Evaluating the Role of Retinal Membrane Guanylyl Cyclase 1 (RetGC1) Domains in Binding Guanylyl Cyclase-activating Proteins (GCAPs)*

Received for publication, December 1, 2014, and in revised form, January 21, 2015. Published, JBC Papers in Press, January 23, 2015, DOI 10.1074/jbc.M114.629642

Igor V. Peshenko, Elena V. Olshevskaya, and Alexander M. Dizhoo1

From the Department of Research, Salus University, Elkins Park, Pennsylvania 19027

Background: GCAP1 and GCAP2 regulate cGMP synthesis by RetGC1 in photoreceptors.

Results: GCAPs compete for binding to RetGC1 in biochemical assays and in HEK293 cells co-expressing fluorescently labeled GCAPs with different forms of RetGC1.

Conclusion: The GCAP1 and GCAP2 binding site(s) overlaps within the kinase homology and/or dimerization domains of RetGC1.

Significance: RetGC1 and GCAPs contribute to normal vision and congenital blindness in humans.

Retinal membrane guanylyl cyclase 1 (RetGC1) regulated by guanylyl cyclase-activating proteins (GCAPs) controls photoreceptor recovery and when mutated causes binding disorders. We evaluated the principal models of how GCAP1 and GCAP2 bind RetGC1: through a shared docking interface versus independent binding sites formed by distant portions of the cyclase intracellular domain. At near-saturating concentrations, GCAP1 and GCAP2 activated RetGC1 from HEK293 cells and RetGC12−/− GCAPs1,2−/− mouse retinas in a non-additive fashion. The M26R GCAP1, which binds but does not activate RetGC1, suppressed activation of recombiant and native RetGC1 by competing with both GCAP1 and GCAP2. Untagged GCAP1 displaced both GCAP1-GFP and GCAP2-GFP from the complex with RetGC1 in HEK293 cells. The intracellular segment of a natriuretic peptide receptor A guanylyl cyclase failed to bind GCAPs, but replacing its kinase homology and dimerization domains with those from RetGC1 restored GCAP1 and GCAP2 binding by the hybrid cyclase and its GCAP-dependent regulation. Deletion of the Tyr1016–Ser1103 fragment in RetGC1 did not block GCAP2 binding to the cyclase. In contrast, substitutions in the kinase homology domain, W708R and I734T, linked to Leber congenital amaurosis prevented binding of both GCAP1-GFP and GCAP2-GFP. Our results demonstrate that GCAPs cannot regulate RetGC1 using independent primary binding sites. Instead, GCAP1 and GCAP2 bind with the cyclase molecule in a mutually exclusive manner using a common or overlapping binding site(s) in the Arg488–Arg851 portion of RetGC1, and mutations in that region causing Leber congenital amaurosis blindness disruption actuate the cyclase by both GCAP1 and GCAP2.

Retinal membrane guanylyl cyclase (RetGC),2 one of the key enzymes in photoreceptor physiology, produces a second messenger of phototransduction, cGMP, in mammalian rods and cones. During photoreceptor excitation and recovery, two RetGC isozymes, RetGC1 and RetGC2 (1–3) (also known as GC-E and GC-F or ROSGC1 and ROSGC2, respectively), are tightly regulated by calcium feedback (4) mediated by guanylyl cyclase-activating proteins (GCAPs) (5–9). Photoexcited visual pigments in rods and cones trigger rapid hydrolysis of cGMP by a Gα-gcoupled phosphodiesterase, PDE6, which shuts off cGMP-gated channels and causes hyperpolarization of the photoreceptor membrane. The interruption of Ca2+ influx through the cGMP-gated channels causes GCAPs to convert from their Mg2+-bound state in the dark to a Mg2+-bound state in the light and thus accelerates cGMP synthesis by RetGC, which speeds up the recovery of photoreceptors from excitation (7, 10). RetGC1 isoyme accounts for most of the cGMP synthetic activity in mammalian rods (11) and nearly all of it in cones (12, 13). In addition to that, the lack of RetGC1 activity or its abnormal regulation by GCAP1 causes retinal dysfunction in animals and blinding diseases in humans such as Leber congenital amaurosis (LCA) (14–16), congenital cone-rod degeneration, and dominant cone degeneration (17–22). Although it has been established that GCAPs activate RetGC1 by binding to its cytosolic or “intracellular” portion (23), major disparity exists in understanding where on the RetGC1 molecule this binding occurs (Fig. 1). The question remains whether or not GCAP1 and GCAP2 can activate the cyclase independently, i.e. by using different binding sites and different mechanisms. According to some of the previous studies, the regulatory properties of RetGC isoforms imparted by GCAP1 and GCAP2 depend on the cyclase kinase homology domain (KHD) (24), whereas other studies argued that the primary binding site for GCAPs could be located in the catalytic domain (25) or even that the two

* This work was supported, in whole or in part, by National Institutes of Health Grant EY11522 from the NEI. This work was also supported by a Commonwealth Universal Research Enhancement formula grant from the Pennsylvania Department of Health.

1 The Martin and Florence Hafter Chair Professor of Pharmacology. To whom correspondence should be addressed: Research S416, Salus University, 8360 Old York Rd., Elkins Park, PA 19027. Tel.: 215-780-1468; Fax: 215-780-1464; E-mail: adizhoo@salus.edu.

2 The abbreviations used are: RetGC, retinal membrane guanylyl cyclase; BiFC, bimolecular fluorescence complementation; GCAP, guanylyl cyclase-activating protein; LCA, Leber congenital amaurosis; PCC, Pearson’s correlation coefficient; NPRA, natriuretic peptide receptor A; KHD, kinase homology domain; DD, dimerization domain.
GCAPs use two binding sites very distant from each other in different cyclase domains (26–28). According to the latter model (27), regulation of the cyclase occurs by GCAP1 and GCAP2 independently bound to the same molecule of RetGC1 by GCAP1 bound at the cyclase KHD and GCAP2 bound at the C-terminal portion of the molecule on the opposite end of the intracellular segment (Fig. 1A). This model advocates the hypothesis that GCAP2 and another Ca$^{2+}$-binding protein, S100B, both bind the C-terminal region Tyr365–Lys1064 in a bovine homolog of RetGC1 (equals Tyr1016–Lys1103 if numbered from theMet1 of the leader peptide; Refs. 26–28). In a human RetGC1, this region corresponds to the C-terminal fragment Tyr1016–Ser1103 (residues numbered from the starting Met1 of the leader peptide coded by GUCY2D gene).

GCAPs shape the photoresponse by activating the cyclase in a sequential mode (29, 30). Therefore, how GCAPs bind to the cyclase (independently or by competing for the same subunit of RetGC1) would be critical for this relay mechanism. GCAP/RetGC interactions also contribute to photoreceptor survival itself. Multiple disease-related mutations in RetGC1 or GCAP1 shift Ca$^{2+}$ sensitivity of cGMP synthesis, ultimately causing photoreceptor death (18–22, 31–36), but how these mutations affect the assembly and function of the active RetGC1-GCAP complex remains unclear. The major obstacles in studying RetGC remain a rather low content of RetGC in photoreceptor membranes (11, 37) and the notorious instability of the RetGC-GCAP complexes in detergents (38), making it impossible to directly isolate and/or quantify these complexes using conventional biochemical approaches such as a pulldown assay or immunoprecipitation. In the present study, we used RetGC1 activation analyses combined with a cell-based assay visualizing association of GCAPs with RetGC1 in HEK293 cells (39, 40) to demonstrate the following. (i) GCAP1 and GCAP2 regulate RetGC1 in a mutually exclusive fashion. (ii) Neither the catalytic domain nor the C-terminal portion, Tyr1016–Lys1103, of RetGC1 are essential for the primary binding of GCAP2. (iii) Instead, GCAP1 and GCAP2 compete over the same RetGC1 molecule using a common or overlapping primary binding site(s) located in a region that contains RetGC1 kinase homology and dimerization domains.

EXPERIMENTAL PROCEDURES

GCAP1 and GCAP2 Expression and Purification

Myristoylated bovine D6S GCAP1 (31) and GCAP2 (32) cDNAs were expressed from pET11d vector in the BLR(DE3) *Escherichia coli* strain (Novagen) harboring pBB131 plasmid encoding yeast N-myristoyltransferase. The cell cultures were incubated in the presence of myristic acid added prior to induction with isopropyl 1-thio-β-d-galactopyranoside, and both proteins were then isolated from inclusion bodies by urea extraction and purified using hydrophobic and size exclusion chromatography as described previously (42–44); 2 mM MgCl$_2$ was present during the urea extraction and subsequent dialysis steps. For co-transfection experiments in HEK293 cells, GCAP1 and GCAP2 were tagged at the C terminus with Super-Glo (Clontech) enhanced green fluorescent protein (GFP) by inserting each GCAP cDNA into pQBIN3 vector (Clontech) as described previously (39). To produce untagged GCAP1 in HEK293 cells, the GFP-coding sequence was deleted by digesting the plasmid with EcoRI and Clal, blunting with T4 polymerase, and self-ligation.

RetGC1 Expression and Activity Assay

Human RetGC1 cDNA was expressed in HEK293 cells from a modified pRCCMV vector (Invitrogen) using calcium phosphate precipitation for the transfection, and the membrane fraction containing expressed RetGC1 was isolated as described previously in detail (43, 45). The activity of the cyclase was assayed using [α-32P]GTP (PerkinElmer Life Sciences) as a substrate, and the [32P]cGMP product was quantified using TLC as described previously (43, 45). Briefly, the assay mixture (25 μl) incubated at 30°C contained 30 mM MOPS-KOH (pH 7.2), 60 mM KCl, 4 mM NaCl, 1 mM DTT, 2 mM Ca$^{2+}$/EGTA buffer, 1 or 6 mM free Mg$^{2+}$ as indicated in the text, 0.3 mM ATP, 4 mM cGMP, 1 mM GTP, and 1 μCi of [α-32P]GTP. The resultant [32P]cGMP product was analyzed by TLC using fluorescently backed polyethyleneimine cellulose plates (Merck) developed in 0.2 M LiCl and eluted with 2 M LiCl.

RetGC1 Activity in Mouse Retinas

Experiments involving mice were conducted in accordance with the National Institutes of Health guidelines and approved by the Institutional Animal Care and Use Committee. Triple gene knock-out RetGC2$^{−/−}$GCAPs1,2$^{−/−}$ mice were bred using the RetGC2$^{−/−}$ (46) and GCAPs1,2$^{−/−}$ double knock-out
(47) parental lines as described previously (11). All experiments utilizing mouse retinas were conducted in the dark under infrared illumination as described (11). Retinas were collected from mice dark-adapted overnight (four retinas per standard 1.5-ml Eppendorf tube), frozen in foil-wrapped tubes by immersion in liquid nitrogen, and kept at −70 °C before the experiment. RetGC1 activity was assayed in retinal homogenates containing the equivalent of 0.2 retina/25-μl assay.

Ca²⁺/*EGTA Buffers**

Ca²⁺/EGTA buffers maintaining defined free Ca²⁺ and Mg²⁺ concentrations in the RetGC assay were calculated, prepared, and verified by fluorescent Ca²⁺ indicator dyes as described previously in full detail (48).

Guanylyl Cyclases Constructs

All PCR-derived DNA fragments were amplified using PhusionFlash polymerase (Thermo Fisher); all intermediate and resulting DNA constructs were verified by sequencing on both strands. The constructs were expressed under control of the cytomegalovirus (CMV) promoter and utilized a bovine growth hormone polyadenylation signal.

mOrangeNPRA—A full-length cDNA clone for human natriuretic peptide receptor A (NPRA) membrane guanylyl cyclase coded by *GUCY2A* gene was obtained from Open Biosystems (catalogue number MHS1010-9204134ID, Thermo Scientific) and identified between the CMV promoter and the bovine growth hormone polyadenylation sequence. The mOrangeNPRA construct in which the C-terminal portion of NPRA substituted the catalytic domain of RetGC1 and the C-terminal peptide altogether was constructed as follows. The cDNA fragment coding for the Leu⁴⁴⁸-Gly¹⁰⁶¹ fragment of NPRA was amplified using forward 5′-GGCTGGAGAGGAGA and reverse 5′-TACAGGGCCGCTGTCAGCTCGTCCATGCCGC primers, digested with AgeI and AgeI sites, and ligated into the pRetGC1NewRest2 (Catalogue number MHS1010-9204134ID, Thermo Scientific) for making mOrangeNPRA cDNA as described (40, 44) (this also eliminated the originally introduced AgeI site in the extracellular domain of NPRA).

mOrangeRetGC1 and Hybrid Constructs—The cDNA portion coding for the human RetGC1 (2) extracellular domain (which does not participate in GCAP binding; see Ref. 23) of NPRA was amplified using forward 5′-AAAAAGCTAGCATGGTGAGCAAGGGCGA and reverse 5′-TACAGGGCCGCTGTCAGCTCGTCCATGCCGC primers and inserted into the NheI/BstBI sites of the pRetGC1NewRest2 plasmid, substituting the corresponding part of the intracellular segment of RetGC1 below the KHD (pGC1NPRAcat1). The mOrange cDNA was then amplified using two primers, 5′-AAAAAGCTAGCATGGTGAGCAAGGGCGA and 5′-TACAGGGCCGCTGTCAGCTCGTCCATGCCGC primers and inserted into the Nhel/BstBI restriction sites of the mOrangeNPRAcat1 plasmid. The BstBI site for additional cloning purposes was removed while keeping the RetGC1 cDNA sequence in-frame with the mOrange by digesting with BstBI, blunting with T4 polymerase, and self-ligating.

**mOrangeRetGC1VenusN and -C—DNA fragments coding for the Met⁵-Gln¹⁵⁸ (VenusN) and Lys¹⁵⁹-Lys²³⁹ (VenusC) (49) of the Venus yellow fluorescence protein (YFP; Ref. 50) as follows. The cDNA fragment coding for the His¹³⁵-Val¹⁹⁷ RetGC1 fragment was modified to introduce a series of new restriction endonuclease sites (Argel, BssHII, AarI, AsfII, KpnI, Clal, Nsil, RsrII, and BsrGI) without changing the encoded protein sequence. The Nhel and BstBI sites were added at the 5′-end of the DNA fragment produced by chemical synthesis (Integrated DNA Technologies). The chemically synthesized cDNA fragment was then inserted into the Nhel/BstBI sites of the modified RetGC1 construct in a pRCCMV vector (Invitrogen) lacking the neomycin resistance-coding XhoI-XhoI fragment utilized for making mOrangeRetGC1 cDNA as described (40, 44) (this also eliminated the originally introduced Argel site in the extracellular domain—coding fragment described in Refs. 44, 49, and 50). The resultant plasmid (pRetGC1NewRest2) was subsequently used for constructing mOrangeRetGC1 containing the new restriction sites, mOrangeRetGC1VenusN (with the deleted portion of RetGC1 C terminus), and a hybrid between RetGC1 and NPRA described below.

mOrangeRetGC1 plasmid encoding wild type intracellular segment of RetGC1 for expression in HEK293 cells was produced by inserting into the Nhel/BstBI sites of the pRetGC1NewRest2 construct a fragment coding for the mOrange tag (Clontech) cDNA-amplified using forward 5′-AAAAAGCTAGCATGGTGAGCAAGGGCGA and reverse 5′-TACAGGGCCGCTGTCAGCTCGTCCATGCCGC primers. The LCA-linked mutations, W708R and I734T, were introduced by replacing the KpnI/DalI fragment of mOrangeRetGC1 plasmid with the respective PCR-generated fragments encoding these mutations.

The mOrangeGC1NPRAcat1 construct in which the C-terminal portion of NPRA substituted the catalytic domain of RetGC1 and the C-terminal peptide altogether was constructed as follows. The cDNA fragment coding for the Leu⁴⁴⁸-Gly¹⁰⁶¹ fragment of NPRA was amplified using forward 5′-GGCTGGAGAGGAGA and reverse 5′-TACAGGGCCGCTGTCAGCTCGTCCATGCCGC primers and inserted into the Nhel/BstBI restriction sites of the mOrangeNPRAcat1 plasmid. The BstBI site for additional cloning purposes was removed while keeping the RetGC1 cDNA sequence in-frame with the mOrange by digesting with BstBI, blunting with T4 polymerase, and self-ligating.

**mOrangeRetGC1VenusN and -C—DNA fragments coding for the Met⁵-Gln¹⁵⁸ (VenusN) and Lys¹⁵⁹-Lys²³⁹ (VenusC) (49) of the Venus yellow fluorescence protein (YFP; Ref. 50) as follows. The cDNA fragment coding for the His¹³⁵-Val¹⁹⁷ RetGC1 fragment was modified to introduce a series of new restriction endonuclease sites (Argel, BssHII, AarI, AsfII, KpnI, Clal, Nsil, RsrII, and BsrGI) without changing the encoded protein sequence. The Nhel and BstBI sites were added at the 5′-end of the DNA fragment produced by chemical synthesis (Integrated DNA Technologies). The chemically synthesized cDNA fragment was then inserted into the Nhel/BstBI sites of the modified RetGC1 construct in a pRCCMV vector (Invitrogen) lacking the neomycin resistance-coding XhoI-XhoI fragment utilized for making mOrangeRetGC1 cDNA as described (40, 44) (this also eliminated the originally introduced Argel site in the extracellular domain—coding fragment described in Refs. 44, 49, and 50). The resultant plasmid (pRetGC1NewRest2) was subsequently used for constructing mOrangeRetGC1 containing the new restriction sites, mOrangeRetGC1VenusN (with the deleted portion of RetGC1 C terminus), and a hybrid between RetGC1 and NPRA described below.

mOrangeRetGC1 plasmid encoding wild type intracellular segment of RetGC1 for expression in HEK293 cells was produced by inserting into the Nhel/BstBI sites of the pRetGC1NewRest2 construct a fragment coding for the mOrange tag (Clontech) cDNA-amplified using forward 5′-AAAAAGCTAGCATGGTGAGCAAGGGCGA and reverse 5′-TACAGGGCCGCTGTCAGCTCGTCCATGCCGC primers. The LCA-linked mutations, W708R and I734T, were introduced by replacing the KpnI/DalI fragment of mOrangeRetGC1 plasmid with the respective PCR-generated fragments encoding these mutations.

Co-transfection Experiments

The mOrange-tagged guanylyl cyclase constructs were co-expressed with the SuperGlo GFP-tagged GCAP1 or GCAP2 in HEK293 cells at a cyclase:GCAP1 plasmid ratio of 100:1 as described in detail previously (39, 40) except that instead of calcium phosphate precipitation a Promega FuGENE HD transfection reagent was used at ∼3 μl/μg of DNA. Confocal images were taken utilizing an Olympus FX1000 Spectral instrument using 543- and 488-nm excitation for the red and the green fluorochromes, respectively, as described previously (39, 40) and processed using Olympus FluoView FX10-ASW software. In the case of YFP versus mOrange fluorescence recording, the emission intervals for recordings were adjusted to exclude bleeding of the fluorescence between the channels.
Regulation of Retinal Guanylyl Cyclase

No changes to the original images were made except for occasional minor γ correction applied to the whole image. Quantitative analysis was performed using only original images without γ corrections.

Pearson’s Correlation Coefficient (PCC)

The PCC for testing co-localization of GCAP-GFP with mOrange-tagged RetGC1 variants was calculated using Olympus FluoView FV10-ASW software as described previously (40), and the statistical difference between the PCC values was tested using the analysis of variance function in Synergy KaleidaGraph 4 software applying Bonferroni post hoc processing.

RESULTS

Testing Whether GCAP1 and GCAP2 Act Synergistically When They Activate RetGC1—The dose dependence of RetGC1 activation by either GCAP1 or GCAP2 presented in Fig. 2A shows that in line with the previous observations (11) 10 μM GCAP provided near-maximal activation of the cyclase with the maximal level of activity stimulated by GCAP1 being above that of GCAP2. A model assuming independent regulation of the cyclase by different GCAPs through independent binding sites on the same RetGC1 molecule (27) implies that the two GCAPs could act synergistically; i.e. the combined effect of both GCAPs together could exceed the levels of activation by saturating concentration of GCAP1 alone. However, adding GCAP2 to the assay nearly saturated with GCAP1 did not further stimulate the cyclase activity (Fig. 2B).

The same was true not only for a recombinant RetGC1 expressed in HEK293 cells but also for the native RetGC1 present in a mouse retina (Fig. 2C). Triple RetGC2(−/−)/GCAPS1,2(−/−) (11) gene knock-out mice lack RetGC2 isozyme and both GCAPs altogether, but RetGC1 in these retinas is expressed at a normal ratio to rhodopsin and preserves its activation and normal Ca2+-sensitive regulation in the presence of exogenously added GCAP1 and GCAP2 (11). Note that this cyclase assay in whole retina specifically measures activity of RetGC from photoreceptors (11, 33, 34). We found that the native RetGC1 in the triple knock-out retinas saturated by GCAP1 did not increase its activity when GCAP2 was also added in the same assay. These results argue that there is no synergy between the two GCAPs in activating RetGC1 and instead open a possibility that GCAPs may compete in binding to the same target enzyme.

GCAP1 and GCAP2 Compete for Binding to the Same RetGC1 Molecule—To test whether or not GCAPs directly compete for the same molecule of RetGC1, we used the M26R GCAP1 mutant (40), which does not activate RetGC1 even though it fully retains the ability to bind the cyclase (Ref. 40 and Fig. 3A, inset). The M26R GCAP1 not only blocked activation of the cyclase by the wild type GCAP1 but also blocked its activation by GCAP2 in a very similar fashion (Fig. 3A), thus arguing that GCAP1 and GCAP2 may compete for the same (or at least overlapping) binding site(s). To additionally verify that the suppression of RetGC1 activation by M26R mutant involves a direct displacement of GCAP from the RetGC1-GCAP complex, we used a cell-based assay (39, 40) utilizing fluorescently labeled GCAP1-GFP (Fig. 3, B–D). GCAP1-GFP when expressed alone is uniformly diffused throughout the cytoplasm and the nucleus of HEK293 cells but becomes anchored to membranes and no longer spreads to the nucleus when co-expressed with RetGC1 (39). As a result, GCAP1-GFP strongly co-localizes (Table 1) with mOrangeRetGC1 in endoplasmic reticulum and plasma membranes of HEK293 cells in a typical “tennis racket” pattern (Fig. 3B and Refs. 39 and 40). However, when the same co-transfection mixture included an excess of the DNA vector coding for the untagged GCAP1, the GCAP1-GFP displaced from its complex with mOrangeRetGC1 by the unlabeled GCAP1 acquired a uniform diffuse pattern of

![Graph](image-url)

FIGURE 2. Activation of RetGC1 by GCAP1 and GCAP2 lacks synergy. A, dose dependence of RetGC1 expressed in HEK293 cells by GCAP1 and GCAP2. The data were fitted using Synergy KaleidaGraph 4 utilizing the standard Levenberg-Marquardt algorithm of nonlinear least square routines assuming a Hill function: $a = \frac{(a_{\text{max}} - a_{\text{min}})}{1 + \left[\left(\frac{[\text{GCAP}]}{K_{1/2,\text{GCAP}}}\right)^{h}\right]} + a_{\text{min}}$, where a is the activity of RetGC in the assay, a_{min} and a_{max} are the minimal and maximal activities ($a_{\text{max}} = 26$ and 22 nmol of cGMP/min/mg for GCAP1- and GCAP2-dependent stimulation, respectively), $[\text{GCAP}]$ is the concentration of GCAP, $K_{1/2,\text{GCAP}}$ is the GCAP concentration required for half-maximal activation (1.5 and 1.7 μM, respectively), and h is the Hill coefficient (1.18 and 1.16, respectively). A near-saturating concentration of 10 μM in each case was used in subsequent experiments described in B and C. B, lack of additive effect of GCAP2 on RetGC1 activity stimulated by GCAP1. RetGC1 expressed in HEK293 membranes was reconstituted with either 10 μM GCAP1 or 10 μM GCAP2 independently or with both GCAPs added together. C, same as B except that RetGC1 activity was measured in RetGC2(−/−)/GCAPS1,2(−/−) mouse retinas. The rightmost column shows the endogenous RetGC1 activity in the absence of GCAPs. Error bars represent S.E.
using the experiments described below. We found that M26R GCAP1 mutant could directly compete with GCAP2 over RetGC1 in a functional RetGC1 activity assay (Fig. 4). At low micromolar concentrations of the M26R GCAP1, the dose dependence of the cyclase activation by either GCAP homolog was drastically shifted toward their higher concentrations (Fig. 4, A and B). Interestingly, relatively low cooperativity effectively makes the shape of the fit for either GCAP similar to a Michaelis function, but the cooperativity becomes more evident in the presence of the competing M26R GCAP1 possibly due to an allosteric effect(s) of the M26R as an inhibitor in the RetGC1 homodimer (see “Discussion”). Moreover, in the cell-based assay such as exemplified in Fig. 3 but utilizing GCAP2-GFP, the normal pattern of the GCAP2-GFP co-localization with the mOrangeRetGC1 (Fig. 4C) was disrupted in the presence of the untagged GCAP1 (Fig. 4D and Table 1). Last but not least, the M26R GCAP1 mutant blocked activation by both GCAP1 and GCAP2 not only of the recombinant RetGC1 but also of the native RetGC1 cyclase in the RetGC2−/−GCAPs1,2−/− mouse retinas (Fig. 5).

Taken together, the experiments presented in Figs. 2–5 strongly argue that GCAP1 and GCAP2 cannot be bound to the same RetGC1 molecule at the same time using two independent non-overlapping primary binding sites. Instead, the two GCAPs by competing for the binding to the same RetGC1 molecule operate in a mutually exclusive manner so that only one GCAP isoform can bind to the same RetGC1 subunit at a time.

GCAP1 and GCAP2 Binding Sites on RetGC1 Overlap— A model proposed previously (27) advocates the idea of two sites for different GCAP isoforms being formed by portions of the cyclase primary structure on the opposite sides of the intracellular segment: for GCAP1-in KHD just near the transmembrane region and for GCAP2 at the C terminus in the Tyr1016–Ser1103 fragment (here residues are numbered starting from the Met1 encoded by RetGC1 cDNA; Ref. 2). We therefore tested that hypothesis in experiments described in Figs. 6–9.

We replaced the C-terminal portion RetGC1 catalytic domain downstream from the Leu1014 (Fig. 6, top), and thus eliminated the entire putative Tyr1016–Ser1103 GCAP2 binding site (26, 27), with a non-homologous sequence: the N-terminal portion of the YFP, VenusN (49). The chimera protein lacking the putative GCAP2 binding site was then tested for co-localization with GCAP2 in a cell-based binding assay (Fig. 6). It is important to emphasize that the mOrange fluorescence of the chimera remained properly associated with the endoplasmic reticulum and plasma membranes and that any detectable fluorescence produced by the residual VenusN part of the chimera (Fig. 6A) could possibly interfere with the subsequent analysis was completely lacking. Because a portion of the cyclase catalytic domain was removed by this modification, we could not rely on the cyclase activity but were able to verify that the C-terminal portion of the chimera was not generally misfolded by applying a bimolecular fluorescence complementation (BiFC) (49) through co-expression with the VenusC-tagged RetGC1 (Fig. 6B). When both constructs containing the VenusN and VenusC portions of the YFP were co-transfected, prominent YFP fluorescence was registered, arguing against global unfolding of each construct. The mOrangeRetGC1VenusN ch-

FIGURE 3. M26R GCAP1 suppresses RetGC1 activation by GCAPs through direct competition for binding with the target enzyme. **A**, inhibition of RetGC1 preactivated by 1 μM GCAP1 (●) or GCAP2 (○) to 9.4 and 6.5 nmol of cGMP/min/mg, respectively, by increasing concentrations of the M26R GCAP1. By empirical fitting, the EC50 values were 0.34 and 0.43 μM, respectively. **Inset**, M26R GCAP1-GFP expressed in HEK293 cells uniformly distributes through the cytoplasm and the nucleus (bottom panel) but co-localizes with the membranes when co-expressed with mOrangeRetGC1 (upper panels). B and C, M26R GCAP1 directly competes with GCAP1 binding to RetGC1. B, GCAP1-GFP co-expression with mOrangeRetGC1 in HEK293 cells at an expression vector ratio of 1:100 (0.1 and 1 μg, respectively). C, same as B but an excess (0.5 μg of DNA) of untagged GCAP1 was added in the co-transfection mixture. D, same as B but an excess (0.5 μg of DNA) of untagged M26R GCAP1 was added in the co-transfection mixture. Error bars represent S.E.
FIGURE 4. GCAP1 directly competes with GCAP2 for binding with RetGC1. A and B, the M26R GCAP1 shifts the dose dependence of RetGC1 activation by GCAP1 and GCAP2 toward higher concentrations. A, dose dependence of RetGC1 activation by GCAP1 in the absence (●) or presence of 1, 2, or 2 M26R GCAP1. B, dose dependence of RetGC1 activation by GCAP2 in the absence (□) or presence of 1, 2, or 2 M26R GCAP1. The data points were fitted assuming the same Hill function as in Fig. 2; the \(a_{\text{max}} \) values for stimulation by GCAPs in the absence or presence of 1 and 2 M26R GCAP1 only slightly change for stimulation by GCAP1 (27, 26, and 25 nmol of cGMP/min/mg, respectively) or GCAP2 (22, 21, and 19 nmol of cGMP/min/mg, respectively), but the \(K_{1/2} \) increased in the presence of M26R GCAP1 for wild type GCAP1 (1.5, 4, and 6.7 \(\mu \)M, respectively) and GCAP2 (1.7, 4.7, and 7.4 \(\mu \)M, respectively). The Hill coefficient increased for GCAP1 (from 1.17 in the presence to 1.53 in the presence of 2 M26R GCAP1) and for GCAP2 (from 1.14 in the presence to 1.54 in the presence of 2 M26R GCAP1). C and D, GCAP1 prevents binding of GCAP2 to RetGC1. C, GCAP2-GFP co-expressed with mOrangeRetGC1 acquires a typical membrane-bound pattern, co-localizing with the mOrangeRetGC1. D, same as C but 0.2 \(\mu \)g of untagged GCAP1-coding vector was also added in the co-transfection mixture. Note the diffuse uniform distribution of GCAP2-GFP displaced from the membrane complex with RetGC1. Error bars represent S.E.

Regulation of Retinal Guanylyl Cyclase

Co-transfection	PCC B (mean ± S.D.; n)	p B
GCAP1-GFP + mOrangeRetGC1	0.90 ± 0.04; 55	<0.0001
GCAP1-GFP + mOrangeRetGC1 + untagged GCAP1	0.87 ± 0.16; 29	<0.0001
GCAP1-GFP + mOrangeNPRA	0.24 ± 0.18; 21	<0.0001
GCAP1-GFP + mOrangeRetGC1NPRAcat1	0.90 ± 0.06; 63	1
GCAP1-GFP + mOrangeW708R	0.24 ± 0.16; 36	<0.0001
GCAP1-GFP + mOrangeI734T	0.25 ± 0.09; 22	<0.0001
GCAP2-GFP + mOrangeRetGC1	0.88 ± 0.06; 34	<0.0001
GCAP2-GFP + mOrangeRetGC1 + GCAP untagged	0.49 ± 0.14; 34	<0.0001
GCAP2-GFP + mOrangeRetGC1NPRAcat1	0.89 ± 0.05; 47	1
GCAP2-GFP + mOrangeNPRA	0.48 ± 0.15; 21	<0.0001
GCAP2-GFP + mOrangeRetGC1NPRAcat1	0.90 ± 0.04; 75	1
GCAP2-GFP + mOrangeW708R	0.42 ± 0.15; 21	<0.0001
GCAP2-GFP + mOrangeI734T	0.46 ± 0.12; 26	<0.0001

a The mOrangeRetGC1 and GCAP1-GFP were co-expressed in HEK293 cells, and confocal microscopy was performed as described under “Experimental Procedures.” PCC values indicating strong co-localization are highlighted in bold (note that PCC ≤ 0.5 generally means no co-localization, whereas PCC = 1.0 would indicate co-localization of all red and green pixels in the image (51)).

b From one-way analysis of variance/Bonferroni (α = 0.01) all-pairs comparison test (confidence level = 99%) processed using Synergy KaleidaGraph 4 software.

c Compared with GCAP1-GFP + mOrangeRetGC1.

d Compared with GCAP2-GFP + mOrangeRetGC1.
Regulation of Retinal Guanylyl Cyclase

Disease-linked Mutations in RetGC1 KHD Block Binding of Both GCAP1 and GCAP2—Multiple mutations in human GUCY2D gene coding for RetGC1 cause LCA, a severe early onset loss of vision (14–16). Some LCA-linked mutations inactive RetGC1 and/or suppress its activation by GCAP1 and GCAP2 (16). Here we tested two LCA-linked point mutations in the KHD, W708R and I734T, found in LCA patients and assigned the highest estimated pathogenic probability (15).

Increased above that level. Hence, the KHD/DD portion of RetGC1 but not its C-terminal portion defines regulation by GCAP2.

A

![Graph showing regulation of RetGC1 by GCAPs](image)

Figure 5. M26R GCAP1 blocks activation of the native RetGC1 in RetGC2−/− GCAPs1,2−/− mouse retinas by both GCAP1 and GCAP2. Retinal homogenate from the RetGC2−/− GCAPs1,2−/− retinas was reconstituted with purified 1 μM GCAP1 or GCAP2 in the absence or presence of 5 μM M26R GCAP1. The rightmost column indicates the endogenous activity of RetGC1 without added GCAPs. Error bars represent S.E.

B

![BiFC experiment](image)

Figure 6. Replacement of the Tyr1016−Ser1103 region in RetGC1 with a non-homologous sequence does not eliminate binding of GCAP2. Top, the mOrangeRetGC1 with the Pro1015−Ser1103 C-terminal portion was substituted with six Gly residues followed by the N-terminal half of Venus YFP (mOrangeGC1VenC). mOrangeRetGC1VenC displays a normal membrane fluorescence pattern when expressed in HEK293 cells and does not emit YFP fluorescence when excited at 488 nm. B, BPC experiment to probe for global unfolding of the Venus-containing constructs. The mOrangeRetGC1VenC construct produces YFP fluorescence when co-expressed with mOrangeRetGC1VenC containing a shorter C-terminal portion of the YFP (49). The untagged wild type GCAP1-coding DNA acquires a membrane binding pattern typical for GCAP2/GCAP1 co-localization (39) (compare with Fig. 4C). D, GCAP1 competes with GCAP2 for binding to mOrangeRetGC1VenC. The untagged wild type GCAP1-coding vector (0.2 μg of DNA) was added in the same co-transfection mixture as in C. Note the pattern of GCAP2-GFP, which changes to diffusely spread through the cytoplasm and nuclei, dissimilar from that of the cyclase.

C

![BiFC experiment](image)

Figure 7. The mOrangeGC1NPRAcat1 chimera containing the catalytic domain of NPRA and the KHD/DD portion derived from RetGC1 very effectively bound GCAP1-GFP and GCAP2-GFP in co-transfected cells (Fig. 8, C and D, and Table 1). Again, GCAP2-GFP was displaced from the complex with the mOrangeGC1NPRAcat1 by an excess of untagged GCAP1 (Fig. 8E).

D

![BiFC experiment](image)

Figure 8. A, mOrangeRetGC1 (Fig. 4C) and Table 1). Again, GCAP2-GFP was displaced from the complex with the mOrangeRetGC1 (Fig. 4C). B, the chimera at free Ca2+ concentrations below 100 nM, but its activity became suppressed when Ca2+ concentrations increased above that level. Hence, the KHD/DD portion of RetGC1 but not its C-terminal portion defines regulation by GCAP2.

E

![BiFC experiment](image)

Figure 9. Not only do NPRA and RetGC1 share little homology between their C-terminal portions, but the Tyr1016−Ser1103 region in RetGC1 hypothesized to contain the GCAP2 binding site (26, 27) is one of the least homologous regions between the two cyclases (2), and most of it is merely absent from NPRA (26, 27) is one of the least homologous regions between the two cyclases (2). When the two mOrange-tagged cyclase constructs are expressed in HEK293 cells, RetGC1 can be activated with either GCAP1 or GCAP2, but no activation of NPRA was ever detected with either GCAP (Fig. 7). Consistent with that, neither GCAP1 nor GCAP2 could bind the NPRA in a cell-based assay (Fig. 8, A and B). Consequently, the intracellular segment of NPRA contains no functional binding sites for either GCAP. In striking contrast to that, the intracellular segment of the mOrangeGC1NPRAcat1 chimera containing the catalytic domain of NPRA and the KHD/DD portion derived from RetGC1 very effectively bound GCAP1-GFP and GCAP2-GFP in co-transfected cells (Fig. 8, C and D, and Table 1). Again, GCAP2-GFP was displaced from the complex with the mOrangeGC1NPRAcat1 by an excess of untagged GCAP1 (Fig. 8E).
Regulation of Retinal Guanylyl Cyclase

When co-transfected with the W708R or I734T mOrange-RetGC1 (Fig. 10, A and B) (positions of the residues are as encoded by GLC/2D in a non-modified RetGC1 cDNA), both GCAP1-GFP and GCAP2-GFP displayed a diffuse pattern, indicating lack of co-localization with the cyclase (PCC < 0.5; Table 1) (see Figs. 3B and 4C for comparison). When introduced in mOrangeRetGC1VenusN and -VenusC constructs, neither W708R (Fig. 10C) nor I734T (identical result; not shown) precluded the subunits harboring the same or two different LCA mutations (Fig 10C, rightmost panel) from forming a YFP fluorescent complex in the BiFC test. Evidently, these two mutations were less likely to cause unspecific global unfolding of the chimera protein and more likely to directly affect the portion of RetGC1 containing the GCAP1 and GCAP2 binding interface.

DISCUSSION

GCAP-RetGC Complexes and Regulation of Rod Photoreceptor Activity—The mechanisms of interaction between RetGC1 and its regulators, GCAPs, remain controversial and relatively poorly understood despite their critical role in retinal physiology and congenital diseases of photoreceptors. Activation of cGMP synthesis by GCAPs in photoexcited rods and cones is essential for their proper light sensitivities and response kinetics (10, 47, 53). In rods, GCAP1 and GCAP2 are recruited to the transmembrane region of the cyclase (10, 47, 53). In cones, GCAP1 and GCAP2 can activate both RetGC1 and RetGC2 (55, 56). Therefore, knowing how GCAPs bind to the RetGC1 molecule can help better explain the mechanisms of Ca2+ feedback. Can GCAPs bind and regulate the same molecule of the cyclase independently? In Fig. 11, which illustrates the summary for our evaluation of different possible modes of GCAP/RetGC1 interaction, we present this as an unlikely scenario.

First, we found clear evidence that GCAP1 and GCAP2 fail to provide cumulative stimulation of the cyclase (Fig. 2). It needs to be pointed out that the lack of additional activation by two GCAPs together could hardly be explained by the cyclase reaching its maximal catalytic efficiency when stimulated by just the GCAP1 isoform because RetGC1, even at full saturation with GCAP1, remains a relatively low efficiency enzyme (Kcat/Km ~ 1–1.6 × 10^5 M^-1 s^-1; Ref. 11) at least 1000-fold less potent than a “perfect” diffusion-limited enzyme.

whereas GCAP2 can activate both RetGC1 and RetGC2 (55, 56). Therefore, knowing how GCAPs bind to the RetGC1 molecule can help better explain the mechanisms of Ca2+ feedback. Can GCAPs bind and regulate the same molecule of the cyclase independently? In Fig. 11, which illustrates the summary for our evaluation of different possible modes of GCAP/RetGC1 interaction, we present this as an unlikely scenario.

First, we found clear evidence that GCAP1 and GCAP2 fail to provide cumulative stimulation of the cyclase (Fig. 2). It needs to be pointed out that the lack of additional activation by two GCAPs together could hardly be explained by the cyclase reaching its maximal catalytic efficiency when stimulated by just the GCAP1 isoform because RetGC1, even at full saturation with GCAP1, remains a relatively low efficiency enzyme (Kcat/Km ~ 1–1.6 × 10^5 M^-1 s^-1; Ref. 11) at least 1000-fold less potent than a “perfect” diffusion-limited enzyme.
Second and more importantly, our results argue that the two GCAPs cannot even occupy the same RetGC1 subunit at the same time (Figs. 4 and 5). Hence, our results directly contradict the model assuming independent binding of different GCAPs to the same cyclase molecule (27). Instead, we found clear evidence that GCAPs bind their target in a mutually exclusive manner so that only one isoform can occupy any given RetGC1 subunit at the same time (Figs. 4 and 5). Hence, our results directly contradict the model assuming independent binding of different GCAPs to the same cyclase molecule (27). Instead, we found clear evidence that GCAPs bind their target in a mutually exclusive manner so that only one isoform can occupy any given RetGC1 subunit at the same time (Figs. 4 and 5). Hence, our results directly contradict the model assuming independent binding of different GCAPs to the same cyclase molecule (27). Instead, we found clear evidence that GCAPs bind their target in a mutually exclusive manner so that only one isoform can occupy any given RetGC1 subunit at the same time (Fig. 6). Left to right, W708R mOrangeRetGC1VenusN construct (1 g of each mutated mOrangeRetGC1 vector and 0.01 g of each mutated mOrangeRetGC1 vector and 0.01 g) plus I734T mOrangeRetGC1VenusC (0.5 g) expressed alone, W708R mOrangeRetGC1VenusC (0.5 g) plus W708R mOrangeRetGC1NPRAcat1 chimera by GCAP2. The membrane fraction from the mOrangeRetGC1NPRAcat1-expressing HEK293 cells was reconstituted with purified GCAP2 at 10 mM Mg2+ in the presence of EGTA. The data were fitted by KaleidaGraph 4 assuming the following function: $A = (A_{max} - A_{min})/(1 + ([Ca]/[Ca]_{1/2})^h) + A_{min}$ where A_{max} and A_{min} are the maximal and minimal activity of guanylyl cyclase, respectively, $[Ca]_{1/2}$ is the concentration of Ca2+ producing 50% inhibition (0.13 mM), and h is the Hill coefficient (1.7). RetGC activity was assayed as described under “Experimental Procedures.” GCAP2 effectively activated the chimera in a Ca2+-sensitive manner despite a very weak homology with the C-terminal portion of RetGC1 (top). The putative GCAP2 binding site in RetGC1 is underlined; identical amino acid residues in the alignment are shown in red, non-identical residues are shown in blue, and absent residues are shown in gray. The two sequences were aligned using NCBI Cobalt software. Error bars represent S.E.

lesser portion bound with GCAP2 would provide, together with the RetGC2-GCAP2 complex, an additional boost of cGMP production in the midphase of recovery (30).
Regulation of Retinal Guanylyl Cyclase

We should, however, consider certain limitations to that model not addressed in Fig. 11. First, the cyclase functions in vivo as a homodimer (57–59). The functional RetGC1 is likely to contain the cyclase homodimer with two activator molecules in it (60). The cooperativity for allosteric activation of the dimer by either GCAP becomes more evident when they have to compete with M26R GCAP1 (Fig. 4, A and B). Much like the competition between Ca\(^{2+}\) and Mg\(^{2+}\)-liganded GCAPs makes Ca\(^{2+}\) dependence of cyclase regulation more cooperative than binding of Ca\(^{2+}\) to isolated GCAP1 (35, 48), creating the competing inhibitor/activator pair for Mg\(^{2+}\)-bound GCAP in the absence of Ca\(^{2+}\) accentuates the non-linear dose dependence. However, at this point, we do not know whether two different GCAPs can bound to the two molecules of RetGC1 comprising the cyclase dimer or what Ca\(^{2+}\) sensitivity such a mixed complex would have. However, based on the higher affinity of the native RetGC1 for GCAP1 versus GCAP2 in crude retinal membranes (11), such a combination would likely represent a major fraction of RetGC1 in comparison with the (GCAP1)\(_2\)–(RetGC1)\(_2\) tetrameric complex. Second, it needs to be noted that the use of the RetGC linear domain structure as a model is an oversimplification because in a three-dimensional structure different distal parts of the protein primary structure can come into proximity to each other to form the GCAP binding interface(s).

In regard to the relationship between the domain structure of RetGC1 and its function, our findings are at variance with the recently advocated hypotheses (26, 27) because we found that GCAP2 does not bind at the C terminus of RetGC1 (Figs. 6–8). Therefore, the model based on the two GCAPs having their binding sites independently formed by remote parts of the RetGC1 primary structure (27) is inconsistent with the experimental data from our study. Evidently, the Tyr\(^{1016}\)–Gly\(^{1103}\) region in RetGC1 defines neither GCAP2 binding (Figs. 6–8) nor Ca\(^{2+}\)-sensitive regulation of the cyclase (Fig. 9). Contrary to the expectations from the model (27), the 1013–11021 sequence at the end of the catalytic domain is not obligatory in making the cyclase interface with GCAP2 because the RetGC1NPRA chimera in which this sequence is replaced by mostly non-identical sequence (1013–KIHLSL11018) of NPRA remained activated by GCAP2 and regulated by Ca\(^{2+}\) (Fig. 9), whereas the NPRA itself did not (Fig. 7). Even after the replacement, GCAP2 activated the hybrid cyclase with a high apparent affinity (Fig. 9). Moreover, we present clear evidence that the region of RetGC1 that imparts its ability to bind GCAP1 and GCAP2 (Figs. 6 and 8) in a mutually exclusive manner (Figs. 8 and 11, D and E) is the KHD/DD part of the molecule, not in the catalytic domain. Our results are also consistent with the early observations by Laura and Hurley (24) that the cyclase KHD rather than catalytic domain defines relative affinities of RetGC1 and RetGC2 isozymes for GCAP1 and GCAP2. A common or at least critically overlapping binding site(s) for GCAP1 and GCAP2 would also be more consistent with the structural similarity between the two GCAPs in both of which the cyclase binding interface includes closely homologous regions comprising EF-hands 1 and 2 (40, 61).

Mutations Causing a Blinding Disorder Destroy GCAP-RetGC1 Complex—Mutations in RetGC1 cause congenital LCA blindness through loss of photoreceptor function rather than photoreceptor degeneration (16). Considering that most of the cyclase activity in rods and nearly all of the activity in cones belongs to RetGC1 (11–13), blocking the cyclase activation by GCAPs could severely affect vision. The indication that binding sites for GCAP1 and GCAP2 are likely identical or overlapped also comes from the comparison of point mutations related to LCA in humans. Multiple mutations in GUCY2D gene found in LCA patients (15, 16) can affect RetGC1 activity and regulation by GCAPs in profoundly different ways (16), but the effect of the tested mutations in each case was virtually identical for both GCAP1- and GCAP2-dependent regulation (16). This would be consistent with the two GCAPs having common or overlapping rather than distantly separated binding sites formed by remotely separated portions of the cyclase primary structure. In the present study, we found that two previously uncharacterized LCA-linked point mutations in the KHD of RetGC1, W708R and I734T (15), completely abolish binding of GCAP1 and GCAP2 altogether (Fig. 10). These results are also surprising considering the hypothesis that the region 708–WTAPELL714 containing Trp\(^{708}\) would contribute to the regulation of the cyclase by GCAPs but not to their primary docking sites (41). Together with the data presented in Figs. 6–8, these results favor the possibility that GCAP1 and GCAP2 use a common structural interface(s) in RetGC1 formed by the KHD/DD por-
tion of the cyclase primary structure. It also needs to be noted that in contrast to the lack of the cyclase (12) the lack of GCAPs does not suppress the amplitude of rods and cones response to light in a mouse model but instead hampers their adaptation to light (10, 47, 53). Hence, just disrupting GCAP binding to RetGC1 may or may not be sufficient to cause LCA on its own. We cannot exclude that some other interactions of RetGC1 in photoreceptors such as for example those related to its trafficking to the outer segment could be affected by LCA mutations. Subsequent in vivo studies may help reveal other potential effects for RetGC1 interactions and stability in photoreceptors. Our data also indicate that to pinpoint the side chains defining the actual docking site(s) for GCAP1 and GCAP2 will require a much more detailed mapping of the cyclase KHD and DD than it was previously believed.

REFERENCES
1. Dizhoo, A. M., Lowe, D. G., Olshevskaya, E. V., Laura, R. P., and Hurley, J. B. (1994) The human photoreceptor membrane guanylyl cyclase, RetGC, is present in outer segments and is regulated by calcium and a soluble activator. *Neuron* 12, 1345–1352
2. Lowe, D. G., Dizhoo, A. M., Liu, K., Gu, Q., Spencer, M., Laura, R., Lu, L., and Hurley, J. B. (1993) Cloning and expression of a second photoreceptor-specific membrane retina guanylyl cyclase (RetGC), RetGC-2. *Proc. Natl. Acad. Sci. U.S.A.* 90, 5535–5539
3. Yang, R. B., Foster, D. C., Garbers, D. L., and Fülle, H. J. (1995) Two membrane forms of guanylyl cyclase found in the eye. *Proc. Natl. Acad. Sci. U.S.A.* 92, 602–606
4. Koch, K. W., and Stryer, L. (1988) Highly cooperative feedback control of retinal rod guanylate cyclase by calcium ions. *Nature* 334, 64 – 66
5. Palczewski, K., Subbaraya, I., Gorczyca, W. A., Helekar, B. S., Ruiz, C. C., Oguro, H., Huang, J., Zhao, X., Crabb, J. W., Johnson, R. S., Walsh, K. A., Gray-Keller, M. P., Detwiller, P. B., and Baehr, W. (1994) Molecular cloning and characterization of retinal photoreceptor guanylyl cyclase-catalyzing protein. *Neuron* 13, 395–404
6. Dizhoo, A. M., Olshevskaya, E. V., Henzel, W. J., Wong, S. C., Stults, J. T., Andkouindina, L. and Hurley, J. B. (1995) Cloning, sequencing, and expression of a 24-KDa Ca²⁺-binding protein activating photoreceptor guanylyl cyclase. *J. Biol. Chem.* 270, 25200–25206
7. Dizhoo, A. M., Olshevskaya, E. V., and Peshenko, I.V. (2000) Mg²⁺/Ca²⁺-curation binding cycle of guanylyl cyclase activating proteins (GCAPs): role in regulation of photoreceptor guanylyl cyclase. *Mol. Cell. Biochem.* 334, 117–124
8. Imanishi, Y., Yang, L., Sokal, I., Filipke, S., Palczewski, K., and Baehr, W. (2004) Diversity of guanylate cyclase-activating proteins (GCAPs) in teleost fish: characterization of three novel GCAPs (GCAP4, GCAP5, GCAP7) from zebrafish Genet. *Mol. Biol.* 30, E782–E796
9. Jiang, L., Zhang, H., Dizhoo, A. M., Boye, S. E., Hauswirth, W. W., Fredrick, J. M., and Baehr, W. (2011) Long-term RNA interference gene therapy in a dominant cone dystrophy pedigreed mapping to a new locus on chromosome 6p21.1. *Hum. Mol. Genet.* 7, 273–277
10. Wilkie, S. E., Li, Y., Deery, E. C., Newbold, R. J., Garibaldi, D., Bateman, J. B., Zhang, H., Lin, W., Zack, D. J., Bhattacharya, S. S., Warren, M. J., Hunt, D. M., and Zhang, K. (2001) Identification and functional consequences of a new mutation (E155G) in the gene for GCAP1 that causes autosomal dominant cone dystrophy. *Am. J. Hum. Genet.* 69, 471–480
11. Kita, A., Miyata, H., Behnen, P., Bell, K., Heckenlively, J. L., Zrenner, E., Jagle, H., Koll, S., Wissinger, B., and Koch, K. W. (2009) Mutations in the GCAP1 gene involved in hereditary cone dystrophies impair calcium-mediated regulation of guanylate cyclase. *Hum. Mutat.* 30, E782–E796
12. Laura, R. P., and Hurley, J. B. (1996) The membrane guanylyl cyclase, retinal guanylyl cyclase-1, is activated through its intracellular domain. *J. Biol. Chem.* 271, 11646–11651
13. Laura, R. P., and Hurley, J. B. (1998) The kinase homology domain of retinal guanylyl cyclases 1 and 2 specifies the affinity and cooperativity of interaction with guanylyl cyclase activating protein. *Biochemistry* 37, 11264–11271
14. Sokal I., Haeseleer, F., Arendt, A., Adman, E. T., Hargrave, P. A., and Palczewski, K. (1999) Identification of a guanylyl cyclase-activating protein-binding site within the catalytic domain of retinal guanylyl cyclase I. *Biochemistry* 38, 1387–1393
15. Duda, T., Fik-Rynkiewicz, E., Venkataraman, V., Krishnan, R., Koch, K. W., and Sharma, R. K. (2005) The calcium-sensor guanylate cyclase activating protein type 2 specific site in rod outer segment membrane guanylate cyclase type 1. *Biochemistry* 44, 7336–7345
16. Duda, T., Pertz, A., and Sharma, R. K. (2012) Differential Ca²⁺ sensor guanylate cyclase activating protein modes of photoreceptor rod outer segment membrane guanylyl cyclase signaling. *Biochemistry* 51, 4650–4657
17. Sharma, R. K., and Duda, T. (2014) Membrane guanylate cyclase, a multimodal transduction machine: history, present, and future directions. *Front. Mol. Neurosci.* 7, 56
18. Wen, X. H., Dizhoo, A. M., and Makino, C. L. (2014) Membrane guanylyl cyclase complexes shapes the photosponses of retinal rods and cones. *Front. Mol. Neurosci.* 7, 45
19. Makino, C. L., Wen, X. H., Olshevskaya, E. V., Peshenko, I. V., Savchenko,
Regulation of Retinal Guanylyl Cyclase

A. B., and Dizhoor, A. M. (2012) Enzymatic relay mechanism stimulates cyclic GMP synthesis in rod photoreceptor: biochemical and physiological study in guanylyl cyclase activating protein 1 knockout mice. PLoS One 7, e47637

31. Dizhoor, A. M., Boikov, S. G., and Olshevskaya, E. V. (1998) Constitutive activation of photoreceptor guanylate cyclase by Y99C mutation of GCAP-1. Possible role in causing human autosomal dominant cone degeneration. J. Biol. Chem. 273, 17311–17314

32. Sokal, I., Dupps, W. J., Grassi, M. A., Brown, J., Jr., Affatigato, L. M., Roy, M. A., Dizhoor, A. M., and Olshevskaya, E. V. (1998) Constitutive excitation by Gly90Asp rhodopsin rescues rods from degeneration in transgenic mice. J. Neurosci. 24, 6078–6085

33. Olshevskaya, E. V., Calvert, P. D., Woodruff, M. L., Peshenko, I. V., Savchenko, A. B., and Dizhoor, A. M. (2004) Factors that determine Ca\(^{2+}\) sensitivity of photoreceptor guanylyl cyclase. Kinetic analysis of the interaction between the Ca\(^{2+}\)-bound and the Ca\(^{2+}\)-free guanylyl cyclase activating proteins (GCAPs) and recombinant photoreceptor guanylyl cyclase 1 (RetGC-1). Biochemistry 43, 13796–13804

34. Remamurthy, V., Tucker, C., Wilkie, S. E., Daggett, V., Hunt, D. M., and Hurley, J. B. (2001) Interactions within the coiled-coil domain of RetGC-1 guanylyl cyclase are optimized for regulation rather than for high affinity. J. Biol. Chem. 276, 26218–26229

35. Hwang, J. Y., Lange, C., Helten, A., Höppner-Heitmann, D., Duda, T., Sharma, R. K., and Koch, K. W. (2003) Regulatory modes of rod outer segment membrane guanylyl cyclase differ in catalytic efficiency and Ca\(^{2+}\)-sensitivity. Eur. J. Biochem. 270, 3814–3821

36. Koch, K. W. (1991) Purification and identification of photoreceptor guanylyl cyclase. J. Biol. Chem. 266, 8634–8637

37. Peshenko, I. V., Olshevskaya, E. V., and Dizhoor, A. M. (2007) Binding of guanylyl cyclase activating protein 1 (GCAP1) to retinal guanylyl cyclase (RetGC1). The role of individual EF-hands. J. Biol. Chem. 283, 21747–21757

38. Duda, T., Pertzev, A., and Sharma, R. K. (2011) \(^{60}\)WTAPEL\(^{663}\) motif of the photoreceptor ROS-GC1: a general phototransduction switch. Biochem. Biophys. Res. Commun. 408, 236–241

39. Olshevskaya, E. V., Hughes, R. E., Hurley, J. B., and Dizhoor, A. M. (1997) Calcium binding, but not a calcium-mystatyl switch, controls the ability of guanylyl cyclase-activating protein GCAP-2 to regulate photoreceptor guanylyl cyclase. J. Biol. Chem. 272, 14327–14333

40. Peshenko, I. V., Olshevskaya, E. V., Lim, S., Ames, J. B., and Dizhoor, A. M. (2012) Calcium-mystatyl tug is a new mechanism for intramolecular tuning of calcium sensitivity and target enzyme interaction for guanylyl cyclase-activating protein 1: dynamic connection between N-fatty acyl group and EF-hand controls calcium sensitivity. J. Biol. Chem. 287, 13972–13984

41. Peshenko, I. V., Olshevskaya, E. V., and Dizhoor, A. M. (2012) Interaction of GCAP1 with retinal guanylyl cyclase and calcium: sensitivity to fatty acylation. Front. Mol. Neurosci. 5, 19

42. Peshenko, I. V., and Dizhoor, A. M. (2007) Activation and inhibition of photoreceptor guanylyl cyclase by guanylyl cyclase activating protein 1 (GCAP-1): the functional role of Mg\(^{2+}\)/Ca\(^{2+}\) exchange in EF-hand domains. J. Biol. Chem. 282, 21645–21652

43. Baehr, W., Karan, S., Maeda, T., Luo, D. G., Li, S., Bronson, J. D., Watt, C. B., Yau, K. W., Frederic, J. M., and Palczewski, K. (2007) The function of guanylyl cyclase 1 and guanylate cyclase 2 in rod and cone photoreceptors. J. Biol. Chem. 282, 8837–8847

44. Mendez, A., Burns, M. E., Sokal, I., Dizhoor, A. M., Baehr, W., Palczewski, K., Baylor, D. A., and Chen, J. (2001) Role of guanylyl cyclase-activating proteins (GCAPs) in setting the flash sensitivity of rod photoreceptors. Proc. Natl. Acad. Sci. U.S.A. 98, 9948–9953