Base change and K-theory for $\operatorname{GL}(n, \mathbb{R})$

Sergio Mendes and Roger Plymen

Abstract

We investigate base change \mathbb{C}/\mathbb{R} at the level of K-theory for the general linear group $\operatorname{GL}(n, \mathbb{R})$. In the course of this study, we compute in detail the C^*-algebra K-theory of this disconnected group. We investigate the interaction of base change with the Baum-Connes correspondence for $\operatorname{GL}(n, \mathbb{R})$ and $\operatorname{GL}(n, \mathbb{C})$. This article is the archimedean companion of our previous article [9].

Mathematics Subject Classification (2000). 22D25, 22D10, 46L80.

Keywords. General linear group, tempered dual, base change, K-theory.

1 Introduction

In the general theory of automorphic forms, an important role is played by base change. Base change has a global aspect and a local aspect [1]. In this article, we focus on the archimedean case of base change for the general linear group $\operatorname{GL}(n, \mathbb{R})$, and we investigate base change for this group at the level of K-theory.

For $\operatorname{GL}(n, \mathbb{R})$ and $\operatorname{GL}(n, \mathbb{C})$ we have the Langlands classification and the associated L-parameters [7]. We recall that the domain of an L-parameter of $\operatorname{GL}(n, F)$ over an archimedean field F is the Weil group W_F. The Weil groups are given by

$$W_{\mathbb{C}} = \mathbb{C}^\times$$

and

$$W_{\mathbb{R}} = \mathbb{C}^\times \rtimes \mathbb{Z}/2\mathbb{Z}$$

where the generator of $\mathbb{Z}/2\mathbb{Z}$ sends a complex number z to its conjugate \overline{z}. Base change is defined by restriction of L-parameter from $W_{\mathbb{R}}$ to $W_{\mathbb{C}}$.

An L-parameter ϕ is tempered if $\phi(W_F)$ is bounded. Base change therefore determines a map of tempered duals.

In this article, we investigate the interaction of base change with the Baum-Connes correspondence for $\operatorname{GL}(n, \mathbb{R})$ and $\operatorname{GL}(n, \mathbb{C})$.
Let F denote \mathbb{R} or \mathbb{C} and let $G = G(F) = \text{GL}(n, F)$. Let $C^*_r(G)$ denote the reduced C^*-algebra of G. The Baum-Connes correspondence is a canonical isomorphism [8][5]

$$\mu_F : K^*_r(G(F))(EG(F)) \to K^*_r(C^*_r(G(F)))$$

where $EG(F)$ is a universal example for the action of $G(F)$.

The noncommutative space $C^*_r(G(F))$ is strongly Morita equivalent to the commutative C^*-algebra $C_0(A^t_n(F))$ where $A^t_n(F)$ denotes the tempered dual of $G(F)$, see [10] section 1.2[11]. As a consequence of this, we have

$$K^*_r(C^*_r(G(F))) \cong K^*_r(A^t_n(F)).$$

This leads to the following formulation of the Baum-Connes correspondence:

$$K^*_r(G(F))(EG(F)) \cong K^*_r(A^t_n(F)).$$

Base change \mathbb{C}/\mathbb{R} determines a map

$$b_{\mathbb{C}/\mathbb{R}} : A^t_n(\mathbb{R}) \to A^t_n(\mathbb{C}).$$

This leads to the following diagram

$$\begin{array}{ccc}
K^*_r(G(\mathbb{C}))(EG(\mathbb{C})) & \xrightarrow{\mu_{\mathbb{C}}} & K^*_r(A^t_n(\mathbb{C})) \\
\downarrow & & \downarrow b^*_{\mathbb{C}/\mathbb{R}} \\
K^*_r(G(\mathbb{R}))(EG(\mathbb{R})) & \xrightarrow{\mu_{\mathbb{R}}} & K^*_r(A^t_n(\mathbb{R})).
\end{array}$$

where the left-hand vertical map is the unique map which makes the diagram commutative.

In section 2 we describe the tempered dual $A^t_n(F)$ as a locally compact Hausdorff space.

In section 3 we recall base change for archimedean fields.

In section 4 we compute the K-theory for the reduced C^*-algebra of $\text{GL}(n, \mathbb{R})$. We show that the K-theory depends on essentially one parameter q given by the maximum number of $2'$s in the partitions of n into $1'$s and $2'$s. There are precisely $\lfloor \frac{n}{2} \rfloor + 1$ such partitions. If n is even then $q = n/2$ (Theorem 4.7) and if n is odd then $q = (n - 1)/2$ (Theorem 4.8). The real reductive Lie group $\text{GL}(n, \mathbb{R})$ is, of course, not connected. If n is even our formulas show that we always have non-trivial K^0 and K^1.

In section 5 we recall the K-theory for the reduced C^*-algebra of the complex reductive group $\text{GL}(n, \mathbb{C})$, see [11].
In section 6 we compute the base change map $BC : A_{n}^t(\mathbb{R}) \to A_{n}^t(\mathbb{C})$ and prove that BC is a continuous proper map. At level of K-theory, base change is the zero map for $n > 1$ (Theorem 6.2).

In section 7, where we study the case $n = 1$, base change for K^1 creates a map

$$\mathcal{R}(\mathbb{T}) \to \mathcal{R}(\mathbb{Z}/2\mathbb{Z})$$

where $\mathcal{R}(\mathbb{T})$ is the representation ring of the circle group \mathbb{T} and $\mathcal{R}(\mathbb{Z}/2\mathbb{Z})$ is the representation ring of the group $\mathbb{Z}/2\mathbb{Z}$. This map sends the trivial character of \mathbb{T} to $1 \oplus \varepsilon$, where ε is the nontrivial character of $\mathbb{Z}/2\mathbb{Z}$, and sends all the other characters of \mathbb{T} to zero.

This map has an interpretation in terms of K-cycles. The K-cycle

$$(C_0(\mathbb{R}), L^2(\mathbb{R}), id/dx)$$

is equivariant with respect to \mathbb{C}^\times and \mathbb{R}^\times, and therefore determines a class $\varnothing_\mathbb{C} \in K_1^{\mathbb{C}^\times}(E\mathbb{C}^\times)$ and a class $\varnothing_\mathbb{R} \in K_1^{\mathbb{R}^\times}(E\mathbb{R}^\times)$. On the left-hand-side of the Baum-Connes correspondence, base change in dimension 1 admits the following description:

$$\varnothing_\mathbb{C} \mapsto (\varnothing_\mathbb{R}, \varnothing_\mathbb{R})$$

This extends the results of [9] to archimedean fields.

We thank Paul Baum for a valuable exchange of emails. Sergio Mendes is supported by Fundação para a Ciência e Tecnologia, Terceiro Quadro Comunitário de Apoio, SFRH/BD/10161/2002.

2 On the tempered dual of $GL(n)$

Let $F = \mathbb{R}$. In order to compute the K-theory of the reduced C^*-algebra of $GL(n, F)$ we need to parametrize the tempered dual $A_{n}^t(\mathbb{R})$ of $GL(n, F)$.

Let M be a standard Levi subgroup of $GL(n, F)$, i.e. a block-diagonal subgroup. Let 0M be the subgroup of M such that the determinant of each block-diagonal is ± 1. Denote by $X(M) = M/^0M$ the group of unramified characters of M, consisting of those characters which are trivial on 0M.

Let $W(M) = N(M)/M$ denote the Weyl group of M. $W(M)$ acts on the discrete series $E_2(^0M)$ of 0M by permutations.

Now, choose one element $\sigma \in E_2(^0M)$ for each $W(M)$-orbit. The isotropy subgroup of $W(M)$ is defined to be

$$W_\sigma(M) = \{ \omega \in W(M) : \omega \cdot \sigma = \sigma \}.$$
Form the disjoint union

\[
\bigsqcup_{(M,\sigma)} X(M)/W_\sigma(M) = \bigsqcup_{M} \bigsqcup_{\sigma \in E_2(0,M)} X(M)/W_\sigma(M). \tag{1}
\]

The disjoint union has the structure of a locally compact, Hausdorff space and is called the Harish-Chandra parameter space. The parametrization of the tempered dual $A^f_n(\mathbb{R})$ is due to Harish-Chandra, see [6].

Proposition 2.1 (Harish-Chandra). [6] There exists a bijection

\[
\bigsqcup_{(M,\sigma)} X(M)/W_\sigma(M) \rightarrow A^f_n(\mathbb{R})
\]

\[\chi^\sigma \mapsto i_{GL(n),MN}(\chi^\sigma \otimes 1),\]

where $\chi^\sigma(x) := \chi(x)\sigma(x)$ for all $x \in M$.

In view of the above bijection, we will denote the Harish-Chandra parameter space by $A^f_n(\mathbb{R})$.

We will see now the particular features of the archimedean case, starting with $GL(n, \mathbb{R})$. Since the discrete series of $GL(n, \mathbb{R})$ is empty for $n \geq 3$, we only need to consider partitions of n into 1’s and 2’s. This allows us to decompose n as $n = 2q + r$, where q is the number of 2’s and r is the number of 1’s in the partition. To this decomposition we associate the partition

\[n = (2,...,2,1,...,1),\]

which corresponds to the Levi subgroup

\[M \cong GL(2, \mathbb{R}) \times ... \times GL(2, \mathbb{R}) \times GL(1, \mathbb{R}) \times ... \times GL(1, \mathbb{R}).\]

Varying q and r we determine a representative in each equivalence class of Levi subgroups. The subgroup $0M$ of M is given by

\[0M \cong SL^\pm(2, \mathbb{R}) \times ... \times SL^\pm(2, \mathbb{R}) \times SL^\pm(1, \mathbb{R}) \times ... \times SL^\pm(1, \mathbb{R}).\]

where

\[SL^\pm(m, \mathbb{R}) = \{g \in GL(m, \mathbb{R}) : |\det(g)| = 1\}\]

is the unimodular subgroup of $GL(m, \mathbb{R})$. In particular, $SL^\pm(1, \mathbb{R}) = \{\pm1\} \cong \mathbb{Z}/2\mathbb{Z}$.
The representations in the discrete series of $GL(2, \mathbb{R})$, denoted D_ℓ for $\ell \in \mathbb{N}$ ($\ell \geq 1$) are induced from $SL(2, \mathbb{R})$ \cite[p.399]{7}:

$$D_\ell = \text{ind}_{SL^\pm(2, \mathbb{R}), SL(2, \mathbb{R})} (D^\pm_\ell),$$

where D^\pm_ℓ acts in the space

$$\{ f : \mathcal{H} \rightarrow \mathbb{C} | f \text{ analytic}, \|f\|^2 = \int \int |f(z)|^2 y^{\ell-1} dx dy < \infty \}.$$

Here, \mathcal{H} denotes the Poincaré upper half plane. The action of $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is given by

$$D^\pm_\ell(g)(f(z)) = (bz + d)^{-(\ell+1)} f\left(\frac{az + c}{bz + d}\right).$$

More generally, an element σ from the discrete series $E_2^0(M)$ is given by

$$\sigma = i_{G,M,N} (D^\pm_{\ell_1} \otimes ... \otimes D^\pm_{\ell_q} \otimes \tau_1 \otimes ... \otimes \tau_r \otimes 1),$$

(2)

where $D^\pm_{\ell_i}$ ($\ell_i \geq 1$) are the discrete series representations of $SL^\pm(2, \mathbb{R})$ and τ_j is a representation of $SL^\pm(1, \mathbb{R}) \cong \mathbb{Z}/2\mathbb{Z}$, i.e. $id = (x \mapsto x)$ or $sgn = (x \mapsto \frac{x}{|x|})$.

Finally we will compute the unramified characters $X(M)$, where M is the Levi subgroup associated to the partition $n = 2q + r$.

Let $x \in GL(2, \mathbb{R})$. Any character of $GL(2, \mathbb{R})$ is given by

$$\chi(det(x)) = (sgn(det(x)))^\varepsilon |det(x)|^t \chi$$

($\varepsilon = 0, 1, t \in \mathbb{R}$) and it is unramified provided that

$$\chi(det(g)) = \chi(\pm 1) = (\pm 1)^\varepsilon = 1,$$

for all $g \in SL^\pm(2, \mathbb{R})$. This implies $\varepsilon = 0$ and any unramified character of $GL(2, \mathbb{R})$ has the form

$$\chi(x) = |det(x)|^t,$$

(3)

for some $t \in \mathbb{R}$.

Similarly, any unramified character of $GL(1, \mathbb{R}) = \mathbb{R}^\times$ has the form

$$\xi(x) = |x|^t,$$

(4)

for some $t \in \mathbb{R}$.

Given a block diagonal matrix $\text{diag}(g_1, ..., g_q, \omega_1, ..., \omega_r) \in M$, where $g_i \in GL(2, \mathbb{R})$ and $\omega_j \in GL(1, \mathbb{R})$, we conclude from (3) and (4) that any unramified character $\chi \in X(M)$ is given by

$$\chi(\text{diag}(g_1, ..., g_q, \omega_1, ..., \omega_r)) = |det(g_1)|^{t_1} \times ... \times |det(g_q)|^{t_q} \times |\omega_1|^{t_{q+1}} \times ... \times |\omega_r|^{t_{q+r}},$$

for some $(t_1, ..., t_{q+r}) \in \mathbb{R}^{q+r}$. We can denote such element $\chi \in X(M)$ by $\chi(t_1, ..., t_{q+r})$. We have the following result.
Proposition 2.2. Let M be a Levi subgroup of $GL(n, \mathbb{R})$, associated to the partition $n = 2q + r$. Then, there is a bijection

$$X(M) \rightarrow \mathbb{R}^{q+r}, \chi(t_1, ..., t_{q+r}) \mapsto (t_1, ..., t_{q+r}).$$

Let us consider now $GL(n, \mathbb{C})$. The tempered dual of $GL(n, \mathbb{C})$ comprises the unitary principal series in accordance with Harish-Chandra [10, p. 277]. The corresponding Levi subgroup is a maximal torus $T \cong (\mathbb{C}^\times)^n$. It follows that $^0T \cong \mathbb{T}^n$ the compact n-torus.

The principal series representations are given by

$$\pi_{\ell,i} = i_{G,TV}(\sigma \otimes 1), \quad (5)$$

where $\sigma = \sigma_1 \otimes ... \otimes \sigma_n$ and $\sigma_j(z) = (\frac{z}{|z|^\ell_j})^{|z|t_j}$ ($\ell_j \in \mathbb{Z}$ and $t_j \in \mathbb{R}$).

An unramified character is given by

$$\chi \left(\begin{array}{c} z_1 \\ \vdots \\ z_n \end{array} \right) = |z_1|^{|t_1|} \times ... \times |z_n|^{|t_n|}$$

and we can represent χ as $\chi(t_1, ..., t_n)$. Therefore, we have the following result.

Proposition 2.3. Denote by T the standard maximal torus in $GL(n, \mathbb{C})$. There is a bijection

$$X(T) \rightarrow \mathbb{R}^n, \chi(t_1, ..., t_n) \mapsto (t_1, ..., t_n).$$

3 Base change for archimedean fields

The Weil group attached to a local field F will be denoted W_F as in [13]. We may state the base change problem for archimedean fields in the following way. Consider the archimedean base change \mathbb{C}/\mathbb{R}. We have $W_\mathbb{C} \subset W_\mathbb{R}$ and there is a natural map

$$Res_{W_\mathbb{C}}^{W_\mathbb{R}} : G_n(\mathbb{R}) \rightarrow G_n(\mathbb{C}) \quad (6)$$

called restriction. By the local Langlands correspondence for archimedean fields [3 Theorem 3.1, p.236][7], there is a base change map

$$BC : A_n(\mathbb{R}) \rightarrow A_n(\mathbb{C}) \quad (7)$$
such that the following diagram commutes

\[
\begin{array}{ccc}
\mathcal{A}_n(\mathbb{R}) & \xrightarrow{BC} & \mathcal{A}_n(\mathbb{C}) \\
\downarrow \mathcal{L}_n & & \downarrow \mathcal{L}_n \\
\mathcal{G}_n(\mathbb{R}) & \xrightarrow{Res_{W_C}} & \mathcal{G}_n(\mathbb{C})
\end{array}
\]

Arthur and Clozel’s book [1] gives a full treatment of base change for $GL(n)$. The case of archimedean base change can be captured in an elegant formula [1, p. 71]. We briefly review these results.

Given a partition $n = 2q + r$ let $\chi_i (i = 1, ..., q)$ be a ramified character of \mathbb{C}^\times and let $\xi_j (j = 1, ..., r)$ be a ramified character of \mathbb{R}^\times. Since the χ_i’s are ramified, $\chi_i(z) \neq \chi_i^\sigma(z) = \chi_i(\overline{z})$. By Langlands classification [7], each χ_i defines a discrete series representation $\pi(\chi_i)$ of $GL(2, \mathbb{R})$, with $\pi(\chi_i) = \pi(\chi_i^\sigma)$.

Denote by $\pi(\chi_1, ..., \chi_q, \xi_1, ..., \xi_r)$ the generalized principal series representation of $GL(n, \mathbb{R})$

\[
\pi(\chi_1, ..., \chi_q, \xi_1, ..., \xi_r) = i_{GL(n, \mathbb{R}), MN}(\pi(\chi_1) \otimes ... \otimes \pi(\chi_q) \otimes \xi_1 \otimes ... \otimes \xi_r \otimes 1). \tag{8}
\]

The base change map for the general principal series representation is given by induction from the Borel subgroup $B(\mathbb{C})$ [1, p. 71]:

\[
BC(\pi) = \Pi(\chi_1, ..., \chi_q, \xi_1, ..., \xi_r) = i_{GL(n, \mathbb{C}), B(\mathbb{C})}(\chi_1, \chi_1^\sigma, ..., \chi_q, \chi_q^\sigma, \xi_1 \circ N, ..., \xi_r \circ N), \tag{9}
\]

where $N = N_{\mathbb{C}/\mathbb{R}} : \mathbb{C}^\times \longrightarrow \mathbb{R}^\times$ is the norm map defined by $z \mapsto z\overline{z}$.

We illustrate the base change map with two simple examples.

Example 3.1. For $n = 1$, base change is simply composition with the norm map

\[
BC : \mathcal{A}_1^1(\mathbb{R}) \rightarrow \mathcal{A}_1^1(\mathbb{C}) , \ BC(\chi) = \chi \circ N.
\]

Example 3.2. For $n = 2$, there are two different kinds of representations, one for each partition of 2. According to (3), $\pi(\chi)$ corresponds to the partition $2 = 2 + 0$ and $\pi(\xi_1, \xi_2)$ corresponds to the partition $2 = 1 + 1$. Then the base change map is given, respectively, by

\[
BC(\pi(\chi)) = i_{GL(2, \mathbb{C}), B(\mathbb{C})}(\chi, \chi^\sigma),
\]

and

\[
BC(\pi(\xi_1, \xi_2)) = i_{GL(2, \mathbb{C}), B(\mathbb{C})}(\xi_1 \circ N, \xi_2 \circ N).
\]
4 \textit{K-theory for } GL(n, \mathbb{R}) \\

Using the Harish-Chandra parametrization of the tempered dual of \textit{GL}(n) (recall that the Harish-Chandra parameter space is a locally compact, Hausdorff topological space) we can compute the \textit{K}-theory of the reduced \textit{C}*-algebra \textit{C}*_r GL(n, \mathbb{R}).

We have

\[K_j(\textit{C}*_r GL(n, \mathbb{R})) = K_j(\bigsqcup_{(M,\sigma)} X(M)/W_\sigma(M)) = \bigoplus_{(M,\sigma)} K^j(X(M)/W_\sigma(M)) \]

(10)

where \(n_M = q + r \) if \(M \) is a representative of the equivalence class of Levi subgroup associated to the partition \(n = 2q + r \). Hence the \textit{K}-theory depends on \(n \) and on each Levi subgroup.

To compute (11) we have to consider the following orbit spaces:

(i) \(\mathbb{R}^n \), in which case \(W_\sigma(M) \) is the trivial subgroup of the Weil group \(W(M) \);

(ii) \(\mathbb{R}^n/S_n \), where \(W_\sigma(M) = W(M) \) (this is one of the possibilities for the partition of \(n \) into 1’s);

(iii) \(\mathbb{R}^n/(S_{n_1} \times \cdots \times S_{n_k}) \), where \(W_\sigma(M) = S_{n_1} \times \cdots \times S_{n_k} \subset W(M) \) (see the examples below).

\textbf{Definition 4.1.} An orbit space as indicated in (ii) and (iii) is called a closed cone.

The \textit{K}-theory for \(\mathbb{R}^n \) may be summarized as follows

\[K^j(\mathbb{R}^n) = \begin{cases} \mathbb{Z}, & n = j \text{(mod 2)} \\ 0, & \text{otherwise}. \end{cases} \]

The next results show that the \textit{K}-theory of a closed cone vanishes.

\textbf{Lemma 4.2.} \(K^j(\mathbb{R}^n/S_n) = 0, j = 0, 1 \).

\textit{Proof.} We need the following definition. A point \((a_1, \ldots, a_n) \in \mathbb{R}^n\) is called normalized if \(a_j \leq a_{j+1} \), for \(j = 1, 2, \ldots, n - 1 \). Therefore, in each orbit there is exactly one normalized point and \(\mathbb{R}^n/S_n \) is homeomorphic to the subset of \(\mathbb{R}^n \) consisting of all normalized points of \(\mathbb{R}^n \). We denote the set of all normalized points of \(\mathbb{R}^n \) by \(N(\mathbb{R}^n) \).
In the case of \(n = 2 \), let \((a_1, a_2)\) be a normalized point of \(\mathbb{R}^2 \). Then, there is a unique \(t \in [1, +\infty[\) such that \(a_2 = ta_1 \) and the map

\[
\mathbb{R} \times [1, +\infty[\to N(\mathbb{R}^2), (a, t) \mapsto (a, ta)
\]

is a homeomorphism.

If \(n > 2 \) then the map

\[
N(\mathbb{R}^{n-1}) \times [1, +\infty[\to N(\mathbb{R}^n), (a_1, ..., a_{n-1}, t) \mapsto (a_1, ..., a_{n-1}, ta_n)
\]

is a homeomorphism. Since \([1, +\infty[\) kills both the \(K \)-theory groups \(K^0 \) and \(K^1 \), the result follows by applying Künneth formula.

The symmetric group \(S_n \) acts on \(\mathbb{R}^n \) by permuting the components. This induces an action of any subgroup \(S_{n_1} \times ... \times S_{n_k} \) of \(S_n \) on \(\mathbb{R}^n \). Write

\[
\mathbb{R}^n \cong \mathbb{R}^{n_1} \times ... \times \mathbb{R}^{n_k} \times \mathbb{R}^{n-n_1-...-n_k}.
\]

If \(n = n_1 + ... + n_k \) then we simply have \(\mathbb{R}^n \cong \mathbb{R}^{n_1} \times ... \times \mathbb{R}^{n_k} \).

\(S_{n_1} \times ... \times S_{n_k} \) acts on \(\mathbb{R}^n \) as follows.

\(S_{n_1} \) permutes the components of \(\mathbb{R}^{n_1} \) leaving the remaining fixed;

\(S_{n_2} \) permutes the components of \(\mathbb{R}^{n_2} \) leaving the remaining fixed;

and so on. If \(n > n_1 + ... + n_k \) the components of \(\mathbb{R}^{n-n_1-...-n_k} \) remain fixed.

This can be interpreted, of course, as the action of the trivial subgroup. As a consequence, one identify the orbit spaces

\[
\mathbb{R}^n/(S_{n_1} \times ... \times S_{n_k}) \cong \mathbb{R}^{n_1}/S_{n_1} \times ... \times \mathbb{R}^{n_k}/S_{n_k} \times \mathbb{R}^{n-n_1-...-n_k}.
\]

Lemma 4.3. \(K^j(\mathbb{R}^n/(S_{n_1} \times ... \times S_{n_k})) = 0, j = 0, 1, \) where \(S_{n_1} \times ... \times S_{n_k} \subset S_n \).

Proof. It suffices to prove for \(\mathbb{R}^n/(S_{n_1} \times S_{n_2}) \). The general case follows by induction on \(k \).

Now, \(\mathbb{R}^n/(S_{n_1} \times S_{n_2}) \cong \mathbb{R}^{n_1}/S_{n_1} \times \mathbb{R}^{n-n_1}/S_{n_2} \). Applying the Künneth formula and Lemma 4.2, the result follows.

We give now some examples by computing \(K^*_j GL(n, \mathbb{R}) \) for small \(n \).

Example 4.4. We start with the case of \(GL(1, \mathbb{R}) \). We have:

\[
M = \mathbb{R}^\times, \ 0M = \mathbb{Z}/2\mathbb{Z}, \ W(M) = 1 \text{ and } X(M) = \mathbb{R}.
\]

Hence,

\[
\mathcal{A}_1^1(\mathbb{R}) \cong \bigcup_{\sigma \in (\mathbb{Z}/2\mathbb{Z})} \mathbb{R}/1 = \mathbb{R} \sqcup \mathbb{R}, \tag{11}
\]

and the \(K \)-theory is given by

\[
K_j^* GL(1, \mathbb{R}) \cong K^j(\mathcal{A}_1(\mathbb{R})) = K^j(\mathbb{R} \sqcup \mathbb{R}) = K^j(\mathbb{R}) \oplus K^j(\mathbb{R}) = \left\{ \begin{array}{ll}
\mathbb{Z} \oplus \mathbb{Z}, & j = 1 \\
0, & j = 0.
\end{array} \right.
\]
Example 4.5. For $GL(2, \mathbb{R})$ we have two partitions of $n = 2$ and the following data

Partition	M	0M	$W(M)$	$X(M)$	$\sigma \in E_2(^0M)$
$2+0$	$GL(2, \mathbb{R})$	$SL^+(2, \mathbb{R})$	1	\mathbb{R}	$\sigma = i_{G,P}(D^+_\ell)$, $\ell \in \mathbb{N}$
$1+1$	\mathbb{R}^2	$(\mathbb{Z}/2\mathbb{Z})^2$	$\mathbb{Z}/2\mathbb{Z}$	\mathbb{R}^2	$\sigma = i_{G,P}(id \otimes sgn)$

Then the tempered dual is parameterized as follows

$$A^1_3(\mathbb{R}) \cong \bigsqcup_{(M, \sigma)} X(M)/W_\sigma(M) = (\bigsqcup_{\ell \in \mathbb{N}} \mathbb{R}) \cup (\mathbb{R}^2/S_2) \cup (\mathbb{R}^2/S_2) \cup \mathbb{R}$$

and the K-theory groups are given by

$$K_jC^*_r GL(2, \mathbb{R}) \cong K^j(A^1_3(\mathbb{R})) \cong (\bigoplus_{\ell \in \mathbb{N}} K^j(\mathbb{R})) \oplus K^j(\mathbb{R}^2) = \begin{cases} \bigoplus_{\ell \in \mathbb{N}} \mathbb{Z} & , j = 1 \\ \mathbb{Z} & , j = 0. \end{cases}$$

Example 4.6. For $GL(3, \mathbb{R})$ there are two partitions for $n = 3$, to which correspond the following data

Partition	M	0M	$W(M)$	$X(M)$
$2+1$	$GL(3, \mathbb{R}) \times \mathbb{R}^3$	$SL^+(2, \mathbb{R}) \times (\mathbb{Z}/2\mathbb{Z})^3$	1	\mathbb{R}^2
$1+1+1$	\mathbb{R}^3	$(\mathbb{Z}/2\mathbb{Z})^3$	S_3	\mathbb{R}^3

For the partition $3 = 2 + 1$, an element $\sigma \in E_2(^0M)$ is given by

$$\sigma = i_{G,P}(D^+_\ell \otimes \tau) , \ell \in \mathbb{N} \text{ and } \tau \in (\mathbb{Z}/2\mathbb{Z}).$$

For the partition $3 = 1 + 1 + 1$, an element $\sigma \in E_2(^0M)$ is given by

$$\sigma = i_{G,P}(\bigotimes_{i=1}^3 \tau_i) , \tau_i \in (\mathbb{Z}/2\mathbb{Z}).$$

The tempered dual is parameterized as follows

$$A^1_3(\mathbb{R}) \cong \bigsqcup_{(M, \sigma)} X(M)/W_\sigma(M) = \bigsqcup_{N \times (\mathbb{Z}/2\mathbb{Z})} (\mathbb{R}^2/1) \bigsqcup_{(\mathbb{Z}/2\mathbb{Z})^3} (\mathbb{R}^3/S_3).$$

The K-theory groups are given by

$$K_jC^*_r GL(3, \mathbb{R}) \cong K^j(A^1_3(\mathbb{R})) \cong \bigoplus_{N \times (\mathbb{Z}/2\mathbb{Z})} K^j(\mathbb{R}^2) \oplus 0 = \begin{cases} \bigoplus_{N \times (\mathbb{Z}/2\mathbb{Z})} \mathbb{Z} & , j = 0 \\ 0 & , j = 1. \end{cases}$$
The general case of $GL(n, \mathbb{R})$ will now be considered. It can be split in two cases: n even and n odd.

- $n = 2q$ even

Suppose n is even. For every partition $n = 2q + r$, either $W_{\sigma}(M) = 1$ or $W_{\sigma}(M) \neq 1$. If $W_{\sigma}(M) \neq 1$ then $\mathbb{R}^{n_{\sigma}}/W_{\sigma}(M)$ is a cone and the K-groups K^0 and K^1 both vanish. This happens precisely when $r > 2$ and therefore we have only two partitions, corresponding to the choices of $r = 0$ and $r = 2$, which contribute to the K-theory with non-zero K-groups.

Partition	M	0M	$W(M)$
$2q$	$GL(2, \mathbb{R})^q$	$SL^\pm(2, \mathbb{R})^q$	S_q
$2(q - 1) + 2$	$GL(2, \mathbb{R})^{q-1} \times (\mathbb{R}^\times)^2$	$SL^\pm(2, \mathbb{R})^{q-1} \times (\mathbb{Z}/2\mathbb{Z})^2$	$S_{q-1} \times (\mathbb{Z}/2\mathbb{Z})$

We also have $X(M) \cong \mathbb{R}^q$ for $n = 2q$, and $X(M) \cong \mathbb{R}^{q+1}$, for $n = 2(q - 1) + 2$.

For the partition $n = 2q$ $(r = 0)$, an element $\sigma \in E_2(0M)$ is given by

$$\sigma = i_{G,P}(\mathcal{D}_{\ell_1}^+ \otimes ... \otimes \mathcal{D}_{\ell_q}^+), (\ell_1, ... \ell_q) \in \mathbb{N}^q \text{ and } \ell_i \neq \ell_j \text{ if } i \neq j.$$

For the partition $n = 2(q - 1) + 2$ $(r = 2)$, an element $\sigma \in E_2(0M)$ is given by

$$\sigma = i_{G,P}(\mathcal{D}_{\ell_1}^+ \otimes ... \otimes \mathcal{D}_{\ell_{q-1}}^+ \otimes \text{id} \otimes \text{sgn}), (\ell_1, ... \ell_{q-1}) \in \mathbb{N}^{q-1} \text{ and } \ell_i \neq \ell_j \text{ if } i \neq j.$$

Therefore, the tempered dual has the following form

$$\mathcal{A}_{\text{t}}^i(\mathbb{R}) = \mathcal{A}_{\text{t}}^i(\mathbb{R}) = \bigsqcup_{\ell \in \mathbb{N}^q} \mathbb{R}^q \sqcup \bigsqcup_{\ell \in \mathbb{N}^{q-1}} \mathbb{R}^{q+1} \sqcup \mathcal{C}$$

where \mathcal{C} is a disjoint union of closed cones as in Definition 4.1.

Theorem 4.7. Suppose $n = 2q$ even. Then the K-groups are

$$K_j C^*_{\text{r}} GL(n, \mathbb{R}) \cong \begin{cases} \bigoplus_{\ell \in \mathbb{N}^q} \mathbb{Z} & j \equiv q (\text{mod} 2) \\ \bigoplus_{\ell \in \mathbb{N}^{q-1}} \mathbb{Z} & \text{otherwise.} \end{cases}$$

If $q = 1$ then the direct sum $\bigoplus_{\ell \in \mathbb{N}^{q-1}} \mathbb{Z}$ will denote a single copy of \mathbb{Z}.

- $n = 2q + 1$ odd

If n is odd only one partition contributes to the K-theory of $GL(n, \mathbb{R})$ with non-zero K-groups:
An element \(\sigma \in E_{2q}(0M) \) is given by

\[
\sigma = \iota_{G,P}(D_{\ell_1}^+ \otimes \cdots \otimes D_{\ell_q}^+ \otimes \tau), \quad (\ell_1, \ldots, \ell_q, \tau) \in \mathbb{N}^q \times (\mathbb{Z}/2\mathbb{Z}) \text{ and } \ell_i \neq \ell_j \text{ if } i \neq j.
\]

The tempered dual is given by

\[
A_t(n) = A_{2q+1}(R) = \bigsqcup_{\ell \in (\mathbb{N}^q \times (\mathbb{Z}/2\mathbb{Z}))} \mathbb{R}^{q+1} \sqcup C
\]

where \(C \) is a disjoint union of closed cones as in Definition 4.1.

Theorem 4.8. Suppose \(n = 2q + 1 \) is odd. Then the \(K \)-groups are

\[
K_jC^*GL(n, \mathbb{R}) \cong \begin{cases} \bigoplus_{\ell \in (\mathbb{N}^q \times (\mathbb{Z}/2\mathbb{Z}))} \mathbb{Z} & , \, j \equiv q + 1 \,(\text{mod}\,2) \\ 0 & , \, \text{otherwise} \end{cases}
\]

Here, we use the following convention: if \(q = 0 \) then the direct sum is \(\bigoplus_{\mathbb{Z}/2\mathbb{Z}} \mathbb{Z} \cong \mathbb{Z} \oplus \mathbb{Z} \).

We conclude that the \(K \)-theory of \(C^*GL(n, \mathbb{R}) \) depends on essentially one parameter \(q \) given by the maximum number of 2’s in the partitions of \(n \) into 1’s and 2’s. If \(n \) is even then \(q = \frac{n}{2} \) and if \(n \) is odd then \(q = \frac{n-1}{2} \).

5 **\(K \)-theory for \(GL(n, \mathbb{C}) \)**

Let \(T^0 \) be the maximal compact subgroup of the maximal compact torus \(T \) of \(GL(n, \mathbb{C}) \). Let \(\sigma \) be a unitary character of \(T^0 \). We note that \(W = W(T), \) \(W_\sigma = W_\sigma(T) \). If \(W_\sigma = 1 \) then we say that the orbit \(W \cdot \sigma \) is generic.

Theorem 5.1. The \(K \)-theory of \(C^*GL(n, \mathbb{C}) \) admits the following description. If \(n = j \mod 2 \) then \(K_j \) is free abelian on countably many generators, one for each generic \(W \)-orbit in the unitary dual of \(T^0 \), and \(K_{j+1} = 0 \).

Proof. We have a homeomorphism of locally compact Hausdorff spaces:

\[
A_t^i(\mathbb{C}) \cong \bigsqcup X(T)/W_\sigma(T)
\]

by the Harish-Chandra Plancherel Theorem for complex reductive groups, and the identification of the Jacobson topology on the left-hand-side with the natural topology on the right-hand-side, as in [11]. The result now follows from Lemma 4.3.
6 The base change map

In this section we define base change as a map of topological spaces and study the induced K-theory map.

Proposition 6.1. The base change map $BC: \mathcal{A}_n^t(\mathbb{R}) \to \mathcal{A}_n^t(\mathbb{C})$ is a continuous proper map.

Proof. First, we consider the case $n = 1$.

As we have seen in Example 3.1, base change for $GL(1)$ is the map given by $BC(\chi) = \chi \circ N$, for all characters $\chi \in \mathcal{A}_1^t(\mathbb{R})$, where $N: \mathbb{C}^\times \to \mathbb{R}^\times$ is the norm map.

Let $z \in \mathbb{C}^\times$. We have

$$BC(\chi)(z) = \chi(|z|^2) = |z|^{2it}. \quad (12)$$

A generic element from $\mathcal{A}_1^t(\mathbb{C})$ has the form

$$\mu(z) = \left(\frac{z}{|z|}\right)^\ell |z|^{it}, \quad (13)$$

where $\ell \in \mathbb{Z}$ and $t \in S^1$, as stated before. Viewing the Pontryagin duals $\mathcal{A}_1^t(\mathbb{R})$ and $\mathcal{A}_1^t(\mathbb{C})$ as topological spaces by forgetting the group structure, and comparing (12) and (13), the base change map can be defined as the following continuous map

$$\varphi: \mathcal{A}_1^t(\mathbb{R}) \cong \mathbb{R} \times (\mathbb{Z}/2\mathbb{Z}) \quad \mapsto \quad \mathcal{A}_1^t(\mathbb{C}) \cong \mathbb{R} \times \mathbb{Z}$$

$$\chi = (t, \varepsilon) \quad \mapsto \quad (2t, 0)$$

A compact subset of $\mathbb{R} \times \mathbb{Z}$ in the connected component $\{\ell\}$ of \mathbb{Z} has the form $K \times \{\ell\} \subset \mathbb{R} \times \mathbb{Z}$, where $K \subset \mathbb{R}$ is compact. We have

$$\varphi^{-1}(K \times \{\ell\}) = \begin{cases} \emptyset & \text{if } \ell \neq 0 \\ \frac{1}{2}K \times \{\varepsilon\} & \text{if } \ell = 0, \end{cases}$$

where $\varepsilon \in \mathbb{Z}/2\mathbb{Z}$. Therefore $\varphi^{-1}(K \times \{\ell\})$ is compact and φ is proper.

The Case $n > 1$

Base change determines a map $BC: \mathcal{A}_n^t(\mathbb{R}) \to \mathcal{A}_n^t(\mathbb{C})$ of topological spaces. Let $X = X(M)/W_\sigma(M)$ be a connected component of $\mathcal{A}_n^t(\mathbb{R})$. Then, X is mapped under BC into a connected component $Y = Y(T)/W_\sigma'(T)$ of $\mathcal{A}_n^t(\mathbb{C})$. Given a generalized principal series representation

$$\pi(\chi_1, \ldots, \chi_q, \xi_1, \ldots, \xi_r)$$
where the χ_i's are ramified characters of \mathbb{C}^\times and the ξ's are ramified characters of \mathbb{R}^\times, then

$$BC(\pi) = i_{G,B}(\chi_1, \chi_1^\tau, ..., \chi_q^\tau, \xi_1 \circ N, ..., \xi_r \circ N).$$

Here, $N = N_{\mathbb{C}/\mathbb{R}}$ is the norm map and τ is the generator of $Gal(\mathbb{C}/\mathbb{R})$.

We associate to π the usual parameters uniquely defined for each character χ and ξ. For simplicity, we write the set of parameters as a $(q+r)$-uple:

$$(t, t') = (t_1, ..., t_q, t'_1, ..., t'_r) \in \mathbb{R}^{q+r} \cong X(M).$$

Now, if $\pi(\chi_1, ..., \chi_q, \xi_1, ..., \xi_r)$ lies in the connected component defined by the fixed parameters $(t, \varepsilon) \in \mathbb{Z}^q \times (\mathbb{Z}/2\mathbb{Z})^r$, then

$$(t, t') \in X(M) \mapsto (t, t, 2t') \in Y(T)$$

is a continuous proper map.

It follows that

$$BC : X(M)/W_\sigma(M) \to Y(T)/W_\sigma'(T)$$

is continuous and proper since the orbit spaces are endowed with the quotient topology. \qed

Theorem 6.2. The functorial map induced by base change

$$K_j(C_\tau^*GL(n, \mathbb{C})) \xrightarrow{K_j(BC)} K_j(C_\tau^*GL(n, \mathbb{R}))$$

is zero for $n > 1$.

Proof. The case $n > 2$

We start with the case $n > 2$. Let $n = 2q + r$ be a partition and M the associated Levi subgroup of $GL(n, \mathbb{R})$. Denote by $X_{\mathbb{R}}(M)$ the unramified characters of M. As we have seen, $X_{\mathbb{R}}(M)$ is parametrized by \mathbb{R}^{q+r}. On the other hand, the only Levi subgroup of $GL(n, \mathbb{C})$ for $n = 2q+r$ is the diagonal subgroup $X_{\mathbb{C}}(M) = (\mathbb{C}^\times)^{2q+r}$.

If $q = 0$ then $r = n$ and both $X_{\mathbb{R}}(M)$ and $X_{\mathbb{C}}(M)$ are parametrized by \mathbb{R}^n. But then in the real case an element $\sigma \in E_2(0,M)$ is given by

$$\sigma = i_{GL(n,\mathbb{R}),P}(\chi_1 \otimes ... \otimes \chi_n),$$

with $\chi_i \in \mathbb{Z}/2\mathbb{Z}$. Since $n \geq 3$ there is always repetition of the χ_i's. It follows that the isotropy subgroups $W_\sigma(M)$ are all nontrivial and the quotient spaces \mathbb{R}^n/W_σ are closed cones. Therefore, the K-theory groups vanish.
If \(q \neq 0 \), then \(X_R(M) \) is parametrized by \(\mathbb{R}^{q+r} \) and \(X_C(M) \) is parametrized by \(\mathbb{R}^{2q+r} \) (see Propositions 2.2 and 2.3).

Base change creates a map

\[
\mathbb{R}^{q+r} \rightarrow \mathbb{R}^{2q+r}.
\]

Composing with the stereographic projections we obtain a map

\[
S^{q+r} \rightarrow S^{2q+r}
\]

between spheres. Any such map is nullhomotopic [4, Proposition 17.9]. Therefore, the induced \(K \)-theory map

\[
K^j(S^{2q+r}) \rightarrow K^j(S^{q+r})
\]

is the zero map.

The Case \(n = 2 \)

For \(n = 2 \) there are two Levi subgroups of \(GL(2, \mathbb{R}) \), \(M_1 \cong GL(2, \mathbb{R}) \) and the diagonal subgroup \(M_2 \cong (\mathbb{R}^\times)^2 \). By Proposition 2.2 \(X(M_1) \) is parametrized by \(\mathbb{R} \) and \(X(M_2) \) is parametrized by \(\mathbb{R}^2 \). The group \(GL(2, \mathbb{C}) \) has only one Levi subgroup, the diagonal subgroup \(M \cong (\mathbb{C}^\times)^2 \). From Proposition 2.3 it is parametrized by \(\mathbb{R}^2 \).

Since \(K^1(\mathcal{A}_2^i(\mathbb{C})) = 0 \) by Theorem 5.1, we only have to consider the \(K^0 \) functor. The only contribution to \(K^0(\mathcal{A}_2^i(\mathbb{R})) \) comes from \(M_2 \cong (\mathbb{R}^\times)^2 \) and we have (see Example 4.5)

\[
K^0(\mathcal{A}_2^i(\mathbb{R})) \cong \mathbb{Z}.
\]

For the Levi subgroup \(M_2 \cong (\mathbb{R}^\times)^2 \), base change is

\[
BC : \mathcal{A}_2^i(\mathbb{R}) \rightarrow \mathcal{A}_2^i(\mathbb{C})
\]

\[
\pi(\xi_1, \xi_2) \mapsto i_{GL(2, \mathbb{C}), B(\mathbb{C})}(\xi_1 \circ N, \xi_2 \circ N),
\]

Therefore, it maps a class \([t_1, t_2]\), which lies in the connected component \((\varepsilon_1, \varepsilon_2)\), into the class \([2t_1, 2t_2]\), which lies in the connect component \((0, 0)\). In other words, base change maps a generalized principal series \(\pi(\xi_1, \xi_2) \) into a nongeneric point of \(\mathcal{A}_2^i(\mathbb{C}) \). It follows from Theorem 5.1 that

\[
K^0(BC) : K^0(\mathcal{A}_2^i(\mathbb{R})) \rightarrow K^0(\mathcal{A}_2^i(\mathbb{C}))
\]

is the zero map. \(\square \)
7 Base change in one dimension

In this section we consider base change for $GL(1)$.

Theorem 7.1. The functorial map induced by base change

$$K_1(C^*_r GL(1, \mathbb{C})) \xrightarrow{K_1(BC)} K_1(C^*_r GL(1, \mathbb{R}))$$

is given by $K_1(BC) = \Delta \circ Pr$, where Pr is the projection of the zero component of $K^1(\mathcal{A}_1'(\mathbb{C}))$ into \mathbb{Z} and Δ is the diagonal $\mathbb{Z} \to \mathbb{Z} \oplus \mathbb{Z}$.

Proof. For $GL(1)$, base change

$$\chi \in \mathcal{A}_1'(\mathbb{R}) \mapsto \chi \circ N_{\mathbb{C}/\mathbb{R}} \in \mathcal{A}_1'(\mathbb{C})$$

induces a map

$$K^1(BC) : K^1(\mathcal{A}_1'(\mathbb{C})) \to K^1(\mathcal{A}_1'(\mathbb{R})).$$

Any character $\chi \in \mathcal{A}_1'(\mathbb{R})$ is uniquely determined by a pair of parameters $(t, \varepsilon) \in \mathbb{R} \times \mathbb{Z}/2\mathbb{Z}$. Similarly, any character $\mu \in \mathcal{A}_1'(\mathbb{C})$ is uniquely determined by a pair of parameters $(t, \ell) \in \mathbb{R} \times \mathbb{Z}$. The discrete parameter ε (resp., ℓ) labels each connected component of $\mathcal{A}_1'(\mathbb{R}) = \mathbb{R} \sqcup \mathbb{R}$ (resp., $\mathcal{A}_1'(\mathbb{C}) = \bigsqcup_{\mathbb{Z}} \mathbb{R}$).

Base change maps each component ε of $\mathcal{A}_1'(\mathbb{R})$ into the component 0 of $\mathcal{A}_1'(\mathbb{C})$, sending $t \in \mathbb{R}$ to $2t \in \mathbb{R}$. The map $t \mapsto 2t$ is homotopic to the identity. At the level of K^1, the base change map may be described by the following commutative diagram

$$\begin{array}{ccc}
\oplus_{\mathbb{R}} \mathbb{Z} & \xrightarrow{K^1(BC)} & \mathbb{Z} \oplus \mathbb{Z} \\
\downarrow Pr & & \downarrow \Delta \\
\mathbb{Z} & & \\
\end{array}$$

Here, Pr is the projection of the zero component of $K^1(\mathcal{A}_1'(\mathbb{C})) \cong \oplus_{\mathbb{R}} \mathbb{Z}$ into \mathbb{Z} and Δ is the diagonal map. \qed

References

[1] J. Arthur, L. Clozel, Simple algebras, base change, and the advanced theory of the trace formula, Annals of Math. Studies 120, Princeton University Press, Princeton, 1989.

[2] P. Baum, A. Connes, N. Higson, Classifying space for proper actions and K-theory for group C^*-algebras, Contemporary Math., 167 (1994) 241–291.
[3] J. Bernstein, S. Gelbart et al, An introduction to the Langlands program, Birkhauser 2003.

[4] R. Bott and L.W. Tu, Differential Forms in Algebraic Topology, Springer-Verlag, New York 1982.

[5] J. Chabert, S. Echterhoff, R. Nest, The Connes-Kasparov conjecture for almost connected groups and for linear p-adic groups, Publications Math. I.H.E.S. 97 (2003) 239-278.

[6] Harish-Chandra, Collected papers, Vol. 4, Springer, Berlin (1984).

[7] A. W. Knapp, Local Langlands correspondence: the archimedean case, Proc. Symp. Pure. Math. 55, 1994, 393–410.

[8] V. Lafforgue, K-théorie bivariante pour les algèbres de Banach et conjecture de Baum-Connes, Invent. Math. 149 (2002) 1–95.

[9] S. Mendes, R.J. Plymen, Base change and K-theory for GL(n), J. Non-commut. Geom., 1 (2007), 311–331.

[10] R. J. Plymen, The reduced C*-algebra of the p-adic group GL(n), J. Functional Analysis 72 (1987) 1–12.

[11] M. G. Penington, R. J. Plymen, The Dirac operator and the principal series for complex semisimple Lie groups, J. Functional Analysis, 53 (1983) 269–286.

[12] M. Rørdam, F. Larsen, N. J. Lausten, An Introduction to K-Theory for C*-Algebras, London Math Soc. Student Texts 49, Cambridge University Press, Cambridge, 2000.

[13] J. Tate, Number theoretic background, Proc. Symp. Pure Math. 33 (1979) part 2, 3–26.

S. Mendes, ISCTE, Av. das Forças Armadas, 1649-026, Lisbon, Portugal
Email: sergio.mendes@iscte.pt

R.J. Plymen, School of Mathematics, Alan Turing building, Manchester University, Manchester M13 9PL, England
Email: plymen@manchester.ac.uk