Preparation of a Novel pH-responsive Fluorescent Probe Based on an Imidazo[1,2-a]indole Fluorophore and its Application in Detecting Extremely Low pH in Saccharomyces cerevisiae

Yanhao Xu 1 · Ruikang Duan 2 · Hao Liu 1 · Chengcai Xia 1 · Guiyun Duan 1 · Yanqing Ge 1

Received: 17 March 2021 / Accepted: 3 May 2021 / Published online: 13 July 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
A novel pH-responsive probe based on an imidazo[1,2-a]indole fluorophore architecture is reported. The probe was highly selective to strongly acidic pH (pK_a = 3.56) with high sensitivity and a fast response time (within 30 s). The probe did not demonstrate any fluorescence changes in the presence of interfering metal ions, and it featured excellent reversibility under strongly acidic conditions. The mechanism of detection of the probe was determined to be based on intramolecular charge transfer (ICT) at different pH. The probe was also able to be used for imaging for detecting acidic pH in Saccharomyces cerevisiae.

Keywords Imidazo[1,2-a]indole · pH fluorescent probe · Saccharomyces cerevisiae · ICT · Imaging

Introduction
As an important parameter reflecting the acid-base strength of a solution, pH buffering allows cells and organisms to maintain homeostasis, thereby enabling normal structure and function [1]. The pH of a normal human body is maintained at 6.5–7.1, but the pH of different compartments within cells varies. For example, the pH within lysosomes and endosomes varies between 4.5 and 6.8 [2], the pH within mitochondria is approximately 8 [3], and the pH of the cytosol is maintained within 6.8–7.4 in viable cells [4]. Changes in intracellular pH can affect the stability of the cellular environment as well as cellular function, such as proliferation, differentiation, apoptosis of cells, and ion transport; these cellular changes can also affect tissue function, such as muscle contraction [5]. Some diseases, such as cystic fibrosis, cancer, and neurodegenerative disorders, can provoke homoestatic pH balance in cells [6]. In addition, significant changes in the pH in the human body can cause physiological changes that can result in the development of cellular metabolic disorders.

Various techniques, such as absorption spectroscopy, electrochemistry, and nuclear magnetic resonance have been used to measure the pH within cells [7, 8]. Offering high sensitivity and excellent selectivity, as well as trivial and low-cost operation, fluorescent probes have been widely employed in molecular biology, biochemistry, medicine, and other fields [9]. To date, many small-molecule, pH-responsive fluorescent probes have been developed for measuring the pH in acidic organelles (lysosomes, pH 4.5–5.0,) and neutral organelles (mitochondria, pH 6.8–7.4) [10–16]. However, few pH fluorescent probes have been developed to measure extremely acidic pH (pH < 4). On the one hand, strong acidity is lethal to most organisms. Acidogenic bacteria and other bacterial species, such as Helicobacter pylori, can survive the acidic environment of the stomach of mammals and can cause infections, which can be life-threatening [17]. On the other hand, the secretory and endocytic pathways of certain eukaryotic cell organelles can only be carried out under acidic conditions. Hence, it is necessary to design a highly pH-sensitive and photostable fluorescent probe that can effective measure very low pH.
Indoles and other heterocyclic derivatives are often found in natural products, such as alkaloids, auxins, essential oils, and coal tar [18]. In addition, indoles are popular moieties in drug discovery and medicinal chemistry [19]. While many indole-containing compounds have demonstrated a myriad of essential biological activities, few reports on their optical properties have been published due to limitation in the synthetic methods of indoles [20, 21]. In this article, we report the development of a new derivative of imidazo[1,2-a]indole, denoted YH-1, which is a simple, yet novel, small-molecule fluorescent probe for measuring the pH in highly acidic environments using intramolecular charge transfer (ICT) as its response mechanism. Compared to other pH-responsive fluorescent probes [22–24], YH-1 could measure the pH of a solution very quickly (within 30 s) with high sensitivity. In addition, fluorescence imaging experiments in Saccharomyces cerevisiae were conducted to provide a foundation for the application of this probe in other organisms.

Experimental Section

Materials

Except for special instructions, all reagents were purchased from commercial sources and were used directly...
without further processing. To avoid any interferences from impurities, deionized water was used to prepare all solutions throughout the experiments. The chloride salt was dissolved in deionized water to prepare the metal ion solution to avoid any interferences from contamination by other metal ions. The sample solutions used in the experiment were all prepared under natural conditions, shaken for 15 s, and then allowed to stand for 10 min. Then, UV-Vis and fluorescence spectroscopy experiments were performed. Solutions of Britton-Robinson buffer (B-R) that were used in the following experiments were prepared by mixing 40 mM acetic acid, phosphoric acid, and boric acid in deionized water. The pH of the solution was adjusted with dilute aqueous NaOH or HCl.

Instruments

All absorption spectra were acquired on a UV-2600 spectrophotometer (Shimadzu), and all fluorescence spectra were recorded on a FS5 fluorescence spectrophotometer (Edinburgh Instruments). 1H NMR and 13C NMR spectra were acquired on a Bruker Avance 400 (400 MHz) spectrometer using DMSO-d_6 as the solvent and tetramethylsilane (TMS) as the internal standard material. An FE28-standard pH meter (Shanghai Mettler) was used to measure pH. All cell imaging experiments were performed on a microscope Ti2 (Nikon, ECLIPSE) with an excitation wavelength of 350 nm.

Fungus Imaging

Saccharomyces cerevisiae (abbrev. *S. cerevisiae*), a species of fungus used in breadmaking (including steamed bread) and brewing, was extracted from yeast at 30 °C in peptone glucose (YPD) medium (containing 2 % tryptophan, 1 % yeast extract, and 2 % glucose (w/v)) and then stirred in a bench top concentrator (ZHI) at 200 rpm for 12 h. The cultured *S. cerevisiae* solution was placed in a 2 mL Eppendorf tube and centrifuged at 4500 × g for 2 min to collect the *S. cerevisiae* cells. The resulting pellet was resuspended in 1 mL of Britton-Robinson buffer at different pH (3.0, 5.0, and 7.0). The centrifuge tube was then placed in a bench top concentrator. The YH-1 probe was dissolved in DMSO. After 2 h, the probe solution was diluted into each tube containing buffer solution to a final probe concentration of 5 µM, and the tubes were incubated for 30 min. Finally, a glass microscope slide was coated with the probe solution,
which was observed with a microscope Ti 2 (Nikon, ECLIPSE) at a wavelength of 350 nm.

Synthesis and Characterization of Probe 9-((benzyloxy)carbonyl)-1-methyl-1 H- imidazo[1,2-a] indole-3-carboxylic Acid (YH-1)

From commercially available 1-fluoro-2-nitrobenzene (1), compounds 2–7 were synthesized according to previously published literature procedures [25]. Compound 7 (0.96 g, 2.56 mmol) and NaOH (0.12 g, 3 mmol) were added to a solution of ethanol (20 mL) and water (10 mL), and the resulting mixture was stirred for 4 h at 80 °C. The crude reaction mixture was decanted in 40 mL of water, and the pH of the solution was adjusted to 2.0 with aqueous hydrochloric acid, after which the product precipitated from solution. The product was isolated by suction filtration and dried in an oven to afford YH-1 as a yellow solid with a yield of 82% (0.78 g). mp: 216–218 °C. 1H NMR (400 MHz, DMSO-d6) δ 13.27 (s, 1 H), 8.65 (d, J = 8.2 Hz, 1 H), 8.15 (s, 1 H), 8.07 (d, J = 8.0 Hz, 1 H), 7.49 (d, J = 7.3 Hz, 2 H), 7.41 (t, J = 7.3 Hz, 2 H), 7.35 (d, J = 7.1 Hz, 1 H), 7.25 (t, J = 7.5 Hz, 1 H), 7.11 (t, J = 7.6 Hz, 1 H), 5.34 (s, 2 H), 4.06 (s, 3 H). 13C NMR (100 MHz, DMSO-d6) δ 163.66, 160.92, 144.88, 137.77, 133.56, 131.18, 128.96, 128.50, 128.30, 126.81, 123.61, 120.71, 119.60, 115.22, 114.96, 80.89, 64.78, 37.15. HRMS ([M + H]+): Calcd for C20H17N2O4: 349.1188; found: 349.1185.

Results and Discussion

Synthesis of the Probe YH-1

Scheme 1 shows the general synthetic route of the probe. The structure of the final probe was characterized by HRMS and 1H/13C NMR.

Spectral Characteristics of Probe N-1 and its Optical Response to pH

For the fluorescence experiments, all samples were dissolved in a mixture of Britton-Robinson buffer (B-R) and DMSO (8/2, v/v) and measured after 10 min. As shown in Fig. 1, probe YH-1 was highly fluorescent, and the fluorescence intensity at 450 nm remained unchanged at pH 4.4 and above. Over the pH range of 2.0–4.4, the fluorescence intensity decreased significantly as the pH decreased. The fluorescence intensity increased significantly from 29346.2 at pH 2.0 to 100201.8 at pH 4.4. The quantum yield at pH 4.4 was calculated to be 0.115 (Quinine sulphate dehydrate in 0.1 N H2SO4 was used as the main standard, φ = 0.546, λex = 350 nm).
As shown in Fig. 2, the x-axis and y-axis represented the pH and fluorescence intensity, respectively, and the data are arranged in a “Z” arrangement (at an emission wavelength of 450 nm). In Fig. 2, over the pH range of 2.3–4.4, the fluorescence intensity and pH demonstrated a linear relationship ($R^2 = 0.9975$). The pK_a of the probe was then measured in a mixture of Britton-Robison buffer and DMSO (8:2 v/v).

![Graph](image)

Fig. 6 Changes in the fluorescence intensity of probe YH-1 in the solution (8/2, B-R/DMSO, v/v) under the influence of different metal ions and amino acids at (a) pH 2.6 and (b) pH 5.0 (probe (1µM), Zn$^{2+}$ (5µM), Fe$^{3+}$ (5µM), Cu$^{2+}$ (5µM), Mg$^{2+}$ (5µM), Ca$^{2+}$ (10µM), Na$^+$ (10µM), K$^+$ (10µM), H$_2$O$_2$ (5µM), GSH (5µM), Cys (5µM), Hey (10µM), $\lambda_{ex} = 350$ nm, $\lambda_{em} = 450$ nm)

Based on the Henderson-Hasselbach equation, the pKa of the probe was calculated using the fluorescence emission intensity of the probe at 450 nm fluorescence according to Eq. 1:

$$N = 2n (n - I) + m$$

where F represented the probe’s emission wavelength at 450 nm. The pKa of YH-1 was determined to be 3.56 (Fig. 3),

![Graph](image)

Fig. 7 The 1H NMR spectrum of probe YH-1 in DMSO-d$_6$ under neutral conditions and acid conditions (CF$_3$COOH)

Springer
which made the probe suitable for measuring the pH of strongly acidic solutions. Over the pH range of 2.3–4.4, and a linear relationship between the pH and log\[(F_{\text{max}}-F_x)/(F_x-F_{\text{min}})\] was obtained, with a linear regression equation of pH = −0.8497x + 3.5605, where x was equivalent to log \[(F_{\text{max}}-F_x)/(F_x-F_{\text{min}})\]. This equation was used to calculate the pH of the samples over the range of 2.3–4.4.

As shown in Fig. 4, the fluorescence emission of the probe at 450 nm was reversible between pH 2.6 and 5.0, which meant the probe was applicable in various acidic environments with different pH values. In addition, the pH response time of the probe under different conditions did not exceed 30 s (Fig. 5). There was also no change in fluorescence intensity of the probe in the presence of different metal ions and amino acids, which indicated that the probe responded selectively to protons (Fig. 6). These results substantiated that the probe was capable of measuring the intracellular pH of \textit{S. cerevisiae}.

Mechanism of pH Detection

\(^1\)H NMR was used to compared the electronics of the probe under neutral and acidic conditions (trifluoroacetic acid, CF\(_3\)CO\(_2\)H) (Fig. 7). No significant shifts in the proton resonances were observed in the spectra of two species, which indicated that the nitrogen bridgehead was not protonated; therefore, the indole nitrogen did not undergo protonation. Under neutral conditions, the 1-N atom was very electron-rich and able to be protonated by the carboxylic acid, which indicated that the ring system was a push-pull system. However, under acidic conditions, the carboxylic acid groups functioned as Lewis bases. Compared to protons under neutral conditions, the imidazo[1,2-a]indole protons absorbed under a higher electric field in acidic conditions. Therefore, the rate of ICT should change under acidic conditions. Scheme 2 shows the process of protonation.

To verify whether the probe can be applied in biological systems, we tested it in \textit{S. cerevisiae} under strongly acidic conditions. After incubation of LB medium at different pH’s (3.0, 5.0, and 7.0) with the probe for 30 min, the medium was incubated with \textit{S. cerevisiae} for 30 min. Based on the confocal fluorescence images (Fig. 8), no fluorescence was observed in the yeast cells at a pH of 3.0. As the intracellular pH increased, the fluorescence intensity of the probe increased significantly. These results indicated that the probe was applicable in biological systems with low pH. Compared to other probes (Table S1), this probe not only detected strong acidic pH but was useful for detecting intracellular acidic pH’s in \textit{S. cerevisiae}.

Conclusions

In short, the simple and novel pH-responsive fluorescent probe \textbf{YH-1} based on an imidazo[1,2-a]indole fluorophore was synthesized and evaluated for pH-responsiveness under strongly acidic conditions. This was the first report of an imidazo[1,2-a]indole derivative that was used as fluorophore for pH detection. \(^1\)H NMR analysis of the fluorophore under neutral and acidic conditions indicated that the response mechanism of the probe to pH was consistent with ICT. In addition, the probe responded quickly to protons (within 30 s), had a high selectivity to protons over other interfering metal ions and amino acids, was sensitive to pH, and was reversible. More importantly, the \textit{S. cerevisiae} experiments corroborated the utility of the probe in fluorescence imagine of yeast because it demonstrated robust imaging capabilities under strongly acidic conditions in \textit{S. cerevisiae}.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s10895-021-02739-8.

Author Contributions All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Yanhao Xu, and Ruikang Duan. Data analysis were performed by Hao Liu, and Chengcai Xia. The first draft of the manuscript was written by Guiyun Duan and Yanqing Ge. All authors read and approved the final manuscript.

Funding This work was supported by the Innovative Research Programs of Higher Education of Shandong Province (2019KJC009), the Science Foundation of Shandong Province for Excellent Young Scholars (ZR2017JL015), and the Natural Science Foundation of China (21,602,153).
Data Availability The authors declare that the data supporting the findings of this study are available in the article and the supplementary materials.

Declarations

Competing Interests The authors declare that there are no conflicts of interest.

Ethics Approval For this type of study, the ethical approval was not required, because this study does not involve cell or animal manipulation.

References

1. Yin J, Hu Y, Yoon J (2015) Fluorescent probes and bioimaging: alkali metals, alkaline earth metals and pH. Chem Soc Rev 44: 4619–4644
2. Wan Q, Chen S, Shi W, Li L, Ma H (2014) Lysosomal pH rise during heat shock monitored by a lysosome-targeting near-infrared ratiometric fluorescent probe. Angew Chem Int Ed 53:10916–10920
3. Yuan L, Wang L, Agrawalla BK, Park SJ, Zhu H, Sivaraman B, Peng JJ, Xu QH, Chang YT (2015) Development of targetable two-photon fluorescent probes to image hypochlorous acid in mitochondria and lysosome in live cell and inflamed mouse model. J Am Chem Soc 137:5930–5938
4. Saha UC, Dhara K, Chattopadhyay B, Mandal SK, Mondal S,Sen S, Mukherjee M, van Smaalen S, Chattopadhyay P (2011) A new half-condensed Schiff base compound: highly selective and sensitive pH-responsive fluorescent sensor. Org Lett 13:4510–4513
5. Niu H, Zhang Y, Tang J, Zhu X, Ye Y, Zhao Y (2020) A bifunctional fluorescent sensor for CCCP-induced cancer cell apoptosis imaging. Chem Commun 56:12423–12426
6. Qu G, Zhang Y, Ma X (2019) Recent progress on pure organic room temperature phosphorescence materials based on host-guest interactions. Chin Chem Lett 30:1809–1814
7. Srivastava J, Barber DL, Jacobson MP (2007) Intracellular pH sensors: design principles and functional significance. Physiology 22: 30–39
8. Li YZ, Wang XP (2014) Study on pH determination based on volumetric ion-selective electrode. China Deep Test 40:47–50
9. Yang Y, Zhao Q, Feng W, Li FY (2013) Luminescent chemodosimeters for bioimaging. Chem Rev 113:192–270
10. Ge YQ, Liu AK, Dong J, Duan GY, Cao XQ, Li FY (2017) A simple pH fluorescent probe based on new fluorophore indolizine for imaging of living cells. Sensors Actuators B 247:46–52
11. Ge YQ, Wei P, Wang T, Cao XQ, Zhang DS, Li FY (2018) A simple fluorescent probe for monitoring pH in cells based on new fluorophore pyridobenzimidazole. Sensors Actuators B 254:314–320
12. Zhang P, Lv HY, Duan GY, Dong J, Ge YQ (2018) A novel pyrazolo[1,5-a]pyridine fluorophore and its application to detect pH in cells. RSC Adv 8:30732–30735
13. Han J, Burgess K (2010) Fluorescent indicators for intracellular pH. Chem Rev 110:2709–2728
14. Fan L, Fu YJ, Liu QL, Lu DT, Dong C, Shuang SM (2012) Novel far-visible and near-infrared pH probes based on styrylcyanine for imaging intracellular pH in live cells. Chem Commun 48:11202–11204
15. Zhou XF, Su FY, Lu HG, Senechal-Willis P, Tian YQ, Johnson RH, Meldrum DR (2012) An FRET-based ratiometric chemosensor for in vitro cellular fluorescence analyses of pH. Biomaterials 33: 171–180
16. Miao F, Song GF, Sun YM, Liu Y, Guo FQ, Zhang WJ, Tian MG, Yu XQ (2013) Fluorescent imaging of acidic compartments in living cells with a high selective novel one-photon ratiometric and two-photon acidic pH probe. Biosens Bioelectron 50:42–49
17. Kruilwich TA, Sachs G, Paden E (2011) Molecular aspects of bacterial pH sensing and homeostasis. Nat Rev Microbiol 9:330–343
18. Dadashpour S, Emami S (2018) Indole in the target-based design of anticancer agents: A versatile scaffold with diverse mechanisms. Eur J Med Chem 150:9–29
19. de Sá Alves FR, Barreiro EJ, Fraga CA (2009) From nature to drug discovery: the indole scaffold as a ‘privileged structure’. Mini Rev Med Chem 9:782–793
20. Shang X, Chen C, Qiu H, Chen W (2014) Silver(I)-promoted intramolecular addition of N-heterocyclic carbenes towards unsaturated esters in water. Tetrahedron 70:3073–3077
21. Ren ZL, Cai S, Liu YY, Xie YQ, Yuan D, Lei M, He P, Wang L (2020) C(sp3)-H functionalization of imidazole at the C2- and C4-positions via palladium-catalyzed isocyanide insertion leading to indeno[1,2-d]imidazole and indazol[1,2-a]indole derivatives. J Org Chem 85:11014–11024
22. Kim HJ, Heo CH, Kim HM (2013) Benzimidazol-based ratiometric two-photon fluorescent probes for acidic pH in live cells and tissues. J Am Chem Soc 135:17969–17977
23. He LW, Lin WY, Xu QY, Ren MG, Wei HP, Wang JY (2015) A simple and effective capping approach to readily tune the fluorescence of near-infrared cyanines. Chem Sci 6:4530–4536
24. Dong BL, Song XZ, Wang C, Kong XQ, Tang YH, Lin WY (2016) Dual site-controlled and lysosome-targeted intramolecular charge transfer photoinduced electron transfer-fluorescence resonance energy transfer fluorescent probe for monitoring pH changes in living cells. Anal Chem 88:4085–4091
25. Forbes IT, Morgan HKA, Thompson M (1996) A synthesis of novel HH-imidazo[1,2-a]indole-3-carboxylates. Synth Commun 26:745–754

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.