Applications of green tea in dentistry

Reethega L1, Balaji Ganesh S2, Geetha R V3

1Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai - 77, Tamil Nadu, India
2White Lab-Materials Research Centre, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai - 77, Tamil Nadu, India
3Department of Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai -77, Tamil Nadu, India

ABSTRACT

Tea is one of the most consumed beverages in the world. Majority of people consume black tea more than green tea. Green tea is prepared from the dry leaves of Camellia sinensis bush. The extent of oxidation of the leaves determines the type of tea prepared. Green tea is made from the un-oxidised tea leaves and is a type of less processed tea. Therefore, it contains the most number of antioxidants and beneficial phenols. These polyphenols prevent the acid production of bacterial species like Streptococcus mutans and Porphyromonas gingivalis, which are solely involved in the development of dental caries and periodontal diseases. Around 30 articles from Pubmed and other Scopus indexed journals were collected and the data was extracted from them. The articles were selected based on their relevance to the topic and characteristics. The review methods, applications of green tea in various systems, applications of green tea in dentistry and their risk and side effects were discussed. The above topics were discussed accurately and the data was selected accordingly. The topic was discussed to see whether green tea can be used in dentistry.

INTRODUCTION

Tea is commonly consumed all around the world. Majority of people consume black tea more than green tea. Green tea is prepared from the Camellia sinensis dry leaves. The extent of oxidation of the green tea leaves determines the type of tea. Green tea is made from the un-oxidised tea leaves and is a type of less processed tea. Therefore, it contains the most number of antioxidants and beneficial phenols. Green tea contains polyphenols, caffeine, flavonols, thiene and other aromatic compounds. Herbal polyphenols precipitate proteins. E.g.: Flavone and Tea catechins. The polyphenols seen in green tea are proven to have antibacterial qualities. They prevent the acid production of Escherichia coli, Streptococcus species, Staphylococcus aureus and Porphyromonas gingivalis (Araghizadeh et al., 2013).

The bacteria like Streptococcus mutans and Porphyromonas gingivalis consists of the main etiology of dental caries and periodontitis. Dental caries is caused due to a collection of factors and if untreated leads to severe toothache, infection and tooth loss. The green tea contains polyphenols which aid in the control of Streptococcus mutans (Yang and Kong, 2016). Previous studies have shown the use of green
Green tea and dental caries

Oral conditions such as dental caries, periodontitis and tooth loss determine human health status. Dental caries is caused due to an array of infectious diseases caused by bacteria (Prabakar et al., 2018a; Mohapatra, 2019). The bacteria chiefly involved here are Streptococcus mutans and Prevotella gingivalis. Green tea protects against numerous bacteria-induced dental caries and plaque scores (Prabakar et al., 2018a,b). It controls the acid production of bacteria, limits glucan biosynthesis that gets stuck on teeth (Khatri, 2019). Studies have shown that extracts of green tea may be especially benefitting in preventing plaque formation by bacteria in the mouth. Polyphenols of green tea act as plaque preventing agents by inhibiting glucosyltransferase used by oral bacteria to feed on sucrose (Prabakar et al., 2018c). Therefore consuming green tea is seen to prevent caries activity (Prabakar et al., 2016; Samuel et al., 2020).

Green tea in oral cancer prevention

The polyphenols in green tea are seen to reduce tumour growth in randomized controlled trials and can protect against ultraviolet radiation (Kannan, 2017; Kumar and Preethi, 2017). The polyphenols in green tea are said to have cytotoxic activity against cancer cells and reduce the risk of oral cancers (Harini and Leelavathi, 2019). A previous study about the role of green tea in the prevention and management of oral cancer is taken into account here. The patients with potentially premalignant lesions are given three doses of green tea extract vs placebo thrice a day, then evaluated for chemoprotective biomarkers. Patients who are given green tea extract show a good dose-response effect to it. VEGF in stroma and cyclin D1 is increased in symptomatic and reduced in asymptomatic patients. Green tea extract in the above study shows the blockade of stimuli to angiogenesis and reduces the possibility of premalignant lesions (Ramshankar and Krishnamurthy, 2014; Kumar and Vijayalakshmi, 2017).

Green tea in halitosis

Halitosis, also known as bad breath is due to the volatile sulphide components like methyl mercaptan and hydrogen sulfide, which are the products of gram-negative bacteria. Green Tea, polyphenols, catechins and especially epigallocatechin gallate abolish halitosis by modification of odorant sulphur components (Pratha and Prabakar, 2019). Previous
studies about the effect of green tea as mouth rinse against salivary Streptococcus mutans is taken. The effects of chlorhexidine and green tea are compared here. The long term usage of chlorhexidine, however, causes brown staining of teeth, oral mucosal ulcers, parotid swellings. Green tea causes no such effects and has better beneficial properties (Nagar, 2019).

GREEN TEA IN PERIODONTAL DISEASE

The antioxidant and antimicrobial effect of green tea catechins prove to be useful in the treatment of periodontal diseases. It also inhibits the growth of Porphyromonas gingivalis, Prevotella intermedia and Prevotella nigrescens and also prevents the production of toxic metabolites of Prevotella and Porphyromonas species. Epigallocatechin gallate present in green tea also helps in osteoclast growth prevention and thus prevent bone resorption (Mao, 2017). Catechins also are bactericidal against Prevotella species. The previous study showing the uses of green tea in patients with periodontal diseases is taken into account. The uptake of green is associated with criteria such as a reduction in bleeding on probing, probing depth and clinical attachment loss. Hence green tea intake is beneficial for periodontal health (Chatterjee, 2012).

CONCLUSIONS

In this review, we have seen the applications, actions, adverse effects of green tea. Green tea can also be infused to any product like toothpaste and used in laboratories to improve its effects, also constituents from green tea are effective against mutans bacteria by making the tooth surface irregular for bacteria to produce enamel affecting acid.

ACKNOWLEDGEMENT

The authors would like to acknowledge the authors of various research articles /journals from where the references were cited to compile. The authors declare that they have no funding support for this review study.

Funding Support

The authors declare that they have no funding support for this study.

Conflict of Interest

The authors declare that they have no conflict of interest for this study.

REFERENCES

Araghizadeh, A., Kohanteb, J., Fani, M. M. 2013. Inhibitory Activity of Green Tea(Camellia sinensis)Extract on Some Clinically Isolated Cariogenic and Periodontopathic Bacteria. Medical Principles and Practice, 22(4):368–372.

Chatterjee, A. 2012. Green tea: A boon for periodontal and general health. Journal of Indian Society of Periodontology, 16(2):161–167.

Harini, G., Leelavathi, L. 2019. Nicotine Replacement Therapy for Smoking Cessation-An Overview. Indian Journal of Public Health Research & Development, 10(11):3588–3588.

Jazaeri, M. 2015. Cariostatic Effect of Green Tea in Comparison with Common Anticariogenic Agents: An in Vitro Study. Journal of Dental Research, pages 44–48.

Kannan, S. S. D. 2017. Awareness and attitude towards mass disaster and its management among house surgeons in a dental college and hospital in chennai, india. Health Risk V.

Khatri, S. G. 2019. Retention of moisture-tolerant fluoride-releasing sealant and amorphous calcium phosphate-containing sealant in 6-9-year-old children: A randomized controlled trial. Journal of the Indian Society of Pedodontics and Preventive Dentistry, 37(1):92–98.

Kumar, R. P., Preethi, R. 2017. Assessment of Water Quality and Pollution of Porur, Chembarambakkam and Puzhal Lake. Research Journal of Pharmacy and Technology, 10(7):2157–2157.

Kumar, R. P., Vijayalakshmi, B. 2017. Assessment of Fluoride Concentration in Ground Water in Madurai District, Tamil Nadu, India. Research Journal of Pharmacy and Technology, 10(1):309–309.

Mao, X. 2017. Oxidative stress-induced diseases and tea polyphenols. Oncotarget, 8(46):81649–81661.

Mathew, M. G. 2020. Evaluation of adhesion of Streptococcus mutans, plaque accumulation on zirconia and stainless steel crowns, and surrounding gingival inflammation in primary molars: randomized controlled trial. Clinical oral investigations.

Mohapatra, S. 2019. Assessment of Microhardness of Enamel Carious Like Lesions After Treatment with Nova Min, Bio Min and Remin Pro Containing Toothpastes: An in Vitro Study. Indian Journal of Public Health Research & Development, pages 375–375.

Nagar, A. 2019. Comparative evaluation of the anti-plaque efficacy of green tea extract mouthrinse and white tea extract mouthrinse with chlorhexidine gluconate mouthrinse-A clinical and microbi-
ological study. *Journal of Dental Specialities*, pages 109–114.

Nakhjavani, M., Nikkhah, V., Sarafraz, M. M., Shoja, S., Sarafraz, M. 2017. Green synthesis of silver nanoparticles using green tea leaves: Experimental study on the morphological, rheological and antibacterial behaviour.

Neralla, M. 2019. Role of nutrition in rehabilitation of patients following surgery for oral squamous cell carcinoma. *International Journal of Research in Pharmaceutical Sciences*, pages 3197–3203.

Pavithra, R. P., Jayashri, P. 2019. Influence of Naturally Occurring Phytochemicals on Oral Health. *Research Journal of Pharmacy and Technology*, 12(8):3979–3979.

Petruk, G. 2018. Antioxidants from Plants Protect against Skin Photoaging. *Oxidative medicine and cellular longevity*, pages 1454936–1454936.

Prabakar, J., John, J., Arumugham, I., Kumar, R., Srisakthi, D. 2018a. Comparing the effectiveness of probiotic, green tea, and chlorhexidine- and fluoride-containing dentifrices on oral microbial flora: A double-blind, randomized clinical trial. *Contemporary Clinical Dentistry*, 9(4):560–560.

Prabakar, J., John, J., Arumugham, I., Kumar, R., Srisakthi, D. 2018b. Comparative evaluation of retention, cariostatic effect and discoloration of conventional and hydrophilic sealants - A single blinded randomized split mouth clinical trial. *Contemporary Clinical Dentistry*, 9(6):233–233.

Prabakar, J., John, J., Arumugham, I. M. 2018c. Comparative Evaluation of the Viscosity and Length of Resin Tags of Conventional and Hydrophilic Pit and Fissure Sealants on Permanent Molars: An Study. *Contemporary clinical dentistry*, 9(3):388–394.

Prabakar, J., John, J., Srisakthi, D. 2016. Prevalence of dental caries and treatment needs among school going children of Chandigarh. *Indian journal of dental research: official publication of Indian Society for Dental Research*, 27(5):547–552.

Pratha, A. A., Prabakar, J. 2019. Comparing the effect of Carbonated and energy drinks on salivary pH-In Vivo Randomized Controlled Trial. *Research Journal of Pharmacy and Technology*, 12(10):4699–4699.

Ramshankar, V., Krishnamurthy, A. 2014. Chemoprevention of oral cancer: Green tea experience. *Journal of natural science*, 5(1):3–7.

Sakanaka, S., Sato, T., Kim, M., Yamamoto, T. 1990. Inhibitory effects of green tea polyphenol on glucan synthesis and cellular adherence of cariogenic streptococci. *Agricultural and Biological Chem-