Quantified Multimodal Logics in Simple Type Theory

Christoph Benzmüller and Lawrence C. Paulson

Abstract. We present an embedding of quantified multimodal logics into simple type theory and prove its soundness and completeness. A correspondence between $QK\pi$ models for quantified multimodal logics and Henkin models is established and exploited. Our embedding supports the application of off-the-shelf higher-order theorem provers for reasoning within and about quantified multimodal logics. Moreover, it provides a starting point for further logic embeddings and their combinations in simple type theory.

Mathematics Subject Classification. Primary 03B45; Secondary 03B15.

Keywords. Quantified multimodal logics, simple type theory, semantic embedding, proof automation.

1. Motivation

There are two approaches to automate reasoning in modal logics. The direct approach develops specific calculi and tools for the task; the translational approach transforms modal logic formulas into first-order logic and applies standard first-order tools.\(^1\)

In previous work \([7,10,11]\) we have extended the translational approach, presenting a sound and complete embedding of propositional multimodal logics into simple type theory (higher-order logic).

In this paper we extend this work to quantified multimodal logics.

Multimodal logics with quantification for propositional variables have been studied by others before, including Kripke [26], Bull [14], Fine [16,17], Kaplan [24], and Kremer [25]. Also first-order modal logics [20,22] have been studied in numerous publications. We are interested here in multimodal logics with quantification over both propositional and first-order variables, a

\(^1\) An overview on tools and provers for both the direct and the translational approach is available at http://www.cs.man.ac.uk/~schmidt/tools/.
combination investigated, for example, by Fitting [18]. In contrast to Fitting we here pursue the translational approach. Moreover, Fitting has only studied the particular case of quantified monomodal logic S5, while we are interested in multimodal K structures.

Our approach has several advantages:

- The syntax and semantics of simple type theory are well understood [1,2,9,21]. Studying (quantified) multimodal logics as fragments of simple type theory can thus help to better understand semantical issues.
- For simple type theory, various automated proof tools are available, including Isabelle/HOL [29], HOL [30], LEO-II [12], and TPS [5]. Employing the transformation presented in this paper, these systems become immediately applicable to quantified multimodal logics or fragments of them.
- The embedding studied in this article provides a fruitful basis for further logic embeddings and logic combinations in simple type theory [8]. Moreover, even meta properties of embedded logics and combinations of logics can be formalized and automatically analyzed with the above provers. In fact we conjecture that our approach will perform comparably better on the meta level.
- The systematic study of embeddings of multimodal logics in simple type theory can identify fragments of simple type theory that have interesting computational properties. This can foster improvements to proof tactics in interactive proof assistants.

Our paper is organized as follows. In Sect. 2 we briefly review simple type theory and adapt Fitting’s [18] notion of quantified multimodal logics. In Sect. 3 we extend our previous work [7,10,11] and present an embedding of quantified multimodal logic in simple type theory. This embedding is shown sound and complete in Sect. 4.

2. Preliminaries

2.1. Simple Type Theory

Classical higher-order logic or simple type theory STT [3,15] is built on top of the simply typed λ-calculus. The set T of simple types is usually freely generated from a set of basic types \{o,ι\} (where o is the type of Booleans and ι is the type of individuals) using the function type constructor \(\rightarrow\). Instead of \{o,ι\} we here consider a set of base types \{o,ι,μ\}, providing an additional base type μ (the type of possible worlds).

The simple type theory language STT is defined by \((\alpha, \beta \in T)\):

\[
\begin{align*}
 s, t &::= p_\alpha \mid X_\alpha \mid (\lambda X_\alpha s_\beta)_{\alpha\rightarrow\beta} \mid (s_\alpha t_\alpha)_{\beta} \mid (\neg o \Rightarrow o)_{o} \\
 &\mid (s_\alpha \lor o \Rightarrow o \Rightarrow o)_{o} \mid (s_\alpha = o \Rightarrow o \Rightarrow o)_{o} \mid (\Pi (o \Rightarrow o \Rightarrow o) s_\alpha)_{o}
\end{align*}
\]

\(p_\alpha\) denotes typed constants and \(X_\alpha\) typed variables (distinct from \(p_\alpha\)). Complex typed terms are constructed via abstraction and application. Our logical
connectives of choice are \(\neg_{\alpha-\alpha}, \lor_{\alpha-\alpha}, =_{\alpha-\alpha} \) and \(\Pi_{(\alpha-\alpha)-\alpha} \) (for each type \(\alpha\)). From these connectives, other logical connectives can be defined in the usual way. We often use binder notation \(\forall X_\alpha s\) for \(\Pi_{(\alpha-\alpha)-\alpha}(\lambda X_\alpha s_\alpha)\). We denote substitution of a term \(A_\alpha\) for a variable \(X_\alpha\) in a term \(B_\beta\) by \([A/X]\). Since we consider \(\alpha\)-conversion implicitly, we assume the bound variables of \(B\) avoid variable capture. Two common relations on terms are given by \(\beta\)-reduction and \(\eta\)-reduction. A \(\beta\)-redex has the form \((\lambda X_\alpha s)\ t\) and \(\beta\)-reduces to \([t/X]\)\(s\). An \(\eta\)-redex has the form \((\lambda X_\alpha s X)\) where variable \(X\) is not free in \(s\); it \(\eta\)-reduces to \(s\). We write \(s =_\beta t\) to mean \(s\) can be converted to \(t\) by a series of \(\beta\)-reductions and expansions. Similarly, \(s =_{\beta\eta} t\) means \(s\) can be converted to \(t\) using both \(\beta\) and \(\eta\). For each \(s \in L\) there is a unique \(\beta\)-normal form and a unique \(\beta\eta\)-normal form.

The semantics of STT is well understood and thoroughly documented in the literature \([1,2,9,21]\); our summary below is adapted from Andrews \([4]\).

A frame is a collection \(\{D_\alpha\}_{\alpha \in \mathbb{T}}\) of nonempty sets \(D_\alpha\), such that \(D_\alpha = \{T, F\}\) (for truth and falsehood). The \(D_{\alpha-\beta}\) are collections of functions mapping \(D_\alpha\) into \(D_\beta\). The members of \(D_\alpha\) are called individuals. An interpretation is a tuple \(\langle\{D_\alpha\}_{\alpha \in \mathbb{T}}, I\rangle\) where function \(I\) maps each typed constant \(c_\alpha\) to an appropriate element of \(D_\alpha\), which is called the denotation of \(c_\alpha\) (the logical symbols \(\neg_{\alpha-\alpha}, \lor_{\alpha-\alpha}, \Pi_{(\alpha-\alpha)-\alpha}, =_{\alpha-\alpha}\) are always given the standard denotations). A variable assignment \(\phi\) maps variables \(X_\alpha\) to elements in \(D_\alpha\). An interpretation \(\langle\{D_\alpha\}_{\alpha \in \mathbb{T}}, I\rangle\) is a Henkin model (equivalently, a general model) if and only if there is a binary function \(V\) such that \(V_\phi s_\alpha \in D_\alpha\) for each variable assignment \(\phi\) and term \(s_\alpha \in L\), and the following conditions are satisfied for all \(\phi\) and all \(s, t \in L\):

(a) \(V_\phi X_\alpha = \phi X_\alpha\),
(b) \(V_\phi p_\alpha = I_{p_\alpha}\),
(c) \(V_\phi(s_{\alpha-\beta} t_\alpha) = (V_\phi s_{\alpha-\beta})(V_\phi t_\alpha)\), and
(d) \(V_\phi(\lambda X_\alpha s_\beta) =\) that function from \(D_\alpha\) into \(D_\beta\) whose value for each argument \(x \in D_\alpha\) is \(V_{[z/X_\alpha]\phi} s_\beta\), where \([z/X_\alpha]\phi\) is that variable assignment such that \(([z/X_\alpha]\phi) X_\alpha = z\) and \(([z/X_\alpha]\phi) Y_\beta = \phi Y_\beta\) if \(Y_\beta \neq X_\alpha\). (Since \(I\neg, I\lor, I\Pi,\) and \(I=\) always denote the standard truth functions, we have \(V_\phi(\neg s) = T\) if and only if \(V_\phi s = F\), \(V_\phi(s \lor t) = T\) if and only if \(V_\phi s = T\) or \(V_\phi t = T\), \(V_\phi(\forall X_\alpha s_\alpha) = V_\phi(\Pi^\alpha(\lambda X_\alpha s_\alpha)) = T\) if and only if for all \(x \in D_\alpha\) we have \(V_{[z/X_\alpha]\phi} s_\alpha = T\), and \(V_\phi(s = t) = T\) if and only if \(V_\phi s = V_\phi t\). Moreover, we have \(V_\phi s = V_\phi t\) whenever \(s =_{\beta\eta} t\).) It is easy to verify that Henkin models obey the rule that everything denotes, that is, each term \(t_\alpha\) always has a denotation \(V_\phi t_\alpha \in D_\alpha\). If an interpretation \(\langle\{D_\alpha\}_{\alpha \in \mathbb{T}}, I\rangle\) is a Henkin model, then the function \(V_\phi\) is uniquely determined.

We say that formula \(A \in L\) is valid in a model \(\langle\{D_\alpha\}_{\alpha \in \mathbb{T}}, I\rangle\) if and only if \(V_\phi A = T\) for every variable assignment \(\phi\). A model for a set of formulas \(H\) is a model in which each formula of \(H\) is valid. A formula \(A\) is Henkin-valid if and only if \(A\) is valid in every Henkin model. We write \(\models_{\text{STT}} A\) if \(A\) is Henkin-valid.

2.2. Quantified Multimodal Logic

First-order quantification can be constant domain or varying domain. Below we only consider the constant domain case: every possible world has the same domain. We adapt the presentation of syntax and semantics of quantified
modal logic from Fitting [18]. In contrast to Fitting we are not interested in S5 structures but in the more general case of K.

Let IV be a set of first-order (individual) variables, PV a set of propositional variables, and SYM a set of predicate symbols of any arity. Like Fitting, we keep our definitions simple by not having function or constant symbols; our language has no terms other than variables. While Fitting [18] studies quantified monomodal logic, we are interested in quantified multimodal logic. Hence, we introduce multiple $quantified\ quantified$ monomodal logic, we are interested in quantified multimodal logic.

The grammar for our quantified multimodal logic QML is thus

$$s, t ::= P \mid k(X^1, \ldots, X^n) \mid \neg s \mid s \lor t \mid \forall Xs \mid \forall Ps \mid \Box_r s$$

where $P \in PV$, $k \in SYM$, and $X, X^i \in IV$.

Further connectives, quantifiers, and modal operators can be defined as usual. We also obey the usual definitions of free variable occurrences and substitutions.

Fitting introduces three different notions of semantics: $QS5\pi^-$, $QS5\pi^+$, and $QS5\pi^\dag$. We study related notions $QK\pi^-$, $QK\pi$, and $QK\pi^+$ for a modal context K, and we support multiple modalities.

A $QK\pi^-$ model is a structure $M = (W, (R_r)_{r \in S}, D, (I_w)_{w \in W})$ such that $(W, (R_r)_{r \in S})$ is a multimodal frame (that is, W is the set of possible worlds and the R_r are accessibility relations between worlds in W), D is a non-empty set (the first-order domain), P is a non-empty collection of subsets of W (the propositional domain), and the I_w are interpretation functions mapping each n-place relation symbol $k \in SYM$ to some n-place relation on D in world w.

A variable assignment $g = (g^{iv}, g^{pv})$ is a pair of maps $g^{iv} : IV \rightarrow D$ and $g^{pv} : PV \rightarrow P$, where g^{iv} maps each individual variable in IV to an object in D and g^{pv} maps each propositional variable in PV to a set of worlds in P.

Validity of a formula s for a model $M = (W, (R_r)_{r \in S}, D, P, I_w)$, a world $w \in W$, and a variable assignment $g = (g^{iv}, g^{pv})$ is denoted as $M, g, w \models s$ and defined as follows, where $[a/Z]g$ denotes the assignment identical to g except that $([a/Z]g)(Z) = a$:

$$M, g, w \models k(X^1, \ldots, X^n) \text{ if and only if } \langle g^{iv}(X^1), \ldots, g^{iv}(X^n) \rangle \in I_w(k)$$
$$M, g, w \models P \text{ if and only if } w \in g^{pv}(P)$$
$$M, g, w \models \neg s \text{ if and only if } M, g, w \not\models s$$
$$M, g, w \models s \lor t \text{ if and only if } M, g, w \models s \text{ or } M, g, w \models t$$
$$M, g, w \models \forall Xs \text{ if and only if } M, ([d/X]g^{iv}, g^{pv}), w \models s \text{ for all } d \in D$$
$$M, g, w \models \forall Qs \text{ if and only if } M, (g^{iv}, [p/Q]g^{pv}), w \models s \text{ for all } p \in P$$
$$M, g, w \models \Box_r s \text{ if and only if } M, g, v \models s \text{ for all } v \in W$$

with $\langle w, v \rangle \in R_r$.

A QK\(\pi^-\) model \(M = (W, (R_r)_{r \in S}, D, P, (I_w)_{w \in W})\) is a QK\(\pi\) model if for every variable assignment \(g\) and every formula \(s\) \(\in\) QML, the set of worlds \(\{w \in W \mid M, g, w \models s\}\) is a member of \(P\).

A QK\(\pi\) model \(M = (W, (R_r)_{r \in S}, D, P, (I_w)_{w \in W})\) is a QK\(\pi^+\) model if every world \(w \in W\) is member of an atom in \(P\). The atoms of \(P\) are minimal non-empty elements of \(P\): no proper subsets of an atom are also elements of \(P\).

A QML formula \(s\) is valid in model \(M\) for world \(w\) if \(M, g, w \models s\) for all variable assignments \(g\). A formula \(s\) is valid in model \(M\) if \(M, g, w \models s\) for all \(g\) and \(w\). Formula \(s\) is QK\(\pi^-\)-valid if \(s\) is valid in all QK\(\pi\) models, when we write \(\models_{\text{QK}\pi^-} s\); we define QK\(\pi^+\)-valid and QK\(\pi\)-valid analogously.

In the remainder we mainly focus on QK\(\pi\) models. These models naturally correspond to Henkin models, as we shall see in Sect. 4.

3. Embedding Quantified Multimodal Logic in STT

The idea of the encoding is simple. We choose type \(i\) to denote the (non-empty) set of individuals and we reserve a second base type \(\mu\) to denote the (non-empty) set of possible worlds. The type \(o\) denotes the set of truth values. Certain formulas of type \(\mu \to o\) then correspond to multimodal logic expressions. The multimodal connectives \(\lnot, \lor, \Box\), become \(\lambda\)-terms of types \((\mu \to o) \to (\mu \to o), (\mu \to o) \to (\mu \to o) \to (\mu \to o),\) and \((\mu \to \mu \to o) \to (\mu \to o) \to (\mu \to o),\) respectively.

Quantification is handled as usual in higher-order logic by modeling \(\forall X. s\) as \(\Pi(\lambda X. s)\) for a suitably chosen connective \(\Pi\), as we remarked in Sect. 2. Here we are interested in defining two particular modal \(\Pi\)-connectives: \(\Pi^i\), for quantification over individual variables, and \(\Pi^{\mu \to o}\), for quantification over modal propositional variables that depend on worlds, of types \((i \to (\mu \to o)) \to (\mu \to o)\) and \(((\mu \to o) \to (\mu \to o)) \to (\mu \to o),\) respectively.

In previous work [10] we have discussed first-order and higher-order modal logic, including a means of explicitly excluding terms of certain types. The idea was that no proper subterm of \(t_{\mu \to o}\) should introduce a dependency on worlds. Here we skip this restriction. This leads to a simpler definition of a quantified multimodal language QMLSTT below, and it does not affect our soundness and completeness results.

Definition 3.1 (Modal operators). The modal operators \(\lnot, \lor, \Box, \Pi^i,\) and \(\Pi^{\mu \to o}\) are defined as follows:

\[
\begin{align*}
\lnot_{(\mu \to o) \to (\mu \to o)} &= \lambda \phi_{\mu \to o} \lambda W_{\mu} \cdot \lnot(\phi W) \\
\lor_{(\mu \to o) \to (\mu \to o) \to (\mu \to o)} &= \lambda \phi_{\mu \to o} \lambda \psi_{\mu \to o} \lambda W_{\mu} \cdot \phi W \lor \psi W \\
\Box_{(\mu \to o) \to (\mu \to o) \to (\mu \to o)} &= \lambda R_{\mu \to o} \lambda \phi_{\mu \to o} \lambda W_{\mu} \cdot \Box W_{\mu} \cdot \lnot(R W V) \lor \phi V \\
\Pi^i_{(i \to (\mu \to o)) \to (\mu \to o)} &= \lambda \phi_{i \to (\mu \to o)} \lambda W_{\mu} \cdot \forall X. \phi X W \\
\Pi^{\mu \to o}_{((\mu \to o) \to (\mu \to o)) \to (\mu \to o)} &= \lambda \phi_{(\mu \to o) \to (\mu \to o)} \lambda W_{\mu} \cdot \forall P_{\mu \to o} \cdot \phi P W
\end{align*}
\]

Note that our encoding actually only employs the second-order fragment of simple type theory enhanced with lambda-notation.
Further operators can be introduced, for example,

\[\top_{(\mu \to o)\to (\mu \to o)} = \forall P_{\mu \to o} \bullet P \lor \lnot P \]

\[\bot_{(\mu \to o)\to (\mu \to o)} = \lnot \top \]

\[\land_{(\mu \to o)\to (\mu \to o)} = \lambda_\phi \mu \to o \bullet \lambda_\psi \mu \to o \bullet (\lnot \phi \lor \lnot \psi) \]

\[\lor_{(\mu \to o)\to (\mu \to o)} = \lambda_\phi \mu \to o \bullet \lambda_\psi \mu \to o \bullet (\phi \lor \psi) \]

\[\Diamond_{(\mu \to o)\to (\mu \to o)} = \lambda R_{\mu \to o} \bullet \lambda_\phi \mu \to o \bullet (\Box R (\lnot \phi)) \]

\[\Sigma^I_{(\mu \to o)\to (\mu \to o)}(\mu) = \lambda_\phi (\mu \to o) \bullet (\Pi^I(\lambda X_1 \bullet (\phi X))) \]

\[\Sigma^\mu/o_{((\mu \to o)\to (\mu \to o))\to (\mu \to o)} = \lambda_\phi (\mu \to o) \bullet (\Pi^\mu/o(\lambda P_{\mu \to o} \bullet (\phi P))) \]

We could also introduce further modal operators, such as the difference modality \(D \), the global modality \(E \), nominals with \(! \), or the \(@ \) operator (cf. the recent work of Kaminski and Smolka [23] in the propositional hybrid logic context):

\[D_{(\mu \to o)\to (\mu \to o)} = \lambda_\phi \mu \to o \bullet \lambda W_\mu \bullet \exists V_\mu \bullet W \neq V \land \phi V \]

\[E_{(\mu \to o)\to (\mu \to o)} = \lambda_\phi \mu \to o \bullet \phi \lor D \phi \]

\[!_{(\mu \to o)\to (\mu \to o)} = \lambda_\phi \mu \to o \bullet E (\phi \land \lnot (D \phi)) \]

\[@_{(\mu \to o)\to (\mu \to o)} = \lambda W_\mu \bullet \lambda_\phi \mu \to o \bullet \phi W \]

For defining QMLSTTT-propositions we fix a set IVSTTT of individual variables of type \(\iota \), a set PVSTTT of propositional variables of type \(\mu \to o \), and a set SYMSTTT of \(n \)-ary (curried) predicate constants of types \(\iota \to \ldots \to \iota \to (\mu \to o) \).

The latter types will be abbreviated as \(\iota^n \to (\mu \to o) \) in the remainder. Moreover, we fix a set SSTTT of accessibility relation constants of type \(\mu \to \mu \to o \).

Definition 3.2 (*QMLSTTT*-propositions). *QMLSTTT*-propositions are defined as the smallest set of simply typed \(\lambda \)-terms for which the following hold:

- Each variable \(P_{\mu \to o} \in PVSTTT \) is an atomic *QMLSTTT*-proposition, and if \(X^i_j \in IVSTTT \) (for \(j = 1, \ldots, n \)) and \(k_{i^n} \in SYMSTTT \), then the term \((k X^1 \cdots X^n)_{\mu \to o} \) is an atomic *QMLSTTT*-proposition.
- If \(\phi \) and \(\psi \) are *QMLSTTT*-propositions, then so are \(\lnot \phi \) and \(\phi \lor \psi \).
- If \(r_{\mu \to o} \in SSTTT \) is an accessibility relation constant and if \(\phi \) is an *QMLSTTT*-proposition, then \(\Box r \phi \) is a *QMLSTTT*-proposition.
- If \(X_\iota \in IVSTTT \) is an individual variable and \(\phi \) is a *QMLSTTT*-proposition then \(\Pi^I(\lambda X_\iota \bullet \phi) \) is a *QMLSTTT*-proposition.
- If \(P_{\mu \to o} \in PVSTTT \) is a propositional variable and \(\phi \) is a *QMLSTTT*-proposition then \(\Pi^\mu/o(\lambda P_{\mu \to o} \bullet \phi) \) is a *QMLSTTT*-proposition.

We write \(\Box r \phi, \forall X_\iota \bullet \phi \), and \(\forall P_{\mu \to o} \bullet \phi \) for \(\Box r \phi, \Pi^I(\lambda X_\iota \bullet \phi) \), and \(\Pi^\mu/o(\lambda P_{\mu \to o} \bullet \phi) \), respectively.

Because the defining equations in Definition 3.1 are themselves formulas in simple type theory, we can express proof problems in a higher-order theorem prover elegantly in the syntax of quantified multimodal logic. Using rewriting or definition expanding, we can reduce these representations to corresponding
statements containing only the basic connectives ¬, ∨, =, Π, and Π−→ of simple type theory.

Example The following QMLSTT proof problem expresses that in all accessible worlds there exists truth:

\[\boxdot_r \exists P_{\mu \to o} P \]

The term rewrites into the following βη-normal term of type \(\mu \to o \)

\[\lambda W_{\mu} \forall Y_{\mu} \neg (r W Y) \lor (\neg \forall P_{\mu \to o} \neg (P Y)) \]

Next, we define validity of QMLSTT propositions \(\phi_{\mu \to o} \) in the obvious way: a QML-proposition \(\phi_{\mu \to o} \) is valid if and only if for all possible worlds \(w_\mu \) we have \(w_\mu \in \phi_{\mu \to o} \), that is, if and only if \(\phi_{\mu \to o} w_\mu \) holds.

Definition 3.3 (Validity). Validity is modeled as an abbreviation for the following simply typed \(\lambda \)-term:

\[\text{valid} = \lambda \phi_{\mu \to o} \forall W_{\mu} \phi W \]

Alternatively, we could define validity simply as \(\Pi_{(\mu \to o) \to o} \).

Example We analyze whether the proposition \(\boxdot_r \exists P_{\mu \to o} P \) is valid or not. For this, we formalize the following proof problem

\[\text{valid} (\boxdot_r \exists P_{\mu \to o} P) \]

Expanding this term leads to

\[\forall W_{\mu} \forall Y_{\mu} \neg (r W Y) \lor (\neg \forall X_{\mu \to o} \neg (X Y)) \]

It is easy to check that this term is valid in Henkin semantics: put \(X = \lambda Y_{\mu} \top \).

An obvious question is whether the notion of quantified multimodal logics we obtain via this embedding indeed exhibits the desired properties. In the next section, we prove soundness and completeness for a mapping of QML-propositions to QMLSTT-propositions.

4. Soundness and Completeness of the Embedding

In our soundness proof, we exploit the following mapping of QKπ models into Henkin models. We assume that the QML logic \(L \) under consideration is constructed as outlined in Sect. 2 from a set of individual variables \(IV \), a set of propositional variables \(PV \), and a set of predicate symbols \(SYM \). Let \(\boxdot_{r^1}, \ldots, \boxdot_{r^n} \) for \(r^i \in S \) be the box operators of \(L \).

Definition 4.1 (QMLSTT logic \(L^{STT} \) for QML logic \(L \)). Given an QML logic \(L \), define a mapping \(\checkmark \) as follows:

\[
\begin{align*}
\checkmark X &= X_i & \text{for every } X \in IV \\
\checkmark P &= P_{\mu \to o} & \text{for every } P \in PV \\
\checkmark k &= k_{i^n}_{\mu \to o} & \text{for every } n\text{-ary } k \in SYM \\
\checkmark r &= r_{\mu \to o} & \text{for every } r \in S
\end{align*}
\]
The QMLSTT logic L^{STT} is obtained from L by applying Def. 3.2 with $IVSTT = \{ \hat{X} \mid X \in IV \}$, $PVSTT = \{ \hat{P} \mid P \in PV \}$, $SYMSTT = \{ k \mid k \in SYM \}$, and $SSTT = \{ \hat{r} \mid r \in S \}$. Our construction obviously induces a one-to-one correspondence \preceq between languages L and L^{STT}.

Moreover, let $g = (g^iv : IV \rightarrow D, g^{pv} : PV \rightarrow P)$ be a variable assignment for L. We define the corresponding variable assignment

$$\hat{g} = (\hat{g}^iv : IVSTT \rightarrow D = D_\iota, \hat{g}^{pv} : PVSTT \rightarrow P = D_{\mu \rightarrow o})$$

for L^{STT} so that $\hat{g}(X_\iota) = \hat{g}(\hat{X}) = g(X)$ and $\hat{g}(P_{\mu \rightarrow o}) = \hat{g}(\hat{P}) = g(P)$ for all $X_\iota \in IVSTT$ and $P_{\mu \rightarrow o} \in PVSTT$.

Finally, a variable assignment \hat{g} is lifted to an assignment for variables Z_α of arbitrary type by choosing $\hat{g}(Z_\alpha) = d \in D_\alpha$ arbitrarily, if $\alpha \neq \iota, \mu \rightarrow o$.

We assume below that L, L^{STT}, g and \hat{g} are defined as above.

Definition 4.2 (Henkin model H^Q for $QK\pi$ model Q). Given a $QK\pi$ model $Q = (W, (R_r)_{r \in S}, D, P, (I_w)_{w \in W})$ for L, a Henkin model $H^Q = \langle \{ D_\alpha \}_{\alpha \in T}, I \rangle$ for L^{STT} is constructed as follows. We choose

- the set D_μ as the set of possible worlds W,
- the set D_ι as the set of individuals D (cf. definition of \hat{g}^iv),
- the set $D_{\mu \rightarrow o}$ as the set of sets of possible worlds P (cf. definition of \hat{g}^{pv}),
- the set $D_{\mu \rightarrow o}$ as the set of sets of possible worlds P (cf. definition of \hat{g}^{pv}),
- the set D_α as the set of relations $(R_r)_{r \in S}$, and all other sets $D_{\alpha \rightarrow \beta}$ as (not necessarily full) sets of functions from D_α to D_β; for all sets $D_{\alpha \rightarrow \beta}$ the rule that everything denotes must be obeyed, in particular, we require that the sets $D_{\nu \rightarrow (\mu \rightarrow o)}$ contain the elements $Ik_{\iota \rightarrow (\mu \rightarrow o)}$ as characterized below.

The interpretation I is as follows:

- Let $k_{\iota \rightarrow (\mu \rightarrow o)} = \hat{k}$ for $k \in SYM$ and let $X^i_\iota = X^i$ for $X^i \in IV$. We choose $Ik_{\iota \rightarrow (\mu \rightarrow o)} \in D_{\iota \rightarrow (\mu \rightarrow o)}$ such that

$$\langle I k \rangle(\hat{g}(X^1_\iota), \ldots, \hat{g}(X^n_\iota), w) = T$$

for all worlds $w \in D_\mu$ such that $Q,g,w \models k(X^1, \ldots, X^n)$, that is, if $(g(X^1), \ldots, g(X^n)) \in I_w(k)$. Otherwise $\langle I k \rangle(\hat{g}(X^1_\iota), \ldots, \hat{g}(X^n_\iota), w) = F$.

- Let $r_{\mu \rightarrow o} = \hat{r}$ for $r \in S$. We choose $Ir_{\mu \rightarrow o} \in D_{\mu \rightarrow o}$ such that

$$\langle Ir_{\mu \rightarrow o} \rangle(w,w') = T$$

if $\langle w, w' \rangle \in R_r$ in Q and $\langle Ir_{\mu \rightarrow o} \rangle(w, w') = F$ otherwise.

It is not hard to verify that $H^Q = \langle \{ D_\alpha \}_{\alpha \in T}, I \rangle$ is a Henkin model.

Lemma 4.3. Let $Q = (W, (R_r)_{r \in S}, D, P, (I_w)_{w \in W})$ be a $QK\pi$ model and let $H^Q = \langle \{ D_\alpha \}_{\alpha \in T}, I \rangle$ be a Henkin model for Q. Furthermore, let $s_{\mu \rightarrow o} = \hat{s}$ for $s \in L$. Then for all worlds $w \in W$ and variable assignments g we have $Q,g,w \models s$ in Q if and only if $V[w/w_\mu]g(s_{\mu \rightarrow o}W_\mu) = T$ in H^Q.

2 To keep things simple, we identify sets with their characteristic functions.
Proof. The proof is by induction on the structure of $s \in L$.

Let $s = P$ for $P \in PV$. By construction of Henkin model H^Q and by definition of \hat{g}, we have for $P_{\mu-o} = \hat{P}$ that $V_{[w/W_{\mu}]}(P_{\mu-o} W_{\mu}) = \hat{g}(P_{\mu-o})(w) = T$ if and only if $Q, g, w \models P$, that is, $w \in g(P)$.

Let $s = k(X_1, \ldots, X^n)$ for $k \in SYM$ and $X^i \in IV$. By construction of Henkin model H^Q and by definition of \hat{g}, we have for $\hat{k}(X_1, \ldots, X^n) = (k_{i-n(\mu-o)} X_1^i \ldots X_n^i)$ that $V_{[w/W_{\mu}]}((k_{i-n(\mu-o)} X_1^i \ldots X_n^i) W_{\mu}) = (I k)(\hat{g}(X_1^i), \ldots, \hat{g}(X_n^i), w) = T$ if and only if $Q, g, w \models k(X_1, \ldots, X^n)$, that is, $\langle g(X_1), \ldots, g(X_n) \rangle \in I_w(k)$.

Let $s = \neg t$ for $t \in L$. We have $Q, g, w \models \neg s$ if and only if $Q, g, w \not\models s$, which is equivalent by induction to $V_{[w/W_{\mu}]}(t_{\mu-o} W_{\mu}) = F$ and hence to $V_{[w/W_{\mu}]}(t_{\mu-o} W_{\mu}) = \beta \eta V_{[w/W_{\mu}]}((\neg t_{\mu-o}) W_{\mu}) = T$.

Let $s = (t \lor l)$ for $t, l \in L$. We have $Q, g, w \models (t \lor l)$ if and only if $Q, g, w \models t$ or $Q, g, w \models l$. The latter condition is equivalent by induction to $V_{[w/W_{\mu}]}(t_{\mu-o} W_{\mu}) = T$ or $V_{[w/W_{\mu}]}(l_{\mu-o} W_{\mu}) = T$ and therefore to $V_{[w/W_{\mu}]}(t_{\mu-o} W_{\mu}) \lor (l_{\mu-o} W_{\mu}) = \beta \eta V_{[w/W_{\mu}]}(t_{\mu-o} W_{\mu}) = T$.

Let $s = \Box t$ for $t \in L$. We have $Q, g, w \models \Box t$ if and only if for all u with $\langle w, u \rangle \in R_{\tau}$ we have $Q, g, u \models t$. The latter condition is equivalent by induction to this one: for all u with $\langle w, u \rangle \in R_{\tau}$ we have $V_{[u/V_{\mu}]}(t_{\mu-o} V_{\mu}) = T$. That is equivalent to $V_{[u/V_{\mu}][w/W_{\mu}]}(\neg (r_{\mu-o} W_{\mu} V_{\mu}) \lor (t_{\mu-o} V_{\mu})) = T$ and thus to $V_{[w/W_{\mu}]}(\forall Y_{\mu} (\neg (r_{\mu-o} W_{\mu} Y_{\mu}) \lor (t_{\mu-o} Y_{\mu}))) = \beta \eta V_{[w/W_{\mu}]}(\Box_{\tau} t W_{\mu}) = T$.

Let $s = \forall X_{\bullet} t$ for $t \in L$ and $X \in IV$. We have $Q, g, w \models \forall X_{\bullet} t$ if and only if $Q, [d/X]g, w \models t$ for all $d \in D$. The latter condition is equivalent by induction to $V_{[d/X][w/W_{\mu}]}(t_{\mu-o} W_{\mu}) = T$ for all $d \in D_{\tau}$. That condition is equivalent to $V_{[w/W_{\mu}]}(\Pi_{(\mu-o)} (\lambda X_{\bullet} t_{\mu-o} W_{\mu})) = \beta \eta V_{[w/W_{\mu}]}((\lambda V_{\mu} (\Pi_{(\mu-o)} (\lambda X_{\bullet} t_{\mu-o} V_{\mu}))) W_{\mu}) = T$ and so by definition of Π^τ to $V_{[w/W_{\mu}]}((\Pi_{(\mu-o)} (\lambda X_{\bullet} t_{\mu-o} W_{\mu})) = V_{[w/W_{\mu}]}((\forall X_{\bullet} t_{\mu-o} W_{\mu}) = T$.

The case for $s = \forall P_{\bullet} t$ where $t \in L$ and $P \in PV$ is analogous to $s = \forall X_{\bullet} t$. \qed

We exploit this result to prove the soundness of our embedding.

Theorem 4.4 (Soundness for QK\(\pi\) semantics). Let $s \in L$ be a QML proposition and let $s_{\mu-o} = \hat{s}$ be the corresponding QMLSTT proposition. If \models^{STT} (valid $s_{\mu-o}$) then $\models^{QK\pi} s$.

Proof. By contraposition, assume $\not\models^{QK\pi} s$: that is, there is a QK\(\pi\) model $Q = (W, (R_{\tau})_{\tau \in S}, D, P, (\lambda w) w \in W)$, a variable assignment g and a world $w \in W$, such that $Q, g, w \not\models s$. By Lemma 4.3, we have $V_{[w/W_{\mu}]}(s_{\mu-o} W_{\mu}) = F$ in a
Henkin model H^Q for Q. Thus, $V_{\vec{g}}(\forall W_{\mu_\ast(s_{\mu \rightarrow o}W)}) = \beta \eta V_{\vec{g}}(\text{valid } s_{\mu \rightarrow o}) = F$. Hence, $\not \models_{\text{STT}} (\text{valid } s_{\mu \rightarrow o})$.

In order to prove completeness, we reverse our mapping from Henkin models to $QK\pi$ models.

Definition 4.5 (QML logic L^{QML} for $QMLSTT$ logic L). The mapping $\bar{\cdot}$ is defined as the reverse map of \cdot from Def. 4.1.

The QML logic L^{QML} is obtained from $QMLSTT$ logic L by choosing $IV = \{X_i \mid X_i \in IVSTT\}$, $PV = \{P_{\mu \rightarrow o} \mid P_{\mu \rightarrow o} \in PVSTT\}$, $SYM = \{\bar{k}_{\mu \rightarrow o} \mid k_{\mu \rightarrow o} \in SYMSTT\}$, and $S = \{\bar{\bar{\mu}}_{\mu \rightarrow o} \mid \bar{\bar{\mu}}_{\mu \rightarrow o} \in SSTT\}$.

Moreover, let $g : IVSTT \cup PVSTT \rightarrow D \cup P$ be a variable assignment for L. The corresponding variable assignment $\bar{\bar{g}} : IV \cup PV \rightarrow D \cup P$ for L^{QML} is defined as follows: $\bar{\bar{g}}(X) = \bar{g}(X_i) = g(X_i)$ and $\bar{\bar{g}}(P) = \bar{g}(P_{\mu \rightarrow o}) = g(P_{\mu \rightarrow o})$ for all $X \in IV$ and $P \in PV$.

We assume below that L, L^{QML}, g and $\bar{\bar{g}}$ are defined as above.

Definition 4.6 ($QK\pi^-$ model Q^H for Henkin model H). Given a Henkin model $H = \langle\{D_\alpha\}_{\alpha \in T}, I\rangle$ for $QMLSTT$ logic L, we construct a QML model $Q^H = (W, (R_r)_{r \in S}, D, P, (I_w)_{w \in W})$ for L^{QML} by choosing $W = D_\mu$, $D = D_\ell$, and $P = D_{\mu \rightarrow o}$. Moreover, let $k = \bar{k}_{\mu \rightarrow o}$ and let $X^i = X_i$. We choose $I_w(k)$ such that $\langle \bar{\bar{g}}(X^1), \ldots, \bar{\bar{g}}(X^n) \rangle \in I_w(k)$ if and only if $(I(k))(g(X^1_k), \ldots, g(X^n_k), w) = T$.

Finally, let $r = \bar{\bar{\bar{\bar{\mu}}}}_{\mu \rightarrow o}$. We choose R_r such that $\langle w, w' \rangle \in R_r$ if and only if $(I_{\bar{\bar{\bar{\bar{\mu}}}}_{\mu \rightarrow o}})(w, w') = T$.

It is not hard to verify that $Q^H = (W, (R_r)_{r \in S}, D, P, (I_w)_{w \in W})$ meets the definition of $QK\pi^-$ models. Below we will see that it also meets the definition of $QK\pi$ models.

Lemma 4.7. Let $Q^H = (W, (R_r)_{r \in S}, D, P, (I_w)_{w \in W})$ be a $QK\pi^-$ model for a given Henkin model $H = \langle\{D_\alpha\}_{\alpha \in T}, I\rangle$. Furthermore, let $s = \bar{s}_{\mu \rightarrow o}$. For all worlds $w \in W$ and variable assignments g we have $V_{[w/W_\mu]}g(s_{\mu \rightarrow o}W_\mu) = T$ in H if and only if $Q^H, \bar{\bar{g}}, w \models s$ in Q^H.

Proof. The proof is by induction on the structure of $s_{\mu \rightarrow o} \in L$ and it is similar to the proof of Lemma 4.3.

With the help of Lemma 4.7, we now show that the $QK\pi^-$ models we construct in Def. 4.6 are in fact always $QK\pi$ models. Thus, Henkin models never relate to $QK\pi^-$ models that do not already fulfill the $QK\pi$ criterion.

Lemma 4.8. Let $Q^H = (W, (R_r)_{r \in S}, D, P, (I_w)_{w \in W})$ be a $QK\pi^-$ model for a given Henkin model $H = \langle\{D_\alpha\}_{\alpha \in T}, I\rangle$. Then Q^H is also a $QK\pi$ model.

Proof. We need to show that for every variable assignment $\bar{\bar{g}}$ and formula $s = \bar{s}_{\mu \rightarrow o}$ the set $\{w \in W \mid Q^H, \bar{\bar{g}}, w \models s\}$ is a member of P in Q^H. This is a consequence of the rule that everything denotes in the Henkin model H.

To see this, consider $V_g s_{\mu\to o} = V_g (\lambda V_{\mu\bullet} s_{\mu\to o} V)$ for variable V_{μ} not occurring free in $s_{\mu\to o}$. By definition of Henkin models this denotes that function from $D_{\mu} = W$ to truth values $D_o = \{T, F\}$ whose value for each argument $w \in D_{\mu}$ is $V_{[w/V_{\mu}]} g (s_{\mu\to o} V_{\mu})$, that is, $s_{\mu\to o}$ denotes the characteristic function $\lambda w \in W \ast V_{[w/V_{\mu}]} g (s_{\mu\to o} V_{\mu}) = T$ which we identify with the set $\{ w \in W \mid V_{[w/V_{\mu}]} g (s_{\mu\to o} V_{\mu}) = T \}$. Hence, we have $\{ w \in W \mid V_{[w/V_{\mu}]} g (s_{\mu\to o} V_{\mu}) = T \} \in D_{\mu\to o}$. By the choice of $P = D_{\mu\to o}$ in the construction of Q^H we know $\{ w \in W \mid V_{[w/V_{\mu}]} g (s_{\mu\to o} V_{\mu}) = T \} \in P$. By Lemma 4.7 we get $\{ w \in W \mid Q^h, \bar{g}, w \models s \} \in P$. □

Theorem 4.9 (Completeness for $QK\pi$ models). Let $s_{\mu\to o}$ be a QMLSTT proposition and let $s = \bar{s}_{\mu\to o}$ be the corresponding QML proposition. If $\models QK\pi s$ then $\models STT (valid s_{\mu\to o})$.

Proof. By contraposition, assume $\not\models STT (valid s_{\mu\to o})$: there is a Henkin model $H = \{ \{ D_o \}_{o \in \mathbb{T}, I} \}$ and a variables assignment g such that $V_g (valid s_{\mu\to o}) = F$. Hence, for some world $w \in D_{\mu}$ we have $V_{[w/W_{\mu}]} g (s_{\mu\to o} W_{\mu}) = F$. By Lemma 4.7 we then get $Q^H, g, w \not\models QK\pi s$ for $s = \bar{s}_{\mu\to o}$ in $QK\pi$ model Q^H for H. By Lemma 4.8 we know that Q^H is actually a $QK\pi$ model. Hence, $\not\models QK\pi s$. □

Our soundness and completeness results obviously also apply to fragments of QML logics.

Corollary 4.10. The reduction of our embedding to propositional quantified multimodal logics (which only allow quantification over propositional variables) is sound and complete.

Corollary 4.11. The reduction of our embedding to first-order multimodal logics (which only allow quantification over individual variables) is sound and complete.

Corollary 4.12. The reduction of our embedding to propositional multimodal logics (no quantification) is sound and complete.

5. Conclusion

We have presented a straightforward embedding of quantified multimodal logics in simple type theory and we have shown that this embedding is sound and complete for $QK\pi$ semantics. This entails further soundness and completeness results of our embedding for fragments of quantified multimodal logics. We have formally explored the natural correspondence between $QK\pi$ models and Henkin models.

Non-quantified and quantified (normal) multimodal logics can thus be uniformly seen as natural fragments of simple type theory and their semantics (except some weak notions such as $QK\pi^-$ models) can be studied from the perspective of the well understood semantics of simple type theory. Vice
versa, via our embedding we can characterize some computationally interesting fragments of simple type theory, which in turn may lead to some powerful proof tactics for higher-order proof assistants.

In experiments we applied the embedding presented in this paper for reasoning within and about combinations of multimodal logics [8]. For example, a formulation of the well known wise men puzzle in quantified multimodal logic can be solved with our theorem prover LEO-II in a few milliseconds. We obtain similar performance results for the verification of meta-properties such as the equivalence of different axiomatizations of modal logic S5. Interestingly, even higher-order model finders such as Nitpick [13] can be fruitfully applied, for example, to verify the consistency of our logic embeddings and their combinations within our framework.

Future work includes further extensions of our embedding to full higher-order modal logics [19,27]. A first suggestion in direction of higher-order modal logics has already been made [10]. This proposal does not yet address intensionality aspects. However, combining it with non-extensional notions of models for simple type theory [9,28] appears a promising direction.

References

[1] Andrews, P.B.: General models and extensionality. J. Symb. Logic 37, 395–397 (1972)
[2] Andrews, P.B.: General models, descriptions, and choice in type theory. J. Symb. Logic 37, 385–394 (1972)
[3] Andrews, P.B.: An Introduction to Mathematical Logic and Type Theory: To Truth Through Proof, 2nd edn. Kluwer, Dordrecht (2002)
[4] Andrews, P.B.: Church’s type theory. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy. Center for the Study of Language and Information, Stanford University (2009). http://plato.stanford.edu/archives/spr2009/entries/type-theory-church/
[5] Andrews, P.B., Brown, C.E.: TPS: a hybrid automatic-interactive system for developing proofs. J. Appl. Logic 4(4), 367–395 (2006)
[6] Armando, A., Baumgartner, P., Dowek, G. (eds.): Automated Reasoning, 4th International Joint Conference, IJCAR 2008, Sydney, Australia, August 12–15. Proceedings, LNCS, vol. 5195. Springer, Berlin (2008)
[7] Benzmüller, C.: Automating access control logic in simple type theory with LEO-II. In: Gritzalis, D., López, J. (eds.) Emerging Challenges for Security, Privacy and Trust, 24th IFIP TC 11 International Information Security Conference, SEC 2009, Pafos, Cyprus, May 18–20. Proceedings, IFIP, vol. 297, pp. 387–398. Springer, Berlin (2009)
[8] Benzmüller, C.: Simple type theory as framework for combining logics. Contest paper presented at the World Congress and School on Universal Logic III (UNILOG’2010), Lisbon, Portugal (2010). http://arxiv.org/abs/1004.5500
[9] Benzmüller, C., Brown, C.E., Kohlhase, M.: Higher order semantics and extensionality. J. Symb. Logic 69, 1027–1088 (2004)
[10] Benzmüller, C., Paulson, L.C.: Exploring properties of normal multimodal logics in simple type theory with LEO-II. In: Benzmüller, C., Brown, C.E., Siekmann,
J., Statman, R. (eds.) Festschrift in Honor of Peter B. Andrews on His 70th Birthday, Studies in Logic, Mathematical Logic and Foundations. College Publications, London (2008)

[11] Benzmüller, C., Paulson, L.C.: Multimodal and intuitionistic logics in simple type theory. Logic J. IGPL 18(6), 881–892 (2010)

[12] Benzmüller, C., Theiss, F., Paulson, L.C., Fietzke, A.: LEO-II—a cooperative automatic theorem prover for higher-order logic. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) Automated Reasoning, 4th International Joint Conference, IJCAR 2008, Sydney, Australia, August 12–15. Proceedings, LNCS, vol. 5195. Springer, Berlin, pp 162–170 (2008)

[13] Blanchette, J.C., Nipkow, T.: Nitpick: a counterexample generator for higher-order logic based on a relational model finder. In: Kaufmann, M., Paulson, L.C. (eds.) First International Conference on Interactive Theorem Proving (ITP 2010), LNCS, vol. 6172, pp. 131–146. Springer, Berlin (2010)

[14] Bull, R.A.: On modal logic with propositional quantifiers. J. Symb. Logic 34(2), 257–263 (1969)

[15] Church, A.: A formulation of the simple theory of types. J. Symb. Logic 5, 56–68 (1940)

[16] Fine, K.: Propositional quantifiers in modal logic. Theoria 36, 336–346 (1970)

[17] Fine, K.: Failures of the interpolation lemma in quantified modal logic. J. Symb. Logic 44(2), 201–206 (1979)

[18] Fitting, M.: Interpolation for first order S5. J. Symb. Logic 67(2), 621–634 (2002)

[19] Fitting, M.: Types, Tableaus, and Gödel’s God. Kluwer, Dordrecht (2002)

[20] Fitting, M., Mendelsohn, R.L.: First-order modal logic. Kluwer, Dordrecht (1998)

[21] Henkin, L.: Completeness in the theory of types. J. Symb. Logic 15, 81–91 (1950)

[22] Hughes, G., Cresswell, M.: A New Introduction to Modal Logic. Routledge, London (1996)

[23] Kaminski, M., Smolka, G.: Terminating tableau systems for hybrid logic with difference and converse. J. Log. Lang. Inf. 18(4), 437–464 (2009)

[24] Kaplan, D.: S5 with quantifiable propositional variables. J. Symb. Logic 35, 355 (1970)

[25] Kremer, P.: On the complexity of propositional quantification in intuitionistic logic. J. Symb. Logic 62(2), 529–544 (1997)

[26] Kripke, S.: A completeness theorem in modal logic. J. Symb. Logic 24(1), 1–14 (1959)

[27] Muskens, R.: Higher order modal logic. In: Blackburn, P., van Benthem, J.F.A.K., Wolter, F. (eds.) Handbook of Modal Logic, vol. 3 (Studies in Logic and Practical Reasoning). Elsevier, New York (2006)

[28] Muskens, R.: Intensional models for the theory of types. J. Symb. Logic 72(1), 98–118 (2007)

[29] Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof Assistant for Higher-Order Logic, LNCS, vol. 2283. Springer, Berlin (2002)

[30] Slind, K., Norrish, M.: A brief overview of HOL4. In: Mohamed, O.A., Muñoz, C., Tahar, S. (eds.) Theorem Proving in Higher Order Logics, TPHOLs 2008, LNCS, vol. 5170, pp. 28–32. Springer, Berlin (2008)
Christoph Benzmüller
Department of Mathematics and Computer Science
Free University Berlin
14195 Berlin, Germany
e-mail: c.benzmueller@googlemail.com

Lawrence C. Paulson
Computer Laboratory
University of Cambridge
Cambridge CB3 0FD, UK
e-mail: lp15@cam.ac.uk

Received: May 10, 2010.
Accepted: April 23, 2012.