Investigation of the biological activities of *Siphonochilus aethiopicus* and the effect of seasonal senescence

ME Light\(^1\), LJ McGaw\(^1\), T Rabe\(^1\), SG Sparg\(^1\), MB Taylor\(^2\), DG Erasmus\(^2\), AK Jäger\(^1\) and J van Staden\(^1\)*

\(^1\) Research Centre for Plant Growth and Development, School of Botany and Zoology, University of Natal Pietermaritzburg, Private Bag X01, Scottsville 3209, South Africa

\(^2\) Department of Medical Virology, Institute of Pathology, University of Pretoria, PO Box 2034, Pretoria 0001, South Africa

* Corresponding author, e-mail: vanstadenj@nu.ac.za

Received 2 February 2001, accepted in revised form 3 September 2001

Siphonochilus aethiopicus (Schweinf.) B.L. Burtt (Zingiberaceae), commonly known as wild ginger, is one of the most important and threatened medicinal plants in South Africa. A study of the pharmacological properties of *S. aethiopicus* and the effect of seasonal senescence on antibacterial and anti-inflammatory properties was undertaken. Water, ethanol and ethyl acetate extracts were prepared from the leaves, rhizomes and roots of *S. aethiopicus* plants. The extracts were tested in a variety of pharmacological assays. Results for the general screening showed antibacterial and anti-inflammatory activity. Some cytotoxicity was observed with the aqueous extracts of the rhizome. However, no significant activity against the herpes simplex virus types 1 and 2, the influenza A virus, and in the anthelmintic, antischistosomal and biochemical induction assays were observed. In the microdilution antibacterial assay, no inhibitory activity against the test bacteria was detected with the aqueous extracts. The ethanol and ethyl acetate extracts tested showed greater antibacterial activity at minimal inhibitory concentrations ranging from 0.78 to 3.13 mg ml\(^{-1}\) against the Gram-positive bacteria (*Bacillus subtilis*, *Staphylococcus aureus*) than the Gram-negative bacteria (*Escherichia coli*, *Klebsiella pneumoniae*). Little difference was observed between the ethanol and ethyl acetate extracts, or between the different plant parts. Ethanol extracts were prepared from the different plant parts before and after seasonal senescence, and tested for antibacterial and anti-inflammatory activity. There appeared to be a loss of antibacterial activity in the leaves with senescence, concomitant with an increase of activity in the alpha-rhizome. In the cyclooxygenase-1 assay, the aqueous extracts showed no significant prostaglandin synthesis inhibition. For the ethanol and ethyl acetate extracts, the leaves showed the highest levels of activity at a concentration of 250 μg ml\(^{-1}\) per test solution, in both the cyclooxygenase-1 and -2 assays. Some differences in the levels of anti-inflammatory activity in the roots following senescence were also observed. There was a slight loss of activity as a result of drying the rhizome material prior to extraction. This suggests that fresh rhizome material may be more effective for medicinal use, although it should be noted that the aqueous rhizome extracts displayed moderately high levels of cytotoxicity, and may require further investigation.

Introduction

Siphonochilus aethiopicus (Schweinf.) B.L. Burtt (Zingiberaceae), commonly known as wild ginger, is a highly sought after plant for use in traditional medicine in South Africa, although it is regarded as being regionally extinct in the wild in KwaZulu-Natal (Scott-Shaw 1999). The rhizome is the part which is traditionally used, although sometimes the roots are also harvested. It is used for colds, coughs, pain relief, asthma, dysmenorrhoea, influenza and is chewed fresh for hysteria (Van Wyk *et al.* 1997). The use of *S. aethiopicus* for pain relief and inflammation has been supported through investigations into the inhibitory action against prostaglandin synthesis (McGaw *et al.* 1997, Lindsey *et al.* 1999, Zschocke *et al.* 2000). However, little is known about other pharmacological properties, and whether there is any seasonal influence on the levels of activity in *S. aethiopicus*. It is possible that plant material of different ages, or harvested at different times, may have varying levels of pharmacological activity. This is an important factor to consider in the use of *S. aethiopicus* by traditional healers. The propagation of medicinal plants by traditional healers and small scale farmers is receiving increasing attention (Jäger and Van Staden 2000). It would be useful to gain a greater understanding of the medicinal properties and seasonal differences in activity of *S. aethiopicus*.

There is very little published information on the chemical constituents of *S. aethiopicus*. The volatile oil contains α-terpinol and various other monoterprenoids, with the main compound being a characteristic sesquiterpenoid (Van Wyk...
Extracts of the leaves, rhizomes and roots were screened in the microdilution antibacterial assay, cyclooxygenase-1 and -2 anti-inflammatory assays, vervet monkey kidney cell cytotoxicity assay, herpes simplex virus type 1 and 2 and influenza A antiviral assays, anthelmintic assay, antischistosomal assay and the biochemical induction assay.

Materials and Methods

Extracts for general screening

S. aethiopicus plants were obtained from stock plants at the University of Natal Botanical Garden, Pietermaritzburg. A voucher specimen was deposited in the University of Natal Herbarium (Light 17 NU). Mature plants were harvested in summer, divided into leaves, rhizomes and roots and dried at 50°C for 2 days. The dried, ground material (10g) was extracted in 100ml solvent (water, ethanol or ethyl acetate), in an ultrasound bath (Branson 5210) for 60min. The extracts were vacuum filtered through Whatman No. 1 filter paper, and dried under vacuum, using a rotary evaporator.

Extracts for comparison of seasonal activity

Plants of *S. aethiopicus* were harvested prior to senescence (green leaves), and after the plants had fully senesced. For each set of extracts, plants were divided into leaves, rhizomes and roots, differentiating between α- and β-rhizomes and roots. The mature rhizomes, and associated roots, from the previous year’s growth were classified as α-rhizomes and roots, and the younger rhizomes, and roots, which develop from the α-rhizome at the start of the growing season were classified as β-rhizomes and roots. Part of the freshly harvested material was extracted in 100ml ethanol using a Wareing blender, and then placed in an ultrasound bath (Branson 5210) for 60min. The remaining material was dried at 50°C for 2 days prior to extraction in the same manner. The extracts were vacuum filtered through Whatman No. 1 filter paper, and dried under vacuum, using a rotary evaporator.

Microdilution antibacterial assay

Antibacterial activity was assessed using the microdilution bioassay, as described by Eloff (1998). The residues from the plant extracts were redissolved to a concentration of 50mg ml⁻¹ in water (for aqueous extract) or ethanol (for ethyl acetate or ethanol extract). Each extract was bioassayed against bacterial strains obtained from the bacterial collection of the Microbiology Department, University of Natal, Pietermaritzburg and maintained on Mueller-Hinton nutrient agar (Biolab) at 4°C. The bacteria used were *Bacillus subtilis*, *Staphylococcus aureus* (Gram-positive) and *Escherichia coli*, *Klebsiella pneumoniae* (Gram-negative).

For each test bacterium, 100μl of redissolved extract was serially diluted 2-fold with 100μl sterile distilled water in a sterile 96-well microtitre plate. A similar 2-fold serial dilution of neomycin (100μg ml⁻¹) was used as a positive control for each bacterium. Extract and bacteria-free negative controls were also included. Suspension cultures of the bacteria were inoculated in Mueller-Hinton (MH) broth (Oxoid) from stock cultures and incubated overnight at 37°C in a waterbath on an orbital shaker. Prior to use in the bioassay, the saturated suspension cultures were diluted 1:100 with sterile MH broth. To each of the wells containing the test and control solutions, 100μl of the bacterial cultures were added. The plates were covered and incubated overnight at 37°C. To indicate bacterial growth, 40μl of 0.2mg ml⁻¹ p-iodonitrotetrazolium chloride (Sigma), were added to each well, and the plates were incubated for a further 30min. The wells which displayed no change in colour represented antibacterial activity. The minimum inhibitory concentration (MIC) was taken as the lowest concentration of plant extract to elicit a bacteriostatic or bactericidal effect against the tested bacterium.

Cyclooxygenase-1 assay

The cyclooxygenase-1 (COX-1) assay was performed as described by White and Glassmann (1974), with slight modifications (Jäger et al. 1996). The COX-1 enzyme (10μl micromsome suspension from sheep seminal vesicles, 0.3μg protein) was activated with 50μl of co-factor solution (0.3mg ml⁻¹ adrenalin and 0.3mg ml⁻¹ reduced glutathione in 0.1M Tris buffer, pH 8.2) on ice for 15min. The enzyme solution (60μl) was added to the sample solution (2.5μl ethanolic or aqueous plant extract and 17.5μl water) and incubated at room temperature for 5min. The plant extracts were tested at a final concentration of 250μg ml⁻¹ per test solution. Indomethacin was tested as a positive control. The reaction was started by adding 20μl [1⁴C]-arachidonic acid (30μM, 16Ci mol⁻¹). Samples were incubated for 8min at 37°C and the reaction terminated by adding 10μl 2M HCl. Prostaglandins and unmetabolised arachidonic acid were separated by column chromatography over silica gel, after addition of 4μl unlabelled prostaglandins (PGE₂, PGF₂α 1:1) as a carrier solution. Arachidonic acid was eluted first with n-hexane:1,4-dioxan:glacial acetic acid (70:30:0.2). The prostaglandin products were then eluted with ethyl acetate:methanol (85:15) and collected. After mixing with scintillation solution, the samples were counted in a Beckman LS 6000DL scintillation counter. Inhibition refers to reduction of PGE₂ formation in comparison to an untreated sample (2.5μl ethanol in 17.5μl water).

Cyclooxygenase-2 assay

The cyclooxygenase-2 (COX-2) assay was performed as described by Noreen et al. (1998), with slight modifications (Zschocke and Van Staden 2000). The COX-2 assay follows a very similar protocol as the COX-1 assay. Purified COX-2 enzyme from sheep placental cotyledons was purchased from Cayman chemical. The enzyme (10μl containing 3 units) was activated with 50μl co-factor solution (0.6mg ml⁻¹ adrenaline, 0.3mg ml⁻¹ reduced glutathione and 1μM hematin in 0.1m Tris buffer, pH 8.0) on ice for 5min. The enzyme solution (60μl) was added to the sample solution.
of 3.16 x 10^5 TCID50/ml, was prepared by diluting the allan-

National Institute for Virology. A stock suspension, with a titre

virus (Inf A) (strain Panama) was kindly supplied by the

microtitre plates with 200μl of 10^5 cells/ml cell suspension.

Institute for Virology) were prepared by seeding 96-well

cytokine labelling (direct IF) (IF) for the detection of viral antigen. Titrations

were done in 16-well Lab-Tek® glass tissue culture chamber slides (Nalgé Nunc) instead of 96-well microtitre plates. Forty-eight hours after infection the growth medium was

recovered and the slides were washed in PBS and fixed in

100% acetone at -20°C. The direct IF was carried out using

standard techniques with a mouse anti-influenza A fluores-

cine isothiocyanate (FITC)-labeled monoclonal antibody

(Chemicon) as the detector. Stained slides were examined for

fluorescence using a halogen lamp at 10x magnification. Wells where fluorescent foci were detected were considered to be positive for Inf A infection.

Cytotoxicity assay

Aqueous extracts of the leaves and rhizomes of *S. aethiopicus* were tested for cytotoxicity by exposing monolayers of VK cells to dilutions of the filter sterilised plant extracts. Serial 2-fold dilutions of the extracts, in serum-free MEM, from a concentration of 3.9μg ml^-1 to 500μg ml^-1, were used for testing on 24-hour-old monolayers of VK cells. The cells were monitored visually, by light microscopy, over a period of seven days and on the seventh day tested for cytotoxicity using a tetrazolium salt reduction (MTT) assay (Van Rensburg et al. 1993). Monolayers of cells exposed to serum-free MEM alone were used as a control.

Antiviral assays

Two separate assays were performed for each virus:

a) To investigate the effect of the aqueous extract of *S. aethiopicus* leaves on the replication of HSV-1 and HSV-

2, 24-hour-old monolayers of VK cells in 96-well microtitre plates were starved in serum-free MEM for 1h at 37°C in a humidified CO2 atmosphere. After starvation the serum-free MEM was withdrawn and 100μl (100TCID50) of virus was added to the wells and allowed to adsorb to the cell cultures for 1h at 37°C in a humidified CO2 atmosphere. After adsorption for 1h the unbound virus was withdrawn and the cells rinsed once with serum-free MEM after which 200μl of the appropriate dilution of plant extract suspension in serum-free MEM was added to each of 6 wells and the cell cultures incubated at 37°C in a humidified CO2 atmosphere. As a positive control, cells infected with virus were maintained in serum-free MEM, and cells mock-infected with 100μl serum-free MEM and maintained in serum-free MEM served as negative controls. After infection the cell monolayers were examined daily for 7 days, by light microscopy, for the appearance of a typical herpes simplex-like cytopathic effect (CPE) characterised by large refractile cells (Wiedbrauk and Johnston 1993). As the herpes simplex CPE spreads rapidly through the cell monolayer complete destruction of the monolayer was readily discernible by days 4 to 5, post-infection. An obser-
A simple anthelmintic bioassay, using Caenorhabditis elegans free-living nematodes as test organisms, was carried out as described by McGaw et al. (2000). The water, ethanol and ethyl acetate extracts of the leaves, rhizome and roots of S. aethiopicus were tested at concentrations of 0.5 and 1 mg ml⁻¹. Water and ethanol extracts were redissolved in their extracting solvents, and the ethyl acetate extracts were redissolved in ethanol for use in the assay. A standard concentration of 5 μg ml⁻¹ levamisole was used as a control. C. elegans var. Bristol (N2) nematodes were cultured on nematode growth agar seeded with E. coli according to the method of Brenner (1974). For this assay, 500–1000 nematodes (7–10 day-old cultures) in M9 buffer (Brenner 1974) were incubated with the plant extracts for 2 hours at 25°C in the dark. Nematodes with no plant extracts or levamisole added were included as a control. The percentage of living nematodes, and their movement, was assessed using a dissecting microscope.

Antischistosomal bioassay

The antischistosomal assay was performed according to Sparg et al. (2000). Infected Bulinus africanus snails were placed into test tubes under a 60W electric light to promote the shedding of cercariae. The cercariae were collected and transformed into schistosomula worms by subjecting a shearing stress, using a syringe with an 0.8 ml needle. The bioassay was run in 96-well microtitre plates. The aqueous extracts of the leaves, rhizomes and roots (100 μl) were serially diluted 2-fold, giving an initial concentration of 25 mg ml⁻¹ per test solution. A similar 2-fold serial dilution of praziquantel (Sigma) was used as a positive control. A culture medium blank was included as a negative control. Three schistosomula, in 100 μl culture medium, were added to each well. After incubation at 25°C for 1 hour, the survival of the schistosomula were assessed.

Biochemical induction assay (BIA)

The BIA was performed according to the method described by White et al. (1986). Water, ethanol and ethyl acetate extracts of the leaves, rhizomes and roots were resuspended to 100 mg ml⁻¹ and applied (10 μl) to filter paper discs which were placed onto agar plates. Plates were incubated for 5 hours at 37°C, after which the chromogenic substrate was added and zones of induction recorded. The strong mutagen 4-nitroquinoline 1-oxide was used at concentrations of 1, 5, 50 and 100 μg per spot as positive controls. Appropriate solvent controls were included as negative controls.

Results and Discussion

Results for the general screening of extracts from different plant parts for antibacterial activity are shown in Table 1. No inhibitory activity against the test bacteria was detected with the aqueous extracts. The ethanol and ethyl acetate extracts tested showed greater antibacterial activity against the Gram-positive bacteria than the Gram-negative bacteria. No distinct differences were observed between the activity obtained with the ethanol and ethyl acetate extracts in the general screening of different plant parts, or between the activity of the different plant parts.

Antibacterial activity has been shown for a number of other species of the Zingiberaceae. In a study by Ahmad and coworkers (1998), wherein 82 Indian medicinal plants were screened for antimicrobial properties, alcoholic extracts of the rhizomes of Curcuma longa showed activity against B. subtilis and S. aureus. Hexane extracts of the seeds of Elettaria cardamomum showed activity against B. subtilis, E. coli and S. aureus, and alcoholic extracts showed activity against B. subtilis, E. coli, Proteus vulgaris, Salmonella typhimurium, Pseudomonas aeruginosa, and S. aureus.

In the same study hexane and alcoholic extracts of
Zingiber officinale, real ginger, showed antibacterial activity against B. subtilis and S. aureus. The essential oils of Kaempferia galanga root and rhizome showed activity against E. coli and S. aureus (Arambewela et al. 1999). In screening 13 species of Alpinia, Costus and Zingiber, most of the dichloromethane and methanol extracts showed some antibacterial activity against B. subtilis, methicillin-resistant S. aureus (MRSA) and P. aeruginosa. The strongest inhibitory activity of a dichloromethane extract was shown by Alpinia mutica with the minimum inhibitory dose of 125μg per disc against both B. subtilis and MRSA (Habsah et al. 2000).

Results for the study of seasonal effects on antibacterial activity are shown in Table 2. Little difference was observed between the extracts prepared from fresh and dry material for activity against S. aureus, as well as for the other test bacteria (results not shown). Extracts prepared from the leaves gave a MIC value of 0.2 (fresh) and 0.1(dry)mg ml⁻¹ before senescence and 3.13mg ml⁻¹ after senescence, indicating a loss in activity. Extracts prepared from α-roots gave MIC values of 3.13 and 1.56mg ml⁻¹ before senescence and 0.1 and 0.2mg ml⁻¹ after senescence, indicating an increase in activity.

The results for the COX-1 inhibition assay are shown in Figure 1A. Aqueous extracts showed no significant activity. Ethanol and ethyl acetate extracts of the leaves showed high levels of anti-inflammatory activity. These results confirm the findings of Zschocke et al. (2000b) that the leaves of S. aethiopicus showed the highest levels of anti-inflammatory activity. The rhizome and root extracts showed much lower levels of activity, with the ethyl acetate extracts having slightly higher activity than the ethanol extracts. Furthermore, the level of activity in the rhizomes was lower than in the roots.

Inhibition of the various extracts in the COX-2 assay are shown in Figure 1B. As was seen in the COX-1 assay, the ethanol and ethyl acetate extracts of the leaves showed the highest levels of activity. Similarly, the rhizome and root extracts showed lower levels of activity, with the ethyl acetate extracts having slightly higher activity than the ethanolic extracts. The aqueous extracts of the roots showed no noteworthy activity, although those of the rhizomes and leaves were slightly higher.

A variety of compounds which demonstrate anti-inflammatory activity have been previously isolated from other species of the Zingiberaceae. Claeson and co-workers (1993) isolated three non-phenolic diarylheptanoids from hexane extracts of the rhizomes of Curcuma xanthorrhiza. These compounds showed significant anti-inflammatory activity in the assay of carrageenin-induced hind paw oedema in rats. Bioassay-guided fractionation of extracts of the rhizomes of Zingiber cassumunar led to the isolation of three cassumannins with anti-inflammatory activity (Masuda and Jitoe 1994). In further studies on Z. cassumunar by Pongprayoon and co-workers (1996), 5 compounds with topical anti-inflammatory activity were isolated from hexane extracts of the rhizome. These compounds gave ID₅₀ values ranging from 2 to 62μg/ear in the model of 12-O-tetradecanoylphorbol-13-acetate-induced ear oedema in rats. Two pimaraane diterpenes have been isolated from Kaempferia pulchra, and were found to have ID₅₀ values estimated at 330 and 50μg/ear in the above-mentioned rat ear oedema bioassay (Sematong et al. 1996).

Results for the effect of senescence on COX-1 inhibition are shown in Figure 2. As observed with the general screening, the leaves showed the highest levels of activity, with the exception of senesced leaf material that was dried prior to extraction. No differences were observed between activity of the α- and β-rhizomes, before and after senescence. However, there did appear to be a slight loss of activity as a

Table 1: Minimum Inhibitory Concentrations (mg ml⁻¹) of Siphonochilus aethiopicus extracts against test bacteria

Plant part	Extract	B.s.	S.a.	E.c.	K.p.
Leaves	Water	>12.5	>12.5	>12.5	>12.5
	Ethanol	3.13	1.56	3.13	3.13
	Ethyl acetate	1.56	1.56	3.13	6.25
Rhizome	Water	>12.5	>12.5	>12.5	>12.5
	Ethanol	1.56	1.56	6.25	6.25
	Ethyl acetate	1.56	1.56	3.13	6.25
Roots	Water	>12.5	>12.5	>12.5	>12.5
	Ethanol	1.56	0.78	6.25	6.25
	Ethyl acetate	0.78	1.56	6.25	12.5

| Neomycin standard (μg ml⁻¹) | 0.1 | 0.1 | 1.56 | 0.39 |

Abbreviations: B.s. B. subtilis; S.a. S. aureus; E.c. E. coli; K.p. K. pneumoniae

Table 2: Minimum Inhibitory Concentrations (mg ml⁻¹) of Siphonochilus aethiopicus ethanol extracts against S. aureus

Extract	Plant part	Before senescence	After senescence
Fresh material	Leaves	0.2	3.13
	Rhizome - α	1.56	1.56
	Rhizome - β	6.25	3.13
	Roots - α	3.13	0.1
	Roots - β	3.13	1.56
Dry material	Leaves	0.1	1.31
	Rhizome - α	3.13	3.13
	Rhizome - β	6.25	6.25
	Roots - α	1.56	0.2
	Roots - β	0.78	0.78

| Neomycin standard (μg ml⁻¹) | 0.39 | 0.39 |
result of drying the rhizome material before extraction. This does suggest that fresh rhizome material may be more effective for use as a traditional medicine. For the α-roots, there was a slight decrease in activity following senescence. This was seen in both the fresh and dried material. The β-roots showed a trend opposite to this, in that there was an increase in activity following senescence.

In the cytotoxicity assay the integrity of the VK cell monolayers, treated with concentrations of the S. aethiopicus aqueous leaf extract, from 3.9μg ml⁻¹ up to 1 000μg ml⁻¹, was maintained. Only minimal morphological changes, indicative of cytotoxic effects, were observed during the 7 day observation period at extract concentrations greater than 250μg ml⁻¹. This low level of toxicity was confirmed in the MTT assay (Table 3). Furthermore, the aqueous leaf extracts which were tested against HSV-1 and HSV-2, at concentrations ranging from 3.90μg ml⁻¹ to 500μg ml⁻¹, exhibited no antiviral activity when the virus was inoculated onto cell cultures simultaneously with the plant extract (results not shown). The same extracts also showed no activity against the replication of either HSV-1 or HSV-2 after viral adsorption had taken place (results not shown).

Cytotoxicity testing of the aqueous extracts of the rhizome revealed high levels of cytotoxicity (Table 3), as evidenced by a percentage survival of the VK cells of less than 50% at concentrations of 125μg ml⁻¹ and higher. In performing the assay, toxicity of the extract was evident by day 3 after inoculation. This extract was also tested in the influenza assay, but did not indicate any noteworthy activity against Inf A (results not shown).

No activity was observed in the anthelmintic, antischistosomal and BIA assays (results not shown). For the BIA test, the S. aethiopicus leaf extracts prepared with ethanol and ethyl acetate produced a zone of bacterial growth inhibition around the site of sample application in the BIA assay. However, no red ring of β-galactosidase induction was observed, so it is likely the extracts did not cause any DNA damage, but rather simply exhibited antibacterial activity.

Table 3: Survival of secondary vervet monkey kidney cells in the presence of varying concentrations of aqueous extracts of S. aethiopicus leaves and rhizomes

Extract concentration (μg ml⁻¹)	Survival of VK cells (%)	Leaf extract	Rhizome extract
1 000	Leaf	53	7
500	Leaf	58	28
250	Leaf	68	40
125	Leaf	75	45
62.5	Leaf	82	70
31.3	Leaf	86	62
15.6	Leaf	89	72
7.8	Leaf	92	76
3.9	Leaf	95	85

Figure 1: COX-1 (A) and COX-2 (B) inhibition of water, ethanol and ethyl acetate extracts of various plant parts of S. aethiopicus. Extracts tested at a final concentration of 250μg ml⁻¹ per test solution. Values represent the mean of double determinations. Indomethacin gave 71% inhibition in the COX-1 assay. In the COX-2 assay, indomethacin and nimesulide standards inhibited the synthesis of prostaglandins by 94% and 33% respectively.

Figure 2: Cyclooxygenase-1 inhibitory activity (± S.D.) of ethanol extracts of various plant parts of S. aethiopicus before and after senescence. Extracts tested at a final concentration of 250μg ml⁻¹ per test solution. Values represent the mean of double determinations from two experiments. The indomethacin standard inhibited the synthesis of prostaglandins by 54 ± 5.7%.

![Figure 1](image1.png)

![Figure 2](image2.png)
Although no activity in the antiviral, anthelmintic, anti-chistosomal or biochemical induction assays was detected, anti-inflammatory activity was confirmed, and antibacterial activity observed against both Gram-positive and Gram-negative bacteria. From the experiments on seasonal senescence, it is clear that the time of harvest, and state of the material for extraction may only have a minimal influence on the degree of antibacterial and anti-inflammatory activity. Generally, little differences were observed between the levels of activity of the rhizomes before and after senescence, which is the plant part most used by traditional healers. This would suggest that the rhizomes could be harvested some time just before senescence or after the leaves have fully dried back. Results from this study also support the use of the roots, which are sometimes used in traditional medicine. The results from the cytotoxicity assay indicate that the rhizomes are potentially harmful. This is an aspect which would require further investigation in terms of the medicinal use of this plant. These are important factors in the use of S. aethiopicus by traditional healers, and should be taken into consideration with regards to cultivation, commercialisation and product quality.

Acknowledgements — The financial assistance of the University of Natal, The National Research Foundation and the South African – Netherlands Research Programme on Alternatives in Development (SANPAD) is appreciated.

References

Ahmad I, Mehmoed Z, Mohammad F (1998) Screening of some Indian medicinal plants for their antimicrobial properties. *Journal of Ethnopharmacology* 62: 183–193

Arambewela LSR, Perera A, Wijesundera RLC (1999) Antibacterial activity of *Kaempferia galanga*. *Fitoterapia* 70: 425–427

Barrett T, Inglis SC (1985) Growth, purification and titration of influenza viruses. In: Mahy BWJ (Ed.) Virology. A practical approach. IRL Press, Oxford, UK, pp 119–150

Brenner S (1974) The genetics of *Caenorhabditis elegans*. *Genetics* 77: 71–94

Claeson P, Panthong A, Tuchinda P, Reutrakul V, Kanjanopothi D, Taylor WC, Santisuk T (1993) Three non-phenolic diarylheptanoids with anti-inflammatory activity from *Curcuma xanthorrhiza*. *Planta Medica* 59: 451–454

Eloff JN (1998) A sensitive and quick microplate method to determine the Minimal Inhibitory Concentration of plant extracts for bacteria. *Planta Medica* 64: 711–713

Grist NR, Bell EJ, Follette EAC, Urquhart GED (1979) Diagnostic Methods in Clinical Virology, 3rd edn. Blackwell Scientific Publications, Oxford, UK, pp 60–79

Habsah M, Amran M, Mackeen MM, Lajis NH, Kikuzaki H, Nakatani N, Rahman, AA, Ghafar, Ali AM (2000) Screening of Zingiberaceae extracts for antimicrobial and antioxidant activities. *Journal of Ethnopharmacology* 72: 403–410

Hussain RF, Nouri AME, Oliver RTD (1993) A new approach for measurement of cytotoxicity using colorimetric assay. *Journal of Immunological Methods* 160: 89–96

Jäger AK, Hutchings A, Van Staden J (1996) Screening of Zulu medicinal plants for prostaglandin-synthesis inhibitors. *Journal of Ethnopharmacology* 52: 95–111

Jäger AK, Van Staden J (2000) The need for cultivation of medicinal plants in southern Africa. *Outlook on Agriculture* 29: 283–284

Lindsey K, Jäger AK, Raidoo DM, Van Staden J (1999) Screening of plants used by Southern African traditional healers in the treatment of dysmenorrhoea for prostaglandin-synthesis inhibitors and uterine relaxing activity. *Journal of Ethnopharmacology* 64: 9–14

Masuda T, Jitoe A (1994) Antioxidative and anti-inflammatory compounds from tropical gingers: isolation, structure determination, and activities of cassumunins A, B, and C, new complex curcuminoids from *Zingiber cassumunar*. *Journal of Agricultural and Food Chemistry* 42: 1850–1856

McGaw LJ, Jäger AK, Van Staden J (1997) Prostaglandin synthesis inhibitory activity in Zulu, Xhosa and Sotho Medicinal Plants. *Phytotherapy Research* 11: 113–117

McGaw LJ, Jäger AK, Van Staden J (2000) Antibacterial, anthelmintic and anti-amoebic activity in South African medicinal plants. *Journal of Ethnopharmacology* 72: 247–263

Noreen Y, Ringbom T, Perera P, Danielson H, Bohlin L (1998) Development of a radiochemical cyclooxygenase-1 and -2 in vitro assay for identification of natural products as inhibitors of prostaglandin biosynthesis. *Journal of Natural Products* 61: 2–7

Pongprayoon U, Tuchinda P, Claeson P, Sematong T, Reutrakul V, Soontornsaratune P (1996) Topical anti-inflammatory activity of the major lipophilic constituents of the rhizome of *Zingiber cassumunar*. Part II: Hexane extracts. *Phytomedicine* 3: 333–336

Scott-Shaw CR (1999) Rare and Threatened Plants of KwaZulu-Natal and Neighbouring Regions. KwaZulu-Natal Nature Conservation Service, Pietermaritzburg, South Africa, pp 200. ISBN 0–620–24688–X

Sematong T, Reutrakul V, Tuchinda P, Claeson P, Pongprayoon U, Nahar N (1996) Topical anti-inflammatory activity of two pimarane diterpenes from *Kaempferia pulchra*. *Phytotherapy Research* 10: 534–535

Sparg SG, Van Staden J, Jäger AK (2000) Efficiency of traditionally used South African plants against schistosomiasis. *Journal of Ethnopharmacology* 73: 209–214

Van Rensburg CEJ, Anderson R, Myer MS, Jooné GK, O’Sullivan JF (1994) The rimonophenazine agents clofazimine and B669 reverse acquired multidrug resistance in a human lung cancer cell line. *Cancer Letters* 85: 59–63

Van Wyk B-E, Van Oudtshoorn B, Gericke N (1997) Medicinal Plants of Southern Africa. Briza Publications, Pretoria, South Africa.

White HL, Glassmann AT (1974) Rare and Threatened Plants of KwaZulu-Natal and Neighbouring Regions. KwaZulu-Natal Nature Conservation Service, Pietermaritzburg, South Africa, pp 200. ISBN 0–620–24688–X

White RJ, Maiese WM, Greenstein M (1986) Screening for new products from microorganisms. In: Manual of Industrial Microbiology and Biotechnology, Chp. 2, p 27. American Society for Microbiology, Washington DC

Wiedbrauk DL, Johnston SLG (1993) Manual of Clinical Virology. Raven Press Ltd., New York, USA

Zschocke S, Rabe T, Taylor JLS, Jäger AK, Van Staden J (2000b) Plant part substitution—an way to conserve endangered medicinal plants? *Journal of Ethnopharmacology* 71: 281–292

Zschocke S, Van Staden J (2000) Cryptocarya species - substitute plants for *Ocotea bullata*. A pharmacological investigation in terms of cyclooxygenase-1 and -2 inhibition. *Journal of Ethnopharmacology* 71: 473–478