ABSTRACT

This paper describes a system that extracts information from Hungarian descriptive texts of medical domain. Texts of clinical narratives define a sublanguage that uses limited syntax but holds the main characteristics of the language, namely free word order and rich morphology. We offer a fairly general parsing method for free word order languages and the way how to use it for parsing Hungarian clinical texts. The system can handle simple cases of ellipsis, anaphora, unknown words and typical abbreviations of clinical practice. The system translates texts of anamneses, patient visits, laboratory tests, medical examinations and discharge papers into a program called ANAGRAMMA (=ANALYTIC GRAMMAR) analyzer (Pérezsky 1982) and a genre system method for free word order languages and the way how to map into the informal format. The last phase is the morphological analysis of word forms. Hungarian is a free word order language, therefore the role of suffixes is very important from the viewpoint of identifying phrasal constituents. A lot of syntactic and semantic information (number, person, possession, case, tense, mood etc.) are carried by these elements. The concatenation of stem and suffixes is sometimes rather complex: there are suffixes that have different stem-dependent forms and stems that have different suffix-dependent forms. Thus the lexicon must contain all the possible variants of the stem as independent entries or we have to define an algorithm for constructing the real stems from the archiphonemes of the lexicon. We have chosen the former alternative.

The lexicon consists of four parts but only conceptually. From the point of view of the algorithm, it is an integral whole. The reasons why we distinguish its parts are as follows:

(i) All the NL processing programs of an aggregulative language must know all the grammatical morphemes of the language.

(ii) The dictionary of common expressions is not necessary but it is a useful part of all NL systems. This module can be enlarged by the user.

(iii) The actual lexicon contains more or less all the lexical elements that is needed for the actual type of application (DB querying, updating, information extraction, translation etc.).

(iv) The special lexicon contains terms of the actual application field (in our case the terms of medical sciences). This module can, of course, be enlarged by the user.

After updating the lexicon, entries will be arranged in alphabetical order.

The morphological analyzer is a finite state automaton (FSM). It takes a word to be analyzed from the input sequence of words and searches the dictionary in order to find the input word. If the left part of the word matches a dictionary entry, the entry's informational part must be copied to the working buffer. The content of this buffer will be the input to the syntactical analyzer. Then the automaton begins to operate from right to left. Its output is the sequence of the informational parts of the grammatical morphemes standing after the stem we identified a short while ago. If the information of the stem and the suffixes are not compatible or there remained an unprocessed part in the word, the algorithm tries to analyze the word as a compound once more and if this process fails then it asks the user what to do. Figure 2 is an illustration of the process. The "origin" of the entries is marked by O, C, A and S, that is grammatical, common, actual and special lexicon, respectively.)

3. PROBLEMS OF PARSING

The well known methods generally utilized for parsing NLs are not convenient for treating languages like Hungarian, Finnish, Estonian or Japanese, cf. (Nelis-Markola et al 1984), (Isajli et al 1984), (Prézséky 1984). In these languages, the suffixes carry out most of the
task of marking grammatical function, therefore, the word order — strictly speaking, the phrase order — will be relatively free. So we must turn our attention to (i) the internal structure of the phrases and (ii) the order of phrases (and the intonation, of course only in speech) that plays an important role in expressing communicative functions.

The basic idea of the strategy we propose builds on the invariants of the sentence structure of free word order languages, that is, (i) the first thing to do is to recognize the internal structure of the parts of speech and (ii) the second is to interpret their relative order. This order is connected with the communicative roles (topic, focus etc.) of the structure.

The syntactic analysis of free word order sentences is based upon the morphemes identified by morphological analysis. The lexicon cannot help us to give the actual functional role of a morpheme because of two reasons:

(i) All possible functional roles of a morpheme cannot be listed.

(ii) If there were several possible roles in the description of morphemes nobody would know which of them to use actually.

A. UNKNOWN ELEMENTS

The problems of the unknown elements can arise not only in the case of computational analysis, since people may read/hear morphemes never read/heard before, yet they can identify the actual syntactic role of them without any knowledge of any previous syntactical categorization. The category or word class of a word is statistical information about its occurrence in particular syntactic positions. For example, the word 'beteg' can be a noun ('patient') or an adjective ('sick', 'ill') in Hungarian. It is an adjective in adjectival use, that is without inflections or before adjectival suffixes:

'Elzödög soha nem volt beteg.'
('He has never been ill before."

'Elzödög soha nem volt beteg.'
('He has been laid up since six days."

The same morpheme can, however, be a noun before nominal suffixes:

'A betegnek néhany volt infarktusa.'
('The patient had has no infarctions."

Although we consider categorization as a syntactic generalization, we do not claim that there are no independent syntactical categories. In agglutinative languages such categories are e.g. the nominal suffixes just mentioned. These categories are not arbitrary, because one cannot introduce a new suffix to the language, but can, however, use new stems in the sentence. If the parser knows these regularities, then lexical categories will be used for control only.

5. SENTENCE STRUCTURE IN AGGLUTINATIVE LANGUAGES

Below we will make use of Hungarian examples to show the most important properties of a typical agglutinative language. In a simple sentence there can be only one finite verbal suffix. If we have a sentence containing two of them, then we have to do with co-ordinate clauses or one sentence with a subordinate clause. Naturally, the finite suffix is immediately preceded by a verbal stem. If the sentence has no finite verbal suffixes, (i) it contains a copula that is rather frequent, not only in medical texts but also in the everyday Hungarian or (ii) there is ellipsis in the sentence. The non-finite verbal suffixes are also preceded by a verbal stem. These elements can behave differently according to whether or not they influence the word order of other elements.

We consider the noun as an element that stands before a nominal suffix group. Sometimes the lexicon does not categorize this morpheme as a noun. We consider this situation as a case of a missing noun. Regeneration of missing elements is important because of identifying elliptical constructions. For example, Hungarian adjectives can have nominal endings when no noun occurs in the structure.

As it seems, most of the morphemes do not have a fixed lexical category, because their positions in the sentence actually define their functional role. But we have some important lexical features:

(i) Stems. They are closed morphologically to the left and open to the right (fonally: <stem>). "Open" means an ability to join other elements. In the case of noun-like ones these "other" elements are, for example, the case suffixes.

(ii) Suffixes. They are closed morphologically to the right and open to the left (suffix), e.g. the case endings.

(iii) Open endings. They are open morphologically on both sides (open), e.g. the morphemes marking plurality or possessivity.

(iv) Closed elements. They are closed on both sides (<closed>), e.g. adjectives, numerals, adverbials. So, if a closed side immediately precedes an open one or an open one a closed one, the parser has to correct the "wrong" sequence inserting an empty morpheme:

(a) <stem <closed> <stem suffix> <closed> (b) <closed> suffix > <closed> <stem suffix>

Instance (a) can be, for example, a genitive case-insertion (an this case ending can sometimes have an empty form in Hungarian) and instance (b) can be a noun insertion between an adjectival stem and a nominal suffix.

6. PARTS OF SPEECH

The surface scheme of a Hungarian sentence is the following:

<CS> <NV> <V> <NF> <F> <CS> <NV> <VF>

where A stands for adverbials, N for nominal, V for verbal stem, F for finite and NF for non-finite verbal suffixes. Hence the types of the constituents are as follows:

(i) independent adverbials (without any suffix),
(ii) non-finite verbs (e.g. infinitive, gerund),
(iii) nominal groups with case ending,
(iv) a verb plus a finite suffix (the main verb of the sentence).

Having made clear the internal structure of the constituents, the parser can deal with the formal evaluation of the connections between the constituents (e.g. verb and complements, possessives and possessors
The kernel of the cycle is a sequential rule package and its condition is the quantity of rules applied at the last pass over the cycle. If it is not 0, then the algorithm continues at the first rule of the package. If it is 0, that is, there were no such applications, the rule of the next number has to be applied.

A trace of an ANAGRAMMA parsing:

```
5: DET DET ADJ N2 CASI DET ADJ N2 CASI V FINI
6: DET DET N1 DET N1 DET N1 DET N1 CASI V FINI
7: DET N1 DET N1 DET N1 DET N1 DET N1 DET N1 CASI V FINI
8: DET N1 CASI V FINI
9: DET N1 CASI V FINI
10: ...  
```

Figure 3

The parsing is over if (i) all elements of the actual string to be parsed are from the distinguished set (e.g. CAS and FIN in the above example), or (ii) the algorithm is after the last rule and there is no acceptable cycle-end after this rule. We say that the algorithm cannot interpret the sentence if there have remained other than distinguished elements. The parser can operate more quickly if the rules in the same package give the description of the same grammatical phenomena. Such modules consist of rules the left sides of which are similar. If a package contains only rules whose left side does not contain any element of the sentence to be parsed, then it can be omitted.

We can use this method of simplification without much ado, owing to an X-like formalism that guarantees that no new symbols can be born as a result of application of the rewriting rules. We use decreasing bar levels alike the formal derivation processes does with arguments.

8. EVALUATION

The evaluation module is essentially a pattern matching algorithm that identifies the link between (i) the predicates and their arguments, (ii) the anaphoric elements and their antecedents, and (iii) the "parallel" structures separated by the normalizer. The lexical forms of predicates contain the surface case endings and the semantic role of the needed constituents, therefore the algorithm has to look for these constituents and order the new features given to them by the predicate. The identification of anaphoric elements is similar, but antecedents often occur in previous sentences. Therefore the evaluator can set up a connection with the analyzed form of the same paragraph.

9. MAPPING INTO INFORMATION FORMAT

After some consultation with physicians it was possible to establish the specialization concept classes and the patterns of the concept class co-occurrence from which the information format could be defined. The nouns in the lexicon are subcategorized by their membership in these classes. Most classes are mapped into the appropriate slot, because the names of the classes are the labels of the slots of the frames used by the expert system. Figure 5 shows the form of the formatted text:

```
ANÁMÉTIS
GENÉTIKUS-FAKTOR FOR
KÖRÉLZÖMÉNY MI
GYAKORISAGA
KEZELES-ELÖZÖMÉNY
```

Figure 5

10. REFERENCES

Kálmán, I., G. Podoski: "FIN Grammar" Work. Pap. of Int. Conf. NLP, 81, Budapest, 1985.
Németh, J., H. Koppán, A. László: "Interfactual Free Word Order Language" Proc. EACL-94, Pisa, 167-176 (1994).
Podoski, G.: ANAGRAMMA: A Parsing Strategy and Grammar for Agglutinating Languages" Work. Pap. AIJ-95, Varna (1995).
Podoski, G.: J. Kiss-, L. Tóth: "Morphological and Morphonological Analysis of Hungarian Word Forms by Computer" Department of Linguistics and Computer Languages Vol. 15, 195-226 (1982).
Sasó, N.: "Natural Language Processing" Addison-Wesley, Reading, Mass. 1981.
Takács, J., J. Makó, M. Nagy: "Analysis Grammar of Japanese in the AI Project" Proc. CLIN-KB, Stanford, 204-227 (1984).
Yangu, Y.: J. László: "Shiki-Doishi", Use of Heuristic Knowledge in Chinese Language Analysis" Proc. CLIN-KB, Stanford, 222-225 (1994).

367