Reproduction of *Mugil cephalus* (Percoidei: Mugilidae) off the Central Mexican Pacific Coast

Elaine Espino-Barr**, Manuel Gallardo-Cabello2, Marcos Puente-Gómez1 and Arturo Garcia-Boa1

1 Instituto Nacional de Pesca, Playa Ventanas s/n, Manzanillo, Colima, México
2 Instituto de Ciencias del Mar y Litoral, Universidad Nacional Autónoma de México, México

Abstract

Reproduction of *Mugil cephalus* of the Pacific coast of Mexico was studied. Fish were captured with gill nets and cast nets; they are a common low priced product for local consumption. The study of the reproduction period and ages of first maturity helps manage the fishery. Fish were obtained from local commercial fishery from August to December 2007, January to March 2008 and November 2012 to October 2013. Size and weight, sex and gonad maturity were registered. The male:female ratio was 0.88:1. Mature organisms occurred all year round. Sexual maturation (L_{50}) of males and females was observed at a mean size of 34.0 cm in males (4.64 years of age) and 35.0 cm in females (4.98 years of age). First maturity length (L_{2}) was both 30.0 cm in males and females corresponding to 3.4 years of age in both cases. The allometric relationship with the hepatosomatic index was $L=W=4.00\times10^{-5}\cdot TL^{2.371}$ ($r^{2}=0.849$). Condition factor indexes of Clark and Safran EW showed a maximum increment during June, August and December; Fulton and Safran TW in July and September to November. The gonadosomatic index showed its highest values from November to January. The hepatosomatic index reached its maximum values in June, July and August. The gastric repletion index reached its highest values in June, February, and October. The mean oocytes diameter was 0.38 mm (range 0.22 to 0.52 mm, standard deviation=0.13). Fecundity ranged from 1,422,076 to 1,747,736 oocytes in females between ages 3 and 12 years old, and mean relative fecundity was 2,830 oocytes·g$^{-1}$ (1,500 to 2,900 oocytes·g$^{-1}$). This study is the base line for the fishery management of *M. cephalus* in Central Mexican Pacific, where the main regulations need information on the first maturity size and reproductive season.

Keywords. Fecundity; Maturity period; Fish reproduction; Gonadosomatic index; Hepatosomatic index; Gastric repletion index; Condition factor

Introduction

The striped mullet *Mugil cephalus* Linnaeus 1758 (Figure 1) has a worldwide distribution between 42°N and 42°S [1]. Through the biogeographic areas and provinces of the American continent, the only exceptions are the cold temperatures of the Northeast Pacific in the Pacific Province and the Magellanic Province in South America [2]. In the Western Atlantic it distributes from Nova Scotia to Argentina including the Gulf of Mexico [3]. In the Eastern Pacific it distributes from California to Chile, including the Gulf of California and Galapagos Islands [4].

New research made by Whitfield et al. establishes that *M. cephalus* is a cosmopolite species that flourishes in a high variety of habitats and that can be considered as a eurytopic species complex, and could be used as a biological marker in the health levels of different ecosystems where it inhabits [5].

This species is important for the meat consumption and the “roe” (female mature gonads), which reaches a higher price than the meat: the roe is $300.00 Mexican pesos per kilogram ($18.00 US dollars) and the meat is $30.00 Mexican pesos ($1.80 US dollars) per kilogram.

M. cephalus ranks in 22nd place in Mexican fisheries, with a capture of 12,280 tons [6]. This species has been studied in many parts of the world where well established fisheries are located. In the case of Mexico, analysis has also been carried out on this fishery and biological aspects has also been carried out on this fishery and biological aspects [7-20]. However, most of the studies in Mexico have been carried out in the Tamiahua lagoon, Tamaulipas, on the Atlantic Ocean, or in Mazatlán, Sinaloa and Nayarit on the northern Mexican Pacific Ocean.

In the coast of Jalisco and Colima, *M. cephalus* does not reach a high catch volume as in these other places, but it is part of a multispecific fishery and important to know the health status of their populations. Traditionally *M. curema* is fished in a higher amount in the coasts of Jalisco and Colima, than *M. cephalus*. In 2014, *M. curema* was fished up to 626 tons (79% of the total Mugilidae species), and 167 tons of *M. cephalus* (21% of the total Mugilidae species) [6]. Therefore *M. cephalus* has been analyzed and some studies of its population dynamics were done [21-26].

The objectives of the present study were to analyze monthly frequency of the gonadic maturity stages and massive spawning...
period; monthly values of the gonadosomatic and hepatosomatic index; monthly values of the gastric repletion index; monthly values of the condition factor of Fulton, Clark and Safran; values of total and relative fecundity; and to compare our results to those reported by other authors [27-29].

These studies will give a solid background for closed seasons and gill net mesh sizes, based on the minimum reproductive size. These fishing measures will allow the species to reproduce at least once, protecting the fishery from overexploitation.

Materials and Methods

From August to December 2007, January to March 2008 and November 2012 to October 2013, M. cephalus samples were monthly collected in the Cuyutlán Lagoon, Colima, Mexico (103°57’-104°19’ W and 18°57’-19°50’ N) and in Cruz de Loreto Lagoon, Jalisco, Mexico (105°27’-105°33’ W and 19°58’-20°05’ N) (Figure 2). The fishing gears were gill-nets of 2.0, 2.5, 3, 3.5 and 4 inches mesh size (5.08, 6.35, 7.62, 8.89 and 10.16 cm). Total length was measured to the nearest millimeter (TL, cm) from the snout tip to the caudal fin extreme in 262 organisms (fishermen deliver this species intact); the total (TW, g) and eviscerated (EW, g) weight of 784 specimens (weighed to the nearest 0.1 g) were measured.

The function W=a.Lb was used to obtain weight-length relationship and sex was recorded macroscopically for each specimen. Sexual maturation was determined in vivo on fresh organisms taken to the laboratory the same day they were caught. Sokolov and Wong, Holden and Raitt, Aboussouan and Lahaye and Espino-Barr suggest a scale to determine sexual maturity and describe the stages as follows [30-33]:

- **Phase I**: Sexually immature organisms, in which sex cannot be distinguished, the gonads are very fine filaments.
- **Phase II**: Organisms have not yet matured sexually, the testis start to develop and are light colored and ovaries are pale pink, and oocytes cannot be observed.
- **Phase III**: Sexual maturity begins; sexual glands can be perfectly identifiable. Oocytes are beginning to form and are opaque, the color of the ovaries start to turn dark pink, testis also show darker and opaque color.
- **Phase IV**: Mature, sexual glands are well developed, ovaries are rose-orange, oocytes are big and transparent, and testes are whitish.
- **Phase V**: This stage corresponds to the spawning, both, ovules and sperm that are expelled if the visceral cavity is pressed, gonads show and intense blood supply and both ovaries and testes show brighter colors.
- **Phase VI**: Corresponds to the post-spawning, sexual products have been expelled, both ovaries and testes are empty, gonads coloring tend towards a dark pink.

Sparre and Venema suggest that the first spawn length is calculated as the 50% of the accumulative frequency (L50) of phases IV and V of the sexual maturity scale mentioned above, considering that the lowest spawning length (L25) is also registered, to compare with data reported in other studies [34,35]. This kind of analysis are carried out for both males and females and both (L25) as (L 50) are useful because deliver information on the stages close to the reproduction. Gaertner and Laloe and Sparre and Venema represent this function by the equation [34,36]:

\[
H_p = \frac{1}{1 + e^{a-b \cdot TL}},
\]

where: \(H_p\) the percentage of mature organisms (males or females) and \(a\) and \(b\) are constants.

Transforming this equation logarithmically, we obtain:

\[
\ln\left(\frac{1}{H_p - 1}\right) = a - b \cdot TL,
\]

and the length at which 50% of the population is sexually mature (L50) corresponds to: L50=a/b.

To include L25, the original equation is modified:

\[
Y = \frac{1}{1 + a \cdot (1 - TL/L_{25})}
\]

The minimum TL of first spawning (L25) was also recorded to be compared with other authors’ findings.

The formula mentioned by Rodríguez-Gutiérrez to calculate the gonadosomatic index (GSI) for males and females of M. cephalus [35], considers the gonad weight (GW) in relation to the fish total weight, i.e., GSI=100·GW/TW (TW=total weight).

To measure physical fitness of fish, we obtained the condition factor

\[
K = \frac{EW \cdot TL^{-1}}{100},
\]

\[
K = \frac{(TW \cdot TL^{-1})}{100}
\]

and

\[
a = TW \cdot TL^{-b}
\]

and

\[
a = EW \cdot TL^{-b}
\]

[27-29].

The hepatosomatic index (HSI), expressed as the percentage of

![Figure 2: Study area of Colima and Jalisco.](image-url)
liver weight (LW) with respect to the total weight was calculated as:

\[\text{HSI} = 100 \times \frac{\text{LW}}{\text{TW}} \]

The stomach repletion index is the relation between the stomach weight and the body weight, calculated individually and averaged monthly.

The gravimetric method was used to calculate total fecundity (F) and relative fecundity (Fr) using the weight of 45 females in phase V of gonadic maturity. To estimate F, two subsamples of 0.1 g were obtained of each individual and put in modified Gilson fluid for preservation [37]. All oocytes were counted with the help of a stereoscopic microscope and measured with an ocular micrometer.

The following formula was used to determine fecundity:

\[F = n \cdot \frac{G_i}{g_i} \]

where \(n \) = number of oocytes in the subsample; \(G_i \) = weight of the gonad (g) and \(g_i \) = weight of the subsample (g) [31].

The relationship between fecundity and total length and weight was calculated with the formula

\[F = a \cdot x^b \]

where \(x \) = individual weight or length, \(a \) = intercept or initial number of oocytes, \(b \) = slope or oocyte number changing rate.

The data obtained by Espino-Barr et al. in the study of otoliths, were used to obtain –for each age- the relations between TL, TW, LW, testis weight (TeW), ovary weight (GW), and fecundity (number of oocytes) are shown in Table 1.

Results

M. cephalus sex cannot be differentiated by their body morphology, so organisms have to be opened and eviscerated; 262 individuals were used to obtain –for each age- the relations between TL, TW, LW, testis weight (TeW), ovary weight (GW), and fecundity [19].

The following allometric relationships of the hepatosomatic index (HSI) LW\(^{1-2.771}\) (\(r^2 = 0.849 \)). The index \(b \) shows that, in terms of length, the liver weight is lower than a cubic proportion, which results in a negative allometric growth of the fish

Age	TL (cm)	TW (g)	EW (g)	LW (g)	TeW (g)	GW (g)	F (eggs)
0	15.62	40.000	33.000	0.767	-	-	-
1	20.43	89.000	74.000	1.604	-	-	-
2	24.71	156.000	130.000	2.706	-	-	-
3	28.53	239.000	198.000	4.018	1.440	2.379	1,422,076
4	31.94	333.000	277.000	5.481	2.966	4.216	1,485,136
5	34.98	436.000	362.000	7.037	5.308	6.684	1,537,943
6	37.69	544.000	451.000	8.640	8.557	9.756	1,582,684
7	40.11	653.000	542.000	10.253	12.743	13.374	1,620,990
8	42.26	762.000	633.000	11.836	17.799	17.426	1,653,846
9	45.90	973.000	808.000	14.855	30.202	26.489	1,707,202
10	47.42	1,072.000	890.000	16.248	37.203	31.245	1,728,711
11	48.79	1,165.000	967.000	17.571	44.642	36.097	1,747,736

Table 1: Length (TL, cm), total weight (TW, g), eviscerated weight (EW, g), liver (LW, g), testis weight (TeW, g), ovary weight (GW, g) and fecundity (number of oocytes) for each age group (years).
and a decrease of its fatty reserves as it ages. HSI variations are shown in Figures 6a and 6b; maximum values are observed in May, June and July and lower values in February and March.

The differences in the stomach repletion index (Figures 7a and 7b) showed higher values during June, February and October; lower values are observed in December, January and September.

Figure 8 shows data of the condition factor; the highest values are obtained in January, August and December for Clark index and Safran EW. For Fulton index and Safran TW the highest values correspond to July, September, October and November.

Discussion

The highest length growth rates of M. cephalus calculated by Espino-Barr et al. are in groups zero and three years of age, a second period corresponds between ages 4 and 7 years, and a third period between ages 8 and 12 years, which show the lowest length growth rate [19]. As length growth rate starts to decrease, total weight, gonad weight and fatty reserve index start to rise. In this way, two main seasons were registered in the life cycle of M. cephalus: first, from ages zero and three when most of the energy obtained through food is used to increase its length (reducing depredation and interspecific competence), and second from ages four to twelve, when this energy is oriented to form the sexual products and fatty reserves (Figure 9) [33,38,39].

Sexual proportion was 0.88:1 male:female, values slightly higher of 1:1.1 male:female were found for M. cephalus in Tamiahua lagoon in the Atlantic sea [40].

During all year round M. cephalus specimens were observed in post spawning phase (Figure 3), which indicates that during every months
mature organisms are present and that the reproduction carries out during every month of the year. However, most of the organisms in spawning phase occur during November, December and January. In the case of *M. cephalus* of Tamiahua, Veracruz, spawning occurs during autumn and winter, coinciding with the northern winds [40].

The highest first reproduction size of *M. cephalus* (*L*₅₀) was 42.52 cm in males and females which corresponds to an age of three years, in the Gulf of México (Table 2), followed by Briones-Avila who obtained values of 38.00 cm in males and females of specimens from Nayarit and Sinaloa in the Mexican Pacific [7,41,42]. Render et al. found sizes of 36.95 cm in organisms of Louisiana in USA [43]. Hubbs reported lengths of 33.00 cm in males and 35.00 cm in females with two years of age in Florida, USA [44]. Organisms of smaller lengths have been reported by Arnold [45,46], Jacot et al. in the coasts of Florida, and by Oren in Texas and Florida, USA [47]. In the present study males reached first reproduction length at 34.0 cm (4.64 years old) and females at 35.0 cm of total length and 4.98 years of age.

The gonadosomatic index (GSI) reached the highest values in November and January in this study (Figures 5a and 5b). Similar spawning seasons to the present study (November to February), were found in Tamiahua lagoon Veracruz, Mexico [40], in North Carolina and to lower Florida [48], in Hawaii [49], in southwestern Taiwan [50], west coast of Taiwan [51], northeastern coasts of Taiwan [52], south west of Bay of Bengal [53]; in all these areas the massive spawning period of *M. cephalus* is from the end of autumn and during winter.

Figure 6: Monthly variation of the hepatosomatic index (HSI): a) calculated with total weight (g) and b) calculated with eviscerated weight (g).

Figure 7: Monthly variation of the stomach repletion index (GRI): a) calculated with total weight (g) and b) calculated with eviscerated weight (g).

Figure 8: Monthly values of the relative condition factor.

Figure 9: Relationship between age and total length increment (TLi, cm), total weight (TW, g), liver weight (LW, g), testes weight (TeW, g), gonad weight (GW, g) of *Mugil cephalus*.
However in other parts of the world, spawning of *M. cephalus* occurs mainly during summer, as is the case of Delaware Bay [48], Natal estuaries of South Africa [54] and Primorye, Russia [55]. In other areas the maximum reproduction of *M. cephalus* takes place during summer and early winter, as occurs in France [56] and the Balear Island of Menorca, Spain [57]. Also spawning of *M. cephalus* can occur during spring and summer as is the case of Delaware Bay [47], Natal estuaries May-August [54], Primorye May-September [55] and Primorye December [56].

Table 2: First maturity (L₅₀) and reproduction (L₅₀) length of *Mugil cephalus* in different places.

Country	Locality	Period	J	M	A	M	J	A	S	O	N	D	Author
Australia	east coast	March-July											Kailola [58]
Australia	west coast	March-September											Kailola [58]
South Africa	Natal estuaries	May-August											Marais [54]
Russia	Primorye	May-September											Novikov [55]
France	France	July-November											Keith and Allardi [56]
Spain	Menorca (Balearic Archipelago)	August-September											Cardona [57]
India	southwest Bay of Bengal	October-December											Jeyaseelan [53]
Taiwan	northeastern coasts	December-January	x										Hsu [52]
Taiwan	West coast	December											Shung [51]
Taiwan	southwestern Taiwan	October-February	x										Chang [57]
Hawaii	Hawaii	December-February	x										Honebrink [49]
USA	North Carolina to lower Florida	October-February	x										Scotton [48]
USA	Delaware	June-August											Scotton [48]
Mexico	Tamaulipas Lagoon, Veracruz	December-February	x										Ibáñez-Aguirre and Gallardo-Cabello [40]
Mexico	Central Pacific (Jalisco and Colima)	-											Present study

Table 3: Spawning seasons of *Mugil cephalus* in different places.

Country	Locality	Period	Author
Hawaii	December-February	x	Honebrink [49]
USA, north east	October-February	x	Scotton [48]
USA, south west	December-February	x	Scotton [48]

The hepatosomatic index obtained in this study was

\[b = 2.771 \ (r^2 = 0.849) \]

which indicates a negative allometric growth; since fish decrease their fatty reserves as they grow older. In the case of *M. cephalus* in the Tamaulipas lagoon, Veracruz, the relationship obtained for the hepatosomatic index showed an isometric growth \(b = 3.0 \), which shows that the increments of the liver weight are directly proportional to the cubic length [40].

Monthly values of hepatosomatic index (Figures 6a and 6b) showed that the liver accelerates its activity of reserving fatty acids during the periods before spawning; therefore, their weight increases considerably. The highest activity of fatty acid reserves is in June, July and August and starts to decrease in February and March after the spawning period of November, December and January. A similar phenomenon was observed in Tamiahua, where the fatty acids accumulation occurred in previous spawning periods [40]. However the largest accumulation of fatty acids was in the abdominal cavity instead of the liver. Ibáñez and Gallardo-Cabello reported this same observation in *M. cephalus* in Tamiahua, where the accumulation of glycogen is so intense in the periods previous spawning, that the stored reserve of hepatic acids is insufficient, which shows a sub estimated hepatosomatic index of the fatty acids reserve in the animal’s body [40].

Variations in the stomach repletion index (Figures 7a and 7b) showed higher values during June, February and October, which are the months previous to spawning and higher accumulation of fatty acids reserve in the liver. Once the spawning has occurred, in the months of November, December and January, values of the gastric repletion values decline significantly.
Figure 8 shows the values of the condition factor; the highest values are obtained in January, August and December for the Clark index and Safran with eviscerated weight values (EW). For the Fulton index and Safran with total weight (TW) the highest values correspond to July, September, October and November. In all cases the highest were in the months previous to spawning or at its beginning. Similar values were obtained in Tamiahua where the highest value of the condition factor increments before the spawning period and decreases at its end; in May is when the higher recovery of the condition factor occurs [40].

Table 4 shows the fecundity values of *M. cephalus* in different countries; the highest values correspond to the Black Sea, where it can reach values over 7 million of oocytes [47]. Also Berg reports in the same area 7 million of oocytes in organisms of 52.00 cm of total length and 13 years of age [47]. In the Hawaiian Islands, Keith et al. found a maximum fecundity of 7 million of eggs; in Mauritania [59], Brulhet found a maximum of 6 million, and Popescu of 5 million in organisms from the Danuvian delta [47]. Grant and Spain reported 4 million 800 thousand in Australia [60]. Values of fecundity of 3 million 790 thousand eggs were reported in SW Korea by Yang and Kim, and of 3 million in Taiwan by Tung and Hsu [52,61,62]. Solis found a maximum value of fecundity for *M. cephalus* in Tamaulipas, Mexico in the Atlantic Ocean of 2 million 919 thousand oocytes in females of 48.00 to 56.00 cm of total length [63]. In Australia, Thomson and Kesteven reported 2781,000 and Tosh 2 million and a half in females of *M. cephalus* [47,64,65]. In Mauritania and Senegal, Landret found a value of 2'322,400 oocytes [47]. In our study values of 1'582,684 to 1'747,736 oocytes in females from the Tamiahua lagoon, Veracruz of 1,680 oocytes per gram and a range of 680 to 4,776 oocytes [40].

It was observed that in the same study area as *M. cephalus*, *M. curema* showed a fecundity of 9,612 to 238,795 in females of 0 to 5 years of age and lengths of 10.54 cm to 27.79 cm, and an average relative fecundity of 1,120 oocytes per gram (850 to 1,176 oocytes per gram), far below the values of *M. cephalus*.

Conclusions

- Sex ratio was 0.88:1 males: females.
- Average length of sexual maturity (*L₅₀*) was 34.0 cm in both males and females with 4.64 years (males) and 4.98 years (females); average length of first maturity (*L₅₀*) for both was 30.0 cm corresponding to 3.4 years of age.
- The gonadosomatic index was at its maximum values in November, December and January. A second very small period occurs during September and October. Mature organisms occur throughout the year.
- The allometric relationship between the liver weight and the fish length is negative (b=2.771). Monthly values of the hepatosomatic index are higher in June, July and August.
- The gastric repletion index shows its highest values in June, February and October.
- The condition factor reaches its highest values in June, August and December with Clark and Safran EW indexes and July,

Author	Area	Fecundity (oocytes)	Organism size
Thomson [65]	Australia	12,750,000-27,810,000	-
Kesteven [64]	Australia	12,750,000-27,810,000	-
Grant and Spain [60]	Australia	1'600,000-4'800,000	-
Tosh [47]	Australia	2'000,000-2'500,000	-
Jacob and Krishnamurthi [47]	India	1'320,000	50 cm (TL)
Tung [62]	Taiwan	700,000-3'000,000	-
Hsu [52]	Taiwan	700,000-3'000,000	-
Yand and Kim [47]	SW Korea	3'790,000	78.7 cm, 5 years old
Keithy Allardi [56]	Francia	500-2,800/gram	-
Popescu [47]	Black Sea: Danubian delta	5'065,800-5'085,440	-
Nikolski [47]	Black Sea	3'089,000-7'206,000	-
Berg [47]	Black Sea	5'000,000-7'000,000	52 cm, 13 years old
Brulhet [47]	Mauritania	4'000,000-6'000,000	-
Landret [47]	Mauritania and Senegal	2'322,400	50 cm FL
Shehadeh [48]	Hawaii	340,000-795,000	induced spawning
Nash [47]	Hawaii	1'000,000 (effectively released)	-
Keith [47]	Hawaii	5'000,000-7'000,000	oocytes -
Solis [63]	Tamaulipas, Mexico	1'341,000-2'919,000 oocytes (6,510 oocytes/g)	48 and 56 cm (TL)
Ibáñez-Aguirre and Gallardo-Cabello [40]	Veracruz, Mexico	405,767-888,512 (1,680 oocytes/g, 680-4,776)	-
This study	Central Mexican Pacific	1'422,076-1'747,736 oocytes (2,830 oocytes/g, 1.500 - 2,900 oocytes/g')	28.5 cm to 48.8 cm (TL)

Table 4: Fecundity values by different authors and countries.
September, October and November with Fulton and Safran TW indexes.

- Total fecundity was 1'422,076 to 1'747,736 oocytes for females of 3 to 12 years old.
- Relative fecundity was average: 2,830 oocytes g⁻¹ from 1,500 to 2,900 oocytes per female from 3 to 12 years old.
- Average oocyte diameter was 0.38 mm (from 0.22 to 0.52 mm).

Recommendations

The studies of the reproduction of the *Mugil cephalus* must be continued and published, because they are an important base line to compare if significant variations occur in the average size of sexual maturity (L₅₀) and at first maturity (L₂₅), which may indicate overexploitation of this resource.

Development of models of maximum sustainable yield and simulation capture should be taken into account to reach a rational management of this fishery, by capturing mature organisms that have already reproduced at least once and that will provide through recruitment new organisms to the population, preventing over-exploitation of the resource. Also, ban seasons should be imposed and the law obeyed as in the mesh size of the fishing gear, to assure that only adults will be fished.

Acknowledgement

We want to express our gratefulness to fishermen, and also EG Cabral-Solís, D Barambilla-López and A Pérez-Muñoz that provided samples to complete the information of this study.

References

1. De Silva SS (1980) Biology of grey mullet: a short review. Aquaculture 19: 21-36.
2. Barletta M, Valenca D (2016) Biogeography and distribution of Mugilidae in the Americas. Crosetti & Blaber (ed). pp: 42-63.
3. Harrison UJ (2002) Mugilidae. In: Carpenter K (ed.) FAO species identification Guide for fisheries purposes. The living marine resources of the Western Central Atlantic. Bony fishes Part 1 (Acoipenseridae to Grammatidae). Rome FAO pp: 1071-1085.
4. Harrison UJ (1995) Mugilidae. In: Fischer W, Kripp F, Schneider W, Sommer C, Carpenter KE (eds.) FAO guide for species identification for purposes of Fisheries. Pacifico Centro Oriental. FAO, Roma pp: 1293-1298.
5. Whitfield AK, Pantfi J, Durand JD (2012) A global review of the cosmopolitan flathead mullet *Mugil cephalus* Linnaeus 1758 (Teleostei: Mugilidae), with emphasis on the biology, genetics, ecology and fisheries aspects of this apparent species complex. Reviews in Fish Biology and Fisheries 22: 641-681.
6. SAGARPA (2015) Statistical Yearbook fishing 2014. National Commission of Aquaculture and Fisheries Secretariat of Agriculture, Livestock, Rural Development, Fisheries and Food.
7. Márquez-Millán R (1974) Observations on mortality totally growth in length of mullet (Mugil cephalus) in the lagoon Tamaulipas, sea, México. INP, Scientific series 2: 1-17.
8. García S (1980) Contribution to the study of the fishery for mullet (Mugil cephalus L) in the lagoon Tamaulipas, Veracruz. INP, Scientific series 2: 1-17.
9. Díaz-Pardo E, Hernández-Vázquez S (1980) Growth, reproduction and feeding habits of the smooth Mugil cephalus in Laguna de San Andrés, Tamps. Proceedings of the National School of Biological Sciences 23: 109-127.
10. Romero MAS, Castro JL (1983) Aspects of the biology of mullet (Mugil cephalus Linnaeus) in the Dead Sea, Chipas, Mexico. An Esc Nac Cienc Biol, México 23: 95-112.
11. Pérez-García M, Ibáñez AL (1992) Morphometry of fish Mugil cephalus and M. curena (mugiliformes: Mugilidae) in Veracruz. Mexico Rev Biol Trop 40: 335-339.
12. Ibáñez AL, Leonart J (1996) Relative growth and comparative morphometrics of Mugil cephalus L. and M. curena V. in the Gulf of Mexico. Scientia Marina 60: 361-368.
13. Ibáñez AL, Gallardo-Cabello M (1996a) Total and natural mortality of Mugil cephalus and M. curena (Pisces: Mugilidae), in Tamaulipas Lagoon, Veracruz. i. Selectivity. Hidrobiológica 6: 9-16.
14. Ibáñez AL, Gallardo-Cabello M (1996b) Age determination of the grey mullet Mugil cephalus L. and the white mullet M. curena. V. (Pisces: Mugilidae) in Tamaulipas lagoon, Veracruz. Marine Science 22: 329-345.
15. Sánchez-Rueda O, Mar IG, Aguirre AL, Garcia AM (1997) Sediment in the stomach contents of Mugil cephalus and M. curena (mugiliformes: Mugilidae) in the lagoon Tamaulipas, Mexico. Rev Biol Trop 45: 1163-1166.
16. Briones-Ávila E (1992) Diagnosis of fishery mullet (Mugil cephalus) in Sinaloa. INP CRIP-Mazatlán. Newsletter 25: 44-51.
17. Briones-Ávila E (1998) Fishery biology Mugil cephalus in Agua Brava Lagoon, Nayarii, during 1992-1994. Master’s Thesis. Autonomous University of Sinaloa, México.
18. Gallardo-Cabello M, Espino-Barr E, Cabral-Solís EG, Puente-Gómez M, Garcia-Boa A (2012) Study of the oothols of Mugil cephalus (Pisces: Mugilidae) in Mexican Central Pacific. J of Fish and Aqu Sci 7: 346-363.
19. Espino-Barr E, Gallardo-Cabello M, Garcia-Boa A, Puente-Gómez M (2015a) Growth analysis of Mugil cephalus (Percoidae: Mugilidae) in Mexican Central Pacific. Glob J Fish Aquac 3: 238-246.
20. Ibáñez AL (2016) Age and growth of Mugilidae. In: Crosetti D and Blaber S (eds.) Biology, Ecology and Culture of Grey Mullet(Mugilidae). Taylor & Francis Group, Boca Ratón, Fla, USA p: 539.
21. Espino-Barr E, Cabral-Solís EG, Gallardo-Cabelllo M, Ibáñez AL (2005) Age determination of Mugil curema Valenciennes, 1836 (Pisces: Mugilidae) in the Cuyutlán Lagoon, Colima, México. Int J Zool Res 1: 21-25.
22. Gallardo-Cabelllo M, Solís EG, Espino-Barr E, Ibáñez AL (2005) Growth analysis of white mullet Mugil curema (Valenciennes, 1836) (Pisces: Mugilidae) in the Cuyutlán Lagoon, Colima, México. Hidrobiológica 15: 321-325.
23. Ibáñez AL, Cabral-Solís EG, Gallardo-Cabelllo M, Espino-Barr E (2006) Comparative morphometrics of two populations of Mugil curema (Pisces: Mugilidae) on the Atlantic and Mexican Pacific coasts. Sci Mar 70: 139-145.
24. Cabral-Solís EG, Espino-Barr E, Gallardo-Cabelllo M, Ibáñez AL (2007) Fishing impact on Mugil curema stock of multi-species Gill net fishery in a tropical lagoon, Colima, México. J Fish Aqu Sci 2: 239-242.
25. Cabral-Solís EG, Gallardo-Cabelllo M, Espino-Barr E, Ibáñez AL (2010) Reproduction of Mugil curema (Pisces: Mugilidae) from the Cuyutlán lagoon, in the Pacific coast of México. Agricultural Research Advances 14: 19-32.
26. Espino-Barr E, Gallardo-Cabelllo M, Cabral-Solís EG, Puente-Gómez M, Garcia-Boa A (2013) Otoliths analysis of Mugil curema (Pisces: Mugilidae) in Cuyutlán Lagoon, Mexico. Agricultural Research Advances 17: 35-64.
27. Fulton T (1902) Rates of growth of sea-fishes. Sci Invest Fish Div Scop Rept 21: 3720.
28. Clark F (1928) The weight-length relationship of the Californian sardine (Sardina coerulea) at San Pedro. Fish Bull USA 12: 22-44.
29. Safran P (1992) Theoretical analysis of the weight-length relationship in fish juveniles. Mar Biol 112: 545-551.
30. Sokolov WA, Wong M (1972) Research into pelagic fish in the Gulf of California (sardine, thread herring and anchovy) in 1970. Series information 1: 1-35.
31. Holden MJ, Ratil DDS (1975) Manual Fisheries Science. Part 2: Methods for research and application resources. ONU/FAO. Tec Doc fisheries 115: 1-207.
32. Abousouan A, Lahaye J (1979) The potential of ichthyologues populations. Fertility and echthypo粉尘clin. Cybium 6: 29-46.
33. Espino-Barr E, Vega AG, Hernández HS, Vega HG (2008) Manual fisheries biology. Autonomous University of Nayari: p 168.
34. Sparer P, Venema SC (1995) Introduction to the assessment of tropical fish stocks. FAO Doc. Tec. Fishing, Roma p: 420.
35. Rodríguez-Gutiérrez M (1992) Techniques for quantitative assessment of gonadal maturity in fish p: 79.
36. Gaertner D, Laloe F (1986) Eludebiométrique the tiller a’premier maturity of sexualle Geryonmaritae, Maning and Holthuis, 1981 Senegal. Oceanologica Act 9: 479-487.
37. Simpson AC (1951) The fecundity of the plaice. Fishery Investigations, London 18: 1-27.
38. Espino-Barr E, Gallardo-Cabello M, Cabral-Solis EG, Puente-Gómez M, Garcia-Boa A (2015b) Reproduction of Gerres cinereus (Percoidei: Gerreidae) off the Mexican Pacific coast. Marine and Coastal Sciences Magazine 7: 83-98.
39. Gallardo-Cabello M, Espino-Barr E, Garcia-Boa A, Puente-Gómez M, Cabral-Solis EG (2015) Reproduction of Diapterus brevirostris (Percoidei: Gerreidae) in the Mexican Pacific coast. Glob J Fish Aquac 3: 221-229.
40. Ibáñez AL, Gallardo-Cabello M (2004) Reproduction of Mugil cephalus and M. curema (Pisces: Mugilidae) from a coastal lagoon in the Gulf of Mexico. Bull of Mar Sci 75: 37-49.
41. Briones-Avila E (1990) The period of gonadal maturity in mullet (Mugil cephalus L.) in Sinaloa and Nayarit. Bull of Mar Sci 3: 221-229.
42. Briones-Avila E (1994) The regulation of the fishery smooth (Mugil cephalus and white mullet) in Sinaloa and Nayarit. Res. IV National Congress of Ichthyology. Morelia, Michoacán.
43. Render JH, Thompson BA, Allen RL (1995) Reproductive development of striped mullet in Louisiana estuarine waters with notes on the applicability of reproductive assessment methods for isochronal species. Trans Am Fish Soc 124: 28-36.
44. Hubbs CL (1921) Remarks on the life history and scale characters of American mullets. Trans Am Microsc Soc 40: 26-27.
45. Jacob AP (1920) Age, growth and scales characters of the mullet Mugil cephalus and Mugil curema. Trans. Am Microsc Soc 39: 199-230.
46. Arnold EL, Thompson JR (1958) Offshore spawning of the striped mullet, Mugil cephalus, in the Gulf of Mexico. Copeia 158: 130-132.
47. Dren OH (Ed) (1981) Aquaculture of grey mullets. International Biol Prog: 26, Cambridge Univ Press, Cambridge p: 507.
48. Scotton LN, Smith RE, Smith NS, Price KS, de Sylva DP (1973) Pictorial guide to fish larvae of Delaware Bay: with information and bibliographies useful for the study of fish larvae. Delaware Bay Report Series. College of Marine Studies, University of Delaware p: 205.
49. Honebrink R (1990) Fishing in Hawaii: a student manual. Education Program, Division of Aquatic Resources, Honolulu, Hawaii p: 79.

50. Chang CW, Tzeng WN, Lee YC (2000) Recruitment and hatching dates of grey mullet (Mugil cephalus L.) juveniles in the Tanshui Estuary of Northwest Taiwan. Zoological Studies 39: 99-106.
51. Shung SH (1977) Studies on the catch and fishery biology of Mugil cephalus in 1975. Bulletin of Taiwan Fisheries Research Institute 28: 123-133.
52. Hsu CC, Han YS, Tzeng WN (2007) Evidence of flathead mullet Mugil cephalus L. spawning in waters northeast of Taiwan. Zool Stud 46: 717-725.
53. Jeyaseelan MJ (1998) Manual of fish eggs and larvae from Asian mangrove waters. United Nations Educational, Scientific and Cultural Organization. Paris p: 193.
54. Marais JF (1976) The nutritional ecology of mullets in the Swartkops estuary. PhD thesis, University of Port Elizabeth, Port Elizabeth.
55. Novikov NP, Sokolovsky AS, Sokolovskaya TG, Yakovlev YM (2002) The fishes of Primorye. Vladivostok, Far Eastern State Tech. Fish. Univ p: 552.
56. Keith P, Allardi J (2001) Atlas freshwater fish France. National Museum of Natural History, Paris. Natural heritage 47: 1-387.
57. Cardona L (2000) Effects of salinity on the habitat selection and growth performance of Mediterranean flathead grey mullet Mugil cephalus (Osteichthyes, Mugilidae). Estuarine, Coastal and Shelf Science 50: 727-737.
58. Kailola PJ, Williams MJ, Stewart PC, Reichelt RE, Mcnee A, et al. (1993) Australian fisheries resources. Bureau of Resource Sciences, Canberra, Australia p: 422.
59. Keith P, Vigneux E, Bosc P (1999) Atlas freshwater fish France. National Museum of Natural History, Paris. Natural heritage 39: 136.
60. Grant CJ, Spain AV (1975) Reproduction, growth and size allometry of Mugil cephalus Linnaeus (Pisces: Mugilidae) from north Queensland inshore waters. Aust J Zool 23: 181-201.
61. Yang WT, Kim UB (1962) A preliminary report on the artificial culture of grey mullet in Korea. In Proc Indo-Pacific Fish Counc 9: 62-70.
62. Tung IH (1948) On the egg development and larval stages of the grey mullet, Mugil cephalus Linnaeus. Rep Inst Fish Biol Minist Econ Aff Nat Taiwan Univ 3: 187-215.
63. Solis RJM (1966) Fertility mullet (Mugil cephalus Linnaeus). Inst Nat Inv Biol Pesq Srla. Ind y Com Trabajos de Divulgación 11: 1-6.
64. Kesteven G (1942) Studies in the biology of Australian mullet. Account of the fishery and preliminary statement of the biology of Mugil dobula Günther. Aust Counc Sci Industr Res Bull 157: 1-147.
65. Thomson JM (1963) Synopsis of biological data on the grey mullet (Mugil cephalus L.). C.S.I.R.O. Div Fish Oceanogr Sydney, Australia.