The impact of inbound demand on price levels in tourism municipalities: empirical evidence from Catalonia

JOSEP-MARIA ESPINET, MODEST FLUVIÀ AND RICARD RIGALL-I-TORRENT

Departament d’Economia, Universitat de Girona, Facultat de Ciències Econòmiques i Empresarials, Campus Montilivi, 17071 Girona, Spain. E-mail: ricard.rigall@udg.edu.

It is usually argued that tourism exerts negative economic impacts in host jurisdictions through the increase in prices linked to increasing demand for basic services and goods from tourists. This paper surveys 149 products in 45 tourism and non-tourism jurisdictions in Catalonia (which represent a total of 18,500 prices) in order to test empirically several hypotheses related to differences in price levels in tourism and non-tourism jurisdictions. The main results show that prices in tourism jurisdictions are not significantly higher than those in non-tourism ones. The analysis suggests that tourists are likely to pay higher prices than natives for some products.

Keywords: tourism demand; price level and price dispersion; traded and non-traded goods; search costs

Wherever tourism is a major economic activity, debates abound regarding the benefits and costs of inbound tourism demand for local jurisdictions. One of those debates is concerned with increased tourism flow as a source of inflation in host municipalities. (This paper uses the terms ‘municipality’ and ‘jurisdiction’ as synonyms.) It is usually argued that tourists push demand up, thus increasing consumer prices (which must be understood in a broad sense, including consumption goods, housing, or land plots, for instance) in tourism jurisdictions and widening the gap between price levels in tourism and non-tourism municipalities. Indeed, according to the United Nations (UNEP; UNEP and UNWTO, 2005), even though tourism impinges many positive economic impacts on host communities (such as foreign exchange earnings, contribution to government revenues, generation of employment, stimulation of infrastructure investment and contribution to local economies), it also exerts negative impacts through the increase in prices linked to increased demand for

The authors wish to thank Daniel Blasco for his superb research assistance and two anonymous referees for their helpful advice. Funding from the Observatory of Tourism of Catalonia (a public body dependent on the Government of Catalonia) is gratefully acknowledged.
basic services and goods from tourists. Other negative impacts are related to
the emergence of the local jurisdiction’s economic dependence on tourism or
the seasonal character of jobs (see also Kim et al., 2006). Furthermore, the
negative effects of increasing prices may spread beyond the economic sphere and
give rise to sociocultural issues. Consider, for instance, the side effects of tourism
demand on the increase of house prices and the ensuing difficulty for young
generations born and raised in second-home jurisdictions to find affordable
dwellings in their native villages (Gallent and Tewdwr-Jones, 2000; Fountain
and Hall, 2002; Gallent et al., 2005).

A few studies exist on the impact of tourism on prices (and other variables,
such as gross domestic product, employment and exchange rates) from a
macroeconomic point of view (Hazari and Ng, 1993; Adams and Parmenter,
1995; Zhou et al., 1997; Nowak et al., 2003; Narayan, 2004; Chao et al., 2005,
2006). These studies rely on strong assumptions rather than on empirical results
(see the ‘theoretical framework’ section). Since, in a macroeconomic setting,
tourism is understood as a demand shock that increases the prices of non-traded
goods, these studies assume a positive relationship between tourism and
price levels without testing whether this hypothesis actually holds in the real
world.

To the best of the authors’ knowledge, the present study is the first to analyse
the effects of tourism demand on prices from a microeconomic perspective,
sidestepping general equilibrium (GE) models and relying instead on survey
data. Thus, this paper collects about 18,500 retail prices in a sample of 149
products sold in 45 tourism and non-tourism municipalities in Catalonia (in
the north-east of Spain, on the shores of the Mediterranean Sea), where tourism
is one of the major industries. In contrast to GE models, the paper’s perspective
makes it possible to test empirically several refutable hypotheses regarding
differences in price levels in tourism and non-tourism jurisdictions.

To do so, the paper proceeds in seven sections, in addition to this
introduction. It starts with some preliminary considerations needed to
understand the paper’s framework of analysis and to dispel some common
misunderstandings. Then, basic principles of economic analysis are used to set
up the empirical framework. The design of the survey used for collecting prices
is described next. A section underlying the framework of statistical analysis
precedes the testing of the hypotheses. The relevance of the results and their
validity for other destinations and countries is discussed before the last section,
which summarizes the paper’s main results.

Inflation, price levels and tourism prices

Measuring the cost of living is notoriously difficult in general (Deaton, 1998).
This is especially so when one wishes to discern the effects of tourists and
visitors on the cost of living faced by local residents. A first difficulty arises
because in practice there is some confusion among three similar terms, which
in this paper will be summarized as prices related to leisure and tourism, tourism
consumption prices and price levels in tourism jurisdictions. To understand clearly the
effects of tourism on a jurisdiction’s existing prices, the relevant terms used in
this paper are defined first.
Inbound demand and price levels in tourism municipalities

- **Prices related to leisure and tourism** refer to the prices of goods and services typically bought by tourists at their destination and considered as related directly to tourism, although local residents may also consume them. For instance, hotel and restaurant prices fit this definition, since they are consumed mostly by tourists and visitors, but also by locals during their leisure time. In Spain, these prices are measured with hotel price indices and the component of the consumer price index (CPI) including the prices charged by hotels, restaurants and other tourism-related business (INE, 2001).

- **Tourism consumption prices** refer to the prices of goods and services bought by tourists either at their destination or at their region of origin, such as hotels and restaurants, but also food, transport and leisure, for instance. These prices are at the basis of both tourism expenditure (UNWTO, 1995) and the competitiveness of different jurisdictions.

- **Price levels in tourism jurisdictions** refer to the cost of living in tourism municipalities. The comparison of prices in tourism and non-tourism municipalities, after controlling for the relevant variables, yields interesting insights regarding the effects of tourism demand (and the flow of immigrants working in the tourism sector). In order to capture these prices, a general price index (not limited to goods and services consumed by tourists) is needed.

Arguably, these three categories are closely related. Thus, one can imagine a situation where it is found that prices in tourism jurisdictions (in the sense of the third category above) are systematically higher than in non-tourism municipalities. Then, a relevant question is whether price differences are significantly higher for goods and services consumed by tourists (second category above).

This paper elucidates whether (as claimed, for instance, by the UNEP and the UNWTO) tourism exerts negative impacts on tourism jurisdictions through the increase in prices linked to increasing demand for basic services and goods from tourists. Thus, the paper analyses price differences between tourism and non-tourism jurisdictions in the sense of the third category above. That is, the prices of some representative products consumed by both tourists and local residents are taken into account and differences in prices between tourism and non-tourism jurisdictions are analysed. Thus, products/services sold by firms catering mainly for tourists or lacking uniformity between jurisdictions are not considered here.

Theoretical framework

In an ideal world with perfectly competitive markets, arbitrage and consumer mobility ensure that in equilibrium the prices of identical traded goods are the same, since the exchange of goods results in price convergence. This is known as the law of one price (see, for instance, Isard, 1977). In this ideal world, price differences for identical traded goods are a symptom of temporary disequilibrium or relevant transport costs. The Balassa–Samuelson hypothesis (Balassa, 1964; Samuelson, 1964) suggests that the prices of traded goods (easily
transportable) must converge between locations, but that the prices of non-traded goods will differ (Kravis et al., 1983; Bhagwati, 1984; De Gregorio et al., 1994). Although it is not always straightforward to distinguish between traded and non-traded goods (Woodland, 2008), it seems clear that many services related to tourism are non-traded. This suggests that tourism can be understood as a demand shock that increases the prices of non-traded goods.

This reasoning is the point of departure of many studies that consider the impact of tourism on prices from a macroeconomic point of view. For instance, Adams and Parmenter (1995) analyse the economic effects of tourism on the industrial and regional structures of the Australian economy and find that Queensland would be a net loser from an economy-wide expansion of tourism. Chao et al. (2005) examine the impact of tourism in a cash-in-advance economy and find that as a result of the expansion in tourism, the price of the non-traded good increases. This gives rise to a terms-of-trade improvement but also worsens the distortion in consumption caused by cash in advance. Chao et al. (2006) examine the effects of an expansion in tourism on capital accumulation, industry output and resident welfare in an open economy with an externality in the traded good sector. They find that although an expansion of tourism increases the relative price of the non-traded good, improves the tertiary terms of trade and yields a gain in revenue, it results in a lowering of the demand for capital used in the traded sector, with a subsequent de-industrialization in the traded good sector which may lower resident welfare. Hazari and Ng (1993) analyse the consequences of tourists’ consumption of non-traded goods and services on the domestic economy of the country receiving the tourist. They show how the consumption of non-traded goods and services affects the domestic consumption possibility locus and how this may reduce the welfare of the local residents. Besides, they find that an increase in the foreign demand for non-traded goods and services may lower welfare because of monopoly power in the trade of non-traded goods and services. Narayan (2004) uses a computable general equilibrium (CGE) model to assess the long-run impact of a 10% increase in tourist expenditure on Fiji’s economy. Nowak et al. (2003) present a model that captures the interdependence between tourism and the rest of the economy and find that the tourist boom may ‘immiserize’ the residents when the non-traded tourism sector is more labour-intensive than the agricultural traded sector. Zhou et al. (1997) use a CGE model to examine the impacts of tourism on the economy of a region.

The previous macroeconomic approaches are based on GE models and on simulations performed in a CGE setting (Johansen, 1960), and rely on strong assumptions (Sandler, 2001; Croes and Severt, 2007). Those models limit themselves first to calibrate a GE with the relevant macroeconomic data and then to perform simulations with the help of the calibrated model. Thus, in Fiji, for instance, an increase in consumer expenditure leads to an increase in domestic prices and wages (Narayan, 2004). In Hawaii, a 10% reduction in visitor expenditure is at the origin of a reduction in prices ranging from 0.089% to 3.060% (Zhou et al., 1997). Summing up, GE and CGE studies assume a positive relationship between tourism and price levels, but do not test whether this relationship actually holds in the real world.

This paper sheds light on the actual validity of that assumed relationship.
The paper proceeds by testing several hypotheses related to differences in price levels in tourism and non-tourism jurisdictions:

- **Hypothesis 1**: General differences (that is, for both traded and non-traded goods) exist in price levels between tourism and non-tourism jurisdictions.
- **Hypothesis 2**: Differences exist only at the height of the tourism season, when demand is at its highest level in tourism jurisdictions.
- **Hypothesis 3**: Differences exist only for different groups of products, particularly those purchased by tourists. That is, the demand shock caused by tourists affects only certain products.
- **Hypothesis 4**: Differences exist when sales are taken into account. It could be argued that retailers resort to sales in order to differentiate among several types (informed and uninformed) of customers (Varian, 1980). If sales are used as a tool for charging different prices in tourism and non-tourism jurisdictions (and presumably higher in the former), then list prices will not reflect the actual price differences between both types of jurisdictions.
- **Hypothesis 5**: Differences exist when the distribution channel is taken into account. It is reasonable to assume that distribution channels with pricing strategies relying on higher prices are located in tourism jurisdictions. (Of course, the cause–consequence link might go in the opposite direction: higher prices in tourism municipalities may attract distribution channels with pricing strategies based on high prices and repel retailers with pricing strategies based on low prices.)
- **Hypothesis 6**: Differences exist for non-traded goods only, that is for goods (such as personal services or pub drinks) that must be consumed where they are purchased (that is, for which no resale opportunities exist). This is a form of the Balassa–Samuelson hypothesis (Balassa, 1964; Samuelson, 1964).
- **Hypothesis 7**: Differences exist in price levels in tourism and non-tourism zones within a particular tourism jurisdiction. It could be argued that informed natives know the prices charged for identical products by different sellers and always go to low-priced stores, while uninformed tourists shop at random (Salop and Stiglitz, 1977). Indeed, if individuals must incur search costs (Diamond, 1971) to obtain information, then the market equilibrium may be characterized by price dispersion (Stiglitz, 1979; Carlton and Perloff, 2005).

Survey design

No institution exists, either in Catalonia or in Spain, which collects systematically the prices of different products in tourism and non-tourism, compares them and analyses their evolution throughout time. In Spain, the CPI is computed at national, regional and local level by the Spanish National Statistics Institute. However, because of sample design, it is not possible to disaggregate the CPI data to take into account prices in tourism and non-tourism jurisdictions. Therefore, this paper starts from scratch, building a representative bundle of goods and services, determining a sample of establishments and of tourism and non-tourism jurisdictions, collecting prices and analysing them. The statistical analysis consists of mean-comparison tests for the prices in
tourism and non-tourism municipalities of every product surveyed (see the ’statistical framework’ section). This section goes into the details of the survey and the sample design.

Sample of jurisdictions

The study considers 45 tourism and non-tourism jurisdictions in Catalonia and 6 districts of the city of Barcelona. Determining which Catalan jurisdictions should be classified as tourism is not straightforward. It is not possible to rely on international tourist arrivals and international tourist receipts since this information, although available at country level (UNWTO, 2008), does not exist for individual jurisdictions. Nevertheless, the Statistical Institute of Catalonia (2009) measures the *de facto* population for the Catalan jurisdiction with more than 5,000 *de jure* inhabitants (Costa and Rovira, 2001). *De facto* population (Siegel, 2002) takes into account both temporary and permanent residents. However, not all temporary residents are tourists, since temporary residents can be categorized as (Smith, 1989): daytime production (for example, job commuters), daytime consumption (for example, hospitalization, shoppers, daytime tourists), overnight production (for example, temporary workers) and overnight consumption (for example, owners of second homes, overnight tourists). Thus, *de facto* population must be complemented with other data, such as the presence of major tourism attractions in the jurisdiction.

Indeed, it could be argued that jurisdictions hosting major tourism attractions can be classified directly as tourism jurisdictions without taking into account the *de facto* population. However, in many instances this is not sensible. For instance, Figueres is a town with 40,000 inhabitants close to the Costa Brava, which hosts the Salvador Dalí Theatre-Museum that attracts tourists from around the world (for instance, the museum received more than 837,000 visitors in 2005 [Rigall-I-Torrent, 2007]). Nevertheless, Figueres can hardly be considered as a tourism jurisdiction, since nowadays most visitors to the town are daytime tourists staying at hotels on the Costa Brava (Rigall-I-Torrent, 2007). These tourists are unlikely to exert significant impacts on the prices of the products considered in this paper. This suggests that a third dimension, hospitality infrastructure (that is, hotel and camping capacity, second homes, etc), must be considered.

Thus, this study classifies a jurisdiction along three dimensions:

- the ratio of non-registered (*de facto*) residents over *de jure* inhabitants in the jurisdiction
- the ratio of hospitality infrastructure per capita in the jurisdiction
- major tourism attractions located in the jurisdiction.

The specific variables used for classifying municipalities between tourism and non-tourism along these dimensions are (Rigall-I-Torrent, 2003):

- ratio of the *de facto* over *de jure* population
- hotel capacity per 1,000 *de jure* inhabitants
- camping capacity per 1,000 *de jure* inhabitants
- second homes per 1,000 *de jure* inhabitants
- restaurants per 1,000 *de jure* inhabitants
Inbound demand and price levels in tourism municipalities

- local police officers per 1,000 de jure inhabitants
- ratio of the de facto population in June–July over the de jure population
- ratio of the de facto population in November–December over the de jure population
- presence of major tourism attractions (beaches, ski resorts or renowned museums, for instance).

Table 1 shows the municipalities included in the sample, together with the values taken by the variables considered. Notice how all the values for Lloret the Mar (an outstanding Catalan tourism jurisdiction) are above Catalonia’s average, while those for Figueres (except the number of local tourism officers) are below average. The variables in Table 1, together with the authors’ knowledge of the different jurisdictions and the opinion of experts at the Observatory of Tourism of Catalonia (a public institution which studies, researches and keeps an ongoing eye on tourism), are at the basis of the final classification of tourism and non-tourism jurisdictions.1

The particular jurisdictions in Table 1 were selected according to their number of inhabitants and proximity between jurisdictions, so that a representative cross section of similar tourism and non-tourism jurisdictions was available for comparison (that is, so that the ceteris paribus clause holds). All the tourism municipalities surveyed are located along the coast and in the Pyrenees, whereas the non-tourism municipalities are distributed across the region (see Figure 1).

Sample of retailers

Prices come from a sample of retailers. Since different retailers may apply different marketing and pricing strategies, the sample includes the main supermarket chains with broad geographical presence in the jurisdictions analysed (Caprabo, Dia, Suma, Carrefour, Mercadona, Bon Preu, Condis and Lidl). Besides, some prices were collected in local markets (fresh foods), bakeries (bread) and bars (certain drinks).2 Thus, prices are available for 225 supermarkets and 204 bars, bakeries and local markets in 45 jurisdictions and 6 districts of the city of Barcelona. Table 2 shows the distribution of supermarket chains in the sample. As stands to reason, retail outlets catering mainly for tourists are not considered, since if they display higher prices, then informed locals are unlikely to shop there.

Sample of products

The sampling scheme relies on the criteria set up by the Spanish Statistical Institute regarding the consumption patterns of a representative consumer (INE, 2001). Since this paper’s goal is to evaluate price differences between tourism and non-tourism jurisdictions (rather than absolute price levels for both types of jurisdictions), the sample does not include any products or services which, because of their characteristics, lack uniformity between different municipalities, or whose prices do not differ systematically between municipalities. For instance, regulated goods and services (such as butane gas, tobacco or prescription drugs), products with prices set at a national level (such as services related to telecommunications), products whose quality and
Table 1. Jurisdictions in the sample and selection criteria (tourism jurisdictions in bold).

Jurisdiction	De jure population (2007)	Ratio of de facto population (2003)	Hotel capacity per 1,000 inhabitants (2003)	Camping capacity per 1,000 inhabitants (2003)	Second homes per 1,000 de jure inhabitants (2001)	Restaurants per 1,000 de jure inhabitants (2000)	Local police officers per 1,000 inhabitants (2006)	De facto population June–July/December (2006)	De facto population (1996)	Tourism attractions
Calafell	21,871	1.40	92.74	25.18	1,236.44	9.41	3.31	5.80	4.98	Beach
Calella	18,034	1.62	900.97	121.50	181.12	9.04	2.66	4.52	3.21	Beach
Calonge	10,009	1.92	162.40	900.63	923.09	7.81	2.22	7.61	5.59	Beach
Cambrils	29,112	1.46	230.86	579.28	714.48	10.43	2.33	5.07	4.03	Beach
Castell-Platja d’Aro	9,766	2.66	592.66	1,226.57	1,307.51	14.65	3.28	9.91	6.80	Beach
L’Escala	9,330	2.18	118.34	770.04	1,549.68	10.98	2.84	8.49	6.62	Beach
Lloret de Mar	34,997	2.07	1,218.01	134.38	331.84	11.72	2.63	5.72	4.07	Beach
Malgrat de Mar	17,822	1.31	399.06	265.27	92.94	4.31	2.62	3.26	2.63	Beach
Mont-Roig del Camp	10,292	1.66	79.40	1,568.44	679.97	9.13	2.01	7.96	5.38	Beach
Pineda de Mar	25,568	1.15	169.37	122.23	169.52	3.79	2.31	3.53	3.11	Beach
Puigcerdà	8,949	1.10	95.59	98.95	219.06	6.66	1.35	2.96	2.74	Nature, sports
Roses	18,139	1.96	459.75	142.74	1,259.53	11.43	2.04	6.11	4.90	Beach
Salou	23,398	2.49	1,500.41	315.07	957.43	18.76	2.93	9.89	7.22	Beach
Santa Susanna	3,019	N/A	3,734.77	1,061.33	446.39	6.29	5.44	13.69	7.82	Beach
Sitges	26,225	1.17	175.51	106.30	264.00	7.61	3.12	3.50	3.00	Beach
Sort	2,264	1.32	259.88	714.66	384.91	3.35	0.00	3.81	3.33	Nature, sports
Torroella de Montgrí	10,924	2.16	220.80	1,324.28	633.81	10.65	2.27	6.55	4.30	Beach
Tossa de Mar	5,662	N/A	1,545.55	1,369.41	1,028.72	29.08	4.99	10.81	6.73	Beach
Vielha	5,385	1.37	528.92	229.82	406.09	13.77	0.00	4.01	3.56	Nature, sports
Vila-Seca	18,678	1.47	456.42	58.43	583.98	2.82	1.68	4.12	3.60	Beach
Balaguer	15,781	0.94	8.67	22.89	1.36	1.20	1.84	1.84	–	–
Banyoles	17,451	0.99	13.05	0.00	46.13	1.53	1.62	1.91	1.94	Lake
Municipality	Inbound demand	Price level	Unit Price	Foreign demand	Capacity	Price level	Unit Price	Price level	Unit Price	
------------------	----------------	-------------	------------	----------------	----------	-------------	------------	-------------	------------	
Cassà de la Selva	8,994	0.96	2.70	0.00	26.16	0.78	2.28	1.98	1.99	
Castelldefels	58,955	0.95	27.80	25.05	116.87	2.33	1.47	2.11	1.93	
Cervera	9,093	1.01	9.62	0.00	49.18	2.15	0.86	2.20	2.11	
El Vendrell	33,340	1.24	65.59	115.81	656.22	3.06	2.25	3.87	3.34	
Esparreguera	21,260	0.93	2.16	0.00	55.54	0.64	1.61	2.04	1.95	
Figueres	41,115	1.01	34.45	5.78	44.18	2.12	1.64	1.88	1.90	
Girona	92,186	1.06	13.24	0.00	66.07	2.74	1.49	1.79	1.83	
Lleida	127,314	1.02	18.27	4.53	61.54	2.57	1.44	1.77	1.86	
Mataró	119,035	0.95	3.48	4.36	9.70	1.28	1.36	1.81	1.89	
Mollerussa	13,086	1.00	13.27	0.00	20.28	1.67	1.43	2.04	1.98	
Montblanc	6,818	1.06	24.11	83.44	84.64	2.32	2.07	2.22	2.10	
Olot	32,357	0.97	10.49	20.07	17.89	1.64	1.44	1.89	1.91	
Reus	104,855	0.96	8.11	0.00	27.08	1.47	1.41	1.70	1.82	
Sabadell	201,712	0.94	4.39	0.00	11.65	1.08	1.29	1.78	1.88	
Santa Coloma de	11,090	0.98	21.46	0.00	69.57	1.47	1.80	1.95	1.91	
Santa Maria de	8,235	0.96	1.91	0.00	149.37	1.11	2.22	2.21	2.07	
Palautordera	134,163	1.04	20.80	56.09	60.02	2.24	1.61	1.87	1.93	
Tarragona	14,017	0.97	6.27	0.00	67.49	1.84	2.09	2.32	2.07	
Tordera	14,524	1.25	34.34	191.53	688.46	7.84	3.77	4.10	3.43	
Torredembarra	34,852	1.01	21.72	0.00	47.65	1.22	1.61	1.97	1.95	
Tortosa	23,948	0.99	6.28	0.00	42.40	1.28	1.76	2.03	1.97	
Valls	38,321	1.06	9.93	0.00	43.26	2.51	1.63	1.97	1.98	
Vilafranca del	36,656	0.97	12.70	0.00	28.24	1.97	1.63	1.91	1.91	
Penedès	7,210,508	1.29	38.08	35.94	80.95	2.23	1.44	2.11	2.08	

Source: Own elaboration with data from the Statistical Institute of Catalonia (2009).
composition may differ between jurisdictions (for example, clothing, footwear, furniture, or housing), goods and services not consumed by tourists (for example, education) and products with a small weight in the CPI shopping basket (for example, culture and leisure) are not considered. Other services, such as hotels, are also ignored, since they are typically consumed only by tourists and they are not included in the shopping basket of local residents. Following CPI conventions, the prices considered include value-added taxes. The final sample contains 149 different products which range from fresh food, bread, bar drinks, cleaning and drugstore products. Table 3 presents a summary of the products analysed. (A complete list of the products surveyed featuring their brand, characteristics and establishment where prices were surveyed is available from the authors on request.)

Pilot and definitive survey

A pilot survey was conducted in six jurisdictions (including Barcelona) prior to the definitive survey. The pilot revealed that certain products were not available at every supermarket chain surveyed. Unavailable products were replaced with similar ones that were more widely available. In the definitive survey, prices were collected twice. First, prices were recorded for the low tourism season (from 6 November 2006 to 15 December 2006). Another survey was conducted for the high tourism season (from 18 June 2007 to 16 July...
Table 2. Sample of supermarket chains, bakeries, bars and local markets.

Jurisdiction	Caprabo	Dia	Carrefour	Mercadona	Lidl	Condis	Suma Preu	Bon Beries	Bars Local markets
Calonge	x	x	x	x	x	x	x		
Castell-Pl. Aro	x	x	x	x	x	x	x		
L’Escala	x				x	x	x		
Lloret de M.					x	x	x		
Puigcerdà	x				x	x	x		
Roses	x	x	x	x	x	x	x		
Tossa de Mar	x				x	x	x		
Calella	x				x	x	x		
Malgrat M.	x		x	x		x	x		
Pineda M.	x	x	x	x					
Sta. Susanna					x	x	x		
Sitges	x	x	x	x					
Barcelona-Rambla	x	x							
Barcelona-S. Família	x	x	x	x	x	x	x		
Barcelona-P. Olímpic	x	x	x	x					
Calafell					x	x	x		
Cambrils	x	x	x						
Mont-Roig					x	x	x		
Salou	x	x							
Vila-Seca					x	x	x		
Sort					x	x	x		
Vila					x	x	x		
Girona	x	x	x	x					
Figueres	x	x	x	x					
Olot	x	x	x	x					
Banyoles	x	x	x	x					
Sta. Coloma F					x	x	x		
Cassà Selva	x								
Sabadell					x	x	x		
Mataró					x	x	x		
Castelldefels					x	x	x		
Vic	x	x	x	x					
Vilafraanca P.					x	x	x		
Esparreguera	x	x	x	x					
Tordera					x	x	x		
Sta. Maria P.	x	x	x						
Barcelona-El Clot	x	x	x	x	x	x	x		
Barcelona-Gràcia	x	x	x	x	x	x	x		
Barcelona-Sarrí	x	x	x						
Tarragona	x	x	x	x	x	x	x		
Reus	x	x	x	x					
Tortosa	x	x	x	x					
El Vendrell	x	x	x						
Valls	x	x	x	x					
Torredembarra	x								
Montblanc	x								
Lleida	x	x	x	x					
Balaguer	x	x	x						
Mollerussa	x		x						
Cervera	x	x	x	x					
Table 3. Summary of products surveyed.

Product code	Product code	Product code	Product code
10	391	1061	Manchego cheese
12	399	1064	Grated cheese
25	402	1074	Paëstrus cheese
39	419	1091	Melted cheese
85	495	1123	Sliced cheese
118	509	1144	Skinless hake fillet
132	523	1155	Cheese-filled escalope
138	528	1182	Cheese and ham pizza
152	545	1194	Stewed vegetables
166	561	1221	Liquid laundry soap
182	565	1230	Liquid laundry soap
198	572	1320	Liquid toilet cleaner
204	573	1350	Disinfectant
231	585	1356	Laundry bleach
237	588	1384	Dishwasher detergent
301	596	1454	Aluminium foil
321	616	1516	Deodorant
336	620	1551	Shower gel
337	635	1568	Toothpaste
356	656	1603	Styling gel
358	699	1640	Shampoo
362	729	1699	Diapers
363	766	1723	Batteries
364	774	2036	Toilet paper
366	781	2117	Dishwashing foam
367	785	8383	Apples
368	786	9002	Tea bags
369	787	9003	Potato crisps
370	826	9004	Sandwich bread
371	840	9007	Roasted ground coffee
372	868	9010	Washing powder
373	876	9012	Floormats
374	884	9015	Fresh cheese
375	895	9016	Fabric softener
378	903	9029	Cured ham
380	920	9031	Canned crushed tomatoes
381	924	84000	Cookies
382	954	BC1/BT1	Mineral water (bar)
383	944	BC2/BT2	Beer (bar)
384	947	BC3/BT3	Chocolate milkshake (bar)
385	958	BC4/BT4	Cola drink (bar)
386	959	BC6/BT6	White coffee (bar)
387	975	BC7/BT7	Black coffee (bar)
388	1033	BC8/BT8	Tea (bar)
389	1040	BC5/BT5	Espresso coffee with a dash of milk (bar)
390	1060	Fresh Manchego cheese	
2007). Since low-season prices refer to 2006, whereas high-season prices refer to 2007, price differences between periods may be due to end-of-year price revisions linked to general inflation, rather than to tourism demand. Nevertheless, it is unlikely that tourism and non-tourism municipalities display different patterns of general inflation (see the ‘discussion’ section).

University students were trained as pollsters. They recorded each product’s price (regular and sale price of products on sale) in a questionnaire. If a certain product was unavailable, the pollsters collected the price of the closest (in terms of characteristics, weight and volume) substitute, staying with the original brand or, when this was not possible, resorting to distributor brands. The prices of fresh food at local markets were collected randomly: the pollsters entered the market through its main entrance and surveyed the first vendor on their right-hand side, proceeding to adjacent vendors until the price of every product on the list was recorded. A similar procedure was used for bars and bakeries. For bars in tourism jurisdictions, prices were collected (and recorded separately) for establishments located in tourism and non-tourism zones within the jurisdiction.

At the end of the process, a sample containing a total of 18,500 prices resulted. The analysis of the prices recorded reveals a few ‘outliers’ (that is, individual prices which differ a lot from one certain jurisdiction or supermarket to another). Since it is not possible to discard the hypothesis that those differences are motivated by particular marketing strategies, outlier prices are kept in the sample. (In any case, if outliers are true errors, then they are likely to be distributed randomly among jurisdictions, so that they do not affect the paper’s results).

Statistical framework

The statistical analysis of the data collected through the survey relies on two kinds of mean comparison tests. First, it is assumed that population variances are unknown and equal. Thus, two independent random samples of prices of the same product (denoted by j) are available, with respective sizes n_X and n_Y (where X and Y refer, respectively, to tourism and non-tourism jurisdictions), drawn from normally distributed populations with respective means μ_X and μ_Y and identical variances. The pooled variance estimator is computed from the sample variances s^2_X and s^2_Y (Newbold et al., 2003):

$$s^2_p = \frac{(n_X - 1)s^2_X + (n_Y - 1)s^2_Y}{n_X + n_Y - 2}.$$ \hspace{1cm} (1)

The null hypothesis (H_0) states that no differences in prices exist between tourism and non-tourism municipalities, whereas the alternative hypothesis (H_1) states that differences do exist. Formally,

$$H_0 : \mu_X - \mu_Y = 0 \text{ and } H_1 : \mu_X - \mu_Y \neq 0.$$ \hspace{1cm} (2)

At a significance level of 5%, the null hypothesis is rejected when
where \bar{X} and \bar{Y} are, respectively, the sample means of the prices of product j in tourism and non-tourism jurisdictions and $t_{n_X+n_Y-2.5\%}$ is the value for which $\text{Prob}(t_{n_X+n_Y-2.5\%}) = 5\%$.

A second mean comparison test assumes that population variances are unknown and different. Samples of size n_X and n_Y, respectively, are drawn from normally distributed populations of prices of product j with respective means μ_X and μ_Y. The number of degrees of freedom of the statistic t, ν, is computed through (Newbold et al., 2003):

$$\nu = \frac{\left(\frac{s^2_{jX}}{n_X^2} + \frac{s^2_{jY}}{n_Y^2}\right)}{\frac{n_X}{n_X - 1} + \frac{n_Y}{n_Y - 1}}.$$ (4)

The null and the alternative hypotheses are identical as before. At a significance level of 5%, the null hypothesis is rejected when:

$$\frac{\bar{X} - \bar{Y}}{\sqrt{\frac{s^2_{jX}}{n_X} + \frac{s^2_{jY}}{n_Y}}} < - t_{\nu,2.5\%}, \text{ or } \frac{\bar{X} - \bar{Y}}{\sqrt{\frac{s^2_{jX}}{n_X} + \frac{s^2_{jY}}{n_Y}}} > t_{\nu,2.5\%}.$$ (5)

Levene’s statistic for equality of variances is used to decide which of the two contrasts above is the most appropriate (Levene, 1960):

$$L = \frac{(n_X + n_Y - 2)(\sum_{j=1}^{n_X} (Z_{jX} - \bar{Z})^2 + \sum_{j=1}^{n_Y} (Z_{jY} - \bar{Z})^2)}{\sum_{j=1}^{n_X} (Z_{jX} - \bar{Z})^2 + \sum_{j=1}^{n_Y} (Z_{jY} - \bar{Z})^2}.$$ (6)

where

$$k = X,Y,Z_{ki} = |j_i - \bar{j_i}|, \bar{Z}_{ki} = \frac{\sum_{j=1}^{n_X} j_{ki}}{n_{ki}}, \text{ and } \bar{Z} = \frac{\bar{Z}_{iX} + \bar{Z}_{iY}}{n_{iX} + n_{iY}}.$$ (7)

The null and the alternative hypotheses are, respectively,
Inbound demand and price levels in tourism municipalities

\[H_0 : \sigma_{jX} = \sigma_{jY} \text{ and } H_1 : \sigma_{iX} \neq \sigma_{jY} . \]

(8)

Levene's test rejects the null hypothesis of equal variances whenever

\[L > F(5\%, 1, n_{jX} + n_{jY} - 2) . \]

This statistical framework (with the appropriate minor modifications) is used to test the seven hypotheses formulated in the theoretical framework. The main results of the empirical analysis are presented in the next section.

Results

Hypothesis 1

When the high- and low-season prices for all supermarkets, bakeries and local markets (excluding bars) are pooled, only 4 (product codes 1144, 321, 868, 9012; see Table 3 for details) out of 149 products surveyed, that is, fewer than 3% of all the products analysed, have significantly (that is, at a 95% confidence level) higher prices in tourism jurisdictions. The prices of 10 products (product codes 1106, 362, 363, 364, 366, 367, 368, 372, 388, 9016), that is, fewer than 7% of the total, are significantly higher in non-tourism municipalities. Thus, no statistically significant price differences exist for 135 products, that is, for more than 90% of the products surveyed.

Table 4 shows the results of the analysis of list prices (excluding sales) for all the establishments available in the sample (excluding bars). (Detailed subsequent results are not displayed in tables for reasons of space. A complete list of tables with detailed results is available from the authors on request.) These results include the districts of Barcelona in the sample. Since the dimensions of these districts are much bigger than those of the rest of the jurisdictions in the sample (in 2007, Barcelona had a total population of 1,595,110) and it is not easy to define the boundaries of its tourism districts, it is reasonable to test the effects on the results of excluding Barcelona from the analysis. When Barcelona's districts are included from the sample, the results do not change substantially. For instance, when low- and high-season prices are pooled, 5 products (product codes 144, 868, 895, 9012, 934) have higher prices in tourism municipalities (4 when Barcelona's districts are included in the sample) and 5 (product codes 364, 367, 368, 380, 388) have higher prices in non-tourism jurisdictions (10 when Barcelona is included). This suggests that the paper's results are robust to small changes in the sample composition.

Hypothesis 2

With few variations, the above observations remain valid for the trough and the height of the tourism season. Whereas for the low tourism season only 2 products (product codes 9012, 975) have higher prices in tourism municipalities (1.4% of all the products surveyed), at the height of the season the prices of 9 products (product codes 1144, 1640, 182, 321, 616, 774, 868, 9007, 934), that is 6.4% of all the products, are higher in tourism jurisdictions.
Table 4. List prices (excluding sales) for all the establishments available in the sample (excluding bars).

Product code	Test for equality of price variances	Test for equality of price means	Confidence interval for the difference (95%)	Data summary												
	Equal variances	Different variances	Type of jurisdiction	N	Price mean	Typical deviation	Typical error of mean									
10	2.464 0.121	0.2464	Tourism	29	1.232 0.0467	0.00867										
	0.995	0.0072	Non-tourism	46	0.220 0.0180	0.00265										
1033	1.276 0.262	0.276	Tourism	25	1.434 0.1802	0.03604										
	–0.995	–0.0094	Non-tourism	48	1.472 0.0506	0.00731										
1040	0.733 0.370	0.733	Tourism	29	1.232 0.0467	0.00867										
	0.370	0.0072	Non-tourism	46	0.220 0.0180	0.00265										
1060	0.896 0.494	0.896	Tourism	29	1.232 0.0467	0.00867										
	0.494	0.0072	Non-tourism	46	0.220 0.0180	0.00265										
1061	1.147 1.126	1.147	Tourism	29	1.232 0.0467	0.00867										
	0.126	0.0072	Non-tourism	46	0.220 0.0180	0.00265										
1064	0.694 0.406	0.694	Tourism	29	1.232 0.0467	0.00867										
	0.406	0.0072	Non-tourism	46	0.220 0.0180	0.00265										
1074	0.483 0.498	0.483	Tourism	29	1.232 0.0467	0.00867										
	0.498	0.0072	Non-tourism	46	0.220 0.0180	0.00265										
1084	0.035 0.855	0.035	Tourism	29	1.232 0.0467	0.00867										
	0.855	0.0072	Non-tourism	46	0.220 0.0180	0.00265										
1091	0.553 0.460	0.553	Tourism	29	1.232 0.0467	0.00867										
	0.460	0.0072	Non-tourism	46	0.220 0.0180	0.00265										
1106	0.171 0.719	0.171	Tourism	29	1.232 0.0467	0.00867										
	0.719	0.0072	Non-tourism	46	0.220 0.0180	0.00265										
1123	0.231 0.632	0.231	Tourism	29	1.232 0.0467	0.00867										
	0.632	0.0072	Non-tourism	46	0.220 0.0180	0.00265										
1144	0.396 0.531	0.396	Tourism	29	1.232 0.0467	0.00867										
	0.531	0.0072	Non-tourism	46	0.220 0.0180	0.00265										
1155	0.180 0.673	0.180	Tourism	29	1.232 0.0467	0.00867										
	0.673	0.0072	Non-tourism	46	0.220 0.0180	0.00265										
118	5.492 0.200	5.492	Tourism	29	1.232 0.0467	0.00867										
	0.200	0.0072	Non-tourism	46	0.220 0.0180	0.00265										
1182	Equal variances	1.533	0.219	0.269	77	0.789	0.01040	0.03872	-0.06671	0.08751	0.07838	Tourism	29	2.3200	0.11414	0.02120
1194	Equal variances	0.479	0.492	0.390	55	0.698	0.01064	0.02730	-0.04408	0.06556	0.06685	Tourism	18	1.8950	0.09775	0.02304
12	Equal variances	1.045	0.387	0.281	77	0.789	0.01040	0.03872	-0.06671	0.08751	0.07838	Tourism	29	2.3200	0.11414	0.02120
1221	Equal variances	4.904	0.037	0.904	23	0.786	0.01040	0.03872	-0.06671	0.08751	0.07838	Tourism	29	2.3200	0.11414	0.02120
1230	Equal variances	0.479	0.492	0.390	55	0.698	0.01064	0.02730	-0.04408	0.06556	0.06685	Tourism	18	1.8950	0.09775	0.02304
132	Equal variances	0.479	0.492	0.390	55	0.698	0.01064	0.02730	-0.04408	0.06556	0.06685	Tourism	18	1.8950	0.09775	0.02304
1330	Equal variances	1.045	0.387	0.281	77	0.789	0.01040	0.03872	-0.06671	0.08751	0.07838	Tourism	29	2.3200	0.11414	0.02120
1349	Equal variances	1.114	0.295	-0.489	76	0.626	0.01040	0.03872	-0.06671	0.08751	0.07838	Tourism	29	2.3200	0.11414	0.02120
1356	Equal variances	8.612	0.094	1.337	0.80	0.01040	0.03872	-0.06671	0.08751	0.07838	Tourism	29	2.3200	0.11414	0.02120	
1388	Equal variances	0.262	0.610	0.452	58	0.588	0.01040	0.03872	-0.06671	0.08751	0.07838	Tourism	29	2.3200	0.11414	0.02120
1394	Equal variances	0.888	0.325	0.691	79	0.492	0.01040	0.03872	-0.06671	0.08751	0.07838	Tourism	29	2.3200	0.11414	0.02120
1454	Equal variances	1.869	0.176	0.082	76	0.935	0.01040	0.03872	-0.06671	0.08751	0.07838	Tourism	29	2.3200	0.11414	0.02120
1516	Equal variances	0.450	0.505	-0.971	63	0.335	0.01040	0.03872	-0.06671	0.08751	0.07838	Tourism	29	2.3200	0.11414	0.02120
1525	Equal variances	0.298	0.588	-0.418	42	0.678	0.01040	0.03872	-0.06671	0.08751	0.07838	Tourism	29	2.3200	0.11414	0.02120
1551	Equal variances	0.064	0.802	0.842	70	0.403	0.01040	0.03872	-0.06671	0.08751	0.07838	Tourism	29	2.3200	0.11414	0.02120
1608	Equal variances	0.026	0.871	-0.777	343	0.437	0.01040	0.03872	-0.06671	0.08751	0.07838	Tourism	29	2.3200	0.11414	0.02120
1640	Equal variances	1.279	0.259	1.022	317	0.307	0.01040	0.03872	-0.06671	0.08751	0.07838	Tourism	29	2.3200	0.11414	0.02120
Product code	Test for equality of price variances	Test for equality of price means	Confidence interval for the difference (95%)	Data summary												
--------------	-------------------------------------	----------------------------------	---	--------------												
	Equal variances															
	Different variances															
166	0.411	0.178	0.118													
1665	0.254	0.043	0.150													
1667	0.941	0.111	0.166													
1699	0.184	0.066	0.043													
1723	0.306	0.018	0.010													
182	0.208	0.111	0.166													
19	0.418	0.120	0.178													
198	0.603	0.120	0.031													
2036	0.041	0.184	0.043													
204	0.222	0.119	0.166													
2117	0.100	0.105	0.600													
231	0.652	0.109	0.150													
237	0.014	0.120	0.031													
25	0.065	0.100	0.166													

Notes:
- Equal variances:
- Different variances:
- Price mean:
- Typical error of mean:
- Type of jurisdiction: Tourism, Non-tourism.
| 301 | Equal variances | Different variances | 5.151 | 0.698 | 3.360 | 308 | 0.175 | 0.05226 | 0.03844 | −0.02239 | −0.02346 | 0.12790 | 0.12797 | Tourism | Non-tourism | 112 | 198 | 2.3409 | 2.2886 | 0.32844 | 0.32533 | 0.03069 | 0.02312 |
| 321 | Equal variances | Different variances | 5.464 | 0.020 | 2.433 | 23.47 | 0.017 | 0.40684 | 0.18114 | 0.08019 | 0.08012 | 29 | Tourism | 3.6428 | 0.84427 | 0.15678 |
| 336 | Equal variances | Different variances | 0.174 | 0.678 | −0.235 | 81 | 0.815 | −0.02745 | 0.11675 | −0.25974 | −0.26675 | 0.20848 | 0.21185 | Tourism | 31 | 5.0577 | 0.54548 | 0.09781 |
| 337 | Equal variances | Different variances | 3.548 | 0.060 | 0.436 | 344 | 0.294 | 0.02397 | 0.05504 | −0.08429 | −0.07684 | 0.13224 | 0.12441 | Tourism | 119 | 4.1634 | 0.40849 | 0.03745 |
| 356 | Equal variances | Different variances | 0.334 | 0.565 | 0.280 | 83 | 0.780 | 0.00618 | 0.02205 | −0.03776 | −0.04076 | 0.05003 | 0.05131 | Tourism | 30 | 1.2100 | 0.10954 | 0.02000 |
| 358 | Equal variances | Different variances | 0.026 | 0.872 | −1.596 | 61 | 0.116 | −0.51106 | 0.32031 | −1.15155 | 0.12943 | 26 | Tourism | 6.1346 | 1.19614 | 0.23458 |
| 359 | Equal variances | Different variances | 1.841 | 0.180 | −0.860 | 60 | 0.393 | −0.26035 | 0.32090 | −0.86624 | −0.91364 | 0.34555 | 0.39294 | Tourism | 27 | 6.0622 | 1.49350 | 0.28742 |
| 361 | Equal variances | Different variances | 2.426 | 0.124 | −0.920 | 62 | 0.361 | −0.73276 | 0.79667 | −2.32527 | −2.39991 | 0.85975 | 0.94348 | Tourism | 27 | 14.0307 | 3.90942 | 0.69098 |
| 362 | Equal variances | Different variances | 3.516 | 0.066 | −2.409 | 61 | 0.019 | −0.65787 | 0.27308 | −1.20932 | −1.13571 | 7 | Non-tourism | 7.6652 | 0.87269 | 0.16791 |
| 363 | Equal variances | Different variances | 0.001 | 0.976 | −2.441 | 61 | 0.118 | −0.83241 | 0.34096 | −1.51419 | −1.50662 | 0.79272 | 0.73425 | Non-tourism | 27 | 7.0948 | 1.34595 | 0.25903 |
| 364 | Equal variances | Different variances | 6.747 | 0.012 | −2.939 | 61 | 0.305 | −1.50731 | 0.51285 | −2.53282 | −0.48181 | 7 | Tourism | 9.6119 | 1.23710 | 0.23808 |
| 365 | Equal variances | Different variances | 0.125 | 0.725 | −2.360 | 62 | 0.021 | −2.15177 | 0.91179 | −3.97441 | −0.92949 | 17 | Non-tourism | 18.9944 | 3.90666 | 0.75184 |
| 367 | Equal variances | Different variances | 6.372 | 0.014 | −2.216 | 61 | 0.030 | −0.39843 | 0.17979 | −0.75782 | −0.03904 | 27 | Tourism | 2.8484 | 0.55848 | 0.10478 |
| 368 | Equal variances | Different variances | 3.409 | 0.059 | −3.856 | 61 | 0.000 | −2.28343 | 0.59218 | −3.46756 | −1.09930 | 26 | Tourism | 9.6285 | 1.74595 | 0.34241 |
| 369 | Equal variances | Different variances | 0.596 | 0.443 | −1.889 | 61 | 0.064 | −1.09629 | 0.58043 | −2.25693 | 0.06435 | 26 | Tourism | 8.9188 | 2.01382 | 0.39494 |
| 370 | Equal variances | Different variances | 0.744 | 0.392 | −1.399 | 48.478 | 0.079 | −0.57358 | 0.13942 | −1.12156 | 0.08580 | 23 | Tourism | 3.2022 | 0.75551 | 0.15700 |
| 371 | Equal variances | Different variances | 0.039 | 0.844 | 0.527 | 55 | 0.600 | 0.47994 | 0.90342 | −1.133456 | 2.28643 | 25 | Tourism | 5.8900 | 3.03503 | 0.66106 |
| 372 | Equal variances | Different variances | 1.522 | 0.223 | −2.415 | 53 | 0.019 | −3.73348 | 1.54597 | −6.83431 | −0.63265 | 23 | Non-tourism | 12.0865 | 5.40419 | 1.12685 |

In addition demand and price levels in tourism municipalities are highlighted.
Product code	Test for equality of price variances	Test for equality of price means	Confidence interval for the difference (95%)	Data summary		
			Inferior	Superior		
			N	Price mean	Typical deviation	Typical error of mean
373	Equal variances	Tourism	25	3.6652	0.901080	0.18216
	Different variances	Non-tourism	32	7.0353	2.49698	0.44141
374	Equal variances	Tourism	23	6.6457	2.13802	0.44581
	Different variances	Non-tourism	35	15.8443	3.81118	0.64421
375	Equal variances	Tourism	23	6.0359	1.15061	0.20340
	Different variances	Non-tourism	32	7.0353	2.49698	0.44141
376	Equal variances	Tourism	23	6.0359	1.15061	0.20340
	Different variances	Non-tourism	32	7.0353	2.49698	0.44141
377	Equal variances	Tourism	23	6.0359	1.15061	0.20340
	Different variances	Non-tourism	32	7.0353	2.49698	0.44141
378	Equal variances	Tourism	23	6.0359	1.15061	0.20340
	Different variances	Non-tourism	32	7.0353	2.49698	0.44141
379	Equal variances	Tourism	23	6.0359	1.15061	0.20340
	Different variances	Non-tourism	32	7.0353	2.49698	0.44141
380	Equal variances	Tourism	23	6.0359	1.15061	0.20340
	Different variances	Non-tourism	32	7.0353	2.49698	0.44141
381	Equal variances	Tourism	23	6.0359	1.15061	0.20340
	Different variances	Non-tourism	32	7.0353	2.49698	0.44141
382	Equal variances	Tourism	23	6.0359	1.15061	0.20340
	Different variances	Non-tourism	32	7.0353	2.49698	0.44141
383	Equal variances	Tourism	23	6.0359	1.15061	0.20340
	Different variances	Non-tourism	32	7.0353	2.49698	0.44141
384	Equal variances	Tourism	23	6.0359	1.15061	0.20340
	Different variances	Non-tourism	32	7.0353	2.49698	0.44141
385	Equal variances	Tourism	23	6.0359	1.15061	0.20340
	Different variances	Non-tourism	32	7.0353	2.49698	0.44141
386	Equal variances	Tourism	23	6.0359	1.15061	0.20340
	Different variances	Non-tourism	32	7.0353	2.49698	0.44141
387	Equal variances	Tourism	23	6.0359	1.15061	0.20340
	Different variances	Non-tourism	32	7.0353	2.49698	0.44141
388	Equal variances	Tourism	23	6.0359	1.15061	0.20340
	Different variances	Non-tourism	32	7.0353	2.49698	0.44141
389	Equal variances	Tourism	23	6.0359	1.15061	0.20340
	Different variances	Non-tourism	32	7.0353	2.49698	0.44141
Week	Equal variances	Different variances				
--------	-----------------	---------------------				
39	0.390	0.534				
	0.227	0.216				
	86	53.757				
	0.821	0.830				
	0.00718	0.00718				
	0.03167	0.03324				
	−0.05578	−0.05947				
	0.07015	0.07383				
Tourism	31	1.1361				
	0.821	0.534				
	0.03167	0.03324				
	−0.05578	−0.05947				
	0.07015	0.07383				
Non-tourism	57	1.1289				
	0.821	0.534				
	0.03167	0.03324				
	−0.05578	−0.05947				
	0.07015	0.07383				
390	1.924	1.139				
	0.260	0.22076				
	0.19374	0.17855				
	−0.16819	−0.13796				
	0.60971	0.57948				
Tourism	20	3.5050				
	0.821	0.534				
	0.03167	0.03324				
	−0.05578	−0.05947				
	0.07015	0.07383				
Non-tourism	33	3.2842				
	0.821	0.534				
	0.03167	0.03324				
	−0.05578	−0.05947				
	0.07015	0.07383				
391	0.828	0.865				
	0.391	0.2053				
	0.23177	0.22587				
	−0.26477	0.66588				
	0.07015	0.07383				
Tourism	20	3.4075				
	0.821	0.534				
	0.03167	0.03324				
	−0.05578	−0.05947				
	0.07015	0.07383				
Non-tourism	33	3.2070				
	0.821	0.534				
	0.03167	0.03324				
	−0.05578	−0.05947				
	0.07015	0.07383				
399	4.225	0.956				
	0.342	0.00644				
	0.00718	0.00814				
	−0.00696	0.01984				
	0.0674	0.0674				
	0.07383	0.07383				
Tourism	31	0.3610				
	0.821	0.534				
	0.03167	0.03324				
	−0.05578	−0.05947				
	0.07015	0.07383				
Non-tourism	53	0.3545				
	0.821	0.534				
	0.03167	0.03324				
	−0.05578	−0.05947				
	0.07015	0.07383				
402	0.444	0.506				
	0.865	0.00153				
	0.00718	0.00819				
	−0.00696	0.01984				
	0.0839	0.0674				
	0.07383	0.07383				
Tourism	125	0.5887				
	0.821	0.534				
	0.03167	0.03324				
	−0.05578	−0.05947				
	0.07015	0.07383				
Non-tourism	221	0.5872				
	0.821	0.534				
	0.03167	0.03324				
	−0.05578	−0.05947				
	0.07015	0.07383				
Table 4 continued.

Product code	Test for equality of price variances	Test for equality of price means	Confidence interval for the difference (95%)	Data summary
596	Equal variances	0.052 0.819	± 0.443	
	Different variances	0.094 375.948	± 0.621	
616	Equal variances	0.004 73.991	± 0.043	
	Different variances	0.007 0.047	± 0.043	
620	Equal variances	0.079 53.913	± 0.147	
	Different variances	0.079 0.147	± 0.046	
635	Equal variances	0.162 15	± 0.781	
	Different variances	0.154 0.781	± 0.047	
656	Equal variances	0.632 81	± 0.411	
	Different variances	0.827 0.411	± 0.055	
699	Equal variances	0.009 69	± 0.079	
	Different variances	1.410 26.858	± 0.170	
705	Equal variances	0.664 84	± 0.743	
	Different variances	0.364 80.589	± 0.717	
719	Equal variances	0.699 175	± 0.164	
	Different variances	1.394 109.823	± 0.166	
729	Equal variances	0.003 54	± 0.111	
	Different variances	1.843 53.186	± 0.071	
766	Equal variances	0.346 74	± 0.793	
	Different variances	0.285 54.789	± 0.776	
774	Equal variances	0.143 531	± 0.423	
	Different variances	0.802 304.431	± 0.404	
781	Equal variances	0.316 81	± 0.727	
	Different variances	0.353 61.437	± 0.261	
785	Equal variances	0.583 93	± 0.361	
	Different variances	0.918 89.084	± 0.356	
786	Equal variances	0.016 93	± 0.615	
	Different variances	0.504 68.131	± 0.632	
Inbound demand and price levels in tourism municipalities

Equal variances	Different variances	Non-tourism	Tourism
0.465	0.497	0.005	0.004
0.826	0.797	0.005	0.004
0.181	0.163	0.011	0.005
0.840	0.863	0.005	0.004
0.868	0.874	0.005	0.004
0.884	0.891	0.005	0.004
0.900	0.907	0.005	0.004
0.903	0.904	0.005	0.004
0.906	0.907	0.005	0.004
0.910	0.912	0.005	0.004
0.915	0.916	0.005	0.004

Equal variances

0.465	0.497	0.005	0.004
0.826	0.797	0.005	0.004
0.181	0.163	0.011	0.005
0.840	0.863	0.005	0.004
0.868	0.874	0.005	0.004
0.884	0.891	0.005	0.004
0.900	0.907	0.005	0.004
0.903	0.904	0.005	0.004
0.906	0.907	0.005	0.004
0.910	0.912	0.005	0.004
0.915	0.916	0.005	0.004

Different variances

0.497	0.529	0.013	0.005
0.797	0.764	0.013	0.005
0.163	0.181	0.013	0.005
0.863	0.840	0.013	0.005
0.874	0.868	0.013	0.005
0.891	0.884	0.013	0.005
0.907	0.903	0.013	0.005
0.904	0.906	0.013	0.005
0.907	0.910	0.013	0.005
0.912	0.915	0.013	0.005
0.916	0.919	0.013	0.005
Product code	Test for equality of price variances	Test for equality of price means	Confidence interval for the difference (95%)	Data summary						
	Equal variances	Different variances	Inferior	Superior	Type of jurisdiction	N	Price mean	Typical deviation	Typical error of mean	
9029	3.665	0.345	0.378	32	0.708	98.924	2.61424	-0.33578	6.31427	2.52209
	0.345	0.065	0.070	17.580	0.734	98.924	2.86084	-0.04080	7.92286	1.36519
903	1.182	0.070	0.05345	281.180	0.624	-0.01736	0.02368	-0.05484	0.03488	0.03388
9031	1.604	0.098	0.00005	60.063	0.994	0.00005	0.04469	-0.08750	0.03804	0.03546
920	2.274	0.033	0.00005	66.935	0.667	-0.0125	0.03289	-0.00070	0.00451	0.00254
924	0.001	0.008	0.00005	60.063	0.994	0.00005	0.04469	-0.08750	0.03804	0.03546
934	21.13	0.000	0.00448	29.716	0.071	0.00448	0.03447	0.08594	0.03076	0.03076
944	1.202	0.082	-0.1510	0.18445	0.17130	-0.52025	0.21765	0.19226	0.03076	0.03076
947	0.019	0.051	0.00005	51.447	0.621	0.00005	0.04469	-0.08750	0.03804	0.03546
958	0.325	0.569	0.596	335.429	0.559	0.00005	0.00799	-0.02090	0.12560	0.05359
959	1.148	0.045	-0.1830	49.728	0.072	-0.14693	0.10396	-0.35408	0.06021	0.03072
975	0.325	0.451	-0.1830	49.728	0.072	-0.14693	0.10396	-0.35408	0.06021	0.03072
BC1	5.878	0.035	-0.09000	101.696	0.032	0.00005	0.04245	-0.17420	0.05080	0.04333
BC2	0.087	0.769	0.00005	85.335	0.237	0.00005	0.04948	-0.03941	0.15736	0.05023
BC3	1.045	0.310	0.00005	78.530	0.255	0.00005	0.04925	-0.04152	0.15457	0.05023
Table: Inbound Demand and Price Levels in Tourism Municipalities

BC4	Equal variances	Different variances	Tourism	Non-tourism								
3.463	0.066	-1.594	0.114	-0.07519	0.04716	-0.16870	0.01832	0.00692	1.3938	1.4689	0.27313	0.03562
BC5	Equal variances	Different variances	Tourism	Non-tourism								
2.142	0.146	0.710	0.114	0.11452	0.16134	-0.20546	0.43450	-0.29314	0.52218	0.1139	0.26509	0.03288
BC6	Equal variances	Different variances	Tourism	Non-tourism								
0.706	0.403	-0.538	0.578	-0.01920	0.03442	-0.08746	0.49090	-0.15730	0.3999	0.1176	0.10500	0.01660
BC7	Equal variances	Different variances	Tourism	Non-tourism								
0.475	0.492	-0.990	0.325	-0.03076	0.03108	-0.09238	0.3807	-0.08572	0.2421	0.1196	0.17488	0.02185
BC8	Equal variances	Different variances	Tourism	Non-tourism								
6.776	0.011	-0.110	0.270	-0.01920	0.03442	-0.08746	0.49090	-0.15730	0.3999	0.1176	0.10500	0.01660
BT1	Equal variances	Different variances	Tourism	Non-tourism								
5.685	0.023	2.108	51	0.041	0.13814	0.06579	0.00606	0.27022	0.3281	0.20190	0.03079	
BT2	Equal variances	Different variances	Tourism	Non-tourism								
1.581	0.214	2.079	51	0.043	0.08651	0.03161	0.00298	0.17005	0.1457	0.1000	0.06749	0.02134
BT3	Equal variances	Different variances	Tourism	Non-tourism								
0.486	0.489	1.603	50	0.115	0.08476	0.05288	-0.02145	0.19098	0.20152	0.1159	0.14923	0.02303
BT4	Equal variances	Different variances	Tourism	Non-tourism								
2.088	0.757	0.946	51	0.549	0.10221	0.07695	-0.05651	0.26993	0.3192	0.1590	0.18477	0.05843
BT5	Equal variances	Different variances	Tourism	Non-tourism								
4.858	0.032	1.792	51	0.079	0.24407	0.13616	-0.02929	0.51743	0.40283	0.1629	0.42219	0.06438
BT6	Equal variances	Different variances	Tourism	Non-tourism								
0.896	0.348	0.975	50	0.334	0.11810	0.12110	-0.12514	0.36133	0.32495	0.1363	0.36040	0.05561
BT7	Equal variances	Different variances	Tourism	Non-tourism								
0.114	0.737	0.829	51	0.411	0.08535	0.10290	-0.12124	0.29194	0.28580	0.1755	0.29970	0.04570
BT8	Equal variances	Different variances	Tourism	Non-tourism								
1.466	0.232	1.802	48	0.078	0.22062	0.12241	-0.02550	0.46675	0.39018	1.7595	0.35512	0.05546

Note: The differences highlighted in grey are significant at the 95% confidence level.
Hypothesis 3

No particular group of products displays higher prices in tourism jurisdictions. The only significant differences in prices arise for fresh food in local markets. However, for these products, prices in tourism jurisdictions are significantly lower than in non-tourism ones. Specifically, 8 fresh foods (product codes 362, 363, 364, 366, 367, 368, 372, 388) out of 29, that is, 28% of all the fresh foods considered, have significantly higher prices in non-tourism jurisdictions. Notice, however, that the quality of (unbranded) fresh food is not easy to assess. Therefore, differences in prices may hide differences in qualities.

Hypothesis 4

There are no significant changes in the above results when sale prices are taken into account. Besides, although advantages may exist for customers carrying supermarket membership cards, no general schemes exist in Catalonia similar to those in place in, for instance, Hawaii (Kreps, 2004). Hawaiian supermarkets close to tourism areas display very high prices by American mainland standards but, for a lot of items, a second and substantially lower price is given for the holders of the supermarkets’ membership cards, which are available to Hawaiian residents only. Thus, the hypothesis that retailers resort to sales strategies in order to differentiate among types of customers (tourists and local residents) must be rejected (However, see the discussion of Hypothesis 6 for non-traded goods and Hypothesis 7 for goods with search costs).

Hypothesis 5

No significant price differences between tourism and non-tourism jurisdictions are revealed when the distribution channel is taken into account. The only significant differences arise for fresh foods sold in local markets and drinks sold in bars. Fresh food prices are significantly higher in non-tourism jurisdictions. Specifically, 10 different products (product codes 1106, 362, 363, 364, 366, 367, 368, 372, 380, 388), 34.5% of all the products considered, have higher prices in non-tourism jurisdictions (and no products have higher prices in tourism jurisdictions). It is also remarkable that at the height of the tourism season, the number of products with significant differences in prices increases with respect to the trough of the tourism season (that is, there are more products with higher prices in non-tourism jurisdictions). Two additional facts about the magnitude of price differences are: first, when price differences are significant, prices in non-tourism municipalities are, on average, 16% higher; and second, price differences are wider at the height of the tourism season.

Hypothesis 6

Prices of drinks sold in bars are used to test the hypothesis that differences exist for non-traded goods. Bars exhibit prices significantly higher in tourism municipalities: 7 out of 8 products surveyed (that is, all of them except beer) have higher prices. For bar drinks, prices in tourism municipalities are 10% higher than prices in non-tourism jurisdictions. This observation is in accordance with the Balassa–Samuelson hypothesis. Besides, differences are higher
at the height of the tourism season; that is, the cyclical component of bar prices is marked for tourism jurisdictions. Nevertheless, differences disappear when the prices of bar drinks in non-tourism jurisdictions are compared to the prices charged in non-tourism zones within tourism jurisdictions. This evidence cannot be rationalized by the Balassa–Samuelson hypothesis and suggests that price dispersion exists within tourism jurisdictions (see Hypothesis 7).

Hypothesis 7

In the case of bars in tourism jurisdictions, differences exist in the prices of products offered by bars located in tourism and non-tourism zones within the jurisdiction, with the former having higher prices. This observation is in accordance with the predictions of tourists-and-natives models (Salop and Stiglitz, 1977; Stiglitz, 1979; Carlton and Perloff, 2005). That is, if there are two types of individuals (uninformed tourists and informed natives), then a two-price equilibrium may exist: natives shop at low-price stores and tourists shop randomly.

Discussion

The main result of the paper is that no significant differences in prices exist between tourism and non-tourism jurisdictions in Catalonia for a broad variety of products. However, the analysis shows that bar drinks have significantly higher prices in tourism zones within tourism jurisdictions. This suggests that tourists are likely to pay higher prices than natives. Although the paper has some limitations, the methodology, the survey and the results are relevant for other tourism (and non-tourism) destinations and developed (and developing) countries.

One of the paper’s limitations is that it takes into account only a reduced amount of products. For instance, prices of property and rents, or personal services (hairdressers, discotheques or restaurants, for instance) are not considered. These are non-traded goods, that is, they must be consumed where (and by whom) they are purchased, so that no possibility of arbitrage exists. Nevertheless, consideration of the prices of bar drinks (which are essentially non-traded) provides some hints for non-traded goods and services.

Another limitation is methodological and arises from the reliance on microeconomic data collected in two time periods. The paper does not take into account the adjustment processes leading to an equilibrium considered by GE models. Therefore, it is not possible to assert whether the markets for traded and non-traded goods are in equilibrium.

A possible additional limitation is that Catalonia is a top destination for both international and domestic tourism and that tourism and non-tourism jurisdictions are relatively close to each other. This may explain the general lack of price differences in Catalonia. Certainly, one could still hope to find price differences in an isolated tourist municipality with limited arbitrage and consumer mobility. However, the paper’s results show price differences in the case of bars, so the jurisdictions used in our study are not so close in that respect.
The paper shows that it is important to distinguish price differences caused by the impossibility of arbitrage from differences caused by search costs. The observation that the prices of products sold in bars located in tourism zones within a jurisdiction are higher than the prices charged by bars located in non-tourism zones within the same (tourism) jurisdiction suggests that search costs play an important role. Uninformed tourists are likely to end up paying prices higher than those paid by (informed) local residents for identical goods. This is consistent with theoretical models based on search costs (Salop and Stiglitz, 1977; Stiglitz, 1979; Carlton and Perloff, 2005).

Experiences of market power based on search costs and asymmetries between tourists and residents have been documented widely in the tourism literature. For instance, during slack periods, hotels in Hawaii offer special (far lower than standard) rates for customers who can prove Hawaiian residency (Phillips, 2005). In some Latin American cities, McDonald’s has experimented with charging different prices for meals according to the relative wealth of their neighbourhoods (The Economist, 2004). In Denver, ski resorts use purchase location to segment sales of list tickets so that price-sensitive locals can buy discounted tickets at grocery stores and self-service gas stations (Nagle and Hogan, 2006). As a final example, the prices for being at the beach in New Jersey are US$6 for one day, US$12 for one week, or US$24 for the season (but only US$19 for the season if bought before Memorial Day), so that permanent residents informed about the deal spend US$19 (Hamermesh, 2008).

Besides prices, another obvious mechanism exists which can yield opposite outcomes. The increased demand generated by tourism can be matched by an increased supply: more production of goods and services, particularly those which are non-traded. If tourists pay all the costs they generate (that is, if no externalities exist), local residents who sell products and services to tourists will be better off, whereas local residents with no stakes in the tourism sector will be no worse off. That is, local residents will experience a Pareto improvement in their economic welfare from an increased tourist flow (Clarke and Ng, 1993).

The lack of confirmatory evidence about price differences between tourism and non-tourism jurisdictions could also be viewed as indirect evidence of this quantity effect. Of course, further indirect evidence comes from the fact that tourism jurisdictions consistently enjoy higher levels of per capita income (Rigall-I-Torrent, 2003).

Conclusion

The empirical evidence collected, based on a comprehensive sample containing more than 18,500 prices gathered in 225 supermarkets and 204 bars, bakeries and local markets of 45 jurisdictions in Catalonia and 6 districts of Barcelona at peak and trough periods of the tourism season, shows that for a vast majority of products, first, there is no evidence that systematic differences exist between prices in tourism and non-tourism jurisdictions. Second, as a consequence of the preceding conclusion, there is no evidence of general differences in prices between tourism and non-tourism jurisdictions. Third, no general differences are observed in the prices of those products which are particularly consumed by tourists. Fourth, for those products whose prices differ significantly in
tourism and non-tourism municipalities, no significant evidence of seasonality exists in the behaviour of their prices. Fifth, drinks sold in bars show prices significantly higher in tourism municipalities and a marked cyclical component (with higher differences at the peak of the tourism season) in those jurisdictions. However, differences disappear when the prices of bar drinks in non-tourism jurisdictions are compared to the prices charged in non-tourism zones within tourism jurisdictions. Sixth, differences exist in the prices of products offered by bars located in tourism and non-tourism zones within the jurisdiction, with the former having higher prices.

Summing up, for an immense majority of products the hypothesis that prices are, in general, higher in tourism jurisdictions does not stand close scrutiny in Catalonia. The increased demand derived from tourism seems to have a rather large quantity effect: more production, more jobs and increased economic welfare. The convergence of prices for traded goods means that the quantity effect goes well beyond tourism jurisdictions, affecting the whole economy. The paper’s findings also suggest the importance of the distinction between traded and non-traded goods and services between jurisdictions and search costs within jurisdictions.

Endnotes
1. Since data of the de facto population are not available at the district level, districts in Barcelona are classified according to the presence of major tourism attractions in the district, the authors’ knowledge of the different districts and the opinion of experts at the Observatory of Tourism of Catalonia. The inclusion of Barcelona’s districts in the sample does not change the paper’s results substantially.
2. A bar is a typical catering establishment in Spain and Catalonia similar to a pub or cantina.
3. Since the CPI is not computed at the jurisdiction level and the list of products included in the CPI is not disclosed publicly, it is not possible to check whether this is true in practice or whether the same products in June–July 2007 had higher prices than in November–December 2006.

References
Adams, P.D., and Parmenter, B.R. (1995), ‘An applied general equilibrium analysis of the economic effects of tourism in a quite small, quite open economy’, *Applied Economics*, Vol 27, No 10, pp 985–994.
Balassa, B. (1964), ‘The purchasing-power parity doctrine: a reappraisal’, *The Journal of Political Economy*, Vol 72, No 6, pp 584–596.
Bhagwati, J.N. (1984), ‘Why are services cheaper in the poor countries?’, *Economic Journal*, Vol 94, No 374, pp 279–286.
Carlton, D.W., and Perloff, J.M. (2005), *Modern Industrial Organization*, Pearson Addison-Wesley, Boston, MA.
Chao, C.C., Hazari, B., and Sgro, P. (2005), ‘Tourism and economic development in a cash-in-advance economy’, *Research in International Business and Finance*, Vol 19, No 3, pp 365–373.
Chao, C.C., Hazari, B.R., Laffargue, J.P., Sgro, P.M., and Yu, E.S.H. (2006), ‘Tourism, Dutch disease and welfare in an open dynamic economy’, *Japanese Economic Review*, Vol 57, No 4, pp 501–515.
Clarke, H.R., and Ng, Y.-K. (1993), ‘Tourism, economic welfare and efficient pricing’, *Annals of Tourism Research*, Vol 20, pp 613–632.
Costa, À., and Rovira, C. (2001), ‘Población flotante en los municipios catalanes 1998 [De facto population in Catalan jurisdictions 1998]’, *Revista Fuentes Estadísticas*, Vol 56–57 (online).
Croes, R.R., and Severt, D.E. (2007), ‘Research report: evaluating short-term tourism economic effects in confined economies – conceptual and empirical considerations’, *Tourism Economics*, Vol 13, No 2, pp 289–307.
De Gregorio, J., Giovannini, A., and Wolf, H.C. (1994), 'International evidence on tradables and non-tradables inflation', *European Economic Review*, Vol 38, No 6, pp 1225–1244.

Deaton, A. (1998), 'Getting prices right: what should be done?', *Journal of Economic Perspectives*, Vol 12, No 1, pp 37–46.

Diamond, P.A. (1971), 'A model of price adjustment', *Journal of Economic Theory*, Vol 3, No 2, pp 156–168.

Economist, The (2004, 16/10/2004), Big Mac's makeover, *The Economist*, Vol 373, No 8397, pp 67–69.

Fountain, J., and Hall, C.M. (2000), *Second Homes: European Perspectives and UK Policies*, Ashgate, Aldershot.

Galí, J. (1997), 'The impact of shocks on employment and production in a small open economy', *European Economic Review*, Vol 41, No 6, pp 1111–1125.

Hazari, B.R., and Ng, A. (1993), 'An analysis of tourists' consumption of non-traded goods and services on the welfare of the domestic consumers', *International Review of Economics and Finance*, Vol 2, No 1, pp 43–58.

INE (2001), *Metodología General IPC [General CPI Methodology]*, Instituto Nacional de Estadística, Madrid.

Johansen, L. (1960), *A Multi-Sectoral Study of Economic Growth*, North-Holland Publishing Co, Amsterdam.

Kim, H.J., Gursoy, D., and Lee, S.B. (2006), 'The impact of the 2002 World Cup on South Korea: comparisons of pre- and post-games', *Tourism Management*, Vol 27, No 1, pp 86–96.

Kreps, D.M. (2004), *Microeconomics for Managers*, W.W. Norton and Company, New York.

Levene, H. (1960), 'Robust tests for equality of variances', in Olkin, I., Ghurye, S.G., Hoeffding, W., Madow, W.G., and Mann, H.B., eds, *Contribution to Probability and Statistics: Essays in Honor of Harald Cramér*, Stanford University Press, Menlo Park, CA, pp 278–292.

Nagle, T.T., and Hogan, J.E. (2006), *The Strategy and Tactics of Pricing: A Guide to Growing More Profitable*, Pearson Prentice Hall, Upper Saddle River, NJ.

Sandler, T. (2001), *Economic Concepts for the Social Sciences*, Cambridge University Press, Cambridge.

Siegel, J.S. (2002), *Applied Demography*, Academic Press, San Diego, CA.
Smith, S.K. (1989), ‘Toward a methodology for estimating temporary residents’, Journal of the American Statistical Association, Vol 84, No 406, pp 430–436.

Statistical Institute of Catalonia (2009), Municipal data bases (http://www.idescat.cat/territ/BasicTerr/TC-5&V0-NC&V1-NC&V3-481&V4-480&ALLINFO-TRUE&PARENT-1&CTX-B, accessed 7 October 2008).

Stiglitz, J.E. (1979), 'Equilibrium in product markets with imperfect information', The American Economic Review, Vol 69, No 2, pp 339–345.

UNEP 'Negative economic impacts of tourism' (http://www.unep.fr/scp/tourism/sustain/impacts/economic/negative.htm, accessed 7 July 2008).

UNEP and UNWTO (2005), Making Tourism More Sustainable: A Guide for Policymakers, UNEP (Division of Technology, Industry and Economics), Paris.

UNWTO (1995), Collection of Tourism Expenditure Statistics. Technical Manual No 2, UNWTO, Madrid.

UNWTO (2008), UNWTO World Tourism Barometer, UNWTO, Madrid.

Varian, H.R. (1980), ‘A model of sales’, The American Economic Review, Vol 70, No 4, pp 651–659.

Woodland, A.D. (2008), ‘Tradable and non-tradable commodities’, in Durlauf, S.N., and Blume, L.E., eds, The New Palgrave Dictionary of Economics, Second Edition, Palgrave Macmillan, Basingstoke (http://www.dictionaryofeconomics.com/article?id=pde2008_T000095 doi:10.1057/9780230226203.1723, accessed 24 September 2010).

Zhou, D., Yanagida, J., Chakravorty, U., and Leung, P. (1997), 'Estimating economic impacts of tourism', Annals of Tourism Research, Vol 24, pp 76–89.