Identification of a New Antifungal Oligoacetal Derivative Produced by Streptomyces toxytricini Against Candida albicans

Ahmed Z. Abdel Azeiz *, Donia K. Hanafi a and Sameh E. Hasanein b.

a* College of Biotechnology, Misr University for Science and Technology (MUST), Egypt.
b Bioinformatics Department, Agriculture Genetic Engineering Research Institute (AGERI), Agriculture Research Center (ARC), Giza, Egypt

Abstract
Thirty actinomycete isolates were isolated from soil and tested against Candida albicans in-vitro. The active isolate was identified by 16s-rRNA gene sequencing method as Streptomyces toxytricini. The antifungal compound was extracted with ethyl acetate followed by di-ethyl ether. Both HPLC and GC-MS analysis confirmed presence of one pure compound in the diethyl ether extract. The compound is a yellow liquid has a maximum absorbance at 240nm. in methanol. The chemical structure was elucidated by 1D and 2D-NMR and IR analysis. The elucidated molecular formula was C_{36}H_{54}O_{14}. The compound is a polyacetal tricyclononane derivative, composed of a tricyclononane ring attached from the carbon atom number four with an oligoacetal chain (six acetal groups in chain) and from the carbon atom number seven with a methoxy carbonyl benzene-1,3-dicarboxylic acid. The purposed name is: 4- { [tricycle(3.2.1.1^{13})non-8-yl] methoxy carbonyl benzene-1,3-dicarboxylic acid } (2,4,5,6,7, 8, 9 heptaoxa, 3-ethoxy, 5,6,7,9- tetramethyl unidecane).

Keywords: Antifungal, Streptomyces toxytricini, Candida albicans, tricyclononane.
Table S1. The chemical shift values for H1, C13, COSY and HMBC NMR data analysis:

C No.	σ C	σ H	Assignment	COSY	HMBC	σ H \rightarrow σ C
1	18.5	1.28 (t,7)	CH$_3$	3.59, 3.89	64.6	
2	64.6	3.59 (m) 3.89 (m)	CH$_2$	1.28	18.5, 105.05	
3	105.05	4.95 (q, 5.5)	CH	1.28	64.6	
4	105.05	5.07 (d)	CH	1.31	18.38, 105.05, 105.18	
5	105.18	5.38 (q, 5.4)	CH	1.33	105.05	
6	103	5.23(q, 5.4)	CH	1.33	--	
7	105.05	5.14 (q, 5.5)	CH	1.28	--	
8	30	1.24 (m)	CH$_2$	5.33	104.4, 105.05	
9	104.4	5.33	CH	1.24	--	
10	64.6	3.59 (m) 3.89 (m)	CH$_2$	1.18	15.57, 104.4	
11, 13	15.57	1.18 (t, 7)	CH$_3$	3.59, 3.89, 3.48	64.6, 66.8	
12	66.8	3.48 (q,7)	CH$_2$	1.15	15.4, 104.4	
14, 17	18.5	1.28 (d, 5.9)	CH$_3$	4.95, 5.14	105.05, 15.4	
15, 16	18.5	1.33 (d, 5.7)	CH$_3$	5.23, 5.38	103, 105.18	
1'	30.6	-	C quaternary	-	-	
2'	30	1.33	CH$_2$	0.83	23.9	
3'	14.38	0.83(m)	CH	1.31, 1.33	23.9, 30	
4'	18.38	1.31 (m)	CH	0.83, 0.91, 5.07	14.38, 23.9, 30, 31.5, 105.05	
5'	11.38	0.91 (m)	CH	1.37, 1.42	24.8, 40	
6'	24.8	1.42 (m)	CH$_2$	0.91	11.38, 18.38, 31.5, 40, 169	
7'	31.5	1.37 (m)	CH$_2$	0.91, 1.68	18.38	
8'	40	1.68 (p, 6.1)	CH	1.37, 4.21	11.38, 24.8, 30.6, 31.5	
9'	23.9	1.33(d, 5.7)	CH$_2$	0.83	14.38, 30	
10'	69	4.21(m)	CH$_2$	1.68	30.6, 31.5, 40, 169	
1'', 2'', 6''	133.4	-	C quaternary	-	-	
3'', 5''	132.3	7.6 (m)	=CH (aromatic)	129.7	129.7, 169	
4''	129.7	7.7 (m)	=CH (aromatic)	132.3	132.3, 133.4	
7'', 8'', 9''	169.1	-	C=O	-	-	
OH			OH	11.5		
OH				11.44		
Fig. S1. The HPLC chromatograms of the diethyl ether extract. The analysis was performed on ODS column with methanol as a mobile phase and detection at 240nm.

Fig. S2: The GC/MS chromatogram for the pure antifungal compound produced by *S. toxytrici*.

Fig.S3: The mass spectrum of the antifungal compound produced by *S. toxytrici*.
Fig. S4: H1-NMR spectrum of the antifungal compound produced by *S. toxycruci*
Fig. S5: 13C spectrum of the antifungal compound produced by *S. toxycrici*
Fig. S6: APT spectrum of the antifungal compound produced by *S. toxytrici*
Fig. S7: HSQC spectrum of the antifungal compound produced by *S. toxytrici*
Fig. S8: COSY spectrum of the antifungal compound produced by *S. toxycruci*
Fig. S9: HMBC spectrum of the antifungal compound produced by *S. toxytrici*
Fig. S10. The HMBC data interpretation of the antifungal compound produced by *S. toxytricini*.