This cross-sectional study was conducted on the drinking water resources of the city of Jolfa (East Azerbaijan province, Iran) from samples taken from 30 wells. Calcium hardness, pH, total alkalinity, TDS, temperature and other chemical parameters were measured using standard methods. The Langelier, Raynar, Puckorius and aggressive indices were calculated. The results showed that the Langelier, Raynar, Puckorius, Larson-skold and aggressive indices were 1.15 (± 0.43), 6.92 (± 0.54), 6.42 (± 0.9), 0.85 (± 0.72) and 12.79 (± 0.47), respectively. In terms of water classification, 30% of samples fell into the NaCl category and 26.6% in the NaHCO3 category and 43.4% samples in the CaHCO3, MgHCO3 and MgCl category. The sedimentation indices indicated that the water of the wells could be considered as corrosive.

© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Specifications Table

Subject area	Chemistry
More specific subject area	Describe narrower subject area
Type of data	Tables, Figure
How data was acquired	To calculate the corrosion indices, 120 water samples were collected, stored and transferred to the lab using standard methods and the water quality parameters such as temperature, electrical conductivity, total dissolved solids, pH, dissolved oxygen, calcium hardness, alkalinity, chloride and sulfate were measured. The gravimetric method was used to measure the dissolved solids and the titration method was used to determine alkalinity. Sulfate ions were measured based on turbidity measurement at 420 nm using a DR5000 spectrophotometer. Residual chlorine and pH measurement was carried out using test kits and water temperature was measured with a thermometer at the sampling points
Data format	Raw, Analyzed
Experimental factors	The mentioned parameters above, in abstract section, were analyzed according to the standards for water and wastewater treatment handbook.
Experimental features	The levels of physical and chemical parameters were determined.
Data source location	Jolfa, East Azerbaijan province, Iran
Data accessibility	The data are available with this article

Value of the data

- Calculation of corrosion indices showed that the chemical quality of the water was imbalanced and could cause corrosion to the water system and other facilities.
- The water quality and the potential for corrosion in all distribution systems is necessary to avoid economic loss and avert adverse effects on health.
- Comparison of five stability indices showed that water conditions in all parts of this study are supersaturated.

1. **Data**

The data presented here deals with monitoring of the physical and chemical properties of pH, EC, TDS, HCO₃⁻, CO₃⁻, SO₄²⁻, Cl⁻, Ca²⁺, Mg²⁺, and Na⁺ as shown in Tables 2 and 3, respectively. The results of the calculations for the Langelier, Ryzener, Puckorius, Aggressive and Larson indices are presented for Jolfa in Table 4. All indices other than the AI index indicated that the water is corrosive. The Langelier index was greater than zero in 90% of samples. Based on the average of this index, the water can be classified as supersaturated; thus, according to the Langelier index, the water is not corrosive. In all samples, (60%) the Ryzener index was between 6 and 7 and it can be concluded that the water samples are saturated (Table 4). The water samples were classified as 30% in the NaCl category, 26.6% in the NaHCO₃ category and 43.4% in the CaHCO₃, MgHCO₃ and MgCl category (Table 5).
2. Experimental design, materials and methods

2.1. Study area description

Jolfa is the capital of Jolfa county in East Azerbaijan province in Iran. Jolfa county is located in northern East Azerbaijan province at UTM coordinates of X = 45.17 to 46.31 east longitude and Y = 38.39 to 39.2 north latitude. The city borders the river Aras and the autonomous republic of Nakhchivan and the Republic of Armenia and Azerbaijan to the north [Fig. 1].

2.2. Sample collection and analytical procedures

To calculate the corrosion indices, 120 water samples were collected, stored and transferred to the lab using standard methods and the water quality parameters such as temperature, electrical conductivity, total dissolved solids, pH, dissolved oxygen, calcium hardness, alkalinity, chloride and sulfate were measured. The gravimetric method was used to measure the dissolved solids and the titration method was used to determine alkalinity. Sulfate ions were measured based on turbidity measurement at 420 nm using a DR5000 spectrophotometer. Residual chlorine and pH measurement was carried out using test kits and water temperature was measured with a thermometer at the sampling points [5–11]. The equations of the corrosion indices and their interpretations are summarized in Table 1.

Table 1

Summary of water stability indices in present study [1–4].
Equation
Langelier saturation index (LSI)
Ryznar stability index (RSI)
Puckorius scaling index (PSI)
Larson-skold index (LS)
Aggressive index (AI)
Table 2
Physical and chemical characteristics of water quality of distribution networks of Jolfa city.

Number	Number	Ca\(^{2+}\) (mg/l)	Mg\(^{2+}\) (mg/l)	Na\(^{+}\) (mg/l)	K\(^{+}\) (mg/l)	CO\(_3\)\(^{2-}\) (mg/l)	HCO\(_3\)\(^{-}\) (mg/l)	TH As CaCO\(_3\) (mg/l)
Well W1	144.00	87.84	349.6	7.41	0	600.85	721.29	
Well W2	25.60	25.86	64.4	1.17	6	317.2	170.43	
Well W3	44.00	33.67	50.6	1.56	0	335.5	274.5	
Well W4	38.40	25.86	167.9	3.12	15	381.25	152.45	
Well W5	72.00	54.14	170.2	7.8	12	488	406.87	
Well W6	47.20	35.62	184	3.12	0	448.35	314.5	
Well W7 176.00	129.32	483	7.41	0	506.3	972.01		
Well W8	66.00	18.91	33.12	1.95	0	219.6	242.67	
Well W9	70.00	17.69	30.82	1.95	0	219.6	247.64	
Well W10	61.40	25.86	167.9	3.12	0	448.35	314.5	
Well W11	44.00	33.67	50.6	1.56	0	335.5	274.5	
Well W12	38.40	25.86	167.9	3.12	15	381.25	152.45	
Well W13	72.00	54.14	170.2	7.8	12	488	406.87	
Well W14	180.00	122	471.5	7.8	12	488	406.87	
Well W15	160.00	97.6	345	7.41	0	649.65	801.44	
Well W16	180.00	85.4	126.5	5.46	0	747.25	1022.91	
Well W17	72.00	56.12	170.2	7.8	12	488	410.89	
Well W18	88.00	107.36	200.1	7.02	0	585.6	661.84	
Well W19	32.00	39.04	11.96	1.17	0	366	290.61	
Well W20	122.00	163.48	310.5	3.12	0	527.65	1022.91	
Well W21	272.20	30.26	14.95	1.17	15	179.95	192.51	
Well W22	176.00	122	471.5	7.41	0	439.2	941.87	
Well W23	160.00	97.6	345	7.41	0	649.65	801.44	
Well W24	180.00	85.4	126.5	5.46	0	747.25	1022.91	
Well W25	52.00	39.04	31.28	1.17	0	366	290.61	
Well W26	132.00	168.36	310.5	3.12	0	527.65	1022.91	
Well W27	184.00	25.86	163.3	7.8	12	488	410.89	
Well W28	63.20	56.12	165.6	3.9	0	405.65	388.91	
Well W29	160.00	97.6	345	7.41	0	649.65	801.44	
Well W30	180.00	85.4	115	5.46	0	716.75	801.14	
Mean	91.49	66.14	184.08	4.28	3.66	448.29	500.81	
Max	180	168.36	483	7.8	28.8	747.25	1022.91	
Min	18.4	17.69	11.96	1.17	0	179.95	152.45	
S.D	55.31	45.48	148.38	2.52	8.09	174.63	300.55	

Table 3
Physical and chemical characteristics of water quality of distribution networks of Jolfa city.

Number	Well	ALK as CaCO\(_3\) (mg/l)	CL\(^{-}\) (mg/l)	SO\(_4\)\(^{2-}\) (mg/l)	EC (μmhos/cm)	TDS (mg/l)	pH	HCO\(_3\)\(^{-}\) (mg/l)	CaH as CaCO\(_3\) (mg/l)
W1	600.85	532.5	235.2	3060	1788	8.2	600.85	360	
W2	323.20	24.85	48	663	374.4	8.7	317.2	64	
W3	320.15	28.4	48	654	430.8	8.7	314.15	110	
W4	335.50	42.6	48	573	465	8.1	335.5	136	
W5	396.25	60.35	96	1092	627.6	9	381.25	46	
W6	500.00	152.65	144	3330	1903	9	381.25	46	
W7	448.35	184.6	86.4	636	863.4	8.8	448.35	180	
W8	506.30	754.375	528	7080	2436	8.2	506.3	440	
W9	219.60	69.225	36	620	403	7.77	219.6	165	
W10	219.60	69.58	35.52	620	403	7.77	219.6	175	
W11	219.12	18.46	45.12	574	340	8.37	190.32	153.5	
W12	225.70	69.935	38.4	640	416	7.8	225.7	172.5	
W13	649.65	532.5	273.6	3140	1884	7.4	649.65	400	
W14	313.90	213	254.4	1673	1003.8	8.6	298.9	110	
W15	741.15	230.75	124.8	2130	1278	7.5	741.15	300	
W16	454.45	443.75	139.2	2290	1374	7.9	454.45	150	
Table 3 (continued)

Number Well	ALK as CaCO₃ (mg/l)	CL⁻ (mg/l)	SO₄²⁻ (mg/l)	EC (μmhos/cm)	TDS (mg/l)	pH	HCO₃⁻ as CaCO₃ (mg/l)	CaH as CaCO₃ (mg/l)
W17	500.00	156.2	144	1582	949.2	8.5	488	180
W18	585.60	399.375	57.6	2210	1326	7.7	585.6	220
W19	366.00	23.075	24	720	432	7.2	366	130
W20	527.65	621.25	355.2	3360	2016	7.7	527.65	330
W21	194.95	12.425	33.6	454	272.4	8.6	179.95	68
W22	439.20	754.375	528	3950	2370	7.9	439.2	440
W23	649.65	532.5	264	3120	1872	7	649.65	400
W24	747.25	227.2	144	2170	1302	7	747.25	450
W25	366.00	23.075	24	720	432	7.1	366	130
W26	527.65	621.25	374.4	3400	2040	7.5	527.65	330
W27	408.70	53.25	96	1024	614.4	7.9	408.7	46
W28	405.65	106.5	259.2	1509	905.4	7.5	405.65	158
W29	649.65	532.5	264	3120	1872	7	649.65	400
W30	716.75	227.2	144	2120	1272	7.5	716.75	450
Mean	451.95	257.26	161.65	1941.13	1092.0	7.8	448.29	228.73
Max	747.25	754.38	528	7080	2436	9	747.25	450
Min	194.95	12.43	4.8	454	272.4	7	179.95	46
S.D	175.43	248.71	151.68	1691.65	699.97	0.59	174.63	138.28

Table 4

Results of Water stability indices calculations samples obtained from Jolfa city.

Number Well	Index				
	LSI	RSI	PSI	LS	Al
W1	1.13	5.93	5.52	1.28	13.54
W2	0.82	7.05	7.54	0.09	13.02
W3	1.06	6.59	7.08	0.24	13.25
W4	0.58	6.94	6.80	0.27	12.76
W5	1.01	6.98	7.63	0.39	13.26
W6	1.04	6.42	6.43	0.59	13.45
W7	0.79	6.52	6.20	0.60	12.98
W8	1.01	6.18	5.88	2.53	13.55
W9	0.12	7.50	7.28	0.48	12.31
W10	0.15	7.45	7.23	0.48	12.33
W11	0.72	6.93	7.33	0.29	12.90
W12	0.20	7.40	7.21	0.48	12.39
W13	0.41	6.58	5.32	1.24	12.81
W14	0.83	6.94	7.34	1.49	13.14
W15	0.50	6.49	5.25	0.48	12.85
W16	0.38	7.14	6.61	1.28	12.73
W17	1.15	6.19	6.20	0.60	13.45
W18	0.46	6.78	5.88	0.78	12.81
W19	-0.32	7.85	6.75	0.13	11.88
W20	0.52	6.65	5.82	1.85	12.94
W21	0.57	7.46	8.17	0.24	12.72
W22	0.74	6.41	5.90	2.92	13.19
W23	0.01	6.98	5.32	1.23	12.41
W24	0.18	6.64	4.89	0.50	12.53
W25	-0.42	7.95	6.75	0.13	11.78
W26	0.32	6.85	5.83	1.89	12.74
W27	-0.07	8.04	7.57	0.37	12.17
W28	0.01	7.47	6.61	0.90	12.31
W29	0.01	6.98	5.32	1.23	12.41
W30	0.67	6.17	4.95	0.52	13.01
Mean	0.49	6.92	6.42	0.85	12.79
Max	1.15	6.92	6.42	0.85	12.79
Min	-0.42	5.93	4.89	0.09	11.78
S.D	0.43	0.54	0.9	0.72	0.47
Number	Well	Water categories based on TDS	Water category based on Piper chart		
--------	------	-------------------------------	-----------------------------------		
W1	Brackish water	Na⁺	Cl⁻		
W2	Fresh water	Na⁺	HCO₃⁻		
W3	Fresh water	Mg²⁺	HCO₃⁻		
W4	Fresh water	Mg²⁺	HCO₃⁻		
W5	Fresh water	Na⁺	HCO₃⁻		
W6	Fresh water	Na⁺	HCO₃⁻		
W7	Fresh water	Na⁺	HCO₃⁻		
W8	Brackish water	Na⁺	Cl⁻		
W9	Fresh water	Ca²⁺	HCO₃⁻		
W10	Fresh water	Ca²⁺	HCO₃⁻		
W11	Fresh water	Ca²⁺	HCO₃⁻		
W12	Fresh water	Ca²⁺	HCO₃⁻		
W13	Brackish water	Na⁺	Cl⁻		
W14	Brackish water	Na⁺	Cl⁻		
W15	Brackish water	Na⁺	HCO₃⁻		
W16	Brackish water	Na⁺	Cl⁻		
W17	Fresh water	Na⁺	HCO₃⁻		
W18	Brackish water	Mg²⁺	Cl⁻		
W19	Fresh water	Mg²⁺	HCO₃⁻		
W20	Brackish water	Na⁺	Cl⁻		
W21	Fresh water	Mg²⁺	HCO₃⁻		
W22	Brackish water	Na⁺	Cl⁻		
W23	Brackish water	Na⁺	Cl⁻		
W24	Brackish water	Ca²⁺	HCO₃⁻		
W25	Fresh water	Mg²⁺	HCO₃⁻		
W26	Brackish water	Mg²⁺	Cl⁻		
W27	Fresh water	Na⁺	HCO₃⁻		
W28	Fresh water	Na⁺	HCO₃⁻		
W29	Brackish water	Na⁺	Cl⁻		
W30	Brackish water	Ca²⁺	HCO₃⁻		
Acknowledgements

The authors want to thank authorities of Neyshabur University of Medical Sciences for their comprehensive support for this study.

Transparency document. Supporting information

Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.dib.2017.11.099.

References

[1] Corrosion manual for internal corrosion of water distribution systems, United States Environmental Protection Agency (U.S. EPA), Washington, D.C (1984).
[2] P. Melidis, M. Sanosidou, A. Mandusa, K. Ouzounis, Corrosion control by using indirect methods, Desalination (2007) 152–158.
[3] M. Shams, A.A. Mohamadi, S.A. Sajadi, Evaluation of corrosion and scaling potential of water in rural water supply distribution networks of Tabas, Iran. World Appl. Sci. J 17 (2012) 1484–1489.
[4] A. Amouei, H. Fallah, H. Asgharnia, R. Bour, M. Mehdinia, Evaluation of corrosion and scaling potential of drinking water resources in Noor city (Iran) by using stability indices, Koomesh 18 (2016) 326–333.
[5] APHA, Standard methods for the examination of water and waste water (APHA), 1995.
[6] A.I. Amouei, A.H. Mahvi, A.A. Mohammadi, H.A. Asgharnia, S.H. Fallah, A.A. Khafajeh, Physical and chemical quality assessment of potable groundwater in rural areas of Khaf, Iran, World Appl. Sci. J 18 (2012) 693.

[7] A.A. Mohammadi, M. Yousefi, A.H. Mahvi, Fluoride concentration level in rural area in Poldasht city and daily fluoride intake based on drinking water consumption with temperature, Data Brief 13 (2017) 312–315.

[8] A.A. Mohammadi, K. Yaghmaeian, H. Faraji, R. Nabizadeh, M.H. Dehghani, J.K. Khaili, A.H. Mahvi, Temporal and spatial variation of chemical parameter concentration in drinking water resources of Bandar-e Gaz City using geographic information system, Desalination Water Treat. 68 (2017) 170–176.

[9] F.B. Asghari, A.A. Mohammadi, Z. Aboosaedi, M. Yaseri, M. Yousefi, Data on fluoride concentration levels in cold and warm season in rural area of Shout (West Azerbaijan, Iran), Data Brief 15 (2017) 528–531.

[10] A. Abbasnia, M. Alimohammadi, A.H. Mahvi, R. Nabizadeh, M. Yousefi, A.A. Mohammadi, H. Pasalari, M. Mirzabeigi, Assessment of groundwater quality and evaluation of scaling and corrosiveness potential of drinking water samples in villages of Chabahr city, Sistan and Baluchistan province in Iran, Data Brief 16 (2018) 182–192.

[11] M. Yousefi, H. Najafi Saleh, A.A. Mohammad, A.H. Mahvi, M. Ghadroopoor, H. Suleimani, Data on water quality index for the groundwater in rural area Neyshabur County, Razavi province, Iran, Data Brief 15 (2017) 901–907.