A novel immune signature to predict the prognosis of patients with hepatocellular carcinoma

Qinghe Li, MD, Bin Fan, MD, Jun Ding, MD, Xiaoxi Xiang, MD, Jian Zhang, MD*

Abstract
Aberrant immunity has been associated with the initiation and progression of cancers such as hepatocellular carcinoma (HCC). Here, we aim to develop a signature based on immune-related genes (IRGs) to predict the prognosis of HCC patients. The gene expression profiles of 891 HCC samples were derived from 4 publicly accessible datasets. A total of 1534 IRGs from Immunology Database and Analysis Portal website were obtained as candidate genes for prognostic assessment. Using least absolute shrinkage and selection operator (LASSO) regression analysis, 12 IRGs were selected as prognostic biomarkers and were then aggregated to generate an IRG score for each HCC sample. In the training dataset (n=365), patients with high IRG scores showed a remarkably poorer overall survival than those with low IRG scores (log-rank P<.001). Similar results were documented in 3 independent testing datasets (n=226, 221, 79, respectively). Multivariate Cox regression and stratified analyses indicated that the IRG score was an independent and robust signature to predict the overall survival in HCC patients. Patients with high IRG scores tended to be in advanced TNM stages, with increased risks of tumor recurrence and metastasis. More importantly, the IRG score was strongly associated with certain immune cell counts, gene expression of immune checkpoints, estimated immune score, and mutation of critical genes in HCC. In conclusion, the proposed IRG score can predict the prognosis and reflect the tumor immune microenvironment of HCC patients, which may facilitate the individualized treatment and provide potential immunotherapeutic targets.

Abbreviations: AUC = area under the curve, CI = confidence interval, CTLA-4 = cytotoxic T-lymphocyte protein 4, GEO = Gene Expression Omnibus, HCC = hepatocellular carcinoma, HR = hazard ratio, ICGC = International Cancer Genome Consortium, IRGs = immune-related genes, OS = overall survival, PD-1 = programmed cell death protein 1, ROC = receiver operating characteristic, TCGA = The Cancer Genome Atlas, TIM = tumor immune microenvironment.

Keywords: hepatocellular carcinoma, immune-related genes, mutation, prognosis, tumor immune microenvironment

1. Introduction
Hepatocellular carcinoma (HCC) is a dominant subtype of primary liver cancer and occurs commonly in patients with cirrhosis. This type of cancer has ranked the sixth most frequently-diagnosed malignancy and the second leading contributor to cancer-related deaths worldwide and, unfortunately, the disease burdens are stably increasing in Western populations.[1] The therapeutic options for HCC include surgical resection, tumor ablation, liver transplantation, and multikinase inhibitors sorafenib.[2] However, recurrence occurs highly in HCC patients even with treatment in early stage; and, for patients with advanced HCC, the survival rate remains unacceptably poor.[3] In recent years, immune checkpoint inhibitors, such as those targeting programmed cell death protein 1 (PD-1) and cytotoxic T-lymphocyte protein 4 (CTLA-4), have emerged as potentially effective treatments for HCC patients in advanced stages.[4] This emphasizes the functional importance of tumor immune microenvironment (TIM) in HCC.

TIM contains diverse of immune cell types that exhibit either immune promotive or suppressive roles, which has been considered to restrict the accumulation of cytotoxic T cells to the vicinity of cancer cells.[5] In patients with HCC, the prognostic impacts have been demonstrated for tumor immune suppressors like regulatory T cells, tumor-associated macrophages, and myeloid-derived suppressor cells.[6–8] To date, however, there has been no signature to predict the overall survival (OS) of HCC patients by systematically evaluating the TIM based on immune-related genes (IRGs). Chew et al.[9] previously developed an immune model that could determine the long-term survival in resectable HCC. Nevertheless, their study focused only on 14 IRGs with a limited number of included
patients, which may not provide a comprehensive assessment on the TIM and patient’s prognosis. Therefore, it is necessary to identify a signature that can reflect the status of TIM with prognostic capacity in HCC patients.

In this investigation, we aim to develop an immune signature to predict the OS of HCC patients based on the comprehensive list of IRGs in the Immunology Database and Analysis Portal database. The gene expression data of HCC samples profiled by RNA-sequencing or microarray from publicly accessible databases were used for analyses. We then established and validated the prognostic capacity of the IRG score, and examined its association with important clinicopathologic features. And last, the tumor immune-related characteristics involved by the IRG score were figured out. The expected results may enhance our understanding about the role of TIM in the development of HCC and promote the discovery of novel therapeutic targets.

2. Materials and methods

2.1. Acquisition of HCC datasets

In this study, the gene expression profiles and corresponding clinical information of HCC patients were downloaded from The Cancer Genome Atlas (TCGA, https://portal.gdc.cancer.gov), the International Cancer Genome Consortium (ICGC, https://icgc.org), and the Gene Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/) databases. The RNA-sequencing data of 365 HCC samples in the TCGA-LIHC cohort from the TCGA database was used as the training set. The LIRI-JP cohort data of 365 HCC samples in the TCGA-LIHC cohort from the ICGC database was adopted as a testing set, which was required. The comprehensive list of IRGs was downloaded from the Immunology Database and Analysis Portal database (https://www.immport.org), which contained a total of 1534 genes (1024 non-duplicates). These genes were involved in 16 immune categories, such as antimicrobials, T-cell receptor signaling, B-cell receptor signaling, and chemokine.[12] To construct the immune signature for prognosis prediction, the expression data of these IRGs were extracted from the training set, and those with zero expression values in >10% of samples were removed. Univariate Cox regression analyses were performed to determine the association between IRGs expression levels and patients’ OS, and those IRGs with Benjamini–Hochberg adjusted \(P \)-values < .05 were selected for further analyses. Then, LASSO penalized Cox regression model was utilized to determine the most significantly OS-related IRGs. In this model, the penalty parameter lambda.1se for prevention of overfitting was obtained using 10-fold cross validation.[13] An IRG score for OS prediction was finally established by linear combination of the IRGs expression levels weighted by the coefficients from LASSO regression.

2.2. Data preprocessing

The RNA-sequencing data were analyzed using fragments perkilobase of exon per million fragments mapped value with log2(\(x + 1\)) transformation. The Ensembl IDs in data expression matrix were matched to gene symbols using the GTF file from GENCODE (https://www.gencodegenes.org, version 23).[10] For microarray data profiled by the Affymetrix platforms, the raw CEL files were downloaded and then processed with robust multichip average algorithm.[11] For gene expression data measured by the Agilent microarray, we downloaded the normalized series matrix for subsequent analysis. The probe sets in the microarray data were then mapped to gene symbols according to the annotation information in corresponding platforms.

2.3. Derivation of the immune signature

The comprehensive list of IRGs was downloaded from the Immunology Database and Analysis Portal database (https://www.immport.org), which contained a total of 1534 genes (1024 non-duplicates). These genes were involved in 16 immune categories, such as antimicrobials, T-cell receptor signaling, B-cell receptor signaling, and chemokine.[12] To construct the immune signature for prognosis prediction, the expression data of these IRGs were extracted from the training set, and those with zero expression values in >10% of samples were removed. Univariate Cox regression analyses were performed to determine the association between IRGs expression levels and patients’ OS, and those IRGs with Benjamini–Hochberg adjusted \(P \)-values < .05 were selected for further analyses. Then, LASSO penalized Cox regression model was utilized to determine the most significantly OS-related IRGs. In this model, the penalty parameter lambda.1se for prevention of overfitting was obtained using 10-fold cross validation.[13] An IRG score for OS prediction was finally established by linear combination of the IRGs expression levels weighted by the coefficients from LASSO regression.

Table 1

Variables	TCGA-LIHC (n = 365)	LIRI-JP (n = 226)	GSE14520 (n = 221)	GSE54236 (n = 79)
Age, yr				
>60	192 (52.6)	177 (78.3)	40 (18.1)	–
≤60	173 (47.3)	49 (21.7)	181 (81.9)	
Gender				
Female	119 (32.6)	61 (27.0)	30 (13.6)	17 (21.5)
Male	246 (67.4)	165 (73.0)	191 (86.4)	62 (78.5)
Stage				
I/II	254 (69.6)	138 (61.1)	170 (76.9)	–
III/IV	87 (23.8)	88 (38.9)	49 (22.2)	
Unknown	24 (6.6)	0 (0.0)	2 (0.9)	
AFP, U/L				
>50	181 (49.6)	–	100 (45.2)	–
≤50	95 (26.0)	118 (53.4)		
Unknown	89 (24.4)	3 (1.4)		
Death				
No	235 (64.4)	185 (81.9)	136 (61.5)	0 (0.0)
Yes	130 (35.6)	41 (18.1)	85 (38.5)	79 (100.0)

Data were presented as number (percentage).

= not available, AFP = alpha fetoprotein.
2.4. Statistic analyses

All statistical analyses were realized with R 3.5.0 software (The R Foundation for Statistical Computing, Vienna, Austria). To evaluate the prognostic ability of the IRG score, time-dependent receiver operating characteristic (ROC) curve were analyzed and the area under the curve (AUC) was calculated using the “survivalROC” package.[14] For subsequent comparison, we separated patients into high- and low-risk groups according to the optimal cut-off IRG score derived from 3-year ROC curve. Kaplan–Meier survival analysis with log-rank test was used to examine the OS difference between the 2 groups. Multivariate Cox regression analysis was applied to test the independence of predictors for patients’ OS. Stratified analyses by TNM stage were carried out to evaluate prognostic ability of the IRG score in subpopulations. The association between IRG scores and important clinicopathologic features including TNM stage, metastasis risk, and tumor relapse were assessed by one-way ANOVA, Wilcoxon rank sum test, or log-rank test when appropriate.

2.5. Immune profiles and gene mutation

The immune infiltrations of HCC samples were estimated using the “MCProcounter” package in R, which robustly quantifies the absolute abundance of 6 immune cell types based on the transcriptomic data of bulk tumors.[15] The overall immune scores of HCC samples were calculated using the “ESTIMATE” package in R, as proposed by Yoshihara et al.[16] Pearson correlation test was then performed to explore the association of the IRG score with the estimated immune cell counts, gene expression of immune checkpoints, and immune scores. The gene-level copy number variation profile of TCGA-LIHC cohort was downloaded from the UCSC Xena database (https://xenabrowser.net, TCGA-hub). We only focused on the difference of commonly mutated genes in HCC,[17] including TP53, CTNNB1, NCOR1, RBI, ERRH1, CDKN2A, ALB, and APOB.

3. Results

3.1. Construction of IRG signature

The immune signature was constructed as mentioned above (see Figure S1, Supplemental Digital Content, http://links.lww.com/MD/G365, which illustrates the process of data analysis). Univariate Cox regression analysis was conducted in 732 abundant IRGs from the TCGA-LIHC cohort, and we identified 59 genes with adjusted P-values <.05 for OS prediction. These genes were selected for LASSO penalized Cox regression analysis, and a total of 12 IRGs were screened out as the most informative predictors (Fig. 1A). A prognostic IRG score was then calculated by summarizing the expression levels of the 12 IRGs weighted by their coefficients from LASSO model (see Table S1, Supplemental Digital Content, http://links.lww.com/MD/G367, which illustrates the results of univariate Cox regression and LASSO coefficients of the 12 IRG for OS prediction). In the training set, the AUC of the 3- and 5-year ROC curves achieved 0.70 and 0.72, respectively, suggesting a good performance of the IRG score in OS prediction of HCC patients (Fig. 1B). Patients in the training set were then assigned into the high- (n = 172) and low-risk (n = 193) groups according to the best cut-off IRG score (4.51) derived from the 3-year ROC curve. The distribution of OS status and expression patterns of the 12 IRGs were shown in Fig. 1C. In the high-risk group, as expected, 9 risky IRGs were upregulated and the remaining 3 protective IRGs tended to be downregulated. Patients in the high-risk group showed significantly poorer OS than those in the low-risk group (hazard ratio [HR]: 3.08, 95% confidence interval [CI]: 2.14–4.45, log-rank P <.001; Fig. 1D).

For the 3 testing sets, the IRG scores were predicted by using the same formula developed in the training set, and patients were also divided into high- and low-risk groups according to the optimum cut-off value from the 3-year ROC curve. The AUC of the 3- and 5-year ROC curves were 0.69 and 0.78, respectively, for the LIRI-JP cohort and 0.65 and 0.67, respectively, for the GSE14520 dataset (Fig. 2A and B). For the GSE54236 dataset, the AUC of the 3-year ROC curve was 0.74 (Fig. 2C). Similar to the training cohort, there was a significant difference in OS between the high- and low-risk groups in the LIRI-JP cohort (HR: 5.44, 95% CI: 1.93–15.30, log-rank P <.001; Fig. 2D), the GSE14520 dataset (HR: 2.75, 95% CI: 1.73–4.40, log-rank P <.001; Fig. 2E), and the GSE54236 dataset (HR: 2.79, 95% CI: 1.74–4.47, log-rank P <.001; Fig. 2F).

3.2. IRG score and clinicopathologic features

To explore the independence of the immune signature in predicting patients’ OS, we performed multivariate Cox regression by including age, sex, TNM stage, alpha fetoprotein, and IRG score as explanatory variables. The results demonstrated that in all of the datasets, the IRG score was an independent predictor of OS in patients with HCC (HR =1.19, 1.12, 1.04, 1.02, respectively; Table 2). Besides, we found that TNM stage was also significantly associated with patients’ OS; thus, additional stratified analysis was performed to examine the prognostic ability of the IRG score in patients with different TNM stages. Due to the limited number of patients with stage III–IV, the GSE14520 and the GSE54236 datasets were not included in such analyses. As a result, the IRG score could predict the OS of HCC in patients with stages I–II or stages III–IV (see Figure S2, Supplemental Digital Content, http://links.lww.com/MD/G366, which illustrates the results of stratified analysis by TNM stage).

To further clarify the clinical implications of the immune signature, we investigated the association between IRG score and some important clinicopathologic features such as TNM stage, tumor metastasis, and tumor recurrence. In the TCGA-LIHC and the LIRI-JP cohorts, we identified a positive correlation between the IRG score and TNM stage (Fig. 3A). Also, in the GSE14520 dataset, patients with advanced TNM stage or increased metastasis risk had a higher IRG score (Fig. 3B). Besides, patients with high IRG score exhibited a shorter relapse-free survival in both the TCGA-LIHC cohort (HR: 1.50, 95% CI: 1.08–2.10, log-rank P = .016; Fig. 3C) and the GSE14520 dataset (HR: 1.91, 95% CI: 1.32–2.76, log-rank P < .001; Fig. 3D).

3.3. IRG score, immune profiles, and gene mutation

Tumor immune infiltration was estimated for the TCGA-LIHC cohort, the LIRI-JP cohort, and the GSE14520 dataset. As shown in Fig. 4A, the IRG score was significantly associated with the estimates of some immune cell types, such as overall T cells, CD8 + T cells, and mononcytic lineage. The IRG score was also positively related to the gene expression of immune checkpoints like CD274, PDCD1, and CTLA4. Accordingly, in the 3 datasets,
the IRG score was positively correlated with the immune score estimated by the R “ESTIMATE” package (Fig. 4B–D). To determine the mutations associated with the signature, we compared the IRG score between patients with and without mutation of common genes, including TP53, CTNNB1, NCOA1, RB1, ERRFI1, CDKN2A, ALB, and APOB. The results showed that for all of these genes (except ALB), the mutated-type group had a higher IRG score compared with the wild-type group (Fig. 4E).

4. Discussion

The treatment opinions for HCC patients have experienced rapid changes in recent years, especially the advances in immunotherapy. This highlights the critical role of TIM in the progression of HCC, and points towards the necessity to identify immune-related biomarkers for prediction of patients’ prognosis. In this study, we constructed a robust immune-related risk signature for HCC using the data from TCGA-LIHC cohort and validated its prognostic efficacy in another 3 independent datasets. The immune signature was also positively related to some important clinicopathologic features including TNM stage, metastasis risk, and tumor recurrence. More importantly, we found this signature was associated with estimated immune cell counts, immune score, gene levels of immune checkpoints, and mutation of critical genes in HCC.

The immune-related signature consisted of 12 IRGs with prognostic capacity for patients with HCC. In this signature, we observed that 10 of the 12 IRGs were cytokines or cytokine receptors, possibly functioning as important elements in the
inflammatory process of tumorigenesis and tumor progression.[18–20] This can be further elucidated by the concept that cytokines and their receptors can activate the oncogenic transcription factors of NF\textsubscript{kB} and STAT families to facilitate the development of cancer.[21] Also, the tumor suppressive cytokines such as \textit{LECT2} may control the inflammatory phenotypes to constrain the growth of tumor.[22] Therefore, the high-immune risk of our signature may represent an increased inflammatory status of the TIM, which may promote the progression of HCC and lead to poor OS of patients. Interestingly, our signature also contained \textit{CDK4}, a fundamental driver of the cell cycle that is essential for the initiation and

\begin{table}[h]
\centering
\caption{Multivariate Cox regression analysis in patients with hepatocellular carcinoma.}
\begin{tabular}{|c|ccc|ccc|ccc|}
\hline
Variables & \multicolumn{3}{c|}{TCGA-LIHC (n=365)} & \multicolumn{3}{c|}{LIRI-JP (n=226)} & \multicolumn{3}{c|}{GSE14520 (n=221)} \\
& HR (95\% CI) & \textit{p}-value \\
\hline
Age* & 1.02 (1.00–1.04) & .051 & 1.00 (0.97–1.04) & .945 & 1.00 (0.98–1.02) & .751 & – & – \\
Gender & Reference & & Reference & & Reference & & Reference & \\
Male & 0.78 (0.49–1.26) & .316 & 0.41 (0.21–0.79) & .008 & 1.21 (0.57–2.55) & .625 & 1.34 (0.75–2.39) & .318 \\
Stage & & & & & & & & \\
I/II & Reference & & Reference & & Reference & & – & \\
III/IV & 1.58 (0.96–2.61) & .074 & 2.32 (1.16–4.63) & .017 & 2.57 (1.47–4.20) & <.001 & – & – \\
AFP \leq\text{50} U/L & Reference & & Reference & & Reference & & – & – \\
>\text{50} U/L & 0.75 (0.45–1.26) & .272 & & & 1.38 (0.88–2.14) & .157 & & \\
IRG score* & 1.19 (1.12–1.27) & <.001 & 1.12 (1.04–1.21) & .002 & 1.04 (1.01–1.07) & .006 & 1.02 (1.01–1.03) & <.001 \\
\hline
\end{tabular}
*Analyzed as continuous variable.
\end{table}
Inhibition of CDK4/6 could augment antitumor immunity by promoting T-cell activation; and, the selective CDK4/6 inhibitor palbociclib has shown encouraging results in preclinical models of HCC.

HSPA8 was another gene in the immune-signature that attracted our attention, which was associated with antigen processing and presentation. Inhibition of the ATPase activity of HSPA8 could enhance the immune response to protein antigens involved in cancer. These further shed light on the importance of our immune signature in the HCC microenvironment.

In order to understand the clinical values of the immune signature, we evaluated the relationship between IRG score and important clinicopathologic features. Patients with high IRG scores tended to have advanced TNM stage and increased risk of tumor metastasis and recurrence. These associations have also been documented in other studies exploring the prognostic immune signature in cancers such as renal papillary cell carcinoma and lung adenocarcinoma. It is likely that patients with high-immune risk are present with a TIM that can promote the cancer development, leading to advanced TNM stage and tumor relapse. Therefore, the proposed signature in our study can not only predict patients’ survival but reflect the probability of tumor progression, recurrence, and metastasis.

Additionally, we tried to classify the immune profiles and gene mutations associated with the IRG signature in HCC patients. Patients with high IRG score tended to have more T cells (e.g., CD8+ T cells) infiltration and higher estimated immune score,
indicating an immunological microenvironment of HCC. Further analysis showed that the IRG score was positively correlated with the gene expression of PD-1, PD-L1, PD-L2, and CTLA-4. These results suggested that the function of T cells in the TIM of HCC was suppressed by the PD-1/PD-L1 or CTLA-4 signaling cascades, albeit with high infiltration of T cells. Thus, patients in the high-immune risk group may be more likely to benefit from the treatment of immune checkpoint inhibitors. Accordingly, Chen et al.\(^{[30]}\) recently demonstrated that tumors with high PD-L1 expression and increased T cells infiltrating appeared to benefit more from blocking of immune checkpoints. Future studies are required to investigate the relationship between the immune signature and immunotherapy. Besides, we found that patients with mutation of critical genes in HCC had a higher IRG score. Apart from the well-known TP53, NCOR1 was also a mutated gene that had the mostly significant correlation with the immune signature. NCOR1 has been recognized as a new player on the field of T cell development,\(^{[31]}\) and it may exert a distinct role in liver regeneration and hepatocarcinogenesis.\(^{[32]}\) In our study, the mutation of NCOR1 caused a significant decrease in mRNA level (data not shown), which may contribute to the poor OS of HCC patients.\(^{[33]}\) These results further confirmed the prognostic ability of our signature.

Nevertheless, several limitations should be acknowledged in this study. First of all, the immune signature was developed using a retrospective design. Therefore, clinical validation of the IRG score is needed in prospective studies with large sample size. Secondly, due to the lacking of patients treated with immune checkpoint inhibitors, we cannot test the association of the immune signature with the response to immunotherapy. Thirdly, immunological studies focusing on the 12 IRGs individually or in combination should be conducted to explore their functions and support their clinical applications.

In summary, we developed an immune signature based on the expression data of IRGs from HCC patients. This signature showed robust ability in the prediction of patients’ OS and could reflect the risk of progression, metastasis, and recurrence of HCC. More importantly, the immune signature was associated with local immune profiles and mutations of critical genes in the TIM of HCC. These results may help us to understand the role of TIM in HCC and facilitate the discovery of novel biomarkers and therapeutic targets.
Author contributions

Jian Zhang conceived and designed the study. Qinghe Li and Bin Fan acquired and organized the gene expression data and relevant clinical information. Jun Ding and Xiaoxi Xiang performed the statistical analyses. Qinghe Li and Bin Fan wrote the manuscript, with key intellectual contents revised by Jian Zhang. All authors approved the final version of the manuscript.

Conceptualization: Jian Zhang.

Data curation: Jian Zhang.

Formal analysis: Qinghe Li, Bin Fan, Jian Zhang.

Investigation: Qinghe Li, Bin Fan.

Methodology: Qinghe Li, Bin Fan.

Resources: Qinghe Li, Bin Fan.

Software: Jun Ding, Xiaoxi Xiang.

Supervision: Jun Ding, Xiaoxi Xiang.

Validation: Jun Ding, Xiaoxi Xiang.

Visualization: Jian Zhang.

Writing – original draft: Qinghe Li.

Writing – review & editing: Jian Zhang.

References

[1] Fornier A, Reig M, Bruix J. Hepatocellular carcinoma. Lancet 2018;391:1301–14.
[2] Zhu J, Yin T, Xu Y, Lu XJ. Therapeutics for advanced hepatocellular carcinoma: recent advances, current dilemma, and future directions. J Cell Physiol 2019;234:12122–32.
[3] Heimbach JK, Kulik LM, Finn RS, et al. AASLD guidelines for the treatment of hepatocellular carcinoma. Hepatology 2018;67:358–80.
[4] Inarrairegue M, Melero I, Sangro B. Immunotherapy of hepatocellular carcinoma: facts and hopes. Clin Cancer Res 2018;24:1518–24.
[5] Joyce JA, Fearon DT. T cell exclusion, immune privilege, and the tumor microenvironment. Science 2015;348:74–80.
[6] Tu JF, Ding YH, Ying XH, et al. Regulatory T cells, especially ICOS(+) FOXP3(+) regulatory T cells, are increased in the hepatocellular carcinoma microenvironment and predict reduced survival. Sci Rep 2016;6:33056.
[7] Li QJ, Yu XJ, Wang YC, et al. Distinct patterns and prognostic values of tumor-infiltrating macrophages in hepatocellular carcinoma and gastric cancer. J Transl Med 2017;15:37.
[8] Wan S, Kuo N, Kryczek I, Zou W, Welling TH. Myeloid cells in hepatocellular carcinoma. Hepatology 2015;62:1304–12.
[9] Chew V, Chen J, Lee D, et al. Chemokine-driven lymphocyte infiltration: an early intratumoural event determining long-term survival in resectable hepatocellular carcinoma. Gut 2012;61:427–38.
[10] Harrow J, Frankish A, Gonzalez JM, et al. GENCODE: the reference human genome annotation for The ENCODE Project. Genome Res 2012;22:1760–74.
[11] Izarrary RA, Hobbs B, Collin F, et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 2003;4:249–64.
[12] Bhattacharya S, Andorfer S, Gomes L, et al. ImmPort: disseminating data to the public for the future of immunology. Immunol Res 2014;58:234–9.
[13] Goeman JJ. L1 penalized estimation in the Cox proportional hazards model. Biom J 2010;52:70–84.
[14] Heagerty PJ, Lumley T, Pepe MS. Time-dependent ROC curves for censored survival data and a diagnostic marker. Biometrics 2000;56:337–44.
[15] Becht E, Giraldo NA, Lacroix L, et al. Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression. Genome Biol 2016;17:218.
[16] Yoshihara K, Shahmoradgoli M, Martinez E, et al. Inferring tumour purity and stromal and immune cell admixture from expression data. Nat Commun 2013;4:2612.
[17] Cancer Genome Atlas Research Network. Electronic address whe, Cancer Genome Atlas Research N. Comprehensive and integrative genomic characterization of hepatocellular carcinoma. Cell 2017;169:1327–e1323.
[18] Chow MT, Luster AD. Chemokines in cancer. Cancer Immunol Res 2014;2:1125–31.
[19] Lippitz BE. Cytokine patterns in patients with cancer: a systematic review. Lancet Oncol 2013;14:e218–28.
[20] Landskron G, De la Fuente M, Thwuajit P, Thuwajit C, Hermoso MA. Chronic inflammation and cytokines in the tumor microenvironment. J Immunol Res 2014;2014:149185.
[21] Aretekhany KN, Drutska MS, Nedosposav SA, Grivennikov SI, Kuprash DV. Chemokines, cytokines and exosomes help tumors to shape inflammatory microenvironment. Pharmacol Ther 2016;168:98–112.
[22] L’Hermitte A, Pham S, Cadoux M, et al. Lect2 controls inflammatory monocytes to constrain the growth and progression of hepatocellular carcinoma. Hepatology 2019;69:160–78.
[23] VanArsdale T, Boshoff C, Arndt KT, Abraham RT. Molecular pathways: targeting the Cyclin D-CDK4/6 axis for cancer treatment. Clin Cancer Res 2013;21:2905–10.
[24] Deng J, Wang ES, Jenkins RW, et al. CDK4/6 inhibition augments antitumor immunity by enhancing T-cell activation. Cancer Discov 2018;8:216–33.
[25] Bollard J, Miguel V, Ruiz de Galanreta M, et al. Palbociclib (PD-0332991), a selective CDK4/6 inhibitor, restricts tumour growth in preclinical models of hepatocellular carcinoma. Gut 2017;66:1286–96.
[26] Defit SN, Blum JS. A central role for HSC70 in regulating antigen trafficking and MHC class II presentation. Mol Immunol 2015;68:83–8.
[27] Bae K, Zhang H, Lee BR, Kwon YG, Ha SJ, Shin I. A small molecule inhibitor for ATPase activity of Hsp70 and Hsc70 enhances the immune response to protein antigens. Sci Rep 2015;5:17642.
[28] Wang Z, Song Q, Yang Z, Chen J, Shang J, Ju W. Construction of immune-related risk signature for renal papillary cell carcinoma. Cancer Med 2019;8:329–304.
[29] Song Q, Shang J, Yang Z, et al. Identification of an immune signature predicting prognosis risk of patients in lung adenocarcinoma. J Transl Med 2019;17:70.
[30] Chen YP, Zhang Y, Lv JW, et al. Genomic analysis of tumor microenvironment immune types across 14 solid cancer types: immunotherapeutic implications. Theranostics 2017;7:3385–94.
[31] Muller L, Hainberger D, Stolz V, Ellmeier W. NCOX1—a new player on the field of T cell development. J Leukoc Biol 2018;104:1061–8.
[32] Ou-Yang Q, Lin XM, Zhu YJ, et al. Distinct role of nuclear receptor corepressor 1 regulated de novo fatty acids synthesis in liver regeneration and hepatocarcinogenesis in mice. Hepatology 2018;67:1071–87.
[33] Yin L, He N, Chen C, Zhang N, Lin Y, Xia Q. Identification of novel blood-based HCC-specific diagnostic biomarkers for human hepatocellular carcinoma. Artif Cells Nanomed Biotechnol 2019;47:1908–16.