Infectious Diseases, Climate Influences, and Nonstationarity

Bernard Cazelles*, Simon Hales

Complex dynamic relationships between humans, pathogens, and the environment lead to the emergence of new diseases and the re-emergence of old ones. Due to concern about the impact of increasing global climate variability and change, many recent studies have focused on relationships between infectious disease and climate [1–5].

Climate and Vector-Borne Diseases

Climate can be an important determinant of vector-borne disease epidemics: geographic and seasonal patterns of infectious disease incidence are often (though not always) driven by climate factors [1–3]. Mosquito-borne diseases, such as malaria, dengue fever, and Ross River virus, typically show strong seasonal and geographic patterns, as do some enteric diseases [4]. These patterns are unsurprising, given the influence of climate on pathogen replication, vector and disease reservoir populations, and human societies. In Sweden, a trend toward milder winters and early spring arrival may be implicated in an increased incidence of tick-borne encephalitis [6]. The recent resurgence of malaria in the East African highlands may be partly explained by increasing temperatures in that region [7]. However, as yet there are relatively few studies showing clear climatic influences on infectious diseases at interannual or longer timescales [5].

The semi-regular El Niño climate cycle, centred on the Pacific Ocean, has an important influence on interannual climate patterns in many parts of the world. This makes El Niño an attractive, albeit imperfect, analogue for the effects of global climate change. In Peru, daily admissions for diarrhoea increased by more than 2-fold during an El Niño event, compared with expected trends based on the previous five years [8]. There is evidence of a relationship between El Niño and the timing of cholera epidemics in Peru and Bangladesh [1,9,10]; of ciguatera in the Pacific islands [11]; of Ross River virus epidemics in Australia [12]; and of dengue and malaria epidemics in several countries [13]. The onset of meningococcal meningitis in Mali is associated with large-scale atmospheric circulation [14].

These studies were performed mostly at country scale, reflecting the availability of data sources and, perhaps, the geographically local effects of El Niño on climate. In part because of this geographic “patchiness” of the epidemiological evidence, the identification of climatic factors in infectious disease dynamics, and the relative importance of the different factors, remains controversial. For example, it has been suggested that climate trends are unlikely to contribute to the timing of dengue epidemics in Thailand [15]. However, recent work has shown a strong but transient association between dengue incidence and El Niño in Thailand [16]. This association may possibly be caused by a “pacemaker-like” effect in which intrinsic disease dynamics interact with climate variations driven by El Niño to propagate travelling waves of infection [16]. This work illustrates the importance of accounting for nonstationarity (see Box 1), transient behaviour that can blur the responses of disease processes to climate forcings.

A New Study on Cutaneous Leishmaniasis

In this issue of PLoS Medicine, new evidence is presented of a relationship between climate and vector-borne diseases, climate influences, and nonstationarity.

Funding: The authors received no specific funding to write this article.

Competing interests: The authors have declared that they have no competing interests.

Citation: Cazelles B, Hales S (2006) Infectious diseases, climate influences, and nonstationarity. PLoS Med 3(8): e328. DOI: 10.1371/journal.pmed.0030328

Copyright: © 2006 Cazelles and Hales. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Bernard Cazelles is at the Centre National de la Recherche Scientifique, UMR 7625, Ecole Normale Supérieure, Paris, France, and the Institut de Recherche pour le Développement, Research Unit GEODES, Bondy, France. Simon Hales is a senior research fellow at the Wellington School of Medicine and Health Sciences, University of Otago, Wellington, New Zealand.

* To whom correspondence should be addressed: cazelles@biologie.ens.fr

The Perspectives section is for experts to discuss the clinical practice or public health implications of a published article that is freely available online.
disease. Chaves and Pascual [17] use a range of mathematical tools to illustrate a clear relationship between climatic variables and the dynamics of cutaneous leishmaniasis, a skin infection transmitted by sandflies.

In Costa Rica, cutaneous leishmaniasis displays three-year cycles that coincide with those of El Niño. Chaves and Pascual use this newly demonstrated association to enhance the forecasting ability of their models and to predict the epidemics of leishmaniasis up to one year ahead. Interestingly, El Niño was a better predictor of disease than temperature, possibly because this large-scale index integrates numerous environmental processes and so is a more biologically relevant measure than local temperature. As the authors note, the link between El Niño and epidemics of leishmaniasis might be explained by large-scale climate effects on population susceptibility. Susceptibility, in turn, may be related to El Niño oscillations [9]. In Bangladesh, early in the 20th century, cholera and El Niño appeared unrelated, yet a strong association emerged in 1980–2001 [9]. Transient relationships between climate and infectious disease may be caused by interactions between climate and intrinsic disease mechanisms such as temporary immunity [10]. If population susceptibility is low, even large increases in transmission potential due to climate forcing will not result in a large epidemic.

Public Health Implications

A deeper understanding of infectious disease dynamics is important in order to forecast, and perhaps forestall, the effects of dramatic global social and environmental changes. Conventional statistical methods may fail to reveal a relationship between climate and health when discontinuous associations are present. Because classical methods quantify average associations over the entire dataset, they may not be adequate to decipher long-term but discontinuous relationships between environmental exposures and human health [9,16]. On the other hand, nonstationarity of relationships between climate and disease could signal problems for disease prediction (but see [20]). Unless all important effects are accounted for, dynamic forecast models may prove to have a limited shelf life.

References

1. Colwell RR (1996) Global climate and infectious disease: The cholera paradigm. Science 274: 2025–2029.
2. Patz JA, Epstein PR, Burke TA, Balbus JM (1996) Global climate change and emerging infectious diseases. JAMA 275: 217–223.
3. Kovats RS, Campbell-Lendrum DH, McMichael AJ, Woodward A, Cox JS (2001) Early effects of climate change: Do they include changes in vector-borne disease? Philos Trans R Soc Lond B Biol Sci 356: 1057–1068.
4. World Health Organization [WHO] (2004) Using climate to predict disease outbreaks: A review. WHO: Geneva. Available: http://www.who.int/globalchange/publications/ceh/0401/en/index.html. Accessed 20 June 2006.
5. McMichael AJ, Woodruff RW, Hales S (2006) Climate change and human health: Present and future risks. Lancet 367: 859–869.
6. Lindgren E, Tälleklint L, Polfeldt T (2000) Impact of climatic change on the northern latitude limit and population. Environ Health Persp 108: 119–123.
7. Pascual M, Ahumada JA, Chaves LF, Rodó X, Bouma M (2006) Malaria resurgence in the East African highlands: Temperature trends revisited. Proc Natl Acad Sci U S A 103: 5829–5834.
8. Checkley W, Epstein LD, Gilman RH, Figueroa D, Cama RV, et al. (2006) Effect of El Niño and ambient temperature on hospital admissions for diarrhoeal diseases in Peruvian children. Lancet 355: 442–446.
9. Rodó X, Pascual M, Fuchs G, Faruque M (2002) ENSO and cholera: A nonstationary link related to climate change? Proc Natl Acad Sci U S A 99: 12901–12906.
10. Koelle K, Rodó X, Pascual M, Yunus M, Mostafa G (2005) Refractory periods and climate forcing in cholera dynamics. Nature 436: 696–700.
11. Hales S, Weinstein P, Woodward A (1999) Giguatera (fish poisoning), El Niño, and Pacific Sea surface temperatures. Ecosys Health 3: 20–25.
12. Maclaren D, Hales S, Weinstein P, Zalucki M, Woodward A (1999) El Niño and arboviral disease prediction. Environ Health Persp 107: 817–818.
13. Hales S, Weinstein P, Souares Y, Woodward A (1999) El Niño and the dynamics of vector-borne disease transmission. Environ Health Persp 107: 99–102.
14. Sultan B, Labadi K, Guégan JF, Janicot S (2005) Climate drives the meningitis epidemics onset in West Africa. PLoS Med 2: e6. DOI: 10.1371/journal.pmed.0020006.
15. Hay SI, Myers MF, Burke DS, Vaughn DW, Eady Y, et al. (2009) Etiology of interepidemic periods of mosquito-borne disease. Proc Natl Acad Sci U S A 97: 9335–9339.
16. Cazelles B, Chaves LF, Hales S (2005) Nonstationary influence of El Niño on the synchronous dengue epidemics in Thailand. PLoS Med 2: e106. DOI: 10.1371/journal.pmed.0020106.
17. Chaves LF, Pascual P (2006) Climate cycles and forecasts of cutaneous leishmaniasis, a nonstationary vector-borne disease. PLoS Med 3: e259. DOI: 10.1371/journal.pmed.0030295.
18. Duncan CJ, Duncan SR, Scott S (1996) Whooping cough epidemics in London, 1701–1812: Infection dynamics, seasonal forcing and the effects of malnutrition. Proc Biol Sci 253: 445–450.
19. Rohani P, Earn DJ, Grenfell BT (1999) Opposite patterns of synchrony in sympatric disease metapopulations. Science 286: 968–971.
20. Cazelles B, Chau N, Guégan JF, Sultan B (1997) Using the Kalman filter and dynamic models to assess the changing HIV/AIDS epidemic. Mathematical Biosci 140: 151–154.