Supplemental Information

Improving the representation of HONO chemistry in CMAQ and examining its impact on haze over China

Shuping Zhang,a,b,c Golam Sarwar,d1 Jia Xing,b2 Biwu Chu,a,c,e Chaoyang Xue,a,c Arunachalam Sarav,f Dian Ding,b Haotian Zheng,b Yujing Mu,a,c,e Fengkui Duan,b Tao Ma,b Hong He,a,c,e3

1 State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
2 State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
3 University of Chinese Academy of Sciences, Beijing 100049, China
d Center for Environmental Measurement and Modeling, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
e Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
f Institute for the Environment, The University of North Carolina at Chapel Hill, 100 Eurpoa Drive, Chapel Hill, NC 27514, USA

Page S1: Sensitivity analysis

Fig. S1: Observed temperature, relative humidity (RH), wind speed, wind direction, PM2.5 and HONO concentrations in Beijing in December 2015.
Fig. S2: Average diurnal variation of HONO/NO2 during 7-22 December in Beijing.
Fig. S3: Diurnal variation of sensitivity simulations during 7-22 December in Beijing. HONO observation is denoted as OBS, final simulated HONO concentration is denoted as REV, HONO with nitrate photolysis rate of 100×JHNO3 is denoted as 100JHNO3, HONO with 2×γgn is denoted as 2γgn, HONO concentration with double NOx emission is denoted as DE, and HONO with one-half of the photolysis rate is denoted as 0.5J.
Fig. S4: A comparison of observed and simulated NO2 in Beijing (hourly data).
Fig. S5: Surface level integrated reaction rates of the six additional HONO reactions in Beijing December 2015.
Fig. S6: Vertical profile of HONO and OH in Beijing simulated for ORI (blue bar) and REV (orange bar). Full-layer heights above ground are 36, 73, 146, 294, 445, 675, 1072, 1573, 2103, and 2965 m.

Table S1: A comparison of observed HONO concentrations in China

1 Tel:1-919-541-2669; fax:1-919-541-1379; e-mail: Sarwar.Golam@epa.gov
2 Tel: 86-10-62781331; fax: 86-10-62781331; e-mail: xingjia@tsinghua.edu.cn
3 Tel: 86-10-62849123; fax: 86-10-62849337; e-mail: honghe@rcees.ac.cn
Table S2: Average VOC concentrations and reaction rates of VOCS with OH in the ORI and REV models in Beijing

Sensitivity analysis

Four additional model sensitivity simulations were performed to better understand the impacts of selected parameters on HONO predictions. One simulation was to investigate the sensitivity of the selected night-time uptake coefficient for the heterogeneous reaction of NO$_2$ on ground surface by doubling the uptake coefficient (from 4×10^{-6} to 8×10^{-6}). It substantially increases the night-time HONO predictions and seriously overestimates the observed HONO concentration (Fig. S3). To investigate the impact of the selected aerosol nitrate photolysis rate, the second simulation was performed by increasing the aerosol nitrate photolysis rate from $30 \times$ HNO$_3$ photolysis rate to $100 \times$ HNO$_3$ photolysis rate. It marginally increases the predicted (12:00 to 18:00) HONO in the afternoon concentrations from 0.72 ppb to 0.82 ppb (Fig. S3). Model underestimates daytime NO$_2$ concentrations, which can lower the model daytime of HONO concentrations. Planetary boundary layer (PBL) height affects model daytime concentration. However, PBL height could not be evaluated because it was not measured. To investigate the causes of daytime HONO underestimation, the third sensitivity simulation was performed by doubling the NO$_x$ emissions. The underestimation of the NO$_x$ concentration in the afternoon decreases from 39 ppb to 36 ppb, whereas the simulated HONO concentrations in the afternoon (12:00 to 18:00) increases from 1.0 ppb to 2.4 ppb (Fig. S3). Another possible reason of daytime HONO underestimation is the overestimation of daytime photolysis reaction rate. Aerosols in heavy pollution periods can reduce the amount of radiation reaching the ground and can lower the photolysis reaction rate. The last sensitivity simulation was conducted by reducing the photolysis rate by 50%. The daytime HONO concentration increases from 1.3 to 2.1 ppb, which improves the comparison with observed data (Fig. S3). Results of our sensitivity analyses reveal that the daytime HONO underestimation can be improved by solving the problem of daytime NO$_2$ underestimation (Fig. S4) and improving the HONO photolysis reaction rates. Future studies can target on such improvements.

Except the six parameterized reactions, the photolysis of deposited HNO$_3$, soil emission and traffic emission are other potential HONO sources. Zhou et al., (2003) reported that HNO$_3$ deposited on environmental surfaces can undergo rapid photolysis leading to day-time HONO production. Several studies (Sarwar et al., 2008; Fu et al., 2019; Liu et al., 2019) included such a reaction in their models. However, we do not include it because the rate constant has high uncertainty and it could also pose a problem for performing long-term model simulations. For long-term (annual and multiyear) simulation, that the deposited amount of HNO$_3$ could accumulate with time, which could continue increasing the HONO production rates with time. Soil can emit HONO and other nitrogen-containing compounds (Su et al., 2011; Oswald et al., 2013). Rasool
et al. (2019) implemented these emissions into CMAQv5.3 by using a mechanistic representation of the underlying processes and examined their impacts on air quality over North America. The impacts of HONO emitted from soil are generally low, and we do not include these emissions in this study. Traffic emissions are usually estimated from the ratio of HONO/NO$_x$, ranging from 0.3% to 2.1% (Kurtenbach et al., 2001; Svoboda et al., 2013; Czader et al., 2015; Wormhoudt et al., 2015; Xu et al., 2015; Liang et al., 2017; Nakshima and Kajii, 2017; Trinh et al., 2017; Rasool et al., 2019). The HONO/NO$_x$ emission ratio used in CMAQv5.3 (0.8%) falls within the reported ranges. Some researchers classify the reaction between vehicle-emitted NO and OH as traffic source. Our research emphasizes the contribution of each chemical reaction including NO+OH, and does not investigate the differences in traffic sources. We also applied our parameter method into another case at Wangdu in winter of 2017. The simulated HONO improves remarkably (Zheng et al., 2020).

Fig. S2: Observed temperature, relative humidity (RH), wind speed, wind direction, PM$_{2.5}$, and HONO concentrations in Beijing in December 2015.
Fig. S2: Average diurnal variation of HONO/NO₂ during 7-22 December in Beijing.

Fig. S3: Diurnal variation of sensitivity simulations during 7-22 December in Beijing. HONO observation is denoted as OBS, final simulated HONO concentration is denoted as REV, HONO with nitrate photolysis rate of 100×JHNO₃ is denoted as 100JNO₃, HONO with 2×γgn is denoted as 2γgn, HONO concentration with double NO₃ emission is denoted as DE, and HONO with one-half of the photolysis rate is denoted as 0.5J.
Fig. S4: A comparison of observed and simulated NO$_2$ in Beijing (hourly data).
Fig. S5: Surface level integrated reaction rates of the six additional HONO reactions in Beijing December 2015.

Fig. S6: Vertical profile of HONO and OH in Beijing simulated for ORI (blue bar) and REV (orange bar). Full-layer heights above ground are 36, 73, 146, 294, 445, 675, 1072, 1573, 2103, and 2965 m.
Table S1: A comparison of observed HONO concentrations in China

Station	Time	Equipment	HONO (ppb)	Reference
Heshan	Jan 4-8, 2017	LOPAP	0.2-8.8	(Fu et al., 2019)
Chengdu	Sep 1-Dec 30, 2017	GAC-IC TH-PKU-303	0.3-1	(Wu et al., 2018)
Xi’an	Dec 16-24, 2015	IGAC	0.5-4	(Feng et al., 2018)
Shanghai	May 12-28, 2016	LOPAP	0.3-6	(Cui et al., 2018)
Xianggang	Aug 20-31, 2011	LOPAP	0.45-2.71	(Zhang et al., 2016)
Beijing	Dec 16-23, 2016	custom	3.5 ± 2.7	(Zhang et al., 2019b)
Jinan	Sep 1, 2015-Aug 31, 2016	LOPAP	17-8.36	(Li et al., 2018)
Beijing	Aug 2-30, 2006	LOPAP	0.06-3	(Zhang et al., 2019a)
Beijing	Sep 22, 2015-Jul 25, 2016	AIM-IC (custom)	1.05-2.27	(Wang et al., 2017)
Beijing	Feb 22-Mar 2, 2014	custom	0.49-3.24	(Hou et al., 2016)
Beijing	Oct 28-Nov 2, 2014	custom	0.54-2.7	(Tong et al., 2016)
Beijing	Dec 7-22, 2015	custom	2.3 ± 1.8	This study

Table S2: Average VOC concentrations and reaction rates of VOCS with OH in the ORI and REV models in Beijing

Conc (ppb)	R\(_{\text{VOC-OH}}\) (ppt/h)			
	ORI	REV	ORI	REV
Acetaldehyde	2.46	⇒ 2.80	58.37	⇒ 123.06
Higher-aldehydes	2.79	⇒ 2.95	63.18	⇒ 124.11
Ethene	14.19	⇐ 13.44	53.06	⇒ 83.94
Ethane	14.91	⇐ 14.89	1.28	⇒ 2.46
Ethanol	0.78	⇐ 0.75	1.36	⇒ 2.39
Formaldehyde	11.63	⇒ 12.44	75.56	⇒ 163.75
Internal olefin	0.81	⇐ 0.69	7.42	⇐ 6.98
Compound	Initial Value	Equilibrium Value	Reaction	
------------	---------------	-------------------	----------	
Isoprene	0.04	0.04	1.10 ⇒ 1.01	
Methanol	1.13	1.13	0.47 ⇒ 0.88	
Olefin	25.13	23.30	258.53 ⇒ 332.31	
Paraffin	186.06	182.60	80.94 ⇒ 144.42	
Monoterpenes	0.03	0.02	0.35 ⇒ 0.21	
Toluene	17.24	16.57	51.83 ⇒ 86.36	
Xylene	16.83	15.84	123.51 ⇒ 179.99	

References

Cui, L.L., Li, R., Zhang, Y.C., Meng, Y., Fu, H.B., Chen, J.M., 2018. An observational study of nitrous acid (HONO) in Shanghai, China: The aerosol impact on HONO formation during the haze episodes. Sci. Total Environ. 630, 1057-1070.

Czader, B.H., Choi, Y., Li, X., Alvarez, S., Lefer, B., 2015. Impact of updated traffic emissions on HONO mixing ratios simulated for urban site in Houston, Texas. Atmospheric Chemistry and Physics 15, 1253-1263.

Feng, T., Bei, N., Zhao, S., Wu, J., Li, X., Zhang, T., Cao, J., Zhou, W., Li, G., 2018. Wintertime nitrate formation during haze days in the Guanzhong basin, China: A case study. Environmental pollution 243, 1057-1067.

Fu, X., Wang, T., Zhang, L., Li, Q.Y., Wang, Z., Xia, M., Yun, H., Wang, W.H., Yu, C., Yue, D.L., Zhou, Y., Zheng, J.Y., Han, R., 2019. The significant contribution of HONO to secondary pollutants during a severe winter pollution event in southern China. Atmospheric Chemistry and Physics 19, 1-14.

Hou, S., Tong, S., Ge, M., An, J., 2016. Comparison of atmospheric nitrous acid during severe haze and clean periods in Beijing, China. Atmospheric Environment 124, 199-206.

Kurtenbach, R., Becker, K., Gomes, J., Kleffmann, J., Lörzer, J., Spittler, M., Wiesen, P., Ackermann, R., Geyer, A., Platt, U., 2001. Investigations of emissions and heterogeneous formation of HONO in a road traffic tunnel. Atmospheric Environment 35, 3385-3394.

Li, D.D., Xue, L.K., Wen, L., Wang, X.F., Chen, T.S., Mellouki, A., Chen, J.M., Wang, W.X., 2018. Characteristics and sources of nitrous acid in an urban atmosphere of northern China: Results from 1-yr continuous observations. Atmospheric Environment 182, 296-306.

Liang, Y., Zha, Q., Wang, W., Cui, L., Lui, K.H., Ho, K.F., Wang, Z., Lee, S.-c., Wang, T., 2017. Revisiting nitrous acid (HONO) emission from on-road vehicles: A tunnel study with a mixed fleet. J. Air Waste Manage. Assoc. 67, 797-805.

Liu, Y., Lu, K., Li, X., Dong, H., Tan, Z., Wang, H., Zou, Q., Wu, Y., Zeng, L., Hu, M., Min, K.-E., Kecorius, S., Wiedensohler, A., Zhang, Y., 2019. A Comprehensive Model Test of the HONO Sources Constrained to Field Measurements at Rural North China Plain. Environmental Science & Technology 53, 3517-3525.

Nakashima, Y., Kajii, Y., 2017. Determination of nitrous acid emission factors from a gasoline vehicle
using a chassis dynamometer combined with incoherent broadband cavity-enhanced absorption spectroscopy. Sci. Total Environ. 575, 287-293.

Oswald, R., Behrendt, T., Ermel, M., Wu, D., Su, H., Cheng, Y., Breuninger, C., Moravek, A., Mougin, E., Delon, C., 2013. HONO emissions from soil bacteria as a major source of atmospheric reactive nitrogen. Science 341, 1233-1235.

Rasool, Q.Z., Bash, J.O., Cohan, D.S., 2019. Mechanistic representation of soil nitrogen emissions in the Community Multiscale Air Quality (CMAQ) model v 5.1. Geosci Model Dev 12, 849-878.

Sarwar, G., Roselle, S.J., Mathur, R., Appel, W., Dennis, R.L., Vogel, B., 2008. A comparison of CMAQ HONO predictions with observations from the northeast oxidant and particle study. Atmospheric Environment 42, 5760-5770.

Su, H., Cheng, Y., Oswald, R., Behrendt, T., Trebs, I., Meixner, F.X., Andreae, M.O., Cheng, P., Zhang, Y., Pöschl, U., 2011. Soil Nitrite as a Source of Atmospheric HONO and OH Radicals. Science 333, 1616.

Svoboda, O., Kubelová, L., Slaviček, P., 2013. Enabling Forbidden Processes: Quantum and Solvation Enhancement of Nitrate Anion UV Absorption. The Journal of Physical Chemistry A 117, 12868-12877.

Tong, S., Hou, S., Zhang, Y., Chu, B., Liu, Y., He, H., Zhao, P., Ge, M., 2016. Exploring the nitrous acid (HONO) formation mechanism in winter Beijing: direct emissions and heterogeneous production in urban and suburban areas. Faraday discussions 189, 213-230.

Trinh, H.T., Imanishi, K., Morikawa, T., Hagino, H., Takenaka, N., 2017. Gaseous nitrous acid (HONO) and nitrogen oxides (NOx) emission from gasoline and diesel vehicles under real-world driving test cycles. J. Air Waste Manage. Assoc. 67, 412-420.

Wang, G., Cheng, S., Wei, W., Yang, X., Wang, X., Jia, J., Lang, J., Lv, Z., 2017. Characteristics and emission-reduction measures evaluation of PM2.5 during the two major events: APEC and Parade. The Science of the total environment 595, 81-92.

Wormhoudt, J., Wood, E.C., Knighton, W.B., Kolb, C.E., Herndon, S.C., Olaguer, E.P., 2015. Vehicle emissions of radical precursors and related species observed in the 2009 SHARP campaign. J. Air Waste Manage. Assoc. 65, 699-706.

Wu, P., Huang, X., Zhang, J., Luo, B., Luo, J., Song, H., Zhang, W., Rao, Z., Feng, Y., Zhang, J., 2018. Characteristics and formation mechanisms of autumn haze pollution in Chengdu based on high time-resolved water-soluble ion analysis. Environmental science and pollution research international.

Xu, Z., Wang, T., Wu, J., Xue, L., Chan, J., Zha, Q., Zhou, S., Louie, P.K.K., Luk, C.W.Y., 2015. Nitrous acid (HONO) in a polluted subtropical atmosphere: Seasonal variability, direct vehicle emissions and heterogeneous production at ground surface. Atmospheric Environment 106, 100-109.

Zhang, J.W., An, J.L., Qu, Y., Liu, X.G., Chen, Y., 2019a. Impacts of potential HONO sources on the concentrations of oxidants and secondary organic aerosols in the Beijing-Tianjin-Hebei region of China. Sci. Total Environ. 647, 836-852.

Zhang, L., Wang, T., Zhang, Q., Zheng, J.Y., Xu, Z., Lv, M.Y., 2016. Potential sources of nitrous acid (HONO) and their impacts on ozone: A WRF-Chem study in a polluted subtropical region. J. Geophys. Res.-Atmos. 121, 3645-3662.

Zhang, W.Q., Tong, S.R., Ge, M.F., An, J.L., Shi, Z.B., Hou, S.Q., Xia, K.H., Qu, Y., Zhang, H.X., Chu, B.W., Sun, Y.L., He, H., 2019b. Variations and sources of nitrous acid (HONO) during a severe pollution episode in Beijing in winter 2016. Sci. Total Environ. 648, 253-262.

Zheng, H., Song, S., Sarwar, G., Gen, M., Wang, S., Ding, D., Chang, X., Zhang, S., Xing, J., Sun, Y., Ji, D., Chan, C.K., Gao, J., McElroy, M.B., 2020. Contribution of Particulate Nitrate Photolysis to Heterogeneous Sulfate Formation for Winter Haze in China. Environmental Science & Technology Letters.
Zhou, X., Gao, H., He, Y., Huang, G., Bertman, S.B., Civerolo, K., Schwab, J., 2003. Nitric acid photolysis on surfaces in low-NOx environments: Significant atmospheric implications. Geophysical Research Letters 30.