Performance Comparison of Hybrid Neuro-Fuzzy Models using Meta-Heuristic Algorithms for Short-Term Wind Speed Forecasting

Emrah Dokur1, Uğur Yüzgeç2, Mehmet Kurban1

1Department of Electrical and Electronics Engineering, Energy Technology Application and Research Center, Bilecik Şeyh Edebali University, Bilecik, Turkey
2Department of Computer Engineering, Bilecik Şeyh Edebali University, Bilecik, Turkey

Cite this article as: E. Dokur, U. Yüzgeç, M. Kurban, "Performance Comparison of Hybrid Neuro-fuzzy Models using Meta-heuristic Algorithms for Short-term Wind Speed Forecasting" Electrica, vol. 21, no. 3, pp. 305-321, Sep. 2021.

ABSTRACT

In this paper, short-term wind speed forecasting models have been developed using neuro-fuzzy systems. The optimal neuro-fuzzy model has been investigated in detail. In addition, meta-heuristic algorithms, such as artificial bee colony differential evolution genetic algorithm and particle swarm optimization for training adaptive neuro-fuzzy inference systems parameters have been used in this study. This is a novel study, as four different meta-heuristic approaches are used to determine the appropriate adaptive neuro-fuzzy inference systems model parameters for short-term wind speed estimation, and analyzed comparatively. To validate the effectiveness of the proposed approach, wind speed series collected from a wind observation station located in Turkey are used in the short-term wind speed forecasting. In the first step, the results of analysis for finding the accurate model revealed that the optimal model that is proposed is adaptive neuro-fuzzy inference systems architecture. The meta-heuristic algorithms used in the optimization of adaptive neuro-fuzzy inference systems model parameters are then independently run 10 times, and the performance results are calculated statistically for the training and test phases of the adaptive neuro-fuzzy inference systems model. The results of the study clearly show that the adaptive neuro-fuzzy inference systems-particle swarm optimization hybrid model has the best performance in the training aspect, but it is observed that the ANFIS-differential evolution hybrid model gives better results than the others in the test step.

Index Terms—Artificial intelligence, forecasting, neuro-fuzzy, meta-heuristic algorithms, wind energy.

I. INTRODUCTION

In today’s globalized world, energy is an indispensable part of human life, in parallel with industrial development and socio-economic progress. The alarming changes in climate and the increasing population have led to growing demands to gradually reduce emissions from energy generation processes, from the environmental perspective. The production of electrical energy from renewable energy sources offers a way for significant reduction of these emissions.

Wind energy, one of the most important renewable energy sources, has great interest worldwide. According to the Global Wind Energy Council (GWEC), total installations of global wind power in 2017 were 52.492 MW, bringing the global total to 539.123 MW [1]. As of the end of 2017, Asia and Europe have the highest total installed capacity, with 228.684 MW and 177.506 MW, respectively. In terms of countries, China and the United States constitute approximately 52% of the total installed wind power in the world. In 2017, Turkey was placed in the top 10 countries in the world with the new installed wind energy conversion systems. In the first half of 2018, the total cumulative installation of wind energy reached 7,012.75 MW in Turkey. According to July 2018 data, wind energy conversion systems of 885.27 MW capacity are under construction. The official wind energy vision and goal of Turkey are to reach a scenario with 20 GW of wind power capacity installation, by the year 2023 [2].

In the light of all these assessments, wind power plants around the world have become one of the most important sources of electricity supply for many countries. Due to the increasing
importance of wind energy in the whole power generation system, determining the power to be obtained from this energy source is of great importance in terms of production planning and integration of the wind power plant into the grid.

Wind speed is one of the most effective factors in determining the wind energy potential. Wind power estimation becomes difficult due to the discontinuous, asymmetric, and chaotic nature of wind speed, and this prevents accurate prediction of energy production. Accurate estimation of wind speed and power is also important for the following reasons:

- determination of the location of the wind farms;
- determination of energy unit costs in advance;
- efficient management of wind farms;
- effective and efficient marketing of energy;
- prediction of the need and costs of technical service;
- minimization of risk of overload in substations; and
- reliable integration of the wind turbine into the power system.

Currently, prediction of wind speed over both the short-term (e.g., hourly) and the long-term (e.g., monthly or seasonal) continues to attract the attention of researchers [3]. Several methods have been proposed by researchers to estimate the wind speed and power [4-6], such as numerical weather prediction (NWP), statistical approaches, and hybrid methods. Numerical weather forecasts are defined as generation of estimates through time integration of a comprehensive set of mathematical equations defining almost all dynamic and physical processes in the atmosphere, using numerical procedures. These models are based on mathematical models of fluid mechanics that can predict wind changes through a range of climatic and physical input parameters. The major disadvantage of this method is the required measurement of different parameters such as temperature, pressure, and humidity, with the steps in the process being long and costly.

In the researches on wind speed estimation, it can be seen that using different methods together, more accurate approaches and predictions can be realized in a hybrid structure [7-9]. Using hybrid structures with different decomposition methods or optimization techniques of both time series analysis and intelligent heuristic approaches are important to establish more accurate models. In hybrid approaches on wind speed estimation, it is also seen that using decomposition techniques such as empirical mode decomposition and wavelet transform, the original signals are decomposed for hybrid structure with such as empirical mode decomposition and wavelet transform, in order to fill this gap in the literature. In addition to these, it is seen that the use of meta-heuristic approaches in hybrid models is among the popular topics in wind energy studies and other research topics [15,16].

In this paper, the originality and novelty of the proposed hybrid methods can be explained as follows: (a) optimization of ANFIS model parameters by using meta-heuristic algorithms for the short-term wind speed forecasting has been discussed. In the framework of the proposed hybrid estimation method, ABC, DE, GA and PSO algorithms have been used to optimize ANFIS model parameters. (b) In the ANFIS model, nine different structures (ANFIS1-9) have been created according to the number of the input and output, and these models have been evaluated for the ABC, DE, GA, PSO and back propagation methods. Afterwards, an optimum ANFIS model has been obtained by means of changing the MF and the number of rules of this structure. (c) The optimum ANFIS model and ANN model in [17] for the short-term wind speed forecasting have been compared by performance metrics, which are root mean square error (RMSE), mean square error (MSE), mean absolute error (MAE), and mean absolute percentage error (MAPE).

The rest of this paper is organized as follows: Section 2 presents the basic ANFIS structure, and in Section 3, the meta-heuristic algorithms (ABC-DE-GA-PSO) used in this study are given briefly. Section 4 presents how the ANFIS training procedure is realized using meta-heuristic algorithms. In Section 5, the different ANFIS variants are evaluated and the optimal architecture of ANFIS is determined for short-term wind speed forecasting, and then the comparison results are presented between meta-heuristic algorithms. Finally, this paper ends with concluding remarks.

A. ANFIS

ANFIS, which was presented by Jang in 1993 [18], is a graphical network representation of Sugeno-type fuzzy systems with neural learning capabilities. This network consists of nodes with specific functions collected in layers, as shown in Fig. 1.

ANFIS normally consists of five layers of neurons, and the neurons in the same layer are of the same function family. All layers of ANFIS are given in the following equations:

\[ \mu_A(x) = e^{-\frac{(x-c_i)^2}{2\sigma}} , i = 1,2 \]

\[ \mu_B(y) = e^{-\frac{(y-c_i)^2}{2\sigma}} , i = 1,2 \]
\[ w_i = \mu_A(x)\mu_B(y), i = 1, 2 \]

\[ \bar{w}_i = \frac{w_i}{\sum_i w_i}, i = 1, 2 \]

\[ f_i = p_i x + q_i y + r_i, i = 1, 2 \]

\[ \bar{w}_i f_i = \bar{w}_i (p_i x + q_i y + r_i), i = 1, 2 \]

\[ z = \sum_i \bar{w}_i f_i = \frac{\sum_i w_i f_i}{\sum_i w_i} \]

c_i and \( \sigma_i \) represent the antecedent parameters, \( \mu \) denotes the membership function in (1) and (2) for the first layer of ANFIS. In the second layer, the rule premise results are evaluated as given in (3). The average premise results (\( \bar{w}_i \)) are calculated in the third layer’s output. The parameters \( p_i, q_i, r_i \) given in (5) are defined as the consequent parameters, and \( f_i \) represents the rules in a Sugeno-type fuzzy system. Evaluation of the implication and rule consequences is presented in the last layer’s output.

**B. Meta-Heuristic Algorithms**

In this section, the artificial bee colony (ABC) algorithm, differential evolution (DE) algorithm, genetic algorithm (GA), and particle swarm optimization (PSO) algorithm, which are well-known meta-heuristic algorithms, are briefly outlined.

1) **Ant bee colony algorithm**

The ABC algorithm which was introduced by Karaboga in 2005 [19] is a swarm-based meta-heuristic algorithm. This algorithm is inspired by the behavior of honey bees. In the ABC algorithm, an ABC consists of employed bees, onlooker bees and scout bees. The first half of the colony includes the employed bees and the second half consists of the onlooker bees [20]. The main aim of some artificial bees (employed and onlooker bees) in the colony is to discover the food sources with high nectar in a search space depending on their own experience. Scout bees randomly search for food sources, unlike other bees. The ABC algorithm has got three parameters: the colony size, limit value, and the value of maximum number of cycles [19-21]. The main steps of the ABC algorithm are as follows:

**Initialization Phase;**

**WHILE**

**Employed Bees Phase;**

**Onlooker Bees Phase;**

**Scout Bees Phase;**

Save the best solution achieved so far;

**ENDWHILE;**

2) **Differential evolution algorithm**

The DE algorithm which is a class of the evolutionary algorithms was proposed by Storn and Price [22,23]. It includes three basic operations: recombination, evaluation, and selection. In the recombination procedure, new candidate solutions are basically generated by the weighted difference between two selected population members added to a third population member in the population [23-25]. This procedure is based on mutation and crossover operations like GA. There are several versions of mutation, which form the several corresponding DE strategies. In the evaluation procedure, cost values of new candidate solutions are calculated. For the next iteration, the better candidates are selected according to the cost values between original and updated population in the selection procedure. The DE algorithm has three parameters: scaling factor, crossover probability, and population size [25].

The pseudocode of the DE algorithm is given below:

**Initialization Phase;**

**WHILE**

Recumben Phase (mutation & crossover);

Evaluation Phase (calculate the new cost);

Selection Phase (select better candidate);

Save the best solution achieved so far;

**ENDWHILE;**
3) Genetic algorithm

GA is an evolutionary-based heuristic algorithm which is inspired by the theory of natural evolution [26]. GA is based on two operators, known as crossover and mutation mechanisms. This algorithm starts with a randomly determined population. The offspring which inherit the characteristics of the parents are generated by crossover and mutation operators. For these offspring, their cost values are calculated, and then the population members are determined for the next generation by the selection operator (roulette wheel, tournament method, etc.). In the selection process, if parents have better fitness than other members in the population, their offspring can be better than the parents and they have a better opportunity for the next generation [27,28]. There are three basic parameters of GA are crossover probability, mutation probability, and population size [29].

The pseudo code of the GA is given below:

Initialization Phase;
WHILE
   Crossover Phase;
   Mutation Phase;
   Fitness Phase (calculate costs);
   Selection Phase (Roulette or Tournament method);
   Save the best solution achieved so far;
ENDWHILE;

4) Particle swarm optimization algorithm

The PSO algorithm is a population-based meta-heuristic algorithm developed by Dr. Eberhart and Dr. Kennedy in 1995 [29]. The PSO algorithm simulates the behaviors of bird flocking. In this algorithm, a group of birds randomly search to find food source in the space. The birds are called as particles in the PSO mechanism. All the particles/birds have cost values, calculated using the fitness function and the velocities directing the flight [30]. In each iteration, the particle is updated by personal best and global best values. The personal best denotes the best solution achieved so far for each particle. The global best represents the best solution obtained so far by any particle in the population. There are some parameters to be tuned in the PSO algorithm before optimization. These are the number of particles and learning factors (c1 and c2). The main steps of the PSO algorithm are given below:

Initialization Phase;
WHILE
   Update Velocity Phase;
   Update Position Phase;
   Evaluation Phase (calculate fitness);
   Update Personal Best Phase;
   Update Global Best Phase;
ENDWHILE;

C. Short-term wind speed forecasting using hybrid ANFIS models

This section describes how to optimize ANFIS parameters with meta-heuristic algorithms. ANFIS consists of two parameters to be updated by the training process: premise and consequent parameters. Premise parameters denote the parameters of Gauss membership function, given as \( \{ c_i, \sigma_i \} \) in (1–2). Consequent parameters represent the parameters in the defuzzification layer, given as \( \{ p_i, q_i, r_i \} \) in (5). In the optimization process, one of the important criteria is the problem dimension. The sum of the premise and the consequent parameters of ANFIS gives the dimension of the optimization problem, as given in (8) below:

\[
N_v = N_p + N_c \rightarrow N_p = N_i \times N_m \times 2, N_c = N_r \times (N_i + 1)
\]

where \( N_v \) denotes the number of variables or problem dimension, \( N_p \) represents the number of premise parameters of ANFIS, and \( N_c \) represents the number of consequent parameters of ANFIS.

\( N_i \) stands for the number of ANFIS inputs, \( N_m \) denotes the number of membership functions for each input, and \( N_r \) represents the number of rules in the defuzzification layer of ANFIS. Fig. 2 shows the flowchart of ANFIS training and test using meta-heuristic algorithms. As can be seen from this flowchart, RMSE is used as a fitness function.

In training of ANFIS parameters, RMSE values are calculated by using (9), given below:

\[
RMSE = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (y_i - \tilde{y}_i)^2}
\]

where \( \tilde{y}_i \) denotes the output of ANFIS model, \( y_i \) represents the actual data of the wind speed, and \( N \) stands for the size of the training data. The training and test dataset selection procedure for short-term hourly wind speed forecasting are shown in Fig. 3. This illustration belongs to the one-step prediction ANFIS model with dataset for instant windspeed and wind-speed of the three previous hours.

II. RESULTS AND DISCUSSION

In this paper, hybrid ANFIS models are proposed to predict the short-term wind speed. To optimize the ANFIS parameters, the well-known meta-heuristic algorithms (ABC, DE, GA, and PSO) are used. For training and test ANFIS models, the short-term wind speed dataset used is the monthly data taken in Turkey, which includes 744 hours of wind speed data. The first 521 datasets are determined as the training data for ANFIS models and the remaining 223 datasets are used as the test data. For training the ANFIS model, the termination criteria in the meta-heuristic algorithms used in this study are to reach the maximum number of iterations.

The size of search agent population is determined as 10 times the problem dimension (number of variables). The parameters of the meta-heuristic algorithms are given in Table I.
A. Analysis of Different ANFIS Variants

To estimate the short-term wind speed, different ANFIS variants are first considered according to the inputs and outputs. The main purpose is to determine the most suitable ANFIS model here. The specifications of the nine different ANFIS models are summarized in Table II.

For all models, the number of MFs and the number of rules are the same. The outputs of ANFIS variants were determined as 1-, 2-, and 3-hour-ahead wind speed forecasting. As inputs, the dataset of instant wind speed and of the previous hours were used. In Fig. 4, ANFIS_{7} architecture is shown.

The MSE and RMSE metrics are presented in Tables III and IV for training and test results of ANFIS variants. The best result of each ANFIS variant is emphasized in boldface. According to the training results, the best ANFIS architecture is the ANFIS_{7} model consisting of four inputs with dataset of the previous three hours and of instant wind speed, and 1-hour-ahead wind speed forecasting. As can be seen from the test results, ANFIS models with 1-hour-ahead wind speed forecasting (ANFIS_{1}, ANFIS_{4}, and ANFIS_{7}) have better performances than those of the others. The best MSE and RMSE scores belong to the ANFIS_{7} model trained by the DE algorithm. Hence, according to the training results, the ANFIS_{7} models for short-term wind speed forecasting were selected.
Fig. 5 shows the training and test results of the ANFIS variant for wind speed estimation by the well-known meta-heuristic algorithms (ABC, DE, GA, and PSO) and back propagation method (BP). The convergence curves of meta-heuristic algorithms obtained in training processes of nine ANFIS variants are illustrated in Fig. 6. It is evident from these figures that GA and PSO algorithms have better convergence than DE and ABC algorithms for all ANFIS variants. According to the numbers of the MFs and the rules, the different ANFIS\(_x\) variants have been discussed, to find the most suitable ANFIS architecture. In the next section, the multiple run performances of the meta-heuristic algorithms have been analyzed in detail.

There are four different ANFIS\(_x\) models to determine the most suitable architecture, and these models' specifications are summarized in Table V. In these ANFIS\(_x\) variants, the same number of MFs and the rules from two to five are used.

The training and test results of ANFIS\(_x\) variants are given in Tables VI and VII. These results include the MSE and RMSE values obtained for ANFIS\(_x\) variants trained by ABC, DE, GA, and PSO algorithms. In the training and test results, the ANFIS\(_{y}\) model for training and the ANFIS\(_{y}\) model for test results are the best models in terms of MSE and RMSE metrics. For the ANFIS\(_{y}\) model, the dimension of the optimization problem is 26, but the number of variables in the ANFIS\(_{y}\) model is double of that of the ANFIS\(_{x}\) model. The number of variables is one of the important factors affecting the optimization of the run time. Therefore, choosing the ANFIS model with a low number of variables gives us an advantage for ANFIS training. Hence, we decided to use ANFIS\(_{y}\) for short-term wind speed forecasting.

TABLE I. PARAMETERS OF META-HEURISTIC ALGORITHMS USED FOR TRAINING ANFIS

| Algorithm | Parameters |
|-----------|------------|
| ABC       | Abandonment Limit Parameter: \(0.6 \times n\text{Var} \times n\text{Pop}\) Population Size: \(10 \times n\text{Var}\) |
| DE        | Scale Weighting Factor: 0.8 Crossover Constant: 0.5 Strategy: DE/rand/1/bin Population Size: \(10 \times n\text{Var}\) |
| GA        | Crossover Coefficient: 0.4 Mutation Coefficient: 0.7 Population Size: \(10 \times n\text{Var}\) |
| PSO       | Inertia Weight: 1.0 Damping Ratio: 0.99 Personal Learning Coefficient: 1.0 Global Learning Coefficient: 2.0 Population Size: \(10 \times n\text{Var}\) |

\(n\text{Var}\), Number of variable; \(n\text{Pop}\), Number of population.
Fig. 7 shows the convergence curves obtained by training ANFIS variants using ABC, DE, GA, and PSO algorithms. The structure of the ANFIS model is shown in Fig. 8.

### B. Wind Speed Forecasting Results of ANFIS with Meta-Heuristic Algorithms

In order to evaluate the performance of the proposed hybrid ANFIS models, four forecasting models (ANFIS-ABC, ANFIS-DE, ANFIS-GA, and ANFIS-PSO) are used in the one-step short-term wind speed forecasting. We have used some error metrics to show the forecasting performances of the proposed models, such as RMSE (in Eq. 9), MSE, MAE, and MAPE, given as follows:

\[
\text{RMSE} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (y_i - \tilde{y}_i)^2}
\]

\[
\text{MSE} = \frac{1}{N} \sum_{i=1}^{N} (y_i - \tilde{y}_i)^2
\]

\[
\text{MAE} = \frac{1}{N} \sum_{i=1}^{N} |y_i - \tilde{y}_i|
\]

| ANFIS Model | Inputs | Output | Number of MFs | Number of Rules | Number of Variables |
|-------------|--------|--------|---------------|-----------------|-------------------|
| ANFIS₁      | x(t), x(t-1) | x(t+1)  | 4             | 4               | 28                |
| ANFIS₂      | x(t), x(t-1) | x(t+2)  | 4             | 4               | 28                |
| ANFIS₃      | x(t), x(t-1) | x(t+3)  | 4             | 4               | 28                |
| ANFIS₄      | x(t), x(t-1), x(t-2) | x(t+1)  | 4             | 4               | 40                |
| ANFIS₅      | x(t), x(t-1), x(t-2) | x(t+2)  | 4             | 4               | 40                |
| ANFIS₆      | x(t), x(t-1), x(t-2, x(t-3)) | x(t+1)  | 4             | 4               | 40                |
| ANFIS₇      | x(t), x(t-1), x(t-2, x(t-3)) | x(t+2)  | 4             | 4               | 40                |
| ANFIS₈      | x(t), x(t-1), x(t-2, x(t-3)) | x(t+3)  | 4             | 4               | 52                |
| ANFIS₉      | x(t), x(t-1), x(t-2, x(t-3)) | x(t+3)  | 4             | 4               | 52                |

**TABLE II. SPECIFICATIONS OF ANFIS VARIANTS**

Fig. 4. ANFIS₁₁ architecture.
### Table III. Training Results of ANFIS Variants

| ANFIS Model | ABC MSE | RMSE | DE MSE | RMSE | GA MSE | RMSE | PSO MSE | RMSE | BP MSE | RMSE |
|-------------|---------|------|--------|------|--------|------|---------|------|--------|------|
| ANFIS_1     | 8.88e-03 | 9.42e-02 | 9.03e-03 | 9.50e-02 | 8.42e-03 | 9.17e-02 | 8.47e-03 | 9.20e-02 | 8.82e-03 | 9.39e-02 |
| ANFIS_2     | 1.91e-02 | 1.38e-01 | 1.91e-02 | 1.38e-01 | 1.82e-02 | 1.35e-01 | 1.83e-02 | 1.35e-01 | 1.83e-02 | 1.35e-01 |
| ANFIS_3     | 2.78e-02 | 1.67e-01 | 2.75e-02 | 1.66e-01 | 2.60e-02 | 1.61e-01 | 2.63e-02 | 1.62e-01 | 2.66e-02 | 1.63e-01 |
| ANFIS_4     | 8.85e-03 | 9.41e-02 | 8.95e-03 | 9.46e-02 | 7.94e-03 | 8.91e-02 | 8.20e-03 | 9.05e-02 | 8.46e-03 | 9.20e-02 |
| ANFIS_5     | 1.91e-02 | 1.38e-01 | 1.90e-02 | 1.38e-01 | 1.76e-02 | 1.33e-01 | 1.73e-02 | 1.31e-01 | 1.79e-02 | 1.34e-01 |
| ANFIS_6     | 2.70e-02 | 1.64e-01 | 2.71e-02 | 1.65e-01 | 2.54e-02 | 1.59e-01 | 2.49e-02 | 1.58e-01 | 2.46e-02 | 1.57e-01 |
| ANFIS_7     | 8.76e-03 | 9.36e-02 | 8.82e-03 | 9.39e-02 | 7.86e-03 | 8.87e-02 | 7.70e-03 | 8.78e-02 | 8.37e-03 | 9.15e-02 |
| ANFIS_8     | 1.86e-02 | 1.36e-01 | 1.89e-02 | 1.38e-01 | 1.68e-02 | 1.30e-01 | 1.62e-02 | 1.27e-01 | 1.73e-02 | 1.31e-01 |
| ANFIS_9     | 2.58e-02 | 1.61e-01 | 2.66e-02 | 1.63e-01 | 2.36e-02 | 1.53e-01 | 2.24e-02 | 1.50e-01 | 2.41e-02 | 1.55e-01 |

### Table IV. Test Results of ANFIS Variants

| ANFIS Model | ABC MSE | RMSE | DE MSE | RMSE | GA MSE | RMSE | PSO MSE | RMSE | BP MSE | RMSE |
|-------------|---------|------|--------|------|--------|------|---------|------|--------|------|
| ANFIS_1     | 8.42e-03 | 9.18e-02 | 8.40e-03 | 9.16e-02 | 8.53e-03 | 9.23e-02 | 8.74e-03 | 9.35e-02 | 8.53e-03 | 9.24e-02 |
| ANFIS_2     | 1.62e-02 | 1.27e-01 | 1.61e-02 | 1.27e-01 | 1.58e-02 | 1.26e-01 | 1.57e-02 | 1.25e-01 | 1.62e-02 | 1.27e-01 |
| ANFIS_3     | 2.33e-02 | 1.49e-01 | 2.23e-02 | 1.49e-01 | 2.25e-02 | 1.50e-01 | 2.43e-02 | 1.56e-01 | 2.26e-02 | 1.50e-01 |
| ANFIS_4     | 8.33e-03 | 9.13e-02 | 8.52e-03 | 9.23e-02 | 9.26e-03 | 9.62e-02 | 8.58e-03 | 9.26e-02 | 8.57e-03 | 9.26e-02 |
| ANFIS_5     | 1.63e-02 | 1.28e-01 | 1.62e-02 | 1.27e-01 | 1.67e-02 | 1.29e-01 | 1.59e-02 | 1.26e-01 | 1.63e-02 | 1.28e-01 |
| ANFIS_6     | 2.17e-02 | 1.47e-01 | 2.21e-02 | 1.49e-01 | 2.15e-02 | 1.47e-01 | 2.19e-02 | 1.48e-01 | 2.24e-02 | 1.50e-01 |
| ANFIS_7     | 8.85e-03 | 9.40e-02 | 8.15e-03 | 9.03e-02 | 8.54e-03 | 9.24e-02 | 8.69e-03 | 9.32e-02 | 8.65e-03 | 9.30e-02 |
| ANFIS_8     | 1.57e-02 | 1.25e-01 | 1.55e-02 | 1.24e-01 | 1.57e-02 | 1.25e-01 | 1.53e-02 | 1.24e-01 | 1.62e-02 | 1.27e-01 |
| ANFIS_9     | 2.09e-02 | 1.45e-01 | 2.12e-02 | 1.46e-01 | 2.19e-02 | 1.48e-01 | 2.04e-02 | 1.43e-01 | 2.13e-02 | 1.46e-01 |
where \( y_i \) and \( \hat{y}_i \) represent observed value and predictive value of the wind speed, \( N \) is the total number of datasets used for performance evaluation and comparison. MAE is a measure of the accuracy of prediction method for performance evaluation and comparison in statistics. The physical basis for using RMSE/MAE is that they express the overall error in wind speed for the entire test set [5].

Table VIII summarizes the ANFIS training and test results with 10 independent runs for well-known meta-heuristic algorithms (ABC, DE, GA, and PSO algorithms). In addition, the statistical results of performance metrics for the ANN model in [17] are calculated for comparison with 10 runs. The best result of each metric is emphasized in boldface here. In this table, four statistical metrics are used for repetitive results: best, worst, mean, and standard deviation. It can be seen from this table that the proposed meta-heuristic algorithms have competitive results for ANFIS training and test. ANFIS training results show that the PSO algorithm has the best error metric values. For the test phase, the DE algorithm has the best performance, according to most of the error and statistical metrics. In general, the proposed hybrid models give better results than the ANN model, as seen from the results in the table.

At the end of the training process, the premise and consequent parameters of the ANFIS model are updated. Hence, Gauss membership functions are adjusted for each input of the ANFIS model. In Fig. 9, the input Gauss membership functions of hybrid ANFIS models updated by meta-heuristic algorithms are represented.

Fig. 10 shows the statistical results of the error metrics (MSE, RMSE, MAE, and MAPE) for the meta-heuristic algorithms (ABC, DE, GA, and PSO) used in this study. These boxplots are the optimization results obtained with 10 runs for the ANFIS training phase. In Fig. 11, the statistical results of tests of hybrid ANFIS models are shown, according to the meta-heuristic algorithms.

Fig. 12 shows the hybrid ANFIS models’ results for the training phase of the short-term wind speed forecasting. In Fig. 13, the forecasting results of test data for 1-hour prediction are represented. As can be seen from these figures, the test and training results show that the proposed hybrid ANFIS models are close in performance and can be used as alternatives to each other.

The error values of wind speed sampling points are shown in Fig.14(a) for each meta-heuristic algorithm. Fig.14(b) shows the convergence curves of ABC, DE, GA, and PSO algorithms for training of ANFIS parameters. These curves come from the RMSE values obtained for the best solutions found by meta-heuristic algorithms. It is clearly observed that the PSO algorithm is more successful than the others, according to the convergence curves.

III. CONCLUSION

Wind speed is one of the most important parameters that determine the amount of electrical power to be obtained.
Fig. 6. Convergence curves obtained by ABC, DE, GA, and PSO algorithms during training all ANFIS structures.

**TABLE V.** SETTING THE NUMBER OF MFS AND RULES FOR ANFIS, MODEL

| ANFIS Model | Inputs                  | Output | Number of MFs | Number of Rules | Number of Variables |
|-------------|-------------------------|--------|---------------|-----------------|--------------------|
| ANFIS\(_{1}\)  | x(t), x(t-1), x(t-2), x(t-3) | x(t+1) | 2             | 2               | 26                 |
| ANFIS\(_{2}\)  | x(t), x(t-1), x(t-2), x(t-3) | x(t+1) | 3             | 3               | 39                 |
| ANFIS\(_{3}\)  | x(t), x(t-1), x(t-2), x(t-3) | x(t+1) | 4             | 4               | 52                 |
| ANFIS\(_{4}\)  | x(t), x(t-1), x(t-2), x(t-3) | x(t+1) | 5             | 5               | 65                 |

**TABLE VI.** TRAINING RESULTS OF ANFIS, VARIANTS FOR DIFFERENT NUMBERS OF MFS AND RULES

| ANFIS Model | ABC                  | DE                  | GA                  | PSO                  |
|-------------|----------------------|---------------------|---------------------|----------------------|
|              | MSE                  | RMSE                | MSE                 | RMSE                | MSE                 | RMSE                |
| ANFIS\(_{1}\) | 8.58e-03             | 9.26e-02            | 8.56e-03            | 9.25e-02            | 8.16e-03            | 9.03e-02            | 8.35e-03            | 9.14e-02            |
| ANFIS\(_{2}\) | 8.62e-03             | 9.29e-02            | 8.73e-03            | 9.34e-02            | 7.99e-03            | 8.94e-02            | 7.84e-03            | 8.86e-02            |
| ANFIS\(_{3}\) | 8.76e-03             | 9.36e-02            | 8.82e-03            | 9.39e-02            | 7.86e-03            | 8.87e-02            | 7.70e-03            | 8.78e-02            |
| ANFIS\(_{4}\) | 8.87e-03             | 9.42e-02            | 9.26e-03            | 9.62e-02            | 7.99e-03            | 8.94e-02            | 7.41e-03            | 8.61e-02            |
from wind energy systems. Hence, wind speed forecasting is critical in the integration of systems that convert wind energy to the grid, in parallel with the increasing energy need. Wind speed is characteristically asymmetric and chaotic, making it difficult to forecast wind power and to predict energy production. Therefore, many different approaches such as numerical weather prediction (NWP), statistical, and hybrid methods are proposed in wind speed forecasting studies, and it is aimed to develop more accurate models in this regard.

In this paper, four different hybrid ANFIS models are proposed for short-term wind speed forecasting. The proposed hybrid structures consist of well-known meta-heuristic algorithms, fuzzy logic, and artificial neural network models. In this study, well-known meta-heuristic algorithms (ABC, DE, GA, and PSO) are used for training two important parameter values—the premise and the consequent—of the ANFIS model. Firstly, nine ANFIS models with the same membership function and rule number for different input and output combinations are

| ANFIS Model | MSE   | RMSE  | MSE   | RMSE  | MSE   | RMSE  | MSE   | RMSE  |
|-------------|-------|-------|-------|-------|-------|-------|-------|-------|
| ANFIS7,1    | 8.89e-03 | 9.43e-02 | 8.60e-03 | 9.27e-02 | 8.56e-03 | 9.25e-02 | 8.42e-03 | 9.18e-02 |
| ANFIS7,2    | 8.77e-03 | 9.37e-02 | 8.36e-03 | 9.14e-02 | 8.79e-03 | 9.38e-02 | 8.50e-03 | 9.22e-02 |
| ANFIS7,3    | 8.85e-03 | 9.40e-02 | 8.15e-03 | 9.03e-02 | 8.54e-03 | 9.24e-02 | 8.69e-03 | 9.32e-02 |
| ANFIS7,4    | 8.25e-03 | 9.08e-02 | 8.77e-03 | 9.36e-02 | 8.61e-03 | 9.28e-02 | 8.57e-03 | 9.26e-02 |

**Table VII. Test Results of ANFIS Variants for Different Numbers of MFS and Rules**

In this paper, four different hybrid ANFIS models are proposed for short-term wind speed forecasting. The proposed hybrid structures consist of well-known meta-heuristic algorithms, fuzzy logic, and artificial neural network models. In this study, well-known meta-heuristic algorithms (ABC, DE, GA, and PSO) are used for training two important parameter values—the premise and the consequent—of the ANFIS model. Firstly, nine ANFIS models with the same membership function and rule number for different input and output combinations are

![Convergence curves obtained by ABC, DE, GA, and PSO algorithms for training ANFIS variants with different numbers of MFs and rules.](image-url)
Fig. 8. Optimal ANFIS architecture (ANFIS$_{opt}$) selected for this study.

### TABLE VIII. COMPARISON OF ANFIS TRAINING AND TEST RESULTS WITH 10 INDEPENDENT RUNS

|               | Training Results                          | Test Results                          |
|---------------|-------------------------------------------|---------------------------------------|
|               | MSE | RMSE | MAE | MAPE (%) | MSE | RMSE | MAE | MAPE (%) |
| **ANFIS-ABC** |     |      |     |          |     |      |     |          |
| best          | 8.56e−03 | 9.25e−02 | 7.04e−02 | 25.75 | 8.31e−03 | 9.12e−02 | 7.11e−02 | 27.90 |
| worst         | 8.71e−03 | 9.33e−02 | 7.19e−02 | 27.13 | 9.15e−03 | 9.56e−02 | 7.27e−02 | 31.97 |
| mean          | 8.64e−03 | 9.30e−02 | 7.14e−02 | 26.47 | 8.52e−03 | 9.23e−02 | 7.16e−02 | 28.87 |
| Std           | 4.91e−05 | 2.64e−04 | 4.44e−04 | 0.51  | 2.31e−04 | 1.23e−03 | 4.55e−04 | 1.25  |
| **ANFIS-DE**  |     |      |     |          |     |      |     |          |
| best          | 8.52e−03 | 9.23e−02 | 7.02e−02 | 25.67 | 8.22e−03 | 9.07e−02 | 7.03e−02 | 27.87 |
| worst         | 8.73e−03 | 9.34e−02 | 7.17e−02 | 27.01 | 8.93e−03 | 9.45e−02 | 7.32e−02 | 29.58 |
| mean          | 8.60e−03 | 9.27e−02 | 7.12e−02 | 26.14 | 8.47e−03 | 9.20e−02 | 7.15e−02 | 28.32 |
| Std           | 6.28e−05 | 3.38e−04 | 4.87e−04 | 0.45  | 1.91e−04 | 1.03e−03 | 7.35e−04 | 0.52  |
| **ANFIS-GA**  |     |      |     |          |     |      |     |          |
| best          | 8.21e−03 | 9.06e−02 | 6.89e−02 | 25.44 | 8.12e−03 | 9.01e−02 | 6.85e−02 | 28.29 |
| worst         | 8.75e−03 | 9.36e−02 | 7.14e−02 | 27.25 | 2.92e−02 | 1.71e−01 | 8.06e−02 | 45.91 |
| mean          | 8.50e−03 | 9.22e−02 | 7.04e−02 | 26.39 | 1.05e−02 | 9.99e−02 | 7.19e−02 | 30.71 |
| Std           | 2.15e−04 | 1.17e−03 | 1.03e−03 | 0.69  | 6.56e−03 | 2.50e−02 | 3.30e−03 | 5.37  |
| **ANFIS-PSO** |     |      |     |          |     |      |     |          |
| best          | 7.92e−03 | 8.90e−02 | 6.81e−02 | 25.21 | 8.23e−03 | 9.07e−02 | 6.92e−02 | 28.25 |
| worst         | 8.96e−03 | 9.46e−02 | 7.24e−02 | 27.05 | 5.98e−02 | 2.45e−01 | 8.63e−02 | 34.96 |
| mean          | 8.59e−03 | 9.27e−02 | 7.08e−02 | 26.47 | 1.51e−02 | 1.14e−01 | 7.41e−02 | 29.46 |
| Std           | 3.42e−04 | 1.86e−03 | 1.33e−03 | 0.66  | 1.63e−02 | 4.93e−02 | 5.08e−03 | 2.00  |
| **ANN**       |     |      |     |          |     |      |     |          |
| best          | 8.59e−03 | 9.27e−02 | 7.08e−02 | 25.97 | 8.22e−03 | 9.06e−02 | 6.96e−02 | 27.69 |
| worst         | 9.13e−03 | 9.56e−02 | 7.35e−02 | 27.53 | 8.84e−03 | 9.40e−02 | 7.36e−02 | 30.53 |
| mean          | 8.84e−03 | 9.40e−02 | 7.19e−02 | 26.79 | 8.48e−03 | 9.21e−02 | 7.14e−02 | 28.81 |
| Std           | 1.97e−04 | 1.05e−03 | 8.45e−04 | 0.43  | 1.90e−04 | 1.04e−03 | 1.17e−03 | 0.80  |
analyzed for ABC, DE, GA, and PSO algorithms. As seen from Table III and IV, the ANFIS model is chosen as the most suitable model according to the error performance criteria (MSE and RMSE) of the resulting training and test data. In the next step, four different models are discussed by changing the membership function (MF) and rule numbers for the ANFIS model. ANFIS, which has four inputs, one output, two MFs, and two rules is found to be the most suitable model due to the low number of variables, RMSE, and MSE values, as seen in the results.

As seen from Table VIII, the training of model parameters of ANFIS are performed with 10 runs for four meta-heuristic algorithms, and the well-known error metrics—RMSE, MSE,
MAE, and MAPE—are calculated statistically for short-term wind forecasting. Although the ANFIS-PSO model is successful in the training section, it is observed that the ANFIS-DE model gives better results in the test step. In addition, the proposed hybrid models are also compared with the well-known ANN model in the literature.

The results show us that the hybrid ANFIS models trained by meta-heuristic algorithms for short-term wind speed forecasting are better than the ANN model, but the obtained error performance criteria of the meta-heuristic algorithms are close, which shows that the proposed hybrid ANFIS models can be used as alternatives to each other.
Future studies are expected to generate more precise hybrid models using different intelligent heuristic approaches. In addition, with the help of the new generation decomposition algorithms such as ensemble empirical mode decomposition (EEMD), and swarm decomposition (SWD), the performance of the model can be further improved by taking hybrid models into consideration. The disadvantage of the hybrid models is that the computation time is relatively high, mainly due to the large amount of calculation involved in parallel computation of the hybrid structures. Therefore, it is thought that the learning algorithms such as meta-extreme learning machine (Meta-ELM) will provide advantages in hybrid structures in terms of computation time.
Peer-review: Externally peer-reviewed.

Author Contributions: Concept - U.Y., M.K.; Design - U.Y.; Supervision - U.Y., M.K.; Data Collection and/or Processing – E.D.; Analysis and/or Interpretation – U.Y.; Literature Search – E.D.; Writing Manuscript - E.D., U.Y.; Critical Review - M.K.

Acknowledgment: The Turkish State Meteorological Service is thanked for their support in the accomplishment of the present study. Source codes of this paper are publicly available at https://github.com/uguryuzgec/Neuro-Fuzzy-Models.

Conflict of Interest: The authors have no conflicts of interest to declare.

Financial Disclosure: The authors declared that this study has received no financial support.

REFERENCES

1. Global Wind Energy Council, “GWEC global wind report,” Wind Energy Technol., 2018. Available online: https://gwec.net/wp-content/uploads/2019/04/GWEC-Global-Wind-Report-2018.pdf (accessed on 1 April 2021).
2. Turkish Wind Energy Association, Turkish Wind Energy Statistical Report. Ankara, Turkey: Turkish Wind Energy Association, 2018.

3. Z. Su, J. Wang, H. Lu and G. Zhao, “A new hybrid model optimized by an intelligent optimization algorithm for wind speed forecasting,” Energy Conversion and Management, vol. 85, pp. 443–452, 2014. [CrossRef]

4. R. Ata, “An adaptive neuro-fuzzy inference system approach for prediction of power factor in wind turbines,” Istanbul University – Journal of Electrical and Electronics Engineering, vol. 9, no. 1, pp. 905–912, 2009.

5. W. Zhang, Z. Qu, K. Zhang, W. Mao, Y. Ma and X. Fan, “A combined model based on CEEMDAN and modified flower pollination algorithm for wind speed forecasting,” Energy Conversion and Management, vol. 136, pp. 439–451, 2017. [CrossRef]

6. H. Liu, C. Yu, H. Wu, Z. Duan and G. Yan, “A new hybrid ensemble deep reinforcement learning model for wind speed short term forecasting,” Energy, vol. 202, 2020. [CrossRef]

7. Y. Zhang, S. Gao, M. Ban and Y. Sun, “A method based on Lorenz disturbance and variational mode decomposition for wind speed prediction,” Advances in Electrical and Computer Engineering, vol. 19, no. 2, pp. 3–12, 2019. [CrossRef]

8. H. Liu, H. Q. Tian, D. F. Fan and Y. F. Li, “Forecasting models for wind speed using wavelet, wavelet packet, time series and artificial neural networks,” Applied Energy, vol. 107, pp. 191–208, 2013. [CrossRef]

9. H. Liu, X. Mi and Y. Li, “An experimental investigation of three new hybrid wind speed forecasting models using multi-decomposing strategy and ELM algorithm,” Renewable Energy, vol. 123, pp. 694–705, 2018. [CrossRef]

10. Z. Guo, W. Zhao, H. Lu and J. Wang, “Multi-step forecasting for wind speed using a modified EMD-based artificial neural network model,” Renewable Energy, vol. 37, no. 1, pp. 241–249, 2012. [CrossRef]

11. J. Hu, J. Wang and G. Zeng, “A hybrid forecasting approach applied to wind speed time series,” Renewable Energy, vol. 60, pp. 185–194, 2013. [CrossRef]

12. H. Liu, C. Chen, H. Q. Tian and Y. F. Li, “A hybrid model for wind speed prediction using empirical mode decomposition and artificial neural networks,” Renewable Energy, vol. 48, pp. 545–556, 2012. [CrossRef]
Mehmet Kurban graduated from Istanbul Technical University (ITU) in Turkey as an Electrical Engineer from the Faculty of Electrical and Electronics Engineering in 1991. He got M.Sc. and Ph.D. degrees from ITU in 1994 and 2001, respectively. Since 2015, he has been a professor at the Bilecik S.E. University. His research areas include renewable energy and power system analysis.

Emrah Dokur received the B.Sc. in Electrical and Electronics Engineering, Istanbul University, Turkey in 2010 and M.Sc. degrees in Electrical Engineering, Istanbul Technical University, Turkey in 2013. He received a Ph.D. degree in Energy System Engineering from Bilecik S.E. University. Since 2017, he has been an assistant professor at the same University. His research areas include high voltage engineering, renewable energy systems, and power system analysis.

Uğur Yüzgeç received the B.S. degree from the Electronics and Communication Engineering Department, Yıldız Technical University, Istanbul, Turkey, in 1995, and the M.S. and Ph.D. degrees from the Electronics and Communication Engineering Department, Kocaeli University, Kocaeli, Turkey, in 1999 and 2005, respectively. From 1998 to 2010, he was a Research Assistant with Electronics and Communication Engineering Department, Kocaeli University. Since 2020, He has been a Professor with the Computer Engineering Department, Faculty of Engineering, Bilecik Seyh Edebali University, Turkey. His research interest includes intelligent systems and control, fuzzy, neuro-fuzzy systems, meta-heuristic algorithms, unmanned aerial vehicle, and numeric techniques in optimization problem.