1. Introduction

Long-duration gamma-ray bursts (GRBs)—the most energetic event in the universe—are considered to be due to the death of massive stars (e.g., Galama et al. 1998; Stanek et al. 2003). Therefore, GRBs are closely associated with the star-formation activity of their hosts. Since GRBs can be detected at cosmological distances (the current record is \(z = 6.3 \) for GRB050904; Kawai et al. 2006), they are expected to be probes of the star formation history of the universe (e.g., Totani 1997; Yonetoku et al. 2004). In order to determine the use of GRBs, it is essential to understand the star formation rates (SFRs) determined from submillimeter/radio. Mid-IR observations further complicate the situation; only a small fraction of GRB hosts are detected at mid-IR wavelengths in contrast with the image of submillimeter/radio observations (Le Floc’h et al. 2003). This result implies that there is a variety of GRB hosts with regard to the presence of obscured star formation.

Key words: galaxies: ISM — gamma rays: bursts — gamma rays: individual (GRB 980425)
methods and not affected by dust extinction and AGNs. For this purpose, an effective method is to observe the CO line. The CO line traces molecular gas, which is a fuel for star formation. Thus far, the search for CO ($J = 1 \rightarrow 0$) emission from the host galaxy of GRB 030329 using the Nobeyama Millimeter Array (Kohno et al. 2005; Endo et al. 2007) has been reported as the only attempt in this regard. However, only upper limits of the molecular gas mass and SFR of the host galaxy have been obtained. Since current instruments have limitations, it appears that target selection is essential to detect CO line emission.

In this paper, we report on observations of the $J = 3 \rightarrow 2$ transition line of ^{12}CO in the host galaxy of GRB 980425 using the Atacama Submillimeter Telescope Experiment (ASTE: Kohno et al. 2004; Ezawa et al. 2004). GRB 980425 emerged in an H II region in a spiral arm and was identified with SN 1998bw (type Ic supernova). Its isotropic γ-ray energy of $\sim 8 \times 10^{47}$ erg is significantly less than that of typical GRBs by several orders of magnitude (Galama et al. 1998). The host galaxy termed ESO184-G82 (figure 1) is the nearest GRB host known to date. The redshift of $z = 0.0085 \pm 0.0002$ (Tinney et al. 1998) is extremely low among GRB hosts (the mean redshift is $z = 2.8$; Jakobsson et al. 2006). Due to the proximity, it is the best target to detect CO line emission. The host galaxy has one of the highest values of metallicity—[$\log(O/H)+12$] = 8.6 (Sollerman et al. 2005)—among GRB hosts (e.g., Stanek et al. 2006).

We assume a cosmology with $H_0 = 71$ km s$^{-1}$ Mpc$^{-1}$, $\Omega_M = 0.27$, and $\Omega_\Lambda = 0.73$. The luminosity distance of GRB 980425 is $D_L = 36.1$ Mpc and the angular distance is $D_A = 35.5$ Mpc (1" corresponds to 0.172 kpc).

2. Observations and data reduction

Observations of ^{12}CO ($J = 3 \rightarrow 2$) were conducted using the ASTE on June 14–22, 2005. The ASTE is a single-dish 10 m submillimeter telescope at Pampa la Bola, Chile, equipped with a 4 K cooled superconductor-insulator-
superconductor (SIS) mixer receiver (Sekimoto et al. 2001; Muraoka et al. 2007). The observations were carried out remotely from ASTE operation rooms in San Pedro de Atacama, Chile, and in Mitaka, Japan, by using the network observation system N-COSMOS3, developed by the National Astronomical Observatory of Japan (NAOJ) (Kamazaki et al. 2005). The observation frequency was set to the redshifted 12CO ($J = 3–2$) line of 342.882 GHz at the upper side band (USB). The half-power beam width (HPBW) was $22''$, corresponding to 3.8 kpc at the distance of the galaxy. We used 4 digital spectrometers (A1, A2, A3, and A4) with a bandwidth of 512 MHz and 1024 channels (Sorai et al. 2000). A1 and A2 were configured at the center of the USB, and A3 and A4 were moved from the center by ∓ 256 MHz respectively to cover a bandwidth of 1024 MHz (~ 900 km s$^{-1}$). The weather was good during the observations and the system temperature was in the range of 250–750 K in DSB. In order to cover the entire region of the galaxy, we observed 5 points around the host galaxy center with a spacing of $11''$, including the GRB position (see figure 1). The sky emission was subtracted by position switching. The pointing was checked every few hours using the CO($3–2$) emission of W Aql and continuum emission of Mars, and the accuracy was within $3''$. The intensity calibration was performed by the chopper wheel method. The absolute intensity calibration was performed by observing the CO($3–2$) emission of M17SW and assuming that the velocity-integrated CO($3–2$) intensity, $I_{CO}(3–2)$, is 536.3 K km s$^{-1}$ (Wang et al. 1994). The main beam efficiency was measured to be 0.59–0.64 during the observations, and we adopted a constant value of 0.62.

Data reduction was carried out using NEWSTAR GBASE developed by the Nobeyama Radio Observatory (NRO). We used only data when the system temperature was less than 500 K. The total integration time was about 3 hours at the center of the global spectrum. More observations are needed to confirm this possibility.

We now discuss the 3σ upper limits on the global properties of the host galaxy from now on. In order to estimate an upper limit of $I_{CO}(3–2)$, we assume the velocity width of the galaxy. In the sample of Leroy et al. (2005), rotation velocities of 115 dwarf galaxies ($M_B \gtrsim -18$) are in the range 21–150 km s$^{-1}$ and the average is 67 km s$^{-1}$. Correcting for the inclination of the host galaxy multiplying the velocity by 2, we assume the velocity width of 134 km s$^{-1}$. The rms of the global spectrum at this velocity resolution is 1.3 mK, and therefore the 3σ upper limit of $I_{CO}(3–2)$ is 0.26 K km s$^{-1}$.

4. Discussion

4.1. H$\textsubscript{2}$ Column Density

The 3σ upper limit of H$\textsubscript{2}$ column density is calculated to be 3×10^{20} cm$^{-2}$ as follows:

$$N(H_2) = X_{CO} \cdot I_{CO}(3–2) \cdot R_{32/10}^{-1} \cdot \cos(i),$$

(1)

where X_{CO} is a CO luminosity to H$\textsubscript{2}$ molecular gas mass conversion factor in units of cm$^{-2}$ (K km s$^{-1}$)$^{-1}$, $R_{32/10}$ is a CO($3–2$)/CO($1–0$) integrated line intensity ratio, and i is the inclination of the disk. A conversion factor, X_{CO}, is derived using the correlation between X_{CO} and the metallicity (Arimoto et al. 1996). By using the metallicity of the host galaxy of $[12 + \log(O/H)] = 8.6$, X_{CO} is estimated as 5.0×10^{20} cm$^{-2}$ (K km s$^{-1}$)$^{-1}$. $R_{32/10}$ is in the range of 0.2–1.2 depending on the type of the galaxy such as nearby dwarf starburst galaxies, early-type galaxies, starburst spiral galaxies, luminous infrared galaxies (LIRGs), and ultraluminous infrared galaxies (ULIRGs) (Meier et al. 2001; Devereux et al. 1994; Mauersberger et al. 1999; Vila-Vilaró et al. 2003; Yao et al. 2003; Narayanan et al. 2005). In this paper we adopt $R_{32/10} = 0.4$, the typical value of the Galactic disk (Sanders et al. 1993).

4.2. Molecular Gas Mass

The 3σ upper limit of molecular gas mass of $M(H_2) < 3 \times 10^8 M_\odot$ is obtained from

$$M(H_2) = \Sigma_{H_2} \cdot S \cdot \cos(i)^{-1},$$

(2)

where Σ_{H_2} is the H$\textsubscript{2}$ surface density, and S is the area of the total beam, which is subtended by the 5 observation beams. This is consistent with those of dwarf galaxies (Leroy et al. 2005; Meier et al. 2001).
Fig. 2. Spectra of five observation points at a velocity resolution of 10 km s$^{-1}$. The peak main beam temperatures are \sim13–20 mK. The rms noise levels are \sim6 mK in T_{mb} scale.

Fig. 3. Global spectrum at a velocity resolution of 10 km s$^{-1}$. This exhibits the global property of the host galaxy of GRB 980425. The rms noise level is 3.3 mK in T_{mb} scale.
4.3. Star Formation Rate

We derive the 3σ upper limit of star formation rate of $0.1\, M_\odot\, \text{yr}^{-1}$ by applying the Schmidt law (Kennicutt 1998):

$$\text{SFR} = 2.5 \times 10^{-4} \cdot (\Sigma_{\text{H}_2})^{1.4} \cdot S \cdot \cos(i)^{-1} \, M_\odot\, \text{yr}^{-1}. \quad (3)$$

This is consistent with the results of the previous Hα observations (SFR = $0.35\, M_\odot\, \text{yr}^{-1}$, Sollerman et al. 2005) considering the uncertainties stated above. This indicates that the host galaxy has no significant obscured star formation. This is also consistent with the value of mid-IR observations—SFR = $0.4\, M_\odot\, \text{yr}^{-1}$ (Le Floc’h et al. 2006).

Figure 4 shows the SFRs of GRB hosts derived by several methods (see Endo et al. 2007 and references therein). The ordinate is the SFR determined from extinction-free wavelengths, such as the CO line, radio continuum, submillimeter continuum, infrared continuum, and X-rays. The abscissa is the SFR determined from optical lines (recombination and forbidden lines) and UV continuum. The diagonal indicates that the values of both axes are equal. The majority of the GRB hosts are located above this line, implying that they have a large amount of molecular gas and massive star formation obscured by dust. This tendency is observed in LIRGs, ULIRGs, and submillimeter galaxies but not in normal spiral galaxies (e.g., Young et al. 1996; Berger et al. 2003). On the other hand, our study shows that the host galaxy of GRB 980425 shows a different trend. This suggests that various GRB hosts exist in terms of the presence of obscured star formation.

5. Summary

We searched for $^{12}\text{CO} (J = 3\rightarrow 2)$ line emission from the host galaxy of GRB 980425 with the ASTE. Five points were observed around the host galaxy center covering the whole area. The results are as follows:

1. No significant emission is detected, but there seems to be a marginal emission feature in the velocity range corresponding to the redshift of the galaxy. After combining all spectra, we obtained a global spectrum with the rms noise level of 3.3 mK in T_{mb} scale at a velocity resolution of 10 km s$^{-1}$.
2. The 3σ upper limit of velocity-integrated CO(3–2) intensity is $I_{\text{CO}}(3\rightarrow 2) < 0.26\, \text{K km s}^{-1}$ by assuming a velocity width of 67 km s$^{-1}$.
3. The 3σ upper limits of H$_2$ column density and molecular gas mass are $N(\text{H}_2) < 3 \times 10^{20}\, \text{cm}^{-2}$ and $M(\text{H}_2) < 3 \times 10^{8}\, M_\odot$ respectively by adopting a CO(3–2)/CO(1–0) integrated line intensity ratio of $R_{32/10} = 0.4$ and a CO luminosity to H$_2$ molecular gas mass conversion factor of $X_{\text{CO}} = 5.0 \times 10^{20}\, \text{cm}^{-2} \cdot (\text{K km s}^{-1})^{-1}$. These are consistent with the values of nearby dwarf galaxies.
4. The 3σ upper limit of star formation rate is SFR < $0.1\, M_\odot\, \text{yr}^{-1}$, based on the Schmidt law. This is consistent with the results of Hα and mid-IR observations, suggesting that there is no significant obscured star formation in the host galaxy of GRB 980425. This result implies that various GRB hosts exist in terms of the presence of obscured star formation.

We would like to acknowledge the members of the ASTE team for the operation and ceaseless efforts to improve the ASTE. This study was financially supported by the MEXT Grant-in-Aid for Scientific Research on Priority Areas No. 15071202.
Fig. 4. Comparison of the SFRs of GRB hosts determined by various observational methods. The ordinate is the SFR derived by extinction-free methods such as the CO line, radio continuum, submillimeter continuum, infrared continuum, and X-rays. The abscissa is the SFR from optical (recombination and forbidden lines) and UV continuum. The data are based on Endo et al. (2007). The open symbols are the SFRs that are corrected for extinction in the host galaxies, and the solid symbols are those that are not corrected. The down-pointing arrows represent upper limits. The diagonal indicates equal values for both axes. It is clear that most of the GRB hosts are above this line, that is, the SFRs from the extinction-free methods are higher than those from the optical/UV bands even after extinction correction. On the other hand, the host galaxy of GRB 980425 show a different trend.

References

Arimoto, N., Sofue, Y., & Tsujimoto, T. 1996, PASJ, 48, 275
Berger, E., Cowie, L. L., Kulkarni, S. R., Frail, D. A., Aussel, H., & Barger, A. J. 2003, ApJ, 588, 99
Costa, E., et al. 1997, Nature, 387, 783
Devereux, N., Taniguchi, Y., Sanders, D. B., Nakai, N., & Young, J. S. 1994, AJ, 107, 2006
Endo, A., et al. 2007, ApJ, 659, 1431
Ezawa, H., Kawabe, R., Kohno, K., & Yamamoto, S. 2004, Proc. SPIE, 5489, 763
Fynbo, J. P. U., et al. 2003, A&A, 406, L63
Fynbo, J. P. U., et al. 2000, ApJL, 542, L89
Galama, T. J., et al. 1998, Nature, 395, 670
Jakobsson, P., et al. 2006, A&A, 447, 897
Kamazaki, T., et al. 2005, ASP Conf. Ser. 347: Astronomical Data Analysis Software and Systems XIV, 347, 533
Kawai, N., et al. 2006, Nature, 440, 184
Kennicutt, R. C., Jr. 1998, ARA&A, 36, 189
Kohno, K., et al. 2004, The Dense Interstellar Medium in Galaxies, 349
Kohno, K., et al. 2005, PASJ, 57, 147
Lauberts, A., & Valentijn, E. A. 1989, Garching: European Southern Observatory, —c1989
Le Floc'h, E., et al. 2003, A&A, 400, 499
Le Floc'h, E., Charmandaris, V., Forrest, W. J., Mirabel, I. F., Armus, L., & Devost, D. 2006, ApJ, 642, 636
Leroy, A., Bolatto, A. D., Simon, J. D., & Blitz, L. 2005, ApJ, 625, 763
Mauersberger, R., Henkel, C., Walsh, W., & Schulz, A. 1999, A&A, 341, 256
Meier, D. S., Turner, J. L., Crosthwaite, L. P., & Beck, S. C. 2001, AJ, 121, 740
Muraoka, K., et al. 2007, PASJ, 59, 43
Narayanan, D., Groppi, C. E., Kulesa, C. A., & Walker, C. K. 2005, ApJ, 630, 269
Nishiyan, K., & Nakai, N. 2001, PASJ, 53, 713
Sanders, D. B., Scoville, N. Z., Tilanus, R. P. J., Wang, Z., & Zhou, S. 1993, AIP Conf. Proc. 278: Back to the Galaxy, 278, 311
Sekimoto, Y., et al. 2001, PASJ, 53, 951
Sollerman, J., Östlin, G., Fynbo, J. P. U., Hjorth, J., Fruchter, A., & Pedersen, K. 2005, New Astronomy, 11, 103
Sorai, K., Sunada, K., Okumura, S. K., Tetsuro, I., Tanaka, A., Natori, K., & Omuki, H. 2000, Proc. SPIE, 4015, 86
Stanek, K. Z., et al. 2003, ApJL, 591, L17
Stanek, K. Z., et al. 2006, ArXiv Astrophysics e-prints, arXiv:astro-ph/0604113
Tinney, C., et al. 1998, IAU Circ., 6896, 1
Totani, T. 1997, ApJL, 486, L71
Vila-Vilaró, B., Cepa, J., & Butner, H. M. 2003, ApJ, 594, 232
Wang, Y., Jaffe, D. T., Graf, U. U., & Evans, N. J., II 1994, ApJS, 95, 503
Watson, D., Hjorth, J., Jakobsson, P., Pedersen, K., Patel, S., & Kouveliotou, C. 2004, A&A, 425, L33
Yao, L., Seaquist, E. R., Kuno, N., & Dunne, L. 2003, ApJ, 588, 77
Yonetoku, D., Murakami, T., Nakamura, T., Yamazaki, R., Inoue, A. K., & Ioka, K. 2004, ApJ, 609, 935
Young, J. S., Allen, L., Kenney, J. D. P., Lesser, A., & Rownd, B. 1996, AJ, 112, 1903