Research article

Origins of a cyanobacterial 6-phosphogluconate dehydrogenase in plastid-lacking eukaryotes

Shinichiro Maruyama*1, Kazuharu Misawa1,4, Mineo Iseki2, Masakatsu Watanabe3 and Hisayoshi Nozaki1

Address: 1Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan, 2Hayama Center for Advanced Studies, Graduate University for Advanced Studies (SOKENDAI), Hayama, Kanagawa 240-0193, Japan, 3School of Advanced Sciences, Graduate University for Advanced Studies (SOKENDAI), Hayama, Kanagawa 240-0193, Japan and 4Research Program for Computational Science, Riken, 4-6-1 Shirokane-dai, Minato-ku, Tokyo 108-8639, Japan

Email: Shinichiro Maruyama* - maruyama@biol.s.u-tokyo.ac.jp; Kazuharu Misawa - kazumisawa@riken.jp; Mineo Iseki - iseki_mineo@soken.ac.jp; Masakatsu Watanabe - watanabe_masakatsu@soken.ac.jp; Hisayoshi Nozaki - nozaki@biol.s.u-tokyo.ac.jp

* Corresponding author

Abstract

Background: Plastids have inherited their own genomes from a single cyanobacterial ancestor, but the majority of cyanobacterial genes, once retained in the ancestral plastid genome, have been lost or transferred into the eukaryotic host nuclear genome via endosymbiotic gene transfer. Although previous studies showed that cyanobacterial gnd genes, which encode 6-phosphogluconate dehydrogenase, are present in several plastid-lacking protists as well as primary and secondary plastid-containing phototrophic eukaryotes, the evolutionary paths of these genes remain elusive.

Results: Here we show an extended phylogenetic analysis including novel gnd gene sequences from Excavata and Glaucophyta. Our analysis demonstrated the patchy distribution of the excavate genes in the gnd gene phylogeny. The Diplonema gene was related to cytosol-type genes in red algae and Opisthokonta, while heterolobosean genes occupied basal phylogenetic positions with plastid-type red algal genes within the monophyletic eukaryotic group that is sister to cyanobacterial genes. Statistical tests based on exhaustive maximum likelihood analyses strongly rejected that heterolobosean gnd genes were derived from a secondary plastid of green lineage. In addition, the cyanobacterial gnd genes from phototrophic and phagotrophic species in Euglenida were robustly monophyletic with Stramenopiles, and this monophyletic clade was moderately separated from those of red algae. These data suggest that these secondary phototrophic groups might have acquired the cyanobacterial genes independently of secondary endosymbioses.

Conclusion: We propose an evolutionary scenario in which plastid-lacking Excavata acquired cyanobacterial gnd genes via eukaryote-to-eukaryote lateral gene transfer or primary endosymbiotic gene transfer early in eukaryotic evolution, and then lost either their pre-existing or cyanobacterial gene.
Background

A cyanobacterium-like ancestor gave rise via primary endosymbiosis to a distinctive endosymbiotic organelle, the plastid (primary plastid), in eukaryotic cells [1,2]. Some eukaryotic lineages retained the plastid through successive generations, and its photosynthetic ability enabled them to grow autotrophically. Some may have lost the plastid, and returned to their previous heterotrophic state, whereas others may have never experienced such an endosymbiotic event.

Green plants (green algae and land plants), Glaucoiphyta and red algae are primary plastid-containing photosynthetic eukaryotes. They are classified into a single supergroup, Stramenopila, among the six ‘super-groups’ proposed by Adl et al. [3]. It is generally believed that the majority of the cyanobacterial genes (genes sharing their origins with cyanobacterial homologues) found in the nuclear genomes of extant Archaeplastida were recruited from cyanobacterium-like endosymbionts via endosymbiotic gene transfer (EGT) [4-6].

Other algae in several independent lineages are thought to have secondarily acquired plastids by engulfing primary photosynthetic eukaryotes. These have evolved into secondary plastid-containing photosynthetic eukaryotes (secondary phototrophs) [1,2]. Most secondary plastids in the supergroup Chromalveolata, which consists of Stramenopiles, Alveolata, Haptophyta and Cryptophyta, are derived from red algae. Chlororachiophyta in the Rhizaria group and Euglenida in the Excavata group possess secondary plastids derived from green algal ancestors [7-9]. A large number of plastid-related cyanobacterial genes were further introduced into nuclear genomes of secondary phototrophs via secondary EGT [10-12].

Although several studies have reported cyanobacterial genes in plastid-lacking eukaryotes [13,14], gnd genes are remarkable in their broad distribution among primary and secondary plastid-containing photosynthetic eukaryotes as well as among plastid-lacking protists [15,16]. The gnd gene encodes an oxidative pentose phosphate pathway enzyme, 6-phosphogluconate dehydrogenase, which is important in regulating sugar metabolism and intracellular redox state. Previous studies reported that the gnd gene is widely conserved among eukaryotes and eubacteria [17], and showed that there are two types of gnd genes; one is phylogenetically close to cyanobacterial gnd genes (termed ‘cyanobacterial gnd’), and the other resembles cytosol-localized gnd genes in Opisthokonta (termed ‘eukaryotic ancestral gnd’). Cyanobacterial gnd genes are present not only in primary and secondary phototrophs, but also in plastid-lacking protists. These include the plant pathogen Phytophthora that is classified into the supergroup Chromalveolata, and the heterolobosean amoeboid flagellates that are classified into the super-group Excavata [15,16]. These pioneering studies suggested a possible scenario that cyanobacterial gnd genes were introduced via primary or secondary endosymbiosis [15-17]. Nevertheless, the origin and evolutionary relationships of these genes in photosynthetic and plastid-lacking eukaryotes remains inconclusive.

We present here an extended analysis of the phylogeny of gnd genes with emphasis on the plastid-lacking excavate protists. We also discuss the origin and evolutionary history of the cyanobacterial genes in plastid-lacking protists, within the scope of previously proposed hypotheses on ancient lateral gene transfer (LGT) and EGT events.

Methods

Culture material

Diplonema papillatum (ATCC No. 50162) was axenically cultured at 25°C in artificial seawater supplemented with 1% horse serum (Invitrogen, Carlsbad, CA, USA), 1 × Daigo IMK medium (Nippon Pharmaceutical, Tokyo, Japan) and 0.1% tryptone. Peranema trichophorum cells, co-cultured with Chlorella sp., were provided by Dr. Toshinobu Suzuki (Kobe University). Euglena gracilis Z (NIES-48) was cultured as described previously [18].

cDNA Library construction and PCR-based gene isolation

D. papillatum genomic DNA was extracted using the DNeasy plant mini kit (Qiagen, Hilden, Germany). P. trichophorum full-length cDNA sequences were synthesized using the SV total RNA isolation system (Promega, Madison, WI, USA) and the CapFishing full-length cDNA kit (Seegene, Seoul, Korea). Glaucoiphyte cDNAs (Cyanophora paradoxa NIES-547, Gloeochaete wittrockiana SAG 46.84 and Cyanopheche gloeocystis SAG 34.90) were prepared as described in the previous study [19], and used as templates for gene isolation. Fragments of gnd genes were amplified using nested-degenerated primers based on the conserved amino acid motif GLAVMGQN for forward primers (GGYTGCGTATGGGICCA or YTGCGTATGGGICCARAA) and QAQRDFG for reverse primers (CCRAAAARTCICKYTGIGC or AARAARTCICKYTGICYTG). PCR products and cDNA clones were sequenced directly or after TA-cloning, using an ABI PRISM 3100 genetic analyzer (Applied Biosystems, Foster City, CA, USA) with a BigDye Terminator Cycle Sequencing Ready Reaction kit v. 3.1 (Applied Biosystems). Expressed sequence tags (ESTs) of Euglena gracilis (3,934 sequenced clones, average length 532 bp) were generated by sequencing cDNA clones selected at random from a cDNA library (average insert size, >1 kbp) constructed using a cDNA synthesis kit (Stratagene, Cedar Creek, TX, USA). The EST sequencing was performed at the Dragon Genomics Center, Takara Bio Inc. (Yokkaichi, Japan).
clone harboring the full-length gnd gene sequence was identified by BLAST search.

Phylogenetic analysis
The data matrix of gnd genes was based on the amino acid alignment in Andersson and Roger [15]. We excluded amitochondrial and/or parasitic eukaryotes, which might cause long branch attraction due to unusual nucleotide substitutions [15,20,21]. We included the novel sequences determined in this study (Table 1), and sequences identified by the BLAST program from the Galdseria sulphuraria genome database [22], the Joint Genome Institute [23] and the Acanthamoeba castellani EST database in TBESTDB [24]. The sequences were aligned using CLUSTAL X [25] and manually refined using SeaView [26]. The data matrix was made with 63 taxa and 437 amino acid sites (available upon request to SM). Data matrices excluding Heterolobosea (61 taxa, 437 sites) and including amitochondrial and/or parasitic eukaryotes (72 taxa, 437 sites) were also prepared to construct additional trees (Additional files 1 and 2, respectively).

Bayesian inference was performed with the program MrBayes version 3.1.2 [27] using the WAG matrix of amino acid replacements assuming a proportion of invariant positions and four gamma-distributed rates (WAG+I+Γ4 model). For the MrBayes consensus trees, 1,000,000 generations were collected with trees collected every 100 generations. One thousand replicates of bootstrap analyses by maximum likelihood (ML) method were performed using PhyML version 2.4.4 [28] with the WAG+I+Γ4 model on two SunFire 15K machines, each of which has 96 CPUs. Bootstrap values (1,000 replicates) based on maximum parsimony (MP) analysis were calculated with PAUP 4.0 b10 with TBR heuristic search [29]. For exhaustive ML analysis, topology-dependent sitewise likelihood values were calculated using TREE-PUZZLE version 5.2 under a WAG+F+Γ8 model [30]. Alternative tree topologies were analyzed with the approximately unbiased (AU) [31] and Kishino-Hasegawa (KH) [32] tests, and the resampling estimated log-likelihood (RELL) bootstrap support values [33], using the CONSEL package [31].

Results and Discussion

Phylogenetic and statistical analysis of gnd genes

Fig. 1 shows a Bayesian consensus tree from a matrix with 63 taxa, with Bayesian posterior probabilities (Bayes) of 70% or more, and ML and MP bootstrap support values of 50% or more. As reported previously [15,16], all the red algae examined have both cyanobacterial and eukaryotic ancestral gnd genes. Although several excavate gnd genes (Heterolobosea and Euglenida) were cyanobacterial in agreement with the previous studies [15,16], the gnd gene from another excavate species, *D. papillatum*, was found to group with Opisthokonta and red algal eukaryotic ancestral genes (Bayes|ML|MP = 79|--|--). Several proteobacterial species (Vibrio, Neisseria and Haemophilus) showed a weak affinity to eukaryotic genes (Bayes|ML|MP = 100|73|--), and Amoeboboa was located outermost in the eukaryotic ancestral clade (Bayes|ML|MP = 100|99|94). Notably, red algae and excavate genes shared basal positions within each of the cyanobacterial and eukaryotic ancestral clades. As shown in *Trypanosoma, Giardia* and *Trichomonas* [15], the EW sequence signature, which is unique to the cyanobacterial gnd genes, was absent in the *D. papillatum* gnd gene (Table 1, Additional file 3), confirming its non-cyanobacterial origin. However, the parasitic excavates were positioned outside of the eukaryotic ancestral clade with weak support values in the tree of 72 taxa (Additional file 2), possibly due to long branch attraction. Whether the genes from parasitic Excavata truly shared the same origin as known free-living Excavata genes, or were independently acquired via prokaryote-to-eukaryote LGT is open to further investigation of evolutionary signals and functional characterization. Our results and currently available genome information suggest that, while each red algal species possesses both cyanobacterial and eukaryotic ancestral genes and supposedly use them in different cellular compartments, free-living Excavata examined to date have just one or the other.

Cyanobacterial genes from bikonts [34] (namely Archaeplastida, Stramenopiles and Excavata in this study) were robustly monophyletic (Bayes|ML|MP = 100|100|98) and showed a strong affiliation with the genes from cyanobacteria (Bayes|ML|MP = 100|91|76) (Fig. 1). In the cyanobacterial genes from bikonts [34] (namely Archaeplastida, Stramenopiles and Excavata in this study) were robustly monophyletic (Bayes|ML|MP = 100|100|98) and showed a strong affiliation with the genes from cyanobacteria (Bayes|ML|MP = 100|91|76) (Fig. 1). In the cyanobacterial gnd genes, the EW sequence signature, which is unique to the cyanobacterial gnd genes, was absent in the *D. papillatum* gnd gene (Table 1, Additional file 3), confirming its non-cyanobacterial origin. However, the parasitic excavates were positioned outside of the eukaryotic ancestral clade with weak support values in the tree of 72 taxa (Additional file 2), possibly due to long branch attraction. Whether the genes from parasitic Excavata truly shared the same origin as known free-living Excavata genes, or were independently acquired via prokaryote-to-eukaryote LGT is open to further investigation of evolutionary signals and functional characterization. Our results and currently available genome information suggest that, while each red algal species possesses both cyanobacterial and eukaryotic ancestral genes and supposedly use them in different cellular compartments, free-living Excavata examined to date have just one or the other.

Species name	Taxonomy	EW signature	Accession number
Cyanophora paradoxa	Glaucophyta	IDGGNEWYENTE	AB425331
Gloeochaete wittrockiana	Glaucophyta	IDGGNEWYKNTNTE	AB425332
Cyanoptische gloeoeytsis	Glaucophyta	IDGGNEWYLNTNE	AB425333
Euglena gracilis	Euglenida	VDGNEWFPNSQ	AB425328
Peranema trichophorum	Euglenida	IDGGNEWFPNTL	AB425329
Diplonema papillatum	Diplonemea	IDGGNSHPDSI	AB425330

EW signature residues conserved among cyanobacterial gnd genes [15] are indicated in bold.
Figure 1

MrBayes consensus tree of gnd genes, constructed with 437 amino acid sites from 63 taxa. Bayesian posterior probabilities (Bayes) (70% or more) and maximum likelihood (ML) and maximum parsimony (MP) bootstrap support values (50% or more) are shown. The thick branches are represented as described in the figure.
bacterial gene clade, each of the three divisions of Archaeoplastida (green plants, Glaucophyta and red algae) was monophyletic but separately located (Fig. 1). Glauco-
phyte gnd genes formed a monophyletic group with green plants, Euglenida, and Stramenopiles with moderate support values (Bayes|ML|MP = 100|64|59). Secondary phototrophs and the plastid-lacking heterotrophic relatives from Euglenida and Stramenopiles were robustly mono-
phyletic (Bayes|ML|MP = 100|100|100). Plastid-lacking heterolobosean protists and red algae were located at the basal position in the cyanobacterial clade, weakly forming a monophyletic group (Bayes|ML|MP = 74|74|74).

To test the possibility that the plastid-lacking excavate protists acquired gnd genes via secondary endosymbiosis of a green alga [15], we carried out an exhaustive ML analysis for calculating the likelihood values of alternative tree topologies. First, based on the topology in Fig. 1, we defined six groups in which monophyly was confirmed by all three methods (Bayes = 100, ML > 50, MP > 50): green plants (Green), Glaucophyta (Glauc), Stramenopiles + Euglenida (EuSt), Heterolobosea (Htrl), red algae (Red) and others (Outgroup). Then, we constructed all possible 105 trees, fixing the intra-group topologies of the six monophyletic groups as in Fig. 1, and calculated probabilities of each tree for AU and KH tests (Table 2).

Although our tree topology in Fig. 1 suggests that cyanobacterial genes from bikonts were originally acquired via a single gene transfer event from cyanobacteria, there are two possible explanations of their origin as discussed in the previous study [15]; early primary EGT from the ancestral plastid genome, or prokaryote-to-eukaryote LGT from a close relative of extant cyanobacteria independently of EGT. We favor the former scenario for the following reasons: 1) the gnd gene product is functionally plastid-related, and is enzymatically localized to the plastid in green plants [17]; and 2) the overall tree topology in Fig. 1 is consistent with a recent multigene phylogeny of eukaryotes based on slowly evolving nuclear genes [19].

Table 2: Comparison of alternative tree topologies by exhaustive maximum likelihood (ML) analysis

Tree	Topology	ΔlnL	S.E.	pAU	pKH	RELL
1	(Out, (Red, Htrl), (EuSt, (Glauc, Green)));	<27143.41>	-	0.867	0.758	0.283
36	(Out, Red, ((Htrl, Green), (EuSt, Glauco)));	30.2	14.4	0.038	0.020	5.00E-06
49	(Out, (Red, (Htrl, Green)), EuSt); Glauco);	54.7	17.8	0.013	0.003	2.00E-04
54	(Out, (Red, (Htrl, Green)), Glauco); EuSt);	40.1	19.3	0.011	0.024	3.00E-04
56	(Out, Red, ((Htrl, Green), Glauco), EuSt);	27.8	15.8	0.009	0.038	4.00E-04
58	(Out, (Red, Glauco), (Htrl, Green)); EuSt);	41.6	19.4	0.009	0.021	3.00E-06
70	(Out, (Red, EuSt), (Htrl, Green)); Glauco);	52.8	18.2	0.004	0.005	3.00E-07
71	(Out, (Red, ((Htrl, EuSt, Green)), Glauco);	48.9	15.5	0.004	0.002	1.00E-05
82	(Out, (Red, (Htrl, Green)), EuSt); Glauco);	57.1	17.8	0.001	0.002	3.00E-06
85	(Out, (Red, EuSt); Glauco), (Htrl, Green));	44.1	15.0	0.001	0.004	2.00E-05
86	(Out, (Red, (Htrl, Green), Glauco)); EuSt);	39.2	19.1	5.00E-04	0.025	6.00E-06
87	(Out, (Red, ((Htrl, EuSt, Green)), Glauco);	29.5	14.8	4.00E-04	0.025	1.00E-06
89	(Out, (Red, EuSt); Glauco), (Htrl, Green));	51.3	18.0	2.00E-04	0.005	3.00E-06
91	(Out, (Red, ((Htrl, EuSt, Green)), Glauco);	27.9	14.5	1.00E-04	0.028	1.00E-05
93	* (Out, (Red, Glauco), (Htrl, Green)); EuSt);	50.0	16.3	1.00E-04	0.003	3.00E-06
94	* (Out, (Red, (Htrl, EuSt), Green)); Glauco);	54.0	18.5	1.00E-04	0.004	1.00E-06
96	(Out, (Red, EuSt), (Htrl, Green)); Glauco);	44.8	18.3	6.00E-05	0.012	2.00E-06
98	* (Out, (Red, Glauco), (Htrl, EuSt), Green));	41.4	15.0	3.00E-05	0.005	5.00E-07
101	(Out, (Red, Glauco), EuSt), (Htrl, Green));	52.5	18.7	2.00E-06	0.006	7.00E-07
108	* (Out, (Red, Glauco), (Htrl, (Green, EuSt)));	57.0	18.2	2.00E-03	0.003	1.00E-17
104	* (Out, (Red, (Htrl, Green), EuSt)); Glauco);	32.8	15.0	3.00E-06	0.016	8.00E-19

*Best tree (tree 1) and trees supporting the monophyly of green plants + Heterolobosea among all the possible 105 trees retaining six monophyletic groups in Fig. 1.

Green, green plants; Htrl, Heterolobosea; Glauc, Glaucophyta; EuSt, Euglenida and Stramenopiles; Red, red algae; Out, eukaryotic ancestral clade and cyanobacteria. Intra-group topologies of six groups are fixed as shown in Fig. 1.

Difference in the log-likelihood value of alternative tree versus the ‘best’ tree.

Probability values of the approximately unbiased (AU) and Kishino-Hasegawa (KH) tests.

Bootstrap support value of resampling estimated log-likelihood with 10,000 replicates. Asterisks indicate the topologies supporting the monophyly of Green + Htrl + EuSt.
Origins of plastid-lacking excavate gnd genes

Heterolobosean gnd genes occupied the basal positions in the cyanobacterial clade and weakly formed a monophyletic group with red algae. Although our tree topology suggests that euglenid and heterolobosean gnd genes are distantly related, previous studies have not clearly excluded the single secondary-plastid origin of these genes [15,16]. To test whether the heterolobosean gnd genes could originate with secondary EGT as suggested by the 'plastids-early' hypothesis for secondary plastids in Euglenida [8], we verified the possibility that the cyanobacterial gnd genes in plastid-lacking heterolobosean protists and green plants could be potentially monophyletic, using confidence tests based on exhaustive ML analyses (Table 2). According to the plastids-early hypothesis for secondary plastids in Euglenida [8], the secondary endosymbiosis of green alga occurred in the common ancestor of Euglenida and Heterolobosea, and extant plastid-lacking protists within these taxa have secondarily lost their plastids and photosynthesis-related genes. Although this hypothesis is contentious [1,8], it is worth verifying because this is the leading explanation for the acquisition of cyanobacterial genes through secondary endosymbionts in Heterolobosea. Considering that the orientation of LGT between the ancestors of Stramenopiles and Euglenida is unknown, we examined two possibilities on the origin of the euglenid and heterolobosean gnd genes. First, we examined the possibility that ancient euglenid gnd was transferred into the common ancestor of Stramenopiles, Euglenida, Heterolobosea and green plants. Then we examined the second possibility that an ancient stramenopile gnd was acquired by the euglenid ancestor, which assumes that Heterolobosea and green plants are exclusively monophyletic. All the trees supporting first or second possibilities were rejected by AU and KH tests at the 5% confidence level (Table 2). These results suggested that heterolobosean gnd genes were not secondary green plastid-derived, and that the gnd gene phylogeny did not support the plastids-early hypothesis [8,35]. Taken together, our data disallowed the plastids-early hypothesis, and showed that a secondary endosymbiotic origin of the gnd genes from green alga into plastid-lacking excavate protists is unlikely.

It is striking that Euglenida is monophyletic with Stramenopiles in the cyanobacterial clade (Fig. 1). Recent phylogenetic analyses of the plastid-encoded and nuclear-encoded plastid-targeted genes suggest that the ancestor of euglenid secondary plastids branches within green algae, inconsistent with our gnd tree topology [9,36]. The monophyly of cyanobacterial gnd genes from E. gracilis and plastid-lacking P. trichophorum further suggests that euglenid gnd genes have not been recruited via secondary EGT of a green alga, because the 'plastids-recent' hypothesis argues that eukaryovorous euglenid species such as P. trichophorum diverged before the secondary endosymbiotic event in the Euglenida lineage [8]. Meanwhile, the presence of the cyanobacterial genes in Stramenopiles, including photosynthetic algae and the plastid-lacking oomycete Phytophthora, is apparently consistent with the 'Chromalveolate hypothesis' [1,13], which suggests that secondary plastids of Chromalveolata have been acquired through a single secondary endosymbiotic event. The most likely explanation is that the ancestor of the euglenida host cells acquired a gnd gene via ancient LGT from the stramenopile lineage before their divergence. This also explains well why Euglenida and Heterolobosea are robustly separated in the gnd phylogeny (Fig. 1) despite the close relatedness of these two lineages based on SSU rRNA gene phylogeny [35] and multiple nuclear-encoded protein phylogenies [36,37].

Evolutionary history of gnd genes and plastid-lacking excavate genomes

Although our gnd tree topology appears unexpected compared with the prevailing view of plastid evolution [38], several gene phylogenies that suggested imprints of gene transfer between Euglenida and Stramenopiles have been reported. In the plastid-targeted phosphoribulokinase (PRK) gene phylogeny [39], red algal genes were basal in the eukaryotic clade and were separated from chromalveolate and green plant genes. Furthermore, euglenid and chromalveolate PRK genes were monophyletic and sister to green plants, and the authors reasoned that these secondary phototrophs might acquire PRK genes via independent LGT events. As discussed above, it is likely that Euglenida has acquired a cyanobacterial gnd gene from the ancestor of Stramenopiles via LGT. Although PRK genes are found only in photosynthetic organisms (cyanobacteria, algae and land plants) and the origin of euglenid PRK genes was phylogenetically unresolved, one can argue that PRK and cyanobacterial gnd genes might have gone through similar evolutionary histories. A phylogenetic analysis of plastid-targeted fructose-1,6-bisphosphatase (FBP) genes illustrated another case of LGT between Euglenida and Chromalveolata [40]. Thus these genes might have been transferred from the stramenopile lineage to the euglenid lineage via multiple LGT events, perhaps phagocytosis of secondary phototrophs by a phagotrophic ancestor as suggested in the chlorarachniophyte Bigelowiella natans [41].

In the cyanobacterial gnd gene subtree, the red algal clade was at the basal position and was moderately separated from green plants and Glaucophyta. An additional phylogenetic analysis excluding Heterolobosea recovered the basal position of red algae in this subtree, suggesting that long branch attraction or artificial misplacement of red algae by heterolobosean sequences was unlikely (addi-
Additionally, provided that the cyanobacterial genes from bikonts were robustly monophyletic (Fig. 1), in contrast to well-characterized examples of prokaryote-to-eukaryote LGTs [42-44], it is unlikely that the cyanobacterial *gnd* genes from bikonts had been acquired via multiple LGTs from cyanobacteria to eukaryotes. Recently, two competing hypotheses on Archaeplastida phylogeny were proposed (monophyly vs. non-monophyly) [19,45]. The phylogenetic position of red algae in Fig. 1 is inconsistent with the monophyletic hypothesis of the Archaeplastida [45] unless multiple eukaryote-to-eukaryote LGTs are hypothesized (Fig. 2A). Although red algal and glaucophyte ancestries of the heterolobosean genes were not significantly dismissed, AU tests rejected the possible secondary EGT from green alga to Heterolobosea (Table 2). Hence, the eukaryote-to-eukaryote LGTs shown in Fig. 2A are likely sources of *gnd* genes in plastid-lacking protists, in terms of the monophyletic hypothesis of the Archaeplastida [45-47]. However, monophyly of red algae plus Stramenopiles (plus Euglenida) was not rejected in our statistical tests (Additional file 4), suggesting that the stramenopile genes might be attributed to secondary EGT of red alga. On the other hand, an increasing number of multigene phylogenies showed that monophyly of Archaeplastida had limited or no support [19,47-49]. Therefore it is advisable to discuss the evolutionary history of *gnd* genes, taking a different point of view on the plastid evolution into consideration (Fig. 2B). In terms of the non-monophyly hypothesis of the Archaeplastida, it is reasonable to suggest that the *gnd* gene phylogeny may reflect the host cell phylogeny as recently resolved by a multiple slowly evolving nuclear gene phylogeny [19], which demonstrated the non-monophyly of Archaeplastida and the most basal positioning of red algae plus Excavata within the bikonts (Fig. 2B).

Possible evolutionary scenarios of plastid and host nuclear genomes

We propose evolutionary scenarios in which the common ancestor of eukaryotes possessed a eubacteria-derived eukaryotic ancestral *gnd* gene, and the bikonts lineage additionally acquired the cyanobacterial *gnd* gene via a single primary endosymbiosis [50-52] (but see [53,54] for alternative views), and then diversified into Archaeplastida, Chromalveolata, Excavata (and Rhizaria) (Fig. 2). Given that recent large-scale molecular phylogenies demonstrated the monophyly of bikonts [19,45-47] based on the rooting of eukaryotes [34], and no data providing evidence on primary and secondary plastids in the unikonts has been shown, we illustrated two likely scenarios in Fig. 2. In scenario A, we assumed monophyly of Archaeplastida [e.g. 45], and accordingly, at least two gains of cyanobacterial *gnd* genes via LGT and multiple losses of eukaryotic ancestral genes in separate lineages of bikonts. In scenario B, we presumed that all the bikonts including

Figure 2

Evolutionary scenarios on the cyanobacterial and eukaryotic ancestral *gnd* gene distribution in bikonts.

A. Traditional view of host cell phylogeny of bikonts [e.g. 45], assuming the multiple loss events of eukaryotic ancestral genes and at least two lateral gene transfer events (LGT) of cyanobacterial genes (broken lines plus white arrows). B. Alternative phylogeny [e.g. 19], assuming a single loss and a single lateral gene transfer event. Although only either the cyanobacterial or eukaryotic ancestral gene was found in Excavata in this study, only one is illustrated for clarity. Rhizaria is not shown since no *gnd* genes have been found in this lineage. 2nd EGT, secondary endosymbiotic gene transfer.
secondary phototrophs and plastid-lacking bikonts had at one time acquired the primary plastid [19]. Green plants, Glaucophyta and Chromalveolata then lost the eukaryotic ancestral gnd gene, red algae retained both, and Excavata lost either one. In the ancestors of Excavata, loss of primary photosynthetic plastids might have triggered concurrent gene loss of either cyanobacterial or eukaryotic ancestral gnd. Only a single LGT event from Stramenopiles into Euglenida is considered in scenario B. Although both scenarios are compatible with our phylogenetic analysis and statistical tests, we reason that scenario B is parsimonious and more likely to explain the evolutionary history of the gnd genes in that less LGT events need to be presupposed. Broader sampling from various eukaryotic groups (especially in Chromalveolata and Rhizaria) will be critical to devise a more reliable evolutionary history of eukaryotic gnd genes, and host lineages [49]. It is also important to note that concatenated nuclear gene phylogeny of eukaryotic (host cell) lineages and data mining for cyanobacterial genes in plastid-lacking protists are supposed to be independent approaches for exploring the origin of plants. Future research will be focused on how deeply primary endosymbiosis is rooted within the bikonts, and which lineage could experience primary endosymbiosis early in the evolution of bikonts.

Conclusion
Our present study demonstrates that (1) free-living Excavata possess either cyanobacterial or eukaryotic ancestral gnd genes, (2) it is statistically unlikely that heterolobosean gnd genes were acquired via secondary EGT of green alga, and (3) Euglenida and Stramenopiles are robustly monophyletic. Although the sister relationship of this monophyletic group to any Archaeplastida lineage is not rejected by the statistical tests (Additional file 4), it is moderately separated from red algae (Fig. 1), suggesting that the gnd genes in Stramenopiles are not of secondary endosymbiotic origin. One explanation is that a unique primary EGT of cyanobacterial gnd genes into Archaeplastida was followed by independent eukaryote-to-eukaryote LGTs into Stramenopiles and Heterolobosea, and then by an additional LGT from Stramenopiles into Euglenida (Fig. 2A). Alternatively, our results favor an evolutionary scenario that the gnd gene phylogeny reflects host cell phylogeny, and that the common ancestor of bikonts has acquired cyanobacterial gnd genes via primary endosymbiotic gene transfer early in eukaryotic evolution (Fig. 2B).

Authors’ contributions
SM participated in the design of the study and coordination, carried out the molecular phylogenetic and statistical studies, and drafted the manuscript. KM participated in the phylogenetic and statistical studies. MI and MW participated in the cDNA library construction and sequence analysis. HN conceived of the study, and participated in its design and helped to draft the manuscript. All authors read and approved the final manuscript.

Additional material

Additional file 1
Figure 3. MrBayes consensus tree of gnd genes, constructed with 437 amino acid sites from 61 taxa. See text and Fig. 1 for additional notes. Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-2148-8-151-S1.pdf]

Additional file 2
Figure 4. MrBayes consensus tree of gnd genes, constructed with 437 amino acid sites from 72 taxa. See text and Fig. 1 for additional notes. Accession numbers for sequences shown are as follows: Giardia lamblia, XP_001704443; Trichomonas vaginalis, XP_001298645; Leishmania major, XP_843439; Trypanosoma brucei, XP_827463; Plasmodium falciparum, XP_001348694; Babesia bovis, XP_001610335; Theileria annulata, XP_954525; and Theileria parva, XP_765720. Gene ID to Toxoplasma gondii gene is 49.m00043 at ToxoDB [55]. Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-2148-8-151-S2.pdf]

Additional file 3
Figure 5. A region of the amino acid sequence alignment encompassing the EW signature of gnd genes. See text, Table 1 and Fig. 4 for additional notes.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-2148-8-151-S3.pdf]

Additional file 4
Table 3. Comparison of alternative tree topologies by exhaustive maximum likelihood (ML) analysis. All possible 105 trees are shown. See text and Table 2 for additional notes.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-2148-8-151-S4.xls]

Acknowledgements
We thank Dr. Toshinobu Suzaki (Kobe University) for a generous gift of the P. trichophorum culture, and Takashi Nakada (Keio University) for help with phylogenetic analysis. Computation time was provided by the Super Computer System, Human Genome Center, Institute of Medical Science, University of Tokyo. This work was supported by Grants-in-Aid for Creative Scientific Research (No. 16GS0304 to HN) and for Scientific Research (No. 17370087 to HN) from the Ministry of Education, Culture, Sports, Science, and Technology, Japan.

References
1. Cavalier-Smith T: Principles of Protein and Lipid Targeting in Secondary Symbiogenesis: Euglenoid, Dinoflagellate, and Sporozoan Plastid Origins and the Eukaryote Family Tree. J Eukaryot Microbiol 1999, 46:347-366.
2. Reyes-Prieto A, Weber AP, Bhattacharya D: The Origin and Establishment of the Plastid in Algae and Plants. Annu Rev Genet 2007, 41:147-168.
3. Adl SM, Simpson AG, Farmer MA, Andersen RA, Andersen OR, Barto JR, Bowser SS, Brugerolle G, Fensome RA, Fredericq S, James TY, Karpsik P, Kugrens P, Krug J, Lane CE, Lewis LA, Lodge J, Lynn DH, Mann DG, McCourt RM, Mendoza L, Mootz GP, Mozley- Standridge SE, Nerdad TA, Shearer CA, Sminov Av, Spiegel FW, Taylor MF: The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. J Eukaryot Microbiol 2005, 52:399-451.

4. Martin W, Rujan T, Richly E, Hans J, Cornelsen S, Lins T, Leister D, Stoebe B, Hasegawa M, Penny D: Evolutionary analysis of Ara- bidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proc Natl Acad Sci USA 2002, 99:12246-12251.

5. Reyes-Prieto A, Hackett JD, Soares MB, Bonaldo MF, Bhattacharya D: Cyanobacterial contribution to algal nuclear genomes is primarily limited to plastid functions. Curr Biol 2006, 16:2320-2325.

6. Nozaki H, Matsuzaki M, Misumi O, Kuroiwa H, Hasegawa M, Higashi- iyama T, Shin-i H, Kihara Y, Ogawa A, Nakanishi T, Sasaki N, Watanabe M: Phylogeny of primary photosynthetic eukaryotes as deduced from slowly evolving nuclear genes. Mol Biol Evol 2007, 24:1592-1595.

7. Stiller JW, Duffield EF, Hall BD: Aramitochondriate amoebae and the evolution of DNA-dependent RNA polymerase II. Proc Natl Acad Sci USA 1998, 95:11769-11774.

8. Stiller JW, Riley J, Hall BD: Are red algae plants? A critical evaluation of three key molecular data sets. J Mol Evol 2001, 52:527-539.

9. Gilneria sulphuraria genome database [http://genom ics.msu.edu/gilneria/index.html]

10. The Joint Genome Institute [http://www.jgi.doe.gov/]

11. The taxonomically broad EST database TBestDB [http://tbestdb.bcm.umontreal.ca/]

12. Shirooka JD, Gibson TJ, Plewinski F, Jeungmough F, Higgins DG: The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997, 25:4876-4882.

13. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol 1990, 215:403-410.

14. Sequestor, an alternative search engine designed for peptide mass identification of proteins in shotgun proteomics. Bioinformatics 2001, 17:1063-1064.

15. The Joint Genome Institute [http://www.jgi.doe.gov/]

16. The Joint Genome Institute [http://www.jgi.doe.gov/]

17. The Joint Genome Institute [http://www.jgi.doe.gov/]

18. Smith EMF, Fermin D, Middelberg APJ, Vingron M: Searching for evolutionary conserved regions in DNA and protein sequences. Bioinformatics 2003, 19:92-99.

19. Koonin EV, Feher SF: Predicting proteins from DNA sequences. Nature 1993, 362:225-231.

20. Stiller JW, Duffield EC, Hall BD: Aramitochondriate amoebae and the evolution of DNA-dependent RNA polymerase II. Proc Natl Acad Sci USA 1998, 95:11769-11774.

21. Shaw RM, Altschul SF, Zhang J, Zhang Z, Zhang L, Zhang N, Zhang Y: Analysis of conserved functional domains using the Bethesda EST database. Genome 2001, 44:571-578.

22. Shaw RM, Altschul SF, Zhang J, Zhang Z, Zhang L, Zhang N, Zhang Y: Analysis of conserved functional domains using the Bethesda EST database. Genome 2001, 44:571-578.

23. Shaw RM, Altschul SF, Zhang J, Zhang Z, Zhang L, Zhang N, Zhang Y: Analysis of conserved functional domains using the Bethesda EST database. Genome 2001, 44:571-578.

24. Shaw RM, Altschul SF, Zhang J, Zhang Z, Zhang L, Zhang N, Zhang Y: Analysis of conserved functional domains using the Bethesda EST database. Genome 2001, 44:571-578.

25. Shaw RM, Altschul SF, Zhang J, Zhang Z, Zhang L, Zhang N, Zhang Y: Analysis of conserved functional domains using the Bethesda EST database. Genome 2001, 44:571-578.

26. Shaw RM, Altschul SF, Zhang J, Zhang Z, Zhang L, Zhang N, Zhang Y: Analysis of conserved functional domains using the Bethesda EST database. Genome 2001, 44:571-578.

27. Shaw RM, Altschul SF, Zhang J, Zhang Z, Zhang L, Zhang N, Zhang Y: Analysis of conserved functional domains using the Bethesda EST database. Genome 2001, 44:571-578.

28. Shaw RM, Altschul SF, Zhang J, Zhang Z, Zhang L, Zhang N, Zhang Y: Analysis of conserved functional domains using the Bethesda EST database. Genome 2001, 44:571-578.

29. Shaw RM, Altschul SF, Zhang J, Zhang Z, Zhang L, Zhang N, Zhang Y: Analysis of conserved functional domains using the Bethesda EST database. Genome 2001, 44:571-578.

30. Shaw RM, Altschul SF, Zhang J, Zhang Z, Zhang L, Zhang N, Zhang Y: Analysis of conserved functional domains using the Bethesda EST database. Genome 2001, 44:571-578.

31. Shaw RM, Altschul SF, Zhang J, Zhang Z, Zhang L, Zhang N, Zhang Y: Analysis of conserved functional domains using the Bethesda EST database. Genome 2001, 44:571-578.

32. Shaw RM, Altschul SF, Zhang J, Zhang Z, Zhang L, Zhang N, Zhang Y: Analysis of conserved functional domains using the Bethesda EST database. Genome 2001, 44:571-578.

33. Shaw RM, Altschul SF, Zhang J, Zhang Z, Zhang L, Zhang N, Zhang Y: Analysis of conserved functional domains using the Bethesda EST database. Genome 2001, 44:571-578.

34. Shaw RM, Altschul SF, Zhang J, Zhang Z, Zhang L, Zhang N, Zhang Y: Analysis of conserved functional domains using the Bethesda EST database. Genome 2001, 44:571-578.

35. Shaw RM, Altschul SF, Zhang J, Zhang Z, Zhang L, Zhang N, Zhang Y: Analysis of conserved functional domains using the Bethesda EST database. Genome 2001, 44:571-578.

36. Shaw RM, Altschul SF, Zhang J, Zhang Z, Zhang L, Zhang N, Zhang Y: Analysis of conserved functional domains using the Bethesda EST database. Genome 2001, 44:571-578.

37. Shaw RM, Altschul SF, Zhang J, Zhang Z, Zhang L, Zhang N, Zhang Y: Analysis of conserved functional domains using the Bethesda EST database. Genome 2001, 44:571-578.

38. Shaw RM, Altschul SF, Zhang J, Zhang Z, Zhang L, Zhang N, Zhang Y: Analysis of conserved functional domains using the Bethesda EST database. Genome 2001, 44:571-578.

39. Shaw RM, Altschul SF, Zhang J, Zhang Z, Zhang L, Zhang N, Zhang Y: Analysis of conserved functional domains using the Bethesda EST database. Genome 2001, 44:571-578.

40. Shaw RM, Altschul SF, Zhang J, Zhang Z, Zhang L, Zhang N, Zhang Y: Analysis of conserved functional domains using the Bethesda EST database. Genome 2001, 44:571-578.

41. Shaw RM, Altschul SF, Zhang J, Zhang Z, Zhang L, Zhang N, Zhang Y: Analysis of conserved functional domains using the Bethesda EST database. Genome 2001, 44:571-578.

42. Shaw RM, Altschul SF, Zhang J, Zhang Z, Zhang L, Zhang N, Zhang Y: Analysis of conserved functional domains using the Bethesda EST database. Genome 2001, 44:571-578.

43. Shaw RM, Altschul SF, Zhang J, Zhang Z, Zhang L, Zhang N, Zhang Y: Analysis of conserved functional domains using the Bethesda EST database. Genome 2001, 44:571-578.

44. Shaw RM, Altschul SF, Zhang J, Zhang Z, Zhang L, Zhang N, Zhang Y: Analysis of conserved functional domains using the Bethesda EST database. Genome 2001, 44:571-578.

45. Shaw RM, Altschul SF, Zhang J, Zhang Z, Zhang L, Zhang N, Zhang Y: Analysis of conserved functional domains using the Bethesda EST database. Genome 2001, 44:571-578.

46. Shaw RM, Altschul SF, Zhang J, Zhang Z, Zhang L, Zhang N, Zhang Y: Analysis of conserved functional domains using the Bethesda EST database. Genome 2001, 44:571-578.

47. Shaw RM, Altschul SF, Zhang J, Zhang Z, Zhang L, Zhang N, Zhang Y: Analysis of conserved functional domains using the Bethesda EST database. Genome 2001, 44:571-578.

48. Shaw RM, Altschul SF, Zhang J, Zhang Z, Zhang L, Zhang N, Zhang Y: Analysis of conserved functional domains using the Bethesda EST database. Genome 2001, 44:571-578.

49. Shaw RM, Altschul SF, Zhang J, Zhang Z, Zhang L, Zhang N, Zhang Y: Analysis of conserved functional domains using the Bethesda EST database. Genome 2001, 44:571-578.
41. Archibald JM, Rogers MB, Toop M, Ishida K, Keeling PJ: Lateral gene transfer and the evolution of plastid-targeted proteins in the secondary plastid-containing alga Bigelowiella natans. Proc Natl Acad Sci USA 2003, 100:7678-7683.

42. Waller RF, Slamovits CH, Keeling PJ: Lateral gene transfer of a multigene region from cyanobacteria to dinoflagellates resulting in a novel plastid-targeted fusion protein. Mol Biol Evol 2006, 23:1437-1443.

43. Marin B, Nowack EC, Glockner G, Melkonian M: The ancestor of the Paulinella chromatophore obtained a carboxyosomal operon by horizontal gene transfer from a Nitrooccus-like γ-proteobacterium. BMC Evol Biol 2007, 7:85.

44. Nosenko T, Bhattacharya D: Horizontal gene transfer in chromalveolates. BMC Evol Biol 2007, 7:1173.

45. Rodríguez-Ezepeleta N, Brinkmann H, Burger G, Roger AJ, Gray MW, Philippe H, Lang BF: Toward resolving the eukaryotic tree: the phylogenetic positions of jakobids and cercozoans. Curr Biol 2007, 17:1420-1425.

46. Hackett JD, Yoon HS, Li S, Reyes-Prieto A, Rümmele SE, Bhattacharya D: Phylogenomic analysis supports the monophyly of cryptophytes and haptophytes and the association of rhizaria with chromalveolates. Mol Biol Evol 2007, 24:1702-1713.

47. Patron NJ, Inagaki Y, Keeling PJ: Multiple gene phylogenies support the monophyly of cryptomonad and haptophyte host lineages. Curr Biol 2007, 17:887-891.

48. Burki F, Shalchian-Tabrizi K, Minge M, Skjøveland A, Nikolaev SI, Jakobsen KS, Pawlowski J: Phylogenomics reshuffles the eukaryotic supergroups. PLoS ONE 2007, 2:e790.

49. Yoon HS, Grant J, Tekle YI, Wu M, Chan BC, Cole JC, Logsdon JM, Patterson DJ, Bhattacharya D, Katz LA: Broadly sampled multigene trees of eukaryotes. BMC Evol Biol 2008, 8:14.

50. Matsuzaki M, Misumi O, Shin-i T, Maruyama S, Takahara M, Miyagishima SY, Mori T, Nishida K, Yagisawa F, Nishida K, Yoshi da Y, Nishimura Y, Nakao S, Kobayashi T, Momoyama Y, Higashiyama T, Minoda A, Sano M, Nomoto H, Oishi K, Hayashi H, Ohta F, Nishizaka S, Haga S, Miura S, Morishita T, Kabeya Y, Terasawa K, Suzuki Y, Ishii Y, Asakawa S, Takano H, Ohta N, Kuroiwa H, Tanaka K, Shimizu N, Sugano S, Sato N, Nozaki H, Ogilawara N, Kohara Y, Kuroiwa T: Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D. Nature 2004, 428:653-657.

51. Weber AP, Linka M, Bhattacharya D: Single, ancient origin of a plastid metabolite translocator family in Plantaes from an endomembrane-derived ancestor. Eukaryotic Cell 2006, 5:609-612.

52. Reyes-Prieto A, Bhattacharya D: Phylogeny of Calvin cycle enzymes supports Plantaes monophyly. Mol Phylogenet Evol 2007, 45:384-391.

53. Larkum AW, Lockhart PJ, Howe CJ: Shopping for plastids. Trends Plant Sci 2007, 12:189-195.

54. Stiller JW: Plastid endosymbiosis, genome evolution and the origin of green plants. Trends Plant Sci 2007, 12:391-396.

55. The Toxoplasma gondii Genome resource ToxoDB [http://toxodb.org/toxo/home.jsp]