Research article

Variants in estrogen-biosynthesis genes CYP17 and CYP19 and breast cancer risk: a family-based genetic association study

Habibul Ahsan1,2, Alice S Whittemore3, Yu Chen1, Ruby T Senie1,2, Steven P Hamilton4, Qiao Wang2, Irina Gurvich2 and Regina M Santella2,5

1Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York, USA
2Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York, USA
3Division of Epidemiology, Department of Health Research and Policy, Stanford University School of Medicine, Stanford, California, USA
4Department of Psychiatry, Columbia University College of Physicians and Surgeons and the New York State Psychiatric Institute, New York, New York USA
5Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA

Corresponding author: Habibul Ahsan, ha37@columbia.edu

Received: 10 Jun 2004 Revisions requested: 2 Aug 2004 Revisions received: 2 Sep 2004 Accepted: 29 Sep 2004 Published: 11 Nov 2004

Breast Cancer Res 2005, 7:R71-R81 (DOI 10.1186/bcr951) http://breast-cancer-research.com/content/7/1/R71 © 2004 Ahsan et al. licensee BioMed Central Ltd.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background Case-control studies have reported inconsistent results concerning breast cancer risk and polymorphisms in genes that control endogenous estrogen biosynthesis. We report findings from the first family-based association study examining associations between female breast cancer risk and polymorphisms in two key estrogen-biosynthesis genes CYP17 (T→C promoter polymorphism) and CYP19 (TTTA repeat polymorphism).

Methods We conducted the study among 278 nuclear families containing one or more daughters with breast cancer, with a total of 1123 family members (702 with available constitutional DNA and questionnaire data and 421 without them). These nuclear families were selected from breast cancer families participating in the Metropolitan New York Registry, one of the six centers of the National Cancer Institute’s Breast Cancer Family Registry. We used likelihood-based statistical methods to examine allelic associations.

Results We found the CYP19 allele with 11 TTTA repeats to be associated with breast cancer risk in these families. We also found that maternal (but not paternal) carrier status of CYP19 alleles with 11 repeats tended to be associated with breast cancer risk in daughters (independently of the daughters' own genotype), suggesting a possible in utero effect of CYP19. We found no association of a woman’s breast cancer risk either with her own or with her mother’s CYP17 genotype.

Conclusion This family-based study indicates that a woman's personal and maternal carrier status of CYP19 11 TTTA repeat allele might be related to increased breast cancer risk. However, because this is the first study to report an association between CYP19 11 TTTA repeat allele and breast cancer, and because multiple comparisons have been made, the associations should be interpreted with caution and need confirmation in future family-based studies.

Keywords: breast cancer, cyp17, cyp19, estrogen biosynthesis genes, family-based design

Introduction

Cumulative exposure to circulating estrogen is considered to be of primary importance in breast cancer etiology. Estrogen biosynthesis, cellular binding and metabolism involve many steps, and the genes controlling these steps may contribute to inherent variability in breast cancer susceptibility. Endogenous estrogen is produced predominantly in the ovarian theca cells in premenopausal women and in the breast stromal adipose cells in postmenopausal women. The present study focuses on CYP17 and CYP19, two key genes that control the biosynthesis of estradiol and estrogens from their lipid precursors and are expressed in these cells. CYP17 controls two successive early steps of endogenous estrogen biosynthesis by converting pregnenolone and progesterone to precursors of androgen and estrogen. CYP19, also known as aromatase, controls the terminal step of estrogen biosynthesis by converting 19-
carbon steroids (testosterone and androstenedione) to 18-carbon estrogens (estradiol and estrone).

A T→C single-nucleotide polymorphism in the 5’ promoter region of the CYP17 gene and a TTTA repeat polymorphism in the exon 4–intron 5 boundary region of the CYP19 gene have been investigated in breast cancer by several studies, with inconsistent results [1,2]. For both polymorphisms the variant alleles are considered to be related to an increased biosynthesis of endogenous estrogen. The CYP17 T→C polymorphism is thought to create an Sp1-type (CCACC) promoter site (although one study did not confirm this [3]) and is associated with an increased serum estrogen level [4,5]. After Feigelson and colleagues first published their study [6] showing a higher risk of breast cancer in relation to the CYP17 C allele among non-Caucasian women, many other authors attempted to replicate this in other populations. Although some studies confirmed this initial finding, others did not. All studies reporting an increased risk, including the original study, found the increased risk in one or more certain subgroups of women studied, for example women with advanced disease [6], women aged less than 40 years [7], women aged less than 40 years with family history [8], women aged more than 55 years [9] and associated with an higher risk of breast cancer [10] in the study by Feigelson and colleagues. Studies have also suggested that polymorphisms in the promoter region of the CYP19 gene variants (that is, exposure in utero to her maternal circulating estrogens [20-25]. In addition to the main association between a woman’s own genotype and her breast cancer status, the family-based design of the present study allows us to address this hypothesis indirectly, by examining the association between maternal carrier status of CYP17 or CYP19 gene variants (that is, exposure in utero to an altered level of maternal estrogens) and breast cancer status in daughters.

Methods

Selection of study participants

Since 1995 the MNYR has been recruiting families with breast and/or ovarian cancers in clinical and community settings within the metropolitan New York area. Families meeting one or more of the following criteria are invited to participate: a female less than 45 years of age at diagnosis of breast cancer; a female with both breast and ovarian cancer; three or more relatives with breast or ovarian cancer diagnosed at age 45 years or more, or any male with breast cancer. After identification of a proband he/she is invited to participate in the registry and his/her family’s eligibility is assessed. If the family is eligible and the proband agrees to participate, after appropriate informed consent, he/she is interviewed either in person or by phone with an epidemiology questionnaire and a family-history analysis of CYP17 T→C polymorphism indicates substantial differences in genotype frequencies in case-control studies conducted in different populations [2], with proportions of carriers ranging from 0.46 in the UK [18] to 0.79 in Japan [19] and proportions of homozygotes ranging from 11% in Finland [12] to 36% in Taiwan [10]. Similarly, the allele frequency of the CYP19 (TTTA)_{10} allele ranges from 0.5% [15] to 1.8% [14]. Given that case-control studies can be susceptible to population stratification bias, it is important to examine these potentially important biologically plausible hypotheses in family-based studies that are free from such bias. In this study we examine the association between the CYP17 promoter T→C and CYP19 TTTA repeat polymorphisms and female breast cancer by using a family-based design among nuclear families participating in the Metropolitan New York Registry (MNYR), one of the six international centers of the National Cancer Institute’s Breast Cancer Family Registry project. Although other polymorphisms in the CYP17 and CYP19 genes have been reported, we focused on these two polymorphisms because they have been studied most extensively both in relation to their potential associations with breast cancer and also in relation to their influence on circulating estrogens.

All published studies focused on the relationship between a woman’s own constitutional genotype and her breast cancer risk. A body of recent literature has provided limited data suggesting that a woman’s breast cancer risk might be related not only to her own endogenous estrogens during adolescence and adulthood, but also to her prenatal exposure; that is, her exposure in utero to her maternal circulating estrogens [20-25]. In addition to the main association between a woman’s own genotype and her breast cancer status, the family-based design of the present study allows us to address this hypothesis indirectly, by examining the association between maternal carrier status of CYP17 or CYP19 gene variants (that is, exposure in utero to an altered level of maternal estrogens) and breast cancer status in daughters.
In brief, DNA isolated from blood cells by salting template-directed primer extension and detection by fluorescent shrimp alkaline phosphatase and amplification by PCR, the primers were digested with reverse primer 5′-TTGGGCCAAAACAAATAAGC-3′ to forward primer 5′-TTTAAAAGGCCTCCTTGTGC-3′ and was amplified by polymerase chain reaction (PCR; using out was used for genotyping subjects. First, the target DNA in the presence of the appropriate allele-specific ddNTPs clease I. Then single-nucleotide extension was performed in the exon 4–intron 5 boundary of the CYP17 gene and the tetranucleotide (TTTA) repeat polymorphism was determined with HRP/epidemiology/FGAP. The incorporation resulted in diminished rotation of the fluor compared with the ddNTP. Finally, the fluorescence polarization was read on a fluorescence polarization microplate reader (Tecan Polarion, Research Triangle Park, NC). The reader generates the genotype data on the basis of the distinct separations (with appropriate cut-offs) of the fluorescent intensity values for different alleles in comparison with internal controls.

The CYP19 TTTA repeats were determined by PCR amplification (using the forward primer 5′-GTCTATGAATGTTGCCTTTTT-3′ and the reverse primer 5′-GTGGACTCCGTGTGTTTGA-3′) followed by analysis on an ABI 377 system with GenScan software on the basis of the separations on gel according to the differences in the number of TTTA repeats.

All laboratory assays were performed with laboratory personnel blinded to the subject’s disease status or family relationships. In addition to assay-specific quality-control samples, 10% of samples were reassayed after relabeling to keep laboratory staff blinded to its identity.

Statistical analysis
We used the Family Genetic Analysis Program (FGAP [28], freely available at http://www.stanford.edu/dept/HRP/epidemiology/FGAP) to test the null hypothesis of no association between genotype and breast cancer risk in nuclear families. The FGAP computes two test statistics: the nonfounder statistic (NFS), a generalization of the transmission disequilibrium test (TDT) [29,30], which evaluates transmission disequilibrium from parents to offspring, and the founder statistic (FS), which compares the distribution of parental genotypes with that expected under the null hypothesis of no association. The FGAP statistics fully exploit data from families with variable numbers of affected/unaffected members with variable (known/unknown) patterns of parental genotypes. They are similar to, but can be more powerful than, those available in the software FBAT [31]. (See [32] for a comparison of the methods.)

On the basis of the previous evidence [6,13,15,17], we hypothesized that breast cancer risk is elevated among carriers of the CYP17 C allele and the CYP19 variant alleles with 10 or more TTTA repeats, namely the (TTTA)_{10}, (TTTA)_{11}, (TTTA)_{12}, and (TTTA)_{13} alleles. The data analysis was focused on two specific components of the study hypotheses: first, whether a woman’s carrier status of the hypothesized alleles is associated with her breast cancer...
status, and second, whether a mother’s carrier status of the hypothesized alleles is associated with her daughter’s breast cancer risk. For testing the first component of a hypothesis, we applied the FS and NFS to assess whether specific genotypes of each of the studied genes are related to breast cancer. Because FS and NFS follow a normal Gaussian distribution under the null hypothesis, the assessment of statistical significance of the association can be done on the basis of the deviation of these statistics from the standard critical values under normal distribution.

For simplicity, we describe these analyses for the CYP17 gene as applied to nuclear families consisting of two parents and at least one daughter. Parents may be untyped and the mother’s breast cancer status may be unknown. The test statistics, which are likelihood-based score statistics, are obtained by summing the score contributions from each family. These family-specific scores are obtained in three steps.

In the first step we imputed a probability distribution for the genotypes of each pair of parents, conditional on the observed genotypes of all family members. To do this, we obtained maximum-likelihood estimates of the genotypes TT, TC and CC for each of a pair of parents, given the observed genotypes in the family. These estimates do not require the assumption of Hardy–Weinberg frequencies for parental genotypes. If, for example, both parents’ genotypes were known, then the probabilities are degenerate at the observed genotypes. Similarly, if both parents’ genotypes were unknown but two offspring had observed CYP17 genotypes TT and CC, then the parental distributions are degenerate at TC because both parents must be heterozygotic.

In the second step we used the inferred parental genotype distribution and the offspring’s observed genotypes to test whether heterozygous parents were equally likely to transmit T and C alleles to affected daughters. This evaluation is based on the NFS. Under the null hypothesis of equal transmission of T and C alleles from parents to affected daughters, the NFS has an asymptotic standard Gaussian distribution. The NFS generalizes the TDT to families with untyped parents and to families with both affected and unaffected daughters. It can be considerably more powerful than the sibling TDT test [33] when applied to families without unaffected daughters.

In the final step we used the inferred parental genotypes (and the mothers’ breast cancer phenotypes) in the FS to compare the parental genotype distribution with the expected distribution under the null hypothesis of no association. This statistic treats the affected and unaffected mothers like cases and controls in a case-control study. However, each parent’s contribution is weighted in proportion to his/her number of affected and unaffected daughters, so that parents of many affected daughters receive higher weights than do those of few affected daughters.

To test the second component of our hypothesis, namely the association between maternal carrier status and daughter’s breast cancer status, we evaluated whether the genotypes of mothers with more affected daughters differ from those of mothers with less affected daughters. Such deviation might be expected if some aspect of a daughter’s environment in utero, governed by the mother’s genotype, influences the daughter’s risk of subsequent breast cancer development. The FS was adapted to evaluate this question by comparing the observed or imputed genotypes of mothers of affected daughters with the genotypes expected in the parental population. It is a weighted sum of differences between each mother’s observed (or inferred) C allele count and the average C count in the population. In symbols, each family’s contribution to this sum is proportional to the quantity \((n_A - n_U)(C_{obs} - C_{exp}) \), where \(n_A \) and \(n_U \) are, respectively, the numbers of affected and unaffected daughters in the family, and \(C_{obs} \) and \(C_{exp} \) are the observed and expected C-allele counts for the mother. Under the null hypothesis of no association between maternal genotype and daughters’ breast cancer risks, \(C_{obs} \) has a mean value \(C_{exp} \), so \(C_{obs} - C_{exp} = 0 \) in expectation for all families. Thus the FS has expectation zero and the correct type I error rate regardless of the actual numbers of affected and unaffected daughters in each family. Under the alternative hypothesis that maternal C-allele count is associated with daughters’ breast cancer risks, one expects that \(C_{obs} - C_{exp} > 0 \), and thus families with many affected daughters and few unaffected daughters (that is, \(n_A - n_U > 0 \)) contribute larger values to the FS than those with few affected daughters or those with many unaffected daughters. A statistically significant value of the FS when restricted to the mothers (with an insignificant value when restricted to the fathers) would provide evidence for this association.

When the null hypothesis is rejected, it is useful to estimate a measure of association between genotype and risk, such as the odds ratio, and to evaluate the effects of potential confounding by hormonal factors. To do so, we also performed conditional logistic regression analyses [34,35] on all the available sibships containing at least one affected sibling and at least one unaffected sibling who had provided blood samples and relevant epidemiology data for statistical adjustment (165 sibships for CYP17 and 169 sibships for CYP19).

Results

Of the 277 nuclear families eligible for CYP17 analyses, 229 were Caucasian, 4 were African American, 41 were Hispanic, and 3 were Asian American. Of the 278 nuclear families eligible for CYP19 analyses, 229 were Caucasian,
4 were African American, 42 were Hispanic, and 3 were Asian American. Table 1 shows the distribution of the study subjects according to CYP17 and CYP19 genotypes, by family position and breast cancer status. The numbers in each cell represent the number of specific type of family members in our study population carrying a particular genotype. The number of TTTA repeats in intron 4 of the CYP19 gene ranged between 7 and 13 in our study population, with the (TTTA)7 and (TTTA)11 alleles being the most frequent (allele frequencies 53.9% and 28.8%, respectively). These frequencies are consistent with those found in Caucasian populations in other studies in the USA [15]. The frequency of the CYP17 variant C allele was 42.8% in this study population, which is similar to that found in other studies conducted in Caucasians [4].

The distribution of the nuclear families according to mother’s and father’s carrier status and mother’s and daughter’s affected status is presented in Table 2. A majority (about 55%) of the nuclear families contained one

Genotype	Affected	Unaffected	Affected	Unaffected	Fathers	Sons	Total
Mothers							
CC	2	10	47	41	6	11	117
CT	8	32	147	108	30	22	347
TT	2	19	107	61	8	18	215
Unknown	64	140	0	0	233	0	437
Total	76	201	301	210	277	51	1116

CYP19 (no. of TTTA repeats)							
7/7	1	15	88	55	7	21	187
7/8	0	10	34	29	4	5	82
7/9	0	0	1	0	1	0	2
7/10	0	1	5	6	2	0	14
7/11	9	19	106	71	14	19	238
7/12	0	2	9	8	0	0	19
7/13	0	0	0	0	1	0	1
8/8	0	0	4	1	0	0	5
8/10	0	1	3	2	0	0	6
8/11	1	2	24	16	1	3	47
8/12	0	0	1	2	0	0	3
8/13	0	0	0	1	0	0	1
9/11	0	0	0	1	0	0	1
10/11	0	0	2	3	0	2	7
11/11	0	5	19	16	1	1	42
11/12	0	1	4	2	0	0	7
11/13	1	0	2	1	1	0	5
11/not 11a	1	3	0	0	5	0	9
Unknown	63	143	0	0	241	0	447
Total	76	202	302	214	278	51	1123

4 indicate those whose genotype cannot be inferred for both alleles; the other allele could be 7, 8, or 12. Two of these nine observations, one an unaffected mother and the other the father in the same nuclear family, will be excluded when the allele with 10 or more repeats is selected as bad allele, because either them could be 11/12.
affected and one unaffected daughter. The majority of the nuclear families had one or more parents who did not have the genotyping information available.

Table 3 presents the FS and NFS for testing the associations between the \textit{a priori} hypothesized \textit{CYP17} and \textit{CYP19} variant alleles and breast cancer. Each test statistic has an approximately standard Gaussian distribution under the null hypothesis of no association between genotype and breast cancer risk. A positive value of a NFS reflects excess transmission of the variant allele to affected daughters, and a negative value represents fewer such transmissions than expected under the null. Thus a test statistic that is negative but large in absolute value would suggest that the variant allele is associated with reduced risk. We computed the FS and NFS under recessive, dominant, and additive models. For the dominant models, the number of affected daughters carrying one or more copies of the variant alleles was compared with that expected from the parental genotypes in accordance with Mendelian expecta-

Table 2

Mother’s Breast Cancer Status	Number of Nuclear Families	Carrier	Non-carrier	Unknown	Total
Affected	10	4	0	6	10
Unaffected	2	0	2	0	2
Total	12	4	0	6	12

Table 2 presents the distribution of participating nuclear families according to mother’s breast cancer status, mother’s and father’s carrier status of the \textit{CYP17} and \textit{CYP19} variant alleles, and number of affected and unaffected daughters.
tion. Similarly, for the recessive models, the number of affected daughters homozygous for the variant allele was compared with that expected under Mendelian expectation. For the additive models, the total variant allele count in affected daughters was compared with that expected from the parental genotypes in accordance with Mendelian expectation. On the basis of the literature, we hypothesized a priori that CYP19 alleles with 10 or more TTTA repeats would be associated with breast cancer. In addition, we examined the association between the CYP19 genotype and breast cancer by defining the variant allele(s) by treating each of the 10 or more repeat alleles, (TTTA)$_{10}$, (TTTA)$_{11}$, (TTTA)$_{12}$ and (TTTA)$_{13}$, separately as the variant allele under each of the three models (realizing that this might have increased the chance of our finding of a statistically significant association; see the Discussion section).

As seen in Table 3, the NFS for association between the (TTTA)$_{11}$ allele and breast cancer under the dominant model is 1.83, which is higher than the critical value (1.65) for a one-tailed test statistic, suggesting that affected daughters were more likely to receive the (TTTA)$_{11}$ allele from their parents (irrespective of their ethnic distribution) than unaffected daughters. Like the NFS, the FS was also statistically significant under the dominant model, supporting an association between the CYP19 (TTTA)$_{11}$ allele and breast cancer among the parents in these families. The results for CYP19 TTTA$_{10}$ alleles did not show a consistent association, because only the FS was statistically significant under the dominant model. None of the other specific CYP19 alleles showed a consistent association with breast cancer on the basis of the NFS and FS (results not shown). Although the FS found an association between the CYP19 (TTTA)$_{13}$ allele and breast cancer, this was not supported by the more robust NFS (results not shown).

Neither the FS nor the NFS suggested any significant association between the CYP17 variant C allele and breast cancer, under any of the models of FGAP analyses (see Table 3).

Table 4 presents the results of conditional logistic regression analysis comparing the CYP17 and CYP19 genotypes between affected and unaffected sisters. These results, adjusted for age (in years), hormone replacement use (ever/never), oral contraceptive use (ever/never), age at menarche (in years) and term pregnancies (yes/no), are similar to the FGAP results although because of the smaller number of available sibships the associations did not achieve statistical significance. As seen in Table 4, carriers of the CYP19 (TTTA)$_{11}$ allele had an increased risk of breast cancer (odds ratio 1.8; 95% confidence interval 0.9–3.5).

Table 5 presents results relating maternal and paternal carrier statuses for the variants of estrogen-biosynthesis genes CYP17 and CYP19 to breast cancer risk in daughters. Mothers of affected daughters were more likely to carry the CYP19 (TTTA)$_{11}$ allele than expected in the parental population. There were no such associations between the paternal carrier status of (TTTA)$_{11}$ and any of the other CYP19 alleles and breast cancer in daughters. For this hypothesis, the findings for analysis involving CYP19 (TTTA)$_{10}$ corroborated that for (TTTA)$_{11}$ alleles. Although maternal carrier status of the CYP17 C allele tended to be positively associated with daughter’s breast cancer, this association was not specific to the mothers but was also present among the fathers.

Discussion

Despite a sound biological basis for the role of estrogen-biosynthesis genes in breast cancer, the findings of studies investigating the relationship between these genes and
breast cancer have not been consistent. Employing a case-control design, many of these prior studies, especially those examining the CYP17 gene–breast cancer relations, produced conflicting results. Although in comparison with CYP17 a smaller number of studies investigated the association of breast cancer with CYP19, findings for CYP19 have been more consistent, with most studies showing a positive association between CYP19 alleles with a higher number (10, 12, or 10 or more) of TTTA repeats and breast cancer [13,15-17].

Using a family-based design we investigated the relationships between the CYP17 and CYP19 gene variants and breast cancer in families participating in the MNYR. Like many of the previous case-control studies, the present study did not find any association between the CYP17 C (variant) allele and breast cancer. However, our findings support an association between certain alleles of the CYP19 intron 4 TTTA repeat polymorphism and breast cancer. On the basis of the previous studies we defined each of the CYP19 alleles with 10, 11, 12, or 13 TTTA repeats as the 'variant' allele and examined each associa-

Table 4

Conditional logistic regression analysis of discordant siblings for the association between CYP17 and CYP19 genotypes and breast cancer

Gene (sibling sets/cases/controls)	Affected (n)	Unaffected (n)	Adjusted odds ratios for breast cancer (95% CI)
CYP17 (165/171/188)			
Dominant model			
TT	59	56	1.00
TC/CC	112	132	0.86 (0.47–1.59)
Recessive model			
TC/TT	146	154	1.00
CC	25	34	0.61 (0.27–1.41)
General model			
TT	59	56	1.00
TC	87	98	0.86 (0.47–1.59)
CC	25	34	0.55 (0.21–1.42)
Additive model (trend per allele)			0.77 (0.49–1.21)
CYP19 (no. of TTTA repeats) (169/175/193)			
Dominant model			
(TTTA)_{c10}(TTTA)_{c10}	67	78	1.00
(TTTA)_{c10}(TTTA)_{c10}/(TTTA)_{c10}(TTTA)_{c10}	108	115	1.24 (0.63–2.46)
Recessive model			
(TTTA)_{c10}(TTTA)_{c10}/(TTTA)_{c10}/(TTTA)_{c10}	159	173	1.00
(TTTA)_{c10}(TTTA)_{c10}	16	20	0.82 (0.30–2.24)
General model			
(TTTA)_{c10}(TTTA)_{c10}	67	78	1.00
(TTTA)_{c10}(TTTA)_{c10}	92	95	1.26 (0.64–2.51)
(TTTA)_{c10}(TTTA)_{c10}	16	20	0.98 (0.30–3.18)
Additive model (trend per allele)			1.11 (0.65–1.89)
Dominant model			
(TTTA)_{other}(TTTA)_{other}	77	95	1.00
(TTTA)_{11}(TTTA)_{other}/(TTTA)_{11}(TTTA)_{11}	98	98	1.77 (0.90–3.47)
Recessive model			
(TTTA)_{other}(TTTA)_{other}/(TTTA)_{11}(TTTA)_{other}	165	179	1.00
(TTTA)_{11}(TTTA)_{11}	10	14	0.66 (0.19–2.33)
General model			
(TTTA)_{other}(TTTA)_{other}	77	95	1.00
(TTTA)_{11}(TTTA)_{other}	88	84	1.84 (0.93–3.63)
(TTTA)_{11}(TTTA)_{11}	10	14	1.04 (0.27–4.08)
Additive model (trend per allele)			1.38 (0.79–2.40)

Odds ratios were adjusted for age (in years), hormone replacement use (ever/never), oral contraceptive use (ever/never), age at menarche (in years), full term pregnancies (yes/no). Each sibling set had at least one breast cancer case and one sister control. All the subjects included in the analysis had information for all the covariate variables. CI, confidence interval.
tions in advancing our understanding of the breast cancer etiology.

Some limitations of the present study merit consideration. The major limitation concerns statistical power. The analysis, which is based on 287 nuclear families, might not have had enough power to detect small increases in risk associated with certain of the CYP17 genotypes. For example, we lacked power to evaluate interactions between genotypes for CYP17 and CYP19 and both endogenous and exogenous hormonal characteristics, such as age at menarche, timing and number of pregnancies and the use of exogenous hormones. In addition, although there is evidence for variations in the allele frequencies of the studied polymorphisms across ethnic groups, we lacked statistical power to conduct ethnicity-specific analyses. The evaluation of such analyses will be the subject of a separate future analysis, based on additional numbers of Breast Cancer Family Registry families.

Although the hypotheses examined in this study are not novel, the study design (which is free from population stratification bias) and the analytical approach have not been applied to these hypotheses in previous studies. Several limitations of this study require caution when interpreting the findings. First, the selection of nuclear families participating in this study from the MNYR was not population-based. Although this might limit the generalizability of the findings it should not affect the validity of the observed associations. Second, although it is possible for variations in the number of nucleotide repeats in hormone-related genes to be associated with cancer risk, such an association is less plausible biologically for the TTTA repeat numbers in the CYP19 gene. This is because the TTTA polymorphism is in the intronic region of the gene and so it

Table 5

Association between parental carrier status of the variant allele(s) and breast cancer risk in daughters

Variant allele(s)	Test statistic	Mothers' carrier status and disease risk in daughters	Fathers' carrier status and disease risk in daughters		
		Additive	Dominant	Additive	Dominant
CYP17					
C	1.47	1.09	1.40	1.07	
P	0.07	0.14	0.08	0.14	
CYP19					
(TTTA)_{10}	1.73	1.65	0.95	0.45	
P	0.04	0.05	0.17	0.33	
(TTTA)_{11}	1.52	1.96	-0.11	0.18	
P	0.06	0.03	0.46	0.43	

The test statistic was calculated under the additive model. P values are based on one-tailed test statistics.
is less likely that the variant alleles of the gene are directly associated with the functional status of endogenous estrogens in the body. Nevertheless, it is possible that one or more of the CYP19 TTTA alleles, including the (TTTA)$_{11}$ allele, are in linkage disequilibrium with other functionally relevant alleles, as suggested by other studies [16]. Third, the present study compared multiple CYP19 TTTA alleles with breast cancer under different models. Although it is possible that multiple comparisons might have led to the observed associations, the consistency of the associations involving the CYP19 (TTTA)$_{11}$ allele across both parents and transmission to offspring as well as the similarity between the associations with both constitutional and maternal genotypes suggest that these findings might have a biological basis. Further, the fact that the association was observed under specific susceptibility models and was consistent with conditional logistic regression analysis might be suggestive of the specificity of the finding.

Conclusion

This family-based study found that the CYP19 (TTTA)$_{11}$ allele is associated with breast cancer risk among families participating in a breast cancer family registry. The study also suggests that maternal carrier status of the CYP19 (TTTA)$_{11}$ allele might be associated with breast cancer in daughters in these families. These associations might have important implications for understanding the etiology and risk prediction of breast cancer. However, because this is the first study to report an association with the CYP19 (TTTA)$_{11}$ allele, and because multiple comparisons have been made, the associations reported in this study should be interpreted with caution and need to be confirmed in future family-based studies.

Competing interests

The author(s) declare that they have no competing interests.

Acknowledgements

This research was supported by US Department of Defense grant no. DAMD17-00-1-0213 and National Cancer Institute under RFA no. CA-95-003, Breast Cancer Family Registry, through cooperative agreement with Columbia University.

References

1. Dunning AM, Healey CS, Pharaoh PD, Teare MD, Ponder BA, Easton DF: A systematic review of genetic polymorphisms and breast cancer risk. *Cancer Epidemiol Biomarkers Prev* 1999, 8:43-854.

2. Ye Z, Parry JM: The CYP17 MspA1 polymorphism and breast cancer risk: a meta-analysis. *Mutagenesis* 2002, 17:119-126.

3. Edelchewa KV, Haraldsen EK, Anderson KB, Lonning PE, Erkstein B, Karesen R, Gabrielsen OS, Borresen-Dale AL: CYP17 and breast cancer risk: the polymorphism in the 5′ flanking area of the gene does not influence binding to Sp-1. *Cancer Res* 1999, 59:2825-2829.

4. Feigelson HS, Shames LS, Pike MC, Coetzee GA, Stanczyk FZ, Henderson BE: Cytochrome P450c17*17* gene (CYP17) polymorphism is associated with serum estrogen and progesterone concentrations. *Cancer Res* 1998, 58:585-587.

5. Haiman CA, Hankinson SE, Spiegelman D, Colditz GA, Willett WC, Speizer FE, Kelsey KT, Hunter DJ: The relationship between a polymorphism in CYP17 with plasma hormone levels and breast cancer. *Cancer Res* 1999, 59:1015-1020.

6. Feigelson HS, Coetzee GA, Kolonel LN, Ross RK, Henderson BE: A polymorphism in the CYP17 gene increases the risk of breast cancer. *Cancer Res* 1997, 57:1069-1073.

7. Bergman-Jungestrom M, Gentile M, Lundin AC, Wingren S: Association between CYP17 gene polymorphism and risk of breast cancer in young women. *Int J Cancer* 1999, 84:350-353.

8. Spurdle AB, Hopper JL, Dite GS, Chen X, Cui J, McCrede MR, Giles GG, Southey MC, Venter DJ, Easton DF, Cheney-Trench G: CYP17 promoter polymorphism and breast cancer in Australian women under age forty years. *J Natl Cancer Inst* 2000, 92:1674-1681.

9. Miyoshi Y, Iwao K, Ikeda N, Egawa C, Noguchi S: Genetic polymorphism in CYP17 and breast cancer risk in Japanese women. *Eur J Cancer* 2000, 36:2375-2379.

10. Huang CS, Chern HD, Chang KJ, Cheng CW, Hsu SM, Shen CY: Breast cancer risk associated with genotype polymorphism of the estrogen-metabolizing genes CYP17, CYP1A1, and COMT: a multicentric study on cancer susceptibility. *Cancer Res* 1999, 59:4870-4875.

11. Feigelson HS, McKean-Cowdin R, Pike MC, Coetzee GA, Kolonel LN, Nomura AM, Le Marchand L, Henderson BE: Cytochrome P450C17 alpha gene (CYP17) polymorphism predicts use of hormone replacement therapy. *Cancer Res* 1999, 59:3908-3910.

12. Mitrunen K, Jourenkova N, Kataja V, Eskelinen L, Kosma VM, Benhamou S, Vainio H, Uusitupa M, Hirvonen A: Steroid metabolism gene CYP17 polymorphism and the development of breast cancer. *Cancer Epidemiol Biomarkers Prev* 2000, 9:1343-1348.

13. Kristensen VN, Andersen TI, Lindblom A, Erkstein B, Magnus P, Borresen-Dale AL: A rare CYP19 (aromatase) variant may increase the risk of breast cancer. *Pharmacogenetics* 1998, 8:43-48.

14. Siegel-Danielli N, Buotaw KH: Constitutional genetic variation at the human aromatase gene (CYP19) and breast cancer risk. *Br J Cancer* 1999, 79:456-463.

15. Haiman CA, Hankinson SE, Spiegelman D, De Vi, Colditz GA, Willett WC, Speizer FE, Hunter DJ: A tetranucleotide repeat polymorphism in CYP19 and breast cancer risk. *Int J Cancer* 2000, 87:204-210.

16. Baxter SW, Choong DY, Eccles DM, Campbell IG: Polymorphic variation in CYP19 and the risk of breast cancer. *Carcinogenesis* 2001, 22:347-349.

17. Miyoshi Y, Iwao K, Ikeda N, Egawa C, Noguchi S: Breast cancer risk associated with polymorphism in CYP19 in Japanese women. *Int J Cancer* 2000, 89:325-328.

18. Young IE, Karian KM, Annink C, Kunkler IH, Anderson VA, Cohen BB, Hooper ML, Wylie AH, Steel CM: A polymorphism in the CYP17 gene is associated with male breast cancer. *Br J Cancer* 1999, 81:141-143.

19. Hamajima N, Iwata H, Obata Y, Matsuo K, Iwase T, Miura S, Okuma K, Ohashi K, Tajima K: No association of the 5′ promoter region polymorphism of CYP17 with breast cancer risk in Japan. *Int J Cancer* 2000, 81:880-885.

20. Sanderson M, Williams MA, Daling JR, Holt VL, Malone KE, Self SG, Moore DE: Maternal factors and breast cancer risk among young women. *Paediatr Perinat Epidemiol* 1998, 12:397-407.

21. Weis HA, Potschmann NA, Brinton LA, Brogan D, Coates RJ, Gammon MD, Malone KE, Schoenberg JB: Prenatal and perinatal risk factors for breast cancer in young women. *Epidemiology* 1997, 8:181-187.

22. Ekbohm A, Hsieh CC, Lipworth L, Adami HO, Trichopoulos D: Intrauterine environment and breast cancer risk in women: a population-based study. *J Natl Cancer Inst* 1997, 89:71-76.

23. Potischman N, Troisi R: In-utero and early life exposures in relation to risk of breast cancer. *Cancer Causes Control* 1999, 10:561-573.

24. Ekbohm A, Trichopoulos D, Adami HO, Hsieh CC, Lan SJ: Evidence of prenatal influences on breast cancer risk. *Lancet* 1992, 340:1015-1018.

25. Sanderson M, Williams MA, Malone KE, Stanford JL, Emanuel I, White E, Daling JR: Perinatal factors and risk of breast cancer. *Epidemiology* 1996, 7:24-27.

26. Kwok PY: SNP genotyping with fluorescence polarization detection. *Hum Mutat* 2002, 19:315-323.
27. Hsu TM, Chen X, Duan S, Miller RD, Kwok PY: Universal SNP genotyping assay with fluorescence polarization detection. Biotechniques 2001, 31:560-568.
28. Whittemore AS, Tu LF: Detection of disease genes by use of family data. I. Likelihood-based theory. Am J Hum Genet 2000, 66:1328-1340.
29. Spielman RS, McGinnis RE, Ewens WJ: Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM). Am J Hum Genet 1993, 52:506-516.
30. Schaid DJ: General score tests for associations of genetic markers with disease using cases and their parents. Genet Epidemiol 1996, 13:423-449.
31. Lange C, DeMeo DL, Laird NM: Power and design considerations for a general class of family-based association tests: quantitative traits. Am J Hum Genet 2002, 71:1330-1341.
32. Whittemore AS, Halpern J: Genetic association tests for family data with missing parental genotypes: a comparison. Genet Epidemiol 2003, 25:80-91.
33. Spielman RS, Ewens WJ: The TDT and other family-based tests for linkage disequilibrium and association. Am J Hum Genet 1996, 58:983-989.
34. Hosmer D, Lemeshow S: Logistic regression for matched case-control studies. In Applied Logistic Regression New York: John Wiley & Sons Inc; 1989:187-213.
35. Breslow NE, Day NE: Statistical Methods in Cancer Research. The Analysis of Case-control Studies. IARC Sci. Publ., No. 32 Volume I. New York: Oxford University Press; 1993.
36. Whittemore AS, Halpern J, Ahsan H: Covariate adjustment in family-based association studies. Genet Epidemiol in press.