Assessment of Blood Plasma Free-amino Acid Levels in Infertile Men

TAKAYUKI SUGIYAMA, HIROSHI TERADA and HIDEAKI MIYAKE

Department of Urology, Hamamatsu University School of Medicine, Hamamatsu, Japan

Abstract. Background/Aim: The objective of this study was to investigate the significance of the blood levels of free amino acids (AAs) in infertile men. Patients and Methods: Ninety-three men who underwent examinations for infertility were included. The concentrations of 20 AAs were measured and compared in four groups (normospermia, obstructive azoospermia, oligozoospermia, non-obstructive azoospermia) based on semen analysis and clinical parameters. Results: When the 93 men were divided into normospermia, obstructive azoospermia, oligozoospermia, and non-obstructive azoospermia groups, no significant differences were found in the concentrations of the 20 AAs between them. We then compared 49 men diagnosed with normozoospermia or oligozoospermia according to the median sperm motility and morphology abnormalities rates (30% and 20%, respectively). Men with low motility rates had significantly lower levels of tryptophan and alanine, and men with high abnormal morphology rates had significantly lower levels of aspartate and glutamate. Conclusion: AAs are probably involved in the pathogenesis of male infertility, particularly oligozoospermia.

Amino acids (AAs) are used for protein synthesis and have been shown to play important roles in a wide variety of physiological events. It is well documented that free AAs are present in the blood (1), and an imbalance in their levels has been shown to be associated with the development and progression of various diseases (2). For example, several studies have reported close relationships between changes in the profile of free AAs in the blood and metabolic syndrome, including diabetes mellitus, hypertension, and fatty liver (3, 4). An imbalance in AAs has been observed in a high proportion of patients with several malignant tumors, such as lung, colorectal, breast, and prostate cancers (5-7).

Several studies have shown the important roles of the metabolic pathways involving AAs in the regulation of parameters associated with semen quality (8-10). For example, metabolic disorders involving AAs are thought to be involved in the structural and functional alterations of spermatozoa in men with severe oligoasthenospermia (8). Furthermore, a few human studies and several animal models have shown the significant roles of free-AAs on sperm quality (11-15). However, the significance of free AA levels in infertile men remains unknown.

Therefore, we measured the blood levels of free AAs in 93 men, who were examined for male infertility, to determine whether clinical features in these men were affected by the profile of free AAs.

Patients and Methods

Patients. This study was approved by the institutional review board of Hamamatsu University School of Medicine (No. 15-241), and written informed consent was obtained from all participants. We consecutively enrolled 93 men who visited our institution between January 2011 and December 2018 with a chief complaint of infertility. We excluded men with a previous history of treatment for male infertility or malignant disease, those without data on gonadotropins, and those with chromosomal abnormalities, such as Klinefelter syndrome.

Data collection. All data used in this study were retrospectively obtained from medical records (laboratory findings, semen analysis, and pathological findings on testicular biopsy). In this series, an endocrine evaluation consisting of measurements of serum follicle-stimulating hormone (FSH), luteinizing hormone (LH), and testosterone levels in a blood sample was conducted for all participants. In addition, according to the World Health Organization laboratory manual, all semen samples were collected by masturbation after 3 days of sexual abstinence, and evaluated within 1 h of collection to measure the volume, sperm count, motility rate, and abnormal morphology rate using a Makler chamber.

In this study, high-performance liquid chromatography mass spectrometry (HPLC-MS) (16) was used to measure the concentration of free- AAs in the blood at SRL Inc. (Tokyo, Japan).
Table I. Free amino acid (AA) concentrations in the blood according to serum follicle-stimulating hormone (FSH) levels.

	FSH ≤10 IU/ml (n=64)*	FSH >10 IU/ml (n=29)*	p-Value
Essential AAs			
Histidine	81.5 (43.8-116.4)	81.6 (71.7-115.3)	0.64
Isoleucine	68.1 (45.7-121.8)	74.5 (45.3-129.0)	0.050
Leucine	119.9 (77.1-201.2)	125.1 (84.5-210.2)	0.19
Lysine	179.9 (118.4-303.1)	176.2 (118.5-260.9)	0.87
Methionine	25.5 (14.7-43.4)	25.1 (17.2-47.8)	0.68
Phenylalanine	60.9 (36.9-79.4)	61.2 (49.1-83.7)	0.24
Threonine	119.6 (73.1-172.7)	127.2 (86.5-264.5)	0.34
Tryptophan	57.54 (40.9-73.1)	57.1 (43.9-85.5)	0.28
Valine	223.2 (154.2-323.2)	232.7 (179.4-326.0)	0.13
Non-essential AAs			
Alanine	376.1 (237.8-591.8)	349.8 (275.8-592.2)	0.51
Arginine	96.0 (44.5-154.2)	99.9 (60.0-143.6)	0.69
Asparagine	48.2 (27.6-86.9)	48.1 (38.0-89.1)	0.64
Aspartic acid	4.5 (2.0-12.2)	4.6 (2.0-12.7)	0.80
Cystine	24.9 (11.8-52.4)	26.2 (14.3-41.4)	0.60
Glutamine	562.3 (477.3-820.0)	553.6 (437.2-711.3)	0.44
Glutamic acid	48.8 (16.4-122.5)	52.2 (10.6-95.6)	0.81
Glycine	224.8 (134.3-375.9)	218.2 (159.1-419.4)	0.96
Proline	199.1 (112.1-493.5)	186.9 (119.8-364.0)	0.43
Serine	112.6 (61.6-171.5)	107.9 (88.2-177.9)	0.30
Tyrosine	57.1 (33.1-108.4)	59.4 (41.2-88.9)	0.38

*Values are presented as median (range).

Nine essential AAs (EAAs), consisting of histidine, isoleucine, leucin, lysine, methionine, phenylalanine, threonine, tryptophan, and valine, and 11 non-EAAs (NEAAs), consisting of alanine, arginine, asparagine, aspartic acid, cysteine, glutamine, glutamic acid, glycine, proline, serine, and tyrosine, were measured.

Statistical analysis. All statistical analyses were performed using EZR (Saitama Medical Center, Jichi Medical University, Saitama, Japan) (17), and a p-value <0.05 was considered statistically significant. Differences between groups were compared using the Mann-Whitney U-test and Kruskal-Wallis test.

Results

The characteristics of the 93 men included in this study were as follows: median age, 36 years (range=25-63 years); median body mass index, 23.4 kg/m² (range=17.0-32.4 Kg/m²); median FSH, 6.9 mIU/ml (range=1.1-80.1 mIU/ml); median LH, 4.9 mIU/ml (range=1.4-25.5 mIU/ml); and median total plasma testosterone 355 ng/dl (range=184-986 ng/dl).

We initially compared the concentrations of AAs in the blood plasma according to serum FSH levels. As shown in Table I, when the 93 men were divided into a group of 64 with serum FSH levels ≤10 IU/ml (68.8%) and a group of 29 with FSH >10 IU/ml (31.2%), there were no significant differences in the concentrations of all 20 AAs between these groups.

We then divided the 93 men into the following four groups: Normospermia group (n=18, 19.4%), sperm count >15×10⁶; Obstructive azoospermia group (n=26, 27.9%), azoospermia with a Johnsen score >7 on testicular biopsy; Oligozoospermia group (n=31, 33.3%), sperm count ≤15×10⁶; and Non-obstructive azoospermia group (n=18, 19.4%), azoospermia with a Johnsen score ≤6. As shown in Table II, there were no significant differences in the concentrations of all 20 AAs between these four groups.

Finally, we compared the concentrations of AAs in the blood of the normospermia and oligozoospermia groups according to median values of sperm motility and abnormal morphology rates (30% and 20%, respectively). Concentrations of tryptophan and alanine in the 25 men with low motility rates (51.0%) were significantly lower than in the 24 men with high motility rates (49.0%); however, there were no significant differences in the concentrations of the remaining 18 AAs between these two groups (Table III). Furthermore, 26 patients with high abnormal morphology rates (53.1%) had low concentrations of aspartic acid and glutamic acid, but not those of the remaining 18 AAs, compared to 23 men with low abnormal morphology rates (46.9%) (Table IV).

Discussion

A number of studies have suggested that AAs play critical roles in a wide variety of pathophysiological events, including male reproduction (2). For example, assessments of the metabolic profile of human sperm cells from men diagnosed with...
idiopathic asthenozoospermia using gas chromatography-mass spectrometry revealed that pathways involved in amino acid and citric acid cycle were disturbed (18). Dietary intervention with functional AAs to alter the abundance and activity of intestinal bacteria was shown to improve reproductive performance in both male and female rats as well as their offspring (13). However, the significance of free AAs in human male reproduction has not yet been well characterized. Therefore, we measured the levels of 20 AAs in the blood plasma using HPLC-MS in 93 men who visited our institution to undergo examinations for infertility, and investigated the association between these outcomes and their clinical features.

We initially compared the concentrations of 20 AAs in the blood of the 93 men according to serum FSH levels and sperm counts; however, there were no significant differences in the concentrations of all 20 AAs. Therefore, FSH levels and sperm count do not influence the balance of the AA concentrations and may not be correlated to spermatogenic function in infertile men. In a previous study, investigating serum samples from non-obstructive azoospermic men, various metabolic pathways, but not those associated with AAs, were shown to be disrupted, suggesting the involvement of serum metabolic disorders in the pathogenesis of male infertility (19).

Considering the important roles of AAs in a wide variety of pathophysiological events, we evaluated our findings,}

Table II. Free amino acid (AA) concentrations in the blood according to the diagnosis group.

	Normospermia (n=18)*	Obstructive azoospermia (n=26)*	Oligozoospermia (n=31)*	Non-obstructive azoospermia (n=18)*	p-Value
Essential AAs					
Histidine	82.9 (66.0-108.0)	81.7 (70.7-107.2)	78.6 (43.8-116.4)	83.3 (74.2-115.3)	0.22
Isoleucine	69.8 (49.0-121.8)	68.3 (45.3-106.8)	68.4 (45.7-129.0)	72.4 (48.2-104.1)	0.52
Leucine	119.9 (90.2-201.2)	122.1 (92.9-176.0)	123.5 (77.1-210.2)	128.6 (84.5-178.9)	0.55
Lysine	167.2 (128.5-303.1)	206.7 (120.1-290.1)	178.6 (118.4-257.4)	181.4 (118.5-260.9)	0.061
Methionine	25.3 (14.7-35.0)	25.4 (18.5-43.4)	24.2 (15.2-34.6)	25.8 (17.2-47.8)	0.31
Phenylalanine	61.2 (46.8-79.4)	61.6 (51.3-75.5)	60.3 (36.9-83.7)	60.9 (51.7-78.4)	0.72
Threonine	109.5 (73.1-188.8)	128.1 (83.1-172.7)	118.0 (85.0-171.1)	127.4 (89.2-246.5)	0.34
Tryptophan	57.5 (45.2-70.6)	55.4 (40.9-73.1)	57.1 (42.3-70.8)	60.5 (47.0-85.5)	0.62
Valine	218.8 (175.2-323.2)	235.8 (172.8-296.0)	219.5 (154.2-326.0)	229.4 (180.5-308.3)	0.41

*Values are presented as median (range).

----------------------	----------------------				
Non-essential AAs					
Alanine	383.7 (301.0-450.2)	383.1 (386.6-592.2)	360.9 (237.8-501.5)	40.24 (275.8-534.7)	0.29
Arginine	90.5 (57.9-142.0)	104.8 (65.9-154.2)	90.0 (44.5-143.6)	94.6 (60.0-143.2)	0.094
Asparagine	43.5 (27.6-65.3)	51.9 (38.5-86.9)	48.5 (30.9-59.4)	48.7 (38.0-89.1)	0.11
Aspartic acid	4.9 (2.4-11.5)	4.3 (2.2-11.6)	4.7 (2.0-12.2)	4.3 (2.0-12.7)	0.95
Cystine	29.7 (14.4-42.6)	23.1 (11.8-52.4)	26.7 (16.7-47.0)	25.9 (12.5-41.4)	0.14
Glutamine	555.8 (482.2-641.4)	565.0 (494.1-753.6)	555.2 (473.7-820.0)	560.4 (437.2-711.3)	0.79
Glutamic acid	60.7 (20.0-122.5)	47.1 (22.8-104.7)	56.0 (16.4-119.6)	40.4 (10.0-92.7)	0.28
Glycine	224.9 (150.5-335.8)	232.4 (148.7-375.9)	216.0 (134.3-339.0)	234.8 (176.6-419.4)	0.32
Proline	222.3 (124.2-346.5)	199.7 (119.8-493.5)	180.6 (112.1-318.3)	190.6 (121.3-364.0)	0.33
Serine	111.2 (88.2-163.9)	110.3 (83.6-171.5)	110.0 (61.6-142.6)	113.0 (89.0-177.9)	0.66
Tyrosine	54.8 (41.2-88.9)	57.9 (41.2-86.9)	54.0 (33.1-108.4)	60.9 (41.4-88.9)	0.26

*Values are presented as median (range).

Table III. Free amino acid (AA) concentrations in the blood according to sperm motility rate.

	Motility rate >30% (n=24)*	Motility rate ≤30% (n=25)*	p-Value
Essential AAs			
Histidine	83.0 (63.2-108.0)	80.2 (43.8-116.4)	0.25
Isoleucine	68.9 (46.6-121.8)	69.5 (45.7-129.0)	0.74
Leucine	122.3 (77.1-201.2)	120.6 (77.3-210.2)	0.56
Lysine	175.6 (137.5-303.1)	174.5 (118.4-231.3)	0.88
Methionine	24.3 (16.2-35.0)	23.9 (14.7-34.6)	0.40
Phenylalanine	61.0 (40.7-79.4)	57.1 (36.9-83.7)	0.48
Threonine	110.9 (81.3-171.1)	118.6 (73.1-188.8)	0.97
Tryptophan	58.1 (48.3-70.6)	55.0 (42.3-70.8)	0.047
Valine	219.5 (179.4-323.2)	220.9 (154.2-326.0)	0.76

*Values are presented as median (range).
Table IV. Free amino acid (AA) concentrations in the blood according to sperm abnormal morphology rate.

AAs	Abnormal morphology rate ≤20% (n=23)*	Abnormal morphology rate >20% (n=26)*	p-Value
Essential AAs			
Histidine	378.4 (237.8-501.5)	356.5 (264.3-455.6)	0.083
Arginine	87.5 (44.5-143.6)	98.5 (57.2-142.0)	0.40
Asparagine	43.3 (30.9-63.2)	48.0 (27.6-65.3)	0.23
Aspartic acid	5.6 (2.6-12.2)	3.3 (2.0-11.6)	0.002
Glutamine	546.9 (482.2-820.0)	566.7 (477.3-683.7)	0.053
Glutamic acid	74.7 (16.4-122.5)	36.3 (18.2-95.6)	0.009
Cystine	29.8 (18.5-47.0)	25.1 (14.4-42.6)	0.20
Valine	225.7 (154.2-308.2)	209.0 (167.7-326.0)	0.84
Non-essential AAs			
Alanine	5.6 (2.6-12.2)	3.3 (2.0-11.6)	0.002
Arginine	87.5 (44.5-143.6)	98.5 (57.2-142.0)	0.40
Asparagine	43.3 (30.9-63.2)	48.0 (27.6-65.3)	0.23
Aspartic acid	5.6 (2.6-12.2)	3.3 (2.0-11.6)	0.002
Glutamine	546.9 (482.2-820.0)	566.7 (477.3-683.7)	0.053
Glutamic acid	74.7 (16.4-122.5)	36.3 (18.2-95.6)	0.009
Cystine	29.8 (18.5-47.0)	25.1 (14.4-42.6)	0.20
Valine	225.7 (154.2-308.2)	209.0 (167.7-326.0)	0.84

*Values are presented as median (range).

We showed that despite the lack of significant differences in the concentrations of free AAs according to FSH levels or sperm count, lower levels of alanine and tryptophan, and those of aspartic acid and glutamic acid, were significantly associated with low motility and high abnormal morphology, respectively, in men with either normospermia or oligozoospermia. These findings suggest that an imbalance in free AAs in the blood is involved in the pathogenesis of male infertility, particularly oligozoospermia.

Conflicts of Interest

The Authors have no conflicts of interest to declare in relation to this study.

Authors’ Contributions

Study conception and design: Takayuki Sugiyama, Hiroshi Terada, Hideaki Miyake; Acquisition of data: Takayuki Sugiyama, Hiroshi Terada; Analysis and interpretation of data: Takayuki Sugiyama, Hideaki Miyake; Drafting of manuscript: Takayuki Sugiyama, Hideaki Miyake.

Acknowledgements

The Authors would like to thank Editage (www.editage.com) for English language editing.

References

1. Nagao K and Kimura T: Use of plasma-free amino acids as biomarkers for detecting and predicting disease risk. Nutr Rev 78(12 Suppl 2): 79-85, 2020. PMID: 33259618. DOI: 10.1093/nutrit/muaa086

2. Noguchi Y, Zhang QW, Sugimoto T, Furuhata Y, Sakai R, Mori M, Takahashi M and Kimura T: Network analysis of plasma and tissue amino acids and the generation of an amino index for potential diagnostic use. Am J Clin Nutr 83(2): 513S-519S, 2006. PMID: 16470023. DOI: 10.1093/ajcn/83.2.513S

3. Yamakado M, Nagao K, Imaizumi A, Tani M, Toda A, Tanaka T, Jinzu H, Miyano H, Yamamoto H, Daimon T, Horimoto K and Ishizaka Y: Plasma free amino acid profiles predict four-year risk of developing diabetes, metabolic syndrome, dyslipidemia, and hypertension in Japanese population. Sci Rep 5: 11918, 2015. PMID: 26156880. DOI: 10.1038/srep11918

4. Yamakado M, Tanaka T, Nagao K, Imaizumi A, Komatsu M, Daimon T, Miyano H, Tani M, Toda A, Yamamoto H, Horimoto K and Ishizaka Y: Plasma amino acid profile associated with methionine, proline, and tryptophan, was observed in men with severe oligoasthenospermia (8). Finally, in order to obtain more comprehensive results on this topic, new sophisticated approaches should be considered, such as network and metabolomic analyses (2, 19, 25, 26).

Conclusion

Several limitations of this study should be mentioned. Firstly, this was a retrospective study including a comparatively small number of men who wished to undergo examinations for infertility. Therefore, it is necessary to perform a prospective large study to confirm our findings. Secondly, the functional significance of an imbalance in free AAs on spermatogenesis should be addressed. Thirdly, despite the use of serum samples in this study, it would be interesting to measure free AA levels in other body fluids. In fact, several studies have analyzed the metabolomic signature of the seminal plasma from infertile men (8, 25, 26). For example, a significant decrease in multiple metabolites, including alanine, aspartic acid, glutamic acid,
fatty liver disease and co-occurrence of metabolic risk factors. Sci Rep 7(1): 14485, 2017. PMID: 29101348. DOI: 10.1038/s41598-017-14974-w

5 Cascino A, Muscaritoli M, Cangiano C, Conversano L, Laviano A, Ariemma S, Meguid MM and Rossi Fanelli F: Plasma amino acid imbalance in patients with lung and breast cancer. Anticancer Res 15(2): 507-510, 1995. PMID: 7763031.

6 Kim HJ, Jang SH, Ryu JS, Lee JE, Kim YC, Lee MK, Jang TW, Lee SY, Nakamura H, Nishikata N, Mori M, Noguchi Y, Miyano H and Lee KY: The performance of a novel amino acid multivariate index for detecting lung cancer: A case control study in Korea. Lung Cancer 90(3): 522-527, 2015. PMID: 26476713. DOI: 10.1016/j.lungcan.2015.10.006

7 Mikami H, Kimura O, Yamamoto H, Kikuchi S, Nakamura Y, Ando T and Yamakado M: A multicentre clinical validation of AminoIndex Cancer Screening (AICS). Sci Rep 9(1): 13831, 2019. PMID: 31554861. DOI: 10.1038/s41598-019-50304-y

8 Bogueuet M, Bocca C, Bouet PE, Serri O, Chupin S, Tesslier L, Blanchet O, El Hackem H, Chao de la Barca JM, Reynier P and May-Panloup P: Metabolomic signature of the seminal plasma in men with severe oligoasthenospermia. Andrology 8(6): 1859-1866, 2020. PMID: 32770844. DOI: 10.1111/andr.12882

9 Chen L, Wen CW, Deng MJ, Ping-Li, Zhang ZD, Zhou ZH and Wang X: Metabolic and transcriptional changes in seminal plasma of asthenozoospermia patients. Biomed Chromatogr 34(3): e4769, 2020. DOI: 10.1002/bmc.4769

10 Zhang J, Huang Z, Chen M, Xia Y, Martin FL, Hang W and Shen H: Urinary metabolome identifies signatures of oligozoospermic infertile men. Fertil Steril 102(1): 44-53.e12, 2014. PMID: 24746742. DOI: 10.1016/j.fertnstert.2014.03.033

11 Ahmed H, Jahan S, Khan A, Khan L, Ullah H, Riaz M, Ullah K and Ullah F: Supplementation of L-tryptophan (an aromatic amino acid) in tris citric acid extender enhances post-thaw progressive motility, plasmalemma, mitochondrial membrane potential, acrosome, and DNA integritys, and in vivo fertility rate of buffalo (Bubalus bubalis) bull spermatozoa. Cryobiology 92: 117-123, 2020. PMID: 31783000. DOI: 10.1016/j.cryobiol.2019.11.044

12 Chen JQ, Li YS, Li ZJ, Lu HX, Zhu PQ and Li CM: Dietary L-aspartic acid administration improves semen quality and libido of boars under high ambient temperature. Animal 12(8): 1611-1620, 2018. PMID: 29198215. DOI: 10.1017/S1751731117003147

13 Dai Z, Wu Z, Hang S, Zhang Z, and Wu G: Amino acid metabolism in intestinal bacteria and its potential implications for mammalian reproduction. Mol Hum Reprod 21(5): 389-409, 2015. PMID: 25609213. DOI: 10.1093/molehr/gav003

14 Kuttler F, Aksu Ö and Kocabahş M: Effect of L-tryptophan on sperm quality of tigris snake (Cyperophis: Cyprinidae) by cryopreservation. Cryo Letters 40(2): 77-82, 2019. PMID: 31017607.

15 Macchia G, Topo E, Mangano N, D’Aniello E and Boni R: DL-Aspartic acid administration improves semen quality in rabbit bucks. Anim Reprod Sci 118(2-4): 337-343, 2010. PMID: 19716655. DOI: 10.1016/j.anireprosci.2009.07.009

16 Shimbo K, Kubo S, Harada Y, Oonuki T, Yokokura T, Yoshida H, Amao M, Nakamura M, Kageyama N, Yamazaki J, Ozawa S, Hirayama K, Ando T, Miura J and Miyanô H: Automated precolunm derivatization system for analyzing physiological amino acids by liquid chromatography/mass spectrometry. Biomed Chromatogr 24(7): 683-691, 2010. PMID: 19830681. DOI: 10.1002/bmc.1346

17 Kanda Y: Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant 48(3): 452-458, 2013. PMID: 23208313. DOI: 10.1038/bmt.2012.244

18 Zhao K, Zhang J, Xu Z, Xu Y, Xu A, Chen W, Miao C, Liu S, Wang Z and Jia R: Metabolomic profiling of human spermatozooa in idiopathic asthenozoospermia patients using gas chromatography-mass spectrometry. Biomed Res Int 2018: 8327506, 2018. PMID: 29682560. DOI: 10.1155/2018/8327506

19 Zhang Z, Zhang Y, Liu C, Zhao M, Yang Y, Wu H, Zhang H, Lin H, Zheng L and Jiang H: Serum metabolomic profiling identifies characterization of non-obstructive azoospermic men. Int J Mol Sci 18(2): 238, 2017. PMID: 28125052. DOI: 10.3390/ijms18020238

20 Ansari M, Zhandi M, Kohram H, Zaghari M, Sadeghi M and Sharafi M: Improvement of post-thawed sperm quality and fertility of Arian rooster by oral administration of d-aspartic acid. Theriogenology 92: 69-74, 2017. PMID: 28237346. DOI: 10.1016/j.theriogenology.2017.01.014

21 Holden SA, Fernandez-Fuertes B, Murphy C, Whelan H, O’Gorman A, Brennan L, Butler ST, Lonergan P and Fair S: Relationship between in vitro sperm functional assessments, seminal plasma composition, and field fertility after AI with either non-sorted or sex-sorted bull semen. Theriogenology 87: 221-228, 2017. PMID: 27678515. DOI: 10.1016/j.theriogenology.2016.08.024

22 Kocabahş M, Kuttler F, Ertekin Ö, Aksu Ö and Başçınar N: Improvement of sperm motility of Oncorhynchus mykiss and Salvelinus fontinalis by L-tryptophan. Syst Biol Reprod Med 65(3): 187-193, 2019. PMID: 30682894. DOI: 10.1080/19396368.2019.1566644

23 Roshanzamin F and Safavi SM: The putative effects of D-aspartic acid on blood testosterone levels: A systematic review. Int J Reprod Biomed (IJMBR) 15(1): 1-10, 2017. PMID: 28280794.

24 Santiago-Moreno J, Bernal B, Pérez-Cerezaes S, Castaño C, Toledano-Díaz A, Esteso MC, Gutiérrez-Adán A, López-Sebastián A, Gil MG, Woelders H and Blesbois E: Seminal plasma amino acid profile in different breeds of chicken: Role of seminal plasma on sperm cryoresistance. PLoS One 14(1): e0209910, 2019. PMID: 30608977. DOI: 10.1371/journal.pone.0209910

25 Li L, Hao X, Chen H, Wang L, Chen A, Song X, Hu Z, Su Y, Lin H and Fan P: Metabolomic characterization of semen from asthenozoospermic patients using ultra-high-performance liquid chromatography-tandem quadrupole time-of-flight mass spectrometry. Biomed Chromatogr 34(9): e4897, 2020. PMID: 32428267. DOI: 10.1002/bmc.4897

26 Margía F, Corda V, Serrenti M, Usai V, Santoró ML, Hurt KJ, Passaretti M, Monni MC, Atzori L and Monni G: seminal fluid metabolomic markers of oligozoospermic infertility in humans. Metabolites 10(2): 64, 2020. PMID: 32053951. DOI: 10.3390/metabo10020064

Revised March 4, 2021
Revised March 14, 2021
Accepted March 16, 2021