Prilagođavanje mašina za zemljane radove uslovima spoljašnjeg opterećenja

V. Shevchenko

1Mašinski fakultet, Katedra građevinskih mašina za puteve, Harkovski Državni Univerzitet za saobraćaj i saobraćajnice, Harkov (Ukrajina)

U toku eksploatacionih uslova mašine za zemljane radove izložene su kombinovanom naprezanju prouzrokovanog radnim okruženjem. Takvi utjecaji parametri zavise od stanja iskapanog zemljišta, vrste izvršenih radova i tipa radnog priključka montiranog na mašini. Tokom životnog ciklusa mašine uslovi opterećenja mogu se menjati mnogo puta. Istraživanjem u eksploataciji je utvrđeno da promene oblika i tipa spoljašnjih opterećenja ne dozvoljavaju visoku pouzdanost i kapacitet mašine za zemljane radove u svim uslovima rada. Da bi se postigao visok nivo navedenih parametara mašina treba da bude opremljena sistemima koji omogućavaju prilagođavanje uslovima spoljašnjeg opterećenja.

Ključne reči: Mašine za zemljane radove, Prilagođavanje, Prostor dinamičkih stanja

1. UVODNA RAZMATRANJA

Opterećenja mašine za zemljane radove (MZR) su promjenljiva i individualna. Masovno proizvedene mašine projektovane su u skladu sa normativnim tehnikama i nisu uvek u skladu sa specifičnim uslovima njihovog rada. Kasnije se, pre svega, određuju parametrima radnog okruženja, tipom najčešće izvršenih radnih operacija i pogodnošću obavljanja posla od strane određenog operatera. Promena opterećenja često rezultuje smanjenjem indeksa performansi MZR-e, kao što su radni kapacitet, pouzdanost itd. Da bi se rešio problem adaptacije masovno proizvedene mašine na stvarne uslove rada, u fazi razvoja bilo je potrebno detaljno istraživanje svim mogućim uslovima opterećenja i izrada tehničkih mera koje pružaju mogućnost mašini da se prilagodi ovim uslovima u okviru zadatog nivoa vrednosti dominantnih kriterijuma.

2. PREGLED NAUČNIH ISTRAŽIVANJA

Idea prilagođavanja se neprestano razvijala i detaljnije je razmotrena pri rešavanju zadataka kontrole otvorenih dinamičkih sistema. Najrasprostranjeniji pristup podrazumeva generisanje kinematičkih jednačina materijalnih sistema koje opisuje Lagranžova jednačina druge vrste [1].

\[L = S_i + u_i, D_i = \frac{\partial}{\partial t} \frac{\partial}{\partial q_i} - \frac{\partial}{\partial q_i}, i = 1,2,...,n \]

gde je \(D_i \) - diferencijalni operator Ojler - Lagranž, \(L \) - functiona funkcija mehaničkog sistema, \(T \) - kinetička ergijska sistema, \(P \) - potencijalna ergijska sistema, \(S_i \) - vektor generalizovanih sila, \(q_i \) - sistem generalizovanih koordinata. Rešavanje problema prilagođavanja zasniva se na određivanju kontrolisanja ciljnih uslova i realizaciji adaptivnog algoritma.

Uglađnom kod generisanja matematičkog modela razmatraju se deterministički pristupi.

U odnosu na sisteme upravljanja razmatran je jedan od dva tipa zadataka adaptivne stabilizacije mehaničkog sistema u odnosu na željeni zakon kretanja \(q_p(t) \) [1]:

1. Pasivna stabilizacija. Podrazumeva rešavanje nejednakosti

\[\| q(t) - q_p(t) \|^2 < \delta, \]

gde je: \(t \) - vreme, \(\delta > 0 \) - potrebna preciznost kontrole kretanja sistema.

2. Optimalna stabilizacija. U ovom slučaju potrebno je ispuniti uslove (2) pri istovremenom minimizaciji kompozitne funkcije kvaliteta upravljačkog sistema

\[J(x,u_1,\tau,\tau_1) \rightarrow \min_{x(\tau),u(\tau)} \]
Prikazana kompozitna funkcija može opisati moguću potrošnju energije, snage, vremena i drugih tipova potrošnje [1].

U radu [2] autori skreću pažnju na činjenicu da je ogroman broj dinamičkih sistema suštinski nonlinearan. Pri tome je utjecaj životne sredine na predmet koji se proučava često nekontrolisan i neizvestan. Na osnovu analize ponašanja nelinearnih dinamičkih sistema, autori predlažu novi pristup problemu sinteze adaptivnog sistema upravljanja [2]. Predlaže se korišćenje postizanja željenih dinamičkih stanja kao kontrolnih ciljeva, što isključuje analizu u skladu sa poznatim uslovima stabilnosti Ljapunova. Dakle, da bi se rešili problemi adaptivne kontrole u sistemima sa neravnim dinamičkim sistemima, autori predlažu potrošnju energije, snage, vremena i drugih tipova potrošnje [1].

U radu [2] autori skreću pažnju na činjenicu da je ogroman broj dinamičkih sistema suštinski nonlinearan. Pri tome je utjecaj životne sredine na predmet koji se proučava često nekontrolisan i neizvestan. Na osnovu analize ponašanja nelinearnih dinamičkih sistema, autori predlažu novi pristup problemu sinteze adaptivnog sistema upravljanja [2]. Predlaže se korišćenje postizanja željenih dinamičkih stanja kao kontrolnih ciljeva, što isključuje analizu u skladu sa poznatim uslovima stabilnosti Ljapunova. Dakle, da bi se rešili problemi adaptivne kontrole u sistemima sa neravnim dinamičkim sistemima, autori predlažu potrošnju energije, snage, vremena i drugih tipova potrošnje [1].

*Kontakt adresa autora: valeriy_shevchenko_2013@mail.ru
Za razvoj matematičkih modela objekata i opisivanje funkcija objektivne kontrole u uslovima nelinearnosti i neizvjesnosti, prema mišljenju autora, neophodno je primeniti aparat fuzzy matematike. Ovaj pristup sintezi adaptivnih sistema upravljanja je nov i zahteva dalja istraživanja. Radovi autora V.A. Mescherjakova [3, 4] su primer implementacije novih pristupa adaptivnoj kontroli MZR. Autor opravdano navodi da je za razvoj adaptivne kontrole neophodno osloniti se na informacije o dinamici radnih procesa MZR. U tu svrhu treba razviti dva pristupa. Prvi se zasniva na informacijama o dizajnu MZR. Drugi pristup simulaciji radnih procesa MZR zasniva se na identifikaciji radnih procesa koji omogućavaju kreiranje adaptivnih dinamičkih modela na osnovu eksperimentalnih podataka koji karakterišu parametre takvih procesa. Navedeni pristup omogućava identifikaciju i simulaciju skrivenih zavisnosti između parametara radnih procesa bez potpune informacije o razvoju MZR i karakteristikama okoline [4]. Autor daje prednost drugom pristupu i predlaže simulaciju radnih procesa MZR pomoću dinamičkog modela neuronske mreže [3].

Ideje koje je predložio V.A. Mešerjakov predlažu, pre svega, dostupnost prave mašine i sprovedenje kompleksa eksperimentalnih testova kako bi se „naučio“ razvijeni dinamički model neuronske mreže. U studijama slučaja realizovanih od strane autora, ciljevi kontrole su pojednostavljeni i praktični. Dakle, pri analizi procesa kretanja tla grejderom, kriterijum određivanja maksimalne vučne snage je predložen kao kontrolni cilj.

Važan faktor za određivanje uslova opterećenja MZR-e uslovima spoljašnjeg opterećenja, potrebno je odrediti faktore koji uzrokuju promene u karakteristikama spoljašnjih opterećenja. Analiza uslova rada mašina za zemljani radove pokazuje da postoji nekoliko takvih faktora. Najvažniji od njih su fizičke i mehaničke osobine radne sredine, slučajni uticaj operatera na rad mašine kao i parametri samog procesa rada. Ovi se određeni nizom posebnosti i aspekata za poboljšanje efikasnosti mašina za zemljane radove, one se koriste za obavljanje različitih radnih operacija. Pri tome, svaka operacija se odlikuje sopstvenim uslovima opterećenja. Za poboljšanje efikasnosti ovi drugi parametri samog procesa rada, radne sredine, slučajni uticaj operatera na rad mašine kao i faktora. Najvažniji od njih su fizičke i mehaničke osobine zemljanih radova pokazuju da postoji nekoliko takvih faktora. Analiza uslova rada mašina za zemljani radove pokazuje da postoji nekoliko takvih faktora. Najvažniji od njih su fizičke i mehaničke osobine radne sredine, slučajni uticaj operatera na rad mašine kao i parametri samog procesa rada. Ovi drugi parametri samog procesa rada, radne sredine, slučajni uticaj operatera na rad mašine kao i faktora. Najvažniji od njih su fizičke i mehaničke osobine zemljanih radova.

3. FAKTORI KOJI UZROKUJU PROMENU USLOVA OPTEREĆENJA MZR

Da bi se razvila strategija prilagođavanja MZR-e uslovima spoljašnjeg opterećenja, potrebno je odrediti faktore koji uzrokuju promene u karakteristikama spoljašnjih opterećenja. Analiza uslova rada mašina za zemljane radove pokazuje da postoji nekoliko takvih faktora. Najvažniji od njih su fizičke i mehaničke osobine radne sredine, slučajni uticaj operatera na rad mašine kao i parametri samog procesa rada. Ovi drugi parametri samog procesa rada, radne sredine, slučajni uticaj operatera na rad mašine kao i faktora. Najvažniji od njih su fizičke i mehaničke osobine zemljanih radova. V.A. Shevchenko, V.

Važan faktor za određivanje uslova opterećenja MZR je način izvođenja jedne iste radne operacije, ali koristeći različite tehnike. Tako se, na primer, kopanje diskretnog materijala utovarivacem sa jednom kašikom može se izvesti različitim tehnikama: - pomeranje radnog priključka u horizontalnom smjeru usled realizacije maksimalne vučne sile i inercije mase mašine; - pomeranje mašine u horizontalnom smjeru pri istovremenom okrećanju nosaća; - zarivanje radnog priključka u gomilu materijala pri istovremenom zakretanju kašike;
- kombiniranje nekoliko pomenutih tehničkih. Svaka tehnika formira sopstveno stanje opterećenja MZR.

Slika 2: Horizontalno opterećenje noža grejdera pri udaru o tlo

Drugi faktor koji utiče na formiranje uslova opterećenja je promena pravca spoljašnjeg opterećenja. Različite faze radnog ciklusa mašina prate različite tipove opterećenja. Tako, kod kopanja zemlje, preovladavaju sile radnog otpora na radnom priključku (uglavnim horizontalno opterećenja). Dok su u transportnom režimu dominante vertikalne težine i neracionalna opterećenja. Izvedeni eksperimenti su pokazali da je pri režimima transporta naprezanje u glavnoj metalnoj konstrukciji MZR uporedivo sa naprezanjima koja se javljaju u režimima kopanja i ponekad ih premašuju. Tip radnog priključka instaliranog na MZR ima značaj lanacij na spoljašnje uslove utovara. Imajući u vidu da je jedan od perspektivnih pravaca razvoja MZR utičenja upotreba različitih radnih priključaka, treba očekivati širok raspon varijacija delovanja opterećenja. Daleko, preporučuje se upotreba ne manje od 30 radnih priključaka za grejder, a više od 100 - za utovarivače za utovar sa čela i jednom kaškom. Mašina dizajnirana za implementaciju standardnih radnih operacija svojim radnim priključkom, u realnim uslovima pri njegovoj zameni automatski će biti podložna novom stanju uslova opterećenja koji nije razmatran do tada.

Uglavnom, uslovi opterećenja MZR su određeni njegovim karakteristikama. Kao sušinski nelinearni dinamički sistem koji se sastoji od niza osnovnih jedinica (motor, menjač, šasija, metalne konstrukcije, radni priključci i upravljački sistemi), svaki od njih ima svoje dinamičke karakteristike i komplikovane međusobne odnose, u uslovima stvarnog rada mašina može biti podložna novom stanju uslova opterećenja koji nije razmatran do tada.

Rast brzine rada znatno povećava verovatnoću nastanka i razvoja nekontroliranih spontanih oscilacija u pojedinim jedinicama. Uz početnu brzinu vozila do 0,8 m/sec u uslovima kretanja blizu zaključavanja radnog priključka, oscilatorni procesi samo-pobuđenih tipa u sistemima grejdera uopšte nisu registrovani. Ako je radna brzina oko 1,2 m/sec i veća, verovatnoća pojave i razvoja takvih procesa se povećava do 100%. Savremene tehnike razvoja MZR ne podrazumevaju proučavanje uslova opterećenja i najčešće ne uzimaju u obzir konstruktivne mere koje bi ih izbegavale.

4. OPŠTA BLOK ŠEMA PROCESA PRILAGOĐAVANJA MZR USLOVIMA SPOLJAŠNJEG OPTEREĆENJA

Promena radnog priključka, vrste radnih operacija, faze radnog ciklusa mašine, brzina radne operacije i tip obrađenog materijala utiče na promenu uslova opterećenja MZR i njegovih pojedinačnih jedinica. Eksperimenti pokazuju da varijacije frekvencije i amplitude opterećenja koje deluju u ovim slučajevima imaju veoma široke granice.
Ovakva složena promena uslova opterećenja može dovesti do promene vrednosti glavnih kriterijuma performansi mašine: radnog kapaciteta, indeksa pouzdanosti, energetskih i ekonomskih parametara, indeksa performansi itd. [12, 13]. Sa naše tačke gledišta, problem adaptacije MZR na spoljašna opterećenja je da treba zadovoljiti nivo vrednosti kriterijuma bez obzira na vrstu i parametre rada koji se izvode. Na osnovu gore navedenih napomena, opšta blok šema procesa adaptacije ima svoje viđenje kako je prikazano na slici 4.

Slika 4: Opšta blok šema prilagođavanja MZR spoljašnjim uslovima opterećenja

Tako, određivanje granica prostora dinamičkih stanja MZR se svodi na rešavanje zadatka višekriterijumske optimizacije [14]. Značajan broj kriterijuma i njihova neizvjesnost znatno komplikuju rešavanje zadatka i ponekad ga čine problematičnim. Međutim, istraživanje sprovedena u okviru operacionih istraživanja pokazuje da za različite tipove MZR u različitim uslovima postoji ograničen broj zahteva za kriterijume rada mašine. To omogućava da se iz liste kriterijuma dodeli nekoliko dominantnih (najvažnijih) i sve kasnije matematičke operacije obavljaju samo na njihovoj osnovi. U ovom slučaju je donesene odredbe tajnosti izvorne performansee mašine i njenih jedinica odgovaraju određenom prostoru dinamičkih stanja. Za realizaciju procesa adaptacije mogu se koristiti dva pristupa: analitički i eksperimentalni. Analitički pristup predlaže razvoj generalizovanog dinamičkog modela MZR koji je predstavljen kao sistem diferencijalnih jednačina kretanja. Izbor podesivih parametara MZR i granice njihove varijacije zasnivaju se na kvalitativnoj i numeričkoj analizi razvijenog generalizovanog modela. S obzirom na veliku raznolikost modela MZR i značajan obim proračuna, realizacija ovog pristupa je moguća samo pri razvoju specijalizovane softverske podrške. Eksperimentalni pristup omogućava realizaciju mašinske adaptacije „u hodu“, u procesu realizacije određene radne operacije. Problemi ovakvog pristupa svedeni su na rešavanje sledećih zadataka:

- razvoj sistema za merenje podataka sa razumnim brojem izvora podataka (sensori) i određivanje mesta za njihovu instalaciju za kompletan opis uslova opterećenja MZR i njegovih jedinica;
- konstrukтивno obezbeđenje skupa parametara mašine, čija varijacija ima najveći uticaj na uslove opterećenja;
- intelektualizacija adaptacionog sistema, koji se sastoji u razvoju softvera za samostalno učenje koji omogućava da se u uslovima uticaja slučajnih opterećenja.
sa određenim trendom donose brze racionalne odluke o
modifikacijama MZR unutar skupa podesivih parametara.
Tako će tehnička realizacija adaptacionog sistema
omogućiti brzo prilagođavanje masovno proizvedene
MZR u skladu sa uslovima njihovih opterećenja.

5. ZAKLJUČAK
Uslovi opterećenja MZR i njenih jedinica određeni su nizom faktora, od kojih su glavni: parametri obrađenog materijala; tip i kinematički parametri izvedene radne operacije; geometrijski, kinematički i dinamički parametri same mašine. Kompleks kriterijuma performansi mašine omogućava određivanje prostora prihvatljivih dinamičkih stanja mašina koje zadovoljavaju navedene vrednosti kriterijuma. Glavni zadatak adaptacije mašine je transformacija njenih geometrijskih, kinematičkih i dinamičkih parametara koji, bez obzira na vrstu i način izvođenja radnih operacija osiguravaju garantovano usklađivanje sa prostorom prihvatljivih dinamičkih stanja MZR.

LITERATURA
[1] Тертычный-Даури В.Ю. Адаптивная механика. – 2-e изд., перераб. и доп. – М.: Изд-во «Факториал Пресс», 2003. – 464 с.
[2] Тюкин И.Ю., Терехов В.А. Адаптация в нелинейных динамических системах. – М.: Издательство ЛКИ, 2008. – 384 с.
[3] Мещеряков В.А. Нейросетевая динамическая модель рабочего процесса землеройной машины // Межвузовский сборник трудов молодых ученых, аспирантов и студентов. Омск: СибАДИ, 2004. – Вып. 1, ч. 1. – с. 135-141.
[4] Мещеряков В.А. Адаптивное управление рабочими процессами землеройно-транспортных машин. – Автореф. дис. на соиск. уч. степени доктора технических наук. – Омск, 2007. – 42 с.
[5] Бузин Ю.М. и др. Пути повышения эффективности работы автогрейдеров. – Ж. «Строительные и дорогожные машины». - № 10. – 1986. – с. 2-3.
[6] Федоров Д.И. Рабочие органы землеройных машин. - 2-е изд., перераб. и доп. – М.: Машиностроение, 1989. – 368 с.
[7] Наукові основи створення високоефективних землеройно-транспортних машин / Кириченко І.Г., Назаров Л.В., Нічке В.В. та ін. – Харків: ХНАДУ, 2003. – 588 с.
[8] Ничке В.В. Надежность прицепного и навесного оборудования тракторов. – Харьков: Вища шк. Изд-во при Харьк. ун-те, 1985. – 152 с.
[9] Завьялов Л.М., Завьялов М.А., Кузнецова В.Н. Взаимодействие дорожных и строительных машин с контактной средой: Монография. – Омск: Изд-во «Полиграфический центр КА11», 2011. – 370 с.
[10] Проектирование машин для земляных работ / Под ред. А.М. Холодова. – Харьков: Вища шк. Изд-во при Харьк. ун-те, 1986. – 272 с.
[11] Ксеноевич И.П. Аспекты проектирования сложных вероятностных нелинейных динамических неголономных систем. – Ж. «Тракторы и сельскохозяйственные машины». – 2007. – № 8
[12] Брауде В.И., Семенов Л.Н. Надежность подъемно-транспортных машин. – Л.: Машиностроение, Ленинградское отд-ние, 1986. – 183 с.
[13] Краснокутский В.М., Якість будівельних і дорожніх машин / Краснокутський В.М., Пімонов І.Г., Пімонов Г.Г. – Харків: ХНАДУ, 2011. – 276 с.
[14] Дубров Ю.А., Травкин С.И., Якимец В.Н. Многокритериальные модели формирования и выбора вариантов систем. – М.: Наука, Гл. ред. физ.-мат. лит., 1986. – 296 с.
Adaptation of Earth-Moving Machines to External Loading Conditions

V. Shevchenko

1. INTRODUCTION

Loading conditions for each earth-moving machine (EMM) are variable and individual. Mass-produced machines are designed according to normative techniques and do not always conform to specific conditions of their operation. The latter are determined, first of all, by parameters of the operating environment, type of the most frequently performed working operations, specificity of performing work by a certain operator. Changing the load conditions often results in decreasing the performance indexes of EMM, such as working capacity, reliability etc. To solve the problem of adaptation of a mass-produced machine to real operation conditions, at the stage of development there required a thorough investigation of all its possible load conditions and working out technical measures allowing the machine to adapt to these conditions within the set level of values of the dominant criteria.

2. ANALYSIS OF SCIENTIFIC RESEARCHES

The idea of adaptation got further development and was considered more thoroughly at solving tasks of controlling open dynamic systems. The most wide-spread approach involves generating equations of kinetics of material systems described by Lagrange equation of second kind [1].

\[DL = S_i + u_i, D_i = \frac{d}{dt} \frac{\partial}{\partial q_i} - \frac{\partial}{\partial \dot{q}_i}, i = 1,2,...,n \] (1)

where \(DL \) - differential operator of Euler-Lagrange, \(L = T - \tilde{V} \) - Lagrange function of a mechanical system, \(T \) - system kinetic energy, \(\tilde{V} \) - system potential energy, \(S_i \) - vector of generalized forces, \(\dot{q}_i \) - system generalized coordinates. Solving the adaptation problem is based on determination of controlling the target conditions and realization of adaptive algorithm. In overwhelming majority at generating a mathematical model deterministic approaches are considered.

In relation to control systems there considered one of the two types of tasks of a mechanical system adaptive stabilization with respect to the desired law of motion \(q_s(t) \) [1]:

1. Passive stabilization. Implies solving the inequality

\[\|q(t) - q_s(t)\| < \delta, \] (2)

where \(t \) - time, \(\delta > 0 \) - required accuracy of controlling the system movement.

2. Optimal stabilization. In this case it is required to meet conditions (2) at simultaneous minimization of the composite function of the control system quality

\[I(x,u,\tau,\dot{\tau}) \rightarrow \min_{u_s,\tau_{\text{opt}}} \] (3)

The presented composite function can describe possible energy, power, time and other types of consumption [1].

In work [2] the authors draw attention to the fact that the vast number of dynamic systems are essentially nonlinear. At that the impact of environment on the object under study is often uncontrolled and uncertain.

On the basis of analysis of nonlinear dynamic systems behavior, the authors propose a new approach to the problem of synthesis of the adaptive control system [2]. It is suggested to use achievement of the desired dynamic states as control objectives, which excludes analysis in accordance with the known Lyapunov stability conditions. Thus, to solve the problems of adaptive control in systems with non-equilibrium and unstable target dynamics of a broad class of nonlinear dynamic systems, it is necessary to describe nonlinear dynamic systems in a language that does not require precise knowledge of differential equations of the object itself, as well as a mathematical apparatus to analyze compounds of such objects [2]. Principles and limitations in the problem of adaptive controller synthesis follow from the analysis of function spaces of the object state. For developing mathematical models of the objects and describing the objective control functions in conditions of nonlinearity and uncertainty, according to the authors, it is necessary to apply the apparatus of fuzzy mathematics. This approach to the synthesis of adaptive control systems is new and requires further research. Works by V.A. Meshcherjakov [3, 4] are an example of implementing the new approaches to EMM adaptive control. The author reasonably states that for developing EMM adaptive control, it is necessary to rely on information about dynamics of EMM working processes. For this purpose two approaches should be developed. The first one is based on developing analytical models of working processes elements and combining them into a general simulation model. Such approach is

*Corresponding author: valeriy_shevchenko_2013@mail.ru
based on a priori information about EMM design. The second approach to simulation of EMM working processes is based on identification of the working processes that allows creating adaptive dynamic models on the basis of experimental data characterizing parameters of such processes. The specified approach makes it possible to identify and simulate hidden dependencies between the parameters of the working processes without full information about EMM design and the environment characteristics [4]. The author gives preference to the second approach and proposes to simulate EMM working processes by means of self-learning neural network dynamic model [3].

Ideas proposed by V.A. Meshcherjakov suggest, first of all, availability of a real machine and carrying out a complex of experimental trials to “teach” the developed neural network dynamic model. In the case studies realizing the author’s developments, the control objectives are simplified and practical. Thus, at analyzing the process of moving soil by a motor-grader, the criterion of maintenance of the maximum traction power is suggested to be the control objective [5]. When blading and grading the earth road bed the target control criterion is minimizing deviation of the working attachment vertical coordinates from the designed values. To implement the control action, a hydraulic actuator of the working attachment control and regulation of EMM motion speed are most commonly used.

Such an approach does not take into account the fact that for essentially nonlinear dynamic systems, which EMMs are, characteristic with a smooth variation of the parameters is a manifestation of bifurcational phenomena as well as processes of dynamic chaos generated by the machine itself. The considered adaptive control principles in most of the mentioned situations can only partially ensure the specified level of complex quality indicators characterizing EMM operational properties.

3. FACTORS CAUSING CHANGE OF EMM LOADING CONDITIONS

To develop a strategy of EMM adaptation to external loading conditions, it is necessary to determine factors causing changes in characteristics of acting external loadings. The analysis of operation conditions of earth-moving machinery shows that there are several such factors. The most important of them are physical and mechanical properties of the working environment, accidental influence of the operator on the machine work as well as the parameters of the working process itself. The latter are determined by a number of peculiarities and aspects.

For improving the efficiency of earth-moving machines, they are used to perform various working operations. At that, each operation is characterized by its own loading conditions. For example, at performing operations of cutting and transporting soil and materials, external loadings are reliably described as a random process [6]. At the same time, at implementation of working operations associated with unsteady movement both of the machine and its working attachment, the loading conditions can be rather precisely described as the determined dynamic process [7].

In figures 1 and 2 oscillograms of variation in time of the horizontal effort on the motor-grader blade corresponding to the specified processes are presented. The given graphs demonstrate that speed characteristics of the implemented work process have a considerable impact on the loading conditions. Some authors point to the fact that with increase in the speed the resistance to digging increases as well, but none of them pays attention to changes in loading conditions [8, 9]. The graphs show variation in time of the horizontal component of digging resistance when performing the same operation but at different speeds. It should be noted that the specified speeds are recommended to perform typical working operations.

![Oscillograms of variation in time of the horizontal component of resistance to soil digging by a motor-grader](image)

Figure 1: Oscillograms of variation in time of the horizontal component of resistance to soil digging by a motor-grader

The important factor for determining conditions of EMM loading is the method of performing one and the same working operation but using different techniques. Thus, for instance, digging discrete material by a single-bucket front-end loader can be performed by various techniques:

- movement of the working attachment in horizontal direction due to realization of the maximum tractive force and mass inertia of the machine;
- movement of the machine in the horizontal direction at a simultaneous boom swing;
- deepening of the work attachment in a pile of material at a simultaneous bucket swing;
- combining several of these techniques.

Each technique forms its own condition of EMM loading.
Another factor influencing the formation of loading conditions is changing the direction of the external load resultant. At different stages of the operational cycle the machine takes up different types of loading. Thus, at digging soil, forces of work resistance on the working attachment (mainly horizontal loadings are taken into account) are prevailing. While at the transportation mode the dominant are vertical weight and inertial loadings. The conducted experiments showed that at transportation modes the stress motion acting in EMM main metal construction are comparable with stresses occurring in the digging modes and sometimes exceed them.

The type of working attachment installed on EMM has a significant impact on external loading conditions. Taking into consideration that one of perspective directions of EMM development is common use of various replaceable working attachment, a wide range variation of acting loadings should be expected. So, it is recommended to use not less than 30 replaceable working attachment for motor-graders, and more than 100 - for single-bucket front-end loaders. The machine designed for implementation of standard working operations by its working attachment, in real conditions at its replacing will automatically be subject to a new, not taken up before, condition of loading.

Largely, EMM loading conditions are determined by its design features. Being an essentially nonlinear dynamic system consisting of a number of basic units (engine, transmission, chassis, metal construction, working attachment and control systems), each of them having its own dynamic characteristics and complicated interrelations, in conditions of real operation the machine can by itself, without the operator intrusion, vary loading conditions of each unit [10, 11]. In the course of experiments with the medium motor-grader at performing operations, during which blocking of the main working attachment was carried out (the blade deepening into the soil at a speed until the complete stopping down of the machine) there was noticed occurrence and development of uncontrolled oscillating process in individual machine units, Figure 3. It is important, to our opinion, that the oscillations were developing in the machine units not simultaneously. Thus, in a number of experiments the development of oscillating processes was noticed in the metal construction and the hydraulic actuator of the blade control, when the transmission worked in the design mode and vice versa.

Growth of working operation speed significantly increases the probability of occurrence and development of uncontrolled spontaneous oscillations in individual units. With an initial vehicle speed of up to 0.8 m/sec in conditions of movement close to locking of the working attachment, oscillatory processes of self-excited type in the motor-grader systems were not registered at all. If the operating speed is about 1.2 m/sec and higher, the probability of occurrence and development of such processes increases up to 100%. Modern techniques of EMM design do not imply studying loading conditions of the kind and most often do not consider constructive measures allowing to avoid them.

4. THE GENERAL BLOCK SCHEME OF THE PROCESS OF EMM ADAPTATION TO EXTERNAL LOADING CONDITIONS

Changing the working attachment, type of working operations, stages of the machine working cycle, speeds of the working operation performance, type of the processed material cause changing in loading conditions of both EMM itself and its individual units. The experiments show...
that variations of frequency and amplitude of the loadings acting in these cases have very wide limits. Such a complex change of loading conditions can lead to changing values of the main performance criteria of the machine: working capacity, reliability indexes, energy and economic parameters, performance index etc. [12, 13]. From our point of view, the problem of EMM adaptation to acting external loadings is that it should meet the specified level of the criteria values regardless of the type and parameters of working operation performed.

On the assumption of the above mentioned remarks, the general block scheme of the adaptation process has the view as it is presented in Figure 4.

Thus, determining limits of EMM space of dynamic states is reduced to solving the task of multicriteria optimization [14]. A significant number of criteria, their inconsistency considerably complicate solving the given task and sometimes make it rather problematic. However, a survey conducted among specialists of operating organizations show that for different types of EMM in different conditions there put forward a limited number of requirements to the machine performance criteria. This allows to allocate several dominant (the most important) ones from the list of criteria and perform all the subsequent mathematical operations only on their basis. In this case the task is simplified to a certain degree.

The very process of adaptation involves changing EMM parameters so that loading conditions both of the machine and its units corresponded to the designated space of dynamic states.

For realizing the adaptation process two approaches can be used: analytical and experimental one.

The most important element of the scheme is space of EMM dynamic states, which limits are determined by specified values of the machine performance criteria. The space itself includes a multifactorial complex of acceptable loading conditions satisfying the set level of criteria. It is possible to determine the limits of such space describing the performance criteria by inequations taking into account not only parameters of the working environment and working operations performed but geometrical, kinematic and dynamic parameters of the machine itself.

The analytical approach suggests development of a generalized dynamic model of EMM presented as a system of differential equations of motion. Choice of adjustable EMM parameters and the limits of their variation are based on qualitative and numerical analysis of the developed generalized model. In view of a great variety of EMM models and substantial volume of computation, realization of this approach is possible only at development of a specialized software support.

The experimental approach allows realizing the adaptation “on the fly”, in the process of implementing a certain working operation. Problems of such approach are reduced to solving the following tasks:
- development of data measuring system with a reasonable number of data sources (sensors) and determination of places for their installation for complete description of loading conditions of EMM and its units;
- constructive provision of a set of the machine parameters, which variation has the greatest impact on loading conditions;
Adaptation of Earth-Moving Machines to External Loading Conditions

5. CONCLUSIONS

Loading conditions of EMM and its units is determined by a number of factors, the main of which are: the worked material parameters; type and kinematic parameters of the working operation performed; geometric, kinematic and dynamic parameters of the machine itself.

The complex of performance criteria of the machine allows determining the space of the machine acceptable dynamic states meeting the specified values of the criteria.

The main task of the machine adaptation is transformation of its geometrical, kinematic and dynamic parameters allowing irrespective from the type and method of performing working operations to ensure a guaranteed matching with the space of the EMM acceptable dynamic states.

REFERENCES

[1] Тертычный-Даури В.Ю. Адаптивная механика. – 2-е изд., перераб. и доп. – М.: Изд-во «Факториал Пресс», 2003. – 464 с.
[2] Тюкин И.Ю., Терехов В.А. Адаптация в нелинейных динамических системах. – М.: Издательство ЛКИ, 2008. – 384 с.
[3] Мещеряков В.А. Нейросетевая динамическая модель рабочего процесса землеройной машины // Межвузовский сборник трудов молодых ученых, аспирантов и студентов. Омск: СибАДИ, 2004. – Вып. 1, ч. 1. – с. 135-141.
[4] Мещеряков В.А. Адаптивное управление рабочими процессами землеройно-транспортных машин. – Автореф. дис. на соиск. уч. степени доктора технических наук. – Омск, 2007. – 42 с.
[5] Бузин Ю.М. и др. Пути повышения эффективности работы автогрейдеров. – Ж. «Строительные и дорожные машины». - № 10. – 1986. – с. 2-3.
[6] Федоров Д.И. Рабочие органы землеройных машин. - 2-е изд., перераб. и доп. – М.: Машиностроение, 1989. – 368 с.
[7] Наукові основи створення високоефективних землеройно-транспортних машин // Кирichenко І.Г., Назаров Л.В., Нічке В.В. та ін. – Харків: ХНАДУ, 2003. – 588 с.
[8] Ничке В.В. Надежность прицепного и навесного оборудования тракторов. – Харьков: Вища шк. Изд-во при Харьк. ун-те, 1985. – 152 с.
[9] Завьялов Л.М., Завьялов М.А., Кузнецов В.Н. Взаимодействие дорожных и строительных машин с контактной средой: Монография. – Омск: Изд-во «Полиграфический центр КА11», 2011. – 370 с.
[10] Проектирование машин для земляных работ / Под ред. А.М. Холодова. – Харьков: Вища шк. Изд-во при Харьк. ун-те, 1986. – 272 с.
[11] Ксеноевич И.П. Аспекты проектирования сложных вероятностных нелинейных динамических неголономных систем. – Ж. «Тракторы и сельскохозяйственные машины», 2007. – № 8.
[12] Брауде В.И., Семенов Л.Н. Надежность подъемно-транспортных машин. – Л.: Машиностроение, Ленинградское отд-ние, 1986. – 183 с.
[13] Краснокутский В.М., Якість будівельних і дорожніх машин / Краснокутский В.М., Пімонов І.І., Пімонов Г.Г. – Харків: ХНАДУ, 2011. – 276 с.
[14] Дубров Ю.А., Травкин С.И., Якимец В.Н. Многокритериальные модели формирования и выбора вариантов систем. – М.: Наука, Гл. ред. физ.-мат. лит., 1986. – 296 с.