Metal Transport and Chemical Heterogeneity in Early Star Forming Systems

Jeremy S. Ritter, Alan Sluder, Chalence Safranek-Shrader, Miloš Milosavljević and Volker Bromm
Department of Astronomy, University of Texas at Austin, Austin, TX 78712, USA

5 August 2014

ABSTRACT

To constrain the properties of the first stars with the chemical abundance patterns observed in metal-poor stars, one must identify any non-trivial effects that the hydrodynamics of metal dispersal can imprint on the abundances. We use realistic cosmological hydrodynamic simulations to quantify the distribution of metals resulting from one Population III supernova and from a small number of such supernovae. Overall, supernova ejecta remain highly inhomogeneous throughout the simulations. When the supernova bubbles collapse, quasi-virialized metal-enriched clouds, fed by fallback from the bubbles and by streaming of metal-free gas from the cosmic web, grow in the centers of the dark matter halos. Partial turbulent homogenization on scales resolved in the simulation is observed in the clouds, and the vortical time scales are short enough to ensure true homogenization on subgrid scales. However, the abundances in the clouds differ from the gross yields of the supernovae. Continuing the simulations until the cloud have gone into gravitational collapse, we predict that the abundances in second-generation stars will be deficient in the innermost mass shells of the supernova (if only one has exploded) or in the ejecta of the latest supernovae (when multiple have exploded). This indicates that hydrodynamics gives rise to biases complicating linear mapping between nucleosynthetic sources and abundance patterns in surviving stars.

Key words: dark ages, reionization, first stars — galaxies: dwarf — galaxies: formation — methods: numerical — stars: abundances — stars: Population II

1 INTRODUCTION

The chemical abundance patterns of metal-poor and ancient stellar populations and intergalactic absorption systems provide information about the earliest stages of chemical enrichment (for reviews, see Beers & Christlieb 2005 [Frebel & Norris 2013] [Karlsson et al. 2013]). Because the first stellar systems were likely enriched by only a few discrete sources, one must interpret the inherent complexity of enrichment in relating the abundance patterns measured in metal-poor stars to theoretical models [Audouze & Silk 1995]. Cosmic star formation, the driver of enrichment, is already stochastic thanks to the randomness of cosmic primordial density fluctuations. Significant additional complexity enters chemical enrichment through the turbulent hydrodynamics of the intergalactic and interstellar medium, the stochasticity of the star formation process, and the mechanics of the dispersal of nucleosynthetic products from their sources—supernovae and stellar mass loss. The effects of complexity are partially, though perhaps not completely erased through the stirring and mixing in mature star forming systems like the Milky Way’s disk. But in ancient stellar populations, we expect vestiges of the complexity to persist, requiring us to model it as much as possible from first principles (e.g., Wise & Abel 2008, Wise et al. 2012, Ritter et al. 2012).

A critical source of uncertainty entering chemical evolution models is the chemical yields of supernovae. The yields could vary drastically with the progenitor mass, rotation rate, the presence of a binary companion, and initial metal content (e.g., Heger & Woosley 2002). In the case of core-collapse supernovae, first-principles theoretical modeling is still not sufficiently predictive to permit direct synthesis of the observed stellar abundance patterns. What is worse, the yields may not be deterministic and could be sensitive to instabilities taking place immediately prior to and in the course of the explosion (e.g., Arnett & Meakin 2011, Wongwathanarat et al. 2013) [Smith & Arnett 2014]. It has therefore been a longstanding hope that the process of nucleosynthesis will be reverse engineered from the abundance patterns (e.g., Talbot & Arnett 1973, Nomoto et al. 2013). Principal component analysis (PCA) can be applied in the stellar chemical abundance space to discern the contributing classes of nucleosynthetic sources, be they individual stars or star clusters (e.g., Ting et al. 2012), if one posits that abundance patterns of the sources define monolithic basis vectors of the resulting stellar abundance space. The situation becomes much more compli-
distributed if the hydrodynamics of metal dispersal skews the patterns, introducing biases absent in the sources themselves. Properly characterizing such biases would place the recovery of the properties of nucleosynthetic sources from stellar abundance data on much firmer footing.

The most primitive and metal-poor stellar populations known, the ultra-faint dwarf spheroidal satellites of the Milky Way (UFDs; Brown et al. 2012; Frebel & Bromm 2012; Vargas et al. 2013; Frebel et al. 2014), the Milky Way’s stellar halo which is thought to have formed through the disruption of dwarf satellite galaxies, and possibly a sub-population within the Milky Way bulge, could be particularly sensitive to hydrodynamical biases, given the low masses and gravitational potential well depths of the progenitor star-forming systems and the low numbers of contributing supernovae. Here we make an initial attempt to identify these biases with ultra-high-resolution cosmological hydrodynamic simulations. We track the degree of chemical heterogeneity in the enrichment by a single supernova, and a cluster of seven consecutive supernovae, exploding in a previously metal-free cosmic minihalo, a plausible UFD progenitor (Ricotti et al. 2008; Salvadori & Ferrara 2009). The two simulations are initialized from cosmological initial conditions as in Safranek-Shrader et al. (2012). The methods were similar to and improvements of those in Ritter et al. (2012) and will be described in detail in follow-up papers.

2 NUMERICAL METHODOLOGY

The simulations were initialized from the same realization of cosmological initial conditions as in Safranek-Shrader et al. (2012). The methods were similar to and improvements of those in Ritter et al. (2012) and will be described in detail in follow-up papers. Briefly, we simulated the gravitational collapse of collisionless dark matter and baryonic fluid in a box of size 1 Mpc (comoving) starting at redshift $z = 146$. The initial density and velocity perturbations were generated with the multiscale cosmological initial conditions package GRAPIC2 (Bertschinger 2001) with Wilkinson Mi-

crowave Anisotropy Probe 7-year cosmological parameters (Komatsu et al. 2011). We utilized two levels of nested refinement to achieve an effective resolution of 512^3, corresponding to $230 M_\odot$ per dark matter particle, in a patch encompassing the density maximum on mass scales $10^8 M_\odot$. Time integration was carried out with the adaptive mesh refinement (AMR) code FLASH (Fryxell et al. 2000) as described in Safranek-Shrader et al. (2012). The AMR resolution was dynamically and adaptively adjusted throughout the simulation to resolve the structures of interest: the initial baryonic collapse in the halo, the evolution of supernova remnants and the structure of the supernova bubble, and the eventual recollapse of metal-enriched gas. In what follows, we assume proper physical as opposed to comoving units. Metallicities are quoted in absolute metal mass fractions unless specified otherwise.

When gas in a $\approx 10^6 M_\odot$ minihalo, cooled by H$_2$ rovibrational emission, has collapsed to density $\gtrsim 10^3$ cm$^{-3}$, a single collisionless particle representing a Population III star (simulation 1SN) or a small cluster of such stars (simulation 7SN) was inserted. The equivalent gas mass was removed by reducing the nearby gas density to a constant maximum level. In view of the recent realization that protostellar disk fragmentation (Stacy et al. 2010; Clark et al. 2011a,b; Greif et al. 2011; 2012) and evaporation by protostellar radiation (Hosokawa et al. 2011; Stacy et al. 2012) can limit the masses of Population III stars in the few tens of solar masses, we picked their masses to be in the range $20 - 80 M_\odot$ with typical values $\sim 40 M_\odot$ and assumed for simplicity that they all exploded with energies 10^{51} erg. Preceding the first explosion, we let the collisionless particle emit ionizing radiation for 3 Myr with ionizing luminosity Q_{ion}, creating an H II region. Hydrodynamic expansion of the ionized gas reduced the central gas density to $n \sim 0.3$ cm$^{-3}$. After 3 Myr, we either inserted a single supernova remnant (1SN; $Q_{ion} = 6 \times 10^{49}$ photons s$^{-1}$) or initiated a sequence of 7 consecutive supernovae (7SN; $Q_{ion} = 2.2 \times 10^{50}$ photons s$^{-1}$), all centered on the location of the collisionless particle.

In 1SN we excised from the cosmological simulation a 1 kpc region centered on the collisionless particle, replacing the dark matter particles with a crude, parametric, spherically symmetric, time-dependent analytical dark matter density profile (in the local rest frame of the host dark matter halo). The baryonic density and velocity field from the cosmological box was mapped directly onto the excised region, allowing us to continue the simulation in the interior of the excised region at high spatial resolution. The supernova ejecta mass was set to $40 M_\odot$. In 7SN, the seven supernova delay times $3.1 - 7.7$ Myr (measured after collisionless particle insertion) were selected to represent the lifetimes of stars with masses decreasing from 80 to $20 M_\odot$, following a stellar IMF with a flat $dN/d\ln M$. Each of the supernovae was inserted in the free expansion phase, with $E_{SN} = 10^{51}$ erg in kinetic energy and an initial radius smaller than one-tenth of the radius containing gas mass equal to that of the ejecta. The ejecta masses were in the range $25 - 18.5 M_\odot$, diminishing with the order of the explosion.

The grid resolution at each supernova insertion was $\ll 0.03$ pc, and somewhat coarser for the later supernovae in 7SN exploding inside the bubble containing gas shocked by preceding supernovae. As each remnant expanded, we degraded the resolution while ensuring that the diameter of the remnant (or superbubble) was resolved by at least 256 cells. In the late stages of the simulations, we degraded the AMR resolution in regions causally disconnected from the halo center. In all supernovae we assumed that 10% of the ejecta mass was in metals, with α-enhanced solar abundances ($[\alpha/Fe] = 0.5$). In the thermodynamic calculations (but not in tracking metal dispersal in 1SN), we assumed that the metal abun-
dances were homogeneous within each supernova’s ejecta. The tracking of ejecta was carried out with Lagrangian passive tracer particles, \(N_{\text{trace}} = 10^7\) in 1SN and \((2 - 3) \times 10^6\) per supernova or a total of \(N_{\text{trace}} \approx 2 \times 10^7\) in 7SN. The tracers allowed us to connect ejecta fluid elements to their origin in the explosions. In 1SN they allowed us to distinguish between the ejecta originating in distinct mass shells within the explosion, and in 7SN, in different supernovae. It is worth noting that the numerical limitations affecting tracers are distinct from the diffusion (or “numerical teleportation”) of passive mass scalars, a common issue affecting tracers are distinct from the diffusion (or “numerical teleportation”) of passive mass scalars, a common issue affecting convection flows are difficult to adequately resolve in cosmological simulations, survival of neutral clouds inside the primordial H II region is expected from the analytical evaporation solutions of Bertoldi & McKee (1990). The densest clouds with central densities \(n \lesssim 10\,\text{cm}^{-3}\) and distances \(\sim 50 - 100\,\text{pc}\) from the center of the halo are associated with the filamentary inflow from the cosmic web. Supernova blastwaves swept past these clouds, partially ablating them and depositing some ejecta material at the perimeters of the clouds. The blastwave-cloud interaction drove turbulence inside the bubble. The ablated primordial gas found itself inside the hot, turbulent interior, where it appeared to be susceptible to turbulent-stirring-aided mixing, especially in the multi-supernova simulation. This intra-bubble mixing resulted in a modest, factor of \(\lesssim 10\) dilution of the ejecta by the primordial gas.

After \(\sim 0.13\) and \(\sim 1\,\text{Myr}\) from the (first) explosion in simulation 1SN and 7SN, respectively, the ejecta material started to accumulate in the pressure-driven snowplow shell. The shell was thin \(< 10\,\text{pc}\) and not adequately resolved at grid resolution \(\sim 0.5 - 1\,\text{pc}\). The insufficient resolution blurred the contact discontinuity and its associated compositional gradient. As a result, the metallicity derived from the passive mass scalar was diluted to \(Z \sim 10^{-3} - 10^{-5}\) in the thin shell. Rayleigh-Taylor (RT) fingers first became prominent in the shell after \(\sim 3\,\text{Myr}\) and then became extended, with length scales comparable to the radius of the bubble, at \(\sim 20\,\text{Myr}\). The long-term hydrodynamical evolution of the supernova bubble was highly anisotropic, with a fraction of the ejecta and swept-up primordial medium traveling many halo virial radii perpendicular to the cosmic web filaments, and another \(\sim 50\%\) of the ejecta remaining within the virial radius.

After the supernova bubbles started to collapse, the bubble interiors cooled to \(\sim 10^4\,\text{K}\) and began intermixing with the ambient unshocked gas. Dual inflows fed toward the halo center: from the infall of unenriched, primordial clouds (including from merging halos in 7SN), and from the fragments of the buckling shell. The terminus of the inflows was a turbulent quasi-virialized (or quasi-hydrostatic) cloud in which turbulence was stirred by gravitational infall. Figure 1 illustrates the overall geometry of the metal distribution at this stage. It shows a homogenized low-metallicity interior surrounded by more metal rich, inhomogeneous clouds.

Figure 2, plotting the amplitude of the fluid vorticity, shows...
that vortical time scales in the quasi-virialized cloud are $|\nabla \times \mathbf{v}|^{-1} \sim 0.1 - 1$ Myr, short enough to facilitate multiscale fluid mixing over tens of Myr. Vorticity is the highest near the center of each plot, where the metal-enriched gas has gone into runaway gravitational collapse. We expect the collapse to ultimately lead to the formation of second-generation stars. Outside the quasi-virialized cloud, the vortical time scales are longer, 10–100 Myr, precluding mixing. Figure 2 shows the joint distribution of gas density and metallicity in the two simulations. Metallicity spread in low-density gas is high, indicating a high degree of inhomogeneity. The spread decreases with increasing density, becoming narrow for dense gas, a consequence of rapid turbulent homogenization. The densest gas is high, indicating a high degree of inhomogeneity.

We proceed to analyze how hydrodynamic dispersal depends on the nucleosynthetic site. In analyzing simulation 1SN, we split the ejecta at supernova insertion into $N_{\text{bin}} = 7$ radial bins containing equal ejecta masses and treat the bin index $i = 1, \ldots, N_{\text{bin}}$ as a crude proxy for the isotopic group synthesized in the corresponding bin. For example, the innermost bins could contain the explosively synthesized Fe peak and α elements, the intermediate bins could be rich in light hydrostatic elements (C and O), and the outermost bins would contain H and He. This idealizes the explosion as preserving spherical symmetry, which is certainly not the case, as symmetry is strongly broken by convection preceding and during the collapse and by RT fingering during the explosion (our simulations can capture the RT instability in the remnant but not in the explosion). However, we expect that the radial “dredging” of elements by instabilities (and rotation-driven mixing, see, e.g., Maeder & Meynet 2012) is incomplete and that some radial stratification is preserved until the ejecta enter free expansion. In analyzing simulation 7SN, we ignore the stratification inside each explosion, and take the bin index $i = 1, \ldots, N_{\text{bin}}$ to range over the $N_{\text{bin}} = N_{\text{SN}} = 7$ supernovae.

We first examine the degree to which the ejecta in different bins are stirred with each other (to be further discussed in a follow-up paper). In 1SN, the outer, high-velocity mass shells of the ejecta are well stirred between themselves, but inner mass shells remain highly inhomogeneous. In 7SN, the ejecta from supernovae separated by short time intervals are well stirred with each other. The ejecta from later supernovae, separated from the earlier supernovae by the longest time intervals, remain inhomogeneous.

We call the enrichment by the source (a single supernova in 1SN and a cluster of supernovae in 7SN) monolithic if the density of isotope A at location x is proportional to the sum of the isotopic yields of individual bins $Y_{i,A}$ over the bin index. Specifically,

$$\rho_{i,A}(x) \propto Z(x)\rho(x) \frac{Y_{A}}{\sum_{A} Y_{A}}, \quad \text{(monolithic)},$$

where

$$Y_{A} \equiv \sum_{i=1}^{N_{\text{bin}}} Y_{i,A} \quad \text{(2)}$$

and $\rho(x)$ and $Z(x)$ are the total mass density and total metallicity from the enrichment event, respectively, such that $\int Z \rho d^{3}x = \sum_{A} Y_{A}$. It is standard to assume (e.g., Ting et al. 2012) that enrichment is indeed monolithic so that each enrichment event C defines a unique chemical space vector $Y^{(C)} = (Y_{A1}, \ldots, Y_{AN}) \sim Y^{(C)}$ representative of a class C of nucleosynthetic sources (e.g., core collapse events with or without r-process).

If star formation takes place at space-time points (x_k, t_k), then stellar abundances are given by

$$Z_{k,A} = \frac{1}{\rho(x_k, t_k)} \sum_{\xi} \rho_{\xi}(x_k, t_k) \frac{Y_{A}^{(C)}(x_k, t_k)}{N_{\text{star}}} \quad \text{(3)}$$

The goal of chemical abundance analysis is then to isolate nucleosynthetic source classes by recovering their yield vectors $Y^{(C)}$. 2 Here and in what follows, coarse graining of ρ_{ξ} on the spatial scales of star-forming clumps is implied.
from stellar abundance data $Z_{i,A}$. The dimensionality of the chemical abundance space corresponds to the number of different nucleosynthetic classes.

The metallicities resulting from individual events $Z^{(E)}(x,t)$ are random variables determined by the hydrodynamics of metal dispersal. They endow stellar metallicities with scatter. If a sufficient number of events contributes and the events are statistically independent, the central limit theorem implies that the scatter is Gaussian, justifying the PCA approach.

It cannot be taken for granted, however, that the source contributions are monolithic (Eq. 1), because nucleosynthetic products are injected into the hydrodynamic environment with different velocities and at different times and are transported differently to their star formation sites. In perfect generality, for each nucleosynthetic event,

$$\rho_A(x) = \sum_{i=1}^{N_{bin}} Z_i(x) \rho(x) \frac{Y_{i,A}}{\sum_A Y_{i,A}} = Z(x) \rho(x) \frac{\sum_{i=1}^{N_{bin}} w_i(x) Y_{i,A}}{\sum_A Y_A},$$

where $Z_i(x)$ is the total metallicity at x due to enrichment by bin i such that $\int Z_i \rho dx = \sum_A Y_{i,A}$, and in the second line, we introduced the weights

$$w_i(x) = \frac{Z_i(x)}{Z(x)} \frac{\sum_A Y_A}{\sum_A Y_{i,A}}$$

for straightforward comparison with the monolithic case (Eq. 1).

If source contributions are monolithic then $w_i \equiv 1/N_{bin}$, but in general, the enrichment at a specific location could be biased toward some bins, giving them higher weights. The dimensionality of the chemical abundance space can now be much larger than the number of nucleosynthetic source classes. The weights encapsulate the biases that hydrodynamics introduces into abundance patterns. If the weights are completely random, possessing unknown statistics, this introduces uncontrolled biases frustrating the recovery of nucleosynthetic source classes from stellar abundance data. Here, we make the first step toward characterizing the nature of the biases, aspiring to detect regularities that can be factored into chemical abundance analysis. Figure 3 shows bin-specific metallicities Z_i spherically averaged around the center of gravitational collapse. In both simulations, in dense gas $n \geq 1 \text{ cm}^{-3}$, departures from monolithic enrichment are evident. In 1SN, the innermost radial bin, which is expected to carry explosive elements, is deficient by a factor of ~ 3 relative to the other bins, $\langle w_1 \rangle \approx \frac{1}{3} \langle w_2 \rangle$ and $\langle w_2 \rangle \sim ... \sim \langle w_7 \rangle$, where the averages refer to gas-mass-weighted averages of w_i in the dense gas. In 7SN, ejecta from the first two supernovae are ~ 3 times as abundant as the ejecta from the last two supernovae, $\langle w_1 \rangle \sim \langle w_2 \rangle \sim 3 \langle w_6 \rangle \sim 3 \langle w_7 \rangle$.

We propose the following physical interpretation. In the case of the solitary supernova, the reverse shock raises the inner ejecta shells, which it sweeps later at lower densities, to a higher entropy than the outer shells, which it sweeps earlier at higher densities. This can be seen by considering the Sedov-Taylor point explosion, in which the pressure asymptotes to a constant value near the center, but density decreases toward the center as $\rho \propto r^{3/(\gamma-1)}$. Therefore, with $\gamma = 5/3$, the entropy $s = \ln(P/\rho^\gamma) + \text{const}$ rises toward the center of the ejecta as $s \sim -\frac{9}{16} \ln r + \text{const}$. This is significant because as the ejecta become quasi-isobaric inside the remnant, the radiative cooling time is a steeply increasing function of entropy. The outer ejecta shells cool first and are incorporated into the snowplow shell, while the innermost ejecta avoid cooling. As the remnant stalls and collapses, the innermost ejecta, having higher entropy, are outward buoyant and rise to larger radii, thus avoiding collapse and allowing low-entropy outer ejecta mass shells to fall in to enrich the quasi-virialized cloud. In 1SN, the ejecta tracer particle radii containing 25% of the ejecta in bins 1 (the innermost bin) and 2 cross at ~ 0.2 Myr after the explosion and then bin 1 interchanges with bins ≥ 3 at ~ 0.3 Myr.

In the case of clustered supernovae, the situation is similar, but now since the density inside the supernova bubble keeps dropping as the bubble expands, the ejecta from later supernovae are on average raised to higher entropies than those of earlier ones and are less susceptible to cooling. Since the ejecta of the latest supernovae remain hot, they are outward buoyant. Upon the collapse of the bubble, the hot ejecta of the later supernovae interchange with the
cooled ejecta of the earlier supernovae. The latter fall in to enrich the central cloud.

5 CONFRONTING THE EMPIRICAL RECORD

Our results have important implications for understanding the early stages of cosmic chemical evolution. More precisely, the hydrodynamic biases in the transport of individual elements, introduced by the post-explosion evolution, need to be taken into account when confronting the empirical abundance trends. The ultimate goal here is to achieve a robust mapping from the observed abundance pattern in metal-poor stars or systems thereof to the individual sources of those metals. In the absence of any monolithic mapping between sources and fossil record (see Section 4), the hydrodynamic transport process constitutes the missing link in our current understanding. Simulations along the lines of our exploratory work here promise to bridge this crucial gap. However, we can already now address a long-standing problem in Galactic chemical evolution in a new light. This concerns the prevalence of peculiar abundance ratios in low-metallicity stars and systems.

To briefly summarize the main phenomenology, observations of metal-poor stars in the Galactic halo, assembled over more than two decades, have provided intriguing constraints on the nature of early chemical evolution (reviewed in Beers & Christlieb 2005, Frebel & Norris 2013, Karlsson et al. 2013). The current state of the art is defined by a large sample of halo red giant stars, where key lines are sufficiently strong to enable high signal-to-noise spectroscopy (Cayrel et al. 2004, François et al. 2007). The main lessons are two-fold: both α-elements (Mg, Ca, Si, Ti), and iron-peak elements (V to Zn) exhibit extremely small scatter, down to [Fe/H] ≲ −3.5. The neutron-capture elements, comprising elements beyond Zn, on the other hand, exhibit equally small scatter down to [Fe/H] ≲ −3, but show extremely large scatter, up to 5 dex, below this (Qian & Wasserburg 2002, Truran et al. 2002, Sneden et al. 2008). Finally, the lighter elements (C, N, O) again show large abundance variations at [Fe/H] < −4, and approach well-defined trends for less metal-poor stars. The most dramatic manifestation of this transition to well-behaved abundance trends, once a threshold metallicity is reached, is provided by the huge scatter in r-process abundances, seen in Galactic halo stars with [Fe/H] ≲ −3 (reviewed in Sneden et al. 2008). The origin of r-process nucleosynthesis, such as the mass and properties of the supernova progenitor star, is still highly uncertain. There is, however, tentative evidence that the r-process might operate in progenitor stars with a very narrow mass range, possibly close to the lower-mass limit for core-collapse supernovae (e.g., Qian & Wasserburg 2008).

It has been challenging to explain all of these trends within one comprehensive framework, but our work suggests a promising Ansatz to do so. Basically, our results show that early enrichment is differential, non-monolithic in nature. This specifically implies that second-generation star formation does not sample the enrichment from the full IMF, and possibly not even that from a single explosion (see Fig. 3). Our simulations build on earlier analytical work that had postulated a minimum number of supernovae, $N_{SN} \gtrsim 20$, needed to average out any yield inhomogeneity from individual explosion sites (see, e.g., Tsujimoto & Shigeyama 1998, Tsujimoto et al. 1999). This absence of effective source-averaging, then, such that only a small number of explosion sites contribute, is the key requirement to preserve peculiar abundance ratios. Next to the classical r-process elements, a similar explanation may pertain to the strong odd-even pattern that is predicted for pair-instability supernova enrichment, but has not been detected so far (Heger & Woosley 2002, Kärtsh et al. 2008). We note that our explanation of the r-process record, understanding huge scatter as a result of sparse IMF-sampling, where only a very narrow progenitor mass range gives rise to the r-process, does not require any stochastic contribution from neutron star mergers, as has been recently suggested (Shen et al. 2014, van de Voort et al. 2014).

Once cosmological structure formation advances to more massive systems, with deeper potential wells to facilitate the near-uniform mixing of the ejecta from a large number of supernovae, convergence towards well-defined, smooth abundance trends will set in. Extragalactic observations, targeting systems of greatly different virial mass, are in agreement with this overall picture. Specifically, recent medium- and high-resolution spectroscopy of red giant stars in Milky Way dwarf satellites have established that their abundance properties, including the degree of scatter, are indistinguishable from the metal-poor tail of the Galactic halo stars (Frebel et al. 2010, 2014). A complementary view into early metal enrichment is provided by the abundances measured in damped Lyman-α (DLA) systems. Here, the evidence points towards extremely low scatter, at least for the prominent α-elements (Becker et al. 2012). This may be indicative of the onset of efficient gas-phase mixing in the deep potential wells of the DLA dark matter host halos. An intriguing question for future simulation work is to test whether the empirical threshold metallicity, roughly measured by [Fe/H], for the disappearance of such anomalous abundance signatures can be reproduced.

Of special interest is the observed dichotomy of carbon-enhanced and carbon-normal metal-poor stars (e.g., Beers & Christlieb 2005, Cooke & Madan 2014) hereafter CM14 have recently suggested that the strength of supernova driven outflows may be responsible for this bimodality. These authors invoke two classes of supernovae with greatly different times for recovery from the supernova explosions with different explosion energies. More energetic explosions $E_{SN} \gg 10^{53}$ erg imply longer recovery times (Itoh et al. 2014). According to CM14, rapid recovery is connected to weak explosions with large carbon overabundances, and slow recovery with strong explosions with normal carbon yields. Our simulation SN, where we find the return of supernova ejecta into the halo center deficient in the ejecta originating from the innermost 10% of the ejecta, suggests another mechanism for carbon-enhanced metal poor (CEMP) stars. A core-collapse explosion ejects a normal carbon-to-iron ratio [C/Fe] < 1, but the iron-bearng ejecta are raised to a higher entropy upon reverse shock traversal than the carbon-bearing ejecta, and subsequently do not cool and settle into the halo center to form second-generation stars.

6 SUMMARY AND CONCLUSIONS

We have carried out two complementary cosmological simulations, employing very high-resolution, of how the metals produced in the first supernova explosions are transported into the cold, dense gas out of which the second-generation of (Population II) stars are formed. The first simulation follows the ejecta from a single explosion, whereas the second traces the metal dispersal from seven sources. We arrive at two main conclusions. The re-condensed, Population II star forming, material exhibits strong turbulent vorticity, implying the likely fine-grained turbulent mixing of gas down to very small, unresolved, scales. Any stellar clusters or groups forming out of this material are thus predicted to be chemically uni-
form, unless any self-enrichment process may operate during the later stages of stellar evolution. Secondly, our results also indicate that the hydrodynamic metal transport proceeds differentially, such that the monolithic mapping of source abundances into the fossil record is broken.

The hydrodynamically biased nature of early metal enrichment, as demonstrated in our pathfinder simulations, has multiple implications, requiring that we rethink a number of our traditional assumptions and methodologies. On the theory side, a common approach to chemical enrichment is to assume that homogenization of the chemical composition is instantaneous and complete in certain “mixing volumes,” normally centered on nucleosynthetic sources, but that the volumes themselves occur stochastically and intermittently, tracing star formation. This approach provides a rudimentary model of inhomogeneous chemical evolution, but since the choice of mixing volumes is ad hoc, its predictive power is limited. It is standard to motivate the choice of mixing volumes by considering the spatial extent of supernova remnants and galactic superbubbles, assuming that the medium is chemically homogeneous within these structures (Argast et al. 2000; Oey 2000; Karlsson 2005; Karlsson & Gustafsson 2005). In the absence of monolithic source mapping, it is not obvious how to adjust this technique.

Our results also present a challenge to the standard interpretational framework of near-field cosmology. The hydrodynamic biases need to be quantified by carrying out a dedicated program of simulations, as a function of star forming environment. Once these chemical transport ‘maps’ are in hand, the full power of stellar archeology can be unleashed. Such a program is very timely, given that the volumes themselves occur stochastically and intermittently, tracing star formation. This approach provides a rudimentary model of inhomogeneous chemical evolution, but since the choice of mixing volumes is ad hoc, its predictive power is limited. It is standard to motivate the choice of mixing volumes by considering the spatial extent of supernova remnants and galactic superbubbles, assuming that the medium is chemically homogeneous within these structures (Argast et al. 2000; Oey 2000). In the absence of monolithic source mapping, it is not obvious how to adjust this technique.

ACKNOWLEDGMENTS

The FLASH code was in part developed by the DOE-supported Flash Center for Computation Science at the University of Chicago. The authors acknowledge the Texas Advanced Computing Center at The University of Texas at Austin for providing HPC resources under XSEDE allocation TG-AST120024. CSS is grateful for support provided by the NASA Earth and Space Science Fellowship (NESSF) program. This study was supported by the NSF grant AST-1009928 and by the NASA grant NNX09AJ33G.

REFERENCES

Abel, T., Wise, J. H., & Bryan, G. L. 2007, ApJ, 659, L87
Argast, D., Samland, M., Gerhard, O. E., & Thielemann, F.-K. 2000, A&A, 356, 873
Arnett, W. D., & Meakin, C. 2011, ApJ, 733, 78
Audouze, J., & Silk, J. 1995, ApJ, 451, L49
Becker, G. D., Sargent, W. L. W., Rauch, M., & Carswell, R. F. 2012, ApJ, 744, 91
Beers, T. C., & Christlieb, N. 2005, ARA&A, 43, 531
Bertoldi, F., & McKee, C. F. 1990, ApJ, 354, 529
Bertoldi, E. 2001, ApJS, 137, 1
Bland-Hawthorn, J., Karlsson, T., Sharma, S., Krumholz, M., & Silk, J. 2010, ApJ, 721, 582
Bland-Hawthorn, J., Sutherland, R., & Karlsson, T. 2011, EAS Publications Series, 48, 397
Brown, T. M., Tumlinson, J., Geha, M., et al. 2012, ApJ, 753, L21
Cayrel, R., Depagne, E., Spite, M., et al. 2004, A&A, 416, 1117
Clark, P. C., Glover, S. C. O., Smith, R. J., et al. 2011a, Science, 331, 1040
Clark, P. C., Glover, S. O., Klessen, R. S., & Bromm, V. 2011b, ApJ, 727, 110
Cooke, R., & Madau, P. 2014, arXiv:1405.7369
Corlies, L., Johnston, K. V., Tumlinson, J., & Bryan, G. 2013, ApJ, 773, 105
Ferland, G. J., Porter, R. L., van Hoof, P. A. M., et al. 2013, RMxAA, 49, 137
François, P., Depagne, E., Hill, v. et al. 2007, A&A, 476, 935
Frebel, A., Simon, J. D., Ghez, M., & Willman, B. 2010, ApJ, 708, 560
Frebel, A., & Bromm, V. 2012, ApJ, 759, 115
Frebel, A., & Norris, J. E. 2013, Planets, Stars and Stellar Systems. Volume 5: Galactic Structure and Stellar Populations, 55
Frebel, A., Simon, J. D., & Kirby, E. N. 2014, ApJ, 786, 74
Fryxell, B., Olson, K., Ricker, P., et al. 2000, ApJS, 131, 273
Greif, T. H., Springel, V., White, S. D. M., et al. 2011, ApJ, 737, 75
Greif, T. H., Bromm, V., Clark, P. C., et al. 2012, MNRAS, 424, 399
Heger, A., & Woosley, S. E. 2002, ApJ, 567, 532
Hosokawa, T., Omukai, K., Yoshida, N., & Yorke, H. W. 2011, Science, 334, 1250
Jeon, M., Pawlik, A. H., Bromm, V., & Milosavljevic, M. 2014, arXiv:1407.0034
Karlsson, T. 2005, A&A, 439, 93
Karlsson, T., & Gustafsson, B. 2005, A&A, 436, 879
Karlsson, T., Johnson, J. L., & Bromm, V. 2008, ApJ, 679, 6
Karlsson, T., Bromm, V., & Bland-Hawthorn, J. 2013, Reviews of Modern Physics, 85, 809
Komatsu, E., Smith, K. M., Dunkley, J., et al. 2011, ApJS, 192, 18
Maeder, A., & Meynet, G. 2012, Reviews of Modern Physics, 84, 25
Nomoto, K., Kobayashi, C., & Tominaga, N. 2013, ARA&A, 51, 457
Oey, M. S. 2000, ApJ, 542, L25
Oey, M. S. 2003, MNRAS, 339, 849
Qian, Y.-Z., & Wasserburg, G. J. 2002, ApJ, 567, 515
Qian, Y.-Z., & Wasserburg, G. J. 2008, ApJ, 687, 272
Ricotti, M., Gnedin, N. Y., & Shull, J. M. 2008, ApJ, 685, 21
Ritter, J. S., Safranek-Shrader, C., Gnat, O., Milosavljević, M., & Bromm, V. 2012, ApJ, 761, 56
Safranek-Shrader, C., Agarwal, M., Federrath, C., et al. 2012, MNRAS, 426, 1159
Salvadori, S., & Ferrara, A. 2009, MNRAS, 395, L6
Shen, S., Cooke, R., Ramirez-Ruiz, E., et al. 2014, arXiv:1407.3796
Smith, N., & Arnett, W. D. 2014, ApJ, 785, 82
Sneden, C., Cowan, J. J., & Gallino, R. 2008, ARA&A, 46, 241
Stacy, A., Greif, T. H., & Bromm, V. 2010, MNRAS, 403, 45
Ting, Y.-S., Freeman, K. C., Kobayashi, C., De Silva, G. M., & Bland-Hawthorn, J. 2012, MNRAS, 421, 1231
Truran, J. W., Cowan, J. J., Pilachowski, C. A., & Sneden, C. 2002, PASP, 114, 1293
Tsujimoto, T., & Shigeyama, T. 1998, ApJ, 508, L151
Tsujimoto, T., Shigeyama, T., & Yoshii, Y. 1999, ApJ, 519, L63
Vargas, L. C., Geha, M., Kirby, E. N., & Simon, J. D. 2013, ApJ, 767, 134
van de Voort, F., Quataert, E., Hopkins, P. F., Keres, D., & Faucher-Giguere, C.-A. 2014, arXiv:1407.7039
Wise, J. H., & Abel, T. 2008, ApJ, 685, 40
Wise, J. H., Turk, M. J., Norman, M. L., & Abel, T. 2012, ApJ, 745, 50
Wongwathanarat, A., Janka, H.-T., Müller, E. 2013, A&A, 552, A126

© 0000 RAS, MNRAS 000, 000-000