Research Article

Phylogenetic Analysis of Entomoparasitic Nematodes, Potential Control Agents of Flea Populations in Natural Foci of Plague

E. I. Koshel, V. V. Aleshin, G. A. Eroshenko, and V. V. Kutyrev

1 Russian Research Anti-Plague Institute “Microbe”, Saratov 410005, Russia
2 Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
3 Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow 127994, Russia
4 National Research Institute of Physiology, Biochemistry, and Nutrition of Farm Animals, Russian Academy of Agricultural Sciences, Kaluga Region, Borovsk 249013, Russia

Correspondence should be addressed to E. I. Koshel; opossum39@mail.ru

Received 28 February 2013; Revised 5 June 2013; Accepted 22 October 2013; Published 3 April 2014

Academic Editor: Vassily Lyubetsky

Copyright © 2014 E. I. Koshel et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Entomoparasitic nematodes are natural control agents for many insect pests, including fleas that transmit *Yersinia pestis*, a causative agent of plague, in the natural foci of this extremely dangerous zoonosis. We examined the flea samples from the Volga-Ural natural focus of plague for their infestation with nematodes. Among the six flea species feeding on different rodent hosts (*Citellus pygmaeus*, *Microtus socialis*, and *Allactaga major*), the rate of infestation varied from 0 to 21%. The propagation rate of parasitic nematodes in the haemocoel of infected fleas was very high; in some cases, we observed up to 1,000 juveniles per flea specimen. Our study of morphology, life cycle, and rDNA sequences of these parasites revealed that they belong to three distinct species differing in the host specificity. On SSU and LSU rRNA phylogenies, these species representing three genera (*Rubzovinema*, *Psyllotylenchus*, and *Spilotylenchus*), constitute a monophyletic group close to Allantonema and Parasitylenchus, the type genera of the families Allantonematidae and Parasitylenchidae (Nematoda: Tylenchida). We discuss the SSU-ITS1-5.8S-LSU rDNA phylogeny of the Tylenchida with a special emphasis on the suborder Hexatylina.

1. Introduction

More than 150 species of fleas feeding on different mammalian hosts, primarily rodents, are vectors of the bacterium *Yersinia pestis*, a causative agent of plague [1, 2]. In natural foci of plague, the dynamics of flea populations are among the main factors controlling the incidence of epizootics that pose a threat to humans inhabiting the areas [3–5]. Entomoparasitic nematodes of the order Tylenchida are known to control populations of various insect hosts [6–9]. The rate of tylenchid infestation in fleas reaches 50–60% in some cases [10, 11], when the nematodes cause castration and early death of the flea hosts [9, 12, 13].

Despite high importance of the Tylenchida as a nematode order harboring entomoparasites and notorious crop pests, their reliable phylogeny is still a challenge. Tylenchid nematodes differ widely in life cycle, parasitic strategies, and the host range that spans plants, fungi, and invertebrates. Phylogenies obtained from SSU and partial LSU rDNA data often disagree with classifications based on morphology and life cycle [14–21]. Phylogenetic resolution inside the order is far from being clear, which in many respects results from the insufficiency of data available to adequately describe its diversity. As for tylenchid parasites of fleas, only 31 species are described to date [9, 22–31], with no molecular vouchering. Here we present a study of parasitic nematodes isolated from fleas sampled from different rodent hosts in a natural focus of plague.

2. Materials and Methods

2.1. Collection of Samples. Samples were collected in 2012 (spring and autumn) and 2013 (spring) in the Volga-Ural natural focus of plague (Figure 1). The sampled rodents included soussliks (*Citellus pygmaeus*), mouse-like rodents (*Microtus socialis* and *Apodemus uralensis*), and jerboas (*Allactaga*...
Two species (Amphipsylla rossica and Ctenopthalmus secundus) were on M. socialis voles; and one species (Mesopsylla hebes) was on jerboas. Fleas were examined for nematode infestation (Table 1). Examination and dissection of fleas were carried out using the dissecting microscope MBS-2 (LOMO, Russia). A half of parasitic nematodes sampled from each flea was preserved for subsequent DNA extraction, and another half was used for morphological analysis. Live fleas infected with nematodes were placed in glass flasks with river sand to obtain free-living forms. Insects were kept in a KBF 720 (E5.2) climate chamber (Binder, Germany) at 26°C and 80% humidity.

2.2. Morphological Analysis. Fixation and clarification of nematode preparations were performed using standard techniques described by De Grisse [32]. Material was mounted on slides in a drop of glycerin, bound by a paraffin circlet (http://pest.cabweb.org). Color staining of preparations was not performed. Morphometric analysis was conducted using the light microscope “Leica DM 1000” (Leica, Germany) with an eyepiece micrometer. Pictures of nematodes were taken with the microscope “DFC 425” (Leica, Germany). Published data on morphometrics [23, 25, 26] were used for comparison.

2.3. DNA Extraction, PCR, and Sequencing. DNA samples were extracted with a Diatom DNA Prep (IsoGen Lab, Russia). rDNA fragments were amplified using an Encyclo PCR kit (Evrogen, Russia) and primers given in Table 2. The amplified rDNA fragments were sequenced using an Applied Biosystems 3500xL DNA analyzer. Sequence reads were assembled with the CAP contig assembly program [33] and proofread with the BioEdit software [34]. For three isolates, almost complete sequences of 18S and 28S rRNA and complete sequences of 5.8 rRNA, internal transcribed spacers ITS1 and ITS2 were assembled. The sequences were submitted to GenBank under accession nos. KF155281–KF155283. For the rest of isolates, partial (750–800 bp) sequences of 18S and 28S rRNA genes were submitted to GenBank under accession nos. KF373731–KF373740.

2.4. Phylogenetic Analysis. The newly obtained rDNA sequences of tylenchid parasites of fleas were aligned with a selected set of other tylenchid sequences obtained from the GenBank. The main selection criterion was to sample representatives of all clades that occur in published SSU and LSU rDNA phylogenies of the Tylenchida [16–21, 39]. Apart from the D2-D3 LSU rDNA expansion segment commonly used in previous studies, we included all LSU rDNA sequence data available for the Tylenchida, with the exception of Basiria sp. SAN-2005 (accession nos. DQ145619, DQ145667) that in our preliminary analyses (data not shown) demonstrated a disputable affinity to the Tylenchida. For the species Anguina tritici, Globodera pallida, Heterodera glycines, Pratylenchus vulnus, and Radopholus similis the nearly complete rDNA sequences were assembled with appropriate cDNA fragments identified with BLAST [40]. Partial LSU rDNA sequence of Ditylenchus dipsaci was combined with the soil environmental clone NTS.28S.061A.2_b4 (accession no. KC558346), as the clone sequence appeared to represent a close tylenchid relative of D. dipsaci. Chimeric sequences were also created in some cases when closely related partial rDNA sequences were found in the database. All sequences and their accession numbers are listed in Table 3. Cephalobidae and Chambersiellidae were chosen as the outgroup. Alignments were constructed with the MUSCLE program [41] and refined manually using the MEGA 5.0 software package [42]. Three alignments were generated: (1) SSU rDNA, (2) D3 region of LSU rDNA, and (3) concatenated rDNA data including SSU, LSU, 5.8S rDNA, and highly conserved regions of ITS1. After discarding ambiguously aligned positions, the alignments length was 1,723, 592, and 4,930 positions, respectively. Bayesian reconstruction of phylogeny was done with the PhyloBayes software, version 3.2 [43] under the GTR + CAT + DP model [44]. Eight independent runs were performed with 4,000,000 cycles each; the first 3,000,000 cycles were discarded. A consensus tree with Bayesian posterior probabilities was constructed for the remained tree sample. Bayesian reconstruction was also performed using the MrBayes software [45] under the GTR + G8 + I model [46] in two independent runs, each with four Markov chains. The chains were run for 5,000,000 generations, with trees sampling every 1,000th generation. The consensus posterior probabilities were calculated after discarding the first 3,000,000 generations. Partitioning “by genes” was used for the concatenated alignment with all parameters unlinked, except for the topology and branch lengths. In addition, node support was estimated with maximum likelihood bootstrap as implemented in the RAxML software, version 7.2.6 [47], under the GTR + G + I model with 1,000 bootstrap replicates. Alternative topologies were tested using the approximately unbiased (AU) [48] and Kishino and Hasegawa [49] tests implemented in the CONSEL software [50] and the expected likelihood weight test [51] implemented in the TREE-PUZZLE software [52].
Table 1: Number of fleas studied and the percentage of fleas infected with nematodes.

Time of sampling	Host rodent species	Flea species	Number of collected fleas	Number of infected fleas	Percentage of infected fleas
April 2012	Citellus pygmaeus	Citellophilus tesquorum	41	7	17.1%
		Neopsylla setosa	73	5	6.8%
		Frontopsylla semura	54	7	13%
October 2012	Microtus socialis	Amphipsylla rossica	135	9	6.7%
		Ctenophthalmus secundus	88	1	1.1%
April 2013	Citellus pygmaeus	Citellophilus tesquorum	34	0	0
		Neopsylla setosa	271	22	8.1%
	Microtus socialis and Apodemus uralensis	Ctenophthalmus secundus	19	4	21%
	Allactaga major	Mesopsylla hebes	34	2	5.9%

Table 2: Nucleotide sequences of primers used in this study.

Primer	Sequence	Orientation	References
Nik22	tmycyggtgtagtyctgc	F	This study
A	gtacgttttgatatccgactgt	F	[35]
Q5nemCh	ggcgcgaaggtcattayaac	F	This study
G18SU	gtgctctcaagattaaagcc	F	[36]
Ves18-d9	tgtctaaaggtatccgtaggtgaac	F	This study
R18Ty1l	gttccaaatgttaccttc	R	[36]
B	gtaaggtaacctcagagaagataca	R	[35]
Q39nem	gaaacctgttagacacctttrcbygg	R	This study
58di	rctagctgaagaagcywgg	F	[37]
58r nem	gcwgctttcttcagacgcyc	R	This study
28d3	gttcgaacagcagaaagcag	F	[37]
28d6	gttcyggtggatccctcgagtc	F	[37]
D2A	cacaagttcggaggaaggttg	F	[38]
28r4	gctatctcggaggaacctcgg	R	[37]
28r2nem	cggtagttcgactgctagc	R	This study
28r7	agccataaatttcctccgaaggta	R	[37]
28r12	ttctagcttacgtagcgagc	R	[37]
D3B	tcgagaagaaaccagcctaca	R	[38]

[53] was used as the tree viewer and editor, and site-wise log-likelihoods were computed with TREE-PUZZLE under the GTR + G8 + I model with substitution matrix parameters estimated by MrBayes.

3. Results

3.1. Infestation of Fleas with Nematodes. The infestation rate is shown in Table 1 (in total, 807 flea specimens were studied). Among the six flea species studied, the population size and the percentage of infected fleas varied depending on the season. Three flea species sampled on sousliks (Citellophilus tesquorum, Neopsylla setosa, and Frontopsylla semura) exhibited a stable population density. In the two species, N. setosa and F. semura, the infestation rate was moderate to high in the spring seasons of 2012 and 2013. In C. tesquorum, no infected fleas were detected in spring 2013, whereas in spring 2012 the fleas were highly infested (17.1%). The vole flea Amphipsylla rossica was abundant and moderately infested in autumn, whereas being less abundant in spring, which may explain the absence of infected fleas in the spring sample. Another vole flea, Ctenophthalmus secundus, exhibited a consistently high population density and low infestation rate in both spring and autumn samples.

Adult parasitic females and their progeny were found in the haemocoel of infected fleas. In the infected fleas C. tesquorum, A. rossica, C. secundus, and Mesopsylla hebes, only one generation of parasitic females was observed. Their amount in a flea specimen is determined by the number of free-living infective females that penetrate into the flea larva. We observed 1 to 2 or 1 to 4 adult parasitic females per flea specimen in spring and autumn, respectively. An additional parthenogenetic generation of parasitic females was found in some fleas of N. setosa and F. semura, where
Table 3: List of OTUs and accession numbers of sequences.

Name	I 18S rRNA	ITS1-5.8SrRNA	28S rRNA	%, SSU-ITS1-5.8S-LSU/D3	Reference	Family by [8]
Chambersiellidae						
Fescia grossa	KC242218	—			DQ145636	[54] Chambersiellidae
Geraldia sp. SAN-2010a	—	—	GU062821	17.8/—		[56] Chambersiellidae
Cephalobidae						
Acroboloides maximus	EU196016	JX026706	EU195987	94.8/—		[57]
Cephalobus cubensis	AF202161	AF202161	EU253570	89.8/—		[57] Cephalobidae
Panagrolobus sp. SN-2010	—	—	HM439771	51.9/—		[60]
Cephalobidae Gen. sp. MHMH-2008	FJ040406	—	—		Holterman et al., 2008, unpublished.	
Zeldia punctata	—	DQ146426	EU195988	96.6/—		[57]
Zeldia sp.	AY284675	—	—			
Aphelenchidae						
Aphelenchus avenae	JQ348399	AF199048	—	96.9/—		[63] Aphelenchidae
Aphelenchus sp.	—	—	DQ145664			[55]
Paraphelenchus aconioides	—	—	HQ18822	45.5/—		[64]
Paraphelenchus sp.	AY284642	—	—			[18]
Hexatylinia + "Anguinata (part)": Iotenchioidea**						
Allantonema mirabile	—	—	JX291132	10.6/85.8		[39]
Bradynema listronoti	DQ95805	—	DQ95804	45.6/96.8		[65]
Bradynema rigidum	—	—	DQ328730	10.4/86.3		[20]
Contortylenchus sp.	—	—	DQ328731	—/85.4		[20]
Deladenus durus	JQ957898	—	—	34.0/—		[66]
Deladenus proximus	JF304744	JF304744	—	35.2/—		[67]
Deladenus siricidicola isolate 354	AY633444	—	AY633444	45.8/98.1		[68]
Deladenus siricidicola isolate 466	FJ004890	FJ004890	—	41.7/—		[69]
Deladenus siricidicola isolate 1093	FJ004889	FJ004889	—	42.0/—		[69]
Fergusobia camaldulensae	AY589294	—	AY589346	45.7/98.0		[68]
Fergusobia sp. 444	EF01667	—	EF01675	45.7/97.3		[68]
Fergusobia sp. SBG	FJ39270	—	FJ386996	45.7/98.3		[70]
cf. Gymnotylenchus sp. TSH-2005	AY912040	—	—	12.9/—		Powers et al., unpublished.
Name	18S rRNA	ITS1-5.8S rRNA	28S rRNA	%, SSU-ITS1-5.8S-LSU/D3	Reference	Family by [8]
-------------------------------------	--------------	----------------	----------	------------------------	-----------	---------------------
Howardula aoronymphium	AY589304	AY589304	AY589395	49.7/96.1	[68]	
Howardula dominicki	AF519234	AF519234	—	37.4/—	[71]	
Howardula neocosmis	AF519226	AF519226	—	38.2/—	[71]	
Howardula phyllostreta	JX291137	—	DQ328728	41.9/86.1	[20]	Allantonematidae
Howardula sp. CD353	—	—	JX291131	—/93.9	[39]	
Howardula sp. SP-A	AF519232	AF519232	—	37.7/—	[71]	
Howardula sp. SP-F	AF519222	AF519222	—	38.2/—	[71]	
Howardula sp. SP-MA	AF519233	AF519233	—	38.1/—	[71]	
Howardula sp. SP-PS	AF519231	AF519231	—	38.1/—	[71]	
Parasitylenchus bifurcatus	KC875397	—	DQ328729	44.0/85.3	[20]	
Parasitylenchus sp.	—	—	—	—/93.9	[39]	
Psylotylenchus sp. ex Frontopsylla semura	KF373734	—	KF373739	27.1/93.7	This study	Parasitylenchidae
Psylotylenchus sp. ex Neopsylla setosa	KF373733	—	KF373738	27.1/93.7	This study	Parasitylenchidae
Rubzovinema sp. ex Amphisylla rossica	KFI55281	KFI55281	KFI55281	90.0/100.0	This study	Neotylenchidae
Rubzovinema sp. ex Ctenophthalmus accundus	KFI55282	KFI55282	KFI55282	89.8/100.0	This study	Neotylenchidae
Rubzovinema sp. ex Citellophilus tesquorum	KFI55283	KFI55283	KFI55283	93.2/100.0	This study	Parasitylenchidae
Rubzovinema sp. ex Frontopsylla semura	KF373732	—	KF373737	27.1/93.7	This study	Parasitylenchidae
Rubzovinema sp. ex Neopsylla setosa	KF373731	—	KF373736	27.1/93.7	This study	Parasitylenchidae
Skarbilovinema laumondi	—	—	JX291136	10.9/91.0	[39]	Itonchioidea
Skarbilovinema lyoni	JX291138	—	DQ328733	41.8/86.3	[20]	
Spilotylenchus sp. ex Mesopsylla hebes	KF373735	—	KF373740	27.1/93.4	This study	Parasitylenchidae
cf. Sychnotylenchus sp. CSP1-09	DQ080531	—	—	12.9/—	Powers et al., unpublished.	Sychnotylenchidae
Wacheckitylenchus bovieni	—	—	DQ328732	—/85.9	[20]	Parasitylenchidae
Unidentified Allantonematidae	—	—	—	18.5/—	Rhule, unpublished.	Allantonematidae
HaMW	JQ941710	—	—	18.5/—	[73]	
Unidentified Allantonematidae	—	—	—	—/—	[73]	
NK2011_2	AB663183	—	—	12.0/—	[73]	
Unidentified Allantonematidae	—	—	—	12.0/—	[73]	
NK2011_3	AB663184	—	—	12.0/—	[73]	
Unidentified nematode	EU880149	—	—	12.0/—	[74]	
804U-025	—	—	—	—/—	[74]	
Name	18S rRNA	ITS1-5.8S rRNA	28S rRNA	%, SSU-ITS1-5.8S-LSU/D3	Reference	Family by [8]
---	----------	----------------	----------	-------------------------	-----------	---------------
Unidentified nematode CD289	—	—	JX291133	—/84.1	[39]	
Unidentified nematode RGD591T12	AB455970		—	12.0/—	[73]	
Unidentified nematode WY2009_BAR-1	—	—	FJ661075	—/96.3	[75]	
Unidentified parasite ex Chrysothrix affinis	—	—	DQ202658	—/5.0	Hunt et al., unpublished.	

Hexatylina + “Anguinata (part)”: Sphaerularioidea

Name	18S rRNA	ITS1-5.8S rRNA	28S rRNA	%, SSU-ITS1-5.8S-LSU/D3	Reference	Family by [8]
Deladenus sp. PDL-2005	AJ966481		—	35.0/—	[16]	Neotylenchidae
cf. Helionema sp. MHMH-2008	EU669913		—	34.0/—	[19]	Parasitylenchidae (genera dubia in Hexatylina)
cf. Hexatylus sp. Westplace	AY912050		—	12.9/—	Powers et al., unpublished.	Neotylenchidae
Nothotylenchus acris	AY593914		—	34.0/—	[76]	Anguinida
Sphaerularia bombi	AB250212		DQ328726	56.7/100.0	Takahashi, unpublished.	Sphaerularioidea
Sphaerularia vespe	AB300595	AB300595	AB300596	54.7/100.0	[77]	
Unidentified nematode 801L-022	EUS80129		—	12.1/—	[74]	

Anguinata

Name	18S rRNA	ITS1-5.8S rRNA	28S rRNA	%, SSU-ITS1-5.8S-LSU/D3	Reference	Family by [8]
Anguina tritici	AY593913	JF826515	H0058555	DQ328723	57.6/92.9	
Ditylenchus adasi	EU669909		—	34.6/—	[19]	
Ditylenchus angustus	AJ966483		—	34.6/—	[16]	
Ditylenchus destructor	JX162205		—	50.0/99.5	[78]	Anguinida
Ditylenchus dipsaci	AY593911	AY593911	JF327759	60.9/100.0	Zhao 2011, unpublished.	
done NTS.28S.061A.2_b4					[79]	
Ditylenchus drepanocercus	JQ429768	JQ429774	JQ429772	48.7/89.3	[80]	
Ditylenchus halicus	AY589297			52.8/97.3	[68]	
Ficoylus congestae	EU018049			45.6/97.5	[81]	
Halenchus fucicola	EU669912			34.6/—	[19]	
Pseudhalenchus minutus	AY284638			34.6/—	[19]	
Unidentified entomoparasitic nematode SAS-2006	—	—	DQ328725	—/85.6	[20]	

“Tylenchina”: Tylenchidae

Name	18S rRNA	ITS1-5.8S rRNA	28S rRNA	%, SSU-ITS1-5.8S-LSU/D3	Reference	Family by [8]
Aglenchus agricola	FJ969113		—	46.0/—	van Megen et al., unpublished.	Tylenchidae
Aglenchus sp.	—	—	JQ004996		[82]	
Name	18S rRNA	ITS-5.8S rRNA	28S rRNA	%, SSU-ITS-5.8S-LSU/D3	Reference	Family by [8]
-------------------------------	----------	---------------	----------	------------------------	-----------	--------------
Coslenchus costatus	AY284581	—	—	45.5/-	[18]	
Coslenchus sp.	—	—	JQ005007	46.4/-	[82]	
Filenchus annulatus	JQ814880	—	JQ005017	44.1/-	[82]	
Tylenchus davainei	AY284588	—	—	33.9/-	[18]	

“Tylenchina”: Tylodoridae

| Eutylenchus excretorius | EU915487 | EU915500 | EU915490 | 35.8/- | [83] | Atylenchidae |
| Cephalenchus hexalineatus | AY284594 | — | — | 44.1/- | [18] | Tylenchidae |

“Tylenchina”: Boleodoridae

Basiria gracilis	EU130839	—	—	44.6/-	[84]	
Basiria sp. 3 TJP-2012	—	—	JQ004998	12.0/-	[82]	
Boleodorus thy lactus	AY993976	—	—	46.7/-	[16]	Tylenchidae
Boleodorus sp.	—	—	JQ005001	46.7/-	[18]	
Neopsislenchus magnidens	AY284585	—	—	45.6/-	[18]	
Neopsislenchus sp. 3 TJP-2012	—	—	JQ005020	11.9/-	[82]	
Neopsislenchus sp. 1 TJP-2012	—	—	JQ005018	11.9/-	[82]	

“Hoplolaimina”: Merliiidae

Nagelus leptus	—	—	—	45.2/-	[20]	Telotylenchidae
Nagelus obscurus	EU306350	—	—	45.2/-	[17]	Telotylenchidae
Pratylenchoides ritteri	AJ966497	—	JX261964	48.7/-	[16]	Pratylenchidae
Psilenchus cf. hilarus	AY284593	—	EU915489	44.1/-	[18]	Psilenchidae
Scutylenchus quadriser	AY284599	—	—	41.5/-	[18]	Telotylenchidae
Scutylenchus sp.	—	JQ069956	—	41.5/-	[86]	Telotylenchidae

“Tylenchina”: Ecyphadophoridae

Ecphyadophora sp. JH-2004	AY593917	—	—	33.7/-	[76]	Ecyphadophoridae
“Ditylenchus” brevicauda	AY284635	—	—	33.9/-	[18]	Anguinidae
Malenchus andrassi	AY284587	—	—	32.3/-	[18]	Tylenchidae
Ottolenchus discrepans	AY284590	—	—	33.7/-	[18]	Tylenchidae

Criconematina

Hemicricemonoides gaddi	—	KC520471	KC520470	55.6/-	[87]	Criconematidae
Hemicricemonoides pseudobrachyurus	AY284622	—	—	33.7/-	[18]	
Hemicyclophora latosa	—	GQ406237	GQ406240	53.2/-	[88]	Hemicyclophoridae
Hemicyclophora thienemanni	AY284628	—	—	53.2/-	[18]	
Table 3: Continued.

Name	18S rRNA	ITS1-5.8S rRNA	28S rRNA	%, SSU-ITS1-5.8S-LSU/D3	Reference	Family by [8]
Meloidoderita kirjanovae	—	DQ768427	—	50.8/—	van Megen, unpublished. [89]	Sphaeronematidae
Sphaeronema alni	FJ969127	—	—	—	[90]	
Meloidoderita sp.	GU253916	GU253917	JQ771954	50.8/—	Cudejkova and Cermak, unpublished. [91] [92]	
Tylenchulus semipenetrans	AJ966511	FJ588909	FJ969710	57.5/—		Tylenchulidae

“Hoplolaimina”: Belonolaimidae

| *Belonolaimus longicaudatus* | AY633449 | DQ672366 | GQ896548 | 55.8/— | [93] [94] | Belonolaimidae |
| *Ihiosoma lolii* | JQ771535 | — | — | 30.9/— | [95] |

“Hoplolaimina”: Hoplolaimidae

| *Carphodorus sp.* | JQ771538 | — | JQ771550 | 41.3/— | [95] |
Name	18S rRNA	ITS1-5.8S rRNA	28S rRNA	%, SSU-ITS1-5.8S-LSU/D3	Reference	Family by [8]
Globodera pallida	EU855119	EU85511		93.6/—	Nowaczyk et al., unpublished.	Heteroderidae
			BM415342			
			BM415248			
			CV577211			
			CV577977			
			CV579301E			
			U85511			
			AF133304			
			AF216579			
			BI704144			
			BI704144			
			BI749520			
			CA940190			
			CA940212			
			CA940243			
			CA940406			
			CA940424			
			CA940429			
			CA940589			
			CB238697			
			CB279977			
			CB299455			
			CB373844			
			CB373981			
			CB379125			
			CB379140			
			CB379219			
			CB379312			
			CB379439			
			CB379505			
			CB379696			
			CB379707			
			CB379996			
			CB380091			
			CB380241			
			CB38041			
			CB824788			
			CB824878			
			CB825995			
			CB934877			
			CB934931			
			CB934950			
			CB934954			
			CK348525			
			CO036619			
			HM560850			
			JN684906			
Heterodera glycines			AF216579	98.3/—	Yan and Davis, unpublished.	
			BI704127			
			BI748392			
			CA940548			
			CB379240			
			CB379263			
			CB379850			
			CB380242			
			CB825296			
			CB825409			
			CB825970			
			CB935610			
			CK348871			
			CK348904			
			CK349775			
			CK352112			
Morulaimus sp.	JQ771540	—	—	31.5/—	[95] Belonolaimidae	
Name	18S rRNA	ITS1-5.8S rRNA	28S rRNA	%, SSU-ITS1-5.8S-LSU/D3	Reference	Family by [8]
-----------------	----------	---------------	----------	-------------------------	------------------------	---------------
Radopholus similis	AJ966502	AY912509	EF384224	97.5/—	[16] Longet al., unpublished.	Pratylenchidae
	EY191076	EY191197	EY191883		[100] Holterman et al., unpublished.	
	EY192786	EY193123	EY193253		[102] Zhao unpublished.	
	EY194340	EY194464	EY194646		[86]	
	EY195472	EY195408	EY195406			

Table 3: Continued.
Table 3: Continued.

Name	18S rRNA	ITS1-5.8S rRNA	28S rRNA	%, SSU-ITS1-5.8S-LSU/D3	Reference	Family by [8]
Rotylenchulus reniformis	JX406356	FJ374686	HML31884	59.4/—	[103] Rahman et al., unpublished.	Rotylenchulidae
"Hoplolaimina": Pratylenchidae						
Dolichodorus sp. WY-2006	DQ912918	—	—	33.9/—	[105] Dolichodoridae	
Hirschmanniella loofi	EU306353	EU620472	EU620469	51.6/—	[17] Pratylenchidae	
Macrotrophurus arbusticola	AY284595	—	—	33.9/—	[18] Telotylenchidae	
Meloidogyne arenaria	U42342	U42342	AF023855	99.2/—	Georgi and Abbott, unpublished.	Meloidogynidae
Meloidogyne artiellia	AF248477	AF248477	AF248477	99.2/—	[107]	
Name	18S rRNA	ITS1-5.8S rRNA	28S rRNA	%, SSU-ITS1-5.8S-LSU/D3	Reference	Family by [8]
---------------------------	----------	----------------	----------	-------------------------	-----------	---------------
Nacobbus aberrans	AJ966494	DQ017473	U47557	49.0/—	[16]	Pratylenchidae
					[108]	
					[109]	
	BQ580554	CV198923	CV198995	CV199233		
	CV199349	CV199490	CV200036	CV200423		
	CV200464	CV200467	CV200471	CV200530		
	CV200687	CV200896	CV201004	CV201135	[19]	
					[110]	
					[96]	
					[111]	
Pratylenchus vulnus	EU669955	JQ966892	100.0/—		[17]	Zhao, unpublished.
					[19]	
					[110]	
					[96]	
					[111]	
Tylenchorhynchus dubius	EU306352	—	DQ328707	53.2/—	[17]	Telotylenchidae
Tylenchorhynchus zeae	—	EF519711	—		[20]	

* Clades of the tree, marked by boldface.
up to 16 specimens per flea were observed. As in other entomoparasitic nematodes, the propagation rate depends on the host age. Thus, in young fleas up to 10 juveniles was found per flea specimen, whereas up to 1,000 juveniles of different stages were contained in some old fleas (Figure 2). After the 2nd molt the number of juveniles is maximal, and 3rd stage juveniles massively migrate to the rectal section of the flea intestine for exit to the environment. In some cases, the observed infestation level was so high that nematodes penetrated distal segments of the flea legs, from where they have no way to the environment.

3.2. Morphological Analysis of Entomoparasitic Stages in Nematode Isolates and Their Taxonomic Identification. Analysis of morphology of entomoparasitic stages suggests that the studied nematode isolates from three distinct groups. A single generation of parasitic females was observed in the first two groups and an additional parthenogenetic generation—in the third group. According to morphometric data on adult parasitic females (Tables 4–6), the first two groups belong to the genera Rubzovinema or Spilotylenchus and the third group to the genus Psyllotylenchus. Photographs of parasitic females of Rubzovinema sp., Spilotylenchus sp., and Psyllotylenchus sp. are depicted in Figure 3. Figure 4 shows their distribution among flea samples studied.

According to morphometric evidence, parasitic females and juveniles of the genera Rubzovinema and Spilotylenchus are very similar. However, in the first two groups of isolates we found characters bearing discriminative and identification value. In particular, the oesophageal glands in juveniles III of the first group are poorly developed. This is a distinctive feature of the genus Rubzovinema, where males and females have shortened oesophageal glands located close to the nerve ring. In the second group of isolates, oesophageal glands are well developed and elongated, which is characteristic of the genus Spilotylenchus. In the first group, the stylet possesses a heavily sclerotized distal spear with a length of approximately half the total stylet length and has a stem with a weaker sclerotization and widening to the base. This stylet structure is characteristic of the genus Rubzovinema, and stylet length (18.5 (14–22) μm) is in accordance with morphometrics given in the description of this genus [26]. In the genus Spilotylenchus, the stylet varies in shape but always possesses a shortened conical distal spear. In the second group of isolates, the stylet structure was similar to that of Spilotylenchus. Also, the vulval lips of the first group are more protruded than in Spilotylenchus. Other features, including the morphometrics, vary widely in both genera, which hampers taxonomic identification. Nevertheless, based on distinctive traits, we identified the first and second group of isolates as Rubzovinema sp. and Spilotylenchus sp., respectively.

In the genus Rubzovinema, the single species described to date is Rubzovinema ceratophylla [26]. This species is known to parasitize exclusively the flea Citellophilus tesquorum that feeds on soulsiks. The specimens of Rubzovinema studied in this work were isolated from five flea species, C. tesquorum, Neopsylla setosa, Frontopsylla semora, Amphipsylla rossica, and Ctenophthalmus secundus, of which the latter two were sampled on mouse-like rodents. Also, the parasitic females of Rubzovinema sp. differed from R. ceratophylla by morphology; they have a shorter tail and more protruded vulval lips. A morphometric comparison of Rubzovinema sp. and R. ceratophylla is given in Table 4.

The parasitic females of Spilotylenchus sp. were isolated from the flea Mesopsylla hebes associated with jerboas. The females were not identified to the species level because of a small number of available specimens and the lack of a free-living stage. A morphometric comparison of Spilotylenchus sp. and the morphologically closest species Spilotylenchus maisonabei [23] is given in Table 5.

In the genus Psyllotylenchus, descriptions of most species are fragmentary and incomplete, which precluded the species identification of the Psyllotylenchus isolates from the fleas N. setosa and F. semura feeding on soulsiks. A morphometric comparison of Psyllotylenchus sp. and the type species of this genus, Psyllotylenchus viviparous [25], is given in Table 6.

The 18S and 28S rDNA sequences of Rubzovinema sp. specimens from A. rossica and C. secundus were 100% identical, which indicates that the isolates belong to the same species. The sequences of Rubzovinema sp. ex C. tesquorum, Rubzovinema sp. ex N. setosa, and Rubzovinema sp. ex F. semura diverged from one another and from the gene sequences of Rubzovinema sp. ex A. rossica and Rubzovinema sp. ex C. secundus by 0.4–0.7%, which corresponds to the levels of intraspecific variation [14, 114–119]. The 18S and 28S rDNA sequences of Spilotylenchus sp. ex N. setosa and Psyllotylenchus sp. ex F. semura were 100% identical, indicating that they belong to the same species. The 18S and 28S rDNA sequences of Rubzovinema sp. and Psyllotylenchus sp. diverge by 1.2% and 1.9%, respectively. Those of Spilotylenchus sp. ex M. hebes were found to be more divergent. The degree of divergence of the 18S rDNA sequence of Spilotylenchus sp. ex M. hebes from those of either Rubzovinema sp. or Psyllotylenchus sp. was 2.4%; the D3 expansion segment of 28S rDNA diverged by 13.1% and 12.0%, respectively. The observed divergence rate of rDNA sequences agrees well with published evidence on entomoparasitic nematodes [14, 114–118]. Thus, intraspecific divergence of 18S rDNA in Deladenus siricidica is 1% [120], of D2 and D3 expansion segments in the phytoparasite Bursaphelenchus xylophilus is from 0% to 0.6%, and the interspecific variation between the
Figure 3: Parasitic females of the studied nematode species. (a) *Rubzovinema* sp., heterogeneous female; (b) *Spilotylenchus* sp., heterogeneous female; (c) *Psillotylenchus* sp., heterogeneous female of the first generation; (d) (c): *Psillotylenchus* sp., parthenogenetic female of the second generation. Scale bar—200 μm.

Table 4: Comparison of morphometrics in parasitic females of *Rubzovinema* sp. and *Rubzovinema ceratophylla*.

Character	*Rubzovinema* sp. (this study)	*Rubzovinema ceratophylla* [26]
N	29	27
L	1278,6 (840–1570)	1265,1 (810–1840)
D	120,8 (85–145)	137,3 (62–200)
A	11,19 (7,9–16,1)	9,51 (6,4–16,8)
C	65,4 (31,4–100)	44,10 (10–86,4)
V%	96,4 (93,1–97,9)	95,44 (92–98,9)
Total length of stylet (St)	18,5 (14–22)	19,5 (18–21)
Length of distal edge of stylet	7,2 (5–8,7)	—
Distance between anterior end and excretory pore (Ex)	20,7 (10–31)	—
Distance between anterior end and nerve ring	61,2 (50–74,5)	—
Total length of tail (Cd)	21,9 (10–42)	26,35 (14–47,5)
Distance between vulva and tail end	46,1 (23–75)	—
Distance between vulva and anus (V–A)	26,9 (13–40)	—

All measurements are in μm and in the form mean (range).
Table 5: Comparison of morphometrics of parasitic females in *Spilotylenchus* sp. and *Spilotylenchus maisonabei*.

Characters	*Spilotylenchus* sp. (this study)	*Spilotylenchus maisonabei* [23]
N	2	6
L	1,600–1,840	1,244 (1,200–1,320)
D	155–160	125 (107–160)
A	10.3–11.5	10.3 (7.5–12)
C	167.3–177.8	84.4 (64.5–121)
V%	97.4–97.7	96.2 (95.8–96.5)
Total length of stylet (St)	9.5–9.8	9.10
Distance between anterior end and excretory pore	1.5–15.5	23.3 (20–28)
Distance between anterior end and nerve ring	—	52–54
Total length of tail (Cd)	9–11	15.4 (10–19)
Distance between vulva and tail end	41.5–43	47 (42–52)
Distance between vulva and anus (V–A)	32–33	—

All measurements are in μm and in the form mean (range).

Table 6: Comparison of morphometrics of parasitic females in *Psyllotylenchus* sp. and *Psyllotylenchus viviparous*.

Character	*Psyllotylenchus* sp. (this study)	*Psyllotylenchus viviparous* [25]		
Gamogenetic	Parthenogenetic	Gamogenetic	Parthenogenetic	
N	3	7	8	10
L	1,016.7 (900–1,100)	446 (420–500)	1,000 (840–1,480)	500 (360–840)
D	81.3 (79–84)	70 (60–80)	77 (62–115)	60 (54–100)
A	12.5 (11.1–13.3)	6.25 (5.6–7)	—	—
C	64.3 (60–68.2)	40.15 (37.1–43.5)	—	—
V%	95.1 (95–95.4)	93.3 (90–95.3)	—	—
Total length of stylet (St)	17.5 (17–18.5)	5.25 (4–6)	17 (15–20)	7 (5–8)
Length of the distal edge of stylet	8.6 (8–9)	—	—	—
Distance between anterior end and excretory pore	26.5 (25–31.5)	17.5 (15–19.5)	23 (13–33)	22 (14–46)
Distance between anterior end and nerve ring	—	51.7 (50–55)	—	—
Total length of tail (Cd)	15.8 (15–17)	11.1 (10.5–11.5)	25 (17–35)	9 (1–17)
Distance between vulva and tail end	48 (45–51)	30.5 (19.7–55)	56 (37–71)	52 (40–104)
Distance between vulva and anus (V–A)	30.8 (29–31.5)	13.5 (11.7–21.6)	—	—

All measurements are in μm and in the form mean (range).

phytoparasites *B. xylophilus* and *Bursaphelenchus mucronatus* is from 1.7% to 3.7%. The spacers ITS1 and ITS2 are generally more diverged; the intra- and interspecific variation for these species is from 0 to 3.1% and 11.2 to 13.4%, respectively [121–123].

Molecular vouchering is proved to efficiently complement morphological species identification in nematodes [73, 122, 124–128]. Combining the rDNA and morphological data confirms the species identity within each of the three studied groups of isolates.

3.3. Phylogenetic Analysis. In phylogenetic analyses of rDNA we used a dataset with extensive species and gene sampling (SSU-ITS1-5.8S-LSU) compared to earlier published tylenchid phylogenies, most of which were based on SSU rDNA or D2-D3 expansion segments [17, 19–21, 39, 129]. The SSU-ITS1-5.8S-LSU rDNA tree topology (Figure 5) is highly similar to other published phylogenies of tylenchids. In this tree, tylenchomorphs are represented by the sister groups Aphelenchidae and Tylenchida. Most of the tylenchid clades occur in published trees but often contradict classifications based on morphology, as it was also noted by other authors [17, 19–21, 39, 129]. The three robust major branches in the SSU-ITS1-5.8S-LSU rDNA tree (Bayesian posterior probabilities of 0.99–1.0) are (1) the clade includes representatives of the suborders Holoilaimina, Criconematina, and Tylenchina (excluding Anguinoidae); (2) the majority of classic Anguinata; (3) the suborder Hexatylina. The studied parasites of fleas form a monophyletic group (bootstrap support of 100%) within the Hexatylina.

The nonredundant rDNA data on the Hexatylina in GenBank mostly represents the D2-D3 expansion segments of LSU rDNA. To maximize species sampling of the Hexatylina, we chose the D3 expansion segment as the molecular marker. The phylogenetic tree with the Anguinoidea as an outgroup is shown in Figure 6. In this tree, the suborder Hexatylina consists of two well-supported clades, in accordance with previously published D2-D3 rDNA phylogenies [19, 20, 39]. The clade of the studied flea parasites is placed within the
largest branch of the Hexatylina, similarly to the result of the concatenated rDNA analysis.

The three alternative relationships between the three major branches of Tylenchida (Figure 5) are not discriminated by the AU and Kishino and Hasegawa tests, and only the basal position of the Hexatylina is rejected by the expected-likelihood weights test (Table 7). All three tests do not discriminate between the alternative placement of the flea parasites as closest to the Allantonema, Parasitylenchus, or Deladenus branches; however, its positioning outside this grouping is not rejected only by a less conservative Shimodaira-Hasegawa test [50].

4. Discussion

4.1. Ribosomal DNA Phylogeny of the Tylenchida and Relationships within the Suborder Hexatylina. Phylogenetic analyses of SSU [16, 17, 19, 39] and D2-D3 [20, 39] rDNA data using various methods and species sampling generally agree on the monophyly of most tylenchid clades and contradict classic morphology based classifications. In the SSU-ITS-5.8S-LSU tree (Figure 5), the monophyletic Tylenchida consists of three major robust clades. The first clade diverges into six groups: (1) the “Tylenchidae (part 2)” (by [17]), (2) the Tylodoridae (represented by the two genera, Cephalenchus and Eutylenchus [83]), (3) Boleodorinae + “Tylenchidae (part 1)” (by Bert), (4) the Merliniidae [130], (5) Criconematina + Sphaeronomatidae + selected Tylenchina, and (6) Belonolaimidae + “Hoplolaimina.” The Merliniidae group corresponds to Clade C in [19] and includes partially the polyphyletic “Telotylenchinae” [131], “Pratylenchidae”, and “Hoplolaimina” (Psilenchus cf. hilarulus). Group (5) corresponds to Clade 12A in [129], where Sphaeronomatidae (Sphaeronomes and Meliododerita) were earlier shown to be closely related to Criconematina [20, 89], and selected Ephydorphoridae + Otollenchus + Malenchus were found to represent a monophyletic clade within the paraphyletic Tylenchina likely to be related to the Criconematina [18, 82]. Group (6) corresponds to Clade VII in [20], Clade 12B in [129], and Clade A + Clade B in [19]. Belonolaimidae (the genera Belonolaimus and Ibiporta) tend to occupy the basal position. Clade A in [19] contains a “long branch” of the burrowing nematode Radopholus similis (“Pratylenchidae”) in sister position to the Hoplolaimidae [17, 19]. This nematode occurs a similar position relative to the Hoplolaimidae in the SSU-ITS-5.8S-LSU tree, and we consider this unlikely to be an LBA artefact. Similarly to [95], Carphodorus and Morulaimus that belong to the classic Belonolaimidae comprise the basal branch of Clade A sensu [19]. The clade corresponding to Clade B in [19] contains Meloidogyneidae, Dolichodoridae, paraphyletic Pratylenchidae, and a part of Telotylenchidae.

The second major clade of the Tylenchida includes representatives of the classic infraorder Anguinata, with a well-supported monophyletic origin, except for a few species. They belong outside the second clade and may initially have been wrongly identified.

The third major clade includes representatives of the classic suborder Hexatylina and consists of two groups. The smaller one unites the three species of Sphaerularia, Helionema sp., cf. Hexaylus sp., Deladenus sp. PDL-2005, and Nothotylenchus acris (Anguinata: Nothothylenchidae). It is further referred to as the Sphaerulariioidea according to the type genus. The larger group contains the clade of studied flea parasites and members of the superfamilies lotonchioidea (Skarbilovinema spp., Parasitylenchus spp., and Wachekitylenchus bovieni) and Sphaerulariioidea (Allantonema mirabile, Brarynema spp., Howardula spp., and Contortylenchus sp. (fam. Allantonematidae); Deladenus durus, Deladenus proximus, Deladenus siricidica, Fergusobia spp., and Gymnotylenchus sp. (fam. Neotylenchidae)). One species of the Anguinata, Sychnotylenchus sp., also joins the larger group. Our study renders the genera Howardula and Deladenus paraphyletic, as was earlier shown in [19, 39, 71, 119].

The genus Howardula is paraphyletic in published rDNA and mitochondrial COI phylogenies [71]. Such characters of Howardula as the degeneration of oesophagus, tail shape, and the absence of stylet in males seem to have evolved independently by convergence. The paraphyletic genus Deladenus is more closely related to either ancestral forms of the Hexatylina or forms typical to the Anguinata. The infraorder Anguinata includes soil-dwelling nematodes, mostly mycetophagous or parasitizing various parts of plants. However, an unidentified entomoparasitic nematode was also grouped within the Anguinoida [39]. The life cycle of Deladenus spp. is an irregular alternation of free-living and entomoparasitic forms. The nematode D. siricidica is able of producing an unlimited number of free-living generations in the absence of the host larvae of siricid
Primarily entomoparasitic, most with free-living mycetophagous or plant-parasitic generation
Obligate parasites of plant roots
Feeding on algae, mosses, and fungi; parasites of plants
Mostly mycetophagous
Bacterial feeding

Figure 5: Phylogenetic tree of Tylenchida, inferred from SSU-ITS1-5.8S-LSU rDNA sequences. Topology was inferred using the PhyloBayes software (maxdiff = 0.36). Node support values are shown as follows: the first two values are Bayesian posterior probability assessed using the PhyloBayes and MrBayes software, respectively, and the third is bootstrap support assessed by the ML method. Thick lines lead to the nodes, in which at least one support value of posterior probability is 0.95 and higher. Names of clades (framed) are mainly given by type genus included in them (with the exception of Itonchioidea). Formal taxonomic position (family by [8]) is shown on the right to the color bar. Colors indicate the ecologies (see the legend). Names of the species of Hexatylinea that have a mycetophagous stage in their life cycle are shown in blue. The three robust major branches of Tylenchida are marked by gradient.
Primarily entomoparasitic, most with free-living mycetophagous or plant-parasitic generation

Feeding on algae, mosses, and fungi; parasites of plants

Type genera

Rubzovinema sp. ex Neopsylla setosa
Rubzovinema sp. ex Ctenophthalmus cecundus
Rubzovinema sp. ex Frontopsylla semura
Rubzovinema sp. ex Amphipsylla rossica
Splotylenchus sp. ex Mesopsylla hbees
Psilomylenchus sp. ex Frontopsylla semura
Psilomylenchus sp. ex Neopsylla setosa

Bradynema listronoti
Bradynema rigidum
Allantonema mirabile

entomoparasitic nematode CD289

Howardula phyllocretae
Parasitylenchus sp.

Deladenus siricidicola isolate 354

Skarbolvinema laumondi
Skarbolvinema lyoni

entomoparasitic nematode sp. WY2009 BAR-1

Contortylenchus sp.

entomoparasitic nematode from Chrysobothris affinis

Figure 6: Phylogenetic tree of Hexatylina, inferred from D3 expansion segment of LSU rDNA. Topology was inferred using the PhyloBayes software. Node support values are shown as follows: Bayesian posterior probability/bootstrap support assessed by the ML method. Thick lines indicate the nodes supported at the level of 0.95 and higher. Color of lines indicates the ecologies (see the legend). Names of species were shown in different colors indicating their taxonomic position. Three families that include their type genera (shown as circles) are marked by gradient.
pine-killing wood wasps [132]. Like in Anguinata, the free-living forms of Deladenus spp. are fungal feeding. Such characters of Deladenus asthe mycetophagy, enlargement of subventral glands in entomoparasitic females versus their reduction in free-living forms, the hypertrophy of dorsal glands, and stylet reduction in free-living forms seem to be symplesiomorphic. Resemblance with the Anguinata is also typical of other mycetophagous free-living forms: Hexatylus (Neotylenchidae), Rubzovinema (Neotylenchidae), Prothallonema (Sphaerularioidae) Helionema (Hexatylina dubia), and Pauroidontidae. For the latter, the entomoparasitic stage is expected but has never been observed. The relationship between the Hexatylina and Anguinata was earlier hypothesized based on morphology [7, 8, 130, 133, 134]. On rDNA phylogenies of tylenchids, the monophyly of the Hexatylina + Anguinata is either supported [19] or not rejected [20]. In the SSU-ITS-5.8S-LSU rDNA tree obtained in this study, the monophyly of the Hexatylina + Anguinata has the Bayesian posterior probability of 0.91, but the maximum-likelihood bootstrap support is low; the AU and Kishino and Hasegawa tests did not discriminate between alternative hypotheses.

According to our SSU-ITS-5.8S-LSU rDNA phylogeny (Figure 5), the major robust branches of the Tylenchida are incongruent with morphology-based classifications suggesting three rather than four suborders (the rank is adopted from morphological systems of tylenchids). Among them, the Hexatylina and Anguinata (both are monophyletic) are likely to be sister groups. The third emerged suborder includes representatives of three classic suborders: Tylenchina, Hoplo-laimina, and Criconematina, among which only the latter does not contradict morphology-based classifications.

Considering ecological traits coded in Figure 5, the mycetophagy and/or facultative ectophytoparasitism are likely to be ancestral in the Tylenchida. Sedentary phytoparasites (root-knot species of Meloidogyne, the false root-knot genus Nacobbus, and cyst-forming Heteroderas and Globodera) and other obligate endoparasites of plants evolved several times from free-living or facultative sedentary forms, as it was previously hypothesized in accordance with the concept of evolutionary trend to endoparasitism in phytonematodes [135]. Similarly, obligate endoparasites of insects from the Hexatylina are likely to have evolved from mycetophagous forms, with some species retaining the ancestral mycetophagous stage in the life cycle (e.g., species of the paraphyletic genus Deladenus and flea nematodes of the genus Rubzovinema). An interesting specific case in the Hexatylina is the genus Fergusobia that includes plant parasites associated with insects [68, 70], which may have transited to plant parasitism via entomoparasitism [39].

Table 7: Results of tree topology tests for alternative hypotheses on (1) the initial divergence of Tylenchida (Figure 4) and on (2) the relationships within the monophyletic branch that includes the studied group of nematodes parasitizing fleas (designated by asterisk).

Topology	Rank	obs	au	np	bp	pp	kh	sh	c-ELW
(((H,An),T),o)	1	-1.8	0.787	0.415	0.402	0.804	0.663	0.969	0.4197
(((An,(H,T)),o),o)	2	4.1	0.326	0.198	0.205	0.013	0.254	0.623	0.1848
(((H,An,T)),o)	3	6.9	0.061	0.013	0.014	0.001	0.101	0.492	0.0186
(((*,(Al,P),Ds),o),o)	1	-1.8	0.787	0.415	0.402	0.804	0.663	0.969	0.4197
(((*,(Al,P),Ds),o),o)	2	1.8	0.495	0.242	0.247	0.130	0.337	0.813	0.2249
(((*,(Al,P),Ds),o),o)	3	2.7	0.371	0.110	0.105	0.052	0.243	0.824	0.1209
(((*,(Al,P),Ds),o),o)	6	15.7	0.063	0.024	0.025	1e−007	0.053	0.153	0.0272
(((*,(Al,P),Ds),o),o)	7	18.3	0.013	0.002	0.002	9e−009	0.020	0.096	0.0028

Al: Allantonematidae, An: Anguinata, Ds: Deladenus siricidicola—D. proximus group, H: Hexatylina, P: Parasitylenchidae, T: Tylenchina, o: outgroup.

4.2. Ribosomal DNA Phylogeny of the Flea Nematodes and Their Classification. The nematodes of fleas do not group with the families known as their relatives in morphology-based systems, as these families do not form monophyletic groups in the tree. However, they do group with both type genera of the families Parasitylenchidae and Allantonematidae (Parasylenchus and Allantonema, resp.). This grouping is preceded by a successive divergence of Deladenus dierus and Deladenus siricidicola (Figure 5). As mentioned above, the pronounced free-living form in Deladenus seems to be ancestral to this group.

Only 31 tylenchid species that parasitize in fleas have been described to date. They differ by morphology, life cycle, and the host specificity, and belong to the five genera: Spilotylenchus (8 species), Psyllotylenchus (20 species), Incurvinema (1 species) Kurochkintylenchus (1 species), and Rubzovinema (1 species). According to the classification of Siddiqi [8], the genera Spilotylenchus and Psyllotylenchus belong to the family Parasitylenchidae, whereas the genus Rubzovinema is a member of the Neotylenchidae. The two families represent two superfamilies, lotonchioidea and Sphaerularioidea, respectively. All rDNA phylogenies published to date suggest that these superfamilies are paraphyletic [19, 20, 39], which is also inferred in our study with an extensive gene and taxon sampling.

A high degree of rDNA similarity in the three studied species suggests a closer relationship of these species than that assumed by the accepted system of classification. Earlier, Slobodyanyuk proposed to unite all known flea parasites into one family, the Spilotylenchidae. Its four subfamilies, Spilotylenchinae, Rubzovinematinae, Psyllotylenchinae, and Kurochkintylenchinae, are discriminated based on the life
cycle features [28]. In Spilotylenchinae and Rubzovinemati-
nae, the entomoparasitic stage is represented by parasitic
females of one heterosexual generation. In Psyllotylenchinae,
in addition to the heterosexual generation, a parthenogenetic
generation occurs in the flea haemocoele. In Kurochkinity-
lenchinae, two heterosexual generations exist in the haemo-
coel: the first generation produces parasitic females and the
second generation produces both females and males [28].
Siddiqi also considered the unification of all flea tylenchids
into one family but observed the need for further evidence in
support [8].

Our results strongly suggest the inclusion of the three
genera, Rubzovinema, Psyllotylenchus, and Spilotylenchus, in
one family, the Spilotylenchidae [28]. The ribosomal DNA
genic distance within the family Spilotylenchidae is much
smaller than that of certain tylenchid genera, for example,
Meloidogyne (Figure 4) or Pratylenchus [19, 84].

4.3. Host Specificity of Flea Nematodes. The majority of
tylenchid nematodes are monoxenous or oligoxenous; in
particular, flea parasites were thought to be strictly host
specific. Earlier papers suggested the lack of strict host
specificity in Psyllotylenchus pawlowskyi and Psyllotylenchus
viviparous [13, 25]. However, later these species were found to
be heterogeneous and sustained revision [9, 27–29]. Spiloty-
lenchus pawlowskyi and Spilotylenchus caspius were referred
to as single-host parasites of the flea Coptosylla lamellifer
[27, 136]. Kurochkinitylenchus laevicepsi and Spilotylenchus
ivaskhini also share the same flea host, Nosopsylla laeviceps
[28, 29]. Before our study, the genus Rubzovinema was known
to contain a single species, Rubzovinema ceratophylla, which
parasitizes exclusively the flea Citellophilus tesquorum.

We found that at least two out of the three studied
species are not single-host parasites. Psyllotylenchus sp. was
shown to parasitize two flea species feeding on sousliks,
Frontopsylla semura and Neopsylla setosa. Rubzovinema sp.
was found on five flea species feeding on different rodent
hosts: C. tesquorum, F. semura, N. setosa (all sampled from
sousliks), Ctenophthalmus secundus, and Amphipsylla rossica
(all sampled from voles). A. rossica, F. semura, and C. tesque-
rum belong to different families of the superfamily Cerato-
philoidea (Leptopsyllidae and Ceratophyllidae), whereas C.
secundus and N. setosa belong to the superfamily Hystri-
chopsylloidea. Unlike the host-specific R. ceratophylla, the
studied Rubzovinema sp. parasitizes taxonomically distant
fleas feeding on different rodents. Thus, the common opinion
that flea nematodes are strictly host specific should be
revisited.

As the two species of Rubzovinema demonstrate, even
closely related parasites may exhibit different host range
size. Among other known examples are the entomoparasitic
nematodes of the genus Howardula parasitizing various
beetles and flies [71, 137, 138], many phytonematodes [8],
sibling species of parasitoid flies [128], and herbivorous
insects [139]. The host range of parasites is an indicator
of their evolutionary strategy in the ecosystem. Multihost
parasites can be considered ecological generalists, in contrast
to specialists that coevolve with a particular host. Generalists
and specialists play different roles in the ecosystem [140],
where they keep in balance, taking advantages and disadvan-
tages of the two strategies. The advantages of generalization
are yet to be explained by evolutionary biologists, whereas
advantages of specialization are obvious, and it is generally
accepted that evolution favors specialization [141, 142]. In
the flea parasites, this trend is demonstrated by a greater species
diversity of ecological specialists, the genera Spilotylenchus
and Psyllotylenchus.

Nevertheless, the generalist Rubzovinema sp. was most
abundant in the studied samples, which indicates that extend-
ing the host range may be evolutionarily successful. Besides
the need to combat the immune response of several hosts,
which is a requirement to widen the hosts range [143], the
free-living stage of Rubzovinema sp. is to adapt to diverse
microbioclimatic conditions of complex environments of
rodent habitats. Multihost parasites pay a cost of adapting
to alternative conditions [141, 144] compensated by stable
survival of the species. Considering the spatial and temporal
dynamics of flea populations feeding on a particular rodent
host (one or two flea species usually dominate over a sampling
season), multihost nematode parasites gain an advantage of
their relative independence of population waves of either flea
hosts or their rodent hosts. A higher infestation rate observed
for Rubzovinema sp., compared to the two other studied
species, may be an indicator of a greater ecological plasticity
of this multihost parasite.

4.4. Entomoparasitic Nematodes in Natural Foci of Plague. In
natural foci of plague, the epizootic dynamics are influenced
by numerous climatic and biotic factors. The spatial and
temporal population dynamics of the plague agent, Y. pestis,
afect the population dynamics of the flea vectors and their
mammalian hosts. Members of the transmission route of the
plague agent also closely interact with other living organisms.
For example, parasites of fleas that in turn feed on rodents
are hyperparasites that play the role of high-level control
agents on the ecosystem level, the role that entomoparasitic
nematodes share with the bacterial plague agent. High-
level control agents render the epidemiological state of a
natural focus of disease less predictable. On the one hand,
a lower density of the flea vector population reduces the
plague transmission rate; on the other, its growth causes
an exponential decay of the host rodent population [145]
below its epidemiological threshold, above which there is a
threat of spillover of plague infection into human population
[145]. Hypothetically, nematode-induced decrease of flea
population is able to increase the number of rodents above
the threshold and thus trigger an epidemic. The dual effect
of high-level control agents is well exemplified by cases,
when during plague episodes the extermination of rodents
are hyperparasites that play the role of high-level control
agents on the ecosystem level, the role that entomoparasitic
nematodes share with the bacterial plague agent. High-
level control agents render the epidemiological state of a
natural focus of disease less predictable. On the one hand,
a lower density of the flea vector population reduces the
plague transmission rate; on the other, its growth causes
an exponential decay of the host rodent population [145]
below its epidemiological threshold, above which there is a
threat of spillover of plague infection into human population
[145]. Hypothetically, nematode-induced decrease of flea
population is able to increase the number of rodents above
the threshold and thus trigger an epidemic. The dual effect
of high-level control agents is well exemplified by cases,
when during plague episodes the extermination of rodents
by humans causes the return of infection through stimulating
the migration of fleas, the plague vectors [5].

The studied entomoparasitic nematodes possess high
potential as control agents of the flea vectors of plague
owing to their high propagation rate within the flea host (Figure 2) and high infestation level (up to 21% observed in
this study and from 50 to 60%, as estimated by other authors
One of the studied nematode species, *Rubzovinema* sp., is a multihost parasite. Host-specific parasites reach the optimal level of pathogenicity by maintaining the trade-off between pathogenicity and transmissibility. Adding of a new host to a multihost system makes the model more complicated [141]. The multihost parasite *Rubzovinema* sp. is expected to exhibit different levels of pathogenicity with respect to different flea hosts which, in turn, play different roles in the transmission of plague. Epizootics cause sporadic mortality in local populations of all members involved in the interaction with the plague agent, and their survival is contingent on migrations within a metapopulation. It is the interaction with the plague agent, and their survival is contingent on migrations within a metapopulation. Epizootics cause sporadic mortality in local populations of all members involved in the interaction with the plague agent, and their survival is contingent on migrations within a metapopulation. It is the case when the Cope’s law [139, 146] governs the extinction of specialists on a shorter time scale rather than a geological period, and evolution may favor the ecological generalists, such as *Rubzovinema* sp.

Some authors surmised the involvement of entomoparasitic nematodes in the transmission of the plague agent [4], as it was observed that biofilms of *Yersinia pestis* adhere to cuticle receptors of *Caenorhabditis elegans* [147–149]. In this perspective, nematodes parasitizing fleas in natural foci of plague take on greater importance, as they may provide for the transmission route that does not include a mammal [4]. Further studies will clarify the role of flea nematodes in the transmission of plague infection.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Acknowledgments

The authors thank G. S. Mirzaeva for help with PCR amplification and rDNA fragment analysis, N. V. Popov and the staff of the Laboratory of Epizootics Monitoring for advice and assistance in collecting and processing rodent samples, and, particularly, A. N. Porshakov for help in identification of flea specimens. They also thank O. V. Sobodyanyuk for helpful discussions of results, S. E. Spiridonov for advice on cultivation of entomoparasitic nematodes, S. A. Subbotin for valuable comments on the earlier version of the paper, and E. Yu. Talanova and L. Yu. Rusin for discussions of its final version, and E. A. Musatkina for assistance with the manuscript preparation. They are grateful to the Supercomputer Center of Moscow State University (http://parallel.ru/cluster) and the Bioportal of the University of Oslo (http://www.bioportal.uio.no) for providing computing resources.

References

[1] A. W. Bacot and C. J. Martin, “Observations on the mechanism of the transmission of plague by fleas,” *The Journal of Hygiene*, vol. 13, supplement 3, pp. 423–439, 1914.

[2] V. V. Kutyrev, G. A. Eroshenko, N. V. Popov, N. A. Vidyaeva, and N. P. Konnov, “Molecular mechanisms of interaction of the plague agent with invertebrates,” *Molecular Genetics, Microbiology and Virology*, vol. 24, no. 4, pp. 7–12, 2009.

[3] E. N. Pavlovsky, *Natural Focality of Transmissible Diseases in Connection with Landscape Epidemiology of Zoonathropones*, Moscow, Russia, 1964.

[4] N. V. Popov, E. I. Koshel, G. A. Eroshenko, and V. V. Kutyrev, “Formation of modern concepts on the mechanism of plague enzoozy,” *Problems of Particularly Dangerous Infections*, vol. 3, no. 109, pp. 5–8, 2011.

[5] M. J. Keeling and C. A. Gilligan, “Bubonic plague: a metapopulation model of a zoonosis,” *Proceedings of the Royal Society B*, vol. 267, no. 1458, pp. 2219–2230, 2000.

[6] R. A. Bedding, R. J. Akhurst, and H. K. Kaya, *Nematodes and the Biological Control of Insect Pests*, CSIRO Press, Melbourne, Australia, 1993.

[7] M. R. Siddiqi, *Tylenchida Parasites of Plants and Insects*, vol. 645 of Commonwealth Agricultural Bureaux, Farnham Royal, Slough, UK, 1986.

[8] M. R. Siddiqi, *Tylenchida: Parasites of Plants and Insects*, CABI, Wallingford, UK, 2nd edition, 2000.

[9] I. A. Rubtsov, *Parasites and Enemies of Fleas*, Nauka, Leningrad, Russia, 1981.

[10] Y. A. Morozov, “About infestation with fleas great gerbils different ages,” in *Proceedings of the Conference Anti-Plague Facilities in Central Asia and Kazakhstan*, pp. 337–338, Alma-Ata, 1974.

[11] Y. A. Morozov, “Effect of infestation of nematode on reproduction of fleas gerbils in Muynunkum,” in *Proceedings of the Conference Anti-Plague Facilities in Central Asia and Kazakhstan*, pp. 338–340, Alma-Ata, 1974.

[12] J. Deunff, *Parasites de Siphonapteres. Etude de la systematique, de la biologie et du pouvoir pathogene des Tylenchides (Nematode) dans une perspective de lutte biologique [Ph.D. thesis]*, Etat Sc. Pham, Rennes, France, 1984.

[13] Y. V. Kurochkin, “The nematode Heterotylenchus pawlowskyi sp. n., castrating flea-vectors of plague,” *Doklady Akademyi Nauk SSSR*, vol. 135, pp. 1281–1284, 1960.

[14] M. L. Blaxter, P. De Ley, J. R. Garey et al., “A molecular evolutionary framework for the phylum Nematoda,” *Nature*, vol. 392, no. 6671, pp. 71–75, 1998.

[15] P. De Ley and M. L. Blaxter, “Systematic Position and Phylogeny,” in *The Biology of Nematodes*, D. L. Lee, Ed., Taylor & Francis, London, UK, 2002.

[16] B. H. M. Meldal, N. J. Debenham, P. De Ley et al., “An improved molecular phylogeny of the Nematoda with special emphasis on marine taxa,” *Molecular Phylogenetics and Evolution*, vol. 42, no. 3, pp. 622–636, 2007.

[17] W. Bert, F. Leliaert, A. R. Vierstraete, and G. Borgonie, “Molecular phylogeny of the Tylenchina and evolution of the female gonoduct (Nematoda: Rhaditida),” *Molecular Phylogenetics and Evolution*, vol. 48, no. 2, pp. 728–744, 2008.

[18] M. Holterman, A. Van Der Wurff, S. Van Den Elsen et al., “Phylum-wide analysis of SSU rDNA reveals deep phylogenetic relationships among nematodes and accelerated evolution toward crown clades,” *Molecular Biology and Evolution*, vol. 23, no. 9, pp. 1792–1800, 2006.

[19] M. Holterman, G. Karssen, S. Van Den Elsen, H. Van Megen, J. Bakker, and J. Helder, “Small subunit rDNA-based phylogeny of the tylenchida sheds light on relationships among some high-impact plant-parasitic nematodes and the evolution of plant feeding,” *Phytopathology*, vol. 99, no. 3, pp. 227–235, 2009.
J. E. Palomares-Rius, N. Vovlas, S. A. Subbotin et al., “Molecular and morphological studies on the neotropical Malastomataceae,” *Nematology*, vol. 15, no. 2, pp. 179–196, 2013.

K. A. Davies, W. Ye, R. M. Giblin-Davis, and K. W. Thomas, “*Ficotylus congestae* gen. n., sp. n. (Anguinidae), from ficus congesta (moraceae) sycones in Australia,” *Nematology*, vol. 11, no. 1, pp. 63–75, 2009.

M. R. Atighi, E. Pourajam, T. J. Pereira et al., “Redescription of *Filenchus annulatus* (Siddiqi & Khan, 1983) Siddiqi, 1986 based on specimens from Iran with contributions to the molecular phylogeny of the *Filenchusida,*” *Nematology*, vol. 15, no. 2, pp. 129–141, 2013.

J. E. Palomares-Rius, S. A. Subbotin, G. Liebanas, B. B. Landa, and P. Castillo, “*Eutylenchus excretorius* Ebsary & Eveleigh, 1981 (Nematoda: Tylenlodorinae) from Spain with approaches to olecular phylogeny of related genera,” *Nematology*, vol. 11, no. 3, pp. 343–354, 2009.

S. A. Subbotin, E. J. Ragsdale, T. Mullens, P. A. Roberts, M. Mundo-Ocampo, and J. G. Baldwin, “A phylogenetic framework for root lesion nematodes of the genus Pratylenchus (Nematoda): evidence from 18S and D2-D3 expansion segments of 28S ribosomal RNA genes and morphological characters,” *Molecular Phylogenetics and Evolution*, vol. 48, no. 2, pp. 491–505, 2008.

Z. Majid Taheri, Z. Tanha Mafi, S. A. Subbotin, E. Pourjami, and A. Eskandari, “Molecular and phylogenetic studies on Pratylenchidae from Iran with additional data on Pratylenchus delattrei, Pratylenchoides alkani and two unknown species of *Hirschmaniella* and Pratylenchus,” *Nematology*, vol. 15, pp. 633–651, 2013.

C. Xu, H. Xie, C. Zhao, S. Zhang, and X. Su, “Review of the genus *Scutylenchus Jairajpuri*, 1971 (Nematoda: Tylenlida), with description of *Scutylenchus dongtengensis* n. sp. from rhizosphere soil of grass in China,” *Zootaxa*, vol. 3437, pp. 32–42.

Y. Yang and S. Zhang, “Identification of *Hemicriconemoides gaddi* from the Rhizosphere of Longan,” *Journal of Chinese Journal of Tropical Crops*, vol. 5, pp. 935–941, 2013.

E. Van den Berg, S. A. Subbotin, and L. R. Tiedt, “Morphological and molecular characterisation of *Hemicycliophora lotosa* Loof & Heins, 1969 and *H. typica* de Man, 1921 from South Africa (Nematoda: Hemicycliophoridae),” *Nematology*, vol. 12, no. 2, pp. 303–308, 2010.

N. Vovlas, B. B. Landa, G. Liebanas, Z. A. Handoo, S. A. Subbotin, and P. Castillo, “Characterization of the cystoid nematode *Meloidoderota kirjanovae* (Nemat: Sphaeronematidae) from Southern Italy,” *Journal of Nematology*, vol. 38, no. 3, pp. 376–382, 2006.

J. E. Palomares-Rius, N. Vovlas, S. A. Subbotin et al., “Molecular and morphological characterisation of *Sphaeronema abii* Turkina & Chizhov, 1986 (Nematoda: Sphaeronematidae) from Spain compared with a topotype population from Russia,” *Nematology*, vol. 12, no. 4, pp. 649–659, 2010.

G. Liu, J. Chen, S. Xiao, D. Pan, and S. Zhang, “Intraspecific variability of *Tylenchulus semipenetrans* populations on citrus and Chinese fir,” *Scientia Agricultura Sinica*, vol. 9, 2011.

B. Y. Park, S. N. Park, J. K. Lee, and C. H. Bae, “Morphometric and genetic variability among *Tylenchulus semipenetrans* populations from citrus growing area in Korea,” *Plant Pathology Journal*, vol. 25, no. 3, pp. 236–240, 2009.

U. Gozel, B. J. Adams, K. B. Nguyen, R. N. Inserra, R. M. Giblin-Davis, and L. W. Duncan, “A phylogeny of *Belonolaimus* populations in Florida inferred from DNA sequences,” *Nematropica*, vol. 36, no. 2, pp. 155–171, 2006.

Z. A. Handoo, A. M. Skantar, and P. Mulrooney, “First report of the sting nematode *Belonolaimus longicaudatus* on soybean in Delaware,” *Plant Disease*, vol. 94, no. 1, p. 133, 2010.

G. R. Stirling, A. M. Stirling, R. M. Giblin-Davis et al., “Distribution of southern sting nematode, *Ibiropa loli* (Nematoda: Belonolaimidae), on turfgrass in Australia and its taxonomic relationship to other belonolaimids,” *Nematology*, vol. 15, pp. 401–415, 2013.

J. Parkinson, M. Mitreva, N. Hall, M. Blaxter, and J. P. McCarter, “400000 nematode ESTs on the Net,” *Trends in Parasitology*, vol. 19, no. 7, pp. 283–286, 2003.

D. D. Sui, N. Atibalentja, G. R. Noel, and L. L. Domier, “Genetic diversity of the rDNA locus among 27 populations and 8 races of *Heterodera glycines* from China, Japan, and the United States, as revealed by PCR-RFLP,” *Journal of Nematology*. In press.

B. Gao, R. Allen, T. Maier, E. L. Davis, T. J. Baum, and R. S. Hussey, “Identification of putative parasitism genes expressed in the esophageal gland cells of the soybean cyst nematode *Heterodera glycines,*” *Molecular Plant-Microbe Interactions*, vol. 14, no. 10, pp. 1247–1254, 2001.

D. P. Puthoff, M. L. Ehrenfried, B. T. Vinyard, and M. L. Tucker, “GeneChip profiling of transcriptional responses to soybean cyst nematode, *Heterodera glycines,* colonization of soybean roots,” *Journal of Experimental Botany*, vol. 58, no. 12, pp. 3407–3418, 2007.

G. E. Múñera Uribe, W. Bert, A. R. Vierstraete, E. de la Peña, M. Moens, and W. Decraemer, “Burrowing nematodes from Colombia and their relationship with Radopholus similis populations, R. arabocoffeae and R. duriophilus,” *Nematology*, vol. 12, pp. 619–629, 2010.

J. Jacob, M. Mitreva, B. Vanholme, and G. Gheysen, “Exploring the transcriptome of the burrowing nematode *Radopholus similis,*” *Molecular Genetics and Genomics*, vol. 280, no. 1, pp. 1–17, 2008.

J. Li, D. Peng, and W. Huang, “Phylogenetic analysis of *Radopho-lus similis* from D2 and D3 fragments of the 28S rRNA gene sequences,” *Journal of Huazhong Agricultural University*, vol. 5, 2008.

S. T. Nyaku, V. R. Sripathi, R. V. Kantety, Y. Q. Gu, K. Lawrence, and G. C. Sharma, “Characterization of the two intra-individual sequence variants in the 18S rRNA gene in the plant parasitic nematode, *Rotylenchulus reniformis,*” *PLoS ONE*, vol. 8, no. 4, Article ID E60891, 2013.

Y. Zhan, A. Matafeo, H. Shi, and J. Zheng, “Morphological and molecular characterization and host range of *Rotylenchulus reniformis* population occurring in Hangzhou, Zhejiang, China,” *Acta Phytopathologica Sinica*, vol. 41, no. 1, pp. 37–43, 2011.

Y. Zeng, R. M. Giblin-Davis, and W. Ye, “Two new species of *Schistonchus* (Nematoda: Aphelenchoididae) associated with *Fusic hispida* in China,” *Nematology*, vol. 9, no. 2, pp. 169–187, 2007.

E. Van den Berg, S. A. Subbotin, Z. A. Handoo, and L. R. Tiedt, “*Hirschmaniella kwazuna* sp. n. from South Africa with notes
on a new record of *H. spinicaudata* (Schuurmans Stekhoven, 1944) Luc & goody, 1964 (nematoda: Pratylenchidae) and on the molecular phylogey of *Hirschmanniella Luc & goody, 1964*; *Nematology*, vol. 11, no. 4, pp. 523–540, 2009.

[107] C. D. Giorgi, P. Veronico, F. D. Luca, A. Natilla, C. Lanave, and G. Pesole, "Structural and evolutionary analysis of the ribosomal genes of the parasitic nematode *Meloidogyne artidella* suggests its ancient origin," *Molecular and Biochemical Parasitology*, vol. 124, no. 1-2, pp. 91–94, 2009.

[108] G. Anthoine and D. Mugniéry, "Variability of the ITS rDNA and identification of *Nacobbus aberans* (Thorne, 1935) Thorne & Allen, 1944 (Nematoda: Pratylenchidae) by rDNA amplification," *Nematology*, vol. 7, no. 4, pp. 503–516, 2005.

[109] L. Al-Banna, V. Williamson, and S. L. Gardner, "Phylogenetic analysis of nematodes of the genus *Pratylenchus* using nuclear 26S rDNA," *Molecular Phylogenetics and Evolution*, vol. 7, no. 1, pp. 94–102, 1997.

[110] X. Li and J. Zheng, "Identification of four *Pratylenchus* species based on morphology and PCR-RFLP of rDNA-ITS," *Acta Phytopathologica Sinica*, vol. 43, no. 4, pp. 444–448, 2013.

[111] M. T. Britton, C. A. Leslie, G. H. McGranahan, and A. M. Dandekar, "Functional genomic analysis of walnut-nematode interactions," *Walnut Research Reports* 2009, California Walnut Board, 2010.

[112] J. C. Wang, G. M. Huang, Y. D. Wei et al., "Phylogenetic analysis of *Pratylenchus* (Nematoda: Pratylenchidae based on ribosomal internal transcribed spacers (ITS) and D2/D3 expansion segments of 28S rDNA gene," *Acta Zootaxonomica Sinica*, vol. 4, pp. 687–693, 2012.

[113] D. Y. Chen, H. F. Ni, and T. T. Tsay, "Identification of a new recorded stunt nematode *Tylenchorhynchus zeae* (Nematoda: Belonolaimidae) in Taiwan," *Plant Pathology Bulletin*, vol. 16, no. 2, pp. 79–86, 2007.

[114] J. Liu, R. E. Berry, and A. F. Moldenke, "Phylogenetic relationships of entomopathogenic nematodes (Heterorhabditidae and Steinernematidae) inferred from partial 18S rDNA gene sequences," *Journal of Invertebrate Pathology*, vol. 69, no. 3, pp. 246–252, 1997.

[115] M. V. Blanco, P. Lax, J. C. Rondon Dueñas, C. N. Gardenal, and M. E. Douc, "Morphological and molecular characterization of the entomoparasitic nematode *Hammerschmidtia diesiogini* (Nematoda, Oxyurida, Thelastomatidae)," *Acta Parassitologica*, vol. 57, no. 3, pp. 302–310, 2012.

[116] S. A. Nadler, E. Bolotin, and S. P. Stock, "Phylogenetic relationships of *Steinernema* Travassos, 1927 (Nematoda: Cephalobina: Steinernematidae) based on nuclear, mitochondrial and morphological data," *Systematic Parasitology*, vol. 63, no. 3, pp. 161–181, 2006.

[117] O. Douda, M. Zouhar, E. Nováková, J. Mazáková, and P. Rýšánek, "Variability of D2/D3 sequence segments of several populations and pathotypes of potato cyst nematodes (*Globodera rostochiensis, Globodera pallida*)," *Plant Protection Science*, vol. 46, no. 4, pp. 171–180, 2010.

[118] S. P. Stock, J. F. Campbell, and S. A. Nadler, "Phylogeny of *Steinernema Travassos, 1927* (Cephalobina: Steinernematidae) inferred from ribosomal DNA sequences and morphological characters," *Journal of Parasitology*, vol. 87, no. 4, pp. 877–889, 2001.

[119] E. E. Morris, R. M. Kepler, S. J. Long, D. W. Williams, and A. E. Hajek, "Phylogenetic analysis of *Deladenus nematodes parasitizing northeastern North American Sirex species," *Journal of Invertebrate Pathology*, vol. 113, pp. 177–183, 2013.

[120] Q. Yu, P. de Groot, I. Leal, C. Davis, W. Ye, and B. Foord, "Characterization of Deladenus siricidicola (Tylenchida: Neotylenchidae) associated with Sirex noctilio (Hymenoptera: Siricidae) in Canada," *International Journal of Nematology*, vol. 19, no. 1, pp. 23–32, 2009.

[121] K. Zhang, H. Liu, J. Sun et al., "Molecular phytoenege of geographical isolates of *Barsaphelenchus xylophilus*: implications on the origin and spread of this species in China and worldwide," *Journal of Nematology*, vol. 40, no. 2, pp. 127–137, 2008.

[122] R. B. Gasser and H. Hoste, "Genetic markers for closely-related parasitic nematodes," *Molecular and Cellular Probes*, vol. 9, no. 5, pp. 315–319, 1995.

[123] T. O. Powers, T. C. Todd, A. M. Burnell et al., "The rDNA internal transcribed spacer region as a taxonomic marker for nematodes," *Journal of Nematology*, vol. 29, no. 4, pp. 441–450, 1997.

[124] R. Floyd, E. Abebe, A. Papert, and M. Blaxter, "Molecular barcodes for soil nematode identification," *Molecular Ecology*, vol. 11, no. 4, pp. 839–850, 2002.

[125] A. Elyakim and M. Blaxter, "Comparison of biological, molecular, and morphological methods of species identification in a set of cultured *Panagrolaimus isolates*," *Journal of Nematology*, vol. 35, no. 1, pp. 119–128, 2003.

[126] P. De Ley, I. T. De Ley, K. Morris et al., "An integrated approach to fast and informative molecular vouchersing of nematodes for applications in molecular barcoding," *Philosophical Transactions of the Royal Society B*, vol. 360, no. 1462, pp. 1945–1958, 2005.

[127] N. R. R. Da Silva, M. C. Da Silva, V. F. Genevois et al., "Marine nematode taxonomy in the age of DNA: the present and future of molecular tools to assess their biodiversity," *Nematology*, vol. 12, no. 5, pp. 661–672, 2010.

[128] M. A. Smith, D. M. Wood, D. H. Janzen, W. Hallwachs, and P. D. N. Hebert, "DNA barcodes affirm that 16 species of apparently generalist tropical parasitoid flies (Diptera, Tachinidae) are not all generalists," *Proceedings of the National Academy of Sciences of the United States of America*, vol. 104, no. 12, pp. 4967–4972, 2007.

[129] H. van Megen, S. van den Elsen, M. Holterman et al., "A phylogenetic tree of nematodes based on about 1200 full-length small subunit ribosomal DNA sequences," *Nematology*, vol. 11, no. 6, pp. 927–950, 2009.

[130] A. Yu, Ryss, "Phylogeny of the order *Tylenchida* (Nematoda)," *Russian Journal of Nematology*, vol. 1, no. 2, pp. 74–95, 1993.

[131] L. K. Carta, A. M. Skantar, and Z. A. Handoo, "Molecular rDNA phylogeny of telotylenchidae squidgi, 1960 and evaluation of tail termini," *Journal of Nematology*, vol. 42, no. 4, pp. 359–369, 2010.

[132] R. A. Bedding, "Controlling the pine-killing woodwasp, *Sirex noctilio*, with nematodes," in *Use of Microbes For Control of Invasive Arthropods*, A. E. Hajek, T. R. Glare, and M. O’Callaghan, Eds., pp. 213–235, Springer, Amsterdam, The Netherlands, 2009.

[133] A. R. Maggenti, M. Luc, D. J. Raski, R. Fortuner, and E. Geraert, "A reappraisal of *Tylenchina* (Nematata). 2. Classification of the suborder *Tylenchina* (Nematata: Diplogasteria)," *Revue De Nematologie*, vol. 10, no. 2, pp. 135–142, 1987.

[134] V. N. Chizhov and S. N. Kruchina, "Phylogeny of the nematode order *Tylenchida* (Nematata)," *Zoologichesky Zhurnal*, vol. 67, no. 9, pp. 1282–1293, 1988.

[135] M. Luc, A. R. Maggenti, R. Fortuner, D. J. Raski, and E. Geraert, "A Reappraisal of *Tylenchina* (Nematata) 1. For a New Approach to the Taxonomy of *Tylenchina*," *Revue De Nematologie*, vol. 10, no. 2, pp. 127–134, 1987.
[136] O. V. Slobodyanyuk, “Host specificity in tylenchids of fleas,” in Abstracts of Papers Presented at the Russian Society of Nematologists 1st English Language International Symposium, pp. 102–103, Zoological Institute of the Russian Academy of Sciences, 1995.

[137] K. D. Elsey, “Parasitism of some economically important species of chrysomelidae by nematodes of the genus howardula,” Journal of Invertebrate Pathology, vol. 29, no. 3, pp. 384–385, 1977.

[138] G. O. Poinar Jr., J. Jaenike, and D. D. Shoemaker, “Howardula neocosmis sp.n. parasitizing North American Drosophila (Diptera: Drosophilidae) with a listing of the species of Howardula Cobb, 1921 (Tylenchida: Allantonematidae),” Fundamental and Applied Nematology, vol. 21, no. 5, pp. 547–552, 1998.

[139] R. L. H. Dennis, L. Dapporto, S. Fattorini, and L. M. Cook, “The generalism-specialism debate: the role of generalists in the life and death of species,” Biological Journal of the Linnean Society, vol. 104, pp. 725–737, 2011.

[140] C. E. Richmond, D. L. Breitburg, and K. A. Rose, “The role of environmental generalist species in ecosystem function,” Ecological Modelling, vol. 188, no. 2-4, pp. 279–295, 2005.

[141] M. E. J. Woolhouse, L. H. Taylor, and D. T. Haydon, “Population biology of multihost pathogens,” Science, vol. 292, no. 5519, pp. 1109–1112, 2001.

[142] H. D. Loxdale, G. Lushai, and J. A. Harvey, “The evolutionary improbability of “generalism” in nature, with special reference to insects,” Biological Journal of the Linnean Society, vol. 103, no. 1, pp. 1–18, 2011.

[143] J. C. Castillo, S. E. Reynolds, and I. Eleftherianos, “Insect immune responses to nematode parasites,” Trends in Parasitology, vol. 27, no. 12, pp. 537–547, 2011.

[144] R. Kassen, “The experimental evolution of specialists, generalists, and the maintenance of diversity,” Journal of Evolutionary Biology, vol. 15, no. 2, pp. 173–190, 2002.

[145] N. I. Samia, K. L. Kaustrup, H. Heesterbeek et al., “Dynamics of the plague-wildlife-human system in Central Asia are controlled by two epidemiological thresholds,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 35, pp. 14527–14532, 2011.

[146] H. E. Kaiser and A. J. Boucot, “Specialisation and extinction: cope’s law revisited,” Historical Biology, vol. 11, no. 1–4, pp. 247–265, 1996.

[147] C. Darby, A. Chakraborti, S. M. Politz, C. C. Daniels, L. Tan, and K. Drace, “Caenorhabditis elegans mutants resistant to attachment of Yersinia biofilms,” Genetics, vol. 176, no. 1, pp. 221–230, 2007.

[148] G. A. Eroshenko, N. A. Vidyaeva, and V. V. Kutyrev, “Comparative analysis of biofilm formation by main and nonmain subspecies Yersinia pestis strains,” FEMS Immunology and Medical Microbiology, vol. 59, no. 3, pp. 513–520, 2010.

[149] G. A. Eroshenko, N. A. Vidyaeva, L. M. Kukleva et al., “Studies of biofilm formation in non-pigmented and plasmid-deprived mutants of Yersinia pestis on biotic surfaces, in vivo and in vitro conditions,” Problems of Particularity Dangerous Infections, vol. 113, pp. 45–49, 2012.