ON THE CHARACTERIZATION PROBLEM OF ALEXANDER POLYNOMIALS OF CLOSED 3-MANIFOLDS

K. ALCARAZ

Abstract. We give a characterization for the Alexander polynomials \(\Delta_M \) of closed orientable 3-manifolds \(M \) with first Betti number \(b_1 M = 1 \) and some partial results for the characterization problem in the cases of \(b_1 M > 1 \).

We first prove an analogue of a theorem of Levine: that the product of an Alexander polynomial \(\Delta_M \) with a non-zero trace symmetric polynomial in \(b_1 M \) variables is again an Alexander polynomial of a closed orientable 3-manifold. Using the fact that there exist \(M \) with \(\Delta_M = 1 \) for \(b_1 M = 1, 2, 3 \), we conclude that the symmetric polynomials of non-zero trace in 1, 2 or 3 variables are Alexander polynomials of closed orientable 3-manifolds. When \(b_1 M = 1 \) we prove that non-zero trace symmetric polynomials are the only ones that can arise. Finally, for \(b_1 M \geq 4 \), we prove that \(\Delta_M \neq 1 \) implying that for such manifolds not all non-zero trace symmetric polynomials occur.

Contents

1. Introduction \hspace{1in} 1
2. Alexander Polynomial \hspace{1in} 2
3. An Analog of a Theorem of Levine for Closed 3-manifolds \hspace{1in} 4
4. Characterization for \(b_1 M = 1 \) \hspace{1in} 10
4.1. Blanchfield’s Mod Unit Symmetry Theorem \hspace{1in} 11
4.2. An Analogue of the Seifert Surface Construction \hspace{1in} 11
4.3. An Analogue of the Seifert Matrix \hspace{1in} 14
4.4. Characterization \hspace{1in} 16
5. Manifolds with \(b_1 > 1 \) \hspace{1in} 17
5.1. Manifolds with \(b_1 = 2, 3 \) \hspace{1in} 17
5.2. Manifolds with \(b_1 \geq 4 \) \hspace{1in} 18
5.3. \(\mathbb{F}_p \)-Homology and Finite Cyclic Covers \hspace{1in} 18
5.4. Closed 3-manifolds with \(\Delta = 1 \) \hspace{1in} 20
References \hspace{1in} 21

1. Introduction

Let \(M \) be a manifold, \(b_1 M \) its first Betti number. For \(b_1 M \geq 1 \), the Alexander polynomial of \(M \), \(\Delta_M \), is a polynomial invariant in \(b_1 M \) variables first defined by Alexander [2] for \(M = S^3 - K \) a knot complement and more generally for \(M \) having finitely presented \(\pi_1 \) by Fox [3].
In the case of knot complements, a characterization of Alexander polynomials was given by Seifert [14], and later, in the case of link complements, necessary conditions on Alexander polynomials were described by Torres [18] (when $b_1 = 2$, these conditions are insufficient [7], [13]).

In this paper, we consider the characterization problem for Alexander polynomials of closed orientable 3-manifolds, giving a characterization in the case $b_1 M = 1$ and some partial results concerning characterization in the cases of $b_1 M > 1$.

Our first result is the following analog for closed orientable 3-manifolds of a Theorem of Levine (see §3 or [10]), which allows us to produce by multiplication new Alexander polynomials from a given one. By the trace of a polynomial we mean the sum of its coefficients.

Theorem. Let M be a closed orientable 3-manifold with $b_1 M = n$ and let λ be a symmetric Laurent polynomial in n variables with non-zero trace. Then there exists a 3-manifold M' with $b_1 M' = n$ for which

$$\Delta_{M'} = \lambda \cdot \Delta_M.$$

This Theorem is proved in §3.

For low Betti numbers $b_1 = 1, 2$ or 3, the following closed orientable manifolds have $\Delta_M = 1$:

- $S^1 \times S^2$, $b_1 = 1$.
- $H_3(\mathbb{R})/H_3(\mathbb{Z})$ = Heisenberg manifold [12], $b_1 = 2$.
- T^3 = the 3-torus, $b_1 = 3$.

Combining these examples with the above analog of Levine’s Theorem we have

Corollary. Every symmetric Laurent polynomial in 1, 2 or 3 variables having non-zero trace is the Alexander polynomial of a 3-manifold with first Betti number 1, 2 or 3.

It is natural to ask if the statement in the Corollary gives necessary conditions for a characterization for Betti numbers $b_1 = 1, 2$ or 3. In the case $b_1 = 1$, it does. We say that a Laurent polynomial is unit symmetric if it is symmetric after multiplication with a unit of the ring $\mathbb{Z}[t_1^{\pm 1}, \ldots, t_n^{\pm 1}]$.

Characterization Theorem. Let λ be a Laurent polynomial in 1 variable. Then $\lambda = \Delta_M$ for some closed 3-manifold M with $b_1 M = 1$ if and only if λ is unit symmetric and has non-zero trace.

Finally, we consider the case of manifolds with $b_1 \geq 4$. Our main result is the following:

Theorem. $\Delta_M \neq 1$ for any closed 3-manifold with $b_1 M \geq 4$.

A consequence of this is the following negative result: not every symmetric polynomial occurs as the Alexander polynomial for a 3-manifold having $b_1 \geq 4$.

Acknowledgements: This paper is based on results contained in my PhD thesis, which was supervised by Marc Lackenby. I would also like to thank Cameron Gordon for helpful conversations.

2. Alexander Polynomial

From this point on, all 3-manifolds will be assumed to be orientable.
We begin by reviewing a definition of the Alexander polynomial which employs absolute homology [11], [14]. This definition differs from those that appear in [3] [12] [19] which use either relative homology or Fox calculus. A proof of the equivalence of all three definitions can be found in [1] (the equivalence is in fact implicit in Theorem 2.7 of [11] as well as Theorem 16.5 of [21]).

Let $\psi : G \to H$ be an epimorphism of a finitely presented group G onto a finitely generated free abelian group H of rank n. Denote by $\mathbb{Z}[H]$ the group ring associated to H i.e. the ring of formal finite linear combinations

$$n_1 h_1 + \cdots + n_k h_k, \quad n_i \in \mathbb{Z}, \; h_i \in H,$$

and the product in $\mathbb{Z}[H]$ is defined by linear extension of the product of H. Note that if we choose a basis t_1, \ldots, t_n of H then we may write elements of H as

$$t^i = t_1^{i_1} \cdots t_n^{i_n}$$

for $i_1, \ldots, i_n \in \mathbb{Z}$, so that the elements of $\mathbb{Z}[H]$ may be viewed as a multivariable Laurent polynomials in the multivariable t.

Let (X, x) be a pointed CW-complex whose 0-skeleton consists of the base point x, such that $G = \pi_1(X, x)$. Let

$$p_\psi : \tilde{X}_\psi \to X$$

be the normal covering space corresponding to ψ: that is, the covering indexed by $\text{Ker}(\psi) \subset G$ with deck group $G/\text{Ker}(\psi) \cong H$.

The **Alexander module** is defined to be

$$A_\psi = H_1(\tilde{X}_\psi) = H_1(\tilde{X}_\psi; \mathbb{Z}),$$

where its structure of $\mathbb{Z}[H]$-module comes from the action of H on \tilde{X}_ψ by deck transformations.

For any finitely presented module A over $\mathbb{Z}[H]$ consider a free resolution

$$\mathbb{Z}[H]^m \xrightarrow{P} \mathbb{Z}[H]^n \to A \to 0.$$

Such a resolution may be defined using a presentation $A = \langle x_1, \ldots, x_n | r_1, \ldots, r_m \rangle$: we take $\mathbb{Z}[H]^n = \langle x_1, \ldots, x_n | \rangle$, $\mathbb{Z}[H]^m = \langle R_1, \ldots, R_m \rangle$ with $P(R_i) = r_i$. Note that we may assume, without loss of generality, that $m \geq n$. One can represent P by an $m \times n$ matrix also denoted P. For each $d = 0, \ldots, n$ we define the **dth elementary ideal** $I_d(A) \subset \mathbb{Z}[H]$ to be the ideal generated by the $(n - d) \times (n - d)$ minors of the matrix P. These ideals are independent of the resolution of A and form a chain

$$I_0(A) \subset I_1(A) \subset \cdots \subset I_n(A) = \mathbb{Z}[H].$$

The **dth order ideal** is the smallest principal ideal containing $I_d(A)$, where any generator $\Delta_d(A)$ of it is called a **dth order** of A; it is well-defined up to multiplication by units. The dth order can also be defined as the greatest common divisor of the $(n - d) \times (n - d)$ minors of the matrix P (which is well-defined since $\mathbb{Z}[H]$ is a unique factorization domain).

When $A = A_\psi$ we denote by

- P_ψ any presentation matrix and call it an **Alexander matrix**.
- I_0 the 0th elementary ideal of a presentation matrix P_ψ and call it the **Alexander ideal**.
- Δ_0 a 0th order of A_ψ and call it an **Alexander polynomial**.
Let M be a compact manifold with $\pi_1 M$ finitely presented and with first Betti number $b_1 M = n$. Let $H(M) = H_1 M / \text{Tor}(H_1 M) \cong \mathbb{Z}^n$, where $\text{Tor}(H_1 M)$ is the torsion subgroup of $H_1 M$, and consider the epimorphism $\psi^{\text{fr-ab}} : \pi_1 M \rightarrow H_1 M \rightarrow H(M)$, where the first map is the abelianization and the second map is the projection. The normal covering associated to $K^{\text{fr-ab}} = \text{Ker}(\psi^{\text{fr-ab}})$

$$
p : \hat{M} \rightarrow M
$$

is called the \textbf{universal free abelian cover} of M.

Proposition 1. Let H be a finitely generated free abelian group and let $\psi : \pi_1 M \rightarrow H$ be an epimorphism with associated covering $p_\psi : \hat{M}_\psi \rightarrow M$. Then there exists a covering $q_\psi : \hat{M} \rightarrow \hat{M}_\psi$ such that $p_\psi \circ q_\psi = p$.

Proof. Let $K_\psi = \text{Ker}(\psi)$ which is the image of $\pi_1 \hat{M}_\psi$ by $(p_\psi)_*$. Since $H_1 M$ is the abelianization of $\pi_1 M$, there is an epimorphism $r : H_1 M \rightarrow H \text{ with } \psi = r \circ \psi^{\text{fr-ab}}$. But H is torsion free, therefore all torsion elements of $H_1 M$ are mapped to 0. This means that there exists an epimorphism $r' : H(M) \rightarrow H$ so that $\psi = r' \circ \psi^{\text{fr-ab}}$. We conclude that $K^{\text{fr-ab}} \subset K_\psi$, and the Proposition follows from this. \qed

Corollary 1. Any cover of M with deck group $H(M)$ is isomorphic to the universal free abelian cover $p : \hat{M} \rightarrow M$.

When $\psi = \psi^{\text{fr-ab}}$ we denote A_M, I_M and Δ_M, and refer to them as the \textbf{Alexander module}, \textbf{ideal} and \textbf{polynomial} of M. By Corollary 1 these invariants depend only on M.

3. An Analog of a Theorem of Levine for Closed 3-manifolds

First we define three notions of symmetry that will be relevant for us. Let $H \cong \mathbb{Z}^n$, denote $\Lambda = \mathbb{Z}[H]$ the group ring and by Λ^\times the group of units. The inversion map in H, $h \mapsto h^{-1}$, extends to an automorphism $\iota : \Lambda \rightarrow \Lambda$.

We say that a polynomial $f \in \Lambda$ is

- \textbf{symmetric} if $\iota(f) = f$.
- \textbf{unit symmetric} if there exists a unit $u \in \Lambda^\times$ such that uf is symmetric i.e. $\iota(uf) = uf$.
- \textbf{mod unit symmetric} if $\iota(f) = uf$ for some unit $u \in \Lambda^\times$.

The definitions which we have just described are given in descending order of strength. For example, $t^2 + t + 1$ is unit symmetric but not symmetric. And $t - 1$ is mod unit symmetric but not unit symmetric.

Now we recall Levine’s method for generating link polynomials.

Theorem 1 (Levine, [10]). Let Δ_L be the Alexander polynomial of an n-component link L, and let $\lambda = \sum c_i t^i \in \mathbb{Z}[H]$ satisfy the following conditions:

1. λ is symmetric.
2. $\lambda(1, \cdots, 1) = 1$.

Then there exists an oriented link L' with the same number of components as L such that
\[\Delta_{L'} = \Delta_L \cdot \lambda. \]

Now we prove an analogue of Levine’s Theorem for closed 3-manifolds. By this we mean the following: let M be a closed 3-manifold with $b_1 M = n$ and let λ be a symmetric Laurent polynomial in n-variables with non-zero trace. Then we will prove that there exists a closed 3-manifold M' with $b_1 M' = n$ and whose Alexander polynomial is $\lambda \cdot \Delta_M$.

Proposition 2. Let M be a 3-manifold with $b_1 M = n$, S a simple closed curve in M which is homotopically trivial and N a tubular neighborhood of S. Let $p : \hat{M} \to M$ be the universal free abelian cover and let $\hat{X} = \hat{M} - p^{-1}(N)$. Then we have the following isomorphism of Λ-modules
\[H_1(\hat{X}) \cong H_1(\hat{M}) \oplus \Lambda. \]

Proof. Consider the pair (\hat{M}, \hat{X}) and denote $\hat{N} = p^{-1}(N)$. By excision on the interior of \hat{X}, we have that
\[H_*(\hat{M}, \hat{X}) \cong H_*(\hat{N}, \partial \hat{N}). \]
Since the deck group H acts by homeomorphisms on the pairs (\hat{M}, \hat{X}), $(\hat{N}, \partial \hat{N})$, the excision isomorphism is an isomorphism of Λ-modules. If we let $\hat{N}_0 \supset \partial \hat{N}_0$ be a pair of fixed components of $\hat{N} \supset \partial \hat{N}$ (i.e. a fixed lift of $N \supset \partial N$) then we may write
\[\hat{N} = \bigcup_{h \in H} h(\hat{N}_0) \supset \partial \hat{N} = \bigcup_{h \in H} h(\partial \hat{N}_0). \]
On the level of homology groups we have then
\[H_k(\hat{N}, \partial \hat{N}) \cong \bigoplus_{h \in H} H_k(\hat{N}, \partial \hat{N}), \]
a direct sum of copies of $H_k(\hat{N}, \partial \hat{N})$ indexed by H. By Lefschetz duality, since $\hat{N} - \partial \hat{N} = N$, we have that
\[H_k(\hat{N}, \partial \hat{N}) \cong H^{3-k}(N) \cong H^{3-k}(\mathbb{S}^1) = \begin{cases} \mathbb{Z} & \text{if } k = 2, 3, \\ 0 & \text{otherwise.} \end{cases} \]
We note that a generator of $H_2(\hat{N}, \partial \hat{N})$ is given by a disk D whose boundary is a meridian of N. Thus as a Λ-module, we have
\[H_2(\hat{N}, \partial \hat{N}) \cong \Lambda, \]
with generator a disk in \hat{N}_0 whose boundary is a meridian. The generator of $H_2(\hat{M}, \hat{X}) \cong H_2(\hat{N}, \partial \hat{N})$ corresponding to the disk generator D_0 of $H_2(\hat{N}, \partial \hat{N})$ is denoted ν. Note that the boundary of ν is equal to $\partial \hat{D}_0$.

The long exact sequence of the pair (\hat{M}, \hat{X}) (an exact sequence of Λ-modules) can now be written
\[\cdots \to H_2(\hat{M}, \hat{X}) \cong \Lambda \xrightarrow{\alpha} H_1(\hat{X}) \xrightarrow{\beta} H_1(\hat{M}) \xrightarrow{\gamma} H_1(\hat{M}, \hat{X}) = 0 \to \cdots \]
Then γ is the zero map and by exactness β is surjective, so that:
\[H_1(\hat{M}) \cong H_1(\hat{X})/\operatorname{Ker}(\beta). \]
Since, as indicated above, $H_2(M, X) \cong \Lambda$, the map α is of the form
$$\alpha : \Lambda \longrightarrow H_1(X).$$
Thus if we can show that α is injective and that the sequence (3) is split by a Λ-module map, this will imply that $H_1(X) \cong H_1(M) \oplus \Lambda$.

We begin by showing that α is injective i.e. we show that $\text{Im}(\alpha) \cong \Lambda$. Note first that $\text{Im}(\alpha)$ is generated as a Λ-module by $\mu = \beta(\nu)$, and μ is in fact the meridian boundary of D_0. Suppose that μ is a torsion element of $H_1(X)$, i.e $f \mu = 0$ for some $f = \sum c_h \nu \in \Lambda$. We will show that $f = 0$ i.e. that $c_h = 0$ for all $h \in H$. Now $f \mu$ bounds a compact surface in X which when included in M can be filled by meridian disks to form a closed orientable surface Σ in M. Write $\tilde{S} = \cup \tilde{S}_h$ where $\tilde{S}_h = h \tilde{S}_0$ and \tilde{S}_0 is a fixed lift of S to \tilde{M}. Since S is homotopically trivial, each lift \tilde{S}_h is also homotopically trivial.

Now we want to show that the short exact sequence is split. Since \tilde{S}_h is homologically trivial for each h, it bounds a compact oriented surface Σ_h in \tilde{M}. Let
$$\phi : H_1(X) \longrightarrow \text{Im}(\alpha) = \Lambda \mu$$
$$l \mapsto \sum_{h \in H} (l \cdot \Sigma_h) h \mu$$
where $l \cdot \Sigma_h$ is the intersection number with Σ_h. Then since $h \mu$ has intersection number one with Σ_h and $h \mu$ has intersection number zero with any $\Sigma_{h'}$ for $h' \neq h$, we have $\phi \circ \gamma(h \mu) = h \mu$. Thus the exact sequence splits, proving the Proposition.

Theorem 2. Let M be a closed 3-manifold with $b_1M = n$, $H \cong \mathbb{Z}^n$ the deck group of its universal free abelian cover and let $\lambda = \Sigma c_I t^I \in \mathbb{Z}[H]$ be a symmetric Laurent polynomial with trace not equal to 0. Then there exists a closed 3-manifold M' with $b_1M' = b_1M$ and having Alexander polynomial
$$\Delta_{M'} = \Delta_M \cdot \lambda.$$
Proof. Let $\lambda = \Sigma c_I t^I$ be a symmetric Laurent polynomial. We start by constructing a simple closed curve $S \subset M$ associated to the polynomial λ with which we will modify M.

Let $B \subset M$ be a 3-ball and choose a simple closed curve $S_0 \subset B$ bounding an embedded disk D in M. We will modify S_0 to obtain a new simple closed curve S that will bound an immersed disk in M. For each term pair $\{ t^I, t^{-I} \}$, $I \neq 0$, of the polynomial λ having non-zero coefficient c_I, pick

1. A point q_I on S_0 such that $q_I \notin \{ q_I \}$, if $\{ t^I, t^{-I} \} \neq \{ t^I, t^{-I} \}$.

2. One of the two homology classes associated to $\pm I \in \mathbb{Z}^n \cong H_1(M) / \text{Tor}(H_1(M))$, which we denote $\gamma_{\pm I}$.

Then pick an embedded loop u_I in M based at q_I such that
$$[u_I] = \gamma_{\pm I}.$$
We may assume, after an isotopy, that the loops u_I are disjoint. Consider a segment \tilde{u}_I obtained from u_I by cutting off a small piece of one of its ends, then thicken this segment to a band $\tilde{u}_I \times [0, 1] \approx [0, 1] \times [0, 1]$. See Figure 1. We assume that we have done this in such a way that

- $(\tilde{u}_I \times [0, 1]) \cap D = (\tilde{u}_I \times [0, 1]) \cap S_0 = \{0\} \times [0, 1]$ and that the two end segments $\{0, 1\} \times [0, 1]$ lie in a small neighborhood of q_I.
- Each component $[0, 1] \times \{0, 1\}$ is a copy of u_I in the sense that the union of it with a small arc in S_0 is isotopic to u_I. We may again assume that all such bands are disjoint.

Finally, modify the end of the band as in Figure 1 so that its boundary links according to the coefficient c_I. We call the new curve S. Note that S bounds an immersed disc in M and is therefore homotopically trivial.

Remove a tubular neighborhood N of S and let $X = M - N$. We construct M' by performing an m-surgery on M along S, where $m = \text{tr}(\lambda)$, and with respect to a preferred framing $f = (\ell, \mu) \subset \partial N$.

Here, ℓ is the preferred longitude – the one characterized by defining a homologically trivial element in X – and μ is a meridian. We will show that $\Delta_{M'} = \Delta_M \cdot \lambda$.

It will be important for us to have an explicit understanding of the preferred longitude ℓ. First, consider a tubular neighborhood of the curve as it appears before the linking step; call that curve S'. See the first image in Figure 1. Choose a preferred longitude for the original curve S_0, cut at the beginning of the band. Continue this longitude along a pair of homotopic segments lying along tubular

\begin{figure}[h]
\centering
\includegraphics[width=0.8\textwidth]{figure1.png}
\caption{Modifying S_0 to obtain S.}
\end{figure}
neighborhoods of the band boundaries. The result will be a curve ℓ' which is homologically trivial in the complement of a tubular neighborhood of S'.

A tubular neighborhood for S is obtained by cutting the tubular neighborhood of S' just constructed and adding a cylinder that links about S_0. If we were to continue ℓ' without twisting about this cylindrical piece, we obtain a longitude called the obvious longitude, denoted l, which is not homologically trivial. In fact, l bounds an immersed punctured disk, punctured twice for each linking that has been introduced. More specifically, l is homologous in X to

$$\left(\sum_{I \neq 0} c_I \right) \mu$$

where μ is a meridian of the tubular neighborhood of S. The preferred longitude of S, denoted ℓ, is therefore obtained from l by introducing a pair of twists in l (opposite in orientation to the direction of the linkings) for each of the c_I linkings coming from u_I. That is,

$$\ell = l - \left(\sum_{I \neq 0} c_I \right) \mu.$$

See Figure 2

![Figure 2. The preferred longitude.](image)

We will now calculate the Alexander module $H_1(\hat{M}')$ as a Λ-module. Let \hat{M} be the \mathbb{Z}^n cover of M, p the covering map so that $\hat{S} = p^{-1}(S)$ and $\hat{N} = p^{-1}(N)$. Let $\hat{X} = \hat{M} - \hat{N}$. By Proposition 2 we have that

$$H_1(\hat{X}) \cong H_1(\hat{M}) \otimes \Lambda$$
as \(\Lambda \)-modules. Then the only new generator in homology which one obtains by removing \(\hat{N} \) corresponds algebraically to the factor \(\Lambda \). In particular, this factor as a \(\Lambda \)-module is cyclic, generated by an element \(\alpha \).

In order to obtain \(\hat{M}' \) from \(\hat{M} \), we will glue in solid tori to \(\hat{X} \), that is, to perform an \(m \)-surgery on each torus component. We will choose a longitude in each torus boundary \(\hat{N} \) coming from the lift of the preferred longitude \(\ell \) of \(N \). For a fixed boundary component of \(\hat{N} \), we denote this longitude by \(\hat{\ell} \) and denote by \(\mu \) a meridian. We let \(\hat{\ell} \) be a lift to \(\hat{N} \) of the obvious longitude \(\ell \) to the same boundary component containing \(\hat{\ell} \). Observe that the homology class of \(\mu \) also generates the factor \(\Lambda \) occurring in \(H_1(\hat{X}) \), so we may assume that \(\mu = \alpha \).

The longitude \(\hat{\ell} \) is not homologically trivial (as \(\ell \) was not) owing to the fact that other lifts of \(N \) link with \(\hat{N} \). Instead, it bounds an immersed punctured disk, in which we have a puncture for each such linking. See Figure 3.

Let \(\lambda_0 = \lambda - c_0 \) so that \(\text{tr}(\lambda_0) = \sum_{t \neq 0} c_t \). Note then that \(\hat{\ell} = \lambda_0 \cdot \mu \) i.e. is the sum of the punctures. Then it follows by our construction of \(\ell \) from \(l \) that

\[
\hat{\ell} = (\lambda_0 - \text{tr}(\lambda_0))\mu = \hat{\ell} - \text{tr}(\lambda_0)\mu.
\]

For the preferred framing \(f = (\ell, \mu) \subset \partial X \) an \(m \)-surgery is given by the formula \(\ell + m\mu \). Thus, in the manifold \(M' \), \(\ell + m\mu \) is trivial. This relation produces the relation in \(\hat{M}' \)

\[
\hat{\ell} + m\mu = (\lambda_0 - \text{tr}(\lambda_0) + m)\mu = 0.
\]
Thus since $m = \text{tr}(\lambda)$ we have $m - \text{tr}(\lambda_0) = c_0$ then this relation becomes

$$\lambda \mu = 0.$$

Since this new relation only involves the new generator $\alpha = \mu$, then the presentation of the Alexander module of M' is of the form

$$\langle x_1, \ldots, x_\alpha, \mu| r_1, \ldots, r_b, \lambda \mu \rangle$$

where $\langle x_1, \ldots, x_\alpha| r_1, \ldots, r_b \rangle$ is the presentation for the Alexander module of M. It then follows immediately that the presentation matrix for the Alexander module of M' is of the form

$$P' = \begin{pmatrix} P & 0 \\ 0 & \lambda \end{pmatrix}$$

where 0 are zero vectors. It follows that $\Delta_{M'} = \Delta_M \cdot \lambda$.

For low Betti numbers $b_1 = 1, 2$ or 3, the following closed orientable manifolds have $\Delta_M = 1$ (see [14]):

- $S^1 \times S^2$, $b_1 = 1$.
- $H_3(\mathbb{R})/H_3(\mathbb{Z})$ = Heisenberg manifold, $b_1 = 2$.
- \mathbb{T}^3 = the 3-torus, $b_1 = 3$.

Combining these examples with Theorem 2 we have

Corollary 2. Every symmetric Laurent polynomial in 1, 2 or 3 variables having non-zero trace is the Alexander polynomial of a 3-manifold with first Betti number 1, 2 or 3.

4. Characterization for $b_1M = 1$

In this section we prove the

Characterization Theorem. Let λ be a Laurent polynomial in 1 variable. Then $\lambda = \Delta_M$ for some closed 3-manifold with $b_1M = 1$ \iff λ is unit symmetric and has non-zero trace.

The sufficiency of the condition “λ is unit symmetric and has non-zero trace” follows from Corollary 2. Therefore we will dedicate this section to proving necessity, which will be accomplished as follows:

- **§4.1** We recall Blanchfield’s symmetry result, which says that the Alexander polynomial of any closed 3-manifold is mod unit symmetric.
- **§4.2** We show the existence of a “Seifert surface” Σ for M and use it to construct the universal infinite cyclic cover \hat{M}.
- **§4.3** Using Σ we define a “Seifert matrix” for M, and use it to show that Δ_M is unit symmetric.
- **§4.4** We prove in Lemma 3 that the trace of Δ_M is not 0.
4.1. Blanchfield’s Mod Unit Symmetry Theorem. Let M be a compact and orientable 3-manifold with or without boundary. In [3], a general symmetry result about Alexander ideals was proved. As before, we denote by \tilde{M} the universal free abelian cover and denote by $\Lambda = \mathbb{Z}[H]$ the group ring generated by the deck group H of $\tilde{M} \rightarrow M$. Recall the automorphism $\iota : \Lambda \rightarrow \Lambda$ defined in [2]. We will say that an ideal $a \subset \Lambda$ is symmetric if $\iota(a) = a$.

The following theorem is a special case of Corollary 5.6 of [3].

Theorem 3. The principal ideal (Δ_M) is symmetric.

We have as an immediate corollary:

Corollary 3. Any Alexander polynomial Δ_M of M is mod unit symmetric.

Proof. By symmetry $\iota(\Delta_M)) = (\Delta_M)$ so there exists $u \in \Lambda^{\times}$ such that $\iota(\Delta) = u\Delta$ i.e. Δ is mod unit symmetric. □

4.2. An Analogue of the Seifert Surface Construction. Let M be closed and orientable with $b_1 M = 1$. Recall the map $\psi : \pi_1 M \rightarrow \mathbb{Z}$ defined as the composition

$$\pi_1 M \xrightarrow{\text{abelianization}} H_1(M, \mathbb{Z}) \xrightarrow{\text{projection}} \text{Free}(H_1(M, \mathbb{Z})) \cong \mathbb{Z},$$

where for A an abelian group, $\text{Free}(A) = A/\text{Tor}(A)$. We will usually identify $\text{Free}(A)$ as a subgroup of A by choosing a section of the projection $A \rightarrow \text{Free}(A)$. For an embedded closed oriented surface $\Sigma \subset M$ and a simple closed oriented curve $\gamma \subset M$ we denote by $\gamma \cdot \Sigma \in \mathbb{Z}$ the signed intersection number.

Theorem 4. There exists an oriented, embedded and non separating closed surface $\Sigma \subset M$ such that for all $\gamma \in \pi_1 M$,

$$\psi(\gamma) = \gamma \cdot \Sigma.$$

Proof. Note that ψ is by definition trivial on $[\pi_1 M, \pi_1 M]$ so that it induces an element of $\text{Hom}(H_1(M, \mathbb{Z}), \mathbb{Z})$: the projection appearing in [4.2], which is a non trivial homomorphism. The intersection pairing version of Poincaré duality provides in particular a non-degenerate pairing

$$\text{Free}(H_1(M, \mathbb{Z})) \times \text{Free}(H_2(M, \mathbb{Z})) \rightarrow \mathbb{Z}$$

given by the signed intersection number.

See [3]. N.B. $H_2(M, \mathbb{Z}) \cong H_1(M, \mathbb{Z})$ which is free by the universal coefficient theorem. This means that every homomorphism

$$\text{Free}(H_1(M, \mathbb{Z})) \rightarrow \mathbb{Z}$$

is given by the intersection pairing with some element of $H_2(M, \mathbb{Z})$. Thus we may associate to ψ an element $[\Sigma] \in H_2(M, \mathbb{Z})$. We note that there exists a representative $\Sigma \in [\Sigma]$ which is a closed connected embedded surface since $[\Sigma]$ is of co-dimension 1. This surface is orientable because it represents a non-trivial element of $H_2(M, \mathbb{Z})$; any closed non-orientable surface has trivial H_2 so could not represent a non-trivial element of $H_2(M, \mathbb{Z})$. Thus we have $\psi(\gamma) = \gamma \cdot \Sigma$ for all $\gamma \in \pi_1 M$. In particular for any curve γ with $\psi(\gamma) = 1$ we have $\gamma \cdot \Sigma = 1$. This, along with the fact that Σ is orientable, implies that Σ is non-separating. For if $M - \Sigma = Y_1 \sqcup Y_2$ is a disjoint union, then since Σ is 2-sided, then after moving γ by an isotopy, $\gamma - \Sigma = \gamma - \{\text{point}\} \approx (0, 1)$ would connect points of Y_1 to points of Y_2, which is impossible. □
Since Σ is orientable and non-separating, it has a collar which we denote $C(\Sigma)$. Let
\[X = M - C(\Sigma) = M - \text{int}(C(\Sigma)). \]
Note that X has two boundary components Σ^- and Σ^+.

Proposition 3. If Σ is of genus g then
\[H_1(X) \cong H_1(\Sigma) \oplus \text{Tor}(H_1X) \cong \mathbb{Z}^{2g} \oplus \text{Tor}(H_1X). \]
In other words, $\text{Free}(H_1X) \cong \mathbb{Z}^{2g}$.

Proof. Observe that the statement of the Proposition is equivalent to showing that
\[\dim H_1(X; \mathbb{Q}) = 2g. \]
For the remainder of the proof, all homology and cohomology will be with \mathbb{Q} coefficients. Next, we have
\[H_1(X) \cong H^2(M, \text{int}(C(\Sigma))) \cong H^2(M, \Sigma) \]
where the first isomorphism is by Lefschetz duality (see [16], page 297) and the second isomorphism follows because Σ is a deformation retract of $\text{int}(C(\Sigma))$. Since we are working with \mathbb{Q}-coefficients, the universal coefficient theorem implies that
\[H^2(M, \Sigma) \cong H_2(M, \Sigma). \]
(Since $H_1M \cong \mathbb{Q}$ is free, $\text{Ext}(H_1M, \mathbb{Q}) = 0$ which implies $H^2(M, \Sigma) \cong \text{Hom}(H_2(M, \Sigma), \mathbb{Q})$; but $H_2(M, \Sigma)$ is a \mathbb{Q}-vector space, so $\text{Hom}(H_2(M, \Sigma), \mathbb{Q}) \cong H_2(M, \Sigma).$) So it will be enough to show that $H_2(M, \Sigma)$ has dimension $2g$.

Let us consider the long exact sequence in homology of the pair (M, Σ):
\[\cdots \rightarrow H_2\Sigma \overset{i_2}{\rightarrow} H_2M \overset{j_2}{\rightarrow} H_2(M, \Sigma) \overset{\partial}{\rightarrow} H_1\Sigma \overset{i_1}{\rightarrow} H_1M \overset{j_1}{\rightarrow} H_1(M, \Sigma) \rightarrow \cdots \]
Notice that
\[H_2M \cong H^1M \cong H_1M \cong \mathbb{Q}, \]
where the first isomorphism is by Poincaré duality, the second by the universal coefficient theorem and the last one because $b_1M = 1$. Note that j_1 is injective, since Σ intersects once a generator of $\text{Free}(H_1(M, \mathbb{Z}))$ and therefore when this generator is mapped to $H_1(M, \Sigma)$, it persists.

Thus $\text{Ker}(j_1) = 0 = \text{Im}(i_1)$ by exactness, so that i_1 is the zero map. Thus $\text{Ker}(i_1) = H_1\Sigma = \text{Im}(\partial)$ again by exactness. Thus ∂ is onto and $H_2(M, \Sigma)$ has dimension $\geq 2g$. On the other hand, $[\Sigma]$ generates an infinite cyclic subgroup of H_2M since it corresponds by duality to ψ which is a free cohomology class. So i_2 is injective and $\mathbb{Q} \cong \text{Im}(i_2) = \text{Ker}(j_2)$. Since $\text{Ker}(j_2) \neq 0$, it follows since $H_2M \cong \mathbb{Q}$ that we must have that $\text{Ker}(j_2) = H_2M$. Hence j_2 is the 0 map, which implies that $\text{Ker}(\partial) = 0$ i.e. ∂ is injective and therefore an isomorphism. \hfill \Box

The argument above can be modified to show that ∂ is an isomorphism modulo torsion in \mathbb{Z}-coefficients. More precisely,

Lemma 1. The homomorphism
\[\partial : H_2(M, \Sigma; \mathbb{Z}) \rightarrow H_1(\Sigma; \mathbb{Z}) \]
satisfies
1. $\text{Ker}(\partial) \subset \text{Tor}(H_2(M, \Sigma; \mathbb{Z}))$.
2. $\text{Coker}(\partial)$ is a finite group.
Proof. Consider the long exact sequence of the pair appearing in the proof of Proposition 3, but now with \(\mathbb{Z} \)-coefficients. The map \(i_2 \) is still injective and its image is still free (by how we defined \(\Sigma \)), but here we can no longer assert that \(i_2 \) is onto. Nevertheless, this implies that \(\text{Ker}(j_2) = \text{Im}(i_2) \) is free. We claim that this implies that \(\text{Im}(j_2) \) is a finite group. For \(H_2(M; \mathbb{Z}) \cong \mathbb{Z} \oplus \text{Tor}(H_2(M; \mathbb{Z})) \), since we saw in the proof of Proposition 3 that \(H_2(M; \mathbb{Q}) \cong H_2(M; \mathbb{Z}) \otimes \mathbb{Q} \cong \mathbb{Q} \). Therefore, \(\text{Ker}(j_2) \subset \text{Free}(H_2(M; \mathbb{Z})) \cong \mathbb{Z} \) and \(j_2 \) induces a map having domain the finite group \(H_2(M; \mathbb{Z})/\text{Ker}(j_2) \), so \(\text{Im}(j_2) \) is a finite group as claimed. By exactness, \(\text{Ker}(\partial) \) is finite, which proves (1). Now since \(H_2(M, \Sigma; \mathbb{Q}) \cong \mathbb{Q}^g \), \(H_2(M, \Sigma; \mathbb{Z}) \cong \mathbb{Z}^g \oplus \text{Tor}(H_2(M, \Sigma; \mathbb{Z})) \) which by (1) means that \(\text{Ker}(\partial) \subset \text{Tor}(H_2(M, \Sigma; \mathbb{Z})) \). Therefore \(\partial \) restricted to the free part of \(H_2(M, \Sigma; \mathbb{Z}) \cong \mathbb{Z}^g \) maps onto a subgroup of rank \(2g \) of \(H_1(\Sigma; \mathbb{Z}) \cong \mathbb{Z}^{2g} \). This implies (2).

Example 1. For an example where \(\partial \) is not surjective, consider the case where \(M \) is the mapping torus

\[
\mathbb{T}_A = \mathbb{T}^2 \times [0, 1]/\sim_A, \quad (x, 0) \sim_A (Ax, 1)
\]

associated to the hyperbolic matrix

\[
A = \begin{pmatrix} 3 & 2 \\ 1 & 1 \end{pmatrix}.
\]

Since there is no simple closed curve \(c \subset \mathbb{T}^2 \) such that \(A^n(c) \) is isotopic to \(c \) for some \(n \), we have \(b_1 \mathbb{T}_A = 1 \). The "Seifert surface" \(\Sigma \) in this case is the image of \(\mathbb{T}^2 \times \{0\} \) in \(\mathbb{T}_A \). On the other hand, we know (see [12]) that

\[
\Delta_{\mathbb{T}_A}(t) = \det(A - It) = t^2 - 4t + 1.
\]

By Lemma 3 of §4.4 below, the order of \(\text{Tor}(H_1\mathbb{T}_A) \) is \(|\Delta_{\mathbb{T}_A}(1)| = 2 \). The map \(i_1 : H_1\mathbb{T}^2 \to H_1\mathbb{T}_A \), which is induced by the identification \(\mathbb{T}^2 \approx \Sigma \subset \mathbb{T}_A \) has image \(\text{Tor}(H_1\mathbb{T}_A) \cong \mathbb{Z}/2\mathbb{Z} \): indeed, due to the defining identifications if we denote by \(x = (1,0), y = (0,1) \) the basis of \(\mathbb{Z}^2 = H_1\mathbb{T}^2 \), then \(i_1(x) = x = A(x) = 3x + 2y \) and \(i_1(y) = y = A(y) = x + y \) which implies that \(2(x + y) = 0 \) and \(x = 0 \) and therefore \(2y = 0 \). In particular, \(\text{Ker}(i_1) = \text{Im}(\partial) \) is a proper subgroup of \(H_1\mathbb{T}^2 \). Therefore, \(\partial \) is not onto.

We now use the surface \(\Sigma \) to construct the universal infinite cyclic cover of \(M \). Take a countable collection \(\{X_i\}, i \in \mathbb{Z} \), of copies of \(X \), and glue them such that \(\Sigma^+_i \) is identified with \(\Sigma^-_i \) by the "re-gluing" homeomorphisms. Denote the result \(\widehat{M} \).

Theorem 5. \(\widehat{M} \) is a universal infinite cyclic cover of \(M \).

Proof. We show that there exists an infinite cyclic covering \(p : \widehat{M} \to M \). Each point in \(X_i \) is mapped to its counterpart in \(X \subset M \). Now we map \(X \) onto \(\overline{X} = X/\sim \) where \(x \sim y \) if \(x, y \in \partial X \) correspond. The gluing used to define \(\widehat{M} \) is compatible with the relation \(\sim \) so we get a covering map \(\widehat{M} \to \overline{X} \approx M \) which is infinite cyclic. \(\square \)
4.3. An Analogue of the Seifert Matrix. A key fact which we will need in order to prove that Δ_M is unit symmetric is the existence of a basis of the homology of X dual to a given basis of the homology of Σ. However, in view of Lemma 1 we will not be able to do this for integral homology, as one does for knot complements in \mathbb{R}^3. In order to address this complication, we will work instead with homology with \mathbb{Q}-coefficients.

We begin with a notion of linking number valid in M. Consider disjoint oriented simple closed curves $l_1, l_2 \subset M$ whose integral homology classes belong to $\text{Tor}(\H_1(M; \mathbb{Z}))$. Then there exists integers n_1, n_2 such that $[n_1 l_1] = 0 = [n_2 l_2]$, and therefore there exist compact and oriented surfaces $S_1, S_2 \subset M$ with $\partial S_1 = n_1 l_1$, $\partial S_2 = n_2 l_2$.

Definition 1. The linking number of l_1 with l_2 is

$$\text{lk}(l_1, l_2) = \frac{(n_2 l_2) \cdot S_1}{n_1 n_2} = \frac{l_2 \cdot S_1}{n_1} \in \mathbb{Q}.$$

Since we have divided by $n_1 n_2$, the linking number does not depend on the n_i chosen so that $[n_i l_i] = 0$.

Note 1. We have $\text{lk}(l_1, l_2) = -\text{lk}(l_2, l_1)$, just as in the case of the classical linking number.

The linking number defined here is for pairs of simple closed curves l_1 and l_2, and only depends on the isotopy type of $l_1 \cup l_2$. We can in fact extend it bi-linearly to rational multiples $ql_1, q_2 l_2$ by the formula

$$\text{lk}(ql_1, q_2 l_2) := q_1 q_2 \cdot \text{lk}(l_1, l_2).$$

We now choose special generating sets for the homology of the boundary components of X.

Fix bases $\{a_i\}, \{a_i^\pm\}$ of $\H_1(\Sigma; \mathbb{Z})$, $\H_1(\Sigma^\pm; \mathbb{Z})$; where $\{a_i^\pm\}$ is a push-off in the \pm normal direction of $\{a_i\}$. When viewed in M, they give elements of $\text{Tor}(\H_1 M)$. We can choose $n \in \mathbb{Z}$ so that $\{na_i\}, \{na_i^\pm\}$ are homologous to 0 in $\H_1(M; \mathbb{Z})$ and not just torsion (for example we could take $n = \prod n_i$).

Now let $\{\bar{a}_i\}, \{\bar{a}_i^\pm\}$ be $\{na_i\}, \{na_i^\pm\}$, these elements give bases of $\H_1(\Sigma; \mathbb{Q}), \H_1(\Sigma^\pm; \mathbb{Q})$.

We define a square matrix $V_q = (\bar{v}_{ij})$ by

$$\bar{v}_{ij} = \text{lk}(\bar{a}_i^+, \bar{a}_j^-).$$

Notice that this is well-defined since these curves are torsion as elements of $\H_1(M; \mathbb{Z})$, and therefore their linking numbers are defined.

Also note that

$$\bar{v}_{ij} = \text{lk}(\bar{a}_i, \bar{a}_j^-)$$

so that

$$V_q^T = (\bar{v}_{ij}^T), \quad \text{where} \quad \bar{v}_{ij}^T = \text{lk}(\bar{a}_j, \bar{a}_i^+).$$

We now specify a basis of $\H_1(X; \mathbb{Q})$ dual to the basis $\{\bar{a}_i\}$ of $\H_1(\Sigma; \mathbb{Q})$ with respect to the bilinear pairing $\text{lk}(\cdot, \cdot)$.

Lemma 2. There exists a basis $\bar{\beta}_1, \ldots, \bar{\beta}_g$ of $\H_1(X; \mathbb{Q})$ such that viewed in M

$$\text{lk}(\bar{a}_i, \bar{\beta}_j) = \delta_{ij}.$$
Proof. The map $\partial : H_2(M, \Sigma; \mathbb{Q}) \to H_1(\Sigma; \mathbb{Q})$ is an isomorphism. If a_i is one of the generators of $H_1(\Sigma; \mathbb{Q})$ specified above, then $\partial^{-1}(a_i)$ is a multiple $n_i S_i$ of a surface S_i. We may assume n_i are integers by choosing n large enough, we write $\bar{S}_i = n_i S_i$.

Thus we obtain a generating set $\bar{S}_1, \ldots, \bar{S}_{2g}$ of $H_2(M, \Sigma; \mathbb{Q})$ in which \bar{S}_i is the image in $H_2(M, \Sigma; \mathbb{Q})$ of the class $n_i S_i \in H_2(M, \Sigma; \mathbb{Z})$.

But

$$H^2(M, \Sigma; \mathbb{Q}) \cong H_2(M, \Sigma; \mathbb{Q}) \cong \mathbb{Q}^{2g}$$

where the first isomorphism is a consequence of the universal coefficient theorem (see Corollary 4, page 244 of [16]) and the second isomorphism comes from composition of isomorphisms

$$H_2(M, \Sigma; \mathbb{Q}) \xrightarrow{\partial} H_1(\Sigma; \mathbb{Q}) \cong \mathbb{Q}^{2g}.$$

Therefore, $H^2(M, \Sigma; \mathbb{Q})$ has a basis dual to $\{\bar{S}_i\}$: given by cohomology classes f_1, \ldots, f_{2g} with $f_i(n_j S_j) = \delta_{ij}$. Here we are identifying cohomology classes with functionals of homology.

By Lefschetz duality we have $H_1(X; \mathbb{Q}) \cong H^2(M, \Sigma; \mathbb{Q})$. The duality isomorphism is given by the intersection pairing. Therefore, if $\bar{\beta} \in H_1(X; \mathbb{Q})$ and $\bar{S} \in H^2(M, \Sigma; \mathbb{Q})$ then the \mathbb{Q}-Lefschetz duality isomorphism is induced by

$$\bar{S} \mapsto \bar{\beta} \cdot \bar{S}.$$

In particular, if we let $\bar{\beta}_i$ be such that the above function coincides with f_i, then we have

$$\bar{\beta}_i \cdot \bar{S}_j = f_i(\bar{S}_j) = \delta_{ij}.$$

But $\partial(\bar{S}_j) = \bar{a}_j$. This implies that $\text{lk}(\bar{\beta}_i, \bar{a}_j) = \delta_{ij}$. \qed

Recall the construction of \hat{M} given at the end of §4.2 of [14]. The Mayer-Vietoris Theorem applied to \hat{M} shows us that as a Λ-module

$$H_1(\hat{M}; \mathbb{Z}) \cong (H_1(X; \mathbb{Z}) \otimes \Lambda)/\text{relations}$$

where the relations are given by the gluing identifications

$$a_i^- - t a_i^+ = 0, \quad i = 1, \ldots, 2g$$

plus the torsion relations (which do not involve t):

$$m_1 \mu_1 = 0, \ldots, m_k \mu_k = 0$$

where the μ_i are generators of the torsion of $H_1(X; \mathbb{Z})$. Hence the Alexander matrix has the form

$$\begin{pmatrix}
A(t) & 0 & \cdots & 0 \\
0 & m_1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & m_k
\end{pmatrix}$$

where $A(t)$ is a $2g \times 2g$ matrix corresponding to the system (4).

Let $\Lambda_\mathbb{Q}$ be the group ring $\mathbb{Q}[t^{\pm 1}]$ with coefficients in \mathbb{Q}. Then $H_1(\hat{M}; \mathbb{Q})$ is a $\Lambda_\mathbb{Q}$-module, and its presentation is given by

$$H_1(\hat{M}; \mathbb{Q}) \cong (H_1(X; \mathbb{Z}) \otimes \Lambda\mathbb{Q})/\text{relations}$$

where the relations are

$$n a_i^- - t a_i^+, \quad i = 1, \ldots, 2g,$$
or in other words
\[\tilde{a}_i^+ - t\tilde{a}_i^-, \quad i = 1, \ldots, 2g. \]
Thus these are the only relations we have and the \(\mathbb{Q} \) Alexander matrix is
\[A_\mathbb{Q}(t) = nA(t). \]

Recall that if \(f(t) = \sum_{i=m}^{n} b_i t^i \) is a Laurent polynomial, where \(b_m, b_n \neq 0 \), then the degree is defined \(\deg(f) = n - m \). This notion of degree is invariant with respect to multiplication by units. If we let \(\Delta_\mathbb{Q}(t) \) be the “Alexander polynomial” associated to \(A_\mathbb{Q}(t) \), then
\[\Delta_\mathbb{Q}(t) := \det(A_\mathbb{Q}(t)) = \frac{\nu^{2g}}{m_1 \cdots m_k} \Delta(t). \]
We can see that \(\Delta(t) \) and \(\Delta_\mathbb{Q}(t) \) have the same degree. Our strategy will be to show that \(\Delta_\mathbb{Q}(t) \) has even degree.

Theorem 6. \(V_\mathbb{Q} - tV_\mathbb{Q}^T = A_\mathbb{Q}(t) \).

Proof. \(H_1(X; \mathbb{Q}) \) has generators the \(\bar{\beta}_i \) and we may write therefore
\[\tilde{a}_i^\pm = \sum c_{ij}^\pm \bar{\beta}_j. \]

If we take the linking number both sides of this equation with \(\tilde{a}_j \), we get by Lemma 2 that
\[c_{ij}^\pm = -\text{lk}(\tilde{a}_i^\pm, \tilde{a}_j). \]

It follows that the relations (4) may be re-written
\[\sum \text{lk}(\tilde{a}_i^-, \tilde{a}_j)\bar{\beta}_j - t \sum \text{lk}(\tilde{a}_i^+, \tilde{a}_j)\bar{\beta}_j = 0. \]

By our definition of \(V_\mathbb{Q} \) and our identification of \(V_\mathbb{Q}^T \) the relations (4) may be re-written
\[\sum (\bar{v}_{ij} - t\bar{v}_{ji})\bar{\beta}_j = 0, \quad i = 1, \ldots, 2g. \]

So
\[A_\mathbb{Q}(t) = V_\mathbb{Q} - tV_\mathbb{Q}^T, \]
as claimed. \(\Box \)

4.4. Characterization.

We begin with the following corollary of Theorem 6.

Corollary 4. \(\Delta_\mathbb{Q}(t) \) is unit symmetric and in particular is of even degree.

Proof. By Theorem 6 we have
\[\Delta_\mathbb{Q}(t) = \det(V_\mathbb{Q} - tV_\mathbb{Q}^T) = \det(V_\mathbb{Q}^T - tV_\mathbb{Q}) \]
and therefore
\[\Delta_\mathbb{Q}(t^{-1}) = \det(V_\mathbb{Q} - t^{-1}V_\mathbb{Q}^T) = \det((-t)^{-1} \cdot (V_\mathbb{Q}^T - tV_\mathbb{Q})) = t^{-2g} \Delta_\mathbb{Q}(t). \]

Then \(f(t) = t^{-g} \Delta_\mathbb{Q}(t) \) is symmetric so \(\Delta_\mathbb{Q}(t) \) is unit symmetric. The last statement follows since odd degree polynomials cannot be unit symmetric (they can be at most mod unit symmetric). \(\Box \)

Theorem 7. The Alexander polynomial \(\Delta(t) \) of \(M \) is unit symmetric.

Proof. By Corollary 4, \(\Delta(t) \) is of even degree. By Blanchfield we know that any \(\Delta_M(t) \) is mod unit symmetric. Since the degree is even, this implies that it is unit symmetric. \(\Box \)
Lemma 3. For $b_1 M = 1$ the trace of the Alexander polynomial Δ_M is non-zero and its absolute value is equal to the order of $\text{Tor} H_1(M;\mathbb{Z})$.

Proof. Let $\hat{P}(t)$ be a presentation matrix for the Λ-module $H_1(\hat{M})$, then $P := \hat{P}(1)$ is a presentation matrix for $G = p_*(H_1\hat{M}) = \text{image of } H_1\hat{M} \text{ in } H_1 M$ by the covering map $p : \hat{M} \rightarrow M$. Since \hat{M} is an infinite cyclic covering of M, we have the exact sequence

$$1 \rightarrow p_*(\pi_1(\hat{M})) \subset \pi_1(M) \rightarrow \mathbb{Z} \rightarrow 0.$$

By abelianizing $\pi_1 M$, we obtain the sequence

$$0 \rightarrow G \subset H_1(M) \rightarrow \mathbb{Z} \rightarrow 0$$

which is exact: here we are using the fact that

1. The image of the subgroup $p_*(\pi_1(\hat{M})) < \pi_1(M)$ by the abelianization map $\pi_1(M) \rightarrow H_1(M)$ is G.

2. The epimorphism $\psi : \pi_1(M) \rightarrow \mathbb{Z}$ satisfies $\ker(\psi) \supset [\pi_1(X), \pi_1(X)]$.

Thus $H_1(M) \approx G \oplus \mathbb{Z}$ as abelian groups so that $\text{Tor}(G) = \text{Tor}(H_1(M))$. But G is a finitely generated abelian group and so is isomorphic to $\mathbb{Z}^r \oplus \mathbb{Z}/n_1 \mathbb{Z} \oplus \cdots \oplus \mathbb{Z}/n_k \mathbb{Z}$ for integers r, n_1, \ldots, n_k, and P must be equivalent to the diagonal presentation matrix $\text{diag}(n_1, \ldots, n_k)$. Then

$$\Delta_M(1) = \det(P) = n_1 \cdots n_k = |\text{Tor}(H_1(M))|.$$

We can now conclude with the

Proof (Characterization Theorem). Immediate from Theorem 1.2 and Lemma 3.

5. Manifolds with $b_1 > 1$

In this chapter we consider Alexander polynomials of closed 3-manifolds with $b_1 > 1$.

5.1. Manifolds with $b_1 = 2, 3$. As mentioned in the Introduction, the following closed 3-manifolds M have $\Delta_M = 1$:

- $H_3(\mathbb{R})/H_3(\mathbb{Z})$ = Heisenberg manifold [12], $b_1 = 2$.
- \mathbb{T}^3 = the 3-torus, $b_1 = 3$.

Applying the generalized Levine’s theorem to the above examples, we have the following corollary:

Corollary 5. Let M be a closed 3-manifold with first Betti number 2 or 3. Then the set of symmetric Laurent polynomials in 2 or 3 variables with $\text{tr} (\lambda) \neq 0$, is contained in the set of Alexander polynomials Δ_M with first Betti number equal to 2 or 3.
5.2. **Manifolds with** $b_1 \geq 4$. In this section we will prove

Theorem 8. $\Delta_M \neq 1$ for any closed 3-manifold with $b_1M \geq 4$.

The proof of this theorem requires several facts which we summarize now. Let p be a prime and $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$. Recall that for a manifold N, the mod p Betti numbers are defined

$$b_k(N; \mathbb{F}_p) := \text{rank}(H_k(N; \mathbb{F}_p)).$$

We will use the abbreviated notation

$$d_p(N) := b_1(N; \mathbb{F}_p)$$

for the first mod p Betti number.

Fact 1. Let \tilde{M}_p be the finite abelian cover of M associated to the epimorphism

$$\psi_p : \pi_1 M \rightarrow H_1(M; \mathbb{Z}) \rightarrow H_1(M; \mathbb{F}_p).$$

Let $r = d_p(M)$. Using an inequality of Shalen and Wagreich [15], we will deduce in §5.3 that

$$d_p(\tilde{M}_p) \geq \binom{r}{2}.$$

Fact 2. Suppose that $\Delta_M = 1$ and let $M' \rightarrow M$ be a finite abelian cover with deck group $\mathbb{F}_{p_1} \oplus \cdots \oplus \mathbb{F}_{p_k}$, p_1, \ldots, p_k primes. Then

a. The torsion subgroup of $H_1(M'; \mathbb{Z})$ is trivial.

b. $b_1M' = b_1M$. This is a consequence of an equality of E. Hironaka [8].

These statements will be proved in §5.4.

Assuming for the moment the above facts, we can now give the

Proof of Theorem 8. We consider a cover \tilde{M}_p as in Fact 1 with p prime to the order of the torsion subgroup of $H_1(M'; \mathbb{Z})$ is trivial. Taking $M' = \tilde{M}_p$, it follows from Fact 2. (parts a. and b.) that

$$d_p(\tilde{M}_p) = d_p(M) = r.$$

But the inequality in Fact 1. is satisfied only for $r \leq 3$, since $r < \binom{r}{2}$ for all $r \geq 4$. □

5.3. **\mathbb{F}_p-Homology and Finite Cyclic Covers.** In this section we will derive the inequality of Fact 1. above.

Fix a prime p and let G be a group. If $A < G$ is a subgroup then we define

$$G\#A = [G, A]A^p := \langle [g, a]b^p \mid g \in G, a, b \in A \rangle,$$

where $[g, a] = gag^{-1}a^{-1}$ and $\langle X \rangle$ means the group generated by X.

We note that if $A < G$ then $G\#A < A$ and $A/(G\#A)$ is an elementary abelian p-group i.e a direct sum of copies of \mathbb{F}_p. The **mod p lower central series** $\{G_i\}$ of G is defined by

$$G_{i+1} = G\#G_i$$

where $G_0 = G$. By the above comments we have $G_{i+1} < G_i$ and G_i/G_{i+1} is an elementary abelian p-group for all $i = 0, 1, 2, \ldots$. See [17].
Let $\Gamma = \pi_1 M$ where M is an orientable closed 3-manifold, and let $\{\Gamma_i\}$ be its mod p lower central series. Let $r = \text{rank}(\Gamma/\Gamma_1)$. The following result appears as Lemma 1.3 in [15].

Theorem 9 (Shalen and Wagreich). $\text{rank}(\Gamma_1/\Gamma_2) \geq \binom{r}{2}$.

Proof. See [15] or [9].

We now give a geometric interpretation of this theorem in terms of first Betti numbers. We start by noting that

Proposition 4. $\Gamma/\Gamma_1 \cong H_1(M;\mathbb{F}_p)$.

Proof. This will follow from showing that Γ_1 is the kernel of the projection $\psi_p : \Gamma \to H_1(M;\mathbb{F}_p)$. First, note that ψ_p is the composition

$$\Gamma \to H_1(M;\mathbb{Z}) \to H_1(M;\mathbb{F}_p),$$

and the image of $\Gamma_1 = \Gamma \# \Gamma$ by the first map in the composition is $pH_1(M;\mathbb{Z})$ which is the kernel of the second map. Thus $\Gamma_1 \subset \text{Ker}(\psi_p)$. On the other hand, any element $\gamma \in \text{Ker}(\psi_p)$ must belong to a coset of the form $b^p[\Gamma,\Gamma]'$, and thus $\gamma \in \Gamma_1$. □

Let $\tilde{M}_p \to M$ be the finite abelian cover associated to the projection $\psi_p : \Gamma \to H_1(M;\mathbb{F}_p)$. We have $\pi_1\tilde{M}_p \cong \Gamma_1$ and

$$\text{Deck}(\tilde{M}_p/M) \cong \Gamma/\Gamma_1 \cong H_1(M;\mathbb{F}_p) \cong (\mathbb{F}_p)^r.$$

Recall the following notation that was used in the introduction to this chapter

$$d_p(N) := \text{rank } (H_1(N;\mathbb{F}_p)).$$

When $N = M$ we have $d_p(M) = r$. We have the following Corollary to the Theorem of Shalen and Wagreich:

Corollary 6. $d_p(\tilde{M}_p) \geq \binom{r}{2}$.

Proof. We will show that $\text{rank}(\tilde{M}_p) \geq \text{rank}(\Gamma_1/\Gamma_2)$. Applying the analysis of the previous paragraphs to \tilde{M}_p in place of M, we know that

$$d_p(\tilde{M}_p) = \text{rank}(H_1(\tilde{M}_p;\mathbb{F}_p)) = \text{rank}(\Gamma_1/(\Gamma_1 \# \Gamma_1)).$$

Now

$$\Gamma_1/(\Gamma_1 \# \Gamma_1) = \Gamma_1/[\Gamma_1,\Gamma_1](\Gamma_1)^p.$$

But $\Gamma_2 = \Gamma \# \Gamma_1 = [\Gamma_1,\Gamma](\Gamma_1)^p$ so that

$$\Gamma_1/\Gamma_2 = \Gamma_1/[\Gamma,\Gamma_1](\Gamma_1)^p.$$

Thus Γ_1/Γ_2 is a quotient of $\Gamma_1/(\Gamma_1 \# \Gamma_1)$ and the Corollary follows. □
5.4. Closed 3-manifolds with $\Delta = 1$. We first recall the following result which relates the order of torsion in the homology of finite abelian covers to values of the Alexander polynomial:

Theorem 10. Let $M' \to M$ be a finite abelian cover lying below the universal free abelian cover $\hat{M} \to M$, with deck group $\mathbb{F}_p \oplus \cdots \oplus \mathbb{F}_{p_n}$, where the p_i are primes. Assume that $\Delta_M(t_1, \ldots, t_n)$ has no zero of the form $(\rho_{e_1}^{e_1}, \ldots, \rho_{e_n}^{e_n})$ where ρ_i is a p_ith root of unity. Then

$$|\text{Tor}(H_1 M')| = \left| \prod \Delta_M(\rho_{e_1}^{e_1}, \ldots, \rho_{e_n}^{e_n}) \right|$$

where the product is over all (e_1, \ldots, e_n) with $0 \leq e_i < p_i$.

Theorem 10 was first proved in the case of knot complements by Fox (see [5]) and stated in the above generality by Turaev ([20], page 136) but he only provides a proof for cyclic covers. A complete proof can be found in [1]. We have immediately part a. of Fact 2:

Corollary 7. Let M be a closed 3-manifold with $\Delta = 1$ and let $M' \to M$ be a finite abelian cover. Then

$$\text{Tor}(H_1 M') = 1.$$

In particular, taking $M = M'$, $\text{Tor}(H_1 M) = 1$.

To prove part b. of Fact 2, we will need a formula of E. Hironaka [8], which we describe in our setting. Let $M' \to M$ be a finite cover and assume that $\Delta_M = 1$. Let us denote

- $D = \text{the deck group of } M' \to M$.
- $\Gamma = \pi_1 M$.
- $\alpha : \Gamma \to D$ the projection.

For any group G, the character group is denoted

$$\hat{G} = \text{Hom}_{\text{cont}}(G, \mathbb{C}^*)$$

where Hom_{cont} means the group of continuous homomorphisms. Write $\hat{1}$ for the trivial character. We recall that \hat{G} is a topological group. In our case, $G = \Gamma$ or D, which are discrete groups, so continuous homomorphisms are just homomorphisms. Since $\alpha : \Gamma \to D$ is an epimorphism, there is an induced inclusion

$$\hat{\alpha} : \hat{D} \to \hat{\Gamma}.$$

Let $\chi \in \hat{\Gamma}$ and $\Lambda = \mathbb{Z}[t_1^{\pm 1}, \ldots, t_r^{\pm 1}]$. Note that χ induces a homomorphism of $\Gamma^{ab} \cong \mathbb{Z}^r$ (the last isomorphism is by Corollary [7]). We may then extend χ linearly to a ring homomorphism $\chi : \Lambda \to \mathbb{C}$.

We now describe the formula of E. Hironaka, following [8]. Before doing so, we remark that the definition of the Alexander polynomial used in [8] is the one formulated using the relative Alexander module

$$A^\text{rel}_M = H_1(\hat{M}, \hat{x}), \quad \hat{x} = p^{-1}(x), x \in M$$

(see [12]). If $P(t_1, \ldots, t_r)$ is a presentation matrix of A^rel_M, the Alexander polynomial is defined in this setting to be a generator of the smallest principal ideal containing the ideal generated by the $(r-1)$ minors of $P(t_1, \ldots, t_r)$. A proof of the equivalence of the relative homology definition with the absolute homology definition can be found in [1] (the equivalence is in fact implicit in Theorem 2.7 of [11] as well as Theorem 16.5 of [21]).
Now given $\chi \in \hat{\Gamma}$ let $P(\chi)$ denote the matrix with complex entries obtained by evaluating each entry of $P(t_1, \ldots, t_r)$ at χ. For each i, define

$$V_i = \left\{ \chi \in \hat{\Gamma} \mid \text{rank}(P(\chi)) < r - i \right\}.$$

Then Hironaka's formula (see [8], page 16, Proposition 2.5.6.) says that

$$b_1 M' = b_1 M + \sum_{i=1}^{r-1} |\alpha(\hat{D} \setminus \hat{1}) \cap V_i|.$$

Theorem 11. Suppose that $\Delta_M = 1$ and let $M' \to M$ be any finite abelian cover of M with deck group $D = \mathbb{F}_{p_1} \oplus \cdots \oplus \mathbb{F}_{p_k}$, p_1, \ldots, p_k primes. Then $b_1 M' = b_1 M$.

Proof. We claim that $|\alpha(\hat{D} \setminus \hat{1}) \cap V_i| = 0$ for all $i = 1, \ldots, r - 1$. To do this, it is enough to show that

$$|\alpha(\hat{D} \setminus \hat{1}) \cap V_1| = 0,$$

since $V_1 \supset \cdots \supset V_{r-1}$. So we must show that for every character $\chi \in \alpha(\hat{D} \setminus \hat{1})$, $\text{rank } P(\chi) \geq r - 1$.

Let us suppose not, that there exists a χ with rank $P(\chi) < r - 1$. Then every $r - 1$ minor of $P(\chi)$ is 0. But $P(\chi)$ is obtained by evaluating each polynomial appearing in P at

$$t_1 = \rho_1^{e_1}, \ldots, t_k = \rho_k^{e_k},$$

where $\rho_j = \exp(2\pi i / p_j)$ and the exponents $e_1, ..., e_k$ depend on χ. This implies that

$$\Delta(\rho_1^{e_1}, \ldots, \rho_k^{e_k}) = 0,$$

which contradicts the fact that $\Delta = 1$. Indeed, the greatest common factor of the $(r-1) \times (r-1)$ minors of $P(\chi)$ is $1 = \Delta(\rho_1^{e_1}, \ldots, \rho_k^{e_k})$, so the minors cannot all be 0. This contradicts our hypothesis, and therefore $\text{rank } P(\chi) \geq r - 1$. \qed

References

[1] K. Alcaraz, The Alexander Polynomial of Closed 3-manifolds. PhD thesis, University of Oxford (2012).

[2] J.W. Alexander, Topological invariants of knots and links. *Trans. AMS* 30 (1928), 275–306.

[3] R. C. Blanchfield, Intersection theory of manifolds with operators with applications to knot theory. *Ann. of Math.*, 65 (1957), 340–356.

[4] R. H. Fox, Free differential calculus I. *Annals of Math.*, 57 (1953), 547–560.

[5] C. McA. Gordon, Some aspects of classical knot theory. *Lecture Notes in Math.*, 685 (1978), 1–69.

[6] P. Griffiths & J. Harris, *Principles of Algebraic Geometry*. Wiley Classics Library, Wiley-Interscience, Hoboken, New Jersey, 1994.

[7] J. Hillman, The Torres conditions are insufficient. *Math. Proc. Cambridge Philos. Soc.* 89 (1981), 19-22.

[8] H. Hironaka, Alexander stratifications of character varieties. *Ann. de l'Inst. Four.*, 47 (2) (1997), 555–583.

[9] M. Lackenby, New lower bounds on subgroups growth and homology growth. *Proc. London Math. Soc.*, 98 (2) (2009), 271–297.

[10] J. Levine, A method for generating link polynomials. *American Journal of Mathematics*, 89 (1967), 69–84.

[11] G. Massuyeau, A short introduction to the Alexander polynomial. www-irma.u-strasbg.fr/~massuyeau/talks/Alex.pdf, 2008.

[12] C. McMullen, The Alexander polynomial of a 3-manifold and the Thurston norm on cohomology. *Ann. scient. de Éc. Norm. Sup.* 35 (2002), 153–172.
[13] Platt, M.L., Insufficiency of Torres’ conditions for two-component classical links. *Trans. AMS*, 296 (1986), 125–136.

[14] D. Rolfsen, *Knots and Links*. AMS Chelsea, Providence, RI, 2003.

[15] P. B. Shalen, P. Wagreich, Growth rates, Z_p-homology, and volumes of hyperbolic 3-manifolds, *Trans. Amer. Math. Soc.* 331 (1992) 895–917.

[16] E. Spanier, *Algebraic Topology*. Springer-Verlag, New York, 1994.

[17] J. Stallings, Homology and central series of groups *J. of Algebra* 2 (1965) 170–181., 2:170?181, 1965.

[18] G. Torres, On the Alexander polynomial. *Ann. of Math.*, 57 (1953), 57–89.

[19] V. Turaev, The Alexander polynomial of a three dimensional manifold. *Math. USSR Sb.*, 26 (1975), 313–329.

[20] V. Turaev, Reidemeister torsion in knot theory. *Russian Math. Surveys*, 41:1 (1986), 119–182.

[21] V. Turaev, *Torsions of 3-dimensional manifolds*, volume 208 of *Progress in Mathematics*. Birkhauser Verlag, Basel, 2002.

The University of Texas at Austin, Department of Mathematics, 1 University Station C1200 Austin, TX 78712-0257

E-mail address: karin@math.utexas.edu