Research on Risk Assessment of Coalbed Methane Development Project Based on SEWM-GCA

Wanqing Wang 1, Shuran Lyu 1*, Yudong Zhang 2, Shuqi Ma 1

1 School of Management Engineering, Capital University of Economics and Business, Beijing, 100070, China
2 Institute for Public Safety Research, Tsinghua University, Beijing, 100084, China
*Corresponding author’s e-mail: lsr22088@163.com

Abstract. Coalbed Methane development is a complex system project with complex technology, many links and long cycle. It is highly susceptible to risks such as legal, technical and management during the development process. In order to scientifically measure the overall risk of CBM development projects, reduce resource waste and property losses caused by risk management failure. This paper constructs a risk assessment index system for CBM development projects consisting of six first-level indicators and 28 second-level indicators. The weight of each indicator is calculated by the structural entropy weight method. Secondly, based on the grey clustering analysis method, the theoretical model of risk assessment for coalbed methane development projects is established. Finally, an empirical study on a coalbed methane development project in Qinshui County, Shanxi Province was carried out using the evaluation system. After calculation, the overall risk level of the project is Grade II. The evaluation results are consistent with the actual situation of the enterprise, indicating that the established evaluation system has certain effectiveness and feasibility.

1. Introduction
Coalbed methane (CBM) is a companion mineral resource of coal and a clean energy with high calorific value, commonly known as “gas” [1]. China is a big coal producer, but it is also a country with high gas explosion accidents. According to incomplete statistics, there were 45 gas explosion accidents in China from 2014 to 2017, resulting in 365 deaths [2]. Such accidents are not only easy to cause death and mass injury, but also lead to a series of secondary disasters, which seriously affect the harmonious and stable development of society. The development of coalbed methane can not only mitigate environmental pollution, but also effectively prevent gas explosion accidents [3]. Under this background, China's coalbed methane industry has shown a trend of rapid development. However, CBM development is a complex system project with complex technology, many links and long cycle. It is highly susceptible to risks such as legal, technical and management during the development process [4]. In order to scientifically measure the risk of CBM development, it is necessary to construct a complete CBM development risk assessment system. Researchers at home and abroad have also achieved some success in the risk of coalbed methane development. For example, Roadifer [5] evaluated the future trends and development risks of coalbed methane development, and combined the experimental and mathematical statistics methods to identify the key factors affecting CBM reserves and production capacity. Senthi et al. [6] used Monte Carlo simulation and hypercube model to evaluate the economic risks faced by the CBM industry. Zhang et al [7] determined the optimal index weights by using the optimized combination...
entropy method and the triangular fuzzy number method, and established a coalbed methane development potential evaluation model.

Although there have been some achievements in the field of coalbed methane risk at home and abroad, there are still some shortcomings. Firstly, most of research were qualitative analysis and lacks a quantitative measure of the overall risk of the CBM project. Secondly, the establishment of the indicator system was incomplete and does not include the entire life cycle of the CBM project. Finally, the research dimension of most studies were limited to the national macro level and cannot meet the actual needs of investors, insurance companies and CBM development companies. Based on the above deficiencies, this paper intends to construct a complete theoretical model of risk assessment for coalbed methane development projects based on structural entropy weighting (SEWM) and grey clustering analysis (GCA), and scientifically measure the overall risk level of the project for investors.

2. Construction of Risk Assessment Index System

2.1. Construction of Index System

Based on the results of life cycle risk identification of exploration, exploitation and operation of CBM project development, the key risk factors of CBM development are obtained as risk evaluation indexes. These indexes fully draw on the research results of domestic and foreign literature [8-10], the characteristics of CBM risk and the results of expert interviews. A risk evaluation index system for CBM development projects with six first-level indicators and 28 second-level indexes, including laws and policies, resource characteristics, engineering technology, economic operation, organization and management, and safety assurance, has been formed, as shown in Table 1.

Primary index	Secondary index	Weight	Primary index	Weight
Law and policy B_1 0.2022	Mineral rights and air rights conflict B_{11}	0.3661	Coal seam thickness B_{35}	0.0635
	Major licenses and approvals B_{12}	0.3665	Buried depth B_{46}	0.0908
	National policy B_{13}	0.2674	Hydrogeological conditions B_{47}	0.1164
Engineering technology B_2 0.2019	Drilling technology B_{21}	0.1856	Engineering Geology B_{48}	0.1050
	Mining technology B_{22}	0.2137	Gas content B_{49}	0.1428
	Resource exploration technology B_{23}	0.2958	Organization structure B_{51}	0.247
	Drainage system B_{24}	0.3049	Coordination and communication B_{52}	0.183
Economic operation B_3 0.1355	Project cost B_{31}	0.3661	Process management B_{53}	0.155
	Market demand B_{32}	0.3665	Fineness of Management B_{54}	0.168
	Coal bed gas price fluctuation B_{33}	0.2674	Resource allocation B_{55}	0.247
Resource characteristics B_4 0.1956	Coal seam area B_{41}	0.0708	Safety management system B_{61}	0.2297
	Porosity B_{42}	0.135	Safety culture B_{62}	0.1503
	Reservoir pressure B_{43}	0.137	Safety input B_{63}	0.3053
	Permeability B_{44}	0.139	Emergency rescue capability B_{64}	0.3148

2.2. Weight Determination Based on Structural Entropy Weight Method

2.2.1. Basic Principles of Structural Entropy Weight Method

Under the premise of definite index hierarchy, the first and second indexes of this evaluation index system have been listed in Section 2.1. Then, the expert scoring method is used to get the "structural ranking", and the corresponding entropy value is obtained by substituting it into the formula of the
entropy weight method. Finally, the average of the entropy value is calculated to "cognitive exclusion blind", so as to reduce the influence of abnormal data on the calculation of the index weight. The specific steps are as follows [11-12]:

1) Collection of expert opinions

Several experts who are representative, authoritative and fair in the industry are invited to fill in the questionnaire (Table 2). Experts need to fill in forms according to the importance of indexes, and rank indexes according to their importance, such as "1" for "the most important", "2" for "the most important", "3" for "the important". Some indexes can be considered equally important, and experts can discuss the final ranking of these indexes.

2) Computation of membership function and analysis of “eliminating blindness”

The corresponding index set of each questionnaire is $V=\{v_1,v_2,v_3,\ldots,v_n\}$, the "structure sort" is $d=\{d_1,d_2,d_3,\ldots,d_m\}$, then the structural ranking matrix $D=(d_i)_{m \times n}$ formed by k-sheets of questionnaires.

Quantitative transformation of "structural ranking" is carried out, and expert ranking is transformed into quantitative membership function. The transformation formula is as follows:

$$X(I) = -\lambda P(I) \ln P(I)$$ \hspace{1cm} (1)

Let $P_n(I) = \frac{m-I}{m-1}$ take $\lambda = \frac{1}{\ln(m-1)}$, bring in:

$$X(I) = -\frac{1}{\ln(m-1)} \left(\frac{m-I}{m-1} \right) \ln \left(\frac{m-I}{m-1} \right)$$ \hspace{1cm} (2)

Among them, $\ln \left(\frac{m-I}{m-1} \right) = \ln(m-I) - \ln(m-1)$, brought into simplification to get:

$$X(I) = -\frac{(m-I)\ln(m-I)}{m-1} + \frac{m-I}{m-1}$$ \hspace{1cm} (3)

At this time, both sides of the formula are divided by $\frac{m-I}{m-1}$, then $X(I) = -\frac{\ln(m-I)}{\ln(m-1)} + 1$;

$$\frac{X(I)}{m-I} = \frac{1}{\mu(I)} \mu(I) = \frac{\ln(m-I)}{\ln(m-1)}$$ \hspace{1cm} (4)

In formula (4), I is a "structural ordering" given qualitative ranking according to the questionnaires filled out by experts. $\mu(I)$ is a membership function of "Structure Sorting" I, and its value interval is [0,1]. I=1, 2, 3, j, j+1, where j is the maximum ordinal order of the expert, as shown in Table 2 at j=5. m is the conversion parameter, m=j+2, and j=7 when m=5.

When I=1, $P_n(I)$=1, when I=j+1 (where j+1 is the maximum ordinal number), then $P_n(j+1)=1/(j+1)>0, I= d_i$ is brought into formula (4), $\mu(d_i)=b_{ij}$, and b_{ij} is the membership degree of I. It is assumed that each expert has the same "speaking power" for the weight of the evaluation index, $b_{ij} = b_{ij} + b_{2j} + b_{3j} + \ldots + b_{kj}$, is the average sorting intention of k experts for an indicator V_i.

At this time, H_j is "cognitive literacy", that is, $H_j = [\max(b_{ij}, b_{2j}, b_{3j}, \ldots, b_{kj}) - b_{ij}] + [\min(b_{ij}, b_{2j}, b_{3j}, \ldots, b_{kj}) - b_{ij}]$]. At this point $H_j=0$. Define that all experts who fill in questionnaires have always ranked an index V_i with the intention of X_j, $X_j = b_{ij}(1-H_j)$, $X_j > 0$. X_j is the evaluation vector of index V_j after expert investigation and membership calculation, $X=(x_1,x_2,\ldots,x_6)$.

3) Calculating Index Weight

$$\eta_j = X_j / \sum_{i=1}^{m} X_j, \text{among} \eta_j > 0, \text{and} \sum_{i=1}^{m} \eta_j = 1 \cdot (\eta_1, \eta_2, \ldots, \eta_n).$$ is a set of K experts on indicators $V=\{v_1,v_2,v_3,\ldots,v_n\}$. The unified ranking judgment of the importance degree of represents the judgment policy of experts. $W=(\eta_1, \eta_2, \ldots, \eta_n)$ is the weight vector of $V=\{v_1,v_2,v_3,\ldots,v_n\}$.
2.2.2. Determination of weights

This evaluation invited five experts from the field of coalbed methane development to score the indicator system. Taking the first-level index as an example, this paper uses the structural entropy weight method to calculate the weight. The detailed calculation process is shown in Table 3. Due to space limitations, the calculation process of the weights of the secondary indicators will not be repeated here. The weights of the indicators are shown in Table 1.

Table 3: Weight calculation process of first-level indicators

Expert	B1	B2	B3	B4	B5	B6
A	2	1	4	3	6	5
B	3	2	5	1	6	4
C	1	3	5	2	4	6
D	1	1	4	2	3	4
E	1	2	5	3	4	3

bj	0.950	0.934	0.624	0.899	0.593	0.635
hj max	1.000	1.000	0.712	1.000	0.827	0.827
hj min-bj	-0.122	-0.107	-0.059	-0.072	-0.237	-0.278
Hj	0.036	0.020	0.015	0.014	0.001	0.0429
Xj	0.964	0.980	0.985	0.986	0.999	0.957
ηj	0.2022	0.2019	0.1355	0.1956	0.1307	0.1339

3. Assessment Model Construction

3.1. Division of Risk Levels

Based on the relevant literature review, the risk characteristics of coalbed methane and the actual situation of production and operation enterprises, this paper divides the risk of coalbed methane industry into five grades as shown in Table 4.

Table 4: Risk level interval table

Risk level	Scoring range	Basic features
I	(8,10]	Risk is very low
II	(6,8]	Lower risk
III	(4,6]	Moderate risk
IV	(2,4]	High risk
V	[0,2]	Extremely high risk

3.2. Construction of Grey Clustering Evaluation Model

3.2.1. Determination of Gray Class and Gray Whitening Weight Function

The rationality of the determination of the gray center point will affect the accuracy of the evaluation results. With reference to past experience, the point with the highest degree of gray is selected as the central point. Combined with the range of risk factors for CBM development, the center point vector U=(9,7,5,3,1) is selected as the gray center point. This paper draws on the central point triangle whitening weight function proposed in the literature [13-14], and combines the characteristics of coalbed methane industry risk to construct the gray matter and gray whitening weight function of coalbed methane industry risk assessment (Table 5).

Table 5: Grey whitening weight function

Gray (e)	Grey number (⊗e)	Whitening weight function f[e[dijk]]
e=1	⊗e ∈ [0,9,∞]	f[e[dijk]] = \begin{cases} \frac{d_{ijk}}{9}, & d_{ijk} \in [0,9] \\ 0, & d_{ijk} \in [9,∞] \end{cases}

4
3.2.2. Construction of Grey Cluster Evaluation Model

1) Establishment of evaluation matrix: According to the scope of risk grade of CBM industry, the evaluation matrix $D_i = [d_{ijk}]_{s \times p}$ is established by subjective rating of index A_j by p experts, in which d_{ijk} refers to the subjective rating of index j under index i by experts $(k = 1, 2, ..., p)$, s are the number of factors to be evaluated.

2) Constructing grey clustering weight matrix: $X_{i je} = \sum_{n=1}^{p} f_e [d_{ijk}]$ denotes the clustering coefficient of secondary index A_j in grey class $e; X_{ij} = \sum_{e=1}^{E} X_{ije}$ denotes the clustering coefficient of primary index A_i. Continue to calculate the grey clustering weight vector $r_{ije} = x_{ije}/x_{ij}$, and finally construct the grey clustering weight matrix [15]:

$$R_i = \begin{bmatrix} r_{i11} & r_{i12} & r_{i13} & r_{i14} & r_{i15} \\ r_{i21} & r_{i22} & r_{i23} & r_{i24} & r_{i25} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ r_{ij1} & r_{ij2} & r_{ij3} & r_{ij4} & r_{ij5} \end{bmatrix} \quad (5)$$

3) Composite clustering evaluation matrix: With the help of formula (6), the primary index clustering evaluation matrix is obtained.

$$Z_i = \eta_i \cdot R_i \quad (6)$$

Suppose that the first-order index evaluation matrix $Z_0 = [Z_1, Z_2, ... Z_n]$. The final grey clustering evaluation matrix is obtained by formula (7):

$$M = \eta_0 \cdot Z_0 = [M_1, M_2, ..., M_n] \quad (7)$$

4) Synthesizing the final evaluation value Q: Using the traditional maximum weight to determine the result of grey evaluation may result in loss of index information. To avoid this situation, vector M and threshold U are synthesized by formula (8) to get the risk level of CBM industry.

$$Q = M^T \cdot U \quad (8)$$

4. Case Study

In order to verify the effectiveness and feasibility of the evaluation system, this paper will take a coalbed methane development project in Qinshui County, Shanxi Province as an example to describe how to use the weight value and gray cluster analysis method to measure the specific risk value of coalbed methane development projects.

4.1. Establish Initial Evaluation Matrixes

According to the risk level of coalbed methane development and the corresponding gray whitening weight function in Table 5, refer to the scores of the five indicators of the coalbed methane development project by five experts in the industry, and establish a matrix of i rows and 5 columns $D_i = [d_{ijk}]_{s \times p}$, where d_{ijk} refers to the subjective scoring $(k = 1, 2, ..., p)$ of the secondary indicator a_j under the first-level indicator A_i, and s is the number of factors to be evaluated.
In order to scientifically measure the overall risk value of coalbed methane development projects, this paper constructs six primary indicators and 28 secondary indicators based on a combination of on-site investigation, literature research, legal and legal inquiry. Risk assessment index system for coalbed methane development projects. The weights of each index are calculated based on the structural entropy weight method.

4.2. Constructing Gray Clustering Weight Matrix
According to formula (5), the grey clustering weight matrix R_i is finally constructed:

$$R_i = \begin{bmatrix}
0.252 & 0.324 & 0.356 & 0.068 & 0 \\
0.429 & 0.320 & 0.352 & 0.080 & 0 \\
0.263 & 0.339 & 0.343 & 0.055 & 0
\end{bmatrix}$$

4.3. Synthetic Cluster Evaluation Matrix and Final Evaluation Value
According to formula (6), the primary index clustering evaluation matrix Z_0 is obtained:

$$Z_0 = \eta_i \cdot R_i = \begin{bmatrix}
0.2537 & 0.3264 & 0.3509 & 0.0689 & 0.00 \\
0.2540 & 0.3267 & 0.3539 & 0.0653 & 0.00 \\
0.2097 & 0.2697 & 0.3502 & 0.1691 & 0.00 \\
0.2552 & 0.3281 & 0.3546 & 0.0620 & 0.00 \\
0.2045 & 0.2631 & 0.3571 & 0.1750 & 0.00 \\
0.2021 & 0.2598 & 0.3504 & 0.1877 & 0.00
\end{bmatrix}$$

Assuming the obtained first-level index evaluation matrix $Z_0 = [Z_1, Z_2, ...Z_6]$, the final gray clustering evaluation matrix is obtained by using equation (7): $M = \eta_0 \cdot Z_0 = [0.2320 \ 0.2983 \ 0.3525 \ 0.1166 \ 0.0000]$. The vector M is combined with the threshold U by the formula (8) to obtain the risk level of the coalbed methane industry: $Q = M \cdot U^T = 7.2878$. According to the classification of risk level interval in Table 4, the risk level of the CBM development project is Grade II. The evaluation results are consistent with the actual situation of the enterprise, indicating that the established model has certain validity and feasibility.

5. Conclusion
1) In order to scientifically measure the overall risk value of coalbed methane development projects, this paper constructs six primary indicators and 28 secondary indicators based on a combination of on-site investigation, literature research, legal and legal inquiry. Risk assessment index system for coalbed methane development projects. The weights of each index are calculated based on the structural entropy weight method.
2) According to the actual situation of coalbed methane development, the rules for determining the risk level are determined, and the theoretical model of risk assessment for coalbed methane development projects is established based on the grey cluster analysis method.

3) Using the evaluation system constructed, an empirical study was carried out on a coalbed methane development project in Qinshui County, Shanxi Province. After calculation, the overall risk level of the project is Grade II, indicating that the overall risk is small and only partial improvement is needed. The evaluation results are consistent with the actual situation of the enterprise, indicating that the established model has certain validity and feasibility.

Acknowledgment
This study was supported by The People's Insurance Company (Group) of China Limited (PICC), 2018 Disaster Research Fund Project, Coalbed Methane Industry Risk Study (D14-01).

References
[1] Knez, D., Wiśniowski, R., Owusu, W.A. (2019) Turning Filling Material into Proppant for Coalbed Methane in Poland—Crush Test Results. Energies, 12:1820
[2] Zhang, J., Xu, K., You, G., et al. (2019) Causation Analysis of Risk Coupling of Gas Explosion Accident in Chinese Underground Coal Mines. Risk Analysis, 4:1-13.
[3] Cheng, L., Ge, Z., Chen, J., Ding, H., Zou, L., Li, K. (2018) A Sequential Approach for Integrated Coal and Gas Mining of Closely-Spaced Outburst Coal Seams: Results from a Case Study Including Mine Safety Improvements and Greenhouse Gas Reductions. Energies, 11:3023.
[4] Zhou, C., Huang, G., Chen, J. (2018) A Multi-Objective Energy and Environmental Systems Planning Model: Management of Uncertainties and Risks for Shanxi Province, China. Energies, 11:2723.
[5] Roadifer, R.D. (2003) Coalbed methane parametric study: What's really important to production and when?. MS SPE Conference Paper, 43:78-92.
[6] Senthil, B. (1994) Economic feasibility of coalbed methane projects using monte-carlo and hypercube simulation. Mississippi State: Mississippi State University.
[7] Zhang, Y.C., Yang, Y.G., Luo J.H. (2017) Evaluation on coalbed methane development potential based on optimized combined weighting. Coal Science and Technology, 45(02):102-108.
[8] Xia, L.Y., Luo, D.K., Dai Y.J. (2012) Risk evaluation methods of CBM development projects. Natural Gas Industry, 32(3): 117-120.
[9] Zhang, Y.C., Yang Y.G., Luo, J.H. (2016) Study on risk assessment of CBM development based on optimized combination weighting. Journal of Safety Science and Technology, 12(05):91-97.
[10] Ge, X., Liu, D., Cai, Y., Wang, Y. (2018) Gas Content Evaluation of Coalbed Methane Reservoir in the Fukang Area of Southern Junggar Basin, Northwest China by Multiple Geophysical Logging Methods. Energies, 11:1867.
[11] Liu, F., Zhao, S., Weng, M., et al. (2017) Fire risk assessment for large-scale commercial buildings based on structure entropy weight method. Safety Science, 94:26-40.
[12] Cheng, Q.Y. (2010) Structure entropy weight method to confirm the weight of evaluating index. Systems Engineering-Theory & Practice, 30(07):1225-1228.
[13] Ren, X.L., Chen, L., Li, D.S., Pang, Z.Z. (2019) Fault decision of computer numerical control machine system using grey clustering analysis and rough set theory. Advances in Mechanical Engineering, 11(5):1-11.
[14] Lin, C.H., Wu, C.H., Huang, P.Z. (2009) Grey clustering analysis for incipient fault diagnosis in oil-immersed transformers. Expert Systems with Applications, 36(2):1371-1379.
[15] Liu, K., Shen, X.L., Tan, Z.F., et al. (2012) Grey Clustering Analysis Method for Overseas Energy Project Investment Risk Decision. Systems Engineering Procedia, 3:55-62.