Enhanced negative emotional processing limits behavioral flexibility in a mouse model of autism spectrum disorder

Miru Yun$^{1,2}$, Eunjoon Kim$^{1,2,*}$, Min Whan Jung$^{1,2,*}$

$^{1}$Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea

$^{2}$Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon 34141, Korea

*Correspondence to: EK (kime@kaist.ac.kr) and MWJ (mwjung@kaist.ac.kr)
Abstract

Impaired behavioral flexibility might underlie some of the symptoms associated with autism spectrum disorder (ASD). We investigated whether and how behavioral flexibility is impaired in a mouse model of ASD by testing Shank2-knockout (Shank2-KO) mice in reversal learning. Shank2-KO mice were trained in probabilistic classical conditioning with two odor cues paired with water and air puff. Upon the reversal of cue-outcome contingency, Shank2-KO mice were significantly slower than wild-type mice in reversing their anticipatory licking responses. Shank2-KO mice also showed stronger anticipatory eye closure responses than wild-type mice to the air puff, raising a possibility that the impairment might be because of enhanced negative emotional processing. Indeed, Shank2-KO mice showed intact reversal learning when the strong air puff was replaced with a mild air puff. Shank2-KO mice also showed intact reversal learning between two odor cues predicting rewards with different probabilities. These results indicate that enhanced negative emotional processing suppresses reversal learning despite of intact capability to learn cue-outcome contingency changes in Shank2-KO mice in our behavioral settings. Our findings suggest that behavioral flexibility may be seriously limited by abnormal emotional processing in ASD.

Keywords

Autism spectrum disorder; Shank2; mouse; behavioral flexibility; reversal learning; anxiety;
Introduction

Autism spectrum disorders (ASD) are developmental disorders that are associated with a diverse array of symptoms including impaired social interaction and communication as well as repetitive and restrictive patterns of behavior (American Psychiatric Association, 2013). Many genes implicated in ASD are expressed broadly in the cerebral cortex and, therefore, their mutations can potentially lead to aberrant circuit development in widespread cortical areas (Hashem et al., 2020; Mundy, 2003; Yan & Rein, 2021). Given that the cerebral cortex plays a key role in adaptive control of behavior, mutations in genes playing important roles in cortical development may well lead to compromised behavioral flexibility in adults. In this respect, ASD patients often show impairments in the tasks requiring cognitive flexibility such as the Wisconsin card sorting test (Hill, 2004; Leung & Zakzanis, 2014), and impaired cognitive flexibility has been proposed to underlie repetitive and restrictive patterns of behavior, a core symptom of ASD (Geurts, Corbett, & Solomon, 2009). ASD patients also show impairments in reversal learning with their performance correlated with clinical ratings of restricted and repetitive behaviors (D'Cruz et al., 2013) or everyday symptoms of behavioral inflexibility (South, Newton, & Chamberlain, 2012). In addition, impaired behavioral flexibility has been reported in mouse models of ASD. Two mouse models of ASD, BTBR T+ tf/J (BTBR) and C58 mice, showed impaired spatial reversal learning with their performance negatively correlated with repetitive behavior (D.A. Amodeo, Jones, Sweeney, & Ragozzino, 2012; Whitehouse, Curry-Pochy, Shafer, Rudy, & Lewis, 2017). Collectively, albeit limited, studies have found impaired behavioral flexibility and its correlations with repetitive and restrictive behaviors in ASD patients and animal models, raising a possibility that repetitive and restrictive patterns of behavior associated with ASD might be manifestations of impaired flexibility.

Shank2 (SH3 and multiple ankyrin repeat domains 2), which is a multi-domain scaffolding protein enriched in the postsynaptic density of excitatory synapses (Sheng & Kim, 2000, 2011), is strongly implicated in ASD (Abrahams et al., 2013). Genetic variations of SHANK2 gene have been identified in ASD (Aspromonte et al., 2019; Bai et al., 2018; Berkel et al., 2010; Berkel et al., 2012; Chilian et al., 2013; Costas, 2015; Guilmatre, Huguet, Delorme, & Bourgeron, 2014; Homann et al., 2016; Leblond et al., 2012; Leblond et al., 2014; Liu et al., 2013; Lu, Mu, Osborne, & Cordner, 2018; Mossa, Giona, Pagano, Sala, & Verpelli, 2018; S Peykov et al., 2015; S. Peykov et al., 2015; Pinto et al., 2010; Prasad et al., 2012; Rauch et al., 2012; Sanders et al., 2012; Satterstrom et al., 2020; Schluth-Bolard et al., 2013; Wang et al., 2020; Wischmeijer et al., 2010; Yuen et al., 2017; Zhou et al., 2019). Moreover, mutations/deletions in Shank2 gene lead to a diverse array of behavioral changes in mice, and some of them show impaired social interaction and repetitive behavior, two core symptoms of ASD (Eltokhi, Rappold, & Sprengel, 2018; Ha et al., 2016; Kim et al., 2018; Lim et al., 2017; Pappas et al., 2017; Peter et al., 2016; Schmeisser et al., 2012; Won et al., 2012). The mice with alterations in Shank2 gene
have been used widely to investigate neurobiological mechanisms of ASD and, as a result, substantial amounts of behavioral and neural data have been accumulated. However, the relationship between Shank2 mutations and behavioral flexibility is largely unknown. In the present study, we investigated whether and how behavioral flexibility is compromised in Shank2 homozygous knock-out (Shank2-KO) mice. For this, we subjected Shank2-KO mice to reversal learning using a probabilistic classical conditioning paradigm. The results indicate that Shank2-KO mice have intact capability to update changes in cue-outcome contingency, but display abnormally heightened negative emotional responses that limit behavioral flexibility under certain circumstances.

Results

We used male Shank2-KO mice with deletions in exons 6 and 7 of Shank2 gene which mimic the microdeletion of exons 6 and 7 in human SHANK2 gene identified in ASD (Won et al., 2012). The mice were trained in a probabilistic classical conditioning task under head fixation (Figure 1a) as previously described (Jeong, Kim, Song, Paik, & Jung, 2020). Two different odor cues (randomly chosen in a given trial) were paired with an appetitive outcome (water) or an aversive outcome (air puff) with given probabilities (Figure 1b).

Figure 1. Behavioral task. (a) The experimental setting. Head-fixed mice performed a probabilistic classical conditioning task. (b) Task schematic. A conditioned stimulus (CS; odor) was delivered for 1 s and, after a 1-s delay, an unconditioned stimulus (US), either appetitive (water, 6 µl) or aversive (air puff), was delivered in a probabilistic manner. Each CS was paired with 75% water (CS\textsubscript{Rw}) or 75% strong air puff (CS\textsubscript{Pn(strong)}) in Experiment 1, 75% water or 75% mild air puff (CS\textsubscript{Pn(mild)}) in Experiment 3, and 80% water (CS\textsubscript{80%}) or 20% water (CS\textsubscript{20%}) in Experiment 4.
In Experiment 1, one odor cue was paired with a small amount of water (6 µl) and another with an air puff (100 ms, 3 psi) each with 75% probability (Figure 2a). Wild-type (WT; n = 10) and Shank2-KO mice (n = 10) were trained in this probabilistic appetitive/aversive conditioning task for three daily sessions (acquisition phase; 400 trials per session). We used anticipatory lick rate during the delay period (1 s) as an index for discrimination between reward-predicting and punishment-predicting cues throughout the study. The anticipatory lick rate in CS\textsubscript{Rw} trials increased during training. Two-way mixed ANOVA indicated a significant main effect of session \((F_{(2, 36)} = 4.629, p = 0.016)\) without a significant main effect of animal group \((F_{(1, 18)} = 2.695, p = 0.118)\) or session×animal group interaction \((F_{(2, 36)} = 0.347, p = 0.709; \text{Figure 2b})\). In contrast, the anticipatory lick rate in CS\textsubscript{Pn} trials did not change significantly during training (main effect of session, \(F_{(2, 36)} = 2.0274, p = 0.146\); main effect of animal group, \(F_{(1, 18)} = 1.311, p = 0.267\); session×animal group interaction, \(F_{(2, 36)} = 1.088, p = 0.348; \text{Figure 2c})\). During the last acquisition session, as shown by two sample sessions in Figure 2a, the anticipatory lick rate during the delay period was significantly higher in CS\textsubscript{Rw} than CS\textsubscript{Pn} trials in both animal groups (WT mice, 2.7±0.5 and 0.6±0.1 Hz, respectively; paired \(t\)-test, \(t_{(9)} = 3.804; p = 0.001\); Shank2-KO mice, 3.9±0.6 and 1.0±0.2 Hz, respectively; \(t_{(9)} = 4.563; p = 2.4\times10^{-4}\)). These results indicate intact motivation and capability to learn the cue-outcome contingency in Shank2-KO mice.

The mice were then subjected to reversal learning. We reversed cue-outcome contingency so that the previous reward-predicting cue becomes the punishment-predicting cue after reversal (CS\textsubscript{Rw}→Pn) and vice versa (CS\textsubscript{Pn}→Rw). All mice were trained until they reach the reversal criterion over 1~5 sessions (400 trials per daily session). The number of trials to reach the reversal criterion differed significantly between WT and Shank2-KO mice (250.0±39.7 and 570.7±146.6 trials, respectively; \(t\)-test, \(t_{(18)} = 2.112, p = 0.049\); Figure 2d,e). The mice sometimes consumed water in the subsequent trial rather than during the inter-trial interval following a rewarded trial. To rule out the influence of such invalid anticipatory licks, we determined the number of trials to reversal criterion after deleting the trials during which the mice consumed water delivered in the previous trial (226 out of 8213 trials; 2.75%). This analysis also yielded a significant difference in the number of trials to reach the reversal criterion between WT and Shank2-KO mice (250.1±39.7 and 571.2±146.7 trials, respectively; \(t_{(18)} = 2.112, p = 0.049\)). These results indicate slower reversal learning in Shank2-KO than WT mice.
Figure 2. Impaired reversal learning in Shank2-KO mice. Results of Experiment 1. (a) Left, two odor cues, CS\textsubscript{Rw} and CS\textsubscript{Pn}, were paired with 75% reward (water, 6 µl; blue) and 75% strong air puff (100 ms, 3 psi; red), respectively. Right, samples for licking responses (lick density functions, \( \sigma = 100 \text{ ms} \)) of WT (left) and Shank2-KO (right) mice during the last acquisition session. Trials were grouped according to CS and outcome. Shading, SEM across trials. (b and c) Z-normalized anticipatory lick rates (delay-period lick rates) of WT (solid line) and Shank2-KO (dashed line) mice in CS\textsubscript{Rw} (b) and CS\textsubscript{Pn} (c) trials during initial acquisition. \( P \)-values, outcomes of two-way mixed ANOVA. **\( p < 0.01 \), post-hoc Bonferroni test. (d) Sample reversal-learning sessions. Blue and red lines indicate anticipatory licking responses to CS\textsubscript{Rw}→Pn and CS\textsubscript{Pn}→Rw cues, respectively, in moving average of 25 trials. Gray and black squares on top, significantly higher anticipatory licking response to CS\textsubscript{Rw}→Pn (gray) or CS\textsubscript{Pn}→Rw (black) cue than the other in a moving window of 25 trials (\( p < 0.05 \), paired \( t \)-test). Triangles on top indicate the first trial since cue-outcome contingency reversal that exceeded the reversal criterion. (e) The number of trials to exceed the reversal criterion. Gray circles, individual animal data; bar graphs and error bars, mean and SEM. *\( p < 0.05 \), \( t \)-test.
ASD is associated with atypical sensory responses and heightened anxiety (Chen et al., 2020; Kazdoba et al., 2015; Vasa et al., 2014). We therefore examined whether WT and Shank2-KO mice show differential eye closure responses to the air puff using separate groups of WT (n = 8) and Shank2-KO (n = 8) mice. Specifically, we delivered the identical air puff used in Experiment 1 (100 ms, 3 psi) without any preceding sensory cue (ITI, 9-11 s, uniform random distribution) and measured the fraction of eye closure before, during, and after air puff delivery (Figure 3a). Eye closure response did not differ significantly between WT and Shank2-KO mice immediately after air puff delivery (1-s time window since air puff onset; t-test, t(14) = 1.484, p = 0.160; Figure 3b). However, eye closure response differed significantly between WT and Shank2-KO mice before (1.5-s time window before air puff onset; t(14) = 2.380, p = 0.032) and after (between 2.5 and 4 s since air puff onset; t(14) = 2.157, p = 0.049) air puff delivery (Figure 3b). These results indicate differential anticipatory eye closure responses between WT and Shank2-KO mice.

Figure 3. Eyelid closure response to air puff differs between WT and Shank2-KO mice. Results of Experiment 2. (a) Eyelid closure responses to air puff were estimated by measuring pupil diameter with an infrared camera. (b) Eyelid closure responses (average of 5 trials) of WT (black) and Shank2-KO (red) mice (shading, SEM across mice) to the strong (100 ms, 3 psi) air puff used in Experiment 1. Shaded rectangles indicate time periods before (green, 1.5 s before air puff onset), immediately after (orange, 1 s after air puff onset), and after air puff delivery (purple, between 2.5 and 4 s after air puff onset). *p < 0.05, t-test. (c) Eyelid closure responses to the mild (5 ms, 3 psi) air puff used in Experiment 3.

The above results raise a possibility that abnormal emotional responses to air puff may negatively affect reversal learning in Shank2-KO mice. We therefore examined the relationship between air puff strength and eye closure response by systematically varying the duration and intensity of air puff (15 combinations except for the original one (100 ms,
Eye closure responses immediately after air puff delivery (1 s) did not differ significantly between the two animal groups in all combinations of air puff duration and intensity (t-test, p-values > 0.05; Figure 3-supplementary figure 1). However, anticipatory eye closure responses before (1.5-s time window before air puff onset) and after air puff delivery (between 2.5 and 4 s since air puff onset) differed significantly between the two animal groups in some intermediate-strength combinations. Mild air puffs induced similarly low levels of anticipatory eye closure responses (Figure 3c), and powerful air puffs induced similarly high levels of anticipatory eye closure responses (Figure 3-supplementary figure 1a) in WT and Shank2-KO mice. However, to some intermediate-strength air puffs ('strong' air puffs), the anticipatory eye closure response was significantly stronger in Shank2-KO than WT mice (Figure 3-supplementary figure 1 and Figure 3-supplementary table 1). These results suggest altered emotional processing in Shank2-KO mice. Based on these results, we chose to use the mildest air puff (5 ms, 3 psi; Figure 3c) to further examine reversal learning of Shank2-KO mice.

Experiment 3: Appetitive/aversive reversal learning with a mild air puff

In Experiment 3, WT (n = 10) and Shank2-KO mice (n = 10) were trained in the appetitive/aversive conditioning in the same manner as in Experiment 1 except that a mild air puff (5 ms, 3 psi), to which the two animal groups show similar anticipatory eye closure responses, was used (Figure 4a). The anticipatory lick rate during the delay period increased during the initial training with no significant difference between the animal groups in CS<sub>Rw</sub> trials (two-way mixed ANOVA, main effect of session, F<sub>(2, 36) = 3.313</sub>, p = 0.048; main effect of mouse group, F<sub>(1, 18) = 0.270</sub>, p = 0.070; mouse group×session interaction, F<sub>(2, 36) = 1.162</sub>, p = 0.324; Figure 4b). In CS<sub>Pn</sub> trials, the anticipatory lick rate did not change significantly during training, and Shank2-KO mice showed overall higher anticipatory lick rates than WT mice (main effect of session, F<sub>(2, 36) = 1.863</sub>, p = 0.170; main effect of mouse group, F<sub>(1, 18) = 12.453</sub>, p = 0.002; mouse group×session interaction, F<sub>(2, 36) = 0.954</sub>, p = 0.395; Figure 4c). During the last acquisition session, as shown by two sample sessions in Figure 4a, the anticipatory lick rate during the delay period was significantly higher in CS<sub>Rw</sub> than CS<sub>Pn</sub> trials in both animal groups (WT mice, 3.3±0.4 and 0.4±0.1 Hz, respectively; paired t-test, t<sub>(9) = 6.469</sub>; p = 4.4x10<sup>-6</sup>; Shank2-KO mice, 3.3±0.6 and 1.2±0.3 Hz, respectively; t<sub>(9) = 3.359</sub>; p = 0.004). These results indicate intact learning capability of Shank2-KO mice for discriminating between reward-predicting and mild punishment-predicting cues.

We then tested the mice in reversal learning. The test procedure was identical to that in Experiment 1. Unlike in Experiment 1, the number of trials to reach the reversal criterion did not differ significantly between WT and Shank2-KO mice (373.6±117.5 and 379.0±79.9 trials, respectively; t-test, t<sub>(18) = 0.038</sub>, p = 0.970; Figure 4d,e). Similar results were obtained when we performed the same analysis after removing the trials during
which mice consumed water delivered in the previous trial (114 out of 7697 trials; 1.48%; 390.7±113.9 and 379.0±79.9 trials to reversal criterion in WT and Shank2-KO mice, respectively; \( t_{(18)} = 0.084, p = 0.934 \)). These results show intact reversal learning of Shank2-KO mice, suggesting that impaired reversal learning in Experiment 1 might be because of altered emotional responses of Shank2-KO mice to a strong air puff.

Figure 4. Intact reversal learning of Shank2-KO mice with the use of a mild air puff. Results of Experiment 3. (a) Left, Two odor cues, CS\(_{Rw}\) and CS\(_{Pn}\), were paired with 75 % reward (water, 6 µl; blue) and 75 % mild air puff (5 ms, 3 psi; pink), respectively. Right, Samples for licking responses during the last acquisition session. (b and c) Z-normalized anticipatory lick rates in CS\(_{Rw}\) (b) and CS\(_{Pn}\) (c) trials during initial acquisition. (d) Sample reversal-learning sessions. Blue and pink lines denote anticipatory licking responses to CS\(_{Rw\rightarrow Pn}\) and CS\(_{Rw\rightarrow Pn}\) cues, respectively. (e) The number of trials to exceed the reversal criterion. The same format as in Figure 2.
Figure 5. Intact learning of Shank2-KO mice in reward probability reversal. Results of Experiment 4. (a) Left, Two odor cues, CS\textsubscript{80\%} (purple) and CS\textsubscript{20\%} (green), were paired with 80\% and 20\% reward (water, 6 µl), respectively. Right, Sample licking responses during the last acquisition session. (b and c) Z-normalized anticipatory lick rates in CS\textsubscript{80\%} (b) and CS\textsubscript{20\%} (c) trials during initial acquisition. *p < 0.05, post-hoc Bonferroni test. (d) Sample reversal-learning sessions. Purple and green lines denote anticipatory licking responses to CS\textsubscript{80\%}\textrarrow{20\%} and CS\textsubscript{20\%}\textrarrow{80\%} cues, respectively. (e) The number of trials to exceed the reversal criterion. The same format as in Figure 2.

Experiment 4: Appetitive/appetitive reversal learning

To further confirm intact behavioral flexibility of Shank2-KO mice in the absence of strong negative emotions, we tested WT (n = 10) and Shank2-KO (n = 10) mice in reversal learning using only appetitive outcomes. In Experiment 4, two different odor cues were paired with the same amount of water (6 µl), but with two different probabilities (80 and 20\%; CS\textsubscript{80\%} and CS\textsubscript{20\%}; Figure 5a). The anticipatory lick rate during the delay period increased over three training sessions in CS\textsubscript{80\%} trials (two-way mixed ANOVA, main effect of session, $F_{(2, 36)} = 6.304$, $p = 0.005$; main effect of mouse group, $F_{(1, 18)} = 3.266$, $p =$
During the last acquisition session, as shown by two sample sessions in Figure 5a, the anticipatory lick rate was significantly higher in CS\textsubscript{80\%} than CS\textsubscript{20\%} trials in both animal groups (WT mice, 3.1±0.3 and 1.6±0.2 Hz, respectively; paired t-test, \(t(9) = 3.991, p = 8.6\times10^{-4}\); Shank2-KO mice, 3.7±0.6 and 2.1±0.2 Hz, respectively; \(t(9) = 2.477, p = 0.023\)). These results indicate that both animal groups successfully learned the cue-outcome contingency.

The mice were then tested in reversal learning in the same manner as in Experiments 1 and 3 except that two appetitive outcomes were used (Figure 5d). The number of trials to reach the reversal threshold did not differ significantly between the two animal groups (620.1±97.7 and 633.6±189.2 trials, respectively; t-test, \(t(18) = 0.063, p = 0.950\); Figure 5e). Similar results were obtained when we repeated the analysis after deleting the trials during which mice consumed water delivered in the previous trial (287 out of 12537 trials; 2.29\%; 604.9±96.4 and 463.7±113.0 trials to reversal criterion in WT and Shank2-KO mice, respectively; \(t(18) = 0.950, p = 0.355\)). These results further show intact reversal learning of Shank2-KO mice in the absence of strong aversive outcomes.

**Discussion**

We examined behavioral flexibility of Shank2-KO mice by testing their capability for reversal learning in a probabilistic classical conditioning task using anticipatory lick rate as an index for learning. Compared to WT mice, Shank2-KO mice showed significantly slower reversal learning when a water reward and a strong air puff were used as appetitive and aversive outcomes, respectively (Experiment 1). However, Shank2-KO mice showed stronger eye closure responses than WT mice to the anticipated air puff (Experiment 2), raising a possibility that the impaired reversal learning in Experiment 1 might be because of altered emotional processing. Indeed, when we replaced the strong air puff with a mild air puff that induced similar eye close responses between Shank2-KO and WT mice, Shank2-KO mice showed intact reversal learning (Experiment 3). Furthermore, Shank2-KO mice showed intact reversal learning between two cues predicting rewards with different probabilities (Experiment 4). Together, these results are consistent with enhanced negative emotional processing, but intact learning of cue-outcome contingency changes in Shank2-KO mice in our behavioral settings. A previous study has found delayed reversal learning in ASD patients in a fear conditioning paradigm in which an air puff was used as an unconditioned stimulus (South et al., 2012). Our results raise a possibility that ASD patients may show intact reversal learning if the
unconditioned stimulus is replaced with a mild air puff, which remains to be tested. Numerous studies indicate the role of the orbitofrontal cortex in reversal learning (L. Amodeo, McMurray, & Roitman, 2017; Ragozzino, 2007). We also have shown that the intact medial prefrontal cortex is needed for probabilistic reversal learning in mice (Jeong et al., 2020). Our results suggest that the neural machinery needed to keep track of changes in cue-outcome contingency as well as that needed to control behavior according to such evaluations are likely to be intact in these brain structures of Shank2-KO mice.

On the one hand, eye closure responses were similar between Shank2-KO and WT mice immediately after an air puff was delivered. This suggests that abnormal sensory processing, which is often observed in ASD patients (Balasco, Provenzano, & Bozzi, 2019; Marco, Hinkley, Hill, & Nagarajan, 2011) and ASD animal models (Balasco et al., 2019; Orefice et al., 2016), or abnormal reactivity to an aversive stimulus is unlikely to account for the reversal learning deficit of Shank2-KO mice observed in Experiment 1. On the other hand, Shank2-KO mice showed significantly stronger eye closure responses than WT mice before and after air puff delivery. Fear and anxiety are the emotional states that evoke a defense state against a threat (Davis, Walker, Miles, & Grillon, 2010; Tovote, Fadok, & Lüthi, 2015). Fear refers to an emotional response to a real or perceived imminent threat, whereas anxiety is often elicited by a less specific and an expected (not real) threat (American Psychiatric Association, 2013; Davis et al., 2010). Therefore, our results suggest that enhanced anxiety, rather than enhanced fear, may underlie slower reversal learning of Shank2-KO mice in Experiment 1. About 40% of children with ASD are comorbid with anxiety disorders, and the level of their anxiety is positively correlated with the degree of repetitive behavior (Evans, Canavera, Kleinpeter, Maccubbin, & Taga, 2005; Jitlina et al., 2017; Rodgers, Glod, Connolly, & McConachie, 2012; Simonoff et al., 2008; South et al., 2012; Top Jr et al., 2016; Vasa et al., 2014; Wigham, Rodgers, South, McConachie, & Freeston, 2015). Also, numerous ASD model mice, including Shank2-KO mice, show elevated anxiety (Kazdoba et al., 2015; Silverman, Yang, Lord, & Crawley, 2010; Won et al., 2012). Previous studies have found impaired behavioral flexibility in human patients with anxiety disorder (Ansari, Derakshan, & Richards, 2008; Eysenck, Derakshan, Santos, & Calvo, 2007; Lyche, Jonassen, Stiles, Ulleberg, & Landro, 2010) and mice with stress-induced enhanced anxiety (Bondi, Rodriguez, Gould, Frazer, & Morilak, 2008; George et al., 2015; Park & Moghaddam, 2017). Our results, together with these findings, raise the possibility that enhanced anxiety may limit behavioral flexibility and thereby enhance repetitive and restrictive behaviors in ASD.

Our findings are at odds with the previous studies that showed impaired spatial reversal learning in ASD patients (D’Cruz et al., 2013) and ASD model mice (D. A. Amodeo et al., 2012; Whitehouse et al., 2017) using only appetitive outcomes. One possible explanation would be that behavioral flexibility is differently compromised across ASD subjects.
(Shank2-KO mice versus BTBR and C58 mice and ASD patients). For example, Shank2-KO mice, but not BTBR and C58 mice and ASD patients, may have intact capability to update changes in cue-outcome contingency. Alternatively, the different results may be because of different experimental procedures rather than differences in ASD subjects. We tested head-fixed mice in a classical conditioning paradigm, whereas ASD patients and BTBR and C58 mice were freely moving and tested in an instrumental conditioning paradigm (D. A. Amodeo et al., 2012; Whitehouse et al., 2017). Hence, unlike in our study, the subjects were allowed to make a choice freely in these studies. Reward was delivered probabilistically in these studies and, notably, BTBR and C58 mice showed intact reversal learning when reward was delivered in an all-or-none manner. Anxiety is elevated under uncertainty (Grupe & Nitschke, 2013; Hirsh, Mar, & Peterson, 2012). Also, anxiety disorder patients prefer to play a passive rather than an active role in decision making (Anderson, Arnold, Angus, & Bryce, 2009). These results raise the possibility that uncertain outcomes under a free-choice condition may have elevated anxiety so as to impair reversal learning of ASD patients and BTBR and C58 mice in these studies. Note that conflicting results have been reported regarding impaired reversal learning in young children (preschoolers) with ASD with certain reward delivery (Coldren & Halloran, 2003; Griffith, Pennington, Wehner, & Rogers, 1999; McEvoy, Rogers, & Pennington, 1993). Given that perseveration was the main source of errors, impaired reversal in some of these studies may be because of delayed development of executive functions, such as inhibitory control, rather than enhanced anxiety. The third possibility would be that non-emotional processes related to performance in instrumental conditioning are altered in ASD. ASD patients show different patterns of decision making compare to normal subjects. For example, ASD patients showed risk-aversive attitudes during the Iowa gambling task (South et al., 2014) and a computerized financial decision-making task (Gosling & Moutier, 2018). These altered decision-making processes may delay reversal learning in an instrumental conditioning paradigm. Clearly, additional studies are required to resolve these alternative possibilities.

To summarize, our results demonstrate that one consequence of Shank2 knock-out in mice is abnormally heightened negative emotional processing that limits behavioral flexibility under certain circumstances. Our findings suggest that behavioral flexibility may be seriously limited by abnormal emotional processing in ASD. Note that behavioral inflexibility can be caused by abnormality in many different underlying processes such as inhibitory control, value-based decision making under free-choice conditions, and capturing complex stimulus-response-outcome contingencies (task rules) under cognitively demanding situations. In this regard, our results do not argue directly against the cognitive inflexibility hypothesis for ASD (Geurts et al., 2009; Van Eylen et al., 2011). Further studies are needed to determine the extent to which ASD patients and animal
models show impairments in flexibly adjusting behavior under diverse behavioral settings and its underlying neural processes.

Materials and Methods

Subjects

We used Shank2-KO mice with deletions in exons 6 and 7 of Shank2 gene which mimic the microdeletion of exons 6 and 7 in human SHANK2 gene identified in ASD (Won et al., 2012). We used 32 male Shank2-KO mice and 30 male WT littermates (3~6 months old) in this study. Eighteen (nine WT and nine Shank2-KO) mice were used in Experiment 1, three (three Shank2-KO) mice were used in Experiment 2, 20 (10 WT and 10 Shank2-KO) mice were used in Experiment 3, and seven mice (two WT and five Shank2-KO) mice were used in Experiment 4. One WT mouse was used in both Experiment 1 and Experiment 4, one Shank2-KO mouse in both Experiment 1 and Experiment 2, and 12 (eight WT and four Shank2-KO) mice in both Experiment 2 and Experiment 4. Those mice used in Experiment 2 as well as another experiment were first tested in Experiment 2. Mice were bred with C57BL/6N background and characterized by PCR genotyping as previously reported (Chung et al., 2019; Won et al., 2012). For classical conditioning, mice were water-deprived and their body weights were maintained above 80% of the initial body weights after handling. Those mice used to measure eye closure responses to air puff were fed ad libitum. All animal care and experimental procedures were performed in accordance with protocols approved by the directives of the Animal Care and Use Committee of Korea Advanced Institute of Science and Technology (approval number KA2018-08).

Surgery

A customized aluminum head plate was implanted on the skull under isoflurane (1.5–2.0 % in 100 % [v/v] oxygen) anesthesia. The head plate was placed near the lambdoid suture and fixed by screws and dental cement. The mice were allowed to recover > 1 week before behavioral training began.

Classical conditioning

All mice were trained in a probabilistic classical conditioning task under head fixation (Figure 1a) as previously described (Jeong et al., 2020). The animal’s head was fixed to a custom-built metal holder. A water port (a blunt 17-gauge needle) was placed slightly below the animal’s nose, an air puff port (a blunt 18-gauge needle) was placed 3~5 mm away from the animal’s left eye, and an odor port (silicon tube; diameter, 8 mm) was
placed slightly above the animal's nose. Four different odors (citrus, isononyl acetate, L-carvone, and 1-butanol) were dissolved in mineral oil (1:1000, v:v) and delivered to the animal using an air circulation system. Two odors were selected randomly from the four for each experiment and for each animal. The animal's licking behavior was detected by an infrared light sensor placed adjacent to the water port.

Behavioral phases consisted of habituation, acquisition, and reversal. For habituation, a small amount of water (6 µl) was provided from the water port initially in every 5 s without an odor cue (~50 trials, day 1). Then the same amount of water was provided 1 s after the delivery of an odor cue (1 s) that was different from those used in the acquisition phase, and a 2.5~4.5 s inter-trial interval (uniform random distribution) was imposed. The habituation phase lasted 1~3 sessions (~400 trials per session).

In the acquisition phase, an odor cue randomly chosen from two different odors was delivered for 1 s and, after a delay of 1 s, an associated outcome was delivered with a given probability (Figure 1b). An inter-trial interval (2.5~4.5 s, uniform random distribution) was then imposed before the next trial began. The mice were trained for three daily sessions of 400 trials in the acquisition phase. We used three different sets of cue-outcome contingency. Reward-predicting conditioned stimulus (CS_{Rw}) and punishment-predicting conditioned stimulus (CS_{Pn}) were paired with water (6 µl) and air puff, respectively, as the following:

Experiment 1: CS_{Rw} (75% delivery of water) and CS_{Pn} (75 % delivery of strong air puff; 100 ms, 3 psi).

Experiment 3: CS_{Rw} (75 % delivery of water) and CS_{Pn} (75 % delivery of mild air puff; 5 ms, 3 psi).

Experiment 4: CS_{80%} (80% delivery of water) and CS_{20%} (20% delivery of water).

In the reversal phase, the cue-outcome contingency of the acquisition phase was reversed. In Experiments 1 and 2, a reward-predicting cue before reversal was paired with a punishment after reversal (CS_{Rw}→Pn) and a punish-predicting cue before reversal was paired with a reward after reversal (CS_{Pn}→Rw). In Experiment 3, the cue predicting 80% reward delivery before reversal was paired with 20% reward delivery after reversal (CS_{80%}→20%) and the cue predicting 20% reward delivery before reversal was paired with 80% reward delivery after reversal (CS_{20%}→80%). Each mouse was trained until reversal criterion over 1~5 daily sessions (400 trials per session). The reversal criterion was determined as the following: the anticipatory lick rate during the delay period was smoothed with a moving window of 25 trials. The reversal criterion was the first trial since cue-outcome contingency reversal at which the smoothed anticipatory lick rate was...
significantly higher ($t$-test, $p < 0.05$) following $CS_{Pn\rightarrow Rw}$ than $CS_{Rw\rightarrow Pn}$ (or $CS_{20\% \rightarrow 80\%}$ than $CS_{80\% \rightarrow 20\%}$) presentation and remained that way for five consecutive trials.

Eye closure response

In Experiment 2, only air puffs were delivered without odor cues, and the area of the left pupil was measured with an infra-red camera at 30 Hz as previously described (Heiney, Wohl, Chettih, Ruffolo, & Medina, 2014; Jeong et al., 2020). The measured pupil area was normalized between 0 (fully open eye) to 1 (fully closed eye). Mice were habituated to the head-fixed experimental setting for 1 h for 3 days. They then received different durations (5, 10, 50, 100 ms) and intensities (3, 7, 15, 30 psi) of air puff (total 16 combinations), five times each. Consecutive air puffs were separated by 9~11 s intervals (uniform random distribution).

Statistical tests

Sample sizes were determined based on previous behavioral studies on ASD model mice (e.g., Won et al., 2012). All statistical tests were performed with MATLAB (version R2017a) and SPSS (version 25.0). Group comparisons were performed with Student’s $t$-tests and two-way mixed ANOVA followed by post-hoc Bonferroni tests. All statistical tests were two-tailed. Statistical significance was accepted if $p < 0.05$. All data are expressed as mean ± SEM. Raw data and code to reproduce this work are archived at Dryad (https://doi.org/10.5061/dryad.crjdfn344).

Author Contributions

M.Y. and M.W.J. conceived the study. M.Y. collected and analyzed the data. M.W.J. and E.K. supervised the study. M.Y. and M.W.J. wrote the manuscript with inputs from E.K.

Acknowledgements

This work was supported by the Institute for Basic Science (IBS-R002-D1 to E.K. and IBS-R002-A1 to M.W.J.).

Competing Interests

The authors declare no competing interests.
References

Abrahams, B. S., Arking, D. E., Campbell, D. B., Mefford, H. C., Morrow, E. M., Weiss, L. A., Menashe, I., Wadkins, T., Banerjee-Basu, S., & Packer, A. (2013). SFARI Gene 2.0: a community-driven knowledgebase for the autism spectrum disorders (ASDs). *Mol Autism*, 4(1), 36. doi:10.1186/2040-2392-4-36

American Psychiatric Association. (2013). *Diagnostic and Statistical Manual of Mental Disorders (5th. ed)*.

Amodeo, D. A., Jones, J. H., Sweeney, J. A., & Ragozzino, M. E. (2012). Differences in BTBR T+ tf/J and C57BL/6J mice on probabilistic reversal learning and stereotyped behaviors. *Behav Brain Res*, 227(1), 64-72. doi:10.1016/j.bbr.2011.10.032

Amodeo, L., McMurray, M., & Roitman, J. (2017). Orbitofrontal cortex reflects changes in response–outcome contingencies during probabilistic reversal learning. *Neuroscience*, 345, 27-37.

Anderson, W. G., Arnold, R. M., Angus, D. C., & Bryce, C. L. (2009). Passive decision-making preference is associated with anxiety and depression in relatives of patients in the intensive care unit. *Journal of critical care*, 24(2), 249-254. doi:10.1016/j.jcrc.2007.12.010

Ansari, T. L., Derakshan, N., & Richards, A. (2008). Effects of anxiety on task switching: evidence from the mixed antisaccade task. *Cogn Affect Behav Neurosci*, 8(3), 229-238. doi:10.3758/cabn.8.3.229

Aspromonte, M. C., Bellini, M., Gasparini, A., Carraro, M., Bettella, E., Polli, R., Cesca, F., Bigoni, S., Boni, S., Carlet, O., Negrin, S., Mammi, I., Milani, D., Peron, A., Sartori, S., Toldo, I., Soli, F., Turolla, L., Stanzial, F., Benedicenti, F., Marino-Buslje, C., Tosatto, S. C. E., Murgia, A., & Leonardi, E. (2019). Characterization of intellectual disability and autism comorbidity through gene panel sequencing. *Human mutation*, 40(9), 1346-1363. doi:10.1002/humu.23822

Bai, Y., Qiu, S., Li, Y., Li, Y., Zhong, W. J., Shi, M. J., Zhu, X. J., Jiang, H. Y., Yu, Y. Q., Cheng, Y., & Liu, Y. W. (2018). Genetic association between SHANK2 polymorphisms and susceptibility to autism spectrum disorder. *IUBMB life*, 70(8), 763-776. doi:10.1002/iub.1876

Balasco, L., Provenzano, G., & Bozzi, Y. (2019). Sensory Abnormalities in Autism Spectrum Disorders: A Focus on the Tactile Domain, From Genetic Mouse Models to the Clinic. *Front Psychiatry*, 10, 1016. doi:10.3389/fpsyt.2019.01016

Berkel, S., Marshall, C. R., Weiss, B., Howe, J., Roeth, R., Moog, U., Endris, V., Roberts, W., Szatmari, P., Pinto, D., Bonin, M., Riess, A., Engels, H., Sprengel, R., Scherer, S. W., & Rappold, G. A. (2010). Mutations in the SHANK2 synaptic scaffolding gene in autism spectrum disorder and mental retardation. *Nat Genet*, 42(6), 489-491. doi:10.1038/ng.589

Berkel, S., Tang, W., Trevino, M., Vogt, M., Obenhaus, H. A., Gass, P., Scherer, S. W., Sprengel, R., Schratt, G., & Rappold, G. A. (2012). Inherited and de novo SHANK2 variants associated with autism spectrum disorder impair neuronal morphogenesis and physiology. *Hum Mol Genet*, 21(2), 344-357. doi:10.1093/hmg/ddr470
Bondi, C. O., Rodriguez, G., Gould, G. G., Frazer, A., & Morilak, D. A. (2008). Chronic unpredictable stress induces a cognitive deficit and anxiety-like behavior in rats that is prevented by chronic antidepressant drug treatment. *Neuropsychopharmacology, 33*(2), 320-331. doi:10.1038/sj.npp.1301410

Chen, Q., Deister, C. A., Gao, X., Guo, B., Lynn-Jones, T., Chen, N., Wells, M. F., Liu, R., Goard, M. J., Dimidschstein, J., Feng, S., Shi, Y., Liao, W., Lu, Z., Fishell, G., Moore, C. I., & Feng, G. (2020). Dysfunction of cortical GABAergic neurons leads to sensory hyper-reactivity in a Shank3 mouse model of ASD. *Nat Neurosci, 23*(4), 520-532. doi:10.1038/s41593-020-0598-6

Chilian, B., Abdollahpour, H., Bierhals, T., Haltrich, I., Fekete, G., Nagel, I., Rosenberger, G., & Kutsche, K. (2013). Dysfunction of SHANK2 and CHRNA7 in a patient with intellectual disability and language impairment supports genetic epistasis of the two loci. *Clin Genet, 84*(6), 560-565. doi:10.1111/cge.12105

Chung, C., Ha, S., Kang, H., Lee, J., Um, S. M., Yan, H., Yoo, Y. E., Yoo, T., Jung, H., Lee, D., Lee, E., Lee, S., Kim, J., Kim, R., Kwon, Y., Kim, W., Kim, H., Duffney, L., Kim, D., Mah, W., Won, H., Mo, S., Kim, J. Y., Lim, C. S., Kaang, B. K., Boeckers, T. M., Chung, Y., Kim, H., Jiang, Y. H., & Kim, E. (2019). Early Correction of N-Methyl-D-Aspartate Receptor Function Improves Autistic-like Social Behaviors in Adult Shank2(−/−) Mice. *Biological psychiatry, 85*(7), 534-543. doi:10.1016/j.biopsych.2018.09.025

Coldren, J. T., & Halloran, C. (2003). Spatial reversal as a measure of executive functioning in children with autism. *Journal of Genetic Psychology, 164*(1), 29-41. doi:10.1080/00221320309597501

Costas, J. (2015). The role of SHANK2 rare variants in schizophrenia susceptibility. *Mol Psychiatry, 20*(12), 1486. doi:10.1038/mp.2015.119

D'Cruz, A. M., Ragozzino, M. E., Mosconi, M. W., Shrestha, S., Cook, E. H., & Sweeney, J. A. (2013). Reduced behavioral flexibility in autism spectrum disorders. *Neuropsychology, 27*(2), 152-160. doi:10.1037/a0031721

Davis, M., Walker, D. L., Miles, L., & Grillon, C. (2010). Phasic vs sustained fear in rats and humans: role of the extended amygdala in fear vs anxiety. *Neuropsychopharmacology, 35*(1), 105-135. doi:10.1038/npp.2009.109

Eltohki, A., Rappold, G., & Sprengel, R. (2018). Distinct Phenotypes of Shank2 Mouse Models Reflect Neuropsychiatric Spectrum Disorders of Human Patients With SHANK2 Variants. *Front Mol Neurosci, 11*, 240. doi:10.3389/fnmol.2018.00240

Evans, D. W., Canavera, K., Kleinpeter, F. L., MacCubbin, E., & Taga, K. (2005). The fears, phobias and anxieties of children with autism spectrum disorders and Down syndrome: comparisons with developmentally and chronologically age matched children. *Child Psychiatry Hum Dev, 36*(1), 3-26. doi:10.1007/s10578-004-3619-x

Eysenck, M. W., Derakshan, N., Santos, R., & Calvo, M. G. (2007). Anxiety and cognitive performance: attentional control theory. *Emotion, 7*(2), 336-353. doi:10.1037/1528-3542.7.2.336

George, S. A., Rodriguez-Santiago, M., Riley, J., Abelson, J. L., Floresco, S. B., & Liberzon,
I. (2015). Alterations in cognitive flexibility in a rat model of post-traumatic stress disorder. *Behav Brain Res*, 286, 256-264. doi:10.1016/j.bbr.2015.02.051

Geurts, H. M., Corbett, B., & Solomon, M. (2009). The paradox of cognitive flexibility in autism. *Trends Cogn Sci*, 13(2), 74-82. doi:10.1016/j.tics.2008.11.006

Gosling, C. J., & Moutier, S. (2018). Brief Report: Risk-Aversion and Rationality in Autism Spectrum Disorders. *J Autism Dev Disord*, 48(10), 3623-3628. doi:10.1007/s10803-018-3616-8

Griffith, E. M., Pennington, B. F., Wehner, E. A., & Rogers, S. J. (1999). Executive functions in young children with autism. *Child development*, 70(4), 817-832.

Grupe, D. W., & Nitschke, J. B. (2013). Uncertainty and anticipation in anxiety: an integrated neurobiological and psychological perspective. *Nat Rev Neurosci*, 14(7), 488-501. doi:10.1038/nrn3524

Guilmatre, A., Huguet, G., Delorme, R., & Bourgeron, T. (2014). The emerging role of SHANK genes in neuropsychiatric disorders. *Dev Neurobiol*, 74(2), 113-122. doi:10.1002/dneu.22128

Ha, S., Lee, D., Cho, Y. S., Chung, C., Yoo, Y.-E., Kim, J., Lee, J., Kim, W., Kim, H., & Bae, Y. C. (2016). Cerebellar Shank2 regulates excitatory synapse density, motor coordination, and specific repetitive and anxiety-like behaviors. *Journal of Neuroscience*, 36(48), 12129-12143.

Hashem, S., Nisar, S., Bhat, A. A., Yadav, S. K., Azeem, M. W., Bagga, P., Fakhro, K., Reddy, R., Frenneaux, M. P., & Haris, M. (2020). Genetics of structural and functional brain changes in autism spectrum disorder. *Transl Psychiatry*, 10(1), 229. doi:10.1038/s41398-020-00921-3

Heiney, S. A., Wohl, M. P., Chettih, S. N., Ruffolo, L. I., & Medina, J. F. (2014). Cerebellar-dependent expression of motor learning during eyeblink conditioning in head-fixed mice. *J Neurosci*, 34(45), 14845-14853. doi:10.1523/JNEUROSCI.2820-14.2014

Hill, E. L. (2004). Executive dysfunction in autism. *Trends Cogn Sci*, 8(1), 26-32. doi:10.1016/j.tics.2003.11.003

Hirsh, J. B., Mar, R. A., & Peterson, J. B. (2012). Psychological entropy: a framework for understanding uncertainty-related anxiety. *Psychol Rev*, 119(2), 304-320. doi:10.1037/a0026767

Homann, O. R., Misura, K., Lamas, E., Sandrock, R. W., Nelson, P., McDonough, S. I., & DeLisi, L. E. (2016). Whole-genome sequencing in multiplex families with psychoses reveals mutations in the SHANK2 and SMARCA1 genes segregating with illness. *Mol Psychiatry*, 21(12), 1690-1695. doi:10.1038/mp.2016.24

Jeong, H., Kim, D., Song, M., Paik, S. B., & Jung, M. W. (2020). Distinct roles of parvalbumin- and somatostatin-expressing neurons in flexible representation of task variables in the prefrontal cortex. *Prog Neurobiol*, 187, 101773. doi:10.1016/j.pneurobio.2020.101773

Jitlina, K., Zumbo, B., Mirenda, P., Ford, L., Bennett, T., Georgiades, S., Waddell, C., Smith, I. M., Volden, J., Duku, E., Zwaigenbaum, L., Szatmari, P., Vaillancourt, T., & Elsabbagh, M. (2017). Psychometric Properties of the Spence Children's Anxiety Scale: Parent Report
in Children with Autism Spectrum Disorder. *J Autism Dev Disord, 47*(12), 3847-3856. doi:10.1007/s10803-017-3110-8

Kazdoba, T. M., Leach, P. T., Yang, M., Silverman, J. L., Solomon, M., & Crawley, J. N. (2015). Translational mouse models of autism: advancing toward pharmacological therapeutics. *Translational Neuropsychopharmacology, 1*-52.

Kim, R., Kim, J., Chung, C., Ha, S., Lee, S., Lee, E., Yoo, Y. E., Kim, W., Shin, W., & Kim, E. (2018). Cell-Type-Specific Shank2 Deletion in Mice Leads to Differential Synaptic and Behavioral Phenotypes. *J Neurosci, 38*(17), 4076-4092. doi:10.1523/JNEUROSCI.2684-17.2018

Leblond, C. S., Heinrich, J., Delorme, R., Proepper, C., Betancur, C., Huguet, G., Konyukh, M., Chaste, P., Ey, E., Rastam, M., Anckarsater, H., Nygren, G., Gillberg, I. C., Melke, J., Toro, R., Regnault, B., Fauchereau, F., Mercati, O., Lemiere, N., Skuse, D., Poot, M., Holt, R., Monaco, A. P., Jarvela, I., Kantojarvi, K., Vanhala, R., Curran, S., Collier, D. A., Bolton, P., Chiocchetti, A., Klauck, S. M., Poustka, F., Freitag, C. M., Waltes, R., Kopp, M., Dukej, E., Bacchelli, E., Minopoli, F., Ruta, L., Battaglia, A., Mazzone, L., Maestrini, E., Sequeira, A. F., Oliveira, B., Vicente, A., Oliveira, G., Pinto, D., Scherer, S. W., Zelenika, D., Delepine, M., Lathrop, M., Bonneau, D., Guinchat, V., Devillard, F., Assouline, B., Mouren, M. C., Leboyer, M., Gillberg, C., Boeckers, T. M., & Bourgeron, T. (2012). Genetic and functional analyses of SHANK2 mutations suggest a multiple hit model of autism spectrum disorders. *PLoS Genet, 8*(2), e1002521. doi:10.1371/journal.pgen.1002521

Leblond, C. S., Nava, C., Polge, A., Gauthier, J., Huguet, G., Lumbroso, S., Giuliano, F., Stordef, C., Depienne, C., Mouzat, K., Pinto, D., Howe, J., Lemiere, N., Durand, C. M., Guibert, J., Ey, E., Toro, R., Peyre, H., Mathieu, A., Amsellem, F., Rastam, M., Gillberg, I. C., Rappold, G. A., Holt, R., Monaco, A. P., Maestrini, E., Galan, P., Heron, D., Jacquette, A., Afenjar, A., Rastetter, A., Brice, A., Devillard, F., Assouline, B., Lafargue, F., Lespinassee, J., Chiesa, J., Rivier, F., Bonneau, D., Regnault, B., Zelenika, D., Delepine, M., Lathrop, M., Sanlaville, D., Schluth-Bolard, C., Edery, P., Perrin, L., Tabet, A. C., Schmeisser, M. J., Boeckers, T. M., Coleman, M., Sato, D., Szatmari, P., Scherer, S. W., Rouleau, G. A., Betancur, C., Leboyer, M., Gillberg, C., Delorme, R., & Bourgeron, T. (2014). Meta-analysis of SHANK Mutations in Autism Spectrum Disorders: a gradient of severity in cognitive impairments. *PLoS Genet, 10*(9), e1004580. doi:10.1371/journal.pgen.1004580

Leung, R. C., & Zakzanis, K. K. (2014). Brief report: cognitive flexibility in autism spectrum disorders: a quantitative review. *J Autism Dev Disord, 44*(10), 2628-2645. doi:10.1007/s10803-014-2136-4

Lim, C. S., Kim, H., Yu, N. K., Kang, S. J., Kim, T., Ko, H. G., Lee, J., Yang, J. E., Ryu, H. H., Park, T., Gim, J., Nam, H. J., Baek, S. H., Wegener, S., Schmitz, D., Boeckers, T. M., Lee, M. G., Kim, E., Lee, J. H., Lee, Y. S., & Kaang, B. K. (2017). Enhancing inhibitory synaptic function reverses spatial memory deficits in Shank2 mutant mice. *Neuropharmacology, 112*(Pt A), 104-112. doi:10.1016/j.neuropharm.2016.08.016

Liu, Y. Y., Du, Y. S., Liu, W. W., Yang, C. H., Liu, Y., Wang, H. Y., & Gong, X. H. (2013). Lack
of Association between NLGN3, NLGN4, SHANK2 and SHANK3 Gene Variants and Autism Spectrum Disorder in a Chinese Population. *PLoS One, 8*(2), e56639. doi:ARTN e56639

10.1371/journal.pone.0056639

Lu, Z. A., Mu, W., Osborne, L. M., & Cordner, Z. A. (2018). Eighteen-year-old man with autism, obsessive compulsive disorder and a SHANK2 variant presents with severe anorexia that responds to high-dose fluoxetine. *Case Reports, 2018*, bcr-2018-225119.

Lyche, P., Jonassen, R., Stiles, T. C., Ulleberg, P., & Landro, N. I. (2010). Cognitive control functions in unipolar major depression with and without co-morbid anxiety disorder. *Frontiers in psychiatry, 1*, 149.

Marco, E. J., Hinkley, L. B., Hill, S. S., & Nagarajan, S. S. (2011). Sensory processing in autism: a review of neurophysiologic findings. *Pediatric research, 69*(8), 48-54.

McEvoy, R. E., Rogers, S. J., & Pennington, B. F. (1993). Executive function and social communication deficits in young autistic children. *Journal of Child Psychology and psychiatry, 34*(4), 563-578.

Mossa, A., Giona, F., Pagano, J., Sala, C., & Verpelli, C. (2018). SHANK genes in autism: Defining therapeutic targets. *Prog Neuropsychopharmacol Biol Psychiatry, 84*(Pt B), 416-423. doi:10.1016/j.pnpbp.2017.11.019

Mundy, P. (2003). Annotation: the neural basis of social impairments in autism: the role of the dorsal medial-frontal cortex and anterior cingulate system. *J Child Psychol Psychiatry, 44*(6), 793-809. doi:10.1111/1469-7610.00165

Orefice, L. L., Zimmerman, A. L., Chirila, A. M., Sleboda, S. J., Head, J. P., & Ginty, D. D. (2016). Peripheral Mechanosensory Neuron Dysfunction Underlies Tactile and Behavioral Deficits in Mouse Models of ASDs. *Cell, 166*(2), 299-313. doi:10.1016/j.cell.2016.05.033

Pappas, A. L., Bey, A. L., Wang, X. M., Rossi, M., Kim, Y. H., Yan, H. D., Porkka, F., Duffney, L. J., Phillips, S. M., Cao, X. Y., Ding, J. D., Rodriguiz, R. M., Yin, H. H., Weinberg, R. J., Ji, R. R., Wetsel, W. C., & Jiang, Y. H. (2017). Deficiency of Shank2 causes mania-like behavior that responds to mood stabilizers. *JCI insight, 2*(20). doi:ARTN e92052

10.1172/jci.insight.92052

Park, J., & Moghaddam, B. (2017). Impact of anxiety on prefrontal cortex encoding of cognitive flexibility. *Neuroscience, 345*, 193-202. doi:10.1016/j.neuroscience.2016.06.013

Peter, S., Ten Brinke, M. M., Stedehouder, J., Reinelt, C. M., Wu, B., Zhou, H., Zhou, K., Boele, H. J., Kushner, S. A., Lee, M. G., Schmeisser, M. J., Boeckers, T. M., Schonewille, M., Hoebeek, F. E., & De Zeeuw, C. I. (2016). Dysfunctional cerebellar Purkinje cells contribute to autism-like behaviour in Shank2-deficient mice. *Nat Commun, 7*(1), 12627. doi:10.1038/ncomms12627

Peykov, S., Berkel, S., Degenhardt, F., Rietschel, M., Nöthen, M., & Rappold, G. (2015). Rare SHANK2 variants in schizophrenia. *Molecular Psychiatry, 20*(12), 1487-1488.

Peykov, S., Berkel, S., Schoen, M., Weiss, K., Degenhardt, F., Strohmaier, J., Weiss, B., Proepper, C., Schratt, G., Nothen, M. M., Boeckers, T. M., Rietschel, M., & Rappold, G. A. (2015). Identification and functional characterization of rare SHANK2 variants in
schizophrenia. Mol Psychiatry, 20(12), 1489-1498. doi:10.1038/mp.2014.172

Pinto, D., Pagnamenta, A. T., Klei, L., Anney, R., Merico, D., Regan, R., Conroy, J.,
Magalhaes, T. R., Correia, C., Abrahams, B. S., Almeida, J., Bacchelli, E., Bader, G. D.,
Bailey, A. J., Baird, G., Battaglia, A., Berney, T., Bolshakova, N., Bolte, S., Bolton, P. F.,
Bourgeron, T., Brennan, S., Brian, J., Bryson, S. E., Caron, A. R., Casallo, G., Casey, J.,
Chung, B. H., Cochrane, L., Corsello, C., Crawford, E. L., Crossett, A., Cytrynbaum, C.,
Dawson, G., de Jonge, M., Delorme, R., Drmic, I., Duketis, E., Duque, F., Estes, A., Farrar,
P., Fernandez, B. A., Folstein, S. E., Fombonne, E., Freitag, C. M., Gilbert, J., Gilberg, C.,
Glessner, J. T., Goldberg, J., Green, A., Green, J., Guter, S. J., Hakonarson, H., Heron, E.
A., Hill, M., Holt, R., Howe, J. L., Hughes, G., Hus, V., Igliozzi, R., Kim, C., Klauck, S. M.,
Kolevzon, A., Kovatska, O., Kustanovich, V., Lajonchere, C. M., Lamb, J. A., Laskawiec,
M., Leboyer, M., Le Couteur, A., Leventhal, B. L., Lionel, A. C., Liu, X. Q., Lord, C.
Lotspeich, L., Lund, S. C., Maestrini, E., Mahoney, W., Mantoulan, C., Marshall, C. R.,
McConachie, H., McDougle, C. J., McGrath, J., McMahan, W. M., Merikangas, A., Migna,
O., Minshew, N. J., Mirza, G. K., Munson, J., Nelson, S. F., Noakes, C., Noor, A., Nygren,
G., Oliveira, G., Papanikolauou, K., Parr, J. R., Parrini, B., Paton, T., Pickles, A., Pilorge, M.,
Piven, J., Ponting, C. P., Posey, D. J., Poustka, A., Poustka, F., Prasad, A., Ragoussis, J.,
Renshaw, K., Rickaby, J., Roberts, W., Roeder, K., Roge, B., Rutter, M. L., Bierut, L. J.,
Rice, J. P., Salt, J., Sanson, K., Sato, D., Segurado, R., Sequeira, A. F., Senman, L., Shah,
N., Sheffield, V. C., Soorya, L., Sousa, I., Stein, O., Sykes, N., Stoppioni, V., Strawbridge,
C., Tancredi, R., Tansey, K., Thiruvahindrapuram, B., Thompson, A. P., Thomson, S.,
Tryfon, A., Tsiantis, J., Van Engeland, H., Vincent, J. B., Volkmar, F., Wallace, S., Wang,
K., Wang, Z., Wassink, T. H., Webber, C., Weksberg, R., Wing, K., Wittemeyer, K., Wood,
S., Wu, J., Yaspan, B. L., Zurawiecki, D., Zwaigenbaum, L., Buxbaum, J. D., Cantor, R. M.,
Cook, E. H., Coon, H., Cuccaro, M. L., Devlin, B., Ennis, S., Gallagher, L., Geschwind, D.
H., Gill, M., Haines, J. L., Hallmayer, J., Miller, J., Monaco, A. P., Nurnberger, J. I., Jr.,
Paterson, A. D., Pericak-Vance, M. A., Schellenberg, G. D., Szatmari, P., Vicente, A. M.,
Vieland, V. J., Wyjsman, E. M., Scherer, S. W., Sutcliffe, J. S., & Betancur, C. (2010).
Functional impact of global rare copy number variation in autism spectrum disorders.
Nature, 466(7304), 368-372. doi:10.1038/nature09146

Prasad, A., Merico, D., Thiruvahindrapuram, B., Wei, J., Lionel, A. C., Sato, D., Rickaby, J.,
Lu, C., Szatmari, P., Roberts, W., Fernandez, B. A., Marshall, C. R., Hatchwell, E., Eis, P.
S., & Scherer, S. W. (2012). A discovery resource of rare copy number variations in
individuals with autism spectrum disorder. G3 (Bethesda), 2(12), 1665-1685.
doi:10.1534/g3.112.004689

Ragozzino, M. E. (2007). The contribution of the medial prefrontal cortex, orbitofrontal cortex,
and dorsomedial striatum to behavioral flexibility. Ann N Y Acad Sci, 1121(1), 355-375.
doi:10.1196/annals.1401.013

Rauch, A., Wiecekorek, D., Graf, E., Wieland, T., Endele, S., Schwarzmayr, T., Albrecht, B.,
Bartholdi, D., Beygo, J., Di Donato, N., Dufke, A., Cremer, K., Hempel, M., Horn, D., Hoyer,
J., Joset, P., Ropke, A., Moog, U., Riess, A., Thiell, C. T., Tzschach, A., Wiesener, A.,
Wohlleber, E., Zweier, C., Ekici, A. B., Zink, A. M., Rump, A., Meisinger, C., Grallert, H., Sticht, H., Schenck, A., Engels, H., Rappold, G., Schrock, E., Wieacker, P., Riess, O., Meitinger, T., Reis, A., & Strom, T. M. (2012). Range of genetic mutations associated with severe non-syndromic sporadic intellectual disability: an exome sequencing study. Lancet, 380(9854), 1674-1682. doi:10.1016/S0140-6736(12)61480-9

Rodgers, J., Glod, M., Connolly, B., & McConachie, H. (2012). The Relationship Between Anxiety and Repetitive Behaviours in Autism Spectrum Disorder. Journal of autism and developmental disorders, 42(11), 2404-2409. doi:10.1007/s10803-012-1531-y

Sanders, S. J., Murtha, M. T., Gupta, A. R., Murdoch, J. D., Raubeson, M. J., Willsey, A. J., Ercan-Sencicek, A. G., DiLullo, N. M., Parikshak, N. N., Stein, J. L., Walker, M. F., Ober, G. T., Teran, N. A., Song, Y., El-Fishawy, P., Murtha, R. C., Choi, M., Overton, J. D., Bjornson, R. D., Carrió, N. J., Meyer, K. A., Mané, S. M., Sestan, N., Lifton, R. P., Gunel, M., Roeder, K., Geschwind, D. H., Devlin, B., & State, M. W. (2012). De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature, 485(7397), 237-241. doi:10.1038/nature10945

Satterstrom, F. K., Kosmicki, J. A., Wang, J. B., Breen, M. S., De Rubeis, S., An, J. Y., Peng, M. S., Collins, R., Grove, J., Klei, L., Stevens, C., Reichert, J., Mulhern, M. S., Artomov, M., Gerges, S., Sheppard, B., Xu, X. Y., Bhduri, A., Norman, U., Brand, H., Schwartz, G., Nguyen, R., Guerrero, E. E., Dias, C., Betancur, C., Cook, E. H., Gallagher, L., Gill, M., Sutcliffe, J. S., Thurm, A., Zwick, M. E., Borglum, A. D., State, M. W., Cicek, A. E., Talkowski, M. E., Cutler, D. J., Devlin, B., Sanders, S. J., Roeder, K., Daly, M. J., Buxbaum, J. D., Alekovic, B., Anney, R., Barbosa, M., Bishop, S., Brusco, A., Bybjerg-Grauholm, J., Carracedo, A., Chan, M. C. Y., Chiocchetti, A. G., Chung, B. H. Y., Coon, H., Cuccaro, M. L., Curro, A., Dalla Bernardina, B., Doan, R., Domenici, E., Dong, S., Fallerini, C., Fernandez-Prieto, M., Ferrero, G. B., Freitag, C. M., Fromer, M., Gargus, J. J., Geschwind, D., Giorgio, E., Gonzalez-Penas, J., Guter, S., Halpern, D., Hansen-Kiss, E., He, X., Herman, G. E., Hertz-Picciotto, I., Hougard, D. M., Hultman, C. M., Ionita-Laza, I., Jacob, S., Jamison, J., Jugessur, A., Kaartinen, M., Knudsen, G. P., Kolevzon, A., Kushima, I., Lee, S. L., Lehtimaki, T., Lim, E. T., Lintas, C., Lipkin, W. I., Lopergolo, D., Lopes, F., Ludena, Y., Maciel, P., Magnus, P., Mahjani, B., Maltman, N., Manoach, D. S., Meiri, G., Menashe, I., Miller, J., Minshew, N., Montenego, E. M. S., Moreira, D., Morrow, E. M., Mors, O., Mortensen, P. B., Mosconi, M., Mulliga, P., Neale, B. M., Nordinotoft, M., Ozaki, N., Palotie, A., Pannell, M., Passos-Bueno, M. R., Pericak-Vance, M., Persico, A. M., Pessah, I., Puura, K., Reichenberg, A., Renieri, A., Riberi, E., Robinson, E. B., Samocha, K. E., Sandin, S., Santangelo, S. L., Schellenberg, G., Scherer, S. W., Schlitt, S., Schmidt, R., Schmitt, L., Silva, I. M. W., Singh, T., Siper, P. M., Smith, M., Soares, G., Stoltenberg, C., Suren, P., Susser, E., Sweeney, J., Szatmari, P., Tang, L., Tassone, F., Teufel, K., Trabetti, E., Trelles, M. D., Walsh, C. A., Weiss, L. A., Werge, T., Werling, D. M., Wigdor, E. M., Wilkinson, E., Willsey, A. J., Yu, T. W., Yu, M. H., Yuen, R., Zachi, E., Agerbo, E., Als, T. D., Appadurai, V., Baekvd-Hansen, M., Belliveau, R., Buil, A., Carey, C. E., Cerrato, F., Chambert, K., Churchhouse, C., Dalsgaard, S., Demontis, D., Dumont, A., Goldstein,
J., Hansen, C. S., Hauberg, M. E., Holtegaard, M. V., Howrigan, D. P., Huang, H. L., Maller, J., Martin, A. R., Martin, J., Mattheisen, M., Moran, J., Pallesen, J., Palmer, D. S., Pedersen, C. B., Pedersen, M. G., Poterba, T., Poulsen, J. B., Ripke, S., Schork, A. J., Thompson, W. K., Turley, P., Walters, R. K., Consortium, A. S., & Consortium, i.-B. (2020). Large-Scale Exome Sequencing Study Implicates Both Developmental and Functional Changes in the Neurobiology of Autism. Cell, 180(3), 568-+. doi:10.1016/j.cell.2019.12.036

Schluth-Bolard, C., Labalme, A., Cordier, M.-P., Till, M., Nadeau, G., Tevissen, H., Lesca, G., Boutry-Kryza, N., Rossignol, S., & Rocas, D. (2013). Breakpoint mapping by next generation sequencing reveals causative gene disruption in patients carrying apparently balanced chromosome rearrangements with intellectual deficiency and/or congenital malformations. Journal of medical genetics, 50(3), 144-150.

Schmeisser, M. J., Ey, E., Wegener, S., Bockmann, J., Stempel, A. V., Kuebler, A., Janssen, A. L., Udvardi, P. T., Shiban, E., Spilker, C., Balschun, D., Skryabin, B. V., Dieck, S., Smalla, K. H., Montag, D., Leblond, C. S., Faure, P., Torquet, N., Le Sourd, A. M., Toro, R., Grabrucker, A. M., Shoichet, S. A., Schmitz, D., Kreutz, M. R., Bourgeron, T., Gundelfinger, E. D., & Boeckers, T. M. (2012). Autistic-like behaviours and hyperactivity in mice lacking ProSAP1/Shank2. Nature, 486(7402), 256-260. doi:10.1038/nature11015

Sheng, M., & Kim, E. (2000). The Shank family of scaffold proteins. J Cell Sci, 113 ( Pt 11), 1851-1856. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/10806096

Sheng, M., & Kim, E. (2011). The postsynaptic organization of synapses. Cold Spring Harb Perspect Biol, 3(12), a005678. doi:10.1101/cshperspect.a005678

Silverman, J. L., Yang, M., Lord, C., & Crawley, J. N. (2010). Behavioural phenotyping assays for mouse models of autism. Nat Rev Neurosci, 11(7), 490-502. doi:10.1038/nrn2851

Simonoff, E., Pickles, A., Charman, T., Chandler, S., Loucas, T., & Baird, G. (2008). Psychiatric disorders in children with autism spectrum disorders: prevalence, comorbidity, and associated factors in a population-derived sample. J Am Acad Child Adolesc Psychiatry, 47(8), 921-929. doi:10.1097/CHI.0b013e318179964f

South, M., Chamberlain, P. D., Wigham, S., Newton, T., Le Couteur, A., McConachie, H., Gray, L., Freeston, M., Parr, J., Kirwan, C. B., & Rodgers, J. (2014). Enhanced decision making and risk avoidance in high-functioning autism spectrum disorder. Neuropsychology, 28(2), 222-228. doi:10.1037/neu0000016

South, M., Newton, T., & Chamberlain, P. D. (2012). Delayed reversal learning and association with repetitive behavior in autism spectrum disorders. Autism Res, 5(6), 398-406. doi:10.1002/aur.1255

Top Jr, D. N., Stephenson, K. G., Doxey, C. R., Crowley, M. J., Kirwan, C. B., & South, M. (2016). Atypical amygdala response to fear conditioning in autism spectrum disorder. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 1(4), 308-315.

Tovote, P., Fadok, J. P., & Lüthi, A. (2015). Neuronal circuits for fear and anxiety. Nature Reviews Neuroscience, 16(6), 317-331.

Van Eylen, L., Boets, B., Steyaert, J., Evers, K., Wagemans, J., & Noens, I. (2011). Cognitive flexibility in autism spectrum disorder: Explaining the inconsistencies? Research in Autism
Vasa, R. A., Carroll, L. M., Nozzolillo, A. A., Mahajan, R., Mazurek, M. O., Bennett, A. E.,
Wink, L. K., & Bernal, M. P. (2014). A systematic review of treatments for anxiety in youth
with autism spectrum disorders. *J Autism Dev Disord, 44*(12), 3215-3229. doi:10.1007/s10803-014-2184-9

Wang, T., Hoekzema, K., Vecchio, D., Wu, H., Sulovari, A., Coe, B. P., Gillentine, M. A.,
Wilbert, A. B., Perez-Jurado, L. A., & Kvarnung, M. (2020). Large-scale targeted sequencing
identifies risk genes for neurodevelopmental disorders. *Nature communications, 11*(1), 1-13.

Whitehouse, C. M., Curry-Pochy, L. S., Shafer, R., Rudy, J., & Lewis, M. H. (2017). Reversal
learning in C58 mice: Modeling higher order repetitive behavior. *Behav Brain Res, 332*,
372-378. doi:10.1016/j.bbr.2017.06.014

Wigham, S., Rodgers, J., South, M., McConachie, H., & Freeston, M. (2015). The Interplay
Between Sensory Processing Abnormalities, Intolerance of Uncertainty, Anxiety and
Restricted and Repetitive Behaviours in Autism Spectrum Disorder. *Journal of autism and
developmental disorders, 45*(4), 943-952. doi:10.1007/s10803-014-2248-x

Wischmeijer, A., Magini, P., Giorda, R., Gnoli, M., Ciccone, R., Ceconi, I., Franzoni, E.,
Mazzanti, L., Romeo, G., & Zuffardi, O. (2010). Olfactory receptor-related duplicons
mediate a microdeletion at 11q13. 2q13. 4 associated with a syndromic phenotype.
*Molecular syndromology, 1*(4), 176-184.

Won, H., Lee, H. R., Gee, H. Y., Mah, W., Kim, J. I., Lee, J., Ha, S., Chung, C., Jung, E. S.,
Cho, Y. S., Park, S. G., Lee, J. S., Lee, K., Kim, D., Bae, Y. C., Kaang, B. K., Lee, M. G.,
& Kim, E. (2012). Autistic-like social behaviour in Shank2-mutant mice improved by
restoring NMDA receptor function. *Nature, 486*(7402), 261-265. doi:10.1038/nature11208

Yan, Z., & Rein, B. (2021). Mechanisms of synaptic transmission dysregulation in the
prefrontal cortex: pathophysiological implications. *Mol Psychiatry, 1-21.*
doi:10.1038/s41380-021-01092-3

Yuen, R. K. C., Merico, D., Bookman, M., Howe, J. L., Thiruvahindrapuram, B., Patel, R. V.,
Whitney, J., Deflaux, N., Bingham, J., Wang, Z. Z., Pellecchia, G., Buchanan, J. A., Walker,
S., Marshall, C. R., Uddin, M., Zarrei, M., Deneault, E., D’Abate, L., Chan, A. J. S., Koyanagi,
S., Paton, T., Pereira, S. L., Hoang, N., Engchuan, W., Higginbotham, E. J., Ho, K.,
Lamoureux, S., Li, W. L., MacDonald, J. R., Nalpathamkalam, T., Sung, W. W. L., Tsoi, F.
J., Wei, J., Xu, L. Z., Tasse, A. M., Kirby, E., Van Etten, W., twigger, S., Roberts, W., Drmic,
I., Jilderda, S., Modi, B. M., Kellam, B., Szego, M., Cytrynbaum, C., Weksberg, R.,
Zwaigenbaum, L., Woodbury-Smith, M., Brian, J., Senman, L., Iaboni, A., Doyle-Thomas,
K., Thompson, A., Chrysler, C., Leef, J., Savion-Lemieux, T., Smith, I. M., Liu, X. D.,
Nicolson, R., Seifer, V., Fedele, A., Cook, E. H., Dager, S., Estes, A., Gallagher, L., Malow,
B. A., Parr, J. R., Spence, S. J., Vorstman, J., Frey, B. J., Robinson, J. T., Strug, L. J.,
Fernandez, B. A., Elsabbagh, M., Carter, M. T., Hallmayer, J., Knoppers, B. M.,
Anagnostou, E., Szatmari, P., Ring, R. H., Glazer, D., Fletcher, M. T., & Scherer, S. W.
(2017). Whole genome sequencing resource identifies 18 new candidate genes for autism
25
spectrum disorder. *Nature neuroscience*, 20(4), 602-+. doi:10.1038/nn.4524

Zhou, W. Z., Zhang, J., Li, Z., Lin, X., Li, J., Wang, S., Yang, C., Wu, Q., Ye, A. Y., Wang, M., Wang, D., Pu, T. Z., Wu, Y. Y., & Wei, L. (2019). Targeted resequencing of 358 candidate genes for autism spectrum disorder in a Chinese cohort reveals diagnostic potential and genotype-phenotype correlations. *Hum Mutat*, 40(6), 801-815. doi:10.1002/humu.23724
Figure 3-supplement figure 1. Eyelid closure responses of WT and Shank2-KO mice to diverse combinations of air puff pressure and duration. (a) Eyelid closure responses of WT (black) and Shank2-KO (red) mice to strong (5 ms, 30 psi) and powerful (100 ms, 30 psi) air puffs. The same format as in Figure 3b. (b) The difference in eyelid closure response between WT and Shank2-KO mice to 16 different combinations of air puff duration (abscissa) and pressure (ordinate) before (left; 1.5-s time window before air puff onset), immediately after (middle; 1-s time window since air puff onset), and after (right; 2.5~4 s since air puff onset) air puff delivery. Eye closure responses shown in Figure 3 are included in these plots. *p < 0.05, ***p < 0.001, t-test between WT and Shank2-KO mice (n = 8 each). Statistical test results are summarized in Figure 3-supplement table 1.
Figure 3-suppment table1. Statistical test results for eyelid closure responses to diverse combinations of air puff duration and pressure. Bold indicates a significant difference between WT and Shank2-KO mice (n = 8 each).

| Time window | Task Condition | Duration | 5 ms | 10 ms | 50 ms | 100 ms |
|-------------|----------------|----------|------|-------|-------|--------|
|             | Pressure       |          |      |       |       |        |
|             | 3 psi          | t(14) = 1.003 | t(14) = 1.060 | t(14) = 1.240 | t(14) = 2.380 |
|             |                | p = 0.333 | p = 0.307 | p = 0.235 | p = 0.032 |
| 1.5~0 s     | 7 psi          | t(14) = 1.608 | t(14) = 0.596 | t(14) = 0.172 | t(14) = 0.698 |
| before puff |                | p = 0.130 | p = 0.560 | p = 0.866 | p = 0.497 |
| onset       | 15 psi         | t(14) = 0.478 | t(14) = 1.872 | t(14) = 1.889 | t(14) = 0.912 |
|             |                | p = 0.640 | p = 0.082 | p = 0.080 | p = 0.377 |
|             | 30 psi         | t(14) = 4.723 | t(14) = 2.280 | t(14) = 0.203 | t(14) = 0.505 |
|             |                | p = 3.0 x 10^{-4} | p = 0.039 | p = 0.842 | p = 0.622 |
| 0~1 s       | 3 psi          | t(14) = 0.383 | t(14) = 1.143 | t(14) = 0.713 | t(14) = 1.484 |
| after puff  |                | p = 0.707 | p = 0.272 | p = 0.488 | p = 0.160 |
| onset       | 7 psi          | t(14) = 0.295 | t(14) = 0.402 | t(14) = 2.138 | t(14) = 1.390 |
|             |                | p = 0.773 | p = 0.694 | p = 0.051 | p = 0.186 |
|             | 15 psi         | t(14) = 0.741 | t(14) = 0.111 | t(14) = 1.409 | t(14) = 1.894 |
|             |                | p = 0.471 | p = 0.913 | p = 0.181 | p = 0.079 |
|             | 30 psi         | t(14) = 0.325 | t(14) = 0.271 | t(14) = 1.335 | t(14) = 1.816 |
|             |                | p = 0.750 | p = 0.790 | p = 0.203 | p = 0.091 |
| 2.5~4 s     | 3 psi          | t(14) = 0.889 | t(14) = 1.408 | t(14) = 1.564 | t(14) = 2.157 |
| after puff  |                | p = 0.389 | p = 0.181 | p = 0.140 | p = 0.049 |
| onset       | 7 psi          | t(14) = 1.617 | t(14) = 2.123 | t(14) = 0.662 | t(14) = 1.865 |
|             |                | p = 0.128 | p = 0.052 | p = 0.519 | p = 0.083 |
|             | 15 psi         | t(14) = 0.913 | t(14) = 2.305 | t(14) = 1.746 | t(14) = 1.419 |
|             |                | p = 0.377 | p = 0.037 | p = 0.103 | p = 0.178 |
|             | 30 psi         | t(14) = 2.598 | t(14) = 1.173 | t(14) = 0.811 | t(14) = 1.717 |
|             |                | p = 0.021 | p = 0.261 | p = 0.431 | p = 0.108 |