A∞ DEFORMATIONS OF EXTENDED KHOVANOV ARC ALGEBRAS AND STROPEL’S CONJECTURE

SEVERIN BARMEIER AND ZHENGFANG WANG

Abstract. Extended Khovanov arc algebras Knm are graded associative algebras which naturally appear in a variety of contexts, from knot and link homology, low-dimensional topology and topological quantum field theory to representation theory and symplectic geometry. C. Stroppel conjectured in her ICM 2010 address that the bigraded Hochschild cohomology groups of Knm vanish in a certain range, implying that the algebras Knm admit no nontrivial A∞ deformations, in particular that the algebras are intrinsically formal.

Whereas Stroppel’s Conjecture is known to hold for the algebras Kn1 and Kn by work of Seidel and Thomas, we show that Knm does in fact admit nontrivial A∞ deformations with nonvanishing higher products for all m, n ≥ 2.

We describe both Knm and its Koszul dual concretely as path algebras of quivers with relations and give an explicit algebraic construction of A∞ deformations of Knm by using the correspondence between A∞ deformations of a Koszul algebra and filtered associative deformations of its Koszul dual. These deformations can also be viewed as A∞ deformations of Fukaya–Seidel categories associated to Hilbert schemes of surfaces based on recent work of Mak and Smith.

Contents

1. Introduction 2
2. Extended Khovanov arc algebras 4
2.1. Diagrammatics and grading 4
2.2. Generators and relations 7
3. The Koszul-dual picture 17
3.1. Generators and relations of the Koszul dual 17
3.2. Reduction systems and Bergman’s Diamond Lemma 19
3.3. Irreducible paths and Kazhdan–Lusztig polynomials 20
3.4. Some useful relations in the Koszul dual 24
4. Hochschild cohomology and deformations for Koszul-dual algebras 28
4.1. Bigraded Hochschild cohomology and Koszul duality 29
4.2. Associative and A∞ deformations under Koszul duality 30
4.3. Associative deformations via reduction systems 33
5. A∞ deformations and Stroppel’s Conjecture 34
5.1. The case K2 35
5.2. The general case Knm 38
5.3. Deformations of Fukaya categories 40
Acknowledgements 42
Appendix A. Proof of Proposition 5.11 43
References 51

2010 Mathematics Subject Classification. Primary 16E40; Secondary 18G70, 16S80, 17B10, 57K18, 53D37.
Key words and phrases. extended Khovanov arc algebras, Koszul duality, A∞ deformations, reduction systems, Kazhdan–Lusztig polynomials.
1. Introduction

Khovanov arc algebras were introduced by Khovanov in his seminal work [Kho00] on the categorification of the Jones polynomial of links. The Khovanov arc algebras are “diagrammatic” algebras whose basis is given by “arc diagrams” with composition defined by stacking the diagrams vertically and applying certain simplification rules obtained from a 2-dimensional TQFT (see §2 for more details). In [Str09] Stroppel introduced the extended Khovanov arc algebras $K_{m,n}$ for $m, n \geq 1$ as a generalisation, where the arc diagrams contain not only closed arcs (circles) but also open arcs (lines). The algebras $K_{m,n}$ are quasi-hereditary covers of the classical Khovanov arc algebras and have many nice properties, for example they are Koszul, cellular and homologically smooth. See also Stroppel’s ICM 2022 address [Str22] for a recent account and further applications to link and tangle invariants.

Besides their role in link homology, the algebras $K_{m,n}$ play a central role in representation theory and naturally appear in symplectic geometry. In [Str09] it was shown that the category $\text{rep}(K_{m,n})$ of finite-dimensional representations of $K_{m,n}$ is equivalent to the category of perverse sheaves on the Grassmannian $Gr(m, m+n)$ and also equivalent to the principal block of the parabolic Bernstein–Gelfand–Gelfand category O associated to the parabolic subalgebra corresponding to $\gl_{m}(\C) \oplus \gl_{n}(\C) \subset \gl_{m+n}(\C)$, see Brundan and Stroppel [BS11a, BS10, BS11b, BS12], also for further applications in representation theory.

A symplectic analogue of classical Khovanov homology and the Jones polynomial was given by Seidel and Smith [SS06] via the Lagrangian Floer homology of certain nilpotent slices, described by Manolescu [Man06] as Hilbert schemes of surfaces. Abouzaid and Smith [AS16, AS19] proved this symplectic Khovanov homology to be isomorphic to Khovanov homology (after collapsing the bigrading of the latter). Similar results were recently obtained for the extended Khovanov arc algebras $K_{m,n}$ by Mak and Smith [MS22] who showed that the DG category $\text{perf}(K_{m,n})$ of perfect DG modules is quasi-equivalent to the derived category $\mathcal{F}S(\pi_{m,n})$, where $\pi_{m,n}: \text{Hilb}^{b}(A_{m+n-1}) \setminus D \to \C$ is a symplectic Lefschetz fibration defined on the affine complement of a certain divisor $D \subset \text{Hilb}^{b}(A_{m+n-1})$ of the Hilbert scheme of n points of the Milnor fibre of an A_{m+n-1} surface singularity. The key observation of their proof is that $\mathcal{F}S(\pi_{m,n})$ has a set of compact generators whose endomorphism A_{∞} algebra turns out to be formal and A_{∞}-quasi-isomorphic to $K_{m,n}$. Note that there is a natural set of “geometric” generators of the Fukaya–Seidel category $\mathcal{F}S(\pi_{m,n})$ given by the Lefschetz thimbles associated to vanishing cycles [Sei08, §18], but the endomorphism A_{∞} algebra of this set of generators is not formal whenever $n > 1$ [MS22, App. A]. The quasi-equivalence to perfect DG modules over $K_{m,n}$ should therefore be understood as a formality result for $\mathcal{F}S(\pi_{m,n})$. These results can be viewed as part of the continually growing dictionary between knot homology, symplectic geometry and representation theory.

In her ICM 2010 address, Stroppel stated the following conjecture about the bigraded Hochschild cohomology groups of $K_{m,n}$.

Conjecture 1.1 ([Str10, Conj. 2.7]). $HH_{i-2}^{i}(K_{m,n}, K_{m,n}) = 0$ if $i \neq 0$.\footnote{more precisely, the split-closure of the twisted complexes}

Whereas the classical Khovanov arc algebras are symmetric algebras with large Hochschild (co)homology groups which can be described in terms of the Khovanov
homology of torus links (see Rozansky [Roz10, Thm. 6.9]), their quasi-hereditary covers K^n_m are homologically smooth and have much smaller Hochschild cohomology. Stroppel’s Conjecture implies in particular that (contrary to the classical arc algebras) the extended Khovanov arc algebras K^n_m are *intrinsically formal*, i.e., that every A_{∞} structure on K^n_m is equivalent to the original associative structure. It was already known by earlier work of Seidel and Thomas [ST01, Lem. 4.21] (also for other choices of grading) that Stroppel’s Conjecture holds for K^n_m whenever $\min(m, n) = 1$. Moreover, Stroppel’s conjecture would yield the formality result of Mak and Smith [MS22] mentioned above as well as the formality result of Abouzaid and Smith [AS16] for the symplectic arc algebras.

In contrast, our main result is the following.

Theorem (Theorem 5.4 and Corollary 5.13). For all $m, n \geq 2$ we have the following:

(i) $\mathsf{HH}^2_{i-2}(K^n_m, K^n_m)$ is 1-dimensional for $i = 2mn - 4$.

(ii) K^n_m is not intrinsically formal.

(iii) K^n_m admits an explicit nontrivial A_{∞} deformation.

Although (i) settles Conjecture 1.1 negatively for $m, n \geq 2$, (ii) and (iii) establish the existence of interesting higher structures on the extended Khovanov arc algebras K^n_m whenever $m, n \geq 2$ (see Corollary 5.13 and Fig. 11 for explicit examples). Moreover, the A_{∞} deformations of K^n_m can be viewed as deformations of the Fukaya–Seidel category $\mathcal{FS}(\Sigma^n_m)$ (see §5.3).

Our proof relies on a combinatorial method of computing Hochschild cohomology and associative deformations developed in [BW20] and can be divided into three steps as follows. In the first step, we realise K^n_m as a quiver with relations, i.e., we give an algebra isomorphism $K^n_m \simeq kQ^n_m/I^n_m$ for some finite quiver Q^n_m with admissible ideal I^n_m. We show that the quiver Q^n_m is the double quiver of a bipartite graph Γ^n_m (Proposition 2.7) and that the ideal I^n_m is generated by three types of quadratic relations (Proposition 2.16).

In the second step, noting that K^n_m is a Koszul algebra [BS10, §5], we describe its Koszul dual as $K^n_m^! = kQ^n_m/I^n_m$, where $Q^n_m^!$ is the opposite quiver of Q^n_m and I^n_m the ideal generated by the orthogonal quadratic relations (Proposition 3.3). We show that $K^n_m^!$ admits a natural reduction system \widetilde{R}^n_m satisfying the diamond condition by showing that the number of the associated irreducible paths can be described by the Kazhdan–Lusztig polynomials (see §3.3).

In the third step, we apply the combinatorial method of [BW20] to the reduction system \widetilde{R}^n_m to construct an explicit (nontrivial) first-order deformation of \widetilde{R}^n_m so that $\mathsf{HH}^2_{2m-6}(\widetilde{R}^n_m, \widetilde{R}^n_m)$ is 1-dimensional. By Keller’s duality theorem (Theorem 4.2) we obtain that $\mathsf{HH}^2_{2mn-6}(K^n_m, K^n_m)$ is also 1-dimensional. The above construction in fact also gives a nontrivial (filtered) associative deformation of K^n_m. The minimal model of the derived endomorphism algebra of its simples then gives an explicit A_{∞} deformation of K^n_m (see Proposition 4.7 and Corollary 5.13).

The simplest example of a nontrivial A_{∞} deformation of K^n_m can be found in §5.1, where the main results are proven for K^n_2. (See Fig. 10 for an illustration of the degree 0 and 1 arc diagrams in K^n_2.) This subsection can also be viewed as a blueprint for the general case which is computationally more involved, but structurally similar. For degree reasons K^n_2 in fact admits a unique A_{∞} deformation which is
weight degree 0 degree 1 degree 2
\[\begin{array}{c|c|c|c}
\text{\textbullet\textbullet\textbullet} & \mid & \mid & \mid \\
\text{\textbullet\textbullet\textbullet} & \mid & \text{O} & \text{O} \\
\text{\textbullet\textbullet\textbullet} & \text{O} & \text{O} & \text{O} \\
\end{array} \]

Figure 1. All arc diagrams for weights of type \(\frac{2}{1} \)
given in Corollary 5.8 and a diagrammatic description of this \(A_\infty \) deformation is given in Fig. 11.

2. Extended Khovanov arc algebras

2.1. Diagrammatics and grading. We first recall the diagrammatics for the extended Khovanov arc algebras. For more details we refer to [Str09, BS11a].

Let \(m, n \geq 1 \) be fixed natural numbers. We fix a horizontal line in the plane and \(m + n \) distinct points on it. A \textit{weight} of type \(\frac{n}{m} \) is a sequence of 's and \(\check{\text{A}} \)'s placed at the \(m + n \) points, where \(m \) is the total number of 's and \(n \) the total number of \(\check{\text{A}} \)'s. Let \(\Lambda_m^n \) denote the set of weights of type \(\frac{n}{m} \). For example \(\Lambda_1^1 = \{ \text{\textbullet, \textbullet} \} \).

A \textit{cup diagram} of type \(\frac{n}{m} \) is a diagram consisting of \(k \leq \left\lfloor \frac{m+n}{2} \right\rfloor \) nested cups and \(m+n-2k \) half-lines which are attached to the \(m+n \) points on the horizontal line. More precisely, the cups are nested lower semicircles lying below the horizontal line and joining pairs of points and the half-lines are attached to single points and extend downwards, in such a way that cups and half-lines pairwise do not intersect. Similarly, a \textit{cap diagram} is the mirror image of a cup diagram along the fixed horizontal line.

A cup diagram and a cap diagram (both of type \(\frac{n}{m} \)) can be glued along a weight — the cups, caps and half-lines are glued together at the \(m+n \) points, giving rise to open and closed arcs in the plane passing through the 's and \(\check{\text{A}} \)'s of the weight.

An \textit{arc diagram} of type \(\frac{n}{m} \) is such a gluing which satisfies the following constraints:

(i) the \(\check{\text{A}} \)'s and 's through which any single arc passes induce a well-defined orientation on the arc

(ii) for any two half-lines extending both to the top or both to the bottom, their orientation must \textit{not} be of the form \(\check{\text{A}} \cdot \cdot \cdot \).

Fig. 1 illustrates all arc diagrams for weights of type \(\frac{2}{1} \). Note that the following diagrams are \textit{not} arc diagrams

because they violate conditions (i), (ii) and (ii), respectively.

Given a weight \(\nu \), let \(\check{\nu} \) denote the unique cup diagram obtained by recursively connecting neighbouring \(\check{\text{A}} \cdot \text{A} \) pairs with a cup, ignoring \(\check{\text{A}} \)'s and 's already connected in a previous step and drawing half-lines extending downwards for the remaining positions. Let \(\check{\check{\nu}} \) denote the cap diagram obtained analogously and note that \(\check{\check{\nu}} = \check{\nu} ^* \), where \(* \) denotes the reflection of the cups along a horizontal axis.
An important observation is that any arc diagram for a weight λ can be viewed as a gluing of $\⌣\alpha$ and $\⌢\beta$ along λ for some (unique) weights α, β. An example of the decomposition of an arc diagram into cup and cap diagrams is illustrated in Fig. 2.

Definition 2.1 ([BS11a, §2]). The *degree* of an arc diagram is given by counting the number of clockwise caps and clockwise cups it contains.

Note that for each weight λ, the arc diagram $e_\lambda := \⌣\lambda \lambda \⌢\lambda$ is the unique arc diagram of degree 0 since λ and λ only contain counterclockwise cups and caps. The number of (counterclockwise) circles in e_λ is called the *defect* of λ and is denoted by $\text{def}(\lambda)$.

Definition 2.2. Let k be a field. The *extended Khovanov arc algebra* K^n_m is the \mathbb{N}-graded k-algebra with basis given by the arc diagrams for weights of type $^{\,n}_m$, graded by their degree, and multiplication given as follows.

For any two arc diagrams $a = \⌣\alpha \lambda \⌢\beta$ and $b = \⌣\gamma \mu \⌢\delta$, their product ab is zero unless $\beta = \gamma$ in which case ab is obtained by writing a below b, connecting the open arcs (lines) in the same position, and repeatedly performing the surgery

on the underlying (unoriented) arcs for a cup–cap pair (i.e. cup and cap correspond to each other in the reflection identifying $\⌢\beta$ and $\⌣\beta$) which can be connected without crossing other arcs. After each surgery (cutting the arcs open and reconnecting them as illustrated), the resulting arcs are reoriented by labelling the connected components containing the cup and the cap by one of 1, ϵ, or ζ according to whether the component is a closed arc oriented counterclockwise, a closed arc oriented clockwise, or an oriented open arc (line), respectively, and reorienting the resulting connected components according to the following rules:

(i) If the surgery produces one connected component out of two, orient it according to

$$
\begin{align*}
1 \otimes 1 &\mapsto 1 \\
1 \otimes \epsilon &\mapsto \epsilon \\
1 \otimes \zeta &\mapsto \zeta \\
\epsilon \otimes 1 &\mapsto \epsilon \\
\epsilon \otimes \epsilon &\mapsto 0 \\
\epsilon \otimes \zeta &\mapsto \zeta \\
\zeta \otimes 1 &\mapsto \zeta \\
\zeta \otimes \epsilon &\mapsto 0
\end{align*}
$$

where $\mapsto 0$ indicates that the arc diagram is deleted and does not contribute to the product.

(ii) If the surgery produces two connected components out of one, orient them according to

$$
\begin{align*}
1 &\mapsto 1 \otimes \epsilon + \epsilon \otimes 1 \\
\epsilon &\mapsto \epsilon \otimes \epsilon \\
\zeta &\mapsto \epsilon \otimes \zeta
\end{align*}
$$

where the first rule means that the surgery produces a sum of two diagrams by duplicating — in one diagram one of the two new closed arcs is oriented
Figure 3. Multiplications of arc diagrams in K_3^3

clockwise and the other counterclockwise and in the other diagram they are oriented in the opposite way (see the lower part of Fig. 3). The two diagrams should separately be simplified further if necessary.

(iii) If the surgery produces two connected components out of two, then this only happens if both are open arcs (lines $\zeta \otimes \zeta$) and one sets $ab = 0$ unless both half-lines from one of the lines were oriented \bullet and both half-lines from the other line were oriented \circ and the orientation from the half-lines is carried over to the resulting lines (see the upper part of Fig. 3). Symbolically we write

$$\zeta \otimes \zeta \mapsto \begin{cases} 0 \\ \zeta \otimes \zeta \end{cases}.$$

Finally, if all cup–cap pairs have been removed through surgery in each summand, then we can identify the weights and obtain a sum of arc diagrams for some weights of the same type.

For example, $\epsilon \mapsto \epsilon \otimes \epsilon$ indicates that if the surgery produces two closed arcs out of one clockwise closed arc (ϵ), then the resulting closed arcs are both oriented clockwise ($\epsilon \otimes \epsilon$). See the lower part of Fig. 3 for an illustration.

Remark 2.3 (Relation to TQFT). The explicit description of the multiplication in K_m^n (Definition 2.2) can be obtained by viewing K_m^n as the quotient of Khovanov’s original arc algebra H_{m+n}^m where all arc diagrams consist of (oriented) closed arcs. In H_k^k, the multiplication only uses the rules involving $1, \epsilon$ and these rules are given by the multiplication and comultiplication in the Frobenius algebra $k[\epsilon]/(\epsilon^2)$ or, equivalently, by the algebraic structure in the corresponding 2-dimensional TQFT. This latter, topological viewpoint is useful for proving well-definedness and associativity of the multiplication as well as compatibility with the grading. In particular, the multiplication is independent of the order of the performed surgeries.

Note also that K_m^n is finite-dimensional, since there are finitely many arc diagrams for fixed $m, n \geq 1$. However, the dimension of K_m^n grows quite quickly in m and n. For instance, $\dim_k K_1^1 = \dim_k K_1^2 = 4l + 1$ and $\dim_k K_2^1 = \dim_k K_2^2 = 8l^2 + 14l - 13$, which may be computed using the Cartan matrix factorisation [BS10, (5.17)].
2.2. Generators and relations. In order to calculate the Hochschild cohomology of K^n_m, our first step is to translate the diagrammatics of K^n_m into generators and relations, i.e. we shall write K^n_m as the path algebra of a finite quiver Q^n_m modulo a two-sided ideal. This explicit algebraic description may be of independent interest.

Algorithmic descriptions of quivers with relations describing principal blocks of parabolic category O for any parabolic subalgebra $p \subset g$ in a semisimple complex Lie algebra were considered by Vybornov [Vyb07], but they are generally difficult to make explicit. Our concrete description is based on the diagrammatic description given by Brundan and Stroppel [BS11a] for parabolics associated to two-block partitions $\mathfrak{gl}_m(\mathbb{C}) \oplus \mathfrak{gl}_n(\mathbb{C}) \subset \mathfrak{gl}_{m+n}(\mathbb{C})$.

It follows from [BGS96] and [BS10, §5] that K^n_m is a Koszul algebra generated in degree 1, so that we may take Q^n_m to be the quiver with vertices corresponding to arc diagrams of degree 0 and arrows corresponding to arc diagrams of degree 1. Precisely, the degree 1 arc diagram $\lambda \mu$ corresponds to the arrow from λ to μ and $\mu \lambda$ corresponds to the arrow from μ to λ. Therefore, there is a natural surjective algebra map
\[\rho: kQ^n_m \rightarrow K^n_m \]
which sends the vertices e_λ to the degree 0 arc diagrams e_λ and sends arrows to the corresponding degree 1 arc diagrams.

We shall describe Q^n_m as the double quiver of a certain bipartite graph Γ^n_m.

Definition 2.5. Let $m, n \geq 1$ be fixed and let Γ^n_m be the (simple and undirected) graph defined as follows:

- **Vertices** The vertices $V(\Gamma^n_m) = \{e_\lambda\}_{\lambda \in \Lambda^n_m}$ are given by the degree 0 arc diagrams.
- **Edges** There is an edge between two vertices e_λ and e_μ if the weight of the one is obtained from the weight of the other by exchanging a $\lambda \cdot \lambda$ pair lying in the same counterclockwise circle.

Lemma 2.6. The quiver Q^n_m is the double quiver of Γ^n_m, i.e. obtained by replacing each edge in Γ^n_m by two arrows in opposite directions.

Proof. Clearly, Q^n_m has the same vertices as Γ^n_m. If there is an edge between e_λ and e_μ in Γ^n_m so that e_μ is obtained from e_λ by exchanging a $\lambda \cdot \lambda$ pair lying in a counterclockwise circle of e_λ, then $\lambda \mu$ (resp. $\mu \lambda$) is a well-defined degree 1 cup diagram (resp. cap diagram). As a result, $\lambda \mu \lambda$ (resp. $\mu \mu \lambda$) is a degree 1 arc diagram from λ to μ (resp. from μ to λ).

Conversely, if $\lambda \mu \lambda$ is a degree 1 arc diagram from λ to μ then $\lambda \mu$ is a degree 1 cup diagram. This means that $\lambda \mu$ is obtained from $\lambda \lambda$ by exchanging the $\lambda \cdot \lambda$ pair lying in a counterclockwise cup of $\lambda \lambda$. In other words, μ can be obtained from λ by exchanging the $\lambda \cdot \lambda$ pair lying in the counterclockwise cup. So there is an edge between e_λ and e_μ in Γ^n_m. □

In order to draw Γ^n_m, we shall order the vertices by the *Bruhat order* (see [BS11a, §2]), which is a partial order on $\Lambda^n_m \simeq V(\Gamma^n_m)$, such that $\lambda \cdots \lambda \cdots \lambda$ is the highest weight and $\lambda \cdots \lambda \cdots \lambda$ the lowest weight. Concretely, we may define the *height* of a weight λ by summing the number of λ‘s on the left of each λ in λ, for example
\[
\begin{align*}
\lambda \lambda \lambda \lambda \lambda &\lambda = 3 + 3 = 6 \\
\lambda \lambda \lambda \lambda \lambda &\lambda = 1 + 2 = 3
\end{align*}
\]
and permuting λ's to the left and ψ's to the right increases the height and the Bruhat order. Fig. 4 shows several graphs, where in each diagram the vertices aligned horizontally have the same height.

The edges of Γ_m^n only connect vertices corresponding to weights with height of different parity. This can be seen as follows. Assume that there is an edge between λ and μ so that μ is obtained from λ by exchanging a $\psi \cdots \lambda$ pair lying in some circle C of the arc diagram e_λ. Denote by k the number of circles inside C in e_λ. Then we have k λ's and k ψ's lying between the $\psi \cdots \lambda$ pair being exchanged, whence $|\mu| = |\lambda| + 2k + 1$. This observation immediately yields the following result.

Proposition 2.7. The graph Γ_m^n is bipartite when decomposing $V(\Gamma_m^n)$ into vertices of even and odd heights. In particular, paths in Γ_m^n of even length can only connect weights whose heights are of the same parity and paths of odd length can only connect weights whose heights are of different parity.

Since K_m^n is Koszul and hence quadratic, we also need a good understanding of the length 2 paths in Γ_m^n and we give a complete description in Proposition 2.12. The description is based on the following two lemmas. (The statements are formulated for general m, n — we note that some of the statements about length 2 paths do not apply to small m, n as the graph Γ_m^n is too simple, see Fig. 4.)

Lemma 2.8. Let $\lambda, \mu \in \Lambda_m^n$ be two distinct weights and assume $|\lambda| \leq |\mu|$.

(i) There is no length 2 path between λ and μ passing through a vertex ν with $|\nu|$ equal to $|\lambda|$ or $|\mu|$.

(ii) The set of length 2 paths passing through vertices ν satisfying $|\nu| < |\lambda|$ contains at most one element.

(iii) The set of length 2 paths passing through vertices ν satisfying $|\nu| > |\mu|$ contains at most one element.

Proof. (i) follows directly from Proposition 2.7, since ν is connected to λ and μ by an edge whence $|\nu|$ is different from $|\lambda|$ and $|\mu|$ mod 2.
To prove (ii), let ν, ν' be two distinct weights both connected to λ and to μ by an edge with $|\nu|, |\nu'| < |\lambda| \leq |\mu|$. Since λ and μ are distinct, they are obtained from ν (resp. ν') by exchanging two $\nu \cdots A$ pairs lying in distinct circles of e_ν (resp. $e_{\nu'}$). These circles are either nested or not, so that $e_\nu, e_{\nu'}$ are of the following forms

\begin{equation}
\begin{array}{c}
\circ \circ \circ \\
\circ \circ \circ \\
\end{array}
\end{equation}

and λ, μ, ν, ν' agree on all other positions represented by the dots. Note that there is an edge between ν and ν' since the diagram on the right of (2.9) may be obtained from the one on the left by exchanging the $\nu \cdots A$ pair in the inner circle, which implies that $|\nu| \neq |\nu'| \mod 2$. Since ν and ν' are connected to λ by an edge we must also have $|\nu| \equiv |\nu'| \mod 2$ by Proposition 2.7, giving a contradiction.

(iii) follows similarly, for if ν, ν' are two distinct weights both connected to λ and μ by an edge with $|\lambda| \leq |\mu| < |\nu|, |\nu'|$, then ν, ν' are obtained from λ by exchanging two $\nu \cdots A$ pairs in distinct circles of e_ν, and ν, ν' can also be obtained from μ in the same way. Thus λ, μ are both of the form (2.9) agreeing on all positions represented by the dots. We get a contradiction since $|\lambda| \equiv |\mu| \mod 2$ and yet, the two arc diagrams in (2.9) share an edge, whence their heights are different modulo 2. \qed

Lemma 2.10. There are no other paths of length 2 (except the illustrated ones) between any two distinct vertices of the square in Fig. 5 (a) or in Fig. 5 (c). Moreover, any square in Γ_n is of one of the forms appearing in Fig. 5.

Remark 2.11. Note that the top square in Fig. 5 (c) is a special case of the square in Fig. 5 (b). Namely, if the middle \cdots in the arc diagrams in Fig. 5 (b) is empty or consists of nested counterclockwise circles, then Fig. 5 (b) can be extended to Fig. 5 (c). So by a similar argument, the statement in Lemma 2.10 holds for the square (b) if it cannot be extended to Fig. 5 (c).

Note that in Fig. 5 (c) there are three squares, the obvious square at the top, and two squares obtained by deleting the left or right vertex (cf. Remark 2.18).

Proof of Lemma 2.10. Let us first consider square (a). Denote the bottom, top, left and right vertices by λ, μ, ν and ν', respectively, and note that by Lemma 2.8 (i) $|\lambda| < |\nu| < |\nu'| < |\mu|$. If there is a path of length 2 between ν and ν' passing through a vertex ξ which is different from λ and μ, then by Lemma 2.8 (ii) and (iii) we have $|\nu| < |\xi| < |\nu'|$. Note that ν and ν' are distinct in four positions and agree on all other positions. Since ξ is connected to ν by an edge, we have that ξ and ν are distinct in two positions and thus ξ must be obtained from ν by exchanging a $\nu \cdots A$ pair which lies in two of the four positions and also in a circle of e_ν (i.e. the outer one). This implies $\xi = \mu$, giving a contradiction.

If there is a path of length 2 between λ and μ passing through a vertex ξ which is different from ν and ν', then we have the following cases.

Case $|\xi| > |\mu|$. Since λ and μ are distinct in four positions and agree on all other positions represented by the dots, we have that ξ is obtained from λ by exchanging a $\nu \cdots A$ pair which lies in two of the four positions and also in a circle of e_λ (resp. e_μ). Then ξ has to equal ν or ν' which contradicts the assumption.

Case $|\xi| < |\lambda|$. We have that λ is obtained from ξ by exchanging a $\nu \cdots A$ pair which lies in two of the four positions. But this cannot happen since in the four positions λ is of the form $\cdots \nu \cdots \nu \cdots A \cdots$ and thus is already as low as possible.
Figure 5. Squares in Γ^m_n giving rise to commutative squares in K^m_n. In (a) the dashed circle indicates the innermost circle enclosing the smaller solid circle, which must exist and be different from the bigger solid circle for the square to exist (cf. Fig. 6 (c) for when such a circle does not exist).

Case $|\lambda| < |\xi| < |\mu|$. By a similar reason we have that ξ is obtained from λ by exchanging a $\bullet \cdots \bullet$ pair which lies in two of the four positions and also lies in a circle of e_λ. So ξ has to equal ν or ν'.

Now let us consider square (c). Denote the vertices from bottom to top by $\kappa, \lambda, \nu, \nu'$ and μ. Note that λ (resp. ν) and μ (resp. ν') are distinct in four positions and agree on all other positions. Then by similar arguments as before, we have that there are no other paths of length 2 between λ (resp. ν) and μ (resp. ν'). It thus suffices to prove the assertion for κ and ν (resp. ν'). If there is a path of length 2 between κ and ν passing through a vertex ξ which is different from λ and μ, then by Lemma 2.8 (ii) we have $|\xi| < |\nu|$.

Case $|\kappa| < |\xi| < |\nu|$. Note that κ and ν are distinct in two positions and agree on all other positions. Then ξ is obtained from κ by exchanging a $\bullet \cdots \bullet$ pair lying in a circle C of e_κ such that either the \bullet or \bullet lies in one of the two positions (otherwise, ξ and ν are distinct in four positions whence there are no edges between them). Thus, C has to be one of the nested circles in e_κ so that $\xi = \lambda$.

Case $|\xi| < |\kappa|$. We have that κ, ν are obtained from ξ by exchanging two $\bullet \cdots \bullet$ pairs in distinct circles C, C' in e_ξ, so κ and ν are distinct in four positions which contradicts the fact that κ and ν are only distinct in two positions.
Figure 6. Paths in Γ^m_n of length 2 without parallel length 2 paths. In (c) there is no circle between the two nested circles enclosing the smaller one (cf. Fig. 5 (a) for the case when such a circle does exist).

To obtain a square in Fig. 5, we may start with a vertex e_λ and choose two circles C_1 and C_2 in e_λ which correspond to two edges starting from e_λ. If C_1 and C_2 are nested such that there is a circle between them enclosing the smaller one then the two edges may be completed to the square (a), if they are nested such that there is no circle between them then we obtain the square (c), and if they are not nested then we obtain the square (b). Note that any square may be obtained in this way so that it is one of the forms in Fig. 5.

We have the following complete description of the length 2 paths in Γ^m_n.

Proposition 2.12. Let $\lambda, \mu \in \Lambda^m_n$ be two distinct weights and assume that $|\lambda| \leq |\mu|$. Then there are at most three paths of length 2 between λ and μ. Concretely, if there exists a length 2 path between λ and μ, then we have the following cases:

- **three paths**
- **two paths**
- **one path**

where
(i) there are exactly three paths if \(\lambda \) and \(\mu \) are the two indicated vertices in Fig. 5 (c)

(ii) there are exactly two paths if \(\lambda \) and \(\mu \) are the two indicated vertices of Fig. 5 (c) or the ones of Fig. 5 (a) or (b) (excluding the case appearing in (i))

(iii) there is exactly one path if the vertices and edges are as in Fig. 6.

Proof. (i) and (ii) follow from Lemma 2.10 and (iii) follows by noting that the length 2 paths in Fig. 6 are precisely all the possible paths of length 2 which do not appear in any square. For instance, to see this for Fig. 6 (d), assume that there is a length 2 path between \(\lambda \) and \(\mu \) passing through a vertex \(\nu \) such that \(|\nu| > |\mu| \geq |\lambda|\). Then \(\nu \) is obtained from \(\lambda \) (resp. \(\mu \)) by exchanging a \(\cdots \cdot \cdot \) pair lying in a circle of \(e_\lambda \) (resp. \(e_\mu \)). Note that \(\lambda, \mu \) can differ in at most four positions. Since \(\lambda \neq \mu \) and \(|\lambda| \leq |\mu|\) we have the following three cases.

In the first case, \(\lambda \) and \(\mu \) are distinct in two positions and agree on all other positions. We claim this can only happen when \(\lambda, \mu, \nu \) are vertices in Fig. 5 (c) with \(\lambda \) the bottom vertex, \(\nu \) the top vertex and \(\mu \) either the left or the right vertex. Firstly, note that the two positions in which \(\lambda, \mu \) differ cannot lie in a single circle of \(e_\lambda \), as otherwise \(\mu \) would be obtained by changing the \(\cdots \cdot \cdot \) pair lying in this circle, contradicting the fact that \(\lambda \) and \(\mu \) have the same height modulo 2. Since the two distinct positions should agree after exchanging a single \(\cdots \cdot \cdot \) pair in both \(\lambda \) and in \(\mu \), one finds that \(\lambda, \mu, \nu \) must be the claimed vertices in Fig. 5 (c).

In the second case, \(\lambda \) and \(\mu \) are distinct in four positions and \(\nu \) is of the form \(\cdots \cdot \) in these four positions. Then \(\nu \) has to be obtained from \(\lambda \) or \(\mu \) by exchanging a \(\cdots \cdot \) pair lying in the first and second position or lying in the third and fourth position in \(e_\lambda \) or \(e_\mu \), whence \(\lambda, \mu, \nu \) may be completed into a square as in Fig. 5 (b).

In the third case, \(\lambda \) and \(\mu \) are distinct in four positions and \(\nu \) is of the form \(\cdots \cdot \). If \(\nu \) is obtained from \(\lambda \) or \(\mu \) by exchanging the \(\cdots \cdot \) lying in the first and fourth position or lying in the second and third position, then \(\lambda, \mu, \nu \) can be completed into a square as in Fig. 5 (a). If \(\nu \) is obtained from \(\lambda \) or \(\mu \) by exchanging the \(\cdots \cdot \) lying in the first and third position or lying in the second and fourth position, then we obtain Fig. 6 (d) which by Lemma 2.10 cannot appear in any square.

\[\square \]

Definition 2.13. Let \(Q^n_m \) be the quiver obtained from \(\Gamma^n_m \) by replacing each edge by two arrows in opposite directions. Edges only connect vertices of different heights. For an edge \(\gamma^\mu_\lambda \) in \(\Gamma^n_m \) connecting two vertices \(\lambda, \mu \in \Lambda^n_m \) with \(|\lambda| < |\mu|\), we denote
the ascending arrow in Q_n^m (from λ to μ) by x^μ_λ and the descending arrow (from μ to λ) by y^μ_λ (see Fig. 7 and Fig. 10 for an illustration of Q^2_n).

Remark 2.14. Note that the arrow x^μ_λ (resp. y^μ_λ) corresponds to the degree 1 arc diagram $\lambda\mu\mu$ (resp. $\mu\mu\lambda$) in Q_n^m. The total number of ascending arrows starting from λ equals the number of circles in e_λ, i.e. the defect $\text{def}(\lambda)$ (see Definition 2.1).

The following definition will be used to describe the quadratic relations of K_n^m and \overline{K}_n^m.

Definition 2.15. Fix a weight $\lambda \in \Lambda_n^m$. Let μ be a weight obtained from λ by exchanging a $\circ \cdots \circ$ pair lying in a circle C of e_λ. Let κ be a weight such that λ is obtained from κ by exchanging a $\circ \cdots \circ$ pair lying in a circle D of e_κ. Then define an integer $c^\mu_\kappa(\lambda)$ as follows

$$c^\mu_\kappa(\lambda) = \begin{cases} 1 & \text{if the circle } C \text{ does not appear in } e_\kappa \\ 0 & \text{if } C \text{ appears in } e_\kappa \text{ but does not enclose the circle } D \\ (-1)^{j-1} & \text{if } C \text{ in } e_\kappa \text{ is the } j^{th} \text{ circle from inner to outer enclosing } D. \end{cases}$$

(2.17)

Recall from (2.4) the surjective algebra map $\rho: \mathbb{k}Q_n^m \twoheadrightarrow K_n^m$.

Proposition 2.16. The map ρ sends the following quadratic relations to 0.

- **Monomial relations.** The paths between the top and bottom vertices in Fig. 6 (a) and (b) are zero respectively.
- **Commutativity relations across all squares.** All parallel paths of length 2 excluding 2-cycles in Q_n^m are equal.
- **Relations at vertices.** Fix $\lambda \in \Lambda_n^m$. Let x^μ_λ be the ascending arrows in Q_n^m starting at e_λ for $1 \leq i \leq \text{def}(\lambda)$. Let x^λ_κ be any ascending arrow ending at e_λ. Then we have

$$y^\lambda_\kappa x^\lambda_\kappa = \sum_{i=1}^{\text{def}(\lambda)} c^\mu_\kappa(\lambda) x^\mu_\lambda y^\mu_\lambda$$

(2.17)

where $c^\mu_\kappa(\lambda)$ is given in Definition 2.15. In particular, if λ is the highest weight then $y^\lambda_\kappa x^\lambda_\kappa = 0$ and if λ is the lowest weight then (2.17) is empty.

Remark 2.18. Note that by Proposition 2.12 the parallel length 2 paths appearing in the commutativity relations across squares are of the following forms

where the first four diagrams appear in Fig. 5 (a), (b) and (c) and the last eight in (c) only.

Proof of Proposition 2.16. The monomial relations stem from the vanishing of the following multiplications (using the rule $\zeta \otimes \zeta \mapsto 0$ in Definition 2.2):

$$\begin{align*}
\cdots & = 0 \\
\cdots & = 0 \\
\cdots & = 0 \\
\cdots & = 0
\end{align*}$$
The commutativity relations across squares follow from the following claim: Let \(p \) be a length 2 path lying in a square in Fig. 5 from \(e_\nu \) to \(e_{\nu'} \) with \(\nu \neq \nu' \). Then \(\rho(p) = \nu \mu' \nu' \), where \(\mu \) is the top vertex in the square.

Let us prove the claim for the square (a) in Fig. 5. Denoting the bottom, top, left and right vertices in Fig. 5 (a) by \(\lambda \), \(\mu \), \(\nu \) and \(\nu' \) respectively, we have

\[
\rho(x_{\nu}^\lambda x_{\mu}^\nu) = \rho(x_{\nu}^\nu) \rho(x_{\mu}^\nu) = \cdots = \cdots = \cdots
\]

using the rule \(1 \otimes 1 \mapsto 1 \) twice. Similarly we have

\[
\rho(x_{\nu'}^\lambda x_{\mu'}^\nu) = \rho(x_{\nu'}^\nu) \rho(x_{\mu'}^\nu) = \cdots = \cdots = \cdots
\]

using \(1 \otimes * \mapsto * \) once and \(1 \otimes 1 \mapsto 1 \) twice. This verifies that \(\rho(x_{\nu}^\nu x_{\mu}^\nu) = \lambda \mu \mu' = \rho(x_{\nu'}^\nu x_{\mu'}^\nu)\). Using the involution in Remark 2.20 we have \(\rho(y_{\nu}^\nu y_{\lambda}^\nu) = \mu \mu' \lambda = \rho(y_{\nu'}^\nu y_{\lambda}^\nu)\).

By a similar computation we have

\[
\rho(x_{\nu}^\nu y_{\mu}^\nu) = \nu \mu' = \rho(y_{\lambda}^\nu x_{\nu}^\nu), \quad \rho(x_{\nu}^\nu y_{\mu'}^\nu) = \nu' \mu' = \rho(y_{\lambda}^\nu x_{\nu'}^\nu).
\]

This proves the claim for Fig. 5 (a). The other cases may be proved in a similar way.

It remains to verify the relations at vertices. Note that \(\lambda \) is obtained from \(\kappa \) by exchanging a \(\nu \cdot \cdot \cdot \lambda \) pair lying in a circle \(D \) of \(e_\kappa \). We have the following two cases. In the first case, there are circles in \(e_\lambda \) which appear in \(e_\kappa \) enclosing \(D \). Then there are two circles (denoted by \(C_1 \) and \(C_2 \) from left to right) in \(e_\lambda \) which do not appear in \(e_\kappa \). Note that the innermost circle in \(e_\kappa \) enclosing \(D \) does not appear in \(e_\lambda \). Denote by \(C_i \) the \((i - 1)\)th circle in \(e_\kappa \) enclosing \(D \) for \(3 \leq i \leq k \) and denote by \(\mu_i \) the weights obtained from \(\lambda \) by exchanging the \(\nu \cdot \cdot \cdot \lambda \) pair lying in \(C_i \). Then \(e_\kappa, e_\lambda \) and \(e_{\mu_i} \) have the following forms

\[
\begin{array}{cccccccc}
\kappa & \lambda & \mu_1 & \mu_2 & \mu_3 & \cdots & \mu_k \\
\end{array}
\]

Using the rules \(1 \otimes 1 \mapsto 1 \) and \(1 \otimes \epsilon + \epsilon \otimes 1 \), we have

\[
\rho(y_{\lambda}^\kappa) \rho(x_{\lambda}^\nu) = \cdots = \lambda \mu_1 \lambda + \lambda \mu_2 \lambda
\]

\[
\rho(x_{\lambda}^\nu) \rho(y_{\lambda}^\nu) = \cdots = \lambda \mu_1 \lambda + \lambda \mu_3 \lambda.
\]
Similarly for $2 \leq i < k$ we have $\rho(x_\lambda^m)\rho(y_\lambda^n) = \lambda \mu \hat{\lambda} + \lambda \mu_{i+1} \hat{\lambda}$ and $\rho(x_\lambda^{m_k})\rho(y_\lambda^{n_k}) = \lambda \mu_k \hat{\lambda}$. Combining the above equalities we obtain

$$\rho(y_\lambda^n)\rho(x_\lambda^m) = \rho(x_\lambda^{m_1} y_\lambda^{n_1}) + \rho(x_\lambda^{m_2} y_\lambda^{n_2}) - 2\rho(x_\lambda^{m_3} y_\lambda^{n_3}) + \cdots + (-1)^k 2\rho(x_\lambda^{m_k} y_\lambda^{n_k}).$$

This yields (2.17) since $c_\kappa^m(\lambda) = 1 = c_\mu^m(\lambda)$ and $c_\kappa^m(\lambda) = (-1)^{i+2}$ for $3 \leq i \leq k$.

In the second case, there is no circle in e_λ which appears in e_κ enclosing D. Then κ, λ have the following subcases:

$$\lambda \quad \cdots \quad \circ \quad \cdots \quad \cdots \quad \cdots \quad \cdots \quad \cdots \quad \cdots \quad \cdots$$

$$\kappa \quad \cdots \quad \circ \quad \cdots \quad \cdots \quad \cdots \quad \cdots \quad \cdots \quad \cdots \quad \cdots$$

Note that in the first subcase we have that $c_\kappa^m(\lambda) = 0$ where μ' is any weight obtained from λ by exchanging the $\circ \cdots \circ$ pair in a circle of e_λ and that

$$\rho(y_\kappa^\lambda x_\kappa^\lambda) = \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots = 0.$$

For the second and third subcases we have $\rho(y_\kappa^\lambda x_\kappa^\lambda) = \lambda \mu \hat{\lambda} = \rho(x_\kappa^\mu y_\kappa^\mu)$ where μ is obtained from λ by exchanging the $\circ \cdots \circ$ pair lying in the (illustrated) circle of e_λ.

Note that $c_\kappa^m(\lambda) = 1$ and $c_\mu^m(\lambda) = 0$ for any $\mu' \neq \mu$. For the fourth subcase we have

$$\rho(y_\kappa^\lambda x_\kappa^\lambda) = \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots = \rho(x_\kappa^{m_1} y_\kappa^{n_1}) + \rho(x_\kappa^{m_2} y_\kappa^{n_2})$$

where μ_1, μ_2 are the weights obtained from λ by exchanging the $\circ \cdots \circ$ pairs lying in the (illustrated) circles of e_λ. Note that $c_\kappa^d(\lambda) = 1 = c_\mu^d(\lambda)$. \hfill \square

Denote by I_m^n the two-sided ideal of kQ_m^n generated by the above quadratic relations. Proposition 2.16 yields an algebra map (still denoted by ρ)

$$\rho: kQ_m^n/I_m^n \longrightarrow K_m^n.$$

Remark 2.20. Note that kQ_m^n/I_m^n admits a natural involution map

$$(-)^*: kQ_m^n/I_m^n \longrightarrow kQ_m^n/I_m^n$$

determined by $(e_\lambda)^* = e_\lambda$ and $(x)^* = y$ and $(y)^* = x$ for a pair of opposite arrows x, y (cf. Fig. 7). We also recall the involution map of K_m^n defined in [BS11a, (4.14)]

$$(-)^*: K_m^n \longrightarrow K_m^n, \quad \alpha \beta \leftrightarrow \beta \alpha.$$

Clearly ρ intertwines these two maps, i.e. we have $\rho(a^*) = \rho(a)^*$ for any $a \in kQ_m^n/I_m^n$.

In the rest of this section we will show that the map ρ in (2.19) is a bijection. As a result, the algebra K_m^n can be written as the path algebra kQ_m^n of the quiver Q_m^n with relations I_m^n. Note that ρ is bijective in degrees 0 and 1, and the algebra K_m^n is Koszul and in particular quadratic. Therefore, it only remains to show that ρ is bijective in degree 2.

Lemma 2.22. $\dim_k e_\lambda(kQ_m^n/I_m^n)_{2e_\mu} \leq 1$ if $\lambda \neq \mu$ and $\dim_k e_\lambda(kQ_m^n/I_m^n)_{2e_\mu} \leq \text{def}(\lambda)$ if $\lambda = \mu$.
Proof. Let $\lambda \neq \mu$. If $\dim_k (kQ^n_m/I^n_m)_{2} e_\mu > 1$ then there exist two distinct paths p, q of length 2 from e_λ to e_μ in Q^n_m such that $\rho(p) \neq \rho(q)$, which contradicts the commutativity relations across squares. Thus, $\dim_k (kQ^n_m/I^n_m)_{2} e_\mu \leq 1$.

If $\lambda = \mu$, from the relations at each vertex λ we note that $e_\lambda (kQ^n_m/I^n_m)_{2} e_\lambda$ is spanned by the set of 2-cycles at λ of the form xy. This set corresponds bijectively to the counterclockwise circles in λ, whence $\dim e_\lambda (kQ^n_m/I^n_m)_{2} e_\lambda \leq \text{def}(\lambda)$. \hfill \square

Lemma 2.23. If $\lambda \neq \mu$ then $\dim_k e_\lambda (kQ^n_m/I^n_m)_{2} e_\mu = \dim_k e_\lambda (K^n_m)_{2} e_\mu$.

Proof. Since ρ is surjective by Lemma 2.22 we have

$$1 \geq \dim_k e_\lambda (kQ^n_m/I^n_m)_{2} e_\mu \geq \dim_k e_\lambda (K^n_m)_{2} e_\mu.$$

We claim that the second inequality is an equality. Indeed, if $\dim_k e_\lambda (kQ^n_m/I^n_m)_{2} e_\mu = 0$ the claim holds since both sides have to be zero. If $\dim_k e_\lambda (kQ^n_m/I^n_m)_{2} e_\mu = 1$ then there exists a length 2 path p in Q^n_m from e_λ to e_μ such that $|p| \neq 0$ in $e_\lambda (kQ^n_m/I^n_m)_{2} e_\mu$. This can only happen in the following two cases.

In the first case, the path p appears in a square. Then it follows from the claim in the proof of Proposition 2.16 that $\rho(p) = \lambda Q \mu$. So $e_\lambda (K^n_m)_{2} e_\mu \neq 0$.

In the second case, the path p does not lie in any square. Then p is the ascending path or the descending path of length 2 in Fig. 6 (c) or the length 2 path from left to right or from right to left in Fig. 6 (d). If p is the ascending path in Fig. 6 (c) then

$$\rho(p) = \ldots \ldots \ldots \ldots$$

which is nonzero in K^n_m. Using the involution in Remark 2.20 we obtain an analogous statement for the descending path. If p is the path from left to right in Fig. 6 (d) then

$$\rho(p) = \ldots \ldots \ldots \ldots$$

which is nonzero in K^n_m. Again, using the involution the same holds for the path from right to left. \hfill \square

Proposition 2.24. The algebra map $\rho: kQ^n_m/I^n_m \rightarrow K^n_m$ is an isomorphism.

Proof. As mentioned above, we need to show that ρ is bijective in degree 2. For this, it suffices to show that for any weights λ, μ we have

$$(2.25) \quad \dim_k e_\lambda (kQ^n_m/I^n_m)_{2} e_\mu = \dim_k e_\lambda (K^n_m)_{2} e_\mu.$$

The equality (2.25) holds for $\lambda = \mu$ since

$$\text{def}(\lambda) \geq \dim_k e_\lambda (kQ^n_m/I^n_m)_{2} e_\lambda \geq \dim_k e_\lambda (K^n_m)_{2} e_\lambda = \text{def}(\lambda)$$

where the first inequality follows from Lemma 2.22 and the second one follows from ρ being surjective, and the third equality follows from Remark 2.14. If $\lambda \neq \mu$ then the equality (2.25) follows from Lemma 2.23. \hfill \square
3. The Koszul-dual picture

Let $A = kQ/I$, where Q is a finite quiver with vertex set Q_0 and $I \subset kQ_{\geq 2}$ is a two-sided ideal of relations, where $Q_{\geq 2}$ denotes the set of paths of length ≥ 2. We say that A is Koszul in the sense of [Pri70, BGS96] if it is graded by the path length such that the A-module kQ_0 admits a graded projective resolution

$$\cdots \rightarrow P_{-1} \rightarrow P_{-1+1} \rightarrow \cdots \rightarrow P_0 \rightarrow kQ_0$$

with P_{-i} being generated in degree i as A-module. Then the ideal I is necessarily generated by quadratic relations by $\text{Ext}_A^i(kQ_0,kQ_0)$ (disregarding the grading of A) is also a Koszul algebra (with elements in $\text{Ext}_A^i(kQ_0,kQ_0)$ being of degree d) such that $(A^!)_0 \simeq A$.

The Koszul dual $A^!$ is isomorphic to the linear dual algebra $kQ/(I^2_2)$ which we briefly recall from [BGS96, §2]. Let \overline{Q} denote the opposite quiver of Q, i.e., \overline{Q} has the same vertices as Q and the opposite arrow \overline{a} for each arrow a in Q, so that $\overline{\overline{Q}}$ can be naturally identified with Q. We have a natural nondegenerate k-bilinear pairing $\langle -,- \rangle : kQ \times k\overline{Q} \rightarrow k$ which is uniquely determined by

$$\langle a_1a_2\cdots a_n, \overline{b}_n\cdots \overline{b}_1 \rangle = \delta_{a_1,\overline{b}_n} \cdots \delta_{a_n,\overline{b}_1} \text{ for paths } a_1\cdots a_n, b_1\cdots b_n \text{ in } Q.$$

Then the quadratic relations for $A^!$ are given by $I^2_2 = \{ p \in k\overline{Q}_2 \mid \langle I_2, p \rangle = 0 \}$.

3.1. Generators and relations of the Koszul dual. We now give a quiver description for the Koszul dual of the extended Khovanov arc algebras K_m^n.

Notation 3.1. In order to simplify notation, let us write

$$K_m^n := (K_m^n)^! \simeq k\overline{Q}_m^n/\overline{I}_m^n$$

for the Koszul dual of $K_m^n \simeq kQ_m^n/I_m^n$, where \overline{Q}_m^n is the opposite quiver of Q_m^n and $\overline{I}_m^n = (I_m^n)^\perp$. We write $\overline{x}_\lambda^\mu, \overline{y}_\lambda^\mu$ for the Koszul duals of the generators x_λ, y_λ of K_m^n.

Therefore, \overline{x}_λ^μ is a descending arrow and \overline{y}_λ^μ an ascending arrow (see Fig. 7).

Remark 3.2. Similar to Remark 2.20, K_m^n also admits an involution

$$(\cdot)^* : K_m^n \rightarrow K_m^n$$

satisfying $(\overline{x})^* = \overline{y}$ and $(\overline{y})^* = \overline{x}$ for a pair of opposite arrows $\overline{x}, \overline{y}$.

Proposition 3.3. The ideal I_m^n is generated by the following quadratic relations:

- **Monomial relations.** The paths of length 2 between the top and bottom vertices in Fig. 6 (c) and (d) are zero.
- **Anticommutativity and Plücker-type relations.** If there is more than one parallel path of length 2 (excluding 2-cycles), then the sum of all such parallel paths is 0.
- **Relations at vertices.** Fix $\lambda \in \Lambda_m^n$. Let $\overline{y}_\kappa^\lambda$ be the ascending arrows in \overline{Q}_m^n ending at e_λ. Let \overline{y}_λ^μ be any ascending arrow starting at e_λ. Then

\[
\overline{y}_\lambda^\mu \overline{x}_\lambda^\beta = - \sum_j c_{\kappa_j}(\lambda) \overline{x}_\kappa_j^\lambda \overline{y}_\kappa_j^\beta
\]

where the coefficients $c_{\kappa_j}(\lambda)$ are given in Definition 2.15.
Proof. We need to show that the above relations are orthogonal to the quadratic relations described in Proposition 2.16. The monomial relations are clear since by Proposition 2.16 the monomials do not appear in the quadratic relations \((\varGamma_m)_{\lambda}\). The anticommutativity and Pl"ucker-type relations involving length 2 paths (excluding 2-cycles) are clearly orthogonal to the commutativity relations across squares in \(\varGamma_m\).

Let us check the relations at vertices. Fix the vertex \(e_\lambda\). Let \(\mu_j\) be the weights obtained from \(\lambda\) by exchanging the \(\cdot \cdot \cdot \cdot \cdot \) pair lying in circles \(C_j\) of \(e_\lambda\) as in Proposition 2.16. Note that for any \(k \lambda\) and \(k \mu\) we have
\[
\langle y_{k \lambda}^\lambda x_{k \lambda}^\lambda - \sum_i e_{k \lambda}^\mu x_{k \lambda}^\mu, y_{k \lambda}^\mu x_{k \lambda}^\mu + \sum_j c_{k \lambda}^\mu x_{j \lambda}^\mu y_{j \lambda}^\mu \rangle = \sum_j \delta_{k \lambda, k j} c_{k j}^\mu - \sum_i \delta_{\mu i, \mu j} c_{k \lambda}^\mu = 0
\]
where we use \(\langle y_{k \lambda}^\lambda x_{k \lambda}^\lambda, y_{k \lambda}^\mu x_{k \lambda}^\mu \rangle = \delta_{k \lambda, k j}\) and \(\langle x_{k \lambda}^\mu y_{k \lambda}^\mu, x_{j \lambda}^\mu y_{j \lambda}^\mu \rangle = \delta_{\mu i, \mu j}\), and we denote \(c_{k \lambda}^\mu(\lambda) = c_{k \lambda}^\mu\). This verifies the relations at vertex \(e_\lambda\). □

The following definition will be useful later.

Definition 3.5. Let \(p = y_{k \lambda_1}^\lambda y_{k \lambda_2}^\lambda \cdots y_{k \lambda_k}^\lambda\) be an ascending path of length \(k \geq 2\) in \(\varGamma_m\). Assume that the weight \(\lambda_{i+1}\) is obtained from \(\lambda_i\) by exchanging the \(\cdot \cdot \cdot \cdot \cdot \) pair lying in a circle \(C_i\) of \(e_\lambda\), for \(1 \leq i \leq k\).

We denote by \(h_i\) the integer such that \(C_i\) appears in \(e_{\lambda_{i-1}}\), for each \(0 \leq j \leq h_i\), but \(C_i\) does not appear in \(e_{\lambda_{h_i}}\). For instance, if \(h_i = 0\) then \(C_i\) appears in \(e_{\lambda_i}\), but does not appear in \(e_{\lambda_{i-1}}\). If \(h_k = k - 1\) then \(C_k\) appears in \(e_{\lambda_j}\), for all \(1 \leq j \leq k\).

Lemma 3.6. Let \(y_{k \lambda_1}^\lambda y_{k \lambda_2}^\lambda \cdots y_{k \lambda_k}^\lambda\) be a path of length \(k \geq 3\) such that \(\lambda_{i+1}\) is obtained from \(\lambda_i\) by exchanging the \(\cdot \cdot \cdot \cdot \cdot \) pair lying in a circle \(C_i\) of \(e_\lambda\), for \(1 \leq i \leq k\). Assume that the following two conditions hold:

(i) For each \(1 \leq i < k\) we have \(h_i = 0\) and \(h_k = k - 1\) (see Definition 3.5).

(ii) \(C_k\) is enclosed in \(C_1\) in \(e_{\lambda_i}\) and lies on the left of \(C_i\) in \(e_{\lambda_i}\), for \(2 \leq i < k\).

Denote by \(\mu_{i+1}\), the weight obtained from \(\lambda_i\) by exchanging the \(\cdot \cdot \cdot \cdot \cdot \) pair lying in \(C_k\) of \(e_{\lambda_i}\), for \(1 \leq i \leq k - 1\). Then we have the following two statements.

If \(\lambda_{i-1}\) there exists a circle between \(C_1\) and \(C_k\) which encloses \(C_k\) (see the left part of Fig. 8 for \(k = 3\)) then
\[
y_{k \lambda_1}^\lambda y_{k \lambda_2}^\lambda \cdots y_{k \lambda_k}^\lambda = -1)^{k-1} y_{k \lambda_1}^\lambda y_{k \lambda_2}^\mu \cdots y_{k \lambda_{i-1}}^\mu y_{k \lambda_{i+1}}^\mu \in \varGamma_m
\]
\[
x_{k \lambda_1}^\lambda \cdots x_{k \lambda_k}^\mu - (1)^{k-1} x_{k \lambda_1}^\mu x_{k \lambda_2}^\mu \cdots x_{k \lambda_{i-1}}^\mu x_{k \lambda_{i+1}}^\mu \in \varGamma_m.
\]

Otherwise, we have (see the right part of Fig. 8 for \(k = 3\))
\[
y_{k \lambda_1}^\lambda y_{k \lambda_2}^\lambda \cdots y_{k \lambda_k}^\lambda = -1)^{k-1} y_{k \lambda_1}^\lambda y_{k \lambda_2}^\mu y_{k \lambda_3}^\mu \cdots y_{k \lambda_{i-1}}^\mu y_{k \lambda_{i+1}}^\mu \in \varGamma_m
\]
\[
x_{k \lambda_1}^\lambda \cdots x_{k \lambda_k}^\mu - (1)^{k-1} x_{k \lambda_1}^\mu x_{k \lambda_2}^\mu \cdots x_{k \lambda_{i-1}}^\mu x_{k \lambda_{i+1}}^\mu \in \varGamma_m.
\]

where we note that there are two circles in \(e_{\mu_2}\) which do not appear in \(e_{\lambda_1}\) and \(\mu_3\) is obtained from \(\mu_2\) by exchanging the \(\cdot \cdot \cdot \cdot \cdot \) pair lying in the left one of the two circles.

Proof. We only verify the statements for the ascending paths as the statements for descending paths follow by using the involution in Remark 3.2.

For the first case, note that the weight \(\mu_1\) may be also obtained from \(\mu_{i-1}\) by exchanging the \(\cdot \cdot \cdot \cdot \cdot \) pair lying in \(C_{i-1}\) so that the vertices \(\lambda_{i-1}, \lambda_i, \mu_i, \mu_{i+1}\) form
a square in Fig. 5 (b) for \(2 < i \leq k\) and a square in Fig. 5 (a) for \(i = 2\). Here, we write \(\mu_{k+1} = \lambda_{k+1}\). So we have the anticommutativity relations for \(2 \leq i \leq k\)

\[
\lambda_i \lambda_{i+1} \mu_{i+1} + \mu_i \lambda_{i+1} \mu_{i+1} = 0.
\]

Applying these recursively to \(\mu_{k+1} = \lambda_{k+1}\) we obtain the desired equality.

For the second case, the anticommutativity relations (3.7) still hold for \(i > 3\). But for \(i = 3\) it is replaced by the Plücker-type relation

\[
\lambda_i \lambda_{i+1} \mu_{i+1} + \mu_i \lambda_{i+1} \mu_{i+1} + \bar{\lambda}_i \bar{\lambda}_{i+1} = 0.
\]

By the monomial relation \(\lambda_i \lambda_{i+1} \mu_{i+1} = 0\) from Fig. 6 (c) in Proposition 3.3, we have

\[
0 = -\bar{\lambda}_1 \bar{\lambda}_2 \bar{\lambda}_3 \bar{\lambda}_4 \bar{\lambda}_5 \cdots \bar{\lambda}_{k-1} \bar{\lambda}_k + \bar{\lambda}_1 \bar{\lambda}_2 \bar{\lambda}_3 \bar{\lambda}_4 \bar{\lambda}_5 \cdots \bar{\lambda}_{k-1} \bar{\lambda}_k
\]

where the second equality follows from (3.8) and the third one from (3.7) and the relation \(\lambda_i \lambda_{i+1} \mu_{i+1} = 0\).

3.2. Reduction systems and Bergman’s Diamond Lemma. In this section we recall the notion of a reduction system and the closely related Diamond Lemma. Whereas \(\mathbb{K}_m^n\) has a diagrammatic \(k\)-basis given by arc diagrams, the Koszul dual \(\overline{\mathbb{K}}_m^n\) is a priori only defined algebraically. Encoding the relations of \(\overline{\mathbb{K}}_m^n\) into a reduction system gives a natural algebraic \(k\)-basis of \(\overline{\mathbb{K}}_m^n\) given by “irreducible” paths.

Definition 3.9. Let \(Q\) be a finite quiver and let \(S \subset Q\geq 2\) be a subset of paths of length \(\geq 2\) such that for any \(s, s' \in S, s\) is not a subpath of \(s'\). We call a path in \(Q\)
irreducible (with respect to S) if it does not contain elements in S as subpaths and we denote the set of all irreducible paths by Irr_S.

A reduction system is given by a set of pairs

$$R = \{(s, \varphi_s) \mid s \in S \text{ and } \varphi_s \in k\text{Irr}_S\}$$

such that each path appearing in the linear combination φ_s is parallel to s.

Given a reduction system $R = \{(s, \varphi_s)\}_{s \in S}$, a basic reduction $r_{q,s,r}$ is a map $kQ \to kQ$ determined by

$$r_{q,s,r}(p) = \begin{cases} q\varphi_s r & \text{if } p = qsr \\ p & \text{otherwise} \end{cases}$$

for any paths $p, q, r \in Q$, and any $s \in S$. In other words, $r_{q,s,r}$ replaces s by φ_s in the path qsr and leaves all other paths invariant. A reduction is any (finite) composition of basic reductions.

Definition 3.10. A reduction system $R = \{(s, \varphi_s)\}_{s \in S}$ is called

- **reduction-finite** if for any path $p \in Q_s$ and any infinite sequence (r_1, r_2, \ldots) of reductions, there exists $n_0 \in \mathbb{N}$ such that for all $n \geq n_0$ we have $r_n \circ \cdots \circ r_1(p)$

- **reduction-unique** if it is reduction-finite and moreover for any path p and any reductions r, r' such that $r(p), r'(p) \in k\text{Irr}_S$, we have that $r(p) = r'(p)$.

We say that R satisfies the diamond condition for a two-sided ideal $I \subset kQ$ if R is reduction-unique and I is equal to the ideal generated by the set $\{s - \varphi_s\}_{s \in S}$.

Definition 3.11. Let $R = \{(s, \varphi_s)\}_{s \in S}$ be a reduction system which is reduction-finite. An overlap ambiguity of S is any path of the form $pqr \in Q_{\geq 3}$ with $p, q, r \in Q_{\geq 1}$ and $pq, qr \in S$.

An overlap ambiguity of S is said to be resolvable with respect to R if $r(p)\varphi_{qr} = r'(\varphi_{pq}r)$ for some reductions r, r'.

The central result about reduction systems is the following Diamond Lemma.

Theorem 3.12 ([Ber78, Thm. 1.2]). Let $R = \{(s, \varphi_s)\}_{s \in S}$ be a reduction system for kQ and let $I = \langle s - \varphi_s \rangle_{s \in S}$. If R is reduction-finite, then the following are equivalent:

(i) R is reduction-unique, i.e. R satisfies the diamond condition for I.

(ii) All overlap ambiguities of S are resolvable with respect to R.

(iii) The image of the irreducible paths Irr_S under the projection $kQ \to kQ/I$ forms a k-basis of $A = kQ/I$.

3.3. Irreducible paths and Kazhdan–Lusztig polynomials.

In this subsection we will define a reduction system \overline{R}_m^n for \overline{K}_m^n and show that it satisfies the diamond condition, i.e. it is reduction-unique (cf. §4.3). In §4 we will see that deformations of \overline{R}_m^n describe A_∞ deformations of K_m^n and can also be used to compute the Hochschild cohomology of K_m^n.

Definition 3.13 (Reduction system for \overline{K}_m^n). Let \overline{S}_m^n be the set of all paths in $\overline{Q}_{\lambda_m}^n$ of the following four types:

(I) length 2 paths of the form $\overline{\gamma}^\lambda \overline{\nu}$ for some weights $\lambda, \mu, \nu \in \Lambda_m$

(II) length 2 paths of the form $\overline{\gamma}^\lambda \overline{\gamma}^\mu$ or $\overline{\nu} \overline{\lambda} \overline{\nu}$ in Fig. 6 (c)
(III) length 2 paths of the form \(\bar{y}_\lambda^\nu \bar{y}_\mu^\nu \) or \(\bar{x}_\lambda^\mu \bar{x}_{\lambda+1}^\nu \) in Fig. 5, where \(\nu \) is the right vertex in each figure

(IV) length \(\geq 3 \) paths of the form \(\bar{y}_{\lambda_1}^{\lambda_2} \cdots \bar{y}_{\lambda_k}^{\lambda_3} \cdots \bar{y}_{\lambda_k}^{\lambda_{k+1}} \) or \(\bar{x}_{\lambda_k}^{\lambda_{k+1}} \cdots \bar{x}_{\lambda_2}^{\lambda_3} \bar{x}_{\lambda_1}^{\lambda_2} \) as in Lemma 3.6

where in (I) we allow \(\lambda = \mu \).

For each \(s \in \overline{\mathbb{S}}_m^n \) let \(\varphi_s \in k\text{Irr}_{\overline{\mathbb{S}}_m^n} \) denote the linear combination of the irreducible paths so that \(s = \varphi_s \in \overline{\mathbb{S}}_m^n \). Then we define \(R^m_\mathcal{R} = \{(s, \varphi_s) \mid s \in \overline{\mathbb{S}}_m^n \} \) (see §5.1 for a concrete description of \(R^m_\mathcal{R} \)). Note that for any path \(s \in \overline{\mathbb{S}}_m^n \) of type (II) we have \(\varphi_s = 0 \) by the monomial relations in Proposition 3.3.

Lemma 3.14. The reduction system \(R^m_\mathcal{R} \) is reduction-finite.

Proof. It suffices to show that reduction-finiteness holds when acting on an arbitrary single path \(p \). Let us prove this by induction on the path length of \(p \). Clearly this holds if \(p \) is a vertex or an arrow.

Assume that it holds for all paths of length \(< m \). Let us prove it for any path of length \(m \). Let \(p = a_1 \cdots a_m \) be a length \(m \) path, where \(a_1, \ldots, a_m \) are arrows in \(\mathcal{C}_m^n \), and denote by \(e_{\lambda_i} \) the starting vertex of \(a_i \) for \(1 \leq i \leq m \). Let us call a vertex \(e_{\lambda_i} \) a peak along \(p \) if \(|\lambda_{i-1}| < |\lambda_i| > |\lambda_{i+1}| \), i.e. \(a_{i-1} = \bar{y}_{\lambda_{i-1}}^{\lambda_i} \) is an ascending arrow but \(a_i = \bar{x}_{\lambda_i+1}^{\lambda_i} \) is descending. Denote by \(V \) the set of peaks along \(p \). Note that peaks are only changed by reductions of type (I) and reductions of types (II)–(IV) leave the peaks along \(p \) invariant.

We have the following two cases. In the first case \(V \) is not empty. Let \(e_{\lambda_0} \in V \) be a peak whose height is not smaller than the height of any other peak. By induction, both \(a_1 \cdots a_{i_0-1} \) and \(a_{i_0} \cdots a_m \) are reduction-finite so at some point we have to use the reduction of type (I) on \(a_{i_0-1}^\nu a_{i_0}^\nu \) passing through \(e_{\lambda_0} \), where \(a_{i_0-1}^\nu \) (resp. \(a_{i_0}^\nu \)) is the last (resp. first) arrow obtained by performing some reductions on \(a_1 \cdots a_{i_0-1} \) (resp. \(a_{i_0} \cdots a_m \)). (Note that \(a_{i_0-1}^\nu \) and \(a_{i_0}^\nu \) may or may not coincide with \(a_{i_0-1} \) and \(a_{i_0} \), but \(a_{i_0-1}^\nu \) is necessarily ascending and \(a_{i_0}^\nu \) descending.) This reduction causes the heights of the peaks to strictly decrease. Since the heights of vertices are bounded below by 0, it follows that \(p \) must be reduction-finite.

In the second case \(V \) is empty. Then we have the following three subcases. In the first subcase, the path \(p \) is of the form \(\bar{x}_1 \cdots \bar{x}_i \bar{y}_{i+1} \cdots \bar{y}_m \) for some \(1 \leq i \leq m - 1 \). By induction both \(\bar{x}_1 \cdots \bar{x}_i \) and \(\bar{y}_{i+1} \cdots \bar{y}_m \) are reduction-finite, hence so is \(p \) since \(\bar{x}_i \bar{y}_{i+1} \) is irreducible. In the second subcase, the path \(p = \bar{y}_1 \cdots \bar{y}_m \) is an ascending path. For this, we may give an order on ascending paths as follows. Set \(\bar{y}_\lambda^\nu \prec \bar{y}_\lambda^\nu \) whenever \(\nu, \nu' \) are obtained from \(\lambda \) by exchanging two different \(\nu \cdots \alpha \) pairs lying in circles \(C, C' \) of \(e_{\lambda} \), respectively, and either \(C, C' \) are nested and \(C \) is contained in \(C' \) or \(C, C' \) are disjoint and \(C \) lies to the right of \(C' \). Extend \(\prec \) by the degree-lexicographic order for longer ascending paths. Then reductions of types (II)–(IV) respect this order in the sense that reductions strictly decrease the order, so that \(p \) is reduction-finite since the set of length \(m \) paths is finite. Note that a descending arrow may appear in a summand \(p' \) when performing the reduction of type (III) from the Plücker-type relations on the ascending path \(p \). Then there is a peak along \(p' \) so that \(p' \) is reduction-finite by the first case. In the third subcase, \(p \) is a descending path. Then \(p \) is reduction-finite by the second subcase and the fact that the reduction system is invariant under involution. \[\square\]
Remark 3.15. If \(m = 1 \) or \(n = 1 \) then \(\mathcal{S}^n_m \) only consists of paths \(\bar{y}_i^\lambda \bar{y}_j^\nu \) of type (I). The paths of type (IV) only exist when \(m \geq 2 \) and \(n > 2 \). In other words, \(\mathcal{S}^n_m \) consists only of paths of types (I)–(III) so that \(\mathcal{R}^2_m \) is quadratic.

The following lemma completely describes the ascending irreducible paths in \(\mathcal{R}^n_m \).

Lemma 3.16. Let \(p = y_{\lambda_1}^{\lambda_2} y_{\lambda_2}^{\lambda_3} \cdots y_{\lambda_k}^{\lambda_{k+1}} \) be a path of length \(k \geq 2 \) such that \(\lambda_{i+1} \) is obtained from \(\lambda_i \) by exchanging the \(\nu \) in a circle \(C \) of \(e_{\lambda_i} \).

Then \(p \) is irreducible if and only if for any \(i \) with \(h_i \neq 0 \) (Definition 3.5), the circle \(C_i \) either lies on the left of \(C_{i-1} \) or encloses \(C_{i-1} \) in \(e_{\lambda_i} \), for each \(0 < j \leq h_i \).

In particular, if \(h_i = 0 \) for all \(1 \leq i < k \) then \(p \) is irreducible.

Proof. Let us prove the “if” part. If \(p \) is not irreducible then by definition it contains elements in \(\mathcal{S}^n_m \) as subpaths. We have the following two cases.

In the first case, there is a subpath \(\bar{y}_{\lambda_{i-1}}^\lambda \bar{y}_{\lambda_i}^{\lambda+1} \) of length 2 belonging to \(\mathcal{S}^n_m \). Then \(\bar{y}_{\lambda_{i-1}}^\lambda \bar{y}_{\lambda_i}^{\lambda+1} \) is in Fig. 5, so that \(\lambda_i \) is the right vertex in each figure. Note that \(C_i \) appears in \(e_{\lambda_i} \) and it lies on the right of \(C_{i-1} \) for the squares (b) and (c) and is enclosed in \(C_{i-1} \) for the square (a), giving a contradiction.

In the second case, there is a subpath \(\bar{y}_{\lambda_j}^{\lambda_j+1} \bar{y}_{\lambda_j+1}^{\lambda_{j+1}} \cdots \bar{y}_{\lambda_{i-1}}^{\lambda_{i-1}} \) of length \(i - j + 1 > 2 \) belonging to \(\mathcal{S}^n_m \). Then by the assumption in Lemma 3.6 we have that \(C_i \) appears in \(e_{\lambda_i} \) and is enclosed in \(C_j \) in \(e_{\lambda_j} \), giving a contradiction.

Let us prove the “only if” part. Namely, we need to prove that if there exists \(1 \leq i_0 \leq k \) with \(h_{i_0} \neq 0 \) so that one of the following conditions holds

1. \(C_{i_0} \) is on the right of \(C_{i_0-j} \) for some \(0 < j \leq h_{i_0} \)
2. \(C_{i_0} \) is enclosed in \(C_{i_0-j} \) for some \(0 < j \leq h_{i_0} \)

then \(p \) is not irreducible. We will prove this by induction on \(k \). Clearly it holds for \(k = 2 \) by the definition of \(\mathcal{S}^n_m \). Assume \(k > 2 \). If \(i_0 < k \) then consider the subpath \(p' = \bar{y}_{\lambda_{i_0}}^{\lambda_1} \bar{y}_{\lambda_2}^{\lambda_3} \cdots \bar{y}_{\lambda_{i_0-1}}^{\lambda_{i_0}} \) of length \(k - 1 \). Note that the above conditions (1) and (2) still hold for \(p' \). It follows by induction that \(p' \) is not irreducible, so neither is \(p \).

If \(i_0 = k \) and \(h_k < k - 1 \) then consider \(p'' = \bar{y}_{\lambda_1}^{\lambda_2} \bar{y}_{\lambda_2}^{\lambda_3} \cdots \bar{y}_{\lambda_{k-1}}^{\lambda_k} \). Similarly, the conditions (1) and (2) still hold for \(p'' \). By induction \(p'' \) is not irreducible, so neither is \(p \).

If \(i_0 = k \) and \(h_k = k - 1 \), by the induction hypothesis (on the subpath \(\bar{y}_{\lambda_1}^{\lambda_2} \bar{y}_{\lambda_2}^{\lambda_3} \cdots \bar{y}_{\lambda_{k-1}}^{\lambda_k} \)) we may assume that \(C_k \) either lies on the left of \(C_i \) or encloses \(C_i \) in \(e_{\lambda_i} \) for each \(2 \leq i < k \). Consider the first condition (1), namely \(C_k \) is on the right of \(C_i \) in \(e_{\lambda_i} \). Since by assumption \(C_2 \) is either on the right of \(C_k \) or enclosed in \(C_k \), it follows that \(C_2 \) has to appear in \(e_{\lambda_1} \) and lie on the right of \(C_1 \), whence \(\bar{y}_{\lambda_1}^{\lambda_2} \bar{y}_{\lambda_2}^{\lambda_3} \) is not irreducible so that neither is \(p \).

Consider (2), namely \(C_k \) is enclosed in \(C_1 \). Since by assumption \(C_2 \) is either on the right of \(C_k \) or enclosed in \(C_k \) in \(e_{\lambda_2} \), we may then further assume that \(C_2 \) does not appear in \(e_{\lambda_1} \), i.e. \(h_\lambda = 0 \) (otherwise \(C_2 \) must be either enclosed in \(C_1 \) or on the right of \(C_1 \), whence \(\bar{y}_{\lambda_1}^{\lambda_2} \bar{y}_{\lambda_2}^{\lambda_3} \) is not irreducible and neither is \(p \)). Similarly, we may also assume that \(h_3 = 0 \). Otherwise \(C_3 \) must be either enclosed in \(C_2 \) or on the right of \(C_2 \) in \(e_{\lambda_2} \), whence \(\bar{y}_{\lambda_2}^{\lambda_3} \bar{y}_{\lambda_3}^{\lambda_4} \) is not irreducible and neither is \(p \). By a similar argument we may assume that \(h_i = 0 \) for all \(2 \leq i < k \). Then the path \(p \) satisfies the assumption in Lemma 3.6 so that \(p \in \mathcal{S}^n_m \) which is not irreducible.

The diamond condition for \(\mathcal{R}^n_m \) will follow from properties of the Kazhdan–Lusztig polynomials which were first defined geometrically by Kazhdan and Lusztig [KL79].
with a closed formula for Grassmannians given by Lascoux and Schützenberger [LS81], see also [BS10, §5]. The Kazhdan–Lusztig polynomials for Grassmannians can be defined in terms of the quiver \overline{Q}_m^a for \overline{K}_m^a as follows.

Definition 3.17. Let $\lambda, \mu \in \Lambda_m^a$ be two weights. For each $k \geq 0$, denote by a_k the number of **ascending** irreducible paths of length k from λ to μ. Define a polynomial

$$P_{\lambda, \mu}(q) = \sum_{k \geq 0} a_k q^k$$

where we set $a_k = 0$ if there are no ascending irreducible paths of length k.

Clearly, $P_{\lambda, \mu}(1)$ is the total number of ascending irreducible paths from λ to μ. Note that a_k also equals the number of descending irreducible paths of length k from μ to λ.

Proposition 3.18. The following properties uniquely determine $P_{\lambda, \mu}(q)$.

(i) If $\lambda = \mu$ then $P_{\lambda, \mu}(q) = 1$ and if $|\lambda| \geq |\mu|$ for $\lambda \neq \mu$ then $P_{\lambda, \mu}(q) = 0$.

(ii) If $|\lambda| < |\mu|$ denote by C the rightmost circle in e_{λ} which does not enclose any other circles. Let λ' and μ' be the weights in Λ_m^{a-1} obtained from λ and μ, respectively, by deleting the vertices in the position of C and let λ'' be the weight in Λ_m^{a-1} obtained from λ by exchanging the \blacklozenge pair in C. Then

$$P_{\lambda, \mu}(q) = \begin{cases} P_{\lambda', \mu'}(q) + qP_{\lambda'', \mu}(q) & \text{if } e_\mu \text{ contains the circle } C \\ qP_{\lambda', \mu}(q) & \text{otherwise.} \end{cases}$$

(3.19)

As a result, $P_{\lambda, \mu}(q)$ coincides with the Kazhdan–Lusztig polynomials in [BS10, §5].

Proof. The first assertion is clear since if $|\lambda| \geq |\mu|$ then there are no ascending paths from λ to μ, except for the “lazy path” of length 0 at $\lambda = \mu$.

Let us prove the second assertion. Assume that e_μ contains the circle C. Let $p = y_1^{\lambda_1} y_2^{\lambda_2} \cdots y_{k+1}^{\lambda_{k+1}}$ be an ascending irreducible path from λ to μ such that λ_{k+1} be obtained from λ_k by exchanging the \blacklozenge pair in a circle C_i of e_{λ_i} (denote $\lambda_1 = \lambda$ and $\lambda_{k+1} = \mu$). Then the path is of one of the following two forms:

In the first one, the vertex e_{λ_j} contains the circle C. Then we claim that e_{λ_j} must also contain the circle C for all $1 \leq j \leq k + 1$. Indeed, if $j_0 > 1$ is the smallest integer so that $e_{\lambda_{j_0+1}}$ does not contain C then λ_{j_0+1} is obtained from λ_{j_0} by exchanging the \blacklozenge pair in C, whence $C_{j_0} = C$ and $h_{j_0} = j_0 - 1 \neq 0$. Since C is the rightmost circle in e_{λ_1} and in particular C_{j_0} is on the right of C_1, it follows by Lemma 3.16 that the path p is not irreducible. This proves the claim. Thus, the ascending irreducible paths of this form bijectively correspond to the ascending irreducible paths from λ' to μ', since removing C from all λ_i the irreducible path p induces an irreducible path in \overline{K}_m^{a-1} by Lemma 3.16 again.

In the second one, e_{λ_2} does not contain C (i.e. λ_2 is obtained from λ_1 by exchanging the \blacklozenge pair in C) then $\lambda_2 = \lambda'$. Since C is the rightmost circle, by Lemma 3.16 the irreducible paths of this form bijectively correspond to the ascending irreducible paths from λ'' to μ by composing with $y_1^{\lambda_2}$.

So putting these two forms together we have $P_{\lambda, \mu}(q) = P_{\lambda', \mu'}(q) + qP_{\lambda'', \mu}(q)$.

Assume that e_μ does not contain C. Then we claim that $\lambda_2 = \lambda''$. Indeed, if $\lambda_2 \neq \lambda''$ then C appears in e_{λ_2}. Since e_μ does not contain C there exists $j_0 \leq k$ such that C appears in e_{λ_j} for each $j \leq j_0$ but does not appear in $e_{\lambda_{j_0+1}}$. That is, λ_{j_0+1} is obtained from λ_{j_0} by exchanging the \blacklozenge pair in C, so $C_{j_0} = C$
and \(h_j = j_0 - 1 \). Since \(C \) is the rightmost circle in \(e_{\lambda_1} \), it follows that \(C_{j_0} \) is on the right of \(C_1 \) in \(e_{\lambda_1} \), whence \(p \) is not irreducible by Lemma 3.16. This proves the claim. Note that ascending irreducible paths from \(\lambda' \) to \(\mu \) bijectively induce ascending irreducible paths from \(\lambda \) to \(\mu \) by composing with \(\bar{y}_\lambda^{\lambda_1} \). Therefore, we have \(P_{\lambda,\mu}(q) = qP_{\lambda',\mu}(q) \).

Note that the recursive formulae for \(P_{\lambda,\mu}(q) \) proved above coincide with the ones for the (combinatorial) Kazhdan–Lusztig polynomials (see [BS10, Lem. 5.2]). □

Lemma 3.20. The number of irreducible paths from \(\lambda \) to \(\mu \) is equal to

\[
\sum_{\kappa \in \Lambda_n^m} P_{\kappa,\lambda}(1)P_{\kappa,\mu}(1).
\]

Proof. Note that any irreducible path can be written as \(\bar{x}_1 \bar{x}_2 \cdots \bar{x}_k \bar{y}_1 \cdots \bar{y}_2 \bar{y}_1 \) where \(\bar{x}_1 \bar{x}_2 \cdots \bar{x}_k \) (resp. \(\bar{y}_1 \cdots \bar{y}_2 \bar{y}_1 \)) is a descending (resp. ascending) irreducible path from \(\lambda \) to \(\kappa \) (resp. from \(\kappa \) to \(\mu \)) for some weight \(\kappa \).

Theorem 3.21. The irreducible paths form a basis of \(\overline{K}_n^m \). As a result, the reduction system \(\overline{K}_m^m \) is reduction-unique and therefore satisfies the diamond condition.

Proof. By [BS11a, Cor. 5.9] and Proposition 3.18 we have

\[
\dim_k e_{\lambda} \overline{K}_n^m e_{\mu} = \sum_{\kappa \in \Lambda_n^m} P_{\kappa,\lambda}(1)P_{\kappa,\mu}(1).
\]

By Lemma 3.20 the right-hand side is equal to the number of irreducible paths from \(\lambda \) to \(\mu \), whence the irreducible paths form a basis of \(\overline{K}_n^m \). By the Diamond Lemma (Theorem 3.12) it follows that \(\overline{K}_n^m \) is reduction-unique. □

Remark 3.22. Denote by \((\overline{K}_n^m)_i \), the image of the length \(i \) paths under the projection \(\mathbb{Q}_m^\Lambda \to \overline{K}_m^m \) so that \(\overline{K}_m^m = \bigoplus_i (\overline{K}_n^m)_i \). Let \(\lambda, \mu \in \Lambda_n^m \) be any two weights. Then \(e_{\lambda} (\overline{K}_n^m)_i e_{\mu} \) is one dimensional if \(i = |\lambda| + |\mu| \) and is zero if \(i > |\lambda| + |\mu| \). In particular, \((\overline{K}_n^m)_i = 0 \) if either \(i < 0 \) or \(i > 2mn \) and \((\overline{K}_n^m)_{2mn} \) is of dimension 1 spanned by the irreducible path \(\bar{x}_0 \bar{x}_1 \cdots \bar{x}_{mn-1} \bar{y}_{mn-1} \cdots \bar{y}_1 \bar{y}_0 \) in Fig. 12 which is parallel to the vertex corresponding to the highest weight.

The following observation is useful. Let \(p \) be any path of length \(|\lambda| + |\mu| \) from \(e_{\lambda} \) to \(e_{\mu} \). Then \(\bar{y} p = 0 \) in \(\overline{K}_m^m \) for any ascending arrow \(\bar{y} \), since \(\bar{y} p \in e_{\kappa} (\overline{K}_n^m)_{|\lambda|+1}|\mu| = 0 \), where \(e_{\kappa} \) is the starting vertex of \(\bar{y} \) and note that \(|\kappa| < |\lambda| \). Similarly, we have \(p \bar{x} = 0 \) in \(\overline{K}_m^m \) for any descending arrow \(\bar{x} \).

Remark 3.23. It would be very interesting to provide a geometric or diagrammatic description of the Koszul dual \(\overline{K}_m^m \), analogous to the diagrammatic description of \(K_n^m \). We refer to Webster [Web16, Thm. 3.7] for an explicit construction of diagrammatic algebras which are Morita equivalent to \(\overline{K}_m^m \).

3.4. **Some useful relations in the Koszul dual.** Since the multiplication in \(\overline{K}_m^m \) has no straightforward diagrammatic description, computing the multiplication of arbitrary elements in \(\overline{K}_m^m \) is rather complicated. In this section we record some formulae for “long” irreducible paths in \(\mathbb{Q}_m^\Lambda \) which are used in the proof of our main theorem (Theorem 5.4).

By [MS22, Proof of Cor. 1.5] we have \(K_n^m \simeq (K_n^m)^{\text{op}} \) as graded algebras and thus \(\overline{K}_m^m \simeq (\overline{K}_n^m)^{\text{op}} \). In the remainder of this section let us assume that \(m \geq n \).
Notation 3.24. Denote by $\bar{x}_0\bar{x}_1\cdots\bar{x}_{mn-1}\bar{y}_{mn-1}\cdots\bar{y}_1\bar{y}_0$ the longest irreducible path in K_m^n (see Fig. 12). For simplicity, we shall often use the short-hand notation

$$x_0\cdots x_{mn-1} = \bar{x}_0\bar{x}_1\cdots\bar{x}_{mn-1} \quad \text{and} \quad \bar{y}_{mn-1}\cdots\bar{y}_1\bar{y}_0 = \bar{y}_{mn-1}\cdots\bar{y}_1\bar{y}_0$$

and similar for other sequences of descending or ascending arrows in Fig. 12.

We have the following relations at vertices (see Proposition 3.3)

$$\bar{y}_{ni+j}\bar{x}_{ni+j} + \bar{x}_{ni+j+1}\bar{y}_{ni+j+1} = 0$$
$$\bar{y}_{ni+n-1}\bar{x}_{ni+n-1} = 0$$

(3.25)

$$\bar{y}_{ni}\bar{x}_{ni} + \bar{x}_{ni+1}\bar{y}_{ni+1} + \bar{y}_{ni+1}' = 0$$
$$\bar{y}_{m(m-1)+1}\bar{x}_{n(m-1)+1} = 0$$

where $0 \leq i \leq m-1$, $1 \leq j \leq n-2$ and $\bar{x}_{ni+1}', \bar{y}_{ni+1}'$ are depicted in Fig. 9.

Lemma 3.26.

(i) For each $0 \leq i \leq m-1$ and $1 \leq j \leq k \leq n-1$ we have

$$\bar{y}_{ni+j}\bar{x}_{ni+j}\cdots\bar{x}_{ni+k} = \begin{cases} 0 & \text{if } k = n-1 \\ (-1)^{k-j+1}\bar{x}_{ni+j+1}\cdots\bar{x}_{ni+k+1}\bar{y}_{ni+k+1} & \text{otherwise.} \end{cases}$$

(ii) For each $1 \leq k \leq n$ we have

$$\bar{y}_{n(m-1)}\bar{x}_{n(m-1)}\cdots\bar{x}_{n(m-1)+k-1} = \begin{cases} 0 & \text{if } k = 1 \\ (-1)^{n-k+1}\bar{x}_{n(m-1)+1}\cdots\bar{x}_{n(m-1)+nm-k-1}\bar{y}_{nm-k+1} & \text{if } k > 1. \end{cases}$$

Proof. Let us prove the first assertion. By (3.25) the desired equation holds if $j = k$.

The general case follows by induction on j since for $j < k$ we have

$$\bar{y}_{ni+j}\bar{x}_{ni+j}\cdots\bar{x}_{ni+k} = -\bar{x}_{ni+j+1}\bar{y}_{ni+j+1}\bar{x}_{ni+j+1}\cdots\bar{x}_{ni+k}.$$

For the second assertion, by (3.25) we have

$$\bar{y}_{n(m-1)}\bar{x}_{n(m-1)+1}\cdots\bar{x}_{n(m-1)+nm-k} = -\bar{x}_{n(m-1)+1}\bar{y}_{n(m-1)+1}\bar{x}_{n(m-1)+1}\cdots\bar{x}_{n(m-1)+nm-k}.$$

Then the desired identity follows from (i).

Lemma 3.27. For each $0 \leq i \leq m-2$ we have

$$\bar{y}_{ni}\bar{x}_{ni}\cdots\bar{x}_{ni+nm-3} = (-1)^{n+m-i}\bar{x}_{ni+1}\cdots\bar{x}_{ni+nm-2}\bar{y}_{nm-2}$$

$$-\bar{x}_{ni+3}\cdots\bar{x}_{ni+m+1}\bar{x}_{ni+1}\cdots\bar{x}_{ni+nm-1}\bar{y}_{nm-2}. $$

As a result, we have that $\bar{y}_{ni}\bar{x}_{ni}\cdots\bar{x}_{ni+nm-3} = 0$ and

$$\bar{y}_{ni}\bar{x}_{ni}\cdots\bar{x}_{ni+nm-2} = (-1)^{n+m-i}\bar{x}_{ni+1}\cdots\bar{x}_{ni+nm-1}\bar{y}_{nm-1}$$

Proof. By the third equality in (3.25) we obtain

$$\bar{y}_{ni}\bar{x}_{ni}\cdots\bar{x}_{ni+nm-3} = -\bar{x}_{ni+1}\bar{y}_{ni+1}\bar{x}_{ni+1}\cdots\bar{x}_{ni+nm-3} - \bar{x}_{ni+1}'\bar{y}_{ni+1}'\bar{x}_{ni+1}\cdots\bar{x}_{ni+nm-3}$$

(3.28)

$$ = -\bar{x}_{ni+1}\bar{y}_{ni+1}\bar{x}_{ni+1}\cdots\bar{x}_{ni+nm-3}$$

$$ = (-1)^n\bar{x}_{ni+1}\bar{y}_{ni+1}\bar{x}_{ni+1}\cdots\bar{x}_{ni+nm-3}$$

where the second equality follows from Lemma 3.26 (i) and the third one uses the anticommutativity relations $\bar{y}_{ni+j}\bar{x}_{ni+j} = -\bar{x}_{ni+j+1}\bar{y}_{ni+j+1}$ for $1 \leq j \leq n-1$ (see Fig. 9). Here we denote $\bar{y}_{ni+1}' = \bar{y}_{ni+1}$ when $j = n-1$. Since $\bar{x}_{ni+1}'\bar{y}_{ni+2}$
lies in a square as in Fig. 5 (c), it satisfies the Plücker-type relation \(\bar{x}_{ni+1}^i \bar{x}_{ni+2} = -\bar{x}_{ni+1} \bar{x}_{ni+2}^i - \bar{x}_{ni+3}^2 \bar{x}_{ni+3}^i \). Substituting this into (3.28) we obtain
\[
\bar{y}_{ni} \bar{x}_{ni} \cdots nm - 3 = (-1)^{n+1} \bar{x}_{ni+1} \bar{x}_{ni+2}^i \bar{x}_{ni+3}^2 \bar{x}_{ni+3}^i \bar{y}_{n(i+1)} \bar{x}_{n(i+1)} \cdots nm - 3
\]
where the second equality uses the anticommutativity relations (see Fig. 9)
\[
\bar{x}_{ni+j}^i \bar{x}_{ni+j+1} = -\bar{x}_{ni+j} \bar{x}_{ni+j+1}^i \quad \text{and} \quad \bar{y}_{ni+j}^i \bar{x}_{ni+j+1} = -\bar{y}_{ni+j} \bar{x}_{ni+j+1}^i,
\]
where \(2 \leq j \leq n - 1 \) and denote \(\bar{x}_{n(i+1)} = \bar{x}_{n(i+1)} \) and \(\bar{y}_{n(i+1)}^i = \bar{y}_{n(i+1)}^i \).

Take \(i = m - 2 \) in (3.29) and apply the identity in Lemma 3.26 (ii) to obtain
\[
\bar{y}_{n(m-2)} \bar{x}_{n(m-2)} \cdots nm - 3
\]
where the first equality uses the induction (we assume it holds for \(i + 1 \) and then prove it for \(i \)). Let us explain the second equality. Using \(\bar{x}_{n(i+1)} \bar{x}_{n(i+1)}^2 = 0 \) and Lemma 3.26 (i) we see that the second and third summands vanish. For the fourth summand, we are abusing notation since \(\bar{x}_{n(i+1)+3}^2 \) denotes the arrow which has the same starting vertex as \(\bar{x}_{n(i+1)+1} \) (just similar to the arrows \(\bar{x}_{ni+3}^2 \) and \(\bar{x}_{ni+1} \)). For this summand, we use the following identity (see Fig. 9 where we shift it by \(i + 1 \))
\[
\bar{y}_{n(i+1)}^i \bar{x}_{n(i+1)+3 \cdots nm - 1} = -\bar{x}_{n(i+1)+2 \cdots nm - 1}
\]
which may be obtained by using the anticommutativity relations iteratively (\(2n - 4 \) times) and the Plücker-type relation \(\bar{x}_{n(i+1)+3 \cdots nm - 1} = \bar{x}_{n(i+1)+3 \cdots nm - 1} + \bar{x}_{n(i+1)+3 \cdots nm - 1} \).

Lemma 3.31. For each \(0 \leq i \leq m - 2 \) we have (see Fig. 12)
\[
\bar{y}_{ni} \bar{x}_{ni} \cdots nm - 3 = \bar{x}_{ni+1} \cdots nm - 2 \bar{y}_{nm - 2}.
\]
As a result we have
\[
\bar{y}_{ni}x_{ni}...n(m-1)-2\bar{x}^0_{n(m-1)}-1...nm-3\bar{x}^0_{nm-3}...n(m-1)-1\bar{y}_{n(m-1)}-2...n(m-2)
\]
\[
\equiv -(-1)^n\bar{x}_{ni+1}...nm-2\bar{y}_{nm-2}...n(m-2).
\]

Proof. Let us first consider the case of \(i = m - 2\). We have
\[
\bar{y}_{n(m-2)}\bar{x}(n-m)...n(m-1)-2\bar{x}^0_{n(m-1)}-1...nm-3
\]
\[
= -\bar{x}_{n(m-2)+1}\bar{y}_{n(m-2)+1}\bar{x}_{n(m-2)+1}...n(m-1)-2\bar{x}^0_{n(m-1)}-1...nm-3
\]
\[
- \bar{x}^0_{n(m-2)+1}\bar{y}^0_{n(m-2)+1}\bar{x}_{n(m-2)+1}...n(m-1)-2\bar{x}^0_{n(m-1)}-1...nm-3
\]
\[
= (-1)^{n-1}\bar{x}_{n(m-2)+1}...n(m-1)-1\bar{y}_{n(m-1)}-1\bar{x}^0_{n(m-1)}-1...nm-3
\]
\[
+ (-1)^{n-1}\bar{x}^0_{n(m-2)+1}\bar{x}_{n(m-2)+2}...n(m-1)-1\bar{y}^0_{n(m-1)}-1\bar{x}^0_{n(m-1)}-1...nm-3
\]
\[
= \bar{x}_{n(m-2)+1}\bar{y}^0_{n(m-2)+2}...nm-2\bar{y}^0_{nm-2}
\]
where the first equality follows from (3.25) and the second one from Lemma 3.26 (i) and \(\bar{y}^0_{n(m-2)+1}\bar{x}_{n(m-2)+2}+j = -\bar{x}^0_{n(m-2)+j+1}\bar{y}^0_{n(m-2)+j+1}\) for \(1 \leq j \leq n - 2\) (denote \(\bar{y}^0_{n(m-1)-1} = \bar{x}^0_{n(m-1)-1}\) for \(j = n - 2\)), and the third one from the anticommutativity relations involving \(\bar{y}^0_{n(m-1)-j}x^0_{n(m-1)-j}\) \((n - 3)\) times and the following identity
\[
\bar{y}^0_{n(m-1)-1}x^0_{n(m-1)-1}...nm-3 = (-1)^{n-2}\bar{x}^0_{n(m-1)-1}...nm-3\bar{y}^0_{nm-3}x^0_{nm-3} = 0
\]
which uses \(\bar{y}^0_{n(m-1)+1}x^0_{n(m-1)+1}...nm-3 = -\bar{x}^0_{n(m-1)+1}\bar{y}^0_{n(m-1)+1}\) for \(0 \leq j \leq n - 3\) and \(\bar{y}^0_{n(m-1)+j}x^0_{n(m-1)+j} = 0\).

For \(i < m - 2\) we may proceed by induction since similar to (3.29) we have
\[
\bar{y}_{ni}x_{ni}...n(m-1)-2\bar{x}^0_{n(m-1)}-1...nm-3
\]
\[
= -\bar{x}_{ni+1}...n(i+1)\bar{y}_{n(i+1)}...n(m-1)-2\bar{x}^0_{n(m-1)}-1...nm-3
\]
\[
- \bar{x}^0_{ni+3}...n(i+1)+1\bar{y}_{n(i+1)}+1\bar{x}_{n(i+1)}...n(m-1)-2\bar{x}^0_{n(m-1)}-1...nm-3
\]
where we also need to use Lemma 3.26 (i) to show that the second summand vanishes. This proves the first desired identity.

To prove the second desired identity, it suffices to prove the following one
\[
\bar{y}^0'_{nm-2}...n(m-1)-1\bar{y}_{n(m-1)}-2...n(m-2) = (-1)^{n-1}\bar{y}^0_{nm-2}...n(m-2).
\]
For this, by the Pl"ucker-type relation \(\bar{y}^0_{nm-2}\bar{y}^0_{nm-3} = -\bar{x}^0_{nm-1}\bar{y}^0_{nm-3}\) where \(\bar{y}^0_{nm-3}\) is the missing arrow connecting the bottom vertex with the ending vertex of \(\bar{y}^0_{nm-3}\) in Fig. 12, it follows that
\[
\bar{y}^0_{nm-2}\bar{y}^0_{nm-3}...n(m-1)-1\bar{y}_{n(m-1)}-2...n(m-2)
\]
\[
= -\bar{y}_{nm-2}\bar{y}^0_{nm-3}...n(m-1)-1\bar{y}_{n(m-1)}-2...n(m-2)
\]
\[
- \bar{x}^0_{nm-1}\bar{y}^0_{nm-4}...n(m-1)-1\bar{y}_{n(m-1)}-2...n(m-2)
\]
\[
= (-1)^{n-1}\bar{y}_{nm-2}...n(m-2)
\]
where the second equality repeatedly uses the anticommutativity relations involving \(\bar{y}^0_{nm-i}\bar{y}^0_{nm-i-1}\) for \(3 \leq i \leq n\). Note that \(\bar{y}^0_{nm-4}...n(m-1)-1\bar{y}_{n(m-1)-2}\) is in \(\mathbb{S}^n_m\) and
using Lemma 3.6 iteratively \((n - 2)\) times for \(k = n, n - 1, \ldots, 3\) we obtain

\[
\bar{x}_{nm-1} \bar{y}_m^{m-1} \bar{y}_{nm-4} \cdots \bar{y}_{nm-(m-1)-1} \bar{y}_n(m-1)-2 \cdots n(m-2)
\]

\[
= (-1)^{\frac{(n-2)(n+1)}{2}} \bar{x}_{nm-1} \bar{y}_{nm-1} \bar{y}_{nm-2} \cdots \bar{y}_n(m-2)+3 \bar{y}_n(m-2) = 0
\]

where we do not need the explicit arrows appearing in \(\cdots\) since the second equality already follows from \(\bar{y}_n(m-2)+3 \bar{y}_n(m-2) = 0\).

\[\square\]

4. Hochschild cohomology and deformations for Koszul-dual algebras

Let \(A\) be a graded algebra. The Hochschild cochain complex \(C^*(A, A)\) is the product total complex of the double complex

\[
A \xrightarrow{\delta^0} \text{Hom}(A, A) \xrightarrow{\delta^1} \cdots \xrightarrow{\delta^p} \text{Hom}(A^\otimes^p, A) \xrightarrow{\delta^{p+1}} \text{Hom}(A^\otimes^{p+1}, A) \xrightarrow{\delta^{p+2}} \cdots
\]

where the horizontal differential \(\delta^p\) is the Hochschild differential and each term \(\text{Hom}(A^\otimes^i, A) = \bigoplus_j \text{Hom}(A^\otimes^i, A)^j\) is viewed as a graded vector space with trivial
(vertical) differential, where \(\text{Hom}(A^\otimes i, A)^j \) is the set of graded \(k \)-linear maps of degree \(j \) from \(A^\otimes i \) to \(A \) so that we have \(C^k(A, A) = \prod_i \text{Hom}(A^\otimes i, A)^{k-i} \).

4.1. Bigraded Hochschild cohomology and Koszul duality

Let \(A = kQ/I \) be a Koszul algebra and \(A^! = kQ/(I_Q^+) \) be its Koszul dual. In this subsection we recall from Keller [Kel03] the isomorphism between the (bigraded) Hochschild cohomology of \(A \) and \(A^! \).

4.1.1. Bigraded vector spaces

Consider bigraded vector spaces \(V = \bigoplus_{p,q \in \mathbb{Z}} V^p_q \) where the superscript \(p \) denotes the (cohomological) differential grading and the subscript \(q \) denotes the Adams grading which is viewed as an additional grading. Let \((V, d)\) be a differential bigraded vector space, where \(d: V \to V \) is a differential of bidegree \((1, 0)\) giving for each fixed \(q \in \mathbb{Z} \) a cochain complex \(V^*_q \)

\[
\cdots \to V^p_q \xrightarrow{d} V^{p+1}_q \xrightarrow{d} V^{p+2}_q \to \cdots
\]

For any two differential bigraded vector spaces \((U, d_U), (V, d_V)\), consider the differential bigraded Hom-space \(\text{Hom}(U, V) = \bigoplus_{p,q \in \mathbb{Z}} \text{Hom}(U, V)^p_q \) where

\[
\text{Hom}(U, V)^p_q := \prod_{i,j \in \mathbb{Z}} \text{Hom}(U^i_j, V^{p+i}_{q+j})
\]

with differential \(\delta(f) = d_V \circ f - (-1)^p f \circ d_U \) for any \(f \in \text{Hom}(U, V)^p_q \). We may also consider the bigraded tensor product \(U \otimes V = \bigoplus_{p,q \in \mathbb{Z}} (U \otimes V)^p_q \) where

\[
(U \otimes V)^p_q := \bigoplus_{i,j \in \mathbb{Z}} U^i_j \otimes V^{p-i}_{q-j}
\]

with differential \(d(u \otimes v) = d_U(u) \otimes v + (-1)^k u \otimes d_V(v) \) for any \(u \otimes v \in U^k_i \otimes V^m_j \).

Let \(A = \bigoplus_{k \in \mathbb{Z}} A^k \) be a graded algebra with additional Adams grading so that \(A^k = \bigoplus_{i \in \mathbb{Z}} A^k_i \). We denote the Hochschild cochain complex with this additional grading by \(C^*_q(A, A) \) where \(C^p_q(A, A) = \prod_{i \geq 0} \text{Hom}(A^\otimes i, A)^{p-i} \) with the induced differential. For each \(q \) let \(HH^*_q(A, A) \) denote the cohomology of the complex \(C^*_q(A, A) \).

The \(B_\infty \) structure on \(C^*(A, A) \) can be restricted to the subspace

\[
\bigoplus_{q \in \mathbb{Z}} C^*_q(A, A) \subset C^*(A, A)
\]

but the inclusion is not necessarily a (quasi-)isomorphism of complexes, even if \(A \) is finite-dimensional (see Remark 4.3 below).

4.1.2. Hochschild cohomology under Koszul duality

Let \(A = kQ/I \) be a Koszul algebra. We view \(A \) as bigraded by assigning any arrow \(a \in Q \) the bidegree \((0, 1)\). Recall that the Koszul dual \(A^! \) is isomorphic to \(kQ/(I_Q^+) \). It also admits a bigrading by assigning any arrow \(a \in Q \) the bidegree \((1, -1)\).

Theorem 4.2 ([Kel03, §3.5]). There is an isomorphism in the homotopy category of (bigraded) \(B_\infty \) algebras

\[
C^*_q(A, A) \to C^*_q(A^!, A^!).
\]

In particular, we have \(HH^p_q(A^!, A^!) \simeq HH^p_q(A, A) \) for all \(p, q \).
Remark 4.3. The additional Adams grading is crucial in Theorem 4.2, as otherwise there may be some issues with completions as discussed in [Kel21, Post11]. For instance, let $A = \mathbb{k}[x]$ be the polynomial algebra. Its Koszul dual $A' = \mathbb{k}[y]/(y^2)$ is the 2-dimensional algebra of dual numbers. Take the differential gradings $|x| = 0$ and $|y| = 1$. Then $\text{HH}^0(A, A) \cong \mathbb{k}[z]$ whereas $\text{HH}^0(A', A') \cong \mathbb{k}[\bar{z}]$ which are not isomorphic (see [Kel21, §1]). However, the Adams grading gives isomorphisms $H^0_{q}(A, A) \cong \mathbb{k}z^q \cong H^0_{q}(A', A')$ for each $q \geq 0$. In fact, we have

$$\text{HH}^0(A, A) = \bigoplus_{q \in \mathbb{Z}} \text{HH}^0_q(A, A) \quad \text{and} \quad \text{HH}^0(A', A') \cong \prod_{q \in \mathbb{Z}} \text{HH}^0_q(A', A').$$

Remark 4.4. As mentioned in [Kel03] the isomorphism between Hochschild cohomology of A and A' as graded algebras was announced by Buchweitz [Buc03]. We also refer to [CYZ16] for the isomorphism preserving the Batalin–Vilkovisky structures for a Koszul Calabi–Yau algebra A.

4.2. Associative and A_∞ deformations under Koszul duality. For a graded algebra we may consider the following two different types of deformations.

Definition 4.5. Let $A = (\bigoplus_{k \geq 0} A^k, \mu)$ be a (positively) graded algebra.

(i) A filtered deformation of A is an associative algebra (A, μ) such that

$$\bar{\mu}(a \otimes b) - \mu(a \otimes b) = 0 \quad \text{if} \quad a \in A^0 \text{ or } b \in A^0$$

$$\bar{\mu}(a \otimes b) - \mu(a \otimes b) \in A^{(\{a\} + \{b\})} \quad \text{for homogeneous} \quad a, b \in A^{>0}.$$

(ii) An A_∞ deformation of A is an A_∞ algebra $(A, m_1, m_2, m_3, \ldots)$ such that $m_1 = 0$ and $m_2 = \mu$.

Remark 4.6. The two types of deformations in Definition 4.5 are inherently very different: a filtered deformation is strictly associative, whereas an A_∞ deformation is generally only associative up to higher homotopies. However, from the point of view of bigraded algebras, these two types of deformations naturally appear as two sides of the same coin (and Koszul duality can be viewed as flipping this coin). For a graded algebra $A = (\bigoplus_{k \geq 0} A^k, \mu)$, we may equip A with two different natural bigradings. The first bigrading assigns each element $a \in A^k$ the bidegree $(0, k)$. Then the cocycles of $\text{HH}^2_q(A, A)$ lie in

$$C^2_q(A, A) = \prod_{i \geq 0} \text{Hom}(A^{\otimes i}, A)_{2-i}^q = \text{Hom}(A^{\otimes 2}, A)^0_q$$

where $\text{Hom}(A^{\otimes i}, A)_{2-i}^q = 0$ for $i \neq 2$ (since A is trivially graded with respect to the differential grading whence the same is true for $\text{Hom}(A^{\otimes i}, A)$). Therefore, if A^0 is semisimple then $\text{HH}^2_q(A, A)$ corresponds to (equivalence classes of) first-order filtered deformations $(A[t]/(t^2), \bar{\mu})$ of A such that $\bar{\mu}(a \otimes b) - \mu(a \otimes b) \in A^{(\{a\} + \{b\}) + q}$ for any homogeneous elements $a, b \in A^{>0}$.

The second bigrading assigns each element $a \in A^k$ the bidegree $(k, -k)$. The cocycles of $\text{HH}^2_q(A, A)$ then lie in

$$C^2_q(A, A) = \prod_{i \geq 0} \text{Hom}(A^{\otimes i}, A)_{2-i}^q = \text{Hom}(A^{\otimes q+2}, A)^q_q$$

where $\text{Hom}(A^{\otimes i}, A)_{2-i}^q = 0$ if $i \neq q+2$ (since the total degree of A is zero whence the same is true for $\text{Hom}(A^{\otimes i}, A)$). Therefore, $\text{HH}^2_q(A, A)$ corresponds to first-order A_∞
deformations of A with the only nontrivial higher product being m_{q+2}. Moreover, it is known from [Kad88, Cor. 4] and [ST01, Thm. 4.7] that if $HH^2_q(A,A) = 0$ for each $q > 0$ then A is intrinsically formal, i.e. any A_∞ deformation of A is A_∞-quasi-isomorphic to the underlying graded algebra A.

Let $A = kQ/I$ be an algebra such that $I \subset kQ_{\geq 2}$. By [Kad82] the graded space $\text{Ext}^*_A(kQ_0,kQ_0)$ admits a natural minimal A_∞ algebra structure, which is the minimal model of the derived endomorphism algebra of kQ_0. Moreover, the minimal model is formal (i.e. quasi-isomorphic to the underlying graded associative algebra which is $\text{Ext}^*_A(kQ_0,kQ_0)$ with the cup product) if and only if A is Koszul (see [Kel01, §2.2] and [Con11, Cor. V.0.6]).

Now let A be Koszul and let $A' = kQ/(I_2^n)$ be its Koszul dual. As before, assign any arrow $a \in Q$ the bidegree $(0,1)$ and $\bar{a} \in \bar{Q}$ the bidegree $(1,-1)$. Then by Remark 4.6 we may consider filtered deformations of A and A_∞ deformations of A'.

Theorem 4.2 and Remark 4.6 motivate the following result.

Proposition 4.7. Let $A = kQ/I$ be a Koszul algebra and let $A' = kQ/(I_2^n)$ be its Koszul dual. View A as an ungraded algebra and A' as a graded algebra. Then for any nontrivial filtered deformation $B = (A,\bar{\mu})$ of A, the minimal model of the derived endomorphism algebra of kQ_0 is a nontrivial A_∞ deformation of A'.

Proof. Let us first show that the A_∞ structure on $\text{Ext}^*_B(kQ_0,kQ_0)$, obtained as the minimal model of the derived endomorphism algebra of kQ_0, is indeed an A_∞ deformation of A', i.e. the underlying graded algebra is isomorphic to A'.

Recall the A-A-bimodule Koszul resolution $K_\bullet(A)$ of A where $K_0(A) = A \otimes A$, $K_{-1}(A) = A \otimes kQ_1 \otimes A$ and

$$K_{-n}(A) = A \otimes (\bigcap_{i=0}^n kQ_i \otimes I_2 \otimes kQ_{n-2-i}) \otimes A$$

for $n \geq 2$

where we write $\otimes = \otimes_{kQ_0}$. Its differential is given by

$$d(1 \otimes \sum_i (a_1^i \otimes \cdots \otimes a_n^i) \otimes 1) = \sum_i a_1^i \otimes a_2^i \otimes \cdots \otimes a_n^i \otimes 1 - \sum_i 1 \otimes a_1^i \otimes \cdots \otimes a_{n-1}^i \otimes a_n^i$$

for any $\sum_i a_1^i \otimes \cdots \otimes a_n^i \in \bigcap_{k=0}^n kQ_k \otimes I_2 \otimes kQ_{n-2-k}$ with $a_1^i, \ldots, a_n^i \in Q_1$. Since $K_\bullet(A)$ is exact in negative degrees we may choose a homotopy $\rho: K_{-n}(A) \to K_{-n-1}(A)$ so that ρ is a left A-module morphism which preserves the path length. We may also assume that $\rho(ab \otimes \sum_i (a_1^i \otimes \cdots \otimes a_n^i) \otimes b) = 0$ if $b = 1$.

Let $\text{Bar}_\bullet(A)$ denote the normalised bar resolution of A, i.e. $\text{Bar}_{-n}(A) = A \otimes \bar{A}^{\otimes n} \otimes A$ where $\bar{A} = A/(kQ_0)$ is the quotient kQ_0-kQ_0-bimodule. Using the same construction as in [BW20, §5.1] we obtain a deformation retract of A-A-bimodules

$$K_\bullet(A) \xrightarrow{F_\bullet} \text{Bar}_\bullet(A) \xrightarrow{h_\bullet}$$

namely $G_n F_n = \text{id}$ and $F_n G_n - \text{id} = h_{n-1} d_n + d_{n+1} h_n$. In particular, F_\bullet is the natural embedding

$$F_n(1 \otimes \sum_i (a_1^i \otimes \cdots \otimes a_n^i) \otimes 1) = 1 \otimes \sum_i (a_1^i \otimes \cdots \otimes a_n^i) \otimes 1.$$
Since ρ preserves the path length so do the maps G_* and h_* by construction. Applying $\text{Hom}_{A^{-}}(\kappa Q_0 \otimes_A - , \kappa Q_0)$ to (4.8) we obtain a new deformation retract

\[(A', 0) \xrightarrow{F^*} (\text{Hom}(\tilde{A}^\delta, \kappa Q_0), \partial) \xrightarrow{\cup} h^* \]

Here we use the natural isomorphisms $\text{Hom}_{A^{-}}(\kappa Q_0 \otimes_A \bar{K}_n(A), \kappa Q_0) \simeq A'$ and $\text{Hom}_{A^{-}}(\kappa Q_0 \otimes_A \text{Bar}_n(A), \kappa Q_0) \simeq \text{Hom}(\tilde{A}^\delta, \kappa Q_0)$. Note that $\text{Hom}(\tilde{A}^\delta, \kappa Q_0)$ is a DG algebra whose cohomology is isomorphic to the graded algebra A^δ, see [CW21, §7.1].

Let $B = (A, \tilde{\mu})$ be a filtered deformation of A. Clearly, the DG algebra $\text{Hom}(\tilde{B}^\delta, \kappa Q_0)$, which computes $\text{Ext}^*_B(\kappa Q_0, \kappa Q_0)$, has the same underlying graded space as $\text{Hom}(\tilde{A}^\delta, \kappa Q_0)$. The differential $\tilde{\partial}$ in the former may be viewed as a perturbed differential by the perturbation $\delta = \tilde{\partial} - \partial$. Note that $\text{Hom}(\tilde{A}^\delta, \kappa Q_0)$ has an additional grading (filtration) induced by the path length, i.e. the dual of a path p is of degree $-|p|$, so that $\text{Hom}(\tilde{A}^\delta, \kappa Q_0)$ is in negative degrees. Note that δ strictly increases this grading it follows that for any $f \in \text{Hom}(\tilde{A}^\delta, \kappa Q_0)$ we have $(\delta h^*)^i(f) = 0$ for $i > n$, i.e. δ is (locally) small. Applying the homological perturbation lemma (see e.g. [HK91, §1]) to δ we have that the homotopy deformation retract (4.10) induces a new one

\[(A', d_{\infty}) \xrightarrow{F^*} (\text{Hom}(\tilde{A}^\delta, \kappa Q_0), \tilde{\partial}) \xrightarrow{\cup} h^* \]

where

\[d_{\infty} = \sum_{n \geq 0} F^*(\delta h^*)^n \delta G^*, \quad F^* = \sum_{n \geq 0} F^*(\delta h^*)^n, \quad G^* = G^* + \sum_{n \geq 0} h^*(\delta h^*)^n \delta G^*.\]

Since δ is locally small the above sums are well-defined. We claim that $\delta G^* = 0$. Indeed, for any $f \in \text{Hom}_{A^{-}}(\kappa Q_0 \otimes_A \bar{K}_n(A), \kappa Q_0)$ we have

\[\delta G^*(f)(\bar{a}_1 \otimes \cdots \otimes \bar{a}_{n+1}) = \sum_{i=1}^n (-1)^i f G_*(1 \otimes \bar{a}_1 \otimes \cdots \otimes \bar{a}_{i-1} \otimes \bar{a}_{i+1} \otimes \cdots \otimes \bar{a}_{n+1} \otimes 1)\]

where $\bar{a}_j \in \tilde{A}$ for $1 \leq j \leq n + 1$ and $\bar{a}_{i+1} := \tilde{\mu}(a_i \otimes a_{i+1}) - a_i a_{i+1}$. Since the path length of \bar{a}_{i+1} is strictly bigger than 2, the one of $p := a_1 \otimes \cdots \otimes a_{i-1} \otimes \bar{a}_{i+1} \otimes \cdots \otimes a_{n+1}$ is bigger than $n + 1$ so is the one of $G_*(p)$. It follows that the right-hand side of the equality vanishes since the path length of elements in $\kappa Q_0 \otimes_A \bar{K}_n(A)$ is n. This proves the claim and shows that $d_{\infty} = 0$ and $G^* = G^*$. Applying the homotopy transfer theorem we obtain an A_{∞} algebra (A', m_3, m_3, \ldots) which is the minimal model $\text{Ext}^*_B(\kappa Q_0, \kappa Q_0)$. Using the path length as above, we may show that $m_2 = F^* \circ m_2^\delta \circ (G^* \otimes G^*) = F^* \circ m_2^\delta \circ (G^* \otimes G^*)$ and the latter coincides with the underlying product of A', since the product m_2 in $\text{Hom}(\tilde{A}^\delta, \kappa Q_0)$ does not rely on the product of A, see [CW21, (7.1)].

If $\text{Ext}^*_B(\kappa Q_0, \kappa Q_0)$ is A_{∞}-quasi-isomorphic to the underlying graded algebra A' then B is Koszul so that $B' \simeq A'$. Thus, we have $B \simeq B' \simeq A' \simeq A$, i.e. B is a trivial associative deformation of A.

Remark 4.11. Proposition 4.7 should be well-known to experts as it may be viewed as a deformation-theoretical interpretation of Theorem 4.2. Note that Braverman and Gaitsgory [BG96] gave a deformation-theoretical construction of PBW deformations of quadratic Koszul algebras, which are filtered deformations in the “opposite” sense, using shorter instead of longer paths, and Floystad and Vatne [FV06,
Thm. 2.1] gave a correspondence between PBW deformations of an N-Koszul algebra and certain A_∞ deformations of its Koszul dual.

4.3. Associative deformations via reduction systems

By the results of §4.2, A_∞ deformations of a Koszul algebra correspond to (filtered) associative deformations of its Koszul dual. In [BW20] it was shown how to describe the latter concretely as deformations of a reduction system (cf. §3.2). The main result of [BW20] is the following.

Theorem 4.12. Let Q be any finite quiver, let $I \subset \k Q$ be any two-sided ideal and let R be any reduction system satisfying the diamond condition for I. Then there is an equivalence of deformation problems between

1. deformations of the associative algebra $A = \k Q/I$
2. deformations of the ideal I
3. deformations of the reduction system R.

This result can be obtained by “replacing” the bar resolution of A, used in the classical formulation of associative deformations in terms of the Hochschild cochain complex equipped with the Gerstenhaber bracket [Ger64], by the Bardzell–Chouhy–Solotar resolution [Bar97, CS15] associated to a reduction system and studying the deformation theory on the resulting smaller cochain complex. Theorem 4.12 gives a practicable description of the full formal deformation theory of $A = \k Q/I$ and a useful particular case (for first-order deformations) is the following result.

Corollary 4.13 ([BW20, Cor. 7.44]). Let $A = \k Q/I$ and R be any reduction system satisfying the diamond condition for I. Then $\HH^2(A, A)$ is isomorphic to the space of first-order deformations of R modulo equivalence.

Here a first-order deformation (over $\k[t]/(t^2)$) of a reduction system $R = \{(s, \varphi_s)\}_{s \in S}$ is given by

$$
\tilde{R} = \{(s, \varphi_s + \tilde{\varphi}_s t)\}_{s \in S}
$$

where $\tilde{\varphi}_s \in \k \text{Irr}_S$ such that \tilde{R} is reduction-unique when viewed as a reduction system for $\k Q \otimes \k[t]/(t^2)$. Here, $\tilde{\varphi}_s$ can be viewed as the image of s under a map $\tilde{\varphi} \in \Hom_{\k Q_0}(\k S, \k \text{Irr}_S)$ sending $s \mapsto \tilde{\varphi}_s$. Note that $\Hom_{\k Q_0}(\k S, \k \text{Irr}_S)$ is the space of 2-cochains in the cochain complex associated to the Bardzell–Chouhy–Solotar resolution associated to R [CS15] and $\tilde{\varphi}$ defines a first-order deformation of R if and only if it is a 2-cocycle in this complex [BW20, §7.A].

Two first-order deformations \tilde{R} and $\tilde{R}' = \{(s, \varphi_s + \tilde{\varphi}'_s t)\}_{s \in S}$ of R are called equivalent if there exists $\psi \in \Hom_{\k Q_0}(\k Q_1, \k \text{Irr}_S)$ such that $\delta(s) = \tilde{\varphi}_s - \tilde{\varphi}'_s$ for any $s = s_1 \cdots s_m \in S$ with $s_i \in Q_1$. Here δ is the map

$$
\delta: \Hom_{\k Q_0}(\k Q_1, \k \text{Irr}_S) \to \Hom_{\k Q_0}(\k S, \k \text{Irr}_S)
$$

defined by $\delta(\psi)(s) = T(\psi)(s - \varphi_s)$ and $T(\psi): \k Q \to \k \text{Irr}_S$ is the k-linear map

$$
T(\psi)(a_1 a_2 \cdots a_m) = \sum_{i=1}^{m} \sigma \pi(a_1 \cdots a_{i-1} \psi(a_i)a_{i+1} \cdots a_m)
$$

where a_1, \ldots, a_m are arrows in Q, $\pi: \k Q \to \k Q/I$ is the natural projection and $\sigma: \k Q/I \to \k \text{Irr}_S$ is the inverse of the restriction $\pi|_{\k \text{Irr}_S}$. In other words, for any path p in Q, $\sigma \pi(p)$ may be obtained by performing reductions (with respect to R) on p until all elements are irreducible. Here δ coincides with the differential of the cochain complex associated to the Bardzell–Chouhy–Solotar resolution and
two first-order deformations of \(R \) are equivalent if and only if the corresponding 2-cocycles \(\tilde{\varphi} \) and \(\tilde{\varphi}' \) are cohomologous [BW20, §7.A].

Corollary 4.13 gives a straightforward method to compute \(\text{HH}^2(A, A) \) and in §5 we will apply this to the algebra \(K^n_m = k \mathcal{Q}^n_m / T^n_m \) with the reduction system \(R^n_m \).

5. \(\mathcal{A}_\infty \) deformations and Stroppel’s Conjecture

We now apply the general theory in §4 to the extended Khovanov arc algebras, viewing \(K^n_m = k \mathcal{Q}^n_m / I^n_m \) and its Koszul dual \(R^n_m = k \mathcal{Q}^n_m / T^n_m \) as bigraded algebras by assigning any arrow \(a \in Q^n_m \) the bidegree \((1, -1)\) and any \(\bar{a} \in \mathcal{Q}^n_m \) the bidegree \((0, 1)\).\(^4\) Theorem 4.2 gives for each \(q \in \mathbb{Z} \) an isomorphism
\[
\text{HH}^q_q(K^n_n, K^n_m) \simeq \text{HH}^q_q(R^n_n, R^n_m)
\]
whence Stroppel’s Conjecture 1.1 is equivalent to
\[
\text{HH}^q_q(R^n_n, R^n_m) = 0 \quad \text{if } i \neq 0.
\]
By §4.3 these cohomology groups may be computed as certain equivalence classes of first-order deformations of the reduction system \(R^n_m \).

The following vanishing result holds for degree reasons.

Lemma 5.2. If either \(i \) is odd, \(i < 0 \) or \(i > 2mn - 2 \) then
\[
\text{HH}^q_q(K^n_n, K^n_m) \simeq \text{HH}^q_q(R^n_n, R^n_m) = 0.
\]

Proof. Using the Koszul resolution of \(K^n_m \) (see the proof of Proposition 4.7), the 2-cocycles of \(\text{HH}^q_q(K^n_n, K^n_m) \) lie in \(\text{Hom}_{kQ^n_m}((I^n_m)^2, R^n_m) = \text{Hom}_{kQ^n_m}((I^n_m)^2, R^n_m) \) (see Remark 4.6). By Proposition 2.7 parallel paths have the same parity, so if \(i \) is odd then \(\text{Hom}_{kQ^n_m}((I^n_m)^2, (R^n_m)^i) = 0 \) whence \(\text{HH}^q_q(R^n_n, R^n_m) = 0 \).

Since \((R^n_m)^i = 0 \) if \(i < 0 \) or \(i > 2mn \) by Remark 3.22, we obtain \(\text{HH}^q_q(R^n_n, R^n_m) = 0 \) in this case. Let us consider \(i = 2mn \). Note that the longest irreducible path is of length \(2mn \) and parallel to the vertex \(e_{\lambda} \) where \(\lambda \) is the highest weight and elements in \((I^n_m)^2 \) are not parallel to \(e_{\lambda} \), i.e. there are no quadratic relations at \(e_{\lambda} \), so that \(\text{Hom}_{kQ^n_m}((I^n_m)^2, (R^n_m)^{2mn}) = 0 \) whence \(\text{HH}^q_q(R^n_n, R^n_m) = 0 \). \(\square \)

The next vanishing result holds by direct computation.

Lemma 5.3. \(\text{HH}^q_q(K^n_n, K^n_m) \simeq \text{HH}^q_q(R^n_n, R^n_m) = 0 \).

Proof. We apply Corollary 4.13. Note that an element \(\tilde{\varphi} \) in \(\text{Hom}_{kQ^n_m}(k \mathcal{S}^n_m, R^n_m)_{2mn-2} \) has the following general form
\[
\tilde{\varphi}_{y_0 z_0} = \alpha \bar{x}_1 \ldots mn-1 y_{mn-1} \ldots 1
\]
for \(\alpha \in k \) and \(\tilde{\varphi}_s = 0 \) for all other \(s \in \mathcal{S}^n_m \). Denote \(\bar{R} = \{(s, \varphi_s + \tilde{\varphi}_s t)\}_{s \in \mathcal{S}^n_m} \). Observe that the irreducible paths parallel to each overlap are of length smaller than \(2mn - 2 \), so all overlaps have to reduce to zero. It follows that all overlaps are resolvable in \(\bar{R} \), i.e. \(\bar{R} \) is a first-order deformation of \(R^n_n \).

We claim that \(\bar{R} \) is equivalent to the trivial deformation. Indeed, consider \(\psi \in \text{Hom}_{kQ^n_m}(k \mathcal{Q}^n_m, R^n_m)_{2mn-2} \) given by \(\psi_{y_0} = (-1)^{n-m} \alpha \bar{x}_0 \ldots mn-2 y_{mn-2} \ldots 1 \).\(^4\)

\(^4\) In the notation of §4, we are considering filtered associative deformations of \(A = K^n_m \) (so that \(Q = \mathcal{Q}^n_m \)) and \(\mathcal{A}_\infty \) deformations of \(A' = K^n_m \).
and $\psi_x = 0 = \psi_y$ for all the other arrows \bar{x} and \bar{y}. Then we have
\[
\delta(\psi)_{\bar{y}_0 \bar{x}_0} = \bar{y}_0 \psi_{\bar{x}_0} = (-1)^{n-m} \alpha \bar{y}_0 \bar{x}_0 \cdots \bar{y}_{mn-2} \bar{y}_{mn-2} \cdots 1 = \alpha \bar{x}_1 \cdots \bar{y}_{nm-1} \bar{y}_{nm-1} \cdots 1
\]
where the last equality follows from Lemma 3.27.

The following theorem shows that, contrary to Conjecture 1.1, HH^2_n also has nonvanishing components HH^2_i for $i \neq 0$.

Theorem 5.4. Let $m, n \geq 2$. Then
\[
\dim_k \text{HH}^2_{2mn-6}(K^n_m, K^n_m) \simeq \dim_k \text{HH}^2_{2mn-6}(\overline{K}^n_m, \overline{K}^n_m) = 1.
\]
As a result, K^n_m is not intrinsically formal.

In the rest of this section we will give a proof of this theorem by using the results of §4.3 to calculate the Hochschild cohomology $\text{HH}^2_{2mn-6}(\overline{K}^n_m, \overline{K}^n_m)$ as equivalence classes of certain first-order deformations of the reduction system \overline{K}^n_m. From now on we assume that $m \geq n$ since by [MS22, Proof of Cor. 1.5] we have $K^n_m \simeq (K^n_m)^{op}$, so that it follows from [CLW20, Prop. 6.4] (cf. [Lod98, E.2.1.4]) that K^n_m and K^n_m have the same (bigraded) Hochschild cohomology and the same deformation theory.

5.1. **The case K^2_2.** We first give a proof of Theorem 5.4 for the case $(m, n) = (2, 2)$ which also serves as a blueprint for the general case $m, n \geq 2$. An illustration of the degree 0 and 1 arc diagrams of K^2_2 and the vertices and arrows of the Koszul dual \overline{K}^2_2 are given in Fig. 10.
The reduction system \mathbf{K}_2^1 (see §3.3) for \mathbf{K}_2^1 is given by the following set of pairs

\[
\begin{align*}
(\bar{y}_2 \bar{x}_2, 0) & \quad (\bar{y}_{11} \bar{x}_{11}, -\bar{x}_{21} \bar{y}_{21} - \bar{x}_{12} \bar{y}_{12}) & \quad (\bar{y}_2 \bar{x}_{21}, -\bar{y}_{32} \bar{y}_{22}) & \quad (\bar{y}_{22} \bar{x}_{22}, -\bar{x}_{32} \bar{y}_{32}) \\
(\bar{y}_2 \bar{y}_{11}, 0) & \quad (\bar{y}_{31} \bar{x}_{12}, -\bar{y}_{22} \bar{y}_{21} - \bar{x}_{32} \bar{y}_{22}) & \quad (\bar{y}_{21} \bar{x}_{12}, -\bar{x}_{22} \bar{y}_{31}) & \quad (\bar{y}_{12} \bar{x}_{2}, -\bar{x}_{31} \bar{y}_{32}) \\
(\bar{x}_{11} \bar{x}_2, 0) & \quad (\bar{x}_{12} \bar{x}_{31}, -\bar{x}_{21} \bar{x}_{22} - \bar{x}_{22} \bar{y}_{32}) & \quad (\bar{y}_{12} \bar{x}_{21}, -\bar{x}_{31} \bar{y}_{22}) & \quad (\bar{y}_{22} \bar{x}_{12}, -\bar{x}_{32} \bar{y}_{31}) \\
(\bar{y}_2 \bar{x}_{21}, 0) & \quad (\bar{y}_{32} \bar{x}_{32}, 0) & \quad (\bar{y}_{31} \bar{x}_{31}, -\bar{x}_{32} \bar{y}_{32}) & \quad (\bar{y}_{21} \bar{x}_{2}, -\bar{x}_{22} \bar{y}_{32})
\end{align*}
\]

so that

$$\bar{S}_2^1 = \{ \bar{y}_2 \bar{x}_2, \bar{y}_{11} \bar{x}_{11}, \bar{y}_{12} \bar{x}_{21}, \bar{y}_{22} \bar{x}_{22}, \bar{y}_{31} \bar{x}_{12}, \bar{y}_{32} \bar{x}_{32}, \bar{y}_{31} \bar{x}_{31}, \bar{y}_{31} \bar{x}_{21} \}.$$

We thus have eight overlaps

$$\bar{y}_2 \bar{x}_{12} \bar{x}_{31}, \quad \bar{y}_{12} \bar{x}_{12} \bar{x}_{31}, \quad \bar{y}_{21} \bar{x}_{12} \bar{x}_{31}, \quad \bar{y}_{11} \bar{x}_{11} \bar{x}_{2},$$

$$\bar{y}_{31} \bar{x}_{12} \bar{x}_{2}, \quad \bar{y}_{31} \bar{x}_{12} \bar{x}_{2}, \quad \bar{y}_{31} \bar{x}_{12} \bar{x}_{21}, \quad \bar{y}_{21} \bar{x}_{21} \bar{x}_{31}.$$

Proposition 5.5. $\dim_k \text{HH}^2_0(\mathbf{K}_2^1, \mathbf{K}_2^1) = \dim_k \text{HH}^2_0(\mathbf{K}_2^1, \mathbf{K}_2^1) = 1.$

Proof. Let $\{(s, \phi_s + \bar{\varphi}, t)\} \in \bar{S}_2^1$ be a first-order deformation of \mathbf{K}_2^1 corresponding to a cocycle in $\text{HH}^2_0(\mathbf{K}_2^1, \mathbf{K}_2^1)$ as in §4.3. Here, $\bar{\varphi}_s$ is the image of s under the cochain $\bar{\varphi} \in \text{Hom}_{\text{KQ}_0}(\mathbf{K}_2^1, \mathbf{K}_2^1)_2$. Note that $\bar{\varphi}_s$ has the following form

$$\begin{align*}
\bar{\varphi}_{y_{11} \bar{x}_{11}} &= \alpha_1 \bar{x}_{21} \bar{x}_{22} \bar{y}_{22} \bar{y}_{21} + \alpha_2 \bar{x}_{21} \bar{x}_{22} \bar{x}_{32} \bar{y}_{32} + \alpha_3 \bar{x}_{22} \bar{x}_{32} \bar{y}_{22} \bar{y}_{21} \\
\bar{\varphi}_{y_{21} \bar{x}_{21}} &= \alpha_4 \bar{x}_{22} \bar{x}_{32} \bar{y}_{32} \bar{y}_{22} + \alpha_5 \bar{x}_{31} \bar{x}_{32} \bar{y}_{31} \bar{y}_{32} \\
\bar{\varphi}_{y_{12} \bar{x}_{12}} &= \alpha_6 \bar{x}_{11} \bar{x}_{21} \bar{x}_{22} \bar{x}_{32} + \alpha_7 \bar{y}_{32} \bar{y}_{22} \bar{y}_{21} \bar{y}_{11} \\
\bar{\varphi}_{y_{21} \bar{x}_{21}} &= \alpha_8 \bar{x}_{22} \bar{x}_{32} \bar{x}_{32} \bar{y}_{32} \bar{y}_{22} + \alpha_9 \bar{x}_{31} \bar{x}_{32} \bar{x}_{32} \bar{y}_{32} \bar{y}_{22} \\
\bar{\varphi}_{y_{21} \bar{x}_{21}} &= \alpha_{10} \bar{x}_{21} \bar{x}_{22} \bar{x}_{32} \bar{y}_{32} \bar{y}_{22} + \alpha_{11} \bar{x}_{22} \bar{x}_{32} \bar{x}_{32} \bar{y}_{32} \bar{y}_{22}
\end{align*}$$

(5.6)

for some coefficients $\alpha_1, \ldots, \alpha_{11} \in \mathbf{k}$ and $\bar{\varphi}_s = 0$ for all other $s \in \bar{S}_2^1$. Note that none of the overlaps has a parallel irreducible path of length ≥ 5, whence they are resolvable in the first-order deformation, i.e. any cochain $\bar{\varphi}$ is a cocycle.

Next we compute the coboundaries. An element $\psi \in \text{Hom}_{\text{KQ}_0}(\mathbf{k}(\mathbf{K}_2^1)_1, \mathbf{K}_2^1)_2$ is of the form

$$\begin{align*}
\psi_{x_{11}} &= \mu_1 \bar{x}_{11} \bar{x}_{21} \bar{y}_{21} + \mu_2 \bar{x}_{11} \bar{x}_{12} \bar{y}_{12} \\
\psi_{y_{21}} &= \mu_3 \bar{x}_{21} \bar{x}_{22} \bar{x}_{32} \bar{y}_{22} + \mu_4 \bar{x}_{22} \bar{x}_{32} \bar{y}_{22} \\
\psi_{x_{12}} &= \mu_5 \bar{x}_{21} \bar{x}_{22} \bar{x}_{31} + \mu_6 \bar{x}_{22} \bar{x}_{32} \bar{y}_{31} \\
\psi_{x_{22}} &= \mu_7 \bar{x}_{22} \bar{x}_{32} \bar{y}_{32} \bar{y}_{22} \\
\psi_{x_{31}} &= \mu_8 \bar{x}_{31} \bar{x}_{32} \bar{y}_{32} \\
\psi_{x_{32}} &= \mu_9 \bar{x}_{21} \bar{x}_{22} \bar{x}_{32} \\
\psi_{y_{11}} &= \nu_1 \bar{x}_{21} \bar{y}_{21} \bar{y}_{21} + \nu_2 \bar{x}_{12} \bar{y}_{21} \bar{y}_{11} \\
\psi_{y_{21}} &= \nu_3 \bar{x}_{22} \bar{y}_{22} \bar{y}_{21} + \nu_4 \bar{x}_{22} \bar{x}_{32} \bar{y}_{22} \\
\psi_{y_{12}} &= \nu_5 \bar{x}_{31} \bar{y}_{31} \bar{y}_{31} + \nu_6 \bar{x}_{31} \bar{x}_{32} \bar{y}_{31} \\
\psi_{y_{22}} &= \nu_7 \bar{x}_{32} \bar{x}_{32} \bar{y}_{32} \bar{y}_{22} \\
\psi_{y_{31}} &= \nu_8 \bar{x}_{22} \bar{x}_{32} \bar{y}_{31} \\
\psi_{y_{32}} &= \nu_9 \bar{x}_{22} \bar{x}_{32} \bar{y}_{31} \\
\psi_{y_{21}} &= \nu_9 \bar{x}_{22} \bar{x}_{32} \bar{y}_{31}
\end{align*}$$
and $\psi_{x_{32}} = 0 = \psi_{y_{12}}$, where $\mu_1, \ldots, \mu_9, \nu_1, \ldots, \nu_9 \in k$. If $\delta(\psi)_s = \tilde{\varphi}_s$ for each $s \in S_m$, then using (4.14) we obtain the following eleven equations

\[-\mu_1 - \nu_1 - \mu_2 - \nu_2 + \mu_3 + \nu_3 - \mu_5 - \nu_5 = \alpha_1\]
\[-\mu_1 - \mu_2 + \nu_4 - \mu_5 - \nu_6 = \alpha_2\]
\[-\mu_1 - \nu_1 - \nu_2 + \mu_4 - \nu_5 - \mu_6 = \alpha_3\]
\[-\nu_4 - \mu_4 = \alpha_4\]
\[-\mu_1 + \mu_2 + \mu_9 = \alpha_6\]
\[-\nu_1 + \nu_2 + \nu_9 = \alpha_7\]
\[\nu_3 - \mu_3 + \mu_5 - \mu_7 - \mu_8 + \mu_9 = \alpha_{10}\]
\[-\mu_3 - \mu_5 + \mu_7 - \mu_8 + \mu_9 = \alpha_{11}\]

Let us check the first three equations. For this, we have

\[\delta(\psi)_{y_{11}x_{11}} = \psi_{y_{11}x_{11}} + \psi_{y_{11}x_{21}} + \psi_{x_{21}y_{21}} + \psi_{x_{21}y_{12}} + \psi_{x_{12}y_{12}} = \psi_{y_{11}x_{11}} + \psi_{y_{11}x_{21}} + \psi_{x_{21}y_{21}} + \psi_{x_{21}y_{12}} + \psi_{x_{12}y_{12}}\]

where $\beta_1 := -\mu_1 - \nu_1 - \mu_2 - \nu_2 + \mu_3 + \nu_3 - \mu_5 - \nu_5$, $\beta_2 := -\nu_1 - \nu_2 + \mu_4 - \mu_5 - \nu_6$, and $\beta_3 := -\mu_1 - \nu_2 + \mu_4 - \mu_5 - \nu_6$, and the third equality follows by performing reductions (with respect to R_2) on each term. For instance, we have

\[x_{21}y_{21}y_{11}x_{11} = x_{21}y_{21}x_{12}y_{12} - x_{21}y_{21}x_{12}y_{12} = x_{21}x_{22}y_{31}y_{12}\]

where the first equality follows by performing reductions on $y_{11}x_{11}$, the second one on $y_{21}x_{21}$ and $y_{21}x_{12}$, and the third one on $y_{31}y_{12}$. Then by $\delta(\psi)_{y_{11}x_{11}} = \varphi_{y_{11}x_{11}}$ we obtain the first three equations. Similarly we may verify the other equations.

From the above eleven equations we observe that

\[(5.7) \quad -\alpha_2 + \alpha_3 - \alpha_6 + \alpha_7 - \alpha_8 + \alpha_9 + \alpha_{10} - \alpha_{11} = 0.\]

Moreover, writing the coefficients as an (18×11)-matrix, the rank of this matrix is seen to be 10, i.e. (5.7) turns out to be the unique constraint for φ to be a coboundary. Thus, $HH^2_\mathbb{R}(K_2, K_2)$ is 1-dimensional. By (5.7) an explicit nontrivial cocycle can be given by setting $\alpha_2 = 1$ and $\alpha_i = 0$ for $i \neq 2$.

Corollary 5.8. We have that $\dim_k(\bigoplus_{s \neq 0, 2} HH^2_\mathbb{R}(K_2, K_2)) = 1$. Moreover, K_2 admits a unique A_∞ deformation (up to A_∞ isomorphism) given on arrows by setting

\[m_2(y_2 \otimes x_{32} \otimes x_{22} \otimes x_{21}) = x_{11}y_{11}\]

and $m_4 = 0$ when restricting to other arrows and setting $m_i = 0$ for $i \neq 2, 4$ for all arrows.

Proof. The first assertion follows from Proposition 5.5 and Lemmas 5.2 and 5.3.

For the second assertion, there is a nontrivial cocycle φ in $HH^2_\mathbb{R}(K_2, K_2)$ given by $\alpha_2 = 1$ and $\alpha_i = 0$ for $i \neq 2$, as in the proof of Proposition 5.5. Note that $\{(s, \varphi_s + \tilde{\varphi}_s)\}_{s \in S_2}$ is an actual deformation of R_2, i.e. it is reduction-finite and reduction-unique so that R_2 admits a filtered deformation by changing the relation $y_{11}x_{11} + x_{21}y_{21} + x_{12}y_{12} = 0$ into

\[y_{11}x_{11} + x_{21}y_{21} + x_{12}y_{12} = x_{22}y_{32}y_{22}y_{21}.\]
By Proposition 4.7, the minimal model of the derived endomorphism algebra of \(k(\Omega^n_m)_0 \) is an \(A_\infty \) deformation of \(K^n_2 \).

See Fig. 11 for a diagrammatic interpretation of the \(A_\infty \) deformation of \(K^n_2 \) given in Corollary 5.8. (A diagrammatic description of the arrows in \(K^n_2 \) was given in Fig. 10.) This \(A_\infty \) deformation appears to correspond to using the usual surgery/reorientation rules for \(K^n_m \), but breaking the rule \(\zeta \otimes \zeta \mapsto 0 \) exactly once by using \(\zeta \otimes \zeta \mapsto \zeta \otimes \zeta \) of degree \(-2\) of the form

\[
\begin{array}{c}
\cdots \cdots \mapsto \cdots \cdots \\
\end{array}
\]

(For higher \(m, n \) also other rules appear to be broken, but we do not give a full description here.) It would also be interesting to compare this to a diagrammatic interpretation of the deformations of \(\overline{K}^n_m \) (cf. Remark 3.23).

Remark 5.9. We also have \(\text{HH}^2(K^n_2, \overline{K}^n_2) \neq 0 \). For this, we show that there is a nontrivial cocycle given by \(\overline{\varphi} \in \text{Hom}_{kQ^n_0}(k\overline{S}^n_2, \overline{K}^n_2)_0 = \text{Hom}_{kQ^n_0}(k\overline{S}^n_2, (k\overline{S}^n_2)_2) \) such that

\[
\overline{\varphi}_{y_1, x_{11}} = \bar{x}_2 \bar{y}_2
\]

and \(\overline{\varphi}_s = 0 \) for all the other \(s \in \overline{S}^n_2 \). The overlaps are resolvable in the first-order deformation \(\{(s, \varphi_s + \overline{\varphi}_s t)\}_{s \in \overline{S}^n_2} \) as follows. The involved overlaps are \(\bar{y}_{11} \bar{x}_{11} \bar{x}_2 \) and \(\bar{y}_2 \bar{y}_{11} \bar{x}_{11} \). Let us only verify for \(\bar{y}_{11} \bar{x}_{11} \bar{x}_2 \). For this, we have

\[
\begin{align*}
\bar{y}_{11} \bar{x}_{11} \bar{x}_2 & \mapsto -\bar{x}_{21} \bar{y}_{21} \bar{x}_2 - \bar{x}_{12} \bar{y}_{12} \bar{x}_2 + \bar{x}_2 \bar{y}_2 \bar{x}_2 t \mapsto 0 \\
\bar{y}_{11} \bar{x}_{11} \bar{x}_2 & \mapsto 0
\end{align*}
\]

where we use \(\bar{y}_2 \bar{x}_2 = 0 \) and \(\bar{x}_{11} \bar{x}_2 = 0 \). Let us show that \(\overline{\varphi} \) is not a coboundary. Note that an element \(\psi \in \text{Hom}_{kQ^n_0}(k(\overline{S}^n_2)_1, (\overline{K}^n_2)_1) \) has the following general form \(\psi(a) = \beta_a a \) for each arrow \(a \in \overline{K}^n_2 \) where \(\beta_a \in k \). Since \(\bar{x}_2 \bar{y}_2 \) does not appear in \(\overline{K}^n_2 \) it follows that \(\delta(\psi)_{y_{11}, x_{11}} \) cannot equal \(\bar{x}_2 \bar{y}_2 \). This shows that \(K^n_2 \) also admits a nontrivial (graded) associative deformation.

5.2. The general case \(K^n_m \). The case \((m, n) = (2, 2) \) was proved in Proposition 5.5. We thus assume that \((m, n) \neq (2, 2) \). Although \(\overline{K}^n_m \) is generally much more complicated than \(K^n_2 \) (cf. Fig. 4), we may exploit the fact that the long irreducible paths in \(\overline{K}^n_m \) have a structure quite similar to those of \(K^n_2 \). (By Lemmas 5.2 and 5.3, \(\text{HH}^2_{2mn-6} \) appearing in Theorem 5.4 is the top nonvanishing component of \(\text{HH}^2 \) with

\[
\begin{align*}
\end{align*}
\]
respect to the lower index corresponding to the Adams grading.) The computation of $\text{HH}^{2m-n}_2(K_m^n, \overline{K}_m^n)$ for general (m, n) then parallels the proof for $(m, n) = (2, 2)$ and is for the most part an exercise in labelling the arrows appearing in long paths and keeping track of the indices which is why we relegate the technical computations to the appendix. The arrows appearing in the computation are illustrated in Fig. 12.

Note that any element $\tilde{\varphi} \in \text{Hom}_{kQ_0}(k\overline{S}_m^n, \overline{K}_m^n)_{2mn - 6}$ (cf. (5.6)) is of the form

$$\tilde{\varphi}_{Y_0, X_0} = \alpha_1 \tilde{x}_{1 \ldots nm - 2} y_{nm - 2} + \alpha_2 \tilde{x}_{1 \ldots nm - 1} y_{nm - 1} + \alpha_3 \tilde{x}_{3 \ldots nm + 2} y_{nm - 1}$$

$$\tilde{\varphi}_{Y_1, X_1} = \alpha_4 \tilde{x}_{2 \ldots nm - 1} y_{nm - 1}$$

$$\tilde{\varphi}_{Y_2, X_2} = \alpha_5 \tilde{x}_{1 \ldots nm + 1} y_{nm - 1} + \alpha_6 \tilde{x}_{1 \ldots nm + 1} y_{nm - 1}$$

$$\tilde{\varphi}_{X_0, Y_0} = \alpha_7 \tilde{x}_{3 \ldots nm + 1} y_{nm - 1} + \alpha_8 \tilde{x}_{2 \ldots nm - 1} y_{nm - 1}$$

$$\tilde{\varphi}_{X_1, Y_1} = \alpha_9 \tilde{x}_{2 \ldots nm + 1} y_{nm - 1} + \alpha_{10} \tilde{x}_{1 \ldots nm + 1} y_{nm - 1}$$

$$\tilde{\varphi}_{X_2, Y_2} = \alpha_{11} \tilde{x}_{3 \ldots nm + 1} y_{nm - 1}$$

(5.10)

and $\tilde{\varphi}_s = 0$ for all other $s \in \overline{S}_m^n$, where $\alpha_1, \ldots, \alpha_{11} \in k$. The arrows appearing in (5.10) are illustrated in Fig. 12. The space $\text{Hom}_{kQ_0}(k\overline{S}_m^n, \overline{K}_m^n)_{2mn - 6}$ is thus of dimension 11.

Let w be any overlap of \overline{S}_m^n starting from e_λ and ending at e_μ for some weights λ, μ. Observe that $|\lambda| + |\mu| \leq 2mn - 4$ (for instance, the equality only holds for $\tilde{y}_0 \tilde{x}_0 \tilde{x}_3$ and $\tilde{y}_2 \tilde{y}_0 \tilde{x}_0$). By Remark 3.22, there are no irreducible paths of length $\geq 2mn - 3$ parallel to w. So all overlaps will reduce to zero after using $\tilde{\varphi}$, whence $R = \{ (s, \varphi + \tilde{\varphi}, t) \}_{s \in \overline{S}_m^n}$ is vacuously reduction-unique — even when evaluating t to any constant in k.

Proposition 5.11. The element $\tilde{\varphi}$ in (5.10) induces a trivial first-order deformation of R if and only if the coefficients $\alpha_1, \ldots, \alpha_{11}$ satisfy

$$-(1)^n \alpha_2 + (1)^n \alpha_3 = (1)^n \alpha_6 + (1)^n \alpha_7 - \alpha_8 + \alpha_9 + \alpha_{10} - \alpha_{11} = 0.$$

(5.12)

The proof, which relies on some long and technical computations, can be found in the appendix. Proposition 5.11 directly yields our main result Theorem 5.4.

Proof of Theorem 5.4. It follows from Proposition 5.11 that the coboundary space is of dimension 10. Thus, $\text{HH}^{2mn-6}_2(\overline{K}_m^n, \overline{K}_m^n)$ is 1-dimensional.

Corollary 5.13. For $m, n \geq 2$, the algebra K_m^n admits a unique A_∞ deformation such that the only nontrivial higher product restricted to arrows is given by

$$m_{2mn-4}(y_1 \otimes \cdots \otimes y_{nm-1} \otimes x_{nm-1} \otimes \cdots \otimes x_{n+2} \otimes x_{n+1}^2 \otimes \cdots \otimes x_3^2) = x_0 y_0$$

where the arrows in this formula are illustrated in Fig. 12.

Proof. Consider $\tilde{\varphi}$ in (5.10) and take $\alpha_2 = 1$ and $\alpha_i = 0$ for $i \neq 2$. By Proposition 5.11 this $\tilde{\varphi}$ gives a nontrivial cocycle of $\text{HH}^{2mn-6}_2(\overline{K}_m^n, \overline{K}_m^n)$. As in the proof of Corollary 5.8 this induces a filtered deformation of \overline{K}_m^n, namely the algebra

$$B := \overline{kK}_m^n/(s - \varphi_s - \tilde{\varphi}_s)_{s \in \overline{S}_m^n}.$$
is a filtered deformation of K_m^n. By Proposition 4.7 we obtain that the minimal model $\mathsf{Ext}^2_{\mathsf{K}}(kQ_0,kQ_0)$ is an A_∞ deformation of K_m^n.

See Fig. 11 for a diagrammatic interpretation of this deformation for the case $m = n = 2$.

Remark 5.14 (The case $m \geq n = 1$). If $m \geq n = 1$ then by [ST01, Lem. 4.21] one has

$$\HH^2_{i-2}(\mathsf{K}_m^1, \mathsf{K}_m^1) \simeq \HH^2_{i-2}(\mathsf{K}_m^1, \mathsf{K}_m^1) = 0 \quad \text{for } i > 0$$

i.e. Stroppel’s Conjecture 1.1 holds. Using the language of reduction systems, this can be seen as follows. The reduction system R_m for K_m^n (Definition 3.13) is

$$\{ (\bar{g}_k \bar{x}_k, -\bar{x}_{k+1} \bar{g}_{k+1}) \}_{0 \leq k \leq m-2} \cup \{ (\bar{g}_{m-1} \bar{x}_{m-1}, 0) \}.$$

By Lemma 5.2 it suffices to prove $\HH^2_{2i-2}(\mathsf{K}_m^1, \mathsf{K}_m^n) = 0$ for $0 \leq i \leq m - 1$. For any fixed i, an element $\bar{\varphi} \in \text{Hom}_{kQ_0}(\mathsf{K}_m^n, \mathsf{K}_m^n)$ has the following general form

$$\bar{\varphi}_{\bar{g}_k \bar{x}_k} = \begin{cases} \alpha_k \bar{x}_{k+1} \ldots \bar{x}_{k+i} \bar{y}_{k+i+1} & \text{if } 0 \leq k < m - i, \\ 0 & \text{otherwise}. \end{cases}$$

Since there are no overlaps, any such $\bar{\varphi}$ is a cocycle. We claim that it is also a coboundary. Indeed, consider $\psi \in \text{Hom}_{kQ_0}(\mathsf{K}_m^n, \mathsf{K}_m^n)$ given by

$$\psi_{\bar{x}_k} = \beta_k \bar{x}_{k+1} \ldots \bar{x}_{k+i+1} \bar{y}_{k+i+1}$$

for each $0 \leq k < m - i$, where $\beta_k := \sum_{j=0}^{m-i-k} (-1)^j (-1)^i \alpha_{k+j}$. Then we have

$$\delta(\psi)_{\bar{g}_k \bar{x}_k} = \bar{g}_k \psi_{\bar{x}_k} + \psi_{\bar{x}_{k+1}} \bar{y}_{k+1} = ((-1)^j \beta_k + \beta_{k+1}) \bar{x}_{k+1} \ldots \bar{x}_{k+i+1} \bar{y}_{k+i+1}.$$

Noting that $(-1)^j \beta_k + \beta_{k+1} = \alpha_k$ this shows that $\delta(\psi) = \bar{\varphi}$.

5.3. Deformations of Fukaya categories. We close with a few remarks about the geometric interpretation of the A_∞ deformations of the extended Khovanov arc algebras K_m^n given in Corollary 5.13. For $k = \mathbb{C}$ it follows from recent work of Mak and Smith [MS22] that there is a quasi-equivalence between the DG category $\mathsf{perf}(\mathsf{K}_m^n)$ and the DG derived category $\mathcal{D}(\mathcal{FS}(\pi_m^n))$ of the Fukaya–Seidel category of a symplectic Lefschetz fibration

$$\pi_m^n : \text{Hilb}^n(A_{m+n-1}) \setminus D \to \mathbb{C}$$

defined on the affine complement of an ample divisor D on the Hilbert scheme of n points of the Milnor fibre of the surface singularity of type A_{m+n-1}. (See [SS06, Man06, AS16, AS19] for a similar collection of results for the classical Khovanov arc algebras.)

Under this equivalence, the indecomposable projective modules of K_m^n correspond to certain generators of $\mathcal{D}(\mathcal{FS}(\pi_m^n))$. (Note that in [MS22, App. A] it was shown that these generators do not correspond to the usual “geometric” generators of the Fukaya–Seidel category given by thimbles of vanishing cycles [Sei08].) The A_∞ deformations of K_m^n can thus be viewed as A_∞ deformations of $\mathcal{FS}(\pi_m^n)$. That is, our main algebraic result (Theorem 5.4) may be reformulated as follows.

Theorem 5.15. For any $m, n \geq 2$ the Fukaya–Seidel category $\mathcal{FS}(\pi_m^n)$ is not intrinsically formal.
Figure 12. A part of Q_m^n used in the proof of Theorem 5.4 where for simplicity the pairs of opposite arrows are drawn by an unoriented edge and only the label of the ascending arrow is given.
Moreover, Corollary 5.13 gives an explicit A_∞ deformation of $\mathcal{FS}(\pi_m^n)$ (see Fig. 11 for a diagrammatic interpretation of the higher multiplication).

The Hochschild cohomology of Fukaya categories played a central part in Kontsevich’s Homological Mirror Symmetry Conjecture [Kon95] and for compact symplectic manifolds is isomorphic to the quantum cohomology of the manifold [PSS96]. Deformations of Fukaya categories were discussed in Seidel’s ICM 2002 address [Sei02] and have been studied in various settings, for example they naturally appear in work of Auroux, Katzarkov and Orlov [AKO08] on mirror symmetry of noncommutative projective planes. In the context of the partially wrapped Fukaya categories of punctured surfaces as in [HKK17, LP20], certain algebraic deformations of the Fukaya category corresponding to elements in HH^2 can be interpreted from a symplectic viewpoint by allowing pseudo-holomorphic discs which cover a puncture and are thus related to partial compactifications of the symplectic manifold. We would be very interested in whether there exists a similar intrinsically symplectic interpretation for the explicit algebraic A_∞ deformations of K^n_m constructed in Corollary 5.13.

Note that a similar difficulty in interpreting algebraic deformations in geometric terms arises in the mirror-symmetric picture. Namely, let $D(X) = \text{D}^b(\text{coh}(X))$ be the bounded derived category of coherent sheaves on a complex algebraic variety X (which may or may not be the mirror of a symplectic manifold). Then the deformation theory of $D(X)$ (or of $\text{coh}(X)$) is parametrised by $\text{HH}^2(X)$ [LV05] and may be described explicitly as the A_∞ deformations of the derived endomorphism algebra of a strong generator \mathcal{E} [BKP18] or as deformations of $\mathcal{O}_X|_{\mathcal{U}}$ as a twisted presheaf of associative algebras [LV05, DHL22, BW21]. For instance, an explicit description was given for curves in [FP14] where the moduli of a curve X can be recovered as the moduli of A_∞ algebra structures on $\text{Ext}^{\ast}(\mathcal{E}, \mathcal{E})$. In other words, any algebraic deformation of $D(X)$ comes from a geometric deformation of the curve X.

This need no longer hold when X is higher-dimensional as can be seen already on the level of first-order deformations: When X is smooth, say, we have that

$$\text{HH}^2(A, A) \simeq \text{HH}^2(X) \simeq H^0(\Lambda^2T_X) \oplus H^1(T_X) \oplus H^2(\mathcal{O}_X)$$

by the Hochschild–Kostant–Rosenberg theorem and the second summand $H^1(T_X)$ controls the “geometric” deformations of X as an algebraic variety, whereas $H^0(\Lambda^2T_X)$ gives rise to “noncommutative” deformations corresponding to quantisations of algebraic Poisson structures on \mathcal{O}_X and $H^2(\mathcal{O}_X)$ to twists of the structure sheaf. In other words, algebraic deformations of $D(X)$, parametrised by $\text{HH}^2(X)$, lift one out of the world of classical algebraic geometry into noncommutative algebraic geometry, and we suspect that a similar phenomenon may occur on the symplectic side.

Acknowledgements

We express our gratitude to Catharina Stroppel for introducing us to the extended Khovanov arc algebras and for her suggestion to apply the combinatorial method developed in [BW20] to study their deformations. We would also like to thank Bernhard Keller, Steffen Koenig, Julian Külshammer, Yanbo Li, Ivan Smith, Jim Stasheff and Ben Webster for many helpful comments and discussions.
Part of this work was carried out during the Junior Trimester Program “New Trends in Representation Theory” at the Hausdorff Research Institute for Mathematics in Bonn, funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy – EXC-2047/1 – 390685813 whose support we gratefully acknowledge. The first-named author also warmly thanks the Institute of Algebra and Number Theory at the University of Stuttgart for the hospitality while working on this article. The second-named author was also supported by the Alexander von Humboldt Stiftung.

APPENDIX A. PROOF OF PROPOSITION 5.11

In this appendix we give a proof of Proposition 5.11 which is the key ingredient in the proof of our main result Theorem 5.4 for the case $m \geq n \geq 2$ and $(m,n) \neq (2,2)$.

An element $\psi \in \text{Hom}_{kQ_6^a}(k(Q_{m1}^a), (R_m^a)_{2mn-5})$ has the following general form

$$
\psi_{X_0} = \mu_1x_0 ... x_{nm-3}y_{nm-3} - 1
+ \mu_2x_0 ... x_{n(m-1)-2} y_{n(m-1)-1}... y_{nm-3} - 3 y_{nm-3} - n(y_{nm-3} - 1) - 1 y_{n(m-1)-2} - 1
+ \mu_3x_0 ... x_{nm-2} y_{nm-2} - n ... y_{nm-2} + 2 y_{nm-2} - 1
+ \mu_4x_0 ... x_{nm-1} y_{nm-1} - n ... y_{nm-1} + 3 y_{nm-1} - 3
\psi_{X_1} = \mu_5x_1 ... x_{nm-2} y_{nm-2} - 2 + \mu_6x_1 ... x_{nm-1} y_{nm-1} - n + 3 y_{nm-1} - 4
+ \mu_7x_2 ... x_{nm-1} y_{nm-1} - 1
\psi_{X_2} = \mu_8x_2 ... x_{nm-1} y_{nm-1} - 3
\psi_{X_3} = \mu_9x_1 ... x_{nm-2} y_{nm-2} - n + 1 y_{nm-2}^1 - n
+ \mu_{10}x_1 ... x_{nm-1} y_{nm-1} - n ... y_{nm-1} + 2 y_{nm-1} - 2 + 3 y_{nm-1} - 2
+ \mu_{11}x_2 ... x_{nm-1} y_{nm-1} - n ... y_{nm-1} + 1 y_{nm-1} - 2
\psi_{X_4} = \mu_{12}x_2 ... x_{nm-1} y_{nm-1} - n ... y_{nm-1} + 1 y_{nm-1} - 3
\psi_{X_5} = \mu_{13}x_3 ... x_{nm-1} y_{nm-1} - n ... y_{nm-1} + 1 y_{nm-1} - 3
\psi_{X_6} = \mu_{14}x_2 ... x_{nm-1} y_{nm-1} - n ... y_{nm-1} + 2 y_{nm-1} - 2
\psi_{X_7} = \mu_{15}x_1 ... x_{nm-1} y_{nm-1} - n ... y_{nm-1} + 2 y_{nm-1} + 1 y_{nm-1} - 4
$$

where ψ_{X_i} is involutive to ψ_{X_i} with coefficients ν_1, \ldots, ν_{15}. Note that $\psi_{X_i} = 0 = \psi_{Y_i}$ for all other arrows. It follows that the dimension of the vector space $\text{Hom}_{kQ_6^a}(k(Q_{m1}^a), (R_m^a)_{2mn-5})$ is 30. If $n = 2$, the terms with coefficient μ_4 and ν_4 do not exist, i.e., $\text{Hom}_{kQ_6^a}(k(Q_{m1}^a), (R_m^a)_{4m-5})$ is of dimension 28.

Recall that any element $\varphi \in \text{Hom}_{kQ_6^a}(k(S^m, R_m^a)_{2mn-4}$ has the form as in (5.10). Also recall the differential δ from (4.14).

Lemma A.1. $\delta(\psi) = \varphi$ if and only if the following eleven equations hold:

1. $\alpha_1 = -(-1)^{n+m}(\mu_1 + \nu_1) - (-1)^n(\mu_2 + \nu_2) + (\mu_3 + \nu_3) - (-1)^n(\mu_4 + \nu_4)$
2. $\alpha_2 = (-1)^{n-m}(\mu_3 - (-1)^n(\mu_4 + (-1)^n(\mu_5 + \nu_5) - (-1)^n(\mu_6 + \nu_6) - (-1)^n(\mu_7 + \nu_7) - (-1)^n(\mu_8 + \nu_8)$
3. $\alpha_3 = (-1)^{n-m}(\mu_5 - (-1)^n(\mu_6 + \nu_6) - (-1)^n(\mu_7 + \nu_7) - (-1)^n(\mu_8 + \nu_8)$
4. $\alpha_4 = (-\mu_7 + \nu_7)$
5. $\alpha_5 = (-1)^{n}(\mu_9 + \nu_9) - (-1)^{n}(\mu_{10} + \nu_{10}) + (\mu_{11} + \nu_{11})$
6. $\alpha_6 = -\mu_1 - (-1)^{n-m}(\mu_3 + \mu_5 + \mu_7 + \mu_9 + \mu_{11})$
\[\alpha_7 = -\nu_1 - (-1)^{n-m}\nu_3 + \nu_{15} \]
\[\alpha_8 = -\mu_{11} + \mu_{12} - (-1)^{m}\nu_5 - (-1)^{n}\nu_7 + (-1)^{n}\nu_{13} \]
\[\alpha_9 = -\nu_1 + \nu_{12} + (-1)^{m}\mu_5 - (-1)^{n}\mu_7 + (-1)^{n}\mu_{13} \]
\[\alpha_{10} = -(-1)^{m}\mu_5 - \mu_6 + \mu_{10} + \mu_{12} - (-1)^{n}\mu_{13} + (-1)^{n}\mu_{15} \]
\[\alpha_{11} = -(-1)^{m}\nu_5 - \nu_6 + \nu_{10} + \nu_{12} - (-1)^{n}\nu_{13} + (-1)^{n}\nu_{15}. \]

This lemma immediately yields Proposition 5.11.

Proof of Proposition 5.11. From Lemma A.1 it follows that if \(\bar{\varphi} \) is a coboundary then equation (5.12) holds. It not difficult to see that (5.12) is the only constraint since the rank of the coefficient matrix is 10. \(\square \)

The remaining part of this appendix is thus devoted to the proof of Lemma A.1. Note that the equations involving \(\alpha_3, \alpha_7, \alpha_9, \alpha_{11} \) may be obtained from those involving \(\alpha_2, \alpha_6, \alpha_8, \alpha_{10} \) by exchanging \(\mu_i \) and \(\nu_i \), and the others involving \(\alpha_1, \alpha_4, \alpha_5 \) are invariant under this operation. (This is the case because the reduction system \(\mathbb{K}_m \) is invariant under the involution in Remark 3.2.)

The proof of Lemma A.1 is divided into several computations which are performed by “chasing the diagram” in Fig. 12, i.e. by repeatedly using the anticommutativity and Plücker-type relations for the \(\mathbb{K}_m \) given in Proposition 3.3 for the paths appearing in the components of \(\delta(\psi) \). In this process, some of the terms appearing from applying the Plücker-type relations vanish due to the following observation.

Observation A.2. Let \(p = \bar{y}^{\lambda_1}_{\lambda_1} \bar{y}^{\lambda_2}_{\lambda_2} \cdots \bar{y}^{\lambda_{k+1}}_{\lambda_{k+1}} \) be any ascending path in \(\mathbb{Q}_m \) such that \(\lambda_1 \) is the lowest weight (i.e. \(|\lambda_1| = 0 \)) and \(|\lambda_{k+1}| = k \). Assume that \(\bar{y}^{\lambda_1}_{\lambda_{i-1}} \bar{y}^{\lambda_{i+1}}_{\lambda_i} \) lies in Fig. 5 (c) for some \(1 < i \leq k \) such that \(\lambda_i \) is the right vertex in the figure. Denote by \(\lambda'_i \) the left vertex. Then
\[p = -\bar{y}^{\lambda_2}_{\lambda_2} \bar{y}^{\lambda_3}_{\lambda_3} \cdots \bar{y}^{\lambda_i}_{\lambda_i} \bar{y}^{\lambda_{i+1}}_{\lambda_{i+1}} \cdots \bar{y}^{\lambda_{k+1}}_{\lambda_{k+1}}. \]

A similar statement holds for descending paths.

Proof. We have \(\bar{y}^{\lambda_1}_{\lambda_{i-1}} \bar{y}^{\lambda_{i+1}}_{\lambda_i} = -\bar{y}^{\lambda'_i}_{\lambda_{i-1}} \bar{y}^{\lambda_{i+1}}_{\lambda'_{i+1}} - \bar{x}^{\lambda_{i-1}}_{\lambda_i} \bar{y}^{\lambda_{i+1}}_{\lambda_i} \) by the Plücker-type relation given in Proposition 3.3, where \(\kappa \) is the bottom vertex in Fig. 5 (c) whence we have
\[p = -\bar{y}^{\lambda_2}_{\lambda_2} \bar{y}^{\lambda_3}_{\lambda_3} \cdots \bar{y}^{\lambda_i}_{\lambda_i} \bar{y}^{\lambda_{i+1}}_{\lambda_{i+1}} \cdots \bar{y}^{\lambda_{k+1}}_{\lambda_{k+1}} - \bar{y}^{\lambda_2}_{\lambda_2} \bar{y}^{\lambda_3}_{\lambda_3} \cdots \bar{y}^{\lambda_{k+1}}_{\lambda_{k+1}}. \]
The desired equality then follows since \(\bar{y}^{\lambda_2}_{\lambda_2} \bar{y}^{\lambda_3}_{\lambda_3} \cdots \bar{y}^{\lambda_{k+1}}_{\lambda_{k+1}} = 0 \) by Remark 3.22. \(\square \)

A.1. **The term** \(\delta(\psi)_{\bar{Y}_0 \bar{X}_0} \). The following lemma proves \(\frac{\partial}{\partial \bar{Y}} \) of Lemma A.1. The computations for the remaining \(\frac{\partial}{\partial \bar{X}} \) are very similar.

Lemma A.3. \(\delta(\psi)_{\bar{Y}_0 \bar{X}_0} = \bar{\varphi}_{\bar{Y}_0 \bar{X}_0} \) if and only if the first three equations in Lemma A.1 involving \(\alpha_1, \alpha_2, \alpha_3 \) hold.

Proof. Since \(\bar{Y}_0 \bar{X}_0 + \bar{X}_1 \bar{Y}_1 + \bar{X}_3 \bar{Y}_3 = 0 \), we have
\[\delta(\psi)_{\bar{Y}_0 \bar{X}_0} = \psi_{\bar{Y}_0} \bar{X}_0 + \bar{Y}_0 \psi_{\bar{X}_0} + \psi_{\bar{X}_1} \bar{Y}_1 + \bar{X}_1 \psi_{\bar{Y}_1} + \psi_{\bar{X}_3} \bar{Y}_3 + \bar{X}_3 \psi_{\bar{Y}_3} \]
where $\psi_{Y_0}X_0$ is the product of ψ_{Y_0} and X_0 in \mathbb{R}_m^n and similarly for the other terms. Note that $\psi_{Y_0}X_0, X_1\psi_{Y_1}, X_2\psi_{Y_2}$ may be obtained from $Y_0\psi_{X_0}, \psi_{X_1}Y_1, \psi_{X_2}Y_3$, respectively, by taking the involution in Remark 3.2 (and exchanging μ_i and ν_i). Therefore, it suffices to compute the latter ones. We first claim

\begin{equation}
\bar{Y}_0\psi_{X_0} = (-1)^{n+m+\mu_1} - (-1)^{n+\mu_2}\bar{x}_{1\ldots nm-2}\bar{y}_{nm-2}\ldots
\end{equation}

(A.4)

To see this, note that $\bar{Y}_1 = \bar{y}_0$ (see Fig. 12), whence by definition of ψ_{X_0} we have

\begin{align*}
\bar{Y}_0\psi_{X_0} &= \mu_1\bar{y}_0\bar{x}_{0\ldots nm-3}\bar{y}_{nm-3}\ldots
+ \mu_2\bar{y}_0\bar{x}_{0\ldots (m-1)}\bar{y}_0\bar{x}_{0\ldots (m-1)-2}\ldots
+ \mu_3\bar{y}_0\bar{x}_{0\ldots (n-2)}\bar{y}_0\bar{x}_{0\ldots (n-2)+2}\ldots
+ \mu_4\bar{y}_0\bar{x}_{0\ldots (n-1)}\bar{y}_0\bar{x}_{0\ldots (n-1)+2}\ldots
\end{align*}

Applying Lemma 3.31 to the second summand and Lemma 3.27 (with $i = 0$) to the other three summands we obtain (A.4).

We also claim that

\begin{equation}
\psi_{X_1}Y_1 = \mu_5\bar{x}_{1\ldots nm-2}\bar{y}_{nm-2}\ldots
\end{equation}

(A.5)

Indeed, note that $\bar{Y}_1 = \bar{y}_1$ so that by definition of ψ_{X_1} we have

\begin{align*}
\psi_{X_1}Y_1 &= \mu_5\bar{x}_{1\ldots nm-2}\bar{y}_{nm-2}\ldots + \mu_6\bar{x}_{1\ldots nm-1}\bar{y}_{nm-1}\ldots
+ \mu_7\bar{x}_{3\ldots n+1}\bar{x}_{n+2}\ldots
\end{align*}

It suffices to perform reductions on the second summand. For this, we have

\begin{align*}
\mu_6\bar{x}_{1\ldots nm-1}\bar{y}_{nm-1}\ldots &+ \bar{y}_{nm-2}\bar{y}_{nm-3}\ldots
= \mu_6\bar{x}_{1\ldots nm-1}\bar{y}_{nm-1}\ldots + \bar{y}_{nm-2}\bar{y}_{nm-3}\ldots
+ \mu_6\bar{x}_{1\ldots nm-1}\bar{y}_{nm-1}\ldots
+ \bar{y}_{nm-2}\bar{y}_{nm-3}\ldots
\end{align*}

where the first equality uses the relation $\bar{y}_0^2\bar{y}_2\bar{y}_1 = \bar{y}_0^2\bar{y}_2\bar{y}_1$ in Lemma 3.6, the second one uses the Plücker-type relation $\bar{y}_0^2\bar{y}_2\bar{y}_1 = -\bar{y}_0^2\bar{y}_2\bar{y}_1$ and the anticommutativity relations $\bar{y}_{n+1}^2\bar{y}_i = -\bar{y}_i^2\bar{y}_{n+1}^2$ for $6 \leq i \leq n + 1$ (denote $\bar{y}_{n+2} = \bar{y}_{n+2}$). Here, Observation A.2 shows that the summand given by $\bar{x}_i^2\bar{y}^n$ vanishes. This gives (A.5).

Now we claim

\begin{equation}
\psi_{X_2}Y_3 = (-1)^{n+1}\mu_9\bar{x}_{1\ldots nm-2}\bar{y}_{nm-2}\ldots
\end{equation}

(A.6)

Indeed, we first note that

\begin{align*}
\bar{y}^1_{n+2}Y_3 &= (-1)^{n+1}\bar{y}_{n+2} + (-1)^{n+1}\bar{x}_{n+1}\bar{y}_{n+1}\ldots
\end{align*}

where we use the Plücker-type relation $\bar{y}^1_{n+2}Y_3 = -\bar{y}^1_{n+2}Y_3 - \bar{x}^2_{n+1}\bar{y}^2_{n+1}$ and the anticommutativity relations $\bar{y}^1_{i}Y_{i-1} = -\bar{y}^1_{i}Y_{i-1}$ and $\bar{y}^1_{i}x^2_{i} = -\bar{x}^2_{i+1}\bar{y}^2_{i+1}$ for $3 \leq i \leq n$ (where
\[\bar{y}_2' = \bar{y}_1', \quad \bar{y}_n' = \bar{y}_n \quad \text{and} \quad \bar{x}_{n+1}' = \bar{x}_{n+1}. \] Then we have
\[
\psi_X \bar{y}_3 = \mu_9 \bar{x}_1 \cdots \bar{x}_{nm-2} \bar{y}_{nm-2} \cdots \bar{y}_{n+1} \bar{Y}_3
+ \mu_{10} \bar{x}_1 \cdots \bar{x}_{nm-1} \bar{y}_{nm-1} \cdots \bar{y}_{n+2} \bar{Y}_3
+ \mu_{11} \bar{x}_3 \cdots \bar{x}_{n+1} \bar{y}_{n+1} \cdots \bar{y}_{n+2} \bar{Y}_3
= (-1)^{n-1} \mu_9 \bar{x}_1 \cdots \bar{x}_{nm-2} \bar{y}_{nm-2} \cdots \bar{y}_{n+1}
+ (-1)^{n} \mu_{10} \bar{x}_1 \cdots \bar{x}_{nm-1} \bar{y}_{nm-1} \cdots \bar{y}_{n+2}
+ (-1)^{n-1} \mu_{11} \bar{x}_3 \cdots \bar{x}_{n+1} \bar{y}_{n+1} \cdots \bar{y}_{n+2}.
\]
where in the second equality we first use (A.7) and then for the summands with coefficients \(\mu_9 \) and \(\mu_{11} \) we use Lemma 3.26 (i), and for the two summands with coefficient \(\mu_{10} \) we use \(\bar{y}_5 \bar{y}_n = 0 \) and respectively
\[
\bar{y}_{nm-1} \cdots \bar{y}_{n+2} \bar{y}_{2n+1} \cdots \bar{y}_{n+4} \bar{y}_n + 4 \bar{y}_n + 3 \bar{y}_n + 4
= -\bar{y}_{nm-1} \cdots \bar{y}_{n+2} \bar{y}_{2n+1} \cdots \bar{y}_{n+4} \bar{y}_n + 4 \bar{y}_n + 3 \bar{y}_n + 4.
\]
Here in the first equality, we use \(\bar{y}_5 \bar{y}_n = \bar{y}_5 \bar{y}_n + 3 \bar{y}_n + 4 \bar{y}_n + 4 \) which follows from the anticommutativity relation across a square (cf. the eighth diagram in Remark 2.18 viewed as a diagram in \(Q_n \)) which may be verified by using the Plücker-type relation \(\bar{y}_5 \bar{y}_n + 3 \bar{y}_n + 4 \bar{y}_n + 3 \bar{y}_n + 4 \) and then the anticommutativity relations \(\bar{y}_{n+1} \bar{y}_{n+2} \bar{y}_{n+3} + \bar{y}_{n+4} \bar{y}_{n+5} \bar{y}_{n+6} \) for \(4 \leq j \leq n+1 \) (where \(\bar{y}_{2n+1} = \bar{y}_{2n+1} \)). Here, the extra term \(\bar{y}_5 \bar{y}_n + 3 \bar{y}_n + 4 \bar{y}_n + 4 \) in the Plücker-type relation vanishes by Observation A.2. This proves (A.6).

Combining (A.4), (A.5) and (A.6) and comparing the coefficients of each summand in \(\delta(\psi) \bar{Y}_1 \bar{X}_1 \) completes the proof. \(\square \)

A.2. The term \(\delta(\psi) \bar{Y}_1 \bar{X}_1 \).

Lemma A.8. \(\delta(\psi) \bar{Y}_1 \bar{X}_1 = \bar{\varphi} \bar{Y}_1 \bar{X}_1 \) if and only if the equation in Lemma A.1 involving \(\alpha_4 \) holds.

Proof. We have \(\delta(\psi) \bar{Y}_1 \bar{X}_1 = \psi_X X_1 + \bar{Y}_1 \bar{X}_1 + \bar{Y}_2 \bar{X}_1 + \bar{X}_2 \psi_X \bar{Y}_2 \) where \(\psi_X X_1, \bar{X}_2 \psi_X \bar{Y}_2 \) are involutive to \(\bar{Y}_1 \psi_X \bar{X}_1, \psi_X \bar{Y}_2 \) by exchanging \(\mu_4 \) and \(\nu_4 \). Since \(\bar{Y}_1 = \bar{y}_1 \) we have
\[
\bar{Y}_1 \psi_X \bar{X}_1 = \mu_5 \bar{y}_1 \bar{x}_1 \cdots \bar{x}_{nm-2} \bar{y}_{nm-2} \cdots \bar{y}_{n+3} + \mu_6 \bar{y}_1 \bar{x}_1 \cdots \bar{x}_{nm-1} \bar{y}_{nm-1} \cdots \bar{y}_{n+4}
+ \mu_7 \bar{y}_1 \bar{x}_3 \cdots \bar{x}_{n+1} \bar{y}_{n+1} \cdots \bar{y}_{n+2}
= -\mu_7 \bar{x}_2 \cdots \bar{y}_{nm} \cdots \bar{y}_{n+2}.
\]
where by Lemma 3.26 (i) the first two summands vanish and the third one uses
\[
\bar{y}_1 \bar{x}_3 \cdots \bar{x}_{n+1} \bar{y}_{n+2} \cdots \bar{y}_{n+3} = -\bar{x}_3 \bar{x}_4 \bar{x}_5 \bar{x}_6 \bar{x}_{n+1} \bar{y}_{n+1} \cdots \bar{y}_{n+2} \cdots \bar{y}_{n+3}.
\]
Here, the first equality uses an anticommutativity relation across a square and the second equality uses the Plücker-type relation \(\bar{x}_3 \bar{x}_4 \bar{x}_5 \bar{x}_6 = -\bar{x}_3 \bar{x}_4 \bar{x}_5 \bar{x}_6 \) and then the anticommutativity relations (2n - 5 times). Again, the summand given by \(\bar{x}_3 \bar{x}_4 \bar{x}_5 \bar{x}_6 \) vanishes by Observation A.2.

Note that \(\bar{Y}_2 = \bar{y}_2 \). Then \(\psi_X \bar{Y}_2 = \mu_8 \bar{x}_2 \cdots \bar{y}_{nm} \cdots \bar{y}_{n+2} \) is already irreducible. Comparing the coefficients we complete the proof. \(\square \)
A.3. The term $\delta(\psi)\bar{Y}_3X_3$.

Lemma A.10. $\delta(\psi)\bar{Y}_3X_3 = \bar{\varphi}Y_3X_3$ if and only if the equation in Lemma A.1 involving α_5 holds.

Proof. We have $\delta(\psi)\bar{Y}_3X_3 = \psi\bar{Y}_3X_3 + \psi X_6\bar{Y}_6 + X_6\psi\bar{Y}_6$, where $\psi\bar{Y}_3X_3$, $X_6\psi\bar{Y}_6$ are involutive to $\bar{Y}_3\psi X_3$, $\psi X_6\bar{Y}_6$ by exchanging μ_i to ν_i. We claim that

$$\bar{Y}_3\psi X_3 = \left((-1)^{m_9} - (-1)^{n_9}\right)\bar{x}_2^{n-1}\bar{y}^{n-1}\bar{y}_n^{1}$$

Indeed, we have

$$\bar{Y}_3\psi X_3 = \mu_9\bar{Y}_3\bar{x}_1...n-2\bar{y}_n^{m-2}...n+1\bar{y}_n^{1}$$

$$+ \mu_{10}\bar{Y}_3\bar{x}_1...n-1\bar{y}_n^{m-1}...n+2\bar{y}_n^{2}...n+3\bar{y}_n^{1}$$

$$+ \mu_{11}\bar{Y}_3\bar{x}_1^{2}...n+1\bar{y}_n^{m-2}...n+1\bar{y}_n^{1}$$

$$= \left((-1)^{m_{9}}\mu_{9}\bar{x}_1^{2}...n\bar{x}_n^{m-1}...n+1\bar{y}_n^{1}\right)$$

$$+ \left((-1)^{n_{9}}\mu_{11}\bar{x}_1^{2}...n\bar{x}_n^{m-1}...n+1\bar{y}_n^{1}\right)$$

where in the second equality we use $\bar{Y}_3\bar{x}_n...n-1 = 0$ by Remark 3.22 to obtain that the summand with μ_{10} vanishes, and we also use the following relations

$$\bar{Y}_3\bar{x}_1...n-1 = \left((-1)^{m_{9}-1}\bar{x}_1^{2}...n\bar{y}_n^{m-1}...n-1\bar{y}_n^{1}\right)$$

$$= \left((-1)^{n_{9}}\bar{x}_1^{2}...n\bar{x}_n^{m-1}...n-1\bar{y}_n^{1}\right)$$

which may be verified by using the anticommutativity and Plücker-type relations (and applying Observation A.2). We have

$$\psi\bar{X}_6\bar{Y}_6 = \mu_{14}\bar{x}_1^{2}...n\bar{x}_n+1...n-1\bar{y}_n^{m-1}...n+2\bar{y}_n^{2}...n+3\bar{y}_n^{1}\bar{Y}_6$$

where similarly the second equality uses the anticommutativity relations ($2n-3$ times) and the Plücker-type relation once (also using Observation A.2). □

A.4. The term $\delta(\psi)\bar{X}_0X_7$.

Lemma A.11. $\delta(\psi)\bar{X}_0X_7 = \bar{\varphi}X_0\bar{X}_7$ if and only if the equation in Lemma A.1 involving α_6 holds.

Proof. Note that $\delta(\psi)\bar{X}_0X_7 = \psi\bar{X}_0X_7 + \bar{X}_0\psi\bar{X}_7$. We claim that

$$\psi\bar{X}_0X_7 = \left(-\mu_1 - (-1)^{m_9}\mu_3\right)x_0...n-1\bar{y}_n^{m-1}...n+2\bar{y}_n^{2}...n+4$$

Indeed, since $X_7 = \bar{x}_3^{2}$ we have

$$\psi\bar{X}_0X_7 = \mu_1\bar{x}_0...n-3\bar{y}_n^{m-3}...1\bar{x}_3^{2}$$

$$+ \mu_2\bar{x}_0...n(m-1)\bar{y}_n^{m-3}...n(m-1)\bar{x}_3^{2}$$

$$+ \mu_3\bar{x}_0...n^{2}\bar{y}_n^{m-4}...n+2\bar{x}_3^{3}$$

$$+ \mu_4\bar{x}_0...n\bar{y}_n^{m-4}...n+2\bar{y}_n^{2}...n+4\bar{x}_3^{2}$$

where the summands with coefficients μ_3 and μ_4 are computed in Lemma A.16 below. Let us compute the first two summands with coefficients μ_1 and μ_2. For
this, we apply the relation \(\bar{y}_{n-1..1} \bar{x}_2^3 = - \bar{x}_n \bar{x}_{n+1} \bar{y}_{n+1..4}^2 \) (which uses the anticommutativity relations \(2n - 3 \) times) to the two summands and obtain
\[
(A.12) \quad - \mu_1 \bar{x}_0...nm-3 \bar{y}_{nm-3...n} \bar{x}_n \bar{x}_{n+1} \bar{y}_{n+1..4}^2 \\
+ (-1)^n \mu_2 \bar{x}_0...nm-2 \bar{y}_{nm-2...n+1} \bar{x}_{n+1} \bar{y}_{n+1..4}^2 \\
\]
where the second summand also uses the involutive version of Lemma 3.31. The second summand of (A.12) vanishes by Lemma 3.26 (i) and the first one equals
\[
- \mu_1 \bar{x}_0...nm-3 \bar{y}_{nm-3...n} \bar{x}_n \bar{x}_{n+1} \bar{y}_{n+1..4}^2 \\
= -(-1)^n \mu_1 \bar{x}_0...nm-2 \bar{y}_{nm-2...n+1} \bar{x}_{n+1} \bar{y}_{n+1..4}^2 \\
+ \mu_1 \bar{x}_0...nm-1 \bar{y}_{nm-1...n+3} \bar{x}_{n+1} \bar{y}_{n+1..4}^2 \\
= - \mu_1 \bar{x}_0...nm-1 \bar{y}_{nm-1...n+2} \bar{y}_{n+1..4}^2 \\
\]
where the first equality follows from Lemma 3.27, in the second equality, the first summand vanishes by Lemma 3.26 (i) and for the second summand we use the anticommutativity relations \(2n - 4 \) times and the Plücker-type relation (involving \(\bar{y}_{n+4}^{\bar{y}_{n+3}} \)) once (applying Observation A.2 to see the vanishing of the extra term). This proves the claim.

Since \(\bar{X}_0 = \bar{x}_0 \) we have that \(\bar{X}_0 \psi_{\bar{X}_n} = \mu_1 \bar{x}_0...nm-1 \bar{y}_{nm-1...n+2} \bar{y}_{n+1..4}^2 \) is already irreducible. We complete the proof by comparing the coefficients. \(\square \)

A.5. The term \(\delta(\psi)\bar{Y}_1\bar{X}_3 \).

Lemma A.13. \(\delta(\psi)\bar{Y}_1\bar{X}_3 = \bar{\varphi} \bar{Y}_1\bar{X}_3 \) if and only if the equation in Lemma A.1 involving \(\alpha_8 \) holds.

Proof. We have \(\delta(\psi)\bar{Y}_1\bar{X}_3 = \psi_{\bar{Y}_1} \bar{X}_3 + \bar{Y}_1 \psi_{\bar{X}_3} + \psi_{\bar{X}_4} \bar{Y}_5 + \bar{X}_4 \psi_{\bar{Y}_5} \). We claim that
\[
\psi_{\bar{Y}_1} \bar{X}_3 = (-1)^n \nu_5 - (-1)^n \nu_\gamma \bar{x}_2...nm-1 \bar{y}_{nm-1...n+1} \bar{y}_{n+1..2}^1.
\]
Indeed, we have
\[
\psi_{\bar{Y}_1} \bar{X}_3 = \nu_5 \bar{x}_2...nm-2 \bar{y}_{nm-2...1} \bar{X}_3 + \nu_6 \bar{x}_3 ... \bar{x}_{n+1} \bar{y}_{nm-1...n} \bar{y}_{n+1..1} \bar{X}_3 \\
+ \nu_7 \bar{x}_2...nm-1 \bar{y}_{nm-1...n+2} \bar{y}_{n+1..3} \bar{X}_3 \\
= -(-1)^n \nu_5 \bar{x}_2...nm-2 \bar{y}_{nm-2...n+1} \bar{y}_{n+1..2} \bar{X}_3 \\
- (-1)^n \nu_7 \bar{x}_2...nm-1 \bar{y}_{nm-1...n+1} \bar{y}_{n+1..2} \bar{X}_3 \\
= ((-1)^n \nu_5 - (-1)^n \nu_\gamma) \bar{x}_2...nm-1 \bar{y}_{nm-1...n+1} \bar{y}_{n+1..2} \bar{X}_3 \\
\]
where in the second equality, the summand with coefficient \(\nu_0 \) vanishes by Remark 3.22, the summand with \(\nu_5 \) uses the anticommutativity relations \((n - 1) \) times, and the summand with \(\nu_7 \) uses the anticommutativity relations \((n - 4) \) times and the Plücker-type relation \(\bar{x}_3^2 \bar{x}_4^2 = - \bar{x}_3^1 \bar{x}_4^3 - \bar{x}_3^3 \bar{x}_4^1 \) once. The term \(\bar{x}_3^2 \bar{y}_0^1 \bar{y}_{n+1..2} \) vanishes by Observation A.2. The third equality follows from Lemma 3.27.

Since \(\bar{Y}_1 = \bar{y}_1 \), we have
\[
\psi_{\bar{Y}_1} \bar{X}_3 = \mu_9 \bar{y}_1 \bar{x}_1...nm-2 \bar{y}_{nm-2...n+1} \bar{y}_{n+1..2} + \mu_{10} \bar{y}_1 \bar{x}_1...nm-1 \bar{y}_{nm-1...2} + \mu_{11} \bar{y}_1 \bar{x}_3 ... \bar{x}_{n+1} \bar{y}_{n+1..2} \\
= - \mu_{11} \bar{x}_2...nm-1 \bar{y}_{nm-1...n+1} \bar{y}_{n+1..2} \\
\]
where the first two summands vanish by Lemma 3.26 (i) and the third one follows from (A.9). Since $X_4 = \bar{x}_1^3$ we have

$$X_4\psi_{\bar{y}_3} = \nu_{13}\bar{x}_3^3\bar{x}_{n+1}\bar{y}_{nm-1}...n+1\bar{y}_{n+2}$$

$$= (-1)^n\nu_{13}\bar{x}_2...nm-1\bar{y}_{nm-1}...n+1\bar{y}_{n+2}$$

where the second equality uses the anticommutativity relations $(n - 2)$ times.

Since $\bar{y}_5 = \bar{y}_2$, the term $\psi_{X_5} = \mu_{12}\bar{x}_2...nm-1\bar{y}_{nm-1}...n+1\bar{y}_{n+2}$ is already irreducible. We complete the proof by comparing the coefficient of each summand. □

A.6. The term $\delta(\psi)X_3\bar{X}_5$.

Lemma A.14. $\delta(\psi)X_3\bar{X}_5 = \bar{\varphi}X_3\bar{X}_5$ if and only if the equation in Lemma A.1 involving α_{10} holds.

Proof. We have $\delta(\psi)X_3\bar{X}_5 = \psi_{X_3}X_5 + \bar{X}_3\psi\bar{X}_5 + \psi_{X_1}\bar{X}_4 + \bar{X}_1\psiX_4 + \psi_{\bar{X}_5}\bar{y}_2'$. Then we claim that

$$\psi_{X_3}X_5 = \mu_{10}\bar{x}_1...nm-1\bar{y}_{nm-1}...n+1\bar{y}_{n+3}$$

Indeed, since $\bar{X}_5 = \bar{x}_1^3$ we have

$$\psi_{X_3}X_5 = \nu_{0}\bar{x}_1...nm-2\bar{y}_{nm-2}...n+1\bar{y}_{n+2}$$

$$(A.15)$$

$$+ \mu_{10}\bar{x}_1...nm-1\bar{y}_{nm-1}...n+1\bar{y}_{n+2}$$

$$+ \mu_{11}\bar{x}_3...n+1\bar{y}_{n+2}...n+1\bar{y}_{n+1}\bar{x}_2^1$$

$$= \mu_{10}\bar{x}_1...nm-1\bar{y}_{nm-1}...n+1\bar{y}_{n+3}$$

where the third summand vanishes since $\bar{y}_{nm-1}...n+1\bar{y}_{n+2} = 0$ by Remark 3.22.

We first show that the first summand involving μ_{0} in (A.15) vanishes. Note that $\bar{y}_2'\bar{x}_2^1 = -\bar{x}_3^3\bar{y}_3^1 - \bar{x}_2'\bar{y}_3' - \bar{x}_2''\bar{y}_3''$ where \bar{x}_2'' is the other longer arrow (which is missing in Fig. 12) with the same starting vertex as \bar{x}_3^3. So we have

$$\mu_{0}\bar{x}_1...nm-2\bar{y}_{nm-2}...n+1\bar{y}_{n+1}\bar{x}_2^1$$

$$= -\mu_{0}\bar{x}_1...nm-2\bar{y}_{nm-2}...n+1\bar{y}_{n+1}\bar{x}_3^3\bar{y}_3^1 + \bar{y}_{nm-1}...n+1\bar{y}_{n+1}\bar{x}_3^3\bar{y}_3^2$$

where the first equality uses $\bar{y}_{nm-1}...n+1\bar{y}_{n+1}\bar{x}_3^3\bar{y}_3^1 = 0$ by Remark 3.22. In the second equality, the first summand vanishes by using $\bar{y}_2'\bar{x}_2^1 = -\bar{x}_3^3\bar{y}_3^1 - \bar{y}_3''$ for $3 \leq i \leq n - 1$ and $\bar{y}_2'\bar{x}_2^1 = 0$ and the second summand vanishes since we have

$$\bar{y}_{nm-1}...n+1\bar{y}_{n+1}\bar{y}_3^2 = (-1)^n\bar{y}_{nm-1}...n+1\bar{x}_n+1\bar{y}_2^2$$

Here, the first equality uses the anticommutativity relations and the second one follows from Lemma 3.26 (i).

We now compute the summand with μ_{10} in (A.15). We have

$$\mu_{10}\bar{x}_1...nm-1\bar{y}_{nm-1}...n+1\bar{y}_{n+2}$$

$$= (-1)^{n-1}\mu_{10}\bar{x}_1...nm-1\bar{y}_{nm-1}...n+2\bar{y}_2\bar{x}_2...nm+1\bar{y}_{n+2}$$

$$= \mu_{10}\bar{x}_1...nm-1\bar{y}_{nm-1}...n+1\bar{y}_{n+3}$$

where the first equality is similar to the above computation, and the second equality uses the Plücker-type relations twice (involving $\bar{y}_2'\bar{y}_3''$ and $\bar{y}_2'\bar{y}_3''$) and the anticommutativity relations $(3n - 7)$ times. This proves the claim.

Using (A.7) and Lemma 3.26 (i) we obtain

$$\bar{X}_3\psi\bar{X}_5 = \mu_{13}\bar{X}_3\bar{x}_2...n\bar{x}_{n+1}...nm-1\bar{y}_{nm-1}...n+1\bar{y}_{n+3}$$
Since $\bar{x}_4 = \bar{x}_3^2$ we have
\[
\psi_{\bar{x}_1} \bar{x}_1 = \mu_5 \bar{x}_1 \ldots \bar{y}_{nm-2} \bar{y}_{nm-2} \bar{x}_3^2 + \mu_6 \bar{x}_1 \ldots \bar{y}_{nm-1} \bar{y}_{nm-1} + \bar{y}_{n+2}^3 \bar{x}_4^3
\]
\[
= (-1)^{n-1} \mu_5 \bar{x}_1 \ldots \bar{y}_{nm-1} \bar{y}_{nm-1} + \bar{y}_{n+2}^3 \bar{x}_4^3
\]
\[
= \mu_6 \bar{x}_1 \ldots \bar{y}_{nm-1} \bar{y}_{nm-1} + \bar{y}_{n+2}^3 \bar{x}_4^3
\]
\[
= \{(-1)^{n-1} \mu_5 - \mu_6 \}\bar{x}_1 \ldots \bar{y}_{nm-1} \bar{y}_{nm-1} + \bar{y}_{n+2}^3 \bar{x}_4^3
\]
where the summand with μ_7 vanishes since $\bar{y}_{nm-1} \bar{y}_{nm-1} + \bar{y}_{n+2}^3 \bar{x}_4^3 = 0$ by Remark 3.22.

To obtain the summand with μ_6, we apply the anticommutativity relations and Lemma 3.27. To obtain the summand with μ_6, we apply the relation
\[
\bar{y}_3^3 \bar{x}_4^3 = -\bar{x}_3^3 \bar{y}_3^3 - \bar{x}_3^2 \bar{y}_3^2 - \bar{x}_3 \bar{y}_3 \bar{x}_4^3
\]
and obtain
\[
\mu_6 \bar{x}_1 \ldots \bar{y}_{nm-1} \bar{y}_{nm-1} + \bar{y}_{n+2}^3 \bar{x}_4^3
\]
\[
= \mu_6 \bar{x}_1 \ldots \bar{y}_{nm-1} \bar{y}_{nm-1} + \bar{y}_{n+2}^3 \bar{x}_4^3
\]
\[
= \mu_6 \bar{x}_1 \ldots \bar{y}_{nm-1} \bar{y}_{nm-1} + \bar{y}_{n+2}^3 \bar{x}_4^3
\]
where the first equality uses $\bar{y}_{nm-1} \bar{y}_{nm-1} + \bar{y}_{n+2}^3 \bar{x}_4^3 = 0$ by Remark 3.22 and in the second equality we note that $\bar{y}_3^3 \bar{x}_4^3$ lie in a square so that $\bar{y}_3^3 \bar{x}_4^3 = -\bar{x}_3^3 \bar{y}_3^3$ for some \bar{x}_3^2, \bar{y}_3^2, then $\bar{y}_{nm-1} \bar{y}_{nm-1} + \bar{y}_{n+2}^3 \bar{x}_4^3 = 0$ by Remark 3.22 and thus the second summand vanishes. For the first summand we use the anticommutativity relations (2n - 5 times) and the Plücker-type relation once (involving $\bar{y}_3^3 \bar{y}_3^2$).

Similar to the second equality in (A.9) we have
\[
\psi_{\bar{x}_1} \bar{y}_3^2 = \mu_5 \bar{x}_1 \ldots \bar{y}_{nm-1} \bar{y}_{nm-1} + \bar{y}_{n+2}^2 \bar{y}_3^2
\]
\[
= (-1)^n \mu_5 \bar{x}_1 \ldots \bar{y}_{nm-1} \bar{y}_{nm-1} + \bar{y}_{n+2}^2 \bar{y}_3^2
\]
\[
= (-1)^n \mu_5 \bar{x}_1 \ldots \bar{y}_{nm-1} \bar{y}_{nm-1} + \bar{y}_{n+2}^2 \bar{y}_3^2
\]
\[
= (-1)^n \bar{x}_1 \ldots \bar{y}_{nm-1} \bar{y}_{nm-1} + \bar{y}_{n+2}^2 \bar{y}_3^2
\]
Note that $\bar{x}_1 \psi_{\bar{x}_4} = \mu_{12} \bar{x}_1 \ldots \bar{y}_{nm-1} \bar{y}_{nm-1} + \bar{y}_{n+2}^2 \bar{y}_3^3 \bar{x}_4^3$ is already irreducible. \hfill \Box

The following lemma was used in Lemma A.11.

Lemma A.16. We have
\[
\mu_3 \bar{y}_{nm-2} \ldots \bar{y}_{n} + 2 \bar{y}_{n+1} + 3 \bar{x}_3^2 = (-1)^{n-m} \mu_3 \bar{y}_{nm-1} + n + 2 \bar{y}_{n+1} + 4 \bar{y}_3^2
\]
\[
\mu_4 \bar{y}_{nm-1} + n + 3 \bar{y}_{n+2} + n + 3 \bar{y}_{n+1} + 3 \bar{x}_3^2 = 0.
\]

Proof. Let us prove the first identity. Note that we have
\[
\mu_3 \bar{y}_{nm-2} \ldots \bar{y}_{n} + 2 \bar{y}_{n+1} + 3 \bar{x}_3^2
\]
\[
= \mu_3 \bar{y}_{nm-2} \ldots n + 2 \bar{y}_{n+1} + 3 \bar{x}_3^2
\]
\[
= \mu_3 \bar{y}_{nm-2} \ldots n + 2 \bar{y}_{n+1} + 3 \bar{x}_3^2
\]
where the first equality uses $\bar{y}_3^3 \bar{x}_3^2 = -\bar{x}_3^3 \bar{y}_3^2$ and then $\bar{y}_3^3 \bar{x}_3^2 = -\bar{x}_3^3 \bar{y}_3^2$.

Let us explain the second equality: the first summand vanishes by using $\bar{y}_3^3 \bar{x}_3^2 = -\bar{x}_3^3 \bar{y}_3^2$ for $5 \leq i \leq n$ and $\bar{y}_{n+1} \bar{x}_n \bar{x}_{n+1} = 0$; the second summand vanishes since by the anticommutativity relations $\bar{y}_i \bar{x}_i \bar{y}_i = -\bar{x}_i^3 \bar{y}_i^3$ for $5 \leq i \leq n+1$ (denote $\bar{x}_i^3 = \bar{x}_{i+2}$) we have
\[
\bar{y}_{nm-2} \ldots n + 2 \bar{y}_{n+1} + 3 \bar{x}_3^2 = (-1)^n \bar{y}_{nm-2} \ldots n + 2 \bar{y}_{n+2} + 3 \bar{x}_3^2 = 0
\]
where the second equality follows from Lemma 3.26 (i), and for the third summand we use the anticommutativity relations \((4n - 7)\) times and the Plücker-type relation
\[
\bar{y}^7 \bar{y}^2 = - \bar{y}^7 \bar{y}^2 \cdots \quad (\text{Observation A.2 is applied to kill the extra term here}).
\]
Then the desired equality follows from Lemma 3.27.

Let us prove the second identity. Note that we have

\[
\begin{equation}
\mu_4 \bar{y}_{nm-1} \cdots 2n + 3 \bar{y}^6_{2n+2} \cdots 4 \bar{y}^2_{n+1} \cdots 3 \bar{x}^2 = (-1)^n \mu_4 \bar{y}_{nm-1} \cdots 2n + 3 \bar{y}^6_{2n+2} \cdots 4 \bar{y}^2_{n+1} \cdots 3 \bar{x}^2
\end{equation}
\]

where the first equality follows from a similar computation as above, the second one uses the relations \(\bar{y}^3 \bar{y}^2 = - \bar{y}^3 \bar{y}^2 \cdots \) and \(\bar{y}^3 \bar{y}^2 = - \bar{y}^3 \bar{y}^2 \cdots \) for \(6 \leq i \leq n + 2\) and \(5 \leq j \leq n + 2\) (denote \(\bar{y}^i_{n+2} = \bar{y}^i_{n+2} \) and then \(\bar{y}^i_{n+2} = \bar{y}^i_{n+2} \)).

The first summand on the right-hand side of the second equality in (A.17) equals

\[
\mu_4 \bar{y}_{nm-1} \cdots 2n + 3 \bar{y}^6_{2n+2} \cdots 4 \bar{y}^2_{n+1} \cdots 3 \bar{x}^2 = \mu_4 \bar{y}_{nm-1} \cdots 2n + 3 \bar{y}^6_{2n+2} \cdots 4 \bar{y}^2_{n+1} \cdots 3 \bar{x}^2
\]

where we first use \(\bar{x}^6_{n+4} \bar{x}^2_{n+2} = - \bar{x}^6_{n+4} \bar{x}^2_{n+2} \) and then \(\bar{y}^6_{n+5} \bar{x}^4_{n+3} = - \bar{y}^6_{n+5} \bar{x}^4_{n+3} \).

Let us compute the second summand in (A.17). Note that \(\bar{y}^6_{n+4} \bar{x}^6_{n+4} = - \bar{y}^6_{n+4} \bar{x}^6_{n+4} \).

To see the second equality of (A.18) follows since the second summand vanishes using \(\bar{x}^6_{n+5} \bar{x}^6_{n+5} = 0\) and the third summand vanishes, since \(\bar{y}^6_{n+5} \bar{x}^6 \) lies in a square so that \(\bar{y}^6_{n+5} \bar{x}^6 = - \bar{x}^6 \bar{y}^6 \) for some arrows \(\bar{x}^6 \), \(\bar{y}^6 \). We then have

\[
\begin{equation}
\bar{y}^6_{nm-1} \cdots 2n + 3 \bar{y}^6_{2n+2} \cdots 4 \bar{y}^2_{n+1} \cdots 3 \bar{x}^2 = - \bar{y}^6_{nm-1} \cdots 2n + 3 \bar{y}^6_{2n+2} \cdots 4 \bar{y}^2_{n+1} \cdots 3 \bar{x}^2
\end{equation}
\]

where the second equality follows from Remark 3.22. For the third equality of (A.18) we use \(\bar{y}^6_{n+5} \bar{y}^6_{n+3} = - \bar{y}^6_{n+5} \bar{y}^6_{n+3} \). \(\bar{y}^6_{n+4} \bar{y}^6_{n+3} = - \bar{y}^6_{n+4} \bar{y}^6_{n+3} \) and then \(\bar{y}^4_{n+3} \bar{y}^4_{n+4} = - \bar{y}^4_{n+3} \bar{y}^4_{n+4} \) (the extra term \(\cdots \) vanishes due to Observation A.2).

Substituting the above equalities into (A.17) we obtain the desired equality. \(\square\)

References

[AS16] M. Abouzaid, I. Smith, The symplectic arc algebra is formal, Duke Math. J. 165 (2016) 985–1060. 2, 3, 40

[AS19] M. Abouzaid, I. Smith, Khovanov homology from Floer cohomology, J. Amer. Math. Soc. 32 (2019) 1–79. 2, 40

[AKO08] D. Auroux, L. Katzarkov, D. Orlov, Mirror symmetry for weighted projective planes and their noncommutative deformations, Ann. Math. 167 (2008) 867–943. 42

[Bar97] M.J. Bardzell, The alternating syzygy behavior of monomial algebras, J. Algebra 188 (1997) 69–89. 33

[BW20] S. Barmeier, Z. Wang, Deformations of path algebras of quivers with relations, arXiv:2002.10001 (2020). 3, 31, 33, 34, 42
[BW21] S. Barmeier, Z. Wang, Deformations of categories of coherent sheaves via quivers with relations, arXiv:2107.07490 (2021).

[BGS96] A. Beilinson, V. Ginzburg, W. Soergel, Koszul duality patterns in representation theory, J. Amer. Math. Soc. 9 (1996) 473–527.

[Ber78] G.M. Bergman, The Diamond Lemma for ring theory, Adv. Math. 29 (1978) 178–218.

[BKP18] A. Blanc, L. Katzarkov, P. Pandit, Generators in formal deformations of categories, Compos. Math. 154 (2018) 2055–2089.

[BG96] A. Braverman, D. Gaitsgory, Poincaré–Birkhoff–Witt theorem for quadratic algebras of Koszul type, J. Algebra 181 (1996) 315–328.

[BS10] J. Brundan, C. Stroppel, Highest weight categories arising from Khovanov’s diagram algebra II: Koszulity, Transform. Groups 15 (2010) 1–45.

[BS11a] J. Brundan, C. Stroppel, Highest weight categories arising from Khovanov’s diagram algebra I: Cellularity, Moscow Math. J. 11 (2011) 685–722.

[BS11b] J. Brundan, C. Stroppel, Highest weight categories arising from Khovanov’s diagram algebra III: Category \mathcal{O}, Represent. Theory 15 (2011) 170–243.

[BS12] J. Brundan, C. Stroppel, Highest weight categories arising from Khovanov’s diagram algebra IV: The general linear supergroup, J. Eur. Math. Soc. (JEMS) 14 (2012) 373–419.

[Buc03] R.-O. Buchweitz, Hochschild cohomology of Koszul algebras, talk at the Conference on Representation Theory (Canberra 2003).

[CYZ16] X. Chen, S. Yang, G. Zhou, Batalin–Vilkovisky algebras and the noncommutative Poincaré duality of Koszul Calabi–Yau algebras, J. Pure Appl. Algebra 220 (2016) 2500–2532.

[CLW20] X.-W. Chen, H. Li, Z. Wang, Leavitt path algebras, B_∞-algebras and Keller’s conjecture for singular Hochschild cohomology, arXiv:2007.06895 (2020).

[CW21] X.-W. Chen, Z. Wang, The dg Leavitt algebra, singular Yoneda category and singularity category, with an appendix by Bernhard Keller and Yu Wang, arXiv:2109.11278v2 (2021).

[CS15] S. Chouhy, A. Solotar, Projective resolutions of associative algebras and ambiguities, J. Algebra 432 (2015) 22–61.

[Con11] A.B. Conner, \mathbb{A}_∞-structures, generalized Koszul properties, and combinatorial topology, PhD thesis, available at https://hdl.handle.net/1794/11559, University of Oregon, 2011.

[DHL22] H. Dinh Van, L. Hermans, W. Lowen, Operadic structure on the Gerstenhaber–Schack complex for prestacks, Selecta Math. 28 (2022) no. 47.

[FP14] R. Fisette, A. Polishchuk, A_∞-algebras associated with curves and rational functions on $M_{g,g}$ I, Compos. Math. 150 (2014) 621–667.

[FV06] G. Flavestad, J.E. Vatne, PBW-deformations of \mathbb{N}-Koszul algebras, J. Algebra 302 (2006) 116–155.

[Ger64] M. Gerstenhaber, On the deformation of rings and algebras, Ann. Math. 79 (1964) 59–103.

[HKK17] F. Haiden, L. Katzarkov, M. Kontsevich, Flat surfaces and stability structures, Publ. Math. Inst. Hautes Études Sci. 126 (2017) 247–318.

[HK91] J. Huebschmann, T. Kadeishvili, Small models for chain algebras, Math. Z. 207 (1991) 245–280.

[Kad82] T.V. Kadeishvili, The algebraic structure in the homology of an $A(\infty)$-algebra (Russian), Soobshch. Akad. Nauk Gruzini. SSR 108 (1982) 249–252.

[Kad88] T.V. Kadeishvili, The structure of the $A(\infty)$-algebra, and the Hochschild and Harrison cohomologies, Trudy Tbiliss. Mat. Inst. Razmadze Akad. Nauk Gruzini. SSR 91 (1988) 19–27.

[KL79] D. Kazhdan, G. Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979) 165–184.

[Kel01] B. Keller, Introduction to A-infinity algebras and modules, Homol. Homotopy Appl. 3 (2001) 1–35.

[Kel03] B. Keller, Derived invariance of higher structures on the Hochschild complex, available at https://webusers.imj-prg.fr/~bernhard.keller/publ/dih.pdf (2003).
References

[Bel21] B. Keller, A remark on Hochschild cohomology and Koszul duality, in: I. Assem, C. Geiß, S. Treise (eds.), Advances in Representation Theory of Algebras (ARTA VII) (Mexico City 2018), 131–136, American Mathematical Society, Providence, RI, 2021.

[Kho00] M. Khovanov, A categorification of the Jones polynomial, Duke Math. J. 101 (2000) 359–426.

[Kon95] M. Kontsevich, Homological algebra of mirror symmetry, in: S.D. Chatterji (ed.), Proceedings of the International Congress of Mathematicians (Zürich 1994), 120–139, Birkhäuser, Basel, 1995.

[LS81] A. Lascoux, M.-P. Schützenberger, Polynômes de Kazhdan et Lustig pour les Grassmanniennes, Astérisque 87–88 (1981) 249–266.

[LP20] Y. Lekili, A. Polishchuk, Derived equivalences of gentle algebras via Fukaya categories, Math. Ann. 376 (2020) 187–225.

[Lod98] J.-L. Loday, Cyclic homology, Springer-Verlag, Berlin, 1992.

[LSV05] W. Lowen, M. Van den Bergh, Hochschild cohomology of Abelian categories and ringed spaces, Adv. Math. 198 (2005) 172–221.

[MS22] C.Y. Mak, I. Smith, Fukaya–Seidel categories of Hilbert schemes and parabolic category \(\mathcal{O} \), J. Eur. Math. Soc. (JEMS) 24 (2022) 3215–3332.

[Man06] C. Manolescu, Nilpotent slices, Hilbert schemes, and the Jones polynomial, Duke Math. J. 132 (2006) 311–369.

[PSS96] S. Pimikhin, D. Salamon, M. Schwarz, Symplectic Floer–Donaldson theory and quantum cohomology, in: C.B. Thomas (ed.), Contact and symplectic geometry (Cambridge 1994), 171–200, Cambridge University Press, Cambridge, 1996.

[Pos11] L. Positselski, Two kinds of derived categories, Koszul duality, and comodule–contramodule correspondence, Mem. Amer. Math. Soc. 212 (2011) no. 996.

[Pri70] S.B. Priddy, Koszul resolutions, Trans. Amer. Math. Soc. 152 (1970) 39–60.

[Roz10] L. Rozansky, A categorification of the stable SU(2) Witten–Reshetikhin–Turaev invariant of links in \(S^2 \times S^1 \), arXiv:1011.1958 (2010).

[Sei02] P. Seidel, Fukaya categories and deformations, in: T. Li (ed.), Proceedings of the International Congress of Mathematicians (Beijing 2002), Vol. II, 351–360, Higher Education Press, Beijing, 2002.

[Sei08] P. Seidel, Fukaya categories and Picard–Lefschetz theory, Zurich Lectures in Advanced Mathematics, European Mathematical Society, Zürich, 2008.

[SS06] P. Seidel, I. Smith, A link invariant from the symplectic geometry of nilpotent slices, Duke Math. J. 134 (2006) 453–514.

[ST01] P. Seidel, R. Thomas, Braid group actions on derived categories of coherent sheaves, Duke Math. J. 108 (2001) 37–108.

[Str09] C. Stroppel, Parabolic category \(\mathcal{O} \), perverse sheaves on Grassmannians, Springer fibres and Khovanov homology, Compos. Math. 145 (2009) 954–992.

[Str10] C. Stroppel, Schur–Weyl dualities and link homologies, in: R. Bhatia, A. Pal, G. Rangarajan, V. Strinivas, M. Vanninathan (eds.), Proceedings of the International Congress of Mathematicians (Hyderabad 2010), Vol. III, 1344–1365, Hindustan Book Agency, New Delhi, 2010.

[Str22] C. Stroppel, Categorification: tangle invariants and TQFTs, to appear in Proceedings of the International Congress of Mathematicians (Virtual ICM 2022), arXiv:2207.05139 (2022).

[Vyb07] M. Vybornov, Perverse sheaves, Koszul IC-modules, and the quiver for the category \(\mathcal{O} \), Invent. Math. 167 (2007) 19–46.

[Web16] B. Webster, Tensor product algebras, Grassmannians and Khovanov homology, in: S. Gukov, M. Khovanov, J. Walcher (eds.), Physics and mathematics of link homology (Montreal 2013), 23–58, American Mathematical Society, Providence, RI, 2016.
Universität zu Köln, Mathematisches Institut, Weyertal 86-90, 50931 Köln, Germany, and Hausdorff Research Institute for Mathematics, Poppelsdorfer Allee 45, 53115 Bonn, Germany

Email address: s.barmeier@gmail.com

Universität Stuttgart, Institut für Algebra und Zahlentheorie, Pfaffenwaldring 57, 70569 Stuttgart, Germany

Email address: zhengfangw@gmail.com