A Koszul complex over skew polynomial rings

Josep Álvarez Montanera, Alberto F. Boixb, and Santiago Zarzuelac

aDepartament de Matemàtiques, Universitat Politècnica de Catalunya, Barcelona, Spain; bDepartment of Mathematics, Ben-Gurion University of the Negev, Beer-Sheva, Israel; cDepartament d’Àlgebra i Geometria, Universitat de Barcelona, Barcelona, Spain

\textit{Dedicated to Professor Gennady Lyubeznik on the occasion of his 60th birthday.}

\begin{abstract}
We construct a Koszul complex in the category of left skew polynomial rings associated with a flat endomorphism that provides a finite free resolution of an ideal generated by a Koszul regular sequence.
\end{abstract}

\section{1. Introduction}

Let \(A \) be a commutative Noetherian ring of characteristic \(p > 0 \) and \(F: A \to A \) the associated Frobenius map for which \(F(a) = a^p \) for all \(a \in A \). The study of \(A \)-modules with an action of the Frobenius map has received a lot of attention over the last decades and is at the core of the celebrated theory of tight closure developed by Hochster and Huneke [15] and the theory of \(F \)-modules introduced by Lyubeznik [18].

To provide an action of the Frobenius on an \(A \)-module \(M \) is equivalent to give a left \(A[^{\Theta}; F] \)-module structure on \(M \). Here \(A[^{\Theta}; F] \) stands for the \textit{left skew polynomial ring} associated with \(F \), which is an associative, \(\mathbb{N} \)-graded, not necessarily commutative ring extension of \(A \). More generally, we may also consider the skew polynomial rings \(A[^{\Theta}; F^e] \) associated with the \(e \)-th iterated Frobenius map and the graded ring \(\mathcal{F}^M = \bigoplus_{e \geq 0} \mathcal{F}^M_e \) introduced by Lyubeznik and Smith [19] that collects all the \(A[^{\Theta}; F^e] \)-module structures on \(M \) or equivalently, all possible actions of \(F^e \) on \(M \). In the case that \(\mathcal{F}^M \) is principally generated then it is isomorphic to \(A[^{\Theta}; F] \). We want also to single out here that, under the terminology \textit{skew polynomial ring of Frobenius type}, Yoshino [26] studied \(A[^{\Theta}; F] \) and left modules over it, and used this study to obtain some new results about tight closure theory; following the same spirit, Sharp [23] also studied the ideal theory of \(A[^{\Theta}; F] \). The case when \(A \) is a field was studied in detail by Enescu [8].

One may also develop a dual notion of \textit{right skew polynomial ring} associated with \(F \) that we denote by \(A[\varepsilon; F] \). A left \(A[\varepsilon; F] \)-module structure on \(M \) is then equivalent to provide an action of a Cartier operator as considered by Blickle and Böckle [4]. The corresponding ring collecting all the \(A[\varepsilon; F^e] \)-module structures on \(M \), that we denote by \(C^M = \bigoplus_{e \geq 0} C^M_e \), was developed by...
Schwede [22] and Blickle [3] (see [5] for a nice survey) and has been a hot topic in recent years because of its role in the theory of test ideals.

Although the theory of skew polynomial rings is classical (see [14, Chapter 2] and [20, Chapter 1, Sections 2 and 6]), the aim of this work is to go back to its basics and develop new tools that should be potentially useful in the study of modules with a Frobenius or Cartier action. Our approach will be in a slightly more general setting as we will consider a Noetherian commutative ring A (not necessarily of positive characteristic) and a ring homomorphism $\varphi : A \to A$. Although most of the results are mild generalizations of the case of the Frobenius morphism we point out that this general approach has already been fruitful (see [25]).

Now, we overview the contents of this paper for the convenience of the reader. In Section 2 we introduce all the basics on left and right skew polynomial rings associated with a morphism φ that will be denoted by $A[\Theta; \varphi]$ and $A[e; \varphi]$. More generally, given an A-module M, we will consider the corresponding rings \mathcal{F}^M, φ and C^M, φ (see Definition 2.9); both are \mathbb{N}-graded, noncommutative rings

$$\mathcal{F}^M, \varphi := \bigoplus_{e \geq 0} \mathcal{F}^e, \varphi, \quad C^M, \varphi := \bigoplus_{e \geq 0} C^e, \varphi,$$

where one collects (see Section 2.2) all the possible φ^e-linear maps (respectively, all the possible φ^{-e}-linear maps). The main result of this section is Theorem 2.12 which states the following: let $I \subseteq A := \mathbb{K}[x_1, \ldots, x_n]$ be an ideal, let $R := A/I$ and let E_R be the injective hull of the residue field of R. Then, for any finite morphism φ, we have an isomorphism between the graded pieces \mathcal{F}^e, φ and C^e, φ induced by Matlis duality.

In Section 3, we present the main result of this work. Here we consider a flat morphism φ satisfying some extra condition (which is naturally satisfied in the case of the Frobenius morphism). First we introduce the φ-Koszul complex which is a Koszul-type complex associated with $x_1, \ldots, x_n \in A$ in the category of left $A[\Theta; \varphi]$-modules. In Theorem 3.13 we prove that, whenever x_1, \ldots, x_n is an A-Koszul regular sequence (see Definition 3.12), the φ-Koszul complex provides a free resolution of A/I_n in the category of left $A[\Theta; \varphi]$-modules, where I_n is the ideal generated by x_1, \ldots, x_n. In the case where A is a regular ring of positive characteristic $p > 0$ and $\varphi = F^p$ is the pth iteration of the Frobenius, we obtain a free resolution, in the category of left $A[\Theta; F^p]$-modules, of the ideal I_n (see Corollary 3.15).

To the best of our knowledge, this is one of the first explicit examples of free resolutions of A-modules as modules over a skew polynomial ring. We hope that a development of this theory of free resolutions would provide, in the case of the Frobenius morphism, more insight in the study of modules with a Frobenius action.

2. Preliminaries

Let A be a commutative Noetherian ring and $\varphi : A \to A$ a ring homomorphism. In association with φ, we may consider non-necessarily commutative algebra extensions of A that are useful in the sense that some non finitely generated A-modules become finitely generated when viewed over these extensions. In this section we will collect the basic facts on this theory keeping always an eye on the case of the Frobenius morphism.

First we recall that φ allows us to describe a covariant functor, the pushforward or restriction of scalars functor φ_*, from the category of left A-modules to the category of left A-modules. Namely, given an A-module M, $\varphi_* M$ is the (A, A)-bimodule having the usual A-module structure on the right but the left structure is twisted by φ; that is, if we denote by $\varphi_* M$ ($m \in M$) an arbitrary $\varphi_* M$ then, for any $a \in A$,

$$a \cdot \varphi_* M := \varphi_*(\varphi(a)m).$$

Moreover, given a map $g : M \to N$ of left A-modules, we can define a map $\varphi_* g : \varphi_* M \to \varphi_* N$ of left A-modules by setting, for any $m \in M$,

$$\varphi_* g(\varphi_* M) := \varphi_* g(m).$$
2.1. Left and right skew-polynomial rings

The most basic ring extensions given by a ring homomorphism are the so-called skew-polynomial rings or Ore extensions. This is a classical object of study, and we refer either to [14, Chapter 2] or [20, Chapter 1, Sections 2 and 6] for further details.

Definition 2.1. Let A be a commutative Noetherian ring and $\varphi : A \to A$ a ring homomorphism.

i. We define the left skew polynomial ring of A determined by φ as

$$A[\Theta; \varphi] := \frac{A[\Theta]}{\langle \Theta a - \varphi(a) \Theta \mid a \in A \rangle}.$$

That is, $A[\Theta; \varphi]$ is a free left A-module with basis $\{\Theta^i \}_{i \in \mathbb{N}_0}$ and $\Theta \cdot a = \varphi(a) \Theta$ for all $a \in A$.

ii. We define the right skew polynomial ring of A determined by φ as

$$A[e; \varphi] := \frac{A[e]}{\langle ae - e \varphi(a) \mid a \in A \rangle}.$$

That is, $A[e; \varphi]$ is a free right A-module with basis $\{e^i \}_{i \in \mathbb{N}_0}$ and $a \cdot e = e \varphi(a)$ for all $a \in A$.

Remark 2.2. The reader will easily note that $A[\Theta; \varphi]^\text{op} \cong A[e; \varphi]$ and $A[e; \varphi]^\text{op} \cong A[\Theta; \varphi]$, where $(-)^\text{op}$ denotes the opposite ring.

Both ring extensions are determined by the following universal property.

Proposition 2.3. Let $B = A[\Theta; \varphi]$ be the left (resp. $B = A[e; \varphi]$ be the right) skew polynomial ring of A determined by φ. Suppose that we have a ring T, a ring homomorphism $\psi : A \to T$ and an element $y \in T$ such that, for each $a \in A$,

$$y \psi(a) = \psi(\varphi(a))y \quad \text{(resp. } \psi(a)y = y \psi(\varphi(a)))$$

Then, there is a unique ring homomorphism $B \xrightarrow{\psi} T$ such that $\psi(\Theta) = y$ (resp. $\psi(e) = y$) which makes the triangle

$$A \xrightarrow{\psi} B$$

commutative.

This universal property allows us to provide more general examples of skew polynomial rings.

Example 2.4. Let $u \in A$. As $u \Theta$ is an element of $A[\Theta; \varphi]$ such that, for any $a \in A$,

$$(u \Theta)a = u \Theta a = u \varphi(a) \Theta = \varphi(a)(u \Theta),$$

it follows from the universal property for left skew polynomial rings that there is a unique A-algebra homomorphism $A[\Theta; \varphi] \longrightarrow A[\Theta; \varphi]$ sending Θ' to $u \Theta$: we shall denote the image of this map by $A[u \Theta; \varphi]$. The previous argument shows that $A[u \Theta; \varphi]$ can be also regarded as a left skew polynomial ring. Analogously, $A[e u; \varphi]$ can be also regarded as right skew polynomial ring since we have, for any $a \in A$,

$$a(\varepsilon u) = e \varphi(a)u = (\varepsilon u)\varphi(a).$$
2.1.1. The case of Frobenius homomorphism

We single out the case where \(A \) is a ring of positive characteristic \(p > 0 \) and \(\varphi = F \) is the Frobenius homomorphism. The specialization of Definition 2.1 to this case is the following:

i. The *Frobenius skew polynomial ring* of \(A \) is the non-commutative graded ring \(A[\Theta; F] \) that is, the free left \(A \)-module with basis \(\{ \Theta^e \}_{e \in \mathbb{N}_0} \) and right multiplication given by

\[
\Theta \cdot a = a^p \Theta.
\]

ii. The *Cartier skew polynomial ring* of \(A \) is the noncommutative graded ring \(A[e; F] \); that is, the free right \(A \)-module with basis \(\{ e^e \}_{e \in \mathbb{N}_0} \) and left multiplication given by

\[
a \cdot e = e a^p.
\]

It turns out that \(A[\Theta; F] \) is rarely left or right Noetherian, as it is explicitly described by Yoshino [26, Theorem 1.3]. He also provided effective descriptions of basic examples of left modules over \(A[\Theta; F] \). Namely, the ring \(A \), the localizations \(A_a \) at elements \(a \in A \) and the local cohomology modules \(H^m_\mathfrak{m}(A) \), where \(m \) is the maximal ideal of a commutative Noetherian local ring \(A \), have an abstract structure as finitely generated left \(A[\Theta; F] \)-modules that we collect in the following result. We refer to [26, Lemma 3.2 (b), Lemma 5.1 and Theorem 5.4] for further details.

Proposition 2.5. Let \(A \) be a commutative Noetherian ring of characteristic \(p \), let \(a \in A \) be any element and let \(J(a) \) denote the left ideal of \(A[\Theta; F] \) generated by the infinite set

\[
a^e \Theta^e - 1 \quad e \in \mathbb{N}.
\]

Then, the following statements hold.

i. \(A \) has a natural structure as left \(A[\Theta; F] \)-module given by

\[
A \cong A[\Theta; F] / A[\Theta; F](\Theta - 1) \cong A[\Theta; F] / J(1).
\]

Moreover, if \((A, m, \mathbb{K}) \) is a local ring of characteristic \(p \) of dimension \(d \geq 1 \), then

ii. If \(0 \neq a \in A \), then the localization \(A_a \) has a natural structure as left \(A[\Theta; F] \)-module given by

\[
A_a \cong A[\Theta; F] / J(a).
\]

iii. The Čech complex of \(A \) with respect to a system of parameters \(a_1, \ldots, a_d \) for \(A \)

\[
0 \rightarrow A \rightarrow \bigoplus_{i=1}^d A a_i \rightarrow \bigoplus_{1 \leq i < j \leq d} A a_i a_j \rightarrow \cdots \rightarrow \bigoplus_{i=1}^d A a_1 \cdots a_i \cdots a_d \rightarrow 0
\]

is a complex of left \(A[\Theta; F] \)-modules which is isomorphic to the following complex:

\[
0 \rightarrow A[\Theta; F] / J(1) \rightarrow \bigoplus_{i=1}^d A[\Theta; F] / J(a_i) \rightarrow \bigoplus_{1 \leq i < j \leq d} A[\Theta; F] / J(a_i a_j) \rightarrow \cdots \rightarrow \bigoplus_{i=1}^d A[\Theta; F] / J(a_1 \cdots a_i \cdots a_d) \rightarrow A[\Theta; F] / J(a_1 \cdots a_d) \rightarrow 0.
\]

iv. Any local cohomology module \(H^m_\mathfrak{m}(A) \) has an abstract structure as a finitely generated left \(A[\Theta; F] \)-module; more specifically, one has
Remark 2.6. In general, for A being any commutative Noetherian ring of prime characteristic and $I \subseteq A$ being any ideal, it is also true [7, Theorem 5.3.4] that any local cohomology module $H^i_I(A)$ has an abstract structure as left $A[\Theta; F]$-module.

2.2. Skew polynomial rings attached to a ring endomorphism

In this subsection we are going to give a natural generalization of skew polynomial rings associated with a ring homomorphism φ. Before doing so, we briefly recall how to give a module structure over a skew polynomial ring by means of the so-called φ and φ^{-1}-linear maps.

Definition 2.7. Let A be a commutative Noetherian ring, $\varphi : A \to A$ a ring homomorphism and M be an A-module. Given $w, \psi \in \text{End}_A(M)$:

i. We say that w is φ-linear provided $w(am) = \varphi(a)w(m)$ for any $(a, m) \in A \times M$.

ii. We say that ψ is φ^{-1}-linear provided $\psi(\varphi(a)m) = \psi(a)m$ for any $(a, m) \in A \times M$.

We denote by $\text{End}_\varphi(M)$ and $\text{End}_{\varphi^{-1}}(M)$ the A-endomorphisms of M which are φ-linear and φ^{-1}-linear respectively. These endomorphisms can be interpreted in terms of the pushforward functor since we have the following bijections:

$$
\text{End}_\varphi(M) \xrightarrow{\cong} \text{Hom}_A(M, \varphi_* M), \quad \text{End}_{\varphi^{-1}}(M) \xrightarrow{\cong} \text{Hom}_A(\varphi_* M, M)
$$

$$
\psi \mapsto [m \mapsto \varphi_*(\psi(m))], \quad \phi \mapsto [\varphi_* m \mapsto \phi(m)]
$$

An $A[\Theta; \varphi]$-module is simply an A-module M together with a suitable action of Θ on M. Actually, one only needs to consider a φ-linear map $\psi : M \to M$ and define $\Theta \cdot m := \psi(m)$ for all $m \in M$. Analogously, an $A[\varepsilon; \varphi]$-module is an A-module M together with an action of ε given by a φ^{-1}-linear map $\phi : M \to M$; we record all these simple remarks into the following:

Proposition 2.8. Let M be an A-module.

i. There is a bijective correspondence between $\text{End}_\varphi(M)$ and the left $A[\Theta; \varphi]$-module structures which can be attached to M.

ii. There is a bijective correspondence between $\text{End}_{\varphi^{-1}}(M)$ and the left $A[\varepsilon; \varphi]$-module structures which can be attached to M.

More generally, we may consider the eth powers φ^e of the ring homomorphism φ and define the corresponding notion of φ^e and φ^{-e}-linear maps. We may collect all these morphisms in a suitable algebra that would provide a generalization of the Frobenius algebra introduced by Lyubeznik and Smith [19, Definition 3.5] and the Cartier algebra considered by Schwede [22, pp. 5927–5928] and generalized by Blickle [3, Definition 2.2] (see also [5, Definition 9.3.1]).

Definition 2.9. Let A be a commutative Noetherian ring and $\varphi : A \to A$ a ring homomorphism, and let M be an A-module.

i. We define the ring of φ-linear operators on M as the associative, \mathbb{N}-graded, not necessarily commutative ring

$$
H^d_m(A) \cong A[\Theta; F]/(J(a_1 \cdots a_d) + A[\Theta; F] \langle a_1, \ldots, a_d \rangle).
$$
\[F_{\epsilon}^{M, \phi} := \bigoplus_{e \geq 0} F_{\epsilon}^{M, \phi}, \]
where \(F_{\epsilon}^{M, \phi} := \text{Hom}_A(M, \phi^e M) = \text{End}_\phi(M), \) and the product is given by the rule
\[\psi_{\epsilon'} \cdot \psi_{\epsilon} := \phi_{\epsilon'}(\psi_{\epsilon'}) \circ \psi_{\epsilon} \in F_{\epsilon+\epsilon'}^{M, \phi}, \]
for any given \(\psi_{\epsilon} \in F_{\epsilon}^{M, \phi} \) and \(\psi_{\epsilon'} \in F_{\epsilon'}^{M, \phi}. \)

ii. We define the ring of \(\phi^{-1}\)-linear operators on \(M \) as the associative, \(\mathbb{N} \)-graded, not necessarily commutative ring
\[C_{\epsilon}^{M, \phi} := \bigoplus_{e \geq 0} C_{\epsilon}^{M, \phi}, \]
where \(C_{\epsilon}^{M, \phi} := \text{Hom}_A(\phi^e M, M) = \text{End}_\phi(M), \) and the product is given by the rule
\[\phi_{\epsilon'} \cdot \phi_{\epsilon} := \phi_{\epsilon'} \circ \phi_{\epsilon'}(\phi_{\epsilon}) \in C_{\epsilon+\epsilon'}^{M, \phi}, \]
for any given \(\phi_{\epsilon} \in C_{\epsilon}^{M, \phi} \) and \(\phi_{\epsilon'} \in C_{\epsilon'}^{M, \phi}. \)

Actually, the generalization of Cartier algebra given by Blickle [3, Definition 2.2] (see also [5, Definition 9.3.1]) would be interpreted in our context as follows:

Definition 2.10. An \(A \)-Cartier algebra with respect to \(\phi \) is an \(\mathbb{N} \)-graded \(A \)-algebra \(C^\phi := \bigoplus_{e \geq 0} C^\phi_e \) such that, for any \((a, \phi_e) \in A \times C^\phi_e \), we have that \(a \cdot \phi_e = \phi_e \cdot \phi^e(a) \). The \(A \)-algebra structure of \(C^\phi \) is given by the structural map from \(A \) to \(C^\phi_0 \). We also assume that this structural map is surjective.

Notice that this notion of Cartier algebra does not depend on a specific module; moreover, we also observe that \(C^{M, \phi} \) is generally not an \(A \)-Cartier algebra with respect to \(\phi \), since \(C^{M, \phi}_0 = \text{End}_A(M) \) and therefore the natural map \(A \longrightarrow \text{End}_A(M) \) that sends \(a \in A \) to the multiplication by \(a \) on \(M \) is, in general, not surjective. Nevertheless, if \(M = A/I \) (where \(I \) is any ideal of \(A \)) then \(\text{End}_A(M) = A/I \) and therefore it follows that \(C^{A/I, \phi} \) is an \(A \)-Cartier algebra.

Whenever the ring of \(\phi \)-linear (resp. \(\phi^{-1} \)-linear) operators is principally generated it is isomorphic to a left (resp. right) skew polynomial ring. This is the case of the ring of \(\phi \)-linear operators of the ring \(A \). This was already observed by Lyubeznik and Smith [19, Example 3.6] when \(A \) is of prime characteristic and \(\phi = F \) is the Frobenius map.

Example 2.11. We have that \(F_{\epsilon}^{A, \phi} \cong A[\Theta; \phi] \). Indeed, fix \(e \in \mathbb{N} \) and let \(\psi_{\epsilon} \in F_{\epsilon}^{A, \phi} \). We point out that, for any \(a \in A \),
\[\psi_{\epsilon}(a) = \psi_{\epsilon}(a \cdot 1) = \phi^e(a) \psi_{\epsilon}(1) = \psi_{\epsilon}(1) \phi^e(a). \]

In this way, set
\[F_{\epsilon}^{A, \phi} \xrightarrow{b_{\epsilon}} A \Theta^e \]
\[\psi_{\epsilon} \longmapsto \psi_{\epsilon}(1) \Theta^e. \]

The previous straightforward calculation shows the injectivity of this map. In fact, it is a bijective map with inverse
\[A \Theta^e \xrightarrow{a} F_{\epsilon}^{A, \phi} \]
\[a \Theta^e \longmapsto a \phi^e. \]
2.2.1. Duality between Cartier algebras and Frobenius algebras

Let \(A = \mathbb{K}[[x_1, \ldots, x_d]] \) be a formal power series ring with \(d \) indeterminates over a field \(\mathbb{K} \), \(I \subseteq A \) an ideal and \(R := A/I \). Let \(\varphi : A \to A \) be a ring homomorphism such that \(\varphi^e A \) is finitely generated as \(A \)-module. The aim of this subsection is to establish an explicit correspondence, at the level of graded pieces, between \(C^R, \varphi \) and \(F^E, \varphi \) given by Matlis duality. This would extend the correspondence given in the case of the Frobenius map (cf. [4, Proposition 5.2] and [24, Theorem 1.20 and Corollary 1.21]).

Theorem 2.12. Let \(\varphi : A \to A \) be a ring homomorphism such that \(\varphi^e A \) is finitely generated as \(A \)-module. Then we have that

\[
\text{Hom}_A(\varphi^e R, R) \cong \text{Hom}_A(E_R, \varphi^e E_R) \quad \text{and} \quad \text{Hom}_A(E_R, \varphi^e E_R)^\vee \cong \text{Hom}_A(\varphi^e R, R).
\]

Before proving this theorem, we have to show a previous statement which we shall need during its proof; albeit the below result was obtained by Enescu and Hochster [9, Discussion 3.4] (see also [26, Lemma 3.6]), we review here their proof for the convenience of the reader.

Lemma 2.13. Let \((A, m, \mathbb{K}) \longrightarrow (B, n, \mathbb{L})\) be a local homomorphism of local rings, and suppose that \(mB \) is \(n \)-primary and that \(\mathbb{L} \) is finite algebraic over \(\mathbb{K} \) (both these conditions hold if \(B \) is module-finite over \(A \)). Let \(E := E_\mathbb{K}(\mathbb{K}) \) and \(E_\mathbb{L}(\mathbb{L}) \) denote choices of injective hulls for \(\mathbb{K} \) over \(A \) and for \(\mathbb{L} \) over \(B \), respectively. Then, the functor \(\text{Hom}_A(-, E) \), on \(B \)-modules, is isomorphic with the functor \(\text{Hom}_B(-, E_B(\mathbb{L})) \).

Proof. First of all, we underline that \(\text{Hom}_A(-, E) \), on \(B \)-modules, can be identified via adjunction with

\[
\text{Hom}_A((-) \otimes_A B, E) \cong \text{Hom}_B(-, \text{Hom}_A(B, E))
\]

and therefore \(\text{Hom}_A(B, E) \) is injective as \(B \)-module. Moreover, as \(mB \) is \(n \)-primary any element of \(\text{Hom}_A(B, E) \) is killed by a power of \(n \) and therefore

\[
\text{Hom}_A(B, E) \cong E_B(\mathbb{L})^{\otimes I}.
\]

In this way, it only remains to check that \(I = 1 \). Indeed, we note that

\[
\text{Hom}_A(\mathbb{L}, E) \cong \text{Hom}_A(\mathbb{L}, \mathbb{K}).
\]

However, as \(A \)-module, \(\text{Hom}_A(\mathbb{L}, \mathbb{K}) \) is abstractly isomorphic to \(\mathbb{L} \) (here we are using the assumption that \(\mathbb{L} \) is finite algebraic over \(\mathbb{K} \)). Thus, all these foregoing facts imply that

\[
E_B(\mathbb{L}) \cong \text{Hom}_A(B, E),
\]

hence \(\text{Hom}_A((-) \otimes_A B, E) \cong \text{Hom}_B(-, E_B(\mathbb{L})) \) and we get the desired conclusion.

Proof of Theorem 2.12. First of all, we underline that

\[
\text{Hom}_A(\varphi^e R, R)^\vee \cong \text{Hom}_A(E_R, \varphi^e(R)^\vee).
\]

Now, let \(E_e \) be the injective hull of the residue field of \(\varphi^e \) and recall that \(E = E_A(\mathbb{K}) \). In this way, from Lemma 2.13 we deduce that \(\text{Hom}_A(-, E) \cong \text{Hom}_{\varphi^e A}(-, E_e) \) as functors of \(\varphi^e A \)-modules. Therefore, combining all these facts joint with the exactness of \(\varphi^e \) it follows that
Thus, taking into account this last chain of isomorphisms one obtains the first desired conclusion.

On the other hand, using once more Lemma 2.13 it turns out that

Thus, bearing in mind this last chain of isomorphisms it follows that

just what we finally wanted to show.

2.2.2. The case of Frobenius homomorphism

Once again we single out the case where \(A \) is a ring of positive characteristic \(p > 0 \) and \(\varphi = F \) is the Frobenius homomorphism. In this case we adopt the terminology of \(p^e \)- and \(p^{-e} \)-linear maps or, following [2], Frobenius and Cartier linear maps.

Definition 2.14. Let \(M \) be an \(A \)-module and \(\psi, \phi \in \text{End}_A(M) \).

i. We say that \(\psi \) is \(p^e \)-linear provided \(\psi(am) = a^e \psi(m) \) for any \((a, m) \in A \times M \). Equivalently, \(\psi \in \text{Hom}_A(M, F^eM) \).

ii. We say that \(\phi \) is \(p^{-e} \)-linear provided \(\phi(a^e m) = a \phi(m) \) for any \((a, m) \in A \times M \). Equivalently, \(\phi \in \text{Hom}_A(F^eM, M) \).

The corresponding rings of \(p^e \) and \(p^{-e} \)-linear maps are defined as follows:

Definition 2.15. Let \(A \) be a commutative Noetherian ring of prime characteristic \(p \) and let \(M \) be an \(A \)-module.

i. The Frobenius algebra attached to \(M \) is the associative, \(\mathbb{N} \)-graded, not necessarily commutative ring

\[
F^M := \bigoplus_{e \geq 0} \text{Hom}_A(M, F^eM).
\]

ii. The Cartier algebra attached to \(M \) is the associative, \(\mathbb{N} \)-graded, not necessarily commutative ring

\[
C^M := \bigoplus_{e \geq 0} \text{Hom}_A(F^eM, M).
\]

In this work we are mainly interested in the case where the Frobenius (resp. Cartier) algebra of a module is principally generated and thus isomorphic to the left (resp. right) skew polynomial ring, Lyubeznik and Smith already carried out such an example in [19, Example 3.7].

Example 2.16. Let \((A, m, \mathbb{K}) \) be a local ring of characteristic \(p \). Then

\[
\mathcal{F}^{\text{dim}(A)} := S[\Theta; F],
\]

where \(S \) denotes the \(S_2 \)-ification of the completion \(\hat{A} \).

Another source of examples is given by the following result.

Proposition 2.17. Let \((A, m, \mathbb{K}) \) be a complete \(F \)-finite local ring of characteristic \(p \) and \(E_A \) stands for a choice of injective hull of \(\mathbb{K} \) over \(A \). Then, the following statements hold.
i. If A is quasi Gorenstein then \mathcal{F}^{E_A} is principal.

ii. If A is a \mathbb{Q}-Gorenstein normal domain then \mathcal{F}^{E_A} is a finitely generated A-algebra if and only if p is relatively prime with the index of A.

iii. If A is a \mathbb{Q}-Gorenstein normal domain then \mathcal{F}^{E_A} is principal if and only if the index of A divides $p - 1$.

Sketch of proof. If A is quasi Gorenstein then $E_A \cong H^\dim(A)(A)$. But we have seen in Example 2.16 that, under our assumptions, $\mathcal{F}^{H^\dim(A)}(A) \cong A[\Theta; F]$; indeed, A is complete and any quasi Gorenstein ring is, in particular, S_2. On the other hand, part (ii) follows essentially in the following way; let m be the index of A. If m is relatively prime to p, then p is a unit modulo m, and therefore there is an integer $e_0 \geq 1$ such that $p^{e_0} \equiv 1 \pmod{m}$. What is proved in [17, Proposition 4.1] is that \mathcal{F}^{E_A} is generated over A by homogeneous elements of degree at most e_0. On the other hand, if p divides m then it is shown in [10, Theorem 4.5], building upon the isomorphism between \mathcal{F}^{E_A} and the so-called T-construction of the anticanonical cover of A (see e.g. [17, Theorem 3.3(ii)] or [10, Theorem 4.1]), that \mathcal{F}^{E_A} is not a finitely generated A-algebra. Finally, part (iii) again follows essentially from the isomorphism between \mathcal{F}^{E_A} and the so-called T-construction of the anticanonical cover of A [10, Proposition 4.2].

We point out that an explicit description of \mathcal{F}^{E_A} can be obtained using the following result due to Fedder (cf. [11, pp. 465]).

Theorem 2.18. Let $A = \mathbb{K}[[x_1, \ldots, x_d]]$ be a formal power series ring over a field \mathbb{K} of prime characteristic p. Let I be an arbitrary ideal of A, $R := A/I$, E denotes a choice of injective hull of \mathbb{K} over A, Θ is the standard Frobenius action on E and $E_R := (0 : EI)$. Then, one has that

$$\mathcal{F}^{E_A} \cong \bigoplus_{c \geq 0} \left\{ \left[I[p^c] : A \right] / I[p^c] \right\} \Theta^c.$$

In [1], we used this result to study Frobenius algebras associated with Stanley–Reisner rings. It turns out that, whenever they are principally generated, they are isomorphic to $A[u\Theta; F]$ with $u = x_1^{p-1} \cdots x_d^{p-1}$.

3. The φ-Koszul chain complex

Let $S = \mathbb{K}[x_1, \ldots, x_n]$ be a polynomial ring with coefficients on a commutative ring \mathbb{K}, and let $\varphi : S \to S$ be a flat map of \mathbb{K}-algebras satisfying the extra condition that for any $1 \leq i \leq n$, $\varphi(x_i) \in (x_i)$. Thus, there are nonzero elements s_1, \ldots, s_n of S such that $\varphi(x_i) = s_i x_i$, for each $1 \leq i \leq n$.

Remark 3.1. If \mathbb{K} is a field of positive characteristic $p > 0$ and $\varphi = F^r$ is the iterated Frobenius morphism, then this extra condition is naturally satisfied. Indeed, $F^r(x_i) = x_i^{p^r}$ so $s_i = x_i^{p^r}$. More generally [25, Example 2.2], if \mathbb{K} is any field and $t \geq 1$ is an integer, then the \mathbb{K}-linear map φ on S sending each x_i to x_i^t also satisfies this condition; indeed, in this case, $s_i = x_i^{t-1}$.

Our aim is to construct a Koszul complex in the category of $S(\Theta; \varphi)$-modules that we will denote as φ-Koszul complex. To begin with, let us fix some notations. Let

$$K_\bullet := K_\bullet(x_1, \ldots, x_n) := 0 \to K_n \xrightarrow{d_n} K_{n-1} \to \cdots \to K_2 \xrightarrow{d_2} K_1 \xrightarrow{d_1} K_0 \to 0$$

be the Koszul chain complex of S with respect to x_1, \ldots, x_n (regarded as a chain complex in the category of left S-modules) and suppose that each differential d_l is represented by right multiplication by a matrix M_l. Moreover, for each $l \geq 0$ $M_l^{(l)}$ denotes the matrix obtained by applying to
each entry of M_l the map φ. In particular, for each entry m, the sign of m is equal to the sign of $\varphi(m)$.

Definition 3.2. We define the φ-Koszul chain complex with respect to x_1, \ldots, x_n as the chain complex

$$FK_\ast(x_1, \ldots, x_n) := 0 \longrightarrow FK_{n+1} \xrightarrow{d_{n+1}} FK_n \xrightarrow{d_n} \ldots \xrightarrow{d_1} FK_0 \longrightarrow 0.$$

Here, for each $0 \leq l \leq n+1$,

$$FK_l := \bigoplus_{1 \leq i_1 < \ldots < i_l \leq n} S[\Theta; \varphi](e_{i_1} \wedge \ldots \wedge e_{i_l}) \bigoplus \bigoplus_{1 \leq i_1 < \ldots < i_{l-1} \leq n} S[\Theta; \varphi](e_{i_1} \wedge \ldots \wedge e_{i_{l-1}} \wedge u),$$

where e_1, \ldots, e_n correspond respectively to x_1, \ldots, x_n and u corresponds to $\Theta-1$. Here, we are adopting the convention that $FK_0 := S[\Theta; \varphi]$.

Moreover, one defines $FK_l \xrightarrow{d_l} FK_{l-1}$ as the unique homomorphism of left $S[\Theta; \varphi]$-modules which, on basic elements, acts in the following manner:

- Given $1 \leq i_1 < \ldots < i_l \leq n$, set
 $$\partial_l(e_{i_1} \wedge \ldots \wedge e_{i_l}) := \sum_{r=1}^l (-1)^{r-1} x_{i_r} (e_{i_1} \wedge \ldots \wedge e_{i_{r-1}} \wedge e_{i_{r+1}} \wedge \ldots \wedge e_{i_l}).$$

- Given $1 \leq j_1 < \ldots < j_{l-1} \leq n$, set
 $$\partial_l(e_{j_1} \wedge \ldots \wedge e_{j_{l-1}} \wedge u) := (-1)^{l-1}(\Theta - (s_{j_1} \cdot \ldots \cdot s_{j_{l-1}})) (e_{j_1} \wedge \ldots \wedge e_{j_{l-1}})$$
 $$+ \sum_{r=1}^{l-1} (-1)^{r-1} \varphi(x_{j_r}) (e_{j_1} \wedge \ldots \wedge e_{j_{r-1}} \wedge e_{j_{r+1}} \wedge \ldots \wedge e_{j_{l-1}} \wedge u).$$

Before going on, we make the following useful

Discussion 3.3. Given a free, finitely generated left S-module M (whence M is abstractly isomorphic to $S^{|r|}$ for some $r \in \mathbb{N}$), we denote by $S[\Theta; \varphi] \otimes_S S^{|r|} \xrightarrow{\lambda_M} S[\Theta; \varphi] \otimes_S S$ the natural isomorphism of left $S[\Theta; \varphi]$-modules given by the assignment $s \otimes m \mapsto sm$; the reader will easily note that, for each $0 \leq l \leq n$, we have the following commutative diagram:

$$\begin{array}{cccc}
S[\Theta; \varphi] \otimes_S K_l & \xrightarrow{1_S \otimes \varphi \otimes d_{l+1}} & S[\Theta; \varphi] \otimes_S K_{l+1} \\
\bigoplus_{1 \leq i_1 < \ldots < i_{l+1} \leq n} S[\Theta; \varphi](e_{i_1} \wedge \ldots \wedge e_{i_{l+1}}) & \xrightarrow{d_{l+1}'} & \bigoplus_{1 \leq i_1 < \ldots < i_n \leq n} S[\Theta; \varphi](e_{i_1} \wedge \ldots \wedge e_{i_n}).
\end{array}$$

Here, d_{l+1}' denotes the map ∂_{l+1} restricted to the direct summand

$$\bigoplus_{1 \leq i_1 < \ldots < i_{l+1} \leq n} S[\Theta; \varphi](e_{i_1} \wedge \ldots \wedge e_{i_{l+1}}).$$

As we shall see quickly, this fact turns out to be very useful in what follows.

The first thing we have to check out is that $FK_\ast(x_1, \ldots, x_n)$ defines a chain complex in the category of left $S[\Theta; \varphi]$-modules. This fact follows from the next:

Proposition 3.4. For any $0 \leq l \leq n$, one has that $\partial \partial l+1 = 0$.

Proof. Regarding the very definition of the ∂'s, we only have to distinguish two cases.
Given $1 \leq i_1 < \ldots < i_{t+1} \leq n$ one has, keeping in mind Discussion 3.3, that
\[
\partial_t(\partial_{t+1}(e_{i_1} \wedge \ldots \wedge e_{i_{t+1}})) = d_{t+1}(d_t(e_{i_1} \wedge \ldots \wedge e_{i_{t+1}}))
\]
\[
= \left(\lambda_{K_{t+1}} \circ (1S(e_{ij}) \otimes d_{t+1}) \circ \lambda_{K_t}^{-1} \right) \circ \left(\lambda_{K_{t+1}} \circ (1S(e_{ij}) \otimes d_t) \circ \lambda_{K_t}^{-1} \right) (e_{i_1} \wedge \ldots \wedge e_{i_{t+1}})
\]
\[
= \left(\lambda_{K_{t+1}} \circ (1S(e_{ij}) \otimes (d_t \circ d_{t+1})) \right) \circ \lambda_{K_t}^{-1} (e_{i_1} \wedge \ldots \wedge e_{i_{t+1}})
\]
\[
= \left(\lambda_{K_{t+1}} \circ (1S(e_{ij}) \otimes 0) \right) \circ \lambda_{K_t}^{-1} (e_{i_1} \wedge \ldots \wedge e_{i_{t+1}}) = 0;
\]
indeed, notice that $d_t d_{t+1} = 0$ because they are the usual chain differentials in the Koszul chain complex of S with respect to x_1, \ldots, x_n.

Given $1 \leq j_1 < \ldots < j_l \leq n$, and setting, for each $1 \leq t, s \leq l$,
\[
e_{j_t} := e_{j_1} \wedge \ldots \wedge e_{j_t} \wedge \ldots \wedge e_j,
\]
\[
e_{j_s} := e_{j_1} \wedge \ldots \wedge e_{j_s} \wedge \ldots \wedge e_{j_t} \wedge \ldots \wedge e_j,
\]
one has that
\[
\partial_t(\partial_{t+1}(e_{j_1} \wedge \ldots \wedge e_{j_t} \wedge u)) = \partial_t \left((-1)^l (\Theta - (s_{j_t} \cdots s_{j_1}) (e_{j_1} \wedge \ldots \wedge e_{j_t}) + \sum_{r=1}^l (-1)^{r-1} \varphi(x_{j_r})(e_{j_1} \wedge u) \right)
\]
\[
= \sum_{r=1}^l (-1)^{r+l-1} \left(\varphi(x_{j_r}) \Theta - (s_{j_t} \cdots s_{j_1}) x_{j_r} \right) e_{j_1} + \sum_{k=1}^{l-1} \sum_{r=1}^l (-1)^{r+k-2} \varphi(x_{j_k} x_{j_r})(e_{j_1} \wedge u) + \sum_{r=1}^l (-1)^{l+r-2} \left(\varphi(x_{j_r}) \Theta - (s_{j_t} \cdots s_{j_1}) s_{j_{k+1}} s_{j_{k+2}} \cdots s_{j_r} \varphi(x_{j_r}) \right) e_{j_k}
\]
Starting from the top, the first summand cancels out the fourth summand just because $\varphi(x_{j_r}) = s_{j_r} x_{j_r}$; on the other hand, the second summand cancels out the third summand because $e_{j_k} = -e_{j_k}$. Therefore, the whole expression vanishes, just what we finally wanted to check.

\[\square\]

Remark 3.5. The differentials of the φ-Koszul complex

\[\text{FK}_n(x_1, \ldots, x_n) := 0 \longrightarrow \text{FK}_{n+1} \xrightarrow{\partial_{n+1}} \text{FK}_n \xrightarrow{\partial_n} \cdots \xrightarrow{\partial_1} \text{FK}_0 \longrightarrow 0.\]

are described as follows:

i. ∂_{n+1} is represented by right multiplication by the matrix $\left((-1)^n (\Theta - (s_1 \cdots s_n)) M_n^{[n]} \right)$.

ii. For each $1 \leq l \leq n-1$, ∂_{l+1} is represented by right multiplication by the matrix

\[
\begin{pmatrix}
M_{l+1} & 0 \\
(-1)^l D_l & M_l^{[n]}
\end{pmatrix},
\]

where D_l is a diagonal matrix with non-zero entries $\Theta - (s_i \cdots s_n), 1 \leq i_1 < \ldots < i_l \leq n$.

iii. ∂_1 is represented by right multiplication by the matrix $\left(x_1 \ldots x_n \Theta^{-1} \right)^T$.

For example, when $n = 2$, $\text{FK}_n(x_1, x_2)$ boils down to the chain complex.
Proposition 3.6. \(S[\Theta; \varphi] \) is a flat right \(S \)-module.

Proof. By the very definition of left skew polynomial rings,

\[
S[\Theta; \varphi] = \bigoplus_{e \geq 0} S \Theta^e.
\]

Since a direct sum of right \(S \)-modules is flat if and only if so all its direct summands are [21, Proposition 3.46 (ii)], it is enough to check that, for any \(e \geq 0 \), \(S[\Theta; \varphi]^e \) is a flat right \(S \)-module.

Fix \(e \geq 0 \). Firstly, albeit the notation \(S[\Theta; \varphi]^e \) might suggest that it is just a left \(S \)-module, this is not the case because \(S[\Theta; \varphi]^e \) can be identified with \(\Theta^e \varphi^e S \); from this point of view, it is clear that \(S[\Theta; \varphi]^e \) may be also regarded as a right \(S \)-module. Therefore, keeping in mind the previous identification one has that the map \(\Theta^e \varphi^e S \to \varphi^e S \) given by the assignment \(\Theta^e \varphi^e s \to \varphi^e s \) defines an abstract isomorphism of right \(S \)-modules, whence \(S[\Theta; \varphi]^e \) is (abstractly) isomorphic to \(\varphi^e S \) in the category of right \(S \)-modules and then the result follows from the fact that \(\varphi^e S \) is a flat right \(S \)-module because of the flatness of \(\varphi \); the proof is therefore completed.

Remark 3.7. When \(S \) is a commutative Noetherian regular local ring of prime characteristic \(p \) and \(F \) is the Frobenius map on \(S \), the fact that \(S[\Theta; F] \) is a flat right \(S \)-module was already observed by Yoshino [26, Proof of Example 9.2].

Next result provides some useful properties of \(\text{FK}_n(x_1, \ldots, x_n) \).

Proposition 3.8. \(H_0(\text{FK}_n(x_1, \ldots, x_n)) \cong S/I_n \) as left \(S[\Theta; \varphi] \)-modules, where \(I_n = \langle x_1, \ldots, x_n \rangle \); moreover, \(H_{n+1}(\text{FK}_n(x_1, \ldots, x_n)) = 0 \).

Proof. First we notice that, as in the case of the Frobenius morphism studied by Yoshino (see Proposition 2.5), we have \(\frac{S[\Theta; \varphi]}{S[\Theta; \varphi][\Theta-1]} \cong S \). Then, using Remark 3.5, it follows that

\[
H_0(\text{FK}_n(x_1, \ldots, x_n)) = \frac{S[\Theta; \varphi]}{\text{Im}(\partial_1)} \cong \frac{S[\Theta; \varphi]}{S[\Theta; \varphi]I_n + S[\Theta; \varphi][\Theta-1]} \cong \frac{S}{I_n}.
\]

Now, consider the composition

\[
S[\Theta; \varphi] \xrightarrow{\partial_{n+1}} S[\Theta; \varphi] \oplus S[\Theta; \varphi]^{\otimes n} \xrightarrow{\pi} S[\Theta; \varphi]^{\otimes n},
\]

where \(\pi \) denotes the corresponding projection. In this way, we have that \(\pi \partial_{n+1} \) turns out to be, up to isomorphisms, \(1_{S[\Theta; \varphi]} \otimes d_n^{(0)} \) (indeed, this fact follows directly from the commutative square established in Discussion 3.3); regardless, since \(d_n^{(0)} \) is an injective homomorphism between free left \(S \)-modules, and \(S[\Theta; \varphi] \) is a flat right \(S \)-module (cf. Proposition 3.6), one has that \(1_{S[\Theta; \varphi]} \otimes d_n^{(0)} \) is an injective homomorphism between free left \(S[\Theta; \varphi] \)-modules. Therefore, \(\pi \partial_{n+1} \) is also an injective homomorphism, whence so \(\partial_{n+1} \) is. This fact concludes the proof. \(\square \)
Now, we state and prove the first main result of this paper, which is the following:

Theorem 3.9. The φ-Koszul complex $FK_\bullet(x_1, \ldots, x_n)$ provides a free resolution of S/I_n in the category of left $S[\Theta; \varphi]$-modules.

Proof. By Proposition 3.8, it is enough to check, for any $1 \leq l \leq n$, that $H_l(FK_\bullet(x_1, \ldots, x_n)) = 0$.

Hence, fix $1 \leq l \leq n$. Our goal is to show that $\ker(\partial_i) \subseteq \text{Im}(\partial_{i+1})$; in other words, we have to prove that the chain complex $FK_{l+1} \xrightarrow{\partial_{l+1}} FK_l \xrightarrow{\partial_l} FK_{l-1}$ is midterm exact. First of all, remember that

$$K'_l := \bigoplus_{1 \leq i < \ldots < i \leq n} S[\Theta; \varphi](e_i \wedge \ldots \wedge e_n), \text{ and}$$

$$K''_l := \bigoplus_{1 \leq i < \ldots < j \leq n} S[\Theta; \varphi](e_i \wedge \ldots \wedge e_{j-1} \wedge u).$$

Furthermore, Discussion 3.3 implies that the chain complexes

$$K'_*: \begin{array}{c} 0 \longrightarrow K'_n \xrightarrow{d'_n} K'_{n-1} \longrightarrow \cdots \longrightarrow K'_2 \xrightarrow{d'_2} K'_1 \xrightarrow{d'_1} K'_0 \longrightarrow 0 \end{array}$$

and

$$(K'_*)^{[v]} : \begin{array}{c} 0 \longrightarrow K'_n \xrightarrow{(d'_n)^{[v]}} K'_{n-1} \longrightarrow \cdots \longrightarrow K'_2 \xrightarrow{(d'_2)^{[v]}} K'_1 \xrightarrow{(d'_1)^{[v]}} K'_0 \longrightarrow 0 \end{array}$$

are respectively canonically isomorphic to $S[\Theta; \varphi] \otimes_S K_\bullet$ and $S[\Theta; \varphi] \otimes_S K'_\bullet$; in particular, since $S[\Theta; \varphi]$ is a flat right S-module (cf. **Proposition 3.6**), K'_* and $(K'_*)^{[v]}$ are both acyclic chain complexes in the category of left $S[\Theta; \varphi]$-modules. On the other hand, we also have to keep in mind that d'_l and $(d'_l)^{[v]}$ are respectively represented by right multiplication by matrix M_l and $M_l^{[v]}$ (cf. **Proposition 3.8** and its corresponding notation).

Now, let $P \in \ker(\partial_l) \subseteq FK_l$. Since $FK_l = K'_l \oplus K''_l$, we may write $P = (P' P'')$ for certain $P' \in K'_l$ and $P'' \in K''_l$; in this way, as $P \in \ker(\partial_l)$ it follows that

$$(0 \ 0) = (P' \ P'') \begin{bmatrix} M_l & 0 \\ (-1)^{l-1} D_{l-1} & M_l^{[v]} \end{bmatrix} = \begin{bmatrix} P'M_l + P''(-1)^{l-1} D_{l-1} & P'' M_l^{[v]} \end{bmatrix},$$

which leads to the following system of equations:

$$P'M_l + P''(-1)^{l-1} D_{l-1} = 0, \ P'' M_l^{[v]} = 0.$$

In particular, since $P'' M_l^{[v]} = 0$ one has that $P'' \in \ker((d'_l)^{[v]}) = \text{Im}((d'_l)^{[v]});$ therefore, there is $Q'' \in K''_l$ such that $Q'' M_l^{[v]} = P''$. Using this fact, it follows that

$$P'M_l + Q''(-1)^{l-1} M_l^{[v]} D_{l-1} = 0.$$
and therefore we can conclude that $P \in \text{Im}(\partial_{l+1})$, which is exactly what we wanted to show.

The only thing we need to justify is that $M_{l}D_{l} = D_{l}M_{l}$; indeed fix $0 \leq l \leq n$. Proposition 3.4 implies that $\partial_{l} \partial_{l+1} = 0$. Then, according to Remark 3.5, this equality corresponds to

$$
\left(\begin{array}{c|c} M_{l+1} & 0 \\ \hline \end{array} \right) \left(\begin{array}{c|c} M_{l} & 0 \\ \hline \end{array} \right) = 0.
$$

In particular, we must have $(-1)^{l}D_{l}M_{l} + (-1)^{l-1}M_{l}D_{l-1} = 0$, which is equivalent to say that $(-1)^{l}(D_{l}M_{l} - M_{l}D_{l-1}) = 0$.

Whence $M_{l}D_{l-1} = D_{l}M_{l}$, as claimed; the proof is therefore completed. \square

The reader will easily note that, during the proof, we have obtained the result below; we specially thank Rishi Vyas to single out this fact to us.

Proposition 3.10. There is a short exact sequence of chain complexes

$$0 \to S[\Theta; \varphi] \otimes_{S} K_{\bullet}(S; x_{1}, \ldots, x_{n}) \to FK_{\bullet}(x_{1}, \ldots, x_{n}) \to \left(S[\Theta; \varphi] \otimes_{S} K_{\bullet}(S; \varphi(x_{1}), \ldots, \varphi(x_{n}))\right)[1] \to 0$$

in the category of left $S[\Theta; \varphi]$-modules.

3.1. The φ-Koszul chain complex in full generality

Our next aim is to define the φ-Koszul chain complex over a more general setting, and explore some specific situations on which we can ensure that defines a finite free resolution. Let A be a commutative Noetherian ring containing a commutative subring K, and y_{1}, \ldots, y_{n} denote arbitrary elements of A; in addition, assume that we fix a flat endomorphism of K-algebras $S := K[x_{1}, \ldots, x_{n}] \xrightarrow{\varphi} S$ satisfying $\varphi(x_{i}) \in (x_{i})$ for any $1 \leq i \leq n$. In this section, we regard A as an S-algebra under the natural homomorphism $S \xrightarrow{\psi} A$ of K-algebras which sends each x_{i} to y_{i}. Finally, we suppose that there exists a K-algebra homomorphism $A \xrightarrow{\Phi} A$ making the square

$$
\begin{array}{ccc}
S & \xrightarrow{\psi} & A \\
\downarrow{\varphi} & & \downarrow{\Phi} \\
S & \xrightarrow{\psi} & A
\end{array}
$$

commutative.

Definition 3.11. We define the φ-Koszul chain complex of A with respect to y_{1}, \ldots, y_{n} as the chain complex $FK_{\bullet}(y_{1}, \ldots, y_{n}; A) := A \otimes_{S} FK_{\bullet}(x_{1}, \ldots, x_{n})$.

Under slightly different assumptions, we want to show that $FK_{\bullet}(y_{1}, \ldots, y_{n}; A)$ still defines a finite free resolution; with this purpose in mind, first of all we review the following notion, which was introduced independently in [6, Definition 2 of page 157] (using a different terminology) and by Kabele [16, Definition 1].

Definition 3.12. Let R be a commutative ring, let $n \in \mathbb{N}$, and let f_{1}, \ldots, f_{n} be a sequence of elements in R. It is said that f_{1}, \ldots, f_{n} is a Koszul regular sequence provided the Koszul chain complex $K_{\bullet}(f_{1}, \ldots, f_{n}; R)$ provides a free resolution of R/I_{n}, where $I_{n} = (f_{1}, \ldots, f_{n})$.
Next statement may be regarded as a generalization of Theorem 3.9; this is the main result of this section.

Theorem 3.13. Preserving the assumptions and notations established at the beginning of Section 3.1, we further suppose that \(\Phi \) is flat and \(y_1,...,y_n \) is an A-Koszul regular sequence. Then, \(\text{FK}_\bullet(y_1,...,y_n;A) \) defines a finite free resolution of \(A/I_n \) in the category of left \(A[\Theta; \Phi] \)-modules, where \(I_n = \langle y_1,...,y_n \rangle \).

Proof. The proof of this result is, mutatis mutandis, the same as the one of Theorem 3.9 replacing \(\delta \) by \(A \) and \(x_1,...,x_n \) by \(y_1,...,y_n \). Indeed, a simple inspection of the proof of Theorem 3.9 reveals that we only used there the flatness of \(\Phi \) and the fact that the Koszul chain complex \(K_\bullet(x_1,...,x_n) \) defines a finite free resolution of \(\mathbb{K} \); the proof is therefore completed. \(\square \)

Remark 3.14. The global homological dimension of right skew polynomial rings was studied by Fields [12,13]. An upper bound for this global dimension is exactly \(n+1 \) in the case that \(\varphi \) is an automorphism. Passing to the opposite ring (see Remark 2.2) we would get analogous results for left skew polynomial rings. Notice that the length of the \(\varphi \)-Koszul complex \(\text{FK}_\bullet(y_1,...,y_n;A) \) is \(n+1 \).

3.2. The case of the Frobenius homomorphism

For the convenience of the reader, we will specialize the construction of the \(\varphi \)-Koszul complex to the case where \(A \) is a commutative Noetherian regular ring of positive characteristic \(p > 0 \), and \(\varphi = F^r \) is an \(r \)th iteration of the Frobenius morphism. In this case, we will denote this complex simply as Frobenius–Koszul complex. Namely we have:

\[
\text{FK}_\bullet(x_1,...,x_n) := 0 \rightarrow \text{FK}_{n+1} \xrightarrow{\partial_{n+1}} \text{FK}_n \xrightarrow{\partial_n} \ldots \xrightarrow{\partial_1} \text{FK}_0 \rightarrow 0.
\]

where, for each \(0 \leq l \leq n+1 \),

\[
\text{FK}_l := \bigoplus_{1 \leq i_1 < \ldots < i_l \leq n} A[\Theta; F^r](e_{i_1} \wedge \ldots \wedge e_{i_l}) \bigoplus_{1 \leq j_1 < \ldots < j_{l-1} \leq n} A[\Theta; F^r](e_{j_1} \wedge \ldots \wedge e_{j_{l-1}} \wedge u),
\]

and the differentials are given by:

- For \(1 \leq i_1 < \ldots < i_l \leq n \), set

\[
\partial_i(e_{i_1} \wedge \ldots \wedge e_{i_l}) := \sum_{r=1}^l (-1)^{r-1} x_r (e_{i_1} \wedge \ldots \wedge e_{i_{r-1}} \wedge e_{i_{r+1}} \wedge \ldots \wedge e_{i_l}).
\]

- For \(1 \leq j_1 < \ldots < j_{l-1} \leq n \), set

\[
\partial_i(e_{j_1} \wedge \ldots \wedge e_{j_{l-1}} \wedge u) := (-1)^{l-1} \left(\Theta - \left(x_{j_l}^{r-1} \cdots x_{j_1}^{r-1} \right) \right)(e_{j_1} \wedge \ldots \wedge e_{j_{l-1}}) + \sum_{r=1}^{l-1} (-1)^{r-1} x_r (e_{j_1} \wedge \ldots \wedge e_{j_{r-1}} \wedge e_{j_{r+1}} \wedge \ldots \wedge e_{j_{l-1}} \wedge u).
\]

As a direct consequence of Theorem 3.13 we obtain the below:

Corollary 3.15. Let \(A \) be a commutative Noetherian regular ring of prime characteristic \(p \), and let \(y_1,...,y_n \) be an A-Koszul regular sequence. Then, \(\text{FK}_\bullet(y_1,...,y_n;A) \) defines a finite free resolution of \(A/I_n \) in the category of left \(A[\Theta; F^r] \)-modules, where \(I_n = \langle y_1,...,y_n \rangle \).
Acknowledgments

The authors thank Rishi Vyas for fruitful discussions about the material presented here, and the referee for his/her very useful remarks.

Funding

The first author is partially supported by Generalitat de Catalunya 2017SGR-932 project and Spanish Ministerio de Economía y Competitividad MTM2015-69135-P. The second and third authors are supported by Spanish Ministerio de Economía y Competitividad MTM2016-7881-P. The second author is partially supported by the Israel Science Foundation (Grant No. 844/14).

References

[1] Álvarez Montaner, J., Boix, A. F., Zarzuela, S. (2012). Frobenius and cartier algebras of Stanley–Reisner rings. J. Algebra 358:162–177.
[2] Anderson, G. W. (2000). An elementary approach to L-functions mod p. J. Num. Theory. 80(2):291–303.
[3] Blickle, M. (2013). Test ideals via algebras of p−1-linear maps. J. Algebra. Geom. 22(1):49–83.
[4] Blickle, M., Böckle, G. (2011). Cartier modules: Finiteness results. J. Reine Angew. Math. 661:85–123.
[5] Blickle, M., Schwede, K. (2013). p−1-linear maps in algebra and geometry. In: Commutative Algebra. New York: Springer, pp. 123–205.
[6] Bourbaki, N. (2007). Éléments de Mathématique. Algèbre. Chapitre 10. Algèbre Homologique. Berlin: Springer, Reprint of the 1980 original.
[7] Brodmann, M. P., Sharp, R. Y. (2013). Local Cohomology: An Algebraic Introduction with Geometric Applications, Volume 136 of Cambridge Studies in Advanced Mathematics, 2nd ed. Cambridge: Cambridge University Press.
[8] Enescu, F. (2012). Finite-dimensional vector spaces with Frobenius action. In: Progress in Commutative Algebra, Vol. 2. Berlin: Walter de Gruyter, pp. 101–128.
[9] Enescu, F., Hochster, M. (2008). The Frobenius structure of local cohomology. Ant. Theory 2(7):721–754.
[10] Enescu, F., Yao, Y. (2016). The Frobenius complexity of a local ring of prime characteristic. J. Algebra 459: 133–156.
[11] Fedder, R. (1983). F-purity and rational singularity. Trans. Am. Math. Soc. 278(2):461–480.
[12] Fields, K. L. (1969). On the global dimension of skew polynomial rings. J. Algebra 13:1–4.
[13] Fields, K. L. (1970). On the global dimension of skew polynomial rings: An addendum. J. Algebra 14: 528–530.
[14] Goodearl, K. R., Warfield, R. B. Jr. (2004). An Introduction to Noncommutative Noetherian Rings, Volume 61 of London Mathematical Society Student Texts, 2nd ed. Cambridge: Cambridge University Press.
[15] Hochster, M., Huneke, C. (1990). Tight closure, invariant theory, and the Briançon–Skoda theorem. J. Am. Math. Soc. 3(1):31–116.
[16] Kabele, T. (1971). Regularity conditions in nonnoetherian rings. Trans. Am. Math. Soc. 155:363–374.
[17] Katzman, M., Schwede, K., Singh, A. K., Zhang, W. (2014). Rings of Frobenius operators. Math. Proc. Camb. Philos. Soc. 157(1):151–167.
[18] Lyubetskii, G. (1997). F-modules: Applications to local cohomology and D-modules in characteristic p > 0. J. Reine Angew. Math. 491:65–130.
[19] Lyubetskii, G., Smith, K. E. (2001). On the commutation of the test ideal with localization and completion. Trans. Am. Math. Soc. 353(8):3149–3180 (electronic).
[20] McConnell, J. C., Robson, J. C. (2001). Noncommutative Noetherian Rings, Volume 30 of Graduate Studies in Mathematics, revised ed with the cooperation of L. W. Small. Providence, RI: American Mathematical Society.
[21] Rotman, J. J. (2009). An Introduction to Homological Algebra. Universitext, 2nd ed. New York: Springer.
[22] Schwede, K. (2011). Test ideals in non-Q-Gorenstein rings. Trans. Am. Math. Soc. 363(11):5925–5941.
[23] Sharp, R. Y. (2009). Graded annihilators and tight closure test ideals. J. Algebra 322(9):3410–3426.
[24] Sharp, R. Y., Yoshino, Y. (2011). Right and left modules over the Frobenius skew polynomial ring in the F-finite case. Math. Proc. Camb. Philos. Soc. 150(3):419–438.
[25] Singh, A. K., Walther, U. (2007). Local cohomology and pure morphisms. Illinois J. Math. 51(1):287–298.
[26] Yoshino, Y. (1994). Skew–polynomial rings of Frobenius type and the theory of tight closure. Commun. Algebra 22(7):2473–2502.