RCC chimney for 800Mw thermal power plant

Tulasi Sai Krishna¹ and CH Mallika Chowdary²

¹ PG Student, Department of Civil Engineering, KoneruLakshmaiah Education Foundation, Vaddeswaram, India
² Assistant Professor, Department of Civil Engineering, KoneruLakshmaiah Education Foundation, Vaddeswaram, India

E-mail: 195021009@kluniversity.in

Abstract. A Chimney is an industrial structure used to ventilate hot flue gases from the furnace to the outside living atmosphere. The Chimneys are typically vertical, or as near as possible to vertical, to ensure that the gases flow smoothly. As a result of the procedure of chimney is ability to handle Dead load, Wind load, Earthquake load and Temperature load. In this research, achimney is starting from basic calculations to analytical calculations. A Chimney analysis for the thermal power plant, the location was taken as Vijayawada, (AP). Where as the basic wind speed and seismic zone were considered only in that particular location. Analysis was about how to calculate the height, calculating area and volumer the thermal plant generates 800MW power. Analysis was calculated by using Indian code IS 4998-2015 in manual and software. STAAD Pro and ANSYS are the softwares used for the validation.

Keywords: Chimney, Wind loads, STAAD Pro, ANSYS, Manual work.

1. Introduction

Chimneys are typically vertical, or as near as possible to vertical, to ensure that the gases flow smoothly. Often chimneys were used in industries, factories and kitchens. Chimneys are available in steel, RCC, Brick, etc. The chimneys are used as teleporting the gasses to the external environment. Additionally, the dispersion of pollutants at higher altitudes can reduce their impact on the immediate surroundings. The dispersion of pollutants over a greater area can reduce their concentrations and facilitate compliance with regulatory limits. In this research, the chimney was designed at thermal power plant which is located in Vijayawada, Krishna district, AP. The Chimneys are ability to handle dead load, wind load, earthquake load, and temperature loads. Apart from that wind loads are more significant loads than other loads. A chimney teleports the flue gas from the thermal power plant which is inside the chimney, planned as liner structure but in this research, no liner structure planned inside the chimney.

Generally the Thermal power plants contain power generators based on the capacity of power produced by generator. Similarly in this research the thermal power plant named Dr. Narla tata Rao thermal power plant (V.T.P.S) in Vijayawada is containing power generator with 1760Mw capacity. In that 1760Mw capacity, six generators are with 210Mw capacity and one generator is with 500Mw capacity. Recently the government-sanctioned 800Mw generator to V.T.P.S because of the extension power a chimney is required for increasing to ventilate the Flue gases[1]. Consequently in this research chimney was designed by the power plant with 800Mw capacity.
According to the location, it plays a main role for any construction, because of that main role of location every structural engineer upload with site details. Usually the chimneys are typically vertical, or as near as possible to vertical at higher altitudes with the wind gusts. Similarly in this research, for the reason of wind gusts the location was planned beside the Krishna river at Vijayawada [2]. Generally, the gust of winds beside the river is higher than the other areas. As per the IS 875-part 3, Vijayawada is Zone-II, the basic wind speed of this location is 50m/s based on this basic wind speed wind load was designed.

Additionally, earthquake load was also calculated by the consideration of site parameters. Based on this Vijayawada location is in Zone-III. In this site the soil type is in medium-hard type. From the dimensions of the structure remaining details are added.

2. Thermal Power Plant:
Thermal power plants are generated power by using coal at a particular temperature. The burning coal will heat the water and with that water vapor the turbine will rotate. For 1MW of power plant 378kgs of coal was required. In this research of chimney, 800MW power plant of thermal plants generate both in steam and SO2. Steam will treat the plant itself with a cooling tower but SO2 is hard to treat so that harmful flue air is not good for outside atmosphere. So by using this chimney, the hot flue gases is teleporting from the furnace to the outside atmosphere which is harmful to humans [3].

2.1. Chimney:
A chimney is a part of a thermal power plant. Chimneys are made up of RCC, Steel, Brick, etc. Chimneys are transporting items because they teleport the gas through them. Chimneys are also used in factories, industries, home kitchens etc. According to this research, chimneys are taken from thermal power plants.

2.2. About SO2:
Coal contains 0.5% of Sulphur, when the coal is heated the Sulphur reacts with oxygen that reaction gives Sulphur Dioxide (SO2).

\[S + O_2 \rightarrow SO_2 \]

(Note 1: Sulphur atomic number (32) oxygen (16) but one Sulphur requires twice of the oxygen as per above reactions.)

3. Properties:
Height, area, and volume have differed from these chimney structures. These are general properties of the chimney

3.1. Height:
Chimney height calculation based on the discharge (Q) of flue gas. Discharge per hour was decided by the height of the chimney. For 800MW power plant calculating Sulphur dioxide is discharge per hour is the main purpose of the height [4].

\[H = 14 \times (Q)^{0.3} \]

3.1.1. Discharge:
Coal required for 800MW can be found for the as 1.1 Sulphur content in coal is calculated. EQ(3)

\[S + O_2 \rightarrow SO_2 \]

\[32 + (2\times16) \rightarrow 64 \]
Therefore, the coal contains 0.5% of Sulphur. After that Sulphur content multiply by two oxygens then Sulphur Dioxide discharge was calculated.

3.2. Area:
The area of the chimney is easy to calculate. Chimney looks like a cone shaped but opens at the top area. So chimney is a hallow section so the inside area is not required because of that inside area subtracted like $A = [A_1 - A_2]$.

$$
A_1 = \pi * [R_1^2 + r_1^2 + (R_1 + r_1) * \sqrt{(R_1 - r_1)^2 + H^2}]
$$

$$
A_2 = \pi * [R_2^2 + r_2^2 + (R_2 + r_2) * \sqrt{(R_2 - r_2)^2 + H^2}]
$$

(4)

3.3. Volume:
Same as area, volume is also calculated whether it is a frustum of cone type model. To generate the integration formula is required. This volume is for solids so it subtract with thickness both the values $V = [V_1 - V_2]$.

$$
V_1 = \frac{\pi}{3} * H * [R_1^2 + r_1^2 + (R_1 + r_1)]
$$

$$
V_2 = \frac{\pi}{3} * H * [R_2^2 + r_2^2 + (R_2 + r_2)]
$$

(5)

(Note 2: don’t subtract directly from full cone area or volume because diameter issues are generated automatically.)

4. Loads:
Dead load, wind load, earthquake load and temperature loads are the design of the chimney but there are no particular load for the chimney. Wind load is shows more effect on the chimney and the temperature load is depending on the industry. According to this research, it is on the thermal power plant. So, temperatures in this thermal power plant are not heavier than another industry [5]. Load calculated are as per the IS 4998-2015 in this research.

4.1. Dead Load:
Dead load known as self-weight, for calculating the Dead load, the IS875-part1 is used that followed by the IS4998-2015.

For that volume and densities are multiplied from (2.3) volume was taken and density of concrete taken as 2500 (because the structure is made up of RCC).

4.2. Wind load:
Wind load was caused by wind gust. Wind load occurs in the opposite direction to the chimney which is in circular and vertical structure so wind load is more significant than another load on the chimney. As the location in Vijayawada which is beside the river where the wind load is heavy to the chimney, then it is a challenge to the structure strength. For the tall chimney, the structure needs to resist with two types of wind loads, along with the wind load and avoid the failure of structures.

4.2.1. Design wind speed (V_d):
This wind speed is mandatory to calculate the wind load in the across direction of wind. For the design load, basic wind speed of the location was required, basic wind speed V_b, risk coefficient K_1, height factor K_2, topography factor K_3, and important factor K_4. Design wind speed is differed from height because of terrain roughness.

4.2.1.1. Basic wind speed V_b:
Basic wind speed varies for every location, in this research location taken at Vijayawada, its basic wind speed is 50m/s as following IS 875 -PART 3

4.2.1.2. Risk coefficient K_1, Height factor K_2, Topography factor K_3, and Important factor K_4:
These factors and coefficients are directly taken from IS 875-part 3. K_1=1.56, K_3=1, K_4=1.15, But the terrain roughness is different from different height. For the reason of that design wind speed also varying at different heights.

4.2.1.2.1. Height factor K_2:
This factor was calculated by using the direction of the wind and the height of the structures. z is the height for calculating roughness, z_0 is the aerodynamic factor in equivalent mannar is taken as constant $(0.002m)^2$. From (2.1) height is calculated in that every 5m(mode height) terrain roughness was calculated.

$$K_2 = 0.1432 \times \ln\left(\frac{z}{z_0}\right) \times z_0^{0.0706} \tag{6}$$

With that factors and coefficients design wind speed was calculated by the formula

$$V_z = V_b K_1 K_2 K_3 K_4 \tag{7}$$

4.2.2. Wind pressure $P(z)$:
This is the Design wind pressure due to periodic mean of wind speed, it is used to calculate the mean along with the wind load. There is a difference in IS 875-part3 and IS 4998-2015. That difference is air mass density directly multiplied by 0.5 in IS 875 part3 but IS 4998-22015 gave like below formula.

$$V_2 = \frac{1}{2} \rho_a [V_z] \tag{8}$$

(Note 3: ρ_a=1.2 Kg/m3 taken in IS 4998-2015)

4.2.3. Along with the wind load:
The wind flow direction wind contacts the structure throughout the circular circumference. This wind load rises when the height is increasing. For Every 10m rising is different from each. F_z is Along the wind load symbol [6].

$$F_z = F_z \tag{9}$$

Thus the sum of mean along with the wind load and fluctuation of the wind load shown in the above formula

(Note 4: From the IS 4998-2015 V_c value is within the limits of 0.5V(c) to 1.3 V(c) Across the wind load was not required. For this chimney V_c is within the limit.)

4.2.3.1. Mean along with the wind load F_z
The mean along wind load is the multiplication for drag coefficient $C(d)$, periodic wind pressure $P(z)$, and diameter of chimney $d(z)$

$$F_z = C(d) \times P \times d(z) \tag{10}$$

(Note 5: outside diameter is changing bone place to another in this research every 5m conceded as a mode. So, diameter founded for every 5m)

4.2.3.2. Fluctuations of along the wind load F_z^1:
Wind load is not a constant load it varies from time to time and height to height. To balance the fluctuations this load was added to the mean load. That load design will satisfy the structures.
Important factor was the fluctuations gust factor (G)[3]. Gust factor is the sudden impacts of wind one after another, that gust of wind tested by the strength and natural frequency of the chimney.

$$G = 1 + g_{f} r_{t} \sqrt{B + \frac{SE}{\beta}}$$ \hspace{1cm} (12)

For calculating gust factor balance intensity r_{t}, size factor S, energy and frequency was required finally critical damping β also needed in IS 4998-2015 directly $\beta = 0.016$ given.

4.2.3.3. Natural frequency of chimney f:

The Chimney naturally possesses its frequency which is the natural frequency of chimney.

$$f_{1} = 0.2 \times \frac{d_{0}}{H^{2}} \times \sqrt{\frac{E_{c}}{\rho_{c}c}} \times (t/t_{0})^{0.3}$$ \hspace{1cm} (13)

Use of the frequency shows the limit of the displacements the chimney undergoes any of the vibrations and if the vibration is more than natural frequency then chimney will collapse. So, the gust factor considers the natural frequency to design the wind load along with it.

5. Earthquake load:

In this research, location area Vijayawada is not an earthquake zone. But chimney is a tall structure it needs seismic analysis[6]. So equivalent static method followed in this research by using IS 1893 part-1 2016.

5.1. Seismic coefficient method:

1. Earthquake loads always depend on chimney location zones.
2. Chimneys natural period Z also play a major role.
3. Type of soil is considering the problems.
4. By using the soil type average spectral acceleration (S_{a}/g).
5. The factor of importance ‘I’ is also required.
6. Chimney decided the reduction response factors ‘R’.
7. Design of Horizontal load accelerations $A_{h}= (S_{a}/g) \times (\frac{z}{2}) \times (I/R)$ \hspace{1cm} (14)
8. Calculating base shear of the $V_{h}= A_{h} \times W$. \hspace{1cm} (15)
9. Design Lateral loads tables $Q_{i}= V_{h} \times (W_{i} \times h_{i})/\sum_{j=1}^{n}(W_{j} \times h_{j})$ \hspace{1cm} (16)

6. Temperature loads:

Thermal power plants producing electricity by burning coal, that coal burned at a certain temperature that could be calculated. For design temperature load calculating the heat drop across the chimney is concrete shell [7].

$$\text{Heat drop } T_{c} = \frac{t_{d_{c}}}{c_{d_{c}}} \times \frac{T_{i} - T_{0}}{\frac{1}{k_{i}} + \frac{t_{d_{c}}}{c_{d_{c}}} + \frac{d_{c_{i}}}{k_{o_{d_{c}}}}}$$ \hspace{1cm} (17)

This head drops changes throughout the chimney with different heights. At Bottom of the chimney temperature is high while going to the top of the chimney it will reduce.

6.1. Stress developed by temperature:

Due to the temperature concrete and steel both undergoes stresses. For calculating the stress which is created inside the chimney vertical and circumferential.
Vertical stress

For concrete $f'_{ctv} = \sigma_{te} x C x T_x x E_c$ (18)

For steel $f'_{stv} = \sigma_{te} x (C-1+\gamma_2) x T_x x E_s$

Circumferential stresses

For concrete $f'_{cvc} = \sigma_{te} x C x T_x x E_c$ (19)

For steel $f'_{svv} = \sigma_{te} x (\gamma_2-1-C^1) x T_x x E_s$

These are the maximum stresses of both vertically and circumferentially due to temperature developed by the power plant.

7. Strength design of circular chimney:
Design strength is the bearing limit of the structure. It is the maximum limit with the factor of safety, while the maximum limit was crossed then the structure was collapsed[8]. This is common strength of Concrete and Steel (R.C.C). This is also known as the ultimate strength of the structure.

$$f_c = \frac{0.67e_{cu}f_{ck}}{\gamma_c} \left(2\left(\frac{e}{e_{cu}}\right)^2 - \left(\frac{e}{e_{cu}}\right)^2\right) N/Sq.mm \quad (20)$$

e_{cu}=maximum strain in compressive of concrete.

e_{sf}=short term load factor $=\frac{0.95-0.1\frac{P_u}{P_{umax}}}{0.85}$

f_{ck}=Characteristic compressive strength of concrete.

$\gamma_c=1.5$

8. Results:
8.1.Property:
8.1.1. Height:
Height of chimney calculation followed by (2.1).

$$H = 14 \times (Q)^{0.3}$$

For 1MW generator burn 378.0062Kgs of coal to generate power. But in this research 800MW Generator burns 3,02,400Kgs of coal. Every coal contains 5% of Sulphur present. In 3,02,400 Kg that 5% is 1512, so there is 1512 Sulphur generating per hour[9]. After the Sulphur burned it reacts with oxygen, thus the Sulphur comes up with multiplication to two oxygens than 3024Kg/hr is the discharge of the So2 based on EQ (21)

$$H = 14 \times (3024)^{0.3} = 154.98 \text{ m.} \approx 155 \text{ m}$$

8.1.2. Area of chimney:
A_1= Outer diameter considered for this area. A_2= Eliminate the assumed thickness for the inside area. Only making for hollow structure this operation happened. EQ(22)

$$A_1 = \pi \times [(R_1^2+R_1^2+R_1+R_1)\times\sqrt{(R_1-R_1)^2+H^2}] = 138573.5895m^2$$

$$A_2 = \pi \times [(R_2^2+R_2^2+R_2+R_2)\times\sqrt{(R_2-R_2)^2+H^2}] = 12901.2788m^2$$

$$A = [A_1-A_2] = 138573.5895-12901.2788=10672.3107m^2$$
8.1.3. Volume of chimney:
Volume is calculating by the following of 3.3 and EQ(23)

\[V_1 = \frac{\pi}{3}H\left(R_1^2 + r_1^2 + (R_1 + r_1)^2\right) = 45,773.00496 \text{m}^3. \]
\[V_2 = \frac{\pi}{3}H\left(R_2^2 + r_2^2 + (R_2 + r_2)^2\right) = 42,283.21912 \text{m}^3. \]
\[V = [V_1 - V_2] = 45,773.00496 - 42,283.21912 = 3489.78583 \text{m}^3. \]

8.2. Load Design:
8.2.1. Dead load:
Volume multiplied by Density of Reinforced concrete.

\[DL = 3489.7853 \times 25 = 87,244.6325 \text{KN}. \]

8.2.2. Wind load:
Wind loads are more severe than other loads because the chimney is a larger structure towards the sky. While going away from the surface wind effect randomly increased[7]. So, the perfection of the wind load was needed.

\[V_z = V_b \times K_1 \times K_2 \times K_3 \times K_4 \]

\[V_b \] is the basic wind speed in the selected location. The current research location in Vijayawada even it is in zone II the basic wind speed 50m/s. \(K_2 \) height factor makes the difference of the wind load at different heights \(z_0 \) is the 0.02 aerodynamic factor for all terrine areas shown in table 1

\[K_2 = 0.1432 \times \left[\ln\left(\frac{z}{z_0}\right) \right] \times z_0^{0.0706} \]

Table 1. TerrionRoughness

No. of. Story	Height of Story	z	\(K_2 \)
1	5	5	0.59609
2	5	10	0.67092
3	5	15	0.71469
4	5	20	0.74575
5	5	25	0.76984
6	5	30	0.78953
7	5	35	0.80617
8	5	40	0.82058
9	5	45	0.8333
10	5	50	0.84467
11	5	55	0.85496
12	5	60	0.86436
13	5	65	0.873
14	5	70	0.881
15	5	75	0.88845
16	5	80	0.89541
17	5	85	0.90196
18	5	90	0.90813
19	5	95	0.91397
20	5	100	0.91951
21	5	105	0.92477
22	5	110	0.92979
23	5	115	0.93459
24	5	120	0.93919
25	5	125	0.9436
26	5	130	0.94783
8.2.3. Design wind loads

Design wind speed is following with \(V_b x K_1 x K_2 x K_3 x K_4 \) readings given in table followed by the IS 4998-2015. Calculated values shown in table 2 [8].

Followed by design wind pressure \(\bar{P}_g = \frac{1}{2} \rho_a |V_g| \) then

Along the wind load is \(F_z = \bar{F}_z + F_z^1 \)

Natural frequency: \(f_1 = 0.2 x \frac{\rho_0}{\rho_a} x \sqrt{\frac{E_c}{\mu_c} x (\rho_0/\mu_0) 0.3} = 0.498 \) Hz

No. of modes	Height of Story	\(z \)	\(V_Z \)	\(\bar{P}_g \)	\(\bar{F}_z \)	\(F_z^1 \)	\(F_z \) N/m²
1	5	5	53.46925	1715.376	8632.216	977.6473	9609.863
2	5	10	60.18161	2173.096	11440.3	2591.357	14031.65
3	5	15	64.10809	2465.908	13554.54	4605.386	18159.93
4	5	20	66.89398	2684.882	15381.78	6968.294	22350.07
5	5	25	69.05487	2861.145	17056.12	9658.51	26714.63
6	5	30	70.82046	3009.322	18638.38	12665.41	31303.8
7	5	35	72.31324	3137.522	20161.11	15983.52	36144.63
8	5	40	73.60634	3250.736	21643.61	19610.09	41253.7
9	5	45	74.74694	3352.263	23098.17	23543.99	46642.16
10	5	50	75.76724	3444.405	24533.05	27785.07	52318.12
11	5	55	76.69021	3528.833	25954	32333.81	58287.81
12	5	60	77.53282	3606.803	27365.16	37191.12	64556.28
13	5	65	78.30795	3679.281	28769.6	42358.16	71127.77
14	5	70	79.0256	3747.027	30169.61	47836.32	78005.93
15	5	75	79.69372	3810.653	31566.96	53627.06	85194.02
16	5	80	80.3187	3870.657	32963.01	59731.96	92694.97
17	5	85	80.90579	3927.448	34358.83	66152.65	100511.5
18	5	90	81.4593	3981.371	35755.28	72890.78	108646.1
19	5	95	81.98288	4032.716	37153.02	79948.01	117101
20	5	100	82.4796	4081.731	38552.61	87326.02	125878.6
21	5	105	82.95208	4128.629	39954.47	95026.48	134980.9
22	5	110	83.40258	4173.594	41358.97	103051	144410
23	5	115	83.83304	4216.787	42766.39	111401.3	154167.7
24	5	120	84.24519	4258.351	44176.95	120079	164255.9
25	5	125	84.6405	4298.409	45590.86	129085.6	174676.5
26	5	130	85.02031	4337.072	47008.26	138422.8	185431
27	5	135	85.38578	4374.439	48429.28	148092	196521.3
28	5	140	85.73796	4410.599	49854	158094.9	207948.9
29	5	145	86.07778	4445.631	51282.5	168433	219715.5
30	5	150	86.40608	4479.607	52714.86	179107.7	231822.5
31	5	155	86.72362	4512.591	54151.1	190120.5	244271.6

Load 105120.5
Wind Graph representation: This figure 1 shows how the attitude of wind load increases height randomly by following table 2.

![Wind Graph representation](Diagram)

Figure 1. Wind Graph representation

8.3. Earthquake load

The equivalent static method, lateral loads are calculated by the following method table 3, figure 2.

\[Q_i = V_h x \left(\frac{W_i x h_i}{\sum_{j=1}^{n} (W_j x h_j)} \right) \]

hi	wi	wihi^2	wihi^2/wihi^2	\{wihi^2/wihi^2\} vb
155	61664.78794	1481496530	0.122460335	693.0806779
150	59352.72617	1335436339	0.110387017	624.7501118
145	57084.79707	1200207858	0.099209046	561.4868878
140	54861.00664	1075275613	0.08888216	503.0404967
135	52681.33689	960117364.8	0.079363193	449.1666234
130	50545.80581	854224118.2	0.070610069	399.6271465
125	48454.40741	757100115.7	0.06258181	354.1901386
120	46407.14168	668262840.1	0.055238531	312.6298664
115	44404.00862	587243014	0.048541441	274.7267901
110	42445.00824	513584599.7	0.042452845	240.2675641
105	40530.14054	446844799.4	0.036936141	209.0450367
100	38659.4055	386594055	0.031955821	180.8582499
95	36832.80315	332416048.4	0.027477473	155.5124399
90	35050.3346	283907701.1	0.023467778	132.8190366
85	33311.99646	240679174.4	0.019894513	112.5956639
80	31617.79212	202353869.6	0.016726548	94.66613943
75	29967.72046	168568427.6	0.013933847	78.86047499
70	28361.78148	138972729.2	0.01148747	65.01487612
65	26799.97517	113229895.1	0.00935957	52.97174231
60	25282.30153	91016285.51	0.007523396	42.57966969
55	23808.76057	72021500.72	0.005953289	33.69343736
50	22379.35228	55948380.7	0.004624687	26.17403472
Figure 2. The lateral loads acting on the Chimney

8.4. Temperature load
Temperature effect on total chimney without liner is calculated by this formula in table 4

\[\text{Heat drop } T_x = \frac{T_i - T_0}{c + \frac{1}{K_1 + \frac{K_2}{C_c \cdot c + K_3}}} \]

Table 4. Temperature drop

\(d_{CO}\)	\(d_i\)	\(d_c\)	\(t\)	\(C_c\)	\(T_i\)	\(T_0\)	\(K_1\)	\(K_2\)	\(T_x\)
14.70968	14.20968	14.45968	0.5	1.73	320	284	20	68	204.5794
14.41935	13.91935	14.16935	0.5	1.73	320	284	20	68	204.5056
14.12903	13.62903	13.87903	0.5	1.73	320	284	20	68	204.4287
13.83871	13.33871	13.58871	0.5	1.73	320	284	20	68	204.3486
13.54839	13.04839	13.29839	0.5	1.73	320	284	20	68	204.2649
13.25806	12.75806	13.00806	0.5	1.73	320	284	20	68	204.1776
12.96774	12.46774	12.71774	0.5	1.73	320	284	20	68	204.0862
12.67742	12.17742	12.42742	0.5	1.73	320	284	20	68	203.9905
12.3871	11.8871	12.1371	0.5	1.73	320	284	20	68	203.8903
12.09677	11.59677	11.84677	0.5	1.73	320	284	20	68	203.7852
11.80645	11.30645	11.55645	0.5	1.73	320	284	20	68	203.6748
11.51613	11.01613	11.26613	0.5	1.73	320	284	20	68	203.5587
11.22581	10.72581	10.97581	0.5	1.73	320	284	20	68	203.4364
8.5. Design for axial and uni-axial load:
All values taken based on the IS4998- 2015 code book. From table 5

TX	c	c'	α_w	E_s	E_c	f_{stv}	f_{ctv}	f_{cts}	f_{ctv}
204.57	1.89E	3.79E	0.00001	2.00E+	3.35E+	9.57E+	1.52E+	3.04E+	9.57E+
94	04	04	17	05	10	02	04	04	02
204.50	1.89E	3.79E	0.00001	2.00E+	3.35E+	9.57E+	1.52E+	3.03E+	9.57E+
56	04	04	17	05	10	02	04	04	02
204.42	1.89E	3.79E	0.00001	2.00E+	3.35E+	9.57E+	1.52E+	3.03E+	9.57E+

Figure 3. Temperature drop
87	04	04	17	05	10	02
204.34	1.89E	3.79E	0.00001	2.00E+	3.35E+	9.56E+
86	04	04	17	05	10	02
204.26	1.89E	3.79E	0.00001	2.00E+	3.35E+	9.56E+
49	04	04	17	05	10	02
204.17	1.89E	3.79E	0.00001	2.00E+	3.35E+	9.56E+
76	04	04	17	05	10	02
204.08	1.89E	3.79E	0.00001	2.00E+	3.35E+	9.56E+
62	04	04	17	05	10	02
203.99	1.89E	3.79E	0.00001	2.00E+	3.35E+	9.56E+
05	04	04	17	05	10	02
203.89	1.89E	3.79E	0.00001	2.00E+	3.35E+	9.56E+
3	04	04	17	05	10	02
203.78	1.89E	3.79E	0.00001	2.00E+	3.35E+	9.56E+
52	04	04	17	05	10	02
203.67	1.89E	3.79E	0.00001	2.00E+	3.35E+	9.56E+
48	04	04	17	05	10	02
203.55	1.89E	3.79E	0.00001	2.00E+	3.35E+	9.56E+
87	04	04	17	05	10	02
203.43	1.89E	3.79E	0.00001	2.00E+	3.35E+	9.56E+
64	04	04	17	05	10	02
203.30	1.89E	3.79E	0.00001	2.00E+	3.35E+	9.56E+
75	04	04	17	05	10	02
203.17	1.89E	3.79E	0.00001	2.00E+	3.35E+	9.56E+
14	04	04	17	05	10	02
203.02	1.89E	3.79E	0.00001	2.00E+	3.35E+	9.56E+
75	04	04	17	05	10	02
202.87	1.89E	3.79E	0.00001	2.00E+	3.35E+	9.56E+
51	04	04	17	05	10	02
202.71	1.89E	3.79E	0.00001	2.00E+	3.35E+	9.56E+
34	04	04	17	05	10	02
202.54	1.89E	3.79E	0.00001	2.00E+	3.35E+	9.56E+
15	04	04	17	05	10	02
202.35	1.89E	3.79E	0.00001	2.00E+	3.35E+	9.56E+
85	04	04	17	05	10	02
202.16	1.89E	3.79E	0.00001	2.00E+	3.35E+	9.56E+
32	04	04	17	05	10	02
201.95	1.89E	3.79E	0.00001	2.00E+	3.35E+	9.56E+
43	04	04	17	05	10	02
201.73	1.89E	3.79E	0.00001	2.00E+	3.35E+	9.56E+
04	04	17	05	10	02	
201.48	1.89E	3.79E	0.00001	2.00E+	3.35E+	9.56E+
98	04	04	17	05	10	02
201.23	1.89E	3.79E	0.00001	2.00E+	3.35E+	9.56E+
05	04	04	17	05	10	02
200.95	1.89E	3.79E	0.00001	2.00E+	3.35E+	9.56E+
03	04	04	17	05	10	02
200.64	1.89E	3.79E	0.00001	2.00E+	3.35E+	9.56E+
66	04	04	17	05	10	02
200.31	1.89E	3.79E	0.00001	2.00E+	3.35E+	9.56E+
63	04	04	17	05	10	02
8.6. Design strength

Design strength with a factor of safety.

\[
f_c = \frac{0.67 \epsilon_y f_{ck}}{Y_c} \left(2 \left(\frac{\epsilon}{\epsilon_{y}} \right)^2 - \left(\frac{\epsilon}{\epsilon_{cu}} \right)^2 \right) = 14.70333 \text{N/Sq.mm}
\]

\[
\epsilon = 0.00173
\]

\[
\epsilon_{cu} = 0.002
\]

\[
f_{ck} = 30
\]

\[
\epsilon_s f = \frac{0.95 - 0.1 \frac{P_{u}-P_{max}}{P_{u}}}{0.85} = \frac{[0.95 - 0.1(1.22072*10^{-4})]}{0.85} = 1.117632621
\]

\[
Y_c = 1.5
\]

8.7. Validation with software’s

STAAD Pro and ANSYS are used in this research

8.7.1. STAAD Pro

Software used for the analysis of the chimney that shows different deflections in different load combination[10]

![Figure 4. DL+WL X+TL](image)

![Figure 5. DL+EL X+TL](image)
After that plate stress also shown min-max top plate stress fig shown.

8.7.2 ANSYS

It shows the direction of wind load acting. The direction of the chimney and also the deflection effect of the chimney [11].
9. Conclusion
1. This research of chimneys is for VTPS newly proposed 800MW generator.
2. This chimney design strength $f_c = 14.70333$N/Sq.mm.
3. Maximum displacement $\delta = 2.32798$ mm.
4. This research calculations are successfully done by both numerical design and software analysis.
5. This Chimney design is analyzed by Staad pro and simulated by Ansys software.

References
[1]. Yadav BP, ReddySA, Yadav JG and Prasad CVSR2020 Estimation of seismic and wind loads for design of a 100 m self supported industrial RCC chimney. Materials Today:Proc., 43, pp 1562-1567
[2]. Remyasree AR and Vijayan M2016 Non-linear seismic analysis of reinforced concrete chimney. SSRG International Journal of Civil Engineering, 3(8), pp12-17
[3]. Elias S, Matsagar V and Datta TK 2017 Distributed multiple tuned mass dampers for wind response control of chimney with flexible foundation. *Procedia engineering*, **199**, pp1641-646.

[4]. KareemBFA 2016 Thermal analysis of chimneys by Finite Element. *Al-Mansour Journal*, **25**, pp 117-142

[5]. Sarkar R, Shrimal D and Goyal S 2015 Seismic analysis of a 275 m tall RCC multi-flue chimney: a comparison of IS code provisions and numerical approaches. In *Advances in Structural Engineering*. pp 1015-1025 DOI 10.1007/978-81-322-2193-7_80

[6]. John AD, Gairola A, Ganju E and Gupta A 2011 Design wind loads on reinforced concrete chimney–An experimental case study. *Procedia engineering*, **14**, pp1252-1257.

[7]. Sengupta S, Datta A and Duttgupta S 2007 Exergy analysis of a coal-based 210 MW thermal power plant. *International journal of energy research*, **31**(1), pp14-28.

[8]. Jha DK and Phanikanth VS 2019 Design of Reinforced Concrete Chimneys. In *Textbook of Seismic Design*. pp. 215-233. https://doi.org/10.1007/978-981-13-3176-3_7

[9]. Kumar P and Samanta A 2020 October Seismic fragility assessment of existing reinforced concrete buildings in Patna, India. In *Structures* **27**, pp54-69

[10]. Thompson MK and Thompson JM 2017 *ANSYS mechanical APDL for finite element analysis*. Butterworth-Heinemann.

[11]. Pradeep KA and Prasad CSR 2014 Governing Loads For Design of a 60m Industrial RCC Chimney. *Governing*, **3**(8), pp 15152-15159