Prediction of Left Ventricular Reverse Remodelling: A Mini Review on Clinical Aspects

Martin Chudý Eva Goncalvesová

Department of Heart Failure and Transplantation, Faculty of Medicine, Comenius University and National Cardiovascular Institute, Bratislava, Slovakia

Keywords
Heart failure with improved ejection fraction · Reverse remodelling · Cardiac remission · Myocardial remission · Clinical predictors · Biomarkers

Abstract
Improvement of left ventricular ejection fraction (LVEF) in patients after the first manifestation of heart failure with reduced ejection fraction (HFrEF) has currently been observed more frequently than it was years ago. This appears to be due to the early initiation of comprehensive HF therapy. According to these observations, a new HF syndrome category, heart failure with improved ejection fraction (HFimpEF), was introduced. In this short review, we present definitions of reverse remodelling, myocardial remission, and myocardial recovery. We provide an overview of clinical research aimed at evaluating reverse remodelling in different populations of patients with HFrEF. Clinical and imaging characteristics and biomarkers identified as predictors of reverse remodelling and improvement of the LVEF are discussed. We also briefly address the current views on the management of patients with HFimpEF. In-depth study and knowledge of the molecular mechanisms underlying the reverse remodelling process may lead to the identification of new individualized therapeutic approaches for HFrEF.

Introduction
Myocardial injury, haemodynamic overload, and excessive neurohumoral activation are the main triggers of several pathophysiological processes leading to structural and functional changes in the myocardium, which are referred to as cardiac remodelling. This pathological process is responsible for the onset and progression of heart failure. Pathological remodelling causes hypertrophy, dilatation, and spherical left ventricular (LV) remodelling, as well as contractility disorders, and typically leads to heart failure with reduced ejection fraction (HFrEF). In the past, systolic dysfunction and remodelling were considered to be irreversible processes and were associated with an unfavourable prognosis. Currently, it is known that favourable changes in LV geometry and LV systolic function improvement can be observed in a significant percentage of patients with HFrEF. These morphological and functional myocardial changes are referred to as reverse remodelling (RR). RR is basically accompanied by termination or reversal of the pathophysiological processes responsible for the initial pathological remodelling. From a morphological point of view, the LV dimensions start returning to normal; mitral regurgitation becomes less severe, and the contractility and LV ejection fraction (LVEF) show improvement. In clinical practice, RR is associated with improved functional capacity and
Reduced hospitalization and mortality rates. According to these characteristics, the induction of RR becomes a major therapeutic target in patients with HFrEF. The predictive factors of RR have been partially described, but detailed knowledge of them, as well as accurate RR prediction, is important for a therapeutic strategy decision, especially when expensive device therapy is being considered.

Reverse Remodelling

In recent years, there has been an increase in the number of studies focused on the group of patients with RR. This phenotype of heart failure is referred to as heart failure with improved ejection fraction (HFimpEF) or heart failure with recovered ejection fraction. Echocardiography plays a dominant role in the evaluation of RR. The presence or absence of RR is identified by the difference between the initial and follow-up values of the measured parameters (Fig. 1). The time interval between two measurements should be at least 3–6 months. The methodology and definition of RR criteria are considerably different in previous studies. Characteristics defining RR usually include a change in LVEF, a change in LV volumes, or a combination of both (Table 1). The reference ranges for LVEF and LV volume change are also not uniform. A recent study compared which of the mentioned parameters (EF change/LV volume change) characterize RR better, with the results showing a better correlation in the LVEF change. Despite the lack of guidelines and recommendations, there is consensus among experts on the following RR criteria [16]:

- documented reduced LVEF <40%,
- an increase in LVEF of at least 10% from the baseline value,
- an increase in LVEF to >40%.

Table 1 summarizes the basic characteristics and results of selected studies focused on LV RR in patients with HFrEF. The final incidence of RR induction ranges from 9.2% to 52%, which is also a result of the previously mentioned inconsistent study methodologies. The diversity of the studied populations also contributes to different RR incidences. The RR induction rate was higher in those...
Table 1. Overview of clinical studies aimed at identifying predictors of LVRR

Study	Studied population	RR criteria	RR observed	RR predictors
Merlo et al. [2], J Am Coll Cardiol 2011	n = 242, IDCMP	LVEF of ≥10% or ↓LVEF over 50%, LVEDD ≥10% or at ≤3.3 mm/m²	37%	Higher systolic blood pressure, LBBB absence
Amorim et al. [3], Int J Cardiovasc Imaging 2016	n = 113, IDCMP	LVEF of >10%, LVEDD (not specified), without MR deterioration	34.5%	Mild hypertension, ventricular hypertrophy on ECG, LBBB absence, shorter QRS duration, higher haematocrit, lower LVDDi, higher VO₂/log10[VE] and lower dVO₂/dCO₂/VO₂, ACEi/ARB treatment, maximum doses of ACEi/ARB and BB
Matsumura et al. [4], Am J Cardiol 2013	n = 19, IDCMP	↓LVEDD to ≤55 mm, fractional shortening improvement to ≥25%	37%	LVRR predictors not evaluated
Kubanek et al. [5], J Am Cardiol 2013	n = 44, DCMP (symptoms for less than 6 months)	LVEF of ≥10% and to more than 35%, ↓LVEDD of ≥10%	45%	Input predictors: LGE range on CMR and greater myocardial oedema on CMR; after 3 months: BNP value; after 6 months: LVDDi, E/E′ ratio
Hoshikawa et al. [6], Am J Cardiol 2011	n = 33, IDCMP	↓LVEDD to ≤55 mm, fractional shortening improvement to ≥25%	42%	No statistically significant differences in the observed predictors
Ikeda et al. [7], Heart Vessels 2015	n = 207, IDCMP	LVEF of ≥10% and to ≥35%, ↓LVDDi of ≥10% (according to CMR)	52%	LVDDi decrease during the first 6 months was predictive for LVRR in the later phase
Masci et al. [8], Circ Cardiovasc Imaging 2013	n = 58, IDCMP	LVEF of ≥10%, ↓LVEDV of ≥10%	38%	The LGE absence at baseline examination, regardless of the clinical condition and severity of LV dysfunction and dilatation
Luo et al. [9], Chinese J Cardiovasc Dis 2021	n = 129, HFrEF	LVEF of ≥10% and to more than 40%	29.5%	Female sex, the absence of previous MI, nonischaemic aetiology of HF, no digoxin treatment
Wilcox et al. [10], Am Heart J 2012	n = 3,994, HFrEF or post-IM HFrEF	LVEF of ≥10%	28.6%	ST2-R2 score: ST2 <48 ng/mL, nonischaemic aetiology, the absence of LBBB, HF duration <12 months, baseline LVEF <24%, BB treatment
Lupón et al. [11], Int J Cardiol 2015	n = 304, HFrEF	LVEF of ≥15% or LVEF of ≥10% and ↓LVESDi of ≥20% or LVESV of ≥40%	34.2%	Higher systolic BP, QRS <120 ms, BB treatment, baseline LVEF, lower LVESDi
Choi JD et al. [12], Circ J 2013	n = 253, nonischaemic DCMP	(1) LVEF of ≥20% or ≥10% if LVEF reaches ≥50% and (2) ↓LVESDi of ≥10% or LVDDi ≤33 mm/m²	38%	Female sex, nonischaemic aetiology, lower BMI, higher DBP, lower GLS, ACEi, and BB treatment; nonischaemic aetiology; no ICD implantation
Viorel et al. [13], Circ Heart Fail 2016	n = 3,519, HFrEF	LVEF >40%	9.1%	NYHA, ACEi, and BB treatment; nonischaemic aetiology; no ICD implantation
Agra Bermejo et al. [14], Cardiol J 2018	n = 449, HFrEF	LVEF >40%	5.2%	NYHA, ACEi, and BB treatment; nonischaemic aetiology; no ICD implantation
Jung et al. [15], J Cardiovasc Imaging	n = 160, DCMP without AF	LVEF of >10% or LVEF >50%, ↓LVESDi of ≥10% or LVDDi ≤33 mm/m²	28%	GLS

ACEi, angiotensin-converting enzyme inhibitors; ARB, angiotensin receptor blockers; BB, beta blockers; BMI, body mass index; CMR, cardiac magnetic resonance; DCMP, dilated cardiomyopathy; DBP, diastolic blood pressure; LVEF, left ventricular ejection fraction; GLS, global longitudinal strain; HFrEF, heart failure with reduced ejection fraction; ICD, implantable cardioverter defibrillator; MI, myocardial infarction; LBBB, left bundle branch block; LGE, late gadolinium enhancement; LVDDi, left ventricular end-diastolic dimension index; LVESDi, left ventricular end-systolic dimension index; LVRR, left ventricular reverse remodelling; MR, mitral regurgitation.
Aetiology and Clinical Parameters

The aetiology of heart failure is an important determinant of RR induction. In general, patients with an ischaemic cause of HFrEF are less likely to achieve RR than patients without ischaemic myocardial damage. Due to almost no ability of cardiomyocytes to regenerate, their postinfarction loss is practically irreversible, and if ventricular dysfunction is already present, no functional improvement is expected in the future. In contrast, due to the increased demands on the intact working myocardium, progression of the dysfunction is more likely to occur.

DCMP dominates among the nonischaemic causes of HFrEF, with nonfamilial forms of DCMP having a more favourable prognosis and a higher probability of RR induction. DCMP associated with truncating titin mutations usually responds well to drug treatment, and RR is more likely to develop than DCMP associated with laminin A/C and other sarcomere protein gene mutations. The estimated probability of RR induction due to proper treatment in patients with idiopathic DCMP is approximately 40% [2].

A relatively high rate of RR induction is also expected in patients with mild forms of myocarditis (e.g., lymphocyte myocarditis) [19], peripartum cardiomyopathy [20], and myocardial damage caused by various toxic agents. In these cases, the nature of the toxic substance, its dosage, and the duration of its action are very important. In patients with alcoholic myocardial damage, the degree of myocardial damage is dose-dependent, and in mild forms, improved function may be achieved by abstinence and appropriate drug treatment. In contrast, myocardial damage appears to be irreversible in patients after cardiotoxic cancer treatment (doxorubicin, daunorubicin, trastuzumab) [21]. Higher BMI [22], female sex [10, 13], shorter disease duration [11], and higher blood pressure [3, 12] were identified as predictors of RR derived from medical history and the patient’s clinical profile.

Imaging

When using echocardiography in RR prediction, it is also necessary to evaluate, in addition to basic morphological and functional parameters, the deformation characteristics of the myocardium using speckle-tracking echocardiography as it reflects contractility and LV systolic function more reliably and seems to predict RR better. Some of the standard echocardiographic parameters are considered to be predictors of RR, including mild/moderate mitral regurgitation, higher TAPSE, smaller left atrial volume, and smaller LV end-diastolic volume. A larger end-diastolic dimension of LV and lower LVEF are paradoxical RR predictors, but these patients actually have a worse prognosis. However, an initially larger and
more dysfunctional ventricle can more easily achieve an increase in LVEF even with a smaller change in LV geometry, but LVEF is unlikely to reach 40%; therefore, we should not consider these parameters as RR predictors. LV GLS assessment represents a more sensitive method for systolic function assessment that is relatively independent of ventricular volumes. Several studies have confirmed that GLS is a reliable RR predictor [23]. In a study on 160 patients with DCMP, RR was achieved in 28% of patients, and LV GLS proved to be its only independent predictor [15]. LV GLS also appears to be a suitable predictor of further clinical course in patients with HFimpEF. Moreover, it has been shown that abnormal LV GLS in patients with HFimpEF predicts a further decrease in LVEF, while normal GLS predicts LVEF stabilization [24]. In addition to LV GLS assessment, left atrial GLS also seems to be a potential predictor. A recently published study on 100 patients with newly diagnosed HFrEF demonstrated left atrial GLS as a sensitive (96%) and specific (82%) RR predictor with a value >10.8% [25].

In addition to echocardiography, magnetic resonance imaging of the heart also plays an important role in RR prediction. Late gadolinium enhancement (LGE) represents the main parameter predicting RR. Patients with a low degree of LGE or no LGE at all are more likely to achieve RR [8, 26].

Biomarkers

Biomarkers are used routinely for heart failure diagnosis, prognosis assessment, and response to treatment monitoring. Currently, it is possible to evaluate the degree and severity of some pathophysiological processes accompanying the onset and progression of heart failure by using biomarkers [27]. The identification of biomarkers as RR predictors seems to be a useful step for clinical practice.

The contribution of NT-proBNP in RR prediction has been demonstrated in several studies that evaluated its dynamic changes. A significant NT-proBNP decrease was associated with LVEF improvement. In the Guiding Evidence-Based Therapy Using Biomarker Intensified Treatment (GUIDE-IT) study, which included 269 patients, a decrease in NT-proBNP levels below 1,000 ng/L at a time interval of 12 months after treatment initiation was correlated with LVEF improvement and LV volume reduction. No unambiguous correlation between the NT-proBNP initial value and RR prediction has been demonstrated in several larger studies.

Pharmacotherapy and Device Therapy

Today, the medical and device treatments used to improve the prognosis of HF patients also have a well-documented effect on reverse LV remodelling. Due to their long-term use, beta blockers and preparations that interfere with the renin-angiotensin aldosterone system (ACEi, ARB, MRA) have well-described mechanisms affecting RR. Newer drugs, including ARNI and SGLT2i, also have a demonstrated effect on RR, but no detailed explanation of their mechanism of action has been fully understood yet. Table 2 shows the effect of individual drugs on molecular, cellular, and extracellular changes responsible for RR.

Cardiomyocyte changes	β-Blockers	ACEi	ARB	MRA	LVAD	CRT	ARNI	SGLT2
Hypertrophy	↓	↑	↑	↑	↓	↑	↑	↑
Foetal gene expression	↓	ND	ND	ND	ND	ND	ND	ND
Myocytolysis	↓	ND	ND	ND	ND	ND	ND	ND
Beta-adrenergic desensitization	↓	ND	ND	ND	ND	ND	ND	ND
EC coupling	↑	↑	↑	↑	↑	↑	↑	↑
Cytoskeletal changes	ND	ND	ND	ND	↑	↑	↑	↑

Myocardial changes	β-Blockers	ACEi	ARB	MRA	LVAD	CRT	ARNI	SGLT2
Myocyte apoptosis	↓	↑	↑	↑	↑	↑	↑	↑
MMP activation	↓	↑	↑	↑	↑	↑	↑	↑
Fibrosis	↓	↑	↑	↑	↑	↑	↑	↑
Angiogenesis	↑	↑	↑	↑	↑	↑	↑	↑

LV geometry changes	β-Blockers	ACEi	ARB	MRA	LVAD	CRT	ARNI	SGLT2
LV dilatation	↓	Stabilization	Stabilization	Stabilization	↓	↓	↓	↓

ACEi, angiotensin-converting enzyme inhibitors; ARB, angiotensin receptor blockers; CRT, cardio resynchronization therapy; EC, excitation-contraction; LVAD, left ventricular assist device; MRA, mineralocorticoid receptor antagonists; ND, no data.
Troponin T as a myocardial damage marker appears to be a promising RR predictor. A study on a heterogeneous group of HFrEF patients showed a higher incidence of RR in patients with an initial highly sensitive troponin T value <11 ng/L than in patients with higher troponin T levels [28].

Suppression of tumorigenicity 2 (ST2) is a marker of pathological remodelling that reflects the degree of fibrosis and LV hypertrophy in patients with HFrEF. Higher soluble ST2 levels have been associated with poorer prognosis of patients with HF in several studies [29–31]. One study including 304 outpatients with HFrEF identified ST2 as the only biomarker associated with RR in a multivariate analysis. The authors also proposed using the ST2-R2 score to predict RR, which consists of the following variables: ST2 < 48 ng/mL, nonischaemic aetiology, the absence of LBBB, disease duration <12 months, baseline LVEF <24%, and a history of beta blocker treatment (13). Other potential biomarkers of RR that are still being studied include mimecan [32], galectin-3 [33], IGF-binding protein-7 [32], and some micro-RNA subtypes and tissue inhibitors of metalloproteinases.

Management of Patients with HFimpEF

After the definition of a new group of patients with heart failure, new questions regarding their management have arisen. Due to the incomplete understanding of various mechanisms of RR and a lack of large randomized clinical trials, no official guidelines for the management of patients with HFimpEF have yet been published, and only the consensus of experts is being followed.

A TRED-HF study addressed the issue of treatment termination or treatment continuation in patients with HFimpEF after LVEF and LV volume normalization and NT-proBNP decrease to less than 250 ng/L [34]. In that study, 51 patients with HmFrecEF due to DCMP were enrolled and randomized into two groups: a treatment-discontinued group (n = 25) and a treatment-continued group (n = 26), with an assignment ratio of 1:1. DCMP relapse (defined by a decrease in LVEF by >10%, an increase in LV volume by >10%, a doubling of NT-proBNP level with an increase to >400 ng/L, or development of clinical signs of heart failure) was considered the primary outcome. Within 6 months, 11 patients (44%) achieved the primary outcome in the discontinued-treatment group, while no patient achieved the primary outcome in the continued-treatment group. Subsequently, in the next 6 months, 25 patients from the continued-treatment group terminated their treatment, and 9 (36%) of them achieved a primary outcome within 6 months [34].

Repeted progression of the disease after previous recovery was examined in a study involving 85 patients with DCMP who continued with their heart failure therapy. Progression of systolic dysfunction after 50 ± 33 months was observed in 38% of cases and was associated with older age, greater LVEDD, and the presence of diabetes mellitus [35]. Discontinued diuretic therapy and the absence of signs of congestion are good indicators of disease stabilization in patients with HFimpEF.

Patients with HFimpEF should be monitored regularly on an outpatient basis for the risk of repeated progression of systolic dysfunction. The frequency of check-ups should be every 6 months during the first 3 years. The regular outpatient check-up should include clinical examination focused on signs of congestion, physical capacity evaluation, electrocardiogram, NT-proBNP level measurement, and echocardiography. In patients with cardiomyopathy with a higher risk of atrial arrhythmias, an ECG Holter of at least once every 2 years is recommended. The indication for primary prevention of sudden cardiac death in patients with HFimpEF is ambiguous, but ICD implantation should be considered in patients with an identified genetic cause of cardiomyopathy at high risk of ventricular arrhythmias (e.g., LMNA, SCN5A, FLNC).

It is already known that some patients diagnosed with HFpEF are actually patients who have already had a reduced ejection fraction, which has improved due to certain factors [36]. They form a heterogeneous group of patients regarding the management, prognosis, and risk of cardiovascular events. Compared to patients with HFpEF, patients with HFrEF are younger, predominantly male, and have a lower prevalence of coronary artery disease, hypertension, DM, chronic lung disease, and atrial fibrillation [37]. However, the identification of these patients can be quite challenging.

Conclusion and Further Perspective

Studies evaluating the clinical outcomes of patients with HFimpEF have consistently shown a reduction in mortality and hospitalization rate and a better quality of life compared to patients with HFrEF, heart failure with mild reduced ejection fraction, and HFpEF [37–43]. In patients with heart failure, RR prediction is very important for determining a treatment strategy. We do not yet have an effective model for RR prediction, but it should be comprised of a wide range of information, including historical data and clinical, laboratory, and imaging parameters. However, the development of such a model requires more scrupulous research on
this heart failure phenotype. The results of studies focused on RR may, in addition to more accurate RR prediction, also identify new therapeutic targets for patients with HFrEF.

In conclusion, early identification of heart failure, accurate aetiological diagnosis (including genetic testing), and proper treatment with adequate dose titration are key factors for predicting and achieving RR in patients with HFrEF. In-depth study and knowledge of the molecular mechanisms involved in RR may lead to the identification of new individualized therapeutic approaches for HFrEF.

Conflict of Interest Statement

Dr. Eva Goncalvesová declares the following disclosures (speaker fees, honoraria, consultancy, advisory board fees, investigator, committee member): Servier, AOP Orphan Pharmaceuticals, Boehringer-Ingelheim, Johnson & Johnson, Merck, Novartis, Amgen, Pfizer. Dr. Martin Chudy has no conflicts of interest to declare.

Funding Sources

The manuscript was supported by a grant from the Slovak Society of Cardiology.

Author Contributions

Martin Chudy and Eva Goncalvesová were involved in conception, design, literature review, and critical revision of the manuscript and completed, read, and approved the final manuscript.

References

1. Aimo A, Fabiani I, Vergaro G, Arzilli C, Chubbuch V, Pasanisi EM, et al. Prognostic value of reverse remodelling criteria in heart failure with reduced or mid-range ejection fraction. *ESC Heart Fail*. 2021 Aug 1;8(4):3014–25.
2. Merlo M, Pyxaras SA, Pinamonti B, Barbati G, Di Lenarda A, Sinagra G. Prevalence and prognostic significance of left ventricular reverse remodeling in dilated cardiomyopathy receiving tailored medical treatment. *J Am Coll Cardiol*. 2011 Mar 29;57(13):1468–76.
3. Amorim S, Rodrigues J, Campelo M, Moura B, Martins E, Macedo F, et al. Left ventricular reverse remodeling in dilated cardiomyopathy—maintained subclinical myocardial systolic and diastolic dysfunction. *Int J Cardiovasc Imaging*. 2017 May 1;33(5):605–13.
4. Matsumura Y, Hoshikawa-Nagai E, Kubo T, Yamasaki N, Furuno T, Kitaoka H, et al. Left ventricular reverse remodeling in long-term (>12 years) survivors with idiopathic dilated cardiomyopathy. *Am J Cardiol*. 2013 Jan 1;111(1):106–10.
5. Kubanek M, Sramko M, Maluskova J, Kautznerova D, Weichet J, Lupinek P, et al. Novel predictors of left ventricular reverse remodeling in individuals with recent-onset dilated cardiomyopathy. *J Am Coll Cardiol*. 2013 Jan 8;61(1):54–63.
6. Hoshikawa E, Matsumura Y, Kubo T, Okawa M, Yamasaki N, Kitaoka H, et al. Mixed messages: transcription patterns in failing and recovering human myocardium. *Circ Res*. 2005 Mar 18;96(5):592–9.
7. Ikeda Y, Inomata T, Iida Y, Iwamoto-Ishida M, Nabeta T, Ishii S, et al. Time course of left ventricular reverse remodeling in response to pharmacotherapy: clinical implication for heart failure prognosis in patients with idiopathic dilated cardiomyopathy. *Heart Vessels*. 2015 31:45–54.
8. Masri PG, Schuurman R, Andrea B, Ripoli A, Cocceni M, Chiappino S, et al. Myocardial fibrosis as a key determinant of left ventricular remodeling in idiopathic dilated cardiomyopathy: a contrast-enhanced cardiovascular magnetic study. *Circ Cardiovasc Imaging*. 2013 Sep;6(5):790–9.
9. Luo Y, Chai K, Cheng Y, Zhu WR, Li YY, Wang H, et al. Clinical characteristics of heart failure with recovered ejection fraction. *Zhonghua Xin Xue Guan Bing Za Zhi*. 2021 Apr 24;49(4):333–9.
10. Wilcox JE, Fonarow GC, Yancy CW, Albert NM, Collins AB, Heywood JT, et al. Factors associated with improvement in ejection fraction in clinical practice among patients with heart failure: findings from IMPROVE HF. *Am Heart J*. 2012 Jan 1;163(1):49–56.e2.
11. Lupión J, Gaggín HK, de Antonio M, Domico M, Galán A, Zamora E, et al. Biomarker-assist score for reverse remodeling prediction in heart failure: the ST2-R2 score. *Int J Cardiovasc Imaging*. 2015;18(1):337–43.
12. Choi JO, Kim EY, Lee GY, Lee SC, Park SW, Kim DK, et al. Predictors of left ventricular reverse remodeling and subsequent outcome in nonischemic dilated cardiomyopathy. *Circ J*. 2013;77(2):462–9.
13. Florea VG, Rector TS, Anand IS, Cohn JN. Heart failure with improved ejection fraction: clinical characteristics, correlates of recovery, and survival: results from the valsartan heart failure trial. *Circ Heart Fail*. 2016 Jul 1;9(7):e003123.
14. Agra Bermejo R, Gonzalez Babarro E, Lopez Cano JN, Varela Román A, Gómez Otero I, Oro Ayude M, et al. Heart failure with recovered ejection fraction: clinical characteristics, determinants and prognosis. *CARDIO-CHUS-CHOP registry. Cardiol J*. 2018;25(3):353–62.
15. Jung IH, Park JH, Lee J-A, Kim GS, Lee HY, Byun YS, et al. Left ventricular global longitudinal strain as a predictor for left ventricular reverse remodeling in dilated cardiomyopathy. *J Cardiovasc Imaging*. 2020;28(2):137–49.
16. Wilcox JE, Fang JC, Margulies KB, Mann DL. Heart failure with recovered left ventricular ejection fraction: JACC Scientific Expert Panel. *J Am Coll Cardiol*. 2020 Aug 7;66(6):719–34.
17. Ye Y, Ling Y, Guo W, Li Q, Yu S, Huang H, et al. Prevalence and prognosis of HFimpEF developed from patients with heart failure with reduced ejection fraction: systematic review and meta-analysis. *Front Cardiovasc Med*. 2021 Nov 25;8:75596.
18. Margulies KB, Matthana S, Cornejo C, Olsen H, Craven WA, Bednarik D. Mixed messages: transcription patterns in failing and recovering human myocardium. *Circ Res*. 2005 Mar 18;96(5):592–9.
19. D’Ambrosio A, Patti G, Manzoli A, Sinagra G, Di Lenarda A, Silvestri F, et al. The fate of acute myocarditis from spontaneous improvement and evolution to dilated cardiomyopathy: a review. *Heart*. 2001;85(5):499–504.
20. Abboud J, Murad Y, Chen–Scarabelli C, Saravolatz L, Scarabelli TM. Peripartum cardiomyopathy: a comprehensive review. *Int J Cardiol*. 2007 Jun 2;118(3):295–303.
21. Volkova M, Russell R. Anthracycline cardiotoxicity: prevalence, pathogenesis and treatment. *Curr Cardiol Rev*. 2011 Mar 26;7(4):214–20.
22. Ye LF, Li XL, Wang SM, Wang YF, Zheng YR, Wang LH. Body mass index: an effective predictor of ejection fraction improvement in heart failure. *Front Cardiovasc Med*. 2021 Dec 1;8:586240.
23 Park SM, Kim YH, Ahn CM, Hong SJ, Lim DS, Shim WJ. Relationship between ultrasonic tissue characterization and myocardial deformation for prediction of left ventricular reverse remodelling in non-ischaemic dilated cardiomyopathy. *Eur J Echocardiogr.* 2011 Dec;12(12):887–94.

24 Adamo L, Perry A, Novak E, Makan M, Lindman BR, Mann DL. Abnormal global longitudinal strain predicts future deterioration of left ventricular function in heart failure patients with a recovered left ventricular ejection fraction. *Circ Heart Fail.* 2017 Jun 1; 10(6):e003788.

25 Torii Y, Kusunose K, Hirata Y, Nishio S, Ise T, Yamaguchi K, et al. Left atrial strain associated with functional recovery in patients receiving optimal treatment for heart failure. *J Am Soc Echocardiogr.* 2021 Sep 1; 34(9):966–75.e2.

26 Barison A, Aimo A, Ortalda A, Todiere G, Grigoratos C, Passino C, et al. Late gadolinium enhancement as a predictor of functional recovery, need for defibrillator implantation and prognosis in non-ischemic dilated cardiomyopathy. *Int J Cardiol.* 2018 Jan 1; 250:195–200.

27 Sarhene M, Wang Y, Wei J, Huang Y, Li M, Li L, et al. Biomarkers in heart failure: the past, current and future. *Heart Fail Rev.* 2019;24:867–903.

28 Gaggin HK, Szymanyika J, Bhardwaj A, Belcher A, De Berardinis B, Motiwala S, et al. Head-to-head comparison of serial soluble ST2, growth differentiation factor-15, and highly-sensitive troponin T measurements in patients with chronic heart failure. *JACC Heart Fail.* 2014 Feb;2(1):65–72.

29 Parikh RH, Seliger SL, Christenson R, Gottdiener JS, Psaty BM, deFilippi CR. Soluble ST2 for prediction of heart failure and cardiovascular death in an elderly, community-dwelling population. *J Am Heart Assoc.* 2016 Aug 1;5(8).

30 Ky B, French B, McCloskey K, Rame JE, McIntosh E, Shahi P, et al. High-sensitivity ST2 for prediction of adverse outcomes in chronic heart failure. *Circ Heart Fail.* 2011 Mar;4(2):180–7.

31 Wang Tj, Wollert KC, Larson MG, Coglianese E, McCabe EL, Cheng S, et al. Prognostic utility of novel biomarkers of cardiovascular stress: the framingham heart study. *Circulation.* 2012 Sep 25;126(13):1596–604.

32 Motiwala SR, Szymonifka J, Belcher A, Weiner RB, Bagghis AL, Gaggin HK, et al. Measurement of novel biomarkers to predict chronic heart failure outcomes and left ventricular remodeling. *J Cardiovasc Transl Res.* 2014 Dec 6;7(2):59–61.

33 Motiwala SR, Szymonifka J, Belcher A, Wein er RB, Bagghis AL, Gaggin HK, et al. Serial measurement of galectin-3 in patients with chronic heart failure: results from the ProBNP Outpatient Tailored Chronic Heart Failure Therapy (PROTECT) study. *Eur J Heart Fail.* 2013 Oct 1;15(10):1157–63.

34 Halliday BP, Wassall R, Lota AS, Khalique Z, Gregson J, Newsome S, et al. Withdrawal of pharmacological treatment for heart failure in patients with recovered dilated cardiomyopathy (TRED-HF): an open-label, pilot, randomised trial. *Lancet.* 2019 Jan 5;393(10166):61–73.

35 Park JS, Kim JW, Seo KW, Choi BJ, Choi SY, Yoon MH, et al. Recurrence of left ventricular dysfunction in patients with restored idiopathic dilated cardiomyopathy. *Clin Cardiol.* 2014;37(4):222–6.

36 Yancy CW, Jessup M, Bozkurt B, Butler J, DonaldCasey EJ, Drazner MH, et al. ACCF/AHA guideline for the management of heart failure. *Circulation.* 2013; 2013 Oct 15(16):128.

37 Kalogeropoulos AP, Fonarow GC, Georgiopoulou V, Burkman G, Siwamongsatham S, Patel A, et al. Characteristics and outcomes of adult outpatients with heart failure and improved or recovered ejection fraction. *JAMA Cardiol.* 2016 Aug 1;1(5):510–8.

38 Basuray A, French B, Ky B, Vorovich E, Olt C, Sweitzer NK, et al. Heart failure with recovered ejection fraction: clinical description, biomarkers, and outcomes. *Circulation.* 2014 Jun 10;129(23):2380–7.

39 Wohlhaft P, Nativi-Nicolau J, Zhang M, Selzman CH, Greene T, Conte J, et al. Quality of life in patients with heart failure with recovered ejection fraction. *JAMA Cardiol.* 2021; 6(8):957–62.

40 Albert J, Lezius S, Stöhr S, Morbach C, Guder G, Frantz S, et al. Trajectories of left ventricular ejection fraction after acute decompensation for systolic heart failure: concomitant echocardiographic and systemic changes, predictors, and impact on clinical outcomes. *J Am Heart Assoc.* 2021;10(3):e017822–17.

41 Gu J, Yin ZF, Zhang HL, Fan YQ, Zhang JF, Wang CQ. Characteristics and outcomes of transitions among heart failure categories: a prospective observational cohort study. *ESC Heart Fail.* 2020 Apr;7(2):616–25.

42 Rastogi A, Novak E, Platts AE, Mann DL. Epidemiology, pathophysiology and clinical outcomes for heart failure patients with a mid-range ejection fraction. *Eur J Heart Fail.* 2017 Dec 1;19(12):1597–605.

43 Brann A, Janvanishstaporn S, Greenberg B. Association of prior left ventricular ejection fraction with clinical outcomes in patients with heart failure with midrange ejection fraction. *JAMA Cardiol.* 2020 Sep 1;5(9):1027–35.