Ether phospholipids and glycosylinositolphospholipids (GIPLs) are not required for amastigote virulence nor for inhibition of macrophage activation by *Leishmania major*

Rachel Zufferey¹, ⁶, Simon Allen², ⁷, Tamara Barron³, Deborah R. Sullivan³,
Paul W. Denny⁴, Igor C. Almeida⁵, Deborah F. Smith⁴,
Salvatore J. Turco³, Michael A.J. Ferguson² and Stephen M. Beverley¹*

¹Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA. ²Wellcome Trust Biocentre, University of Dundee, Dundee DD1 4HN, UK. ³Department of Biochemistry, University of Kentucky Medical Center, Lexington, KY, 45306 USA. ⁴Department of Biological Sciences, Wellcome Trust Laboratories for Molecular Parasitology, Imperial College, London SW7 1AZ, UK; ⁵Dept. Parasitology, Universidade de Sao Paulo, SP05508-900, Brazil.

*Corresponding author e-mail: Stephen M. Beverley, Dept. of Molecular Microbiology, Campus Box 8230, Washington University Medical School, 660 S. Euclid Ave., St. Louis, MO 63110 USA. Tel: (314) 747-2630, Fax: (314) 747-2634; email: beverley@borcim.wustl.edu

⁶Current address: Department of Pathology and Center for Microbial Pathogenesis, University of Connecticut Health Center, Farmington, CT 06032, USA; ⁷Buck Institute, 8001 Redwood Blvd., Novato, CA 94945, USA.

Copyright 2003 by The American Society for Biochemistry and Molecular Biology, Inc.
ABSTRACT

Ether phospholipids are major components of the membranes of humans and *Leishmania*. In protozoan parasites they occur separately or as part of the GPI anchor of molecules implicated in virulence, such as lipophosphoglycan (LPG), smaller glycosylinositolphospholipids (GIPLs) and glycosylphosphatidylinositol (GPI)-anchored proteins. We generated null mutants of the *L. major* alkyl dihydroxyacetonephosphate synthase (ADS), the first committed step of ether lipid synthesis. Enzymatic analysis and comprehensive mass spectrometric analysis showed that *ads*¹- knockouts lacked all ether phospholipids, including plasmalogens, LPG and GIPLs. *Leishmania ads*¹- thus represents the first ether lipid-synthesizing eukaryote for which a completely null mutant could be obtained. Remarkably, *ads*¹- grew well and maintained lipid rafts (DRMs). In virulence tests it closely resembled LPG-deficient *L. major*, including sensitivity to complement and an inability to survive the initial phase of macrophage infection. Likewise, it retained the ability to inhibit host cell signaling and to form infectious amastigotes from the few parasites surviving the establishment defect. These findings counter current proposals that GIPLs are required for amastigote survival in the mammalian host, or that parasite lyso-alkyl or alkylacyl-GPI anchors are solely responsible for inhibition of macrophage activation.

Abbreviations: GPI, glycosylphosphatidylinositol; LPG, lipophosphoglycan; ADS, alkyl dihydroxyacetonephosphate synthase; DRM, detergent-resistant membrane; GIPL, glycosylinositolphospholipid; PG, phosphoglycan; PI, phosphatidylinositol; PPG, proteophosphoglycan; sAP, secretory acid phosphatase; DHAP, dihydroxyacetonephosphate; PE, phosphatidylethanolamine; PC, phosphatidylcholine; IPC, inositol-phosphorylceramide; WT, wild type; ES-MS, electrospray mass spectrometry.

Key words: glycosylphosphatidylinositol (GPI) anchors / lipophosphoglycan (LPG) / alkyl dihydroxyacetonephosphate synthase / detergent-resistant membrane (DRM) / plasmalogens
Introduction

The surface of the *Leishmania* parasite is a major point of interaction with the host throughout the infectious cycle, which includes an extracellular promastigote form residing in the midgut of sand flies and an intracellular amastigote form adapted for survival within the phagolysosomes of vertebrate macrophages. Glycosylphosphatidylinositol (GPI)-anchored molecules dominate the parasite surface, and many of these have been implicated in the ability of the parasite to survive in such hostile environments (1). Abundant surface molecules include lipophosphoglycan (LPG, containing 15-30 copies of a phosphoglycan (PG) repeating unit), GPI-anchored proteins such as membrane proteophosphoglycans (PPGs), gp63 and gp46, and a heterogeneous group of small glycosylinositolphospholipids (GIPLs; reviewed in 2,3).

LPG, GIPLs and related molecules have been shown to inhibit activation and signaling when applied exogenously to macrophage (4-7). The expression of LPG and GPI-anchored proteins decreases greatly in intracellular amastigotes, while GIPLs remain at high levels (2,8). These and other data have led to proposals that GIPLs are key molecules for survival of amastigotes within the macrophage phagolysosome (9-11).

A shared structural motif of GPI-anchored glycoconjugates, as well as other abundant phospholipids in *Leishmania* is the presence of ether lipids. The lipid moeties of GIPLs and GPI-anchored proteins are \(sn-1 \)-alkyl-2-acyl-PIs (reviewed in 1,2,3), while that of LPG is \(sn \)-1-alkyl-2-lyso-PI where the alkyl group is C\(_{24-26}\) (12,13). The GPI anchors of GIPLs and LPG with its very-long chain alkyl group have been implicated in down-regulation of host cell responses, for example in the inhibition of protein kinase C and nitric oxide (NO) production (5,14-16). At least 10% of the total membrane lipids in *Leishmania* consist of ether lipids, within GPI anchors or in phospholipids including phosphatidylethanolamine (PE), phosphatidylcholine (PC) and phosphatidylserine (17-19). Ether lipid analogs have strong
inhibitory activity against parasites, exemplified by the recent introduction of miltefosine into clinical usage against *L. donovani* (reviewed in 20). In mammals ether phospholipids constitute nearly 20% of total phospholipids, occurring most commonly as 1-O-alkenyl-2-alkyl-*sn*-glycerol-3-phosphocholine or phosphoethanolamine plasmalogens (reviewed by 21). Plasmalogens have been implicated in signal transduction, membrane fusion and trafficking, oxidant resistance, and prostaglandin synthesis (reviewed by 21).

To focus on the question of the role of the lipid moiety of GPI anchors in the infective cycle, we took a genetic approach targeting alkyl dihydroxyacetonephosphate (DHAP) synthase (ADS; EC 2.5.1.26), the first committed step in ether lipid synthesis. In *Leishmania* as in other organisms, this pathway begins with the acylation of DHAP, followed by replacement of the acyl group with an alkyl group and then reduction to give the ether lipid precursors 1-alkyl-glycerol-3-phosphate (22,23). In mammals this pathway occurs in peroxisomes, while in trypanosomatids it occurs in glycosomes, a microbody variant of peroxisomes (reviewed in 22,24). ADS activity has been characterized and its gene identified in a number of species including *Trypanosoma brucei* (22,23,25,26). We used this information to identify the *Leishmania* gene *ADS1*, and to create null mutants in order to assess the role of ether lipids in parasite metabolism and virulence.

Experimental Procedures

Parasite culture

L. major Friedlin strain V1 (MHOM/IL/80/Friedlin) promastigote forms were cultivated in M199 medium at 26° C and transfected by electroporation (27). As needed G418, hygromycin, nourseothricin or puromycin were added at 10, 50, 100 and 50 µg/ml, respectively. Metacyclics were prepared by Ficoll gradient centrifugation (28).
Molecular biology

All enzyme restriction reactions, PCR, DNA and RNA extractions and hybridizations (Southern blot, Northern blot, colony hybridization) preparations were performed by standard methods (29). DNA hybridization probes were made using a random priming kit (Roche). The gene \(D/\)SHERP probe was obtained by PCR from genomic DNA with primers Y09088 137-156 (5'-GATCCGCGCAGACCAAGATG) and Y09087 320-300 (5'-CAGAGAACGGCGAAGGGACTG). For RT-PCR, cDNA was prepared from RNA isolated from logarithmic phase promastigotes using random primers for the reverse transcription reaction (Invitrogen), and used as template for PCR with an oligonucleotide specific for the miniexon (SMB936, 5’-ACCGCTATATAAAGTATCAGTTCTGTACTTTTA) and one specific for \(ADS1 \) (either SMB1012, 5’-ACTAGTGCTGTCCTGTGTTTTATCG, located in the 5’ UTR, or SMB1017, 5’-ATCTGCATCTGGACATCC, located within the \(ADS1 \) coding region). These products were directly sequenced by the chain-termination method.

Cloning of \(ADS1 \) of \(L. \) major and plasmids construction

A 1.58-kb fragment was obtained following PCR with \(L. \) major genomic DNA template and the \(ADS1 \) degenerate primers SMB929 (‘5- AAGTGGAAYGGNTGGGG) and SMB931 (‘5-CCSATNCCGTGGTGNTNGT). This was inserted into pCR2.1 (Invitrogen) to give pCRII.DHAP-PCR (strain B3772) and sequenced. This PCR product was used to screen a \(L. \) major Friedlin strain V1 cLHYG cosmid library (30) by colony hybridization. Positive clones were further analyzed by restriction enzyme digestion followed by Southern blot analysis probed with the 1.58-kb PCR product. A 3.6-kb \(SphI \) fragment containing \(ADS1 \) was cloned into pUC19, yielding pUC.DHAP.Sp1 (B3793) and sequenced on both strands.

Plasmids for inactivation of \(ADS1 \) were generated as following from pUC.DHAP.Sp1 (B3793) that carries a 3.6-kb \(SphI \) fragment containing the entire \(ADS1 \) gene and flanking
regions. The 1.7-kb \textit{SphI-Eco47III} (blunt-ended) of the \textit{ADS1} ORF was replaced with the HYG or SAT cassettes as \textit{SpeI-AflIII} fragments (blunt-ended, 2.2 and 1.8–kb, respectively) excised from \textit{pX63HYG} (31) or \textit{pXGSAT} (B2352; Ha \textit{et al.}, unpublished data). \textit{pXGSAT} was constructed by replacing the NEO marker with a PCR (SMB248, 5’

\texttt{CGACTAGTTAGCGTCATCTGTGC}; SMB249, 5’

\texttt{GTGACTAGTATGAGATTTCG GTGATCC}) amplified SAT cassette from \textit{pLEXSAT} (32) cloned in the \textit{SpeI} site of \textit{pXG1a} (33), respectively. The plasmids carrying the resistance marker in the same transcription orientation as the \textit{ADS1} gene were kept and named \texttt{pUC.DHAP:HYG\textss (B3796)} and \texttt{pUC.DHAP:SAT-B\textss (B3828)}, respectively.

\textit{pXG-ADS1} and \textit{pXG-GFP-ADS1} (B3909 and B4187, respectively) were made as follows: \textit{BamHI} sites at the 5’ and 3’ ends of the \textit{ADS1} gene were introduced successively by PCR and cloning to yield \texttt{pUC.B-DHAP-B} (B3840). The \textit{ADS1} \textit{BamHI} fragment was ligated in the sense orientation into the \textit{BamHI} site of \textit{pXG} (33) or \textit{pXG-GFP2+} (B2952). \textit{pX63PAC-LdSAcP-1} (B4191) was obtained by inserting a sense blunt ended 3-kb \textit{Ncol-PstI} fragment from \textit{pLdSAcP3.9} (34) into the \textit{BamHI} site of \textit{pX63PAC} (B2949).

\textbf{Western blot analysis}

\textit{Leishmania} were first washed once in PBS (136 mM NaCl, 2.7 mM KCl, 8.5 mM KH$_2$PO$_4$, 1 mM Na$_2$HPO$_4$, pH7.2) then lysed in SDS-PAGE loading dye (2% SDS (w/v), 0.7 M \textit{β}-mercaptoethanol, 10% glycerol, 62 mM Tris HCl, pH 6.8, 0.05% bromphenol blue). The samples were heated for 15 min at 70°C and loaded on discontinuous 4%/10% SDS-polyacrylamide gels. Proteins were transferred to nitrocellulose filters by the Towbin method. Preincubation, antibody incubations and washes were conducted in TBST buffer (10 mM Tris-HCl, pH 8, 150 mM NaCl, 0.05% Tween 20) with 5% skim milk added. Detection was performed with a chemiluminescence kit (ECL, Amersham) followed by autoradiography.
Enzyme assays

ADS activity was measured in an enriched glycosome fraction, using slight modifications of the protocol by Heise et al (22). Cells were resuspended in 7 ml containing 0.25 M sucrose, 1 mM EDTA and 25 mM Tris-HCl, pH 7.8 (STE buffer), and disrupted by nitrogen cavitation (1500-2000 psi for 30 min at 4°C). Cellular debris was removed by centrifugation at 1000 x g for 10 min, and the supernatant was briefly sonicated. The sample was mixed with 80% percoll/20% STE buffer to a final volume of 40% percoll, and centrifuged at 70,000 x g in a Beckman NV190 rotor for 30 min at 4°C. Glycosome fractions banding at a density of 1.09-1.1 g/ml were taken. Protein concentration was determined according to the bicinchoninic acid assay with a bovine serum albumin standard. Alkyl DHAP synthase activity was measured in triplicate as described previously with slight modifications (26). Briefly, 0.4 mg of glycosomal proteins were incubated in 100 µl containing 50 mM potassium phosphate, pH 8.0, 100 µM $[^{14}C]$ hexadecanol, 90 µM palmitoyl-DHAP, 1 mM DTT, 50 µM NaF, 0.1% Triton X-100, 2 µg/ml pepstatin, 2 µg/ml leupeptin and 10 µg/ml trypsin inhibitor at 37°C for 40 min, and extracted with chloroform:methanol (1:2 v/v) (35). The organic phase was dried under nitrogen, spotted onto Silica gel 60 plates and resolved in solvent chloroform/methanol/acetic acid/5% sodium bisulfite (100:40:12:4 v/v/v/v); bands were visualized with Lester reagent (36) and the radioactivity in bands with ~Rf of 3.5 was measured by scintillation counting.

For secretory acid phosphatase assay cell supernatants were loaded on a non-denaturing polyacrylamide gel in absence of SDS (37); separating and stacking gels were 6% and 3% acrylamide, respectively. AP was visualized as described (38).
Microscopy

Indirect immunofluorescence microscopy with anti-HGPRT antibody was performed as described (39). Immunofluorescence and flow cytometry with WIC79.3 antibodies (40) and gp46 were performed according to (41).

For transmission electron microscopy, parasites were washed in 0.1 M cacodylate buffer, pH 7, and fixed in 2.5% glutaraldehyde (EM grade-Sigma, St. Louis, MO) in cacodylate buffer containing 5 mM CaCl$_2$, 5% sucrose, and 0.15% ruthenium red (Electron Microscopy Sciences, Ft. Washington, PA) for 1 h at 4°C. Following three washes in cacodylate buffer, parasites were post-fixed in 1% osmium tetroxide (Polysciences Inc., Warrington, PA)/2mM CaCl$_2$/0.15% ruthenium red in cacodylate buffer for 1 hr at room temperature. The samples were then rinsed extensively in cacodylate buffer/3% sucrose and deionized water prior to staining with 1% uranyl acetate. Following several rinses in deionized water, samples were dehydrated in a graded series of ethanol and embedded in Spurr’s (Electron Microscopy Sciences). Sections of 70-80 nm were cut, stained with lead citrate, and viewed on a Zeiss 902 transmission electron microscope.

Phospholipid, GIPL and LPG analysis

Bulk phospholipids and GIPLs were purified and analyzed by electrospray mass spectrometry (ES-MS) in positive- and negative-ion modes as described (10,42). Phospholipids were dissolved in chloroform methanol (1:2, v/v) (approx. 2 x 106 cell equivalents/µl) and introduced into the electrospray source of the mass spectrometer (Quattro triple quadrupole, Micromass, UK) at 5 µl/min with a syringe pump. Parameters were as follows: skimmer/cone offset 5 V; capillary, high voltage lens and cone voltages, were 3 kV, 0.5 kV and 25 V, respectively for positive ion mass spectra, and 3 kV, 0.5 kV and 45 V for negative ion mass spectra. CID spectra were achieved in a hexapole collision cell containing argon (2.5x10$^{-3}$ Torr).
Parent ion spectra were taken using the following accelerating voltages into the collision cell: parents of \(m/z \) 184 (for PC detection), 27 V (positive ion mode); parents of \(m/z \) 241 (for PI detection), 45 V (negative ion mode); neutral loss of \(m/z \) 141 (for detection of PE), 12 V (positive ion mode) and neutral loss of \(m/z \) 185 (for detection of PS) 27 V (positive ion mode). Daughter ion spectra of \([\text{M-H}]^-\) pseudomolecular ions used acceleration voltages of 30-100 V. GIPLs were dissolved in 70% propan-1-ol, 5 mM ammonium acetate at approximately 20 pmol/µl and introduced into the electrospray source at 5 µl/min using a syringe pump. Samples were analyzed in positive ion mode with a capillary voltage of 3 kV and a cone voltage of 130 V. Daughter ion spectra were collected using an accelerating voltage of 30-100 V. Daughter ion spectra of alkenyl-acyl-PE \([\text{M-H}]^-\) pseudomolecular ions were recorded with an LCQ-Duo ion trap-ESI-MS (Finnigan-Thermoquest, San Jose, CA). Samples were introduced at 5 µl/min. Source voltage and current were 4.52 kV and 0.24 mA and capillary voltage and temperature were set at -19-36 V and 200°C. The collision energy was 28% (1.4 eV) under helium pressure. Fragmentation spectra were collected in the \(m/z \) 175-800 range, at a rate of 3 microscans over a maximum ion injection time of 200 millisec.

LPG and the ‘LPG-like’ material in \textit{ads1}- were purified as described (13). In some experiments exponentially growing cells were metabolically labeled with \([^{3}\text{H}]\)galactose (50 µCi for 8x10^8 cells) for 6 h. PG repeat structures were determined from LPG (approximately 50 pmol in 5% propan-1-ol, 5 mM ammonium acetate) by ESI-MS as described (43).

DRM preparation and analysis

Crude membranes were prepared from 10^8 log phase parasites and DRMs were isolated on a step gradient after extraction with 1% Triton X-100 at 4°C as described (44). Fractions were then taken from the top of the gradient and analyzed by Western blotting.
Mouse and macrophage infections

Mouse were injected with 4 day-stationary promastigote cells (1x10^6) or amastigotes (1x10^5) subcutaneously into footpads, and lesion size and parasite numbers measured (41,45). In vitro infection of peritoneal macrophage infections was performed as described (41,46). Metacyclic parasites were purified on a Ficoll gradient (28) and crude amastigotes were prepared from lesions (41). Briefly, excised lesions were placed in cold DMEM, dissociated with a Dounce homogenizer, tissue fragments and intact host cells were removed by a low speed centrifugation at 200 x g, and amastigotes were pelleted at 1800 x g. Amastigotes were washed twice in cold DMEM and then counted with a hemocytometer.

For nitrite quantification, macrophages were induced in the presence of interferon-γ and LPS (100 U and 100 ng/ml, respectively) exactly four hours after the 2 h wash. Nitrite was quantified 48 h after macrophage induction according to (47).

Lysis by human complement was measured with a mid-log phase cultures (5x10^6/ml) incubated with varying amounts of human serum for 30 min at 26°C (41).

Results

Characterization of Leishmania major ADS1

From known ADS sequences we designed degenerate oligonucleotide primers for amplification of the L. major gene, and recovered the parasite gene by screening an L. major cosmid library. Southern blot analysis showed that the Leishmania ADS1 gene was single copy (Fig. 1A), which was confirmed by targeted gene replacement (described below; Fig. 1D). The sequence of the ADS1 gene predicted a protein of 621 amino acids (GenBank Accession AY328521), with strong homology to the ADS proteins of T. brucei (59% identity) and other eukaryotes including mammals, C. elegans and Dictyostelium (30-37% identity).
ADS1 lacked obvious transmembrane domains, but contained at its C terminus the sequence SHI which resembled typical type 1 peroxisomal targeting signals (PTS1; 48). We created an N-terminal GFP-ADS1 fusion protein, which was shown to be enzymatically active following transfection into ads1- null mutants (below; data not shown). Fluorescence microscopy showed that GFP-ADS1 fusion protein was correctly targeted to the Leishmania glycosome (analogous to peroxisomes of other creatures), and co-localized with the glycosomal marker hypoxanthine guanine phosphoribosyltransferase (HGPRT; Fig. 1E; 39).

In trypanosomatids mRNAs bear a 39 nt 5’terminal exon added by trans-splicing (49). RT-PCR with miniexon and ADS1-specific primers mapped the splice acceptor site to position -355 nt relative to the predicted ADS1 initiation codon. Northern blot analysis showed that ADS1 mRNA was expressed at similar levels in all developmental stages, as two transcripts of 4.6 and 6.6 kb (Fig. 1B).

Generation of an ads1- knock-out

An ads1- null mutant (∆ADS1::SAT/∆ADS1::HYG) was generated by two rounds of gene replacement, since Leishmania is an asexual diploid (31; see Fig. 1C, D for predicted structures of replacements and southern blot confirmation). These were recovered at typical frequencies, appeared morphologically to be normal, and grew well in culture, with a doubling time of 8.1 vs. 7 hr for wild type (WT; Table 1). As a control ‘add-back’ line for subsequent studies, several ads1- mutants were transfected with the ADS1 expressing plasmid pXG-ADS1, yielding lines termed ads1-/+ADS1. ads1- differentiated normally to the infective metacyclic stage (Table 1) where it expressed stage specific markers such as SHERP (Fig. 2B).

ADS activity was measured from enriched glycosomal preparations. WT showed high levels of activity, while ads1- showed only background levels, and ads1-/+ADS1 restored ADS activity to WT levels (Fig. 2A). Thus ADS1 was responsible for cellular ADS activity.
The ads1- mutant lacks ether phospholipids

Total phospholipids from WT, ads1- and ads1-/+ADS1 cells were analyzed by electrospray mass spectrometry (ES-MS and ES-MS-CID-MS) (42). The positive ion spectrum for WT was found to contain mainly phosphatidylethanolamine (PE) and phosphatidylcholine (PC) species (Fig. 3A, upper panel). The [M+H]^+ PE ions at m/z 728 and 730 were consistent with alkylacyl-PEs, with a total of 36 carbons and 2 (m/z 730) or 3 (m/z 728) degrees of unsaturation (i.e., C36:2 and C36:3). Negative ion mass spectrometry (see below) of these lipid species showed that they were plasmenylethanolamines (i.e., alkenyl-acyl-PEs with mono-unsaturated C18:1 alkenyl chains). The ion at m/z 466 was most likely a lyso-PE with a single C18:1 fatty acid. The ions at m/z 828, 830 and 880 were PC species, most likely C40:9, C40:8 and C44:11 diacyl-PCs, respectively. These unusually large and unsaturated PC species were consistent with the abundance of C22:5, C22:6 , C18:3, C18:2 and C18:1 fatty acids in the PC fraction (Beach et al., 1979). The PC containing ions at m/z 518, 520 and 522 and m/z 568 and 570 represented lyso-PC species containing C18:3, C18:2 and C18:1 and C22:6 and C22:5 fatty acids, respectively. The abundance of PS species was below the limit of detection.

In the ads1- cells the positive ion spectrum was markedly different (Fig. 3A, middle panel). While the lyso-acyl- and diacyl-PC species remained, the alkylacyl-PEs were absent. These phospholipids were all restored in ads1-/+ADS1 (Fig. 3A, lower panel), establishing their dependency on ADS1.

Negative ion ES-MS and ES-MS-CID-MS were used to identify phosphatidylinositol (PI) species (Fig. 3B, upper panel). The strong m/z 778 and 806 ions produced intense m/z 241 [inositol-1,2-cyclic phosphate]^− and m/z 259 [inositol monophosphate]^− daughter ions in ES-MS-CID-MS, a characteristic of inositol-phosphorylceramides (IPC) (50). Daughter ion spectra of m/z 849 and 933 confirmed their identities as alkylacyl-PI species, as each ion fragmented to
yield [inositol-1,2-cyclic phosphate] (m/z 241), sn-1-alkyl-glycerol-2,3-cyclic phosphate] (m/z 405 or 489) and C18:2 carboxylate ions (m/z 279) (data not shown). Of the remaining ions, m/z 728 and m/z 464 [M-H]- ions corresponded to the abundant m/z 730 and m/z 466 [M+H]+ alkylacyl-PE and lyso-PE ions seen in the positive ion spectrum. The m/z 728 and 726 alkylacyl-PE [M-H]- parent ions were subjected to fragmentation and the daughter ion spectra revealed the presence of m/z 464 1-O-(C18:1)alkenyl-2-lyso-PE fragment ions and m/z 281 (Fig. 3C) or m/z 279 fatty acid carboxylate ions, respectively. Thus, the major PEs are alkenylacyl-PEs. The identity of the ion m/z 552 is unknown. The negative ion spectra of ads1- phospholipids (Figure 3B, middle panel) lacked the alkylacyl-PI ions (at m/z 849 and 933) but contained four unidentified (non-inositol-phospholipid) ion clusters at m/z 479, 504, 554 and 604. The spectrum for the ads1+/ADS1 phospholipids (Fig. 3B, lower panel) showed restoration of the alkylacyl-PI ions and disappearance of the unidentified ions. As seen in the positive ion mode, these data established that lack of ADS1 leads to complete loss of expression of ether phospholipids.

The ads1- mutant lacks conventional GIPLs

The GIPL fraction of ads1+/ADS1 cells was analyzed by positive ion ES-MS (Fig. 4B). The ions at m/z 1255/1283, 1417/1445 and 1579/1607 represented iM2, GIPL-1 and GIPL-2 species containing C18:0 alkyl- and C12:0/C14:0 acyl-chains, respectively (see Fig. 4A for structures) (51,52). These assignments were confirmed by ES-MS-CID-MS (data not shown). In contrast, the ads1- spectrum showed that the GIPLs identified above were completely absent (Fig. 4C). Daughter ion analysis of the remaining peaks of m/z 1561 and 1582 showed that they were dimer ions ([2M+H]+ and [2M+Na]+, respectively) of IPC. Thus the ads1- lacked all conventional GIPLs.

Interestingly, the ads1+/ADS1 GIPL fraction also showed ions at m/z 1156 and 1318, whose ES-MS-CID-MS spectra identified them as lyso-iM2 and lyso-GIPL-1 species,
respectively, with C24:0 alkyl chains. These latter species were LPG precursors that are barely detectable in WT cells (51), suggesting that over-expression of ADS1 in the ads1+/+ADS1 line may lead to their overproduction.

The ads1- mutant synthesizes normal amounts of GPI-anchored proteins

We examined the synthesis of the abundant alkylacyl-GPI-anchored proteins gp46/PSA-2 and gp63 by immunoblots and flow cytometry. In contrast to the results obtained with GIPLs and ether phospholipids, the WT, ads1- and ‘add-back’ strains synthesized similar levels of gp46 (Fig. 5A). gp46 was localized on the plasma membrane in ads1-, where it showed enhanced fluorescence (Fig. 5B). This reflected the absence of LPG as seen previously (53) and as discussed below. Similar studies showed that gp63 steady state expression was not affected in the ads1- mutant (data not shown). Efforts to determine the structure of the gp63 anchor in ads1- were not successful (data not shown).

The ads1- mutant lacks LPG

Metabolic labeling of WT, ads1- and ads1+/+ADS1 parasites with [3H]Gal followed by extraction and purification of the LPG fraction showed that ads1- contained about 7% of WT levels (Fig. 6A). LPG was visualized by Western blot analysis with the anti-phosphoglycan (PG) monoclonal antibody WIC79.3 (54). LPG from WT and ads1+/+ADS1 lines migrated as a smear with an apparent molecular weight of 30-60 kD, both from cells and when shed into culture supernatants (Fig. 6B). ads1- contained significantly less WIC79.3-reactive material (termed ‘LPG-like’), which had reduced electrophoretic mobility (50-100 kD) and was not secreted into the medium (Fig. 6B). In contrast, Western blots showed similar levels of PPG in both WT and ads1- (Fig. 6C), again with that of ads1- showing reduced mobility. Analysis of the PG repeat structures by cone voltage-fragmentation ES-MS (43) of LPG from WT and ads1+/+ADS1
parasites, and the ‘LPG-like’ fraction of ads1-, showed that they were identical (data not shown). Attempts to determine the structure of a possible PI-lipid component in purified preparations of the ads1- ‘LPG-like’ material by negative ion ES-MS analysis were unsuccessful.

LPG comprises a major portion of the parasite surface glycocalyx (55). Correspondingly, transmission electron microscope analysis of plasma membranes stained with ruthenium red showed the typical LPG-rich glycocalyx for WT and ads1-/+ ADS1 parasites, but relatively little staining in the ads1- mutant (Fig. 6E). The absence of the surface glycocalyx in ads1- conferred increased sensitivity to lysis by human complement (Table 1) and labeling with antisera to GPI-anchored proteins (Fig. 5B).

Phosphoglycosylation is more extensive in ads1- mutants.

The slower electrophoretic mobility of PG-containing molecules in ads1- relative to WT suggested that they could be more extensively phosphoglycosylated (reviewed in 56). To test this, we used the *L. donovani* secretory acid phosphatase (sAP) gene SAcP-1 as a ‘phosphoglycosylation reporter’ following transfection into *L. major*. sAP lacks a GPI membrane anchor and *L. major* normally expresses very low levels (57). *In situ* enzymatic activity assays showed that WT and the ads1-/+ ADS1 SAcP-1 transfectants expressed sAPs with identical electrophoretic mobility, while ads1- transfectant sAPs migrated more slowly; as expected, vector transfectant controls lacked detectable sAP (Fig. 6D). This suggested that the degree of phosphoglycosylation was elevated in ads1-.

Increased phosphoglycosylation occurs during *Leishmania* development, with higher numbers of PG repeats found in the LPG of metacyclic promastigotes (8,58). However, metacyclogenesis and the stage-specific expression of the metacyclic marker SHERP were normal in ads1- (Table 1 and Fig. 2B), suggesting that differentiation was not altered in this line.
ADS1 is not required for formation of lipid rafts (DRMs)

We asked whether the absence of ether lipids leads to alterations in the formation of ‘lipid rafts’, as defined by buoyant detergent-resistant membrane (DRM) criteria. DRMs were prepared by standard procedures from log phase parasites, further separated on density gradients, and the distribution of LPG and gp63 into a buoyant fraction expected for ‘lipid rafts’ was assessed. As previously observed, in WT *L. major* the GPI-anchored protein gp63 resides in a buoyant fraction (Fig. 7, upper left panel, fraction 2), whereas the majority of cellular material was found in dense fractions towards the bottom of the gradient (data not shown; 44,59). Similar results were obtained with *ads1*− (Fig. 7, upper right panel), showing that DRM formation was not altered. In contrast, LPG did not reside in buoyant DRMs in either WT or *ads1*− parasites (Fig. 7, lower panels). This conflicted with results reported previously in WT parasites (44), where LPG did show enrichment in the buoyant DRM fraction. This discrepancy was shown to reflect differences in the methods used in the previous study, which examined pulse-labeled cells treated with tunicamycin, rather than steady state levels in the unperturbed cells as studied here (P.Denny and D.F. Smith, unpublished). Regardless, the key finding was that DRMs did not differ between WT or *ads1*− parasites.

ADS1 is important for establishment of infections in mice and macrophages

Following inoculation of stationary phase promastigotes into susceptible BALB/c mice, WT parasites formed lesions which appeared after ~ 15 days and progressed rapidly, while their appearance in *ads1*− was delayed until 40 days, and progressed somewhat more slowly thereafter (Fig. 8A). Lesion size correlated with the parasite burden (data not shown), and the *ads1*− */+ADS1* line induced lesions in a manner similar to WT (Fig. 8A). *ads1*− amastigotes were recovered from mice showing lesions around day 70, allowed to differentiate back to promastigotes, and reinoculated into animals, yielding identical results (data not shown). This
showed that the delayed lesion appearance was not due to the presence of revertants or contaminants.

Macrophage infections were performed with stationary-stage promastigotes parasites opsonized with C5-deficient mouse serum. While \(adsI^- \) parasites were taken up into macrophages somewhat better than WT (as seen previously in other LPG-deficient lines; 41,60), nearly 95% perished within 2 days of infection, vs. 30-50% for WT or the ‘add-back’ (Fig. 8B, top panel). The extent of destruction was higher than seen previously with an LPG-deficient \(lpgI^- \) mutant (41,61). Quantitation of the few surviving \(adsI^- \) parasites showed that they went on to replicate, albeit at about 50% the rate seen in the WT or \(adsI^-/+ADS1 \) (Fig. 8B, lower panel).

\(ADS1 \) is not required for replication or infection of amastigotes.

The promastigote infections of macrophages and mice suggested that while defective in establishment of infection, those \(adsI^- \) parasites that escaped initial destruction during the ‘establishment phase’ were able to survive and propagate as amastigotes. In this aspect \(adsI^- \) resembled the specifically LPG-deficient mutant \(lpgI^- \) (41,61), where this was expected since the amastigote stage normally lacks LPG. Extrapolation to \(adsI^- \) would argue that ether lipids are not essential for replication as amastigotes.

To test this, \(adsI^- \) amastigotes were purified from mouse lesions similar to those shown in Fig. 8A, and then used to initiate macrophage infections directly. In contrast to the results obtained with stationary phase promastigote infections, \(adsI^- \) amastigotes entered and survived well in macrophages, and went on to replicate well, albeit again at about 1/3 the rate seen in WT or \(adsI^-/+ADS1 \) (Fig. 8D, Table I). Similar findings were obtained in mouse infections by amastigotes (data not shown).
ads1− retained the ability to inhibit macrophage NO production.

Purified metacyclic parasites were used to infect two sets of peritoneal macrophages; after 6 hr, interferon-γ and lipopolysaccharide (LPS) were added to one set of infected macrophages, and NO production was determined. As expected, infections with WT L. major did not induce NO synthesis, and these parasites inhibited macrophage NO production by 70% following treatment with activators (Fig. 8C); similar results arose with the control ads1−/+ADS1. Surprisingly, ads1− showed the same profile, even though the overwhelming majority of these parasites were destroyed by macrophages (Fig. 8B,C).

Discussion

In this work we used multiple approaches to establish that the Leishmania alkyl DHAP synthase encoded by ADS1 is required for all cellular ether phospholipid synthesis, and to explore its role in parasite biology. Despite the fact that more than 10% of Leishmania cellular lipids are comprised by ether phospholipids, the ads1− null mutant was viable. Enzymatic studies showed that ADS activity was absent in ads1−, and biochemical studies showed that all known ether phospholipid species were lacking. These included alkenylacyl-PEs, as well as GPI-anchored molecules such as LPG and GIPLs. In this respect ads1− differs from previously identified mammalian mutants defective in ether lipid biosynthesis, which are typically ‘leaky’ and express residual levels of plasmalogens (21). While GPI-anchored proteins were retained at the parasite surface at normal levels, it seems likely that they now contain an alternative lipid anchor, probably diacylglycerol (as seen in trypanosome variant surface glycoproteins), although efforts to confirm this were inconclusive. Since no other specific alterations in lipid composition were seen in ads1−, we presume that that a modest up-regulation of remaining membrane lipid species compensated for the general lack of ether phospholipids.
Remarkably, the complete loss of ether phospholipids, LPG and GIPLs was accompanied by minimal changes in many aspects of parasite biology: for example, only a modest reduction in growth rate was observed \textit{in vitro} as promastigotes, or as amastigotes within macrophages \textit{in vivo}. A secondary phenotype was increased phosphoglycosylation of endogenous or reporter proteins in the \textit{ads1}\(^{-}\) mutant. Its basis was not sought; it may arise from small differences in membrane vesicular trafficking dependent upon ether lipids, as seen in mammalian cells (62,63).

Previous studies have shown that ether lipids can associate and potentially contribute to the stability of membrane microdomains commonly termed ‘lipid rafts’, which are also rich in sterols and sphingolipids (64-68). However, ‘lipid rafts’ (as defined by DRM criteria) were maintained in \textit{ads1}\(^{-}\) in the absence of the 10% of cellular lipids comprised by \textit{Leishmania} ether phospholipids, possibly reflecting the ameliorating abundance of sphingolipids and especially ergosterol in the parasite membrane (17,19). It should be emphasized that retention of DRMs does not necessarily imply that the lipid rafts remaining in \textit{ads1}\(^{-}\) are identical to those of WT; to address this, additional markers for parasite rafts will have to be identified and examined in the future.

The synthesis of the major classes of GPI-anchored molecules has been proposed to diverge from a common Man-GlcN-PI precursor (3,69), with LPG and type 2 GIPLs requiring the formation of Man(\(\alpha1-3\))Man-GlcN-PI and protein GPI anchors the formation of Man(\(\alpha1-6\))Man-GlcN-PI. The loss of LPG/GIPL but not protein GPI anchor synthesis in the \textit{ads1}\(^{-}\) line suggests that the GDP-Man : Man-GlcN-PI (\(\alpha1-3\))mannosyltransferase may be dependent on Man-GlcN-PI acceptors that contain \textit{sn}-1-alkyl-2-acyl-PI, whereas the Dol-P-Man : Man-GlcN-PI (\(\alpha1-6\))mannosyltransferase may also function with diacyl-PI-containing acceptors. Consistent with this model, \([3H]\)GlcN labelling studies have shown that GlcN-diacyl-PIs are synthesized by \textit{L.major} promastigotes (70), providing potential non-ether lipid substrates for
protein GPI anchor synthesis, and cell-free GPI biosynthesis studies have suggested that the GDP-Man : Man-GlcN-PI (α1-3) mannosyltransferase may not act on Man-GlcN-diacyl-PI (3). There are precedents for lipid-specificity/selectivity for certain mammalian GPI biosynthetic enzymes, although GPI anchor synthesis in *T. brucei* shows a relaxed specificity for the composition of the lipid anchor (71,72). Future studies may explore the lipid specificity of LPG/GIPL and protein GPI anchor synthesis in *L. major* in more detail.

The abundance of GIPLs in the intracellular amastigote stage (3,73), and the ability of purified GPI anchors and GIPLs to modulate key signaling pathways implicated in parasite survival in macrophages (5,7), led to proposals that these molecules play major roles in parasite virulence. However, genetic studies of GIPL function in *L. mexicana* have yielded contradictory results, possibly because they were based upon mutants with broad and complex effects beyond GIPL synthesis (9,11,74,75). Moreover, *L. mexicana* and *L. major* differ greatly in their dependency upon LPG and phosphoglycans for virulence, probably due to interactions with the host immune response (76). The *L. major ads1* mutant studied here affected a defined set of parasite ether phospholipids, in a species where for both LPG and PGs the general roles in virulence and the specific mechanisms by which these act have been defined genetically (41,61).

Remarkably, the phenotype seen for *L. major ads1* was nearly indistinguishable from the LPG-deficient mutant *lpg1*: both showed increased sensitivity to lysis by complement due to disruption of the glycocalyx, normal metacyclogenesis, increased destruction following macrophage infection, and delayed lesion appearance (Table 1; Figs. 2B, 8; 41,61). That the *ads1* phenotype included the *lpg1* phenotype was not surprising given that it lacks LPG, but that the absence of both GIPLs and ether phospholipids conferred little additional effect was unexpected, especially in the amastigote stage. In contrast, the globally PG-deficient *L. major* mutant *lpg2* was unable to establish macrophage infections at all, and did not induce pathology.
in mouse infections (60). We conclude therefore that neither GIPL nor ether phospholipid synthesis is uniquely required for amastigote growth and survival, in macrophages in vitro or in mouse infections in vivo.

Similarly, we found that despite its attenuated ability to establish infections in macrophages, the ads1− mutant did not induce NO following entry, and inhibited the ability of macrophages to make NO following the strong induction signal of interferon-γ + LPS (Fig. 8C). This was remarkable given reports that the alkyl-glycerol anchor of LPG or the alkylacyl anchor of GIPLs can inhibit macrophage activation pathways leading to the activation of protein kinase C and/or the formation of NO or IL-12 (4-7). There are a number of potential explanations: one is that the highly purified GPIs studied previously contained traces of an active, non-GPI species. Similar problems were encountered in assessing the antigenicity of purified LPG preparations (77). A second possibility is that differences in the amount, form or delivery route of GPI-anchored molecules tested in vitro does not closely mimic what occurs in natural infection in vivo. A third possibility invokes redundancy of GIPL functions with those of other parasite molecules, as it seems likely during evolution that selection for multiple mechanisms ensuring repression of macrophage activation would be advantageous. Reasonable candidates for this role might be other parasite glycolipids, such as sphingolipids or protein GPI-anchor moieties remaining in ads1−, and the possibility of molecules other than glycolipids cannot be excluded.

Acknowledgements

We thank D.G. Russell, B. Ullman and D. McMahon-Pratt for the generous gift of gp63(235), α-tubulin, HGPRT and gp46 antibodies, D. Dwyer for plasmid pLdSACP3.9, A.K. Hajra for providing labeled hexadecanol, F. Opperdoes, N. Heise and G. Späth for discussions, and A. Capul, D. Dobson and K. Zhang for comments on this manuscript. This work was supported by
a Human Frontier Science Program Organization grant to RZ, by Wellcome Trust Program
Grants 054491 and 061343 to MAJF and DFS respectively, a BBSRC PhD studentship to SA, a
CNPq-Brazil Research Fellowship to ICA (98/10495-5), and NIH grants to SJT and SMB.

REFERENCES
1. Ferguson, M. A. (1997) Philos Trans R Soc Lond B Biol Sci 352, 1295-1302.
2. Ilgoutz, S. C., and McConville, M. J. (2001) Int J Parasitol 31, 899-908
3. McConville, M. J., Mullin, K. A., Ilgoutz, S. C., and Teasdale, R. D. (2002) Microbiol Mol
Biol Rev 66, 122-154
4. Chawla, M., and Vishwakarma, R. A. (2003) J Lipid Res 44, 594-600
5. Proudfoot, L., O'Donnell, C. A., and Liew, F. Y. (1995) Eur J Immunol 25, 745-750.
6. Tachado, S. D., Mazhari-Tabrizi, R., and Schofield, L. (1999) Parasite Immunol 21, 609-617.
7. McNeely, T. B., Rosen, G., Londner, M. V., and Turco, S. J. (1989) Biochem J 259, 601-604.
8. Moody, S. F., Handman, E., McConville, M. J., and Bacic, A. (1993) J Biol Chem 268, 18457-18466.
9. Ilgoutz, S. C., Zawadzki, J. L., Ralton, J. E., and McConville, M. J. (1999) EMBO J 18, 2746-2755.
10. McConville, M. J., and Bacic, A. (1989) J Biol Chem 264, 757-766.
11. Mensa-Wilmot, K., Garg, N., McGwire, B. S., Lu, H. G., Zhong, L., Armah, D. A.,
LeBowitz, J. H., and Chang, K. P. (1999) Mol Biochem Parasitol 99, 103-116
12. McConville, M. J., Thomas-Oates, J. E., Ferguson, M. A., and Homans, S. W. (1990) J Biol
Chem 265, 19611-19623.
13. Orlandi, P. A., Jr., and Turco, S. J. (1987) J Biol Chem 262, 10384-10391.
14. Turco, S. J. (1999) *Parasite Immunol* **21**, 597-600

15. Proudfoot, L., Nikolaev, A. V., Feng, G. J., Wei, W. Q., Ferguson, M. A., Brimacombe, J. S., and Liew, F. Y. (1996) *Proc Natl Acad Sci U S A* **93**, 10984-10989.

16. Tachado, S. D., Gerold, P., McConville, M. J., Baldwin, T., Quilici, D., Schwarz, R. T., and Schofield, L. (1996) *J Immunol* **156**, 1897-1907.

17. Beach, D. H., Holz, G. G., Jr., and Anekwe, G. E. (1979) *J Parasitol* **65**, 201-216.

18. Singh, B. N., Costello, C. E., Beach, D. H., and Holz, G. G., Jr. (1988) *Biochem Biophys Res Commun* **157**, 1239-1246.

19. Wassef, M. K., Fioretti, T. B., and Dwyer, D. M. (1985) *Lipids* **20**, 108-115.

20. Croft, S. L., Seifert, K., and Duchene, M. (2003) *Mol Biochem Parasitol* **126**, 165-172.

21. Nagan, N., and Zoeller, R. A. (2001) *Prog Lipid Res* **40**, 199-229.

22. Heise, N., and Opperdoes, F. R. (1997) *Mol Biochem Parasitol* **89**, 61-72.

23. Lux, H., Heise, N., Klenner, T., Hart, D., and Opperdoes, F. R. (2000) *Mol Biochem Parasitol* **111**, 1-14.

24. Opperdoes, F. R., and Michels, P. A. (1993) *Biochimie* **75**, 231-234.

25. van den Bosch, H., and de Vet, E. C. (1997) *Biochim Biophys Acta* **1348**, 35-44.

26. Zomer, A. W., Michels, P. A., and Opperdoes, F. R. (1999) *Mol Biochem Parasitol* **104**, 55-66.

27. Kapler, G. M., Coburn, C. M., and Beverley, S. M. (1990) *Mol Cell Biol* **10**, 1084-1094.

28. Späth, G. F., and Beverley, S. M. (2001) *Exp Parasitol* **99**, 97-103.

29. Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) *Molecular Cloning: A Laboratory Manual* (Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY)

30. Ryan, K. A., Dasgupta, S., and Beverley, S. M. (1993) *Gene* **131**, 145-150
31. Cruz, A., Coburn, C. M., and Beverley, S. M. (1991) *Proc Natl Acad Sci U S A* **88**, 7170-7174.

32. Joshi, P. B., Webb, J. R., Davies, J. E., and McMaster, W. R. (1995) *Gene* **156**, 145-149.

33. Ha, D. S., Schwarz, J. K., Turco, S. J., and Beverley, S. M. (1996) *Mol Biochem Parasitol* **77**, 57-64.

34. Shakarian, A. M., Ellis, S. L., Mallinson, D. J., Olafson, R. W., and Dwyer, D. M. (1997) *Gene* **196**, 127-137.

35. Schrakamp, G., Roosenboom, C. F., Schutgens, R. B., Wanders, R. J., Heymans, H. S., Tager, J. M., and van den Bosch, H. (1985) *J Lipid Res* **26**, 867-873.

36. Ryu, E. K., and MacCoss, M. (1979) *J Lipid Res* **20**, 561-563.

37. Laemmli, U. K. (1970) *Nature* **227**, 680-685.

38. Katakura, K., and Kobayashi, A. (1988) *Infect Immun* **56**, 2856-2860.

39. Shih, S., Hwang, H. Y., Carter, D., Stenberg, P., and Ullman, B. (1998) *J Biol Chem* **273**, 1534-1541.

40. Tolson, D. L., Turco, S. J., Beecroft, R. P., and Pearson, T. W. (1989) *Mol Biochem Parasitol* **35**, 109-118.

41. Späth, G. F., Epstein, L., Leader, B., Singer, S. M., Avila, H. A., Turco, S. J., and Beverley, S. M. (2000) *Proc Natl Acad Sci U S A* **97**, 9258-9263.

42. Schneiter, R., Brugger, B., Sandhoff, R., Zellnig, G., Leber, A., Lampl, M., Athenstaedt, K., Hrastnik, C., Eder, S., Daum, G., Paltauf, F., Wieland, F. T., and Kohlwein, S. D. (1999) *J Cell Biol* **146**, 741-754.

43. Wilson, I. B., O'Donnell, N., Allen, S., Mehlert, A., and Ferguson, M. A. (1999) *Mol Biochem Parasitol* **100**, 207-215.

44. Denny, P. W., Field, M. C., and Smith, D. F. (2001) *FEBS Lett* **491**, 148-153.
45. Titus, R. G., Marchand, M., Boon, T., and Louis, J. A. (1985) *Parasite Immunol* 7, 545-555.

46. Racoosin, E. L., and Beverley, S. M. (1997) *Exp Parasitol* 85, 283-295.

47. Green, L. C., Wagner, D. A., Glogowski, J., Skipper, P. L., Wishnok, J. S., and Tannenbaum, S. R. (1982) *Anal Biochem* 126, 131-138.

48. Sommer, J. M., and Wang, C. C. (1994) *Annu Rev Microbiol* 48, 105-138.

49. Clayton, C. E. (2002) *EMBO J* 21, 1881-1888

50. Serrano, A. A., Schenckman, S., Yoshida, N., Mehler, A., Richardson, J. M., and Ferguson, M. A. (1995) *J Biol Chem* 270, 27244-27253.

51. McConville, M. J., Homans, S. W., Thomas-Oates, J. E., Dell, A., and Bacic, A. (1990) *J Biol Chem* 265, 7385-7394.

52. Schneider, P., Schnur, L. F., Jaffé, C. L., Ferguson, M. A., and McConville, M. J. (1994) *Biochem J* 304, 603-609.

53. Karp, C. L., Turco, S. J., and Sacks, D. L. (1991) *J Immunol* 147, 680-684.

54. de Ibarra, A. A., Howard, J. G., and Snary, D. (1982) *Parasitology* 85, 523-531.

55. Pimenta, P. F. P., Saraiva, E. M. B., and Sacks, D. L. (1991) *J. Biol. Chem.* 72, 191-204

56. Mengeling, B. J., Beverley, S. M., and Turco, S. J. (1997) *Glycobiology* 7, 873-880

57. Shakarian, A. M., and Dwyer, D. M. (2000) *Exp Parasitol* 95, 79-84.

58. McConville, M. J., Turco, S. J., Ferguson, M. A., and Sacks, D. L. (1992) *EMBO J* 11, 3593-3600.

59. Ralton, J. E., Mullin, K. A., and McConville, M. J. (2002) *Biochem J* 363, 365-375

60. Späth, G. F., Lye, L. F., Segawa, H., Sacks, D. L., Turco, S. J., and Beverley, S. M. (2003) *Science* (in press, Aug 29 2003).

61. Späth, G. F., Garraway, L. A., Turco, S. J., and Beverley, S. M. (2003) *Proc Natl Acad Sci U S A* 100, 9536-9541
62. Glaser, P. E., and Gross, R. W. (1995) Biochemistry 34, 12193-12203.

63. Thai, T. P., Rodemer, C., Jauch, A., Hunziker, A., Moser, A., Gorgas, K., and Just, W. W. (2001) Hum Mol Genet 10, 127-136.

64. Ohvo-Rekila, H., Ramstedt, B., Leppimaki, P., and Slotte, J. P. (2002) Prog Lipid Res 41, 66-97.

65. Mattjus, P., and Slotte, J. P. (1996) Chem Phys Lipids 81, 69-80.

66. Simons, K., and Ikonen, E. (1997) Nature 387, 569-572.

67. Brown, D. A., and London, E. (2000) J Biol Chem 275, 17221-17224.

68. Pike, L. J., Han, X., Chung, K. N., and Gross, R. W. (2002) Biochemistry 41, 2075-2088.

69. Ralton, J. E., and McConville, M. J. (1998) J Biol Chem 273, 4245-4257.

70. Proudfoot, L., Schneider, P., Ferguson, M. A., and McConville, M. J. (1995) Biochem J 308, 45-55.

71. Watanabe, R., Inoue, N., Westfall, B., Taron, C. H., Orlean, P., Takeda, J., and Kinoshita, T. (1998) EMBO J. 17, 877-885.

72. Smith, T. K., Crossman, A., Paterson, M. J., Borissow, C. N., Brimacombe, J. S., and Ferguson, M. A. (2002) J Biol Chem 277, 37147-37153.

73. Schneider, P., Rosat, J. P., Ransijn, A., Ferguson, M. A., and McConville, M. J. (1993) Biochem J 295, 555-564.

74. Garami, A., and Ilg, T. (2001) EMBO J 20, 3657-3666.

75. Garami, A., Mehlert, A., and Ilg, T. (2001) Mol Cell Biol 21, 8168-8183.

76. Turco, S. J., Späth, G. F., and Beverley, S. M. (2001) Trends Parasitol 17, 223-226.

77. Jardim, A., Tolson, D. L., Turco, S. J., Pearson, T. W., and Olafson, R. W. (1991) J Immunol 147, 3538-3544.
Table I.

Growth, differentiation and serum sensitivity of WT and *adsI*− mutant *L. major*.

	WT	*adsI*−	*adsI*+/+*ADS1*
Per cent metacyclics (after 4 days in stationary phase)	4.5 ± 0	5.6 ± 0.8	n.d.
Percent human serum (complement) required for 50% lysis (IC₅₀)	6.3 ± 1.8	1.0 ± 0.04	6 ± 2.4
Promastigote doubling time *in vitro* (h)	7 ± 0.35	8.1 ± 0.5	n.d.
Amastigote doubling time in macrophages (days)	1.8 ± 0.2	5.1 ± 0.7	2.0 ± 0.1

All four assays were done twice in triplicate. The standard deviations are indicated.

n.d.: not determined.
Figure legends

Fig. 1. Characterization of *ADS1* and *ads1*− knockouts.

The migration of size markers (kb) is shown. (A) Southern blot analysis with WT *L. major* DNA (3 µg) digested with single (*PstI*) or null enzymes (*BamHI*, *EcoRI*, *SalI* and *SphI*). The probe was an *ADS1* PCR fragment obtained with primers SMB929 (*'5-AAGTGGAGGGNGNTGGGG*) and SMB931 (*'5-CCATNCCGTGGGTGNTNGT*). (B) Northern blot analysis with total *L. major* RNAs (5 µg) from log, late-log and stationary promastigotes, metacyclics and lesion amastigotes. The probe is described in part (A). (C) Restriction maps of *ADS1* locus in WT and *ads1*− replacement lines. The sizes (in kb) expected following *PstI* digestion and hybridization with a flanking 1-kb *SphI*-*BamHI* probe (black bar) are shown by arrows above each map. P, B, S indicate *PstI*, *BamHI* and *SphI* sites, respectively. (D) Southern blot of *PstI*-digested DNA from WT (*ads1*+/+) , heterozygote (*ads1*+/-) and homozygote (*ads1*−/−) mutants. The probe was shown in (C). (E) *ADS1* is targeted to the glycosomes. The cells shown are permeabilized WT *L. major* transfected with pXG-GFP-ADS1. (1) Phase microscopy image; (2) GFP fluorescence (WT controls showed no signal); (3) Indirect immunofluorescence with anti-HGPRT antisera; (4) Superposition of (2) and (3).

Figure 2. Characterization of ADS activity and metacyclogenesis in an *ads1*− null mutant.

(A) Enzymatic assay of ADS activity of indicated lines. Assays were performed in triplicate and normalized to WT; the standard deviation is shown. *ads1*− were identical to background. (B) Northern blot analysis of total RNAs (5 µg) from procyclic and metacyclic promastigotes of WT and *ads1*− cells, hybridized with a *SHERP* probe.
Figure 3. The ads1- mutant lacks ether phospholipids

(A) Positive-ion and (B) negative-ion ES-MS spectra of total phospholipid fractions purified from wild type (upper panel), ads1- mutant (middle panel) and ads1-/+ADS1 parasites (lower panel). Identities of key ions are indicated and the numbers X:Y refer to the total number of lipid carbon atoms (X) and the degrees of unsaturation (Y) in the whole lipid molecule. (C) Negative ion ES-MS-MS daughter ion spectrum of the m/z 728 [M-H] ion of 1-O-alkenyl-2-acyl-PE.

Figure 4. The ads1- mutant lacks conventional L. major GIPLs

(A) The structures of Leishmania GIPLs are shown. (B, C) Positive ion ES-MS spectrum of GIPL fractions isolated from ads1-/+ADS1 (B) and ads1- mutant (C) parasites. The identities of the major ions correspond are indicated by cartoons in panel (A) and can be inferred from the structure of GIPL-2 which is: Galα1-6Galα1-3Galββ1-3Manα1-3Manα1-4GlcNα1-6myo-inositol-1-HPO3-3(sn-1-alkyl-2-acyl-glycerol). The structure of the IPC species retained in ads1- is shown as an inset in panel (C). Symbols are: solid circles, Galp; hashed circle, Galf; open circle, Mane; hashed square, GlcN; hexagon, myo-inositol; and P, phosphate.

Fig. 5. The ads1- mutant synthesizes normal levels of surface GPI-anchored protein gp46.

(A) Whole cell extracts (2x10^6 cells) from WT, ads1- and ads1-+/+ADS1 lines were subjected to Western blot analysis with anti-gp46 or anti-α-tubulin antisera (top and lower panel, respectively). (B) Flow cytometry of fixed non-permeabilized parasites labeled with anti-gp46.
Fig. 6. Phosphoglycan expression and glycocalyx structure in WT and *ads1* L. major.

(A) LPG was metabolically labeled with [³H] Gal, purified, and quantified by liquid scintillation counting. Values are given relative to WT and the standard deviation is shown. (B) Whole cell extracts (1x10⁶ cells) or cell supernatants (30 µl/lane) of a mid-log (5x10⁶/ml) culture from WT, *ads1* and *ads1*/+/ADS1 cells were separated by SDS-PAGE and subjected to immunoblotting with the anti-phosphoglycan antibody WIC79.3. Protein marker (kDa) is indicated. (C) PPGs show decreased mobility in *ads1* consistent with increased phosphoglycosylation. PPGs were resolved in the stacking gel by discontinuous 4%/10% SDS-PAGE and subjected to Western blotting with WIC 79.3; the arrow marks the border between the stacking and separating gel. (D) Phosphoglycosylation of an *L. donovani* sAP PG ‘reporter’ is elevated in the *ads1* line. Culture supernatants from *L. major* WT, *ads1* or *ads1*/+/ADS1 lines transfected with either pX63PAC (denoted by ‘-’) or pX63PAC-LdSAcP-1 (denoted by ‘+’) were separated by native PAGE and stained for acid phosphatase activity. (E) Transmission electron microscopy of the surface glycocalyx of WT, *ads1* and *ads1*/+/ADS1 cells stained with ruthenium red for carbohydrate. The bar corresponds to 0.1 µm.

Fig. 7. Ether lipids are not required for DRM / ‘lipid raft’ formation in *ads1*

Cold Triton X-100 extracted DRMs from WT and *ads1* (left and right panels, respectively) parasites were fractionated on a density gradient (fractions 1-6, low to high density), and subjected to Western blotting with antisera against gp63 (top panels) or LPG (WIC79.3; lower panels). The size of the protein makers is indicated in kDa.
Fig. 8. Ether lipids are important for the establishment of macrophage infections by ads1, but not for amastigote virulence nor for inhibition of NO production by macrophages.

(A) Lesion formation following footpad inoculation of 1x10^6 stationary phase promastigotes (WT, ■; ads1, □; ads1 /+ADS1, ○) (B) In vitro macrophage infection with C3-opsonized stationary-phase promastigotes. The survival of parasites per 100 macrophages (MΦ) and the percentage infected macrophages as a function of time is indicated in the upper and middle panels, respectively; the growth of the surviving intracellular parasites (parasites/infected macrophage) is shown on the lower panel. These results derived from two independent triplicate experiments. Symbols are as in (A). (C) NO synthesis. Macrophages were infected with the indicated strains in triplicate in vitro; after 6 hrs, interferon-γ and LPS were added to the cultures marked induced with a “+” and the incubation was continued another 48 h. Nitrite levels and standard deviations are shown. (D) In vitro macrophage infection with amastigote parasites freshly isolated from a mouse footpad lesion; the data are presented as described in part (B).
Fig. 1 Zufferey...Beverley
Fig. 2 Zufferey…Beverley
Fig. 3
Zufferey…Beverley
Fig. 4 Zufferey...Beverley
Fig. 5.

A

B

Fig. 5 Zufferey…Beverley
Fig. 6 Zufferey...Beverley
Fig. 7 Zufferey...Beverley
Fig. 8 Zufferey…Beverley
Ether phospholipids and glycosylinositolphospholipids (GIPLs) are not required for amastigote virulence nor for inhibition of macrophage activation by Leishmania major. Rachel Zufferey, Simon Allen, Tamara Barron, Deborah R. Sullivan, Paul W. Denny, Igor C. Almeida, Deborah F. Smith, Salvatore J. Turco, Michael A.J. Ferguson and Stephen M. Beverley.

J. Biol. Chem. published online August 27, 2003

Access the most updated version of this article at doi: [10.1074/jbc.M308063200](http://doi.org/10.1074/jbc.M308063200)

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts