Photochemical reactions are a powerful tool in (bio)materials design due to the spatial and temporal control light can provide. To extend their applications in biological setting, the use of low-energy, long wavelength light with high penetration properties is required. Further regulation of the photochemical process by additional stimuli, such as pH, will open the door for construction of highly regulated systems in nanotechnology- and biology-driven applications. Here we report the green light induced [2+2] cycloaddition of a halochromic system based on a styrylquinoxaline moiety, which allows for its photo-reactivity to be switched on and off by adjusting the pH of the system. Critically, the [2+2] photocycloaddition can be activated by green light (λ up to 550 nm), which is the longest wavelength employed to date in catalyst-free photocycloadditions in solution. Importantly, the pH-dependence of the photo-reactivity was mapped by constant photon action plots. The action plots further indicate that the choice of solvent strongly impacts the system's photo-reactivity. Indeed, higher conversion and longer activation wavelengths were observed in water compared to acetonitrile under identical reaction conditions. The wider applicability of the system was demonstrated in the crosslinking of an 8-arm PEG to form hydrogels (ca. 1 cm in thickness) with a range of mechanical properties and pH responsiveness, highlighting the potential of the system in materials science.
Light-gated reactions are important tools in soft matter materials design and the biological sciences due to their unique spatial and temporal control over the chemical processes. Critically, by switching the wavelength of irradiation in photo-regulated processes, it is possible to trigger specific reactions in a sequence as well as establish true wavelength orthogonality. This distinct feature has become a key concept in the design of photo-responsive systems. To date, most wavelength-dependent reactions require activation by UV light, which has low penetration characteristics and can be harmful to species in biological environments. Thus, identifying a catalyst—which has low penetration characteristics and can be harmful to wavelength-dependent reactions require activation by UV light, in the design of photo-responsive systems. To date, most processes with a template, via hydrogen-bonding, and the formation of molecular switches in nanotechnology-based applications, For example, the enantiodifferentiating photocycloaddition of PEG-styrylquinoxaline (PEG-SQ) was obtained and a carboxylic acid functionality replacing one phenyl ring of stilbene with quinoxaline, styrylquinoxaline was obtained and a carboxylic acid functionality was introduced as a versatile precursor for the conjugation to water (10 mg mL−1) at 510 nm—a wavelength that has thus far not been reported to induce photocycloadditions in solution. After irradiation, the absorbance at longer wavelengths in the UV/vis spectrum decreases, while new absorbance bands appear close to λ = 250 and 325 nm. Such a change in the UV/vis spectrum is well-known to occur upon cyclobutane ring formation between two alkenes, which decreases the extent of the conjugated system (Fig. 2a). To combine these spectroscopic observations related to the electronic structure changes with the macromolecular ligation

Results

Design and [2+2] cycloaddition of styrylquinoxaline. The judicious design of the molecular architecture is key to accomplishing red-shifted reactivity in [2+2] photocycloadditions. By replacing one phenyl ring of stilbene with quinoxaline, styrylquinoxaline was obtained and a carboxylic acid functionality was introduced as a versatile precursor for the conjugation to polymers (see Supplementary Fig. 17). The chromophore was subsequently attached to a poly(ethylene glycol) (PEG) mono methyl ether via carbodiimide coupling, affording PEG-SQ as shown in Fig. 1. PEG was selected due to its solubility in a wide range of solvents—and its wide application in biomaterials design. The absorption of PEG-SQ is significantly red-shifted compared to stilbene as well as all alkene derivatives that can undergo [2+2] photocycloadditions reported to date. To investigate the photo-reactivity of the styrylquinoxaline moiety, 1H NMR, UV/vis, SEC and SEC-MS analyses were performed before and after irradiation of PEG-SQ solutions in water (10 mg mL−1) at 510 nm—a wavelength that has thus far not been reported to induce photocycloadditions in solution (Fig. 2, also see Supplementary Figs. 5 and 23). After irradiation, the absorbance at longer wavelengths in the UV/vis spectrum decreases, while new absorbance bands appear close to λ = 250 and 325 nm. Such a change in the UV/vis spectrum is well-known to occur upon cyclobutane ring formation between two alkenes, which decreases the extent of the conjugated system (Fig. 2a).

To combine these spectroscopic observations related to the electronic structure changes with the macromolecular ligation

![Fig. 1 Schematic representation of the proposed reaction mechanism. [2+2] Photocycloaddition of PEG-styrylquinoxaline (PEG-SQ).](image)
reactions, SEC traces of PEG-SQ before and after irradiation at 510 nm with 9.29×10^{22} photons were recorded (Fig. 2b). After irradiation, a distribution ($M_n = 7100$ g mol$^{-1}$) at approximately double the initial molecular weight ($M_n = 3200$ g mol$^{-1}$) can be observed, while the intensity of the initial molecular weight distribution (PEG-SQ) decreased.

To confirm the [2+2] cycloadduct formation on the molecular level, SEC hyphenated to high resolution mass spectrometry was carried out. The SEC trace of PEG-SQ exhibits only one peak at 17.7 min (see Supplementary Fig. 23), while the SEC trace after irradiation displays the dimer peak of PEG-SQ ((PEG-SQ)$_2$) at 16.3 min—as well as a small amount of unreacted PEG-SQ with a peak at 17.7 min (Fig. 2c). The mass spectrum obtained at 16.3 min of SEC elution time displays multiple patterns of the PEG repeating units with a difference of $m/z = 22.013$, equal to the molecular weight of one PEG repeating unit. The simulated isotopic patterns of (PEG-SQ)$_2$ overlap with the experimentally obtained m/z values, confirming the structure of the photocycloaddition product.

Wavelength and pH-dependent reactivity studies. After confirming the [2+2] cycloadduct formation, the wavelength-dependent reactivity was investigated. Since a previous study...
indicated that solvent effects can alter the reactivity of [2+2] photocycloadditions, the conversion of PEG-SQ to (PEG-SQ)2 was monitored in water and in acetonitrile using the same concentration (10 mg mL⁻¹) and number of photons (1.23 × 10²²) for each sample. A tunable laser setup was used as a monochromatic light source, and all samples were irradiated with the same number of photons at different wavelengths to establish the wavelength-dependent conversion as a so-called ‘action plot’ (Fig. 3a). We earlier reported that the wavelength-dependent reactivity does not necessarily align with the absorption spectra of the employed chromophores. The same trend was observed here for PEG-SQ. Although very little absorption was observed close to 450 nm, the conversion up to 450 nm is close to quantitative in both solvents after irradiation with 1.23 × 10²² photons, albeit slightly higher in water (97.0%). Remarkably, above 450 nm the reactivity difference in water and in acetonitrile significantly increases. The conversion in water at 470 nm is very close to its maximum, while the conversion in acetonitrile is close to 55.5%. The SEC data explicitly show the conversion difference in water and in acetonitrile after irradiation at 470 nm with the same number of photons (1.23 × 10²²).

The protonation of the quinoxaline nitrogens (see Supplementary Fig. 1), the UV/vis spectrum obtained at pH 2 shows a significant bathochromic absorbance shift resulting in a red colored solution (Fig. 4a, also see Supplementary Figs. 2 and 3). Each solution was irradiated with the same wavelength (510 nm) and identical number of photons to observe the change in reactivity.SEC data indicate that at acidic levels (pH 2) the reactivity decreases significantly, whereas it is not affected at higher pH values (pH > 2) (Fig. 4b). As a consequence, the halochromic properties of the styrylquinoxaline unit appear to translate directly into its reactivity, marking it as the first example of a photochemical ligation that can be directly tuned by switching the pH.

Hydrogel studies. To demonstrate the utility of our photocycloaddition design in material science, we synthesized an 8-arm (PEG-SQ)₈ with a molecular weight of 20,000 g mol⁻¹ via amide formation, and examined its crosslinking in aqueous solution (Fig. 5a) under irradiation with light in the same wavelength range (400–510 nm) investigated on linear PEG-SQ. Rheological data show a rapid increase in the storage modulus (G') value upon irradiation with light (Fig. 5b), indicative of the
formation of a crosslinked network. Under the same irradiation intensity $I = 20 \text{ mW cm}^{-2}$, the gelation rate is highly dependent on the wavelength of light with $\lambda = 420$ and 455 nm being the most efficient, providing complete gelation in 10 min (see Supplementary Fig. 8). This result is strongly correlated with the action plot data (Fig. 3a), highlighting the importance of the action plot study in understanding the photo-reactivity of the photochemical reaction, confirming that UV/vis absorbance of the chromophore may not be indicative of the reactivity of its associated photochemical reaction system^{32,44}. Of note, light at $\lambda = 365$ nm also triggered gelation, however, at a very slow rate. This is due to the competing cycloreversion under UV light irradiation, as suggested by data from linear PEG-SQ, where a sample was irradiated at 470 nm and 360 nm subsequently and the change in molecular weight was monitored via SEC (see Supplementary Fig. 6). After irradiation at 360 nm, an increase in the intensity of the non-dimerized PEG-SQ peak was observed, which is indicative of a competing reverse reaction. Furthermore, acidic pH significantly affected the crosslinking of (PEG-SQ)$_8$ with pH 4 slowing down the gelation rate and fully suppressing the crosslinking at pH 1 (Fig. 5c). Importantly, the photo-reactivity was restored when pH was switched back to neutral or basic (refer to the Supplementary videos), demonstrating the reversibility of using a pH switch in the photo-induced cyclodimerization process.

Taking advantage of the high solubility of the SQ end group, we attempted to crosslink the polymer solutions at different concentration ($c = 1$–10 mM) to obtain gels with a range of physical properties. We observed an exponential increase in the stiffness by increasing the polymer concentration, with the modulus values varying from 0.5 kPa to 40 kPa (Fig. 5d). These values are similar to the moduli reported in 8-arm PEG-based hydrogels prepared by photocycloaddition-driven crosslinking^{48}.

Beer-Lambert’ law dictates that the rate of photocycloaddition has an inverse exponential relationship with regard to the competitive absorption of the product^{49}. As seen from Fig. 2a, the dimer product displayed an absorbance in the 350–450 nm region. Thus, the photocycloaddition process can be significantly affected in thick and static samples due to the competitive absorption of the dimer product. Indeed, when the polymer solution ($c = 5$ mM) having thicknesses of ca. 1 cm was irradiated with light at $\lambda = 405$ nm or 420 nm, only a thin layer of gel (thickness ≤ 0.2 cm) was formed after 1 h of irradiation (Fig. 6). More efficient gelation across the entire sample depth was observed when the polymer solution was irradiated with light at $\lambda \geq 455$ nm, and a gel with thickness of 1 cm was formed under green light ($\lambda = 455$) illumination. This is a significant improvement of sample size for hydrogel fabrication via catalyst-free photocycloaddition, compared to a thus far reported thickness of ≤ 0.1 cm for curing with UV light^{50–52} or short wavelength blue light-initiated crosslinking^{30,32,36}. This result emphasizes the advantage of longer wavelength activation of photochemical system with regard to penetration depth and circumventing competitive absorption of the resultant photo-adduct.

To investigate the suitability of the introduced visible light-triggered coupling in biomaterials engineering, we attempted to crosslink 8-arm (PEG-SQ)$_8$ solutions ($c = 5$ mM) containing mouse fibroblasts (L929 cell line) under irradiation of green light at $\lambda = 505$ nm and $I = 20 \text{ mW cm}^{-2}$ (Fig. 7). Live/dead staining of the cell-laden hydrogels showed very high cell viability...
(ca. 90%) after 1 day of encapsulation, indicating that the crosslinking process is non-toxic to fibroblasts. Notably, the cells remained viable (viability ≥80%) after 3 days of 3D culture inside the hydrogel substrate. This viability is high considering PEG is non-fouling toward cells in general, and high rates of fibroblasts cell death have been reported when they are encapsulated in PEG-based hydrogels for more than 24 h53,54.

Discussion

We introduce a halochromic species combining photo-induced [2+2] cycloadditions with a pH switch to exercise fine control over photo-reactivity. With this system, it is possible to trigger a [2+2] photocycloaddition with green light (λ < 550 nm)—the longest activation wavelength so far employed in catalyst-free photocycloaddition. The wavelength-dependent reactivity was monitored in different solvents, revealing different wavelength-dependent reactivities and highlighting the importance of interactions between solvent and chromophore. Furthermore, we evidence that the photo-reactivity can be tuned by the pH, particularly, at acidic pH it is possible to switch the reactivity off. Finally, we demonstrate the applicability of the system by the selective formation of hydrogels with different mechanical properties and explicitly show that green light allows for higher penetration depths, enabling the fabrication of thicker hydrogels. We submit that applications of the developed photoligation system can be readily extended to 3D laser lithography, drug delivery, and pharmacology. In the context of cell biology, our system can potentially be employed in cell-related studies, where pH-dependent cellular responses need to be mapped. Furthermore, the utility of initiating a photoligation in a higher wavelength regime and simultaneously tuning its reactivity with an orthogonal pH switch is a critical step toward molecular surgery, altering selected parts of (macro)molecules while leaving others untouched.

Methods

Synthetic procedures. Detailed synthetic procedures are described in the Supplementary Information and are accompanied with reaction schemes and NMR characterizations figures.

Dimerization of PEG-SQ and calculation of action plots. The incident light used for laser experiments was a Coherent Opolette 355 tunable OPO operated at 410–500 nm with a full width half maximum of 7 ns and a repetition rate of 20 Hz. The emitted pulse, which has a flat-top spatial profile, was expanded to 6 mm diameter using focusing lenses and directed upwards using a prism. The beam was then centered on a glass laser vial which is positioned in a 6 mm diameter slot in a temperature-controlled sample holder. The energy transmitted through the sample holder was measured using a Coherent Energy Max PC power meter. PEG-SQ, (1 mg) was dissolved in 0.1 mL of Acetonitrile or water in laser vials, the vials were crimped airtight and degassed for 5 min applying Argon. Each solution was irradiated at λ = 410–530 nm with 1.23 × 1022 photons. The conversion of the dimerization reactions was calculated from the SEC data (Supplementary Fig. 4) by calculating the integral of the peaks. Detailed information on the photochemical procedures as well as the scheme of laser set-up can be found in the Supplementary Information section.

Rheology studies. Rheological experiments were studied using an Anton Paar Physica rheometer with a plate-plate configuration. The lower plate is made of...
quartz and the upper plate is made of stainless steel with a diameter of 15 mm. A liquid light guide, which was connected to the WoolEde light source, was equipped below the quartz plate. In a typical experiment, 50 µL of a solution of P3 was placed on the lower plate and the upper plate was brought to a measurement gap of 0.2 mm. A layer of paraffin oil was applied on the edge of the stainless-steel plate to prevent dehydration of the hydrogel and the test was started by applying a 1% strain with the frequency of 0.1 Hz on the sample.

Hydrogel swelling. To study the effect of pH on hydrogel swelling, a polymer solution (c = 7.5 mM, 200 µL) in a 5 mL sealed vial was irradiated with light at 455 nm for 3 h. The resultant solid gel was extracted from the vial and placed in excess PBS solution pH 7.4.

1. **Aubert, S., Bezagu, M., Spivey, A. C. & Arseniyadis, S.** Spatial and temporal control of dynamic materials. *J. Am. Chem. Soc.* 141, 12187–12191 (2019).

2. **Frisch, H., Bloesser, P. R. & Barner-Kowollik, C.** Controlling chain coupling and single-chain ligand for two colours of visible light. Angew. Chem. Int Ed. Engl. 58, 3064–3069 (2019).

3. **Hammer, J. R. et al.** Tunable visible and near infrared photoswitches. *J. Am. Chem. Soc.* 138, 13960–13966 (2016).

4. **Menzel, J. P. et al.** Light-controlled orthogonal covalent bond formation at two different wavelengths. Angew. Chem. Int Ed. Engl. 58, 7470–7474 (2019).

5. **Perotti, S., Ravelli, D. & Fagnoni, M.** Wavelength dependence and wavelength selectivity in photochemical reactions. *Photochem Photobiol. Sci.* 18, 2094–2101 (2019).

6. **Wagenknecht, H. A.** Unraveling the pathways to UVA-induced DNA photodamage: (6–4) photoadduct as a potential "Trojan Horse". *Chemphyschem* 14, 3197–3198 (2013).

7. **Offenbacher, J. T. et al.** Controlling polymer chemistry: the visible light challenge. *Chemistry 25*, 3700–3709 (2019).

8. **Bleger, D. & Hecht, S.** Visible-light-activated molecular switches. Angew. Chem. Int Ed. Engl. 54, 11338–11349 (2015).

9. **Hippler, M. et al.** Controlling the shape of 3D microstructures by temperature and light. *Nat. Commun.* 10, 232 (2019).

10. **Jochum, F. D., Theato, P.** Temperature- and light-responsive smart polymer materials. *Chem. Soc. Rev.* 42, 7468–7483 (2013).

11. **Dong, M. et al.** Near-infrared photoswitching of azobenzenes under physiological conditions. *J. Am. Chem. Soc.* 139, 13483–13486 (2017).

12. **Frisch, H., Marschner, D. E., Goldmann, A. S. & Barner-Kowollik, C.** Controlling chain coupling and de-coupling of polymer chains via reversible [2+2] photocycloaddition of styrylpyrene. *Adv. Funct. Mater.* 29, 12201 (2019).

13. **Maturi, M. M. et al.** Enantioselective [4+4] photocycloaddition of 2-anthracenecarboxylic acid using a chiral N-(2-hydroxymethyl-4-pyrrolidinyl) benzamide template. *Org. Lett.* 8, 6051–6054 (2006).

14. **Kawamani, Y. et al.** Supramolecular photocorrection with a higher-order chromophore: highly accelerated exquisitely head-to-head photocycloaddimerization of 2-anthracenecarboxylic acid via 2,2′-complexation with prolinol. *J. Am. Chem. Soc.* 138, 12187–12191 (2016).

15. **Maturi, M. M. et al.** Enantioselective [4+4] photocycloaddimerization of anthracene-2,6-dicarboxylic acid mediated by a C2-symmetric chiral template. *Chem. Commun. (Camb).* 52, 1032–1035 (2016).

16. **Nishino, H. et al.** Absolute asymmetric photo reactions of aliphatic amino acids by circularly polarized synchrotron radiation: critically pH-dependent photobehavior. *J. Am. Chem. Soc.* 124, 11618–11627 (2002).

17. **Nishino, H. et al.** Mechanism of pH-dependent photoisomerization of aliphatic amino acids and enantiomeric enrichment of racemic leucine by circularly polarized light. *Org. Lett.* 3, 921–924 (2001).

18. **Truong, V. X., Li, F., Ercole, F. & Forsythe, J. S.** Wavelength-selective coupling and decoupling of polymer chains via reversible [2+2] photocycloaddition of styrylpyrene for construction of cyto-compatible photodynamic hydrogels. *ACS Macro Lett.* 7, 464–469 (2018).

19. **Doi, T., Kawai, H., Murayama, K., Kashiha, H. & Asanuma, H.** Visible-light-triggered cross-linking of DNA duplexes by reversible [2+2] photocycloaddition of styrylpyrene. *Chemistry 22*, 10533–10538 (2016).

20. **Manscher, D. E. et al.** Visible light [2+2] Cycloclydimerization for reversible polymer ligation. *Macromolecules 51*, 3802–3807 (2018).

21. **Schrab, M., Gray, H. & Hampp, N.** Selective [2+2]-cycloaddition in methacrylic stilbene polymers without interference from E2/Z-isomerization. *Macromolecules 44*, 8755–8762 (2011).

22. **Fedorova, O. A. et al.** The regioselective [2+2] photocycloaddition reaction of 2-(3,4-dimethoxy styryl)quinoline in solution. *Photochem Photobiol Sci.* 18, 2208–2215 (2019).

23. **Murayama, K., Yamano, Y. & Asanuma, H.** 8-Pyrenylvinyl adenine controls reversible duplex formation between serinol nucleic acid and RNA by [2+2] Photo cycloaddition. *J. Am. Chem. Soc.* 141, 9485–9489 (2019).

24. **Kalayci, K., Frisch, H., Barner-Kowollik, C. & Truong, V. X.** Wavelength-dependent stiffening of hydrogel matrices via redshifted [2+2] photocycloadditions. *Adv. Funct. Mater.* 30, 1908171 (2020).

25. **Bilas, S. et al.** Access to disparate solid matter materials by curing with two colors of light. *Adv. Mater.* 31, e1807288 (2019).

26. **Lange, R. Z., Hofer, G., Weber, T. & Schlüter, A. D.** A two-dimensional polymer synthesized through a topological [2+2]-cycloaddition on the Multigram Scale. *J. Am. Chem. Soc.* 139, 2053–2057 (2017).

27. **Truong, V. X., Li, F. & Forsythe, J. S.** Versatile biorthogonal hydrogel platform by catalyst-free visible light initiated photocatalysis of anthracene. *ACS Macro Lett.* 6, 657–662 (2017).

28. **Pfeifer, B. T., Wiedbrauk, S. & Barner-Kowollik, C.** Contempory catalyst-free photocatalysis in synthetic macromolecular science. *Prog. Polym. Sci.* 100, 101183 (2020).
41. Offenloch, J. T. et al. Contemporary Photoligation the visible light challenge. *Chem. Eur. J.* 25, 3700–3709 (2019).
42. Marin, L., Lutsen, L., Vanderzande, D. & Maes, W. Quinoxaline derivatives with broadened absorption patterns. *Org. Biomol. Chem.* 11, 5866–5876 (2013).
43. Gruendling, T., Guilhaus, M. & Barner-Kowollik, C. Quantitative LC-MS of polymers: determining accurate molecular weight distributions by combined size exclusion chromatography and electrospray mass spectrometry with maximum entropy data processing. *Anal. Chem.* 80, 6915–6927 (2008).
44. Fast, D. E. et al. Wavelength-dependent photochemistry of oxime ester. *J. Am. Chem. Soc.* 139, 15812–15820 (2017).
45. Menzel, J. P. et al. Wavelength dependence of light-induced cycloadditions. *Angew. Chem. Int. Ed. Engl.* 58, 9912–9916 (2019).
46. Black, H. T., Pelse, I., Wolfe, R. M. & Reynolds, J. R. Halochromism and protonation-induced assembly of a benzo[1,10]indolo[2,3-b]quinoxaline derivative. *Chem. Commun. (Camb.)* 52, 12877–12880 (2016).
47. Park, J. S., Tran, T. T., Kim, J. & Sessler, J. L. Electrochemical amphotericity of quinoxaline-tetrathiafulvalene-pyrroles. *Chem. Commun. (Camb.)* 54, 4553–4556 (2018).
48. Gunay, K. A. et al. PEG-anthracene hydrogels as an on-demand stiffening matrix to study mechanobiology. *Angew. Chem. Int. Ed. Engl.* 58, 9912–9916 (2019).
49. Fairbanks, B. D., Schwartz, M. P., Bowman, C. N. & Anseth, K. S. Photoinitiator polymerization of PEG-diacylate with lithium phenyl-2,4,6-trimethylbenzylphosphinate: polymerization rate and cytocompatibility. *Biomaterials* 30, 6702–6707 (2009).
50. Beninatto, R. et al. Photocrosslinked hydrogels from coumarin derivatives of hyaluronic acid for tissue engineering applications. *Mater. Sci. Eng. C. Mater. Biol. Appl.* 96, 625–634 (2019).
51. Gattas-Asfura, K. M. et al. Nitrocinnamate-functionalized gelatin: synthesis and “smart” hydrogel formation via photo-cross-linking. *Biomacromolecules* 6, 1503–1509 (2005).
52. Wells, L. A., Brook, M. A. & Sheardown, H. Generic, anthracene-based hydrogel clicklinkers for photo-controllable drug delivery. *Macromol. Biosci.* 11, 988–998 (2011).
53. Truong, V. X., Donderwinkel, I. & Frith, J. E. Bioorthogonal hydrogels by thiol-halide click crosslinking with fast gelation time and tunable stability in aqueous media. *J. Polym. Sci. Part A: Polym. Chem.* 57, 1872–1876 (2019).
54. Truong, V. X., Tsang, K. M. & Forsythe, J. S. Nonswelling click-cross-linked gelatin and PEG hydrogels with tunable properties using pluronic linkers. *Biomacromolecules* 18, 757–766 (2017).

Acknowledgements
C.B.-K. acknowledges the Australian Research Council (ARC) for funding in the context of a Laureate Fellowship enabling his photochemical research program, an ARC Discovery Grant focused on red-shifting photochemical reaction systems as well as continued key support from the Queensland University of Technology (QUT). The size exclusion chromatography hyphenated with mass spectrometry data reported herein were obtained at the Central Analytical Research Facility (CARF) operated by the Institute for Future Environments (IFE).

Author contributions
All authors contributed to discussion and evaluation of the results at all stages. K.K., H.F., and V.X.T. conceived and designed the experiments. H.F., V.X.T., and C.B.-K. motivated and supervised the research project. K.K. and V.X.T. performed the experiments and prepared all figures. K.K. and V.X.T. wrote the paper in close collaboration with H.F. and C.B.-K.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41467-020-18057-9.

Correspondence and requests for materials should be addressed to H.F., V.X.T. or C.B.-K.

Peer review information *Nature Communications* thanks the anonymous reviewers for their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2020