Componentwise linearity of ideals arising from graphs

Veronica Crispin and Eric Emtander

Abstract. Let G be a simple undirected graph on n vertices. Francisco and Van Tuyl have shown that if G is chordal, then $\bigcap\{x_i, x_j\} \in E_G \langle x_i, x_j \rangle$ is componentwise linear. A natural question that arises is for which $t_{ij} > 1$ the ideal $\bigcap\{x_i, x_j\} \in E_G \langle x_i, x_j \rangle^{t_{ij}}$ is componentwise linear, if G is chordal. In this report we show that $\bigcap\{x_i, x_j\} \in E_G \langle x_i, x_j \rangle^t$ is componentwise linear for all $n \geq 3$ and positive t, if G is a complete graph. We give also an example where G is chordal, but the intersection ideal is not componentwise linear for any $t > 1$.

1. Introduction

The previous version of this article is published as [CQE].

Let G be a simple graph on n vertices, E_G the edge set of G and V_G the vertex set of G. Let $R = k[x_1, \ldots, x_n]$ be the polynomial ring over a field k. The edge ideal of G is the quadratic squarefree monomial ideal $I(G) = \langle \{x_i x_j\} \mid \{x_i, x_j\} \in E_G \rangle \subset R$. Then we define the squarefree Alexander dual of $I(G)$ as $I(G)^\vee = \bigcap\{x_i, x_j\} \in E_G \langle x_i, x_j \rangle$. Calling $I(G)^\vee$ the squarefree Alexander dual of $I(G)$ is natural since $I(G)^\vee$ is the Stanley–Reisner ideal of the simplicial complex Δ^\vee, that is, the Alexander dual simplicial complex of Δ. Here Δ is the simplicial complex, the Stanley-Reisner ideal of which is $I(G)$.

In [HH] Herzog and Hibi give the following definition. Given a graded ideal $I \subset R$, we denote by $I_{(d)}$ the ideal generated by the
elements of degree d that belong to I. Then we say that a (graded) ideal $I \subset R$ is componentwise linear if $I_{(d)}$ has a linear resolution for all d.

If the graph G is chordal, that is, every cycle of length $m \geq 4$ in G has a chord, then it is proved by Francisco and Van Tuyl [FvT1] that $I(G)^V$ is componentwise linear. (The authors then use the result to show that all chordal graphs are sequentially Cohen-Macaulay.)

In this report we examine componentwise linearity of ideals arising from complete graphs and of the form $\bigcap_{\{x_i,x_j\} \in E_G} \langle x_i, x_j \rangle^t$.

2. Intersections for complete graphs

Let K_n be a complete graph on n vertices, that is, $\{x_i, x_j\} \in E_{K_n}$ for all $1 \leq i \neq j \leq n$. We write $K_n^{(t)} = \bigcap_{\{x_i,x_j\} \in E_{K_n}} \langle x_i, x_j \rangle^t$. We will show that the ideal $K_n^{(t)}$ is componentwise linear for all $n \geq 3$ and $t \geq 1$. Recall that a vertex cover of a graph G is a subset $A \subset V_G$ such that every edge of G is incident to at least one vertex of A. One can show that $I(G)^V = \langle x_{i_1} \cdots x_{i_k} \mid \{x_{i_1}, \ldots, x_{i_k}\} \text{ a vertex cover of } G \rangle$. A t-vertex cover (or a vertex cover of order t) of G is a vector $a = (a_1, \ldots, a_n)$ with $a_i \in \mathbb{N}$ such that $a_i + a_j \geq t$ for all $\{x_i, x_j\} \in E_G$.

In the proof of our main result Theorem 2.3, we use the following definition and proposition.

Definition 2.1. A monomial ideal I is said to have linear quotients, if for some degree ordering of the minimal generators f_1, \ldots, f_r and all $k > 1$, the colon ideals $\langle f_1, \ldots, f_{k-1} \rangle : f_k$ are generated by a subset of $\{x_1, \ldots, x_n\}$.

Proposition 2.2 (Proposition 2.6 in [FvT2] and Lemma 4.1 in [CH]). If I is a homogeneous ideal with linear quotients, then I is componentwise linear.

Theorem 2.3. The ideal $K_n^{(t)}$ is componentwise linear for all $n \geq 3$ and $t \geq 1$.

Proof. For calculating an explicit generating system of $K_n^{(t)}$ we will use t-vertex covers. Pick any monomial m in the generating set of $K_n^{(t)}$ and, for some k and l, consider the greatest exponents t_k and t_l such that $x_k^t x_l^l$ is a factor in m. As m is contained in $\langle x_k, x_l \rangle^t$ we must have $t_k + t_l \geq t$. Hence, $K_n^{(t)}$ is generated by the monomials of the form x^a, where a is an t-cover of K_n. That is, the sum of the two lowest exponents in every (monomial) generator of $K_n^{(t)}$ is at least t.

First we assume that $t = 2m + 1$ is odd. Using the degree lexicographic ordering $x_1 \prec x_2 \prec \cdots \prec x_n$ on the the minimal generators we
get

\[K_n^{(t)} = K_n^{(2m+1)} = \langle x_1^m \prod_{i \neq 1} x_i^{m+1}, \ldots, x_n^m \prod_{i \neq n} x_i^{m+1}, \]
\[x_1^{m-1} \prod_{i \neq 1} x_i^{m+2}, \ldots, x_n^{m-1} \prod_{i \neq n} x_i^{m+2}, \]
\[\vdots \]
\[\prod_{i \neq 1} x_i^{2m+1}, \ldots, \prod_{i \neq n} x_i^{2m+1} \rangle. \]

This ordering of the minimal generators satisfies the condition in Definition 2.1. Hence, \(K_n^{(t)} \) has linear quotients and is componentwise linear by Proposition 2.2.

If \(t = 2m \) is even, then the degree lexicographic ordering yields the sequence

\[K_n^{(t)} = K_n^{(2m)} = \langle \prod_{i=1}^{2m} x_i^m, x_1^{m-1} \prod_{i \neq 1} x_i^{m+1}, \ldots, x_n^{m-1} \prod_{i \neq n} x_i^{m+1}, \]
\[x_1^{m-2} \prod_{i \neq 1} x_i^{m+2}, \ldots, x_n^{m-2} \prod_{i \neq n} x_i^{m+2}, \]
\[\vdots \]
\[\prod_{i \neq 1} x_i^{2m}, \ldots, \prod_{i \neq n} x_i^{2m} \rangle, \]

which also satisfies the condition in Definition 2.1 and the same result follows.

Example 2.4.

\[K_{12}^{(5)} = \langle \left\{ x_j^2 \prod_{i \neq j} x_i^3 \right\}, \left\{ x_j \prod_{i \neq j} x_i^4 \right\}, \left\{ \prod_{i \neq j} x_i^5 \right\} \rangle \]

and

\[K_5^{(6)} = \langle \prod_{i=1}^5 x_i^3, \left\{ x_j^2 \prod_{i \neq j} x_i^4 \right\}, \left\{ x_j \prod_{i \neq j} x_i^5 \right\}, \left\{ \prod_{i \neq j} x_i^6 \right\} \rangle. \]

Remark 2.5. A monomial ideal is called polymatroidal if it is generated in one degree and its minimal generators satisfy a certain ”exchange condition”. In [HT] Herzog and Takayama show that polymatroidal ideals have linear resolutions. Later Francisco and van Tuyl [FvT2] proved that some families of ideals \(I \) are componentwise linear showing in their Theorem 3.1 that \(I_{(d)} \) are polymatroidal for all \(d \).

The ideals \(K_n^{(t)} \) are also polymatroidal, but the proof using the same techniques as in the proof of Theorem 3.1 in [FvT2] is rather tedious and takes a few pages.
3. A counterexample

There exists a chordal graph G such that $\bigcap_{(x_i, x_j) \in E_G} \langle x_i, x_j \rangle^t$ is not componentwise linear for any $t > 1$.

Proof. Let G be the chordal graph

```
  b
 /\  /
a \ \ \c
  \ / \d
  / \  
```

and denote the intersection $\langle a, b \rangle^t \cap \langle a, c \rangle^t \cap \langle b, c \rangle^t \cap \langle b, d \rangle^t$ by $I_4^{(t)}$. We have

$$I_4^{(1)} = \bigcap_{\{i, j\} \in E_G} \langle i, j \rangle = \langle bc \rangle + \langle abd, acd \rangle$$

and

$$I_4^{(2)} = \bigcap_{\{i, j\} \in E_G} \langle i, j \rangle = \langle b^2c^2, abcd \rangle + \langle a^2b^2d^2, a^2c^2d^2 \rangle.$$

Arguing in the same way as for $K_n^{(t)}$ we see that the minimal generating set consists of generators of exactly degree $2t$ and generators of higher degrees:

- If $t_a \leq \lfloor \frac{t}{2} \rfloor$ then $t_b = t - t_a = t_c$ (the sum $t_b + t_c \geq t$ automatically) and $t_d = t - t_b = t - t_c = t_a$. We get the set of minimal generators of degree $2t$:
 $$\{a^i(bc)^{t-i}d^i\}_{0 \leq i \leq \lfloor \frac{t}{2} \rfloor}.$$

- If $t_a > \lfloor \frac{t}{2} \rfloor$, then either $t_b = t - t_a$ and $t_c = t - t_b = t_a$, or $t_c = t - t_a$ and $t_b = t_a$. Further $t_d = t_a$. The set of minimal generators we get in this way is equal to
 $$\{(acd)^i(b^t-i)\}_{\lfloor \frac{t}{2} \rfloor < i \leq t} \cup \{(acd)^i(b^t-i)\}_{\lfloor \frac{t}{2} \rfloor < i \leq t}.$$

The generators in this set are of degree at least $(2t + 1)$ for odd t and of degree at least $(2t + 2)$ for even t.

Now consider the minimal free resolution F of $(I_4^{(t)})_{(2t)}$. Since F is contained in any free resolution G of $(I_4^{(t)})_{(2t)}$ we have that if F_1 (the component of F in homological degree 1) has a non-zero component in a certain degree, then so does G_1. Let G be the Taylor resolution of $(I_4^{(t)})_{(2t)}$. The degrees in which G_1 has nonzero components come from
least common multiples of pairs of minimal generators of \((I_4^{(t)})_{(2t)}\). By considering the above description of the minimal generators in degree \(2t\), one sees that \(G_1\) has non-zero components only in degrees strictly larger than \(2t + 1\). Thus \(F\) cannot be a linear resolution and, hence, \(I_4^{(t)}\) is not componentwise linear.

\[\square\]

Acknowledgements

First of all we would like to thank the Università di Catania and the organizers of the PRAGMATIC summer school 2008, especially Alfio Ragusa and Giuseppe Zappalà. We are deeply greatful to Jürgen Herzog and Volkmar Welker for their excellent lectures, interesting problems and thorough guidance.

References

[CH] A. Conca and J. Herzog, Castelnuovo-Mumford regularity of products of ideals, Collect. Math. 54 (2003), no. 2, 137–152.

[CQE] V. Crispin Quinonez and E. Emtander, Componentwise linearity of ideals arising from graphs, Matematiche (Catania) 63 (2008), no. 2, 185–189 (2009).

[FvT1] C. Francisco and A. van Tuyl, Sequentially Cohen-Macaulay edge ideals, Proc. Amer. Math. Soc. 135 (2007), 2327–2337.

[FvT2] C. Francisco and A. van Tuyl, Some families of componentwise linear monomial ideals, Nagoya Math. J. 187 (2007), 115–156.

[HH] J. Herzog and T. Hibi, Componentwise linear ideals, Nagoya Math. J. 153 (1999), 141–153.

[HT] J. Herzog and Y. Takayama, Resolutions by Mapping Cones, The Roos Festschrift volume, 2. Homology Homotopy Appl. 4 (2002), no. 2, part 2, 277–294 (electronic).

Department of Mathematics, University of Oregon
E-mail address: vcrispin@uoregon.edu

Department of Mathematics, Stockholm University
E-mail address: erice@math.su.se