An evaluation of the outcome metric `days alive and at home´ in older patients after hip fracture surgery

A. Wu,1,2 M. T. Fahey,3,4 D. Cui,2,5 B. El-Behesy1,2 and D. A. Story6

1 Consultant, 5 Resident, Department of Anaesthetics, Maroondah Hospital, Eastern Health, Melbourne, Australia
2 Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia
3 Senior Statistician, Department of Health Sciences and Biostatistics, Swinburne University of Technology, Melbourne, Australia
4 Department of Biostatistics and Clinical Trials, Peter MacCallum Cancer Centre, Victoria, Australia
6 Professor, Department of Critical Care, University of Melbourne and Melbourne Academic Centre for Health, Melbourne, Australia

Summary
‘Days alive and at home´ is a validated measure that estimates the time spent at home, defined as the place of residence before admission to hospital. We evaluated this metric in older adults after hip fracture surgery and assessed two follow-up durations, 30 and 90 days. Patients aged ≥ 70 years who underwent hip fracture surgery were identified retrospectively via hospital admission and government mortality records. Patients who successfully returned home and were still alive within 90 days of surgery were distinguished from those who were not. Regression models were used to examine which variables were associated with failure to return home and number of days at home among those who did return, within 90 days of surgery. We analysed the records of 825 patients. Median (IQR [range]) number of days at home within 90 days (n = 788) was 54 (0–76 [0–88]) days and within 30 days (n = 797) it was 2 (0–21 [0–28]) days. Out of these, 274 (35%) patients did not return home within 90 days and 374 (47%) within 30 days after surgery. Known peri-operative risk-factors such as older age, pre-operative anaemia and postoperative acute renal impairment were associated with failure to return home. This study supports days alive and at home as a useful patient-centred outcome measure in older adults after hip fracture surgery. We recommend that this metric should be used in clinical trials and measured at 90, rather than 30, postoperative days. As nearly half of this patient population did not return home within 30 days, the shorter time-period catches fewer meaningful events.

Introduction
Recent decades have seen an increasing emphasis on quality assurance in anaesthesia, including not only safety but also patient experience [1–4]. Surgical outcomes are traditionally indicated by mortality or length of hospital stays. However, these endpoints only partially capture a patient’s postoperative recovery journey and quality of survival [2, 3, 5].
‘Days alive and at home’ has three contributing elements: initial acute and subacute hospital stays; duration of any hospital re-admissions and/or new care facility admissions; and mortality. By combining these outcome measures, days alive and at home reflects both quality of life and daily function [3, 6–10]. In older adults, zero days at home can reflect death, prolonged hospitalisation or a permanent move to higher levels of care. Thus, days alive and at home represents a pragmatic, patient-centred outcome measure that approximates the time spent in ‘good’ health [11–13]. Days alive and at home includes multiple postoperative key events and weights early death more than hospitalisation. Unlike many complication-based outcomes in peri-operative research, more days at home are better than fewer days at home.

Days alive and at home has been validated in several surgical populations [11–16] and is used to evaluate outcomes for specific patient factors and surgical procedures. However, there is debate as to the relative value of days alive at home within 30 days of surgery vs. 90 days of surgery; the latter is more complex to collect and may not add important new information for many surgical populations [12–14]. There is currently little research on days alive and at home after hip fracture surgery, one of the most common emergency operations for older adults [17]. This is a high-risk patient group which is likely to have extended hospital stays, multiple complications, frequent re-admissions and high mortality rates [18–20]. We aimed to investigate the utility of days alive and at home within 90 days of surgery as a research metric for patients undergoing surgical repair of hip fracture.

Methods
We conducted a historical cohort study in an Australian metropolitan healthcare network, which comprises two major acute hospitals and two subacute hospitals. The study was approved by the local institution’s human research ethics committee.

Patients aged ≥70 y were included if they were admitted to our primary site for operative management of a hip fracture between July 2011 and July 2015. Patients were not studied if they were managed non-operatively, re-admitted for a second hip fracture within 90 days of their first operation or had incomplete data (this included those who were transferred to an external network and those whose operations were not performed at the primary site within our healthcare network). In cases where included patients had multiple admissions for hip fracture operations, only their first procedure was included.

Patients were identified via the hospital diagnostic-related group database and verified with their electronic medical records through InfoMedix Clinical Patient Folder (InfoMedix Pty Ltd, Melbourne, Australia). Baseline characteristics and peri-operative variables were recorded from this database. Mortality data were obtained from, and correlated against, government records (Victorian Registry of Births, Death and Marriages) as well as their individual electronic medical record for a further year after surgery.

Peri-operative variables (see also online Supporting Information, Appendix S1) included: ASA physical status scores; duration of stay for all admissions and re-admissions within 90 days of surgery; pre-operative residential settings; discharge destinations; presence of pre-operative dementia, anaemia or chronic kidney disease; development of postoperative acute renal impairment; peri-operative blood transfusions or ICU admissions; and timing of surgery (including time of day and whether within 48 h of hospital admission).

We defined ‘home’ as the place where the patient usually resided before their index admission, which could be their own home (privately owned or government housing), living with family or a nursing home.

The primary outcome was the number of days alive and at home at 90 days after surgery (DAH_90). This was calculated by adding the duration of stay in hospital (during both the index admission and any subsequent re-admissions) and periods in post-acute settings (such as rehabilitation wards or a new care facility) between the date of the index operation and the 90th day thereafter, and subtracting the total from the 90-day period. DAH_90 was defined as zero if a patient died during the 90 days, even if they spent time in their home. This definition is consistent with other studies [11–14].

Unfortunately, the current literature lacks consensus on the terminology used for this metric. ‘Days alive and at home’ [12, 13], ‘days alive and out of hospital’ [14–16] and ‘home-to-home days’ [21] are related metrics. To avoid confusion, we proposed to standardise the use of ‘days alive and at home’ for the above metrics, and exclude the time spent in hospital or any new care facilities. Based on this definition, we distinguished patients who successfully returned to their home and were still alive within 90 days of surgery (DAH_90 > 0) from those who did not (DAH_90 = 0).

Our secondary outcome was to assess days alive and at home 30 days postoperatively (DAH_30) (this was calculated similarly to DAH_90); we also aimed to examine which explanatory variables were associated with failure to return home within 90 days, and document the number of days at
home among patients who did return to their home within 90 days.

The distribution of DAH$_{90}$ was both zero-heavy and negatively skewed (Fig. 1a). To account for the zero-heaviness, overdispersion and skew evident in the DAH$_{90}$ data, DAH$_{90}$ was modelled using a zero-adjusted beta-binomial regression [22]. The zero-adjusted model was used to examine association with explanatory variables by estimating it via its component parts as a logistic regression model with failure to return home within 90 days as the outcome, and a zero-truncated beta-binomial regression model with whether a patient was in their home, on any given day, as the outcome (given they had returned to their home). In both models, the logit link function was used for mean parameters, and so estimates of association could be interpreted as OR (95% CI) and associated p values. In the second model, each patient’s 90-day observation period can be regarded as 90 single-day trials, and a ‘day at home’ as a success. The correlation among trials observed on the same patient was accounted for by allowing beta variation in the binomial probability parameter [23].

There was a non-linear relation between age and outcome on the logit scale in both models above. In each case, a smoothing plot indicated that the magnitude of association varied around the 85- and 90-year thresholds. Thus, age was modelled as a categorical effect using these thresholds, and with patients aged 70–85 y as the reference category.

Statistical analysis was conducted using R version 4.0.1 [24]. The gamlss package (version 5.1-6) was used to estimate the zero-truncated beta-binomial regression model and to make overall predictions using a jointly estimated zero-adjusted count model [25, 26].

Results

A total of 1048 older adults were admitted to our primary hospital with a hip fracture during the study period (Fig. 2). Among them, 19 patients had further admissions for...
subsequent hip fractures (18 were admitted twice and one patient three times); only the first admission was included. There were 223 patients who were not studied, including 94 who were conservatively managed and 76 who had operations outside the primary site. Baseline characteristics and peri-operative factors for the remaining 825 patients are summarised in Table 1.

There were 37 patients (4%) who were lost to follow-up at hospital discharge before 90 days and 28 patients (3%) before 30 days. This was primarily due to being discharged to an external healthcare network or having missing information (see also online Supporting Information, Figure S1). As such, their data on days alive and at home were not available for analysis, that is, there were 788 patients remaining for DAH90 and 797 for DAH30 analyses.

The distribution of DAH90 was dominated by the high frequency of patients with a value of zero days (Fig. 1a). Median (IQR [range]) DAH90 was 54 (0–76 [0–88]) days. Out of these patients, 274 (35%) did not return home (DAH90 = 0): 147 patients died and 127 patients remained in hospital or a new care facility within 90 days. Median (IQR [range]) of acute and subacute hospital stays were 8 (6–11 [0–64]) days and 11 (0–27 [0–204]) days, respectively. Re-admission occurred for 108 patients (14%) with median (IQR [range]) re-admission duration of 7 (4–16 [1–73]) days. Out of these, 15 were re-admitted twice and one patient three times. Overall median (IQR [range]) interval between hospital discharge and re-admission was 18 (6–37 [0–82]) days.

Among 514 patients (65%) who survived and returned to their home, median (IQR [range]) DAH90 was 71 (56–83 [4–88]) days. Out of these, 189 (37%) were discharged early (discharged within postoperative 2 weeks) with a majority (167, 88%) returning to their nursing home and only 22 (12%) to their own home.

Overall median (IQR [range]) DAH30 was 2 (0–21 [0–28]) days; among them, 374 patients (47%) did not return home,
including 87 patients who died and 287 who remained in hospital or a new care facility during this period. For those who did return to their home, median (IQR [range]) DAH30 was 20 (10–24 [1–28]) days.

The results for associations between baseline characteristics or peri-operative factors and failure to return home are reported in Table 2. The odds of not returning home increased about two-fold for patients aged ≥85 y, compared with younger patients. We note also that the odds of failure to return home was about one and a half times greater when pre-operative dementia was present, compared with when it was absent. Other factors associated with failure to return home were as follows: male sex; pre-operative anaemia; and postoperative acute renal impairment. There was also a tendency towards an association with increasing ASA physical status.

The results for associations between baseline characteristics or peri-operative factors and number of days at home, among patients who did return home within 90 days, are reported in Table 3. The odds of a patient having an additional day at home increased by 21% among patients aged 85–89 y, compared with younger patients. However, this negative age effect was not apparent among older patients aged >89 y. Moreover, the odds of a patient having an additional day at home increased about two and a half fold when pre-operative dementia was present, compared with when it was absent.

Table 1 Baseline characteristics and peri-operative factors. Values are mean (SD), number (proportion) or median (IQR [range]).

Variables	Values
Age, y	84.7 (6.9)
Male sex	223 (27%)
ASA physical status	
1–2	114 (14%)
3	460 (58%)
≥4	215 (27%)
Postoperative mortality	
In-hospital	58 (7%)
30-day	87 (11%)
90-day	147 (18%)
1-year	239 (29%)
Length of hospital stay in days	
Acute*	8 (6–11 [0–64])
Subacute†	11 (0–27 [0–204])
90-day postoperative re-admissions	
Re-admission duration in days‡	108 (14%)
Interval between hospital discharge and re-admission in days	7 (4–16 [1–73])
Blood transfusion	287 (35%)
Daytime surgery	566 (69%)
Pre-operative chronic kidney disease stage	
3	365 (45%)
4 or 5	64 (8%)
Pre-operative residential setting	
Nursing home§	342 (42%)
Own home	475 (58%)
Returned to own home for those originating from there	
At 30 postoperative days	173 (38%)
At 90 postoperative days	288 (65%)
Pre-operative dementia	297 (36%)
Pre-operative residential setting of those with dementia	
Nursing home§	239 (80%)
Own home	58 (20%)
Direct discharge destination¶	
Original nursing home	257 (76%)
Own home	20 (6%)
External hospital/new nursing home	32 (9%)
In-hospital death	28 (8%)

HLCNH, high level care nursing home; LLCNH, low level care nursing home.
*Length of hospital acute stays during the initial hospitalisation and subsequent 90 postoperative day re-admissions after excluding the 37 patients with incomplete data.
†Length of hospital subacute stays during the initial hospitalisation and subsequent 90 postoperative day re-admissions after excluding the 37 patients with incomplete data.
‡Length of hospital stays during the hospital re-admissions within 90 postoperative days after excluding the 37 patients with incomplete data.
§Nursing home includes HLCNH and LLCNH.
¶Hospital discharge from the initial acute care during the index admission.

©2022 The Authors. Anaesthesia published by John Wiley & Sons Ltd on behalf of Association of Anaesthetists.
We evaluated the number of days alive and at home within 90 days of hip fracture surgery. We found that a third of our cohort either died or spent more than 90 days away from their home in hospital or a new care facility, and that even if they did eventually return home, patients often spent weeks to months away from their home. Due to the lengthy time away from home, we found the DAH90 of greater value than the DAH30 metric.

Our cohort were old, had significant comorbidity and were undergoing non-elective surgery; these are all risk-factors for complications, prolonged hospital stays and mortality [14, 18, 27, 28]. Our patients spent a median of 32 fewer days at home during the first 90 days compared with other studies that reported a median DAH90 of about 86 days for a wide range of surgery in younger cohorts [11–13]. This difference was more pronounced at day 30, with a median DAH30 of only 2 days compared with studies of other surgical cohorts with a median of 26 days [11–13]. After excluding those who died, the proportion of patients not returning home was 40% at 30 days and 19% at 90 days postoperatively, suggesting that there was a large number of patients who returned to their home after 30 days. With far fewer patients leaving hospital, DAH30 is less likely to capture meaningful events, such as postoperative complications and re-admissions, than DAH90. Furthermore,
most patients in our study who were admitted from their own home (rather than a nursing home) spent a significant period in subacute and rehabilitation wards in hospital. Only 38% of these patients returned home during the first 30 days, compared with 65% during the first 90 days, again supporting DAH$_{90}$ as the preferred metric for this patient group.

Consistent with previous studies [27–31], we found DAH$_{90}$ sensitive to risk factors for adverse surgical outcomes including postoperative complications, mortality and rehabilitation in hip fracture patients. Story et al. [32] reported that acute renal impairment with even a mild increase in serum creatinine of 20% or more was associated with a significant mortality risk in older adults undergoing a range of surgical procedures. Similarly, our study has also shown an association of reduced DAH$_{90}$ using this lower threshold of defining kidney injury. As such, we recommend using this lower threshold to define acute kidney injury for older surgical patients, which may alert clinicians to diagnose and treat otherwise unrecognised kidney injury in a timely manner.

Patient factors such as older age, male sex, presence of pre-operative anaemia and development of postoperative acute renal impairment were all associated with failing to return home. However, patients living with dementia were more likely to spend less time in hospital, usually returning to supported care, compared with those without dementia. Pre-operative dementia was associated with increased frequency of failure to return home; however, when they did return, patients with dementia actually had greater DAH$_{90}$. This may appear contradictory; however, over 80% of patients with dementia were admitted from a nursing home and returned there. Although living with dementia is a risk-factor for failure to return home, the level of care provided at their pre-operative residence, and possibly combined with limitations of medical treatment, may have led to earlier hospital discharge compared with those who lived in their own residence.

Despite having few modifiable risk-factors identified in this study, DAH$_{90}$ can be a useful communication tool to convey patients’ risks of failure to return to their home after surgery. For the majority of older patients and their families, postoperative daily function, and being able to return to their home are the most important surgical outcomes [33]. Given the high-risk nature of these older adults, it is especially important to have discussions about goals of care and establish reasonable expectations. Hence, DAH$_{90}$ may be a useful decision aid for shared decision-making and informed consent tool for patients and clinicians.

Current research shows a lack of consensus regarding which outcomes should be reported for patients undergoing hip fracture surgery and how these outcomes should be defined and measured [34]. A core outcome set for patients undergoing hip fracture surgical procedures has been advocated [35], with the timing of surgery scored the highest as critical for inclusion in the future studies. However, the lack of consistent definitions and the heterogeneity in outcome measures have made it difficult for comparative effectiveness research to be conducted in this most-needed patient group [36]. For example, ‘early surgery’ is recommended in the current guidelines [37], but its definition varies from 6 to 72 h [38]. Although we could not demonstrate that DAH$_{90}$ gained benefit from early surgery, this is further evidence to support the call for consistent definitions and for standardising outcomes to be measured and reported, which plays a fundamental role in making comparative effectiveness research as well as future pooling of data possible. Accordingly, we propose to select from the recommended set of 10 core outcomes as secondary endpoints in all peri-operative trials that evaluate their effects on DAH$_{90}$ after hip fracture surgery [35].

Unlike previous studies that approximated length of stay of post-acute hospitalisation for different groups of surgical patients [12–14], we were able to accurately calculate individual days alive and at home based on their length of stay in post-acute care settings and record an accurate picture of most patients’ care settings and durations after discharge. The exception was for the 37 patients who were lost to follow-up at hospital discharge. As they only accounted for a very small proportion of our cohort (4%), their data were used for descriptive statistics only, that is, days alive and at home results excluded these patients.

Moreover, we defined ‘home’ as the place where the patient usually resided before the index admission (nursing or own home) and a ‘new care facility’ where the patient received a higher level of care than that of pre-operative residence, and possibly combined with limitations of medical treatment, may have led to earlier hospital discharge compared with those who lived in their own residence.

Despite having few modifiable risk-factors identified in this study, DAH$_{90}$ can be a useful communication tool to convey patients’ risks of failure to return to their home after surgery. For the majority of older patients and their families, postoperative daily function, and being able to return to their home are the most important surgical outcomes [33]. Given the high-risk nature of these older adults, it is especially important to have discussions about goals of care and establish reasonable expectations. Hence, DAH$_{90}$ may be a useful decision aid for shared decision-making and informed consent tool for patients and clinicians.

Current research shows a lack of consensus regarding which outcomes should be reported for patients undergoing hip fracture surgery and how these outcomes should be defined and measured [34]. A core outcome set for patients undergoing hip fracture surgical procedures has been advocated [35], with the timing of surgery scored the highest as critical for inclusion in the future studies. However, the lack of consistent definitions and the heterogeneity in outcome measures have made it difficult for comparative effectiveness research to be conducted in this most-needed patient group [36]. For example, ‘early surgery’ is recommended in the current guidelines [37], but its definition varies from 6 to 72 h [38]. Although we could not demonstrate that DAH$_{90}$ gained benefit from early surgery, this is further evidence to support the call for consistent definitions and for standardising outcomes to be measured and reported, which plays a fundamental role in making comparative effectiveness research as well as future pooling of data possible. Accordingly, we propose to select from the recommended set of 10 core outcomes as secondary endpoints in all peri-operative trials that evaluate their effects on DAH$_{90}$ after hip fracture surgery [35].

Unlike previous studies that approximated length of stay of post-acute hospitalisation for different groups of surgical patients [12–14], we were able to accurately calculate individual days alive and at home based on their length of stay in post-acute care settings and record an accurate picture of most patients’ care settings and durations after discharge. The exception was for the 37 patients who were lost to follow-up at hospital discharge. As they only accounted for a very small proportion of our cohort (4%), their data were used for descriptive statistics only, that is, days alive and at home results excluded these patients.

Moreover, we defined ‘home’ as the place where the patient usually resided before the index admission (nursing or own home) and a ‘new care facility’ where the patient received a higher level of care than that of pre-operative residence, and possibly combined with limitations of medical treatment, may have led to earlier hospital discharge compared with those who lived in their own residence.

Despite having few modifiable risk-factors identified in this study, DAH$_{90}$ can be a useful communication tool to convey patients’ risks of failure to return to their home after surgery. For the majority of older patients and their families, postoperative daily function, and being able to return to their home are the most important surgical outcomes [33]. Given the high-risk nature of these older adults, it is especially important to have discussions about goals of care and establish reasonable expectations. Hence, DAH$_{90}$ may be a useful decision aid for shared decision-making and informed consent tool for patients and clinicians.
Acknowledgements

This study was funded by a project grant from the Australian and New Zealand College of Anaesthetists Research Foundation. Open access publishing facilitated by The University of Melbourne, as part of the Wiley – The University of Melbourne agreement via the Council of Australian University Librarians. The authors thank Dr A. Khaleque, Dr C. Farag, Dr P. Chan, Dr T. Lee, Dr J. Duke and Ms A. Skiller for assistance with data collection, in particular Dr A. Khaleque who made a great contribution to data collection and collation. No competing interests declared.

References

1. Fung D, Cohen MM. Measuring patient satisfaction with anesthesia care: a review of current methodology. Anesthesia and Analgesia 1998; 87: 1089–98.
2. Shulman M, Myles P. Measuring perioperative outcome. Current Opinion in Anesthesiology 2016; 29: 733–8.
3. Kalkman C, Kappen T. Patient-centered endpoints for perioperative outcomes research. Anesthesiology 2015; 122: 481–3.
4. Boney O, Nathanson M, Grocott M, Metcalf L. Differences between patients' and clinicians' research priorities from the Anaesthesia and Peri-operative Care Priority Setting Partnership. Anaesthesia 2017; 72: 1134–8.
5. Myles P. More than just morbidity and mortality – quality of recovery and long-term functional recovery after surgery. Anaesthesia 2020, 75: e143–e150.
6. Groff A, Colla C, Lee T. Days spent at home — a patient-centered goal and outcome. New England Journal of Medicine 2016; 375: 1610–2.
7. Birkmeyer J, Gust C, Dimick J, Birkmeyer N, Skinner J. Hospital quality and the cost of inpatient surgery in the United States. Annals of Surgery 2012; 255: 1–5.
8. Graham LA, Mull HJ, Wagner TH, et al. Comparison of a potential hospital quality metric with existing metrics for surgical quality-associated readmission. Journal of the American Medical Association Network Open 2019; 2: e191313.
9. Glance L, Kellermann A, Osler T, et al. Hospital readmission after noncardiac surgery. Journal of the American Medical Association 2014; 149: 439.
10. Hinami K, Bilmoria K, Kallas P, Simons Y, Christensen N, Williams M. Patient experiences after hospitalizations for elective surgery. American Journal of Surgery 2014; 207: 855–62.
11. Jerath A, Austin PC, Wijeysundera DN. Days alive and out of hospital: validation of a patient-centered outcome for perioperative medicine. Anesthesiology 2019; 131: 84–93.
12. Myles PS, Shulman MA, Heritier S, et al. Validation of days at home as an outcome measure after surgery: a prospective cohort study in Australia. British Medical Journal Open 2017; 7: e015828.
13. Bell M, Eriksson LI, Svensson T, et al. Days at home after surgery: an integrated and efficient outcome measure for clinical trials and quality assurance. EBiomedicine 2019; 11: 18–26.
14. Spurling LJ, Moonesinghe SR, Oliver CM. Validation of the days alive and out of hospital outcome measure after emergency laparotomy: a retrospective cohort study. British Journal of Anaesthesia 2022; 128: 449–56.
15. Jørgensen CC, Petersen PB, Kehlet H, et al. Days alive and out of hospital after fast-track total hip and knee arthroplasty: an observational cohort study in 16137 patients. British Journal of Anaesthesia 2019; 123: 671–8.
16. Scott S, Madsen A, Rubek N, Kehlet H, von Buchwald C. Days alive and out of hospital after treatment for oropharyngeal squamous cell carcinoma with primary transoral robotic surgery or radiotherapy – a prospective cohort study. Acta Oto-Laryngologica 2020; 141: 193–6.
17. Australian Institute of Health and Welfare. Admitted patient care 2017–18: Australian hospital statistics. Health services series no. 90. Cat. no. HSE 225. 2019. https://www.aihw.gov.au/getmedia/d0bad115-5dd8-a556-94fa-c9ab6869e18/aihw-hse-225.pdf (accessed 13/02/2022).
18. Callum K, Gray A, Holle R, et al. Extremes of age. The 1999 report of the National Confidential Enquiry into Perioperative Deaths. 1999. https://www.ncepod.org.uk/1999report/99full.pdf (accessed 13/02/2022).
19. National Hip Fracture Database. Annual report. 2019. http://www.nhfd.co.uk/003/hipfractureR.nsf/luMenuDefinitions/CA920122A244F2ED802579C00553993/$file/NHFD%20Report%202013.pdf?OpenElement (accessed 13/02/2022).

20. Veronesi N, Maggi S. Epidemiology and social costs of hip fracture. Injury 2018; 49: 1458–60.

21. Barnett M, Grabowski D, Mehrrota A. Home-to-home time — measuring what matters to patients and payers. New England Journal of Medicine 2017; 377: 4–6.

22. Neelon B, O’Malley AJ, Smith VA. Modeling zero-modified count and semicontinuous data in health services research part 1: background and overview. Statistics in Medicine 2016; 35: 5070–93.

23. Agresti A. Categorical Data Analysis. 3rd ed. New York: Wiley, 2002.

24. R Core Team. R: a language and environment for statistical computing. 2021. https://www.R-project.org (accessed 13/02/2022).

25. Rigby RA, Stasinopoulos DM, Heller GZ, De Bastiani F. Distributions for Modeling Location, Scale, and Shape: Using GAMLSS in R. Boca Ratun, FL: Chapman and Hall/CRC, 2020.

26. Stasinopoulos DM, Rigby RA, Voudouris V, Akantziliotou C, Enea M, Kiose D. Generalized additive models for location scale and shape (GAMLSS) in R. 2021. https://CRAN.R-project.org/package=gamlss (accessed 13/02/2022).

27. Stoneham M, Murray D, Foss N. Emergency surgery: the big three - abdominal aortic aneurysm, laparotomy and hip fracture. Anaesthesia 2013; 69: 70–80.

28. Johansen A, Tsang C, Boulton C, Wakeman R, Moppett I. Understanding mortality rates after hip fracture repair using ASA physical status in the National Hip Fracture Database. Anaesthesia 2017; 72: 961–6.

29. Brauner Christensen J, Aasbrenn M, Sandoval Castillo L, et al. Predictors of acute kidney injury after hip fracture in older adults. Geriatric Orthopaedic Surgery and Rehabilitation 2020; 11: 2151459320920088.

30. Roche J, Wern R, Sahota O, Moran C. Effect of comorbidities and postoperative complications on mortality after hip fracture in elderly people: prospective observational cohort study. British Medical Journal 2005; 331: 1374.

31. Foss N, Kristensen M, Kehlet H. Prediction of postoperative morbidity, mortality and rehabilitation in hip fracture patients: the cumulated ambulation score. Clinical Rehabilitation 2006; 20: 701–8.

32. Story DA, Leslie K, Myles PS, et al. Complications and mortality in older surgical patients in Australia and New Zealand (the REASON study): a multicentre, prospective, observational study. Anaesthesia 2010; 65: 1022–30.

33. Salkeld G, Cameron ID, Cumming RG, et al. Quality of life related to fear of falling and hip fracture in older women: a time trade off study. British Medical Journal 2000; 320: 341–6.

34. O’Donnell CM, McLoughlin L, Patterson CC, et al. Perioperative outcomes in the context of mode of anaesthesia for patients undergoing hip fracture surgery: systematic review and meta-analysis. British Journal of Anaesthesia 2018; 120: 37–50.

35. O’Donnell CM, Black N, McCourt KC, et al. Development of a Core Outcome Set for studies evaluating the effects of anaesthesia on perioperative morbidity and mortality following hip fracture surgery. British Journal of Anaesthesia 2019; 122: 120–30.

36. Coburn M, Sanders R, Neuman M, Rossaint R, Matot I. We may have improved but we must get better still: the never-ending story of the elderly with fractured neck of femur. European Journal of Anaesthesiology 2017; 34: 115–7.

37. Australian and New Zealand Hip Fracture Registry (ANZHFR) Steering Group. Australian and New Zealand guideline for hip fracture care: improving outcomes in hip fracture management of adults. Technical report. 2014. https://anzhfr.org/wp-content/uploads/sites/1164/2021/12/ANZ-Guideline-for-Hip-Fracture-Care.pdf (accessed 23/03/2022).

38. Kiesl T, Röder C, Stotter C, et al. Impact of timing of surgery in elderly hip fracture patients: a systematic review and meta-analysis. Scientific Reports 2018; 8: 13933.

39. Van Houtven CH, Smith VA, Sperber NR, Coffman CJ, Hastings SN. Advancing the science of population-based measures of home-time. Healthcare (Amsterdam, Netherlands) 2020; 8: 100463.

Supporting Information

Additional supporting information may be found online via the journal website.

Appendix S1. Peri-operative variables and definitions.

Figure S1. Timeline of patients’ discharge journey and destination after surgery. * Postoperative acute or subacute care in hospital setting. † Post-acute care in hospital or a new care facility setting.