A Prototype Decision Support System for Sustainability Performance Measurement in Furniture Industry

Sriyanto¹, D Pujotomo¹ and S Hartini¹

¹Industrial Engineering Department, Diponegoro University, Jl. Prof. H. Soedarto, SH, Tembalang, Semarang, 50275, Indonesia

sriyanto.st.mt@gmail.com

Abstract. In measuring sustainability performance of a manufacturing system, a manager needs a practical tool to assess relevant sustainability indicators. This research aims to develop a decision support system (DSS) to measure, evaluate and improve the existing manufacturing operations toward sustainability goals. The DSS incorporates a manufacturing sustainability model that measures current manufacturing performance in Triple Bottom Line aspects comprehensively. The system provides a single index with workable indicators encompassed economic, environmental, and social dimensions. These indicators generated specifically for furniture industry in Indonesia. The DSS prototype, called EvaSus, designed as an interactive tool that helps manager to get comprehensive evaluation of the manufacturing sustainability, thus providing a way to improve the business processes.

1. Introduction

The furniture industry uses abundant natural resources in their manufacturing process, without strict control and regulation this can have an impact on environmental damage and sustainability. A new concept known as sustainable manufacturing had introduced in this industry, the production of goods in such a way that utilizes minimum natural resources and produces cleaner and environment-friendly products at an affordable cost. The implementation of this concept, need a continuous assessment to maintain the sustainability performance of a manufacturing organization periodically.

Sustainability includes environmental, economic, and social dimensions, the Triple Bottom Line. Hence, the assessment of sustainability must measure those indicators in a holistic approach [1]. Although manual calculation of sustainability performance is feasible, the process consumes time and usually mistake prone. The manager needs an easy and practical tool to assess relevant sustainability indicators aided by a computerised system. This system will assists the managers to measure, evaluate and improve the existing manufacturing operations toward sustainability goals by focusing on crucial indicators of sustainability aspects.

Performance assessment is important part for decision maker to review sustainability process. This process is needed to ensure the sustainability process and help decision makers to improve their operation in operational, tactical as well as strategic level [2]. Some researchers have developed several tools with various of models involved to measure the sustainability performance in the strategic level or corporate [3] but their lack proper model in measuring the sustainability at the operational level.

Hartini et al [4] has introduced a sustainable model for the shop floor that portrays the manufacturing process performance in a single score, called manufacturing sustainability index (MSI). MSI could be...
embed in a such system, that easy to operate and interactively help the manager to get comprehensive pictures of the manufacturing sustainability, thus providing a way to improve the business processes.

A kind of system that able to support the manager during their decision-making process is decision support system (DSS). A DSS can use internal information available in databases and it can use external information from such sources as experts. The main function of DSS is to save various data and to assess current performance of the system sustainability. Here, the research question is how to build an appropriate DSS that embed MSI model for performance assessment of sustainability at operational level.

2. Method of the Research

2.1. Manufacturing sustainability indicators

Recently, many research has been done on the evaluation of sustainability performance. In 2003, a multi-criterion framework was presented by Munda [5] for assessing sustainability. In 2004, an initiative was taken by Pope et al [6] to achieve triple bottom line by an integrated assessment process laying emphasis on minimizing unsustainability. Lee and Huang [7] presented the idea of sustainability index in Taipei. Another research have continued and applied this concept in broader scope from the company until the supply chain in constructing their performance assessment model.

The first step in development of performance assessment model is determining indicators and formulating indicators judgment. Hartini et al [8] has been formulated sustainability indicator specifically for furniture industry. This indicator is grouped in three aspect, namely economics, environmental and social which is combined to form manufacturing sustainability index. The economic aspect use four indicators, that are efficiency of time, cost, inventory and quality. The environment aspect include three indicators, material consumption, energy consumption and recycling of waste. The social aspect consists of employee’s satisfaction rate, healthy rate, safety rate and training efficiency. These indicators can be structured hierarchically as seen in Figure 1.

![Figure 1. Hierarchy of indicators for manufacturing sustainability index](image-url)
2.2. Performance parameter
Score of indicator is determined by using the concept of efficiency that is the comparison between the use of the sources with added value towards the total use. The common formula of efficiency used is ratio between the use of resource and total resource. Every indicator have several parameter taken into account in determining the performance score. List of required parameters shown in Table 1.

Table 1. Performance parameter for sustainability

No	Indicators	Performance parameter
1	Time efficiency	Value added time
		Total time
		Non-value added time
2	Cost efficiency	Value added cost
		Non-value added cost
		Total cost
3	Inventory efficiency	Number of inventory
		Total material
4	Quality efficiency	Number of defect
		Total material
5	Material efficiency	Value added material
		Total material used
		Non-value added material
6	Energy efficiency	Value added energy
		Non-value added energy
		Total energy
7	Efficiency of waste recycling	Total waste
		Number of waste to landfill
8	Satisfaction efficiency	Number of employee turnover
		Number of employee
9	Health efficiency	Number of employee absent
		Number of employee
10	Safety efficiency	Number of activity with risk
		Number of activity
11	Efficiency of employee training	Number of employee training
		Number of employee

Manufacturing sustainability index is approached by adding all weighted economy index, environment and social as shown in Table 2.

Table 2. Manufacturing Sustainability Index

No	Dimension	Input	Formula
1	Economic index	wi : weight of indicator i	\(Ec_I = \sum_{i=1}^{n=4} w_i E_i \)
	(Ec_I)	E_i : score of economic indicator i	
2	Environment index	wi : weight of environment indicator i	\(En_I = \sum_{i=5}^{n=7} w_i E_i \)
	(En_I)	E_i : score of environment indicator i	
3	Social index	wi : weight of social indicator i	\(S_I = \sum_{i=10}^{n=13} w_i E_i \)
	(S_I)	E_i : score of social indicator i	
4	Manufacturing	\(\alpha \) : weight of economic dimension	MSI = \(\alpha Ec_I + \beta En_I + \gamma S_I \)
Sustainability Index	\(\beta \) : weight of environment dimension		
	(MSI)	\(\gamma \) : weight of social dimension	

2.3. Decision support system
A decision support system (DSS) is an information system that process data into useful information to support decision-making activities. The main role of DSSs serve person in strategic, tactical, and
operational levels of an organization and help to make decisions in not well structured situation. Brunner and Starkl [9] stated the importance of a decision aid system in estimating sustainability. DSS not only database driven, but also model driven thus some models must be embedded. This research focus in developing a prototype DSS that using MSI model to measure the sustainability performance in furniture industry. The prototype generated uses a rapid application development tool that provides speed and flexibility in accommodating user requirement for ease of use. By using user-centred development, tremendously decrease user learning time in using the DSS.

3. Result and Discussion
The prototyping process uses Delphi Community Edition to rapidly develop an initial user interface. Users involved in the prototyping process are managers from several furniture companies located in Jepara, Middle Java, Indonesia. This process uses throwaway prototyping which first gets the initial requirement and interface expectations from the manager iteratively. After gaining the initial prototype, formal analysis is carried out based on identified requirements. The DSS prototype named EvaSus which mean Evaluation of Sustainability.

Results of the prototyping process are a database performance, some user interfaces including input and output, and application that embed the MSI model. The database store every input relating to the performance indicators such as weight, measurement and performance score. This database managed by MySQL, a database management system, which easies to accommodate further requirement. The user interface consists of an interface for input indicators that show achievement and standard to be analyzed. The weight of indicators also inputted by the manager based on expertise. Outputs are results from data transformation showing the performance score of every aspect. The DSS facilitate communication between the user and the application in several interfaces.

Here some explanations of the interface created in EvaSus prototype. First, there is the main form of EvaSus that facilitates accessing five primarily function that is as follows Weighting, Measurement, Performance, MSI Index and Report. It is designed to make easy in completing the assessment process by just pressing the appropriate button. The proposed design can be seen in Figure 2.

![Figure 2. Interface EvaSus DSS Prototype](image)

Subsequently, detail interfaces of EvaSus function can be depicted as follows. Figure 3, the weighting interface, an interface to input the weight of three bottom-line indicators. This interface can
accommodate the changing preference of decision makers. Figure 4, the measurement interface, it is the base function of EvaSus. Its record raw data about the shop floor activities. Input is saved in a particular period in accordance with the manufacturing system, e.g. monthly or quarterly. These two interfaces shown in the following figures:

![Figure 3. Weighting for the three bottom line indicators](image1)

![Figure 4. Input interface for measurement process](image2)

Next, are the performance interface and MSI Index interface. Performance interface shows the performance score computed by MSI formulas, while MSI Index interface states the Manufacturing Sustainability Index of the system for the current period. Both are shown in Figure 5 and Figure 6. And the last is Report interface that shows report of all data and performance recorded.
4. Conclusion
We have designed a DSS prototype for performance assessment of the manufacturing system in the furniture industry. The designed DSS has included a period to facilitate decision maker in evaluating performance periodically. Sustainability model used in designed DSS that provides a single index representing the manufacturing sustainability performance. This capability is a manifestation of the evaluation phase in the performance assessment. Performance assessment is key to achieving sustainability goals. The computer-aided tool in performance assessment can provide support to make decisions effectively. Decision makers can view overall factors and may browse indicators that have contributed to increasing or decreasing performances. The prototype built with a rapid application development tool that incorporates user intensively results in minimum training needs.
References
[1] Vinodh S, Jayakrishna K, Kumar V and Dutta R. 2013 *Clean Technol. Envir.* **16**.
[2] Gunasekaran A, Patel C and Tirtiroglu E. 2011 *Int. J. Oper. Prod. Man.* **21** 71–87.
[3] Hadiguna R A. 2013 *International Journal of Green Computing* **4** 24-37.
[4] Hartini S, Ciptomulyono U and Anityasari M. 2017 *Extended value stream mapping to enhance sustainability: a literature review.* 3rd International Materials, Industrial and Manufacturing Engineering Conference (MIMEC2017) (AIP Publishing).
[5] Munda G. 2003 *Environ. Dev. Sustain.* **7** 117–34.
[6] Pope J, Annandale D and Saundersb AM. 2004 *Environ. Impact Assess Rev.* **24** 595–616.
[7] Lee YJ and Huang CM. 2007 *Environ. Impact Assess Rev.* **27** 505–521.
[8] Hartini S, Ciptomulyono U, Anityasari M, Sriyanto, Pujotomo D. 2018 *MATEC Web of Conferences* **154** 01055.
[9] Brunner N and Starkl M. 2004 *Environ. Impact Assess Rev.* **24** 441–69.