Pneumocystis jirovecii Pneumonia in a Non-small Cell Lung Cancer Patient on Chemoradiotherapy: A Case Report

Kevin Doello, Víctor Amezcua, Javier García, Javier Valdivia
Service of Medical Oncology, Virgen De Las Nieves Hospital, Granada, Spain

Abstract

Pneumocystis jirovecii pneumonia is a very uncommon complication in lung cancer patients. We report the case of a 59-year-old, Stage IIIIB non-small cell lung cancer (epidermoid) patient who was receiving concurrent chemotherapy scheme (cisplatin + vinorelbine) and radiotherapy and developed fever and dyspnea not controlled with classical antibiotics. The patient developed respiratory distress. A high-resolution computed tomography showed a crazy-paving pattern, and a bronchoalveolar lavage confirmed the diagnosis of _Pneumocystis jirovecii_ pneumonia. The patient was successfully managed with intravenous trimethoprim/sulfamethoxazole and voriconazole. Few such cases have been reported in the literature, and in most cases, the infection has been found to be associated with aggressive oncological treatments. Therefore, _Pneumocystis jirovecii_ pneumonia should be considered in lung cancer patients with its presenting symptoms, especially if the patient is undergoing aggressive chemotherapy and/or radiotherapy.

Keywords: Chemoradiotherapy, crazy paving, non-small cell lung cancer, _Pneumocystis jirovecii_

INTRODUCTION

Pneumocystis jirovecii pneumonia (PJP) is a severe and rare lung complication caused by the fungus _P. jirovecii_. It is characterized by being subacute interstitial pneumonia that requires high oxygen efflux (respiratory distress) and fever that does not respond to commonly used antibiotics. This infection is typical in immunocompromised patients with cellular deficiencies such as acquired immune deficiency syndrome. Other risk factors of PJP include hematological neoplasms, bone marrow transplantation and long-term use of corticosteroids.[1-3] However, solid neoplasms are not a risk factor of PJP, and the pathogen is not usually diagnosed in such patients.[4,5] We present the case of a patient who was undergoing multimodal treatment for non-small cell lung cancer (NSCLC) in our department but developed PJP during this period.

CASE REPORT

A 59-year-old male patient who had been diagnosed with NSCLC (Stage IIIIB) 13 months ago and had completed ten sessions of radiotherapy and one cycle of chemotherapy was admitted to our hospital with complaints of 38.7°C fever, dyspnea and cough for 3 days. The patient had an Eastern Cooperative Oncology Group performance status 0 and was hemodynamically stable. Oxygen saturation was 95% (without supplementary oxygen). Clinical exploration
revealed abundant crackles and rhonchi in all lung fields. Analytic studies (biochemistry and blood count) and chest radiography did not present significant findings.

The patient was started on antibiotic treatment with intravenous piperacillin–tazobactam (4 g/6 h). However, 24 h after admission, the patient exhibited intense dyspnea and oxygen saturation fell to 86% (without supplementary oxygen), requiring contribution with 40% oxygen to maintain oxygen saturation above the threshold of normality (>92%). Despite this, the patient continued to have fever (39.8°C), and thus linezolid (600 mg/12 h) was added to the empirical treatment. In addition, sputum culture, serum galactomannan antigen test, bacilloscopy and computed tomography (CT) scan were carried out. All tests were inconclusive except the CT scan, which revealed lung cavitations and a crazy-paving pattern [Figure 1]. Bronchoalveolar lavage (BAL) was requested for sample obtention and to increase the accuracy of the microbiological studies. The patient’s condition worsened and required 60% oxygen to maintain oxygen saturation. During the evolution of the disease, 100% oxygen was needed for maintenance. Based on the CT results and the clinical evolution of the patient, empirical coverage against *P. jirovecii* was provided with intravenous trimethoprim/sulfamethoxazole (160/800 mg, every 8 h). BAL results confirmed our clinical suspicion for *P. jirovecii* and also revealed positivity for *Aspergillus flavus*. The intravenous treatment was optimized with voriconazole 300 mg once daily. Subsequently, the patient’s condition began improving with less FiO₂, being required, improvement in lung auscultation findings and disappearance of fever. The patient’s serological human immunodeficiency virus test returned positive, but the Western blot results were negative; therefore, the serological result was considered a false positive. As the patient’s condition evolved favorably, he was discharged after 2 weeks of treatment with oral trimethoprim/sulfamethoxazole (160/800 mg, every 8 h) for 1 month.

The patient was followed up in the outpatient clinics every 3 weeks. The patient was improving, and prophylactic treatment with trimethoprim/sulfamethoxazole (on alternate days) was carried out for another month. Follow-up CT scan showed that the crazy-paving pattern had completely resolved, and there was improvement in the *Aspergillus* cavitary lesion. The patient’s cancer metastasized to the right femur and died a few months later due to progress of NSCLC.

DISCUSSION

PJP is a very uncommon phenomenon in lung cancer patients, with an incidence of 2.6 cases/100,000 person/year. It is associated with high corticosteroid intake and immunosuppression. However, the patient reported here had not taken high doses of corticosteroids. In the literature, few such cases have been published. Velcheti and Govindan recently described a series of five cases wherein curative intent radiotherapy protocols were found to be related with PJP in lung cancer patients. This is the same risk factor that might be involved in our case. It should be noted that in lung cancer patients, there appears to be no *P. jirovecii* colonization.

In 1980, Fossieck and Spagnolo published a series of five cases of PJP associated with lung cancer, where all patients had received polychemotherapy protocols, three had received radiotherapy and two did not take corticosteroids. From these findings, it appears that PJP in lung cancer is related with high aggressive chemotherapeutic and radiotherapeutic protocols, such as those used for locally advanced NSCLC. Similarly, McAleese et al. recently described a series of cases wherein curative intent radiotherapy protocols were found to be related with PJP in lung cancer patients. This is the same risk factor that might be involved in our case. It should be noted that in lung cancer patients, there appears to be no *P. jirovecii* colonization.

Similar relationships have also been found in other solid tumors. For example, primary brain tumors patients receiving the Stupp protocol (temozolomide + radiotherapy) have been shown to be at risk of PJP, and thus it is indicated to initiate prophylaxis with trimethoprim/sulfamethoxazole thrice weekly (on alternate days) in such patients. Similarly, in lymphomas, several aggressive chemotherapeutic protocols have been found to increase the risk of PJP, and thus PJP (P. jirovecii) prophylaxis is indicated.

CONCLUSION

PJP is a rare complication among lung cancer patients, but it should be considered if such patients present with fever, dyspnea and cough and is undergoing chemotherapy and/or radiotherapy.

![Figure 1: Computed tomography images that show a crazy-paving pattern compatible with Pneumocystis jiroveci infection and an Aspergillus cavitary lesion](image-url)
Declaration of patient consent
The authors certify that they have obtained all appropriate patient consent forms. In the form, the patient’s next of kin has given their consent for his images and other clinical information to be reported in the Journal. The patient’s next of kin understands that his name and initial would not be published, and due efforts will be made to conceal his identity, but anonymity cannot be guaranteed.

Peer review
This article was peer reviewed by one independent and anonymous reviewer.

Financial support and sponsorship
Nil.

Conflicts of interest
There are no conflicts of interest.

REFERENCES
1. Lee PH, Fu PK. Coinfection of Pneumocystis jiroveci pneumonia and pulmonary aspergillosis in a non-HIV-infected patient. J Microbiol Immunol Infect 2018;51:860-1.
2. Fillatre P, Decaux O, Jouneau S, Revest M, Gacouin A, Robert-Gagnneux F, et al. Incidence of Pneumocystis jiroveci pneumonia among groups at risk in HIV-negative patients. Am J Med 2014;127:1242.e11-7.
3. Okafor PN, Wasan SK, Farraye FA. Pneumocystis jiroveci pneumonia in patients with inflammatory bowel disease: A survey of prophylaxis patterns among gastroenterology providers. Inflamm Bowel Dis 2013;19:812-7.
4. McAleese J, Mooney L, Walls GM, Eakin RL, Harney J, Hanna GG, et al. Risk of death from Pneumocystis jiroveci after curative-intent radiotherapy for lung cancer. Clin Oncol (R Coll Radiol) 2018;30:e81-2.
5. Ray A, Khong B, Khong HT. A case report of Pneumocystis jiroveci pneumonia in a patient with metastatic breast cancer. Anticancer Res 2016;36:6673-6.
6. Velchetti V, Govindan R. Pneumocystis pneumonia in a patient with non-small cell lung cancer (NSCLC) treated with pemetrexed containing regimen. Lung Cancer 2007;57:240-2.
7. Fossieck BE Jr., Spagnolo SV. Pneumocystis carinii pneumonia in patients with lung cancer. Chest 1980;78:721-2.
8. Togashi Y, Masago K, Ito Y, Sakamori Y, Okuda C, Fukuhara A, et al. Pneumocystis jiroveci pneumonia and colonization in patients with advanced lung cancer. Oncol Lett 2013;5:601-4.
9. De Vos FY, Gijtenbeek JM, Bleeker-Rovers CP, van Herpen CM. Pneumocystis jiroveci pneumonia prophylaxis during temozolomide treatment for high-grade gliomas. Crit Rev Oncol Hematol 2013;85:373-82.
10. Jiang X, Mei X, Feng D, Wang X. Prophylaxis and treatment of Pneumocystis jiroveci pneumonia in lymphoma patients subjected to rituximab-contained therapy: A systematic review and meta-analysis. PLoS One 2015;10:e0122171.