On Extensions of supersingular representations of $\text{SL}_2(\mathbb{Q}_p)$.

Santosh Nadimpalli

October 10, 2018

Abstract

In this note for $p > 5$ we calculate the dimensions of $\text{Ext}^1_{\text{SL}_2(\mathbb{Q}_p)}(\tau, \sigma)$ for any two irreducible supersingular representations τ and σ of $\text{SL}_2(\mathbb{Q}_p)$.

1 Introduction

In this note we calculate the space of extensions of supersingular representations of $\text{SL}_2(\mathbb{Q}_p)$ for $p > 5$. The dimensions of the space of extensions between irreducible supersingular representations of $\text{GL}_2(\mathbb{Q}_p)$ are calculated by Paškūnas in [Paš10]. Understanding extensions between irreducible smooth representations play a crucial role in Paškūnas work on the image of Colmez Montreal functor in (see [Paš13]). We hope that these results have similar application to mod p and p-adic local Langlands correspondence for $\text{SL}_2(\mathbb{Q}_p)$.

Let G be the group $\text{GL}_2(\mathbb{Q}_p)$, K be the maximal compact subgroup $\text{GL}_2(\mathbb{Z}_p)$ and Z be the center of G. We denote by $I(1)$ the pro-p Iwahori subgroup of G. We denote by G_S the special linear group $\text{SL}_2(\mathbb{Q}_p)$. For any subgroup H of $\text{GL}_2(\mathbb{Q}_p)$ we denote by H_S the subgroup $H \cap \text{SL}_2(\mathbb{Q}_p)$. All representations in this note are defined over vector spaces over $\overline{\mathbb{F}}_p$. Let σ be an irreducible smooth representation of K and σ extends uniquely as a representation of K_Z such that $p \in Z$ acts trivially. The Hecke algebra $\text{End}_G(\text{ind}^G_K Z \sigma)$ is isomorphic to $\overline{\mathbb{F}}_p[T]$. For any constant λ in $\overline{\mathbb{F}}_p^*$ let μ_λ be the unramified character of Z such that $\mu_\lambda(p) = \lambda$. Let $\pi(\sigma, \mu_\lambda)$ be the representation

$$\text{ind}_{KZ}^G \sigma \otimes (\mu_\lambda \circ \det).$$

The representations $\pi(\sigma, \mu_\lambda)$ are irreducible (see [Bre03]) and are called supersingular representations in the terminology of Barthel–Livné.

Let σ_r be the representation $\text{Sym}^r \overline{\mathbb{F}}_p$ of $\text{GL}_2(\overline{\mathbb{F}}_p)$. We consider σ_r as a representation of K by inflation. The K-socle of $\pi(\sigma_r, \mu_\lambda)$ is a direct sum of two irreducible smooth representations σ_r and σ_{p-1-r}. Let $\pi_{0,r}$ and $\pi_{1,r}$ be the G_S representations generated by $\sigma_r^{I(1)}$ and $\sigma_{p-1-r}^{I(1)}$. The representations $\pi_{0,r}$ and $\pi_{1,r}$ are irreducible supersingular representations of G_S and

$$\text{res}_{G_S} \pi(\sigma_r, \mu_\lambda) \simeq \pi_{0,r} \oplus \pi_{1,r}.$$

Any irreducible supersingular representation of G_S is isomorphic to $\pi_{i,r}$ for some r such that $0 \leq r \leq p - 1$ and $i \in \{0, 1\}$. Moreover the only isomorphisms between $\pi_{i,r}$ are $\pi_{0,r} \simeq \pi_{1,p-1-r}$ and $\pi_{1,r} \simeq \pi_{0,p-1-r}$ (see [Abd14]). Our main theorem on extensions of supersingular representations of G_S is:
Theorem 1.1. Let \(p \geq 5 \) and \(0 \leq r \leq (p - 1)/2 \). For any irreducible supersingular representation \(\tau \) of \(G_S \) the space \(\text{Ext}^1_{G_S}(\tau, \pi_{i,r}) \) is non-zero if and only if \(\tau \simeq \pi_{j,r} \) for some \(j \in \{0,1\} \). If \(0 \leq r < (p - 1)/2 \) then \(\dim_{\mathbb{F}_p} \text{Ext}^1_{G_S}(\pi_{i,r}, \pi_{j,r}) = 2 \) for \(i \neq j \) and \(\dim_{\mathbb{F}_p} \text{Ext}^1_{G_S}(\pi_{i,r}, \pi_{i,r}) = 1 \). For \(r = (p - 1)/2 \) we have \(\dim_{\mathbb{F}_p} \text{Ext}^1_{G_S}(\pi_{0,r}, \pi_{0,r}) = 3 \).

We briefly explain the method of proof. We essentially follow [Pas10]. The functor sending a smooth representation to its \(G \)-invariants induces an equivalence of categories of smooth representations of \(G_S \) generated by \(I(1)_S \)-invariants and the module category of the pro \(p \)-Iwahori Hecke algebra (see [Koz16, Theorem 5.2]). We use the Ext spectral sequence thus obtained by this equivalence of categories to calculate \(\text{Ext}^1_{G_S} \). Extensions of pro \(p \)-Iwahori Hecke algebra modules are calculated from resolutions of Hecke modules due to Schneider and Ollivier. We crucially use results from work of Paskunas [Pas10]. We first obtain lower bounds on the dimensions of \(\text{Ext}^1_{G_S} \) spaces using the spectral sequence and then obtain upper bounds using Paskunas results on \(\text{Ext}^1_K(\sigma, \pi(\sigma, \mu_\lambda)) \).

Acknowledgements I thank Eknath Ghate for showing the fundamental paper [Pas10] and for his interest in this work and discussions on the role of extensions in mod \(p \)-Langlands. I want to thank Radhika Ganapathy for various discussions on mod \(p \) representations and for her mod \(p \) seminar at the Tata Institute.

2 Pro-\(p \) Iwahori Hecke algebra

Let \(B \) be the Borel subgroup consisting of invertible upper triangular matrices, \(U \) be the unipotent radical of \(B \) and \(T \) be the maximal torus consisting of diagonal matrices. We denote by \(\bar{U} \) the unipotent radical of \(\bar{B} \) the Borel subgroup consisting of invertible lower triangular matrices. We denote by \(I \) the standard Iwahori-subgroup of \(G \). Let \(I(1) \) be the pro-\(p \) Iwahori subgroup of \(G \) and \(I(1)_S \) be the pro-\(p \)-Iwahori subgroup of \(G_S \). We note that \(I(1)_S(Z \cap I(1)) \) is equal to \(I(1) \). Let \(\mathcal{H} \) be the pro-\(p \) Iwahori–Hecke algebra \(\text{End}_G(\text{ind}_{I(1)_S}^{G_S} \text{id}) \). Let \(\text{Rep}_{G_S} \) and \(\text{Rep}_{G_S}^{I(1)_S} \) be the category of smooth representations of \(G_S \) and its full subcategory consisting of those smooth representations generated by \(I(1)_S \)-invariant vectors respectively. We denote by \(\text{Mod}_\mathcal{H} \) the category of modules over the ring \(\mathcal{H} \). We have two functors

\[
\mathcal{I} : \text{Rep}_{G_S}^{I(1)_S} \rightarrow \text{Mod}_\mathcal{H} \\
\mathcal{I}(\pi) = \pi^{I(1)_S}
\]

and

\[
\mathcal{T} : \text{Mod}_\mathcal{H} \rightarrow \text{Rep}_{G_S}^{I(1)_S} \\
\mathcal{T}(M) = M \otimes_\mathcal{H} \text{ind}_{I(1)_S}^{G_S} \text{id}.
\]

From [Koz16] Theorem 5.2 the functors \(\mathcal{T} \) and \(\mathcal{I} \) are quasi-inverse to each other. Let \(\sigma \) and \(\tau \) be any two smooth representations of \(G_S \) and \(\sigma_1 \) be the \(G_S \) subrepresentation of \(\sigma \) generated by \(I(1)_S \)-invariants of \(\sigma \). We have

\[
\text{Hom}_G(\tau, \sigma) = \text{Hom}_G(\tau, \sigma_1) = \text{Hom}_H(\mathcal{I}(\tau), \mathcal{I}(\sigma_1)) = \text{Hom}_H(\mathcal{I}(\tau), \mathcal{I}(\sigma)).
\]

We get a Grothendieck spectral sequence with \(E_2^{ij} \) equal to \(\text{Ext}^i(\mathcal{I}(\tau), \mathcal{R}^j\mathcal{I}(\sigma)) \) such that

\[
\text{Ext}^i(\mathcal{I}(\tau), \mathcal{R}^j\mathcal{I}(\sigma)) \Rightarrow \text{Ext}^{i+j}_{G_S}(\tau, \sigma).
\]
The 5-term exact sequence associated to the above spectral sequence gives the following exact sequence:

\[
0 \to \text{Ext}_H^1(\mathcal{I}(\tau), \mathcal{I}(\sigma)) \xrightarrow{i} \text{Ext}_G^1(\tau, \sigma) \xrightarrow{\delta} \\
\text{Hom}_H(\mathcal{I}(\tau), \mathcal{I}(\sigma)) \to \text{Ext}_H^2(\mathcal{I}(\tau), \mathcal{I}(\sigma)) \to \text{Ext}_G^2(\tau, \sigma)
\]

for all \(\tau \) such that \(\tau = < G_S \tau^{(1)} > \). In particular we apply these results when \(\tau \) and \(\sigma \) are irreducible supersingular representations of \(G_S \). We first recall the structure of the ring \(\mathcal{H} \), its modules \(M(i, r) = \pi_{i,r}^{(1)} \) for \(i \) in \(\{0, 1\} \) and \(0 \leq r \leq p-1 \). The \(\mathcal{H} \) module \(M(i, r) \) is a character and we first calculate the dimensions of the spaces \(\text{Ext}_H^1(M(i, r), M(j, s)) \).

Let \(T_0^S \) and \(T_1^S \) be the maximal compact subgroup of \(T_S \) and its maximal pro-\(p \)-subgroup. We denote by \(s_0, s_1 \) and \(\theta \) the matrices \(\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \), \(\begin{pmatrix} 0 & -p^{-1} \\ p & 0 \end{pmatrix} \) and \(\begin{pmatrix} p & 0 \\ 0 & p^{-1} \end{pmatrix} \) respectively. Let \(N(T_S) \) be the normaliser of the torus. The extended Weyl group \(W = \theta^\mathbb{Z} \coprod s_0 \theta^\mathbb{Z} \) sits into an exact sequence of the form

\[
0 \to \Omega := \frac{T_0^S}{T_1^S} \to \tilde{W} := \frac{N(T_S)}{T_1^S} \to W = \frac{N(T_S)}{T_0^S} \to 0.
\]

The length function \(l \) on \(W \), given by \(l(\theta^i) = |2i| \) and \(l(s_0 \theta^i) = |1 - 2i| \), extends to a function on \(\tilde{W} \) such that \(l(\Omega) = 0 \). Let \(T_w \) be the element \(\text{Char}_{\mathcal{I}(1)w(1)} \) for all \(w \in \tilde{W} \). We denote by \(e_1 \) the element \(\sum_{w \in \Omega} T_w \). The functions \(T_w \) span \(\mathcal{H} \) and the relations in \(\mathcal{H} \) are given by

\[
T_w T_v = T_{vw} \text{ whenever } l(v) + l(w) = l(vw), \\
T_{s_i}^2 = -e_1 T_{s_i}.
\]

The pro-\(p \)-Iwahori Hecke algebra is generated by \(T_w T_{s_i} \) for \(w \) in \(\Omega \). For any character \(\chi \) of \(\Omega \) let \(e_\chi \) be the element \(\sum_{w \in \Omega} \chi^{-1}(w) T_w \). Let \(\gamma \) be a \(W_0 \) orbit of the characters \(\chi \) and \(e_\gamma \) be the element \(\sum_{\chi \in \gamma} e_\chi \). The elements \(\{e_\gamma; \gamma \in \hat{\Omega}/W_0\} \) are central idempotents in the ring \(\mathcal{H} \) and we have

\[
\mathcal{H} = \bigoplus_{\hat{\Omega}/W_0} \mathcal{H} e_\gamma.
\]

For the group \(G_S \), we know that \(\mathcal{H} \) is the affine Hecke algebra. The characters of affine Hecke algebra are described in a simple manner we recall this for \(G_S \). Let \(I \) be a subset of \(\{s_0, s_1\} \) and \(W_I \) be the subgroup of \(W \) generated by elements of \(I \) and \(W_0 \) is trivial group. The characters of \(\mathcal{H} \) are parametrised by pairs \((\lambda, I) \) where \(\lambda \) is a character of \(\Omega \) and \(I \subset S_\lambda \). For such a pair \((\lambda, I) \) the character \(\chi_{\lambda, I} \) associated to it is given by

\[
\chi_{\lambda, I}(T_w t) = 0 \text{ for all } w \in W \setminus W_I \text{ and for all } t \in \Omega, \\
\chi_{\lambda, I}(T_w t) = \lambda(t)(-1)^{l(w)} \text{ for all } w \in W_I \text{ and for all } t \in \Omega.
\]

If \(\lambda \) is nontrivial then we have \(\chi_{\lambda, 0}(T_I) = \lambda(t) \), for all \(t \in \Omega \) and \(\chi_{\lambda, 0}(T_w t) = 0 \) for all \(w \neq \text{id} \) and \(t \in \Omega \).

We denote by \(\chi_{r, \theta} \) the character \(\chi_{r \to r^*, \theta} \). From the above description we get that \(M(0, r) = \chi_{r, 0} \) and \(M(1, r) = \chi_{p-1-r, \theta} \) for \(r \notin \{0, p-1\} \). If \(r \in \{0, p-1\} \) then [OST16] Proposition 3.9 says that \(\chi_{\text{id}, 0} \) and \(\chi_{\text{id}, S} \) are not supersingular characters. This shows that \(M(i, r) \) is either \(\chi_{\text{id}, I} \) or \(\chi_{\text{id}, J} \), for \(r \in \{0, p-1\} \), where \(I = \{s_0\} \) and \(J = \{s_1\} \). Since the element \(T_{s_0} \) belongs to pro-\(p \) Iwahori–Hecke
algebra of G and using the presentation in [BP12, Corollary 6.4] we obtain that $M(1, 0) = \chi_{\text{id}, J}$ and $M(0, 0) = \chi_{\text{id}, J}$. Similarly $M(1, p - 1)$ is given by the character $\chi_{\text{id}, J}$ and $M(0, p - 1)$ is given by the character $\chi_{\text{id}, J}$. Let $0 \leq r, s \leq (p - 1)/2$ then (11) shows that

$$\text{Ext}^1_{\mathcal{H}}(M(i, r), M(j, s)) = 0 \quad (7)$$

for $r \neq s$.

2.1 Resolutions of Hecke modules

In order to calculate extensions between the characters $M(i, r)$, we use resolutions constructed by Schneider and Ollivier for \mathcal{H}. Let X be the Bruhat–Tits tree of G_S and let $A(T_S)$ be the standard apartment associated to T_S. We fix an edge E and vertices v_0 and v_1 contained in E such that the G_S-stabiliser of v_0 is K_S. For any facet F of X we denote by G_F the \mathbb{Z}_p-group scheme with generic fibre SL_2 and $G_F(\mathbb{Z}_p)$ is the G-stabiliser of F. We denote by I_F the subgroup of $G_F(\mathbb{Z}_p)$ whose elements under mod-p reduction of $G_F(\mathbb{Z}_p)$ belong to the \mathbb{F}_p-points of the unipotent radical of $G_F \times \mathbb{F}_p$. We denote by \mathcal{H}_F the finite subalgebra of \mathcal{H} defined as

$$\mathcal{H}_F := \text{End}_{G_F(\mathbb{Z}_p)}(\text{ind}_{I_F}^{G_F(\mathbb{Z}_p)}(\text{id})).$$

In particular \mathcal{H}_E is a semi-simple algebra.

For any \mathcal{H}-module m the construction of Schneider and Ollivier [OS14, Theorem 3.12, (6.4)] gives us a (\mathcal{H}, \mathcal{H})-exact resolution

$$0 \to \mathcal{H} \otimes_{\mathcal{H}_E} m \xrightarrow{\delta_1} (\mathcal{H} \otimes_{\mathcal{H}_{v_0}} m) \oplus (\mathcal{H} \otimes_{\mathcal{H}_{v_1}} m) \xrightarrow{\delta_0} m \to 0. \quad (8)$$

Using the resolution (8) and the observation that \mathcal{H}_E is semi-simple for $p \neq 2$ we get that

$$0 \to \text{Hom}_{\mathcal{H}}(m, n) \to \bigoplus_{v_0, v_1} \text{Hom}_{\mathcal{H}_{v_i}}(m, n) \to \text{Hom}_{\mathcal{H}_E}(m, n) \xrightarrow{\delta} \text{Ext}^1_{\mathcal{H}}(m, n) \to \bigoplus_{v_0, v_1} \text{Ext}^1_{\mathcal{H}_{v_i}}(m, n) \to 0 \quad (9)$$

Note that we have an isomorphism of algebras

$$\mathcal{H}_{v_0} \simeq \mathcal{H}_{v_1} \simeq \text{End}_{\text{SL}_2(\mathbb{F}_p)}(\text{ind}_{N(\mathbb{F}_p)}(\text{id})).$$

The above isomorphism is not a canonical isomorphism. Let K_0 and K_1 be the compact open subgroups $K \cap G_S$ and $K_{\Pi} \cap G_S$ respectively.

2.2 Extensions of supersingular modules over pro-p Iwahori–Hecke algebra.

The Hecke algebra \mathcal{H}_{v_i} is isomorphic to $\text{End}_{K_i}(\text{ind}_{I_i}^{K_i}(\text{id})$. The Hecke algebra \mathcal{H}_{v_i} is generated by T_i and T_{s_i} for $t \in \Omega$. The relations among them are given by

$$T_{i_1}T_{i_2} = T_{i_1i_2},$$
$$T_iT_{s_i} = T_{i}s_i - T_{s_i}T_{i} = T_{s_i}T_{i} - T_{i}T_{s_i},$$
$$T_{s_i}^2 = -e_1T_{s_i}$$

where $e_1 = \sum_{t \in \Omega} T_t.$
Lemma 2.1. Let $0 < r < (p-1)/2$ the space $\text{Ext}^1_{H}(M(i,r), M(j,s))$ is non-zero if and only if $i \neq j$ and has dimension 2 when $i = j$. If $r = (p-1)/2$ then the space $\text{Ext}^1_{H}(M(i,r), M(i,r))$ has dimension 2.

Proof. Since $r \neq 0$ the characters $M(0, r)$ and $M(1, r)$ are isomorphic to $\chi_{r,0}$ and $\chi_{p-1-r,0}$ respectively (see [5]). Let E_{c} be a 2-dimensional \mathbb{F}_p module $\mathbb{F}_p e_1 \oplus \mathbb{F}_p e_2$ and $\mathbb{F}_p[\Omega]$ acts on E by $T_ie_0 = t^r e_0$ and $T_ie_1 = t^{p-1-r} e_1$. We set $T_i e_0 = 0$ and $T_s e_1 = c e_0$ for some $c \neq 0$. This makes E a H_{v_i} module and is a non-trivial extension

$$0 \to \chi_{r,0} \to E \to \chi_{p-1-r,0} \to 0.$$

Let E be a H_{v_i}-extension of $W := \chi_{s,0}$ by $V := \chi_{r,0}$ i.e, we have an exact sequence

$$0 \to V \to E \xrightarrow{f} W \to 0.$$

There exists a $\mathbb{F}_p[\Omega]$-equivariant section $s : W \to E$ of f. Let V' be the image of this section. Now $E = V \oplus V'$. The action of T_i is trivial on V and observe that $f(T_i(V')) = T_i(f(V')) = 0$. If E is nontrivial then $T_i(V') = V$. This implies that $r + s = p - 1$ and hence E is isomorphic to E_c for some $c \neq 0$. This shows that the space of H_{v_i} extensions of W by V is one dimensional if $r + s = p - 1$ and zero otherwise. Now consider the exact sequence ([6]) when m is $M(i,r)$ and n is $M(j,r)$. For $i = j$ the map δ in zero ([6]) hence the space $\text{Ext}_H^1(M(i,r), M(i,r))$ is trivial. When $i \neq j$ the Hom spaces in ([6]) are all trivial. This shows that the dimension of the space $\text{Ext}_H^1(M(i,r), M(i,r))$ is 2 from our calculations. \hfill \Box

Lemma 2.2. The space of extensions $\text{Ext}_H^1(M(i,0), M(j,0))$ is trivial for $i = j$ and has dimension 1 for $i \neq j$.

Proof. The algebra $e_1H_{v_i}$ is semi-simple algebra and hence we get that

$$\text{Ext}_{H_{v_i}}^1(\chi_{id,S}, \chi_{id,S'}) = 0$$

for all $i > 0$ and for subsets S and S' of $\{s_0, s_1\}$. Now consider the exact sequence ([7]) when m is $M(i,r)$ and n is $M(j,r)$. For $i = j$ the map δ in ([7]) is zero hence the space $\text{Ext}_H^1(M(i,r), M(i,r))$ is trivial. When $i \neq j$ the first two Hom spaces in ([7]) are trivial. The space $\text{Hom}_{H_{v_i}}(m,n)$ has dimension one. This shows that the dimension of the space $\text{Ext}_H^1(M(i,r), M(i,r))$ is 1 for $i \neq j$. \hfill \Box

3 The Hecke module $\mathbb{R}^1T_{\pi_{i,r}}$.

Paškūnas calculated the cohomology groups $\mathbb{R}^1T_{\pi_{i,r}}$ and we now recall his results. Let π_r be the supersingular representation $\pi(\sigma_r, \mu_1)$ of G. Recall that the K-socle of π_r is isomorphic to $\sigma_r \oplus \sigma_{p-1-r}$ and the space of $I(1)$ invariants has a basis (v_0, v_1) where v_0 and v_1 belong to σ_r and σ_{p-1-r} respectively. Let I^+ and I^- be the groups $I \cap U$ and $I \cap \bar{U}$ respectively. Consider the spaces

$$M_0 := I^+ \theta^n v_1; \ n \geq 0 \quad \text{and} \quad M_1 := I^+ \theta^n v_2; \ n \geq 0$$

and let Π be the matrix $\begin{pmatrix} 0 & 1 \\ p & 0 \end{pmatrix}$ which normalizes I and $I(1)$. We denote by π_0 and π_1 the spaces $M_0 + \Pi M_1$ and $M_1 + \Pi M_0$. Let G^0 be subgroup of G consisting of elements with integral discriminant. Let G^+ be the group ZG^0. We denote by Z_1 the group $I(1) \cap Z$.

Proposition 3.1 (Paškūnas). The spaces σ_0 and σ_1 are G^+ stable. The space $\tilde{\pi}_r$ is the direct sum of the representations π_1 and π_0 as G^+ representations and hence $\pi_{i,r}$ is isomorphic to π_i as G_S representations for $i \in \{0,1\}$. If r be an integer such that $0 < r < (p-1)/2$ then the Hecke module $\mathbb{R}^1I(\pi_{i,r})$ is isomorphic to $I(\pi_{i,r}) \oplus I(\pi_{i,r})$. In the Iwahori case (i.e, $r = 0$) the Hecke module $\mathbb{R}I(\pi_{0,0}) \oplus \mathbb{R}I(\pi_{1,0})$ is isomorphic to $I(\pi_{0,0}) \oplus I(\pi_{1,0})^2$.

Proof. The first part follows from [Paš10, Corollary 6.5]. The second part follows from [Paš10, Proposition 10.5, Theorem 10.7 and equation (49)]. \qed

Corollary 3.2. Let τ be an irreducible supersingular representation of G_S. If the space of extensions $\text{Ext}_{G_S}^1(\tau, \pi_{i,r})$ is non-trivial then $\tau \simeq \pi_{j,r}$ for some $j \in \{0,1\}$.

Proof. This follows from (3), (7) and Proposition 3.1. \qed

Corollary 3.3. Let $0 < r < (p-1)/2$ and $i \neq j$ then the dimensions of the space $\text{Ext}_{G_S}^1(\pi_{i,r}, \pi_{j,r})$ is 2.

Proof. Observe that for $0 < r < (p-1)/2$ the modules $M(i,r)$ and $M(j,s)$ are not isomorphic. Now using the exact sequence (3) and Proposition 3.1 we get that

$$\text{Ext}_{G_S}^1(\pi_{i,r}, \pi_{j,r}) \simeq \text{Ext}_R^1(M(i,r), M(j,r)).$$

The corollary follows from the Lemma 2.1. \qed

Remark 3.4. The results of Corollary 3.3 remain valid for $r = 0$ but we prove this later. It is interesting to note that for $0 < r < (p-1)/2$ and $i \neq j$ any extension E of $\pi_{i,r}$ by $\pi_{j,r}$ for $i \neq j$ is generated by its $I(1)_S$ invariants, i.e, $E = \langle G_S E^{I(1)_S} \rangle$.

4 Calculation of degree one self extensions.

Let us first consider the case when $0 < r \leq (p-1)/2$. In order to determine the dimensions of $\text{Ext}_{G_S}^1(\pi_{i,r}, \pi_{i,r})$ we first show that the map

$$\text{Ext}_{G_S}^1(\pi_{i,r}, \pi_{i,r}) \to \text{Hom}_R(I(\pi_{i,r}), \mathbb{R}^1I(\pi_{i,r}))$$

is non-zero. Explicitly the above map takes an extension E, with $0 \to \pi_{i,r} \to E \to \pi_{i,r} \to 0$, to the delta map in the associated long exact sequence, given by: $I(\pi_{i,r}) \xrightarrow{\delta_E} \mathbb{R}^1I(\pi_{i,r})$. Note that the dimension of $E^{I(1)}$ is one if and only if $\delta_E \neq 0$.

Lemma 4.1. For $0 < r \leq (p-1)/2$ then map (11) is non-zero.

Proof. For $0 < r \leq (p-1)/2$ there exists a self extension E of $\tilde{\pi}_r$ such that the map $I(\tilde{\pi}_r) \xrightarrow{\delta_E} \mathbb{R}^1I(\tilde{\pi}_r)$ is non-zero. We fix an extension E such that $\delta_E \neq 0$. Since δ_E is a Hecke-equivariant map and $I(\tilde{\pi}_r)$ is an irreducible Hecke-module of dimension 2 we get that the inclusion map of $I(\tilde{\pi}_r)$ in $I(E)$ is an isomorphism i.e, dim $E^{I(1)} = 2$. Now consider the pullback diagram

$$
\begin{array}{cccccc}
0 & \longrightarrow & \tilde{\pi}_r & \longrightarrow & E_1 & \longrightarrow & \pi_{i,r} & \longrightarrow & 0 \\
& & \downarrow & & \downarrow & & \downarrow & & \\
0 & \longrightarrow & \tilde{\pi}_r & \longrightarrow & E & \longrightarrow & \tilde{\pi}_r & \longrightarrow & 0.
\end{array}
$$

(12)
The long exact sequences in $I(1)$-group cohomology attached to (12) gives us:

$$
\begin{array}{ccccccc}
0 & \to & \mathcal{I}(\pi_r) & \xrightarrow{f} & \mathcal{I}(E_1) & \to & \mathcal{I}(\pi_{i,r}) & \xrightarrow{\delta_2} & \mathcal{R}^1\mathcal{I}(\tilde{\pi}_r) \\
& & \downarrow & & \downarrow & & \downarrow & & \downarrow \\
0 & \to & \mathcal{I}(\pi_r) & \to & \mathcal{I}(E) & \to & \mathcal{I}(\tilde{\pi}_r) & \to & \mathcal{R}^1\mathcal{I}(\tilde{\pi}_r).
\end{array}
$$

Since the dimension of $\mathcal{I}(E)$ is 2 we get that δ_1 is injective and hence the map δ_2 is non-zero. The dimension of the space $\mathcal{I}(\pi_{i,r})$ is one hence f is an isomorphism. This shows that the space $\mathcal{I}(E_1)$ has dimension 2. For $r = (p - 1)/2$ the representations $\pi_{1,r} \simeq \pi_{0,r}$. We assume without loss of generality $img\delta_2$ is contained in $\mathcal{R}^1\mathcal{I}(\pi_{i,r})$. For any r such that $0 < r \leq (p - 1)/2$ consider the pushout of $\tilde{\pi}_r$ by $\pi_{i,r}$

$$
\begin{array}{ccccccc}
0 & \to & \pi_{i,r} & \to & E_2 & \to & \pi_{i,r} & \to & 0 \\
& & \downarrow & & \downarrow & & \downarrow & & \downarrow \\
0 & \to & \tilde{\pi}_r & \to & E_1 & \to & \pi_{i,r} & \to & 0
\end{array}
$$

(13)

The self extension E_2 of $\pi_{i,r}$ is non-split and the induced map δ_{E_2} is non-zero. To see this consider the long exact sequence in cohomology attached to (13):

$$
\begin{array}{ccccccc}
0 & \to & \mathcal{I}(\pi_{i,r}) & \xrightarrow{g} & \mathcal{I}(E_2) & \to & \mathcal{I}(\pi_{i,r}) & \xrightarrow{\delta_3} & \mathcal{R}^1\mathcal{I}(\pi_{i,r}) \\
& & \downarrow & & \downarrow & & \downarrow & & \downarrow \\
0 & \to & \mathcal{I}(\tilde{\pi}_r) & \xrightarrow{\sim} & \mathcal{I}(E_1) & \to & \mathcal{I}(\pi_{i,r}) & \xrightarrow{\delta_2} & \mathcal{R}^1\mathcal{I}(\tilde{\pi}_r)
\end{array}
$$

Note that $\mathcal{R}^1\mathcal{I}(\tilde{\pi}_r)$ is isomorphic to $\mathcal{R}^1\mathcal{I}(\pi_{0,r}) \oplus \mathcal{R}^1\mathcal{I}(\pi_{1,r})$ and $\mathcal{R}^1\mathcal{I}(p_2)$ is the projection map. This shows that $\mathcal{R}^1\mathcal{I}(p_2)\delta_2 \neq 0$ and hence $\delta_3 \neq 0$ using which we get that g is an isomorphism. This shows that E_2 is a non-split self-extension of $\pi_{i,r}$ by $\pi_{i,r}$. \hfill \Box

Corollary 4.2. For any integer r such that $0 < r < (p - 1)/2$ we have $\dim_{\mathbb{F}_p} \text{Ext}^1_{G}(\pi_{i,r}, \pi_{i,r}) \geq 1$.

Theorem 4.3. Let $p \geq 5$ and $0 \leq r < (p - 1)/2$ then the dimension of $\text{Ext}^1_{G}(\pi_{i,r}, \pi_{i,r})$ is 1 and dimension of $\text{Ext}^1_{G}(\pi_{i,r}, \pi_{j,r})$ is 2 for $i \neq j$. For $r = (p - 1)/2$ the dimension of $\text{Ext}^1_{G}(\pi_{0,r}, \pi_{0,r})$ is 3.

Proof. The subgroup G_SZ is an index 2 subgroup of G and id and Π are two double coset representatives for $K \backslash G/G_SZ$. We note that $K \cap G_SZ$ and $K^{\Pi} \cap G_SZ$ are representatives for the two distinct classes of maximal compact subgroups of G_SZ and we denote them by K_1 and K_2 respectively. Let σ'_r be the representation σ^Π_r of K^{Π}. Using Mackey-decomposition we get that

$$
\text{res}_{G_SZ} \text{ind}_{K^{\Pi}_SZ}^{G_SZ} \sigma_r = \text{ind}_{K^{\Pi}_SZ}^{G_SZ} \sigma^\Pi_r \oplus \text{ind}_{K^{\Pi}_SZ \cap G_SZ}^{G_SZ} \sigma_r = \text{ind}_{K^{\Pi}_1SZ}^{G_SZ} \sigma_r \oplus \text{ind}_{K^{\Pi}_2SZ}^{G_SZ} \sigma'_r.
$$

(14)

using the long exact sequence of Ext groups for the exact sequence,

$$
0 \to \text{ind}_{ZK}^G \sigma_r \xrightarrow{T} \text{ind}_{ZK}^G \tilde{\pi}_r \to 0
$$

7
we get that an exact sequence
\[\text{Hom}_G(\text{ind}^G_{ZK} \sigma_r, \bar{\pi}_r) \to \text{Ext}^1_G(\bar{\pi}_r, \bar{\pi}_r) \to \text{Ext}^1_G(\text{ind}^G_{ZK} \sigma_r, \bar{\pi}_r) \xrightarrow{T} \text{Ext}^1_G(\text{ind}^G_{ZK} \sigma_r, \bar{\pi}_r). \] (15)

Now using (14) the exact sequence (15) becomes
\[0 \to \text{Hom}_{K_1}(\sigma_r, \bar{\pi}_r) \oplus \text{Hom}_{K_2}(\sigma'_r, \bar{\pi}_r) \to \text{Ext}^1_G(\bar{\pi}_r, \bar{\pi}_r) \to \text{Ext}^1_{K_1}(\sigma_r, \bar{\pi}_r) \oplus \text{Ext}^1_{K_2}(\sigma'_r, \bar{\pi}_r). \] (16)

The groups \(K_1 \) is contained in \(K/Z_1 \). For all \(i \geq 0 \) we note that
\[\text{Ext}^1_{K_1}(\sigma_r, \bar{\pi}_r) \approx \text{Ext}^1_{K/Z_1}(\text{ind}^{K/Z_1}_{K_1}(\sigma_r), \bar{\pi}_r) \approx \bigoplus_{0 \leq a < p-1} \text{Ext}^1_{K/Z_1}(\sigma_r \otimes \det^a, \bar{\pi}_r). \]

The spaces \(\text{Ext}^1_{K/Z_1}(\sigma_r \otimes \det^a, \bar{\pi}_r) \) can be calculated from the work of Paškūnas. We recall his calculations as needed. There exists a \(G \) smooth representation \(\Omega \) such that \(\text{res}_K \Omega \) is an injective envelope of \(\text{Soc}_K(\pi_r) \) in the category of smooth representations of \(K \). In particular we get that \(\pi_r \) is contained in \(\Omega \). The restriction \(\text{res}_K \Omega \) is isomorphic to \(\text{inj} \sigma_r \oplus \text{inj} \sigma_{p-1-r} \). Now \(\text{Ext}^1_{K/Z_1}(\sigma_r \otimes \det^a, \bar{\pi}_r) \) is isomorphic to \(\text{Hom}_{K/Z_1}(\sigma_r \otimes \det^a, \Omega/\bar{\pi}_r) \).

We now use the notations from [Pas10, Notations, Section 9]. We make one modification. Paškūnas uses the notation \(\chi \) for the character
\[\begin{pmatrix} \lambda & 0 \\ 0 & [\mu] \end{pmatrix} \mapsto (\lambda)^r (\mu)^a \]
for all \(\lambda, \mu \in \mathbb{F}_{p^2}^\times \) and \([\cdot]\) is the Teichmuller lift. For convenience we use the notation \(\chi_{a,r} \) instead of \(\chi \). The idempotent \(e_{\chi_{a,r}} \) in [Pas10] Section 9 will be denoted \(e_{\chi_{a,r}} \). The space \(\text{Hom}_{K_1}(\sigma_r \otimes \det^a, \Omega/\bar{\pi}_r) \) is the same as
\[\ker(\mathcal{I}(\Omega/\bar{\pi}_r)e_{\chi_{a,r}} \xrightarrow{T_n} \mathcal{I}(\Omega/\bar{\pi}_r)e_{\chi_{a,r}}) \] (17)
and from [Pas10] Proposition 10.10 has dimension less than or equal to 2. For \(0 \leq r \leq (p-1)/2 \) the space \(\text{Hom}_{K/Z_1}(\sigma_r \otimes \det^a, \bar{\pi}_r) \) is non-zero if and only if \(a = 0 \) and has dimension 1 if \(r < (p-1)/2 \) and 2 otherwise. Using (17) for \(0 \leq r < (p-1)/2 \) the space \(\text{Ext}^1_{K/Z_1}(\sigma_r \otimes \det^a, \bar{\pi}_r) \) is non-zero if and only if \(a = 0 \) and has dimension at most 2 (see [Pas10] Proposition 10.10 for \(0 < r < (p-1)/2 \) and [Pas13], Corollary 6.13 and Corollary 6.16 for \(r = 0 \)). When \(r = (p-1)/2 \) the space \(\text{Ext}^1_{K/Z_1}(\sigma_r \otimes \det^a, \bar{\pi}_r) \) is non-zero for \(a = 0 \) and \(a = (p-1)/2 \) and in each of these cases the dimension of the space \(\text{Ext}^1_{K/Z_1}(\sigma_r \otimes \det^a, \bar{\pi}_r) \) is less than or equal to 2.

Now using exact sequence (16) the space \(\text{Ext}^1_{GS}(\bar{\pi}_r, \bar{\pi}_r) \) has dimension less than or equal to 6 for \(0 \leq r < (p-1)/2 \) and its dimension is less than or equal to 12 if \(r = (p-1)/2 \). For \(r \neq 0 \) using this upper bound and the lower bounds from Corollary 12 and Corollary 33 we deduce the theorem in this case. When \(r = 0 \) Paškūnas showed that (see [Pas10] Proposition 6.15) the dimension of \(\text{Ext}^1_{G^+/Z}(\pi_{i,0}, \pi_{j,0}) \) is 0 when \(i \neq j \) and 1 otherwise. Since \(G_S/\{\pm 1\} \) has index a factor of 2 in \(G^+/Z \) and \(G_S \cap Z \) acts trivially on \(\pi_{i,0} \) we get that
\[\text{Ext}^1_{G^+/Z}(\pi_{i,0}, \pi_{j,0}) \to \text{Ext}^1_{G_S/(\{\pm 1\})}(\pi_{i,0}, \pi_{j,0}) = \text{Ext}^1_{GS}(\pi_{i,0}, \pi_{j,0}). \] (18)

From our upper bounds the inclusions (18) are strict and hence we prove the theorem.

Corollary 4.4. The Hecke module \(\mathbb{R}^1 \mathcal{I}(\pi_{i,0}) \) is isomorphic to the module \(\mathcal{I}(\pi_{i,0}) \oplus \mathcal{I}(\pi_{j,0}) \) for \(i \neq j \).

Proof. From the Theorem 4.3 exact sequence (3) and (10) we get that dimension of the space \(\text{Hom}_H(\mathcal{I}(\pi_{0,0}), \mathbb{R}^1 \mathcal{I}(\pi_{0,0})) \) is 1. Using the Proposition 3.1 we get that
\[\mathbb{R}^1 \mathcal{I}(\pi_{i,0}) \simeq \mathcal{I}(\pi_{i,0}) \oplus \mathcal{I}(\pi_{j,0}). \]

\[\square \]
References

[Abd14] Ramla Abdellatif, *Classification des représentations modulo p de SL(2, F)*, Bull. Soc. Math. France 142 (2014), no. 3, 537–589. MR 3295722

[BP12] Christophe Breuil and Vytautas Paškūnas, *Towards a modulo p Langlands correspondence for GL_2*, Mem. Amer. Math. Soc. 216 (2012), no. 1016, vi+114. MR 2931521

[Bre03] Christophe Breuil, *Sur quelques représentations modulaires et p-adiques de GL_2(Q_p). I*, Compositio Math. 138 (2003), no. 2, 165–188. MR 2018825

[Koz16] Karol Kozioł, *Pro-p-Iwahori invariants for SL_2 and L-packets of Hecke modules*, Int. Math. Res. Not. IMRN (2016), no. 4, 1090–1125. MR 3493443

[OS14] Rachel Ollivier and Peter Schneider, *Pro-p Iwahori-Hecke algebras are Gorenstein*, J. Inst. Math. Jussieu 13 (2014), no. 4, 753–809. MR 3249689

[OS16] ———, *A canonical torsion theory for pro-p Iwahori-Hecke modules*, J 13 (2016), no. 0, 65. MR 0

[Paš10] Vytautas Paškūnas, *Extensions for supersingular representations of GL_2(Q_p)*, Astérisque (2010), no. 331, 317–353. MR 2667891

[Paš13] ———, *The image of Colmez’s Montreal functor*, Publ. Math. Inst. Hautes Études Sci. 118 (2013), 1–191. MR 3150248

Santosh Nadimpalli,
School of Mathematics, Tata Institute of Fundamental Research, Mumbai, 400005.
nvrnsantosh@gmail.com, nsanthosh@math.tifr.res.in