Resistance of Soil Organic Matter in “Humic A Horizons” of the Mountainous Region in the State of Rio De Janeiro

Ademir Fontana¹, Marcos Gervasio Pereira², Fabiano de Carvalho Balieiro¹, Cesar da Silva Chagas¹, Guilherme Kangussu Donagemma¹, Lucienne Silva de Oliveira³

¹Embrapa Solos – CNPS, Rio de Janeiro/RJ, Brasil
²Universidade Federal Rural do Rio de Janeiro – UFRRJ, Seropédica/RJ, Brasil
³Independent researcher, Mangaratiba/RJ, Brasil

ABSTRACT
Soils with high organic carbon content, such as those with “humic A horizon”, occur in different regions of Brazil. This study aimed to determine the quantitative and qualitative characteristics of organic matter regarding the humic A horizon under different land uses in Bom Jardim, in Rio de Janeiro State, Brazil. Samples from forest, pasture, Eucalyptus plantation, coffee cultivation, olericulture, and also passion fruit soils were sampled and analyzed. In October 2011, undisturbed samples from humic A horizons, were collected for soil density analysis. In addition, disturbed samples were collected for the determination of organic carbon (C_{org}) content, total carbon, humic substance fractions contents and natural abundance of {^{13}}Carbon (δ^{13}C). Low C_{org} contents were observed in areas under olericulture, pasture and passion fruit cultivation. The fulvic acid fraction was higher than other fractions, regardless of land use. The small variability in δ^{13}C indicated maintenance of original C_{org} and suggest high resistance of Soil Organic Matter in humic A horizons.

Keywords: organic carbon, humic substances, isotopic composition.
1. INTRODUCTION

Mountain farming systems are very common worldwide. Although generally small-scale and family-run systems ensure food security for thousands of people, as well as protect the environment, in other words, beautify rural landscapes, these systems also provide various ecosystem services (Kohler & Romeo, 2014). Mountain areas, which vary greatly in terms of relief patterns, soils, and cultures, are vulnerable to degradation. Some soil classes are more resilient to organic matter loss owing to agricultural interventions and low-temperature effects (Buol & Eswaran, 2000). Cultural practices, such as no-tillage farming, crop rotation and agroforestry, stabilize macroaggregates in the soil and reduce carbon loss.

In the state of Rio de Janeiro, Brazil, mountain farming is frequently carried out in soils with humus-rich topsoil, that is, in humic A horizons. According to the Brazilian Soil Classification System, the humic A horizon is a thick, dark-colored layer with high organic carbon content and low base saturation (Santos et al., 2018). These unique characteristics are a reflection of soil formation, landscape evolution and soil properties and processes, such as aeration, gas exchange, microbial activity and diversity, root growth, cation exchange capacity (CEC), and nutrient cycling (Doran & Parkin, 1994; Feller & Beare, 1997; Haynes, 2000; Dominati et al., 2010).

This study hypothesizes that the resilience of the humic A horizon is affected by agricultural practices, leading to modifications in the level and composition of SOM in areas subject to high-impact management practices. To test this hypothesis, the aim of this work was to evaluate the quantitative and qualitative characteristics of SOM in the humic A horizon under different uses in the state of Rio de Janeiro, Brazil.

2. MATERIAL AND METHODS

This study was carried out in Bom Jardim, located in the Pito Aceso microbasin (22°15’17” and 42°18’09”) in the mountainous region of the state of Rio de Janeiro, Brazil. The local relief is characterized by rugged topography including slopes of various altitudes and narrow valleys; the elevation varies between 640 and 1,270 m above sea level. More information on local relief, geology, climate, vegetation, and land uses (P05, Eucalyptus plantation; P09, olericulture; P12, pasture; P13, coffee cultivation; and P35, passion fruit cultivation) can be found in Chagas et al. (2012) and Fontana et al. (2017).

Six areas under different uses were selected: 1) eucalyptus (Eucalyptus sp.) - a 3-year-old plantation associated with leaf litter covering the soil surface; 2) olericulture - “cassava” (Manihot esculenta) cultivation was being managed using mechanical tillage and weed control practices were established; 3) pasture (Brachiaria decumbens) that was put out under moderate grazing; 4) coffee (Coffea arabica) planted in rows; 5) passion fruit (Passiflora edulis) planted in rows; and 6) a fragment of Atlantic forest at a medium stage of regeneration (Figure 1).

The soil sampling and the field evaluations were performed in October 2011. In each area, a trench was opened and the horizons were separated. Samples were collected and described morphologically according to Santos et al. (2013) and classified according to the Brazilian Soil Classification System (Santos et al., 2018). From each horizon, undisturbed samples were collected using a 100 cm3 ring for the analysis of soil density, and disturbed samples were collected for the determination of organic carbon (C_{org}), content, total carbon (TC) content, humic substance fractions, and carbon-13 natural abundance ($\delta^{13}C$).
Undisturbed soil samples were oven dried at 105 °C for 24 h. Soil density was calculated by dividing soil dry weight by the ring volume. Disturbed samples were oven dried at 50 °C, de-clumped, and sieved through 2 mm mesh sieve. C$_{org}$ content was determined by wet oxidation with potassium dichromate ($K_2Cr_2O_7$) solution in acidic medium and titration of ferrous ammonium sulfate (Mohr's salt), both described in Teixeira et al. (2017). TC content was determined by the dry combustion method. Briefly, 0.5 g of the sample was combusted at 1200 °C under oxygen (O$_2$) atmosphere (99.97%). Carbon dioxide (CO$_2$) was quantified using a non-dispersive infrared detector (multi EA® 2000, Analytik Jena, Jena, Alemanha). Calcium carbonate (CaCO$_3$) with a carbon (C) content of 120 g kg$^{-1}$ was used as standard. The C stock was determined according to Ellert & Bettany (1995).

Chemical fractionation of soil organic matter was carried out in acidic and basic media, and C$_{org}$ content was determined in the Fulvic Acid (FAF), Humic Acid (HAF), and humin (HUMIN) fractions (Benites et al., 2017). Briefly, 1.0 g of soil sample was added to 20 mL of 0.1 mol L$^{-1}$ sodium hydroxide (NaOH) solution after 24 h, the alkaline extract was separated from the residue by centrifugation at 5,000 g for 30 min. Another extraction was performed, resulting in a final volume.
of alkaline extract of 40 mL. The pH of the alkaline extract was adjusted to 1.0 ± 0.1 using 20% of sulfuric acid (H₂SO₄) solution. The mixture rested for 18 h in a refrigerator, and the precipitate (HAF) was separated from the soluble fraction (FAF) by filtration. Samples were completed to 50 mL with distilled water.

The C₉org contents of FAF and HAF were determined by adding 1.0 mL of 0.042 mol L⁻¹ K₂Cr₂O₇ and 5.0 mL of concentrated sulfuric acid (H₂SO₄) to 5.0 mL of each extract, placing the solutions in a block digester at 150 °C for 30 min, and subsequently titrating with 0.0125 mol L⁻¹ ferrous sulfate ammonium. The insoluble fraction (HUMIN) was oven dried and added to 5.0 mL of 0.1667 mol L⁻¹ K₂Cr₂O₇ and 10.0 mL of concentrated sulfuric acid. Block digestion was carried out at 150 °C for 30 min, followed by titration with 0.25 mol L⁻¹ ferrous ammonium sulfate and ferroin indicator solution (Yeomans & Bremner, 1988). The C₉org contents of FAF, HAF, and HUMIN were determined, and the HAF/FAF ratio calculated (Benites et al., 2017). The percentage contribution of each fraction to TC content was also determined (%FAF, %HAF, and %HUMIN).

The natural abundance of ¹³C was determined using a mass spectrometer and the international standard Pee Dee Belemnite (PDB) was also used (Craig, 1957). Results are expressed as δ¹³C, according to the equation

\[\delta^{13}C‰ = 10 \times \frac{R_{\text{sample}} - R_{\text{standard}}}{R_{\text{standard}}} \]

where \(R_{\text{sample}} \) is the ¹³C/¹²C ratio of the sample and \(R_{\text{standard}} \) is the ¹³C/¹²C ratio of the standard.

3. RESULTS AND DISCUSSION

3.1. Variability in soil C₉org content and humic properties

C₉org contents in soil ranged from 10.5 to 30.1 g kg⁻¹ (Table 1). C₉org values were highest in shallow horizons, however, the C₉org values have been decreasing according to the soil depth (Table 1). It was found that the variation of the C₉org content is not consistent with land use or

Uses	Horizon	Depth cm	Corg g kg⁻¹	FAF %	HAF %	HUMIN %	HAF/FAF
Eucalyptus plantation	Ap	0-18	30.1	17	23	46	1.4
	A1	18-45	22.8	12	26	45	2.1
	A2	45-85	22.8	12	15	39	1.3
	AB	85-100	14.8	11	16	39	1.4
Olericulture	Ap	0-40	15.6	22	20	29	0.9
	A1	40-65	10.5	25	14	26	0.6
	A2	65-80	11.1	11	16	66	1.5
	AB	80-102	10.9	25	23	53	0.9
Pasture	Ap	0-23	15.9	15	18	26	1.2
	A1	23-58	11.1	22	13	46	0.6
	A2	58-95	11.0	15	18	25	1.2
Coffee cultivation	Ap	0-19	23.1	20	13	61	0.6
	A1	19-32	20.5	18	13	43	0.7
	A2	32-60	20.6	9	13	31	1.5
	AB	60-79	12.9	26	20	25	0.8
Passion fruit	Ap	0-20	17.2	13	13	31	1.0
	A1	20-38	15.8	15	15	29	1.0
	A2	38-61	17.2	24	26	11	1.1
	AB	61-85	10.9	15	23	43	1.6
Forest	A1	0-22	27.3	8	6	79	0.8
	A2	22-40	27.1	8	6	76	0.7
	A3	40-65	22.1	10	9	57	0.9
	AB	65-75	12.8	13	15	49	1.1

Corg = organic carbon; FAF = fulvic acid fraction; HAF = humic acid fraction; HUMIN = humin fraction.
type of crop. For instance, C_{org} values were in average 11%, 29%, 42% and 50% lower in soils under coffee cultivation, passion fruit, olericulture and pasture, respectively, than in soil under forest (Table 1 and Figure 2). In other hand, the humic A horizon from *Eucalyptus* plantation presented as an average of 3% more C_{org} than soil under forest (Table 1).

These differences in C_{org} content between soil layers can be attributed to variability in root contribution between areas (root/shoot ratio), such as, the effects of root exudates on soil microbial activity, and differences in water vapor permeability (Wang et al., 2018; Sokol & Bradford, 2019). It seems evident that a diverse forest ecosystem allows greater C stabilization at depth, and these data corroborated with the role of forests in C sequestration (Bonan, 2008). Nevertheless, C_{org} contents in soils under pasture and crop correspond to SOM contents within the normal range for fertile soil (Freire et al., 2013), indicating good stability or resilience of C_{org} in the sampled profiles.

In previous studies, Calegari (2008) and Chagas et al. (2012) observed in the same humic A horizon from the Southern, Southeastern and Northeastern regions similar variations and C_{org} values between 5.9 and 68.9 kg g$^{-1}$ (Figure 2). In the Agreste region of Pernambuco in Brazil, Pessoa et al. (2012) also found variations in C_{org} content among soils under different uses. In their study, C_{org} values ranged from 15.0 to 43.7 g kg$^{-1}$ at the 10 cm depth. Native forest soils had the highest C_{org} content, followed by soils under "capoeira" vegetation, 25- and 30-year old pastures and annual cropping systems.

Although the use of agriculture is admittedly deleterious to soil C stocks (Carvalho et al., 2010; Coutinho et al., 2014), in pastures, I could be found distinct results when compared to other authors who reviewed the world literature (Guo & Gifford, 2002), or even had been worked more locally (in the Atlantic Forest biome) (Tarré et al. 2001; Cerri et al., 2007), as they detected an increase in C levels and stocks after converting forest to pasture; on the other hand, this change has not occurred for soils with humic A horizon. The evidence of susceptibility to C-CO$_2$ loss from these soils seemed to be relevant for these soils, but more soils must be sampled and characterized.

The analysis of humic substance provides information on the degree of humification and C stability, complementing the results of SOM and C_{org} analysis. There was wide variability in humic properties within and between soil fractions, regardless of land use or crop type. HUMIN varied from 11 to 79%, but most results were above 25%. HAF ranged from 6 to 26%, and FAF from 8 to 25% (Table 1). The HAF/FAF ratio is an indicator of the quality and origin of SOM. An HAF/FAF ratio greater than 1.0 for surface horizons indicates that soil use or changes in vegetation cover have been decreased the supply of fresh organic material into the soil. Surface horizons had lower HAF/FAF ratios than deeper horizons. Forest, olericulture, and coffee cultivation areas had topsoil HAF/FAF ratios below 1.0.

TC contents were used to estimate the C stock in humic A horizons (Table 2). The C stock varied greatly between sites: soil under passion fruit cultivation showed a C stock of 162.64 Mg ha$^{-1}$, whereas soil under *Eucalyptus* plantation had a C stock of 284.69 Mg ha$^{-1}$. These values are higher than those reported in previous studies for soils subjected to different uses in low-altitude regions.

![Figure 2. Depth distribution of the organic carbon contents in humic A horizons in "Pito Aceso" and in other municipalities of the state of Rio de Janeiro. (1) Present study; (2) Calegari (2008); (3) Chagas et al. (2012).](image-url)
The C stock changes in the humic A horizon can be a result of several factors, including inherent characteristics related to the formation of the soil, as well as past and present land use and management practices—from wood harvesting since colonization and coffee and cattle production days to modern times.

Calegari (2008) analyzed C contents in humic A horizon of other regions in the state of Rio de Janeiro and estimated higher TC stocks values than those found in this study: 368.84 Mg ha\(^{-1}\) for pasture and 613.82 Mg ha\(^{-1}\) for secondary forest. The author has also studied soil profiles submitted to different uses in other regions of the country, and this author could find TC stock values ranging from 251.12 to 500.82 Mg ha\(^{-1}\). This large variability in C stock shows that soils with humic A horizon differ greatly in C accumulation potential, in agreement with their differences in formation, vegetation cover, landscape evolution history, and water erosion susceptibility.

3.2. \(^{13}\)C natural abundance in Latossolos with humic A horizon

\(^{13}\)C values ranged from -25.73 to -21.33‰ (Figure 3). It was found that both past (deep horizons) and present vegetation (surface horizon) were formed predominantly, but not exclusively, by C\(_3\). A combination of C\(_4\) and C\(_3\) plants was detected in all soils. Calegari (2008) reported similar data in a study that evaluated the occurrence and paleoenvironmental significance of A humic horizon in Latossolos (Oxisols). That study, by evaluating the data of SOM isotope and phytolith assemblages indicated that this type of soil was formed under a less dense vegetation than the present one. Probably, owing to the mixture of C\(_3\) and C\(_4\) (\(-22\)%) plants and to the more contribution of C\(_3\) in the Southeast region. In addition, the author concluded that, from the late Holocene, it could be

Table 2. Total carbon and carbon stock from humic A horizons and total stock in each study area in the “Pito Aceso” microbasin, situated in Bom Jardim, in the state of Rio de Janeiro, Brazil.

Uses	Horizon	TC g kg\(^{-1}\)	BD Mg m\(^{-3}\)	Horizon Stock Mg ha\(^{-1}\)	Total Stock Mg ha\(^{-1}\)
Eucalyptus	Ap	45.0	0.79	63.99	284.69
	A1	31.4	0.82	69.52	
	A2	30.3	0.92	111.50	
	AB	22.8	1.16	39.67	
Olericulture	Ap	19.6	1.07	83.89	201.47
	A1	18.5	1.09	50.41	
	A2	16.8	1.28	32.26	
	AB	12.8	1.24	34.92	
Pasture	Ap	19.2	1.25	55.20	176.26
	A1	13.3	1.15	53.53	
	A2	16.9	1.08	67.53	
Coffee	Ap	26.6	1.08	54.58	208.10
cultivation	A1	25.3	1.13	37.17	
	A2	23.0	1.21	77.92	
	AB	15.8	1.28	38.43	
Passion	Ap	22.4	1.01	45.25	162.64
fruit	A1	20.6	1.00	37.08	
	A2	22.7	0.91	47.51	
	AB	13.4	1.02	32.80	
Forest	A1	32.1	0.89	62.85	185.51
	A2	29.8	0.94	50.42	
	A3	22.4	1.02	57.12	
	AB	12.7	1.19	15.11	

TC = total carbon; BD = bulk density.
found a more 13C depleted values ($\sim 25\%$), suggesting the expansion of the tropical and subtropical forests, probably associate to a humid and warm climate.

The small variability in δ^{13}C indicated maintenance of original C, as even secondary forest areas converting into grass areas for 20 or 30 years had low C$_4$ contribution. Kuzyakov et al. (2000) described soil effects whereby changes in organic matter turnover that occurs due to soil interventions, such as mechanical disturbance or addition of fertilizers, crop residues, or organic compounds. According to an ecological perspective, negative priming effects are more important than positive one because they have an impact on original C conservation. Thus, it is important to consider the original C stocks equivalent to those found in forest fragments, a characteristic that can be observed is the resistance of these soils to C losses.

4. CONCLUSIONS

Soils under intensive agriculture, such as pasture and olericulture systems, had a greater C loss than soils under secondary forest cover or Eucalyptus plantation. There was wide variability in humic substance fractions between and within areas and horizons. Surface layers had higher FAF, regardless of land use or crop type. δ^{13}C values showed little variability between soils under different uses, which indicates relative stability of the landscape and of the maintenance of soil C quality, with relative resistance of organic matter in the humic A horizon. Efforts in agriculture conservation practices should be encouraged to minimize C losses in these soils, especially regarding the perspective of global warming.

ACKNOWLEDGEMENTS

The authors thank the Rio de Janeiro State Research Foundation – FAPERJ (Grant no. E-26/111.934/2011, project entitled “Dinâmica dos solos com elevados teores de matéria orgânica da região serrana do estado do Rio de Janeiro” for the financial support, and the Brazilian National Council for Scientific and Technological Development – Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for supporting the scientific initiation scholarship (Grant no. 121768/2011-2).

SUBMISSION STATUS

Received: 12 july, 2019
Accepted: 27 dec., 2019

CORRESPONDENCE TO

Ademir Fontana
Embrapa Solos – CNPS, Rua Jardim Botânico, CEP 22460-000, Rio de Janeiro, RJ, Brasil
e-mail: ademir.fontana@embrapa.br

FINANCIAL SUPPORT

Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (Grant Award Number: E-26/111.934/2011). Conselho Nacional de Desenvolvimento Científico e Tecnológico (Grant/Award Number: 121768/2011-2).

REFERENCES

Benites VM, Machado PLOA, Madari BE, Fontana A. Fracionamento químico da matéria orgânica. In: Teixeira PC, Donagemma GK, Fontana A, Teixeira W, editors. Manual de métodos de análise de solo. 3. ed. rev. e ampl. Brasília: Embrapa; 2017.

Benites VM. Caracterização de solos e das substâncias húmidas em complexo rupestre de altitude [tese]. Viçosa:
Departamento de Solos, Universidade Federal de Viçosa; 2002.
Bonan GB. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 2008; 320(5882): 1444-1449. http://dx.doi.org/10.1126/science.1155121. PMid:18556546.
Buol SW, Esowan H. Oxisols. Advances in Agronomy 2000; 68: 151-195. http://dx.doi.org/10.1016/S0065-2113(08)60845-7.
Calegari MR. Ocorrência e significado paleoambiental do horizonte a húmico em Látosolos [tese]. Piracicaba: Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo; 2008.
Carvalho JLN, Raucci GS, Cerri CEP, Bernoux M, Feigl BJ, Wruck MJ, Pinheiro AR, Aristegui JL, 2000 Impact of pasture, agriculture and crop-livestock systems on soil C stocks in Brazil. Soil & Tillage Research 2010; 110(1): 175-186. http://dx.doi.org/10.1016/j.still.2010.07.011.
Cerri CEP, Sparovek G, Bernoux M, Easterling WE, Melillo JM, Cerri CC. Tropical agriculture and global warming: impacts and mitigation options. Scientia Agricola 2007; 64(1): 83-99. http://dx.doi.org/10.1590/0103-901600700100103.
Chagas CS, Calderano B Fo, Donagemma GK, Fontana A, Bhering SB. Levantamento semidetalhado dos solos da microbacia do Córrego do Pito Aceso, Município de Bom Jardim, região serrauna do Estado do Rio de Janeiro – RJ [online]. Brasília: Embrapa; 2012 [cited 2019 July 12]. Available from: https://www.embrapa.br/busca-de-publicacoes/-/publicacao/998391/levantamento-semidetalhado-dos-solos-da-microbacia-do-corrego-do-pito-aceco-municipio-de-bom-jardim-regiao-serrana-do-estado-do-rio-de-janeiro--rj.
Coutinho HLC, Noellemeyer E, Balieiro FC, Pimenta G, Fidalgo EC, Martius C et al. Impacts of land-use change on carbon stocks and dynamics in central-southern South American Biomes: Cerrado, Atlantic Forest and Southern Grasslands. In: Banwart SB, Noellemeyer E, Milne E, editors. Soil carbon science: management and policy for multiple benefits. 1st ed. Reino Unido: CABI; 2014.
Craig H. Isotopic standards for carbon and oxygen and correction factors for mass spectrometric analysis of carbon dioxide. Geochimica et Cosmochimica Acta 1957; 12(1-2): 133-149. http://dx.doi.org/10.1016/0016-7037(57)90024-8.
Dalmolin RSD, Gonçalves CN, Dick DP, Knicker H, Klant E, Kögel-Knabner I. Organic matter characteristics and distribution in Ferralsol profiles of a climosequence in southern Brazil. European Journal of Soil Science 2006; 57(5): 644-654. http://dx.doi.org/10.1111/j.1365-2389.2005.00755.x.
Dias HCT, Schaefer CEGR, Fernandes EI Fo, Oliveira AP, Michel R, Lemos JB Jr. Caracterização de solos altimontanos em dois transectos no Parque Estadual do Ibitipoca (MG). Revista Brasileira de Ciência do Solo 2003; 27(3): 469-481. http://dx.doi.org/10.1590/S0100-06832003000300009.
Dominati E, Patterson M, Mackay A. A framework for classifying and quantifying the natural capital and ecosystem services of soils. Ecological Economics 2010; 69(9): 1858-1868. http://dx.doi.org/10.1016/j.ecolecon.2010.05.002.
Doran JW, Parkin TB. Defining and assessing soil quality. In: Doran JW, Coleman DC, Bezdek DF, Stewart BA, editors. Defining soil quality for a sustainable environment. Madison: Soil Science Society of America; 1994. (SSSA Special Publication; no. 35). http://dx.doi.org/10.2136/ssaspecpub35.c1.
Ellert BH, Bettany JR. Calculation of organic matter and nutrients stored in soils under contrasting management regimes. Canadian Journal of Soil Science 1995; 75(4): 529-538. http://dx.doi.org/10.4141/cjss95-075.
Feller C, Beare MH. Physical control of soil organic matter dynamics in the tropics. Geoderma 1997; 79(1-4): 69-116. http://dx.doi.org/10.1016/S0016-7061(97)00039-6.
Fontana A, Chagas CS, Donagemma GK, Menezes AR, Calderano B Fo. Soils developed on geomorphic surfaces in the mountain region of the state of Rio de Janeiro. Revista Brasileira de Ciência do Solo 2017; 41: e0160574. http://dx.doi.org/10.1590/18069657rbs20160574.
Fontana A, Pereira MG, Anjos LHC, Benites VM. Quantificação e utilização das frações húmicas como característica diferencial em horizontes diagnósticos de solos brasileiros. Revista Brasileira de Ciência do Solo 2010; 34(3): 1241-1247. http://dx.doi.org/10.1590/S0100-0683201000400023.
Freire LR, Balieiro FC, Zonta E, Anjos LHC, Pereira MG, Lima E et al. Manual de calagem e adubação do Estado do Rio de Janeiro. Brasília: Embrapa; 2013.
Guo LB, Gifford RM. Soil carbon stocks and land use change: a meta analysis. Global Change Biology 2002; 8(4): 345-360. http://dx.doi.org/10.1046/j.1354-1013.2002.00486.x.
Haynes RJ. Labile organic matter as an indicator of organic matter quality in arable and pastoral soils in New Zealand. Soil Biology & Biochemistry 2000; 32(2): 211-219. http://dx.doi.org/10.1016/S0038-0717(99)00148-0.
Kohler T, Romeo R. Mountains farming is family farming. In: Wymann von Dach S, Romeo R, Vita A, Wurzinger M, Kohler T, editors. Mountain farming is family farming: a contribution from mountain areas to the International Year of Family Farming 2014. Rome: FAO, CDE, BOKU; 2014.
Kuzyakov Y, Friedel JK, Stahr K. Review of mechanisms and quantification of priming effects. Soil Biology & Biochemistry 2000; 32(11-12): 1485-1498. http://dx.doi.org/10.1016/S0038-0717(00)00884-5.
Martins SC, Sousa E No, Piccolo MC, Almeida DQA, Camargo PB, do Carmo JB et al. Soil texture and chemical characteristics along an elevation range in the coastal Atlantic
Forest of Southeast Brazil. *Geoderma Regional* 2015; 5: 106-116. http://dx.doi.org/10.1016/j.geodrs.2015.04.005.

Pessoa PMA, Duda GP, Barros RB, Freire MBGS, Nascimento CWA, Correa MM. Frações de carbono orgânico de um Latossolo Húmico sob diferentes usos no Agreste Brasileiro. *Revista Brasileira de Ciência do Solo* 2012; 36(1): 97-104. http://dx.doi.org/10.1590/S0100-06832012000100011.

Santos HG, Jacomine PKT, Anjos LHC, Oliveira VA, Lumbreras JF, Coelho MR et al. Sistema brasileiro de classificação de solos. 5. ed. rev. ampl. Brasília: Embrapa; 2018.

Santos RD, Lemos RC, Santos HG, Ker JC, Anjos LHC, Shimizu SH. *Manual de descrição e coleta de solo no campo*. 6. ed. rev. ampl. Viçosa: Sociedade Brasileira de Ciência do Solo, Embrapa Solos; 2013.

Silva AC, Vidal Torrado P, González Perez M, Martin L No, Vasques FM. Relações entre matéria orgânica do solo e declividade de vertentes em toposssequência de Latossolos do sul de Minas Gerais. *Revista Brasileira de Ciência do Solo* 2007; 31(5): 1059-1068. http://dx.doi.org/10.1590/S0100-06832007000500022.

Sokol NW, Bradford MA. Microbial formation of stable soil carbon is more efficient from belowground than aboveground input. *Nature Geoscience* 2019; 12(1): 46-53. http://dx.doi.org/10.1038/s41561-018-0258-6.

Tarré R, Macedo R, Cantarutti RB, Rezende CP, Pereira JM, Ferreira E et al. The effect of the presence of a forage legume on nitrogen and carbon levels in soils under Brachiaria pastures in the Atlantic forest region of the south of Bahia, Brazil. *Plant and Soil* 2001; 234(1): 15-26. http://dx.doi.org/10.1023/A:1010533721740.

Teixeira PC, Donagemma GK, Fontana A, Teixeira W. *Manual de métodos de análise de solo* [online]. 3. ed. rev. e ampl. Brasília, DF: Embrapa, 2017 [cited 2019 July 12]. Available from: https://www.infoteca.cnptia.embrapa.br/handle/doc/1085209

Vieira SA, Alves LF, Duarte-Neto PJ, Martins SC, Veiga LG, Scaranello MA et al. Stocks of carbon and nitrogen and partitioning between above- and belowground pools in the Brazilian coastal Atlantic Forest elevation range. *Ecology and Evolution* 2011; 1(3): 421-434. http://dx.doi.org/10.1002/ece3.41. PMid:22393511.

Villela DM, Mattos EA, Pinto AS, Vieira SA, Martinelli LA. Carbon and nitrogen stock and fluxes in coastal Atlantic Forest of southeast Brazil: potential impacts of climate change on biogeochemical functioning. *Brazilian Journal of Biology = Revista Brasileira de Biologia* 2012; 72(Suppl.3): 633-642. http://dx.doi.org/10.1590/S1519-69842012000400003. PMid:23011294.

Volkoff B, Cerri CC, Melfi J. Húmus e mineralogia dos horizontes superficiais de três solos de campo de altitude dos Estados de Minas Gerais, Paraná e Santa Catarina. *Revista Brasileira de Ciência do Solo* 1984; 8: 277-283.

Wang Y, Li X, Dong W, Wu D, Hu C, Zhang Y et al. Depth-dependent greenhouse gas production and consumption in an upland cropping system in northern China. *Geoderma* 2018; 319: 100-112. http://dx.doi.org/10.1016/j.geoderma.2018.01.001.

Yeomans JC, Brenner JM. A rapid and precise method for routine determination of organic carbon in soil. *Communications in Soil Science and Plant Analysis* 1988; 19(13): 1467-1476. http://dx.doi.org/10.1080/00103628809368027.