ON THE UPPER SEMICONTINUITY OF THE WU METRIC

MAREK JARNICKI AND PETER PFLUG

ABSTRACT. We discuss continuity and upper semicontinuity of the Wu pseudometric.

The Wu pseudometric has been introduced by H. Wu in [Wu 1993] (and [Wu]). Various properties of the Wu metric may be found for instance in [Che-Kim 1996], [Che-Kim 1997], [Kim 1998], [Che-Kim 2003], [Juc 2002]. Nevertheless, it seems that even quite elementary properties of this metric are not completely understood, e.g. its upper semicontinuity.

First, let us formulate the definition of the Wu pseudometric in an abstract setting. Let \(h : \mathbb{C}^n \to \mathbb{R}_+ \) be a \(\mathbb{C} \)-seminorm. Put:

\[
I = I(h) := \{ X \in \mathbb{C}^n : h(X) < 1 \} \quad (I \text{ is convex}),
\]

\[
V = V(h) := \{ X \in \mathbb{C}^n : h(X) = 0 \} \subset I \quad (V \text{ is a vector subspace of } \mathbb{C}^n),
\]

\[
U = U(h) := \text{the orthogonal complement of } V \text{ with respect to the standard Hermitian scalar product } \langle z, w \rangle := \sum_{j=1}^n z_j \overline{w_j} \text{ in } \mathbb{C}^n,
\]

\[
I_0 := I \cap U, \ h_0 := h|_U \quad (h_0 \text{ is a norm}, \ I = I_0 + V).
\]

For any pseudo–Hermitian scalar product \(s : \mathbb{C}^n \times \mathbb{C}^n \to \mathbb{C} \), let

\[
q_s(X) := \sqrt{s(X, X)}, \ X \in \mathbb{C}^n, \quad \mathbb{E}(s) := \{ X \in \mathbb{C}^n : q_s(X) < 1 \}.
\]

Consider the family \(F \) of all pseudo–Hermitian scalar products \(s : \mathbb{C}^n \times \mathbb{C}^n \to \mathbb{C} \) such that \(I \subset \mathbb{E}(s) \), equivalently, \(q_s \leq h \). In particular,

\[
V \subset I = I_0 + V \subset \mathbb{E}(s) = \mathbb{E}(s_0) + V,
\]

where \(s_0 := s|_{U \times U} \) (note that \(\mathbb{E}(s_0) = \mathbb{E}(s) \cap U \)). Let \(\text{Vol}(s_0) \) denote the volume of \(\mathbb{E}(s_0) \) with respect to the Lebesgue measure of \(U \). Since \(I_0 \) is bounded, there exists an \(s \in F \) with \(\text{Vol}(s_0) < +\infty \). Observe that for any basis \(e = (e_1, \ldots, e_m) \) of \(U \) (\(m := \dim U \)) we have

\[
\text{Vol}(s_0) = \frac{C(e)}{\det S},
\]

where \(C(e) > 0 \) is a constant (independent of \(s \)) and \(S = S(s_0) \) denotes the matrix representation of \(s_0 \) in the basis \(e \), i.e. \(S_{j,k} := s(e_j, e_k) \), \(j, k = 1, \ldots, m \). In particular, if \(U = \mathbb{C}^m \times \{ 0 \}^{n-m} \) and \(e = (e_1, \ldots, e_m) \) is the canonical basis, then \(C(e) \) is the volume of the open unit Euclidean ball \(\mathbb{B}_m \subset \mathbb{C}^m \). We are interested in finding an \(s \in F \) for which \(\text{Vol}(s_0) \) is minimal, equivalently, \(\det S(s_0) \) is maximal. Observe that if \(s \) has this property (with respect to \(h \)), then for any \(\mathbb{C} \)-linear isomorphism \(L : \mathbb{C}^n \to \mathbb{C}^n \), the scalar product

\[
\mathbb{C}^n \times \mathbb{C}^n \ni (X, Y) \xrightarrow{L(s)} s(L(X), L(Y)) \in \mathbb{C}
\]
Theorem 1 ([Wu], [Wu 1993]). There exists exactly one element $s^h \in F$ such that
\[
\Vol(s_0^h) = \min\{\Vol(s) : s \in F\} < +\infty.
\]

Put $\hat{s}^h := m \cdot s^h$ ($m := \dim U(h)$), $\hat{W}h := q_{s^h}$. Obviously, $\hat{W}h \leq \sqrt{mh}$ and $\hat{W}h \equiv \sqrt{mh}$ iff $h = q_s$ for some pseudo–Hermitian scalar product s. For instance, $\hat{W}|| || = \sqrt{n|| ||}$, where $|| ||$ is the Euclidean norm in \mathbb{C}^n. Moreover, $\hat{W}(\hat{W}h) \equiv \sqrt{m\hat{W}h}$.

Remark 2. Assume that $U(h) = \mathbb{C}^n$. Let $L : \mathbb{C}^n \rightarrow \mathbb{C}^n$ be a \mathbb{C}–linear isomorphism such that $|\det L| = 1$ and $h \circ L = h$. Then $\Vol(s^h) = \Vol(L(s^h))$ and hence $s^h = L(s^h)$, i.e. $s^h(X, Y) = s^h(L(X), L(Y))$, $X, Y \in \mathbb{C}^n$.

Theorem 3 ([Wu], [Wu 1993] 1). (a) $h \leq \hat{W}h \leq \sqrt{mh}$.

(b) If $h(X) := \max\{h_1(X_1), h_2(X_2)\}$, $X = (X_1, X_2) \in \mathbb{C}^{n_1} \times \mathbb{C}^{n_2}$, then $s^h(X, Y) = s^{h_1}(X_1, Y_1) + s^{h_2}(X_2, Y_2)$, $X = (X_1, X_2)$, $Y = (Y_1, Y_2) \in \mathbb{C}^{n_1} \times \mathbb{C}^{n_2}$, $\Vol(\hat{W}h(X)) = \left(\Vol(h_1(X_1))^2 + \Vol(h_2(X_2))^2\right)^{1/2}$, $X = (X_1, X_2)$.

For a domain $G \subset \mathbb{C}^n$, let $\mathcal{M}(G)$ denote the space of all pseudometrics
\[
\eta : G \times \mathbb{C}^n \rightarrow \mathbb{R}_+, \quad \eta(a; tX) = |t|\eta(a; X), \quad a \in G, \ X \in \mathbb{C}^n, \ t \in \mathbb{C},
\]
such that
\[
\forall a \in G \ \exists M, r > 0 : \ \eta(z; X) \leq M||X||, \quad z \in B(a, r) \subset G, \ X \in \mathbb{C}^n,
\]
where $B(a, r)$ is the open Euclidean ball centered at a with radius r.

For $\eta \in \mathcal{M}(G)$ we define the Wu pseudometric
\[
(\hat{\eta})(a; X) := (\hat{\eta}(a; \cdot))(X), \quad a \in G, \ X \in \mathbb{C}^n,
\]
where
\[
\hat{\eta}(a; X) := \sup\{h(X) : h \text{ is a } \mathbb{C}\text{–seminorm, } h \leq \eta(a; \cdot)\}, \quad a \in G, \ X \in \mathbb{C}^n,
\]
denotes the Buseman pseudometric associated to η (cf. [J-P 1993], §4.3). Observe that $\hat{\Vol}(a) \in \mathcal{M}(G)$.

Recall that an upper semicontinuous metric $\eta \in \mathcal{M}(G)$ is said to be complete if any $\hat{\eta}$–Cauchy sequence is convergent to a point from G, where $\hat{\eta}$ denotes the integrated form of η (cf. [J-P 1993], §§ 4.3, 7.3).

Proposition 4. (a) If $\eta \in \mathcal{M}(G)$ is a continuous metric, then so is $\hat{\Vol}(\eta)$ (cf. Example 4).

(b) If $\eta \in \mathcal{M}(G)$ is a continuous complete metric, then so is $\hat{\Vol}(\eta)$.

(c) If $(\delta_G)_G$ is a holomorphically contractible family of pseudometrics (cf. [J-P 1993]), then for any biholomorphic mapping $F : G \rightarrow D$ ($D \subset \mathbb{C}^n$) we have
\[
(\hat{\Vol}(\delta_D)(F(z); F'(z)X) = (\hat{\Vol}(\beta_G)(z; X), \quad z \in G, \ X \in \mathbb{C}^n.
\]

\footnote{See also M. Jarnicki, P. Pflug, Invariant distances and metrics in complex analysis — revisited, to appear.}
(d) If \((\delta_G)_G\) is a holomorphically contractible family of pseudometrics, then for any holomorphic mapping \(F : G \rightarrow D\) \((G \subset \mathbb{C}^n, D \subset \mathbb{C}^n)\) we have
\[
(\mathcal{W}_G)(F(z); F'(z)X) \leq \sqrt{\mathcal{W}_G}(z; X), \quad z \in G, \ X \in \mathbb{C}^n,
\]
but, for example, the family \((\mathcal{W}_G)_G\) is not holomorphically contractible, where \(\mathcal{W}_G\) is the Kobayashi–Royden pseudometric of \(G\) (cf. Example 7).

In the case \(\eta = \mathcal{W}_G\), the above properties (a) — (d) were formulated (without proof) in [Wu, Wu 1993].

Proof. (a) Fix a point \(z_0 \in G \subset \mathbb{C}^n\). Let \(s^z := s^{\eta(z; \cdot)}, z \in G\). We are going to show that \(s^z \xrightarrow{z \to z_0} s^{z_0}\).

By our assumptions, there exist \(r > 0, c > 0\) such that
\[
\eta(z; X) \geq c\|X\|, \quad z \in \mathbb{B}(z_0, r) \subset G, \ X \in \mathbb{C}^n.
\]
In particular, the sets
\[
I(z) := \{X \in \mathbb{C}^n : \eta(z; X) < 1\}, \quad z \in \mathbb{B}(z_0, r),
\]
are contained in the ball \(\mathbb{B}(0, C)\) with \(C := 1/c\). Moreover,
\[
|\eta(z; X) - \eta(z_0; X)| \leq \phi(z)\|X\|, \quad X \in \mathbb{C}^n,
\]
where \(\phi(z) \xrightarrow{z \to z_0} 0\). Hence
\[
(1 + C\phi(z))^{-1}I(z) \subset I(z_0) \subset (1 + C\phi(z))I(z), \quad z \in \mathbb{B}(z_0, r),
\]
and consequently,
\[
(\star) \quad I(z_0) \subset (1 + C\phi(z))E(s^z) = E((1 + C\phi(z))^{-2}s^z),
\]
\[
I(z) \subset (1 + C\phi(z))E(s^{z_0}) = E((1 + C\phi(z))^{-2}s^{z_0}), \quad z \in \mathbb{B}(z_0, r).
\]
Hence
\[
\text{Vol}(s^{z_0}) \leq \text{Vol}((1 + C\phi(z))^{-2}s^z) = (1 + C\phi(z))^{2n}\text{Vol}(s^z),
\]
\[
\text{Vol}(s^z) \leq \text{Vol}((1 + C\phi(z))^{-2}s^{z_0}) = (1 + C\phi(z))^{2n}\text{Vol}(s^{z_0}), \quad z \in \mathbb{B}(z_0, r).
\]
Thus \(\text{Vol}(s^z) \xrightarrow{z \to z_0} \text{Vol}(s^{z_0})\).

Take a sequence \(z_\nu \rightarrow z_0\). Since
\[
|s^{z_\nu}(e_j, e_k)| \leq \eta(z_\nu; e_j)\eta(z_\nu; e_k), \quad j, k = 1, \ldots, n, \ \nu \in \mathbb{N},
\]
we may assume that \(s^{z_\nu} \rightarrow s^*\), where \(s^*\) is a pseudo–Hermitian scalar product. We already know that \(\text{Vol}(s^*) = \text{Vol}(s^{z_0})\). Moreover, by \((\star)\), \(I(z_0) \subset E(s^*)\). Consequently, the uniqueness of \(s^{z_0}\) implies that \(s^* = s^{z_0}\).

(b) Recall that \(\tilde{\eta} = \int \tilde{\eta} = \text{cf. L.P. 1993, Proposition 4.3.5(b). By (a), } \mathcal{W}\eta \text{ is a continuous metric. In particular, the distance } \int(\mathcal{W}\eta) \text{ is well defined. By Theorem } \mathfrak{W}(a) \text{ we get}
\[
\int \tilde{\eta} \leq \int(\mathcal{W}\eta),
\]
which directly implies the required result.

(c) The result is obvious because for any \(z \in G\), the mapping \(F'(z)\) is a \(\mathbb{C}\)-linear isomorphism and \(\delta_D(F(z); F'(z)X) = \delta_G(z; X), X \in \mathbb{C}^n\).
(d) It is known that the family \((\hat{G})_G\) is holomorphically contractible ([J-P 1993, Theorem 4.3.10(c)]). Hence, using Theorem 3(a), we get
\[
(W\hat{G})(F(z); F'(z)X) \leq \sqrt{n_2} \hat{G}(F(z); F'(z)X) \leq \sqrt{n_2} \hat{G}(z; X), \quad z \in G, \ X \in \mathbb{C}^n.
\]

Example 5. Let \(G := \{(z_1, z_2) \in \mathbb{B}_2 : |z_1| < \varepsilon\}; 0 < \varepsilon < 1/\sqrt{2}\). Recall that \(\hat{G}(0; X) = \|X\|\) and \(\hat{G}(0; X) = \max\{\|X\|, |X_1|/\varepsilon\}, \ X = (X_1, X_2)\). Then \((W\hat{G})(0; (0, 1)) = \sqrt{2} > (W\hat{G})(0; (0, 1))\). In particular, the family \((W\hat{G})_D\) is not contractible with respect to inclusions.

We point out that Proposition 4(a) gives us the continuity of \(W\eta\) only in the case where \(\eta\) is a continuous metric. It is natural to conjecture that in the general case, where \(\eta\) is only an upper semicontinuous (pseudo)metric, \(W\eta\) remains to be upper semicontinuous. The following Example 6 shows that in general this is not true. In the case where \(\eta = \hat{G}\), the upper semicontinuity of \(W\hat{G}\) is claimed for instance in [J-P 1993 (Theorem 1)], [Che-Kim 1996 (Proposition 2)], [J-P 2002 (Theorem 0)], but so far there is no proof.

Example 6. There is an upper semicontinuous metric \(\eta\) such that \(W\eta\) is not upper semicontinuous.

Indeed, let \(\eta : \mathbb{B}_2 \times \mathbb{C}^2 \to \mathbb{R}^+\), \(\eta(z; X) := \|X\|\) for \(z \neq 0\), and \(\eta(0, X) := \max\{\|X\|, |X_1|/\varepsilon\}, \ X = (X_1, X_2)\in \mathbb{C}^2\) \((\varepsilon > 0\) small). Then \((W\eta)(z; X) = \sqrt{2}\|X\|\) for \(z \neq 0\), and \(\{X \in \mathbb{C}^2 : (W\eta)(0; X) < 1\} \cap \mathbb{B}(0, 1/\sqrt{2}) = \emptyset\), so \(W\eta\) is not upper semicontinuous (cf. Example 5).

Example 7. There exists a bounded domain \(G \subset \mathbb{C}^2\) such that \(W\hat{G}\) is not continuous (see Proposition 2 in [Che-Kim 1996], where such a continuity is claimed).

Indeed, let \(D \subset \mathbb{C}^2\) be a domain such that (cf. [J-P 1993, Example 3.5.10]):

- there exists a dense subset \(M \subset \mathbb{C}\) such that \((M \times \mathbb{C}) \cup (\mathbb{C} \times \{0\}) \subset D\),
- \(\hat{G}(z; (0, 1)) = 0, \ z \in A := M \times \mathbb{C}\),
- there exists a point \(z_0 \in D \setminus A\) such that \(\hat{G}(z_0; X) = c\|X\|\), \(X \in \mathbb{C}^2\), where \(c > 0\) is a constant.

For \(R > 0\) let \(D_R := \{z = (z_1, z_2) \in D : |z_j - z_0^j| < R, \ j = 1, 2\}\). It is known that \(\hat{G}_D\) \(\neq\) \(\hat{G}\) when \(R \to +\infty\). Observe that \(z_0 \in D_R\) and \(\hat{G}_D(z_0; X) \geq \hat{G}_D(z_0^j; X) \geq c\|X\|\), \(X \in \mathbb{C}^2\).

Hence, by Theorem 3(a), \((W\hat{G}_D)(z_0; X) \geq c\|X\|\), \(X \in \mathbb{C}^2\). In particular,
\[
(W\hat{G}_D)(z_0^0; (0, 1)) \geq c.
\]

Fix a sequence \(M \ni z_k \to z_0^1\). Note that \(\{z_k\} \times (z_0^2 + RE) \subset D_R\), which implies that \(\hat{G}_D((z_k, z_0^2); (0, 1)) \leq 1/R, \ k = 1, 2, \ldots\). In particular,
\[
(W\hat{G}_D)((z_k, z_0^2); (0, 1)) \leq \sqrt{2}\hat{G}_D((z_k, z_0^2); (0, 1)) \leq \sqrt{2}/R, \quad k = 1, 2, \ldots.
\]

Now it clear that if \(R > \sqrt{2}/c\) then
\[
\limsup_{k \to +\infty} (W\hat{G}_D)((z_k, z_0^2); (0, 1)) \leq \sqrt{2}/R < c \leq (W\hat{G}_D)(z_0^0; (0, 1)).
\]
which shows that for $G := D_R$ the pseudometric $\overline{W}_{\mathcal{H}G}$ is not continuous.

Remark 8. We point out the influence of the factor \sqrt{m} in the definition of \overline{W} to its upper semicontinuity.

Suppose we defined $\tilde{W} := q_k$, $\tilde{W}_{\eta}((a;X)) = (\tilde{W}_{\eta}(a;\cdot))(X)$. Then, using the product formula (Theorem 3(b)), we would get a domain $G \subset \mathbb{C}^3$ such that $\tilde{W}_{\mathcal{H}G}$ is not upper semicontinuous.

Indeed (the example is due to W. Jarnicki), let $D \subset \mathbb{C}^2$ and $D \ni z_k \rightarrow z_0 \in D$ be such that:

- $\kappa_D(z_k;\cdot)$ is not a metric (in particular, $m(k) := \dim U(\hat{\kappa}_D(z_k;\cdot)) \leq 1$, $k \in \mathbb{N}$),
- $\kappa_D(z_0;\cdot)$ is a metric.

Take, for instance, the domain D as in Example 7.

Put $G := D \times E \subset \mathbb{C}^3$. Then $\tilde{W}_{\mathcal{H}G}$ is not upper semicontinuous at $((z_0,0),(0,1))$ because

$$\tilde{W}_{\mathcal{H}G}^2(((z_k,0),(0,1)) = s_{\mathcal{H}G}(z_k,0;\cdot)((0,1),(0,1)) = \frac{1}{m(z_k) + 1} \geq \frac{1}{2}, \quad k \in \mathbb{N},$$

$$\tilde{W}_{\mathcal{H}G}^2(((z_0,0),(0,1)) = s_{\mathcal{H}G}(z_0,0;\cdot)((0,1),(0,1)) = \frac{1}{m(z_0) + 1} = \frac{1}{3}.$$

We conclude the paper by repeating the main open question.

Problem. Let $\eta \in \{\gamma_G^{(k)}, A_G, \mathcal{H}_G\}$ (cf. [J-P 1993]). Is \overline{W}_{η} upper semicontinuous?

References

[Che-Kim 1996] C. K. Cheung, K. T. Kim, *Analysis of the Wu metric. I: The case of convex Thullen domains*, Trans. Amer. Math. Soc. 348 (1996), 1421–1457.

[Che-Kim 1997] C. K. Cheung, K. T. Kim, *Analysis of the Wu metric. II: The case of non-convex Thullen domains*, Proc. Amer. Math. Soc. 125 (1997), 1131–1142.

[Che-Kim 2003] C. K. Cheung, K. T. Kim, *The constant curvature property of the Wu invariant metric*, Pac. J. Math. 211 (2003), 61–68.

[J-P 1993] M. Jarnicki, P. Pflug, *Invariant Distances and Metrics in Complex Analysis*, de Gruyter Expositions in Mathematics 9, Walter de Gruyter 1993.

[Juc 2002] P. Jucha, *The Wu metric in elementary Reinhardt domains*, Univ. Iag. Acta Math. 40 (2002), 83–89.

[Kim 1998] K. T. Kim, *The Wu metric and minimum ellipsoids*, Proc. 3rd Pacific Rim Geometry Conf. (J. Choe ed.), Monogr. Geom. Topology 25, International Press, Cambridge, 1998, 121–138.

[Wu] H. Wu, *Unpublished notes*.

[H. Wu 1993] H. Wu, *Old and new invariant metrics*, Several complex variables: Proc. Mittag-Leffler Inst. 1987–88 (J.E. Fornæss ed.), Math. Notes, Princeton Univ. Press 38 (1993), 640–682.

Jagiellonian University, Institute of Mathematics, Reymontowa 4, 30-059 Kraków, Poland

E-mail address: jarnicki@im.uj.edu.pl

Carl von Ossietzky Universität Oldenburg, Institut für Mathematik, Postfach 2503, D-26111 Oldenburg, Germany

E-mail address: pflug@mathematik.uni-oldenburg.de