Interactive Music Teaching Method Based on Big Data and Cloud Computing

Yinan Hao

Department of Musical Instrument Engineering of Xinghai Conservatory of Music, Guangzhou 510006, Guangdong, China

Correspondence should be addressed to Yinan Hao; haoyinan@xhcom.edu.cn

Received 27 April 2022; Revised 27 May 2022; Accepted 13 June 2022; Published 28 June 2022

Academic Editor: Yanyi Rao

Copyright © 2022 Yinan Hao. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

With the development of contemporary technology and education, there are more and more innovative teaching methods that are helpful to the education and teaching procedure. Interactive teaching method is one of them. Interactive teaching is a teaching modus based on the scaffolding teaching theory that attaches importance to the communication between teachers and learners. Its biggest goal is to develop learner-specific and specific autonomous learning strategies through the communication and collaboration between the teacher and the learner. The advanced nature and effectiveness of interactive teaching methods make it more and more widely used in education, such as in the field of music teaching. Music teaching is a kind of teaching that pays more attention to the communication between teachers and students. This paper aims to study the interactive music teaching method based on big data and cloud computing technology, and conduct practical application experiments on it. The experiment concluded that the interactive music teaching method based on BD and CC has made the students’ participation rate in music teaching classrooms reach 88%, and the excellent rate of in-class test scores has reached 90%.

1. Introduction

Interactive teaching is an innovative teaching mode developed in the theory of scaffolding teaching (decompose complex learning tasks in advance to facilitate in-depth learning of learners). It encourages that in the teaching procedure, the use of interactive teaching methods enables teachers’ teaching and students’ learning to be closely linked and communicated with each other. Interactive teaching method is a meaningful manifestation of modern education in teaching method reform and innovation and has important application value education. With the development of national education, the requirements for innovation and reform of education and teaching methods are becoming more and more strict, and educators have been constantly exploring more advanced teaching methods. The application of interactive teaching methods in the scopes of education is becoming more and more extensive, such as in the field of music teaching. In many teaching fields, music teaching is a basic part of aesthetic education. Music education refers to the use of music to cultivate students’ thinking quality, cultivate students’ sentiment, and promote students’ knowledge and skills growth. It is the main channel for cultivating students’ aesthetic awareness and musical ability and can also enrich students’ extracurricular entertainment life and appropriately relax students’ learning pressure. Therefore, music teaching has accepted more and more attention from the society. In order to improve the quality of music teaching and adapt to the growing trend of society and education, the reform and innovation of music teaching methods are essential. Since the communication between the two sides of teaching is very important in the procedure of music teaching, it is necessary to explore an interactive music teaching method. However, due to the difficulty of organization in interactive teaching and the uncertainty of the control of teaching procedure, the exploration of interactive music teaching methods requires certain scientific and technological support. This article mainly explores the interactive music teaching method based on the key technologies of BD and CC.
2. Related Work

In view of the superiority and extensive application of BD and CC, there has been a lot of research on BD and CC in contemporary society. Among them, Xu's research took a broader perspective on personal data privacy issues in big data and examines various approaches that can help protect sensitive information in big data [1]. The main purpose of Xu's research is to improve the processing speed of big data. For this reason, he proposed a method of compressed sensing sampling and proved the effectiveness of this method in practical applications [2]. Kuang mainly studied how to effectively represent and procedure big data with a unified scheme. He proposed a unified tensor model to represent semistructured and structured big data [3]. Deng's research is about the scaling of cloud computing technology and explored the trade-off between power consumption and transmission delay in cloud computing systems [4]. Wei studied the resource scheduling problem of cloud computing architecture and created a cloud resource allocation pattern based on incomplete information game [5]. Stergiou studied the application of cloud computing combined with big data in the field of telecommunications, and he found that the combination of these two technologies can improve the utilization frequency of big data applications [6]. However, the experimental procedures of these studies are relatively complex and not very practical. Moreover, from an experimental point of view and method, these studies are also slightly less innovative.

3. Interactive Music Teaching Method

3.1. Interactive Teaching

3.1.1. "Interactive" Concept. The word "interactive" was first born in the procedure of computer information procedureing, which belongs to a special term for computers, and can also be simply called human-computer communication [7]. However, with the deepening of people's discussion and understanding of the concept of communication, many people have a new understanding of the definition of communication, and the concept of communication has gradually been applied to teaching practice. Communication in the field of teaching means that the communication between the teacher and the recipient should be emphasized in the teaching procedure so as to improve the autonomous thinking and learning ability of the recipient [8].

3.1.2. Interactive Teaching and Its Educational Philosophy. The initial connotation of interactive teaching is as follows: teaching should be based on students' continuous and active construction of themselves and teachers' appropriate support and help as the basis for cultivating students' autonomous learning ability. Therefore, the whole teaching should be student-centered so that students it can be transformed from passive recipients of external information to subjects of autonomous information procedureing. With the development of society and the advancement of people's thinking concepts, the specific meaning of interactive teaching today is as follows: in the teaching procedure, teachers and students participate in teaching activities together, and they recognize and respect each other through a variety of ways to support, communicate, and exchange with each other, continuously improve students' autonomous learning ability, and promote students' comprehensive and harmonious development. There is no doubt that interactive teaching has evolved into an open, constructive, and innovative teaching mode that adapts to the fierce educational competition environment and the new needs of educational development. It can be seen that interactive teaching is the most advanced educational concept of "people-oriented" in the context of the course innovation. It can maximize the improvement of students' potential, mobilize students' learning initiative, and improve students' capability to explore and innovate. And it can effectively cultivate students' collective consciousness and teamwork ability and then can continuously improve the comprehensive student's comprehensive development [9, 10]. The interactive teaching mode is shown in Figure 1.

3.2. Big Data. Big data refers to a collection of information data that is so large that it cannot be acquired, managed, processed, and organized into a set of information that can be helpful to the information decision-making process within a reasonable time through conventional software tools [11]. To put it another way, big data must be processed using a new efficient procedureing mode in order for the obtained data to have greater decision-making power and procedure optimization capability, allowing it to adapt to the condition of vast data expansion and diversification.

The basic unit definitions of big data are revealed in Table 1. Combined with the above definitions, the following are the primary properties of big data.

3.2.1. The Amount of Data Is Huge. Big data typically has data volumes in excess of 1 petabyte. Such a huge amount of data is largely due to the extensive use of different sensors during data processing, which enables people to collect different types of data. In addition, due to the close relationship between people and the need for real-time and low-interval communication methods, the amount of data exchanged increases exponentially [12].

3.2.2. Many Kinds of Data. This is mostly because of the increasing number of sensors used in big data applications
and the wide application of various smart devices, making the type and structure of big data more perplexed. Furthermore, different forms of semistructured and unstructured data such as web pages, sounds, images, and texts have also emerged [13].

3.2.3. Fast Flow Speed. Contemporary society is in an information age where data update and change very fast. A huge amount of data has to be answered in a very limited time. Otherwise, it will expire or be invalid. The characteristics of big data are to emphasize the quickly and moving changes of data and to shape the overall flow of data. The requirement for throughput of data is also one of the key differences between BD technology and traditional data storage technology [14].

3.2.4. Low Value Density. A common feature of all big data is that its value density hangs down. That is, the useful information concealed in massive big data will not grow up even when the data volume increases exponentially, but it will make the procedure of obtaining useful information more difficult. So, it must utilize big data mining techniques to extract large amounts of data and procedure data sets with low value density and facilitate the acquisition of useful data [15].

3.2.5. Accuracy. It is necessary to make sure that the execution of large data is precise enough. In other words, the accuracy of the achieved results cannot be sacrificed to ensure the time of large-scale processing [16]. Data processes and the accuracy of the process occurring, for example, data in a secure manner, should be continuously improved.

The main characteristics of big data are shown in Figure 2.

With the continuous development of big data technology, the application of big data in education is becoming more and more extensive, and the emergence of educational big data will play an important role in the reform and development of education.

3.3. Cloud Computing

3.3.1. Basic Concepts. CC is a kind of computation. It aggregates many computing resources to form a resource-sharing pond. The shared word of this resource department is called “cloud”. It transforms computing resources into infrastructure serving the public, which has a significant effect on the application of information technology. Cloud computing improves the utilization of data and makes them more accessible, thereby helping to improve the quick development of the Internet. Cloud computing provides services based on the concepts of “everything is a service” and “on-demand service” so as to meet the needs of users at different levels and angles [17, 18]. Therefore, cloud computing has different technology and service architectures. The following is an introduction to the basic architecture of cloud computing.

3.3.2. Basic Structure. Cloud computing takes providing users with a variety of more convenient and efficient cloud resource services as its core goal. It mainly includes three levels. The first level is SaaS: Software as a Service, that is, cloud computing application services are mostly offered to users in the form of Web. The second level is PaaS: Platform as a Service, that is, cloud computing provides an application platform to users as a service. The last layer is IaaS: that is, cloud computing provides different below network and archive resources as serving to users [19]. The basic architecture of cloud computing is shown in Figure 3.

Among them, SaaS is the most direct and common cloud computing service for end users. IaaS refers to the fact that a provider directly provides end users with the computer resources they need.

3.3.3. Classification. Cloud computing can be divided into three categories: public cloud, private cloud, and hybrid cloud according to the scope of deployment. Private cloud: also known as dedicated cloud, it is widely deployed within an organization and only provides services to specialized agencies and keeps closed to the society. Private cloud has the features of elastic deploy and easy to manage. Public cloud: public cloud is a service that can provide services for specialized agencies, or person in need, usually provided by specialized cloud service providers. Hybrid cloud: hybrid cloud is a mode of combining cloud computing with cloud computing. The use of hybrid air can enhance the power of public and private clouds.
Cloud computing classification can be shown in Figure 4.

3.4. Incremental Kernel Data Clustering Algorithm. Among the many big data clustering algorithms, the incremental kernel data clustering algorithm is one of the most frequently used data clustering algorithms. It assigns different weight values according to the importance of data points within the FCM algorithm, thereby performing the clustering process. For a given data set \(X = \{x_1, x_2, \ldots, x_n\} \), let \(\omega_i (i = 1, 2, \ldots, n) \) be the weight for data point \(x_i \). The above procedure is repeated continuously until the convergence criterion is reached. The calculation procedure is as follows:

\[
\begin{align*}
\omega_j &= \frac{1}{\sum_{i=1}^{n} \omega_i u_{ij}}, \quad V_j = \sum_{i=1}^{n} \omega_i \frac{u_{ij}}{\omega_i} u_{ij} x_i,
\end{align*}
\]

(1)

Among them, \(i = 1, 2, \ldots, n, j = 1, 2, \ldots, k \) represents the blurry modulus. \(V_j \) represents the cluster center, and \(u_{ij} \) on behalf of the degree to which the data point \(x_i \) belongs to the cluster center. The distance from this data point to the cluster center can be concluded by the following formula:

\[d_{ij} = \| x_i - v_j \|. \]

(2)

In general, the calculation method of the convergence criterion function of this algorithm is as follows:

\[J(U, V) = \sum_j \frac{n}{i=1} k \omega_i u_{ij}. \]

(3)

The definition of the kernel function is as follows:

\[k(x_i, x_j) = \varnothing(x_i) \varnothing(x_j). \]

(4)

Among them, \(\varnothing \) is the mapping function.

In this algorithm, the distance is defined as follows:

\[d_{ij}^2 = \| \varnothing(x_i) - \varnothing(y_j) \|. \]

(5)

Another expression is

\[d_{ij}^2 = k_{xd} + k_{ij} - 2k_{xj}. \]

(6)

Combining the above formula, the calculation formula of membership degree in this algorithm can be obtained from

\[u_{ij} = \sum_{i=1}^{k} \frac{\varnothing(x_i) - \varnothing(y_j)}{\varnothing(x_i)} \]

(7)

The update formula of the bunch center is as follows:

\[\varnothing(V_j) = \sum_{i=1}^{n} \omega_i u_{ij} (x_i). \]

(8)

Let \(A_t = \{a_1, a_2, \ldots, a_k\} \) denote the set of points mapped by the result of clustering at time \(t-1 \), and we can make

\[a_j = \sum_{i=1}^{n} a(t) \varnothing(x_i^t). \]

(9)

Since \(A_t \) is mapped from \(V_{t-1} \), it can be obtained by the following formula:

\[\min \| \varnothing(v_j) - a(t) \|^2. \]

(10)

The representation method of the cluster center obtained by the \(t \)-step clustering is as follows:

\[\varnothing(V_j^t) = \sum_{i=1}^{n} \varnothing(x_i^t). \]

(11)

Among them,

\[q_{ij} = \frac{\omega_j \sum_{i=1}^{k} u_{ij}}{\sum_{p=1}^{n} \omega_p}. \]

(12)

For data point \(x_i^t \), its weight value is generally set to 1, and the calculation of the weight value of transfer point \(a_j^t \) can be gained by the following formula:

\[\omega_j = \sum_{i=1}^{n} u_{ij} (a(t) - 1). \]

(13)

At this time, the membership calculation formula of data point \(x_i \) is

\[u_{ij} = \sum_{k=1}^{n} \| \varnothing(x_i^t) - \varnothing(v_j) \|. \]

(14)

The calculation formula of the degree coefficient \(u_j \) of the transfer point \(a_j^t \) is

\[u_j = \sum_{i=1}^{n} \frac{\varnothing(x_i^t) - \varnothing(v_j)}{\varnothing(v_j)} \frac{2}{\varnothing(v_j)}. \]

(15)

To sum up, the incremental algorithm is a procedure of continuously reclustering new data blocks and clustered results.
4. Interactive Music Teaching Experiment

4.1. Experimental Design. Firstly, using BD and CC technology, combined with incremental kernel data clustering algorithm, an interactive music teaching method was designed. This method is based on the concept of interactive teaching, with big data and cloud computing technology as the main technical support, emphasizing the interaction and cooperation between teachers and students in the teaching process. Then, students from 4 classes of a junior high school in Guangzhou (120 students in total) were selected as the experimental objects of this interactive music teaching experiment. The interactive teaching method designed in this paper to teach music to students in these 4 classes was used. And the actual utilization consequent of the interactive music teaching method designed based on BD and CC technology in this paper is judged by the results of the student participation rate and the excellent rate of the in-class test in the interactive music teaching of these four classes.

The relevant data of the students in the four classes selected in this experiment can be seen in Table 2.

It can be seen from Table 1 that the number of students in each of the four selected classes is about 30, and the proportion of male and female students is also relatively balanced. Such experimental objects can ensure the universality of the experimental conclusions to the greatest extent.

4.2. Student Participation Rate. In this interactive music teaching experiment, the participation rate of students was judged by counting the number of students in the four classes who answered the teacher’s questions during the teaching procedure and who submitted the test papers in the classroom. The statistical results are shown in Figures 5 and 6.

Combining Figures 5 and 6, it can be seen that among all the students in the 4 selected classes, the total number of students who answered the teacher’s questions in the interactive music teaching class was 102. The total number of students who submitted the in-class test papers was 108. It can be seen that the total participation rate of students in this interactive music teaching experiment is 88%. This shows that this interactive music teaching has a certain appeal to students, which makes the participation rate of students high.

4.3. Excellent Rate of In-Class Test Results. In this interactive music teaching class, according to the correction results of the in-class test papers submitted by the students in these
four classes, the results of the in-class test of all the students who submitted the papers are shown in Figure 7.

From Figure 7, the amount of students who have achieved grades of 80–90 in class 1 and class 2 is significantly more than the number of students in classes 3 and 4 in this grade.

Figure 8 shows the specific results of the excellent rate of all students who handed in the papers in the 4 classes.

As can be seen from Figure 8, in the classroom test of this interactive music teaching, the total excellent rate of all the students who submitted papers in the 4 classes reached 90%. This shows that the interactive music teaching method has a significant effect on improving the students' music test scores, making the students' achievement rate higher.

In summary, this experiment draws the following conclusions: the interactive music teaching way based on BD and CC has a certain positive effect on attracting Teachee's interest in music study and improving their academic performance. It enables students to participate in the classroom to 88%, and the excellent rate of the in-class test has reached 90%.

5. Discussion

Interactive teaching method pays attention to the communication and collaboration between teachers and Teachees and has certain application value in many teaching fields. The application of interactive teaching methods in

Total students	Boys	Girls	
Class 1	32	15	17
Class 2	28	18	10
Class 3	29	16	13
Class 4	31	17	14

Number of students	Question
	Question
20	1
22	2
16	3
15	4
12	5
Figure 6: Number of students who submitted in-class test papers in 4 classes. (a) The number of people who handed in the papers in classes 1 and 2; (b) the number of people who handed in papers in classes 3 and 4.

Figure 7: The total results of the in-class test of the students who handed in the papers in 4 classes. (a) Summary of grades 1 and 2; (b) summary of grades 3 and 4.

Figure 8: The specific results of the outstanding performance rate of all the students who handed in the papers in the 4 classes. (a) Excellent rate of classes 1 and 2; (b) excellent rate of classes 3 and 4.
music teaching just meets the requirements of music teaching focusing on teacher-student communication, and it is helpful to ameliorate music teaching.

While the interactive teaching method also has some organizational difficulties in the actual application procedure, certain technical support is needed to assist the application of the interactive teaching method. As an important product of contemporary technological development, big data and cloud computing technology have strong technical advantages in data information services. This paper mainly studies the application effect of interactive music teaching method based on BD and CC technology.

In this paper, the study on the application effect of the interactive music teaching method based on BD and CC is mainly carried out through experimental analysis. The interactive music teaching experiment designed in this paper designs an interactive music teaching method based on BD and CC. Then, the effectiveness of the method is judged by analyzing the participation rate of the class students participating in this interactive music teaching class and the excellent rate of the in-class test. The experimental results show that the interactive music teaching method based on BD and CC has a significant effect on raising students’ interest in music study and academic performance. It has resulted in an 88% student participation rate and a 90% academic excellence rate.

6. Conclusions

This paper firstly introduces technologies such as BD and CC and then designs an interactive music teaching method based on these technologies and conducts application experiments on the method. Through the statistics and analysis of the participation rate of students participating in the experimental classroom and the excellent rate of the test in the classroom, the experiment finally draws a conclusion. The final conclusion of the experiment is that the excellent rate of the test in the classroom has reached 90%. This fully demonstrates the superiority of the interactive music teaching method based on BD and CC in raising students’ interest in music learning and academic performance. The research conclusions drawn in this paper have a certain reference value for promoting the application of BD and CC in the design of interactive music teaching methods and also have a certain meaning for boosting the development of music teaching. However, due to the limitations of research conditions and levels, the research in this paper still has some deficiencies in the design of interactive music teaching methods based on big data and cloud computing, and we hope to continue to explore and improve in future research. It is wished that the study in this article can contribute to the application and development of interactive music teaching methods.

Data Availability

Data sharing is not applicable to this article as no data sets were generated or analyzed during the current study.

Disclosure

The author confirms that the content of the manuscript has not been published or submitted for publication elsewhere.

Conflicts of Interest

The author declares no conflicts of interest in our paper.

Authors’ Contributions

The author has seen the manuscript and approved to submit it to your journal.

References

[1] L. Xu, C. Jiang, J. Wang, J. Yuan, and Y. Ren, “Information security in big data: privacy and data mining,” IEEE Access, vol. 2, no. 2, pp. 1149–1176, 2017.
[2] J. W. Xue, X. K. Xu, and F. Zhang, “Big data dynamic compressive sensing system architecture and optimization algorithm for internet of things,” Discrete & Continuous Dynamical Systems - S, vol. 8, no. 6, pp. 1401–1414, 2015.
[3] L. Kuang, F. Hao, L. T. Yang, M. Lin, C. Luo, and G. Min, “A tensor-based approach for big data representation and dimensionality reduction,” IEEE Transactions on Emerging Topics in Computing, vol. 2, no. 3, pp. 280–291, 2014.
[4] R. Deng, R. Lu, C. Lai, T. H. Luan, and L. Hao, “Optimal workload allocation in fog-cloud computing toward balanced delay and power consumption,” IEEE Internet of Things Journal, vol. 3, no. 6, pp. 1171–1181, 2017.
[5] W. Wei, X. Fan, H. Song, X. Fan, and J. Yang, “Imperfect information dynamic stackelberg game based resource allocation using hidden markov for cloud computing,” IEEE Transactions on Services Computing, vol. 11, no. 1, pp. 78–89, 2018.
[6] C. Stergiou and K. E. Psannis, “Recent advances delivered by mobile cloud computing and internet of things for big data applications: a survey,” International Journal of Network Management, vol. 27, no. 3, p. e1930, 2017.
[7] A. Al-Badi, A. Tarhini, and W. Al-Kaaf, “Financial incentives for adopting cloud computing in higher educational institutions,” Asian Social Science, vol. 13, no. 4, p. 162, 2017.
[8] T. Hirai, H. Masuyama, S. Kasahara, and Y. Takahashi, “Performance analysis of large-scale parallel-distributed processing with backup tasks for cloud computing,” Journal of Industrial and Management Optimization, vol. 10, no. 1, pp. 113–129, 2014.
[9] J. L. Tsai and N. W. Lo, “A privacy-aware authentication scheme for distributed mobile cloud computing services,” IEEE Systems Journal, vol. 9, no. 3, pp. 805–815, 2015.
[10] A. F. Barsoum and M. A. Hasan, “Provable multicopy dynamic data possession in cloud computing systems,” IEEE Transactions on Information Forensics and Security, vol. 10, no. 3, pp. 485–497, 2015.
[11] T. G. Rodrigues, K. Suto, H. Nishiyama, and N. Kato, “Hybrid method for minimizing service delay in edge cloud computing through VM migration and transmission power control,” IEEE Transactions on Computers, vol. 66, no. 5, pp. 810–819, 2017.
[12] H. Cai, B. Xu, L. Jiang, and A. V. Vasilakos, “IoT-based big data storage systems in cloud computing: perspectives and
challenges,” *IEEE Internet of Things Journal*, vol. 4, no. 1, pp. 75–87, 2017.

[13] Y. Wang, J. Li, and H. H. Wang, “Cluster and cloud computing framework for scientific metrology in flow control,” *Cluster Computing*, vol. 22, no. S1, pp. 1189–1198, 2017.

[14] J. Du, L. Zhao, J. Feng, and X. Chu, “Computation offloading and resource allocation in mixed fog/cloud computing systems with min-max fairness guarantee,” *IEEE Transactions on Communications*, vol. 66, no. 4, pp. 1594–1608, 2018.

[15] M. M. U. Rathore, A. Paul, A. Ahmad, B. W. Chen, B. Huang, and W. Ji, “Real-time big data analytical architecture for remote sensing application,” *IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing*, vol. 8, no. 10, pp. 4610–4621, 2015.

[16] H. Xing, A. Qian, R. C. Qiu, W. Huang, L. Piao, and H. Liu, “A big data architecture design for smart grids based on random matrix theory,” *IEEE Transactions on Smart Grid*, vol. 8, no. 2, pp. 674–686, 2017.

[17] C. S. Calude and G. Longo, “The deluge of spurious correlations in big data,” *Foundations of Science*, vol. 22, no. 3, pp. 595–612, 2017.

[18] Z. Lv, H. Song, P. Basanta-Val, A. Steed, and M. Jo, “Next-generation big data analytics: state of the art, challenges, and future research topics,” *IEEE Transactions on Industrial Informatics*, vol. 13, no. 4, pp. 1891–1899, 2017.

[19] B. Tang, Z. Chen, G. Hefferman et al., “Incorporating intelligence in fog computing for big data analysis in smart cities,” *IEEE Transactions on Industrial Informatics*, vol. 13, no. 5, pp. 2140–2150, 2017.