Introduction

Chyle fistula is a rare but serious complication following neck dissection with an incidence ranging from 1% to 2.5% [1]. This uncontrolled extravasation of chyle can result in potentially devastating metabolic, nutritional and immunologic sequelae. Management of chyle fistula (CF) is a rare complication of neck dissection. The extravasation of chyle can result in potentially devastating metabolic, nutritional and immunologic sequelae. We report the efficacy a protocol for treatment of intraoperative (CF).

There were 19 patients with thoracic duct injury development following neck dissection (0.08%). The mean age was 62 years and the majority were male with squamous cell carcinoma of the oral cavity. The TDI's were identified on the left side in 16 patients and on the right side in 3 patients. In all cases TDI were identified intraoperatively, packed with micro-fibrillar collagen and oversewn with monofilament nylon. In one patient required re-exploration and placement of a muscle flap. The mean number of days NPO was 2.5 (range 1 to 13 days, SD ± 2.8). The mean LOS was 4 days (range 2 to 14 days, SD ± 2.7). Only patient number 5 and 12 required MCT administration for 12 and 14 days and no patients required parenteral nutrition.

Prompt recognition and definitive intraoperative management of TDI can result in reduced post-operative complications and early return to acceptable oral alimentation.

Abstract

Chyle fistula (CF) is a rare complication of neck dissection. The extravasation of chyle can result in potentially devastating metabolic, nutritional and immunologic sequelae. We report the efficacy a protocol for treatment of intraoperative (CF).

Hospital length of stay, time to oral alimentation, and type of diet were analyzed.

There were 19 patients with thoracic duct injury development following neck dissection (0.08%). The mean age was 62 years and the majority were male with squamous cell carcinoma of the oral cavity. The TDI's were identified on the left side in 16 patients and on the right side in 3 patients. In all cases TDI were identified intraoperatively, packed with micro-fibrillar collagen and oversewn with monofilament nylon. In one patient required re-exploration and placement of a muscle flap. The mean number of days NPO was 2.5 (range 1 to 13 days, SD ± 2.8). The mean LOS was 4 days (range 2 to 14 days, SD ± 2.7). Only patient number 5 and 12 required MCT administration for 12 and 14 days and no patients required parenteral nutrition.

Prompt recognition and definitive intraoperative management of TDI can result in reduced post-operative complications and early return to acceptable oral alimentation.

Research Article

Management of Intra-operative Chyle Leak during Neck Dissection: Recognition and Control

Brett Tracy and Guy J Petruzzelli*

Department of Surgery, Memorial University Medical Center and Mercer University School of Medicine, 4700 Waters Ave Savannah, Georgia

Dates: Received: 15 May, 2017; Accepted: 02 August, 2017; Published: 03 August, 2017

*Corresponding author: Guy J Petruzzelli, MD, PhD, FACS, Department of Surgery, Memorial University Medical Center and Mercer University School of Medicine, 4700 Waters Ave, Savannah, Georgia, 31404, E-mail: guypetruzzelli@gmail.com

https://www.peertechz.com

Citation: Tracy B, Petruzzelli GJ (2017) Management of Intra-operative Chyle Leak during Neck Dissection: Recognition and Control. Arch Otolaryngol Rhinol 3(3): 083-086.DOI: http://doi.org/10.17352/2455-1759.000053
Herein we describe an approach to the treatment of thoracic duct injuries, focusing on early intraoperative recognition and immediate repair. The aim of this study is to demonstrate the efficacy of Avitene, a microfibril collagen hemostat, and postoperative adherence to a low fat, low carbohydrate diet as an adjunct to the standard intraoperative management of a chyle fistula.

Materials and Methods

Between 1995 and 2015, 1736 patients underwent 2381 neck dissections or node biopsies by the senior author (GJP). After eliminating sentinel node biopsies (96) and Zone 1,2 3 selective neck dissections (1100), there were 1185 necks at risk for TDI having undergone either comprehensive neck (161), modified neck (995), zones 4 node dissection (1) or Zone 6–para-tracheal node (28) dissections. Of the 1185 at risk necks, a total of 19 thoracic duct injuries were identified intraoperatively (Figure 1). Data was collected from a password protected database of deidentified patient surgical records maintained by the senior author.

In all cases, the TDI was identified intraoperatively, oversewn with 4-0 monofilament non-absorbable suture, packed with Avitene microfibril collagen hemostatic material and a medially directed suction drain was placed. Patients remained nil per os for 24 to 48 hours then began a high protein, low-fat, low-carbohydrate diet.

Demographic information was collected regarding patient age, gender, primary cancer, primary tumor site, and TDI sidedness. The primary outcome was the presence or absence of a delayed chyle leak, and secondary outcomes evaluated were length of hospital stay, days NPO, and need for MCT and/or TPN. Statistical analysis of data was performed using the SPSS statistical package XXX. Chi-squared and Fisher exact tests were used to compare percentages.

Results

There were 19 patients with thoracic duct injury development following neck dissection with an overall incidence of 0.80%.

Among the 19 patients, the mean age was 62 years, and the majority was male with a diagnosis of squamous cell carcinoma of the oral cavity (Table 1). In the patient population who suffered TDIs, 14 underwent modified radical neck dissections, 4 underwent selective neck dissections, and 1 underwent a radical neck dissection. The procedures were performed on the left side in 16 patients and on the right side in 3 patients (Table 2). Specifically, the incidence of TDI following a right-sided neck dissection was 0.24% and the incidence following a left-sided neck dissection was higher at 1.42%.

In one patient intraoperative management was not successful and he required a return to the operating room for re-exploration and placement of a sternocleidomastoid muscle flap. The mean number of days NPO was 2.5, ranging from 1 to 13 days (SD ± 2.8). The mean duration of hospitalization was...
Discussion

The best method for prevention of a chyle fistula is prompt recognition of the index thoracic duct injury. In addition to standard practice of direct suture repair and drain placement, we advocate for the use of intraoperative Avitene and post operative compliance with a low-carbohydrate low-fat diet. As a result, we encountered no delayed chyle leaks. Avitene is a microfibrillar collagen hemostat (MCH) that accelerates platelet and protein aggregation, resulting in a fibrin plug. It is naturally derived, lacks antigenicity, and is insoluble in water. These properties have made it a popular choice for hemostasis in neurosurgical, urological, and endoscopic surgery, and recent literature has shown that MCH’s structure can increase surface area for cell adhesion as well as provide a lasting scaffolding for new cartilage synthesis [12]. Sautoallala also described the use of fibrin, polyalgactin, or collagen application to intra-operatively detected TDIs, and reported an incidence of 1.3% (4/304) post-operative chylous fistula [2]. Gregor et al., also utilized fibrin glue for management of chylous fistula, both early and delayed, and his study cited an incidence of 5.8% [5]. It is possible that our lack of post-operative chyle fistula was due not only to our use of a more suitable product, but also because of our pre-emptive application of the MCH at the index operation.

Also unique to our study was that all patients adhered to a low-fat low-carbohydrate diet post-operatively. This nutrition regimen seeks to minimize fat digestion and subsequent lymphatic transit, which ultimately slows the flow of lymph through the thoracic duct. Additionally, this diet promotes ketosis, which new research has shown to inhibit the NLRP3 inflammasome from activating IL-1β and IL-18 generation, thereby dampening the inflammatory process [13]. Of our 19 patients, 17 responded to this diet while the remaining 2 patients required supplementation with MCT. Both of these patients had left-sided MRNDs for squamous cell carcinoma, were older than the average age of our cohort, and had longer lengths of hospitalization.

Nevertheless, we still sustained injuries to the thoracic duct during neck dissections in this series. We describe an overall incidence of 0.80% for injury, which is much lower than the cited literature values. There are numerous anatomic variations of the duct that may contribute to the occurrence of ductal injury following surgery, such as the existence of multiple tributaries as opposed to one duct or termination into the subclavian vein, innominate vein, and the external jugular vein [10]. Consequently, chyle fistula occur more commonly following radical neck dissections and are typically left-sided, specifically at the base of the neck lateral to the carotid sheath [3]. Not surprisingly, the most common procedure in our series associated with a TDI was a left-sided, modified radical neck dissection.

Unfortunately, there are no exact objective signs of chyle fistula to aid in immediate diagnosis during the postoperative period. A leak of up to 1 L/day can be tolerated for 1 to 2 days before causing any electrolyte abnormalities [14]. Once identified, medical management is the first line of treatment for delayed chyle fistulas and is aimed at measures that promote closure by reducing chyle flow [15,16]. If these attempts fail, a minimally invasive surgical repair can be undertaken by percutaneous lymphangiography-guided cannulation with embolization of the thoracic duct [17] or through thoracoscopic ligation. Finally, re-exploration of the neck with local muscle flaps and adjuvant fibrin glue or cyanoacrylate tissue glue are recommended as a last resort due to the delicacy of the already damaged thoracic ductal system. Thus, it behooves one to meticulously inspect the wound at the index operation, especially after hyperinflating the lungs to increase intrathoracic pressure in order to identify the source of the leak [10]. Once localized, prompt suture repair, placement of hemostatic material (Avitene) and a suction drain, as well as post-operative adherence to a diet that decreases lymph flow and inflammation are instrumental to success.

Conclusion

The management of chylous fistula is multi-faceted and depends on the timing of identification. We believe that microfibrillar collagen hemostat (Avitene) effectively seals a thoracic duct injury and prevents post-operative chyle fistula. Adjuvant diet modification to low-fat low-carbohydrate enhances the efficacy of the repair.

References

1. Fitz-Hugh GS, Cowgill R (1970) Chylous Fistula— complication of neck dissection. Arch Otolaryngol 91: 543-547. https://doi.org/S8WoF
2. Sautoallala F, Anta JA, Zabala A, Del Rey Sanchez A, Martinez A, et al. (2009) Management of chylous fistula as a complication of neck dissection: a 10-year retrospective review. Eur J Cancer Care 19: 510-515. https://doi.org/Sud25g
3. Nussenbaum B, Liu JH, Sinard RJ (2000) Systematic management of chyle fistula: The Southwestern experience and review of the literature. Otolar Panal Head Neck Surg 122: 31-38. https://doi.org/NVBQ9Q
4. Erisen L, Coskun H, Basut O (2002) Objective and early diagnosis of chylous fistula in the postoperative period. Otolar Panal Head Neck Surg 126: 172-175. https://doi.org/f7YrW
5. Gregor RT (2000) Management of chyle fistulization in association with neck dissection. Otolar Panal Head Neck Surg 122: 434-439. https://doi.org/g9bmr
6. Swanson M, Hudson R, Bhandari N, Sinha U, Macei D, et al. (2015) Use of Octreotide for the Management of Chyle Fistula Following Neck Dissection. JAMA Otolar Panal Head Neck Surg 141: 723. https://doi.org/B2J2Y
7. Crumley RL, Smith JG (1976) Postoperative Chylous Fistula Prevention and Management. Laryngoscope 86: 804-813. https://doi.org/K3pR7w
8. Wei T, Liu F, Li Z, Gong Y, Zhu J (2015) Novel Management of Intractable Cervical Chylous Fistula with Local Application of Pseudomonas aeruginosa Injection. Otolar Panal Head Neck Surg 153: 561-565. https://doi.org/3Kltw
9. Gunlauasson CB, Iannetton MD, Yu B, Chepeba DB, Teknos TN (2004) Management of Chyle Fistula Utilizing Thoracoscopic Ligation of the Thoracic Duct. Cell Physiol Biochem 66:148-154. https://doi.org/D4WHpN
10. Myers EN, Dinerman WS. (1975) Management of Chylous Fistulas. Laryngoscope 85: 835-840. Link: https://goo.gl/RDAJfd

11. Anestis N, Christos F, Ioannis P, Christos I, Lampros P, et al. (2012) Thoracic duct injury due to left subclavicular vein catheterization: A new conservative approach to a chyle fistula using biological glue. Int J Surg Case Rep 3: 330-332. Link: https://goo.gl/xts2YQ

12. Shou L, Ding R, Xu B, Fan X, Baowei Li, et al. (2016) Application of microfibrillar collagen hemostat sponge for cartilage engineering. Int J Clin Exp Med 9: 6127-6132. Link: https://goo.gl/SR9QGY

13. Storoni M, Plant GT (2015) The Therapeutic Potential of the Ketogenic Diet in Treating Progressive Multiple Sclerosis. Multiple Sclerosis International 1-9. Link: https://goo.gl/iilGwi

14. Brennan PA, Blythe JN, Herd MK, Habib A, Anand R (2012) The contemporary management of chyle leak following cervical thoracic duct damage. Brit J Oral Max Surg 50: 197-201. Link: https://goo.gl/rHsZD4

15. Jain A, Singh S, Singhal P, Sharma M, Grover M (2015) A prospective study on the role of Octreotide in management of chyle fistula neck. Laryngoscope 125:1624-1627. Link: https://goo.gl/3Bny18

16. Martin I, Marinho L, Brown A, McRobbie D (1993) Medium chain triglycerides in the management of chylous fistulae following neck dissection. Br J Oral Maxillofac Surg 31: 236-238. Link: https://goo.gl/SF8Vsa

17. Cope C (2004) Management of chylothorax via percutaneous embolization. Curr Opin Pulm Med 10: 311-314. Link: https://goo.gl/yhdHky