GENUS STATISTICS USING THE DELAUNAY TESSELLATION FIELD ESTIMATION METHOD. I. TESTS WITH THE MILLENNIUM SIMULATION AND THE SDSS DR7

YOUCAI ZHANG1,2, VOLKER SPRINGEL3,4, AND XIAOHU YANG1

1 Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory (the Partner Group of MPA), Nandan Road 80, Shanghai 200030, China; yezhang@shao.ac.cn
2 Graduate School of the Chinese Academy of Sciences, 19A, Yuquan Road, Beijing, China
3 Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Strasse 1, 85748 Garching, Germany
4 Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany

Received 2010 June 18; accepted 2010 August 14; published 2010 September 23

ABSTRACT

We study the topology of cosmic large-scale structure through the genus statistics, using galaxy catalogs generated from the Millennium Simulation and observational data from the latest Sloan Digital Sky Survey Data Release (SDSS DR7). We introduce a new method for constructing galaxy density fields and for measuring the genus statistics of its isodensity surfaces. It is based on a Delaunay tessellation field estimation (DTFE) technique that allows the definition of a piece-wise continuous density field and the exact computation of the topology of its polygonal isodensity contours, without introducing any free numerical parameter. Besides this new approach, we also employ the traditional approaches of smoothing the galaxy distribution with a Gaussian of fixed width, or by adaptively smoothing with a kernel that encloses a constant number of neighboring galaxies. Our results show that the Delaunay-based method extracts the largest amount of topological information. Unlike the traditional approach for genus statistics, it is able to discriminate between the different theoretical galaxy catalogs analyzed here, both in real space and in redshift space, even though they are based on the same underlying simulation model. In particular, the DTFE approach detects with high confidence a discrepancy of one of the semi-analytic models studied here compared with the SDSS data, while the other models are found to be consistent.

Key words: cosmology: observations – large-scale structure of universe – methods: statistical

Online-only material: color figures

1. INTRODUCTION

According to the standard cosmological model, the large-scale structure in the present universe has formed as a result of gravitational amplification of primordial density fluctuations which were presumably seeded by quantum fluctuations during the early phases of cosmic inflation (Guth 1981; Guth & Pi 1982). The statistical properties of the primordial fluctuations are well constrained by cosmic microwave background (CMB) observations, as, for example, measured by the Wilkinson Microwave Anisotropy Probe (WMAP; Dunkley et al. 2009). If the universe is indeed dominated by cold dark matter, the statistics of the initial density field are thought to be well preserved in the large-scale distribution of galaxies, as mapped, e.g., by the Sloan Digital Sky Survey (SDSS) or the 2dF Galaxy Redshift Survey (2dFGRS; Colless et al. 2001). However, it remains an important task to test whether the observed galaxy distribution is indeed consistent with the expectations for the prevailing ΛCDM cosmology. The latter can be accurately obtained by evolving the initial conditions constrained by the CMB forward in time with the ordinary laws of physics (e.g., Springel et al. 2006).

Most studies of the large-scale distribution of matter and galaxies are based on low-order two-point statistics, i.e., the two-point correlation function and its Fourier transform, the power spectrum (Peebles 1980). While these provide the most basic characterization of the statistics of a set of discrete points, they only fully characterize Gaussian random fields. In order to detect deviations from Gaussianity and the higher-order correlations that develop as a result of non-linear growth of structure even from Gaussian initial conditions, different statistical measures are required. For example, this can be done in terms of the one-point density distribution (Kofman et al. 1994), or through the three-point correlation function and the bispectrum. An interesting alternative are more direct measures of the geometry and topology of cosmic large-scale structure, such as shape statistics (Dave et al. 1997), Minkowski functionals (Mecke et al. 1994), or the genus statistics (Gott et al. 1986). These morphological measures of large-scale structure are sensitive to higher-order correlations and provide important descriptive statistics of the cosmic web.

In this paper, we focus on the genus statistic first proposed by Gott et al. (1986). It has been widely applied during the past two decades (Gott et al. 1989; Park et al. 1992; Moore et al. 1992; Rhoads et al. 1994; Vogeley et al. 1994; Canavez et al. 1998; Springel et al. 1998; Hikage et al. 2002, 2003; Gott et al. 2008, 2009; James et al. 2009), in particular due to its sensitivity to non-Gaussianity. The genus measures the topology of isodensity surfaces of a smoothed mass density field. Therefore, it is sensitive to global aspects of the density maps. It can test directly whether the geometry of the observed cosmic web is consistent with theoretical expectations for the ΛCDM cosmology.

However, the genus statistics is strongly affected by the density reconstruction techniques that are required to allow a consideration of isodensity contours in the first place. The most commonly employed technique for this purpose uses simple Gaussian smoothing of the point set with a fixed kernel size. However, the need to avoid severe under-sampling in void regions usually forces one to significantly over-smooth the strongly clustered regions of the cosmic web, like the nodes and filaments. A spatially adaptive kernel in real space may therefore be a better choice, but just like the fixed smoothing, it also introduces an unwanted numerical parameter into the
analysis, namely, the number of neighbors used for defining the adaptive kernel.

In this work, we therefore propose a novel method that provides for a genus analysis without any free parameter and with minimal smoothing, thereby allowing an extraction of the maximum amount of topological information from the point set. The new approach is based on a three-dimensional density field reconstruction based on the Delaunay tessellation field estimator (DTFE) technique (Schaap & van de Weygaert 2000; Pelupessy et al. 2003). This method allows the unambiguous definition of a continuous, piece-wise linear density field on a tetrahedral mesh, constructed directly from the coordinates of the point set. This field is consistent, i.e., its volume integral reproduces the total mass. Furthermore, isodensity contours can be specified exactly in this field; they become polygonal surfaces for which the genus can also be calculated exactly.

We apply both our new method as well as the traditional approaches of fixed and adaptive smoothing to a number of different galaxy formation models constructed from the Millennium Simulation (MS). We also compare genus results obtained for volume-limited galaxy samples constructed from the SDSS Data Release 7 to matching mock surveys we created for the theoretical galaxy catalogs. This yields an important test of the consistency between the topology of the observed galaxy distribution and the theoretical models, as well as direct information about the improvement in discriminative power made possible by our new method for measuring the genus.

This paper is organized as follows. In Section 2, we briefly describe the genus statistics, and introduce the different density reconstruction methods we use in this study. In Section 3, we describe the data that are used to perform our genus analysis: the galaxy catalogs constructed from the MS, the SDSS observations, and the mock galaxy redshift surveys (MGRSs) we construct for comparison. Section 4 presents our results for the galaxy distribution and the theoretical models, as well as direct information about the improvement in discriminative power possible by our new method for measuring the genus.

2. GENUS STATISTICS

The genus is a measure of the topology of a surface. Following Gott et al. (1986), we define the genus as

\[G = \text{number of holes} - \text{number of isolated regions}, \]

which differs from the usual mathematical definition of the genus, \(g_{\text{math}} = G + 1 \), by a constant offset of 1. In our definition, an isolated sphere has a genus of \(-1\), and a torus has a genus of 0. In the analysis of cosmic large-scale structure, it is customary to analyze the genus of isodensity surfaces as a function of density threshold for a density field that is suitably created from a tracer distribution of discrete points (e.g., galaxies). The actual measurement of the genus can be carried out by means of the Gauss–Bonnet theorem,

\[G = -\frac{1}{4\pi} \int \kappa \, dA, \]

which relates the genus to the integral of the Gaussian curvature, \(\kappa = 1/(r_1 r_2) \), over the surface. Here, \(r_1 \) and \(r_2 \) are the principal radii of curvature of the surface at the integration point.

Interestingly, for a Gaussian random density field, the genus per unit volume, \(g(v) = G(v)/V \), is given by an analytic formula (Hamilton et al. 1986),

\[g(v) = A(1 - v^2) \exp \left(-\frac{v^2}{2} \right), \]

where the amplitude

\[A = \frac{1}{2\pi^2} \left(\frac{\langle k^2 \rangle}{3} \right)^{3/2} \]

depends only on the second moment

\[\langle k^2 \rangle = \frac{\int k^2 P(k) W(k) d^3k}{\int P(k) W(k) d^3k} \]

deviations of the shape \(g(v) \) of a measured genus curve from the form of Equation (3) can be interpreted as a measure of non-Gaussianity, or equivalently, of the cumulative impact of higher-order correlations. Our procedure for quantifying such deviations is to first find the best-fitting genus curve \(g_{\text{fit}}(v) \) expected for Gaussian random phases through a least-squares fit of Equation (3) to the measured curve. This yields, in particular, the \textit{amplitude} of the measured genus curve.

Next, one can define different meta-statistics to quantify the differences of the measured genus curve relative to the Gaussian shape. For example, the shift parameter \(\Delta v \) has been defined by Park et al. (1992) as

\[\Delta v = \frac{\int_{-1}^{1} g(v) v \, dv}{\int_{-1}^{1} g_{\text{fit}}(v) \, dv}, \]

which measures the horizontal shift of the central portion of the genus curve. The Gaussian random phase curve (Equation (3)) has \(\Delta v = 0 \). A negative value of \(\Delta v \) is sometimes called a "meatball shift" because it signifies a greater prominence of isolated over-densities in the density field, while a void dominated field leads to \(\Delta v > 0 \), called a "bubble shift."

Since the two negative extrema of the genus curve represent a measure for the frequency of isolated over- and under-densities, the abundance of clusters and voids relative to that expected from the best-fit Gaussian genus curve can be quantified by two parameters \(A_C \) and \(A_V \) (Park et al. 2005), defined as

\[A_C = \frac{\int_{-1/2}^{1/2} g(v) \, dv}{\int_{-1/2}^{1/2} g_{\text{fit}}(v) \, dv}, \]

where \(\text{erfc} \) is the complementary error function. The \(\nu = 0 \) contour corresponds to the median volume fraction contour (\(f = 50\% \)). We will employ this definition for labeling our density contours, but note that for a Gaussian field one then still has \(\nu = \delta_i/\sigma \).

Deviations of the shape \(g(v) \) of a measured genus curve from the form of Equation (3) can be interpreted as a measure of non-Gaussianity, or equivalently, of the cumulative impact of higher-order correlations. Our procedure for quantifying such deviations is to first find the best-fitting genus curve \(g_{\text{fit}}(v) \) expected for Gaussian random phases through a least-squares fit of Equation (3) to the measured curve. This yields, in particular, the \textit{amplitude} of the measured genus curve.
and
\[A_V = \frac{\int_{-1.2}^{1.2} g(v) dv}{\int_{-1.2}^{1.2} \hat{s}_h(v) dv}, \]
(9)

where the integration interval of \(A_C(A_V) \) is roughly centered at \(v = \sqrt{3} \) and \(v = -\sqrt{3} \), respectively, which are the locations of the minima in the best-fit Gaussian genus curve. At these points, the sensitivity to the number of clusters and voids is greatest. \(A_C < 1 \) (\(A_C > 1 \)) means that fewer (more) isolated clusters or voids are observed than those expected from the best-fit Gaussian curve.

In principle, additional genus meta-statistics are conceivable, and one may even use principal components analysis to determine the most sensitive measures for shape distortions of the genus curve (Springel et al. 1998). Also, the amplitude of the genus curve relative to the genus of a field with the same power spectrum (Canaveses et al. 1998) can be used as a quantitative measure for the cumulative effect of higher-order correlations. However, in this study, we will restrict ourselves to the simple genus statistics described above.

2.1. Fixed Smoothing

As is clear from the above, a given discrete point set first needs to be transformed to a continuous density field to allow the genus analysis. The simplest approach for this is to smooth the point set with a Gaussian kernel of the form
\[W(r) = \frac{1}{(2\pi \lambda^2)^{3/2}} \exp \left(-\frac{r^2}{2\lambda^2} \right), \]
(10)

where \(\lambda \) is a fixed smoothing length. In practical terms, a Cartesian grid with spacing \(d \) can be used to represent the density field, where the grid spacing \(d \) needs to be smaller than \(\lambda \) by a factor of a few to provide adequate sampling. Sampling constraints also impose a lower bound on reasonable values for \(\lambda \), which should be chosen (considerably) larger than the mean spacing of points in the sample, otherwise the estimated density field will be dominated by noise. In practice, we choose \(\lambda \) to be within 5–10 \(h^{-1} \) Mpc.

The actual measurement of the genus can then be carried out on the Cartesian grid in the following way. For a given prescribed density threshold, one considers the surface of all cell faces that lie between pairs of cells on opposite sides of the density threshold. This surface is then an approximation to the true isodensity contour of the underlying density field. In fact, the topology of the discretized surface, which is composed of squares, will be the same as that of the smooth true isodensity contour (modulo very small changes if the grid spacing is not fine enough), except that all the curvature of the real surface is now compressed into the corners of the discretized contour. All the curvature is then represented by a set of Dirac delta functions at these corners, each giving an integrated curvature equal to the angle deficit relative to 360° for the sum of the angles between the incident edges. An application of the Gauss–Bonnet theorem to measure the genus of the surface then effectively reduces to summing up the angle deficits at all vertices of the contour. This approach is exploited by the CONTOUR algorithm (Weinberg 1988), which we have reimplemented in a C code for the analysis of the smoothed density fields in this paper.

2.2. Adaptive Smoothing

A serious disadvantage of the fixed smoothing technique is that a single fixed smoothing length is not well adjusted to highly clustered particle distributions, like the ones we expect for galaxies of the cosmic web. If the smoothing is chosen sufficiently large to avoid under-sampling of the voids, the filaments and clusters will typically be over-smoothed, limiting the amount of information that can be extracted.

A better match to the spatially varying sampling density can be obtained if an adaptive smoothing kernel is used, where the size of the kernel is determined by the local sampling density. In our study, we employ the adaptive kernel estimation techniques that are used in the well-known smoothed particle hydrodynamics (SPH) approach. For the smoothing kernel, we adopt the common choice in SPH, a spherically symmetric spline of the form (Monaghan & Lattanzio 1985)
\[W(r; h) = \frac{8}{\pi h^3} \left\{ \begin{array}{ll} 1 - 6(\frac{r}{h})^2 + 6(\frac{r}{h})^3, & 0 \leq \frac{r}{h} \leq \frac{1}{2}, \\ 2(1 - \frac{r}{h})^3, & \frac{1}{2} \leq \frac{r}{h} \leq 1, \\ 0, & \frac{r}{h} > 1, \end{array} \right. \]
(11)

where the adaptive smoothing length \(h(x) \) at each point \(x \) is defined as the distance to the \(N_{sph} \)th nearest neighbor such that the number of particles inside the smoothing radius \(h(x) \) is equal to a constant value \(N_{sph} \). We then compute the density field as
\[\rho(x) = \sum_{i=1}^{N} m_i W(r_i - x; h(x)), \]
(12)

where \(m_i \) is the mass of the \(i \)th particle. This corresponds to the so-called gather approach to define a density field (Hernquist & Katz 1989).

Again, we shall use a finely spaced Cartesian grid to represent the smoothed field. We note however that it is here considerably more difficult to make this mesh fine enough everywhere. In fact, for clustered distributions, some unwanted over-smoothing of the densest regions due to a too coarse mesh can usually not be avoided.

2.3. Genus Calculation Through a Delaunay Tessellation

The above limitations of the fixed and adaptive smoothing techniques have motivated us to develop a more general approach for measuring the topology of a point set. The new method we propose below does not rely on any additional parameter, it is free of grid-spacing limitations, and at the same time extracts the maximum topological information from the point set.

In mathematics and computational geometry, the Delaunay tessellation for a set of points is the uniquely defined and time extracts the maximum topological information from the point set.

There are different possibilities for using the Delaunay or Voronoi tessellations for density estimates. For example, one may use the Voronoi volumes \(V_i^{\text{Vor}} \) and simply estimate the density within each Voronoi cell as \(\rho_i^{\text{Vor}} = \frac{m_i}{V_i^{\text{Vor}}} \). Another possibility lies in defining the density as
\[\rho_i = \frac{4 m_i}{W_i}, \]
(13)

where now \(W_i \) is the volume of the contiguous Delaunay region around point \(i \), i.e., the sum \(W_i = \sum_j V_{ij}^{\text{Del}} \) of the volumes of
all Delaunay tetrahedra that have \(i \) as one of their vertices. Note that each Delaunay tetrahedron is contributing to the contiguous Delaunay region of four points, hence the multiplication by 4 in Equation (13). In the DTFE technique (Schaap & van de Weygaert 2000; Pelupessy et al. 2003), one estimates densities for each point in this way, and then linearly extends the density estimates at the corners of each tetrahedron to a volume-filling density field. To this end, one simply uses tri-linear interpolation of the density values at the corners of each tetrahedron, in the basis of the three principal vectors that span the tetrahedron. This creates a continuous, piece-wise linear density field, in which the gradient within each tetrahedron is constant. Furthermore, it is easy to see that the volume integral of this field reproduces the sum of the particle masses exactly.

The above DTFE method allows a unique, parameter-free construction of polygonal isodensity contours for a given set of points, without any restriction on dynamic range and without requiring a smoothing procedure. Furthermore, we can readily measure the integrated Gaussian curvature (and hence the genus) of this surface by generalizing the technique employed for Cartesian grids. This is again the case, all the volume will be compressed into the corners/vertices of the polygonal isodensity surface. These points all lie on edges of the Delaunay tessellation, because it is only there that three or more tetrahedra with different gradients can meet.

An example for the geometrical situation is sketched in Figure 1. For every edge in the Delaunay tetrahedralization, we can readily decide whether or not it is intersected by the isodensity contour corresponding to a prescribed density threshold \(\rho_t \). This happens when the densities of the two endpoints of the edge lie on different sides of the density threshold. Provided this is the case, we can straightforwardly find the intersection point on the edge which has density \(\rho_t \). Next, we have to determine the deficit angle around this point. To this end, we visit all tetrahedra that share the given edge and find the points on their outer edges that have density \(\rho_t \). Based on simple geometrical operations, we can then determine the total angle deficit around the intersection point, which corresponds to the integrated curvature at this corner of the isodensity contour.

Summing these angles over all Delaunay edges that have an intersection point then yields the genus of the surface.

We can also obtain an exact measurement of the enclosed volume fraction within the isodensity contour. To this end, we simply loop over all tetrahedra and check whether any of their points lie below or above the density threshold. If all four points lie below \(\rho_t \), the full volume of the tetrahedron is counted in the enclosed volume fraction. If one corner lies below \(\rho_t \), then the intersections on the three incident edges can be calculated, yielding together with the low corner a tetrahedral volume that is counted toward the volume fraction. Similarly, if three points are below \(\rho_t \), then the volume complement for the corner that lies above the density threshold can be readily computed. Only in the case where two points lie below and two above \(\rho_t \), a bit more work is required. Here, the volume below the threshold can be obtained as a composite of three suitably defined tetrahedra. Finally, if all four points lie above the threshold, there is evidently no contribution to the enclosed volume fraction.

In our data analysis below, we will try out this method for the first time in the topological analysis of cosmic large-scale structure. To construct the Delaunay mesh, we employ the tessellation engine of the parallel AREPO code (Springel 2010).

Before we apply this new approach to galaxy data, it is useful to illustrate its response to clustering with the help of an \(N \)-body simulation. To this end, we have run a small collisionless \(N \)-body simulation with 128\(^3\) particles in a periodic box of size \(L = 50\ h^{-1}\ \text{Mpc} \) on a side, using the cosmological parameters of the MS. In Figure 2, we show eight genus curves measured at different times between the starting redshift \(z = 127 \) and the final epoch of \(z = 0 \). First, during the mildly non-linear evolution, the genus amplitude declines, due to the development of phase correlations (Springel et al. 1998). After \(z \sim 7 \), strong non-linear evolution sets in, and the number density of virialized halos rapidly increases. As a result, the genus curve develops a “meatball shift,” as well as an increasing asymmetry between the minima on the \(v < 0 \) and \(v > 0 \) sides. Interestingly, the maximum of the genus curve first begins to increase in this non-linear phase, but then declines again at late times. The latter is...
probably related to the slowly declining total number of halos at late times, as they aggregate into ever larger structures, and the thinning-out of the cosmic web. For comparison, we also include in Figure 2 the genus curve for a random distribution of an equal number of points, shown as a dashed line, which yields a very different shape compared to the N-body simulation at all times. Overall, it is therefore clear that the shape of the genus curve measured with the DTFE method encodes a wealth of interesting information about the clustering pattern which is not readily accessible by other statistical measures.

3. DATA

3.1. Galaxy Catalogs Based on the Millennium Simulation

The simulation analyzed in this study is the so-called “MS” which evolved \(N = 2160^3 \approx 1.0078 \times 10^{10} \) particles from redshift \(z = 127 \) to the present in a cubic box of length \(L_{\text{box}} = 500 \, h^{-1} \, \text{Mpc} \) on each side (Springel et al. 2005). The cosmological parameters in the MS are \(\Omega_m = \Omega_{\text{int}} + \Omega_b = 0.25, \Omega_b = 0.045, h = 0.73, \Omega_{\Lambda} = 0.75, n = 1, \) and \(\sigma_8 = 0.9 \), where the Hubble constant is given as \(H_0 = 100 \, h \, \text{km s}^{-1} \, \text{Mpc}^{-1} \), \(\sigma_8 \) is the rms linear mass fluctuation in a sphere of radius \(8 \, h^{-1} \, \text{Mpc} \) at \(z = 0 \), and \(n \) is the spectral index of the primordial power spectrum. The simulation was carried out with the massively parallel GADGET-2 code (Springel 2005). Gravitational forces were computed with the TreePM method, while long-range forces are calculated with a classical particle-mesh method while short-range forces are determined with a hierarchical tree approach (Barnes & Hut 1986). The Plummer equivalent gravitational softening length was \(5 \, h^{-1} \, \text{kpc} \), which can be taken as the spatial resolution of the simulation.

Dark matter halos and subhalos were identified with the friends-of-friends (FOF; Davis et al. 1985) and SUBFIND (Springel et al. 2001) algorithms, respectively. Based on the halos and subhalos at all output times of the simulation, detailed merging history trees were constructed, which form the basic input required by subsequently applied semi-analytic models of galaxy formation.

The first galaxy catalog we consider is constructed based on the conditional luminosity function (CLF) approach developed by Yang et al. (2003). Halos of different masses are populated with galaxies according to the best-fit CLF parameters listed in Cacciato et al. (2009), properly converted to the MS cosmology. We assign each galaxy an \(r \)-band absolute magnitude \(0.1 \, M_r - 5 \log h \), which is \(K + E \) corrected to redshift \(z = 0.1 \) (Blanton et al. 2003). Note that by construction, the galaxy catalog has a luminosity function that is in very good agreement with the SDSS observations. From this catalog, we select a sample of galaxies in the absolute magnitude range \(-21.7 < 0.1 \, M_r - 5 \log h < -20.1 \) for further analysis. While the choice of this absolute magnitude range is somewhat arbitrary, it yields a good compromise of a fairly large volume and a high number density of galaxies as covered by the SDSS observations (see Figure 3). The total number of galaxies and mean separation in this sample are 665, 914, and 5.73 \(h^{-1} \, \text{Mpc} \), respectively. In order to assess statistical uncertainties due to cosmic variance, we divide the galaxy catalog corresponding to the full simulation box into eight subsamples with \(L_{\text{box}} = 250 \, h^{-1} \, \text{Mpc} \) each and consider the scatter among the results for the individual subsamples. To investigate the dependence of the genus statistics on galaxy absolute magnitudes, we also construct two different samples with the absolute magnitude ranges \(-19.8 < 0.1 \, M_r - 5 \log h < -19.2 \) and \(-18.8 < 0.1 \, M_r - 5 \log h < -18.3 \), respectively, which have a similar number of galaxies as in the case of \(-21.7 < 0.1 \, M_r - 5 \log h < -20.1 \).

The second galaxy catalog we study is taken from Croton et al. (2006).\(^5\) This semi-analytic galaxy formation model includes a

\(^5\) The semi-analytic galaxy catalog is publicly available at http://www.mpa-garching.mpg.de/galform/agnpaper.
The same number of galaxies.

percent less than others), so that all our samples have exactly as before. Note that as discussed in Liu et al. (2010), galaxies (2006) and De Lucia & Blaizot (2007) models are compared, tributions in halos of different masses when the Bower et al. with given luminosity /stellar masses have quite different dis-
total of about 9 million galaxies at $z = 0$. After converting the absolute magnitudes of galaxies by a $K + E$ correction to redshift $z = 0.1$, we also construct from this catalog three different samples in the same absolute magnitude ranges that we described above.

Finally, the third theoretical galaxy catalog used in this paper is that of Bower et al. (2006). The catalog consists of a total of about 24 million galaxies. Again, after $K + E$ correcting the absolute magnitudes and converting them to redshift $z = 0.1$, we construct three galaxy samples in the absolute magnitude ranges $-21.7 < 0.1 M_r - 5 \log h < -20.1$, $-19.8 < 0.1 M_r - 5 \log h < -19.2$, and $-18.8 < 0.1 M_r - 5 \log h < -18.3$, respectively, as before. Note that as discussed in Liu et al. (2010), galaxies with given luminosity/stellar masses have quite different distributions in halos of different masses when the Bower et al. (2006) and De Lucia & Blaizot (2007) models are compared, whereas the latter is very similar to Croton et al. (2006).

Note that in each of the absolute magnitude ranges, there are slight differences in the numbers of galaxies among the three catalogs. Since the genus curve can quite strongly depend on the total number of galaxy in consideration (Protogeros & Weinberg 1997), we randomly downsamp the galaxies where needed according to the Bower et al. (2006) catalog within the magnitude range $-21.7 < 0.1 M_r - 5 \log h < -20.1$ (a few percent less than others), so that all our samples have exactly the same number of galaxies.

3.2. Sloan Digital Sky Survey

The SDSS (York et al. 2000), one of the most influential galaxy redshift surveys to date, is a multi-filter imaging and spectroscopic survey to explore the large-scale distribution of galaxies and quasars. Here, we make use of the New York University Value-Added Galaxy Catalog (NYU-VAGC; Blanton et al. 2005), which is based on the SDSS Data Release 7 (Abazajian et al. 2009). DR7 marks the completion of the survey phase known as SDSS-II. It features a spectroscopy that is now complete over a large contiguous area of the Northern Galactic cap, closing the gap which was present in previous data releases. The continuity over this large area is a great advancement and critical to the statistics of large-scale structure. From the NYU-VAGC, we select all galaxies in the Main Galaxy Sample with an extinction-corrected apparent magnitude brighter than $r = 17.72$, with redshifts in the range $0.01 \leq z \leq 0.20$ and with a redshift completeness $C_r > 0.7$. The extracted SDSS galaxy catalog contains a total number of 639,555 galaxies. Note that in this catalog, a very small fraction of galaxies have redshifts that are borrowed from the Korea Institute for Advanced Study (KIAS) Value-Added Galaxy Catalog (VAGC; Park & Choi 2005; Choi et al. 2007, 2010).

Since the complicated survey geometry may potentially impact the genus measurements significantly, we select only galaxies with right ascension α and declination δ in the ranges $120^\circ \leq \alpha < 240^\circ$ and $10^\circ < \delta < 55^\circ$, which results in a loss of $\sim44\%$ of the galaxies, of which however nearly half are not in the coherent region. With this selection, the remaining SDSS survey volume will suffer less from edge effects, and we have a precise understanding about where the edges lie in our genus calculations. We note that for our new DTFE method we always need to put the data points into a large enclosing box for which formally periodic boundaries are imposed in order to facilitate the construction of the Delaunay tessellation. We have checked that filling the residual volume of this box with a sparse grid of background points or leaving it empty has no significant influence on our results, confirming that the edge effects are sufficiently small (see also the tests in Figure 8 below).

Furthermore, we construct a volume-limited galaxy sample with absolute magnitudes $-21.7 < 0.1 M_r - 5 \log h < -20.1$. As shown in the redshift-absolute magnitude diagram (Figure 3), this corresponds to the redshift range $0.0197 < z < 0.1187$ when the apparent magnitude cut ($10.2 < m_r < 17.7$) is applied. The final volume-limited sample we use, based on the SDSS observations, contains 92,662 galaxies.

3.3. Mock Galaxy Redshift Surveys

The end product of the CLF approach and the semi-analytic models (SAMs) considered here is a large sample of galaxies distributed over the dark matter halos in the cubic simulation box of the MS. One approach would be to compare these galaxy samples directly with the SDSS data. However, this ignores the fact that the latter is affected by observational selection effects, especially the survey geometry and redshift distortion effects. To make an “apples-to-apples” comparison with the SDSS data, which is essential especially for the genus statistics, we construct MGRSs for the three galaxy catalogs we discussed in Section 3.1.

Our construction of the MGRS here is similar to that described in Yang et al. (2004; see also Li et al. 2007). First, we stack $3 \times 3 \times 3$ replicas of the simulation box and place a virtual observer at the center of the stacked boxes. Next, we assign each galaxy (α, δ) coordinates and remove the ones that are outside the mocked SDSS survey region. For each model galaxy in the survey region, we compute its redshift (which includes the cosmological redshift due to the universal expansion, the peculiar velocity, and a 35 km s$^{-1}$ Gaussian line-of-sight velocity dispersion to mimic the redshift errors in the data) and its r-band apparent magnitude (based on the r-band luminosity of the galaxy). We eliminate galaxies that are
fainter than the SDSS apparent magnitude limit and incorporate the position-dependent incompleteness by randomly eliminating galaxies according to the completeness factors obtained from the survey masks provided by the NYU-VAGC. To have a measure of the error on the genus statistics, we construct six MGRSs for the CLF galaxy catalog by rotating the simulation boxes.

Finally, similar to the SDSS observational data, we construct volume-limited galaxy samples with absolute magnitudes $-21.7 < 0.1 M_r - 5 \log h < -20.1$ and a redshift range of $0.0197 < z < 0.1187$. Again, we downsample the resulting galaxy catalogs according to the one with the least number of galaxies if needed so that they have the same number of galaxies for the genus measurements.

4. GENUS STATISTICS OF COSMIC LARGE-SCALE STRUCTURE

Reconstructing a density field from a set of irregularly sampled points is a key step in measuring the genus curve. In this section, we investigate the effects of different reconstruction methods for the density field on the genus and its related statistics. Since we have two types of galaxy catalogs, with and without SDSS survey selection effects, we present our measurements in two subsections.

4.1. Results for Galaxies in Real Space

We first carry out genus measurements for the three galaxy catalogs in the full MS box, where periodical boundary conditions apply. Note that we are here measuring the signal in real space, i.e., the distribution of galaxies is not affected by the redshift distortion effects that are present in the SDSS observations.

4.1.1. Fixed Smoothing Genus Curve

The mean galaxy separation in all of our galaxy samples based on the MS is about $5.73 h^{-1}$ Mpc; therefore, we can reasonably safely apply a Gaussian smoothing length of $6 h^{-1}$ Mpc. If the smoothing length is smaller than $1/\sqrt{2}$ times the mean galaxy separation, the genus curve tends to show a “meatball shift” because the algorithm picks out individual galaxies as isolated high-density regions (Gott et al. 1987, 1989).

For each of the eight subsamples of the three full galaxy catalogs, we first compute the density field using the cloud-in-cell (CIC) assignment scheme. The galaxies are assigned onto 64^3 grids covering the box of $L_{\text{box}} = 250 h^{-1}$ Mpc, where the pixel size of $3.91 h^{-1}$ Mpc is deemed adequate for the smoothing length of $6 h^{-1}$ Mpc. Next, we smooth the galaxy density field by convolving it with a Gaussian window function (Equation (10)) at $\lambda = 6 h^{-1}$ Mpc. Finally, for each sample, we compute the genus at 100 values of ν, where ν is defined in terms of the contour’s enclosed volume fraction (Equation (6)).

In Figure 4, we show the resulting genus curves for the CIC method and a Gaussian smoothing with $\lambda = 6 h^{-1}$ Mpc, for different galaxy catalogs: based on the CLF approach (upper row panels), the SAM of Croton et al. (2006; middle row panels), and the SAM of Bower et al. (2006; lower rows panels), respectively. The panels in the left to right columns give the results for galaxies with absolute magnitude within $-21.7 < 0.1 M_r - 5 \log h < -20.1$, $-19.8 < 0.1 M_r - 5 \log h < -19.2$, and $-18.8 < 0.1 M_r - 5 \log h < -18.3$, respectively. In each panel, the mean genus curve of the eight subsamples is depicted by the solid line, while the shaded areas indicate the 1σ scatter calculated from the eight subsamples. Compared to the Gaussian fit, which is shown as a dotted line, the genus measurements indicate that after CIC assignment and Gaussian smoothing with $\lambda = 6 h^{-1}$ Mpc, the galaxy density fields are consistent with a Gaussian distribution at slightly more than 1σ level.

One step further, we follow Park et al. (1992) in measuring the shift parameter $\Delta \nu$ of the genus curves, as listed in each panel of Figure 4. In the bright absolute magnitude bin $-21.7 < 0.1 M_r - 5 \log h < -20.1$, we find that the CLF and Croton galaxy catalogs have positive $\Delta \nu > 0$ at about a 2σ significance, which means that void structures dominate the galaxy distribution. Gott et al. (2008) report a value of $\Delta \nu = 0.010 \pm 0.023$ for mock samples from MS, which is in agreement with our measurements for galaxies in different absolute magnitude bins and in different galaxy catalogs.

Following Park et al. (2005), we also measured the void multiplicity parameter A_V and the cluster multiplicity parameter A_C, respectively. As can be seen in Figure 4, the void multiplicity parameter A_V is lower than 1 in all the measurements, especially for galaxies in the bright absolute magnitude bin $-21.7 < 0.1 M_r - 5 \log h < -20.1$, which implies that voids are very empty and coalesce into fewer large voids than would be expected for a Gaussian field. The value A_V slightly rises for fainter galaxies in all the three galaxy catalogs. On the other hand, however, the cluster multiplicity parameter A_C is quite different among the three galaxy catalogs. It is consistently below unity in the CLF galaxy catalog, indicating that there are fewer independent isolated high-density regions than for a Gaussian random field. In the Croton et al. (2006) galaxy catalog on the other hand, there is a trend that the values of A_C rise and are consistent with unity only for fainter galaxies. Overall, however, we find that the amplitude of A_C for the Bower et al. (2006) galaxy catalog is consistent with unity. Also, A_V shows smaller deviations than found in the other two catalogs, suggesting that the galaxy distribution in Bower et al. indeed shows subtle differences from the other two.

4.1.2. Genus Curve for an Adaptive Smoothing Kernel

We next turn to an analysis of the genus based on adaptively constructed density fields, considering first the “classic” adaptive kernel estimation technique and in the next subsection our new tessellation method that works directly with the point set.

For each of the eight subsamples of three galaxy catalogs, we compute the density field on a regular 64^3 grid using the SPH method with a neighbor number of $N_{\text{ph}} = 64$ galaxies. Then we calculate the genus curve at 100 values of ν. In the middle panel of Figure 5, we show the genus curves based on the SPH method for our three theoretical galaxy catalogs in the magnitude range $-21.7 < 0.1 M_r - 5 \log h < -20.1$.

Note first that the number of structural elements resolved with the SPH adaptive smoothing is much larger than the one accessible with fixed smoothing. Compared with the $6 h^{-1}$ Mpc fixed smoothing results, which are shown in the left panel of Figure 5, we find that the $N_{\text{ph}} = 64$ adaptive smoothing scheme reaches a genus density approximately three times larger, which is due to the considerably better adaptive resolution of the corresponding isodensity surfaces. However, similar to the fixed smoothing method, the results of the genus statistics for the three catalogs are clearly well consistent with each other, lacking the power of discriminating between the different assumptions about the galaxy formation physics made in the models.

4.1.3. Genus Curve for the DTFE Technique

Finally, we consider our new DTFE method for density reconstruction and measure the genus statistics directly on
Figure 4. Genus curves measured for galaxy samples from three different galaxy catalogs constructed for the MS, from the upper to lower rows as labeled, using the fixed smoothing technique. The shaded region indicates the standard error of the eight subsamples in each model, while the solid line is their mean. The dotted line is the best-fit genus curve for a Gaussian field. The density field has here first been constructed on a fine grid using CIC assignment and was then smoothed with a Gaussian of smoothing length $\lambda = 6 h^{-1} \text{Mpc}$. Results shown in the left-, middle-, and right-hand columns are for galaxies in different absolute magnitude bins, as labeled, where $M_r' = 0.1 (M_r - 5 \log h)$ is the r-band absolute magnitude, $K + E$ corrected to redshift $z = 0.1$. In each panel, we include measurements for the amplitude A, the horizontal shift $\Delta \nu$, and the abundance diagnostics for clusters and void, A_C and A_V. In each case, we cite the mean of our eight measurements and their standard deviations.

the Delaunay tessellation defined by the galaxy coordinates. This method is free of any smoothing parameter and should be able to resolve the largest number of structural elements. The results are shown in the right panel of Figure 5, again for three different galaxy catalogs in the magnitude range $-21.7 < M_r - 5 \log h < -20.1$. The squares with error bars, connected with a solid line, show the results for our primary CLF catalog. The dotted and dashed lines give the corresponding results for the other two catalogs. Overall, the genus curve shows a much larger amplitude than can be resolved with the adaptive smoothing, which is a direct consequence of the larger resolving power of this method. Interestingly, we find that there are significant genus differences between the three galaxy catalogs, especially between the first two and the SAM of Bower et al. (2006). This directly demonstrates the improved discriminative power made possible by the DTFE genus approach, which here can pick up the subtle differences introduced in the galaxy distribution due to different assumptions made in the theoretical galaxy formation modeling.

Apart from the different implementation of galaxy formation processes that cause the different halo occupation number distribution for galaxies of given luminosity, e.g., with...
In the left panel, the density field was constructed using the CIC method with \(\lambda = 6 h^{-1} \) Mpc. In the middle panel, the density field was constructed using the SPH adaptive kernel method with \(N_{\text{sph}} = 64 \) neighbors. The right panel is based on the DTFE method and represents a direct genus measurement of the Delaunay tetrahedralization. In each panel, we show results for galaxy subsamples constructed using the CLF approach (solid line with squares and error bars) and obtained for the semi-analytic models of Croton et al. (2006; dotted line with circles and error bars) and Bower et al. (2006; dashed line with triangles and error bars), respectively.

Figure 5. Similar to Figure 4, but here we compare results for galaxies with \(-21.7 < 0.1 M_l - 5 \log h < -20.1\) using three different methods for density reconstruction. In the left panel, the density field was constructed using the CIC method with \(\lambda = 6 h^{-1} \) Mpc. In the middle panel, the density field was constructed using the SPH adaptive kernel method with \(N_{\text{sph}} = 64 \) neighbors. The right panel is based on the DTFE method and represents a direct genus measurement of the Delaunay tetrahedralization. In each panel, we show results for galaxy subsamples constructed using the CLF approach (solid line with squares and error bars) and obtained for the semi-analytic models of Croton et al. (2006; dotted line with circles and error bars) and Bower et al. (2006; dashed line with triangles and error bars), respectively.

\(-21.7 < 0.1 M_l - 5 \log h < -20.1\), we consider galaxies of different luminosities ranges. As explicitly modeled in the CLF approach introduced by Yang et al. (2003), galaxies with the different luminosities may be hosted by halos of different masses, which in turn can have quite different genus behavior. According to the halo mass distribution of galaxies with the given luminosities shown in Figure 3 of Yang et al. (2009), we roughly expect that galaxies with absolute magnitude in the range \(-21.7 < 0.1 M_l - 5 \log h < -20.1\) should be hosted by halos of mass \(\sim 10^{12} h^{-1} M_\odot \) if they are central galaxies, and in larger halos if they are satellite galaxies. Galaxies with \(-19.8 < 0.1 M_l - 5 \log h < -19.2\) and \(-18.8 < 0.1 M_l - 5 \log h < -18.3\) should be hosted in halos of mass \(\sim 10^{11.6} h^{-1} M_\odot \) and \(\sim 10^{11.3} h^{-1} M_\odot \), respectively, as central galaxies and in larger halos as satellite galaxies. We show and compare in each panel of Figure 6 the genus statistics of galaxies in these three different magnitude ranges. Results shown in the different panels correspond to different galaxy catalogs (left to right columns) and different genus measurement methods (upper to lower rows). As can be seen, only in the three bottom panels based on the DTFE method can we clearly distinguish the difference among the genus curves for galaxies in different magnitude ranges, at much better than a 1\(\sigma \) level. Note also, in the DTFE results, that the Bower et al. (2006) galaxy catalog reveals significantly smaller differences between galaxies within the different absolute magnitude ranges than the other catalogs. This behavior can be well understood if we check the halo mass distribution of these galaxies: for a given luminosity, the Bower et al. (2006) model shows comparatively large halo mass scatter. And thus in Bower et al. (2006), there is a larger overlap of the halo masses in the three different magnitude ranges (see also Figure 4 in Liu et al. 2010).

4.2. Results for Galaxies in Redshift Space

Having measured the genus statistics in real space using different methods for three different galaxy catalogs and for galaxies in three different luminosity ranges, we now turn to an analysis where observational selection effects are included. This also allows us to make a direct comparison with the SDSS observations in an “apples-to-apples” fashion. We note however that we here compare only to theoretical predictions obtained for the LCDM cosmology simulated in the MS; in the future, it will be very interesting to also carry out such a comparison for different cosmological models. Also, we remark that although we have demonstrated in the previous subsections that the genus measured with the DTFE method can in principle distinguish topological differences between different galaxy catalogs constructed for the same simulation model and galaxies within different absolute magnitude ranges, we lack the theoretical prediction/judgment of which of these models is ultimately the most accurate.

As an illustration, we here use the SDSS observation to judge to what extent the three galaxy catalogs we discussed in this paper agree with the observations. Note that in SDSS, there are a number of important survey selection effects: flux limit, sky mask, redshift distortion, etc. To have a fair comparison between the observations and the galaxies in the three theoretical catalogs, we have generated appropriate MGRSs. We then compare the genus statistics measured for the volume-limited samples with \(-21.7 < 0.1 M_l - 5 \log h < -20.1\) extracted from the SDSS observations and for the MGRSs corresponding to our three theoretical galaxy catalogs. The main differences between these measurements and the ones carried out earlier in cubic boxes are the following: (1) a light cone geometry without periodic boundary conditions is used and (2) the analysis is in redshift space.

In Figure 7, we show the genus curves of SDSS and the MGRSs generated from the three different galaxy catalogs. Results shown in the left, middle, and right panels are for genus statistics measured using the \(\lambda = 6 h^{-1} \) Mpc fixed smoothing, the SPH \(N_{\text{sph}} = 64 \) adaptive smoothing, and the DTFE method, respectively. The error bars on top of the CLF results are obtained from 1\(\sigma \) variances of six MGRSs generated from the CLF galaxy catalog by adopting different pointings. As one can see from the plot, the first two genus measurement methods indicate that the three galaxy catalogs are consistent with the SDSS observations at about a 1\(\sigma \)–2\(\sigma \) level, with the Bower et al. (2006) model doing slightly worse. However, the DTFE method clearly shows that the Bower et al. (2006) galaxy catalog is actually inconsistent with the SDSS observations at a high significance level (see also Choi et al. 2010). Again, this is a strong demonstration of the improved discriminative power of the DTFE genus measurement technique even when used in redshift space.
Finally, we examine the systematic effects that our SDSS survey selections may induce. For illustration purposes, we focus only on the DTFE technique and check the impacts of the light cone geometry and of redshift space distortions. We first investigate the light cone geometry effect (according to the SDSS mask) on the shape and amplitude of the genus curve. In Figure 8, we show three DTFE genus curves based on the CLF galaxy catalog, scaled to the same volume: (1) computed for the cubic box of \(L_{\text{box}} = 500 h^{-1} \) Mpc, (2) for small boxes of equal volume as the SDSS, and (3) for MGRSs selected with exactly the same SDSS geometry. Note that all the results shown in this plot are measured in real space. The small and large box results are in overall good agreement at better than 1σ level. However, the results for the SDSS geometry do suffer somewhat from the edge effects, biasing the genus curve to a lower (by about 2σ) maximum value.

Next, we check the impact of redshift space distortions. In Figure 9, we compare the DTFE genus curves for the MGRSs based on the CLF galaxy catalog, measured separately in real and redshift spaces. Both the maximum and minimum values of the genus curves in real space are more prominent than those in redshift space, and their shapes are also slightly different, emphasizing the need of making “apples-to-apples” comparisons with the SDSS observations when genus measurements

Figure 6. Comparison of the genus statistics in different absolute magnitude bins based on different density reconstruction methods and for different galaxy catalogs, as indicated in each panel.
Figure 7. Comparison of the genus statistics between the SDSS and mock redshift surveys that take into account various observational effects, especially the redshift distortion effect, using different density reconstruction methods from left to right, as indicated in the panels. The error bars are calculated from six mock redshift surveys (with different pointings) based on the galaxy catalog constructed using the CLF.

(A color version of this figure is available in the online journal.)

Figure 8. Comparison of the genus statistics for the DTFE method measured from the full simulation box (solid line), from a smaller box of equal volume to the SDSS (dotted line), and from the SDSS geometry (dashed line with error bars) for the CLF galaxy catalog based on the MS. The results shown in this plot are all measured in real space. The error bars for the SDSS geometry results are again calculated from six mock redshift surveys (with different pointings) based on the CLF catalog, but here in real space. The shaded area is the standard error of the eight subsamples.

Figure 9. Comparison of the genus statistics for the DTFE method in real (solid line) and redshift (dotted line) space for MGRSs based on the CLF galaxy catalog. The results in real and redshift spaces are the same as those shown in Figure 8 and the right panel of Figure 7, respectively.

are considered. With further tests, we have confirmed that similar differences also exist in the fixed and adaptive smoothing genus measurements.

In this paper, we have focused on introducing the new DTFE methodology and showing its potential. We therefore restricted our analysis to a comparison of the genus statistics of SDSS observations with galaxy models generated for a single simulation model, the MS, using only \(\sim L^* \) galaxies. We defer a more detailed comparison with the SDSS observations to a forthcoming paper, where galaxies generated in simulations with different cosmological parameters and galaxies in different luminosity bins, etc., are also studied. This will also further clarify the ability of the DTFE genus technique to provide constraints on cosmological and galaxy formation parameters.

5. CONCLUSIONS

In this study, we introduced a new method for measuring the genus statistics of isodensity surfaces of the galaxy distribution, based on the DTFE for constructing a continuous and piece-wise linear galaxy density field. Compared to traditional Gaussian smoothing and adaptive SPH smoothing, this technique does not require any free parameter, and it allows the extraction of the largest amount of topological information from the point set.

To demonstrate the abilities of the new method for measuring the topology of the large-scale structure compared to the
traditional methods, we have carried out genus measurements using galaxies both in real space and in redshift space. In real space, we make use of three galaxy catalogs constructed for the same underlying MS: one based on the CLF approach and the other two generated with semi-analytical galaxy formation models. In redshift space, we make use of the volume-limited samples extracted from the SDSS observational data and the MGRSs generated using the three galaxy catalogs. Three types of genus measurement methods are introduced and applied to those samples: (1) CIC assignment with $\lambda = 6h^{-1}\text{Mpc}$ fixed Gaussian smoothing, (2) adaptive SPH-like smoothing with a neighbor number of $N_{\text{sph}} = 64$ galaxies, and (3) DTFE.

Based on our various comparisons, we can summarize our findings as follows.

1. The traditional genus measurement method based on a fixed smoothing cannot really distinguish the topology of the different galaxy formation models considered here. Reassuringly, they are all found to be consistent with the SDSS observations. If adaptive smoothing is used instead, more topological information can be recovered, but only marginal differences between the models at a $1\sigma - 2\sigma$ level can be detected.

2. The DTFE method has significantly enhanced genus measurement power: its larger amplitude in $G(\nu)$ reflects its ability to extract a maximum amount of topological information from the galaxy density field.

3. Most importantly, the DTFE method can distinguish the topology of different galaxy formation models and of galaxies in different luminosity ranges at very significant confidence levels, both in real space and in redshift space.

4. Comparing with the SDSS observational data using MGRSs that take into account various survey selection effects, we find that the semi-analytical galaxy catalog constructed by Bower et al. (2006) deviates from the observations significantly.

Our results have clearly demonstrated the power of our new DTFE method in performing a topological analysis both in real space and in redshift space. The present work is the first study in a series of papers where we want to exploit the full potential of the new approach for constraining cosmological parameters and the galaxy formation process. It will also be interesting to see how sensitive the DTFE method is to traces of non-Gaussianity in the initial conditions, or to non-standard dark energy models.

We thank Changbom Park and Yun-Young Choi for kindly providing us with the KIAS-VAGC, and the anonymous referee for useful and insightful comments that greatly helped improve the presentation of this paper. This work is partly supported by 973 Program (No. 2007CB815402), the CAS Knowledge Innovation Program (grant No. KJCX2-YW-T05) and grants by 973 Program (No. 2007CB815402), the CAS Knowledge Innovation Program (grant No. KJCX2-YW-T05) and grants by 973 Program (No. 2007CB815402), the CAS Knowledge

The SDSS is managed by the Astrophysical Research Consortium for the Participating Institutions. The Participating Institutions are the American Museum of Natural History, Astrophysical Institute Potsdam, University of Basel, University of Cambridge, Case Western Reserve University, University of Chicago, Drexel University, Fermilab, the Institute for Advanced Study, the Japan Participation Group, Johns Hopkins University, the Joint Institute for Nuclear Astrophysics, the Kavli Institute for Particle Astrophysics and Cosmology, the Korean Scientist Group, the Chinese Academy of Sciences (LAMOST), Los Alamos National Laboratory, the Max-Planck-Institute for Astronomy (MPIA), the Max-Planck-Institute for Astrophysics (MPA), New Mexico State University, Ohio State University, University of Pittsburgh, University of Portsmouth, Princeton University, the United States Naval Observatory, and the University of Washington.

REFERENCES

Abazajian, K. N., et al. 2009, ApJS, 182, 543
Barnes, J., & Hut, P. 1986, Nature, 324, 446
Blanton, M. R., et al. 2003, ApJ, 592, 819
Blanton, M. R., et al. 2005, AJ, 129, 2562
Bower, R. G., Benson, A. J., Malbon, R., Helly, J. C., Frenk, C. S., Baugh, C. M., Cole, S., & Lacey, C. G. 2006, MNRAS, 370, 645
Cacciato, M., van den Bosch, F. C., More, S., Li, R., Mo, H. J., & Yang, X. 2009, MNRAS, 394, 929
Canavezes, A., et al. 1998, MNRAS, 297, 777
Choi, Y., Park, C., Kim, J., Gott, J. R., III, Weinberg, D. H., Vogeley, M. S., & Kim, S. S. 2010, arXiv:1005.0256
Choi, Y., Park, C., & Vogeley, M. S. 2007, ApJ, 658, 884
Colless, M., et al. 2001, MNRAS, 328, 1039
Croton, D. J., et al. 2006, MNRAS, 365, 11
Dave, R., Hellinger, D., Primack, J., Nolthenius, R., & Klypin, A. 1997, MNRAS, 284, 607
Davis, M., Efstathiou, G., Frenk, C. S., & White, S. D. M. 1985, ApJ, 292, 371
Delaunay, B. N. 1934, Sur la sphère vide: Izv. Akad. Nauk SSSR, Otdel. Mat. Est. Nauk, 7, 793
De Lucia, G., & Blaizot, J. 2007, MNRAS, 375, 2
Dunkley, J., et al. 2009, ApJS, 180, 306
Gott, J. R., Choi, Y., Park, C., & Kim, J. 2009, ApJ, 695, L45
Gott, J. R., III, Dickinson, M., & Melott, A. L. 1986, ApJ, 306, 341
Gott, J. R. I., Weinberg, D. H., & Melott, A. L. 1987, ApJ, 319, 1
Gott, J. R. I., et al. 1989, ApJ, 340, 625
Gott, J. R. I., et al. 2008, ApJ, 675, 16
Guth, A. H. 1981, Phys. Rev. D, 23, 347
Guth, A. H., & Pi, S. 1982, Phys. Rev. Lett., 49, 1110
Hamilton, A. J. S., Gott, J. R. I., & Weinberg, D. 1986, ApJ, 309, 1
Hernquist, L., & Katz, N. 1989, ApJS, 70, 419
Hikage, C., et al. 2002, PASJ, 54, 707
Hikage, C., et al. 2003, PASJ, 55, 911
Illian, J., Penttinen, A., Stoyan, H., & Stoyan, D. 2008, Statistical Analysis and Modelling of Spatial Point Patterns (New York: Wiley)
James, J. B., Colless, M., Lewis, G. F., & Peacock, J. A. 2009, MNRAS, 394, 454
Kofman, L., Bertschinger, E., Gelb, J. M., Nusser, A., & Dekel, A. 1994, ApJ, 420, 44
Li, C., Jing, Y. P., Kauffmann, G., Börner, G., Kang, X., & Wang, L. 2007, MNRAS, 376, 984
Liu, L., Yang, X., Mo, H. J., van den Bosch, F. C., & Springel, V. 2010, ApJ, 712, 734
Meecke, K. R., Buchert, T., & Wagner, H. 1994, A&A, 288, 977
Monaghan, J. J., & Lattanzio, J. C. 1985, A&A, 149, 135
Moore, B., et al. 1992, MNRAS, 256, 477
Okabe, A., et al. 2000, Spatial Tessellations: Concepts and Applications of Voronoi Diagrams (2nd ed.; Chichester: Wiley)
Park, C., & Choi, Y. 2005, ApJ, 635, L29
Park, C., Gott, J. R., III, & da Costa, L. N. 1992, ApJ, 392, L51
Park, C., Kim, J., & Gott, J. R. I. 2005, ApJ, 633, 1
Peebles, P. J. E. 1980, The Large-scale Structure of the Universe (Princeton, NJ: Princeton Univ. Press)
Peulpossy, E. I., Schaap, W. E., & van de Weygaert, R. 2003, A&A, 403, 389
Protogeros, Z. A. M., & Weinberg, D. H. 1997, ApJ, 489, 457

The SDSS Web site is http://www.sdss.org/.
Rhoads, J. E., Gott, J. R. I., & Postman, M. 1994, ApJ, 421, 1
Schaap, W. E., & van de Weygaert, R. 2000, A&A, 363, L29
Springel, V. 2005, MNRAS, 364, 1105
Springel, V. 2010, MNRAS, 401, 791
Springel, V., Frenk, C. S., & White, S. D. M. 2006, Nature, 440, 1137
Springel, V., White, S. D. M., Tormen, G., & Kauffmann, G. 2001, MNRAS, 328, 726
Springel, V., et al. 1998, MNRAS, 298, 1169
Springel, V., et al. 2005, Nature, 435, 629
Vogeley, M. S., Park, C., Geller, M. J., Huchra, J. P., & Gott, J. R. I. 1994, ApJ, 420, 525
Weinberg, D. H. 1988, PASP, 100, 1373
Yang, X., Mo, H. J., Jing, Y. P., van den Bosch, F. C., & Chu, Y. 2004, MNRAS, 350, 1153
Yang, X.-h., Mo, H. J., & van den Bosch, F. C. 2003, MNRAS, 339, 1057
Yang, X., Mo, H. J., & van den Bosch, F. C. 2009, ApJ, 695, 900
York, D. G., et al. 2000, AJ, 120, 1579