Pairwise disjoint perfect matchings in \(r \)-edge-connected \(r \)-regular graphs

Yulai Ma\(^1\!*\), Davide Mattiolo\(^2\)! Eckhard Steffen\(^1\), Isaak H. Wolf\(^1\)‡

\(^1\) Department of Mathematics, Paderborn University, Warburger Str. 100, 33098 Paderborn, Germany.
\(^2\) Department of Computer Science, KU Leuven Kulak, 8500 Kortrijk, Belgium.

yulai.ma@upb.de, davide.mattiolo@kuleuven.be, es@upb.de, isaak.wolf@upb.de

Abstract

Thomassen [Problem 1 in Factorizing regular graphs, J. Combin. Theory Ser. B, 141 (2020), 343-351] asked whether every \(r \)-edge-connected \(r \)-regular graph of even order has \(r - 2 \) pairwise disjoint perfect matchings. We show that this is not the case if \(r \equiv 2 \mod 4 \). Together with a recent result of Mattiolo and Steffen [Highly edge-connected regular graphs without large factorizable subgraphs, J. Graph Theory, 99 (2022), 107-116] this solves Thomassen’s problem for all even \(r \).

It turns out that our methods are limited to the even case of Thomassen’s problem. We then prove some equivalences of statements on pairwise disjoint perfect matchings in highly edge-connected regular graphs, where the perfect matchings contain or avoid fixed sets of edges.

Based on these results we relate statements on pairwise disjoint perfect matchings of 5-edge-connected 5-regular graphs to well-known conjectures for cubic graphs, such as the Fan-Raspaud Conjecture, the Berge-Fulkerson Conjecture and the 5-Cycle Double Cover Conjecture.

Keywords: perfect matchings, regular graphs, factors, \(r \)-graphs, edge-colorings, class 2 graphs

1 Introduction and motivation

We consider finite graphs that may have parallel edges but no loops. A graph without parallel edges is called simple. Let \(r \geq 0 \) be an integer. A graph \(G \) is \(r \)-regular if every vertex has
degree \(r \), where the degree \(d_G(v) \) of a vertex \(v \) is the number of edges that are incident with \(v \). An \(r \)-graph is an \(r \)-regular graph \(G \), where every odd set \(X \subseteq V(G) \) is connected by at least \(r \) edges to its complement \(V(G) \setminus X \). For \(k \in \{1, \ldots, r\} \), a \(k \)-factor of \(G \) is a spanning \(k \)-regular subgraph of \(G \). The edge set of a 1-factor is called a perfect matching of \(G \). Moreover, for \(k \geq 2 \), a \(k \)-PDPM of an \(r \)-regular graph \(G \) is a set of \(k \) pairwise disjoint perfect matchings of \(G \).

An \(r \)-regular graph is class 1 if it has an \(r \)-PDPM. Otherwise, it is class 2. On one side, dense simple \(r \)-regular graphs are class 1 [4]. On the other side, for every \(r \geq 3 \) there are \((r - 2)\)-edge-connected \(r \)-regular graphs of even order without a perfect matching, see for example [1] p. 47 ff.

Every \(r \)-graph has a perfect matching [16] and we call an \(r \)-graph poorly matchable if any two perfect matchings intersect. Every class 2 3-graph is poorly matchable. A natural question is what is the maximum number \(t \) such that every \(r \)-graph has a \(t \)-PDPM? For \(r \)-graphs, the answer is given by Rizzi [15], who showed that for every \(r \geq 3 \), there are poorly matchable \(r \)-graphs. However, all graphs he constructed have a 4-edge-cut. It seems that the situation changes for highly edge-connected \(r \)-graphs.

Let \(m(r) \) be the maximum number \(t \) such that every \(r \)-edge-connected \(r \)-graph has \(t \) pairwise disjoint perfect matchings. This gives rise to the following problem.

Problem 1.1. Determine \(m(r) \) for all \(r \geq 2 \).

Clearly, \(m(r) \geq 1 \), \(m(2) = 2 \), and \(m(3) = 1 \). Furthermore, \(m(4) = 1 \) by the result of Rizzi [15]. Thomassen [17] conjectured that there exists a natural number \(r_0 \) such that \(m(r) \geq 2 \) for every \(r \geq r_0 \). In other words, he conjectured that for all \(r \geq r_0 \), there are no poorly matchable \(r \)-edge-connected \(r \)-graphs. Thus, \(r_0 \geq 5 \).

Class 1 graphs are of no interest for the study of \(m(r) \). They have \(r \) pairwise disjoint perfect matchings. For \(r \geq 3 \), class 2 \(r \)-graphs have at most an \((r - 2)\)-PDPM. Thus, \(m(r) \leq r - 2 \), if there is an \(r \)-edge-connected class 2 \(r \)-graph. Note that \(r \)-edge-connected class 2 \(r \)-graphs are known for all \(r \geq 3 \) and \(r \neq 5 \). The case \(r = 5 \) is briefly addressed at the end of this section and in Section 5.

Thomassen (Problem 1 of [17]) proposed the following question for the value of \(m(r) \).

Problem 1.2 (Thomassen [17]). For all \(r \geq 3 \), is it true that \(m(r) = r - 2 \)?

Problem 1.2 is solved for \(r \equiv 0 \mod 4 \) in [12]. It is shown that \(m(r) \leq r - 3 \) in this case. In Section 3 we prove the following statement.

Theorem 1.3. If \(r \equiv 2 \mod 4 \), then \(m(r) \leq r - 3 \).

Together with the results of [12, 15] we obtain the following corollary.

Corollary 1.4. If \(r > 2 \) is even, then \(m(r) \leq r - 3 \).
The graphs that prove Corollary 1.4 have a 2-vertex-cut. It is easy to see that for odd \(r \), an \(r \)-edge-connected \(r \)-graph is 3-vertex-connected. This shows that our methods are limited to the case when \(r \) is even.

Thus, the main motivation for Section 4 is the study of Problems 1.1 and 1.2 for odd \(r \). We prove that every \(r \)-edge-connected \(r \)-graph has \(k \in \{2, \ldots, r - 2\} \) pairwise disjoint perfect matchings if and only if every \(r \)-edge-connected \(r \)-graph has \(k \) pairwise disjoint perfect matchings that contain (or that avoid) a fixed edge. For odd \(r \), we prove the stronger statement that every \(r \)-edge-connected \(r \)-graph has an \((r - 2) \)-PDPM if and only if for every \(r \)-edge-connected \(r \)-graph and every \(\left\lfloor \frac{r}{2} \right\rfloor \) adjacent edges, there is an \((r - 2) \)-PDPM of \(G \) containing all \(\left\lfloor \frac{r}{2} \right\rfloor \) edges.

In Section 5 these results are used to prove tight connections between (possible) answers to Problem 1.1 for \(r = 5 \) and some well-known conjectures on cubic graphs. In particular, we prove the following statement.

Theorem 1.5. If \(m(5) \geq 2 \), then the Fan-Raspaud Conjecture holds. Moreover, if \(m(5) = 5 \), then both the 5-Cycle Double Cover Conjecture and the Berge-Fulkerson Conjecture hold.

The condition \(m(5) = 5 \) of the second statement of Theorem 1.5 seems to be surprising since it is equivalent to saying that every 5-edge-connected 5-regular graph is class 1. So far, we have not succeeded in constructing 5-edge-connected 5-regular class 2 graphs. Also, intensive literature research and computer-assisted searches in graph databases did not lead to the desired success. We conclude this introduction with the following problem, which surprisingly seems to be unsolved.

Problem 1.6. Is there any 5-edge-connected 5-regular class 2 graph?

For planar graphs, the answer to the above question is “no”. Guenin [8] proved that all planar 5-graphs are class 1. Indeed, it is conjectured by Seymour [16] that every planar \(r \)-graph is class 1. So far, this conjecture is proved to be true for all \(r \leq 8 \), see [3] also for further references.

2 Basic definitions and results

In this section we introduce some definitions and tools. For undefined notation and terminology the readers are referred to [2].

If \(u, v \) are two vertices of a graph \(G \), we denote by \(\mu_G(u, v) \) the number of parallel edges connecting \(u \) and \(v \). In case \(\mu_G(u, v) = 1 \) we also say that \(e = uv \) is a simple edge. The **underlying graph** of \(G \) is the simple graph \(H \) with \(V(H) = V(G) \) and \(\mu_H(u, v) = 1 \) if and only if \(\mu_G(u, v) \geq 1 \). For any two disjoint sets \(U, W \subseteq V(G) \), denote by \([U, W]_G \) the set of edges with exactly one endpoint in each of \(U \) and \(W \). For convenience, we simply write \([u, W]_G \) for
\([U, W]_G \) if \(U = \{u\} \), and just write \(\partial_G(U) \) if \(W = V(G) \setminus U \). Moreover, \(\partial_G(U) \) is called an edge-cut of \(G \). The index \(G \) is sometimes omitted if there is no ambiguity. The graph induced by \(U \) is denoted by \(G[U] \). Similarly, we use \(G - U \) instead of \(G[V(G) \setminus U] \), and use \(G - u \) instead of \(G - \{u\} \) if \(U = \{u\} \). A \(k \)-circuit is a circuit of length \(k \) and a cycle is a union of pairwise edge-disjoint circuits. A set of \(k \) vertices, whose removal increases the number of components of a graph, is called a \(k \)-vertex-cut. A graph \(G \) on at least \(k + 1 \) vertices is called \(k \)-connected if \(G - X \) is connected for every \(X \subseteq V(G) \) with \(|X| \leq k - 1 \). Similarly, a graph \(G \) is called \(k \)-edge-connected if for every non-empty \(X \subset V(G) \), \(|\partial_G(X)| \geq k \). Moreover, a graph \(G \) is called cyclically \(k \)-edge-connected if \(G - S \) has at most one component containing a circuit for any edge-cut \(S \subseteq E(G) \) with \(|S| \leq k - 1 \).

A multiset \(\mathcal{M} \) consists of objects with possible repetitions. We denote by \(|\mathcal{M}| \) the number of objects in \(\mathcal{M} \). For a positive integer \(k \), we define \(k \mathcal{M} \) to be the multiset consisting of \(k \) copies of each element of \(\mathcal{M} \). Let \(G \) be a graph and \(N \) a multiset of edges of the complete graph on \(V(G) \). The graph \(G + N \) is obtained by adding a copy of all edges of \(N \) to \(G \). This operation might generate parallel edges. More precisely, if \(N \) contains exactly \(t \) edges connecting the vertices \(u \) and \(v \) of \(G \), then \(\mu_{G + N}(u, v) = \mu_G(u, v) + t \).

We will frequently use the following simple fact.

Observation 2.1. Let \(G \) be a graph with a perfect matching \(M \). For any subset \(X \subseteq V(G) \), if \(|X| \) is odd, then \(|\partial_G(X) \cap M| \) is odd.

Many results in the following sections rely on the properties of the Petersen graph, which will be denoted by \(P \) throughout this paper. We need to fix a drawing of \(P \) and consider its six perfect matchings. Let \(v_1 \ldots v_5 v_1 \) and \(u_1 u_3 u_5 u_2 u_4 u_1 \) be the two disjoint 5-circuits of \(P \) such that \(u_i v_i \in E(P) \) for each \(i \in \{1, \ldots, 5\} \). Set \(M_0 = \{u_i v_i : i \in \{1, \ldots, 5\}\} \). Clearly, \(M_0 \) is a perfect matching of the Petersen graph. For each \(i \in \{1, \ldots, 5\} \), let \(M_i \) be the only other perfect matching containing \(u_i v_i \), see Figure 1.

![Figure 1: The 6 perfect matchings of the Petersen graph.](image-url)
Let $P^M = P + \sum_{j=1}^{k} N_j$ be the graph obtained from P and \mathcal{M}, where $\mathcal{M} = \{N_1, \ldots, N_k\}$ is a multiset of perfect matchings of P. For a perfect matching N of P^M, if it is a copy of M_j of P, then we say that N is of type j in P^M. Let \mathcal{M}' be a multiset of perfect matchings of P^M. We denote by \mathcal{M}'_P the multiset of perfect matchings of \mathcal{M}' interpreted as perfect matchings of P. That is, for each $j \in \{0, \ldots, 5\}$, \mathcal{M}'_P contains exactly k copies of M_j if and only if \mathcal{M}' contains exactly k perfect matchings of type j.

Lemma 2.2 ([12]). Let \mathcal{M} be a multiset of k perfect matchings of P. If $\mathcal{M}' = \{M'_1, \ldots, M'_{k+1}\}$ is a $(k+1)$-PDPM of P^M, then $\mathcal{M} \subseteq \mathcal{M}'_P$.

We also need the following lemma, whose proof is basically the same as that of Lemma 2.4 in [12] but its statement is more general. To keep the paper self-contained, the proof is presented.

Lemma 2.3. Let \mathcal{M} be a multiset of k perfect matchings of P. If for every $u, v \in V(P^M)$, $\mu_{P^M}(u, v) \leq \lfloor \frac{k+3}{2} \rfloor$, then P^M is a $(k+3)$-edge-connected $(k+3)$-regular class 2 graph.

Proof. By construction, P^M is $(k+3)$-regular. Moreover, it is class 2, see Theorem 3.1 of [7]. Let $X \subset V(P^M)$ be the subset with $|\partial_{P^M}(X)|$ minimum. This implies that $P^M[X]$ is connected. If $|X|$ is odd, then by Observation 2.1, every perfect matching of \mathcal{M} intersects $\partial_{P^M}(X)$. Hence, $|\partial_{P^M}(X)| \geq 3 + k$. If $|X|$ is even, then it suffices to consider the cases $|X| \in \{2, 4\}$. Since P has girth 5, the subgraph $P[X]$ is a path on either 2 or 4 vertices or it is isomorphic to $K_{1,3}$. Since $\mu_{P^M}(u, v) \leq \lfloor \frac{k+3}{2} \rfloor$ for every $u, v \in V(P^M)$ it follows that $\partial_{P^M}(X)$ contains at least $\lfloor \frac{k+3}{2} \rfloor$ edges for each vertex of degree 1 in $P[X]$. Consequently, $|\partial_{P^M}(X)| \geq k + 3$. \qed

Meredith [13] constructed r-edge-connected class 2 r-graphs for every $r \geq 8$. One can observe that $P + M_0 + M_1 + M_2$ and $P + M_0 + M_1 + M_2 + M_3$ are respectively a 6-edge-connected 6-regular graph and a 7-edge-connected 7-regular graph. Such graphs are class 2 by [7] (Theorem 3.1). However, we cannot easily construct a 5-edge-connected 5-regular graph in the same way. Indeed, adding two perfect matchings to P generates a 4-edge-cut. It is also well known that for each $r \in \{3, 4\}$ there are r-edge-connected class 2 r-graphs. Surprisingly, it seems that so far no 5-edge-connected 5-regular class 2 graph is known, see Problem 1.6.

3 Proof of Theorem 1.3

In this section we construct a $(4k+2)$-edge-connected $(4k+2)$-graph G_k without a 4k-PDPM for each integer $k \geq 1$. As in [12], we first construct a graph P_k by adding perfect matchings to the Petersen graph and a graph Q_k by using two copies of P_k. Then, we construct a graph S_k and 'replace’ some edges of S_k by copies of Q_k to obtain the graph G_k with the desired properties.
3.1 The graphs P_k and Q_k

For each $k \geq 1$, let

\[P_k = P + k(M_0 + M_1 + M_2) + (k - 1)M_5, \]

as shown in Figure 2.

![Figure 2: The graph P_2.](image)

Let P^1_k and P^2_k be two distinct copies of P_k. For each $w \in V(P_k)$, the vertex of P^1_k (P^2_k, respectively) that corresponds to w is denoted by w^1 (w^2, respectively). Now, we obtain the graph Q_k from P^1_k and P^2_k by removing the $2k+1$ parallel edges connecting u^1_i and v^1_i from P^i_k, for each $i \in \{1, 2\}$, and identifying u^1_1 and u^2_1 to a new vertex, denoted by u_{Q_k}. Note that the degree of u_{Q_k} in Q_k is $4k+2$. For a graph G containing Q_k as a subgraph, let $E^i_k = [v^1_i, V(G) \setminus V(Q_k)]_G$ for each $i \in \{1, 2\}$. The subgraph Q_2 and the edge-sets E^1_2 and E^2_2 are shown in Figure 3.

![Figure 3: The subgraph Q_2 and the edge-sets E^1_2 and E^2_2.](image)

The following lemma is similar to Lemma 2.5 in [12] (Q_k is different), and it can be proved analogously. In order to keep the paper self-contained, we present the proof here.

Lemma 3.1. Let G be a graph that contains Q_k as an induced subgraph. Let $\mathcal{N} = \{N_1, \ldots, N_{4k}\}$ be a set of pairwise disjoint perfect matchings of G and let $N = \bigcup_{i=1}^{4k} N_i$. If $\partial(V(Q_k)) = E^1_k \cup E^2_k$,
\[|E|^1_k \cap N| = |E|^2_k \cap N| = 2k.\]

Proof. Every perfect matching of \(G\) intersects \(\partial(V(Q_k))\) precisely once since \(|V(Q_k)|\) is odd and \(\{v^1_1, v^2_1\}\) is a 2-vertex-cut. It remains to show that \(E^1_k\) intersects precisely \(2k\) elements of \(N\). Recall that \(Q_k\) is constructed by using two copies of \(P + \sum_{M \in M} M\), where

\[M = \{M_0, M_1, M_2, \ldots, M_0, M_1, M_2, M_3, \ldots, M_5\}.\]

We argue by contradiction. Without loss of generality, suppose that \(|E^1_k \cap N| < 2k\), which is equivalent to \(|E^2_k \cap N| > 2k\). Every perfect matching of \(N\) that intersects \(E^1_k\) also intersects the set \([u_{Q_k}, V(P^2_k)]\)_G, and vice versa. Consequently, the existence of \(N\) implies that there is a set \(N^\prime\) of \(4k\) pairwise disjoint perfect matchings in \(P^1_k\) such that \(M \not\subseteq N^\prime\), a contradiction to Lemma 2.2. Hence, \(|E^1_k \cap N| = |E^2_k \cap N| = 2k.\]

3.2 The graph \(S_k\)

For every \(k \geq 1\), let \(S_k\) be the graph with vertex set \(\{x_i, y_i, z_i, w : i \in \{1, \ldots, 4k + 2\}\}\) and edge set \(A_k \cup kB_k \cup (k + 1)C_k \cup (2k + 1)(D_k \cup E_k)\) where

\[A_k = \{wz_i : i \in \{1, \ldots, 4k + 2\}\},\]
\[B_k = \{z_ix_i, z_iy_i : i \in \{1, \ldots, 4k + 2\}\},\]
\[C_k = \{x_iy_i : i \in \{1, \ldots, 4k + 2\}\},\]
\[D_k = \{y_ix_{i+1} : i \in \{1, \ldots, 4k + 2\}\},\]
\[E_k = \{z_iz_{i+2k+1} : i \in \{1, \ldots, 2k + 1\}\},\]

and the indices are added modulo \(4k + 2\), see Figure 4.

Lemma 3.2. For all \(k \geq 1\), \(S_k\) is \((4k + 2)\)-edge-connected and \((4k + 2)\)-regular.

Proof. By definition, \(S_k\) is \((4k + 2)\)-regular. Let \(X \subset V(G)\) be a non-empty set. First, we consider the case that there are two vertices \(u, v \in \{x_i, y_i : i \in \{1, \ldots, 4k + 2\}\}\) such that \(X\) contains exactly one of them. Clearly, there are \(4k + 2\) pairwise edge-disjoint \(uv\)-paths in \(S_k\), which only contain edges of \(kB_k \cup (k + 1)C_k \cup (2k + 1)D_k\). Hence, \(|\partial_{S_k}(X)| \geq 4k + 2\). Therefore, without loss of generality we may assume \(\{x_i, y_i : i \in \{1, \ldots, 4k + 2\}\} \cap X = \emptyset\). Since \(S_k\) is \((4k + 2)\)-regular and \(\mu_{S_k}(u, v) \leq 2k + 1\) for every \(u, v \in V(S_k)\), we have \(|X| \notin \{1, 2\}\). Hence, \(X\) either contains at least three vertices of \(\{z_i : i \in \{1, \ldots, 4k + 2\}\}\) or \(w\) and exactly two vertices of \(\{z_i : i \in \{1, \ldots, 4k + 2\}\}\). In the first case, \(\partial(X)\) contains at least \(6k\) edges of \(kB_k\). In the second case, \(\partial(X)\) contains \(4k\) edges of \(A_k\) and at least \(4k\) edges of \(kB_k\), which completes the proof. \(\square\)
3.3 The graph G_k

For every $k \geq 1$, let G_k be the graph obtained from S_k as follows. First, remove all edges of $(2k + 1)(D_k \cup E_k)$. Then, for every edge $e = uv \in D_k \cup E_k$, add a copy Q^e_k of Q_k, connect u with the vertex corresponding to v_1^1 by $2k + 1$ new parallel edges and connect v with the vertex corresponding to v_1^2 by $2k + 1$ new parallel edges, see Figure 4.

In order to prove that G_k has the desired properties, we need the following two observations.

Observation 3.3. Let G be a graph and let $u, v \in V(G)$ with $\mu_G(u, v) = t$. Let H be the graph obtained from G by identifying u and v to a (new) vertex w and removing all resulting loops. If G is $2t$-edge-connected and $2t$-regular, then H is $2t$-edge-connected and $2t$-regular.

Proof. Assume that G is $2t$-edge-connected and $2t$-regular. Since $\mu_G(u, v) = t$, it follows that $\partial_G(\{u, v\}) = 2t$ and hence, H is $2t$-regular. Let $X \subset V(H)$ be a non-empty set. If $w \in X$, then $|\partial_H(X)| = |\partial_G(X \setminus \{w\} \cup \{u, v\})| \geq 2t$. If $w \notin X$, then $|\partial_H(X)| = |\partial_G(X)| \geq 2t$. \hfill \square

Observation 3.4. Let G and G' be two graphs and let $u, v \in V(G)$ and $u', v' \in V(G')$ such that $\mu_G(u, v) = \mu_{G'}(u', v') = t$. Let H be the graph obtained from G and G' as follows. Remove the t parallel edges between u and v and the t parallel edges between u' and v'. Add t parallel edges between u and u' and t parallel edges between v and v'. If G and G' are $2t$-edge-connected and $2t$-regular, then H is $2t$-edge-connected and $2t$-regular.

Proof. Clearly, H is $2t$-regular. Note that $G - [u, v]_G$ and $G' - [u', v']_{G'}$ are t-edge-connected. Let $X \subset V(H)$ be a non-empty set.
Figure 5: The graph G_1, where the boxes are copies of Q_1.

Case 1. $X \cap V(G) = V(G)$ or $X \cap V(G') = V(G')$.

Say $V(G) \subseteq X$, then $\partial_H(X)$ contains either (i) $[u, u']_H$ and $[v, v']_H$ or (ii) one of $[u, u']_H$ and $[v, v']_H$ and a t_1-edge-cut of $G' - [u', v']_{G'}$ with $t_1 \geq t$ or (iii) a t_2-edge-cut of $G' - [u', v']_{G'}$ with $t_2 \geq 2t$.

Case 2. $X \cap V(G) \neq V(G)$ and $X \cap V(G') \neq V(G')$.

If $X \cap V(G) \neq \emptyset$ and $X \cap V(G') = \emptyset$, then $|\partial_H(X)| = |\partial_G(X \cap V(G))| - t + |\partial_{G'}(X \cap V(G'))| - t \geq 2t$. If $X \cap V(G') = \emptyset$, then $|\partial_H(X)| \geq |\partial_G(X)| \geq 2t$. □

Theorem 3.5. For all $k \geq 1$, G_k is a $(4k+2)$-edge-connected $(4k+2)$-graph without $4k$ pairwise disjoint perfect matchings.

Proof. By Lemma 2.3, P_k is $(4k+2)$-edge-connected and $(4k+2)$-regular. Hence, by Observations 3.3 and 3.4, the graph $Q_k + (2k+1)\{v_1^1, v_1^2\}$ is $(4k+2)$-edge-connected and $(4k+2)$-regular. Thus, G_k is $(4k+2)$-edge-connected and $(4k+2)$-regular by Observation 3.4 again. Furthermore, the order of G_k is $|V(S_k)| + 19|D_k \cup E_k|$, which is even. Suppose to the contrary that G_k has $4k$ pairwise disjoint perfect matchings. Let $N \subseteq E(G_k)$ be the union of them and let $wz_i \in N$. Lemma 3.1 implies $|N \cap \partial_{G_k}(\{x_i, y_i, z_i\})| = 6k + 1$. On the other hand, every perfect matching contains an odd number of edges of $\partial_{G_k}(\{x_i, y_i, z_i\})$ by Observation 2.1. Therefore, $|N \cap \partial_{G_k}(\{x_i, y_i, z_i\})|$ is even, a contradiction. □

Theorem 3.5 implies that $m(r) \leq r - 3$ if $r \equiv 2 \mod 4$. Thus, Theorem 1.3 and Corollary 1.4 are proved.
4 Equivalences for statements on the existence of a k-PDPM

The graph G_k from the previous section has many 2-vertex-cuts. The following observation shows that such a construction will not apply for the odd case of Problem 1.2.

Observation 4.1. For odd $r \geq 3$, every r-edge-connected r-graph is 3-connected.

Proof. Let G be an r-edge-connected r-graph. Clearly, G is of even order and 2-connected. Suppose that there are two vertices v_1, v_2 such that $G - \{v_1, v_2\}$ is not connected. Then $G - \{v_1, v_2\}$ has exactly two components A and B. Since the order of G is even, A and B are either both of even order or both of odd order. In the first case, $|\partial(V(A))| + |\partial(V(B))| \leq |\partial(v_1)| + |\partial(v_2)| = 2r$. Since A and B are of even order, $|\partial(V(A))|$ and $|\partial(V(B))|$ are both even. Hence, it follows that either $|\partial(V(A))| < r$ or $|\partial(V(B))| < r$ since r is odd. In the second case, $|\partial(V(A) \cup \{v_1\})| + |\partial(V(B) \cup \{v_1\})| = |\partial(v_1)| + |\partial(v_2)| = 2r$. Thus, $|\partial(V(A) \cup \{v_1\})| < r$ or $|\partial(V(B) \cup \{v_1\})| < r$ since A and B are of odd order. Therefore, both cases lead to a contradiction with the assumption that G is r-edge-connected.

We are going to prove some equivalent statements about the existence of a k-PDPM in r-edge-connected r-graphs.

Definition 4.2. Let G and H be two disjoint r-regular graphs with $u \in V(G)$ and $v \in V(H)$. Let $(G, u)(H, v)$ be the set of all graphs obtained by replacing the vertex u of G by (H, v), that is, deleting u from G and v from H, and then adding r edges between $N_G(u)$ and $N_H(v)$ such that the resulting graph is regular.

Lemma 4.3. If G and H are two disjoint r-edge-connected r-regular graphs with $u \in V(G)$ and $v \in V(H)$, then every graph in $(G, u)(H, v)$ is r-regular and r-edge-connected.

Proof. Suppose to the contrary that there exists a graph $G' \in (G, u)(H, v)$ with a set $X \subseteq V(G')$ such that $|\partial_{G'}(X)| \leq r - 1$. If $X \subseteq V(G - u)$ or $X \subseteq V(H - v)$, then $|\partial_G(X)| = |\partial_{G'}(X)| \leq r - 1$ or $|\partial_H(X)| = |\partial_{G'}(X)| \leq r - 1$, a contradiction. Hence, by symmetry, we assume $X \cap V(G - u) = X_1$, $X \cap V(H - v) = X_2$, $X \cap V(G - u) = X_3$ and $X \cap V(H - v) = X_4$, where $X_i = V(G') - X$ and $X_i \neq \emptyset$ for each $i \in \{1, 2, 3, 4\}$. Since $|\partial_{G'}(X)| \leq r - 1$, we have $|[X_1, X_3]_{G'}| \leq \lceil \frac{r - 1}{2} \rceil$ or $|[X_2, X_4]_{G'}| \leq \lceil \frac{r - 1}{2} \rceil$. It implies that $G - u$ or $H - v$ has an edge-cut of cardinality at most $\lceil \frac{r - 1}{2} \rceil$, which contradicts the assumption that both G and H are r-edge-connected.

Let e be an edge of a graph G and \mathcal{M} be a k-PDPM of G. We say that \mathcal{M} contains e if there is an $N \in \mathcal{M}$ such that $e \in N$. Otherwise, we say that \mathcal{M} avoids e. In what follows we show that if every r-edge-connected r-graph has a k-PDPM, then every r-edge-connected r-graph has a k-PDPM containing or avoiding a fixed set of edges.
\textbf{Theorem 4.4.} Let $r \geq 4$ and $2 \leq k \leq r - 2$. The following statements are equivalent.

(i) Every r-edge-connected r-graph has a k-PDPM.

(ii) For every r-edge-connected r-graph G and every $e \in E(G)$, there exists a k-PDPM of G containing e.

(iii) For every r-edge-connected r-graph G and every $e \in E(G)$, there exists a k-PDPM of G avoiding e.

(iv) For every r-edge-connected r-graph G, every $v \in V(G)$ and $e \in \partial_G(v)$, there are at least $s = r - \left\lceil \frac{r-k}{2} \right\rceil - 1$ edges e_1, \ldots, e_s in $\partial_G(v) \setminus \{e\}$ such that, for each $i \in \{1, \ldots, s\}$, there exists a k-PDPM of G containing e_i and e.

\textbf{Proof.} Clearly, each of (ii), (iii) and (iv) implies (i). Thus, it suffices to prove that (i) implies (ii); (i) implies (iii); and (ii) implies (iv).

(i) \Rightarrow (ii), (iii). Assume that statement (i) is true and let G be an r-edge-connected r-graph with an edge vu_1. We use the same construction for both implications. Let $C_{2r} = u_1u_2 \ldots u_{2r}u_1$ be a circuit of length $2r$. Denote $U_o = \{u_i : i \text{ is odd}\}$ and $U_e = \{u_i : i \text{ is even}\}$. We construct a new graph H from C_{2r} as follows. Replace each edge of C_{2r} by $\frac{r-1}{2}$ parallel edges, if r is odd, and replace the edge u_iu_{i+1} ($u_{i+1}u_i$ and $u_{2r}u_{1}$, respectively) of C_{2r} by $\frac{r}{2}$ ($\frac{r-2}{2}$, respectively) parallel edges for each $u_i \in U_o$ ($u_{i} \in U_e \setminus \{u_{2r}\}$, respectively), if r is even. Add two new vertices, denoted by u and u', such that u is adjacent to each vertex in U_o and u' is adjacent to each vertex in U_e, see Figure [3]. Clearly, H is r-regular and r-edge-connected.

Let $I = \{i : i \in \{1, \ldots, 2r\}, i \text{ is odd}\}$ and for every $i \in I$ let G^i be a copy of G, in which the vertices are labeled accordingly by using an upper index. For example, v^i is the vertex of G^i that corresponds to the vertex v of G. Following the procedure described in Definition 4.2, we construct another new graph H' from H by successively replacing each vertex $u_i \in U_o$ of H by (G^i, v^i) such that for each $i \in I$ the vertex v^i is adjacent to u (see Figure [7]). By Lemma 4.3, H' is r-regular and r-edge-connected. Note that H' is an r-graph since it is of even order.

In order to prove statements (ii) and (iii) we observe the following. Let M be an arbitrary perfect matching of H' and for every $i \in I$, let $m_i = |\partial_{H'}(V(G^i - v^i)) \cap M|$. The set M contains exactly one edge incident with u and one edge incident with u'. Thus, by the construction of H' we have $\sum_{i \in I} m_i = |M \cap \partial_{H'}(U_o)| = |I|$. Observation 2.1 implies $m_i \geq 1$ and hence, $m_i = 1$ for every $i \in I$. Thus, every perfect matching of H' can be translated into a perfect matching of G^i for each $i \in I$.

Now, by statement (i), H' has a k-PDPM \mathcal{N}. Furthermore there are two integers $i, j \in I$ such that \mathcal{N} contains vu^i_1 and avoids vu^j_1. By the above observation, the graph G^i has a k-PDPM containing $v^i_1u^i_1$ and G^j has a k-PDPM avoiding $v^j_1u^j_1$, which proves statements (ii) and (iii).

(ii) \Rightarrow (iv). Let G be an r-edge-connected r-graph and let $e_1 = vu_1 \in E(G)$. Suppose $|\{e \in \partial_G(v) \setminus \{e_1\} : \text{there exists a } k\text{-PDPM of } G \text{ containing } e, e_1\}| < s$. As a consequence, $\partial_G(v) \setminus \{e_1\}$ contains at least $t = r - 1 - (s - 1) = \left\lceil \frac{r-k}{2} \right\rceil + 1$ edges e_2, \ldots, e_{t+1}, such that for
We show that there is no k-PDPM of G containing e_1 and e_j. For each $j \in \{2, \ldots, t+1\}$ denote $e_j = uv_j$.

Let K_4 be the complete graph of order 4 and let $V(K_4) = \{u_1, u_2, u_3, u_4\}$. We construct a new r-regular graph H from K_4 by replacing each edge of $\{u_1u_2, u_2u_3, u_3u_4, u_4u_1\}$ by $\frac{r-1}{2}$ parallel edges if r is odd, and replacing each edge of $\{u_1u_2, u_3u_4\}$ ($\{u_2u_3, u_4u_1\}$, respectively) by $\frac{r}{2}$ ($\frac{r-2}{2}$, respectively) parallel edges if r is even, see Figure 9. Clearly, H is r-edge-connected.

For each $i \in \{1, 3\}$, let G^i be a copy of G in which the vertices and edges are labeled accordingly by using an upper index and let $V^i = \{v^i_j : j \in \{2, \ldots, t+1\}\}$. Following the procedure in Definition 4.2, we construct another new graph H' from H by successively replacing each vertex $u_i \in \{u_1, u_3\}$ of H by (G^i, v^i) such that v^i_1 is adjacent to v^i_2 and $|u_2, V^1 \cup V^3|_{H'}$ contains as many edges as possible, see Figure 9. The graph H' is r-regular and r-edge-connected by Lemma 4.3. By statement (ii), H' has a k-PDPM $\mathcal{N}' = \{N_1, \ldots, N_k\}$ containing u_2u_4. Clearly, $v^i_1v^i_2$ and u_2u_4 are in the same perfect matching of \mathcal{N} and so each $N_i \in \mathcal{N}$ contains exactly one edge of $\partial_{H'}(V(G^1-v^i))$ and one edge of $\partial_{H'}(V(G^3-v^i))$ by Observation 2.1. Thus, $N_i \cap [u_2, V^1 \cup V^3]_{H'} = \emptyset$ for each $i \in \{1, \ldots, k\}$. Now we consider the following two cases.

Case 1. r is odd.

Since $t = \left\lfloor \frac{r-k}{2} \right\rfloor + 1 \leq \frac{r-1}{2}$, the set $[u_2, V^i]_{H'}$ contains t edges for each $i \in \{1, 3\}$ by the construction of H'. Note that $N_i \cap [u_2, V^1 \cup V^3]_{H'} = \emptyset$ for each $i \in \{1, \ldots, k\}$. Hence, the k-PDPM \mathcal{N} of H' contains at most $r-2t = r-2\left\lfloor \frac{r-k}{2} \right\rfloor \leq r-2(\frac{r-1}{2} - 1) = k-1$ edges in $\partial_{H'}(u_2)$, a contradiction.

Case 2. r is even.

Case 2.1. $k = 2$.

Since $t = \left\lfloor \frac{r-k}{2} \right\rfloor + 1 = \frac{r}{2}$, the set $[u_2, V^1 \cup V^3]_{H'}$ contains $2t-1 = r-1$ edges. Hence, the k-PDPM \mathcal{N} of H' contains at most $r - (2t-1) = 1$ edges in $\partial_{H'}(u_2)$, a contradiction.

Case 2.2. $k > 2$.

Since $t = \left\lfloor \frac{r-k}{2} \right\rfloor + 1 \leq \frac{r-4}{2} + 1 = \frac{r}{2} - 1$, we have that $[u_2, V^i]_{H'}$ contains t edges for each $i \in \{1, 3\}$ by the construction of H'. Hence, the k-PDPM \mathcal{N} of H' contains at most $r - 2t = r - 2\left\lfloor \frac{r-k}{2} \right\rfloor + 1 \leq r - 2\left(\frac{r-k}{2} - 1\right) = k-1$ edges in $\partial_{H'}(u_2)$, a contradiction again.

For the special case $k = r - 2$, we can obtain a stronger result as follows.

Theorem 4.5. Let $k \geq 1$. The following statements are equivalent.

(i) Every $(2k+1)$-edge-connected $(2k+1)$-graph has a $(2k-1)$-PDPM.

(ii) For every $(2k+1)$-edge-connected $(2k+1)$-graph G and every k edges sharing a common vertex, there exists a $(2k-1)$-PDPM of G containing this k edges.

Proof. It suffices to prove that statement (i) implies statement (ii). Let G be a $(2k+1)$-edge-connected $(2k+1)$-graph and let $v \in V(G)$ be a vertex with $\partial_G(v) = \{e_i : i \in \{1, \ldots, 2k+1\}\}$. We show that there is a $(2k-1)$-PDPM of G that contains the edges e_1, \ldots, e_k. 12
Figure 6: Two examples for the graph H obtained from C_{2r} as in the proof of Theorem 4.4.

Figure 7: Two examples for the graph H' obtained from G and H as in the proof of Theorem 4.4.
Figure 8: Two examples for the graph H obtained from K_4 as in the proof of Theorem 4.4.

Figure 9: Two examples for the graph H' obtained from G and H as in the proof of Theorem 4.4.
Denote $e_i = vv_i$ for each $i \in \{1, \ldots, 2k+1\}$. Let G^1 be a copy of G in which the vertices and edges are labeled accordingly by using an upper index. As described in Definition 4.2, construct a new graph H from G by replacing v with (G^1, v^1) such that the set of new edges is given by $\{v_{2k+1}v^1_{2k+1}\} \cup E_1 \cup E_2$, where $E_1 = \{v_i v^1_i : i \in \{1, \ldots, k\}\}$ and $E_2 = \{v^1_i v_{i+k} : i \in \{1, \ldots, k\}\}$. By Lemma 4.3, H is $(2k+1)$-edge-connected and $(2k+1)$-regular. Thus, by statement (i) and Theorem 4.4 there is a $(2k+1)$-PDPM N of H avoiding $v_{2k+1}v^1_{2k+1}$. By Observation 2.1 every perfect matching of N contains exactly one edge of $\partial_H(V(G) \setminus \{v\})$ and hence, N contains either every edge of E_1 or every edge of E_2. In the first case, G has a $(2k-1)$-PDPM that contains e_1, \ldots, e_k; in the second case, G^1 has a $(2k-1)$-PDPM that contains e^1_1, \ldots, e^1_k. This proves statement (ii). \qed

5 5-graphs

We explore some consequences of the non-existence of 5-edge-connected class 2 5-graphs. The edge-connectivity may play a crucial role in this case as, by a result of Rizzi [15], there are poorly matchable 4-edge-connected 5-graphs.

Let G be a cubic graph and let $\mathcal{F} = \{F_1, \ldots, F_t\}$ be a multiset of subsets F_i of $E(G)$. For an edge e of G, we denote by $\nu_\mathcal{F}(e)$ the number of elements of \mathcal{F} containing e. A Fan-Raspaud triple, or FR-triple, is a multiset \mathcal{T} of three perfect matchings of G such that $\nu_\mathcal{T}(e) \leq 2$ for all $e \in E(G)$. A 5-cycle double cover, or 5-CDC, is a multiset \mathcal{C} of five cycles in G such that, for every edge $e \in E(G)$, $\nu_\mathcal{C}(e) = 2$. A Berge-Fulkerson cover, or BF-cover, is a multiset \mathcal{T} of six perfect matchings of G such that $\nu_\mathcal{T}(e) = 2$ for all $e \in E(G)$. We recall the following three well-known conjectures and a result from [9].

Conjecture 5.1 (Fan-Raspaud Conjecture [5]). *Every bridgeless cubic graph has an FR-triple.*

Conjecture 5.2 (5-cycle double cover Conjecture, see [18]). *Every bridgeless cubic graph has a 5-cycle double cover.*

Conjecture 5.3 (Berge-Fulkerson Conjecture [6]). *Every bridgeless cubic graph has a BF-cover.*

Theorem 5.4 (Kaiser and Škrekovski [9]). *Every bridgeless cubic graph has a 2-factor that intersects every edge-cut of cardinality 3 and 4. Moreover, any two adjacent edges can be extended to such a 2-factor.*

As shown in [14], the following conjecture is equivalent to the Fan-Raspaud Conjecture.

Conjecture 5.5 (Mkrtchyan and Vardanyan [14]). *Let G be a bridgeless cubic graph. For every $e \in E(G)$ and $i \in \{0, 1, 2\}$, there is an FR-triple \mathcal{T} with $\nu_\mathcal{T}(e) = i$.***

In the same paper, they also pointed out the following observation but without proof. To keep the paper self-contained, we present a short proof here.
Observation 5.6 (Mkrtchyan and Vardanyan [14]). A minimum possible counterexample G to Conjecture 5.5 with respect to $|V(G)|$ is 3-edge-connected.

Proof. Suppose that G is a minimum counterexample to Conjecture 5.5 with respect to $|V(G)|$. Then, there is $e \in E(G)$ and $i \in \{0, 1, 2\}$ such that no FR-triple T satisfies $\nu_T(e) = i$. Suppose that there is a set $X \subseteq V(G)$ with $u, v \in X$ and $\partial_G(X) = \{ux, vy\}$. Let $H_1 = G[X] + \{uv\}$ and $H_2 = G - X + \{xy\}$. Notice that both H_1 and H_2 are bridgeless cubic graphs. If $e \in \{ux, vy\}$, since $|V(G)|$ is minimum, there is an FR-triple T_1 of H_1 and an FR-triple T_2 of H_2 such that $\nu_{T_1}(uv) = \nu_{T_2}(xy) = i$. Then T_1 and T_2 can be used to construct an FR-triple T of G with $\nu_T(e) = i$, a contradiction. Hence, without loss of generality we may assume $e \in E(H_1)$. Since $|V(G)|$ is minimum, there is an FR-triple T_1 of H_1 and an FR-triple T_2 of H_2 such that $\nu_{T_1}(e) = i$ and $\nu_{T_2}(xy) = \nu_{T_1}(uv)$. Again, T_1 and T_2 can be used to construct an FR-triple T of G with $\nu_T(e) = i$, a contradiction. \qed

5.1 Relation to the Fan-Raspaud Conjecture

In this subsection we show that the Fan-Raspaud Conjecture is true if there is no poorly matchable 5-edge-connected 5-graph.

Theorem 5.7. If $m(5) \geq 2$, then Conjecture 5.5 is true.

Proof. By contradiction, suppose that $m(5) \geq 2$ and Conjecture 5.5 is false. Let G be a minimum counterexample to Conjecture 5.5 with respect to $|V(G)|$. Then, there is an edge $e = uv$ of G and an $i \in \{0, 1, 2\}$ such that no FR-triple T satisfies $\nu_T(e) = i$. By Observation 5.6 G is 3-edge-connected.

First, we consider the case $i = 0$. By Theorem 5.4 there is a 2-factor F of G such that $e \in E(F)$ and F intersects every edge-cut of cardinality 3 and 4. Let $H = G + E(F)$ and let e' be the new edge parallel to e. Since G is 3-edge-connected, the graph H is 5-edge-connected by the choice of F. Since $m(5) \geq 2$, it follows with Theorem 4.4 (iv) that for each edge $e_0 \in \partial_H(v) \setminus \{e, e'\}$, there are at least three edges $e_1, e_2, e_3 \in \partial_H(v) \setminus \{e_0\}$ such that for each $j \in \{1, 2, 3\}$ there exists a 2-PDPM containing e_j and e_0. This implies that H has two disjoint perfect matchings N_1 and N_2 such that e and e' are in none of them. In the graph G, let N'_1 and N'_2 be the perfect matchings corresponding to N_1 and N_2, respectively. Let $N_3 = E(G) \setminus E(F)$. Since N_1 and N_2 are disjoint, every edge of $N'_1 \cap N'_2$ belongs to $E(F)$, i.e. $T = \{N'_1, N'_2, N_3\}$ is an FR-triple of G. Furthermore $\nu_T(e) = 0$, a contradiction.

Next suppose $i \in \{1, 2\}$. By Theorem 5.4 we can choose a 2-factor F of G such that $e \notin E(F)$ and F intersects every edge-cut of cardinality 3 and 4. Again, the graph H defined by $H = G + E(F)$ is 5-edge-connected. Since $m(5) \geq 2$, by statements (ii) and (iii) of Theorem 4.4 H has two disjoint perfect matchings N_1 and N_2 such that e is in exactly $i - 1$ of them.
Therefore, $T = \{N_1', N_2', N_3\}$ is an FR-triple of G with $\nu_T(v) = i$ where N_1' and N_2' are the perfect matchings of G that correspond to N_1 and N_2, respectively, and $N_3 = E(G) \setminus E(F)$. This leads to a contradiction again.

If $m(5) \geq 2$, then in particular every 5-edge-connected 5-graph with an underlying cubic graph has two disjoint perfect matchings. By adjusting Theorem 4.4, one can show the following strengthening of Theorem 5.7 (for a sketch of the proof, see Appendix A).

Theorem 5.8. If every 5-edge-connected 5-graph whose underlying graph is cubic has two disjoint perfect matchings, then Conjecture 5.5 is true.

5.2 Relation to the 5-cycle double cover Conjecture

Now we focus on the consequences of the non-existence of 5-edge-connected class 2 5-graphs. Let $k \geq 3$ be an integer. A k-wheel W_k is a k-circuit C_k plus one additional vertex w adjacent to all vertices of C_k.

Theorem 5.9. The following statements are equivalent.

(i) Every 5-edge-connected 5-graph is class 1.

(ii) Every 5-edge-connected 5-graph with an underlying cubic graph is class 1.

Proof. The first statement implies trivially the second one. We prove now the other implication. Let G be a 5-edge-connected 5-graph. For every vertex v of G, let W_v^5 be a copy of the graph $W_5 + E(C_5)$. Moreover, let w^v and C_v^5 be the vertex and, respectively, the circuit of W_v^5 corresponding to w and C_5 in W_5. Following the procedure described in Definition 4.2, successively replace every vertex v of G with (W_v^5, w^v) to obtain a new graph H, which is 5-regular and 5-edge-connected. Moreover, its underlying graph is cubic and so H is class 1 by statement (ii). Hence, H has a 5-PDPM, denoted by $N = \{N_1, \ldots, N_5\}$. Since $|V(C_v^5)|$ is odd, by Observation 2.1 we have that, for all $i \in \{1, \ldots, 5\}$, $|N_i \cap \partial_H(V(C_v^5))| = 1$. Hence, the restriction N_i' of N_i to the graph G is a perfect matching of G. Moreover, $\{N_1', \ldots, N_5'\}$ is a 5-PDPM of G. Therefore, G is class 1.

It is well known that a counterexample of minimum order to Conjecture 5.2 is a cyclically 4-edge-connected cubic class 2 graph.

Theorem 5.10. If $m(5) = 5$, then Conjecture 5.2 is true.

Proof. Let K be the graph obtained from a 4-wheel by doubling the edges of the outer circuit and of one spoke. Note that K has one vertex of degree 6, which we denote by w, and four vertices of degree 5.

Let G be a minimum counterexample to Conjecture 5.2 with respect to $|V(G)|$. Then, G is cubic and cyclically 4-edge-connected. Thus, the graph $2G = G + E(G)$ is 6-edge-connected.
For every vertex \(v \) of \(G \), let \(K^v \) be a copy of \(K \) and let \(w^v \) be the vertex of \(K^v \) corresponding to \(w \) in \(K \). Analogously to Definition 4.2, let \(H \) be the graph obtained by replacing each vertex \(v \) of \(2G \) by \((K^v, w^v) \), in such a way that parallel edges of \(2G \) are incident with the same vertex of \(K^v \). Then, \(H \) is a 5-edge-connected 5-graph and therefore, it has a 5-PDPM \(\mathcal{N} = \{N_1, \ldots, N_5\} \). For every \(v \in V(2G) \), there exist exactly three perfect matchings of \(\mathcal{N} \), say \(N_1', N_2', N_3' \), such that \(|N_i' \cap \partial_H(K^v - w^v)| = 2 \) for each \(i \in \{1, 2, 3\} \). Hence, for every \(j \in \{1, \ldots, 5\} \), the restriction of each \(N_j \in \mathcal{N} \) on \(G \) induces an even subgraph \(C'_j \) of \(G \). Moreover, we have \(\nu_C(e) = 2 \) for each \(e \in E(G) \), where \(C = \{C'_1, \ldots, C'_5\} \). So \(C \) is a 5-CDC of \(G \).

\[\square \]

5.3 Relation to the Berge-Fulkerson Conjecture

Observation 5.11. If \(m(5) = 5 \), then Conjecture 5.3 is true.

Proof. Assume \(m(5) = 5 \) and suppose that \(G \) is a counterexample to the Berge-Fulkerson Conjecture such that the order of \(G \) is minimum. Let \(F \) be a 2-factor of \(G \). As shown in \([10]\), \(G \) is cyclically 5-edge-connected and hence, \(G + E(F) \) is 5-edge-connected. Therefore, \(G + E(F) \) has five pairwise disjoint perfect matchings. The corresponding five perfect matchings of \(G \) and \(E(G) \setminus E(F) \) are a BF-cover of \(G \), a contradiction.

\[\square \]

5.4 Properties of a minimum possible 5-edge-connected class 2 5-graph

We are going to prove some structural properties of a smallest possible 5-edge-connected class 2 5-graph. Let \(G \) be a graph and \(v \in V(G) \). A lifting of \(G \) at \(v \) is the following operation. Remove two edges \(vx, vy \) where \(x \neq y \) and add a new edge \(xy \). In this case we say \(vx \) and \(vy \) are lifted to \(xy \).

Theorem 5.12 (Mader [11]). Let \(G \) be a finite graph and let \(v \in V(G) \) such that \(d(v) \geq 4 \), \(|N(v)| \geq 2 \) and \(G - v \) is connected. There is a lifting of \(G \) at \(v \) such that, for every pair of distinct vertices \(u, w \in V(G) \setminus \{v\} \), the number of edge-disjoint uw-paths in the resulting graph equals the number of edge-disjoint uw-paths in \(G \).

Statement (ii) of the following theorem is already mentioned in \([3]\) for planar \(r \)-graphs without proof.

Theorem 5.13. Let \(G \) be a 5-edge-connected class 2 5-graph such that the order of \(G \) is as small as possible. The following statements hold.

(i) Every 5-edge-cut of \(G \) is trivial, i.e. if \(X \subset V(G) \) and \(|\partial(X)| = 5 \), then \(|X| = 1 \) or \(|V(G) \setminus X| = 1 \).

(ii) Every 3-vertex-cut is trivial, i.e. if \(X \subset V(G), |X| = 3 \) and \(G - X \) is not connected, then one component of \(G - X \) is a single vertex.
Proof. (i). The proof follows easily and is left to the reader.

(ii). By contradiction, suppose that \(X = \{v_1, v_2, v_3\} \subset V(G) \) is a 3-vertex-cut of \(G \) such that none of the components of \(G - X \) is a single vertex. By Observation 4.1 and the edge-connectivity of \(G \), the graph \(G - X \) has at most three components. First, we consider the case that \(G - X \) has exactly three components. Denote the vertex sets of these three components by \(A, B \) and \(C \). We have that \(|\partial_G(S)| = 5 \), for each \(S \in \{A, B, C\} \), and so \(|A| = |B| = |C| = 1 \) by statement (i), a contradiction.

Next, we assume that \(G - X \) has exactly two components whose vertex sets are denoted by \(A \) and \(B \). Since \(G \) has even order, we may assume \(|A| \) is odd and \(|B| \) is even. For each \(i \in \{1, 2, 3\} \), set \(n_i = |\partial_G(B) \cap \partial_G(v_i)| \) and let

\[
a = \frac{1}{2} (n_1 + n_2 - n_3), \quad b = \frac{1}{2} (-n_1 + n_2 + n_3), \quad c = \frac{1}{2} (n_1 - n_2 + n_3).
\]

We have that \(n_1 + n_2 + n_3 = |\partial_G(B)| \) is even, since \(|B| \) is even. Thus, all of \(a, b, c \) are integers. Furthermore, \(5 \leq |\partial_G(B \cup \{v_3\})| = n_1 + n_2 + (5 - n_3) \) and hence, \(a \geq 0 \). Analogously, we obtain \(b, c \geq 0 \). Therefore, we can define a new graph \(H_1 \) as follows (see Figure 10).

\[
H_1 = (G - B) + a \{v_1 v_2\} + b \{v_2 v_3\} + c \{v_3 v_1\}.
\]

By the definitions of \(a, b, c \), the graph \(H_1 \) is 5-regular. Moreover \(H_1 \) is also 5-edge-connected. Indeed, let \(Y \subseteq V(H_1) \). We can assume, without loss of generality, that \(|Y \cap \{v_1, v_2, v_3\}| \leq 1 \) (otherwise, we argue by taking its complement). By the choices of \(a, b \) and \(c \), we have \(|\partial_{H_1}(Y)| = |\partial_G(Y)| \geq 5 \) and so \(H_1 \) is 5-edge-connected.

Let \(H' \) be the graph obtained from \(G \) by identifying all vertices in \(A \) to a new vertex \(u \) and removing all resulting loops, see Figure 10. Then, \(H' \) is 5-edge-connected and every vertex is of degree 5 except \(u \). Since \(|A| \) is odd, we have that \(|\partial_G(A)| \) is odd. Hence, the vertex \(u \) has an odd degree of at least 5 in \(H' \). Now, by Theorem 5.12 a new 5-edge-connected 5-graph \(H_2 \) can be obtained from \(H' \) by \(\frac{1}{2}(d_H(u) - 5) \) liftings at \(u \), see Figure 10. We will refer to the edges of \(H_2 \) obtained by a lifting at \(u \) as lifting edges and denote the set of all lifting edges by \(\mathcal{L} \).

By the minimality of \(|V(G)| \), \(H_1 \) has a 5-PDPM \(\{N_1^1, \ldots, N_3^3\} \) and \(H_2 \) has a 5-PDPM \(\{N_1^1, \ldots, N_3^3\} \). Since \(u \) has at most three neighbors in \(H_2 \), every perfect matching of \(H_2 \) contains at most one lifting edge. For each \(i \in \{1, \ldots, 5\} \), let \(N_i \) be the subset of edges of \(H' \) defined as follows.

\[
N_i = \begin{cases} \quad N_i^2 & \text{if } N_i^2 \cap \mathcal{L} = \emptyset; \\ \quad (N_i^2 \setminus \{e\}) \cup \{e_1, e_2\} & \text{if } N_i^2 \cap \mathcal{L} = \{e\} \text{ and } e_1, e_2 \text{ are the two edges lifted to } e. \end{cases}
\]

Every perfect matching of \(H_1 \) contains either one or three edges of \(\partial_{H_1}(A) \) by Observation 2.1. Let \(s_1 \) be the number of integers \(i \in \{1, \ldots, 5\} \) with \(|N_i^1 \cap \partial_{H_1}(A)| = 3 \), let \(s_2 = |\mathcal{L}| \) and let \(s' \) be the number of integers \(j \in \{1, \ldots, 5\} \) with \(|N_j \cap \partial_{H'}(u)| = 3 \). We have that \(s_2 = s' \). Moreover,
we have $\partial_G(A) = 3s_1 + (5 - s_1) = 5 + 2s_2$ and so $s_1 = s_2 = s'$. Note that $\partial_{H_1}(A) = \partial_G(A)$ and recall that H' is obtained from G by identifying all vertices in A to u. As a consequence, the sets of edges N_1, \ldots, N_5 of H' and the perfect matchings N^1_1, \ldots, N^1_5 of H_1 can be combined to obtain a 5-PDPM of G, a contradiction.

Figure 10: An example for the graphs H_1, H' and H_2 obtained from G in Theorem 4.4.

6 Acknowledgments

Major parts of this work were carried out during a stay of Davide Mattiolo at Paderborn University, sponsored by the Heinrich Hertz-Stiftung.

References

[1] J. Akiyama and M. Kano. Factors and Factorizations of Graphs: Proof Techniques in Factor Theory. Springer Publishing Company, Incorporated, 1st edition, 2011.
[2] J. A. Bondy and U. S. R. Murty. Graph theory. Springer, New York, 2008.

[3] M. Chudnovsky, K. Edwards, and P. D. Seymour. Edge-colouring eight-regular planar graphs. J. Comb. Theory, Ser. B, 115:303–338, 2015.

[4] B. Csaba, D. Kühn, A. Lo, D. Osthus, and A. Treglown. Proof of the 1-factorization and Hamilton decomposition conjectures, volume 244. American Mathematical Society, 2016.

[5] G. Fan and A. Raspaud. Fulkerson’s conjecture and circuit covers. J. Comb. Theory, Ser. B, 61(1):133–138, 1994.

[6] D. R. Fulkerson. Blocking and anti-blocking pairs of polyhedra. Mathematical programming, 1(1):168–194, 1971.

[7] S. Grünewald and E. Steffen. Chromatic-index-critical graphs of even order. J. Graph Theory, 30:27–36, 1999.

[8] B. Guenin. Packing T-joins and edge colouring in planar graphs. Faculty of Mathematics, University of Waterloo, 2003.

[9] T. Kaiser and R. Škrekovski. Cycles intersecting edge-cuts of prescribed sizes. SIAM J. on Discrete Math., 22(3):861–874, 2008.

[10] E. Máčajová and G. Mazzuoccolo. Reduction of the Berge-Fulkerson conjecture to cyclically 5-edge-connected snarks. Proc. Am. Math. Soc., 148(11):4643–4652, 2020.

[11] W. Mader. A reduction method for edge-connectivity in graphs. Ann. Discrete Math., 3:145–164, 1978.

[12] D. Mattiolo and E. Steffen. Highly edge-connected regular graphs without large factorizable subgraphs. J. Graph Theory, 99:107–116, 2022.

[13] G. H. J. Meredith. Regular n-valent n-connected non-hamiltonian non n-edge-colourable graphs. J. Comb. Theory, Ser. B, 14:55–60, 1973.

[14] V. V. Mkrtchyan and G. N. Vardanyan. On two consequences of Berge-Fulkerson conjecture. AKCE Int. J. Graphs Comb., 17(1):584–586, 2020.

[15] R. Rizzi. Indecomposable r-graphs and some other counterexamples. J. Graph Theory, 32(1):1–15, 1999.

[16] P. D. Seymour. On multi-colourings of cubic graphs, and conjectures of Fulkerson and Tutte. Proc. London Math. Soc., 3(3):423–460, 1979.

[17] C. Thomassen. Factorizing regular graphs. J. Comb. Theory, Ser. B, 141:343–351, 2020.
[18] C.-Q. Zhang. *Integer flows and cycle covers of graphs*. Monographs and textbooks in pure and applied mathematics ; 205. Marcel Dekker, New York, 1997.
A A sketch of the proof of Theorem 5.8

In order to prove Theorem 5.8 we adjust Theorem 4.4 as follows.

Theorem A.1. The following statements are equivalent.

(i) Every 5-edge-connected 5-graph with an underlying cubic graph has a 2-PDPM.

(ii) For every 5-edge-connected 5-graph G with an underlying cubic graph and every simple edge $e \in E(G)$, there is a 2-PDPM containing e.

(iii) For every 5-edge-connected 5-graph G with an underlying cubic graph and every simple edge $e \in E(G)$, there is a 2-PDPM avoiding e.

(iv) For every 5-edge-connected 5-graph G with an underlying cubic graph and every simple edge $e \in E(G)$ and every two parallel edges e_1, e_2 adjacent with e, there is a 2-PDPM containing e and avoiding e_1, e_2.

Proof. Clearly, each of (ii), (iii) and (iv) implies (i). Thus, it suffices to prove that (i) implies (ii); (ii) implies (iii); and (iii) implies (iv).

(i) \Rightarrow (ii), (iii). Let G be a 5-edge-connected 5-graph whose underlying graph is cubic and let $e = vv_1$ be a simple edge of G. Let H and H' be the graphs constructed in the part *(i)* \Rightarrow (ii), (iii)* of the proof of Theorem 4.4 by using C_2r and r copies of G in the case $r = 5$ (see Figures 6(a) and 7(a)). Clearly, the graph H' can be constructed from H such that every vertex of $V(H') \setminus \{u, w\}$ has degree 3 in the underlying graph of H'. Let $W = W_5 + E(C_5)$. Now, according to Definition 4.2, replace u by (W^1, w^1) and replace u' by (W^2, w^2), where W^l is a copy of W and w^l is the vertex of W^l corresponding to w, for $l \in \{1, 2\}$. The resulting graph, denoted by H'', is a 5-edge-connected 5-graph by Lemma 4.3. Since its underlying graph is cubic, H'' has two disjoint perfect matchings N_1, N_2 by statement (i). Let $N = N_1 \cup N_2$ and recall that $I = \{1, 3, 5, 7, 9\}$. For every $i \in I$ and $j \in \{1, 2\}$, Observation 2.1 implies $m_{ij} \in \{1, 3\}$, where $m_{ij} = |\partial_{H''}(V(G^i) \setminus \{v^i\}) \cap N_j|$. Furthermore, we have $|\partial_{H''}(V(W^l) \setminus \{w^l\}) \cap N_j| \in \{1, 3\}$ for every $l, j \in \{1, 2\}$ also by Observation 2.1. Thus, $|\partial_{H''}(V(W^l) \setminus \{w^l\}) \cap N| \in \{2, 4\}$ for every $l \in \{1, 2\}$. As a consequence, there is an integer $i \in I$ such that N does not contain the unique edge in $[v^i_1, V(W^1) \setminus \{w^1\}]_{H''}$. We have $m_{i1} = m_{i2} = 1$. Therefore, G^i has two disjoint perfect matchings such that $v^i_1v^i_2$ is in none of them, which proves statement (iii). For statement (ii), we consider the following cases.

Case 1. $|N \cap \partial_{H''}(V(W^1) \setminus \{w^1\})| = |N \cap \partial_{H''}(V(W^2) \setminus \{w^2\})| = 2$.

In this case, H' has a 2-PDPM, and hence, statement (ii) follows by the same argumentation as in the proof of Theorem 4.4, part *(i)* \Rightarrow (ii), (iii)*.

Case 2. Without loss of generality $|N_1 \cap \partial_{H''}(V(W^1) \setminus \{w^1\})| = 3$.

In this case, there is an integer $i \in I$, say $i = 1$, such that N_1 contains the unique edge in $[v^1_1, V(W^1) \setminus \{w^1\}]_{H''}$ and the unique edge in $[v^1_1v^2_1, V(W^1) \setminus \{w^1\}]_{H''}$. The set N_1 contains exactly one edge incident with w_2 and thus, $m_{11} = 1$ or $m_{31} = 1$ by the construction of H''.

23
Therefore, \(G^1 \) has two disjoint perfect matchings such that \(v^1v_1^1 \) is in one of them or \(G^3 \) has two disjoint perfect matchings such that \(v^3v_3^1 \) is in one of them, which proves statement (ii).

Case 3. Without loss of generality \(|N_1 \cap \partial_{H''}(V(W^2) \setminus \{w^2\})| = 3 \).

In this case, there is an integer \(i \in I \), say \(i = 3 \), such that \(N_1 \) contains the unique edge in \([u_{i-1}, V(W^2) \setminus \{w^2\}]_{H''}\) and the unique edge in \([u_{i+1}, V(W^2) \setminus \{w^2\}]_{H''}\). As a consequence, \(N_1 \) contains the unique edge in \([v^3_1, V(W^1) \setminus \{w^1\}]_{H''}\) and \(m_{31} = 1 \). Therefore, \(G^3 \) has two disjoint perfect matchings such that \(v^3v_3^1 \) is in one of them, which proves statement (ii).

\((ii) \Rightarrow (iv)\). Let \(G \) be a 5-edge-connected 5-graph whose underlying graph is cubic, let \(v \in V(G) \) and let \(N_G(v) = \{v_1, v_2, v_3\} \). Furthermore, let \(\mu_G(v, v_1) = 1, \mu_G(v, v_2) = \mu_G(v, v_3) = 2 \), let \(e \) be the edge connecting \(v \) and \(v_1 \) and let \(e_1, e_2 \) be the two parallel edges connecting \(v \) and \(v_2 \). We show that there are two disjoint perfect matchings such that their union contains \(e \) but neither \(e_1 \) nor \(e_2 \).

Let \(G^1 \) and \(G^3 \) be two copies of \(G \) in which the vertices and edges are labeled accordingly by using an upper index. Let \(H \) be the graph constructed in the part "(ii) \Rightarrow (iv)" of the proof of Theorem 4.4 by using \(K_4 \) in the case \(r = 5 \), see Figure 8 (a). According to Definition 4.2, construct a new graph \(H' \) from \(H \) by replacing \(u_1 \) with \((G^1, v^1) \) and replacing \(u_3 \) with \((G^3, v^3) \) such that \(\mu_{H'}(v^1_1, v^3_1) = 1 \) and \(\mu_{H'}(v^1_2, u_2) = \mu_{H'}(v^3_2, u_2) = \mu_{H'}(v^3_3, u_4) = 2 \). The graph \(H' \) is 5-edge-connected and 5-regular by Lemma 4.3 and its underlying graph is cubic. Therefore, by statement (ii) there are two disjoint perfect matchings \(N_1, N_2 \) of \(H' \) such that \(u_2u_4 \in N_1 \). By Observation 2.1, we have \(v^1_1v^3_1 \in N_1 \) and \(|\partial_{H'}(V(G') \setminus \{v^1\}) \cap N_j| = 1 \) for every \(i \in \{1, 3\} \) and every \(j \in \{1, 2\} \). Furthermore, \(N_1 \cup N_2 \) either does not contain the two edges connecting \(v^1_2 \) and \(u_2 \) or does not contain the two edges connecting \(v^3_2 \) and \(u_2 \). In the first case, \(G^1 \) has two disjoint perfect matchings such that their union contains \(e^1 \) but neither \(e^1_1 \) nor \(e^1_2 \); in the second case \(G^3 \) has two disjoint perfect matchings such that their union contains \(e^3 \) but neither \(e^3_1 \) nor \(e^3_2 \). This proves statement (iv).

\(\square \)

Theorem 5.8 can be proved like Theorem 5.7 by using Theorem A.1 instead of Theorem 4.4.