Context-dependent control of behavior in *Drosophila*
Tess B. Oram and Gwyneth M. Card

Abstract
The representation of contextual information peripheral to a salient stimulus is central to an animal's ability to correctly interpret and flexibly respond to that stimulus. While the computations and circuits underlying the context-dependent modulation of stimulus-response pairings have typically been studied in vertebrates, the genetic tractability, numeric simplifications, and well-characterized connectivity patterns of the *Drosophila melanogaster* brain have facilitated circuit-level insights into contextual processing. Recent studies in flies reveal the neuronal mechanisms that create flexible context-dependent behavioral responses to sensory events in conditions of predation threat, feeding regulation, and social interaction.

Addresses
Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, 20147, Virginia, USA

Corresponding author: Card, Gwyneth M (cardg@janelia.hhmi.org) (Oram T.B.)

Current Opinion in Neurobiology 2022, 73:102523
This review comes from a themed issue on Neurobiology of Behavior 2022
Edited by Tiago Branco and Mala Murthy
For complete overview of the section, please refer the article collection - Neurobiology of Behavior 2022
Available online 11 March 2022
https://doi.org/10.1016/j.conb.2022.02.003
0959-4388/© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Introduction
We take in the world through our senses and often have strong reactions to important sensory cues. However, any given sensory cue considered in isolation is likely to be ambiguous with respect to how it should be interpreted, and an animal would be at risk were it to always respond identically to the same cue. Instead, the encoding of the context around a stimulus is what allows animals to appropriately and flexibly adapt their behavior to suitably respond to events. Take, for example, a driver’s response to a green stoplight turning yellow. A driver far from the intersection and in no hurry will brake. A driver close to the intersection or running late will accelerate to get through. In this case, the same sensory cue (green to yellow light change) leads to a different behavioral response (braking or accelerating) depending on contextual information, which in this case includes both additional information about the external environment (distance from the intersection) and the driver’s emotional state (relaxed or anxious). This type of context-dependent response, contingent on both the individual’s sensorimotor environment and emotional state, is critical for properly interpreting sensory stimuli and choosing appropriate reactions. Despite its importance, the neuronal circuits in which context is represented in the brain, and through which the encoding of context allows an animal to flexibly link stimuli and behavioral responses, remain poorly understood.

One challenge in studying the neural mechanisms underlying contextual processing is that it can be difficult to demarcate what constitutes a “context.” Typically, context-dependent processing has been studied in vertebrates (frequently humans), and the word “context” itself has strong cognitive connotations [1]. Additionally, context has largely been defined within well-controlled experiments, in which there is a clear primary sensory cue (e.g., electric shock) separated from other information available to the animal (e.g., location or social milieu). This suggests that a given context might be a distinct percept, represented by activity patterns in specific sets of neurons in the brain. However, in natural settings the stimulus and context are generally less obviously separable. The bugle of a bull elk is both a highly attractive stimulus to a cow elk and an important component of the cues that signify the “rut season” context to her [2]. On a more cognitive level, to a human the elk bugle may signify the “autumn” context.

For the purposes of this review, we broadly and functionally define context as any combination of internal and external extra-stimulus information that modifies a stimulus-behavior pairing. In natural circumstances, contexts are rich, commonly involving multiple aspects of these internal and external components. However, in laboratory experiments aiming to find neural correlates, “context” is often simplified to a single factor, such as location in a maze or locomotor status. Thus, following our broad definition, the internal state of the animal—or any subcomponent thereof, including locomotor or behavioral state, emotional state, hunger state, etc., as well as the animal’s history as stored in memory—may...
serve as a context, and hereafter internal state alone is sometimes used as a stand-in for context.

What then might we expect to see when we look for context and its integration with sensorimotor control at the neural circuit level? Mammalian studies find explicit neural representations of context in the hippocampus and medial prefrontal cortex circuits, areas of the brain associated with memory and learning, and cognition and sociability, respectively [1,3]. This contextual representation is separate from perceptual representations of individual contextual elements. In other words, the context of “school” is represented separately in the brain from the perception of desks, books, and a white board. On the other hand, generalized neuromodulatory release, such as the release of adrenaline when we find ourselves in a stressful emergency situation, is also often interpreted as a proxy for context [4]. Even for simplified contexts, however, it has been challenging to study the neural mechanisms underpinning how contextual information is used to guide behavioral responses, as in mammals this process can involve billions of neurons ranging from the sensory periphery to higher cortical areas [5,6].

Drosophila melanogaster, commonly known as the fruit fly, has recently emerged as a suitable model to study the cellular and circuit mechanisms of cognitive processes because of its tractable brain size (~100,000 neurons) [7], genetically accessible identifiable neurons [8,9], extensively characterized connectome [7,10], and advanced genetic [11], physiological [12–14], and behavior quantification [15–17] tools. In this review, we examine work from the last five years on contextually modified behaviors in Drosophila and their circuit representations. We primarily focus on circuit motifs that mediate the encoding of context and provide flexibility to behavioral output. However, in flies, neuromodulatory signals also play a central role in the representation of internal state [18,19] and context-based reinforcement cues [20]. Drosophila studies have progressed rapidly to reveal how commonly flies build, interpret, and use context to modify their innate behaviors. We review these here for three contexts in which a picture is emerging of the neural motifs underpinning contextual processing: predation threat, feeding regulation, and social interaction.

Predation threat
The correct identification of, and appropriate response to, predation threats are critical nervous system functions. Whether a particular sensory stimulus constitutes a threat, and, if so, what the best behavioral response to the threat should be, depends strongly on context. The most salient cue generated by a predatory attack is a looming stimulus, the rapid and non-linear expansion of a dark shadow on the retina. However, even though all attacks generate a looming cue as the predator approaches, not all looming cues signify a predator. Similar visual expansion occurs when a non-threatening animal approaches, such as a conspecific that might be a desirable mate, or when the fly itself approaches an object by its own self-motion (Figure 1a) [21]. How can the fly disambiguate these circumstances to enact an appropriate behavior: flee, court, or land on the object producing the looming cues?

Recent studies of the mechanisms underlying fly escape behavior choices have led to a comprehensive model of how flies integrate a set of contextual cues to respond flexibly and appropriately to looming. The simplest strategy used by the fly nervous system is to detect two different features of the looming stimulus, rather than having a single looming detector. This allows one looming feature to effectively provide “context” in which to interpret the other. In the fly, the retinal size and expansion velocity of an approaching predator, or predator-mimicking visual looming stimulus, are separately encoded in the feature-detecting visual projection neurons LPLC2 [22,23] and LC4 [24], respectively. These two neuronal types are the primary visual input to the Giant Fiber (GF) command-like descending neuron, whose response to a looming stimulus is the weighted linear sum of the LPLC2 and LC4 input [23]. If the GF membrane potential reaches threshold and the GF fires a single action potential, the fly performs a “short-mode” takeoff that rapidly gets it into the air but leads to aerial tumbling. If the looming cue is not expanding quickly enough, because it is a slow attack or not a predator, then the GF does not fire an action potential and other descending pathways mediate a slower but steadier “long-mode” takeoff, or alternate behavior such as “freezing” [25] or walking backwards [26]. The fly’s walking speed [25] and social interactions with conspecifics [27] are also contextual information that flies process simultaneously with looming to adapt their motor responses appropriately.

In addition to this contextual integration in the feed-forward processing of visual looming stimuli, a further motif in the fly nervous system that provides contextual information is the feedback of motor signals onto descending motor pathways. In general, motor feedback onto visual neurons projecting from the optic lobe to the central brain is well documented and thought to quantitatively cancel out visual flow from self-motion [13,28] or enhance directional selectivity of optic flow sensing neurons [29,30]. Descending neurons (DNs) connecting the brain to the insect ventral nerve cord (VNC) are also known to be multimodal with a strong motor component [10,31,32]. In Drosophila, it has recently been shown that both flight motor signals and release of the neuromodulator octopamine, which correlates with flight [33], impinge on two bilateral pairs of DNs whose activity drives a landing response [21]. These flight signals gate the transmission of visual signals in these
neurons [21]. The result is that only the behavior (landing or takeoff) appropriate to the current context (flying or perching) is coupled to visual drive from looming cues (Figure 1b). This example raises the hypothesis that DNs may occupy a key regulatory position in sensorimotor control due to their relatively small numbers (\(\sim 1000 \) DNs [10] connect the \(\sim 100,000 \) brain [7] and \(\sim 30,000 \) VNC [34] neurons) and central position within the sensorimotor watershed. In particular, they may be a locus where information about different locomotor contexts is integrated to effectively turn motor pathways for specific behaviors “on” or “off” depending on their suitability. Future research should focus on testing this hypothesis broadly across the DN population and on examining how interaction between descending pathways may further contribute to context-specific gating of behaviors.

Feeding regulation

Another critical function of the nervous system is to ensure that animals obtain an appropriate amount of food to survive and reproduce. Choosing whether, when, and what to eat is a delicate balance of risks and rewards, such as the availability and nutritional value of food and the animal’s hunger state. Many sensory stimuli that signal the presence of food may also indicate the presence of predators or parasites. For example, carbon dioxide (CO₂) is a major byproduct of yeast fermentation that signals the location of this preferred food source to flies but also attracts wasps that parasitize Drosophila. Flies have long been documented to avoid CO₂ at both high and low concentrations [35], raising the paradox of how they overcome this aversion to consume yeast. Recently, van Breugel et al. have resolved this puzzle with the discovery that CO₂ becomes attractive to flies when they are flying or walking in a foraging context (Figure 2a) [36]. The IR25a ionotropic receptor is required for CO₂ attraction behavior, while aversion is mediated by separate channels in chemosensory neurons expressing the Gr21a, Gr63a and IR64a receptors [37,38]. Thus, the valence of the CO₂ cue is processed in context-gated labeled lines (Figure 2b). The exact
mechanism by which the CO₂ “attraction” or “aversion” pathway gains dominance is unknown, but may be dependent on the time-course of the behavior [39]. Similarly the valence of visual objects can be switched by contextual olfactory cues. For example, flying *Drosophila* usually avoid small visual objects [40] but may approach them in the presence of an attractive food odor. It is believed that this attraction is mediated through an odor-induced release of octopamine by Tdc2 neurons. This modulates activity in the visual motion pathways, including directionally-selective T4/T5 and visual projection neurons in the lobula plate of the fly optic lobe, to increase the saliency of small objects [41]. Contextual information about the valence of environmental odor and the fly’s hunger state is also fed into the fly’s reward system, the dopaminergic neurons in the fly’s mushroom body. These neurons are actively tuned by odor and satiety state information on a moment-to-moment basis, possibly to reward the fly for foraging in the presence of food odor cues, but only when hungry [20].

Another way flies regulate their feeding behavior is to weigh the nutritional value of food against their hunger state and competing survival drives. This requires them to evaluate food-generated sensory cues in the context of their internal state. Neural activity in ingestion neurons (IN1) increases when hungry flies ingest
from the visual system to descending neurons that guide activated and permissively gate sensorimotor pathways [50]. Hunger is also a critical contextual signal integrated with food quality during a male fly’s choice of whether to mate or feed [44]. Taken together, these studies indicate that the fly incorporates contextual information about whether it is foraging or hungry to interpret whether odor and food cues are attractive or aversive. Integration of this contextual information can occur at the sensory periphery, as with the separate olfactory channels for CO2 sensing [36] or in higher order neuropil of the central brain [45].

Social interaction

The neural circuits most often studied and associated with the context-dependent control of behavior in Drosophila are those that govern male courtship, mating, and aggression. During social interactions male flies must use context to accurately identify potential mates (receptive female conspecifics) and rebuff competition (conspecific males). Further, once an appropriate female has been identified, males must effectively respond to the contextual cues provided by the female in order to successfully copulate. Finally, males must weigh their own internal mating drive against the availability of mating partners, so that they only court receptive females when their own reproductive capacity is high.

Central to the contextual processing of social cues is the encoding of the arousal state of the fly. In Drosophila males, approximately 20 neurons (the P1 neurons) that encode the courtship arousal state have been identified [46,47]. One way to consider this set of P1 neurons in males is as a “switch”. To determine when to turn the switch — and hence the courtship state — “on,” the P1 neurons integrate visual [48,49] and chemosensory [50–52] input about the presence of a suitable mate. When these stimuli reach a threshold, the P1 neurons are activated and permissively gate sensorimotor pathways from the visual system to descending neurons that guide courtship behaviors [53], including courtship song [54,55] and female pursuit [48]. In support of this switch-like role, artificial activation of P1 neurons is sufficient to induce males to court highly abstracted mate replicas, such as moving pieces of rubber band that are of similar size to a female fly [55]. Male aggression is also mediated by activity in P1 neurons [56,57]. The persistence of both the courtship and aggression states is dependent on the activity of pCd neurons, which are downstream of P1 neurons [58]. Thus, P1 neurons mechanistically act as an integrator “switch” that persistently promotes a suite of related social behaviors in response to social context.

Recent studies have focused on how context modulates the activity of the P1 switch, so that the presence of an appropriate mate leads males to perform the most advantageous behaviors. The activity of P1 neurons is observed to be inhibited after mating by a decrease in dopamine-mediated mating drive [59,60] or by the identification an unsuitable mate [61,62]. Thus, P1 activity dynamically encodes a male’s arousal state, facilitating the contextual processing of complex social interactions.

Once a male fly has found a potential mate and entered the courtship state, it must appropriately and flexibly interact with a female fly in order to successfully copulate. Recent work has revealed some of the local contextual cues that flies use in this interaction. For example, the type of courtship song that a male fly uses to attract a female is dependent on the distance between the flies and the male’s velocity, with males more often opting for the louder “pulse” song mode when farther from the female and moving rapidly. The choice of song mode is actively modulated by P1 drive to the pIP10 descending neurons that produce song [63]. Additionally, the level of sexual arousal in male flies gates their pursuit behavior. P1-mediated arousal dynamically modulates pursuit by controlling the signal gain of LC10a visual neurons [64], increasing the saliency of potential mates. Additionally, arousal state is integrated with visual information from LC9 visual neurons in DNp09 descending neurons to permit a locomotor walking program, ipsilateral turning, used in pursuit [65].

Reciprocal context-dependent circuits for control of social behaviors are seen in Drosophila females. In a switch-like circuit similar to that in male flies, the mating status, receptivity and arousal level of female flies is persistently encoded in the PC1 neurons [66,67]. The mating state of female flies determines their receptivity to male flies and thus their behavioral response to male courtship cues. For example, descending neurons that control vaginal plate opening, and thereby copulation, integrate mating status encoded in PC1 neurons with excitatory input from neurons specifically tuned to the male courtship song (Figure 3) [68]. Further, mating status-encoding activity in PC1 neurons gates egg laying behavior, such that females only lay eggs after mating [69]. A neural circuit that mediates female rejection of males does not involve PC1, but rather is a parallel circuit in which female mating status (encoded by sensory neurons in the uterus) and input from auditory neurons that encode male song is integrated in descending neurons that control ovipositor extrusion [70]. Thus, mated females extrude their ovipositor when courted by males,
deterring mating. Additionally, neural pathways originating in the abdomen suppress female receptivity after copulation [71] and increase the female defensive response [72]. Finally, also in common with the mechanisms seen in males, a subset of PC1 neurons drives female aggressive behaviors [73,74].

In summary, the male P1 and female PC1 switches provide a mechanism by which elements of complex and dynamic contexts, including both interoceptive information (e.g., mated state, motivational drive, and locomotor activity) and external cues (e.g., suitability, receptiveness and behavior of potential mates), are integrated in order to gate sensorimotor courtship and mating behaviors.

Conclusions and future directions
Currently, exceptional opportunities exist to investigate cognitive processing in *Drosophila*. With the full connectome of male and female fly brains and ventral nerve cords becoming available in the near future and increasing knowledge of synaptic valence and connectivity [75], there is optimism that the neural circuits underpinning cognitive processes will be revealed. In the case of context-dependent control of behavior, the neuronal mechanisms that mediate contextual processing from stimulus transduction to motor output may be fully understood. As knowledge of these mechanisms grows, the boundary between “stimulus” and “context” will become increasingly blurred, as context will cease to be a gestalt composed of obscure interoceptive and exteroceptive sensory cues (e.g., “foraging” or “social isolation”), but instead will consist of a number of discrete, well defined sensory stimuli encoded in known neural pathways whose mechanistic purpose within stimulus-response circuits is delineated.

Further, in ethological conditions, flies actively engage with a changing environment. Thus in the real world a “context” is not a static external stimulus, as often used in the lab, but a set of continuously changing variables. As emerging behavioral, genetic, and physiological
techniques make laboratory-based paradigms more sophisticated, it is becoming possible to quantify neural activity during richer contextual situations. Ultimately, the distinction between stimulus and context might be unwarranted when we are able to model “closed-loop” processing of continuously changing stimuli. *Drosophila* hold a promise for resolving abstract concepts such as “context” at a cellular level, and future work should continue to make use of the connectome to advance our understanding of how known contextual processing motifs interact with sensorimotor pathways to enable complex and dynamic behavioral choices in ethological conditions.

Conflict of interest statement
Nothing declared.

Acknowledgements
We thank Prof. Ehud Ahissar (Weizmann Institute of Science) and Dr. Jonathan Cannon (McMaster University) for discussions and comments on the manuscript. Funding was provided by the Howard Hughes Medical Institute. This article is subject to HHMI’s Open Access to Publications policy. HHMI lab heads have previously granted a nonexclusive CC BY 4.0 license to the public and a sublicensable license to HHMI in their research articles. Pursuant to those licenses, the author-accepted manuscript of this article can be made freely available under a CC BY 4.0 license immediately upon publication.

References

Papers of particular interest, published within the period of review, have been highlighted as:

- of special interest
- of outstanding interest

1. Maren S, Phan KL, Liberzon I: The contextual brain: implications for fear conditioning, extinction and psychopathology. *Nat Rev Neurosci* 2013, 14:417–428.

2. Feighn J, Williamson K, Clarke J: Northern American elk bugle vocalizations: male and female bugle call structure and context. *J Mammal* 2006, 87:1072–1077.

3. Yizhar O, Levy DR: The social dilemma: prefrontal control of mammalian sociability. *Curr Opin Neurobiol* 2021, 68:67–75.

4. Angela JY, Dayan P: Uncertainty, neuromodulation, and attention. *Neuron* 2005, 46:681–692.

5. Kim LH, Sharma S, Sharples SA, Mayr KA, Kwok CH, Whelan PJ: Integration of descending command systems for the generation of context-specific locomotor behaviors. *Front Neurosci* 2017, 11:581.

6. Stermson SM: Exploring internal state-coding across the rodent brain. *Curr Opin Neurobiol* 2020, 65:20–26.

7. Scheffer UK, Xu CS, Januszewski M, Lu Z, Takemura S-y, Hayworth KJ, Huang GB, Shinomya K, Matlin-Shepard J, Berg S: A connectome and analysis of the adult Drosophila central brain. *Elife* 2020, 9:e57443.

8. Dione H, Hibbard KL, Cavallaro A, Kao J-C, Rubin GM: Genetic reagents for making split-GAL4 lines in Drosophila. *Genetics* 2018, 209:31–35.

9. Davis FP, Nern A, Picard S, Reiser MB, Rubin GM, Eddy SR, Henry GL: A genetic, genomic, and computational resource for exploring neural circuit function. *Elife* 2020, 9:e59001.

10. Namiki S, Dickinson MH, Wong AM, Kortt W, Card GM: The functional organization of descending sensory-motor pathways in Drosophila. *Elife* 2018, 7:e34572.

11. Simpson JH, Looger LL: Functional imaging and optogenetics in Drosophila. *Genetics* 2018, 208:1291–1309.

12. Wilson RI, Tumer GC, Laurent G: Transformation of olfactory representations in the Drosophila antennal lobe. *Science* 2004, 303:366–370.

13. Mainen G, Straw AD, Dickinson MH: Active flight increases the gain of visual motion processing in Drosophila. *Nat Neurosci* 2010, 13:393–399.

14. Aimon S, Katsuki T, Jia T, Grosenick L, Broxton M, Deisseroth K, Sejnowski TJ, Greenspan RJ: Fast near-whole–brain imaging in adult Drosophila during responses to stimuli and behavior. *PLoS Biol* 2019, 17:e2000732.

15. Williamson WR, Peek MY, Breads P, Coop B, Card GM: Tools for rapid high-resolution behavioral phenotyping of automatically isolated Drosophila. *Cell Rep* 2018, 25:1636–1649. e5.

16. Pereira TD, Shaevitz JW, Murthy M: Quantifying behavior to understand the brain. *Nat Neurosci* 2020, 23:1537–1549.

17. Reiser MB, Loesche F: An inexpensive, high-precision, modular spherical treadmill setup optimized for Drosophila experiments. *Front Behav Neurosci* 2021, 15:138.

18. Kim SM, Su C-Y, Wang JW: Neuromodulation of innate behaviors in Drosophila. *Annu Rev Neurosci* 2017, 40:327–348.

19. Hückesfeld S, Schlegel P, Miroshnichenko A, Schoofs A, Zinke I, Haubrich AN, Schneider-Mizell CM, Truman JW, Fetter RD, Cardona A: Unveiling the sensory and interneuronal pathways of the neuroendocrine connectome in Drosophila. *Elife* 2021, 10:e65745.

20. Zolin A, Cohn R, Pang R, Siliciano AF, Fairhall AL, Ruta V: Context-dependent representations of movement in Drosophila dopaminergic reinforcement pathways. *Nat Neurosci* 2021, 1–13.

21. Ache JM, Namiki S, Lee A, Branson K, Card GM: State-dependent decoupling of sensory and motor circuits underlies behavioral flexibility in Drosophila. *Nat Neurosci* 2019, 22:1132–1139.

22. Klajoepke NC, Nern A, Peek MY, Rogers EM, Breads P, Rubin GM, Reiser MB, Card GM: Ultra-selective looming detection from radial motion opposition. *Nature* 2017, 551:237–241.

23. Ache JM, Polsky J, Alghailani S, Parekh R, Breads P, Peek MY, Bock DD, von Reyn CR, Card GM: Neural basis for looming size and velocity encoding in the Drosophila giant fiber escape pathway. *Curr Biol* 2019, 29:1073–1081. e4.

24. von Reyn CR, Nern A, Williamson WR, Breads P, Wu M, Namiki S, Card GM: Feature integration drives probabilistic behavior in the Drosophila escape response. *Neuron* 2017, 94:1190–1204. e6.

25. Zacarias R, Namiki S, Card GM, Vasconcelos ML, Moita MA: Speed dependent descending control of freezing behavior in Drosophila melanogaster. *Nat Commun* 2018, 9:1–11.

26. Sen R, Wu M, Branson K, Robie A, Rubin GM, Dickson BJ: Moonwalker descending neurons mediate visually evoked retreat in Drosophila. *Curr Biol* 2017, 27:766–771.

27. Ferreia CH, Moita MA: Behavioral and neuronal underpinnings of safety in numbers in fruit flies. *Nat Commun* 2020, 11:1–10.
28. Kim AJ, Fitzgerald JK, Maimon G: Cellular evidence forerrorCode copy in Drosophila visuomotor processing. *Nat Neurosci* 2015, 18:1247–1255.

29. Fujitaka T, Cruz TL, Bohnslav JP, Chiappe ME: A faithful internal representation of walking movements in the Drosophila visual system. *Nat Neurosci* 2017, 20:72–81.

30. Cruz TL, Pérez SM, Chiappe ME: Fast tuning of posture control by visual feedback underlies gaze stabilization in walking Drosophila. *Curr Biol* 2021.

31. Böhm H, Schildberger K: Brain neurons involved in the control of walking in the cricket Gryllus bimaculatus. *J Exp Biol* 1990, 166:113–130.

32. Zorovíc M, Hedwig B: Descending brain neurons in the cricket Gryllus bimaculatus (de Geer): auditory responses and impact on walking. *J Comp Physiol* 2013, 199:25–34.

33. Suver MP, Mamiya A, Dickinson MH: Octopamine neurons mediate flight-induced modulation of visual processing in Drosophila. *Curr Biol* 2012, 22:2294–2302.

34. Allen AM, Neville MC, Birtles S, Croset V, Treiber CD, Waddell S, Goodwin SF: A single-cell transcriptomic atlas of the adult Drosophila ventral nerve cord. *Elite* 2020, 9.

35. Lin H-H, Chu L-A, Fu T-F, Dickson BJ, Chiang A-S: Acid sensing by the Drosophila olfactory system. *Nature* 2010, 468:691–695.

36. van Breugel F, Huda A, Dickinson MH: Distinct activity-gated pathways mediate attraction and aversion to CO2 in Drosophila. *Nature* 2018, 564:420–424.

37. Jones WD, Cayirlioglu P, Kadow IG, Vosshall LB: Two chemosensory receptors together mediate carbon dioxide detection in Drosophila. *Nature* 2007, 445:86–90.

38. Al M, Min S, Grosjean Y, Leblanc C, Bell R, Benton R, Suh GS: Acid sensing by the Drosophila olfactory system. *Nature* 2010, 468:691–695.

39. MacWilliam D, Kowalewski J, Kumar A, Pontrello C, Ray A: Signaling mode of the broad-spectrum conserved CO2 receptor is one of the important determinants of odor valence in Drosophila. *Neuron* 2018, 97:1153–1163. e4.

40. Maimon G, Straw AD, Dickinson MH: A simple vision-based algorithm for decision making in flying Drosophila. *Curr Biol* 2008, 18:464–470.

41. Cheng KY, Colbath RA, Frye MA: Offactory and neuro-modulatory signals reverse visual object avoidance in Drosophila. *Curr Biol* 2019, 29:2058–2065. e2.

42. The authors show that the valence of a small visual stimulus is reversed by an attractive odor. Specifically, flies in odorless air will avoid a small, contrasting visual object, but approach the object when there is an attractive food odor, a proxy for the foraging context. This valence reversal is mediated by octapamine release.

43. Yapici N, Cohn R, Schusterreiter C, Ruta V, Vosshall LB: A taste circuit that regulates ingestion by integrating food and hunger signals. *Cell* 2016, 165:715–729.

44. May CE, Vaziri A, Lin YQ, Grushko O, Khabiri M, Wang QP, Holme KJ, Fletcher SD, Fredollo PL, Neely GG, Dus M: High dietary sugar reshapes sweet taste to promote feeding behavior in Drosophila melanogaster. *Cell Rep* 2019, 27: 1675–1685 e7.

45. Cheriyamkunnel SJ, Rose S, Jacob PF, Blackburn LA, Glasgow S, Moore J, Winstanley M, Moyo S, Waddell S, Rezvani C: A neuronal mechanism controlling the choice between feeding and sexual behaviors in Drosophila. *Curr Biol* 2021, 31:4231–4245. e4.

46. Competition between feeding and courting circuits, which integrate a fly’s hunger state, food quality and mating history, determines whether flies eat or mate. The authors propose “antagonistic co-regulation” as a mechanism for context-dependent behavioral choice.

47. Sten TH, Li R, Ottopalik A, Ruta V: Sexual arousal gates visual processing during Drosophila courtship. *Nature* 2021, 58:2400–2412. e6.
modulated, amplified visual signals are believed to increase the salience of “virtual female” stimuli and lead to courtship pursuit behavior.

65. Bidaye SS, Laturney M, Chang AK, Liu Y, Bockemuhl T, Buschges A, Scott K: Two brain pathways initiate distinct forward walking programs in Drosophila. Neuron 2020, 108: 469–485. e8.
The authors report that fast, straight-forward walking, and object-directed walking with turning are initiated by two different neuronal types, P9 and BPN, respectively. P9 neurons receive input from courtship neurons and visual projections neurons, and are necessary for courtship pursuit.

66. Zhou C, Pan Y, Robinet CC, Meissner GW, Baker BS: Central brain neurons expressing doublesex regulate female receptivity in Drosophila. Neuron 2014, 83:149–163.

67. Deutsch D, Pacheco D, Encarnacion-Rivera L, Pereira T, Fathy R, Clemens J, Girardin C, Caihoun A, Ireland E, Burke A: The neural basis for a persistent internal state in Drosophila females. Elife 2020, 9:e59502.

68. Wang K, Wang F, Forknall N, Yang T, Patrick C, Parekh R, Dickson BJ: Neural circuit mechanisms of sexual receptivity in Drosophila females. Nature 2021, 589:577–581.
This study elucidates a neural circuit in which the mating status of female flies is integrated with auditory responses to male courtship song in order to guide female mating choice in a context-dependent manner. Virgin female flies are sexually receptive to courting males, while mated females are less receptive.

69. Wang F, Wang K, Forknall N, Patrick C, Yang T, Parekh R, Dickson BJ: Neural circuitry linking mating and egg laying in Drosophila females. Nature 2020, 579:101–105.
The authors characterize a neural circuit that coordinates mating with egg laying, so that female flies only lay eggs after mating – the descending neuron that controls oviposition is disinhibited after copulation.

70. Wang F, Wang K, Forknall N, Parekh R, Dickson BJ: Circuit and behavioral mechanisms of sexual rejection by drosophila females. Curr Biol 2020, 30:3749–3760. e3.
A circuit by which female flies reject courting males is revealed. A descending neuron integrates the mating status of the female with auditory responses to male courtship song, resulting in mated females being more likely to sexually reject courting males, i.e. extrude their ovipositors in response to male courtship song.

71. Shao L, Chung P, Wong A, Siwanowicz I, Kent CF, Long X, Heberlein U: A neural circuit encoding the experience of copulation in female Drosophila. Neuron 2019, 102: 1025–1036. e6.

72. Liu C, Zhang B, Zhang L, Yang T, Zhang Z, Gao Z, Zhang W: A neural circuit encoding mating states tunes defensive behavior in Drosophila. Nat Commun 2020, 11:1–14.

73. Palavicino-Maggio CB, Chan Y-B, McKellar C, Kravitz EA: A small number of cholinergic neurons mediate hyper-aggression in female Drosophila. Proc Natl Acad Sci Unit States Am 2019, 116:17029–17038.

74. Schretter CE, Aso Y, Robie AA, Dreher M, Dolan M-J, Chen N, Ito M, Yang T, Parekh R, Branson KM: Cell types and neuronal circuitry underlying female aggression in Drosophila. Elife 2020, 9:e58942.

75. Buhmann J, Sheridan A, Gerhard S, Krause R, Nguyen T, Heinrich L, Schlegel P, Lee W-CA, Wilson R, Saalfeld S: Automatic detection of synaptic partners in a whole-brain Drosophila EM dataset. bioRxiv 2020:2020.12.12.874172.

76. Von Reyn CR, Breads P, Peek MY, Zheng GZ, Williamson WR, Yee AL, Leonardo A, Card GM: A spike-timing mechanism for action selection. Nat Neurosci 2014, 17:962–970.

77. Feng K, Palfreyman MT, Häsemeyer M, Talsma A, Dickson BJ: Ascending SAG neurons control sexual receptivity of Drosophila females. Neuron 2014, 83:135–148.