The Effects of Mergers and Acquisitions on the Firm Size Distribution

Elena Cefis, Orietta Marsili, Hans Schenk
The Tjalling C. Koopmans Institute is the research institute and research school of Utrecht School of Economics. It was founded in 2003, and named after Professor Tjalling C. Koopmans, Dutch-born Nobel Prize laureate in economics of 1975.

In the discussion papers series the Koopmans Institute publishes results of ongoing research for early dissemination of research results, and to enhance discussion with colleagues.

Please send any comments and suggestions on the Koopmans institute, or this series to M.deSwart-Gijsbers@econ.uu.nl

How to reach the authors

Please direct all correspondence to the first author.

Elena Cefis
Bergamo University
Utrecht University
Utrecht School of Economics
Janskerkhof 12
3512 BL Utrecht
The Netherlands
E-mail: e.cevis@econ.uu.nl

Orietta Marsili
Erasmus University Rotterdam
Rotterdam School of Management
Burgemeester Oudlaan 50
3062 PA Rotterdam
Postbus 1738
3000 DR, Rotterdam
The Netherlands
E-mail: omarsili@rsm.nl

Hans Schenk
Utrecht University
Utrecht School of Economics
Janskerkhof 12
3512 BL Utrecht
The Effects of Mergers and Acquisitions on the Firm Size Distribution

Elena Cefisa
Orietta Marsilib
Hans Schenkc

aBergamo University
Utrecht School of Economics
Utrecht University

bRotterdam School of Management
Erasmus University Rotterdam

cUtrecht School of Economics
Utrecht University

December 2006

Abstract
This paper provides new empirical evidence on the effects of mergers and acquisitions on the shape of the firm size distribution (FSD), by using data of the population of manufacturing firms in the Netherlands. Our analysis shows that M&As do not affect the size distribution when we consider the entire population of firms. When we focus on the firms involved in a M&A event, we observed a shift of the FSD towards larger sizes. FSD becomes more concentrated around the mean size, less skewed to the right hand side, and thinner at the tails as a whole. The shift toward higher sizes due to M&A is not uniform but affects firms of different sizes in different ways. While the number of firms in the lower tail decreased, the number of firms in the central size classes increased substantially and outweighed the increase in the number (and mean size) of firms in the upper tail of the distribution (consequently the overall market concentration measured by the Herfindhal index declines). M&As leads to a departure from log-normality of the FSD, suggesting that external growth does not follow a Gibrat’s law. Our counterfactual analysis highlights that only internal growth does not affect the shape of the size distribution of firms. On the contrary, it suggests that the change in the size distribution is almost entirely due to the external growth of the firms.

Keywords: Firm Size Distribution, Mergers and Acquisitions, Firm Entry and Exit, Industry Concentration

JEL classification: L11, L25, D21, C14

Acknowledgements
The authors would like to thank the participants in the 10th International Schumpeter Society Conference held in Milan in 2004, and in particular G. Bottazzi, S. Klepper, J. Sutton and A. Secchi for helpful and interesting suggestions. The empirical part of this research has been carried out at the Centre for Research of Economic Microdata at Statistics Netherlands (CBS). The views expressed in this paper are those of the authors and do not necessarily reflect the policies of Statistics Netherlands. The authors gratefully acknowledge the financial support of NWO (Dynamics of Innovation Programme, grant nr: 472-04-008). Elena Cefis also acknowledges the financial support of the University of Bergamo (grant ex 60%, n. 6OCEFIO6,
1. INTRODUCTION

Empirical studies have repeatedly shown that firm size distributions in industrial countries are highly skewed, or, in other words, that a small number of large firms coexist with a large number of small firms. The firm size distribution within an industry indicates the degree of industrial concentration and therefore it is of particular interest for antitrust policy.

Starting with Gibrat (1931), firm sizes have often been described by lognormal distributions. Indeed, this distribution is the outcome of the “Law of Proportionate Effects”, which predicts that firm size follows a random walk and hence that the growth of firms is erratic and independent of firm size (Sutton, 1997; and Bottazzi et al., 2002). Gibrat’s Law was originally used as an explanation of the highly skewed distribution of firms’ sizes and it has become, both empirically and theoretically, a benchmark for discussing the processes of firm growth (Geroski, 1999; McCloughan, 1995; Cefis et al., 2002).

The upper tail of these highly skewed size distributions has often been described by the Yule or Pareto (also known as “Power Law”) distributions. If a discrete random variable, such as firm size, is Pareto-distributed it means that the frequency of the variable above a certain threshold is inversely proportional to the value of the variable. In the case of firm size, the Power Law predicts that the frequency of firms above a certain size (or a minimum size) is inversely proportional to firm size.

Several studies in industrial economics have empirically tested whether firm sizes are Pareto-distributed and have formulated models able to generate Pareto-like distributions (e.g. Ijiri and Simon, 1974). If firm sizes are distributed according to a Pareto distribution, the coefficient of the distribution (the slope of the Pareto curve) is a measure of the degree to which business is concentrated in the larger firms in an industry or an economy, expressing the percentage of observations in the upper tail of the distribution. Furthermore, if Pareto distributed, the industrial structure would depend only on the interaction between firms and
not on external factors or individual firm behaviour.

Despite the vast literature that has investigated the firm size distribution—some of which will be discussed below—very little attention has been devoted to the underlying form of firm growth, more in particular to the effects on such distributions of, on the one hand, internal firm expansion and, on the other, mergers and acquisitions (M&As). This may be of significance if the incidence (and/or size) of mergers and acquisitions were not neutral with respect to the size of firms. For example, suppose that merger-initiating firms (i.e. acquiring firms) are more ubiquitous in larger size classes. If such mergers are more effective in gaining size than would be the case with growth by internal expansion (which, in the short run, is obviously true) and sustainable (in the sense that they do not have to be broken up soon after initiation because of failures) then—ceteris paribus—we would expect a systematically higher growth rate in the upper tails of the size distribution. Growth, in other words, would then be dependent on firm size.

Also, it is important to note that the variance of a distribution is a measure of inequality, not concentration (Hannah & Kay, 1981). Thus, trends in inequality and concentration will be similar if the number of firms remains constant, but when this latter number declines, concentration will increase while—depending on the size of acquired firms—the degree of inequality may rise as well as fall. Since merger necessarily implies such a decline, concentration through merger may or may not increase inequality whereas inequality will increase when concentration increases through internal growth.

That this concerns non-trivial questions is shown by the dramatic rise in M&As during the second half of the 1990s (see Figure 1). In fact, this so-called fifth merger wave exceeded everything that went on before, both in numbers and in deal value. During 1996-2000, more than $12,000 bln was spent on mergers, $9,000 bln of which by firms from Europe and the U.S.A.
Among large firms, merger is also the most important cause of disappearance, especially in Europe and the U.S.A. (see Table 1). About 27 of the U.S. and the EU’s 100 largest manufacturing firms, i.e. approx. fourteen per cent, were absorbed into another member of this size group within a fifteen-year period; slightly smaller firms acquired three others so that in total 15 per cent of large firms disappeared through merger, except in Japan where large firms apparently are much less active in mergers. Evidently, extending the population to smaller size categories will increase the percentage of merger disappearances. For example, of the 3,011 firms quoted on the London Stock Exchange in 1950, no less than 1,265 (or 42 per cent) appeared to have been taken over by 1977 (Odagiri, 1992).

The purpose of the paper is, therefore, to analyse the effects of M&As on the firm size distribution and on the concentration measure represented by the slope coefficient of the Pareto curve. The aim is to supply new empirical evidence on a topic scarcely investigated. The research is meant to be a first step in the analysis of the firm’s growth process when considering not merely internal growth (i.e. growth due to the internal capacities to expand in terms of total sales or number of employees) but also external growth (i.e. growth due to mergers and acquisitions).

In Section 2, we discuss some crucial results previously obtained in the literature. Section 3 describes the database and the variables under scrutiny. In Section 4 we examine the evidence on the aggregate size distributions while in Section 5 we consider only the size
distribution of firms involved in a merger and/or an acquisition. Section 6 discusses the
results of the counterfactual analysis and Section 7 concludes.

2. LITERATURE REVIEW AND DISCUSSION

The increasing importance of large firms is hardly contested. Indeed, the data throughout
the previous century, perhaps excluding the 1930s through to the 1950s, display increasing
aggregate concentration in manufacturing, mining and distribution for most European
countries well into the 1990s, the Netherlands included (Schenk, 1997). Data on the U.S.
reveals an undulating pattern of aggregate concentration until the early 1990s after which it
rises sharply (Scherer & Ross, 1990; Pryor, 2001). Such increasing dominance can result from
stochastic processes, or be the inevitable result of modern technology and large-scale
production. In all cases, however, it can be carried by mergers and acquisitions.

Ijiri and Simon (1971) was the first of only a small number of empirical studies focusing
on the effects of merger and acquisition on the firm size distribution (henceforward to be
abbreviated as FSD). ¹ Comparing firm size distributions in 1956 and in 1957 in a sample of
large American firms, Ijiri and Simon tested the effects of M&As on the concentration
measure β (the slope of the Pareto curve). Their results suggested that mergers and
acquisitions do not greatly affect β, a conclusion that has long remained a prime source of
reference no matter how counterintuitive it was. Furthermore, Ijiri and Simon proposed that
during the 1950s and 1960s the size distribution of the 500 largest firms remained relatively
unchanged. Any growth of the firms in question then takes the form of a parallel upward shift
in the (partial) FSD, the degree of shift depending on the growth rate that is applicable to all

¹ In this paper we do not distinguish between merger on the one hand and acquisition or takeover on the
other. All three terms will be used interchangeably.
firms in the relevant population, regardless of their size. Their analysis thus supports the proposition that firm growth due to mergers and acquisitions would follow Gibrat’s Law to the same extent as internal growth would.2

However, these results may have been biased because the mid-1950s were exceptionally low in terms of merger incidence. Thus, comparing the firm size distribution of 1957 with that of 1956 would not lead one to expect to find significant differences, if any. Similarly, and despite Ijiri and Simon’s claims to the contrary, M&As only appeared to catch on in the late 1960s (starting what would later become known as the third merger wave; see Blair, 1972), so that it would not be surprising to find that the size distribution of the top-500 firms did not change much from the early 1950s through to the mid 1960s.

Indeed, in their later work, Ijiri and Simon (1974) recanted their earlier conclusions. Studying the 831 largest industrial firms according to the annual Fortune rankings for 1969, they found an FSD that departed significantly from the straight-line Pareto curve. Two potential explanations were subsequently investigated, one of which concerned the effect of mergers and acquisitions.3 They first grouped the 831 firms into 9 size classes, and then observed the number of firms that were involved in mergers during the twenty preceding years and classified these by (a) the post-merger size of the combined firms; (b) the pre-merger size of acquiring firms; and (c) the pre-merger size of acquired firms. The estimated number of firms if mergers are eliminated, then, was given by calculating over the size classes the number of 1969-firms minus the numbers classified as (a), plus those classified as (b) and (c). It turned out that 1,002 firms would have existed in 1969 instead of the actually observed

2 Notice that Ijiri and Simon (1971), contrary to common parlance, define internal growth as growth due to mergers and acquisitions and external growth as growth due to growth from sources outside the population.

3 Ijiri and Simon (1974) also studied a model in which a firm with a history of recent growth had a better chance for further growth than a firm of the same size whose growth had taken place in the distant past. It
831 firms, and that the rate of disappearance due to merger was not independent of the size class in the sense that smaller firms had a higher chance of being absorbed. A similar exercise involving assets produced a series of merger-free asset data by size class. Growth by assets as a result of merger appeared to be dependent on size class as well in the sense that without mergers, the total of assets present in the smaller size classes would have been higher than actually observed, whereas in the larger size classes it would have been smaller than actually observed. By plotting the actual data and the estimated data against the theoretical size-rank relationship (the Pareto curve), Ijiri and Simon were able to confirm that mergers and acquisitions had contributed appreciably to increasing the concentration measure and the concavity of the FSD, i.e. its departure from the Pareto expectation. It is worth noticing that by far most of the increases in size-growth disparities were observed during the last few years of the period studied, i.e. when the third merger wave caught momentum.

Following somewhat different methodologies, but essentially retaining the idea of composing hypothetical ‘merger-free’ populations for comparison, other researchers have come up with similar results. Singh (1975) found that from the second quintile upwards, the probability of being acquired declines monotonically with size, moderately at first but more sharply once the top size classes are reached. Similarly, Aaronovitch and Sawyer (1975) reinforced the finding that among large companies, size and the probability of acquisition are inversely related. Among the smallest of size classes, the disappearance rate due to merger over a twelve-year period was 40.4 %, after which it declined systematically with increasing size, ultimately reaching 21.1 and 26.3 per cent in the highest size classes. Other things being equal, this suggests that the underlying process is that smaller firms disappear as bigger firms eat them, while some bigger firms disappear because they merge among themselves, thus appeared plausible and also found empirical support.
creating a size-stronger segment in the upper tails of the distribution.

According to Hannah and Kay (1977), the effects of merger on growth are so strong, that without mergers, smaller firms would have grown faster than larger firms.\(^5\) They studied two populations, one of which concerned all quoted firms in manufacturing operating in the U.K. with 1957-assets in excess of £ 1 mln. By carefully dissecting the sources of concentration growth, they conclude that without mergers, (aggregate) concentration would not have increased much, and certainly not as much as it did during the 1957-1976 period they study. For the period 1957-1969 it was only the fact that the internal growth of large and merging firms was below the average of their population as a whole that prevented concentration from being higher than it already was. Interestingly, Hannah and Kay’s study would suggest that, rather than attributing any departures from the Pareto curve to the effect of mergers, it is the influence of mergers that is to be held responsible for the Law of Proportionate Effect to hold, if it holds. Firstly, if there were no mergers, the higher degree of diversification that is so characteristic of large firms would lead to a lower degree of dispersion of growth rates. Secondly, the feasibility of an acquisition in terms of size will be dependent on the existing size of the acquiring firm. Merger, according to Hannah and Kay (1977), is almost always the principal contributor to the variance of the growth of firms since merger is behind most cases of outstandingly rapid growth.

Our contribution to the literature is twofold. First, this paper applies an extensive dataset of the entire population of Dutch manufacturing firms (and not only quoted or large firms), including entries and exits, to the study of the effects of M&As on the shape of the firm size

\(^4\) Notice that the population involves large firms only.

\(^5\) This assumes that there is no trade-off between internal and external growth, in the sense that it is assumed that firms would not have generated more internal growth if, for some reason, they had not focused on external growth.
distribution. Second, it attempts to disentangle the effects of internal and external growth processes on the size distribution by means of a counterfactual analysis.

3. DATA AND METHODOLOGY

We use two databases of manufacturing firms in the Netherlands collected by the Central Bureau of Statistics Netherlands (CBS). The first database is the Business Register. This is a comprehensive database of the entire population of manufacturing firms. It contains demographic and domestic employment data of all firms registered for fiscal purposes in the Netherlands over the period 1993-1999. For a given year, the dataset includes all firms that have been active during that year, not necessarily for the full duration of that year. The set is composed of all firms that existed throughout the year and of all those that entered and/or exited during the year. Here, the events ‘entry’ and ‘exit’ are defined with respect to the inclusion in or exclusion from the dataset. In addition, the dataset specifies the reason for inclusion or exclusion of a firm. The particular variable allows distinguishing actual entry and exit of a firm from the entries and exits due to mergers and acquisitions. Because of this identification and of the comprehensive scope of the dataset, (actual) entry and (actual) exit as reported in the BR provide very good approximations of the birth and death of a company. As a measure of size, we use the number of domestic employees, as this is the only measure available in the dataset. In this respect, the BR has the advantage of reporting the firm size down to zero employees (or self-employment).

The second database provides additional information to the Business Register (BR). It contains detailed information on all domestic M&As that took place within the observed population of firms from the BR. In particular, it allows matching the acquired (or merged) firms to the acquiring (or merging) firms, and the corresponding number of employees. From
now on we refer to an “event” whenever a merger, takeover or partial acquisition takes place, on the one hand; and, on the other, whenever restructuring of the company in different units, or via spin-offs and partial divestures takes place (partial acquisitions and divestitures are recorded only if they concern ownership changes beyond 50% of total outstanding shares).

Combining the two datasets, we have estimated two distributions: a) the ‘starting distribution’ that one would observe at the beginning of the year, before any event has taken place; and b) the ‘final distribution’ that one observes at the end of the year, after all events have taken place. The firms that carry out acquisitions (including partial acquisitions) or divestitures (including partial divestitures) appear in the starting distribution with their size before any event takes place. In the final distribution, they appear with their size modified according to the events that took place, i.e. in case of a merger or an acquisition with an increased size, while in case of a divestiture with a decreased size.

For a certain year, the ‘starting distribution’ is composed of four categories: (i) the firms that will not undergo any event throughout the year; (ii) the firms that will exit during the year; (iii) the firms that will be acquired or merged; and (iv) the firms that will acquire or undertake partial divestiture. For the same year, the ‘final distribution’ comprises the following sets: (i) firms that will not have undergone any event during the year (so-called continuing firms); (ii) firms that have entered during the year; (iii) firms that have been spun-off or demerged from existing firms; and (iv) firms that have done acquisitions or that have undertaken (partial) divestitures.

In addition, to better distinguish the effects of M&A on the size distribution we compare the starting and final state for the entire population – that is, as a result of (i) + (ii) + (iii) + (iv) – as well as for the only set of firms involved in the process of merger and acquisitions – that is, (iii) and (iv).

As a reference year for the starting and final distributions, we consider the year 1997,
since this is the year in which the greatest number of events related to mergers and acquisitions took place over the observation period, 1993-1999. In 1997, the population of manufacturing firms from the Business Register includes 62,662 firms, of which slightly less than 10 per cent is self-employment (firms with zero employees). Therefore, we compare the distribution that includes the firms with zero employees with the distribution that excludes these firms.

4. The Aggregate Size Distribution

We first analyse the size distribution for the entire population of firms for 1997. We estimate the starting and final distributions for the population including and excluding self-employment. Table 2 reports the descriptive statistics for the four distributions.

--- Insert Table 2 ---

The number of active firms in the starting distribution amounts to 57329, of which 9.7 per cent concerns self-employment. The same number for the final distribution is equal to 56595, of which 8.8 concerns self-employment. A comparison of the starting and the final distribution shows that the number of firms decreases by 1.3 per cent when self-employment is included, and with 0.2 per cent when it is excluded. This suggests that the self-employed are suffering the highest mortality rate.

Our estimated distributions, no matter whether we are concerned with the starting or final distribution, either with or without self-employment, are in line with previous findings on empirical size distributions. Seventy-five per cent of the distribution consists of firms with less than 10 employees, confirming the “stylised fact” that size distributions are highly positively skewed: large numbers of small sized firms and small numbers of large firms.
Indeed, only about 1 per cent of the population has more than 230 employees. In addition, the mean of the distribution is between 8 and 9 times larger than the median, due to the long right tail (confirmed by the large kurtosis) given the presence of only a few large firms.

To compare graphically the size distributions of the starting and final populations, we plot the right cumulated distribution function on a double logarithmic scale (Figure 2). Because of the logarithmic scale, we analyse only the distributions without self-employment.\(^6\)

--- Insert Figure 2 ---

In Figure 2, the plots of the starting and final distribution largely overlap, thus demonstrating that the FSD seems to be unaffected by events, among which mergers and acquisitions. Since 1997 was well into the fifth merger wave (see Figure 1), and Dutch firms were among the world’s most active in terms of mergers and acquisitions, this would seem to be a puzzling result. However, a number of possible explanations can be brought forward. First, the dynamics of the entire manufacturing sector may counterbalance the effects of M&As on the size distribution. In this case we would assume that greenfield entrants (8.13 % of the population) as well as the firms that exit the market (7.09 % of the population) offset the effects of M&As on the size distributions.

Second, our analysis focuses on the population of manufacturing firms that are active in the Netherlands, and on events related to mergers and acquisitions that have involved these firms only, excluding events that took place abroad. In other words, we study the effects of M&As on the firm size distribution as far as these firms have manufacturing facilities inside a country, in this case the Netherlands. Especially during the last merger wave that ran from

\(^6\) However, this restriction would not affect the analysis of the size distribution, since, as we observed in Table 2,
1995-2000, many M&As, however, were cross-border, especially those involving large and very large firms. Dutch firms were particularly active in the international merger market. For example, in 1998, and in relation to home country GDP, Dutch firms took the world’s number one position in terms of cross-border M&As. Such mergers amounted to approx. 11.1 per cent of GDP whereas cross-border M&As involving French and German firms amounted to only 3.4 and 3.3 per cent of GDP respectively (Schenk 2003). Therefore, even merger frenzies may leave domestic firm size distributions—as well as industrial concentration—unaffected, provided that the implied mergers are cross-border. Obviously, such mergers may have a significant effect on the firm size distribution as well as industrial concentration at the European (EU) and/or the worldwide level.

Finally, our analysis focuses on the effects of M&As on the size distribution at the aggregate level, indeed pooling together all manufacturing sectors. Thus, the result that no significant change of the firm size distribution has been detected may be due to aggregation. An increasing industrial concentration due to M&As in one specific sector (at two or three digit level of the Standard Industrial Classification) might be compensated by a decreasing concentration in another. Therefore aggregation washes away the effects of M&As on industrial concentration.

--- Insert Table 3 ---

In order to test whether the differences between the two distributions are statistically significant, we run a Kolmogorov-Smirnov test. The results shown in Table 3 reject the hypothesis that the two empirical distributions come from the same theoretical distribution.

the two distributions, with and without self-employment, have the same characteristic features.
Despite the graphical analysis, the statistical test detects the effects of the M&As on the size distribution. Indeed, we know that about 3000 firms are involved in such processes. As the Kolmogorov-Smirnov is a sensitive test for a large number of observations, it is able to capture an effect that the graphical analysis neglects.

We calculate the Herfindahl index for the starting and final distributions in order to assess whether the degree of industrial concentration changes as an effect of industrial dynamics. For the starting distribution the Herfindahl index is 0.00210 and for the final distribution 0.00202. The measure of concentration has been calculated using a relative measure that normalises for the number of firms in the distribution. The result suggests that in 1997 the industrial dynamics slightly reduced the degree of the degree of the domestic industrial concentration.

To investigate the shape of the size distribution, and the effects of industrial dynamics on it, we present the p-p plots for the starting and final distributions both for the lognormal and Pareto. Figure 3 shows that the lognormal distribution not surprisingly fits the data better than the Pareto distribution. This is not surprising because we know from the literature that the Pareto fits better the upper tail of the firm size distribution (Marsili, 2005) As observed for the density and cumulative distribution graphs, the differences in the shape of the distribution cannot be visually appreciated.

--- Insert Figure 3---

5. THE EFFECTS OF MERGERS AND ACQUISITIONS

In this section, we focus on the set of firms that are involved in a M&A-event during the year 1997. In this way we try to emphasise the possible effects of M&As on the shape of the
size distribution. The starting distribution represents the initial (at the beginning of the year) size of the firms that we know will be involved in an event during the year. The final distribution collects the size of the same firms after the event took place. Furthermore, in the final distribution the new firms created by spin-offs, divestures and restructuring appear, while firms that exited the market due to mergers, or takeovers are not present anymore.

\[\text{Insert Table 4}\]

During 1997, 3899 firms are involved in activities related to mergers and acquisitions and their opposites (spin-offs and divestures). At the end of the year, 2564 firms remain which implies that M&As and their opposites have decreased the numbers of firms active marketing the manufacturing sector. The descriptive statistics shown in Table 4 highlight that this is not the only effect. The average firm size increases by 56%, while the median increases by 100%. Looking at the quintiles of the two distributions (the one at the beginning of the year and the one at the end after all events had occurred), one could conclude that the entire starting distribution shifts towards larger sizes.

It is worth noting that the skewness, the kurtosis and also the coefficient of variation considerably decrease from the starting to the final distribution, suggesting that the final distribution is more symmetric and more concentrated around its mean.

As Figure 4 confirms there are more firms concentrated in the central part of the distribution. Indeed the density increases drastically at the centre, and marginally in the upper tail. This increase is due to a large reduction in the density of firms in the lower tail (see Figure 4b). Overall, we observe that the effect of M&A increases significantly the number of medium-sized firms, reducing the number of the micro and small firms, while the number of large firms does not increase in such a relevant way, but their size increases considerably (see
the 95 and the 99 percentiles in Table 4: the values almost double.

--- Insert Figure 4 -----

In accordance with the graphical analysis, the Kolmogorov-Smirnov test shown in Table 3 states that the empirical distributions before and after the M&A events come from two distinct theoretical distributions.

As before, we calculate the Herfindahl index of the starting and final distributions in order to measure the changes in industrial concentration due to the effects of mergers and acquisitions. For the starting distribution, the Herfindahl index is 0.0765 while it is 0.0717 for the final distribution.\(^7\) Like for the entire population, industrial concentration decreases as an effect of mergers and acquisitions. This counterintuitive result could be explained by observing that the increase in the density of the medium-sized firms outweighs the increase in the density of the upper tails of the distribution. The minimum of the Herfindahl index is equal to 1/N (where N is the total number of firms) implying that all the firms are of same size or have the same market share. In this case the size of the firm coincides with the mean of the size distribution, 1/N. What we observe in our data is that the density of the distribution significantly increases around the mean of the distribution, implying that the Herfindahl index moves towards its minimum value, that is, industrial concentration decreases. This is also consistent with the decline of the coefficient of variation from the starting distribution to the final distribution, both in the entire population and in the sample considering only firms involved in M&A events.

\(^7\) As before, the measure of concentration has been calculated using a relative measure that normalises for the
Another way to study the effects of mergers and acquisitions on the shape of the size distribution is to look at the $p-p$ plots. Figure 5 reports the $p-p$ plots for the lognormal and Pareto. Again, the Pareto shows a poor fit to the data, while the lognormal seems to provide a better fit. If we focus on the lognormal $p-p$ plot of the final distribution, we can observe that the M&As induce a greater departure from log-normality than the starting distribution. This suggests that the process of external growth due to mergers and acquisitions is not generated by Gibrat’s process.

6. COUNTERFACTUAL ANALYSIS

The differences previously observed between the starting and the final distributions reflect organic or internal growth of the firm as well as growth due to mergers and acquisitions (external growth). In order to disentangle the effects given by internal and external growth, we perform a counterfactual analysis. The aim is to compare the real final distribution of firms that underwent an M&A event (therefore including any internal growth as well as external growth) with the distribution of the same firms assuming that they experienced only internal growth.

The computation of the counterfactual distribution builds on the following steps. First, the actual growth rates between the years 1997 and 1998 for the firms that are not involved in an M&A event are calculated. From this distribution of actual growth rates a random sample was extracted of dimension equal to the number of firms that are involved in M&A. By number of firms in the distribution.
applying these random values to the initial size of firms involved in an M&A event, we derive the final size of these same firms, had they not been involved in M&As. The actual final size of firms involved in M&A and the imputed final size of those that were involved in M&A define the final distribution of firm size that would result from internal growth only.

--- Insert Figure 6 ---

The counterfactual analysis (see Figure 6a) suggests that mergers and acquisitions do affect the FSD, especially among medium sized firms: indeed the density of the M&A-firms is much above the counterfactual in the central part of the distribution meaning that M&As create a large number of medium sized firms. The upper tail is less affected by M&As, than the lower tail. The number of large firms slightly rises, but, above all, the size of very few large firms increases as an effect of M&A. In fact, Figure 6a shows a longer and slightly thicker upper tail of the final distribution than the counterfactual distribution. However, the dynamics that we observe among the largest firms is limited in number in comparison to the dynamics of the small and medium sized firms. The total effect of M&As is that industrial concentration, as measured by the Herfindhal index, is higher in the counterfactual distributions (H=0.0965) than in the actual final distribution (H=0.0717). This is mainly because, in the final distribution, the number of firms with size around the mean increases considerably at the expense of micro and small firms. This variation largely outweighs the increase in number and average size of very few large firms and makes the concentration index decrease.\(^8\)

Figure 6b shows that only internal growth does not affect the shape of the size

\(^8\) This result is given by the same motivations reported in Section 5.concerning the minimum of the
distribution of firms. Indeed the starting and counterfactual distributions are hardly distinguishable in the graph. On the contrary, the counterfactual analysis suggests that the change in the size distribution is almost entirely due to the external growth of the firms.

7. CONCLUSIONS

As pointed out by Scherer (2002), the process of mergers and acquisitions plays an important role in shaping market concentration. Nevertheless, the empirical evidence on how this process influences the shape of the firm size distribution is limited and somewhat inconclusive. This paper provides new empirical evidence on the effects of mergers and acquisitions on the shape of the size distribution of firms, by using data from the Business Register of the population of manufacturing firms in the Netherlands.

Our analysis shows that M&As do not affect the size distribution when we consider the entire population of firms. This may depend on a number of facts: that entries and exits may balance the effects of M&As, that the distribution may aggregate opposite effects at sector level, and that international M&As, which are excluded from the dataset, may have the most apparent effect on the overall population because they tend to involve the largest firms.

The effects of M&A on the shape of the size distribution emerge when we focus on the firms that were involved in a merger or acquisition event in the observed period. First of all, we observed a shift of the firm size distribution towards larger sizes, with a considerable increase in both the mean and median of firm size. At first glance, this is consistent with what Ijiri and Simon (1971) originally noted in their study of US largest firms in 1950s early 1960s. They found that M&As produced an upward shift in the Pareto curve, which, however, left the shape of the distribution – and therefore market concentration as measured by the slope of the Pareto curve – largely unchanged. Ijiri and Simon’s interpretation was that the size distribution was relatively invariant to the process of M&As, because all firms grew roughly in the same proportion as an effect of it.

Our analysis of the higher central moments of the distribution allowed us to qualify such a shift in firm size and provided evidence that the shape of the distribution did change per effect of M&As (in contrast with the results of the 1971 study by Ijiri and Simon). Indeed, we concentration index.
found that the firm size distribution becomes more concentrated around the mean size, less skewed to the right hand side, and thinner at the tails as a whole. In addition, the graphical inspection of the density functions revealed that the shift toward higher sizes due to M&A is not uniform but affects firms of different sizes in different ways. While the number of firms in the lower tail decreased, as expected, the number of firms in the central size classes increased substantially and outweighed the increase in the number (and mean size) of firms in the upper tail of the distribution.

In sum, we observe increasing concentration of firms around the average size, effect that seems to counterbalance the observed increase in firm size in the upper tail of the size distribution as an effect of M&A (consequently the overall market concentration measured by the Herfindhal index declines). These findings are consistent with the results of a later work by Ijiri and Simon (1974) in which they revised their earlier conclusions, on the basis of data from the late 1960s; during this period a larger number of M&As took place than in the 1950s early 1960s. Ijiri and Simon (1974) observed an increase in concavity in size distribution – compared to the straight line of the Pareto law – when also the number of M&As picked up. Increase in concavity implies that the number of firms in the centre of the distribution increases, which is consistent with our results.

Another aspect is the implications on Gibrat’s law. Firm disappears both at the bottom of the distribution and somewhere in the middle-high range. The probability of experiencing an M&A is not uniform over the size range. This process leads to a change in the shape of the size distribution and to a departure from log-normality. The departure from the lognormal is more evident for the firms involved in M&As than for the total population. This suggests that external growth does not follow a Gibrat’s law, and even more so than in the overall population. Small firms are more likely to be acquired while the larger are more likely to merge (Singh 1975).

Our counterfactual analysis highlights that only internal growth does not affect the shape of the size distribution of firms. On the contrary, it suggests that the change in the size distribution is almost entirely due to the external growth of the firms. More research is needed here, on the relationship between firm growth rates and different form of growth, internal and external. Our analysis is limited to the effects that M&As occurred in a certain year had on the firm size distribution in the aggregate manufacturing. As possible extensions of the current
research, it would be interesting to see whether the effects of M&As that we observed are invariant or not over time and across industrial sectors. One should then examine the evolution of the effects of M&As on firm size distribution over time at the economy wide level and at the disaggregate level of sectors.
REFERENCES

Aaronovitch S. & M. Sawyer (1975), *Big Business*, London: Macmillan

Axtell R.L. (2001), Zipf Distribution of U.S. Firm Sizes, *Science*, 293, 1818-1820.

Blair J.M. (1972), *Economic Concentration*, New York: Harcourt Brace, Jovanovich.

Bottazzi G., E. Cefis & G. Dosi (2002), Corporate Growth and Industrial Structure. Some Evidence from the Italian Manufacturing Industry, *Industrial and Corporate Change*, 11 (4), 705-725.

Cefis, E., M. Ciccarelli, L. Orsenigo (2006), “Heterogeneity in firms’ growth in the pharmaceutical industry”, forthcoming in M. Mazzucato & G. Dosi (eds.) *Knowledge Accumulation and Industry Evolution The Case of Pharma-Biotech*, Cambridge University Press, Cambridge, UK, ch.6, pp. 163-207.

Dickerson A.P., H.D. Gibson & E. Tsakalotos (1997), The Impact of Acquisitions on Company Performance: Evidence From a Large Panel of UK Firms, *Oxford Economic Papers*, 49, 344-361.

Cabral L. & J. Mata (2003), On the Evolution of the Firm Size Distribution: Facts and Theory, *American Economic Review*, 93 (4), pp. 1075-1090.

Geroski P.A. (1999), *The growth of Firms in Theory and in Practice*, CEPR working paper 2092, London.

Gibrat R. (1931), *Les Inegalites Economiques*, Paris: Sirey.

Hannah L. & J.A. Kay (1977), *Concentration in Modern Industry*, London: Macmillan.

Hannah L. & J.A. Kay (1981), The Contribution of Mergers to Concentration Growth: A Reply to Professor Hart, *Journal of Industrial Economics*, XXIX (3), 305-313.

Ijiri Y. & H. A. Simon (1971), Effects of Mergers and Acquisitions on Business Firm Concentration, *Journal of Political Economy*, 79 (2), 314–322.

Ijiri Y. & H. A. Simon (1974), Interpretations of Departures from the Pareto Curve Firm-Size Distributions, *Journal of Political Economy*, 82 (2), 315–331.

Marsili O. (2006), Technology and the Size Distribution of Firms: Evidence from Dutch Manufacturing, forthcoming *Review of Industrial Organization, forthcoming*.

McCloughan P. (1995), Simulation of Concentration Development from Modified Gibrat Growth-Entry-Exit Processes, *Journal of Industrial Economics*, 43 (4), 405-433.

Odagiri, H. (1992), *Growth through Competition, Competition through Growth*, Oxford: Oxford University Press/Clarendon.

Pryor F.L. (2001), Will most of us be working for giant enterprises by 2028?, *Journal of Economic Behavior & Organization*, 44, 363-382.
Pryor F.L. (2002), *The Future of U.S. Capitalism*, Cambridge/New York: Cambridge University Press.

Schenk H. (1997), Mergers, Efficient Choice, and International Competitiveness. Bandwagon Behaviour and Industrial Policy Implications, *Working Paper*, Tilburg University/Erasmus University Rotterdam.

Schenk H. (2003), Organisational Economics in an Age of Restructuring, *Inaugural Address*, Utrecht University.

Scherer, F. M. (2002) Assessing Progress in Research on Industrial Evolution and Economic Growth: A Review Article, *Small Business Economics*, 16, 237-242.

Singh A. (1975), Take-overs, economic natural selection and the theory of the firm: evidence from the post-war United Kingdom experience, *Economic Journal*, 85.

Sutton J. (1997), Gibrat's Legacy, *Journal of Economic Literature*, XXXV (March), 40-59.
Figure 1: Mergers and acquisitions by total transaction value (trn US$)

Source: Schenk (2003)
Table 1: Disposition of the Triad's largest manufacturers of 1978 with respect to 1993 *

Disposition	USA	EU	Japan
Liquidated	0	1	0
Demerged	0	2	0
Surpassed \(^a\)	21	21	18
Survived	58	57	78
Acquired(remaining in top-100)	14	16	4
Other \(^b\)	7	3	0
	100	100	100

\(^a\) Firms that dropped out of the top-100; no further information as to their disposition available.

\(^b\) Firms that dropped out of the top-100 because of reclassification to another sector (mainly services)

* In percentages; with respect to top-100 firms of each respective region.

Note that the period does not cover the massive merger movement in the second half of the 1990s.

Source: Schenk (1997)
Table 2: Descriptive Statistics of the starting and final distribution of the firm population in 1997

	Including self-employment	Excluding self-employment		
	Starting Distribution	Final Distribution	Starting Distribution	Final Distribution
N. of firms	57329	56595	51740	51633
Mean number of employees	16,9	17,0	18,7	18,6
Std. Deviation	185,5	181,8	195,1	190,2
Coff. Variation	1096,5	1069,0	1041,3	1020,7
Skewness	137,2	137,6	130,5	131,6
Kurtosis	25789,3	25885,0	23312,0	23650,7
Quantiles				
0%	0	0	1	1
1%	0	0	1	1
5%	0	0	1	1
10%	1	1	1	1
25%	1	1	1	1
50%	2	2	3	2
75%	7	7	9	9
90%	25	25	27	27
95%	52	53	59	59
99%	238	245	261	267
Figure 2: Size distribution of all firms including mergers and acquisitions in 1997

Figure 2a: Cumulative distribution function

Figure 2b: Probability density function
Figure 3: Lognormal (left) and Pareto (right) p-p plots for the starting and final
distributions of firm size (entire population)
	Starting Distribution (N)	Final Distribution (N)	KS	D	KSa	Pr > KSa
All firms: Including those with 0 employees	57329,00	56595,00	0,00	0,01	1,66	0,01
All firms: Excluding those with 0 employees	51740,00	51633,00	0,01	0,02	2,44	<.0001
Only firms involved in M&A: including those with 0 employees	3891,00	2564,00	0,13	0,26	10,17	<.0001
Table 4: Descriptive Statistics on the numbers of employees of the firms involved in events during 1997

	Including those with 0 employees	
	Starting Distribution	Final Distribution
N. of firms	3899	2564
Mean	36.33	55.67
Std.Deviation	621.16	748.85
Coff. Variation	1709.70	1345.23
Skewness	52.48	42.54
Kurtosis	3003.15	1973.80
Quantiles		
0%	0	0
1%	0	0
5%	0	2
10%	0	4
25%	2	8
50%	7	14
75%	15	21
90%	27	45
95%	64	122
99%	350	579
Figure 4: Size distribution of firms involved in mergers and acquisitions in 1997

Figure 4a: Cumulative distribution function

Figure 4b: Probability density function
Figure 5: Lognormal (left) and Pareto (right) p-p plots for the starting and final size distributions for only firms involved in M&A.
Figure 6: Counterfactual Analysis

Figure 6a: Real final distribution versus the counterfactual distribution (only firms involved in M&As)

Figure 6b: The effects of only internal growth: starting versus counterfactual distribution