Accurate estimation of sums over zeros of the Riemann zeta-function

Richard P. Brent† David J. Platt‡ and Timothy S. Trudgian§

September 30, 2020

Abstract

We consider sums of the form \(\sum \phi(\gamma) \), where \(\phi \) is a given function, and \(\gamma \) ranges over the ordinates of nontrivial zeros of the Riemann zeta-function in a given interval. We show how the numerical estimation of such sums can be accelerated by a simple device, and give examples involving both convergent and divergent infinite sums.

1 Introduction

Let the nontrivial zeros of the Riemann zeta-function \(\zeta(s) \) be denoted by \(\rho = \beta + i\gamma \). In order of increasing height, the ordinates of the zeros in the upper half-plane are \(\gamma_1 \approx 14.13 < \gamma_2 < \gamma_3 < \cdots \).

Let \(\phi : [T_0, \infty) \mapsto [0, \infty) \) be a non-negative function on the interval \([T_0, \infty)\), for some \(T_0 \geq 1 \). Throughout this paper we assume that \(\phi(t) \) is twice continuously differentiable and satisfies the conditions \(\phi'(t) \leq 0 \) and \(\phi''(t) \geq 0 \) on \([T_0, \infty)\). These conditions imply that \(\phi(t) \) is convex on \([T_0, \infty)\).

We are interested in sums of the form \(\sum_{T_1 \leq \gamma \leq T_2} \phi(\gamma) \) and \(\sum_{T_1 < \gamma} \phi(\gamma) \), where \(T_0 \leq T_1 \leq T_2 \). Here the prime symbol (′) indicates that if \(\gamma = T_1 \) or \(\gamma = T_2 \) then the term \(\phi(\gamma) \) is given weight \(\frac{1}{2} \). If multiple zeros exist, then terms involving such zeros are weighted by their multiplicities. Sums of this form can be bounded using a lemma of Lehman [9, Lem. 1] that we state for reference. We have changed Lehman’s wording slightly, but the proof is the same. In the lemma and elsewhere, \(\vartheta \) denotes a real number in \([-1, 1] \), possibly different at each occurrence.

*2010 Mathematics Subject Classification. Primary 11M06; Secondary 11M26.

†Australian National University, Canberra, Australia <accel@rpbrent.com>
‡School of Mathematics, University of Bristol, Bristol, UK <dave.platt@bris.ac.uk>
§School of Science, Univ. of NSW, Canberra, Australia <t.trudgian@adfa.edu.au>
Lemma 1 (Lehman). If $2\pi e \leq T \leq T_2$ and $\phi : [T, T_2] \mapsto [0, \infty)$ is monotone non-increasing on $[T, T_2]$, then

$$
\sum_{T \leq \gamma \leq T_2}^' \phi(\gamma) = \frac{1}{2\pi} \int_T^{T_2} \phi(t) \log(t/2\pi) \, dt + A\phi \left(2\phi(T) \log T + \int_T^{T_2} \phi(t) / t \, dt\right),
$$

where A is an absolute constant.

Our Lemma 3 may be seen as a refinement of Lehman’s lemma, with the additional assumption that $\phi''(t) \geq 0$. Lemma 3 is stated and proved in §3. For simplicity, we outline here the case $T_2 \to \infty$, since this case has one fewer parameter and is of interest in many applications.

If the infinite sum $\sum_{T \leq \gamma \leq T_2}^' \phi(\gamma)$ converges, then the error term in Lemma 1 is $\gg \phi(T) \log T$. In Theorem 1, we express the error as $-\phi(T)Q(T) + E_2(T)$, where $Q(T) \ll \log T$ can be computed from (4)–(5), and $E_2(T)$ is generally of lower order than $\phi(T) \log T$. We state Theorem 1 here; the proof is given in §4. Note that the lower bound on T is 2π, not $2\pi e$ as in Lehman’s lemma. This is convenient in applications because $2\pi < \gamma_1 < 2\pi e$.

Theorem 1. Suppose that $2\pi \leq T_0 \leq T$ and $\int_T^{\infty} \phi(t) \log(t/2\pi) \, dt < \infty$. Let

$$
E(T) := \sum_{T \leq \gamma}^' \phi(\gamma) - \frac{1}{2\pi} \int_T^{\infty} \phi(t) \log(t/2\pi) \, dt.
$$

Then $E(T) = -\phi(T)Q(T) + E_2(T)$, where

$$
E_2(T) = -\int_T^{\infty} \phi'(t)Q(t) \, dt,
$$

and $Q(T) = N(T) - L(T)$ is defined by (4)–(5). Also,

$$
|E_2(T)| \leq 2(A_0 + A_1 \log T) |\phi'(T)| + (A_1 + A_2)\phi(T)/T.
$$

Here A_0 and A_1 are constants satisfying condition (10) below, and A_2 is a small constant which, from Lemma 2, we can take as $A_2 = 1/150$. We note that $E_2(T)$ is a continuous function of T, as can be seen from (2), whereas $E(T)$ has jumps at the ordinates of nontrivial zeros of $\zeta(s)$.

Disregarding the constant factors, Theorem 1 shows that

$$
E_2(T) \ll |\phi'(T)| \log T + \phi(T)/T.
$$

1In Lemma 1, A is a constant such that $|Q(T)| \leq A \log T$ for all $T \geq 2\pi e$, where $Q(T)$ is as in [4]. From [3 Cor. 1], we may take $A = 0.28$. 2
For example, if $\phi(t) = t^{-c}$ for some $c > 1$, then $E(T) \ll T^{-c} \log T$, and $E_2(T) \ll T^{-(c+1)} \log T$ is smaller by a factor of order T.

As well as convergent sums, we also consider certain divergent sums. Theorem 2 shows that, if $\int_{T_0}^\infty t^{-1} \phi(t) \, dt < \infty$, then there exists

$$F(T_0) := \lim_{T \to \infty} \left(\sum_{0 < \gamma \leq T} \phi(\gamma) - \frac{1}{2\pi} \int_{T_0}^T \phi(t) \log(t/2\pi) \, dt \right).$$

In Theorem 3 we consider approximating $F(T_0)$ by computing a finite sum (over $\gamma \leq T$), with error term $E_2(T)$ the same as in Theorem 1.

For example, if $\phi(t) = 1/t$ and $T_0 = 2\pi$, we have $E(T) \ll T^{-1} \log T$ and $E_2(T) \ll T^{-2} \log T$. The latter bound allows us to obtain an accurate approximation to the constant $H = F(2\pi)$ that can equally well be defined, in analogy to Euler’s constant, by

$$H := \lim_{T \to \infty} \left(\sum_{0 < \gamma \leq T} \frac{1}{4\pi} \log^2(T/2\pi) \right).$$

This example is considered in detail in [4], where it is shown that

$$H = -0.0171594043070981495 + \vartheta(10^{18}).$$

The motivation for this paper was an attempt to generalise the results of [4].

In §2 we define some notation and mention some relevant results in the literature. We also state Lemma 2, which sharpens a result of Trudgian [13] and gives an almost best-possible explicit bound on $Q(t) - S(t)$. Lemma 3 in §3 covers finite sums. In §4–§5 we deduce Theorems 1–3 from Lemma 3. Thus, in a sense, Lemma 3 is the key result, but we have called it a lemma in deference to Lehman’s lemma.

2 Preliminaries

The Riemann-Siegel theta function $\theta(t)$ is defined for real t by

$$\theta(t) := \arg \Gamma \left(\frac{1}{4} + \frac{it}{2} \right) - \frac{t}{2} \log \pi,$$

see for example [6 §6.5]. The argument is defined so that $\theta(t)$ is continuous on \mathbb{R}, and $\theta(0) = 0$.

Let F denote the set of positive ordinates of zeros of $\zeta(s)$. Following Titchmarsh [11, §9.2–9.3], if $0 < T \not\in F$, then we let $N(T)$ denote the number of zeros $\beta + i\gamma$ of $\zeta(s)$ with $0 < \gamma \leq T$, and $S(T)$ denote the value of $\pi^{-1} \arg \zeta(\frac{1}{2} + iT)$ obtained by continuous variation along the straight lines joining $2, 2 + iT$, and $\frac{1}{2} + iT$, starting with the value 0. If $0 < T \in F$, we take $S(T) = \lim_{\delta \to 0} [S(T - \delta) + S(T + \delta)]/2$, and similarly for $N(T)$. This convention is the reason why we consider sums of the form $\sum_{T_1 \leq \gamma \leq T_2} \phi(t)$ instead of $\sum_{T_1 \leq \gamma \leq T_2} \phi(t)$.

By [11, Thm. 9.3], we have

$$N(T) = L(T) + Q(T),$$

$$L(T) = \frac{T}{2\pi} \left(\log \left(\frac{T}{2\pi} \right) - 1 \right) + \frac{7}{8},$$

$$S(T) = Q(T) + O(1/T).$$

From [11, Thm. 9.4], $S(T) \ll \log T$. Thus, from (5), $Q(T) \ll \log T$.

Trudgian [13, Cor. 1] gives the explicit bound $|Q(T) - S(T)| \leq 0.2/T$ for all $T \geq e$. In Lemma 2 we obtain a sharper constant, assuming that $T \geq 2\pi$. The result of Lemma 2 is close to optimal, since the proof shows that the constant 150 could at best be replaced by $48\pi \approx 150.8$.

Lemma 2. If $Q(t)$ and $S(t)$ are defined as above then, for all $t \geq 2\pi$,

$$|Q(t) - S(t)| \leq \frac{1}{150t}.$$

Proof. We shall assume that $t \not\in F$, since otherwise the result follows by continuity of $Q(t) - S(t)$. The Riemann-von Mangoldt formula states, in its most precise form,

$$N(t) = \theta(t)/\pi + 1 + S(t).$$

From [11], this implies that

$$Q(t) - S(t) = \frac{\theta(t)}{\pi} + 1 - L(t).$$

Now $\theta(t)$ has a well-known asymptotic expansion [7, Satz 4.2.3(c)]

$$\theta(t) \sim \frac{t}{2} \left(\log \left(\frac{t}{2\pi} \right) - 1 \right) - \frac{\pi}{8} + \sum_{j \geq 1} \frac{(1 - 2^{1-2j})|B_{2j}|}{4j(2j - 1)t^{2j-1}},$$

where $B_2 = \frac{1}{6}, B_4 = -\frac{1}{30}, \ldots$ are Bernoulli numbers. Thus, using (5), $Q(t) - S(t)$ has an asymptotic expansion

$$Q(t) - S(t) \sim \frac{1}{\pi} \sum_{j \geq 1} \frac{(1 - 2^{1-2j})|B_{2j}|}{4j(2j - 1)t^{2j-1}}.$$
In order to give an explicit bound on \(Q(t) - S(t) \), we use an explicit bound on the error incurred by taking the first \(k \) terms \(\tilde{T}_j(t) \), \(j = 1, \ldots, k \) in (7). From [2] (47), for all \(t > 0 \), this error is
\[
|\tilde{R}_{k+1}(t)| < (1 - 2^{1-2k})^{-1} (\pi k)^{1/2} \tilde{T}_k(t) + \frac{1}{2} e^{-\pi t}.
\] (9)

Substituting the expression for \(\tilde{T}_k(t) \) into (9) gives a bound
\[
|\tilde{R}_{k+1}(t)| < \frac{|B_{2k}|}{4(\pi k)^{1/2}(2k - 1) t^{2k-1}} + e^{-\pi t} \frac{1}{2\pi}
\]
for the error incurred by taking the first \(k \) terms in (8). Thus, for all \(k \geq 1 \) and \(t > 0 \),
\[
Q(t) - S(t) = \frac{1}{\pi} \sum_{j=1}^{k} \frac{(1 - 2^{1-2j})|B_{2j}|}{4j(2j - 1) t^{2j-1}} + \frac{\vartheta|B_{2k}|}{4(\pi k)^{1/2}(2k - 1) t^{2k-1}} + \frac{\vartheta e^{-\pi t}}{2\pi}.
\]

Taking \(k = 3 \) and using the assumption \(t \geq 2\pi \), we obtain the result. \(\Box \)

Define \(S_1(T) := \int_0^T S(t) \, dt \). We know that \(S_1(T) \ll \log T \), and that \(S_1(T) = o(\log T) \) if and only if the Lindelöf Hypothesis is true — see Titchmarsh [11, Thm. 9.9(A), Thm. 13.6(B), and Note 13.8].

Explicit bounds on \(S_1(T) \) are known [6, 12, 14, 15]. From [12, Thm 2.2],
\[
|S_1(T) - c_0| \leq A_0 + A_1 \log T \text{ for all } T \geq 168\pi,
\] (10)
where \(c_0 = S_1(168\pi) \), \(A_0 = 2.067 \), and \(A_1 = 0.059 \). However, a small computation shows that (10) also holds for \(T \in [2\pi, 168\pi] \). Hence, from now on we assume that \(T_0 \geq 2\pi \) and that (10) holds for \(T \geq T_0 \).

3 Finite sums

In this section we prove Lemma 3 which may be seen as a refinement of Lemma 1 if the conditions \(\varphi'(t) \leq 0, \varphi''(t) \geq 0 \) are satisfied. The proof of Lemma 3 is essentially the same as the proof of Lehman’s lemma up to equation (13), but then differs in the way that \(\int_{T_1}^{T_2} \varphi'(t)Q(t) \, dt \) is bounded.

From the discussion in [2], we may assume that the constants \(A_0, A_1, A_2 \) occurring in Lemma 3 are \(A_0 = 2.067, A_1 = 0.059, \) and \(A_2 = 1/150 < 0.007 \). The first two values could probably be improved significantly.
Lemma 3. If \(2\pi \leq T_0 \leq T_1 \leq T_2 \) and

\[
E(T_1, T_2) := \sum_{T_1 \leq \gamma \leq T_2} \phi(\gamma) - \frac{1}{2\pi} \int_{T_1}^{T_2} \phi(t) \log(t/2\pi) \, dt,
\]

then \(E(T_1, T_2) = \phi(T_2)Q(T_2) - \phi(T_1)Q(T_1) + E_2(T_1, T_2) \), where

\[
E_2(T_1, T_2) = -\int_{T_1}^{T_2} \phi'(t)Q(t) \, dt,
\]

and

\[
|E_2(T_1, T_2)| \leq 2(A_0 + A_1 \log T_1) |\phi'(T_1)| + (A_1 + A_2)\phi(T_1)/T_1.
\]

Proof. Assume initially that \(T_1 \notin \mathcal{F} \), \(T_2 \notin \mathcal{F} \). Using Stieltjes integrals, we see that

\[
\sum_{T_1 \leq \gamma \leq T_2} \phi(\gamma) = \int_{T_1}^{T_2} \phi(t) \, dN(t) = \int_{T_1}^{T_2} \phi(t) \, dL(t) + \int_{T_1}^{T_2} \phi(t) \, dQ(t)
\]

so

\[
E(T_1, T_2) = \int_{T_1}^{T_2} \phi(t) \, dQ(t) = \left[\phi(t)Q(t) - \int \phi'(t)Q(t) \, dt \right]_{T_1}^{T_2}
\]

\[
= \phi(T_2)Q(T_2) - \phi(T_1)Q(T_1) - \int_{T_1}^{T_2} \phi'(t)Q(t) \, dt.
\]

This proves (11). To prove (12), note that, from (6) and Lemma 2

\[
\int_{T_1}^{T_2} \phi'(t)Q(t) \, dt = \int_{T_1}^{T_2} \phi'(t)S(t) \, dt + \vartheta A_2 \int_{T_1}^{T_2} \phi'(t)/t \, dt,
\]

and the last integral can be bounded using

\[
\left| \int_{T_1}^{T_2} \frac{\phi'(t)}{t} \, dt \right| \leq \frac{1}{T_1} \int_{T_1}^{T_2} |\phi'(t)| \, dt = \frac{\phi(T_1) - \phi(T_2)}{T_1} \leq \frac{\phi(T_1)}{T_1}.
\]

Also,

\[
\int_{T_1}^{T_2} \phi'(t)S(t) \, dt = \left[\phi'(t)(S_1(t) - c_0) - \int \phi''(t)(S_1(t) - c_0) \, dt \right]_{T_1}^{T_2}
\]

\[
= \phi'(T_2)(S_1(T_2) - c_0) - \phi'(T_1)(S_1(T_1) - c_0) - \int_{T_1}^{T_2} \phi''(t)(S_1(t) - c_0) \, dt.
\]
Now, using $\phi'(t) \leq 0$ and $|S_1(t) - c_0| \leq A_0 + A_1 \log t$, we have

$$|\phi'(t)(S_1(t) - c_0)| \leq -(A_0 + A_1 \log t)\phi'(t)$$

for $t = T_1, T_2$. Thus

$$\left| \int_{T_1}^{T_2} \phi'(t)S(t) \, dt \right| \leq - \sum_{j=1}^{2} (A_0 + A_1 \log T_j)\phi'(T_j) + \left| \int_{T_1}^{T_2} \phi''(t)(S_1(t) - c_0) \, dt \right|. \quad (16)$$

Also, using $\phi''(t) \geq 0$, we have

$$\left| \int_{T_1}^{T_2} \phi''(t)(S_1(t) - c_0) \, dt \right| \leq A_0 \int_{T_1}^{T_2} \phi''(t) \, dt + A_1 \int_{T_1}^{T_2} \phi''(t) \log t \, dt$$

$$= A_0(\phi(T_2) - \phi(T_1)) + A_1 \left[\phi(t) \log t - \int_{T_1}^{T_2} \frac{\phi'(t)}{t} \, dt \right]_{T_1}^{T_2}$$

$$= (A_0 + A_1 \log T_2)\phi'(T_2) - (A_0 + A_1 \log T_1)\phi'(T_1) - A_1 \int_{T_1}^{T_2} \frac{\phi'(t)}{t} \, dt. \quad (17)$$

Inserting (17) in (16) and simplifying, terms involving T_2 cancel, giving

$$\left| \int_{T_1}^{T_2} \phi'(t)S(t) \, dt \right| \leq -2(A_0 + A_1 \log T_1)\phi'(T_1) - A_1 \int_{T_1}^{T_2} \frac{\phi'(t)}{t} \, dt. \quad (18)$$

Combining (11) with (14), (15), and (18), gives (12). Finally, we note that (11)–(12) hold even if $T_1 \in F$ and/or $T_2 \in F$, because of the way that we defined $N(T)$ (and hence $Q(T) = N(T) - L(T)$) for $T \in F$.

Remark 1. With the assumptions and notation of Lemma 3, Lemma 1 gives the bound

$$|E(T_1, T_2)| \leq A \left(2 \phi(T_1) \log T_1 + \int_{T_1}^{T_2} \frac{\phi(t)}{t} \, dt \right). \quad (19)$$

Our bound (12) on $E_2(T_1, T_2)$ is often smaller than the bound (19) on $E(T_1, T_2)$. We can take advantage of this if the terms $\phi(T_j)Q(T_j)$ ($j = 1, 2$) are known. Examples are given in §§4–5.
4 Convergent sums

In this section we assume that \(\sum_{T \leq \gamma} \phi(\gamma) < \infty \), or equivalently (given our conditions on \(\phi \)), that \(\int_{T}^{\infty} \phi(t) \log(t/2\pi) dt < \infty \). We first state an easy lemma, and then prove Theorem 1.

Lemma 4. Suppose that \(2\pi \leq T_0 \leq T \) and \(\int_{T}^{\infty} \phi(t) \log(t/2\pi) dt < \infty \). Then

\[
\begin{align*}
\phi(t) \log t &= o(1) \quad \text{as } t \to \infty, \\
\phi'(t) \log t &= o(1) \quad \text{as } t \to \infty, \quad \text{and} \\
\int_{T}^{\infty} |\phi'(t)| \log t dt &< \infty.
\end{align*}
\]

Proof. For \(u \geq T \),

\[
\int_{u}^{u+1} \phi(t) \log(t/2\pi) dt \geq \phi(u+1) \log(u/2\pi).
\]

Thus \(\phi(u+1) \log(u/2\pi) = o(1) \) as \(u \to \infty \), and \(\phi(t) \log((t-1)/2\pi) = o(1) \). Since \(\log((t-1)/2\pi) \sim \log t \), (20) follows.

For (21), we have

\[
\begin{align*}
\phi(u) &\geq \phi(u) - \phi(u+1) = \int_{u}^{u+1} |\phi'(t)| dt \geq |\phi'(u+1)|,
\end{align*}
\]

so (20) implies that \(\phi'(u+1) \log u = o(1) \). Taking \(t = u+1 \), we have \(\phi'(t) \log(t-1) = o(1) \). Since \(\log(t-1) \sim \log t \), (21) follows.

Finally, from (23), we have

\[
\int_{T+1}^{\infty} |\phi'(t)| \log t dt \leq \int_{T+1}^{\infty} (t-1) \log t dt \leq \int_{T}^{\infty} \phi(t) \log(t/2\pi) dt < \infty.
\]

and (22) follows.

Proof of Theorem 1. We have \(\phi(t) \log t = o(1) \) by Lemma 4 and convergence of the integral in (1). Also, from Lemma 4 we have \(\int_{T}^{\infty} |\phi'(t)| \log t dt < \infty \), but \(Q(t) \ll \log t \), so \(\int_{T}^{\infty} \phi'(t)Q(t) dt \) converges absolutely. Now, Lemma \(\boxed{3} \) gives

\[
\sum'_{T \leq \gamma \leq T_2} \phi(\gamma) - \frac{1}{2\pi} \int_{T}^{T_2} \phi(t) \log(t/2\pi) dt
\]

\[
= \phi(T_2)Q(T_2) - \phi(T)Q(T) - \int_{T}^{T_2} \phi'(t)Q(t) dt. \tag{24}
\]
If we let $T_2 \to \infty$ in (24), $\phi(T_2)Q(T_2) \to 0$ and $\int_T^{T_2} \phi'(t)Q(t)\,dt$ tends to a finite limit. Thus, the right side of (24) tends to a finite limit, and the left side must tend to the same limit. This gives

$$\sum_{T \leq \gamma} \phi'(\gamma) - \frac{1}{2\pi} \int_T^{\infty} \phi(t) \log(t/2\pi)\,dt = -\phi(T)Q(T) - \int_T^{\infty} \phi'(t)Q(t)\,dt.$$

We have proved (1)–(2) of Theorem 1. The bound (3) follows by observing that the bound (12) of Lemma 3 is independent of T_2, so

$$\left| \int_T^{\infty} \phi'(t)Q(t)\,dt \right| \leq 2(A_0 + A_1 \log T) |\phi'(T)| + (A_1 + A_2)\phi(T)/T.$$

This completes the proof of Theorem 1.

Example 1. We consider computation of the constant

$$c_1 := \sum_{\gamma > 0} \frac{1}{\gamma^2} = 0.02310499\ldots.$$

The approximation 0.023105 was given in [10, Lemma 2.9], where it was computed using a finite sum with (essentially) Lemma 1 to bound the tail.

Taking $\phi(t) = 1/t^2$ in Lemma 1 gives an error term

$$|E(T)| \leq A \left(A + 2 \log T \right) \frac{1}{T^2} = 0.14 + 0.56 \log T,$$

using the value $A = 0.28$ mentioned above. The corresponding error term given by Theorem 1 is

$$|E_2(T)| \leq \left(4A_0 + A_1 + A_2 \right) \frac{4A_1 \log T}{T^3} \leq 8.334 + 0.236 \log T,$$

using the values of A_0, A_1, A_2 above. For example, taking $T = 1000$ (corresponding to the first 649 nontrivial zeros), we get $|E(T)| \leq 4.009 \times 10^{-6}$ and $|E_2(T)| \leq 9.965 \times 10^{-9}$, an improvement by a factor of 400. If we use 10^{10} zeros, as in Corollary 1, the improvement is by a factor of 3×10^9.

Corollary 1. We have

$$c_1 = \sum_{\gamma > 0} \frac{1}{\gamma^2} = 0.0231049931154189707889338104 + \vartheta(5 \times 10^{-28}).$$

9
Proof. This follows from Theorem 1 by an interval-arithmetic computation using the first \(n = 10^{10} \) zeros, with \(T = 3293531632.542 \cdots \in (\gamma_n, \gamma_{n+1}) \).

Remark 2. Assuming the Riemann Hypothesis (RH), there is an equivalent expression:

\[
c_1 = \frac{d^2 \log \zeta(s)/ds^2|_{s=1/2}}{2} + \frac{\pi^2}{8} + G - 4,
\]

where \(G = \beta(2) \) is Catalan’s constant 0.915965\(\cdots \). This enables us to confirm Corollary 1 without summing over any zeros of \(\zeta(s) \), but assuming RH. It is only rarely that such a closed form is known. One other example is the following — see, e.g., [5, Ch. 12]. Assuming RH, we have

\[
\sum_{\gamma > 0} \frac{1}{\gamma^2 + \frac{1}{4}} = \sum_{\rho} \Re \left(\frac{1}{\rho} \right) = 1 + \frac{C}{2} - \frac{\log 4\pi}{2} = 0.0230957 \cdots ,
\]

where \(C = 0.5772\ldots \) is Euler’s constant.

5 Divergent sums

In this section we give two theorems that apply, subject to a mild condition on \(\phi(t) \), even if \(\sum_{T \leq \gamma} \phi(\gamma) \) diverges. Theorem 2 shows the existence of a limit for the difference between a sum and the corresponding integral. Theorem 3 shows how we can accurately approximate the limit.

First we prove two lemmas that strengthen the first and third parts of Lemma 4. In Lemma 5, \(f \) is non-increasing but need not be differentiable.

Lemma 5. Suppose that, for some \(T \geq 1 \), \(f : [T, \infty] \mapsto [0, \infty) \) is non-negative and non-increasing on \([T, \infty) \). If

\[
\int_T^\infty \frac{f(t)}{t} dt < \infty,
\]

then \(f(t) \log t = o(1) \).

Proof. Assume, by way of contradiction, that \(f(t) \log t \neq o(1) \). Thus, there exists a constant \(c > 0 \) and an unbounded increasing sequence \((t_n)_{n \geq 1}\) such that \(t_1 > T \) and

\[
f_n := f(t_n) \geq \frac{c}{\log t_n}.
\]

\footnote{The formula (25) is stated in [8 (21)] and is proved in [1, p. 13]. An almost indecipherable sketch of this result may be found in Riemann’s Nachlass.}
Moreover, by taking a subsequence of \((t_n)_{n \geq 1}\) if necessary, we can assume that \(t_{n+1} \geq t_n^2\) for all \(n \geq 1\). Thus
\[
\log \left(\frac{t_{n+1}}{t_n} \right) \geq \frac{\log t_{n+1}}{2}. \tag{28}
\]
Since \(f(t)\) is non-increasing, we have \(f(t) \geq f_{n+1}\) on \([t_n, t_{n+1}]\), and
\[
\int_{t_n}^{t_{n+1}} \frac{f(t)}{t} \, dt \geq \int_{t_n}^{t_{n+1}} \frac{f_{n+1}}{t} \, dt = f_{n+1} \log \left(\frac{t_{n+1}}{t_n} \right). \tag{27}
\]
Using \((27) - (28)\), this gives
\[
\int_{t_1}^{t_{n+1}} \frac{f(t)}{t} \, dt \geq \frac{1}{2} \sum_{k=1}^{n} f_{k+1} \log t_{k+1} \geq \frac{c}{2} \sum_{k=1}^{n} 1 = \frac{cn}{2} \to \infty.
\]
This contradicts the condition \((26)\). Thus, our assumption is false, and we must have \(f(t) \log t = o(1)\). \(\square\)

Lemma 6. If \(\int_{T_0}^{\infty} \frac{\phi(t)}{t} \, dt < \infty\), then \(\int_{T_0}^{\infty} \phi'(t) \log t \, dt\) is absolutely convergent.

Proof. For \(T \geq T_0\) we have
\[
\int_{T_0}^{T} \phi'(t) \log t \, dt = \phi(T) \log T - \phi(T_0) \log T_0 - \int_{T_0}^{T} \frac{\phi(t)}{t} \, dt. \tag{29}
\]
As \(T \to \infty\) in \((29)\), the term \(\phi(T) \log T \to 0\) by Lemma \(5\) and the integral on the right-hand side tends to a finite limit. Thus, the integral on the left-hand side tends to a finite limit. Since \(\phi'(t) \log t \leq 0\) has constant sign on \([T_0, \infty)\), the integral is absolutely convergent. \(\square\)

Theorem 2. Suppose that \(T_0 \geq 2\pi\), and
\[
\int_{T_0}^{\infty} \frac{\phi(t)}{t} \, dt < \infty. \tag{30}
\]
Then there exists
\[
F(T_0) := \lim_{T \to \infty} \left(\sum_{T_0 \leq \gamma \leq T} \phi'(\gamma) - \frac{1}{2\pi} \int_{T_0}^{T} \phi(t) \log(t/2\pi) \, dt \right),
\]
and
\[
F(T_0) = -\phi(T_0)Q(T_0) - \int_{T_0}^{\infty} \phi'(t)Q(t) \, dt. \tag{31}
\]
Proof. Suppose that $T \geq T_0$. Applying Lemma 3, we have

$$\sum_{T_0 \leq \gamma \leq T}' \phi(\gamma) - \frac{1}{2\pi} \int_{T_0}^{T} \phi(t) \log(t/2\pi) \, dt$$

$$= \phi(T)Q(T) - \phi(T_0)Q(T_0) - \int_{T_0}^{T} \phi'(t)Q(t) \, dt. \quad (32)$$

Let $T \to \infty$ in (32). On the right-hand side, $\phi(T)Q(T) \to 0$ by Lemma 5 and the integral tends to a finite limit by Lemma 6, using $Q(t) \ll \log t$. Thus the left-hand side tends to a finite limit $F(T_0)$. This gives (31). \qed

The identity (31) is not convenient for accurately approximating $F(T_0)$ when T_0 is small, because $\int_{T_0}^{\infty} \phi'(t)Q(t) \, dt$ is not necessarily small. In Theorem 3 we use a finite sum (over $\gamma \leq T$) and integral to approximate $F(T_0)$. Theorem 3 has the same expression for the error term E_2 as Theorem 1 essentially because the bounds in both theorems are proved using Lemma 3.

Theorem 3. Suppose that $2\pi \leq T_0 \leq T_1$ and $\phi(t)$ satisfies (30). Let

$$F(T_0) := \lim_{T_0 \to \infty} \left(\sum_{T_0 \leq \gamma \leq T}' \phi(\gamma) - \frac{1}{2\pi} \int_{T_0}^{T} \phi(t) \log(t/2\pi) \, dt \right).$$

Then

$$F(T_0) = \sum_{T_0 \leq \gamma \leq T_1}' \phi(\gamma) - \frac{1}{2\pi} \int_{T_0}^{T_1} \phi(t) \log(t/2\pi) \, dt - \phi(T_1)Q(T_1) + E_2(T_1),$$

where $E_2(T_1) = -\int_{T_1}^{\infty} \phi'(t)Q(t) \, dt$, and

$$|E_2(T_1)| \leq 2(A_0 + A_1 \log T_1) |\phi'(T_1)| + (A_1 + A_2)\phi(T_1)/T_1.$$

Proof. We note that, from Theorem 2, the limit defining $F(T_0)$ exists. Also, from Lemmas 3, 6, $\phi(T)Q(T) = o(1)$ and $\int_{T_0}^{\infty} \phi'(t)Q(t) \, dt < \infty$. Thus, using Lemma 3 as in the proof of Theorem 1, we see that

$$\lim_{T_0 \to \infty} \left(\sum_{T_0 \leq \gamma \leq T_2}' \phi(\gamma) - \frac{1}{2\pi} \int_{T_0}^{T_2} \phi(t) \log(t/2\pi) \, dt \right)$$

$$= -\phi(T_1)Q(T_1) - \int_{T_1}^{\infty} \phi'(t)Q(t) \, dt$$
and \(\left| \int_{T_1}^{\infty} \phi'(t) Q(t) \, dt \right| \leq 2(A_0 + A_1 \log T_1) |\phi'(T_1)| + (A_1 + A_2) \phi(T_1)/T_1. \)

Since

\[
F(T_0) = \lim_{T_2 \to \infty} \left(\sum_{T_1 \leq \gamma \leq T_2} \phi(\gamma) - \frac{1}{2\pi} \int_{T_1}^{T_2} \phi(t) \log(t/2\pi) \, dt \right) + \sum_{T_0 \leq \gamma \leq T_1} \phi(\gamma) - \frac{1}{2\pi} \int_{T_0}^{T_1} \phi(t) \log(t/2\pi) \, dt, \]

the result follows. \(\square \)

Example 2. To illustrate the divergent case, we consider the example \(\phi(t) = 1/(\log(t/2\pi))^2 \). The constant \(2\pi \) here is unimportant, but this choice simplifies some of the expressions below.

From Lemma 1, the asymptotic behaviour of \(\sum_{0<\gamma \leq T} \phi(\gamma) \) is given by

\[
\frac{1}{2\pi} \int_{c}^{T} \phi(t) \log(t/2\pi) \, dt = \text{li}(T/2\pi) - \text{li}(c/2\pi) \sim \frac{T}{2\pi \log T},
\]

where \(c \geq 2\pi e \) is an arbitrary constant, and \(\text{li}(x) \) is the logarithmic integral, defined in the usual way by a principal value integral. This motivates the definition of a constant \(c_2 \) by

\[
c_2 := \lim_{T \to \infty} \left(\sum_{0<\gamma \leq T} \phi(\gamma) - \text{li}(T/2\pi) \right), \tag{33}
\]

where the limit exists by Theorem 2.

If we use (33) to estimate \(c_2 \) then, by Theorem 3, the error is

\[
E(T) = -\phi(T)Q(T) + O(|\phi'(T)| \log T) + O(\phi(T)/T) \ll \frac{1}{\log T}. \]

Convergence is so slow that it is difficult to obtain more than two correct decimal digits. On the other hand, if we estimate \(c_2 \) using the approximation

\[
\sum_{0<\gamma \leq T} \phi(\gamma) - \text{li}(T/2\pi) - \phi(T)Q(T) \tag{34}
\]

suggested by Theorem 3, then the error is \(E_2(T) \ll (T \log^2 T)^{-1} \), smaller by a factor of order \(T \log T \). More precisely, from Theorem 3 we have

\[
|E_2(T)| \leq \frac{4(A_0 + A_1 \log T)}{T \log^3(T/2\pi)} + \frac{A_1 + A_2}{T \log^2(T/2\pi)} \leq \frac{0.302 \log(T/2\pi) + 8.702}{T \log^3(T/2\pi)}. \tag{35}
\]

13
Corollary 2. If c_2 is defined by \((33) \), then

$$c_2 = -0.5276697875 + \frac{1}{6} \cdot 10^{-10}.$$

Proof. Using the first $n = 10^9$ nontrivial zeros with $T \approx (\gamma_n + \gamma_{n+1})/2$ in \((34) \), and the error bound \((35) \), an interval-arithmetic computation gives the result.

To illustrate the speed of convergence, in Table 1 we give the estimates of c_2 obtained from \((33) \) and \((34) \) by summing over the first n nontrivial zeros, and the error bound \((35) \), with $T = (\gamma_n + \gamma_{n+1})/2$. The first incorrect digit in each entry is underlined.

| n | estimate via \((33) \) | estimate via \((34) \) | $|E_2|$ bound \((35) \) |
|------|------------------------|------------------------|------------------------|
| 10 | -0.499862599 | -0.527339083 | 1.96 \times 10^{-2} |
| 10^2 | -0.540547244 | -0.527672383 | 8.64 \times 10^{-4} |
| 10^3 | -0.522449744 | -0.527671734 | 4.58 \times 10^{-5} |
| 10^4 | -0.531178464 | -0.527669804 | 2.78 \times 10^{-6} |
| 10^5 | -0.530262600 | -0.527669777 | 1.87 \times 10^{-7} |

Table 1: Numerical estimation of c_2.

Acknowledgements

We are indebted to Juan Arias de Reyna for information on the identity \((25) \), and for his translation of the relevant page from Riemann’s Nachlass. DJP is supported by ARC Grant DP160100932 and EPSRC Grant EP/K034383/1; TST is supported by ARC Grants DP160100932 and FT160100094.

References

[1] J. Arias de Reyna, 130802-report, unpublished, 2 August 2013. Available from the author via https://personal.us.es/arias/.

[2] R. P. Brent, On asymptotic approximations to the log-Gamma and Riemann-Siegel theta functions, *J. Austral. Math. Soc.* \textbf{107}:319–337, 2019.

[3] R. P. Brent, D. J. Platt, and T. S. Trudgian, *The mean square of the error term in the prime number theorem*, submitted. Also [arXiv:2008.06140](https://arxiv.org/pdf/2008.06140.pdf), 13 Aug. 2020.
[4] R. P. Brent, D. J. Platt, and T. S. Trudgian, A harmonic sum over the ordinates of nontrivial zeros of the Riemann zeta-function, *Bull. Aust. Math. Soc.*, to appear. Also arXiv:2009.05251, 11 Sept. 2020.

[5] H. Davenport, *Multiplicative Number Theory*, 3rd ed., Grad. Texts in Math., vol. 74, Springer, New York, 2000.

[6] H. M. Edwards, *Riemann's Zeta Function*, Academic Press, New York, 1974.

[7] W. Gabcke, *Neue Herleitung und Explizite Restabschätzung der Riemann-Siegel-Formel*, Dissertation, Mathematisch-Naturwissenschaftlichen, Göttingen, 1979. Online version (revised 2015), available from http://ediss.uni-goettingen.de/.

[8] J. Guillera, *Some sums over the non-trivial zeros of the Riemann zeta function*, arXiv:1307.5723v7, 19 June 2014.

[9] R. S. Lehman, On the difference $\pi(x) - \text{li}(x)$, *Acta Arith.* 11:397–410, 1966.

[10] Y. Saouter, T. Trudgian, and P. Demichel, A still sharper region where $\pi(x) - \text{li}(x)$ is positive, *Math. Comp.* 84(295):2433–2446, 2015.

[11] E. C. Titchmarsh, *The Theory of the Riemann Zeta-function*, 2nd ed. (edited and with a preface by D. R. Heath-Brown), Oxford, 1986.

[12] T. S. Trudgian, Improvements to Turing’s method, *Math. Comp.* 80(276):2259–2279, 2011.

[13] T. S. Trudgian, An improved upper bound for the argument of the Riemann zeta-function on the critical line II, *J. Number Theory* 134:280–292, 2014.

[14] T. S. Trudgian, Improvements to Turing’s method II, *Rocky Mountain J. Math.* 46:325–332, 2016.

[15] A. M. Turing, Some calculations of the Riemann zeta-function, *Proc. Lond. Math. Soc.* 3:99–117, 1953.