The demographic profile and the management of infantile inguinal hernia: a 3-year’s review

Jayalaxmi Shripati Aihole*

Abstract
Background: Inguinal hernia in neonates and infants including children is as a result of failure of processes vaginalis to close. Once diagnosed, it should be promptly repaired on elective basis to prevent possible risk of bowel incarceration. The purpose of this study was to evaluate the clinical profile, management, and outcome of infantile inguinal hernia.

Methods: Aim of this prospective clinical study was to clinically evaluate the infants with clinical diagnosis of inguinal hernia admitted in our tertiary child care institute from January 2014 to December 2017 over a period of three years. The design of this study was to assess the clinical profile, management and outcome of infantile inguinal hernia. Study was conducted in a tertiary care neonatal and paediatric referral centre in southern India. Infants less than 1 year including neonates were selected for this study on the basis of inclusion and exclusion criteria. The maximum follow-up period was 5 years.

Results: A total of 118 infants admitted with clinical diagnosis of inguinal hernia were included in the present study. They were grouped as per their clinical diagnosis and age on admission into two groups; 0 to 6 months as group I and more than 6 months to 12 months as group II. All of them underwent surgical repair as soon as diagnosed. Overall survival rate was 100%. There was no operative mortality 0/118 (0%). Rate of recurrence was 0.034% without any surgical site infections.

Conclusion: Early surgical intervention in the form of inguinal herniotomy is the most appropriate management of inguinal hernia in infants including the neonates as soon as diagnosed on elective basis.

Keywords: Inguinal hernia, Neonates, Processus vaginalis, Herniotomy
Neonates from day 0 to day 30 including infants less than a year of age referred with clinical diagnosis of inguinal hernia were included in the study. Diagnosis of inguinal hernia was made in the majority by clinical examination alone. Imaging studies like ultrasonography was infrequently used to look for the contents except in female infants. 2D echocardiography was used whenever there was clinically significant murmur or in syndrome/dysmorphic babies. Babies with congenital hydrocele were excluded from this study. We did not encounter any baby with femoral hernia during this present study.

3 Statistical analysis

Factors statistically analysed were, age in months, birth weight in kgs, weight at the time of surgery, age on admission, gender, laterality, synchronicity, duration of symptoms, reducibility, and haemoglobin level at the time of surgery, length of hospital stay, infection, recurrence, morbidity and mortality (Table 1). Categorical variables were reported using frequencies and percentiles. Student’s t test and Chi-square test were used to find association between variables. A P value of < 0.05 was considered statistically significant.

Table 1 Clinical profile of infantile inguinal hernia

Parameters	GI 0–6 months	GI 6–12 months	P value	Significance
No of study subjects-118	N=89 (75.4%)	N=29 (24.6%)	—	—
Age (days)	79 ± 36	312 ± 52.8	< 0.001	HS
Gender				
Male				
Female	70 (78.65%)	24 (82.75%)	—	—
Ratio	19 (21.3%)	5 (17.24%)		
Duration of symptoms (days) (Mean ± SD)	3.6:1	4.8:1		
Birth wt (Kgs) (Mean ± SD)	3 ± 3	2.63 ± 0.4	> 0.05	NS
Wt at time of surgery (Kgs) (Mean ± SD)	3.82 ± 1.12	8 ± 1.0	< 0.0001	HS
Preterm babies (28–37 weeks)	22 (24.71%)	0 (0%)	—	—
GI-H	38 (42.66%)	14 (48.27%)	—	—
RIH-H	31 (34.83%)	10 (34.48%)	—	—
B/LIH	18 (20.2%)	5 (17.24%)		
Metachronous IH-	2 (2.4%)	0		
HB (gms) (Mean ± SD)	11 ± 1.57	11 ± 1.0	> 0.05	NS
Reducible hernia-	81 (91%)	26 (89.65%)	—	—
Special contents-				
Irreducible hernia-				
Contents-ovary				
*Ovary-3 (3.7%)	*Ovary- 1 (3.8%)			
*AH-2 (2.46%)	*Chylous ascites-1 (3.8%)			
R-3 (37.5%)	*Enterocle-1 (3.8%)			
L-5 (62.5%)	*3 (10.34%)			
2 (25%)	R-1 (33.3%)			
Lohs (days) (Mean ± SD)	5 ± 5	3.55 ± 2.10	0.149	NS
Syndromic babies	4 (4.49%)	1 (0.345%)	—	—
Other procedures	Mitchell banks'-3 (3.3%)	Mesh repair-1 (2.9%)	—	—
Recurrence	1 (1.12%)	0 (0.0345%)	—	—
Infection	0	0	—	—
Surgical morbidity	1 (0.85%)	0	—	—
General morbidity	1	1		
General mortality	0	1 (0.847%)		

LIH left inguinal hernia, RIH right inguinal hernia, BLIH bilateral inguinal hernia, HB hemoglobin, AH Amyand’s hernia, LOH length of hospital stay
4 Results

A total of 118 infants with inguinal hernia were enrolled in the present study. The congenital inguinal hernias were diagnosed by taking a detailed history from the parents as well as caretakers in pre designed proformas, followed by clinical examinations, investigations if required.

The hernial site, size, variability, reducibility, cry impulse or any underlying straining for micturition and the presence or absence of the testis in the scrotal sac were also noted (Fig. 1). The respiratory system, the cardiovascular system and the abdomen were also examined for any associated congenital/acquired conditions. All the babies were subjected to routine complete hemogram. Abdominal ultrasound was done in clinically doubtful cases, including in female babies to look for content of the sac and in irreducible inguinal hernias. 2D echocardiography was advised in dysmorphic, syndromic babies as well as for those with clinically significant murmur.

All of them underwent surgical repair as soon as diagnosed. There were 89/118 (75.4%) infants in group I and 29/118 (24.6%) in group II. Mean age of infants at admission in group I was 79 ± 36 (days) and in group II was 312 ± 52.8 with a P value of < 0.001 which was highly significant (Table 1). Left-sided hernia predominated in GI 38 (42.66%), with right side 31 (34.83%) with 18 (20.2%) were bilateral (synchronous) and 2 (2.24%) were metachronous hernias. In GII left were 14 (48.27%), right were 10 (34.48%), and 5 (17.24%) were bilateral without any case of metachronous hernia. Reducible hernia in GI were 81 (91%) and irreducible were 8 (8.9%) with left 5 (62.5%), right 3 (37.5%), whereas in GII reducible ones were 26 (89.65%) and irreducible ones were 3 (10.34%), with left 2 (66%) and right 1 (33.3%) (Table 1). All of them underwent standard Ferguson’s hernia repair under general anaesthesia except 3 (3.3%) neonates in GI underwent Mitchells Banks’ repair and one (2.9%) polypropylene mesh repair in GII.

Syndromic babies in GI were 4 (4.49%) which included Down’s syndrome, Cutis laxa and Edward’s syndromes; 1 case of Cutis laxa syndrome (3.44%) in GII. The isolated syndromic babies were 2 (Down’s and Cutis laxa) in GI and nil in GII. Two babies (2.24%) with Edward’s syndrome had associated other anomalies in GI and 1 baby with Cutis laxa syndrome had other anomalies (3.44%) in GII (Table 2). 19 babies (21.34%) had non-syndromic conditions in GI and 9 (31%) in GII.

No emergency surgical intervention was required in incarcerated cases, all of which were operated on...
electively after 3 to 5 days following manual reduction. None of our babies underwent umbilical hernia repair at the time of herniotomy (Fig. 2).

In our study we found, age on admission, weight at the time of surgery and duration of symptoms highly significant statistically (Table 1).

5 Discussion

Present study was a prospective observational cohort study conducted on infants including neonates diagnosed and admitted with inguinal hernia. Inguinal and scrotal swellings are the common swellings encountered in infants and children. Most common is hernial swelling which is due to persistence of processus vaginalis which is present during intrauterine gestation for ease of descent of testis. The incidence of inguinal hernia (IH) in full term infants is 3.5 to 5.0%, whereas in premature and low birth weight (LBW) babies is 44 to 55% [1–3]. In our study, we found 22 (24.71%) of premature babies in GI and none in GII which were managed successfully.

Bronsther et al. have reported that, one-third of the patients in their series were of less than 6 months of age [4]. However, in our series, babies less than 6 months (GI) constituted around three times the infants in GII. Since ours is the only neonatal and paediatric referral centre in southern India; babies are referred to us quiet early.

Among GI, we had 70 (78.65%) males, 19 (21.3%) females with a ratio of 3.6:1, whereas in GII we had 24 (82.75%) males, 5 (17.24%) females, with a ratio of 4.8:1. Hence, the male predominance was seen in both the groups. Literature review reveals the ratio as, 6:1 by Poeinarau et al., 7:1 by Grossfeld et al., 9:1 by Ravikumar et al. and 11.5:1 by Jadhav et al. [5–7]. Ours is the only series, which showed lower sex ratio despite lower socio-economic status and the general public awareness.

Bronsther et al. have reported that, one-third of the patients in their series were of less than 6 months of age [4]. However, in our series, babies less than 6 months (GI) constituted around three times the infants in GII. Since ours is the only neonatal and paediatric referral centre in southern India; babies are referred to us quiet early.

Among GI, we had 70 (78.65%) males, 19 (21.3%) females with a ratio of 3.6:1, whereas in GII we had 24 (82.75%) males, 5 (17.24%) females, with a ratio of 4.8:1. Hence, the male predominance was seen in both the groups. Literature review reveals the ratio as, 6:1 by Poeinarau et al., 7:1 by Grossfeld et al., 9:1 by Ravikumar et al. and 11.5:1 by Jadhav et al. [5–7]. Ours is the only series, which showed lower sex ratio despite lower socio-economic status and the general public awareness.

Left-sided hernia predominated in GI 38 (42.66%), right side 31 (34.83%) with 18 (20.2%) were bilateral (synchronous) and 2 (2.24%) were metachronous hernias (Fig. 1a, b). In GII left were 14 (48.27%), right of 10 (34.48%) and 5 (17.24%) were bilateral without any case of metachronous hernia. Literature confirms the predominance of right-sided inguinal hernias, but our study revealed the just the opposite. The studies of Rowe et al., and Grosfeld et al., reported an incidence of 55–60% of the inguinal hernias...

Table 2 Syndrome/conditions associated with infantile inguinal hernia

No of study subjects-118	GI (0–6 months) N-89	GII (6–12 months) N-29
Isolated syndromic	2 (2.24%)	0
DS-1 (1.12%)		
CL-1 (1.12%)		
Syndromic asso with other cong anomalies	2 (2.24%)	1 (3.44%)
*Edward syndrome + CTEV + webbed neck -1 (1.12%)	*CL + HUN + Pectus excavatum	
*Edwards syndrome + RDS-1 (1.12%)		
Non syndromic Conditions	19 (21.34%)	9 (31.1%)
*Gerd-2		*EEC + Cervical MMC + Spina
*Sept arthritis-1		bifida + Small Phalus
*BLHN-1		*Chylous Ascites-1
*UDT-2		*CHD-3
*UH-3		*GDD + Spastic Diplegia-1
*HYPO-2		*LIMB anomalies-1
*RDF-1		*UDT-2
*CHD-2		
*SLOL-1		
*CLEFT PL-1		
*Cong cataract-1		
*DDH-1		
*EHBA-1		
*Duplicated extrophy-1		
Other surgeries	7 (7.8%)	5 (17.24%)
*Orchidopexy-2 (2.24%)		*Orchidopexy-2 (6.8%)
*Circumcision-1		*Circumcision-1
*Arthrotomy-1		*EEC + MMC repair-1
*Cataract surgery (IOL)-1		
*Kasai’s procedure-1		
*Excision of duplicated Extrophy-1		

DS down’s syndrome, **CL** cutis laxa, **CTEV** congenital talipes equino varus, **RDS** respiratory distress syndrome, **HUN** hydroureteronephrosis, **GERD** gastroesophageal reflux syndrome, **BLHN** bilateral hydronephrosis, **UDT** undescended testis, **UH** umbilical hernia, **HYPO** hypoplasia, **ROP** retinopathy of prematurity, **CHD** congenital heart disease, **SLOL** subluxation of lens, **DDH** developmental dysplasia of hip, **EHBA** extrahepatic biliary atresia, **EEC** extrophy epispadais complex, **MMC** myelomengocele, **GDD** global developmental delay, **CLEFT PL** Cleft Palte
that of 25% on the left side and that of 15% bilaterally [2, 3, 8, 9] (Fig. 3).

Hoshino et al. [10] study confirms that babies operated for left-sided inguinal hernia repair had a 5.5-fold incidence of metachronous hernia but surprisingly in our study we did not find its correlation [10]. We encountered only 2 (2.24%) cases of metachronous hernias in GI, and none in GII. Crankson et al. and Ballantyne et al. states
that, because of low occurrence of metachronous hernia, contra lateral inguinal exploration is not justified [11, 12]. In our institute also, we generally do not follow the policy of the contra lateral groin exploration routinely.

Duration of symptoms in days in the both groups was found to be 18±15 and 42.97±56.28 in days, respectively, with a P value of <0.0001, which was highly significant statistically. We found only one article where duration of symptoms correlated with our study by Kumar et al. [13, 14].

We had only three babies less than a month whose birth weight was above 2 kg, who were operated for hernia, and hence, they were monitored in neonatal intensive care unit (NICU) for a day or two post operatively and discharged uneventfully immediately after that. Very low birth weight premature infants with severe co morbidities are more likely to develop postoperative respiratory and cardiac events; hence a close observation in the NICU is advised for these babies.

22 (24.71%) babies were premature (28–33 weeks) in GI and none in GII, presenting during early gestation which were managed successfully.

Birth weight (kgs) in both the groups were 3±3 and 2.63±0.4, respectively, with a P value of >0.05 which was not significant statistically. Crankson et al. and Kreiger et al. preferred to do hernitomy in premature babies just before their discharge from nicu, same protocol was applied in our babies [11, 13]. De Goede and Vaos et al. stated that lower weight at the time of surgery was not a contradiction of surgery [15, 16].

Weight at the time of surgery in both groups was 3.82±1.12 and 8±1.0, respectively, with a P value of <0.0001 which was highly significant statistically which was correlated well with Yu-Li Lin et al. study [17]; in which they stated that no operation was postponed which was correlated well with Yu-Li Lin et al. study [17]; which was highly significant statistically. We found only one article where duration of symptoms correlated with our study by Kumar et al. [13, 14].

Amongst the reducible hernias, we had 2 (2.46%) neonates with Amyand’s hernia containing normal appendix on right side type 1 as per Losonoff and Bassons classifications one in male and another one in a female neonate without any history suggestive of appendicitis, detected during the procedure; hence appendix was preserved. As per literature Amyand’s hernia usually presents acutely with scrotal or tender swelling in the groin region; but finding normal appendix without any symptoms is rare [22, 23]; same was witnessed in our case (Figs. 1g, 2).

We had 3 (3.7%) cases of hernial sac containing ovary amongst which, one had torted ovary; which could be detorsed and preserved in GI and one normal ovary (3.8%) in GII. Laing et al. stated that 15–20% of inguinal hernias in females do contain ovary and fallopian tubes [24]. Osifo et al. reported in their study that, out of 176 hernias, 145 (82.4%) were found to contain ovary and fallopian tube, which is a very high percentage in comparison with that obtained in the present study which showed only case 3.8% of inguinal hernias containing normal ovary [25].

We had 2 (2.24%) isolated syndromic cases, one was downs and another of cutis laxa syndrome in GI; none in GII. Two cases (2.24%) of syndromic (Edward’s) associated with other anomalies in GII and one case (3.44%) of cutis laxa in GII (Table 2). 19 (21.34%) non syndromic babies having other conditions in GI and 9 (31%) in GII (Table 2) (Figs. 1c, 2).

Rescoria et al. stated that direct inguinal hernias are rare constitute 0.5% of all groin hernias [26], We had only one case of direct inguinal hernia in GII with cutis laxa in which mesh repair was done primarily [27–29].

Afr J Urol (2020) 26:28

Page 6 of 8
The Mitchell Bank’s operation was performed in three neonates by single consultant, where herniotomy was done without opening the external oblique aponeurosis. However, all other babies underwent standard Ferguson’s repair by all the consultants including the trainees in paediatric surgery (Fig. 1e, f). General anaesthesia using a combination of shorter acting agents such as sevoflurane and fentanyl, supplemented with caudal analgesics is a popular anaesthetic technique for infants. Babies did not receive any antibiotics pre- or post-operatively except few babies previously admitted for other commodities.

In our institute we attempt laparoscopic hernia repair in toddlers and children, but never in infants. Though the literature is abundant with laparoscopic hernia repair in children, it is limited in neonates as well as in infants at present moment, but however, it is exciting and worthwhile attempting in near future.

Associated other surgeries conducted in 7 (7.8%) in GI like orchidopexy, congenital cataract surgery, Retinopathy, arthrotomy for septic arthritis, excision of duplicated bladder extrophy. 5 babies (17.24%) in GII underwent other procedures like, cervical menigo myelocoele repair, cleft palate repair, orchidopexy and ritual circumcision.

We had 2 neonates (2.24%) with undescended testis at superficial inguinal pouch where orchidopexies were done in GI and 2 babies (6.8%) in GII, during same anaesthesia. According to Witherington et al., a patent processus vaginalis with undescended testis is a clear indication for orchidopexy [30].

Ein et al. have reported a recurrence rate of 1.2%, whereas others report 3.8%. Recurrence rate in incarceration hernias is up to 3% [32]. We had only one case of 1.12% recurrence of hernia, in baby with duplicated extrophy variant 4 months after the procedure, which can be explained due to difficult tissue planes and altered anatomy (Fig. 1d).

Ein had 1.2% wound infection rates [31]. None of our babies had surgical site infection; including any kind of surgical morbidity or mortality.

As per literature we found incidence of testicular loss or atrophy in 0–19% [30–32]. We had one baby (0.847%) with testicular loss, post herniotomy (Mitchell banks’ technique) done at day 2 of life in premature baby, noticed 3 months following the procedure. Turk et al. stated that Mitchells Banks’ technique is safer in older children [30, 32].

We had one morbidity in a baby with congenital cuts laxa syndrome having direct inguinal hernia where mesh repair was done, required longer time for recovery and discharge from the hospital (0.847%). Eventually, baby succumbed to other coexisting illnesses 8 months following the procedure.

We did not have any mortality directly related to herniotomy procedure in our series.

Limitations of our study: routine ultrasonology and 2D echo cardiography were not done in all the babies pre-operatively.

6 Conclusion
Inguinal hernia is a common surgical condition in neonates, infants and children; should be referred immediately and managed by tertiary care paediatric centre where round the clock expertise is available. The original Ferguson hernia repair, much used contemporarily, is undoubtedly the excellent operative method for infantile and childhood inguinal hernias with minimal infection and recurrence rates, if done by a paediatric surgeon, as these cases require finer dissection and clear understanding of delicate local anatomy.

Abbreviations
DS: down’s syndrome; CL: cutis laxa; CTEV: congenital talipes equino varus; RDS: respiratory distress syndrome; HUN: hydrooreteronephrosis; GERD: gastroesophageal reflux syndrome; BLHN: bilateral hydronephrosis; UDT: undescended testis; UH: umbilical hernia; HYPO: hypoplasia; ROP: retinopathy of prematurity; CHD: congenital heart disease; SLOL: subluxation of lens; DDH: developmental dysplasia of hip; EHBA: extrahepatic biliary atresia; EEC: extrophy epispadais complex; MMC: myelomengocele; GDD: global developmental delay; CLEFT PL: cleft palate.

Acknowledgements
Author would like to thank the Director, paediatric surgical colleagues, paediatric anaesthetists, Radiologists, OT staffs of IGICH, Bangalore, Karnataka, India.

Authors’ contributions
DR JSA has contributed whole to the article.

Funding
None.

Availability of data and materials
The confidential data from the patients is with the corresponding author and is available on request.

Ethics approval and consent to participate
Ethics approval and consent to participate obtained from Indira Gandhi Child Health Institute with a number of IGICH 2349000. *Written as well as verbal consent has been taken from caretakers and parents of the babies.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Received: 7 January 2020 Accepted: 2 June 2020
Published online: 17 August 2020

References
1. Groff D, Nagaraj HS, Pietsch JB (1985) Inguinal hernias in premature infants who were operated on before their discharge from the neonatal intensive care unit. Arch Surg 120:962.
Grosfeld JL (1989) The current concepts in inguinal hernias in infants and children. World J Surg 13:506–515

Grosfeld JL, Minnick K, Shedd F, West KW, Rescorla FJ, Vane DW (1991) Inguinal hernia in children: the factors which affected the recurrence in 62 cases. J Paed Surg. 26:283–287

Bronsther B, Abrams MW, Elboim C (1972) Inguinal hernias in children—a study of 100 cases and a review of literature. J Am Med Womans Assoc 27:522–525

Poeneru D (2000) Inguinal hernias and hydroceles in infancy and childhood: a consensus statement of the Canadian Association of Paediatric Surgeons. Paedirtr Child Health 5:461–462

Ravikumar V, Rajshankar S, Hareesh RS, Kumar N, Gowda MR (2013) A clinical study of the management of inguinal hernias in children on the children's general surgical practice. J Clin Diag Res 7:144–147

Dinesh LJ, Manjunath L, Vikas GK (2014) A study of inguinal hernia in children. Int J Sci Res 3:2149–2155

Rowe MJ, Copeland LW, Clatworthy HW (1969) The patent processus vaginalis and the inguinal hernia. J Pediatr Surg 4:102–107

Rowe MJ, Clatworthy HW (1970) Incarcerated and strangulated hernias in children. Arch Surg 101:136–139

Hoshino M, Sugito K, Kawashima H, Goto S, Kaneda H, Furuya T, Hosodo T, Masuko T, Ohashi K, Inoue M, Ikeda T, Tomita R, Koshinaga T (2014) Prediction of contra lateral inguinal hernia in children: a prospective study of 357 unilateral inguinal hernias. Hernia 18:333–337

Clankson SJ, Al Tawil K, Al Namshan M, Al Jadaan S, Baylon BJ, Gieballa M, Ahmed IH (2015) Management of inguinal hernia in premature infants: 10-year experience. Indian Assoc Pediatr Surg 20:21–24

Ballantyne A, Jawaheer G, Munro F (2001) Contralateral groin exploration is not justified in infants with a unilateral inguinal hernia. Br J Surg 88:720–723

Kreiger NR, Shochat SJ, McGowan V et al (1994) Early hernia repair in the premature infant: long-term follow-up. J Pediatr Surg 29:978–982

Kumar A, Ramakrishnan B, Taneja V, Chahal A, Bhati R, Maghmay R (2013) Single port laparoscopic repair of paediatric inguinal hernias: our experience at a secondary care centre. J Minim Access Surg 9:7–12

de Goede B, Verhelst J, van Kempen BJ, Baartmans MG, Langeveld HR, Halm JA, Kazemier G, Lane JF, Wijnen RM (2015) Very low birth weight is an independent risk factor for emergency surgery in premature infants with inguinal hernia. J Am Colloid Surg 220:347–352

Vaos G, Gardikis S, Kambouri K, Sigalas I, Koutakis G, Petousiss G (2010) Optimal timing for repair of an inguinal hernia in premature infants. Pediatr Surg Int 26:379–385

Lin LY, Chang TJ (2009) Effect of a pediatric surgeon on pediatric inguinal hernia repair—evaluation of the importance of surgeons with subspecialty training by a single-hospital comparative experience. Formos J Surg 42:263–267

Ozdemir T, Arikan A (2013) Postoperative apnea after inguinal hernia repair in formerly premature infants: impacts of gestational age, postconceptional age and comorbidities. Pediatr Surg Int 29:801–804

Zamakhshary M, To T, Guan J, Langer JC (2008) Risk of incarceration of inguinal hernia among infants and young children awaiting elective surgery. CMAJ 179:1001–1005

Palmer BV (1978) Incarcerated inguinal hernia in children. Ann R Coll Surg Engl 60:121–124

Smith G, Wright JE (1996) Reduction of gangrenous small bowel by taxis on an inguinal hernia. Pediatr Surg Int 11:582–583

Armas Alvarez AL, Taboada Santomil P, Pradillos Serna JM, Rivera Chávez LL, Estévez Martínez E, Méndez Gallart R et al (2010) Infantile Amyand's hernia presenting as acute scrotum. Circ Pediatr 23:250–252

Laing FC, Townsend BA, Rodríguez JR (2007) Ovary-containing hernia in a premature infant: sonographic diagnosis. J Ultrasound Med 26:985–987

Osifo OD, Ovuemi ME (2009) Inguinal hernia in Nigerian female children: beware of ovary and fallopian tube as contents. Hernia 13:149–153

Rescorla FJ, Grosfeld JL (1984) Inguinal hernia repair in the peri natal period and in early infancy: the clinical considerations. J Pediatr Surg 19:832

Hadj-Rabia S, Callewaert BL, Bourrat E, Kempters M, Plov F, Layet V, Bartholdi D, Renard M, De Backer J, Malfait F, Vanakker OM, Coucke PJ, De Paepe AM, Bodemer C (2013) Twenty patients including 7 probands with autosomal dominant cutis laxa confirm clinical and molecular homogeneity. Orphanet J Rare Dis 8:36

Sawaguchi S, Matsunaga E, Honma T (1975) A genetic study on indirect inguinal hernia. Jpn J Pediatr 19:107–195

Shafei EE (2009) Role of Prolene® Mesh in the repair of recurrent congenital inguinal hernia: a pilot study. Ann Pediatr Surg 1:11–15

Armas Alvarez AL, Taboada Santomil P, Pradillos Serna JM, Rivera Chávez LL, Estévez Martínez E, Méndez Gallart R et al (2010) Infantile Amyand's hernia: a pilot study. Ann Pediatr Surg 1:11–15

Withennington R (1984) Cryptorchism and approaches to its surgical management. Surg Clin North Am 64:367–384

Ein SH, Njere I, Ein A (2006) Six thousand three hundred sixty-one pediatric inguinal hernias: a 35-year review. J Pediatr Surg 41:980–986

Laing FC, Townsend BA, Rodríguez JR (2007) Ovary-containing hernia in a premature infant: sonographic diagnosis. J Ultrasound Med 26:985–987

Rescorla FJ, Grosfeld JL (1984) Inguinal hernia repair in the peri natal period and in early infancy: the clinical considerations. J Pediatr Surg 19:832

Wicherpool R (1984) Cryptorchism and approaches to its surgical management. Surg Clin North Am 64:367–384

Ein SH, Njere I, Ein A (2006) Six thousand three hundred sixty-one pediatric inguinal hernias: a 35-year review. J Pediatr Surg 41:980–986

Türk E, Memetoglu ME, Edirne Y, Karaca F, Seday C, Güven A (2014) Inguinal herniotomy with the Mitchell–Banks' technique is safe in older children. J Pediatr Surg 49:1159–1160

Puri P, Guiney EI, O'Donnell B (1984) Inguinal hernia in infants: the fate of the testis following incarceration. J Pediatr Surg 19:44–46

Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Submit your manuscript to a SpringerOpen journal and benefit from:

► Convenient online submission
► Rigorous peer review
► Open access: articles freely available online
► High visibility within the field
► Retaining the copyright to your article

Submit your next manuscript at ► springeropen.com