CASE REPORT

Whole-exome sequencing in a patient with synchronous triple primary malignancies involving lung cancer: a case report

Dan Li¹, Min Yu², Ping Zhou³, Jie Yang⁴ and Yongsheng Wang²,⁵,*

¹Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
²Department of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
³Department of Pathology, West China Hospital, Sichuan University, Chengdu 610041, China
⁴YuceBio Technology Co., Ltd, Shenzhen 518081, China
⁵Institute of Drug Clinical Trial, West China Hospital, Sichuan University, Chengdu 610041, China

*Correspondence: Yongsheng Wang, wangys@wchscu.cn

Abstract

The incidence of multiple primary malignancies (MPMs) has been increasing rapidly in recent years, however, the genetic pathogenesis is largely unknown on account of rare cases, especially for those patients who are diagnosed with three or more tumors. Under these circumstances, whole-exome sequencing (WES) may help to provide more comprehensive genomic information and guidance to proper therapeutic strategies. Here, we presented a rare case of a 66-year-old Chinese male patient who was diagnosed with synchronous triple primary malignancies: esophageal squamous cell carcinoma (ESCC), lung adenocarcinoma (LA), and hepatocellular carcinoma (HCC). Tumors were surgically removed within 3 months. WES was performed when the patient suffered from cancer recurrence and tumor-specific neoantigens were predicted. Each tumor displayed a distinct somatic mutation profile, providing direct evidence of independent origins. No shared driver gene mutation or neoantigen was detected among the three tumors. Two germline alterations of cancer susceptibility genes—SPINK1 c.194 + 2T>C and JAK3 c.425G>A were identified. This case is the first report of synchronous primary triple cancers covering the esophagus, lung, and liver. Our findings highlight the complexities of MPMs that even when under identical germline genetic backgrounds, the occurrence of MPMs can be a random event and driven by distinct somatic gene mutations. Synchronous multiple primary cancers that originated from different organs may not have common therapeutic gene targets, and it can be difficult to find a treatment to cover all the tumors.

Key words: triple primary malignancies; whole-exome sequencing; lung adenocarcinoma; esophageal squamous cell carcinoma; hepatocellular carcinoma; somatic mutation; germline mutation; neoantigen
Whole-exome sequencing in triple primary cancers

Background
The incidence of multiple primary malignancies (MPMs) has been increasing for the past few years, among which the incidence of lung cancer-related MPMs was estimated to range from 2.5% to 3.4% of total lung cancer patients. Although frequently taken as an indicator of hereditary cancer, fewer than 25% of MPM patients had an identified pathogenic germline variant, and there is a paucity of information on the genetic mechanisms underlying pathogenesis. It can be quite challenging to understand the etiology and find a therapeutic regimen to cover each type of cancer simultaneously, especially for those patients who were diagnosed with three or more tumors. Compared with next-generation sequencing (NGS)-based target gene panel, whole-exome sequencing (WES) may provide more comprehensive genomic information to guide diagnosis and therapy.

Here, we report the first case of a patient with synchronous occurrence of triple primary malignancies: esophageal squamous cell carcinoma (ESCC), lung adenocarcinoma (LA), and hepatocellular carcinoma (HCC). Each tumor harbored a distinct somatic mutation profile and was driven by different gene mutations. Tumor-specific neoantigens were predicted. We describe two novel germline cancer susceptibility gene alterations—SPINK1 c.194 + 2T>C and JAK3 c.425G>A mutations in MPMs.

Case Presentation
In June 2017, a 66-year-old Chinese male patient presented at our hospital due to progressive dysphagia. Contrast-enhanced chest CT showed thickening of the esophageal wall, obvious lumen stenosis, and a blurred peripheral fat gap. Enhanced scan showed marked enhancement (Fig. 1A). Upper gastrointestinal X-ray barium meal examination further confirmed mid-esophageal luminal stenosis (Fig. 1B). CT also showed a 1.9 cm × 1.2 cm soft tissue mass shadow in the posterior segment of the left upper lobe, with peripheral burrs, pleural indentation, and mild dilatation of the bronchus (Fig. 1C, D). In July 2017, the patient received excision of left thoracic esophageal tumor and wedge resection of left upper lobe (Fig. 1E, F). Histopathological evaluation revealed distinct tumor morphologies. The esophageus tumor was identified as a moderate-to-poorly differentiated ESCC (T4N0M0; stage II) with focal hyaline degeneration (Fig. 2C). IHC revealed positive expressions of Hepa, GPC-3, and GS, while negative expressions of AFP, P63, P40, TTF-1, and CK7. The patient suffered from swallowing obstruction again 7 months after surgery. PET-CT showed anastomotic recurrence of esophageal cancer and a new hepatic lesion. Obstruction was alleviated after radiochemotherapy. Unfortunately, the liver lesion soon progressed, and hepatic transcatheter artery chemoembolization (TACE) was performed. In October 2018, this patient died of respiratory failure due to pulmonary infection.

To investigate the underlying genetic etiology and at the same time explore for a personalized therapeutic regimen that can cover all types of tumor, WES were performed when the patient suffered cancer relapse. For identification of somatic gene alterations, DNA was extracted from formalin-fixed paraffin-embedded (FFPE) tumor sections and sequenced on Illumina HiSeq platform. All tumors were tumor mutation burden (TMB) moderate and microsatellite instability (MSI) low (Supplementary Table S1), and each harbored a distinct somatic mutation profile (Fig. 3A). A total of 134 nonsynonymous mutations were identified in ESCC, including four potential driver mutations: AJUBA c.1008_1009insTTCTCTTCTCAGGC, KMT2D c.8719dupT, TP53 c.844T>C and c.727C>T. For LA, 216 nonsynonymous mutations were identified, including three potential driver mutations: RB1 c.1723C>T stop_gain, TP53 c.851delT, and EGFR c.2573T>G (L858R). For HCC, 103 nonsynonymous were identified, but none of the driver mutations were detected (Table 1). The detailed information of somatic mutations was listed in Supplementary Table S2. These results provided direct evidences that each tumor originated independently, which were consistent with the histopathological assessment.

To further study the germline gene alterations, DNA was extracted from peripheral white blood cells and sequenced via WES. Three high-confidence germline heterozygous variants of cancer susceptibility genes were detected, including SPINK1 c.194 + 2T>C splice site, JAK3 c.425G>A, and UGT1A1 c.1091C>T mutations, which displayed different variant allele frequencies (VAFs) in each tumor (Fig. 3B). Additionally, tumor neoantigens were predicted based on WES results of tumor tissues and normal cells. Target neoantigens were predicted and scored based on a predefined set of criteria. Each tumor had a moderate tumor neoantigen burden. No shared neoantigen was identified among the three tumors. The detailed information about the tumor neoantigens is listed in Supplementary Table S3.

Discussion
To our knowledge, this is the first report of synchronous esophagus, lung, and liver cancers that happened in one
Figure 1. Radiographic images of three primary tumors. Contrast-enhanced chest CT (A) and upper gastrointestinal X-ray barium meal (B) show a left thoracic esophageal tumor. (C, D) Chest CT shows a 1.9 cm × 1.2 cm soft tissue mass shadow in the posterior segment of the left upper lobe. (E, F) Abdomen MRI reveals a 2.4 cm × 2 cm massive shadow in the right anterior superior segment of the liver. The arrow shows the location of tumor.

Figure 2. Pathologic subtype of different lesions. Hematoxylin and eosin staining of three primary cancers: (A) esophageal squamous carcinoma, (B) lung adenocarcinoma, and (C) hepatocellular carcinoma. Scale bar, 100 μm.
patient. According to previous studies, only 3.9% to 5.4% of lung cancer-related MPMs were diagnosed with three or more tumors.\(^1,2\) Although germline alterations such as BRCA1/2 and TP53 mutations have been demonstrated as a strong genetic predisposition toward MPM, only fewer than 25% of patients had an identified pathogenic germline variant.\(^3\) In this situation, it is attractive to find new therapeutic strategies that can cover all types of cancer in the same patient, especially for those originated from different organs.

According to current guidelines, it is difficult to find a therapeutic regimen to cover all the tumors in our patient. Furthermore, the present standard relies on histopathology to distinguish MPMs, which can hardly provide comprehensive information. Although several studies have used NGS-based gene panel to classify MPMs, most of those are confined to focal changes and provide limited information. There is no systemic genomic evaluation for MPMs that represent a variety of tumor types. In this case, WES was used to detect somatic and germline alterations when the patient suffered from cancer recurrence, and tumor neoantigens were predicted for future design of an individualized cancer vaccine. Unfortunately, no shared therapeutic gene target or neoantigen was identified. Each tumor showed a distinct somatic mutation profile and was driven by different oncogenic event. The tumors were further evaluated as a moderate or low TMB, indicating current immunotherapies such as PD-L1/PD-1 checkpoint inhibitors may not be applicable. Interestingly, three unreported deleterious heterozygous germline variants were identified: SPINK1 c.194 + 2T>C splice site,

| Primary cancer site | No. of nonsynonymous mutations | No. of SNV | No. of InDel | CNV | No. of fusion gene | Driver mutation |
|---------------------|-------------------------------|------------|--------------|-----|-------------------|----------------|
| Esophageal          | 134                           | 103        | 31           | ARHGEF10 gain (3.61), KAT6A gain (3.63), EIF3H gain (3.7), MYC (4.32) | 0 | AJUBA c.1008>1009insTTCTCTTCTCAGGC, KMT2D c.8719dupT, TP53 c.844T>C and c.727C>T, RB1 c.1723C>T stop, gain, TP53 c.851delT, EGFR c.2573T>G |
| Lung                | 216                           | 200        | 16           | 0   | 0                 | N/A |
| Liver               | 103                           | 93         | 10           | 0   | 0                 | N/A |

Abbreviations: SNV, single nucleotide variant; InDel, insertion or deletion mutation; CNV, copy-number variation; N/A, not available.
Supplementary data

Supplementary data is available online at PCMedi.

Author contributions

DL collected, analyzed, and interpreted the patient data, and wrote the manuscript. MY collected the clinical data. PZ performed histological examinations. JY was responsible for WES and neoantigen prediction. YSW designed the study, revised the article, and approved for the final version to be submitted. All authors read and approved the final manuscript.

Acknowledgements

This work was funded by the Sichuan Science and Technology Program (Grant No. 2019YJ0022) from Sichuan Provincial Science and Technology Department. We thank Jian Bai from Berry Oncology Co., Ltd for academic support.

Conflict of interest statement

Jie Yang was employed by the company YuceBio Technology Co., Ltd. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be constructed as a potential conflict of interest.

References

1. Wang H, Hou J, Zhang G, et al. Clinical characteristics and prognostic analysis of multiple primary malignant neoplasms in patients with lung cancer. Cancer Gene Ther 2019;26:419–26. doi: 10.1038/s41417-019-0084-z.
2. Li F, Zhong WZ, Niu FY, et al. Multiple primary malignancies involving lung cancer. BMC Cancer 2015;15:696. doi: 10.1186/s12885-015-1733-8.
3. Whitworth J, Hoffman J, Chapman C, et al. A clinical and genetic analysis of multiple primary cancer referrals to genetics services. Eur J Hum Genet 2015;23:581–7. doi: 10.1038/ejhg.2014.157.
4. Kereszteri E, Király O, Sahin-Toth M. Minigene analysis of intronic variants in common SPINK1 haplotypes associated with chronic pancreatitis. Gut 2009;58:545–9. doi: 10.1136/gut.2008.164947.
5. Wiksten JP, Lundin J, Nordling J, et al. High tissue expression of tumour-associated trypsin inhibitor (TATI) associates with a more favourable prognosis in gastric cancer. Histopathology 2005;46:380–8. doi: 10.1111/j.1365-2559.2005.02073.x.
6. Rink M, Park K, Volkmer BG, et al. Loss of SPINK1 expression is associated with unfavorable outcomes in urothelial carcinoma of the bladder after radical cystectomy. Urol Oncol 2013;31:1716–24. doi: 10.1016/j.urolonc.2013.07.008.
7. Boortalary T, Jalaly NY, Moran RA, et al. Metastatic pancreatic adenocarcinoma in a patient with chronic calcific pancreatitis and a heterozygous SPINK1 c.194 + 2T>C mutation. Pancreas 2018;47:e24–e5. doi: 10.1097/MPA.0000000000001515.
8. Hu N, Kadota M, Liu H, et al. Genomic landscape of somatic alterations in esophageal squamous cell carcinoma and gastric cancer. Cancer Res 2016;76:1714–23. doi: 10.1158/0008-5472.CAN-15-0338.
9. Lu J, Yin J, Dong R, et al. Targeted sequencing of cancer-associated genes in hepatocellular carcinoma using next generation sequencing. Mol Med Rep 2015;12:4678–82. doi: 10.3892/mmr.2015.3952.
10. Li SD, Ma M, Li H, et al. Cancer gene profiling in non-small cell lung cancers reveals activating mutations in JAK2 and JAK3 with therapeutic implications. Genome Med 2017;9:89. doi: 10.1186/s13073-017-0478-1.
11. Peng L, Zeng Z, Teng X, et al. Genomic profiling of synchronous triple primary tumors of the lung, thyroid and kidney in a young female patient: a case report. Oncol Lett 2018;16:1089–94. doi: 10.3892/ol.2018.9334.