DPG: A Cache-Efficient Accelerator for Sorting and for Join Operators

Gene Cooperman∗, Xiaoqin Ma∗ and Viet Ha Nguyen∗
Northeastern University
Boston, MA 02115, USA
{gene,xqma,vietha}@ccs.neu.edu

Abstract

Retrieval of records on disk is well-known to be at the heart of many database problems. We show that the corresponding movement of records in main memory has now become a severe bottleneck for many database operations. This is due to the stagnating latency of main memory, even while CPU speed, main memory bandwidth, and disk speed all continue to improve. As a result, record movement has become the dominant cost in main memory sorting.

We present a new algorithm for fast record retrieval, distribute-probe-gather, or DPG. DPG has important applications both in sorting and in joins. Current main memory sorting algorithms split their work into three phases: extraction of key-pointer pairs; sorting of the key-pointer pairs; and copying of the original records into the destination array according the sorted key-pointer pairs. The copying in the last phase dominates today’s sorting time. Hence, the use of DPG in the third phase provides an accelerator for existing sorting algorithms.

DPG also provides two new join methods for foreign key joins: DPG-move join and DPG-sort join. The resulting join methods with DPG are faster because DPG join is cache-efficient and at the same time DPG join avoids the need for sorting or for hashing. The ideas presented for foreign key join can also be extended to faster record pair retrieval for spatial and temporal databases.

1 Introduction

Two important database operations are sorting and joins. These operations have three primary hardware-related costs: disk access, CPU operation and main memory access. The growth of main memory in current computers implies that main memory databases become more popular. For main memory databases, the bottleneck moves from disk to main memory and the cost for disk access is not an issue anymore.

Further, the growing CPU-memory gap implies that CPU costs represent an increasingly small portion of the total time. This has been borne out by several studies of DBMs [2, 5, 16, 29]. The impact of the CPU-memory gap was popularized by the paper of Wulf and McKee [30] on the memory wall.

The diminishing role of the CPU in the total running time is partially accounted for by increasing CPU speeds and greater on-chip functional parallelism. In part, it is also accounted for because most CPUs today implement non-blocking caches and hardware prefetch in order to overlap CPU execution with memory access [13]. Hence, memory access becomes the bottleneck. Therefore, we follow the example of previous researchers [2, 7, 18, 19, 20, 28] in concentrating on main memory as the bottleneck.

At the heart of this memory bottleneck lies the record retrieval problem: the problem of copying records from a source array into a destination array according to a new ordering. In a typical application, one will be given a source data file, a sequence of record ids (rids) for that data file, and a destination file. The task is to copy the source records into the destination file in the order specified by the sequence of rids. Fast record retrieval is the key to faster sorting and faster joins.

A standard approach for data retrieval accesses the records of the source data file directly according to the sequence of the rids. This implies random access to the main memory. This, for example, is what was done in AlphaSort [23] and SuperScalarSort [1], the current record holders for the Datamation sorting challenge [3]. However, the cost of such random access has now become the dominant cost in main memory sorting, since the CPU-memory gap has widened still further since the original work on sorting. (In fact, AlphaSort and SuperScalarSort sort data on disk, but the size of the data file, 100 MB, is small enough that the disk access consists solely of reading the source data file from disk, and writing to a destination data file.)

Random access is harmful not just in disk resident databases, but also in main memory resident databases.
Current DRAM technologies, such as DDR RAM and Rambus RAM (RDRAM), extract a large latency penalty for any non-sequential access to RAM. This is because the memory chips are divided into memory pages of several kilobytes, and there is a latency penalty for switching to a new memory page [15, 21].

Random access to RAM also harms performance in a second manner. Random access incurs a heavy penalty when large cache blocks are used. On a cache miss, the entire cache block is loaded into memory. If the record size is small compared to the cache block size, then there is a large overhead to load the entire cache block. For example, for a cache miss on a Pentium 4 with DDR-266 RAM, approximately 60 ns are spent loading the cache block, and approximately 60 ns are spent waiting on the latency of DDR RAM. The trend is toward larger cache blocks. The 128 byte L2 cache blocks of the Pentium 4 are four times larger than those of the Pentium III. The IBM Power4 processor goes still further using 512 byte L3 cache blocks.

The solution to avoid these latency penalties in main memory is to access main memory sequentially. This is similar in spirit to the way in which traditional databases strongly prefer to access disk sequentially. In analogy with operation on disk, two-pass algorithms are a key for faster main memory performance.

The DPG-based sorting algorithms immediately yield faster sorting algorithms. Both AlphaSort and SuperScalarSort sort their data essentially in three phases: extraction of key-pointer pairs; sorting of the key-pointer pairs; and copying of the original records into the destination array according to the sorted key-pointer pairs. The last phase is essentially record retrieval.

A re-implementation of AlphaSort and SuperScalarSort on an IBM p690 Turbo shows that the record retrieval phase now dominates the running time. With the DPG record retrieval algorithm replacing the standard record retrieval algorithm, we immediately produce a faster sorting algorithm. In the re-implementation of SuperScalarSort, the versions with DPG as an accelerator are 27% faster.

A direct consequence of faster record retrieval is faster main memory sort-merge joins. For example, in implementing sort-merge join using SuperScalarSort, we find that the use of DPG sort instead of SuperScalarSort results in a 27% faster join algorithm. The DPG record retrieval phase in isolation is 48% faster than traditional record retrieval algorithm.

Finally, we apply DPG algorithm in the context of foreign key joins. In a foreign key join the join key is the same as the foreign key. we assume that one relation has an secondary index on the join key. Foreign key joins have the advantage that one need only rearrange the records of one of the files. This is in distinction to sort-merge join and hash join, which both require to rearrange each of the two files into a new file with join key values in sorted order.

Foreign key joins require less record retrieval because it is possible to first extract join triples, \((k, rid_R, rid_F)\), where \(R\) and \(F\) are the two relations and \(k\) is the join key value. Assume that \(R\) references a foreign key of \(F\). To construct a join triple, do file scan of \(R\), for each record of \(R\), its key \(k\) is extracted. The secondary B-tree index of the join key on \(F\) is then used to derive the corresponding record id, \(rid_F\), with the key value \(k\). The standard index lookup is very expensive, we propose a cache efficient B-tree batch lookup to generate the join triples.

Join triples reduce foreign key join to record pair retrieval. The join triples specify the record pairs, \((rid_R, rid_F)\), to be retrieved. One can re-order the records of \(F\) to match the ordering of \(rid_R\) in the sequence of record pairs. Recall that, we do file scan for \(R\), so \(rid_R\)s in the join triples are in sorted order. Alternatively, one can sort the join triples according to \(rid_F\), and re-order the records of \(R\) to match the ordering of \(rid_F\) in the sorted rid pairs. In either situation, there are fewer record retrievals, and so foreign key join is faster than a general join.

The ideas of faster record retrieval can also be applied to the general case of record pair retrieval. Many algorithms for spatial join [4, 24] and temporal join [25] produce record pairs. Unlike equijoin, there is no single search key, and so record retrieval is more difficult. The ideas of this paper are described in terms of foreign key join. However, it is even simpler to translate the ideas into record pair retrieval, since an initial join triple extraction is not required.

2 Distribute-Probe-Gather

The **distribute-probe-gather algorithm (DPG)** is a record retrieval algorithm. Given a data file of records and a sequence of record ids (rids) for the file, the goal is to copy the records into a destination file with the property that the ordering of records in the destination file corresponds to the ordering of the rids in the given sequence.

For example, let the source file, \(R\), be the array of records with a secondary B+ tree index on the attribute \(A\). We want to place the records of \(R\) in sorted order according to the values of \(A\). The sequence of record ids, \(S_{rids}\), at leaf nodes of the B+ tree is a list of record ids in sorted order according to the value of \(A\). Then, the destination file, \(D\), below, will contain the corresponding records in sorted order according to the value of \(A\).

\[
\text{for each } i, D[i] = R[S_{rid[i]}]
\]

In the case that the sequence of rids is a permutation of the rids for the data file, the sequence of rids acts as a permutation vector. The destination file is then a permutation of the records in the input file.

Note, however, that the DPG algorithm is not limited to permutations of data. In the case of join, one record from
one relation may match more than one records from another relation. In such cases portion of the original records must be duplicated. The DPG algorithm also works for this case.

2.1 Algorithm

The input for the algorithm is: a list of rids, RID_LIST, and a data file of records, INPUT. The DPG algorithm partitions the rids, RID_LIST, into separate runs. It also partitions the data records, INPUT, into separate runs. The algorithm makes two passes over the record ids, RID_LIST, and two passes over the records of the data file, INPUT.

The ideas are presented in the context of main memory databases. We assume that neither the sequence of rids, RID_LIST, nor the data file, INPUT, fit in cache. The DPG algorithm applies equally well as an external data retrieval algorithm between disk and main memory.

The spirit of the DPG algorithm is: try to transform arbitrary memory access patterns into sequential memory access patterns; where arbitrary memory access patterns are unavoidable, we try to divide the data into small partitions that fit into the cache.

For a sequential access pattern, it is easy to maintain a buffer in cache. In the DPG algorithm we need to read many streams simultaneously, and maintain a buffer for each stream. Hence, we want to keep the buffer as small as possible while maintaining reasonable efficiency. We define a buffer in cache to consist of two cache blocks. When a cache block is full, it is written back to main memory and a new cache block is loaded from main memory into cache. On Pentium 4, this is done automatically by the hardware prefetch function unit if the access to main memory is sequential. On other architectures without the hardware prefetch function unit, the software instructions, cflush and prefetch, are needed to maintain the buffers.

Constraints: The data records and rids are split into runs of length \(L \). The run length \(L \) is chosen based on two constraints. First, the cache must be able to simultaneously hold both one run of data records of length \(L \) and one single buffer for the corresponding run of rids. (This constraint applies in the second phase of DPG.) Second, the cache must simultaneously be able to hold a buffer for each run. (This constraint applies in the first phase and in the third phase of DPG.) These constraints are typical of the constraints for two-pass algorithms, such as external sorting.

If the data file has \(N \) records, then the data file is partitioned into \(N/L \) sets of consecutive records. Assuming an rid consists of a page id and offset on that page, the high order bits of the page number can be used to efficiently identify the particular partition to which the rid belongs. This assumes that the number of pages in a partition is a power of two, which can be satisfied by appropriate choice of \(L \). For the sake of clarity, we assume the rids values are in the rage of \(0 \) and \(N \).

Three Phases: There are three phases in the DPG algorithm. The three phases are also illustrated by pseudo-code in Figure 1 and by the diagram of Figure 2.

1. **Phase I.** The first phase is the Distribute phase. One distributes the rids of RID_LIST into appropriate RID runs according to the values of the rids. The first RID run contains the rid values in the range from 0 to \(L \), the second RID run contains the rid values in the range from \(L \) to \(2L \), and so on. Both the access to every RID run and the access to RID_LIST are sequential. Therefore, one only needs to maintains a buffer in cache for each RID run and a single buffer in cache for RID_LIST. At the end, we form \(N/L \) RID runs and each RID run is a permutation vector. For example, the \(i \)-th RID run is a permutation vector in the range from \((i-1) \ast L \) and \(i \ast L \).

2. **Phase II.** The second phase is the Probe phase. In this phase, we allocate a second, temporary data file, INTERNAL, in main memory. The temporary data file has the same size as the original data file, INPUT, and is organized into the same number of runs as the original data file. One then proceeds through each of the runs of rids and each of the runs of INPUT. The rids from the \(i \)-th RID run are used to probe the \(i \)-th INPUT run and the corresponding records are copied into the \(i \)-th INTERNAL run.

At the end, the \(i \)-th INTERNAL run contains the same records as the \(i \)-th INPUT run, but the order of records in the INTERNAL run is organized according to the \(i \)-th RID run. Both the \(i \)-th RID run and the \(i \)-th INTERNAL run are accessed sequentially. The \(i \)-th INPUT run is accessed randomly, but it can fit in cache. Hence, every time, one loads the \(i \)-th INPUT run entirely into cache and maintains two buffers in cache: one for the \(i \)-th RID run and the other for the \(i \)-th INTERNAL run.

3. **Phase III.** The third phase is the Gather phase. This is an inverse of the Distribute phase and is similar to the merge phase of external sorting. In the Distribute phase, the rids are distributed into runs. As a result of the Probe phase, the records in a given INTERNAL run are now in the same order as the rids in the corresponding RID run created in Phase I. Hence, it suffices to gather (merge) the records from the INTERNAL runs in exactly the same order as the order of the rids in RID_LIST. More precisely, if the \(i \)-th rid was distributed to the \(j \)-th RID run during the Distribute phase, then at the \(i \)-th step of the Gather phase, the next record from the \(j \)-th INTERNAL run is copied to the destination array. One maintains several buffers in cache: one single buffer for RID_LIST, one single...
buffer for the destination array, and a buffer for each INTERNAL run.

2.2 Example

The DPG algorithm is presented more formally in pseudo-code in Figure 1. The input of the algorithm is an array, RID, of rids (record ids) and a data file, INPUT_REC, of records. It is desired to retrieve the records from INPUT_REC in the order corresponding to RID. The retrieved records are then written to OUTPUT_REC.

The three phases of the DPG algorithm are illustrated by an example in Figure 2. The input in this example is the leaf nodes of a secondary B+-tree index. The input contains a sequence of key-rid pairs sorted according to the key values. The output is a sequence of records sorted according to the key values of the secondary index. The output will either be stored again on disk or else pipelined to the next stage. The ability of the DPG algorithm to take advantage of pipelining is an important feature for sorting and joins.

The letters a, b, c, ... are used to indicate the sorted keys on the leaf nodes of the index. So (a, 5) indicates that the record with the rid value of 5 has a key value of a. The first two rows are for Phase I, the next three rows for Phase II, and the following three rows for Phase III. The horizontal rectangle of the first row represents a sequence of key-rid pairs sorted according to the key values. The second row represents the runs of rids into which the first row is partitioned. Similarly, the third row again represents the runs of rids, but now as part of Phase II. The fourth row is the partitioned runs of input records, and so on. There are 12 elements and 3 runs in the example and each run contains 4 elements.

During Phase I, one has a sequence of key-rid pairs sorted according to the key values and will distribute them into appropriate RID runs. The first RID run will contain rid values from 0 to 3, the second RID run will contain rid values from 4 to 7, and the third RID run will contain rid values from 8 to 11. Upon reading the sequence of pairs from the first row, one places the rids in their proper runs. For example, the rid 5 goes to the second RID run, the rid 7 goes to the second RID run, the rid 3 goes to the first RID run, the rid 8 goes to the third RID run, and so on. The third row in the figure presents the end of Phase I. In this phase, we do sequential read on a single stream and sequential writes on multiple streams.

During Phase II, one copies the original data file, INPUT, to a temporary data file, INTERNAL. The input to this phase is the third row. In the third row, each RID run has rid values that correspond to one contiguous range of the INPUT file, an INPUT run. For example, for the first RID run, we will load the first INPUT run into the cache. The first INPUT run consists of the first 4 contiguous records. The first rid in the first RID run is 3 and INPUT[3] is in the cache, so one finds this record, INPUT[3], in cache and copies it to the buffer maintained in cache for the first INTERNAL run, and so on. At the end of Phase II, the records in the first INPUT run with key values in the sequence of i, l, f, c are reordered as records in the first INTERNAL run with key values in the sequence of c, f, i, l. The reordering is done according to a permutation specified by the first RID run, 3, 2, 0, 1.

During Phase III, we will use the original rid sequence in the list of key-rid pairs to gather (merge) records from all INTERNAL run. For example, upon reading 5, we go to the second INTERNAL run to gather the record; upon reading 7, we go to the second INTERNAL run to gather the record; upon reading 3, we go to the first INTERNAL run to gather the record; upon reading 8 we go to the third INTERNAL run to gather the record, and so on. For this phase, we maintain a buffer for the key-rid list, a buffer for OUTPUT in cache and a buffer for each INTERNAL run. All buffers are in cache.

2.3 Data Skew

Implicit in the description of the DPG algorithm is that the input sequence of rids is distributed uniformly among the set of all rids of the input data file. This is always the case when DPG is applied to retrieve records after sorting key-pointer pairs. In that situation, the key-pointer pairs act as a permutation vector to permute the records in the input data file.

If the input sequence of rids is not uniformly distributed, then some RID runs will be larger than other runs. As a consequence, in Phase II, when the partition of the temporary data file (the partition of RECORD_RUN in Figure 1) may be larger than the size of the cache. If only a few of the partitions of the temporary data file are larger than cache then the overall running time is not greatly affected.

If there is a great deal of data skew and many of the temporary partitions RECORD_RUN are larger than cache, then the N/L partitions of the input sequence of rids must be chosen on some other basis than the high order bits of the page number. In such cases, one can invoke the data skew handling techniques of DeWitt et al. [10]. Their solution, reformulated in our context, is to sample the rids from the rid sequence. The sampled set of rids is then sorted, and partitions of the rids are chosen so as to evenly partition the sampled set.

3 Sorting

As discussed in the introduction, DPG acts as an accelerator for many main memory sorting algorithms. Recall that main memory sorts typically proceed in three phases:

1. extraction of key-pointer;
2. sorting of the key-pointer pairs; and
3. copying of the original records into the destination array according to the sorted key-pointer pairs.

AlphaSort [23] and SuperScalarSort [1] are examples of this three-phase sorting paradigm. Both sorting algorithms can be considered as main memory sorting algorithms.

In principle, the sorting algorithms are single-pass disk-based sorting algorithms. Both sorting algorithms were introduced as an answer to the Datamation Sorting Challenge [3]. The Datamation challenge dictates that one is given one million records of 100 bytes. Each record has a 10 byte key. The keys are uniformly distributed. At the time of the Datamation Challenge, external sorting algorithms were required. On today’s computers, the data file of 100 MB easily fits in main memory.

Hence, the only disk-related portion of the Datamation Challenge is to overlap disk I/O with CPU operation. Disk striping has the potential to provide very fast disk I/O. This occurs because the disks are accessed in parallel. In this situation, main memory data retrieval becomes the bottleneck.

The DPG algorithm pushes back this main memory bottleneck. By using DPG for data movement, the largest cost of main memory sorting is reduced. We have reimplemented the main memory portion of SuperScalarSort, both with and without DPG.

4 Join Methods with DPG

We use the ideas of DPG to present three new join algorithms: 1.c, 2 and 3. Algorithms 1.a, 1.b and 4, will be included in the experimental section 5.3 for completeness.

1. **Sort-Merge Join**

 (a) Sort-Merge Join with AlphaSort (sort based on [23])

 (b) Sort-Merge Join with SuperScalarSort (sort based on [1])

 (c) Sort-Merge Join with DPG Sort (sort based on DPG; see 4.1)

2. **DPG-Sort Join** (see Section 4.2.1)

3. **DPG-Move Join** (see Section 4.2.1)

4. **Radix Join** (from [20])

4.1 Sort-Merge Join with DPG Sort

The well-known Sort-Merge join was introduced by Blasgen and Eswaran [6]. There are two steps in Sort-Merge joins: sort two relations on the join key and scan the sorted relations to do a merge on the join key.

Applying DPG sort at the first step provides a new faster sort-merge join method, Sort-Merge join with DPG Sort. In Sections 5.2 and 5.3, we experimentally compare different

Figure 2. Distribute-Probe-Gather (DPG) (also, see pseudo-code in Figure 1)

Phase I: (Key, RID):	Phase II: RID_RUN:	INTERNAL_RUN:	OUTPUT:
(a, 5)	(l, 1)	(a, [data])	a [data]
(b, 7)	(k, 6)	(b, [data])	b [data]
(c, 3)	(j, 11)	(c, [data])	c [data]
(d, 8)	(i, 0)	(d, [data])	d [data]
(e, 10)	(h, 3)	(e, [data])	e [data]
(f, 2)	(g, 8)	(f, [data])	f [data]
(g, 9)	(j, 2)	(g, [data])	g [data]
(h, 8)	(i, 11)	(h, [data])	h [data]
(i, 0)	(j, 0)	(i, [data])	i [data]
(j, 11)	(k, 6)	(j, [data])	j [data]
(k, 6)	(l, 1)	(k, [data])	k [data]
(l, 1)	(l, 1)	(l, [data])	l [data]
(m, 1)	(m, 1)	(m, [data])	m [data]
(n, 1)	(n, 1)	(n, [data])	n [data]
(o, 1)	(o, 1)	(o, [data])	o [data]
(p, 1)	(p, 1)	(p, [data])	p [data]
(q, 1)	(q, 1)	(q, [data])	q [data]
(r, 1)	(r, 1)	(r, [data])	r [data]
(s, 1)	(s, 1)	(s, [data])	s [data]
(t, 1)	(t, 1)	(t, [data])	t [data]
(u, 1)	(u, 1)	(u, [data])	u [data]
(v, 1)	(v, 1)	(v, [data])	v [data]
(w, 1)	(w, 1)	(w, [data])	w [data]
(x, 1)	(x, 1)	(x, [data])	x [data]
(y, 1)	(y, 1)	(y, [data])	y [data]
(z, 1)	(z, 1)	(z, [data])	z [data]
There are three steps in a foreign key join algorithm with DPG. The first step is to construct join triples. The second step is to use the join triples to copy one of the two relations into a temporary file according to an order derived from the join triples. The third step is to join the temporary file with the remaining relation.

We describe the second and third steps initially in Section 4.2.1. We then return to the more technical problem of efficiently constructing join triples in Sections 4.2.2 and 4.2.3.

4.2.1 Two Foreign Key Join Methods with DPG

This section describes two DPG join algorithms. It assumes that one has already constructed the join triples. Some algorithms for constructing the join triples are described later in Sections 4.2.2 and 4.2.3.

Assume that one has generated the join triples \((k, \text{rid}_R, \text{rid}_F)\). It is now possible to ignore the key \(k\), and deal directly with the rid pairs \((\text{rid}_R, \text{rid}_F)\). We wish to satisfy one of two goals:

1. **DPG-Move join**: Move the records of \(F\) into a temporary file according to the ordering of the records of \(R\).

2. **DPG-Sort join**: Move the records of \(R\) into a temporary file according to the ordering of the records of \(F\). So, the rid pairs \((\text{rid}_R, \text{rid}_F)\) will be sorted according to \(\text{rid}_F\).

First consider DPG-Move join. We will see how to generate the join triples in the order of \(\text{rid}_R\). This is done by scanning the records of the relation \(R\) in file order (in order of increasing \(\text{rid}_R\)). Therefore the rid pairs can be used directly as part of a DPG algorithm. The second component of the pair, \(\text{rid}_F\), is the sequence of rids according to which we want to move the records of \(F\). This algorithm does not require any sorting or hashing. Hence, we call it DPG-Move join.

Next consider DPG-Sort join. In this version, we first sort the rid pairs \((\text{rid}_R, \text{rid}_F)\) according to the order of \(\text{rid}_F\). This is done, for example, with SuperScalarSort and DPG. The algorithm then reduces to record movement in which we wish to move the records of \(R\) according to the ordering of \(\text{rid}_F\) in the sorted sequence \((\text{rid}_R, \text{rid}_F)\).

Note that DPG-Move join is preferred when the relation \(F\) is smaller. DPG-Sort join is preferred when the relation \(R\) is smaller.

4.2.2 Construction of Join Triples

The simplest solution for a foreign key join is to do a file scan of \(R\), and for each record of \(R\) to extract the join key and do an index lookup in the index of \(F\). One can then join the record of \(R\) with the corresponding record of \(F\). This involves random access, and is economical only if the join

Figure 1. Distribute-Probe-Gather (DPG) Algorithm

versions of sort-merge join, according to the sorting methods used. Specifically, we consider using DPG sort, Alpha-Sort and SuperScalarSort for the sorting step.

4.2 Foreign Key Join with DPG

We next consider joins in which the join key is a foreign key, and it has an index. We denote by \(R\) a non-indexed relation. We denote by \(F\) an indexed relation. The notation is motivated by the example of a foreign key join. In a foreign key join, the join key is the same as the foreign key. So, the join key is a set of attributes in the relation \(R\) that refers to a foreign key from relation \(F\).

A **join triple** is a triple \((k, \text{rid}_R, \text{rid}_F)\), such that \(k\) is a key value, \(\text{rid}_R\) is the rid of a record from \(R\) with key \(k\), and \(\text{rid}_F\) the rid of a record from \(F\) with key \(k\).

Let \(L \leftarrow (\text{CACHE}_\text{SIZE}/2)\)
Let \(N \leftarrow \text{NUM_RECORDS}\)
Let \(\text{NUM_RUNS} \leftarrow N/L\)

INPUT: integer \(\text{RID}[\text{NUM_RIDS}]\),
record \(\text{INPUT_REC}[\text{NUM_RECORDS}]\);
OUTPUT: record \(\text{OUTPUT_REC}[\text{NUM_RIDS}]\);
PARAMETERS: integer \(\text{RID_RUN}[\text{NUM_RUNS}][]\),
record \(\text{RECORD_RUN}[\text{NUM_RUNS}][]\);

// Phase I: Distribute RID array into runs
// with each run of length \(L\)
For each \(\text{rid}, r\), in \(\text{RID}\) do {
 Set \(\text{run_num} = \lceil r/L \rceil\);
 Append \(r\) to \(\text{RID_RUN}[\text{run_num}]\)
}

// Phase II: Probe partitions of \(\text{INPUT_REC}\)
For \(i = 1, \ldots, \text{NUM_RUNS}\) do {
 Read into memory all records from
 \(\text{INPUT_REC}[i \cdot L + 1 : \lceil (i+1) \cdot L \rceil]\)
 Allocate memory for \(L\) records
 to be stored in \(\text{RECORD_RUN}[i]\)
 For each \(\text{rid}, r\), in \(\text{RID_RUN}[i]\) do
 Append \(\text{INPUT_REC}[r]\) to \(\text{RECORD_RUN}[i]\)
 Write out \(\text{RECORD_RUN}[i]\) to disk
}

// Phase III: Gather records from \(\text{RECORD_RUN}[]\)
// into \(\text{OUTPUT_REC}\) in same order as \(\text{RID}[]\)
For each \(\text{rid}, r\), in \(\text{RID}\) do {
 Set \(\text{run_num} = \lceil r/L \rceil\);
 Read next record from \(\text{RECORD_RUN}[\text{run_num}]\)
 Append record to \(\text{OUTPUT_REC}[]\)
produces very few records. In particular, this will be the case only if the number of records of \(R \) is small.

A better solution is to do a file scan of \(R \), and to use the index on \(F \) to create join triples. To construct the join triples, one scans the relation \(R \). For each record of \(R \), one extracts the corresponding rid and associated join key \(k \). One then looks up the key \(k \) in the index of \(F \). The index lookup yields the final element of the triple, \(\text{rid}_F \).

4.2.3 Batch Lookup in Indexes

Note that the join triple is constructed at the cost of a file scan of \(R \) and an index lookup in the index of \(F \) for each record of \(R \). Usually an index on a data file is much smaller than the full data file. If the index fits entirely in cache, then the index lookup will be significantly cheaper than the file scan.

Unfortunately, the indexes in many main memory databases generally do not fit in cache. In such cases, the index lookup in the index of \(F \) will dominate the costs. For example, in a B+ tree indexing \(N \) records, if an internal node has \(m \) children, then \(\log_m N \) nodes of the B+ tree must be accessed. Each such access will be a random access in main memory. Most of the random accesses imply a cache miss. The cost of so many random accesses makes a naive index lookup uneconomical. Even if the index is a hash index, at least one random access in memory will be required.

Luckily, it is possible to execute the index lookup faster than the above analysis would indicate. This is because the construction of the join triples requires many index lookups, with no intervening record accesses. For purposes of join triple construction, batch lookup of keys in an index suffices. By batch lookup, we assume that an array of join keys is first extracted by scanning the data file of \(R \). The batch lookup then produces an array of rids for \(F \) through the use of the index on \(F \). We show that the index lookups can be reorganized into a two-pass algorithm. Two such two-pass algorithms are demonstrated: one for B+ tree indexes, and one for hash indexes.

Note that batch lookup of rids in an index can be substantially faster than individual lookup. Rao and Ross had previously discussed cache conscious indexes for main memory [26]. There they present CSS-trees, which have better cache behavior than either B+ trees or hash indexes. However, they only consider individual lookup of keys in an index, one at a time. In their scenario, a second key is not looked up until the index lookup of the first key has been resolved.

Batch Lookup in B+ Tree Indexes For simplicity, we describe the two-pass lookup for an enhanced B+ tree. The notion of enhanced B+ tree was introduced by Rao and Ross [26]. The idea is that all slots of a B+ tree node are used. This is similar to compact B-Trees [8] or to the ISAM method introduced by IBM [12]. In the context of a general B+ tree this can be accomplished by maintaining updates to the B+ tree in a separate index, and then doing a batch update by reorganizing the B+ tree. For brevity, we will sometimes refer to B+ tree, although in all cases, an enhanced B+ tree is intended.

Assume that we are executing a file scan of \(R \) with the purpose of constructing the join triples. We collect a sequence of keys from the relation \(R \), and we wish to carry out a batch lookup of rids in the enhanced B+-tree. The rids will be used to retrieve records from the foreign relation \(F \). We assume that the B+ tree does not fit in cache. Our goal is a two-pass algorithm which will efficiently accomplish batch lookup.

Assume that the B+ tree has \(m \) entries per node. Assume that the B+ tree indexes \(N \) records. Then there are \(\log_m N \) levels. Assume further that the first \(\log_m N \)/2 levels (the top half of the B+ tree) fit in cache. For \(m \gg 2 \), the top half of the tree has approximately \(m(\log_m N)/2 = \sqrt{N} \) slots. For example, if there are \(N = 10^9 \) records, then there are 32,000 slots, which clearly fit inside cache.

The strategy is a two-pass strategy. In the first pass, one performs a lookup of each key, but only using the top half of the B+ tree. As shown in Figure 3, each leaf of the subtree comprising this upper half can be considered as the root of a second subtree comprising nodes in the lower half of the B+ tree. Thus, at the end of this first pass, a key can be associated with a leaf of the upper subtree, which is also a root of one of the lower subtrees.

![Figure 3. B-Tree (Each smaller triangle represents a subtree that fits in cache.)](image)

After the first pass, one can associate each key with a subtree within the lower half of the B+ tree. So, in the second pass, one loads a subtree from the lower half. One then continues the lookup for all keys associated with the root of the subtree in the lower half. At the end, one then has a sequence of keys and rids.

If one wishes to have the keys in the same order as the...
order of the original rids, then this can also be arranged. In this case, one extends the previous scenario to use the DPG algorithm.

The first phase of the DPG algorithm is to distribute the keys into runs. In the initial lookup of a key in the first half, it was associated with a root of a subtree in the first half. The particular root of a subtree identifies the run into which the key is copied.

The second phase of the DPG algorithm is to use the key to probe the index, in order to find the rid. One completes the lookup of all keys in a run associated with a particular subtree of the B+ tree, before proceeding to the next subtree in the lower half. The resulting rids are stored in a temporary partition or run. This is exactly what was described earlier.

Finally, the third phase of the DPG algorithm gathers the rids into a destination array in the same order as that of the original keys. Hence, we have completed a batch lookup of the keys, and returned an array of rids in the same order as that of the original keys.

Batch Lookup in Hash Indexes
Batch lookup of hash indexes also proceeds in two passes. We assume that the hash array of the hash index stores at each hash entry one key-rid pair. A second hash array associated with the index stores pointers to overflow key-rid pairs that would have collided with an occupied slot in the first hash array.

The two-pass lookup for hash indexes proceeds in a very simple manner. We extract the sequence of keys from R. As the keys are extracted, the hash values are computed. Those key-hash value pairs are saved in an array in an order corresponding to the rid order of R.

It now suffices to apply the DPG algorithm. The hash array is partitioned into sets of L hash slots. In the distribute phase, the hash value acts as an index into the hash array. Hence, this becomes the permutation vector of the DPG algorithm. The key and hash value are then written into separate runs according to the partition of the hash array. There is one run of key-hash values for each partition of the hash array.

In the probe phase, a run of hash values is loaded into cache along with the corresponding partition of the hash array. As part of the probe phase, the key and hash values from the run are used to look up the corresponding rid in the partition of the hash array. The rids are then saved in a temporary partition, in the same order as the order in which the key-hash values of the original partition are stored.

Finally, in the gather phase, the ordering of the key-hash value pairs are used to gather the rids from the temporary partition. As in Section 2, the rids are gathered into a destination array in an order corresponding the ordering of the original key-hash value pairs.

5 Experimental Evaluation

5.1 Sorting Comparisons

Figure 4 demonstrates the acceleration achieved by SuperScalarSort when DPG is used. The results are demonstrated on the IBM pSeries 690 Turbo. The IBM p690 has an L3 cache of size 128 MB. Hence, in order to realistically demonstrate DPG, we were forced to increase the size of the database. We chose to implement SuperScalarSort for a data file of size 512 MB. The record size was treated as a variable, to illustrate the influence of record size. As in the original Datamation Challenge, the key is 10 bytes.

Note that the additional speed of SuperScalarSort with DPG is most pronounced for smaller record sizes. For record sizes of 256 bytes and higher, DPG provides only a small advantage. This is because the IBM p690 has an L3 cache block of size 512 bytes. So, for record sizes below 256 bytes, a cache miss incurs significant overhead in loading a 512 byte cache block.

There was some variability in the results because the data was taken on a time-shared, shared memory machine. On the IBM p690, the L2 cache is shared among two CPUs, and the L3 cache is shared among eight CPUs. Our experiments were run on a single CPU. Hence another process on a neighboring CPU could consume some of our cache, thereby affecting the timings. The reported experimental results are the averages of three runs each.

5.2 Comparison of Sort-Merge Join using Different Sorting Algorithms

We implement two sort-merge join methods: sort-merge join with DPG sort and sort-merge join with SuperScalarSort. As defined in section 4.1, sort-merge join with DPG sort applies the DPG sort for the sorting phase and sort-merge join with SuperScalarSort applies SuperScalarSort for the sorting phase.
As expected, the acceleration in the speed of sort-merge join in Figure 5 follows the same pattern as that of Figure 4 for sorting. In this case, we illustrate our results on a database of size 128 MB on the IBM p690. The IBM p690 has an L2 cache of size 1.4 MB. So, in this case, the L3 cache is acting as the main memory, while L2 cache is acting as the “cache”.

5.3 Comparison of Six Different Join Methods

In Figures 6 through 12, we now experimentally compare the six join methods originally presented at the beginning of Section 4. The three join algorithms labelled Sort-Merge Join with DPG Sort, DPG-Sort Join, and DPG-Move Join are all new. The remaining algorithms, Sort-Merge Join with AlphaSort, Sort-Merge Join with Super-ScalarSort, and Radix Join, are all based on sorting or join algorithms from the literature.

As explained earlier, we denote by F an indexed relation and R a relation that has foreign key on the indexed attribute of F. We consider both uniform and non-uniform distribution of foreign key values.

The non-uniform distribution of join key values. Sort-merge join with AlphaSort and DPG-Sort are the only two of the previously discussed join methods that operate correctly for a non-uniform distribution of join key values.

In the following we use count bucket sort for bucket sort. The count bucket sort is as follows:

1. count the number of elements destined for each bucket.
2. set bucket boundaries according to the statics computed and distribute elements to buckets.

AlphaSort works for non-uniformly distributed data, because it uses quicksort to sort each run and uses replacement-selection to merge the runs. DPG-Sort join works for non-uniformly distributed data too, because we use count bucket sort to sort RIDs.

DPG-Sort join sorts the RIDs according to the lowest $\log N$ bits is enough, N is the number of records. In the simulation, we assign the RID values in the range $[1, ..., n]$, the lowest $\log N$ bits is sufficient for sorting. For example, for $N = 2^{20}$ sorting RIDs according to the lowest 20 bits is enough. This could be done in two steps with count bucket sort: first do count bucket sort according to the lower 10 bits, then do count bucket sort according to the higher 10 bits.

Using the UNIX $\text{random}()$ and $\text{exp}()$ functions we generate an exponential distribution of the data as $\text{exp}(c * (\text{random}() > > 10))$ (c is a constant and in our experiments we assign c with -0.0000001). A comparison of Sort-Merge join with AlphaSort and DPG-Sort join on three different computer architectures is provided in the figures 6, 7, and 8. The three different architectures are the IBM Power4 Pseries 690 Turbo, the 3.06 GHz Pentium 4 with Rambus PC-1200 RAM, and the 2.6 GHz Pentium 4 with DDR-266 RAM. From the comparison, we can see that DPG-sort join is much faster than Sort-Merge join with AlphaSort.
and DPG-move join.

We also implement the radix join of Manegold et al. [20]. They describe a variation of hash join for main memory. Radix join also requires a uniform distribution of the join key values. Otherwise, some of their partitions will be too large to fit into the L2 cache and how to set the boundaries is unknown.

We produce uniformly distributed foreign key values using the UNIX `random()` function. A comparison of the different join methods on three different computer architectures as before is provided in the figures. Figure 9 reflects data with no duplicate join key values in the relation R. Figures 10, 11, and 12, show the same information in which duplicate join key values are allowed. From the comparison, we can see that DPG-move join and radix join are the fastest. DPG-move is better for large records and radix join is better for small records.

![Figure 7. Comparison of Joins (2.6 GHz Pentium 4 / DDR-266 RAM, exponential distribution of keys)](image7)

![Figure 8. Comparison of Joins (3.06 GHz Pentium 4 / Rambus PC-1200 RAM, exponential distribution of keys)](image8)

![Figure 9. Comparison of Joins (IBM Power4 pSeries 690 Turbo, no duplicate keys)](image9)

![Figure 10. Comparison of Joins (IBM Power4 pSeries 690 Turbo, duplicate keys)](image10)

6 Conclusions

The use of DPG in the sorting provides an accelerator for existing sorting algorithms. Especially for the smaller record sizes, such as 32 bytes and 64 bytes, the performance improvements are really impressive.
For the more common case of non-uniform distribution of join key values, DPG-Sort join works better than sort-merge join with AlphaSort across all the tested platforms. For smaller records sizes, such as, 32, 64, DPG-Sort join is much better than sort-merge join with AlphaSort. More impressively, on the newer platform, Rambus PC-1200 RAM, DPG-Sort works better than on PC with DDR-266 RAM and even works better for larger record sizes, for example 512 bytes.

For special case of uniform distribution of join key values, DPG-move join and radix join are the best. The remaining DPG algorithms are also competitive with older algorithms although with a smaller improvement.

7 Future Work

The DPG algorithm can be easily generalized to multiple passes. This can be useful when there is a very small cache in relation to the size of main memory. However, we do not encounter this scenario in our current experiments.

8 Acknowledgements

We would like to thank Betty Salzberg and Donghui Zhang for extensive conversations and insights into additional situations where distribute-probe-gather can be beneficial. We also gratefully acknowledge the use of the support for the computations on the IBM p690 by the Scientific Computing and Visualization (SCV) group at Boston University.

References

[1] Agarwal, R.C. “A Super Scalar Sort Algorithm for RISC Processors”, *ACM SIGMOD ’96*, pp. 240–246, June 1996.

[2] A. Ailamaki, D.J. DeWitt, M.D. Hill, D.A. Wood, “DBMSs on a Modern Processor: Where Does Time Go?”, *VLDB’99, Proceedings of 25th International Conference on Very Large Data Bases*, 1999, pp. 266-277.

[3] Anon., Et-Al. (1985). “A Measure of Transaction Processing Power”, *Datamation* 31(7): pp. 112–118. Also in *Readings in Database Systems*, M.J. Stonebraker, ed., Morgan Kaufmann, San Mateo, 1989.

[4] L. Arge, O. Procopiuc, S. Ramaswamy, T. Suel and J.S. Vitter, “Scalable Sweeping-Based Spatial Join”, *VLDB 1998, Proceedings of 24th International Conference on Very Large Databases*, 1998, pp. 570–581.

[5] L.A. Barroso, K. Gharachorloo and E.D. Bugnion “Memory System Characterization of Commercial Workloads”, *Proc. of the Int. Symp. on Computer Architecture*, Barcelona, Spain, 1998.

[6] M.W. Blasgen and K.P. Eswaran, “Storage and access in relational databases”, *IBM Systems Journal* 16(4), 1977.

[7] P. Boncz, S. Manegold and M.L. Kersten, “Database Architecture Optimized for the New Bottleneck: Memory Access”, *The VLDB Journal*, 1999, pp. 54–65.

[8] F. Cesarini and G. Soda, “An Algorithm to Construct a Compact B-tree in Case of Ordered Keys”, *Information Processing Letters* 17(1), pp. 1612–1630, 1983.
[9] D. DeWitt, R. Katz, F. Olken, L. Shapiro, M. Stonebraker and D. Wood, “Implementation Techniques for Main Memory Databases”, Proc. ACM SIGMOD Conf. on the Management of Data, 1984.

[10] D. DeWitt, J. Naughton, D. Schneider and S. Seshadri, “Practical Skew Handling in Parallel Joins”, VLDB 1992, Proc. Intl. Conf. on Very Large Databases, 1992.

[11] J.-P. Dittrich, B. Seeger, D.S. Taylor and P. Widmayer, “Progressive Merge Join: A Generic and Non-blocking Sort-based Join Algorithm”, VLDB 2002, Proceedings of 28th International Conference on Very, 2002.

[12] J. Gray and A. Reuter, Transaction Processing: Concepts and Techniques, Morgan Kaufmann, San Francisco, 1993.

[13] Intel Pentium 4 and Intel Xeon Processor Optimization Reference Manual. http://www.intel.com/design/Pentium4/manuals/index.htm

[14] Intel PC SDRAM Specification, Revision 1.7, November 1999.

[15] Lost Circuits web site: “Latency vs. Bandwidth, a performance analysis”, http://www.lostcircuits.com/memory/latency/2.shtml; “Inside the EDDR Chip: Combining DRAM storage and SRAM speed”, http://www.lostcircuits.com/memory/eddr/, Nov. 27, 2000; and “High Performance DDR DIMMs”, http://www.lostcircuits.com/memory/ddr2/, July 17, 2001.

[16] K. Keeton, D.A. Patterson, Y.Q. He R.C. Raphael and W.E. Baker “Performance Characterization of a Quad Pentium Pro SMP using OLTP Workloads” Proc. of the Int. Symp. on Computer Architecture, p0p. 15–26, Barcelona, Spain, 1998.

[17] D.E. Knuth, Sorting and Searching, The Art of Computer Programming, vol. 3, second edition, Addison Wesley, Reading, MA, 1998

[18] S. Manegold, P.A. Boncz and M.L. Kersten, “Database architecture optimized for the new bottleneck: Memory access”, VLDB ’99, Proc. of 25th Intl. Conf. Very Large Databases, 1999.

[19] S. Manegold, P.A. Boncz and M.L. Kersten, “What Happens During a Join? Dissecting CPU and Memory Optimization Effects”, VLDB 2000, Proceedings of 26th International Conference on Very Large Databases, September 10-14, 2000, Cairo, Egypt, 2000, pp. 339–350.

[20] S. Manegold, P.A. Boncz and M.L. Kersten, “Optimizing main-memory join on modern hardware”, IEEE Transactions on Knowledge and Data Engineering 14(4), 2002, pp. 709–730.

[21] Micron Technology, Inc., 256Mb: x4, x8, x16 DDR SDRAM, Revision C, April, 2001, http://download.micron.com/pdf/datasheets/dram/256Mx4x8x16DDR_D.pdf

[22] M. Negri and G. Pallagatti, “Join During Merge: An Improved Sort Based Algorithm”, Information Processing Letters 21(1), 1985, pp. 11–16.

[23] Nyberg, C., Barclay, T., Cvetanovic, Z., Gray, J., and Lomet, D. “AlphaSort: A Cache-Sensitive Parallel External Sort”, VLDB Journal 4(4), pp. 603–627, 1995.

[24] J. M. Patel and D. J. DeWitt, “Partition Based SpatialMerge Join”, Proc. of the ACM SIGMOD Conference on Management of Data, 1996.

[25] D. Zhang and V.J. Tsotras and B. Seeger, “Efficient Temporal Join Processing using Indices”, Proc. of 18th International Conference on Data Engineering (ICDE), 2002.

[26] J. Rao and K.A. Ross, “Cache Conscious Indexing for Decision-Support in Main Memory”, VLDB 1999, 25th Intl. Conf. Very Large Databases, 1999, pp. 78–89.

[27] L.D. Shapiro, “Join Processing in Database Systems with Large Main Memories”, ACM Transactions on Database Systems 11(3), 1986, pp. 239–264.

[28] A. Shatdal, C. Kant and J.F. Naughton, “Cache Conscious Algorithms for Relational Query Processing”, VLDB 1994, Proceedings of the 20th VLDB Conference, 1994, pp. 510–521.

[29] P. Trancoso J.L. Larriba-Pey, Z. Zhang and J. Torellas, “The Memory Performance of DSS Commercial Workloads in Shared-Memory Multiprocessors”, Int. Symp. on High Performance Computer Architecture, San Antonio, TX, USA 1997.

[30] W.A. Wulf and S.A. McKee. “Hitting the memory wall: Implications of the obvious”, ACM Computer Architecture News, 23(1):20–24, 1995.