A Versatile Metagenome Purification Method to Identify Uncultivable Bacteria by Denaturing Gradient Gel Electrophoresis (DGGE) from Sediments and Soils

Lourdes Reyes-Escogido, Ingrid Rodríguez-Buenfil*, Jesús Valdés, Luis Kameyama, Odila Saucedo Cárdenas and Francisco Martínez-Pérez*

*1Unidad Sureste, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., México
2Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del I.P.N., México
3Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Nuevo Léon y División de Genética, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey, N.L., México

Abstract

Here, we report a versatile metagenome purification method to identify uncultivable species from sediments and soils by nested-PCR-DGGE according to 16S rDNA. This combination of methods uses enzymatic lysis *in situ*, polyvinylpyrrolidone (PVP), Chelex 100, glass bead-silica gel and chaotropic salts, with the advantage that it can be applied to different soils.

Keywords: Metagenome purification; Agriculture; Costal lagoon; Hypersaline soils; DGGE; rDNA 16S

Metagenomics is the study of the genomic repertoire of all the organisms living in a particular environment and their activities as a collective [1]. Metagenomes have been purified from soils and other niches, with an estimated 10^3-10^7 species/g [2,3]. To determine the diversity of a microbial community, a common gene present in all species, such as the 16S ribosomal gene (16S rDNA), is amplified by PCR and their amplicons are separated by DGGE, or can be used to generate libraries [4,5]. Since, each amplicon is derived from one genome; their sequences provide taxonomic information and the physiological connections of every species within the community. Therefore, the sequences of the primers, metagenome purity and integrity are essential factors for biodiversity determinations.

A common protocol or commercial kit for metagenome purification from soils or sediments has not been published yet. However, all of them aim to 1) obtain the majority of genomes to represent actual diversity, 2) keep the integrity of each genome, and 3) eliminate humic substances which can inhibit PCR [3,4].

Several protocols were combined to obtain a general method for metagenome purification from sediments of coast lagoons with different salinity concentrations, forests with petrified waterfalls or geysers and soils employed as garbage collector from agricultural and livestock sector (papaya harvest, henequen production and cattle farm). Such method was used to determine the presence of *Lactobacillales* and *Firmicutes* strains with nested-PCR-DGGE.

To prevent cellular lysis by osmotic change and to eliminate debris and humic acids in hypersaline samples, 0.5 g of sediments were homogenized/washed in 5 ml TEN Buffer (100 mM Tris-HCl, pH 7.5; 10 mM EDTA, pH 8; 200 mM NaCl) and centrifuged at 4,000 g for 5 min. All other sediments were washed 4 times in TE Buffer (without NaCl). Cell lysis was carried out *in situ*, the sample was resuspended in 1 ml of TET buffer (100 mM Tris-HCl, pH 8; 10 mM EDTA, pH 8; 1% Triton X-100 (W/V) with 500 μg/ml hen egg white lysozyme (USP)) and was heated in a micro-wave oven [7] at 300 Watts for 5 seconds (applying >400 Watts may result in soil blow ups), and incubated twice for 5 min at 55°C. Proteinase K (500 μg/ml; Invitrogen) and 0.05 ml of SDS at 10% (W/V) were added and incubated as before.

Figure 1: Bacterial communities were determined by nested PCR-DGGE. Soil samples were from hypersaline sediment (lane 1), lagoons (2-4), garbage collector from agricultural sectors (5-6), forest with petrified waterfalls and geiser (7-8) and cattle farm (9). Geographic localizations are described in Table 1. The numbers indicate the sequenced amplicons. The amplicons reported in the Gen-Bank appear in italics and underlined. The arrow shows the direction of the urea gradient.

Corresponding author: Francisco Martínez-Pérez, Unidad Sureste, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Colonia García Gineres, Merida 97070, Yucatan, Mexico, Tel: +52 9999 202671; Fax: +52 9999 202671; E-mail: fmarti2@correo.unam.mx

Received August 06, 2012; **Accepted** August 29, 2012; **Published** August 30, 2012

Citation: Reyes-Escogido L, Rodríguez-Buenfil I, Valdés J, Kameyama L, Cárdenas OS, et al. (2012) A Versatile Metagenome Purification Method to Identify Uncultivable Bacteria by Denaturing Gradient Gel Electrophoresis (DGGE) from Sediments and Soils. J Bacteriol Parasitol 3:147. doi:10.4172/2155-9597.1000147

Copyright: © 2012 Reyes-Escogido L, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
The differences with other protocols or commercial kits account for the use of this method for diverse soils. The microwave heat-enzymatic-Chlex 100 treatments released complete genomes eliminating the need of phenol-chloroform extractions. Furthermore, PVPP and glass silica beads removed most contaminants that inhibit PCR-DGGE. Therefore, with this strategy bacterial diversity can be determined fast and without the requirement of any special equipment.

Acknowledgements
This work was supported by the Fondo Sectorial de Investigación Ambiental grant FOSEMARNAT-2004-01-280 (to FJMP).

References
1. Medini D, Serruto D, Parkhill J, Relman DA, Donati C, et al. (2008) Microbiology in the post-genomic era. Nat Rev Microbiol 6: 419-430.
2. Fierer N, Breitbart M, Nulton J, Salamon P, Lozupone C, et al. (2007) Metagenomic and small-subunit rRNA analyses reveal the genetic diversity of bacteria, archaea, fungi, and viruses in soil. Appl Environ Microbiol 73: 7059-7066.
3. Schmeisser C, Steele H, Streit WR (2007) Metagenomics, biotechnology with non-culturable microbes. Appl Microbiol Biotechnol 75: 955-962.
4. Streit WR, Schmitz RA (2004) Metagenomics-the key to the uncultured microbes. Curr Opin Microbiol 7: 492-498.
5. Nocker A, Burr M, Camper AK (2007) Genotypic microbial community profiling: a critical technical review. Microb Ecol 54: 476-498.
6. Schneegurt MA, Dore SY, Kulp CT, Jr (2003) Direct extraction of DNA from sediments. Appl Environ Microbiol 71: 46-50.
7. Schmeisser C, Steele H, Streit WR (2007) Metagenomics-the key to the uncultured microbes. Curr Opin Microbiol 7: 492-498.
8. Schneegurt MA, Dore SY, Kulp CT, Jr (2003) Direct extraction of DNA from sediments. Appl Environ Microbiol 71: 46-50.
9. Miller DN, Bryant JE, Madsen EL, Ghiorse WC (2004) Metagenomics-the key to the uncultured microbes. Curr Opin Microbiol 7: 492-498.
10. Reyes-Escogido L, Balam-Chi M, Rodríguez-Buenfil I, Valdés J, Kameyama L, et al. (2010) Purification of bacterial genomic DNA in less than 20 min using chelex-100 microwave: examples from strains of lactic acid bacteria isolated from soil samples. Antonie Van Leeuwenhoek 98: 465-474.

11. Sheffield VC, Cox DR, Lerman LS, Myers RM (1989) Attachment of a 40-base-pair G + C-rich sequence (GC-clamp) to genomic DNA fragments by the polymerase chain reaction results in improved detection of single-base changes. Proc Natl Acad Sci U S A 86: 232-236.