The Role of Peritoneal Dialysis in Different Phases of Kidney Transplantation

Ali I. Gardezi, Fahad Aziz, and Sandesh Parajuli

Abstract

The utilization of peritoneal dialysis (PD) has been increasing in the past decade owing to various government initiatives and recognition of benefits such as better preservation of residual renal function, quality of life, and lower cost. The Advancing American Kidney Health initiative aims to increase the utilization of home therapies such as PD and kidney transplantation to treat end stage kidney disease (ESKD). A natural consequence of this development is that more patients will receive PD, and many will eventually undergo kidney transplantation. Therefore, it is important to understand the effect of pretransplant PD on posttransplant outcomes such as delayed graft function (DGF), rejection, thrombosis, graft, and patient survival. Furthermore, some of these patients may develop DGF, which raises the question of the utility of PD during DGF and its risks. Although transplant is the best renal replacement therapy option, it is not everlasting, and many transplant recipients must go on dialysis after allograft failure. Can PD be a good option for these patients? This is another critical question. Furthermore, a significant proportion of nonrenal solid organ transplant recipients develop ESKD. Is PD feasible in this group? In this review, we try to address all of these questions in the light of available evidence.

Introduction

Ever since its conceptualization as a potential method of uremic toxins removal, peritoneal dialysis (PD) has endured a turbulent course (1–3). After the initial success in treating acute kidney failure in the 1940s (4), the use of PD gained traction in the treatment of ESKD in the 1960s (5–7). But the concerns about the high incidence of peritonitis, technique failure, and higher mortality compared with hemodialysis (HD) led to a steady decline in the prevalence of PD after peaking in the mid-1990s (8–10).

In the past decade, there has been a resurgence in the utilization of PD (11). With improvements in our understanding of peritoneal physiology, reduction in peritonitis rates, and overall improvements in the care of patients with ESKD, the mortality of patients on PD has improved dramatically (11). Additionally, multiple studies have shown benefits such as better preservation of residual renal function (12,13), better quality of life (14,15), and lower cost (16) compared with HD. An impetus to increase the use of PD was provided by the introduction of a new expanded prospective payment model by the Center of Medicare and Medicaid (CMS) in 2011, which incentivizes dialysis units to put more patients on home dialysis therapies (17). Furthermore, a key component of the Advancing American Kidney Health initiative, launched in 2019, is to have 80% of new patients with ESKD receiving either dialysis at home or kidney transplantation (18).

The Effect of Pretransplant PD on Transplant Outcomes

The effect of pretransplant dialysis modality on posttransplant outcomes has been the subject of multiple studies done across different eras, locations, and methodologies (19,20). A recurring theme in most research on this topic is the inherent differences between patients on pretransplant HD and PD (21–23). Most studies have attempted to reduce this selection bias by using models adjusting for some of these differences (Table 1).

Probability of Receiving a Kidney Transplant

Snyder et al. (24) used the Center of Medicare and Medicaid data to compare the posttransplant outcomes of patients who were initiated on either PD or HD from 1995 to 1998 and who underwent kidney transplantation before November 30, 2000. The relative likelihood of receiving a kidney transplant was 1.39 times higher in patients on PD than HD, even after adjusting for variables. Another study utilizing United Kingdom Renal Registry data showed a
Table 1. Major studies comparing posttransplant outcomes between patients on pretransplant peritoneal dialysis and those on pretransplant hemodialysis

Author	Study Characteristics	Number Pretransplant Hemodialysis/Peritoneal Dialysis	Outcomes
Snyder et al.	Retrospective registry based USA Medicare Beneficiaries	Dialysis: 1995–1998 Transplant by November 2000	Delayed Graft Function
		17,155/5621	Death Censored Graft Survival
			Patient Survival
			Lower in pretransplant PD
Goldfarb et al.	Retrospective registry based USA USRDS	January 1990–December 1999	Not reported
		66,223/20,204	Better in pretransplant PD
Molnar et al.	Retrospective registry based USA SRTR	Dialysis: July 2001–June 2006 Transplant by June 2007	Lower in Pretransplant PD in the unadjusted analysis
		12,416/2092	No difference in adjusted analysis
Schwenger et al.	Retrospective registry based Europe, North America, Australia, and New Zealand	1998–2007	Not reported
		45,651/11,664	No difference
Kramer et al.	Retrospective registry based Europe ERA–EDTA	1999–2008	Not reported
		18,953/10,135	No difference in the adjusted analysis

HD, hemodialysis; PD, peritoneal dialysis; USRDS, United States Renal Data System; SRTR, Scientific Registry of Transplant Recipients; ERA-EDTA, European Renal Association–European Dialysis and Transplant Association.
significantly higher percentage of patients on PD on the transplant waitlist than age-matched in-center patients on HD (25). Other studies have shown similar results, with transplant rates 30%–60% higher in patients on PD (26,27). As mentioned earlier, selection bias may be an important factor in these results. The same qualities that make someone a better PD candidate might also positively affect the probability of receiving a kidney transplant. Additionally, it is possible that PD was selected more often in those patients who were more likely to receive a kidney transplant in the near future.

Delayed Graft Function

Delayed graft function (DGF) is defined as the need for dialysis within 1 week of a kidney transplant (28). It has been associated with the increased risk of poor outcomes such as rejection, graft failure, and mortality (29–31). Most of the smaller single-center studies have shown a lower incidence of DGF with pretransplant PD (32–39), whereas some have shown no difference (40–43). Among the larger studies utilizing national databases, Snyder et al. (24) showed a lower incidence of DGF in the pretransplant PD group than in the pretransplant HD. Molnar et al. (44) linked data from the Scientific Registry of Transplant Recipients (SRTR) to patients who underwent PD or HD through a large dialysis organization between 2001 and 2006. Furthermore, they adjusted the outcomes on the basis of three additional models: the case-mixed adjusted model, the malnutrition inflammation complex syndrome adjusted model, and the transplant data adjusted model. They noted that pretransplant PD was associated with a 36% lower risk of DGF in the unadjusted model, but after applying the models mentioned above, this result no longer remained statistically significant. This further reiterates that reduced risk of DGF with pretransplant PD could be due to other favorable factors. The most important among these is the likelihood of higher residual renal function in patients on PD (12,13). Furthermore, it has been postulated that patients on pretransplant PD may have higher volume going into the transplant surgery than patients on HD, which may offer protection against DGF (45,46). Van Biesen et al. (47) looked at this theory in a small study including 40 patients on pretransplant PD and 79 on pretransplant HD. Even after adjusting for variables such as higher central venous pressure and weight gain before transplant, pretransplant PD was still associated with a shorter time required to attain >50% decrease in serum creatinine. Another proposed mechanism is lower inflammation and oxidative stress due to biocompatibility of peritoneal membrane compared with dialyzer membranes (19,20).

Acute Rejection

Acute allograft rejection can have deleterious effects on long-term allograft survival (48). However, the incidence has diminished significantly in the past 30 years owing to the introduction of robust immunosuppression regimens (49,50). Van Holder et al. (35) noticed a higher incidence of rejection in patients on PD before transplant. They attributed this observation to a possibility of better immunity in patients on PD compared with those on HD (51). Other studies have not shown any difference in the incidence of rejection between these two groups (36,39,40,52). Tang et al. (20) studied this outcome in a meta-analysis of six studies with 3283 patients and did not find any difference between the two groups.

Graft Thrombosis

Vascular thrombosis of the kidney allograft is a feared complication, resulting in immediate graft loss. Reported incidence is 0.1%–8% (53). Several studies have found pretransplant PD to be an independent risk factor for renal allograft thrombosis (24, 54–56). Murphy et al. (54) were the first to report this risk. Ojo et al. (56) examined the United States Network for Organ Sharing data from 1990 to 1996. The incidence of graft thrombosis was 0.89%. Repeat transplantation and predialysis PD were the strongest predictors of graft thrombosis. Snyder et al. (24) looked at the causes of graft failure in patients on pretransplant HD and PD. Of all the causes, graft thrombosis was the only one found to be more common in patients on PD. Higher plasma fibrinogen, apolipoprotein A, and higher procoagulant activity in patients on PD have been proposed as the underlying

Study characteristics	Design	Thomson et al. (74)	Yan et al. (75)	Gardezi et al. (76)
Location	Canada	Retrospective	Retrospective	Retrospective
Time period	2004–2011	observational	observational	observational
Number	HD=63, PD=14	Not reported	7%	10%, No difference
Peritonitis in PD-DGF	Not reported	36%. Significantly higher than HD-DGF	compared with HD-DGF	
Duration of DGF	Shorter in PD	No difference	Longer in PD	No difference
Rejection	No difference	No difference	No difference	No difference
Death censored graft survival	No difference	No difference	No difference	No difference
Patient survival	No difference	No difference	No difference	No difference

DGF, delayed graft function; HD, hemodialysis; PD, peritoneal dialysis; PD-DGF, PD during DGF; HD-DGF, HD during DGF.
Figure 1 | Guidelines for undergoing peritoneal dialysis during delayed graft function in posttransplant patients.

- Initiate peritoneal dialysis in patient with delayed graft function only after consultation with the transplant surgeon.

- Confirm that none of the following contraindications are present:
 - Any peritoneal breach during the transplant surgery
 - Abdominal distention due to ileus
 - Any active intra-abdominal pathology like infection or bleeding
 - Life threatening hyperkalemia
 - Severe hypervolemia causing pulmonary edema and hypoxia

- Only do Continuous Cycler PD. Avoid Continuous Ambulatory PD
 - Prior to starting the treatment, do a test dwell with 500 ml of 1.5% dextrose peritoneal fluid.
 - Look for any pain or fluid leak
 - If no symptoms occur, start cycler PD with 1 liter fill volume, dwell time of 90 minutes and 6 exchanges.
 - Instruct the patient to stay supine during the treatment.
 - Gradually increase the fill volume to meet the dialysis needs but never exceed two thirds of patient’s home prescription
 - Monitor for pain, cloudy fluid and fluid leak through the wound
 - Do not instill heparin in the PD fluid

Patient Survival

Although most large studies utilizing registry data have shown mortality benefit with pretransplant PD compared with HD (44,62,63,65), some have shown no difference (24,61,64). Interestingly, the mortality of nontransplanted patients on PD has improved in the past two decades and is now better than in those on HD (11,26). Being on pretransplant PD may confer benefits that continue after renal transplantation and contribute to better survival. Less fluctuation in volume status and blood pressure, no risk of myocardial stunning as opposed to HD, and better residual renal function may contribute to better cardiovascular (CV) outcomes in PD, although the results of studies are conflicting (66,67). The first large-scale study to show posttransplant mortality benefit with pretransplant PD was done by Goldfarb et al. (62), which showed 6% lower mortality in this group compared with pretransplant HD. However, the study done by Snyder et al. (24) using a similar population in the same era did not show any difference. As mentioned above, Molnar et al. (44) reexamined the difference in posttransplant outcomes according to pretransplant modality after the turn of the century. They utilized multiple models to adjust for the inherent differences between the two groups. After adjusting for the variables, patients on pretransplant PD had 43% lower mortality than patients on pretransplant HD. Most of this benefit was due to 66% lower CV mortality in patients on pretransplant PD. Similar results were noticed by Schwenger et al. (63), showing lower all-cause and CV mortality in patients on pretransplant PD. Around the same time, Kramer et al. (64) analyzed 10,135 PD and 18,953 patients on HD who underwent kidney transplantation in Europe. In addition to applying...
multivariable regression analysis, they also used the instrumental variable method to address confounding by indication. After applying the latter, there was no difference in mortality between the patients treated with PD and HD before transplant. The authors concluded that the selection of patients to receive PD as opposed to HD might be based on factors that have positive effects on mortality after transplant. Two meta-analyses were published in 2016, which combined data from most of the major studies done in the past two decades (19,20). Both showed better survival in patients on pretransplant PD. It is safe to conclude that patients on pretransplant PD have better survival after transplant owing to lower CV mortality, which in turn could be due to better overall health and other factors such as residual renal function.

The Role of PD Immediately after Kidney Transplant

PD during DGF

Whether PD can be continued during DGF safely has been examined in several different retrospective studies (Table 2). Thomson et al. (68) showed a shorter duration of DGF and length of hospital stay but a higher incidence of infections and fluid leak in patients who received PD during DGF than in those who received HD. On the other hand, Yan et al. (69) found higher rates of peritonitis and longer DGF duration in patients who received PD during DGF. Our group established a low-volume, supine PD protocol for patients who were on PD before transplant and developed DGF (Figure 1). We found a lower risk of peritonitis than previous studies, no fluid leak or wound infection, and no difference in duration of DGF between those receiving PD compared with HD during DGF (70). In all three studies mentioned above, there was no difference in other outcomes such as acute rejection and graft or patient survival. Other studies have shown a higher risk of peritonitis, wound infection, and fluid leak with PD use during DGF (71–74). If PD is not employed in DGF, most of these patients would require a central venous catheter, which subsequently increases the risk of central line bloodstream infections and central venous stenosis (75,76). Considering these risks, if a patient on pretransplant PD develops DGF, PD could be done using low fill volumes in a strictly supine position, with close monitoring for side effects such as peritonitis, fluid leak, and wound infection.

Timing of PD Catheter Removal

There has been no consensus on the timing of PD catheter removal after successful kidney transplant in pretransplant PD patients. European best practice guidelines recommend that earlier removal is advisable, but it can be left in the body for up to 3 months (77). Some have advocated removal at the time of transplant to prevent catheter-related complications (73). Others have suggested that it can be kept for up to 6 weeks (78). It is reasonable to remove the PD catheter at the time of transplantation in patients with very low pretransplant risk of developing DGF such as living donor kidney recipients. In others, it should be removed as soon as there is enough graft function to ensure no need for dialysis. Some centers have developed calculators to determine the risk of DGF, which could be used to decide on the timing of catheter removal (79).

PD after Kidney Transplant Failure

Despite improved graft survival, the number of transplant recipients initiating dialysis due to allograft failure is rising (80). A large majority of these patients receive HD, with PD utilization rates as low as 5%–16% (81,82). It is pertinent to note that history of abdominal surgery such as kidney transplantation is not a contraindication to PD (83). Multiple studies have compared the outcomes of patients initiating PD after failed kidney transplant with incident ESRD patients receiving PD. Although some small studies have shown poor outcomes in failed transplant patients (84,85), larger studies and a meta-analysis have demonstrated similar outcomes, including peritonitis rates, technique, and patient survival (81,86–88). One study compared the outcomes of patients who initiated PD after allograft failure with those who initiated HD (89). There was no difference in adjusted survival at short- and long-term follow-up. Stopping or continuing the immunosuppression is a critical decision in patients starting PD after renal transplant failure. On the one hand, immunosuppression may increase the risk of peritonitis, but on the other hand, it may help conserve residual kidney function, which may improve outcomes (90). Studies have shown a faster decline in residual kidney function in patients on PD after failed kidney transplant than those without a transplant (91,92), but none have compared these outcomes between patients receiving PD or HD after a failed transplant. Nonetheless, patients with a failing kidney allograft must be given opportunities to explore different dialysis modalities and to choose the one most suitable for their lifestyle. This is particularly important in younger patients with longer life expectancy who may require multiple RRT modalities throughout their life. Starting with PD would provide them more flexibility in their daily life and preserve their vasculature for future HD access should PD fail. This aligns with formulating an ESKD life plan for each patient according to the recently published KDOQI vascular access guidelines (93).

PD in ESKD Associated with Nonrenal Solid Organ Transplantation

Patients with nonrenal solid organ transplant (NRSOT), such as the liver, heart, and lung, have a high risk of developing ESKD due to factors such as long-term use of calcineurin inhibitors (CNI) (94). Studies have shown an ESKD incidence of 1%–2% per year in NRSOT (95). Concerns regarding the increased risk of peritonitis with immunosuppression use and resulting poor survival have limited the use of PD in this population (96,97). Several studies have compared the infection and survival outcomes of patients with NRSOT on PD with nontransplant patients on PD and have shown no difference between these groups (98–100). It is suspected that CNI may also increase the risk of encapsulating peritoneal fibrosis (94). Furthermore, exposure of peritoneum to high glucose in the presence of steroids and CNI may also increase the risk of
posttransplant diabetes mellitus. However, these outcomes have not been studied in patients with NRSOT who have PD for ESKD. Even though the authors of the abovementioned studies have concluded that PD is a safe option for these patients, studies with larger number of patients are required to substantiate these findings.

Conclusion

Thanks to various initiatives, PD is now well placed to be more prevalent in the future. Owing to its better preservation of residual renal functions, pretransplant PD may offer benefits such as a lower incidence of DGF and better patient survival after kidney transplant. Although most of the benefits may be due to patient selection for PD and may no longer be significant once more patients are placed on this modality regardless of their health status, the available literature still does not show any major disadvantage of PD compared with HD when it comes to transplant. With more patients receiving PD and eventually undergoing a transplant, it is important to understand the relationship of PD with various stages of a kidney transplant. It is equally important to present PD as a therapeutic option to those whose kidney allograft is failing so that they have more understanding and knowledge of all the available options for RRT.

Disclosures

S. Parajuli reports research funding from Veloxis. All remaining authors have nothing to disclose.

Funding

None.

Author Contributions

F. Aziz and S. Parajuli reviewed and edited the manuscript; A.I. Gardezi was responsible for conceptualization, data curation, and formal analysis, and wrote the original draft of the manuscript; and S. Parajuli was responsible for supervision.

References

1. Gantner G: On the elimination of toxic substances from the blood by dialysis. [In German] Munch Med Wochenschr 70: 1478–1480, 1923
2. Misra M, Phadke GM: Historical milestones in peritoneal dialysis. Contrib Nephrol 197: 1–8, 2019 https://doi.org/10.1159/000496301
3. Oreopoulos DG, Thodis E: The history of peritoneal dialysis: Early years at Toronto Western Hospital. Dial Transplant 39:338–343, 2010 https://doi.org/10.1002/dat.20476
4. Fine JH, Frank HA, Seligman AM: The treatment of acute renal failure by peritoneal irrigation. Ann Surg 124: 857–878, 1946 https://doi.org/10.1097/00000658-194606000-00004
5. Boen ST, Curtis FK, Tenclova H, Scribner BH: Chronic hemodialysis and peritoneal dialysis. Proc Eur Dial Transplant Assoc 1:221–223, 1964
6. Palmer RA, Quinton WE, Gray JF: Prolonged peritoneal dialysis for chronic renal failure. Lancet 1: 700–702, 1964
7. Laker N, Shalhoub R, Habib O, Passarotti C: The management of end-stage renal disease with intermittent peritoneal dialysis. Ann Intern Med 62 1147–1169, 1964
8. Fried LF, Bernardini J, Johnston JR, Piraino B: Peritonitis influences mortality in peritoneal dialysis patients. J Am Soc Nephrol 7: 2176–2182, 1996 https://doi.org/10.1681/ASN.V7102176
9. Ahmad S, Gallagher N, Shen F: Intermittent peritoneal dialysis: Status reassessed. Trans Am Soc Artif Intern Organs 25: 86–89, 1979 https://doi.org/10.1097/00002480-197902500-00018
10. Bloembergen WE, Port FK, Mauger EA, Wolfe RA: A comparison of mortality between patients treated with hemodialysis and peritoneal dialysis. J Am Soc Nephrol 6: 177–183, 1995 https://doi.org/10.1681/ASN.V6177
11. United States Renal Data System: USRDS Annual Data Report: Epidemiology of Kidney Disease in the United States, Bethesda, MD, National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, 2020
12. Moist LM, Port FK, Orzol SM, Young EW, Oshbye T, Wolfe RA, Hulbert-Sharon T, Jones CA, Bloembergen WE: Predictors of loss of residual renal function among new dialysis patients. J Am Soc Nephrol 11: 556–564, 2000 https://doi.org/10.1681/ASN.V113556
13. Jansen MA, Hart AA, Korevaar JC, Dekker FW, Tsang JPY, Lam CLK: The health-related quality of life of Chinese patients on hemodialysis and peritoneal dialysis. Patient 10: 799–808, 2017 https://doi.org/10.1016/j.ijpd.2017.02.056-6
14. Al Wakeel J, Al Harbi A, A. Bayrami M, Al-Suwaidi K, Al Gho- raini M, Mishkiy A: Quality of life in hemodialysis and peritoneal dialysis patients in Saudi Arabia. Ann Saudi Med 32: 570–574, 2012 https://doi.org/10.5144/0256-4947.2012.570
15. Chen JY, Wan EYF, Choi EPH, Chan AKC, Chan KHY, Tsang JPY: Lam CLK: The health-related quality of life of Chinese patients on hemodialysis and peritoneal dialysis. Patient 10: 799–808, 2017 https://doi.org/10.1016/j.ijpd.2017.02.056-6
16. Karopadi AN, Mason G, Rettore E, Ronco C: Cost of peritoneal dialysis and haemodialysis across the world. Nephrol Dial Transplant 28: 2553–2569, 2013 https://doi.org/10.1093/ndt/gft214
17. Centers for Medicare & Medicaid Services (CMS), HHS: Medicare program; end-stage renal disease prospective payment system. Final rule. Fed Regist 75: 49329–49412, 2010
18. US Department of Health and Human Services: Advancing American Kidney Health. Available at: https://aspe.hhs.gov/sites/default/files/private/pdf/262046/AdvancingAmericanKidneyHealth.pdf. Accessed December 18, 2021
19. Joachim E, Gardezi AJ, Chan MR, Shin JJ, Astor BC, Waheed S: Association of pre-transplant dialysis modality and post-transplant outcomes: A meta-analysis. Perit Dial Int 37: 259–265, 2017 https://doi.org/10.3747/pdi.2016.00011
20. Tang M, Li T, Liu H: A comparison of transplant outcomes in peritoneal and hemodialysis patients: A meta-analysis. Blood Purif 42: 170–176, 2016 https://doi.org/10.1159/000464272
21. Stack AG: Determinants of modality selection among incident US dialysis patients: Results from a national study. J Am Soc Nephrol 13: 1279–1287, 2002 https://doi.org/10.1681/ASN.V1351279
22. Miskulin DC, Meyer KB, Athienitis NV, Martin AA, Terrin N, Marsh JV, Fink NE, Coresh J, Powe NR, Klag MJ, Levey AS: Comorbidity and other factors associated with modality selection in incident dialysis patients: The CHOICE Study. Choices for Healthy Outcomes in Caring for End-Stage Renal Disease. Am J Kidney Dis 39: 324–336, 2002 https://doi.org/10.1053/ajkd.2002.30552
23. Inrig JK, Sun JL, Yang Q, Briley LP, Szczewc LA: Mortality by dialysis modality among patients who have end-stage renal disease and are awaiting renal transplantation. Clin J Am Soc Nephrol 1: 774–779, 2006 https://doi.org/10.2215/CJN.00580705
24. Snyder JJ, Kasiskie BL, Gilbertson DT, Collins AJ: A comparison of transplant outcomes in peritoneal and hemodialysis patients. Kidney Int 62: 1423–1430, 2002 https://doi.org/10.1111/j.1523-1755.2002.kid563.x
25. Nitsch D, Steenkamp R, Tomson CR, Roderick P, Ansell D, MacGregor MS: Outcomes in patients on home haemodialysis in England and Wales, 1997–2005: A comparative cohort analysis. Nephrol Dial Transplant 26: 1670–1677, 2011 https://doi.org/10.1093/ndt/gft561
26. Mehrotra R, Chiu KW, Kalantar-Zadeh K, Bargman J, Vonesh E: Similar outcomes with hemodialysis and peritoneal dialysis in patients with end-stage renal disease. Arch Intern Med 171: 110–118, 2011 https://doi.org/10.1001/archinternmed.2010.352
786 KIDNEY360

Pérez Contreras J, Selgas R: A comparative survey on the incidence of kidney graft primary vascular thrombosis among CAPD and haemodialysis patients. Nephrol Dial Transplant 11: 1896–1897, 1996 https://doi.org/10.1093/oxfordjournals.ndt.a027704.

60. Pérez Fontán M, Rodríguez-Carmona A, García Falcón T, Trescans C, Bouza P, Valdés F: Peritoneal dialysis is not a risk factor for primary vascular graft thrombosis after renal transplantation. Perit Dial Int 18: 311–316, 1998

61. Lin HT, Liu FC, Lin JR, Pang ST, Yu HP: Impact of the pre-transplant dialysis modality on kidney transplantation outcomes: A nationwide cohort study. BMJ Open 8: e020558, 2018 https://doi.org/10.1136/bmjopen-2017-020558.

Coldford-Rumyantzev AS, Hurdle JF, Scandling JD, Baird BC, Cheung AK: The role of pretransplantation renal replacement therapy modality in kidney allograft and recipient survival. Am J Kidney Dis 27: 4473–4480, 2011 https://doi.org/10.1053/j.ajkd.2009.10.007.

10.1080/21505594.2016.1139279

79. Irish WD, Isley JN, Schnitzler MA, Feng S, Brennan DC: A risk prediction model for delayed graft function in the current era of deceased donor renal transplantation. Am J Transplant 10: 2279–2280, 2010 https://doi.org/10.1111/j.1600-6143.2010.03179.x.

80. Davis S, Mohan S: Managing patients with failing kidney allograft: Many questions remain. Clin J Am Soc Nephrol 17: 1044–1051, 2022 https://doi.org/10.2215/CJN.21540920.

81. Benomar M, Vachey C, Lobbedez T, Henriques J, Ducloux D, Vernerey D, Courivaud C: Peritoneal dialysis after kidney transplant failure: a nationwide matched cohort study from the French Language Peritoneal Dialysis Registry (RDPLF). Nephrop Dial Transplant 34: 858–863, 2019 https://doi.org/10.1093/ndt/gfy341.

82. Gill JS, Abichandani R, Khan S, Kausz AT, Pereira BJ: Opportunities to improve the care of patients with kidney transplant failure. Kidney Int 61: 2193–2200, 2002 https://doi.org/10.1046/j.1523-1755.2002.00373.x.

83. Aziz F, Chaudhary K: Peritoneal dialysis in patients with abdominal surgeries and abdominal complications. Adv Perit Dial 33: 40–46, 2017

84. Sasal J, Naimark D, Klassen J, Shea J, Bargman JM: Late renal transplant failure: a nationwide matched cohort study. Nephrol Dial Transplant 21: 776–783, 2006 https://doi.org/10.1093/ndt/gfl248.

85. da Costa LA, Andreoli MCC, Carvalho AB, Draibe SA, Pestana JOM, Canziani MEF: Clinical outcomes of incident peritoneal dialysis patients coming from kidney transplantation program: A case-control study. PLoS One 15: e0227870, 2020 https://doi.org/10.1371/journal.pone.0227870.

86. Badve SV, Hawley CM, McDonald SP, Mudge DW, Rosman JB, Brown FG, Johnson DW; ANZDATA Registry PD Working Committee: Effect of previously failed kidney transplantation on peritoneal dialysis outcomes in the Australian and New Zealand dialysis population. Nephron Perit Dial 21: 776–783, 2006 https://doi.org/10.1093/ndt/gfl248.

87. Mujais S, Story K: Patient and technique survival on peritoneal dialysis in patients with failed renal allograft: A case-control study. Kidney Int Suppl 70: S133–S137, 2006 https://doi.org/10.1038/sj.ki.5009130.

88. Meng X, Wu W, Xu S, Cheng Z: Comparison of outcomes of peritoneal dialysis between patients after failed kidney transplant and transplant-naïve patients: A meta-analysis of observational studies. Ren Fail 43: 698–708, 2021 https://doi.org/10.1080/0886022X.2021.1914659.

89. Perl J, Hasan O, Bargman JM, Jiang D, Na Y, Gill JS, Jassal SV: Impact of dialysis modality on survival after kidney transplant failure. Clin J Am Soc Nephrol 6: 582–590, 2011 https://doi.org/10.2215/CJN.06640810.

90. Jassal SV, Lok CE, Walea E, Bargman JM: Continued transplant immunosuppression may prolong survival after return to peritoneal dialysis: Results of a decision analysis. Am J Kidney Dis 40: 178–183, 2002 https://doi.org/10.1053/ajkd.2002.33927.

91. Davies SJ: Peritoneal dialysis in the patient with a failing renal allograft. Perit Dial Int 21: S280–S284, 2001 https://doi.org/10.1111/j.1600-6143.2001.03614.x.

92. Schiff H, Mücke C, Lang SM: Rapid decline of residual renal function in patients with late renal transplant failure who are re-treated with CAPD. Perit Dial Int 23: 398–400, 2003 https://doi.org/10.1111/j.1600-6860.2003.00304.x.
93. Lok CE, Huber TS, Lee T, Shenoy S, Yevzlin AS, Abreo K, Allon M, Asif A, Astor BC, Glickman MH, Graham J, Moist LM, Rajan DK, Roberts C, Vachharajani TJ, Valentini RP; National Kidney Foundation; KDOQI Clinical Practice Guideline for vascular access: 2019 update [published correction appears in Am J Kidney Dis 77: 551, 2021 10.1053/j.ajkd.2021.02.002], Am J Kidney Dis 75: S1–S164, 2020 https://doi.org/10.1053/j.ajkd.2019.12.001

94. Perl J, Bargman JM, Jassal SV: Peritoneal dialysis after nonrenal solid organ transplantation: Clinical outcomes and practical considerations. Perit Dial Int 30: 7–12, 2010 https://doi.org/10.3747/pdi.2008.00215

95. Ojo AO, Held PJ, Port FK, Wolfe RA, Leichtman AB, Young EW, Arensburger J, Christensen L, Merion RM: Chronic renal failure after transplantation of a nonrenal organ. N Engl J Med 349: 931–940, 2003 https://doi.org/10.1056/NEJMoa021744

96. Andrews PA, Warr KJ, Hicks JA, Cameron JS: Impaired outcome of continuous ambulatory peritoneal dialysis in immunosuppressed patients. Nephrol Dial Transplant 11: 1104–1108, 1996 https://doi.org/10.1093/oxfordjournals.ndt.a027463

97. Jayasena SD, Riaz A, Lewis CM, Neild GH, Thompson FD, Woolfson RG: Outcome in patients with end-stage renal disease following heart or heart–lung transplantation receiving peritoneal dialysis. Nephrol Dial Transplant 16: 1681–1685, 2001 https://doi.org/10.1093/ndt/16.8.1681

98. Cornelis T, Rioux JP, Bargman JM, Chan CT: Home dialysis is a successful strategy in nonrenal solid organ transplant recipients with end-stage renal disease. Nephrol Dial Transplant 25: 3425–3429, 2010 https://doi.org/10.1093/ndt/gfq373

99. Saiprasertkit N, Nihei CH, Bargman JM: Peritoneal dialysis in orthotopic liver transplantation recipients. Perit Dial Int 38: 37–43, 2018 https://doi.org/10.3747/pdi.2017.00125

Received: January 14, 2022 Accepted: February 23, 2022