The composition and properties of young cattle nutrition enriched with the additive “Tanrem”

A A Nigmatyanov¹, E Z Nafikova², N A Fedoseeva³, T V Rybchenko⁴, S Yu Kontsevaya⁵ and V A Pogodaev⁶

¹Ufa State Petroleum Technological University, 1 Cosmonauts st., Ufa, Russia
²Bashkir State Agrarian University, 34 50-letiya Oktyabrya Str., Ufa, Russian Federation
³Russian State Agrarian Correspondence University, 50 Shosse Entuziastov, Balashikha, Russian Federation
⁴Omsk State Agrarian University named after P. A. Stolypin, 1 Institutskaya square, Omsk, Russian Federation
⁵Belgorod state agricultural univerisity named after V. Gorin, village Maisky, st. Vavilova 1, Belgorod, Russian Federation
⁶North Caucasus Federal Agricultural Research Center, 49 st. Nikonova, Mikhailovsk, Russian Federation

E-mail: nigmatyanov@mail.ru

Abstract. Feeding that provides animals with good health, high productivity and good product quality at the lowest feed cost is considered complete. For this goal, it is necessary to balance the diet of animals for all nutrients, because even the work of breeders does not guarantee high productivity from animals without a complete diet. The lack of energy in the diet affects all vital functions of the animal’s body, which caused the need to enrich the diet with energy-carbohydrate feed. This fact determined the relevance of our work. With the help of a computer program, it became possible in a short time to analyze the diet with the inclusion of the studied additive in three different dosages, to assess its structure, nutritional value and to carry out a zoo analysis. The ration was made up for stall and pasture keeping of young cattle of LLC “Agro-Alliance”, divided into 15 animals in a group. The main fodder was procured in the same farm. The calculation showed that in the experimental groups the ration was as close as possible to the standard values, which indicates the prospects of using the studied type of feed in feeding young animals.

1. Introduction

The question of the quality of feed and the technology of their feeding remains relevant for many decades. At the same time, the lack of a balanced diet acts as a brake on the development of the industry in many regions of the country [1–4].

Balanced feeding is able to provide the body with all the necessary substances, accelerating the metabolism of animals. A deficiency or excess of certain components leads to metabolic disorders, up to deaths. In this regard, it becomes relevant to use various additives, both domestic and foreign manufacturers, which are presented on the market in a large assortment. Their use allows to improve the
digestibility of feed, and, consequently, to influence the increase in the productive qualities of livestock [5–8].

The aim of the research was to increase the productivity of young cattle. The task of this study was to determine the actual nutritional value of feed used in the diets of young animals, analyze the diets for compliance with their requirements, calculate the daily amount of energy-carbohydrate feed “Tanrem” to balance the diet in terms of sugar and energy for subsequent study of its effect on animal productivity.

2. Materials and research methods

Energy-carbohydrate feed is produced in the Russian Federation (Balashikha, Moscow region) under the trade name “Tanrem”. The composition of the feed is represented by easily fermentable carbohydrates, vegetable fat, vegetable protein.

Sugars serve as a source of energy, have an impact on digestive processes and the degree of utilization of nutrients. Easily fermentable carbohydrates are necessary for the body to synthesize microbial protein [9].

Vegetable fat in the supplement is a source of fat-soluble vitamins and energy, which is spent on heating the body, animal growth and milk synthesis. It is part of the protoplasm of cells and participates in metabolic processes [10].

Protein supplements are of plant origin and are important for the growth of meat and milk production. In addition, without their participation, the cellular and tissue growth of organism is impossible [11].

Increasing the profitability of cattle and poultry husbandry requires researchers to introduce new technologies for keeping and feeding farm animals [12, 13] and poultry [14–20].

In order to start the scientific and economic experiment, the selection of feed for the diet and its balancing in the software complex for young cattle were made. The feed was procured at LLC “Agro-Alliance” of Chishminsky district of the Republic of Bashkortostan, where the experiment was organized.

For the experiment, the animals were divided into 4 groups of 15 animals in each, control and experimental according to the principle of analogues. The latter in the composition of the diet as an experiment introduced different doses of the studied additive (250, 500 and 700 g per animal per day).

3. Research results

The beginning of the experiment fell on the stall keeping, where the young animals were kept for the period from 6 months to 12 months. During this period, the diet of young animals consisted of coarse, juicy, and concentrated feed (table 1).

| Table 1. The composition of the diets of young animals per 1 animal, kg. |
|------------------|-----------------|-----------------|
| Indicator | Young growth, months |
| | 6 | 9 | 12 |
| Stall period | | |
| Alfalfa Hay | 1 | 1.5 | 1.5 |
| Alfalfa haylage | 3 | 5 | 5 |
| Barley straw | - | - | - |
| Corn silo | 3.5 | 3.5 | 6 |
| Barley | 0.4 | 0.4 | 0.4 |
| Oats | 0.6 | 0.5 | 0.5 |
| Peas | 0.2 | 0.1 | 0.2 |
| Table salt, g / kg | 0.015 | 0.02 | 0.025 |
| Monosodium phosphate feed, g / kg | 0.06 | 0.085 | 0.085 |
| Premix P60-1 | - | - | - |
| Additive “Tanrem” I (control) / II / III / IV | - / 0.25 / 0.50 / | - / 0.25 / | - / 0.25 / 0.50 / |
| | 0.75 | 0.50 / 0.75 | 0.75 |
| Grazing period | | | |
Grass bean-bean mixture 21
Barley 0.55
Oats 0.5
Peas 0.1
Table salt, g / kg 0.03
Monosodium phosphate feed, g / kg 0.06
Additive “Tanrem” I (control) / II / III / IV 0.0 / 0.25 / 0.5 / 0.75

As it can be seen from the table, in the winter period the young stock ration consisted of alfalfa hay, alfalfa haylage, corn silage, barley, oats, peas, table salt, monosodium phosphate feed, additives “Tanrem”, and in the pasture period - cereal and legumes, barley, oats, peas, fodder molasses, table salt, fodder monosodium phosphate and Tanrem additives.

Before the start of the experiment, the composition and nutritional value of the farm feed used in the diets were studied. The results of the zootechnical analysis showed that the composition and nutritional value of feed used in the diets of young animals are close to the average reference data (table 2).

Nutrition Indicators	Group				I (control)	II	III	IV	
		stall	grazing	stall	grazing	stall	grazing	stall	grazing
Pure lactation energy, MJ		32.6	34.7	30.6	33.7	29.4	32.4	29.4	31.7
ECE		5.59	5.84	5.67	6.07	5.86	6.24	6.26	6.54
O.E. MJ		55.9	58.4	56.7	60.7	58.6	62.4	62.6	65.4
Dry matter, g		5946	5556.5	5687	5425	5513	5208	5513	5121
Crude protein, g		890.7	895.5	879.0	911.0	889.0	912.2	925.3	935.4
Breakable protein, g		702.7	751.7	663.1	734.2	641.0	704.8	641.0	693.7
Non-digestible protein, g		188.4	143.6	180.1	140.4	176.0	134.8	176.0	132.7
Digestible protein, g		551.3	602.8	513.1	587.8	494.1	564.8	494.1	555.2
Lysine		41.7	46.0	39.4	45.2	38.5	43.3	38.5	42.9
Methionine, g		29.2	22.3	28.2	21.9	27.6	20.0	27.6	20.8
Tryptophan, g		10.4	8.1	9.8	7.8	9.6	5.9	9.6	5.3
Sugar, g		198.0	614.3	256.0	679.1	319.5	718.6	387.0	784.0
Starch, g		558.0	513.5	482.0	499.0	451.5	556.5	509.0	570.0
Crude Fat, g		199.8	240.2	222.4	266.7	246.9	286.7	276.9	313.9
Crude fiber, g		1535.8	1204.4	1517.7	1196.6	1505.0	1142.6	1505.0	1156.2
Table salt, g		30.3	32.1	30.3	32.1	30.3	32.1	30.3	32.1
Calcium g		66.3	53.7	65.8	53.6	65.7	51.1	65.7	51.0
Phosphorus, g		36.4	26.6	35.3	26.1	34.6	25.7	34.6	25.4
Magnesium g		14.7	10.4	14.3	10.0	14.0	9.6	14.0	9.5
Potassium g		88.1	90.6	86.1	89.8	85.0	85.8	85.0	85.3
Sulfur, g		10.9	11.3	10.8	11.2	10.6	10.7	10.6	10.7
Iron mg		1530.5	1496.6	1520.4	1494.5	1516.3	1424.5	1516.3	1422.4
Copper mg		44.1	121.3	42.1	120.1	40.8	114.7	40.8	114.1
Zinc mg		141.1	346.2	133.1	341.8	127.7	326.8	127.7	324.2

Table 2. Nutrient content in stall ration.
The use of the Tanrem supplement promotes an increase in sugar in the diet during all periods of observation. With its deficiency in the diet of ruminants, it leads to a lack of readily available energy for the cicatricial microflora, that is why it sharply reduces its digestive and synthetic processes, negatively affects the digestibility of feed nutrients, especially protein and fiber. At the same time, it is important not only to maintain an optimal level of sugars and starch in the diet, but also the ratio of sugar to digestible protein, which affects the absorption of nutrients in the diet. It should be noted that the summer diet has a higher content of metabolic energy, crude protein, crude fat, but less dry matter and crude fiber. The diet of the young was additionally subjected to zoo analysis (table 3).

Table 3. Zooanalysis of the diet.

Indicator	Group	Stall	Grazing	Stall	Grazing	Stall	Grazing	Stall	Grazing
Calcium: Phosphorus	I (control)	1.8	2.0	1.9	2.1	1.9	2.0	1.9	2.0
Sugar: Protein		0.4	1.0	0.5	1.2	0.6	1.3	0.8	1.4
Digestible Protein: Non-digestible Protein		3.7	5.2	3.7	5.2	3.2	5.2	3.6	5.2
The content of crude protein in dry matter,%		15	16.1	15.5	16.8	16.1	17.5	16.8	18.3
The content of crude fiber in dry matter,%		25.8	21.7	26.7	22.1	27.3	21.9	27.3	22.2
The content of crude fat in dry matter,%		3.4	4.3	3.9	4.9	4.5	5.5	5.0	6.1
The starch content in dry matter,%		9.4	9.2	8.5	9.2	8.2	10.7	9.2	11.1
The sugar content in dry matter,%		3.3	11.1	4.5	12.5	5.8	13.8	7.0	15.3
The amount of ECE per 1 kg of dry matter		0.9	1.1	1.0	1.1	1.1	1.2	1.1	1.3
The digestible protein content in 1 kg of dry matter, g		98.6	103.2	90.5	96.8	84.3	90.5	78.9	84.9
The carotene content in 1 kg of dry matter, mg		61.1	181.5	63.8	185.9	65.8	184.4	65.8	187.6
The content of vitamin D₃ in 1 kg of dry matter, IU		291.8	18.9	305.1	19.4	314.7	19.2	314.7	19.5
The content of vitamin E in 1 kg of dry matter, mg		104.9	191.1	108.5	195.6	111.7	194.1	111.7	197.3
The nitrogen balance in the rumen, g		17.66	18.36	15.41	16.97	14.04	14.69	12.55	13.08
Absorbed protein, g		780.3	780.75	782.7	804.96	801.26	820.39	846.89	853.63
Microbial protein, g		591.9	637.15	602.6	664.56	625.26	685.59	670.89	720.93
Comparative analysis indicates an increase in the sugar-protein ratio in the diet of young animals in the experimental groups during all periods of keeping. A similar pattern was established for the content of crude protein in dry matter, crude fiber, crude fat and sugar in dry matter.

The structure of the diet of young stall and pasture housing was also analyzed (table 4).

Table 4. The structure of the diet of young animals, %.

Feed	Age	Group			
		I (control)	II	III	IV
Stall period					
Rude	6	48.1	45.24	41.39	38.93
	9	62.32	57.63	55.74	51.95
	12	54.74	53.97	52.22	48.88
Juicy	6	20.51	19.29	17.65	16.6
	9	16.50	15.25	14.75	13.75
	12	24.69	24.34	23.55	22.04
Concentrated	6	31.39	25.95	23.75	20.08
	9	21.18	19.59	15.12	14.09
	12	20.57	14.64	10.75	10.06
Grazing period					
Juicy	12	79.11	76.11	70.51	67.28
Concentrated	12	20.89	17.30	16.83	14.53

The data in table 4 shows that both in the pasture and in the stall period of keeping with the use of the additive “Tanrem” in the structure of the diet of young animals, a decrease in the proportion of succulent feed is noticeable.

4. Conclusion

Thus, a comparative analysis of the diets of young animals for stall and pasture keeping with their enrichment with energy-carbohydrate feed indicates the ability of the feed set of the diet to provide the body with additional energy for growth, development and high productivity. In addition, the additive provides the attractiveness of the staple feed due to its pleasant taste and aroma, inducing appetite and better palatability. Due to the fact that the energy-carbohydrate feed is rich in structural fibers, this has a beneficial effect on rumen motility. Therefore, to improve the diets of young animals, we recommend to include the supplement “Tanrem” in the amount of 500 g per 1 head per day both in winter and summer periods of keeping animals. This contributes to the improvement of carbohydrate and energy metabolism, presumably, an increase in the productivity of young animals and a decrease in feed costs per unit of production.

References

[1] Andreeva A, Nikolaeva O, Ismagilova E, Tuktarov V, Fazlayev R, Ivanov A, Altynbekov O, Sultangazin G, Urmanov I and Khakimova A 2018 Effect of probiotic preparations on the intestinal microbiome *Journal of Engineering and Applied Sciences* 13 6467–72

[2] Khazaiakhmetov F et al. 2018 Effect of probiotics on calves, weaned pigs and lamb growth *Research Journal of Pharmaceutical, Biological and Chemical Sciences* 9 (3) 866–70 WOS:000438847100113

[3] Tagirov H, Gubaidullin N, Fakhretdinov I, Khaziakhmetov F, Avzalov R, Mironova I, Iskhakov R, Zubairova L, Khabirov A and Gizatova N 2018 Carcass quality and yield attributes of bull calves fed on fodder concentrate “Zolotoi felutsen” *Journal of Engineering and Applied Sciences* 13 (S8) 6597–6603

[4] Nikolaeva O, Andreeva A, Altynbekov O, Mishukovskaya G and Ismagilova E 2020 Probiotic
drugs impact on the innate immunity factors Journal of Global Pharma Technology 12 (1) 38–45

[5] Mironova I, Nigmatyanov A, Radchenko E and Gizatova N 2019 Effect of feeding haylage on milk and beef quality indices E3S Web of Conf. The conf. proceedings Innovative Technologies in Environmental Science and Education. Don State Technical University 135 01100

[6] Gubaidullin N, Tagirov H, Mironova I, Lysov Y, Gafarov F, Zubairova L, Iskhakov R, Nigmatyanov A, Bagautdinov A and Pozdnyakova E 2019 The efficiency of haylage use conserved by the pure culture of propionibacteria in black-and-white cattle feeding Bulgarian Journal of Agricultural Science 25 (S2) 74–79

[7] Khaziakhmetov F, Khabirov A, Rebezov M, Basharov A, Ziangulov I and Okuskhanova E 2018 Influence of probiotics “Stimix Zoostim” on the microflora of faeces, hematological indicators and intensitivity of growth of calves of the dairy period International Journal of Veterinary Science 7 (4) 178–81

[8] Sedykh T, Gizatullin R, Kosilov V, Chudov I, Andreeva A, Giniyatullin M, Islamova S, Tagirov H and Kalashnikova L 2018 Adapting Australian hereford cattle to the conditions of the Southern Urals Research Journal of Pharmaceutical, Biological and Chemical Sciences 9 885–98

[9] Khabibullin R, Khabibullin I, Yagafarov R, Bakirova A, Fazlaev R, Karimov F, Mussina L, Ismagilova E, Fazlaeva S and Tuktarov V 2019 The influence of dietary supplements on the adaptive processes in animals after physical stress Bulgarian Journal of Agricultural Science 25 (S2) 105–18

[10] Mironova I, Kosilov V, Nigmatyanov A, Saifullin R, Senchenko O, Chalirachmanov E and Chernenkov E 2018 Nutrient and energy digestibility in cows fed the energy supplement “felucen” Research Journal of Pharmaceutical, Biological and Chemical Sciences 9 885–98

[11] Bagautdinov A, Baymatov V, Gildikov D, Kozlov G, Chudov I, Tagirov H, Karimov F, Skovorodin E, Tuktarov V and Mukminov M 2018 Assessment of the antioxidant properties of plant and chemical origin dietary supplements in the model test system Journal of Engineering and Applied Sciences 13 (8) 6576–83

[12] Belookov A, Belookova O, Zhuravel V, Gritsenko S, Bobyleva I, Ermolova E, Ermolov S, Matrosova Y, Rebezov M and Ponomarev E 2019 Using of EM-technology (effective microorganism) for increasing the productivity of calves International Journal of Engineering and Advanced Technology 8 (4) 1058–61

[13] Gorelik O, Rebezov M, Gorelik A, Harlap S, Dolmatova I, Zaitseva T, Maksimuk N, Fedoseeva N and Novikova N 2019 Effect of bio-preparation on physiological status of dry cows International Journal of Innovative Technology and Exploring Engineering 8 (7) 559–62

[14] Gorelik O et al. 2020 Dynamics of hematological indicators of chickens under stress-inducing influence Ukrainian Journal of Ecology 10 (2) 264–67 DOI: 10.15421/2020_94

[15] Gorelik O et al. 2020 Influence of transport stress on the adaptation potential of chickens Ukrainian Journal of Ecology 10 (2) 260–63 DOI: 10.15421/2020_93

[16] Rebezov Y, Gorelik O, Bezhin T, Safroinov S, Vinogradova N, Ermolova Y, Shcherbakov P, Gritsenko S and Stepanova K 2020 Mineral metabolism features in Turkeys International Journal of Psychosocial Rehabilitation 24 (8) 7550–57 DOI: 10.37200/IJPR/V24I8/PR280766

[17] Rebezov Y, Gorelik O, Rebezov M, Nikolaeva L, Shcherbakov P, Dashkin A, Bezhin T, Bobyleva I and Shcherbakova T 2020 Features of the morphologic composition of blood of Turkeys International Journal of Psychosocial Rehabilitation 24 (8) 7868–75 DOI: 10.37200/IJPR/V24I8/PR280799

[18] Rebezov Y et al. 2020 The immunological reactivity of Turkeys of different genotypes on the action of environmental factors Ukrainian Journal of Ecology 10 (2) 256–59 DOI: 10.15421/2020_92
[19] Sharipova A, Khaziev D, Kanareikina S, Kanareikin V, Rebezov M, Kazanina M, Andreeva A, Okuskhanova E, Yessimbekov Zh and Bykova O 2017 The effects of a probiotic dietary supplementation on the amino acid and mineral composition of broilers meat *Annual Research & Review in Biology* **21** (6) 1–7 DOI: 10.9734/ARRB/2017/38429

[20] Sharipova A, Khaziev D, Kanareikina S, Kanareikin V, Rebezov M, Okuskhanova E, Suychinov A and Esimbekov Zh 2017 The effects of a probiotic dietary supplementation on the livability and weight gain of broilers *Annual Research & Review in Biology* **19** (6) 1–5 DOI: 10.9734/ARRB/2017/37344