Increased levels of lactate dehydrogenase and hypertension are associated with severe illness of COVID-19

Zhen-Mu Jin, Ji-Chan Shi, Mo Zheng, Que-Lu Chen, Yue-Ying Zhou, Fang Cheng, Jing Cai, Xian-Gao Jiang

Abstract

BACKGROUND
Coronavirus disease 2019 (COVID-19) is amid an ongoing pandemic. It has been shown that patients with cardiovascular comorbidities are at higher risk of severe illness of COVID-19.

AIM
To find out the relationship between cardiovascular comorbidities and severe illness of COVID-19.

METHODS
The clinical data of 140 COVID-19 patients treated from January 22, 2020 to March 3, 2020 at our hospital were retrospectively collected. The clinical characteristics were compared between patients with mild illness and those with severe illness.

RESULTS
There were 75 male patients and 65 female patients (53.6% vs 46.4%). The mean age was 45.4 ± 14.6 years (range, 2-85 years). Most of the patients had mild illness (n = 114, 81.4%) and 26 patients had severe illness (18.6%). The most common symptom was fever (n = 110, 78.6%), followed by cough (n = 82, 58.6%) and...
expectoration ($n = 51$, 36.4%). Eight patients were asymptomatic but were positive for severe acute respiratory syndrome coronavirus 2 RNA. Patients with severe illness were significantly more likely to be hypertensive than those with mild illness [(10/26, 38.4%) vs (22/114, 19.3%), \(P = 0.036\)]. The levels of lactate dehydrogenase were significantly higher in the severe illness group than in the mild illness group (299.35 ± 68.82 vs 202.94 ± 63.87, \(P < 0.001\)). No patient died in either the severe illness or the mild illness group.

CONCLUSION

Hypertension and elevated levels of lactate dehydrogenase may be associated with severe illness of COVID-19.

Key Words: Pneumonia; Virus; COVID-19; Hypertension; Lactate dehydrogenase; Radiology

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Coronavirus disease 2019 (COVID-19) is amid an ongoing pandemic. It has been shown that patients with cardiovascular comorbidities are at higher risk of severe illness of COVID-19. Although most COVID-19 patients have mild symptoms and generally good outcomes, some of them still show severe illness. Patients with hypertension and elevated levels of lactate dehydrogenase may be at high risk of severe illness of COVID-19.

Citation: Jin ZM, Shi JC, Zheng M, Chen QL, Zhou YY, Cheng F, Cai J, Jiang XG. Increased levels of lactate dehydrogenase and hypertension are associated with severe illness of COVID-19. *World J Clin Cases* 2022; 10(1): 128-135

URL: https://www.wjgnet.com/2307-8960/full/v10/i1/128.htm

DOI: https://dx.doi.org/10.12998/wjcc.v10.i1.128

INTRODUCTION

Coronavirus disease 2019 (COVID-19) has rapidly evolved into a pandemic since its first outbreak in Wuhan, China in December 2019. However, there is still no effective drugs for this disease[1,2]. In addition, the symptoms and signs and pathological mechanisms of COVID-19 are very complex, posing great challenges in treating patients. Our hospital is a dedicated hospital for treating patients with COVID-19 in Wenzhou, China, which is 680 km from Wuhan. There is strong economic connectivity and mass migrations between the two cities. The present study aimed to analyze the clinical characteristics of COVID-19 patients from a hospital in Wenzhou, China.

MATERIALS AND METHODS

Patients

The clinical data of COVID-19 patients treated from January 22, 2020 to March 3, 2020 at our hospital were retrospectively collected. The diagnostic criteria for COVID-19 at our hospital were: (1) Potential exposure to COVID-19; (2) Had fever, respiratory symptoms, radiological abnormalities in the lungs, or leukocytopenia/lymphocytopenia; and (3) Presence of viral RNA in nasopharyngeal specimens. The inclusion criteria were: (1) With laboratory-confirmed COVID-19; (2) With specific outcomes of discharge or death; and (3) Had been examined by chest computed tomography (CT) during hospitalization. Our study was approved by the ethics committee of our hospital.

Data collection

All data were retrospectively collected from electronic records of the patients, including sex, age, symptoms, radiological findings, laboratory test results, treatment
Jin ZM et al. Hypertension and COVID-19

methods, and patient outcomes. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA was tested using quantitative real-time polymerase chain reaction. Blood samples were collected at 7 am after fasting overnight. Disease severity was classified as mild illness (respiratory symptoms and/or radiological findings of pneumonia) and severe illness (respiratory distress and/or need of mechanical ventilation).

Statistical analysis
Continuous data are presented as the mean and standard deviation and were compared using the independent student’s *t*-test. Categorical data are presented as counts or percentages and were compared using the Chi-square test. All statistical analyses were performed using SPSS 24.0 (IBM, United States). A *P* value less than 0.05 was considered statistical significance.

RESULTS

Patient general information
A total of 140 laboratory-confirmed COVID-19 patients were included in our study (Table 1). There were 75 male patients and 65 female patients (53.6% vs 46.4%). The mean age was 45.4 ± 14.6 years (range, 2-85 years). Most of the patients had potential exposure to COVID-19 (*n* = 92, 65.7%).

Clinical characteristics
The most common symptom was fever (*n* = 110, 78.6%), followed by cough (*n* = 82, 58.6%), expectoration (*n* = 51, 36.4%), fatigue (*n* = 20, 14.3%), shortness of breath (*n* = 15, 10.7%), diarrhea (*n* = 14, 10%), and headache (*n* = 4.3%) (Table 1). Eight patients (5.6%) were asymptomatic but were positive for SARS-CoV-2 RNA. These patients were family members or neighbors of other symptomatic patients and thus were tested for COVID-19.

The most common comorbidity was hypertension (*n* = 32, 22.9%). Other comorbidities included diabetes (*n* = 6), coronary heart disease (*n* = 3), and malignant tumor (*n* = 4). Most of the patients had mild illness (*n* = 114, 81.4%) and 26 had severe illness (18.6%) (Table 1). Patients with severe illness were significantly more likely to be hypertensive than those with mild illness [(10/26, 38.5%) vs (22/114, 19.3%), *P* = 0.036].

The results of laboratory tests are shown in Table 2. The leukocyte count was lower than 3.5 × 10⁹/L in 26 patients (18.6%). The lymphocyte count was lower than 1.1 × 10⁹/L in 54 patients (38.6%). Low levels of hemoglobin were present in 16 patients (11.4%). Thrombocytopenia (< 100 × 10⁹/L) was present in three patients. Elevated serum levels of creatinine > 94 μmol/L were noticed in 18 patients. Elevated serum levels of creatine kinase > 200 U/L were noticed in 12 patients, and > 500 U/L in three patients. Elevated serum levels of lactate dehydrogenase were noticed in 37 patients. The level of lactate dehydrogenase was significantly higher in the severe illness group than in the mild illness group (299.35 ± 68.82 vs 202.94 ± 63.87, *P* < 0.001). There were significant differences in lymphocyte count, platelet count, levels of total serum protein, prealbumin, blood uric acid, lactate dehydrogenase, C-reactive protein, erythrocyte sedimentation rate, arterial partial pressure of oxygen, and oxygenation index between patients with mild illness and those with severe illness (Table 2).

Radiologic characteristics in computed tomography
Only 3 three patients showed no significant radiologic findings (3/140, 2.1%). The radiologic characteristics are shown in Table 3. There was no significant difference in the frequency of affected lung sites between patients with mild illness and those with severe illness. However, significantly more patients with mild illness had ground-glass opacity than those with severe illness (78.9% vs 23.1%, *P* < 0.0001). On the contrary, there were significantly more patients with consolidation (100% vs 25.4, *P* < 0.0001) and pleural effusion (30.8% vs 2.6%, *P* < 0.0001) in the severe illness group than in the mild illness group.

Treatment outcomes
High-flow nasal oxygen therapy was used in 22 patients with mild illness (22/114, 19.3%), while all the 26 patients with severe illness used this treatment. Non-invasive mechanical ventilation was used in 4/26 (15.4%) patients with severe illness, while
Table 1 Characteristics of the patients (n = 140)

Characteristic	Mild illness (n = 114)	Severe illness (n = 26)	P value
Age (yr, %)	43.2 ± 14.0	54.7 ± 13.8	0.98
Female (n, %)	56 (49.1)	9 (34.6)	0.20
Comorbidities (n)			
Hypertension	22 (19.3)	10 (38.5)	0.07
Diabetes	5 (4.4)	1 (3.8)	1.0
Chronic obstructive pulmonary disease	3 (2.6)	0	1.0
Chronic renal failure	0	2 (7.7)	1.0
Coronary heart disease	1 (0.9)	2 (7.7)	0.09
Malignant tumor	2 (1.8)	2 (7.7)	0.16
Hepatitis B	10 (8.8)	3 (11.5)	0.71
Connective tissue disease	1 (0.9)	0	0.08
Gout	2 (1.8)	1 (3.8)	0.46
Symptoms (n, %)			
Fever	86 (75.4)	24 (92.3)	0.06
Cough	61 (53.5)	21 (80.8)	0.01
Expectoration	34 (29.8)	17 (65.4)	<0.01
Fatigue	15 (13.2)	5 (19.2)	0.53
Chest pain	2 (1.8)	2 (7.7)	0.16
Myalgia	8 (7.0)	2 (7.7)	1.0
Headache	5 (4.4)	1 (3.8)	1.0
Sore throat	14 (12.3)	2 (7.7)	0.74
Shortness of breath	7 (6.1)	8 (30.8)	<0.01
Diarrhea	12 (10.5)	2 (7.7)	1.0

none of the patients with mild illness used this treatment. No tracheal intubation was required in our patients. All patients were cured and discharged as of March 3, 2020.

DISCUSSION

Our study retrospectively analyzed 140 patients with laboratory-confirmed COVID-19 and found that patients with severe illness were more likely to have hypertension than those with mild illness. In addition, the level of lactate dehydrogenase was significantly higher in the severe illness group than in the mild illness group.

Fever (78.6%) and cough (58.6%) were the most common symptoms in our patients. This finding is consistent with previous reports[3,4]. However, these symptoms are not specific and many of the patients had early on-set symptoms of fatigue, diarrhea, and myalgia. In addition, eight patients (5.6%) were asymptomatic but were positive for SARS-CoV-2 RNA. Most recent research showed that the rate of asymptomatic infection in the general population may be as high as 80.9%[5,6]. Due to the criteria for diagnosis and patient admission for COVID-19 at our hospital, asymptomatic patients were not tested for viral RNA and thus were not confirmed with the diagnosis of COVID-19.

The existence of comorbidities can increase the risk of more severe illness and mortality in COVID-19 patients[7,8]. The most common comorbidity in our patients was hypertension (22.9%), and patients with severe illness were significantly more likely to be hypertensive than those with mild illness (38.4% vs 19.3%). A previous study with 1099 COVID-19 patients also found that hypertension was associated with severe disease[3]. In addition, we found that the levels of lactate dehydrogenase were
significantly elevated in patients with severe illness compared to those with mild illness. Lactate dehydrogenase is a biomarker for myocardial injury[9,10]. All these findings suggest that hypertension and the resulting myocardial injury may lead to a poor prognosis in COVID-19. There have been concerns and debates on the roles of the renin-angiotensin system, angiotensin-converting enzyme inhibitors, and angiotensin receptor blockers in COVID-19 and poor prognosis[11-15]. However, there is no con-
crete evidence at present suggesting that these anti-hypertensive drugs should be discontinued in hypertensive COVID-19 patients[16,17].

All our patients were examined by CT and only three showed no significant radiologic findings in the lungs. Most patients had signs of involvement of bilateral lungs, especially the lower lobes. Patients with severe illness of COVID-19 had features of involvement of multiple lobes, irregular patches, and consolidations. Significant radiological progression was seen in 32 patients (22.9%) even after 3 to 7 d. Consistent with previous studies[18,19], our findings suggest that COVID-19 patients with mild or no symptoms may be negative in chest CT examinations. Although CT should not be relied on as a method for screening or diagnosing COVID-19, we recommend repeated chest CT for suspected patients in case of symptoms onset or disease progression.

Our study has limitations. First, most of our patients were only diagnosed with COVID-19 and admitted to the hospital when they showed symptoms. This criterion for diagnosis may underestimate the true population of COVID-19 patients. Second, patients with mild symptoms may not visit the clinics and just stay at home. This may potentially increase the proportion of patients with severe illness in our study. Third, the relationship between hypertension and elevated levels of lactate dehydrogenase in COVID-19 patients was not addressed due to the retrospective nature of our study.

CONCLUSION

Our study found that most of the laboratory-confirmed COVID-19 patients in Wenzhou, China had mild illness and generally good outcomes. Hypertension and elevated levels of lactate dehydrogenase may be associated with severe illness of COVID-19. Targeting hypertension-associated myocardial injury may be a potential option in the treatment of COVID-19.

ARTICLE HIGHLIGHTS

Research background
The coronavirus disease 2019 (COVID-19) pandemic is still evolving.

Research motivation
Older people are at increased risk of cardiovascular diseases and COVID-19. The relationship between COVID-19 and cardiovascular diseases is poorly understood.

Research objectives
Our study aimed to find out the relationship between COVID-19 and cardiovascular diseases.

Research methods
The clinical data of 140 COVID-19 patients were retrospectively analyzed. The clinical characteristics were compared between patients with mild illness and those with severe illness.

Research results
Patients with severe illness of COVID-19 were more likely to be hypertensive and had significantly higher levels of lactate dehydrogenase than those with mild illness.

Research conclusions
The coexistence of hypertension and higher levels of lactate dehydrogenase in patients with severe illness of COVID-19 suggests a close relationship between COVID-19 and cardiovascular diseases.

Research perspectives
The relationship between hypertension and elevated levels of lactate dehydrogenase in COVID-19 patients should be addressed in future investigations.
REFERENCES

1. Md Ibasit Islam Rabby. Current Drugs with Potential for Treatment of COVID-19: A Literature Review. J Pharm Pharm Sci 2020; 23: 58-64 [PMID: 32251618 DOI: 10.18433/jpps31002]

2. Jean SS. Lee PI, Hsueh PR. Treatment options for COVID-19: The reality and challenges. J Microbiol Immunol Infect 2020; 53: 436-443 [PMID: 32307245 DOI: 10.1016/j.jmii.2020.03.034]

3. Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He XJ, Liu X, Shan H, Lei CL, Hui DSC, Du B, Li LJ, Zeng G, Yuen KY, Chen RC, Tang CL, Wang T, Chen PY, Xiang J, Li SY, Wang JL, Liang ZJ, Peng YX, Wei L, Liu Y, Hu YH, Peng F, Wang JM, Liu YJ, Chen Z, Li G, Zheng ZJ, Qiu SQ, Luo J, Ye CJ, Zhu SY, Zhong NS; China Medical Treatment Expert Group for Covid-19. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med 2020; 382: 1708-1720 [PMID: 32109013 DOI: 10.1056/NEJMoa2002032]

4. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, Cheng Z, Yu T, Xia J, Wei Y, Wu W, Xie Y, Yin L, Li H, Liu M, Xiao Y, Gao H, Guo L, Xie J, Wang G, Jiang R, Gao Z, Jin Q, Wang J, Cao B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395: 497-506 [PMID: 31986264 DOI: 10.1016/S0140-6736(20)30183-5]

5. Lai CC, Liu YH, Wang CY, Wang YH, Hsueh SC, Yen MY, Ko WC, Hsueh PR. Asymptomatic carrier state, acute respiratory disease, and pneumonia due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): Facts and myths. J Microbiol Immunol Infect 2020; 53: 404-412 [DOI: 10.1016/j.jmii.2020.02.012]

6. Wang Y, Wang Y, Chen Y, Qin Q. Unique epidemiological and clinical features of the emerging 2019 novel coronavirus pneumonia (COVID-19) implicate special control measures. J Med Virol 2020; 92: 568-576 [PMID: 32134116 DOI: 10.1002/jmv.25748]

7. Guan WJ, Liang WH, Zhao Y, Liang HR, Chen ZS, Li YM, Liu XQ, Chen RC, Tang CL, Wang T, Ou CQ, Li C, Chen PY, Sang L, Wang W, Li JF, Li CC, Ou LM, Cheng B, Xiong S, Ni ZY, Xiang J, Hu Y, Liu L, Shan H, Lei CL, Peng YX, Wei L, Liu Y, Hu YH, Peng F, Wang JM, Liu YJ, Chen Z, Li G, Zheng ZJ, Qiu SQ, Luo J, Ye CJ, Zhu SY, Cheng LL, Ye F, Li SY, Zhang JP, Zhong NF, Zhong NS, He JY; China Medical Treatment Expert Group for COVID-19. Comorbidity and its impact on 1590 patients with COVID-19 in China: a nationwide analysis. Eur Respir J 2020; 55 [DOI: 32217650 DOI: 10.1183/13993003.00547-2020]

8. Guo T, Fan Y, Chen M, Wu X, Zhang L, He T, Wang H, Wan J, Wang X, Lu Z. Cardiovascular Implications of Fatal Outcomes of Patients With Coronavirus Disease 2019 (COVID-19). JAMA Cardiol 2020; 5: 811-818 [PMID: 32219356 DOI: 10.1001/jamacardio.2020.1017]

9. Martins JT, Li DJ, Baskin LB, Jialal I, Keffer JH. Comparison of cardiac troponin I and lactate dehydrogenase isoforms for the late diagnosis of myocardial injury. Am J Clin Pathol 1996; 106: 705-708 [PMID: 8980345 DOI: 10.1093/ajcp/106.6.705]

10. Jaffe AS, Landt Y, Parvin CA, Abendschein DR, Geltman EM, Ladenson JH. Comparative sensitivity of cardiac troponin I and lactate dehydrogenase isoforms for diagnosing acute myocardial infarction. Clin Chem 1996; 42: 1770-1776 [PMID: 8906075]

11. Li B, Yang J, Zhao F, Zhi L, Wang X, Liu L, Bi Z, Zhao Y. Prevalence and impact of cardiovascular metabolic diseases on COVID-19 in China. Clin Res Cardiol 2020; 109: 531-538 [PMID: 32161990 DOI: 10.1007/s00392-020-01626-9]

12. Schiffrin EL, Flack JM, Ito S, Muntner P, Webb RC. Hypertension and COVID-19. Am J Hypertens 2020; 33: 373-374 [PMID: 32251498 DOI: 10.1093/ajh/hpaa057]

13. South AM, Diz DI, Chappell MC. COVID-19, ACE2, and the cardiovascular consequences. Am J Physiol Heart Circ Physiol 2020; 318: H1084-H1090 [PMID: 32228252 DOI: 10.1152/ajpheart.00217.2020]

14. Zheng Y, Ma YT, Zhang JY, Xie X. COVID-19 and the cardiovascular system. Nat Rev Cardiol 2020; 17: 259-260 [PMID: 32139004 DOI: 10.1038/s41569-020-0360-5]

15. Antiwi-Amoabeng D, Beutler BD, Moody AE, Kanji Z, Gullapalli N, Rowan CJ. Management of hypertension in COVID-19. World J Cardiol 2020; 12: 228-230 [PMID: 32547717 DOI: 10.4330/wjc.v12.i5.228]

16. Lopes RD, Macedo AVS, de Barros E Silva PGM, Moll-Bernardes RJ, Dos Santos TM, Zeng G, Yuen KY, Chen RC, Tang CL, Wang T, Ou CQ, Li C, Chen PY, Sang L, Wang W, Li JF, Li CC, Ou LM, Cheng B, Xiong S, Ni ZY, Xiang J, Hu Y, Liu L, Shan H, Lei CL, Peng YX, Wei L, Liu Y, Hu YH, Peng F, Wang JM, Liu YJ, Chen Z, Li G, Zheng ZJ, Qiu SQ, Luo J, Ye CJ, Zhu SY, Cheng LL, Ye F, Li SY, Zhang JP, Zhong NF, Zhong NS, He JY; China Medical Treatment Expert Group for COVID-19. Implications of Fatal Outcomes of Patients With Coronavirus Disease 2019 (COVID-19) and Angiotensin II Receptor Blockers on Days Alive and Out of the Hospital in Patients Admitted With COVID-19: A Randomized Clinical Trial. JAMA 2021; 325: 254-264 [PMID: 33464336 DOI: 10.1001/jama.2020.25864]

17. Li XL, Li T, Du QC, Yang L, He KL. Effects of angiotensin receptor blockers and angiotensin-converting enzyme inhibitors on COVID-19. World J Clin Cases 2021; 9: 5462-5469 [PMID: 34307600 DOI: 10.12998/wjcc.v9.i20.5462]

18. Kanne JP. Chest CT Findings in 2019 Novel Coronavirus (2019-nCoV) Infections from Wuhan, China: Key Points for the Radiologist. Radiology 2020; 295: 16-17 [PMID: 32017662 DOI: 10.1148/radiol.2020200241]

19. Shi H, Han X, Zheng C. Evolution of CT Manifestations in a Patient Recovered From 2019 Novel Coronavirus (2019-nCoV) Pneumonia in Wuhan, China. Radiology 2020; 295: 20 [PMID: 32032497]
