Estrogenic Effects of Sedum sarmentosum Bunge in Ovariectomized Rats

Won-Hee Kim1, Yun-Ja Park1, Mi-Ra Park1, Tae-Yeul Ha2, Sang-Hyeon Lee3,4, Song-Ja Bae1,3 and Mihyang Kim1,3, *

1 Department of Food and Nutrition, Silla University, Busan 617-736, Korea
2 Food Function Research Division, Korea Food Research Institute, Kyonggi 463-746, Korea
3 Marine Biotechnology Center for Bio-Functional Material Industries, Busan 617-736, Korea
4 Department of Bioscience and Biotechnology, Silla University, Busan 617-736, Korea

(Received March 26, 2003)

Summary The aim of this study was to evaluate the effects of Sedum sarmentosum Bunge (SS) on the lipid on serum and the collagen content of the connective tissues in ovariectomized estrogen-deficient rats. Three groups were surgically ovariectomized. The fourth group was sham operated. From day 2 until day 37 after the ovariectomy, Sprague-Dawley female rats were randomly assigned to the following groups: sham-operated rats (sham), ovariectomized control rats (OVX-control), ovariectomized rats supplemented with an ethyl ether fraction of SS at 10mg/kg bw/d (OVX-EE), ovariectomized rats supplemented an ethyl acetate fraction of SS at 10mg/kg bw/d (OVX-EA). The SS fractions were orally administered at 1 mL per day. The estrogenic effects of the ethyl ether and ethyl acetate fractions of SS, were investigated using one in vitro assay and two in vivo assays. The treatment of the partition of the ethyl ether and ethyl acetate layers of SS increased the transcriptional activity 0.7-fold and 0.5-fold compared to those that were given 17β-estradiol treatment, respectively. The OVX rats were significantly heavier than the sham-operated rats at all times, but supplementation with the SS extracts tended to result in less weight gain than OVX-control. The serum triglyceride levels were significantly decreased after supplementation with the SS portion EE and EA layers. Supplementation with the SS extracts prevented a decrease in the collagen level in bone and cartilage tissues. This result indicates that the SS affects the collagen synthesis in ovariectomized rats. These results are consistent with the conclusions based on the estrogenic activities of SS. Therefore, it may be used to possibly improve the quality of life in menopausal women.

Key Words Sedum sarmentosum Bunge, collagen, lipid, estrogenic effects, ovariectomized rats

An estrogen deficiency after menopause is associated with osteoporosis, and one or more symptoms such as hot flashes, depression, mood swings, sleeping disorders, vaginal dryness, and joint pain (1, 2). Hormone replacement therapy (HRT) has been used to relieve menopausal symptoms. In addition, HRT reduces the risk of osteoporosis, cardiovascular disease, dementia from Alzheimer’s disease, and certain types of cancer are reduced (3–7). Epidemiological data shows that a diet rich in phytoestrogens, such as those found in soy, reduce the number of hot flashes and the incidence of cancer in Oriental women (8). The ovariectomized rat is proposed as an experimental model for the rapid development of menopausal symptoms. An ovariectomy in rats has been widely used as a model, replicating many of the events associated with postmenopausal osteoporosis in humans (9–12).

Following loss of ovarian function, postmenopausal women display an increased incidence of hypertension and coronary heart disease, which is at least partially attributable to an increase in the total cholesterol, LDL-cholesterol and triglyceride levels, as well as a reduction in the HDL-cholesterol levels (13–17).

An ovarian hormone deficiency has a substantial influence on the skeletal metabolism, and a decline in the skeletal mass after the cessation of the ovarian function in humans is well recognized (18). There is evidence suggesting that skin collagen is affected by osteoporosis. McConkey et al. first reported the association between transparent skin and osteoporosis (19). In addition Foundos et al. and Lovett et al. reported significant changes in the structure of the inflamed rabbit bone and skin collagen fibrils (20, 21).

The aim of this study was to evaluate the effects of Sedum sarmentosum Bunge (crassulaceae, SS) on the lipid on serum and the collagen content of connective tissues in ovariectomized estrogen-deficient rats. In the present study, we had systematically evaluated the estrogenic activity of various partition layers of SS. In order to analyze the SS extracts on the treatment of menopausal symptoms, the estrogenic activity in...

*To whom correspondence should be addressed.
E-mail: mihkim@silla.ac.kr
human breast cancer cell line MCF7 was measured using in vitro test system. The change in serum lipids and connective tissues collagen in ovariectomized rats were examined to further investigate the estrogenic effect of the SS extracts in vivo.

MATERIALS AND METHODS

Preparation of materials. The SS was purchased from the traditional market of Umgung-Dong. The plant (120 g) was macerated in EtOH (1.5 L) overnight. Following filtration, the marc was extracted twice using EtOH (1.5 L), with gentle heating (<45°C, 10 min). The extracts were combined, and the solvent was removed in vacuo. The plant extracts were redissolved in 20% aqueous EtOH (1.5 L) and partitioned against ethyl ether. The residual EtOH was removed in vacuo from the aqueous portion, and the latter was partitioned against EtOAc and BuOH successively. Removing the solvent yielded the ethyl ether, EtOAc, BuOH, and aqueous soluble fractions.

Plasmid construction. Complementary oligonucleotides spanning a minimal promoter composed of the TATA region of the adenovirus-2 major late promoter (Ad2MLP, −33 to +34) were synthesized. After annealing, a double-stranded oligonucleotide was subcloned between the PstI and XbaI sites in pCAT-Basic (Promega, USA) to yield pCAT-Ad2MLP. Complementary oligonucleotides spanning two consensus, perfectly palindromic Xenopus vitellogenin A2 genes EREs (ERE119; Table 1) were synthesized (22, 23). After annealing, the double-stranded oligonucleotide was subcloned between the HindIII and PstI sites in pCAT-Ad2MLP to yield pCAT-ERE119-Ad2MLP. The integrity of all constructs was verified by restriction analysis and sequencing.

Cell culture and transient expression assays. The human breast cancer cells line MCF7 was obtained from ATCC (Manassas, VA, USA). The MCF7 cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM, BioWhittaker, USA) supplemented with 10% dextran-coated charcoal stripped fetal bovine serum (Life Technologies, USA) at 37°C in a humidified atmosphere containing 10% CO2. Transfection was carried out using Lipofectamine plus reagent (Invitrogen BV, Netherlands) and 5 μg of the pCAT-ERE119-Ad2MLP plasmid in serum free medium in 60-mm dishes. A Plasmid Midi Kit (Qiagen, USA) was used to purify the plasmids. Three hours after transfection, either a pomegranate extract (40 μg/mL), 17β-estradiol (10−7 M; RBI, USA), or the vehicle (ethanol, 5 μL) was added to the corresponding dishes. The cells were harvested 48 h after adding the DNA. The lysates were prepared by four cycles of freezing and thawing of the harvested cells, which was followed by centrifugation.

The CAT assays were carried out using a CAT-enzyme linked immunosorbent assay (ELISA) kit (Boehringer Mannheim, Germany). All the CAT assay results were normalized to the protein concentration of the lysates measured by the BCA Protein Assay Reagent kit (Pierce, Rockford, IL, USA).

Table 1. Oligonucleotides for plasmid construction.

Oligonucleotide	Sequence
Ad2MLP Sense	5'-GCTATAAAAGGGGTGGGGCCCTTC GCCCTCATCTCTTGCGA CAGGCGACGTCT-3'
Antisense	5'-CTAGAGGCTGGCCCTGCAAGACAGCGAT CCGGAAAGAGTGAAGAGCAAGCGGCCC CACCCCTTTTTATAGCTGCA-3'
ERE119 Sense	5'-AGCTCTGAGATCTAGGTACATGACCT GACTGACATGATGACATGCAGTCAGTACCGAC TCTGCA-3'
Antisense	5'-GAGTCAGGTCAGTGAACCTGATCTCG AGTCAGGTCAGTGAACCTGATCTCGA-3'

Table 2. Experimental design.

Groups	Ovariectomy	Ethyl ether fraction	Ethyl acetate fraction
Sham	−	−	−
OVX-control	+	−	−
OVX-EE	+	−	+
OVX-EA	+	−	+

1 Sham: sham-operated rats, OVX-control: ovariectomized rats, OVX-EE: ovariectomized rats supplemented ethyl ether fraction of Sedum sarmentosum Bunge at 10 mg/kg bw/d, OVX-EA: ovariectomized rats supplemented ethyl acetate at 10 mg/kg bw/d.

Animals and diets. Seven-week-old female rats (Sprague-Dawley) were obtained from Hyochang Science Co. (Daegu, Korea). They were fed a commercial diet for 1 wk in order to allow them to acclimatize to the new surroundings. At 8 wk of age, a bilateral ovariectomy was performed using the dorsal approach. The rats were divided into four groups of six or seven animals each, with similar mean body weights. The sham-operated rats (sham) were fed a control diet. The ovariectomized rats were assigned to the control (OVX-Control), the ethyl ether fraction of SS (10 mg/kg bw/d) (OVX-EE) and ethyl acetate fraction of SS (10 mg/kg bw/d) (OVX-EA) groups (Table 2). The temperature was maintained at 23±1°C and the animals were subjected to a 12-h light-dark cycle. Body weight and food consumption were recorded every 2 or 3 d. All rats were sacrificed under diethyl ether anesthesia at the end of the 5-wk feeding period. The uteri, skin, lungs, bones and cartilage were carefully removed. The weights were recorded for each organ, and the bone and cartilage were prepared as described below. All procedures were performed in accordance with the Silla University Guidelines for the Care and Use of Laboratory Animals.

Preparation of blood and tissues for analysis. Blood was collected from the aorta ventralis into tubes and separated by centrifugation at 2,000×g for 15 min at 4°C. The bone and cartilage were cut into small pieces, washed in saline and defatted with methanol: chloroform (1:2). The tissue samples were hydrolyzed with...
6 M HCl in sealed tubes at 110°C for 24 h and evaporated to dryness in vacuo.

Determination of serum lipids. The total cholesterol, HDL-cholesterol and triglyceride level in the serum were measured enzymatically using commercial kits (YD Diagnostics, Seoul, Korea).

Determination of collagen. The collagen was measured from its hydroxyproline content, assuming that the hydroxyproline content was 0.11 mol per mol collagen (24). The hydroxyproline contents of the resulting hydrolysates were determined using the method described by Woessner (25).

Statistical tests. The results are presented as a mean±SD. The statistically significant difference between the means of the two groups was evaluated by either a Student's t-test or the Cochran-Cox test, depending on whether variances were equal or different. A p value <0.05 was considered statistically significant.

RESULTS

Estrogenic activity of the Sedum sarmentosum Bunge extract

The estrogenic activity of the SS extracts (SS) was evaluated in the human breast cancer cell line, MCF7, using an in vitro test system. After treatment with the SS extracts or estrogen, the cell extracts were prepared and assayed for their chloramphenicol acetyl transferase (CAT) activity. Treatment with the ethyl ether and ethyl acetate layers of SS extract resulted in a 0.7-fold and 0.5-fold increase in the transcriptional activity compared to the 17β-estradiol treatment, respectively (Table 3). These observations indicated that SS extracts have effective estrogenic action.

Food intake and body weight

The OVX rats were significantly heavier than the sham-operated rats at all times. There was no difference in the weight gained by any of the OVX groups at any time. Treatment with SS extracts tended to result in lower weight gain than the OVX-control, but the BW was not significantly altered in the OVX groups. The food intake in the OVX groups was higher than that in the sham-operated group (Table 4). No significant differences in food intake were observed between the OVX groups. The uteri of the OVX animals were markedly atrophic compared to the sham animals. The uterine weights in the OVX-EE and OVX-EA groups were the same as that in the OVX-control group.

Change of lipid contents in serum

The ovariectomy caused an expected increase in the serum levels of total cholesterol and triglycerides (Fig. 1). The serum triglyceride levels of the OVX-EE and OVX-EA groups were significantly lower than that of the OVX-control group. The total cholesterol content of the ovariectomized rats in the serum was higher than in the sham-operated rats. Supplementation with the SS ethyl acetate extracts resulted in a decrease in the total cholesterol in the serum, but this was not significantly different than those from the OVX animals. The serum HDL-cholesterol in the OVX-EA group was significantly higher than in the OVX-control group (Fig. 1).

Collagen contents in connective tissues

OVX caused a significant decrease in the amount of collagen in the connective tissues (Table 5). Supplemen-
tation with the SS extracts prevented the decrease in collagen in the bone and cartilage tissues.

Collagen from the lungs and skin from the ovariectomized rats treated with the SS extracts revealed a significant increase compared to the OVX-control.

DISCUSSION

The potential biological impact of environmental and dietary estrogens on human health has generated considerable interest (26–28). Since the side effects of traditional estrogen replacement therapy include a slight but significant increase in the risk of developing breast and endometrial cancer, women are increasingly using herbal remedies as an alternative (29–36). Zava et al. previously reported the estrogenic and progestin bioactivities of over 150 herbs (37). This study systematically evaluated the estrogenic properties of *Sedum sarmentosum* Bunge (SS) using one in vitro assay and two in vivo assays.

The estrogenic activity of the SS extracts was evaluated in human breast cancer cell line, MCF7, using the in vitro test system. Treatment with the ethyl ether and ethyl acetate layers of SS increased the transcriptional activity compared to 17β-estradiol treatment. The change of serum lipids and connective tissues collagen was examined in ovariectomized rats in order to further investigate the estrogenic effect of SS extracts in vivo.

The ovariectomy increased the BW by 4–9%, which is similar to the results reported by other researchers (38). This study observed that the OVX rats were significantly heavier than the sham-operated rats at all times, but treatment with the SS extracts tended to result in lower weight gain than the OVX-control. The food intake in the OVX groups was higher than that in the sham group. It has been reported that an ovariectomy resulted in an increase in the food intake in rats but not in hamsters (39, 40). The uteri weights in the OVX-EE and OVX-EA groups were the same as that in the OVX-control group. The SS extracts did not affect the uterus weight in the ovariectomized rats, as was reported in other papers (41).

The risk of hypertension and stroke is lower in postmenopausal women relative to men of the same age. However, the incidence of cerebrovascular events rapidly increases in women after menopause (42, 43). Stevenson et al. reported that a change from a pre-menopausal to postmenopausal status results in an increase in the total cholesterol, the LDL-cholesterol and triglyceride levels, as well as a reduction in the HDL2-cholesterol levels (17). It is known that an ovariectomy induces an increase in the serum total cholesterol levels in rats, rabbits and hamsters (44–47). In this study using rats, there is a tendency for a higher serum cholesterol and triglyceride after an ovariectomy. The supplementation of SS ethyl ether and ethyl acetate layers resulted in a significant decrease triglyceride level in the serum.

The collagen level is altered in osteoporosis and it is important that these changes are recognized in studies of the bone metabolism in osteoporosis because they may play a role in the pathogenesis of the disease (48). An ovarian hormone deficiency has a substantial influence on the skeletal metabolism, and the decline in the skeletal mass after the cessation of the ovarian function in humans is well recognized (18). Compared to the OVX-control, a change in the collagen contents was observed in the lung and skin of the ovariectomized rats with the SS extracts. Supplementation with the SS extracts prevented the collagen decrease in the bone and cartilage tissues.

These results are consistent with these conclusions based on the estrogenic activities of SS. A further investigation into SS is necessary in order to evaluate its potential estrogenicity and to fully understand its mechanisms.

Acknowledgments

This work was supported by the Korea Research Foundation Grant (KRF-2001-003-G00045).

REFERENCES

1) Brosage P. 1995. Hormone therapy: The woman’s decision. Contemp Nurse Pract 1(S): 3.
2) Bush TL, Barret-Connor E. 1985. Noncontraceptive estrogen use and cardiovascular disease. Epidemiol Rev 7: 89–104.
3) Stolley PD, Tonascia JA, Tockman MS, Sartwell PE, Rutledge AH, Jacobs MP. 1975. Thrombosis with low-estrogen oral contraceptives. Am J Epidemiol 102: 197–201.
4) Harris RB, Law B, Reddy FM, King A, Haskell WL. 1990. Are women using postmenopausal estrogens? A community survey. Am J Public Health 80: 1266–1268.
5) Colditz GA, Hankinson SE, Hunter DJ, Willett WC, Men-
son JE, Stamper MJ, Hennekens C, Rosner B, Speizer FE. 1995. The use of estrogens and progesterins and the risk of breast cancer in postmenopausal women. New Engl J Med 332: 1589–1593.

6) Wickelgren I. 1997. A new weapon against Alzheimer’s. Science 276: 676–677.

7) Grodstein F, Stamler MJ, Colditz GA, Willett WC, Manson JE, Joffe M, Rosner B, Fuchs C, Hankinson SE, Hunter DJ, Hennekens CH, Speizer FE. 1997. Postmenopausal hormone therapy and mortality. New Engl J Med 336: 1769–1775.

8) Kurzer MS, Xu X. 1997. Dietary phytoestrogens. Annu Rev Nutr 17: 353–381.

9) Anderson JJ, Garnier SC, Mar MH, Boass A, Toverud SU, Pankh I. 1990. The ovariecctomized lactating rat as an experimental model for osteopenia. Calcium metabolism and bone changes. Bone Miner 11: 43–53.

10) Cahi DN, Hardin RR, Cockerham R. 1989. The aged rat model of ovarian hormone deficiency bone loss. Endocrinology 124: 7–16.

11) Omi K, Ezawa I. 1995. The effect of ovariecctomy on bone growth in rats. Bone 17(Suppl.): 1635–1688.

12) Yamazaki I, Yamaguchi H. 1989. Characteristics of an ovariecctomized osteopenic rat model. J Bone Miner Res 4: 13–22.

13) Kannel WB, Hjortland MC, McNamara PM, Gordon T. 1976. Menopause and risk of cardiovascular disease: the Framingham study. Ann Intern Med 85: 447–452.

14) Wenger NK, Speroff L, Packard N. 1993. Cardiovascular health and disease in women. N Engl J Med 329: 247–256.

15) Stamper MJ, Colditz GA. 1991. Estrogen replacement therapy and coronary heart disease: a quantitative assessment of the epidemiologic evidence. Prev Med 20: 47–63.

16) Mizutani K, Ikeda K, Kawai Y, Yamori Y. 2000. Reseratrol attenuates ovariecctomy-induced hypertension and bone loss in stroke-prone spontaneously hypertensive rats. J Nutr Sci Vitaminol 46: 78–83.

17) Stevenson JC, Crook D, Godsland IF. 1993. Influence of age and menopause on serum lipid and lipoproteins in healthy women. Atherosclerosis 98: 83–90.

18) Kafantari H, Kounadi E, Fatouros M, Milonakis M, Tzaphlidou M. 2000. Structural alteration in rat skin and bone collagen fibrils induced by ovariecctomy. Bone 26: 349–353.

19) McConkey B, Fraser GM, Bligh AS, Whiteley H. 1963. Transparent skin and osteoporosis. Lancet 1: 693–695.

20) Fountos G, Kounadi E, Tzaphlidou M, Yasumura S, Glaros D. 1998. The effects of inflammation-mediated osteoporosis (IMO) on the skeletal Ca/P ratio and on the structure of rabbit bone and skin collagen. Appl Radiat Isot 49: 657–659.

21) Lovett CR, Smolensky KA, Duance VC, Light ND, Young S, Dyson M. 1987. Type I and III collagen content and fibre distribution in normal human skin during aging. Br J Dermatol 117: 419–428.

22) Miyamoto NG, Morocoll V, Egly JM, Chambon P. 1985. Specific interaction between a transcription factor and the upstream element of the adenovirus-2 major late promoter. EMBO J 4: 3565–3570.

23) Ponglikitmongkol M, White JH, Chambon P. 1990. Synergistic activation of transcription by the human estrogen receptor bound to tandem responsive elements. EMBO J 9: 2221–2231.

24) Fujimoto D, Moriguchi T. 1978. Pyridinoline, a non-reducible crosslink of collagen. J Biochem 83: 863–867.

25) Woessner Jr. 1961. The determination of hydroxyproline in tissue and protein samples containing small proportions of this amino acid. Arch Biochem Biophys 93: 440–447.

26) Cotton P. 1994. Environmental estrogenic agents area of concern. JAMA 271: 414–416.

27) Safe SH. 1995. Environmental and dietary estrogens and human health: Is there a problem? Environ Health Perspect 103: 346–351.

28) Feldman D. 1997. Estrogens from plastic—Are we being fooled? Endocrinology 138: 1777–1779.

29) Colditz GA, Hankinson SE, Hunter DJ, Willett WC, Manson JE, Stamper MJ, Hennekens C, Rosner B, Speizer FE. 1995. The use of estrogens and progestins and the risk of breast cancer in postmenopausal women. New Engl J Med 332: 1589–1593.

30) Henderson BE, Ross R, Bernstein L. 1998. Estrogen as a cause of human cancer. The Richard and Hinda Rosenthal Foundation Award Lecture. Cancer Res 48: 246–253.

31) Liehr JG. 1990. Genotoxic effects of estrogens. Mutat Res 238: 269-276.

32) Stamper MJ, Willett WC, Hunter DJ, Manson JE. 1992. Type of postmenopausal hormone use and risk of breast cancer: 12-year follow-up from the Nurses’ Health Study. Cancer Causes Control 3: 33–39.

33) Bolton JL, Pisa H, Zhang F, Qiu S. 1998. Role of quinoids in estrogen carcinogenesis. Chem Res Toxicol 11: 1113–1127.

34) Setchell KDR. 1998. Phytoestrogens: The biochemistry, physiology, and implications for human health of soy isoflavones. Am J Clin Nutr 68: 1333S–1346S.

35) Setchell KDR. 1999. Dietary isoflavones: Biological effects and relevance to human health. J Nutr 129: 7585–767S.

36) Murkies AL, Wilcox G, Davis SR. 1998. Clinical review 92: Phytoestrogens. J Clin Endocrinol Metab 83: 297–303.

37) Zava DT, Dollbaum CM, Blen M. 1998. Estrogen and progestin bioactivity of foods, herbs, and spices. Proc Soc Exp Biol Med 217: 369–378.

38) Arjmandi BH, Alekel L, Hollis BW, Amin D, Stacewicz-Sapuntzakis M, Guo P, Kukreja SC. 1996. Dietary soybean protein prevents bone loss in an ovariectomized rat model of osteoporosis. J Nutr 126: 161–167.

39) Wade GN. 1975. Some effects of ovarian hormones on food intake and body weight in female rats. J Comp Physiol Psychol 88: 183–193.

40) Jones AP, McElroy JF, Crnic L, Wade GN. 1991. Effects of ovariecctomy in thermogenesis in brown adipose tissue and liver in Syrian hamsters. Physiol Behav 50: 41–45.

41) Kikuchi-Hayakawa H, Onodera N, Matsubara S, Yasuda K. 1998. Effect of soya milk on bone loss in stroke-prone spontaneously hypertensive rats. J Nutr Sci Vitaminol 46: 78–83.

42) Hunter DJ, Hennekens CH, Speizer FE. 1997. Postmenopausal hormone therapy and mortality. New Engl J Med 332: 1589–1593.

43) Wenger NK, Speroff L, Packard N. 1993. Cardiovascular health and disease in women. N Engl J Med 329: 247–256.

44) Kikuchi-Hayakawa H, Onodera N, Matsubara S, Yasuda K. 1998. Effect of soya milk on bone loss in stroke-prone spontaneously hypertensive rats. J Nutr Sci Vitaminol 46: 78–83.
E. Chonan O, Takahashi R, Ishikawa F. 1998. Effects of soy milk and Bifidobacterium fermented soy milk on lipid metabolism in aged ovariectomized rats. Biosci Biotechnol Biochem 62: 1688–1692.

45) Kikuchi-Hayakawa H, Onodera-Masuoka N, Kano M, Matsubara S, Yasuda E, Takahashi R, Ishikawa F. 2000. Effects of soy milk and Bifidobacterium fermented soy milk on plasma and liver lipids in ovariectomized Syrian hamsters. J Nutr Sci Vitaminol 46: 105–108.

46) Sato M, Rippy MK, Bryant HU. 1996.Raloxifene, ramoxifen, nafoxidine, or estrogen effects on reproductive and nonreproductive tissues in ovariectomized rats. FASEB J 10: 905–912.

47) Haarbo J, Leth-Espensen P, Stender S, Christiansen C. 1991. Estrogen monotherapy and combined estrogen-progestogen replacement therapy attenuate aortic accumulation of cholesterol in ovariectomized cholesterol-fed rabbits. J Clin Invest 87: 1274–1279.

48) Bailey AJ, Wotton SF, Sims TJ, Thompson PW. 1992. Post-translational modifications in the collagen of human osteoporotic femoral head. Biochem Biophys Res Commun 185: 801–805.