Investigation of Doubly Heavy Tetraquark Systems using Lattice QCD

Martin Pflaumer
pflaumer@itp.uni-frankfurt.de

Goethe-Universität Frankfurt am Main
in collaboration with Luka Leskovec, Stefan Meinel, Marc Wagner

Asia-Pacific Symposium for Lattice Field Theory
August 07, 2020
Experimental background

- Experimentally observed states $Z_b(10610)^+$ and $Z_b(10650)^+$
- Mass suggests a bottomonium state $\bar{b}b$ but would be electrically neutral
 ⇒ Quantum numbers with four-quark structure possible to describe
Physical Motivation (1)

Experimental background

- Experimentally observed states $Z_b(10610)^+$ and $Z_b(10650)^+$
- Mass suggests a bottomonium state $\bar{b}b$ but would be electrically neutral
 \Rightarrow Quantum numbers with four-quark structure possible to describe

Theoretical study

- We study similar but less challenging systems
- Quark content: $\bar{Q}Q'qq'$, here: $\bar{b}bud, \bar{b}bus, \bar{b}cud$
- In the limit $m_Q \to \infty$ stable tetraquark was shown

[J. Carlson, L. Heller and J. A. Tjon, Phys. Rev. D 37, 744 (1988)]
[A. V. Manohar and M. B. Wise, Nucl. Phys. B 399, 17 (1993)]
[E. J. Eichten and C. Quigg, Phys. Rev. Lett. 119, no. 20, 202002 (2017)]
Physical Motivation (2)

- **Born-Oppenheimer study** of $\bar{b}\bar{b}ud$, static \bar{b}-quarks:
 - Prediction of a bound tetraquark with $I(J^P) = 0(1^+)$ and a binding energy $M_{\bar{b}\bar{b}ud} - (M_B + M_{B^*}) \approx -90$ MeV → Talk by M. Wagner in Session 4B

 - [P. Bicudo et al. [European Twisted Mass Collaboration], Phys. Rev. D 87, no. 11, 114511 (2013)]
 - [Z. S. Brown and K. Orginos, Phys. Rev. D 86, 114506 (2012)]
 - [P. Bicudo, K. Cichy, A. Peters, B. Wagenbach and M. Wagner, Phys. Rev. D 92, no. 1, 014507 (2015)]
 - [P. Bicudo, J. Scheunert and M. Wagner, Phys. Rev. D 95, no. 3, 034502 (2017)]
Physical Motivation (2)

- **Born-Oppenheimer study** of $\bar{b}b\bar{u}d$, static \bar{b}-quarks:
 - Prediction of a bound tetraquark with $I(J^P) = 0(1^+)$ and a binding energy $M_{\bar{b}b\bar{u}d} - (M_B + M_{B^*}) \approx -90$ MeV → Talk by M.Wagner in Session 4B
 - [P. Bicudo et al. [European Twisted Mass Collaboration], Phys. Rev. D 87, no. 11, 114511 (2013)]
 - [Z. S. Brown and K. Orginos, Phys. Rev. D 86, 114506 (2012)]
 - [P. Bicudo, K. Cichy, A. Peters, B. Wagenbach and M. Wagner, Phys. Rev. D 92, no. 1, 014507 (2015)]
 - [P. Bicudo, J. Scheunert and M. Wagner, Phys. Rev. D 95, no. 3, 034502 (2017)]

- Resonance analysis applying methods of scattering theory predict a resonance in the $I(J^P) = 0(1^-)$ channel with $M_{\bar{b}b\bar{u}d} - (M_B + M_{B^*}) \approx +20$ MeV, $\Gamma \approx 100$ MeV
 - [P. Bicudo, M. Cardoso, A. Peters, M.P. and M. Wagner, Phys. Rev. D 96, no. 5, 054510 (2017)]
Physical Motivation (2)

- **Born-Oppenheimer study** of $\bar{b}b\bar{u}d$, static \bar{b}-quarks:
 - Prediction of a bound tetraquark with $I(J^P) = 0(1^+)$. A binding energy $M_{\bar{b}b\bar{u}d} - (M_B + M_{B^*}) \approx -90$ MeV → Talk by M. Wagner in Session 4B
 - [P. Bicudo et al. [European Twisted Mass Collaboration], Phys. Rev. D 87, no. 11, 114511 (2013)]
 - [Z. S. Brown and K. Orginos, Phys. Rev. D 86, 114506 (2012)]
 - [P. Bicudo, K. Cichy, A. Peters, B. Wagenbach and M. Wagner, Phys. Rev. D 92, no. 1, 014507 (2015)]
 - [P. Bicudo, J. Scheunert and M. Wagner, Phys. Rev. D 95, no. 3, 034502 (2017)]

- Resonance analysis applying methods of scattering theory predict a resonance in the $I(J^P) = 0(1^-)$ channel with $M_{\bar{b}b\bar{u}d} - (M_B + M_B^*) \approx 20$ MeV, $\Gamma \approx 100$ MeV
 - [P. Bicudo, M. Cardoso, A. Peters, M.P. and M. Wagner, Phys. Rev. D 96, no. 5, 054510 (2017)]

- Investigate $\bar{b}b\bar{u}d$ bound state in the $I(J^P) = 0(1^+)$ channel with **Non-Relativistic QCD** i.e. non-static \bar{b}-quarks.
 - [A. Francis, R. J. Hudspith, R. Lewis and K. Maltman, Phys. Rev. Lett. 118, no. 14, 142001 (2017)]
 - [P. Junnarkar, N. Mathur and M. Padmanath, Phys. Rev. D 99, no. 3, 034507 (2019)]
 - [A. Francis, R. J. Hudspith, R. Lewis and K. Maltman, Phys. Rev. D 99, no. 5, 054505 (2019)]
 - [L. Leskovec, S. Meinel, M.P. and M. Wagner, Phys. Rev. D 100, no. 1, 014503 (2019)]
Lattice Setup

- Use gauge link configuration generated by RBC and UKQCD collaboration

 [Y. Aoki et al. [RBC and UKQCD Collaborations], Phys. Rev. D 83, 074508 (2011)]
 [T. Blum et al. [RBC and UKQCD Collaborations], Phys. Rev. D 93, no. 7, 074505 (2016)]

- 2 + 1 flavours domain-wall fermions and Iwasaki gauge action

- Five different ensembles which differ in

 lattice spacing \(a \approx 0.083 \text{ fm} \ldots 0.114 \text{ fm} \),

 lattice size \(L \approx 2.65 \text{ fm} \ldots 5.48 \text{ fm} \),

 pion mass \(m_\pi \approx 139 \text{ MeV} \ldots 431 \text{ MeV} \)

 \(\Rightarrow \) explore dependence on \(L, m_\pi \)

- Smeared point-to-all propagators for the up and down quarks

- Utilize all-mode-averaging technique

 [T. Blum, T. Izubuchi and E. Shintani, Phys. Rev. D 88, no. 9, 094503 (2013)]
 [E. Shintani, R. Arthur, T. Blum, T. Izubuchi, C. Jung and C. Lehner, Phys. Rev. D 91, no. 11, 114511 (2015)]
Relevant thresholds are BB^* and B^*B^* (≈ 45 MeV heavier)

Two types of interpolating operators:

- Local operators: four quarks at the same space-time position
- Non-local operators: two mesons separated in space-time position

Expectation:
- Local operators: good overlap to ground state (stable four-quark)
- Non-local operators: sizeable overlap to first excited state (2 meson state)

⇒ Isolate ground state from higher excitations, especially first excited state
Relevant thresholds are BB^* and B^*B^* (≈ 45 MeV heavier)

Two types of interpolating operators:

- **Local operators:**
 - Four quarks at the same space-time position
 - 3 operators: BB^*, B^*B^*, diquark-antidiquark

- **Nonlocal operators:**
 - Two mesons separated in space-time position
 - 2 operators: BB^* and B^*B^* scattering operators

Expectation:
- Local operators: good overlap to ground state (stable four-quark)
- Nonlocal operators: sizeable overlap to first excited state (2 meson state)

⇒ Isolate ground state from higher excitations, especially first excited state
Interpolating Operators for $\bar{b}\bar{b}ud$

- Relevant thresholds are BB^* and B^*B^* (≈ 45 MeV heavier)
- Two types of interpolating operators:
 - **Local operators:**
 - Four quarks at the same space-time position
 - 3 operators: BB^*, B^*B^*, diquark-antidiquark
 - **Nonlocal operators:**
 - Two mesons separated in space-time position
 - 2 operators: BB^* and B^*B^* scattering operators
Interpolating Operators for $\bar{b}\bar{b}ud$

- Relevant thresholds are BB^* and B^*B^* ($\approx 45\text{ MeV}$ heavier)
- Two types of interpolating operators:
 - **Local operators:**
 - Four quarks at the same space-time position
 - 3 operators: BB^*, B^*B^*, diquark-antidiquark
 - **Nonlocal operators:**
 - Two mesons separated in space-time position
 - 2 operators: BB^* and B^*B^* scattering operators
- Expectation:
 - **Local operators:** good overlap to ground state (stable four-quark)
 - **Nonlocal operators:** sizeable overlap to first excited state (2 meson state)

\Rightarrow Isolate ground state from higher excitations, especially first excited state
Energy Spectrum for the $\bar{b}budd$ system

- Due to point-to-all propagators, only 5×3 correlation matrix available (no scattering operator at source)
- Apply **multi-exponential matrix fitting**: employable also for non-symmetric matrices

$$C_{jk}(t) \approx \sum_{n=0}^{N-1} Z_n^j Z_n^k e^{-E_n t},$$

E_n : n-th energy eigenvalue
$Z_n^j = \langle \Omega |\mathcal{O}_j|n\rangle$: overlap factor

Schematic representation of Wick contractions for different correlation matrix elements
Fit Results for Different Operator Bases

Results for the lowest two $\bar{b}b\bar{u}d$ energy levels relative to the BB^* threshold. Black box: local operator included. Red box: scattering operator included.
Overlap Factors

For fixed j: Z^n_j indicates relative importance of energy eigenstates $|n\rangle$

\[O_j^{\dagger}|\Omega\rangle = \sum_{n=0}^{\infty} |n\rangle \langle n| O_j^{\dagger}|\Omega\rangle = \sum_{n=0}^{\infty} Z^n_j |n\rangle. \]

The normalized overlap factors $|\tilde{Z}^n_j|^2 = \frac{|Z^n_j|^2}{\max_m (|Z^m_j|^2)}$ as determined on ensemble C005.
Scattering Analysis

- Relate *finite volume* energy spectrum E_n to *infinite volume* scattering amplitude for 2 energy levels in T_1^+ irrep.
- Use Lüscher’s formula and scattering momenta k_n^2 to determine phase shift.
- Apply effective-range-expansion (ERE)

$$k \cot \delta_0(k) = \frac{1}{a_0} + \frac{1}{2} r_0 k^2 + O(k^4).$$

Plot of the effective-range-expansion for C005.

- Blue curve: $ak \cot(\delta(k)) + |ak|$.
- Vertical green line: Inelastic B^*B^* threshold.
Scattering Analysis

- Relate finite volume energy spectrum E_n to infinite volume scattering amplitude for 2 energy levels in T_1^+ irrep.
- Use Lüscher’s formula and scattering momenta k_n^2 to determine phase shift.
- Apply effective-range-expansion (ERE)

$$k \cot \delta_0(k) = \frac{1}{a_0} + \frac{1}{2} r_0 k^2 + O(k^4).$$

- Search bound state pole of scattering amplitude below threshold at

$$\cot \delta_0(k_{BS}) = i, \quad \text{so:} \quad -|k_{BS}| = \frac{1}{a_0} - \frac{1}{2} r_0 |k_{BS}|^2$$

Plot of the effective-range-expansion for C005.
Blue curve: $ak \cot(\delta(k)) + |ak|$. Vertical green line: Inelastic B^*B^* threshold.
Scattering Analysis

- Relate finite volume energy spectrum E_n to infinite volume scattering amplitude for 2 energy levels in T_1^+ irrep
- Use Lüscher’s formula and scattering momenta k_n^2 to determine phase shift
- Apply effective-range-expansion (ERE)

$$k \cot \delta_0(k) = \frac{1}{a_0} + \frac{1}{2} r_0 k^2 + O(k^4).$$

- Search bound state pole of scattering amplitude below threshold at

$$\cot \delta_0(k_{BS}) = i,$$

so:

$$-|k_{BS}| = \frac{1}{a_0} - \frac{1}{2} r_0 |k_{BS}|^2$$

- Results essentially identical to the finite-volume energy levels
- Confirmation that ground state is stable tetraquark.
Fit of the pion-mass dependence of E_{binding}. The vertical dashed line indicates the physical pion mass.

$$E_{\text{binding}}(m_\pi,\text{phys}) = (-128 \pm 24 \pm 10) \text{ MeV}$$

$$m_{\text{tetraquark}}(m_\pi,\text{phys}) = (10476 \pm 24 \pm 10) \text{ MeV}$$
Expectations for $\bar{b}b\bar{u}s$ and $\bar{b}\bar{c}ud$

Subsequent promising candidates have heavier light or lighter heavy quarks:

- **$\bar{b}b\bar{u}s$:**
 - Similar quantum numbers to $\bar{b}b\bar{u}d$: $I(J^P) = \frac{1}{2}(1^+)$
 - Previous studies predict a bound state in this channel

- **$\bar{b}\bar{c}ud$:**
 - Due to different heavy quark structure: 2 promising channels:
 - $I(J^P) = 0(1^+)$ and $I(J^P) = 0(0^+)$
 - Supposed to have either a weakly bound state or no binding

[A. Francis, R. J. Hudspith, R. Lewis and K. Maltman, Phys. Rev. Lett. 118, no. 14, 142001 (2017)]
[P. Junnarkar, N. Mathur and M. Padmanath, Phys. Rev. D 99, no. 3, 034507 (2019)]
[A. Francis, R. J. Hudspith, R. Lewis and K. Maltman, Phys. Rev. D 99, no. 5, 054505 (2019)]
[R. J. Hudspith, B. Colquhoun, A. Francis, R. Lewis and K. Maltman, arXiv:2006.14294 [hep-lat]]
Expectations for $\bar{b}\bar{b}us$ and $\bar{b}\bar{c}ud$

Subsequent promising candidates have heavier light or lighter heavy quarks:

- $\bar{b}\bar{b}us$:
 - Similar quantum numbers to $\bar{b}\bar{bud}$: $I(J^P) = \frac{1}{2}(1^+)$
 - Previous studies predict a bound state in this channel

- $\bar{b}\bar{c}ud$:
 - Due to different heavy quark structure: 2 promising channels: $I(J^P) = 0(1^+)$ and $I(J^P) = 0(0^+)$
 - Supposed to have either a weakly bound state or no binding

[1. A. Francis, R. J. Hudspith, R. Lewis and K. Maltman, Phys. Rev. Lett. 118, no. 14, 142001 (2017)]
[2. P. Junnarkar, N. Mathur and M. Padmanath, Phys. Rev. D 99, no. 3, 034507 (2019)]
[3. A. Francis, R. J. Hudspith, R. Lewis and K. Maltman, Phys. Rev. D 99, no. 5, 054505 (2019)]
[4. R. J. Hudspith, B. Colquhoun, A. Francis, R. Lewis and K. Maltman, arXiv:2006.14294 [hep-lat]]

Interpolating Operators

- Local operators: mesonic structure and diquark-antidiquark structure
- Nonlocal operators: relevant scattering states near threshold
Preliminary Results

- Strong indication of bound state in $\bar{b}bus$, stable after Lüscher analysis
- No evidence for bound state in $\bar{b}\bar{c}ud$

top left: $\bar{b}bus$. **bottom left:** $\bar{b}\bar{c}ud$, $J = 0$. **bottom right:** $\bar{b}\bar{c}ud$, $J = 1$.
Summary

- Study bound states in doubly heavy tetraquarks
- Consider *local* and *nonlocal* interpolating operators
- Apply a *finite volume Lüscher analysis*

Preliminary studies show:
- Strong indication of bound state for $\bar{b}\bar{b}uds$, $I(J^P) = 1/2(1 + \frac{1}{2})$
- No evidence for bound tetraquark in $\bar{b}\bar{c}uds$, both $0(1 + \frac{1}{2})$ and $0(0 + \frac{1}{2})$

Outlook

- Perform calculation for $\bar{b}\bar{b}uds$ and $\bar{b}\bar{c}uds$ on all available ensembles
- Apply a rigorous Lüscher analysis

Thank You for Your Attention!
Summary

- Study bound states in doubly heavy tetraquarks
- Consider *local* and *nonlocal* interpolating operators
- Apply a *finite volume Lüscher analysis*
- Predict a *bound state* in the $\bar{b}b\bar{u}d$ channel with $I(J^P) = 0(1^+)$; $E_{\text{binding}} = (-128 \pm 24 \pm 10)$ MeV
- Preliminary studies show:
 - Strong indication of bound state for $\bar{b}b\bar{u}s$, $I(J^P) = \frac{1}{2}(1^+)$
 - No evidence for bound tetraquark in $\bar{b}\bar{c}u\bar{d}$, both $0(1^+)$ and $0(0^+)$
Summary

- Study bound states in doubly heavy tetraquarks
- Consider local and nonlocal interpolating operators
- Apply a finite volume Lüsher analysis
- Predict a bound state in the $\bar{b}b\bar{u}d$ channel with $I(J^P) = 0(1^+)$ with $E_{\text{binding}} = (-128 \pm 24 \pm 10) \text{MeV}$
- Preliminary studies show:
 - Strong indication of bound state for $\bar{b}b\bar{u}s$, $I(J^P) = \frac{1}{2}(1^+)$
 - No evidence for bound tetraquark in $\bar{b}\bar{c}u\bar{d}$, both $0(1^+)$ and $0(0^+)$

Outlook

- Perform calculation for $\bar{b}b\bar{u}s$ and $\bar{b}\bar{c}u\bar{d}$ on all available ensembles
- Apply a rigorous Lüsher analysis
Study bound states in doubly heavy tetraquarks

Consider *local* and *nonlocal* interpolating operators

Apply a *finite volume* Lüscher analysis

Predict a *bound state* in the $\bar{b}b\bar{u}d$ channel with in $I(J^P) = 0(1^+)$ with $E_{\text{binding}} = (-128 \pm 24 \pm 10) \text{ MeV}$

Preliminary studies show:

- Strong indication of bound state for $\bar{b}b\bar{u}s$, $I(J^P) = \frac{1}{2}(1^+)$
- No evidence for bound tetraquark in $\bar{b}\bar{c}ud$, both 0(1+) and 0(0+)

Outlook

- Perform calculation for $\bar{b}b\bar{u}s$ and $\bar{b}\bar{c}ud$ on all available ensembles
- Apply a rigorous Lüscher analysis

Thank You for Your Attention!
Comparison of Different Results for $\bar{b}\bar{b}ud$

Comparison of $\bar{b}\bar{b}ud$ tetraquark binding energies with $I(J^P) = 0(1^+)$ (black: this work; blue: lattice NRQCD; red: lattice QCD computations of static $\bar{b}\bar{b}$ potentials and solving the Schrödinger equation; green: effective field theories and potential models).