Impact of Environmental Resistance Factors on Abundance of Spotted Bollworm, \textit{Earias vittella} Fabricius and \textit{Helicoverpa armigera} Hubner on \textit{Bt} and Non-\textit{Bt} Cotton in Odisha

Uttam Kumar Behera1*, Chitta Ranjan Satapathy2 and Bishnu Charan Jena2

\textit{Department of Entomology, College of Agriculture, Bhawanipatna, Orissa University of Agriculture and Technology, Kalahandi, Odisha, India}

\textit{College of Agriculture, Bhubaneswar, Orissa University of Agriculture and Technology, Bhubaneswar, Odisha, India}

*Corresponding author

\textbf{A B S T R A C T}

The field study aimed to assess impact of environmental resistance factors on population dynamics of \textit{Earias vittella} Fabricius and \textit{Helicoverpa armigera} Hubner on \textit{Bt} and non-\textit{Bt} cotton was conducted at the Regional Research and Technology Transfer Station, Bhawanipatna, Kalahandi. The results revealed that the transgenic Bunny \textit{Bt} cotton incorporated with Cry 1Ac and Cry 2Ab remained absolutely free from bollworms infestation throughout the crop season in 2013 and 2014. However, in non-\textit{Bt} of same Bunny hybrid, the peak incidence of \textit{E. vittella} with damage of terminal shoots (5.96\%), squares (12.97\%) and bolls (9.55\%) were noticed at 35th, 45th and 38th SMW. Similarly, the peak occurrence of \textit{H. armigera} damage to squares (6.07 \%) and bolls (11.08 \%) was recorded at 41st and 40th SMW in both the years. Maximum larval population \textit{E. vittella} and \textit{H. armigera} were noticed during 38th to 41st SMW in both the years. The correlation coefficient of larval population of both the bollworms and oviposition by \textit{H. armigera} with the weather parameters remained non-significant.

\textbf{Keywords}

Seasonal incidence, \textit{Earias vittella}, \textit{Helicoverpa armigera}, Environmental resistance factor, \textit{Bt} and non-\textit{Bt} cotton

\textbf{Introduction}

Cotton (\textit{Gossypium hirsutum} L., Malvaceae) known as ‘white gold’ enjoys a predominant position amongst all cash crops in India and plays a significant role in the national economy. India was a leading country in terms of area under cotton cultivation and raw cotton production (28500 million bales) during 2017-18 in the world. However, the productivity in India was decreased from 541 Kg/ha during 2016-17 to 524 Kg/ha during 2017-18. In Odisha the area under cotton cultivation was increased from 1.36 lakh ha in the year 2016-17 to 1.45 lakh ha in the year 2017-18 whereas, the productivity was lowest (351 Kg/ha) in comparison to normal average (524 Kg/ha) (Anonymous, 2018). About 162 species of insect pests invade cotton crop in its various growth stages and cause 50-60\% losses. The bollworms viz., \textit{Helicoverpa armigera} (Hubner), \textit{Pectinophora gossypiella} (Saunders) and \textit{Earias vittella} (Fabricius) were major serious insect species (Puri \textit{et al.},...
Prior to Bt cotton cultivation in India it was the single largest pesticide consuming crop accounting for about half of the total pesticides used in agriculture (Birthal et al., 2000). Which resulted in undesirable ecological and economic consequences and unfortunately, almost all the insecticides had inadvertent adverse effects on beneficial insects (Kranthi and Russell, 2009). Considering the inevitability to safeguard the environment, Government of India approved the commercial cultivation of Bt cotton since 2002 and subsequently there was phenomenal increase in its acreage (Padaria et al., 2009). In India Bt cotton area increased to 119.40 lakh hectares out of 128.19 lakh hectares in 2014-15 showing more than 93.14 % adoption within a span of thirteen years (Status Paper of Indian Cotton, 2017, Directorate of Cotton Development).

Transgenic crops with insecticidal toxins producing Cry1Ac and Cry2Ab2 genes from the bacterium, Bacillus thuringiensis (Bt) (Sharma and Pampapathy, 2006) showed high degree of resistance against bollworms viz., Helicoverpa armigera (Hubner), Pectinophora gossypiella (Saunders) and Earias vittella (Fabricius) in laboratory and field conditions (Manjunatha et al., 2009; Sarma and Senguttuvan, 2011). Looking into the significant increase in adoption of Bt cotton cultivation which played potential role in IPM, the Bt transgenic technology need to be harnessed appropriately for sustainable crop production and better environment (Swamy et al., 2009). In IPM population dynamics of insect pests, natural enemies and monitoring of abiotic resistance factors would play a significant role for development of a sound and economically sustainable IPM modules for the insect pest management (Fakhri and Khowaja, 2012). The present study was conducted to analyze the cotton agro-ecosystem as a whole and to identify the environmental resistance factors governing the population dynamics of major bollworms on Bt and non Bt cotton crop,

Materials and Methods

The field experiment was conducted to study the population dynamics of major bollworm species viz., Earias vittella and Helicoverpa armigera on Bt and non Bt cotton and the impact of the abiotic environmental resistance factors viz., temperature (Mean minimum, mean maximum and the average of both), morning and evening relative humidity and the rainfall during Kharif, 2013 and 2014 under rainfed situations at Regional Research and Technology Transfer Station (RRTTS), Bhawanipatna located at 19°40’ North latitude and 83°00’ East longitude with an altitude of 247 meters above MSL.

The experiment was laid out in two fixed plots, in one plot with transgenic (Bt) Bunny hybrid and the other plot with non-transgenic Bunny hybrid in the last week of June in the years 2013 and 2014. The genes incorporated in Bt Bunny are Cry1Ac + Cry2Ab (Event MON 15985). The crop was raised with a spacing of 90 cm x 60 cm for both Bt and non-Bt cotton with recommended agronomical practices (Narayana et al., 2007) excepting the plant protection measures.

Observations were recorded on the damage to buds, squares and bolls due to spotted bollworm, E. vittella and American bollworm, H. armigera. Simultaneously, the larval population of both the bollworms were counted on whole plant from randomly selected 25 plants/ plots in each observation at weekly interval commencing from 30 days after germination (DAG) till final harvesting of seed cotton. In addition, the terminal shoot damage due to E. vittella incidence at vegetative stage was also recorded. The eggs laid by adults of H. armigera were recorded on whole plant from randomly selected 25
plants/plot from 45 (DAG) onwards. The data on per cent shoot, squares and boll damage by bollworms were worked with the help of formula.

\[
\text{Damage(\%)} = \frac{\text{Damaged fruting bodies}}{\text{Total number of fruting bodies}} \times 100
\]

The observations on various parameters were averaged individually at different periods and subjected to T-test analysis for comparison of the mean population of the insect pests on Bt and non-Bt cotton and finding out the correlation co-efficient between the insect pest population and the weather factors by using the following formulae as per Gomez and Gomez (1984) and computed with the help of MS-excel,

\[
t = \frac{\bar{X}_1 - \bar{X}_2}{\sqrt{S_1^2 - S_2^2}}
\]

Where, \(\bar{X}_1 = \frac{\Sigma x_1}{n_1}\), \(\bar{X}_2 = \frac{\Sigma x_2}{n_2}\),

\[
S_1^2 = \frac{\Sigma x_1^2 - (\Sigma x_1)^2}{n_1}, S_2^2 = \frac{\Sigma x_2^2 - (\Sigma x_2)^2}{n_2}
\]

\[
r = \frac{\Sigma xy}{\sqrt{(\Sigma x^2)(\Sigma y^2)}}
\]

Where, \(x = X - \bar{x}, y = Y - \bar{y}\); \(r\) = Simple correlation coefficient;

\(X\) = Variable i.e. mean number of insect pests;

\(Y\) = Variable i.e. abiotic component (Average temperature, relative humidity and rainfall)

The correlation coefficient (\(r\)) values were subjected to the test of significance using t-test:

\[
t = \frac{r}{\sqrt{1 - x^2}} \sqrt{n - 2}
\]

Results and Discussion

Seasonal incidence of bollworm on Bt and non-Bt cotton hybrids

Incidence of spotted bollworm, *Earias vittella* larvae

The results of the study on incidence of *E. vittella* larvae (Table 2) indicated that the spotted boll worm first appeared on non-Bt cotton at 32\(^{nd}\) SMW (6\(^{th}\)-12\(^{th}\) August) whereas, the Bt cotton remained absolutely free from the incidence throughout the cropping season in both 2013 and 2014. Kengegowda et al., (2005) observed that the larval population of *E. vittella* was very low in Bt cotton hybrid. Occurrence of significantly lower larval population on Bt than non-Bt cotton under unprotected condition was also reported by Manjunathan et al., (2009) and Arshad et al., (2015). The mean larval population in non-Bt cotton varied from 0.04 to 0.42 larva per plant in both the years with maximum population recorded between mid-September to mid-October.

Shoot damage by spotted bollworm, *E. vittella*

The present experimental findings revealed that *E. vittella* caused shoot damage in non-Bt cotton crop whereas, the Bt cotton remained completely free from the damage. The results of Brained from the investigation was in line with the view of Sharma and Pampapathy (2006) who reported that transgenic hybrids suffered low shoot damage by spotted bollworm, *E. vittella*. The present investigation showed that the Bt cotton was immune to SBW infestation which was obviously due to the effect of Cry1Ac and Cry2Ab genes incorporated into the Bt hybrid cotton (BG-II). The incidence was recorded in non-Bt cotton during 1\(^{st}\) week of August and continued up to 1\(^{st}\) week of November with a
peak (5.96 %) at last week of August (Table 1). There after the shoot damage was declined.

Square damage by spotted bollworm, *E. vittella*

The *Bt* hybrid cotton exhibited immune reaction to *E. vittella* infestation throughout the cropping season in both the years (Table 1). Whereas, the non-*Bt* version of same hybrid (Bunny) was susceptible to pest damage. The pest appeared to cause damage on non-*Bt* cotton from 33rd SMW (mid-August) and continued till 50th SMW (mid-December) with its peak activity (12.97 % square damage) during 5th to 11th November in both the years. The findings of Dhaka and Pareek (2008) indicated that the infestation of spotted bollworm, *E. in-sulana* and *E. vittella* commenced in the second fortnight of June and reached its peak (25%) in the first week of August and first week of October. Our findings differed from the results of Dhaka and Pareek (2008).

Boll damage by spotted bollworm, *E. vittella*

The observation on boll damage in *Bt* cotton (Table 2) revealed that the green boll damage caused by *E. vittella* in non-*Bt* cotton was significantly higher as compared to *Bt* cotton hybrid. The results of the investigation were in accordance with the findings of Kengegowda et al., (2005), Raja et al., (2007) and Pal et al., (2010) who reported the incidence of *E. vittella* was almost nil in *Bt* hybrids.

The green bolls damage in non-*Bt* cotton started from 2nd week of September (37th SMW) and continued till 2nd week of December (50th SMW) and it was maximum (9.55 %) during 3rd week of September (38th SMW). The results obtained by Tomar (2009) stated that the spotted bollworm activity continued up to 47th SMW with maximum incidence (12%) in 39th SMW. The finding of author was similar with result of Tomar (2009) (Fig. 1).

Oviposition by American bollworm, *Helicoverpa armigera*

The results of investigation (Table 3) showed that egg laying by *Helicoverpa armigera* was first noticed in the last week of August in both *Bt* and non-*Bt* cotton crop. Significantly higher numbers of eggs (0.48 eggs/ plant) were laid by *H. armigera* in non-*Bt* cotton as compared to the *Bt* cotton (0.08 eggs/ plant). Kengegowda et al., (2005) and Reed et al., (2000) reported that the number of bollworms eggs laid did not differ much in *Bt* and non-*Bt* cotton hybrids.

Larval incidence of American bollworm, *H. armigera*

It was observed from the present studies that, there was cent per cent mortality of the *H. armigera* larvae in *Bt* cotton which corroborates with findings of Parker et al., (2000) with a small difference that when neonate or 2-day old larvae were exposed to *Bt* cotton with Cry1Ac gene for 48 hours the survivability was significantly low. The finding was also in agreement with Ashfaq et al., (2000) who reported that the mortality of *Helicoverpa zea* was high for first and third instars and it significantly increased with the increase in feeding period on *Bt*-cotton. Kumar and Grewal (2016) revealed that different larval instars (1st, 2nd, 3rd and 4th) of *H. armigera* when fed on the different plant parts viz., leaves and squares of transgenic *Bt* cotton hybrids caused cent per cent mortality. Observation on the larval population of *H. armigera* (Table 4) showed that maximum larval population observed in between 38th to 40th SMW. The peak larval population of 0.48 and 0.40 larvae/ plant recorded in non-*Bt* cotton at 40th SMW (1st week of October) in the year 2013 and 2014 respectively (Fig. 2).
Fig. 1 Seasonal incidence of *E. vittella* on Bt and non-Bt cotton during 2013 and 2014

Fig. 2 Seasonal incidence of *H. armigera* on Bt and non-Bt cotton during 2013 and 2014
Table 1: Seasonal incidence of spotted bollworm, *Earias vittella* on *Bt* and non-*Bt* cotton during 2013 and 2014

SMW	Periods	Shoot damage (%)	Square damaged (%)										
		2013	2014	Mean (Bt)	Mean (N-Bt)	2013	2014	Mean (Bt)	Mean (N-Bt)				
		Bt	N-Bt	*Bt*	N-Bt		2013	2014					
32	6th – 12th Aug	0.00	0.00	0.00	4.65	0.00	2.33	0.00	1.27	0.00	5.58	0.00	3.43
33	13th – 19th Aug	0.00	4.30	0.00	6.72	0.00	5.51	0.00	1.35	0.00	1.02	0.00	1.19
34	20th – 26th Aug	0.00	3.33	0.00	4.11	0.00	3.72	0.00	1.62	0.00	2.54	0.00	2.08
35	27th – 02nd Sep	0.00	5.67	0.00	6.25	0.00	5.96	0.00	7.14	0.00	7.54	0.00	7.34
36	03rd – 09th Sep	0.00	4.15	0.00	3.70	0.00	3.93	0.00	6.71	0.00	5.77	0.00	6.24
37	10th – 16th Sep	0.00	1.08	0.00	1.47	0.00	1.28	0.00	7.43	0.00	7.98	0.00	7.71
38	17th – 23rd Sep	0.00	1.18	0.00	2.51	0.00	1.85	0.00	4.48	0.00	4.68	0.00	4.58
39	24th – 30th Sep	0.00	0.56	0.00	0.00	0.00	0.28	0.00	7.49	0.00	6.34	0.00	6.92
40	01st – 07th Oct	0.00	1.32	0.00	0.00	0.00	0.00	0.00	6.04	0.00	5.43	0.00	5.74
41	08th – 14th Oct	-	-	-	-	-	-	0.00	3.56	0.00	5.39	0.00	4.48
42	15th – 21st Oct	-	-	-	-	-	-	0.00	6.57	0.00	5.30	0.00	5.94
43	22nd – 28th Oct	-	-	-	-	-	-	0.00	5.10	0.00	6.48	0.00	5.79
44	29th – 04th Nov	-	-	-	-	-	-	0.00	13.23	0.00	12.71	0.00	12.97
45	05th – 11th Nov	-	-	-	-	-	-	0.00	7.22	0.00	6.03	0.00	6.63
46	12th – 18th Nov	-	-	-	-	-	-	0.00	3.89	0.00	4.23	0.00	4.06
47	19th – 25th Nov	-	-	-	-	-	-	0.00	2.44	0.00	1.55	0.00	2.00
48	26th – 02nd Dec	-	-	-	-	-	-	0.00	3.45	0.00	1.06	0.00	2.26
49	03rd – 09th Dec	-	-	-	-	-	-	0.00	4.69	0.00	3.70	0.00	4.20

	Mean±SD	Rang								
	2.40±1.99	-	3.27±2.47	-	2.83±2.06	-	5.20±2.93	-	5.19±2.79	-

SMW - Standard Meteorological Week; S - Significant, NS - Not significant
Table 2: Seasonal incidence of spotted bollworm, *Earias vittella* on *Bt* and non-*Bt* cotton at RRTTS, Bhawanipatna during 2013 and 2014.

SMW	Periods	Boll damage (%)	Larval population (Nos/Plant)								
		2013	2014	2013 & 2014	2013	2014	2013 & 2014				
	Bt N-Bt	Bt N-Bt	Mean (Bt)	Mean (N-Bt)	Bt N-Bt	Bt N-Bt	Mean (Bt)	Mean (N-Bt)			
32	6th – 12th Aug	-	-	-	-	0.00	0.00	0.00	0.08	0.00	0.04
33	13th – 19th Aug	-	-	-	-	0.00	0.04	0.00	0.12	0.00	0.08
34	20th – 26th Aug	-	-	-	-	0.00	0.04	0.00	0.00	0.00	0.02
35	27th – 02nd Sep	-	-	-	-	0.00	0.12	0.00	0.12	0.00	0.12
36	3rd – 09th Sep	-	-	-	-	0.00	0.28	0.00	0.20	0.00	0.24
37	10th – 16th Sep	0.00	4.41	0.00	3.70	0.00	4.06	0.00	0.32	0.00	0.24
38	17th – 23rd Sep	0.00	10.22	0.00	8.88	0.00	9.55	0.00	0.36	0.00	0.28
39	24th – 30th Sep	0.00	8.33	0.00	7.05	0.00	7.69	0.00	0.44	0.00	0.40
40	1st – 07th Oct	0.00	6.87	0.00	7.59	0.00	7.23	0.00	0.52	0.00	0.32
41	8th – 14th Oct	0.00	7.82	0.00	6.72	0.00	7.27	0.00	0.44	0.00	0.40
42	15th – 21st Oct	0.00	5.71	0.00	5.94	0.00	5.83	0.00	0.20	0.00	0.04
43	22nd – 28th Oct	0.00	2.61	0.00	3.99	0.00	3.30	0.00	0.12	0.00	0.20
44	29th – 04th Nov	0.00	2.24	0.00	1.21	0.00	1.73	0.00	0.28	0.00	0.12
45	5th – 11th Nov	0.00	3.72	0.00	2.78	0.00	3.25	0.00	0.24	0.00	0.16
46	12th – 18th Nov	0.00	1.02	0.00	1.15	0.00	1.09	0.00	0.12	0.00	0.08
47	19th – 25th Nov	0.00	1.27	0.00	0.94	0.00	1.11	0.00	0.28	0.00	0.04
48	26th – 02nd Dec	0.00	1.58	0.00	1.25	0.00	1.42	-	-	-	-
49	3rd – 09th Dec	0.00	3.73	0.00	2.47	0.00	3.10	-	-	-	-
50	10th – 16th Dec	0.00	2.70	0.00	1.71	0.00	2.21	-	-	-	-
	Range	-	1.02	1.02	0.94	1.09	0.55	-	0.00	0.04	0.42
	Mean±SD	-	4.45	4.45	3.96	4.20	2.80	-	0.24	0.18	0.21

SMW- Standard Meteorological Week; S- Significant, NS- Not significant
Table 3
Seasonal incidence of American bollworm, *Helicoverpa armigera* on *Bt* and non-*Bt* cotton at RRTTS, Bhawanipatna during 2013 and 2014

SMW	Periods	American bollworm eggs (Nos/plant)	American bollworm damaged squares (%)										
	2013 & 2014	2013 & 2014	2013 & 2014										
	Bt	*N-Bt*	*Bt*	*N-Bt*	Mean (Bt)	Mean (N-Bt)	*Bt*	*N-Bt*	*Bt*	*N-Bt*	Mean (Bt)	Mean (N-Bt)	
34	20th–26th Aug	-	-	-	-	-	0.00	0.00	0.00	1.36	0.00	0.68	
35	27th–02nd Sep	0.04	0.08	0.00	0.04	0.02	0.06	0.00	1.08	0.00	1.27	0.00	1.18
36	3rd–09th Sep	0.00	0.16	0.04	0.12	0.02	0.14	0.00	1.64	0.00	0.96	0.00	1.30
37	10th–16th Sep	0.08	0.20	0.04	0.24	0.06	0.22	0.00	0.87	0.00	1.13	0.00	1.00
38	17th–23rd Sep	0.00	0.40	0.08	0.48	0.04	0.44	0.00	4.39	0.00	4.71	0.00	4.55
39	24th–30th Sep	0.04	0.44	0.00	0.32	0.02	0.38	0.00	4.98	0.00	5.28	0.00	5.13
40	1st–07th Oct	0.00	0.24	0.04	0.16	0.02	0.20	0.00	3.59	0.00	4.57	0.00	4.08
41	08th–14th Oct	-	-	-	-	-	-	0.00	5.56	0.00	6.58	0.00	6.07
42	15th–21st Oct	-	-	-	-	-	-	0.00	1.66	0.00	1.62	0.00	1.64
43	22nd–28th Oct	-	-	-	-	-	-	0.00	0.86	0.00	1.22	0.00	1.04
Mean±SD	0.00±0.08	0.08±0.44	0.00±0.08	0.04±0.48	0.02±0.06	0.06±0.44	0.00	0.00	0.00	0.96±0.58	0.00	1.00±0.07	
S	S	S	S	S	S	S	S	S	S	S	S	S	

SMW- Standard Meteorological Week; S- Significant, NS- Not significant

Table 4
Seasonal incidence of American bollworm, *Helicoverpa armigera* on *Bt* and non-*Bt* cotton at RRTTS, Bhawanipatna during 2013 and 2014

SMW	Periods	American bollworm damaged bolls (%)	American bollworm larval population (Nos/Plant)										
	2013 & 2014	2013 & 2014	2013 & 2014										
	Bt	*N-Bt*	*Bt*	*N-Bt*	Mean (Bt)	Mean (N-Bt)	*Bt*	*N-Bt*	*Bt*	*N-Bt*	Mean (Bt)	Mean (N-Bt)	
35	27th–02nd Sep	-	-	-	-	-	0.00	0.04	0.00	0.08	0.00	0.06	
36	3rd–09th Sep	-	-	-	-	-	0.00	0.12	0.00	0.16	0.00	0.14	
37	10th–16th Sep	0.00	5.88	0.00	7.41	0.00	6.65	0.00	0.28	0.00	0.32	0.00	0.30
38	17th–23rd Sep	0.00	7.53	0.00	6.54	0.00	7.04	0.00	0.36	0.00	0.40	0.00	0.38
39	24th–30th Sep	0.00	7.02	0.00	7.32	0.00	7.17	0.00	0.36	0.00	0.28	0.00	0.32
40	1st–07th Oct	0.00	10.65	0.00	11.50	0.00	11.08	0.00	0.48	0.00	0.40	0.00	0.44
41	8th–14th Oct	0.00	7.67	0.00	4.68	0.00	6.18	0.00	0.40	0.00	0.20	0.00	0.30
42	15th–21st Oct	0.00	5.14	0.00	5.94	0.00	5.54	0.00	0.16	0.00	0.08	0.00	0.12
Mean±SD	2.61±0.65	1.77±1.15	2.19±1.10	-	0.04±0.48	0.08±0.40	-	0.06±0.44					
S	S	S	S	S	S	S	S	S	S	S	S	S	

SMW- Standard Meteorological Week; S- Significant, NS- Not significant
Table 5 Effect of weather parameters on incidence of the bollworms on *Bt* and non-*Bt* cotton

Meteorological parameters	Simple correlation coefficient (r) between meteorological parameters and bollworms population							
	SBW larvae	ABW eggs	ABW larvae					
	2013	2014	2013	2014	2013	2014		
Temp. (Max)(°C)								
Bt	0.000	-0.098	0.028	-0.363	-0.117	-0.217	-0.184	0.015
N-Bt								
Temp. (Min)(°C)								
Bt	0.271	-0.209	0.594	0.458	-0.291	0.172	-0.002	0.292
N-Bt								
Temp. (Mean) (°C)								
Bt	0.088	0.035	0.467	0.053	-0.422	-0.075	-0.115	0.205
N-Bt								
R H (Morning) (%)								
Bt	0.039	0.177	-0.765	0.306	0.281	-0.159	0.356	-0.238
N-Bt								
R H (Evening) (%)								
Bt	0.131	0.108	-0.388	0.298	0.455	-0.065	0.131	-0.224
N-Bt								
R H (Mean) (%)								
Bt	0.096	0.144	-0.530	0.313	0.387	-0.104	0.226	-0.233
N-Bt								
Rain fall (mm)								
Bt	0.024	0.208	-0.828	0.314	0.326	-0.205	0.422	-0.138
N-Bt								

* P=0.05, ** P=0.01

* Significant at P= 0.05; ** Significant at P=0.0
While, no incidence of *H. armigera* larvae recorded in *Bt* cotton which is in line with the revelation made by Manjunathan *et al.*, (2009). Jie and Yuan (2000) observed that *Bt* cotton was highly resistant to cotton bollworm, *H. armigera* which confirms our results. Sharma and Pampapathy (2006) indicated that *H. armigera* larvae were significantly lower on the transgenic hybrids which coincided with the present findings. Nagendra (2015) reported that the highest bollworm larval population observed in mid-September and last week of November in conventional cotton.

Square damage by *H. armigera*

The *H. armigera* damaging square was observed during last week of August in 2013 and 2014 on non-*Bt* cotton (Table 3). The squares damaged by *H. armigera* reached its peak (5.56 and 6.58 % in 2013 and 2014 respectively) at 41st SMW in the 2nd week of October during both the crop seasons. Saini *et al.*, (2004) reported that *H. armigera* incidence was at its peak in second fortnight of September to early October. Dhaka and Pareek (2008) reported that the ABW appeared from the mid-August and reached at its peak (8.25%) in the mid-October. Prasada Rao *et al.*, (2010) reported that, by growing the *Bt* cotton, the average reduction in square damage was from 78.8 to 89.3 per cent. The results obtained in present study was in accordance with the findings of the earlier workers (Saini *et al.*, 2004; Dhaka and Pareek, 2008 and Prasada Rao *et al.*, 2010)

Boll damage by *H. armigera*

The *Bt* hybrid cotton exhibited complete resistance against *H. armigera* damage. However, the non-*Bt* hybrid of same variety was susceptible to the *H. armigera* attack. The results obtained from the investigation substantiated with the findings of Hallad *et al.*, (2014) who revealed that second generation *Bt* genotypes, Tulasi 4 BG-II and Chiranjeevi-BG-II of MON-15985 event showed high degree of resistance against bollworm attack. Pal *et al.*, (2010) reported that larval incidence of American bollworm (*H. armigera*) was nil in all the *Bt* hybrids compared to non *Bt* hybrids

The boll damage commenced from 37th SMW (2nd week of September) and continued up to 43rd SMW (4th week of October) during both the growing season (Table 4). The boll damage by *H. armigera* reached its plateau (10.65 and 11.50 % in the year 2013 and 2014 respectively) at 40th SMW i.e., during the 1st week of October. On an average the boll damage varied from 2.19 to 11.08 per cent. Dhaka and Pareek (2008) stated that the damage by *H. armigera* reached at its peak (8.25%) in the middle of October. The result of the author was similar with result of Dhaka and Pareek (2008).

Correlation of bollworms incidence with weather parameters

The data presented in Table 5 revealed that the larval population of *E. vittella* showed non-significant but positive correlation with temperature, relative humidity and rainfall excepting the negative correlation observed in non-*Bt* population in the year 2014.

There was no significant correlation between egg laying by *H. armigera* and any of the weather factors during the study period. However, there was negative correlation with maximum and mean temperature, relative humidity and rainfall in non-*Bt* during 2014. Similarly, during 2013, negative correlation between relative humidity and rainfall and egg laying in *Bt* cotton was observed.

The incidence of *H. armigera* larvae showed negative but non-significant correlation with
maximum, minimum and mean temperature in non-Bt cotton in the year 2013, whereas, morning, evening, mean relative humidity and rainfall negatively affected the larval population in non-Bt cotton in the year 2014. Kumar et al., (2016) reported that the bollworm, *E. vittella* exhibited positive correlation with rainfall, minimum temperature and relative humidity which supplement the present finding. Rawal et al., (2017) also observed that bollworms infestation showed negative and significant correlation with mean minimum temperature (r = -0.740) and non-significant negative correlation with mean maximum temperature (r = -0.309), evening relative humidity (r = -0.434) and rainfall (r = -0.074).

Acknowledgments

The authors acknowledge the facilities provided by the Associate Director of Research, Regional Research and Technology Transfer Station, Bhawanipatna, Kalahandi for successful accomplishment of the research.

References

Anonymous. 2018. Annual Report, All India Coordinated Research Project on Cotton (2017-18), Indian council of Agricultural Research, New Delhi: A-1-5

Arshad, M., Zain-ul-Abdin, Gogi, M. D., Arif, M. J. and Khan, R. R. 2015. Seasonal pattern of infestation by spotted bollworm, *Earias insulana* (Boisd.) and pink bollworm, *Pectinophora gossypiella* (Saund.) in field plots of transgenic *Bt* and non-*Bt* cottons, *Pakistan Journal of Zoology*, 47(1): 177-186.

Ashfaq, M., Young, S. Y. and McNew, R. W. 2000. Development of *Spodoptera exigua* and *Helicoverpa zea* (Lepidoptera: Noctuidae) on transgenic cotton containing Cry IAc insecticidal protein. *Journal of Entomological Science*, 35 (4): 360-372.

Birthal, P. S., Sharma, O. P., Kumar, S. and Dhandapani, A. 2000. Pesticide use in rainfed cotton: frequency, intensity and determinants, *Agricultural Economics Research Review*, 13 (2): 107-122.

Dhaka, S. R. and Pareek, B. L. 2008. Weather factors influencing population dynamics of major insect pests of cotton under semi-arid agro-ecosystem, *Indian Journal of Entomology*, 70(2): 157-163.

Fakhr, M. S. A. and Khowaja, J. 2012. Management of *Bemisia tabaci*, *Amrasca biguttula*, *biguttula* and *Helicoverpa armigera* on field grown, cotton using different ecofriendly insecticides, *International Journal of Advanced Biological Research*, 2(3): 522-529.

Gomez KA, Gomez AA. Statistical procedures for agricultural research, 2nd, IRRI, Philippines, 1984.

Hallad, A.V., Udikeri, S.S., Patil, S. B. and Bhat, A. R. S. 2014. Field performance of first and second generation *Bt* cotton events for bollworm resistance in rainfed ecosystem, *International Journal of Current Microbiology and Applied Sciences*, 3(2): 223-238.

Jie, C. J. and Yuan, X. J. 2000. Effects of *Bt* (*Bacillus thuringiensis*) transgenic cotton on the dynamics of pest population and their enemies. *Acta Phytophylacica Sinica*, 27(2): 141-145.

Kengegowda, N., Patil, B. V. and Bheemanna, M. 2005. Population dynamics of insect pests on *Bt*, non-*Bt* and popular hybrid cotton in Tungabhadra project area of Karnataka state, Karnataka, *Journal of Agricultural Science*, 18(2): 383-388.

Kranthi, K. R. and Russell, D. A. 2009. Changing Trends in Cotton Pest
Management, Book- Integrated Pest Management: Innovation-Development Process, 1, Edn1st:499-541, Springer.

Kumar, V. and Grewal, G. K. 2016. Effect of Bt cotton hybrids on larval mortality and development of Helicoverpa armigera (Hubner) and Spodoptera litura (Fabricius), Journal of Cotton Research and Development, 30(2): 252-259.

Manjunatha, R., Pradeep, S., Sridhara, S., Manjunatha, M., Naik, M. I., Shivanna, B. K. and Hosamani, V. 2009. Comparative performance of Bt and non-Bt cotton against bollworm complex, Karnataka Journal of Agricultural Science, 22(3): 646-647.

Nagendra, S. 2015. Studies on population dynamics of key pests of cotton, International Journal of Agricultural Technology, 11(5): 1161-1176.

Narayana, E., Hema, K., Srinivasulu, K., Prasad, N. V. V. S. D. and Rao, N. H. P. 2007. Agronomic evaluation of Gossypium hirsutum hybrids for varied spacings and nitrogen levels in vertisols under rainfed conditions, Journal of Cotton Research and Development, 21(2): 197-200.

Padaria, R. N., Singh, B., Sivaramane, N., Naik, Y. K., Modi, R. and Surya, S. 2009. A logit analysis of Bt cotton adoption and assessment of farmers’ training need, Indian Research Journal of Extension Education, 9(2): 39-45.

Pal, V., Sharma, P. D., Rahul, C. and Jat, S. L. 2010. Relative incidence of American bollworm, Helicoverpa armigera (Hubner) in Bt and their corresponding non-Bt cotton genotypes. Journal of Cotton Research and Development, 24(2): 253-255.

Parker, C. D., Jr Mascarenhas, V. J., Luttrell, R. G. and Knighten, K. 2000. Survival rates of tobacco budworm, Heliothis virescens (Lepidoptera: Noctuidae) larvae exposed to transgenic cottons expressing insecticidal protein of Bacillus thuringiensis Berliner, Journal of Entomological Science, 35(2): 105-117.

Prasada Rao G. M. V., Prasad, N. V. V. S. D. and Grace, A. D. G. 2010. Impact of Bt cotton in different management modules under rainfed agro-ecosystem, Annals of Plant Protection Sciences, 18(2): 311-314.

Puri, S. N., Sharma, O., Murthy, K. S. and Lavekar, R. C. 2005. Comparative evaluation of different IPM modules in rainfed cotton of Maharashtra, Annals of Plant Protection Sciences, 13 (1): 100-104.

Raja, B., Singh, T. V. K., Lakshmi, K. V., Sreenivas, C. 2007. Relative incidence of pest complex in Bt and non-Bt cotton cultivars, Journal of Cotton Research and Development, 21(2): 239-241.

Rawal, R., Dahiya, K. K., Kumar, A. and Saini, V. 2017. Effect of abiotic factors on bollworms infestation, Journal of Entomology and Zoology Studies, 5(5): 902-905.

Reed, J. T., Stewart, S., Laughlin, D., Harris, A., Furr, R. and Ruscoe, A. 2000. Bt and conventional cotton in the hills and delta of Mississippi: 5 years of comparison, Proceedings-Beltwide-Cotton Conferences San Antonio USA, 4-8 January, 2000, 2: 1027-1030.

Saini, R. K., Jaglan, R. S. and Naresh, J. S. 2004. Status of American bollworm, Helicoverpa armigera (Hubner) on cotton in Haryana, Journal of Cotton Research and Development, 18(1): 78-80.

Sarma, M. and Senguttuvan, N. 2011. Survival of pink bollworm, Pectinophora gossypiella (Saunders) on Bt and non Bt cotton in normal and late sowing with a special emphasis to avoid population pressure, World Cotton
Research Conference on Technologies for Prosperity -5, Mumbai 7-11 November 2011, Abstract No-135:86
Sharma, H. C. and Pampapathy, G. 2006. Influence of transgenic cotton on the relative abundance and damage by target and non-target insect pests under different protection regimes in India, *crop protection*, 25 (8): 800-813.

Status Paper of Indian Cotton. 2017. Directorate of Cotton Development, Government of India, Ministry of Agriculture & Farmers Welfare, Department of Agriculture, Cooperation and Farmers Welfare (DAC & FW), January, 2017: 40-42

Swamy, S. V. S. G., Prasad, N. V. V. S. D. and Rao, N. H. P. 2009. Transgenic *Bt* crops: a major component of integrated pest management- an overview, *Indian Journal of Crop Science*, 4 (1-2): 1-10.

Tomar, S. P. S. 2009. Impact of Weather Parameters on Incidence of Bollworm Complex in Cotton, *Indian Journal of Entomology*, 71(2): 137-142.

How to cite this article:

Uttam Kumar Behera, Chitta Ranjan Satapathy and Bishnu Charan Jena. 2018. Impact of Environmental Resistance Factors on Abundance of Spotted Bollworm, *Earias vitellata* Fabricius and *Helicoverpa armigera* Hubner on *Bt* and Non-*Bt* Cotton in Odisha. *Int.J.Curr.Microbiol.App.Sci.* 7(09): 200-212. doi: https://doi.org/10.20546/ijcmas.2018.709.026