Nestin, an Important Marker for Differentiating Oligodendroglioma from Astrocytic Tumors

Abstract
Background: Nestin is an acronym for neuroepithelial stem cell protein. It is an intermediate filament protein expressed in proliferating cells during the developmental stages in a variety of embryonic and fetal tissues. It is also expressed in some adult stem/progenitor cell populations, such as newborn vascular endothelial cell. Differentiation between astrocytic tumors and oligodendroglioma tumor is of paramount importance because of different lines of treatment and different prognosis.

Design: We performed Nestin immunostaining on paraffin blocks of 16 cases of astrocytomas of various grades (3 Glioblastoma, 3 anaplastic astrocytoma, 3 fibrillary astrocytoma and 7 Pilocytic astrocytoma) and on 12 oligodendroglioma (6 grade II, and 6 grade III). All cases of oligodendroglioma has confirmation by FISH for 1p 19q.

Result: Nestin staining was seen in all astrocytic tumors. The strongest staining was in glioblastomas and in anaplastic astrocytomas. Pilocytic astrocytomas show mostly focal and weak staining with strong staining of Rosenthal fibers. Grade II astrocytoma shows weak but more intense staining than pilocytic astrocytoma. No Nestin immunostaining was seen in any of the oligodendroglioma tumor cells, but Nestin stained the endothelial cells in oligodendroglioma as a positive internal control.

Conclusion: Nestin is an important immunohistochemical marker in differentiating oligodendroglioma from astrocytic tumors. Nestin, also, is helpful in grading astrocytoma

Keywords: Nestin; Astrocytoma Grading; Oligodendroglioma; Immunohistochemistry

Abbreviations: IF: Intermediate Filament; GFAP: Glial Fibrillary Acidic Protein; CNS: Central Nervous System; GBM: Glioblastomas Multiforme

Introduction

Nestin is an intermediate filament (IF) protein. These intermediate filament proteins are expressed mostly in neural stem cells [1-3]. Nestin is also expressed by many other stem cells and it is considered a primitive marker [4-7]. Upon differentiation, Nestin becomes down-regulated and is replaced by tissue-specific intermediate filament proteins [8]. During neuro- and gliogenesis, Nestin is replaced by cell type-specific intermediate filaments, e.g. neurofilaments and glial fibrillary acidic protein (GFAP) [9]. One instance of Nestin expression in adult organisms, and perhaps that for which Nestin is best known, are the neuronal precursor cells of the subventricular zone [8,10]. Interestingly, Nestin expression is reinduced in the adult during pathological situations, such as the formation of the glial scar after CNS injury and during regeneration of injured muscle tissue [11]. Nestin expression has been extensively used as a marker for central nervous system (CNS) progenitor cells in different contexts [4]. Nestin has recently received attention as a marker for detecting newly formed endothelial cells [3,12].

Material and Methods

We performed Nestin Immunostaining on paraffin blocks of 16 cases of astrocytomas of various grades (3 Glioblastoma, 3 anaplastic astrocytoma, 3 fibrillary astrocytoma and 7 Pilocytic astrocytoma) and on 12 oligodendroglioma (6 grade II, and 6 grade III) (Table 1). All cases of oligodendroglioma has confirmation by FISH for 1p 19q. In immunohistochemical staining, deparaffinized sections underwent heat induced antigen retrieval [autoclaved in 10-mM citrate buffer (pH 6.0) for 10 min] and were subjected to a reaction with 3 % hydrogen peroxidase for 10 min to remove endogenous peroxidase. Then, the reaction was conducted using a 250-fold diluted solution of rabbit polyclonal anti-human nestin antibody (Biocare concentrated polyclonal antibody dilution 1:250, rabbit polyclonal).

Results

No Nestin immunostaining was seen in any of the oligodendroglioma tumor cells, but Nestin stained the endothelial cells in oligodendroglioma as a positive internal control (Figure 1,2).
Table 1: This shows the Grades of Astrocytoma.

	Grade I Pilocytic Astrocytoma	Grade II fibrillary astrocytoma	Grade III Anaplastic astrocytoma	Grade IV Glioblastoma multiforme	Grade II Oligodendroglioma	Grade III Anaplastic oligodendroglioma
No. of cases	7	3	3	3	6	6
Gender	M:4, F:3	M:1, F:2	M:2; F:1	M:2, F:1	M:3, F:3	M:4, F:2
Average Age	11	35	44	52	42	46
Nestin expression	Negative-very weak	weak	strong	Very strong	negative	Negative

Nestin staining was seen in all astrocytic tumors. Pilocytic astrocytomas show mostly focal and weak staining with strong staining of Rosenthal fibers (Figure 3). Grade II astrocytoma shows weak but more intense staining than pilocytic astrocytoma (Figure 4). The strongest staining was in glioblastomas multiforme (GBM) and in Anaplastic astrocytomas (Figure 5,6).
Nestin, an Important Marker for Differentiating Oligodendroglioma from Astrocytic Tumors

Figure 3:
A: Pilocytic astrocytoma.
B: negative-weak staining in the astrocytes, but strong staining in Rosenthal fibers and eosinophilic.

Figure 4:
A: low grade astrocytoma.
B: weak staining in astrocytes.

Figure 5:
A: Anaplastic astrocytoma, Grade III.
B: strong Immunostaining for Nestin.
Discussion and Conclusion

This study has clarified that the importance of nestin over-expression in glial tumor in two parts: The first one, in helping grading astrocytomas from Grade I-IV. The second part in helping differentiating astrocytomas from oligodendroglioma.

Since Nestin is an important protein in immature neural crest cells, its presence indicate that the cells are of neural crest origin [1-3]. Brain tumor that originate from neural crest and high grade tumors are expected to over express nestin.

Differentiating astrocytomas into different grades depends on morphology, mitotic figures and Ki-67. For example, differentiating grade II from anaplastic astrocytoma relies on finding mitotic figures and on Ki-67. Immunohistochemistry for Ki-67 has shown that a very good correlation with glioma grading and behavior [13,14]. Ki-67 is usually less than 4% in diffuse astrocytoma grade II [13]. Ki-67 is a proliferation factor that is expressed in cells in cell cycle during G1, S, G2/M phase [9]. Nestin is expressed in glioma tissue in astrocytoma lineage cells. The degree of nestin expression increases as the degree of malignancy increases, that is, as differentiation decreases. Now with nestin over-expression, we have another objective marker helping us to differentiate and grade astrocytomas. The higher grades of astrocytomas: Glioblastoma multiform and anaplastic astrocytoma, shows strong expression of Nestin (Figures 5&6), [4,6, 11,15-18]

Differentiating oligodendrogliomas from astrocytomas is very important because of two main reasons. The first one is that the prognosis of oligodendroglioma is better than astrocytoma, grade for grade. For example Oligodendrogloma grade II, has a median survival of 11.6 years with 10-year survival rate of 51% [14,18]. While the mean survival for fibrillary astrocytoma WHO grade II, is in the range of 6-8 years [18,19]. The same thing is applied for anaplastic oligodendrogloma grade II with a mean survival of 4-5, while it is of 2 year duration in anaplastic astrocytoma [18]. Nestin is an important immunohistochemical marker in differentiating oligodendrogloma from astrocytic tumors [4,11,20, 21]. Nestin is expressed only in tumors with some components of astrocytoma. Nestin is not expressed at all in any of the pure oligodendrogloma cases and only expressed in the vascular endothelium.

References

1. Sanai N, Alvarez-Buylla A, Berger MS (2005) Neural stem cells and origin of gliomas. N Engl J Med 353(8): 811-822.
Nestin, an Important Marker for Differentiating Oligodendroglioma from Astrocytic Tumors

2. Sugawara K, Kurihara H, Negishi M, Saito N, Nakazato Y, et al. (2002) Nestin as a marker for proliferative endothelium in gliomas. Lab Invest 82(3): 345-351.

3. Tohyama T, Lee VY, Morin M, McKay RDG, et al. (1993) Monoclonal antibodies to a rat nestin fusion protein recognize a 220-kDa polypeptide in subsets of fetal and adult human central nervous system neurons and in primitive neuroectodermal tumor cells. Am J Pathol 143(1): 258-268.

4. Strojnik T, Rosland GV, Sakariassen PO, Kavaler R, Lah T (2007) Neural stem cell markers, nestin and musashi proteins, in the progression of human glioma: correlation of nestin with prognosis of patient survival. Surg Neurol 68(2): 133-143.

5. Tohyama T, Lee VY, Morin M, McKay EDG, et al. (1992) Nestin expression in embryonic human neuroepithelium and in human neuroepithelial tumor cells. Lab Invest 66(3): 303-313.

6. Almqvist PM, Mah R, Lendahl U, Jacobsson B, Henderson G (2002) Immunohistochemical detection of nestin in pediatric brain tumors. J Histochem Cytochem 50(2): 147-158.

7. Maderna E, Salmaggi A, Calatozzolo C, Limido L, Nestin Pollo B (2007) PDGFRbeta, CXCL12 and VEGF in glioma patients. Different profiles of pro-angiogenic molecule expression are related with tumor grade and may provide prognostic information. Cancer Biol Ther 6(7): 1018-1024.

8. Jafri NF, Clarke JL, Weinberg V, Bannai JJ, Cha S (2013) Relationship of glioblastoma multiforme to the subventricular zone is associated with survival. Neurol Oncol 15(1): 91-96.

9. Singh K, Hawkins C, Clarke ID, Squire JA, Bayani J, et al. (2004) Identification of human brain tumour initiating cells. Nature 432(7015): 396-401.

10. Kappadakunnel M, Eskin A, Dong J, Nelson SF, Mischel PS, et al. (2010) Stem cell associated gene expression in glioblastoma multiforme: relationship to survival and the subventricular zone. J Neurooncol 96(3): 359-367.

11. Ani H, Ikota H, Sugawara K, Nobusawa S, Hirato J, et al. (2012) Nestin expression in brain tumors: its utility for pathological diagnosis and correlation with the prognosis of high-grade gliomas. Brain Tumor Pathol 29(3): 160-167.

12. Chinnaiyan P, Wang M, Rojian AM, Tofilon PJ, Chakravarti A, et al. (2008) The prognostic value of nestin expression in newly diagnosed glioblastoma. Report from the Radiation Therapy Oncology Group. Radiat Oncol 3: 32.

13. McKeever PE, Ross DA, Strawderman MS, Brunberg JA, Greenberg HS, et al. (1997) A Comparison of the predictive power for survival in gliomas provided by MIB-1, bromodeoxyuridine and proliferating cell nuclear antigen with histopathologic and clinical parameters. J Neuropathol Exp Neurol 56(7): 796-805.

14. Louis D, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, et al. (2007) The 2007 WHO classification of tumors of the central nervous system. Acta Neuropathol 114(2): 97-109.

15. Lim DA, Cha S, Mayo MC, Chen MH, Keles E, et al. (2007) Relationship of glioblastoma multiforme to neural stem cell origins predicts invasive and multifocal tumor phenotype. Neurol Oncol 9(4): 424-429.

16. Ishiwata T, Teda K, Yamamoto T, Kawahara K, Matsuda Y, et al. (2011) Neuroepithelial stem cell marker nestin regulates the migration, invasion and growth of human gliomas. Oncol Rep 21(1): 91-99.

17. Tomita T, Akimoto J, Haraoka J, Kudo MC (2014) Clinopathological significance of expression of nestin, a neural stem/progenitor cell marker, in human glioma tissue. Brain Tumor Pathol 31(3): 162-171.

18. Ohgaki H, Kelhues P (2005) Population based studies on incidence, survival rates and genetic alteration in astrocytic and oligodendroglial gliomas. H Neuropathol Exp Neurol 63(6): 479-489.

19. Ohgaki H, Dessen P, Joude B, Horstmann S, Nishikawa T, et al. (2004) Genetic pathways to a Glioblastoma. A population based study. Cancer Res 64(19): 6892-6899.

20. Kitai R, Horita R, Sato K, Yoshida K, Arishima H, et al. (2010) Nestin expression in astrocytic tumors delineates tumor infiltration. Brain Tumor Pathol 27(1): 17-21.

21. Schiffer D, Manazza A, Tamagno I (2006) Nestin expression in neuroepithelial tumors. Neurosci Lett 400(1-2): 80-85.