Electronic structure of Co$_x$TiSe$_2$ and Cr$_x$TiSe$_2$

A. N. Titov, A. V. Kuranov, and V. G. Pleschev

Ural State University, Physics of Condensed Matter Department, 620083 Yekaterinburg, Russia

Yu. M. Yarmoshenko and M. V. Yablonskikh

Institute of Metal Physics, Russian Academy of Sciences-Ural Division, 620219 Yekaterinburg GSP-170, Russia

A. V. Postnikov

Theoretical Low-Temperature Physics, University of Duisburg, D-47048 Duisburg, Germany

S. Plogmann and M. Neumann

Department of Physics, Osnabrück University, D-49069 Osnabrück, Germany

A. V. Ezhov and E. Z. Kurmaev

Institute of Metal Physics, Russian Academy of Sciences-Ural Division, 620219 Yekaterinburg GSP-170, Russia

(Febuary 9, 2022)

The results of investigations of intercalated compounds Cr$_x$TiSe$_2$ and Co$_x$TiSe$_2$ by X-ray photoelectron spectroscopy (XPS) and X-ray emission spectroscopy (XES) are presented. The data obtained are compared with theoretical results of spin-polarized band structure calculations. A good agreement between theoretical and experimental data for the electronic structure of the investigated materials has been observed. The interplay between the M_3d–$Ti3d$ hybridization ($M=$Cr, Co) and the magnetic moment at the M site is discussed. A 0.9 eV large splitting of the core Cr2p$_{3/2}$ level was observed, which reveals a strong exchange magnetic interaction of 3d-2p electrons of Cr. In the case of a strong localization of the Cr3d electrons (for $x < 0.25$), the broadening of the CrL spectra into the region of the states above the nominal Fermi level was observed and attributed to X-ray re-emission. The measured kinetic properties are in good accordance with spectral investigations and band calculation results.

71.20.-b 71.20.Tx 72.80.Ga 78.70.En 79.60.-i

I. INTRODUCTION

Intercalated compounds built by insertion of transition metal (TM) atoms into layered titanium dichalcogenides are interesting as natural nanostructures formed by alternation of magnetic TM layers and non-magnetic layers of the host lattice. The investigations performed for M_xTiS$_2$ ($M = Mn, Fe, Co, Ni$) \cite{1-3} show that the effect of intercalation on the chemical bonding is not consistent with the rigid band model \cite{4} often referred to in relation to these compounds. Instead, the charge carriers localization due to the formation of covalent bonds with intercalant atoms seems to become important. From this point of view, the TiSe$_2$-based intercalated materials are obviously even more interesting, because they demonstrate a higher degree of two-dimensionality in comparison with TiS$_2$, as follows from their larger c/a ratio (1.697 in pure TiSe$_2$ vs. 1.672 in TiS$_2$, see, e.g., Ref. \cite{5}). Tazuke et al. \cite{6} discussed magnetic properties of M_xTiSe$_2$ ($M = V, Cr, Mn, Fe, Co, Ni, Cu$) referring to the hybridization between the intercalant 3d states and the band states of TiSe$_2$, the information on the latter being based on the band structure calculation \cite{7}. According to Ref. \cite{8}, the hybridized states with lighter TM atoms have smaller contribution of Se4p states.

The aim of the present work is to deepen the understanding of the chemical bonding and related (magnetic and transport) properties of two TiSe$_2$-based systems, intercalated with “light” (Cr) and “heavy” (Co) TM atoms. Monocrystalline samples over a range of intercalant concentration were prepared and used in the study of magnetic susceptibility, conductivity, X-ray emission and photoelectron spectroscopy.

While for the system Co$_x$TiSe$_2$ the literature data about influence of intercalation on crystal structure \cite{8}, electric and magnetic properties \cite{9} were reported earlier, for Cr$_x$TiSe$_2$ system we failed to find any literature data except those of Ref. \cite{6}.
II. EXPERIMENTAL

Polycrystalline Co$_x$TiSe$_2$ and Cr$_x$TiSe$_2$ samples ($0 < x < 0.5$) were prepared by an ampoule synthesis method from the constituent elements. The methods of synthesis and characterization are described in detail in Ref. [3]. The initial diffraction data were obtained with a DRON 1UM diffractometer (Cu K_α, Ni filtered radiation.) The unit cell parameters have been then determined by a least square refinement with 16 reflexes with the accuracy $\Delta a_0 = \pm 0.001$, $\Delta c_0 = \pm 0.002$ Å. The hexagonal unit cell parameters of intercalated TiSe$_2$ are shown in Fig. 1. The crystal structure, electric and magnetic properties of Co$_x$TiSe$_2$ are described in Refs. [8,9]. The information about the type of intercalant ordering in Co$_x$TiSe$_2$ is controversial [8], which may be traced back to different thermal treatments of the samples. In the present work we used the samples quenched from 850 °C in ice water. For the samples so prepared, no ordering of intercalant atoms was observed in both systems.

At temperatures above that of liquid nitrogen, both materials are paramagnetic, with a temperature dependence of their magnetic susceptibility following a Curie-Weiss law. The values of effective magnetic moments are close to nominal spin moments of Co$^{2+}$ and Cr$^{3+}$ ions, respectively.

The single crystals for the X-ray spectra measurements were grown by the gas transport reaction method in evacuated quartz ampoules with I$_2$ as gas-carrier [14]. Powdered Co$_{0.25}$TiSe$_2$ and Cr$_{0.25}$TiSe$_2$ material was used as origin materials. In the case of Co$_{0.25}$TiSe$_2$ there was a flow of substance from the hot (1000 °C) to the cold (600 °C) edge of the ampoule. The single crystals had a shape of thin plates $\approx 2-3$ mm large and ≈ 0.1 mm thick. The final intercalant content (determined from the lattice parameter values) was found to be close to the initial one: Co$_{0.23}$TiSe$_2$. In the case of Cr$_{0.25}$TiSe$_2$ the substance was transferred from the middle part (at 900 °C) where the powder was initially placed to both hot (1100 °C) and cold (700 °C) edges of the ampoule. The single crystals grown at the hot edge of the ampoule had a shape of slim needles with the size close to $0.3 \times 0.1 \times 10$ mm, whereas those grown at the cold edge were thin plates $2-4$ mm large and ≈ 0.1 mm thick. From the unit cell parameters comparison we found that the crystals formed at the cold edge have the composition Cr$_{0.1}$TiSe$_2$, those at the hot edge – Cr$_{0.5}$TiSe$_2$.

The X-ray photoelectron spectroscopy (XPS) measurements were performed at a Perkin Elmer spectrometer with an energy resolution of 0.3 eV, X-ray emission spectroscopy (XES) measurements – at a soft X-ray radiation spectrometer RSM-500 with electron excitation and an energy resolution of 0.7 eV. The single crystals of Co$_{0.23}$TiSe$_2$ and Cr$_{0.1}$TiSe$_2$ were cut by a razor blade in the spectrometer chamber directly before the measurements.

III. CRYSTAL STRUCTURE AND BULK PROPERTIES

In this section, we present the discussion of the electronic characteristics as they might be deduced from the analysis of the measured bulk properties. The microscopic aspects of hybridization will be discussed in Sec. 2 in relation with ab initio calculations. A decrease of the lattice parameter c in the course of intercalation is typical for M_xTiSe$_2$ systems as has been mentioned in Ref. [8,9] and could be seen in Fig. 2. This might be understood as a result of covalent bonds being formed between intercalant atoms and the host lattice [13]. While free Co$^{2+}$ and Cr$^{3+}$ ions have the same spin value of 3/2, in intercalated systems the experimentally obtained effective magnetic moment at the Cr atom is roughly 1.5 times larger than that per Co atom (see Table I). This fact may be related to a stronger hybridization of $3d_{xz,yz}$ orbitals (those participating in the magnetic moment formation in the $3d^7$ configuration of Co$^{2+}$) with the Se4p orbitals. In contrast, the $3d_{xz,yz}$ orbitals are essentially empty in the $3d^8$ configuration of Cr$^{3+}$. The deviation of the effective moment from its nominal free-ion value correlates well with the lattice distortion (which is the measure of the chemical bonding between an intercalant and the host [14]) at least for concentrations $x \leq 0.25$ as is shown in Fig. 2. The systems with $x = 0.33$ are actually beyond the percolation limit on the ordered lattice of $3d$ “impurities”, so that their clustering and direct exchange interaction apparently results in the drop of magnetic moments and breakdown of the abovementioned correlation.

The lattice deformation and change in the degree of hybridization affects the conductivity σ of the M_xTiSe$_2$ systems. While in Co$_x$TiSe$_2$ σ is only weakly concentration-dependent, in Cr$_x$TiSe$_2$ it exhibits an interesting behavior – being on the average higher, $\sigma(x)$ includes several irregularities. Fig. 3 shows the conductivity at room temperature, but the irregularities persist over a broad temperature range. Two different types of $\sigma(T)$ are shown in the inset of Fig. 3 for two Cr concentrations.

An overall decrease of σ as the unit cell parameter c decreases (see Fig. 3) is apparently due to the drop in the free charge carriers concentration as electrons are trapped in covalent bonds – this seems to be well the case at least in all Co-containing systems. Due to a different charge configuration of Cr$^{3+}$ as compared to Co$^{2+}$, one electron provided by Cr remains free and contributes to the metallic type of conductivity – see the calculated density of states (DOS) distribution at the impurity site, Sec. [13]. A drop in the conductivity near $x = 0.05$ of Cr probably indicates the compensation of highly mobile intrinsic (hole-type) carriers in TiSe$_2$, the concentration of which is 0.05 per
as well as in pure 3 where charge-transfer excitations were argued to be an important mechanism responsible for a rich satellite structure, covalency than in oxides; as for shake-up/shake-off processes – it is difficult to argue why their intensity would be high-energy side of the emission process in Cr.

The shift of the X-ray emission spectra by the 2p states. The Cr and Co sites and must be visible in the valence-band XPS.

The trends in the “local” electronic structure of intercalant atoms depending on concentration are much better visible from X-ray emission spectra which are element-selective and hence not masked by the contributions from selenium. The Cr L\(_α\) spectra (4s3d \(\rightarrow\) 2p\(_{3/2}\) transitions) have been measured for several concentrations and are shown in Fig. 7. Based on the arguments of Ref. [17], the concentration-related differences in the spectra can be traced to the percolation threshold on a two-dimensional hexagonal lattice at \(x = 0.25\). Above this threshold, the intercalant atoms (under an uniform distribution) may have a neighbor of the same type at the distance of hexagonal lattice constant. It is noteworthy how the width and the relative intensity of \(L\alpha\) and \(L\beta\) bands vary with the concentration. The Cr \(L\alpha\) spectra of intercalated compounds are quite different from those of pure metallic Cr, whereas the corresponding differences for the Co-based systems are less pronounced.

A striking difference in the XES of Co- and Cr-intercalated systems is a much broader emission band in the latter, in spite of the fact that the widths of the occupied valence bands in both systems are presumably not too much different. The shift of the X-ray emission spectra by the 2p\(_{3/2}\) core level binding energy onto the common energy scale with the XPS (Fig. 6) makes obvious that the states above the nominal Fermi level effectively participate in the emission process in Cr\(_{0.1}\)TiSe\(_2\), but not in Co\(_{0.1}\)TiSe\(_2\). Another peculiarity of the spectra shown in Fig. 4 is the increase of the \(L\beta\)/\(L\alpha\) relative intensity in more diluted (especially in Cr-based) systems. The broadening of \(L\alpha\) spectra of 3d components has been detected and discussed before – in 3d oxides (of Mn [21], and Cu [22]) where charge-transfer excitations were argued to be an important mechanism responsible for a rich satellite structure, as well as in pure 3d metals (Cu, [24]) where an initial-state 3d vacancy satellite was shown to contribute on the high-energy side of the \(L\alpha\) line for excitation energies beyond the \(L\alpha\) threshold. For our systems in question, none of these mechanisms seem to work: charger-transfer excitations cannot play an important role because of a much high covalency than in oxides; as for shake-up/shake-off processes – it is difficult to argue why their intensity would be

IV. X-RAY PHOTOELECTRON AND X-RAY EMISSION SPECTRA

We refer to the XPS spectra with three main purposes: to control the quality of monocrystalline samples, to get information about the electronic structure and to trace the effects of on-site magnetic interactions on the spectra. Figs. 3 and 4 depict the 2p core levels of titanium and of intercalated elements, correspondingly. Ti 2p spectra are known to exhibit relatively large chemical shifts already at early oxidation states (see, e.g., [12]). The actual spectra indicate a good (oxygen-free) quality of samples. The chemical shift still present (455.0 eV for the Ti2p\(_{3/2}\) binding energy in TiSe\(_2\); 455.5 eV in Co0.5TiSe\(_2\); 455.8 eV in Cr0.1TiSe\(_2\)) exhibits the increase of ionicity from the host to Co-based to Cr-based systems [16]. This is consistent with above discussed (Fig. 1) stronger z-contraction of the crystal lattice in more covalent Co\(_x\)TiSe\(_2\), as compared to Cr\(_x\)TiSe\(_2\).

Of interest are the core 2p photoemission spectra of intercalant atoms, which may exhibit an exchange splitting due to an intra-atomic 2p–3d interaction (similarly to what has been demonstrated for the Mn-based Heusler alloys [17,18]). As is seen in Fig. 3, the Cr2p\(_{3/2}\) line in Cr0.1TiSe\(_2\) clearly shows a splitting of about 1 eV, differently from the Co2p\(_{3/2}\) spectrum of Co0.25TiSe\(_2\) where no such splitting is observed. The splitting is qualitatively related to the difference between local magnetic moments in these compounds (see Table I).

The valence-band (VB) photoelectron spectra (Fig. 3) have a relatively simple structure, where the Se4s contribution (in the region of binding energies 12–16 eV) is clearly separated from the Se4p–Ti3d–M3d hybridized band spanning the binding energies 0–6 eV. In the latter band, the contribution from the Se4p states is the most pronounced, since the photoionization cross-section of selenium is much larger than for all other constituents [19]. However, the contribution of Cr3d and, in particular, Co3d states is noticeable just below the Fermi energy, similarly to the behavior detected for the Fe3d states in Fe\(_x\)TiTe\(_2\) [11]. An analysis of the calculated DOS (see next section) shows that a narrow peak at \(\approx 1.5\) eV below the Fermi level, well separated from the bulk of Se4p states, indeed dominates the local DOS at the Co site and must be visible in the valence-band XPS.

The concentration at \(x = 0.25\) may be related to the percolation threshold on a two-dimensional hexagonal lattice at \(x = 0.25\). Above this threshold, the intercalant atoms (under an uniform distribution) may have a neighbor of the same type at the distance of hexagonal lattice constant. It is noteworthy how the width and the relative intensity of \(L\alpha\) and \(L\beta\) bands vary with the concentration. The Cr \(L\alpha\) spectra of intercalated compounds are quite different from those of pure metallic Cr, whereas the corresponding differences for the Co-based systems are less pronounced.

A striking difference in the XES of Co- and Cr-intercalated systems is a much broader emission band in the latter, in spite of the fact that the widths of the occupied valence bands in both systems are presumably not too much different. The shift of the X-ray emission spectra by the 2p\(_{3/2}\) core level binding energy onto the common energy scale with the XPS (Fig. 6) makes obvious that the states above the nominal Fermi level effectively participate in the emission process in Cr\(_{0.1}\)TiSe\(_2\), but not in Co\(_{0.1}\)TiSe\(_2\). Another peculiarity of the spectra shown in Fig. 4 is the increase of the \(L\beta\)/\(L\alpha\) relative intensity in more diluted (especially in Cr-based) systems. The broadening of \(L\alpha\) spectra of 3d components has been detected and discussed before – in 3d oxides (of Mn [21], and Cu [22]) where charge-transfer excitations were argued to be an important mechanism responsible for a rich satellite structure, as well as in pure 3d metals (Cu, [24]) where an initial-state 3d vacancy satellite was shown to contribute on the high-energy side of the \(L\alpha\) line for excitation energies beyond the \(L\alpha\) threshold. For our systems in question, none of these mechanisms seem to work: charger-transfer excitations cannot play an important role because of a much high covalency than in oxides; as for shake-up/shake-off processes – it is difficult to argue why their intensity would be
enhanced at low Cr (but not Co) concentrations. Moreover, the increase of the high-energy satellite in Cu $L_{\alpha,\beta}$ in Ref. [24] is accompanied by the decrease of the L_{β}/L_{α} intensity ratio (due to the Coster-Kronig process) – the trend opposite to that observed in the present case.

What makes the difference between low-concentratrion Cr-intercalated system and other systems studied is relatively high localization of the Cr$3d$ state and high magnetic moment associated with it. It is noteworthy that in recently studied Heusler alloys NiMnSb and Co$_2$MnSb where the high magnetic moment at the Mn site is similarly localized, the L_{α} emission from the states nominally above the Fermi level was observed [23]. Similarly to how it was argued in Ref. [23] for Heusler alloys, we tend to qualitatively attribute the anomalous X-ray emission in the diluted Cr$_3$TiSe$_2$ system to a relaxation of the intermediate state with electronic configuration $2p^43d^{n+1}$, which involves the contribution from the states of d symmetry nominally vacant in the ground-state configuration $2p^63d^5$. Below, we shall refer to this effect for brevity as re-emission. Strictly speaking, the excitation and subsequent emission in a resonant process must be treated as a single event; an extensive literature exists on this subject (see, e.g., Refs. [26–28]). The effect is the more pronounced the stronger the localization of involved states is. The peculiarity of our present spectra is that such typically resonance-like phenomenon as re-emission is observed in spite of high-energy (i.e. non-resonance) electronic excitation, with the excitation energy of nearly 4 KeV, apparently due to sufficiently high lifetime of an electron trapped in a highly localized vacant Cr$3d$ state. For the Co-intercalated systems, the effect is practically not observable. Assuming phenomenologically the participation of the lowest vacant Cr$3d$ states in the X-ray emission, we leave the (otherwise single-particle) quantitative treatment of the spectrum till next section where the microscopic information about the electronic structure becomes available.

Another important observation concerning the X-ray emission spectra is a substantial increase – especially at low intercalant concentrations – of the L_{β}/L_{α} intensity ratio as compared to that in the pure metal. To our opinion, this indicates a localization of the $3d$ electron density and hence a magnetic moment. L_{α} and L_{β} bands originate from the dipole transitions $2p_{3/2}\rightarrow3d_{5/2,3/2}$ and $2p_{1/2}\rightarrow3d_{5/2}$, correspondingly. The change in the L_{β}/L_{α} relative intensity may be influenced by the selection rule on the total moment projection, $\Delta m_j = 0$, which in the present case favors a substantial decrease of the statistical weight of the $2p_{3/2}\rightarrow3d_{5/2,3/2}$ transition, since the exchange interaction energy of $3d$ electrons (2–2.5 eV) by more than an order of magnitude exceeds their spin-orbit interaction energy. As already mentioned above, the changes in the observed L_{β}/L_{α} weights distribution for systems with lower Cr content is opposite to what one could expect from the Coster-Kronig transitions, which redistribute intensities from $2p_{1/2}$ to the $2p_{3/2}$ channel. This indicates a relative unrelavence of the Coster-Kronig effect for the systems in question.

V. ELECTRONIC STRUCTURE CALCULATIONS

In Ref. [29] we reported the results of a first-principles optimization of lattice parameters in pure TiSe$_2$ (as well as in TiTe$_2$) and the electronic structure of $3d$-intercalated systems, with the use of M(TiSe$_2$)$_3$ supercells in the latter case. The calculation has been done with the full-potential linearized augmented plane wave code WIEN97 [30], using the generalized gradient approximation (GGA) in the formulation by Perdew, Burke and Ernzerhof [31]. The hexagonal lattice parameters as found in the course of total energy minimization were $a=3.519$ Å, $c=6.280$ Å, whereas the experimental measurements give the values $a=3.535$ Å, $c=6.004$ Å (as quoted in Ref. [32]). The internal coordinate z (the distance between Ti and Se layers) is 0.247 in the calculation, compared to the measured value of 0.25. At a first sight, the GGA overestimates the c/a ratio by as much as 5%. However, considering the reduced value of z in the calculation, one can notice that in reality just the van der Waals gap between adjacent chalcogen planes is overestimated, whereas the lengths of Ti-Ti and Ti-Se bonds remain well within 1% of the experimental estimate. The Perdew–Burke–Ernzerhof formula for gradient approximation was optimally tuned for a certain degree of localization of the exchange-correlation hole, typical for bulk solids but not for the “empty” van der Waals gap. Some discussion on this subject can be found, e.g., in Ref. [33]. In the present study, we consider systems with relatively high concentration (1/3 per TiSe$_2$ unit) of intercalant atoms in the van der Waals gap, therefore the abovementioned shortcoming of the GGA treatment must be less serious than for pure dichalcogenides.

As in Ref. [29], we simulated intercalated systems using the rhombohedral M(TiSe$_2$)$_3$ supercell, shown in Fig. 8 in the hexagonal setting). Similar supercells were earlier used in non-magnetic calculations by Suzuki et al. [34,35]. With only one type of supercell being considered in ab initio calculations, it had little sense to address the systematical trends in the lattice parameters under doping. Instead, we concentrated in our analysis on the properties of two intercalated systems as impurity systems. The calculations have been performed therefore in a fixed (c, a) frame, with a local atomic relaxation around the M atoms taken into account. This allows us to make a more clear comparison of Cr- and Co-intercalated systems. From the following it becomes obvious that the noticeably perturbed region around an intercalant atom is indeed much smaller than the region defined by the translation vectors in the supercell of our choice.
In the hexagonal setting, the supercell with the lattice constants \(a' = a\sqrt{3}, \quad c' = 3c \) (Fig. 8) hosts three \(M(\text{TiSe}_2)_3 \) units with the following atomic positions in one of them: \(M \) at \((0,0,0); \) Ti at \((0,0,\frac{1}{4}) \) and at \((0,0,\frac{1}{4}+\Delta_1); \) six Se at \(\pm(1-\Delta_2-\Delta_3, \frac{1}{2}-\Delta_2, \frac{1}{2}+\Delta_3); \) \((\frac{1}{2}+\Delta_3, \frac{1}{2}-\Delta_2, \frac{1}{2}+\Delta_1); \) \((\frac{1}{2}+\Delta_2, \Delta_2+\Delta_3, \frac{1}{2}+\Delta_4). \) The optimized values of internal coordinates \(\Delta_1 \) to \(\Delta_4 \) obtained from the condition that the forces on all atoms disappear, are listed in Table II. The local structural distortion, as compared to the equilibrium structure of TiSe\(_2\), is quite small. The negative value of \(\Delta_1 \) corresponds to the displacement of the chalcogen planes towards the Ti layers by 0.42% of the \(c \) parameter of TiSe\(_2\); this corresponds roughly to \(z = 0.247 \) rather than 0.25 found for pure TiSe\(_2\). A qualitative difference between Cr\(_{1/3}\)TiSe\(_2\) and Co\(_{1/3}\)TiSe\(_2\) is that the nearest Ti atoms approach the Co atom (\(\Delta_1 \) slightly negative) but are shifted away from the Cr atom. This is consistent with the evidence of larger Co–Ti bonding and, contrarily, higher localization of the Cr\(_{3d}\) states as addressed below.

The spatial distribution of the charge density in a plane cut across the supercell is shown in Fig. 8. The vertical size of the plot covers 18.84 Å. One can see that in the absence of an \(M \) atom the charge density between the Se layers is indeed rather low, about 0.05 e/Å\(^3\). An intercalant atom embedded in this region mediates the chemical bonding between chalcogen atoms. An effectively larger (see below) Co atom provides a slightly higher charge density along the Se–M line. Moreover, the distribution of the charge density along [001] (i.e., towards the nearest Ti atoms) is somehow different in Cr- and Co-intercalated crystals (Fig. 10). On the Co site, the occupation of 3\(d \) states is substantially higher as compared to Cr, with the effect that the effective size of an intercalant atom is larger, in spite of a slightly higher contraction of the Co\(_3\)\(d \) states. At the same time, the occupation of the Ti\(_3\) shell is lower in the vicinity of Co next to a Cr atom. The local DOS distribution on the atoms in question (Fig. 11) helps to understand the origins and energetics of this different charge distribution.

The center of gravity of the Cr\(_{3d}\) states lies closer to that of Ti\(_3d\). In spite of large exchange splitting at the Cr site, a noticeable contribution from both atoms is present near the Fermi level. Specifically, mostly the 3\(d \) orbitals at both Cr and Ti sites are responsible for this direct hybridization and the enhancement of the Ti DOS (of the atoms neighboring to Cr in the [001] direction) near the Fermi energy. This factor is not important in the Co-intercalated system because the Co\(_3d\) states are lower in energy and do not mix so efficiently with Ti\(_3d\) – in fact, the majority-spin band at the Co site is fully occupied. Apart from this enhancement of the direct Cr–Ti bonding, the distribution of electronic density (spatial as well as energy-resolved) within the TiSe\(_2\) remains largely unaffected by the presence of intercalant atoms and very much close to that of pure TiSe\(_2\) (see Ref. [30]). We notice however a difference of our electronic structure from that calculated for TiSe\(_2\) in Ref. [32] with the use of the muffin-tin approximation.

The local DOS at the \(M \) site contains spin-splitted and broadened levels, typical for a magnetic impurity embedded in the VB (the latter being formed, in this case, by the Ti\(_3d\)–Se\(_4p\) hybridization). An anomalously narrow minority-spin peak appears at the Co site because its energy position is between the separated subbands due to a bonding and antibonding Ti–Se interaction (see more detailed discussion in Ref. [34]), i.e., the scattering of valence-band electrons at this impurity level is suppressed. A more detailed analysis of the crystal-field splitting and spatial distribution of the 3\(M\)\(_3d\) orbitals will be given elsewhere [35]. It should be noted that the present calculation for the ordered Cr\(_{1/3}\)TiSe\(_2\) structure failed to find an energy gap at the Fermi level (implied by the conductivity type as shown in Fig. 3 for \(x=0.33 \)). The reason may be either an effect of the lattice parameters’ change, important for the Cr-intercalated systems but ignored in the present calculation, or the importance of correlation effects due to high Cr\(_{3d}\) localization, that would justify the use of a different (orbital-dependent) form of the total energy functional. This subject yet needs a further clarification.

The values of local magnetic moments (attributed to muffin-tin sphere sizes cited above) are 2.81 \(\mu_B \) for Cr and 1.46 \(\mu_B \) for Co, that agrees well with the experimental values of Table I for \(x=0.33 \). In spite of a slight variation of the magnetic moment over the crystal (small antiparallel polarization of Ti\(_3d\) shells and parallel of the Se\(_4p\) shells), the magnetic moment remains quite localized at the intercalant atom. For the values of the 2\(p \) exchange splitting (taken simply as energy differences between spin-up and spin-down components of self-consistently calculated relativistic core levels), we obtained 0.85 eV at the Cr site and 0.59 eV at the Co site. The former is in good agreement with the experimental estimate, and the latter is probably already too small to be resolved with the experimental resolution (see Fig. 3).

With the information about the local state density distribution at intercalant sites available, it becomes possible to address the problem of X-ray re-emission in the Cr\(_x\)TiSe\(_2\) systems with low \(x \) content. An assumption of a strongly localized character of Cr\(_{3d}\) states is supported by the calculations of both spatial distribution (Fig. 4) and the local DOS (Fig. 11). Localized states in the vacant region (which may host an absorbed electron in an intermediate state of a X-ray emission process) must be necessarily those in the minority-spin channel. In order to imitate their possible participation in the X-ray re-emission, we calculated the Cr\(_{\alpha,\beta}\) X-ray emission spectrum, taking into account dipole transition matrix elements and the cutoff energy of 2 eV above the nominal Fermi level, to allow the lowest minority-spin band localized at the Cr site to contribute in full. This band incorporates more than two extra electrons, rather than one as would be the case in a simple intermediate-state model. However, there is no simple criterion to select...
only part of these low-lying vacant states for their possible contribution to the re-emission process. The result of a calculation is shown in Fig. 7, top curve. Without the Fermi energy artificially shifted, the higher peak in both L_α and L_β bands is missing, so that the calculated spectrum is rather close to that of pure chromium. No such artificial adjustment was necessary for the Co$_x$TiSe$_2$ system.

CONCLUSION

As a result of this combined study incorporating measurements of the crystal structure, kinetic properties (conductivity) and the analysis of the electronic structure by different spectroscopic techniques (XPS and XES), interpreted on the basis of electronic structure calculations, we establish the following. In spite of nominally identical magnetic moments of a free ion for Cr and Co, the saturation magnetization of intercalated TiSe$_2$ reveals an almost two times larger effective moment on Cr than that on Co sites. A large exchange splitting in the Cr$3d$ shell polarizes the Cr$2p$ shell and leads to the exchange splitting of Cr$2p$ core levels large enough (0.9 eV) to be detected by photoelectron spectroscopy. No such splitting was resolved for Co$2p$ levels. So different magnetic behavior can be traced to different strength of chemical bonding in Cr- and Co-intercalated systems. The bonding is stronger in Co$_x$TiSe$_2$, as is evidenced by larger distortion of the host lattice. The Cr$3d$ states, on the contrary, remain more localized, that favors a higher magnetic moment. Another indication of higher localization of Cr$3d$ states in Cr$_x$TiSe$_2$ is a strong contribution in the X-ray emission $L_{\alpha,\beta}$ spectrum from above the nominal Fermi level, observed even at excitation energies much higher than the threshold and tentatively attributed to re-emission. We emphasize that the exchange splitting of 2p core levels and a strong re-emission due to high-energy electronic excitations are experimental findings quite rarely observed in 3d-based systems so far. The reported first-principles calculations provide an adequate description of the structural and magnetic properties and simplify at least a qualitative understanding of the underlying physics. However, an attempt to take into account correlation effects more systematically could be interesting for the treatment of highly localized Cr$3d$ states and of the excitation processes involving the latter.

ACKNOWLEDGMENT

This work was supported by the Russian Science Foundation for Fundamental Research (Projects 96-15-96598 and 99-03-32503), a NATO Linkage Grant (HTECH.LG 971222) and a DFG-RFFI Project. Financial support from the Deutsche Forschungsgemeinschaft is greatly acknowledged.

[1] M. Inoue, M. Koyano, H. Negishi, Y. Ueda, and H. Sato, Phys. stat. solidi (b) 132(1), 295 (1985).
[2] M. Koyano, H. Negishi, Y. Ueda, M. Sasaki, and M. Inoue, Phys. stat. solidi (b) 138(2), 357 (1986).
[3] A. Fujimori, S. Suga, H. Negishi, and M. Inoue, Phys. Rev. B 38(6), 3676 (1988).
[4] R. H. Friend and A. D. Yoffe, Adv. Phys. 36(1), 1 (1987).
[5] T. Hibma, Structural Aspects of Monovalent Cation Intercalates of Layered Dichalcogenides (Academic Press, London – New York, 1982), pp. 285–313.
[6] Y. Tazuke and T. Takeyama, J. Phys. Soc. Japan 66(3), 827 (1997).
[7] T. Yamazaki, N. Suzuki, and K. Motizuki, J. Phys. C: Solid State Phys. 20(3), 395 (1987).
[8] Y. Arnaud, M. Chevreton, A. Ahouandjionou, M. Danot, and J. Rouxel, J. Solid State Chem. 18(1), 9 (1976).
[9] V. G. Pleschchev, A. N. Titov, and A. V. Kuranov, Phys. Solid State 39(9), 1442 (1997).
[10] A. N. Titov, Phys. Metals and Metallography 81(6), 629 (1996).
[11] A. Titov, S. Titova, M. Neumann, V. Pleschov, Y. Yarmoshenko, L. Krasavin, A. Dolgoshein, and A. Kuranov, Mol. Cryst. Liq. Cryst. 311, 161 (1998).
[12] J. A. Wilson, Phys stat. solidi (b) 1(1), 11 (1978).
[13] M. F. Sykes and J. W. Essam, J. Math. Phys. 5(8), 1117 (1964).
[14] W. Y. Liang, in Physics and Chemistry of Electrons and Ions in Condensed Matter. Proceedings of the NATO Advanced Study Institute, edited by J. V. Acrivos, N. F. Mott, and A. D. Yoffe (Reidel, Dordrecht, Netherlands, 1984), pp. 459–478.
[15] J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. D. Bomben, Handbook of X-ray Photoelectron Spectroscopy (Perkin-Elmer Corporation, Eden Prairie, Minnesota, 1992).
It is noteworthy that the corresponding spectra of 3d-intercalated titanium disulphides exhibit an opposite trend: the Ti2p binding energy decreases on intercalation, consistently with other physical properties of MₓTiS₂ that may be well cast into a rigid-band model, see Ref. [1,2]. In TiS₂, the lattice is more rigid along the hexagonal axis direction (consistently with smaller width of the van der Waals gap) as compared to TiSe₂. Consequently, the formation of covalent bonds between titanium and intercalant atoms is more difficult in MₓTiS₂; the electrons provided by the dopant enter the “rigid” conduction band.

Y. M. Yarmoshenko, M. I. Katsnelson, E. I. Shredler, E. Z. Kurmaev, A. Ślebarski, S. Plogman, T. Schlathölter, J. Braun, and M. Neumann, Eur. Phys. J. B 2(1), 1 (1998).

S. Plogmann, T. Schlathölter, J. Braun, M. Neumann, Y. M. Yarmoshenko, M. V. Yablonskikh, E. I. Shredler, E. Z. Kurmaev, A. Wrona, and A. Ślebarski, Phys. Rev. B 60(9), 6428 (1999).

J. J. Yeh and I. Lindau, At. Data Nucl. Data Tables 32(1), 1 (1985).

A. N. Titov, Phys. Solid State 38(10), 1709 (1996).

S. M. Butorin, J.-H. Guo, M. Magnuson, P. Kuiper, and J. Nordgren, Phys. Rev. B 54(7), 4405 (1996).

J. Kawai, K. Nakajima, K. Maeda, and Y. Goshi, Adv. X-ray Anal. 35, 1107 (1992).

M. Magnuson, N. Wassdahl, and J. Nordgren, Phys. Rev. B 56(19), 12238 (1997).

M. V. Yablonskikh, V. I. Grebennikov, Y. M. Yarmoshenko, S. M. Butorin, L.-C. Duda, C. Sothe, T. Käämbrer, M. Magnuson, J. Nordgren, S. Plogmann, and M. Neumann, Magnetic circular dichroism in X-ray fluorescence of Heusler alloys at threshold excitation (unpublished).

Y. Ma, Phys. Rev. B 49(9), 5799 (1994).

J.-E. Rubensson, J. Lüning, S. Eisebitt, and W. Eberhardt, Appl. Phys. A 65, 91 (1997).

N. Martensson, M. Weinelt, O. Karis, M. Magnuson, N. Wassdahl, A. Nilsson, J. Stöhr, and M. Samant, Appl. Phys. A 65, 159 (1997).

A. V. Postnikov, M. Neumann, S. Plogmann, Y. M. Yarmoshenko, A. N. Titov, and A. V. Kuranov, Magnetic properties of 3d-doped TiSe₂ and TiTe₂ intercalate compounds, (to be publish in Comput. Mater. Sci.).

P. Blaha, K. Schwarz, and J. Luitz, WIEN97, Vienna University of Technology (1997), improved and updated Unix version of the original copyrighted WIEN-code, which was published by P. Blaha, K. Schwarz, P. Sorantin, and S. B. Trickey, in Comput. Phys. Commun. 59, 339 (1990).

J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77(18), 3865 (1996); J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 78(7), 1396 (1997); Y. Zhang and W. Yang, Phys. Rev. Lett. 80(4), 890 (1998); J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 80(4), 891 (1998).

A. Leventi-Peetz, E. E. Krasovskii, and W. Schattke, Phys. Rev. B 51(24), 17965 (1995).

S. Tinte, M. G. Stachiotti, C. O. Rodriguez, D. L. Novikov, and N. E. Christensen, Phys. Rev. B 58(18), 11959 (1998).

N. Suzuki, T. Yamasaki, and K. Motizuki, J. Phys. Soc. Japan 58(9), 3280 (1989).

Y.-S. Kim, M. Mizuno, I. Tanaka, and H. Adachi, Jpn. J. Appl. Phys. 37, Pt. 1(9A), 4878 (1998).

A. N. Titov, A. S. Ovchinnikov, and A. V. Kuranov, The role of Me3d-Ti3d hybridization in the reduction of magnetic moments of intercalant ions Co³⁺ and Cr³⁺ in TiSe₂ (unpublished).

TABLE I. Effective magnetic moment µ_eff. (in µ_B) as measured for different intercalant concentrations

x	0.10	0.20	0.25	0.33
Co₂TiSe₂	2.67	2.38	2.24	1.64
Cr₂TiSe₂	3.85	3.03	3.29	2.56

TABLE II. Internal coordinates in relaxed M₁/₃TiSe₂ supercells

M	Δ₁ x 10³	Δ₂ x 10³	Δ₃ x 10³	Δ₄ x 10³
Cr	0.26	1.89	0.47	−1.13
Co	−0.02	1.53	0.50	−1.40
FIG. 1. The hexagonal unit cell parameters a and c of $\text{Co}_x \text{TiSe}_2$ and $\text{Cr}_x \text{TiSe}_2$ depending on x.

FIG. 2. Correlation between reduced magnetic moment of intercalant atom $\mu_0 - \mu_{\text{eff}}/\mu_0$ (μ_0 is the nominal free ion magnetic moment, μ_{eff} as determined from magnetic susceptibility measurements) and the lattice deformation parameter $c_0/(c_0 - c_x)$.
FIG. 3. The conductivity of Co$_x$TiSe$_2$ and Cr$_x$TiSe$_2$ as function of intercalant content at $T=300$ K. Inset: the temperature dependence of conductivity for Cr$_x$TiSe$_2$ with $x=0.05$ and 0.33.

FIG. 4. X-ray photoelectron spectra of Ti 2p core levels in Co$_{0.23}$TiSe$_2$, Cr$_{0.1}$TiSe$_2$, and TiSe$_2$.
FIG. 5. X-ray photoelectron spectra of intercalant $2p$ core levels in $\text{Cr}_{0.1}\text{TiSe}_2$ and $\text{Co}_{0.23}\text{TiSe}_2$.
FIG. 6. X-ray photoelectron spectrum of the valence band (VB) and L\(_{\alpha}\) X-ray emission, brought into the same scale of binding energies for Co\(_{0.1}\)TiSe\(_2\) (top panel) and Cr\(_{0.23}\)TiSe\(_2\) (bottom panel). Note the contribution to the CrL\(_{\alpha}\) spectrum from the states above the Fermi energy.
FIG. 7. $L_{\alpha,\beta}$ X-ray emission spectra of Cr and Co in pure metals (bottom) and intercalated TiSe$_2$. Top curve: the spectra calculated from first principles for the M(TiSe$_2$)$_3$ (M=Cr, Co) supercell; see text for details.

FIG. 8. The M(TiSe$_2$)$_3$ supercell (in the hexagonal setting) used in the ab initio electronic structure calculations (M=Cr, Co).
FIG. 9. The cut of the charge density distribution along the [001] from the \(M \) position in \(M(TiSe_2)_3 \) (\(M = \text{Cr}, \text{Co} \)).

FIG. 10. The contour plot of the charge density distribution over the supercell. The points labeled are in the supercell hexagonal setting (\(c' = 3c, a' = \sqrt{3}a \) – see text). The contours go up to 0.5 \(e/\AA^3 \) with the step 0.05 \(e/\AA^3 \).
FIG. 11. M$_3$d, Ti$_3$d (at the Ti atoms closest to M$_x$), and Se$_4$p-DOS as calculated for the M(TiSe$_2$)$_3$ supercell. Upper row: M = Cr, lower row: M = Co.