Inhibition and induction of CYP enzymes in humans: an update

Jukka Hakkola1,2,3 · Janne Hukkanen2,4 · Miia Turpeinen1,5 · Olavi Pelkonen1

Received: 3 September 2020 / Accepted: 12 October 2020 / Published online: 27 October 2020
© The Author(s) 2020

Abstract
The cytochrome P450 (CYP) enzyme family is the most important enzyme system catalyzing the phase 1 metabolism of pharmaceuticals and other xenobiotics such as herbal remedies and toxic compounds in the environment. The inhibition and induction of CYPs are major mechanisms causing pharmacokinetic drug–drug interactions. This review presents a comprehensive update on the inhibitors and inducers of the specific CYP enzymes in humans. The focus is on the more recent human in vitro and in vivo findings since the publication of our previous review on this topic in 2008. In addition to the general presentation of inhibitory drugs and inducers of human CYP enzymes by drugs, herbal remedies, and toxic compounds, an in-depth view on tyrosine-kinase inhibitors and antiretroviral HIV medications as victims and perpetrators of drug–drug interactions is provided as examples of the current trends in the field. Also, a concise overview of the mechanisms of CYP induction is presented to aid the understanding of the induction phenomena.

Keywords Cytochrome P450 · Inhibition · Induction · Drug–drug interaction · Herbal remedies · Environmental toxicants

Introduction
Inhibition and induction of cytochrome P450 (CYP) enzymes are central mechanisms, resulting in clinically significant drug–drug interactions (DDI). Today, characteristics and regulatory factors of various CYP enzymes have been elucidated to a considerable extent (Manikandan and Nagini 2018; Zanger and Schwab 2013). Detailed mechanisms of inhibition have been uncovered by studies on isolated or expressed enzymes and tissue fractions. Nuclear receptors as important xenobiotic-sensing transcription factors and as regulators of CYP induction have been elucidated (Wang et al. 2012).

Prediction on the basis of in vitro studies is now an integral part of early drug development (Lu and Di 2020) as well as of the medicines agency guidelines (EMA, FDA, and MHLW/PMDA). Computational models such as physiologically based pharmacokinetic models are now being used for quantitative prediction of in vivo interactions from in vitro experiments (Kato 2020; Min and Bae 2017), and these models are used extensively by drug developers before and during clinical trials. After preclinical studies, there is an ultimate need of human in vivo studies and observations on inhibition and induction. Obviously, such information is absolutely needed for clinical drug treatment to prevent possible adverse outcomes and ensure safety.

In addition to drugs, humans are exposed to a large number of other chemical substances through diet, use of cosmetics, in workplaces, by environmental pollutants, etc., and many of these chemicals are in vitro inhibitors or inducers of CYP enzymes but compared to pharmaceutics often poorly characterized. The risk posed by these chemicals is difficult or impossible to assess without reliable in vitro–in vivo extrapolation, which is only possible by having proven in vivo inhibitors or inducers (and non-effective substances) as reference items.
With these premises in mind, and pointing to the profound developments in drug research and regulation (see the guest editorial, Pelkonen et al., in this issue), we have collected and updated the information about human in vivo inhibitors and inducers, which would constitute a curated compilation for the use as a reference for other in-depth studies. The main focus is on data published after 2008, and in many instances, we point to our earlier review for references before 2008 (Pelkonen et al. 2008).

Progress since 2008

We previously reviewed CYP inhibition and induction 12 years ago (Pelkonen et al. 2008). In 2008, we stated that, because multiplicity and variability of CYP enzymes are an important complicating factor in pharmacological and toxicological research and regulation, and predictive and pre-empting measures are a top priority, and thus, the development of predictive in vitro approaches is necessary and should be based on the firm background of basic research on the phenomena of inhibition and induction and their underlying mechanisms. Consequently, we focused on covering both inhibition and induction of CYP enzymes, always keeping in mind the basic mechanisms on which to build predictive and preventive in vitro approaches to be validated by in vivo studies. These principles still apply today. Nevertheless, since 2008, further progress has been made in the research of CYP inhibition and induction and the application of the knowledge. Furthermore, very important development has happened in the characteristics of new drugs.

New pharmaceuticals since 2008

It is obvious that the spectrum of new drugs has changed since 2008 (see the guest editorial Pelkonen et al. in this issue and (de la Torre and Albericio 2020; Yu et al. 2019)). Biological drugs, proteins, and peptides or oligonucleotides occupy nowadays a sizable share of new drugs (see Internet sites of major drug agencies: https://www.accessdata.fda.gov/scripts/cder/daf/; https://www.ema.europa.eu/en/medicines; https://www.pmda.go.jp/english/review-services/reviews/approved-information/drugs/0002.html) and their role in DDIs in general is supposed to be in the pharmacodynamics sphere; specifically, CYP-associated DDIs are not expected. Consequently, small-molecular new chemical entities represent a smaller contribution into the new drugs, and these are more thoroughly studied during the developmental phases with in vitro tools and during clinical trials with focus on specific enzymes and transporters depicted by the in vitro information. The efficiency of the in vitro and in vivo tools as formulated in guidance documents from major authorities (EMA 2012, FDA 2020, MHLW/PMDA 2018) is demonstrated by the fact that there have been no major surprises leading to drug withdrawals among novel drugs during the last 10–15 years. Advancements in the pharmacokinetic research include the recognition that many less-studied non-CYP enzymes and especially several transporters have emerged as interaction targets.

Shifts in approved drug classes have led to the situation that anticancer and antiviral (HIV) drugs are major molecules in CYP-associated DDIs. These shifts are probably behind the observation that CYP3A4 substrates form a majority of the drugs suspected or shown as causing CYP-associated interactions. The observation that there seem to be only a few inducers among newly approved drugs may be explained by the thrust in the development of small molecule drugs towards more potent and specific molecules. This has led to a relative decrease of clinical doses, which often are too small to cause a significant CYP induction.

Tyrosine (protein) kinase inhibitors as an example of CYP-mediated DDIs

Tyrosine kinase inhibitors (TKIs) form a relatively novel class of (mainly) anticancer agents, which has been expanding tremendously over the last 2 decades. Because of their “precision” targets, TKIs offer a more effective and safer option in many cancers compared to the cytostatic agents. Because their pharmacodynamic targets are a diverse, even if functionally related, set of enzymes, it is not surprising that their chemical structures as well as their metabolism and general pharmacokinetic characteristics are rather variable. However, TKIs actually are well represented in DDI sections of reference books and reviews, especially regarding their metabolic features and transporter involvements [see, e.g., (Gay et al. 2017; Hussaarts et al. 2019; Jackson et al. 2018)]. In this section, the TKI-associated CYP-DDIs are presented as an example of current concerns of clinically important CYP interactions.

Drugs selected

The drugs covered here include protein or tyrosine-kinase inhibitors (TKIs) approved by EMA and/or FDA until 2018. There are a number of TKIs that have been discarded in the last rounds of development, but this source of useful

1 EMA 2012, https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-investigation-drug-interactions-revision-1_en.pdf; FDA 2020, https://www.fda.gov/media/134582/download and https://www.fda.gov/media/134581/download; MHLW/PMDA 2018, https://www.pmda.go.jp/files/000228122.pdf.
compounds remains largely untapped for the analysis of DDIs. However, a scan of literature and physician’s desk references demonstrate that many of the approved TKIs are predominantly CYP3A4 substrates and many of them display a potential to inhibit or induce CYP enzymes. Consequently, it is a good opportunity to look at various interaction characteristics of these TKIs for the purposes of this review. Some salient features are collected in Table 1.

Key publications

An important element in research of TKIs is that the crucial development leading to authorization has occurred at the time when in vitro and in vivo studies for predicting and estimating CYP interactions have been refined to the extent that there has been a possibility for fact-based go/no-go decisions and that there are tools to estimate the contribution of particular CYP enzymes and their predictable interaction consequences. On the other hand, much of the available published material is of regulatory nature, i.e., drug monographs in national formularies, and thus detailed experimental and clinical results may not be available for open scrutiny. Thus, we have been mostly dependent on material that is not publicly peer-reviewed (naturally regulators have had access to original studies), but on the other hand, studies providing the basis for official drug monographs are expected to be of high quality. Furthermore, many of them have appeared in the public literature later on. Otherwise, publicly available studies are often rather sporadic regarding individual drugs, but, nevertheless, we have referred to them when they provide additional or confirmatory information.

TKI as a victim drug

As can be seen in Table 1, a large majority of TKIs, 41 out of 43 drugs, is metabolized by CYP3A4/5 at least to a certain extent. Other CYP enzymes, such as CYP1A2, CYP2B6, CYP2C, and CYP2D6, contribute to the metabolism of some TKIs, but only binimetinib is metabolized to a small extent by CYP1A2 and CYP2C9 and not at all by CYP3A4/5. It is perhaps appropriate to note that the exact contribution of any single CYP is often rather difficult to quantitate precisely, but usually it is possible to state, whether CYP3A4 is responsible for a major or minor share of the metabolism. In vitro studies with human liver preparations or human hepatocytes are often crucial in this respect. In any case, it is not often possible to find in regulatory filings important parameters to describe enzyme kinetics, although some information may be found in the public literature.

The extent and relative isoform contribution of CYP-associated metabolism of individual TKIs is one of the crucial factors leading to clinically significant DDI potential. As the anticancer effect is of paramount interest for the developer of the compound, the clinician, and ultimately the patient, some risks of off-target effects including DDIs are accepted that would not be deemed acceptable when developing drugs for other less serious indications.

In DDI clinical studies, it is customary to use inhibitors and inducers which are known to have a strong effect. In most cases, rifampicin is used as an inducer and ketoconazole or itraconazole as an inhibitor. However, the strength of effect of a perpetrator is dependent on the metabolic characteristics of a victim, i.e., affinity to the principal enzyme, relative contribution of a specific enzyme to overall metabolism or PK behavior of a drug, and alternative enzymatic and excretory clearance routes. Consequently, the interaction outcome of a “strong” perpetrator may be strong, moderate, or weak, dependent on a specific victim. The intensity of inhibition or induction is defined by the FDA on the basis of the AUC change (FDA 2020). Strong, moderate, and weak inhibitors give rise to an increase in AUC of a victim at least fivefold, between two and fivefold, and 1.25- to 2-fold, respectively. For induction, corresponding AUC classes are an AUC decrease by > 80%, between 50 and 80% and between 20 and 50%. As stated above, even a “strong” inhibitor or inducer could result in strong, moderate, or weak effect, dependent on characteristics of a victim. Obviously, this classification provides only a rough yardstick for assessing the likelihood or clinical significance of an interaction and many other factors such as concentration–effect relationships of a victim may be more significant.

Regarding 43 TKI drugs in Table 1, the metabolism of 30 of them is strongly or moderately and seven weakly inhibited and/or induced by “strong” CYP3A4 perpetrators and only five are classified as having no CYP3A4-associated DDIs as victims. Among these “negatives”, CYP3A4 plays either a minor or no role in elimination: afatinib is excreted mainly unchanged, binimetinib is metabolized by hydrolysis, lenvatinib is predominantly excreted unchanged and metabolized by aldehyde oxidase, nintedanib is eliminated by P-glycoprotein, and vismodegib is eliminated only to a minor extent by CYPs. It is fair to conclude that a majority of clinically used TKIs are CYP3A4 substrates, although the contribution of CYP3A4 to the overall elimination may be decreased by other metabolic or transporter routes [see, e.g., (Fenner et al. 2009; Yu et al. 2017a, b, 2019)].

TKIs as CYP inhibitors

Most TKIs in Table 1 have been screened for inhibitory potential using in vitro human liver microsomal assays consisting of major CYP activities from CYP1A2 to CYP3A4/5. In seven cases, no inhibition in vitro was detected, whereas
Table 1 Tyrosine (protein) kinase inhibitor anticancer drugs as CYP substrates, inhibitors, and inducers

Anticancer Drug	Role of CYPs in TKI elimination	Perpetrators in vivo – inhibitors and inducers	TKI as a CYP substrate (perpetrator)	CYPs inhibited in vitro	Victims studied in vivo	CYPs studied in vitro and in vivo	References
Abemaciclib (2017)	M: 3A4 3 act. met.	clarithromycin (3A4 inh) - moderate	NR (transporters studied)	NR	in vitro 1A2, 2B6, 3A4 no induction (mRNAs) NR in vivo	(Posada et al. 2020; J. Yu et al. 2019)	
Afatinib (2013)	E: M negligible	(PGP inhibitors and inducers moderate)	NR (PGP studied)	NR (not applicable)	NR in vitro or in vivo	(Wind et al. 2017)	
Alectinib (2015)	M: 3A4 1 act.met.	posaconazole (3A4 inh) and rifampicin - no effect	3A4, 2C8 weak inhibition	midazolam (3A4), repaglinide (2C8) - no inhibition	in vitro no or weak induction NR in vivo	(Cleary et al. 2018; Hofman et al. 2019; Morcos et al. 2017)	
Axitinib (2012)	M: 3A4, (1A2, 2C19)	ketoconazole – moderate	1A2, 2C8 weak inhibition	paclitaxel (2C8) no inhibition	no induction in vitro NR in vivo	(Pithavala et al. 2010; Pithavala et al. 2012)	
Binimetinib (2018)	M: UGT1A1 (>50%), (1A2, 2C19 minor) 2 act.met.	NR in vitro and in vivo	1A2, 2C9, 2D6, 3A no inhibition	midazolam (3A4) – no effect	NR in vitro or in vivo	[EMA, FDA]	
Bosutinib (2012)	M: 3A4	ketoconazole and rifampicin – strong	2C8 weak inhibition	NR in vivo	no induction in vitro NR in vivo	(Abbas et al. 2012; Abbas et al. 2015; Abbas and Hsyu 2016)	
Brigatinib (2017)	M: 2C8, 3A4 act.met.	gemfibrozil (2C8 inh) – no	All major CYPs – no inhibition	NR in vivo	in vitro 3A, 2C induction	(Tugnait et al. 2020)	
Ceritinib (2014)	M: 3A4 (major)	ketoconazole – moderate	3A4 (TDI), 2C9 (weak), 2A6, 2E1 in vitro	NR in vivo	NR in vivo or in vivo	(Cho et al. 2017; D. Zhao et al. 2020)	
Cobimetinib (2015)	M: 3A4, UGT2B7	ketoconazole – weak	in vitro 3A4, 2C8/9/19	rosiglitazone (2C8) – no effect	in vitro, 1A1 induction, no induction others NR in vivo	(Nguyen et al. 2015)	
Crizotinib (2012)	M: 3A4	ketoconazole – moderate	3A4, 2B6 in vitro	midazolam (3A4), dextromethorphan (2D6) – no effect	in vitro 1A2, 2B6, 3A4 no induction NR in vivo	(Budha et al. 2016)	
Dasatinib (2006)	M: 3A4 (FMO3, UGT), act.met. (5%)	ketoconazole and rifampicin – strong	3A4, 2B6 in vitro	midazolam (3A4) – moderate effect	no induction in vitro NR in vivo	(van Leeuwen, Roelof W. F. et al. 2014)	
Encorafenib (2018)	M: 3A4 (major), 2C19, 2D6 (minor)	posaconazole (3A4) – moderate	3A4 (TDI), 1A2, 2B6, 2C8/9	NR in vivo	in vitro 2B6, 2C9, 2A4 no induction in vivo autoinduction	[EMA, FDA]	
Erlotinib (2004)	M: 3A4, (1A2, 1A1)	ketoconazole, ciprofloxacin (3A4, 1A2) – moderate	in vitro 3A4, (1A1, 2C9)	NR in vivo	NR in vitro	(Hamilton et al. 2014; Svedberg et al. 2019; van den ...)	
Table 1 (continued)

Drug	M:	CYPs	In vivo	In vitro	Notes
Gefitinib (2015)	3A4, 2D6 partial, act.met. (by 2D6, 14%)	ketoconazole and rifampicin - moderate	in vitro 2C19, 2D6 (weak)	metoprolol (2D6 minor effect)	NR in vitro or in vivo
Gilterminib (2018)	3A4	itraconazole and rifampicin - moderate	NR in vitro	midazolam (3A4) - minor effect	NR in vitro and in vivo
Ibrutinib (2013)	3A4 (2D6 minor), act.met.	ketoconazole and rifampicin - strong	3A4 etc (weak) in vitro	NR in vivo	CYPs (weak in vitro)
Idelalisib (2014)	AO, 3A4, UGT1A4	ketoconazole - weak	3A4, 2C19 - strong effect	midazolam (3A4) - strong effect	2B6, 3A4 in vitro
Imatinib (2001)	3A4 (1A2, 2D6, 2C9, 2C19 minor), act.met. (15% AUC)	ketoconazole - weak	2D6, 3A4, 2C9 in vitro (moderate)	simvastatin (3A4) - strong effect	NR in vitro or in vivo
Ixazomib (2015)	multiple (3A4 <50%, CYP1A2, 2B6, 2D6)	rifampicin - moderate	no effect in vitro	NR in vivo	no effect in vitro
Labatinib (2007)	3A4/5, (2C19, 2C8 minor)	ketoconazole - moderate	3A4, 2C8 in vitro	paclitaxel (2C8) - weak effect	NR in vitro or in vivo
Larotrectinib (2018)	3A4	itraconazole - moderate	in vitro 1A2, 2B6, 2C8/9/19, 2D6, 3A4	midazolam (3A4) - weak effect	NR in vitro and in vivo
Lenvatinib (2015)	3A4, 3A4 (2C8 minor)	ketoconazole and rifampicin - no significant effect	multiple CYPs (3A4, 2C8 etc) in vitro	midazolam (3A4), repaglinide (2C8) - no effect	NR in vitro or in vivo
Lorlatinib (2018)	UGT1A4 (2C6/19, 3A5, UGT1A3, all minor)	itraconazole – weak	in vitro 3A4 (TDI), others no effect	NR in vivo	in vitro 2A6 2B6 for 3A4 autoinduction midazolam (3A4) - moderate effect
Midostaurin (2017)	3A4	ketoconazole and rifampicin –strong	in vitro all major CYPs inhibition	midazolam (3A4) - no effect (study not relevant?)	in vitro induction 1A2, 2B6, 2C, 3A in vivo midazolam – weak
Nilotinib (2007)	3A4 (2C8 minor)	ketoconazole – moderate	3A4, (2C8, 2C9, 2D6 weak) in vitro	midazolam (3A4) – strong effect	in vitro induction 2B6, 2C9 NR in vivo
Nintedanib (2014)	hydrolysis (major), 3A4 (minute)	PGP inhibitors and inducers - medium effects	PGP major	NR in vivo	NR in vitro PGP (major) in vivo
Olaparib (2014)	3A4 (major)	itraconazole – weak	3A4 (TDI)	midazolam (3A4) - weak effect	in vitro 1A2, 2B6, 3A4 no induction
Osimertinib (2015)	3A4 (3A5) 2 act.met.	itraconazole – no effect	3A4 inhibition	NR in vivo	(3A4, 1A2 weak) in vitro
Palbociclib (2015)	3A, SULT2A1	itraconazole – weak	in vitro 3A4 (TDI)	midazolam (3A4) - weak effect	in vitro 1A2, 2B6, 3A4 no induction NR in vivo
Table 1 (continued)

Drug	Mode of action	CYP inhibition	CYP induction	Notes
Pazopanib	M: 3A4 (1A2, 2C8, minor)	ketoconazole - moderate	1A2, 3A4, 2B6, 2C8/9/19, 2D6, and 2E1 in vitro	midazolam (3A4), dextromethorphan (2D6) – weak effect; 3A4 (PXR) in vitro; NR in vivo (Tan et al. 2013)
Ponatinib	M: 3A4 (2C8, 2D6 minor) act.met.	ketoconazole - weak	no CYP inhibition in vitro	NR in vivo; no CYP induction in vitro; NR in vivo (Narasimhan et al. 2013)
Regorafenib	M: 3A4 2 act.met.	ketoconazole and rifampicin – weak effect (act.met.!)	2C8, 2C9, 2B6 (act.met. equal)	midazolam (3A4) – moderate effect; caffeine (1A2) – minimal effect (Sorf et al. 2018; J. Yu et al. 2019)
Ribociclib	M: 3A4	rifampicin – strong	in vitro 3A4 (Tdi), 1A2, 2E1	in vitro no induction; NR in vivo; no CYP induction in vitro; NR in vivo (Shi et al. 2012)
Ruxolitinib	M: 3A4, 2C9 2 act.met. (less than parent)	ketoconazole and rifampicin – weak	no CYP inhibition in vitro	NR in vivo; no CYP induction in vitro; NR in vivo (Sorf et al. 2018; J. Yu et al. 2019)
Sonidegib	M: 3A4	ketoconazole and rifampicin - moderate	in vitro 2B6, 2C9	NR in vivo; no CYP induction in vitro; NR in vivo (J. Yu et al. 2016; Einolf et al. 2017)
Sorafenib	M: 3A4 1 act.met.	rifampicin – weak	inhibition of 2C9, 2C19, 2D6, and 3A4 in vitro	midazolam (3A4), dextromethorphan (2D6), omeprazole (2C19), warfarin (2C9) – no inhibition; no CYP induction (1A2, 3A4) in vitro; NR in vivo (Flaherty et al. 2011; Gangadhar et al. 2011; Reardon et al. 2011)
Sunitinib	M: 3A4 1 act.met.	rifampicin and ketoconazole – weak	all major CYPs no inhibition in vitro	NR in vivo; no CYP induction in vitro; NR in vivo (Bilbao-Meseguer et al. 2015; Sugiyama et al. 2011)
Tivozanib	M: 3A4 (1A1)	rifampicin – weak	in vitro 2B6, 2C8 (weak)	NR in vivo; NR in vitro and in vivo (Cotreau et al. 2015)
Vandetanib	M (<50%): 3A4 (partial)	rifampicin – weak	3A4 no inhibition	no inhibition - midazolam; NR in vitro or in vivo (Indra et al. 2019; Johansson et al. 2014; Martin et al. 2011)
Vemurafenib	E and M: 3A4 (1A2)	rifampicin – moderate	all major CYPs in vitro - 1A2 major	tizanidine and caffeine (1A2) – moderate; 3A4, (2B6) induction in vitro in vivo midazolam (3A4) – weak effect (W. Zhang et al. 2017; W. Zhang et al. 2019)
Vismodegib	E: major M: (minor 2C9, 3A4)	in clinical trials various 2C9 or 3A4 inhibitors or inducers – no or minor effect	2C8, 2C9, 3A4 weak inhibition in vitro	rosiglitazone (2C8) or EE (3A4) - no inhibition; no CYP induction in vitro; NR in vivo (Malhi et al. 2016)

 act.met. active metabolite(s) (if reported or published), PGP P-glycoprotein, NR no results or not reported, TDI time-dependent inhibition

1 E: excretion of a drug as an unchanged parent. M: metabolism—the extent and contributions of CYP isoforms’ other xenobiotic-metabolizing enzymes if known

2 Usually, strong inducers (rifampicin) and inhibitors (ketoconazole, itraconazole) of CYP3A4 were studied. Other perpetrators are assigned with appropriate CYP enzyme. Color code: red, strong effect; orange, moderate effect; light brown, weak/minor effect; green, no (significant) effect; yellow, information in need

3 Major sources drug monographs from FDA, EMA, and FIMEA; the latest uploaded documents were retrieved. Publications in general literature were sought and used for additional evidence for conclusions
for the rest of the drugs, the in vitro classifications ranged from “studied” to “some” or “weak inhibition”, and in a few cases even “moderate or strong inhibitory action”. However, on the basis of the published regulatory text, it is difficult to quantify “weak” or “strong” effect. Often, the regulatory text noted that inhibition was present or non-existent “at clinically relevant concentrations”. In certain cases, in vitro studies were followed by in vivo studies in which CYP-selective probe drugs were employed. For example, with respect to CYP3A4 substrates, inhibition was classified as strong for idelalisib–midazolam, imatinib–simvastatin and nilotinib–midazolam, moderate for crizotinib–midazolam, dasatinib–simvastatin, and ribociclib–midazolam, and weak for larotrectinib–midazolam, palbociclib–midazolam, and pazopanib–midazolam. Regarding CYP2D6 substrates, inhibition was classified as weak in two cases: gefitinib–metoprolol and pazopanib–dextromethorphan. Regarding CYP2C8, lapatinib inhibited weakly paclitaxel elimination, and with CYP1A2, vemurafenib inhibited moderately tizanidine and caffeine elimination. Altogether, it can be concluded that the cases CYP inhibition by TKIs, regarded worthy a warning in the regulatory desk reference, were rather few. However, occasionally, there were warnings that seemed to be based only on in vitro results and/or subsequent physiologically based pharmacokinetic (PBPK) simulations (Yu et al. 2019).

TKIs as CYP inducers

According to the guidelines of major regulatory agencies, potential CYP induction should be studied in human-cultured hepatocytes in vitro or in an analogous cellular system. In most cases, appropriate studies have been performed and the outcome registered in the drug monograph. In 14 cases, no information on in vitro induction studies could be found (in Table 1, these are marked by NR, no results or not reported). No induction of the major inducible CYPs has been found in 14 cases and a clear response emerged in 10 reported. No induction of the major inducible CYPs has been found (in Table 1, these are marked by NR, no results or not reported). Based on this analysis, it can be concluded that TKIs do not often display clinically significant induction potency in humans in vivo.

Active metabolites

At least 13 TKIs have at least one active metabolite. However, there may be several types of active metabolites regarding potential effects and outcomes. Several TKIs have pharmacodynamically active metabolites with a similar, although not necessarily equipotent, pharmacodynamic action as the parent. In some cases, a pharmacodynamically active metabolite may also have CYP-interaction potential. A special case is regorafenib, which has two CYP3A4-associated active metabolites with equal effect compared to the parent. This makes the assessment of interactions quite complex and uncertain. For example, although rifampicin exposure slightly decreased the AUC of the parent compound, it increased the AUC of one active metabolite by 2.6-fold. Thus, it is quite difficult to estimate the net pharmacodynamic effect.

Another mechanism is the so-called time-dependent inhibition (TDI), often due to the tight or irreversible binding of an active metabolite with the catalyzing enzyme leading to its inactivation (mechanism-based inhibition) or potentially due to formation of a more potent inhibitory metabolite. Both terms, TDI and mechanism-based inhibition, are used in this review. The evaluation of TDI would require appropriate in vitro studies, which were not usually available concerning TKIs. A recent review (Jackson et al. 2018) listed the following TKIs as potential candidates in this category: axitinib, bosutinib, dasatinib, imatinib, erlotinib, gefitinib, lapatinib, nilotinib, pazopanib, and sunitinib. However, company or authority data are not usually detailed enough in this respect, and more appropriate and detailed information is provided only rarely in published articles (Filppula et al. 2018; Kenny et al. 2012; Mao et al. 2016).

The generation of reactive metabolites has quite often been studied by drug companies developing the TKIs, since the reactive metabolites could potentially induce hepatotoxicity and form a threat for withdrawal during development or, worse, after the regulatory approval. Thus, at least in the following cases, reactive metabolites have been identified for clinically available tyrosine-kinase inhibitors: axitinib (Wang et al. 2020), dasatinib (Li et al. 2009), erlotinib (Li et al. 2009; Zhao et al. 2018), gefitinib (Li et al. 2009), imatinib (Li et al. 2014), lapatinib (Takakusa et al. 2011; Teng et al. 2010), ponatinib (Lin et al. 2017), and sunitinib (Amaya et al. 2018). It is, however, difficult to ascertain a specific reactive metabolite to cause a certain TDI, especially when the presence of a reactive metabolite has been deduced on the basis of trapping agents (Mao et al. 2016).
Table 2 Antiretroviral HIV drugs as CYP substrates, inhibitors and inducers

Antiretroviral drug	As a CYP substrate	Perpetrators (effect assignments in parentheses)	As a CYP inhibitor	Victim drugs (effect assignments in parentheses)	As a CYP inducer	References[^b]
Pharmacokinetic enhancers (boosters)						
Cobicistat	E: > 80% M: 3A4, 2D6 (minor)	Strong 3A4 inducers (moderate)	3A4 (mechanism-based), 2D6 (weak)	Atorvastatin, rosuvastatin, etc.	No significant in vitro	Cattaneo et al. (2019), Sherman et al. (2015), Tseng et al. (2017)
Ritonavir	E: > 50% M: 3A4, 2D6 (minor)	Strong 3A4 inhibitors ketoconazole (minor) Strong 3A4 inducers rifampicin (moderate)	3A4 (mechanism-based), 2D6, 2C9	1A2, 2B6, 2C8, 2C9, 2C19 in vitro; in vivo minor or moderate effects		Cattaneo et al. (2019), Cooper et al. (2003), Tseng et al. (2017)
Protease inhibitors						
Atazanavir (+cobicistat)	M: 3A4	Strong 3A4 inducers rifampicin (strong) Efavirenz (moderate)	3A4 (mechanism-based), 2C8 (weak)	3A4 substrates (from weak to strong)	No effect in vitro or in vivo	Tseng et al. (2017)
Darunavir (+ritonavir)	M: 3A4, 2D6	3A4-inducers and inhibitors (variable observed or predicted effects)	3A4, 2D6	3A4 substrates (from weak to moderate)	2C9: warfarin	Tseng et al. (2017), Wagner et al. (2017)
Fosamprenavir (amprenavir) (+ritonavir)	M: 3A4	3A4-inducers and inhibitors (variable observed or predicted effects)	3A4	3A4 substrates (from weak to moderate)	3A4; in vivo effect minor or moderate	Justesen et al. (2003), Sale et al. (2002), Tran et al. (2002)
Lopinavir (+ritonavir)	M: 3A4	3A4-inducers and inhibitors (variable observed or predicted effects)	3A4	3A4 substrates (from weak to moderate)	3A4, in vivo effect minor at most	Wagner et al. (2017)
Nelfinavir	M: 3A4, 2C19	3A4-inducers and inhibitors (weak to moderate) 2C19-inhibitors (weak to moderate)	3A4	Midazolam (moderate)	In vitro 1A2, 2B6, 2C19 In vivo 1A2 (moderate), 2B6 (weak) and 2C9 (weak)	Kirby et al. (2011a, b)
Saquinavir (+ritonavir)	3A4	3A4-inducers and inhibitors (variable observed or predicted effects)	3A4	Midazolam (strong)	3A4, in vivo minor effect at most	Dickinson et al. (2008), Eagling et al. (2002)
Tipranavir (+ritonavir)	3A4	2B6 and 3A4-inducers and inhibitors (variable observed or predicted effects)	2D6 NA	3A4, 1A2, 2C19 combination in vivo moderate or strong effect		Tseng et al. (2017)
Integrase strand transfer inhibitors						
Bictegravir	M: 3A4, UGT1A1 (about equal)	3A4 inhibitors: voriconazole (weak), atazanavir (moderate) 3A4 inducers: rifabutin (moderate), rifampicin (strong)	No significant effects in vitro/or vivo	NA	No significant effects in vitro/or vivo	Gallant et al. (2017), Sax et al. (2017), Zhang et al. (2017)
Table 2 (continued)

Antiretroviral drug	As a CYP substrate	Perpetrators (effect assignments in parentheses)	As a CYP inhibitor	Victim drugs (effect assignments in parentheses)	As a CYP inducer	References b
Non-nucleoside reverse transcriptase inhibitors						
Dolutegravir	E: ~50% M: UGT1A1; 3A4 (minor)	Strong 3A4 inducers: ritonavir, efavirenz, rifampicin (no significant effect)	No effect in vivo	No effect in vivo	No effect in vivo	Kandel and Walmsley (2015)
Elvitegravir	E: 95% M: 3A4 (minor)	Inducers: rifabutin, efavirenz, etc. (minor effect at most)	Minor effect in vitro at most	2C9?	Lee et al. (2012), Tseng et al. (2017)	
Raltegravir	E: major M: UGT1A, no CYPs	No significant effects	No in vitro/in vivo	No in vitro/in vivo	No in vitro/in vivo	Okeke and Hicks (2011)
Doravirine	M: 3A4	Strong 3A4 inhibitors ritonavir, ketoconazole (moderate) Strong 3A4 inducers rifampicin (strong)	No in vitro/in vivo	NA	In vivo 3A4 (weak)	Khalilieh et al. (2019)
Efavirenz	M: 2B6 (primary), 2A6, 3A4	2B6 and 3A4-inducers and inhibitors (variable observed or predicted effects) 2C9, 2C19, 3A4	In vivo variable effects 3A4, 2B6 in vivo 2B6 autoinduction 2A6, 2B6, 2C19, 3A4 in vivo variable effects	In vivo variable effects	3A4, 2B6 in vitro 2B6 autoinduction 2A6, 2B6, 2C19, 3A4 in vivo variable effects	Best and Goicoechea (2008), Marzolini et al. (2017), McDonagh et al. (2015), Metzger et al. (2019)
Etravirine	M: 3A4, 2C9, 2C19	Inhibitors and inducers variable effects 2C9, 2C19	In vitro variable effects	3A4	3A4	Havens et al. (2020)
Nevirapine	M: 3A4, 2B6	Rifampicin (moderate) Pluconazole (strong) 3A4, 2B6 (both weak)	Weak or no effects in vitro or in vivo	3A4, 2B6	In vivo autoinduction In vivo weak or moderate effect at most	Ena et al. (2012)
Rilpivirine	M: 3A4	Rifampicin (moderate) Ketoconazole (moderate) 3A4	No/minor effects in vivo at most	No in vitro/in vivo	No in vitro/in vivo	Crauwels et al. (2013)
C–C chemokine receptor type 5						
Maraviroc	M: 3A4	Strong 3A4 inducers and inhibitors (strong) 3A4 (weak)	No significant inhibition in vitro or in vivo	No induction in vitro or in vivo	No induction in vitro or in vivo	Abel et al. (2009)

a M, elimination by metabolism, E excretion as an unchanged drug

b Principal source for the information of this table is based on the AIDS Info: Panel on antiretroviral guidelines for adults and adolescents. Guidelines for the use of antiretroviral agents in adults and adolescents living with HIV. Department of Health and Human Services. 2020 [cited 2020 March 20]. Available from: https://aidsinfo.nih.gov/contentfiles/lvguidelines/adultandadolescentgl.pdf
Antiretroviral HIV drugs

The antiretroviral human immunodeficiency virus (HIV) drugs (Table 2) are of considerable interest for DDIs in research and therapy for two main reasons. First, the group contains two drugs (ritonavir and cobicistat) that are mainly used as pharmacokinetic enhancers, “boosters”, due to their strong and mechanism-based inhibitory action towards CYP3A4, the predominant enzyme metabolizing anti-HIV-protease inhibitors (Tseng et al. 2017). These boosters are rather rare examples of intentional, beneficial utilization of CYP-DDIs. The second reason is due to the frequent use of combinations of various antiviral drugs; up to four drugs in fixed combinations, although pharmacodynamic benefits are the major reasons to use such combinations.

The use of combinations makes it challenging to evaluate, especially in therapeutic situations, potential DDIs with other drug treatments of individual patients. The FDA or EMA-approved drug monographs contain extensive tabulated information about experimentally and/or clinically observed, or predicted DDIs, which often are difficult to translate into clinically useful advice in actual patients. It is expected that in the future, DDI-predicting PBPK-models and artificial intelligence-based algorithms would aid clinical decisions [see, e.g., (Ryu et al. 2018; Varma et al. 2015)].

Cobicistat and ritonavir are especially employed in combination with HIV-protease inhibitors which are CYP3A4 substrates. CYP3A4-associated metabolism is very potently inhibited, because both boosters are mechanism-based inhibitors and block protease inhibitor metabolism and clearance almost completely thus extending drug exposure and the ensuing effect. They are also used in combination with other classes of HIV drugs, especially in fixed multidrug combinations containing protease inhibitors.

Pharmacokinetic interactions could also be based on processes involving transporters, e.g., P-glycoprotein. Many HIV drugs are ligands of various transporters and consequently interactions with other ligands may occur (Alam et al. 2016). This review will not cover transporter-mediated interactions as the focus is on CYP-DDIs.

Nucleoside reverse transcriptase inhibitors (abacavir, emtricitabine, lamivudine, tenofovir alafenamide, tenofovir disoproxil, and zidovudine) and the only fusion inhibitor (enfuvirtide) are devoid of CYP inhibition potential, because they are not metabolized by, or interacting with, CYP enzymes and most of them are renally eliminated. They are also not known to cause CYP induction.

Herbal/botanical natural products interacting with drugs

Herbal and/or botanical (medicinal) products are used in the treatment of various diseases, often as a ‘self-treatment’ by the patient and many times unbeknownst to the treating physician (Paine and Roe 2018). From the drug-interaction point of view, a challenge is that herbal products are usually complex mixtures of constituents that can vary substantially in both content and concentration depending on the preparation and, furthermore, when isolated they can behave very differently (Kellogg et al. 2019; Paine et al. 2018; Sevior and Ahokas 2017). These problems are exaggerated by inadequacies of product regulation and standardization, thus leaving a physician without essential information and thus being at the mercy of very variable and often blatantly poor-quality literature (Pelkonen et al. 2014). Especially, there is a dearth of quality scientific data on potential herb–drug interactions for even widely used herbal medicines. In this review, interactions resulting in induction of CYP enzymes are detailed in Table 14. Regarding inhibitory interactions, only a few well-characterized examples (resveratrol, quercetin) have been included as ‘clinically significant’ perpetrators (see Table 4). According to literature reviews on herbal-associated CYP interactions [see, e.g., (Her mann and von Richter 2012; Izzo and Ernst 2009)], a large number of herbal preparations are interacting with CYP enzymes at the level of in vitro incubations, but there are variable and uncertain evidence on interactions in vivo. Also, major agency guidances pay little attention to these natural products; only EMA has a rather general entry in the interaction guidance, while FDA is treating herbal products as food supplements. The WHO document on herbal–drug interactions is under preparation and is expected shortly; it is hoped to set the stage for further scientific research and regulatory guidance to assess the clinical significance of herb–drug interactions.

CYP substrates and inhibitors

General

Data on substrates and inhibitors of major xenobiotic-metabolizing CYP enzymes are collected in Tables 3, 4, 5, 6, 7, 8, 9, 10 and 11. It is obvious that due to the vast literature, this survey cannot include all the possible substrates and inhibitors for CYP enzymes, instead certain restrictions had to be applied. Obviously, ‘the clinical significance’ is one of the overriding criterium, although
Table 3 Substrates and inhibitors of CYP3A4/5 enzyme

Reference substrates recommended by major regulatory agencies

Drug	Reaction	Km (μM) in vitro (HLMs) (plasma conc)	Specificity near Km	References
Midazolam in vitro, in vivo	1′-Hydroxylation/elimination	1–14 (0.8)	High	☺
Triazolam in vitro, in vivo	4-Hydroxylation/elimination	238–304 (0.06)	High	☺
Testosterone in vitro	6β-Hydroxylation	33–94 (na)	High	☺

Substrates potentially affected by strong CYP3A4 inhibitors

- Highly selective/sensitive: alfentanil, alprazolam, aprepitant, atorvastatin, avanafil, budesonide, buspirone, colchicine, conivaptan, cyclosporin A, darifenacin, darunavir, dasatinib, dihydroergotamine (and ergotamine), docetaxel, dronedarone, ebastine, eletriptan, eliglustat, eplerenone, everolimus, felodipine, fentanyl, flibanserin, guanfacine, ibrutinib, indinavir, lomitapide,Lovastatin, lurasidone, maraviroc, midazolam, naloxegol, nifedipine, nisoldipine, pimozide, quetiapine, quinidine, ritilpivine, rivaroxaban, saquinavir, sildenafil, simprevir, simvastatin, sirolimus, sonidegib, tacrolimus, tadalfil, ticagrelor, tipranavir, tolvaptan, triazolam, vardenafil, and vincristine

Additional protein tyrosine-kinase inhibitors, see Table 1 for details

Reference inhibitors recommended by major regulatory agencies

Drug	Mode of inhibition	IC₅₀ (μM) in vitro (plasma conc)	CYP selectivity and other CYPs inhibited	References
Ketoconazole in vitro, in vivo	Competitive	0.037–0.028 (2–6)	Moderate (2C, 1A2, 2D6)	☺
Itraconazole in vitro, in vivo	Competitive (metabolites)	0.013–0.27 (0.6–2.8)	High	☺ Yoshida et al. (2018)
Azamulin in vitro	Mechanism-based	0.03–0.24 (na)	High	☺ Parmentier et al. (2017), Stresser et al. (2004)
Fluconazole	Competitive	5.4–13.1 (6–30)	Moderate (2C9, 2C19)	Niwa et al. (2005), Yoshida et al. (2018)
Troleandomycin in vitro	Mechanism-based	0.26	High	☺ Yadav et al. (2018)
Verapamil	Mechanism-based	2.3–2.9 (0.1–0.6)	High	☺
Ritonavir in vivo	Mechanism-based	0.019–0.17 (7–15)	Moderate (2C9)	☺
Clarithromycin in vivo	Mechanism-based (comp)	0.8 (5.5–10) (0.3–2.7)	High	☺
Erythromycin in vivo	Mechanism-based (comp)	1.0 (16–19) (1–8)	High	Akiyoshi et al. (2013), Kanamitsu et al. (2000)

Inhibitors of potential clinical significance

Voriconazole	Mechanism-based	3.0 (4–17)	Poor (2B6, 2C9, 2C19)	Jeong et al. (2009a)
Posaconazole	Competitive	? (<0.17) (1)	High	Groll et al. (2017), Krishna et al. (2009)
Indinavir	Competitive	0.17–0.5 (> 0.16)	High	☺
Nelfinavir	Competitive	1–4.8 (> 1.4)	Moderate (CYP2D6)	☺
Saquinavir	Mechanism-based	0.65–2.99 (> 0.37)	High	☺
Diltiazem	Mechanism-based	2.2–5.0 (0.1–0.6)	High	☺
Telithromycin	Mechanism-based (competitive)	1.05 (3.65) (2.5)	High	Elsby et al. (2019)
Gestodene	Mechanism-based	46 (0.02)	High	☺ Palovaara et al. (2000)
Cerititinib	Mechanism-based	0.16–0.2 (0.9–2.7)	Moderate (2C9)	Zhao et al. (2020)
Idelalisib	Mechanism-based (metabolite)	5.1 (0.5–5)	High	Ramanathan et al. (2016)
Imatinib	Competitive?	8 (1–4)	Moderate	O’Brien et al. (2003)
Lapatinib	Mechanism-based	1.7	High (3A5: 37.6 uM)	Chan et al. (2012), Teng et al. (2010)
Nilotinib	Competitive	0.4–7 (2–3)	Moderate (2C8, 2C9, 2D6)	Tian et al. (2018)
Osimertinib	Mechanism-based competitive	2.5–5.1 (1.5–3)	Moderate (2C8)	Pilla Reddy et al. (2018), Vishwanathan et al. (2019)
Stiripentol	Competitive	80 (8–40)	Moderate (CYP1A2, 2D6)	Tran et al. (1997)
Dronedarone	Mechanism-based	0.87 (0.15–0.3)	Moderate (2J2)	Hong et al. (2016)
it is very difficult to define. In this review, ‘the clinical
significance’ means that the first-hand assessment of the
drug, mostly on the basis of information in the regula-
tory dossier, has resulted in the inclusion of the drug in
the list (see above the section on tyrosine-kinase inhibi-
tors). However, ‘the clinical significance’ is dependent
on many determinants including in vitro studies, clinical
trials with reference substrates and inhibitors (these stud-
ies may be available at the time of approval), published
non-regulatory studies and clinical experiences, etc. In the
end, we have to admit that a certain measure of personal
experience has been applied in the current review. Pre-
dominantly, only currently used drugs are listed, but some
well-established, although withdrawn drugs are provided
as reference. Also a few well-studied examples of in vitro
substances are included because of their use as reference
substrates or inhibitors.

Reference substrates and inhibitors

Reference substrates and inhibitors recommended by major regulatory agencies, FDA, EMA, and MHLW/PMDA, have
been collected in the upper part of Tables 3, 4, 5, 6, 7, 8, 9,
10 and 11. The basic requirement is that the compound is
metabolized totally or preferably by a single CYP enzyme,
and this has been demonstrated in vitro and in vivo. In
in vitro assay, the formation of the CYP-associated metabo-
lite is followed, but in in vivo studies, often, the elimination
of the parent is measured due to, e.g., further metabolism
of a CYP-associated metabolite. Naturally, in the human
in vivo studies, approved drugs have to be used, but the lists
contain also a few substances which are either withdrawn
drugs or experimental substances (e.g., azamulin). These
are used only in in vitro tests to investigate basic in vitro
interactions in connection with early drug development or
in mechanistic studies later on.

Sensitive substrates

In addition to reference substrates and inhibitors, appro-
priate lists of substrates and inhibitors of definitive clinical
potential are compiled. Of potential substrates, only the
so-called “strongly and/or moderately sensitive” substrates
have been listed as extractions from reviews of individual
CYP enzymes. Usually, sensitive substrates are metabolized
almost completely or to a significant extent (>25%) by the
CYP enzyme concerned, so that the inhibition by a specific
inhibitor will lead to a significant increase in the exposure to
a substrate. However, there are a number of substrates which
are actually metabolically activated by an enzyme and, con-
sequently, the inhibition of metabolism leads to a pharmaco-
dynamically reverse outcome and this is an important point

Drug	Mode of inhibition	K_i/IC$_{50}$ (μM) in in vitro (plasma conc)b	CYP selectivity and other CYPs inhibited	References
Boceprevir	Mechanism-based	6.1 (0.2–1.5)	High	Chu et al. (2013), Wilby et al. (2012)
Telaprevir	Mechanism-based	0.19–0.36 (3–4.5)	High	Chapron et al. (2015)
Cobicistat	Mechanism-based	0.032 (0.9)	Moderate	Hossain et al. (2017)
Netupitant	Competitive	1.9–5.7 (0.3–1)	Moderate (2C9)	Giuliano et al. (2012)
Isavuconazole	Competitive	0.62–1.93 (5.71)	Moderate (2C, 2D6)	Townsend et al. (2017), Yamazaki et al. (2017)
Grapefruit juice	Mechanism-based	Not applicable	Low? (multiple CYPs)	Bailey et al. (2013); Hanley et al. (2011)

Moderate inhibitorsc (regulatory documents): amprenavir, aprepitant, atazanavir, ciprofloxacin, crizotinib, darunavir/ritonavir, diltiazem, fosa-
mpreneavir, and gestodene

na not available, nk not known
a For older references, see (Pelkonen et al. 2008). Newer inhibitors, since 2008, have been indicated in bold
b Appropriate guidance documents of EMA (2012), FDA (2020), and MHLW/PMDA (2018) recommending the listed reference compounds for in vitro and in vivo studies. The use of two structurally unrelated CYP3A4/5 substrates for evaluation of in vitro CYP3A4/5 inhibition is recommended
c Km or K_i/IC$_{50}$ values were taken mostly from in vitro human microsomal incubations. Therapeutic (“control”) plasma concentrations were mainly taken from two compilations (Schulz et al. 2012, 2020) or the referenced publications listed
d The list is compiled from various published reviews, databases, and guidelines and drug labels of major drug agencies (EMA, FDA, MHLW/ PMDA) as well as publicly available databases (Hoffmann et al. 2014; Preissner et al. 2010). Database address: http://bioinformatics.charite.de/transformer/
Table 4 Substrates and inhibitors of CYP1A2 enzyme

Reference substrates recommended by major regulatory agencies

Drug	Reaction/assay measurement	Km (μM) in vitro (plasma conc)b	Specificity near Km	References
Phenacetin in vitro probe (withdrawn)	O-De-ethylation	10–50 (na)	High	☺ Zhou et al. (2009)
Ethoxyresorufin in vitro probe (non-drug)	O-De-ethylation	0.11–0.23 (na)	Moderate (CYP1A1)	☺
Caffeine in vivo probe	N-Demethylation elimination rate (in vivo)c	200–500 (20–50)	High	☺ Thorn et al. (2012)
Theophylline in vivo probe	N-Demethylation elimination rate (in vivo)c	280–1230 (10–30)	High	☺ Britz et al. (2019)
Tizanidine in vivo probe	Elimination rate (in vivo)	nk (0.6)	High	☺ (Granfors et al. (2005), Karjalainen et al. (2008))

Substrates potentially affected by strong CYP1A2 inhibitors (Faber et al. 2005; Wang and Zhou 2009)

Sensitive/moderate: agomelatine, alosteron, clozapine, duloxetine, flutamide, frovatriptan, guanabenz, letrozolomide, lidocaine, melatonin, mexiletine, mirtazapine, olanzapine, pirfenidone, ramelteon, ramosetron, rifluzole, ropinirole, ropivacaine, tacrine, tasmelteon, thalidomide, triamterene, zolmitriptan, zolpidem, and zileuton

Reference inhibitors recommended by major regulatory agencies

Drug	Mode of inhibition	KJJC50 (μM) in vitro (plasma conc)b	CYP selectivity (other CYPs inhibited)	References
α-Naphthoflavone in vitro (non-drug)	Competitive	0.01 (na)	Moderate (CYP1A1)	☺
Furfylamine in vitro (withdrawn)	Mechanism-based	0.6–0.7 (nk)	High	☺
Enoxacin in vivo	Competitive	65–170 (3–12)	High	☺
Fluvoxamine in vivo	Competitive	0.12–0.24 (0.2–0.7)	Moderate (minor 2B6, 2C9, 2C19, 2D6)	☺

Inhibitors of potential clinical significance

Drug	Mode of inhibition	KJJC50 (μM) in vitro (plasma conc)b	CYP selectivity (other CYPs inhibited)	References
Amiodarone (metabolites)	Mechanism-based	0.46 (1.5–3)	Moderate (2D6, 3A4)	McDonald et al. (2015), Ohya-ama et al. (2000)
Ciprofloxacin	Competitive	90–290 (7.5–12)	High	☺ Granfors et al. (2004), Raaska and Neuvonen (2000)
Isoniazid	Competitive	56 (36–73)	Low (2C19, 3A4, 2A6)	Wen et al. (2002)
Mexiletine	Competitive	4.3–8.3 (3–11)	Moderate (1A1)	☺
Propafenone	Competitive	21 (1–6)	Moderate (2D6, 3A4)	☺ Dean (2012)
Thiabendazole	Mechanism-based	1.4 (na)	nk	Bapiro et al. (2005), Coulet et al. (1998), Thelivingwani et al. (2009)
Vemurafenib	Competitive	~ 30 (100)	Moderate (2B6, 2C9, 3A4)	Zhang et al. (2017a,b), Chang et al. (2001), Chun et al. (1999)
Resveratrol (non-drug)	Competitive?	500 (na)	Moderate (2B6, 2C9, 3A4)	poor (1A1, 3A4)

Moderate/weak inhibitors: acyclovir, allopurinol, caffeine, cimetidine, daidzein, disulfiram, Echinacea, ethinylestradiol, famotidine, gestodene, norflaxacin, piperine, propafenone, propranolol, terbinafine, ticlopidine, verapamil, and zileuton

na not available, nk not known

© For older references, see (Pelkonen et al. 2008). Newer inhibitors, since 2008, have been indicated in bold

Appropriate guidance documents of EMA (2012), FDA (2020), and MHLW/PMDA (2018) recommending the listed reference compounds for in vitro and in vivo studies. The use of two structurally unrelated CYP3A4/5 substrates for evaluation of in vitro CYP3A4/5 inhibition is recommended.

Km or KJJC50 values were taken mostly from in vitro human microsomal incubations. Therapeutic (“control”) plasma concentrations were mainly taken from two compilations (Schulz et al. 2012, 2020) or the referenced publications listed.

The list is compiled from various published reviews, databases, and guidelines and drug labels of major drug agencies (EMA, FDA, and MHLW/PMDA) as well as publicly available databases (Hoffmann et al. 2014; Preisssner et al. 2010). Database address: http://bioinformatics.charite.de/transformer/

[Springer](http://www.springer.com)
to remember when assessing potential consequences of an interaction. However, perhaps, a more common situation is where pharmacologically active metabolites contribute to the action of the parent drug and the final outcome of the interaction may be more difficult to define.

Clinically significant inhibitors

Among inhibitors, the listed substances contain mostly “strong” or at least “moderate” inhibitors for a given CYP enzyme. This implies a relatively strong affinity to an enzyme at concentrations achieved in clinical situations. For this reason, an inhibition constant or a corresponding measure (IC50, K_i) and actual therapeutic concentration (if known) have been given in tables. Furthermore, mechanism of inhibition, most commonly competitive or mechanism-based inhibition, is of importance for the extent and length of inhibition.

The extent of inhibition is also heavily dependent on characteristics of a victim drug, its affinity to an enzyme, and a fraction of a victim metabolized by an enzyme. However, clinical situations could be much more complex. Consequently, quantitative measures of inhibitory potency are only guiding by nature, but may still suggest at least a significant possibility of inhibitory interaction in clinical drug use.

Table 5 Substrates and inhibitors of CYP2B6 enzyme

Drug	Reaction/assay measurement	K_m (μM) in vitro (plasma conc)b	Specificity near K_m	References
Bupropion (in vitro, in vivo)	Hydroxylation	89–130 (15–40)	High	☺ (Pelkonen et al. 2008)
Efavirenz (in vitro, in vivo)	8-Hydroxylation	17–23 (3–10)	Moderate (CYP1A2, 3A4)	☺ (Manosuthi et al. 2013)

Substrates potentially affected by strong CYP2B6 inhibitorsc (Hedrich et al. 2016)

Highly/moderately sensitive: artemether, artemisinin, cyclophosphamide, diazepam, Ifosfamide, ketamine, mephentyoin, mephobarbital, methadone, nicotine, pethidine (meperidine), propofol, piclamilast, selegiline, and temazepam

Reference substrates recommended by major regulatory agenciesa

Drug	Mode of inhibition	K_m/IC50 (μM) in vitro (plasma conc)b	CYP selectivity and other CYPs inhibited	References
Ticlopidine (in vitro, in vivo)	Mechanism-based	0.2–0.8 (3–8)	Moderate (CYP1A2, 2C19, 2D6)	☺ Palacharla et al. (2018)
ThioTEPA (in vitro)	Mechanism-based	2.8–3.8 (3–20)	High	☺ Bae et al. (2013)
Sertraline (in vivo)	Competitive	3.2 (0.1–0.5)	Moderate	Hesse et al. (2000), Palacharla et al. (2018)
Phencyclidine (in vivo)	Mechanism-based	2 (0.1–1)	Moderate	Jushchysyn et al. (2006), Walsky and Obach (2007)

Inhibitors of potential clinical significance

Drug	Mode of inhibition	K_m/IC50 (μM) in vitro (plasma conc)b	CYP selectivity and other CYPs inhibited	References
Canagliflozin	Competitive	16 (0.6–3)	Poor (2E1, 3A4, 2C19, 2C9)	Yu et al. (2014)
Clopidogrel (pro-drug)	Mechanism-based	1.1 (0.02)	Moderate (2C19, 2C9)	☺ Backman et al. (2016), Wang et al. (2015)
17-α-Ethynylestradiol	Mechanism-based	0.8 (0.3 nM)	Moderate (1A2)	☺ Bae et al. (2013)
Sonidegib	Competitive	0.045 (0.3–1)	Moderate (CYP2C9)	Yu et al. (2017a, b)
Voriconazole	Competitive	0.40 (5.7–11.5)	Poor (2C9, 2C19, 3A)	Jeong et al. (2009a, b)

Potential (moderate/weak) inhibitorsc

aFor older references, see (Pelkonen et al. 2008). Newer inhibitors, since 2008, have been indicated in bold

bKm or K_i/IC50 values were taken mostly from in vitro human microsomal incubations. Therapeutic (“control”) plasma concentrations were mainly taken from two compilations (Schulz et al. 2012, 2020) or the referenced publications listed

cThe list is compiled from various published reviews, databases, and guidelines and drug labels of major drug agencies (EMA, FDA, and MHLW/PMDA) as well as publicly available databases (Hoffmann et al. 2014; Preissner et al. 2010). Database address: http://bioinformatics.charite.de/transformer/
It should be kept in mind that the inhibition mechanisms may be very complex and may need extensive in-depth experiments to uncover the details of inhibition and the consequent in vitro and in vivo outcomes (Asaumi et al. 2018; Korzekwa et al. 2014; Lutz and Isoherranen 2012; Roberts et al. 2008; Varma et al. 2015). We have used a dichotomous expression of competitive vs mechanism-based inhibition, although the outcome of inhibition may be modified by more complex mechanisms.

It should also be stressed that the concentration of a drug interacting with the enzyme may be different from the plasma concentration, which is usually readily available.

Table 6 Substrates and inhibitors of CYP2C8 enzyme

Reference substrates recommended by major regulatory agencies

Drug	Reaction/assay measurement	Km (μM) in HLMs (plasma conc)	Specificity near Km	References
Repaglinide (in vivo)	Oxidation	24 (0.1–0.45)	Moderate (CYP3A4)	☺
Paclitaxel (in vitro)	6α-Hydroxylation	2.5–19 (0.3–0.8)	High	☺
Amodiaquine (in vitro)	N-De-ethylation	1.9–3.4 (0.15)	High	☺ Bohnert et al. (2016)

Substrates potentially affected by strong CYP2C8 inhibitors

Highly selective: pioglitazone, rosiglitazone, and tazarotenic acid

Moderately selective (other CYPs in parentheses): chloroquine (CYP3A4) and dasabuvir (3A4)

Poorly selective (other CYPs in parentheses): amiodarone (CYP1A2, 2C19, 3A4)

Reference inhibitors recommended by major regulatory agencies

Drug	Mode of inhibition	Ki/IC50 (μM) in vitro (plasma conc)	CYP selectivity and other CYPs inhibited	References
Montelukast in vivo	Competitive	0.009–0.15 (0.05–0.5)	Moderate (CYP2C9, 3A4)	☺ Bohnert et al. (2016)
Quercetin in vivo (non-drug)	Competitive	1.1–1.6 (0.4)	Poor (CYP1A2, 2E1, 3A4)	☺
Phenelzine in vitro, in vivo	Mechanism-based	1.2 (0.1–1.5)	Kahma et al. (2019)	
Clopidogrel in vitro, in vivo	Mechanism-based	na (0.02)	Moderate (CYP2C19, 2C9)	

Gemfibrozil (glucuronide) in vitro, in vivo

Inhibitors of potential clinical significance

Drug	Mode of inhibition	Ki/IC50 (μM) in vitro (plasma conc)	CYP selectivity and other CYPs inhibited	References
Montelukast in vivo	Competitive	0.009–0.15 (0.05–0.5)	Moderate (CYP2C9, 3A4)	☺ Bohnert et al. (2016)
Quercetin in vivo (non-drug)	Competitive	1.1–1.6 (0.4)	Poor (CYP1A2, 2E1, 3A4)	☺
Phenelzine in vitro, in vivo	Mechanism-based	1.2 (0.1–1.5)	Kahma et al. (2019)	
Clopidogrel in vitro, in vivo	Mechanism-based	na (0.02)	Moderate (CYP2C19, 2C9)	

Gemfibrozil (glucuronide) in vitro, in vivo

Potential and/or putative inhibitors (Polasek et al. 2004) amiodarone, verapamil, nortriptyline, fluoxetine, and isoniazid. tasimelteon

na not available, nk not known

© For older references, see (Pelkonen et al. 2008). Newer inhibitors, since 2008, have been indicated in bold

aAppropriate guidance documents of EMA (2012), FDA (2020), and MHLW/PMDA (2018) recommending the listed reference compounds for in vitro and in vivo studies. The use of two structurally unrelated CYP3A4/5 substrates for evaluation of in vitro CYP3A4/5 inhibition is recommended

bKm or Ki/IC50 values were taken mostly from in vitro human microsomal incubations. Therapeutic ("control") plasma concentrations were mainly taken from two compilations (Schulz et al. 2012, Schulz et al. 2020) or the referenced publications listed

cThe list is compiled from various published reviews, databases, and guidelines and drug labels of major drug agencies (EMA, FDA, and MHLW/PMDA) as well as publicly available databases (Hoffmann et al. 2014; Preissner et al. 2010). Database address: http://bioinformatics.charite.de/transformenter/
from clinical trials and later monitoring activities. It has been suggested that the use of unbound cytosolic concentrations—as a proxy for total/unbound plasma concentrations—would improve the prediction of in vivo DDIs (Filppula et al. 2019). For practical reasons, we have listed the total plasma concentrations, not unbound concentrations, because there exists some uncertainty about which one is in better correlation with the drug concentration at the enzyme site. Also, it is not known whether there is a direct relation between unbound concentrations in plasma and cell cytosol. It has to be recognized that drugs bind to intracellular structures, mainly proteins and lipids, and the ensuing unbound concentration could be different from the unbound plasma concentration. A reliable method to measure the drug concentration at the effector site of an enzyme is needed.

Because the available literature on CYP inhibition is enormous, we have made use of our previous review (Pelkonen et al. 2008) as a collective reference to the older literature (Tables 3, 4, 5, 6, 7, 8, 9, 10, 11). In addition, we have referred to more recent papers if they have added significant new information. For many newer substances, publicly available regulatory dossiers have been a primary source of information, although they do not necessarily provide strictly quantitative information about DDIs.
Table 8 Substrates and inhibitors of CYP2C19 enzyme

Reference substrates recommended by major regulatory agencies

Drug	Reaction	Km (μM) in HLMs (plasma conc)	Specificity near Km	References
S-Mephenytoin (in vitro)	4′-Hydroxylation	23–169 (0.4–2)	High	☺
Omeprazole (in vivo)	5-Hydroxylation elimination	6–10 (0.2–10)	High	☺
Lansoprazole (in vivo)	5-Hydroxylation elimination	15–17 (0.1–1)	Moderate (3A4)	☺

Substrates potentially affected by strong CYP2C19 inhibitors

Citalopram (2D6, 3A4), clobazam, clomipramine, diazepam (3A4), lansoprazole (3A4), pantoprazole (3A4), phenytoin, proganil (3A4), propranolol, and rabeprazole (CYP3A4)

Reference inhibitors recommended by major regulatory agencies

Drug	Mode of inhibition	K/IC50 (µM) in vitro (plasma conc)	CYP selectivity and other CYPs inhibited	References
(−)-N-3-Benzyl-phenobarbital in vitro (non-drug)	Competitive	0.079–0.12 (na)	“Not specific”	Cai et al. (2004), Suzuki et al. (2002)
S-(+)-N-3-Benzyl-nirvanol in vitro (non-drug)	Competitive	0.2 (na)	“Not specific”	Suzuki et al. (2002)
Nootkatone in vitro (non-drug)	nk	0.5 (nk)	Poor (CYP2A6)	Tassaneeyakul et al. (2000)
Loratadine	Competitive	0.76 (0.05)	Poor (2D6, 3°4, 2E1)	Barecki et al. (2001), Ramanathan et al. (2018)
Ticlopidine	Mechanism-based	1.2 (3–8)	Poor (CYP2B6, 1°2, 2D6)	Ha-Duong et al. (2001), Ko et al. (2000), Turpeinen et al. (2006)

Inhibitors of potential clinical significance

Drug	Mode of inhibition	K/IC50 (µM) in vitro (plasma conc)	CYP selectivity and other CYPs inhibited	References
Omeprazole	Competitive	2–3 (0.2–10)	Moderate (2C9, 3A4)	Chiba et al. (1993), Funck-Brentano et al. (1997)
Fluvoxamine	Competitive	0.29 (0.13–0.53)	Moderate (1A2)	Iga (2016), Kong et al. (2014), Yasui-Furukori et al. (2004)
Modafinil	competitive	39 (6–15)	High	Robertson et al. (2000), Rowland et al. (2018)

Moderate/weak inhibitors: Wu et al. (2013)
Carbamazepine, cimetidine, esomeprazole, etravirine, felbamate, fluconazole, fluoxetine, ketoconazole, moclobemide, and voriconazole

na not available, nk not known

*For older references, see (Pelkonen et al. 2008). Newer inhibitors, since 2008, have been indicated in bold

aAppropriate guidance documents of EMA (2012), FDA (2020), and MHLW/PMDA (2018) recommending the listed reference compounds for in vitro and in vivo studies. The use of two structurally unrelated CYP3A4/5 substrates for evaluation of in vitro CYP3A4/5 inhibition is recommended

bKm or K/IC50 values were taken mostly from in vitro human microsomal incubations. Therapeutic (“control”) plasma concentrations, either range or maximal, were mainly taken from two compilations (Schulz et al. 2012, 2020) or the referenced publications listed

*The list is compiled from various published reviews, databases, and guidelines and drug labels of major drug agencies (EMA, FDA, MHLW/PDMA) as well as publicly available databases (Hoffmann et al. 2014; Preissner et al. 2010). Database address: http://bioinformatics.charite.de/transformer/

Substrates and inhibitors of individual CYPs

CYP3A4/CYP3A5

Table 3 presents a collection of compounds participating as substrates and/or inhibitors in clinically relevant CYP3A4-associated DDIs, which is by far the most important area of CYP-based interactions. The table lists also > 10 inhibitors (in bold), which have come to the market since our previous review in 2008 (Pelkonen et al. 2008).

On the basis of analyses of Yu et al. (2014, 2016a, b, 2017a, b, 2018, 2019) on FDA-approved drugs (close to 150 between 2013 and 2017), roughly 65% were substrates, 30% inhibitors and about 5% inducers of CYP3A. This is not to say that a similar portion should cause DDI consequences of clinical significance, because the establishment of clinical
significance would require at least some in vivo trials and/or observations. Currently, the use of reference perpetrators (e.g., ketoconazole and rifampicin) or substrates (e.g., midazolam) is practically mandatory to aid the assessment of clinical significance.

Usually, it is not possible to indicate what would be a contribution of CYP3A5 for the DDI effect. However, if need be there are in vitro tools to study the CYP3A5 contribution into the metabolism or the effect of a studied drug (Guo et al. 2020; Lolodi et al. 2017). The most comprehensive literature on the role of CYP3A5 is available for tacrolimus, see (Birdwell et al. 2015; Chen and Prasad 2018).

CYP1A2

The list of substrates potentially affected by CYP1A2 inhibitors (Table 4) contains at least 13 “new” drugs [compared with the previous review in 2008 (Pelkonen et al. 2008)], whereas only one inhibitor of potential clinical significance, vemurafenib (see also Table 1), has appeared since 2008.
Resveratrol has been added to the table as an example of an ingredient in a large number of consumable products, including red wine. However, it seems to be a moderate CYP1A2 inhibitor at the best.

CYP2B6

There are only three “new” drugs added into the list of inhibitors, canagliflozin, sonidegib, and voriconazole, and the first two are probably only moderate-to-weak inhibitors. The list of substrates potentially affected by strong CYP2B6 inhibitors contains almost exclusively “old” drugs.

CYP2C8

In addition of recommended substrates and inhibitors, Table 6 lists 6 ‘new’ inhibitors of CYP2C8. However, in the immediate analysis, some recently registered drugs, which were shown to be CYP2C8 inhibitors in in vitro studies, were difficult to classify. For example, according to the regulatory dossier studies, tasimelteon was shown to be a weak in vitro inhibitor of CYP2C8 (IC$_{50}$ > 100 μM), whereas vorapaxar was a relatively potent in vitro inhibitor (IC$_{50}$ 0.86 μM), but still both did not affect CYP2C8-associated rosiglitazone elimination in vivo [drug monographs, (Yu et al. 2016a, b)]. Consequently, tasimelteon is mentioned only in the group of putative inhibitors, waiting for additional in vivo investigations to classify more convincingly, whereas vorapaxar is listed in the category of inhibitors of potential clinical significance due to its low IC$_{50}$ value as compared with the in vivo plasma concentration.

CYP2C9

The list of victim drugs of CYP2C9 (Table 7) is relatively long, altogether 20 substances. It reflects the importance of CYP2C9 in metabolizing clinically widely used drugs, practically all of which are “old” drugs and many of them used for 20–30 years. There are five “new” drugs as CYP2C9 inhibitors of potential clinical significance, three of them kinase inhibitors (ceritinib, sonidegib, and vemurafenib). The only “old” inhibitor is the widely used antiarrhythmic amiodarone, which is used in research projects as an example of a drug with a very long half-life, complex kinetics and multiple potential interactions (McDonald et al. 2015).
CYP2C19

Since the previous review (Pelkonen et al. 2008), only one “new” drug (modafinil) has been added to the list of inhibitors of potential clinical significance. Reference inhibitors recommended by major regulatory agencies are not specific for CYP2C19-mediated metabolism; however, they can be used together with other information such as data obtained from experiments done with recombinant enzyme systems.

CYP2A6

Since our review in 2008 (Pelkonen et al. 2008), only one drug (letrozole) has been added to the list of substrates or inhibitors (Table 10). Letrozole was added to the list of CYP2A6 inhibitors on the basis of an in vitro study (Jeong et al. 2009b); no clinical studies have been undertaken. Only 5 out of 102 FDA-approved drugs between 2013 and 2016 were at least partial substrates and/or inhibitors of CYP2A6 principally on the basis of in vitro experiments and none of them were considered ‘clinically significant’ even potentially (Yu et al. 2018).

CYP2E1

is another enzyme that has been only rarely observed to associate with clinically significant interactions

Table 11 Substrates and inhibitors of CYP2E1 enzyme

Drug	Reaction	Km (μM) in vitro (HLMs) (plasma conc)	Specificity near Km	References
Chlorzoxazone^{a,b}	6-Hydroxylation	39–157 (170)	High	☺ Ernstgård et al. (2004)
p-Nitrophenol (non-drug)	3-Hydroxylation (nk)	24–30	High	☺ Collom et al. (2008)
Aniline (non-drug)	4-Hydroxylation	6–24	High	☺
Lauric acid (non-drug)	11-Hydroxylation	130	Moderate (CYP4A)	☺

Substrates potentially affected by strong CYP2E1 inhibitors^a acetaminophen (paracetamol), theophylline, enfurane, and halothane

Drug	Mode of inhibition	K_i/IC₅₀ (μM) in vitro (plasma conc)^b	CYP selectivity and other CYPs inhibited	References
4-Methylpyrazole	Competitive	2.0 (17–250)	High	Collom et al. (2008)
Diethyldithiocarbamate (DDC, non-drug)	Mechanism-based	5.3–34 (na)	Poor (1A2, 2A6, 2B6, 2C8, 3A4)	☺ Pratt-Hyatt et al. (2010)
Pyridine (non-drug)	Not known	0.4, 11.8 (na)	High	☺ Jones et al. (2011)
Disulfiram (in vivo)	Mechanism-based	Via DDC	Moderate (CYP2A6)	☺
Clomethiazole	Mechanism-based	1.0 (10)	Moderate (2A6)	☺ Stresser et al. (2016)
Diallyl sulfide (non-drug)	COMPETITIVE?	6.3–17.3 (na)	High?	☺ Rao et al. (2015)

^a For older references, see (Pelkonen et al. 2008)
^bKm or K_i/IC₅₀ values were taken mostly from in vitro human microsomal incubations. Therapeutic (“control”) plasma concentrations, either range or maximal, were mainly taken from two compilations (Schulz et al. 2012, 2020) or the referenced publications listed
^cThe list is compiled from various published reviews, databases, and guidelines and drug labels of major drug agencies (EMA, FDA, MHLW/PMDA) as well as publicly available databases (Hoffmann et al. 2014; Preissner et al. 2010). Database address: http://bioinformatics.charite.de/transformer/

Since the previous review (Pelkonen et al. 2008), only one “new” drug (modafinil) has been added to the list of inhibitors of potential clinical significance. Reference inhibitors recommended by major regulatory agencies are not specific for CYP2C19-mediated metabolism; however, they can be used together with other information such as data obtained from experiments done with recombinant enzyme systems.

Since our review in 2008 (Pelkonen et al. 2008), only one drug (letrozole) has been added to the list of substrates or inhibitors (Table 10). Letrozole was added to the list of CYP2A6 inhibitors on the basis of an in vitro study (Jeong et al. 2009b); no clinical studies have been undertaken. Only 5 out of 102 FDA-approved drugs between 2013 and 2016 were at least partial substrates and/or inhibitors of CYP2A6 principally on the basis of in vitro experiments and none of them were considered ‘clinically significant’ even potentially (Yu et al. 2018). Our own view over the years since 2007 (see the accompanying article, Pelkonen et al., this volume) is similar: although CYP2A6 was occasionally mentioned in drug labels as a target of in vitro inhibition (no quantitative information provided), no in vitro observations were translated into potentially clinical significance. CYP2E1 is another enzyme that has been only rarely observed to associate with clinically significant interactions.
(Table 11). According to our own experiences (Pelkonen et al., this volume) and those of Yu et al. (2014, 2016a, b, 2017a, b, 2018, 2019), CYP2E1 has been mentioned only rarely in drug monographs and there have been no ‘clinically significant’ interactions since 2008. This is also reflected in a lack of officially recommended reference compounds to study metabolism or inhibition associated with CYP2E1. However, it is known that CYP2E1 is of importance in the metabolism of several small-molecular xenobiotics and its role in biochemical consequences of heavy alcohol consumption should be duly noted.

Mechanisms of CYP induction

Xenobiotic-sensing receptors as mediators of CYP induction

The induction of drug metabolism has been known since 1950s and it was early on understood to have important consequences for the action of drugs. However, the mechanistic basis behind induction remained enigmatic for decades. Discovery of the xenobiotic-sensing receptors, aryl hydrocarbon receptor (AHR) at 1970s and pregnane X receptor (PXR) and constitutive androstane receptor (CAR) at 1990s, as the molecular mediators of the CYP induction was a major step forward in understanding the mechanisms of induction (Baes et al. 1994; Honkakoski et al. 1998; Kliewer et al. 1998; Poland et al. 1976).

The xenobiotic-sensing receptors are ligand-activated transcription factors belonging structurally either to the nuclear receptors or the basic-helix–loop–helix Per-Arnt-Sim (bHLH-PAS) proteins. Today, activation of these receptors and subsequent CYP induction can be studied with a number of in silico, in vitro, and cell-based methods enabling relatively good prediction of in vivo induction (Benasconi et al. 2019; Kato 2020; Pelkonen et al. 2008). However, not all the compounds found to be activators in cell or other in vitro assays are actual in vivo activators because of pharmacokinetic or other factors. It has also become clear that AHR, PXR, and CAR not only control the elimination of xenobiotics, but regulate also many other endogenous functions and signaling pathways and their activation may be involved in many chronic diseases such as metabolic diseases and cancer (Hakkola et al. 2018).

PXR and CAR, the xenobiotic-sensing nuclear receptors

PXR, systematic name NR1I2, and CAR, systematic name NR1I3, belong to the same subfamily of nuclear receptors. Their tissue expression profile is quite limited, and both are predominantly expressed in the liver, PXR also in the intestine (Wang et al. 2012). Low levels can be found in some other tissues. PXR and CAR ligand-binding sites have evolved to accommodate various foreign chemicals, and therefore, they play a major role in sensing of the chemical environment. The basis for their ligand promiscuity is large and flexible ligand-binding pockets that can accommodate a wide range of ligands with diverse structural and physicochemical properties (Buchman et al. 2018).

Especially, the PXR ligand-binding pocket is very large (1200–1600 Å³) and adaptable allowing a great number of compounds with different structures to bind and activate PXR, thus making PXR an ideal sensor for chemical environment (Buchman et al. 2018). The CAR ligand-binding pocket is smaller (~ 600 Å³) and less flexible than that of PXR and, therefore, apparently can accommodate a smaller number of chemicals (Buchman et al. 2018). However, also CAR can be activated with many different compounds. From the point of view of clinically important drug–drug interactions, PXR activation probably represents the most important induction mechanism. However, PXR and CAR also share many important pharmaceuticals as ligands.

While the DNA-binding domains of PXR and CAR are quite conserved across species, the ligand-binding domains differ significantly. Consequently, there are important species differences in the ligand preferences of these xenobiotic-sensing receptors hindering translation of in vivo results from the experimental animals to the humans (Blumberg et al. 1998; Lehmann et al. 1998). A classic example is rifampicin that induces efficiently the human PXR but poorly the mouse counterpart. Vice versa, PCN (pregnenolone-16α-carbonitrile) prefers the mouse PXR over the human PXR. Similarly, TCPOBOP (1,4-bis-[2-(3,5-dichloropyridyloxy)]benzene, 3,3′,5,5′-tetrachloro-1,4-bis(pyridyloxy)benzene) activates the mouse CAR, but not the human CAR, while CITCO (6-(4-Chlorophenyl)imidazo[2,1-b][1,3]thiazole-5-carbaldehyde-O-(3,4-dichlorobenzyl)oxime) is an agonist for the human CAR with little affinity to the mouse CAR (Chai et al. 2016). To overcome the problem of species differences in ligand preference, PXR and CAR-humanized mouse models have been developed (Scheer et al. 2008).

Aptly named as constitutive androstane receptor (or less frequently constitutively active receptor), CAR displays ligand-independent, constitutive transcriptional activity (Chai et al. 2016; Kobayashi et al. 2015). This has been especially evident in experiments utilizing exogenous expression of CAR in hepatic cell lines. In primary hepatocytes or in the liver in vivo, the constitutive activity may be limited by mainly cytoplasmic localization of the unliganded receptor as part of a multiprotein complex. Upon ligand binding, CAR dissociates from the chaperone proteins allowing translocation to nucleus. In addition to classical ligand binding, CAR may be activated indirectly. Phenobarbital is
the prime example of an indirect CAR activator (Kobayashi et al. 2015). The mechanism of CAR activation by phenobarbital is complex and involves repression of epidermal growth factor (EGF) receptor (EGFR) signaling through the competitive inhibition of EGF–EGFR interaction. Subsequently, phosphorylation of receptor for activated C kinase 1 (RACK1) is reduced allowing RACK1 to interact with CAR and protein phosphatase 2A. This ternary interaction then enables CAR dephosphorylation and, consequently, translocation to nucleus (Kobayashi et al. 2015).

In response to ligand binding, both PXR and CAR transfer from the cytosol to the nucleus and form heterodimers with another nuclear receptor, retinoid X receptor (RXR). The heterodimer is then able to bind to the DNA elements including both direct and everted repeats of the sequence AGGTCA and its variants. The agonist-bound nuclear receptor activates transcription through coactivator recruitment modifying chromatin structure and engaging transcription initiation complex. In addition to this classical nuclear receptor function, PXR and CAR form also protein–protein interactions broadening the cellular functions under the control of these nuclear receptors (Odlandeji et al. 2016; Pavek 2016). This mode of action may be especially important for the gene repression by the receptors. Furthermore, the PXR and CAR function may be fine-tuned by phosphorylation status and other posttranslational modifications (Cui et al. 2016; Smutny et al. 2013; Staudinger et al. 2011).

PXR targets several CYP enzymes with major importance in drug metabolism including the most predominant drug-metabolizing CYP enzyme CYP3A4. Along with the CYP3A subfamily, PXR regulates many other important drug-metabolism CYPs. Chromatin immunoprecipitation sequencing (ChIP-Seq) analysis of PXR binding in HepG2 cells in response to rifampicin treatment detected rifampicin-induced regions close to CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP3A4, and CYP3A7 genes (Smith et al. 2014). In addition, several CYP genes with less-defined roles in drug metabolism and many phase 2 enzymes were found to interact with PXR (Smith et al. 2014).

CYP2B6 has been much studied as a classical CAR target gene, but the CAR target gene profile appears to be fairly overlapping with PXR (Kobayashi et al. 2015). No ChIP-Seq analysis revealing the CAR binding to human CYP genes has been published so far, although the human CAR interactome has been studied in a mouse model (Niu et al. 2018). Interestingly, this investigation showed that CAR targets several genes coding for other transcription factors including PXR and AHR introducing additional level of complexity to the induction mechanisms (Niu et al. 2018).

RXR functions as a binding partner for PXR and CAR as well as several other type 2 nuclear receptors. Although RXR is often regarded as a passive partner, RXR may also bind ligands such as 9-cis retinoic acid (de Almeida and Conda-Sheridan 2019) and it has been reported that RXR ligands may modulate function of the dimers formed by RXR and the xenobiotic-sensing receptors (Chen et al. 2010). It has also been reported that retinoids could induce CYP3A4 through RXR/VDR heterodimers and RXR homodimers (Wang et al. 2008).

AHR

Aryl hydrocarbon receptor (AHR) belongs to the bHLH-PAS family of transcription factors (Nebert 2017). AHR is activated especially by toxins and environmental contaminants including the classical activator 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and it has great toxicological significance (Kawajiri and Fujii-Kuriyama 2017). However, also some pharmaceutical ligands such as omeprazole activate AHR (Quattrochi and Tukey 1993). Many endogenous ligands have been identified for AHR including some originating from the microbiota (Bock 2019; Kawajiri and Fujii-Kuriyama 2017).

AHR is ubiquitously expressed in most tissues with high expression in placenta, lung, heart, pancreas, and liver (Dolwick et al. 1993). In absence of a ligand, AHR is sequestered to the cytosol in a complex with several proteins. Ligand binding-induced conformational change releases AHR from the chaperone proteins and allows translocation to the nucleus, where it heterodimerizes with another bHLH-PAS protein, aryl hydrocarbon receptor nuclear translocator (ARNT) (Kawajiri and Fujii-Kuriyama 2017; Nebert 2017). AHR/ARNT-dimer is then able to bind the so-called xenobiotic-response-elements (XRE) in the vicinity of the target genes to promote transcription. One of the target genes is aryl hydrocarbon receptor repressor (AHRR), which acts as a negative feedback mechanism (Bock 2019).

Among the CYPs, AHR mainly regulates the members of the CYP1 family, of which only CYP1A2 plays an important role in hepatic drug metabolism. In several extrahepatic tissues, AHR efficiently induces CYP1A1 and CYP1B1 (Bock 2019). In the other CYP families, AHR has been found to regulate some members in the CYP2 family including CYP2S1 (Saarikoski et al. 2005). In mouse, also Cyp2a5 is regulated by AHR, but no similar evidence exist for the human ortholog CYP2A6 (Arpiainen et al. 2005). AHR also regulates several phase 2 drug-metabolizing enzymes. In addition to drug metabolism, AHR plays important role in multiple physiological functions such as immunity, cell growth and differentiation, and prolonged activation may cause toxicity (Hakkola et al. 2018; Kawajiri and Fujii-Kuriyama 2017; Nebert 2017; Rothhammer and Quintana 2019).
Other transcriptional mechanisms mediating CYP induction

In addition to the xenobiotic-sensing receptors, some other transcription factors have been shown to mediate induction of CYP enzymes in response to chemical exposure. Some classical steroid receptors have been shown to regulate CYP genes. In contrast to the xenobiotic-sensing nuclear receptors, these nuclear receptors are more restricted in ligand preference and act as homodimers. Accordingly, estradiol induces CYP2A6 directly through estrogen receptor α (ERα) binding to the 5′-flanking region of the gene (Higashi et al. 2011).

Glucocorticoids regulate CYP expression; however, the mechanisms are diverse. Some glucocorticoids such as dexamethasone are PXR ligands explaining the observed CYP induction. However, others like methylprednisolone activate poorly the human PXR (Shukla et al. 2011). In fact, glucocorticoid receptor (GR) activation induces expression of PXR and CAR that may explain in many cases the CYP induction by glucocorticoids (Pascussi et al. 2001, 2003). However, also direct GR-mediated regulation of the CYP2C and CYP3A genes has been reported (Chen et al. 2003; Ferguson et al. 2005; Gerbal-Chaloin et al. 2002; Hukkanen et al. 2003; Matsunaga et al. 2004). For the CYP3A genes, this has been shown in the lung and fetal liver, i.e., in the absence of PXR and CAR expression (Hukkanen et al. 2003; Matsunaga et al. 2004).

Nuclear factor-erythroid 2-related factor 2 (NRF2) (the official name: Nuclear factor-erythroid-derived 2-like 2, NFE2L2) is a transcription factor belonging to the cap-n-collar subfamily of basic region–leucine zipper-type transcription factors (Suzuki and Yamamoto 2015). NRF2 expression is controlled at the level of protein stability and under unstressed conditions NRF2 is targeted to proteasomal degradation by its interaction partner Kelch-like ECH-associated protein 1 (KEAP1). KEAP1 functions as a redox sensor and contains several highly reactive cysteines that, upon modification by electrophilic molecules, prevent it from targeting NRF2 for proteasomal degradation. Therefore, in response to oxidative stress, NRF2 is stabilized, accumulates to the nucleus, and forms heterodimers with small musculoaponeurotic fibrosarcoma oncogene homologue (sMAF) proteins. The NRF2/sMAF-dimer binds to the antioxidant response element (ARE) in the regulatory regions of the target genes (Cuadrado et al. 2019).

NRF2 pathway is activated in response to oxidative stress produced by many toxic compounds such as heavy metals like cadmium and lead (Abu-Bakar et al. 2013). NRF2 regulates multiple cell functions, among them antioxidative response and xenobiotic biotransformation (Cuadrado et al. 2019). However, within the xenobiotic metabolism machinery, NRF2 mainly targets phase 2 enzymes, and among the CYP enzymes, only a limited number of CYP2 genes are regulated by NRF2 (K. C. Wu et al. 2012). The best-characterized CYP target is the mouse gene Cyp2a5 (Abu-Bakar et al. 2007; Lämsä et al. 2010). Also the closely related human gene CYP2A6 is regulated by NRF2 (Abu-Bakar et al. 2013; Yokota et al. 2011). Interestingly, the AHR and NRF2 pathways crosstalk at multiple levels (Köhle and Bock 2007).

Post-transcriptional regulation

Some CYPs are regulated at the post-transcriptional level. The most important example is CYP2E1. CYP2E1 protein has a short half-life and protein stabilization represents a major level of CYP2E1 regulation. The labile CYP2E1 protein is stabilized by xenobiotics such as ethanol, acetone, pyrazole, and isoniazid (Carroccio et al. 1994; Song et al. 1989). A few CYPs have been shown to be regulated by xenobiotics at the level of mRNA stability. mRNA stabilization has been shown convincingly for the mouse form Cyp2a5, which, in response to pyrazole treatment, is regulated by heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) binding to the 3′-untranslated region of the Cyp2a5 mRNA (Abu-Bakar et al. 2013). The human CYP2A6 appears to be regulated by a similar mechanism (Christian et al. 2004). During the recent years, many CYPs have been shown to be targeted by microRNAs that may also potentially mediate the post-transcriptional effects of chemical exposure (Yu et al. 2016a, b).

The in vivo induction of human CYP enzymes with drugs, herbal medicines, and environmental chemicals

In the following section, we will present the current status on the knowledge of the human in vivo induction. The following tables present the medications (Table 12), environmental contaminants (Table 13), and the herbal remedies and nutritional exposures (Table 14) known to induce human CYP enzymes. Only human in vivo inducers are listed based on the following criteria: the compound induces a specific CYP enzyme as assessed by (1) the pharmacokinetics of an established CYP-specific probe, (2) the established CYP-specific metabolic pathway of an endogenous metabolite (such as 6β-hydroxycortisol and 4β-hydroxycholesterol for CYP3A4), or (3) tissue-level expression of a CYP enzyme mRNA or protein. Also, supporting in vitro mechanistic evidence was required for compounds with only one published report of in vivo induction. However, the mechanistic evidence was not required if the inducer was a structural analog of a well-established inducer (this pertains especially to
Enzyme	Class of inducers	Inducing medication	Receptor(s) implicated	Tissues	References
CYP1A1	Proton pump inhibitors	Omeprazole	AHR	Duodenum	Buchthal et al. (1995), McDonnell et al. (1992)
CYP1A2	Antibiotics	Rifampicin	PXR indirectly?	Liver (phenotyping)	Backman et al. (2006), Robson et al. (1984), Wietholtz et al. (1995)
	Antiepileptics	Carbamazepine	CAR/PXR indirectly?	Liver (phenotyping and expression)	Lucas et al. (1998), Oscarson et al. (2006), Parker et al. (1998)
		Phenytoin	CAR/PXR indirectly?	Liver (phenotyping)	Miller et al. (1984), Wietholtz et al. (1989)
	Antiretrovirals	Nelfinavir	PXR indirectly?	Liver (phenotyping)	Kirby et al. (2011)
		Ritonavir	PXR indirectly?	Liver (phenotyping)	Hsu et al. (1998), Kirby et al. (2011), Penzak et al. (2002)
	Barbiturates	Pentobarbital	CAR and PXR indirectly?	Liver (phenotyping)	Dahlqvist et al. (1989)
		Phenobarbital	CAR and PXR indirectly?	Liver (phenotyping)	Landay et al. (1978), Saccar et al. (1985)
		Secobarbital	CAR and PXR indirectly?	Liver (phenotyping)	Paladin et al. (1983)
	Immunosuppressants	Teriflunomide	CAR?	Liver (phenotyping)	Aubagio summary of product characteristics†
	Proton pump inhibitors	Omeprazole	AHR	Liver (phenotyping and expression)	Diaz et al. (1990), Rost et al. (1994), Rost and Roots (1994)
	CYP2A6	Antiepileptics	Carbamazepine	CAR/PXR	Oscarson et al. (2006), Williams et al. (2010)
	Antimalarials	Artemisinin	CAR/PXR	Liver (phenotyping)	Asimus et al. (2008)
	Antiretrovirals	Efavirenz	CAR/PXR	Liver (phenotyping)	Metzger et al. (2019)
	Barbiturates	Phenytoic	CAR/PXR	Liver (expression)	Cashman et al. (1992), Kyerematen et al. (1990), Yamano et al. (1990)
	Estrogens	Ethinyl estradiol (of oral contraceptives)	ER	Liver (phenotyping)	Benowitz et al. (2006), Berlin et al. (2007), Sinues et al. (2008)
	CYP2B6	Antibiotics	Rifampicin	PXR	Chung et al. (2011), Loboz et al. (2006), Lopez-Cortes et al. (2002)
	Antiepileptics	Carbamazepine	CAR/PXR	Liver (phenotyping and expression)	Ji et al. (2008), Ketter et al. (1995), Oscarson et al. (2006)
		Phenytoin	CAR/PXR	Liver (phenotyping)	Slattery et al. (1996), Williams et al. (1999)
	Antimalarials	Arteether	CAR/PXR	Liver (phenotyping)	Elsherbiny et al. (2008)
		Artemether	CAR/PXR	Liver (phenotyping)	Elsherbiny et al. (2008)
		Artemisinin	CAR/PXR	Liver (phenotyping)	Elsherbiny et al. (2008), Simonsson et al. (2003), Zang et al. (2014)
		Artesunate	CAR/PXR	Liver (phenotyping)	Elsherbiny et al. (2008)
		Dihydroartemisinin	CAR/PXR	Liver (phenotyping)	Elsherbiny et al. (2008)
Enzyme Class of inducers	Inducing medication	Receptor(s) implicated	Tissues	References	
--------------------------	---------------------	-----------------------	---------	------------	
Antipyretic analgesic	Metamizole	Unknown	Liver (phenotyping and expression)	Qin et al. (2012), Saussele et al. (2007)	
Antiretrovirals	Efavirenz	CAR/PXR	Liver (phenotyping), white blood cells	Kharasch et al. (2012), Meyer zu Schwabedissen et al. (2012), Ngaimisi et al. (2010), Robertson et al. (2008a, b)	
	Nelfinavir	PXR	Liver (phenotyping)	Kirby et al. (2011a, b)	
	Ritonavir	PXR	Liver (phenotyping)	Kharasch et al. (2008), Kirby et al. (2011a, b)	
Barbiturates	Phenobarbital	CAR/PXR	Liver (phenotyping)	Jao et al. (1972)	
CYP2C8	Rifampicin	PXR	Liver (phenotyping), small intestine enterocytes	Glaeser et al. (2005), Jaakkola et al. (2006), Niemi et al. (2000, 2004), Park et al. (2004)	
	Flucloxacillin	PXR	Liver (phenotyping)	Du et al. (2013)	
	Carbamazepine	CAR/PXR	Liver (expression)	Oscarson et al. (2006)	
CYP2C9	Apalutamide	PXR?	Liver (phenotyping)	Duran et al. (2020)	
	Enzalutamide	PXR	Liver (phenotyping)	Gibbons et al. (2015)	
Antibiotics	Dicloxacillin	PXR	Liver (phenotyping)	Stage et al. (2018)	
	Nafcillin	PXR	Liver (phenotyping)	Kim et al. (2007), King et al. (2018)	
	Rifabutin	PXR	Liver (phenotyping)	Lutz et al. (2018)	
	Rifampicin	PXR	Liver (phenotyping), duodenum	Glaeser et al. (2005), O’Reilly (1974), Oscarson et al. (2007), Williamson et al. (1998), Zilly et al. (1975)	
Antiemetics	Aprepitant	PXR	Liver (phenotyping)	Depre et al. (2005), Shadle et al. (2004)	
Antiepileptics	Carbamazepine	CAR/PXR	Liver (phenotyping and expression)	Herman et al. (2006), Lai et al. (1992), Oscarson et al. (2006)	
	Phenytoin	CAR/PXR	Liver (phenotyping)	Chetty et al. (1998), Dickinson et al. (1985)	
Antiretrovirals	Nelfinavir	PXR	Liver (phenotyping)	Kirby et al. (2011a, b)	
	Ritonavir	PXR	Liver (phenotyping)	Kirby et al. (2011a, b), Lim et al. (2004), Yeh et al. (2006)	
Barbiturates	Pentobarbital	CAR/PXR	Liver (phenotyping)	Yoshida et al. (1993)	
	Phenobarbital	CAR/PXR	Liver (phenotyping)	Goldberg et al. (1996), Orme and Breckenridge (1976)	
	Secobarbital	CAR/PXR	Liver (phenotyping)	Breckenridge and Orme (1971), O’Reilly et al. (1980), Udall (1975)	
Endothelin receptor antagonists	Bosentan	PXR	Liver (phenotyping)	van Giersbergen et al. (2002), Weber et al. (1999a)	
Enzyme	Class of inducers	Inducing medication	Receptor(s) implicated	Tissues	References
--------	-------------------	---------------------	-----------------------	---------	------------
Kinase inhibitor		Dabrafenib	PXR	Liver (phenotyping)	Suttle et al. (2015)
CYP2C19	Antiandrogens	Apalutamide	PXR	Liver (phenotyping)	Duran et al. (2020)
		Enzalutamide	PXR	Liver (phenotyping)	Gibbons et al. (2015)
Antibiotics		Dicloxacillin	PXR	Liver (phenotyping)	Stage et al. (2018)
		Rifampicin	PXR	Liver (phenotyping), duodenum	Feng et al. (1998), Oscarson et al. (2007), Zhou et al. (1990), Zilly et al. (1975)
Antiepileptics		Carbamazepine	CAR/PXR	Liver (expression)	Oscarson et al. (2006)
		Phenytoin	CAR/PXR	Liver (phenotyping)	Richter et al. (1980)
Antimalarials		Arteether	CAR/PXR	Liver (phenotyping)	Asimus et al. (2007), Elsherbiny et al. (2008)
		Artemether	CAR/PXR	Liver (phenotyping)	Elsherbiny et al. (2008)
		Artemisinin	CAR/PXR	Liver (phenotyping)	Asimus et al. (2007), Elsherbiny et al. (2008), Mihara et al. (1999), Svensson et al. (1998)
Antiretrovirals		Efavirenz	CAR/PXR	Liver (phenotyping)	Michaud et al. (2012)
		Ritonavir (with lopinavir or tipranavir)	PXR	Liver (phenotyping)	Dumond et al. (2010), Yeh et al. (2006)
Barbiturates		Pentobarbital	CAR/PXR	Liver (phenotyping)	Heinmeyer et al. (1987)
		Phenobarbital	CAR/PXR	Liver (phenotyping and expression)	Lecamwasam et al. (1975), Richter et al. (1980)
CYP2E1	Antibiotics	Isoniazid	Stabilization	Liver (phenotyping), blood lymphocytes	Chien et al. (1997), Mazze et al. (1982), O’Shea et al. (1997), Walubo et al. (2005), Zand et al. 1993
Retinoid receptor modulators		All-trans-retinoic acid	RXR?	Liver (phenotyping)	Adedoyin et al. (1998)
CYP2S1	Retinoid receptor modulators	Topical all-trans retinoic acid	RXR?	Skin	Smith et al. (2003)
CYP3A4	Antiandrogens	Apalutamide	PXR	Liver (phenotyping)	Duran et al. (2020)
		Enzalutamide	PXR	Liver (phenotyping)	Belderbos et al. (2018), Gibbons et al. (2015), Schwartzberg et al. (2017)
Antibiotics		Dicloxacillin	PXR	Liver (phenotyping)	Stage et al. (2018)
		Flucloxacillin	PXR	Liver (phenotyping)	Fan et al. (2019)
		Nafcillin	PXR	Liver (phenotyping)	Lang et al. (2003)
		Rifabutin	PXR	Liver (phenotyping)	Barditch-Crovo et al. (1999), Perucca et al. (1988)
		Rifampicin	PXR	Liver (phenotyping and expression), duodenum	Greiner et al. (1999), Kolans et al. (1992), Marschall et al. (2005), McAllister et al. (1983), Ohnhaus and Park (1979), Perucca et al. (1988)
Table 12 (continued)

Enzyme	Class of inducers	Inducing medication	Receptor(s) implicated	Tissues	References
Drug-drug interactions					
Antidiarrheals		Telotristat ethyl	PXR	Liver (phenotyping)	Yu et al. (2019)
Antiemetics		Aprepitant	PXR	Liver (phenotyping)	Shadle et al. (2004)
Antiepileptics		Carbamazepine	CAR/PXR	Liver (phenotyping, expression)	Crawford et al. (1990), Moreland et al. (1982), Oscarson et al. (2006)
		Phenytoin	CAR/PXR	Liver (phenotyping, expression)	Crawford et al. (1990), Thummel et al. (1994), Werk et al. (1964), Xu et al. (2006)
		Oxcarbazepine	PXR	Liver (phenotyping)	Andreasen et al. (2007), Klostoskoff Jensen et al. (1992, Zaccara et al. (1993)
		Rufinamide	Unknown	Liver (phenotyping)	Perucca et al. (2008)
		Topiramate	PXR	Liver (phenotyping)	Rosenfeld et al. (1997)
Antimalarials		Artemether	CAR/PXR	Liver (phenotyping)	Asimus et al. (2007)
		Artemisinin	CAR/PXR	Liver (phenotyping)	Asimus et al. (2007), Zang et al. (2014)
		Dihydroartemisinin	CAR/PXR	Liver (phenotyping)	Asimus et al. (2007)
Antineoplastic agents		Vinblastine	CAR/PXR	Liver (phenotyping)	Smith et al. (2010)
Antipyretic analgesic		Metamizole	Unknown	Liver (phenotyping and expression)	Caraco et al. (1999), Saussele et al. (2007)
Antiretrovirals		EFV	CAR/PXR	Liver (phenotyping)	Fellay et al. (2005), Moully et al. (2002)
		Etravirine	PXR	Liver (phenotyping)	Kakuda et al. (2014), Scholler-Gyure et al. (2009)
		Fosamprenavir (and metabolite amprenavir)	CAR/PXR	Liver (phenotyping)	Justesen et al. (2003), Kashuba et al. (2005), Tran et al. (2002)
		Nevirapine	CAR/PXR	Liver (phenotyping)	Dallly et al. (2006), Mildvan et al. (2002), Solas et al. (2004)
		ritonavir	PXR	Liver (phenotyping)	Hsu et al. (1997), Ouellet et al. (1998)
		Tipranavir	CAR/PXR	Liver (phenotyping)	Boehringer Ingelheim (2005)
Barbiturates		Pentobarbital	CAR/PXR?	Liver (phenotyping)	Berman and Green (1971), Schellens et al. (1989)
		Phenoobarbital	CAR/PXR	Liver (phenotyping)	Back et al. (1980), Burstein and Klai-ber (1965)
Bile acid derivatives		Ursodeoxycholic acid	PXR	Liver (phenotyping)	Bodin et al. (2001), Marschall et al. (2005)
Cystic fibrosis medications		Lumacaftor	PXR	Liver (phenotyping)	ORKAMBI summary of product characteristics³⁶⁵
Table 12 (continued)

Enzyme Class of inducers	Inducing medication	Receptor(s) implicated	Tissues	References
Endothelin receptor antagonists	Bosentan	PXR	Liver (phenotyping)	Dingemanse et al. (2003), Weber et al. (1999b)
Glucocorticoids	Dexamethasone	GR/PXR	Liver (phenotyping)	McCune et al. (2000), Roberts et al. (2008), Watkins et al. (1989)
	Methylprednisolone	GR	Liver (phenotyping)	Kuypers et al. (2004), Villikka et al. (2001)
	Prednisolone	GR	Liver (phenotyping)	Press et al. (2010), van Duijnhoven et al. (2003)
	Prednisone	GR	Liver (phenotyping)	Anglicheau et al. (2003)
Herpes virus medications	Amenamevir	Unknown	Liver (phenotyping)	Adeloye et al. (2018), Kusawake et al. (2017)
Gout medications	Lesinurad	PXR	Liver (phenotyping)	Gillen et al. (2017)
Retinoid receptor modulators	Alitretinoin (9-cis retinoic acid)	RXR	Liver (phenotyping)	Schmitt-Hoffmann et al. (2011)
	Bexarotene	RXR	Liver (phenotyping)	Padda et al. (2013), Wakelee et al. (2012)
Steroidogenesis inhibitors	Mitotane	PXR	Liver (phenotyping)	Bledsoe et al. (1964), van Erp et al. (2011)
Stimulants	Modafinil (and its R-enantiomer armodafinil)	Unknown	Liver (phenotyping)	Darwish et al. (2008), Robertson et al. (2002)
Kinase inhibitors	Dabrafenib	PXR	Liver (phenotyping)	Lawrence et al. (2014)
	Erlotinib	PXR	Liver (phenotyping)	Svedberg et al. (2019)
	Midostaurin	PXR	Liver (phenotyping)	Gu et al. (2018)
	Vemurafenib	PXR	Liver (phenotyping)	Zhang et al. (2017)
CYP3A5 Antibiotics	Rifampicin	PXR	Duodenum	Burk et al. (2004)
Glucocticoids	Topical clobetasol 17-propionate	GR	Skin	Smith et al. (2006)
CYP3A7 Antibiotics and CYP3A43 Antiepileptics	Rifampicin	PXR	Duodenum	Oscarson et al. (2007)
	Carbamazepine	CAR/PXR	Liver (expression)	Oscarson et al. (2006)

Only medications currently in clinical use are listed

a https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/202992s010lbl.pdf

b https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/211358s000lbl.pdf
various barbiturates). Supporting evidence was not required if at least two studies report the induction. For medications, only those in current clinical use are listed. For withdrawn pharmaceuticals, reader is advised to consult previously published reviews (Hukkanen 2012; Zanger and Schwab 2013). Only CYP enzymes in families 1–3 are covered here.

The search strategy included searching PubMed with the specific CYPs as keywords (e.g., CYP2B6 and [induction or inducer or induce]). Also searches with the specific probe compounds were performed (e.g., for CYP2B6 “bupropion and [induction or inducer or induce]”). The bibliographies of the publications were checked for additional articles. As the clinical and toxicological significance of the induction is often difficult to evaluate, the compounds are listed on the tables with no regard to the consequences or magnitudes of the induction. However, for CYP-inducing TKIs, Table 1 provides the estimates of potency. For the sake of brevity, the following paragraphs do not systematically repeat the data and the references given in Tables 12, 13 and 14.

The most important xenobiotic-activated receptor regulating the induction of enzymes in the CYP1 subfamily is AHR. Several environmental chemicals such as PAHs, dioxins, polychlorinated biphenyls, and heterocyclic aromatic amines induce CYP1A1, CYP1A2, and CYP1B1 enzymes via AHR (Tables 12, 13, 14). Human in vivo induction of CYP1A1 and CYP1B1 is difficult to study with phenotyping probes owing to their very low or non-existent hepatic expression and overlap with CYP1A2 substrates (Chang et al. 2003). However, their expression can be measured more easily as these enzymes are widely expressed in various extrahepatic tissues where tissue sampling is more convenient than with liver. Only one medication (omeprazole for CYP1A1 in duodenum and CYP1A2 in liver) (Buchthal et al. 1995; Diaz et al. 1990; McDonnell et al. 1992; Rost et al. 1994; Rost and Roots 1994) and one nutritional exposure (indole-3-carbinol present in cruciferous vegetables for hepatic CYP1A2) (Pan- tuck et al. 1979; Reed et al. 2005) are currently known to induce CYP1 enzymes via AHR-mediated pathways. PXR and CAR are not known to directly induce CYP1 enzymes but several CAR/PXR agonists do induce CYP1A2-related activities in vivo. It is quite likely that CAR/PXR agonists induce the expression of AHR and lead to the induction of CYP1 enzymes indirectly (Maglich et al. 2002; Oscarson et al. 2006). Recent evidence suggests that teriflunomide, an immunosuppressant, induces CYP1A2 activity as shown with caffeine phenotyping possibly via phenobarbital-like indirect CAR activation (Carazo et al. 2018).3

CYP2A6 is induced in humans in vivo by CAR, PXR, ERα, and NRF2 agonists (Tables 12, 13, 14). The regulation of CYP2A6 by ERα and NRF2 sets it apart as no other CYP enzyme is known to be regulated in vivo by these transcription factors. CYP2A6 is induced through ERα by phytoestrogens such as genistein (in legumes such as soybeans) (Y. Chen et al. 2011; Mazur 1998) and quercetin (in tea, vegetables, fruits, and berries) (Chen et al. 2009; Chvn et al. 2012) as well as ethinyl estradiol of oral contraceptives (Benowitz et al. 2006; Berlin et al. 2007; Sinues et al. 2008). Exposure to cadmium measured as urine cadmium excretion is associated with CYP2A6 activity probed with coumarin 7-hydroxylation but only in non-smokers (Satarug et al. 2004a, b). In smokers, CYP2A6 activity is known to be reduced (inhibition) by an unknown mechanism (Hukkanen et al. 2005) and as smoking is also an important source of cadmium (induction), it is not surprising that smoking can confound the association between cadmium exposure and CYP2A6 activity. The effect of cadmium on CYP2A6 is most likely mediated by NRF2 as is the induction caused by sulforaphane present in cruciferous vegetables (Abu-Bakar et al. 2004; Yokota et al. 2011). All medications known to induce CYP2A6 are combined CAR/PXR activators and it is not known which nuclear receptor is more important for CYP2A6 induction in vivo as there is some evidence for the involvement of both (Itho et al. 2006). Rifampicin treatment for 6 days had no effect on CYP2A6 activity measured as coumarin hydroxylation (Rautio et al. 1994) arguing against the role of PXR in the in vivo regulation.

Several medications with PXR and combined CAR/PXR-activating properties induce CYP2B6 (Table 12). The mechanism mediating the effect of metamizole, an antipyretic analgesic with spasmylic properties, on the induction of CYP2B6 is currently unknown (Qin et al. 2012; Sausselle et al. 2007). It is not acting as a direct ligand of PXR or CAR and an indirect phenobarbital-like mechanism has been suggested (Qin et al. 2012; Sausselle et al. 2007). No environmental toxicant has been shown to induce CYP2B6 in vivo, but constituents of herbal remedies such as baicalin (CAR/PXR), hyperforin (PXR) of St. John’s wort, and sodium ferulate (PXR) induce CYP2B6 (Fan et al. 2009; Gao et al. 2012, 2013; Lei et al. 2010) (Table 14). The effects of baicalin and sodium ferulate on CYP2B6 were demonstrated only as purified compounds in high doses. Thus, it is not known if dosing as herbal preparations containing Angelica sinesis, Cimicifuga heracleefolia, or Ligusticum chuangxiang (sodium ferulate) or Baikal skullcap (Scutellaria baicalensis) (baicalin) induce CYP2B6.

The induction of CYP2C8 has been demonstrated only with a few CAR or PXR-activating pharmaceuticals (Table 12). No environmental chemicals or constituents of herbal remedies are known to induce CYP2C8 in vivo in humans. Similarly, CYP2C9 is not known to be induced by environmental toxicants and only one herbal preparation, St. John’s wort, induces CYP2C9-related activities in vivo.
et al. 2006) (Table 12). St John’s wort induces CYP2E1 in RXR agonism as the most likely mode of induction (Gyamfi isoniazid (stabilization) and oral all-retinoic acid with tations have been demonstrated to induce CYP2E1, namely can’t inducing CYP2E1 is ethanol (Table 14). Two medicati- esto-Castello et al. 2010; Wongvijitsuk et al. 2011) and the same compounds may also be responsible for the CYP2E1 induction detected in tobacco smokers (Benowitz et al. 2003; Pri- et al. 2000; Smith et al. 2003). UVB exposure leads to the formation of 6-formylindolo[3,2-b]carbazole, a tryptophan photoproduct and an endogenous AHR ligand (Fritsche et al. 2007). The only medication known to induce CYP2S1 expression is topical all-trans retinoic acid, possibly via RXR (McNeilly et al. 2012).

As CYP3A4 is involved in the metabolism of approximately 50% of all marketed medications (Zhou 2008), its induction is of special importance. There are also numerous pharmaceutical CYP3A4 inducers leading to increased risk of drug–drug interactions (Table 12). CAR, GR, and PXR are known to mediate the induction. The mechanism of induction is unknown for antiepileptic rufinamide, stimu- lants modafinil and its R-enantiomer armodafinil, antither- petic medication amenamievir, and metiamizole (Table 12). Also RXR agonists altitretinoin (9-cis retinoic acid) and bexarotene are known to induce CYP3A4-related activities in phenotyping studies (Padda et al. 2013; Schmitt-Hoffmann et al. 2011; Wakelee et al. 2012).

In addition to CYP3A4-inducing medications, quite many herbal remedies and food ingredients induce CYP3A4 (Table 14). Also the occupational and environmental exposure to organochlorine pesticides dichlorodiphenyltrichlo- roethane (DDT) and endrin is associated with the induction of CYP3A4 as measured with urinary 6β-hydroxycortisol (Petersen et al. 2007; Poland et al. 1970) (Table 13). One often neglected CYP3A4 inducer is ethanol. Chronic alco- holics had a higher ratio of urine 6β-hydroxycortisol/cortisol compared with healthy volunteers (Luceri et al. 2001). Also oral bioavailability of midazolam was significantly lower in subjects with moderate alcohol consumption in compari- son with abstaining controls suggesting intestinal CYP3A4 induction (Liangpunsakul et al. 2005). In a twin study, alco- hol consumption was significantly associated with greater St. John’s wort-induced CYP3A4 activity as assessed with quinine phenotyping (Rahmioglu et al. 2011). There are also indications that CYP3A4 protein could be induced in liver of the alcoholics with liver disease (Niemela et al. 2000).

The evaluation of induction phenomena of CYP3A enzymes is complicated by the closely related CYP3A5 enzyme. CYP3A4 and CYP3A5 have widely overlapping substrate specificities and their regulation shares certain features such as crucial role of PXR and CAR (Burk et al. 2004). A notable difference is the extensive influence of genetics on CYP3A5 expression. The CYP3A5*3 allele with severely decreased enzymatic activity is more common than the CYP3A5*1 allele (CYP3A5*3 allele frequency is ~90% in Caucasians and 50% in African–Americans) (Lamba et al. 2002). Thus, most Caucasians do not have a functional CYP3A5 enzyme. The phenotyping studies per- formed with probes metabolized by CYP3A4 and CYP3A5 are classified here as showing only CYP3A4 induction if there are no enzyme-specific data on CYP3A5 induction. It is conceivable that many of the CYP3A4 inducers are also CYP3A5 inducers in those patients carrying one or two functional CYP3A5/* alleles. There are only a few known CYP3A5 mRNA in vivo inducers. Rifampicin induced duodenal CYP3A5 mRNA in the subjects carrying a CYP3A5/* allele, while no induction was detected in CYP3A5*/3/* subjects (Burk et al. 2004). Topical administration of the glucocorti- coid clobetasol 17-propionate induced cutaneous CYP3A5 mRNA (Smith et al. 2006).

The induction of minor CYP3A forms has also been demon- strated. The use of carbamazepine is associated with the increased expression of hepatic CYP3A7 and CYP3A43 mRNA (Oscarson et al. 2006). Rifampicin induces intesti- nal CYP3A7 and CYP3A43 mRNA in healthy volunteers (Oscarson et al. 2007) (Table 12).
Table 13: Chemical toxicants and radiation as in vivo inducers of human cytochrome P450 enzymes

Enzyme	Class of inducers	Compound or exposure	Receptor(s) implicated	Tissues	References
CYP1A1	Dioxins	Various environmental exposures, and a case of massive TCDD poisoning	AHR	Skin	Fabbrocini et al. (2015), Saurat et al. (2012)
CYP1A1	PAHs	Charbroiled meat	AHR	Duodenum	Fontana et al. (1999)
		Smoking	AHR	Adipose tissue, lung, oral and pharyngeal mucosa, placenta, uroepithelium, fetal lung, fetal liver	Boyle et al. (2010), Chi et al. (2009), Dorenhaus et al. (2007), Hukkanen et al. (2002), Huuskonen et al. (2008), McLemore et al. (1990), O’Shaughnessy et al. (2011), Pasanen et al. (1990), Tsai et al. (2018), Ullrich et al. (1997), Vyhlidal et al. (2013)
CYP1A1	PAHs	Topical coal tar	AHR	Skin, hair follicles	Merk et al. (1987), Smith et al. (2006)
CYP1A1	Radiation	Therapeutic ultraviolet-B radiation	AHR	Placenta	Lucier et al. (1987)
CYP1A2	Dioxins	Dioxins, mainly TCDD, from environmental and occupational exposures, an occupational accident, and a case of massive TCDD poisoning	AHR	Liver (phenotyping)	Abraham et al. (2002), Cherynyak et al. (2016), Samer et al. (2020)
CYP1A2	Heterocyclic aromatic amines	Pan-fried meat	AHR	Liver (phenotyping)	Sinha et al. (1994)
CYP1A2	PAHs	Charbroiled meat	AHR	Liver (phenotyping)	Fontana et al. (1999), Kappas et al. (1978), Pantuck et al. (1976)
CYP1A2	PAHs	Coffee	AHR	Liver (phenotyping)	Djordjevic et al. (2008), Horn et al. (1995)
CYP1A2	PAHs	Smoking	AHR	Liver (phenotyping, expression in liver autopsy samples)	Baker et al. (2001), Hunt et al. (1976), Pantuck et al. (1972)
CYP1B1	PAHs	Topical coal tar	AHR	Skin	Smith et al. (2006)
CYP1B1	PAHs	Consumption of contaminated fish and farm products	AHR	Liver (phenotyping)	Fitzgerald et al. (2005), Lambert et al. (1990)
CYP1B1	CYP2A6	Smoking	AHR	Adipose tissue, lung, oral mucosa, placenta, white blood cells, fetal lung	Boyle et al. (2010), Chi et al. (2009), Hukkanen et al. (2002), Huuskonen et al. (2008), Lampe et al. (2004), Tsai et al. (2018), van Leeuwen et al. (2007), Vyhlidal et al. (2013), Willey et al. (1997)
CYP1B1	Radiation	Topical coal tar	AHR	Skin	Smith et al. (2006)
CYP1B1	Radiation	Work in coke ovens and waste incinerators	AHR	White blood cells	Hanaoka et al. (2002), Hu et al. (2006)
CYP1B1	Radiation	Therapeutic ultraviolet-B radiation	AHR	Skin	Katiyar et al. (2000)
CYP2A6	Heavy metals	Cadmium	NRF2	Liver (phenotyping)	Satarug et al. (2004a, b)
Consequences and relevance of CYP induction

The induction of CYP enzymes as a cause of DDIs, as distinct from the enzyme inhibition, is unique as the induction becomes apparent more slowly and it takes more time for the induction to abate. This is caused by the delay due to the synthesis of new enzymes when the inducer is introduced, and then for the additional enzymes to degrade after the inducer is withdrawn. These effects take usually days to even weeks to fully manifest when concerning rapidly metabolized compounds (Tran et al. 1999). The time-dependent effects are even slower when dealing with steady-state levels of compounds with long half-lives. Thus, the outcome of adding an inducer to the patient’s established drug regimen can be difficult to detect in clinical setting if the physician is unaware of the anticipated effect. The effect of the induction is even more difficult to discern when dealing with intermittent exposures as is common with environmental toxicants as both victims and perpetrators of induction. For drugs and toxicants active in their parent form, CYP induction increases the elimination of compounds and decreases therapeutic and toxic effects, respectively. For prodrugs and toxicants that have active metabolites formed by CYP enzymes, enhanced pharmacodynamic and toxic effects could result.

The consequences of CYP induction are even more difficult to evaluate when dealing with mixtures of chemical compounds comprised of all the pharmaceutical, herbal, and environmental chemical exposures encountered by individuals in their daily lives. This is due to newly emerging findings on the combinatorial effects of chemical mixtures as activators of xenobiotic-sensing receptors. This phenomenon has been best demonstrated with PXR. It has been shown that combinations of toxic compounds such as bisphenol A analogs (Sui et al. 2012), and drugs and toxicants such as the combination of pesticide trans-nonachlor and drug 17α-ethinylestradiol (Delfosse et al. 2015), potentiate the PXR activation even at the low concentrations incapable to activate PXR by themselves. The science of the combinations is still very much a work in progress.

Concluding remarks and lessons learnt

After intense investigation for several decades, the research field of CYP inhibition and induction has reached a rather matured stage. The basic mechanisms of both CYP inhibition and induction are now fairly well understood, although further details continue to be revealed.

The experimental tools to study CYP inhibition and induction in vitro have been well established and adopted in guidelines regulating drug development. The in vitro results can further guide the in vivo experiments. Indeed, we have moved from testing clinically commonly used individual drugs together to the rational design of studies using index drugs and reference inhibitors based on mechanistic understanding of drug–drug interactions (Tornio et al. 2019). Further development has been made in the computational tools, and the physiologically based pharmacokinetic modeling can be used to simulate in vivo conditions, extend the knowledge gained from the clinical studies, and even avoid unnecessary clinical studies (Shebley and Einolf 2019; Venkatakrishnan and Rostami-Hodjegan 2019). However, human in vivo DDI studies are still needed to definitively demonstrate the consequences of inhibition/induction, especially for the

Table 13 (continued)

Enzyme Class of inducers	Compound or exposure	Receptor(s) implicated	Tissues	References
CYP2E1 Benzene derivatives	Smoking (cigarette smoke contains both styrene and toluene, see below)	Stabilization?	Liver (phenotyping), bronchial epithelium	Benowitz et al. (2003), Oyama et al. (2007)
	Occupational exposure to styrene	Stabilization?	Blood lymphocytes, whole-blood cells	Prieto-Castello et al. (2010), Wongvijitsuk et al. (2011)
	Toluene	Stabilization?	Blood lymphocytes	Mendoza-Cantu et al. (2006)
CYP2S1 PAHs	Smoking	AHR	Bronchoalveolar macrophages	Thum et al. (2006)
	Topical coal tar	AHR	Skin	Smith et al. (2003)
	Ultraviolet-B radiation	AHR	Skin	Smith et al. (2003)
	Dichlorodiphenyltrichloroethane (DDT)	AHR	Skin	Petersen et al. (2007), Poland et al. (1970)
	Endrin	PXR	Liver (phenotyping)	Jager (1970)
Table 14 Nutritional exposures and herbal remedies as in vivo inducers of human cytochrome P450 enzymes. Some of the studies have been performed with purified compounds in high doses for drug development purposes. Food contaminants and compounds formed during food preparation are listed in Table 13

Enzyme	Compound	Examples of sources	Receptor(s) implicated	Tissues	References
CYP1A2	Indole-3-carbinol	Cruciferous vegetables	AHR	Liver (phenotyping)	Pantuck et al. (1979), Reed et al. (2005)
	Resveratrol	Many plants including berries, grapes and peanuts, and red wine	AHR indirectly	Liver (phenotyping, studied only with a pharmacologic dose)	Chow et al. (2010)
CYP2A6	Genistein	Legumes such as soybeans	ER	Liver (phenotyping, studied only with a pharmacologic dose)	Chen et al. (2011)
	Sulforaphane	Cruciferous vegetables	NRF2	Liver (phenotyping)	Hakooz and Hamdan (2007)
	Quercetin	Tea, many vegetables, fruits, and berries	ER	Liver (phenotyping, studied only with a pharmacologic dose)	Chen et al. (2009)
CYP2B6	Baicalin	Baikal skullcap, an herbal remedy	CAR/PXR	Liver (phenotyping, studied only with a pharmacologic dose)	Fan et al. (2009)
	Hyperforin	St. John's wort, an herbal remedy	PXR	Liver (phenotyping)	Lei et al. (2010)
	Sodium ferulate	Several herbal remedies such as Angelica sinensis, Cimicifuga heracleifolia, and Ligusticum chuangxiong	PXR	Liver (phenotyping, studied only with a pharmacologic dose)	Gao et al. (2013, 2012)
CYP2C9	Hyperforin	St. John’s wort	PXR	Liver (phenotyping)	Jiang et al. (2004, 2006)
CYP2C19	Baicalin	Yin Zi Huang, an herbal remedy with several herbs	CAR/PXR	Liver (phenotyping)	Fan et al. (2007)
	Hyperforin	St. John’s wort	PXR	Liver (phenotyping)	Wang et al. (2004a, b)
CYP2E1	Ethanol	Alcoholic drinks	Stabilization	Liver (phenotyping and expression), blood lymphocytes, esophagus, placenta	Girre et al. (1994), Millonig et al. (2011), Oneta et al. (2002), Perrot et al. (1989), Rasheed et al. (1997), Raucy et al. (1997, 1999), Takahashi et al. (1993), Tsutsumi et al. (1989)
	Unknown compound(s) in St. John’s wort	St. John’s wort	Unknown	Liver (phenotyping)	Gurley et al. (2002, 2005)
Enzyme	Compound	Examples of sources	Receptor(s) implicated	Tissues	References
-----------------	---------------------------------	--	-----------------------	--	---
CYP3A4	Baicalin	*Yin Zi Huang*, an herbal remedy with several herbs	CAR/PXR	Liver (phenotyping)	Fan et al. (2007)
	Unknown compounds in *Echinacea*	*Echinacea purpurea*, an herbal remedy	PXR	Liver (phenotyping)	Gorski et al. (2004), Penzak et al. (2010)
	Ethanol	Alcoholic drinks		Stabilization	Liangpunsakul et al. (2005), Luceri et al. (2001), Niemela et al. (2000), Rahmioglu et al. (2011)
	Genistein	Legumes, soybeans, coffee	PXR	Liver (phenotyping, studied only with a pharmacologic dose)	Xiao et al. (2012)
	Ginkgolide A and B	*Ginkgo biloba*, an herbal remedy	PXR	Liver (phenotyping)	Markowitz et al. (2003), Robertson et al. (2008b)
	Hyperforin	St. John’s wort	PXR	Liver (phenotyping), duodenum	Durr et al. (2000); Piscitelli et al. (2000); Roby et al. (2000)
	Quercetin	Many vegetables, fruits, and berries (also one of the flavonoids in *Ginkgo biloba*)	PXR	Liver (phenotyping, studied only with a pharmacologic dose)	Duan et al. (2012)
	Tanshinone IIA and cryptotanshin-	*Danshen* (*Salvia miltiorrhiza*), an herbal remedy	CAR/PXR	Liver (phenotyping), duodenum (phenotyping)	Qiu et al. (2010), Qiu et al. (2013), Zhou et al. (2018)
regulatory filings, and it is not likely that these studies would be deemed unnecessary in the near future.

As a result of the methodological developments, the CYP-mediated drug–drug interactions are identified early in the pharmaceutical development and no longer big surprises appear in the clinical use after approval. The early awareness of the potential CYP-mediated drug–drug interactions may also guide the drug development process to avoid strong inhibitors and inducers. Thus, especially the number of new inducers has been low among the recently approved drugs. However, there may still be unidentified inducers and inhibitors among the compounds present in our diet and various herbal remedies as well as in the environment as chemical toxicants.

The CYP-mediated interactions are now mastered rather well in the drug development process. The use of different databases and prescription aid tools has also improved application of the interaction data in the clinical practice. The widespread application of these information technology solutions is crucial as the amount of DDI data are too extensive for any individual physician to master. The progress in the pharmaceutical drug development during the recent years has resulted in design of small-molecular drugs with increasing metabolic stability. While this decreases the risk of CYP-mediated drug–drug interactions, this development may induce other types of interactions such as those mediated by various transporters (Venkatakrishnan and Rostami-Hodjegan 2019).

Although, in general, there is a good potential for prediction of the CYP inhibition and induction, unusual cases may still continue to provide surprises. For example, it was described that co-binding of two non-activating compounds to the active site of PXR may result in synergistic effect and receptor activation (Delfosse et al. 2015). This kind of cocktail effect may be possible among drugs, but perhaps more relevant in the toxicological exposure to complex mixtures. Naturally, also drugs and environmental compounds or natural substances could interact or act together. Thus, although much has been learned in the last decades regarding inhibition and induction of CYP enzymes, novel discoveries may still be made by inquiring minds.

Acknowledgements The authors would like to pay tribute to the late Professor PERTTI NEUVONEN, a prominent scientist in the field of CYP-mediated drug–drug interaction, and extensively cited also in this review.

Author contributions All authors participated in the literature search, data analysis, and writing of the manuscript. All authors have read and approved the manuscript.

Funding Open access funding provided by University of Oulu including Oulu University Hospital. The original research by the authors is supported by the Academy of Finland (Grants 286743 and 323706) to JHä, Finnish Medical Foundation; the Finnish Foundation for Cardiovascular Research; the Northern Finland Health Care Support Foundation; and the Diabetes Research Foundation to JHu, the Northern Finland Health Care Support to MT.

Availability of data and material (data transparency) All the data are available in the text and tables of the review.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interest.

Ethics approval Not applicable.

Consent to participate Not applicable.

Consent for publication Not applicable.

Code availability Not applicable.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Abbas R, Hsyu P (2016) Clinical pharmacokinetics and pharmacodynamics of bosutinib. Clin Pharmacokinet 55:1191–1204
Abbas R, Leister C, El Gaaloul M, Chalon S, Sonnichsen D (2012) Ascending single-dose study of the safety profile, tolerability, and pharmacokinetics of bosutinib coadministered with ketoconazole to healthy adult subjects. Clin Ther 34:2011–2019.e1
Abbas R, Boni J, Sonnichsen D (2015) Effect of rifampin on the pharmacokinetics of bosutinib, a dual Src/Abl tyrosine kinase inhibitor, when administered concomitantly to healthy subjects. Drug Metab Pers Ther 30:57–63
Abel S, Back DJ, Vourvahis M (2009) Maraviroc: pharmacokinetics and drug interactions. Antivir Ther (Lond) 14:607–618
Abraham K, Geusau A, Tosun Y, Helge H, Bauer S, Brockmoller J (2002) Severe 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) intoxication: insights into the measurement of hepatic cytochrome P450 1A2 induction. Clin Pharmacol Ther 72:163–174
Abu-Bakar A, Satarug S, Marks GC, Lang MA, Moore MR (2004) Acute cadmium chloride administration induces hepatic and renal CYP2A5 mRNA, protein and activity in the mouse: involvement of transcription factor Nrf2. Toxicol Lett 148:199–210
Abu-Bakar A, Länsä V, Arpiainen S, Moore MR, Lang MA, Hakkola J (2007) Regulation of CYP2A5 gene by the transcription factor nuclear factor (erythroid-derived 2)-like 2. Drug Metab Dispos 35:787–794
Abu-Bakar A, Hakkola J, Juvonen R, Rahnasto-Rilla M, Raunio H, Lang MA (2013) Function and regulation of the Cyp2a5/
CYP2A6 genes in response to toxic insults in the liver. Curr Drug Metab 14:137–150
Adedayo A, Stiff DD, Smith DC, Romkes M, Bahsson RC, Day R, Hofacker J, Branch RA, Trump DL (1998) All-trans-retinoic acid modulation of drug-metabolizing enzyme activities: investigation with selective metabolic drug probes. Cancer Chemother Pharmacol 41:133–139
Adeloye T, Sahgal O, Puri A, Warrington S, Endo T, Dennison J, Johnston A (2018) PMC6585933; amenamevir: studies of potential CYP3A-mediated pharmacokinetic interactions with midazolam, cyclosporine, and ritonavir in healthy volunteers. Clin Pharmacol Drug Dev 7:844–859
Akiyoshi T, Ito M, Murase S, Miyazaki M, Guengerich FP, Nakamura K, Yamamoto K, Ohtani H (2013) Mechanism-based inhibition profiles of erythromycin and clarithromycin with cytochrome P450 3A4 genetic variants. Drug Metab Pharmacokinet 28:411–415
Aalam C, Whyte-Allman S, Omeragic A, Bendayan R (2016) Role and modulation of drug transporters in HIV-1 therapy. Adv Drug Deliv Rev 103:121–143
Amaya GM, Durandis R, Bourgeois DS, Perkins JA, Abouda AA, Wines KJ, Mohamud M, Starks SA, Daniels RN, Jackson KD (2018) Cytochromes P450 1A2 and 3A4 catalyze the metabolic activation of sumitrobin. Chem Res Toxicol 31:570–584
Andreasen AH, Bosen K, Damkier P (2007) A comparative pharmacokinetic study in healthy volunteers of the effect of carbamazepine and oxcarbazepine on cytp3a4. Epilepsia 48:490–496
Anglicheau D, Flamant M, Schlageter MH, Martinez F, Cassinat B, Andreasen AH, Brosen K, Damkier P (2007) A comparative pharmacokinetic interaction between corticosteroids and tacrolimus after renal transplantation. Nephrol Dial Transplant 18:2409–2414
Arpaianen S, Raffalli-Mathieu F, Lang MA, Pelkonen O, Hakkola J (2005) Regulation of the Cyp2a5 gene involves an aryl hydrocarbon receptor-dependent pathway. Mol Pharmacol 67:1325–1333
Asaumi R, Toshimoto K, Toye Y, Hashizume K, Nounoya K, Imawaka H, Lee W, Sugiyama Y (2018) Comprehensive PBPK Model of rifampicin for quantitative prediction of complex drug–drug interactions: CYP3A2/C9 induction and OATP inhibition effects. CPT Pharmacomet Syst Pharmacol 7:186–196
Asimus S, Esherbiny D, Hai TN, Jansson B, Huang NV, Petzold MG, Simonsson US, Ashton M (2007) Artemisinin antimalarials moderately affect cytochrome P450 enzyme activity in healthy subjects. Fundam Clin Pharmacol 21:307–316
Asimus S, Hai TN, Van Huong N, Ashton M (2008) Artemisinin and CYP2A6 activity in healthy subjects. Eur J Clin Pharmacol 64:283–292
Back DJ, Bates M, Bowden A, Breckenridge AM, Hall MJ, Jones H, Maclver M, Orme P, Perucca E, Richens A, Rowe PH, Smith E (1980) The interaction of phenobarbital and other anticonvulsants with oral contraceptive steroid therapy. Contraception 22:495–503
Back DJ, Tija JF, Karbwang J, Colbert J (1988) In vitro inhibition studies of tolbutamide hydroxylase activity of human liver microsomes by azoles, sulphonamides and quinolines. Br J Clin Pharmacol 26:23–29
Backman JT, Granfors MT, Neuvonen PJ (2006) Rifampicin is only a weak inducer of CYP1A2-mediated presystemic and systemic metabolism: studies with tizanidine and caffeine. Eur J Clin Pharmacol 62:451–461
Backman JT, Filippula AM, Niemi M, Neuvonen PJ (2016) Role of cytochrome P450 2C8 in drug metabolism and interactions. Pharmacol Rev 68:168–241
Bae SH, Kwon MJ, Choi EJ, Zheng YF, Yoon KD, Liu K, Bae SK (2013) Potent inhibition of cytochrome P450 2B6 by sibutramine in human liver microsomes. Chem Biol Interact 205:11–19
Baes M, Gulick T, Choi HS, Martinoli MG, Simha D, Moore DD (1994) A new orphan member of the nuclear hormone receptor superfamily that interacts with a subset of retinoic acid response elements. Mol Cell Biol 14:1544–1552
Bailey DG, Dresser G, Arnold JMO (2013) Grapefruit- medication interactions: forbidden fruit or avoidable consequences? CMAJ 185:309–316
Baker JR, Satarug S, Reilly PE, Edwards RJ, Ariyoshi N, Kamataki T, Moore MR, Williams DJ (2001) Relationships between non-occupational cadmium exposure and expression of nine cytochrome P450 forms in human liver and kidney cortex samples. Biochem Pharmacol 62:713–721
Bapiro TE, Sayi J, Hasler JA, Jande M, Rimoy G, Masselle A, Masimirembwa CM (2005) Artemisinin and thienobenzole are potent inhibitors of cytochrome P450 1A2 (CYP1A2) activity in humans. Eur J Clin Pharmacol 61:755–761
Barditch-Crovo P, Trapnell CB, Elte E, Zacur HA, Coresh J, Rocco LE, Hendrix CW, Flexner C (1999) The effects of rifampin and rifabutin on the pharmacokinetics and pharmacodynamics of a combination oral contraceptive. Clin Pharmacol Ther 65:428–438
Barecki ME, Casciano CN, Johnson WW, Clement RP (2001) In vitro characterization of the inhibition profile of loratadine, desloratadine, and 3-OH-desloratadine for five human cytochrome P-450 enzymes. Drug Metab Dispos 29:1173–1175
Belderbos BPS, Bins S, van Leeuwen RWF, Oomen-de Hoop E, van der Meer N, de Brijn P, Hamberg P, Overkleeft ENM, van de Weer DM, Lokkema MP, de Wit R, Mathijssen RHJ (2018) Influence of enzalutamide on cabazitaxel pharmacokinetics: a drug–drug interaction study in metastatic castration-resistant prostate cancer (mCRPC) Patients. Clin Cancer Res 24:541–546
Benowitz NL, Peng M, Jacob P III (2003) Effects of cigarette smoking and carbon monoxide on chloroxazone and caffeine metabolism. Clin Pharmacol Ther 74:468–474
Benowitz NL, Lessov-Schlaggar C, Swan GE, Jacob P III (2006) Female sex and oral contraceptive use accelerate nicotine metabolism. Clin Pharmacol Ther 79:480–488
Berlin I, Gasior MJ, Moolchan ET (2007) Sex-based and hormonal contraception effects on the metabolism of nicotine among adolescent tobacco-dependent smokers. Nicotine Tob Res 9:493–498
Berman ML, Green OC (1971) Acute stimulation of cortisol metabolism by pentobarbital in man. Anesthesiology 34:365–369
Bersanconi C, Pelkonen O, Andersson TB, Strickland J, Wilk-Zasadna I, Asturio D, Cole T, Liska R, Worth A, Muller-Vieira U, Richert L, Chesne C, Coecke S (2019) Validation of in vitro methods for human cytochrome P450 enzyme induction: outcome of a multi-laboratory study. Toxicol In Vitro 60:212–228
Best BM, Goicoechea M (2008) Efavirenz-still first-line king? Expert Opin Drug Metab Toxicol 4:965–972
Bilbao-Meseguer I, Jose BS, Lopez-Gimenez LR, Gil MA, Serrano L, Castaño M, Sautua S, Basagoiti A, Bazza B, Baskaran Z, Bustina A (2015) Drug interactions with sunitinib. J Oncol Pharm Pract 21:52–66
Birdwell KA, Decker B, Barbarino JM, Peterson JF, Stein CM, Sadee W, Wang D, Vinks AA, He Y, Swn JJ, Leeder JS, van Schaik R, Thumml KE, Klein TE, Caudle KE, IAm MacPhee (2015) Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines for CYP3A5 genotype and tacrolimus dosing. Clin Pharmacol Ther 98:19–24
Birmingham AT, Coleman AJ, Orme ML, Park BK, Pearson NJ, Short AH, Southgate PJ (1978) Antibacterial activity in serum and urine following oral administration in man of DL473 (a cyclo-pentyl derivative of rifampicin) [proceedings]. Br J Clin Pharmacol 6:455P–456P

Springer
Dutreix C, Munarini F, Lorenzo S, Roesel J, Wang Y (2013) Investigation into CYP3A4-mediated drug–drug interactions on midostaurin in healthy volunteers. Cancer Chemother Pharmacol 72:1223–1234

Eagling VA, Wiltshire H, Whitcombe IWA, Back DJ (2002) CYP3A4-mediated hepatic metabolism of the HIV-1 protease inhibitor saquinavir in vitro. Xenobiotica 32:1–17

Elbsy R, Hare V, Neal H, Outteridge S, Pearson C, Plant K, Gill RU, Butler P, Riley RJ (2019) Mechanistic in vitro studies indicate that the clinical drug–drug interaction between telithromycin and simvastatin is driven by time-dependent inhibition of CYP3A4 with minimal effect on OATPB11. Drug Metab Dispos 47:1–8

Elsherby DA, Asimus SA, Karlsson MO, Ashton M, Simonsson US (2008) A model based assessment of the CYP2B6 and CYP2C19 inductive properties by artemisinin antimalarials: implications for combination regimens. J Pharmacokinet Pharmacodyn 35(2):203–217. https://doi.org/10.1007/s40262-008-9084-6

EMA (2012) Guideline on the investigation of drug interactions. https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-investigation-drug-interactions-revision-1_en.pdf

Ena J, Amador C, Benito C,Pasqua F (2012) Pharmacological and clinical evidence of nevirapine immediate- and extended-release formulations. HIV AIDS (Auckl) 4:169–179

Ernstgård L, Warholm M, Johanson G (2004) Robustness of chlorzoxazone as an in vivo measure of cytochrome P450 2E1 activity. Br J Clin Pharmacol 58:190–200

Fabbricini G, Kaya G, Caseiro Silverio P, De Vita V, Kaya A, Fontao F, Sorg O, Saurat JH (2015) Aryl hydrocarbon receptor activation in acne vulgaris skin: a case series from the region of Naples, Italy. Dermatology 231:334–338

Faber MS, Jetter A, Fuhr U (2005) Assessment of CYP1A2 activity in clinical practice: why, how, and when? Basic Clin Pharmacol Toxicol 97:125–134

Fan L, Wang G, Wang LS, Chen Y, Zhang W, Huang YF, Huang RX, Hu DL, Wang D, Zhou HH (2007) Herbal medicine yin zhi huang induces CYP3A4-mediated sulfoxidation and CYP2C19-dependent hydroxylation of omeprazole. Acta Pharmacol Sin 28:1685–1692

Fan L, Wang JC, Jiang F, Tan ZR, Chen Y, Li Q, Zhang W, Wang G, Lei HP, Hu DL, Wang D, Zhou HH (2009) Induction of cytochrome P450 2B6 activity by the herbal medicine baicalin as measured by bupropion hydroxylation. Eur J Clin Pharmacol 65:403–409

Fan Q, Liu W, Yang Y, Zhou J, Tang Y, Xiao M, Pan X, Zhou Y, Deng K, He F (2019) A new similarity method for assessment of pharmacokinetic interaction between fluvoxacinil and midazolam. Pharmazie 74:397–405

FDA (2020) In vitro drug interaction studies—cytochrome P450 enzyme- and transporter-mediated drug interactions guidance for industry. https://www.fda.gov/media/134582/download

Fellay J, Marzolini C, DeCoster L, Golay KS, Baumann P, Buclin T, Telenti A, Eap CB (2005) Variations of CYP3A activity induced by antiretroviral treatment in HIV-1 infected patients. Eur J Clin Pharmacol 60:503–409

Fenner KS, Troutman MD, Kempshall S, Cook JA, Ware JA, Smith DA, Lee CA (2009) Drug–drug interactions mediated through P-glycoprotein: clinical relevance and in vitro–in vivo correlation using digoxin as a probe drug. Clin Pharmacol Ther 85:173–181

Ferguson SS, Chen Y, LeCluyse EL, Negishi M, Goldstein JA (2005) Human CYP2C8 is transcriptionally regulated by the nuclear receptors constitutive androstane receptor, pregnane X receptor,
glucocorticoid receptor, and hepatic nuclear factor 4alpha. Mol Pharmacol 68:747–757

Filippula AM, Mustonen TM, Backman JT (2018) In vitro screening of six protein kinase inhibitors for time-dependent inhibition of CYP2C8 and CYP3A4: possible implications with regard to drug–drug interactions. Basic Clin Pharmacol Toxicol 123:739–748

Filippula AM, Parvizi R, Mateus A, Baranczewski P, Artursson P (2019) Improved predictions of time-dependent drug–drug interactions by determination of cytosolic drug concentrations. Sci Rep 9:5850

Fitzgerald EF, Hwang SA, Lambert G, Gomez M, Tarbell A (2005) 125I-Tyr exposure and in vivo CYP1A2 activity among Native Americans. Environ Health Perspect 113:272–277

Flaherty KT, Latthia C, Frye RF, Schuchter L, Redlinger M, Rosen M, O’Dwyer PJ (2011) Interaction of sorafenib and cytochrome P450 isoforms in patients with advanced melanoma: a phase I/I pharmacokinetic interaction study. Cancer Chemother Pharmacol 68:1111–1118

Fontana RJ, Lown KS, Paine MF, Fortlage L, Santella RM, Felton JS, Knize MG, Greenberg A, Watkins PB (1999) Effects of a char-grilled meat diet on expression of CYP3A, CYP1A1, and P-glycoprotein levels in healthy volunteers. Gastroenterology 117:89–98

Fritsche E, Schafer C, Calles C, Bernsmann T, Bernshausen T, Wurm F, Greiner B, Eichelbaum M, Fritz P, Kreichgauer HP, von Richter O, Glaeser H, Drescher S, Eichelbaum M, Fromm MF (2005) Influence of rifampicin on the expression and function of human intestinal cytochrome P450 enzymes. Br J Clin Pharmacol 59:199–206

Gangadhar TC, Cohen EEW, Wu K, Janisch L, Geary D, Kocherginsky M, Hubenthal U, Cline JE, Hajimiragha H, Schroeder P, Klotz LO, Randug A, Forst P, Hanenberg H, Abel J, Krutmann J (2007) 1885591: lightening up the UV response by identification of the arylhydrocarbon receptor as a cytoplasmatic target for ultraviolet B radiation. Proc Natl Acad Sci USA 104:8851–8856.

Funck-Brentano C, Becquemont L, Leneuv A, Roux A, Jailllon P, Beauf P (1997) Inhibition by omeprazole of proguanil metabolism: mechanism of the interaction in vitro and prediction of in vivo results from the in vitro experiments. J Pharmacol Exp Ther 280:730–738

Gallant JE, Thompson M, DeJesus E, Voskuhl GW, Wei X, Zhang H, White K, Cheng A, Quirk E, Martin H (2017) Antiviral activity, safety, and pharmacokinetics of bupropion in healthy men. J Acquir Immune Defic Syndr 75:61–66

Gangadhara TC, Cohen EEW, Wu K, Janisch L, Geary D, Kocherginsky M, House LK, Ramirez J, Undevia SD, Maitland ML, Fleming GF, Ratian MJ (2011) Two drug interaction studies of sirolimus in combination with sorafenib or sunitinib in patients with advanced malignancies. Clin Cancer Res 17:1956–1963

Gao L, Huang X, Tan ZR, Fan L, Zhou HH (2012) The effects of sodium ferulate on the pharmacokinetics of bupropion and its major metabolites M1 and M2, involving several human cytochrome P450 isoforms. Ann Oncol 23(suppl 9):ix520

Glaeser H, Drescher S, Eichelbaum M, Fromm MF (2005) Influence of rifampicin on the expression and function of human intestinal cytochrome P450 enzymes. Br J Clin Pharmacol 59:199–206

Goldberg MR, Lo MW, Deutsch PJ, Wilson SE, McWilliams EJ, McCrea JB (1996) Phenobarbital minimally alters plasma concentrations of losartan and its active metabolite E-3174. Clin Pharmacol Ther 59:268–274

Gorski JC, Huang SM, Pinto A, Hamman MA, Hillgoss JK, Zaheer NA, Desai M, Miller M, Hall SD (2004) The effect of echinacea (Echinacea purpurea root) on cytochrome P450 activity in vivo. Clin Pharmacol Ther 75:89–100

Granfors MT, Backman JT, Neuvonen M, Neuvonen PJ (2004) Ciprofloxacin greatly increases concentrations and hypotensive effect of tizanidine by inhibiting its cytochrome P450 1A2-mediated presystemic metabolism. Clin Pharmacol Ther 76:598–606

Granfors MT, Backman JT, Laitila J, Neuvonen PJ (2005) Oral contraceptives containing ethinyl estradiol and gestodene markedly increase plasma concentrations and effects of tizanidine by inhibiting cytochrome P450 1A2. Clin Pharmacol Ther 78:400–411

Greiner B, Eichelbaum M, Fritz P, Kreichgauer HP, von Richter O, Zundler J, Kroemer HK (1999) PMC408477; the role of intestinal P-glycoprotein in the interaction of digoxin and rifampin. J Clin Investig 104:147–153

Groll AH, Townsend R, Desai A, Azie N, Jones M, Engelhardt M, Schmitt-Hoffman AH, Brüggemann RJM (2017) Drug-drug interactions between triazole antifungal agents used to treat invasive aspergillosis and immunosuppressants metabolized by cytochrome P450 3A4. Transpl Infect Dis 19(5). https://doi.org/10.1111/tid.12751

Gu H, Dutreix C, Rebelio S, Ouatas T, Wang L, Chun DY, Einolf HJ, He H (2018) Simultaneous physiologically based pharmacokinetic (PPBK) modeling of parent and active metabolites to investigate complex CYP3A4 drug–drug interaction potential: a case example of midostaurin. Drug Metab Dispos 46:109–121

Guo Y, Luckisir A, Dickinson GL, Vuppalanchi RK, Hillgoss JK, Hall SD (2020) Quantitative prediction of CYP3A4- and CYP3A5-mediated drug interactions. Clin Pharmacol Ther 107:246–256

Gupta N, Hanley MJ, Venkatakrishnan K, Bessudo A, Rasco DW, Sharma S, O’Neil BH, Wang B, Liu G, Ke A, Patel C, Rowland Yeo K, Xia C, Zhang X, Esseltine D, Nemunaitis J (2018) Effects of strong CYP3A inhibition and induction on the pharmacokinetics of ixazomib, an oral proteasome inhibitor: results of drug–drug interaction studies in patients with advanced solid tumors or lymphoma and a physiologically based pharmacokinetic analysis. J Clin Pharmacol 58:180–192

Gurley BJ, Gardner SF, Hubbard MA, Williams DK, Gentry WB, Cui Y, Ang CY (2005) Clinical assessment of effects of botanical supplementation on cytochrome P450 phenotypes in the elderly: St John’s wort, garlic oil, Panax ginseng and Ginkgo biloba. Drugs Aging 22:525–539

Springer
Havens JP, Podany AT, Scarsi KK, Fletcher CV (2020) Clinical pharmacokinetics and pharmacodynamics of etravirine: an updated review. Clin Pharmacokinet 59:137–154

Hedrich WD, Hassan HE, Wang H (2016) Insights into CYP2B6-mediated drug−drug interactions. Acta Pharmacol Sin 37:413−425

Heimark LD, Wienkers L, Kunze K, Gibaldi M, Eddy AC, Trager WF, O’Reilly RA, Goulart DA (1992) The mechanism of the interaction between amiodarone and warfarin in humans. Clin Pharmacol Ther 51:398−407

Heinemeyer G, Grimm HJ, Simgen W, Dennhardt R, Roots I (1987) Kinetics of hexobarbital and dipyrone in critical care patients receiving high-dose pentobarbital. Eur J Clin Pharmacol 32:273−277

Herman D, Locatelli I, Grabar L, Peternel P, Stegnar M, Lainscak M, Mihar A, Breskvar K, Dolzan V (2006) The influence of co-treatment with carbamazepine, amiodarone and statins on warfarin metabolism and maintenance dose. Eur J Clin Pharmacol 62:291−296

Herrmann R, von Richter O (2012) Clinical evidence of herbal drugs as perpetrators of pharmacokinetic drug interactions. Planta Med 78:1458−1477

Hesse LM, Venkatakrishan K, Court MH, von Moltke LL, Duan SX, Shader RI, Greenblatt DJ (2000) CYP2B6 mediates the in vitro hydroxylation of bupropion: potential drug interactions with other antidepressants. Drug Metab Dispos 28:1176−1183

Higashi E, Fukami T, Itoh M, Kyo S, Inoue M, Yokoi T, Nakajima M (2007) Human CYP2A6 is induced by estrogen via estrogen receptor. Drug Metab Dispos 35:275−286

Hoffmann MF, Preissner SC, Nickel J, Dunkel M, Preissner R, Preissner S (2014) The transformer database: biotransformation of xenobiotics. Nucleic Acids Res 42:1113

Hofman J, Sorf A, Vagiannis D, Sucha S, Novotna E, Kammerer S, The Mechanism of the interaction between amiodarone and warfarin in humans. Clin Pharmacol Ther 51:398−407

Hong Y, Chia YMF, Yeo RH, Venkatesan G, Koh SK, Chai CLL, Zhou L, Kojodjojo P, Chan ECY (2016) Inactivation of human cytochrome P450 3A4 and 3A5 by dronedarone and N-desbutyl dronedarone. Mol Pharmacol 89:1−13

Honkakoski P, Zelko I, Sueyoshi T, Negishi M (1998) The nuclear orphan receptor CAR-retinoid X receptor heterodimer activates the phenobarbital-responsive enhancer module of the CYP2B1 gene. Mol Cell Biol 18:5652−5658

Horn EP, Tucker MA, Lambert G, Silverman D, Zemtek Din, Sinha R, Hartje T, Landi MT, Caporaso NE (1995) A study of gender-based cytochrome P4501A2 variability: a possible mechanism for the male excess of bladder cancer. Cancer Epidemiol Biomark Prev 4:529−533

Hossain MA, Tran T, Chen T, Mikus G, Greenblatt DJ (2017) Inhibition of human cytochromes P450 in vitro by ritonavir and cobicistat. J Clin Pharmacol 69:1786−1793

Hsu A, Granneman GR, Witt G, Locke C, Denissen J, Valdes M, Mrhar A, Breskvar K, Dolzan V (2006) The influence of co-receiving high-dose pentobarbital. Eur J Clin Pharmacol 54:1828−1831

Hukkainen J (2012) Induction of CYP enzymes: a view on human in vivo findings. Expert Rev Clin Pharmacol 5:569−585

Hukkainen J, Pelkonen O, Hakko J, Raunio H (2002) Expression and regulation of xenobiotic-metabolizing cytochrome P450 (CYP) enzymes in human liver. Crit Rev Toxicol 32:391−411

Hukkainen J, Vaisanen T, Lassila A, Piipari R, Anttila S, Pelkonen O, Raunio H, Hakko J (2003) Regulation of CYP3A5 by glucocorticoids and cigarette smoke in human lung-derived cells. J Pharmaco Exp Ther 304:745−752

Hukkainen J, Jacob P III, Benowitz NL (2005) Metabolism and disposition kinetics of nicotine. Pharmacol Rev 57:79−115

Hunt SN, Jusko WJ, Yurchak AM (1976) Effect of smoking on theophylline disposition. Clin Pharmacol Ther 19:546−551

Hussaarts K, Veerman GDM, Jansman FGA, van Gelder T, Hakkola J, Berne AM, Vugts K, van der Veen R (2008) Microarray analysis of the global alterations in the gene expression in the placentas from cigarette-smoking mothers. Clin Pharmacol Ther 83:542−550

Iba K (2016) Dynamic and static simulations of fluoroxime-perpetrated drug−drug interactions using multiple cytochrome P450 inhibition modeling, and determination of perpetrator-specific CYP isoform inhibition constants and fractional CYP isoform contributions to victim clearance. J Pharm Sci 105:1307−1317

Iba K, Inoue M, Nakajima M, Higashi E, Yoshida R, Nagata K, Yamazoe Y, Yokoi T (2006) Induction of human CYP2A6 is mediated by...
the pregnane X receptor with peroxisome proliferator-activated receptor-gamma coactivator 1 alpha. J Pharmacol Exp Ther 319:693–702

Izzo AA, Ernst E (2009) Interactions between herbal medicines and prescribed drugs: an updated systematic review. Drugs 69:1777–1798

Jaakkola T, Backman JT, Neuvonen M, Laitila J, Neuvonen PJ (2006) Effect of rifampicin on the pharmacokinetics of pioglitazone. Br J Clin Pharmacol 61:70–78

Jackson KD, Durandis R, Vergne MJ (2018) Role of cytochrome P450 enzymes in the metabolic activation of tyrosine kinase inhibitors. Int J Mol Sci 19(8):2367. https://doi.org/10.3390/ijms19082367

Jager KW (1970) Aldrin, Dieldrin, Endrin and Telodrin: an epidemiological and toxicological study of long term occupational exposure. Elsevier, Amsterdam

James AJ, Smith CC, Litzow M, Perl AE, Altman JK, Shepard D, Kadokura T, Souda K, Patton M, Lu Z, Liu C, Moy S, Levis MJ, Bajecce E (2020) Pharmacokinetic profile of gilteritinib: a novel FLT-3 tyrosine kinase inhibitor. Clin Pharmacokinet 59(10):1273–1290. https://doi.org/10.1007/s40262-020-00888-w

Jao YJ, Jusko WJ, Cohen JL (1972) Phenobarbital effects on cyclophosphamide pharmacokinetics in man. Cancer Res 32:2761–2764

Jeong S, Nguyen PD, Desta Z (2009a) Comprehensive in vitro analysis of voriconazole inhibition of eight cytochrome P450 (CYP) enzymes: major effect on CYPs 2B6, 2C9, 2C19, and 3A. Antimicrob Agents Chemother 53:541–551

Jeong S, Woo MM, Flockhart DA, Desta Z (2009b) Inhibition of drug metabolizing cytochrome P450s by the aromatase inhibitor drug letrozole and its major oxidative metabolite 4,4′-methanol-bisbenzonitrile in vitro. Cancer Chemother Pharmacol 64:867–875

Ji P, Damle B, Xie J, Unger SE, Grasela DM, Kaul S (2008) Pharmacokinetic interaction between efavirenz and carbamazepine after multiple-dose administration in healthy subjects. J Clin Pharmacol 48:948–956

Jiang X, Williams KM, Liauw WS, Ammit AJ, Roufogalis BD, Duke CC, Day RO, McLachlan AJ (2004) Effect of St John’swort and ginseng on the pharmacokinetics and pharmacodynamics of warfarin in healthy subjects. Br J Clin Pharmacol 57:592–599

Jiang X, Blair EY, McLachlan AJ (2006) Investigation of the effects of herbal medicines on warfarin response in healthy subjects: a population pharmacokinetic-pharmacodynamic modeling approach. J Clin Pharmacol 46:1370–1378

Johansson S, Read J, Oliver S, Steinberg M, Li Y, Lisbon E, Mathews D, Leese PT, Martin P (2014) Pharmacokinetic evaluations of the co-administrations of vandetanib and metformin, digoxin, midazolam, omeprazole or ranitidine. Clin Pharmacokinet 53:837–847

Johnson FM, Agrawal S, Burris H, Rosen L, Dhillon N, Hong D, Blackwood-Chirchir A, Luo FR, Sy O, Kaul S, Chiappori AA (2010) Phase I pharmacokinetic and drug-interaction study of dasatinib in patients with advanced solid tumors. Cancer 116:1582–1591

Jones JP, Joswig-Jones CA, Hebner M, Chu Y, Koop DR (2011) The effects of nitrogen-heme-iron coordination on substrate affinities for cytochrome P450 2E1. Chem Biol Interact 193:50–56

Jushchyshyn MI, Wahlstrom JL, Hollenberg PF, Wienkers LC (2006) Mechanism of inactivation of human cytochrome P450 2B6 by phencyclidine. Drug Metab Dispos 34:1523–1529

Justesen US, Kitgata ND, Brosen K, Pedersen C (2003) Pharmacokinetic interaction between ampicillin and delavirdine after multiple-dose administration in healthy volunteers. Br J Clin Pharmacol 55:100–106

Kahma H, Filippula AM, Launiainen T, Viinamäki J, Neuvonen M, Evangelista EA, Totah RA, Backman JT (2019) Critical differences between enzyme sources in sensitivity to detect time-dependent inactivation of CYP2C8. Drug Metab Dispos 47:436–443

Kakuda TN, Van Solingen-Ristea RM, Onkelinx J, Stevens T, Aharchi F, De Smadt G, Peeters M, Leopold L, Hoetelmans RM (2014) The effect of single- and multiple-dose etravirine on a drug cocktail of representative cytochrome P450 probes and digoxin in healthy subjects. J Clin Pharmacol 54:422–431

Kanamitsu S, Ito K, Green CE, Tyson CA, Shimada N, Sugiyama Y (2000) Prediction of in vivo interaction between triazolam and erythromycin based on in vitro studies using human liver microsomes and recombinant human CYP3A4. Pharm Res 17:419–426

Kandel CE, Walmsley SL (2015) Dolasetron—a review of the pharmacology, efficacy and safety in the treatment of HIV. Drug Des Dev Ther 9:3547–3555

Kappas A, Alves AP, Anderson KE, Pantuck EJ, Pantuck CB, Chang R, Conney AH (1978) Effect of charcoal-broiled beef on antipyrene and theophylline metabolism. Clin Pharmacol Ther 23:445–450

Karjalainen MI, Neuvonen PJ, Backman JT (2008) In vitro inhibition of CYP1A2 by model inhibitors, anti-inflammatory analgesics and female sex steroids: predictability of in vivo interactions. Basic Clin Pharmacol Toxicol 103:157–165

Kashuba AD, Tierney C, Downey GF, Acosta EP, Vergis EN, Klingman K, Mellors JW, Eshleman SH, Scott TR, Collier AC (2005) Combining fosamprenavir with lopinavir/ritonavir substantially reduces amprenavir and lopinavir exposure: a CTG protocol A5143 results. AIDS 19:145–152

Kattiyar SK, Matsui MS, Mukhtar H (2000) Ultraviolet-B exposure of human skin induces cytochromes P450 1A1 and 1B1. J Invest Dermatol 114:328–333

Kato H (2020) Computational prediction of cytochrome P450 inhibition and induction. Drug Metab Pharmacokinet 35:30–44

Kawajiri K, Fujii-Kuriyama Y (2017) The aryl hydrocarbon receptor: a multifunctional chemical sensor for host defense and homeostatic maintenance. Exp Anim 66:75–89

Kellogg JJ, Paine MF, McCune JS, Oberlies NH, Cech NB (2019) Selection and characterization of botanical natural products for research studies: a NaPDI center recommended approach. Nat Prod Rep 36:1196–1221

Kenny JR, Mukadam S, Zhang C, Tay S, Collins C, Galetin A, Khoojaste SC (2012) Drug–drug interaction potential of marketed oncology drugs: in vitro assessment of time-dependent cytochrome P450 2D6 inhibition, reactive metabolite formation and drug–drug interaction prediction. Pharm Res 29:1960–1976

Ketter TA, Jenkins JB, Schroeder DH, Pazzaglia PL, Marangell LB, George MS, Callahan AM, Hinton ML, Chao J, Post RM (1995) Carbamazepine but not valproate induces Pparg protein. J Clin Pharmacol 35:327–333

Khalilieh SG, Yee KL, Sanchez RI, Fan L, Anderson MS, Sura M, Kandel CE, Walmsley SL (2015) Dolutegravir—a review of the pharmacology and pharmacodynamics. Current Med Chem 22:921–929

Kharasch ED, Mitchell D, Coles R, Blanco R (2008) Rapid clinical pharmacokinetics and drug-interaction study of dasatinib for cytochrome P450 2E1. Chem Biol Interact 193:50–56

Koay N, Zhong Z, Xiao T, Li B, Sen G (2010) Prediction of in vitro and in vivo drug interactions. Antimicrob Agents Chemother 63(5):e02016–e02018. https://doi.org/10.1128/AAC.02016-18

Kharasch ED, Whittington D, Ensigh D, Hofter C, Bedynsk PS, Campbell S, Stubbert K, Crawford A, London A, Kim T (2012) Mechanism of efavirenz influence on methadone pharmacokinetics and pharmacodynamics. Clin Pharmacol Ther 91(4):673–684. https://doi.org/10.1038/clpt.2011.276

Kim KY, Frey RJ, Epplen K, Forhui F (2007) Interaction between warfarin and nafcillin: case report and review of the literature. Pharmacotherapy 27:1467–1470
King CA, Babcock KM, Godios RJ, King BS (2018) PMC6243422; significant drug–drug interaction between warfarin and nafcillin. Ther Adv Drug Saf 9:667–671

Kirby BJ, Collier AC, Kharasch ED, Whittington D, Thummel KE, Unadkat JD (2011a) Complex drug interactions of HIV protease inhibitors 1: inactivation, induction, and inhibition of cytochrome P450 3A by ritonavir or nelfinavir. Drug Metab Dispos 39:1070–1078

Kirby BJ, Collier AC, Kharasch ED, Dixit V, Desai P, Whittington D, Thummel KE, Unadkat JD (2011b) Complex drug interactions of HIV protease inhibitors 2: in vivo induction and in vitro-to-in vivo correlation of induction of cytochrome P450 1A2, 2B6, and 2C9 by ritonavir or nelfinavir. Drug Metab Dispos 39:2329–2337

Kliwer SA, Moore JT, Wade L, Staudinger JL, Watson MA, Jones SA, McKee DD, Oliver BB, Willson TM, Zetterström RH, Perlmann T, Lehmann JM (1998) An orphan nuclear receptor activated by progesterone defines a novel steroid signaling pathway. Cell 92:73–82

Klosterskov Jensen P, Saano V, Haring P, Svenstrup B, Menge GP, Kliewer SA, Moore JT, Wade L, Staudinger JL, Watson MA, Jones SA, Kirbey BJ, Collier AC, Nagar S (2014) A numerical method for analysis of the recombinant human enzyme model. Pharmazie 69:362–366

Identification of CYP2C19 inhibitors from phytochemicals using an emphasis on resource-limited settings. HIV AIDS (Auckl) 4:5–15

Lefebvre J, Poirier L, Poirier P, Turgeon J, Lacouerciere Y (2007) The influence of CYP2D6 phenotype on the clinical response of nevirapine in patients with essential hypertension. Br J Clin Pharmacol 63:575–582

Lehmann JM, McKee DD, Watson MA, Willson TM, Moore JT, Kliwer SA (1998) The human orphan nuclear receptor PXR is activated by compounds that regulate CYP3A4 gene expression and cause drug interactions. J Clin Invest 102:1016–1023

Lei HP, Yu XY, Xie HT, Li HH, Fan L, Dai LL, Chen Y, Zhou HH (2010) Effect of St. John’s wort supplementation on the pharmacokinetics of elvitegravir with an emphasis on resource-limited settings. HIV AIDS (Auckl) 4:5–15

Liangpunsakul S, Kolwankar D, Pinto A, Gorski JC, Hall SD, Chavkin C, Koenigh M, Cameron MD, Vojkovsky T (2009) Characterization of dasatinib and its structural analogs as CYP3A4 mechanism-based inactivators and the proposed bioactivation pathways. Drug Metab Dispos 37:1242–1250

Li AC, Yu E, Ring SC, Chovan JP (2014) Structural identification of imatinib cyanide adducts by mass spectrometry and elucidation of bioactivation pathway. Rapid Commun Mass Spectrom 28:123–134

Lim ML, Min SS, Eron JJ, Bertz RJ, Robinson M, Gaedigk A, Kashuba AD (2004) Coadministration of lopinavir/ritonavir and phenytoin...
results in two-way drug interaction through cytochrome P-450 induction. J Acquir Immune Defic Syndr 36:1034–1040

Lin D, Kostov R, Huang JT, Henderson CJ, Wolf CR (2017) Novel pathways of ponatinib disposition catalyzed by CYP1A1 involving generation of potentially toxic metabolites. J Pharmacol Exp Ther 363:12–19

Loboz KK, Gross AS, Williams KM, Liuw WS, Day RO, Bleviernicht JK, Zanger UM, Mcclachlan AJ (2006) Cytochrome P450 2B6 activity as measured by bupropion hydroxylation: effect of induction by rifampin and ethnicity. Clin Pharmacol Ther 80:75–84

Lolodi O, Wang Y, Wright WC, Chen T (2017) Differential regulation of CYP3A4 and CYP3A5 and its implication in drug discovery. Curr Drug Metab 18:1095–1105

Lopez-Cortes L, Ruiz-Valderas R, Viciana P, Alarcon-Gonzalez A, Gomez-Mateos J, Leon-Jimenez E, Sarasanacenta M, Lopez-Pua Y, Pachon J (2002) Pharmacokinetic interactions between efavirenz and rifampicin in HIV-infected patients with tuberculosis. Clin Pharmacokinet 41:681–690

Lu C, Di L (2020) In vitro and in vivo methods to assess pharmacokinetic drug–drug interactions in drug discovery and development. Biopharm Drug Dispos 41:3–31

Lucas RA, Gilfillan DJ, Bergstrom RF (1998) A pharmacokinetic interaction between carbamazepine and olanzapine: observations on possible mechanism. Eur J Clin Pharmacol 54:639–643

Luceri F, Fattori S, Luceri C, Zorn M, Mannaioni P, Messeri G (2001) Gas chromatography-mass spectrometry measurement of 6beta-OH-cortisol/cortisol ratio in human urine: a specific marker of enzymatic induction. Clin Chem Lab Med 39:1234–1239

Lucer GW, Nelson KG, Everson RB, Wong TK, Phulpot RM, Tiernan T, Taylor M, Sunahara GI (1987) 1474460: placentar markers of human exposure to polychlorinated biphenyls and polychlorinated dibenzoepurins. Environ Health Perspect 76:79–87

Lutz JD, Isoherranen N (2012) In vitro-to-in vivo predictions of drug–drug interactions involving multiple reversible inhibitors. Expert Opin Drug Metab Toxicol 8:449–466

Lutz JD, Kirby BJ, Wang L, Song Q, Ling J, Massetto B, Worth A, Kearney BP, Mathias A (2018) PMc6282692: cytochrome P450 3A0 induction predicts P-glycoprotein inhibition; part 2: prediction of decreased substrate exposure after rifabutin or carbamazepine. Clin Pharmacol Ther 104:1191–1198

Maglish JM, Stoltz CM, Goodwin B, Hawkins-Brown D, Moore JT, Kiewer SA (2002) Nuclear pregnane X receptor and constitutive androstane receptor regulate overlapping but distinct sets of genes involved in xenobiotic detoxification. Mol Pharmacol 62:638–646

Malhi V, Colburn D, Williams SJ, Hop CECA, Dresser MJ, Chandra P, Graham RA (2016) A clinical drug–drug interaction study evaluating the effect of a proton-pump inhibitor, a combined P-glycoprotein/cytochrome 450 enzyme (CYP3A4 inhibitor, and a CYP2C9 inhibitor on the pharmacokinetics of vismod EG. Cancer Chemother Pharmacol 78:41–49

Manikandan P, Nagini S (2018) Cytochrome P450 structure, function and clinical significance: a review. Curr Drug Targets 19:38–54

Manosuthi W, Sukasem C, Lueangniyomkul A, Manakittham W, Thongyen S, Niklamanhang S, Manosuthi M, Sungkanuparph S (2013) Impact of pharmacogenetic markers of CYP2B6, clinical factors, and drug–drug interaction on efavirenz concentration in HIV/tuberculosis-coinfected patients. Antimicrob Agents Chemother 57:1019–1024

Mao J, Tay S, Khojasteh CS, Chen Y, Hop CECA, Kenny JR (2016) Evaluation of time dependent inhibition assays for marketed oncology drugs: comparison of human hepatocytes and liver microsomes in the presence and absence of human plasma. Pharm Res 33:1204–1219

Markowitz JS, Donovan JL, Lindsey DeVane C, Sipes L, Chavin KD (2003) Multiple-dose administration of Ginkgo biloba did not affect cytochrome P-450 2D6 or 3A4 activity in normal volunteers. J Clin Psychopharmacol 23:576–581

Marschall HU, Wanner M, Zollner G, Fickert P, Diczfalusy U, Gumbs J, Silbert D, Fuchsbieler A, Benthin L, Grundstrom R, Gustafsson U, Sahlin S, Einarsson C, Trauner M (2005) Complementary stimulation of hepatobiliary transport and detoxification systems by rifampicin and ursodeoxycholic acid in humans. Gastroenterology 129:476–485

Martin P, Oliver S, Robertson J, Kennedy S, Read J, Dauvacheulle T (2011) Pharmacokinetic drug interactions with vandetanib during coadministration with rifampicin or itraconazole. Drugs R D 11:37–51

Marzolini C, Rajoli R, Battegay M, Elzi L, Back D, Siccardi M (2017) Physiologically based pharmacokinetic modeling to predict drug–drug interactions with efavirenz involving simultaneous inducing and inhibitory effects on cytochromes. Clin Pharmacokinet 56:409–420

Matsuanga T, Maruyama M, Harada E, Katsuyama Y, Sugihara N, Ise H, Negishi N, Ikeda U, Ohmori S (2004) Expression and induction of CYP3As in human fetal hepatocytes. Biochem Biophys Res Commun 318:428–434

Mazur W (1998) Phytosterogen content in foods. Baillieres Clin Endocrinol Metab 12:729–742

Mazze RL, Woodruff RE, Heerdt ME (1982) Isoniazid-induced enflurane defluorination in humans. Anesthesiology 57:5–8

McAllister WA, Thompson PJ, Al-Habet S, Rogers HJ (1983) 1547305: rifampicin reduces effectiveness and bioavailability of prednisolone. Br Med J (Clin Res Ed) 286:923–925

McCormick A, Swaisland H, Reddy VP, Learyd M, Scarfe G (2018) In vitro evaluation of the inhibition and induction potential of olaparib, a potent poly(ADP-ribose) polymerase inhibitor, on cytochrome P450. Xenobiotica 48:555–564

McCune JS, Hawke RL, LeCluyse EL, Gillenwater HH, Hamilton G, Ritchie J, Lindley C (2000) In vivo and in vitro induction of human cytochrome P4503A4 by dexamethasone. Clin Pharmacol Ther 68:356–366

McDonagh EM, Lau JL, Alvarellos ML, Altman RB, Klein TE (2015) PharmGKB summary: efavirenz pathway, pharmacokinetics. Pharmacogenet Genom 25:363–376

McDonald MG, Au NT, Rettie AE (2015) P450-based drug–drug interactions of amiodarone and its metabolites: diversity of inhibitory mechanisms. Drug Metab Dispos 43:1661–1669

McDonell WM, Scheiman JM, Traher PG (1992) Induction of cytochrome P4503A0 genes (CYP1A) by omeprazole in the human alimentary tract. Gastroenterology 105:1509–1516

McLemore TL, Adelberg S, Liu MC, McMahon NA, Yu SJ, Hubbard WC, Czerwinski M, Wood TG, Storeng R, Lubet RA (1990) Expression of CYP1A1 gene in patients with lung cancer: evidence for cigarette smoke-induced gene expression in normal lung tissue and for altered gene regulation in primary pulmonary carcinomas. J Natl Cancer Inst 82:1333–1339

McNeill JD, Woods JA, Ibbotson SH, Ibbotson SH, Williams JM, Scheiman JM, Traber PG (1992) Induction of cytochrome P450 2B6 activity by rifampicin and ursodeoxycholic acid in human peripheral lymphocytes. Environ Health Perspect 114:494–499
CYP1A2 and induction of CYP2A6 by the antiretroviral drug efavirenz in healthy volunteers. Clin Transl Sci 12:657–666
Michaud V, Ogburn E, Thong N, Aregbe AO, Quigg TC, Flockhart M, Meyer zu Schwabedissen HE, Oswald S, Bresser C, Nassif A, Modess Miller M, Cosgriff J, Kwong T, Morken DA (1984) Influence of microsomal enzyme expression in children: the influence of carbamazepine on theophylline clearance. Br J Clin Pharmacol Therm 14:861–865
Mouly S, Lown KS, Kornhauser D, Joseph JL, Fiske WD, Benedek IH, Watkins PB (2002) Hepatic but not intestinal CYP3A4 displays dose-dependent induction by efavirenz in humans. Clin Pharmacol Ther 72:1–9
MHLW/PMDA (2018) Pharmaceuticals and medical devices safety information. https://www.pmda.go.jp/english/safety/info-services/drugs-medical-safety-information/0016.html. Accessed 20 June 2020
Narasimhan NI, Dorer DJ, Niland K, Haluska F, Sonnichsen D (2013) Effects of ketoconazole on the pharmacokinetics of ponatinib in healthy subjects. J Clin Pharmacol 53:974–981
Nebert DW (2017) Aryl hydrocarbon receptor (AHR): “pioneer membrane” of the basic-helix/loop/helix per-Arn sim (bHLH/PAS) family of “sensors” of foreign and endogenous signals. Prog Lipid Res 67:38–57
Ngaimisi E, Mugusi S, Minzi OM, Sasi P, Riedel KD, Suda A, Ueda N, Janabi M, Mugusi F, Haelzi WE, Burhenne J, Akilkul E (2010) Long-term efavirenz autoinduction and its effect on plasma exposure in HIV patients. Clin Pharmacol Ther 88:676–678
Nguyen L, Holland J, Miles D, Engel C, Benrimoh N, O’Reilly T, Lacy S (2015) Pharmacokinetic (PK) drug interaction studies of cabozantinib: effect of CYP3A4 inducer rifampin and inhibitor ketoconazole on cabozantinib plasma PK and effect of cabozantinib on CYP2C8 probe substrate rosiglitazone plasma PK. J Clin Pharmacol 55:1012–1023
Niemela O, Parkkila S, Juvenon RO, Viitala K, Gelboin HV, Pasanen M (2000) Cytochromes P450 2A6, 2E1, and 3A and production of protein-aldyde adducts in the liver of patients with alcoholic and non-alcoholic liver diseases. J Hepatol 33:893–901
Niemi M, Backman JT, Neuvonen M, Neuvonen PJ, Kivistö KT (2000) Rifampin decreases the plasma concentrations and effects of repaglinide. Clin Pharmacol Ther 68:495–500
Niemi M, Backman JT, Neuvonen PJ (2004) Effects of trimethoprim and rifampin on the pharmacokinetics of the cytochrome P450 2C8 substrate rosiglitazone. Clin Pharmacol Ther 76:239–249
Niu B, Cosol DM, Bataille AR, Albert I, Pugh BF, Omiecinski CJ (2018) In vivo genome-wide binding interactions of mouse and human constitutive androstane receptors reveal novel gene targets. Nucleic Acids Res 46:8385–8403
Niwa T, Shiraga T, Takagi A (2005) Effect of antifungal drugs on cytochrome P450 (CYP) 2C9, CYP2C19, and CYP3A4 activities in human liver microsomes. Biol Pharm Bull 28:1805–1808
O’Brien SG, Meinhardt P, Bond E, Beck J, Beng P, Dutreix C, Mehring G, Milosavljev S, Huber C, Capdeville R, Fischer T (2003) Effects of imatinib mesylate (STI571, Gleevec) on the pharmacokinetics of simvastatin, a cytochrome p450 3A4 substrate, in patients with chronic myeloid leukemia. Br J Cancer 89:1855–1859
Ohnhaus EE, Park BK (1979) Measurement of urinary 6-beta-hydroxy corticosterol excretion as an in vivo parameter in the clinical assessment of the microsomal enzyme-inducing capacity of antipyrine, phenobarbionate and rifampicin. Eur J Clin Pharmacol 15:139–145
Ohyama K, Nakajima M, Suzuki M, Shimada N, Yamazaki H, Yokoi T (2000) Inhibitory effects of amiodarone and its N-deethylated metabolite on human cytochrome P450 activities: prediction of in vivo drug interactions. Br J Clin Pharmacol 49:244–253
Okeke NL, Hicks C (2011) Role of retalgegravir in the management of HIV-1 infection. HIV AIDS (Auckl) 3:81–92
Olaldejmi P, Cui H, Zhang C, Chen T (2016) PMC4992434; regulation of PXR and CAR by protein–protein interaction and signaling crosstalk. Expert Opin Drug Metab Toxicol 12:997–1010
Oneta CM, Lieber CS, Li J, Rittmann S, Schmid B, Lattmann J, Rosman AS, Seitz HK (2002) Dynamics of cytochrome P4502E1 activity in man: induction by ethanol and disappearance during withdrawal phase. J Hepatol 36:47–52
O’Reilly RA (1974) Interaction of sodium warfarin and rifampin. Studies in man. Ann Intern Med 81:337–340
O’Reilly RA, Trager WF, Motley CH, Howald W (1980) Interaction of secobarbital with warfarin pseudocumestanes. Clin Pharmacol Ther 28:187–195
Orme M, Breckenridge A (1976) Enantiomers of warfarin and phenobarbital. N Engl J Med 295:1482–1483
Oscarson M, Zanger UM, Rifiik OF, Klein K, Eichelbaum M, Meyer UA (2006) Transcriptional profiling of genes induced in the livers of patients treated with carbamazepine. Clin Pharmacol Ther 80:440–456
Oscarson M, Burk O, Winter S, Schwab M, Wolkold R, Dippon J, Eichelbaum M, Meyer UA (2007) Effects of rifampicin on global gene expression in human small intestine. Pharmacogenet Genom 17:139–145
O’Shea D, Kim RB, Wilkinson GR (1997) Modulation of CYP2E1 activity by isoniazid in rapid and slow N-acetylators. Br J Clin Pharmacol 43:99–103
Ouellet D, Hsu A, Qian J, Locke CS, Eason CJ, Cavanaugh JH, Leonard JM, Granneman GR (1998) Effect of ritonavir on the...
pharmacokinetics of ethinyl oestradiol in healthy female volunteers. Br J Clin Pharmacol 46:111–116

Oyama T, Sugio K, Uramoto H, Iwata T, Onitsuka T, Isse T, Nozoe T, Kagawa N, Yasumoto K, Kawamoto T (2007) Increased cytochrome P450 and aryl hydrocarbon receptor in bronchial epithelium of heavy smokers with non-small cell lung carcinoma carries a poor prognosis. Front Biosci 12:4497–4503

Padda SK, Chhatwani L, Zhou L, Jacobs CD, Lopez-Anaya A, Waklee HA (2013) Phase I and pharmacokinetic study of bexarotene in combination with gefitinib in the third-line treatment of non-small-cell lung cancer: brief report. Anticancer Drugs 24:731–735

Paine MF, Roe AL (2018)“Green Medicine”: the past, present, and future of botanicals. Clin Pharmacol Ther 104:410–415

Paine MF, Shen DD, McCune JS (2018) Recommended approaches for pharmacokinetic natural-product-drug interaction research: a NaPDi Center Commentary. Drug Metab Dispos 46:1041–1045

Pakkir Maideen NM, Manavalan G, Balasubramanian K (2018) Drug interactions of meglitinide antidiabetics involving CYP enzymes and OATP1B1 transporter. Ther Adv Endocrinol Metab 9:259–268

Palcharla RC, Nirogi R, Uthukam V, Manoharan A, Ponnanneni RK, Kalaikadhiban I (2018) Quantitative in vitro phenotyping and prediction of drug interaction potential of CYP2B6 substrates as victims. Xenobiotica 48:663–675

Paladino JA, Blumer NA, Maddox RR (1983) Effect of secoharbital on theophylline clearance. Ther Drug Monit 5:135–139

Palovaara S, Kivivö XT, Tapanainen P, Manninen P, Neuvonen PJ, Laine K (2000) Effect of an oral contraceptive preparation containing ethinylestradiol and gestodene on CYP3A4 activity as measured by midazolam 1′-hydroxylation. Br J Clin Pharmacol 50(4):333–337. https://doi.org/10.1046/j.1365-2125.2000.00271.x

Pantuck EJ, Kuntzman R, Conney AH (1972) Decreased concentration of phenacetin in plasma of cigarette smokers. Science 175:1248–1250

Pantuck EJ, Hsiao KC, Conney AH, Garland WA, Kappas A, Anderson KE, Alvesap AP (1976) Effect of charcoal-broiled beef on phenacetin metabolism in man. Science 194:1055–1057

Pantuck EJ, Pantuck CB, Garland WA, Min BH, Wattenberg LW, Anderson KE, Kappas A, Conney AH (1979) Stimulatory effect of brussels sprouts and cabbage on human drug metabolism. Clin Pharmacol Ther 25:88–95

Park JY, Kim KA, Kang MH, Kim SL, Shin JG (2004) Effect of rifampin on the pharmacokinetics of rosiglitazone in healthy subjects. Clin Pharmacol Ther 75:157–162

Parker AC, Pritchard P, Preston T, Choonara I (1998) Induction of CYP1A2 activity by carbamazepine in children using the caffeine breath test. Br J Clin Pharmacol 45:176–178

Parmentier Y, Poither C, Delmas A, Caradee F, Trancart M, Guillet F, Bouaita B, Chesne C, Brown Houston J, Walthér B (2017) Direct and quantitative evaluation of the human CYP3A4 contribution (fm) to drug clearance using the in vitro SILENSOMES model. Xenobiotica 47:562–575

Pasanen M, Haaparanta T, Sundin M, Sivonen P, Vakakangas K, Raunio H, Hines R, Gustafsson JA, Pelkonen O (1990) Immunochemical and molecular biological studies on human placental cigarette smoke-inducible cytochrome P-450-dependent monooxygenase activities. Toxicology 62:175–187

Pascussi JM, Drocourt L, Gerbal-Chaloin S, Fabre JM, Maurel P, Vilarem MJ (2001) Dual effect of dexamethasone on CYP3A4 gene expression in hepatocytes. Sequential role of glucocorticoid receptor and pregnane X receptor. Eur J Biochem 268:6346–6358

Pascussi JM, Busson-Le Coniat M, Maurel P, Vilarem MJ (2003) Transcriptional analysis of the orphan nuclear receptor constitutive androstane receptor (NR1I3) gene promoter: identification of a distal glucocorticoid response element. Mol Endocrinol 17:42–55

Pavek P (2016) Pregnan X receptor (PXR)-mediated gene repression and cross-talk of PXR with other nuclear receptors via coactivator interactions. Front Pharmacol 7:456

Pelkonen O, Turpeinen M, Hakkołja J, Honkasalo K, Hukkanen J, Raunio H (2008) Inhibition and induction of human cytochrome P450 enzymes: current status. Arch Toxicol 82:667–715

Pelkonen O, Xu Q, Fan T (2014) Why is research on herbal medicinal products important and how can we improve its quality? J Tradit Complement Med 4:1–7

Penzar SR, Hon YY, Lawhorn WD, Shirley KL, Spratlin V, Jann MW (2002) Influence of ritonavir on olanzapine pharmacokinetics in healthy volunteers. J Clin Psychopharmacol 22:366–370

Penzar SR, Robertson SM, Hunt JD, Chairez C, Malati CY, Alfaro RM, Stevenson JM, Kovacs JA (2010) PMC3407958; echinacea purpurea signiﬁcantly induces cytochrome P450 3Aa activity but does not alter lopinavir–ritonavir exposure in healthy subjects. Pharmacotherapy 30:797–805

Perrot N, Nalpas B, Yang CS, Beune PH (1989) Modulation of cytochrome P450 isozymes in human liver, by ethanol and drug intake. Eur J Clin Investig 19:549–555

Perucca E, Grimaldi R, Frigo GM, Sardi A, Monig H, Ohnhaus EE (1988) Comparative effects of rifabutin and rifampicin on hepatic microsomal enzyme activity in normal subjects. Eur J Clin Pharmacol 34:595–599

Perucca E, Cloyd J, Critchley D, Fuese E (2008) Rufinamide: clinical pharmacokinetics and concentration–response relationships in patients with epilepsy. Epilepsia 49:1123–1141

Petersen MS, Halling J, Damkier P, Nielsen F, Grandjean P, Weihe P, Brosen K (2007) Polychlorinated biphenyl (PCB) induction of CYP3A4 enzyme activity in healthy Faroese adults. Toxicol Appl Pharmacol 224:202–206

Pilla Reddy V, Walker M, Sharma P, Ballard P, Vishwathanan K (2018) Development, verification, and prediction of osimertinib drug–drug interactions using PBPK modeling approach to inform drug label. CPT Pharmacomet Syst Pharmacol 7:321–330

Piscitelli SC, Burstein AH, Chait D, Alfaro RM, Falloon J (2000) Indinavir concentrations and St John's wort. Lancet 355:547–548

Pithavala YK, Tortorici M, Toh M, Garrett M, Hee B, Kuruganti U, Ni G, Klammerus KJ (2010) Effect of rifampin on the pharmacokinetics of Atixinib (AG-013736) in Japanese and Caucasian healthy volunteers. Cancer Chemother Pharmacol 65:563–570

Pithavala YK, Tong W, Mount J, Rahavendran SV, Garrett M, Hee B, Selaru P, Sarana N, Klammerus KJ (2012) Effect of ketozolamide on the pharmacokinetics of atixinib in healthy volunteers. Invest New Drugs 30:273–281

Poland A, Smith D, Kuntzman R, Jacobson M, Conney AH (1970) Effect of intensive occupational exposure to DDT on phenylbutazone and cortisol metabolism in human subjects. Clin Pharmacol Ther 25:88–95

Poland A, Spear YK, Tortorici M, Toh M, Garrett M, Hee B, Kuruganti U, Ni G, Klammerus KJ (2012) Effect of rifampin on the pharmacokinetics of Atixinib (AG-013736) in Japanese and Caucasian healthy volunteers. Cancer Chemother Pharmacol 65:563–570

Piskulic MM, Morse BL, Turner PK, Kulanthaivel P, Hall SD, Dickinson GL (2020) Predicting clinical effects of CYP3A4 modulators on abemaciclib and active metabolites exposure using
physiologically based pharmacokinetic modeling. J Clin Pharmacol 60:915–930

Pratt-Haytt M, Lin H, Hollenberg PF (2010) Mechanism-based inactivation of human CYP2E1 by diethylthiocarbamate. Drug Metab Dispos 38:2286–2292

Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R (2010) SuperCYP: a comprehensive database on cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res 38:237

Press RR, Ploeger BA, den Hartigh J, van der Straaten T, van Pel H, Danhof M, de Fijter H, Guchelaar HJ (2010) 2686991; explaining variability in ciclosporin exposure in adult kidney transplant recipients. Eur J Clin Pharmacol 66:579–590

Prio-Castello M, Cardona A, Marhuenda D, Roel JM, Corno A (2010) Use of the CYP2E1 genotype and phenotype for the biological monitoring of occupational exposure to styrene. Toxicol Lett 192:34–39

Pursche S, Schleyer E, von Bonin M, Ehninger G, Saad SM, Prondzinski R, Illmer T, Wang Y, Hosius C, Nikolova Z, Bornhäuser M, Dresemann G (2008) Influence of enzyme-inducing antiepileptic drugs on trough level of imatinib in glioblastoma patients. Curr Clin Pharmacol 3:198–203

Qin WJ, Zhang W, Liu ZQ, Chen XP, Tan ZR, Hu DL, Wang D, Fan L, Zhou HH (2012) PMC3522813: Rapid clinical induction of bupropion hydroxylation by metamizole in healthy Chinese men. Br J Clin Pharmacol 74:1000–1004

Qiu F, Wang G, Zhang R, Sun J, Jiang J, Ma Y (2010) PMC2883758; Effect of danshen extract on the activity of CYP3A4 in healthy volunteers. Br J Clin Pharmacol 69:656–662

Qiu F, Jiang J, Ma Y, Wang G, Gao C, Zhang X, Zhang L, Liu S, He M, Zhu L, Ye Y, Li Q, Miao P (2013) PMC3816049; opposite effects of single-dose and multidose administration of the extract of danshen on CYP3A4 in healthy volunteers. Evid Based Complement Altern Med 2013;730734

Quattrrochi LC, Tukey RH (1993) Nuclear uptake of the Ah (dioxin) receptor in response to omeprazole: transcriptional activation of the human CYP1A1 gene. Mol Pharmacol 43:504–508

Raaska K, Neuvonen PJ (2000) Ciprofloxacin increases serum clozapine and N-desmethylclozapine: a study in patients with schizophrenia. Eur J Clin Pharmacol 56:585–589

Rahimoglu N, Heaton J, Clement G, Gill R, Sourdulescu G, Zlobeka K, Hodgkiss D, Ma Y, Hider RC, Smith NW, Ahmadi KR (2011) Genetic epidemiology of induced CYP3A4 activity. Pharmacogenet Genom 21:642–651

Ramanathan S, Jin F, Sharma S, Kearney BP (2016) Clinical Pharmacokinetic and pharmacodynamic profile of idelalisib. Clin Pharmacokinet 55:33–45

Rao PSS, Midde NM, Miller DD, Chauhan S, Kumar A, Kumar S (2015) Diallyl sulfide: potential use in novel therapeutic interventions in alcohol, drugs, and disease mediated cellular toxicity by targeting cytochrome P450 2E1. Curr Med Metab 16:486–503

Rasheed A, Hines RN, McCarver-May D (1997) Variation in induction of human placental CYP2E1: possible role in susceptibility to fetal alcohol syndrome? Toxicol Appl Pharmacol 144:396–400

Raucy JL, Schultz ED, Wester MR, Arora S, Johnston DE, Omdahl JL, Carpenter SP (1997) Human lymphocyte cytochrome P450 2E1, a putative marker for alcohol-mediated changes in hepatic chlorozoxazone activity. Drug Metab Dispos 25:1429–1435

Raucy JL, Schultz ED, Kearns MC, Arora S, Johnston DE, Omdahl JL, Eckmann L, Carpenter SP (1999) CYP2E1 expression in human lymphocytes from various ethnic populations. Alcohol Clin Exp Res 23:1868–1874

Rautio A, Salmela E, Arvela P, Pelkonen O, Sotaniemi EA (1994) Assessment of CYP2A6 and CYP3A4 activities in vivo in different diseases in man. In: Lechner MC (ed) Cytochrome P450: biochemistry, biophysics and molecular biology. John Libbey Eurotext, Paris, pp 519–521

Reardon DA, Vredenburgh JJ, Desjardins A, Peters K, Gururangan S, Sampson JH, Marcello J, Herndon JE, McLendon RE, Janney D, Friedman AH, Bigner DD, Friedman HS (2011) Effect of CYP3A4-inducing antiepileptics on sorafenib exposure: results of a phase II study of sorafenib plus daily temozolomide in adults with recurrent glioblastoma. J Neurooncol 101:57–66

Reed GA, Peterson KS, Smith HJ, Gray JC, Sullivan DK, Mayo MS, Crowell JA, Hurwitz A (2005) A phase I study of indole-3-carbinol in women: tolerability and effects. Cancer Epidemiol Biomark Prev 14:1953–1960

Reese MJ, Wurm RM, Muir KT, Generaux GT, St John-Williams L, McCaughan PJ (2008) An in vitro mechanistic study to elucidate the desipramine/bupropion clinical drug–drug interaction. Drug Metab Dispos 36:1198–1201

Richter E, Breimer DD, Zilly W (1980) Disposition of hexobarbital in intra- and extrahepatic cholestasis in man and the influence of drug metabolism-inducing agents. Eur J Clin Pharmacol 17:197–202

Roberts PJ, Rollins KD, Kashuba AD, Paine MF, Nelsen AC, Williams EE, Moran C, Lamba JK, Schuetz EG, Hawke RL (2008) 2770345; the influence of CYP3A5 genotype on dexamethasone induction of CYP3A4A activity in African Americans. Drug Metab Dispos 36:1465–1469

Robertson P, DeCory HH, Madan A, Parkinson A (2000) In vitro inhibition and induction of human hepatic cytochrome P450 enzymes by modafinil. Drug Metab Dispos 28:664–671

Robertson PJ, Hellriegel ET, Arora S, Nelson M (2002) Effect of modafinil on the pharmacokinetics of ethinyl estradiol and triazolam in healthy volunteers. Clin Pharmacol Ther 71:46–56

Robertson SM, Maldarelli F, Natarajan V, Formentini E, Alfaro RM, Penzak SR (2008a) Efavirenz induces CYP2B6-mediated hydroxylation of bupropion in healthy subjects. J Acquire Immune Defic Syndr 49:513–519

Robertson SM, Davey RT, Veoli J, Formentini E, Alfaro RM, Penzak SR (2008b) Effect of Ginkgo biloba extract on lopinavir, midazolam and fexofenadine pharmacokinetics in healthy subjects. Curr Med Res Opin 24:591–599

Robson RA, Miners JO, Wing LM, Birkett DJ (1984) 1463637; theophylline-riflamipin interaction: non-selective induction of theophylline metabolic pathways. Br J Clin Pharmacol 18:445–448

Roby CA, Anderson GD, Kantor E, Dryer DA, Burstein AH (2000) St John’s Wort; effect on CYP3A4 activity. Clin Pharmacol Ther 67:451–457

Rosenfeld WE, Doose DR, Walker SA, Nayak RK (1997) Effect of topiramate on the pharmacokinetics of an oral contraceptive containing norethindrone and ethinyl estradiol in patients with epilepsy. Epilepsia 38:317–323

Rost KL, Roots I (1994) Accelerated caffeine metabolism after omeprazole treatment is indicated by urinary metabolite ratios: coincidence with plasma clearance and breath test. Clin Pharmacol Ther 55:402–411

Rost KL, Brosicke H, Heinemeyer G, Roots I (1994) Specific and dose-dependent enzyme induction by omeprazole in human beings. Hepatology 20:1204–1212

Rothhammer V, Quintana FJ (2019) The aryl hydrocarbon receptor: an environmental sensor integrating immune responses in health and disease. Nat Rev Immunol 19:184–197

Rowland A, van Dyk M, Warncken D, Mangoni AA, Sorich MJ, Rowland A (2018) Evaluation of modafinil as a perpetrator of metabolic drug–drug interactions using a model informed cocktail reaction phenotyping trial protocol. Br J Clin Pharmacol 84:501–509
Samer CF, Gloor Y, Rollason V, Guessous I, Doffey-Lazeyras F, Sau-saarkoski ST, Rivera SP, Hankinson O, Husafvel-Pursiainen K (2005) CYP2S1: a short review. Toxicol Appl Pharmacol 207:62–69

Saccar CL, Danish M, Ragni MC, Rocci MLJ, Greene J, Yaffe SJ, Manssmann HCJ (1985) The effect of phenobarbital on theophy-line disposition in children with asthma. J Allergy Clin Immunol 75:716–719

Sager JE, Tripathy S, Price LSL, Nath A, Chang J, Stephenson-Famy A, Issherranan N (2017) In vitro to in vivo extrapolation of the complex drug–drug interaction of bupropion and its metabolites with CYP2D6: simultaneous reversible inhibition and CYP2D6 downregulation. Biochem Pharmacol 123:85–96

Sale M, Sadler BM, Stein DS (2002) Pharmacokinetic modeling and simulations of interaction of amprenavir and ritonavir. Anti-microb Agents Chemother 46:746–754

Samer CF, Gloor Y, Rollason V, Gossuiss O, Doffey-Lazeyras F, Saur-JH, Sog O, Desmeules J, Daali Y (2020) Cytochrome P450 1A2 activity and incidence of thyroid disease and cancer after chronic or acute exposure to dioxins. Basic Clin Pharmacol Toxicol 126(3):296–303. https://doi.org/10.1111/bcpt.13339

Satarug S, Ujjin P, Vanavanitunk Y, Nishijo M, Baker JR, Moore MR (2004a) Effects of cigarette smoking and exposure to cadmium and lead on phenotypic variability of hepatic CYP2A6 and renal function biomarkers in men. Toxicology 204:161–173

Satarug S, Nishijo M, Ujjin P, Vanavanitunk Y, Baker JR, Moore MR (2004b) Effects of chronic exposure to low-level cadmium on renal tubular function and CYP2A6-mediated coumarin metabo-lism in healthy human subjects. Toxicol Lett 148:187–197

Saurat JH, Kaya G, Saxer-Sekulic N, Parbo D, Becker M, Fontao L, Mottu F, Carrauph, Pham XC, Barde C, Fontao F, Zennegg M, Schmid P, Schaod O, Descombes P, Sog O (2012) The cutaneous lesions of dioxin exposure: lessons from the poisoning of Victor Yushchenko. Toxicol Sci 125:310–317

Sausselé T, Burk O, Blievertheck J, Klein K, Nussler A, Nussler N, Hengstler JG, Eichelbaum M, Schwab M, Zanger UM (2007) Selective induction of human hepatic cytochromes P450 3A4 and 3A5 by metamizole. Clin Pharmacol Ther 82:265–274

Scholzer-Gyure M, Kakuda TN, Raoof A, De Smedt G, Hoetelmans RM (2009) Clinical pharmacokinetics and pharmacodynamics of etravirine. Clin Pharmacokinet 48:561–574

Schulz M, Iwersen-Bergmann S, Andresen H, Schmoldt A (2012) Therapeutic and toxic blood concentrations of nearly 1000 drugs and other xenobiotics. Crit Care 16:R136

Schulz M, Schmoldt A, Andresen-Streichert H, Iwersen-Bergmann S (2020) Revisited: therapeutic and toxic blood concentrations of more than 1100 drugs and other xenobiotics. Crit Care 24:195

Schwartzberg LS, Yardley DA, Elias AD, Patel M, LoRusso P, Burris HA, Gucaip A, Peterson AC, Blaney ME, Steinberg JL, Gibbons JA, Traina TA (2017) A phase I/Ib study of enzalutamide alone and in combination with endocrine therapies in women with advanced breast cancer. Clin Cancer Res 23:4046–4054

Savori D, Ahokas JT (2017) Chapter 5: interactions between conven-tional and herbal medicinal products. In: Pelkonen O, Duez P, Vuorela H (eds) Toxicology of herbal products. Springer Interna-tional Publishing, Switzerland, pp 81–99

Shadle CR, Lee Y, Majumdar AK, Petty KJ, Gargano C, Bradstreet TE, Evans JK, Blum RA (2004) Evaluation of potential inductive effects of aprepiant on cytochrome P450 3A4 and 2C9 activity. J Clin Pharmacol 44:215–223

Shelley M, Einolf HJ (2019) Practical assessment of clinical drug–drug interactions in drug development using physiologically based pharmacokinetic modeling. Clin Pharmacol Ther 105:1326–1328

Sherman EM, Worley MV, Unger NR, Gauthier TP, Schafer JJ (2015) Cobicistat: review of a pharmacokinetic enhancer for HIV infect-ion. Clin Ther 37:1876–1893

Shi JG, Chen X, Emm T, Scherle PA, McGee RF, Lo Y, Landman RR, McKeever EG, Punwani NG, Williams WV, Yeleswaram S (2012) The effect of CYP3A4 inhibition or induction on the pharmacokinetics and pharmacodynamics of orally administered ruxolitinib (INCB018424 phosphate) in healthy volunteers. J Clin Pharmacol 52:809–818

Shukla SJ, Sakamuru S, Huang R, Moeller TA, Shin P, Vanleer D, Auld DS, Austin CP, Xia M (2011) Identification of clinically used drugs that activate preganone X receptors. Drug Metab Dispos 39:151–159

Simonsson US, Jansson B, Hai TN, Huang DX, Tybring G, Ashton M (2003) Artemisinin autoinduction is caused by involvement of cytochrome P450 2B6 but not C29. Clin Pharmacol Ther 74:32–43

Sinha R, Rothman N, Brown ED, Mark SD, Hoover RN, Caporaso NE, Levander OA, Knize MG, Lang NP, Kadlubar FF (1994) Pan-fried meat containing high levels of heterocyclic aromatic amines but low levels of polycyclic aromatic hydrocarbons induces cytochrome P4501A2 activity in humans. Cancer Res 54:6154–6159

Sinues B, Fanlo A, Mayayo E, Carcas C, Vicente J, Arenaz I, Cebol-lada A (2008) CYP2A6 activity in a healthy Spanish population: effect of age, sex, smoking, and oral contraceptives. Hum Exp Toxicol 27:367–372

Skjerjance A, Wang J, Maren K, Rojkjaer L (2010) Investigation of the pharmacokinetic interactions of deferasirox, a once-daily oral iron chelator, with midazolam, rifampin, and repaglinide in healthy volunteers. J Clin Pharmacol 50:205–213

Slattery JT, Kallhorn TF, McDonald GB, Lambert K, Buckner CD, Bensinger WI, Anasetti C, Appelbaum FR (1996) Condition-ing regimen-dependent disposition of cyclophosphamide and hydroyxycyclophosphamide in human marrow transplantation patients. J Clin Oncol 14:1484–1494

Smith G, Wolf CR, Deeni YY, Dawe RS, Evans AT, Comrie MM, Ferguson J, Ibbotson SH (2003) Cutaneous expression of cytochrome P450 CYP2S1: individuality in regulation by therapeutic agents for psoriasis and other skin diseases. Lancet 361:1336–1343

Smith G, Ibbotson SH, Comrie MM, Dawe RS, Bryden A, Ferguson J, Wolf CR (2006) Regulation of cutaneous drug-metabolizing enzymes and cytoprotective gene expression by topical drugs in human skin in vivo. Br J Dermatol 155:275–281
treatment induces cytochrome P450 3A activity in non-small cell lung cancer patients. Br J Clin Pharmacol 85:1704–1709
Svensson US, Ashton M, Trinh NH, Bertilsson L, Dinh XH, Nguyen VH, Nguyen TN, Nguyen DS, Lykkefeldt J, Le DC (1998) Artemisinin induces omeprazole metabolism in human beings. Clin Pharmacol Ther 64:160–167
Swails J, Ranson M, Smith RP, Leadbetter J, Laight A, McKillop D, Wild MJ (2005) Pharmacokinetic drug interactions of gefitinib with rifampicin, iraconazole and metoprolol. Clin Pharmacokinet 44:1067–1081
Takahashi T, Lasker JM, Rosman AS, Lieber CS (1993) Induction of cytochrome P4502E1 in the human liver by ethanol is caused by a corresponding increase in encoding messenger RNA. Hepatology 17:236–245
Takakusa H, Wahlin MD, Zhao C, Hanson KL, New LS, Chan EYC, Nelson SD (2011) Metabolic intermediate complex formation of human cytochrome P450 3A4 by lopatinib. Drug Metab Dispos 39:1022–1030
Takusagawa S, Miyashita A, Iwatsubo T, Usui T (2012) In vitro inhibition and induction of human cytochrome P450 enzymes by mirabegron, a potent and selective β3-adrenergic receptor agonist. Xenobiotica 42:1187–1196
Tan AR, Gibbon DG, Stein MN, Lindquist D, Edenfeld JW, Martin JC, Gregory C, Suttle AB, Tada H, Botyl J, Stephenson JJ (2013) Effects of ketoconazole and esomeprazole on the pharmacokinetics of pazopanib in patients with solid tumors. Cancer Chemother Pharmacol 71:1635–1643
Tanaka C (2014) Clinical pharmacology of deferasirox. Clin Pharmacokinet 53:679–694
Tanaka C, Yin OQP, Smith T, Sethuraman V, Grouss K, Galitz L, Harrell R, Schran H (2011) Effects of rifampin and ketoconazole on the pharmacokinetics of nilotinib in healthy participants. J Clin Pharmacol 51:75–83
Tanner JA, Tyndale RF (2017) Variation in CYP2A6 activity and personalized medicine. J Pers Med 7(4):18. https://doi.org/10.3390/jpm7040018
Tassaneeyakul W, Guo LQ, Fukuda K, Ohta T, Yamazoe Y (2000) Inhibition selectivity of grapefruit juice components on human cytochromes P450. Arch Biochem Biophys 378:356–363
Teng WC, Oh JW, New LS, Wahlin MD, Nelson SD, Ho HK, Chan EYC (2010) Mechanism-based inactivation of cytochrome P450 3A4 by lopatinib. Mol Pharmacol 78:693–703
Theilingwani RS, Zvada SP, Dolgos H, Uggab AB, Masimirembwa CM (2009) In vitro and in silico identification and characterization of thiabendazole as a mechanism-based inhibitor of CYP1A2 and simulation of possible pharmacokinetic drug–drug interactions. Drug Metab Dispos 37:1286–1294
Thorn CF, Aklillu E, McDonagh EM, Klein TE, Altman RB (2012) PharmGKB summary: caffeine pathway. Pharmacogenet Genom 22:389–395
Thum T, Erpenbeck VJ, Moeller J, Hohlfeld JM, Krug N, Borlak J (2006) Expression of xenobiotic metabolizing enzymes in different lung compartments of smokers and nonsmokers. Environ Health Perspect 114:1655–1661
Thummel KE, Shen DD, Pollod TL, Kunze KL, Trager WF, Hartwell PS, Raisys VA, Marsh CL, McVicar JP, Barr DM (1994) Use of midazolam as a human cytochrome P450 3A probe: I. In vitro-in vivo correlations in liver transplant patients. J Pharmacol Exp Ther 271:549–556
Tian X, Zhang H, Heimbach T, He H, Buchbinder A, Aghoghovbia M, Hourcade-Potelleret F (2018) Clinical pharmacokinetic and pharmacodynamic overview of nilotinib, a selective tyrosine kinase inhibitor. J Clin Pharmacol 58:1533–1540
Tornio A, Filippula AM, Kailari O, Neuvonen M, Nyronen TH, Tapininen T, Neuvonen PJ, Niemi M, Backman JT (2014) Glucuronidation converts clopidogrel to a strong time-dependent inhibitor
of CYP2C8: a phase II metabolite as a perpetrator of drug–drug interactions. Clin Pharmacol Ther 96:498–507

Tornio A, Filippula AM, Niemi M, Backman JT (2019) Clinical studies on drug–drug interactions involving metabolism and transport: methodology, pitfalls, and interpretation. Clin Pharmacol Ther 105:1345–1361

Townsend R, Dietz A, Hale C, Akhtar S, Kowalski D, Lademacher C, Lasseter K, Pearlman H, Rammelsberg D, Schmitt-Hoffmann A, Yamazaki T, Desai A (2017) Pharmacokinetic evaluation of CYP3A4-mediated drug–drug interactions of isavuconazole with rifampin, ketoconazole, midazolam, and ethinyl estradiol/norethindrone in healthy adults. Clin Pharmacol Drug Dev 6:44–53

Tran A, Rey E, Pons G, Rousseau M, d’Athis P, Olive G, Mather GG, Bishop FE, Wurden CJ, Labroo R, Trager WF, Kunze KL, Thumbel KE, Vincent JC, Gillardin JM, Lepage F, Levy RH (1997) Influence of stiripentol on cytochrome P450 P340-mediated metabolic pathways in humans: in vitro and in vivo comparison and calculation of in vivo inhibition constants. Clin Pharmacol Ther 62:490–504

Tran QJ, Kovacs SJ, McIntosh TS, Davis HM, Martin DE (1999) Morning spot and 24-hour urinary 6 beta-hydroxycortisol to cortisol ratios: intraindividual variability and correlation under basal conditions and conditions of CYP 3A4 induction. J Clin Pharmacol 39:487–494

Tran QJ, Petersen C, Garrett M, Hee B, Kerr BM (2002) Pharmacokinetic interaction between amapnirav and delavirdine: evidence of induced clearance by amapnirav. Clin Pharmacol Ther 72:615–626

Tsai PC, Glastonbury CA, Eliot MN, Bollepalli S, Yet I, Castillo-Frant JQ, Petersen C, Garrett M, Hee B, Kerr BM (2002) Pharmacokinetic interaction between osimertinib and bosentan, a dual endothelin receptor antagonist, and glyburide. Clin Pharmacol Ther 71:253–262

van Leeuwen DM, van Agen E, Gottschalk RW, Vlietinck R, Gieelen M, van Herwijden MH, Maas LM, Kleinjans JC, van Delft JH (2007) Cigarette smoke-induced differential gene expression in blood cells from mononzygotic twin pairs. Carcinogenesis 28:691–697

van Leeuwen RWF, van Gelder T, Mathijssen RHJ, Jansma FGA (2014) Drug–drug interactions with tyrosine-kinase inhibitors: a clinical perspective. Lancet Oncol 15:315

Varma MV, Pang KS, Isosherran N, Zhao P (2015) Dealing with the complex drug–drug interactions: towards mechanistic models. Biopharm Drug Dispos 36:71–92

Venkatakrishnan K, Rastomi-Hodgejan A (2019) Come dance with me: transformative changes in the science and practice of drug–drug interactions. Clin Pharmacol Ther 105:1272–1278

Villikka K, Varis T, Backman JT, Neuvonen PJ, Kivisto KT (2001) Effect of methylprednisolone on CYP3A4-mediated drug metabolism in vivo. Eur J Clin Pharmacol 57:457–460

Vishwanathan K, So K, Thomas K, Bramley A, English S, Collier J (2019) Absolute bioavailability of osimertinib in healthy adults. Clin Pharmacol Drug Dev 8:198–207

Vital Durand D, Hampden C, Boobis AR, Park BK, Davies DS (1986) 1400797: Induction of mixed function oxidase activity in man by rifampentine (MDL 473), a long-acting rifamycin derivative. Br J Clin Pharmacol 21:1–7

Vyhildal CA, Rifkel AK, Haley JK, Sharma S, Dai H, Tantisira KG, Weiss SS, Leeder JS (2013) PMC3558855; Cotinine in human placenta predicts induction of gene expression in fetal tissues. Drug Metab Dispos 41:305–311

Wagner C, Zhao P, Arya V, Mullick C, Struble K, Au S (2017) Physiologically Based pharmacokinetic modeling for predicting the effect of intrinsic and extrinsic factors on darunavir or lopinavir exposure coadministered with ritonavir. J Clin Pharmacol 57:1295–1304

Wakelam K, Takimoto CH, Lopez-Anaya A, Chu Q, Middleton G, Dunlop D, Ramlau R, Leighl N, Wovinsky EK, Hao D, Zatloukal P, Jacobs CD, Rodon J (2012) The effect of bexarotene on atorvastatin pharmacokinetics: results from a phase I trial of bexarotene plus chemotherapy in patients with advanced non-small cell lung cancer. Cancer Chemother Pharmacol 69:563–571

Walsky RL, Obach RS (2007) A comparison of 2-phenyl-2-(1-piperidinyl)propane (ppp), 1,1′,1″-phosphinothioylidynetrisaziridine (thioTEPA), clopidogrel, and ticlopidine as selective inacti-vators of human cytochrome P450 2B6. J Clin Pharmacol Drug Dev 9:214–223

Turpeinen M, Raunio H, Pelkonen O (2006) The functional role of CYPIIA in pharyngeal mucosa and in oropharyngeal cancer tissue. Biochem Pharmacol 54:1159–1162

Van Booven D, Marsh S, McLeod H, Wang LS, Zhou G, Zhu B, Wu J, Wang JG, Abd El-Aty AM, Li T, Liu J, Yang TL, Wang D, Zhong XY, Zhou HH (2004a) St John’s wort induces both cytochrome P450 3A4-catalyzed sulfoxidation and 2C19-dependent hydroxylation of omeprazole. Clin Pharmacol Ther 75:191–197

van Duynhoven EM, Boots JM, Christaas MAH, Stolk LM, Undre NA, van Hoof JP (2003) Increase in tacrolimus trough levels after steroid withdrawal. Transpl Int 16:721–725

van Erp NP, Guchelaar HJ, Ploeger BA, Romijn JA, Hartigh J, Gelderb-lom H (2011) Mitotane has a strong and a durable inducing effect on CYP3A4 activity. Eur J Endocrinol 164:621–626

van Giersbergen PL, Treibler A, Clozel M, Bodin F, Dingemanse J (2002) In vivo and in vitro studies exploring the pharmacokinetic interaction between bosantan, a dual endothelin receptor antagonist, and glyburide. Clin Pharmacol Ther 71:253–262
Williams ML, Wainer IW, Embree L, Barnett M, Granvil CL, Ducharme MP (1999) Enantioselective induction of cytochrome P450 2C9 activity by phenotypin. Chirality 11:569–574

Williams JM, Gandhi KK, Benowitz NL (2010) 2952059; carbamazepine but not valproate induces CYYP2A6 activity in smokers with mental illness. Cancer Epidemiol Biomark Prev 19:2582–2589

Williamson KM, Patterson JH, McQueen RH, Adams KFJ, Pieper JA (1998) Effects of erythromycin or rifampin on isoratamin pharmacokinetics in healthy volunteers. Clin Pharmacol Ther 63:316–323

Wind S, Schnell D, Ehber T, Freiwald M, Stopfer P (2017) Clinical pharmacokinetics and pharmacodynamics of afatinib. Clin Pharmacokinet 56:235–250

Wongvijituk S, Navasumrit P, Vattanasit U, Parnlbo V, Ruchirawat M (2011) Low level occupational exposure to styrene: its effects on DNA damage and DNA repair. Int J Hyg Environ Health 214:127–137

Wu KC, Cui JY, Klaassen CD (2012) Effect of graded Nrf2 activation on phase-I and -II drug metabolizing enzymes and transporters in mouse liver. PLoS One 7:e39006

Wu H, Kannik S, Subhadrarini A, Wang Z, Phillips S, Han X, Chiang C, Liu L, Bostani M, Roche LM, Quinney SK, Flockhart D, Li L (2013) An integrated pharmacokinetics ontology and corpus for text mining. BMC Bioinform 14:35

Xiao CQ, Chen R, Lin J, Wang G, Chen Y, Tan ZR, Zhou HH (2012) Effect of genistein on the activities of cytochrome P450 3A4 and P-glycoprotein in Chinese healthy participants. Xenobiotica 42:173–178

Xu Y, Hashizume T, Shuhart MC, Davis CL, Nelson WL, Sakaki T, Kalhorn TF, Watkins PB, Schuetz EG, Thummel KE (2006) Intestinal and hepatic CYYP3A4 catalyze hydroxylation of alpha,25-dihydroxyvitamin D(3): implications for drug-induced osteomalacia. Mol Pharm 69:56–65

Yadav J, Korzekwa K, Nagar S (2018) Improved predictions of drug–drug interactions mediated by time-dependent inhibition of CYYP3A. Mol Pharm 15:1979–1995

Yamano T, Tsutsumo J, Gonzalez FJ (1990) The CYYP2A3 gene product catalyzes coumarine 7-hydroxylation in human liver microsomes. Biochemistry 29:1322–1329

Yamazaki T, Desai A, Goldwater R, Han D, Howieson C, Akhtar S, Kowalski D, Lademacher C, Pearlman H, Rammlsborg D, Townsend R (2017) Pharmacokinetic effects of isavuxonanzole coadministration with the cytochrome P450 enzyme substrates bupropion, repaglinide, caffeine, dextromethorphan, and methadone in healthy subjects. Clin Pharmacol Drug Dev 6:54–65

Yasui-Fukuroki N, Takahata T, Nakagami T, Yoshiya G, Inoue Y, Kaneko S, Tateishi T (2004) Different inhibitory effect of fluvoxamine on omeprazole metabolism between CYP2C19 genotypes. Br J Clin Pharmacol 56:235–250

Yeh RF, Gaver VE, Patterson KB, Rezk NL, Baxter-Meheux F, Blake MJ, Eron JJ, Klein CE, Rubleic JK, Kashuba AD (2006) Lopinavir/ritonavir induces the hepatic activity of cytochrome P450 3A4 enzymes CYYP2C9, CYYP2C19, and CYYP1A2 but inhibits the hepatic and intestinal activity of CYYP3A3 as measured by a phenotypic drug cocktail in healthy volunteers. J Acquir Immune Defic Syndr 42:52–60

Yin QQP, Gallagher N, Fischer D, Zhao L, Zhou W, Leroy E, Golor G, Schran H (2011) Effects of nilotinib on single-dose warfarin pharmacokinetics and pharmacodynamics: a randomized, single-blind, two-period crossover study in healthy subjects. Clin Drug Investig 31:169–179

Yokota S, Higashi E, Fukami T, Yokoi T, Nakajima M (2011) Human CYYP2A6 is regulated by nuclear factor-erythroid 2 related factor 2. Biochem Pharmacol 81:289–294
Yoshida N, Oda Y, Nishi S, Abe J, Kaji A, Asada A, Fujimori M (1993) Effect of barbiturate therapy on phenytoin pharmacokinetics. Crit Care Med 21:1514–1522

Yoshida K, Maeda K, Konagaya A, Kusuhara H (2018) Accurate estimation of in vivo inhibition constants of inhibitors and fraction metabolized of substrates with physiologically based pharmacokinetic drug–drug interaction models incorporating parent drugs and metabolites of substrates with cluster newton method. Drug Metab Dispos 46:1805–1816

Yu J, Ritchie TK, Mulaokar A, Raguenneau-Majlessi I (2014) Drug disposition and drug–drug interaction data in 2013 FDA new drug applications: a systematic review. Drug Metab Dispos 42:1991–2001

Yu A, Tian Y, Tu M, Ho PY, Jilek JL (2016a) MicroRNA pharmacogenetics: posttranscriptional regulation mechanisms behind variable drug disposition and strategy to develop more effective therapy. Drug Metab Dispos 44:308–319

Yu J, Ritchie TK, Zhou Z, Raguenneau-Majlessi I (2016b) Key findings from preclinical and clinical drug interaction studies presented in new drug and biological license applications approved by the food and drug administration in 2014. Drug Metab Dispos 44:83–101

Yu J, Zhou Z, Owens KH, Ritchie TK, Raguenneau-Majlessi I (2017a) What can be learned from recent new drug applications? A systematic review of drug interaction data for drugs approved by the US FDA in 2015. Drug Metab Dispos 45:86–108

Yu Y, Lui C, Hoffman J, Wang D (2017b) Physiologically Based Pharmacokinetic Modeling Of Palbociclib. J Clin Pharmacol 57:173–184

Yu J, Zhou Z, Tay-Sontheimer J, Levy RH, Raguenneau-Majlessi I (2018) Risk of clinically relevant pharmacokinetic-based drug–drug interactions with drugs approved by the U.S. Food and Drug Administration between 2013 and 2016. Drug Metab Dispos 46:835–845

Yu J, Petrie ID, Levy RH, Raguenneau-Majlessi I (2019) Mechanisms and clinical significance of pharmacokinetic-based drug–drug interactions with drugs approved by the U.S. Food and Drug Administration in 2017. Drug Metab Dispos 47:135–144

Zaccara G, Gangemi PF, Bendoni L, Menge GP, Schwabe S, Monza GC (1993) Influence of single and repeated doses of oxcarbazepine on the pharmacokinetic profile of felodipine. Ther Drug Monit 15:39–42

Zand R, Nelson SD, Slattery JT, Thummel KE, Kalhorn TF, Adams SP, Wright JM (1993) Inhibition and induction of cytochrome P4502E1-catalyzed oxidation by isoniazid in humans. Clin Pharmacol Ther 54:142–149

Zhang M, Zhu F, Li X, Yang A, Xing J (2014) PMC4055232; auto-induction of phase I and phase II metabolism of artemisinin in healthy Chinese subjects after oral administration of a new artemisinin–piperazine fixed combination. Malar J 13:214

Zanger UM, Schwab M (2013) Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol Ther 138:103–141

Zhang H, Custodio JM, Wei X, Wang H, Yu A, Ling J, Martin H, Quirk E, Kearney BP (2017) Clinical pharmacology of the HIV integrase strand transfer inhibitor bictegravir. In: Conference on retroviruses and opportunistic infections: abstract 40

Zhang W, Heinzmann D, Grippop JF (2017b) Clinical pharmacokinetics of vemurafenib. Clin Pharmacokinet 56:1033–1043

Zhang W, McIntyre C, Forbes H, Gaafar R, Kohail H, Beck JT, Pletsina S, Bertran E, Riehl T (2019) Effect of rifampicin on the pharmacokinetics of a single dose of vemurafenib in patients with BRAFV600 mutation-positive metastatic malignancy. Clin Pharmacol Drug Dev 8:837–843

Zhao B, Zhang W, Yu D, Xu J, Wei Y (2018) Erlotinib in combination with bevacizumab has potential benefit in non-small cell lung cancer: a systematic review and meta-analysis of randomized clinical trials. Lung Cancer 122:10–21

Zhao D, Chen J, Chu M, Long X, Wang J (2020) Pharmacokinetic-based drug–drug interactions with anaplastic lymphoma kinase inhibitors: a review. Drug Des Devel Ther 14:1663–1681

Zhou SF (2008) Drugs behave as substrates, inhibitors and inducers of human cytochrome P450 3A4. Curr Drug Metab 9:310–322

Zhou HH, Anthony LB, Wood AJ, Wilkinson GR (1990) Induction of polymorphic 4′-hydroxylation of S-mephenytoin by rifampicin. Br J Clin Pharmacol 30:471–475

Zhou SF, Yang LP, Zhou ZW, Liu YH, Chan E (2009) Insights into the substrate specificity, inhibitors, regulation, and polymorphisms and the clinical impact of human cytochrome P450 1A2. AAPS J 11(3):481–494. https://doi.org/10.1208/s12248-009-9127-y

Zhou CH, Xu M, Yu HB, Zheng XT, Zhong ZF, Zhang LT (2018) Effects of Danshen capsules on the pharmacokinetics and pharmacodynamics of clopidogrel in healthy volunteers. Food Chem Toxicol 119:302–308

Zilly W, Breimer DD, Richter E (1975) Induction of drug metabolism in man after rifampicin treatment measured by increased hexobarbital and tolbutamide clearance. Eur J Clin Pharmacol 9:219–227

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.