Membrane dynamics associated with viral infection
Laura de Armas-Rillo†, María-Soledad Valera †, Sara Marrero-Hernández and Agustín Valenzuela-Fernández*
Laboratorio de Inmunología Celular y Viral, Unidad de Virología IUETSPC, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), Tenerife, Spain

SUMMARY
Viral replication and spreading are fundamental events in the viral life cycle, accounting for the assembly and egression of nascent virions, events that are directly associated with viral pathogenesis in target hosts. These processes occur in cellular compartments that are modified by specialized viral proteins, causing a rearrangement of different cell membranes in infected cells and affecting the ER, mitochondria, Golgi apparatus, vesicles and endosomes, as well as processes such as autophagic membrane flux. In fact, the activation or inhibition of membrane trafficking and other related activities are fundamental to ensure the adequate replication and spreading of certain viruses. In this review, data will be presented that support the key role of membrane dynamics in the viral cycle, especially in terms of the assembly, egression and infection processes. By defining how viruses orchestrate these events it will be possible to understand how they successfully complete their route of infection, establishing viral pathogenesis and provoking disease. © 2015 The Authors Reviews in Medical Virology Published by John Wiley & Sons, Ltd.

Received: 30 September 2015; Revised: 14 December 2015; Accepted: 16 December 2015

*Correspondence author: A. Valenzuela-Fernández, Laboratorio de Inmunología Celular y Viral, Unidad de Virología IUETSPC, Unidad de Farmacología, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38071 La Laguna, Tenerife, Spain.
E-mail: avalenzu@ull.edu.es
†These authors contributed equally to this review.

Abbreviations used
ADF, adenine diphosphate; ALIX, ALC-2 (apoptosis-linked gene 2)-interacting protein X; APOBEC3, apolipoprotein B mRNA-editing enzyme-catalytic, polypeptide-like 3; Arf, ADP-ribosylation factor; Arf-GEF, Arf-GTP exchange protein; ASFV, African swine fever virus; Afg, autophagy-related protein; BFA, Brefeldin A; CCR, C-C chemokine receptor; CD, cluster of differentiation; COPI and II, clathrin, coatamer protein complex I and II; CPV, cytopathic vacuole; CVB3, Coxsackievirus B3; CXCR, C-X-C chemokine receptor; C3-PI3K, lipid class III phosphatidylinositol 3-kinase complex; DC, dendritic cell; DENV, dengue virus; DMVs, double-membrane vesicles; dsDNA, double-stranded DNA; dsRNA, double-stranded RNA; Eno, envelope; ERGIC, ER–Golgi intermediate compartment; ESCRT, endosomal-sorting complex required for transport; GALT, gut-associated lymphoid tissue; GDP, guanosine diphosphate; GTP, guanosine triphosphate; GTPase, guanosine triphosphatase; HDAC6, histone deacetylase 6; ISG-15, interferon-stimulated gene 15 protein; LC3-I, microtubule-associated protein 1A/1B-light chain 3; LC3-II, the phosphatidylethanolamine-conjugated from LC3-I; LHBs, large HBV envelope; LHV, luteovirus; MAVS, mitochondrial antiviral signaling protein; MVB, multivesicular body; MT, microtubule; MTOC, microtubule organizing centre; NCLDV’s, nucleocytoplasmic large DNA viruses; Nef, negative factor; NS5A, non-structural 5A protein; NS5B, non-structural 5B protein; P450-K, pr, phosphatidyl ethanolamine; pH, proton gradient; PIP2, phosphatidylinositol-4,5-bisphosphate; PIP3, phosphatidylinositol-3,4,5-trisphosphate; PIP5K, phosphatidylinositol-4-phosphate 5-kinase I; PIP6, phosphatidylinositol-4,5,6-trisphosphate; RIG-I, RIG-I-like receptor; VAMP, vesicle-associated protein complex; VAP; VAMP-associated protein; Vif, viral infectivity factor; Vps, vacuolar protein sorting-associated protein; VF, viral factory; VS, Virological synapse; SipaseIV, polyphosphoinositide 5-phosphatase IV.
phagocytosis, where microorganisms can be cleared by granule and vesicle secretion [6]. Therefore, determining how viruses use and rearrange intracellular organelles during their biological cycle is an important goal that will aid the development of new antiviral strategies, and our understanding
of these pathologies. Indeed, there is growing evidence that cell's modify their membranes to defend themselves against pathogens and infection, altering their spatial reorganization and vesicle trafficking. In this review, we focus on the importance of the membrane flux triggered by viruses to achieve replication and egression, and to ensure their propagation.

Membrane dynamics during viral replication

Several of the cell's organelles and membrane structures are involved in viral replication and in fact, many viruses use specific cellular compartments to replicate, referred to as viral factories (VFs: Figure 1). These VFs provide a physical scaffold that brings together elements required for genome replication and morphogenesis [1,7]. VFs are usually formed by rearranging the host's cell membranes, reorganizing the cytoskeleton and recruiting specific organelles, like mitochondria (reviewed in [8]). These viral driven events involve the association of replication complexes (RCs) with ER derived membranes to form a VF. Hence, intracellular membrane dynamics appear to be crucial for viral replication and survival.

A well-known example of a VF is that used by vaccinia virus, an enveloped pathogen of the Poxvirus family that replicates in the cytoplasm by assembling small rough ER-derived cisternae into a microenvironment that resembles a cytoplasmic mini-nucleus for viral replication [9]. Similarly, the RCs of Togaviruses associate with endocytic membranes, while Nodavirus RCs associate with mitochondrial membranes (reviewed in [1]). Thus, specific membrane compartments can be used as VFs by RNA viruses to concentrate viral replicases and key cofactors, and ensure efficient viral genome replication [10]. In this context, both rubella virus (RUBV), a relevant human teratogenic Togaviridae virus [11], and Semliki forest virus (SFV), a member
of the Alphavirus group of this family [12], couple their RNA synthesis to endosome and lysosome membranes modified by the association of virus specific components. The subsequent fusion of these late endosomes and lysosomes generates cytopathic vacuoles (CPVs) [13,14] that are lined with small vesicular invaginations or spherules (viral RNA replication sites) [13,14]. CPVs establish complex and reversible contact with endocytotic vesicles through internal membranes interconnected with transport endosomes [8]. For example RUBV forms VFs around CPVs via the recruitment of membrane structures from the ER cisternae, Golgi stacks and mitochondria [8] (Figure 1). The Golgi apparatus is a highly dynamic organelle with a sustained, functional flux of membrane proteins [15], and it can serve as a morphogenic mould for Rubiviruses, Coronaviruses, Arteriviruses and Bunyaviruses [1,8,16,17]. These RUBV factories connect viral replication with the assembly and maturation of nascent virions at Golgi membranes, contributing to the virus escaping from the host cell’s defences [16].

Some viruses induce the formation of double-membrane vesicles (DMVs) and/or autophagosomes for replication [1–4,18,19], such as the positive RNA viruses of the Flaviviridae family and Nidovirales order [20,21] (Figure 1). The RNA polymerase of the human poliovirus, a Picornaviridae family member responsible for poliomyelitis, can also assemble DMVs [22]. Infection by this virus triggers the modification of different intracellular membrane structures and organelles (but not mitochondria), converting them into virus replication vesicles. In fact, poliovirus-associated DMVs resemble autophagosomes, as also described for another Picornaviridae family member, Coxsackievirus B3 (CVB3) [23,24]: Figure 1). Autophagosomes are DMVs generated by membrane trafficking and they are related to the catabolic process of autophagy, which involves the degradation of cytoplasmic components within lysosomes [25,26]. Autophagy maintains the organism’s homeostasis by sequestering undesired intracellular elements for lysosomal degradation and recycling [25,26]. Viruses often use autophagy to complete their lifecycle and evade immune responses, even though it is based on catalytic pathways [3,23,24]. Poliovirus, like other positive RNA viruses, has evolved the capacity to convert autophagy into a key cellular motor for replication [3,10,23]. During autophagy, a cytosolic form of the microtubule-associated protein 1A/1B light chain 3 (LC3-I) conjugates with phosphatidylethanolamine to form LC3-II and associate with autophagosomal membranes, ultimately producing the degradation of LC3-II during the late steps of autophagy [27]. Conversely, the p62 protein (or sequestosome-1, SQSTM1) interacts with ubiquitinated proteins, LC3 and other proteins to ensure the correct degradation of undesired material. LC3-II augments during active autophagy when p62 is degraded [28,29]. In this context, Poliovirus or CVB3 infection triggers the generation of autophagosomes with a higher LC3-II/LC3-I ratio and with LC3 foci, structures that support the RNA RC without promoting lysosome degradation (evident through p62 stabilization [23,24]: Figure 1). However, it is unclear whether these viruses block autophagosome maturation into amphisomes, avoiding autophagosome fusion with endosomes [30]. Such events override the appearance of degradative autolysosomes [31] or they may provoke the formation of autophagosome-like structures disconnected from catalytic pathways. It is also thought that these autophagosomes may ultimately serve as a membrane scaffold to permit the egression of nascent virions from infected cells, preventing cell lysis [30] (Figure 1).

All HCV viral genotypes (1a, 1b and 2a), positive RNA flaviviruses that are a major cause of chronic liver disease [32], induce autophagosome accumulation [33,34]. This involves regulation of the unfolded protein response (UPR), which relieves ER stress and prevents the formation of catalytic autolysosomes by suppressing their fusion with lysosomes [33,34] (Figure 1). Apparently, the success of viral replication relies on the recruitment of membrane-trafficking proteins to ER-derived membrane scaffolds [35–41]. Hence, domain 1 of the non-structural 5A (NS5A) protein and the helicase domain of NS3 are sufficient to achieve efficient DMV formation, which also depends on tightly regulated cis cleavage of the HCV-polyprotein precursor [35] and requires cyclophilin A isomerase activity [36]. NS5A associates with NS5B, a RNA-dependent RNA polymerase, a complex that interacts with VAMP (vesicle-associated membrane protein)-associated proteins (VAPs) [37,38] and recruits Ras-like small GTPases (e.g. Rab1, Rab5 and Rab7), enlarging the viral replication compartment by docking membrane vesicles [39–41]. This process also regulates autophagy [42], given that HCV-
induced autophagosomes support viral replication and the delivery of incoming viral RNA to the translation apparatus, and/or the recruitment of cellular factors for translation. However, some controversy still surrounds this issue, autophagosomes can mature into acidic amphisomes in HCV-infected cells [43,44], and subsequently fuse with late endosomes or lysosomes [44] (Figure 1). Autophagic membrane flux appears to be necessary to translate the HCV genome, yet it appears to be dispensable once viral infection has begun [45]. Moreover, no changes in either p62 or the degradation of long-lived proteins are observed [33], despite the enhanced autolysosome formation in cells expressing HCV replicons [46]. While specific silencing of autophagy genes does not affect viral translation and RNA replication, it does apparently alter HCV morphogenesis [47]. However, the silencing of factors critical for autophagosomes formation, like LC3 or Atg7, appears to suppress HCV RNA replication [48], while HCV replication is apparently potentiated when the UPR promotes autophagy [49]. Conversely, HCV infection seems to promote autophagy without concomitant stimulation of the UPR and autophagy does not appear to be required as a platform for HCV RNA replication [50]. Thus, doubts remain about the role of autophagy and the UPR in HCV replication, although the distinct interactions between autophagy and HCV replication suggest that such membrane flux promotes viral replication.

The dengue virus (DENV) is a mosquito-borne single positive-stranded RNA virus of the Flaviviridae family that causes dengue fever [51]. There are five antigenically related but distinct DENV virus genotypes (DENV-1 to DENV-5) [51,52]. Like HCV, there is evidence that autophagy may be implicated in DENV replication. Following cell entry and nucleocapsid uncoating, DENV RNA is translated into a single polyprotein that passes into the ER lumen where the different viral proteins are processed. In fact, DENV-2 proteins involved in translation and replication are found in or in close proximity to autophagosomes during viral infection [53,54]. Accordingly, inhibition of autophagosome formation dampens the production of infectious DENV-2 particles [53], while stabilizing autophagosomes and/or amphisomes by impeding their fusion with lysosomes enhances viral egression [55]. Indeed, DENV-3 seems to promote autophagy during early infection [54], while inhibition of autophagosome formation also dampens the production of infectious DENV-3 [54]. Hence, DENV-2 and -3 appear to interact with the autophagosome machinery in a different manner, and while it is conceivable that amphisomes or autophagosomes represent the site of DENV-2 translation/replication [54,55], autophagolysosomes could be the crucial site for DENV-3 viral replication [54]. The distribution of NS1 or DENV-2 and DENV-3 double-stranded RNA (dsRNA) in the different autophagy-associated membrane structures confirms these observations (Figure 1). Moreover, nascent viral particles are formed and mature in these structures, then travelling through the trans-Golgi network (TGN) to egress [56,57]. Remarkably, the precursor membrane (prM) protein of the DENV-1–4 genotypes behaves similarly and it is cleaved by the TGN- protease furin in the secretory pathway [58], assuring viral assembly and the infectivity of nascent viral particles [59].

HIV is a single-stranded RNA virus (Lentivirus genus of the Retroviridae family) that causes AIDS. HIV type 1 (HIV-1) alters the autophagic membrane flux of the host cell’s organelles, thereby modulating the intracellular milieu in favour of viral replication and propagation [3] (Figure 1). When CD4+ T cells, monocytes and dendritic cells (DCs) are infected with HIV-1, autophagic vacuole formation is blocked and the expression of autophagy proteins down-regulated (e.g. LC3 and Beclin1 [19,60]: Figure 1). Remarkably, the HIV-1 protein Nef (negative factor) blocks the autophagic flux of membranes, especially during the autolysosome stage of autophagy, resulting in an accumulation of autophagosomes and LC3 in macrophages (Figure 1). Thus, Nef prevents autophagic degradation of HIV-1 biosynthetic intermediates of virions by targeting the lipid class III phosphatidylinositol 3-kinase (C3-PI3K) complex and by associating with Beclin1 (Atg6—autophagy-related protein 6—in yeast). Significantly, Beclin1 is actually part of the C3-PI3K complex, together with the vacuolar protein sorting-associated proteins 34 (Vps34) and 15 (p150). Nef therefore alters the sub-cellular distribution of Vps34, potentially ensuring the survival of the viral progeny [3,61]. Indeed, Nef is thought to promote the appropriate HIV-1 Gag membrane localization and processing, thereby facilitating viral cell-to-cell transfer [62]. Although the catalytic activity of autophagy appears to be impeded by HIV-1, autophagosome formation or accumulation is still promoted. Hence, the HIV-1 Gag protein promotes early stages of
autophagosome formation by directly interacting with LC3 in macrophages, enhancing HIV-1 yields and Gag processing, a critical step in virion assembly and release [61] (Figure 1). Notably, newly identified components of the ubiquitin-like conjugation system all seem to be involved in HIV-1 replication (e.g. Atg7, Atg8—LC3 is its best characterized mammalian homologue—Atg12 and Atg16L2—responsible for vesicle elongation) [63]. However, it remains unclear how these factors actually affect HIV-1 replication, which occurs in the nucleus of infected cells. Moreover, while autophagic vacuoles would appear to be fundamental for HIV-1 morphogenesis and egress, how HIV-1 overrides or uses autophagy to persist remains poorly understood. Hence, the infectious capacity of nascent HIV-1 virions depends on the uptake of the viral infectivity factor (Vif) during viral budding, a process influenced by histone deacetylase 6 (HDAC6), which promotes autophagic clearance of Vif [64]. Other positive RNA viruses exploit the formation of ER-derived membrane scaffolds and membrane autophagic flux to replicate (e.g. the Norwalk virus), because the membrane-bound nsp48 protein also binds to VAP-A [65].

RNA replication may occur in endosomes, lysosomes (Togaviruses), peroxisomes and chloroplasts (Tombusvirus), or mitochondria (Nodaviruses), shielded from immune responses. All positive RNA viruses transform cytoplasmic membranes into specialized viral replication sites [10]. The antiviral effect of Brefeldin A (BFA), an inhibitor of anterograde ER–Golgi network membrane dynamics, suggests that membrane trafficking must be active for enterovirus replication, as reported for Picornaviruses, poliovirus and Coxsackievirus [66,67]. BFA prevents the membrane flux required to form replication compartments, blocking virus secretion from infected cells [68] by inhibiting ADP (adenosine diphosphate)-ribosylation factor (Arf)-GTP exchange proteins (Arf-GEFs). This blockade negatively affects COPI coat generation at the Golgi by diminishing and sequestering Arf1-GTP [69]. For several Picornaviruses, COPII-coated vesicles may provide membranes suitable for replication [70], although autophagosomes may also contribute at this point [23] (Figure 1). Reovirus and SFV also promote coated-pit formation [71]. Moreover, the small GTPase Rab7 is soon recruited for SFV internalization when associated to intermediate endosomes [72], which in turn induces the formation of CPVs that is an important event for viral RNA synthesis in target cells [13].

An important biological process common to the recently proposed Megavirales order is viral replication within cytoplasmic VFs [73]. Giant viruses (also called nucleocytoplasmic large DNA viruses—CLDVs) belonging to this order are double-stranded DNA (dsDNA) viruses with a genome and particle size comparable to those of small bacteria [74]. African swine fever virus (ASFV; from the Asfarviridae family), poxviruses and iridoviruses are the three families of NCLDVs that terminate or undergo their entire replication cycle in the cytoplasm [75–77]. This feature is not observed in herpes viruses or baculoviruses, other large DNA viruses of eukaryotes that undergo nuclear DNA replication and transcription [78]. Giant viruses provoke VF formation in the cytoplasm of infected cells to permit genome replication and morphogenesis [73,79]. ASFV factories are similar to the aggresomes formed at the MTOC (microtubule organizing centre) [80], and they provoke a rearrangement of the intermediate vimentin cytoskeleton at the MTOC into a star shaped structure that resembles the microtubule aster formed during mitosis, a structure required for late gene expression [81]. Together with an ASFV chaperone, the hsp70 cell chaperone is recruited to ASFV factories, along with mitochondria, facilitating the folding of viral structural proteins like the major capsid protein p72 [82,83]. Nascent ASFV virions are formed from VFs through the assembly and recruitment of viral proteins in VFs. Thus, the viral membranes in VFs may be connected to cellular organelles, particularly given that resident ER markers are detected with the viral p17, p54 and pB318L proteins in new viral particles [84–87]. ASFVs are thought to reorganize cell membranes through viral proteins that contain a KDE motif, inducing the redistribution of ER-associated proteins [88] and the viral p54 protein. The latter is required for the correct VF localization of the membranes and the collapse of the ER-derived cisternae [89]. ASFV infection is achieved by redistributing membranes from the secretory pathway and TGN [90]. Therefore, these common biological features of giant virus replication and virion architecture could reflect a common origin, and the sharing of a large set of ancestral genes [74,91].

Membrane dynamics during viral assembly and budding

Budding is an important event in the life cycle of enveloped viruses, influencing their morphology
and infectiousness. During budding, successful infection is achieved by adjustment and distortion of the target cell’s plasma membrane [4]. The structural Gag polyprotein is common to several retroviruses, like HIV-1 and the murine leukaemia virus (MLV), representing the minimal plasma membrane component required for viral assembly [92]. HIV-1 Gag localizes to phosphatidylinositol-4,5-bisphosphate (PIP2) rich plasma membrane regions, where PIP2 plays a critical role in HIV-1 virion assembly [93] (Figures 1 and 2). In fact, the matrix viral protein (MA) within the unprocessed HIV-1 Gag polypeptide drives Gag towards these PIP2 membrane domains [92,94] in a myristoylation-dependent manner [95], raft domains where HIV-1 buds [95–97]. Phosphate hydrolysis by polyphosphoinositide 5-phosphatase IV (5ptaseIV) diminishes the plasma membrane susceptility gene 101 (Tsg101) is a subunit of the ESCRT-I complex that drives viral RNA transport and envelope fusion to late endosomes, processes required for infection and RNA release [105] (Figure 2). However, the interaction of viral Gag protein with the ESCRT machinery appears not to be absolutely required for HIV-1 viral budding [106–108]. Nevertheless, interferon-stimulated gene 15 protein (ISG-15) inhibits HIV-1 egression by interfering with ESCRT-III protein membrane flux during budding [109,110].

Remarkably, morphogenesis and the release of HBV particles also require Tsg101 [111], although this DNA virus lacks a viral protein bearing the late (L) domain necessary to interact with the ESCRT machinery [101]. However, α-taxilin interacts directly with Tsg101 and with the large HBV surface protein (LHBs), thereby recruiting the viral capsids to ESCRT complexes, thus permitting correct viral formation and egression [111]. Therefore, HBV maturation and egression depends on the ESCRT-MVB system. Notably, HBV infected cells also produce large amounts of non-infectious spherical or filamentous envelope particles (SVPs). These SVPs are a mixture of lipids and viral surface proteins that accumulate in an ER–Golgi intermediate compartment (ERGIC), budding into the lumen and provoking release through the general secretory pathway [112].

Many other enveloped RNA viruses bud in an ESCRT-dependent manner [5,100,113], as do most negative-strand non-segmented single-stranded RNA (ssRNA) viruses, such as Rhabdoviruses, Filoviruses and most Paramyxoviruses, all of which recruit ESCRTs for viral egression [114,115]. Even the budding of negative-strand segmented-ssRNA Arena viruses involves an ESCRT-dependent pathway [116,117]. However, no evidence for the participation of ESCRTs has yet been reported in Nipah, Measles, HRSV or Bornaviridae budding ([5]). Indeed, the enveloped influenza virus buds in an ESCRT-independent manner as its matrix protein is devoid of an ESCRT-binding domain [118,119]. Other viruses are also released from the host’s plasma membrane through their MAs, such as the Newcastle disease virus or VSV. In these cases, bud formation and excision from the membrane are matrix-dependent processes [120,121], as for influenza virus. However, much work is still required to determine how membrane dynamics affect the trafficking and assembly of these viruses, particularly in terms of the cellular factors that control the
trafficking of the structural proteins of these viruses to the plasma membrane [92,122].

Given all of these findings, membrane dynamics has a crucial influence on the assembly and budding of numerous viruses, and it may represent an important and complex target to limit the viral life cycle.

Membrane dynamics and viral spreading

Viruses use various cell communication pathways to achieve effective cell-to-cell dissemination [123]. First described for type 1 HTLV (HTLV-1) [124], the virological synapse (VS) is a complex structure found at the interface of infected:uninfected cells. Viral receptors and the egression machinery accumulate at the VS [125], making the infection and spread of HTLV-1 through T lymphocytes cell–cell dependent. Direct cell-to-cell transmission facilitated by the formation of stable cellular junctions has several advantages, including faster replication rates [126], successful transmigration of infected cells across mucosal barriers [123] and viral protection from host responses. However, such transmission is still to be confirmed for HIV [127,128].

Cell-to-cell spreading of HIV-1 (Figure 2) is considered to involve microtubule-mediated polarization and substantial budding, followed by the entry of free viral particles into target cells [129]. Thus, it involves pathways that regulate cell-free virus entry by modifying membrane dynamics. In this regard, most HIV-1-infected GALT (gut-associated lymphoid tissue) cells in intestinal crypts are infected by concentrated pools of free HIV-1 viral particles in HIV-1-infected humanized mice. Fewer infected cells are found in the mucosal regions and the lamina propria, where VS presumably occur [130], explaining why infection of permissive cells by free viral particles is crucial for HIV-1 replication and pathogenesis in vivo. This is consistent with the recent identification of the key cell signals required for efficient early HIV-1 infection and the establishment of latency in CD4+ T cells [131–136]. Interference with retroviral cell-to-cell transmission is not only produced by blocking cytoskeletal motility [137] and depleting membrane-cholesterol [138] but also, by interfering with Arf6-governed plasma membrane dynamics. Moreover, restricting plasma membrane fluidity caused by altering early HIV-1-triggered phosphatidylinositol-4-phosphate 5-kinase (PI4P5-K) Iα activation and the ensuing detrimental effects PIP₂ production on HIV-1 transmission [4,133,135]. In fact, Arf6-coordinated membrane trafficking is required for efficient HIV-1 fusion, entry and infection of CD4+ T lymphocytes [135] (Figures 1 and 2). The flux and turnover of PIP₂-enriched vesicles from the plasma membrane, driven and coordinated by the Arf6-GTP/GDP cycle, ensures cell surface membrane regeneration and it allows membrane exchange between the viral and target cell surfaces. This type of membrane trafficking, coupled with enhanced fluidity, is in strong synergy with the key HIV/1/receptor (CD4 and C–X–C or C–C chemokine receptor type 4 or 5—CXCR4 or CCR5), interactions that promote fusion pore formation in target cells. These interactions take place between the non-regenerative HIV-1 viral membrane and the dynamic cell surface membrane, favouring efficient virus–cell fusion, entry and infection, both for the free virus and in the context of the VS [4,133,135] (Figures 1 and 2).

Despite these similarities, some contact-specific events that affect membrane flux should also be considered. During cell–cell HIV transmission, intense viral endocytosis drives entry into neighbouring cells even if they are in contact [139] (Figure 2). Remarkably, biofilm-like structures at the surface of infected cells concentrate HTLV-1 viruses for their efficient transmission to target cells [140] and cellular projection is used to transmit pseudo-rabies virus. Retroviruses also travel along membrane protrusions that contact adjacent cells and MLV surfs on the filopodia of fibroblasts before entering cells [141] (Figure 2). HIV-1 also takes advantages of filopodia for cell-to-cell transmission [141], similarly surging on the narrower membranous nanotubes that connect cells separated no more than 100 μm [142] and facilitating the transfer of viral proteins to the inner side of the membrane. These actin structures extend from HIV-infected cells to target cells irrespective of receptor-envelope interactions [142] (Figure 2).

The take up of larger membrane invaginations at the VS of connected cells [129] is known as trogocytosis, an event that may also control the extent and stability of the synapse, regulating its duration [143]. HIV particles, like CD4 molecules and other membrane components, are transferred by trogocytosis from uninfected to infected cells in a manner triggered by the HIV-1 envelope (Env)/CD4 [128] (Figure 2). This mechanism could be very significant and render cells permissive to HIV infection, as recently proposed [144].

The cell–cell contacts and signalling induced by the HIV-1 Env complex that occur at the VS can...
activate autophagic membrane flux, leading to apoptotic cell death of uninfected CD4+ T cells [60,145]. This lethal autophagy may provoke or enhance immunodeficiency, as observed in vivo where the majority of CD4+ T cells undergoing apoptosis, as well as the peripheral blood and lymph nodes of HIV patients, remain uninfected [146]. Simultaneously, autophagy can be suppressed in infected CD4+ T cells [60], thereby antagonizing Env-mediated apoptosis and allowing viral replication to occur in infected CD4+ T cells. In this context, HIV-1 evades immune responses in an HIV-1 Env-CD4-dependent manner by efficiently impairing autophagy in DCs when early contacts are established [19]. Taking into account the role autophagy plays in viral replication, HIV-1 can enhance or suppress autophagy at different stages of its viral cell cycle, favouring persistence and the evasion of immune responses, and therefore, its pathogenesis [19] (Figure 1). Finally, like other viruses (e.g. CMV), HIV-1 stably associates with professional APCs during infection (such as DCs) to further infect lymphocytes during T-cell scanning or antigen presentation [147]. In fact, HIV-1 enters DCs by exploiting exosomal trafficking during antigen presentation [148] (Figure 2).

CONCLUDING REMARKS
This review examines the intracellular trafficking of viruses that occurs in association with cell-membrane structures, some of which may be newly assembled by viruses to ensure their replication and budding. Membranes derived from the ER, mitochondria, lysosomes and endosomes are sculpted by viruses to generate VFs, acquiring their own functional morphology. These structures help ensure RNA replication is accomplished without alerting the host’s defence mechanisms.

Although the importance of membrane dynamics during viral infection has been established, several questions remain unanswered. It remains unclear how proteins from distinct viruses and host cells use the same intracellular membrane compartments or events (e.g. autophagy) to achieve viral replication, without affecting important cellular processes. Conversely, it is not clear why viruses replicate in different subcellular membrane compartments, how they move across membranes and which host factors are involved in these events. Similarly, we still do not know how these changes in membrane dynamics enable viruses to avoid immune responses. Indeed, it remains unclear whether rearranging intracellular organelles enables viruses to escape the anti-replicative activity of natural restriction factors, such as apolipoprotein B mRNA-editing enzyme-catalytic, polypeptide-like 3 (APOBEC3) proteins, Tetherin (BST-2/CD317/HM1.24) or SAMHD1 (sterile alpha motif (SAM) and histidine-aspartate (HD) domain-containing protein 1) for HIV-1 [149]. Resolving these issues will help decipher how viruses rearrange membranes during their infection cycle, thereby aiding the design of new antiviral strategies that target these dynamic viral-cell interactions and combat viral infection. These findings may also produce innovations in non-viral gene delivery systems to tackle tumours and immune diseases.

New technical developments, such as more powerful microscopy systems [4,8,135,150], will allow dynamic viral trafficking and egression to be studied in cells with better spatial and temporal resolution. Such information will further our understanding of the viral infection process and of how viruses succeed in deceiving the host’s immune responses.

CONFLICT OF INTEREST
The authors have no competing interests to declare.

ACKNOWLEDGEMENTS
This work and A.V.-F. are supported by the European Regional Development Fund (ERDF), SAF2008-01729 and SAF2011-24671 (MICINN and MINECO, respectively, Spain), UNLL10-3E-783 (ERDF) and Fundación CajaCanarias, and by the Project RD12/0017/0034 integrated in the “Plan Nacional I + D + I” and co-funded by ISCIII “Subdirección General de Evaluación” and ERDF (RIS-RETIC) grants. M-S.V and L.A-R are supported by RD12/0017/0034-(RIS-RETIC) and SAF2011-24671-FPI-associated grants and fellowships, respectively. We thank Dr Mark Sefton (Biomedred SL) for his linguistic revision of the manuscript. We apologize for all research studies and reviews that we have not discussed or cited in this Review. We have tried to avoid any and all such omissions but space limitations have surely made this an impossible endeavour.
REFERENCES

1. Miller S, Krijnse-Locker J. Modiﬁcation of intracellular membrane structures for virus replication. Nature Reviews Microbiology 2008; 6: 363–374. DOI:10.1038/nrmicro1890 [pii].

2. Gruenberg J. Viruses and endosome membrane dynamics. Current Opinion in Cell Biology 2009; 21: 582–588. S0065-3527(09)00091-X. DOI:10.1016/j.ceb.2009.03.008.

3. Kim HJ, Lee S, Jung JU. When autophagy meets viruses: a double-edged sword with functions in defense and offense. Seminars in Immunopathology 2010; 32: 323–341. DOI:10.1007/s00281-010-0226-8.

4. Barroso-Gonzalez J, Garcia-Exposito L, Puigdomenech I, et al. Viral infection: moving through complex and dynamic cell membrane structures. Communicative & Integrative Biology 2011; 4: 398–408. DOI:10.4161/cib.4.4.16761.

5. Weissenhorn W, Poutevigne E, Eifantin G, Bassereau P. How to get out: ssRNA enveloped viruses and membrane fusion. Current Opinion in Virology 2013; 3: 159–167. S1879-6257(13)00035-7. DOI:10.1016/j.coviro.2013.03.011.

6. Faurschou M, Borregaard N. Neutrophil granules and secretory vesicles in inﬂammation. Microbes and Infection 2003; 5: 1317–1327.

7. Netherton C, McFad K, Brooks E, Wileman T. A guide to viral inclusions, membrane rearrangements, factories, and viroplasm produced during virus replication. Advances in Virus Research 2007; 70: 101–182. S0065-3527(07)00040-4. DOI:10.1016/S0065-3527(07)00040-4.

8. Harak C, Lohmann V. Ultrastructure of the replication sites of positive-strand RNA viruses. Virology 2015; 479-480: 418–433. S0042-6822(15)00075-6. DOI:10.1016/j.virology.2015.02.029.

9. Tolonen N, Doglio L, Schleich S, Krijnse L. Vaccinia virus DNA replication occurs in endoplasmic reticulum-enclosed cytoplasmic mini-nuclei. Molecular Biology of the Cell 2001; 12: 2031–2046.

10. Salonen A, Ahola T, Kaariainen L. Viral RNA replication in association with cellular membranes. Current Topics in Microbiology and Immunology 2005; 285: 139–173.

11. Frey TK. Molecular biology of rubella virus. Advances in Virus Research 1994; 44: 69–160.

12. Kujala P, Ikakeimonen A, Ehsani N, Vihinen H, Auvainen P, Kaariainen L. Bio-genesis of the Semliki Forest virus RNA replication complex. Journal of Virology 2001; 75: 3873–3884. DOI:10.1128/JVI.75.8.3873-3884.2001.

13. Frosbauer S, Kartenbeck J, Helenius A. Alphavirus RNA replicase is located on the cytoplasmic surface of endosomes and lysosomes. The Journal of Cell Biology 1988; 107: 2075–2086.

14. Maglialo D, Marshall JA, Bowden DS, Vardaxis N, Meanger J, Lee Y. Rubella virus replication complexes are virus-modiﬁed lysosomes. Virology 1998; 240: 57–63. S0042-6822(97)98096-6. DOI:10.1006/viro.1997.9806.

15. James Morre D, Mollenhauer HH. Microscopic morphology and the origins of the membrane maturation model of Golgi apparatus function. International Review of Cytology 2007; 262: 191–218. S0074-7696(07)62004-X. DOI:10.1016/S0074-7696(07)62004-X.

16. Risco C, Carrascosa JL, Frey TK. Structural maturation of rubella virus in the Golgi complex. Virology 2003; 312: 261–269. S0042682203003842. DOI:10.1006/viro.2003.0842.

17. Salanueva IJ, Novoa RR, Cabezás P, et al. Polymorphism and structural maturation of bunyamwera virus in Golgi and post-Golgi compartments. Journal of Virology 2003; 77: 1368–1381.

18. Johnson DC, Baines JD. Herpesviruses remodel host membranes for virus egress. Nature Reviews Microbiology 2011; 9: 382–394. nrmicro2559. DOI:10.1038/nrmicro2559.

19. Blanchet FP, Morris A, Nikolic D, et al. Human immunodeﬁciency virus-1 inhibition of immunoamphisomes in dendritic cells impairs early innate and adaptive immune responses. Immunity 2011; 32: 654–669. S1074-7613(10)00160-3. DOI:10.1016/j.immuni.2010.04.011.

20. van der Meer Y, van Tol H, Locker JK, Snijder EJ. ORFla-encoded replicase subunits are involved in the membrane association of the arterivirus replication complex. Journal of Virology 1998; 72: 6689–6698.

21. Hall RA, Scherret JH, Mackenzie JS. Kunjin virus: an Australian variant of West Nile? The Annals of the New York Academy of Sciences 2001; 951: 153–160.

22. Hober SD, Rosenblum ES, Richards OC, Richmond K, Kirkegaard K, Schulz SC. Oligomeric structures of poliovirus polymerase are important for function. The EMBO Journal 2001; 20: 1153–1163. DOI:10.1093/emboj/20.5.1153.

23. Jackson WT, Giddings TH Jr, Taylor MP, et al. Subversion of cellular autophagosomal machinery by RNA viruses. PLoS Biology 2005; 3: e156. 03-PLBI-RA-0370R3. DOI:10.1371/journal.pbio.0030156.

24. Xue Z, Klionsky DJ. Autophagosome formation: core machinery and adaptations. Nature Cell Biology 2007; 9: 1102–1109. ncb10071102. DOI:10.1038/ncb1007-1102.

25. Mizushima N. Autophagy: process and function. Genes and Development 2007; 21: 2861–2873. 21/22/2861. DOI:10.1101/gad.1599207.

26. Bjorkoy G, Lamark T, Brech A, et al. p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. The Journal of Cell Biology 2005; 171: 603–614. Jcb.200507002. DOI:10.1083/jcb.200507002.

27. Pankiv S, Clausen H, Lamark T, et al. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. The Journal of Biological Chemistry 2007; 282: 24131–24145. M7082824200. DOI:10.1074/jbc.M708282420.

28. Richards AL, Jackson WT. That which does not degrade you makes you stronger: infectivity of poliovirus depends on vesicle acidification. Autophagy 2013; 9: 806–807. 23962. DOI:10.4161/auto.23962.
31. Dunn WA Jr. Studies on the mechanisms of autophagy: maturation of the autophagic vacuole. *The Journal of Cell Biology* 1990; 110: 1935–1945.

32. Hoofnagle JH. Course and outcome of hepatitis C. *Hepatology* 2002; 36: S21–29 S0270913902001684 [pii]. DOI:10.1053/jhep.2002.36227.

33. Sir D, Chen WL, Choi J, Wakita T, Yen TS, Ou JH. Induction of incomplete autophagic response by hepatitis C virus via the unfolded protein response. *Hepatology* 2008; 48: 1054–1061. DOI:10.1002/hep.22464.

34. Guevin C, Manna D, Belanger C, Konan 2007; *Journal of Virology* 79: 282 2507 AAC.04958-14.

35. Romero-Brey I, Berger C, Kallis S, et al. NS5A domain 1 and polyprotein cleavage kinetics are critical for induction of double-membrane vesicles associated with hepatitis C virus replication. *MBio* 2015; 6: e00759 MBio.00759-15 [pii]. DOI:10.1128/mBio.00759-15.

36. Chatterji U, Bobardt M, Tai A, Wood M, Smith DR. A role for autophagolysosomes in dengue virus 3 production in HepG2 cells. *The Journal of General Virology* 2009; 90: 1093–1103 vir.007914-0 [pii]. DOI:10.1099/vir.0.007914-0.

37. Tu H, Gao L, Shi ST, et al. Hepatitis C virus RNA polymerase and NS5A complex with a SNARE-like protein. *Virology* 1999; 263: 30–41. DOI:10.1006/viro.1999.9893 S0042-6822(99)98983-8 [pii].

38. Hamamoto I, Nishimura Y, Okamoto T, et al. Human VAP-B is involved in hepatitis C virus replication through interaction with NS5A and NS5B. *Journal of Virology* 2005; 79: 13473–13482 79/21/13473 [pii]. DOI:10.1128/JVI.1979.21.13473-1982.00315-0.

39. Sklan EH, Serrano RL, Elain S, Pfeffer SR, Lambright DG, Glenn JS. TBC1D20 is a Rab1 GTPase-activating protein that mediates hepatitis C virus replication. *The Journal of Biological Chemistry* 2007; 282: 36354–36361 MT05221200 [pii]. DOI:10.1074/jbc.M705221200.

40. Stone M, Jia S, Heo WD, Meyer T, Konan KV. Participation of rab5, an early endosome protein, in hepatitis C virus RNA replication machinery. *Journal of Virology* 2007; 81: 4551–4563 JVI.01366-06 [pii]. DOI:10.1128/JVI.01366-06.

41. Manna D, Aligo J, Xu C, et al. Endocytic Rab proteins are required for hepatitis C virus replication complex formation. *Virology* 2009; 386: 21–37 S0042-6822(09)00770-3 [pii]. DOI:10.1016/j.viro.2009.11.034.

42. Ao X, Zou L, Wu Y. Regulation of autophagy by the Rab GTPase network. *Cell Death and Differentiation* 2014; 21: 348–358 cdd2013187 [pii]. DOI:10.1038/cdd.2013.187.

43. Kimura S, Noda T, Yoshimori T. Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3. *Autophagy* 2007; 3: 452–460 4451 [pii].

44. Ke PT, Chen SS. Activation of the unfolded protein response and autophagy after hepatitis C virus infection suppresses innate antiviral immunity in vitro. *The Journal of Clinical Investigation* 2011; 121: 37–56 41474 [pii]. DOI:10.1172/JCI41474.

45. Dreux M, Chisari FV. Autophagy proteins promote hepatitis C virus replication. *Autophagy* 2009; 5: 1224–1225 10219 [pii].

46. Taguva S, Kambara H, Fujita N, et al. Dysfunction of autophagy participates in vacuole formation and cell death in cells replicating hepatitis C virus. *Journal of Virology* 2011; 85: 13185–13194 JVI.06099-11 [pii]. DOI:10.1128/JVI.06099-11.

47. Tanida I, Fukasawa M, Ueno T, Kominami E, Wakita T, Hanada K. Knockdown of autophagy-related gene decreases the production of infectious hepatitis C virus particles. *Autophagy* 2009; 5: 937–945 9243 [pii].

48. Sir D, Kuo CF, Tian Y, et al. Replication of hepatitis C virus RNA on autophagosomal membranes. *The Journal of Biological Chemistry* 2012; 287: 18036–18043 M11.320085 [pii]. DOI:10.1074/jbc.M111.320085.

49. Shinohara Y, Imajo K, Yoneda M, et al. Unfolded protein response pathways regulate Hepatitis C virus replication via modulation of autophagy. *Biochemical and Biophysical Research Communications* 2013; 432: 326–332 S0006-291X(13)00193-9 [pii]. DOI:10.1016/j.bbrc.2013.01.103.

50. Mohl BP, Tedbury PR, Griffin S, Harris M. Hepatitis C virus-induced autophagy is independent of the unfolded protein response. *Journal of Virology* 2012; 86: 10724–10732 JVI.01667-12 [pii]. DOI:10.1128/JVI.01667-12.

51. Holmes EC, Twiddy SS. The origin, emergence and evolutionary genetics of dengue virus. *Infection, Genetics and Evolution* 2003; 3: 19–28 S1567134803000042 [pii].

52. Mustafa MS, Rasotgi V, Jain S, Gupta V. Discovery of fifth serotype of dengue virus (DENV-5): a new public health dilemma in dengue control. *Medical Journal Armed Forces India* 2015; 71: 67–70. DOI:10.1016/j.mjafi.2014.09.011 S0377-1237(14)00172-5 [pii].

53. Lee YR, Lei HY, Liu MT, et al. Autophagic machinery activated by dengue virus enhances virus replication. *Virology* 2008; 374: 240–248 S0042-6822(08)00112-8 [pii]. DOI:10.1016/j.virol.2008.02.016.

54. Khakpour A, Panyasrivanit M, Wikan N, Smith DR. A role for autophagy-related genes in dengue virus 3 production in HepG2 cells. *The Journal of General Virology* 2009; 90: 1093–1103 vir.007914-0 [pii]. DOI:10.1099/vir.0.007914-0.

55. Panyasrivanit M, Khakpour A, Wikan N, Smith DR. Co-localization of constituents of the dengue virus translation and replication machinery with amphisomes. *The Journal of General Virology* 2009; 90: 446–456 90/2/448 [pii]. DOI:10.1099/vir.0.005353-0.

56. Zybert IA, van der Ende-Metselaar H, Wilschut J, Smit JM. Functional importance of dengue virus maturation: infectious properties of immature virions. *The Journal of General Virology* 2008; 89: 3047–3051 89/12/3047 [pii]. DOI:10.1099/vir.0.002535-0.

57. Welsch S, Miller S, Romero-Brey I, et al. Composition and three-dimensional architecture of the dengue virus replication and assembly sites. *Cell Host & Microbe* 2009; 5: 365–375 S1931-3128(09)00089-5 [pii]. DOI:10.1016/j.chom.2009.03.007.

58. Murray JM, Aaskov JG, Wright PJ. Processing of the dengue virus type 2 proteins prM and C-prM. *The Journal of General Virology* 1993; 74(Pt 2): 175–182. DOI:10.1099/0022-1317-74-2-175.

59. Hsieh SC, Zou G, Tsai WY, et al. The C-terminal helical domain of dengue virus.
precursor membrane protein is involved in virus assembly and entry. *Virology* 2011; 410: 170–180 S0042-6822(10)00711-7 [pii]. DOI:10.1016/j.viroi.2010.11.006.

60. Espert I, Varbanov M, Robert-Hebmann V, et al. Differential role of autophagy in CD4 T cells and macrophages during X4 and R5 HIV-1 infection. *PLoS One* 2009; 4: e7587. DOI:10.1371/journal.pone.0007587.

61. Kyei GB, Dinkins C, Davis AS, et al. Autophagy pathway intersects with HIV-1 biosynthesis and regulates viral yields in macrophages. *The Journal of Cell Biology* 2009; 186: 255–268 jcb.200903070 [pii]. DOI:10.1083/jcb.200903070.

62. Malbec M, Sourisseau M, Guivel-Bennahsine F, et al. HIV-1 Nef promotes the localization of Gag to the cell membrane and facilitates viral cell-to-cell transfer. *Retrovirology* 2013; 10: 80 1742-4690-10-80 [pii]. DOI:10.1186/1742-4690-10-80.

63. Brass AL, Dykhooorn DM, Benita Y, et al. Identification of host proteins required for HIV infection through a functional genomic screen. *Science* 2008; 319: 921–926 1152725 [pii]. DOI:10.1126/science.1152725.

64. Garcia-Beato R, Salas ML, Vinuela E, et al. The HDAC6/APOBEC3G complex regulates HIV-1 infectiveness by inducing Vif autopagic degradation. *Retrovirology* 2015; 12: 53. DOI:10.1186/s12977-015-0181-5 [pii]. DOI:10.1083/jcb.200903070.

65. Ettayebi K, Hardy ME. Norwalk virus nonstructural protein p48 forms a complex with the SNARE regulator VAP-A and prevents cell surface expression of vesicular stomatitis virus G protein. *Journal of Virology* 2003; 77: 11790–11797.

66. Maynell LA, Kirkegaard K, Klymkowsky MW. Inhibition of poliovirus RNA synthesis by brefeldin A. *Journal of Virology* 1992; 66: 1985–1994.

67. Lanke KH, van der Schaar HM, Belov GA, et al. GBF1, a guanine nucleotide exchange factor for Arf, is crucial for cossackvirus B3 RNA replication. *Journal of Virology* 2009; 83: 11940–11949 JVLI.01244-09 [pii]. DOI:10.1128/JVI.01244-09.

68. Doedens JR, Kirkegaard K. Inhibition of cellular protein secretion by poliovirus proteins 2B and 3A. *The EMBO Journal* 1995; 14: 894–907.

69. Belov GA, Ehrenfeld E. Involvement of cellular membrane traffic proteins in poliovirus replication. *Cell Cycle* 2007; 6: 36–38.

70. Rust RC, Landmann L, Gosert R, et al. Cellular COPII proteins are involved in production of the vesicles that form the poliovirus replication complex. *Journal of Virology* 2001; 75: 9808–9818. DOI:10.1128/JVI.75.20.9808-9818.2001.

71. Ehrlich M, Boll W, Van Oijen A, et al. Endocytosis by random initiation and stabilization of clathrin-coated pits. *Cell* 2004; 118: 591–605. DOI:10.1016/j.cell.2004.08.017 S0092-8674(04)07901 [pii].

72. Vonderheit A, Helenius A. Rab7 associates with early endosomes to mediate sorting and transport of Semliki forest virus to late endosomes. *PLoS Biology* 2005; 3: e233 04-PLBI-RA-077782 [pii]. DOI:10.1371/journal.pbio.0030233.

73. Muttsfi Y, Zauberman N, Sabanay I, et al. Virology 2001; 7583–7588.

74. Rovjo G, Chamorro M, Salas ML, Vinuela E, Cuezva JM, Salas J. Migration of mitochondria to viral assembly sites in African swine fever virus-infected cells. *Journal of Virology* 1998; 72: 5783–5788.

75. Rouiller I, Brookes SM, Hyatt AD, Windsor M, Wileman T. African swine fever virus is wrapped by the endoplasmic reticulum. *Journal of Virology* 1998; 72: 2373–2387.

76. Andres G, Garcia-Escudero R, Simon-Mateo C, Vinuela E. African swine fever virus is enveloped by a two-membraned collapsed cisterna derived from the endoplasmic reticulum. *Journal of Virology* 1998; 72: 9898–9901.

77. Chlanda P, Carabaj MA, Cyrlklaff M, Griffiths G, Krijnke-Locker J. Membrane rupture generates single open membrane sheets during vaccinia virus assembly. *Cell Host & Microbe* 2009; 6: 81–90 S1931-3128(09)00219-4 [pii]. DOI:10.1016/j.chom.2009.05.021.

78. Chlanda P, Carabaj MA, Kolovou A, et al. Vaccinia virus lacking A17 induces complex membrane structures composed of open membrane sheets. *Archives of Virology* 2011; 156: 1647–1653. DOI:10.1007/s00705-011-1012-1.

79. Netherton C, Rouiller I, Wileman T. The subcellular distribution of multigene family 110 proteins of African swine fever virus is determined by differences in C-
terminal KDEL endoplasmatic reticulum retention motifs. *Journal of Virology* 2004; **78**: 3710–3721.

89. Windsor M, Hawes P, Monaghan P, et al. Mechanism of collapse of endoplasmatic reticulum cisternae during African swine fever virus infection. *Traffic* 2012; **13**: 30–42. DOI:10.1111/j.1600-0854.2011.01293.x.

90. Netherton CL, Wileman TE. African swine fever virus organelle rearrangements. *Virus Research* 2013; **173**: 76–86 S0168-1702(12)00476-5 [pii]. DOI:10.1016/j.virres.2012.12.014.

91. Colson P, De Lamballerie X, Yutin N, et al. “Megavirales”, a proposed new order for eukaryotic nucleocytoplasmic large DNA viruses. *Archives of Virology* 2013; **158**: 2517–2521. DOI:10.1007/s00705-013-1768-6.

92. Kerviel A, Thomas A, Chaloin L, Favard C, Muriaux D. Virus assembly and plasma membrane domains: which came first? *Virus Research* 2013; **171**: 332–340 S0168-1702(12)00310-3 [pii]. DOI:10.1016/j.virres.2012.08.014.

93. Ono A, Ablan SD, Lockett SJ, Nagashima K, Freed EO. Phosphatidylinositol (4,5) bisphosphate regulates HIV-1 Gag targeting to the plasma membrane. *Proceedings of the National Academy of Sciences of the United States of America* 2004; **101**: 14889–14894 0405956101 [pii]. DOI:10.1073/pnas.0405956101.

94. Inlora J, Chukkapalli V, Derse D, Ono A. Gag localization and virus-like particle release mediated by the matrix domain of human T-lymphotropic virus type 1 Gag are less dependent on phosphatidylinositol-(4,5)-bisphosphate than those mediated by the matrix domain of HIV-1 Gag. *Journal of Virology* 2011; **85**: 3802–3810 JVI.02383-10 [pii]. DOI:10.1128/JVI.02383-10.

95. Saad JS, Loeliger E, Lumsford P, et al. Point mutations in the HIV-1 matrix protein turn off the myristyl switch. *Journal of Molecular Biology* 2007; **366**: 574–585 S0022-2836(06)01627-5 [pii]. DOI:10.1016/j.jmb.2006.11.068.

96. Nguyen DH, Hildreth JE. Evidence for budding of human immunodeficiency virus type 1 selectively from glycolipid-enriched membrane lipid rafts. *Journal of Virology* 2000; **74**: 3264–3272.

97. Brugger B, Glass B, Haberkant P, Leibrecht I, Wieland FT, Krausslich HG. The HIV lipidome: a raft with an unusual composition. *Proceedings of the National Academy of Sciences of the United States of America* 2006; **103**: 2641–2646 0511136103 [pii]. DOI:10.1073/pnas.0511136103.

98. Kisseleva MV, Wilson MP, Majerus PW. The isolation and characterization of a cDNA encoding phospholipid-specific inositol polyphosphate 5-phosphatase. *The Journal of Biological Chemistry* 2000; **275**: 20110–20116. DOI:10.1074/jbc.M910119199 [pii].

99. Sundquist WI, Krausslich HG. HIV-1 assembly, budding, and maturation. *Cold Spring Harbor Perspectives in Medicine* 2012; **2**: a00924. DOI:10.1101/cshperspect.a00924 [pii].

100. Bintzas PD. Late budding domains and host proteins in enveloped virus release. *Journal of Virology* 2006; **80**: 55–63 S0042-6822(05)00599-4 [pii]. DOI:10.1128/JVI.01950-05 [pii].

101. Chen BJ, Lamb RA. Mechanisms for enveloped virus budding: can some viruses do without an ESCRT? *Virology* 2008; **372**: 221–232 S0042-6822(07)00756-8 [pii]. DOI:10.1016/j.virology.2007.11.008.

102. Piper RC, Katzmann DJ. Biogenesis and function of multivesicular bodies. *Annual Review of Cell and Developmental Biology* 2007; **23**: 519–547. DOI:10.1146/annurev.cellbio.23.090506.123319.

103. Carlton JG, Martin-Serrano J. The ESCRT machinery: new functions in viral and cellular biology. *Biochemical Society Transactions* 2009; **37**: 195–199 BST0370195 [pii]. DOI:10.1042/BST0370195.

104. Hurley JH, Hanson PL. Membrane budding and scission by the ESCRT machinery: it’s all in the neck. *Nature Reviews Molecular Cell Biology* 2010; **11**: 556–566 nmr2937 [pii]. DOI:10.1038/nrm2937.

105. Luyet PP, Falguieres T, Pons V, Pattnaik AK, Grubenc J. The ESCRT-I subunit TSG101 controls endosome-to-cytosol release of viral RNA. *Traffic* 2008; **9**: 2279–2290 TRA820 [pii]. DOI:10.1111/j.1600-0854.2008.00820.x.

106. Zhang Y, Qian H, Love Z, Barklis E. Analysis of the assembly function of the human immunodeficiency virus type 1 gag protein nucleocapsid domain. *Journal of Virology* 1998; **72**: 1782–1789.

107. Fuji K, Munshi UM, Ablan SD, et al. Functional role of Alix in HIV-1 replication. *Virology* 2009; **391**: 284–292 S0042-6822(09)00356-8 [pii]. DOI:10.1016/j.virol.2009.06.016.

108. Popova E, Popov S, Gottleibe HG. Human immunodeficiency virus type 1 nucleocapsid p1 confers ESCRT pathway dependence. *Journal of Virology* 2010; **84**: 6590–6597 JV.00035-10 [pii]. DOI:10.1128/JVI.00035-10.

109. Pincoüt A, Kuang Z, Seo EJ, Leis J. The interferon-induced gene ISG15 blocks retrovirus release from cells late in the budding process. *Journal of Virology* 2010; **84**: 4725–4736 JV.02478-09 [pii]. DOI:10.1128/JVI.02478-09.

110. Seo EJ, Leis J. Budding of enveloped viruses: interferon-induced ISG15-antivirus mechanisms targeting the release process. *Advances in Virology* 2012; **2012**: 532723. DOI:10.1155/2012/532723.

111. Hoffmann J, Boehm C, Himmelbach K, et al. Identification of alpha-taxilin as an essential factor for the life cycle of hepatitis B virus. *Journal of Hepatology* 2013; **59**: 934–941 S0188-821 (13)00437-6 [pii]. DOI:10.1016/j.jhepa.2013.06.020.

112. Patient R, Hourieu C, Roinier P. Morphogenesis of hepatitis B virus and its subviral envelope particles. *Cellular Microbiology* 2009; **11**: 1561–1570 CMI.1363 [pii]. DOI:10.1111/j.1462-5822.2009.01363.x.

113. Freed EO. Viral late domains. *Journal of Virology* 2002; **76**: 4679–4687.

114. Hartlöh B, Weissenhorn W. Filovirus assembly and budding. *Virology* 2006; **344**: 64–70 S0042-6822(05)00597-8 [pii]. DOI:10.1016/j.virology.2005.09.018.

115. Okumura A, Harty RN. Rabies virus assembly and budding. *Advances in Virus Research* 2011; **79**: 23–32 B978-0-12-387040-7-00002-0 [pii]. DOI:10.1016/B978-0-12-387040-7-00002-0.

116. Gesseth A, Wölf S, Stecker T, Hoenen T, Becker S. Efficient budding of the tadarivi virus matrix protein z requires the nucleoprotein. *Journal of Virology* 2010; **84**: 3603–3611 JV.02429-09 [pii]. DOI:10.1128/JVI.02429-09.

117. Emonet SE, Urata S, de la Torre JC. Arenavirus reverse genetics: new approaches for the investigation of arenavirus biology and...
development of antiviral strategies. *Virology* 2011; 411: 416–425. S0042-6822(11)00018-3 [pii]. DOI:10.1016/j.viro.2011.01.013.

118. Chen BJ, Leser GP, Morita E, Lamb RA. Influenza virus hemagglutinin and neuraminidase, but not the matrix protein, are required for assembly and budding of plasmid-derived virus-like particles. *Journal of Virology* 2007; 81: 7111–7123. JVI.00361-07 [pii]. DOI:10.1128/JVI.00361-07.

119. Bruce EA, Medcalf L, Crump CM, et al. Budding of filamentous and non-filamentous influenza A virus occurs via a VPS4 and VPS28-independent pathway. *Virology* 2009; 390: 268–278. S0042-6822(09)00304-3 [pii]. DOI:10.1016/j.viro.2009.05.016.

120. Irie T, Licata JM, Jayakar HR, Whitt MA, Bell P, Harty RN. Functional analysis of late-budding domain associated with the PSAP motif within the vesicular stomatitis virus M protein. *Journal of Virology* 2004; 78: 7823–7827. DOI:10.1128/JVL7.14.7823-7827.2004 78/14/7823 [pii].

121. Shnyrova AV, Ayllon J, Mikhailov II, Villar E, Zimmerberg J, Frolov VA. Vesicle formation by self-assembly of membrane-bound matrix proteins into a fluid-like budding domain. *The Journal of Cell Biology* 2007; 179: 627–633. jcb.200705062 [pii]. DOI:10.1083/jcb.200705062.

122. El Najjar F, Schmitt AP, Dutch RE. Paramyxovirus glycoprotein incorporation, assembly and budding; a three way dance for infectious particle production. *Viruses* 2014; 6: 2019–3054. v6083019 [pii]. DOI:10.3390/v6083019.

123. Sattentau Q. Avoiding the void: cell-to-cell spread of human viruses. *Nature Reviews Microbiology* 2008; 6: 815–826.

124. Igaakura T, Stinchcombe JC, Goon PK, et al. Spread of HTLV-I between lymphocytes by virus-induced polarization of the cytoskeleton. *Science* 2003; 299: 1713–1716. DOI:10.1126/science.1080115 1080115 [pii].

125. Jolly C, Sattentau QJ. Retroviral spread by induction of virological synapses. *Traffic* 2004; 5: 643–650.

126. Dimitrov DS, Wilely RL, Sato H, Chang LJ, Blumenthal R, Martin MA. Quantitation of human immunodeficiency virus type 1 infection kinetics. *Journal of Virology* 1993; 67: 2182–2190.
146. Debatin KM, Fahrig-Faissner A, Enenkel-Stoodt S, Kreuz W, Benner A, Krammer PH. High expression of APO-1 (CD95) on T lymphocytes from human immunodeficiency virus-1-infected children. *Blood* 1994; 83: 3101–3103.

147. Izquierdo-Useros N, Naranjo-Gomez M, Erkizia I, et al. HIV and mature dendritic cells: Trojan exosomes riding the Trojan horse? *PLoS Pathogen* 2010; 6: e1000740. DOI:10.1371/journal.ppat.1000740.

148. Izquierdo-Useros N, Puertas MC, Borras FE, Blanco J, Martinez-Picado J. Exosomes and retroviruses: the chicken or the egg? *Cellular Microbiology* 2011; 13: 10–17. DOI:10.1111/j.1462-5822.2010.01542.x.

149. Santa-Marta M, de Brito PM, Godinho-Santos A, Goncalves J. Host factors and HIV-1 replication: clinical evidence and potential therapeutic approaches. *Frontiers in Immunology* 2013; 4: 343. DOI:10.3389/fimmu.2013.00343.

150. Brandenburg B, Zhuang X. Virus trafficking—learning from single-virus tracking, *Nature Reviews Microbiology* 2007; 5: 197–208 [pii]. DOI:10.1038/nrmicro1615.