Current advances in the understanding of coronary vasospasm

Ming-Jui Hung

Abstract

Recent years have witnessed progress in our understanding of coronary vasospasm (CVS). It is evident that this is not only an East Asian but also a global disease associated with significant symptoms and possible lethal sequelae for afflicted individuals. A correct diagnosis depends on the understanding of pathogenesis and symptomatology of CVS. With the correct diagnosis, we can manage CVS patients effectively and promptly, providing optimal patient safety. Advances in our understanding of interactions between inflammation, endothelium, and smooth muscle cells have led to substantial progress in understanding the pathogenesis of symptoms in CVS and have provided some insights into the basic etiology of this disorder in some patient subpopulations. We look forward to a time when therapy will address pathophysiology and perhaps, even the primary etiology.

© 2010 Baishideng. All rights reserved.

Key words: Coronary vasospasm; Endothelial nitric oxide synthase; Inflammation; Nitric oxide; Rho-kinase

INTRODUCTION

Coronary vasospasm (CVS) with transient ST-segment elevation can occur in diseased coronary arteries as Prinzmetal’s variant angina[1]; it may also occur in angiographically normal coronary arteries as so-called ‘variant of the variant’ angina[2]. Subsequently, many investigators found that most CVS are associated with ST-segment depression rather than ST-segment elevation on electrocardiography (ECG)[3-5]. Therefore, variant angina is only one aspect of the spectrum of coronary vasospastic myocardial ischemia[6]. CVS plays an important role in the pathogenesis not only of variant angina, but also of ischemic heart disease, including effort angina, unstable angina, acute myocardial infarction, and sudden death[5-11]. Therefore, angina caused by CVS is now usually called ‘coronary vasospastic angina’. The name ‘variant angina’ is less often used and is usually denoted as angina with transient ST-segment elevation.

CASE PRESENTATION

A 67-year-old man was admitted at midnight (0:30 am) to the emergency department due to sudden onset ischemic chest pain associated with cold sweating and palpitation. He was a heavy smoker who had experienced several of these episodes during the past 15 years in which most episodes occurred in the early morning hours. The baseline ECG (Figure 1A) showed no evidence of...
myocardial ischemia on admission to the emergency department. A few hours later, the follow-up ECG due to recurrent chest pain (Figure 1B) showed ST-segment elevation in the V2-4 leads. In the following days, serial ECGs due to chest pain showed dynamic ST-segment elevation in the anterior and inferior leads. D: The patient’s ECG was normal when he was not having chest pain. Baseline coronary angiography showed no evidence of significant fixed coronary artery stenosis; E: Diffuse spasm in the proximal to distal portion (white arrows) and diagonal branch (black arrow) of the left anterior descending artery and in the proximal portion of the left circumflex artery (arrowhead) were noted following intracoronary methylergonovine administration.

The attack is transient, often lasts only a few minutes, and is unpredictably. Thus, ambulatory monitoring of ECG is important to detect the attack. However, even during ambulatory ECG monitoring, an attack may not be apparent, especially when attacks are infrequent. Furthermore, most CVS are associated with ST-segment depression rather than ST-segment elevation, which may not attract the cardiologists’ attention[12]. Therefore, provocation tests for CVS were developed to make a diagnosis of CVS-related ischemic heart disease. An important issue is the indication of provocation testing performed. The pharmacologic provocation testing of CVS is recommended in patients with recurrent episodes of apparent ischemic chest pain at rest who have normal or mildly abnormal coronary angiograms, with no clinical observations substantiating the diagnosis of variant angina, i.e. ST-segment elevation during pain[13].

Several provocative tests for CVS are available. Of these, the ergonovine and acetylcholine tests are most commonly used. Ergonovine is an ergot alkaloid that stimulates both α-adrenergic and serotonergic receptors, and intracoronary administration of doses ranging from 10-80 μg in total are most commonly used. Intracoronary nitroglycerin 50-200 μg is administered subsequently if the luminal diameter is decreased more than 70% after intracoronary ergonovine, in association with clinical symptoms and/or electrocardiographic changes[14]. There is no standard definition for a positive intracoronary provocation test. Yasue et al[15] defined CVS as an abnormal contraction of an epicardial coronary artery resulting in myocardial ischemia. With this definition, there are no limits to the degree of lumen reduction required to diagnose CVS, since ischemia must accompany

DIAGNOSIS OF CVS: MOST CVS ARE ASSOCIATED WITH ST-SEGMENT DEPRESSION

The diagnosis of CVS is not necessarily easy. In contrast to stable effort angina, which is reproducibly induced by exercise testing, CVS is usually not induced by exercise, particularly in the afternoon; it occurs usually at rest, particularly from midnight to early morning. The attack is transient, often lasts only a few minutes, and is unpredictable. Thus, ambulatory monitoring of ECG is important to detect the attack. However, even during ambulatory ECG monitoring, an attack may not be apparent, especially when attacks are infrequent. Furthermore, most CVS are associated with ST-segment depression rather than ST-segment elevation, which may not attract the cardiologists’ attention[12]. Therefore, provocation tests for CVS were developed to make a diagnosis of CVS-related ischemic heart disease. An important issue is the indication of provocation testing performed. The pharmacologic provocation testing of CVS is recommended in patients with recurrent episodes of apparent ischemic chest pain at rest who have normal or mildly abnormal coronary angiograms, with no clinical observations substantiating the diagnosis of variant angina, i.e. ST-segment elevation during pain[13].

Several provocative tests for CVS are available. Of these, the ergonovine and acetylcholine tests are most commonly used. Ergonovine is an ergot alkaloid that stimulates both α-adrenergic and serotonergic receptors, and intracoronary administration of doses ranging from 10-80 μg in total are most commonly used. Intracoronary nitroglycerin 50-200 μg is administered subsequently if the luminal diameter is decreased more than 70% after intracoronary ergonovine, in association with clinical symptoms and/or electrocardiographic changes[14]. There is no standard definition for a positive intracoronary provocation test. Yasue et al[15] defined CVS as an abnormal contraction of an epicardial coronary artery resulting in myocardial ischemia. With this definition, there are no limits to the degree of lumen reduction required to diagnose CVS, since ischemia must accompany
the changes in vessel size. The American College of Cardiology/American Heart Association guidelines for coronary angiography suggest that CVS is present when a reduction in lumen diameter of > 50% occurs during a provocative test. In early 1990, coronary provocation testing using methylergonovine was developed. The intracoronary route of administration of methylergonovine for provocation of CVS is safe, sensitive, and specific. This route is preferable in hypertensive patients and affords the opportunity to evaluate the left and right coronary circulations separately. Auch-Schwelk et al. reported that the contractions to ergonovine are not dependent on nitric oxide release, but are synergistically augmented by thromboxane. However, methylergonovine causes similar effects on vascular smooth muscle, but contractions are inhibited by the release of nitric oxide from the endothelium.

Intracoronary acetylcholine administration in doses of 10-100 μg is also used for CVS provocation. The duration of the action of acetylcholine is very short and the induced CVS usually disappears spontaneously within 2-3 min, without the need for intracoronary nitroglycerin administration. Sinus node and conduction system inhibition is a major side effect of the acetylcholine test in which temporary pacing is needed, especially when intracoronary acetylcholine is administered into the right coronary artery. Acetylcholine provocation is also commonly used to assess coronary endothelial function as it stimulates the release of endothelium-derived nitric oxide with subsequent vasorelaxation of the vascular smooth muscle cells. However, with increasing doses of acetylcholine application, the vasoconstrictor effect on the vascular smooth cells may override the endothelial effect and a vasoconstrictor response may result. Thus, in the normal setting, there is an endothelium-induced coronary vasodilation in response to acetylcholine stimulation, while in the presence of a dysfunctional endothelium the vasoconstrictor effects of acetylcholine prevail and cause a vasoconstriction. Overall, it may be difficult to differentiate between coronary endothelial dysfunction and a CVS, unless the vasoconstrictor response is distinct or > 50% of the vessel diameter. The vasomotion can result in as much as a < 50% change in vessel diameter in patients without CVS. This can also be applied for the cold pressor test.

CVS can also be induced by hyperventilation, which causes respiratory alkalosis. Its sensitivity is 65% and the specificity is 100%. It may be safe when CVS is induced by hyperventilation. Nonetheless, it may be dangerous to use this method to induce multivessel CVS. Histamine, epinephrine, dopamine, dobutamine, serotonin, exercise in the morning, and the cold pressor test all induce CVS with a lower sensitivity than ergonovine or acetylcholine.

Angiographically normal coronary arteries occur in 25% of patients with acute coronary syndrome. The CVS can be induced in 50%-60% of these patients. Since variant angina is a presentation of transient ST-elevation acute coronary syndrome, the diagnosis and initial management procedures must adhere to the guidelines proposed by the American Heart Association in 2005. Initial general therapies for acute coronary syndrome include immediate oxygen therapy, continuous cardiac monitoring, establishment of intravenous access, and medications of aspirin, nitroglycerin, and/or morphine. Morphine is indicated only for refractory chest pain after nitroglycerin use. If a normalized ST-segment is noted after the above general therapies, a diagnosis of variant angina is most likely and reperfusion therapy is unnecessary. If ST-segment elevation persists, then reperfusion therapies are necessary, according to the facilities available in the emergency room.

The importance of the differential diagnosis between persistence and transience of elevated ST-segments lies in the follow-up ECG and patient monitoring. The next diagnostic step for transient ST-segment elevation is coronary angiography, as this is the only certain method to distinguish between patients who have severe fixed multivessel disease or only angiographically normal or near-normal coronary arteries. This differential diagnosis is important because the treatment strategies proposed for variant angina with severe, fixed multivessel disease (e.g. aspirin, clopidogrel, nitrates, angiotensin-converting enzyme inhibitor, and/or percutaneous coronary intervention) or only angiographically normal or near-normal coronary arteries (e.g. calcium antagonists and/or nitrates) are different. Because there are some patients with CVS who are refractory to the conventional medications and who may suffer from life-threatening arrhythmias or sudden death, and because percutaneous coronary intervention is not the correct management for CVS, it is important for every emergency room, ward doctor, and cardiologist to be alert to the presence of CVS, a type of dynamic coronary artery stenosis, which may be silent and lethal.

In 1991, Dote et al. first reported 5 cases of multivessel CVS and transient myocardial stunning. Thereafter, the term transient left ventricular apical ballooning or Takotsubo cardiomyopathy was used to describe transient myocardial stunning by many investigators. After recent investigations, Takotsubo cardiomyopathy is recognized as a form of myocardial stunning following a stressful event that is presumably induced by intense catecholamine response, microvascular dysfunction, or a marked catecholamine response. Clinically, Takotsubo cardiomyopathy is characterized by (1) acute onset (usually following a stressful or emotional event, especially in older women); (2) variable severity of clinical (mainly, dyspnea and chest pain) and electrocardiographic manifestations of acute myocardial ischemia (typically involving territories larger than a single coronary branch); (3) mild cardiac enzyme elevation; (4) absence of obstructive, fixed coronary lesions on early angiographic images; (5) apical, anteroapical, and inferoapical hypo- or dyskinesia, with preserved basal-segment contractility, producing an ampulla-like systolic deformity of the left ventricular sil-
In the 1990s, researchers demonstrated that autonomic nervous system dysfunction was one of the possible mechanisms involved in the development of CVS. Pathologic findings of degeneration and fibrotic changes in the perivascular nerves of vasospastic coronary arteries support the hypothesis of autonomic nervous system dysfunction in CVS. In the 1990s, deficiency of nitric oxide activity due to endothelial dysfunction and oxidative stress were identified as other possible mechanisms for CVS. Plasma levels of vitamin E and another antioxidant were also found to be low in patients with CVS. Subsequently, Japanese investigators showed that polymorphisms of Glu298Asp in exon 7 and T-786C in the 5′-flanking region of the endothelial nitric oxide synthase (eNOS) gene and paraoxonase gene Gln192Arg (Q192R) polymorphism were significantly associated with CVS. Paraoxonase I gene has an antioxidant effect and CVS occurs more often in cigarette smokers. Of CVS, endothelial function is impaired both in coronary and brachial arteries and is improved by vitamin C infusion in smokers. Cigarette smoke extract suppresses the acetylcholine-induced endothelium dependent vasorelaxation and the suppression is prevented by antioxidants in isolated arteries. Thus, cigarette smoking degrades nitric oxide through oxygen radicals. These findings suggest that decreased nitric oxide activity in CVS patients is partly due to increased nitric oxide degradation by oxygen radicals. However, eNOS polymorphisms are found in only one-third of CVS patients and therefore, other genes or factors may also be involved in the pathogenesis of CVS. Murase et al. showed that while genetic risk and gene environment in both genders were involved with CVS, eNOS gene polymorphism was associated with CVS only in women. Type A personality, severe anxiety, and panic disorders were factors associated with CVS, even without significant obstructive coronary artery disease. Although the oxidized form of low-density lipoprotein impairs production of nitric oxide due to down-regulation of eNOS and the oxidative inactivation of nitric oxide by oxygen free radicals, hypercholesterolemia is not a risk factor for CVS. Nakagawa et al. found that CVS preferentially occurs at branch points and nonplaque sites, whereas the atherosclerotic lesion is predominantly localized at the nonbranch points of the curved proximal segments. This indicates that CVS may be a manifestation of coronary artery disease distinctly different from coronary atherosclerosis which is associated with hypercholesterolemia.

Smooth muscle hypercontraction

The classical pathway of vascular smooth muscle contraction through which stimuli induce myosin light chain phosphorylation is an increase of the intracellular Ca²⁺ concentration. However, Ca²⁺-independent regulation also occurs through the inhibition of myosin light chain phosphatase, and the level of myosin light chain phosphorylation is determined by a balance between myosin light chain phosphorylation by myosin light chain kinase and dephosphorylation by myosin light chain phosphatase. Some investigators found that small GTPase RhoA and its downstream effector, ROCK/Rho-kinase, inhibit myosin light chain phosphatase resulting in accentuation of myosin light chain phosphorylation and Ca²⁺ sensitization in response to vasoconstrictor stimuli. In the late 1990s, researchers showed that RhoA/ROCK activity was enhanced in rat arteries with hypertension and vasospasm. Shimokawa et al. and Kandabashi et al. developed swine models of CVS and showed that ROCK activity is enhanced in coronary ar-

NEW UNDERSTANDING OF THE MECHANISMS OF CVS

Autonomic system dysfunction

In the 1980s, researchers demonstrated that autonomic nervous system dysfunction was one of the possible mechanisms involved in the development of CVS. Pathologic findings of degeneration and fibrotic changes in the perivascular nerves of vasospastic coronary arteries support the hypothesis of autonomic nervous system dysfunction in CVS.

Endothelial dysfunction, oxidative stress, and genetic susceptibility

In the 1990s, deficiency of nitric oxide activity due to endothelial dysfunction and oxidative stress were identified as other possible mechanisms for CVS. Plasma levels of vitamin E and another antioxidant were also found to be low in patients with CVS. Subsequently, Japanese
tery smooth muscle after wrapping the coronary artery with interleukin-1 beads. They subsequently showed that the ROCK inhibitor, fasinulid, relieved CVS in humans. Thus, enhanced vascular smooth muscle contraction through the Rho/ROCK pathway plays an important role in the development of CVS. Recent studies show that decreased endothelial nitric oxide activity increases RhoA/ROCK activity in coronary arteries. Fluvastatin, which blocks the RhoA/ROCK pathway was also found to suppress CVS. These findings connect the activity of RhoA/ROCK to endothelial nitric oxide and are in agreement with the clinical observations that spastic coronary arteries are supersensitive to both vasoconstrictor agonists and nitrates.

Inflammation

In 1978, Lewis et al. first reported a case of variant angina and localized pericarditis. They postulated that there was a link between inflammation and CVS. In the mid and late 2000s, we and others showed that chronic inflammation was associated with CVS, as evidenced by elevated peripheral blood monocyte counts, high-sensitivity C-reactive protein, interleukin-6, and adhesion molecules. Cigarette smoking, a major risk factor for CVS, is associated with low-grade inflammation. An interaction between smoking and high-sensitivity C-reactive protein was recently reported by our group. Based on several studies, inflammation exists in patients with CVS. However, the mechanism remains elusive.

Magnesium deficiency, insulin resistance, and K\textsubscript{ATP} channel dysfunction

In the 1980s to 1990s, magnesium deficiency was also considered as a possible factor contributing to the genesis of CVS. Furthermore, it has been reported that infusion of magnesium reduced coronary spasm attacks in patients with CVS. The plausible mechanism might be the calcium channel blocking effect of magnesium ions at the level of vascular smooth muscle cells. Extracellular magnesium inhibits capacitative calcium ion entry in vascular smooth muscle cells. Magnesium-induced coronary dilatation may also be mediated via an intracellular cyclic adenosine 3',5'-monophosphate. Previous studies have shown that adenosine 3',5'-monophosphate elevations contribute to coronary dilatation. Magnesium infusion may cause an increase in adenosine 3',5'-monophosphate within coronary smooth muscle cells, leading to the dilatation of coronary arteries. In 1995, Shinozaki et al. found that insulin resistance associated with compensatory hyperinsulinemia is an independent factor for CVS. They postulated that hyperinsulinemia causes vascular endothelial dysfunction and CVS, and subsequently amplifies atherosclerotic lesion formation. However, CVS does not always precede obstructive atherosclerotic coronary artery disease. The mechanisms between insulin resistance and CVS have not been definitely defined. In 2006, Kalkkat et al. found that spontaneous CVS occurs in K\textsubscript{ATP} mutant mice, which arises from a smooth muscle-extrinsic process. They postulated that endothelial dysfunction with loss of K\textsubscript{ATP} channels and decreased nitric oxide production and/or bioavailability promotes smooth muscle hypercontractility. Another possibility includes the sympathetic neurons, where opening of presynaptic K\textsubscript{ATP} channels decreases norepinephrine release enhancing smooth muscle relaxation to dilate coronary arteries. A defect in these channels decreasing the threshold for norepinephrine release might be associated with CVS.

Summary

CVS provoked by ergonovine results in altered vascular muscle function rather than a disturbance in endothelial nitric oxide release. This is in line with clinical studies demonstrating endothelial dysfunction in many patients without evidence of CVS. Dysfunctional endothelium could play an additional role in the pathogenesis of CVS, because contractions due to the endogenous ligand serotonin are markedly augmented after inhibition of nitric oxide synthase. The interactions between the autonomic nervous system, inflammation, nitric oxide availability, eNOS regulation, Rho/ROCK activity of vascular smooth muscle cells, and K\textsubscript{ATP} channels in smooth muscle cells provide some insights towards the basic etiology of this disorder in some subpopulations.

MANAGEMENT

In the event of an acute CVS attack, chest pain can usually be relieved by sublingual nitroglycerin. With occasional refractory CVS, intravenous or intracoronary administration of nitroglycerin may be necessary. Since the durations of action for nitroglycerin and nitrates are short, i.e. 1 h or less, the long-acting calcium antagonists are necessary to prevent recurrence. The effect of the calcium antagonists is often dramatic. Of particular importance, the calcium antagonist should be given before going to bed at night as CVS attacks usually occur from midnight into the early morning. It may require 2 calcium antagonists (dihydropyridine and non-dihydropyridine) to relieve CVS-related angina. Calcium antagonists should not be withdrawn even if symptomatic attacks occur rarely because of long-term spasticity-related silent myocardial ischemia and sudden death from life-threatening cardiac arrhythmias. Long-acting nitrates are also useful, but their potency is reduced by their tolerance. Combinations of different classes of calcium antagonists with nitrates may be necessary for patients with refractory CVS. \(\beta\)-blockers are not effective in suppressing CVS-related chest pain, especially in patients with angiographically normal or near-normal coronary arteries. Recent clinical research shows that magnesium, statins, antioxidants, and the Rho-kinase inhibitor fasudil are also beneficial for the treatment of CVS. In addition to the use of effective anti-CVS medications, CVS inducers must be avoided. These inducers include cigarette smoking, catecholamines,
muscarnic agonists, ergot alkaloids, prostaglandins, alcohols, emotional stress, and propranolol.

The role of coronary intervention in patients with refractory CVS and organic stenosis is limited. In CVS patients who did not respond to conventional treatments, internal mammary artery revascularization with angiographically normal coronary arteries was reported. An implantable cardioverter defibrillator with aggressive medical therapy for CVS was reported to be effective in patients who had a previous syncopal event, documented ventricular tachycardia, or surviving out of hospital cardiac arrest (Table 1).

PROGNOSIS

The natural history of CVS-related ischemic heart disease is generally good as long as patients avoid cigarette smoking and have good compliance with adequate calcium antagonists therapy. Cardiac events are likely to occur during the first 3-6 mo. Patients without a stenosis of 70% or more have a 94% 1-year MI-free survival rate, while patients with multivessel atherosclerotic coronary artery disease and variant angina only have a 83% 1-year MI-free survival rate. A recurrent angina rate of 11% was noted in patients with CVS without significant coronary artery disease during a 4-year follow-up period. Nonfatal acute myocardial infarction is a possible complication of variant angina with a incidence of 5%-10%. Seventy-five percent of nonfatal myocardial infarction occurs during the first 3 mo. The extent and severity of underlying fixed obstructive coronary artery disease is the prognostic factor which predicts survival within 3-6 mo after the diagnosis of CVS. Significant arrhythmic events during or following attacks of variant angina occur in 20%-50% of patients, among a large series of mostly untreated patients. The risk of sudden death for patients with coronary vasospastic angina is approximately 2% and is most common in patients with multivessel CVS and prior significant arrhythmias during angina occurrence. From another point of view, Wakabayashi et al. tested consecutive Japanese patients for CVS 10-20 d after acute myocardial infarction treated by percutaneous coronary intervention. They found that provoked CVS occurs in 70% of infarct-related arteries and about 50% of noninfarct-related arteries. Provoked CVS was an independent predictor of adverse outcome.

CONCLUSION

Advances in our understanding of interactions between inflammation, the vascular endothelium, and smooth muscle cells have led to substantial progress in our understanding of CVS-pathogenesis and symptomatology, and have provided some insights towards the basic etiology of this disorder in some patient subpopulations. The absence of significant obstructive coronary artery disease should not lead the physician to conclude that the patient does not have ischemic heart disease. Since most patients with CVS present with ST-segment depression rather than ST-segment elevation, a high index of suspicion for CVS-related ischemic chest pain is important, because the treatment of choice varies accordingly. Many young cardiologists are now much interested in coronary intervention and, therefore, are not familiar with CVS-related angina. Since CVS may be complicated by lethal cardiac arrhythmias, sudden death, and incorrect management, it is very important for every physician to be alert to the presence of CVS, which is a dynamic type of coronary artery stenosis. With the correct diagnosis, we can manage CVS patients effectively and promptly, providing for optimal patient safety.

REFERENCES

1. Prinzmetal M, Kennamer R, Merliss R, Wada T, Bor N. Angina pectoris. I. A variant form of angina pectoris; preliminary report. Am J Med 1959; 27: 375-388
2. Cheng TO, Bashour T, Kelser GA Jr, Weiss L, Bacos J. Variant angina of Prinzmetal with normal coronary arteriograms. A variant of the variant. Circulation 1973; 47: 476-485
3. Harding MB, Leithé ME, Mark DB, Nelson CL, Harrison JK, Hерmiller JB, Davidson CJ, Pryor DB, Bashore TM. Ergonovine maleate testing during cardiac catheterization: a 10-year perspective in 3,447 patients without significant coronary artery disease or Prinzmetal’s variant angina. J Am Coll Cardiol 1992; 20: 107-111
4. Kim MH, Park EH, Yang DK, Park TH, Kim SG, Yoon JH, Cha KS, Kim DS, Kim HJ, Kim JS. Role of vasospasm in acute coronary syndrome: insights from ergonovine stress echocardiography. Circ J 2005; 69: 39-43
5. Ong P, Althanasiadis A, Hill S, Vogelsberg H, Voehringer M, Seltzem U. Coronary artery spasm as a frequent cause of acute coronary syndrome: The CASPAR (Coronary Artery Spasm in Patients With Acute Coronary Syndrome) Study. J Am Coll Cardiol 2008; 52: 523-527
6. Maseri A, Severi S, Nes MD, L’Abbate A, Chierchia S, Marzilli M, Ballestra AM, Parodi O, Bagnini A, Distante A. “Variant” angina: one aspect of a continuous spectrum of vasospastic myocardial ischemia. Pathogenetic mechanisms, estimated incidence and clinical and coronary arteriographic findings in 138 patients. Am J Cardiol 1978; 42: 1019-1035
7. Maseri A, L’Abbate A, Baroldi G, Chierchia S, Marzilli M, Ballestra AM, Severi S, Parodi O, Bagnini A, Distante A, Pesola A. Coronary vasospasm as a possible cause of myocardial infarction. A conclusion derived from the study of “preinfarction” angina. N Engl J Med 1978; 299: 1271-1277
8. Yasse H, Kugiyama K. Coronary artery spasm: Japanese view. Coron Artery Dis 1990; 1: 668-674
9. Hung MJ. Coronary vasospasm

Table 1 Therapeutic strategies for CVS

Strategy	Obligatory
Quit smoking	Use before going to bed at night
Long-acting Calcium antagonists	Decreased potency by tolerance
Long-acting Nitrates	
Magnesium	
RhoA/ROCK inhibitor	
Statins	
Coronary bypass graft	
Implantable cardioverter defibrillator	

CVS: Coronary vasospasm.
Coronary vasospasm

10 Hung MJ, Coronary vasospasm

11 Cheng CW, Yang NI, Hung MY, Cherrington WJ. Coronary vasospasm-induced acute coronary syndrome complicated by life-threatening cardiac arrhythmias in patients without hemodynamically significant coronary artery disease. J Am Coll Cardiol 2007; 49: 37-44

12 Nakagawa H, Morikawa Y, Mizuno Y, Harada E, Ito T, Matsui K, Saito Y, Yasue H. Coronary spasm preferentially occurs at branch points: an angiographic comparison with atherothrombosis. Circ Cardiovasc Interv 2009; 2: 97-104

13 Scanlon PJ, Faxon DP, Audef AM, Carabello B, Dehmer GJ, Eagle KA, Legako RD, Leon DF, Murray JA, Nissen SE, Pepine CJ, Watson RM, Ritchie JL, Gibbons RJ, Cheitlin MD, Gardner TJ, Garson A Jr, Russell RO Jr, Ryan TJ, Smith SC Jr. ACC/AHA guidelines for coronary angiography. A report of the American College of Cardiology/American Heart Association Task Force on practice guidelines (Committee on Coronary Angiography). Developed in collaboration with the Society for Cardiac Angiography and Interventions. J Am Coll Cardiol 1999; 33: 1756-1824

14 Baim DS. Coronary angiography. In: Baim DS, editor. Grossman’s cardiac catheterization, angiography, and intervention. 7th ed. Philadelphia: Lippincott Williams & Wilkins, 2006: 215

15 Yasue H, Kugiyama K. Coronary spasm: clinical features and pathogenesis. Intern Med 1997; 36: 760-765

16 Igashiro Y, Yamazoe M, Shibata A. Effect of direct intracoronary administration of methyleneblue in patients with and without variant angina. Am Heart J 1991; 121: 1094-1100

17 Auch-Schwell W, Paetsch I, Krackhardt F, Grafe M, Hetzer R, Fleck E. Modulation of contractions to ergonovine and methyleneblue by nitric oxide and thromboxane A2 in the human coronary artery. J Cardiovasc Pharmacol 2000; 36: 631-639

18 Yasue H, Horio Y, Nakamura N, Fujii H, Imoto N, Sonoda R, Kugiyama K, Oba H, Morikami Y, Kimura T. Induction of coronary artery spasm by acetylcholine in patients with variant angina: possible role of the parasympathetic nervous system in the pathogenesis of coronary artery spasm. Circulation 1986; 74: 955-963

19 Hackett D, Larkin S, Chierchia S, Davies G, Kaski JC, Maseri A. Induction of coronary artery spasm by a direct local action of ergonovine. Circulation 1987; 75: 577-582

20 Nakao K, Ohgushi M, Yoshimura M, Morooka K, Okumura K, Ogawa H, Kugiyama K, Oike Y, Fujimoto K, Yasue H. Hyperventilation as a specific test for diagnosis of coronary artery spasm. Am J Cardiol 1997; 80: 545-549

21 Yasue H, Nakagawa H, Itah T, Harada E, Mizuno Y. Coronary artery spasm–clinical features, diagnosis, pathogenesis, and treatment. J Am Coll Cardiol 2008; 51: 2-17

22 ECC Committee. Subcommittees and Task Forces of the American Heart Association. 2005 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 2005; 112: IV1-IV203

23 Roberts WC, Curry RC Jr, Isner JM, Waller BF, McManus BM, Mariani-Constantini R, Ross AM. Sudden death in Prinzmetal’s angina with coronary spasm documented by angiography. Analysis of three necropsy patients. Am J Cardiol 1982; 50: 203-210

24 Corcos T, David PR, Bourassa MG, Val PG, Robert J, Mata LA, Waters DD. Percutaneous transluminal coronary angioplasty for the treatment of variant angina. J Am Coll Cardiol 1985; 5: 1046-1054

25 Dote K, Sato H, Tateishi H, Uchida T, Ishihara M. [Myocardial stunning due to simultaneous multivessel coronary spasms: a review of 5 cases] J Cardiol 1991; 21: 203-214

26 Lacy CR, Contrada RJ, Robbins ML, Tanenbaum AK, Mooreya AE, Chelton S, Kostis JB. Coronary vasocostriction induced by mental stress (simulated public speaking). Am J Cardiol 1995; 75: 503-505

27 Kurisu S, Sato H, Kawagoe T, Ishihara M, Shimatani Y, Nishio K, Kono Y, Umemura T, Nakamura S. Tako-tsubo-like left ventricular dysfunction with ST-segment elevation: a novel cardiac syndrome mimicking acute myocardial infarction. Am Heart J 2002; 143: 448-455

28 Ghiadoni L, Donald AE, Copley M, Mullen MJ, Oakley G, Taylor M, O’Connor G, Betteridge J, Klein N, Stępko A, Deanfield JE. Mental stress induces transient endothelial dysfunction in humans. Circulation 2000; 102: 2473-2478

29 Sadamatsu K, Tashiro H, Maehira N, Yamamoto K. Coronary microvascular abnormality in the reversible systolic dysfunction observed after noncardiac disease. Jpn Circ J 2000; 64: 790-792

30 Wittstein IS, Thiemann DR, Lima JA, Baughman KL, Schulman SP, Gerschnfeld G, Wu KC, Rade JJ, Bivalacqua TJ, Champion HC. Neurohumoral features of myocardial stunning due to sudden emotional stress. N Engl J Med 2002; 352, 539-548

31 Akashi Y, Nakazawa K, Sakakibara M, Miyake F, Musha H, Sasaki K. 123I-MIBG myocardial scintigraphy in patients with “takotsubo” cardiomyopathy. J Nucl Med 2004; 45: 1121-1127

32 Patel MR, Chen AY, Peterson ED, Newby LR, Pollack CV Jr, Brindis RG, Gibson CM, Kleiman NS, Saucedo JF, Bhatt DL, Gibler WB, Ohman EM, Harrington RA, Roe MT. Prevalence, predictors, and outcomes of patients with non-ST-segment elevation myocardial infarction and insignificant coronary artery disease: results from the Can Rapid risk stratification of Unstable angina patients Suppress ADverse Outcomes with Early implementation of the ACC/AHA Guidelines (CRUSADE) initiative. Am Heart J 2006; 152: 641-647

33 Parodi G, Del Pace S, Carrabba N, Salvadori C, Memish G, Simonetti I, Antoniucci D, Gensini GF. Incidence, clinical findings, and outcome of women with left ventricular apical ballooning syndrome. Am J Cardiol 2007; 99: 182-185

34 Angelini P. Transient left ventricular apical ballooning: A unifying pathophysiological theory at the edge of Prinzmetal angina. Catheter Cardiovasc Interv 2008; 71: 342-352

35 Nabel EG, Ganz P, Gordon JB, Alexander RW, Selwyn AP. Dilatation of normal and constriction of atherosclerotic coronary arteries caused by the cold pressor test. Circulation 1988; 77: 43-52

36 Jougasaki M, Yasue H, Takahashi K. Perivascular nerve lesion of the coronary artery involved in spasm in a patient with variant angina. Pathology 1989; 21: 304-307

37 Kugiyama K, Yasue H, Okumura K, Ogawa H, Fujimoto K, Nakao K, Yoshimura M, Motoyama T, Inobe Y, Kawano H. Nitric oxide activity is deficient in spasm arteries of patients with variant angina. Circulation 1997; 96: 266-271

38 Kugiyama K, Ohgushi M, Sugiyama S, Motoyama T, Kawano H, Hirashima O, Yasue H. Supersensitive dilator response to nitroglycerin but not to atrial natriuretic peptide in spastic coronary arteries in coronary spastic angina. Am J Cardiol 1997; 97: 606-610

39 Kugiyama K, Motoyama T, Hirashima O, Ohgushi M, Soejima H, Misumi K, Kawano H, Miyao Y, Yoshimura M, Ogawa H, Motowu M, Sugiyama S, Yasue H. Vitamin C attenuates abnormal vasomotor reactivity in spasm coronary arteries in patients with coronary spastic angina. J Am Coll Cardiol 1998; 32: 103-109

40 Motoyama T, Kawano H, Kugiyama K, Hirashima O, Ohgushi M, Tsunoda R, Moriyama Y, Miyao Y, Yoshimura M, Ogawa H, Yasue H. Vitamin E administration improves impairment of endothelium-dependent vasodilation in patients with coronary spastic angina. J Am Coll Cardiol 1998;
Hung MJ. Coronary vasospasm

32: 1672-1679
41 Miwa K, Miyagi Y, Igawa A, Nakagawa K, Inoue H. Vitamin E deficiency in variant angina. Circulation 1996; 94: 14-18
42 Yoshimura M, Yasue H, Nakayama M, Shimasaki Y, Sumida H, Sugiyama S, Kugiyama K, Ogawa H, Ogawa Y, Saito Y, Miyamoto Y, Nakao K. A missense Glu289Asp variant in the endothelial nitric oxide synthase gene is associated with coronary spasms in the Japanese. Hum Genet 1998; 103: 65-69

Nakayama M, Yasue H, Yoshimura M, Shimasaki Y, Kugiyama K, Ogawa H, Motoyama T, Saito Y, Ogawa Y, Miyamoto Y, Nakao K. T-786→C mutation in the 5′-flanking region of the endothelial nitric oxide synthase gene is associated with coronary spasm. Circulation 1999; 99: 2864-2870

4t0 T, Yasue H, Yoshimura M, Nakamura S, Nakayama M, Shimasaki Y, Harada E, Mizuno Y, Kawano H, Ogawa H. Paraoxonase gene Gln192Arg (Q192R) polymorphism is associated with coronary artery spasm. Hum Genet 2002; 110: 89-94

Hunq MJ. Hung MY, Cheng CW, Yang NL, Cheng WJ. Comparison of clinical characteristics and prognosis in Taiwanese patients with coronary vasospastic angina pectoris without significant fixed coronary artery disease versus patients with significant fixed coronary artery disease and either stable angina pectoris or acute coronary syndromes. Am J Med Sci 2007; 334: 160-167

Motoyama T, Kawano H, Kugiyama K, Hiroshima O, Ohgushi M, Yoshimura M, Ogawa H, Yasue H. Endothelium-dependent vasodilation in the brachial artery is impaired in smokers: effect of vitamin C. Am J Physiol 1997; 273: H1644-H1650

Ota Y, Kugiyama K, Sugiyama S, Ogushi M, Matsumura T, Doi H, Ogata N, Oka H, Yasue H. Impairment of endothelium-dependent relaxation of rabbit aortas by cigarette smoke extract—role of free radicals and attenuation by captopril. Atherosclerosis 1997; 131: 195-202

Sugiyama S, Kugiyama K, Ogushi M, Matsumura T, Ota Y, Doi H, Ogata N, Oka H, Yasue H. Supersensitivity of atherosclerotic artery to constriction effect of cigarette smoke extract. Cardiovasc Res 1998; 38: 508-515

Murase Y, Yamada H, Hirashiki A, Ichihara S, Kanda H, Watarai M, Takatsu F, Murohara T, Yokota M. Genetic risk and gene-environment interaction in coronary artery spasms in Japanese men and women. Eur Heart J 2004; 25: 970-977

Suzuki S, Yoshimura M, Nakayama M, Abe K, Yamamura M, Nagayoshi M, Kojima S, Kaikita K, Sugiyama S, Yasue H, Ogawa H. A novel genetic marker for coronary spasm in women from a genome-wide single nucleotide polymorphism analysis. Pharmacogenet Genomics 2007; 17: 199-930

Kawahsima S, Yokoyama M. Dysfunction of endothelial nitric oxide synthase and atherosclerosis. Arterioscler Thromb Vasc Biol 2004; 24: 988-1005

Shimokawa H, Tomoike H, Nabeyama S, Yamamoto H, Ishii Y, Tanaka K, Nakamura M. Coronary artery spasms induced in a miniature swine: angiographic evidence and relation to coronary atherosclerosis. Am Heart J 1985; 110: 300-310

Sugishii M, Takatsu F. Cigarette smoking is a major risk factor for coronary spasm. Circulation 1993; 87: 76-79

Narumiya S. The small GTPase Rho: cellular functions and signal transduction. J Biochem 1996; 120: 215-228

Somlyo AP, Somlyo AV. Ca2+ sensitivity of smooth muscle and nonmuscle myosin II: modulated by G proteins, kinases, and myosin phosphatase. Physiol Rev 2003; 83: 1325-1358

Uehata M, Ishizaki T, Sato H, Ono T, Kawahara T, Morishita T, Takakawa H, Yamagami K, Inui J, Maekawa M, Narumiya S. Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature 1997; 389: 990-994

Sato M, Tani E, Fujikawa H, Kabiuchi K. Involvement of Rho-kinase-mediated phosphorylation of myosin light chain in enhancement of cerebral vascular spasms. Circ Res 2000; 87: 195-200

Shimokawa H, Seto M, Katsumata N, Amano M, Kozai T, Yamawaki T, Kuswata K, Kandabashi T, Egashira K, Ikegaki I, Asano T, Kaibuchi K, Takeshita A. Rho-kinase-mediated pathway induces enhanced myosin light chain phosphorylation in a swine model of coronary artery spasm. Cardiovasc Res 1999; 43: 1029-1039

Kandabashi T, Shimokawa H, Miyata K, Kunihiro I, Kawano Y, Fukuta Y, Higo T, Egashira K, Takahashi S, Kaibuchi K, Takeshita A. Inhibition of myosin phosphatase by upregulated rho-kinase plays a key role for coronary artery spasm in a porcine model with interleukin-1beta. Circulation 2000; 101: 1319-1323

Masumoto A, Mohri M, Shimokawa H, Urakami L, Usui M, Takeshita A. Suppression of coronary artery spasm by the Rho-kinase inhibitor fasudil in patients with vasospastic angina. Circulation 2002; 105: 1545-1547

Sauzeau V, Rolli-Derkinnder M, Marionneau C, Loirand G, Pacaud P. RhoA expression is controlled by nitric oxide through cGMP-dependent protein kinase activation. J Biol Chem 2003; 278: 9472-9480

Nohria A, Grunnet ME, Rikitake Y, Noma K, Prsic A, Ganz P, Liao JK, Creager MA. Rho kinase inhibition improves endothelial function in human subjects with coronary artery disease. Circ Res 2006; 99: 1426-1432

Yasue H, Mizuno Y, Harada E, Itoh T, Nakagawa H, Nakayama M, Ogawa H, Hayama S, Honda T, Hokimoto S, Ohshima S, Hokumora Y, Kugiyama K, Horie M, Yoshimura R, Harada M, Uemura S, Saito Y. Effects of a 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor, fluvastatin, on coronary spasm after withdrawal of calcium-channel blockers. J Am Coll Cardiol 2008; 51: 1742-1748

Okumura K, Yasue H, Matsuyama K, Ogawa H, Kugiyama K, Ishizaka H, Sumida H, Fujii H, Matsunaga T, Tsunoda R. Diffuse disorder of coronary artery vasomotility in patients with coronary spastic angina. Hyperreactivity to the constrictor effects of acetylcholine and the dilator effects of nitroglycerin. J Am Coll Cardiol 1996; 27: 45-52

Lewis JR, Kisilevsky R, Armstrong PW. Prinzmetal's angina, normal coronary arteries and pericarditis. Can Med Assoc J 1978; 119: 36-39

Hunq MJ, Kuo LT, Cheng CW, Chang CP, Cheng WJ. Comparison of peripheral monocyte counts in patients with and without coronary spasm and without fixed coronary narrowing. Am J Cardiol 2004; 93: 620-624

Hunq MJ, Cherng WJ, Yang NL. Effect of anti-spastic agents (calcium antagonists and/or isosorbide dinitrate) on high-sensitivity C-reactive protein in patients with coronary vasospastic angina pectoris and no hemodynamically significant coronary artery disease. Am J Cardiol 2005; 99: 84-87

Rich MV. Is vasospastic angina an inflammatory disease? Am J Cardiol 2005; 96: 1612

Rich MV. An association between prinzmetal's angina pectoris and obstructive lung disease. Am J Cardiol 2005; 96: 1612-1613

Itoh T, Mizuno Y, Harada E, Yoshimura M, Ogawa H, Yasue H. Coronary spasm is associated with chronic low-grade inflammation. Circ J 2007; 71: 1074-1078

Li JJ, Zhang YP, Yang P, Zeng HS, Qian XW, Zhang CY, Zhu CG, Li J, Nan JL. Increased peripheral circulating inflammatory cells and plasma inflammatory markers in patients with variant angina. Coron Artery Dis 2008; 19: 293-297

Cho SH, Park IH, Jeong MH, Hwang SH, Yun NS, Hong SN, Lee SR, Kim KH, Moon Y, Hong YJ, Park HW, Kim JH, Ahn YK, Cho JG, Park JC, Kang JC. Increased inflammatory markers and endothelial dysfunction are associated with variant angina. Korean Circ J 2007; 37: 27-32
Comparison of high-sensitivity C-reactive protein level with coronary vasospastic angina pectoris in patients without hemodynamically significant coronary artery disease. Am J Cardiol 2005; 96: 1484-1490

Hung MJ, Cherng WJ, Cheng CW, Li LF. Relation of high-sensitivity C-reactive protein level with coronary vasospastic angina pectoris in patients with coronary vasospasm without significant fixed coronary artery disease versus patients with stable angina pectoris and acute coronary syndromes with significant fixed coronary artery disease. Am J Cardiol 2006; 97: 1429-1434

Yasue H, Hirai N, Mizuno Y, Harada E, Itoh T, Yoshimura M, Kugiyama K, Ogawa H. Low-grade inflammation, thrombogenicity, and atherogenic lipid profile in cigarette smokers. Circ J 2006; 70: 8-13

Hung MY, Hsu KH, Hung MJ, Cheng CW, Kuo LT, Cherng WJ. Interaction between cigarette smoking and high-sensitivity C-reactive protein in the development of coronary vasospasm in patients without hemodynamically significant coronary artery disease. Am J Med Sci 2009; 338: 440-446

Turlapaty PD, Altura BM. Magnesium deficiency produces spasms of coronary arteries: relationship to etiology of sudden death ischemic heart disease. Science 1980; 208: 198-200

Goto K, Yasue H, Okumura K, Matsuyma K, Kugiyama K, Miyagi H, Higashi T. Magnesium deficiency detected by intravenous loading test in variant angina pectoris. Am J Cardiol 1990; 65: 709-712

Miyagi H, Yasue H, Okumura K, Ogawa H, Goto K, Ohshima S. Effect of magnesium on angiographic attack induced by hyperventilation in patients with variant angina. Circulation 1993; 87: 597-602

Teragawa H, Kato M, Yamagata T, Matsuura H, Kajiyama G. The preventive effect of magnesium on coronary spasm in patients with vasospastic angina. Chest 2000; 118: 1690-1695

Yoshimura M, Oshima T, Matsuura H, Ishida T, Kambe M, Kajiyama G. Extracellular Mg2+ inhibits capacitative Ca2+ entry in vascular smooth muscle cells. Circulation 1997; 95: 2567-2572

Mallet RT, Sun J, Fan WL, Kang YH, Bünget R. Magnesium activated adenosine formation in intact perfused heart: predominance of ecto 5'-nucleotidase during hypermagnesemia. Biochim Biophys Acta 1996; 1290: 165-176

Sasaguri T, Itoh T, Hirata M, Kitamura K, Kuriyama H. Regulation of coronary artery tone in relation to the activation of signal transducers that regulate calcium homeostasis. J Am Coll Cardiol 1987; 9: 1167-1175

Shinozaki K, Suzuki M, Ikibuchi M, Takagi H, Hara Y, Tsushima M, Harano Y. Insulin resistance associated with compensatory hyperinsulinaemia as an independent risk factor for vasospastic angina. Circulation 1995; 92: 1749-1757

Kakkar R, Ye B, Stoller DA, Smelley M, Shi NQ, Galles K, Hadhazy M, Makielski JC, McNally EM. Spontaneous coronary vasospasm in KATP mutant mice arises from a smooth muscle-extrinsic process. Circ Res 2006; 98: 682-689

Ueda O, Kohchi K, Kishi Y, Numano F. Long lasting spasticity in controlled vasospastic angina. Heart 1999; 81: 528-532

Kugiyama K, Yasue H, Horio Y, Morikami Y, Fuji H, Koga Y, Kojima A, Takahashi M. Effects of propranolol and nifedipine on exercise-induced attack in patients variant angina: assessment by exercise thallium-201 myocardial scintigraphy with quantitative rotational tomography. Circulation 1986; 74: 374-380

Tanabe Y, Itoh E, Suzuki K, Ito M, Hosaka Y, Nakagawa I, Kumakura M. Limited role of coronary angioplasty and stenting in coronary spastic angina with organic stenosis. J Am Coll Cardiol 2002; 39: 1120-1126

Ono T, Ohashi T, Asakura T, Shin T. Internal mammary revascularization in patients with variant angina and normal coronary arteries. Interact Cardiovasc Thorac Surg 2005; 4: 426-429

Meisel SR, Mazur A, Chetboun J, Epshtein M, Canetti M, Gallimidi J, Katz A, Strasberg B, Peled B. Usefulness of implantable cardioverter-defibrillators in refractory variant angina pectoris complicated by ventricular fibrillation in patients with angiographically normal coronary arteries. Am J Cardiol 2002; 89: 1114-1116

Lettsa KP, Filippatos GS, Eremidis M, Sideris A, Kardaras F. Secondary prevention of sudden cardiac death in coronary artery spasm: is implantable cardioverter defibrillator always efficient? Int J Cardiol 2007; 117: 141-143

Takahagi Y, Yasuda S, Takahashi J, Takeda M, Nakayama M, Ito K, Hirose M, Wakayama Y, Fukuda K, Shimokawa H. Importance of dual induction tests for coronary vasospasm and ventricular fibrillation in patients surviving out-of-hospital cardiac arrest. Circ J 2009; 73: 767-769

Shimokawa H, Nagasawa K, Irie T, Egashira S, Egashira K, Sagara T, Kikuchi Y, Nakamura M. Clinical characteristics and long-term prognosis of patients with variant angina. A comparative study between western and Japanese populations. Int J Cardiol 1988; 18: 331-349

Waters DD, Miller DD, Szlachic J, Bouchard A, Méthé M, Kreed J, Théraux P. Factors influencing the long-term prognosis of treated patients with variant angina. Circulation 1983; 68: 258-265

Yasue H, Takizawa A, Nagao M, Nishida S, Horie M, Kubota J, Ono-Sato S, Takaoka K, Okumura K. Long-term prognosis for patients with variant angina and influential factors. Circulation 1988; 78: 1-9

Bory M, Pirron F, Panagides D, Bonnet JL, Yvorra S, Desfossez L. Coronary artery spasm in patients with normal or near normal coronary arteries. Long-term follow-up of 277 patients. Eur Heart J 1996; 17: 1015-1021

Kodama S, Inoue Y, Mihara H, Sumi S, Kudo K, Okamura K, Ando C, Niimura H, Tsuchiya Y, Yamanouchi Y, Urata H. Prognostic factors for the long-term survival in patients with vasospastic angina Analysis of effects of patients' characteristics and therapeutic drugs. J Cardiol 2009; 54: 10-20

Nakamura M, Takeshita A, Nose Y. Clinical characteristics associated with myocardial infarction, arrhythmias, and sudden death in patients with vasospastic angina. Circulation 1986; 75: 1110-1116

Wakabayashi K, Suzuki H, Honda Y, Wakatsuki D, Kawachi K, Oka K, Koba S, Shimizu N, Asano F, Sato T, Takeyama Y. Provoked coronary spasm predicts adverse outcome in patients with acute myocardial infarction: a novel predictor of prognosis after acute myocardial infarction. J Am Coll Cardiol 2008; 52: 518-522

Shimokawa H, Yasuda S. Myocardial ischemia: Current concepts and future perspectives. J Cardiol 2008; 52: 67-78

Maseri A, Beltrame JF, Shimokawa H. Role of coronary vasoconstriction in ischemic heart disease and search for novel therapeutic targets. Circ J 2009; 73: 394-403

S-Editor Cheng JX, L-Editor Webster JR, E-Editor Zheng XM