A Remark on the Three Dimensional Baroclinic Quasigeostrophic Dynamics

Jinqiao Duan
Department of Mathematical Sciences,
Clemson University, Clemson, South Carolina 29634, USA.
E-mail: duan@math.clemson.edu, Fax: (864)656-5230.

January 12, 1998

Abstract

We consider time-periodic patterns of the dissipative three dimensional baroclinic quasigeostrophic model in spherical coordinates, under time-dependent forcing. We show that when the forcing is time-periodic and the spatial square-integral of the forcing is bounded in time, the model has time-periodic solutions.

Keywords— quasigeostrophic fluid model, dissipative dynamics, time-periodic motion, nonlinear analysis.

Short running title:
Three Dimensional Quasigeostrophic Dynamics

*This research was supported by the National Science Foundation Grant DMS-9704345 and a Clemson University Research Grant. This research was performed while the author was visiting the Isaac Newton Institute for Mathematical Sciences at Cambridge University, England.
1 Introduction

The three dimensional baroclinic quasigeostrophic model is an approximation of the rotating Euler (inviscid case) or Navier-Stokes (viscous case) equations in the limit of zero Rossby number, i.e., at asymptotically high rotation rate; see, for example, [1], [2], [3], [4], [5], [6], and [7].

The well-posedness for the invisid three dimensional baroclinic quasigeostrophic model was studied in, for example, [8] and [4], and for the viscous three dimensional baroclinic quasigeostrophic model in [9]. The invisid baroclinic quasigeostrophic model is a Hamiltonian system ([10]). The work mentioned above and most other research about the baroclinic quasigeostrophic model has been on the Cartesian, $\beta-$plane version of this model.

Wang ([11]) discussed global attractors for the viscous three dimensional baroclinic quasigeostrophic model in spherical coordinates, under time-independent forcing.

In this paper, we consider the same viscous three dimensional baroclinic quasigeostrophic model, but under time-dependent forcing. We show that when the forcing is time-periodic and when the spatial square-integral of the forcing is bounded in time, the forced viscous three dimensional quasigeostrophic model has time-periodic solutions. We use a topological technique from nonlinear global analysis ([12]).

2 Dissipative Dynamics and Time-Periodic Motion

We consider the three dimensional baroclinic quasigeostrophic equation, in nondimensional form, for the atmospheric dynamics in spherical coordinates ϕ, θ, ζ as in [11]

\[
(A\psi)_t + J(\psi, Ro A\psi + 2\cos\theta) - \frac{1}{Re}A^2\psi = f(\phi, \theta, \zeta, t),
\]

where $\psi(\phi, \theta, \zeta, t)$ is the stream function, $f(\phi, \theta, \zeta, t)$ is the time-dependent forcing such as external source of heating, and Ro, Re are the Rossby number, Reynolds number, respectively. The space domain for the equation is $D = S^2 \times (\zeta_0, 1)$ with S^2 the two dimensional unit sphere and ζ_0 fixed: $1 > \zeta_0 \geq 0$.
The operators appeared in the equation (1) are

\[\Delta = \frac{1}{\sin \theta} \left[\frac{\partial}{\partial \theta} (\sin \theta \frac{\partial}{\partial \theta}) + \frac{1}{\sin \theta} \frac{\partial^2}{\partial \phi^2} \right], \]

\[A = \Delta + \frac{\partial}{\partial \zeta} (N^2 \frac{\partial}{\partial \zeta}), \]

\[J(p, q) = \frac{\partial p}{\partial \theta} \frac{1}{\sin \theta} \frac{\partial q}{\partial \phi} - \frac{1}{\sin \theta} \frac{\partial p}{\partial \phi} \frac{\partial q}{\partial \theta}, \]

where \(N(\phi, \theta, \zeta) > 0 \) is a known smooth function related to the stratification frequency.

The equation (1) is supplemented by the following boundary and initial conditions

\[\frac{\partial \psi}{\partial \zeta} = 0 \quad \text{if} \quad \zeta = \zeta_0, \]
(2)
\[\frac{\partial \psi}{\partial \zeta} + a \psi = \frac{\partial (A \psi)}{\partial \zeta} + a A \psi = 0 \quad \text{if} \quad \zeta = 1, \]
(3)
\[\psi|_{t=0} = \psi_0(\phi, \theta, \zeta), \]
(4)

where \(a(\phi, \theta) > 0 \) is a known smooth function related to heat transfer between the atmosphere and the earth, and \(\psi_0 \) is initial data.

Denote \(L^2(D) \) as the space of square-integrable functions, with the standard norm \(\| \cdot \| \). The problem (1), (2), (3), (4) is well-posed (14) in \(L^2(D) \), with solution \(\psi(\phi, \theta, \zeta, t) \) at least continuous in time \(t \).

We address the issue of whether there are any time-periodic solutions in the nonlinear forced dissipative quasigeostrophic dynamics modeled by (1), (2), (3). To this end we further assume that the forcing \(f(t) := f(\phi, \theta, \zeta, t) \) is periodic in time with period \(T > 0 \), and the spatial square-integral of the forcing \(\| f(t) \| \) is bounded in time, i.e., \(\| f(t) \| \) is bounded by a time-independent constant. Then we can follow (14) exactly to show that there is a bounded absorbing set in \(L^2(D) \) (we omit this part). That is, all solutions \(\psi \) enter a bounded set \(\{ \psi : \| \psi \| \leq C(Re, Ro) \} \) as time goes to infinity. The system (1), (2), (3) is therefore a dissipative system as defined in (14) (also (13) or (14)).

We now recall a result from (14), page 235, that a \(T \)-time-periodic nonautonomous dissipative dynamical system in a Banach space has at least one \(T \)-time-periodic solution. This result follows from a Leray-Schauder topological degree argument and the Browder’s principle (14). So the system (1),
Theorem 1 Assume that the forcing \(f(\phi, \theta, \zeta, t) \) is time-periodic with period \(T > 0 \), and its spatial square-integral with respect to \(\phi, \theta, \zeta \) is bounded in time. Then the forced viscous three dimensional baroclinic quasigeostrophic model

\[
(A\psi)_t + J(\psi, Ro A\psi + 2\cos\theta) - \frac{1}{Re} A^2 \psi = f(\phi, \theta, \zeta, t),
\]

and

\[
\frac{\partial \psi}{\partial \zeta} = \frac{\partial (A\psi)}{\partial \zeta} = 0 \quad \text{if} \quad \zeta = \zeta_0,
\]

\[
\frac{\partial \psi}{\partial \zeta} + a\psi = \frac{\partial (A\psi)}{\partial \zeta} + aA\psi = 0 \quad \text{if} \quad \zeta = 1,
\]

has at least one time-periodic solution with period \(T > 0 \), for some square-integrable initial data \(\psi_0 \).

3 Discussions

Forced coherent structures in the two dimensional baroclinic model were studied in [15]. A wind forced two dimensional baroclinic model was also used in the study of multiple geophysical equilibria (e.g., [16]). In general, it is very difficult to show existence of periodic coherent structures in spatially extended physical systems. In this paper, we have shown that the three dimensional time-periodic quasigeostrophic patterns may form due to time-periodic forcing such as external source of heating.

References

[1] J. G. Charney, The dynamics of long waves in a baroclinic westerly current, *J. Meteorol.* (1947), 135-163.

[2] J. Pedlosky, *Geophysical Fluid Dynamics*, Springer-Verlag, 2nd edition, 1987.

[3] A. E. Gill, *Atmosphere-Ocean Dynamics*, Academic Press, New York, 1982.
[4] A. J. Bourgeois and J. T. Beale, Validity of the quasigeostrophic model for large-scale flow in the atmosphere and ocean, *SIAM J. Math. Anal.* 25 (1994), 1023-1068.

[5] P. F. Embid and A. J. Majda, Averaging over fast gravity waves for geophysical flows with arbitrary potential vorticity, *Comm. PDEs* 21 (1996), 619-658.

[6] B. Desjardins and E. Grenier, Derivation of quasigeostrophic potential vorticity equations, preprint, 1997.

[7] B. Desjardins and E. Grenier, On the homogeneous model of wind driven ocean circulation, preprint, 1997.

[8] J. A. Dutton, The nonlinear quasi-geostrophic equation: Existence and uniqueness of solutions on a bounded domain, *J. Atmos. Sci.* 31 (1974), 422-433.

[9] A. F. Bennett and P. E. Kloeden, The dissipative quasigeostrophic equations, *Mathematika* 28 (1981), 265-285.

[10] D. D. Holm, Hamiltonian formulation of the baroclinic quasigeostrophic fluid equations, *Phys. Fluids* 29 (1986), 7-8.

[11] S. Wang, Attractors for the 3D baroclinic quasi-geostrophic equations of large-scale atmosphere, *J. Math. Anal. Appl.* 165 (1992) 266-283.

[12] M. A. Krasnoselskii and P. P. Zabreiko, *Geometrical Methods of Nonlinear Analysis*, Springer-Verlag, New York, 1984.

[13] R. Temam, *Infinite-Dimensional Dynamical Systems in Mechanics and Physics*, Springer-Verlag, New York, 1988.

[14] J. K. Hale, *Asymptotic Behavior of Dissipative Systems*, American Math. Soc., 1988.

[15] R. T. Pierrehumbert and P. Malguzzi, Forced coherent structures and local multiple equilibria in a barotropic atmosphere, *J. Atmos. Sci.* 41 (1984), 246-257.

[16] P. Cessi and G. R. Ierley, Symmetry-breaking multiple equilibria in quasi-geostrophic, wind-driven flows, *J. Phys. Oceanography*, 25 (1995), 1196-1205.