Minimum Component Based First-Order Inverting and Non-inverting Outputs of All-Pass Filter at the Same Circuit

J. Mohan1, S. Maheshwari2, and D. S. Chauhan3

1Department of Electronics and Communications, Jaypee University of Information Technology, Waknaghat, Solan-173215 (India)
Email:jitendramv2000@rediffmail.com

2Department of Electronics Engineering, Z. H. College of Engineering and Technology, Aligarh Muslim University, Aligarh-202002 (India)
Email:Sudhanshu_maheshwari@rediffmail.com

3Department of Electrical Engineering, Institute of Technology, Banaras Hindu University, Varanasi-221005 (India)
Email:pdschauhan@gmail.com

Abstract— In this paper, a new voltage-mode first order all-pass filter using minimum active and passive components is presented. The proposed circuit employs one fully differential second generation current conveyor (FDCCII), one grounded capacitor, one resistor and offers the following advantages: the use of only grounded capacitor which is attractive for integrated circuit implementation, low active and passive sensitivities, providing inverting and non-inverting voltage-mode all-pass responses simultaneously from the single circuit and no requirement for component matching conditions. The theory is validated through PSPICE simulation using TSMC 0.35μm CMOS process parameters.

Index Terms—first term, second term, third term, fourth term, fifth term, sixth term

I. INTRODUCTION

First order all-pass filters are an important class of analogue signal processing circuits which have been extensively researched in the technical literature [1-2] due to their utility in communication and instrumentation systems, for instance as a phase equalizer, phase shifter or for realizing quadrature oscillators band pass filters etc.

A voltage-mode all-pass filter with minimum component is expected to use two passive components and one active element. Since two component based circuits are free from matching problems as both pole and zero frequency depend on the same two components such circuits would benefit from easy control over the pole frequency, as only a single element need to be controlled unlike the circuits require three components. In the literature, several voltage-mode all-pass filter circuit employing different types of active elements such as current conveyors and its different variations have been reported [3-20]. Some voltage-mode circuits benefit from minimum component feature and hence require no matching constraints []. However, none of the reported circuit using minimum component count provides inverting and non-inverting all-pass response simultaneously from the single circuit.

This paper proposes a new circuit for realizing inverting and non-inverting voltage-mode all-pass filters with different phase responses together using single active element, and two passive components. This feature not collectively exhibited in any of the reported work in the literature, including the most recent and useful circuit [19-20]. The proposed circuit is based on FDCCII, an active element to improve the dynamic range in mixed mode application, where fully differential signal processing is required [21]. PSPICE simulation results using TSMC 0.35μm CMOS parameters are given to validate the circuits.

II. CIRCUIT DESCRIPTION

The fully differential second generation current conveyor (FDCCII) is an eight terminal analog building block with the defining matrix equation of the form

\[
\begin{bmatrix}
I_{y1} \\
I_{y2} \\
I_{y3} \\
I_{y4} \\
V_{x+} \\
V_{x-} \\
I_{z+} \\
I_{z-}
\end{bmatrix}
= \begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & -1 & 1 & 0 & 0 & 0 & 0 & 0 \\
-1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & 0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
V_{y1} \\
V_{y2} \\
V_{y3} \\
V_{y4} \\
I_{x+} \\
I_{x-} \\
V_{z+} \\
V_{z-}
\end{bmatrix}
\]

(1)

The CMOS implementation of FDCCII is shown in Fig. 1 [21]. FDCCII is a useful and versatile active element for analog signal processing [21-22].
Figure 1. Fully differential second generation current conveyor CMOS implementation

Figure 2. Proposed voltage-mode all-pass filter circuit.

The proposed voltage-mode all-pass filter circuit using a single FDCCII, one grounded capacitor and one resistor is shown in Fig. 2. The circuit is characterized by the following voltage transfer functions:

\[
\frac{V_{\text{OUT1}}}{V_{\text{IN}}} = - \frac{s - (1/RC)}{s + (1/RC)} \quad (2)
\]

\[
\frac{V_{\text{OUT2}}}{V_{\text{IN}}} = \frac{s - (1/RC)}{s + (1/RC)} \quad (3)
\]

Equations (2)-(3) is the standard first-order all-pass transfer function. The circuits of Fig. 2, thus provides a unity gain at all frequencies and frequency dependent phase function (\(\Phi\)) with a value \(\Phi = -2 \tan^{-1}(\omega RC)\) for equation (2) and \(\Phi = 180^\circ - 2 \tan^{-1}(\omega RC)\) for equation (3).

The salient features of the proposed circuit is realizing inverting and non-inverting voltage-mode all-pass filters with different phase responses simultaneously using single active element, and two passive components, the feature not exhibited together in any of the available works \([3-20]\). The circuit also enjoys one of the voltage output at low impedance thus making them suitable for voltage-mode cascading.

III. NON-IDEAL ANALYSIS

To account for non ideal sources, two parameter \(\alpha\) and \(\beta\) are introduced where \(\alpha_i (i=1,2)\) accounts for current transfer gains and \(\beta_i (i=1,2,3,4,5,6)\) accounts for voltage transfer gains of the FDCCII. These transfer gains differ from unity by the voltage and current tracking errors of the FDCCII. More specifically, \(\alpha_i = 1 - \delta_i, (|\delta_i| < 1)\) where current tracking error \(\delta_1\) (from \(X^+\) to \(Z^+\)) and \(\delta_2\) (from \(X^-\) to \(Z^-\)). Similarly, \(\beta_i = 1 - \epsilon_i, (|\epsilon_i| < 1)\) where voltage tracking errors \(\epsilon_1\) (from \(Y_1\) to \(X^+\)), \(\epsilon_2\) (from \(Y_2\) to \(X^+\)), \(\epsilon_3\) (from \(Y_1\) to \(X^-\)), \(\epsilon_4\) (from \(Y_1\) to \(X^-\)), \(\epsilon_5\) (from \(Y_2\) to \(X^-\)), and \(\epsilon_6\) (from \(Y_4\) to \(X^-\)), respectively. Incorporating the two sources of error onto ideal input-output matrix relationship of the modified FDCCII leads to:

\[
\begin{bmatrix}
I_{Y_1} \\
I_{Y_2} \\
I_{Y_3} \\
I_{Y_4} \\
V_{X^+} \\
V_{X^-} \\
I_{Z^+} \\
I_{Z^-}
\end{bmatrix} =
\begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\beta_i - \beta_2 & \beta_3 & 0 & 0 & 0 & 0 & 0 & 0 \\
-\beta_4 & \beta_5 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \alpha_1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -\alpha_2 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
V_{Y_1} \\
V_{Y_2} \\
V_{Y_3} \\
V_{Y_4} \\
I_{X^+} \\
I_{X^-} \\
V_{Z^+} \\
V_{Z^-}
\end{bmatrix}
\] (4)

The circuits of Fig. 2 is analyzed using (4) and the non-ideal voltage transfer functions are found as

\[
\frac{V_{\text{OUT1}}}{V_{\text{IN}}} = -\beta_3 \left(\frac{s - \beta_5 \alpha_2 / (RC)}{s + \beta_5 \alpha_2 / (RC)} \right) \quad (5)
\]
\[
\frac{V_{\text{OUT2}}}{V_{\text{IN}}} = \beta_1 \left(\frac{s + \alpha_2 (\beta_1 \beta_3 - \beta_2 \beta_4) / (\beta_2 \beta_3)}{s + \beta_3 \alpha_2 / (RC)} \right) \quad (6)
\]

Thus, the pole frequency (\(\omega_o\)) of the first order all-pass filter circuit of Fig. 2 can be expressed as

\[
\omega_o = \frac{\beta_3 \alpha_2}{RC} \quad (7)
\]

From (7), the pole frequency (\(\omega_o\)) sensitivities can be expressed as

\[
S_{\omega_o}^{\alpha_2} = -1; \quad S_{\omega_o}^{\beta_3} = 1; \quad S_{\omega_o}^{\beta_1, \beta_2, \beta_3, \beta_4} = 0; \quad (8)
\]

From (8), the sensitivities of active and passive components with respect to pole frequency (\(\omega_o\)) are within unity in magnitude. Thus, the circuit enjoys attractive active and passive sensitivity performance.

IV. SIMULATION RESULTS

The proposed circuits were verified using PSPICE simulation. The FDCCII was realized using CMOS implementation as shown in Fig. 1 [21] and simulated using TSMC 0.35\(\mu\)m, Level 3 MOSFET parameters as listed in Table 2. The aspect ratio of the MOS transistors are listed in Table 3, with the following DC biasing levels \(V_{dd} = -V_{ss} = 3\text{V}, \quad V_{bp} = V_{bn} = 0\text{V}, \quad \text{and} \quad I_B = I_{SB} = 1.2\text{mA}.

Table 2. 0.35\(\mu\)m level 3 MOSFET parameters

Transistors	W(\(\mu\)m)	L(\(\mu\)m)
M1-M6	60	4.8
M7-M9, M13	480	4.8
M10-M12, M24	120	4.8
M14, M15, M18, M19, M25, M29, M30, M33, M34	240	2.4
M16, M17, M20, M21, M26, M31, M32, M35, M36	60	2.4
M22,M23,M27,M28	4.8	4.8

The circuit of Fig. 2 was designed with \(C=1\text{nF}\) and \(R=1\text{k\Omega}\). The designed pole frequency was 159.2 KHz. The phase and gain plot is shown in Fig. 3. The phase is found to vary with frequency from 180\(^\circ\) to 0 for \(V_{\text{OUT1}}\) and from 0 to -180\(^\circ\) for \(V_{\text{OUT2}}\) with a value of 90\(^\circ\) and -90\(^\circ\) at the pole frequency, and the pole frequency was found to be 155.6 KHz, which is in error by \(\approx 2\%\) with the designed value. The circuit was next used as a phase shifter introducing 90\(^\circ\) and -90\(^\circ\) shift to a sinusoidal voltage input of 1volt peak at 155.6 KHz was applied. The input and ±90\(^\circ\) phase shifted output waveforms (given in Fig. 4) which verify circuit as a phase shifter. The THD variation at the output for varying signal amplitude at 155.6 KHz was also studied and the results shown in Fig. 5. The THD for a wide signal amplitude (few mV-1000mV) variation is found within 4.3% at 155.6 KHz.
Figure 5. THD variation at output with signal amplitude at 155.6 KHz

V. INTEGRATION ASPECTS

The proposed circuit is can be conveniently implemented in CMOS technology. The resistor can be replaced by active-MOS resistor with added advantage of tunability through external voltage [23]. Similarly, there are techniques of implementing capacitor in MOS technology [24]. Since the used capacitor is in grounded form, it is further favourable as far as implementation is concerned. Thus the proposed circuits are quite suitable for IC implementation.

VI. CONCLUSION

This paper has presented a new voltage-mode first order all-pass filter employing one FDCCI, one grounded capacitor and resistor. The salient features of the proposed circuit is use of grounded capacitor, suitable for IC implementation, providing inverting and non-inverting voltage-mode all-pass responses simultaneously from the circuit and also providing one of the voltage output at low impedance thus making them suitable for voltage-mode cascading. The proposed circuit is verified through PSPICE simulation using 0.35μm TSMC parameters. The integration of the proposed circuit is an open area for further research.

REFERENCES

[1]. D. BIOLEK, R. SENANI, V. BULIKOVA, and Z. KOLKA, “Active elements for analog signal processing: classification, review, and new proposals,” Radioengineering, vol. 17, pp. 15-32, 2008.

[2]. S.J.G. GIFT, and B. MAUNDY, “A novel circuit element and its application in signal amplification,” International Journal of Circuits Theory and Applications, vol. 36, pp. 219–231, 2008.

[3]. A.M. SOLIMAN, “Inductorless realization of an all-pass transfer function using the current conveyor,” IEEE Transactions on Circuits Theory, vol. 20, pp. 80–81, 1973.

[4]. A.M. SOLIMAN, “Generation of current conveyor-based all-pass filters from op amp-based circuits,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 44, pp. 324–330, 1997.

[5]. O. CICEKOGLU, H. KUNTMAN, and S. BERK, “All-pass filters using a single current conveyor,” International Journal of Electronics, vol. 86, pp. 947–955, 1999.

[6]. S. J. G. GIFT, “The application of all-pass filters in the design of multiphase sinusoidal systems,” Microelectronics Journal, vol. 31, pp. 9–13, 2000.

[7]. J.A. KHAN, and S. MAHESHWARI, “Simple first order all-pass section using a single CCII,” International Journal of Electronics, vol. 87, pp. 303–306, 2000.

[8]. A. Toker, S. ÖZCAN, H. KUNTMAN, and O. ÇICEKOGLU, “Supplementary all-pass sections with reduced number of passive elements using a single current conveyor,” International Journal of Electronics, vol. 88, pp. 969-976, 2001.

[9]. B. Metin, A. Toker, H. Terzioglu, and O. Cicekoglu, “A new all-pass section for high-performance signal processing with a single CCII,” Frequenz, vol. 57, pp. 241-243, 2003.

[10]. M.A. Ibrahim, H. Kuntman, and O. Cicekoglu, “First-order all-pass filter canonical in the number of resistors and capacitors employing a single DDCC,” Circuits, Systems, and Signal Processing, vol. 22, pp. 525–536, 2003.

[11]. N. Pandey, and S. K. Paul, “All-pass filters based on CCII and CCCCI,” International Journal of Electronics, vol. 91, pp. 485-489, 2004.

[12]. K. Pal, and S. Rana, “Some new first-order all-pass realizations using CCII,” Active and Passive Electronic Component, vol. 27, pp. 91–94, 2004.

[13]. S. Maheshwari, I. A. KHAN, and J. Mohan, “Grounded capacitor first-order filters including canonical forms,” Journal of Circuits, Systems and Computers, vol. 15, pp. 289–300, 2006.

[14]. J.W. Horn, C.L. Hou, C.M. Chang, Y.T. Lin, I.C. Shiu, and W.Y. Chiu, “First-order all-pass filter and sinusoidal oscillators using DDCCs,” International Journal of Electronics, vol. 93, pp. 457–466, 2006.

[15]. S. Minaei, and O. Cicekoglu, “A resistorless realization of the first order all-pass filter,” International Journal of Electronics, vol. 93, pp. 177–183, 2006.

[16]. H. P. Chen, and K. H. Wu, “Grounded capacitor first order filter using minimum components,” IEICE Trans Fundamentals, vol. E89-A, pp. 3730-3731, 2006.

[17]. S. Maheshwari, Voltage-mode all-pass filters including minimum component count circuits, Active and Passive Electronic Components, vol. 2007, pp. 1-5, 2007.

[18]. S. Maheshwari, ‘High input impedance voltage mode first order all-pass sections’, International Journal of Circuit Theory and Application, vol. 36, pp. 511–522, 2008.

[19]. S. Maheshwari, “Analog signal processing applications using a new circuit topology,” IET Circuits Devices Systems, vol. 3, pp. 106-115, 2009.

[20]. Metin, and O. Cicekoglu, “Component reduced all-pass filter with a grounded capacitor and high impedance input,” International Journal of Electronics, vol. 96, pp. 445 – 455, 2009.

[21]. A.A. El-Adway, A. M. Soliman, and H. O. Elwan, “A novel fully differential current conveyor and its application for analog VLSI,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 47, pp. 306-313, 2000.

[22]. C.M. Chang, B.M. Al-Hashimi, C.I. Wang, and C.W. Hung, “Single fully differential current conveyor biquad filters,” IEE Proceedings-Circuits, Devices and Systems, vol. 150, pp. 394-398, 2003.

[23]. K. M. Al-Ruawaihi, “A floating voltage controlled linear resistor and its application to active RC filters,” International Journal of Electronics, vol. 92, pp. 483-498, 1997.

[24]. M. Bhusan, and R. W. Newcomb, “Grounding of capacitors in integrated circuits,” Electronic Letter, vol. 3, pp. 148–149, 1967.