Raman Photogalvanic Effect: photocurrent at inelastic light scattering

L. E. Golub and M. M. Glazov
Ioffe Institute, 194021 St. Petersburg, Russia

We show theoretically that electromagnetic waves propagating in the transparency region of a non-centrosymmetric medium can induce a dc electric current. The origin of the effect is the Raman scattering of light by free carriers in the system. Due to the photon scattering, electrons undergo real quantum transitions resulting in the formation of their anisotropic momentum distribution and in shifts of electronic wavepackets giving rise to a steady state photocurrent. We present microscopic theory of the Raman Photogalvanic effect (RPGE) focusing on two specific situations: (i) generic case of a bulk gyrotropic semiconductor and (ii) a quantum well structure where the light is scattered by intersubband excitations. We uncover the relation of the predicted RPGE and the traditional photogalvanic effect at the light absorption.

Introduction. Photogalvanic and photon drag effects (PGE and PDE) resulting in the dc electric current generation under steady-state illumination belong to a class of non-linear high-frequency transport phenomena and bridge optics and transport [1–8]. The dc current magnitude and direction depend on the light intensity, propagation direction, and polarization. The processes of the photocurrent generation are highly sensitive to the symmetry of the system, fine structure of the electron energy spectrum, and microscopic processes of the optical transitions and scattering [4, 5]. Furthermore, the photocurrent generation can be related in some cases to the topological properties of the charge carriers Bloch functions [9–13]. It makes polarization-dependent photocurrents an important tool to study the delicate features of the electronic spectrum and kinetic properties of charge carriers in metals and semiconductors and opens up prospects to develop polarization detectors based on these effects [14, 15].

Usually, photogalvanic and photon drag currents are observed under the conditions of light absorption, see Fig. 1(a). The PGEs are studied in conventional bulk semiconductors like Te and GaAs [4, 16], in low-dimensional structures such as quantum wells [17, 18], and in a wide range of emergent material systems including topological insulators [19–24], Weyl semimetals [25, 26], graphene based nanosystems [8, 27–29], and transition metal dichalcogenides [30–32]. Both inter- and intraband optical transitions can be involved in the dc current generation.

It is commonly assumed that, if the light propagates in the transparency region of the crystal, no dc current is formed [4, 33, 34]. It is indeed the case provided real electronic transitions and corresponding changes of the electromagnetic field are absent in the system. In such a situation, the irradiation results solely in renormalization of the energy dispersion. Thus, after a transient process the current vanishes [33]; otherwise, in violation of the energy conservation law, such current could generate the Joule heating in the external circuit.

Here we show that even in the absence of photon absorption, the dc electric current can be generated if the light is scattered by the free carriers in the medium. The Raman scattering of light leads to the electronic transitions, Fig. 1(b), resulting in the asymmetry of the electron distribution in the steady state and, eventually, in the dc current. A similar idea has been put forward in Ref. [35] without detailed analysis, here we present an explanation of the effect and transparent microscopic model. We develop the microscopic theory of the Raman photogalvanic effect (RPGE) in noncentrosymmetric semiconductors and semiconductor nanostructures. We mainly focus on the case of the circular RPGE where the current reverses its sign under reversal of the radiation helicity. We address the situation where the photon...
energy is smaller than the fundamental energy gap. We take as examples (i) a non-resonant Raman scattering in bulk semiconductors and (ii) the intersubband resonant Raman scattering in quantum wells.

General description. We recall that the dc current linear in the radiation intensity \(I \) arising in the non-centrosymmetric media can be written in the most general form as [4, 5]

\[
J_\alpha = \gamma_{\alpha\beta}[e \times e^*]_\beta I + \chi_{\alpha\beta\mu} (e_\beta e^*_\mu + e_\mu e^*_\beta) I, \tag{1}
\]

where \(e \) is the complex polarization vector of the incident electromagnetic field, \([e \times e^*] = P_{\text{circ}} \hat{n} \) with \(P_{\text{circ}} \) being the circular polarization degree and \(\hat{n} \) being the unit vector along the light propagation axis describes the light helicity. Tensors \(\gamma_{\alpha\beta} \) and \(\chi_{\alpha\beta\mu} = \chi_{\alpha\mu\beta} \) describe circular and linear photocurrents, respectively; \(\alpha, \beta, \mu \) are the Cartesian components. Notably, the first and second terms in Eq. (1) have different properties under time reversal, \(t \to -t \). Particularly, since both current and light helicities change their signs at the time reversal, tensor \(\gamma_{\alpha\beta} \) is even and the tensor \(\chi_{\alpha\beta\mu} \) is odd at \(t \to -t \).

We assume that the light propagates in the transparency region of the direct-gap semiconductor

\[
\hbar \omega < E_g, \quad \omega \tau_p \gg 1, \tag{2}
\]

where \(\omega \) is the frequency of radiation, \(E_g \) is the band gap, and \(\tau_p \) is the conduction electron momentum scattering time. Here, for definiteness, we assume that the system is \(n \)-doped. First condition in Eq. (2) ensures that the real interband transitions are forbidden, while the second one allows us to neglect the intraband Drude-like absorption.

Under condition (2) absorption of light is absent and the only possible processes are the free-carrier light scattering as illustrated in Fig. 1(a). The incident photon with the frequency \(\hbar \omega \), polarization \(e \), and wavevector \(q \) scatters and gives rise to a secondary photon with the frequency \(\hbar \omega' \), polarization \(e' \) and wavevector \(q' \) while a resident electron undergoes a transition from the \(k' \) to \(k \) state. Thus, the dc current density can be readily expressed as

\[
j = \frac{e}{V_0} \text{Tr} \{ \hat{\nu} \rho^{(2)} \} = j_b + j_s, \tag{3}
\]

with the ballistic

\[
j_b = \frac{2e}{V_0} \sum_{k,k',q,q'} \left[v_{kq} \tau_p (E_{c,k}) - v_{k'q'} \tau_p (E_{c,k'}) \right] \times W_{k,k'}^{sc}(E) f_0(E_{c,k'}) [1 - f_0(E_{c,k})], \tag{4a}
\]

and shift

\[
j_s = \frac{2e}{V_0} \sum_{k,k',q,q'} R_{k,k'} \times W_{k,k'}^{sc}(E) f_0(E_{c,k'}) [1 - f_0(E_{c,k})], \tag{4b}
\]

contributions, respectively [4, 5, 36, 37]. Here \(e \) is the electron charge, \(V_0 \) is the normalization volume, \(\hat{\nu} \) is the velocity operator and \(\rho^{(2)} \) is the electron density matrix calculated in the second-order in the incident electromagnetic field amplitude. In Eqs. (4), factors ‘2’ account for the spin degeneracy, \(E_{c,k} \) is the electron dispersion, \(f_0(E) \) is the equilibrium Fermi-Dirac distribution function, \(v_{kq} = \hbar^{-1} \partial E_{c,k} / \partial q \) is the electron velocity, \(W_{k,k'}^{sc}(E) \) is the probability of electron scattering \(k' \to k \) at the incident light polarization \(e \) averaged over the polarization and propagation direction of the final photon, and \(R_{k,k'} \) is the electron shift at the quantum transition \(k' \to k \).

The lack of the inversion center allows for odd in the electron wavevector terms in \(W_{k,k'}^{sc}(E) \) and even in the wavevector terms in the \(R_{k,k'} \). It makes contributions (4) non-zero. The contribution (4a) has a clear physical interpretation: In the course of quantum transitions electrons acquire an “average” velocity \(\bar{v} \) depending on the light polarization. The velocity generation rate is given by the rate of electron transitions \(\dot{N} \) and the velocity relaxation rate is given by the momentum relaxation rate \(\tau_p^{-1} \). As a result, the dc current according to this mechanism is formed during the ballistic propagation of electrons between the scattering events and given by the balance of the generation and relaxation processes [4]

\[
j = e \nu \tau_p \dot{N}. \tag{5}
\]

The shift photocurrent in Eq. (4b) can be estimated in the same manner with the replacement in Eq. (5) \(\nu \tau_p \) by the “average” shift of the wavepacket \(\bar{R} \) in the course of scattering [4]. Equation (5) underlies that the current generation requires real electronic transitions and \(\dot{N} \) can be expressed via the light intensity and the extinction coefficient \(K \) related to the scattering process \(\dot{N} = K I / \hbar \omega \).

Figure 2. (a) Scheme of the light scattering process with allowance for the momentum relaxation. (b) Spectral dependence of the photocurrent for a bulk semiconductor (solid line) and quantum wells (dotted line). Inset shows the relevant diagram, see SI.

Microscopic model of the impurity or phonon-assisted RPGE. Now we turn to the microscopic description of the scattering processes. We focus on the photocurrent generation process in the bulk gyrotropic semiconductor under assumption that the incident photon energy is smaller but close to the fundamental bandgap.
\[\Delta = E_g - \hbar \omega \ll \hbar \omega. \]
In this situation the main contribution to the free-carrier scattering of light is provided by virtual states in the valence band \[5\]. Accordingly, the scattering can be described as a three-stage process, where as shown in Fig. 2(a) (i) the incident photon is absorbed (virtually) and creates an electron-hole pair by promoting the electron with the wavevector \(k \) from the valence band to the conduction band; (ii) the hole in the valence band scatters (by phonon or impurity) in such a way that the state \(k \) in the valence band becomes filled with electron and the state with the wavevector \(k' \) becomes unoccupied; and (iii) the hole recombines with the resident electron, so that finally the valence band remains unperturbed (all the states are filled) and in the conduction band the state with the wavevector \(k' \) is filled. The corresponding scattering rate is given by

\[
W_{k,k'}^{ec}(e',e) = \frac{2\pi i}{\hbar} \delta(\hbar \omega - \hbar \omega' - E_{c,k} + E_{c,k'}) I \\
\times \left| \frac{M_{k,k'}^{cm}(e') V_{k,k'} M_{k,k}^{e}(e)}{(\hbar \omega - E_{c,k} + E_{v,k})(\hbar \omega - E_{c,k} + E_{v,k'})} \right|^2, \tag{6}
\]

where \(M_{k,k'}^{e}(e) \) and \(M_{k,k'}^{cm}(e') \) are the interband transition matrix elements describing the absorption and emission of photons, respectively. It is convenient to present

\[
|M_{k,k'}^{e}(e)|^2 = |M_0|^2(1 + D_{\alpha\beta} k_{\alpha}^i e \times e^* |_{\beta}), \tag{7}
\]

where the real second-rank tensor \(D_{\alpha\beta} \) is responsible for the gyrotrropy of the system \[4\] and \(M_0 \) is a constant. The presence of \(k \)-linear terms in Eq. (7) makes an odd in the wavevector contribution to the electron transition rate \(W_{k,k'}^{ec}(e) = \sum_{q',e} W_{k,k'}^{c}(e',e) \) and eventually results in the non-zero photocurrent, Eq. (4b). Equations (4a) and (6) correspond to the diagram in Fig. 2(b). Assuming that the carrier’s momentum relaxation is caused by short-range impurities, introducing \(\xi \) as the ratio of the conduction and valence band elastic scattering matrix elements squared and \(\gamma_\tau \) as the radiative decay rate of the photoexcited electron-hole pair we obtain the following expression for the circular photocurrent (see SI for details of derivation)

\[
j_\alpha = e n_c \gamma_\tau D_{\alpha\beta} \hat{n}_\beta P_{circ} \left| \frac{M_0}{\Delta} \right|^2 \xi \Phi(\nu) \frac{1}{3\pi}. \tag{8}
\]

Here \(n_c \) is the electron density in the conduction band, \(\nu = 1 + m_e/m_h \) with \(m_e \) and \(m_h \) being the electron and hole effective masses, and \(\Phi(\nu) = [(\nu + 1) \ln \nu - 2(\nu - 1)](\nu - 1)^{-3} \). In derivation of Eq. (8) we assumed degenerate electrons with their Fermi energy \(E_F \ll \Delta \). The photocurrent in Eq. (8) increases with decreasing the detuning \(\Delta \) because the smaller \(\Delta \) is the more efficient is the light scattering, see Fig. 2(b).

The ballistic photocurrent (8) changes its sign at reversal of the radiation helicity and Eq. (8) describes the circular RPGE. To obtain the ballistic linear RPGE one has to go beyond the three-stage process described above and take into account additional scattering processes to ensure the correct properties of the current under time reversal or evaluate the shift contribution, Eq. (4b), see Ref. [38] for evaluation of \(R_{k,k'} \) for multiquantum transitions. In any case, the linear RPGE will have an additional smallness \(\sim (\Delta \tau_p/\hbar)^{-1}, (\omega \tau_p)^{-1}, (E_F \tau_p/\hbar)^{-1} \) depending on the particular mechanism of the effect.

It is worth to mention that the main contribution to the Raman scattering of light by free charge carriers in semiconductors does not require an additional transition of the hole in the valence band. The electron wavevector can change due to the variation of the light wavevector in the course of scattering

\[
k - k' = q - q', \tag{9}
\]

see SI for details. This process is described by the diagram analogous to that in Fig. 2(b) but without the dashed vertical line. Calculation shows that the resulting photocurrent differs from that derived above in Eq. (8) by a factor of \(\hbar q^2 \tau_p/m_e \ll 1 \). The smallness of such contribution is related to the fact that, in the absence of additional scattering of the hole, the initial and final wavevectors of electrons are close to each other, see Eq. (9): The electron wavevector cannot change more than by a radiation wavevector. It results in a significant reduction of the effect.

![Figure 3](image-url)
Figure 3. (a) Quantum well structure. (b) Scheme of the intersubband resonant light scattering process.
conduction subband $c1$. A situation of interest occurs in the vicinity of the intersubband resonance
\[\hbar \omega - \hbar \omega' = E_{c3,k} - E_{c1,k}, \]
where the process depicted in Fig. 3(b) becomes possible. In this case the virtual photon absorption via $v1 \rightarrow c3$ electron transition is followed by the photon emission process resulting from the $c1 \rightarrow v1$ transition. As a result, an electron is promoted from $c1 \rightarrow c3$ subband (in asymmetric quantum wells similar transitions involving $c2$ subband are also allowed). Corresponding transition rate is readily evaluated [cf. Eq. (6)]

\[W_{c1\rightarrow c3}^{sc}(\epsilon', \epsilon, k) = \frac{2\pi}{\hbar} \left| M_{c1\rightarrow c3}^{\text{em}}(\epsilon') M_{c3\rightarrow c1}^{\text{abs}}(\epsilon) \right|^2 \times \delta(\hbar \omega - \hbar \omega' - E_{c3,k} + E_{v1,k})I. \]

We neglect the photon momentum and any additional phonon or impurity scattering processes, hence the transitions take place at the same electron wavevector k. As above we focus on the ballistic circular RPGE because it dominates the photocurrent and using the same Eq. (7) for $|M_{c3\rightarrow c1}^{\text{abs}}(\epsilon)|^2$ as in the bulk case we arrive at the following expression for the current density (see SI for details):

\[j_{\alpha} = -en_{e}\gamma_{P}^{\text{QW}} D_{\alpha} \tilde{n}_{\beta} P_{\text{circ}} I \left[\frac{\sigma_{\alpha}}{\pi} \right]^{2} \tau_{\text{tr}} \frac{h}{\Delta_{QW}} \chi(\epsilon). \]

Here γ_{P}^{QW} is the recombination rate of the electron in $c1$ subband with the $v1$ hole, we assumed the parabolic dispersion $E_{c1,k} = \hbar^2 k^2 / 2m_{e1}$, $E_{c3,k} = \Delta_{31} + \hbar^2 k^2 / 2m_{c3}$ with $m_{c1} (i = 1, 3)$ being the effective mass in the ith subband, and Δ_{31} being the intersubband energy gap. In Eq. (12) we have introduced $\nu_{31} = m_{c1}/m_{c3} + m_{c1}/m_{e}$, τ_{tr} is the momentum scattering time of $c1$ electron at a Fermi surface, the detuning for quantum wells $\Delta_{QW} = E_{g} + \Delta_{31} - \hbar \omega$, and

\[\epsilon = \frac{\Delta_{QW}}{\nu_{31} E_{g}}, \quad \chi(\epsilon) = \epsilon \left(\ln \frac{1 + \epsilon}{\epsilon} - \frac{1}{1 + \epsilon} \right). \]

Equation (12) is valid for degenerate electrons and under assumption that the momentum relaxation in the $c3$ subband is much faster than in $c1$ subband: It is typically the case because of optical phonon emission processes causing electrons to relax to the bottom subbands; the general case is considered in the SI. It follows from Eq. (12) that RPGE current at intersubband scattering tends to a constant at the absorption edge being much weaker function of the detuning as compared to the analogous photocurrent in the bulk, cf. Eq. (8) and Fig. 2.

Comparison with circular PGE in the absorption region. It is instructive to compare the results for the circular photocurrent obtained here for the transparency region with the well-known results for the circular PGE at the direct interband transitions. Considering the bulk semiconductor in the model described above [see diagram in Fig. 1(c)] we obtain the following expression for the conduction electron photocurrent at $\hbar \omega > E_{g}$:

\[j_{\alpha}^{\text{abs}} = e/A \frac{\sigma_{\alpha}}{\hbar} D_{\alpha} \tilde{n}_{\beta} P_{\text{circ}} 2|\Phi(\nu)| \frac{\Delta_{QW}}{3\hbar}. \]

Here A is the absorption coefficient of the semiconductor, the electron momentum scattering time τ_{p} is taken at the energy $|\Delta|/\nu$, and $\Delta = E_{g} - \hbar \omega < 0$ in the case of direct optical transitions. One can recast Eq. (8) in a similar form via the extinction coefficient K

\[j_{\alpha}^{\text{scatt}} = e/A \frac{\sigma_{\alpha}}{\hbar} D_{\alpha} \tilde{n}_{\beta} P_{\text{circ}} 2|\Phi(\nu)| \frac{\Delta_{QW}}{3\hbar}. \]

with $\Phi(\nu) = \pi \sqrt{\nu}/[2(1 + \sqrt{\nu})^2]$. The factors $\nu^2, \Phi/\Phi \sim 1$, as a result for the same value of detuning the traditional and Raman photocurrents differ by the factor $\sim A/K$ which provides an estimate of the ratio of the electronic transition rates at the light absorption and scattering, respectively. Naturally, both expressions can be brought to the form of general Eq. (5) with

\[\bar{\nu}_{a} \sim \frac{\Delta_{QW}}{h} D_{\alpha} \tilde{n}_{\beta} P_{\text{circ}}. \]

Equations (5), (15), and (16) demonstrate that even for transparent media, real electronic transitions should occur to enable the photocurrent [39].

We also note that in gyrotropic semiconductors and nanostructures k-linear terms are present in the effective Hamiltonian of the charge carriers due to the spin-orbit coupling [5, 7, 40, 41]:

\[H_{SO} = h \beta_{\alpha\beta} k_{\alpha} \sigma_{\beta}, \]

where $\sigma/2$ is the electron spin operator. These terms provide an additive mechanism for the RPGE current generation. It can be also described by the general Eq. (5) with $\bar{\nu}_{a} \sim \beta_{\alpha\beta} k_{\alpha} P_{\text{circ}}$.

Conclusion. We have shown that the light scattering results in the steady state current in noncentrosymmetric media. The RPGE current is generated even if the light is propagating in the transparency spectral region of the crystal. While absorption is absent in this case, the current results from real electronic transitions owing to the Raman scattering of photons by free charge carriers. These transitions cause asymmetric distribution of electrons and also quantum shifts. We have identified key mechanisms of the Raman scattering induced circular photocurrent for the photon energies slightly below the band gap of a semiconductor and studied the photocurrent generation under intersubband scattering in quantum well structures.

Acknowledgements. We are grateful to Y. Onishi for valuable discussions. The authors acknowledge support from RSF: Project 22-12-00211 (general theory of RPGE, M.M.G.) and 22-12-00125 (calculations of RPGE currents, L.E.G.). L.E.G. also thanks the Foundation for the Advancement of Theoretical Physics and Mathematics “BASIS”.
[1] A. M. Glass, D. von der Linde, and T. J. Negran, High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO$_3$, Applied Physics Letters 25, 233 (1974).

[2] E. Ivchenko and G. Pikus, New photogalvanic effect in gyrotropic crystals, JETP Lett. 27, 640 (1978).

[3] V. Belinicher, Space-oscillating photocurrent in crystals without symmetry center, Physics Letters A 66, 213 (1978).

[4] B. I. Sturman and V. M. Fridkin, The photovoltaic and photorefractive effects in non-centrosymmetric materials (Gordon and Breach, New York, 1992).

[5] E. L. Ivchenko, Optical spectroscopy of semiconductor nanostructures (Alpha Science, Harrow UK, 2005).

[6] S. D. Ganichev and W. Prettl, Spin photocurrents in quantum wells, J. Phys.: Condens. Matter 15, R935 (2003).

[7] M. I. Dyakonov, ed., Spin physics in semiconductors, 2nd ed., Springer Series in Solid-State Sciences 157 (Springer International Publishing, 2017).

[8] M. M. Glazov and S. D. Ganichev, High frequency electric field induced nonlinear effects in graphene, Physics Reports 535, 101 (2014).

[9] J. E. Moore and J. Orenstein, Confinement-induced Berry phase and helicity-dependent photocurrents, Phys. Rev. Lett. 105, 026805 (2010).

[10] T. Morimoto and N. Nagaosa, Topological aspects of non-linear excitonic processes in noncentrosymmetric crystals, Phys. Rev. B 94, 035117 (2016).

[11] F. de Juan, A. G. Grushin, T. Morimoto, and J. E. Moore, Quantized circular photogalvanic effect in Weyl semimetals, Nature Communications 8, 15995 (2017).

[12] L. E. Golub, E. L. Ivchenko, and B. Spivak, Semiclassical theory of the circular photogalvanic effect in gyrotropic systems, Phys. Rev. B 102, 085202 (2020).

[13] J. Orenstein, J. Moore, T. Morimoto, D. Torchinsky, J. Harter, and D. Hsieh, Topology and symmetry of quantum materials via nonlinear optical responses, Annual Review of Condensed Matter Physics 12, 247 (2021).

[14] S. D. Ganichev, W. Weber, J. Kiermaier, S. N. Danilov, P. Olbrich, D. Schuh, W. Wegscheider, D. Bougeard, G. Abstreiter, and W. Prettl, All-electric detection of the polarization state of terahertz laser radiation, Journal of Applied Physics 103, 114504 (2008).

[15] S. N. Danilov, B. Wittmann, P. Olbrich, W. Eder, W. Prettl, L. E. Golub, E. V. Beregulin, Z. D. Kvon, N. N. Mikhailov, S. A. Dvoretsky, V. A. Shalygin, N. Q. Vinh, A. F. G. van der Meer, B. Murdin, and S. D. Ganichev, Fast detector of the ellipticity of infrared and terahertz radiation based on HgTe quantum well structures, Journal of Applied Physics 105, 013106 (2009).

[16] V. M. Asnin, A. A. Bakun, A. M. Danishievskii, E. L. Ivchenko, G. E. Pikus, and A. A. Rogachev, Observation of a photo-emf that depends on the sign of the circular polarization of light, JETP Letters 28, 24 (1978).

[17] S. D. Ganichev, E. L. Ivchenko, S. N. Danilov, J. Eroms, W. Wegscheider, D. Weiss, and W. Prettl, Conversion of spin into direct electric current in quantum wells, Phys. Rev. Lett. 86, 4358 (2001).

[18] S. Ganichev, E. Ivchenko, and W. Prettl, Photogalvanic effects in quantum wells, Physica E: Low-dimensional Systems and Nanostructures 14, 166 (2002).

[19] B. Wittmann, S. N. Danilov, V. V. Bel’kov, S. A. Tarasenko, E. G. Novik, H. Buhmann, C. Brüne, L. W. Molenkamp, Z. D. Kvon, N. N. Mikhailov, S. A. Dvoretsky, N. Q. Vinh, A. F. G. van der Meer, B. Murdin, and S. D. Ganichev, Circular photogalvanic effect in HgTe/CdHgTe quantum well structures, Semiconductor Science and Technology 25, 095005 (2010).

[20] J. W. McIver, D. Hsieh, H. Steinberg, P. Jarillo-Herrero, and N. Gedik, Control over topological insulator photocurrents with light polarization, Nature Nanotechnology 7, 90 (2012).

[21] P. Olbrich, L. E. Golub, T. Herrmann, S. N. Danilov, H. Plank, V. V. Bel’kov, G. Musserl, C. Weyrich, C. M. Schneider, J. Kämpf meier, D. Grützmacher, L. Plucinski, M. Eschbach, and S. D. Ganichev, Room-temperature high-frequency transport of Dirac fermions in epitaxially grown Sb$_2$Te$_3$ and Bi$_2$Te$_3$-based topological insulators, Phys. Rev. Lett. 113, 096601 (2014).

[22] H. Plank, L. E. Golub, S. Bauer, V. V. Bel’kov, T. Herrmann, P. Olbrich, M. Eschbach, L. Plucinski, C. M. Schneider, J. Kämpf meier, M. Lanius, G. Musserl, D. Grützmacher, and S. D. Ganichev, Photon drag effect in (Bi$_1$-xSb$_x$)$_2$Te$_3$ three-dimensional topological insulators, Phys. Rev. B 93, 125434 (2016).

[23] M. V. Durnev and S. A. Tarasenko, High-frequency nonlinear transport and photogalvanic effects in 2D topological insulators, Annalen der Physik 531, 1800418 (2019).

[24] N. V. Leppenen and L. E. Golub, Nonlinear optical absorption and photocurrents in topological insulators, Phys. Rev. B 105, 115306 (2022).

[25] Q. Ma, S.-Y. Xu, C.-K. Chan, C.-L. Zhang, G. Chang, Y. Lin, W. Xie, T. Palacios, H. Lin, S. Jia, P. A. Lee, P. Jarillo-Herrero, and N. Gedik, Direct optical detection of Weyl fermion chirality in a topological semimetal, Nature Physics 13, 842 (2017).

[26] D. Rees, K. Manna, B. Lu, T. Morimoto, H. Borrmann, C. Felser, J. E. Moore, D. H. Torchinsky, and J. Orenstein, Helicity-dependent photocurrents in the chiral Weyl semimetal RhSi, Science Advances 6, eaba0509 (2020).

[27] C. Drexler, S. A. Tarasenko, P. Olbrich, J. Karch, M. Hirner, F. Muller, M. Gmitra, J. Fabian, R. Yakinova, S. Lara-Avila, S. Kubatkin, M. Wang, R. Vajtai, P. Ajayan, J. Kono, and S. D. Ganichev, Magnetic quantum ratchet effect in graphene, Nature Nanotechnology 8, 104 (2013).

[28] S. Candussio, M. V. Durnev, S. Slizovskiy, T. Jötten, J. Keil, V. V. Bel’kov, J. Yin, Y. Yang, S.-K. Son, A. Mishchenko, V. Fal’ko, and S. D. Ganichev, Edge photocurrent in bilayer graphene due to inter-Landau-level transitions, Phys. Rev. B 103, 125408 (2021).

[29] S. Candussio, L. E. Golub, S. Bernreuter, T. Jötten, T. Rockinger, K. Watanabe, T. Taniguchi, J. Eroms, D. Weiss, and S. D. Ganichev, Nonlinear intensity dependence of edge photocurrents in graphene induced by terahertz radiation, Phys. Rev. B 104, 155404 (2021).

[30] J. Quereda, T. S. Ghiasi, J.-S. You, J. van den Brink, B. J. van Wees, and C. H. van der Wal, Symmetry regimes for circular photocurrents in monolayer MoSe$_2$, Nature Communications 9, 3346 (2018).
[31] A. Rasmita, C. Jiang, H. Ma, Z. Ji, R. Agarwal, and W. bo Gao, Tunable geometric photocurrent in van der waals heterostructure, Optica 7, 1204 (2020).

[32] R. Asgari and D. Culcer, Unidirectional valley-contrasting photocurrent in strained transition metal dichalcogenide monolayers, Phys. Rev. B 105, 195418 (2022).

[33] V. I. Belinicher, E. L. Ivchenko, and G. E. Pikus, Transient photocurrent in gyrotropic crystals, Sov. Phys. - Semicond. 20, 558 (1986).

[34] L. E. Golub and E. L. Ivchenko, Circular and magnetoinduced photocurrents in Weyl semimetals, Phys. Rev. B 98, 075305 (2018).

[35] Y. Onishi, H. Watanabe, T. Morimoto, and N. Nagaosa, Photovoltaic effect in noncentrosymmetric material without optical absorption, arXiv: 2204.12727 (2022).

[36] V. I. Belinicher, E. L. Ivchenko, and B. I. Sturman, Kinetic theory of the displacement photovoltaic effect in piezoelectrics, JETP 56, 359 (1982).

[37] B. I. Sturman, Ballistic and shift currents in the bulk photovoltaic effect theory, Physics-Uspekhi 63, 407 (2020).

[38] L. E. Golub and E. L. Ivchenko, Shift photocurrent induced by two-quantum transitions, JETP 112, 152 (2011).

[39] Further details and comparison with recent Refs. [35, 42] are presented in SI.

[40] E. I. Rashba and V. I. Sheka, Symmetry of energy bands in crystals of wurtzite type. II. Symmetry of bands with spin-orbit interaction included, Fiz. Tverd. Tela: Collected Papers 2, 162 (1959).

[41] S. D. Ganichev and L. E. Golub, Interplay of Rashba/Dresselhaus spin splittings probed by photogalvanic spectroscopy – A review, physica status solidi (b) 251, 1801 (2014).

[42] L. Shi, O. Matasysyn, J. C. W. Song, and I. S. Villadiego, The Berry dipole photovoltaic demon and the thermodynamics of photo-current generation within the optical gap of metals, arXiv: 2207.03496 (2022).
Here we present the details of derivation of photocurrents, particularly, Eqs. (8) and (12) of the main text, present the model for the Raman photocurrent associated with the photon wavevector, which does not require electron scattering, and discuss the relation between this work and recent preprints [1, 2].

CONTENTS

SI. Ballistic circular photocurrent in bulk gyrotropic semiconductor

A. Light extinction and RPGE

B. Relation to the photogalvanic effect at light absorption

SII. Allowance for the radiation wavevector in RPGE

SIII. Intersubband scattering-assisted photocurrent

SIV. Diagrammatic approach to RPGE

SV. Photocurrents in the transparency region: general remarks

References

SI. BALLISTIC CIRCULAR PHOTOCURRENT IN BULK GYROTROPIC SEMICONDUCTOR

Substituting the scattering rate (6) [of the main text] with the squared matrix element (7) into Eq. (4a) we obtain the ballistic photocurrent in the form

\[
j_\alpha = \frac{e}{V_0} |M_0|^2 |M_{em}|^2 \frac{k_\alpha}{\omega_\alpha} \frac{8\pi}{3\hbar^2} \frac{n_e|V|^2}{V_0} \times \sum_{k,k',q'} \frac{\tau_p(E_{c,k})E_{c,k}f_0(E_{c,k}')[1-f_0(E_{c,k})]}{(\hbar \omega - E_{c,k} + E_{v,k}')^2(\hbar \omega - E_{c,k} + E_{v,k}')^2} \delta(\hbar \omega - \hbar \omega' - E_{c,k} + E_{c,k'}). \tag{S1}
\]

Here we assumed the parabolic dispersion \(E_{c,k} = \hbar^2 k^2/2m_e\) with \(m_e\) being the effective mass. Here \(|M_{em}|^2\) is the emission matrix element summed over the secondary photon polarization. In calculation of \(|M_{em}|^2\) we can disregard \(k'\)-linear terms because they are sensitive to \(\epsilon'\), we also disregard \(k'^2\) and higher-order contributions to the matrix elements. Note that \(M_{abs}(\epsilon)\) describes the stimulated process (we consider classical electromagnetic wave incident on the sample), while emission process is spontaneous. That is why we use different normalization of \(M_{em}\) and \(M_{abs}\), see the main text below Eq. (6) for details.

For the following calculations we perform the summation over \(q'\) by means of the energy conservation \(\delta\)-function:

\[
j_\alpha = \frac{e}{V_0} |D_{\alpha\beta}| \epsilon \times \epsilon^* |D_{\epsilon\gamma}| \frac{4}{3\hbar} \frac{n_e|V|^2}{V_0} \gamma_r \sum_{k,k'} \frac{\tau_p(E_{c,k})E_{c,k}f_0(E_{c,k}')[1-f_0(E_{c,k})]}{(\hbar \omega - E_{c,k} + E_{v,k}')^2(\hbar \omega - E_{c,k} + E_{v,k}')^2}, \tag{S2}
\]

where we introduced the rate of emission of the secondary photon (i.e., the recombination rate of the electron-hole pair in the vicinity of the fundamental band gap)

\[
\gamma_r = \frac{2\pi}{\hbar} |M_{em}|^2 \sum_{q'} \delta(\hbar \omega - \hbar \omega' - E_{c,k} + E_{c,k'}). \tag{S3}
\]

Further calculations can be simplified as follows: we sum over \(k'\) (initial electron wavevector) under the assumption that \(E_F T \ll E_g - \hbar \omega\) (\(T\) is the temperature expressed in the energy units). Hence, the \(k'\)-dependence of the
denominators can be neglected in this case. This summation yields \(n_e V_0 / 2 \) with \(n_e = (2 / V_0) \sum_k f_0(E_{c,k}) \) being the electron density. Under the same assumption one can omit \(1 - f_0(E_{c,k}) \) (but keep the \(k \)-dependence in the denominators otherwise the integral diverges at large \(k \)) and we finally have

\[
\begin{align*}
\frac{e}{V_0} D_{\alpha \beta} i [e \times e^*]_\beta &= \frac{2}{3 \hbar} I n_c V |M_0|^2 \gamma_r \sum_k \frac{\tau_p(E_{c,k}) E_{c,k}}{(\hbar \omega - E_{c,k} + E_{c,k}^*)^2 \hbar (\hbar \omega - E_{c,k} + E_{c,k}^*)^2}.
\end{align*}
\] (S3)

Here all energies are counted from the bottom of the conduction band. Using

\[
\sum_k \ldots = V_0 \int_0^\infty \text{d}E_c g_c(E_c) \ldots \quad E_{c,k} - E_{v,k} = \nu E_{c,k} + E_g, \quad \nu = 1 + \frac{n_e}{m_h},
\] (S4)

where \(\xi \) is the ratio of the conduction and valence band elastic scattering matrix elements squared: \(\xi = |V_c|^2 / |V_e|^2 \), \(g_c(E_c) \) is the density of states in the conduction band, we get

\[
\begin{align*}
\frac{e}{V_0} D_{\alpha \beta} i [e \times e^*]_\beta &= \frac{2}{3 \hbar} I n_c V |M_0|^2 \gamma_r \frac{\xi}{3 \pi} \int_0^\infty \text{d}E_c \frac{E_c}{(\hbar \omega - E_g - \nu E_{c})^2 \hbar (\hbar \omega - E_g - E_{c})^2}.
\end{align*}
\] (S5)

Calculating the integral

\[
\int_0^\infty \text{d}E_c \frac{E_c}{(\hbar \omega - E_g - \nu E_{c})^2 \hbar (\hbar \omega - E_g - E_{c})^2} = \frac{\Phi(\nu)}{\Delta^2}, \quad \Delta = E_g - \hbar \omega,
\]

\[
\Phi(\nu) = \int_0^\infty \frac{x}{(1 + \nu x)^2 (1 + x)^2} \frac{(\nu + 1) \ln \nu - 2(\nu - 1)}{(\nu - 1)^3}, \quad \Phi(1) = \frac{1}{6},
\] (S6)

we finally get Eq. (8) of the main text:

\[
\begin{align*}
\frac{e}{V_0} D_{\alpha \beta} i [e \times e^*]_\beta &= \frac{2}{3 \hbar} I n_c V |M_0|^2 \xi \frac{\Phi(\nu)}{\Delta^2}.
\end{align*}
\] (S7)

A. Light extinction and RPGE

Let us introduce the extinction coefficient \(\mathcal{K} [\text{cm}^{-1}] \) related to the light scattering

\[
\mathcal{K} = \frac{2 \sum_{k,k',q} W_{k,k'}^{e,e}(e) f_0(E_{c,k'})[1 - f_0(E_{c,k})]}{N(c/n)}.
\] (S8)

It describes light attenuation in the system due to the scattering. Here \(n \) is the refractive index of the crystal and \(N \) is the number of photons in the electromagnetic wave. Taking into account that \(I = N / \hbar \omega c / n \) and performing summation over \(q' \) to obtain \(\gamma_r \), over \(k' \) to obtain \(n_e \), and over \(k \) by virtue of

\[
\int_0^\infty \text{d}E_c \frac{g_c(E_c)}{(\hbar \omega - E_g - \nu E_{c})^2 \hbar (\hbar \omega - E_g - E_{c})^2} = \Phi(\nu) \frac{g_c(E_{\omega})}{E_{\omega}^3 \nu^3}, \quad E_{\omega} = E_g - \hbar \omega, \quad \Phi(\nu) = \frac{\pi \sqrt{\nu}}{2(1 + \sqrt{\nu})^3},
\]

and using \(g_c(E_\omega)n_1 |V|^2 = \xi \hbar / [2 \pi \tau_p(E_\omega)] \), we have

\[
\mathcal{K} = n_e \gamma_r \frac{\xi \hbar}{2 \pi \tau_p} \Phi(\nu) \frac{\hbar |M_0|^2}{\Delta^3}.
\] (S9)

As a result for the Raman scattering-induced photocurrent we have Eq. (15) of the main text:

\[
\frac{e}{\hbar \omega} D_{\alpha \beta} i [e \times e^*]_\beta \frac{2 \Delta \tau_p(E_{\omega}) \Phi(\nu)}{\Phi(\nu)}.
\] (S10)
B. Relation to the photogalvanic effect at light absorption

Let us calculate the (ballistic) CPGE current in the same system generated at $\hbar \omega > E_g$. We calculate the electron contribution only (this is the net electric current if the relaxation time in the valence band is very short). The CPGE current density at light absorption is given by

$$J_{\alpha}^{\text{abs}} = 2e \sum_k W_{k}^{\text{abs}}(e) \tau_p(E_{c,k}) \nu_\alpha(k) \delta(E_{c,k} - E_{v,k} - \hbar \omega),$$ \hfill (S11)

where the asymmetric contribution to the light absorption probability at direct optical transition is

$$W_{k}^{\text{abs}}(e) = \frac{2\pi}{\hbar} |M_0|^2 D_{\alpha\beta} [e \times e^*]_\beta.$$

Then we obtain

$$J_{\alpha}^{\text{abs}} = 2e \frac{2\pi}{\hbar} |M_0|^2 D_{\alpha\beta} [e \times e^*]_\beta \sum_k \frac{2}{3\hbar} E_{c,k} \tau_p(E_{c,k}) \delta(\nu E_{c,k} + E_g - \hbar \omega) = e I D_{\alpha\beta} [e \times e^*]_\beta \frac{8\pi |M_0|^2}{3\hbar^2} g_c(|E_{\omega}|) \frac{|E_{\omega}| \tau_p(|E_{\omega}|)}{\nu^2} \Theta(\hbar \omega - E_g).$$ \hfill (S13)

It is convenient to introduce the light absorption coefficient $A(\omega)$ with the dimension of cm$^{-1}$ related to the direct optical transitions as

$$A = \frac{\hbar \omega}{I} W_{cv},$$ \hfill (S14)

where the direct interband transition rate

$$W_{cv} = \frac{2\pi}{\hbar} \sum_k |M_0|^2 \delta(E_{c,k} - E_{v,k} - \hbar \omega) = \frac{4\pi}{\hbar} |M_0|^2 \frac{g_c(|E_{\omega}|)}{\nu} \Theta(\hbar \omega - E_g),$$ \hfill (S15)

and

$$A = 4\pi \omega |M_0|^2 \frac{g_c(|E_{\omega}|)}{\nu} \Theta(\hbar \omega - E_g).$$ \hfill (S16)

Finally, we obtain from Eq. (S13) the circular photocurrent caused by the CPGE in the form of Eq. (14) of the main text:

$$J_{\alpha}^{\text{abs}} = e \frac{A I}{\hbar \omega} D_{\alpha\beta} [e \times e^*]_\beta \frac{2 |E_{\omega}| \tau_p(|E_{\omega}|)}{3\nu \hbar}.$$ \hfill (S17)

SII. ALLOWANCE FOR THE RADIATION WAVEVECTOR IN RPGE

In previous section we studied the RPGE photocurrent that is generated in a course of a three-step process of virtual photon absorption, valence band hole scattering, and virtual photon emission. In this way the electron wavevectors in the initial, k', and final, k, states are decoupled. Let us now discuss the contribution to RPGE where the valence band hole scattering is absent. Such process takes place with allowance for the photon wavevector, see Fig. S1, this process is the main process of light scattering by free carriers in semiconductors for $\hbar \omega \lesssim E_g$ [3]. Corresponding transition probability is given by

$$W_{k,k'}(e', e) = \frac{2\pi}{\hbar} \delta(\hbar \omega - \hbar \omega' - E_{c,k} + E_{c,k'}) \delta_{k+q,k'+q} \frac{M_{k'}^{\text{em}}(e') M_k^{\text{abs}}(e)}{\hbar \omega - E_{c,k} + E_{c,k'}}.$$ \hfill (S18)

Here Kronecker-δ accounts for the momentum conservation in the course of light scattering [Eq. (9) of the main text]

$$k' + q = k + q'.$
The photocurrent is given by [cf. Eq. (4a) of the main text]

\[j_b = \frac{2e}{V_0} \sum_{k,k',q} [v_{k\tau}(E_{c,k}) - v_{k'\tau}(E_{c,k'})] W_{k,k'}^q(e) f_0(E_{c,k'}) [1 - f_0(E_{c,k})], \]

(S19)

Let us assume for simplicity that the energy dependence of the electron momentum scattering time can be disregarded. In this case the velocity-dependent term in square brackets can be recast as

\[[v_{k\tau}(E_{c,k}) - v_{k'\tau}(E_{c,k'})] = \tau_p \frac{\hbar}{m_e} (q' - q). \]

Note that the difference of velocities in the initial and final states is now small and related to the photon wavevector. It results in suppression of the photocurrent.

Disregarding in Eq. (S19) the \(q, q' \)-dependence of all remaining terms we obtain the polarization independent photocurrent related to the photon drag effect at the Raman scattering:

\[j_b = \frac{2e \hbar}{V_0 m_e} (-q) \sum_{k,q'} W_{k,k'}^q(e) f_0(E_{c,k}) [1 - f_0(E_{c,k})]. \]

(S20)

According to the time-reversal symmetry this effect is independent of the circular polarization of light.

Furthermore, to obtain the polarization-dependent current we need to extract \(k \)- and \(q \)-linear contributions from the occupancy factors, otherwise the sum over \(k \) in Eq. (S19) vanishes. The resulting current contains the factor \(\sim \hbar^2 q^2/m_e \) instead of \(\sim \hbar/\tau_p \) that appears in Eq. (S3) due to the scattering in the valence band. As a result, the RPGE without scattering in the valence band is smaller than the current in Eq. (S10) by a factor of \(\sim \hbar^2 \tau_p/m_e \).

For typical conditions this factor is small.

SIII. INTERSUBBAND SCATTERING-ASSISTED PHOTOCURRENT

In noncentrosymmetric quantum well systems, the intersubband scattering probability of light \(W_{3\rightarrow 1}^{\text{sec}}(e,k) \) contains, in general, an asymmetric part. As a result, there is a ballistic contribution to the photocurrent:

\[j = \frac{2e}{S_0} \sum_{k,k',q'} [v_{c3,k\tau}(E_{c3,k}) - v_{c1,k\tau}(E_{c1,k})] W_{3\rightarrow 1}^{\text{sec}}(e,k) f_0(E_{c1,k}) [1 - f_0(E_{c3,k})], \]

(S21)
where S_0 is the normalization area. Substitution of the scattering rate given by Eq. (11) of the main text yields

$$j_\alpha = \frac{e}{S_0} D_{\alpha \beta} [e \times e^*]_\beta \frac{4\pi}{h^2} |M_0|^4 \times \sum_{k, q'} \frac{h^2 k^2}{2} \frac{\tau_p(E_{c3, k})/m_{c3} - \tau_p(E_{c1, k})/m_{c1}}{(\hbar \omega - E_{c3, k} + E_{c1, k})^2} f_0(E_{c1, k})[1 - f_0(E_{c3, k})] \delta(\hbar \omega - \hbar \omega' - E_{c3, k} + E_{c1, k}).$$

(S22)

For the following calculations we perform the summation over q' by means of the energy conservation δ-function:

$$j_\alpha = \frac{e}{S_0} D_{\alpha \beta} [e \times e^*]_\beta \frac{2}{h} |M_0|^2 \gamma_r^{QW} \sum_k \frac{h^2 k^2}{2} \frac{\tau_p(E_{c3, k})/m_{c3} - \tau_p(E_{c1, k})/m_{c1}}{(\hbar \omega - E_{c3, k} + E_{c1, k})^2} f_0(E_{c1, k})[1 - f_0(E_{c3, k})],$$

(S23)

where we introduced the rate of emission of the secondary photon (i.e., the recombination rate of the electron-hole pair in the vicinity of the fundamental band gap)

$$\gamma_r^{QW} = \frac{2\pi}{\hbar} |M_0|^2 \sum_{q'} \delta(\hbar \omega - \hbar \omega' - E_{c3, k} + E_{c1, k}).$$

Further calculations can be simplified as follows: we assume $\tau_p(E_{c3, k}) \ll \tau_p(E_{c1, k})$, $f_0(E_{c3, k}) \ll 1$. Then we have

$$j_\alpha = -\frac{e}{S_0} D_{\alpha \beta} [e \times e^*]_\beta \frac{2}{h} I |M_0|^2 \gamma_r^{QW} \sum_k \frac{E_{c1, k} \tau_p(E_{c3, k})}{(\hbar \omega - E_{c3, k} + E_{c1, k})^2} f_0(E_{c1, k}).$$

(S24)

For crude estimation we can assume $E_F, T \ll E_g - \hbar \omega$, where $E_g = E_g + \Delta_{31}$, and obtain

$$j_\alpha \approx -en_e \gamma_r^{QW} D_{\alpha \beta} [e \times e^*]_\beta \frac{2}{h} \frac{I |M_0|^2}{(E_g - \hbar \omega)^2} f_0(E).$$

(S25)

More precisely, using

$$\sum_k \ldots = S_0 g_{e1} \int_0^\infty dE_{c1} \ldots, \quad E_{c1, k} - E_{e, k} = \nu_{31} E_{c1, k} + E_{g3}, \quad \nu_{31} = m_{c1} \left(\frac{1}{m_{c1}} + \frac{1}{m_h} \right),$$

(S26)

where g_{e1} is the density of states in the 1st conduction subband, we get

$$j_\alpha = -e D_{\alpha \beta} [e \times e^*]_\beta \frac{2}{h} I |M_0|^2 \gamma_r^{QW} \frac{\hbar}{2\pi \nu_{31} V^2} \int_0^\infty \frac{dE}{(\hbar \omega - E_g - \nu_{31} E)^2} f_0(E).$$

(S27)

At low temperatures we have:

$$\int_0^{E_F} \frac{dE}{(\hbar \omega - E_g - \nu_{31} E)^2} = \frac{1}{\nu_{31}^2} \left(\ln \frac{1 + \varepsilon}{\varepsilon} - \frac{1}{1 + \varepsilon} \right), \quad \varepsilon = \frac{E_g - \hbar \omega}{\nu_{31} E_F},$$

(S28)

while the electron concentration is given by $n_e = 2g_{e1} E_F$. Therefore we get for Fermi statistics (when $\tau_{tr} = \tau_p(E_F)$) Eqs. (12), (13) of the main text:

$$j_\alpha = -en_e \gamma_r^{QW} D_{\alpha \beta} [e \times e^*]_\beta I |M_0|^2 \frac{\tau_{tr}}{\nu_{31}^3 \hbar E_F} \left(\ln \frac{1 + \varepsilon}{\varepsilon} - \frac{1}{1 + \varepsilon} \right).$$

(S29)

At Boltzmann statistics we have:

$$\int_0^\infty \frac{dE}{(\hbar \omega - E_g - \nu_{31} E)^2} = \frac{\exp(\mu/T)}{\nu_{31}^2} \int_0^\infty dx \frac{x \exp(-x)}{(x + b)^2} = \frac{\exp(\mu/T)}{\nu_{31}^2} \left[\frac{e^b E_i(-b)(1 + b) - 1}{\nu_{31}^2} \right],$$

(S30)

where $E_i(x) = \int_x^\infty t^{-1} \exp(-t)dt$ is the exponential integral,

$$b = \frac{E_g - \hbar \omega}{\nu_{31} T}, \quad n_e = 2g_{e1} T \exp(\mu/T).$$

(S31)

As a result, we obtain

$$j_\alpha = -en_e \gamma_r^{QW} D_{\alpha \beta} [e \times e^*]_\beta I |M_0|^2 \frac{\tau_p(T)}{\nu_{31}^3 \hbar T} \left[\frac{e^b E_i(-b)(1 + b) - 1}{\nu_{31}^2} \right].$$

(S32)
SIV. DIAGRAMMATIC APPROACH TO RPGE

It is instructive to consider the circular photocurrent generation in the diagrammatic approach.

Figure S2. Diagrams relevant for the photocurrent generation (in-scattering terms).

Figure S2(a) shows the diagram relevant for the CPGE at the light absorption. Taking into account that in the absorption region of the spectrum $\hbar \omega \geq E_g$ the energy conservation law can be fulfilled, Fig. S2(a) can be immediately calculated and represents the conduction band contribution to the photocurrent, Eq. (S11). In the absence of absorption this diagram vanishes.

Diagrams S2(b-d) describe the RPGE: These diagrams take into account the photon scattering, i.e., the emission of the secondary photon, wavy line marked as $\hbar \omega'$. The diagram Fig. S2(b) and its counterpart, Fig. S3, describe the RPGE with allowance for the photon momentum. Note that k, k'', and k' are related by the momentum conservation law. Figure S2(c) (and the diagram, analogous to that in Fig. S3) describe the photocurrent with allowance for the scattering in the valence band. The sum of all relevant diagrams with (0, 1, 2, ..) scattering is depicted in Fig. S2(d).

Figure S3. Second diagram describing the RPGE with allowance for the photon wavevector (out-scattering term).

Figure S4 shows the diagrams relevant for the RPGE at the intersubband resonant scattering in quantum well structures. Here extra scattering in the valence band is not required, see Eq. (11) of the main text.

Figure S4. Diagrams relevant for the RPGE at the intersubband scattering: (a) in-scattering and (b) out-scattering contributions.

SV. PHOTOCURRENTS IN THE TRANSPARENCY REGION: GENERAL REMARKS

It is instructive to make several comments about photocurrents for $\hbar \omega$ in the transparency region of the crystal regarding recent preprints [1, 2]. We reiterate that in the absence of any real electronic transitions dc current is forbidden. It is obvious from general reasons: If a dc current is generated then this current results in a Joule heat in the sample or in the external circuit connected to the sample. It is forbidden by the energy conservation law in the absence of real transitions. On the microscopic level, the absence of the photocurrent follows from the arguments
presented in Ref. [4]: In the absence of real transitions the only effect of the field is the renormalization of single particle dispersion $E_{c,k} \rightarrow \tilde{E}_{c,k}$. During the transient processes of energy and momentum relaxation the distribution function relaxes to an equilibrium function $f_0(\tilde{E}_{c,k})$ of the renormalized dispersion. The dc current would be

$$J_{dc} = 2 \sum_k \tilde{v}_k f_0(\tilde{E}_{c,k}) = 0,$$

(S33)

where $\tilde{v}_k = \hbar^{-1} \partial \tilde{E}_{c,k}/\partial k$. Thus, real electronic transitions are crucial for the photocurrent generation.

In the case considered in our work the real transitions are induced by the light scattering (this point was mentioned in Ref. [1]). In recent preprint [2] the authors discussed the photocurrent in the optical gap of a metal related to the “Berry curvature dipole” and “jerk” effects. In this regard, two comments are due:

i) At linear polarization no current can be generated in the absence of absorption or scattering processes. It follows from the general relation (1) of the main text:

$$j_\alpha = \gamma_{\alpha\beta}[\mathbf{e} \times \mathbf{e}^*]_\beta I + \chi_{\alpha\beta\mu}(e_\beta e^*_\mu + e_\mu e^*_\beta)I,$$

(S34)

which explicitly shows that the tensor χ responsible for the linear PGE is odd at the time reversal. Thus, it contains odd numbers of dissipative constants.

ii) The “Berry curvature dipole” contribution, at first glance, seems dissipationless: It appears at the circular polarization and does not vanish in the clean limit ($\Gamma \rightarrow 0$ in the terminology of the authors of Ref. [2]). However, as demonstrated in Ref. [5], this contribution is related to the interference of real electronic transition processes with the intermediate states in the same (conduction) band (Drude-like absorption) and with the intermediate states in the remote (valence) band. We also note that there is a side-jump contribution to the PGE which differs from the “Berry curvature dipole” contribution by a numerical factor only. Obviously, real transitions require dissipation, and as the authors of Ref. [2] explicitly check, these processes do not violate basic thermodynamic principles. Note that the absence of scattering rates in the expressions for the “Berry curvature dipole” and side-jump contributions is due to the cancellation of the rates in product of the Drude transition probability and in the momentum scattering time entering the general expression for the photocurrent [cf. Eq. (5) of the main text]:

$$J_{dc} = e\tilde{v} \tau_p \dot{N},$$

where for Drude-like transitions $\dot{N} \propto 1/\tau_p$ at $\omega \tau_p \gg 1$.

[1] Y. Onishi, H. Watanabe, T. Morimoto, and N. Nagaosa, Photovoltaic effect in noncentrosymmetric material without optical absorption, arXiv: 2204.12727 (2022).

[2] L. Shi, O. Matsyshyn, J. C. W. Song, and I. S. Villadiego, The Berry dipole photovoltaic demon and the thermodynamics of photo-current generation within the optical gap of metals, arXiv: 2207.03496 (2022).

[3] E. L. Ivchenko, Optical spectroscopy of semiconductor nanostructures (Alpha Science, Harrow UK, 2005).

[4] V. I. Belinicher, E. L. Ivchenko, and G. E. Pikus, Transient photocurrent in gyrotropic crystals, Sov. Phys. - Semicond. 20, 558 (1986).

[5] L. E. Golub, E. L. Ivchenko, and B. Spivak, Semiclassical theory of the circular photogalvanic effect in gyrotropic systems, Phys. Rev. B 102, 085202 (2020).