Divergent effects of α- and β-myosin heavy chain isoforms on the N terminus of rat cardiac troponin T

Ranganath Mamidi and Murali Chandra

Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164

Divergent effects of α- and β-myosin heavy chain (MHC) isoforms on contractile behavior arise mainly because of their impact on thin filament cooperativity. The N terminus of cardiac troponin T (cTnT) also modulates thin filament cooperativity. Our hypothesis is that the impact of the N terminus of cTnT on thin filament activation is modulated by a shift from α- to β-MHC isoform. We engineered two recombinant proteins by deleting residues 1–43 and 44–73 in rat cTnT (RcTnT): RcTnT1–43 and RcTnT44–73, respectively. Dynamic and steady-state contractile parameters were measured at sarcomere length of 2.3 µm after reconstituting proteins into detergent-skinned muscle fibers from normal (α-MHC) and propylthiouracil-treated (β-MHC) rat hearts. α-MHC attenuated Ca\(^{2+}\)-activated maximal tension (~46%) in RcTnT1–43 fibers. In contrast, β-MHC decreased tension only by 19% in RcTnT1–43 fibers. Both α- and β-MHC did not affect tension in RcTnT44–73 fibers. The instantaneous muscle fiber stiffness measurements corroborated the divergent impact of α- and β-MHC on tension in RcTnT1–43 fibers, pCa\(_{50}\) (log of [Ca\(^{2+}\)\(\text{free}\) required for half-maximal activation) decreased significantly by 0.13 pCa units in α-MHC + RcTnT1–43 fibers but remained unaltered in β-MHC + RcTnT1–43 fibers, demonstrating that β-MHC counteracted the attenuating effect of RcTnT1–43 on myofilament Ca\(^{2+}\) sensitivity. β-MHC did not alter the sudden stretch-mediated recruitment of new cross-bridges (\(E_R\)) in RcTnT1–43 fibers, but α-MHC attenuated \(E_R\) by 36% in RcTnT1–43 fibers. The divergent impact of α- and β-MHC on how the N terminus of cTnT modulates contractile dynamics has implications for heart disease; alterations in cTnT and MHC are known to occur via changes in isoform expression or mutations.

INTRODUCTION

We recently demonstrated the existence of two distinct regions in the N terminus of mouse cardiac troponin T (cTnT) that have diverse roles in mediating cardiac contractile activation (Mamidi et al., 2013a). For example, using normal adult mouse cardiac muscle fibers (α-myosin heavy chain [MHC]), we demonstrated that the region 1–44 in mouse cTnT modulated the recruitment of force-bearing cross-bridges (XBs). Our data also showed that the cardiac-specific region 45–74 in mouse cTnT slowed XB recruitment mechanisms by augmenting thin filament cooperative processes. cTnT-induced slowing of XB recruitment mechanisms may be important for linking the dynamics of cardiac contraction to the heart rate (Mamidi et al., 2013a).

Apart from cTnT, XB also have a major effect on cardiac thin filaments through cooperative mechanisms, a process in which the strongly bound XB promotes the recruitment of other strong XB by affecting the movement of tropomyosin (Tm) on the actin filament (Gordon et al., 2000; Fitzsimons et al., 2001; Moss et al., 2004; Fitzsimons and Moss, 2007). Because of their major effects on thin filament activation, differences in the expression of XB isoforms are associated with tissue-specific functions. For example, fast skeletal muscle type expresses a fast XB isoform (α-MHC), and slow skeletal muscle type expresses a slow XB isoform (β-MHC). Moreover, the hearts of smaller mammals, with rapid heart rates, primarily express a faster cycling α-MHC isoform; larger mammals, with slower heart rates, primarily express a slower cycling β-MHC isoform. Because of their significant differences in XB dwell times (shorter for α-MHC isoform vs. longer for β-MHC isoform) in the force-producing state, fast and slow XB isoforms are expected to have divergent effects on cooperative processes in the thin filament (Ford et al., 2012).

Whether it is cTnT or a given MHC isoform, cooperative effects modulated by these proteins do not work in isolation. Therefore, the effects of both cTnT and XB on thin filament cooperativity takes on a new significance when we consider the cTnT–XB interplay effects on cardiac contractile dynamics (Chandra et al., 2007). Collectively, these arguments lead us to hypothesize that the modulating effects of the N terminus of cTnT on contractile dynamics is affected differently by α- and β-MHC isoforms. Our hypothesis has significant implications for heart disease; alterations in cTnT and MHC are known to occur via changes in isoform expression or mutations.

Correspondence to Murali Chandra: murali@vetmed.wsu.edu

Abbreviations used in this paper: cTnT, cardiac troponin T; MHC, myosin heavy chain; ML, muscle length; NLRD, nonlinear recruitment distortion; PTU, propylthiouracil; RcTnT, rat cTnT; RU, regulatory unit; SL, sarcomere length; Tm, tropomyosin; Tn, troponin; XB, cross-bridge.

© 2013 Mamidi and Chandra. This article is distributed under the terms of an Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/.
implications for understanding how contractile dynamics are tuned by species-specific variation in the expression of fast versus slow MHC isoforms in small versus large animals. In this regard, it is worth noting that hearts of both small and large animals contain the cTnT isoform, albeit with minor changes—but express MHC isoforms that possess vastly differing kinetic rates.

Additional support for our hypothesis comes from the following critical observations: (a) the functional impact of disease-related mutations in the N terminus of cTnT is influenced by the type of MHC isoform (Tschiirgi et al., 2006; Rice et al., 2010; Ford et al., 2012); (b) the composition of MHC isoform is a key determinant of cardiac contractile activation (Stelzer et al., 2007); (c) small changes in the level of MHC isoform induce large changes in cardiac function both at the myofilament level (Fitzsimons et al., 1998; Rundell et al., 2005; Tschiirgi et al., 2006) and at the whole heart level (Tardiff et al., 2000; Korte et al., 2005; Rice et al., 2010); and (d) mutations in sarcomeric proteins that cause human heart failure are often accompanied by a near-complete shift to β-MHC (Miyata et al., 2000; Reiser et al., 2001).

To test our hypothesis, we deleted two specific regions (regions 1–43 and 44–73) in the N terminus of rat cTnT (RcTnT) to generate RcTnT1–43 and RcTnT44–73 proteins, respectively. Steady-state and dynamic contractile measurements were made in cardiac muscle fibers containing either α- or β-MHC isoforms reconstituted with RcTnT1–43 and RcTnT44–73 proteins. Novel findings from our study demonstrate that α- or β-MHC isoforms have divergent effects on how the N terminus of cTnT modulates contractile function. As demonstrated by the decrease in Ca$^{2+}$-activated maximal tension and myofilament Ca$^{2+}$ sensitivity, the thin filament activation was significantly attenuated by RcTnT1–43 fibers in the presence of α-MHC. In contrast, the attenuating effect of RcTnT1–43 was counteracted by β-MHC. The sudden stretch–mediated recruitment of new force-bearing Xbs (E_b) was attenuated in α-MHC + RcTnT1–43 fibers but not in β-MHC + RcTnT1–43 fibers. We discuss these data in terms of the differential synergy between α-/β-MHC isoforms and the N terminus of cTnT.

Materials and Methods

Ethical approval and animal treatment protocols

Papillary muscle bundles were collected from the left ventricles of young adult male Sprague-Dawley rats. Rats used in this study were split into two groups: one group consisted of normal rats that predominantly expressed α-MHC, and the other group consisted of propylthiouracil (PTU)-treated rats (see below) that predominantly expressed β-MHC in their left ventricles. Rats were carefully handled to minimize the pain and suffering, according to the established guidelines of the National Academy of Sciences: Guide for the Care and Use of Laboratory animals.

PTU treatment

PTU was administered in drinking water (0.2 g L$^{-1}$) and in solid feed (0.15% PTU; Harlan Laboratories) for ~5 wk. PTU treatment has been shown to induce a shift in the ventricular MHC isoform from predominantly α- to β-MHC, without altering other myofilament proteins (Metzger et al., 1999; Herron et al., 2001; Ford et al., 2012).

Preparation of detergent-skinned cardiac muscle fiber bundles

Detergent-skinned cardiac muscle fibers were prepared as described previously (Chandra et al., 2006, 2007). In brief, rats were deeply anesthetized by inhalation of isoflurane. The depth of anesthesia was evaluated by a lack of pedal withdrawal reflex. Hearts were quickly removed and placed into an ice-cold high relaxing (HR) solution containing (mM): 20 2, 3-butanedione monoxime (BDM), 50 N,N,N,N-tetramethylammonium bromide (TMA-BDM), 50 2, 3-butanedione monoxime-2, 3-butanedione monoxime-2, 3-butanedione monoxime-2, 3-butanedione monoxime-2, 3-butanedione monoxime, 0.15 mm in width and 2 mm in length. All procedures were performed in ice-cold solution. Muscle fiber bundles were then chemically skinned overnight at 4°C in HR containing 1% Triton X-100.

MHC isoform composition

After removing the hearts from normal (α-MHC) and PTU-treated (β-MHC) rats, left ventricular tissue was rapidly frozen and stored at ~80°C until they were used. To prepare protein samples from frozen tissue was submerged in liquid nitrogen, thoroughly crushed, and minced using a pestle and mortar (Ford et al., 2012). The minced tissue was then resuspended in 10 µl of a protein extraction buffer per 1 mg of tissue. The protein extraction buffer contained the following: 2.5% SDS, 10% glycerol, 50 mM Tris base, 2.5 mM MgCl$_2$, 6.29 mM Na$_2$ATP, 30.83 potassium propionate, 10 sodium azide, 1.0 DTT, and 4 benzamidine-HCl. The pH was adjusted to 7.0 with KOH. A fresh cocktail of protease inhibitors (µM): 5 bestatin, 2 E-64, 10 leupeptin, 1 pepstatin, and 200 PMSF was added to the HR solution. Papillary muscle bundles were further dissected into smaller muscle fiber bundles of ~0.15 mm in width and 2 mm in length. All procedures were performed in ice-cold solution. Muscle fiber bundles were then chemically skinned overnight at 4°C in HR containing 1% Triton X-100.

Purification of recombinant rat cardiac troponin (Tn) subunits

Recombinant c-myc-tagged RcTnT (c-myc RcTnT), rat cardiac TnI (RcTnI), and rat cardiac TnC (RcTnC)—all cloned into pSBE Ta vector—were expressed in BL21*DE3 cells (Invitrogen) for protein synthesis (Chandra et al., 2006). Deletions of amino acid residues 1–43 (RcTnT1–43) and 44–73 (RcTnT44–73) in RcTnT were performed using a standard polymerase chain reaction procedure. For protein preparations, cultured cells were spun down and sonicated in a buffer containing 50 mM Tris base, 6 M urea, and 5 mM EDTA, pH 8.0 at 4°C. The sonication buffer also contained a cocktail of protease inhibitors: 0.2 mM PMSF, 5 mM benzamidine-HCl, 10 µM leupeptin, 1 µM pepstatin, and 5 µM bestatin. The resuspended tissue was further homogenized on ice using a Tissue Tearor (model 985570–395; Biospec Products, Inc.), sonicated in a water bath at 4°C, and followed by centrifugation at 10,000 rpm. Protein samples from normal and PTU-treated rats were run on a large 6% SDS gel to assess the left ventricular MHC isoform composition (Chandra et al., 2007; Ford and Chandra, 2013).
then purified by ion-exchange chromatography on a DEAE-fast sepharose column (GE Healthcare). c-myc RcTnT and RcTnT$_{14-73}$ were eluted with a 0–0.4 M NaCl gradient. The procedure used for the purification of RcTnT$_{14-73}$ was similar to that of c-myc RcTnT, except that a CM sepharose column (GE Healthcare) was used for ion-exchange chromatography. RcTnT was purified as described previously (Chandra et al., 2007). RcTnC protein was purified as described previously (Mamidi et al., 2013a). Samples from eluted fractions were run on a 12.5% SDS gel to determine their purity. Pure fractions were pooled and dialyzed extensively against deionized water containing 15 mM β-mercaptoethanol, lyophilized, and stored at −80°C.

Reconstitution of recombinant rat cardiac Tn subunits into detergent-skinned rat cardiac muscle fibers

Reconstitution was performed as described previously (Chandra et al., 2007). c-myc-tagged WT RcTnT (RcTnT$_{WT}$) was used as a control so that the incorporation of the exogenously added WT Tn subunits could be assessed by the differential gel migration pattern of c-myc RcTnT. It has been shown that the use of cTnT with an 11-amino acid c-myc epitope at the N terminus does not affect cardiac function (Tardiff et al., 1998; Montgomery et al., 2001). The replacement of endogenous Tn was performed using an extraction solution containing RcTnT (c-myc RcTnT; RcTnT$_{14-73}$) or RcTnT$_{14-73}$ (0.9 mg/ml wt/vol) and RcTnI (1.0 mg/ml wt/vol) that were first dissolved in buffer 1, which contained 50 mM Tris-HCl, pH 8.0, 6.0 M urea, 1.0 M KCl, 10 mM DTT, and a cocktail of protease inhibitors. High salt and urea in the extraction solution were removed by successive dialysis against the following buffer: 2 mM benzamidine-HCl, 1 mM DTT, and 0.01% NaN$_3$ (buffer 2), followed by 50 mM Tris-HCl, pH 8.0, 2 M urea, 0.5 M KCl, 0.2 mM PMSF, 2 mM benzamidine-HCl, 1 mM DTT, and 0.01% NaN$_3$ (buffer 3), and finally dialyzed against an extraction buffer containing 50 mM BES, pH 7.0 at 20°C, 200 mM KCl, 10 mM BDM, 6.27 mM MgCl$_2$, 5 mM EGTA, 0.2 mM PMSF, 2 mM benzamidine-HCl, 1 mM DTT, and 0.01% NaN$_3$ (buffer 4). After the final dialysis, 6.13 mM MgATP$_2^-$ and a cocktail of protease inhibitors were added to the supernatant containing RcTnT and RcTnI. Undissolved protein was removed by spinning the protein solution at 3,000 rpm for 15 min. Detergent-skinned fibers were then treated with the extraction solution containing RcTnT and RcTnI for ~3 h at room temperature (20°C), with constant stirring. RcTnT–RcTnI-treated muscle fibers were then washed three times using buffer 4 for 10 min at room temperature. To complete the reconstitution procedure, RcTnT–RcTnI-treated fibers were incubated with RcTnC (3.0 mg/ml wt/vol) overnight at 4°C.

Fibers reconstituted with RcTnT$_{14-73}$ + RcTnI + RcTnC are referred to as “RcTnT$_{14-73}$,” and those reconstituted with RcTnT$_{14-73}$ + RcTnC were referred to as “RcTnT$_{14-73}$.” Fibers reconstituted with c-myc RcTnT + RcTnI + RcTnC were referred to as “RcTnT$_{WT}$” and used as controls. Reconstituted fibers were denatured and solubilized in 2% SDS solution (10 µl/fiber) for SDS-PAGE (Mamidi et al., 2012). SDS-solubilized fibers were mixed with an equal volume of protein loading dye that contained 125 mM Tris-HCl, pH 6.8, 20% glycerol, 2% SDS, 0.01% bromophenol blue, and 50 mM β-mercaptoethanol. Equal quantities of protein were separated on an 8% SDS gel and stained with Bio-Safe Coomassie blue G-250 (Bio-Rad Laboratories).

Proteins separated on the SDS gel were transferred onto a PVDF membrane for Western blot analysis using a Trans-Blot Turbo Transfer System (Bio-Rad Laboratories). The incorporation of c-myc RcTnT, RcTnT$_{14-73}$, or RcTnT$_{14-73}$ was assessed using a monoclonal anti-TnT primary antibody (clone JLT-12; Sigma-Aldrich), followed by a horseradish peroxidase–labeled anti–mouse secondary antibody (GE Healthcare). Densitometric analysis of Western blots was performed using the ImageJ software (acquired from National Institutes of Health at: http://rsbweb.nih.gov/ij/) (Mamidi et al., 2013b).

Measurement of steady-state isometric tension and ATPase activity

Isometric steady-state tension and ATPase activity were measured as described previously (Chandra et al., 2007, 2009). In brief, T-shaped aluminum clips were used to attach the muscle fiber between a motor arm (322C; Aurora Scientific Inc.) and a force transducer (AE 801; Sensor One Technologies Corp.). The sarcomere length (SL) of the muscle fibers was set to 2.3 µm under relaxing conditions as described previously (Chandra et al., 2007, 2009). After two cycles of maximal activation and relaxation, the SL was readjusted if necessary. The muscle fiber was then immersed in a constantly stirred chamber containing Ca$^{2+}$ solutions, the concentration of which ranged from pCa 4.3 to 9.0 (pCa = −log of [Ca$^{2+}$]$_{free}$). The concentration of various pCa solutions was calculated using methods described previously (Rabito and Fabiato, 1979). The composition of the maximal Ca$^{2+}$-activation solution (pCa 4.3) was (mM): 31 potassium propionate, 5.95 Na$_2$ATP, 6.61 MgCl$_2$, 10 EGTA, 10.11 CaCl$_2$, 50 BES, 5 sodium azide, and 10 phosphoenolpyruvate (PEP). The composition of the relaxing solution (pCa 9.0) was (mM): 51.14 potassium propionate, 5.83 Na$_2$ATP, 6.87 MgCl$_2$, 10 EGTA, 0.024 CaCl$_2$, 50 BES, 5 Na$_3$S, and 10 PEP. The activation and relaxing solutions also contained 0.5 mg/ml pyruvate kinase (500 U/mg), 0.05 mg/ml lactate dehydrogenase (870 U/mg), 20 µM diadenosine pentaphosphate, 10 µM oligomycin, and a cocktail of protease inhibitors. The pH of the Ca$^{2+}$-activated solution was adjusted to 7.0 using KOH, and the ionic strength was 180 mM. Ca$^{2+}$-activated tension was digitally recorded on a computer. All measurements were made at 20°C.

Steady-state isometric ATPase activity was measured according to a protocol described previously (de Tombe and Stienen, 1995; Kirk et al., 2009; Rodgers et al., 2009; Gollapudi et al., 2012). In brief, near-UV light (340 nm) was projected through the muscle chamber, and then split (50:50) via a beam splitter and detected at 340 nm (sensitive to changes in NADH) and at 400 nm (insensitive to changes in NADH). ATPase activity was measured as follows: ATP regeneration from ADP was coupled to the breakdown of PEP to pyruvate and ATP catalyzed by pyruvate kinase, which was linked to the synthesis of lactate catalyzed by lactate dehydrogenase. The breakdown of NADH during the synthesis of lactate was proportional to the ATP consumption and was measured by changes in UV absorbance at 340 nm. The signal for NADH was calibrated by multiple injections of 250 pmol of ADP.

Measurement of muscle fiber mechano-dynamics

Once the force developed by the muscle fiber reached steady state (pCa 4.3), step-like length changes were applied (Ford et al., 2010). In brief, the motor arm was commanded to change the muscle length (ML) in a step-like pattern; the changes in ML were on the order of ±0.5, 1.0, 1.5, and 2.0% of the initial ML. The ML was initially increased by 0.5% ML (stretched) and held at the increased length for 5 s, and then the motor arm was commanded to rapidly return (released) to the initial ML. The same protocol was repeated for the remaining step-like length changes of 1.0, 1.5, and 2.0% ML. A nonlinear recruitment distortion (NLRD) model (Ford et al., 2010) was fitted to the elicited force responses to estimate the following model parameters: b, the rate by which new XBs are recruited into the force-bearing state because of a change in ML; c, the rate by which the stiffness of distorted XBs dissipate; E$_{max}$, the magnitude of an instantaneous increase in muscle fiber stiffness caused by a sudden change in ML; and E$_{rec}$, the magnitude of an increase in steady-state force caused by the sudden stretch–mediated recruitment of additional XBs.
Measurement of rate of tension redevelopment (k_t)
The measurement of k_t (pCa 4.3) was performed according to a
modified protocol described originally by Brenner and Eisenberg
(1986). Upon attaining a steady-state isometric force, the motor
arm was commanded to slacken the muscle fiber by 10% of
the ML using a high-speed length-control device (Aurora Scientific
Inc.). After a brief shortening period of 25 ms, the motor arm was
commanded to rapidly (within 0.5 ms) swing past the original set
point by a 10% stretch. The stretch was applied to ensure that any
remaining XBs were mechanically detached and the residual
force was not more than \sim10% of the initial steady-state isometric
force. k_t was determined by fitting the following mono-exponential
equation to the force redevelopment:

$$F = (F_s - F_m) \left(1 - e^{-k_t t} \right) + F_m,$$

where F is the force at time t, F_s is the steady-state isometric force,
and F_m is the residual force from which the redevelopment of
force occurs.

Data analysis
Contractile and mechano-dynamic parameters were analyzed
using a two-way ANOVA. One factor in this analysis was the RcTnT
variant (c-myc RcTnT, RcTnT1-43a, or RcTnT44-73a), and the other
was the MHC isoform (α- or β-MHC). After analysis by two-way
ANOVA, post-hoc tests (planned multiple pairwise comparisons)
were made using corrected Fisher’s LSD method. Compari-
sions were made to determine the effects of RcTnT variants and
MHC isoforms on various contractile and mechano-dynamic par-
ameters. The Hill equation was fitted to normalized pCa–tension
data to estimate $pC_{a,50}$ ($-\log \left([Ca^{2+}]_{iso} \right)$ required for half-
maximal activation) and the Hill coefficient (n_H). Values are reported
as mean ± SEM. The criterion for statistical significance was set
at P < 0.05.

Online supplemental material
The online supplemental material describes the development of
the NLRD model, which was used to estimate the dynamic con-
tractile parameters (Ford et al., 2010). It also contains character-
istic features of the force responses of muscle fibers to step-like
length perturbations. The online supplemental material is avail-
able at http://www.jgp.org/cgi/content/full/jgp.201310971/DC1.

RESULTS
Rationale for the generation of RcTnT1-43a and RcTnT44-73a
deletion mutants
Recently, we identified two distinct functional regions
(1–44 and 45–74) in the N terminus of mouse cTnT; the
interplay between these two regions and the overlapping
ends of contiguous Tm dimers were shown to affect
thin filament activation and myofilament cooperativity
(Mamidi et al., 2013b). Based on the sequence compa-
rision shown in Fig. 1, we identified the corresponding
regions in RcTnT: (a) a highly acidic peptide region compris-
ing 1–43 amino acids, which shares only 51% se-
quence similarity with rat fast skeletal TnT (RfsTnT); and
(b) a region comprising 44–73 amino acids, which is ab-
sent in RfsTnT. Residues 1–43 and 44–73 were deleted in
RcTnT to generate RcTnT1-43a and RcTnT44-73a, respec-
tively. Deletion of these two distinct regions (RcTnT1-43a
and RcTnT44-73a) amounted to a net removal of 22 and
6 acidic residues, respectively.

To understand how α- and β-MHC isoforms affect the
interplay between the N terminus of cTnT and the overlapping
ends of Tm, we reconstituted these mutants into detergent-skinned
rat cardiac muscle fibers from normal rats (α-MHC) and PTU-treated rats (β-MHC).

Shift from α- to β-MHC in PTU-treated rat hearts
PTU treatment has been shown to induce a shift from α- to
β-MHC isoform, without any significant changes in the
expression of other myofilament proteins (Metzger et al.,
1999; Herron et al., 2001; Ford et al., 2012). PTU-induced
hypothyroidism silences the α-MHC promoter and activ-
ates the β-MHC promoter, resulting in the myocardial
expression of β-MHC (Chizzonite and Zak, 1984). As
shown in Fig. 2 A, PTU treatment of rats induced a near-
complete shift to β-MHC isoform in the left ventricles.

Western blot analysis of reconstituted rat cardiac
muscle fibers
The c-myc–tagged WT RcTnT (RcTnTWT) was used as the
control. In our reconstitution protocol, the exo-
genously added Tn complex consisted of RcTnT (RcTnTWT,
RcTnT1-43a, or RcTnT44-73a), RfsTnT, and RfsTnC.
We have shown previously that the endogenous
Tn complex is replaced when a vast excess of exogenously
added cTnT competes with the endogenous cTnT
(Chandra et al., 1999). Therefore, the level of RcTnT
incorporated may be used as an index of the amount
of endogenous Tn replaced. The differential migration
pattern of c-myc-tagged RcTnTWT and the endogenous RcTnT allowed us to assess the level of incorporation of RcTnTWT. Because of significant differences in molecular weights, RcTnT1-43Δ and RcTnT44-73Δ migrated differently when compared with the endogenous RcTnT; therefore, RcTnT1-43Δ and RcTnT44-73Δ were not tagged with the c-myc tag.

SDS-solubilized muscle fibers were run on an 8% SDS gel and transferred to a PVDF membrane for the Western blot analysis. The ImageJ software was used for densitometric analysis of protein bands in the Western blot. The total optical band intensity (i.e., the total amount of RcTnT in a single lane) was assumed to be the sum of the optical band intensities of both the endogenous RcTnT and the incorporated RcTnT (RcTnTWT, RcTnT1-43Δ, or RcTnT44-73Δ) bands. The extent of incorporation was determined by dividing the optical band intensity of the exogenously added RcTnT with the total band intensity. This approach permitted us to precisely estimate the level of incorporation of different proteins in reconstituted fibers. In fibers from normal rats (α-MHC), the level of incorporation was as follows: 80% for RcTnTWT (lane 2 of Fig. 2 B), 99% for RcTnT1-43Δ (lane 3 of Fig. 2 B), and 80% for RcTnT44-73Δ (lane 4 of Fig. 2 B). The level of incorporation of exogenously added RcTnT proteins in PTU-treated rat fibers (β-MHC) was similar to that observed in the normal rat fibers.

Divergent effects of α- and β-MHC isoforms on Ca2+-activated maximal tension and ATPase activity in RcTnT1-43Δ or RcTnT44-73Δ-reconstituted rat cardiac muscle fibers

Ca2+-activated maximal tension was measured at pCa 4.3. Two-way ANOVA revealed a significant interaction effect (P < 0.001), demonstrating a divergent impact of α- and β-MHC isoforms on how RcTnT1-43Δ and RcTnT44-73Δ modulated Ca2+-activated maximal tension. To determine the factor that was responsible for the significant interaction effect, we performed subsequent post-hoc tests using multiple pairwise comparisons (uncorrected Fischer’s LSD). Post-hoc tests revealed that α- and β-MHC isoforms had different impact on maximal tension in RcTnT1-43Δ fibers but not in RcTnT44-73Δ fibers. Ca2+-activated maximal tension decreased by ~46% in α-MHC + RcTnT1-43Δ fibers (Fig. 3 A) and by only 18% in β-MHC + RcTnT1-43Δ fibers (Fig. 3 B). Thus, β-MHC significantly counteracted the attenuating effect of RcTnT1-43Δ on maximal tension. On the other
Ca$^{2+}$-activated maximal ATPase activity was measured in reconstituted fibers at pCa 4.3. Two-way ANOVA revealed a significant interaction effect ($P < 0.01$), demonstrating a divergent impact of α- and β-MHC isoforms on how RcTnT$_{1-43}\Delta$ or RcTnT$_{44-73}\Delta$ affected Ca$^{2+}$-activated maximal ATPase activity. Post-hoc multiple comparisons revealed that a shift from α- to β-MHC had a differential impact on ATPase activity. In the presence of α-MHC, ATPase values (in pmol × mm$^{-3}$ × s$^{-1}$) were 174.89 ± 4.87, 118.23 ± 4.31, and 162.43 ± 5.70 for RcTnT$_{WT}$, RcTnT$_{1-43}$, and RcTnT$_{44-73}\Delta$ fibers, respectively. However, in the presence of β-MHC, ATPase values were 98.84 ± 6.71, 73.38 ± 3.00, and 93.27 ± 4.09 for RcTnT$_{WT}$, RcTnT$_{1-43}$, and RcTnT$_{44-73}\Delta$ fibers, respectively. When compared with the control fibers, RcTnT$_{1-43}\Delta$ decreased ATPase activity by ~32% in the presence of α-MHC and by ~26% in the presence of β-MHC. In the presence of α- or β-MHC, RcTnT$_{44-73}\Delta$ did not alter maximal ATPase activity when compared with the respective control fibers. Therefore, Ca$^{2+}$-activated maximal ATPase activity showed trends that were similar to Ca$^{2+}$-activated maximal tension.

Divergent effects of α- and β-MHC isoforms on the magnitude of an instantaneous increase in muscle fiber stiffness (E_0) in RcTnT$_{1-43}\Delta$ or RcTnT$_{44-73}\Delta$-reconstituted rat cardiac muscle fibers

To examine whether the effect of RcTnT$_{1-43}\Delta$ on maximal tension was caused by changes in the number of strongly bound XBs, we measured E_0 by imposing step-like length perturbations in constantly activated muscle fibers (Ford et al., 2010). The amplitude of the ML-induced instantaneous force (see F_1 in Fig. 4 and Fig. S1) increases with the amount of stretch and with the level of Ca$^{2+}$ activation because it is an approximate function of the number of force-bearing XBs. Therefore, a comparison of F_1 in Fig. 4 (A and B) suggests that the number of strongly bound XBs is attenuated more in α-MHC + RcTnT$_{1-43}$ fibers. E_0 was estimated as described in the supplemental text. Two-way ANOVA revealed a significant interaction effect ($P < 0.001$), suggesting a divergent impact of α- and β-MHC isoforms on how RcTnT$_{1-43}$ or

Figure 4. Effect of RcTnT$_{1-43}\Delta$ and RcTnT$_{44-73}\Delta$ on E_0 in the presence of α- or β-MHC isoform. E_0 was measured at pCa 4.3. Step-like length perturbation protocol was as described previously (Ford et al., 2010). F_1, F_s, and F_{ss} are described in the supplemental text. (A) Force responses to a 2% stretch in ML of α-MHC fibers reconstituted with RcTnT$_{WT}$ and RcTnT$_{1-43}\Delta$. (B) Force responses to a 2% stretch in ML of β-MHC fibers reconstituted with RcTnT$_{WT}$ and RcTnT$_{1-43}\Delta$. Force traces shown in A and B are the averaged responses measured from at least 11 fibers. F_1 decreases to a greater extent in RcTnT$_{1-43}\Delta$ + α-MHC fibers. E_0 (the slope of the relationship between F_1–F_s and change in ML) was estimated as described in the supplemental text. (C) E_0 in fibers containing α-MHC. (D) E_0 in fibers containing β-MHC. RcTnT$_{1-43}\Delta$ decreased E_0 by ~39% in α-MHC fibers, whereas RcTnT$_{1-43}\Delta$ decreased E_0 by only 19% in β-MHC fibers. Values are reported as mean ± SEM. *** P < 0.001; ** P < 0.01.
RcTnT₄₄₋₇₃ altered <i>E₀</i>. Post-hoc multiple comparisons revealed that α- and β-MHC isoforms differentially affected <i>E₀</i> in RcTnT₁₋₄₃ fibers but not in RcTnT₄₄₋₇₃ fibers. <i>E₀</i> decreased by ~39% in α-MHC + RcTnT₁₋₄₃ fibers (Fig. 4 C). On the other hand, <i>E₀</i> decreased by only 19% in β-MHC + RcTnT₁₋₄₃ fibers (Fig. 4 D). Thus, our estimates of <i>E₀</i> suggest that the attenuation of maximal tension in RcTnT₁₋₄₃-reconstituted fibers is caused by a decrease in the number of force-bearing XB s. Furthermore, multiple comparisons also revealed that the <i>E₀</i> of β-MHC + RcTnT₁₋₄₃ fibers is significantly higher when compared with that of α-MHC + RcTnT₁₋₄₃ fibers. As observed for maximal tension, both α- and β-MHC isoforms did not alter <i>E₀</i> in RcTnT₄₄₋₇₃ fibers (Fig. 4, C and D).

Divergent effects of α- and β-MHC isoforms on myofilament Ca²⁺ sensitivity and cooperativity in RcTnT₁₋₄₃- or RcTnT₄₄₋₇₃-reconstituted rat cardiac muscle fibers

Normalized tension values were plotted against a range of pCa to construct the pCa–tension relations (Fig. 5, A and B). The pCa–tension relation of α-MHC + RcTnT₁₋₄₃ was shifted to the right of α-MHC + RcTnT_{WT} (Fig. 5 A), indicating a desensitization of myofilament Ca²⁺ sensitivity (pCa₅₀) in α-MHC + RcTnT₁₋₄₃ fibers. This rightward shift of the pCa–tension relation was ablated in β-MHC + RcTnT₁₋₄₃ fibers (indicated by arrows in Fig. 5 B), suggesting that β-MHC counteracted the desensitizing effect of RcTnT₁₋₄₃ on pCa₅₀. Two-way ANOVA revealed a significant interaction effect (P < 0.05) on pCa₅₀, suggesting that α- and β-MHC isoforms divergently affected the way RcTnT₁₋₄₃ and RcTnT₄₄₋₇₃ altered pCa₅₀ (Fig. 5, C and D). The main contributing factor for the significant interaction effect on pCa₅₀ was caused by the divergent effects of α- and β-MHC isoforms on pCa₅₀ in RcTnT₁₋₄₃ versus RcTnT₄₄₋₇₃ fibers. Comparison of α-MHC + RcTnT₁₋₄₃ fibers (Fig. 5 C) with β-MHC + RcTnT₁₋₄₃ fibers (Fig. 5 D) shows that β-MHC negated the desensitizing effect of RcTnT₁₋₄₃ on pCa₅₀. In contrast, RcTnT₄₄₋₇₃ increased pCa₅₀ in the presence of α- or β-MHC (Fig. 5, C and D).

The Hill equation was fitted to the pCa–tension relationships to estimate the Hill coefficient (n_H). Two-way ANOVA revealed a significant interaction effect (P < 0.05), suggesting that n_H was affected differentially in RcTnT₁₋₄₃ and RcTnT₄₄₋₇₃ fibers, regardless of the type of MHC isoform present. Post-hoc multiple comparisons showed that RcTnT₁₋₄₃ did not affect n_H, but RcTnT₄₄₋₇₃ decreased n_H in the presence of α- or β-MHC. In the presence of α-MHC, n_H values were 3.62 ± 0.17, 4.10 ± 0.31, and 2.18 ± 0.10 for RcTnT₁₋₄₃, RcTnT₄₄₋₇₃, and RcTnT_{WT}, respectively. In the presence of β-MHC, n_H values were 3.92 ± 0.34, 2.98 ± 0.15, and 2.21 ± 0.08 for RcTnT_{WT}, RcTnT₁₋₄₃, and RcTnT₄₄₋₇₃ fibers, respectively.

Divergent effects of α- and β-MHC isoforms on the magnitude of sudden stretch–mediated recruitment of new force-bearing XB s (E_R) in RcTnT₁₋₄₃- or RcTnT₄₄₋₇₃-reconstituted rat cardiac muscle fibers

We measured E_R to determine if the attenuation of thin filament activation in α-MHC + RcTnT₁₋₄₃ fibers was caused by a decrease in E_R. Two-way ANOVA revealed a significant interaction effect (P < 0.05), suggesting a divergent impact of α- and β-MHC isoforms on how RcTnT₁₋₄₃ or RcTnT₄₄₋₇₃ altered E_R. Post-hoc multiple

![Figure 5](image-url) Effect of RcTnT₁₋₄₃ and RcTnT₄₄₋₇₃ on pCa₅₀ in the presence of α- or β-MHC isoform. Normalized tension values were plotted against a range of pCa to derive the pCa–tension relationships. (A) pCa–tension relationships in fibers containing α-MHC. (B) pCa–tension relationships in fibers containing β-MHC. Arrows in B indicate that a shift to β-MHC counteracts the desensitizing effect of RcTnT₁₋₄₃ on myofilament Ca²⁺ sensitivity. Note that the curve for RcTnT₁₋₄₃ is shifted to the right in A, but the rightward shift is attenuated in B (see arrows). The Hill equation was fitted to the pCa–tension relationships to estimate pCa₅₀. (C) Estimates of pCa₅₀ in fibers containing α-MHC. (D) Estimates of pCa₅₀ in fibers containing β-MHC. RcTnT₁₋₄₃ decreased pCa₅₀ significantly in α-MHC fibers, an effect that was counteracted in β-MHC fibers. Number of determinations was at least seven for each group. Values are reported as mean ± SEM. *** P < 0.001.
comparisons revealed that α- and β-MHC isoforms had differential impact on E_k in RcTnT$_{1-43}$ fibers but not in RcTnT$_{44-73}$ fibers. E_k decreased significantly (~36%) in α-MHC + RcTnT$_{1-43}$ fibers (Fig. 6 A) but not in β-MHC + RcTnT$_{1-43}$ fibers (Fig. 6 B). Furthermore, multiple comparisons also revealed that the E_k of β-MHC + RcTnT$_{1-43}$ fibers is significantly higher when compared with that of α-MHC + RcTnT$_{1-43}$ fibers. Thus, β-MHC counteracted the attenuating effect of RcTnT$_{1-43}$ on E_k. On the other hand, both α- and β-MHC isoforms did not alter E_k in RcTnT$_{44-73}$ fibers (Fig. 6, A and B).

Effects of α- and β-MHC isoforms on the rates of XB recruitment and detachment dynamics in RcTnT$_{1-43}$ or RcTnT$_{44-73}$ reconstituted rat cardiac muscle fibers

The rate constant of XB recruitment (b) was measured by fitting the NLRD model to force responses elicited by step-like ML perturbations (see the supplemental text for details). Two-way ANOVA showed no significant interaction effect but revealed a significant main effect of MHC isoforms on b. Post-hoc multiple comparisons demonstrated that b decreased in all groups of β-MHC–containing fibers (Table 1). This is not surprising because β-MHC has an intrinsic ability to slow b (Chandra et al., 2007; Stelzer et al., 2007). In the presence of β-MHC, b decreased uniformly in RcTnT$_{WT}$ or RcTnT$_{1-43}$ or RcTnT$_{44-73A}$ fibers, demonstrating that b was not affected by β-MHC. Another way to look at this is that RcTnT$_{1-43}$ or RcTnT$_{44-73A}$ had no effect on b in the presence of α- or β-MHC (Table 1). This observation was corroborated by the rate of tension redevelopment (k_r). Two-way ANOVA revealed no significant interaction effect but revealed a significant main effect of MHC isoforms on k_r. Post-hoc multiple comparisons demonstrated that k_r decreased uniformly in all three different groups of β-MHC fibers when compared with the corresponding groups of α-MHC fibers (Table 1). As observed for b, RcTnT$_{1-43}$ and RcTnT$_{44-73A}$ did not alter k_r in α- or β-MHC fibers.

A shift from α- to β-MHC isoform affects cardiac contractile dynamics by slowing b (Chandra et al., 2007; Stelzer et al., 2007). Therefore, we sought to determine if the impact of α- and β-MHC on XB detachment kinetics had any effect on how RcTnT$_{1-43}$ and RcTnT$_{44-73}$ modulated contractile dynamics. The rate of XB distortion dynamics (c) was measured by fitting the NLRD model to force responses elicited by step-like ML perturbations (Ford et al., 2010). Two-way ANOVA showed no significant interaction effect but revealed a significant main effect of α- and β-MHC on c. Post-hoc multiple comparisons showed that c decreased in all groups of β-MHC–containing fibers when compared with the corresponding groups of α-MHC–containing fibers. However, RcTnT$_{1-43}$ and RcTnT$_{44-73A}$ did not alter c in α- or β-MHC fibers (Table 1).

DISCUSSION

Conclusions drawn from our data have significant implications for the regulation of cardiac thin filament activation. The most important finding from our study is that α- and β-MHC isoforms have a divergent impact

Table 1 Estimates of dynamic contractile parameters from α- and β-MHC–containing fibers reconstituted with RcTnT$_{1-43}$ and RcTnT$_{44-73A}$
Dynamic contractile parameters
α-MHC
b (s$^{-1}$)
k_r (s$^{-1}$)
c (s$^{-1}$)
β-MHC
b (s$^{-1}$)
k_r (s$^{-1}$)
c (s$^{-1}$)

The SL of the muscle fiber was set to 2.3 µm. b and c were estimated as described previously (Ford et al., 2010). k_r was estimated using a rapid slack/restretch protocol (Brenner and Eisenberg, 1986). Number of determinations was at least 11 for each group. Values are reported as mean ± SEM.

aP < 0.001 when compared to the corresponding groups in α-MHC fibers.
on how the cardiac-specific N terminus of cTnT modulates cardiac thin filament activation. The magnitude of cardiac thin filament activation depends on how cooperative mechanisms are modulated by the actions of both cTnT and XBs. Thus, how the 1–44 and 45–74 regions of cTnT modulate thin filament activation and desensitize cardiac thin filaments to Ca2+ (Mamidi et al., 2013a) will not only depend on how these two regions by themselves exert their effects on the thin filament but also on how such actions are further modulated by the MHC isoform–mediated effects on the thin filament.

A shift from α- to β-MHC counteracts the attenuating effect of RcTnT1–43 on thin filament activation

The functional significance of the N terminus of cTnT is demonstrated by the findings that deletions in the N terminus of cTnT attenuate thin filament activation by depressing both Ca2+-activated maximal tension (Chandra et al., 1999; Communal et al., 2002; Sumandea et al., 2009; Mamidi et al., 2013a) and myofilament Ca2+ sensitivity (Mamidi et al., 2013a). Deletions in the N terminus of cTnT have been shown to alter Tn–Tm interactions (Chandra et al., 1999), as well as Tn–Tm interaction with actin (Mamidi et al., 2013a). In view of the observation that cardiac contractile dynamics are tuned by a significant interplay between Tn isoforms and MHC (Chandra et al., 2007), and that α- and β-MHC isoforms have a divergent impact on myofilament Ca2+ sensitivity (Ford and Chandra, 2013), we sought to determine how the impact of deletions in the N terminus of cTnT is modified by a shift from α- to β-MHC background. An interesting observation in the present study is that the attenuating effect of RcTnT1–43 on Ca2+-activated maximal tension—observed under an α-MHC background (Mamidi et al., 2013a)—is suppressed by a shift to β-MHC background (Fig. 3, A and B). Specifically, RcTnT1–43 attenuates maximal tension by ~46% under an α-MHC background (Fig. 3 A), whereas a shift to β-MHC background attenuates maximal tension by only ~18% (Fig. 3 B). Thus, our data demonstrate that RcTnT1–43 attenuates thin filament activation to a greater extent in the presence of α-MHC.

A shift from α- to β-MHC ablates the RcTnT1–43-mediated desensitization of myofilament Ca2+ sensitivity

Another novel finding in this study is that the attenuation of myofilament Ca2+ sensitivity—observed in α-MHC + RcTnT1–43 fibers (Fig. 5, A and C)—is ablated in β-MHC + RcTnT1–43 fibers (Fig. 5, B and D). These observations clearly demonstrate that α- and β-MHC isoforms have a divergent impact on myofilament Ca2+ sensitivity. Based on our recent studies, the attenuation of myofilament Ca2+ sensitivity by RcTnT1–43 may be explained by the RcTnT1–43-mediated increase in the rigidity of Tm (Mamidi et al., 2013a). Such an impact on Tm would shift the OFF/ON equilibrium of the regulatory units (RUs; Tm–Tn) more toward the OFF state, thereby attenuating myofilament Ca2+ sensitivity in α-MHC + RcTnT1–43 fibers. pCα29 decreased significantly by 0.13 pCa units in α-MHC + RcTnT1–43 fibers (Fig. 5 C) but remained unaffected in β-MHC + RcTnT1–43 fibers (Fig. 5 D), demonstrating that the augmenting effect of β-MHC on thin filament cooperativity negated the attenuating effect of RcTnT1–43 on myofilament Ca2+ sensitivity. If this observation is true, we expect β-MHC to further increase myofilament Ca2+ sensitivity in RcTnT1–43 fibers. Indeed, that is exactly what we observe: for example, RcTnT14–73a increases pCα50 by 0.22 pCa units in the presence of α-MHC and by 0.29 pCa units in the presence of β-MHC. Inferences drawn from the above analysis lead us to conclude that
β-MHC affects the transition between OFF/ON states of the RU.

A shift from α- to β-MHC ablates the negative effect of RcTnT1–43 on the sudden stretch–mediated recruitment of new force-bearing XB.

The effects mediated by the N terminus of cTnT on the rate of RU ON/OFF transitions may be transcuded through a direct effect on the overlapping ends of two contiguous Tm dimers (Mamidi et al., 2013b). Moreover, strong XB themselves affect the balance between RU OFF and ON states through cooperative activation (Fitzsimons and Moss, 1998; Gordon et al., 2000; Razumova et al., 2000; Moss et al., 2004). These observations suggest that some aspect of RU-related cooperativity may modulate the recruitment of XB and, therefore, the length-dependent activation. One way to determine this is by estimating E_k from sudden stretch experiments performed at SL of 2.3 µm. E_k is the slope of the relationship between new steady-state force (F_{new}) and ΔL (see Fig. 6 and supplemental text). As described previously, E_k is an index of the sensitivity of sudden stretch–mediated recruitment of additional XB into the force-bearing state (Ford et al., 2010). It is interesting to note that E_k was different in α- and β-MHC fibers. Specifically, α- and β-MHC isoforms had a divergent impact on E_k in RcTnT1–43 fibers but not in RcTnT14–73 fibers. Note that both pg_{SNC} and E_k decrease significantly in α-MHC + RcTnT1–43 fibers (Figs. 5 C and 6 A) but not in β-MHC + RcTnT1–43 fibers (Figs. 5 D and 6 B). Conclusions drawn from this observation suggest that the β-MHC–mediated effect on the thin filament negates the attenuating effect of RcTnT1–43 on E_k. Thus, our results demonstrate that the interplay between the N terminus of cTnT and MHC isoform–mediated effects on the thin filament has a divergent impact on mechanisms that modulate both the sudden stretch–mediated XB recruitment and myofilament Ca$^{2+}$ sensitivity. Collectively, these observations have implications for understanding how cTnT-mediated thin filament activation is modulated in hearts of different species that express either a fast or a slow MHC isoform.

Summary

Novel findings from our study demonstrate that α- and β-MHC isoforms have divergent effects on how the N terminus of cTnT modulates cardiac contractile dynamics. Inferences made from our study also have significant relevance to cardiac health and disease; for example, alterations in MHC and cTnT are known to occur via changes in isoform expression or mutations (Miyata et al., 2000; Wei and Jin, 2011).

We thank Sri Lakshmi Mallampalli for excellent technical assistance and Dr. Sampath Gollapudi for help in generating figures using MATLAB.

This work was funded by the National Heart, Lung, and Blood Institute (grant R01-HL-075643 to M. Chandra) and a Poncin Fellowship (to R. Mamidi).

Richard L. Moss served as editor.

Submitted: 4 February 2013
Accepted: 16 August 2013

REFERENCES

Brenner, B., and E. Eisenberg. 1986. Rate of force generation in muscle: correlation with actomyosin ATPase activity in solution. Proc. Natl. Acad. Sci. USA. 83:3542–3546. http://dx.doi.org/10.1073/pnas.83.10.3542

Chandra, M., D.E. Montgomery, J.J. Kim, and R.J. Solaro. 1999. The N-terminal region of troponin T is essential for the maximal activation of rat cardiac myofilaments. J. Mol. Cell. Cardiol. 31:867–880. http://dx.doi.org/10.1016/j.jmcc.1999.09.092

Chandra, M., M.L. Tschirgi, I. Rajapakse, and K.B. Campbell. 2006. Troponin T modulates sarcomere length-dependent recruitment of cross-bridges in cardiac muscle. Biophys. J. 90:2867–2876. http://dx.doi.org/10.1529/biophysj.105.076950

Chandra, M., M.L. Tschirgi, S.J. Ford, B.K. Slinker, and K.B. Campbell. 2007. Interaction between myosin heavy chain and troponin isoforms modulate cardiac myofiber contractile dynamics. Am. J. Physiol. Regul. Integr. Comp. Physiol. 293:R1595–R1607. http://dx.doi.org/10.1152/ajpregu.00157.2007

Chandra, M., R. Mamidi, S. Ford, C. Hidalgo, C. Witt, C. Ottenheim, S. Labeit, and H. Granzier. 2009. Nebulin alters cross-bridge cycling kinetics and increases thin filament activation: a novel mechanism for increasing tension and reducing tension cost. J. Biol. Chem. 284:30889–30896. http://dx.doi.org/10.1074/jbc.M109.049718

Chizzone, R.A., and R. Zak. 1984. Regulation of myosin isoenzyme composition in fetal and neonatal rat ventricle by endogenous thyroid hormones. J. Biol. Chem. 259:12628–12632.

Coffee Castro-Zena, P.G., and D.D. Root. 2013. Asymmetric myosin binding to the thin filament as revealed by a fluorescent nanocircuit. Arch. Biochem. Biophys. 535:14–21. http://dx.doi.org/10.1016/j.abb.2012.12.014

Communal, C., M. Sumandea, P. de Tombe, J. Narula, R.J. Solaro, and R.J. Hajjar. 2002. Functional consequences of caspase activation in cardiac myocytes. Proc. Natl. Acad. Sci. USA. 99:6252–6256. http://dx.doi.org/10.1073/pnas.092922999

de Tombe, P.P., and G.J. Stienen. 1995. Protein kinase A does not alter economy of force maintenance in skinned rat cardiac trabeculae. Circ. Res. 76:734–741. http://dx.doi.org/10.1161/01.RES.76.5.734

Fabiato, A., and F. Fabiato. 1979. Calculator programs for computing the composition of the solutions containing multiple metals and ligands used for experiments in skinned muscle cells. J. Physiol. (Paris). 75:463–505.

Fitzsimons, D.P., and R.L. Moss. 1998. Strong binding of myosin modulates length-dependent Ca$^{2+}$ activation of rat ventricular myocytes. Circ. Res. 83:602–607. http://dx.doi.org/10.1161/01.RES.83.6.602

Fitzsimons, D.P., and R.L. Moss. 2007. Cooperativity in the regulation of force and the kinetics of force development in heart and skeletal muscles: cross-bridge activation of force. Adv. Exp. Med. Biol. 592:177–189. http://dx.doi.org/10.1007/978-4-431-38453-3_16

Fitzsimons, D.P., J.R. Patel, and R.L. Moss. 1998. Role of myosin heavy chain isoform in kinetics of force development and relaxation in rat myocardium. J. Physiol. 513:171–183. http://dx.doi.org/10.1111/j.1469-7793.1998.171by.x
Fitzsimons, D.P., J.R. Patel, K.S. Campbell, and R.L. Moss. 2001. Cooperative mechanisms in the activation dependence of the rate of force development in rabbit skinned skeletal muscle fibers. J. Gen. Physiol. 117:133–148. http://dx.doi.org/10.1085/jgp.117.2.133

Ford, S.J., and M. Chandra. 2013. Length-dependent effects on cardiac contractile dynamics are different in cardiac muscle containing α- or β-myosin heavy chain. Arch. Biochem. Biophys. 535:3–13. http://dx.doi.org/10.1016/j.abb.2012.10.011

Ford, S.J., M. Chandra, R. Mamidi, W. Dong, and K.B. Campbell. 2010. Model representation of the nonlinear step response in cardiac muscle. J. Gen. Physiol. 136:150–177. http://dx.doi.org/10.1085/jgp.201010467

Ford, S.J., R. Mamidi, J. Jimenez, J.C. Tardiff, and M. Chandra. 2012. Effects of R92 mutations in mouse cardiac troponin T are influenced by changes in myosin heavy chain isoform. J. Mol. Cell. Cardiol. 53:542–551. http://dx.doi.org/10.1016/j.yjcc.2012.07.018

Gollapudi, S.K., R. Mamidi, S.L. Mallampalli, and M. Chandra. 2012. The N-terminal extension of cardiac troponin T stabilizes the blocked state of cardiac thin filament. Biophys. J. 103:940–948. http://dx.doi.org/10.1016/j.bpj.2012.07.035

Gordon, A.M., E. Homsher, and M. Regnier. 2000. Regulation of contraction in striated muscle. Physiol. Rev. 80:853–924.

Herron, T.J., F.S. Korte, and K.S. McDonald. 2001. Loaded shortening and power output in cardiac myocytes are dependent on myosin heavy chain isoform expression. Am. J. Physiol. Heart Circ. Physiol. 281:H1217–H1222.

Kirk, J.A., G.A. MacGowan, C. Evans, S.H. Smith, C.M. Warren, R. Mamidi, M. Chandra, A.F. Stewart, R.J. Solaro, and S.G. Shroff. 2009. Left ventricular and myocardial function in mice expressing constitutively pseudophosphorylated cardiac troponin I. Circ. Res. 105:1232–1239. http://dx.doi.org/10.1161/CIRCRESAHA.109.205427

Korte, F.S., T.J. Herron, M.J. Rovetto, and K.S. McDonald. 2005. Power output is linearly related to MYH content in rat skinned myocytes and isolated working hearts. Am. J. Physiol. Heart Circ. Physiol. 289:H801–H812. http://dx.doi.org/10.1152/ajpheart.01227.2004

Locher, M.R., M.V. Razumova, J.E. Stelzer, H.S. Norman, J.R. Patel, and R.L. Moss. 2009. Determination of rate constants for turnover of myosin isoforms in rat myocardium: implications for in vivo contractile kinetics. Am. J. Physiol. Heart Circ. Physiol. 297:H247–H256. http://dx.doi.org/10.1152/ajpheart.00922.2008

Mamidi, R., S.K. Gollapudi, S.L. Mallampalli, and M. Chandra. 2012. Alanine or aspartic acid substitutions at serine23/24 of cardiac troponin I decrease thin filament activation, with no effect on crossbridge detachment kinetics. Arch. Biochem. Biophys. 525:1–8. http://dx.doi.org/10.1016/j.abb.2012.05.024

Mamidi, R., S.L. Mallampalli, D.F. Wieczorek, and M. Chandra. 2013a. Identification of two new regions in the N-terminus of cardiac troponin T that have divergent effects on cardiac contractile function. J. Physiol. 591:1217–1234. http://dx.doi.org/10.1113/jphysiol.2012.243394

Mamidi, R., J.J. Michael, M. Muthuchamy, and M. Chandra. 2013b. Interplay between the overlapping ends of tropomyosin and the N terminus of cardiac troponin T affects tropomyosin states on actin. FASEB J. 27:3848–3859. http://dx.doi.org/10.1096/fj.13-232963

Metzger, J.M., P.A. Wahr, D.E. Michele, F. Alhaya, and M.V. Westfall. 1999. Effects of myosin heavy chain isoform switching on Ca2+-activated tension development in single adult cardiac myocytes. Circ. Res. 84:1310–1317. http://dx.doi.org/10.1161/01..RES.84.11.1310

Miyata, S., W. Minobe, M.R. Bristow, and I.A. Leinwand. 2000. Myosin heavy chain isoform expression in the failing and non-failing human heart. Circ. Res. 86:386–390. http://dx.doi.org/10.1161/01.RES.86.4.386

Montgomery, D.E., J.C. Tardiff, and M. Chandra. 2001. Cardiac troponin T mutations: correlation between the type of mutation and the nature of myofilament dysfunction in transgenic mice. J. Physiol. 536:583–592. http://dx.doi.org/10.1113/jphysiol.2001.058384

Moss, R.L., M. Razumova, and D.P. Fitzsimons. 2004. Myosin crossbridge activation of cardiac thin filaments: implications for myocardial function in health and disease. Circ. Res. 94:1290–1300. http://dx.doi.org/10.1161/01.RES.0000127125.61647.4F

Razumova, M.V., A.E. Bukatina, and K.B. Campbell. 2000. Different myofilament nearest-neighbor interactions have distinctive effects on contractile behavior. Biophys. J. 78:3120–3137. http://dx.doi.org/10.1016/S0006-3495(00)76849-4

Reiser, P.J., M.A. Portman, X.H. Ning, and C. Schomisch Moravec. 2001. Human cardiac myosin heavy chain isoforms in fetal and failing adult atria and ventricles. Am. J. Physiol. Heart Circ. Physiol. 280:H1814–H1820.

Rice, R., P. Guinto, C. Dowell-Martino, H. He, K. Hoyer, M. Krenz, J. Robbins, J.S. Ingwall, and J.C. Tardiff. 2010. Cardiac myosin heavy chain isoform exchange alters the phenotype of cTnT-related cardiomyopathies in mouse hearts. J. Mol. Cell. Cardiol. 48:979–988. http://dx.doi.org/10.1016/j.yjmcc.2009.11.018

Rodgers, B.D., J.P. Interllicha, D.K. Garikipati, R. Mamidi, M. Chandra, O.L. Nelson, C.E. Murry, and L.F. Santana. 2009. Myostatin represses physiological hypertrophy of the heart and excitation-contraction coupling. J. Physiol. 587:4873–4886. http://dx.doi.org/10.1113/jphysiol.2009.172544

Rundell, V.L., V. Manaves, A.F. Martin, and P.P. de Tombe. 2005. Impact of beta-myosin heavy chain isoform expression on cross-bridge cycling kinetics. Am. J. Physiol. Heart Circ. Physiol. 288:H896–H903. http://dx.doi.org/10.1152/ajpheart.00407.2004

Stelzer, J.E., S.L. Brickson, M.R. Locher, and R.L. Moss. 2007. Role of myosin heavy chain composition in the stretch activation response of rat myocardium. J. Physiol. 579:161–173. http://dx.doi.org/10.1113/jphysiol.2006.119719

Sumandea, M.P., S. Vahab, C.A. Sumandea, M.L. Garcia-Cazarin, J. Staidle, and E. Homsher. 2009. Impact of cardiac troponin T N-terminal deletion and phosphorylation on myofilament function. Biochemistry. 48:7722–7731. http://dx.doi.org/10.1021/bi900516n

Tardiff, J.C., S.M. Factor, B.D. Tompkins, T.E. Hewett, B.M. Palmer, R.L. Moore, S. Schwartz, J. Robbins, and L.A. Leinwand. 1998. A truncated cardiac troponin T molecule in transgenic mice suggests multiple cellular mechanisms for familial hypertrophic cardiomyopathy. J. Clin. Invest. 101:2800–2811. http://dx.doi.org/10.1172/JCI2389

Tardiff, J.C., T.E. Hewett, S.M. Factor, K.L. Vikstrom, J. Robbins, and L.A. Leinwand. 2000. Expression of the beta (slow)-isoform of MHC in the adult mouse heart causes dominant-negative functional effects. Am. J. Physiol. Heart Circ. Physiol. 278:H412–H419.

Tschirgi, M.L., I. Rajapakse, and M. Chandra. 2006. Functional consequence of mutation in rat cardiac troponin T is affected differently by myosin heavy chain isoforms. J. Physiol. 574:263–273. http://dx.doi.org/10.1113/jphysiol.2006.107417

Wei, B., and J.P. Jin. 2011. Troponin T isoforms and posttranscriptional modifications: Evolution, regulation and function. Arch. Biochem. Biophys. 505:144–154. http://dx.doi.org/10.1016/j.abb.2010.10.013