Generalized potentials on commutative hypergroups

by

Mubariz G. Hajibayov
National Aviation Academy
and
Institute of Mathematics and Mechanics, Baku, Azerbaijan
(hajibayovm@yahoo.com)

Abstract

By the Hardy-Littlewood-Sobolev theorem the classical Riesz potential is bounded on Lebesgue spaces. E. Nakai and H. Sumitomo [16] extended that theorem to the Orlicz spaces. We introduce generalized potential operators on commutative hypergroups and under some assumptions on the kernel we showed the boundedness of these operators from Lebesgue space into certain Orlicz space. Our result is an analogue of Theorem 1.3 in [16].

Mathematics Subject Classification 2010: 47G40, 20N20, 43A62, 26A33.

Key words and phrases: Riesz potential, hypergroup, Lebesgue space, Orlicz space, Hardy-Littlewood maximal function.

1 Introduction

For $0 < \alpha < n$, the operator

$$R_\alpha f(x) = \int_{\mathbb{R}^n} |x - y|^{n-\alpha} f(y) dy$$

is called a classical Riesz potential (fractional integral).

By the classical Hardy-Littlewood-Sobolev theorem, if $1 < p < \infty$ and $\alpha p < n$, then $R_\alpha f$ is a bounded operator from $L^p(\mathbb{R}^n)$ into $L^q(\mathbb{R}^n)$, where $\frac{1}{q} = \frac{1}{p} - \frac{\alpha}{n}$ (see [10], [19]).

The Hardy-Littlewood-Sobolev theorem is an important result in the potential theory. There are a lot of generalizations and analogues of that theorem. The boundedness of the Riesz potentials on spaces of homogeneous type was studied in [4] and [12]. The Hardy-Littlewood-Sobolev theorem was proved for the Riesz potentials associated to non-doubling measures in [13]. In [3] and [8], generalized potential-type integral operators were considered and (p, q) properties of these operators were proved. In [15], [16], [17], [9] the Hardy-Littlewood-Sobolev theorem was extended to Orlicz spaces for generalized fractional integrals. In [5], [6], [7], [21], Riesz potentials on different hypergroups were defined and analogues of the Hardy-Littlewood-Sobolev theorem were given for these operators.
In this paper, we define generalized fractional integrals on commutative hypergroups and prove the analogue of Theorem 1.3 in [16] for the generalized fractional integrals on commutative hypergroups. The obtained result is an extension of the Hardy-Littlewood-Sobolev theorem given in [5], [6], [7], [21], for Riesz potentials on different hypergroups.

Let K be a set. A function $\rho : K \times K \to [0, \infty)$ is called quasi-metric if:

1. $\rho(x, y) = 0 \iff x = y$;
2. $\rho(x, y) = \rho(y, x)$;
3. there exists a constant $c \geq 1$ such that for every $x, y, z \in K$

\[
\rho(x, y) \leq c(\rho(x, z) + \rho(z, y)).
\]

Let all balls $B(x, r) = \{y \in K : \rho(x, y) < r\}$ be λ-measurable and assume that the measure λ fulfils the doubling condition

\[
0 < \lambda B(x, 2r) \leq D\lambda B(x, r) < \infty. \tag{1}
\]

A space (K, ρ, λ) which satisfies all conditions mentioned above is called a space of homogeneous type (see [2]).

In the theory of locally compact groups there arise certain spaces which, though not groups, have some of the structure of groups. Often, the structure can be expressed in terms of an abstract convolution of measures on the space.

A hypergroup (K, \ast) consists of a locally compact Hausdorff space K together with a bilinear, associative, weakly continuous convolution on the Banach space of all bounded regular Borel measures on K with the following properties:

1. For all $x, y \in K$, the convolution of the point measures $\delta_x \ast \delta_y$ is a probability measure with compact support.
2. The mapping: $(x, y) \mapsto supp(\delta_x \ast \delta_y)$ of $K \times K$ into $C(K)$, is continuous where $C(K)$ is the space of compact subsets of K endowed with the Michael topology, that is the topology generated by the subbasis of all

\[
U_{V,W} = \{L \in C(K) : L \cap V \neq \emptyset, L \subset W\}
\]

where V, W are open subsets of K.
3. There exits an identity $e \in K$ such that $\delta_e \ast \delta_x = \delta_x \ast \delta_e = \delta_x$ for all $x \in K$.
4. There exits a topological involution \sim from K onto K such that $(x^\sim)^\sim = x$, for $x \in K$, with

\[
(\delta_x \ast \delta_y)^\sim = \delta_y^\sim \ast \delta_x^\sim
\]

and $e \in supp(\delta_x \ast \delta_y)$ if and only if $x = y^\sim$ for $x, y \in K$ where for any Borel set B, $\mu^\sim(B) = \mu(\{x^\sim : x \in B\})$ (see [11], [18], [1], [14]).
If $\delta_x \ast \delta_y = \delta_y \ast \delta_x$ for all $x, y \in K$, then the hypergroup K is called commutative. It is known that every commutative hypergroup K possesses a Haar measure which will be denoted by λ (see [18]). That is, for every Borel measurable function f on K,
\[
\int_K f(\delta_x \ast \delta_y) d\lambda(y) = \int_K f(y) d\lambda(y) \quad (x \in K).
\]

Define the generalized translation operators T^x, $x \in K$, by
\[
T^x f(y) = \int_K f(\delta_x \ast \delta_y) d\lambda(y)
\]
for all $y \in K$. If K is a commutative hypergroup, then $T^x f(y) = T^y f(x)$ and the convolution of two functions is defined by
\[
(f \ast g)(x) = \int_K T^x f(y) g(y^{-}) d\lambda(y).
\]

Let $p > 0$. By $L^p(K, \lambda)$ denote a class of all λ-measurable functions $f : K \to (-\infty, +\infty)$ with
\[
\|f\|_{L^p(K, \lambda)} = \left(\int_K |f(x)|^p d\lambda(x)\right)^{\frac{1}{p}} < \infty.
\]
A function $\Phi : [0, \infty] \to [0, \infty]$ is called an N-function if can be represented as
\[
\Phi(r) = \int_0^r \phi(t) dt,
\]
where $\phi : [0, \infty] \to [0, \infty]$ is a left continuous nondecreasing function such that $\phi(0) = 0$ and $\lim_{t \to \infty} \phi(t) = \infty$.

Let Φ is an N-function. Define the Orlicz space $L^\Phi(K, \lambda)$ to be the set of all locally integrable functions f in K for which
\[
\int_K \Phi \left(\frac{|f(x)|}{\eta}\right) d\lambda(x) < \infty
\]
for some $\eta > 0$. Here $L^\Phi(K, \lambda)$ is equipped with the norm
\[
\|f\|_{\Phi} = \inf\{\eta > 0 : \int_K \Phi \left(\frac{|f(x)|}{\eta}\right) d\lambda(x) \leq 1\}.
\]

For $\Phi(r) = r^p$, $1 < p < \infty$, we have $L^\Phi(K, \lambda) = L^p(K, \lambda)$.

The notation $\chi_A(x)$ denotes the characteristic function of set A.

Define a function $\Lambda(x)(y) = T^x \chi_B(e,r)(y^{-})$.

We will assume that there exit constants $c_1 > 0$, $c_2 > 0$ and $c_3 > 0$ such that for every $x, y \in K$ and $r > 0$
\[
\text{supp}\Lambda_x(\cdot) \subset B(x, c_1 r)
\]
and
\[\lambda B(x, r) T^y \chi_{B(e, r)}(y) \leq c_2 \lambda B(e, r) \leq c_3 r^N. \] (3)

As examples of hypergroups satisfying the conditions (2) and (3) can be taken Laguerre, Dunkl and Bessel hypergroups (see [5], [6], [7]).

A non-negative function \(a(r) \) defined on \([0, \infty)\) is called almost increasing (almost decreasing), if there exist a constant \(C > 0 \) such that
\[a(t_1) \leq C a(t_2) \]
for all \(0 < t_1 < t_2 < \infty \) (\(0 < t_2 < t_1 < \infty \), respectively).

For an increasing function \(a : (0, \infty) \to (0, \infty) \), define
\[I_a f(x) = \int_K T^x \left(\frac{a(\rho(e, y))}{\rho(e, y)^N} \right) f(y) d\lambda(y) \]
on the commutative hypergroup \((K, \ast)\) equipped with the quasi-metric \(\rho \). If \(a(r) = r^\alpha, 0 < \alpha < N \), then \(I_a \) is the Riesz potential of order \(\alpha \).

Now we formulate a main result of the paper.

Theorem 1.1 Let \((K, \ast)\) be a commutative hypergroup, with the quasi-metric \(\rho \) and doubling Haar measure \(\lambda \) satisfying the conditions (2) and (3). Assume that \(1 < p < \infty \) and \(a = a(r) \) is non-negative almost increasing function on \([0, \infty)\), \(\frac{a(r)}{r^\lambda} \) is almost decreasing for some \(0 < \lambda < \frac{N}{p} \) and
\[\int_0^1 \frac{a(t)}{t} dt < \infty. \]

Then the operator \(I_a \) is bounded from \(L^p(K, \lambda) \) into the Orlicz space \(L^\Phi(K, \lambda) \), where the \(N \)-function is defined by its inverse
\[\Phi^{-1}(r) = \int_0^r A \left(t^{-\frac{1}{N}} \right) t^{-\frac{1}{p'}} dt, \]
where \(A(r) = \int_0^r \frac{a(t)}{t} dt. \)

If we take \(a(r) = r^\alpha, 0 < \alpha < N \), then we have Hardy-Littlewood-Sobolev theorem for the Riesz potential
\[I_\alpha f(x) = \int_K T^x \rho(e, y)^{\alpha-N} f(y) d\lambda(y) \]
on the commutative hypergroup \((K, \ast)\).

Corollary 1.2 Let \((K, \ast)\) be a commutative hypergroup, with the quasi-metric \(\rho \) and doubling Haar measure \(\lambda \) satisfying the conditions (2) and (3). If \(0 < \alpha < N \), \(1 < p < \frac{N}{\alpha} \) and \(\frac{1}{p} - \frac{1}{q} = \frac{\alpha}{N} \), then \(I_\alpha \) is a bounded operator from \(L^p(K, \lambda) \) into \(L^q(K, \lambda) \).
2 Preliminaries

Define Hardy-Littlewood maximal function

\[Mf(x) = \sup_{r>0} \frac{1}{\lambda B(e, r)} \left(|f| \ast \chi_{B(e, r)} \right)(x) \]

on commutative hypergroup \((K, \ast)\) equipped with the pseudo-metric \(\rho\).

Lemma 2.1 Let \((K, \ast)\) be a commutative hypergroup, with quasi-metric \(\rho\) and doubling Haar measure \(\lambda\). Assume that there exist constants \(c_1 > 0\) and \(c_2 > 0\) such that for every \(x, y \in K\) and \(r > 0\)

\[\text{supp} \Lambda_x(\cdot) \subset B(x, c_1 r) \]

and

\[\lambda B(x, r)T^x \chi_{B(e, r)}(y^\sim) \leq c_2 \lambda B(e, r). \]

Then

1) The maximal operator \(M\) satisfies a weak type \((1, 1)\) inequality, that is, there exists a constant \(C > 0\) such that for every \(f \in L^1(K, \lambda)\) and \(\alpha > 0\)

\[\lambda \{ x : Mf(x) > \alpha \} \leq \frac{C}{\alpha} \int_K |f(x)| d\lambda(x). \]

2) The maximal operator \(M\) is of strong type \((p, p)\), for \(1 < p \leq \infty\), that is,

\[\| Mf \|_{L^p(K, \lambda)} \leq C_p \| f \|_{L^p(K, \lambda)}, \tag{4}\]

for some constant \(C_p\) and every \(f \in L^p(K, \lambda)\).

Proof. It is clear that there exists nonnegative integer \(m\) such that \(c_1 \leq 2^m\) and \(\lambda B(x, c_1 r) \leq D^m \lambda B(x, r)\), where \(D\) is a constant on doubling condition (\(\square\)). Then we have

\[Mf(x) = \sup_{r>0} \frac{1}{\lambda B(e, r)} \int_K T^x f(y) \chi_{B(e, r)}(y^\sim) d\lambda(y) \]

\[= \sup_{r>0} \frac{1}{\lambda B(e, r)} \int_K |f(y)| T^x \chi_{B(e, r)}(y^\sim) d\lambda(y) \]

\[\leq \sup_{r>0} \frac{1}{\lambda B(e, r)} \int_{B(x, c_1 r)} |f(y)| T^x \chi_{B(e, r)}(y^\sim) d\lambda(y) \]

\[= \sup_{r>0} \frac{1}{\lambda B(x, r)} \int_{B(x, c_1 r)} |f(y)| T^x \chi_{B(e, r)}(y^\sim) \frac{\lambda B(x, r)}{\lambda B(e, r)} d\lambda(y) \]

\[\leq c_2 \sup_{r>0} \frac{1}{\lambda B(x, r)} \int_{B(x, c_1 r)} |f(y)| d\lambda(y) \leq c_2 D^m M_\rho f(x), \]
where
\[M_\rho f(x) = \sup_{r>0} \frac{1}{\lambda B(x,r)} \int_{B(x,r)} |f(y)| d\lambda(y) \]
is a maximal operator on \((K, \rho, \lambda)\). It is well known that the maximal operator \(M_\rho\) is of weak type \((1,1)\) and is bounded on \(L^p(K, \lambda)\) (see [2], [20]). This fact and the inequality \(Mf(x) \leq c_2 D^m M_\rho f(x)\) completes the proof. \(\square\)

3 Proof of Theorem 1.1

We may suppose that \(f(x) \geq 0\) and by the linearity of the operator \(I_a\), it suffices to prove that \(\|I_a f\|_\Phi \leq C < \infty\) for \(\|f\|_{L^p(K, \lambda)} \leq 1\). accordance with Hedbergs trick, we split \(I_a f(x)\) in the standard way

\[I_a f(x) = \int_{B(e,r)} \frac{a(\rho(e,y))}{\rho(e,y)^N} T^x f(y^-) d\lambda(y) \]

\[+ \int_{X \setminus B(e,r)} \frac{a(\rho(e,y))}{\rho(e,y)^N} T^x f(y^-) d\lambda(y) = A_r(x) + B_r(x). \]

Estimate \(A_r(x)\). Since \(\frac{a(t)}{t^{p'}}\) is almost decreasing, we have

\[A_r(x) = \sum_{k=0}^{\infty} \int_{\frac{2}{2^k-1} \leq \rho(e,y) < 2^{-k}} \frac{a(\rho(e,y))}{\rho(e,y)^N} T^x f(y^-) d\lambda(y) \]

\[\leq C \sum_{k=0}^{\infty} \frac{2^{k-1} - r}{2^{k-1} - r} \int_{2^k-1}^{2^k-1} T^x f(y^-) d\lambda(y) \leq CMf(x) \sum_{k=0}^{\infty} a\left(2^{k-1} - r\right) \]

\[\leq CMf(x) \sum_{k=0}^{\infty} \frac{1}{2^{k-1}} \int_0^{a(t)} \frac{1}{t} dt. \]

Therefore,

\[A_r(x) \leq CA(r)Mf(x), \quad A(r) = \int_0^r \frac{a(t)}{t} dt. \] (5)

Now estimate \(B_r(x)\). By the Hölder inequality and the condition \(\|f\|_{L^p(K, \lambda)} \leq 1\), we obtain

\[B_r(x) \leq \left(\int_{K \setminus B(e,r)} (T^x f(y^-))^p d\lambda(y) \right)^{\frac{1}{p}} \left(\int_{K \setminus B(e,r)} \left(\frac{a(\rho(e,y))}{\rho(e,y)^N} \right)^{p'} d\lambda(y) \right)^{\frac{1}{p'}} \]

\[\leq \left(\int_{K \setminus B(e,r)} \left(\frac{a(\rho(e,y))}{\rho(e,y)^N} \right)^{p'} d\lambda(y) \right)^{\frac{1}{p'}} \]
\[
\left(\sum_{k=0}^{\infty} \int_{2^{k+1}r}^{2^kr} \left(\frac{a(e,y)}{\rho(e,y)^N} \right)^{p'} d\lambda(y) \right)^{\frac{1}{p'}}
\]
\[
\leq C \left(\sum_{k=0}^{\infty} \left(\frac{a(2^k r)}{(2^k r)^N} \right)^{p'} \left(\frac{1}{t^{\frac{N}{p}}} \right)^{p'-1} dt \right)^{\frac{1}{p'}}
\]
\[
= C \left(\int_r^{\infty} \left(\frac{a(t)}{t^{\frac{N}{p}}} \right)^{p'} \frac{1}{t^p} dt \right)^{\frac{1}{p'}}
\]
\[
\leq C \frac{a(r)}{r^\beta} \left(\int_r^{\infty} (t^{\beta-N/p})^{p'} t^{-1} dt \right)^{\frac{1}{p'}}
\]
\[
\leq C \frac{a(r)}{r^\beta}
\]

Therefore
\[
B_r(x) \leq CA(r)r^{-\frac{N}{p}}
\]

From (5) and (6), we have
\[
I_a f(x) \leq C \left(Mf(x) + r^{-\frac{N}{p}} \right) A(r).
\]

Then
\[
I_a f(x) \leq C \left[Mf(x)r^{\frac{N}{p}} + 1 \right] \Phi^{-1} \left(\frac{1}{r^N} \right)
\]

by Theorem 4.9 in [9]. If we choose \(r = [Mf(x)]^{-\frac{p}{N}} \), then the inequality (7) turns into
\[
I_a f(x) \leq C \Phi^{-1} ([Mf(x)]^p)
\]
and consequently,

$$\int_K \Phi \left(\frac{I_a f(x)}{C} \right) d\lambda(x) \leq \int_K [M f(x)]^p d\lambda(x) \leq 1,$$

where we have used (4) and the fact that \(\|f\|_{L^p(K,\lambda)} \leq 1\). Hence

$$\|I_a f\|_\Phi \leq C,$$

which completes the proof.

Acknowledgement. This work was supported by the Science Development Foundation under the President of the Republic of Azerbaijan Grant EIF-2012-2(6)-39/10/1. The author would like to express his thanks to Academician Akif Gadjiev for valuable remarks.

References

[1] W. R. Bloom and H. Heyer, Harmonic analysis of probability measures on hypergroups, *de Gruyter Stud. Math.*, vol. 20, Walter de Gruyter & Co., Berlin, 1995.

[2] R. R. Coifman and G. Weiss, Analyse harmonique non-commutative sur certains espaces homogènes.(French) *Lecture Notes in Math.*, 242, Springer-Verlag, Berlin-New York, 1971

[3] A. D. Gadjiev, On generalized potential-type integral operators, *Functiones et Approximatio, UAM*, 25 (1997), 37-44.

[4] A. E. Gatto and S. Vagi, Fractional integrals on spaces of homogeneous type, *Analysis and Partial Differential Equations*, (1990), 171-216.

[5] V. S. Guliyev, On maximal function and fractional integral, associated with the Bessel differential operator, *Math. Inequal. Appl.*, 6(2) (2003), 317-330.

[6] V. S. Guliyev, Y. Y. Mammadov, On fractional maximal function and fractional integrals associated with the Dunkl operator on the real line, *J. Math. Anal. Appl.*, 353 (2009), 449-459.

[7] V. S. Guliyev, M.N. Omarova, On fractional maximal function and fractional integral on the Laguerre hypergroup, *J. Math. Anal. Appl.*, 340(2) (2008), 1058-1068.

[8] M.G.Hajibayov \((L_p; L_q)\) properties of the potential-type integrals associated to non-doubling measures, *Sarajevo J. Math.* 2 (15) (2006), 173-180.

[9] M. G. Hajibayov and S. G. Samko, Generalized potentials in variable exponent Lebesgue spaces on homogeneous spaces, *Math. Nachr.*, 284(1) (2011), 53-66.

[10] L. Hedberg, On certain convolution inequalities, *Proc. Amer. Math. Soc.*, 36 (1972), 505-510.
[11] R. L. Jewett, Spaces with an abstract convolution of measures. *Adv. in Math.*, **18**(1) (1975), 1-101.

[12] V. M. Kokilashvili and A. Kufner, Fractional integrals on spaces of homogeneous type, *Comment. Math. Univ. Carolinae*, **30**(3) (1989), 511-523.

[13] V. Kokilashvili and A. Meskhi, Fractional integrals on measure spaces, *Frac. Calc. Appl. Anal.*, **4**(1) (2001), 1-24.

[14] M. Lashkarizadeh Bami, The semisimplicity of $L^1(K, w)$ of a weighted commutative hypergroup K, *Acta Math. Sin. (Engl.ser)*, **24**(4) (2008), 607-610.

[15] E. Nakai, On generalized fractional integrals, *Taiwanese J. Math.* **5**(3) (2001), 587-602.

[16] E. Nakai and H. Sumitomo, On generalized Riesz potentials and spaces of some smooth functions, *Sci. Math. Japonicae*, **54**(3) (2001), 463-472.

[17] E. Nakai, On generalized fractional integrals in the Orlicz spaces on spaces of homogeneous type, *Sci. Math. Japonicae*, **54**(3) (2001), 473-487.

[18] R. Spector, Measures invariantes sur les hypergroupes(French), *Trans. Amer. Math. Soc.*, **239** (1978), 147-165.

[19] E. Stein, Singular integrals and differentiability properties of functions, *Princeton Mathematical Series*, No. 30 Princeton University Press, Princeton, N.J. 1970.

[20] J. O. Strömberg and A. Torchinsky, Weighted Hardy spaces. Lecture Notes in Math., **1381**, Springer-Verlag, Berlin, 1989.

[21] S. Thangavelu and Y. Xu, Riesz transform and Riesz potentials for Dunkl transform, *J. of Comput. and Appl. Math.*, **199**(1) (2007), 181-195.

Mubariz G. Hajibayov
National Aviation Academy. Bine gesebesi,
25-ci km, AZ1104, Baku, Azerbaijan
and
Institute of Mathematics and Mechanics of NAS of Azerbaijan,
9, B. Vahavzade str., AZ1141, Baku, Azerbaijan.