Quantum Cryptography Using Single Particle Entanglement

Jae-Weon Lee and Eok Kyun Lee
Department of Chemistry, School of Molecular Science (BK 21), Korea Advanced Institute of Science and Technology, Taejon 305-701, Korea

Yong Wook Chung and Hai-Woong Lee
Department of Physics, Korea Advanced Institute of Science and Technology, Taejon 305-701, Korea

Jaewan Kim
School of Computational Sciences, Korea Institute for Advanced Study, 207-43 Cheongryangri-dong, Dongdaemun-gu Seoul 130-012, Korea

(April 1, 2022)

A quantum cryptography scheme based on entanglement between a single particle state and a vacuum state is proposed. The scheme utilizes linear optics devices to detect the superposition of the vacuum and single particle states. Existence of an eavesdropper can be detected by using a variant of Bell’s inequality.

Entanglement could be exploited in many interesting applications, including quantum teleportation [1, 2] and quantum cryptography [3]. Discussion on the nonlocal nature (entanglement) of quantum systems was initiated by Einstein, Podolsky and Rosen (EPR) [4] and later extended by Bell [5–7]. Since then many authors have studied the physical meaning of the nonlocality of a single particle [8–15]. Generally, quantum cryptography schemes based on entanglement (EPR-based schemes) use two or more spatially separated particles possessing correlated properties as the source of entanglement. However, recent developments in experimental techniques [16–18] for generating and manipulating single photons have made quantum information processing utilizing single particle entanglement feasible. Here, single particle entanglement refers to entanglement of a single particle state and the vacuum state [19].

In the present study, we developed a quantum cryptography scheme based on single particle entanglement. The proposed scheme utilizes linear optics to detect a superposition of the vacuum state and a single photon state. A variant of Bell’s inequality suggested by Peres [20] is used for the detection of eavesdropping. In fact, the idea of quantum cryptography using single particle entanglement is not new. Examples of other approaches that can be considered as quantum cryptography schemes using single particle entanglement are the phase coding scheme of Bennett [21] and Ardehali’s scheme based on the delayed choice experiment [22], which uses interferometers. In these double-rail schemes, detection of a particle state is performed by a single observer at a given site. A characteristic feature of our single rail scheme is that both of two space-like separated parties, whom we call Alice and Bob, detect either a single particle or no particle at their respective sites. This characteristic makes our scheme more compatible with the original meaning of quantum nonlocality.

We begin with a description of our scheme, which is depicted in Fig. 1. The setup consists of a single photon source (S) and a lossless 50/50 beam splitter (BS₀), which generate the single particle entanglement state, and two identical non-deterministic projective measurement devices belonging to Alice and Bob, respectively. Each projective measurement device shown in detail in Fig. 2 itself consists of a lossless 50/50 beam splitter (BSₐ or BS₋) with a probe state γ|0⟩ + δ|1⟩ and two photon detectors (Dₐₐ, Dₐₜ or Dₙₐ, Dₙₜ). We assume that every beam splitter induces a sign change in a transmitted beam incident on the black side (Eq. (2)).

![FIG. 1. Schematic of the experimental setup for quantum cryptography based on single particle entanglement. See text for a detailed explanation.](image-url)
ton exiting the beam splitter through the output ports A (towards Alice) and B (towards Bob), respectively, and \(|1 \rangle \) and \(|0 \rangle \) are the single photon state and the vacuum state, respectively.

\[
\gamma |0\rangle + \delta |1\rangle
\]

\[
\alpha |0\rangle + \beta |1\rangle
\]

\[
\begin{array}{c}
\text{BS} \\
\text{a} \\
\text{a'} \\
\text{b} \\
\text{b'} \\
\text{D_a} \\
\text{D_b}
\end{array}
\]

FIG. 2. Schematic of a device for performing a nondeterministic projective measurement of the superposition state of the vacuum and a single photon \(\alpha |0\rangle + \beta |1\rangle \). \(\gamma |0\rangle + \delta |1\rangle \) is a known probe state.

The state given in Eq. (1) represents a single-photon entangled state. Following the argument of Peres [20], Alice and Bob, who test a violation of the Bell’s inequality, measure the projection on the superposed state of a single particle and the vacuum \(\alpha |0\rangle + \beta |1\rangle \). However, detection of the superposition of a particle state and the vacuum state is made difficult by the fact that the superposed state is not a particle number eigenstate. The experimental setup shown in Fig. 2, which is a generalization of the setup considered in Ref. 24, can be used to detect the superposed state. The beam splitter \(BS \) (corresponding to the beam splitter \(BS_A \) or \(BS_B \) in Fig. 1) performs the mode transformation

\[
\begin{pmatrix}
a' \\
b'
\end{pmatrix} = \begin{pmatrix}
\sqrt{R} & \sqrt{1-R} \\
\sqrt{1-R} & \sqrt{R}
\end{pmatrix} \begin{pmatrix}
a \\
b
\end{pmatrix},
\]

where \(R \) is the reflectivity of the beam splitter. Using second quantized notation, the general form of the input state shown in Fig. 2 can be written as

\[
\psi = (\gamma + \delta a^\dagger)(\alpha + \beta b^\dagger)|0\rangle
\]

with normalization requirements \(\gamma^2 + \delta^2 = 1 \) and \(\alpha^2 + \beta^2 = 1 \). Here, \(\gamma |0\rangle + \delta |1\rangle \) is a known probe state with fixed \(\gamma \) and \(\delta \), while \(\alpha |0\rangle + \beta |1\rangle \) is an unknown state to be measured. The probe state can be prepared by linear optics with coherent light and a single photon state [24] or by parametric down conversions [10]. By replacing \(a \) and \(b \) in Eq. (3) with \(a' \) and \(b' \) obtained from the transformation Eq. (2), we obtain the following output state

\[
\psi = |\alpha \gamma + \sqrt{R}(1-R)\beta \delta (a^\dagger b^\dagger - b^\dagger a^\dagger)|0\rangle
\]

\[
+ (\sqrt{1-R} \beta \gamma + \sqrt{R} \alpha \delta) a^\dagger
\]

\[
+ (\sqrt{R} \beta \gamma - \sqrt{1-R} \alpha \delta b^\dagger)|0\rangle
\]

Hence, by setting \(R = 1/2 \) and choosing \(\gamma \) and \(\delta \) which satisfy

\[
\alpha \delta = \beta \gamma,
\]

one finds that the coefficient of the \(b^\dagger \) term vanishes while that of the \(a^\dagger \) term does not. In other words, there is a possibility that detector \(D_A \) detects a single photon, while \(D_b \) detects none. By noting this event, one can perform a nondeterministic projection on the superposition state \(\alpha |0\rangle + \beta |1\rangle \). Using the parameters chosen above, the output state can be written as

\[
\psi = \alpha \gamma |0\rangle + \sqrt{2} \beta \gamma |10\rangle + \frac{\beta \delta}{\sqrt{2}} (|02\rangle - |20\rangle),
\]

where \(|ij\rangle \) denotes the state with \(i \) particles in mode \(a' \) and \(j \) particles in mode \(b' \). Thus, the probability of measuring \(|10\rangle \) is \(2|\beta \gamma|^2 \leq 1/2 \), because \(|\gamma| = |\alpha| \) from Eq. (5). Similarly, if the input state is \(\alpha |0\rangle - \beta |1\rangle \), the roles of the \(a^\dagger \) and \(b^\dagger \) terms are interchanged and we obtain the \(|01\rangle \) term instead of the \(|10\rangle \) term. In this way, the observers are able to measure a projection on a superposed state \(\alpha |0\rangle \pm \beta |1\rangle \) (\(P_A' \) and \(P_B' \) in Eq. (7)) of a single photon and the vacuum. We now discuss how to detect the presence of an eavesdropper using the projective measurement devices described above in conjunction with Bell’s inequality.

Choosing four projection operators

\[
P_A \equiv |1\rangle_A \langle 1|_A, \quad P_B \equiv |1\rangle_B \langle 1|_B,
\]

\[
P_A' \equiv (\alpha |0\rangle_A + \beta |1\rangle_A)(\alpha^* |0\rangle_A + \beta^* |1\rangle_A),
\]

\[
P_B' \equiv (\alpha |0\rangle_B - \beta |1\rangle_B)(\alpha^* |0\rangle_B - \beta^* |1\rangle_B),
\]

one can obtain expectation values of the operators

\[
\langle \phi | P_A' | \phi \rangle = \langle \phi | P_B' | \phi \rangle = \frac{1}{2},
\]

\[
\langle \phi | P_A P_B | \phi \rangle = |\langle \phi | P_B | \phi \rangle|^2 = \frac{1}{2} |\beta|^2,
\]

\[
\langle \phi | P_A P_B | \phi \rangle = 0, \quad \langle \phi | P_A' P_B' | \phi \rangle = |\alpha|^2 |\beta|^2.
\]

From these expectation values one can define a quantity

\[
S \equiv \langle \phi | P_A' + P_B' - P_A' P_B' - P_A P_B - P_A P_B' + P_A P_B' | \phi \rangle
\]

\[
= |\alpha|^2 (1 - 2 |\beta|^2),
\]

which violates the following version of Bell’s inequality, formulated by Peres

\[
0 \leq S \leq 1
\]

when \(|\beta| > 1/\sqrt{2} \) and \(\alpha \neq 0 \). This inequality is obtained when we assume a local hidden variable. As usual, possible interception, detection and substitution of the photons by an eavesdropper is equivalent to introducing a
local hidden variable into the system. In this case, Alice and Bob obtain not \(S \) but
\[
S_E = \int \rho(E_A, E_B) dE_A dE_B [p_A(E_A, A') + p_B(E_B, B')] \tag{11}
\]
\[
- p_A(E_A, A')p_B(E_B, B') - p_A(E_A, A')p_B(E_B, B) - p_A(E_A, A)p_B(E_B, B') + p_A(E_A, A)p_B(E_B, B),
\]
where \(\rho(E_A, E_B) \) is the probability that Eve measures the projection on a state \(|E_A\rangle \) at photon A \((P_{E_A}) \) at photon B \((P_{E_B}) \). This represents the strategy of the eavesdropper. \(p_A(E_A, A') \) denotes the probability of a count from Alice’s detector when she tests the projection operator \(P_A' \) after Eve has tested the projection operator \(P_{E_A} \) on the photon A. It is expressed by the quantum calculation
\[
p_A(E_A, A') = \langle \phi | P_A' P_{E_A} | \phi \rangle. \tag{12}
\]
For example, setting \(\alpha = 1/2 \) and \(\beta = \sqrt{3}/2 \) and considering the special case in which the eavesdropper measures only photon A, we obtain from Eqs. (7) and (12)
\[
S_E = \int \rho(E_A, E_B) dE_A dE_B [1 - p_A(E_A, A')] \tag{13}
\]
\[
= \int \rho(E_A) dE_A \left[1 - |\alpha' + \sqrt{3}/2 \beta'|^2 \right],
\]
where \(|E_A\rangle = \alpha'|0\rangle_A + \beta'|1\rangle_A \). With the triangle inequality, this implies \(1/4 \leq S_E \leq 1 \), which contradicts the quantum prediction of \(S = -1/8 \) obtained from Eq. (9) for the system with no eavesdropper. In this respect one may say that our scheme represents another experimental method for examining the single particle nonlocality.

We may now proceed to the discussion of a key distribution scheme going as follows.
(i) The photon source \((S) \) and beam splitters \((BS) \) periodically generate the single photon entangled state.
(ii) At a photon arrival time, Alice measures a projection operator randomly chosen between \(P_A \) and \(P'_A \). Similarly, at the same time, Bob measures \(P_B \) or \(P'_B \). This corresponds to the selection of the analyzer axis in ordinary two particle quantum cryptography schemes.
(iii) After a series of measurements Alice and Bob announce to each other which projection operator they chose. If Alice chose \(P_A \) and Bob chose \(P_B \) (probability \(1/4 \)), one of them will detect a photon and the other will not. Then they can share a random raw key 1 (say, for a photon) and 0 (for vacuum). With a probability of \(3/4 \), either Alice chooses \(P'_A \) or Bob chooses \(P'_B \). Since their results are not anti-correlated (see Eq. (8)) in these cases, they cannot extract keys. However, these discarded data together with the anti-correlated data from the previous step can be used to detect eavesdroppers, as shown in the next step.
(iv) Detection of eavesdroppers is possible by publicly comparing a subset of the results of Alice and Bob using Eq. (9) and Eq. (10), as described above.
We now briefly discuss another scheme that adopts deterministic projective measurement devices using cavity QED. The setup of this scheme, shown in Fig. 3, is similar to that considered by Davidovich et al., Freyberger, Moussa and Basiea [25–27], except that the single particle entangled state \(|\phi\rangle \) is generated not by an atom crossing the two cavities, but by the beam splitter (BS) and the single photon source \((S) \) as in Fig. 1.

Assuming that at time \(t = 0 \) two ground state atoms \(|g\rangle_A \) and \(|g\rangle_B \) are injected into the cavities \(C_A \) and \(C_B \), respectively, the total cavities-atom state is then \(|\psi(0)\rangle = |\phi\rangle |g\rangle_A |g\rangle_B \). The interaction between atoms and photons in the cavity \(C_k \) \((k = A, B) \) is described by the Jaynes-Cummings Hamiltonian
\[
H_I^k = \hbar \lambda (\sigma_{+,k} a_k + \sigma_{-,k} a_k^\dagger), \tag{14}
\]
where \(\lambda \) is a coupling constant and \(\sigma_{+,k}, \sigma_{-,k} \) and \(a_k^\dagger, a_k \) are the raising and lowering operators for the atom and photon states, respectively. In the cavities, these atoms interact with the photons injected into the cavities. In Refs. 25–27, it was shown that by choosing the interaction time \(t \) to be \(\lambda t = \pi/2 \), one can replicate the information of the entanglement of the photon states \(|\phi\rangle \) to that of the atoms. In other words, the state becomes
\[
|\psi(t)\rangle = \exp[-i/\hbar (\Sigma_k H_I^k) t] |\psi(0)\rangle = \frac{1}{\sqrt{2}} ((|e\rangle_A |g\rangle_B - |g\rangle_A |e\rangle_B) |0\rangle_A |0\rangle_B,
\]
\[
= \frac{1}{\sqrt{2}} ((|e\rangle_A |g\rangle_B - |g\rangle_A |e\rangle_B) |0\rangle_A |0\rangle_B,
\]
\[
= \frac{1}{\sqrt{2}} \left(|\phi\rangle + |\phi\rangle \right) |0\rangle_A |0\rangle_B.
\]

The projective measurement on \(\alpha |0\rangle + \beta |1\rangle \) can be performed as follows. Microwave fields are appropriately adjusted in the Ramsey zones \((R_k) \) such that a superposition of the ground state and the excited state of the atom, \(\alpha |g\rangle_k + \beta |e\rangle_k \), with \(|\alpha|^2 + |\beta|^2 = 1 \), undergoes a unitary evolution to the excited state \(|e\rangle_k \), which registers a
click in the state-selective ionization detector D_k. Except for the measurement devices, the procedure followed in this scheme is the same as that with linear optics devices shown in Fig. 1.

Our scheme has the following merits compared to ordinary quantum cryptography schemes. First, compared to the ordinary two-particle EPR-based scheme, it is easier for our scheme to generate vacuum and single particle entanglement using beam splitters. Of course, our model entails the detection of a superposition of the vacuum and single photon states, which is rather difficult to implement. However, the difficulty involved in detecting the superposed state will also be encountered by eavesdroppers. Second, compared to non-EPR based schemes such as the BB84 scheme, it is easier for EPR-based schemes to use quantum repeaters [28] based on quantum teleportation [15] to send information to distant observers. One shortcoming of our scheme is that, due to low detection efficiency, Bob may sometimes confuse a loss of signal with the vacuum state. In this case, Alice and Bob need to distill a secret key from the series of keys using privacy amplification [29].

In summary, we have proposed a new quantum cryptography technique based on single particle entanglement using linear optics devices and Bell's inequality to detect the presence of eavesdroppers.

We acknowledge the support of the Korean Ministry of Education.

[1] C.H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres and W.K. Wootters, Phys.Rev.Lett. 70, 1895 (1993).
[2] D. Bouwmeester, J.W. Pan, K. Mattle, M. Eibl, H. Weinfurter and A. Zeilinger, Nature (London) 390, 575 (1997); D. Boschi, S. Branca, F. De Martini, L. Hardy and S. Popescu, Phys.Rev.Lett. 80, 1121 (1998);
A. Furusawa, J.L. Sorensen, S.L. Braunstein, C.A. Fuchs, H.J. Kimble and E.S. Polzik, Science 282, 706 (1998).
[3] A.K. Ekert, Phys.Rev.Lett. 67, 661 (1991).
[4] A. Einstein, B. Podolsky and N. Rosen, Phys.Rev. 47, 777 (1935).
[5] J.S. Bell, Physics (Long Island City, N.Y.) 1, 195 (1964).
[6] S. J. Freeman and J. F. Clauser, Phys.Rev. Lett. 28, 938 (1972); J.F. Clauser and A. Shimony, Rep.Prog.Phys. 41, 1881 (1978).
[7] A. Aspect, P. Grangier and G. Roger, Phys.Rev.Lett. 47, 460 (1981); ibid 49, 91 (1982); A. Aspect, J. Dalibard and G. Roger, Phys.Rev.Lett. 49, 1804 (1982).
[8] G. Björk and P. Jonsson and L.L. Sánchez-Soto, Phys. Rev. A 64,042106 (2001).
[9] S. M. Tan, D. F. Walls and M. J. Collet, Phys.Rev.Lett. 66, 252 (1991);
S. M. Tan, M. J. Holland and D. F. Walls, Opt. Commun. 77, 285 (1990).
[10] L. Hardy, Phys.Rev.Lett. 73, 2279 (1994); L. Vaidman, Phys.Rev.Lett. 75, 2063 (1995); D. M. Greenberger, M. A. Horne and A. Zeilinger, Phys.Rev.Lett. 75, 2064 (1995); L. Hardy, Phys.Rev.Lett. 75, 2065 (1995).
[11] E. Santos, Phys.Rev.Lett. 68, 894 (1992); S. M. Tan, D. F. Walls and M. J. Collet, Phys.Rev.Lett. 68, 895 (1992).
[12] M. Revzen and A. Mann, Found. Phys. 26, 847 (1996).
[13] C. C. Gerry, Phys.Rev.A 53, 4583 (1996).
[14] M. Michler, H. Weinfurter, and M. Zukowski, Phys. Rev. Lett., 84, 5457 (2000).
[15] H.W. Lee and J.K. Kim Phys. Rev. A 63, 012305 (2001).
[16] G. J. Milburn, Phys.Rev. Lett. 62, 2124 (1989).
[17] J.C. Howell and J.A. Yeazell, Phy.Rev.A 62, 012102 (2000).
[18] C. K. Hong and L. Mandel, Phys.Rev.Lett. 56, 58 (1986); J. Kim, O. Benson, H. Kan and Y. Yamamoto, Nature 397, 500 (1999); C. Brunel, B. Lounis, P. Tamrat and M. Orrit, Phys.Rev.Lett. 83, 2722 (1999).
[19] M. Czachor, Phys. Rev. A 49, 2231 (1994); D. Home and G.S. Agarwal, Phys. Lett. A 209, 1 (1995).
[20] A. Peres, Phys. Rev. Lett. 74,4571 (1992); 76,2205 (1996).
[21] C. H. Bennett, Phys. Rev. Lett. 68,3121 (1992).
[22] M. Ardehali, Phys. Lett. A 217,301 (1996).
[23] E. Knill, R. Laflamme and G. J. Milburn, Nature, 409,46 (2001).
[24] A. P. Lund and T. C. Ralph Phys. Rev. A 66, 032307 (2002); D. T. Pegg et al., Phys. Rev. Lett. 81, 1604 (1604).
[25] I.Davidovich et al., Phys. Rev. A 50, R895 (1994).
[26] M.H.Y. Moussa and B. Baseia, Phys. Lett. A 245,335 (1998).
[27] M. Freyberger, Phys. Rev. A 51,3347 (1995).
[28] M. Zukowski et al., Phys. Rev. Lett. 71, 4287 (1993); H.-J. Briegel et al., Phys. Rev. Lett. 81, 5932 (1998).
[29] C. H. Bennett, et al., SIAM Journal on Computing, 17,210 (1998).