Ketoacidosis as a primary manifestation of COVID-19
Kwasica ketonowa jako główny objaw COVID-19

Majid Reza Akbarizadeh, Mahin Naderifar, Parisa Ghanizadegan, Mahshid Akbarizadeh

1Department of Pediatrics, School of Medicine, Zabol University of Medical Sciences, Zabol, Iran
2Department of Pediatrics, School of Nursing and Midwifery, Zabol University of Medical Sciences, Zabol, Iran

Abstract
Introduction: Diabetic ketoacidosis is the most important metabolic emergency in children. Children mimic many syndromes with a combination of nonspecific symptoms during the COVID-19 pandemic. Many syndromes are triggered by changes in children's body conditions. Reporting specific cases can improve the diagnosis process. The present study reports an 18-month-old paediatric case of COVID-19 who presented ketoacidosis (DKA) symptoms.

Case presentation: The case is an 18-month-old child with fever and diarrhoea from 3 days before, who did not respond to outpatient treatment. On the day of the visit, he suffered from deep and abdominal breathing and decreased level of consciousness and sugar levels at admission of 420 mg/dl. He was then admitted with the initial diagnosis of DKA and had a positive PCR test result for COVID-19.

Conclusions: Considering the non-specific symptoms of COVID-19, general practitioners and paediatricians are recommended that special attention be paid to these symptoms, especially those that are similar to life-threatening syndromes. They also should not easily ignore these symptoms and follow up patients and their recovery status and, if patients do not recover, consider the risk of COVID-19 given the current COVID-19 pandemic.

Key words: COVID-19, ketoacidosis, type 1 diabetes, children.
Ketoacidosis as a primary manifestation of COVID-19
Kwasica ketonowa jako główny objaw COVID-19

Pediatr Endocrinol Diabetes Metab 2021

147

© Copyright by PTEiDD 2021

(PICU) in addition to insulin therapy and DKA treatment. Within 10 days of hospitalization, the patient recovered and was finally discharged in good general condition. COVID-19 seems to have caused such conditions in the patient and was the main cause of such conditions.

Conclusions

Both environmental and genetic factors are involved in the development of type 1 diabetes. Environmental factors such as viral infections can damage the pancreas and cause diabetes (10). Other environmental factors include vitamin D deficiency, prenatal factors, cow’s milk (in children under 2 years of age with a genetic predisposition), and viral infections such as cytomegalovirus (CMV), rubella, coxsackie B, and mumps (lymphocyte infiltration destroys beta cells). In fact, type 1 diabetes is a type of T cell-dependent disease. Genetic factors including DR4 and HLA-DR3 are found in 90% of diabetic children [3, 8].

Clinical symptoms of diabetes include polyuria, polydipsia, polyphagia, and weight loss. If ketoacidosis is present, other symptoms may be added. Other symptoms include lethargy and drowsiness (due to hyperosmolarity and decreased cerebral blood flow), tachypnoea and Kussmaul respiration (due to acidosis), fruity-smelling breath (due to acetone), abdominal pain, vomiting, and abdominal distention (due to dehydration, mesenteric ischaemia). On the other hand, serum TG rises due to insulin deficiency, and pancreatitis develops (hypokalaemia-related ileus also causes abdominal pain). Children with DKA have at least 10% dehydration. These children must have azotaemia and high serum BUN and Cr levels. On the other hand, the serum WBC is high (leukocytosis), and the serum sodium level is variable hyperlipidaemia can lead to false hyponatraemia. If a DKA child has a high fever, he/she may have an infection and should undergo antibiotics treatment. If DKA persist for 36 to 48 hours, there is either incorrect treatment or the patient suffers from sepsis and DKA at the same time [11]. With regard to the young boy and the sudden occurrence of such conditions presented in the present study, the patient’s condition and symptoms seem to be a new manifestation of COVID-19 disease. A case-report study showed that an 8-year-old boy with no previous history of the disease developed diarrhoea and abdominal pain and there was no response to treatment

Table I. Laboratory tests

Variables	Preliminary test	Discharge	Variables	Preliminary test	Discharge
FBS	420	105	BE	-30	0.4
WBC	31200	14800	HCO3	1.8	23
RBC	4.3	4.32	PO2	111	147
Hb	9.4	10.4	PCO2	10	33
Hct	31	32.2	K	17.3	3.5
MCV	72.1	75.5	Ph	6.90	7.45
MCH	21.9	22	Cr	0.7	0.4
MCHC	30.3	32.3	Bun	150	136
Pt	595000	540,000	K	4.9	4.4
P	3.4	3	Na	150	136
Mg	2	2.2	Urinary Analysis		
Ca	9.9	4.4	Ph	5	5
ESR	5	5	SG	1.030	1.015
CRP	3+	Neg	pr	neg	neg
BGRh	A+	Glucose	2+	neg	neg
COVID-19 IgM (EIA)	3.7 (positive > 1.1)	Keton	2+	neg	
COVID-19 IgG (EIA)	0.2 (negative < 0.9)	Blood	Neg	neg	
after 3 days of supportive treatment. On the fourth day, he developed respiratory symptoms [12] and was admitted to the emergency department with an initial diagnosis of DKA [12].

General practitioners and paediatricians are advised to pay special attention to the nonspecific symptoms of COVID-19, especially those that are similar to life-threatening syndromes. They also should not easily ignore these symptoms and should follow up patients and their recovery status and, if patients do not recover, consider the risk of COVID-19, given the current COVID-19 pandemic.

References

1. Akbarizadeh MR, Naderifar M, Goli H. Complications affecting newborns of diabetic mothers. J Diabetes Nurs 2019; 7: 887-899.
2. Vanelli M, Chiarelli F. Treatment of diabetic ketoacidosis in children and adolescents. Acta Biomed 2003; 74: 59-68.
3. Castellanos L, Tuffaha M, Koren D, Levitsky LL. Management of diabetic ketoacidosis in children and adolescents with type 1 diabetes mellitus. Pediatric Drugs 2020; 22: 357-367. doi: 10.1007/s40272-020-00397-0.
4. Hanas R, Lindgren F, Lindblad B. Diabetic ketoacidosis and cerebral oedema in Sweden—a 2-year paediatric population study. Diabet Med 2007; 24: 1080-1085. doi: 10.1111/j.1464-5491.2007.02200.x.
5. Neu A, Williasch A, Ehehalt S, et al. Ketoacidosis at onset of type 1 diabetes mellitus in children—frequency and clinical presentation. Pediatr Diabetes 2003; 4: 77-81. doi: 10.1034/j.1399-5448.2003.00007.x.
6. Habib HS. Frequency and clinical characteristics of ketoacidosis at onset of childhood type 1 diabetes mellitus in Northwest Saudi Arabia. Saudi Med J 2005; 26: 1936-1939.
7. Lo FS, Yang MH, Chang LY, et al. Clinical features of type 1 diabetic children at initial diagnosis. Acta Paediatr Taiwan 2004; 45: 218-223.
8. Zhang X, Liu Z, Xia L, et al. Clinical features of vitamin D deficiency in children: A retrospective analysis. J Steroid Biochem Mol Biol 2020; 196: 105491. doi: 10.1016/j.jsbmb.2019.105491.
9. Dong Y, Mo X, Hu Y, et al. Epidemiology of COVID-19 Among Children in China. Pediatrics 2020; 145: e20200702. doi: 10.1542/peds.2020-0702.
10. Akbarizadeh MR. Comparison of clinical, laboratory, and radiological characteristics of diabetic and non-diabetic children with pneumonia Admitted to Mofid Hospital of Tehran. J Diabetes Nurs 2018; 6: 365-373.
11. Williams V, Muralidharan J. Diabetic Ketoacidosis in Children. IAP Specialty Series on Pediatric Intensive Care 2019; 288.
12. Cherubini V, Gohil A, Addala A, et al. Unintended Consequences of Coronavirus Disease-2019: Remember General Pediatrics. J Pediatr 2020; 223: 197-198. doi: 10.1016/j.jpeds.2020.05.004.