BIOCHEMICAL COMPOSITION AND ENZYMATIC ANALYSIS OF SUGARCANE VARIETIES
Iisd-16 AND Iisd-28

P. K. Sen*, S. M. M. Rahman*, M. F. Hasanb, M. A. S. Miahb, M. H. Rahmanc and A. S. M. Noman*

*Biotechnology and Genetic Engineering Discipline, Life science school, Khulna University, Khulna-9208, Bangladesh.
Bangladesh Sugarcane Research Institute (BSRI), Ishurdi-6020, Pabna, Bangladesh.
Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi-6205, Bangladesh.

KUS-03/34-240803

Manuscript received: August 24, 2003; Accepted: May 18, 2004

Abstract: An experiment was conducted at Bangladesh Sugarcane Research Institute (BSRI), Ishurdi, Pabna, Bangladesh. In this study, biochemical composition, enzyme activity and some chemical parameter of sugarcane juice in the varieties Iisd-16 and Iisd-28 were investigated. Iisd-28 showed higher amount of brix (20.85%), pol (18.53%), fiber (19.93%), ash (6.95%), minerals (Na 1.36 & K 3.12 gm/100 gm ash) and lipid (0.058%) than that of Iisd-16. Other compositions such as reducing sugars (0.096%), commercial cane sugar (12.55%), moisture (88.97%), protein (0.328%) and vitamin-C (0.00351 gm/100 gm juice) were lower in Iisd-28. Amylase enzyme activity (44.44 unit/ml) and cellulase enzyme activity (7.15 unit/ml) were higher in Iisd-28 but invertase enzyme activity (10.88 unit/ml) was lower than that of Iisd-16. Purity (91.34%) and extraction percentages (54.63%) were higher in Iisd-16 whereas, recovery percentage (11.17%) was lower in the juice of Iisd-16 variety than that of variety Iisd-28 of sugarcane. Most of the biochemical compositions analyses were higher in Iisd-28 than that of Iisd-16. Reducing sugars were less in Iisd-28 variety indicating less invertase activity.

Key words: Sugarcane; enzyme; brix; pol; Iisd-16; Iisd-28

Introduction

Sugarcane (Saccharum officinarum) is the second cash crop of Bangladesh. It is the major source of sugar (65%) of the world and the remaining (35%) produced from sugar beet (Anon., 1993). The annual production of sugar in Bangladesh is 0.22 million metric tons from sugarcane. But the country’s annual requirement of sugar production has been estimated at 0.30 million metric tons (Ali et al., 1989). Adopting two ways can increase sugarcane production of the country, one is to extend the cultivation area of sugarcane and the other is to increase the yield per unit area. Bangladesh Sugarcane Research Institute (BSRI), has released some locally developed improved varieties of sugarcane which produce maximum tonnage with satisfactory sugar recovery (Bull and Cullen, 1994).

Sugar is a source of instant energy and a glass of sugar helps to regain energy loss due to long hours of fasting. Nutritionist rightly advocate for taking around 15% of the required calories from sugar alone. A minimum of 13% of the body’s required calorie must be provided through sugar especially at the adolescent age for balanced growth and development of the brain. Sugarcane juice contains calcium, potassium, phosphorus, iron, riboflavin, carotene besides sucrose and traces of protein and fat. The quality of cane depends on higher sucrose level, lower fiber, reducing sugars, and other impurities content in juice. Sucrose accumulation in sugarcane is in fact a highly sensitive response to discrete enzyme behavior. Sucrose, commonly known as table sugar, is a disaccharide composed of a α-D-glucose moiety and a β-D-fructose moiety linked by a α-1, 4-glucosidic bond. When this bond is cleaved in a hydrolysis reaction, an equimolar mixture of glucose and fructose is generated.

Due to some biochemical changes, the qualitative and quantitative changes of sugar in sugarcane occur abundantly. Previous study regarding biochemical composition was employed using small numbers of parameters. In this study we have clarified biochemical composition using large number of parameters for Iisd-16 and Iisd-28 varieties of sugarcane. The present investigation was undertaken to study some biochemical compositions and parameters viz. brix, pol, commercial cane sugar (CCS), reducing sugars (RS), lipid, protein, ash, vitamin-C, fiber, minerals, purity, extraction percentage, recovery percentage, pH and enzymatic activities of the sugarcane varieties Iisd-16 and Iisd-28.

Materials and Methods

For the experimental purpose, Iisd-16 and Iisd-28 varieties of sugarcane were collected from BSRI (24.07°N latitude, 89.05°E longitude and 15.2M altitudes), Ishurdi, Pabna at the harvesting time in the month of February, 2003. The cane samples were crushed in a three-roller mill (power crusher). Brix% was determined by the Brix hydrometer, standardized at 20°C. Horne’s dry led method was used for the pol (sucrose) determination using Automatic Polarimeter (ADP-220). Purity% & recovery% were calculated from brix% and pol% as described by Anonymous (1970). Reducing sugars were determined by Lane and Eynon method mentioned in by Queensland Sugar Mill Laboratory Manual (Anon., 1970). Fiber content
was determined by the Prepared Cane Method (Anon., 1970). Moisture and ash content were determined by Association of Official Analytical Chemists (AOAC) (1984) method. Mineral content was determined by Flame Photometric Method. Lipid content was determined by Bligh and Dyer (1959) method. Protein content was determined by Micro-Kjeldahl (Jayaraman, 1985) method. Vitamin-C content was determined by Bessey’s titrimetric method (Bessey and King, 1933). Enzyme activity was determined by Mahadevan and Sridhar (1982) method.

Results and Discussion

The biochemical compositions of brix, pol, RS, fiber, CCS, moisture, ash, minerals (Na, K), lipid, protein, vitamin-C and some chemical parameters and enzyme activity of sugarcane were determined and analyzed. Table 1 shows the results of biochemical composition. Hasan et al. (2002) found almost similar results of biochemical composition. For the variety Isd-16, the composition was: brix 20.80%, pol 18.46% and RS 0.20%. For the variety Isd-28, the composition was: brix 19.60%, pol 17.00% and RS 0.25% at the harvesting stage. Almost similar results were observed by Sikder et al. (2001). Solomon et al. (1990) also found the similar type of results and reported that the brix%, pol%, CCS% and reducing sugar contents were 20.11, 19.18, 13.73 and 0.83, respectively in the harvesting stage of the sugarcane variety Co l58. Almost similar results of brix%, pol% and reducing sugars were reported by Kundu and Gupta (1991) at the harvesting stage in the varieties Co 48211, Co 94 5, Co 74, Co 76, Co 687, Co 83615, CoH 51. Taneja et al. (1986) also observed almost close results in the varieties Co 64, Co 7314, Co 7714, Co 9614, CoH 7802, Co 1158, Co 975, CoH 7803 and Co 1148. Tama and Salamatullah (2002) found 79.53 ± 0.07% moisture, 0.5 ± 0.07 % ashes, 0.28 ± 0.07% proteins and 0.13 ± 0.04% fat in Isd-16 variety. They also found 75.83 ± 0.06% moisture, 0.30±0.01% ashes, 0.26±0.03% proteins and 0.12 ± 0.06% fat in the variety Isd-28.

Table 1. Biochemical composition in sugarcane

Compositions	Isd-16	Isd-28
Brix %	19.75	20.85
Pol%	18.04	20.53
Reducing Sugars %	0.209	0.096
Fiber %	17.67	19.03
% Commercial Cane Sugar (CCS)	12.82	12.55
Ash%	4.42	6.95
Moisture %	90.18	88.97
Minerals		
(gm/100gms of Ash)		
Na	1.31	1.36
K	0.292	0.312
Lipid%	0.051	0.038
Protein%	0.437	0.328
Vitamin-C%	0.00378	0.00351

Table 2 shows the results of some biochemical parameters analysis. Almost similar results were reported by Hasan et al. (2002). They found that Isd-16 had 88.75% purity and 11.2% recovery rate whereas Isd-28 contained 89.79% purity and 10.8% recovery rates. Almost similar results were observed by Sikder et al. (2001). Solomon et al. (1990) reported that purity and extraction percentages and pH in the varieties Co 1158 were 95.29%, 55.29% and 5.47 respectively.

Table 2. Biochemical parameters of sugarcane juice

Parameters	Isd-16	Isd-28
Purity %	91.34	88.97
Recovery %	11.17	11.29
Extraction %	54.63	47.66
pH	5.39	5.41

Fig.-1, Fig.-2 and Fig.-3 represent the enzyme invertase, amylase and cellulase activity respectively at harvesting stages of Isd-16 and Isd-28 varieties of sugarcane. Isd-16 had higher invertase activity (14.51 unit/ml) than Isd-28 (10.88 unit/ml). Isd-28 had a higher amount of amylase activity (44.44 unit/ml) than that
of the Isd-16 (35.56 unit/ml). Isd-28 also had a higher amount of cellulase activity (7.15 unit/ml) than that of the Isd-16 (3.50 unit/ml).

Hasan et al. (2002) found that at harvesting stage, invertase activity of Isd-16 and Isd-28 were 6.0 unit/ml and 17.37 unit/ml respectively, amylase activity was 23.0 unit/ml and 30.0 unit/ml in the variety Isd-16 and Isd-28 respectively and Isd-28 contained 4.88 unit/ml and Isd-16 contained 3.77 unit/ml cellulase at harvesting stage. It has been hypothesized that, the presence of higher invertase activity in the sugarcane reduces the amount of brix and pol but increases reducing sugars. The result shown in Table 1 and Fig.-1 is consistent with the hypothesis.

Sikder et al. (2001) reported almost similar amount of invertase, amylase and cellulase in Isd-16 and Isd-28 varieties. Das and Prabhu (1990) reported that during maturity phase, reducing sugars content and invertase activity in sugarcane were low; they also reported 48.9 unit of amylase in variety Co 1148.

Conclusion

Although both Isd-16 and Isd-28 are prominent varieties of sugarcane, Isd-28 contains lower amount of invertase enzyme as well as lower amount of reducing sugars and higher amount of brix and pol than that of variety Isd-16. Among the biochemical compositions, moisture content was the highest, lipid and vitamin-C content was very minute in both the variety. Due to less amount of invertase, variety Isd-28 contained less amount of reducing sugars. We can transfer this enzyme responsible gene into another variety, which would synthesize higher invertase as well as higher reducing sugar and thus the variety may be improved.
Acknowledgement

The authors are grateful to Dr. A. B. M. Mafizur Rahman, Director General, Bangladesh Sugarcane Research Institute (BSRI), Ishurdi-6620, Pabna for giving permission and providing laboratory facility to perform this research work at BSRI.

References

Ali, M. Y., S. A. Imam and M. K. Ali (1989). Ropa Akh Chash. Sugarcane Res. Trg. Ins., Ishurdi, Pabna. Pub. No.45.

Anonymous (1970). Laboratory Manual for Queensland Sugar Mills Division of Mill Technology, Brisbane, Queensland, Australia, pp. 5.95-98, 113-114.

Anonymous (1993). Statistical Year Book of Bangladesh, 1992. Bangladesh Bureau of Statistics, Dhaka. p.103.

Official Methods of Analysis. The Association of Official Analytical Chemists (AOAC, 1984). Edited by Williams S. Analytical Chemists Inc. Virginia, U.S.A. 14th ed. p. 2049.

Bessey, O. A. and C. G. King (1933). The distribution of vitamin-C in Plant and Animal Tissues and its determination. J. Biol. Chem. 103: 687.

Bligh, E. G. and W. J. Dyer (1959). Total lipid extraction and purification. Cane. J. Biochem. physiol., 37: 911.

Bull, T. A. and G. R. Cullen (1994). A Ten Years Master Plan for the Sugarcane Research and Training Institute. Bangladesh Australian Sugar Industry Project. Pp. 8-9.

Das, G. and K. A. Prabhu (1990). Study of some hydrolytic enzymes in different varieties of sugarcane during maturity period. Indian sugar, 40(9): 653-657.

Donefer, E. and L. Latrille (1979). Description of sugarcane feeds: nomenclature and nutritional information. “Standardization of analytical methodology for feeds” in Proceedings of a Workshop, Ottawa, Canada, 12-14 March 1979. Eds. W.J. Pigden, C.C. Balch, and M. Graham. IDRC - 134C, 79-86.

Hasan, M. F., M. A. Sikder, M. A. S. Miah and M. H. Rahman (2002). Effect of enzyme activities on sucrose accumulation in different stages of sugarcane (Saccharum officinarum L.). Pakistan Sugar Journal. 17 (5): 2-9.

Islam, M. N., M. H. Rahman, M. F. Hasan and Z. A. Saud (2002). Post infection change in nutrient composition and enzyme activities of healthy and red rot affected sugarcane juice. Pakistan Sugar Journal. 17 (5): 16-19.

Jayaraman, J. (1985). Laboratory Manual in Biochemistry, Wiley Eastern Ltd., New delhi, India, pp. 75-76, 107.

Kundu, S. K. and M. L. Gupta (1991). Assessment of reducing sugars content of cane juice at different stages of growth in plant crop some early variety of sugarcane. Indian sugar, 41 (9): 669-671.

Mahadevan, A. and R. Sridhar (1982). Method in Physiological plant pathology. Sivakami Publication. Madras. p. 316.

Okuno, M. and H. Tamaki (2002). A novel technique for the decolorization of sugarcane juice. Journal of food science, 67 (1): 236-238.

Sikder, M. A., M. H. Rahman, M. S. Uddin and M. F. Hasan (2001). Relationship of carbohydrate splitting enzymes to sugar content in sugarcane juice at different maturity levels. J. Bio-Sci., 9: 9-13.

Solomon, S., K. K. Srivatsa, Bhatnagar and V. K. Madan (1990). Post harvest changes in invertase activity and juice quality in sugarcane. Indian sugar, 29(12): 895-899.

Taneja, A. D., M. S. Punja, B. S. Chaudhary and A. P. Sharma (1986). Effect of crop age on the quality of early, mid and late maturing variety of sugarcane. Indian sugar, 36 (4): 155-159.

Tania, J. and Q. Salamatullah (2002). Comparative study of different nutritive values of locally developed variety of cane sugar in Bangladesh. Bangladesh, J. Nut., 13: 39-46.