1. Introduction

Nowadays the sensitivity analysis is a significant tool helping to realize a structural parameters influence analysis. This analysis is usually very computer time consuming but the results are very innovative. This process is often applied to a structural analysis, i.e. in stress and strain analysis, modal and spectral or buckling analysis, stochastic analysis and so on [3, 6].

Application of the sensitivity analysis is not associated only with the structural optimizing but also with the analysis of the mechanical systems with uncertain parameters, mainly in the usage of so-called perturbation methods based on differentiation of the response with respect to the uncertain system parameters (stiffness, mass, damping, etc.). Implementation of this computational process into the finite element method characterized mainly the era of development of structural optimizing techniques in the eighties.

2. Stress sensitivity analysis for beam finite element

We will consider classic linear two-nodes beam element with a constant cross section (There is more information in [1, 5]).

Let’s consider only a well-known linear distribution of the normal stress, i.e.

$$\sigma = \frac{N_x}{A} - \frac{M_{oz}}{J_z} y + \frac{M_{oy}}{J_y} z,$$  \hspace{1cm} (1)

where $N_x$ is the internal axial force, $M_{oz}$ and $M_{oy}$ are bending moments, $A$ is the element cross-section area, $J_z$ and $J_y$ are moments of inertia [2, 5, 7, 8].

If the bending moment is [1, 6]

$$M_z(x) = \begin{bmatrix} 1 - \frac{x}{L} & \frac{x}{L} \\ \frac{x}{L} & 1 - \frac{x}{L} \end{bmatrix} \begin{bmatrix} M_{oz} \\ M_{oy} \end{bmatrix} ,$$  \hspace{1cm} (2)

than the normal stress function is following

$$\sigma(x,y,z) = \begin{bmatrix} 0 & 0 & 0 \\ \frac{z}{J_z} \left(1 - \frac{x}{L}\right) & -\frac{x}{J_x} \left(1 - \frac{x}{L}\right) \end{bmatrix} \begin{bmatrix} M_{oz} \\ M_{oy} \end{bmatrix} ,$$  \hspace{1cm} (3)

In agreement with points in Fig. 1 it is possible to write the relationship between normal stress in these marginal points of the cross-section and internal elements forces and moments, i.e.
Using the well-known finite element theory, the internal forces \( f_j \) in the local coordinate system is given by

\[
\mathbf{f}_j = \mathbf{K}_G \mathbf{u}_j = \mathbf{K}_G \mathbf{T}_{ji} \mathbf{T}_{ii}^{-1} \mathbf{K}_G^{-1} \mathbf{f}_e,
\]

(7)

where \( \mathbf{K}_G \) is the global stiffness matrix (in the global coordinate system), \( \mathbf{f}_e \) is the external nodal forces vector (in the global coordinate system), \( \mathbf{T}_{ji} \) is a transformation matrix between the local and global coordinate systems, \( \mathbf{T}_{ii} \) is a Boolean matrix, i.e., the localization matrix determining the element position in the global stiffness matrix, it means

\[
\mathbf{u}_j = \mathbf{T}_{ji} \mathbf{u}_e.
\]

(8)

Let’s now realize the derivation of the internal nodal forces vector (7) with respect to \( X_i \):

\[
\frac{\partial \mathbf{f}_j}{\partial X_i} = \frac{\partial \mathbf{K}_G}{\partial X_i} \mathbf{u}_j + \mathbf{K}_G \frac{\partial \mathbf{u}_j}{\partial X_i} = \frac{\partial \mathbf{K}_G}{\partial X_i} \mathbf{T}_{ji} \mathbf{T}_{ii}^{-1} \mathbf{K}_G^{-1} \mathbf{f}_e + \mathbf{K}_G \frac{\partial \mathbf{u}_j}{\partial X_i}.
\]

(9)

Applying the derivation on the well-known “FEA” equation \( \mathbf{K}_G \mathbf{u}_e = \mathbf{f}_e \) we can write

\[
\frac{\partial \mathbf{K}_G}{\partial X_i} \mathbf{u}_e + \mathbf{K}_G \frac{\partial \mathbf{u}_e}{\partial X_i} = \frac{\partial \mathbf{f}_e}{\partial X_i}.
\]

(10)

where

\[
\frac{\partial \mathbf{K}_G}{\partial X_i} = \sum_{j=1}^n \mathbf{T}_{ij} \frac{\partial \mathbf{K}_G}{\partial X_i} \mathbf{T}_{ij} \mathbf{T}_{ii}^{-1} \mathbf{K}_G^{-1} \mathbf{f}_e.
\]

(11)

and \( j \) is a number of all the elements containing \( X_i \). Further, the gradient of a global vector of the nodal displacements can be following

\[
\begin{align*}
\frac{\partial \mathbf{u}_G}{\partial X_i} &= \mathbf{K}_G^{-1} \left( \frac{\partial \mathbf{f}_e}{\partial X_i} + \frac{\partial \mathbf{K}_G}{\partial X_i} \mathbf{u}_G \right) = \mathbf{K}_G^{-1} \frac{\partial \mathbf{f}_e}{\partial X_i} - \\
&- \sum_{j=1}^m \left( \mathbf{T}_{ij} \mathbf{T}_{ij}^{-1} \mathbf{K}_G^{-1} \mathbf{T}_{ij} \mathbf{T}_{ij} \mathbf{T}_{ij}^{-1} \mathbf{u} \right) = \mathbf{K}_G^{-1} \frac{\partial \mathbf{f}_e}{\partial X_i}.
\end{align*}
\]

(12)

Relationship between \( \mathbf{u}_G \) and \( \mathbf{u}_e \), will be given by

\[
\begin{align*}
\frac{\partial \mathbf{u}_G}{\partial X_i} &= \mathbf{T}_{ii} \frac{\partial \mathbf{u}_G}{\partial X_i} = \mathbf{T}_{ii} \frac{\partial \mathbf{u}_G}{\partial X_i}.
\end{align*}
\]

(13)

Substituting (13) into (9), we can obtain the derivation of the \( \mathbf{f}_j \) with respect to \( X_i \) as follows

\[
\begin{align*}
\frac{\partial \mathbf{f}_j}{\partial X_i} &= \frac{\partial \mathbf{K}_G}{\partial X_i} \mathbf{T}_{ii} \mathbf{T}_{ii}^{-1} \mathbf{K}_G^{-1} \mathbf{f}_e + \mathbf{K}_G \frac{\partial \mathbf{u}_j}{\partial X_i} = \mathbf{K}_G^{-1} \frac{\partial \mathbf{f}_e}{\partial X_i} - \\
&- \sum_{j=1}^m \left( \mathbf{T}_{ij} \mathbf{T}_{ij}^{-1} \mathbf{K}_G^{-1} \mathbf{T}_{ij} \mathbf{T}_{ij} \mathbf{T}_{ij}^{-1} \mathbf{u} \right) = \mathbf{K}_G^{-1} \frac{\partial \mathbf{f}_e}{\partial X_i}.
\end{align*}
\]

(14)

Finally, after the substituting (14) into (6) we give the gradient of the \( j \)th element stress vector

\[
\begin{align*}
\frac{\partial \sigma_{ij}}{\partial X_i} &= \frac{\partial \mathbf{C}_{ij}}{\partial X_i} \frac{\partial \mathbf{K}_G}{\partial X_i} \mathbf{T}_{ii} \mathbf{T}_{ii}^{-1} \mathbf{K}_G^{-1} \mathbf{f}_e + \mathbf{C}_{ij} \frac{\partial \mathbf{K}_G}{\partial X_i} \mathbf{f}_e + \mathbf{K}_G \frac{\partial \mathbf{u}_j}{\partial X_i} = \mathbf{C}_{ij} \frac{\partial \mathbf{K}_G}{\partial X_i} \mathbf{f}_e - \\
&- \sum_{j=1}^m \left( \mathbf{T}_{ij} \mathbf{T}_{ij}^{-1} \mathbf{K}_G^{-1} \mathbf{T}_{ij} \mathbf{T}_{ij} \mathbf{T}_{ij}^{-1} \mathbf{u} \right) = \mathbf{C}_{ij} \frac{\partial \mathbf{K}_G}{\partial X_i} \mathbf{f}_e.
\end{align*}
\]

(15)

It should be noted that the derivation of the matrix \( \mathbf{C}_{ij} \) with respect to \( X_i \) depends on the used cross-section. To realize the derivation \( \frac{\partial \mathbf{C}_{ij}}{\partial X_i} \) means to find the following derivations \( \frac{\partial \mathbf{K}_G}{\partial X_i} \), \( \frac{\partial \mathbf{C}_{ij}}{\partial X_i} \), and \( \frac{\partial \mathbf{f}_e}{\partial X_i} \). The last derivation usually equals to zero or is insignificant for the sensitivity analysis.

Let the cross-section area variable \( X_i \), then other cross-section characteristics will be expressed as follows

\[
J_y = a \cdot X_i, J_z = b \cdot X_i, J_y = a \cdot X_i,
\]

(16)

where parameters \( a, b, c \) and exponents \( p, q, r \) will be obtained exactly (a simple cross-section) or numerically (a more complicated cross section), using the least squares method. The values of these parameters are presented in Tab. 1.
which have to be expressed by the variable \( \delta \) of the stiffness matrix corresponding axial, bending (about axes y and z) and torsion stiffness of the used cross section (More information about stiffness parameters is in [1, 5, 6]).

The derivation \( \frac{\partial K_i}{\partial X} \) can be given by

\[
\frac{\partial K_i}{\partial X} = \delta_{ij} [K_i(X) + p \cdot K_i(a \cdot X_i) + q \cdot K_i(b \cdot X_i) + r \cdot K_i(c \cdot X_i)],
\] (17)

where \( \delta_{ij} \) is Kronecker delta and matrices \( K_{i,2,3,4} \) are sub-matrices of the stiffness matrix corresponding axial, bending (about axes y and z) and torsion stiffness of the used cross section (More information about stiffness parameters is in [1, 5, 6]).

Let’s now focus on the derivation \( \frac{\partial C_i}{\partial X} \). The transformations matrix \( C_i \) depends on coordinates of the marginal points 1, 2, 3, 4, which have to be expressed by the variable \( X_i \). Considering these conditions we can express matrix \( C_i \) for circular section as follows

\[
\begin{pmatrix}
0 & 0 & \frac{4 \sqrt{\pi}}{\sqrt{X}} & 0 & \frac{1}{X} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{4 \sqrt{\pi}}{\sqrt{X}} & \frac{1}{X} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{4 \sqrt{\pi}}{\sqrt{X}} & \frac{1}{X} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \frac{4 \sqrt{\pi}}{\sqrt{X}} & \frac{1}{X} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \frac{4 \sqrt{\pi}}{\sqrt{X}} & \frac{1}{X} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{4 \sqrt{\pi}}{\sqrt{X}} & \frac{1}{X} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{4 \sqrt{\pi}}{\sqrt{X}} \\
\end{pmatrix}
\]

and the analyzed derivation of this matrix gets the following form

\[
\begin{pmatrix}
0 & 0 & \frac{6 \sqrt{\pi}}{\sqrt{X}} & 0 & \frac{1}{X} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -\frac{6 \sqrt{\pi}}{\sqrt{X}} & \frac{1}{X} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -\frac{6 \sqrt{\pi}}{\sqrt{X}} & \frac{1}{X} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -\frac{6 \sqrt{\pi}}{\sqrt{X}} & \frac{1}{X} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -\frac{6 \sqrt{\pi}}{\sqrt{X}} & \frac{1}{X} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & -\frac{6 \sqrt{\pi}}{\sqrt{X}} & \frac{1}{X} \\
\end{pmatrix}
\]

It is possible to get exactly the previous matrices but, for example, \( C_i \) of the I-section has to be analyzed numerically [6].

**Example 1**

Let us consider the structural sensitivity analysis of normal stresses of the beam element from Fig. 2. Given: \( E = 2.1 \times 10^5 \text{ MPa} \) \( F_1 = 800 \text{ N} \), \( F_2 = 6000 \text{ N} \), \( A_1 = 200 \text{ mm}^2 \), \( A_2 = 35 \text{ mm}^2 \), \( L_1 = 1 \text{ m} \), \( L_2 = 0.5 \text{ m} \).

![Simple beam structure with 2 cross section](image_url)
Applying previous relationships we can obtain the following derivations of matrices $C^i_L$ and $C^i_E$

$$
\frac{\partial c^i_L}{\partial \lambda_i} = 
\begin{bmatrix}
0 & 0 & 0 & -2.5e - 5 & 0 & 0 \\
0 & 0 & -1.8e - 5 & -2.5e - 5 & 0 & 0 \\
0 & 0 & 0 & -2.5e - 5 & 0 & 0 \\
0 & 0 & -1.8e - 5 & -2.5e - 5 & 0 & 0 \\
0 & 0 & 0 & -2.5e - 5 & 0 & 0 \\
0 & 0 & 0 & -2.5e - 5 & 0 & 0
\end{bmatrix}
$$

$$
\frac{\partial c^i_E}{\partial \lambda_i} = 
\begin{bmatrix}
0 & 0 - 3.9e - 6 & -8.16e - 6 & 0 & 0 \\
0 & 0 - 3.9e - 6 & -8.16e - 6 & 0 & 0 \\
0 & 0 - 3.9e - 6 & -8.16e - 6 & 0 & 0 \\
0 & 0 - 3.9e - 6 & -8.16e - 6 & 0 & 0 \\
0 & 0 - 3.9e - 6 & -8.16e - 6 & 0 & 0 \\
0 & 0 - 3.9e - 6 & -8.16e - 6 & 0 & 0
\end{bmatrix}
$$

and finally stress gradients in marginal points of the used cross-sections are the following

$$
\frac{\partial \sigma_{xi}}{\partial \lambda_i} = 
\begin{bmatrix}
-0.0222 \\
-0.8077 \\
0.7632 \\
-0.0222 \\
-1.1897 \\
1.1452
\end{bmatrix}
$$

$$
\frac{\partial \sigma_{yi}}{\partial \lambda_i} = 
\begin{bmatrix}
0.0222 \\
0.8077 \\
-0.7632 \\
0.0222 \\
1.1897 \\
-1.1452
\end{bmatrix}
$$

The graphic presentation of the stress gradients is in Fig. 3. The presented stress gradient analysis was confronted with a “classical” numerical computational approach (\(\Delta \sigma / \Delta x\)) and it’s possible to observe the absolute consensus.

3. Stress sensitivity analysis for a thin shell finite element

The finite element modeling of box, shell or thin-walled structures are usually realized using thin shell finite elements (Kirchhoff’s or Mindlin’s formulation) [1, 4, 9]. The stiffness parameters depend on material constants and element geometry, mainly on its thickness. Therefore, the thickness \(t\) will be the variable in the following theoretical and numerical stress sensitivity analysis of the shell finite element; the fundamental information about this analysis can be found in [1, 4, 9].

At first we have to prepare the stress calculation process. This process is based on the expression of the \(j\)th element membrane forces and bending moments (without shear forces) [4, 6], i.e.

$$
\{F_x, F_y, F_z\} = \int_b^a \{E_i \cdot \epsilon \} dS = \\
= E_i \int_b^a \{B_i \cdot \epsilon \} dS \\
\frac{\partial \tau_{\lambda_i j}}{\partial \lambda_i} = 
\begin{bmatrix}
1/t_i & 0 & 0 & 6/t_i \\
0 & 1/t_i & 0 & 6/t_i \\
0 & 0 & 1/t_i & 0 \\
0 & 0 & 0 & 1/t_i
\end{bmatrix}
$$

$$
= \{E_i \cdot \epsilon \} dS \\
\frac{\partial \tau_{\lambda_i j}}{\partial \lambda_i} = 
\begin{bmatrix}
1/t_i & 0 & 0 & 6/t_i \\
0 & 1/t_i & 0 & 6/t_i \\
0 & 0 & 1/t_i & 0 \\
0 & 0 & 0 & 1/t_i
\end{bmatrix}
$$

Fig. 3 Values of the stress gradient in the first and second element

The auxiliary matrices \(I_s\) and \(I_t\) can be calculated only using the numerical approach. Further details about \(E_m, E_o, D, B_m, B_o, u_{j}\), and \(t\) are presented in [6]. The extreme stress values can be expected at the top or at the bottom surface. Generally, it means or in compliance with the previous beam element (eq. 5)
\[ \sigma_{v,ab} = C_{ij} f_i. \]  

Let's build new material and auxiliary matrices

\[
E_{ab} = \begin{bmatrix} t_i & L_i & 0 \\ 0 & t_j & L_j \end{bmatrix} \quad \begin{bmatrix} D \end{bmatrix} = D_{ba} \quad \begin{bmatrix} L_a \\ L_b \end{bmatrix} = \begin{bmatrix} I_a \\ I_b \end{bmatrix},
\]

where the matrix \( I_3 \) is the classical unit matrix. Then (22) can be written as follows

\[
\sigma_{v,ab} = \sigma_{v,ab}^{(y)} + \sigma_{v,ab}^{(x)} = \begin{bmatrix} A_{xy} & E_{ab} & u_i^t \\ 0 & A_{xy} & -E_{ab} \end{bmatrix} \begin{bmatrix} \sigma_{v,ab}^{(y)} \\ \sigma_{v,ab}^{(x)} \end{bmatrix} = \begin{bmatrix} u_i^t \\ \sigma_{v,ab}^{(x)} \end{bmatrix},
\]

or

\[
\sigma_{v,ab}^{(x)} = \begin{bmatrix} A_{xy} & E_{ab} & u_i^t \\ 0 & A_{xy} & -E_{ab} \end{bmatrix}^{-1} \begin{bmatrix} \sigma_{v,ab} \end{bmatrix} = \begin{bmatrix} \sigma_{v,ab}^{(x)} \end{bmatrix},
\]

where

\[
T_{x,ab} = \begin{bmatrix} 1 & -0.5 & 0 \\ -0.5 & 1 & 0 \\ 0 & 0 & 3 \end{bmatrix}
\]

Using (25) and (27) in (26) we obtain

\[
\sigma_{v,ab}^{(x)} = \sigma_{v,ab}^{(y)} + \sigma_{v,ab}^{(x)} = \begin{bmatrix} u_i^t \\ \sigma_{v,ab}^{(x)} \end{bmatrix},
\]

and

\[
\sigma_{v,ab}^{(x)} = \begin{bmatrix} u_i^t \\ \sigma_{v,ab}^{(x)} \end{bmatrix} = \begin{bmatrix} u_i^t \\ \sigma_{v,ab}^{(x)} \end{bmatrix}.
\]

Assuming a relation between the local element displacements \( u_i^t \) and the global displacement vector \( u_i \),

\[
u_i^t = T_{i,ab} \cdot u_i,
\]

then (28a,b) may be rewritten as

\[
\sigma_{v,ab}^{(x)} = \begin{bmatrix} u_i^t \\ \sigma_{v,ab}^{(x)} \end{bmatrix} = \begin{bmatrix} u_i^t \\ \sigma_{v,ab}^{(x)} \end{bmatrix}.
\]

where \( T_{i,ab} \) is a classical transformation matrix between the local and the global coordinate systems, \( T_{i,ab} \) is again a Boolean matrix, i.e. the localization matrix determining the element position in the global stiffness matrix.

The stress sensitivity analysis means the finding of von Mises stress derivative with respect to a chosen structural parameter, in our case the element thickness \( t_i \). Let's analyze the differentiation of the von Mises stress of \( t_i \)-th element with respect to the \( i \)-th element thickness \( t_i \). Applying (31a, b) we can obtain

\[
\frac{\partial \sigma_{v,ab}^{(x)}}{\partial t_i} = \begin{bmatrix} \partial u_i^t \\ \partial \sigma_{v,ab}^{(x)} \end{bmatrix} = \begin{bmatrix} u_i^t \\ \sigma_{v,ab}^{(x)} \end{bmatrix}.
\]

where

\[
T_{x,ab} = \begin{bmatrix} 1 & -0.5 & 0 \\ -0.5 & 1 & 0 \\ 0 & 0 & 3 \end{bmatrix}
\]

and

\[
T_{x,ab} = \begin{bmatrix} 1 & -0.5 & 0 \\ -0.5 & 1 & 0 \\ 0 & 0 & 3 \end{bmatrix}
\]
Stress gradient with respect to the thickness $t_i$ and $t_j$ of the shell structure in Fig. 4.

\begin{equation}
\frac{\partial \sigma_{i,kl}}{\partial t_i} = \frac{\partial u_k}{\partial t_i} \mathbf{T}_{i,kl}^{T} \mathbf{I}_{l,kl}^{T} \mathbf{D}_{k,kl}^{T} \mathbf{T}_{i,k} + \mathbf{D}_{k,kl}^{T} \mathbf{T}_{i,kl} \frac{\partial u_k}{\partial t_i},
\end{equation}

where

\begin{equation}
\frac{\partial \sigma_{i,kl}}{\partial t_j} = \frac{\partial u_k}{\partial t_j} \mathbf{T}_{j,kl}^{T} \mathbf{I}_{l,kl}^{T} \mathbf{D}_{k,kl}^{T} \mathbf{T}_{j,k} + \mathbf{D}_{k,kl}^{T} \mathbf{T}_{j,kl} \frac{\partial u_k}{\partial t_j}.
\end{equation}

The derivative $u$ with respect to $t_i$ may be expressed as

\begin{equation}
\frac{\partial u}{\partial t_i} = \mathbf{K}_{i,j}^{-1} \left[ \frac{\partial \mathbf{F}_{i,j}}{\partial t_i} - \frac{\partial \mathbf{K}_{i,j}}{\partial t_i} \mathbf{u} \right],
\end{equation}

or, in more detail,

\begin{equation}
\frac{\partial u}{\partial t_i} = \mathbf{K}_{i,j}^{-1} \left[ \frac{\partial \mathbf{F}_{i,j}}{\partial t_i} - \sum_{j=1}^{n} \mathbf{T}_{j,kl}^{T} \mathbf{I}_{l,kl}^{T} \mathbf{D}_{k,kl}^{T} \mathbf{T}_{i,k} \mathbf{u} \right].
\end{equation}

The relation \( \frac{\partial \mathbf{F}}{\partial t_i} \) is often zero and the derivative of all the element components of the stiffness matrix can be realized as follows [6]

\begin{equation}
\frac{\partial (\mathbf{K}_{i,j} + \mathbf{K}_{j,i} + \mathbf{K}_{i,j})}{\partial t_i} = \frac{\partial \mathbf{J}_{i,j}}{\partial t_i} \mathbf{K}_{i,j},
\end{equation}

\[\mathbf{K}_{i,j} = \mathbf{K}_{i,j} + 3 \cdot \mathbf{K}_{j,i} + \mathbf{K}_{i,j}.\]

The particular membrane, bending and shear matrices are presented in [1, 7].

Finally, the derivative of the von Mises stress (at the top and at the bottom surfaces) with respect to the element thickness $t_i$ is the following

\begin{equation}
\frac{\partial \sigma_{i,kl}}{\partial t_i} = \frac{1}{2\sigma_{i,kl}} \frac{\partial \sigma_{i,kl}}{\partial t_i} = \frac{1}{2\sigma_{i,kl}} \frac{\partial \sigma_{i,kl}}{\partial t_i}.
\end{equation}

All the presented approaches have been implemented into Matlab’s FE software MATFEM developed by the authors.

**Example 2**

Determine the element stress derivative (eqs. 32a, 32b) with respect to the thickness $t_i$ and $t_j$ of the shell structure in Fig. 4.

\[\begin{align*}
\frac{\partial \mathbf{T}_{i,kl}}{\partial t_i} &= \frac{\partial \mathbf{u}_k}{\partial t_i} \mathbf{T}_{i,kl}^{T} \mathbf{I}_{l,kl}^{T} \mathbf{D}_{k,kl}^{T} \mathbf{T}_{i,k} + \mathbf{D}_{k,kl}^{T} \mathbf{T}_{i,kl} \frac{\partial \mathbf{u}_k}{\partial t_i}, \\
\frac{\partial \mathbf{T}_{j,kl}}{\partial t_j} &= \frac{\partial \mathbf{u}_k}{\partial t_j} \mathbf{T}_{j,kl}^{T} \mathbf{I}_{l,kl}^{T} \mathbf{D}_{k,kl}^{T} \mathbf{T}_{j,k} + \mathbf{D}_{k,kl}^{T} \mathbf{T}_{j,kl} \frac{\partial \mathbf{u}_k}{\partial t_j}.
\end{align*}\]

\[\begin{align*}
\frac{\partial \mathbf{T}_{i,kl}}{\partial t_i} &= \frac{\partial \mathbf{u}_k}{\partial t_i} \mathbf{T}_{i,kl}^{T} \mathbf{I}_{l,kl}^{T} \mathbf{D}_{k,kl}^{T} \mathbf{T}_{i,k} + \mathbf{D}_{k,kl}^{T} \mathbf{T}_{i,kl} \frac{\partial \mathbf{u}_k}{\partial t_i}, \\
\frac{\partial \mathbf{T}_{j,kl}}{\partial t_j} &= \frac{\partial \mathbf{u}_k}{\partial t_j} \mathbf{T}_{j,kl}^{T} \mathbf{I}_{l,kl}^{T} \mathbf{D}_{k,kl}^{T} \mathbf{T}_{j,k} + \mathbf{D}_{k,kl}^{T} \mathbf{T}_{j,kl} \frac{\partial \mathbf{u}_k}{\partial t_j}.
\end{align*}\]

\[\begin{align*}
\frac{\partial \mathbf{T}_{i,kl}}{\partial t_i} &= \frac{\partial \mathbf{u}_k}{\partial t_i} \mathbf{T}_{i,kl}^{T} \mathbf{I}_{l,kl}^{T} \mathbf{D}_{k,kl}^{T} \mathbf{T}_{i,k} + \mathbf{D}_{k,kl}^{T} \mathbf{T}_{i,kl} \frac{\partial \mathbf{u}_k}{\partial t_i}, \\
\frac{\partial \mathbf{T}_{j,kl}}{\partial t_j} &= \frac{\partial \mathbf{u}_k}{\partial t_j} \mathbf{T}_{j,kl}^{T} \mathbf{I}_{l,kl}^{T} \mathbf{D}_{k,kl}^{T} \mathbf{T}_{j,k} + \mathbf{D}_{k,kl}^{T} \mathbf{T}_{j,kl} \frac{\partial \mathbf{u}_k}{\partial t_j}.
\end{align*}\]

The chosen calculated values of the stress gradients are written in Table 2. The presented analytic stress gradient calculation was confronted with the classical numerical computational approach (\(\Delta \sigma / \Delta t_i\)). A graphic presentation of the stress gradients distribution in each of the elements is in Figs. 5 and 6.
The results document the influence of both parameters on the stresses and the major signification of thickness $t_1$. This information may be used for the next optimizing process.

4. Conclusion

The presented work deals with the theoretical aspects and numerical realization of the stress sensitivity analysis of the beam and shell finite elements focused on its cross section parameters (the area in the case of the beam element and the thickness in the case of the thin shell element). The whole computational procedure was inbuilt into Matlab’s software module MATFEM. Testing examples support the authors’ considerations about effectiveness of the proposed method.

Acknowledgements

This work has been supported by VEGA grant No. 1/4099/07 and by the research project AV 4/2044/08.

References

[1] BATHE, K. J.: Finite Element Procedures. New Persey, Prentice Hall, 1996.
[2] DEKYŠ, V., SAPIETOVÁ, A., KOCÚR, R.: On the reliability estimation of the conveyer mechanism using the Monte Carlo method, Proc. of COSIM2006, Krynica-Zdroj, 2006, pp. 67–74.
[3] HAFTKA, R. T., GURDAL, Z.: Elements of Structural Optimization, Kluwer Academic Publisher, 1992.
[4] KWON, Y. W., BANG, H.: The Finite Element Method using MATLAB, CRC Press University of Minnesota, 1996.
[5] MURIN, J.: Finite Element Method for Bar Constructions and Framed Structures (in Slovak), STU, Bratislava 1999.
[6] SAGA, M., VASKO, M., KOCUR, R., TOTH, L., KOHAR, R.: Application of optimizing algorithms in solid mechanics. In Slovak, VTS, University of Zilina, 2006.
[7] M. SAGA A, M. VAAKO A, J. JANDACKA, Z. HOLKOVA: Contribution to stress sensitivity analysis of the shell finite elements, Applied and Computational Mechanics, Vol. II, No.1, 2008, pp. 113–122
[8] SEGLA, S., CIUPITU, L., REICH, S.: *Optimization of a spring balancing mechanism for parallelogram robot mechanisms*, 1st International Conference “Optimization of robots and Manipulators OPTIROB 2006”, Predeal, Romania, 2006, pp. 69–74.

[9] VAVRO, J.: *Optimization of the design of cross-sectional quantities in transport machines and equipment*, Studia i materiał, Zelena Hora, Poland, 1998, pp. 186–194.

[10] ZIENKIEWICZ, O. C.: *The Finite Element Method in Engineering Science*, McGraw, Hill, New York, 1971.