Title
TREATMENT OF CUTANEOUS T-CELL LYMPHOMA (MYCOSIS FUNGOIDES) WITH 13-CIS-RETINOIC ACID

Permalink
https://escholarship.org/uc/item/5qt50039

Journal
The Lancet, 321(8338)

ISSN
0140-6736

Authors
Kessler, JohnF
Levine, Norman
Meyskens, FrankL
et al.

Publication Date
1983-06-01

DOI
10.1016/s0140-6736(83)92136-0

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed
TREATMENT OF CUTANEOUS T-CELL LYMPHOMA (MYCOSIS FUNGOIDES) WITH 13-CIS-RETINOIC ACID

JOHN F. KESSLER FRANK L. MEYSKENS, JR
NORMAN LEVINE PETER J. LYNCH
STEPHEN E. JONES

Sections of Hematology/Oncology and Dermatology, Department of Medicine, University of Arizona Hospital and Cancer Center, Tucson, Arizona 85724, USA

Summary Four patients with refractory cutaneous T-cell lymphoma (mycosis fungoides) were treated with 13-cis-retinoic acid. Near complete clearing of extensive tumors and plaques was seen in one patient, who remains in partial remission with continued improvement after fifteen months. Two patients showed improvement in pruritus and 50% reduction in plaques by four and six weeks, respectively. The fourth patient had improvement in pruritus and clearing of plaques, but dryness and scaling necessitated reduction and eventually withdrawal of the treatment.

Introduction

VITAMIN A is necessary for normal epithelial cell maturation.1 Synthetic derivatives of vitamin A (retinoids) can inhibit proliferation and cause differentiation and maturation in malignant disease of epithelial and non-epithelial origin.2-13 Lately, retinoids have been shown to alter T lymphocyte maturation.12 We and others have demonstrated potent effects of the retinoid 13-cis-retinoic acid on non-malignant and malignant skin conditions,5,15,16 and have now tried this agent in four patients with generalised plaques and erythroderma due to mycosis fungoides.

Case Reports

Case 1

A 39-year-old man presented with a 10-year story of pruritus with nodules and plaques involving 80–90% of the skin surface (figs 1 and 2). Therapy had included topical and systemic corticosteroids, topical nitrogen mustard, electron beam therapy, phototherapy with psoralens and ultraviolet light (PUVA), and systemic cytotoxic chemotherapy with single agent methotrexate and combinations of cyclophosphamide, vincristine, prednisone, and levamisole and later of vincristine, 1,3-bis(2 chloethy1)-1-nitrosourea (BCNU), doxorubicin, and prednisone. Topical BCNU had given temporary 50% clearing of plaques but the lesions were progressing after 1 year. A short course of oral vitamin A 5 years previously had produced no response.

On physical examination he had total alopecia and 90% of the skin surface was affected by scaly erythematous plaques and nodules. A 2 cm axillary lymph node was palpable. There was no hepatosplenomegaly. A skin biopsy specimen showed hyperkeratosis and atypical mononuclear cells infiltrating the dermal and perivascular tissues. Pautner's microabscesses were present, consistent with mycosis fungoides. Laboratory indices of hepatic and renal function, serum lipids, and blood picture were normal; in the buffy coat no abnormal cells were seen on light microscopy or electron microscopy. Chest roentgenogram was normal.

He was treated with 13-cis-retinoic acid ('Accutane') 3 mg/kg per day by mouth. After four weeks he noticed increased scaling but his pruritus had diminished and he was more mobile. His skin lesions gradually improved and after ten months the pruritus had almost

Fig 1—Pretreatment photograph of patient 1 showing generalised tumours and plaques of mycosis fungoides.
Fig 2—Close-up photograph of upper arm of patient 1 before treatment.

Fig 3—Patient 1 twelve months after start of 13-cis-retinoic acid. Tumours and plaques have regressed and extensive depigmentation has occurred.

Fig 4—Patient 4 before and one month after start of treatment with 13-cis-retinoic acid.
ceased and the tumours and plaques occupied only 20% of the skin surface (fig 3). After fifteen months the plaques involved 10–15% of the skin surface, pruritus remained under control, and there was no evidence of extracutaneous involvement. At no time were there serious toxicity effects from the retinoid; skin dryness was easily controlled with emollients.

Case 2
A man of 68 presented with a 4-year history of red, scaly, pruritic rash refractory to topical steroids. He had erythematous plaques on buttocks, back, and arms, and skin biopsy was consistent with mycosis fungoides, showing Pautrier’s microabscesses and mononuclear cell infiltration. He was started on oral 13-cis-retinoic acid 2 mg/kg per day. After one month the plaques had decreased by 50% and pruritus was reduced. Because of skin dryness, the retinoid dose was reduced to 1 mg/kg per day.

Case 3
A man of 63 was evaluated for a pruritic rash of 7 years’ duration. He had erythematous plaques involving 90% of the skin surface. Skin biopsy, examined by light and electron microscopy, was consistent with mycosis fungoides. He was treated with 13-cis-retinoic acid 2 mg/kg per day, reduced to 1 mg/kg per day after one month because of scaling and dryness. After two weeks his scaling had improved and the skin plaques had decreased by 50%.

During his staging evaluation he was found to have a hilar mass on chest roentgenogram and mildly raised liver enzymes. On further investigation he proved to have extensive undifferentiated small-cell lung cancer; the retinoid was therefore stopped and combination chemotherapy was initiated.

Case 4
A woman of 66 had a 4-year story of generalised erythroderma, scaling, and pruritus resistant to all treatment. She had total alopecia and 90% involvement of the skin with an exfoliative dermatisis and extensive plaques. Skin biopsy was histologically and immunologically consistent with mycosis fungoides. She was treated with 13-cis-retinoic acid 2 mg/kg per day. After four weeks the plaques had cleared and her pruritus had improved (fig 4). She could not, however, tolerate the skin dryness and scaling and the dose was reduced to 0.25 mg/kg and then 0.1 mg/kg per day. Because of continued dryness the retinoid was eventually withdrawn. Shortly thereafter her disease activity increased, requiring other investigational therapy.

Discussion
Previous reports have suggested possible benefit from retinoids in mycosis fungoides. Clauzy et al. described improvement of nodular lesions in a 77-year-old patient with cutaneous T-cell lymphoma; they used an ethyl ester derivative of retinoic acid (RO-10-9359) at 1-0 mg/kg per day. On withdrawal of the drug after four months, the patient relapsed. Zachariae reported complete remission in eight of ten patients treated with a complex regimen including retinoids. Conversely, no response was seen in six patients concurrently treated without additional retinoids. However, other major differences in the treatments obscured the contribution of retinoids to the observed responses. In our investigation, all four patient responded to oral 13-cis-retinoic acid.

The skin lesions of cutaneous T-cell lymphoma are characterised by epidermal infiltration with atypical mononuclear cells, and most patients have an infiltrate of helper T-cells. Lately, natural killer lymphocyte activity has been reported lower in leukaemic and non-leukaemic cutaneous T-cell lymphomas than in normal controls. Antimunótor activity has been attributed to these natural killer cells.

Whether retinoids exert an effect on natural killer lymphocyte activity is unknown, but other immunological effects have been observed.

Retinoids influence the immune function of epidermal mononuclear cells and vitamin A has been seen as a possible immunological adjuvant. Dernert described that retinoic acid enhances antigen specific cytotoxic T-cell activity, and Sidell found that retinoids enhance blastogenesis in thymus and thymus derived lymphocytes but not in those derived from the spleen or peripheral blood. Therefore there is ample evidence that retinoids could influence tumour activity by their effects on immunity, although this is not the only possible anti-tumour mechanism.

Our experience and that of others justifies further clinical investigation of retinoids in the treatment of cutaneous T-cell lymphoma.

We thank Yvonne Taylor for secretarial assistance.

This work was supported by grants from the NIH (CA 75703, CA 25047; CA 17094) and Hoffman-LaRoche, Inc.

References
1. Laroche L, Kaiserlan D. Decreased natural killer cell activity in cutaneous T-cell lymphomas. Cancer 1983; 52: 1326–31.
2. Laharanne J. Retinoids in the treatment and prevention of dermatoses and epitelial neoplasia. Ann Clin Res 1980; 12: 123–30.
3. Bollag W. Therapy of epitelial tumors with an aromatic retinoic acid analog. Chemotheraphy 1975; 24: 236–37.
4. Bollag W, Ott F. Vitamin A in benign and malignant epitelial tumors of the skin. Acta Dermatol 1975; 55 (suppl. 74), 263–66.
5. Pock GL, Olano FG, Ruckus D, et al. Treatment of basal cell carcinoma with 13-cis retinoic acid. Proc Assoc Cancer Res 1979; 20: 56–58.
6. Sporn MB, Newton DL. Chemoprevention of cancer with retinoids. Fed Proc 1979; 38: 2328–34.
7. Hogan B. Epitelial cancer, differentiation and vitamin A. Nature 1979; 277: 261–62.
8. Elias P, Williams M. Retinoids, cancer and the skin. Arch Dermatol 1981: 117: 160–68.
9. Levine N, Meyersen F. Topical vitamin A therapy for cutaneous melanoma. Lancet 1980; ii: 224–26.
10. Meyersen P, Salmon S. Induction of melanoma colony formation by retinoids. Cancer Res 1979; 39: 4055–57.
11. Lotan R. Different susceptibilities of human melanoma and breast carcinoma cells lines to retinoic acid induced growth inhibition. Cancer Res 1979; 39: 1014–19.
12. Bollag W. Therapeutic effects of an aromatic retinoic acid analog on chemically induced skin papillomias and carcinomas of mice. Eur J Cancer 1974; 10: 731–37.
13. Jetten A, Jetten M. Possible role of retinoic acid binding protein in retinoid stimulation of embryonal carcinoma cells differentiation. Nature 1979; 278: 180–82.
14. Dernert G, Lotan R. Effects of retinoic acid on the immune system: stimulation of T killer cell induction. Eur J Immunol 1978: 8: 29–39.
15. Meyersen P, Gilmarson G, Hordijk L, Dijkema R, Brooks R, Salmon S, Surbee R. Activity of isoretinoin against squamous cell cancers and preneoplastic lesions. Cancer Treat Rep 1983; 67: 1315–19.
16. Haydry RP, Reed ML, Deubler LM. Treatment of keratocanthomas with oral 13-cis retinoic acid. N Engl J Med 1980, 303: 560–62.
17. Claudy A, Delomier Y, Hermier C. Treatment of cutaneous T cell lymphoma with a new aromatic retinoid (RO-10-9359). Arch Dermatol 1982; 273: 37–42.
18. Zachariae H, Gruntett E, et al. Oral retinoid in combination with bleomycin, cyclophosphamide, prednisone and transfer factor in mycosis fungoides. Acta Dermatol (Stockh) 1982; 62: 162–64.
19. Breder S, Edelton R, Luztner M. The Sezary syndrome: a malignant proliferation of helper T cells. J Clin Invest 1976; 58: 1307–1309.
20. Berger C, Warbritton D, Raffo J, et al. Cutaneous T-cell lymphoma in patients with helper activity. Blood 1979; 53: 642–51.
21. Laroch S, Luster J. Decreased natural killer cell activity in cutaneous T-cell lymphoma. N Engl J Med 1983; 306: 101–02.
22. Haller O, Hansson M, Keissling R, Wigzell H. Role of non-conventional natural killer cells in resistance against syngeneic tumor cells in vivo. Nature 1979; 270: 609–11.
23. Santoli D, Trinchieri G, Lotz F. Cell-mediated cytotoxicity against virus infected target cells in humans. I. Characterisation of the effector lymphocyte. J Immunol 1978; 121: 526–31.
24. Dorlac W. Oral retinoids—present status. Br J Dermatol 1980; 40: 473–81.
25. Felix E, Cohen M, et al. Immune and toxic antitumor effects of systemic and intranasal vitamin A. Am J Surg Res 1976; 21: 107–12.
26. Ahl J, Denhardt D. Effects of retinoic acid on the human lymphocyte response to tetanus. Exp Cell Res 1980; 184: 69–79.
27. Miechishe M, Cerm C, et al. Stimulation of immune response in lung cancer patients by vitamin A therapy. Onology 1973; 34: 233–38.
28. Sidell S, Paniagua E, Gobey S. Augmentation of human thymocyte proliferative responses by vitamin A (retinoic acid. Exp Cell Res 1981; 45: 239–45.
29. DeLuca L, Fangala V, et al. Biosynthesis of phospholipid and glycoprotein phosphoryl derivatives of vitamin A in biological membranes. Fed Proc 1979; 38: 2515–19.
30. Wolf G, Korperges T, et al. Recent evidence for the participation of vitamin A in glycoprotein synthesis. Fed Proc 1979; 38: 2540–43.