Animal models of portal hypertension

Juan G Abraldes, Marcos Pasarín, Juan Carlos García-Pagán

Animal models have allowed detailed study of hemodynamic alterations typical of portal hypertension and the molecular mechanisms involved in abnormalities in splanchnic and systemic circulation associated with this syndrome. Models of prehepatic portal hypertension can be used to study alterations in the splanchnic circulation and the pathophysiology of the hyperdynamic circulation. Models of cirrhosis allow study of the alterations in intrahepatic microcirculation that lead to increased resistance to portal flow. This review summarizes the currently available literature on animal models of portal hypertension and analyzes their relative utility. The criteria for choosing a particular model, depending on the specific objectives of the study, are also discussed.

© 2006 The WJG Press. All rights reserved.

Key words: Cirrhosis; Nitric oxide; Portal vein

Abraldes JG, Pasarín M, García-Pagán JC. Animal models of portal hypertension. World J Gastroenterol 2006; 12(41): 6577-6584

MODELS OF PORTAL HYPERTENSION

The portal pressure gradient is the result of the interaction between portal blood flow and the vascular resistance that opposes that flow. This relationship is defined by Ohm’s law in the equation:

\[\Delta P = Q \times R \]

where \(\Delta P \) is the portal pressure gradient (the difference between portal pressure and inferior vena cava pressure), \(Q \) is blood flow within the entire portal venous system (which in portal hypertension includes also the portal-systemic collaterals), and \(R \) is the vascular resistance of the entire portal venous system. It follows that portal pressure may increase because of an increase in portal blood flow,
an increase in vascular resistance, or by a combination of both. It is widely established that the primary factor leading to portal hypertension is an increased resistance to portal blood flow. This increased resistance can be prehepatic (portal vein thrombosis), intrahepatic (liver cirrhosis) or posthepatic (Budd-Chiari syndrome). Independently of the cause, portal hypertension is associated with severe disturbances in the systemic and splanchnic circulation, characterized by vasodilation, hypotension, activation of vasoactive systems, plasma volume expansion and increased cardiac output. This is known as the hyperdynamic circulatory syndrome, and it leads to an increase in portal blood inflow that contributes to maintain or worsen portal hypertension despite the development of portal-systemic collaterals. The percentage of portal-systemic shunting increases with increasing levels of portal pressure in animals that develop portal hypertension due to the development of collateral vessels. For the study of the intrahepatic circulation specific models of disease are needed.

Models of pre-hepatic portal hypertension

Partial portal vein ligation: Partial portal vein ligation model (PVL) has been widely used in the study of the pathophysiology of portal hypertension. This model has been developed in rats, mice and rabbits. The portal vein is freed from surrounding tissue after a midline abdominal incision. A ligature is placed around a calibrated stenosis of the portal vein that has the diameter of the needle. In the conventional rat PVL model a 20G needle is used (0.889 mm diameter). By using needles of greater caliber, less severe stenosis and thus less severe degrees of portal hypertension are induced. The diameters of the needles and resulting levels of stenosis are as follows: 16G: 1.651 mm, 18G: 1.270 mm, 20G: 0.889 mm. These procedures are easy to perform, inexpensive, reproducible and portal hypertension develops very fast. One week after portal vein ligation rats develop the complete PVL model, with hyperdynamic circulation and portal-systemic shunting. Portal-systemic shunting becomes detectable at two days. The percentage of portal-systemic shunting increases with increasing levels of portal pressure in animals that develop portal hypertension due to the development of collateral vessels. For the study of the intrahepatic circulation specific models of disease are needed.

Models of intrahepatic portal hypertension

Intrahepatic portal hypertension (IPH) can be classified as presinusoidal, sinusoidal and postsinusoidal. Models of cirrhosis, the most common cause of portal hypertension in western countries, have a double component, which are the pre- and post-sinusoidal components, but for practical purposes they will be discussed with the models of sinusoidal portal hypertension. Presinusoidal intrahepatic portal hypertension: Experimental infection with Schistosoma mansoni has been characterized in mice and hamsters. This model is achieved by injecting cercariae of the parasite in the abdominal wall. Portal hypertension develops 5 to 7 wk after inoculation. An important feature of this model is that portal hypertension develops progressively. In the hamster Schistosoma infection does not induce the development of portal-systemic shunting despite the presence of portal hypertension. On the contrary, mice infected with Schistosoma mansoni develop portal...
hypertension with portal-systemic shunting. Shunting is detectable from wk 9 and reaches 15% at wk 11[18,19]. Currently this model is seldom used, and no studies have been published in the last decade.

Sinusoidal portal hypertension: A number of models of cirrhosis have been described. We will limit our discussion to those that have been used for the study of portal hypertension.

(1) Common bile duct ligation (CBDL) CBDL is a model of secondary biliary cirrhosis. It has been mainly developed in rats[21], which are especially appropriate due to the lack of a gallbladder, but it has also been developed in rabbits[22] and mice[23]. Mice, however, develop a marked dilation of the gallbladder after bile duct ligation, which may lead to perforation and choleperitoneum. The intervention consists of the isolation of the common bile duct followed by a double ligature. The first ligature is made below the junction of the hepatic ducts. The second is made above the entrance of the pancreatic ducts. The portion of the bile duct between the two ligatures is resected to avoid repermeabilization. Mortality is high after the 5th wk (20%). The use of prophylactic antibiotics (Ampicillan 100 mg/Kg s.c. or similars) before surgery and weekly administration of vit K (50 mcg s.c.) notably improve the survival of CBDL rats. One of the drawbacks of this model is the potential formation of a biliary cyst, which may compress the portal vein at the hilum. This problem can be solved by gently injecting 10% formalin (120 µL/100 g) through a P10 catheter in the bile duct before ligation[24,25]. Other authors have prevented cyst formation by injecting Ethibloc®, a substance developed for vessel embolization, or by ligating the biliary duct of each lobule[27,28].

This model develops biliary fibrosis-cirrhosis in 4-6 wk. Histology shows marked cholangiolar proliferation and expansive portal fibrosis (Figure 2A), but the architectural disturbances typical of cirrhosis are seldom found[29]. At 2 wk rats develop mild portal hypertension[21] and at 4 wk severe portal hypertension, hyperdynamic circulation and portal-systemic shunting of 30%-60%[21,31,32]. Approximately, 60% of the rats develop ascites. Portal hypertension in this model has a presinusoidal component[29]. A major drawback of this model is that it is not adequate for pharmacological studies with drugs that are eliminated through the biliary route.

(2) Carbon tetrachloride induced cirrhosis (CCl₄) Acute administration of carbon tetrachloride induces acute hepatitis of primary perivenular localization. Continuous administration induces chronic liver injury that leads to cirrhosis. This methodology to induce cirrhosis has been used in rats[33,34], mice[33] and rabbits[22]. Route of administration varies among laboratories, but the most effective are oral[35,37], intraperitoneal[38,39] or inhalatory[34,40,41]. Subcutaneous route is not recommended due to its low yield of cirrhosis. The use of different administration schedules, even using the same route of administration, could explain the variability in the yield and time to cirrhosis in different laboratories. In our unit, Phenobarbital (0.3 g/L) is added to drinking water to increase the yield of cirrhosis, starting one week before first CCl₄ administration. Hemodynamic studies are performed 5-7 d after stopping CCl₄ and Phenobarbital.

Twelve to 15 wk after CCl₄ administration the rats develop micronodular cirrhosis (Figure 3A), portal
hypertension, portal-systemic shunting (30%-60%) and hyperdynamic circulation\[6\]. If maintained for 12 to 20 wk, most rats develop ascites. A major complexity of this model is the different sensitivity of the rats to CCl\(_4\), which makes it difficult to obtain a homogeneous group of cirrhotic rats. Proctor et al\[8\] proposed a solution that consists of the individualization of the dose according to weight gain/loss of the animal in response to the previous dose.

(3) Cirrhosis induced by thioacetamide (TAA) This is another widely used model of toxic cirrhosis. The toxin affects both perivenular and periportal areas. It has been used in rats\[11,12\] and mice\[12,13\]. TAA can be administered in drinking water\[14\] or by i.p. injection\[15,16\]. I.p. injection offers much more consistent results\[17\]. This model develops macronodular cirrhosis with portal hypertension in 12 wk (Figures 2B and 3B)\[16,19\]. Longer periods of induction might be required for the instauration of overt hyperdynamic circulation\[17\]. Approximately 40% develop ascites\[11,12\]. One particular feature of this model is that, contrary to what occurs with the CCl\(_4\) model, fibrosis remains stable for weeks after TAA withdrawal\[18\]. After 18 wk of TAA administration the rats might develop cholangiocarcinoma\[17\].

(4) DimethylNitrosamine induced cirrhosis (DMNA) DMNA is another hepatotoxic that induces hepatocellular necrosis. After continuous administration (generally i.p.) the rats develop fibrosis with portal hypertension, already present at 5 wk, but at this time the animals do not have cirrhosis nor features of hyperdynamic circulation\[19\]. Overt cirrhosis with ascites develops in 13 wk\[19,20\]. This model has been seldom used for the study of the pathophysiology of portal hypertension, probably due to restrictions in the use of DMNA due to its high carcinogenetic potential.

(5) Diet induced cirrhosis A diet deficient in choline and methionin, or a diet with low protein and choline and enriched with fat, induces liver steatosis associated with marked oxidative stress that induces inflammation and fibrosis\[21,22\]. Cirrhosis is developed after 12-24 wk. These models have not been well-characterized from the hemodynamic point of view and have not been used for the study of portal hypertension.

Postsinusoidal portal hypertension: Recently, a model that reproduces the pathological and clinical characteristics of veno-occlusive disease has been developed\[25\]. This is achieved by the administration of monocrotalin by oral gavage. Rats develop hyperbilirubinemia, hepatomegaly and ascites at 4-5 d. This model is useful for the study of the pathophysiology of veno-occlusive disease, but has not been characterized from the hemodynamic point of view.

Posthepatic portal hypertension

The aim of these models is to reproduce the features of the Budd-Chiari syndrome; i.e. liver injury derived from hepatic venous outflow obstruction. This has been achieved by placing an aneroid, which is a stainless steel device that allows slow expansion inside upon contact with the wet tissue, in the hepatic veins inducing a progressive occlusion of hepatic venous outflow. This model has been developed in dogs\[25\]. However, in the rat it is almost impossible to dissect the hepatic veins, so hepatic venous outflow occlusion has been induced by occluding the inferior vena cava cranially to the hepatic veins\[22\]. This is not a pure model of Budd-Chiari. These models have been very seldom used, and therefore it is uncertain whether they have any utility in the study of the hemodynamics of Budd-Chiari syndrome.

Table 2 Utility of the most commonly used animal models of portal hypertension

Type of study	PVL	CBDL	CCl\(_4\)	TAA
Abnormalities of the intrahepatic microcirculation in cirrhosis				
Pathophysiology of the hyperdynamic circulation	***	***	***	***
Temporary sequence of alterations leading to the hyperdynamic circulation	***	*	***	
Pathophysiology of ascites	***	***	***	***
Mesenteric circulation	***	***	***	?
Collateral circulation	***	***	***	?
Portal hypertensive gastropathy	***	***	***	?
Hepato-pulmonary syndrome	***	***	?	?
Portal hypertension-related bleeding models	No	No	experience	experience

Utility of the most commonly used animal models of portal hypertension for the study of the different manifestations of the syndrome. CCl\(_4\) model has been the most widely used model for the study of the intrahepatic circulation. In the study of the splanchnic and systemic circulation the PVL model is particular useful for hypothesis generation, that might be later confirmed in the cirrhosis models. Only the CBDL model develops features of hepatopulmonary syndrome (\(*\): Not useful; *: Low utility; **: Moderately useful; ***: Very useful).

Selection of a Model for the Study of the Pathophysiology of Portal Hypertension and Its Complications (Table 2)

Abnormalities of the intrahepatic circulation in cirrhosis

The most frequent cause of portal hypertension in western countries is liver cirrhosis. The primary factor leading to portal hypertension is an increased resistance to portal blood flow. This is not only the result of the disruption of the liver architecture, but is also due to an increased hepatic vascular tone. This concept has been demonstrated in isolated liver perfusion\[26\], which allows evaluation of the hepatic vascular tone and its response to vasoconstrictors and vasodilators. This is problematic in *in vivo* studies because it is very difficult to discern the effects of a particular vasoactive substance that depend on changes in systemic, splanchnic and collateral circulation.

www.wjgnet.com
from those derived from changes on hepatic resistance. Another way of evaluating intrahepatic microcirculation is by intravital microscopy[60].

The model most frequently used for isolated perfusion has been CCl	extsubscript{4} induced cirrhosis. In these livers, it has been demonstrated that there is an increased hepatic vascular tone, hyperresponse to vasoconstrictors and hyporesponsiveness to vasodilators. The main mechanism underlying these abnormal vascular responses is endothelial dysfunction with insufficient NO production and an increased production of vasoconstrictive eicosanoids[61-63]. Vascular responses have also been studied in other models of cirrhosis, such as CBDL[64,65] and TAA[46,64], but data are still scarce and less consistent than those obtained with the CCl	extsubscript{4} model. Moreover, it must be stressed that the CBDL model has an important presinusoidal component in the increase in hepatic resistance[56].

Abnormalities in the systemic, mesenteric and collateral circulation in portal hypertension

These studies include in vivo hemodynamic studies and ex vivo perfusion of the mesenteric vascular bed and the portal-systemic collaterals. The in vivo studies are very useful for the study of the pathophysiology of the hyperdynamic circulation associated with portal hypertension. The hyperdynamic circulation has been described in the PVL model[13,18] and in the models of cirrhosis induced by CCl	extsubscript{4}, CBDL[82] and TAA[46,64]. The in vivo studies, on the other hand, globally evaluate the effects of a drug on portal pressure, which is the result of the integrated effects of the drug on portal blood inflow, collateral resistance and hepatic resistance.

Any model of portal hypertension is valid, in theory, for the study of mesenteric circulation. This has been evaluated by the isolated perfusion of the mesenteric vascular bed (McGregor’s preparation[65]), by the study of vascular responses in isolated mesenteric vessels[66] or by the perfusion of intestinal microvasculature[63]. The characteristic hyporesponsiveness of vasoconstrictors of the mesenteric circulation has only been demonstrated so far in the PVL and the CCl	extsubscript{4} models[64-66].

Collateral circulation has been studied with different methodologies. The most common has been the evaluation of portal-systemic shunting by the injection of radioactive, colored or fluorescent microspheres[67,68]. If different isotopes or colored or fluorescent markers are used, changes in portal-systemic shunting after different interventions can be evaluated in the same animal[59].

Another way of studying the collateral circulation is the measurement, with transit-time flow probes, of the blood flow of the spontaneous splenorenal shunt, a major collateral developed after portal hypertension[40]. Mosca et al developed a system for ex vivo perfusion of collaterals[39], in which the vascular responses of the collateral vascular bed to different vasoactive substances can be tested. The interpretation of the results obtained with this methodology might differ among models, because in the PVL model shunting is about 100%, while in the cirrhosis models shunting does not go beyond 60%.

The availability of the PVL model has shown great advantage for the study of the abnormalities of systemic, mesenteric and collateral circulation, because it is a very rapid model and much less expensive than models of cirrhosis. In the last 20 years, most investigators have chosen to generate and test hypothesis first in the PVL model, and subsequently confirm those hypothesis in the more laborious and expensive models of cirrhosis.

Ascites and renal dysfunction

The vast majority of studies in this field have been performed using the CCl	extsubscript{4} cirrhosis model[70-72]. CCl	extsubscript{4} administration is maintained until the animal develops ascites at physical examination, which occurs between 12-20 wk. The PVL model, akin to what happens in patients with prehepatic portal hypertension, does not develop ascites. Even though, since this model is ideal for sequential studies, it has been instrumental in the description of hyperdynamic circulation[13] and in the validation of the peripheral arterial vasodilation hypothesis as the trigger for sodium and water retention in cirrhosis[13,73-75]. CBDL and CCl	extsubscript{4} models have been also used for longitudinal studies aimed at demonstrating the sequence vasodilation-sodium retention-ascites[76-78], but the temporal evolution of these models (especially for CCl	extsubscript{4}) is less consistent.

Portal hypertensive gastropathy

Several studies have demonstrated that PVL and cirrhotic rats show abnormalities of the gastric microvasculature comparable to those observed in portal hypertensive gastropathy in humans. Studies in these models have been useful to test therapeutic interventions that subsequently showed some efficacy in patients bleeding from portal hypertensive gastropathy[79,80].

Hepatopulmonary syndrome

CBDL rats develop alterations analogous to those of hepatopulmonary syndrome seen in humans, such as intrapulmonary vascular dilatations and an increased alveolar to arterial oxygen gradient[81]. These alterations are obvious from the 2nd wk after bile duct ligation[44]. Other models of portal hypertension, such as the PVL and the TAA, do not develop hepatopulmonary syndrome[84,85].

Models of portal hypertension-related bleeding

Our laboratory has recently described a portal hypertension-related bleeding model that has been useful in evaluating therapeutic interventions in acute variceal bleeding, such as for determining the best policy for volume replacement and the effects of vasoactive drugs on the outcome of bleeding[14,25,82]. This model consists of the isolation and section of a branch of the ileocolic vein (Figure 4). The severity of hemorrhage depends on the degree of portal hypertension and the size of the sectioned branch[14]. This model has been characterized in PVL and CBDL rats[14,25,82]. A section of the first order branch of the ileocolic vein results in 50% mortality in CBDL rats, whereas mortality is 0% in PVL rats. Subsequently, a modification of the model was developed, in which 2 successive sections of a first order branch of ileocolic
vein are performed in PVL rats. In this way the second bleeding is induced when the rat is already hypovolemic. This modification increases mortality to 50%, and allows testing of the vasoactive drugs in hypovolemic conditions, a situation that better reproduces the clinical context in which these drugs are applied[82].

REFERENCE

1 Vorobioff J, Bredfeldt JE, Groszmann RJ. Hyperdynamic circulation in portal-hypertensive rat model: a primary factor for maintenance of chronic portal hypertension. Am J Physiol 1985; 244: G52-G57
2 Vorobioff J, Bredfeldt JE, Groszmann RJ. Increased blood flow through the portal system in cirrhotic rats. Gastroenterology 1984; 87: 1120-1126
3 Groszmann RJ, Abrahaldes JG. Portal hypertension: from bedside to bench. J Clin Gastroenterol 2005; 39: S125-S130
4 Mullen KD, McCullough AJ. Problems with animal models of chronic liver disease: suggestions for improvement in standardization. Hepatology 1989; 9: 500-503
5 Sarin SK, Sabbah C, Groszmann RJ. Splanchnic and systemic hemodynamics in mice using a radioactive microsphere technique. Am J Physiol 1990; 258: G365-G369
6 Fernandez M, Vizzutti F, Garcia-Pagan JC, Rodes J, Bosch J. Anti-VEGF receptor-2 monoclonal antibody prevents portal-systemic collateral vessel formation in portal hypertensive mice. Gastroenterology 2004; 126: 886-894
7 Iwakiri Y, Cadelina G, Sesso WC, Groszmann RJ. Mice with targeted deletion of eNOS develop hyperdynamic circulation associated with portal hypertension. Am J Physiol Gastrointest Liver Physiol 2002; 283: G176-G180
8 Bosch J, Enriquez R, Groszmann RJ, Storer EH. Chronic bile duct ligation in the dog: hemodynamic characterization of a portal hypertensive model. Hepatology 1985; 5: 97-101
9 Kroeger J, Groszmann RJ. Increased portal venous resistance hinders portal pressure reduction during the administration of beta-adrenergic blocking agents in a portal hypertensive model. Hepatology 1983; 3: 1002-1007
10 Sikulker E, Kravetz D, Groszmann RJ. Evolution of portal hypertension and mechanisms involved in its maintenance in a rat model. Am J Physiol 1985; 248: G618-G625
11 Witte CL, Tobin GR, Clark DS, Witte MH. Relationship of splanchnic blood flow and portal venous resistance to elevated portal pressure in the dog. Gut 1976; 17: 122-126
12 Groszmann RJ. Hyperdynamic circulation of liver disease 40 years later: pathophysiology and clinical consequences. Hepatology 1994; 20: 1359-1363
13 Colombato LA, Albillos A, Groszmann RJ. Temporal relationship of peripheral vasodilatation, plasma volume expansion and the hyperdynamic circulatory state in portal-hypertensive rats. Hepatology 1992; 15: 323-328
14 Castaneda B, Debernardi-Venon W, Bandi JC, Andres V, Perez-del-Pulgar S, Moitinho E, Pizcueta P, Bosch J. The role of portal pressure in the severity of bleeding in portal hypertensive rats. Hepatology 2000; 31: 581-586
15 Cahill PA, Foster C, Redmond EM, Gingalewski C, Wu Y, Sitzmann JV. Enhanced nitric oxide synthase activity in portal hypertensive rabbits. Hepatology 1995; 22: 598-606
16 Lozeva V, Montgomery JA, Tuomisto L, Rocheleau B, Panmunzio M, Huet PM, Butterworth RF. Increased brain serotonin turnover correlates with the degree of shunting and hyperammonemia in rats following variable portal vein stenosis. J Hepatol 2004; 40: 742-748
17 Abrahaldes JG, Iwakiri Y, Loureiro-Silva M, Haq O, Sessa WC, Groszmann RJ. Mild increases in portal pressure upregulate vascular endothelial growth factor and endothelial nitric oxide synthase in the intestinal microcirculatory bed, leading to a hyperdynamic state. Am J Physiol Gastrointest Liver Physiol 2006; 290. G980-G987
18 Sarin SK, Groszmann RJ, Mosca PG, Rojkind M, Stadecker MJ, Bhatnagar R, Reuben A, Dayal Y. Propranolol ameliorates the development of portal-systemic shunting in a chronic murine schistosomiasis model of portal hypertension. J Clin Invest 1991; 87: 1032-1036
19 Sarin SK, Mosca P, Sabbah C, Groszmann RJ. Hyperdynamic circulation in a chronic murine schistosomiasis model of portal hypertension. Hepatology 1991; 13: 581-584
20 Morgan JS, Groszmann RJ, Rojkind M, Enriquez R. Hemodynamic mechanisms of emerging portal hypertension caused by schistosomiasis in the hamster. Hepatology 1990; 11: 98-104
21 Lee SS, Girod C, Braillon A, Hadengue A, Lebrec D. Hemodynamic characterization of chronic bile duct-ligated rats: effect of pentobarbital sodium. Am J Physiol 1986; 251: G176-G180
22 Burns RC, Wu Y, Sitzmann JV. Role of cirrhosis in the hemodynamic response to hemorrhage in portal hypertension. Surgery 1995; 117: 488-493
23 Biecker E, Neef M, Sagesser H, Shaw S, Koshy A, Reichen J. Nitric oxide synthase 1 is partly compensating for nitric oxide synthase 3 deficiency in nitric oxide synthase 3 knock-out mice and is elevated in murine and human cirrhosis. Liver Int 2004; 24: 345-353
24 Beck PL, Lee SS. Vitamin K I improves survival in bile-duct-ligated rats with cirrhosis. J Hepatol 1995; 23: 235
25 Castaneda B, Morales J, Lionetti R, Moitinho E, Andreu V, Perez-del-Pulgar S, Pizcueta P, Rodes J, Bosch J. Effects of blood volume restitution following a portal hypertensive-related bleeding in anesthetized cirrhotic rats. Hepatology 2001; 33: 821-825
26 Cho JJ, Hocher B, Herbst H, Jia JD, Ruehl M, Hahn EG, Riecken EO, Schuppan D. An oral endothelin-A receptor antagonist blocks collagen synthesis and deposition in advanced rat liver fibrosis. Gastroenterology 2000; 118: 1169-1178
27 Aller MA, Lorente L, Alonso S, Arias J. A model of cholestasis in the rat, using a microsurgical technique. Scand J Gastroenterol 1993; 28: 10-14
28 Aller MA, Duran M, Ortega L, Arias JL, Nava MP, Prieto I, Arias J. Comparative study of macro- and microsurgical extraportal cholestasis in the rat. Microsurgery 2004; 24: 442-447
29 Kountouras J, Billing BH, Scheuer PJ. Prolonged bile duct obstruction: a new experimental model for cirrhosis in the rat. Br J Exp Pathol 1984; 65: 305-311
30 Franco D, Gigou M, Szekely AM, Bismuth H. Portal hypertension after bile duct obstruction: effect of bile diversion on portal pressure in the rat. Arch Surg 1979; 114: 1064-1067
31 Heller J, Shiozawa T, Tredick J, Hennenberg M, Scheike M, Neef M, Sauerbruch T. Acute haemodynamic effects of losartan in anaesthetized cirrhotic rats. Eur J Clin Invest 2003; 33: 1006-1012
et al. Animal models of portal hypertension

6583

Sikuler E, Buchs AE, Yaari A, Keynan A. Hemodynamic characterization of conscious and ketamine-anesthetized bile duct-ligated rats. *Am J Physiol* 1991; 260: G161-G166

Jimenez W, Claria J, Arroyo V, Rodes J. Carbon tetrahydroxide induced cirrhosis in rats: a useful tool for investigating the pathogenesis of ascites in chronic liver disease. *J Gastroenterol Hepatol* 1992; 7: 909

Graupera M, Garcia-Pagan JC, Titos E, Claria J, Massaguer F, Vander Elst I, Zeegers M, Servaes R, Libbrecht LP, Tyce GM, Miller VM, Edwards BS, Rorie DK, Garcia-Pagan JC, Abraldes JG, Peralta C, Henderson N, Iredale JP. Modeling liver fibrosis. *Hepatology* 2002; 35: 477-487

Kamada Y, Tamura S, Siso S, Matsumoto H, Saji Y, Yoshida Y, Fukui K, Maeda N, Nishizawa H, Nagaretani H, Okamoto Y, Kihara S, Miyagawa J, Shimomura Y, Funahashi T, Matsuzawa Y. Enhanced carbon tetrahydroxide-induced liver fibrosis in mice lacking adiponectin. *Gastroenterology* 2003; 125: 1796-1807

Proctor E, Chataram K. High yield micronodular cirrhosis in the rat. *Gastroenterology* 1982; 83: 1183-1190

Kobayashi N, Ito M, Nakamura J, Cai G, Cao H, Himmel JM, Fox IJ. Hepatocyte transplantation in rats with decompensated cirrhosis. *Hepatology* 2000; 31: 851-857

Hernandez-Munoz R, Diaz-Munoz M, Suarez-Cuenca JA, Trejo-Solis C, Lopez V, Sanchez-Sevilla L, Yanez L, De Sanchez VC. Adenosine reverses a preestablished CCl4-induced micronodular cirrhosis through enhancing collagenolytic activity and stimulating hepatocyte cell proliferation in rats. *Hepatology* 2001; 34: 677-687

Constandinou A, Henderson N, Iredale JP. Modeling liver fibrosis in rodents. *Methods Mol Med* 2005; 117: 237-250

Sieber CC, Lopez-Talavera JC, Grossmann RJ. Role of nitric oxide in the in vitro splanchnic vascular hyperreactivity in ascitic cirrhotic rats. *Gastroenterology* 1993; 104: 1750-1754

Loureiro-Silva MR, Catalina GW, Groszmann RJ. Deficit in nitric oxide production in cirrhotic rat livers is located in the sinusoidal and postsinusoidal areas. *Am J Physiol Gastrointest Liver Physiol* 2003; 284: G567-G574

Li X, Benjamin JS, Alexander B. Reproducible production of thioacetamide-induced macronodular cirrhosis in the rat with no mortality. *Hepatol* 2002; 36: 488-493

Okuyama H, Nakamura H, Shimahara Y, Uyama N, Kwon YW, Kawada N, Yamaoka Y, Yodoi J. Overexpression of thioerodixin prevents thioacetamide-induced hepatic fibrosis in mice. *Hepatol* 2005; 42: 117-123

Luo B, Liu L, Tang L, Zhang J, Ling Y, Fallon MB. ET-1 and TNF-alpha induce MMP-2, -3, and -9 in HPS: an in vitro model recapitulating the multi-stage progression of human cholangiocarcinoma. *Carcinogenesis* 2004; 25: 631-636

Veal N, Oberti F, Moal F, Vuillenim E, Fort J, Kaassie M, Plateau C, Calle F. Splenectomy shunts blood flow in an accurate index of collateral circulation in different models of portal hypertension and after pharmacological changes in rats. *J Hepatol* 2000; 32: 434-440

Takamori M, Matsuoka M, French SW. Experimental models of nonalcoholic fatty liver disease and steatohepatitis. *Clin Liver Dis* 2004; 8: 559-874, ix

DeLeve LD, McCuskey RS, Wang X, Hu L, McCuskey MK, Epstein RB, Kanel GC. Characterization of a reproducible rat model of hepatic veno-occlusive disease. *Hepatology* 1999; 29: 1779-1791

Fleet ER, Muscatine ME, Annetts DL, Goodhead B, Orloff MJ. Production of hepatic outflow block and ascites with an amiodar constrictor. *Surg Forum* 1966; 17: 376-378

Orloff MJ, Daily PO, Girard B. Treatment of Budd-Chiari syndrome due to inferior vena cava occlusion by combined portal and vena cava decompensation. *Am J Surg* 1992; 163: 137-142; discussion 142-143

Bhatyal PH, Grossman HJ. Reduction of the increased portal vascular resistance of the isolated perfused cirrhotic rat liver by vasodilatators. *J Hepatol* 1985; 1: 325-337

Zhang JX, Pegoli W Jr, Clemens MG. Endothelin-1 induces direct constriction of hepatic sinusoids. *Am J Physiol* 1994; 266: G624-G632

Graupera M, Garcia-Pagan JC, Abraldes JG, Peralta C, Brugalat M, Corominola H, Bosch J, Rodes J. Cyclooxygenase-derived products modulate the increased intrahepatic resistance of cirrhotic rat livers. *Hepatology* 2003; 37: 172-181

Gupta TK, Torunuer M, Claria J, Grossmann RJ. Endothelial dysfunction and decreased production of nitric oxide in the intrahepatic microcirculation of cirrhotic rats. *Hepatology* 1998; 29: 926-931

Yokoyama Y, Xu H, Kresse S, Sarmadi AH, Baveja R, Clemens MG, Zhang JX. Role of thromboxane A2 in early BDL-induced portal hypertension. *Am J Physiol Gastrointest Liver Physiol* 2003; 284: G453-G460

Kamath PS, Tye GM, Miller VM, Edwards BS, Rorie DK. Endothelin-1 modulates parenchymal resistance in a rat model of noncirrhotic portal hypertension. *Hepatology* 1999; 30: 401-407

Noda S, Masumi S, Moriyama M, Kannan Y, Ohta M, Sugano T, Yamate J. Population of hepatic macrophages and response of perfused liver to platelet-activating factor during production of thioacetamide-induced cirrhosis in rats. *Hepatology* 1996; 24: 412-418

Hori N, Okanoue T, Sawa Y, Mori T, Kashima K. Hemodynamic characterization in experimental liver cirrhosis induced by thioacetamide administration. *Dig Dis Sci* 1993; 38: 2195-2202

McGregor DD, Smirk FH. Vascular responses in mesenteric arteries from genetic and renal hypertensive rats. *Am J Physiol* 1968; 214: 1429-1433

Sogni P, Sabry S, Moreau R, Gadano A, Lebrec D, Dinh-Xuan AT. Hyperactivity of mesenteric resistance arteries in por tal hypertensive rats. *J Hepatol* 1996; 24: 487-490

Joh T, Granger DN, Beneit N. Intestinal microvascular responsiveness to norepinephrine in chronic portal hypertension. *Am J Physiol* 1991; 260: H1135-H1143

Sieber CC, Grossmann RJ. In vitro hyperreactivity to methoxamine in portal hypertensive rats: reversal by nitric oxide blockade. *Am J Physiol* 1992; 262: G996-G1001

Chojkier M, Grossmann RJ. Measurement of portal-systemic shunting in the rat by using gamma-labeled microspheres. *Am J Physiol* 1981; 240: G371-G375

Theodorakis NG, Wang YN, Skill NJ, Metz MA, Cahill PA, Redmond EM, Sitzmann JV. The role of nitric oxide synthase isoforms in extrahepatic portal hypertension: studies in gene-knockout mice. *Gastroenterology* 2003; 124: 1500-1508

Mosca F, Lee FY, Kaumann AJ, Groszmann RJ. Pharmacology of portal-systemic collaterals in portal hypertensive rats: role of endothelium. *Am J Physiol* 1992; 263: G544-G550

Claria J, Jimenez W, Ros J, Rigol M, Angel P, Arroyo V, Rivera F, Rodes J. Increased nitric oxide-dependent vasorelaxation in aortic rings of cirrhotic rats with ascites [see comments]. *Hepatology* 1994; 20: 1615-1621

Claria J, Jimenez W, Ros J, Asbert M, Castro A, Arroyo V, Rivera F, Rodes J. Pathogenesis of arterial hypotension in cirrhotic rats with ascites: role of endogenous nitric oxide. *Hepatology* 1991; 13: 325-337

Ros J, Claria J, Jimenez W, Bosch-Marce M, Angel P, Arroyo V, Rivera F, Rodes J. Role of nitric oxide and prostacyclin in the...
control of renal perfusion in experimental cirrhosis. *Hepatology* 1995; 22: 915-920

73 Albillos A, Colombato LA, Groszmann RJ. Vasodilatation and sodium retention in prehepatic portal hypertension. *Gastroenterology* 1992; 102: 931-935

74 Colombato LA, Albillos A, Groszmann RJ. The role of central blood volume in the development of sodium retention in portal hypertensive rats. *Gastroenterology* 1996; 110: 193-198

75 Schrier RW, Arroyo V, Bernardi M, Epstein M, Henriksen JH, Rodes J. Peripheral arterial vasodilation hypothesis: a proposal for the initiation of renal sodium and water retention in cirrhosis. *Hepatology* 1988; 8: 1151-1157

76 Martinez-Prieto C, Ortiz MC, Fortepiani LA, Ruiz-Macia J, Atucha NM, Garcia-Estan J. Haemodynamic and renal evolution of the bile duct-ligated rat. *Clin Sci* (Lond) 2000; 98: 611-617

77 Jimenez W, Martinez-Pardo A, Arroyo V, Bruix J, Rimola A, Gaya J, Rivera F, Rodes J. Temporal relationship between hyperaldosteronism, sodium retention and ascites formation in rats with experimental cirrhosis. *Hepatology* 1985; 5: 245-250

78 Lopez C, Jimenez W, Arroyo V, Claria J, La Villa G, Asbert M, Gaya J, Rivera F, Rodes J. Temporal relationship between the decrease in arterial pressure and sodium retention in conscious spontaneously hypertensive rats with carbon tetrachloride-induced cirrhosis. *Hepatology* 1991; 13: 585-589

79 Panes J, Casadevall M, Pique JM, Bosch J, Whittle BJ, Teres J. Effects of acute normovolemic anemia on gastric mucosal blood flow in rats: role of nitric oxide. *Gastroenterology* 1992; 103: 407-413

80 Panes J, Casadevall M, Fernandez M, Pique JM, Bosch J, Casamitjana R, Cirera I, Bombi JA, Teres J, Rodes J. Gastric microcirculatory changes of portal-hypertensive rats can be attenuated by long-term estrogen-progestagen treatment. *Hepatology* 1994; 20: 1261-1270

81 Fallon MB, Abrams GA, McGrath JW, Hou Z, Luo B. Common bile duct ligation in the rat: a model of intrapulmonary vasodilatation and hepatopulmonary syndrome. *Am J Physiol* 1997; 272: G779-G784

82 Morales J, Moitinho E, Abraldes JG, Fernandez M, Bosch J. Effects of the V1a vasopressin agonist F-180 on portal hypertension-related bleeding in portal hypertensive rats. *Hepatology* 2003; 38: 1378-1383