Comparative Study of Induction Motors of IE2, IE3 and IE4 Efficiency Classes in Pump Applications Taking into Account CO₂ Emission Intensity

Victor Goman 1, Vladimir Prakht 2,*, Vadim Kazakbaev 2 and Vladimir Dmitrievskii 2

1 Nizhniy Tagil Technological Institute, Ural Federal University, 622000 Nizhniy Tagil, Russia; v.v.goman@urfu.ru
2 Department of Electrical Engineering, Ural Federal University, 620002 Yekaterinburg, Russia; vadim.kazakbaev@urfu.ru (V.K.); vladimir.dmitrievsky@urfu.ru (V.D.)
* Correspondence: va.prakht@urfu.ru; Tel.: +7-909-028-49-25

Received: 31 October 2020; Accepted: 26 November 2020; Published: 29 November 2020

Featured Application: The presented results can be used to evaluate the energy-saving potential and ecological impact of electric motors of various energy efficiency classes in various applications of electric drive.

Abstract: The high energy intensity of the modern industry and the threat of climate change determine the high urgency of increasing the energy efficiency of electric motors. In this paper, energy consumption, energy costs, payback periods, and CO₂ emissions of 75 kW, 4 pole induction motors with direct grid supply in a fixed-speed pump unit are evaluated. Motors of the IE2, IE3, and IE4 efficiency classes according to IEC 60034-30-1 standard are compared in terms of life-time energy savings, payback period, and CO₂ emissions. To carry out the analysis, polynomial interpolation of the data from the available manufacturer datasheets of the motors is used. It concluded that even though the initial investment cost of the IE4-motor is higher than that of IE3-motor, the IE4-motor is more profitable if more than 3 years of operation are considered and also provides significant reductions of CO₂ emissions. The paper presents a calculation method of the aforementioned indicators which can be useful for companies, researchers, and engineers for quick assessment and selection of technical solutions.

Keywords: centrifugal pump; cost savings; energy conversion; energy efficiency; energy efficiency class; energy policies and regulation; induction motor; lifetime cost; throttling control; carbon dioxide emissions; environmental impact assessment; climate change mitigation; low-carbon development; sustainable utilization of resources

1. Introduction

Both inside and outside the European Union, increasing the energy efficiency of household appliances, industrial equipment, and technological processes is a long-term stable trend. According to the European Commission data [1], electric motors consume about 46% of the electricity produced worldwide and up to 70% of the electricity in industrial applications. For this reason, the legislation in the field of mandatory energy efficiency classes of convertor-powered motors operating as a part of variable speed drives (VSD) [2] and line-start (direct-on-line) [3] is becoming more and more demanding.

According to the European Commission Regulations [4] from 1 January 2017, in the European Union, all line-start motors with a rated output of 0.75–375 kW should not be less efficient than the IE3 efficiency level. VSD motors should not be less efficient than the IE2 level. The requirements have been updated in the new 2019 European Commission Regulation [5]. According to [5], both line-start...
and VSD 2-, 4-, 6-, 8-pole motors with a rated output of 0.12–1000 kW shall not be less efficient than the IE3 level from 1 July 2021. In addition, from 1 July 2023, 2-, 4- and 6-pole motors with a rated output of 75–200 kW shall not be less efficient than IE4 level. In many countries outside the European Union, IE3 motors are also mandatory [6]: Switzerland and Turkey adopt the regulations of the European Union; USA (0.75–200 kW, from 2017); Canada (0.75–150 kW, from 2017); Mexico (0.75–375 kW, from 2010); South Korea (0.75–200 kW, from 2017); Singapore (0.75–375 kW, from 2013), Japan (0.75–375 kW, from 2014), Saudi Arabia (0.75–375 kW, from 2018), Brazil (0.75–185 kW, from 2017).

All aforementioned measures are aimed at the reduction of carbon dioxide (CO₂) emissions, since CO₂ is one of the most dangerous greenhouse gases. Besides energy saving on the consumer side, usage of the sources with high energy conversion efficiency and renewable energy sources are also very important and results in a significant reduction in greenhouse gas emissions [7–9].

Pumps of various types consume about 22% of all electricity produced worldwide [3]. Therefore, studying the opportunities for increasing the energy efficiency of pump units is of current interest.

Centrifugal pumps often do not require their drives to provide a wide speed-range adjustment, a high starting torque, or enhanced dynamic performances. For this reason, induction motors (IMs) fed directly from the mains are commonly used in this application. In this case, the fluid flow is adjusted by throttling. It can be also noted that these IMs are the most common solution in most applications because of the high cost of frequency converters. Thus, the variable-speed drives account only for 22% of the market in Germany [1] and about 20% in Switzerland [10].

Improving the energy efficiency of a pump unit is possible by optimizing the hydraulic network in which the pump operates, applying VSD, optimizing the load distribution (in the case of parallel-running pumps), and by the proper selection of the elements of the pump unit. In particular, electric motors of a higher energy efficiency level can be applied [11]. A large number of works provide comparative studies on the feasibility of pump systems employing motors various of various types (induction motors, synchronous motors with rare-earth magnets on the rotor, synchronous reluctance motors without magnets) [12–15]. However, all these works are dedicated to the analysis of pump units adjusted by VSD. In this paper, the use of electric motors with a higher energy efficiency class is discussed as the most relevant way to increase the energy efficiency of pumps with throttle control.

It can be noted, that according to document [3], IE-levels depend only on the motor efficiency in the rated loading point. However, it is typical for motors in pump applications to operate at underload most of the time. For example, low-power (<2.5 kW) circulator pumps in variable-flow systems have the following typical flow-time profile [16–18]: 25%-flow for 44% of the time; 50%-flow for 35% of the time; 75%-flow for 15% of the time, and only for 6% of the time the pump operates at the rated flow.

Industrial centrifugal water pumps have the following typical flow-time profile [17,18]: 75%-flow for 25% of the time; 100%-flow for 50% of the time, and 110%-flow for 25% of the time. It can be mentioned that the pump efficiency indicator (minimum efficiency index, MEI) also depends on the efficiency of the pump hydraulic part in these three operating points [19].

In [20], the comparison of the energy consumption of 2.2 kW line-start permanent magnet motors (LS-PMSM) and induction motors of IE3 and IE4 classes in a pump unit with throttling control is considered. The annual energy consumption, the annual electricity costs, and the life-cycle cost savings were assessed for these motors. The main purpose of that work was to demonstrate that when deciding which motor to use in variable-flow pump units with the loading cycle according to [16], it is also needed to consider not only the rated efficiency that determines the energy efficiency class of the motor. It is also necessary to take into account the efficiency values of the motor under partial load conditions. Still, in [20], the payback period and CO₂ emissions, depending on the electricity consumed by different motors, were not estimated.

In [21], a comparative analysis of energy consumption is presented for 15 kW induction motors of IE1 and IE2 classes in a pump unit with a throttling control. CO₂ emissions differences were not considered, but the payback period in the case of replacing the IE1-class with the IE2 motor was assessed. However, replacing IE1 motors with IE2 motors is relevant only in some countries.
For example, this measure can be up-to-date in the countries of the Eurasian Economic Union (Russia, Armenia, Belarus, Kazakhstan, and Kyrgyzstan) as the ecodesign legislation of these countries [22] allows using IE1-motors until 9 September 2021. The above overview shows that comparative analysis of energy efficiency indicators and CO₂ emissions depending on the consumed electricity for motors of IE2, IE3, and IE4 classes in high and medium-power, constant flow pump applications with throttle control is still not presented in the literature.

This paper presents the comparison of the main energy efficiency indicators and payback periods of 75 kW, 4-pole inductions motors of the IE2, IE3, and IE4 classes in a fixed-speed pump unit with throttle control. The manufacturer catalog data [23–25] and the data of the typical flow-time profile [17,18] are used for the comparison.

2. Characteristics of the Pump

To assess the motor loading conditions in various loading points of the pump this study uses a polynomial interpolation of data from technical datasheets of the pump and electric motors based on the experimental data. Data of pump Calpeda NMS4 150/400 A/A [26] with the rated power \(P_{\text{RATE}} \) of 75 kW and the rated rotational speed \(n_{\text{RAME}} \) of 1450 rpm are used for the analysis. The main parameters of this pump are specified in Table 1. Figure 1 shows the head-flow, mechanical power-flow, and efficiency-flow curves of this pump.

![Figure 1](image)

Table 1. Nameplate data of the pump.

Parameter	Type	\(P_{\text{RATE}}, \text{W} \)	\(n_{\text{RAME}}, \text{rpm} \)	\(Q_{\text{BEP}}, \text{m}^3/\text{h} \)	\(H_{\text{BEP}}, \text{m} \)	Efficiency, %
Value	NMS4 150/400 A/A	75,000	1450	352	50.3	81

The avoided annual emissions were calculated according to formula (4):

\[
\Delta CDE* = CDE*y.m - CDE*y.3m
\]

The electric power consumed from the grid is calculated using the interpolated pump mechanical power and interpolated motor efficiency according to Formula (1):

\[
P_{\text{l.i.m}} = P_{\text{mech.i.m}}/\eta_{\text{M.i.m}}
\]

where \(P_{\text{mech.i.m}} \) is the pump mechanical power; \(\eta_{\text{M.i.m}} \) is the efficiency of \(m \)-th motor in \(i \)-th loading point. Second-order polynomial interpolation of the motors’ loss curves was used for the calculation of the efficiency at each loading point. As it is shown in [27], losses as a function of the load may be described by a second-order polynomial curve, the coefficients of which can be calculated using the
efficiencies at three standard loading points (50%, 75%, 100%) provided by the manufacturers of the electric motor.

The electricity consumed per annum by one of the considered motors assuming the flow-time diagram shown in Figure 2 is determined using the Formula (2), where \(t_\Sigma \) is the total time of the operating cycle (24 h) and \(t_i \) is the operating time of the pump in \(i \)-th loading point (see Figure 2).

\[
E_{y.m} = 365 \cdot t_\Sigma \cdot \sum_{i=1}^{3} \left(p_{i,m} \cdot \frac{t_i}{t_\Sigma} \right).
\] (2)

\[
\text{Figure 2. Flow-time profile for constant flow systems} \ [17,18].
\]

4. Calculation Method for Assessment of the CO2 Emission Intensity

The annual CO2 emissions were estimated using the CO2 emissions factor for electricity consumption (EFE; it is 418.8 g/kWh for Germany according to the data [28]) as follows:

\[
CDE_{y.m} = E_{y.m} \cdot EFE.
\] (3)

The avoided annual emissions were calculated according to formula (4):

\[
\Delta CDE_{y,3m} = CDE_{y,3} - CDE_{y,m}.
\] (4)

\(E_{y,m} \) in formula (2) can be considered as the “final energy” according to [29]. The generation and transmission of the “final energy” demand a corresponding value of “primary energy” from energy sources [30]. The primary energy factor (PEF) is used for calculations of primary energy and it characterizes the averaged efficiency of the primary energy conversion into the final energy [30]. According to Directive 2012/27/EU [29], a default PEF of 2.5 is applicable. However, this value of PEF is under discussion in [31] and one of the main issues is the need to revise the coefficient 2.5. For example, according to [31], PEF is assumed to be 1.8–2.2 depending on the calculation method. In [32] PEF was also estimated and assumed to be 2.21 for European conditions. Taking into account \(PEF = 2.2 \), the annual \(CDE^{*}_{y,m} \) and avoided CO2 emissions \(\Delta CDE^{*}_{y,3m} \) were recalculated according to Formulae (5) and (6):

\[
CDE^{*}_{y,m} = CDE_{y,m} \cdot PEF.
\] (5)

\[
\Delta CDE^{*}_{y,3m} = CDE^{*}_{y,3} - CDE^{*}_{y,m}.
\] (6)

5. Calculation Method for Assessment of the Lifecycle Costs and Cost Savings

The electricity cost (in Euro) at the tariff GT for non-household consumers in Germany equal to 0.188€/per kWh [33] is calculated according to (7):

\[
C_{y.m} = E_{y.m} \cdot GT.
\] (7)
To compare the cost of the electricity consumed per annum in the case of different motors, the differences in the costs were calculated at the considered flow-time profile according to formula (8).

\[S_{y,31} = C_{y,3} - C_{y,1}; S_{y,32} = C_{y,3} - C_{y,2}; S_{y,21} = C_{y,2} - C_{y,1}. \] (8)

The pump lifetime cost often consists mostly of the energy cost (more than 50–60%) [34,35]. According to [34,35] the duration of the life cycle of pump units is about 15–20 years. For this reason, in this study, it is assumed the estimated pump lifetime of \(n = 20 \) years. The net present value (NPV) of the energy cost over the entire service life is estimated according to:

\[C_{LCCen,m} = C_{y,m} / (1 + (y - p))^n \] (9)

where \(p \) is the expected inflation per annum (defined as 0.02); \(y \) is the interest rate (defined as 0.04) [34,35].

The lifetime cost saving of \(m \)-th motor relative to the IE2-motor \((m = 3)\) is calculated as follows:

\[\Delta C_{LCCen.3m} = C_{LCCen.3} - C_{LCCen.m}. \] (10)

In the case of replacing the IE2-motor \((m = 3)\) with the IE4 \((m = 1)\) or the IE3-motor \((m = 2)\), the payback time \(T_m \) of the \(m \)-th motor is calculated as following:

\[T_m = C_{iic,m} / S_{y,3m} \] (11)

where \(C_{iic,m} \) is the initial investment costs of the motors, according to data of [36].

6. Results and Discussions

Table 2 shows the pump parameters in the points of the pump duty cycle according to the characteristics of the manufacturer’s catalog [26].

Table 2. Pump loading cycle parameters.

No. of Loading Points \((i)\)	1	2	3
\(Q_i, \% \)	75	100	110
\(Q_i, \) m\(^3\)/h	264.0	352.0	387.2
\(H_{pump,i}, \) m	55.8	50.3	47.2
\(\eta_{pump,i}, \% \)	76.22	81.00	79.85
\(P_{mech,i}, \) W	52,538	59,520	62,421
\(P_{mech,i}, \% \)	70.05	79.36	83.23

Table 3 and Figure 3 show the motor efficiency in the loading points specified in the catalog (50%, 75%, and 100% of the rated motor output power) [23–25]. In addition, Table 3 specifies the interpolated motor efficiency in the points of the pump duty cycle (75%, 100%, and 110% of the rated flow). All motors under consideration have identical frame size 280S/M and identical mounting dimensions.

Table 3. Catalog and interpolated efficiencies of 75 kW 4-pole electric motors.

\(m \)	Type of Motor, IE Class	Catalog Efficiency, \% at the Loads	Interpolated Efficiency \(\eta_{M,i,m}\), \% in the Loading Points				
		50%	75%	100%	1	2	3
1	IM, IE4	95.5	96.1	96.2	96.05	96.15	96.18
2	IM, IE3	94.5	95.1	95.2	95.07	95.17	95.19
3	IM, IE2	93.8	94.4	94.4	94.37	94.40	94.40
Tables 4 and 5, and Figures 4–7 illustrate the results of the energy indicators assessment according to the proposed method, Formulae (1)–(11).

Table 4. Energy consumption and cost savings calculation results.

m	Type of Motor, IE Class	$E_{y,m}$, MW·h	$C_{y,m}$, k€	$S_{y,3m}$, €	$C_{LCCm,m}$, k€	$\Delta C_{LCCm,3m}$, k€	$C_{iic,m}$, €	T_m, Years
1	IM WEG W22, IE4	533.05	100.21	1809.4	1638.58	29.59	5246	2.9
2	IM WEG W22, IE3	538.56	101.25	775.0	1655.58	12.59	4035	5.2
3	IM WEG W22, IE2	542.68	102.02	-	1668.17	-	-	-

Table 5. CO₂ emissions calculation results.

m	Type of Motor, IE Class	Emissions Considering the Final Energy	Emissions Considering the Primary Energy		
		$C_{DE_{y,m}}$, Tons	$\Delta C_{DE_{y,3m}}$, Tons	$C_{DE^{*}_{y,m}}$, Tons	$\Delta C_{DE^{*}_{y,3m}}$, Tons
1	IM WEG W22, IE4	223.24	4.03	491.12	8.87
2	IM WEG W22, IE3	225.55	1.72	496.21	3.78
3	IM WEG W22, IE2	227.27	-	499.99	-

Figure 3. Motors’ efficiency interpolated curves and initial points.

Figure 4. Annual energy consumption $E_{y,m}$ (MW·h).
which saves the 20 years cost for 12,590 € planned renovation, the 20 years energy saving is 192.6 MW·h, which saves 29,590 € for the 20 years; and the payback period is 5.2 years. Therefore, it can be concluded that replacing the IE2-motor with either the IE3-motor or IE4 motor is a feasible solution. Even though the initial investment cost of the IE4-motor is higher compared to the IE3-motor, the payback period is 2.9 years. In the case of the IE3-motor, the 20 years energy saving is 82.4 MW·h, which saves 20 years cost for 12,590 €, and the payback period is 5.2 years. Therefore, it can be concluded that replacing the IE2-motor with IE3-motor gives only 3.78 tons avoided CO₂ emissions per annum and replacing the IE2-motor with IE3-motor gives only 3.78 tons avoided CO₂ emissions per annum. It can be concluded that although IE4 motor is 30% more costly than IE3 motor (see Table 4) the avoided emissions are $8.87/3.78 = 2.35$ times higher that is very significant.

7. Conclusions

In this paper, the comparative analysis of the energy efficiency indicators and payback periods of the 75 kW, 4-pole induction motors of the IE2, IE3, and IE4 efficiency classes in the fixed-speed...
The hydraulic flow variation in the range of 75–110% of the rated pump value is considered. The payback period is assessed in the case of replacing the motor as a part of the pump unit during a planned renovation. The initial investment cost of the IE4-motor is higher comparing to the IE3-motor. However, the payback period of the IE4-motor is only 2.9 years and much shorter than that of the IE3 motor. Therefore, even with the higher initial investment cost, the IE4-motor is significantly more profitable. It should be highlighted that the proposed technical solution is especially relevant considering the requirements of the European Commission Regulation [5], according to which, the use of IE4-class motors for a range of the rated power above 75 kW is mandatory from 1 July 2023.

The replacement of the IE2-motor also results in a significant reduction in CO₂ emissions. It is 8.87 tons per annum in the case of the IE4-motor and 3.78 tons per annum in the case of the IE3-motor. In addition, the paper presents the calculation methods for energy consumption, energy savings, cost savings, and carbon dioxide emission intensity which can be useful for companies, researchers, and engineers for quick assessment and selection of technical solutions.

Author Contributions: Conceptual approach, V.P. and V.G.; data curation V.D., and V.K.; software V.G. and V.K.; calculations and modeling, V.G, V.P., and V.K.; writing of original draft, V.G., V.P., V.K., and V.D.; visualization, V.G., and V.K.; review and editing, V.G., V.P., V.K., and V.D. All authors have read and agreed to the published version of the manuscript.

Funding: The work was partially supported by the Ministry of Science and Higher Education of the Russian Federation (through the basic part of the government mandate, Project No. FEUZ-2020-0060).

Acknowledgments: The authors thank the editors and reviewers for careful reading, and constructive comments.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

Acronym	Definition
IE	International efficiency
IEC	International Electrotechnical Commission
VSD	variable speed drive
CO₂	carbon dioxide
IM	induction motor
MEI	minimum efficiency index
LS-PMSM	line-start permanent magnet motors
BEP	best efficiency point
CDE	carbon dioxide emissions
EFE	CO₂ emissions factor for electricity consumption
PEF	primary energy factor
NPV	net present value

References

1. European Commission. Study on Improving the Energy Efficiency of Pumps. 2001. Available online: http://www.jakob-albertsen.dk/komposit/Darmstadtrapport.pdf (accessed on 14 August 2020).

2. Rotating Electrical Machines-Part 30–32: Efficiency Classes of Variable Speed AC Motors (IE-Code) IEC 60034-30-2/ IEC: 2016–2012. Available online: https://webstore.iec.ch/publication/30830 (accessed on 14 August 2020).

3. Rotating Electrical Machines-Part 30–31: Efficiency Classes of Line Operated AC Motors (IE Code). IEC 60034-30-1/Ed. 1. Available online: https://webstore.iec.ch/publication/136 (accessed on 14 August 2020).

4. European Commission Regulation (EC) No. 640/2009 Implementing Directive 2005/32/ EC of the European Parliament and of the Council with Regard to Ecodesign Requirements for Electric Motors, 2009. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32014R0004 (accessed on 14 August 2020).
5. Commission Regulation (EU) 2019/1781 of 1 October 2019 Laying Down Ecodesign Requirements for Electric Motors and Variable Speed Drives Pursuant to Directive 2009/125/EC of the European Parliament and of the Council, Amending Regulation (EC) No 641/2009 with Regard to Ecodesign Requirements for Glandless Standalone Circulators and Glandless Circulators Integrated in Products and Repealing Commission Regulation (EC). Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32019R1781&from=EN (accessed on 14 August 2020).

6. Efficiency Regulations for Motors: International Norms. Available online: https://www.nord.com/cms/media/documents/bw/S4700_6069202_4019_Screen.pdf (accessed on 14 August 2020).

7. Chodakowska, E.; Nazarko, J. Assessing the Performance of Sustainable Development Goals of EU Countries: Hard and Soft Data Integration. Energies 2020, 13, 3439. [CrossRef]

8. Siksnyte, L.; Zavadskas, E.K. Achievements of the European Union Countries in Seeking a Sustainable Electricity Sector. Energies 2019, 12, 2254. [CrossRef]

9. Mathiesen, B.V.; Lund, H.; Karlsson, K. 100% Renewable energy systems, climate mitigation and economic growth. Appl. Energy 2011, 88, 488–501. [CrossRef]

10. Phillips, R.; Tieben, R. Improvement of Electric Motor Systems in Industry (IEMSI). In Proceedings of the 10th International Conference on Energy Efficiency in Motor Driven Systems (EEMODS ’17), Rome, Italy, 6–8 September 2017. [CrossRef]

11. Arun Shankar, V.K.; Umashankar, S.; Paramasivam, S.; Hanigovszki, N. A comprehensive review on energy efficiency enhancement initiatives in centrifugal pumping system. Appl. Energy 2016, 181, 495–513. [CrossRef]

12. Ahonen, T.; Orozco, S.M.; Ahola, J.; Tolvanen, J. Effect of electric motor efficiency and sizing on the energy efficiency in pumping systems. In Proceedings of the 18th European Conference on Power Electronics and Applications (EPE’16 ECCE Europe), Karlsruhe, Germany, 5–9 September 2016; pp. 1–9. [CrossRef]

13. Van Rhyn, P.; Pretorius, J.H.C. Utilising high and premium efficiency three phase motors with VFDs in a public water supply system. In Proceedings of the IEEE 5th International Conference on Power Engineering, Energy and Electrical Drives (POWERENG), Riga, Latvia, 11–13 May 2015; pp. 497–502. [CrossRef]

14. Brinner, T.R.; McCoy, R.H.; Kopecky, T. Induction Versus Permanent-Magnet Motors for Electric Submersible Pump Field and Laboratory Comparisons. IEEE Trans. Ind. Appl. 2014, 50, 174–181. [CrossRef]

15. Kazakbaev, V.; Prakht, V.; Dmitrievskii, V.; Ibrahim, M.N.; Oshurbekov, S.; Sarapulov, S. Efficiency analysis of low electric power drives employing induction and synchronous reluctance motors in pump applications. Energies 2019, 12, 1144. [CrossRef]

16. Commission Regulation (EC) July 22, 2009 implementing Directive 2005/32/EC of the European Parliament and of the Council with regard to Ecodesign Requirements for Glandless Standalone Circulators and Glandless Circulators Integrated in Products, Amended by Commission Regulation (EU). Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A02009R0641-20170109 (accessed on 14 August 2020).

17. Europump. Extended Product Approach for Pumps. Available online: http://europump.net/uploads/Extended%20Product%20Approach%20for%20Pumps%20-%20A%20Europump%20guide%20(27OCT2014).pdf (accessed on 14 August 2020).

18. Stoffel, B. Assessing the Energy Efficiency of Pumps and Pump Units. Background and Methodology; Elsevier: Amsterdam, The Netherlands, 2015. [CrossRef]

19. Commission Regulation (EU) Implementing Directive 2009/125/EC of the European Parliament and of the Council with regard to Ecodesign Requirements for Water Pumps. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32012R0547 (accessed on 14 August 2020).

20. Goman, V.; Oshurbekov, S.; Kazakbaev, V.; Prakht, V.; Dmitrievskii, V. Energy Efficiency Analysis of Fixed-Speed Pump Drives with Various Types of Motors. Appl. Sci. 2019, 9, 5295. [CrossRef]

21. Oshurbekov, S.; Kazakbaev, V.; Prakht, V.; Dmitrievskii, V.; Alecksey Paramonov. Comparative Study of Energy Consumption of 15 kW Induction Motors of IE1 and IE2 Efficiency Classes in Pump Applications. In Proceedings of the XI International Conference on Electrical Power Drive Systems (ICEPDS), Saint-Petersburg, Russia, 4–7 October 2020; pp. 1–6. [CrossRef]

22. Technical Regulations of Eurasian Economic Union. O Trebovaniyakh k Energeticheskoy Effectivnosti Energopotreblyaushchikh Ustroistv. Available online: https://www.garant.ru/products/ipo/prime/doc/73240518/ (accessed on 14 August 2020).
23. W22 High Efficiency IE2 75 kW 4P 280S/M 3Ph 380-415/660//460 V 50 Hz IC411-TEFC-B3T. Product Details. Available online: https://www.weg.net/catalog/weg/CY/en/Electric-Motors/Low-Voltage-IEC-Motors/General-Purpose-ODP-TEFC-Cast-Iron-TEFC-General-Purpose/W22---Cast-Iron-TEFC-General-Purpose/W22-IE2/W22-IE2-75-kW-4P-280S-M-3Ph-380-415-660-460-V-50-Hz-IC411---TEFC---B3T/p/11130155 (accessed on 14 August 2020).

24. W22 Premium Efficiency IE3 75 kW 4P 280S/M 3Ph 380-415/660//460 V 50 Hz IC411-TEFC- B3T. Product Details. Available online: https://www.weg.net/catalog/weg/CI/en/Electric-Motors/Low-Voltage-IEC-Motors/General-Purpose-ODP-TEFC/Cast-Iron-TEFC-General-Purpose/W22---Cast-Iron-TEFC-General-Purpose/W22-IE3/W22-IE3-75-kW-4P-280S-M-3Ph-380-415-660-460-V-50-Hz-IC411---TEFC---B3T/p/12864750 (accessed on 14 August 2020).

25. W22 Super Premium Efficiency IE4 75 kW 4P 280S/M 3Ph 400/690//460 V 50 Hz IC411-TEFC-B3T. Product Details. Available online: https://www.weg.net/catalog/weg/CI/en/Electric-Motors/Low-Voltage-IEC-Motors/General-Purpose-ODP-TEFC/Cast-Iron-TEFC-General-Purpose/W22---Cast-Iron-TEFC-General-Purpose/W22-IE4/W22-IE4-75-kW-4P-280S-M-3Ph-400-690-460-V-50-Hz-IC411---TEFC---B3T/p/12774369 (accessed on 14 August 2020).

26. NM, NMS, Close Coupled Centrifugal Pumps with Flanged Connections; Catalogue; Calpeda, 2018. Available online: https://www.calpeda.com/system/products/catalogue_50hzs/53/en/NM_NMS_EN2018.pdf?1549893188 (accessed on 14 August 2020).

27. Ferreira, F.J.T.E.; de Almeida, A.T. Energy savings potential associated with stator winding connection mode change in induction motors. In Proceedings of the XXII International Conference on Electrical Machines (ICEM), Lausanne, Switzerland, 4–7 September 2016; pp. 2775–2783. [CrossRef]

28. CO2 Intensity of Electricity Generation. European Environment Agency. Available online: https://www.eea.europa.eu/data-and-maps/data/co2-intensity-of-electricity-generation (accessed on 14 August 2020).

29. Directive 2012/27/EU of the European Parliament and of the Council of 25 October 2012 on Energy Efficiency, Amending Directives 2009/125/EC and 2010/30/EU and Repealing Directives 2004/8/EC and 2006/32/EC. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32012L0027 (accessed on 8 August 2020).

30. Wilby, M.R.; González, A.B.R.; Díaz, J.J.V. Empirical and dynamic primary energy factors. Energy 2014, 73, 771–779. [CrossRef]

31. Final Report. Evaluation of Primary Energy Factor Calculation Options for Electricity. Available online: https://ec.europa.eu/energy/sites/ener/files/documents/final_report_pef_eed.pdf (accessed on 8 August 2020).

32. Tucki, K.; Orynycz, O.; Mitoraj-Wojtanek, M. Perspectives for Mitigation of CO2 Emission due to Development of Electromobility in Several Countries. Energies 2020, 13, 4127. [CrossRef]

33. Eurostat Data for the Industrial Consumers in Germany. Available online: http://ec.europa.eu/eurostat/statistics-explained/index.php/Electricity_price_statistics#Electricity_prices_for_industrial_consumers (accessed on 14 August 2020).

34. Pump Life Cycle Costs: A Guide to LCC Analysis for Pumping Systems, Executive Summary. (2001) Hydraulic Institute (Parsippany, NJ, USA); Europump (Brussels, Belgium); Office of Industrial Technologies Energy Efficiency and Renewable Energy U.S. Department of Energy (Washington, DC, USA). Available online: https://searchworks.stanford.edu/view/4676735 (accessed on 14 August 2020).

35. Waghmode, L.; Sahasrabudhe, A. A comparative study of life cycle cost analysis of pumps. In Proceedings of the International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (ASME 2010), Montreal, QC, Canada, 15–18 August 2010; Volume 6, pp. 491–500.

36. AC Electric Motor. Available online: https://www.acelectricmotor.co.uk/ (accessed on 14 August 2020).

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).