Ligand Functionalization of Defect-Engineered Ni-MOF-74

Jaewoong Lim,‡ Seonghwan Lee,‡ Amitosh Sharma, Junmo Seong, Seung Bin Baek* and Myoung Soo Lah*

Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea

E-mail: sbbaek@unist.ac.kr; mslah@unist.ac.kr
Experimental section

General procedure

The reagents were purchased from commercial sources and used without further purification. Powder X-ray diffraction (PXRD) patterns were recorded using a Bruker D2 Phaser automated diffractometer at room temperature with a step size of \(2 \theta = 0.02^\circ\). Solution-state \(^1\)H nuclear magnetic resonance (NMR) spectra of acid digested samples in DMSO-d\(_6\), DCl (35\%), and D\(_2\)SO\(_4\) were recorded using a Bruker 400 MHz FT-NMR spectrometer at the UNIST Central Research Facilities. The \(^1\)H chemical shifts were referenced to the residual proton resonance of the DMSO-d\(_6\) solvent in ppm. Thermogravimetric analysis (TGA) was performed using an STD Q-600 series instrument (TA Instruments Inc.) at a heating rate of 10 °C min\(^{-1}\) under an N\(_2\) flow.

Gas adsorption measurements

Samples in amount of 20–40 mg were pretreated at 150 °C under vacuum for 24 h prior to gas adsorption measurements. N\(_2\) adsorption/desorption isotherms were measured at 77 K using a BELSORP-Max (BEL Japan, Inc.) low-pressure adsorption measuring system employing a standard volumetric technique up to saturation pressure. The adsorption data in the pressure range of \(< 0.1 \frac{P}{P_0}\) were fitted to the Brunauer–Emmett–Teller (BET) equation to determine the BET surface area using the BELMaster software (BEL Japan). CO\(_2\) adsorption/desorption isotherms were recorded using the BELSORP-Max adsorption measuring system equipped with a temperature control unit. For all defect-engineered Ni-MOF-74 derivatives, the CO\(_2\) adsorption isotherms were measured at 273 K up to 1 bar. For the defect-engineered derivatives selected for isosteric heat of adsorption (\(Q_{\text{st}}\)) calculations, CO\(_2\) adsorption isotherms were recorded at 273 K, 283 K, and 293 K, respectively. All adsorption data were manipulated with BEL-Master software provided by BEL Japan Inc.

Calculation of the Isosteric heat of adsorption

Virial equation (1) was employed to calculate the isosteric heat of adsorption (\(Q_{\text{st}}\)) for CO\(_2\) in the defect-engineered Ni-MOF-74.\(^{81}\)
In equation (1), p is the pressure of the gas phase at equilibrium (kPa), N is the adsorbed amount per mass of adsorbent (mmol g$^{-1}$), T is the absolute temperature (K), a_i and b_j are virial coefficients, and m and n represent the number of coefficients required to adequately fit the isotherms. The coverage-dependent isosteric heat of adsorption Q_{st} was evaluated using equation (2).

$$Q_{st} = - R \sum_{i=0}^{m} a_i N^i$$ \hspace{1cm} (2)$$

In equation (2), R is the universal gas constant ($8.314 \text{ J K}^{-1} \text{ mol}^{-1}$). The virial coefficients were derived by fitting the experimental adsorption isotherms ($\ln p$ versus N) measured at 273 K, 283 K, and 293 K. The fitted parameter values are presented in Electronic Supplementary Information (ESI).
Figure S1. 1H NMR spectra of acid digested 5-fSA$_x$(a/b). (a) 5-fSA$_{0.08}$(9/1), (b) 5-fSA$_{0.21}$(7/3), and (c) 5-fSA$_{0.39}$(5/5). In 5-fSA$_x$(a/b), x is the estimated molar fraction of the fragmented ligand, H$_2$-5-fSA, in the framework from the 1H NMR spectrum, and a/b is the molar ratio of H$_2$DOBDC and H$_2$-5-fSA used to prepare the defect-engineered Ni-MOF-74.
Figure S2. 1H NMR spectra of acid digested 3-hSA$_x$. (a) 3-hSA$_{0.06}$(9/1), (b) 3-hSA$_{0.21}$(7/3), and (c) 3-hSA$_{0.41}$(5/5).
Figure S3. 1H NMR spectra of acid digested 2-hNA$_x$. (a) 2-hNA$_{0.06}(9/1)$, (b) 2-hNA$_{0.17}(7/3)$, and (c) 2-hNA$_{0.29}(5/5)$.
Figure S4. 1H NMR spectra of acid digested 5-hBImCA$_x$. (a) 5-hBImCA$_{0.04}(9/1)$, (b) 5-hBImCA$_{0.12}(7/3)$, and (c) 5-hBImCA$_{0.20}(5/5)$.
Figure S5. Thermogravimetric analysis of defect-engineered Ni-MOF-74. (a) 5-fSA₅, (b) 3-hSA₅, (c) 2-hNA₅, and (d) 5-hBImCA₅.
Figure S6. Comparison of PXRD patterns for defect-engineered Ni-MOF-74 before and after exposure to boiling water for 3 days. (a) 5-fSA_{x}, (b) 3-hSA_{x}, (c) 2-hNA_{x}, and (d) 5-hBImCA_{x}.
Figure S7. Nonlocal density functional theory (NLDFT) pore-size distribution of (a) 5-fSA_x,
(b) 3-hSA_x, (c) 2-hNA_x, and (d) 5-hBImCA_x.
Figure S8. Nonlocal density functional theory (NLDFT) pore-size distribution and cumulative pore volume of 3-hSA$_{0.41}$. The black line and squares represent the cumulative pore volume, and the red line and squares represent the pore-size distribution.
Figure S9. The overall correlation of CO₂ uptakes with (a) surface areas and (b) pore volumes of defect-engineered Ni-MOF-74 derivatives.
Figure S10. (a) CO$_2$ sorption isotherms of 5-fSA$_{0.08}$ recorded at 273 K, 283 K, and 293 K. (b) virial analysis of isotherms.
Figure S11. (a) CO₂ sorption isotherms of 5-hSA₀.₀₆ recorded at 273 K, 283 K, and 293 K. (b) Virial analysis of isotherms.
Figure S12. (a) CO$_2$ sorption isotherms of 2-hNA$_{0.06}$ recorded at 273 K, 283 K, and 293 K. (b) virial analysis of isotherms.
Figure S13. (a) CO$_2$ sorption isotherms of 5-hBImCA$_{0.12}$ recorded at 273 K, 283 K, and 293 K. (b) virial analysis of isotherms.
Figure S14. (a) CO$_2$ sorption isotherms of defect-free Ni-MOF-74 recorded at 273 K, 283 K, and 293 K. (b) Virial analysis of isotherms.
Table S1. Doping ratios of fragmented ligands in the defect-engineered Ni-MOF-74.

Sample	Doping Linker	Feeding ratio/%	Doped ratio/%
5-fSA_{0.08}	H₂-5-fSA	10	8
5-fSA_{0.21}	H₂-5-fSA	30	21
5-fSA_{0.39}	H₂-5-fSA	50	39
3-hSA_{0.06}	H₂-3-hSA	10	6
3-hSA_{0.21}	H₂-3-hSA	30	21
3-hSA_{0.41}	H₂-3-hSA	50	41
2-hNA_{0.06}	H₂-2-hNA	10	6
2-hNA_{0.17}	H₂-2-hNA	30	17
2-hNA_{0.29}	H₂-2-hNA	50	29
5-hBImCA_{0.04}	H₂-5-hBImCA	10	4
5-hBImCA_{0.12}	H₂-5-hBImCA	30	12
5-hBImCA_{0.20}	H₂-5-hBImCA	50	20
Table S2. BET surface areas and pore volumes of defect-engineered Ni-MOF-74.

Sample	BET/m² g⁻¹	Pore volume/cm³ g⁻¹
5-fSA₀.₀₈	1325	0.586
5-fSA₀.₂₁	1209	0.670
5-fSA₀.₃₉	894	0.517
3-hSA₀.₀₆	1323	0.608
3-hSA₀.₂₁	1042	0.607
3-hSA₀.₄₁	640	0.456
2-hNA₀.₀₆	1325	0.575
2-hNA₀.₁₇	1156	0.550
2-hNA₀.₂₉	934	0.570
5-hBImCA₀.₀₄	1196	0.539
5-hBImCA₀.₁₂	1189	0.514
5-hBImCA₀.₂₀	1038	0.486
Supplementary Reference

S1. A. Nuhnen and C. Janiak, *Dalton Trans.*, 2020, 49, 10295–10307.