Association between Fas/FasL gene polymorphism and musculoskeletal degenerative diseases: a meta-analysis

Donghua Huang 1†, Jinrong Xiao 2†, Xiangyu Deng 1, Kaige Ma 1, Hang Liang 1, Deyao Shi 1, Fashuai Wu 1 and Zengwu Shao 1*

Abstract

Background: It was reported that Fas (rs1800682, rs2234767) and FasL (rs5030772, rs763110) gene polymorphism might be related to the risk of musculoskeletal degenerative diseases (MSDD), such as osteoarthritis (OA), intervertebral disc degeneration (IVDD) and rheumatoid arthritis (RA). However, data from different studies was inconsistent. Here we aim to elaborately summarize and explore the association between the Fas (rs1800682, rs2234767) and FasL (rs5030772, rs763110) polymorphisms with MSDD risk.

Methods: Literatures were selected from PubMed, Web of Science, Embase, Scopus and Medline in English and VIP, SinoMed, Wanfang and the China National Knowledge Infrastructure (CNKI) in Chinese up to August 21, 2017. All the researches included are case-control studies about human. We calculated the pooled odds ratios (ORs) with 95% confidence intervals (95% CI) to evaluate the strengths of the associations of Fas (rs1800682, rs2234767) and FasL (rs5030772, rs763110) polymorphisms with MSDD risk.

Results: Eleven eligible studies for rs1800682 with 1930 cases and 1720 controls, 6 eligible studies for rs2234767 with 1794 cases and 1909 controls, 3 eligible studies for rs5030772 with 367 cases and 313 controls and 8 eligible studies for rs763110 with 2010 cases and 2105 controls were included in this analysis. The results showed that the G allele of Fas (rs1800682) is associated with an increased risk of IVDD in homozygote and recessive models. The G allele of Fas (rs2234767) is linked to a decreased risk of RA but an enhanced risk of OA in allele and recessive models. In addition, the T allele of FasL (rs763110) is correlated with a reduced risk of IVDD in all of models. However, no relationship was found between FasL (rs5030772) and these three types of MSDD in any models.

Conclusions: Fas (rs1800682) and FasL (rs763110) polymorphism were associated with the risk of IVDD and Fas (rs2234767) was correlated to the susceptibility of OA and RA. Fas (rs1800682) and Fas (rs2234767) are more likely to be associated with MSDD for Chinese people. Fasl. (rs763110) is related to the progression of MSDD for both Caucasian and Chinese race groups. But FasL (rs5030772) might not be associated with any types of MSDD or any race groups statistically.

Keywords: Fas/FasL polymorphism, Musculoskeletal degenerative diseases, Intervertebral disc degeneration, Osteoarthritis, Rheumatoid arthritis

* Correspondence: szwpro@163.com
†Equal contributors
1Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan 430022, China
Full list of author information is available at the end of the article

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Background

Degenerative disease is a consequence of a successive process resulted from degenerative cell changes, influencing tissues or organs, which will gradually deteriorate over time. The most common degenerative diseases in musculoskeletal systems include intervertebral disc degeneration (IVDD), osteoarthritis (OA) and rheumatoid arthritis (RA). IVDD, which results from ageing, small injuries and natural daily compression on intervertebral disc (IVD), has been regarded as one of the main causes to low back pain and motor deficiency. OA, a common type of joint disease, is owing to the destruction of joint cartilage and subchondral bone and is traditionally considered to be associated with articular cartilage degeneration [1]. RA, a long term autoimmune dysfunction that primarily affects joints, is also considered to be a degenerative rheumatoid and arthritis [2, 3]. All of the three diseases are of high prevalence in the society and exert huge burdens to the global medical care [4]. And they were all have been found to be related to gene alterations or heredity by recent studies [5–8].

Apoptosis represents a physiological procedure in order to remove harmful, damaged, or unwanted cells [9]. Fas is a cell-surface receptor referring to apoptotic signaling in various cell types and interacts with the natural ligand Fas ligand (FasL) to start the death signal cascade, which can contribute to apoptotic cell death [10, 11]. Fas/FasL genetic polymorphisms have been reported to be related to the development or progression of several common diseases such as cancer, systemic lupus erythematosus [12–14]. Fas (−670 G > A rs1800682, −1377 G > A rs2234767) and FasL (IVS2nt124 A > G rs5030772, −844 T > C rs763110) are the most commonly studied sites in Fas/FasL gene recently.

Although the exact etiology of OA is still unclear, current researches have explored an association between chondrocyte apoptosis and the progression of OA [15, 16]. RA, which is characterized by synovial cells proliferation and T lymphocyte collection inside the synovial tissue, is partly due to the inhibition of T cell death by Fas/FasL participated in [17, 18]. One of the main processes in the initiation and development of IVDD is the decrease in disc cells, leading to decline in ability of synthesizing and repairing extracellular matrix [19]. Recent studies have observed a significantly higher expression levels of Fas and FasL in disc cells of the herniated lumbar disc tissues, which may result in a rapid apoptosis of resident disc cells [20, 21]. From the evidences above, we hypothesize that there may be an association of Fas and FasL gene polymorphisms with musculoskeletal degenerative diseases (MSDD). A few previous researches have reported that Fas and FasL variations were associated with these MSDD risks but came to a contradictory published results [19, 22–32]. However, no meta-analysis has investigated the association between IVDD or OA and Fas/FasL polymorphism up to now. Two meta-analyses, Zhu et al. (published in 2016) [31] and Lee et al. [33] have analyzed the association between RA and Fas/FasL recently. For Zhu et al.(published in 2016) [31] it only included and analyzed Chinese patients for Fas (rs2234767) site. For Lee et al. [33], it only analyzed Fas polymorphism and there are some mistakes in data extractions for some studies included, such as, Huang et al. [26], Lee et al. [28] and Coakley et al. [25].

So we performed a comprehensive meta-analysis containing three MSDD (OA, RA and IVDD) and enrolling all races of populations besides Chinese. Also we corrected the mistakes of the previous meta-analysis, Lee et al. [33] and added a new study, Zhu et al. (published in 2016) [31] when analyzing. This meta-analysis is designed to explore the association of MSDD (OA, RA and IVDD) with Fas/FasL polymorphism, which could assist to forecast the susceptibility of MSDD for specific individuals or conduct the clinical treatment for ‘high-risk’ individuals.

Methods

Strategy for literature search

To identify all literatures that studied the association of Fas and FasL genes polymorphisms with MSDD, we searched nine electronic databases including PubMed, Web of Science (WOS), Embase, Scopus and Medline in English and VIP, SinoMed, Wanfang and the China National Knowledge Infrastructure (CNKI) in Chinese. The search period for all these nine databases was up to August 21, 2017. The search strategy to explore all potential studies involved the use of the following terms: “Intervertebral Disk Degeneration” or “IDD” or “Disc Degeneration” or “disc herniation” or “low back pain” or “IVDD”, “Osteoarthritis” or “Degenerative Arthritis” or “Osteoarthrosis” or “Arthritis, Degenerative” or “Degenerative Arthritis” or “Osteoarthritis Deformans”, “Rheumatoid Arthritis”, “CD95 antigen, human” or “Fas” or “tumor necrosis factor receptor superfamily, member 6 protein, human” or “CD95L” or “Fas Ligand” or “FasL Protein” or “tumor necrosis factor ligand superfamily member 6” or “CD178 Antigen” or “CD95 Antigen Ligand” or “TNFRSF6 protein, human” or “Fas1 protein, human” or “rs1800682” or “rs2234767” or “rs5030772” or “rs763110”, “polymorphism” and “SNP”.

Inclusion and exclusion criteria

To be included in this meta-analysis, studies should satisfy the following inclusion criteria: (1) evaluated the association of Fas and FasL genes polymorphisms with IVDD, OA and RA; (2) case-control studies; (3) offered sufficient data to calculate an odds ratio (OR) with 95% confidence interval (CI). What’s more, the following...
exclusion disciplines were also applied: (1) non-case-control studies; (2) repeated publications; (3) the study only concerned with a case group; (4) comment or review; and (5) not relevant to MSDD. Two investigators (Xiao and Huang) independently evaluated the articles in accord with the inclusion and exclusion criteria. Any inconsistency was solved by discussion. If these 2 authors could still not reach the uniformity, senior authors (Ma and Deng) were asked to resolve the disputes.

Data extraction
For each study, the following characteristics were collected: (1) name of the first author; (2) year of publication; (3) country of enrollment; (4) ethnicity, age range and gender of the study population; (5) diagnosis and diagnostic criteria for MSDD cases; (6) genotyping methods; (7) source of controls; (8) matching criteria. (9) number of subjects under MSDD cases and controls; and (10) the HWE among the controls. Data were extracted cautiously from all eligible articles independently by 2 authors (Xiao and Huang). For conflict resolution, the accordance was realized by discussion.

Methodological quality assessment
The qualities of all the included studies were assessed by two investigators (Xiao and Huang) separately using the Clark scores system, which includes 10 items [34]. Scores under 5 represent low quality; while 5–7 scores denote moderate quality and 8–10 scores indicate high quality [34].

Statistical analysis
The PRISMA checklists and their guidelines were carefully followed in the whole process of this study [35]. The HWE in control groups for all the studies were calculated by χ² test before statistical analysis and \(P < 0.05 \) was thought to indicate significant disequilibrium. We examined Fas (rs1800682, rs2234767) and FasL (rs5030772, rs763110) genotypes using the allele (G vs. A, C vs. T) model, homozygote (GG vs. AA, CC vs. TT) model, heterozygote (GA vs. AA, CT vs. TT) model, dominant (GG + GA vs. AA, CC + CT vs. TT) model, recessive (GG vs. GA + AA, CC vs. CT + TT) model. The strength of the association between Fas (rs1800682, rs2234767) and FasL (rs5030772, rs763110) polymorphism and MSDD was assessed by the pooled ORs and 95% CI. Subgroup analyses were conducted to find whether diagnosis of MSDD or race groups was also related to the value of the pooled ORs and 95% CI. The statistical heterogeneity was verified by \(I^2 \) statistics. Fixed-effects model was applied to estimate the ORs and 95% CI when heterogeneity was low (\(I^2 < 50% \)); instead, the random-effects model was used when heterogeneity was high (\(I^2 > 50% \)) [36]. Sensitivity analyses were carried out by removing one study each time to test the stability of the results.

Publication bias was evaluated by the Begg’s test [37] and the Egger’s test [38] (\(P < 0.05 \) was considered to be statistically significant). All statistical analyses were managed using STATA 14 (Stata, College Station, TX). All \(P \)-values were two-sided.

Results
Characteristics of the studies
A flow chart showing the exclusion/inclusion of literatures is presented as Fig. 1. The comprehensive publications search screened 1761 potentially relevant articles, of which 267 articles were excluded for duplication and 1469 articles were omitted after browsing the title and/or abstract due to obvious irrelevance to MSDD or Fas/FasL gene we studied. Eight articles were deleted because they did not study MSDD or single nucleotide polymorphisms (SNPs) unrelated to the object of our study; 1 article was excluded on account of no detailed data; and 4 articles were wiped off because they were reviews. Finally, 12 case-control studies [19, 22–32] were identified for meta-analysis based on the inclusion criteria. As shown in Table 1, 4 eligible studies for IVDD, 1 eligible study for OA, 7 eligible studies for RA. Also, 5 eligible studies for Chinese, 5 eligible studies for Caucasian and 2 eligible studies for other race groups.

As shown in Table 2, 11 eligible studies for rs1800682 with 1930 cases and 1720 controls, 6 eligible studies for rs2234767 with 1794 cases and 1909 controls, 3 eligible studies for rs5030772 with 367 cases and 313 controls and 8 eligible studies for rs763110 with 2010 cases and 2105 controls were included in this analysis. The characteristics of all the included studies are also listed in the Table 1 and Table 2, including the year, country and continent of studies, the ethnicity, age and gender of subjects, the type of MSDD, the diagnosis methods, genotyping methods, source of controls, matching items of cases and controls, the number of subjects in control/case group and Hardy-Weinberg equilibrium (HWE) in each studies. The genotype distributions for all of the control groups were consistent with the HWE, except Sezgin et al. [22]. The quality assessment of study was listed in Table 3.

Association between Fas (rs1800682) polymorphism and MSDD risk
No significant heterogeneity was noted among the studies of rs1800682 in the overall analysis, subgroup analysis leveled by diagnosis or recessive model of subgroup analysis leveled by race groups. Thus, the fixed-effects model was used for analysis in these models mentioned above. And other models used the random-effects model. However, no significant associations were found in any models for overall analysis.

The results of subgroup analyses leveled by diagnosis were listed below: For OA subgroup, no significant
relationship was found in any models. For IVDD subgroup, significant associations were noted in GG vs. AA, OR = 1.388, 95% CI: 1.062–1.812, $P = 0.016$; in GG vs. GA + AA, OR = 1.357, 95% CI: 1.063–1.731, $P = 0.014$ (Fig. 2). However, no significant relationship was observed in other models. For RA subgroup, no significant relationship was found in any models. (Additional file 1: Table S1) The results of subgroup analyses leveled by race groups were listed below: For Caucasoid subgroup, no significant relationship was found in any models. For Chinese subgroup, significant associations were noted in GG vs. AA, OR = 1.388, 95% CI: 1.062–1.812, $P = 0.016$; in GG vs. GA + AA, OR = 1.357, 95% CI: 1.063–1.731, $P = 0.014$ (Fig. 3). However, no significant relationship was observed in other models. (Additional file 2: Table S2).

Association between Fas (rs2234767) polymorphism and MSDD risk

Significant heterogeneity was observed among the studies of rs2234767 in the allele and recessive models for overall analysis and subgroup analysis leveled by diagnosis and allele, heterozygote and recessive models of subgroup analysis leveled by race groups. Thus, the random-effects model was chosen to assess the connection between rs2234767 polymorphism and MSDD risk in these models mentioned above. And other models used the fixed-effects model. Significant associations were noted in GG vs. AA, OR = 0.771, 95% CI: 0.608–0.976, $P = 0.031$. However, no significant relationship was observed in other models.

The results of subgroup analyses leveled by diagnosis were showed below: For OA subgroup, significant associations were found in G vs. A, OR = 1.826, 95% CI: 1.199–2.779, $P = 0.005$; in GG vs. GA + AA, OR = 2.561, 95% CI: 1.525–4.299, $P = 0.000$ (Fig. 4). However, no significant relationship was observed in other models. For IVDD subgroup, no significant relationship was found in any models. For RA subgroup, significant associations were explored in G vs. A, OR = 0.855, 95% CI: 0.734–0.996, $P = 0.044$; in GG vs. GA + AA, OR = 0.785, 95% CI: 0.641–0.961, $P = 0.019$ (Fig. 4). However, no significant relationship was observed.
Study ID	Year	Enrolled Country	Ethnicity	Age Range	Gender	Diagnosis	Diagnosis by	Genotyping Method	Control Source	Matching	Cases	Controls
Lv et al. [32]	2009	China	Chinese	N/D	N/D	MDD	N/D	PCR-seq	N/D	N/D	223	124
Zhu et al. [24]	2011	China	Chinese	30–68	both	MDD	MRI	PCR-seq	healthy subjects	age, sex, occupation, smoking	348	215
Sun et al. [19]	2013	China	Chinese	N/D & both	IVDD	MRI	PCR-seq	participants with nonspine-related problems	age, sex, race	472	528	
Zhang et al. [23]	2013	China	Chinese	33–61	both	IVDD	MRI	PCR-seq	patients or participants without back pain	race, sex, age, living areas	129	132
Sezgin et al. [22]	2013	Turkey	Caucasoid	43–70	both	OA	ACR	PCR-seq	patients without OA related disease	N/D	148	102
Coakley et al. [25]	1999	UK	Caucasoid	24–87	both	RA	ACR	PCR-seq	healthy subjects	age	18	128
Huang et al. [26]	1999	Australia	Caucasoid	23–65	both	RA	ARA	PCR-seq	healthy subjects	N/D	185	86
Lee et al. [28]	2001	Korea	Korean	16–75	both	RA	ACR	PCR-seq	healthy subjects	ethnically	87	87
Mohammadzadeh et al. [29]	2012	Iran	Caucasoid	28–59	both	RA	N/D	PCR-seq	healthy subjects	N/D	120	112
Kobak et al. [27]	2012	Turkey	N/D	19–72	both	RA	ACR	PCR-seq	healthy subjects	age, sex	101	105
Seyfi et al. [30]	2013	Turkey	Caucasoid	20–80	both	RA	ACR	PCR-seq	patients without musculoskeletal diseases	age, sex, ethnically	100	101
Zhu et al. [31]	2016	China	Chinese	40–70	both	RA	ACR	N/D	patients without RA	age, sex	839	615

Abbreviations: ACR the American college of rheumatology diagnostic criteria for RA, ARA American rheumatology association 1987 criteria, MDD Intervertebral disc degeneration, OA osteoarthritis, RA rheumatoid arthritis, N/D not described, PCR-seq restriction analysis polymerase chain reaction sequencing. & the author only mentioned the mean ages of the case and control groups were 36.5 and 38.7 years, respectively.
in other models. (Additional file 1: Table S1) The results of subgroup analyses leveled by race groups were showed below: For Caucasoid subgroup no significant relationship was observed in any models. For Chinese subgroup significant associations was explored in GG vs. AA, OR = 0.761, 95% CI: 0.599–0.966, *P* = 0.025 (Fig. 5). However, no significant relationship was observed in other models. (Additional file 2: Table S2).

Association between FasL (rs5030772) polymorphism and MSDD risk

Significant heterogeneity was explored among the studies of rs5030772 in the allele model of overall and subgroup leveled by diagnosis analysis. Thus, the random-effects model was used to evaluate the association between rs5030772 polymorphism and MSDD risk in allele model. The other models used the fixed-effects

Table 2 Distribution of genotypes among cases and controls

Study ID	Year	Diagnosis	Ethnicity	Case Group	Control Group	*P* _HWE_
FAS (CD95) site						
-670 G > A rs1800682						
Lvé et al. [32]	2009	IVDD	Chinese	GG 47	GA 125	AA 51
Zhu et al. [24]	2011	IVDD	Chinese	GG 57	GA 162	AA 129
Sun et al. [19]	2013	IVDD	Chinese	GG 74	GA 217	AA 181
Zhang et al. [23]	2013	IVDD	Chinese	GG 20	GA 59	AA 49
Sezgin et al. [22]	2013	OA	Caucasoid	GG 27	GA 63	AA 58
Coakley et al. [25]	1999	RA	Caucasoid	GG 4	GA 8	AA 6
Huang et al. [26]	1999	RA	Caucasoid	GG 32	GA 105	AA 48
Lee et al. [28]	2001	RA	Korean	GG 16	GA 38	AA 33
Mohammazadeh et al. [29]	2012	RA	Caucasoid	GG 17	GA 64	AA 39
Kobak et al. [27]	2012	RA	N/D	GG 24	GA 50	AA 27
Seyfi et al. [30]	2013	RA	Caucasoid	GG 20	GA 45	AA 35
Zhu et al. [24]	2011	IVDD	Chinese	GG 121	GA 172	AA 55
Sun et al. [19]	2013	IVDD	Chinese	GG 218	GA 209	AA 45
Zhang et al. [23]	2013	IVDD	Chinese	GG 59	GA 55	AA 14
Sezgin et al. [22]	2013	OA	Caucasoid	GG 95	GA 51	AA 2
Seyfi et al. [30]	2013	RA	Caucasoid	GG 74	GA 26	AA 0
Zhu et al. [31]	2016	RA	Chinese	GG 246	GA 284	AA 68
FASL (CD178) site						
IVS2nt-124 A > G rs5030772						
Sezgin et al. [22]	2013	OA	Caucasoid	GG 4	GA 37	AA 107
Mohammazadeh et al. [29]	2012	RA	Caucasoid	GG 8	GA 35	AA 77
Seyfi et al. [30]	2013	RA	Caucasoid	GG 6	GA 25	AA 68
Zhu et al. [24]	2011	IVDD	Chinese	GG 175	GA 148	AA 25
Sun et al. [19]	2013	IVDD	Chinese	GG 236	GA 188	AA 48
Zhang et al. [23]	2013	IVDD	Chinese	GG 64	GA 51	AA 13
Sezgin et al. [22]	2013	OA	Caucasoid	GG 45	GA 80	AA 23
Mohammazadeh et al. [29]	2012	RA	Caucasoid	GG 33	GA 63	AA 24
Kobak et al. [27]	2012	RA	N/D	GG 30	GA 40	AA 31
Seyfi et al. [30]	2013	RA	Caucasoid	GG 20	GA 55	AA 25
Zhu et al. [31]	2016	RA	Chinese	GG 331	GA 228	AA 34

Abbreviations: HWE Hardy–Weinberg equilibrium
Table 3 Quality assessment of the included articles

Study ID	year	A	B	C	D	E	F	G	H	I	J	Sum
Huang et al. [26]	1999	1	1	1	1	1	0	0	1	1	1	8
Coakley et al. [25]	1999	1	1	1	1	1	0	0	1	1	0	7
Lee et al. [28]	2001	1	1	1	1	1	0	0	1	1	0	7
Lv et al. [32]	2009	0	1	1	1	1	0	0	1	1	0	6
Zhu et al. [24]	2011	0	1	1	1	1	1	0	1	1	0	7
Mohammadzadeh et al. [29]	2011	0	1	1	1	1	0	0	1	1	0	6
Kobak et al. [27]	2012	1	1	1	1	1	0	0	1	1	0	7
Sun et al. [19]	2013	1	1	1	1	1	1	1	1	1	0	9
Zhang et al. [23]	2013	1	1	1	1	1	1	0	1	1	0	7
Sezgin et al. [22]	2013	0	0	1	1	1	1	0	1	1	0	6
Seyfi et al. [30]	2013	1	0	1	1	1	0	0	1	1	0	6
Zhu et al. [31]	2016	1	1	1	1	1	1	0	1	1	1	8

Abbreviations: A Control group, B Hardy–Weinberg equilibrium, C Case group, D Primer, E Reproducibility, F Blinding, G Power calculation, H Statistics, I Corrected statistics, J Independent replication, Sum sum of quality assessment score, 1 done, 0 undone or unclear

Fig. 2 The associations of Fas (rs1800682) with MSDD leveled by diagnosis in different genetic models.

Diagram a

Study ID	OR (95% CI)	% Weight
OA	0.86 (0.46, 1.63)	9.32
Subtotal (I-squared = 86%, p = .001)	0.86 (0.46, 1.63)	9.32
VDD	1.07 (0.85, 1.34)	83.85
Zhang et al. (2013)	1.53 (0.79, 2.97)	53.96
Zhu et al. (2011)	1.21 (0.75, 1.95)	14.21
Lv et al. (2009)	1.31 (0.74, 2.31)	9.76
Subtotal (I-squared = 0%, p = 0.956)	1.31 (0.74, 2.31)	9.76
RA	0.89 (0.27, 2.92)	2.72
Cooakley et al. (1999)	0.86 (0.42, 1.75)	9.35
Mohammadzadeh et al. (2012)	0.90 (0.45, 1.77)	8.03
Kobak et al. (2012)	2.03 (0.98, 4.19)	4.80
Lee et al. (2001)	1.28 (0.58, 2.86)	4.86
Subtotal (I-squared = 26.4%, p = 0.237)	0.99 (0.74, 1.44)	39.12
Overall (I-squared = 7.6%, p = 0.372)	1.17 (0.97, 1.46)	100.00

Diagram b

Study ID	OR (95% CI)	% Weight
OA	0.86 (0.46, 1.63)	9.32
Subtotal (I-squared = 86%, p = .001)	0.86 (0.46, 1.63)	9.32
VDD	1.07 (0.85, 1.34)	83.85
Zhang et al. (2013)	1.53 (0.79, 2.97)	53.96
Zhu et al. (2011)	1.21 (0.75, 1.95)	14.21
Lv et al. (2009)	1.31 (0.74, 2.31)	9.76
Subtotal (I-squared = 0%, p = 0.956)	1.31 (0.74, 2.31)	9.76
RA	0.89 (0.27, 2.92)	2.72
Cooakley et al. (1999)	0.86 (0.42, 1.75)	9.35
Mohammadzadeh et al. (2012)	0.90 (0.45, 1.77)	8.03
Kobak et al. (2012)	2.03 (0.98, 4.19)	4.80
Lee et al. (2001)	1.28 (0.58, 2.86)	4.86
Subtotal (I-squared = 26.4%, p = 0.237)	0.99 (0.74, 1.44)	39.12
Overall (I-squared = 7.6%, p = 0.372)	1.17 (0.97, 1.46)	100.00
model. However, no significant associations were observed in any models for overall analysis. The results of subgroup analyses leveled by diagnosis were listed below: For OA subgroup, no significant relationship was found in any models. For RA subgroup, no significant relationship was found in any models. (Additional file 3: Table S3) The results of subgroup analyses leveled by race groups were listed below: For Caucasoid subgroup, no significant relationship was found in any models. (Additional file 4: Table S4).

Association between FasL (rs763110) polymorphism and MSDD risk

Significant heterogeneity was observed among the studies of rs763110 in the allele, homozygote and dominant models for overall analysis and subgroup analyses stratified by diagnosis and all the models stratified by race groups. So the random-effects model was applied to assess the association between rs763110 polymorphism and MSDD risk in models mentioned above. Other models used the fixed-effects model. Significant associations were noted in all models: in the allele model, C vs. A.
The results of subgroup analyses leveled by diagnosis were showed below: For OA subgroup, no significant relationship was found in any models. For IVDD subgroup, significant associations were explored in C vs. T, OR = 0.684, 95% CI: 0.588–0.795, P = 0.000; in CC vs. TT, OR = 0.344, 95% CI: 0.226–0.525, P = 0.000; in CT vs. TT, OR = 0.442, 95% CI: 0.288–0.679, P = 0.000; in CC + CT vs. TT, OR = 0.382, 95% CI: 0.253–0.577, P = 0.001; in CC
vs. CT + TT, OR = 0.694, 95% CI: 0.576–0.837, P = 0.001 (Fig. 6). For RA subgroup, no significant relationship was found in any models. (Additional file 3: Table S3) The results of subgroup analyses leveled by race groups were showed below: For Caucasoid subgroup, significant associations were explored in C vs. T, OR = 0.777, 95% CI: 0.626–0.964, P = 0.022; in CC vs. CT + TT, OR = 0.647, 95% CI: 0.465–0.901, P = 0.010 (Fig. 7). However, no significant relationship was observed in other models. For Chinese subgroup, significant associations were explored in C vs. T, OR = 0.772, 95% CI: 0.603–0.989, P = 0.041; in CC vs. CT + TT, OR = 0.786, 95% CI: 0.618–0.998, P = 0.048 (Fig. 7). However, no significant relationship was observed in other models. (Additional file 4: Table S4).

Sensitivity analysis

Sensitivity analysis was performed to assess the influence set by one study on the pooled ORs for Fas (rs1800682, rs2234767) and FasL (rs5030772, rs7631110) polymorphism by deleting one study each turn in every genetic model.

We observed that the pooled ORs significantly differed when we deleted Huang et al. [26] in homozygote model (GG vs. AA, OR = 1.269, 95% CI: 1.030–1.565, P = 0.025) and in recessive model (GG vs. GA + AA, OR = 1.240, 95% CI: 1.026–1.499, P = 0.026) for Fas (rs1800682) site. We also noted that the overall ORs significantly changed when we deleted Zhu et al. (published in 2011) [24] in homozygote model (GG vs. AA, OR = 0.843, 95% CI: 0.647–1.098, P = 0.204) and Zhu et al. (published in 2016) [31] in homozygote model (GG vs. AA, OR = 0.755, 95% CI: 0.550–1.037, P = 0.082) for Fas (rs2234767) site. We found that the pooled ORs significantly differed when we deleted Sun et al. [19] in dominant model (GG + GA vs. AA, OR = 0.760, 95% CI: 0.560–1.031, P = 0.078) and Seyfi et al. [30] in dominant model (GG + GA vs. AA, OR = 0.679, 95% CI: 0.459–1.005, P = 0.053) for FasL (rs7631110) site as well. However, there was no change in the significance of results in any models for FasL (rs5030772) site.

Publication bias

The Begg funnel plot (Fig. 8) and the Egger’s test were conducted to evaluate the publication bias in selected literature. No evidence of publication bias was noted in this study for Fas rs1800682 (Begg’s test: P = 0.436, Egger’s test: P = 0.576 for allele model; Begg’s test: P = 0.640, Egger’s test: P = 0.609 for homozygote model; Begg’s test P = 0.876, Egger’s test P = 0.694 for heterozygote model; Begg’s test: P = 0.640, Egger’s test: P = 0.965 for dominant model; Begg’s test: P = 1.000, Egger’s test: P = 0.508 for recessive model).(Table 4) Because of the limited number (below 10) of studies included in Fas (rs2234767) and FasL (rs5030772, rs7631110), publication bias was not evaluated in these sites.

Discussion

MSDD are common and one of the most clinically vital somatic disorders. A large number of genetic factors have been discovered among the crucial causes of IVDD [39], RA [40] and OA [41, 42] Several studies have reported the Fas/FasL genetic polymorphisms to be related to MSDD, but with conflicting results. In order to offer insight into the connection between Fas/FasL gene and diseases, large sample studies about predisposing gene polymorphisms are required. A meta-analysis, critically...
Fig. 6 The associations of Fasl (rs763110) with MSDD leveled by diagnosis in different genetic models. a Allele model (C vs. T), b Homozygote model (CC vs. TT), c Heterozygote model (CT vs. TT), d Dominant model (CC + CT vs. TT), e Recessive model (CC vs. CT + TT)
reviewing 11 studies on Fas (rs1800682), 6 studies on Fas (rs2234767), 3 studies on FasL (rs5030772) and 8 studies on FasL (rs763110), was performed to assess the association of Fas/FasL genetic polymorphisms with the risk of MSDD. Its strength came from the accumulation of published data, offering more information to evaluate significant differences.

In current meta-analysis, the main findings were that the G allele of Fas (rs2234767) was linked to a decreased risk of MSDD only in homozygote model and the T allele of FasL (rs763110) was associated with a reduced risk of MSDD in all of the comparison models. Besides that, subgroup analyses leveled by diagnosis suggested that the G allele of Fas (rs1800682) was associated with an increased risk of IVDD in homozygote and recessive models. The G allele of Fas (rs2234767) was linked to a decreased risk of RA but an enhanced risk of OA in allele and recessive models. In addition, the T allele of FasL (rs763110) was correlated with a reduced risk of IVDD in all of models. However, no relationship was found between FasL (rs5030772) and these three types of MSDD in any models. In addition, subgroup analyses leveled by race groups showed that the G allele of Fas (rs1800682) was associated with an increased risk of MSDD in homozygote and recessive models. The G allele of Fas (rs2234767) was linked to a decreased risk of MSDD in homozygote model for Chinese people. What’s more, the T allele of
FasL (rs763110) was correlated with a reduced risk of MSDD in allele and recessive models for both Caucasoid and Chinese race groups. However, no relationship was found between FasL (rs5030772) and these two race groups of MSDD in any models. Our results have several differences with the previous meta-analyses of RA recently published [31, 33]. Compared with Lee et al. [33], we observed no significance between FasL rs763110 and RA but it got an opposite result. A possible explanation for this phenomenon is that we include one more study with large participants, Zhu et al. (published in 2016) [31] Although Lee et al. [33] got the same result with us in Fas (rs1800682) site, it has some errors in data extraction of articles as mentioned above. We corrected the mistakes and analyzed again. Compared with Zhu et al. (published in 2016) [31], the small differences of result in Fas (rs2234767) for RA might be due to a new study [30] that we added in analysis. Furthermore, these Fas/FasL polymorphisms influencing the risk of MSDD can be explained partly by that these mutations can remarkably alter the percent of resident cells in tissues, such as disc cells in IVD and T-lymphocyte in synovial tissue, gradually causing occurrence of these MSDD [17, 19]. In addition, the same single nucleotide polymorphism exerted disproportionate levels of influence on different MSDD. These might be interpreted by various histology constitutions among IVDD, OA and RA. Finally, significant heterogeneity was noted in allele and recessive models of Fas (rs2234767), in allele model of FasL (rs5030772) and in allele, homozygote and dominant models of FasL (rs763110). Discrepancy among three types of MSDD might contribute to these heterogeneities. Other factors, such as ethnicity, sex distribution,

Table 4 Publication bias tests for association of the Fas (rs1800682) polymorphisms with musculoskeletal degenerative diseases

Comparisons	Egger’s test	Begg’s test		
	t	95% CI	P value	P value
allele model	−0.58	(−2.91, 1.72)	0.576	0.436
homozygote model	−0.53	(−3.70, 2.29)	0.609	0.640
heterozygote model	0.41	(−1.56, 2.24)	0.694	0.876
dominant model	0.05	(−2.03, 2.11)	0.965	0.640
recessive model	−0.69	(−3.82, 2.03)	0.508	1.000

Abbreviations: CI confidence interval
occupation and etc. might also be potential sources of heterogeneity.

What’s more, the genotype distributions of controls in all of models were in accordance with HWE, except Sezgin et al. [22] in Fas (rs2234767) and Seyfi et al. [30] in Fasl. (rs5030772). However, the association was not significant change when ruled out these two studies by excluding one at a time. The quality assessment indicated that the enrolled studies were credible. No evidences of publication bias were observed by either Begg’s or Egger’s test in Fas (rs1800682). In order to analyze the stability of the overall results, sensitivity analysis by deleting each included studies was managed in this meta-analysis. Only one or two studies influenced the result of analysis in some models for Fas (rs1800682, rs2234767) and Fasl. (rs763110) and no study affects the results for Fasl. (rs5030772), suggesting the results were reliable in some extents. But more studies still need to be conducted in order to verify the outcome of the current meta-analysis. Overall, the results of this meta-analysis are credible and stable to a certain degree.

There are some limitations in the present study. Firstly, only three studies for Fasl. rs5030772 site were included in analysis and only one article was screened out for OA subgroup analysis due to shortage of original studies. Secondly, the heterogeneity was a little bit high \((I^2 > 50\%) \) in some models for overall analyses, leading to a cautious acceptance of the results. So we performed subgroup analyses stratified by diagnosis to make the result more credible. What's more, some of the included articles did not match the confounding factors such as age, sex and ethnicity between case group and control group. And different factors for matching might also increase the probability of residual confounding. Such confounding factors might influence the final results. However, this meta-analysis has some strength. For example, to our best knowledge, this is the most comprehensive meta-analysis focused on the association of Fas/Fasl gene polymorphism with the susceptibility of MSDD, including OA, IVDD and RA. Several strategies and rigid criteria were set to assess the methodological quality of each study; all of the included studies possessed high or moderate qualities.

Conclusions
In summary, the current meta-analysis suggested that Fas (rs1800682) and Fasl (rs763110) polymorphism were associated with the susceptibility of IVDD. Fas (rs2234767) was correlated to the risk of OA and RA. Fas (rs1800682) and Fas (rs2234767) are more likely to be associated with MSDD for Chinese people. Fasl. (rs763110) is related to the progression of MSDD for both Caucasoid and Chinese race groups. However, Fasl. (rs5030772) might not be associated with MSDD. Because of the above-mentioned limitations, large-scale studies, including larger populations and considering more confounding factors, are required to verify the outcomes of this meta-analysis.

Additional files

Additional file 1: Table S1. Summary of meta-analysis for the association of Fas rs1800682 and rs2234767 polymorphisms with musculoskeletal degenerative diseases leveled by diagnosis. (DOCX 25 kb)

Additional file 2: Table S2. Summary of meta-analysis for the association of Fas rs1800682 and rs2234767 polymorphisms with musculoskeletal degenerative diseases leveled by race groups. (DOCX 23 kb)

Additional file 3: Table S3. Summary of meta-analysis for the association of Fasl. rs5030772 and rs763110 polymorphisms with musculoskeletal degenerative diseases leveled by diagnosis. (DOCX 24 kb)

Additional file 4: Table S4. Summary of meta-analysis for the association of Fasl. rs5030772 and rs763110 polymorphisms with musculoskeletal degenerative diseases leveled by race groups. (DOCX 22 kb)

Abbreviations
CI: Confidence interval; CNKI: China National Knowledge Infrastructure; Fasl.: Fas ligand; HWE: Hardy-Weinberg equilibrium; IVD: Intervertebral disc; IVDD: Intervertebral disc degeneration; MSDD: Musculoskeletal degenerative diseases; OA: Osteoarthritis; OR: Odds ratio; RA: Rheumatoid arthritis; SNPs: Single nucleotide polymorphisms; WOS: Web of Science

Acknowledgments
We would like to thank all the people who helped us in the current study.

Funding
This study was supported by the National Key Research and Development Program of China (2016YFC1100100) and the Major Research Plan of National Natural Science Foundation of China (No.91649204).

Availability of data and materials
All data generated or analyzed during this study are included in this published article and its supplementary information files.

Authors’ contributions
Made substantial contributions to conception and design, or acquisition of data: HDH, XJR, SDY, WFS, LH; Analysis and interpretation of data: HDH, XJR, SDY, DXY; Revising it critically for important intellectual content: MKG, SZW; Given final approval of the version to be published: SZW. Each author should have participated sufficiently in the work to take public responsibility for appropriate portions of the content and all authors have read and approved the manuscript, and ensure that this is the case.

Ethics approval and consent to participate
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details
1Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China. 2Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
References

1. Bailey AJ, Knott L. Molecular changes in bone collagen in osteoporosis and osteoarthritis in the elderly. Exp Gerontol. 1999;34(3):337–51.
2. Wegener T. Therapy of degenerative diseases of the musculoskeletal system with south African devil’s claw (Harpagophytum procumbens DC). Wien Med Wochenschr (1946). 1999;149(8–10):254–7.
3. Denner SS. A review of the efficacy and safety of devil’s claw for pain associated with degenerative musculoskeletal diseases, rheumatoid, and osteoarthritis. Holist Nurs Pract. 2007;21(4):203–7.
4. Glyn-Jones S, Palmer AJ, Agicola R, Price AJ, Vincent TL, Weinsans H, Carr AJ. Osteoarthritis. Lancet. 2015;386(9991):376–87.
5. Raisz LG. Pathogenesis of osteoporosis: concepts, conflicts, and prospects. J Clin Invest. 2005;115(12):3318–25.
6. Smolen JS, Aletaha D, McInnes IB. Rheumatoid arthritis. Lancet. 2016;388(10055):2023–32.
7. Spector TD, MacGregor AJ. Risk factors for osteoarthritis: genetics. Osteoarthr Cartil. 2004;12(Suppl A):S39–44.
8. Loughlin J. The genetic epidemiology of human primary osteoarthritis: current status. Expert Rev Mol Med. 2005;7(9):1–12.
9. Alenzi FQ. Apoptosis and diseases: regulation and clinical relevance. Saudi Med J. 2005;26(11):1679–90.
10. Itoh N, Yonehara S, Iihara A, Yonehara M, Mizushima S, Sameshima M, Hase A, Seto Y, Nagata S. The polypeptide encoded by the cDNA for human cell surface antigen Fas can mediate apoptosis. Cell. 1991;66(2):233–43.
11. Oehm A, Behrmann I, Falk W, Pawlita M, Maier G, Klas C, Li-Weber M, Raisz LG. Pathogenesis of osteoporosis: concepts, conflicts, and prospects. J Clin Invest. 2005;115(12):3318–25.
12. Tan SC, Ismail MP, Duski DR, Othman NH, Ankathil R. FAS c.-671A>G promoter polymorphism at position −670 a/G, and FAS/FASL polymorphisms with the susceptibility and severity of lumbar disc degeneration in Chinese Han population. Biomarkers. 2011;16(6):485–90.