The centroid Banach-Mazur distance between the parallelogram and the triangle

Marek Lassak

Abstract. Let C and D be convex bodies in the Euclidean space E^d. We define the centroid Banach-Mazur distance $\delta_{\text{cen}}(C, D)$ similarly to the classic Banach-Mazur distance $\delta_{BM}(C, D)$, but with the extra requirement that the centroids of C and an affine image of D coincide. We prove that for the parallelogram P and the triangle T in E^2 we have $\delta_{BM}(P, T) = \frac{5}{2}$.

Keywords: Banach-Mazur distance, centroid Banach-Mazur distance, convex body, centroid, parallelogram, triangle

MSC: Primary: 52A21, Secondary 46B20, 52A10

1 Introduction

The classical definition of the Banach-Mazur distance of centrally symmetric convex bodies of the Euclidean d-space E^d is given by Banach [2] in behalf of him and Mazur over nine decades ago. For over four decades this definition is considered also for a arbitrary convex bodies of E^d. Namely, for convex bodies C, D of E^n this extended Banach-Mazur distance sounds as follows

$$\delta_{BM}(C, D) = \inf_{a, h_\lambda} \{\lambda; \ a(D) \subset C \subset h_\lambda a(D)\},$$

where a stands for an affine transformation and h_λ denotes a homothety with a positive ratio λ. For the relationship of them see Claim of [3].

A survey on the Banach-Mazur distance is given in the book [11] by Tomczak-Jaegerman. Moreover, in Sections 3.2 and 3.3 of the book [12] by Toth, and in Section 4.1 of the book [1] by Aubrun and Szarek.

Here is the notion of the centroid Banach-Mazur distance of convex bodies C, D of E^d:

$$\delta_{BM}^{\text{cen}}(C, D) = \inf_{a, h_\lambda} \{\lambda; \ a(D) \subset C \subset h_\lambda a(D) \text{ and } \text{cen}(a(D)) = \text{cen}(C)\},$$

where a again stands for an affine transformation, but h_λ means a homothety with the ratio $\lambda \geq 1$ whose center is at the centroids $\text{cen}(a(D)) = \text{cen}(C)$ of $a(D)$ and C. Observe that the centroids of C, D in this definition take over the roles of the centers of the centrally-symmetric bodies in the original definition of Banach-Mazur distance. We easily show that $\delta_{BM}^{\text{cen}}(C, D) = \delta_{BM}^{\text{cen}}(D, C)$ for every C and D. Recall that pioneer research on the centroid was provided by Neumann [10].
In Theorem we prove that \(\delta_{\text{cen}}^{BM}(P, T) = \frac{5}{2} \) for the parallelogram \(P \) and the triangle \(T \) in \(E^2 \). Our effort is put in order to show that \(\delta_{\text{cen}}^{BM}(P, T) \geq \frac{5}{2} \) since the opposite inequality immediately follows from easy examples.

At the end of the paper we present a few remarks. The first concerns the positions of our triangle with respect to the parallelogram for which the ratio \(\frac{5}{2} \) is realized. The second comments the dual version of Theorem. The third shows the following generalization of Theorem for a centrally-symmetric convex body \(M \) in place of \(P \): for every triangle \(T \) inscribed in \(M \) with the common centroid we have \(M \subset 3T \). We also propose a more general task to consider an arbitrary convex body instead of \(M \). Finally, we ask about a generalization of Theorem for \(E^d \).

As usual, by \(\text{int}(A) \) and \(\text{bd}(A) \) we denote the interior and boundary of a set \(A \).

2 The distance between the parallelogram and the triangle is \(\frac{5}{2} \)

Theorem. For the parallelogram \(P \) and the triangle \(T \) we have \(\delta_{\text{cen}}^{BM}(P, T) = \frac{5}{2} \).

Proof. In the proof, by \(\lambda C \) we mean the homothetic image of a set \(C \) with a positive ratio \(\lambda \) and the center at the origin \(o \) of \(E^2 \). By \(S \) denote the square with vertices \((1, \pm 1)\) and \((-1, \pm 1)\).

Let us rephrase our theorem as the conjunction of the two following sentences

(*) for every triangle \(\Delta \subset S \) with the centroid at the center \(o \) of \(S \) the interior of the triangle \(\frac{5}{2} \Delta \) does not contain \(S \),

(**) there exists a triangle \(\Delta_0 \subset S \) with the centroid in the center of \(S \) for which \(\frac{5}{2} \Delta_0 \) contains \(S \).

Taking as \(\Delta_0 \) the triangle with vertices \((1, \frac{1}{2}), (-1, \frac{1}{2})\) and \((0, -1)\) we see that (***) is true. Later, our aim is to show that (*) holds true.

The following obvious fact is applied soon two times in the proof.

(\(\triangleright \)) If (*) is true for a triangle centered at \(o \) and containing \(\Delta \), then (*) is true for \(\Delta \).

By (\(\triangleright \)) we may assume that \(\Delta \subset S \) has at least one vertex in the boundary of \(S \). Still if all the vertices of the triangle are in the interior of \(\text{int}(S) \), we can increase this triangle by a homothety with center \(o \) such that at least one of its vertices “arrives” to the boundary of \(S \).

Without losing the generality assume that such a vertex \(a \) is \((1, \alpha)\), where \(0 \leq \alpha \leq 1 \).

Denote by \(b \) and \(c \) the endpoints of the opposite side of \(\Delta \) such that \(a, b, c \) are in the positive order. The midpoint of \(bc \) is \(d = (-\frac{1}{2}, -\frac{1}{2} \alpha) \). The reason is that the segment connecting \(d \) with \(a \) passes through \(o \) which is the centroid of \(\Delta \).

We may assume that \(b \) or \(c \) is in \(\text{bd}(S) \). Still if \(b \) and \(c \) are in \(\text{int}(S) \), we do not lose the generality by properly enlarging \(\Delta \). Namely, we increase \(bc \) by the homothety at its center \(d \) as long as an endpoint attains the boundary of \(S \), but clearly, the other must remain in \(S \). This follows by (\(\triangleright \)) and the observation that the center of the increased triangle is \(o \) again.
Case 1, when the vertex b attains the boundary of S not later than c.

Subcase 1.1, when $\alpha \in (0, 1]$.

Since $\alpha > 0$, we have $-\frac{1}{2}\alpha < 0$. Thus d is below the axis $y = 0$. Since d is the midpoint of bc, this and the fact that c is over or on the straight line $y = -1$ imply that b must be below the straight line $y = 1$. Hence b does not belong to the side $(1, 1)(-1, 1)$. Obviously, it also does not belong to the sides $(-1, -1)(1, -1)$ and $(1, -1)(1, 1)$. So b belongs to the side $(-1, 1)(-1, -1)$ and has the form $b = (-1, \beta)$. See Figure 1. Clearly, $-1 \leq \beta \leq 1$.

Applying again the fact that $d = (-\frac{1}{2}, -\frac{1}{2}\alpha)$ is the middle of bc, we conclude that $c = (0, -\alpha - \beta)$. Since the second coordinate of c is at least -1, we get $\alpha - \beta \geq -1$ which means that $1 - \alpha \geq \beta$. Since the order of vertices a, b, c of Δ is positive, we get $\beta \geq -\alpha$ (for $\beta = -\alpha$ our triangle Δ degenerates to a segment). Resuming, $-\alpha \leq \beta \leq 1 - \alpha$ and thus $b \in gh$, where $g = (-1, 1 - \alpha)$ and $h = (-1, -\alpha)$.

Take into consideration the triangle $\frac{5}{2}\Delta$. Its corresponding vertices are $a' = (\frac{5}{2}, \frac{5}{2}\alpha)$, $b' = (-\frac{5}{2}, \frac{5}{2}\beta)$ and $c' = (0, -\frac{5}{2}\alpha - \frac{5}{2}\beta)$. Here are the equations of the straight lines $\ell_{a'c'}$ and $\ell_{b'c'}$ containing the sides $a'c'$ and $b'c'$, respectively:

$$\ell_{a'c'}: y - \frac{5}{2}\alpha = (2\alpha + \beta)(x - \frac{5}{2}),$$

$$\ell_{b'c'}: y + \frac{5}{2}\alpha + \frac{5}{2}\beta = (-\alpha - 2\beta)x.$$

We intend to show that for every $\alpha \in (0, 1]$ and $\beta \in [-\alpha, 1 - \alpha]$ at least one of the straight lines $\ell_{a'c'}, \ell_{b'c'}$ intersects the square S. This would mean that the interior of $\frac{5}{2}\Delta$ does not contain the whole S. Consequently (*) would hold true.

Consider the parallelogram $V = \{(\alpha, \beta); 0 < \alpha \leq 1, \alpha \leq \beta \leq 1 - \alpha\}$ in the coordinate system $O\alpha\beta$, where $a = (0, 0)$, without the side $(0, 0)(0, 1)$. See Figure 2.

The below consideration shows that for every $(\alpha, \beta) \in R$ at least one of the following two sentences is true in the system Oxy:

- $\ell_{a'c'}$ intersects the side $(-1, -1)(1, -1)$.
- $\ell_{b'c'}$ intersects the side $(-1, -1)(-1, 1)$.

We intersect $\ell_{a'c'}$ with the line $y = -1$ containing the side $(-1, -1)(1, -1)$. The point of intersection is $e = \left(\frac{2 - 5\alpha + 5\beta}{4\alpha + 2\beta}, -1\right)$. If the line $\ell_{a'c'}$ intersects the side $(-1, -1)(1, -1)$, from $x \leq 1$ we obtain $\beta \leq \frac{2 - \alpha}{3}$. As a result we see the region $V(\ell_{a'c'})$ of points (α, β) in the coordinate system $O\alpha\beta$ for which the line $\ell_{a'c'}$ intersects the side $(-1, -1)(1, -1)$; it is the part of R not above the straight line $\beta = \frac{2 - \alpha}{3}$.

The straight line $\ell_{b'c'}$ intersects the one $x = -1$ containing the side $(-1, 1)(-1, -1)$. The point f of intersection is $(-1, -\frac{3}{2}\alpha - \frac{1}{2}\beta)$. If the line $\ell_{a'c'}$ intersects the side $(-1, 1)(1, -1)$, then from $y \geq -1$ we conclude that $\beta \leq 2 - 3\alpha$. The region $V(\ell_{b'c'})$ of points (α, β) in the system $O\alpha\beta$ for which the line $\ell_{b'c'}$ intersects the side $(-1, -1)(-1, 1)$ is the part of R not above the straight line $\beta = 2 - 3\alpha$.

These two straight lines $\beta = \frac{2-\alpha}{3}$ and $\beta = 2 - 3\alpha$ intersect at the point $(\frac{1}{2}, \frac{1}{2})$ of the system $\alpha\beta$ which is in the side $(1, 0)(0, 1)$ of R. From this and the two preceding paragraphs we see that $V \subset \ell_{a'b'} \cup V(\ell_{b'c'})$. Hence (*) holds true.

Subcase 1.2, when $\alpha = 0$.

We have $d = (\frac{-1}{2}, 0)$ which implies that $b \in (0, 1)(-1, 1)$ and $c \in (-1, -1)(0, -1)$ are symmetric with respect to d. We let the reader to check that the interior of the triangle $\frac{5}{2}\Delta$ does not contain S, so (*) holds true.

Case 2, when the vertex c attains the boundary of S not later than b.

Subcase 2.1 when $\alpha \in (0, 1]$.

Observe that c must be in the side $(-1, -1)(1, -1)$ (see Figure 3). So c has the form $(\gamma, -1)$, where $-1 \leq \gamma \leq 1$. From $b \in S$ and the fact that d has the first coordinate $\frac{-1}{2}$ we see that $-1 \leq \gamma \leq 0$. Since d is the midpoint of bc, we have $b = (-1 - \gamma, 1 - \alpha)$.

Take into account the triangle $\frac{5}{2}\Delta$. Its corresponding vertices are $a' = (\frac{5}{2}, \frac{5}{2}\alpha)$, $b' = (\frac{-\frac{5}{2} - \frac{5}{2}\gamma, \frac{5}{2} - \frac{5}{2}\alpha})$ and $c' = (\frac{\gamma}{2}, -\frac{\gamma}{2})$ (see Figure 3).

Here are the equations of the straight lines containing the sides of the triangle $a'b'c'$.

- $\ell_{a'b'} : y - \frac{5}{2}\alpha = \frac{-1+2\alpha}{2+\gamma}(x - \frac{5}{2})$,
- $\ell_{b'c'} : y + \frac{5}{2} = \frac{2\alpha-\gamma}{2-\gamma}(x - \frac{5}{2}\gamma)$,
- $\ell_{a'c'} : y - \frac{5}{2}\alpha = \frac{\alpha+1}{\gamma}(x - \frac{5}{2})$.

We intend to show that for every $\gamma \in [-1, 0]$ at least one of these lines $\ell_{a'b'}, \ell_{b'c'}$ and $\ell_{a'c'}$ intersects the square S. This would mean that (*) holds true.
Now let us deal with the set $W = \{(\alpha, \gamma) : 0 < \alpha \leq 1, -1 \leq \gamma \leq 0\}$ of points in the coordinate system $o\alpha\gamma$ (see Figure 4), where $o = (0,0)$.

The point k of intersection of $\ell_{a'}$ with the straight line $x = 1$ containing the side \((1,1)(1, -1)\) has the second coordinate $y = -\frac{3}{2} - \frac{1 + 2\alpha}{2 + \gamma} + \frac{5}{2} \alpha$. If $\ell_{a'}$ intersects this side, then from $y \leq 1$ we get $\frac{3}{2} - \frac{1 + 2\alpha}{2 + \gamma} + \frac{5}{2} \alpha \leq 1$. Equivalently, $\gamma \geq \frac{1 - 4\alpha}{2 + 5\alpha}$. So the curve $\gamma = \frac{1 - 4\alpha}{2 + 5\alpha}$ in the coordinate system $o\alpha\gamma$ intersects the axis $o\alpha$ at $(\frac{1}{4}, 0)$ and the axis $o\gamma$ at $(0, -\frac{1}{2})$. This permits to see the subregion $W(\ell_{a'})$ of W of points for which $\ell_{a'}$ intersects S. It is bounded by the piece of $\gamma = \frac{1 - 4\alpha}{2 + 5\alpha}$ for $0 \leq \alpha \leq \frac{1}{4}$ (marked by the dotted line in Figure 4) and the segments \((0,0)(0, \frac{1}{4})\) and \((0,0)(0, -\frac{1}{2})\) in the system $o\alpha\gamma$.

The intersection of $\ell_{b'}$ with the straight line $y = -1$ containing the side \((-1, -1)(1, -1)\) is at a point $l = (x, -1)$, where x fulfills $\frac{3}{2} = \frac{2 - \alpha}{2 + \gamma}(x - \frac{5}{2} \gamma)$, this is $x = \frac{-3 - 6\alpha}{4 - 2\gamma} + \frac{5}{2} \gamma$. If $\ell_{b'}$ intersects the side \((1, -1)(-1, -1)\), then from $x \geq -1$ we obtain $-1 \leq \frac{-3 - 6\alpha}{4 - 2\gamma} + \frac{5}{2} \gamma$ which (for $\alpha \in [0, \frac{1}{2}]$) is equivalent to $\gamma \geq \frac{1 - 2\alpha}{4 + 5\alpha}$. We easily check that the curve $\gamma = \frac{1 - 2\alpha}{4 + 5\alpha}$ in the coordinate system $o\alpha\gamma$ intersects the axis $o\alpha$ at $(\frac{1}{4}, 0)$ and the axis $o\gamma$ at $(0, -\frac{1}{4})$. In Figure 4 we see the subregion $W(\ell_{b'})$. It is bounded by the piece of $\gamma = \frac{1 - 2\alpha}{4 + 5\alpha}$ for $0 \leq \alpha \leq \frac{1}{4}$ (marked by the dashed line in Figure 4) and the segments \((0,0)(0, \frac{1}{4})\) and \((0,0)(0, -\frac{1}{4})\) in the coordinate system $o\alpha\gamma$.

The intersection of $\ell_{c'}$ with the straight line $y = -1$ is at a point $m = (x, -1)$, where x fulfills $-1 - \frac{5}{2} \alpha = \frac{\alpha + 1}{1 + \gamma}(x - \frac{5}{2} \gamma)$, this is $x = \frac{5}{2} + \frac{2 - 5\alpha}{2 + 2\alpha}(1 - \gamma)$. If $\ell_{c'}$ intersects the side \((-1, -1)(1, -1)\), then from $x \leq 1$ we obtain $\frac{3}{2} \leq \frac{2 + 5\alpha}{2 + \alpha}(1 - \gamma)$ which, for our positive α is...
equivalent to $\gamma \leq \frac{-1+2\alpha}{2+5\alpha}$. We easily check that the curve $\gamma = \frac{-1+2\alpha}{2+5\alpha}$ in the coordinate system $o\alpha\gamma$ intersects the axis $o\alpha$ at $(\frac{1}{2}, 0)$ and the axis $o\gamma$ at $(0, -\frac{1}{2})$. In Figure 4 we see this subregion $W(\ell_{a'c'})$ of W of points for which $\ell_{a'c'}$ intersects S. This subregion is bounded by the piece of the curve $\gamma = \frac{-1+2\alpha}{2+5\alpha}$ for $0 < \alpha \leq \frac{1}{2}$ (marked by the solid line in Figure 4) and by the segments connecting the succeeding pairs of points $(0, -\frac{1}{2}), (0, -1), (1, -1), (1, 0)$ and $(\frac{1}{2}, 0)$ in the coordinate system $o\alpha\gamma$. Clearly, here the first of these segments is not in $W(\ell_{a'c'})$.

Observe that the point $(\frac{1}{3}, -\frac{1}{3})$ belongs to the three pieces of curves bounding our three considered subregions. Moreover, $-\frac{1+2\alpha}{2+5\alpha} \geq \frac{-4\alpha}{2+5\alpha}$ for $0 < \alpha \leq \frac{1}{3}$ and $-\frac{1+\alpha}{2+5\alpha} \geq \frac{-2\alpha}{2+5\alpha}$ for $\frac{1}{3} \leq \alpha \leq \frac{1}{2}$ (see Figure 4). These facts and the three preceding paragraphs imply that $W \subset W(\ell_{a'c'}) \cup W(\ell_{b'c'}) \cup W(\ell_{a'c'})$.

Subcase 2.2 for $\alpha = 0$.

Now we have $d = (-\frac{1}{2}, 0)$. This implies that $c \in (-1, -1)(0, -1)$ and $b \in (0, 1)(-1, 1)$ are symmetric with respect to d. It is easy to check that the interior of the triangle $\frac{5}{2}\triangle$ does not contain S. So (*) holds true.

From Cases 1 and 2 we see that always $\text{int}(\frac{5}{2}\triangle)$ does not contain S, i.e., (*) is fulfilled. \square

The fact proved in Theorem is claimed without a proof at the bottom of p. 259 of [4].

3 Final remarks

Let us comment the positions of the triangle Δ_0 in S (drawn by a thick line in Figure 5) from the proof of Theorem, for which (**) holds true. As it follows from our considerations, the only two such triangles $\Delta_0 \subset S$ (up to symmetric positions) are the following. The first has vertices $a_1 = (1, \frac{1}{2}), b_1 = (-1, \frac{1}{2})$ and $c_1 = (0, -1)$ (by the way, two symmetric positions are also seen for $\alpha = 0$ in Subcases 1.2 and 2.2 of the proof of Theorem). The second has vertices $a_2 = (1, \frac{1}{5}), b_2 = (-\frac{1}{5}, \frac{1}{5})$ and $c_2 = (-\frac{1}{5}, -1)$. We see both and also corresponding $\frac{5}{2}\triangle_0$ in Figure 5.

Look at the dual situation. Putting $C = P$ and $D = T$ in $\delta_{BM}^{\text{cen}}(C, D) = \delta_{BM}^{\text{cen}}(D, C)$, by Theorem we get $\delta_{BM}^{\text{cen}}(T, P) = \frac{5}{2}$. In particular, for a given equilateral triangle T (marked by a thick line in Figure 6) there are only two extreme positions (up to symmetric ones) of a parallelogram P_0 for which $\frac{5}{2}P_0$ contains T.

In connection to our Theorem recall Theorem from [7] shows that every centrally symmetric convex body $M \subset E^2$ permits to inscribe a triangle Δ whose centroid is at the center of symmetry of M such that $M \subset \frac{5}{2}\Delta$ (our present Theorem explains that this ratio cannot be lessened when M is a parallelogram.) Here is a claim which considers any inscribed triangle.

Claim. Let $M \subset E^2$ be a centrally-symmetric convex body. For every inscribed triangle Δ in M with the common centroid we have $M \subset 3\Delta$.

Proof. Let $\Delta = abc$. Take the symmetric triangle $\Delta_s = a_s b_s c_s$ with respect to o. The convex
hull H of $\Delta \cup \Delta_s$ is an affine-regular hexagon inscribed in M. Prolonging the sides ab_s, bc_s, ca_s we get three points of intersection. Denote by $S(H)$ the star being union of the triangle with these three vertices and the symmetric triangle with respect to o. By the convexity of M we conclude that $M \subset S(H)$. Moreover, observe that $S(H) \subset 3\Delta$. Consequently, $M \subset 3\Delta$.

By the way, Figure 3 of [5] shows an analogous situation of extreme homothetic parallelograms $S \subset \Delta$ and $(\sqrt{2} + 1)S \supset \Delta$ without the requirement that centroids of S and Δ coincide. The ratio 3 in Claim cannot be lessened as it shows the example of the square with vertices $(-1, \pm 1), (1, \pm 1)$ and the triangle with vertices $(1, 1), (-1, 0), (0, -1)$.

Theorem of [7] says the following. Let $M \subset E^2$ be a centrally symmetric convex body. In M it can be inscribed a triangle Δ whose centroid is the center of symmetry of M such that $M \subset \frac{5}{2}\Delta$. From our Theorem it follows that this ratio $\frac{5}{2}$ cannot be lessened.

What about considering an arbitrary convex body in place of M in Claim? The author conjectures that for every planar convex body C and an arbitrary inscribed triangle Δ with the common centroid we have $C \subset 4\Delta$. Possibly the result of Neumann [10] would be a good tool. The the ratio 4 cannot be lessened for C being a triangle with the centroid at o and $\Delta = -\frac{1}{4}C$.

The above remarks can be seen in the wider context of approximation by triangles in [3].

Finally, let us ask about a higher dimensional generalization of Theorem. In E^3 the parallelepiped Q permits to inscribe (thus also put inside) a simplex S whose centroid is in the center of Q and $Q \subset 3S$. Just put the vertices of S at some four non-neighboring vertices of Q. Thus $\delta_{cen}^{BM}(Q, P) \leq 3$. The author believes that the equality holds true here, but possible
evaluation seems to be complicated. For higher dimensions the task of finding or at least estimating $\delta_{\text{cen}}^{BM}(Q, P)$ remains open. From [8] we only conclude that $\delta_{\text{cen}}^{BM}(Q, P) \leq 2n - 1$. Since $\delta_{\text{cen}}^{BM}(P, Q) = \delta_{\text{cen}}^{BM}(Q, P)$, the same also follows from the last paragraph of [6].

References

[1] G. Aubrun and S. J. Szarek, Alice and Bob Meet Banach, The interface of asymptotic geometric analysis and quantum information theory. Mathematical Surveys and Monographs, 223. American Mathematical Society, Providence, RI, 2017.

[2] S. Banach, Théorie des opérations linéaires, Monogr. Mat. 1. Warszawa (1932). [English translation: Theory of linear operations. Translated from the French by F. Jellett. With comments by A. Pełczyński and Cz. Bessaga. North-Holland Mathematical Library, 38. North-Holland Publishing Co., Amsterdam, 1987.]

[3] P. Brass and M. Lassak, Problems on approximation by triangles, Geombinatorics, 10 (2001), 103–115.

[4] B. Grünbaum, Measures of symmetry of convex sets, Convexity, Proc. Sympos. Pure Math., vol. 7, Amer. Math. Soc., Providence, R.I., 1963, pp. 233-170.

[5] M. Lassak, Approximation of plane convex bodies by centrally symmetric bodies, J. London Math. Soc. (2) 40 1989, 369–377.

[6] M. Lassak, Approximation of convex bodies by paralleloptopes, Bull. Pol. Ac. Math. 39 (1991), 219–223.

[7] M. Lassak, Approximation of convex bodies by triangles, Proc. Amer. Math. Soc. 115 (1992), 207-210.

[8] M. Lassak, Approximation of convex bodies by centrally symmetric bodies, Geom. Dedicata 72 (1998), 63–68.

[9] M. Lassak, Banach-Mazur distance from the parallelogram to the affine-regular hexagon and other affine-regular even-gons, Results Math. 76 (2021), 76–82.

[10] B. H. Neumann, On some affine invariants of closed convex regions, J. London Math. Soc. 14 (1939), 262–272.

[11] N. Tomczak-Jaegerman, Banach-Mazur Distances and Finite-dimensional Operator Ideals. Longman Scientific and Technical (Harlow and New York), 1989.

[12] G. Toth, Measures of Symmetry for Convex Sets and Stability, Universitext, Springer, Cham, 2015.