The Fastest Rotating Pulsar: A Strange Star?

XU Ren-Xin(), XU Xuan-Bin(), WU Xin-Ji()
CAS-PKU Joint Beijing Astrophysical Center and Department of Astronomy, Peking University, Beijing 100871

ABSTRACT

According to the observational limits on the radius and mass, the fastest rotating pulsar (PSR 1937+21) is probably a strange star, or at least some neutron star equations of state should be ruled out, if we suggest that a dipole magnetic field is relevant to its radio emission. We presume that the millisecond pulsar is a strange star with much low mass, small radius, and weak magnetic moment.

PACS: 97.60.G, 97.60.J, 95.30.C

Pulsars are conventionally modeled as neutron stars, but a strange star model for pulsars is also proposed (see also a review, e.g., by Xu et al[3]). Therefore it is of great importance to find observationally unambiguous features to distinguish strange stars from neutron stars. There are three hopeful ways known hitherto to identify a strange star, which are based upon the differences of viscosity, mass-radius relation, and surface condition between neutron and strange stars[4]. Recently, Kapoor and Shukre's suggested to constrain the equations of state of neutron stars by Rankin’s experiential line of the core emission of radio pulsars, and find the restriction that the pulsar masses $M \leq 2.5M_{\odot}$ and radii $R \leq 10.5$ km, indicating that pulsars are strange stars. However, Kapoor and Shukre’s work has at least two unseemly points: (1) the polar cap is defined for aligned rotators (rather than for orthogonal rotators) in their calculation; (2) the Rankin line is not doubtless true due to many observational and statistical uncertainties. By redefining the polar cap for orthogonal rotators, still we can not obtain a conclusion that pulsars are strange stars, or that some neutron stars equations of state are ruled out, if the Rankin line is used to constrain pulsar masses and radii. Nevertheless, when applying this method to the fastest rotating pulsar, PSR 1937+21, we conclude that the pulsar may be a strange star, or at least some equations of state should be ruled out. In order to find solid evidence

0*Supported by the National Science Foundation of China under Grant No. 19803001, and the Special Funds for Major State Basic Research Projects of China.
to shown that PSR 1937+21 is a strange star, it is strongly suggested to measure precisely the maximum rate of position-angle swing by further polarization observations.

Now, we improve Kapoor and Shukre’s computation by removing the first unseemliness. In a spherical coordinate system with magnetic axis μ being chosen as the z-axis, one has the following form for a position vector \mathbf{r} in a dipole field line denoted by parameter λ:

$$r = \lambda \frac{cP}{2\pi} \sin^2 \theta,$$

(1)

where θ is the polar angle, P the rotation period, c the speed of light, and λ characterizes the sorts of field lines. Based on Eq.(1), the angle θ_μ between μ and the direction of magnetic field at \mathbf{r} reads,

$$\cos \theta_\mu = \frac{2\lambda - 3\mathcal{R}}{\sqrt{\lambda(4\lambda - 3\mathcal{R})}},$$

(2)

where $\mathcal{R} \equiv \frac{2\pi r}{cP} \ll 1$ for points near pulsar surface. Expand function θ_μ in the vicinity of $\mathcal{R} = 0$, one comes to

$$\theta_\mu = \frac{3}{2\sqrt{\lambda}} \mathcal{R}^{1/2} + \frac{3}{8\lambda \sqrt{\lambda}} \mathcal{R}^{3/2} + O(\mathcal{R}^{5/2}).$$

(3)

Assuming $\lambda = \lambda_0$ for the last-open-field lines (note: λ_0 is a function of inclination angle α), one can obtain the beam radius ρ for the radiation at an emission height $h = r - R$ (R is the radius of pulsar), neglecting the terms being equal or higher than $\mathcal{R}^{3/2}$ in Eq.(3),

$$\rho = \frac{3}{2} \sqrt{\frac{2\pi}{\lambda_0 c \frac{P}{1^2}}} \frac{r^{1/2}}{\sqrt{\lambda_0 P} \sqrt{\frac{r}{10km}}}.$$

(4)

For core emissions ($r \gtrsim R$), which are supposed to be originated from regions near pulsar surfaces, general relativistic effects are not negligible due to the spacetime curvature. Two such effects, squeezing of the dipole magnetic field and bending of the radio wave, can be represented approximately by two factors, f_{sqz} and f_{bnd}, respectively, so that the beam radius ρ can be re-written as

$$\rho = \frac{3}{2} \sqrt{\frac{2\pi}{\lambda_0 c \frac{P}{1^2}}} \frac{r^{1/2}}{\sqrt{\lambda_0 P} \sqrt{\frac{r}{10km}}} f_{sqz} f_{bnd},$$

(5)

where $f_{sqz} = (1 + \frac{3GM}{2c^2 r})^{-1/2}$, $f_{bnd} = \frac{1}{3}(2 + (1 - \frac{2GM}{c^2 r})^{-1/2})$, G is the gravitation constant, M the pulsar mass.

We are to calculate the parameter λ_0 of last-open-field lines below, assuming that only the plasma within the light cylinder with radius $r_{lc} = \frac{cP}{2\pi}$ can corotates with the star, i.e., field lines that penetrate beyond the light cylinder should be open. Generally, λ_0 is a
function of inclination angle α. Nevertheless, one can obtain simple formulae of λ_0 in two special cases. Obviously, $\lambda_0(\alpha = 0) = 1$ for an aligned rotator according to Eq.(1). Another formula of λ_0 can be easily reached for an orthogonal rotator ($\alpha = 90^\circ$). The conal angle θ_0 of the null surface, where the magnetic fields are perpendicular to magnetic axis μ, can be obtained from Eq.(2) by setting $\theta_\mu = 90^\circ$,

$$\theta_0 = \sin^{-1} \sqrt{\frac{2}{3}}. \quad (6)$$

Let $r \cos \theta_0 = r_{ic}$, one finds

$$\lambda_0(\alpha = 90^\circ) = \frac{3\sqrt{3}}{2}, \quad (7)$$

which is 2.6 times of $\lambda_0(\alpha = 0^\circ)$.

Fig. 1.— Calculated results based on Eq.(11) show the variations of $\rho \times \sqrt{P}$ (in deg·s$^{1/2}$) as a function of emission altitude r for different pulsar masses ranging from $0.1M_\odot$ to $\gtrsim 2M_\odot$. We present results of $\lambda_0 = 1$ (aligned rotators) and $\lambda_0 = 3\sqrt{3}/2$ (orthogonal rotators) for two limits; an actual value for a pulsar with artificial inclination angle α should be between those two corresponding values. The dashed lines are calculated by Eq.(4), which are not relevant to pulsar mass.

Following the representation by Kapoor and Shukre,[5] we calculate the value, $\rho \times \sqrt{P}$, as a function of emission altitude r for pulsars with core emission according to Eq.(11). The calculated results are shown in Fig.1. Contrary to the result of Kapoor and Shukre,[5]
it is clear from Fig. 1 that the Rankin line (i.e., \(\rho \times \sqrt{P} = 1.225^\circ \text{s}^{1/2} \)) can not effectively put any limit on the equations of state of neutron stars or conduce toward any indication that pulsars are strange stars if we assume that Rankin’s samples are of nearly orthogonal rotators. Nevertheless, we may still obtain some valuable conclusions from above calculation for some special pulsars, for instance, the fastest rotating millisecond pulsar, PSR 1937+21.

The rotation period of PSR 1937+21 is \(P = 1.558 \text{ ms} \), the smallest one of pulsars observed, and the rate of period change is \(\dot{P} = 10^{-19} \text{ s} \cdot \text{s}^{-1} \). The radius of light cylinder of the star is \(r_{lc} = cP/(2\pi) = 74\text{ km} \). The corotation radius, defined by the balance of gravitational force and the centrifugal force, is \(r_c = [GM/(4\pi^2)]^{1/3}P^{2/3} = 20(M/M_\odot)^{1/3}\text{km} \), where \(M \) is the mass of PSR 1937+21. Therefore the pulsar radius \(R \) satisfies

\[
R < \min(r_{lc}, r_c) = 20(M/M_\odot)^{1/3} \text{km}. \tag{8}
\]

Another circumscription of the stellar radius \(R \) and the mass \(M \) may arise from the inclusion of general relativistic effect.\[The pulse width \(\Delta \phi \) of PSR 1937+21 is about 10\(^\circ \) at 600 MHz and 1.4 GHz (EPN database), which is difficult to be explained geometrically if we suggest PSR 1937+21 has a radius of 10 km for canonical pulsars.\[Gil propose thus a model in which a quadrupole magnetic field geometry is assumed. However an alternative conjecture to overcome the difficulty is that PSR 1937+21 may have unusual small radius. Taking the simplest proposing that \(\alpha = 90^\circ \) and impact angle \(\beta = 0 \), we know \(\Delta \phi = 2\rho \), and therefore \(\rho \sqrt{P} = 0.2^\circ \text{s}^{1/2} \). According to the results in Fig. 1, it is found that

\[
M < 0.2 M_\odot \text{ and } R < 1 \text{ km}. \tag{9}
\]

These stringent limits have to result in the conclusion that PSR 1937+21 is a strange star rather than a neutron star because of the strikingly different mass-radius relations.

However, the conclusion in Eq. (9) is not so solid. In fact there are two models proposed to account for the inter-pulse emission: \[single-pole model and double-pole model. Three observational facts favor a double-pole model of inter-pulse origin of PSR 1937+21. (1) The gradient of the position angle at inter-pulse center has the same value as at the main-pulse center. (2) The separation of the main-pulse and the inter-pulse is nearly 180\(^\circ \). (3) The intensities of the main-pulse and the inter-pulse are roughly equal. The observed maximum rate of position angle swing at the main-pulse center is \((d\psi/d\phi)_{\text{max}} \approx 3 \). In the standard rotating vector model, the impact angle \(\beta \) should be

\[
\beta = \sin^{-1}[\sin \alpha/(d\psi/d\phi)_{\text{max}}] \sim 19.5^\circ, \tag{10}
\]

and the beam radius \(\rho \) thus can be derived as

\[
\rho = \cos^{-1}[\cos \beta - 2 \sin \alpha \sin(\alpha + \beta) \sin^2 \Delta \phi/4] \sim 20.1^\circ, \tag{11}
\]
if we take $\alpha = 90^\circ$, $(d\psi/d\phi)_{\text{max}} = 3$ and $\Delta \phi = 10^\circ$. In this case, we find $\rho \sqrt{P} = 0.79^9 s^{1/2}$, and the limits thus are

$$M < 2.4 \, M_\odot \quad \text{and} \quad R < 11.5 \, \text{km} \quad (12)$$

based on Fig.1.

It is well known that the masses and radii of rotating magnetized neutron stars are of equation-of-state dependent. The radius of a neutron star with a maximum mass is the smallest; a smaller mass, a slower rotation and/or a lower inner magnetic field would cause its radius to be larger. Therefore the observational deduction of Eq.(12) should have some implications for proof-testing the equations of state available. Five equations of state have been focused in the calculation for rapidly rotating neutron stars, the results of which are listed in Table 1 by interpolating between the tabulated points in Table 9-23 of Cook et al. for angular frequency $\Omega = 4 \times 10^3 \, s^{-1}$ (i.e., $P = 1.558$ ms). We see that the equations labeled as “L” and “M” should be ruled out by the limits of Eq.(12). Certainly, we should also keep in mind that more equations of state may be killed by inclusion of the inner magnetic field effect, which is an interesting topic in the future study.

Furthermore, two observational uncertainties may result in a derivation of stronger limits on the mass and radius of PSR 1937+21. The first is that observation would give a less steep position angle gradient (i.e., a smaller value of $(d\psi/d\phi)_{\text{max}}$ than reality) due to smearing of finite sampling time, to the frequency dispersion in pulse arrive time, and to the interstellar scattering which may bring on a stretching out of the longitude scale. In fact, $(d\psi/d\phi)_{\text{max}} > 3$. A larger $(d\psi/d\phi)_{\text{max}}$ (thus a smaller β according to Eq.(10)) favours a rough equality of the intensities of the main-pulse and inter-pulse. The second is that PSR 1937+21 might not be exactly an orthogonal rotator (i.e., α is not precisely 90°). It is possible that $\alpha < 90^\circ$. Both these two uncertainties lead to a smaller value of $\rho \sqrt{P}$. We thus take $(d\psi/d\phi)_{\text{max}}$ and α as two free parameters to calculate $\rho \sqrt{P}$. The calculated results are shown in Fig.2. It is clear that stronger limits than those of Eq.(12) may rule out more neutron star equations of state, and probably conduct toward a strange star model for PSR 1937+21, based on Figs.1 and 2.
Inclination Angle (Degree) or Maximum Rate of PA Swing

Fig. 2.— Beam angular radius times square root of period \((\rho \sqrt{P})\) of PSR 1937+21 versus possible different inclination angles \(\alpha\) for the case of \((d\psi/d\phi)_{\text{max}} = 3\), or maximum rates of position-angle swing \((d\psi/d\phi)_{\text{max}}\) for \(\alpha = 90^\circ\).

In Fig. 2 we find \(\rho \sqrt{P}\) is sensitively dependent on \((d\psi/d\phi)_{\text{max}}\) if \((d\psi/d\phi)_{\text{max}} \sim< 10\). \(\rho \sqrt{P} = 0.6\) if \((d\psi/d\phi)_{\text{max}} = 4\) and \(\alpha = 90^\circ\), in this case the limits of Eq.(12) should be modified as \(M < 1.4 M_\odot\) and \(R < 6.6\) km. These limits inevitably lead to the conclusion that PSR 1937+21 is a strange star. Because of the observational uncertainties of \((d\psi/d\phi)_{\text{max}}\) and \(\alpha\) and of the importance of distinguishing a strange star in nature, we seriously table a proposal of detecting more accurate polarization signal from PSR 1937+21 to obtain an actual value, especially of \((d\psi/d\phi)_{\text{max}}\). This could be possibly by means of reducing the sampling time and increasing the total observation time.

If PSR 1937+21 is a strange star with small radii \((R < 10\) km), the old formulae to calculate the surface magnetic field \(B\) and dipole magnetic moment \(\mu_m\) should be modified as

\[
B = \left(\frac{c^3 \rho P P}{5 \pi R \rho}\right)^{1/2} \sim 9.3 \times 10^{19} R_5^{-1/2} \left(\frac{P}{P}\right)^{1/2} \text{ G},
\]

\[
\mu_m = \left(\frac{c^3 \rho P P R^2}{20 \pi}\right)^{1/2} \sim 4.6 \times 10^{29} R_5^{5/2} \left(\frac{P}{P}\right)^{1/2} \text{ G} \cdot \text{cm}^3,
\]

since the density \(\rho \sim 5 \times 10^{15} \text{ g cm}^{-3}\) has a very modest variation with radial distance of strange star, \(M \sim (4/3) \pi R^3 \rho\), and the moment of inertia \(I \sim (8/15) \pi \rho R^5\), where \(R_5\) is the stellar radius in \(10^5\) cm (1 km). We see from Eq.(13) that the calculated magnetic moment is strongly related to the radius although the observation-determined surface magnetic field is weakly related to. For instance, if the radius of PSR 1937+21 is only 1
km, $B = 1.2 \times 10^9$ G, whilst $\mu_m = 5.8 \times 10^{18}$ G·cm3 (typically, μ_m for millisecond pulsars is assumed to be 10^{26} G·cm3). This property favors the assumption that dipole magnetic structure dominates in the radio emission region.

Millisecond pulsars are currently believed to be of recycled-origin of normal pulsars which are spin down enough. However, motivated by the study of planet formation around PSR 1257+12, Miller and Hamilton\cite{18} suggested that some and perhaps all isolated millisecond pulsars may have been born with high spin rates and low magnetic fields instead of having been recycled by accretion. This is understandable if we assume part or all of the isolated millisecond pulsars are strange stars with smaller radii (thus smaller masses): (1) Turbulent convection in nuclear matter\cite{19} or in strange quark matter\cite{20} should be less prosperous in a proto-pulsar with lower mass than with higher mass in the Kelvin-Hermholtz cooling phase, the dynamo-created magnetic field is thus weaker. (2) Small radius favors faster rotation since the centrifugal force become smaller while the gravitational force to be larger (see Eq.(8)). A bimodal distribution of pulsar periods and magnetic fields may arises from various kind of progenitors as well as complex mechanisms of supernova exploration. Therefore, it is conjectured that PSR 1937+21 and PSR 1257+12 (and possibly some or all of the isolated millisecond pulsars) may have weaker dynamo-originated magnetic field due to a less effective field magnification process.

REFERENCES:

1. Huang Y F and Lu T 1997 Chin. Phys. Lett. 14 314
2. Chen C X and Zhang J L 2001 Chin. Phys. Lett. 18 145
3. Xu R X, Zhang B and Qiao G J 2001 Astropart. Phys. 15 101
4. Xu R X 2001 Science & Technology Review (in press) (in Chinese)
5. Kapoor R C and Shukre C S 2000 preprint [astro-ph/0011386]
6. Rankin J M 1990 Astrophys. J. 352 247
7. Alfvén H and Falthammer C G 1963 Cosmical Electrodynamics (Oxford at the Clarendon Press)
8. Kapoor R C and Shukre C S 1998 Astrophys. J. 501 228
9. Cordes J M and Stinebring D R 1983 Astrophys. J. 277 L53
10. Gil J 1985 Astron. Astrophys. 143 443
11. Gil J 1983 *Astron. Astrophys.* **127** 267
12. Cook G B, Shapiro S L and Teukolskey S A 1994 *Astrophys. J.* **424** 823
13. Salgado M *et al* 1994 *Astron. Astrophys.* **291** 155
14. Bocquet M *et al* 1995 *Astron. Astrophys.* **301** 757
15. Liu X F and Wu X J 1999 *Acta Astrophysica Sinica* **19** 68 (in Chinese)
16. Manchester R N and Taylor J H 1977 *Pulsars* (San Francisco: Freeman)
17. Alcock C, Farhi E and Olinto A 1986 *Astrophys. J.* **310** 261
18. Miller M C and Hamilton D P 2001 *Astrophys. J.* (in press) ([astro-ph/0012042](http://arxiv.org/abs/astro-ph/0012042))
19. Thompson C and Duncan R C 1993 *Astrophys. J.* **408** 194
20. Xu R X and Busse F H 2001 *Astron. Astrophys.* (in press) ([astro-ph/0101011](http://arxiv.org/abs/astro-ph/0101011))
Table 1. Total gravitational mass-energy M and the circumferential Radii R at equator of rotating ($P = 1.558$ ms) neutron stars with maximum mass for five kinds of Equations of state

* See Table 2 of Cook et al.[12] for details.

EOS*	M/M_\odot	R(km)
A (Reid soft core)	1.6604	8.82
L (Mean field)	2.7263	14.98
M (Tensor interaction)	1.8298	19.08
AU (AV14 + UVII)	2.1433	9.78
FPS (UV14 + TNI)	1.8069	9.88