LINEAR SOFIC GROUPS AND ALGEBRAS

GOULNARA ARZHANTSEVA AND LIVIU PĂUNESCU

Abstract. We introduce and systematically study linear sofic groups and linear sofic algebras. This generalizes amenable and LEF groups and algebras. We prove that a group is linear sofic if and only if its group algebra is linear sofic. We show that linear soficity for groups is a priori weaker than soficity but stronger than weak soficity. We also provide an alternative proof of a result of Elek and Szabó which states that sofic groups satisfy Kaplansky’s direct finiteness conjecture.

1. Introduction

Metric approximation properties for groups have received considerable attention in the last years, mainly due to the notions of hyperlinear and sofic groups. Hyperlinear groups appeared in the context of Alain Connes’ embedding conjecture (1976) in operator algebra (see also [Wa76]) and were termed hyperlinear by Florin Rădulescu [Ră08]. Sofic groups were introduced by Misha Gromov [Gr99] in his study of symbolic algebraic varieties in relation to the Gottschalk surjectivity conjecture (1973) in topological dynamics. They were called sofic by Weiss [W00]. Over the last years, various strong results have been obtained for sofic groups in seemingly unrelated areas of mathematics. For instance, they have been at the heart of developments on profinite topology of free groups, unimodular random networks, diophantine approximations, linear cellular automata, L^2-torsion, profinite equivalence relations, measure conjugacy invariants, and continuous (in contrast to traditional binary) logic.

These group properties can be stated in elementary algebraic terms, as approximation properties, or in the language of ultraproducts, as the existence of an embedding in a certain metric ultraproduct. We mainly use the latter technique due to simplicity in writing. For a careful introduction to the subject, including ultraproducts terminology, see [Pe08,PeKw09].

Throughout the article, let ω be a non-principal (or free) ultrafilter on \mathbb{N}. In general, $(n_k)_k$ or $(m_k)_k$ denote sequences of natural numbers tending to infinity. We denote by S_n the symmetric group of degree n, that is, the group of permutations on a set of n elements. This group is endowed with the normalized Hamming distance:

$$d_{Ham}(p,q) = \frac{1}{n} |\{i: p(i) \neq q(i)\}|.$$

Received by the editors May 9, 2014 and, in revised form, March 22, 2015.

2010 Mathematics Subject Classification. Primary 20E26, 20C07, 16N99, 03C20, 20F70.

Key words and phrases. Sofic groups, metric ultraproduct, linear groups, Kaplansky’s direct finiteness conjecture.

The first author was supported in part by the ERC grant ANALYTIC no. 259527, and by the Swiss NSF, under Sinergia grant CRSI22-130435.

The second author was supported by the Swiss NSF, under Sinergia grant CRSI22-130435.

©2016 American Mathematical Society
Definition 1.1. A group G is sofic if there exist a sequence of natural numbers $(n_k)_k$ and an injective group morphism from G into the metric ultraproduct $\Pi_{k \to \omega}(S_{n_k}, d_{Ham})$.

Such a morphism is called a sofic representation of G.

The major goal of our paper is to introduce the concept of soficity for algebras. We shall approximate our algebras by matrix algebras endowed with a distance provided by the rank. Two matrices are close in this distance if they are equal, as linear transformations, on a large subspace. This is in essence similar to the Hamming distance. Therefore, we call the corresponding algebras (and groups, respectively) linear sofic. We refer the reader to Section 4 for precise definitions.

Our main results about linear soficity are the following.

Theorem 1.2. A group G is linear sofic if and only if its group algebra C^*G is linear sofic.

This should be regarded in the light of recent developments in asymptotic geometry of algebras and, more specifically, of group algebras; see Gr08, CS09 and the references therein. In particular, the known fact that a group is amenable if and only if its group algebra is amenable El05, S00, B08 is an evident predecessor of the above result.

Our proof of this theorem also provides an alternative proof of Kaplansky’s direct finiteness conjecture for sofic groups, a result due to Elek and Szabo ElSz04.

In Gir08, Glebsky and Rivera defined the notion of a weakly sofic group by replacing (S_n, d_{Ham}) in the definition of sofic groups by arbitrary finite groups equipped with a bi-invariant metric. At present, very little is known about weakly sofic groups.

Theorem 1.3. Sofic groups are linear sofic, while linear sofic groups are weakly sofic.

Our viewpoint on metric approximations of algebras and groups has given rise to a number of new challenging difficulties. For instance, the equivalence between the metric ultraproduct interpretation and the algebraic approach in the definition of approximation, as well as the fundamental amplification trick, are easy in the sofic and hyperlinear cases. In the rank metric case, both properties are highly non-trivial. We successfully resolve these issues by introducing the rank amplification and by analyzing the tensor product of Jordan blocks; see Sections 4 and 5.

Our approach leads to interesting phenomena (non-existent in the classical sofic case) when approximations by complex matrix algebras are replaced by those over a different field (or a sequence of fields); see Sections 6 and 7. For instance, using the fundamental result of algebraic geometry, Hilbert’s Nullstellensatz, we establish the equivalence between linear sofic representations over the field of complex numbers and those over the rationals.

Although Kaplansky’s direct finiteness conjecture remains open for linear sofic groups (see Questions 7.8 and 8.6), we show that this new class of groups shares with sofic groups several positive results. In particular, the class of linear sofic groups is preserved under many group-theoretical operations; see Section 9. Moreover, under the failure of the Continuum Hypothesis, there exist 2^\aleph_0 of universal linear sofic groups, up to metric isomorphism; see Section 10.
Our intention to study soficity of algebras is motivated by recent advances on amenable algebras as well as LEF algebras and algebras having almost finite dimensional representations. The idea allows us to go beyond algebras associated to groups. In such a general context, we introduce the concepts of linear sofic radical for groups and of sofic radical for algebras. We also notice the existence of algebras which are not linear sofic (these are not group algebras). We refer to Section 11 for details.

Our choice of the rank metric is not arbitrary but has a view towards potential applications. The concept of the rank metric was first introduced by Loo-Keng Hua [Hua45] (he uses the term “arithmetic distance”) who found a surprisingly nice description of adjacency preserving maps with respect to this metric. The entire book [Wan96] is devoted to this topic; see also [S06] for a recent discussion on the connection to several preserver problems on matrix and operator algebras arising in physics and geometry. From a different point of view, Philippe Delsarte [Del78] defined the rank distance (named q-distance) on the set of bilinear forms and proposed the construction of optimal codes in bilinear form representation. This allowed Ernst Gabidulin [Gab85] to study the rank distance for vector spaces over extension fields and to describe optimal codes, now called Gabidulin codes. This currently emerged into an intensively developing area of rank-metric codes.

In view of the above, we believe that the full extent of possible applications of sofic and linear sofic groups and algebras is yet to be discovered. The present paper on the connection to several preserver problems on matrix and operator algebras provides the necessary fundamentals for such further developments.

2. Ultraproducts of matrix algebras with respect to the rank

Ultraproducts of matrices using rank functions have been considered, for example, in [ElSz04, Oz09]. Let us first recall some basic properties of the rank. Throughout the article F is an arbitrary field.

Notation 2.1. For a matrix $a \in M_n = M_n(F)$ we shall denote by $rk(a)$ its rank and define the normalized rank by $\rho(a) := \frac{1}{n}rk(a)$.

Proposition 2.2. The rank function on the algebra M_n has the following properties:

1. $rk(I_n) = n$; $rk(a) = 0$ if and only if $a = 0$;
2. $rk(a + b) \leq rk(a) + rk(b)$ for $a, b \in M_n$;
3. $rk(ab) \leq rk(a)$ and $rk(ab) \leq rk(b)$ for $a, b \in M_n$;
4. $rk(a \oplus b) = rk(a) + rk(b)$ for $a \in M_n$ and $b \in M_m$;
5. $rk(a \otimes b) = rk(a) \cdot rk(b)$ for $a \in M_n$ and $b \in M_m$.

Thus, the function ρ induces a metric on $M_n(F)$, defined by $d_{rk}(a, b) := \rho(a - b)$.

We now define the ultraproduct that we use throughout the paper.

Definition 2.3. Let ω be a non-principal (or free) ultrafilter and $(n_k)_k$ a sequence of natural numbers such that $\lim_{k \to \infty} n_k = \infty$. The Cartesian product $\Pi M_{n_k}(F)$ is an algebra. Let us define:

$$\rho_\omega : \Pi M_{n_k}(F) \to [0, 1] \quad \rho_\omega((a_k)_k) := \lim_{k \to \omega} \rho(a_k).$$

Then $\text{Ker} \rho_\omega$ is an ideal of $\Pi M_{n_k}(F)$. We denote by $\Pi_{k \to \omega} M_{n_k}(F)/\text{Ker} \rho_\omega$, or by $\Pi M_{n_k}(F)/\text{Ker} \rho_\omega$ if there is no danger of confusion, the ultraproduct obtained by taking the quotient of $\Pi M_{n_k}(F)$ by $\text{Ker} \rho_\omega$. This algebra comes with a natural metric defined by $d_\omega(u, v) := \rho_\omega(u - v)$, where u and v belong to the ultraproduct.
We always denote by ρ_ω the limit rank function, even though we shall work with ultraproducts over different dimension sequences $(n_k)_k$. The dimension of the matrices that we use will be clear, so this notation should cause no confusion.

Observe that the metric d_{rk} restricted to the group $GL_n(F)$ is bi-invariant. We can therefore construct the following ultraproduct.

Definition 2.4. We denote by $\Pi_{k\to\omega}GL_{n_k}(F)/d_\omega$ the metric ultraproduct obtained by taking the quotient of the Cartesian product $\Pi GL_{n_k}(F)$ by $\mathcal{N}_\omega = \{(a_k)_k \in \Pi GL_{n_k}(F) : \lim_{k\to\omega} d_{rk}(a_k, Id) = 0\}$.

Here are variants of (4) and (5) of Proposition 2.2 extended to metric ultraproducts.

Proposition 2.5. Let $u = (u_k)_k \in \Pi_{k\to\omega}M_{n_k}(F)/\text{Ker}\rho_\omega$ and $v = (v_k)_k \in \Pi_{k\to\omega}M_{n_k}(F)/\text{Ker}\rho_\omega$. Then:

$$u \oplus v = (u_k + v_k)_k \in \Pi_{k\to\omega}M_{n_k+m_k}(F)/\text{Ker}\rho_\omega;$$

$$\rho_\omega(u \oplus v) = \lim_{k\to\omega} \frac{n_k\rho_\omega(u) + m_k\rho_\omega(v)}{n_k + m_k};$$

$$u \otimes v = (u_k \otimes v_k)_k \in \Pi_{k\to\omega}M_{n_km_k}(F)/\text{Ker}\rho_\omega;$$

$$\rho_\omega(u \otimes v) = \rho_\omega(u) \cdot \rho_\omega(v).$$

In many ultraproduct constructions invertible elements in an ultraproduct are given by an ultraproduct of invertible elements. For instance, this is the case in the classical result of Malcev addressing the algebraic ultraproduct of matrix algebras [Ma40]. An analogous result holds also for our rank ultraproduct construction.

Proposition 2.6. The group $GL(\Pi_{k\to\omega}M_{n_k}(F)/\text{Ker}\rho_\omega)$ of invertible elements of $\Pi_{k\to\omega}M_{n_k}(F)/\text{Ker}\rho_\omega$ is isomorphic to $\Pi_{k\to\omega}GL_{n_k}(F)/d_\omega$.

Proof. Elements of $\Pi_{k\to\omega}GL_{n_k}(F)/d_\omega$ are invertible. So, $\Pi_{k\to\omega}GL_{n_k}(F)/d_\omega \subseteq GL(\Pi_{k\to\omega}M_{n_k}(F)/\text{Ker}\rho_\omega)$. For the converse inclusion, the key observation is that for any $a \in M_{n_k}(F)$ there exists $\tilde{a} \in GL_{n_k}(F)$ such that $\rho(a - \tilde{a}) = 1 - \rho(a)$.

If $(a_k)_{k,\omega}$ is invertible in $\Pi_{k\to\omega}M_{n_k}(F)/\text{Ker}\rho_\omega$, then $\rho_\omega((a_k)_{k,\omega}) = 1$ by (1) and (3) of Proposition 2.2 (also the reverse of this implication holds). It follows that $(a_k)_{k,\omega} = (\tilde{a}_k)_{k,\omega} \in \Pi_{k\to\omega}GL_{n_k}(F)/d_\omega$.

We shall encounter many examples of stably finite algebras. Let us first recall the definition.

Definition 2.7. A unital ring R is called directly finite if for any $x, y \in R$, $xy = I$ implies $yx = I$. It is called stably finite if $M_n(R)$ is directly finite for any $n \in \mathbb{N}$.

Kaplansky’s direct finiteness conjecture. For any field F and any group G the group algebra $F(G)$ is directly finite.

The following proposition is well known. It was used by Elek and Szabó to prove Kaplansky’s direct finiteness conjecture for sofic groups and it also appears in [Oz09]. Note that the class of sofic groups is currently the largest known to satisfy this conjecture.

Proposition 2.8. The algebra $\Pi_{k\to\omega}M_{n_k}(F)/\text{Ker}\rho_\omega$ is stably finite, for any sequence $(n_k)_k$ of natural numbers.
Proof. As $M_m(\Pi_{k \to \omega} M_{n_k}(F)/\text{Ker}\rho_\omega) \simeq \Pi_{k \to \omega} M_{m \cdot n_k}(F)/\text{Ker}\rho_\omega$ we only need to prove the direct finiteness of these algebras.

It is not hard to check that $rk(I - ab) = rk(I - ba)$ for $a, b \in M_n(F)$. This equality implies in the ultralimit that $\rho_\omega(I - xy) = \rho_\omega(I - yx)$. So, in $\Pi_{k \to \omega} M_{n_k}(F)/\text{Ker}\rho_\omega$ we have $xy = I$ if and only if $yx = I$. □

3. PRODUCT OF ULTRAFILTERS

We have equipped the ultraproduct $\Pi_{k \to \omega} M_{n_k}(F)/\text{Ker}\rho_\omega$ with a metric induced by the rank function, namely $d_\omega(u, v) := \rho_\omega(u - v)$. If we have a family of ultraproducts we can construct the metric ultraproduct of this family. The object that we get is again an ultraproduct. We provide the definitions here. For more details, we refer the reader to [CaPa12].

Definition 3.1. If ϕ, ω are ultrafilters on \mathbb{N}, then define the product ultraproduct $\phi \otimes \omega$ on $\mathbb{N} \times \mathbb{N}$ by:

$$
A \in \phi \otimes \omega \iff \{i \in \mathbb{N} : \{j \in \mathbb{N} : (i, j) \in A\} \in \omega\} \in \phi.
$$

It is easy to check that $\phi \otimes \omega$ is an ultraproduct. Since \mathbb{N} and \mathbb{N}^2 are cardinal equivalent, $\phi \otimes \omega$ can be viewed as an ultraproduct on \mathbb{N}.

Proposition 3.2. If $(x_i^{(j)})_{(i,j)\in\mathbb{N}^2}$ is a bounded sequence of real numbers, then:

$$
\lim_{i \to \phi} (\lim_{j \to \omega} x_i^{(j)}) = \lim_{(i,j) \to \phi \otimes \omega} x_i^{(j)}.
$$

This proposition implies that the ultraproduct of ultraproducts is again an ultraproduct:

Corollary 3.3. Let $(m, k)_{m,k}$ be a double sequence of natural numbers. For every $m \in \mathbb{N}$ construct the ultraproduct $\Pi_{k \to \omega} M_{n_{m,k}}/	ext{Ker}\rho_\omega$. On the Cartesian product $\Pi_m(\Pi_{k \to \omega} M_{n_{m,k},m})$ define $d_{\phi}((m, k)_m, (v, m)_m) = \lim_{m \to \phi} \rho_\omega(u_m - v_m)$. Then:

$$
\Pi_{m \to \phi}(\Pi_{k \to \omega} M_{n_{m,k}}/	ext{Ker}\rho_\omega)/d_{\phi} \simeq \Pi_{(m, k) \to \phi \otimes \omega} M_{n_{m,k}}/	ext{Ker}\rho_{\phi \otimes \omega}.
$$

4. DEFINITIONS OF LINEAR SOFICITY

We are now defining the main concepts of our paper.

Definition 4.1. A countable group G is linear sofic if there exist an injective morphism $\Theta : G \to \Pi_{k \to \omega} GL_{n_k}(\mathbb{C})/d_\omega$.

Such a morphism is called a linear sofic representation of G.

Definition 4.2. A countably generated algebra A over a field F is linear sofic if there exist an injective morphism $\Theta : A \to \Pi_{k \to \omega} M_{n_k}(F)/\text{Ker}\rho_\omega$. Moreover, if A is a unital algebra we require that this morphism is unital.

Such a morphism is called a linear sofic representation of A.

Our choice of complex matrices for linear sofic representations of G does not lead to any loss of generality. Indeed, Definition 4.1 viewed over any given field F yields the concept of a linear sofic group over a field F. All our results on linear sofic groups remain true for linear sofic groups over F and the corresponding proofs are...
Observation 4.3. An element of $M_n(C)$ is a linear transformation of the vector space C^n. As C is a vector space of dimension 2 over R, we can view this element as a transformation of the space R^{2n} or as a matrix in $M_{2n}(R)$. Its normalized rank remains the same. As a consequence, a morphism $\Theta : G \to \Pi_{k \to \omega}GL_{n_k}(C)/Ker\rho_\omega$ induces a morphism $\Theta' : G \to \Pi_{k \to \omega}GL_{2n_k}(R)/Ker\rho_\omega$. The value of ρ_ω is preserved by this transformation. It follows that we can work with R instead of C in the definition of a linear sofic group. We can further reduce our considerations to the field of rationals (equivalently to any finite dimensional extension of the rationals); see Section 8. Alternatively, we construct linear sofic representations of groups over a sequence of finite fields; see Section 5.

Proposition 4.4. A group G is linear sofic if and only if the following holds: there exists $\delta : G \to [0,1]$ such that $\delta(g) = 0$ if and only if $g = e$ and for any finite subset $E \subseteq G$ and for any $\varepsilon > 0$, there exist $n \in \mathbb{N}$ and a function $\phi : E \to GL_n(C)$ such that:

1. $\forall g, h, gh \in E$ we have $\rho(\phi(g)\phi(h) - \phi(gh)) < \varepsilon$;
2. $\forall g \in E$ we have $\rho(1 - \phi(g)) > \delta(g) - \varepsilon$.

Using this equivalent characterization we see that the definition of a linear sofic group does not depend on the particular choice of the ultrafilter nor does it depend on the sequence $(n_k)_k$ as long as $\lim_{k \to \infty} n_k = \infty$.

It is implicit in [ElSz04] that for a sofic group G and any field F the group algebra $F(G)$ satisfies our definition of linear sofic algebra (see also [Oz09]). This was obtained as an intermediate result in the proof of Kaplansky’s direct finiteness conjecture for sofic groups. We present an alternative proof of this fact in Section 7 as a consequence of our results about linear soficity. The following result shows that linear soficity is a priori weaker than soficity. Observe that the converse is open.

Proposition 4.5. Sofic groups are linear sofic.

Proof. Let $p \in S_n$ and let A_p be the corresponding permutation matrix. Denote by $\text{fix}(p)$ the number of fixed points of p and by $\text{cyc}(p)$ the number of cycles (including fixed points) of p. Clearly, $\text{fix}(p) \leq \text{cyc}(p)$. By definition, $d_{\text{Hamm}}(Id,p) = 1 - \text{fix}(p)/n$ and it is easy to check that $\rho(Id - A_p) = 1 - \text{cyc}(p)/n$ (see [Lm11], Lemma 13). From this we deduce that $\rho(Id - A_p) \leq d_{\text{Hamm}}(Id,p)$.

Let G be a sofic group and $\Phi : G \to \Pi_{k \to \omega}(S_{n_k},d_{\text{Hamm}})$ the corresponding injective morphism. The group S_{n_k} is isomorphic to the subgroup of permutation matrices of $GL_{n_k}(C)$. Due to the above inequality on the normalized rank, the
morphism \(\Phi \) induces a group morphism \(\Theta : G \to \Pi_{k\to \omega}GL_{n_k}(\mathbb{C})/d_\omega \). We show that this morphism is injective.

Coming back to \(p \) and \(A_p \), it is easy to see that \(\text{cyc}(p) \leq f \text{ix}(p) + (n - f \text{ix}(p))/2 \).

This can be rewritten as \(1 - f \text{ix}(p)/n \leq 2(1 - \text{cyc}(p)/n) \). Thus,

\[
d_{\text{Hamm}}(\text{Id}, p) \leq 2\rho(\text{Id} - A_p).
\]

As a consequence, we deduce the injectivity of \(\Theta \). \(\square \)

5. Rank amplification

A classical theorem of Elek and Szabó states that if \(G \) is a sofic group, then there exists a group morphism \(\Theta : G \to \Pi_{k\to \omega}(S_{n_k}, d_{\text{Hamm}}) \) such that the distance between \(\Theta(g_1) \) and \(\Theta(g_2) \) is 1 in the limit for each \(g_1 \neq g_2 \). This fact is required to prove various results including some permanence properties like a direct limit of sofic groups is again sofic. We shall obtain a similar general fact for linear sofic groups. That is, in Proposition 4.4 we make a function \(\delta \) constant on \(G \setminus \{e\} \): \(\delta \) is independent of the choice of the group element \(g \in G \setminus \{e\} \). The proof of Elek and Szabó employs a fundamental tool called amplification. In matrix language, this tool relies on tensor products together with the formula \(Tr(a \otimes b) = Tr(a)Tr(b) \), where \(Tr \) denotes the trace of a matrix. Unfortunately, we do not have a similar formula for the rank metric. We introduce a new construction that we call the rank amplification, which is technically much more involved.

5.1. Preliminaries. In this section, \(A \) is an element of \(GL_n(\mathbb{C}) \). For \(\lambda \in \mathbb{C} \) define \(M_\lambda(A) \) to be \(1/n \) multiplied with the algebraic multiplicity of the eigenvalue \(\lambda \) (this is \(0 \) whenever \(\lambda \) is not an eigenvalue of \(A \)). Then \(M_0(A) = 0 \) and \(\sum_{\lambda \in \mathbb{C}^*} M_\lambda(A) = 1 \).

Observe that:

\[
\rho(A - \text{Id}) \geq 1 - M_1(A).
\]

Lemma 5.1. If \((\lambda_i)_{i=1,...,n} \) are the eigenvalues of \(A \) written with the algebraic multiplicity, then \((\lambda_i\lambda_j)_{i,j=1,...,n} \) are the eigenvalues of \(A \otimes A \) written with algebraic multiplicity.

Proof. By the Jordan decomposition, we can write \(A \) as an upper triangular matrix with the values \((\lambda_i)_{i=1,...,n} \) on the diagonal. Then \(A \otimes A \) is also an upper triangular matrix with the values \((\lambda_i\lambda_j)_{i,j=1,...,n} \) on the diagonal. This implies that \((\lambda_i\lambda_j)_{i,j=1,...,n} \) are the roots of the characteristic polynomial of \(A \otimes A \). These roots are the eigenvalues with algebraic multiplicity. \(\square \)

Lemma 5.2. If \(A \in GL_n(\mathbb{C}) \), then \(M_1(A \otimes A) \leq M_1(A)^2 + (1 - M_1(A))^2 \).

Proof. Let \((\lambda_i)_{i=1,...,n} \) be the eigenvalues of \(A \) written with the algebraic multiplicity. Assume that for \(i = 1, \ldots, k \) we have \(\lambda_i = 1 \) and for \(i = k+1, \ldots, n \) we have \(\lambda_i \neq 1 \). Then \(M_1(A) = k/n \). If \(\lambda_i\lambda_j = 1 \), then either \(i \leq k \) and \(j \leq k \) or \(i > k \) and \(j > k \).

This implies that \(M_1(A \otimes A) \leq (k^2 + (n - k)^2)/n^2 = M_1(A)^2 + (1 - M_1(A))^2 \). \(\square \)

The following proposition is elementary.

Proposition 5.3. Define \(f : [1/2, 1] \to [1/2, 1] \) by \(f(x) = x^2 + (1 - x)^2 \). Then \(f \) is a well-defined increasing bijection. If \(x \in [1/2, 1] \), then \(\lim_{m \to \infty} f^m(x) = 1/2 \).

Lemma 5.4. If there exists \(\mu \in \mathbb{C} \) such that \(M_\mu(A \otimes A) > 1/2 \), then there exists \(\lambda \in \mathbb{C} \) such that \(M_\lambda(A) > 1/2 \). Moreover, both \(\lambda \) and \(\mu \) are unique and if \(\lambda = 1 \), then \(\mu = 1 \).
Definition 5.5. For α, β and such that

Let $(\cdot)^{\otimes k}$ be the k-th tensor power of an algebraic variety. By hypothesis, there exists $\mu \in \mathbb{C}$ such that $\left|\{(i,j) : \lambda_i \lambda_j = \mu\}\right| > \frac{1}{2} n^2$. Let $C_i = \{j : \lambda_i \lambda_j = \mu\}$. Then $\sum_{i=1}^{n} |C_i| > \frac{1}{2} n^2$. It follows that there exists i_0 such that $|C_{i_0}| > \frac{1}{2} n$. If $\lambda = \lambda_{i_0}^{-1} \mu$, then $\lambda_j = \lambda$ for every $j \in C_{i_0}$. This means that $M_{\lambda}(A) > 1/2$. The uniqueness part of the proposition is trivial.

Suppose now that $\lambda = 1$ and assume that $\mu \neq 1$. Let $k_1 = M_{1}(A) \cdot n$ and $k_2 = M_{\mu}(A) \cdot n$ (these are the algebraic multiplicities of 1 and μ). Define $k_3 = n - k_1 - k_2$. By hypothesis $k_1 > n/2$, hence $k_3 < k_1$. It is easy to see that the algebraic multiplicity of μ in $A \otimes A$ is less than $2k_1k_2 + k_3$. Then:

$$2n^2 M_{\mu}(A \otimes A) \leq 4k_1k_2 + 2k_3 \leq (k_1 + k_2)^2 + (k_1 + k_2)k_3 + k_3^2 \leq (k_1 + k_2 + k_3)^2 = n^2.$$

It follows that $M_{\mu}(A \otimes A) \leq 1/2$, giving a contradiction. \qed

Definition 5.5. For $A \in GL_n(\mathbb{C})$ define $A_1 := A$ and $A_{m+1} := A_m \otimes A_m$.

Proposition 5.6. Suppose that $M_1(A) \in (1/2, 1)$ and let c be a constant such that $c \in (M_1(A), 1)$. Then $M_1(A_m) < f^{m-1}(c)$.

Proof. We proceed by induction. The case $m = 1$ follows by hypothesis. Assume that $M_1(A_m) < f^{m-1}(c)$. Since $f^m(c)$ is always strictly greater than $1/2$, if $M_1(A_{m+1}) \leq 1/2$ we are done. Assume that $M_1(A_{m+1}) > 1/2$. We shall prove that also $M_1(A_m) > 1/2$.

By the previous lemma and a reverse induction, for each $n \leq m$ there exists λ_n such that $M_{\lambda_n}(A_n) > 1/2$. Since $M_1(A) > 1/2$ we get $\lambda_1 = 1$. Applying the second part of the previous lemma, we inductively get $\lambda_n = 1$ for $n \leq m$. This proves that $M_1(A_m) > 1/2$.

The function f is strictly increasing, therefore $f(M_1(A_m)) < f^m(c)$. By Lemma 5.2 we get $M_1(A_{m+1}) \leq f(M_1(A_m))$ and we are done. \qed

This proposition solves the case $M_1(A) < 1$. We still have to deal with the case $M_1(A) = 1$, that is, when all eigenvalues of A are 1. In this case, the inequality $\rho(A - I) > 1 - M_1(A)$ cannot help. Thus, we have to investigate in detail the decomposition of A into Jordan blocks.

Let $J(\alpha, s) \in GL_s(\mathbb{C})$ be the Jordan block of size $s \times s$ and having eigenvalue α, that is, the diagonal is composed only of values α and the entries directly above and to the right of the diagonal are 1. We use the following recent description of the tensor product of Jordan blocks (surprisingly, the proof of this fact is quite involved).

Theorem 5.7 ([MaV] Theorem 2], [Iwa09] Theorem 2.0.1)). For $s, t \in \mathbb{N}$, $s \leq t$ and $\alpha, \beta \in \mathbb{C}^*$ we have:

$$J(\alpha, s) \otimes J(\beta, t) = \bigoplus_{i=1}^{s} J(\alpha \beta, s + t + 1 - 2i).$$

Such a decomposition remains true and has the same number of Jordan blocks in any positive characteristic [Iwa09] Theorem 2.0.1].

From now on, A is a matrix in $GL_n(\mathbb{C})$ such that $M_1(A) = 1$. Denote by $J(A)$ the number of Jordan blocks in A divided by n. Then $\rho(A - I) = 1 - J(A)$.

Proposition 5.8. If $M_1(A) = 1$, then $J(A \otimes A) \leq J(A)$ and $J(A \otimes A) \leq J(A)^2 + (1 - J(A))^2$.

Proof. For \(i \in \mathbb{N}^+ \) let \(c_i \) be the number of Jordan blocks in \(A \) of size \(i \). Then
\[
\sum ic_i = n \quad \text{and} \quad \sum ic_i = nJ(A).
\]
Also \(A = \bigoplus_{i,j} J(1,i) \otimes Id_{c_i} \). Then:
\[
A \otimes A = \bigoplus_{i,j} J(1,i) \otimes J(1,j) \otimes Id_{c_ic_j}.
\]
According to Theorem 5.71, the number of Jordan blocks in the matrix \(J(1,i) \otimes J(1,j) \) is \(\min\{i,j\} \), so \(n^2J(A \otimes A) = \sum_{i,j} c_ic_j \min\{i,j\} \). Then:
\[
n^2J(A \otimes A) = \sum_{i<j} c_ic_j + \sum_{i} c_ic_j + \sum_{i} c_i^2 = \sum_{i} ic_i^2 + 2 \sum_{i<j} ic_ic_j.
\]
Note that \(n^2[J(A)^2 + (1 - J(A))^2] = (nJ(A))^2 + (n - nJ(A))^2 \), so:
\[
n^2[J(A)^2 + (1 - J(A))^2] = (\sum_{i} c_i)^2 + (\sum_{i} (i-1)c_i)^2 = \sum_{i} c_i^2 + 2 \sum_{i<j} c_ic_j
+ \sum_{i} (i-1)^2c_i^2 + 2 \sum_{i<j} (i-1)(j-1)c_ic_j
= \sum_{i} [(i-1)^2 + 1]c_i^2 + 2 \sum_{i<j} [(i-1)(j-1) + 1]c_ic_j.
\]
For the second inequality we only need to see that for any \(i \in \mathbb{N} \) and \(i < j \) we have
\(i \leq (i-1)^2 + 1 \leq (i-1)(j-1) + 1 \). The first inequality is easy because:
\[
n^2J(A) = (\sum_{i} ic_i)(\sum_{j} c_j) = \sum_{i,j} ic_ic_j.
\]

\(\square \)

Proposition 5.9. Let \(c > 1/2 \) be a constant \(c \in (J(A),1) \). Then \(J(A_m) < f^{m-1}(c) \).

Proof. For \(m = 1 \), \(A_m = A \) and \(f^0(c) = c \), hence the result follows by hypothesis. Suppose now that \(J(A_m) < f^{m-1}(c) \). If \(J(A_m) \leq 1/2 \), then \(J(A_{m+1}) \leq 1/2 \) and we are done as \(f^{m}(c) \) is always strictly greater than 1/2.

Assume that \(J(A_{m+1}) > 1/2 \). The function \(f \) is strictly increasing, so \(f(J(A_m)) < f^{m}(c) \). By the previous proposition, \(J(A_{m+1}) \leq f(J(A_m)) \) and we are done. \(\square \)

5.2. Equivalent definition. This section is devoted to the proof of the following theorem which will provide the strengthening of Proposition 4.3

Theorem 5.10. Let \(G \) be a countable linear sofic group. Then there exists a morphism \(\Psi : G \to \Pi_k \to \omega GL_n_k(\mathbb{C})/d_\omega \) such that \(d_\omega(\Psi(g),Id) \geq \frac{1}{4} \) for any \(g \neq e \).

Proof. Let \(\Theta : G \to \Pi_k \to \omega GL_n_k(\mathbb{C})/d_\omega \) be a linear sofic representation of \(G \). Let \(\theta_k(g) \in GL_n_k \) be such that \(\Theta(g) = \Pi_k \to \omega \theta_k(g)/d_\omega \). Define \(\theta^{k}_m(g) := \theta^{k}(g) \otimes \theta^{m}_m(g) \). Notice that the matrix dimension of \(\theta^{k}_m(g) \) is \(n^{2m-1}_k \).

Construct the linear sofic representation:
\[
\Theta_m : G \to \Pi_k \to \omega GL_{n^{2m-1}_k}(\mathbb{C})/d_\omega, \quad \Theta_m(g) = \Pi_k \to \omega \theta^{k}_m(g)/d_\omega,
\]
and take the ultraproduct of these representations:
\[
\Psi_1 : G \to \Pi_{(m,k)} \to \omega \otimes \omega GL_{n^{2m-1}_k}(\mathbb{C})/d_\omega \otimes \omega, \quad \Psi_1(g) = \Pi_{(m,k)} \to \omega \otimes \omega \theta^{k}_m(g)/d_\omega \otimes \omega.
\]
Also construct an amplification of Θ to this sequence of matrix dimensions:

$$\Psi_2: G \to \Pi_{(m,k)\to\omega} GL_{n_k^2m} - 1(\mathbb{C})/d_\omega \otimes \omega,$$

where

$$\Psi_2(g) = \Pi_{(m,k)\to\omega} \theta^k(g) \otimes \text{Id}_{n_k^2m - 1}/d_\omega \otimes \omega.$$

Define $\Psi = \Psi_1 \otimes \Psi_2, \Psi: G \to \Pi_{(m,k)\to\omega} GL_{2n_k^2m - 1}(\mathbb{C})/d_\omega \otimes \omega$ so that, by Proposition 5.12,

$$\rho_{\omega \otimes \omega}(\Psi(g) - \text{Id}) = \frac{1}{2}(\rho_{\omega \otimes \omega}(\Psi_1(g) - \text{Id}) + \rho_{\omega \otimes \omega}(\Psi_2(g) - \text{Id})).$$

The so constructed morphism Ψ is the rank amplification of Θ.

Claim 5.11. For any $g \in G$, we have $\rho_{\omega \otimes \omega}(\Psi(g) - \text{Id}) \geq 1/4$.

Assume that $\lim_{k \to \omega} M_1(\theta^k(g)) \leq 1/2$. Then $\lim_{n \to \omega} \lim_{k \to \omega} M_1(\theta^k(g) \otimes \text{Id}) \leq 1/2$. It follows that $\rho_{\omega \otimes \omega}(\Psi_2(g) - \text{Id}) \geq 1/2$, hence $\rho_{\omega \otimes \omega}(\Psi(g) - \text{Id}) \geq 1/4$ and we are done. We are left with the case $\lim_{k \to \omega} M_1(\theta^k(g)) > 1/2$.

Assume that $\lim_{k \to \omega} M_1(\theta^k(g)) < 1$. Then there exist $c \in (1/2, 1)$ and $F \in \omega$ such that $1/2 < M_1(\theta^k(g)) < c$ for all $k \in F$. It follows by Proposition 5.10 that:

$$M_1(\theta^k_m(g)) < f_m^{m - 1}(c), \forall k \in F, m \in \mathbb{N}.$$

Then $\lim_{k \to \omega} M_1(\theta^k_m(g)) \leq f_m^{m - 1}(c)$ for all $m \in \mathbb{N}$. We get the inequality:

$$\lim_{m \to \omega} \lim_{k \to \omega} M_1(\theta^k_m(g)) \leq \lim_{m \to \omega} f_m^{m - 1}(c) = 1/2.$$

As a consequence $\rho_{\omega \otimes \omega}(\Psi_1(g) - \text{Id}) \geq 1/2$, so we have $\rho_{\omega \otimes \omega}(\Psi(g) - \text{Id}) \geq 1/4$.

We are left with the case $\lim_{k \to \omega} M_1(\theta^k(g)) = 1$. We can assume that $M_1(\theta^k(g)) = 1$ for each k. It follows that $M_1(\theta^k_m(g)) = 1$ for each m and k. The proof is similar to the previous case, using $J(\theta^k_m(g))$ instead of $M_1(\theta^k_m(g))$, the equation $\rho(A) = 1 - J(A)$, and Proposition 5.9 instead of Proposition 5.10.

The structure of the group does not play a role in the proof as $\Theta(g_1)$ does not interact with $\Theta(g_2)$ for $g_1 \neq g_2$. The construction is possible even if we have just a subset of our group.

Proposition 5.12. Let G be a countable group and let E be a subset of G. Consider a function $\Phi: E \to \Pi_{k \to \omega} GL_m(\mathbb{C})/d_\omega$ such that $\Phi(g)\Phi(h) = \Phi(gh)$ whenever $g, h, gh \in E$. Then there exists $\Psi: E \to \Pi_{k \to \omega} GL_m(\mathbb{C})/d_\omega$ such that $\Psi(g)\Psi(h) = \Psi(gh)$ whenever $g, h, gh \in E$ and:

$$\Phi(g) = \Phi(h) \implies \Psi(g) = \Psi(h),$$

$$\Phi(g) \neq \Phi(h) \implies d_\omega(\Psi(g), \Psi(h)) > \frac{1}{4}.$$

Now we can provide a stronger version of the algebraic characterization of linear soficity contained in Proposition 4.4, using this extra information that we obtained.

Proposition 5.13. A group G is linear sofic if and only if for any finite subset $E \subset G$ and for any $\varepsilon > 0$ there exist $n \in \mathbb{N}$ and a function $\phi: E \to GL_n(\mathbb{C})$ such that:

1. $\forall g, h, gh \in E$ we have $\rho(\phi(g)\phi(h) - \phi(gh)) < \varepsilon$;
2. $\forall g \in E, g \neq e$, we have $\rho(1 - \phi(g)) > \frac{1}{4} - \varepsilon$.
6. Rational linear soficity

This section is devoted to proving that in the definition of a linear sofic group (see Definition 11) we can use the groups $GL_n(\mathbb{Q})$ endowed with the rank metric. In other words, the existence of a complex linear sofic representation is equivalent to the existence of a rational linear sofic representation.

Lemma 6.1. A group G is linear sofic if and only if for any finite subset $E \subseteq G$ and for any $\varepsilon > 0$ there exist $n \in \mathbb{N}$ and a function $\phi: E \rightarrow GL_n(\mathbb{C})$ such that:

1. $\forall g, h, gh \in E$ at least $(1 - \varepsilon)n$ columns of the matrix $\phi(g)\phi(h)$ are equal to the corresponding columns in $\phi(gh)$;
2. $\forall g \in E$, $g \neq e$, we have $\rho(1 - \phi(g)) > \frac{1}{4} - \varepsilon$.

Proof. Elements in $GL_n(\mathbb{C})$ are invertible linear transformations on \mathbb{C}^n. These elements are matrices as soon as we fix a basis for the vector space \mathbb{C}^n. Proposition 5.13 provides a function ϕ satisfying (2). We find a basis to fulfill (1) as well, as the second condition does not depend on the particular choice of a basis.

Let $E_1 = \{(g, h) \in E^2 \mid gh \in E\}$. Then E_1 is a finite set. Take $\delta := \varepsilon/|E_1|$. Apply Proposition 5.13 for E and δ to get $n \in \mathbb{N}$ and a function $\phi: E \rightarrow GL_n(\mathbb{C})$. For each $(g, h) \in E_1$ let $V_{g, h} \subset \mathbb{R}^n$ be the linear subspace on which $\phi(g)\phi(h) = \phi(gh)$. By condition (1) of Proposition 5.13 it follows that $\dim V_{g, h} > (1 - \delta)n$ for any $(g, h) \in E_1$. Let $V = \bigcap_{(g, h) \in E_1} V_{g, h}$. Then $\dim V > (1 - |E_1|\delta)n = (1 - \varepsilon)n$. Choose a basis in V and complete it to a basis in \mathbb{C}^n.

Using this basis we can see elements in $\phi(E)$ as matrices. It is clear now by construction that the first condition holds. \[\square\]

We denote by \mathbb{Q} the field of algebraic numbers. The next step in the proof is to replace the function $\phi: E \rightarrow GL_n(\mathbb{C})$ by another function $\psi: E \rightarrow GL_n(\mathbb{Q})$. In order to achieve this we will use the following variant of the fundamental result of algebraic geometry, the so-called *Weak Nullstellensatz* (it is an immediate corollary of Hilbert’s Nullstellensatz).

Theorem 6.2. Let R be an algebraically closed field. Let $(f_j)_{j=1}^{s}$ be a finite family of polynomials in $R[X_1, \ldots, X_d]$. Then the following properties are equivalent:

1. The set $\{x \in R^d \mid f_j(x) = 0 \forall j\}$ is empty.
2. There exist polynomials $(g_j)_{j=1}^{s}$ in $R[X_1, \ldots, X_d]$ such that $f_1g_1 + f_2g_2 + \ldots + f_sg_s = 1$.

Corollary 6.3. Let $(g_k)_{k=1}^{t}$ and $(h_l)_{l=1}^{u}$ be finite families of polynomials in $\mathbb{Q}[X_1, \ldots, X_d]$. If there exists a complex solution $x \in \mathbb{C}^d$ to the system:

$$
g_k(x) \neq 0, \quad k = 1, \ldots, t,
\quad h_l(x) = 0, \quad l = 1, \ldots, u,
$$

then there is also a solution $x \in \mathbb{Q}^d$.

Proof. The trick is to replace each non-equation $g_k(x) \neq 0$ with a new variable y_k and a new equation $g_k(x)y_k + 1 = 0$.

Let us consider the system of polynomials $(h_l)_{l=1}^{u}$ and $(g_ky_k + 1)_{k=1}^{t}$ over $\mathbb{Q}[X_1, \ldots, X_d, Y_1, \ldots, Y_t]$. The existence of a solution to this system of equations is equivalent to the existence of a solution to our original system from the hypothesis. For simplicity denote $g_ky_k + 1$ by h_{l+k} for $k = 1, \ldots, t$.
If there is no solution \((x, y) \in \overline{\mathbb{Q}}^{d+t}\) to the system above, then according to the previous theorem there exist \(f_k \in \overline{\mathbb{Q}}[X_1, \ldots, X_d, Y_1, \ldots, Y_t]\) such that
\[
h_1 f_1 + \ldots + h_{t+t} f_{t+t} = 1.
\]
However, this equation also holds in \(\mathbb{C}[X_1, \ldots, X_d, Y_1, \ldots, Y_t]\) so there should not exist a solution \((x, y) \in \mathbb{C}^{d+t}\).

\[\Box\]

Proposition 6.4. A group \(G\) is linear sofic if and only if for any finite subset \(E \subset G\) and for any \(\varepsilon > 0\) there exist \(n \in \mathbb{N}\) and a function \(\phi: E \to GL_n(\overline{\mathbb{Q}})\) such that:

1. \(\forall g, h, gh \in E\) we have \(\rho(\phi(g)\phi(h) - \phi(gh)) < \varepsilon\);
2. \(\forall g \in E, g \neq e,\) we have \(\rho(1 - \phi(g)) > \frac{1}{4} - \varepsilon\).

Proof. Using \(E\) and \(\varepsilon\), apply Lemma 6.1 to get a function \(\phi: E \to GL_n(\mathbb{C})\). Recall from the proof of that lemma that \(E_1 = \{(g, h) \in E^2 \mid gh \in E\}\).

We regard conditions (1) and (2) of Lemma 6.1 as a system of equations and non-equations. The variables of this system are the \(n^2|E|\) entries of matrices in \(\phi(E)\).

Condition (1) in Lemma 6.1 provides more than \((1 - \varepsilon)n\) equations for each pair \((g, h) \in E_1\). These equations are enough to deduce that \(\rho(\phi(g)\phi(h) - \phi(gh)) < \varepsilon\).

For each \(g \in E\) choose a minorant of \(1 - \phi(g)\) of size greater than \((1/4 - \varepsilon)n \times (1/4 - \varepsilon)n\) of non-zero determinant. This information will provide a non-equation.

Apply now the previous corollary to get a solution to our system in \(\overline{\mathbb{Q}}^{n^2|E|}\). Using this solution we construct a map \(\tilde{\phi}: E \to GL_n(\overline{\mathbb{Q}})\) with the required properties.

\[\Box\]

Theorem 6.5. Let \(G\) be a linear sofic group. Then there exists an injective morphism \(\Theta: G \to \Pi_{k \to \omega}GL_{n_k}(\overline{\mathbb{Q}})\).

Proof. Fix a finite subset \(E \subset G\) and \(\varepsilon > 0\). By the previous proposition, we obtain a map \(\phi: E \to GL_n(\overline{\mathbb{Q}})\), satisfying the algebraic definition of linear soficity. We replace \(\overline{\mathbb{Q}}\) by \(F\), the field generated by the \(n^2|E|\) entries of the matrices in \(\phi(E)\).

Being a finitely generated algebraic extension over \(\mathbb{Q}\), the field \(F\) is also a vector space over \(\mathbb{Q}\) of finite dimension. Then, we proceed as in Observation 4.3 and we get a required function \(\psi: E \to GL_n(\mathbb{Q})\) having the same properties as in the algebraic definition.

A natural question is whether this result can be further extended with \(\mathbb{Q}\) being replaced by any field. Observation 4.3 indicates that it suffices to consider finite fields. We discuss this issue in Section 8. Note, however, that the question is not about different fields but about distinct characteristics and changing the characteristic is never an easy feat in algebra.

7. LINEAR SOFIC GROUPS AND ALGEBRAS

This section is devoted to proving Theorem 1.2 that a group \(G\) is linear sofic if and only if \(CG\) is a linear sofic algebra. While the “if” part follows directly from Proposition 2.6 the “only if” part is much more involved.

Notation 7.1. If \(\Theta: G \to \Pi_{k \to \omega}GL_{n_k}(F)/d_{\omega}\) is a group morphism we denote by \(\overline{\Theta}\) its extension to the group algebra:
\[
\overline{\Theta}: F(G) \to \Pi_{k \to \omega}M_{n_k}(F)/\ker\rho_{\omega}, \overline{\Theta}(\sum a_i u_{gi}) := \sum a_i \Theta(g_i),
\]
where \(a_i \in F, g_i \in G\) and \(u_{g_i}\) is the element in the group algebra corresponding to \(g_i\).

Example 7.2. If \(\Theta\) is injective on \(G\) it does not follow that \(\tilde{\Theta}\) is injective on \(F(G)\).

As an easy example consider \(\Theta: \mathbb{Z} \to \Pi_{k \to \omega} GL_k(\mathbb{R})/d_\omega, \Theta(i) = 2^i \text{Id}, \) for \(i \in \mathbb{Z}\).

Then for \(u_1 - 2u_0 \in \mathbb{R}(\mathbb{Z})\) we have \(\Theta(u_1 - 2u_0) = 2\text{Id} - 2\text{Id} = 0\).

The proof relies on the direct sum and tensor product of elements in an ultraproduct of matrices; see Proposition 2.5.

Theorem 7.3. Let \(\Theta: G \to \Pi_{k \to \omega} GL_{n_k}(F)/d_\omega\) be an injective group morphism. Then there exists an injective algebra morphism \(\Psi: F(G) \to \Pi_{k \to \omega} M_{n_k}(F)/\text{Ker}\rho_\omega\).

Proof. Let \(\theta_k: G \to GL_{n_k}(F)\) be some functions such that \(\Theta = \Pi_{k \to \omega} \theta_k/d_\omega\). Then \(\Theta \otimes \Theta: G \to \Pi_{k \to \omega} GL_{n_k^2}(F)/d_\omega\), defined by \(\Theta \otimes \Theta(g) = \Pi\theta_k(g) \otimes \theta_k(g)/d_\omega\) is a linear sofic representation of \(G\). For every \(i \in \mathbb{N}\) define a map \(\theta_k^i: GL_{n_k^2}(F), \) \(\theta_k^i(g) := \theta_k(g) \otimes \ldots \otimes \theta_k(g)\) (\(i\) times tensor product), and set \(\Theta^i = \Pi_{k \to \omega} \theta_k^i/d_\omega\). For \(m \geq i\) define \(\theta_k^{i,m}: GL_{n_k^m}(F), \) \(\theta_k^{i,m}(g) := \theta_k^i(g) \otimes \text{Id}_{n_k^{m-i}}\).

The meaning of this definition is to bring the first \(m\) \(\theta_k^i\)'s into the same matrix dimension.

Now define \(\phi_k: G \to GL_{n_k^{k+2}}\) by:

\[
\phi_k = (\theta_k^{1,k} \otimes \text{Id}_{2k-1}) \oplus (\theta_k^{2,k} \otimes \text{Id}_{2k-2}) \oplus \ldots \oplus (\theta_k^{k,k} \otimes \text{Id}_{2k}) \oplus (\text{Id}_{n_k^k} \otimes \text{Id}_{2k})
\]

and set \(\Phi = \Pi_{k \to \omega} \phi_k/d_\omega\), which is the rank amplification of \(\Theta\).

The reason for this definition is the relation:

\[
\rho_\omega(\Phi(f)) = \sum_{i=1}^{\infty} \frac{1}{2^i} \rho_\omega(\Theta^i(f)),
\]

for any \(f \in F(G)\). Before proving this equality let us state our crucial claim.

Claim 7.4. \(\Phi: F(G) \to \Pi_{k \to \omega} M_{n_k^{k+2}}(F)/\text{Ker}\rho_\omega\) is injective.

We now prove the stated relation:

\[
\rho_\omega(\Phi(f)) = \lim_{k \to \omega} \frac{r_k(\tilde{\phi}_k(f))}{n_k^{k+2}} = \lim_{k \to \omega} \frac{1}{n_k^{k+2}} \sum_{i=1}^{k} r_k(\tilde{\theta}_k^{i,k} \otimes I_{2k-i}(f))
\]

\[
= \lim_{k \to \omega} \sum_{i=1}^{k} \frac{1}{2^i n_k^{i}} r_k(\tilde{\theta}_k^{i,k}(f)) = \lim_{k \to \omega} \sum_{i=1}^{k} \frac{1}{2^i n_k^{i}} r_k(\tilde{\theta}_k(f))
\]

\[
= \sum_{i=1}^{\infty} \frac{1}{2^i} \rho_\omega(\Theta^i(f)).
\]

Assume now that \(f \in F(G)\) is such that \(\rho_\omega(\Phi(f)) = 0\). Then \(\rho_\omega(\Theta^i(f)) = 0\) for any \(i\). In order to present our injectivity argument in a transparent way we shall assume that \(f = a_1 u_1 + a_2 u_2 + a_3 u_3\), where \(a_i\) are non-zero elements of \(F\) and \(u_i\)
are invertible elements in the group algebra corresponding to distinct elements in the group G. We know that:

(1)

$$a_1\Theta(u_1) + a_2\Theta(u_2) + a_3\Theta(u_3) = 0,$$

(2)

$$a_1\Theta(u_1) \otimes \Theta(u_1) + a_2\Theta(u_2) \otimes \Theta(u_2) + a_3\Theta(u_3) \otimes \Theta(u_3) = 0,$$

(3)

$$a_1\Theta(u_1) \otimes \Theta(u_1) \otimes \Theta(u_1) + a_2\Theta(u_2) \otimes \Theta(u_2) \otimes \Theta(u_2) + a_3\Theta(u_3) \otimes \Theta(u_2) \otimes \Theta(u_3) = 0.$$

Amplifying the first equation by $\Theta(\tilde{T})$ and subtracting it from the second we get:

(4)

$$a_1\Theta(u_1) \otimes (\Theta(u_1) - \Theta(u_3)) + a_2\Theta(u_2) \otimes (\Theta(u_2) - \Theta(u_3)) = 0.$$

Applying the same operation to equations (2) and (3), we get:

(5)

$$a_1\Theta(u_1) \otimes \Theta(u_1) \otimes (\Theta(u_1) - \Theta(u_3)) + a_2\Theta(u_2) \otimes \Theta(u_2) \otimes (\Theta(u_2) - \Theta(u_3)) = 0.$$

Now we amplify equation (4) with $\Theta(\tilde{T})$ between the already existing tensor product, and subtract it from equation (5) to get:

(6)

$$a_1\Theta(u_1) \otimes (\Theta(u_1) - \Theta(u_2)) \otimes (\Theta(u_1) - \Theta(u_3)) = 0.$$

As $a_1 \neq 0$ and $\Theta(u_1)$ is invertible, we get that $\Theta(u_1) = \Theta(u_2)$ or $\Theta(u_1) = \Theta(u_3)$. This contradicts the injectivity of Θ. This procedure applies to any f with an arbitrary large (finite) support.

The key of the proof is the construction of the representation $\tilde{\Phi}$ out of a sequence of maps $\tilde{\Theta}^i$ such that $\tilde{\Phi}(x) = 0$ if and only if $\tilde{\Theta}^i(x) = 0$ for all i. This is a construction that can be performed in general and we record it here for a later use.

Proposition 7.5. Let $\{\Theta^i\}_i$, $\Theta^i : A \to \Pi_{k \to \omega} M_{n_{i,k}} / \text{Ker} \rho_{\omega}$, be a sequence of morphisms of an algebra A. Then there exists a morphism Φ of A such that $\rho_{\omega}(\Phi(x)) = \sum_{i=1}^{\infty} \frac{1}{i!} \rho_{\omega}(\Theta^i(x))$ for any $x \in A$. In particular, $\Phi(x) = 0$ if and only if $\Theta^i(x) = 0$ for all i. Moreover, if $\{\Theta^i\}_i$ are unital morphisms, then Φ can be taken unital.

Corollary 7.6. A group G is linear sofic if and only if $\mathbb{C}G$ is a linear sofic algebra.

Proof. The direct implication is the previous theorem for $F = \mathbb{C}$. The reverse implication immediately follows from Proposition 2.6.

Our previous theorem also provides a new proof of the result of Elek and Szabó [ElSz04]. We refer the reader to Section 2 for the definitions and exact statement of Kaplansky’s direct finiteness conjecture.

Corollary 7.7. Sofic groups satisfy Kaplansky’s direct finiteness conjecture.

Proof. Let F be a field and G be a sofic group. Same arguments as in Proposition 4.5 show that there exists an injective group morphism

$$\Theta : G \to \Pi_{k \to \omega} GL_{n_k}(F)/d_{\omega}.$$

The previous theorem provides an injective algebra homomorphism $\Psi : F(G) \to \Pi_{k \to \omega} M_{n_k}(F)/\text{Ker} \rho_{\omega}$. However, $\Pi_{k \to \omega} M_{n_k}(F)/\text{Ker} \rho_{\omega}$ is stably finite by Proposition 2.8. Thus, $F(G)$ is actually stably finite in this case.

Question 7.8. Do linear sofic groups satisfy Kaplansky’s direct finiteness conjecture?

See also the comments following Question 8.6 below.
8. Linear sofic implies weakly sofic

Here we prove that a linear sofic group is weakly sofic. The proof is an adaptation of the proof of Malcev’s theorem presented in [PeKw09 Theorem 1.4]. Let us recall the definition of weakly sofic group.

Definition 8.1 (cf. [GlRi08 Definition 4.1]). A group G is *weakly sofic* if it can be embedded in a metric ultraproduct of finite groups, each equipped with a bi-invariant metric.

The original definition in [GlRi08] is algebraic and uses a constant length function (as discussed before Proposition 1.4). It is equivalent to its ultraproduct version above by a standard amplification argument [Pe08]. Indeed, the direct product of finite groups is obviously finite and one can define a bi-invariant distance on the direct product as the sum of the bi-invariant metrics on the factors.

Theorem 8.2. If G is a linear sofic group, then there exists $(F_k)_k$ a sequence of finite fields and an injective group morphism $\Phi : G \to \prod_{k \to \omega} \text{GL}_{n_k}(F_k)/d_\omega$.

Proof. Let $\theta_k : G \to \text{GL}_{n_k}(\mathbb{C})$ be some functions such that $\Theta = \prod_{k \to \omega} \theta_k/k/d_\omega$ is an injective homomorphism given by linear soficity of G. Let $G = \bigcup_k B_k$, where $(B_k)_k$ is an increasing sequence of finite subsets of G such that $B_k^{-1} = B_k$ and $e \in B_k$. Let $R_k \subset \mathbb{C}$ be the ring generated by all the entries of $\theta_k(s)$ with $s \in B_k$. Because it is finitely generated, R_k is a Jacobson ring. We can view θ_k as a map from B_k to $\text{GL}_{n_k}(R_k)$.

Claim 8.3. There exists $m_k \subset R_k$ a maximal ideal such that if we reduce θ_k modulo m_k to get the induced map $\phi_k : B_k \to \text{GL}_{n_k}(R_k/m_k)$ we get:

$$rk(I - \phi_k(s)) = rk(I - \phi_k(s)), \quad \forall s \in B_k.$$

For $s \in B_k$ let $a_s = rk(I - \phi_k(s))$ and choose A_s an $a_s \times a_s$ submatrix of $\theta_k(s)$ such that $b_s = \det A_s \neq 0$. Let $c = \prod_{s \in B_k} b_s$ and choose $m_k \subset R_k$ a maximal ideal such that $c \notin m_k$. Then $b_s \notin m_k$ for any $s \in B_k$ so indeed $rk(I - \theta_k(s)) = rk(I - \phi_k(s))$.

Since m_k is a maximal ideal, R_k/m_k is a field. It is a well-known non-trivial fact that a finitely generated ring that is also a field is finite. It follows that R_k/m_k is finite.

Define $\Phi = \prod_{k \to \omega} \phi_k/d_\omega$ and note that in general if $s, t, st \in B_k$, then

$$rk(\phi_k(st) - \phi_k(s)\phi_k(t)) \leq rk(\theta_k(st) - \theta_k(s)\theta_k(t)).$$

This implies that Φ is still a homomorphism and the claim shows that Φ is injective.

Observation 8.4. Every finite field F is a finite dimensional vector space over $\mathbb{Z}/p\mathbb{Z}$, where p is the characteristic of F. Therefore, as in Observation 1.3 if we have an embedding $\phi : G \to \prod_{k \to \omega} \text{GL}_{n_k}(F_k)/d_\omega$ with F_k finite fields, then we can construct $\psi : G \to \prod_{k \to \omega} \text{GL}_{m_k}(\mathbb{Z}/p_k\mathbb{Z})/d_\omega$, where $(p_k)_k$ is a sequence of prime numbers.

Question 8.5. Are all linear sofic groups indeed sofic?
For this question the tensor product is not a useful tool. Suppose that we have a map \(\theta: E \to GL_n(\mathbb{C}) \) from a finite subset \(E \) of a linear sofic group \(G \). We want to construct a new map from \(E \) into \(S_n \). As permutation matrices are diagonalizable, we can first try to construct a map using only diagonalizable matrices.

If \(A \in M_n(\mathbb{C}) \) let \(A = UTU^{-1} \) be the canonical Jordan decomposition of \(A \). Let \(Diag(T) \) be the diagonal matrix obtained by taking only the entries on the diagonal of \(T \). Then \(\rho(A - UDiag(T)U^{-1}) = 1 - J(A) \), where \(J(A) \) is the number of Jordan blocks in \(A \) divided by \(n \) as defined in Section 5. In the rank metric, this is the lower bound for \(\rho(A - D) \), where \(D \) is any diagonalizable matrix. This follows from Theorem 2 of [GlRi09] or it can be checked directly. In Section 5 we proved that \(J(A \otimes A) \leq J(A) \). Therefore, taking the tensor product will only increase the rank distance from \(A \) to a diagonalizable matrix, not reduce it.

Question 8.6. Let \(G \) be a linear sofic group and \(F \) a finite field. Does there exist an injective group morphism \(\Phi: G \to \Pi_{k \to \omega} GL_{n_k}(F)/d_\omega \)?

Sofic groups have this property and this is the only property that we used in our proof of Kaplansky’s direct finiteness conjecture, Corollary 7.7. A positive answer to this question will immediately imply that linear sofic groups do satisfy Kaplansky’s direct finiteness conjecture. That would give a positive answer to Question 7.8.

9. Permanence properties

Here we shall prove various permanence properties for linear sofic groups and algebras. Due to our Theorem 1.2 many permanence properties for linear sofic algebras can be transported to linear sofic groups.

Theorem 9.1. Subalgebras, direct product, inverse limits of linear sofic algebras are linear sofic. Same permanence properties hold also for linear sofic groups.

Proof. It is not hard to see that a subalgebra of a linear sofic algebra is linear sofic. Let \((A_i) \) be a sequence of linear sofic algebras and let \(A = \Pi_i A_i \) be its direct product. Denote by \(P_j: \Pi_i A_i \to A_j \) the projection to the \(j \)-th component. Let \(\Theta_i: A_i \to \Pi_{k \to \omega} M_{n_{i,k}}/Ker\rho_\omega \) be a linear sofic representation of \(A_i \). Then \((\Theta_i \circ P_j)_i \) is a sequence of morphisms of the algebra \(A \). Using Proposition 7.5 we construct \(\Psi: A \to \Pi_{k \to \omega} M_{n_{k}}/Ker\rho_\omega \) such that \(Ker\Psi = \bigcap_i Ker(\Theta_i \circ P_i) = 0 \). It follows that \(A \) is linear sofic. An inverse limit is a specific subalgebra of the direct product.

The second part of the theorem follows immediately from Theorem 1.2 and properties of group algebras for these constructions.

Theorem 9.2. Direct limit of linear sofic groups is again linear sofic.

Proof. For the proof we use Proposition 5.13. Note that Proposition 4.4 is not sufficient for this result.

Let \(\{G_i\}_i \) be a family of linear sofic groups together with morphisms required to construct the group \(G \), the direct limit of this family. Let \(\psi_i: G_i \to G \) be the morphisms provided by the definition of the direct limit.

Let \(E \) be a finite subset of \(G \) and \(\varepsilon > 0 \). There exists \(i_0 \in \mathbb{N} \) and \(E_0 \subset G_{i_0} \) such that \(\psi_{i_0}: E_0 \to E \) is a bijection. Apply Proposition 5.13 for \(G_{i_0} \), \(E_0 \) and \(\varepsilon \) to get \(\phi: E_0 \to GL_n(\mathbb{C}) \). Then \(\phi \circ \psi_{i_0}^{-1}: E \to GL_n(\mathbb{C}) \) is the required function for \(G \), \(E \) and \(\varepsilon \).
Elek and Szabó proved that amenable extensions of sofic groups is again sofic \cite{ElekSzabo2006}. The same result is true for linear sofic groups and our proof is a careful adaptation of the proof of the sofic case presented in \cite{Ozawa2009}.

Theorem 9.3. Let G be a countable group and H a normal subgroup of G. If H is linear sofic and G/H is amenable, then G is linear sofic.

Proof. Let $\sigma : G/H \to G$ be a lift and define $\alpha : G \times G/H \to H$ by $\alpha(g, \gamma) = \sigma(g\gamma)^{-1}g\sigma(\gamma)$. Then α satisfies the cocycle identity, $\alpha(g_1g_2, \gamma) = \alpha(g_1, g_2\gamma)\alpha(g_2, \gamma)$.

Let $E \subset G$ be a finite subset and $\varepsilon > 0$. Let $F \subset G/H$ be such that $|gF \cap F| > (1 - \varepsilon)|F|$ for all $g \in E$. Then $\alpha(E, F) \subset H$ is finite. Use Proposition \ref{prop:extension} and the linearity of H to get $\phi : \alpha(E, F) \to GL_n(\mathbb{C})$. Construct $\psi : E \to M_{n, |F|}(\mathbb{C})$ by:

$$\psi(g) = \sum_{\gamma \in Fg^{-1}F} \phi(\alpha(g, \gamma)) \otimes e_{g\gamma, \gamma}.$$

Here $e_{g\gamma, \gamma} \in M_{|F|}(\mathbb{C})$ is a matrix unit, that is, a matrix having only one entry of 1 on the position $(g\gamma, \gamma)$. It is easy to compute $\rho(\psi(g)) = |F \cap g^{-1}F|/|F| > 1 - \varepsilon$, so $\psi(g)$ is almost an element of $GL_{|F|}$.

We want to show that $\psi(g_1)\psi(g_2)$ is close to $\psi(g_1g_2)$. By construction:

$$\psi(g_1)\psi(g_2) = \sum_{\gamma_1 \in Fg_1^{-1}F} \sum_{\gamma_2 \in Fg_2^{-1}F} \phi(\alpha(g_1, \gamma_1))\phi(\alpha(g_2, \gamma_2)) \otimes e_{g_1\gamma_1, \gamma_1}e_{g_2\gamma_2, \gamma_2}.$$

Inside the sum we must have $\gamma_1 = g_2\gamma_2$ in order to get a non-trivial term

$$\psi(g_1)\psi(g_2) = \sum_{\gamma_2 \in Fg_2^{-1}F} \phi(\alpha(g_1, g_2\gamma_2))\phi(\alpha(g_2, \gamma_2)) \otimes e_{g_1g_2\gamma_2, \gamma_2}.$$

Also $\psi(g_1g_2) = \sum_{\gamma \in F \cap (g_1g_2)^{-1}F} \phi(\alpha(g_1, g_2\gamma))\alpha(g_2, \gamma) \otimes e_{g_1g_2\gamma, \gamma}$. Comparing the two equations we get:

$$\rho(\psi(g_1)\psi(g_2) - \psi(g_1g_2)) \leq \frac{1}{n|F|}(|F|n\varepsilon + \varepsilon|F|) < 2\varepsilon.$$

We only need to show that $\rho(Id - \psi(g))$ is larger than a constant. If $g \in H$, then:

$$\rho(Id - \psi(g)) = \frac{1}{|F|}\rho(Id - \sum_{\gamma \notin F} \phi(\alpha(g, \gamma)) \otimes e_{\gamma, \gamma}) = \frac{1}{|F|} \sum_{\gamma \in F} \rho(Id - \phi(\alpha(g, \gamma))) \geq \frac{1}{4} - \varepsilon.$$

Consider now the case $g \notin H$ such that $g\gamma \neq \gamma$ for any $\gamma \in F$. Let $x = (x_\gamma, \gamma) \in \mathbb{C}^{n|F|}$ be a vector in $Ker(Id - \psi(g))$. An easy computation will provide the equation $\phi(\alpha(g, \gamma))(x_\gamma) = x_{g\gamma}$ for $\gamma \in F \cap g^{-1}F$. This means that if we fix x_γ, then $x_{g\gamma}$ is completely determined. It follows that dim $Ker(Id - \psi(g))$ cannot be greater than $1/2$ minus some ε due to the restriction $\gamma \in F \cap g^{-1}F$. So $\rho(Id - \psi(g)) = 1 - \dim Ker(Id - \psi(g)) \geq 1/2 - \varepsilon$.

\square

10. **The number of universal linear sofic groups**

A **universal linear sofic group** is a metric ultraproduct of $(GL_{n_k}(F))_k$ as defined in Definition \ref{def:ultraproduct}. In \cite{Lupini2011} Lupini proved that, under the failure of the Continuum Hypothesis (CH), there are 2^{\aleph_0} metric ultraproducts of matrix algebras endowed with the metric induced by the rank (Definition \ref{def:rank}), up to algebraic isomorphism. This result is based on methods of continuous logic developed in \cite{FarahShelah2009}. Here we extend Lupini’s arguments to show that, assuming \neg CH, there are 2^{\aleph_0} universal
linear sofic groups. Such results are not known for general weakly sofic groups when the approximating family of finite groups endowed with bi-invariant metrics is given.

Recall that by definition $\aleph_0 := 2^{\aleph_0}$, where \aleph_0 is the cardinality of \mathbb{N}. If a, b are elements of a group, then $[a, b]$ is defined as $aba^{-1}b^{-1}$.

In this section, $(n_k)_k \subset \mathbb{N}$ is a fixed strictly increasing sequence. We obtain non-isomorphic universal linear sofic groups by using different ultrafilters.

Proposition 10.1 ([Lu11] Corollary 2]). Let $(G_n)_n$ be a sequence of groups, each equipped with a bi-invariant metric, with uniformly bounded diameter. Suppose that for some constant $\gamma > 0$ and every $l \in \mathbb{N}$, for all but finitely many $n \in \mathbb{N}$, G_n contains sequences $(g_{n,i})_{i=1}^l$ and $(h_{n,i})_{i=1}^l$ such that, for every $1 \leq i < j \leq l$, $g_{n,i}$ and $h_{n,j}$ commute, while if $1 \leq j \leq i \leq l$, $d([g_{n,i}, h_{n,j}] ; e_{G_n}) \geq \gamma$. Then under the failure of CH, there are 2^{\aleph_0} many pairwise non-isometrically isomorphic metric ultraproducts of the sequence $(G_n)_k \subset \mathbb{N}$.

Lupini used this proposition for $(S_n, d_{Hamn})_n$ to show that there are 2^{\aleph_0} many universal sofic groups (a result initially obtained by Thomas [T10]). We shall use the same permutations that he constructed, regarded now as elements in $(GL_n(\mathbb{C}), d_{rk})_n$, to show that the hypothesis of the proposition still holds for these groups.

Proposition 10.2. The hypothesis of Proposition 10.1 holds for $GL_n(\mathbb{C})$ endowed with the bi-invariant metric d_{rk}. The constant γ can be chosen $2/9$.

Proof. As $(GL_n(\mathbb{C}), d_{rk})_n$ are bi-invariant metric groups with uniformly bounded diameter we just need to construct elements $g_{n,i}$ and $h_{n,i}$.

First assume that $n = 3^l$ for some $l \in \mathbb{N}$. Let (12) and (23) be two transpositions in S_3 and denote by $A_{(12)}$ and $A_{(23)}$ the corresponding permutation matrices in $GL_3(\mathbb{C})$. For $1 \leq i \leq l$ define $g_{n,i} = A_{(12)} \otimes A_{(12)} \otimes \ldots \otimes A_{(12)} \otimes I_{d_{3^l-1}}$ ($A_{(12)}$ is used i times) and $h_{n,i} = I_{d_{3^l-1}} \otimes A_{(23)} \otimes I_{d_{3^l-1}}$. It is easy to check that for $i < j$, $g_{n,i}$ and $h_{n,j}$ commutes, while for $i \geq j$, $[g_{n,i}, h_{n,j}] = I_{d_{3^l-1}} \otimes A_{(12)} \otimes I_{d_{3^l-1}}$. This means that $[g_{n,i}, h_{n,j}]$ is composed of 3^{l-1} cycles of length 3, so $d_{rk}([g_{n,i}, h_{n,j}], I_{d_{3^l}}) = 1 - 3^{l-1}/3^l = 2/3$.

Let now $n \in \mathbb{N}$ be an arbitrary number and $l \in \mathbb{N}$ such that $3^l \leq n < 3^{l+1}$. Define $g_{n,i} = g_{3^l,i} \oplus I_{d_{n-3^l}}$ and $h_{n,i} = h_{3^l,i} \oplus I_{d_{n-3^l}}$. Again for $i < j$, $g_{n,i}$ and $h_{n,j}$ commutes, while for $i \geq j$, $[g_{n,i}, h_{n,j}] = I_{d_{3^l-1}} \otimes A_{(123)} \otimes I_{d_{3^l-1}} \oplus I_{d_{n-3^l}}$. Then $d_{rk}([g_{n,i}, h_{n,j}], I_{d_{3^l}}) = 1 - (3^{l-1} + n - 3^l)/n = (3^l - 3^{l-1})/n \geq 2/9$. Thus, the constant γ can be set $2/9$.

11. Almost finite dimensional representations

In this section, we work only with unital algebras. For now, we also assume that our groups and algebras are countably generated. The following property of algebras was introduced by Gabor Elek.

Definition 11.1 ([El05, Definition 1.1]). A unital F-algebra A has almost finite dimensional representations if for any finite dimensional subspace $1 \in L \subset A$ and $\varepsilon > 0$, there exists a finite dimensional vector space V together with a subspace
\[V_\varepsilon \subset V \text{ such that} \]

1. there exists a linear (not necessarily injective) map \(\psi_{L,\varepsilon}: L \to \text{End}_F(V) \) such that \(\psi_{L,\varepsilon}(1) = \text{Id} \) and \(\psi_{L,\varepsilon}(a)\psi_{L,\varepsilon}(b)(v) = \psi_{L,\varepsilon}(ab)(v) \) for \(a, b, ab \in L \) and \(v \in V_\varepsilon \).
2. \(\dim F V - \dim F V_\varepsilon < \varepsilon \cdot \dim F V \).

Such a map is called an \(\varepsilon \)-almost representation of \(L \).

Proposition 11.2. A unital, countably generated algebra \(A \) has almost finite dimensional representations if and only if there exists a unital morphism (not necessarily injective) \(\Theta: A \to \Pi M_{n_k}(F)/\ker \rho_\omega \).

Proof. Let \((L_k)_k\) be an increasing sequence of finite dimensional subspaces of \(A \) such that \(A = \bigcup_k L_k \) and \(1 \in L_k \). Let \((\varepsilon_k)_k\) be a decreasing sequence of strictly positive reals such that \(\lim_k \varepsilon_k = 0 \). For every \(k \), let \(\psi_{L_k,\varepsilon_k}: L_k \to \text{End}_F(V_\varepsilon) \) be the map from the previous definition. Define \(n_k = \dim F V_\varepsilon \). Then \(\Theta: A \to \Pi M_{n_k}(F)/\ker \rho_\omega \) defined by \(\Theta = \Pi \psi_{L_k,\varepsilon_k}/\ker \rho_\omega \) is a unital morphism. The reverse implication follows from the definition of ultraproduct. \(\square \)

If we compare this definition to the definition of linear sofic algebras we see that having almost finite dimensional representations is the first step towards linear soficity. However, this is not sufficient. We introduce an object that measures how far from being linear sofic is an algebra with almost finite dimensional representations. This is inspired by the definition of the rank radical by Elek.

11.1. The rank radical

Definition 11.3 ([El05], Definition 4.1). The rank radical \(RR(A) \) of an algebra is defined as follows: if \(A \) does not have almost finite dimensional representations, then \(RR(A) = A \). Otherwise, let \(p \in RR(A) \) if there exists a finite dimensional subspace \(L \) with \(\{1, p\} \subset L \subset A \) such that for any \(\delta > 0 \) there exists \(n_\delta > 0 \) with the following property: if \(0 < \varepsilon < n_\delta \) and \(\psi_{L,\varepsilon}: L \to \text{End}(V) \) is an \(\varepsilon \)-almost representation, then \(\dim \text{Ran}(\psi_{L,\varepsilon}(p)) < \delta \cdot \dim V \).

We restate this property in ultraproduct language. We use the following definition.

Definition 11.4. If \(1 \in L \subset A \) is a linear subspace of an algebra, then a partial morphism of \(L \) is a linear function \(\Phi: L \to \Pi M_{n_k}(F)/\ker \rho_\omega \) such that \(\Phi(1) = 1 \) and \(\Phi(x)\Phi(y) = \Phi(xy) \) whenever \(x, y, xy \in L \).

Proposition 11.5. For any element \(p \) of an algebra \(p \in RR(A) \) if and only if there exists a finite dimensional subspace \(L \) with \(\{1, p\} \subset L \subset A \) such that for any partial morphism \(\Phi: L \to \Pi M_{n_k}(F)/\ker \rho_\omega \) we have \(\Phi(p) = 0 \).

Proof. We first assume that \(A \) has almost finite dimensional representations. Note that this is equivalent to \(RR(A) \varsubsetneq A \).

Let \(p \in RR(A) \). Let \(L \) be the finite dimensional subspace from the definition of the rank radical. Fix \(\delta > 0 \) and use again the definition to get an \(n_\delta > 0 \). Let \(\Phi: L \to \Pi M_{n_k}(F)/\ker \rho_\omega \) be a partial morphism, \(\Phi = \Pi \phi_k/\ker \rho_\omega \). Let \(0 < \varepsilon < n_\delta \). Then there exists \(H \in \omega \) such that \(\phi_k: L \to M_{n_k}(F) \) is an \(\varepsilon \)-almost representation of \(L \) for any \(k \in H \). Then \(\dim \text{Ran}(\phi_k(p)) < \delta n_k \), or with our notation \(\rho(\phi_k(p)) < \delta \) for any \(k \in H \). This implies that \(\rho_\omega(\Phi(p)) < \delta \). As \(\delta \) was arbitrary it follows that \(\rho_\omega(\Phi(p)) = 0 \) so \(\Phi(p) = 0 \).
Suppose now $p \notin RR(A)$. Let L be an arbitrary finite dimensional subspace. Then there exists $\delta_L > 0$ such that for any $\epsilon > 0$ there exists an ϵ-almost representation $\psi_{L,\epsilon}: L \to \text{End}(V)$ with $\dim \text{Ran}(\psi_{L,\epsilon}(p)) \geq \delta_L \cdot \dim V$. This is equivalent to $\rho(\psi_{L,\epsilon}(p)) \geq \delta_L$.

Let $(\epsilon_k)_k$ be a decreasing sequence converging to 0 and $\psi_{L,\epsilon_k}: L \to \text{End}(V_k)$ be ϵ_k-almost representations with $\dim \rho(\psi_{L,\epsilon_k}(p)) \geq \delta_L$. Define $\Psi = \Pi \psi_{L,\epsilon_k}/\text{Ker}\rho_\omega$. Because $\epsilon_k \to 0$, Ψ is a partial morphism of L. Also, $\rho_\omega(\Psi(p)) \geq \delta_L$, so $\Psi(p) \neq 0$.

Consider now the case $RR(A) = A$. Let $p \in A$. We shall prove that there exists a finite dimensional subspace L with $\{1,p\} \subset L \subset A$ such that there is no partial morphism $\Phi : L \to \Pi M_{n_k}(F)/\text{Ker}\rho_\omega$.

Let $A = \bigcup_i L_i$, where $(L_i)_i$ is an increasing sequence of finite dimensional subspaces of A such that $\{1,p\} \subset L_i$. Assume that for each i there exists a partial morphism $\Phi_i : L_i \to \Pi M_{n_k}(F)/\text{Ker}\rho_\omega$. Consider also a sequence $(\epsilon_i)_i$ of strictly positive real numbers converging to 0.

The existence of Φ_i implies the existence of $\psi_i : L_i \to M_{n_k,i}$, an ϵ_i-almost representation of L_i. Define $\Theta = \Pi \psi_i/\text{Ker}\rho_\omega$. Because $A = \bigcup_i L_i$ and $\epsilon_i \to 0$, Θ is a unital morphism. This is in contradiction with the fact that A does not have almost finite dimensional representations. \hfill \Box

Elek proved that $RR(A)$ is an ideal. We can deduce this from our description.

Corollary 11.6. The set $RR(A)$ is an ideal.

Proof. Let $a \in A$ and $p \in RR(A)$. Let $\{1,p\} \subset L_p \subset A$ be a finite dimensional subspace such that $\Phi(p) = 0$ for any partial morphism $\Phi : L_p \to \Pi M_{n_k}(F)/\text{Ker}\rho_\omega$.

Define $L_{ap} = \text{Sp}\{L_p \cup \{a, ap\}\}$, defined by taking the linear span. Let $\Psi : L_{ap} \to \Pi M_{n_k}(F)/\text{Ker}\rho_\omega$ be a partial morphism. Then $\Psi(ap) = \Psi(a)\Psi(p)$. But $L_p \subset L_{ap}$ and $p \in RR(A)$ implies $\Psi(p) = 0$. So $\Psi(ap) = 0$. The same proof works for pa. \hfill \Box

Theorem 11.7. The rank radical of $A/RR(A)$ is 0.

Proof. We denote by $f : A \to A/RR(A)$ the canonical projection. Let $v \in A/RR(A)$, $v \neq 0$. Let $\{1,v\} \subset L$ be a finite dimensional subspace of $A/RR(A)$. Choose $N \subset A$ a finite dimensional subspace such that $f(N) = L$ and $1 \in N$. There exists $u \in N$ such that $v = f(u)$ and $u \notin RR(A)$. Define $N_0 = \text{Sp}\{N \cup N^2\} \cap RR(A)$. Then N_0 is finite dimensional and choose $\{z_1, \ldots, z_r\}$ a base for N_0. For any $1 \leq i \leq r$ there exists $L_i \subset A$ a finite dimensional subspace such that for any partial morphism $\Phi : L_i \to \Pi M_{n_k}/\text{Ker}\rho_\omega$ $\Phi(z_i) = 0$.

Define $N_1 = \text{Sp}\{N \cup N^2 \cup \bigcup_i L_i\}$. Because $u \notin RR(A)$ there exists a partial morphism $\Phi : N_1 \to \Pi M_{n_k}/\text{Ker}\rho_\omega$ such that $\Phi(u) \neq 0$. As $L_i \subset N_1$ we get $\Phi(z_i) = 0$ for any i. This implies that $\Phi(N_0) = 0$ so we can factor Φ to get a linear function $\Psi : L \cup L^2 \to \Pi M_{n_k}/\text{Ker}\rho_\omega$. If $a, b \in L$, then $\Psi(a)\Psi(b) = \Psi(ab)$ so Ψ restricted to L is a partial morphism. Also $\Psi(v) = \Phi(u) \neq 0$. It follows that $v \notin RR(A/RR(A))$. \hfill \Box

Proposition 11.8 (El05 Proposition 4.3). Let A be an algebra such that $RR(A) = 0$. Then A is stably finite.

Proof. We simplify the original proof by the use of ultrafilters. First we prove that if $RR(A) = 0$, then $RR(M_m(A)) = 0$. Recall that $M_m(A) \simeq M_m(F) \otimes A$. Let $v \in M_m(A)$, $v \neq 0$ and let $u \in A$ be a non-zero entry of v. Consider $\{1,v\} \subset L \subset M_m(A)$ a finite dimensional subspace. Then there exists $\{1,u\} \subset L_1 \subset A$
a finite dimensional subspace such that \(L \subset M_m(F) \otimes L_1 \). As \(u \notin RR(A) \) there exists \(\Phi_1 : L_1 \to \Pi M_n_k(F)/\Ker \rho_\omega \) such that \(\Phi(u) \neq 0 \). Define \(\Phi : M_m(F) \otimes L_1 \to \Pi M_m_n_k(F)/\Ker \rho_\omega \) by \(\Phi(a \otimes p) = a \otimes \Phi_1(p) \). Then \(\Phi(v) \neq 0 \).

Consider now \(x, y \in A \) such that \(xy = 1 \). Assume that \(yx \neq 1 \) so \(xy - yx \neq 0 \). Let \(L = Sp\{1, x, y, xy\} \). As \(xy - yx \notin RR(A) \) there exists a partial morphism \(\Phi : L \to \Pi M_n_k(F)/\Ker \rho_\omega \) such that \(\Phi(xy - yx) \neq 0 \). Now \(1 = \Phi(xy) = \Phi(x)\Phi(y) \) and by Proposition 2.8, \(\Pi M_n_k(F)/\Ker \rho_\omega \) is directly finite. Thus, \(\Phi(y)\Phi(x) = 1 \). It follows that \(\Phi(xy - yx) = 1 - 1 = 0 \), a contradiction.

11.2. The sofic radical. It is easy to see that if an algebra \(A \) is linear sofic, then \(RR(A) = 0 \). However, this condition is not sufficient. We modify the definition of the rank radical to get a larger ideal that will describe the linear soficity. This can be done also for groups and we first discuss this case as a warm up.

Definition 11.9. The linear sofic radical \(LSR(G) \) of a countable group \(G \) is defined as follows: \(h \in LSR(G) \) whenever for all group morphisms \(\Theta : G \to \Pi GL_n_k(\mathbb{C})/d_\omega \) we have \(\Theta(h) = 1 \).

Proposition 11.10. The linear sofic radical \(LSR(G) \) is a normal subgroup of \(G \). The group \(G/LSR(G) \) is linear sofic.

Proof. It is easy to see from the definition that:

\[
LSR(G) = \bigcap \{ \Ker \Theta \mid \Theta : G \to \Pi GL_n_k(\mathbb{C})/d_\omega \ \text{group morphism} \},
\]

so indeed \(LSR(G) \) is a normal subgroup of \(G \).

For the second part of the proposition, for each \(g \in G \), \(g \notin LSR(G) \) consider a morphism \(\Theta_g : G \to \Pi GL_n_k(\mathbb{C})/d_\omega \) such that \(\Theta_g(g) \neq 1 \). Then \(\{\Theta_g\}_{g \in G \setminus LSR(G)} \) is a sequence of unital morphisms of the group algebra and we apply Proposition 7.5 to get a morphism \(\Theta : G \to \Pi GL_m_k(\mathbb{C})/d_\omega \) such that \(\Ker \Theta = \bigcap_{g \in G \setminus LSR(G)} \Ker \Theta_g = LRS(G) \).

This construction of the linear sofic radical can be performed for several other metric approximation properties for groups such as soficity, weak soficity, and hyperlinearity. We now introduce the sofic radical for algebras.

Definition 11.11. The sofic radical \(SR(A) \) of an algebra is defined as follows: if \(A \) does not have almost finite dimensional representations, then \(SR(A) = A \). Otherwise, let \(p \in SR(A) \) if for any \(\delta > 0 \) there exists a finite dimensional subspace \(L \) with \(\{1, p\} \subset L \subset A \) and there exists \(n_\delta > 0 \) with the following property: if \(0 < \varepsilon < n_\delta \) and \(\psi_{L, \varepsilon} : L \to End(V) \) is an \(\varepsilon \)-almost representation, then \(\dim Ran(\psi_{L, \varepsilon}(p)) < \delta \cdot \dim V \).

We now provide a characterization of the sofic radical in terms of morphisms into ultraproducts.

Proposition 11.12. For any element \(p \) of an algebra \(p \in SR(A) \) if and only if for any unital morphism \(\Theta : A \to \Pi M_n_k(F)/\Ker \rho_\omega \) we have \(\Theta(p) = 0 \).

Proof. Let \(p \in SR(A) \). Fix \(\delta > 0 \) and let \(L \) and \(n_\delta > 0 \) as in the definition of the sofic radical. Let \(\Theta : A \to \Pi M_n_k(F)/\Ker \rho_\omega \) be a unital morphism, \(\Theta = \Pi \theta_k/\Ker \rho_\omega \). Let \(0 < \varepsilon < n_\delta \). Then there exists \(H \in \omega \) such that \(\theta_k : L \to M_n_k(F) \) is an \(\varepsilon \)-almost representation of \(L \) for any \(k \in H \). Then \(\dim Ran(\theta_k(p)) < \delta n_k \), or
with our notation $\rho(\theta_k(p)) < \delta$ for any $k \in H$. This implies that $\rho_\omega(\Theta(p)) < \delta$. As δ was arbitrary it follows that $\rho_\omega(\Theta(p)) = 0$ so $\Theta(p) = 0$.

Suppose now $p \notin SR(A)$. Then there exists $\delta > 0$ such that for any finite dimensional subspace L with $\{1, p\} \subset L \subset A$ and any $n > 0$ there exists $0 < \varepsilon < n$ and $\psi_{L, \varepsilon} : L \to \text{End}(V)$ an ε-almost representation with $\dim \text{Ran}(\psi_{L, \varepsilon}(p)) \geq \delta \cdot \dim V$. This is equivalent to $\rho(\psi_{L, \varepsilon}(p)) \geq \delta$.

Let $A = \bigcup_k L_k$, where $(L_k)_{k \in \mathbb{N}}$ is an increasing sequence of finite dimensional subspaces of A such that $\{1, p\} \subset L_k$. We can find a decreasing sequence $(\varepsilon_k)_k$ converging to 0 and ε_k-almost representations $\psi_{L_k, \varepsilon_k} : L_k \to \text{End}(V_k)$ with $\dim \rho(\psi_{L_k, \varepsilon_k}(p)) \geq \delta$.

Define $\Theta = \Pi_{\varepsilon_k} L_k / \text{Ker} \rho_\omega$. Since $A = \bigcup_k L_k$ and $\varepsilon_k \to 0$, Θ is a unital morphism. Also, $\rho(\Theta(p)) \geq \delta$, so $\Theta(p) \neq 0$. □

Corollary 11.13. The sofic radical is an ideal. Moreover, $SR(A/\text{SR}(A)) = 0$.

Proof. By the previous proposition,

$$SR(A) = \bigcap \{ \text{Ker} \Theta \mid \Theta : A \to \Pi \text{M}_{n_k}(F)/\text{Ker} \rho_\omega, \text{ unital morphism} \}. $$

Let now $q \in A / \text{SR}(A)$ and $p \in A$ such that $q = \hat{p}$. Suppose that $q \neq 0$ so that $p \notin \text{SR}(A)$. Then there exists a unital morphism $\Theta : A \to \Pi \text{M}_{n_k}(F)/\text{Ker} \rho_\omega$ such that $\Theta(p) \neq 0$. Also $\text{SR}(A) \subset \text{Ker} \Theta$. So we can factor Θ by $\text{SR}(A)$ to get a unital morphism $\hat{\Theta} : A/\text{SR}(A) \to \Pi \text{M}_{n_k}(F)/\text{Ker} \rho_\omega$ with $\hat{\Theta}(q) \neq 0$. It follows that $q \notin \text{SR}(A/\text{SR}(A))$. □

Theorem 11.14. An algebra A is linear sofic if and only if $\text{SR}(A) = 0$.

Proof. If A is linear sofic, then there exists an injective morphism

$$\Theta : A \to \Pi \text{M}_{n_k}(F)/\text{Ker} \rho_\omega.$$

So $\text{Ker} \Theta = 0$ and then $\text{SR}(A) = 0$.

Let A be an algebra such that $\text{SR}(A) = 0$. It follows that for any $p \neq 0$ there exists a unital morphism $\Psi_p : A \to \Pi \text{M}_{n_k}(F)/\text{Ker} \rho_\omega$ such that $\Psi_p(p) \neq 0$.

Let $\{x_i\}_{i \in \mathbb{N}}$ be a basis for A as a vector space over F. For $s \in \mathbb{N}$, we shall inductively construct $\Phi_s : A \to \Pi \text{M}_{n_k,s}(F)/\text{Ker} \rho_\omega$ such that $\text{Ker} \Phi_s \cap \text{Sp}\{x_1, \ldots, x_s\} = 0$.

Define $\Phi_1 = \Psi_{x_1}$. Assume now by induction that we have Φ_{s-1} unital morphism such that $\text{Ker} \Phi_{s-1} \cap \text{Sp}\{x_1, \ldots, x_{s-1}\} = 0$. Then $\text{dim}(\text{Ker} \Phi_{s-1} \cap \text{Sp}\{x_1, \ldots, x_s\}) \leq 1$. If this space is trivial define $\Phi_s = \Phi_{s-1}$. Otherwise, let $y_s \in \text{Ker} \Phi_{s-1} \cap \text{Sp}\{x_1, \ldots, x_s\}$, $y_s \neq 0$ and define $\Phi_s = \Phi_{s-1} \oplus \Psi_{y_s}$ (see Proposition 4.5). If $z \in \text{Ker} \Phi_s \cap \text{Sp}\{x_1, \ldots, x_s\}$, then $z \in \text{Ker} \Phi_{s-1} \cap \text{Sp}\{x_1, \ldots, x_s\}$. It follows that $z \in \text{Sp}\{y_s\}$. But also $z \in \text{Ker} \Psi_{y_s}$, so $z = 0$.

Using arguments similar to the proof of Theorem 7.5 (see also Proposition 7.5), we shall construct a unital morphism Θ such that $\text{Ker} \Theta = \bigcap_s \text{Ker} \Phi_s$.

First we bring Φ_s into the same sequence of matrix dimensions. Define $n_k = n_{k,1} n_{k,2} \cdots n_{k,k}$. Replace Φ_s by an amplification to get $\Phi_s : A \to \Pi \text{M}_{n_k}(F)/\text{Ker} \rho_\omega$.

Let now $\phi_{s,k} : A \to M_{n_k}$ be such that $\Phi_s = \Pi \phi_{s,k}/\text{Ker} \rho_\omega$. Define $\theta_k : A \to M_{2^{s} n_k}$ by:

$$\theta_k = (\phi_{1,k} \otimes \text{Id}_{2^{s-1}}) \oplus (\phi_{2,k} \otimes \text{Id}_{2^{s-2}}) \oplus \cdots \oplus (\phi_{k,k} \otimes \text{Id}_{2^0}) \oplus \text{Id}_{n_k}.$$
Proof. Let A be such an algebra. Consider $(L_k)_k$ an increasing sequence of finite dimensional subspaces of A such that $1 \in L_k$ and $A = \bigcup_k L_k$. Consider also $(\varepsilon_k)_k$ a sequence of strictly positive real numbers such that $v_k = \dim L_k \cdot \varepsilon_k \to_k 0$. For any k, by the definition of amenability, there exists S_k a finite dimensional subspace of A such that $\dim(aS_k \cap S_k) > (1-\varepsilon_k) \cdot \dim S_k$ for any $a \in L_k$. Then we can construct a linear map $\phi_k(a) : S_k \to S_k$ such that $\phi_k(a)$ is the left multiplication on a subspace of dimension $(1-\varepsilon_k) \cdot \dim S_k$. This implies that $\phi_k : L_k \to End(S_k)$ is a v_k-almost representation of L_k. As $\phi_k(a)$ is the left multiplication on a subspace of dimension $(1-\varepsilon_k) \cdot \dim S_k$ and A has no zero divisors it follows that $\rho(\phi_k(a)) \geq 1 - \varepsilon_k$ for any $a \in L_k$, $a \neq 0$.

Let $n_k = \dim S_k$ and construct $\Theta : A \to \Pi M_{n_k}/Ker \rho_\omega$, by $\Theta = \Pi \phi_k/Ker \rho_\omega$. By construction $\rho_\omega(\Theta(a)) = 1$ for $a \neq 0$. It follows that Θ is injective, so A is linear sofic.

The hypothesis of non-existence of zero divisors is too strong for this proposition to hold. We can construct a unital morphism Θ for any amenable algebra. Therefore, amenable algebras have almost finite dimensional representations. The non-existence of zero divisors implies $\rho_\omega(\Theta(a)) = 1$, but we only use $\rho_\omega(\Theta(a)) > 0$ for the injectivity of Θ.

It is easy to construct almost finite dimensional representations for LEF algebras (that is, algebras locally embeddable into finite dimensional ones) as also noticed in \cite{El05}. In particular, any amenable or LEF algebra that is also simple is linear sofic.

There exist algebras that are not stably finite (see, for instance, Example \ref{Example11.17} below). In particular, such algebras are not linear sofic. Combining Propositions \ref{Proposition11.16} and \ref{Proposition11.12} we immediately see that $RR(A) \subset SR(A)$. If $RR(A) \nsubseteq SR(A)$, then $A/RR(A)$ will be a stably finite algebra which is not linear sofic. Such algebras seem difficult to find as counterexamples to soficity in general and proved to be elusive.

Example 11.17. Let us present an example of an algebra that is directly finite but it is not stably finite. This construction is due to Sheperdson. Let A be the unital algebra over F generated by elements $\{x, y, z, t, a, b, c, d\}$ and relations $\{xa + yc = 1; xb + yd = 0; za + tc = 0; zb + td = 1\}$. These relations are chosen such that:

$$
\begin{pmatrix}
 x & y \\
 z & t
\end{pmatrix}
\begin{pmatrix}
 a & b \\
 c & d
\end{pmatrix} = Id_2.
$$

Then A is directly finite but it is not stably finite. Details can be found in \cite{La07, Exercise 1.18, p. 11}.
Example 11.18. In [Cor11] Cornulier constructed a sofic group that is not initially subamenable. Its group algebra is linear sofic by Theorem 11.2 and Proposition 4.5. On the other hand, this algebra is neither LEF by Theorem 1 of [Zi02], nor amenable.

11.3. Computations of the sofic radical. In this section, we prove that the rank radical is equal to the sofic radical for group algebras. We also provide a characterization of the sofic radical for a group algebra.

Proposition 11.19. Let G be a countable group and let $LSR(G)$ be its linear sofic radical. Denote by $f: G \to G/LSR(G)$ the canonical projection and extend this morphism to group algebras: $\overline{f}: \mathbb{C}G \to \mathbb{C}(G/LSR_F(G))$. Then $SR(\mathbb{C}G) = Ker \overline{f}$.

Proof. Let $\Psi: \mathbb{C}G \to \Pi M_{n_k}/Ker \rho_\omega$ be a unital morphism. By Proposition 2.9 Ψ can be restricted to a morphism of the group, so $\Psi(u_g) = 1$ if $g \in LSR(G)$. Then $f(g) = f(h)$ implies $\Psi(u_g) = \Psi(u_h)$. Now we can see that $Ker \overline{f} \subset Ker \Psi$. As Ψ was arbitrary, we get $Ker \overline{f} \subset SR(\mathbb{C}G)$.

The group $G/LSR(G)$ is linear sofic, so by Theorem 1.2 there exists

$$\Theta: \mathbb{C}(G/LSR(G)) \to \Pi M_{n_k}/Ker \rho_\omega,$$

an injective unital morphism. Then $\Theta \circ \overline{f}: \mathbb{C}G \to \Pi M_{n_k}/Ker \rho_\omega$ is a unital morphism such that $Ker \Theta \circ \overline{f} = Ker \overline{f}$. It follows that $SR(\mathbb{C}G) \subset Ker \overline{f}$. \Box

Theorem 11.20. For any group G we have $SR(\mathbb{C}G) = RR(\mathbb{C}G)$.

Proof. Let $p \notin RR(\mathbb{C}G)$ and assume that $p \in SR(\mathbb{C}G)$. Let $G = \bigcup B_i$, where $\{B_i\}_i$ is an increasing sequence of finite subsets each containing the support of p such that $1 \in B_i$ and $B_i = B_i^{-1}$.

Let $\Phi_i: \mathbb{C}(B_i \cup B_i^2) \to \Pi \rightarrow \omega M_{n_i,k}/Ker \rho_\omega$ be a partial morphism such that $\Phi_i(p) \neq 0$. Then Φ_i restricted to B_i has its image included in $\Pi \rightarrow \omega GL_{n_i,k}/d_\omega$. Now we can apply Proposition 5.12 to get a partial morphism $\Psi_i: \mathbb{C}(B_i) \to \Pi \rightarrow \omega M_{n_i,k}/Ker \rho_\omega$ such that for any $g, h \in B_i$:

$$\Phi_i(u_g) = \Phi_i(u_h) \implies \Psi_i(u_g) = \Psi_i(u_h),$$

$$\Phi_i(u_g) \neq \Phi_i(u_h) \implies d_\omega(\Psi_i(u_g), \Psi_i(u_h)) \geq \frac{1}{4}.$$

We construct the ultraproduct of the family $\{\Psi_i\}_i$, $\Psi = \Pi i \rightarrow \omega \Psi_i/d_\omega$. Then $\Psi: \mathbb{C}G \to \Pi i \rightarrow \omega M_{n_i,k}/Ker \rho_\omega \omega \omega$ is a unital morphism. If $\Psi(u_g) = \Psi(u_h)$, then $\lim_{i \rightarrow \omega} d_\omega(\Psi_i(u_g), \Psi_i(u_h)) = 0$. The properties of Ψ_i imply that $\{i : \Psi_i(u_g) = \Psi_i(u_h)\} \in \omega$ in this case.

Let $f: G \to G/LSR(G)$ be the canonical projection used also in the previous proposition. Then $f(g) = f(h)$ implies $\Psi(u_g) = \Psi(u_h)$. As argued earlier $\Psi(u_g) = \Psi(u_h)$ iff $\{i : \Psi_i(u_g) = \Psi_i(u_h)\} \in \omega$. Because the support of p is finite we can find an i_0 such that: $g, h \in supp p$ and $f(g) = f(h)$ implies $\Psi_{i_0}(u_g) = \Psi_{i_0}(u_h)$. Then also $\Phi_{i_0}(u_g) = \Phi_{i_0}(u_h)$.

By the previous proposition and our initial assumption that $p \in SR(\mathbb{C}G)$ we get $\overline{f}(p) = 0$. This implies that $\Phi_{i_0}(p) = 0$, which is a contradiction. \Box

11.4. Remark on uncountable algebras. All our results in Section 11 do hold for arbitrary algebras, not just for countable generated as stated above (for simplicity). One way to obtain this is to replace the index set of an ultraproduct by a set.
Definition 11.21. An arbitrary algebra A is linear sofic if and only if every countable generated subalgebra is linear sofic in the sense of Definition 4.2.

Definition 11.22. The linear sofic radical $LSR(G)$ of a group G is defined as follows: $h \in LSR(G)$ whenever for all countable generated subgroups H, such that $h \in H$, and for all group morphisms $\Theta: H \to \Pi G L_{n_k}(C)/d_\omega$ we have $\Theta(h) = 1$.

The definition of the linear sofic radical for an algebra does not use ultraproducts, so no modification is required. The description of this radical using ultraproducts is now:

Proposition 11.23. For any element p of an algebra $p \in SR(A)$ if and only if for any countable generated subalgebra B containing p, for any unital morphism $\Theta: B \to \Pi M_{n_k}(F)/Ker\rho_\omega$ we have $\Theta(p) = 0$.

It is straightforward to extend the proofs, using these characterizations.

References

[B08] Laurent Bartholdi, On amenability of group algebras. I, Israel J. Math. 168 (2008), 153–165, DOI 10.1007/s11856-008-1061-7. MR2448055 (2010a:43001)

[CaP˘a12] Valerio Capraro and Liviu P˘aunescu, Product between ultrafilters and applications to Connes' embedding problem, J. Operator Theory 68 (2012), no. 1, 165–172. MR2966039

[CS09] T. G. Ceccherini-Silberstein and A. Y. Samet-Vaillant, Asymptotic invariants of finitely generated algebras. A generalization of Gromov's quasi-isometric viewpoint, J. Math. Sci. (N. Y.) 156 (2009), no. 1, 56–108, DOI 10.1007/s10958-008-9257-2. Functional analysis. MR2760313 (2012d:16069)

[Cor11] Yves Cornulier, A sofic group away from amenable groups, Math. Ann. 350 (2011), no. 2, 269–275, DOI 10.1007/s00208-010-0557-8. MR2794910 (2012f:20090)

[Del78] Ph. Delsarte, Bilinear forms over a finite field, with applications to coding theory, J. Combin. Theory Ser. A 25 (1978), no. 3, 226–241, DOI 10.1016/0097-3165(78)90015-8. MR514618 (80a:94040)

[El03] G´abor Elek, The amenability of affine algebras, J. Algebra 264 (2003), no. 2, 469–478, DOI 10.1016/S0021-8693(03)00163-7. MR1981416 (2004d:16043)

[El05] G´abor Elek, On algebras that have almost finite dimensional representations, J. Algebra Appl. 4 (2005), no. 2, 179–186, DOI 10.1142/S0219498805001046. MR2139264 (2006a:16038)

[ElSz04] G´abor Elek and Endre Szab´o, Sofic groups and direct finiteness, J. Algebra 280 (2004), no. 2, 426–434, DOI 10.1016/j.jalgebra.2004.06.023. MR2089244 (2005d:16041)

[ElSz06] G´abor Elek and Endre Szab´o, On sofic groups, J. Group Theory 9 (2006), no. 2, 161–171, DOI 10.1515/JGT.2006.011. MR2220572 (2007a:20037)

[FaSh09] I. Farah and S. Shelah, A dichotomy for the number of ultrafilters, (2009), arxiv:0912.0406.

[Gab85] É. M. Gabidulin, Theory of codes with maximum rank distance (Russian), Problemy Peredachi Informatsii 21 (1985), no. 1, 3–16. MR791529 (87j:94036)

[GI08] Lev Glebsky and Luis Manuel Rivera, Sofic groups and profinite topology on free groups, J. Algebra 320 (2008), no. 9, 3512–3518, DOI 10.1016/j.jalgebra.2008.08.008. MR2455513 (2009j:20054)

[GI09] Lev Glebsky and Luis Manuel Rivera, On low rank perturbations of complex matrices and some discrete metric spaces, Electron. J. Linear Algebra 18 (2009), 302–316, DOI 10.13001/1081-3810.1315. MR2519917 (2010h:15003)

[G99] M. Gromov, Endomorphisms of symbolic algebraic varieties, J. Eur. Math. Soc. (JEMS) 1 (1999), no. 2, 109–197, DOI 10.1007/PL00011162. MR1694588 (2000e:14003)

[Gr08] Misha Gromov, Entropy and isoperimetry for linear and non-linear group actions, Groups Geom. Dyn. 2 (2008), no. 4, 499–593, DOI 10.4171/GGD/48. MR2442946 (2010h:37011)
[Hua45] Loo-Keng Hua, Geometries of matrices. I. Generalizations of von Staudt's theorem, Trans. Amer. Math. Soc. 57 (1945), 441–481. MR0012679 (7,58b)

[HiWa09] Kei-ichiro Iima and Ryo Iwamatsu, On the Jordan decomposition of tensored matrices of Jordan canonical forms, Math. J. Okayama Univ. 51 (2009), 133–148. MR2482411 (2010d:15014)

[La07] T. Y. Lam, Exercises in modules and rings, Problem Books in Mathematics, Springer, New York, 2007. MR2278849 (2007h:16001)

[Lu11] Martino Lupini, Logic for metric structures and the number of universal sofic and hyperlinear groups, Proc. Amer. Math. Soc. 142 (2014), no. 10, 3635–3648, DOI 10.1090/S0002-9939-2014-12089-2. MR3238439 (2016c:03035)

[Ma07] T. Y. Lam, Exercises in modules and rings, Problem Books in Mathematics, Springer, New York, 2007. MR2278849 (2007h:16001)

[Lu11] Martino Lupini, Logic for metric structures and the number of universal sofic and hyperlinear groups, Proc. Amer. Math. Soc. 142 (2014), no. 10, 3635–3648, DOI 10.1090/S0002-9939-2014-12089-2. MR3238439 (2016c:03035)

[Ma40] A. Malcev, On isomorphic matrix representations of infinite groups (Russian, with English summary), Rec. Math. [Mat. Sbornik] N.S. 8 (50) (1940), 405–422. MR0003420 (2,216d)

[MaVl] A. Martsinkovsky and A. Vlassov, The representation rings of $k[x]$, preprint, http://www.math.neu.edu/~martsinkovsky/GreenExcerpt.pdf.

[Oz09] N. Ozawa, Hyperlinearity, sofic groups and applications to group theory, (2009), http://www.kurims.kyoto-u.ac.jp/~narutaka/notes/NoteSofic.pdf.

[Pe08] Vladimir G. Pestov, Hyperlinear and sofic groups: a brief guide, Bull. Symbolic Logic 14 (2008), no. 4, 449–480, DOI 10.2178/bsl/1231081461. MR2460675 (2009k:20103)

[PeKw09] V. Pestov and A. Kwiatkowska, An introduction to hyperlinear and sofic groups, (2009), arxiv:0911.4266.

[Rå08] Florin Rădulescu, The von Neumann algebra of the non-residually finite Baumslag group $\langle a, b \mid a b^3 a^{-1} = b^2 \rangle$ embeds into R^ω, Hot topics in operator theory, Theta Ser. Adv. Math., vol. 9, Theta, Bucharest, 2008, pp. 173–185. MR2436761 (2009k:46110)

[S00] A. Y. Samet-Zaiblant, C^*-algebras, Gelfand-Kirillov dimension, and Følner sets, J. Funct. Anal. 171 (2000), no. 2, 346–365, DOI 10.1006/jfan.1999.3525. MR1745631 (2000g:46131)

[S06] Peter Semrl, Maps on matrix and operator algebras, Jahresber. Deutsch. Math.-Verein. 108 (2006), no. 2, 91–103. MR2248755 (2007e:46056)

[T10] Simon Thomas, On the number of universal sofic groups, Proc. Amer. Math. Soc. 138 (2010), no. 7, 2585–2590, DOI 10.1090/S0002-9939-10-10280-9. MR2607888 (2011c:20084)

[Wan96] Zhe-Xian Wan, Geometry of matrices, World Scientific Publishing Co., Inc., River Edge, NJ, 1996. In memory of Professor L. K. Hua (1910–1985). MR1409910 (98a:51001)

[Wa76] Simon Wassermann, On tensor products of certain group C^*-algebras, J. Functional Analysis 23 (1976), no. 3, 239–254. MR0425628 (54 #13582)

[Wo00] Benjamin Weiss, Sofic groups and dynamical systems, Sankhyā Ser. A 62 (2000), no. 3, 350–359. Ergodic theory and harmonic analysis (Mumbai, 1999). MR1803462 (2001j:37022)

[Zi02] Miloš Ziman, On finite approximations of groups and algebras, Illinois J. Math. 46 (2002), no. 3, 837–839. MR1951243 (2004a:20008)

Fakultät für Mathematik, Universität Wien, Oskar-Morgenstern-Platz 1, 1090 Wien, Austria
E-mail address: goulnara.arzhantseva@univie.ac.at

Fakultät für Mathematik, Universität Wien, Oskar-Morgenstern-Platz 1, 1090 Wien, Austria – and – Institute of Mathematics of the Romanian Academy (on leave), 21 Calea Grivitei Street, 010702 Bucharest, Romania
E-mail address: liviu.pauanescu@imar.ro