Three realizations of quantum affine algebra $U_q(A_2^{(2)})$

A. Shapiro

*Institute of Theoretical & Experimental Physics, 117259 Moscow, Russia

Abstract

We establish explicit isomorphisms between three realizations of the quantum twisted affine algebra $U_q(A_2^{(2)})$: the Drinfeld ("current") realization, the Chevalley realization, and the so-called RLL realization, investigated by Faddeev, Reshetikhin and Takhtajan.

0 Introduction

There exist just two quantum affine algebras of rank 2: $U_q(\widehat{sl}_2)$ and $U_q(A_2^{(2)})$. The algebra $U_q(\widehat{sl}_2)$ and its representation theory are both very well studied. The situation with $U_q(A_2^{(2)})$ is somewhat different, although the algebra itself and its representation are interesting from the standpoints of both mathematics and mathematical physics.

The algebra $U_q(A_2^{(2)})$ first appeared in works on physics. The fundamental representation of the R-matrix of $U_q(A_2^{(2)})$ was obtained in [IK] as the R-matrix of the quantum version of the Shabat-Mikhailov model, also known as the Izergin-Korepin model. The same representation was later obtained in [J] among fundamental representations of R-matrices of other nonexceptional affine Lie algebras. The Bethe ansatz technique was later extended onto $U_q(A_2^{(2)})$ in [T]. Finally, the ideas of the thermodynamic Bethe ansatz for $U_q(A_2^{(2)})$ were developed in [FRS], and some finite dimensional representations were obtained there.

The algebra $U_q(A_2^{(2)})$ was also investigated from an algebraic standpoint. In [KT], the Cartan-Weyl basis for $U_q(A_2^{(2)})$ was established, and the universal R-matrix was written in terms of infinite products of elements of the Cartan-Weyl basis. A classification of finite dimensional representations of algebra $U_q(A_2^{(2)})$ was obtained in [CP] by means of the Drinfeld polynomials. Later, an integral formula for the universal R-matrix for $U_q(A_2^{(2)})$ appeared in [DK], where $U_q(A_2^{(2)})$ was treated as a topological Hopf algebra with the Drinfeld comultiplication. In the same work, the Serre relations in $U_q(A_2^{(2)})$ were represented in terms of zeros and poles of products of the Drinfeld currents. Finally, integral representations for factors of the universal R-matrix for $U_q(A_2^{(2)})$ were derived in [KS], where $U_q(A_2^{(2)})$ was endowed with the standard Hopf structure.

Quantum affine algebras allow three different realizations with different Hopf structures. The first one is the "standard" realization given by the Chevalley generators and relations determined by the corresponding Cartan matrix. The standard realization has a small number of generators, but is unfortunately very difficult to use in applications. The second realization, the Drinfeld
“new realization”, was first established in [D] by means of generating functions (the Drinfeld “currents”) and relations on them. The Drinfeld realization allows using methods of complex analysis. Moreover, it makes it possible to give the classification of the finite dimensional representations of the quantum affine algebra. Finally, the third one is the RLL realization, based on the Faddeev-Reshetikhin-Takhtajan-Semenov-Tian-Shansky approach, where generators are combined into L-operators, satisfying the famous Yang-Baxter equation (see [FRT], [RS]). The simplicity of comultiplication in the RLL realization allows to construct new representations as tensor products of already known ones. The RLL realization is therefore widely used in physical models.

It is universally acknowledged that the three realizations are isomorphic, although precise proofs hardly exist for any algebra other than of the $U_q(\widehat{\mathfrak{sl}}_n)$ type. For $U_q(\widehat{\mathfrak{sl}}_n)$, an isomorphism between the standard and the Drinfeld realizations was established in [DF], whereas links between the Drinfeld and the RLL approaches were studied in [DK2].

In the case of quantum twisted affine algebras, the RLL realization requires additional relations. Although it is believed that the three realizations are also isomorphic for the twisted algebras, there is no full understanding of what the exact isomorphism should look like. An isomorphism between the standard and the Drinfeld realizations for $U_q(A^{(2)}_2)$ was established in [KS], and an isomorphism between the RLL and the Drinfeld realizations was partly derived in [YZ]. A more complete bibliography can be found in [H].

In this work, we obtain a full description of the three realizations of algebra $U_q(A^{(2)}_2)$ (without grading element and with zero central charge), the isomorphisms between them, and the links between the three Hopf structures. We also pay special attention to the following fact: each realization has a “minimal” set of generators (or almost minimal in the twisted case) and an extended set of generators. These two sets should be linked by an analogue of the PBW-theorem if there exists one. In the standard realization, these sets are the Chevalley generators and the Cartan-Weyl basis. In the Drinfeld realization, they are the Drinfeld currents and the so-called “composite currents” (see [DK3]). Finally, in the RLL-realization, the Gaussian coordinates immediately above or below the diagonal form the “minimal” set, and all the Gaussian coordinates form the extended set. We note that these extended sets of generators are crucial for calculations of the universal weight function. Here, we obtain a link between projections of the composite currents and the Gaussian coordinates for $U_q(A^{(2)}_2)$ as was done for $U_q(\widehat{\mathfrak{gl}}_n)$ in [KP].

The paper is organized as follows. In the first section we introduce the three realizations. In Section 2, we obtain the isomorphisms between them. In Section 3, we represent elements of the extended set of Gaussian coordinates in terms of composite currents.

1 Realizations of $U_q(A^{(2)}_2)$

For simplicity of exposition, we consider the algebra $U_q(A^{(2)}_2)$ without grading element and with zero central charge. All the statements also hold for an algebra with grading element and arbitrary central charge, but the formulas become more involved.

1.1 Drinfeld realization

Let A_D be the associative algebra generated by elements

$$e_n, f_n, a_n, \quad n \in \mathbb{Z}, \quad a_n, \quad n \in \mathbb{Z} \setminus \{0\}, \quad \text{and} \quad k^\pm 1,$$
subject to certain commutation relations. The relations are given as formal power series identities for generating functions (currents)

\[e(z) = \sum_{k \in \mathbb{Z}} e_k z^{-k}, \quad f(z) = \sum_{k \in \mathbb{Z}} f_k z^{-k}, \quad K^\pm(z) = k^{\pm 1} \exp \left(\pm (q - q^{-1}) \sum_{n>0} a_{\pm n} z^{\pm n} \right) \]

as follows:

\[
\begin{align*}
(z - q^2 w)(qz + w)e(z)e(w) &= (q^2 z - w)(z + qw)e(w)e(z), \\
(q^2 z - w)(z + qw)f(z)f(w) &= (z - q^2 w)(qz + w)f(w)f(z), \\
K^+(z)e(w)K^+(z)^{-1} &= \alpha(w/z)e(w), \\
K^+(z)f(w)K^+(z)^{-1} &= \alpha(w/z)^{-1}f(w), \\
K^-(z)e(w)K^-(z)^{-1} &= \alpha(z/w)^{-1}e(w), \\
K^-f(w)K^-(z)^{-1} &= \alpha(z/w)f(w), \\
K^\pm(z)K^\pm(w) &= K^\pm(w)K^\pm(z), \\
K^-(z)K^+(w) &= K^+(w)K^-(z), \\
e(z)f(w) - f(w)e(z) &= \frac{1}{q - q^{-1}} (\delta(z/w)K^+(w) - \delta(z/w)K^-(z)).
\end{align*}
\]

where

\[\alpha(x) = \frac{(q^2 - x)(q^{-1} + x)}{(1 - q^2 x)(1 + q^{-1} x)}, \]

and \(\delta \left(\frac{z}{w} \right) \) is a formal Laurent series, given by

\[\delta(z/w) = \sum_{n \in \mathbb{Z}} (z/w)^n. \]

The generating functions \(e(z) \) and \(f(z) \) also satisfy the cubic Serre relations (see [D]):

\[
\begin{align*}
\text{Sym} \left(q^{-3} z_1 - (q^{-2} + q^{-1}) z_2 + z_3 \right) e(z_1)e(z_2)e(z_3) &= 0, \\
\text{Sym} \left(q^{-3} z_1^{-1} - (q^{-2} + q^{-1}) z_2^{-1} + z_3^{-1} \right) f(z_1)f(z_2)f(z_3) &= 0, \\
\text{Sym} \left(q^3 z_1^{-1} - (q^2 + q) z_2^{-1} + z_3^{-1} \right) e(z_1)e(z_2)e(z_3) &= 0, \\
\text{Sym} \left(q^3 z_1 - (q^2 + q) z_2 + z_3 \right) f(z_1)f(z_2)f(z_3) &= 0.
\end{align*}
\]

The Hopf algebra structure on \(\mathcal{A}_D \) can be defined as follows:

\[
\begin{align*}
\Delta_D(e(z)) &= e(z) \otimes 1 + K^-(z) \otimes e(z), \\
\Delta_D(f(z)) &= 1 \otimes f(z) + f(z) \otimes K^+(z), \\
\Delta_D(K^\pm(z)) &= K^\pm(z) \otimes K^\pm(z), \\
S_D(e(z)) &= -(K^-)^{-1}e(z), \\
S_D(f(z)) &= -f(z)(K^+)^{-1}, \\
S_D(K^\pm(z)) &= (K^\pm(z))^{-1}, \\
\varepsilon_D(e(z)) &= 0, \\
\varepsilon_D(f(z)) &= 0, \\
\varepsilon_D(K^\pm(z)) &= 1.
\end{align*}
\]
where Δ_D, ε_D and S_D are the comultiplication, the counit and the antipode maps, respectively. We call Δ_D a Drinfeld comultiplication. Here, we must note that A_D is a topological bialgebra and Δ_D is a map from A_D to a topological extension of its tensor square (see [EKP, Section 2] for details).

1.2 Chevalley realization

Another realization of $U_q(A_2^{(2)})$ is given in terms of Chevalley generators. Let the algebra A_{Ch} be the associative algebra generated by elements $e_{\pm \alpha}$, $e_{\pm (\delta - 2\alpha)}$, $k_{\alpha}^{\pm 1}$, $k_{\delta - 2\alpha}^{\pm 1}$, satisfying the following relations:

\[
\begin{align*}
 k_{\alpha} e_{\pm \alpha} k_{\alpha}^{-1} &= q^{\mp 1} e_{\pm \alpha}, \\
 k_{\delta - 2\alpha} e_{\pm \alpha} k_{\delta - 2\alpha}^{-1} &= q^{\mp 2} e_{\pm \alpha}, \\
 k_{\alpha}^{2} k_{\delta - 2\alpha} &= 1, \\
 [e_{\alpha}, e_{-\alpha}] &= q - q^{-1}, \\
 (ad_q e_{\pm \alpha})^5 e_{\pm (\delta - 2\alpha)} &= 0,
\end{align*}
\]

where

\[
\begin{align*}
 (ad_q e_{\pm \alpha})(x) &= e_{\pm \alpha} x - k_{\alpha}^{\mp 1} x k_{\alpha}^{\mp 1} e_{\pm \alpha}, \\
 (ad_q e_{\pm (\delta - 2\alpha)})(x) &= e_{\pm (\delta - 2\alpha)} x - k_{\delta - 2\alpha}^{\mp 1} x k_{\delta - 2\alpha}^{\mp 1} e_{\pm (\delta - 2\alpha)}.
\end{align*}
\]

The Hopf algebra structure associated with this realization can be defined by

\[
\begin{align*}
 \Delta(e_{\alpha}) &= e_{\alpha} \otimes 1 + k_{\alpha} \otimes e_{\alpha}, \\
 \Delta(e_{-\alpha}) &= 1 \otimes e_{-\alpha} + e_{-\alpha} \otimes k_{\alpha}^{-1}, \\
 \Delta(k_{\alpha}) &= k_{\alpha} \otimes k_{\alpha}, \\
 \varepsilon(k_{\alpha}^{\mp 1}) &= 1, \\
 S(e_{\alpha}) &= -k_{\alpha}^{-1} e_{\alpha}, \\
 S(e_{-\alpha}) &= -e_{-\alpha} k_{\alpha}, \\
 S(k_{\alpha}^{\mp 1}) &= k_{\alpha}^{\mp 1},
\end{align*}
\]

where Δ, ε and S are the comultiplication, the counit and the antipode maps, respectively. We call Δ the standard comultiplication. We also consider the opposite comultiplication

\[
\Delta^{op} = \sigma \circ \Delta, \quad \text{where} \quad \sigma(u \otimes v) = v \otimes u.
\]

Now, let us recall the construction of the Cartan-Weyl basis, obtained for $U_q(A_2^{(2)})$ in [KT]2. The twisted affine algebra $A_2^{(2)}$ has the root system $\Delta = \Delta_+ \cup \Delta_-$, where

\[
\Delta_+ = \alpha \cup \{ n\delta, \pm \alpha + n\delta, \pm 2\alpha + (2n - 1)\delta \mid n \in \mathbb{N} \}, \quad \text{and} \quad \Delta_- = -\Delta_+.
\]

\footnote{To adapt the results of [KT] to our case, one should replace q-commutators with q^{-1}-commutators in the construction of the Cartan-Weyl basis.}

\[
4
\]
The roots $\gamma \in \Delta_+$ are called positive, the roots $\gamma \in \{n\delta, n \in \mathbb{Z}\}$ are called imaginary, and the roots $\gamma \in \Delta \setminus \{n\delta, n \in \mathbb{Z}\}$ are called real. We define a scalar product on Δ by

$$(\alpha, \alpha) = 1, \quad (\alpha, \delta) = (\delta, \delta) = 0.$$

Now, let

$$q_\gamma = q^{e^{(\gamma, \gamma)}}, \quad (a)_q = \frac{q^a - 1}{q - 1}, \quad (n)_q! = (1)_q \cdots (n)_q,$$

and

$$\exp_q(x) = \sum_{n \geq 0} \frac{x^n}{(n)_q!} = 1 + x + \frac{x^2}{(2)_q!} + \ldots.$$

We fix the normal ordering on Δ

$$\alpha, 2\alpha + \delta, \alpha + \delta, 2\alpha + 3\delta, \alpha + 2\delta, \ldots, \delta, 2\delta, 3\delta, \ldots, 2\delta - \alpha, 3\delta - 2\alpha, \delta - \alpha, \delta - 2\alpha.$$

In accordance with the procedure of the construction of the Cartan-Weyl basis described in [KT], we set

$$e_{\delta - \alpha} = a[e_{\alpha}, e_{\delta - 2\alpha}]q^{-1}, \quad e'_\delta = b[e_{\alpha}, e_{\delta - \alpha}]q^{-1}, \quad e_{\alpha + n\delta} = b[e_{\alpha + (n-1)\delta}, e'_{\delta}]q^{-1},$$

$$e_{\delta - \alpha + n\delta} = b[e'_{\delta}, e_{\delta - \alpha + (n-1)\delta}]q^{-1}, \quad e'_{\delta - \alpha} = b[e_{\alpha + (n-1)\delta}, e_{\delta - \alpha}]q^{-1},$$

$$e_{2\alpha + (2n+1)\delta} = a[e_{\alpha + n\delta}, e_{\alpha + (n+1)\delta}]q^{-1}, \quad e_{\delta - 2\alpha + 2n\delta} = a[e_{\delta - \alpha + n\delta}, e_{\delta - \alpha + (n+1)\delta}]q^{-1},$$

where

$$a = \frac{1}{\sqrt{q + q^{-1}}}, \quad b = \frac{1}{\sqrt{q + 1 + q^{-1}}},$$

and

$$[e_{\beta}, e_{\gamma}]q^{-1} = e_{\beta}e_{\gamma} - q^{-e^{(\beta, \gamma)}}e_{\gamma}e_{\beta}.$$

holds for all $\beta, \gamma \in \Delta$. Finally, we define imaginary roots $e_{n\delta}$ by means of the Schur polynomials:

$$e'_{n\delta} = \sum_{p_1 + 2p_2 + \ldots + np_n = n} \frac{((q - q^{-1})b^{-1})^{p_n - 1}}{p_1! \cdots p_n!} e_{\delta}^{p_1} e_{2\delta}^{p_2} \cdots e_{n\delta}^{p_n}. \quad (1.2)$$

Monomials in the elements $e_{n\delta}, e_{n\delta \pm \alpha}$ and k^\pm_α form a linear basis of \mathcal{A}_Ch.

1.3 RLL realization

Let

$$R(x) = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & a & 0 & d & 0 & 0 & 0 & 0 \\ 0 & 0 & b & 0 & e & 0 & p & 0 \\ 0 & f & 0 & a & 0 & 0 & 0 & 0 \\ 0 & 0 & g & 0 & c & 0 & e & 0 \\ 0 & 0 & 0 & 0 & a & 0 & d & 0 \\ 0 & 0 & q & 0 & g & 0 & b & 0 \\ 0 & 0 & 0 & 0 & f & 0 & a & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}, \quad (1.3)$$

$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & a & 0 & d & 0 & 0 & 0 & 0 \\ 0 & 0 & b & 0 & e & 0 & p & 0 \\ 0 & f & 0 & a & 0 & 0 & 0 & 0 \\ 0 & 0 & g & 0 & c & 0 & e & 0 \\ 0 & 0 & 0 & 0 & a & 0 & d & 0 \\ 0 & 0 & q & 0 & g & 0 & b & 0 \\ 0 & 0 & 0 & 0 & f & 0 & a & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$.
where

\[
\begin{align*}
 a &= \frac{q(x - 1)}{q^2x - 1}, &
 b &= \frac{q^2(qx + 1)(x - 1)}{(q^2x - 1)(q^3x + 1)}, &
 c &= \frac{q(x - 1)}{q^2x - 1} + \frac{(q^2 - 1)(q^3 + 1)x}{(q^2x - 1)(q^3x + 1)}, \\
 d &= \frac{q^2 - 1}{(q^2x - 1)}, &
 e &= \frac{(q^2 - 1)(x - 1)q^{1/2}}{(q^2x - 1)(q^3x + 1)}, &
 p &= \frac{(q^2 - 1)(q^3x + qx - q + 1)}{(q^2x - 1)(q^3x + 1)}, \\
 f &= \frac{(q^2 - 1)x}{(q^2x - 1)}, &
 g &= \frac{(1 - q^2)x(x - 1)q^{5/2}}{(q^2x - 1)(q^3x + 1)}, &
 q &= \frac{(q^2 - 1)x(q^3x - q^2x + q^2 + 1)}{(q^2x - 1)(q^3x + 1)}.
\end{align*}
\]

We consider the generating functions

\[
l_{ij}^\pm(z) = \sum_{n=0}^{\infty} l_{ij}^\pm[\pm n]z^n, \quad 1 \leq i, j \leq 3
\]

and the shifted generating functions

\[
l_{ij}^\pm(z) = q^{\frac{1}{2}(i-j)}l_{4-j,4-i}^\pm(-q^{-3}z).
\]

We define the *L-operators* \(L^\pm(z) \) and their shifts \(\tilde{L}^\pm(z) \) as

\[
L^\pm(z) = \left(l_{ij}^\pm(z) \right)_{i,j=1}^3, \quad \tilde{L}^\pm(z) = \left(\tilde{l}_{ij}^\pm(z) \right)_{i,j=1}^3.
\]

Finally, we recall the notion of \(q \)-determinant:

\[
det_q(L^\pm(z)) = \sum_{\tau \in S_3} (-q)^{\sgn(\tau)} l_{1\tau(1)}^\pm(z) l_{2\tau(2)}^\pm(q^2z) l_{3\tau(3)}^\pm(q^4z),
\]

where \(S_n \) is the permutation group on \(n \) elements.

Define \(A_R \) as the associative algebra with the generators \(l_{ij}^\pm[\pm n], n \in \mathbb{N}, 1 \leq i, j \leq 3 \) and \(l_{ij}^\pm[0], \tilde{l}_{ij}^\pm[0] \) for \(1 \leq j \leq i \leq 3 \), subject to the following relations:

\[
\begin{align*}
 &\det_q(L^\pm(z)) = 1, \quad (1.4) \\
 &L^\pm(z) \tilde{L}^\pm(z) = I_3, \quad (1.5) \\
 &l_{ii}^\pm[0]l_{ii}^\pm[0] = l_{ii}^\pm[0]l_{ii}^\pm[0] = 1, \quad (1.6) \\
 &R \left(\frac{z}{w} \right) L_1^\pm(z)L_2^\pm(w) = L_2^\pm(w)L_1^\pm(z)R \left(\frac{z}{w} \right), \quad (1.7) \\
 &R \left(\frac{z}{w} \right) L_1^\pm(z)L_2^\pm(w) = L_2^\pm(w)L_1^\pm(z)R \left(\frac{z}{w} \right).
\end{align*}
\]

where \(L_1(z) = L(z) \otimes I_3, L_2(z) = I_3 \otimes L(z), \) and \(I_n \) denotes the \(n \times n \) identity matrix.

The Hopf algebra structure on \(A_R \) is given by

\[
\Delta_R(l_{ij}^\pm) = \sum_{k=1}^{3} l_{ik}^\pm \otimes l_{kj}^\pm, \quad S_R(L^\pm) = (L^\pm)^{-1}, \quad \varepsilon_R(L^\pm) = I_3,
\]

where \(\Delta_R, S_R \) and \(\varepsilon_R \) are the comultiplication, the antipode and the counit maps, respectively.
The L-operators admit the Gaussian decomposition

$$L^±(z) = \begin{pmatrix} 1 & f_1^±(z) & f_{13}^±(z) \\ 0 & 1 & f_2^±(z) \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} k_1^±(z) & 0 & 0 \\ 0 & k_2^±(z) & 0 \\ 0 & 0 & k_3^±(z) \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ e_1^±(z) & 1 & 0 \\ e_{31}^±(z) & e_2^±(z) & 1 \end{pmatrix},$$

(1.8)

where

$$e_i^±(z) = \sum_{n\geq 0} e_i^±[n]z^n, \quad i = 1, 2, \quad e_{31}^±(z) = \sum_{n\geq 0} e_{31}^±[n]z^n,$$

$$f_i^±(z) = \sum_{n\geq 0} f_i^±[n]z^n, \quad i = 1, 2, \quad f_{13}^±(z) = \sum_{n\geq 0} f_{13}^±[n]z^n,$$

$$k_i^±(z) = \sum_{n\geq 0} k_i^±[n]z^n, \quad i = 1, 2, 3.$$

and

$$e_1^±[0] = e_2^±[0] = e_{31}^±[0] = 0, \quad f_1^±[0] = f_2^±[0] = f_{13}^±[0] = 0.$$

We have thus defined the Gaussian generators

$$f_1^±[n], f_2^±[n], f_{13}^±[n], \quad e_1^±[n], e_2^±[n], e_{31}^±[n], \quad k_1^±[n], k_2^±[n], k_3^±[n], \quad n \geq 0,$$

subject to relations (1.4) – (1.7). Here $f_1^±[n], f_2^±[n], e_1^±[n], e_2^±[n]$ form the “minimal” set of generators, while $f_{13}^±[n]$ and $e_{31}^±[n]$ form the extended one.

2 Links between realizations

2.1 Universal \mathcal{R}-matrix

Recall that the universal \mathcal{R}-matrix of a quasitriangular Hopf algebra A is an element $\mathcal{R} \in A \otimes A$, subject to the following relations:

$$\Delta^{op}(x) = \mathcal{R}\Delta(x)\mathcal{R}^{-1}$$

(2.1)

for any $x \in A$, and

$$(\Delta \otimes \text{id})\mathcal{R} = \mathcal{R}_{13}\mathcal{R}_{23}, \quad (\text{id} \otimes \Delta)\mathcal{R} = \mathcal{R}_{13}\mathcal{R}_{12},$$

(2.2)

where

$$\mathcal{R}_{12} = \mathcal{R} \otimes 1, \quad \mathcal{R}_{23} = 1 \otimes \mathcal{R}, \quad \mathcal{R}_{13} = (\sigma \otimes \text{id})(\mathcal{R}_{23})$$

are elements of $A \otimes A \otimes A$.

Now we fix the representation π_z defined on Chevalley generators as

$$\pi_z(e_\alpha) = \begin{pmatrix} 0 & q^{1/4} & 0 \\ 0 & 0 & -q^{-1/4} \\ 0 & 0 & 0 \end{pmatrix}, \quad \pi_z(e_{\delta-2\alpha}) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sqrt{q + q^{-1}} & 0 & 0 \end{pmatrix} z,$$

$$\pi_z(e_{-\alpha}) = \begin{pmatrix} 0 & 0 & 0 \\ q^{-1/4} & 0 & 0 \\ 0 & -q^{1/4} & 0 \end{pmatrix}, \quad \pi_z(e_{-\delta+2\alpha}) = \begin{pmatrix} 0 & 0 & \sqrt{q + q^{-1}} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} z^{-1},$$

$$\pi_z(k_\alpha) = \begin{pmatrix} q & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & q^{-1} \end{pmatrix}, \quad \pi_z(k_{\delta-2\alpha}) = \begin{pmatrix} q^{-2} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & q^2 \end{pmatrix}.$$
After the representation is chosen, we obtain the R-matrix
\[R \left(\frac{z}{w} \right) = (\pi_z \otimes \pi_w) R \]
directly from the definition of \mathcal{R} by applying $\pi_z \otimes \pi_w$ to relation (2.1) and substituting the Chevalley generators for x. Condition (2.1) defines $R(x)$ up to a scalar.

2.2 Chevalley and Drinfeld realizations

Following [KT], we represent the universal \mathcal{R}-matrix of A_{Ch} as:

\[\mathcal{R} = \mathcal{R} - K q^{-h \otimes h} \mathcal{R}_+, \quad \mathcal{R}_- = \prod_{\gamma < \delta} \exp_{q_{\gamma}} \left((q^{-1} - q) e_{\gamma} \otimes e_{-\gamma} \right), \]

\[K = \exp \left(- \sum_{n>0} S_n \right), \quad \mathcal{R}_+ = \prod_{\gamma > \delta} \exp_{q_{\gamma}} \left((q^{-1} - q) e_{\gamma} k_{\alpha}^{-(-1)\alpha} \otimes k_{\alpha}^{(1)\alpha} e_{-\gamma} \right), \]

where γ ranges over real positive roots, h is defined by
\[q^{\pm h} = k^{\pm 1}, \]
and S_n is given by the formula
\[S_n = \frac{n \left(q - q^{-1} \right)^2 (q + 1 + q^{-1}) (e_n \otimes e_{-n})}{(q^n - q^{-n}) (q^n + (-1)^{n+1} + q^{-n})}. \]

Now, we can find the scalar prefactor for $R(x)$. Applying $\pi_z \otimes \pi_w$ to $K \cdot q^{-h \otimes h}$, we obtain the scalar
\[q^{-1} \exp \left(- \sum_{n>0} \frac{(q^n - q^{-n}) x^n}{(q^n + (-1)^{n+1} + q^{-n}) n} \right). \]

Therefore, $R(x)$ is equal to matrix (1.3) times scalar prefactor (2.4).

Remark 2.1 Scalar (2.4) expands into the product
\[q^{-1} \prod_{k=0}^{\infty} \left(\frac{1 + q^{3k+2} x}{1 + q^{3k} x} \right)^{(-1)^k}, \]
in the domain $|q| < 1$ and into the product
\[q^{-1} \prod_{k=0}^{\infty} \left(\frac{1 + q^{-3k} x}{1 + q^{-(3k+2)} x} \right)^{(-1)^k}, \]
in the domain $|q| > 1$.

3 The scaling of the basis of the $U_q(A^{(2)}_2)$-module is chosen in such a way that R-matrix $R(x)$ becomes symmetric with respect to the secondary diagonal. In that basis, the R-matrix coincides with the one obtained in [J].

4 The formula for the \mathcal{R}-matrix differs from the formula in [KT] because q-commutators are replaced with q^{-1}-commutators. Moreover, our formula differs from the one in [KS]; the \mathcal{R}-matrix in [KS] is inverse to the \mathcal{R}-matrix here.
Theorem 1 The isomorphism between associative algebras A_{Ch} and A_D is established by the following map:

\[
\begin{align*}
k_{\delta-2\alpha} & \mapsto k^{-2}, & k_\alpha & \mapsto k, \\
e_{\delta-2\alpha} & \mapsto a(qf_1f_0 - f_0f_1)k^{-2}, & e_\alpha & \mapsto e_0, \\
e^{-\delta+2\alpha} & \mapsto ak^2(q^{-1}e_0e_{-1} - e_{-1}e_0), & e_{-\alpha} & \mapsto f_0,
\end{align*}
\]

where a is defined in (1.2).

Proof: A straightforward verification and the inductive construction of the Cartan-Weyl basis show that the map (2.5) above is a surjective homomorphism. More precisely, every Drinfeld generator can be obtained as

\[
\begin{align*}
e_{\alpha+n\delta} & \mapsto e_n, & n \geq 0, & -k^{-1}_\alpha e_{\alpha-n\delta} & \mapsto e_{-n}, & n > 0, \\
e^{-\alpha-n\delta} & \mapsto f_n, & n \geq 0, & -e^{-\alpha+\delta}k_\alpha & \mapsto f_n, & n > 0, \\
k_\alpha & \mapsto k, & -b^{-1}_\delta e_{-\alpha} & \mapsto a_n, & n \in \mathbb{Z} \setminus \{0\}.
\end{align*}
\]

Reversing all the arrows in map (2.6), we obtain a map inverse to (2.5). Finally, map (2.6) with reversed arrows is also an epimorphism, and the statement of the theorem follows. \[\square\]

Remark 2.2 The above map is an isomorphism of associative algebras. It preserves the counit but does not respect comultiplication maps Δ and Δ_D.

As for the link between the Drinfeld and the standard comultiplications, we have the following

Proposition 2.1 The tensor R_- is a cocycle for Δ_D so that for any $x \in A_{\text{Ch}}$

\[
\Delta(x) = (R_-)^{-1} \Delta_D(x) R_-.
\]

The proof is given in [KS]. Another expression for R_- in terms of the Drinfeld generators can also be found there.

2.3 From Chevalley to RLL realization

According to [D], the universal R-matrix of any quasitriangular Hopf algebra satisfies the quantum Yang-Baxter equation

\[
R_{12}R_{13}R_{23} = R_{23}R_{13}R_{12}.
\]

Theorem 2 An isomorphism between the associative algebras A_R and A_{Ch} can be given by the maps

\[
\begin{align*}
L^-(z) & \mapsto (\pi_z \otimes \text{id})R_-, \\
L^+(z) & \mapsto (\pi_z \otimes \text{id})R^{-1}_{21}.
\end{align*}
\]

Proof: Applying $\pi_z \otimes \pi_w \otimes \text{id}$, $\pi_z \otimes \text{id} \otimes \pi_w$ and $\text{id} \otimes \pi_z \otimes \pi_w$ to relation (2.7), we derive commutation relations (1.6) and (1.7). Using formulas (2.3) and (2.8), we obtain the Gaussian decomposition (1.8).

The matrix $R(-q^3)$ has a one-dimensional kernel, which is spanned by vector

\[
v = q^{-\frac{1}{2}}v_1 \otimes v_3 + v_2 \otimes v_2 + q^\frac{1}{2}v_3 \otimes v_1,
\]
where \(\{v_1, v_2, v_3\} \) is the basis of the representation \(\pi_x \). It follows that \(v \) is an eigenvector of operator \(L_1(z)L_2(-q^{-3}z) \). Let \(\lambda(z) \) be an eigenvalue of \(v \). One can check that \((\pi_x \otimes \pi_{-q^{-3}z}) \Delta(x) \) vanishes on \(v \) for every \(x \in A_{Ch} \) (it is sufficient to verify the vanishing condition for the Chevalley generators only). Applying \((\pi_x \otimes \pi_{-q^{-3}z} \otimes \text{id}) \) to the first equation in (2.2), we obtain \(\lambda(z) = 1 \). Hence, \(v \) is stable under \(L_1(z)L_2(-q^{-3}z) \), which turns out to be equivalent to the relation (1.5):

\[
\begin{pmatrix}
 l_{11}(z) & l_{12}(z) & l_{13}(z) \\
 l_{21}(z) & l_{22}(z) & l_{23}(z) \\
 l_{31}(z) & l_{32}(z) & l_{33}(z)
\end{pmatrix}
\begin{pmatrix}
 l_{33}(-q^{-3}z) & q^{-4}l_{23}(-q^{-3}z) & q^{-1}l_{13}(-q^{-3}z) \\
 q^{1/2}l_{32}(-q^{-3}z) & l_{22}(-q^{-3}z) & q^{-4}l_{12}(-q^{-3}z) \\
 q^{1/2}l_{31}(-q^{-3}z) & q^{1/2}l_{21}(-q^{-3}z) & l_{11}(-q^{-3}z)
\end{pmatrix} = I_3.
\]

Next, it is possible to check that

\[
\det_q(L^\pm(z)) = k_1^\pm(z)k_2^\pm(q^{-2}z)k_3^\pm(q^{-4}z).
\]

Following the procedure of the construction of the Cartan-Weyl basis we get

\[
\pi_x(e_{\pm n\delta}) = \frac{1}{n(q-q^{-1})} \begin{pmatrix}
 -z^{\pm n} & 0 & 0 \\
 0 & (q^2 - q^{-2})z^{\pm n} & (q - q^{-1})z^{\pm n} \\
 0 & 0 & (-q^3z)^{\pm n}
\end{pmatrix}, \quad n > 0.
\]

Applying \(\pi_x \) to either first or second tensor component of \(K \), we arrive at

\[
k_1^\pm(z) = k_3^\mp(-q^{-3}z)^{-1},
\]

\[
k_2^\pm(z) = k_3^\mp(-q^{-1}z)k_3^\pm(q^{-2}z)^{-1},
\]

which implies the desired relation (1.4).

Since all the Chevalley generators are in the image of map (2.8), we obtain an epimorphism from \(A_R \) to \(A_{Ch} \) (and, therefore, to \(A_D \)). In Theorem 3 below, we establish an epimorphism from \(A_D \) to \(A_R \), which is inverse to (2.8). Hence, the theorem is proved modulo the result of Theorem 3.

Proposition 2.2 Let \(\varphi(x) \in A_{Ch} \) be the image of \(x \in A_R \) under isomorphism (2.8). Then

\[
\varphi(\Delta_R(x)) = \sigma \circ \Delta(\varphi(x)).
\]

Proof: The proof can be obtained by applying \(\pi_x \otimes \text{id} \otimes \text{id} \) to the relation

\[
(id \otimes \Delta^{op})R = R_{12}R_{13},
\]

which is equivalent to (2.2). \(\square \)

2.4 From RLL to Drinfeld realization

First of all, we express all generators of the RLL realization in terms of \(e_1^\pm(z) \), \(f_1^\pm(z) \), \(k_1^\pm(z) \). The expressions

\[
k_2^\pm(z) = k_1^\pm(-qz)k_1^\pm(q^2z)^{-1},
\]

\[
k_3^\pm(z) = k_1^\pm(-q^3z)^{-1}
\]

(2.10)
follow directly from (2.9). Relations (1.7) imply
\[(q^2 - 1)(q^3 z + w)L_{23}^\pm(z)L_{33}^\pm(w) + q(z - w)(q^3 z + w)L_{23}^\pm(z)\]
\[L_{33}^\pm(w) = (q^2 z - w)(q^3 z + w)L_{23}^\pm(w)L_{33}^\pm(z),\]
which results in
\[q(z - w)k_3^\pm(z)f_2^\pm(w) = (q^2 z - w)f_2^\pm(w)k_3^\pm(z) - (q^2 - 1)zf_2^\pm(z)k_3^\pm(z).\]
Setting \(w = q^2 z\), we get
\[f_2^\pm(q^2 z) = q^{-1}k_3^\pm(z)^{-1}f_2^\pm(z)k_3^\pm(z).\]
On the other hand, relation (1.5) implies
\[f_1^\pm(z) = -q^{-\frac{1}{2}}k_3^\pm(-q^{-3}z)^{-1}f_2^\pm(-q^{-3}z)k_3^\pm(-q^{-3}z).\]
We hence obtain
\[f_2^\pm(z) = -q^{-\frac{1}{2}}f_1^\pm(-qz),\]
\[e_2^\pm(z) = -q^{\frac{1}{2}}e_1^\pm(-qz),\]
where the expression for \(e_2^\pm(z)\) is derived in the similar way. The expressions for \(e_3^\pm(z)\) and \(f_{13}^\pm(z)\) are considered in Section 3.

Remark 2.3 It is also possible to use the explicit formula for \(L^\pm(z)\) to derive relations (2.11), as we did for relations (2.9).

Now let
\[E_i(z) = e_i^+(z) - e_i^-(z),\]
\[F_i(z) = f_i^+(z) - f_i^-(z).\]
Then the equalities
\[E_2(z) = -q^{\frac{1}{2}}E_1(-qz),\]
\[F_2(z) = -q^{-\frac{1}{2}}F_1(-qz).\]
(2.12)
hold. Moreover, relations (1.4)–(1.7) imply
\[k_1^+(z)k_1^+(w) = k_1^+(w)k_1^+(z),\]
\[k_1^-(z)k_1^+(w) = k_1^+(w)k_1^-(z),\]
\[k_1^+(z)E_1(w)k_1^+(z)^{-1} = \frac{q(z - w)}{q^2z - w}E_1(w),\]
\[k_1^+(z)^{-1}F_1(w)k_1^+(z) = \frac{z - q^2w}{q(z - w)}F_1(w),\]
(2.14)
\[(qz + w)(z - q^2w)E_1(z)E_1(w) = (z + qw)(q^2z - w)E_1(w)E_1(z),\]
\[(z + qw)(q^2z - w)F_1(z)F_1(w) = (qz + w)(z - q^2w)F_1(w)F_1(z),\]
(2.15)
\[[E_1(z), F_1(w)] = (q - q^{-1})\delta \left(\frac{z}{w}\right) (k_1^+(w)k_2^+(w)^{-1} - k_1^-(z)k_2^-(z)^{-1}).\]
(2.16)
Theorem 3 An isomorphism\(^5\) between the algebras \(A_D\) and \(A_R\) is given by the following maps:

\[
\begin{align*}
q^{-\frac{1}{2}}(q - q^{-1})e(qz) & \mapsto E_1(z), \\
q^{\frac{1}{2}}(q - q^{-1})f(qz) & \mapsto F_1(z), \\
K^\pm(qz) & \mapsto k^\pm_1(z)k^\pm_2(z)^{-1}.
\end{align*}
\] (2.17)

Proof: Formulas (2.13)–(2.16) imply that the map (2.17) is a homomorphism. For all \(n \geq 0\), Gaussian coordinates \(k^\pm_1[n]\) can be obtained step by step from the product \(k^\pm_1(z)k^\pm_2(z)^{-1}\), which together with relations (2.10) and (2.12) imply that map (2.17) is an epimorphism. Finally, one can check that the composition of maps (2.8), (2.5) and (2.17) is the identity map. \(\square\)

3 Link with composite Drinfeld currents

Here we revise some definitions, given in [KS] and then express the generating functions \(f^\pm_{13}(z)\) and \(e^\pm_{31}(z)\) in terms of the Drinfeld currents.

Recall that in any quantum affine algebra there exist two types of Borel subalgebras. Borel subalgebras of the first type come from the Drinfeld realization. Let \(U_F\) denote the subalgebra of \(U_q(A^{(2)}_2)\) generated by \(k^\pm_1, f_n, n \in \mathbb{Z}; a_n, n > 0\), and let \(U_E\) denote the subalgebra of \(U_q(A^{(2)}_2)\) generated by \(k^\pm_1, e_n, n \in \mathbb{Z}; a_n, n < 0\). The “current” Borel subalgebra \(U_F\) contains subalgebra \(U_F\) generated by \(f_n, n \in \mathbb{Z}\). The “current” Borel subalgebra \(U_E\) contains subalgebra \(U_E\) generated by \(e_n, n \in \mathbb{Z}\).

Borel subalgebras of the second type are obtained via the Chevalley realization. Let \(U_q(b_+)\) and \(U_q(b_-)\) denote a pair of subalgebras of \(U_q(A^{(2)}_2)\) generated by

\[
e^\pm_0, e^{\delta-2\alpha}, k^\pm_1 \quad \text{and} \quad e^{-\alpha}, e^{-(\delta-2\alpha)}, k^\pm_1
\]

respectively. In terms of the Drinfeld realization, these subalgebras are generated by

\[
k^\pm_1, e_0, qf_1f_0 - f_0f_1 \quad \text{and} \quad k^\pm_1, f_0, q^{-1}e^{-1}e_1 - e_1e_0.
\]

respectively.

Let \(U_F^+, U_F^-, U_E^+\) and \(U_E^-\) denote the following intersections of Borel subalgebras:

\[
\begin{align*}
U_F^- & = U_F \cap U_q(b_-), & U_F^+ & = U_F \cap U_q(b_+), \\
U_E^+ & = U_E \cap U_q(b_+), & U_E^- & = U_E \cap U_q(b_-).
\end{align*}
\]

The superscript sign indicates the Borel subalgebra \(U_q(b_{\pm})\) containing the given algebra, and the subscript letter indicates “current” Borel subalgebras \(U_F\) or \(U_E\) that it is intersected with. These letters are capitals if the subalgebra contains imaginary root generators \(a_n\) and are lower case otherwise.

Let \(P^+\) and \(P^-\) denote projection operators such that for any \(f^+ \in U_F^+\) and for any \(f^- \in U_F^-

\[
P^+(f^-f^+) = \varepsilon(f^-)f^+, \quad P^-(f^-f^+) = f^+\varepsilon(f^-).
\] (3.1)

\(^5\)As in remark (2.2), the mapping above is an isomorphism of associative algebras. It preserves the counit but does not respect comultiplication maps \(\Delta\) and \(\Delta_D\).
Also let P^{+} and P^{-} denote projecton operators such that for any $e_{+} \in U_{e}^{+}$ and for any $e_{-} \in U_{E}$

$$P^{+}(e_{+} e_{-}) = e_{+} e_{-}, \quad P^{-}(e_{+} e_{-}) = e(e_{+}) e_{-}.$$ \(3.2\)

Finally, let us introduce composite currents $s(z)$ and $r(z)$ as follows:

$$s(z) = \text{res}_{w = -q^{-1}z} f(z) f(w) \frac{dw}{w},$$

$$r(z) = \text{res}_{w = -q} e(w) e(z) \frac{dw}{w}.$$

Remark 3.1 The currents $s(z)$ and $\bar{s}(z)$ were defined in [KS]. The definition of $s(z)$ coincides with the one given above, while $\bar{s}(z) = -s(-qz)$ or equivalently

$$\bar{s}(z) = \text{res}_{w = -q z} f(w) f(z) \frac{dw}{w}.$$

An involution ι of the algebra $U_{q}(A_{2}^{(2)})$ was also defined in [KS]:

$$\iota(e_{n}) = f_{-n}, \quad \iota(f_{n}) = e_{-n}, \quad \iota(a_{n}) = a_{-n}, \quad \iota(K_{0}) = K_{0}^{-1}.$$

Therefore, the current $r(z)$ satisfies the equality

$$r(z) = \iota(-\bar{s}(z^{-1})).$$

Proposition 3.1 Isomorphism (2.17) maps the Gaussian coordinates $e_{31}^{\pm}(z)$ and $f_{13}^{\pm}(z)$ to the expressions

$$e_{31}^{\pm}(z) \mapsto \mp(1 - q) \left(q^{-1} \left[P^{\mp}(e(-q^{2}z)), e_{0}\right]_{q^{-1}} + \left[-q^{2}z e_{-1}, P^{\mp}(e(-q^{2}z)) \mp e_{0}\right]_{q^{-1}} \right),$$

$$f_{13}^{\pm}(z) \mapsto \pm(1 - q) \left(q \left[P^{\pm}(f(-q^{2}z)), f_{0}\right]_{q^{-1}} + \left[(-q^{2}z)^{-1} f_{1}, P^{\pm}(f(-q^{2}z)) \pm f_{0}\right]_{q^{-1}} \right).$$ \(3.3\)

Proof: We consider only the case of $f_{13}^{+}(z)$ because the other cases are similar. Relations (1.7) imply

$$(q^{2} - 1)z(q^{3}z + w)l_{13}^{+}(z)l_{22}^{+}(w) + q(z - w)(q^{3}z + w)l_{23}^{+}(z)l_{12}^{+}(w) =$$

$$= (q^{2} - 1)w(q^{3}z + w)l_{13}(w)l_{22}(z) + q(z - w)(q^{3}z + w)l_{12}(w)l_{23}(z).$$

Assuming $w = 0$, we get

$$(q - q^{-1})l_{13}^{+}(z) = \left[l_{12}^{+}(0), l_{23}^{+}(z)\right].$$

or, equivalently,

$$(q - q^{-1})f_{13}^{+}(z)k_{3}^{+}(z) = f_{1}^{-}[0] f_{2}^{+}(z) k_{3}^{+}(z) - f_{2}^{+}(z) k_{3}^{+}(z) f_{1}^{-}[0].$$

Using (1.7) once again, we obtain

$$k_{3}^{+}(z) f_{1}^{-}[0] = q f_{1}^{-}[0] k_{3}^{+}(z) + (q - q^{-1}) q^{1/2} f_{2}^{+}(z) k_{3}^{+}(z),$$

and therefore derive

$$f_{13}^{+}(z) = \frac{1}{q - q^{-1}} \left(q^{1/2} f_{1}^{+}(-qz) f_{1}^{-}[0] - q^{-1/2} f_{1}^{-}[0] f_{1}^{+}(-qz)\right) - q^{-1/2} f_{1}^{+}(-qz)^{2}.$$
Now, let us recall a result from [KS]: on one hand, we have

\[
P(f(z_1)f(z_2)) = f^+(z_1) \left(f^+(z_2) - \frac{q^2 - 1}{q^2 - z_2/z_1} f^+(z_1) \right) - \frac{(1 + q^3)(1 - z_2/z_1)}{(1 + q)(q^2 - z_2/z_1)(1 + qz_2/z_1)} P(s(z_1)),
\]
and, on the other hand,

\[
P(f(z_1)f(z_2)) = \frac{(q^2 - z_1/z_2)(q^{-1} + z_1/z_2)}{(1 - q^2z_1/z_2)(1 + q^{-1}z_1/z_2)} P(f(z_2)f(z_1)).
\]

Equating the right-hand sides of these expressions, multiplying them by \(z_2\), and letting \(z_2\) tend to infinity, we obtain

\[
(q - q^{-1})P(f(z))^2 = (f_1 P(f(z)) - q^{-1} P(f(z)) f_1) z^{-1} + \frac{1 + q^3}{q(1 + q)} P(s(z)) + (f_1 f_0 - q^{-1} f_0 f_1) z^{-1}.
\]

Finally, since isomorphism (2.17) maps \(f^+_1(-qz)\) to \(\pm q^\mp (q - q^{-1}) P^\pm(f(-q^2 z))\), we derive the desired formula (3.3). □

Theorem 4 Isomorphism (2.17) links the Gaussian coordinates \(f_{13}^+(z), e_{31}^+(z)\) and the composite Drinfeld currents \(s(z), r(z)\) by the following expressions:

\[
\begin{align*}
P^+(s(-q^2 z)) &= \frac{1}{(q - q^{-1})(q - 1 + q^{-1})} f_{13}^+(z), \\
P^-(s(-q^2 z)) &= \frac{1}{(q - q^{-1})(q - 1 + q^{-1})} \left(f_1^{-}(z) f_2^{-}(z) - f_{13}^{-}(z) \right), \\
P^{++}(r(-q^2 z)) &= \frac{1}{(q - q^{-1})(q - 1 + q^{-1})} e_{31}^+(z), \\
P^{--}(r(-q^2 z)) &= \frac{1}{(q - q^{-1})(q - 1 + q^{-1})} (e_2^{-}(z) e_1^{-}(z) - e_{31}^{-}(z)).
\end{align*}
\]

Proof: The statement for \(s(z)\) follows directly from Proposition 3.1 and Theorem 1 in [KS]. For \(r(z)\) the involution \(\iota\) should also be used.

□

Remark 3.2 Since \(f_1^{-}(z) f_2^{-}(z) - f_{13}^{-}(z)\) and \(e_2^{-}(z) e_1^{-}(z) - e_{31}^{-}(z)\) are the corner elements in the Gaussian decomposition of the inverse L-operator \((L^{-}(z))^{-1}\), it might make sense to use the elements of the decomposition of the inverse L-operator \((L^{-}(z))^{-1}\) as the Gaussian coordinates instead of the elements of the decomposition of usual L-operator \(L^{-}(z)\).

Acknowledgements

The author thanks Sergey Khoroshkin for the invaluable help and his constant interest to the work. The author is also grateful to Stanislav Pakuliak for many fruitful discussions. The author was supported by RFBR grant 08-01-00667, joint CNRS-RFBR grant 09-01-93106-NCNIL, and by Federal Agency for Science and Innovations of Russian Federation under contract 14.740.11.0081.
References

[CP] V. Chari, A. Pressley. Twisted quantum affine algebras. *Comm. Math. Phys.* 198 (1998), No.2, 461–476.

[D] V. Drinfeld. New realization of Yangians and quantum affine algebras. *Sov. Math. Dokl.* 36 (1988), 212–216.

[DF] J. Ding, I. Frenkel. Isomorphism of two realizations of quantum affine algebra $U_q(\hat{gl}(n))$. *Comm. Math. Phys.* 156 (1993), No.2, 212–216.

[DK] J. Ding, S. Khoroshkin. Universal R-matrix for quantum affine algebras $U_q(A^{(2)}_2)$ and $U_q(\hat{osp}(1|2))$ with Drinfeld comultiplication. *Adv. in Math.* 189 (2004), 413–438.

[DK2] J. Ding, S. Khoroshkin. On the FRTS approach to quantized current algebras. *Lett. Math. Phys.* 45 (1998), No.4, 331–352.

[DK3] J. Ding, S. Khoroshkin. Weyl group extension of quantized current algebras. *Transform. Groups* 5 (2000), pp.35-59.

[EKP] B. Enriquez, S. Khoroshkin, S. Pakuliak. Weight functions and Drinfeld currents. *Comm. Math. Phys.* 276 (2007), No.3, 691–725.

[FRS] D. Fioravanti, M. Stanishkov, F. Ravanini. Generalized KdV and Quantum Inverse Scattering description of Conformal Minimal Models. *Phys. Lett. B.* 367 (1996), 113–120.

[FRT] L. Faddeev, N. Reshetikhin, L. Takhtajan. Quantization of Lie groups and Lie algebras. *Leningrad Math. J.* 1 (1990), 193–225.

[FR] I. Frenkel, N. Reshetikhin. Quantum affine algebras and holonomic difference equations. *Comm. Math. Phys.* 146 (1992), 1–60.

[H] D. Hernandez. Kirillov-Reshetikhin conjecture: the general case. *Int. Math. Res. Not.* 2010, No.1, 149–193.

[IK] A. Izergin, V. Korepin. The inverse scattering method approach to the quantum Shabat-Mikhailov model. *Comm. Math. Phys.* 79 (1981), No.3, 303–316.

[J] M. Jimbo. Quantum R-matrix for the generalized Toda system. *Comm. Math. Phys.* 102 (1986), No.4, 537–547.

[KP] S. Khoroshkin, S. Pakuliak. A computation of an universal weight function for the quantum affine algebra $U_q(\hat{gl}(n))$. *J. Math. Kyoto Univ.* 48 (2008), 277-322.

[KS] S. Khoroshkin, A. Shapiro. Weight function for the quantum affine algebra $U_q(A^{(2)}_2)$. *Geom. and Phys.* 60 (2010), 1833-1851.

[KT] S. Khoroshkin, V. Tolstoy. The uniqueness theorem for the universal R-matrix. *Let. Math. Phys.* 24 (1992), No.3, 231–244.

[RS] N. Reshetikhin, M. Semenov-Tian-Shansky. Central extensions of quantum current groups. *Lett. Math. Phys.* 19 (1990), 133–142.

[T] V. Tarasov. Algebraic Bethe ansatz for the Izergin-Korepin R-matrix. *Theor. and Math. Phys.* 76 (1988), No.2, 793-803.

[YZ] W. Yang, Y. Zhang. Drinfeld basis of the twisted quantum affine algebra $U_q(A^{(2)}_2)$ from the Gauss decomposition of an L-operator. *J. Phys. A: Math. Gen.* 34 (2001), L205.