Discussion: Downs’s syndrome is a congenital chromosomal anomaly which affects almost all the systems in the body. It includes macroglia, microcephaly, endocardial cushion defects, ventricular septal defects, duodenal atresia, and atlantoaxial instability and supraglottic stenosis. There is an increased incidence of respiratory complications in children with Down’s syndrome. Upper and lower airway problems exist in this subset of the population which is attributed to hypotonia, relative obesity, cardiac disease, small upper airway, pulmonary hypoplasia, and congenital anomalies of airway. All these results in unique sets of challenges to the anaesthesiologists. Diaphragmatic hernia is a protrusion of abdominal viscosa into the chest cavity through communication. The classic diagnostic triad includes respiratory distress, scaphoid abdomen, and signs of mediastinal shift. The prevalence rate for all types of CDH is approximately one in 3000 live births, although considerable variation has been reported with frequencies as low as one in 5000. Physiologically, the hernia affects mainly one of two systems: (A) the cardiorespiratory or (B) the gastrointestinal. It leads to pulmonary hypoplasia and aspiration pneumonitis; which is also evident in Down’s Syndrome.
hernia. 19-21 Overall frequency of congenital diaphragmatic hernia (CDH) in Down’s Syndrome seems to be low. Following table shows the incidence of Common Chromosomal Anomalies Associated with CDH.

Table 1. Common Chromosomal Anomalies Associated with CDH
View in own window
Chromosome Abnormality/Locus
Pallister-Killian syndrome (isch-romosome or tetrasomy 12p)
Trisomy 13
Trisomy 18
Trisomy 21
Del (4)p(16) (Wolf-Hirschhorn syndrome)
Del (15)(q26.2)
Del (1)(q41-q42)
Del (8)(p23.1)

1. Small chromosome deletions of these regions, or point mutations of genes mapping to these regions, may cause CDH. The frequency with which these occur is presently unknown.

2. *Number provided represents an educated estimate, derived from the medical literature and authors’ personal experiences.

In our patient, anaesthesia was designed by keeping in mind both the conditions together. Gastro-esophageal reflux disease (GERD) is more prevalent in children with Down’s syndrome. The symptoms to be assessed preoperatively include vomiting, oesophagitis, respiratory symptoms like apnea, wheezing and aspiration pneumonia. Aspiration prophylaxis with modified rapid sequence induction may be used along with the agents to decrease the pH in the stomach. 16 Hence endotracheal intubation should be performed either awake or by restoring spontaneous respiration. There is also increased incidence of pulmonary infections in both the conditions. This may also be due to thymus dependent immune system depression in children with Down’s syndrome. 17 Peripheral lines may be the source of infection so the lines are not to be kept in place for long periods of time. Downs babies are very sensitive to anaesthetic agents and carefully titrated dosages should be used. Sleep induced ventilatory dysfunction may be exaggerated by narcotic induced sedation and residual anesthetic concentration in the body. Volatile anesthetic agent requirements in these patients are less than normal patients. 18 Ligamenus laxity leads to atlanto axial joint instability in Down’s babies. It poses a potential risk of C1-C2 subluxation. During induction and endotracheal intubation, great care must be taken to maintain the neck in neutral position. Placing a soft collar after induction of anaesthesia can serve as reminder to avoid neck movements intraoperatively. Down’s syndrome should be intubated with an endotracheal tube 0.5–1.0 mm diameter smaller than the standard age-appropriate endotracheal tube size due to possible tracheal stenosis 19 These patients are also prone to have hypothermia during surgery. Proper covering of head and extremities is essential. Post-operative respiratory complications are also more common. In CDH, in addition to transport and installation of the newborn infant the dangerous periods of the anaesthesia are represented by abdominal closure because of the risk of compression. Patients are left intubated at the end of surgery since postoperative artificial ventilation is a necessity in such cases. Awake extubation should be considered after assessing spontaneous ventilatory efforts; to minimize post operative respiratory complications.

Summary:

Due to high prevalence of Down’s Syndrome, anaesthetists may come across to these patients with need to operate for congenital defects. A full-term baby born with congenital diaphragmatic hernia unassociated with other major anomalies can have good prognosis with proper anesthetic and surgical management. Pertinent aspects of the embryology, pathology, and physiology involved should be considered in anesthetizing these babies. Extra care should be taken to tackle combination of two different congenital problems for successful intra-operative and peri-operative management.

REFERENCE

1. B Bhattarai, AH Kulkarni, ST Rao and A Mairpadi. Anesthetic consideration in Down’s syndrome-a review. Nepal Med Coll J 2008; 10(3): 199-203.
2. Dr Sunita Goel. Anaesthesia in Down’s Syndrome Associated Conditions-Special Problems. Pediatric Oncall Journal Carefully designed anaesthesia is must for successful perierative outcome.
3. J. Hueter SE, McCance KL. Understanding pathophysiology. Chicago Ill : Mosby; 1996.
4. M. Mandhan P, Memon A, Memon AS. Congenital hernias and diaphragm in children. Journal of Ayub Medical College, Abbottabad. JAMEC. 2007;19:37-41.
5. Meitnzer MC, Skumorwicz JA. Anaesthetic considerations in patients with Down’s Syndrome. AANA Journal. 2005, 103-107,73. 6. e-medicine: World Medical Library. Down’s syndrome: Pathophysiology article by James Bowman, MD.
7. Doull I. Respiratory disorders in Down’s syndrome: Overview with diagnostic and treatment options, UK Down’s Syndrome Medical Interest Website available at www.dsmig.org.uk.
8. McCaughey, T.: Anaesthesia for Abdominal Emergencies in Children. Canad. Anaesth. Soc. J.10:616, 1963.
9. Skari H, Bjornland K, Haugen G, Egeland T: Embilem R: Congenital diaphragmatic hernia: a meta-analysis of mortality factors. J Pediatr Surg. 2000;35:1187–97.
10. Chang SW, Lee HC, Yeung CY, Chan WT, Hsu CH, Kao HA, Hung HY, Chang JH, Sheu JC, Wang NL. At a twenty-year review of early and late-presenting congenital Bochdalek diaphragmatic hernia: are they different clinical spectra? Pediatr Neonatol. 2010 Feb;51(2):126-30.
11. Cigdem MK, Oner A, Okur H, Oztu S. Associated malformations in Morgagni hernia. Pediatr Surg Int. 2000;23(1):110-13.
12. Pober BR, Russell MK, Ackerman KG. Congenial Diaphragmatic Hernia Overview.2006;Feb 1.
13. Dott MM, Wong LY, Rasmussen SA. Population-based study of congenital diaphragmatic hernia: risk factors and survival in Metropolitan Atlanta, 1968-1999. Birth Defects Res A Clin Mol Teratol. 2003;67:261-7.
14. Guibert TW, Gebb SA, Shannon JM. Lung hypoplasia in the nitrofen model of congenital diaphragmatic hernia occurs early in development. Am J Physiol Lung Cell Mol Physiol. 2000;279:L159-71.
15. Ackerman KG, Herron BJ, Vargas SO, Huang H, Tevosian SG, Kochals L, Rao C, Pober BR, Babauk RP, Epstein JA, Greer JJ, Beier DR. Fog2 is required for normal diaphragm and lung development. Am J Physiol Lung Cell Mol Physiol. 2000,279:L1159–71.
16. Jong AL, Vargas SO, Huang H, Tevosian SG, Kochals L, Rao C, Pober BR, Babauk RP, Epstein JA, Greer JJ, Beier DR. Fog2 is required for normal diaphragm and lung development. Am J Physiol Lung Cell Mol Physiol. 2000,279:L1159–71.