Water Quality and Herbivory Interactively Drive Coral-Reef Recovery Patterns in American Samoa

Peter Houk1*, Craig Musburger1,2, Phil Wiles3

1 Pacific Marine Resources Institute, Saipan, Commonwealth of the Northern Mariana Islands, 2 Department of Zoology, University of Hawai‘i at Manoa, Honolulu, Hawaii, United States of America, 3 American Samoa Environmental Protection Agency, Pago Pago, American Samoa

Abstract

Background: Compared with a wealth of information regarding coral-reef recovery patterns following major disturbances, less insight exists to explain the cause(s) of spatial variation in the recovery process.

Methodology/Principal Findings: This study quantifies the influence of herbivory and water quality upon coral reef assemblages through space and time in Tutuila, American Samoa, a Pacific high island. Widespread declines in dominant corals (Acropora and Montipora) resulted from cyclone Heta at the end of 2003, shortly after the study began. Four sites that initially had similar coral reef assemblages but differential temporal dynamics four years following the disturbance event were classified by standardized measures of ‘recovery status’, defined by rates of change in ecological measures that are known to be sensitive to localized stressors. Status was best predicted, interactively, by water quality and herbivory. Expanding upon temporal trends, this study examined if similar dependencies existed through space; building multiple regression models to identify linkages between similar status measures and local stressors for 17 localities around Tutuila. The results highlighted consistent, interactive interdependencies for coral reef assemblages residing upon two unique geological reef types. Finally, the predictive regression models produced at the island scale were graphically interpreted with respect to hypothesized site-specific recovery thresholds.

Conclusions/Significance: Cumulatively, our study purports that moving away from describing relatively well-known patterns behind recovery, and focusing upon understanding causes, improves our foundation to predict future ecological dynamics, and thus improves coral reef management.

Introduction

Poor water quality and reduced herbivory often represent the greatest impediments to favorable coral-reef recovery following large-scale disturbance events [1–4]. Indeed, studies that forecast increasing disturbance frequencies due to climate induced change often end in recommendations to address local stressors to facilitate resiliency through time [5,6]. However, limited insight exists to identify when thresholds may be crossed, and to quantify if stressors exceed the conditions necessary for (optimal) disturbance-recovery cycles.

A wealth of manipulative studies using individual organisms (i.e., corals) or small plots of reef have documented negative impacts to reef assemblages where herbivory and water quality are reduced [7–10]. Decreased coral and fish species richness, increasing dominance of assemblages by fewer species, increased macroalgal abundance, and even permanent phase shifts from coral to algal have been reported. However, the imposed experimental conditions constitute extreme environments that may not be prevalent (i.e., complete herbivore exclusion or continuous fertilization), especially throughout the Pacific [11]. Therefore, a disconnect between observable change reported by manipulative experiments and ecological change observed across reeffscapes emerges. Beyond manipulative conditions, this disconnect may also be a result of the spatial scale of investigation [12–15]. Levin [16] showed that when increasing the complexity of study designs, defined by the number, strength, and scale of ecological interactions, contrasting patterns often become evident.

In order to improve our understanding and prediction of environmental thresholds leading to undesirable change on coral reefs, it seems logical to draw upon evidence collected at spatial scales appropriate to observe reef assemblages through time (∼100–500 m²), matching the majority of existing management, policy, and perception. Yet, this is a difficult task requiring multi-year investigations that encompass both ecological and environmental datasets. Understandably then few studies have defined relationships between environmental thresholds and observable ecological change on coral reefs because sampling rarely occurs along a gradient of environmental conditions through time, a required basis [17].

In lieu of multi-year datasets, many studies investigating coral reef assemblages at ecological scales have compared sites from

Citation: Houk P, Musburger C, Wiles P (2010) Water Quality and Herbivory Interactively Drive Coral-Reef Recovery Patterns in American Samoa. PLoS ONE 5(11): e13913. doi:10.1371/journal.pone.0013913

Editor: Peter Roopnarine, California Academy of Sciences, United States of America

Received July 22, 2010; Accepted October 6, 2010; Published November 10, 2010

Copyright: © 2010 Houk et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: Thanks to the American Samoa Environmental Protection Agency and the United States Environmental Protection Agency Region IX for their funding and collaboration. Partial funding also originated from the NOAA coral reef management grant program awarded to American Samoa. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: peterhouk@pacmares.com

© 2010 Houk et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Published: November 10, 2010

PLoS ONE | www.plosone.org 1 November 2010 | Volume 5 | Issue 11 | e13913
contrasting environmental regimes (i.e., heavily populated versus unpopulated regions or high versus low nutrient concentrations), and corroborate the nature and magnitude of the cause(s) that underpin ‘undesirable’ ecological states [18–20]. In these situations differences in reef assemblages are due to longer-term, integrated responses of ecological assemblages to environmental conditions, and therefore, statistical confirmations of the cause(s) that led to ‘undesirable’ conditions are not available [19–21]. Despite much logical insight gained, the differences in natural history and disturbance regimes between locales remain critical, and are difficult to account for.

In instances where studies have extended through disturbance and recovery periods contrasting ecological recovery patterns, their causes, and their mechanisms have been reported [22–25]. However, examples remain limited, especially in the Pacific where global coral diversity peaks [26], and a strong social, cultural, and economic reliance on coral reefs perpetuates. Supporting statistics from the Science Citation Index search engine reveal published studies have a heavy focus upon herbivory, and no-take protected areas, when investigating recovery patterns on coral reefs. Few studies interactively consider localized stressors and conduct investigation along naturally occurring environmental gradients. Thus, our collective insight surrounding environmental thresholds and ecological dynamics on coral reefs remains limited.

Here, we build upon the doctrine and examine the causes of differential ecological recovery using multi-year datasets from seventeen locations around Tutuila, American Samoa (Figure 1). We first determine the general impacts of a large-scale disturbance associated with tropical cyclone Heta, and isolate upon four sites where similar coral reef assemblages existed, but differential dynamics through time were noted. Subsequently, herbivory, water quality, and their interaction were tested for their ability to predict ‘favorable’ dynamics, defined within by establish metrics of coral reef assemblages sensitive to localized stressors. Expanding upon temporal trends, predictive regressions between coral reef assemblages and local stressors were defined spatially, across a gradient of 17 sites around Tutuila. Lastly, we integrate the spatial and temporal findings to form a logical basis for management and future direction.

Results

Tropical cyclone Heta was the most plausible explanation for the observed widespread decline in coral abundance that was evident between 2003 and 2005. Coral loss following this disturbance ranged between 5 to 45%, and was heavily dependent upon the initial coral community composition, prior to the cyclone. Nearly 90% of the decline in coral cover was attributed to the loss of table and corymbose Acropora, and encrusting and plate Montipora (Figure 2a). Most notable to the present study, four sites that had initial assemblages with high Acropora and Montipora abundances showed differential recovery four years after the disturbance. Two sites had non-significant changes in favorable benthic substrate and coral species richness (sites 9 and 13, 13).

![Figure 1. A map of the study area with site-symbols indicating geomorphological reef type, defined in Materials and Methods. doi:10.1371/journal.pone.0013913.g001](image-url)
Discussion

Intriguing evidence presented here shows that water quality and herbivory interactively accounted for the temporal and spatial variances associated with ‘favorable’ coral assemblage dynamics in American Samoa. Clearly further efforts will serve to refine our predictions as they pertain to Pacific coral reefs, however, the results are among the first to collectively quantify thresholds in localized stressors that are associated with ecological status. It is
Table 1. Results from regression models describing how well driving independent variables predicted relevant ecological metrics for two unique reef types, described in Materials and Methods.

Dependent	Model Fit	Variables	Slope (1)	SE	Slope (2)	SE	Intercept	R^2	P-Value	AIC
Benthic substrate ratio	1	dist land $^{-0.6}$	7.94	1.73	—	—	−2.36	0.77	0.005	5.4
Benthic substrate ratio	2	human pop	−0.47	0.15	—	—	3.12	0.59	0.02	9.3
Coral species richness	1	herb fish + dist land	2.49	0.42	−1.89	0.46	22.89	0.92	0.003	23.5
Coral species richness	2	herb fish + human pop	2.39	0.44	−1.71	0.44	23.32	0.91	0.003	24.2
Coral cover	1	shed size$^{10} \times$ exposure$^{-3.2}$	−2.8e-05	7.9e-06	—	—	37.9	0.66	0.01	52.4
Framework reefs with lower interstitial porosity, cemented basement										
Benthic substrate ratio	1	Exposure25 + herb fish	−7.6e-18	1.2e-19	0.28	0.03	1.94	0.99	<0.001	−10.3
Benthic substrate ratio	2	(exposure25 × human pop53) + herb fish	−3.3e-18	4.9e-19	0.33	0.11	1.69	0.89	0.01	4.4
Coral species richness	1	Exposure25 + herb fish	−7.3e-17	1.3e-17	4.7	1.3	21.7	0.87	0.02	34.2
Coral species richness	2	(exposure25 × dist land$^{-1.2}$) + herb fish	−3.2e-16	7.5e-17	4.2	1.6	21.7	0.79	0.04	37.2
Coral cover	2	exposure25 × shed size$^{-0.09}$	−1.2e-16	2.7e-17	—	—	41.2	0.78	0.01	41.7

Figure 3. Results from pairwise testing of water quality and herbivory between ‘high’ and ‘low’ recovery reefs, defined by sensitive ecological metrics (see Materials and Methods). Several water quality parameters were ranked and combined to form the index reported here; higher values refer to better water quality (see methods). P-values are as follows: (*P<0.05, **P<0.01, and ***P<0.001). doi:10.1371/journal.pone.0013913.g003
notable that ‘desirable’ ecological status, as defined here, was not always represented by the recovery of coral assemblages to their pre-existing states. Rather the results agree that intermediate ecological assemblages may arise following disturbance [27–30]. While shifting assemblages are often perceived as indicators of reduced recovery; they also represent probable mechanisms to maintain ecosystem function following disturbance [30]. In reconciliation of the two viewpoints, we reported shifting assemblages under both ‘favorable’ and ‘unfavorable’ recovery scenarios, with favorability defined by standardized ecological metrics that had affinities with water quality and herbivory through space and time. In support, previous studies have reported ‘favorable’ post-bleaching recovery in a temporal and taxonomic manner consistent with the present findings [24]. We conclude that standardized rates of change in coral species richness and benthic substrates were ideal indicators of ecological status on coral reefs, but further, attributing status to measurable environmental regimes represents a desirable means towards identifying thresholds relevant for management.

When investigations were expanded to the island scale contrasting hierarchical influences of local stressors were reported in accordance with geological reef structure. The suspect driver of these trends is the varying degree of freshwater seepage through the volcanic island. Ambient salinity levels are typically higher on the southern side of Tutuila [31], and the noted differences have previously been linked with ecologically distinct reef assemblages [32,33]. Enhanced water quality profiling would not only improve our understanding of natural constraints limiting coral assemblages [34], but these data would also serve to further our understanding of the input and distribution of land-based pollution to adjacent coral reefs.

Presently, the wealth of causative knowledge linking localized stressors with reef assemblages has been derived through examining either herbivory or water quality [23–25,35], often within no-take marine preserves, or conducted using cage-based, manipulative experiments [36]. For instance, multi-year investigations found that increased herbivory facilitated recovery within a Caribbean no-take marine preserve, evidenced through improved growth rates of corals in the preserves [25,37]. Similarly, the distribution and density of grazing urchin recovery in the Caribbean was linked with coral recruitment and growth patterns [38,39]. Smith et al. [23] report that demographic patterns following a bleaching event were most dynamic where poor water quality existed along the Great Barrier Reef. While the present results agree with these findings, they also highlight clear synergistic dependencies that are novel and warrant further attention. To what extent might enhanced herbivory be able to account for reduced water quality, or vice-versa, in order to maintain desirable ecological states?

Synergistic experimental designs (i.e., water quality × herbivory) have mainly been constrained to smaller temporal and spatial scales due to logistical considerations, thus establishing a reliance upon manipulative environments [10]. A meta-analysis of cage-based experiments extrapolated that herbivory, acting alone, is typically the greatest predictor of tropical macroalgal dynamics [36]. However, recall that herbivore exclusion plots with continuous nutrient supplementation represent extreme situations, and patterns observed on individual plots of reef may not hold for reefscapes [17]. Here we highlight contrasting findings based upon observations at larger spatial scales, and call for long-term monitoring programs to consider the collection of complimentary environmental datasets to augment our collective insight. Through an improved elucidation of ecological-environmental coupling on coral reefs, management programs will have a better foundation to define and meet their goals.

Coral reef disturbance and recovery cycles are ubiquitous at time scales relevant to the resource needs of Pacific island societies and economies [40,41]. Efforts to improve preservation and sustainability should build upon describing the relatively well-known patterns behind recovery [42–46], and focus more upon predicting why patterns become emergent.

Materials and Methods

Ethics Statement

All research was approved by and conducted in collaboration with the American Samoa Environmental Protection Agency.

Study Location

Data were collected in conjunction with a long-term monitoring program on Tutuila, American Samoa [32], a high volcanic island in the South Pacific (Figure 1). Seventeen monitoring sites have been examined on a rotational basis between 2003 and 2008 based upon logistical constraints and weather patterns (Table S1). Monitoring stations were established on the nearshore reef slopes (8–10 m) adjacent to selected watersheds, approximately 250 m away from stream discharge, collectively representing gradients of environmental regimes. Inherent differences in reef assemblages and geological reef structures exist due to varying physical environments on Tutuila [32,33]. On Tutuila, two visually distinct reef types categorized by previous studies are relevant: 1) primary framework with interstitial spaces common throughout the reef matrix, found mainly on the southern side of Tutuila, and primary framework reefs with a well-cemented, underlying basement lacking significant interstitial space development, found mainly on the north side of the island (b).
and assess management actions (1–5 years). Benthic cover was evaluated using a modified video belt transect method [47]. For each site, video data were collected along three 50 m transects using an underwater digital video camera that recorded 0.5 m × 50 m belts. These videos were analyzed by extracting 60 individual frames per transect, projecting five randomly situated dots, and noting the life form under each. The benthic categories chosen for analysis were corals (to genus level), turf algae (less than 2 cm), macroalgae (greater than 2 cm, to genus level if abundant), coralline algae known to overgrow coral (i.e., Pseudepiphoris, Pseudolithophyllum [48-50]), other coralline algae, sand, and other invertebrates (genus level if abundant). Besides categorical estimates, a benthic substrate ratio [32,33] was calculated as the percent cover of coral, soft coral, and coralline algae divided by the percent cover of macroalgae, turf algae, and inhibitive coralline algae.

Coral communities were examined using a point-quadrat technique. Eight, 1 × 1 m quadrats were tossed at equal distances along each transect line. Every colony whose center point lay inside the quadrat was recorded to species level, and the maximum diameter and diameter perpendicular to the maximum were measured. These measurements were used to estimate percent coverage, relative abundance, population density, and geometric diameter, with the mathematical assumption that colonies are circular. Species richness per unit area was calculated as the average number of coral species that were found within each quadrat. Margalef’s d-statistic was calculated as a measure of the number of corals present, making some allowance for the abundance of individuals, or community evenness [51].

Fish numerical abundance and biomass were estimated using a modified, Bohnsack stationary point count (SPC), with a radius of 7.5 m [52]. At each site, five SPC replicates were conducted. All large fish (>20 cm TL) as well as all fish known to be exploited for either commercial or artisanal fisheries were surveyed. All fish were identified to species level, counted, and size estimates to the nearest 5 cm were recorded for each individual observed within the SPC boundary during a 5 minute observation period. Fish biomass estimates were calculated from the lengths recorded using the formula: \(W = A \times L^B \) where \(W = \text{weight}, L = \text{length}, \) and \(A \& B \) are growth parameters obtained from fishbase [53]. Fish were assigned trophic groups based upon published accounts of diet [54]. In total, 44 species of herbivorous fishes consisting primarily of surgeonfishes (Acanthuridae) and parrotfishes (Scaridae), along with a few species of angelfishes (Pomacanthidae), rabbitfishes (Siganidae), and rudderfishes (Kyphosidae), were considered for analyses.

Macroinvertebrates were counted along three 50 × 4 m transects at each site, identified to the genus level.

Environmental Data

Water quality data originated from the ASEPA watershed monitoring program, and have been collected from most major watersheds on a rotational basis since 2004. For the purposes of this study a water quality index was created for each watershed based upon bacteria and nutrient concentrations (NO\(_3\), NO\(_2\), NH\(_3\), PO\(_4\), Total P, and Total N). The index represents mean, ranked values for these constituents.

Wave-exposure data were gathered from NOAA Wave Watch III model predictions, summarized for American Samoa [31]. For each monitoring site, mean wave heights were recorded with respect to their angle of exposure, using the wave-rose data. Shortly after data collection efforts began, a category 5 cyclone (Heta) impacted much of the region, and wave heights reaching as high as 13 m were reported offshore. The suspected drivers of the ubiquitous decline in coral cover surrounding this time frame are the direct impacts of the cyclone, major upwelling of cool nutrient rich waters that accompanies tropical storms [55], or time-integrated responses of both [56].

Watershed statistics were derived from existing American Samoa Department of Commerce GIS layers [57], while land-use data were derived from the United States Forest Service vegetation maps [58]. “Disturbed land” represented all land use categories that were not classified as tropical forests within each watershed, including urban development, agriculture, savannah, shrub, and grassland.

Human population estimates were derived from the most recent census report, while pig population data were collected during American Samoa Environmental Protection Agency household inspections from June to October, 2006. These data were used as proxies of water quality for multiple regression analyses encompassing the entire island, as water quality data were not ubiquitously available.

Data Analysis

First, a widespread coral mortality event during the austral summer of 2003, coincident with Cyclone Heta, was characterized. Comparisons before and after the event were made for benthic and coral assemblage data using standard pairwise testing procedures, assumptions, and transformations when appropriate. Subsequently, coral assemblages were examined in multivariate space using principle components analyses (PCA’s) [59] to provide further insight into site-specific changes, and different ecological recovery patterns (2003–2007). Species-centered PCA’s rotate the multidimensional species similarity matrices to extract as much variance as possible (i.e., show the greatest gradients) in two dimensions. The resultant eigenvalues describe how much of the ecological variance was attributed to each axis.

Second, four sites where data were available before and after the disturbance event, and that held similar initial coral reef assemblages, were grouped based upon their differential dynamics through time as: 1) ‘high-recovery reefs’, where mean coral species richness and benthic substrate ratios remained statistically similar, and 2) ‘low-recovery reefs’, where both metrics had significant declines. The ecological metrics used in these classifications were selected based upon their documented sensitivity to localized stressors [60], while being less influenced by natural disturbances [4]. Coral species richness patterns have previously been predicted by gradients of human influence [4,33], whereby pollution and/or reduced herbivory facilitated selective environmental conditions that were corroborated with a narrowing of the local species pool as disturbance-recovery cycles become evident. Favorable benthic substrates, defined above, have been corroborated by numerous studies that show relationships between the noted benthic categories, high coral recruitment, and benign interactions with adult colonies [40,48–50]. Clearly reef assemblages from different locales differ to some extent, and evaluating ‘status’ without knowing individual disturbance histories presents a challenge. Here, we address this by focusing upon rates of change in standardized ‘status’ metrics rather than absolute values.

Water quality, herbivory, and an interaction term were compared with respect to recovery status using similar pairwise testing procedures and assumptions noted above. Marine water quality datasets originated from collection events between 2004 and 2007. Herbivorous fish data were from 2007 and 2008. Prior to examination, both were standardized across all sites residing in similar geological settings to provide for equal weighting. The
interacton term was calculated by randomly pairing each replicate herbivorous fish estimate with a measure of water quality. This process was iterated for all possible combinations of herbivory and water quality data, to ensure that the distribution of the interactive term variable was normal, and the appropriate mean and variance estimates were used.

Third, multiple regression models were created to test for consistencies between site-specific findings regarding ecological recovery and island-wide patterns. These tests examined interdependencies between ecological metrics (coral cover, species richness, and benthic substrate ratio) and localized stressors along a gradient of 17 sites. Data handling included: 1) creating site-based averages for all years, 2) stratifying data by reef type, 3) standardizing independent data, 4) conducting power-transformations on the data if normality assumptions were not met [61], and 5) constructing models that defined what combination of environmental variables best predicted the ecological variance (R-statistical package, [62]). Independent variables consisted of watershed area, “disturbed land”, wave exposure, human population, pig population, and herbivorous fish density. This study examined the best fit models using Akaike’s Information Criterion; briefly, the selected models explained the greatest proportion of the variance while using the least number of explanatory variables to ensure the greatest precision, accuracy, and repeatability.

Based upon significant trends found, interpolation plots were created to visualize island-wide patterns between gradients of localized stressors and resiliency status. Recovery status was defined categorically above, however, here the continuous dependent variable was calculated by combining standardized scores of coral species richness and benthic substrate ratio’s.

Supporting Information

Table S1 Environmental characteristics associated with each site, numbers in parentheses referring to site location (Fig. 1). Reef types are categorized as follows: 1) primary framework reefs with interstitial porosity, common to the south side of Tutuila, 2) primary framework reefs with a well-cemented basement, common to the north side, and 3) sand and patches of reef.

References

1. Knowlton N (1992) Thresholds and multiple stable states in coral-reef community dynamics. Am Zool 32: 674–682.
2. Birkeland C (1997) Life and death of coral reefs (Springer USA).
3. McClanahan T, Polunin N, Done T (2002) Ecological states and the resilience of coral reefs. Conserv Ecol 6: 27.
4. Houk P, van Woekel R (2010) Coral assemblages and reef growth in theCommonwealth of the Northern Mariana Islands (Western Pacific Ocean). Mar Ecol 31: 318–329.
5. Baker AC, Glynn PW, Riegl B (2008) Climate change and coral reef bleaching: An ecological assessment of long-term impacts, recovery trends and future outlook. Eosmar Coast Shelf S 80: 453–471.
6. Baskett ML, Nibert RM, Kappel CV, Mumpf PJ, Gaines SD (2010) Conservation management approaches to protecting the capacity for corals to respond to climate change: a theoretical comparison. Glob Change Biol 16: 1229–1246.
7. Smith JE, Smith CM, Hunter CL (2006) An experimental analysis of the effects of herbivory and nutrient enrichment on benthic community dynamics on a Hawaiian reef. Coral Reefs 19: 332–342.
8. Lapointe BE, Barile PJ, Matzie WR (2004) Anthropogenic nutrient enrichment of seagrass and coral reef communities in the Commonwealth of the Northern Mariana Islands (Western Pacific Ocean). Ecol Soc 9: 169–177.
9. Hughes TP, Bellwood DR, Folke CS, McCook LJ, Pandolfi JM (2007) No-take areas, herbivory and coral reef resilience. Trends Ecol Evol 22: 1–3.
10. Mork E, Sjo GL, Kautsky N, McClanahan TR (2009) Top-down and bottom-up regulation of macroalgal community structure on a Kenyan reef. Estuar Coast Shelf S 84: 331–336.
11. Bruno JF, Sweetman H, Precht WF, Selig ER, Schutte VGW (2009) Assessing evidence of phase shifts from coral to macroalgal dominance on coral reefs. Ecology 90: 1478–1484.
12. Dutilh P (1993) Spatial heterogeneity and the design of ecological field experiments. Ecology 74: 1646–1658.
13. Fowler-Walker MJ, Connell SD, Gillanders BM (2005) Variation at local scales need not impede tests for broader scale patterns. Mar Biol 147: 825–831.
14. Fraschetti S, Tefluzzi A, Bevacqua S, Boroo F (2006) The distribution of hydroids (Goniadaria, Hydrozoa) from micro- to macro-scale: Spatial patterns on habitat-forming algae. J Exp Mar Biol Ecol 339: 148–150.
15. Zvuloni A, van Woekel R, Loya Y (2010) Diversity partitioning of stony corals across multiple spatial scales around Zanzibar Island, Tanzania. Plos One 5(3): e9941.
16. Levin SA (1992) The problem of pattern and scale in ecology: the Robert H. MacArthur award lecture. Ecology 73: 1943–1967.
17. Cottingham LJ, Brown BL (2005) Knowing when to draw the line: designing more informative ecological experiments. Proc Natl Acad Sci-Biol 3: 143–152.
18. Costa OS, Leao Z, Nuncio M, Attrell MJ (2000) Nutritive impacts on coral reefs from northern Bahia, Brazil. Hydrobiologia 440: 307–315.
19. Lapointe BE, Barile PJ, Yentsch CS, Littler MM, Littler DS, et al. (2004) The relative importance of nutrient enrichment and herbivory on macroalgal communities near Norman’s Pond Cay, Exumas Cays, Bahamas: a “natural” enrichment experiment. J Exp Mar Biol Ecol 298: 273–301.
20. Sandin SA, Smith JE, DeMartini EE, Dinsdale EA, Donner SD, et al. (2008) Baselines and degradation of coral reefs in the Northern Line Islands. Plos One 3(2): e1548.
21. DeMartini EE, Friedlander AM, Sandin SA, Sala E (2008) Differences in fish-assemblage structure between fish and unfished atolls in the northern Line Islands, central Pacific. Mar Ecol Prog Ser 365: 199–215.
22. Graham NAJ, Wilson SK, Jennings S, Polunin NVC, Bijoux JP, et al. (2006) Dynamic fragility of oceanic coral reef ecosystems. Proc Natl Acad Sci USA-Biol 103: 8425–8429.
23. Smith LD, Devlin M, Haynes D, Gilour JP (2003) A demographic approach to monitoring the health of coral reefs. Mar Pollut Bull 47: 399–407.
24. McClanahan TR (2006) Response of the coral reef benthos and herbivory to fisheries closure management and the 1998 ENSO disturbance. Oecologia 155: 169–177.
25. Munday PJ, Harborne AR (2010) Marine reserves enhance the recovery of corals on Caribbean Reefs. Plos One 5(1): e5657.
26. Veron JEN, DeVantier LM, Turak E, Green Al, Kininmonth S, et al. (2009) Delineating the coral triangle. Galaxea 11: 91–100.
27. Adjeroud M, Michonneau F, Edmunds PJ, Chancerelle Y, de Loma TL, et al. (2009) Recurrent disturbances, recovery trajectories, and resilience of coral assemblages on a South Central Pacific reef. Coral Reefs 28: 755–780.
28. Connell JH, Hughes TE, Wallace CC, Tanner JE, Harms KE, et al. (2004) A long-term study of competition and diversity of corals. Ecol Monogr 74: 179–210.
29. Johnson EJ, Miyawaki K (2008) Testing the assumptions of chronosequences in succession. Ecol Lett 11: 419–431.
30. Keitt TH, Fischer J (2006) Detection of scale-specific community dynamics using wavelets. Ecology 87: 2895–2904.
31. Brainard R, Asher J, Gove J, Helyer J, Kenyon J, et al. (2008) Coral reef ecosystem monitoring report for American Samoa, 2002–2006 (National Oceanic and Atmospheric Administration special report, Silver Springs, Maryland).
32. Houk P, Didonato G, Igou J, Van Woerkik R (2005) Assessing the effects of non-point source pollution on American Samoa’s coral reef communities. Environ Monit Assess 107: 11–27.
33. Houk P, Musburger C (2008) Assessing the effects of non-point source pollution on American Samoa’s coral reef assemblages. (Technical Report Submitted to the American Samoa Environmental Protection Agency, Tutuila, American Samoa).
34. Houk P, Starmer J (2010) Constraints on the diversity and distribution of coral-reef assemblages in the volcanic Northern Mariana Islands. Coral Reefs 29: 59–70.
35. Wooldridge SA, Done TJ (2009) Improved water quality can ameliorate effects of climate change on corals. Ecol App 19: 1492–1499.
36. Burkleple DE, Hay ME (2006) Herbivore vs. nutrient control of marine primary producers: Context-dependent effects. Ecology 87: 3128–3139.
37. Mumby PJ, Hastings A, Edwards HJ (2007) Thresholds and the resilience of Caribbean coral reefs. Nature 450: 98–101.
38. Edmunds PJ, Carpenter RC (2001) Recovery of Diadema antillarum reduces macroalgal cover and increases abundance of juvenile corals on a Caribbean reef. Proc Nat Acad Sci USA-Biol 98: 5067–5071.
39. Ijadi JA, Haring RN, Precht WF (2010) Recovery of water quality on American Samoa’s coral reef assemblages. (Technical Report Submitted to the American Samoa Environmental Protection Agency, Tutuila, American Samoa).
40. McClanahan TR, Ateyebahb M, Omojoto J (2008) Long-term changes in coral colony size distributions on Kenyan reefs under different management regimes and across the 1998 bleaching event. Mar Biol 153: 755–768.
41. Sommerfeld PJ, Jaap WC, Clarke KR, Callahan M, Hackert K, et al. (2008) Changes in coral reef communities among the Florida Keys, 1996–2003. Coral Reefs 27: 951–965.
42. Islamaloe E (1998) The descriptive nomenclature and classification of growth fabrics in fossil scleractinian reefs. Sediment Geol 110: 159–186.
43. Houk P, Van Woerkik R (2006) Coral reef benthic video surveys facilitate long-term monitoring in the commonwealth of the Northern Mariana Islands: Toward an optimal sampling strategy. Pac Sci 60: 177–189.
44. Keats DW, Chamberlain YM, Baba M (1997) Pneophyllum conicum (Dawson) comb nov (Rhodophyta, Corallinaceae), a widespread Indo-Pacific non-geniculate coralline alga that overgrows and kills live coral. Bot Mar 40: 263–279.
45. Antonius A (1999) Metapexysomella corallepida, a new coral-killing red alga on Caribbean Reefs. Coral Reefs 18(3): 301–303.
46. Antonius A (2001) Pneophyllum conicum, a coralline red alga causing coral reef death in Mauritius. Coral Reefs 19: 418–418.
47. Washington HG (1984) Diversity, biotic and similarity indices. A review with special relevance to aquatic ecosystems. Water Res 18(6): 653–694.
48. Bohnsack JA, Bannerot SP (1986) A stationary visual census technique for quantitatively assessing community structure of coral reef fishes (National Oceanic and Atmospheric Administration Technical Report, Silver Springs, Maryland).
49. Biomass coefficients available at http://www.fishbase.org.
50. Green AL, Bellwood, R D (2009) Monitoring functional groups of herbivorous reef fishes as indicators of coral reef resilience – A practical guide for coral reef managers in the Asia Pacific region. (IUCN working group on climate change and coral reefs, IUCN, Gland, Switzerland).
51. Walker ND, Leben RR, Balasubramanian S (2005) Hurricane-forced upwelling and chlorophyll a enhancement within cold-core cyclones in the Gulf of Mexico. Geophys Res Lett 32: L18610.
52. Guillemon T, Chabanet P, Le Pape O (2010) Cyclone effects on coral reef habitats in New Caledonia (South Pacific). Coral Reefs 29: 445–453.
53. ter Braak CJF (1983) Principal components biplots and alpha and beta diversity. Ecology 64: 454–462.
54. American Samoa GIS layers are available at http://dusk.geo.orst.edu/djl/samoa/.
55. United States Forest Service land-use GIS layers are available at http://www.fs.fed.us/r5/spf/fhp/fhm/landcover/islands/index.shtml.
56. Cooper TF, Gilmour JP, Fabricius KE (2009) Biodicators of changes in water quality on coral reefs: review and recommendations for monitoring programmes. Coral Reefs 28: 589–606.
57. ter Braak CJF (1983) Principal components biplots and alpha and beta diversity. Ecology 64: 454–462.
58. Box GEP, Cox DR (1964) An analysis of transformations. J Roy Stat Soc B 26: 211–252.
59. Crawley MJ (2007) The R book (John Wiley & Sons Inc, West Sussex, England).