Gossypium hirsutum is also called upland cotton or Mexican cotton. It is the most widely cultivated species of cotton in the whole world. Globally, about 90% of all cotton production is of cultivars derived from this species. Some genetic parameters were evaluated for their potential utilization via selection in seed cotton yield improvement. Significant positive genetic correlations were estimated for monopodial branches per plant ($r_g = 0.9722^{**}$), sympodial branches per plant ($r_g = 0.7098^{**}$), sympodial branch length ($r_g = 0.617^{**}$), bolls per plant ($r_g = 0.8271^{**}$), boll weight ($r_g = 0.8065^{**}$), sympo-boll distance ($r_g = 0.6507^{**}$), GOT% ($r_g = 0.7541^{**}$), staple length ($r_g = 0.9199^{**}$), and fiber strength ($r_g = 0.7534^{**}$) with seed cotton yield. A path analysis of all the yield components under study revealed strong positive direct effects of monopodial length (1.1556), sympo-boll distance (0.8173) and staple length (0.7633) while plant height exerted a highly strong direct negative effect (-1.2096) on yield. It is concluded that a direct selection based on parameters viz, Monopodial branch length and sympo-boll distance, and staple length is effective, whereas, monopodial branch length, and sympodial branch length are good selection indicators via bolls per plant for yield improvement in cotton.
Unfunded studies
Enter: The author(s) received no specific funding for this work.

Funded studies
Enter a statement with the following details:
• Initials of the authors who received each award
• Grant numbers awarded to each author
• The full name of each funder
• URL of each funder website
• Did the sponsors or funders play any role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript?
• NO - Include this sentence at the end of your statement: The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
• YES - Specify the role(s) played.

* typeset

Competing Interests

Use the instructions below to enter a competing interest statement for this submission. On behalf of all authors, disclose any competing interests that could be perceived to bias this work—acknowledging all financial support and any other relevant financial or non-financial competing interests.

This statement is required for submission and will appear in the published article if the submission is accepted. Please make sure it is accurate and that any funding sources listed in your Funding Information later in the submission form are also declared in your Financial Disclosure statement.

View published research articles from PLOS ONE for specific examples.

The authors have declared that no competing interests exist.
**NO authors have competing interests**

Enter: *The authors have declared that no competing interests exist.*

**Authors with competing interests**

Enter competing interest details beginning with this statement:

*I have read the journal’s policy and the authors of this manuscript have the following competing interests: [insert competing interests here]*

---

**Ethics Statement**

Enter an ethics statement for this submission. This statement is required if the study involved:

- Human participants
- Human specimens or tissue
- Vertebrate animals or cephalopods
- Vertebrate embryos or tissues
- Field research

Write "N/A" if the submission does not require an ethics statement.

General guidance is provided below. Consult the submission guidelines for detailed instructions. **Make sure that all information entered here is included in the Methods section of the manuscript.**
### Format for specific study types

#### Human Subject Research (involving human participants and/or tissue)
- Give the name of the institutional review board or ethics committee that approved the study
- Include the approval number and/or a statement indicating approval of this research
- Indicate the form of consent obtained (written/oral) or the reason that consent was not obtained (e.g. the data were analyzed anonymously)

#### Animal Research (involving vertebrate animals, embryos or tissues)
- Provide the name of the Institutional Animal Care and Use Committee (IACUC) or other relevant ethics board that reviewed the study protocol, and indicate whether they approved this research or granted a formal waiver of ethical approval
- Include an approval number if one was obtained
- If the study involved non-human primates, add additional details about animal welfare and steps taken to ameliorate suffering
- If anesthesia, euthanasia, or any kind of animal sacrifice is part of the study, include briefly which substances and/or methods were applied

#### Field Research
Include the following details if this study involves the collection of plant, animal, or other materials from a natural setting:
- Field permit number
- Name of the institution or relevant body that granted permission

### Data Availability
Authors are required to make all data underlying the findings described fully available, without restriction, and from the time of publication. PLOS allows rare exceptions to address legal and ethical concerns. See the PLOS [Data Policy](https://journals.plos.org/plospathogens/sdata) and [FAQ](https://journals.plos.org/plospathogens/sdata) for detailed information.

| Yes - all data are fully available without restriction |  |
A Data Availability Statement describing where the data can be found is required at submission. Your answers to this question constitute the Data Availability Statement and will be published in the article, if accepted.

*Important:* Stating ‘data available on request from the author’ is not sufficient. If your data are only available upon request, select ‘No’ for the first question and explain your exceptional situation in the text box.

Do the authors confirm that all data underlying the findings described in their manuscript are fully available without restriction?

| Yes |
|-----|

Describe where the data may be found in full sentences. If you are copying our sample text, replace any instances of **XXX** with the appropriate details.

- If the data are held or will be held in a public repository, include URLs, accession numbers or DOIs. If this information will only be available after acceptance, indicate this by ticking the box below. For example: *All **XXX** files are available from the **XXX** database (accession number(s) **XXX**, **XXX**).*
- If the data are all contained within the manuscript and/or Supporting Information files, enter the following: *All relevant data are within the manuscript and its Supporting Information files.*
- If neither of these applies but you are able to provide details of access elsewhere, with or without limitations, please do so. For example:

  *Data cannot be shared publicly because of [**XXX**]. Data are available from the **XXX** Institutional Data Access / Ethics Committee (contact via **XXX**) for researchers who meet the criteria for access to confidential data.*

  *The data underlying the results presented in the study are available from (include the name of the third party)}
| Additional data availability information: |
|------------------------------------------|

- This text is appropriate if the data are owned by a third party and authors do not have permission to share the data.
PATH ANALYSIS BASED ON GENETIC ASSOCIATION OF YIELD COMPONENTS IN UPLAND COTTON VARIETIES METHODOLOGY USED IN SCREENING AND EVALUATION OF TWO DIVERSE BREEDING POPULATIONS WITH THE RELEASE OF RH-662 AND RH-668

Author Detail:

Mussarat Shaheen¹, Muhammad Yousaf Ali², *, Amjad Bashir³, Sagheer Atta³

1- Cotton Research Institute, Khanpur
2- Rural Education and Economic Development Society (REEDS) Pakistan
3- Department of plant protection faculty of agricultural sciences, Ghazi University, Dera Ghazi Khan

First Author: Dr. Mussarat Shaheen
Corresponding Author: Dr. Muhammad Yousaf Ali
Corresponding Author E-Mail: abashir@gudgkedu.pk, yousaf_arsh@yahoo.com

ABSTRACT

Gossypium hirsutum is also called upland cotton or Mexican cotton. It is the most widely cultivated species of cotton in the whole world. Globally, about 90% of all cotton production is of cultivars derived from this species. Some genetic parameters were evaluated for their potential utilization via selection in seed cotton yield improvement. Significant positive genetic correlations were estimated for monopodial branches per plant (rg=0.9722**), sympodial branches per plant (rg=0.7098**), sympodial branch length (rg=0.617**), bolls per plant (rg=0.8271**), boll weight (rg=0.8065**), sympo-boll distance (rg=0.6507**), GOT% (rg=0.7541**), staple length (rg=0.9199**), and fiber strength (rg=0.7534**) with seed cotton yield. A path analysis of all the yield components under study revealed strong positive direct effects of monopodial length (1.1556), sympo-boll distance (0.8173) and staple length (0.7633) while plant height exerted a highly strong direct negative effect (-1.2096) on yield. It is concluded that a direct selection based on parameters viz, Monopodial branch length and sympo-boll distance, and staple length is effective, whereas, monopodial branch length, and sympodial branch length are good selection indicators via bolls per plant for yield improvement in cotton.

KEYWORDS: Path analysis, genetic correlations, breeding population
INTRODUCTION

*Gossypium hirsutum* also known as upland cotton (Tyagi, Gore *et al.* 2014) or Mexican cotton, is the most widely planted species of cotton in the world. Globally, about 90% of all cotton production is of cultivars derived from this species. Most commonly short staple cotton is the characteristic of upland cotton to overcome this scientist are working to get extra-long staple in upland cotton (Smith, Hague *et al.* 2008). Upland cotton is primarily used in making denim jeans as well as flannel cloth (McLoughlin, Hayes *et al.* 2015). Scientist are working on genetic variations in upland cotton to overcome different issues and challenges like salt tolerance (Xu, Guo *et al.* 2021), fiber traits (Guo, Su *et al.* 2021), resistance against bacterial blight (Elassbli, Abdelraheem *et al.* 2021) and insect resistance (Abdelraheem, Kuraparthty *et al.* 2021). Presence of different secondary endosymbionts in whitefly also determine the virus infection severity (Ali, Amin *et al.* 2016). A part from adoption of water saving techniques like drip irrigation and use of sprinkler systems to cultivate cotton (Ali, Saleem *et al.* 2020) new varieties of upland cotton should be developed through breeding and genetic modification which are drought tolerant. Though whitefly control by use of RNAi against candidate genes is found quite effective (Vyas, Raza *et al.* 2017) some varieties which are tolerant to attack of whitefly should be raised through breeding. Some new varieties which are high yielding and are adopted to severe temperature zone are being introduced like RH-647 (Shaheen, Yasin *et al.* 2021). A pleotropic gene effect could embrace a change in one character that is most often accompanied by changes in the expression of several others traits either in same direction or antagonistic way therefore, deriving a basic knowledge of genetic perspectives of various traits, magnitude and direction of reciprocal genetic association is very important (Salahuddin, Abro *et al.* 2010; Tabasum, Aziz *et al.* 2012). Cotton breeders forfeit great efforts and breeding approaches through illustrating genetic basis of gene mechanism, inherited association of either individual per collaborative impact of various agronomic and economic traits for genetic manipulations in breeding population (Khan and Qasim 2012). Practically, simple correlation does not explain the causes, origin and pathway of interrelationship of genetic parameters for depiction of effective
selection parameters for evaluation of breeding material (Ekinci, Basbag et al. 2010) (Méndez-Natera, Rondón et al. 2012). Seed cotton yield is polygenic and highly intricate trait for improvement is under collaborative impact of various quantitative characters association hence, a path coefficient analysis helps to measure and engrave the direct and indirect effects of various component traits for decisive evaluation of yield component contribution to economic yield (Simon, Bello et al. 2010) (Irum, Tabasum et al. 2011) (Tabasum, Aziz et al. 2012).

Several cotton breeders previously worked out the direct and indirect effect of various plant traits in yield improvement. Asad and coworker in 2002 estimated genetic correlations of various economic traits with yield and reported positive and significant genotypic correlation of staple length, lint% and fiber fineness with yield and strong direct effects of lint%, staple length and fiber fineness on yield (Asad, Azhar et al. 2002). In 2004 significant positive genetic correlation of boll per plant with seed cotton yield and direct contribution bolls per plant and sympodial branches per plant manifested maximum positive direct effect on seed cotton yield were estimated (Rauf, Khan et al. 2004). Highly significant positive correlation of boll weight, boll per plant, plant height and seed index with seed cotton yield and maximum direct effect of boll weight and seed index to yield were also reported (Al-Bayaty 2005). Another study revealed a positive and highly significant correlation of sympodial branches per plant, bolls per plant, boll weight, plant height and yield (Karademir, Karademir et al. 2010). Genetic correlations and path coefficient analysis for seed oil, yield and fiber quality traits in *Gossypium hirsutum* L were studied and revealed positive significant correlation with number of sympodial branches per plants, bolls per plant, boll weight and GOT % with yield and estimated a positive direct effect exerted by boll weight and sympodial branches per plant on seed cotton yield (Ashokkumar and Ravikesavan 2010). Ekinci *et al.*, in 2010 reported the significant positive correlation positive direct effect of sympodial branches per plant, bolls per plant and boll weight and negative correlation of monopodial branches per plant with seed cotton yield. Moreover, it was suggested that monopodial branches per plant, sympodial branches per plant, bolls per plant and boll weight as good indicators of effective selection in cotton breeding programs. In correlations and path analysis of fifteen genotypes and six upland cotton traits, Salahuddin *et al.*, 2010 reported positive
correlation of sympodial branches per plant, bolls per plant, boll weight, GOT % and lint index to yield and strong positive direct effect of bolls per plant and boll weight on seed cotton yield. Positive significant correlation of bolls per plant, sympodial branches per plant, plant height, lint index and boll weight to yield was also studied (Thiyagu, Nadarajan et al. 2010). Positive correlation and maximum direct effects of sympodial branches per plant and boll weight on yield was studied (Méndez-Natera, Rondón et al. 2012).

MATERIALS AND METHODS

Experiment was planned out in complete Randomized Block Design (RCBD) with three replications. 34 genotypes of a breeding population were grown in field conditions by two successive years of 2019 and 2020. Each Plot area sown consist of 28×10 ft² separated with a path of 5ft were sown at beds with R×R distance and P× P distance of 9 inch throughout season maintaining of all the recommended agronomic practices of fertilizer application, irrigation and crop protection measures that were followed from sowing till maturity and harvesting. On harvesting of mature crop data were recorded in each entry for 25 randomly selected plants on crop maturity for recording of data and agronomic data for monopodial branches per plant (MBP), monopodial branch length (MBL), sympodial branches per plant (SBP), sympodial branch length (SBL), sympo-boll distance, (SBD), bolls per plant (BP) Plant height and 5o Boll weight. Means were computed in each replication for each entry. The seed cotton samples of 50 bolls of all the plants in each entry were subjected to ginning by a single roller electrical gin in the laboratory on individual plant basis. After ginning of 50g seed-cotton, ginning out turn (GOT) % of samples were estimated. Lint samples were subjected to further fiber traits like staple length (SL), fiber strength (tpsi), (FS) and fiber fineness (FF) micronaire by using spinlab ® HVI-900 in the Cotton Research Station (CRS) Multan, Pakistan. Means of the replicated form of recorded data computed simply generating in Microsoft Office® 2007 were in turn subjected to analysis of variance using MSTAT-C® statistical software. From mean values of each character, genotypic and phenotypic coefficients of variation were computed from standard statistical procedures as shown in (Table1). Fisher’s F-test was applied to test the significance of variability of traits among 34
genotypes by computing Fisher’s test value at \( p \leq 0.01 \) and \( p \leq 0.05 \) probability in the experiment. Phenotypic correlations among traits were calculated from mean values and genetic variance was obtained from the combined analysis of variance for each replication. The genetic and phenotypic components of correlation were determined to establish the association among all the characters \( \textit{vis a vis} \) to seed cotton yield as shown in (Table 2). The genetic correlations were further subjected to derive direct, residual and indirect influence of each character towards plant yield as shown in (Table 3).

**Results**
Analysis of Variance (ANOVA) revealed highly significant differences \( p \leq 0.01 \) and \( p \leq 0.05 \) for monopodial branches per plant; monopodial length, sympodial branches per plant, sympodial length, plant height, bolls per plant, boll weight, sympo-boll distance, GOT\%, fiber fineness, fiber strength and finally yield were evaluated for significant variations exist among the genotypes of breeding population as shown in (Table 1).

**Coefficients of Genetic correlations**
The estimated phenotypic correlation coefficients were comparatively lower in magnitude than genotypic correlation for their corresponding coefficients of correlation. Monopodial branches per plant was estimated to be strongly and significantly correlated with monopodial branch length as \( (rg=0.9410^{**}) \), bolls per plant \( (0.6722^{**}) \) with yield \( (rg=0.9722^{**}) \), while it was estimated to be strongly negatively correlated with GOT\% \( (rg=-0.8013^{**}) \), fiber strength \( (rg=-0.7303^{**}) \), and moderately with plant height as \( (rg=-0.3969) \) while negligible association with all other characters under investigation as shown in (Table 2). Monopodial branch length was estimated to be positively correlated with plant height as \( (rg=0.3338) \) and seed cotton yield as \( (rg=0.2283) \) and moderate negative association of the character with number of bolls per plant \( (rg=-0.2709) \) as shown in (Table 2). Sympodial branches per plant was estimated to impend a positive genetic association with other economic traits like sympodial branch length \( (rg=0.3991) \), bolls per plant \( (rg=0.5422) \) and seed cotton yield as \( (rg=0.7098^{**}) \), while highly significant negative genetic correlation plant height as \( (rg=-0.6543) \), and fiber strength was \( (rg=-0.9.106^{**}) \) wile exhibited a negligible association with all other characters
under investigation as shown in (Table 2). Sympodial branch length exhibit positive moderate genetic correlation with plant height was (rg=0.2769), fiber strength as (rg=0.2851), and significant positive correlation with bolls per plant (rg=0.5917), and seed cotton yield as (rg=0.617**), whereas negligible association with all other characters under investigation as shown in (Table 2). As far as plant height and traits are concerned it exhibited negligible and genetic associations with all traits understudy and finally bolls per plant exerted a positive correlation with seed cotton yield (rg=0.8271**) as shown in (Table 2). The boll weight was estimated to exhibit a positive association with sympo-boll distance as (rg=0.26152), with GOT% as (rg=0.2969), staple length (rg=0.3543*). Finally, it possessed significant positive correlation with seed cotton yield as (rg=0.8065**), while a significant negative association of boll weight with fiber strength (rg= 0.6837**) as shown in (Table 2). Sympo-boll distance exerted moderate positive correlation with GOT % (rg=0.2763), and highly significant positive association with yield as (rg=0.6507**), and strong negative association with fiber strength (rg=-0.5386**) as shown in (Table 2). As far as GOT% exhibit a strong positive association to seed cotton yield as (rg=0.7541**) and significant negative association of the character under inference with fiber strength as (rg=-0.4458*) shown in (Table 2). Staple length has been estimated for strong positive genetic correlation with fiber strength as (rg=0.7534**) and seed cotton yield as (rg=0.9199**). Whereas, fiber finesse has moderate negative genetic correlation to seed cotton yield (rg=-0.2663) and negligible association with fiber strength as shown in (Table 2) and fiber strength was estimated to be significantly and strongly associated to seed cotton yield (rg=0.8778**) is illustrated in (Table 2).

Path analysis of yield components
Estimated genetic correlations were analyzed by partial regression equation to estimate direct and indirect effect of each individual trait understudy towards finally dependent trait like yield. Path analysis revealed logical and conclusive results of the study as monopodial branches per plant exerted a strong negative direct effect as (-0.5476) but exhibited a strong positive indirect effect via monopodial branch length, plant height and bolls per plant as shown in (Table 3). Monopodial branch length exerted a positively
strong direct effect was estimated as (1.1556) on yield as key component and a moderate negative indirect effect via plant height (-0.4038) while other characters remained negligible as shown in (Table 3). Path analysis revealed a significantly strong negative direct effect of plant height was estimated as (-1.2096), as compared it contributed quantitatively weak positive indirect effects via other traits understudy as shown in (Table 3). Bolls per plant exerted synchronously a strong positive direct effect on yield as (0.6953) and indirectly by monopodial branches per plant. Sympo-boll distance exerted strong positive direct effect on yield as (0.8173) with very negligible association or indirect effect via other plant traits As far as GOT% is concerned, path analysis revealed its moderate positive direct effect as yield component that impact a strong indirect effect via monopodial branches per plant as shown in (Table 3). Staple length exerted a positively strong direct effect on yield as (0.7633) and very negligible contributions effected via other traits. Fiber finesse has been evaluated to exert a strong negative direct effect on yield and exhibited negligible effects indirectly via affecting other traits as shown in (Table 3). Finally, fiber strength has been estimated negligible direct effect on yield while it has been revealed an active component of yield via effecting strongly and positively correlated with other traits like monopodial branches per plant, sympodial branches per plant, and staple length synchronously and negatively effecting via other traits like boll weight sympo-boll distance and GOT% as shown in (Table 3).

**Discussion**

Genetic variability in breeding material is a prime requisition of execution of an effective plant breeding program and selection strategies (Irum, Tabasum et al. 2011). The breeding material that has been evaluated in this study acquired sufficient genetic variability for all the traits under study. We found strong positive correlation of monopodial branches per plant sympodial branches per plant, bolls per plant and boll weight and results of this study are in agreement with (Al-Bayaty 2005) (Karademir, Karademir et al. 2010) (Salahuddin, Abro et al. 2010) (Thiyagu, Nadarajan et al. 2010). Our results partially deflected from (Asad, Azhar et al. 2002) who reported significant and positive genetic correlation of staple length and fiber finesse to yield while we estimated significant and positive correlation estimates of fiber strength with seed cotton
yield. Although, our results are in contrary with recently reported results of (Dinakaran, Thirumeni et al. 2012) they reported bolls per plant manifested highly strong direct positive effect on yield while micronaire value exhibited a moderate positive effect on yield. The other way, GOT% and uniformity ratio had strong negative direct effect following boll weight that had moderate negative direct effect on yield. The reported traits like bolls per plant, boll weight, lint yield per plant, GOT% and micronaire were suggested as robust indicators in selection of high yielding genotypes under saline conditions for improvement of seed cotton yield by (Dinakaran, Thirumeni et al. 2012).

A Path coefficient analysis is highly capable to simplify the exact interrelationship and contribution of each component effect on highly dependent variable like yield. Therefore, breeders are inclined to wisely focus on the set of components which shows high direct effect on yield and selection for those traits with positive moderate indirect effects to synchronize the selection efficiency. From path analysis and a careful review of the genetic correlations to harmonize the results, it is concluded that yield of cotton plant could be very effectively enhanced through direct selection of monopodial branch length, sympo-boll distance, staple length solely as these traits are independent of each other and not affecting antagonistically seed cotton yield via indirect effects. Secondly, an indirect selection is very effective for sympodial branch length via with bolls per plant. Conclusively, we suggest monopodial length, Sympo-boll distance and sympodial branch length as potential selection criterion for manipulation to improve the seed cotton yield.

In this study, we worked out the significance of three new genetic parameters via path analysis as yield components in aim to tentative manipulation of effective genetic parameters via selection in seed cotton yield improvement.
Table 1: Estimates of genetic variability from Analysis of Variance (ANOVA)

| SOV               | df | MBP (cm) | MBL (cm) | SBP (cm) | SBL (cm) | PH (cm) | BP (g) | BW (g) | SBD (cm) | GOT % | SL (cm) | FF (mic) | FS (g per tex) | Yield (Kg) |
|-------------------|----|----------|----------|----------|----------|---------|--------|--------|----------|-------|---------|----------|----------------|------------|
| $\sum \delta^2$Replication | 2  | 0.030    | 1581.7   | 1.757    | 131.453  | 5288.218| 66.197 | 0.057  | 0.031    | 1.488 | 1.533   | 10.715   | 0.172          | 132.93     |
| $\sum \delta^2$Genotypes   | 33 | 14.038   | 2244.8   | 112.85   | 532.316  | 12531.40| 3183.685| 15.90  | 9.992    | 457.676| 215.58  | 1002.96  | 5.559          | 14577.5    |
| $\sum \delta^2$Error       | 67 | 7.830    | 3493.9   | 159.24   | 987.477  | 10681.06| 3510.830| 5.117  | 5.437    | 117.099| 94.48   | 750.844  | 8.035          | 10538      |
| Total                        | 102| 21.898   | 7320.5   | 273.85   | 1651.246| 28500.68| 6760.712| 21.074 | 15.460   | 576.263| 311.593 | 1764.52 | 13.766         | 25248.4    |
| S.D                          | -  | 0.466    | 8.514    | 1.647    | 4.043    | 16.798  | 8.182  | 0.457  | 0.391    | 2.389 | 1.756   | 4.180    | 0.369          | 15.811     |
| S.E                          | -  | 0.046    | 0.843    | 0.163    | 0.400    | 1.663   | 0.810  | 0.045  | 0.039    | 0.237 | 0.174   | 0.414    | 0.037          | 1.566      |
| CV%                          | -  | 23.24    | 9.96     | 8.11     | 20.25    | 11.58   | 18.98  | 9.78   | 12.63    | 3.53  | 4.42    | 9.24     | 6.73           | 8.69       |

df= degree of freedom, MS= Mean squares, SOV= Source of variation, $\sum \delta^2= $ sum of squares. S.D= standard deviation, S.E= standard error, CV% coefficient of variation.
Table 2: Estimated genetic and Phenotypic coefficients of correlation for various agronomic and fiber traits towards Yield of upland cotton

| Variables | MBL (cm) | SBP | SBL (cm) | PH (cm) | BP | BW (g) | SBD (cm) | GOT% | SL (mm) | FF (mic) | FS (g per tetx) | Yield (Kg) |
|-----------|----------|-----|----------|---------|----|--------|----------|-------|---------|----------|--------------|------------|
| MBP       | rg       | rp  | 0.9410**| 0.060065| 0.1905| 0.6722**| 0.04231 | -0.0098| -0.8013**| -0.1805 | -0.7303** | 0.9722** |
|           |          |     | * 3.9399*| 0.553258| -0.3969| 4.31405 | -0.02932 | -0.36271 | -0.75993 | 0.1939 | -0.35401 | -2.0809 |
| MBL (cm)  | rg       | rp  | 0.018002 | 2.332*10^3| 0.15105| 0.3338*| 0.01123 | 0.02499| -0.00599 | 0.06029 | 2.0299*10^3 | 0.16347 | 0.2281* |
|           |          |     | -0.75993 | 0.07826 | -0.270978| 3.817*10^3 | 0.02751 | -0.019467 | 0.046567 | 1.88531 | -0.14915 |
| SBP       | rg       | rp  | 0.39905*| 0.01864 | 0.3338*| 0.5422**| 0.010872| 0.02724| -0.018123| 0.12714 | 0.02648 | -0.9106** |
|           |          |     | -1.5494*| 0.07514 | 0.01732| 5.03*10^{-4}| 0.02086 | 0.12714 | 0.05638 | 0.023014 | 0.94651 | 2.12842 |
| SBL (cm)  | rg       | rp  | 0.27687*| 0.02029 | 0.59169*| 0.02905| -0.776*10^-4| -0.7792*10^-4| 0.167907| 9.918*10^4 | 9.914*10^4 | 0.28514 | 0.6177** |
|           |          |     | 0.41371 | 0.02447 | -0.167507| 9.918*10^-4 | 0.2949 | -0.6312*10^-4 | 5.914*10^-4 | 6.31*10^-4 | 1.08606 | 0.7177** |
| PH (cm)   | rg       | rp  | 0.091953| 0.099793 | 0.3222*10^-3| 0.03828| -0.7068*10^-3| 2.977*10^-2| 0.28514 | 0.9199 | 0.2615 | 0.22615 |
|           |          |     | -1.385*10^-3| 0.03828| 0.001293| 1.2619*10^-2 | -6.041*10^-4 | 3.881*10^-4 | 0.1655 | 0.006687 | 0.0578 |
| BP        | rg       | rp  | 0.343*10^{-4} | 3.431*10^-3| 0.26152*| 0.2960*| 0.3543* | 0.13645 | -0.6837** | 0.38219 | 3.4266 | 0.8065** |
|           |          |     | 3.431*10^-3 | 0.24363* | 0.08078**| 1.10655** | 0.09235 | 0.38219 | 3.4266 | 0.55117 | 0.6507** |
| BW (g)    | rg       | rp  | 0.26152*| 0.2960* | 0.2960*| 0.3543*| 0.13645 | -0.6837** | 0.38219 | 3.4266 | 0.6507** |
|           |          |     | 3.431*10^-3 | 0.24363* | 0.08078**| 1.10655** | 0.09235 | 0.38219 | 3.4266 | 0.55117 | 0.6507** |
| SBD (cm)  | Rg       | rp  | 0.2763*| 0.07639 | 0.2763*| 0.0733 | -0.0453 | -0.01899 | 0.047972 | 0.073822 | -0.4458** | 0.7541** |
|           |          |     | 0.07639 | -0.2829* | 0.07639 | 0.0733 | -0.0453 | -0.01899 | 0.047972 | 0.073822 | -0.4458** | 0.7541** |
| GOT %     | rg       | rp  | 0.05046| 2.69*10^{-3} | 0.025713 | 0.028883 | 0.05046 | 2.69*10^{-3} | 0.025713 | 0.028883 | 0.8778** | 1.8214** |
| SL (mm)   | rg       | rp  | 0.7534** | 1.31697** | 0.7534** | 1.31697** | 0.7534** | 1.31697** | 0.7534** | 1.31697** | 0.7534** | 1.31697** |
| FF (mic.) | rg       | rp  | 0.025713| 0.028883 | 0.025713 | 0.028883 | 0.025713 | 0.028883 | 0.025713 | 0.028883 | 0.025713 | 0.028883 |
| FS (tpsi) | rg       | rp  | 0.05046| 2.69*10^{-3} | 0.025713 | 0.028883 | 0.05046 | 2.69*10^{-3} | 0.025713 | 0.028883 | 0.05046 | 2.69*10^{-3} |

MBP= Monopodial branches per plant, MBL= monopodial branch length(cm), SBP= symiodal branches per plant, SBL=symiodal branch length, PH= plant height(cm), BP= bolls per plant, BW=boll weight(g), SBD=sympo-boll distance(cm), GOT= ginning out turn%, SL= staple length(mm), FF= fiber finesse (micronair), FS= fiber strength (tpsi), rg= genotypic correlation, rp= phenotypic correlation, ** highly significant, * significant
| Variables | MBP         | MBL (cm) | SBP         | SBL (cm) | PH (cm) | BP         | BW (g) | SBD (cm) | GOT % | SL (mm) | FF (mic.) | FS (tps) | rg |
|-----------|-------------|----------|-------------|----------|---------|------------|--------|----------|-------|---------|-----------|----------|----|
| MBP       | -0.5476     | 0.8874   | -0.0257     | 0.1219   | 0.4801  | 0.4674     | 0.0231 | -0.008   | -0.3117| -0.07   | 0.091     | -0.1357  | 0.9722 |
| MBL (cm)  | -0.5153     | 1.1556   | -0.0077     | 0.0966   | -0.4038 | -0.1884    | 0.0061 | 0.0204   | -0.0019| 0.046   | -0.001    | 0.0215   | 0.2281 |
| SBP       | -0.0329     | 0.0208   | -0.4279     | 0.2553   | 0.7915  | 0.377      | 0.0593 | 0.0223   | 0.0056 | 0.0971  | -0.3134   | -0.1449  | 0.7098 |
| SBL (cm)  | -0.1043     | 0.1746   | -0.1707     | 0.6397   | -0.3349 | 0.4114     | 0.0159 | -0.0001  | -0.0523| 0.0008  | 0.000     | 0.0376   | 0.6177 |
| PH (cm)   | 0.2173      | 0.3857   | 0.28        | 0.1771   | -1.2096 | 0.0639     | -0.0001| 0.0003   | -0.0119| 0.0292  | -0.0001   | 0.0104   | -0.0578 |
| BP        | 0.3681      | -0.3132  | -0.232      | 0.3785   | -0.1112 | 0.6953     | 0.000  | 0.0106   | 0.000  | 0.0263  | 0.000     | 0.0047   | 0.8271 |
| BW (g)    | -0.0232     | 0.013    | -0.0465     | 0.0186   | 0.0002  | 0.000      | 0.5456 | 0.2137   | 0.0924 | 0.2705  | -0.0688   | -0.209   | 0.8065 |
| SBD (cm)  | 0.0054      | 0.0289   | -0.2117     | -0.201   | -0.1004 | 0.109      | 0.1427 | 0.8173   | 0.086  | 0.056   | -0.0106   | -0.0709  | 0.6507 |
| GOT %     | 0.5483      | -0.0069  | -0.0078     | -0.2074  | 0.0463  | 0.000      | 0.162  | 0.2258   | 0.3113 | -0.0346| -0.1242   | -0.1587  | 0.7541 |
| SL (mm)   | 0.0502      | 0.0697   | -0.2544     | 0.0006   | -0.0463 | 0.024      | 0.1933 | 0.0599   | -0.0141| 0.7633  | -0.0255   | 0.0992   | 0.9199 |
| FF (mic)  | 0.0988      | 0.0024   | -0.0113     | 0.000    | -0.0002 | 0.000      | 0.0744 | 0.0172   | 0.0149 | 0.0385  | -0.5044   | 0.0034   | -0.2663 |
| FS (g per tax) | 0.5642 | 0.1889   | 0.4709      | 0.1824   | -0.2953 | 0.2249     | -0.473 | -0.4402  | -0.2388| 0.5751  | -0.013    | 0.1317   | 0.8778 |
REFERENCES

Abdelraheem, A., V. Kuraparthy, et al. (2021). "Genome-wide association study for tolerance to drought and salt tolerance and resistance to thrips at the seedling growth stage in US Upland cotton." Industrial Crops and Products 169: 113645.

Al-Bayaty, M. (2005). "Path coefficient analysis in upland cotton." Mesopotamia Journal of Agriculture 33(3): 2-7.

Ali, M. Y., I. Amin, et al. (2016). "Study of Secondary Endosymbionts of Whiteflies Collected from Cotton Growing Districts of Punjab, Pakistan." Pakistan Journal of Zoology 48(5).

Ali, M. Y., S. Saleem, et al. (2020). "Comparative study of different irrigation system for cotton crop in district Rahim Yar khan, Punjab, Pakistan." International Journal of Agricultural Extension 8(2): 131-138.

Asad, M. A., F. M. Azhar, et al. (2002). "Association of yield with various economic traits in Gossypium hirsutum L." Int. J. Agri. Biol 4(1): 105-106.

Ashokkumar, K. and R. Ravikesavan (2010). "Genetic studies of correlation and path coefficient analysis for seed oil, yield and fibre quality traits in cotton (G. hirsutum L.)." Australian Journal of Basic and Applied Sciences 4(11): 5496-5499.

Dinakaran, E., S. Thirumeni, et al. (2012). "Yield and fibre quality components analysis in upland cotton (Gossypium hirsutum L.) under salinity." Annals of Biological Research 3(8): 3910-3915.

Ekinci, R., S. Basbag, et al. (2010). "Path Coefficient Analysis between seed cotton yield and some characters in cotton (Gossypium hirsutum L.)." Journal of Environmental Biology 31(5): 861.

Elassbli, H., A. Abdelraheem, et al. (2021). "Evaluation and analysis of commercial cultivars and elite breeding lines for resistance to the bacterial blight pathogen race 18 in cotton." Euphytica 217(2): 1-15.

Guo, A.-h., Y. Su, et al. (2021). "QTL controlling fiber quality traits under salt stress in upland cotton (Gossypium hirsutum L.)." Theoretical and Applied Genetics 134(2): 661-685.

Irum, A., A. Tabasum, et al. (2011). "Variability, correlation and path coefficient analysis of seedling traits and yield in cotton (Gossypium hirsutum L.)." African Journal of Biotechnology 10(79): 18104-18110.
Karademir, E., Ç. Karademir, et al. (2010). "Relationship between yield, fiber length and other fiber-related traits in advanced cotton strains."

Khan, T. M. and M. U. Qasim (2012). "Genetic studies of yield traits in cotton (Gossypium hirsutum L.)." *J. Agric. Res* 50(1): 21-28.

McLoughlin, J., S. Hayes, et al. (2015). Cotton fibre for denim manufacture. *Denim*, Elsevier: 15-36.

Méndez-Natera, J. R., A. Rondón, et al. (2012). "Genetic studies in upland cotton. III. Genetic parameters, correlation and path analysis." *Sabrao. J. Breeding & Genetics* 44(1): 112-128.

Rauf, S., T. M. Khan, et al. (2004). "Correlation and path coefficient analysis of yield components in cotton (Gossypium hirsutum L.)." *Int. J. Agric. Biol* 6(4): 686-688.

Salahuddin, S., S. Abro, et al. (2010). "Correlation and path coefficient analysis of yield components of upland cotton (Gossypium hirsutum L.) sympodial." *World Applied Sciences Journal* 8: 71-75.

Shaheen, M., M. Yasin, et al. (2021). "NEW PROMISING HIGH YIELDING COTTON BT-VARIETY RH-647 ADAPTED FOR SPECIFIC AGRO-CLIMATIC ZONE." *Saudi Journal of Biological Sciences*.

Simon, A., D. Bello, et al. (2010). "Genetic Correlation and Path Coefficient Analysis of yield and it’s Components in Cotton." *ASSET: An International Journal (Series A)* 7(1): 237-241.

Smith, C. W., S. Hague, et al. (2008). "Development of extra-long staple upland cotton." *Crop science* 48(5): 1823-1831.

Tabasum, A., I. Aziz, et al. (2012). "Inheritance of seed cotton yield and related traits in cotton (Gossypium hirsutum L.)." *Pak. J. Bot* 44(6): 2027-2031.

Thiyagu, K., N. Nadarajan, et al. (2010). "Association and path analysis for seed cotton yield improvement in interspecific crosses of cotton (Gossypium spp)." *Electronic Journal of Plant Breeding* 1(4): 1001-1005.

Tyagi, P., M. A. Gore, et al. (2014). "Genetic diversity and population structure in the US Upland cotton (Gossypium hirsutum L.)." *Theoretical and Applied Genetics* 127(2): 283-295.
Genetic diversity and population structure in the US Upland cotton was established and core sets of allelic richness were identified for developing association mapping populations in cotton.

Vyas, M., A. Raza, et al. (2017). "Knock down of whitefly gut gene expression and mortality by orally delivered gut gene-specific dsRNAs." PLoS One 12(1): e0168921.

Xu, P., Q. Guo, et al. (2021). "Genome-wide association analysis reveals genetic variations and candidate genes associated with salt tolerance related traits in Gossypium hirsutum." BMC genomics 22(1): 1-14.