The Mermin-Ho texture in superfluid 3He describes an interesting thermodynamic equilibrium state, in which a circulation remains nonvanishing in a cylindrically symmetric vessel, despite the vessel being at rest. This phenomenon is due to the fact that the boundary condition at the surface of the vessel imposes a topological structure on the l vector. In this Letter, we show that the spontaneous formation of such a topological spin texture also occurs in a Bose-Einstein condensate (BEC) of atomic gases with spin degrees of freedom.

In contrast to the Mermin-Ho texture in 3He, the physical origin of the spin texture formation proposed in this Letter is the interplay between ferromagnetic interactions and spin conservation. Consider a spin-1 BEC with ferromagnetic interactions in an $m = 0$ magnetic sublevel. The spin-exchange collisions between the atoms transfer the $m = 0$ state into $m = \pm 1$ states, as $0 \rightarrow 1 + (-1)$. As a consequence, magnetization in the x-y plane may arise due to the ferromagnetic nature of the interaction. However, uniform magnetization of the entire system is prohibited because of spin conservation, which results in various spin textures, such as staggered domain structures. In this Letter, we show that the topological spin texture is spontaneously generated as a result of the spin exchange dynamics under spin conservation.

In this topological spin texture, each of the $m = \pm 1$ components contains a vortex, whose directions are opposite. Therefore, from the symmetry of the Hamiltonian, there are two degenerate textures: one has $+$ and $-$ vortices in the $m = 1$ and -1 components, respectively, and the other has $-$ and $+$ vortices. We show that the symmetry between these two textures is spontaneously broken in the course of the dynamics even when the initial state has chiral symmetry.

Topological spin structures in a spinor BEC of an atomic gas have been realized by the MIT group, who obtained topological phases adiabatically imprinted on the spin components by a quadrupole magnetic field, producing coreless vortices. The stability of such topological spin structures has been studied by several authors. Recently, it was predicted that the dipolar interaction creates a coreless vortex state through a mechanism similar to the Einstein-de Haas effect.

We consider a system of spin-1 Bose atoms with mass M confined in a potential V. The Hamiltonian of the system is given by

$$\hat{H} = \int dr \left[\sum_m \hat{\psi}_m^\dagger H_0 \hat{\psi}_m + \sum_{m_1,2,3,4} \hat{\psi}_{m_1}^\dagger \hat{\psi}_{m_2}^\dagger \hat{\psi}_{m_3} \hat{\psi}_{m_4} \times \left(\frac{g_0}{2} \delta_{m_1 m_4} \delta_{m_2 m_3} + \frac{g_1}{2} \mathbf{F}_{m_1 m_4} \cdot \mathbf{F}_{m_2 m_3} \right) \right],$$

where $\hat{\psi}_m$ is the field operator for an atom in the magnetic sublevel $m = 0, \pm 1$, $H_0 = -\hbar^2 \nabla^2/(2M) + V$, and \mathbf{F} is the spin-1 matrix. The spin-independent and spin-dependent interactions are characterized by $g_0 = 4\pi \hbar^2 (a_0 + 2a_2)/(3M)$ and $g_1 = 4\pi \hbar^2 (a_2 - a_0)/(3M)$, respectively, where a_2 is the s-wave scattering length for the scattering channel with total spin S. In the case of spin-1 87Rb, g_1 is negative and the ground state is ferromagnetic.

When the potential V is axisymmetric with respect to the z axis, the Hamiltonian is invariant under spatial reflection with respect to an arbitrary plane containing the z axis, e.g., $(x, y) \rightarrow (-x, y)$. This transformation changes a clockwise vortex $\propto e^{-i\phi}$ into a counterclockwise vortex $\propto e^{i\phi}$ with azimuthal angle ϕ. Hence, if only one of them is spontaneously realized, we call it chiral symmetry breaking. Also, from the symmetry of the Hamiltonian, the x, y, and z components of the total spin and the z component of the orbital angular momentum are conserved independently.

We consider the case in which the initial state is in the $m = 0$ mean-field ground state satisfying

$$[H_0 + g_0 |\Psi_0|^2] \Psi_0 = \mu_0 \Psi_0. \quad (2)$$

If the $m = \pm 1$ components are exactly zero, Ψ_0 is a stationary state of the multicomponent Gross-Pitaevskii
(GP) equations,

\[i\hbar \frac{\partial \psi_0}{\partial t} = (H_0 + g_0 n) \psi_0 + \frac{g_1}{\sqrt{2}} (F_+ \psi_1 + F_- \psi_{-1}), \quad (3a) \]

\[i\hbar \frac{\partial \psi_{\pm1}}{\partial t} = (H_0 + g_0 n) \psi_{\pm1} + g_1 \left(\frac{1}{\sqrt{2}} F_\mp \psi_0 \pm F_\pm \psi_{\mp1} \right), \quad (3b) \]

where \(\psi_m \) is the macroscopic wave function, \(n = \sum_m |\psi_m|^2 \), \(F_\pm = |\psi_1|^2 - |\psi_{-1}|^2 \), and \(F_\pm = F_\mp = \sqrt{2} (\psi_1^* \psi_0 + \psi_{-1}^* \psi_{-1}) \). The stability against excitation in the \(m = \pm 1 \) components is analyzed by the Bogoliubov-de Gennes equations, given by

\[[H_0 - \mu_0 + (g_0 + g_1)|\Psi_0|^2] u_{\pm1}^{(t)} + g_1 \Psi_0^2 v_{\mp1}^{(t)*} = \varepsilon^{(t)} u_{\pm1}^{(t)}, \quad (4a) \]

\[[H_0 - \mu_0 + (g_0 + g_1)|\Psi_0|^2] v_{\mp1}^{(t)} + g_1 \Psi_0^2 u_{\pm1}^{(t)} = -\varepsilon^{(t)} v_{\mp1}^{(t)*}, \quad (4b) \]

where \(u_{\pm1}^{(t)} \) and \(v_{\mp1}^{(t)} \) are the eigenfunctions for a Bogoliubov mode with eigenenergy \(\varepsilon^{(t)} \). From the asymmetry of the system, the Bogoliubov modes can be classified according to the angular momentum \(\ell \), for which \(u_{\pm1}^{(t)} \propto e^{i\ell \phi} \) and \(v_{\mp1}^{(t)} \propto e^{-i\ell \phi} \). We find that \(u_1^{(t)} \) couples with \(v_{-1}^{(t)} \) in Eq. (4), and hence the excitation of the \(m = 1 \) component with vorticity \(\ell \) is accompanied by the \(m = -1 \) component with vorticity \(-\ell\), as a consequence of the orbital angular momentum conservation. If all the eigenenergies are real, the state \(\Psi_0 \) is dynamically stable. If there exist complex eigenenergies, the corresponding modes grow exponentially and the state \(\Psi_0 \) is dynamically unstable.

For simplicity, we restrict ourselves to two-dimensional (2D) space. This situation can be realized by a tight pancake-shaped potential \(V = M\omega^2(x^2 + y^2 + \lambda z^2)/2 \) with \(\lambda \gg 1 \), where the axial confinement energy is so large that the dynamics in the \(z \) direction are frozen. In this case, the interaction strengths can be characterized by the dimensionless parameters \(g_{3D} = g_j [\lambda/(2\pi\hbar)]^{1/2}/N(a_{ho})^{1/2} \), where \(N \) is the number of atoms, \(a_{ho} = |\hbar/(M\omega)|^{1/2} \), and \(j = 1, 2 \).

We numerically solve Eq. (2) by the imaginary-time propagation method and diagonalize Eq. (4) to obtain the Bogoliubov spectrum for the state \(\Psi_0 \). Figure 1 shows the lowest Bogoliubov energies for \(\ell = 0 \) and \(\pm 1 \) as a function of \(g_1^{2D} \), where \(g_0^{2D} \) is determined by \(g_0^{2D} = g_0/g_1 \approx -216.1 \) which is the ratio for spin-1 \(^{87}\text{Rb} \). In the parameter regime shown in Fig. 3, the three modes exhibit complex eigenenergies. A crucial observation is that there is a region \(-3.9 \gtrsim g_1^{2D} \gtrsim -10.7 \) in which only \(\varepsilon^{(\pm 1)} \) are imaginary. This indicates that these two modes only are dynamically unstable in this region, where one mode has vortices \(\propto e^{i\phi} \) and the other mode has vortices \(\propto e^{i\phi} \) in the \(m = \pm 1 \) components. These two modes are degenerate because of the chiral symmetry of the system. In this region, we expect that the \(m = \pm 1 \) components start to rotate, despite there being no external rotating drive is applied to the system.

In order to confirm the spontaneous rotation phenomenon predicted above, we numerically solve the GP equation (3) in 2D using the Crank-Nicholson scheme. The interaction strengths are taken to be \(g_0^{2D} = 2200 \) and \(g_1^{2D} = -10.18 \), with the ratio \(g_0^{2D}/g_1^{2D} \) again chosen to be that of spin-1 \(^{87}\text{Rb} \). For this set of interaction parameters, \(\text{Im}(\varepsilon^{(\pm 1)})/\hbar\omega = 0.0707 \) and all the other Bogoliubov energies are real. The initial state is the ground state of Eq. (2) for the \(m = 0 \) component plus a small amount of random noise in the \(m = -1 \) component. To extract the Bogoliubov excitations from \(\psi_m(t) \), we define \(P_{\pm 1} \) which represents the degree of excitation in the modes \(u_1^{(\pm 1)} \propto v_{-1}^{(\pm 1)*} \propto e^{\pm i\phi} \). Figure 2 shows the time evolution of \(P_{\pm 1} \) and the density-phase profile of each component at \(\omega t = 130 \). We find that \(P_{\pm 1} \) increase according to \(\exp(2\text{Im}(\varepsilon^{(\pm 1)})t/\hbar) \), with their initial ratio \(P_{-1}/P_1 \approx 7.5 \) kept constant, resulting in an exponential growth in the angular momenta of the \(m = \pm 1 \) components. Thus, the \(m = \pm 1 \) components spontaneously rotate if the initial noise has angular-momentum fluctuations.

Suppose that we can prepare an initial state of the system in which the chiral symmetry is preserved to great accuracy, say, \(P_{-1}/P_1 = 1.0002 \). Then, the result in Fig. 2 indicates that vortices will not be created in the time scale in which the linear stability analysis is applicable. For a longer time scale, however, the chiral symmetry is spontaneously broken due to the nonlinear effect. Figure 3(a) shows the time evolution of the frac-
FIG. 2: (Color) Degree of Bogoliubov excitation $P_{\pm 1}$ in Eq. (5). The interaction strengths are $g_{2D}^0 = 2200$ and $\gamma = -10.18$. The initial state is the ground state Ψ_0 of Eq. (2) for the $m = 0$ component plus a small amount of random noise in the $m = -1$ component. The dashed line is proportional to $e^{0.141\omega t}$. The insets show the density-phase profiles at $\omega t = 130$, where the size of the frame is 16×16 in units of $a_{ho} = [\hbar/(M \omega)]^{1/2}$. The heights of the vertical lines in the insets indicate $|\psi_m|^2 a_{ho}^2/N$, which is 0.001 for $m = \pm 1$ and 0.0025 for $m = 0$.

FIG. 3: (Color) (a) Time evolution of the fraction n_{-1} (dashed curves) and the orbital angular momentum per particle L_{-1} (solid curves) in the $m = -1$ component with $\gamma = 0.03$ and without $\gamma = 0$, blue) dissipation. The interaction strengths are the same as in Fig. 2. The initial state is given by $\psi_0 = \Psi_0$, $\psi_{-1} = 10^{-4} r(e^{i\phi} + 1.0001 e^{-i\phi})\Psi_0$, which gives $P_{-1}/P_1 \simeq 1.0002$. As long as this ratio is kept constant, the formation of the vortex states shown in the insets of Fig. 2 is not expected. In fact, as shown in Fig. 3(b), no vortex is created around the first peak of n_{-1} at $\omega t \simeq 100$. However, at $\omega t \simeq 160$, L_{-1} starts to deviate from 0 (blue solid curve) and the chiral symmetry is dynamically broken. Consequently, the vortex states emerge in the $m = \pm 1$ components at $\omega t \simeq 340$ as shown in Fig. 3(c).

The instability in the state with chiral symmetry [Fig. 3(b)] against forming the rotating state [Fig. 3(c)] implies that the energy of the latter is lower than that of the former. In order to confirm this, we take the energy dissipation into account by replacing i on the left-hand side of Eq. (5) with $i - \gamma$ [18]. The time evolution with $\gamma = 0.03$ [19] is shown by the red curves in Fig. 3(a) and clearly indicates that the energy of the rotating state [Fig. 3(d)] is lower than that of the state having chiral symmetry [Fig. 3(b)]. For $\gamma = 0$, L_{-1} oscillates with a large amplitude due to the excess energy released from the initial state, while for $\gamma = 0.03$, the sign of the angular momentum is unchanged.

The bottom panels in Figs. 3(b)-(d) show the spin vector distributions. In Fig. 3(b), the magnetic domains in the opposite spin directions are separated by a domain wall at $x = 0$. On the other hand, topological spin structures are formed in Figs. 3(c) and (d). The underlying physics of the spin structure formation is the interplay
between the ferromagnetic interaction and spin conservation. The growth in the spin vectors must be accompanied by spatial spin structure formation to conserve the total spin angular momentum. It should be noted that the area in which the length of the spin vector is long is larger in Figs. 3 (c) and (d) than in Fig. 3 (b), since the spin vectors must vanish at the domain wall in the latter. This is why the energy of the state in Fig. 3 (d) is lower than that of Fig. 3 (b). That is, the formation of the topological spin structure increases the (negative) ferromagnetic energy of the system more than does the formation of the domain structure.

The above energy argument concerning the spin domain and topological structures can be reinforced by applying the variational method. We assume the variational wave function to be

$$\begin{pmatrix} 0 \\ \Psi_0 \\ 0 \end{pmatrix} + c \cos \theta \begin{pmatrix} u_1^{(1)} \\ 0 \\ e^{i\chi} v_1^{(1)} \end{pmatrix} + c \sin \theta \begin{pmatrix} u_1^{(1)} \\ 0 \\ e^{i\chi'} v_1^{(1)} \end{pmatrix},$$

where $\Psi_0 = (|\Psi_0|^2 - |\psi_1|^2 - |\psi_{-1}|^2)^{1/2}$ so that the total density n is kept to be $|\Psi_0|^2$ irrespective of the values of the variational parameters, reflecting the fact that the spin-exchange process hardly changes the total density because $g_0 \gg |g_1|$ for spin-1 87Rb atoms. We minimize the energy of the system calculated from Eq. (6) with respect to c, χ, and χ' for a given θ, as shown in Fig. 4.

The state at $\theta = \pi/4$, which is similar to the state shown in Fig. 3 (b), has a maximum energy, while the topological spin states at $\theta = 0$ and $\pi/2$ have minimum energy, in agreement with the above discussion.

The results presented above can be realized using current experimental setups. For example, when the radial trapping frequency is $\omega = 100 \times 2\pi$ Hz and its ratio to the axial trapping frequency is $\omega/\omega_z = 0.01$, the interaction parameters for Figs. 2 and 3 correspond to $N \approx 8880$ spin-1 87Rb atoms. The time scale for the appearance of the topological spin structure (e.g., $\omega t \sim 300$ for the initial condition in Fig. 3) is ~ 0.5 s. If the ratio $|g_1/g_0|$ can be increased with a decrease in g_0 by Feshbach resonance or by using other atomic species, we can reduce the time scale, e.g., to about 1/10 for $|g_1/g_0| = 1$.

In the presence of an external magnetic field B, the linear and quadratic Zeeman terms enter the Hamiltonian. Since the total spin is conserved, the linear Zeeman term only rotates the spin at the Larmor frequency and does not affect the dynamics. When the magnetic field is applied in the z direction, the quadratic Zeeman effect raises the energy of the $m = \pm 1$ components compared with the $m = 0$ component. If the quadratic Zeeman energy exceeds the ferromagnetic energy, the $m = 0$ state becomes the ground state and no excitation to the $m = \pm 1$ components occurs, which is the case for $B > 400$ mG for the parameters $\omega = 100 \times 2\pi$ Hz, $\omega/\omega_z = 0.01$, and $N \approx 8880$. We have numerically confirmed that the dynamics in Figs. 2 and 3 are qualitatively unchanged for a magnetic field of ≈ 100 mG.

In conclusion, we have proposed a novel mechanism of spontaneous formation of a topological spin structure in the spin-1 BEC prepared in the $m = 0$ state. The $m = \pm 1$ components increase exponentially from initial random seeds due to dynamical instabilities and form singly-quantized vortex states (Fig. 2). Even if the clockwise and counterclockwise rotation components are assumed to be equal in an initial seed, one of them eventually becomes dominant (Fig. 3). This chiral symmetry breaking is attributed to the fact that the topological spin structure is energetically the most favorable due to the ferromagnetic interaction. This spontaneous spin structure formation is essentially caused by the spin exchange dynamics under the constraint of spin conservation. We expect that many more interesting spin textures may also be spontaneously generated in isolated spinor BECs.

This work was supported by Grant-in-Aids for Scientific Research (Grant No. 17740263, No. 17071005, and No. 15340129) and by a 21st Century COE program at Tokyo Tech “Nanometer-Scale Quantum Physics,” from the Ministry of Education, Culture, Sports, Science and Technology of Japan. YK acknowledges support by a Fellowship Program of the Japan Society for Promotion of Science (Project No. 16-0648). MU acknowledges support by a CREST program of the JST.

[1] N. D. Mermin and T. -L. Ho, Phys. Rev. Lett. 36, 594 (1976).
[2] D. M. Stamper-Kurn, M. R. Andrews, A. P. Chikkatur, S. Inouye, H. -J. Miesner, J. Stenger, and W. Ketterle, Phys. Rev. Lett. 80, 2027 (1998).
[3] T. Ohmi and K. Machida, J. Phys. Soc. Jpn. 67, 1822 (1998).
[4] T. -L. Ho, Phys. Rev. Lett. 81, 742 (1998).
[5] H. Saito and M. Ueda, Phys. Rev. A 72, 023610 (2005).
[6] W. Zhang, D. L. Zhou, M. -S. Chang, M. S. Chapman, and L. You, Phys. Rev. Lett. 95, 180403 (2005).
[7] J. Mur-Petit, M. Guilleumas, A. Polls, A. Sanpera, M. Lewenstein, K. Bongs, and K. Sengstock, cond-mat/0507521
[8] A. E. Leanhardt, Y. Shin, D. Kielpinski, D. E. Pritchard, and W. Ketterle, Phys. Rev. Lett. 90, 140403 (2003).
[9] U. Al Khawaja and H. T. C. Stoof, Nature (London) 411, 918 (2001).
[10] T. Mizushima, K. Machida, and T. Kita, Phys. Rev. Lett. 89, 030401 (2002).
[11] C. M. Savage and J. Ruostekoski, Phys. Rev. Lett. 91, 010403 (2003).
[12] L. Santos and T. Pfau, cond-mat/0510634
[13] Y. Kawaguchi, H. Saito, and M. Ueda, cond-mat/0511052
[14] N. N. Klausen, J. L. Bohn, and C. H. Greene, Phys. Rev. A 64, 053602 (2001).
[15] Y. Castin and R. Dum, Eur. Phys. J. D 7, 399 (1999).
[16] E. G. M. van Kempen, S. J. J. M. F. Kokkelmans, D. J. Heinzen, and B. J. Verhaar, Phys. Rev. Lett. 88, 093201 (2002).
[17] Y. Kawaguchi and T. Ohmi, Phys. Rev. A 70, 043610 (2004).
[18] M. Tsubota, K. Kasamatsu, and M. Ueda, Phys. Rev. A 65, 023603 (2002).
[19] S. Choi, S. A. Morgan, and K. Burnett, Phys. Rev. A 57, 4057 (1998).