Distinct \(\text{ERG} \) rearrangement prevalence in prostate cancer: higher frequency in young age and in low PSA prostate cancer

G Schaefer1,2,7, J-M Mosquera3,7, R Ramoner1,4, K Park3, A Romanel3, E Steiner3, W Horninger1, J Bektic1, M Ladurner-Rennau1, MA Rubin3, F Demichelis5,6,8 and H Klocker1,8

BACKGROUND: The \(\text{TMPRSS2-ERG} \) gene fusion resulting in \(\text{ERG} \) overexpression has been found in around 50% of prostate cancers (PCa) and is a very early event in tumorigenesis. Most studies have reported on selected surgical cohorts with inconsistent results. We hypothesized that \(\text{ERG} \) gene rearrangements impact tumor development and investigated the frequency of \(\text{ERG} \) overexpression in the context of clinicopathological tumor characteristics.

METHODS: \(\text{ERG} \) overexpression (\(\text{ERG}^+ \) or \(\text{ERG}^- \)) was determined by immunohistochemistry (IHC) in 1039 radical prostatectomy (RP) tumors and association with PSA, D’Amico risk score, histopathology, biochemical recurrence, body mass index and age of PCa cases was analyzed.

RESULTS: \(\text{ERG}^+ \) was associated with younger age at diagnosis \((P<0.0001)\), lower serum PSA \((P=0.002)\) and lower prostate volume \((P=0.001)\). It was most frequent in the youngest age quartile \((<55\text{ years}, 63.9\% \text{ ERG}^+)\) and decreased constantly with increasing age to 40.8% in the oldest age quartile \((\geq 67\text{ years}, P<0.0001)\). In the PSA range \(<4\text{ ng ml}^{-1}\) the frequency of \(\text{ERG} \) positivity was 60.2% compared with 47.5 and 49.1% in the PSA ranges 4–10 and \(\geq 10\text{ ng ml}^{-1}\), respectively. In the first age quartile, \(\text{ERG}^+ \) patients had lower median serum PSA and PSA% and smaller PV. In the highest age quartile tumor volume \((\text{TV})\) was increased. Similar differences were observed in the low PSA range. Multivariate analysis identified the first age quartile as a predictor for \(\text{ERG} \) status \((\text{OR} 2.05, P=0.007)\). No association was found with the D’Amico progression risk score and with biochemical tumor recurrence.

CONCLUSIONS: \(\text{ERG}^+ \) tumors manifest clinically at lower PSA levels and their prevalence is age dependent. This suggests acceleration of tumor development by \(\text{ERG} \) overexpression that results in earlier tumor detection in young patients. Long-term results are warranted to determine the impact of \(\text{ERG} \) overexpression on disease outcome.

Prostate Cancer and Prostatic Disease (2013) 16, 132–138; doi:10.1038/pcan.2013.4; published online 5 February 2013

Keywords: age; \(\text{ERG} \) frequency distribution; \(\text{ERG} \) overexpression; early-onset prostate cancer; PSA screening

INTRODUCTION

Prostate cancer (PCa) is the most common solid neoplasm in the developed countries accounting for almost 30% of cancer incident cases in men. It is the third leading cause of male cancer deaths in Europe14 and second in the USA although an estimated 90% of newly diagnosed cases are local or regional with a 5-year relative survival approaching almost 100%. A frequently occurring genetic alteration of prostate tumors is a gene rearrangement involving transcription factors of the E26 transformation specific \(\text{(ETS)} \) family and an androgen-regulated gene. The most common event found in 40–60% of PCa cases results in the fusion of the transcription factor \(\text{ERG} \) and the androgen regulated transmembrane serine protease 2 \((\text{TMPRSS2})\) gene and leads to androgen-stimulated overexpression of \(\text{ERG} \).4 Less common are rearrangements involving the ETS transcription factors \(\text{ETV1}, \text{ETV4} \) and 5 other androgen regulated \(5' \) partners such as \(\text{SLC45A3} \).5

An \(\text{ERG} \) rearrangement regardless of the \(5' \) partner is highly specific for PCa and only found in tumor cells or a subset of high-grade prostatic intraepithelial neoplasia lesions.6,7 Therefore, analysis of an \(\text{ERG} \) rearrangement is beginning to have a role in routine pathology.8,9 The fusion status can reliably be determined using fluorescence in situ hybridization detecting the gene rearrangement,6,10 by PCR measuring expression of a fusion transcript5 or using IHC detecting the overexpressed \(\text{ERG} \) protein.11 Positive immunohistochemical staining highly correlates with the \(\text{ERG} \) gene rearrangement status determined by fluorescence in situ hybridization or mRNA analyses.11,12

The \(\text{ERG} \) rearrangement occurs early in prostate carcinogenesis7 and is then present at around the same frequency through all tumor stages up to metastatic, therapy-resistant disease.13 Despite numerous studies the implication of this common genetic alteration on tumor progression and consequences for the management and treatment of PCa have yet to be defined. This may in part be due to relative few studies that have focused on large well-characterized patient populations. The majority of studies reported no association between biochemical recurrence
and ERG rearrangement status.14,15 Conversely, population-based Watchful Waiting studies have found associations with PCA specific death.16,17 Recent investigations suggested that gene-fusion driven ERG overexpression increases self-renewal and stimulates epithelial to mesenchymal transition.18,19

We hypothesized that ERG overexpression is an early driver of tumor development and investigated the frequency of ERG overexpression in dependence on patient age and clinicopathological characteristics. The prevalence of ERG overexpression was investigated retrospectively in a large cohort of the Tyrolean PCA patients, the majority of whom have been diagnosed in an age-adjusted PSA-based screening program for early detection and treatment of PCAs.20,21 We observed an increased frequency of ERG overexpression in younger PCA patients and association with lower serum PSA.

MATERIALS AND METHODS

Study population
The analysis involved 1039 PCA patients (selected by the availability of archival tissue) who underwent radical prostatectomy (RP) in the Department of Urology of the University Hospital Innsbruck between 6/1993 and 4/2012). The majority of patients had been diagnosed in the PSA screening program employing age-adjusted PSA serum level cutoffs (1.25 (up to 49 year), 1.75 (50–59 year), 2.25 (60–69 year) and 3.75 nm l−1 (70–75 year)) in combination with IFPSA.20,22 The prostate specimens underwent routine histopathological processing and analysis.23 Tumor volume (TV) was assessed using computerized morphometrical analysis24 in patients operated after 2009. Serum PSA and IFPSA values leading to PCAs positive biopsy, PSA density, D’Amico progression risk group, Gleason score (GS) of the RP tumor, prostate volume (PV), TV, percent TV of PV (%TV), pathological stage (pTNM), prostate specimen margin status (R), time to PSA recurrence or follow-up time after RP, age at the time of prostatectomy and patients body mass indexes were retrieved for analysis. The D’Amico low, intermediate and high-risk group classifications were based on PSA values at diagnosis, biopsy GS and clinical stage assessed by digital rectal examination.25 PSA recurrence was defined as two consecutive serum PSA values >0.2 ng ml−1, follow-up time in patients without PSA recurrence as time of RP to the most recent serum PSA measurement. Patients gave their informed consent and the study was approved by the local ethics committee.

Evaluation of ERG protein expression by IHC
ERG protein expression was assessed by IHC in RP specimens. Standard 0.5-μm sections were deparaffinized and immunohistochemical staining was applied using a commercially available antibody for ERG (EPR3864, dilution 1:100, Ventana Medical Systems, Tucson, AZ, USA) on the Discovery XT biomarker platform (Ventana). In RP specimens with multifocal tumors, only the index tumor was analyzed. The D’Amico low, intermediate and high-risk group classifications were based on PSA values at diagnosis, biopsy GS and clinical stage assessed by digital rectal examination.25 PSA recovery was defined as two consecutive serum PSA values >0.2 ng ml−1, follow-up time in patients without PSA recurrence as time of RP to the most recent serum PSA measurement. Patients gave their informed consent and the study was approved by the local ethics committee.

Statistical analysis
In order to identify age and PSA dependent associations, patients were classified into age quartiles (35–55, 56–61, 62–66, 67–82 years) and PSA ranges (>4, 4–10, 10) were performed using stepwise backward elimination. For frequency comparisons χ2 tests, for non-normal distributed variables in group comparisons Mann–Whitney U or Wilcoxon tests were applied. A two-tailed significance level of 0.05 was considered as statistically significant.

RESULTS
ERG protein expression was analyzed by IHC in 1039 patients who underwent RP at the University Hospital of Innsbruck between 1993 and 2012 and ERG positivity was correlated to PSA, D’Amico progression risk groups, clinical and histological parameters and to biochemical recurrence (Table 1). The majority of the cohort patients were diagnosed in the Tyrolean PSA screening program. Patients’ median age was 61 years (range 35–82), PR tumor GS’s were <7 in 341 (32.8%), 7 in 571 (55.0%) and >7 in 120 (11.5%) cases. In total 757 (73.1%) tumors were organ-confined (pt2) and 276 (26.6%) patients showed extraprostatic extension (pt3/4). Surgical margins were positive in 283 (27.2%) cases. Nodal invasion was diagnosed in eight (0.8%) cases. Tumors of 492 patients (47.4%) were ERG- and of 547 (52.6%) were ERG+. Patients with ERG+ PCA were significantly younger than those harboring ERG- tumors (median age 60.0 vs 63.0, P<0.0001), and median PSA values were significantly lower in ERG+ compared with ERG- PCA patients (4.7 vs 5.5 ng ml−1, P=0.002). PV in individuals with ERG+ cancer was significantly smaller with a median volume of 35.0 ml compared with 40.0 ml in ERG- cases (P=0.004) and ERG+ tumors were more frequent in GS=7 cancers (P=0.036). There was no significant relation between ERG status and body mass index, IFPSA, PSA density, TV, pt stage, surgical margins, D’Amico progression risk groups or frequency of biochemical recurrence.

To further analyze ERG-status, age quartiles (35–55, 56–61, 62–66, 67–82 years) and serum PSA ranges (>4, 4–10, >10) were considered. In the first age quartile 63.9% of the patients had ERG+ PCA. ERG+ status was significantly lower in the 2nd, 3rd and 4th quartile (55.5%, 50.6% and 40.8%, respectively, P=0.0001, Figure 1 and Table 2). ERG status and clinicopathological parameters in relation to quartiles showed statistically significant differences only in the first and last quartile. In the youngest age quartile PSA was significantly lower in ERG+ compared with ERG- patients (3.1 vs 4.1 ng ml−1, P=0.011, Table 3A), PSA% (12.0% vs 14.4%, P=0.004) and the PV (34 vs 35 ml, P=0.026) were significantly reduced. These differences vanished with increasing age in all quartiles with no differences at all in the second and third. However, in the oldest quartile other differences emerged with significantly higher TV (1.6 vs 1.3 ml, P=0.042) and %TV (4.2% vs 2.9%, P=0.029) in ERG+ patients (Table 3A). Association between ERG status and age of diagnosis and disease-free lifetime is shown in Figure 2 as a Kaplan–Meier plot. The ERG+ cohort curve is significantly shifted to younger age (P<0.001, log-rank test) with a median disease-free lifetime of 60 compared with 63 years in the ERG- patients. A Cox model analysis using age at diagnosis as the independent variable, revealed an increased risk factor for cancer+ diagnosis for ERG positivity (relative risk (RR) 1.34, P=0.001) and slightly decreased risk for serum PSA (RR=0.956, P<0.001) (Table 1).

As the patient enrollment protocol used age-adjusted serum PSA thresholds to trigger a biopsy for the majority of patients, we also investigated ERG association within discrete PSA ranges. In the low PSA range (<4 ng ml−1) 60.2% of the tumors were ERG+ whereas the frequency decreased to 47.5 and 49.1% in the intermediate (4–10 ng ml−1) and high (>10 ng ml−1) PSA ranges, respectively (P=0.002, Table 2). A computer generated schematic visualization of the observed PSA differences showed a clear shift of the frequency peak of ERG+ tumors to lower PSA levels compared with the peak of ERG- tumors for two sets of equal size (Figure 3). The selection of the distribution parameters was based on the experimental PSA level data from the validation cohort.

Disease-free lifetime was calculated using the Kaplan–Meier method, the Cox regression model was used to identify associated risk factors. All calculations were carried out with IBM-SPSS 2.0 (IBM Corporation, New York, NY, USA).
Table 1. Clinicopathological characteristics of the study cohort in relation to ERG status

Characteristics	ERG negative (n = 492)	ERG positive (n = 547)	Total (n = 1039)	P-value
Age at RP, year				<0.0001*
Median	63.0	60.0	61.0	
s.d.	7.2	7.5	7.5	
95% CI	61.4–62.7	59.0–60.2	60.3–61.2	
Range	35.0–82.0	41.0–78.0	35.0–82.0	
Age quartiles, year				<0.0001*
1 (35–55)	90	159	249	
2 (56–61)	125	156	281	
3 (62–66)	122	125	247	
4 (67–82)	155	107	262	
BMI kg m⁻²				0.407
Median	26.0	26.0	26.0	
s.d.	3.7	3.2	3.5	
95% CI	26.5–27.3	26.2–26.9	26.5–30.0	
Range	19.0–41.0	18.4–42	18–42	
PSA, indication to biopsy, ng ml⁻¹				0.002*
Median	5.5	4.7	5.1	
s.d.	5.5	5.1	5.3	
95% CI	6.3–7.4	5.7–6.6	6.1–6.8	
Range	1.2–57.9	1.35–54.7	1.2–57.9	
PSA ranges, ng ml⁻¹				0.004*
<4	109	165	274	
4–10	221	200	421	
>10	58	56	114	
Missing	104	126	130	
PSA density, ng ml⁻¹				0.409
Median	0.13	0.12	0.12	
s.d.	0.21	0.14	0.18	
95% CI	0.16–0.20	0.15–0.18	0.16–0.19	
Range	0.03–2.31	0.02–1.05	0.02–2.31	
D'Amico score				0.390*
Low	173	214	387	
Intermediate	118	139	257	
High	39	34	73	
Missing	162	160	322	
PV, ml				0.001*
Median	40.0	35.0	39.0	
s.d.	15.8	15.0	15.5	
95% CI	41.2–44.5	41.2–44.5	39.9–42.2	
Range	20.0–110.0	20.0–110.0	20.0–110.0	
TV, ml				0.778
Mean	1.30	1.32	1.30	
s.d.	1.72	4.03	3.00	
95% CI	1.57–2.05	1.83–3.09	1.79–2.41	
Range	0.01–10.05	0.03–36.06	0.01–38.06	
Tumor volume % of PV (%TV), %				0.404
Mean	3.04	3.05	3.04	
s.d.	3.13	7.51	5.89	
95% CI	3.71–4.84	4.45–6.79	4.28–5.50	
Range	0.02–21.69	0.12–56.80	0.02–56.80	
GS, n				0.036*
<7	167	174	341	
7	233	318	571	

Abbreviations: BMI, body mass index; CI, confidence interval; GS, gleason score; pTNM, pathologic T stage; PV, prostate volume; RP, radical prostatectomy; R, margin status; TV, tumor volume.
*P<0.05.

taken from Demichelis et al²⁷ Mean serum PSA was smaller in ERG+ compared with ERG- tumors within the low PSA range (2.8 vs 3.0 ng ml⁻¹, P = 0.022, Table 3B). Likewise mean PV and PSA% were smaller (35 vs 40 ml, P = 0.02; 12.6% vs 16.0%, P = 0.004). On the other end, in the highest PSA range, remarkable differences of mean PV, TV, and %TV (50 vs 35 ml, P = 0.020; 9.3 vs 2.4 ml, P = 0.003 and 18.5% vs 6.7%, P = 0.002) were noticed (Table 3B).

Categorization into GS groups, low (GS<7), intermediate (GS=7) and high (GS>7), revealed a higher prevalence of GS = 7 tumors in the ERG+ group (P = 0.036, 51.4% ERG- and 58.1% ERG+). Categorization of patients into progression risk groups according to the criteria of D’Amico²⁵ with 387 (54%) patients in the low, 257 (35.8%) in the intermediate and 73 (10.2%) in the high-risk group showed no correlation to ERG overexpression. Biochemical progression after RP occurred in 113 (10.9%) patients. No significant difference was found in the two ERG categories (ERG- 10.8%, ERG+ 11.0%) and in median time to biochemical recurrence (ERG- 667d, ERG+ 998d) (Table 1).

Univariate logistic regression revealed the youngest age quartile, lowest PSA range and GS = 7 group to increase the probability for an ERG+ tumor with OR of 1.81, 1.65 and 1.31, respectively, and oldest age quartile and PSA range 4–10 ng ml⁻¹ to reduce the risk (OR = 0.53 and 0.68, Table 4). To extend these findings we fitted clinical parameters available in routine diagnosis (age quartile, PSA range, GS group, PV, serum PSA and PSA%) into a multivariate logistic regression model. For a positive ERG status we obtained a strong increased risk for the first age quartile (OR 2.05, P = 0.007) and a marginally decreased risk for PV (OR 0.99, P = 0.031).
Age-dependent ERG overexpression frequency

G Schaefer et al

Discussion

In this study, we show for the first time significantly different frequencies of ERG positivity in early-onset PCa and association of ERG positivity with lower PSA and fPSA% in this age group. The analysis method used in our study determines the ERG protein level and was shown to cover different ERG gene rearrangements with 96% sensitivity and 97% specificity. A limitation to our study is the lack of detection of other ETS transcription factors such as ETV1 and ETV5. However, the frequency of gene fusions found in 65% ERG positivity. In that study, patients with 34% of ERG positivity, age was in mean 2.4 years lower in ERG+ patients than an older man with the same PSA level. The reasoning has to separate age and PSA entirely. Age adjusted PSA cutpoints ensure model, age remained the strongest valid factor predicting a positive ERG status. Up to now only a few studies have addressed associations of ERG status and age at tumor diagnosis. In a Japanese study of 194 RPs with 28% ERG+ patients, ERG rearrangement frequency was strongly reduced in patients younger than 59 and older than 71 years. In another study of 178 hormonally treated patients with 34% of ERG positivity, age was in mean 2.4 years lower in ERG+ patients. The median ages in different study populations reflect a high variability of patient selection and makes a direct comparison difficult.

Concerning associations between ERG rearrangement and serum PSA levels, published data are ambiguous. On the one hand no association of ERG status and preoperative PSA in patients treated with a RP was found, but on the other hand a recent PSA screening study reported a higher frequency of ERG+ cancer in low PSA patients, however, ‘low PSA’ was defined as <10 ng ml⁻¹. In the study of Rice et al. evaluating ERG mRNA in urine for the detection of PCa, the mRNA score performed particularly well in Caucasian patients with serum PSA of 4 ng ml⁻¹ or lower. Our data can explain these findings, as ERG overexpression is most frequent in this subgroup of patients and support a rationale that in men suspected of having PCa, lower levels of PSA might trigger an ETS specific assay such as a urine TMPRSS2-ERG mRNA assay.

Mosquera et al. reported low PSA density to be one of the best predictors for a positive TMPRSS2-ERG fusion status. In our cohort we could not confirm this conclusion.

One potential limitation in our current study is an inability to separate age and PSA entirely. Age adjusted PSA cutoffs ensure that a young man with a lower PSA is more likely to get a biopsy than an older man with the same PSA level. The reasoning has to do with the elevations of PSA due to prostate gland enlargement with age. To adequately address this issue, one would need to examine a cohort of men where biopsies were performed at low

Table 2. Distribution of ERG status in age quartiles and PSA ranges

ERG Status	Age quartile (years)	PSA range (mg ml⁻¹)
	1. (35–55)	1. (<4)
Negative	36.1 (90)	39.8 (109)
Positive %	44.5 (125)	52.5 (221)
Total	100 (249)	100 (274)
	2. (56–61)	2. (4–10)
Negative	55.5 (156)	60.2 (165)
Positive %	50.6 (125)	47.5 (200)
Total	100 (281)	100 (421)
	3. (62–66)	3. (≥10)
Negative	40.8 (107)	49.1 (56)
Positive %	52.6 (547)	52.0 (421)
Total	100 (247)	100 (114)
	4. (67–82)	
Negative	59.2 (155)	
Positive %	47.4 (492)	
Total	100 (262)	

Figure 1. Distribution of ERG status within the age quartiles and the PSA ranges. Tumors from the study cohort were assigned to age quartiles of patients’ age at RP and the frequencies of ERG+ and ERG- were calculated for each age quartile (a). Similarly, tumors of the study cohort were divided into three PSA ranges (<4, 4–10 and >10 ng ml⁻¹) and ERG+ and ERG- frequencies were calculated (b). The distribution of ERG+ and ERG- tumors was significantly different in the four age quartiles (P<0.0001) and in the three PSA ranges (P=0.002).
PSA levels regardless of age-adjustment. Therefore, currently we cannot entirely exclude, that ERG\(^+\) cancers can be detected at lower PSA levels independent of age.

An association of a positive ERG status with larger tumors was previously reported in a series of some 100 single-focus peripheral zone tumors.\(^39\) Furthermore, a positive TMPRSS2-ERG urine test result correlated with TV.\(^40\) In our study ERG\(^+\) PCa patients also show a significantly higher TV, but only in the oldest quartile. On one hand ERG rearrangements seems to occur more frequently in tumors emerging at a younger age. In a PSA screening program using age-dependent PSA cutoffs these tumors are detected early despite their lower serum PSA level. On the other hand ERG rearrangements are less frequent in tumors diagnosed in older age and lead to larger tumors probably by providing a growth advantage under this circumstance.\(^17\) Higher PSA thresholds applied in older patients might allow ERG\(^+\) tumors to grow to larger sizes before they reach a PSA level triggering a biopsy.

Differences of tumor size associations between the first and the last age quartile suggest interaction of ERG overexpression with conditions that change with age such as the hormonal environment.\(^41\) An interaction with the hormonal status is supported by the fact that the fusion genes are all positively regulated by androgens\(^42\) and ERG and androgen receptor signaling interact at the gene transcription level.\(^43,44\)

Association of ERG\(^+\) with younger age at diagnosis suggests a speed-up of progression of early cancer lesions to a clinically relevant tumor. At the current time, there is strong emerging genomics data that ETS\(^+\) and ETS- PCas are different. ERG\(^+\) and AR have overlapping DNA binding sites\(^45\) and DNA rearrangement breakpoints were enriched near open chromatin,
These results are in agreement with previous studies and meta-

...cohort progressed after RP with rising serum PSA. Neither the

...examination were available for 71.4% of the patients. However, no

...detection at a younger age and is associated with lower PSA levels

CONCLUSIONS

ERG overexpression is significantly more frequent in tumors detected at an older age. ERG overexpression is significantly associated with a higher TV but not with differences in PSA. ERG overexpression seems to accelerate carcinogenesis and drive prostate tumors to early clinical manifestation and detection but have no effect on tumor progression.

REFERENCES

1. Heidenreich A, Bellmunt J, Bolla M, Joniau S, Mason M, Matveev V et al. EAU guidelines on prostate cancer. Part 1: screening, diagnosis, and treatment of clinically localised disease. *Eur Urol* 2011; 59: 61–71.
2. Malvezzi M, Bertuccio P, Levi F, La Vecchia C, Negri E. European cancer mortality predictions for the year 2012. *Ann Oncol* 2012; 23: 1044–1052.
3. Jemal A, Siegel R, Xu J, Ward E. Cancer statistics, 2010. *CA Cancer J Clin* 2010; 60: 277–300.
4. Tomlins SA, Rhodes DR, Perner S, Dhanasekaran SM, Mehra R, Sun X-W et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. *Science* 2005; 310: 644–648.
5. Esgueva R, Perner S, Naarek C, Scheble V, Stephan C, Lein M et al. Prevalence of TMPRSS2-ERG and SLC45A3-ERG gene fusions in a large prostatectomy cohort. *Mod Pathol* 2010; 23: 539–546.
6. Mosquera J-M, Perner S, Genega EM, Sanda M, Hofer MD, Mertz KD et al. Characterization of TMPRSS2-ERG fusion high-grade prostate intraepithelial neoplasia and potential clinical implications. *Clin Cancer Res* 2008; 14: 3380–3385.
7. Perner S, Mosquera J-M, Demichelis F, Hofer MD, Paris PL, Simko J et al. TMPRSS2-ERG fusion prostate cancer: an early molecular event associated with invasion. *Am J Surg Pathol* 2007; 31: 882–888.
8. He H, Magi-Galluzzi C, Li J, Carver P, Fizazi K, Smith K et al. The diagnostic utility of novel immunohistochemical marker ERG in the workup of prostate biopsies with ‘atypical glands suspicious for cancer’. *Am J Surg Pathol* 2011; 35: 608–614.
9. Tomlins SA, Palansky N, Siddiqui J, Chinnaiyan AM, Kunju LP. Antibody-based detection of er rearrangements in prostate core biopsies, including diagnostically challenging cases: ERG staining in prostate core biopsies. *Arch Pathol Lab Med* 2012; 136: 935–946.
10. Perner S, Demichelis F, Berozikhim R, Schmidt H, Mosquera J-M, Setlur S et al. TMPRSS2:ERG fusion-associated deletions provide insight into the heterogeneity of prostate cancer. *Cancer Res* 2006; 66: 8337–8341.
11. Park K, Tomlins SA. Mandard KM, Chiu Y-L, Esgueva R, Mehra R et al. Antibody-based detection of ERG rearrangement-positive prostate cancer. *Neoplasia* 2010; 12: 590–598.
12. Furusato B, Tan SH, Young D, Dobi A, Sun C, Mohamed AA et al. ERG oncprotein expression in prostate cancer: clonal progression of ERG-positive tumor cells and potential for ERG-based stratification. *Prostate Cancer Prostatic Dis* 2010; 13: 228–237.
13. Perner S, Svensson MA, Hossain RR, Day JR, Groskopf J, Slaughter RC et al. ERG rearrangement metastasis patterns in locally advanced prostate cancer. *Urology* 2010; 75: 762–767.
14. Hoogland AM, Jenster G, van Weerden WM, Trapman J, van der Kwast T, Roobol MJ et al. ERG immunohistochemistry is not predictive for PSA recurrence, local recurrence or overall survival after radical prostatectomy for prostate cancer. *Mod Pathol* 2012; 25: 471–479.
15. Pettersson A, Graff RE, Bauer SR, Pitt MJ, Lis RT, Stack EC et al. The TMPRSS2:ERG rearrangement, ERG expression, and prostate cancer outcomes: a cohort study and meta-analysis. *Cancer Epidemiol Biomarker Prev* 2012; 21: 1497–1509.

© 2013 Macmillan Publishers Limited

Prostate Cancer and Prostatic Disease (2013), 132 – 138

Table 4. Logistic and Cox regression analysis for identification of factors associated with ERG + status

Factor	RR	95% CI	P-value
Logistic regression—univariate			
Age quartile 1	1.81	1.35–2.44	0.000*
Age quartile 2	1.18	0.91–1.56	0.260
Age quartile 3	0.90	0.71–1.20	0.460
Age quartile 4	0.53	0.40–0.70	0.000*
PSA range <4	1.65	1.23–2.22	0.001*
PSA range 4–10	0.68	0.52–0.91	0.007*
PSA range >=10	0.87	0.59–1.30	0.501
GS group <7	0.91	0.71–0.91	0.461
GS group =7	1.31	1.02–1.69	0.030*
GS group >7	0.65	0.44–0.96	0.290

Logistic regression—multivariate step 1	OR	95% CI	P-value
GS group >7	1.00		0.27
GS group <7	1.13	0.62–2.07	0.69
GS group =7	1.45	0.84–2.51	0.18
PV, ml	0.99	0.97–1.00	0.05
PSA range <4	1.00		0.58
PSA range >=4	0.77	0.40–1.49	0.43
PSA range 4–10	0.72	0.39–1.33	0.30
Age quartile 1	1.00		0.05
Age quartile 2	2.03	1.17–3.50	0.01*
Age quartile 3	1.41	0.87–2.28	0.17
Age quartile 4	1.07	0.66–1.75	0.78
fPSA%	0.99	0.96–1.02	0.65

Logistic regression—multivariate final backward step 4	OR	95% CI	P-value
Age quartile 4	1.00		0.036*
Age quartile 1	2.05	1.22–3.44	0.007*
Age quartile 2	1.42	0.89–2.28	0.146
Age quartile 3	1.01	0.67–1.76	0.673
PV, ml	0.99	0.99–1.00	0.031*

Cox regression (inclusion model)	RR	95% CI	P-value
ERG +	1.25	1.09–1.44	0.001*
PSA	0.96	0.94–0.97	<0.001*

Abbreviations: CI, confidence interval; GS, gleason score; OR, odds ratio; PV, prostate volume.

*P < 0.05. Multivariate logistic regression was performed using a stepwise backward elimination model. OR values of 1.00 indicate reference values with no CI computable. Data of the first and the last steps are shown. For Cox regression the inclusion model was applied.

AR and ERG DNA binding sites in ETS + but not ETS- tumors.46,47 Taken together mounting data would support ERG + PCs as a distinct molecular subclass of PCs.

Information on progression risk based on PSA values at diagnosis, biopsy GS and clinical stage assessed by digital rectal examination were available for 71.4% of the patients. However, no correlation of the D’Amico progression risk classification and ERG overexpression was found. About every tenth men of our PCa cohort progressed after RP with rising serum PSA. Neither the number of progressing patients nor the median disease-free survival times were statistically different in the two ERG categories. These results are in agreement with previous studies and meta-analysis.14,15,46 On the other hand association of an ERG rearrangement with cancer specific death was reported for a watchful waiting cohort.11 This calls for more long-term outcome results to establish the impact of ERG overexpression on the course and death of PCs.
16 Attard G, Clark J, Ambrosiou L, Fisher G, Kovacs G, Flohr P et al. Duplication of the fusion of TMPRSS2 to ERG sequences identifies fatal human prostate cancer. Oncogene 2008; 27: 253–263.

17 Demichelis F, Fall K, Perner S, Andreu O, Schmidt F, Settlur SR et al. TMPRSS2:ERG gene fusion associated with lethal prostate cancer in a watchful waiting cohort. Oncogene 2007; 26: 4596–4599.

18 Casey OM, Fang L, Hynes PG, Abou-Kheir WG, Martin PL, Tillman HS et al. TMPRSS2–driven ERG expression in vivo increases self-renewal and maintains expression in a castration resistant subpopulation. Plos One 2012; 7: e41668.

19 Leshem O, Madar S, Kogan-Sakin I, Kamer I, Goldstein I, Brosh R et al. Identification of functionally active, low frequency copy number variants at 16q21.3 and 12q21.31 associated with prostate cancer risk. Cancer Cell 2011; 19: 1910–1916.

20 Bartsch G, Horninger W, Klocker H, Pelzer A, Bektic J, Oberaigner W et al. Prostate-specific antigen testing in Tyrol, Austria: prostate cancer mortality reduction was supported by an update with mortality data up to 2008. Int J Public Health 2012; 57: 57–62.

21 Oberaigner W, Siebert U, Horninger W, Klocker H, Bektic J, Schafer G et al. Prostate-specific antigen testing in Tyrol, Austria, after introduction of prostate-specific antigen testing. Am J Epidemiol 2006; 164: 376–384.

22 Epstein JI, Allsbrook WC, Amin MB, Egevad LL. The 2005 International Society of Urological Pathology (ISUP) consensus conference on gleason grading of prostate carcinoma. Am J Surg Pathol 2005; 29: 1228–1242.

23 Epstein JI, Allsbrook WC, Amin MB, Egevad LL. The 2005 International Society of Urological Pathology (ISUP) consensus conference on gleason grading of prostate carcinoma. Eur Urol 2006; 49: 662–667.

24 Lowrance WT, Scardino PT. Predictive models for newly diagnosed prostate cancer patients. Rev Urol 2009; 11: 117–126.

25 Magi-Galluzzi C, Tsusuki T, Elson P, Simmerman K, LaFargue C, Esgueva R et al. Family history of prostate cancer and prostate-specific antigen testing as predictive models for newly diagnosed prostate cancer. Eur Urol 2010; 57: 821–829.

26 Ewing K, Cleveland RH, Perea MD, Wilt TJ, Kramer BS et al. Positive family history of prostate cancer and risk of prostate cancer. JAMA Intern Med 2012; 172: 889–896.

27 Gaulier JM, Huggins C, Grisanti S, Lifshitz B, Sebo TJ et al. Clinical implications of TMPRSS2:ERG gene fusion expression in patients with prostate cancer treated with radical prostatectomy. J Urol 2010; 183: 2054–2061.

28 Bartsch G, Horninger W, Klocker H, Pelzer A, Bektic J, Oberaigner W et al. Androgen receptor in regulating trefoil factor 3 in prostate cancer disease progression. Clin Cancer Res 2010; 16: 1572–1576.

29 Tomlins SA, Aubin SM, Siddiqui J, Lonigro RJ, Sefton-Miller L, Mikl S et al. Urine TMPRSS2:ERG fusion transcript stratifies prostate cancer risk in men with elevated serum PSA. Sci Transl Med 2011; 3: 94ra72.

30 Leyten GH, Hesiusi D, Jannink SA, Smitt FP, de Jong H, Cornel EB et al. Prospective multicentre evaluation of PCA3 and TMPRSS2:ERG Gene fusions as diagnostic and prognostic urinary biomarkers for prostate cancer. Eur Urol 2012; 50: 328–338.

31 Gasi D, Trapman J. Androgen regulation of ETS gene fusion transcripts in prostate cancer. Methods Mol Biol 2011; 776: 335–348.

32 Mosquera JM, Mehra R, Regan MM, Perner S, Genega EM, Buett G et al. Prevalence of TMPRSS2:ERG fusion prostate cancer among men undergoing prostate biopsy in the United States. Clin Cancer Res 2009; 15: 4706–4711.

33 Miyagi Y, Sasaki T, Fujinami K, Sano J, Senga Y, Miura T et al. ETS family-associated gene fusions in Japanese prostate cancer: analysis of 194 radical prostatectomy samples. Mod Pathol 2010; 23: 1492–1498.

34 Leimonen RA, Tokonen TT, Bracken H, Stemman U-H, Tammela TLJ, Saramaki OR et al. Association of SPINK1 expression and TMPRSS2:ERG fusion with prognosis in endocrine-treated prostate cancer. Clin Cancer Res 2010; 16: 2845–2851.

35 Falzarano SM, Zhou M, Hernandez AV, Klein EA, Rubin MA, Magi-Galluzzi C. Single focus prostate cancer: pathological features and ERG fusion status. J Urol 2011; 185: 489–494.

36 Rice KR, Chen Y, Ali A, Whitman EJ, Blase A, Ibrahim M et al. Evaluation of the ETS-related gene mRNA in urine for the detection of prostate cancer. Clin Cancer Res 2010; 16: 1572–1576.

37 Leyten GH, Hesiusi D, Jannink SA, Smitt FP, de Jong H, Cornel EB et al. Prospective multicentre evaluation of PCA3 and TMPRSS2:ERG Gene fusions as diagnostic and prognostic urinary biomarkers for prostate cancer. Eur Urol 2012; 50: 328–338.

38 Falzarano SM, Zhou M, Carver P, Tszuki T, Simmerman K, He H et al. ETS gene rearrangement status in prostate cancer detected by immunohistochemistry. Virchows Archiv 2011; 459: 441–447.

39 Falzarano SM, Zhou M, Carver P, Tszuki T, Simmerman K, He H et al. ETS gene rearrangement status in prostate cancer detected by immunohistochemistry. Virchows Archiv 2011; 459: 441–447.

40 Tomlins SA, Aubin SM, Siddiqui J, Lonigro RJ, Sefton-Miller L, Mikl S et al. Urine TMPRSS2:ERG fusion transcript stratifies prostate cancer risk in men with elevated serum PSA. Science Transl Med 2011; 3: 94ra72.

41 Elmlinger MW, Kuhnelt W, Warmstall H, Doller PC. Reference intervals for testosterone, androstenedione and SHBG levels in healthy females and males from birth until old age. Clin Lab 2005; 51: 625–632.

42 Gasi D, Trapman J. Androgen regulation of ETS gene fusion transcripts in prostate cancer. Methods Mol Biol 2011; 776: 335–348.

43 Chen Y, Sawyer CL. Coordinate transcriptional regulation by ERG and androgen receptor in fusion-positive prostate cancers. Cancer Cell 2010; 17: 415–416.

44 Rickman DS, Chen YB, Barnerjee S, Pan Y, Yu J, Vuong T et al. ERG cooperates with androgen receptor in regulating trefoil factor 3 in prostate cancer disease progression. Neoplasia 2010; 12: 1031–1040.

45 Yu J, Yu J, Mani RS, Cao Q, Brenner CJ, Cao X et al. An integrated network of androgen receptor, polycomb, and TMPRSS2:ERG gene fusions in prostate cancer progression. Cancer Cell 2010; 17: 443–454.

46 Berger MF, Lawrence MS, Demichelis F, Dier Y, Cibulskis K, Sivachenko AY et al. The genomic complexity of primary human prostate cancer. Nature 2011; 470: 214–220.

47 Rickman DS, Soong TD, Moss B, Mosquera JM, Dilabio J, Terry S et al. Oncogene-mediated alterations in chromatin conformation. Proc Natl Acad Sci USA 2012; 109: 9083–9088.

48 Minner S, Enodien M, Sirma H, Luebke AM, Krohn A, Mayer PS et al. Testing mutual exclusivity of ETS rearranged prostate cancer. Lab Invest 2011; 91: 404–412.

49 Magi-Galluzzi C, Tsusuki T, Elson P, Simmerman K, LaFargue C, Esgueva R et al. TMPRSS2:ERG gene fusion prevalence and class are significantly different in prostate cancer of Caucasian, African-American and Japanese patients. Prostate 2011; 71: 489–497.

50 Rubio-Brones J, Fernandez-Serra A, Calatrava A, Garcia-Casado Z, Rubio L, Bonillo MA et al. Clinical implications of TMPRSS2:ERG gene fusion expression in patients with prostate cancer treated with radical prostatectomy. J Urol 2010; 183: 2054–2061.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/