Measurement of the Differential Cross Section $d\sigma/d(\cos \theta_t)$ for Top-Quark Pair Production in $p\bar{p}$ Collisions at $\sqrt{s} = 1.96$ TeV

T. Aaltonen,21 S. Amerio,39 D. Amidei,31 A. Anastassov,15 A. Annovi,17 J. Antos,12 G. Apollinari,15 J.A. Appel,15 T. Arisawa,52 A. Artikov,13 J. Asaadi,47 W. Ashmanskas,15 B. Auerbach,2 A. Aurisano,47 F. Azfar,38 W. Badgett,15 T. Bae,25 A. Barbaro-Galtieri,26 V.E. Barnes,43 B.A. Barnett,23 P. Barria,41 P. Bartos,12 M. Bause,39 F. Bedeschi,41 S. Behari,15 G. Bellettini,41 J. Bellinger,54 D. Benjamín,14 A. Beretvas,15 A. Bhatti,45 K.R. Bland,5 B. Blumenfeld,23 A. Boci,14 A. Bodek,44 D. Bortoletto,43 J. Boudreau,42 A. Boveia,11 L. Brigladori,6 C. Bromberg,32 E. Brucken,31 J. Budagov,13 H.S. Budd,44 K. Burket,15 G. Busetto,39 P. Bussey,19 P. Butti,41 A. Buzatu,19 A. Calamba,10 S. Camarda,8 M. Campanelli,28 F. Canelle,11 B. Carls,22 D. Carlsmith,54 R. Carosi,41 S. Carrillo,16 B. Casal,9 M. Casarsa,4 A. Castor,6 6. P. Catastini,20 D. Cauz,48 48 V. Cavaliere,22 M. Cavalli-Sforza,4 A. Cerri,26 L. Corrillo,28 Y.C. Chen,1 M. Chertok,7 G. Chiarelli,41 G. Chlachidze,15 K. Cho,25 D. Chokheli,13 A. Clark,18 C. Clarke,53 M.E. Convery,15 J. Conway,7 M. Corbo,15 M. Cordelli,17 C.A. Cox,7 D.J. Cox,7 M. Cremonesi,41 D. Cruz,47 J. Cuevas,9 R. Culbertson,15 N. d'Aschenzo,15 M. Datta,15 P. de Barbiero,44 L. Demortier,45 M. Deninno,6 M. D'Errico,39 F. Devoto,21 A. Di Canto,44 B. Di Ruza,15 J.R. Dittmann,5 S. Donati,44 M. D'Onofrio,27 M. Dorigo,48 A. Driutti,48 K. Ebina,52 R. Edgar,31 A. Elaginit,49 R. Erbacher,6 S. Errede,22 B. Esfahani,22 J.P. Fernández Ramos,39 R. Field,16 G. Flanagan,15 R. Forrest,7 M. Franklin,20 J.C. Freeman,15 H. Frisch,11 Y. Funakoshi,52 C. Galloni,41 A.F. Garfinkel,43 P. Garosi,41 H. Gerberich,22 E. Gerchtein,15 S. Giagu,46 V. Giakoumopoulou,9 K. Gibson,42 C.M. Ginsburg,15 N. Giokaris,8 P. Giommi,17 G. Giurgiu,23 V. Glagolev,13 D. Glinski,15 M. Gold,34 D. Goldin,47 A. Golossanov,15 G. Gomez,9 G. Gomez-Ceballos,30 M. Gouchar,30 O. González López,29 I. Gorelov,34 A.T. Goshaw,14 K. Goulianos,45 E. Gramellini,6 S. Grinstein,4 C. Grosso-Pilcher,11 R.C. Group,51,15 J. Guimaraes da Costa,20 S.R. Hahn,15 J.Y. Han,44 F. Happacher,17 K. Hara,49 M. Hare,52 R.F. Harr,53 T. Harrington-Taber,15 K. Hatakeyama,5 C. Hays,38 J. Heinrich,40 M. Herndon,54 A. Hocker,15 Z. Hong,47 W. Hopkins,15 S. Hou,11 E.R. Hughes,35 U. Husemann,55 M. Hussein,32 J. Huston,32 G. Introietti,41,11 M. Iorio,40 A. Ivanov,42 E. James,15 D. Jung,10 B. Jayatilaka,15 E.J. Jeon,25 S. Jindariani,15 M. Jones,43 K.K. Joo,25 S.Y. Jun,10 T.R. Junk,15 M. Kambeitz,24 T. Kamon,25 P.E. Karchin,53 A. Kasmi,5 Y. Kato,37 W. Ketchum,11 J. Keung,40 B. Kilminster,15 D.H. Kim,31 H.S. Kim,25 J.E. Kim,25 M.J. Kim,48 S.H. Kim,25 B.Y. Kim,25 Y.K. Kim,11 N. Kimura,52 M. Kirby,15 K. Knoepfel,15 K. Kondo,52 D.J. Kong,25 J. Konigsberg,16 A.V. Kotwal,14 M. Kreps,24 J. Kroll,40 M. Kruse,14 T. Kuhr,24 M. Kurata,49 A.T. Laasanen,43 S. Lammel,15 M. Lancaster,28 K. Lannon,45 G. Latino,41 H.S. Lee,25 J.S. Lee,25 S. Leo,41 S. Leone,41 J.D. Lewis,15 A. Limosini,14 E. Lipeles,40 A. Lister,18 H. Liu,51 Q. Liu,43 T. Liu,15 S. Lockowitz,55 A. Logino,55 D. Lucchesi,39 A. Lucà,17 J. Lueck,24 P. Lujan,26 P. Lukens,15 G. Lungu,45 J. Lys,40 R. Lysak,42 R. Madrak,15 P. Maestro,41 S. Malik,45 G. Mancà,27 A. Manousakis-Katsikakis,3 L. Marchese,46 F. Margaroli,46 O. Marco,44 M. Martinez,4 K. Matera,22 M.E. Mattsson,53 A. Mazzacane,15 P. Mazzanti,6 R. McNulty,27 A. Mehta,27 P. Mehtala,21 C. Mesropian,45 T. Miao,15 D. Miettlicki,31 A. Mitra,1 H. Miyake,39 S. Moed,15 N. Moggi,6 C.S. Moon,45 R. Moore,44 M.J. Morello,44 A. Mukherjee,15 Th. Muller,24 P. Murat,15 M. Mussini,6 J. Nachtman,15 Y. Nagai,49 J. Nagano,52 I. Nakano,36 A. Napier,50 J. Nett,47 C. Neu,51 T. Nigman,42 L. Nodulman,42 S.Y. Noh,25 O. Norniella,22 L. Oakes,38 S.H. Oh,14 Y.D. Oh,25 I. Oksuzian,51 T. Okuasa,37 R. Orava,21 L. Ortolan,45 C. Pagliarone,48 E. Palencia,49 P. Palni,34 V. Papadimitriou,15 W. Parker,54 G. Pauletta,44 M. Paulini,40 C. Paus,30 T.J. Phillips,14 G. Piacentino,41 E. Pianori,40 J. Pilot,7 K. Pitts,22 C. Plager,8 L. Pondrom,54 S. Poproczki,15 K. Potamianos,26 A. Pranko,26 F. Prokoshin,13 F. Ptohos,17 G. Punzi,41 N. Ranjan,43 I. Redondo Fernández,29 P. Renton,38 M. Rescigno,46 G. Restampato,6 L. Ristori,41 A. Robson,19 T. Rodríguez,40 S. Rolli,50 M. Ronzan,41 K. Roser,15 J.L. Rosner,11 F. Ruffini,41 A. Ruiz,9 J. Russ,40 V. Rusi,15 W.K. Sakamoto,44 Y. Sakurai,52 L. Santin,48 K. Sato,49 V. Saveliev,15 A. Sauvy-Navarro,15 P. Schlabach,15 E.E. Schmidt,15 T. Schwarz,31 L. Scodellaro,9 F. Scuri,41 S. Seidel,34 Y. Seiya,37 A. Senemoglu,13 F. Sforza,41 S.Z. Shalhout,7 T. Shears,27 P.F. Shepard,42 M. Shimojima,41 M. Shocchet,11 I. Shreyber-Tecker,33 A. Simonenko,13 K. Silvea,50 J.R. Smith,7 F.D. Snider,15 H. Song,42 V. Sorin,4 R. St. Denis,56 M. Stancari,15 D. Stentz,15 J. Strologas,41 Y. Sudo,49 A. Sukhanov,15 I. Suslov,13 K. Takemasa,29 Y. Takeuchi,49 J. Tand,11 M. Tecchio,31 P.K. Teng,17 J. Thom,15 E. Thomson,40 V. Thukral,47 D. Toback,47 S. Tokar,12 K. Tollefson,32 T. Tomura,49 D. Tonelli,15 S. Torre,17 D. Torretta,15 P. Totaro,39 M. Trovato,41 F. Ukegawa,49 S. Uozumi,25 F. Vázquez,16 G. Vele,15 C. Velidis,15
We report a measurement of the differential cross section, $d\sigma/d(cos\theta_t)$, for top-quark-pair production as a function of the top-quark production angle in proton-antiproton collisions at $\sqrt{s} = 1.96$ TeV. This measurement is performed using data collected with the CDF II detector at the Tevatron, corresponding to an integrated luminosity of 9.4 fb$^{-1}$. We employ the Legendre polynomials to characterize the shape of the differential cross section at the parton level. The observed Legendre coefficients are in good agreement with the prediction of the next-to-leading-order standard-model calculation, with the exception of an excess linear-term coefficient, $a_1 = 0.40 \pm 0.12$, compared to the standard-model prediction of $a_1 = 0.15^{+0.07}_{-0.03}$.

PACS numbers: 14.65.Ha, 11.30.Er, 12.38.Qk

The Collider Detector at Fermilab (CDF) and D0 experiments have measured an anomalously large forward-backward asymmetry (A_{FB}) in top-quark-pair ($t\bar{t}$) hadron

* Deceased

† With visitors from ²University of British Columbia, Vancouver, BC V6T 1Z1, Canada, ⁴Istituto Nazionale di Fisica Nucleare, Sezione di Cagliari, 09042 Monserrato (Cagliari), Italy, ³University of California Irvine, Irvine, CA 92697, USA, ⁵Institute of Physics, Academy of Sciences of the Czech Republic, 182 21, Czech Republic, ⁶CERN, CH-1211 Geneva, Switzerland, ⁷Cornell University, Ithaca, NY 14853, USA, ⁸University of Cyprus, Nicosia CY-1678, Cyprus, ⁹Office of Science, U.S. Department of Energy, Washington, DC 20585, USA, ¹⁰University College Dublin, Dublin 4, Ireland, ¹¹ETH, 8092 Zürich, Switzerland, ¹²University of Fukui, Fukui City, Fukui Prefecture, Japan 910-0017, ¹³Universidad Iberoamericana, Lomas de Santa Fe, México, C.P. 01219, Distrito Federal, ¹⁴University of Iowa, Iowa City, IA 52242, USA, ¹⁵Kinki University, Higashi-Osaka City, Japan 577-8502, ¹⁶Kansas State University, Manhattan, KS 66506, USA, ¹⁷Brookhaven National Laboratory, Upton, NY 11973, USA, ¹⁸Queen Mary, University of London, London, E1 4NS, United Kingdom, ¹⁹University of Melbourne, Victoria 3010, Australia, ²⁰Michigan State University, East Lansing, MI 48824, USA, ²¹Sapienza Università di Roma, I-00185 Roma, Italy, ²²Tufts University, Medford, Massachusetts 02155, USA, ²³University of Virginia, Charlottesville, Virginia 22906, USA ²⁴Wayne State University, Detroit, Michigan 48201, USA, ²⁵University of Wisconsin, Madison, Wisconsin 53706, USA, ²⁶Yale University, New Haven, Connecticut 06520, USA.

(Dated: May 7, 2014)

The Collider Detector at Fermilab (CDF) and D0 experiments have measured an anomalously large forward-backward asymmetry (A_{FB}) in top-quark-pair ($t\bar{t}$) hadron production. The latest measurements are $A_{FB} = (16.4 \pm 4.5)\%$ from CDF [1], and $A_{FB} = (19.6 \pm 6.5)\%$ from D0 [2]. This asymmetry is the manifestation of a charge asymmetry in $t\bar{t}$ production via the CP-even [3] initial state at the Fermilab Tevatron proton-antiproton (pp) collider. The standard model (SM) [4] predicts a small forward-backward asymmetry, $<8.8 \pm 0.6\%$, at next-to-leading order (NLO) in the strong coupling constant, α_s [5, 6]. The tension between the Tevatron measurements and the predictions has stimulated new work on the SM calculation [7–10] and on possible non-SM sources for the asymmetry [11]. The charge asymmetry is also under study at the LHC, but any effects are expected to be much smaller due to the forward-backward symmetric (proton-proton) initial state [12], and the results are so far inconclusive [13, 14].

We measure the differential cross section, $d\sigma/d(cos\theta_t)$, where θ_t is the angle between the top-quark momentum and the incoming proton momentum as measured in the $t\bar{t}$ center-of-mass frame. The inclusive measurements of A_{FB} are equivalent to a two-bin measurement of this differential cross section, with one bin forward (cos$\theta_t > 0$) and one bin backward (cos$\theta_t < 0$). The full shape of the differential cross section provides additional information, and has the potential to discriminate among various calculations of the SM as well as models of non-SM physics. One of the aims of this study is to identify what aspects of the shape of $d\sigma/d(cos\theta_t)$ explain the A_{FB}.

We characterize the shape of $d\sigma/d(cos\theta_t)$ by employing the Legendre polynomials [15], which are fundamental to the general theory of scattering of particles in the present spin-averaged case [16]. The orthonormality of these
polynomials on the interval $[-1, 1]$ allows a unique decomposition of the cross section into a Legendre polynomial series. We write
\begin{equation}
\frac{d\sigma}{d(\cos \theta_t)} = \sum_{\ell=0}^{\infty} a_\ell P_\ell(\cos \theta_t),
\end{equation}
where P_ℓ is the Legendre polynomial of degree ℓ, and a_ℓ is the Legendre moment of degree ℓ. Because the experimental sensitivity degrades as ℓ increases, we restrict the sum to $\ell \leq 8$. Since the moment a_0 contains only the total cross section, we scale all the moments so that $a_0 = 1$.

We study the full sample of top-quark-pair candidate events in the decay channel with a single lepton in the final state collected by the CDF experiment during Run II of the Fermilab Tevatron. The CDF II detector is a general purpose particle detector employing a large charged-particle tracking volume inside a solenoidal magnetic field coaxial with the beam direction, surrounded by calorimeters and muon detectors [23, 24]. The collected data correspond to an integrated luminosity of 9.4 fb^{-1} of $p\bar{p}$ collisions. The general features of the event selection requirements are as follows. We require exactly one well-reconstructed charged-lepton candidate (electron or muon) with $p_T > 20 \text{ GeV}/c$, an imbalance in the total event transverse momentum (missing transverse energy [25]) $E_T > 20 \text{ GeV}$, and four or more calorimeter-energy clusters (jets [26]), three with $E_T > 20 \text{ GeV}$ and the fourth with $E_T > 12 \text{ GeV}$, in the central part of the detector ($|\eta| < 2.0$). We further require that at least one of the jets be identified (tagged) as having a displaced vertex resulting from the decay of a bottom-quark meson, which is produced from the dominant top-quark decay $t \rightarrow W b$. Further details on the online and offline event selection requirements are in [1]. The resulting data set is enriched in $t\bar{t}$ events, but it contains non-$t\bar{t}$ background events as well, dominated by events in which a W boson is produced in association with hadron jets. The rates and differential distributions of all the sources of non-$t\bar{t}$ backgrounds are well understood [1]. We expect to observe 2750 ± 427 $t\bar{t}$ events and 1026 ± 210 non-$t\bar{t}$ background events, and we observe 3864 $t\bar{t}$ candidate events.

We reconstruct the top quark and the top anti-quark from their decay products, using the measured momentum of the lepton and the four jets, as well as the missing transverse energy. We fit each possible jet-to-parton assignment to the $t\bar{t}$ hypothesis. We require that two of the jets be consistent with the decay of a W boson of mass $80.4 \text{ GeV}/c^2$ and that the lepton and missing transverse energy clusters...
energy also be consistent with the decay of a W boson. We further require that each reconstructed W boson, when paired with one of the remaining jets, be consistent with the decay of a top quark of mass $172.5 \text{ GeV}/c^2$ [27]. The jet-to-parton assignment which is most consistent with this $t\bar{t}$ hypothesis is used to calculate the top-quark production angle as measured in the detector, $\cos \theta^\text{jet}_t$, for each event.

We exploit the orthonormality of the Legendre polynomials to estimate the Legendre moments without performing a fit. Given a distribution $f(\cos \theta_i)$, the Legendre moments of f are

$$a_\ell = \frac{2\ell + 1}{2} \int_0^1 d(\cos \theta) f(\cos \theta) P_\ell(\cos \theta). \quad (3)$$

The data are described by an empirical distribution [28], $f(\cos \theta^\text{det}_i) = \sum_i \delta(\cos \theta^\text{det}_i - \cos \theta^\text{det}_i)$, where $\delta(x)$ is the Dirac δ function and the index i runs over the events in the data set. Using this distribution in Eq. (3) greatly simplifies the integration due to the Dirac delta functions, so the moments of the observed $\cos \theta^\text{det}_i$ distribution are

$$a^\text{det}_\ell = \frac{2\ell + 1}{2} \sum_i P_\ell(\cos \theta^\text{det}_i). \quad (4)$$

Then, the estimate of the moments is

$$a_\ell = \sum K_{\ell m} \left(\sum_i P_m(\cos \theta^\text{det}_{i,i}) - a^\text{BG}_m \right), \quad (5)$$

where a^BG_m represents the Legendre moments of the distribution of $\cos \theta^\text{det}_i$ predicted by the background model, and $K_{\ell m}$ is a correction matrix that accounts for the finite resolution of the detector and for the non-uniform detector acceptance and selection efficiency. The matrix K is developed from a sample of fully-simulated $t\bar{t}$ Monte Carlo events generated by the POWHEG NLO SM generator [29]. It describes the response of the detector and the effects of the event selection requirements. No smoothing or regularization is applied in this correction procedure, in contrast to the correction procedure of [1].

The statistical uncertainties on the moments are given by a root-mean-square covariance matrix including correlations. In order to estimate the effect from each of several sources of systematic uncertainty in the model assumptions, we vary the corresponding nuisance parameter that alters either the background prediction or correction matrix, and then perform the full correction procedure again. The resulting parton-level moments estimate is compared to the unvaried moments, and then the covariance matrix describing the uncertainty on the measurement is

$$\sigma_{m\ell} = \delta_m \delta_\ell$$

where $\delta_m \equiv a^\text{varied}_m - a^\text{nominal}_m$. We study systematic shifts due to the uncertainty in the jet-energy scale, the rate of the backgrounds, the shape of the backgrounds, the modeling of parton showering, the modeling of color reconnection, the modeling of initial- and final-state radiation, and the parton distribution functions of the proton and antiproton. We sum the resulting covariance matrices and add them to the statistical covariance matrix to obtain a covariance matrix that fully describes the uncertainty of the measurement of the parton-level Legendre moments. The eigenvalues and eigenvectors of the covariance matrix [30] can be used to calculate a χ^2 goodness-of-fit statistic with eight degrees of freedom in order to perform fits to the data.

![CDF Run II $f \bar{L} = 9.4 \text{ fb}^{-1}$](image)

FIG. 2. Measured Legendre moments $a_1 - a_4$, with theory predictions overlaid.

ℓ	a_ℓ (obs)	a_ℓ (pred)
1	0.40±0.12	0.15±0.03
2	0.44±0.25	0.28±0.03
3	0.11±0.21	0.030±0.007
4	0.22±0.28	0.035±0.008
5	0.11±0.33	0.005±0.002
6	0.24±0.40	0.006±0.003
7	−0.15±0.48	−0.003±0.001
8	0.16±0.65	−0.0019±0.0003

TABLE I. Measured Legendre moments $a_1 - a_4$, with NLO SM prediction. The uncertainty on the measured moments is the total uncertainty from statistical and systematic sources. The uncertainty on the prediction reflects reasonable variations in the renormalization scale [5].

The parton-level Legendre moments are shown in Fig. 2 and in Table I. We observe good agreement within the uncertainties with the NLO SM prediction for moments $a_2 - a_4$, but a_1 is in excess of the prediction. That is, a mild excess is observed in the differential cross section in the term linear in $\cos \theta_t$, while all other terms are as predicted by the SM. The LO SM prediction is strongly disfavored by the linear term, with a significance of more than three standard deviations. The benchmark t-channel model, ‘Z’ 200”, is disfavored by a_2 and a_3. The benchmark s-
channel model, “Octet A”, is in good agreement with the data.

![Graph showing cross section data and theoretical predictions](image)

FIG. 3. Absolute contributions of the Legendre moments to the A_{FB}, with theory predictions overlaid. The lines and symbols are the same as in Fig. 2. The inset shows the 1-, 2-, and 3-standard-deviation uncertainty ellipses.

We determine the contribution of each Legendre moment to the A_{FB} from the inherent asymmetry of each polynomial (Fig. 3). The observed A_{FB} (19.9 ± 5.7) % is completely dominated by the excess linear term, $a_2 \cos \theta$, which contributes (20.1 ± 6.1) %. The A_{FB} contributed by the non-linear asymmetric terms a_3, a_5, and a_7 is negligible (-0.2 ± 3.1) %, and is consistent with the SM prediction (7.3 % from the linear term, -0.3 % from the non-linear terms). The correlation between the measurements of A_{FB} from the linear and non-linear terms is -29 %.

![Graph showing cross section data and theoretical predictions](image)

FIG. 4. Fraction of cross section accruing in 10 bins of $\cos \theta$, obtained by integrating the series of Legendre polynomials over the width of each bin.

A more traditional picture of the differential cross section (Fig. 4) is obtained by integrating the Legendre series over intervals (bins) in $\cos \theta$. This shows the fraction of the total cross section that accrues in each bin. The uncertainties are strongly correlated, and they are dominated by the large uncertainties on the high-degree Legendre moments.

Because the non-linear moments, a_2-a_7, are in good agreement within the uncertainties with the NLO SM prediction, we may obtain a more precise, but model-dependent, estimate of the linear term by explicitly assuming that the non-linear moments are as predicted by the NLO SM calculation. Using the covariance matrix and the fitting procedure described in [30], we fit to the measured moments, taking the NLO SM prediction for the non-linear moments with their scale uncertainties as a prior assumption, obtaining $a_1 = 0.39 \pm 0.11$ (including statistical and systematic uncertainty). Through the correlations among the measured moments, this reduces the uncertainty on a_1 by about 10 % while shifting the central value less than 3 %. The resulting curve is also shown in Fig. 4.

In conclusion, we have presented the first measurement of the top-quark-pair production differential cross section, $d\sigma/d(\cos \theta_t)$, in pp collisions at $\sqrt{s} = 1.96$ TeV as a function of the production angle of the top quark. In order to probe the origin of the top-quark-production asymmetry, we decompose the angular form into Legendre polynomials. We observe that the coefficient of the $\cos \theta_t$ term in the differential cross section, $a_1 = 0.40 \pm 0.12$, is in excess of the NLO SM prediction, $0.15^{+0.07}_{-0.03}$, while the remainder of the differential cross section is in good agreement within the uncertainties with the NLO SM prediction. The top-quark forward-backward asymmetry is thus completely dominated by the linear term. The result constrains t-channel explanations of the asymmetry and favors asymmetry models with strong s-channel components.

We thank T. Tait, S. Jung, W. Bernreuther, and Z.-G. Si for their assistance in preparing the theoretical models and calculations used in this Letter, and T. Rizzo for helpful conversations. We also thank the development teams of scipy, pytables, matplotlib, and ipython for their useful tools [31].

We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium für Bildung und Forschung, Germany; the Korean World Class University Program, the National Research Foundation of Korea; the Science and Technology Facilities Council and the Royal Society, UK; the Russian Foundation for
Basic Research; the Ministerio de Ciencia e Innovación, and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency; the Academy of Finland; the Australian Research Council (ARC); and the EU community Marie Curie Fellowship contract 302103.

[1] T. Aaltonen et al. (CDF Collaboration), Phys. Rev. D 87, 092002 (2013).
[2] V. M. Abazov et al. (D0 Collaboration), Phys. Rev. D 84, 112005 (2011).
[3] CP is the simultaneous transformation of charge conjugation and parity.
[4] S. L. Glashow, Nucl. Phys. 22, 579 (1961); S. Weinberg, Phys. Rev. Lett. 19, 1264 (1967); A. Salam, in Elementary Particle Theory, edited by N. Svartholm (Almquist and Wiksell, Stockholm, 1968) p. 367.
[5] W. Bernreuther and Z.-G. Si, Phys. Rev. D 86, 034026 (2012); W. Bernreuther (private communication).
[6] J. H. Kuhn and G. Rodrigo, Phys. Rev. Lett. 81, 49 (1998).
[7] S. J. Brodsky and X.-G. Wu, Phys. Rev. D 85, 114040 (2012).
[8] W. Hollik and D. Pagani, Phys. Rev. D 84, 093003 (2011).
[9] J. H. Kuhn and G. Rodrigo, J. High Energy Phys. 01 (2012) 063.
[10] A. V. Manohar and M. Trotta, Phys. Lett. B 711, 313 (2012).
[11] J. F. Kamenik, J. Shu, and J. Zupan, Eur. Phys. J. C 72, 2102 (2012).
[12] E. L. Berger, Argonne National Laboratory Report ANL-HEP-CP-12-87, 2013 (unpublished).
[13] S. Chatrchyan et al. (CMS Collaboration), Phys. Lett. B 717, 129 (2012).
[14] G. Aad et al. (ATLAS Collaboration), Euro. Phys. J. C 72, 2039 (2012).
[15] We normalize the Legendre polynomials so that
\[\frac{2i+1}{2} \int_{-1}^{1} dx P_i(x) P_{i'}(x) = \delta_{i,i'}, \]
where \(\delta_{i,i'} \) is the Kronecker delta.
[16] M. Jacob and G. C. Wick, Ann. Phys. (N.Y.) 7, 404 (1959); 281, 774 (2000).
[17] T. Sjöstrand, S. Mrenna, and P. Skands, J. High Energy Phys. 05 (2006) 026, we use pythia version 6.216.
[18] T. Aaltonen et al. (CDF Collaboration), Phys. Rev. D 83, 112003 (2011).
[19] S. Jung, A. Pierce, and J. D. Wells, Phys. Rev. D 83, 114039 (2011).
[20] M. I. Gresham, I.-W. Kim, and K. M. Zurek, Phys. Rev. D 83, 114027 (2011).
[21] S. Mandelstam, Phys. Rev. 112, 1344 (1958).
[22] J. Alwall, P. Demin, S. de Visscher, R. Frederix, M. Herquet, F. Maltoni, T. Plehn, D. L. Rainwater, and T. Stelzer, J. High Energy Phys. 09 (2007) 028.
[23] D. E. Acosta et al. (CDF Collaboration), Phys. Rev. D 71, 032001 (2005).
[24] We use a cylindrical coordinate system with the origin at the center of the CDF detector, \(z \) pointing in the direction of the proton beam, \(\theta \) and \(\phi \) representing the polar and azimuthal angles, respectively, and pseudorapidity defined by \(\eta = -\ln \tan(\theta/2) \). The transverse momentum \(p_T \) (transverse energy \(E_T \)) is defined to be \(p \sin \theta \) (\(E \sin \theta \)).
[25] The calorimeter missing \(E_T \) (\(\vec{E}_T \)(cal)) is defined by the sum over calorimeter cells, \(\vec{E}_T \)(cal) = - \sum_i \vec{E}_i \hat{n}_i \), where \(i \) is calorimeter cell number with \(|\eta| < 3.6 \), \(\hat{n}_i \) is a unit vector perpendicular to the beam axis and pointing at the \(i \)th calorimeter cell. The reconstructed missing energy, \(\vec{E}_T \), is derived by subtracting from \(\vec{E}_T \)(cal) the energies associated with components of the event not registered by the calorimeter, such as muons and jet energy adjustments. \(\vec{E}_T \)(cal) and \(E_T \) are the scalar magnitudes of \(\vec{E}_T \)(cal) and \(\vec{E}_T \), respectively.
[26] A. Bhatti et al., Nucl. Instrum. Methods A 566, 375 (2006).
[27] A. Abulencia et al. (CDF Collaboration), Phys. Rev. D 73, 032003 (2006).
[28] A. Kolmogorov, G. Ist. Ital. Attuari 4, 83 (1933); V. I. Smirnov, Byull. Moskov. Gos. Univ. Ser. A 2, 2 (1938).
[29] S. Frixione, P. Nason, and G. Ridolfi, J. High Energy Phys. 09 (2007) 126.
[30] See Supplemental Material at [URL will be inserted by publisher] for the eigenvalues and eigenvectors of the covariance matrix describing the correlations and uncertainty of this measurement.
[31] E. Jones et al., “SciPy: Open source scientific tools for Python,” (2001), http://www.scipy.org/; F. Al- ted et al., “PyTables: Hierarchical datasets in Python,” (2002), http://www.pytables.org/; J. D. Hunter, Comput. Sci. Eng. 9, 90 (2007), http://matplotlib.org; F. Pérez and B. E. Granger, Comput. Sci. Eng. 9, 21 (2007), http://ipython.org.