Breast and Prostate Cancer Risks for Male BRCA1 and BRCA2
Pathogenic Variant Carriers Using Polygenic Risk Scores

Daniel R. Barnes, PhD†, Valentina Silvestri, PhD†, Goska Leslie, MEng1, Lesley McGuffog, 1, Joe Dennis, MSc1, Xin Yang, PhD1, Julian Adlard, MMedSc, PhD3, Bjarni A. Agnarsson, MD4,5, Munaza Ahmed, MD(Res), FRCP6, Kristiina Aittomäki, MD, PhD7, Irene L. Andrulis, PhD8,9, Adalgeir Arason, BSc4,10, Norbert Arnold, PhD11,12, Bernd Auber, PhD13, Jacopo Azzollini, MD14, Judith Balmaña, MD, PhD15,16, Rosa B. Barkardottir, CandSci4,10, Daniel Barrowdale, BSc1, Julian Barwell, MRCP, PhD17, Muriel Belotti, PhD18, Javier Benitez, PhD19,20, Pascaline Berthet, MD21, Susanne E Boonen, MD, PhD22, Åke Borg, PhD23, Aniko Bozsik, PhD24, Angela Brady, PhD25, Paul Brennan, MBBS, FRCP26, Carole Brewer, MD27, Joan Brunet, MD, PhD28, Agostino Bucalo, MSc2, Saundra S. Buys, MD29, Trinidad Caldés, MD30, Maria A. Caligo, PhD31, Ian Campbell, PhD32,33, Hayley Cassingham, MS, CGC34, Lise Lotte Christensen, MSc, PhD35, Giulia Cini, MsD36, Kathleen B.M. Claes, PhD37, GEMO Study Collaborators, 38-40, EMBRACE Collaborators, 1, Jackie Cook, 41, Anna Coppa, MD42, Laura Cortesi, MD42, Giuseppe Damante, MD43, Esther Darder, BS28, Rosemarie Davidson, MD44, Miguel de la Hoya, PhD30, Kim De Leeneer, MD, PhD37, Robin de Putter, MD37, Jesús Del Valle, PhD28, Orland Diez, PhD15,45, Yuan Chun Ding, PhD46, Susan M. Domchek, MD47, Alan Donaldson, MD48, Jacqueline Eason, MD49, Ros Eeles, MD, PhD50, Christoph Engel, MD51,52, D. Gareth Evans, MD53,54, Lidia Feliubadaló, PhD28, Florentia Fostira, PhD55, Megan Frone, M.S.56, Debra Frost, ONC1, David Gallagher, MD57, Andrea Gehrig, MD58, Sophie Giraud, MD, PhD59, Gord Glendon, MSc8, Andrew K. Godwin, PhD60, David E. Goldgar, PhD61, Mark H. Greene, MD56, Helen Gregory, MBBS62, Eva Gross,
PhD63, Eric Hahnen, PhD64, 65, Ute Hamann, PhD66, Thomas V.O. Hansen, PhD67, Helen Hanson, MD, FRCP68, Julia Hentschel, PhD69, Judit Horvath, MD, PhD70, KConFab Investigators, 32 HEBON Investigators, 71 Louise Izatt, PhD72, Angel Izquierdo, MD, MPH28, Paul A. James, MBBS, PhD, FRACP, FRANZCR33, 73, Ramunas Janavicius, MD, PhD74, 75, Uffe Birk Jensen, MD, PhD76, Oskar Th. Johannsson, MD, PhD77, Esther M. John, PhD78, 79, Gero Kramer, MD, PhD80, Lone Kroeldrup, MD22, Torben A. Kruse, PhD22, Charlotte Lautrup, MD, PhD81, 82, Conxi Lazaro, PhD28, Fabienne Lesueur, PhD39, 40, 83, Adria Lopez-Fernández, MSc15, Phuong L. Mai, MD, MS84, Siranoush Manoukian, MD14, Zoltan Matrai, MD, PhD85, Laura Matricardi, PhD86, Kara N. Maxwell, MD, PhD87, Noura Mebirouk, PhD39, 40, 83, Alfons Meindl, PhD63, Marco Montagna, PhD86, Alvaro N. Monteiro, PhD88, Patrick J. Morrison, MD89, Taru A. Muranen, PhD90, Alex Murray, FRCP91, Katherine L. Nathanson, PhD47, Susan L. Neuhausen, PhD46, Heli Nevanlinna, PhD90, Tu Nguyen-Dumont, PhD92, 93, Dieter Niederacher, PhD94, Edith Olah, PhD, DSc, HAS-fellow24, Olufunmilayo I. Olopade, MD95, Domenico Palli, MD96, Michael T. Parsons, BSc97, Inge Sokilde Pedersen, PhD82, 98, 99, Bernard Peissel, MD14, Pedro Perez-Segura, MD30, Paolo Peterlongo, PhD100, Annabeth H. Petersen, MSc, PhD101, Pedro Pinto, MSc102, Mary E. Porteous, MD103, Caroline Pottinger, MD91, Miquel Angel Pujana, PhD104, Paolo Radice, PhD105, Juliane Ramser, PhD106, Johanna Rantala, PhD107, Mark Robson, MD108, Mark T. Rogers, MD91, Karina Rønlund, MD, PhD109, Andreas Rump, PhD110, Ana María Sánchez de Abajo, PhD111, Payal D. Shah, MD87, Saba Sharif, MD112, Lucy E. Side, MD113, Christian F. Singer, MD, MPH114, Zsofia Stadler, MD108, Linda Steele, MS46, Dominique Stoppa-Lyonnet, MD, PhD18, 38, 115, Christian Sutter, PhD116, Yen Yen Tan, PhD117, Manuel R. Teixeira, MD, PhD102, 118, Alex Teulé, MD28, Darcy L. Thull, MS119, Marc Tischkowitz, MD,
PhD120,121, Amanda E. Toland, PhD122, Stefania Tommasi, MD123, Angela Toss, MD42, Alison H. Trainer, MBBS, PhD, FRACP73,124, Vishakha Tripathi, MBBS72, Virginia Valentini, MSc2, Christi J. van Asperen, MD, PhD125, Marta Venturelli, MD42, Alessandra Viel, PhD36, Joseph Vijai, PhD108,126, Lisa Walker, PhD127, Shan Wang-Gohrke, MD, PhD128, Barbara Wappenschmidt, MD64,65, Anna Whaite, MSc129, Ines Zanna, PhD96, Kenneth Offit, MD, MPH108,126, Mads Thomassen, PhD22, Fergus J. Couch, PhD130, Rita K. Schmutzler, MD64,65,131, Jacques Simard, PhD132, Douglas F. Easton, PhD1,133, Georgia Chenevix-Trench, PhD97, Antonis C. Antoniou, PhD1*, Laura Ottini, MD2* on behalf of the Consortium of Investigators of Modifiers of BRCA1 and BRCA2

1 Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.

2 Department of Molecular Medicine, University La Sapienza, Rome, Italy.

3 Yorkshire Regional Genetics Service, Chapel Allerton Hospital, Leeds, UK.

4 Department of Pathology, Landspitali University Hospital, Reykjavik, Iceland.

5 School of Medicine, University of Iceland, Reykjavik, Iceland.

6 North East Thames Regional Genetics Service, Great Ormond Street Hospital for Children NHS Trust, London, UK.

7 Department of Clinical Genetics, Helsinki University Hospital, University of Helsinki, Helsinki, Finland.

8 Fred A. Litwin Center for Cancer Genetics, Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, ON, Canada.

9 Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
10 BMC (Biomedical Centre), Faculty of Medicine, University of Iceland, Reykjavik, Iceland.

11 Department of Gynaecology and Obstetrics, University Hospital of Schleswig-Holstein, Campus Kiel, Christian-Albrechts University Kiel, Kiel, Germany.

12 Institute of Clinical Molecular Biology, University Hospital of Schleswig-Holstein, Campus Kiel, Christian-Albrechts University Kiel, Kiel, Germany.

13 Institute of Human Genetics, Hannover Medical School, Hannover, Germany.

14 Unit of Medical Genetics, Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy.

15 Hereditary Cancer Genetics Group, Vall d’Hebron Institute of Oncology, Vall d’Hebron Hospital Campus, Barcelona, Spain.

16 Department of Medical Oncology, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain.

17 Leicestershire Clinical Genetics Service, University Hospitals of Leicester NHS Trust, Leicester, UK.

18 Service de Génétique, Institut Curie, Paris, France.

19 Biomedical Network on Rare Diseases (CIBERER), Madrid, Spain.

20 Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.

21 Département de Biopathologie, Centre François Baclesse, Caen, France.

22 Department of Clinical Genetics, Odense University Hospital, Odence C, Denmark.

23 Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden.
Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary.

North West Thames Regional Genetics Service, Kennedy Galton Centre, The North West London Hospitals NHS Trust, Middlesex, UK.

Northern Genetics Service, Newcastle Hospitals NHS Foundation Trust, Newcastle, UK.

Department of Clinical Genetics, Royal Devon & Exeter Hospital, Exeter, UK.

Hereditary Cancer Program, ONCOBELL-IDIBELL-IGTP, Catalan Institute of Oncology, CIBERONC, Barcelona, Spain.

Department of Medicine, Huntsman Cancer Institute, Salt Lake City, UT, USA.

Molecular Oncology Laboratory, CIBERONC, Hospital Clinico San Carlos, IDIISC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), Madrid, Spain.

SOD Genetica Molecolare, University Hospital, Pisa, Italy.

Peter MacCallum Cancer Center, Melbourne, Victoria, Australia.

Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia.

Department of Internal Medicine, Division of Human Genetics, The Ohio State University Wexner Medical Center, Columbus, OH, USA.

Division of Surgical Oncology, National Cancer Centre, Singapore, Singapore.

Division of Functional onco-genomics and genetics, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy.

Centre for Medical Genetics, Ghent University, Gent, Belgium.

Department of Tumour Biology, INSERM U830, Paris, France.

Institut Curie, Paris, France.

Mines ParisTech, Fontainebleau, France.
41 Sheffield Clinical Genetics Service, Sheffield Children’s Hospital, Sheffield, UK.
42 Department of Oncology and Haematology, University of Modena and Reggio Emilia, Modena, Italy.
43 Department of Medicine, University of Udine, Udine, Italy.
44 Department of Clinical Genetics, South Glasgow University Hospitals, Glasgow, UK.
45 Area of Clinical and Molecular Genetics, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain.
46 Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA.
47 Basser Center for BRCA, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA.
48 Clinical Genetics Department, St Michael’s Hospital, Bristol, UK.
49 Nottingham Clinical Genetics Service, Nottingham University Hospitals NHS Trust, Nottingham, UK.
50 Oncogenetics Team, The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, UK.
51 Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany.
52 LIFE - Leipzig Research Centre for Civilization Diseases, University of Leipzig, Leipzig, Germany.
53 Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.
North West Genomics Laboratory Hub, Manchester Centre for Genomic Medicine, St Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.

Molecular Diagnostics Laboratory, INRASTES, National Centre for Scientific Research ‘Demokritos’, Athens, Greece.

Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA.

Academic Unit of Clinical and Molecular Oncology, Trinity College Dublin and St James’s Hospital, Dublin, Eire.

Department of Human Genetics, University Würzburg, Würzburg, Germany.

Service de Génétique, Groupement Hospitalier Est, Hospices Civils de Lyon, Bron, France.

Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA.

Department of Dermatology, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA.

North of Scotland Regional Genetics Service, NHS Grampian & University of Aberdeen, Foresterhill, Aberdeen, UK.

Department of Gynecology and Obstetrics, University of Munich, Campus Großhadern, Munich, Germany.

Center for Familial Breast and Ovarian Cancer, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.

Center for Integrated Oncology (CIO), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany.

Department of Clinical Genetics, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.

Southwest Thames Regional Genetics Service, St George’s Hospital, London, UK.

Institute of Human Genetics, University Hospital Leipzig, Leipzig, Germany.

Institute of Human Genetics, University of Münster, Münster, Germany.

The Hereditary Breast and Ovarian Cancer Research Group Netherlands (HEBON), Coordinating center: The Netherlands Cancer Institute, Amsterdam, The Netherlands.

Clinical Genetics, Guy’s and St Thomas’ NHS Foundation Trust, London, UK.

Parkville Familial Cancer Centre, Peter MacCallum Cancer Center, Melbourne, Victoria, Australia.

Faculty of Medicine, Institute of Biomedical Sciences, Dept. Of Human and Medical Genetics, Vilnius University, Vilnius, Lithuania.

State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania.

Department of Clinical Genetics, Aarhus University Hospital, Aarhus N, Denmark.

Department of Oncology, Landspitali University Hospital, Reykjavik, Iceland.

Department of Epidemiology & Population Health, Stanford University School of Medicine, Stanford, CA, USA.

Department of Medicine, Division of Oncology, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA.

Department of Urology, Medical University of Vienna, Vienna, Austria.

Department of Clinical Genetics, Aalborg University Hospital, Aalborg, Denmark.

Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark.
83 Genetic Epidemiology of Cancer team, Inserm U900, Paris, France.

84 Magee-Womens Hospital, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.

85 Department of Surgery, National Institute of Oncology, Budapest, Hungary.

86 Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy.

87 Department of Medicine, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.

88 Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA.

89 Northern Ireland Regional Genetics Centre, Belfast City Hospital, Belfast, UK.

90 Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland.

91 All Wales Medical Genetics Services, University Hospital of Wales, Cardiff, UK.

92 Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia.

93 Department of Clinical Pathology, The University of Melbourne, Melbourne, Victoria, Australia.

94 Department of Gynecology and Obstetrics, University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany.

95 Center for Clinical Cancer Genetics, The University of Chicago, Chicago, IL, USA.

96 Cancer Risk Factors and Life-Style Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Florence, Italy.

97 Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.

98 Molecular Diagnostics, Aalborg University Hospital, Aalborg, Denmark.
Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.

Genome Diagnostics Program, IFOM - the FIRC Institute of Molecular Oncology, Milan, Italy.

Department of Clinical Genetics, Vejle Hospital, Vejle, Denmark.

Department of Genetics, Portuguese Oncology Institute, Porto, Portugal.

South East of Scotland Regional Genetics Service, Western General Hospital, Edinburgh, UK.

Translational Research Laboratory, IDIBELL (Bellvitge Biomedical Research Institute), Catalan Institute of Oncology, CIBERONC, Barcelona, Spain.

Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori (INT), Milan, Italy.

Division of Gynaecology and Obstetrics, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany.

Clinical Genetics, Karolinska Institutet, Stockholm, Sweden.

Clinical Genetics Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.

Department of General Surgery, Singapore General Hospital, Singapore, Singapore.

Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany.

Servicio de Análisis Clínicos y Bioquímica Clínica, Complejo Hospitalario Universitario Insular Materno-Infantil de Gran canaria, Las Palmas de Gran Canaria, Spain.

West Midlands Regional Genetics Service, Birmingham Women’s Hospital Healthcare NHS Trust, Birmingham, UK.
Princess Anne Hospital, Southampton, UK.

Dept of OB/GYN and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.

Université Paris Descartes, Paris, France.

Institute of Human Genetics, University Hospital Heidelberg, Heidelberg, Germany.

Dept of OB/GYN, Medical University of Vienna, Vienna, Austria.

Biomedical Sciences Institute (ICBAS), University of Porto, Porto, Portugal.

Department of Medicine, Magee-Womens Hospital, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.

Program in Cancer Genetics, Departments of Human Genetics and Oncology, McGill University, Montréal, QC, Canada.

Department of Medical Genetics, University of Cambridge, Cambridge, UK.

Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA.

Istituto Tumori 'Giovanni Paolo II', Bari, Italy.

Department of medicine, University Of Melbourne, Melbourne, Victoria, Australia.

Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands.

Clinical Genetics Research Lab, Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.

Oxford Regional Genetics Service, Churchill Hospital, Oxford, UK.

Department of Gynaecology and Obstetrics, University Hospital Ulm, Ulm, Germany.
Liverpool Centre for Genomic Medicine, Liverpool Women’s NHS Foundation Trust, Liverpool, UK.

Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.

Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.

Genomics Center, Centre Hospitalier Universitaire de Québec – Université Laval Research Center, Québec City, QC, Canada.

Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK.

† Contributed equally as joint first authors. ‡ Contributed equally as joint senior authors.

* Corresponding authors:

Dr Daniel R Barnes, PhD
Centre for Cancer Genetic Epidemiology, Strangeways Research Laboratory, 2 Worts Causeway, Cambridge, CB1 8RN, UK
+44 (0)1223 748672
drb54@medschl.cam.ac.uk

Prof Laura Ottini, MD
Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena, 324, 00161, Rome, Italy
+39 0649918266
laura.ottini@uniroma1.it
Abstract

Background: Recent population-based female breast cancer and prostate cancer polygenic risk scores (PRS) have been developed. We assessed the associations of these PRS with breast and prostate cancer risks for male BRCA1 and BRCA2 pathogenic variant carriers.

Methods: 483 BRCA1 and 1,318 BRCA2 European ancestry male carriers were available from the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA). A 147-single nucleotide polymorphism (SNP) prostate cancer PRS (PRSPC) and a 313-SNP breast cancer PRS were evaluated. There were three versions of the breast cancer PRS, optimized to predict overall (PRSBC), estrogen-receptor (ER) negative (PRSER-) or ER-positive (PRSER+) breast cancer risk.

Results: PRSER+ yielded the strongest association with breast cancer risk. The odds ratios (ORs) per PRSER+ standard deviation estimates were 1.40 (95% confidence interval [CI] =1.07-1.83) for BRCA1 and 1.33 (95% CI = 1.16-1.52) for BRCA2 carriers. PRSPC was associated with prostate cancer risk for both BRCA1 (OR=1.73, 95% CI =1.28-2.33) and BRCA2 (OR=1.60, 95% CI =1.34-1.91) carriers. The estimated breast cancer ORs were larger after adjusting for female relative breast cancer family history. By age 85 years, for BRCA2 carriers, the breast cancer risk varied from 7.7% to 18.4% and prostate cancer risk from 34.1% to 87.6% between the 5th and 95th percentiles of the PRS distributions.

Conclusions: Population-based prostate and female breast cancer PRS are associated with a wide range of absolute breast and prostate cancer risks for male BRCA1 and BRCA2 carriers. These findings warrant further investigation aimed at providing personalized cancer risks for male carriers and to inform clinical management.
Key words: $BRCA1$, $BRCA2$, male breast cancer, prostate cancer, PRS, polygenic, genetics
BRCA1 and *BRCA2* pathogenic variants are associated with increased male breast cancer and prostate cancer risks1-4. A recent prospective study estimated the lifetime risk of developing prostate cancer to be 29\% for *BRCA1* and 60\% for *BRCA2* carriers5. The risks of developing male breast cancer compared with the general population have been estimated to be 15-18-fold higher for *BRCA1* and 80-fold higher for *BRCA2* carriers6,7. Up to one in ten *BRCA2* carriers develop breast cancer8-12 and display potentially more aggressive disease relative to sporadic cases8,12,13.

Polygenic risk scores (PRS) that combine the effects of multiple disease-associated single nucleotide polymorphisms (SNPs), provide marked cancer risk stratification in both the general population14,15 and *BRCA1* and *BRCA2* carriers16-18. Our previous findings suggested the joint effects of PRS and *BRCA1* and *BRCA2* pathogenic variants may identify men at clinically meaningful breast and prostate cancer risk levels17. Recent studies have identified additional breast and prostate cancer susceptibility variants15,19,20, and have refined PRS for these cancers15,21.

The Breast Cancer Association Consortium recently developed and validated a 313-SNP PRS in European ancestry women, which was further optimized to predict Estrogen-Receptor (ER)-specific disease21. The estimated per standard deviation (SD) odds ratio (OR) for the most predictive (ER-positive) PRS was OR=1.68 (95\%CI:1.63-1.73)21. A recent evaluation of this PRS in unselected male breast cancer cases showed similar associations with breast cancer risk in men22. The most recent prostate cancer PRS was developed using 147-SNPs associated with prostate cancer risk in European-ancestry men from the general population15. The estimated per SD OR for the prostate cancer PRS was OR=1.86 (95\%CI:1.83-1.89)15.

Male *BRCA1* and *BRCA2* carriers are likely to benefit from more personalized breast and prostate cancer risk estimates. Investigating the extent to which these PRS modify cancer risks may lead to more precise and gender-specific cancer risk assessment and could assist in optimizing cancer screening.

Here, we assessed the associations of the newly developed 313-SNP breast cancer PRS and 147-SNP prostate cancer PRS derived using population-based data, with breast and prostate cancer risks, respectively, for male *BRCA1* and *BRCA2* carriers. We investigated whether cancer family history influences the associations and if breast cancer associations differed by ER-status or tumor grade. Furthermore, we assessed whether associations vary by age or *BRCA1* and *BRCA2* pathogenic variant characteristics (location; functional effect). We used the results to estimate age-specific absolute risks of developing breast and prostate cancers for male carriers by PRS distribution percentiles.

Methods

Statistical analyses were performed using R-3.6.3 (commands can be found in the Supplementary Methods).

Study participants and genotyping

Male *BRCA1* and *BRCA2* pathogenic variant carriers were recruited through 40 studies from 19 countries participating in the Consortium of Investigators of Modifiers of *BRCA1* and *BRCA2* (CIMBA). The majority of male carriers were ascertained through families attending cancer genetic clinics (96.9%, Supplementary Tables 1-2). In this setting, individuals are referred to clinical genetics because of strong family or personal cancer history. The first individual in a family, screened for mutations,
tends to be an affected individual diagnosed at a young age, most often female relative with a young age at breast cancer diagnosis. When a pathogenic variant is identified, then other family members are tested for the same variant. All participants were aged ≥18 years and provided written informed consent. All studies were approved by local ethical review committees. A total of 1,989 male BRCA1 and BRCA2 carriers of European ancestry were included the present study, by selecting all available men with a breast or prostate cancer diagnosis and matched controls. Details of matching, genotyping and quality control processes have been described previously and in Supplementary Table 2.

Data collected included breast or prostate cancer diagnoses, age at diagnosis or interview, prostate cancer Gleason score, breast cancer ER-status and grade, and family history of: prostate; male breast; and female breast cancers among first- and second-degree relatives. BRCA1 and BRCA2 pathogenic variants (detailed pathogenicity description: http://cimba.ccge.medschl.cam.ac.uk/files/CIMBA_Mutation_Classification_guideline_s_May16.pdf) were categorized according to their known or predicted effect on protein function: “class I” included loss-of-function variants expected to yield unstable or no protein; “class II” included variants likely to produce stable mutant proteins.

Pathology data were obtained from pathology reviews, medical, pathology or tumor registry records, or immunohistochemical staining of tissue microarrays.

Polygenic risk scores

PRS were constructed as the weighted sums of alleles (Supplementary Methods) for 313-SNPs for breast cancer and 147-SNPs for prostate cancer (Supplementary Tables 3-4). Three breast cancer PRS were evaluated, optimized
to predict: overall (PRS\textsubscript{BC}); ER-negative (PRS\textsubscript{ER-}); and ER-positive (PRS\textsubscript{ER+}) breast cancer21. These PRS were scaled to the female population-based control PRS SDs21. The prostate cancer PRS (PRS\textsubscript{PC}) was scaled to the SD calculated from population-based controls15.

Associations between PRS and cancer risks

PRS associations with breast and prostate cancer risks were assessed simultaneously using multinomial logistic regression to estimate per SD ORs. Men without breast or prostate cancer diagnoses were considered controls. Breast and prostate cancer cases were defined by considering the first occurring cancer. Instances in which breast and prostate cancers were diagnosed simultaneously were considered as breast cancer cases. Statistical models were adjusted for three ancestry informative principal components (proxy adjustment for study/country, as a direct adjustment would result in too few controls and cases within each study/country, **Supplementary Table 1**) and age. Models using the combined sample of carriers were adjusted for \textit{BRCA1}/\textit{BRCA2} status. To account for relatedness, we estimated robust variances by clustering on family membership27,28. The primary analyses assumed a continuous PRS. Categorical PRS associations were evaluated using the quartiles of the PRS distributions in the combined \textit{BRCA1}/2 carrier controls.

Since the distribution of tumor ER-status in male carriers may differ from the distributions in the general population26, we assessed the associations between all three versions of the breast cancer PRS with overall breast cancer risk and ER-specific disease. Associations with ER-positive and ER-negative breast cancer were assessed simultaneously by considering “ER-negative”, “ER-positive” or “unknown”
as distinct multinomial outcomes. We also assessed the associations with breast cancer grade-specific risk by considering “grade 1”, “grade 2”, “grade 3”, or “unknown grade” as separate multinomial outcomes. A case-only logistic regression also was undertaken that considered grades 1 and 2 as “controls”, and grade 3 as “cases”.

To assess the PRS_{PC} association with disease aggressiveness, we partitioned prostate cancers into those with Gleason scores <7, ≥7, or “unknown”, and these were used as distinct multinomial outcomes. A case-only logistic regression assessed differences in the associations with Gleason scores <7 (“controls”) and Gleason scores ≥7 (“cases”).

Discriminatory ability of each PRS was assessed by calculating the area under the receiver operator characteristic (ROC) curve (AUC). Under the sampling design, the majority of male carriers were identified through clinical genetics. Therefore, the majority of both affected and unaffected carriers are expected to have family history of cancer. To determine whether this introduces any biases in the PRS associations, we fitted models that were adjusted for family history in first- and second-degree relatives.

To determine whether PRS associations varied by age (continuous), pathogenic variant location or pathogenic variant effects on protein function (“class I” or “class II” variants), we estimated interaction terms between these factors with the PRS and statistical significance was assessed using likelihood ratio tests (LRT). Pathogenic variants were categorized based on previously-reported nucleotide position differences in breast/ovarian or prostate cancer risks²⁹⁻³¹.

We undertook a sensitivity analysis to test for PRS heterogeneity across study-countries (Supplementary Methods).
All statistical tests were 2-sided and a P value of less than 0.05 was considered statistically significant.

Predicted age-specific absolute and ten-year cancer risks by PRS

We predicted absolute risks up to age 85 years and ten-year risks of developing breast and prostate cancers by PRS distribution percentiles, assuming the estimated PRS OR follows a log-linear model across the entire PRS range (Supplementary Methods)\(^32\).

Results

Study participants and genotyping

After quality control, the analyses included 483 \(BRCA1\) (33 breast and 70 prostate cancer cases) and 1,318 \(BRCA2\) (244 breast and 141 prostate cancer cases) carriers of European ancestry (Supplementary Tables 1-2).

All SNPs from both PRS were well imputed \((r^2≥0.76; \text{Supplementary Tables 3-4, Supplementary Figures 1-2})\). Average PRS were larger for cases compared with controls (Supplementary Table 2).

Associations with breast cancer risk

The associations between the breast cancer PRS and male breast cancer risk for carriers are shown in Table 1 and Supplementary Tables 5-6. The PRS\(_{ER^+}\) yielded the strongest associations with overall breast cancer risk for \(BRCA1\) (OR=1.40, 95%CI = 1.07-1.83) and \(BRCA2\) (OR=1.33, 95%CI = 1.16-1.52) carriers. The PRS\(_{BC}\) resulted in nearly identical associations as the PRS\(_{ER^+}\). There was no statistically
significant evidence that the PRS_{ER^+} associations differed by country (P_{heterogeneity} \geq 0.48, Supplementary Figure 3). In the joint analysis of BRCA1 and BRCA2 carriers, men in the uppermost PRS_{ER^+} quartile had approximately twofold increased breast cancer risk (OR=2.10, 95%CI = 1.43-3.08) compared with men in the lowest quartile (Supplementary Table 6).

Most breast cancers amongst the male carriers were ER-positive (95.7%). The OR for the association between the PRS_{ER^+} and ER-positive breast cancer risk for BRCA1 carriers (OR=1.79, 95%CI = 1.30-2.48; Table 1) was somewhat higher compared to the OR for overall breast cancer. The number of ER-negative cancers was too small to assess associations with ER-negative disease. There was no statistically significant evidence for differences in the associations of any of the PRS by grade (Table 1; Supplementary Table 6).

The ability of PRS_{ER^+} to discriminate between controls and breast cancer cases was estimated as an AUC of 0.60 (95%CI = 0.51-0.69) for BRCA1 and 0.59 (95%CI = 0.55-0.63) for BRCA2 carriers.

Associations with prostate cancer risk

The estimated associations between the PRS_{PC} and prostate cancer risk for male carriers are reported in Table 2 and Supplementary Tables 5 and 7. The ORs per PRS_{PC} SD were estimated to be 1.73 (95%CI = 1.28-2.33) for BRCA1 and 1.60 (95%CI = 1.34-1.91) for BRCA2 carriers. There was no statistically significant evidence that the PRS_{PC} associations differed by country (P_{heterogeneity} \geq 0.14; Supplementary Figure 4). In the joint analysis of BRCA1 and BRCA2 carriers, men in the top PRS_{PC} quartile had a prostate cancer OR of 3.35 (95%CI = 2.06-5.42) compared with men in the lowest quartile (Supplementary Table 7).
There was a suggestion of higher risk for aggressive disease for BRCA1 carriers (Gleason score ≥7: OR=2.09, 95%CI = 1.27-3.46; Gleason score <7: OR=1.11, 95%CI = 0.70-1.77), also supported by the case-only analysis (OR=1.87, 95%CI = 1.01-3.44, P=0.05; Table 2). There were no differences in the PRS_{PC} associations with high- or low-Gleason score among BRCA2 carriers (Table 2).

The PRS_{PC} discriminatory ability was estimated as an AUC of 0.62 (95%CI = 0.54-0.69) for BRCA1 and 0.62 (95%CI = 0.57-0.67) for BRCA2 carriers.

Adjusting for cancer family history
Adjusting for family history of male breast cancer did not influence the PRS_{ER+} associations with breast cancer risk (Table 1, Supplementary Table 8). However, the OR estimates were somewhat larger when adjusting for female breast cancer family history (Table 1, Supplementary Table 9).

The associations of PRS_{PC} with prostate cancer risk remained similar after adjusting for prostate cancer family history (Table 2, Supplementary Table 10).

PRS interactions with age and gene pathogenic variants characteristics
There was little evidence for OR estimate variability with age, for both the breast and prostate cancer PRS (P_{LRT}≥0.43; Table 3).

The PRS_{ER+} and PRS_{PC} ORs with breast or prostate cancer risks appeared to be larger for “class II” variant (pathogenic variants likely to yield stable mutant proteins) carriers compared with “class I” BRCA1 and BRCA2 variant carriers (Table 3). However, these differences were not statistically significant (P_{LRT}≥0.26).
There was no statistically significant evidence that the PRS_{ER+} (P_{LRT}≥0.61) or PRS_{PC} (P_{LRT}=0.52) associations differed by the pathogenic variant location in the gene (Table 3).

Absolute risks of developing breast and prostate cancer

The absolute risks of developing breast cancer by age 85 years for BRCA2 carriers was predicted to be 7.7% at the 5th and 18.4% at the 95th PRS_{ER+} distribution percentiles (Figure 1). The ten-year risks of developing breast cancer at 50 years were 0.8% at the 5th and 2.0% at the 95th PRS_{ER+} distribution percentiles for BRCA2 carriers (Figure 2). The corresponding risks at age 75 years were 3.7% and 9.3%, respectively.

The predicted absolute risks of developing prostate cancer by age 85 years were 13.1% at the 5th and 50.4% at the 95th PRS_{PC} distribution percentiles for BRCA1 carriers (Figure 1). The corresponding risks for BRCA2 carriers were 34.1% and 87.6%. BRCA2 carriers had ten-year risks of 2.1% and 10.1% at the 5th and 95th PRS_{PC} percentiles at age 50 years, respectively. The corresponding risks at age 75 years were 25.5% and 77.0% (Figure 2).

Discussion

We evaluated the associations of the most recently developed breast and prostate cancer PRS with site-specific cancer risks in the largest case-control study of male BRCA1 and BRCA2 carriers available to date. Our findings showed that these PRS, developed using population-based data, are associated with breast and prostate cancer risks for male BRCA1 and BRCA2 carriers. Despite the modest estimated AUCs, our results demonstrate that since male carriers are already at elevated risks
of developing breast and prostate cancers, these PRS can lead to large differences in the absolute cancer risks for carriers across PRS percentiles.

Both PRS_{BC} and PRS_{ER+} were associated with larger OR estimates than PRS_{ER-} in predicting breast cancer risk, consistent with the fact that most breast cancers in men are ER-positive, including those harboring BRCA1 and BRCA2 pathogenic variants\(^\text{26}\). Similarly, when assessing associations with ER-positive breast cancer risk, PRS_{BC} and PRS_{ER+} showed the strongest associations for both BRCA1 and BRCA2 carriers. There were no differences in PRS associations by breast cancer grade.

The 147-SNP PRS_{PC}\(^\text{15}\) yielded larger per SD OR estimates than a previously evaluated 103-SNP prostate cancer PRS\(^\text{17}\). There was some evidence that PRS_{PC} may be associated with a higher OR for more aggressive disease (Gleason score \(\geq 7\)) for BRCA1 carriers. This pattern was not observed for BRCA2 carriers, who tend to develop more aggressive disease\(^\text{5}\). If this finding is replicated by larger studies, the PRS may prove to be useful in cancer prevention and surveillance by identifying BRCA1 carriers at greater risk of developing aggressive prostate cancers.

PRS associations with breast or prostate cancer risk, adjusted for family history of male breast or prostate cancer, were similar to unadjusted estimates, suggesting that cancer family history in male relatives does not alter PRS associations. Adjusting for family history of female breast cancer resulted in somewhat larger OR estimates for the breast cancer PRS compared with unadjusted estimates. This observation is consistent with male carriers being identified and recruited into our studies mostly based on their female relatives’ breast cancers.
There was little evidence supporting variability in PRS associations by age or pathogenic variant characteristics. However, larger sample sizes are required to reliably assess such differences and the current analyses were likely underpowered.

Previous studies\(^{18,33}\), suggest the magnitude of the breast cancer PRS associations are attenuated in female \textit{BRCA}1 and \textit{BRCA}2 carriers compared with associations seen in the general population\(^{21}\). As seen for female carriers, the estimated breast cancer ORs for male carriers were attenuated compared with estimates for women in the general population\(^{21}\). Similarly, the estimated prostate cancer OR estimate for male carriers was attenuated compared with population-based data\(^{15}\). Taken together, these observations suggest there is a deviation from the multiplicative model for the joint effects of \textit{BRCA}1 and \textit{BRCA}2 pathogenic variants and the PRS for both male and female carriers. These observed attenuations for \textit{BRCA}1 and \textit{BRCA}2 carriers are unlikely to be an overestimation of the effects in the general population ("winner’s curse"\(^{34}\)), as they have been validated in independent prospective cohorts\(^{21}\). The lower ORs for the breast and prostate cancer PRS in male \textit{BRCA}1 and \textit{BRCA}2 carriers, compared with the general population, may reflect a general attenuation of the effect sizes of common variants on genetic risk in the presence of a pathogenic variant in a high-risk gene\(^{35,36}\). This supposition may also explain the larger PRS ORs for \textit{BRCA}1 carriers, who are at lower risk compared to \textit{BRCA}2 carriers\(^{37}\). However, given the current study design, we cannot rule out that the observed attenuations in effect size are related to ascertainment biases. Although adjusting for family history did not change the OR estimates substantially, residual confounding may still remain. Large-scale population studies will be required to address this. If the attenuations in the PRS effect size are real, they would result in a smaller range of cancer risks for \textit{BRCA}1
and BRCA2 carriers compared to using the PRS effect sizes estimated from general population data.

Whilst breast cancer risk stratification might not currently be feasible for men in the general population, male BRCA1 and BRCA2 carriers may represent a group likely to benefit from a more refined stratification of their individual breast and prostate cancer risks, to better inform their clinical management. At present, limited recommendations based on low-level evidence or expert opinion are available for male carriers. Current guidelines recommend clinical breast examinations beginning at ages 30-35 years and suggest mammographic screening on an individual basis, whereas clinical prostate cancer screening, particularly for BRCA2 carriers, is recommended from ages 40-45 years\(^{38-40}\).

The PRS percentile-specific absolute risks varied substantially over the PRS distribution, consistent with previous studies in male\(^{17}\) and female\(^{16,18}\) BRCA1 and BRCA2 carriers. At least twofold increased risk is often considered a clinically actionable level for breast and prostate cancers\(^{41}\). Our findings may inform the development of age-specific clinical recommendations and provide guidance on when to start risk-adapted screening, based on their PRS percentile-specific ten-year risks. Overall, refined risk estimates may be useful to distinguish male carriers at higher risk, who may benefit from enhanced and/or earlier screening; and identify carriers at lower risk, who may opt for more limited or postponed surveillance. Identification of men at lower risk of prostate cancer by PRS stratification has been shown to be useful in reducing overdiagnosis in the general population, resulting in a reduction in the harms associated with prostate-specific antigen (PSA) testing\(^{42}\). Similar arguments may apply to male carriers, in whom PRS prediction may further improve screening efficacy.
Strengths of this study include the fact that this is an independent validation of the most recently derived breast\(^{21}\) and prostate\(^{15}\) cancer PRS derived from population-based data. We benefitted from the availability of Gleason scores and breast cancer ER-status and grade; hence, we could assess subtype-specific associations. Finally, we assumed recent prospectively estimated prostate cancer incidence rates\(^{5}\) to predict absolute prostate cancer risks, which may be more representative of risks for carriers currently seen in clinical genetics centers.

Study limitations include the limited sample size to assess PRS associations with cancer risks for subgroups of male carriers. However, these data remain the largest male \(BRCA1\) and \(BRCA2\) carrier case-control study with available genotype data. The breast\(^{21}\) and prostate\(^{15}\) cancer PRS do not include male breast cancer-specific risk associated SNPs or SNPs which may specifically be associated with prostate cancer risk for carriers. If such SNPs exist, further improvement may be gained in risk prediction by including them in PRS. The absolute risk calculations assumed that the PRS OR behaves log-linearly over the PRS range. It was difficult to evaluate this assumption in the present analyses due to the limited sample size of male carriers. However, empirical evidence based on larger sample sizes of female carriers\(^{18}\) or in the general population\(^{15,21}\) suggests that this assumption is plausible. Additionally, the absolute breast and prostate cancer risk predictions by PRS will require validation in large prospective studies of male carriers with long-term follow-up, although such studies remain a challenge. Finally, the PRS that we investigated were derived using European ancestry data, hence our estimated associations and predicted risks may not be applicable to non-European ancestry carriers.

PRS are now used in cancer risk-stratified screening trials and implementation studies in the general population\(^{43-47}\). They are commercially
available and are used in multifactorial cancer risk prediction models for women48,49. We found that PRS derived from population-based data are associated with breast and prostate cancer risks and lead to meaningful risk stratification for male carriers. These findings may potentially be used to provide more personalized cancer risk predictions and therefore assist clinical management decisions. Future implementation studies should determine if optimal strategies exist for incorporating these PRS into genetic counselling and risk assessment to clarify whether they can influence the clinical management decisions of male \textit{BRCA1} or \textit{BRCA2} carriers.

Funding

The CIMBA data management and data analysis were supported by Cancer Research – UK grants C12292/A20861 and PPRPGM-Nov20\,100002. The research leading to these results has received funding from AIRC under IG 2018 - ID. 21389 and LILT under IG 2019 projects, P.I. Ottini Laura and Italian Ministry of Education, Universities and Research–Dipartimenti di Eccellenza-L. 232/2016. CIMBA: GCT is a NHMRC Research Fellow. iCOGS and OncoArray data: the European Community's Seventh Framework Programme under grant agreement n° 223175 (HEALTH-F2-2009-223175) (COGS), Cancer Research UK (C1287/A10118, C1287/A 10710, C12292/A11174, C1281/A12014, C5047/A8384, C5047/A15007, C5047/A10692, C8197/A16565), the National Institutes of Health (CA128978) and Post-Cancer GWAS initiative (1U19 CA148537, 1U19 CA148065 and 1U19 CA148112 - the GAME-ON initiative), the Department of Defence (W81XWH-10-1-0341), the Canadian Institutes of Health Research (CIHR) for the CIHR Team in Familial Risks of Breast Cancer (CRN-87521), and the Ministry of Economic Development, Innovation and Export Trade (PSR-SIIRI-701), Komen Foundation for the Cure, the
Breast Cancer Research Foundation, and the Ovarian Cancer Research Fund. The PERSPECTIVE and PERSPECTIVE I&I projects were supported by the Government of Canada through Genome Canada and the Canadian Institutes of Health Research, the Ministry of Economy and Innovation through Genome Québec, and The Quebec Breast Cancer Foundation and the Ontario Research Fund. BCFR: UM1 CA164920 from the National Cancer Institute. BFBOCC: Lithuania (BFBOCC-LT): Research Council of Lithuania grant SEN-18/2015. BIDMC: Breast Cancer Research Foundation. BMBSA: Cancer Association of South Africa (PI Elizabeth J. van Rensburg). CNIO: Spanish Ministry of Health PI16/00440 supported by FEDER funds, the Spanish Ministry of Economy and Competitiveness (MINECO) SAF2014-57680-R and the Spanish Research Network on Rare diseases (CIBERER). COH-CCGCRN: Research reported in this publication was supported by the National Cancer Institute of the National Institutes of Health under grant number R25CA112486, and RC4CA153828 (PI: J. Weitzel) from the National Cancer Institute and the Office of the Director, National Institutes of Health. CONSIT TEAM: Associazione Italiana Ricerca sul Cancro (AIRC; IG2014 no.15547) to P. Radice. Funds from Italian citizens who allocated the 5x1000 share of their tax payment in support of the Fondazione IRCCS Istituto Nazionale Tumori, according to Italian laws (INT-Institutional strategic projects ‘5x1000’) to S. Manoukian. Associazione CAOS Varese to M.G. Tibiletti. Associazione Italiana Ricerca sul Cancro (AIRC; IG2015 no.16732) to P. Peterlongo. DEMOKRITOS: European Union (European Social Fund – ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program of the General Secretariat for Research & Technology: SYN11_10_19 NBCA. Investing in knowledge society through the European Social
Fund. DFKZ: German Cancer Research Center. EMBRACE: Cancer Research UK
Grants C1287/A10118 and C1287/A11990. D. Gareth Evans and Fiona Laloo are
supported by an NIHR grant to the Biomedical Research Centre, Manchester. The
Investigators at The Institute of Cancer Research and The Royal Marsden NHS
Foundation Trust are supported by an NIHR grant to the Biomedical Research
Centre at The Institute of Cancer Research and The Royal Marsden NHS
Foundation Trust. Ros Eeles and Elizabeth Bancroft are supported by Cancer
Research UK Grant C5047/A8385. Ros Eeles is also supported by NIHR support to
the Biomedical Research Centre at The Institute of Cancer Research and The Royal
Marsden NHS Foundation Trust. FCCC: The University of Kansas Cancer Center
(P30 CA168524) and the Kansas Bioscience Authority Eminent Scholar Program.
A.K.G. was in part funded by the NCI (R01 CA214545 and R01 CA140323), The
Kansas Institute for Precision Medicine (P20 GM130423), and the Kansas
Bioscience Authority Eminent Scholar Program. A.K.G. is the Chancellors
Distinguished Chair in Biomedical Sciences Professor. FPGMX: FISPI05/2275 and
Mutua Madrileña Foundation (FMMA). GC-HBOC: German Cancer Aid (grant no
110837, Rita K. Schmutzler) and the European Regional Development Fund and
Free State of Saxony, Germany (LIFE - Leipzig Research Centre for Civilization
Diseases, project numbers 713-241202, 713-241202, 14505/2470, 14575/2470).
GEMO: Ligue Nationale Contre le Cancer; the Association “Le cancer du sein,
parlons-en!” Award, the Canadian Institutes of Health Research for the "CIHR Team
in Familial Risks of Breast Cancer" program and the French National Institute of
Cancer (INCa grants 2013-1-BCB-01-ICH-1 and SHS-E-SP 18-015).
GEORGETOWN: the Non-Therapeutic Subject Registry Shared Resource at
Georgetown University (NIH/NCI grant P30-CA051008), the Fisher Center for
Hereditary Cancer and Clinical Genomics Research, and Swing Fore the Cure. G-FAST: Bruce Poppe is a senior clinical investigator of FWO. Mattias Van Heetvelde obtained funding from IWT. HCSC: Spanish Ministry of Health PI15/00059, PI16/01292, and CB-161200301 CIBERONC from ISCIII (Spain), partially supported by European Regional Development FEDER funds. HEBCS: Helsinki University Hospital Research Fund, the Finnish Cancer Society and the Sigrid Juselius Foundation. HEBON: the Dutch Cancer Society grants NKI1998-1854, NKI2004-3088, NKI2007-3756, the Netherlands Organization of Scientific Research grant NWO 91109024, the Pink Ribbon grants 110005 and 2014-187.WO76, the BBMRI grant NWO 184.021.007/CP46 and the Transcan grant JTC 2012 Cancer 12-054. HEBON thanks the registration teams of Dutch Cancer Registry (IKNL; S. Siesling, J. Verloop) and the Dutch Pathology database (PALGA; L. Overbeek) for part of the data collection. HRBCP: Hong Kong Sanatorium and Hospital, Dr Ellen Li Charitable Foundation, The Kerry Group Kuok Foundation, National Institute of Health1R 03CA130065, and North California Cancer Center. HUNBOCS: Hungarian Research Grants KTIA-OTKA CK-80745 and NKFI_OTKA K-112228. ICO: The authors would like to particularly acknowledge the support of the Asociación Española Contra el Cáncer (AECC), the Instituto de Salud Carlos III (organismo adscrito al Ministerio de Economía y Competitividad) and “Fondo Europeo de Desarrollo Regional (FEDER), una manera de hacer Europa” (PI10/01422, PI13/00285, PIE13/00022, PI15/00854, PI16/00563 and CIBERONC) and the Institut Català de la Salut and Autonomous Government of Catalonia (2009SGR290, 2014SGR338 and PERIS Project MedPerCan). IHCC: PBZ_KBN_122/P05/2004. ILUH: Icelandic Association “Walking for Breast Cancer Research” and by the Landspitali University Hospital Research Fund. INHERIT: Canadian Institutes of Health Research for the “CIHR Team in
Familial Risks of Breast Cancer” program – grant # CRN-87521 and the Ministry of Economic Development, Innovation and Export Trade – grant # PSR-SIIRI-701.
IOVHBOCS: Ministero della Salute and “5x1000” Istituto Oncologico Veneto grant.
IPOBCS: Liga Portuguesa Contra o Cancro. kConFab: The National Breast Cancer Foundation, and previously by the National Health and Medical Research Council (NHMRC), the Queensland Cancer Fund, the Cancer Councils of New South Wales, Victoria, Tasmania and South Australia, and the Cancer Foundation of Western Australia. KOHGRA: the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), and the National R&D Program for Cancer Control, Ministry of Health & Welfare, Republic of Korea (HI16C1127; 1020350; 1420190). MAYO: NIH grants CA116167, CA192393 and CA176785, an NCI Specialized Program of Research Excellence (SPORE) in Breast Cancer (CA116201), and a grant from the Breast Cancer Research Foundation. MCGILL: Jewish General Hospital Weekend to End Breast Cancer, Quebec Ministry of Economic Development, Innovation and Export Trade. Marc Tischkowitz is supported by the funded by the European Union Seventh Framework Program (2007Y2013)/European Research Council (Grant No. 310018). MODSQUAD: MH CZ - DRO (MMCI, 00209805), MEYS - NPS I - LO1413 to LF, and by Charles University in Prague project UNCE204024 (MZ). MSKCC: the Breast Cancer Research Foundation, the Robert and Kate Niehaus Clinical Cancer Genetics Initiative, the Andrew Sabin Research Fund and a Cancer Center Support Grant/Core Grant (P30 CA008748). NAROD: 1R01 CA149429-01. NCI: the Intramural Research Program of the US National Cancer Institute, NIH, and by support services contracts NO2-CP-11019-50, N02-CP-21013-63 and N02-CP-65504 with Westat, Inc, Rockville, MD. NICCC: Clalit Health Services in Israel, the
Israel Cancer Association and the Breast Cancer Research Foundation (BCRF), NY. NNPIO: the Russian Foundation for Basic Research (grants 17-54-12007, 17-00-00171 and 18-515-12007). NRG Oncology: U10 CA180868, NRG SDMC grant U10 CA180822, NRG Administrative Office and the NRG Tissue Bank (CA 27469), the NRG Statistical and Data Center (CA 37517) and the Intramural Research Program, NCI. OSUCCG: Ohio State University Comprehensive Cancer Center. PBCS: Italian Association of Cancer Research (AIRC) [IG 2013 N.14477] and Tuscany Institute for Tumors (ITT) grant 2014-2015-2016. SEABASS: Ministry of Science, Technology and Innovation, Ministry of Higher Education (UM.C/HIR/MOHE/06) and Cancer Research Initiatives Foundation. SMC: the Israeli Cancer Association. SWE-BRCA: the Swedish Cancer Society. UCHICAGO: NCI Specialized Program of Research Excellence (SPORE) in Breast Cancer (CA125183), R01 CA142996, 1U01CA161032 and by the Ralph and Marion Falk Medical Research Trust, the Entertainment Industry Fund National Women's Cancer Research Alliance and the Breast Cancer research Foundation. OIO is an ACS Clinical Research Professor. UCLA: Jonsson Comprehensive Cancer Center Foundation; Breast Cancer Research Foundation. UCSF: UCSF Cancer Risk Program and Helen Diller Family Comprehensive Cancer Center. UKFOCR: Cancer Research UK. UPENN: National Institutes of Health (NIH) (R01-CA102776 and R01-CA083855; Breast Cancer Research Foundation; Susan G. Komen Foundation for the cure, Basser Research Center for BRCA. UPITT/MWH: Hackers for Hope Pittsburgh. VFCTG: Victorian Cancer Agency, Cancer Australia, National Breast Cancer Foundation. WCP: Dr Karlan is funded by the American Cancer Society Early Detection Professorship (SIOP-06-258-01-COUN) and the National Center for Advancing Translational Sciences (NCATS), Grant UL1TR000124. TN-D is a recipient of a Career
Development Fellow from the National Breast Cancer Foundation (Australia, ECF-17-001).

Notes

The role of the funder: The study sponsors had no role in the design of the study; the collection, analysis, and interpretation of the data; the writing of the manuscript; and the decision to submit the manuscript for publication.

Author disclosures: I.L.A has received funding from the NIH. N.A has received lecture fees from AstraZeneca and Clovis Oncology. Å.B has received personal honoraria for lectures at courses in tumor biology and genetics for medical students and physicians, courses organized by AstraZeneca and Roche. L.C has received honoraria from Astra Zeneca, MSD, Pfizer and Novartis. S.M.D has received honoraria from Astra Zeneca. C.E received funding from German Cancer Aid. DG.E has received honoraria from Astra Zeneca, Springworks and Ceresis. A.K.G has received funding from the NIH, NCI, and NIGMS and honoraria from VITRAC Therapeutics and NanoString Technologies, and is co-founder of Sinochips Diagnostics. T.V.O.H has received lecture honoraria from Pfizer. G.K received advisory board honoraria from Astra Zeneca, Sanofi-Aventis, Janssen, Bayer, AMGEN, Ferring and Astellas. H.N has funding from the Helsinki University Hospital Research Fund, The Sigrid Juselius Foundation, The Finnish Cancer Society and honoraria from Astra Zeneca. O.I.O is co-Founder of Cancer IQ and serves on the boards of 54gene and Tempus. Z.S’s immediate family member received consulting fees from Genentech/Roche, Novartis, RegenexBio, Neurogene, Optos Plc, Regeneron, Allergan, Gyroscope Tx and Adverum. L.S has received funding from the NCI paid to institution. A.E.T has received funding from the NCI paid to
institution. A.To has received honoraria from Lilly, Roche, Novartis and MSD. J.V has received funding from the Breast Cancer Research Foundation. F.J.C has received funding from the NIH and the Breast Cancer Research Foundation paid to institution. R.K.S has received funding from German Cancer Aid. J.S. has received funding from the Government of Canada through Genome Canada and the Canadian Institutes of Health Research, the Ministère de l’Économie et de l’Innovation du Québec through Genome Québec, the Quebec Breast Cancer Foundation, the CHU de Quebec Foundation, and the Ontario Research Fund. D.F.E has received funding from Cancer Research UK paid to institution. A.C.A is listed as creator of the BOADICEA algorithm, which has been licensed to Cambridge Enterprise. L.O has received funding from the Italian Association for Cancer Research. All other authors have no disclosures.

Author contributions: Conceptualization: G.C-T, A.C.A and L.O. Data curation: D.R.B, G.L, L.Mc, J.D and X.Y. Formal analysis: D.R.B and V.S. Funding acquisition: K.O, M.Th, F.J.C, R.K.S, J.S, D.F.E, G.C-T, A.C.A and L.O. Investigation: D.R.B, V.S, J.Ad, B.A.A, M.A, K.A, I.L.A, A.A, N.A, B.A, J.Az, J.Bal, R.B.B, D.B, J.Bar, M.B, J.Be, P.Be, S.E.B, Á.B, A.Bo, A.Br, P.Br, C.B, J.Br, A.Bu, S.S.B, T.C, M.A.C, I.C, H.C, LL.C, G.C, K.B.M.C, J.C, A.C, L.C, G.D, E.D, R.D, M.DLH, K.DL, R.DP, J.DV, O.D, YC.D, S.M.D, A.D, J.E, R.E, C.E, DG.E, L.F, F.F, M.F, D.F, D.G, A.G, S.G, G.G, A.K.G, D.E.G, M.H.G, H.G, E.G, E.H, U.H, T.V.O.H, H.H, J.He, J.Ho, L.I, A.I, P.A.J, R.J, UB.J, O.T.J, E.M.J, G.K, L.K, T.A.K, C.Lau, C.Laz, F.L, A.L-F, P.L.M, S.M, Z.M, L.Ma, K.N.M, N.M, A.Me, M.M, A.N.M, P.J.M, T.A.M, A.Mu, K.L.N, S.L.N, H.N, T.N-D, D.N, E.O, O.I.O, D.P, M.T.P, IS.P, B.P, P.P-S, P.Pe, A.H.P, P.Pi, M.E.P, C.P, MAP, P.R, J.Ram, J.Ran, M.R, M.T.R, K.R, A.R, A.M.S.D.A, P.D.S, S.S, L.E.S, C.F.S, Z.S, L.S, D.S-L, C.S, YY.T, M.R.T, A.Te, D.L.T, M.Ti, A.E.T, S.T, A.To, A.H.T,
Acknowledgements: All the families and clinicians who contribute to the studies; members and participants in the New York site of the Breast Cancer Family Registry; members and participants in the Ontario Familial Breast Cancer Registry; all the individuals and the researchers who took part in CONSIT TEAM (Consorzio Italiano Tumori Ereditari Alla mammella) and the personnel of the Cogentech Cancer Genetic Test Laboratory, Milan, Italy. IFE - Leipzig Research Centre for Civilization; We thank all participants, clinicians, family doctors, researchers, and technicians for their contributions and commitment to the DKFZ study and the collaborating groups in Lahore, Pakistan and Bogota, Colombia. Genetic Modifiers of Cancer Risk in BRCA1/2 Mutation Carriers (GEMO) study is a study from the National Cancer Genetics Network UNICANCER Genetic Group, France. The team in Lyon managed the GEMO samples until the biological resource centre was transferred to Paris in December 2015. We want to thank all the GEMO collaborating groups for their contribution to this study: Coordinating Centre, Service de Génétique, Institut Curie, Paris, France and Inserm U900, Institut Curie, Paris, France. Contributing Centres: Unité Mixte de Génétique Constitutionnelle des Cancers Fréquents, Hospices Civils de Lyon - Centre Léon Bérard, Lyon, France. Institut Gustave Roussy, Villejuif, France. Centre Jean Perrin, Clermont–Ferrand, France. Centre Léon Bérard, Lyon, France. Centre François Baclesse, Caen, France. Institut Paoli Calmettes, Marseille, France. CHU Arnaud-de-Villeneuve, Montpellier, France. Centre Oscar Lambret, Lille, France. Centre Paul Strauss, Strasbourg, France. Institut Bergonié, Bordeaux,
France. Institut Claudius Regaud, Toulouse, France. CHU Grenoble, France. CHU Dijon, France. CHU St-Etienne, France. Hôtel Dieu Centre Hospitalier, Chambéry, France. Centre Antoine Lacassagne, Nice, France. CHU Limoges, France. CHU Nantes, France. CHU Bretonneau, Tours and Centre Hospitalier de Bourges France. Groupe Hospitalier Pitié-Salpêtrière, Paris, France. CHU Vandoeuvre-les-Nancy, France. CHU Besançon, France. CHU Poitiers, Centre Hospitalier d’Angoulême and Centre Hospitalier de Niort, France. Centre Hospitalier de La Rochelle. CHU Niômes Carémeau, France. CHU Poissy, France. CHU Angers, France. The Hereditary Breast and Ovarian Cancer Research Group Netherlands (HEBON) consists of the following Collaborating Centers: Coordinating center: Netherlands Cancer Institute, Amsterdam, NL; Erasmus Medical Center, Rotterdam, NL; Leiden University Medical Center, NL; Radboud University Nijmegen Medical Center, NL; University Medical Center Utrecht, NL; Amsterdam Medical Center, NL; VU University Medical Center, Amsterdam, NL; University Hospital Maastricht, NL; University Medical Center Groningen, NL; The Netherlands Foundation for the detection of hereditary tumours, Leiden, NL; The Netherlands Comprehensive Cancer Organization (IKNL); The Dutch Pathology Registry (PALGA); Hong Kong Sanatorium and Hospital; the Hungarian Breast and Ovarian Cancer Study Group members and the clinicians and patients for their contributions to this study; the Oncogenetics Group (VHIO) and the High Risk and Cancer Prevention Unit of the University Hospital Vall d’Hebron, Miguel Servet Progam (CP10/00617), and the Cellex Foundation for providing research facilities and equipment; the ICO Hereditary Cancer Program team; the ICO Hereditary Cancer Program team; members of the Center of Molecular Diagnosis, Oncogenetics Department and Molecular Oncology Research Center of Barretos Cancer Hospital; all the kConFab research nurses and staff, the heads and
staff of the Family Cancer Clinics, and the Clinical Follow Up Study (which has received funding from the NHMRC, the National Breast Cancer Foundation, Cancer Australia, and the National Institute of Health (USA)) for their contributions to this resource, and the many families who contribute to kConFab; the KOBRA Study Group; the participants in Hereditary Breast/Ovarian Cancer Study and Breast Imaging Study for their selfless contributions to our research; the NICCC National Familial Cancer Consultation Service team, the lab team, and the research field operations team; the investigators of the Australia New Zealand NRG Oncology group; members and participants in the Ontario Cancer Genetics Network; all the research nurses, research assistants and doctors involved in the MyBrCa Study for assistance in patient recruitment, data collection and sample preparation, the Singapore Breast Cancer Study and the HUKM-HKL Study; the Meirav Comprehensive breast cancer center team at the Sheba Medical Center; Gothenburg Sahlgrenska University Hospital; Stockholm and Karolinska University Hospital; Umeå University Hospital; Uppsala University; Linköping University Hospital.

Disclaimers: The content of this manuscript does not necessarily reflect the views or policies of the National Cancer Institute or any of the collaborating centers in the Breast Cancer Family Registry (BCFR), nor does mention of trade names, commercial products, or organizations imply endorsement by the US Government or the BCFR. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Data Availability
The complete dataset is not publicly available due to restraints imposed by the ethical committees of individual studies. Requests to access the complete dataset which is subject to GDPR rules can be made to the Data Access Coordinating Committee (DACC) of CIMBA, following the process described on the CIMBA website (http://cimba.ccge.medschl.cam.ac.uk/projects/data-access-requests/). Submitted applications are reviewed by the CIMBA DACC every three months.

References

1. Castro E, Eeles R. The role of BRCA1 and BRCA2 in prostate cancer. *Asian J Androl.* 2012;14(3):409-414.

2. Rizzolo P, Silvestri V, Tommasi S, et al. Male breast cancer: genetics, epigenetics, and ethical aspects. *Ann Oncol.* 2013;24 Suppl 8:viii75-viii82.

3. Leongamornlert D, Mahmud N, Tymrakiewicz M, et al. Germline BRCA1 mutations increase prostate cancer risk. *Br J Cancer.* 2012;106(10):1697-1701.

4. Kote-Jarai Z, Leongamornlert D, Saunders E, et al. BRCA2 is a moderate penetrance gene contributing to young-onset prostate cancer: implications for genetic testing in prostate cancer patients. *Br J Cancer.* 2011;105(8):1230-1234.

5. Nyberg T, Frost D, Barrowdale D, et al. Prostate Cancer Risks for Male BRCA1 and BRCA2 Mutation Carriers: A Prospective Cohort Study. *Eur Urol.* 2020;77(1):24-35.

6. Liede A, Karlan BY, Narod SA. Cancer risks for male carriers of germline mutations in BRCA1 or BRCA2: a review of the literature. *J Clin Oncol.* 2004;22(4):735-742.

7. Weiss JR, Moysich KB, Swede H. Epidemiology of male breast cancer. *Cancer Epidemiol Biomarkers Prev.* 2005;14(1):20-26.

8. Basham VM, Lipscombe JM, Ward JM, et al. BRCA1 and BRCA2 mutations in a population-based study of male breast cancer. *Breast Cancer Res.* 2002;4(1):R2.
9. Ottini L, Masala G, D'Amico C, et al. BRCA1 and BRCA2 mutation status and tumor characteristics in male breast cancer: a population-based study in Italy. *Cancer Res.* 2003;63(2):342-347.

10. Easton DF, Steele L, Fields P, et al. Cancer risks in two large breast cancer families linked to BRCA2 on chromosome 13q12-13. *Am J Hum Genet.* 1997;61(1):120-128.

11. Thompson D, Easton D, Breast Cancer Linkage C. Variation in cancer risks, by mutation position, in BRCA2 mutation carriers. *Am J Hum Genet.* 2001;68(2):410-419.

12. Ferzoco RM, Ruddy KJ. The Epidemiology of Male Breast Cancer. *Curr Oncol Rep.* 2016;18(1):1.

13. Kwiatkowska E, Teresiak M, Filas V, Karczewska A, Breborowicz D, Mackiewicz A. BRCA2 mutations and androgen receptor expression as independent predictors of outcome of male breast cancer patients. *Clin Cancer Res.* 2003;9(12):4452-4459.

14. Mavaddat N, Pharoah PD, Michailidou K, et al. Prediction of breast cancer risk based on profiling with common genetic variants. *J Natl Cancer Inst.* 2015;107(5).

15. Schumacher FR, Al Olama AA, Berndt SI, et al. Association analyses of more than 140,000 men identify 63 new prostate cancer susceptibility loci. *Nat Genet.* 2018;50(7):928-936.

16. Kuchenbaecker KB, McGuffog L, Barrowdale D, et al. Evaluation of Polygenic Risk Scores for Breast and Ovarian Cancer Risk Prediction in BRCA1 and BRCA2 Mutation Carriers. *J Natl Cancer Inst.* 2017;109(7).

17. Lecarpentier J, Silvestri V, Kuchenbaecker KB, et al. Prediction of Breast and Prostate Cancer Risks in Male BRCA1 and BRCA2 Mutation Carriers Using Polygenic Risk Scores. *J Clin Oncol.* 2017;35(20):2240-2250.

18. Barnes DR, Rookus MA, McGuffog L, et al. Polygenic risk scores and breast and epithelial ovarian cancer risks for carriers of BRCA1 and BRCA2 pathogenic variants. *Genet Med.* 2020;22(10):1653-1666.
19. Michailidou K, Lindstrom S, Dennis J, et al. Association analysis identifies 65 new breast cancer risk loci. *Nature*. 2017;551(7678):92-94.

20. Milne RL, Kuchenbaecker KB, Michailidou K, et al. Identification of ten variants associated with risk of estrogen-receptor-negative breast cancer. *Nat Genet*. 2017;49(12):1767-1778.

21. Mavaddat N, Michailidou K, Dennis J, et al. Polygenic Risk Scores for Prediction of Breast Cancer and Breast Cancer Subtypes. *Am J Hum Genet*. 2019;104(1):21-34.

22. Maguire S, Perraki E, Tomczyk K, et al. Common susceptibility loci for male breast cancer. *J Natl Cancer Inst*. 2020;113(4).

23. Gaddam S, Heller SL, Babb JS, Gao Y. Male Breast Cancer Risk Assessment and Screening Recommendations in High-Risk Men Who Undergo Genetic Counseling and Multigene Panel Testing. *Clin Breast Cancer*. 2020.

24. Chenevix-Trench G, Milne RL, Antoniou AC, et al. An international initiative to identify genetic modifiers of cancer risk in BRCA1 and BRCA2 mutation carriers: the Consortium of Investigators of Modifiers of BRCA1 and BRCA2 (CIMBA). *Breast Cancer Res*. 2007;9(2):104.

25. Antoniou AC, Sinilnikova OM, Simard J, et al. RAD51 135G-->C modifies breast cancer risk among BRCA2 mutation carriers: results from a combined analysis of 19 studies. *Am J Hum Genet*. 2007;81(6):1186-1200.

26. Silvestri V, Barrowdale D, Mulligan AM, et al. Male breast cancer in BRCA1 and BRCA2 mutation carriers: pathology data from the Consortium of Investigators of Modifiers of BRCA1/2. *Breast Cancer Res*. 2016;18(1):15.

27. Huber PJ. The behavior of maximum likelihood estimates under nonstandard conditions. Paper presented at: Proceedings of the fifth Berkeley Symposium on Mathematical Statistics and Probability1967.

28. White H. A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. *Econometrica*. 1980;48:817-838.
29. Kuchenbaecker KB, Hopper JL, Barnes DR, et al. Risks of Breast, Ovarian, and Contralateral Breast Cancer for BRCA1 and BRCA2 Mutation Carriers. *JAMA.* 2017;317(23):2402-2416.

30. Rebbeck TR, Mitra N, Wan F, et al. Association of type and location of BRCA1 and BRCA2 mutations with risk of breast and ovarian cancer. *JAMA.* 2015;313(13):1347-1361.

31. Patel VL, Busch EL, Friebel TM, et al. Association of Genomic Domains in BRCA1 and BRCA2 with Prostate Cancer Risk and Aggressiveness. *Cancer Res.* 2020;80(3):624-638.

32. Antoniou AC, Beesley J, McGuffog L, et al. Common breast cancer susceptibility alleles and the risk of breast cancer for BRCA1 and BRCA2 mutation carriers: implications for risk prediction. *Cancer Res.* 2010;70(23):9742-9754.

33. Gallagher S, Hughes E, Wagner S, et al. Association of a Polygenic Risk Score With Breast Cancer Among Women Carriers of High- and Moderate-Risk Breast Cancer Genes. *JAMA Netw Open.* 2020;3(7):e208501.

34. Xiao R, Boehnke M. Quantifying and correcting for the winner's curse in genetic association studies. *Genet Epidemiol.* 2009;33(5):453-462.

35. Sawyer S, Mitchell G, McKinley J, et al. A role for common genomic variants in the assessment of familial breast cancer. *J Clin Oncol.* 2012;30(35):4330-4336.

36. Coignard J, Lush M, Beesley J, et al. A case-only study to identify genetic modifiers of breast cancer risk for BRCA1/BRCA2 mutation carriers. *Nat Commun.* 2021;12(1):1078.

37. Silvestri V, Leslie G, Barnes DR, et al. Characterization of the Cancer Spectrum in Men With Germline BRCA1 and BRCA2 Pathogenic Variants: Results From the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA). *JAMA Oncol.* 2020.

38. NCCN. National Comprehensive Cancer Network Clinical (NCCN Guidelines) Practice Guidelines in Oncology Genetic/Familial High-Risk Assessment: Breast,
39. Paluch-Shimon S, Cardoso F, Sessa C, et al. Prevention and screening in BRCA mutation carriers and other breast/ovarian hereditary cancer syndromes: ESMO Clinical Practice Guidelines for cancer prevention and screening. Ann Oncol. 2016;27(suppl 5):v103-v110.

40. ASCO. American society of Clinical Oncology Hereditary Breast and Ovarian Cancer Guidelines: Screening for men with a BRCA1 or BRCA2 gene mutation. https://www.cancer.net/cancer-types/hereditary-breast-and-ovarian-cancer. Published 2017. Accessed 30th September, 2019.

41. Jia G, Lu Y, Wen W, et al. Evaluating the Utility of Polygenic Risk Scores in Identifying High-Risk Individuals for Eight Common Cancers. JNCI Cancer Spectr. 2020;4(3):pkaa021.

42. Toland AE. Polygenic risk scores for prostate cancer: testing considerations. Can J Urol. 2019;26(5 Suppl 2):17-18.

43. Eeles RA, Raghallaigh Hn, Group TBS. BARCODE 1: A pilot study investigating the use of genetic profiling to identify men in the general population with the highest risk of prostate cancer to invite for targeted screening. Journal of Clinical Oncology. 2020;38(15_suppl):1505-1505.

44. BARCODE1. BARCODE 1: The Use of Genetic Profiling to Guide Prostate Cancer Targeted Screening. http://www.icr.ac.uk/our-research/research-divisions/division-of-genetics-and-epidemiology/oncogenetics/research-projects/barcode-1. Published 2020. Accessed 21st October, 2020.

45. Castro E, Mikropoulos C, Bancroft EK, et al. The PROFILE Feasibility Study: Targeted Screening of Men With a Family History of Prostate Cancer. Oncologist. 2016;21(6):716-722.

46. PROFILE. The PROFILE Study: Germline genetic profiling: correlation with targeted prostate cancer screening and treatment. http://www.icr.ac.uk/our-research/research-
Pashayan N, Antoniou AC, Ivanus U, et al. Personalized early detection and prevention of breast cancer: ENVISION consensus statement. *Nat Rev Clin Oncol.* 2020;17(11):687-705.

Lee A, Mavaddat N, Wilcox AN, et al. BOADICEA: a comprehensive breast cancer risk prediction model incorporating genetic and nongenetic risk factors. *Genet Med.* 2019;21(8):1708-1718.

IBIS. IBIS Breast Cancer Risk Evaluation Tool. http://www.ems-trials.org/riskevaluator/. Published 2017. Accessed 21 May, 2020.
Tables

Table 1. Breast cancer PRS associations with breast cancer risk for BRCA1 and BRCA2 carriers.

PRS investigated and outcome	No. of Controls	No. of Cases	OR (95% CI)	P^a	No. of Controls	No. of Cases	OR (95% CI)	P^a
PRS_{BC} association with breast cancer risk								
Continuous^b	380	33	1.40 (1.06-1.85)	0.02	933	244	1.32 (1.15-1.52)	<0.001
Continuous: adjusted for male relative breast cancer FH^c	380	33	1.39 (1.05-1.84)	0.02	933	244	1.33 (1.15-1.52)	<0.001
Continuous: adjusted for female relative breast cancer FH^c	380	33	1.44 (1.07-1.95)	0.02	933	244	1.36 (1.18-1.57)	<0.001
PRS_{BC} association with grade-specific breast cancer risk^d								
Controls	380	--	1.00 (reference)		933	--	1.00 (reference)	
Grade 1	--	1	1.03 (0.63-1.67)^g	0.92	--	11	1.33 (0.74-2.36)	0.34
Grade 2	--	6	1.17 (0.63-2.17)^g	0.92	--	68	1.29 (1.04-1.60)	0.02
Grade 3	--	12	1.56 (1.03-2.37)	0.04	--	98	1.23 (1.00-1.50)	0.05
Grade unknown	--	14	1.47 (0.93-2.32)	0.10	--	67	1.51 (1.18-1.93)	0.001
Case-only: grade 1+2 vs grade 3^e	7	12	6.30 (0.88-44.87)	0.07	79	98	0.95 (0.71-1.27)	0.73
PRS_{ER}- association with breast cancer risk								
Continuous^b	380	33	1.12 (0.79-1.59)	0.52	933	244	1.23 (1.07-1.41)	0.004
Continuous: adjusted for male relative breast cancer FH^c	380	33	1.12 (0.79-1.59)	0.53	933	244	1.23 (1.07-1.42)	0.004
Continuous: adjusted for female relative breast cancer FH^c	380	33	1.14 (0.80-1.63)	0.48	933	244	1.25 (1.09-1.45)	0.002
PRS_{ER}- association with ER-specific breast cancer risk^f								

Note: FH = family history, PRS = polygenic risk score, OR = odds ratio, CI = confidence interval, P = p-value.
a P value was calculated using a 2-sided Wald test. \(\text{PRS}_{\text{BC}} \) = overall breast cancer \(\text{PRS} \); \(\text{PRS}_{\text{ER}} \) = \(\text{ER} \)-negative breast cancer \(\text{PRS} \); \(\text{PRS}_{\text{ER}+} \) = \(\text{ER} \)-positive breast cancer \(\text{PRS} \); \(\text{FH} \) = family history; \(\text{OR} \) = odds ratio per \(\text{PRS} \) standard deviation, estimated from a multinomial logistic regression (unless otherwise stated); \(\text{CI} \) = confidence interval.
The continuous test shows the per PRS standard deviation associations, estimated from a multinomial logistic regression model assuming a continuous PRS.

Association estimates adjusted for family history of (male and female) breast cancer in first- and second-degree relatives. FH was coded as no family history, one or more relative diagnosed with breast cancer, unknown FH or missing FH. Supplementary Table 8 (male breast cancer FH adjusted) and Supplementary Table 9 (female breast cancer FH adjusted) describe the breast cancer FH adjusted analyses in greater detail.

The breast cancer grade specific ORs were estimated by partitioning breast cancer status into multinomial outcomes for grade 1, grade 2, grade 3, or grade unknown.

The case-only breast cancer grade analysis was a logistic regression considering grade 1 and grade 2 breast cancers combined as “controls” and grade 3 breast cancers as “cases”.

The ER-specific breast cancer ORs were estimated by partitioning breast cancer status into distinct multinomial outcomes for ER-negative, ER-positive, or ER-status unknown.

Grade 1 and grade 2 combined for BRCA1 carriers (to ensure adequate sample size to estimate associations).
Table 2. Prostate cancer PRS associations with prostate cancer risk for BRCA1 and BRCA2 carriers.

PRS investigated and outcome	BRCA1 carriers	BRCA2 carriers						
	No. of Controls	No. of Cases	OR (95% CI)	P^a	No. of Controls	No. of Cases	OR (95% CI)	P^a
Continuous^b	380	70	1.73 (1.28-2.33)	<0.001	933	141	1.60 (1.34-1.91)	<0.001
Continuous: adjusted for FH^c	380	70	1.74 (1.29-2.35)	<0.001	933	141	1.59 (1.32-1.90)	<0.001
PRS_{PC} association with Gleason score (GS) specific prostate cancer risk^d								
Controls	380	--	1.00 [reference]	933	--	1.00 [reference]		
GS < 7	--	26	1.11 (0.70-1.77)	0.66	--	27	1.83 (1.29-2.58)	<0.001
GS ≥ 7	--	21	2.09 (1.27-3.46)	0.004	--	82	1.68 (1.32-2.13)	<0.001
GS unknown	--	23	2.38 (1.49-3.80)	<0.001	--	32	1.26 (0.95-1.68)	0.11
Case-only analysis: GS ≥ 7 vs GS < 7^e	26	21	1.87 (1.01-3.44)	0.05	27	82	0.93 (0.63-1.37)	0.72

^a P value was calculated using a 2-sided Wald test. PRS_{PC} = prostate cancer PRS; GS = Gleason score; FH = family history. OR = odds ratio per PRS standard deviation, estimated from a multinomial logistic regression (unless otherwise stated); CI = confidence interval.

^b The continuous test shows the per PRS standard deviation associations, estimated from a multinomial logistic regression model assuming a continuous PRS.

^c Association estimates adjusted for family history of prostate cancer in first- and second-degree relatives. FH was coded as no family history, one or more diagnosed relative, unknown FH or missing FH. Supplementary Table 10 describes the prostate cancer FH adjusted analyses in greater detail.

^d The Gleason score prostate cancer ORs were estimated by partitioning prostate cancer status into distinct multinomial outcomes for GS < 7, GS ≥ 7, or GS unknown.
The case-only prostate cancer analysis was a logistic regression considering GS < 7 prostate cancers as "controls" and GS ≥ 7 prostate cancers as "cases".
Table 3. PRS interactions with age and BRCA1 and BRCA2 pathogenic variant characteristics for BRCA1 and BRCA2 carriers with breast cancer risk and prostate cancer risk.

Model and Category	Breast cancer (PRS_{ER+})^a	Prostate cancer (PRS_{PC})								
	BRCA1 carriers	BRCA2 carriers	OR (95% CI)	P						
PRS x Age interaction^c			1.88 (0.68-5.18)	0.22	1.34 (0.71-2.53)	0.37	0.64 (0.20-2.04)	0.45	2.03 (0.91-4.52)	0.08
PRS	1.00 (0.98-1.01)	0.56	1.00 (0.99-1.01)	0.98	1.02 (1.00-1.03)	0.09	1.00 (0.98-1.01)	0.55		
PRS x Age	0.90	0.86	0.43	0.79						
Gene pathogenic variant class^e			1.38 (1.03-1.84)	0.03	1.31 (1.13-1.52)	<0.001	1.57 (1.13-2.19)	0.008	1.57 (1.31-1.89)	<0.001
Class I	1.71 (0.72-4.07)	0.23	1.39 (0.67-2.86)	0.38	3.00 (1.36-6.60)	0.006	2.04 (0.63-6.55)	0.23		
Class II	0.76	0.69	0.26	0.97						
BRCA1 pathogenic variant location (OCCR)			1.50 (1.00-2.26)	0.05	NA	NA	NA	NA		
5' to c.2281	1.17 (0.79-1.72)	0.44	NA	NA	NA	NA	NA			
c.2282 to c.4071	1.61 (0.87-2.98)	0.13	NA	NA	NA	NA	NA			
c.4072 to 3'	0.85									
BRCA2 pathogenic variant location (OCCR)			1.43 (1.09-1.88)	0.009	NA	NA	NA	NA		
5' to c.2830	NA	1.24 (0.99-1.55)	0.06	NA	NA	NA	NA			
c.2831 to c.6401	NA	1.33 (1.04-1.70)	0.02	NA	NA	NA	NA			
c.6402 to 3'	0.61									
BRCA2 pathogenic variant location (PCCR)			1.67 (1.06-2.62)	0.03	1.77 (1.07-2.95)	0.03	1.49 (1.18-1.89)	<0.001	1.76 (1.24-2.50)	0.002
5' to c.755	NA									
c.756 to c.1000	NA									
c.1001 to c.7913	NA									
c.7914 to 3'	0.52									
The associations with breast cancer risk are reported for the ER-positive breast cancer PRS (PRS_{ER+}). OR = odds ratio per PRS standard deviation, estimated from a multinomial logistic regression; CI = confidence interval; OCCR = ovarian cancer cluster region; PCCR = prostate cancer cluster region.

b P value was calculated using a 2-sided Wald test, unless otherwise indicated.

c The PRS term is applicable at age 0-years and the PRSxAge interaction term is a per-year effect. Age in years.

d P values were calculated using a 2-sided likelihood ratio test. The likelihood ratio test compared the model that estimated the interaction term with a nested model that omitting the interaction term.

e “Class I” pathogenic variant = loss-of-function pathogenic variants expected to result in unstable or no protein; “class II” pathogenic variant = pathogenic variants likely to yield stable mutant proteins.
Figure Legends

Figure 1: The predicted absolute risks of developing breast cancer and prostate cancer by PRS percentile. Risks were calculated assuming the per SD OR estimates in the combined sample of \textit{BRCA1} and \textit{BRCA2} carriers (Tables 1 and 2). (A) The absolute risks of developing breast cancer for \textit{BRCA2} carriers by PRS\textsubscript{ER+} percentiles. (B) The absolute risks of developing prostate cancer for \textit{BRCA1} carriers by PRS\textsubscript{PC} percentiles. (C) The absolute risks of developing prostate cancer for \textit{BRCA2} carriers by PRS\textsubscript{PC} percentiles. PRS\textsubscript{ER+} = ER+-positive breast cancer PRS.

Figure 2: The predicted ten-year risks of developing breast cancer and prostate cancer by PRS percentile. Ten-year risks were calculated from the absolute risks of developing breast cancer or prostate cancer (Figure 1). (A) The ten-year risks of developing breast cancer for \textit{BRCA2} carriers by PRS\textsubscript{ER+} percentiles. (B) The ten-year risks of developing prostate cancer for \textit{BRCA1} pathogenic variant carriers by PRS\textsubscript{PC} percentiles. (C) The ten-year risks of developing prostate cancer for \textit{BRCA2} pathogenic variant carriers by PRS\textsubscript{PC} percentiles. PRS\textsubscript{ER+} = ER+-positive breast cancer PRS.
Figure 1

(A) BRCA2 carriers: absolute risk of breast cancer (PRS_{ER+})

(B) BRCA1 carriers: absolute risk of prostate cancer

(C) BRCA2 carriers: absolute risk of prostate cancer

50th (median) percentile
10th and 90th percentiles
5th and 95th percentiles
Figure 2

(A) BRCA2 carriers: ten-year risk of breast cancer (PRS_{ER+})

(B) BRCA1 carriers: ten-year risk of prostate cancer

(C) BRCA2 carriers: ten-year risk of prostate cancer

Ten-year risk (%) vs Age (years)