Direct Observation of the Rotation of ε Subunit in F₁-ATPase

Yasuyuki Kato-Yamada, Hiroyuki Noji, Ryohi Yasuda, Kazuhiro Kinosita Jr., and Masasuke Yoshida

From the Research Laboratory of Resources Utilization, Tokyo Institute of Technology, 4259 Nagatsuta, Yokohama, 226-8503, Japan, the Department of Physics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan, and CREST (Core Research for Evolutional Science and Technology) Genetic Programming Team 13, Teikyo University Biotechnology Research Center 3F, 907 Nagawa, Miyamae, Kawasaki 216-0011, Japan

Rotation of the ε subunit in F₁-ATPase from thermophilic Bacillus strain PS3 (TF₁) was observed under a fluorescence microscope by the method used for observation of the γ subunit rotation (Noji, H., Yasuda, R., Yoshida, M., and Kinosita, K., Jr. (1997) Nature 386, 299–302). The αβγε complex of TF₁ was fixed to a solid surface, and fluorescently labeled actin filament was attached to the ε subunit through biotin-streptavidin. In the presence of ATP, the filament attached to ε subunit rotated in a unidirection. The direction of the rotation was the same as that observed for the γ subunit. The rotational velocity was slightly slower than the filament attached to the γ subunit, probably due to the experimental setup used. Thus, as suggested from biochemical studies (Aggelier, R., Ogilvie, L., and Capaldi, R. A. (1997) J. Biol. Chem. 272, 19621–19624), the ε subunit rotates with the γ subunit in F₁-ATPase during catalysis.

F₂F₁-ATP synthase catalyzes ATP synthesis coupled with the proton flow across the energy-transducing membranes such as the plasma membrane of bacteria, mitochondrial inner membrane, and thylakoid membrane of chloroplast (1–4). F₁-ATPase is the water-soluble portion of F₀F₁-ATP synthase and contains a catalytic core for ATP synthesis and hydrolysis. The F₁-ATPase consists of five kinds of subunits with a stoichiometry of αβγεδ1. The catalytic sites of ATP synthesis and hydrolysis are located mainly on the β subunits, and noncatalytic nucleotide binding sites are located mainly on the α subunits (5). The αβγε complex of F₁-ATPase is regarded as a minimum stable complex which has catalytic features similar to F₂-ATPase (6–8). Three catalytic sites of F₁-ATPase exhibit strong negative cooperativity in ATP binding and positive cooperativity in ATP hydrolysis. To explain these characteristics, a binding change mechanism was proposed (3, 4) and has been widely accepted. In the binding change mechanism, all three β subunits in F₂F₁-ATP synthase are in different states at a given moment and alternately exchange their states during ATP synthesis and hydrolysis. The physical rotation of the γ subunit within the αβγε complex is hypothesized as a mechanism for the binding change to occur (3), and a crystal structure of bovine mitochondrial F₁-ATPase in which a cylinder of the αβγε complex is penetrated by the coiled-coil structure of the γ subunit gave the hypothesis more reality (5). Biochemical (9, 10) and optical (11) analyses provided support for the rotation of the γ subunit, and finally, the rotation was directly observed as the rotation of a fluorescently labeled actin filament attached to the γ subunit (12). Driven by ATP hydrolysis, the γ subunit rotated for several minutes in the direction predicted from the crystal structure of bovine mitochondrial F₁. To obtain further insight into the mechanism of this enzyme, it is necessary to identify each subunit of F₂F₁-ATP synthase as either a rotor or stator subunit.

The ε subunit, the smallest subunit of bacterial and chloroplast F₂-ATPases, is an endogenous ATPase inhibitor (14–16). According to recent structural analyses, the ε subunit of Escherichia coli F₂-ATPase consists of an N-terminal β-sandwich and a C-terminal α-helical domain (17, 18). The ε subunit interacts with the γ subunit (19) and the analysis of a chimeric complex from a thermophilic Bacillus PS3 (TF₁) and chloroplast F₁-ATPase indicated that the ε subunit affects the ATPase activity of F₂-ATPase through the γ subunit (20). The subunit interface between the γ and ε subunits has been explored by the cross-linking and chemical modification (21, 22), and recent work by Aggelier et al. (23) suggested that the ε subunit rotates together with the γ subunit. Previously we reported that the inhibitory effect of the ε subunit on ATPase activity of TF₁ was observed only at low concentrations of ATP. Unlike the case of E. coli F₂-ATPase where the ε subunit tends to dissociate from F₂-ATPase during multiple turnovers of ATPase reaction, the ε subunit of TF₁ remains associated with the αβγε portion during catalysis (24). Taking advantage of this stable association of the ε subunit, we observed directly the rotation of the ε subunit in TF₁.

EXPERIMENTAL PROCEDURES

Preparation of the Mutant αβγε Complex and ε Subunit of TF₁—Wild-type ε subunit of TF₁, does not contain cysteine. To ensure specific modification, a mutant ε subunit (H38C) of TF₁ was generated by the method of Kunkel et al. (25). A primer oligonucleotide (5′-AAGCGGAATGCATCCCGGCAAAATG-3′) which contained substitution corresponding to H38C mutation and a new EcoT22I site, the αβγε complex of TF₁ with streptavidin bound to biotinylated γ-Cys-107; αβγεκε, a complex of αβγεκ and the wild-type ε subunit; αβγεκα, a mutant (αC193S, βS107C, His₁₈₉-Tag in N terminus of the β subunit) αβγε complex of TF₁ with streptavidin bound to biotinylated ε-Cys-38; SA, streptavidin; DTT, dithiothreitol; AMPPNP, adenosine 5′-(β,γ-imino)triphosphate; Ni-NTA, nickel-nitrilotriacetic acid.

This paper is available on line at http://www.jbc.org

¶ This work was supported in part by Grant 07458158 from the Ministry of Education, Science, and Culture of Japan and grants from CREST (Core Research for Evolutional Science and Technology). The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

‡ Supported by Research Fellowships of the Japan Society for the Promotion of Science for Young Scientists.

** To whom correspondence should be addressed: Research Laboratory of Resources Utilization, R-1, Tokyo Institute of Technology, 4259 Nagatsuta, Yokohama, 226-8503, Japan. Tel.: 81-45-924-5233; Fax: 81-45-924-5277; E-mail: myoshida@res.titech.ac.jp.
was used to introduce mutation to the expression plasmid of TF, α, pTE2 (24). The mutant α subunit was expressed in E. coli BL21(DE3) and purified as described previously (20) except that all buffers contained 1 mM DTT. The expression plasmid for the cysteine-less, His-tagged mutant (αC193S, Hisγ4 tags in β N termini) αβγ complex was generated from the expression plasmid used for the observation of the rotation of the γ subunit (12). Its BgIII-NheI fragment was exchanged by that of wild-type plasmid (pKABG1) (7), and the mutation γS107C was reverted to serine. The αβγ complex was purified as described previously (7).

Preparation of Streptavidin-attached αβγγ Complex of TF—Purified αβγγ complex was incubated at 23 °C with 2 mM DTT for 15 min and passed through a Sephacryl G-25M column equilibrated with 50 mM Tris-HCl (pH 8.0) and 100 mM KCl. Then, 50 mM N-[2-(N-maleimidomethyl)-ethyl]-N-piperazinyl-d-biotinamide (Dedingo) dissolved in dimethyl sulfoxide was added to the γ subunit solution (100 μM) to give a final concentration of 1 mM and incubated for 2 h at 23 °C. The reaction was quenched by the addition of 7 mM DTT. The biotinylated γ subunit was allowed to bind to the αβγ complex, and the αβγγ complex formed was purified as described previously (24). The αβγ complex obtained was then mixed with 10 molar excess of streptavidin (SA) and incubated for 20 min at 23°C. Excess streptavidin was removed by G4000SWXL (Tosoh) gel filtration high performance liquid chromatography, and the fraction containing the αβγγSA complex (the superscript SA designates the subunit labeled with biotin-streptavidin) complex was concentrated by Microcon-100 (Amicon).

Observation of Rotation—The rotation of the γ and γ subunits was observed by the same experimental setup as that used for the rotation of the γ subunit in the previous report (12, 13, Fig. 1). The ATP concentration was fixed at 2 mM in an ATP regenerating system, containing 0.2 mg/ml creatine kinase and 2.5 mM creatine phosphate. Rotation was observed at 23° C on an inverted fluorescence microscope (IX70, Olympus), and images were recorded with an SIT camera (C2741-08, Hamamatsu Photonics) on an 8-mm video tape. The rotation angle of the filament was estimated from the circular movement of the centroid of the filament image calculated using a digital image processor (DIPS-C2000, Hamamatsu Photonics) (12, 13).

Other Materials and Procedures—For a control, αβγγ-SA in which streptavidin was attached to the biotinylated γ-Cys-107 was prepared from the mutant (αC193S, γS107C, Hisγ4 tags in β N termini) αβγ complex as described (12, 13). A αβγγγ-SA complex was reconstituted from αβγγ-SA and the wild-type γ subunit (24). The purity of the complexes was checked by 6% polyacrylamide gel electrophoresis without a denaturing reagent (24). ATPase activity was measured at 23°C in the presence of an ATP regenerating system in 10 mM MOPS-KOH (pH 7.0) buffer containing 50 mM KCl, 4 mM MgCl2, 50 μg/ml pyruvate kinase, 50 μg/ml lactate dehydrogenase, 2.5 mM phosphoenolpyruvate, 0.2 mM NADH, and 2 mM ATP. Steady-state ATPase activities of the (αC193S, His-tag)-αβγγ complex and the (αC193S, His-tag)-αβγ complex were almost the same; 57 s⁻¹ and 58 s⁻¹ (expressed as a turnover rate), respectively. Rabbit skeletal actin filaments were biotinylated and stained with phalloidin-tetramethylrhodamine B isothiocyanate conjugate (as in Ref. 12 but without cross-linking). Streptavidin was purchased from Sigma as lyophilized powder. Experimental procedures of recombinant DNA were performed as described in a manual (26). E. coli strain JM109 (27) was used for the preparation of plasmids, and the strain CJ236 (25) was used for the generation of single-stranded plasmids for site-directed mutagenesis. Protein concentrations were determined by the method of Bradford (28) using bovine serum albumin as a standard or from the UV absorbance using an absorbance 0.45 at 280 nm for 1 mg/ml of the subunit complexes of TF, (29). Polycrystalline gel electrophoresis in the presence of 0.1% sodium dodecyl sulfate was performed as described by Laemmli (30).

RESULTS AND DISCUSSION

Experimental Setup—Three kinds of subunit complexes were used for experiments; the (αC193S, εH38C, His-tag) αβγε complex for observing the rotation of the ε subunit, the (αC193S, γS107C, His-tag) αβγγ complex and the (αC193S, γS107C, His-tag) αβγ complexes for observing the rotation of the γ subunit. Ten histidine tags at the N terminus of the β subunits were used for the immobilization of the complex on a solid surface, and α-C193S was for elimination of unwanted cysteine residues to ensure the specificity of the biotinylation (among five kinds of subunits of the wild-type TF, only the α subunit contains a cysteine residue, α-Cys-193). In addition to these two mutations, we introduced a cysteine at the position ε-His38 which is supposed to face the F0 side (opposite to the N termini of α and β subunits) in the structure of F1-ATPase (31). The biotinylation at ε-Cys-38 did not impair the ability of the ε subunit to associate with the αβγγ complex to form the αβγε complex. Polyacrylamide gel electrophoresis without a denaturing reagent, in which two (αβγγ and αβγγε) complexes were electrophoresed as separate bands (24), gave only a single band at a corresponding position, ensuring the homogeneity of each complex prepared. After streptavidin was bound to the introduced biotin, we fixed αβγγε-SA to the beads which adhered on the glass plate, and a fluorescently labeled, biotinylated actin filament was attached to the ε subunit through biotin-streptavidin-biotin (Fig. 1). Fixation and actin filament attachment to αβγγε-SA and αβγγε were carried out in the same way.

Characteristics of the Rotation—When 2 mM ATP was supplied, continuous rotation of the actin filament attached to αβγγε-SA was observed (Fig. 2). Rotation was absolutely dependent on ATP hydrolysis. In the absence of ATP, or in the presence of 2 mM ATP + 10 mM NaN3 which inhibits ATPase activity of TF1, no continuous rotation was observed (data not shown). The number of the rotating actin filaments per total actin filaments was less than 1%, 4- to 5-fold lower than the number observed for actin filaments attached to αβγγSA. If the connection between the γ and ε subunits is weak, a rotating actin filament would be detached in a short time from the complex by the hydrodynamic frictional load. However, because the duration of the rotation which sometimes continued more than 5 min was apparently similar to the case when an actin filament was attached to the γ subunit, the γ-ε intersubunit connection might be strong enough to bear the hydrodynamic friction on the actin filament. The rotation was anti-clockwise when viewed from the membrane side. This direction is the same as that observed for the rotation of an actin filament attached to the γ subunit (12). According to the crystal structure of the bovine mitochondrial F1 (5), when the (ε and γ) subunit(s) rotates in this direction, one β subunit experiences the transition in the order expected in the ATP hydrolysis reaction, AMPPNP-bound form, ADP-bound form, and empty form.

In the plot of rotational rate versus filament length (Fig. 3),
Hydrodynamic friction was calculated by (33–35), the stant torque (hydrodynamic friction) value in pN·nm indicated on the scale.

\[\tau = \frac{1}{2} \rho \omega^2 r^2 L \]

where \(\rho \) is the density of the medium, \(\omega \) is the angular velocity, \(r \) is the radius of the filament, and \(L \) is the length of the filament.

we notice the tendency that the rotation of the filament attached to \(\alpha_3\beta_2\gamma^{SA} \) is somewhat slower than that of the filament attached to \(\alpha_3\beta_2\gamma^{SB} \) or to \(\alpha_3\beta_2\gamma^{SA}\epsilon \). As a consequence, the apparent torque needed for rotation (12, 32) of the filament attached to \(\alpha_3\beta_2\gamma^{SA} \) at the observed rate was at most \(-25\) pN·nm smaller than the corresponding values for \(\alpha_3\beta_2\gamma^{SB} \) and \(\alpha_3\beta_2\gamma^{SA}\epsilon \) \(-40\) pN·nm (Fig. 3). Because the cross-linking between the \(\gamma \) and \(\epsilon \) subunits has little effect on ATPase activity (33–35), the \(\gamma \) and \(\epsilon \) subunits are supposed to rotate together at the same angular velocity. The fact that rotational rates of the \(\gamma \) subunit in \(\alpha_3\beta_2\gamma^{SA}\epsilon \) and in \(\alpha_3\beta_2\gamma^{SA} \) were the same with each other (Fig. 3) suggests that the presence of the \(\epsilon \) subunit in the \(\alpha_3\beta_2\gamma^{SA} \) complex does not impede the rotation of the \(\gamma \) subunit. Therefore, the apparent difference in the rotational rates between the \(\epsilon \)-attached filament and the \(\gamma \)-attached filament appears to be caused from an experimental artifact at present.

If an actin filament can bind to the \(\epsilon \) subunit at Cys-38 only with nonhorizontal, downward angle (when a complex is viewed as in Fig. 1B), increased hydrodynamic friction near the surface (32) might slow the rotation of the filament. Another possible cause is the biotin-streptavidin connection through the single bond between the \(\epsilon \) subunit and the actin filament. In principle, a single bond allows free rotation around the bond axis, and the rotation of the \(\epsilon \) subunit in \(\alpha_3\beta_2\gamma^{SA} \) may not be transmitted at 100% efficiency to the rotation of the actin filament, resulting in the apparent slow rotation. This could happen to the rotation of the \(\gamma \) subunit-attached filament, but fortunately it seems not.

In summary, we show here exclusive evidence that the \(\epsilon \) subunit rotates in F1-ATPase relative to the \(\alpha_3\beta_2 \) hexagon ring during catalysis. Further identification of the rotor and the stator subunits is required to know the coupling mechanism of F0F1-ATP synthase.

REFERENCES

1. Senior, A. E. (1988) Physiol. Rev. 68, 177–231
2. Futai, M., Noumi, T., and Maeda, M. (1989) Annu. Rev. Biochem. 58, 111–136
3. Boyer, P. D. (1993) Biochim. Biophys. Acta 1149, 215–250
4. Boyer, P. D. (1997) Annu. Rev. Biochem. 66, 717–749
5. Abrahams, J. P., Leslie, A., Lutter, R., and Walker, J. E. (1994) Nature 370, 621–628
6. Yokoyama, K., Hisabori, T., and Yoshida, M. (1989) J. Biol. Chem. 264, 21837–21841
7. Matsui, T., and Yoshida, M. (1995) Biochim. Biophys. Acta 1231, 139–146
8. Kishihara, C., Matsui, T., Hisabori, T., and Yoshida, M. (1996) J. Biol. Chem. 271, 2433–2438
9. Duncan, T. M., Bulygin, V. V., Zhou, Y., Hutcheon, M. L., and Cross, R. L. (1995) Proc. Natl. Acad. Sci. U. S. A. 92, 10964–10968
10. Zhou, Y., Duncan, T. M., Bulygin, V. V., Hutcheon, M. L., and Cross, R. L. (1996) Biochim. Biophys. Acta 1275, 96–100
11. Suhbret, D., Engelbrecht, S., and Junge, W. (1996) Nature 381, 623–625
12. Noji, H., Yasuda, R., Yoshida, M., and Kinoshita, K., Jr. (1997) Nature 386, 299–302
13. Yasuda, R., Noji, H., Kinoshita, K., Jr., and Yoshida, M. (1998) Cell 93, 1117–1124
14. Smith, J. B., and Sternweis, P. C. (1977) Biochemistry 16, 306–311
15. Laget, P. P., and Smith, J. B. (1979) Arch. Biochem. Biophys. 197, 83–89
16. Nelson, N., Nelson, H., and Racker, E. (1972) J. Biol. Chem. 247, 7657–7662
17. Wilkens, S., Dahlquist, F. W., McIntosh, L. P., Donaldson, L. W., and Capaldi, R. A. (1995) Nat. Struct. Biol. 2, 961–967
18. Uhlin, U., Cox, G. B., and Buss, J. M. (1997) Structure 5, 1219–1230
19. Dunn, S. D. (1992) J. Biol. Chem. 267, 7346–7359
20. Hisabori, T., Kato, Y., Motohashi, K., Kroth-Pancic, P., Strotmann, H., and Yoshida, M. (1997) Biochim. Biophys. Acta 1319, 177–184
21. Aggerler, R., Oglivie, I., and Capaldi, R. A. (1997) J. Biol. Chem. 272, 19021–19024
22. Kato, Y., Matsui, T., Tanaka, N., Muneyuki, E., Hisabori, T., and Yoshida, M. (1997) J. Biol. Chem. 272, 24906–24912
23. Kunkel, T. A., Bebenek, K., and McClary, J. (1991) Methods Enzymol. 204, 125–139
24. Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, 2nd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
25. Yanisch-Perron, C., Vieira, J., and Messing, J. (1985) Gene 33, 103–119
26. Bradford, M. M. (1976) Anal. Biochem. 72, 248–254
27. Yoshida, M., Sone, N., Hirata, H., and Kagawa, Y. (1977) J. Biol. Chem. 252, 3480–3485
28. Laemmli, U. K. (1970) Nature 227, 680–685
29. Aggerler, R., Weinreich, F., and Capaldi, R. A. (1995) Biochim. Biophys. Acta 1230, 62–68
30. Hunt, A. J., Gittes, F., and Howard, J. (1994) Biophys. J. 67, 766–781
31. Aggerler, R., Chicas-Cruz, K., Cai, S.-X., Kean, J. F. W., and Capaldi, R. A. (1992) Biochemistry 31, 2956–2961
32. Watts, S. D., Tang, C., and Capaldi, R. A. (1996) J. Biol. Chem. 271, 28341–28347
33. Schuernberg, B., Wellner, F., Lili, H., Junge, W., and Engelbrecht, S. (1997) Eur. J. Biochem. 249, 134–141