COVID-19, the Climate, and Transformative Change: Comparing the Social Anatomies of Crises and their Regulatory Responses

Rolf Lidskog 1,*, Ingemar Elander 1,2 and Adam Standring 1

1 School of Humanities, Education and Social Sciences, Örebro University, SE-702 81 Örebro, Sweden; ingemar.elander@oru.se (I.E.); adam.standring@oru.se (A.S.)
2 School of Business Society and Engineering, Mälardalen University, SE-722 20 Västerås, Sweden
* Correspondence: rolf.lidskog@oru.se; Tel.: +46-19-303-272

Received: 6 July 2020; Accepted: 4 August 2020; Published: 6 August 2020

Abstract: Despite forces struggling to reduce global warming growing stronger, there has been mixed success in generating substantive policy implementation, while the global spread of the coronavirus has prompted strong and far-reaching governmental responses around the world. This paper addresses the complex and partly contradictory responses to these two crises, investigating their social anatomies. Using temporality, spatiality, and epistemic authority as the main conceptual vehicles, the two crises are systematically compared. Despite sharing a number of similarities, the most striking difference between the two crises is the urgency of action to counter the rapid spread of the pandemic as compared to the slow and meager action to mitigate longstanding, well-documented, and accelerating climate change. Although the tide now seems to have turned towards a quick and massive effort to restore the status quo—including attempts to restart the existing economic growth models, which imply an obvious risk for substantially increasing CO₂ emissions—the article finally points at some signs of an opening window of opportunity for green growth and degrowth initiatives. However, these signs have to be realistically interpreted in relation to the broader context of power relations in terms of governance configurations and regulatory strategies worldwide at different levels of society.

Keywords: climate change; corona; COVID-19; crisis; governance; pandemic; regulatory regime; risk; securitization; transformative change

1. Introduction

Coronavirus is on everyone’s lips. Previously, the word was reserved for epidemiologists and virologists, but in the space of a few months, coronavirus has rapidly become a constituent part of world-wide public concern. Societal responses that were thought impossible in peacetime—such as closing borders, stopping international flights, prohibiting crowds, shutting schools and commerce—were implemented rapidly across a number of countries—albeit to greatly varying degrees and with varying capacities for implementation. The increased perception and prediction of an explosive growth of infected people triggered government responses to minimize or at least slow down the speed of the outbreak, thereby hoping to avoid the collapse of the health and social care systems. The initial debates around the pandemic looked at relative state capacity and authority to implement the necessary control measures—with comparisons drawn between democracies such as Italy and Spain against authoritarian regimes like China and Iran. Thus far, there is no clear co-variation between outcome and type of regime [1,2]. Disregarding the effects of different strategies on controlling the spread of the virus, the varied responses have led to cascading effects, instigating or exacerbating
broader social problems—unprecedented rises in unemployment, the erosion of the public sphere/life, and citizens facing hard economic and social conditions—to the extent that it was impossible to visit seriously ill, even dying, relatives.

These secondary effects cascade across administrative borders within as well as between countries, challenging the steering capacity of governance networks at all political scales. The economic, social, and political consequences of COVID-19, in terms of the impending global recession, seem to overshadow the epidemiological root causes and health implications of the pandemic. The multiple and interrelated trade-offs that need to be weighed up make it clear that “science will not come on a white horse with a solution” [3], and that both the current mitigation policies and future direction of recovery are ultimately political decisions. Many world leaders, most notably those in the European Union [4,5], initially acknowledged, even welcomed, the possibility of a “green recovery”—incorporating a more sustainable economic model through investment in green industry. It remains to be seen, however, how much the perceived imperatives of economic recovery will ensure that the policy and political priorities look to return to the status quo ante with measures focusing on existing institutions of banks, corporations, and stimulating consumption in households. There is also an increased confidence among financial as well as political leaders that it is both possible and necessary to stimulate a new “Great Acceleration”, the post–World War II era of intensive resource exploitation, during which the economy grew exponentially, and most curves of welfare and happiness seemed to indicate progress [6]. However, despite extremely costly measures by national governments, international political unions (such as the EU), and global financial institutions (such as the International Monetary Fund (IMF) and World Bank) to minimize secondary economic effects, it is uncertain to what extent these measures are sufficient and how the global post-corona situation will look at all levels and sectors of society. The Economist Intelligence Unit [7], in a seminar call in June 2020, stated:

The global economic picture is grim. Following the coronavirus pandemic, [the Unit] expects a sharp contraction in global output this year. The years 2020 and 2021 will be lost for growth; global GDP will not recover to pre-coronavirus levels before at least 2022. Risks are tilted to the downside, as a second wave of the pandemic would derail the economic recovery. Delays in developing a vaccine also represent a major downside risk.

It is perhaps too early to draw direct comparisons with previous global pandemics; while many countries appear to have the spread of infections under control, there are new virus hotspots emerging, and it remains to be seen whether or where subsequent waves will erupt. What can be said with some confidence is that the very nature and interconnectedness of global populations and systems in 2020 gives COVID-19 the potential to be as big a threat to social stability as previous pandemics. The spread of COVID-19 from China, through Iran, Italy, Spain, and later the US, Brazil, Mexico, and India—with probably more to come—gives a real-time vision of the extent to which we live in a “world risk society”. This is a situation in which risk and uncertainty are generated and transmitted globally, although unevenly, across very different national contexts and in which explicit tensions are exposed between the practices of people’s everyday lives, national political/policy responses, and the need for concerted and coordinated action.

Another crucial question highlighted by COVID-19 is why such strong and rapid governmental responses are marshalled in response to one existential threat—a pandemic—but not for another—climate change. Global warming has climbed towards the top of the global political agenda in recent years, receiving enormous media attention, and is acknowledged by a broad community of scientists and global leaders as a severe and urgent global threat to society. While knowledge of both the pandemic and climate change, derived very often from mathematical models, include a high degree of uncertainty about the specific and local impacts, climate models have, for years, shown there to be severe and irreversible consequences from climate change [8]. Questions over what measures are most relevant, the social aspect of all measurements, and particularly the relationship between data, measurements, and knowledge on the one hand, and policy, mitigation, and implementation on the other, are increasingly relevant in both cases.
There are clearly a number of important differences between the pandemic and climate change, which will be discussed below. Still, the challenges are similar to such an extent that it is relevant to discuss why this kind of strong societal response for COVID-19 has been totally absent for the climate change threat. Why is it that the perception of risk does not have the same urgency when it comes to climate change, particularly when the scientifically grounded risk calculations have been known for such a long time? Renowned geographer/historian Jared Diamond, author of Guns, Germs, and Steel [9] and other books related to pandemics throughout history, stated in an interview that the coronavirus has a “limited mortality. The climate crisis can literally kill us all. It is without doubt the worst threat. It is fine that people buy protecting masks against the coronavirus, but they should also buy masks against coal power” [10].

The contrast between these two major risks to humanity constitutes the starting point for this paper, which aims to explore the seemingly contradictory responses to the two macrosocial threats of pandemic and climate change. To compare these crises is complicated, requiring an analytical approach that includes temporal, spatial, and epistemic considerations: COVID-19 is a recent and still-emerging crisis, the response to which has been a mixture of established and novel measures, and the knowledge produced of the crisis remains both tentative and grounded largely in the immediate present. Climate change is also ongoing and still emerging to the extent that impacts are variably but increasingly felt, but the long gestation of climate science and public knowledge of the issue means that it has become a “normalized” crisis around which institutions and regulatory frameworks have developed. As the UN [11] states, “climate change is the defining crisis of our time and it is happening even more quickly than we feared”, and yet the urgency and necessity for action that are typically defining features of “a crisis” are missing.

Corona is a case where social and political perceptions of risk take politics “beyond the established rules of the game and frame the issue either as a special kind of politics or as above politics”, an existential threat similar to that of climate change, making comparisons between the two more necessary. As an issue becomes securitized, it is “presented as an existential threat, requiring emergency measures and justifying actions outside the normal bounds of political procedure” [12] (pp. 23–24). It is a discourse that “takes the form of presenting something as an existential threat to a referent object, for example ‘the welfare state’, ‘the nation’, or even ‘humanity’”. Once defined as a threat by a government, it is used to legitimate emergency action through securitization. What counts as a risk, as well as how it should be securitized, is always filtered through someone’s perception [13]. Climate change has been formulated by the UN, a large part of the scientific community, and many nation-states as an existential threat to the future of humankind. Yet policymaking has, to a large extent, remained traditional—with nation-states negotiating around targets and measures—and slow—with a reluctance to mitigate against even well-documented climate-related problems.

The aim of this article is to explore the social and political anatomies of COVID-19 and climate change and to propose explanations as to why they have evoked such different governmental responses. These crises are ongoing processes, involving a myriad of actors, events, understandings, and policies, which are viewed through a broad lens. This is done in three steps. Section 2 develops the analytical approach of social and political anatomies of crises and risk regimes by drawing on theories of risk, disaster, regulation, and securitization. Section 3 analyzes and compares the two crises in terms of their anatomies as they manifest themselves in largely different risk regimes. Section 4 discusses similarities and differences between the two crises. Section 5 concludes by reflecting upon the wider implications of the social and political responses and their actual and potential repercussions on current and future society.

2. Conceptual Framework: Governing Crises

Crisis has been defined as a threat to fundamental structures or values in society, especially those requiring urgent intervention [14,15]. In this article, we focus on three concepts that are crucial to understanding the way societies react to the COVID-19 and climate change crises: Temporality, spatiality, and epistemic authority. In other words, comparing the two crises means that we describe and analyze them in terms of time, space, and the way they are represented in knowledge and images.
Our point of departure is that in order to govern a crisis, it has to be defined and delineated as such, as an event or period distinct from the status quo. Knowledge has to be developed and synthetized within frames and narratives about what is at stake and what strategies have to be negotiated [16]. This leads to a social and political anatomy of a crisis, where the constitutive parts—its causes, risks, and future development as well as relevant remedies—are defined and disseminated. In comparing these anatomies, we pinpoint three crucial aspects—those of space, time, and knowledge. Of course, there are additional aspects to consider for understanding why and how an issue is regulated as a crisis—not least politics [17]—but we find these three crucial when analyzing the different responses to COVID-19 and climate change.

2.1. Temporality and Anticipatory Governance

Policy response to a crisis involves at least three key components related to temporality: Threat, uncertainty, and urgency [18]. A threat means that something ordinary people, governments, business leaders, and non-governmental organizations value is at stake. Closely related to this is the notion of risk, which refers to uncertainty about and the severity of the outcomes of such a threat [19,20]. Risk thus connects to its perceived causes, future consequences, and decided action strategies.

The basis for uncertainty is that the future is not pre-determined and that human action shapes the future, often in unintentional ways [21,22]. Human behavior and purposeful action never rest on complete knowledge about the possible effects of a decision; what future will be realized is always more or less uncertain [23]. In this regard, COVID-19 and climate change are similar, although the latter has been documented for a much longer time and the risks are better evidenced. However, through risk assessment, possible and probable future consequences of present action are anticipated—or at least calculated. In this way, risk assessments open up space for action in the absence of firm knowledge, allowing decision-makers to navigate through alternative risk-based strategies [24].

Anticipatory governance means applying risk evaluations, foresight, and scenario-building to prevent and avoid unwanted futures and problems from emerging rather than solving them when they appear [25,26]. Through anticipatory practices, governments and other actors navigate in an uncertain terrain, aiming to avoid or realize particular future outcomes. An advantage of this mode of governance is that by pointing to different potential futures, there is less need to provide precise and firm estimates of risk, which, because of limits in knowledge and lack of time, is often hard or even impossible to achieve. Thus, anticipatory governance explores uncertainties and their potential implications if realized, and based on these, makes decisions on what is perceived to be the most suitable way forward.

The quest for anticipatory governance is accelerated when a crisis feels imminent. Governments have to act, and when deliberating on relevant responses to a crisis, they need to be aware of potential futures that may be realized, therefore invoking increased awareness of potential consequences of actions taken by individuals, organizations, and societies [27]. To avoid unintended and unwanted consequences (secondary effects) of any action taken, it is important to try to anticipate the consequences of different options. On the one hand, “[S]imply focusing on one aspect of a problem will ultimately fail, because the root causes of that problem are tied to other major challenges” [28] (p. 434). On the other hand, too much information on complexities and possible consequences makes it hard to navigate and act. The complexity of a crisis, therefore, needs to be reduced, although without excluding crucial aspects [29,30]. In other words, there is a delicate balance between including too much and too little information when analyzing and proposing action in the face of a potential crisis.

Although the cause of the crisis can be incremental (gradual, small-scale changes) or sudden (a single event), the crisis itself signals urgency [17,31], and needs to be addressed rapidly, otherwise it may be transformed into a devastating and uncontrollable disaster [18]. This makes anticipatory governance a potentially powerful technology of governance in societies where political power is highly legitimized. In societies with a high level of trust in public institutions, governments can act urgently to prevent disaster, i.e., before the crisis has fully manifested itself.
Urgency is, however, contextually dependent. To act urgently can mean instantly or within a year, depending on the time frame associated with an issue [32]. A time regime is an institutionalized unit of how quickly decisions must be made and practices must be performed [33]. It is a social perception, a belief about the time available for action. This belief is, for many crises, institutionalized in the sense that the time compression (or extension) of urgency is anchored in social logics of how particular institutions work and established ways of understanding and governing particular kinds of issues. Crises may thus accelerate a loss of temporal sovereignty of the state—in which modes of deliberation, policy options, and knowledge production that are typically utilized by the national state are all narrowed in response to the imperative for urgent action [34]. A relevant example of this can be seen in the national responses to the global financial crisis of 2007–2008. In the space of only a few weeks, as the global economy seemed on the verge of collapse, governments passed massive stimulus packages with limited public deliberation and over the heads of nominally independent institutions of economic management, such as central banks [35]. They did so because the consequences of not acting immediately, or waiting for more information before acting, was considered a greater risk than acting, and stands to be repeated in the management of the economic consequences of COVID-19.

However, it should be stressed that even if urgency is connected to an extended time frame, it nevertheless means that decisions must be made without firm knowledge; there is no time to wait for developing more knowledge about the character of the threat and relevant remedies. Whatever the causes and consequences, a crisis means that something must be done promptly and resolutely, notwithstanding the possibility that there could be different opinions on the urgency, causes, and actions needed, even raising doubts whether there is a “crisis” at all. This, in turn, puts heavy pressure on political leaders. If denying the existence or severity of the virus while hospitals are overcrowded with seriously ill and dying people, political leaders—irrespective of being authoritarian or democratic ones—risk losing legitimacy, trust, and authority.

2.2. Spatiality and Regulatory Regimes

Crises involve governments, public authorities, economic actors, professionals, civil society organizations, and ordinary citizens, each of which engage in a struggle to understand the precise nature of events [36,37]. When it comes to initiating, formulating, coordinating, implementing, and evaluating policies, the potential list of relevant actors is long, including actors at several spatio-political levels: The UN, the EU, central, regional, and local government authorities, economic actors, voluntary associations, and individual citizens. Analyzing phenomena like COVID-19 and climate change consequently requires an approach acknowledging the multi-level, transnational, multi-sector processes interrelating to create a form of governance where the state or central government is not necessarily the only or most important political actor [38–41]. In other words, the way perceived crises are defined, regulated, and securitized is always related to a particular governance configuration, or institutional machinery of regulation. This is not only a matter of developing and deciding on particular rules, but also how to make them known, organize their implementation, and create incentives for acceptance and sanctions in cases when rules are not followed, i.e., it is a question of power, legitimacy, and efficacy.

A regulatory regime denotes the complexity of institutions, norms, practices, and knowledge that heavily influence the development of a particular kind of risk [42]. Assessing the development of a regulating regime has to take into consideration the style (what kind?), the structure (how to organize?), and the scope (how much?) of regulation. Countries have different regulatory regimes depending on national history, political cultures, and civic epistemologies [43]. In Western Europe, over the last 30–40 years, public policies have largely developed into a combination of a Regulatory State and a Networked Polity, commonly legitimized by a “neoliberal” ideology [28,44,45]. When facing existential threats, during this pandemic, for example, the role of the national state and government becomes extraordinary, as argued by political scientist David Runciman [46]:

Though the pandemic is a global phenomenon, and is being experienced similarly in many different places, the impact of the disease is greatly shaped by decisions taken by individual
governments. Different views about when to act and how far to go still mean that no two nations are having the same experience. At the end of it all we may get to see who was right and what was wrong. But for now, we are at the mercy of our national leaders.

However, governments do not only differ in the way they govern crises, but also in the way they define and understand them. It is never the case that an issue is automatically apt for regulation and ready to be governed by a particular regime. Instead, a regulatory regime has to define and delineate what should be regulated, that is, it has to construct its regulatory object. It creates demarcations and boundaries that make objects appear hazardous or harmless, safe or risky, natural or unnatural, important or unimportant [16]. The reason for this is that mere information gathering—which is a central aspect of regulation [42]—is not sufficient. To be ready for action, information must be inserted into a contextual, interpretative framework [47], thereby giving a general understanding of what is at stake and possible and relevant strategies to handle the situation.

Many current transboundary crises have a truly glocal character. Globalization processes connect people and places around the world, but affect them unevenly [48]. Equally, many global processes—such as transport nodes and business hubs—exist as relations between cities or urban areas around the world [49]. There is a glocal geography of crises and disasters, meaning that countries are not necessarily the best spatial unit to investigate the consequences or responses to a crisis [50]. This does not mean that regional and local levels of governance should be pitted against national governance, but that there is a dynamic interplay between the national and supranational, regional, and local levels of governance.

By ascribing a crisis with specific spatial characteristics, a government implicitly advocates a certain regime for the handling of the problem as well as who should be responsible for and participate in the regulatory process [16]. To ascribe spatial identity to an issue is a formative act, where ascribing a particular level or combination of levels fills it with meaning and creates opportunities for action. How it is spatially defined—the spatial scale of the threat (consequences), the proper (geopolitical) level for governing it (solutions), and accountability for its spread (its root cause as well as the handling of it)—determine what is seen as relevant action. By shaping the spatial identity of an issue, it becomes a global, international, domestic, or local matter. This, in turn, creates incentives for certain types of political action and puts expectations on certain actors regarding mandate and accountability. In other words, it is ultimately a question of how a government in a particular context chooses to define the crises and decide on the road forward.

2.3. Epistemic Authority and Visualization

Any crisis entails complexity: Decision-makers are faced with unfamiliar, uncertain situations informed by a multiplicity of interrelated yet competing and often contradictory sources of knowledge on the very nature of the phenomenon. Regulation needs to be implemented and, at the same time, legitimized in front of those who are affected by the response. A crucial element of regulation is thus to control, use, and distribute specific frames and narratives. Ideally, these should be naturalized and taken for granted by the involved actors as a set of “symbols of justification” or “master symbols” [51,52]. In this sense, regulation is discursively constituted, that is, concerns how a situation perceived as risky is conceptualized and understood [53–55]. This meaning does not only include knowledge about a crisis—mere crisis awareness rarely results in desired action—but also more distinct guidance on what to do, by whom, how, and when [14]. This meaning has to be communicated widely in society and also to be seen as legitimate, that is, seen as an authoritative and appropriate way to understand what has taken place and what to do [47]. A common way to legitimize this is to refer to authoritative knowledge, which usually means to refer to scientific expertise [53,56,57].

Historically, certain kinds of expertise and ways to organize the expert–policy relations within states have developed [43]. There are institutionalized ways to develop regulatory knowledge about a problem, its character, prognosticated development, and what kinds of measures are believed to be relevant and efficient. This expertise–problem configuration is dynamic and may change over time, but for the acute handling of a particular problem, it is rather fixed [56]. Certain disciplines, expert
organizations, and expert agencies are attached epistemic authority, that is, accorded (often unconsciously) the legitimacy to define, describe, and explain a particular problem at a particular time within a particular space [58].

By telling not only what has happened and why, but also what to do about it, factual statements and normative orientation are combined as a guidance and trigger for action [59]. Additionally, when an issue is unexpected and unknown it may be anchored within a familiar context and related to more well-known phenomena as a guidance for action [16]. Thus, organizing different kinds of materials into narratives creates meaning and motivates action in certain directions [60]. Complex and multifarious phenomena are simplified and organized; certain aspects of them are selected and made central, whereas others are omitted or de-emphasized. There are numerous techniques for simplifying complex phenomena into ways that justify and legitimize action. One common technique is through the construction of comparative metrics that allow different countries or regions to be compared with each other across different indicators. Often, these indicators obscure complex differences and important contextual details between countries. Stories, metaphors, and symbols (including graphs and models) are powerful in explaining how the world works, and thereby affect how actors relate to the world [57]. Thus, visualization is a powerful vehicle to make problems understandable, but also to create dramatic stories and evoke feelings of hope and fear, thereby motivating and legitimating action [59].

The development of information technology and technical devices has been very important in visualizing and spreading of what is taking place. Monitoring stations—for example, for measuring air pollution, ozone depletion, and carbon dioxide in the atmosphere—provide empirical material for modeling and prognoses about future trajectories. With mathematical modeling, not only knowledge about the current situation, but also prognoses of the future are produced and widely distributed [61]. Communicative professionals help experts to visualize their messages in ways that are easy for decision-makers and the public to understand, even if they remain unaware of the raw data and how they are produced. In this way, it is the models, trends, and forecasted futures that become central to decision-making, rather than the raw data or calculated risks [62]. The primary purpose of these kinds of visualization is not to give detailed information about an issue, but to motivate action by showing what may happen if no action is taken. These facts, figures, and patterns are distributed widely in society, where people around the world can follow emission patterns or infection spread in almost real time (or at least on a daily basis) from the level of a single city (in some cases, even to a residential area) to the world at large [63]. Through forecasting strategies, an unknown future is made visible and spaces for action and anticipatory governance are shaped.

To summarize this section, how a threat is socially perceived determines which responses are developed. To investigate how a crisis is governed implies, therefore, a need to analyze how decision-makers (and publics) understand and demarcate events, which, in turn, entails the analysis of how crisis measures are justified, legitimized, and securitized. The understanding and demarcation of crises are never absolute, but temporarily (and spatially) fixed and contested ways to understand and govern an issue, and may be re-negotiated or even rejected and replaced by a new understanding in the future.

3. Results: Social Anatomy of Two Macrosocial Threats

When comparing the current understanding of COVID-19 and climate change, we pinpoint three crucial aspects: First, the issue of temporality: What is the perceived time frame for handling the crisis? Second, the issue of spatiality: What is the perceived appropriate spatial level for governing the crisis? Third, the issue of epistemic authority: What kind of knowledge is given the power to define, measure, and visualize the crisis?

3.1. Temporality and Anticipatory Governance

The time regime for COVID-19 includes an extremely compressed time frame. There is a need for immediate action with no time to postpone. This means that there is no time to wait for further knowledge, investigation of uncertainties, or broader political or public debates. Lockdowns are
enacted and borders are closed as though they are efficient strategies and without knowing the broader socio-economic consequences. Obviously, there are great national variations: Some countries implemented strong responses, based on legislative measures, immediately (e.g., China, Italy, Spain, South Africa), whereas others developed less robust measures (e.g., Brazil, US), some countries were late to respond (e.g., United Kingdom), and others responded quickly, but put a greater emphasis on soft measures (e.g., Sweden). Despite these national variations, the global understanding—as provided by the international expert authority, the World Health Organization (WHO), and supported by most national expert bodies and researchers—is based on an extreme time compression; there is no time to postpone action; the imperative is to act swiftly and, thereby, to hopefully restore control over the pandemic.

The urgency of action on climate change has been heavily stressed, with calls for immediate action gaining momentum in recent years. The COP21 in Paris in 2015 was framed as possibly the last chance for humanity to avoid climate change, which will challenge and threaten biological life world-wide. The goal of the Paris agreement is to keep the global average temperature well below 2 degrees (Celsius) above pre-industrial levels, and action must be taken immediately in order to halt further rise. At the same time, the temporality is different from that of COVID-19, with the time lag between current action and future consequences opening up the political and public space for contestation. This may not take the form of outright denial, but might include calls for further research on possible techno-scientific solutions, such as negative emissions technologies and global carbon taxes or calls for broader public consultation on the targets themselves and the respective trade-offs required to meet them. Thus, as the science of the catastrophic consequences of climate change becomes stronger and more difficult to dispute, the relative urgency and temporal aspect of climate change itself comes another issue open to political contestation, with different groups arguing either for the necessity of urgent and radical action, while others stress caution and gradual change. Another factor integral to the temporal contestability of climate change is the inherent complexity of climate systems, which means that it is difficult to identify uncontested and manifest consequences. Extreme weather has been a constant companion of humankind, heat waves have happened before, and melting ice at poles and Greenland has not yet had any clear consequences for most people. While many countries—most notably, small island states—and communities are already feeling the direct consequences of climate change, for many—particularly those in the global North—the phenomenon remains largely abstract in nature, visible largely through the graphs published in news reports, produced by mathematical modeling and forecasts.

In contrast to this, COVID-19 shows clear and immediate consequences. Here, expert bodies not only provide graphs of the current number of infected, fatalities, and recovered world-wide, but can provide projections of likely spread. The pandemic is a phenomenon closer to the lived experience of publics, as it is likely that people will know some (relatives, friends, or colleagues) that have been infected and can concretely relate to the consequences of COVID-19, with government measures, from lockdowns to social distancing, having affected whole populations. Even in cases where this direct link is missing, the global media has frequently provided rolling coverage of personal stories and reported on the plight of those most seriously affected, giving the pandemic the immediacy and apocalyptic feel of something more akin to a Hollywood movie than a real-life event. This, in turn, gives the pandemic a disjointed feeling, being at once more real than climate change, but at the same time having an unreal or surreal feel to it, particularly when life is compared to how it was just five or six months before.

Besides this difference—clear, manifest, immediate, and understandable consequences reported in real-time versus abstract prognoses of future consequences—they also differ in the location of the primary threat. For COVID-19, human health, and ultimately life, is at the center, and all other aspects are secondary to it, whereas climate change has a much broader focus, of which human health is only one part. Most of the prognosticated consequences of climate change are put in terms of ecosystem change, sea-level rise, and increased frequencies of extreme weather, all of which are likely to have profound and serious impacts on human health, but are rarely framed as such.
Furthermore, the issues of uncertainty and non-knowledge function differently in different temporal contexts. Uncertainty has played a central role for understanding and responding to climate change. For many years, the Intergovernmental Panel on Climate Change (IPCC) has explicitly and consistently incorporated uncertainties in their assessment work, evaluating the type, amount, quality, and consistency of evidence [64,65]. The reason for this is both to ensure the validity of its assessment presented to policy-makers, but also to prevent criticism of bias in its assessment and of not being policy neutral in its summary for policy-makers. The 2009 Climategate incident highlighted the importance of this work and accelerated and formalized how the IPCC should treat uncertainties in its assessments.

For COVID-19, the situation is almost opposite. In the initial modeling of the viral outbreak, there was no peer review due to the need to rapidly make the information public and available to governments [62]. The enactment of urgency also creates uncertainty; there is no time to wait for further research on the consequences of different options, which means that there is no firm knowledge base for action to be taken. In the COVID-19 case, however, this uncertainty did not illegitimate a particular course of action. The dramatic consequences of failing to act and the limited time for restricting the spread of the virus made the fact of insufficient knowledge an invalid objection for action. This did not mean that either governments or publics were ignorant of uncertainty or non-knowledge, but that these issues did not hinder action, but instead fostered it. The claim that we have insufficient knowledge about the spread and relevant ways to combat it was actively used to speed up decision-making and legitimate certain remedies. In this sense, the COVID-19 response was based in non-knowledge; states and expert bodies proposed and tested different strategies based on relatively weak evidence. Non-knowledge and uncertainties were, in this sense, productive; due to the pressing time frame, they generated action.

Furthermore, and in contrast to climate change, in many countries, references to economic and social costs of measures did not constitute an obstacle when deciding on the relevance and viability of measures. Time frame mattered here again; the responses to COVID-19 were seen as temporary, a parenthesis in a period of economic growth. The implication was that substantial negative economic and social effects of the social responses were legitimate; they were needed in order to return to the pre-corona status quo.

3.2. Spatiality and Regulatory Regimes

One of the particularly striking features of COVID-19 has been the distinctly national nature of the responses to it—lacking in any real or consistent transnational efforts. This is notable due to both the global nature of a pandemic, a defining characteristic, and the international institutions of knowledge production and exchange, such as the WHO being a leading figure in defining the pandemic. Media reports are framed in national terms (or at least in terms that draw a distinction between “here” and “there”), with the vast and public production of national statistics reminding us of the origin of the term in the measurement and control of “the state” [66]. These documented the spread of the virus and counted the fatalities, complemented by statistics on how it unevenly affected the national population in terms of age, gender, and ethnicity [67]. Governmental responses are understandably national—and even in countries with strong sub-national governance, like Italy and India, regional—focusing on the immediate and bounded territories, leading to a varied mix of responses to what remains a global problem, and with limited efforts to coordinate national responses across borders. A reason for this is that the social anatomy of the issue, not least how it is temporally fixed, makes it possible to perceive national responses as the most relevant and efficient way to govern the pandemic. National borders are closed, intercontinental flights are halted, people’s movements and gatherings within their countries are heavily restricted, and, by force or complicity, citizens have isolated themselves. An important goal is to minimize the spread, but also to “flatten the curve”, thereby temporally slowing the spread of the outbreak in order to preserve the capacity of healthcare systems to treat the most severe cases. It had even led to national (and regional) competition to get access to healthcare equipment, as well as medicine (the US securing the coming
three months’ global supply of Remdesivir, a drug that can help recovery from COVID-19, is a clear case of this).

For climate change, there are fewer opportunities to rely on national strategies. Nation-states can develop their own far-reaching policies for reducing greenhouse gas emissions, but these strategies serve largely as role models, paving the way for other countries to develop similar strategies to reduce their climate footprints, while their discrete impact remains limited. Unlike responses to COVID-19, uncoordinated national responses to climate change are only relevant as adaptation strategies (i.e., making a country more resilient to a changed climate). To be efficient, any mitigation strategy needs to be developed by a large majority of, if not all, nation-states—and particularly those who produce the most greenhouse gases. Even if a single country succeeded in converting to a low-carbon society, the impact would be negligible as long as other countries continue to emit greenhouse gases at present levels. Therefore, much of the effort to combat climate change needs to be made in global settings, where negotiating nation-states are pivotal, but where the aim is to develop shared agreements—global solutions—to reverse climate change.

Thus, a central difference is that, to a large extent, COVID-19 is presented as a global threat with national solutions, whereas climate change is a national threat (to the extent that it will affect individual countries differently) necessitating global solutions. This is due to the spatial (and temporal) characteristics attached to the respective crises of COVID-19 and climate change. While it is difficult to attribute a specific and definite cause to the pandemic, there are social phenomena that are broadly agreed upon among epidemiologists and other experts to exacerbate the problem. Urbanization and the commercialization of agriculture have brought people and animals closer to each other, facilitating the spread of zoonotic diseases. Technological innovations and economic growth have resulted in an unprecedented circulation of people and goods across the globe. Measures to combat COVID-19 rarely seek to address the systemic and social phenomena that contribute to the spread and severity of the pandemic, but are rather focused on the short-term goals of controlling the viral outbreak within the national borders and preserving the national institutions, such as health services, that might mitigate the effects. This focus created a global shock of de-globalization and socio-economic domestication, but this spatial focus is only possible if the overall aim of regulation and action is to control the virus at the national level. In the long term, this spatial identity of the problem is likely to be re-negotiated. In order to reduce the risk for future pandemics, or at least control their spread, concerted global action will be necessary. On the one hand, this may be spontaneously generated by a broad understanding of a pandemic’s global nature and the inherent damage that it does to established values and practices, such as cosmopolitanism [68], while on the other hand, it might provoke a retreat from an interconnected and global normative horizon towards a more nationalistic and insular future.

At the same time, it is important to recognize that, given the diverse national, regional, and local contexts, universal responses to what is perceived as a global threat may not necessarily be the most efficient or legitimate way to act [69]. The consequences of extreme events and catastrophes are contextually dependent; they have different meanings and implications under different conditions. Therefore, spatially differentiated responses to a threat are not in and of themselves problematic, but it is a problem if these responses are developed in isolation—without relation to the differentiated but interrelated nature of each context. This, in turn, requires an increased level of reflexivity on how different spatial levels respond and react with each other. COVID-19 is of particular threat to urban centers that are connected in international networks of tourism, commerce, and migration. Mayors of cities—such as Los Angeles, Manaus, Moscow, Paris, and Tokyo—have been able to use and augment their existing powers to develop more far-reaching measures than their central governments, which, in turn, has provided the discursive space for debates and sparked criticism of the national governments. In the case of climate change, these kinds of initiatives have been increasingly institutionalized and formalized around transnational networks of cities that now support each other in the work of generating and implementing more radical climate policies than their respective nation-states [41].

3.3. Epistemic Authority and Visualization
The character or nature of any particular crisis will legitimate a particular form of knowledge lodged with a specific discipline or epistemic regime. As a pandemic, epidemiological knowledge has been central to understanding COVID-19 [70]. The type of knowledge that is privileged within this specific discipline includes the numbers of infected, fatalities, and recovered. Worldwide, there are health officials that track and record what is happening in countries, and graphs are constructed that show the spread at global, national, and local levels. Epidemiologists and medical statisticians give empirical data about the pandemic’s progress and what relevant measures should be taken to halt this spread [67]. Secondary to this is economic expertise, which calculates the effects these measures might have on the economy in terms of the relative loss in consumer and industrial demand and the resultant job losses. This subsequently feeds into suggestions as to what kind of state support is needed for different sectors of the economy to survive the crisis. Occasionally, social scientists are consulted to provide knowledge about how social inequalities affect both the spread of the virus and also responses to it. However, within this social machinery of expertise, the expertise valorized most highly is that of epidemiological and medical expertise, supported by the sociotechnical apparatus of tracking and recording the spread, as well as laboratories characterizing the biological agent COVID-19 and measuring to what extent immunity seems to be achieved amongst recovered people. The valorization of medical knowledge, thus, had an important role in directing the policy orientation, with the negative effects of lockdowns considered secondary to the primary focus of reducing the numbers of infections and preserving the health services.

From the earliest days of climate science, a variety of expertise has been informative, albeit to greater or lesser degrees and with greater or lesser impact on the policies implemented. The IPCC’s Working Group I assesses the natural science of climate systems—how they work and how they are changing. The other two working groups assess impacts and vulnerabilities of climate change (WGII) and mitigation strategies for preventing or limiting greenhouse gas emissions into the atmosphere (WGIII). Thus, the fundamental knowledge of the climate change issue is created by natural scientists, but when moving to the issue of what this means and what needs be done, social science expertise is necessary. Predominant in this are economists, providing knowledge relevant for designing and implementing emission trading systems, followed by other social sciences, producing knowledge on, for example, the impact of climate change on societies, settlements, and systems, and what effects governmental and voluntary measures have in reducing greenhouse gas emissions. Despite the root of anthropogenic climate change lying in how contemporary society works, the fundamental base of knowledge for how climate systems work and change lies within the natural sciences.

There remain a number of fundamental differences between these issues: The COVID-19 pandemic is defined principally as a health crisis and thus engages with epidemiologists, medical science, and public health agencies, whereas climate change is defined as an environmental issue, engaging climate science (e.g., meteorologists, climatologists) and environmental protection agencies. Most striking is that the expertise and expert authorities in the COVID-19 case have, in many countries, been given the opportunity not only to diagnose the problem, but also to directly guide the governmental response. In the case of climate change, scientific expertise has also been central in diagnosing the problem, but much less successful in influencing governmental responses, to the extent that the IPCC’s mandate expressly prevents it from being “policy prescriptive”.

Another striking feature, which is mentioned above when discussing temporal aspects, is that in the case of climate change, lack of knowledge and uncertainty have hindered action, and, therefore, the IPCC has developed a structured way to handle it. In the case of COVID-19, unknowns and uncertainties are actively used to legitimize governmental action. Hasty lockdowns of cities as well as whole countries are implemented (and repealed) based on quickly made forecasting, in some cases even without peer review [71].

Last but not least, there is different institutional machinery in place here. Epidemiological risks signify an established risk regulatory regime to handle them; national public agencies have tentacles up to the WHO and down to regional hospitals and local health centers, populated by medical experts and equipped with strong instruments for intervening in society. In contrast to this, the regulatory mechanisms of climate change are much less institutionalized across different spatial levels, and it is
also a more complex issue. Public environmental or meteorological agencies do not have similar powers to rapidly implement strong regulatory instruments.

In addition to the differences between them, there are a number of striking similarities. The most obvious one is the role of models and forecasting in legitimizing interventions. For regulatory science, it is not sufficient to diagnose a problem, but it must also inform of probable future development as well as inform on relevant measures. In both of these cases, expert advice is concerned with how to prevent, mitigate, and treat the problem. For COVID-19, it is how to stop the spread (preventive measures and creating a vaccine) and hospitalization of affected people (medical treatment of those who are infected). For climate change, it is to halt the increase of carbon in the atmosphere (mitigation) and to make society more resilient towards the effects of a changed climate (adaptation). In both cases, the visualization of data, trends, and predictions has played an important role in prompting and justifying action.

Similar to the (contested) graphs of human progress, such as those provided by Steven Pinker and Hans Rosling/Gapminder, and graphs of environmental decay, such as those of the Great Accelerations and Planetary Boundaries [59,72] graphs, form prominent parts of the discussions on COVID-19 and climate change. These graphs communicate a lot about the direction, speed, and severity of the issues, without burdening the message with details on how units are defined and measures are performed. For example, “confirmed cases” for COVID-19 vary largely nationally because of different levels of ambition in detection strategies and different criteria for measuring cases of infected [73]. Nevertheless, graphs are published as if they measure phenomena in a uniform and directly comparable way. In addition, in contrast to climate change figures, epidemiological figures are primarily based on manually collected and coded data. Thus, even if these graphs are based in empirical measures, they nevertheless work seductively to present a dynamic and ambiguous issue as “hard facts” that are rarely contested in public and political debates.

In modeling and projecting the future, this is taken one step further. Mathematical projections provide a sense of control; they forecast how the future will be. In this sense, they make a contingent future known and thereby make anticipatory governance possible. Proposed responses to climate change and existing responses to COVID-19 are frequently based on models. Simultaneously, these models legitimize decisions made for political (or politically expedient) reasons. The models are widely distributed in society and are central to the public understanding of an issue. This kind of forecasting of the future functions to motivate and initiate action in the present, not least if importance is the function of the curves. For both COVID-19 and climate change, the message is “to flatten the curve”. In the case of COVID-19, the message is that, after a while, the curve will deviate downwards, whereas for climate change, the message is that the curve will stabilize on this level (hopefully below +2 degrees). To visualize what is happening unless measures are taken and what will hopefully be the result if proposed measures are implemented is an important tool.

Another similarity is how visualization works through symbols in the form of words, pictures, and curves. Words such as “the curve”, “social quarantine”, “social distancing”, and “herd immunity” have been appropriated by the public and politicians in the same way that “greenhouse gases”, “global warming”, and “1.5 degrees” have been for climate change. Photos of healthcare professionals in protective clothing and patients in respirators or of melting icebergs, desolate polar bears, and flooding stress the severity of the issues.

Table 1 summarizes the social anatomies of the two crises.

	COVID-19	Climate Change
Time Regime	Rapid–Present	Incremental–Historical
Cause	Immediate	Extended/delayed
Consequences		
Time compression	Extreme	Slow, but now accelerating
Life-span	Reversible	Irreversible
4. Discussion: Similarities and Differences

Needless to say, there is a huge and growing gap between what has been done and what needs to be done in responding to climate change, whereas combating COVID-19 is still in a very precarious state, with huge variation in responses—temporally, spatially, and in terms of epistemic authority. Whereas climate change has to compete with a broad array of other high-priority challenges, despite it gradually moving up in the agenda in many countries, COVID-19 is still a largely unknown problem with regards to its temporal development and geographical extension. Despite its global expansion, international organizations like the WHO, United Nations, and the EU have been unable to orchestrate coordinated action in relation to COVID-19, whereas bilateral cooperation has resulted in the closing (and reopening) of specific international borders in order to halt the spread of the pandemic.

In terms of temporality, COVID-19 has a perceived, prolonged, or repeated life-span, whereas climate change is widely understood to be an irreversible, man-made phenomenon casting a present and future generational shadow over humankind. Paradoxically, the temporal regime developed for climate change makes it possible to hesitate and even postpone necessary action, as it does not hit humankind promptly and brutally all over the planet, shifting the major burden on future generations, i.e., a case of “after us—the Deluge”, and to “other” countries and locations. COVID-19 has immediate and dramatic repercussions on society broadly, in terms of life and death, social and intimate relations, and production and economy, whereas climate change, with its gradual and globally differentiated effects, makes it possible to obstruct, postpone, or find ways to compromise solutions with dubious long-term outcomes.

In terms of spatiality and institutional settings, there are risks from COVID-19 to entire populations, even if the specifics of social and geographical location, class, and political system mean that the risk is spread unevenly. Climate change differs from this in the way that its immediacy, as well as the capacity to adapt, is very much dependent on one’s geographical and social position. A massive boost to owners of capital and banks may speed up investment in industries and push human behavior in a direction detrimental to climate change. In both cases, what we have, and must live with in a foreseeable future, is a patchwork of more or less overlapping assemblies representing different spheres of authority; it is a matter of multi-level governance, including global institutions like the UN, World Bank, and WHO, international institutions like the EU other transnational arrangements, and national, regional, and local governments. While the potential exists for radical and progressive modes of governance to emerge from the pandemic, COVID-19 has, to date, triggered a regressive swing towards the primacy of national sovereignty (Standring and Davies 2020). However, paradoxically, the virus has, at the same time, made it obvious that we are all in a
way “cosmopolitan”, as people all over the world are affected and can follow the development of the virus visually on their mobile phones, computers, and TV screens, making us understand that we share the same fate and fears [74] (p. 79).

In terms of epistemic authority, an institutional machinery of expertise was not only ready to measure infected, recovered, and fatalities of COVID-19, but also had direct access to governments and strongly influenced not only how governments understood, but also how they responded to the pandemic. For climate change, a similar machinery for measuring greenhouse gases has developed over decades, and similarly to COVID-19, it can present, in real time, figures on the concentration of greenhouse gases in the Earth’s atmosphere. The IPCC has successfully spread the message of a threatened planet, both in terms of graphs on current emission trends and prognoses of future development. In contrast to COVID-19, climate change has not been given priority over other sectors and issues. Although climate change will also greatly affect human health and also change the likelihood and distribution of infectious disease outbreaks, it has not succeeded in guiding governments or prompting substantive interventions. This can be partly explained by the different temporal and spatial horizons of the crises, but also by the different institutionalization of expertise, health expertise and environmental expertise, respectively within different science–policy interfaces. Common for both crises is the fundamental dependency on expertise in understanding the crises. Paradoxically, despite the obvious social nature of the crises, social sciences still play a secondary role in understanding and governing the crises [69], partly because the dominant framing obscures important aspects of the character of the crises.

In addition to these three conclusions, strictly following our analytical framework, we now add three other comparative observations that need to be included in a broader interpretative framework, stating differences and similarities between the two threats, or crises.

First, COVID-19 has no obvious or easily identifiable human enemy that could be used as a scapegoat, although some political leaders have attempted to do so by pointing blame at specific groups as responsible for multiplying the virus, e.g., the “the Chinese”, “immigrants”, “the sitting government”, “irresponsible young party people”, or “fragile oldies”. Climate change, on the other hand, makes us all responsible in varying degrees and different ways, as producers and/or consumers. However, from a radical, “capitalocene” perspective, there is no doubt that the root cause of climate change lies with the destructive, carbon-dependent fossil fuel industry and the powerful financial/technical complex of owners and supporters [75].

Second, rather few established interests in society could take immediate advantage of the COVID-19 crisis, as the virus leads to dramatic loss of profits, rising unemployment, social isolation, and general drop in face-to-face activities in society, whereas, for example, investments in “green growth” are rapidly becoming a profitable branch of the economy. Even the political benefits of having done something, such as demonstrating political leadership in times of crisis, are fraught with uncertainty, as the ultimate impact of the pandemic—in health, social, and economic terms—remains unknown. The strong, sometimes extremely rapid, financial stimuli to mitigate the consequences of the pandemic do not challenge the current structure of society, but aim to maintain or reproduce it; this sits in direct contrast to many of the suggested measures argued to be necessary to mitigate and reverse climate change. Ironically, the pandemic crisis caused a dramatic, temporary slowdown of carbon dioxide and other emissions, thus giving a lesson in what would happen to the atmosphere should radical climate change mitigation be implemented. However, the current restoration of the Great-Acceleration-inspired high-speed capitalist growth may reverse the trend in a very short time.

Third, although the tide now seems to have turned towards a quick and comprehensive effort to restore something of the economic optimism of the Great Acceleration, there is a potential window of opportunity for degrowth and green growth initiatives depending on what kind of governance configurations and regulatory strategies will be created at different levels of society. This, in turn, is largely a matter of legitimacy and power. Common to both kinds of crises, then, is that they actualize multi-level and multi-scalar governance relations between governments, profit-making business, and civil society, even raising reconsideration of accountability and power relations between political leadership and citizens.
5. Conclusions: More of the Same or New Paths?

Humanity faces several huge, simultaneous, and interlinked challenges. It is tempting to view climate change and the COVID-19 pandemic as distinct and discrete, but their interrelations are complex and dynamic. To them we can add other social crises, such as growing global inequality, the accelerating extinction of species, and huge numbers of refugees and globally displaced people. These challenges raise the question of whether humanity is currently thrown into a “perfect storm” of accelerating and exacerbating crises of governance and democracy [44,76]. Here, the concept of a “critical juncture” comes to the fore, alluding to a situation where crucial actors have to urgently reconsider traditional policies in breadth and depth and initiate transformative change [77,78]. A crisis or a disaster may thus open windows of opportunity for alternative pathways to the road that led up to the drama [79,80]. What signs of hope for such a window are there in this “critical juncture”?

One could presume that the spread of the COVID-19 virus will ebb away, although according to different time scales around the globe, the dominant discourse among world leaders seems to be one of returning to the status quo ante [81,82]. Governments that were once strongly committed to a neoliberal, state-reductionist agenda now cry out for massive financial boosts from the state in order to save private companies (or, more accurately, their investors and banks), getting people to return to work and make their living in a way that may revive the Great Acceleration of the past. This economic boost will, unfortunately, also trigger a parallel boost for fossil fuel production, as documented and visualized in a running Energy Policy Tracker of real-time data published by the International Institute for Sustainable Development: “G20 governments have pledged to inject trillions of dollars into the global economy to counteract the health, social, and financial shocks caused by the COVID-19 crisis. This large-scale stimulus spending will shape the global economy for decades to come. These decisions could trigger unbearable climate disasters or create a resilient and safe economy powered by clean energy” [83] (our emphasis). However, despite presuming a basically traditional capitalist framework for recovery, there are still windows potentially open for “green growth”, re-directing regulations and investments in a carbon-neutral direction—particularly in the energy and transport sectors [84,85]. Unfortunately, “green growth” production also presumes an increase of CO₂ emissions over several years, making it even more difficult to reach the carbon budget reduction target of the Paris agreement [86].

Despite the increased political rhetoric advocating for the capitalist Great Acceleration, there is an enormous potential for alternative “crisis governance” to be realized. While mass unemployment is on the rise worldwide, we see an increased amount of voluntary efforts by individuals and multi-level civil society associations moving in to help those at risk of being hit by the health, social, and economic consequences of COVID-19. For example, people and organizations are giving support to professional health workers, delivering food and other necessities to old and sick people, and creating virtual networks to keep and nurture education, cultural, and social relations without physical contact [87]. Despite such impressive efforts outside the logic of state and capital, there is no doubt that the social consequences of the pandemic hit more heavily on the poor. Socio-economic studies indicate that the consequences of lockdowns and other pandemic-related mitigation policies hit the poor in less-developed countries even harder than the pandemic itself [88].

The voices of scientists, activists, and ordinary people demand a radical shift in development focus, arguing that now, in the midst of interrelated crises, is exactly the right moment for forging new paths and implementing new strategies of work and living [70,77,89]. Criticism of the dominant global economic discourse is growing, as exemplified by the degrowth hypothesis, stating that “it is possible to organize a transition and live well under a different political-economic system that has a radically smaller resource throughput” [90] (p. 2). Importantly, and not to fall into the trap of implicating degrowth in a retrotopian swing backwards to mass poverty, this discourse has to be coupled with notions of global social justice, promoting economic growth for poor nations and degrowth for the rich ones. Both theories of degrowth and environmental justice “share a common quest for profound socio-ecological transformations towards justice and sustainability, and that an alliance among these research and activist communities is essential” [91] (p. 7). With regard to climate change, the Principle of Common but Differentiated Responsibility proclaimed as early as the Rio...
Declaration that “while addressing the problem of climate change is the responsibility of all countries (hence a common responsibility), this […] should nonetheless be asymmetrically allocated to countries depending on their background circumstances, such as their varying economic needs” [92] (p. 123).

A similar logic was at play in the European context during the recent negotiations on the distribution of COVID-19 support to member states. A political conflict emerged over the issue of whether countries should receive direct transfers of aid or have to take out loans, based on policy conditionality and to be paid back when the situation, presumably, will improve. The result was a kind of compromise between the positions, in an echo of the situation during the Eurozone crisis, with some countries emphasizing the need for fiscal responsibility and economic conservatism while others argued for a show of solidarity and an expression of social and economic justice [93]. With regard to climate change, the issue of social justice is—or at least, should be—crucial when implementing a “New Green Deal”, i.e., “to find public support, then it must be demonstrably egalitarian, providing working-class people with economic security, decent housing, and good public services” [94] (p. 12). This argument is also strongly raised by the French economist Thomas Piketty in an interview [95] on his latest book Capital and Ideology:

Times of crisis are times when existing conceptions about the economy are being challenged and when new political—ideological trajectories can arise. COVID-19 illustrates the fact that public authorities can choose to regulate economic forces if they so wish. The question is whether we’ll be able to act strongly in order to address global warming or rising inequality. Together with the 2008–2012 bank bailout and money creation, the 2020 health crisis will challenge long-standing discourses about laissez-faire and will feed social demand for other intervention. For now, however, the only issue is survival: we need to do everything we can to avoid a dreadful rise in the number of casualties (Piketty 2020).

Although echoes of utopian—perhaps even “nowtopian” [96,97]—thoughts are only weakly apparent in mainstream political rhetoric (the EU Green Deal talks, for example), the dominant discourse among world political and financial leaders is still much closer to that of the Great Acceleration, showing the hegemonic power of the current capitalist system. As stated by Newell and Lane, this is not surprising, as environmental issues are “shaped by the social relations, institutional configurations, and practices of power that we observe in other areas produced by the same global political economy that provides the ideological, institutional, and material context in which responses to the ecological crisis have to be forged. Recognition of this fact takes us to the heart of the contradictions and opportunities that we observe in global attempts to manage environmental crises” [98].

In accordance with both (orthodox) Marxist and liberal theories of development, accumulation and competition are driving mechanisms intrinsic to the contemporary system, and are adjustable to different cultural, political, and geographical contexts. Despite the shifting labels of “corporate capitalism” [99], “crony capitalism” [100], “green capitalism” [101], and “surveillance capitalism” [102], most diagnoses of the current social and economic pathologies share one thing in common—a critique of (contemporary) capitalism. The current wave of academic, literary, and existential reflections on the COVID-19 and climate change crises contains an enormous breadth of perspectives about what will happen in the future, spanning from the optimistic liberalism of “soon back to the normal” [103], to the more radical and progressive image of “a portal to a new world” [104]. Well aware of the intricate power relations in global and international politics [98,105,106], we here contend with a modest, and perhaps too naïve, plea for a critical navigation between the emotional messages of fear and hope, searching for paths to unblock the road to more responsible and livable societies.

Author Contributions: Conceptualization, R.L.; Analysis, R.L., A.S., and I.E.; writing—original draft preparation, R.L.; writing—review and editing, A.S., I.E., and R.L.; funding acquisition, R.L. All authors have read and agreed to the published version of the manuscript.
Funding: This research was funded by The Swedish Research Council, grant number 2018-01634.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

References

1. EIU. How Well have OECD Countries Responded to the Coronavirus Crisis? Economist Intelligence Unit: London, UK, 2020. Available online: https://www.eiu.com/n/campaigns/oecd-countries-responded-to-the-coronavirus-crisis/ (accessed on 17 June 2020).
2. Kleinfield, R. Do authoritarian or Democratic Countries Handle Pandemics Better? Carnegie Endowment for International Peace, 31 March 2020. Available online: https://carnegieendowment.org/2020/03/31/do-authoritarian-or-democratic-countries-handle-pandemics-better-pub-81404 (accessed on 20 June 2020).
3. Jasanoff, S. Science Will Not Come on a White Horse With a Solution. Interview conducted by Nawal Arjini. The Nation, 6 April 2020. Available online: https://www.thenation.com/article/society/sheila-jasanoff-interview-coronavirus/ (accessed on 9 April, 2020).
4. Carrington, D. EU Green Recovery Package Sets A Marker for the World. The Guardian 28 May 2020. Available online: https://www.theguardian.com/environment/2020/may/28/eu-green-recovery-package-sets-a-marker-for-the-world (accessed on 23 June 2020).
5. EC. Recovery Plan for Europe; European Commission: Brussels, Belgium, 2020. Available online: https://ec.europa.eu/info/live-work-travel-eu/health/coronavirus-response/recovery-plan-europe_en (accessed on 24 July 2020).
6. McNeill, J.R.; Engelke, P. The Great Acceleration. An Environmental History of the Anthropocene since 1945; Harvard University Press: New York, NY, USA, 2016.
7. EIU. Webinar Invite: Global Growth and Geopolitical Outlook; Economist Intelligence Unit: London, UK, 2020. Available online: https://pages.eiu.com/JuneGlobalgrowthandgeopoliticaloutlook-Subscriptions-NewBusiness_registration-page.html (accessed on 15 June 2020).
8. IPCC. Global Warming of 1.5 °C; An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; The IPCC: Geneva, Switzerland, 2018. Available online: https://www.ipcc.ch/sr15/ (accessed on 27 May 2020).
9. Diamond, J. Guns, Germs and Steel: The Fates of Human Societies; Norton: New York, NY, USA, 1997.
10. Gelin, G. Jared Diamond: Viruset är här för att stanna, men det kommer inte slå ut vår civilisation. [Jared Diamond: The virus is here to stay, but it will not knock out our civilisation]. Interview with Jared Diamond. Dagens Nyheter, Kultur, 21 March 2020; Available online: https://www.dn.se/kultur-noje/jared-diamond-viruset-ar-var-for-att-stanna-men-det-kommer-inte-sla-ut-var-civilisation/ (accessed on 20 April 2020)
11. UN. The Climate Crisis—A Race We Can Win; United Nations: Geneva, Switzerland, 2020. Available online: https://www.un.org/en/un75/climate-crisis-race-we-can-win (accessed 24 June 2020).
12. Buzan, B.; Wæver, O.; Wilde, J.D. Security: A New Framework for Analysis; Lynne Rienner: Boulder, CO, USA, 1998.
13. Bacchi, C.L.; Goodwin, S. Poststructural Policy Analysis: A Guide to Practice; Palgrave Pivot: New York, NY, USA, 2016.
14. Hay, C. Crisis and the structural transformation of the state: Interrogating the process of change. Br. J. Politics Int. Relat. 1999, 1, 317–344, doi:10.1111/1467-856X.00018.
15. Koselleck, R. Crisis. J. Hist. Ideas 2006, 67, 357–400. Available online: www.jstor.org/stable/30141882 (accessed on 13 March 2020).
16. Lidskog, R.; Soneryd, L.; Uggla, Y. Transboundary Risk Governance; Earthscan: London, UK, 2010.
17. Standring, A. Depoliticising austerity: Narratives of the Portuguese debt crisis 2011–2015. Policy Politics 2018, 46, 149–164, doi:10.1332/030557317X14866576265977.
18. Boin, A.; Hart, P.T. The crisis approach. In Handbook of Disaster Research; Rodrigues, H., Quarantelli, E.L., Dynes, R.R., Eds.; Springer: New York, NY, USA, 2007; pp. 42–54.
19. Aven, T.; Renn, O. Risk Management and Governance: Concepts, Guidelines and Applications; Springer: Heidelberg, Germany, 2010.
20. Lidskog, R.; Sundqvist, G. The sociology of risk. In Essentials of Risk Theory; Roeser, S., Hillerbrand, R., Sandin, P., Peterson, M., Eds.; Springer: New York, NY, USA, 2013; pp. 75–105.
21. Beck, U. World at Risk; Polity Press: Cambridge, UK, 2009.
22. Lidskog, R.; Sjödin, D. Unintended consequences and risk(y) thinking: The shaping of consequences and responsibilities in relation to environmental disasters. Sustainability 2018, 10, 2906, doi:10.3390/su10082906.
23. Gross, M. Ignorance and Surprise: Science, Society, and Ecological Design; MIT Press: Cambridge, UK, 2010.
24. Lidskog, R.; Uggla, Y.; Soneryd, L. Making transboundary risks governable: Reducing complexity, constructing identities and ascribing capabilities. Ambio 2011, 40, 111–120.
25. Guston, D.H. Understanding 'anticipatory governance'. Social Stud. Sci. 2014, 44, 218–242, doi:10.1177/0306312713508669.
26. Quay, R. Anticipatory governance. J. Am. Plan. Assoc. 2010, 76, 496–511, doi:10.1080/01944363.2010.508428.
27. Poli, R. Steps toward an explicit ontology of the future. J. Futures Stud. 2011, 16, 67–78, https://pdfs.semanticscholar.org/0294/5386f7e88e2344d5dad6da40de623f22bf14.pdf
28. Yasuda, J. Regulatory governance. In Handbook of Theories on Governance; Ansell, C., Torfing, J., Eds.; Edward Elgar: Cheltenham, UK, 2016; pp. 428–441.
29. Boyd, E.; Nykvist, B., Borgström, S.; Stacewicz, I.A. Anticipatory governance for social ecological resilience. Ambio 2015, 44 (Suppl. 1), S149–S161, doi:10.1007/s13280-014-0604-x.
30. Fueth, L.S. Foresight and anticipatory governance. Foresight 2009, 11, 14–32, doi:10.1108/14636680910982412.
31. Peijun, S.; Jaeger, C.; Ye, Q. (Eds.) Integrated Risk Governance. Science Plan and Case Studies of Large-Scale Disasters; Springer: Berlin, Germany, 2013.
32. Brown, O.; Heyman, B.; Alaszewkski, A. Time-Framing and Health Risks. Health Risk Soc. 2013, 15, 479–488, doi:10.1080/13698575.2013.846303.
33. Lidskog, R.; Sjödin, D. Time, knowledge, and risk: Decision making in the aftermath of storm disasters. Int. J. Mass Emerg. Disasters 2015, 33, 341–359.
34. Jessop, B. The Future of the Capitalist State; Polity Press: Cambridge, UK, 2002.
35. Tooze, A. Crashed: How A Decade of Financial Crises Changed the World; Viking Press: New York, NY, USA, 2018.
36. Boholm, Å.; Corvellec, H.; Karlsson, M. The practice of risk governance: Lessons from the field. J. Risk Res. 2012, 15, 1–20, doi:10.1080/13698877.2011.587886.
37. Lidskog, R.; Sjödin, D. Risk governance through professional expertise. Forestry consultants’ handling of uncertainties after a storm disaster. J. Risk Res. 2016, 19, 1275–1290, doi:10.1080/13698877.2015.1043570.
38. Brenner, N. New State Spaces: Urban Governance and the Rescaling of Statehood; Oxford University Press: Oxford, UK, 2004.
39. Daniell, K.A.; Kay, A. (Eds.) Multi-level governance: An introduction. In Multi-level Governance: Conceptual Challenges and Case Studies from Australia; ANU Press: Acton, Australia, 2017; pp. 3–32.
40. Glover, L.; Granberg, M. The Politics of Adapting to Climate Change; PalgraveMacmillan: Basingstoke, UK, 2020.
41. Gustavsson, E.; Elander, I.; Lundmark, M. Multilevel governance, networking cities, and the geography of climate-change mitigation: Two Swedish examples. Environ. Plan. C Gov. Policy 2009, 27, 59–74, doi:10.1068/c07109j.
42. Hood, C.; Rothstein, H.; Baldwin, R. The Government of Risk. Understanding Risk Regulation Regimes; Oxford University Press: Oxford, UK, 2001.
43. Jasanoff, S. Designs on Nature: Science and Democracy in Europe and the United States; Princeton University Press: Princeton, NJ, USA, 2005.
44. Mastropaolo, A. Is Democracy a Lost Cause? Paradoxes of an Imperfect Invention; ECPR Press: Colchester, UK, 2012.
45. Palumbo, A. Situating Governance: Context, Content, Critique; ECPR Press: Colchester, UK, 2015.
46. Runciman, D. Coronavirus Has Not Suspended Politics—It Has Revealed the Nature of Power. The Guardian, 27 March 2020. Available online: https://www.theguardian.com/commentisfree/2020/mar/27/coronavirus-politics-lockdown-hobbes (accessed on 15 June 2020).
47. Weick, K.E.; Sutcliffe, K.M.; Obstfeld, D. Organizing and the process of sensemaking. In Making Sense of the Organization. The Impermanent Organization; Wiley: Chichester, UK, 2009; Volume 2; pp. 131–152.
48. Robertson, R. Globalization: Social Theory and Global Culture; Sage: London, UK, 1992.
49. Sassen, S. Cities in a World Economy, 4th ed.; SAGE/Pine Forge: Thousand Oaks, CA, USA, 2012.
50. Bayrbağ, M.K.; Davies, J.S.; Münch, S. Interrogating urban crisis: Cities in the governance and contestation of austerity. Urban Stud. 2017, 54, 2023–2038, doi:10.1177/0042098017706336.
51. Edelman, M. Politics as Symbolic Action; Academic Press: New York, NY, USA, 1971.
52. Gerth, H.; Mills, C.W. Character and Social Structure. In The Psychology of Social Institutions; Harcourt: New York, NY, USA, 1953.
53. Fischer, F. Reframing Public Policy: Discursive Politics and Deliberative Practices; Oxford University Press: Oxford, UK, 2003.
54. Hajer, M.; Wagenaar, H. Deliberative Policy Analysis: Understanding Governance in the Network Society; Cambridge University Press: New York, NY, USA, 2003.
55. Rose, N. Powers of Freedom: Reframing Political Thought; Cambridge University Press: Cambridge, UK, 1999.
56. Lidskog, R.; Sundqvist, G. Environmental expertise as group belonging: Environmental sociology meets Science and Technology Studies. Nat. Cult. 2018, 13, 309–331, doi:10.3167/ncc.2018.130301.
57. Stone, D. Policy Paradox: The Art of Political Decision Making, 3rd ed.; W.W. Norton & Company: New York, NY, USA, 2012.
58. Lidskog, R.; Löfmarck, E. Managing uncertainty. The forest in the face of societal and climate change. Risk Manag. 2015, 17, 145–164, doi:10.1057/rm.2015.10.
59. Lidskog, R.; Berg, M.; Gustafsson, K.; Löfmarck, E. Cold science meets hot weather. Environmental threats, emotional messages and scientific storytelling. Media Commun. 2020, 8, 118–128, doi:10.17645/mac.v8i1.2432.
60. Brown, P. Studying COVID-19 in light of critical approaches to risk and uncertainty: Research pathways, conceptual tools, and some magic. Health Risk Soc. 2020, 22, 1–4, doi:10.1080/13698875.2020.1745508.
61. Rhodes, T.; Lancaster, K.; Rosengarten, M. A model society: Maths, models and expertise in viral outbreaks. Crit. Public Health 2020, 30, 253–256, doi:10.1080/09581596.2020.1748310.
62. Gallaghan, S. COVID-19 Is a data science issue. Patterns 2020, 1, doi:10.1016/j.patter.2020.100022.
63. Everts, J. The dashboard pandemic. Dialogues Hum. Geogr. 2020, doi:10.1177/2043820620935355.
64. IPCC. Guidance Notes for Lead Authors of the IPCC Fourth Assessment Report on Addressing Uncertainties. In AR4 Climate Change 2007: The Physical Science Basis; IPCC: Geneva, Switzerland, 2005. Available online: https://www.ipcc.ch/site/assets/uploads/2018/02/ar4-uncertaintyguidancenote-1.pdf (accessed on).
65. IPCC. Guidance Note for Lead Authors of the IPCC Fifth Assessment Report on Consistent Treatment of Uncertainties. In Proceedings of the IPCC Cross-Working Group Meeting on Consistent Treatment of Uncertainties; Jasper Ridge, Portola Valley, CA, USA, 6–7 July 2010. Available online: https://www.ipcc.ch/site/assets/uploads/2018/05/uncertainty-guidance-note.pdf (accessed on 27 May 2020).
66. Desrosieres, A. The Politics of Large Numbers; Harvard University Press: Cambridge, MA, USA, 2002.
67. Pleyers, G. A plea for global sociology in times of the coronavirus. ISA Digital Worlds: Global Sociology. 2020, doi:10.1177/2043820620935355.
68. Beck, U. Emancipatory catastrophism: What does it mean to climate change and risk society? Curr. Sociol. 2015, 63, 75–88, doi:10.1177/0011392114559951.
69. Hulme, M.; Lidskog, R.; White, J.; Standring, A. Social scientific knowledge in times of crises: What climate change can learn from coronavirus (and vice versa)? WIREs Clim. Chang. 2020, 11, e656, doi:10.1002/wcc.656.
70. Zinn, J.O. ‘A monstrous threat’: How a state of exception turns into a ‘new normal’. J. Risk Res. 2020, doi:10.1080/13698877.2020.1758194.
71. Enslenrunk, M.; Kupferschmidt, K. Mathematics of life and death: How disease models shape national shutdowns and other pandemic policies. Sci. Mag. 2020, doi:10.1126/science.abb8814.
72. Lidskog, R.; Waterton, C. Anthropocene—A cautious welcome from environmental sociology? Environ. Sociol. 2016, 2, 395–406, doi:10.1080/23251042.2016.1210841.
73. Sismondo, S. COVID-19. Soc. Stud. Sci. 2020, 50, 173–174, doi:10.1177/0306312720918403.
74. Krastev, I. Är Morgondagen Redan Här? Hur Pandemning Föränder dr Europas; Daidalos: Göteborg, Sweden, 2020.
75. Moore, J.W. The Capitalocene. Part I: On the nature and origins of our ecological crisis. J. Peasant. Stud. 2017, 44, 594–630, doi:10.1080/03066150.2016.1235036.
76. Abramowitz, M.J. Freedom in the World 2018: Democracy in Crisis; Freedom House: Washington, DC, USA, 2018. Available online: https://freedomhouse.org/report/freedom-world/freedom-world-2018 (accessed on 23 June 2020).
77. Boström, M.; Andersson, E.; Berg, M.; Gustafsson, K.; Gustavsson, E.; Hysing, E.; Lidskog, R.; Löfmarck, E.; Ojala, M.; Olsson, J.; Singleton, B.E.; et al. Conditions for transformative learning for sustainable development: A theoretical review and approach. *Sustainability* 2018, 10, 4479, doi:10.3390/su10124479.
78. Capoccia, G. Critical Junctures. In *The Oxford Handbook of Historical Institutionalism*; Fioretos, O., Falletti, T.G., Sheingate, A., Eds.; Oxford: Oxford Handbooks Online: 2016, doi:10.1093/oxfordhb/9780199662814.013.5.
79. Kingdon, J.W. *Agendas, Alternatives, and Public Policies*; Little Brown: Boston, MA, USA, 1984.
80. Birkland, T.A. *Lessons of Disaster. Policy Change after Catastrophic Events*; Georgetown University Press: Washington, DC, USA, 2007.
81. OECD. *OECD Economic Outlook June 2020*. Available online: http://www.oecd.org/economic-outlook/june-2020/ (accessed on 20 June 2020).
82. World Bank. *Global Economic Prospects, June 2020*; Word Bank: Washington, DC, USA, 2020, doi:10.1596/978-1-4648-1553-9.
83. IIISD. *Energy Policy Tracker*; International Institute for Sustainable Development: Winnipeg, MB, Canada, 2020. Available online: https://www.energypolicytracker.org/ (accessed on 20 July 2020).
84. Rubin, J. *The Carbon Bubble: What Happens to Us When it Bursts*; Penguin: Toronto, ON, Canada, 2015.
85. Luque-Ayala, A.; Marvin, S.; Bulkeley, H. (Eds.) *Rethinking Urban Transitions: Politics in the Low Carbon City*; Routledge: London, UK, 2018.
86. Alfredsson, E.; Malmaeus, J.M. Real capital investments and sustainability—The case of Sweden. *Ecol. Econ.* 2019, 161, 216–224, doi:10.1016/j.ecolecon.2019.04.018.
87. Standring, A.; Davies, J. From crisis to catastrophe: The death and viral legacies of austere neoliberalism in Europe? *Dialogues Hum. Geogr.* 2020, doi:10.1177/2043820620934270.
88. Buheji, M.; da Costa Cunha, K.; Beka, G.; Mavrić, B.; do Carmo de Souza, Y.L.; da Costa Silva, S.S.; Hanafi, M.; Yein, T.C. The extent of COVID-19 pandemic socio-economic impact on global poverty. A global integrative multidisciplinary review. *Am. J. Econ.* 2020, 10, 213–224, doi:10.5923/j.economics.20201004.02.
89. Bregman, R. *Utopia for Realists—And How We Can Get There*; Bloomsbury: London, UK, 2018.
90. Kallis, G.; Kostakis, V.; Lange, A.; Muraca, B.; Paulson, S.; Schmelzer, M. Research on degrowth. *Annu. Rev. Environ. Resour.* 2018, 43, 291–316, doi:10.1146/annurev-environ-10217-025941.
91. Akbulut, B.; Demaria, F.; Gerber, J.F., Martínez-Alier, J. Who promotes sustainability? Five theses on the relationships between the degrowth and the environmental justice movements. *Ecol. Econ.* 2019, 165, 106418, doi:10.1016/j.ecolecon.2019.106418.
92. Tan, K.-C. *What is this Thing called Global Justice?* Routledge: London, UK, 2017.
93. BBC News. Coronavirus: EU Leaders Reach Recovery Deal after Marathon Summit. 21 July 2020. Available online: https://www.bbc.com/news/world/europe-53481542 (accessed on 22 July 2020).
94. Sayer, A. Rentiership, improverty and moral economy. *Environ. Plan. A Econ. Space* 2020, doi:10.1177/0308518X20908287.
95. Piketty, T. Thomas Piketty: Confronting Our Long History of Massive Inequality. Interview conducted by Daniel Steinmetz-Jenkins. *The Nation*, 26 March 2020. Available online: https://www.thenation.com/article/culture/thomas-piketty-interview-inequality-book-covid/ (accessed 25 July 2020).
96. Carlsson, C.; Manning, S. Nowtopia: Strategic Exodus? *Antipode* 2010, 42, 924–953, doi:10.1111/j.1467-8330.2010.00782.x.
97. Demaria, F.; Kallis, G.; Bakker, K. Geographies of degrowth: Nowtopias, resurgences and the decolonization of imaginaries and places. *Environ. Plan. E Nat. Space* 2019, 2, 431–450, doi:10.1177/251484619869689.
98. Newell, P.; Lane, R. IPE and the enviromnent in the age of the anthropocene. In *Traditions and Trends in Global Environmental Politics*; International Relations and the Earth; Corry, O., Stevenson, H., Eds.; Routledge: London, UK, 2017; Chapter 8, doi:10.4324/9781315206967.
99. Perrow, C. *Organizing America: Wealth, Power, and the Origins of Corporate Capitalism*; Princeton University Press: New York, NY, USA, 2009.
100. Monbiot, G. The Problem is Capitalism. The Guardian, 25 April 2019. Available online: https://www.monbiot.com/2019/04/30/the-problem-is-capitalism/ (accessed on 6 July 2020).
101. Hickel, J.; Kallis, G. Is green growth possible? New Polit. Econ. 2020, 25, 469–486, doi:10.1080/13563467.2019.1598964.
102. Zuboff, S. The Age of Surveillance Capitalism: The Fight for the Future at the New Frontier of Power; Profile Books: London, UK, 2019.
103. Mounk, Y. Livet kommer att återgå till det normal efter pandemin [Life will get back to the normal after the pandemic] Dagens Nyheter, Kultur, 22 June 2020; pp. 6–7. Available online: https://www.dn.se/kultur-noje/yascha-mounk-joda-livet-kommer-att-aterga-till-det-normala-efter-pandemin/ (accessed on 22 June 2020).
104. Roy, A. Pandemin kan vara en portal till en ny värld. In Corona: 19 Författare om Krisen; Wiman, B., Ed; Dagens Nyheter/Polaris: Stockholm, Sweden, 2020; pp. 17–28.
105. Young, O. Institutional Dynamics: Emergent Patterns in International Environmental Governance; MIT Press: Cambridge, MA, USA, 2010.
106. Harvey, D. The New Imperialism; Oxford University Press: Oxford, UK, 2003.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).