mathematical forms of density, heat capacity, dynamic viscosity, kinematic viscosity, thermal conductivity, and electrical thermal conductivity. Table 3 depicts the thermophysical features of the involved base fluids i.e., water, kerosene oil, and the nanoparticles i.e., copper & copper oxide.
\[ ρ_0 = ρ_0' + (1 - φ)ρ_f \]

Heat capacity

\[ (ρC_P)_0 = φ(ρC_P)_f + (1 - φ)(ρC_P)_i \]

Dynamic viscosity

\[ μ_0 = \frac{μ_1}{1 - φ} \]

Kinematic viscosity

\[ ν_0 = \frac{μ_1}{ρ_1} \]

Thermal conductivity

\[ α_0 = \frac{k_0 + 2λ_0(β_0 - β)}{k_0 + λ_0(β_0 - β)} \]

Table 2. The models for nanoluid thermophysical properties.

| Thermophysical properties | ρ (kg m⁻³) | Cₚ (J kg⁻¹ K⁻¹) | k (W m⁻¹ K⁻¹) | α (s m⁻¹) |
|---------------------------|------------|-----------------|---------------|------------|
| Cu                        | 8933       | 385             | 601           | 5.96 × 10⁻⁷ |
| CuO                       | 6500       | 540             | 18            | 2.7 × 10⁻⁸  |
| Water                     | 997.1      | 4179            | 0.13          | 5.5 × 10⁻⁵  |
| Kerosene oil              | 783        | 2090            | 0.15          | 21 × 10⁻⁵   |

Table 3. Mathematical values of thermal properties of Cu, CuO, water, and kerosene oil.

**Similarity transformations**

To convert a highly nonlinear dimensionless system of equations into an ordinary linear non-dimensional system of equations, the change of variables is given as

\[ u = b(x + y)f'(η), \quad v = b(x + y)g'(η), \quad η = \left(\frac{b}{νf}\right)^{1/2}z, \]

\[ w = -\left(\frac{b}{νf}\right)^{1/2}[f(η) + g(η)], \quad T = (T_w - T_∞)θ(η) + T_∞. \]  

Using the above change of variables, the continuity equation is trivially satisfied, and Eqs. (7)–(10) take the form

\[ \frac{1}{φ_1}f'''(η) + f''(η)[f(η) + g(η)] = f'(η)[f'(η) + g'(η)] \]

\[ + (Ha)^2 \left(\frac{φ_2}{φ_1}\right) \left\{ \frac{1 + β_Hβ_I f'(η) - β_Hg'(η)}{(1 + β_Hβ_I)^2 + β_H^2} \right\}, \]  

\[ \frac{1}{φ_1}g'''(η) + g''(η)[f(η) + g(η)] = g'(η)[f'(η) + g'(η)] \]

\[ + (Ha)^2 \left(\frac{φ_2}{φ_1}\right) \left\{ \frac{1 + β_Hβ_I g'(η) + β_Hf'(η)}{(1 + β_Hβ_I)^2 + β_H^2} \right\}, \]

\[ \frac{1}{k_{nf}} \frac{θ''(η)}{k_f} = Pr \left[ \gamma' \left\{ \frac{(f(η) + g(η))^2θ''(η)}{+(f(η) + g(η))(f'(η) + g'(η))θ'(η)} \right\} \right. \]

with transformed BC's

\[ f'(0) = 1, f(0) = 0, g'(0) = 0, g(0) = 0, θ(0) = 1 \quad \text{at} \quad η = 0, \]

\[ f'(∞) \to 0, g'(∞) \to 0, θ(∞) \to 0 \quad \text{as} \quad η \to ∞ \]

where
Here, prime denotes the partial derivative with respect to $\eta$. The expressions for the non-dimensional parameters (given in Eqs. (12)–(15)) are:

$$\phi_1 = (1 - \phi)^{2.5} \left(1 + \phi - \phi \frac{\rho_n}{\rho_f}\right),$$

$$\phi_2 = (1 - \phi)^{2.5} \left\{1 + \frac{3}{2} \frac{\sigma_n}{\sigma_f} - 1 \phi \right\},$$

$$\phi_3 = \left(1 + \phi - \phi \frac{(\rho C_p)\mu}{(\rho C_p)\mu_f}\right).$$ (16)

Here, prime denotes the partial derivative with respect to $\eta$. The expressions for the non-dimensional parameters (given in Eqs. (12)–(15)) are:

$$a = \frac{c}{b}, \quad Ha = \sqrt{\frac{\sigma_{nf} B_0^2}{b \rho_f}}, \quad Pr = \frac{\mu_f (C_p)_{f}}{k_f}, \quad \gamma = \tau_0 b.$$ (17)

Mathematically, dimensional forms of Skin drag coefficient and Nusselt number are:

$$C_x = \frac{\tau_{xz}}{\rho_f u^2}, \quad C_y = \frac{\tau_{zy}}{\rho_f v^2}, \quad Nu_x = \frac{(x + y) q_w}{k_f (T_w - T_\infty)},$$

$$\tau_{xz} = \mu_{nf} (u_x + w_x)_{z=0}, \quad \tau_{zy} = \mu_{nf} (v_x + w_y)_{z=0}.$$ (18)

Implementing Eq. (11), we get a non-dimensional form of Nusselt and Skin drag coefficient given in Eq. (18) as:
where \( Re_x \) and \( Re_y \) is the local Reynolds number given as

\[
\begin{align*}
(Re_x)^{0.5} C_x &= \frac{1}{\phi_1} f''(0), \\
(Re_y)^{0.5} C_y &= \frac{1}{\phi_1} g''(0), \\
(Re_x)^{0.5} \theta_x &= \frac{k_{nf}}{k_f} (0),
\end{align*}
\]

(19)

where \( Re_x \) and \( Re_y \) is the local Reynolds number given as

\[
Re_x = \frac{c(x+y)}{v_f}, \quad Re_y = \frac{c(x+y)}{v_f}.
\]

(20)

**Solution methodology**

For non-linear systems of ODEs (Eqs. 12–14) with boundary conditions (Eq. 16), the Finite-difference default method of bvp4c built-in function of MATLAB scheme is implemented which is fourth-order accurate and 0.01 grid size is taken with the tolerance \( 10^{-6} \). Using the following numerical code, we get ODEs with order one.

\[
y(1) = f(\eta), \\
y(2) = f'(\eta), \\
y(3) = f''(\eta), \\
f'''(\eta) = y'(3) = y''(1) = \phi_1 \left[ \left\{ y(2) + y(5) \right\} y(2) - \left\{ y(1) + y(4) \right\} y(3) + \left( \frac{\phi_2}{\phi_1} \right) (Ha)^2 \left\{ \frac{(1 + \beta_H \beta_i) y(2) - \beta_H y(5)}{(1 + \beta_H \beta_i)^2 + \beta_H^2} \right\} \right].
\]

(21)
Results and discussion

The heat transfer effects of Cu and CuO nanoparticles in water and kerosene oil based partially ionized magnetized nanofluids in the presence of CC heat flux model are analyzed theoretically. The mathematical system of equations is solved via numerical default method of bvp4c built-in function of the MATLAB scheme which is a fourth-order accurate method. The different effects are simulated numerically and presented in both

\begin{align}
  y(4) &= g(\eta), \\
  y(5) &= g'(\eta), \\
  y(6) &= g''(\eta), \\
  g''(\eta) &= y'(6) = yy(2) = \phi_1 \left[ \left\{ y(2) + y(5) \right\} y(5) - \left\{ y(1) + y(4) \right\} y(6) \right] + \left( \frac{\phi_2}{\phi_1} \right) (Ha)^2 \left\{ \frac{(1 + \beta_H \beta_i) y(5) + \beta_H y(2)}{(1 + \beta_H \beta_i)^2 + \beta_H^2} \right\}, \\
  y(7) &= \theta(\eta), \\
  y(8) &= \theta'(\eta), \\
  g''(\eta) &= y'(6) = yy(3) = \frac{Pr \left[ y \left\{ y(1) + y(4) \right\} \left\{ y(2) + y(5) \right\} y(8) \right]}{1 - \frac{\mu}{\mu_f} - Pr \gamma \left\{ y(1) + y(4) \right\}^2},
\end{align}

with the boundary conditions

\begin{align}
  y_0(2) = 1, y_0(5) = a, y_0(1) = 0, y_0(4) = 0, y_0(7) = 1, \\
  y_{\infty}(2) = 0, y_{\infty}(5) = 0, y_{\infty}(7) = 0.
\end{align}

Figure 4. (a,b) Variations of ion slip parameter $\beta_i$ on velocity in x- and y-direction.
graphical and tabular forms. Fluid flows in both x- and y-directions, shear stresses, and rate of heat transfer at the wall are investigated under some prominent physical parameters. The parameters used in this analysis are $a = 0.5$, $Pr = 7$, $\phi = 0.01$, $\gamma = 0.5$, $Ha = 0.8$, $\beta_i = 0.5$, $\beta_H = 0.3$.

Figure 5. (a,b) Variations of nanoparticle volume fraction $\phi$ on velocity in x- and y-direction.

Figure 6. Variations of stretching rate $a$ on fluid temperature.
Flow behavior of copper and copper-based partially ionized water and kerosene oil nanofluids. The impacts of stretching ratio parameter ($a$), Hall parameter ($\beta_H = \omega_H \tau_H$), ion slip parameter ($\beta_i = \omega_i \tau_i$), and nanoparticles volume fraction ($\phi$) on fluid velocity in $x$- and $y$-directions are presented graphically in Figs. 2, 3, 4, 5. Figure 2a,b show the variations of $(a = c/b)$ on $x$- and $y$-velocity components which are the ratio between the rate of stretching surface $c$ in the $y$-direction and the rate of stretching $d$ in the $x$-direction.

Figure 7. Variations of Hall parameter $\beta_H$ on fluid temperature.

Figure 8. Variations of ion slip parameter $\beta_i$ on fluid temperature.

Figure 9. Variations of nanoparticle volume fraction $\phi$ on fluid temperature.
The behavior of CuO-water nanofluid > CuO-kerosene oil nanofluid > Cu-water nanofluid > Cu-kerosene oil nanofluid. In Figs. 3a,b, the x-component of velocity enhances due to increment in ($\beta_H$) and y-component of velocity falls. The behavior of $\beta_i$ on x- and y-velocity components are drawn in Fig. 4a,b. The fluid velocity in both x- and y- directions is noted to increase with the augmentation in the ion slip parameter. It is also observed that the effect of ($\beta_H$) on x-velocity component is analogous to the ($\beta_H$) on the x-velocity component of the partially ionized fluid. Since an enhancement in the fluid motion is noted due to time collision of ions ($\tau_i$) or ions frequency ($\omega_i$) caused by an increment in ion slip parameter, hence, velocity increases. Figure 5a,b depict the decreasing behavior of momentum transport in both directions for the high volume of Cu and CuO nanoparticles. As high nanoparticle concentration causes a gradual decrease in a fluid motion. Thus, the velocity decreases. It is again noted that whenever velocity increases, the partially ionized fluid velocity of CuO-water nanofluid is higher than the other nanofluids, the same as discussed for Fig. 2. And, whenever velocity falls, a large decay in fluid velocity is observed in the case of Cu-kerosene oil nanofluid such that the velocity of Cu-kerosene oil nanofluid < Cu-water nanofluid < CuO-kerosene oil nanofluid < CuO-water nanofluid (Figs. 2a, 3b, 5a,b).

Dynamics of heat transfer. The impacts of the stretching ratio parameter ($\alpha$), Hall parameter ($\beta_H = \omega_H \tau_H$), Ion slip parameter ($\beta_i$), nanoparticles volume fraction ($\phi$), and thermal time relaxation parameter ($\gamma$) on partially the ionized fluid temperature in x- and y-direction for linear stretching surface are presented graphically in Figs. 6, 7, 8, 9, 10. Figure 6 shows the decreasing trend of stretching ratio parameter on fluid temperature. It is noted that temperature variations are higher for Cu-water and Cu-kerosene oil nanofluids than the CuO-water and CuO-kerosene oil nanofluids. In Figs. 7 and 8, the influence of the Hall and Ion slip parameter is simulated on partially ionized fluid temperature. An increment in these parameters has a decreasing trend on the partially ionized fluid temperature in case of $\beta_i$, whereas the increasing trend in case of $\beta_H$. The dynamics of fluid temperature for nanoparticles volume fraction $\phi$ are illustrated in Fig. 9. Two different types of nanoparticles are dispersed in the two different types of partially ionized liquids. The thermal conductivity effectiveness is increased due to nanoparticle dispersion in the mixture. The greater effective thermal conductivity is noted for the mixture of Cu-nanoparticles and base fluid water as compared to other partially ionized nanofluids (Cu-kerosene oil, CuO-water/kerosene oil partially ionized nanofluids). Thus, it is concluded that the dispersion of CuO-nanoparticles in fluid other than in partially ionized fluid is recommended for greater thermal conductance. The observations for partially ionized fluid temperature under the variations of thermal time relaxation parameter $\gamma$ are sketched in Fig. 10. Partially ionized nanofluid temperature is reduced under the higher values of $\gamma$. Besides, the zero thermal relaxation time narrates to traditional Fourier’s law, so this can be deduced that the temperature is smaller than the classical Fourier’s model. It is observed under the effects of prominent parameters that the temperature is highest when Cu-nanoparticles are dispersed in the partially ionized water-base fluid than the other three given partially ionized nanofluids.

Normalized shear stresses and heat flux at the wall. In this part, the effects of different parameters on the rate of heat transfer and skin drag are presented in a tabular form. Numerical values for heat flux and skin drag are tabulated in Table 4 for two types of partially ionized fluids (water and kerosene oil) verses two types of nanoparticles volume fraction $\phi$, Hartmann number $Ha$, thermal time relaxation parameter $\gamma$, Hall and ion slip parameters $\beta_H$ and $\beta_i$, and stretching ratio parameter $\alpha$. It is observed that shear stress at the wall in x-direction decreases with the increment in Hall parameter while shear stress at the wall is increased by augmentation in the ion slip parameter. However, shear stress at the wall in y-direction decreases with augmentation in the Hall parameter, whereas shear stress at the wall is increased with the increment in the ion slip parameter. The heat flux at the wall is increased when $\beta_i$ is increased. A slight increase in wall heat flux can be seen from numerical.
| $\phi$ | $Ha$ | $\gamma$ | $\beta_H$ | $\beta_I$ | $a$ | Water (Cu) | CuO (CuO) | Water (Cu) | CuO (CuO) |
|------|-----|-------|--------|--------|-----|------------|---------|------------|---------|
|      |     |       |        |        |     |            |         |            |         |
| 0.01 |     |       |        |        |     | -1.3478952 | -1.3612856 | -1.3290680 | -1.3468623 |
| 0.02 |     |       |        |        |     | -1.2809354 | -1.3045165 | -1.2483745 | -1.2790191 |
| 0.03 |     |       |        |        |     | -1.2209122 | -1.2522615 | -1.1782113 | -1.2180605 |
| 0.01 | 0.1 |       |        |        |     | -1.1690065 | -1.1815156 | -1.1558839 | -1.1716080 |
| 0.1  |     |       |        |        |     | -1.1931705 | -1.2065709 | -1.1792828 | -1.1960799 |
| 0.5  |     |       |        |        |     | -1.2399456 | -1.2528109 | -1.2240452 | -1.2411975 |
| 0.8  | 0.1 |       |        |        |     | -1.3478952 | -1.3612856 | -1.3290680 | -1.3471201 |
| 0.3  |     |       |        |        |     | -1.3478952 | -1.3612856 | -1.3290680 | -1.3471201 |
| 0.5  | 0.1 |       |        |        |     | -1.3652991 | -1.3787380 | -1.3468623 | -1.3639729 |
| 0.2  |     |       |        |        |     | -1.3659952 | -1.3612856 | -1.3290680 | -1.3468623 |
| 0.5  | 0.1 |       |        |        |     | -1.3670789 | -1.3609839 | -1.3264790 | -1.3443249 |
| 0.3  |     |       |        |        |     | -1.3573755 | -1.3671276 | -1.3347209 | -1.3526666 |
| 0.5  | 0.1 |       |        |        |     | -1.3478952 | -1.3612856 | -1.3290680 | -1.3468623 |
| 0.5  | 0.1 |       |        |        |     | -1.3602333 | -1.3736169 | -1.3410002 | -1.3589029 |
|      |     |       |        |        |     | -1.3609333 | -0.6161330 | -0.6020764 | -0.6105802 |
| 0.5  | 0.1 |       |        |        |     | -0.6529924 | -0.6596954 | -0.6442662 | -0.6531216 |
| 0.8  | 0.1 |       |        |        |     | -0.7481555 | -0.7549908 | -0.7366010 | -0.7463125 |
| 0.3  |     |       |        |        |     | -0.7481555 | -0.7549908 | -0.7366010 | -0.7463125 |
| 0.5  |     |       |        |        |     | -0.7481555 | -0.7549908 | -0.7366010 | -0.7463125 |
| 0.5  | 0.1 |       |        |        |     | -0.7094796 | -0.7162494 | -0.6990055 | -0.7083001 |
| 0.3  |     |       |        |        |     | -0.7481555 | -0.7549908 | -0.7366010 | -0.7463125 |
| 0.5  | 0.1 |       |        |        |     | -0.8043621 | -0.8113016 | -0.7911882 | -0.8013409 |
| 0.3  | 0.1 |       |        |        |     | -0.7690649 | -0.7753929 | -0.7569085 | -0.7667223 |
| 0.5  |     |       |        |        |     | -0.7578884 | -0.7647415 | -0.7460530 | -0.7557598 |
| 0.5  | 0.1 |       |        |        |     | -0.7481555 | -0.7549908 | -0.7366010 | -0.7462150 |
| 0.3  |     |       |        |        |     | -0.1887964 | -0.1900994 | -0.1851113 | -0.1873405 |
| 0.3  |     |       |        |        |     | -0.4546673 | -0.4585576 | -0.4471607 | -0.4529255 |
| 0.5  |     |       |        |        |     | -0.7481554 | -0.7549908 | -0.7366010 | -0.7462150 |
|      |     |       |        |        |     | -0.7696838 | -0.8281397 | -0.7633379 | -0.8559182 |
| 0.3  |     |       |        |        |     | -0.7698358 | -0.8281397 | -0.7633379 | -0.8559182 |
| 0.5  |     |       |        |        |     | -0.7455669 | -0.6241706 | -0.6199810 | -0.6241706 |
| 0.3  | 0.1 |       |        |        |     | -0.7535557 | -0.6386130 | -0.6323481 | -0.6692995 |
| 0.3  |     |       |        |        |     | -0.7582256 | -0.6955089 | -0.7345348 | -0.7254290 |
| 0.5  |     |       |        |        |     | -0.7625940 | -0.7461081 | -0.7390291 | -0.7753202 |
| 0.5  | 0.1 |       |        |        |     | 6.5115554 | 5.3488811 | 6.2276550 | 5.3753412 |

Continued
results by increasing the thermal time relaxation parameter $\gamma$. Skin friction (both in x- and y-direction) and heat flux at the wall have an increasing trend when the dispersion of nanoparticles is increased.

**Conclusion**

Three-dimensional comparative heat transfer analysis of two different partially ionized fluids (water and kerosene oil) using two different nanoparticles (Cu and CuO) over a three-dimensional stretching sheet is studied theoretically. The present theoretical study has depicted that the effects of Cu-nanoparticles are more significant than the CuO-nanoparticles on temperature of partially ionized nanofluid. It is important to mention that the temperature is highest under the effects of prominent parameters when Cu-nanoparticles are dispersed in the partially ionized water base fluid than the other three given partially ionized nanofluids. It is again noted that whenever velocity increases, the partially ionized fluid velocity of CuO-water nanofluid is higher than the other nanofluids and whenever velocity falls, a large decay in fluid velocity is observed in the case of Cu-kerosene oil nanofluid. The impact of Hall parameter $\beta_H$ on velocity field in the y-direction is more significant as compared to the velocity field in x-direction. The greater effective thermal conductivity is noted for Cu-water partially ionized nanofluid as compared to other given partially ionized nanofluids (Cu-kerosene oil, CuO-water/kerosene oil partially ionized nanofluids). Thus, it is concluded that the dispersion of CuO-nanoparticles in base fluid kerosene oil other than in partially ionized water fluid is recommended for greater thermal conductance.

Received: 29 March 2020; Accepted: 7 October 2020
Published online: 09 November 2020

**References**

1. Vijaya Kumar, R., Elgamiel, R., Diamant, Y., Gedanken, A. & Norwig, J. Sonocohmochemical preparation and characterization of nanocrystalline copper oxide embedded in poly (vinyl alcohol) and its effect on crystal growth of copper oxide. *Langmuir*. **17**, 1406–1410 (2001).
2. Zhang, Y., et al. CuO shuttle-like nanocrystals synthesized by oriented attachment. *J. Cryst. Growth*. **291**, 196–201 (2006).
3. Ison, W., Jinkai, Y., Jiqquan, S. & Ying, B. Synthesis of copper oxide nanomaterials and the growth mechanism of copper oxide nanorods. *Mater. Des.* **25**, 625–629 (2004).
4. Abboud, Y., et al. Biosynthesis, characterization and antimicrobial activity of copper oxide nanoparticles (CONPs) produced using brown alga extract (*Bifurcaria bifurcata*). *Appl. Nanosci.* **4**, 571–576 (2014).
5. Ramanathan, R., Bhargava, S.K. & Bansal, V. Biological synthesis of copper/copper oxide nanoparticles. *in Chemeca 2011: Engineering a Better World: Sydney Hilton Hotel, NSW, Australia, 18–21 September 2011*, 1991 (2011).
6. Singh, J., Kaur, G. & Rawat, M. A brief review on synthesis and characterization of copper oxide nanoparticles and its applications. *J. Bioelectro. Nanotechnol* **1** (2016).
7. Lee, S., Choi, S.S., Li, S.A. & Eastman, J.A. Measuring thermal conductivity of fluids containing oxide nanoparticles. *121*(2), 280–289 (1999).
8. Hamilton, R. L. & Crosser, O. K. Thermal conductivity of heterogeneous two-component systems. *Ind. Eng. Chem. Fundam.* **1**, 187–191 (1962).
9. Bachok, N., Ishak, A., Nazar, R. & Senu, N. Stagnation-point flow over a permeable stretching/shrinking sheet in a copper-water nanofluid. *Bound. Value Prob.* **2013**, 39 (2013).
10. Hussain, S. T., Nadeem, S. & Haq, R. U. Model-based analysis of micropolar nanofluid flow over a stretching surface. *Eur. Phys. J. Plus*. **129**, 161 (2014).
11. Hayat, T. & Nadeem, S. Heat transfer enhancement with Ag–CuO/water hybrid nanofluid. *Results Phys.* **7**, 2317–2324 (2017).
12. Iqbal, Z., Akbar, N. S., Azhar, E. & Maraj, E. N. Performance of hybrid nanofluid (Cu–CuO/water) on MHD rotating transport in oscillating vertical channel inspired by Hall current and thermal radiation. *Alex. Eng. J.* **57**, 1943–1954 (2018).
13. Liu, M., Lin, M. C. & Wang, C. Enhancements of thermal conductivities with Cu, CuO, and carbon nanotubes in nanofluid applications. *J. Therm. Eng. Res. Lett. 6*, 1–13 (2011).
14. Uddin, M. J. & Rasel, S. K. Numerical analysis of natural convective heat transport of copper oxide-water nanofluid flow inside a quadrilateral vessel. *Helbyon 5*, e01757 (2019).
15. Ahmed, N., et al. Nonlinear thermal radiation and chemical reaction effects on a (Cu–CuO)/NaAlg hybrid nanofluid flow past a stretching curved surface. *Processes 7*, 962 (2019).
16. Ahmad, S., Ijaz Khan, M., Hayat, T. & Alsaedi, A. Numerical analysis of copper-water and copper-oxide-water nanofluid flow over a stretching sheet. *Int. J. Mod. Phys. B* **34**, 2050130 (2020).
17. Fourier, J.B.J. *Théorie analytique de la chaleur*. F. Didot (1822).
18. Cattaneo, C. Sulla conduzione del calore. *Atti Sem. Mat. Fis. Univ. Modena* **3**, 83–101 (1948).
19. Christov, C. I. On frame indifferent formulation of the Maxwell-Cattaneo model of finite-speed heat conduction. *Mech. Res. Commun.* **36**, 481–486 (2009).
20. Oldroyd, J. G. On the formulation of rheological equations of state. *Proc. R. Soc. Lond. Ser. A. Math. Phys. Sci.* **200**, 523–541 (1950).
21. Tibullo, V. & Zampoli, V. A uniqueness result for the Cattaneo-Christov heat conduction model applied to incompressible fluids. *Mech. Res. Commun.* **38**, 77–79 (2011).
22. Sha, Z. et al. Hall effect on couple stress 3D nanofluid flow over an exponentially stretched surface with Cattaneo Christov heat flux model. *IEEE Access* **7**, 64844–64855 (2019).
23. Shah, Z. et al. Cattaneo-Christov model for electrical magnetite micropoler Casson ferrofluid over a stretching/shrinking sheet using effective thermal conductivity model. *Case Stud. Therm. Eng.* **13**, 100352 (2019).

**Table 4.** Numerical analysis of Surface drag and Nusselt number for a linearly stretching sheet.

| $\phi$ | $Ha$ | $\beta$ | $\beta_H$ | $a$ | Cu | CuO | Cu | CuO |
|---|---|---|---|---|---|---|---|---|
| 0.3 | 7.08742720 | 6.08678460 | 6.82890480 | 6.10761100 |
| 0.5 | 7.62570480 | 6.74610810 | 7.39028910 | 6.77532020 |
24. Ahmad, M. W. et al. Darcy–Forchheimer MHD couple stress 3D nanofluid over an exponentially stretching sheet through Cattaneo–Christov convective heat flux with zero nanoparticles mass flux conditions. *Entropy* **21**, 867 (2019).
25. Rasool, G. & Zhang, T. Darcy–Forchheimer nanofluidic flow manifested with Cattaneo–Christov theory of heat and mass flux over non-linearly stretching surface. *PloS ONE* **14**, e0221302 (2019).
26. Summarraya, N. & Zaib, A. Steady flow of Williamson nanoliquid past heated stretched surface with Cattaneo–Christov heat flux. in 2019 2nd International Conference on Computing, Mathematics Engineering Technology (iCoMET) 1–9 (IEEE, 2019).
27. Ramzan, M., Bilal, M. & Chung, J. D. Influence of homogeneous–heterogeneous reactions on MHD 3D Maxwell fluid flow with Cattaneo–Christov heat flux and convective boundary condition. *J. Mol. Liq.* **230**, 415–422 (2017).
28. Nawaz, M., Saleem, S. & Rana, S. Computational study of chemical reactions during heat and mass transfer in magnetized partially ionized nanofluid. *J. Braz. Soc. Mech. Sci. Eng.* **41**, 326 (2019).
29. Qureshi, I. H., Nawaz, M. & Shahzad, A. Numerical study of dispersion of nanoparticles in magnetohydrodynamic liquid with Hall and ion slip currents. *AIP Adv.* **9**, 025219 (2019).
30. Nazir, U., Nawaz, M., Alqarni, M. M. & Saleem, S. Finite element study of flow of partially ionized fluid containing nanoparticles. *Arab. J. Sci. Eng.* **44**, 10257–10268 (2019).
31. Nawaz, M. & Nazir, U. An enhancement in thermal performance of partially ionized fluid due to hybrid nano-structures exposed to magnetic field. *AIP Adv.* **9**, 085024 (2019).
32. Hayat, T., Kiran, A., Imtiaz, M. & Alsaedi, A. Hydromagnetic mixed convection flow of copper and silver water nanofluids due to a curved stretching sheet. *Results. Phys.* **6**, 904–910 (2016).
33. Ali, F., Khan, I., Sheikh, N. A., Gohar, M. & Tili, I. Effects of different shaped nanoparticles on the performance of engine-oil and kerosene-oil: A generalized Brinkman-type fluid model with non-singular kernel. *Sci. Rep.* **8**, 1–13 (2018).
34. Sheikholeslami, M. Numerical investigation for CuO-H2O nanofluid flow in a porous channel with magnetic field using mesoscopic method. *J. Mol. Liq.* **249**, 739–746 (2018).
35. Lu, D., Li, Z., Ramzan, M., Shafee, A. & Chung, J. D. Unsteady squeezing carbon nanotubes based nano-liquid flow with Cattaneo–Christov heat flux and homogeneous–heterogeneous reactions. *Appl. Nanosci.* **9**, 169–178 (2019).
36. Khan, J. A., Mustafa, M., Hayat, T. & Alsaedi, A. On three-dimensional flow and heat transfer over a non-linearly stretching sheet: analytical and numerical solutions. *PloS ONE* **9**, e107287 (2014).
37. Tiwari, R. K. & Das, M. K. Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids. *Int. J. Heat. Mass. Transf.* **50**, 2002–2018 (2007).
38. Aghamajidi, M., Yazdi, M., Dinavard, S. & Pop, I. Tiwari-Das nanofluid model for magnetohydrodynamics (MHD) natural-convective flow of a nanofluid adjacent to a spinning down-pointing vertical cone. *Propuls. Power. Res.* **7**, 78–90 (2018).

### Acknowledgements

This work was supported by Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government (MOTIE) (20202020900060, The Development and Application of Operational Technology in Smart Farm Utilizing Waste Heat from Particulates Reduced Smokestack).

### Author contributions

N.A. did software work and wrote the manuscript, M.R. conceived the idea of this manuscript, N.A., Y.M.C. and S.K revised the manuscript, J.D.C. did the numerical part vetting and arranged the funds.

### Competing interests

The authors declare no competing interests.

### Additional information

**Correspondence** and requests for materials should be addressed to Y.-M.C.

**Reprints and permissions information** is available at [www.nature.com/reprints](http://www.nature.com/reprints).

**Publisher’s note** Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

---

**Open Access** This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit [http://creativecommons.org/licenses/by/4.0/](http://creativecommons.org/licenses/by/4.0/).

© The Author(s) 2020