Supplementary Material

Table S1 Specific source information of milk samples.

Dairy farm	Location	Incidence of mastitis (%)	Sample quantity
Farm A	Heilongjiang, China	2.82	24
Farm B	Shangdong, China	2.13	38
Farm C	Anhui, China	Unknown	28
Farm D	Jiangsu, China	Unknown	12
Farm E	Hubei, China	2.26	13
Farm F	Hebei, China	3.00	24
Farm G	Ningxia, China	2.20	17
Farm H	Ningxia, China	1.74	25

Table S2 Breakpoints of 12 Antibiotics for *K. pneumoniae*.

Antibiotic	S	I	R
Penicillin G	≤16		≥32
Ampicillin	≤16	16	≥32
Amoxicillin/clavulanic acid	≤4	8	≥16
Sodium Ceftiofur	≤1	2	≥4
Enrofloxacin	≤4	8	≥16
Sulfamethoxazole	≤256		≥512
Spectinomycin	≤16	32	≥64
Tobramycin	≤4	8	≥16
Cefoxitin	≤8	6	≥32
Florfenicol	≤4		≥16
Erythromycin	≤16		≥32
Doxycycline	≤4	8	≥16
Genes	Sequence (5'-3')	Amplicon size (bp)	Annealing temperature (°C)
---------	-----------------	--------------------	--------------------------
bla_{OXA-48}	GCGTGGTTAAGGATGAACAC CATCAAGTTCAACCCAACCG	438	52
	GCTTTATCGGCCTTCACTCAAG		
bla_{SHV}	TTAGCGTTGCCAGTGCTCGATCA AACCGTCACGCTGGTTTAG	898	55
	TTAGCGTTGCCAGTGCTCGATCA AACCGTCACGCTGGTTTAG		
bla_{CTX-M}	TTGAGGCGTGTGGAAGTAAG	766	52
	ACGTGGCGGATGATGCT		
oqxA	CCACTCTTCACGGGAGACGA	392	55
parC	CTGAATGCCAGGCCAAAAT	382	54
gyrA	CGCGTACTATACGCCCCATGAACGTA ACCGTGTACCTTCGTCAG	420	55
	CGCGATCGCAACACATGACG		
sul2	GTCGGCGGATCGATCAG	722	50
tetB	CTCAGTTTTCACCATTTTTC	416	57
strAB	TATCTGCGATTGGACCTCTG CATGGCTACATTTTGATCGGTCTG	538	55
aadA	GCAGCCGAATGACATTCTTG ATCCTTCGGCGCATTTT	282	60
Table S4 Primers for virulence genes and product size of *K. pneumoniae*.

Genes	Sequence (5’-3’)	Amplicon size (bp)	Annealing temperature (°C)
wabG	ACCATCGGCCATTGATAGA CGGACTGGCAGATCCATATC TCTTACGCCCTTCTCTCCTACT	683	50
uge	GATCATCCCGTCTCCCTCTGTA TGCTGCTGGGCTGGTCGATG	534	51
fimH	GGGAGGGTGACGGTGACATC	550	57
mrkD	AAGCTATCGCTGTACCTCCGGCA GCGTGGCCGTCAGTATAGG	340	57
entB	GTCAACTGGGCTTTTGACGCGTC TATGCGTAAACCGCGTGTAG	400	57
kfu	ATAGTAGGCGAGCACCAGAGA AGAACCTTCCTCGCTGAAACA	530	57
ureA	GCTGACTTAAGAGAACGTTATG GATCATGGCGCTACCT(C/T)A	337	50
ybtA	AGACGGAGTCACCGCAAAC TTACATCAGCGTTAAAGG	960	55
rmpA	TACATAGGAAGGAGATGTTAAT GAGCATCTTTCTACATCAAC	505	48
magA	GGTGCTCTTACATCATTCG GCAATGGCCATTTGCGTTAG	1238	49
Table S5 Specific background information of 102 *K. pneumoniae* strains.

Isolate ID	Strain	Country	Year	Source	Accession No.
M1	WI-01	USA	2014	Bovine	SAMN13523781
M2	MN-01	USA	2014	Bovine	SAMN13523782
M3	MN-02	USA	2014	Bovine	SAMN13523783
M4	WI-02	USA	2014	Bovine	SAMN13523786
M5	FL-01	USA	2014	Bovine	SAMN13523787
M6	FL-02	USA	2014	Bovine	SAMN13523789
M7	VT-01	USA	2014	Bovine	SAMN13523791
M8	FL-03	USA	2014	Bovine	SAMN13523792
M9	FL-04	USA	2015	Bovine	SAMN13523793
M10	CT-01	USA	2015	Bovine	SAMN13523795
M11	PA-01	USA	2015	Bovine	SAMN13523803
M12	PA-02	USA	2015	Bovine	SAMN13523804
M13	NC-01	USA	2015	Bovine	SAMN13523807
M14	MN-11	USA	2016	Bovine	SAMN13523815
M15	WA-01	USA	2016	Bovine	SAMN13523816
M16	MN-12	USA	2016	Bovine	SAMN13523818
M17	WI-08	USA	2016	Bovine	SAMN13523819
M18	WI-09	USA	2016	Bovine	SAMN13523820
M19	WI-10	USA	2016	Bovine	SAMN13523821
M20	WI-11	USA	2016	Bovine	SAMN13523822
M21	NY-05	USA	2016	Bovine	SAMN13523823
M22	NY-06	USA	2016	Bovine	SAMN13523824
M23	NY-07	USA	2016	Bovine	SAMN13523825
M24	NC-02	USA	2017	Bovine	SAMN13523829
M25	CT-02	USA	2017	Bovine	SAMN13523831
M26	CT-03	USA	2017	Bovine	SAMN13523837
M27	CT-04	USA	2017	Bovine	SAMN13523840
M28	NY-10	USA	2017	Bovine	SAMN13523841
M29	NY-11	USA	2017	Bovine	SAMN13523842
M30	NY-12	USA	2017	Bovine	SAMN13523844
M31	MN-20	USA	2018	Bovine	SAMN13523848
M32	CA-01	USA	2018	Bovine	SAMN13523849
M33	IA-001	USA	2015	Bovine	SAMN13523850
M34	IA-004	USA	2015	Bovine	SAMN13523853
M35	IA-018	USA	2015	Bovine	SAMN13523867
M36	IA-020	USA	2015	Bovine	SAMN13523869
M37	IA-021	USA	2015	Bovine	SAMN13523870
M38	IA-022	USA	2015	Bovine	SAMN13523871
M39	IA-059	USA	2015	Bovine	SAMN13523908
M40	K3	Egypt	NA	Bovine	SRR13933220
M41	SB2722	Netherlands	2009	Bovine	Unknown

	isolate	country	year	species	status	Accession Number
M42	SB2726	Netherlands	2009	Bovine	Unknown	ERR025515
H1	SKP000534	USA	2008	Human	ERR025515	
H2	SKP000795	USA	2006	Human	ERR025140	
H3	SKP000800	USA	2006	Human	ERR025986	
H4	SKP000802	USA	2007	Human	ERR025988	
H5	SKP000803	USA	2007	Human	ERR025989	
H6	KP01	Netherlands	2016	Human	ERR1616341	
H7	KP02	Netherlands	2016	Human	ERR1616345	
H8	KP03	Netherlands	2016	Human	ERR1616353	
H9	KP04	Netherlands	2016	Human	ERR1616359	
H10	KP05	Netherlands	2016	Human	ERR1616362	
H11	H150660738	UK	2016	Human	Unknown	
H12	H15390402	UK	2016	Human	Unknown	
H13	H135060621	UK	2016	Human	Unknown	
H14	H140240552	UK	2016	Human	Unknown	
H15	H142140857	UK	2016	Human	Unknown	
H16	Kp_1093127	Italy	2016	Human	Unknown	
H17	Kp_811117	Italy	2016	Human	Unknown	
H18	Kp002	Australia	2016	Human	ERR025540	
H19	Kp1832	USA	2016	Human	ERR025540	
H20	38941	Kenya	2017	Human	ERR214375	
H21	33909	Kenya	2017	Human	ERR214297	
H22	45441	Kenya	2017	Human	ERR219172	
H23	NCSR101	Vietnam	2014	Human	ERR025479	
H24	DM23092/04	Singapore	2014	Human	ERR025540	
H25	DU38032/05	Singapore	2014	Human	ERR025541	
H26	SA25	France	2013	Human	Unknown	
H27	SA26	France	2013	Human	Unknown	
H28	T6	France	2013	Human	Unknown	
H29	L3	France	2013	Human	Unknown	
H30	Pus_13542	Laos	2015	Human	ERR011870	
H31	Pus_15007	Laos	2015	Human	ERR011871	
H32	Pus_15987	Laos	2015	Human	ERR011873	
H33	NN61	Spain	2009	Human	Unknown	
H34	N66	Spain	2009	Human	Unknown	
H35	I5	Spain	2009	Human	Unknown	
E1	SKP000753	USA	2006	Bovine	ERR025575	
E2	SKP000754	USA	2006	Bovine	ERR025563	
E3	SKP000755	USA	2006	Bovine	ERR025588	
E4	SKP000764	USA	2005	Bovine	ERR025131	
E5	SKP000765	USA	2005	Bovine	ERR025132	
E6	SKP000827	USA	2007	Bovine	ERR025615	
E7	SKP000832	USA	2007	Bovine	ERR025618	
E8	SKP000781	USA	2005	Environmental	ERR025151	
---	---	---	---	---		
E9	SKP000826	USA	2005	Environmental	ERR025614	
E10	SKP000830	USA	2005	Environmental	ERR025607	
E11	ESBLH238T	India	2014	Environmental	Unknown	
E12	E48T	India	2014	Environmental	Unknown	
E13	19SK1	India	2014	Environmental	Unknown	
E14	ESBLH239T	Thailand	2014	Environmental	Unknown	
E15	ABW S20	Switzerland	2015	Environmental	Unknown	
E16	002 SK5	Switzerland	2016	Environmental	Unknown	
E17	2-2	The Netherlands	Unknown	Environmental	Unknown	
E18	2-3	The Netherlands	Unknown	Environmental	Unknown	
E19	3-1	The Netherlands	Unknown	Environmental	Unknown	
E20	3-2	The Netherlands	Unknown	Environmental	Unknown	
E21	5-1	The Netherlands	Unknown	Environmental	Unknown	
E22	808	Libya	2009	Environmental	Unknown	
E23	809	Libya	2009	Environmental	Unknown	
E24	817	Libya	2008	Environmental	Unknown	
E25	DR85_08	Singapore	2008	Environmental	ERS011922	
Table S6 Specific background information of the *K. pneumoniae* strains.

Strain	Source	Cow number	Year	
HLJ-1	Farm A	140142	2021	
HLJ-2	Farm A	140439	2021	
HLJ-3	Farm A	141011	2021	
HLJ-4	Farm A	150170	2021	
HLJ-5	Farm A	151054	2021	
HLJ-6	Farm A	160427	2021	
HLJ-10	Farm A	161158	2021	
HLJ-14	Farm A	170581	2021	
HLJ-16	Farm A	170872	2021	
HLJ-20	Farm A	180218	2021	
HLJ-23	Farm A	181270	2021	
HLJ-24	Farm A	190281	2021	
HLJ-24F	Farm A	190281	2021	
SD-1	Farm B	158069	2021	
SD-3	Farm B	174827	2021	
SD-6	Farm B	183568	2021	
SD-7	Farm B	181566	2021	
SD-8	Farm B	175611	2021	
SD-9	Farm B	140361	2021	
SD-10	Farm B	131890	2021	
SD-13	Farm B	193586	2021	
SD-14	Farm B	193189	2021	
SD-15	Farm B	175239	2021	
SD-16	Farm B	167058	2021	
SD-18	Farm B	171431	2021	
SD-19	Farm B	172361	2021	
SD-20	Farm B	145156	2021	
SD-21	Farm B	184381	2021	
SD-23	Farm B	172943	2021	
SD-25	Farm B	173540	2021	
SD (2)-7	Farm B	180653	2021	
AH-1	Farm C	155500	2021	
AH-5	Farm C	175145	2021	
AH-12	Farm C	168544	2021	
AH-13	Farm C	14701	2021	
AH-16	Farm C	187972	2021	
AH-17	Farm C	178388	2021	
AH-20	Farm C	152870	2021	
AH-21	Farm C	193067	2021	
AH-23	Farm C	164864	2021	
JS-1	Farm D	4068	2021	
JS-2	Farm D	6295	2021	
Dairy farm	Sampling time	Sample quantity	Positive sample quantity	Detection rate (%)
-----------	---------------	-----------------	--------------------------	--------------------
Farm A	2021.07	24	13	54.17
Farm E	2021.07	13	7	53.85
Farm B	2021.08	38	18	47.37
Farm F	2021.09	24	11	45.83
Farm G	2021.09	17	2	11.76
Farm D	2021.10	12	5	41.67
Farm H	2021.10	25	0	0
Farm C	2021.10	28	9	32.14

Table S7 Detection rates of *K. pneumoniae* in different farms.
Table S8 Results of antimicrobial susceptibility testing.

Types of antibiotics	Antibiotics	Strain number	Proportion (%)	Strain number	Proportion (%)	Strain number	Proportion (%)
β-lactam/β-lactamase-inhibitor combinations	Penicillin G	0	0	0	0	65	100
Amoxicillin/clavulanic acid	Ampicillin	0	0	1	1.54	64	98.46
Ceftriaxone	Enrofloxacin	17	26.15	14	21.54	34	52.31
Fluoroquinolones	Sulfamethoxazole	0	0	1	1.54	64	98.46
Aminoglycosides	Spectinomycin	4	6.15	23	35.39	38	58.46
Cephamycins	Tobramycin	49	75.39	5	7.69	11	16.92
Chloramphenicol	Cefoxitin	48	73.84	9	13.85	8	12.31
Macrolides	Florfenicol	9	13.85	15	23.08	41	63.07
Tetracyclines	Erythromycin	0	0	0	0	65	100
	Doxycycline	19	29.23	8	12.31	38	58.46

Table S9 Statistics of Nanopore data quality.

Strain	Sequence number	sum_len (bp)	min_len (bp)	avg_len (bp)	max_len (bp)	N50 (bp)
SD-14	58 821	1 000 008 661	7 533	17 000.9	134 766	19 434
HB-21	54 597	1 000 019 433	9 785	18 316.4	91 271	19 533

Table S10 The genomics islands prediction of K. pneumoniae strain SD-14.

GIs ID	Sequence ID	Start	End	GIs length (bp)
GI1	assembly_1	1 165 213	1 185 458	20 246
GI2	assembly_1	2 049 012	2 081 938	32 927
GI3	assembly_1	2 277 317	2 293 045	15 729
GI4	assembly_1	2 879 024	2 923 750	44 727
GI5	assembly_1	2 958 582	2 991 994	33 413
GI6	assembly_1	3 060 808	3 071 120	10 313
GI7	assembly_1	3 221 868	3 268 487	46 620
GI8	assembly_1	4 669 391	4 696 362	26 972
GI9	assembly_1	4 887 309	4 895 520	8 212
GI10	assembly_2	30 386	48 614	18 229
GI11	assembly_2	103 225	118 189	14 965
Table S11 The genomics islands prediction of *K. pneumoniae* strain HB-21.

GIs ID	Sequence ID	Start (bp)	End (bp)	GIs length (bp)
GI1	assembly_1	756 743	785 165	28 423
GI2	assembly_1	1 461 283	1 515 264	53 982
GI3	assembly_1	2 962 544	2 993 406	30 863
GI4	assembly_1	2 999 915	3 025 821	25 907
GI5	assembly_1	3 179 377	3 234 127	54 751
GI6	assembly_1	4 205 438	4 220 159	14 722
GI7	assembly_1	4 654 342	4 662 352	8 011
GI8	assembly_1	4 667 975	4 692 945	24 971
GI9	assembly_2	99 711	107 987	8 277
GI10	assembly_2	122 655	128 859	6 205
GI11	assembly_2	235 824	245 742	9 919
GI12	assembly_3	9 964	18 942	8 979

Table S12 The values of alleles and the respective sequence types of 104 strains.

Strain	gapA	infB	mdh	pgi	phoE	rpoB	tonB	ST																																	
SD-14	2	6	1	5	11	1	15	43																																	
HB-21	2	9	2	1	13	1	38	896																																	
M1	3	1	1	1	3	3	1	4																																	
M2	10	20	2	1	9	11	14	442																																	
M3	2	1	2	17	27	1	39	107																																	
M4	2	1	99	6	1	1	129	867																																	
M5	18	22	26	63	85	20	51	414																																	
M6	4	3	1	1	43	1	13	191																																	
M7	2	3	2	2	6	4	4	29																																	
M8	2	3	6	1	9	7	299	5734																																	
M9	4	3	1	1	43	1	13	191																																	
M10	2	1	1	37	3	4	64	1496																																	
M11	2	1	2	1	3	4	4	109																																	
M12	2	1	2	17	27	1	39	107																																	
M13	2	1	5	1	17	4	42	111																																	
M14	10	20	2	1	9	11	14	442																																	
M15	4	7	1	37	177	4	6	2159																																	
M16	2	1	2	1	7	1	24	234																																	
M17	3	5	1	12	4	46	1426																																		
M18	4	5	2	2	1	1	24	2253																																	
M19	2	1	1	10	1	9	5753																																		
M20	2	1	97	1	9	4	13	846																																	
M21	38	19	53	58	73	21	130	526																																	
M22	3	1	1	20	2	62	5754																																		
M23	4	1	2	6	2	5	9	5755																																	
---	---	---	---	---	---	---	---	---																																	
M24	4	6	1	1	8	1	56	229																																	
M25	2	9	2	1	13	1	10	309																																	
M26	4	3	1	36	9	10	14	661																																	
M27	2	1	2	2	10	4	19	1117																																	
M28	2	20	2	1	9	11	355	5759																																	
M29	4	1	1	21	1	35	76																																		
M30	17	19	28	20	103	18	52	5760																																	
M31	17	19	92	39	170	18	125	3212																																	
M32	2	7	7	1	61	1	456	3664																																	
M33	2	1	2	3	1	36	9	10	661																																
M34	2	1	2	1	2	1	776																																		
M35	2	1	5	1	17	4	42	111																																	
M36	2	1	2	3	27	1	39	219																																	
M37	2	9	2	1	13	1	16	37																																	
M38	2	1	1	1	7	1	12	485																																	
M39	3	1	2	1	3	4	31	1086																																	
M40	2	5	2	2	7	1	10	48																																	
M41	5	1	5	1	7	1	24	87																																	
M42	2	5	2	2	7	1	10	48																																	
H1	16	3	2	1	1	1	18	769																																	
H2	11	3	2	2	6	4	4	754																																	
H3	17	19	39	39	51	18	72	196																																	
H4	10	1	1	1	12	1	38	225																																	
H5	10	7	2	2	3	25	4	247																																	
H6	2	5	2	2	7	1	10	48																																	
H7	10	1	2	1	9	27	6	359																																	
H8	14	1	2	1	7	4	182	873																																	
H9	2	1	2	1	2	1	4	1836																																	
H10	4	1	11	1	9	4	59	1593																																	
H11	2	7	2	1	2	1	2	2201																																	
H12	2	3	65	6	3	15	4	2202																																	
H13	2	6	1	37	3	27	111	2203																																	
H14	10	1	11	1	9	10	300	2204																																	
H15	3	31	2	1	4	1	220	2205																																	
H16	2	6	88	5	4	1	6	2287																																	
H17	16	18	21	33	55	59	75	2288																																	
H18	2	6	1	5	4	1	6	101																																	
H19	2	6	1	3	8	1	15	42																																	
H20	3	1	5	1	1	4	223	2813																																	
H21	4	1	2	1	1	247	4	2814																																	
H22	4	2	2	1	247	4	25	2815																																	
H23	3	3	1	1	1	4	11																																		
H24	3	3	1	1	1	4	11																																		
H25	3	3	1	1	1	4	11																																		
	H26	H27	H28	H29	H30	H31	H32	H33	H34	H35	E1	E2	E3	E4	E5	E6	E7	E8	E9	E10	E11	E12	E13	E14	E15	E16	E17	E18	E19	E20	E21	E22	E23	E24	E25						
---	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----							
	2	1	1	1	1	4	19	380	2	1	1	1	1	4	19	380	2	1	1	1	1	4	19	380	2	1	1	1	1	4	19	380									
	43	1	2	1	10	4	13	375	2	1	1	1	1	4	13	25	16	24	43	38	54	22	346	2139	12	1	1	2	5	1	36	133									
	2	3	1	1	10	1	19	13	3	1	2	1	1	1	4	134		1	6	1	1	1	1	1	14	2	9	30	13	1	16	177									
	2	2	1	2	7	4	4	222	2	1	1	2	1	13	1	256		23	31	2	1	9	4	23	187	2	1	2	6	9	1	10	224								
	4	5	1	1	12	4	46	289	3	37	1	1	1	10	4	4	222		2	5	1	6	9	1	10	224	4	5	1	1	12	4	46	289							
	2	1	2	42	26	4	18	211	2	1	2	1	13	1	4	222		2	3	2	1	17	1	4	2	1740	2	1	2	1	42	26	4	18	221						
	4	1	1	1	7	1	1	1739	17	19	39	20	150	18	52	1740		2	3	2	1	17	4	42	1741	2	3	1	1	220	1	4	1743								
	65	110	189	1	260	4	170	2256	18	19	175	114	261	21	338	2257		18	19	175	114	261	21	338	2257	2	1	2	1	112	511										
	18	19	175	114	261	21	338	2257	2	1	2	1	1	25	63		12	1	1	2	23	1	36	50		4	5	1	1	9	1	31	46								
	2	1	15	1	1	18	4	30	62	2	1	1	14	24	1	19	52		2	1	2	1	1	1	112	511		38	19	69	39	96	51	126	509						
	2	1	1	1	14	24	1	19	52	2	1	1	2	1	1	112	511		50	19	66	20	97	18	126	486		2	1	2	1	1	112	511							
	18	15	26	22	94	13	165	734																																	
Figure S1 Phylogenetic tree of 65 strains of *K. pneumoniae*
Figure S2 Carriage rate of multiple antimicrobial resistance genes.

Figure S3 Carriage rate of multiple virulence genes.
Figure S4 Circular map of *K. pneumoniae* strain SD-14. From the outside to the inside: the first ring corresponds to the information of genome sequence; the second ring corresponds to GC content; the third ring corresponds to GC skew; the forth ring corresponds to Illumina sequencing depth; the fifth ring corresponds to Nanopore sequencing depth; the last ring corresponds to CDS and ncRNA.
Figure S5 Circular map of *K. pneumoniae* strain HB-21. From the outside to the inside: the first ring corresponds to the information of genome sequence; the second ring corresponds to GC content; the third ring corresponds to GC skew; the forth ring corresponds to Illumina sequencing depth; the fifth ring corresponds to Nanopore sequencing depth; the last ring corresponds to CDS and ncRNA.
Figure S6 (A) GO classification of *K. pneumoniae* strain SD-14. (B) GO classification of *K. pneumoniae* strain HB-21.
Figure S7 (A) KEGG classification of *K. pneumoniae* strain SD-14. (B) KEGG classification of *K. pneumoniae* strain HB-21.