A Novel Way to Numerically Characterize DNA Sequences and Its Application

YING GUO,1 YAN-FANG WANG,1 SHENG-LI ZHANG2

1College of Information Engineering, Dalian University, Dalian of Liaoning 116622, China
2School of Mathematical Sciences, Dalian University of Technology, Dalian of Liaoning, Dalian 116024, China

Received 19 January 2010; accepted 27 May 2010
Published online 4 November 2010 in Wiley Online Library (wileyonlinelibrary.com).
DOI 10.1002/qua.22872

ABSTRACT: We presented a novel way to numerically characterize DNA sequences based on the graphical representation for the sequences comparison and analysis. Instead of calculating the leading eigenvalues of the matrix for graphical representation, we computed curvature and torsion of curves as the descriptor to numerically characterize DNA sequences. The new method was tested on three data sets: the coding sequences of β-globin gene, all of their exons, and 24 coronavirus geneomes from NCBI. The similarities/dissimilarities and phylogenetic tree of these species verify the validity of our method. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem 111: 3971–3979, 2011

Key words: graphical representation; curvature; torsion; phylogenetic tree

1. Introduction

Graphical techniques initiated in 1983 by Hamori and Ruskin [1] have emerged as a very powerful tool for the visualization and analysis of long DNA sequences. Several authors outlined different 2D graphical representations of DNA sequences based on two dimensional Cartesian coordinates. The original plot of a DNA sequence as a random walk on a 2D grid using the four cardinal directions to represent the four bases was done by Gates [2], Leong and Morgenthaler [3], and Nandy [4]. Their method is based on the assignment of the four bases of DNA sequences to the four directions of the \((x, y)\) coordinate system. These 2D graphical representations of DNA sequence provide useful insights into local and global characteristics and the occurrences, variations and repetition of the nucleotides along a sequence that are not easily observed from DNA sequences directly. However, these graphical representations are accompanied with some loss of information because of overlapping and crossing of the curve representing DNA with itself. To eliminate, or at least reduce the
degeneracy of the above graphical representations, many high orders and unique graphical representations have been proposed [5–11].

In recent years, based on existing graphical representation, several authors have presented various methods to assign mathematical descriptors to DNA sequences to quantitatively compare the sequences and determine similarities and dissimilarities between them [8–10, 12–16]. In particular, the leading eigenvalues of the L/L matrices have been considered to be good descriptors of DNA sequences. However, the computation of the leading eigenvalues of the L/L matrices for long DNA sequences will be expensive. Therefore, the emergence of research into mathematical descriptors of DNA sequences is apparent and necessary.

Motivated by searching an efficient descriptor of DNA sequences, we propose a novel way to numerically characterize DNA sequences. When a DNA sequence is mapped into a 3D space, we can obtain a curve. Then, the curvature and torsion of the curve are computed to numerically characterize DNA sequences. The proposed numerical characterizations are tested by similarity analysis and phylogenetic analysis on three different data sets. Our results show that our method is preferable to numerically characterize DNA sequences. Furthermore, our method is rapid because the whole process does not involve complex algorithm.

2. Materials and Methods

2.1. 3D GRAPHICAL REPRESENTATION

Yuan et al. [7] proposed a 3D graphical representation that assigns one nucleotide base as follows:

\[(-1, 0, 0) \rightarrow A, \quad (1, 0, 0) \rightarrow G, \]
\[(0, -1, 0) \rightarrow T, \quad (0, 1, 0) \rightarrow C. \]

That is to say, A, G, T, and C are assigned to \(-x +y \), \(-x -y \), and \(+x -y \), respectively, while the corresponding curve extend along with z-axes. In detail, for a given DNA sequence \(G = g_1 \ldots g_N \), inspect it by stepping one base at a time. For the step \(i \) \((i = 1, 2, \ldots, N) \), a 3D space point \(P_i(x_i, y_i, z_i) \) can be constructed by function \(\phi(g_i) \) as follows:

\[
\phi(g_i) = \begin{cases}
(−1, 0, i) & \text{if } g_i = A, \\
(1, 0, i) & \text{if } g_i = G, \\
(0, −1, i) & \text{if } g_i = T, \\
(0, 1, i) & \text{if } g_i = C.
\end{cases}
\]

where \(N \) is the length of the given DNA sequence. When \(i \) runs from 1 to \(N \), we have points \(P_1(x_1, y_1, z_1), P_2(x_2, y_2, z_2), \ldots, P_N(x_N, y_N, z_N) \). Connecting adjacent points, we obtain a 3D zigzag curve. For example, the 3D graphical representation of the sequence ATGGTGCACC is presented in Figure 1.

According to the method of the graphical representation, there are three curves corresponding to the same DNA sequence. If we assign the four nucleotide bases as follows:

\[(-1, 0, 0) \rightarrow A, \quad (1, 0, 0) \rightarrow T, \]
\[(0, −1, 0) \rightarrow C, \quad (0, 1, 0) \rightarrow G, \]

we will get the second 3D curve. For the same sequence, ATGGTGCACC, the graph of the second curve is shown in Figure 2.

The third curve will be gotten by assigning the four nucleotide bases as follows:

\[(-1, 0, 0) \rightarrow A, \quad (1, 0, 0) \rightarrow C, \]
\[(0, −1, 0) \rightarrow G, \quad (0, 1, 0) \rightarrow T, \]

After having three curves corresponding to the same DNA sequence, we conveniently denote them as the curves of the patterns AGTC, ATCG, and ACGT.

2.2. THE CURVATURE AND TORSION OF THE CURVE

The most fundamental characteristics of a curve are its curvature and torsion, so we regard the curvature and torsion of curves as the descriptors to
FIGURE 2. The 3-D graphical representation of the sequence ATGGTGACC.

Numerically characterize curve of DNA sequences. The zigzag curve from the graphical representation of Yuan et al. is not smooth. In this section, we introduce a new method to calculate curvature and torsion of unsmooth curves.

Based on the reference [17], let \(\Delta \) be the difference operator, which assigns to every function \(f(x) \), the function \(g = \Delta f \), which is defined by \(g(x) = f(x + 1) - f(x) \). For each integer \(n \geq 2 \), we define \(\Delta^n f(x) = \Delta(\Delta^{n-1} f)(x) \), and we denote \(\Delta^n f(x) \) instead of \((\Delta^n f)(x) \). Then, we have:

\[
\Delta^n f(x) = \sum_{k=0}^{n} (-1)^{n-k} \binom{n}{k} f(x + k), \quad n = 0, 1, 2, \ldots
\]

(2)

So we can get the first to third difference form as below:

\[
\Delta f(x) = f(x + 1) - f(x)
\]

(3)

\[
\Delta^2 f(x) = f(x + 2) - 2f(x + 1) + f(x)
\]

(4)

\[
\Delta^3 f(x) = f(x + 3) - 3f(x + 2) + 3f(x + 1) - f(x)
\]

(5)

Then the three curves are obtained, denoted by

\[
r^i(t) = (x^i(t), y^i(t), z^i(t)) \quad i = 1, 2, 3
\]

(6)

For the \(i \)-th curve, its curvature \(k \) and torsion \(\tau \) can be calculated by the following formula [18].

\[
k^i(t) = \begin{vmatrix}
\Delta y^i(t) & \Delta z^i(t) \\
\Delta^2 y^i(t) & \Delta^2 z^i(t)
\end{vmatrix}, k^i(t) = \begin{vmatrix}
\Delta^2 y^i(t) & \Delta^2 z^i(t) \\
\Delta^3 y^i(t) & \Delta^3 z^i(t)
\end{vmatrix}
\]

(7)

(8)

If \(t \) is equal to \(t_0 \), the curvature and torsion values are

\[
k^i(t_0) = k^i(t) \big|_{t=t_0}, \quad \tau^i(t_0) = \tau^i(t) \big|_{t=t_0} \quad i = 1, 2, 3
\]

(9)

Give a DNA sequence with length of \(N \), \(N \) curvature and torsion values will be obtained. The average curvature and torsion values of the \(N \) curvature and torsion values, denoted by \(k^i_0 \) and \(\tau^i_0 \) respectively, can be computed as:

\[
k^i_0 = \left(\sum_{t=1}^{N} k^i(t) \right) / N \quad \tau^i_0 = \left(\sum_{t=1}^{N} \tau^i(t) \right) / N \quad i = 1, 2, 3
\]

(10)

As the curvature and torsion are character of the curve, they, in turn, can be regarded as descriptors to numerically characterize the curve. For extracting more characters from sequence, we construct a six-component vector, which is composed of three average curvatures and three average torsions, for numerical characterization the DNA sequence.

3. Results and Discussions

3.1. SIMILARITY ANALYSIS

Comparison of different DNA sequences is main application of our method. In Table I, the coding sequences of \(\beta \)-globin genes of 11 species and their exons are presented. Table II shows the six-component vectors of the coding sequences of the \(\beta \)-globin genes of 11 species.

Having a vector representation of a DNA sequence, we can compare various sequences by
using any of existing distance measures for vectors. The distance between two DNA sequences can be computed as the Euclidean distance between the end points of the two vectors representing them. The Euclidean distance between \(u \) and \(v \) is defined as:

\[
d(u, v) = \left(\sum_{i=1}^{6} (u_i - v_i)^2 \right)^{1/2}
\]

(11)

where \(u \) and \(v \) are vectors, \(u_i \) and \(v_i \) denote the six-component of the vectors \(u \) and \(v \), respectively. The underlying rationale is that if two vectors points in similar direction and the difference in their magnitudes is small, then the two sequences represented by these vectors are similar. In other words, the smaller the Euclidean distance between the end points of two vectors, the more similar are the two sequences represented by these vectors. Table III denotes the similarity matrix of the coding sequences of the \(\beta \)-globin gene of 11 species. Following the same method, we can also get the similarity matrices of the coding sequences of the each exon of 11 species, which are represented in Tables IV–VI.

In Table III, for the coding sequences of the \(\beta \)-globin gene of 11 species, it is obvious that the coding sequences of Gallus is the most dissimilar to the other 10 species, which is consistent with the fact that Gallus is non-mammal, whereas the others are mammal. The more similar species pairs are Human-Gorilla, Human-Chimpanzee, Rat-Mouse, and Gorilla-Chimpanzee, which are consistent with the results obtained by Randic [5, 19] and B. Liao [20]. In Tables IV–VI, for the single exon of the coding sequences of the \(\beta \)-globin gene of 11 species, there are some flaws. Some entries are not better than that of Table III.

To compare with other methods, we use the leading eigenvalues of E, L/L, M/M matrices [7] to perform the similarity analysis on the same data. The similarity for any pair of DNA sequences can be

\[
\begin{array}{c|c|c|c|c|c|c}
\text{Pattern} & \text{AGTC (k)} & \text{AGTC (i)} & \text{ATCG (k)} & \text{ATCG (i)} & \text{ACGT (k)} & \text{ACGT (i)} \\
\hline
\text{Human} & 0.63200 & 0.05099 & 0.63072 & 0.03132 & 0.62382 & 0.02744 \\
\text{Chimpanzee} & 0.63112 & 0.05498 & 0.62941 & 0.03825 & 0.62328 & 0.02229 \\
\text{Gorilla} & 0.62998 & 0.05751 & 0.62843 & 0.04263 & 0.62133 & 0.02117 \\
\text{Lemur} & 0.61447 & 0.05474 & 0.61306 & 0.01929 & 0.61350 & 0.02304 \\
\text{Rat} & 0.64599 & 0.03798 & 0.63502 & 0.04446 & 0.63577 & 0.04387 \\
\text{Mouse} & 0.64188 & 0.05029 & 0.63145 & 0.02985 & 0.63260 & 0.04137 \\
\text{Goat} & 0.64591 & 0.07325 & 0.63768 & 0.02751 & 0.63712 & 0.02328 \\
\text{Bovine} & 0.64807 & 0.06577 & 0.64012 & 0.02722 & 0.63735 & 0.01937 \\
\text{Rabbit} & 0.63439 & 0.04962 & 0.62955 & 0.01564 & 0.63016 & 0.02001 \\
\text{Opossum} & 0.64708 & 0.04546 & 0.63761 & 0.00544 & 0.63592 & 0.03010 \\
\text{Gallus} & 0.64163 & 0.07442 & 0.62966 & -0.00025 & 0.63436 & 0.05336 \\
\end{array}
\]
TABLE III
The similarity matrix of the coding sequences of the β-globin gene of 11 species.

Species	Human	Chimp-	Gorilla	Lemur	Rat	Mouse	Goat	Bovine	Rabbit	Opossum	Gallus
Human	0	0.00965	0.01501	0.03007	0.03112	0.01929	0.03076	0.02881	0.01871	0.03360	0.04922
Chimp-	0	0.00574	0.03163	0.03467	0.02576	0.03048	0.02909	0.02455	0.04135	0.05531	
Gorilla	0	0.03308	0.03752	0.03002	0.03271	0.03209	0.02984	0.04688	0.05889		
Lemur	0	0.05762	0.04384	0.05063	0.05127	0.03154	0.04996	0.05601			
Rat	0	0.02027	0.04431	0.04126	0.05888	0.04215	0.05888				
Mouse	0	0.03057	0.02943	0.02469	0.02867	0.04048					
Goat	0	0.00907	0.03094	0.03617	0.04203						
Bovine	0	0.02731	0.03180	0.04631							
Rabbit	0	0.02196	0.04528								
Opossum	0	0.03883									
Gallus	0										

TABLE IV
The similarity matrix of the coding sequences of the first exon of the β-globin gene of 11 species.

Species	Human	Chimp-	Gorilla	Lemur	Rat	Mouse	Goat	Bovine	Rabbit	Opossum	Gallus
Human	0	0.04546	0.02183	0.15386	0.08196	0.10383	0.08294	0.06119	0.10542	0.10540	0.14157
Chimp-	0	0.04459	0.14779	0.11172	0.12163	0.11736	0.06849	0.12709	0.08631	0.13549	
Gorilla	0	0.15326	0.07260	0.09546	0.08338	0.05888	0.11757	0.10732	0.15115		
Lemur	0	0.17836	0.13171	0.17118	0.10132	0.18117	0.11156	0.08159			
Rat	0	0.06226	0.04167	0.08762	0.13894	0.13912	0.19241				
Mouse	0	0.06483	0.06798	0.12206	0.11249	0.16349					
Goat	0	0.08303	0.11411	0.13033	0.17459						
Bovine	0	0.08848	0.07362	0.10987							
Rabbit	0	0.12287	0.09962								
Opossum	0	0.10638									
Gallus	0										

TABLE V
The similarity matrix of the coding sequences of the second exon of the β-globin gene of 11 species.

Species	Human	Chimp-	Gorilla	Lemur	Rat	Mouse	Goat	Bovine	Rabbit	Opossum	Gallus
Human	0	0.00418	0.00992	0.05362	0.05805	0.05955	0.05134	0.04771	0.03977	0.05134	0.07491
Chimp-	0	0.00838	0.05061	0.05425	0.05626	0.05315	0.05023	0.03945	0.04832	0.07303	
Gorilla	0	0.05111	0.05425	0.05689	0.06028	0.05695	0.04530	0.04747	0.07298		
Lemur	0	0.03670	0.02035	0.09014	0.08925	0.05604	0.01426	0.03782			
Rat	0	0.02628	0.08780	0.09124	0.06804	0.03381	0.06576				
Mouse	0	0.09220	0.09382	0.06639	0.01814	0.04051					
Goat	0	0.01432	0.05231	0.09081	0.11111						
Bovine	0	0.04682	0.08976	0.10931							
Rabbit	0	0.05919	0.08091								
Opossum	0	0.03770									
Gallus	0										
TABLE VI
The similarity matrix of the coding sequences of the third exon of the β-globin gene of 11 species.

Species	Human	Chimp-	Gorilla	Lemur	Rat	Mouse	Goat	Bovine	Rabbit	Opossum	Gallus
Human	0	0.04846	0.09099	0.12016	0.09176	0.12910	0.11005	0.08975	0.09191	0.04514	0.09097
Chimp-	0	0.05847	0.13822	0.13576	0.14872	0.10518	0.10569	0.09840	0.06711	0.11851	
Gorilla	0	0.13308	0.17006	0.15632	0.08933	0.11427	0.10655	0.08887	0.14676		
Lemur	0	0.11037	0.06751	0.06350	0.05128	0.06878	0.10755				
Rat	0	0.10577	0.13933	0.09200	0.10699	0.08413	0.07091				
Mouse	0	0.09428	0.06444	0.07437							
Goat	0	0.05293	0.04704	0.07162							
Bovine	0	0.02260	0.05066	0.07055							
Rabbit	0	0.05587	0.07534								
Opossum	0	0.07596									
Gallus	0										

On the other hand, it is noteworthy that the eigenvalues of E, L/L, and M/M matrixes is computationally intensive. Its running times is 6.5-times longer than that of our method. For example, in the β-globin gene, the leading eigenvalues of E, L/L, and M/M matrixes take 2.103h, and our method just 19.4s, using a 1.41 GHZ, AMD with 512 MB total memory. It is obvious that our method performs faster.

TABLE VII
The comparison similarity between Human and the other 10 species based on our method and Yuan’s method.

Species	Chimp-	Gorilla	Lemur	Rat	Mouse	Goat	Bovine	Rabbit	Opossum	Gallus
β gene										
E(10^6)	0.0770	0.0770	0.0179	0.2076	0.2142	0.0472	0.0401	0.2506	0.7159	0.0743
L/L	0.1143	0.1169	0.0140	0.3584	0.3761	0.0503	0.0409	0.4442	0.6943	0.1193
M/M(10^3)	0.0800	0.0800	0.0180	0.2279	0.2359	0.0471	0.0401	0.2810	0.5981	0.7914
My work	0.00965	0.01501	0.03007	0.03112	0.01929	0.03076	0.02881	0.01871	0.03360	0.04922

1st exon

β gene										
E(10^3)	0.8900	0.0642	0.0000	0.0001	0.1293	0.3711	0.3712	0.1266	0.0002	0.0001
L/L	0.2647	0.0165	0.0672	0.0111	0.0107	0.1455	0.1275	0.0737	0.0497	0.0177
M/M	13.0146	1.0175	0.1072	0.0032	2.0398	5.9294	6.0303	1.9919	0.1728	0.0229
My work	0.04546	0.02183	0.15386	0.08196	0.10383	0.08294	0.06119	0.10542	0.10540	0.14157

2nd exon

β gene										
E(10^4)	0.0155	0.0155	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
L/L	0.0087	0.0084	0.0045	0.0227	0.0165	0.0111	0.0029	0.0076	0.0025	0.0115
M/M	0.9990	0.9995	0.0394	0.0592	1.0380	0.0907	0.0524	0.0571	0.0263	0.1075
My work	0.00418	0.00992	0.05362	0.05805	0.05955	0.05134	0.04771	0.03977	0.05134	0.07491

3rd exon

β gene										
E(10^5)	4.9488	4.9488	0.0000	0.0000	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001
L/L	1.9337	1.9384	0.0150	0.0167	0.0116	0.0079	0.0204	0.0106	0.0113	0.0051
M/M	80.0582	80.0664	0.0425	0.0231	0.0701	0.0057	0.0256	0.0599	0.0985	0.1431
My work	0.04846	0.09099	0.12016	0.09176	0.12910	0.11005	0.08975	0.09191	0.04514	0.09097
3.2. PHYLOGENETIC ANALYSIS

Phylogenetics is the study of the evolutionary history among organisms. Moreover, it can provide information for function prediction. When sequences are grouped into families, it can provide us some clues about the general features of that family and evolutionary evidence of sequences.

Given a set of DNA sequences, their phylogenetic relationship can be gotten through the following main operation: first, we calculate the numerical characterizations of DNA sequences and the Euclidean distance between these numerical characterizations. Second, by arranging all the distance into a matrix, we obtain a distance matrix. Finally, we put the distance matrix into the UPGMA program in the PHYLIP package. We obtain the phylogenetic tree drawn by Treeview program.

To further demonstrate the utility of our method, we also analyze 24 coronavirus genome, which are listed in Table VIII. Recently, more attention has been paid to atypical syndrome (SARS), which was first identified in Guangdong Province, China, and rapidly spread to several countries later. The research of the relationships between the SARS-CoVs and the other coronaviruses can help to discover drugs and develop vaccines against the virus. The phylogenetic tree for 24 coronavirus genome is constructed by using our method, which is presented in Figure 3. To indicate the validity, we also constructed an evolutionary tree by the Clustal X method. Clustal X is a multiple sequence alignment program. The result is shown in Figure 4.

The topology of the tree obtained by our method (Fig. 3) is on the whole consistent with the established taxonomic groups, except for BCoVM and IBV. Coronaviruses can be divided into four groups according to serotypes. Group I (HCoV_229E, TGEV, and PEDV) and group II (BCoVL, BCoVQ, BCoV, MHVM, MHV2, MHV, and MHV) contain mammalian viruses, while group II coronaviruses contain a hemagglutinin esterase gene homologous to that of Influenza C virus [21]. Group III (IBV) contains only avian viruses, and Group IV [22, 23] are SARS-CoVs. Compared with the results in Figures 3 and 4, we can find some difference. In Figure 4, the result of Group IV is not clear. All in all, our method gives a more intuitively acceptable arrangement compared with the result of Clustal X.
4. Conclusions

Sequence comparison, which aims to discover similarity relationships between molecular sequences, is a fundamental task in computational biology. Currently, it is mainly handled using alignments. With the biological sequences explosive increasing, the alignment methods seem inadequate for postgenomic studies. Therefore, other methods are actively pursued.

In this article, we proposed a new method to numerically characterize DNA sequences and applied it to analyze the similarity of different sequences. Based on the 3D graphical representation, we calculated curvature and torsion in difference forms. Then, the curvature and torsion are regarded as the new descriptor to numerically characterize the DNA sequences. Avoiding the complexity of calculating the leading eigenvalues of the matrix for graphical representation, our method is more simple. Its application to the similarity/dissimilarity of the coding sequences of β-globin gene of 11 species and each of the exons of the gene illustrates validity. Not only so, using our method we analyzed coronavirus genomes and constructed the phylogenetic tree. The result, that is consistent with previous analysis, shows that SARS-CoVs form an independent group.

References

1. Hamori, E.; Ruskin, J. J Biol Chem 1983, 258, 1318.
2. Gates, M. A. J Theor Biol 1986, 119, 319.
3. Leong, P. M.; Morgenthaler, S. Comput Appl Biosci 1995, 12, 503.
4. Nandy, A. Curr Sci 1994, 66, 309.
5. Randic, M.; Guo, X. F.; Basak, S. C. J Chem Inf Comput Sci 2001, 41, 619.
6. Randic, M.; Vracko, M.; Zupan, J.; Novic, M. Chem Phys Lett 2003, 373, 558.
7. Yuan, C. X.; Liao, B.; Wang, T. M. Chem Phys Lett 2003, 379, 412.
8. Liao, B.; Tan, M. G.; Ding, K. Q.; Chem Phys Lett 2005, 402, 380.
9. Dai, Q.; Liu, X. Q.; Wang, T. M. J Mol Graph Model 2006, 25, 340.
10. Liu, X. Q.; Dai, Q.; Xin, Z. L.; Wang, T. M. J Theor Biol 2006, 243, 555.
11. Liao, B.; Li, R. F.; Zhu, W.; Xiang, X. Y. J Math Chem 2007, 42, 47.
12. Randic, M.; Zupan, J.; Novic, M. J Chem Inf Comput Sci 2001, 41, 1339.
13. Guo, Y.; Wang, T. M. J Biomol Struct Dyn 2008, 26, 367.
14. Feng, J.; Wang, T. M. J Biomol Struct Dyn 2008, 25, 621.
15. Li, C.; Wang, J. J Chem Inf Model 2005, 45, 115.
16. Yang, L. P.; Zhang, X.; Wang, T. M. J Theor Biol 2010, 262, 742.
17. Comtet, L. Advanced Combinatorics; D. Reidel Publishing Co.: Dordrecht, 1974.
18. Mei, X. M.; Huang, J. Z. Differential Geometry; Higher Education Press: Beijing, 2003.
19. Randic, M.; Vracko, M.; Lers, N.; Plavsic, D. Chem Phys Lett 2003, 371, 202.
20. Liao, B.; Wang, T. J Comput Chem 2004, 25, 1364.
21. Lai, M. M. C.; Holmes, K. V. In: Fields Virology, 4th ed.; Knipe, D. M., Howley, P. M., Eds.; Lippincott Williams and Wilkins: New York, 2001; p 1163.
22. Marra, M. A.; Jones, S. J. M.; Astell, C. R.; Holt, R. A.; Angela, B. W.; Butterfield, Y. S. N.; Khattra, J.; Asano, J. K.; Barber, S. A.; Chan, S. Y.; Cloutier, A.; Coughlin, S. M.; Freeman, D.; Girn, N.; Griffith, O. L.; Leach, S. R.; Mayo, M.; McDonald, H.; Montgomery, S. B.; Pardohn, P. K.; Petrescu, A. S.; Robertson, A. G.; Schein, J. E.; Siddiqui, A.; Smailus, D. E.; Stott, J. M.; Yang, G. S.; Plummer, F.; Andonov, A.; Artso, B.; Bastien, N.; Bernard, K.; Booth, T. F.; Bowness, D.; Czub, M.; Drebot, M.; Fernando, L.; Flick, R.; Garbutt, M.; Gray, M.; Grola, A.; Jones, S.; Feldmann, H.; Meyers, A.; Kabani, A.; Li, Y.; Normand, S.; Stroher, U.; Tipples, G. A.; Tyler, S.; Vogrig, R.; Ward, D.; Watson, B.; Brunham, R. C.; Krajden, M.; Petric, M.; Skovronski, D. M.; Upton, C.; Roper, R. L. Science 2003, 300, 1399.
23. Rota, P. A.; Oberste, M. S.; Monroe, S. S.; Nix, W. A.; Campagnoli, R.; Icenogle, J. P.; Penaranda, S.; Bankamp, B.; Berger, K.; Chen, M. H.; Tong, S.; Tamir, A.; Lowe, L.; Frace, M.; DeRisi, L. L.; Chen, Q.; Wang, D.; Erdman, D. D.; Peret, T. C. T.; Burns, C.; Ksiazek, T. G.; Rollin, P. E.; Sanchez, A.; Liffick, S.; Holloway, B.; Limor, J.; McCaustland, K.; Melissa, O. R.; Fouchier, R.; Gnhber, S.; Ostertag, A. D. M. E.; Drosten, C.; Pallen, M. A.; Anderson, L. J.; Bellini, W. J. Science 2003, 300, 1394.