A note concerning the Grundy and b-chromatic number of graphs

Manouchehr Zaker

Department of Mathematics,
Institute for Advanced Studies in Basic Sciences,
Zanjan 45137-66731, Iran

Abstract

The Grundy number of a graph G is the maximum number of colors used by the First-Fit coloring of G and is denoted by $\Gamma(G)$. Similarly, the b-chromatic number $b(G)$ of G expresses the worst case behavior of another well-known coloring procedure i.e. color-dominating coloring of G. We obtain some families of graphs \mathcal{F} for which there exists a function $f(x)$ such that $\Gamma(G) \leq f(b(G))$, for each graph G from the family. Call any such family (Γ, b)-bounded family. We conjecture that the family of b-monotone graphs is (Γ, b)-bounded and validate the conjecture for some families of graphs.

AMS Classification: 05C15; 05C20

Keywords: Graph coloring; First-Fit coloring; Grundy number; b-chromatic number.

1 Introduction

This note deals only with undirected graphs without any loops or multiple edges. By a Grundy coloring of a graph G we mean any partition of $V(G)$ into independent subsets C_1, \ldots, C_k such that for each $i, j \in \{1, \ldots, k\}$ with $i < j$, each vertex in C_j has a neighbor in C_i. The maximum such value k is called the Grundy number (also called First-Fit chromatic number) and denoted by $\Gamma(G)$ (also by $\chi_{FF}(G)$). It can be observed that $\Gamma(G)$ is equal to the maximum number of colors used by the First-Fit (greedy) coloring procedure in the graph G [11]. The Grundy number and First-Fit coloring of graphs are important research areas in chromatic and algorithmic graph theory with full of papers e.g. [2, 3, 6, 7, 10, 11, 12].

By a color-dominating coloring of G we mean any partition of $V(G)$ into independent subsets C_1, \ldots, C_k such that for each i, the class C_i contains a vertex say v such

mzaker@iasbs.ac.ir
that \(v \) has a neighbor in any other class \(C_j, j \neq i \). Denote by \(b(G) \) (also denoted by \(\varphi(G) \)) the maximum number of colors used in any color-dominating coloring of \(G \). It can be easily seen that \(b(G) \leq \Delta(G) + 1 \) and under some conditions the equality holds, e.g. \(d \)-regular graphs with at least \(2d^3 \) vertices \[1\]. An algorithmic interpretation of \(b(G) \) is that it expresses the worst case behavior of the following coloring procedure. In any proper coloring \(C \) of a graph \(G \), a vertex \(v \) is said to be a color-dominating vertex if it has a neighbor with any other color except the color of \(v \). Let \(C \) be any arbitrary proper coloring of \(G \) and \(C_i \) be a color class in \(C \). If \(C_i \) does not contain any color-dominating vertex then each vertex of \(C_i \) can be removed from \(C_i \) and transferred to another suitable class. By this technique the class \(C_i \) is totally removed and number of colors is decreased by one. We repeat this method for all remaining color classes until we obtain a color-dominating coloring. Obviously, the final number of colors is at most \(b(G) \). The b-chromatic number of graphs introduced in \[4\] and widely studied in the literature \[8, 9\]. For a recent survey on b-chromatic number see \[5\]. A useful graph parameter relating to b-chromatic number of a graph \(G \) with non-increasing degree sequence \(d_1 \geq d_2 \geq \ldots \geq d_n \) is \(m(G) := \max\{i : d_i \geq i - 1\} \). It is known that \(b(G) \leq m(G) \) and for trees \(T \), \(b(T) \geq m(T) - 1 \[4\]. In this paper, a graph \(G \) is called b-monotone if for each induced subgraph \(H \) of \(G \) we have \(b(H) \leq b(G) \).

A first natural inquiry concerning the comparison of Grundy and b-chromatic numbers is to explore and generate families of graphs \(\{G_n\}_{n \geq 1} \) and \(\{H_n\}_{n \geq 1} \) such that \(b(G_n) - \Gamma(G_n) \to \infty \) and \(\Gamma(H_n) - b(H_n) \to \infty \). Based on the results of this paper, both of the above-mentioned situations may happen in the universe of graphs. But the first situation (i.e. families with bounded Grundy number and unbounded b-chromatic number) is more likely to happen because these families are more accessible.

The concept of \((\chi_{FF}, \omega)\)-boundedness was introduced by Gyárfás and Lehel in \[3\]. Denote the size of a maximum clique in \(G \) by \(\omega(G) \). A family \(F \) is called \((\chi_{FF}, \omega)\)-bounded if there exists a function \(f(x) \) such that \(\Gamma(G) \leq f(\omega(G)) \) for each \(G \) from the family. Some \((\chi_{FF}, \omega)\)-bounded families were obtained in \[3, 6, 7, 12\]. In the next section we introduce \((\Gamma, b)\)-bounded families.

2 \((\Gamma, b)\)-bounded families of graphs

We say a family \(F \) is \((\Gamma, b)\)-bounded if there exists a function \(f(x) \) such that \(\Gamma(G) \leq f(b(G)) \), for each graph \(G \) from the family. Note that any \((\chi_{FF}, \omega)\)-bounded family is also \((\Gamma, b)\)-bounded. Also any family of graphs satisfying \(b(G) = \Delta(G) + 1 \) is \((\Gamma, b)\)-bounded. Some of such families were obtained in \[3\] and reported in \[5\]. With a similar manner we can define \((b, \Gamma)\)-bounded families. We can easily obtain a sequence of trees \(T_n \) such that \(\Gamma(T_n) \leq 3 \) for each \(n \), but \(b(T_n) \to \infty \). In fact, we
may consider \(T_n \) as a path with sufficiently large length and sufficiently many leaves attached to the vertices of the path. In this note we concentrate on \((\Gamma, b)\)-bounded families. The following proposition is useful.

Proposition 1. A family \(\mathcal{F} \) is \((\Gamma, b)\)-bounded if and only if for any sequence \(\{G_n\}_{n \geq 1} \) from \(\mathcal{F} \), \(\Gamma(G_n) \to \infty \) implies \(b(G_n) \to \infty \).

Proof. If \(\mathcal{F} \) is \((\Gamma, b)\)-bounded then the assertion trivially holds. To prove the other side, note that any infinite family of graphs is countable, so write \(\mathcal{F} = \{G_n\}_{n \geq 1} \). If necessary use a relabeling and assume that \(\{\Gamma(G_n)\}_{n \geq 1} \) is increasing. Assume that \(\Gamma(G_n) \to \infty \) (otherwise the assertion trivially holds). It implies \(b(G_n) \to \infty \). Hence, for each \(n \geq 1 \), there exists an integer \(N(n) \) such that \(b(G_i) \geq \Gamma(G_n) \) for each \(i \geq N(n) \). Now, define a function \(f \) by putting for each \(n \), \(f(b(G_n)) := b(G_{N(n)}) \). We have \(\Gamma(G_n) \leq f(b(G_n)) \) for each \(n \), as desired. \(\square \)

The following result shows that the family of tree graphs is \((\Gamma, b)\)-bounded.

Proposition 2. For any tree \(T \), \(\Gamma(T) \leq 2b(T) + 2 \).

Proof. Set \(|V(T)| = n \), \(\Gamma(T) = p \) and \(m(T) = m \). It is enough to show \(p \leq 2m \). Otherwise, \(p \geq 2m + 1 \). Let \(p - m = m + t + 1 \), for some \(t \geq 0 \). By the definition of \(m(T) \), for each \(k \geq m + 1 \), \(n - k + 1 \) vertices in \(T \) have degree at most \(k - 2 \). Take \(k = p - m - t \) and obtain that there exist \(n - p + m + t + 1 \) vertices of degree at most \(p - m - t - 2 \). From the other side, there exists a Grundy coloring of \(T \) using \(p \) colors. Then for each \(i \), at least \(i \) vertices have degree at least \(p - i \). Equivalently, at most \(n - i \) vertices of degree at most \(p - i - 1 \) exist in the graph. Combining these two bounds for \(i = m + t + 1 \), we obtain \(2m + 2t + 2 \leq p \), a contradiction. \(\square \)

In the following, we denote the path on \(k \) vertices by \(P_k \). For any fixed graph \(H \), by \(

\text{Forb}(H) \) we mean the family of all graphs \(G \) which does not contain \(H \) as induced subgraph. \(\text{Forb}(H_1, H_2) \) is defined similarly.

Proposition 3. \(\text{Forb}(P_k) \) is \((\Gamma, b)\)-bounded if and only if \(k \leq 5 \).

Proof. Define a bipartite graph \(B_t \), \(t \geq 2 \) as follows. Take a complete bipartite graph \(K_{t,t} \) and remove the edges of a matching of size \(t - 1 \) from the graph and call it \(B_t \). It’s easily seen that \(\Gamma(B_t) = t + 1 \). It can also be shown that \(b(B_t) = 2 \). Note that \(B_t \) contains \(P_5 \) as induced subgraph but not \(P_k \) for each \(k \geq 6 \) and hence is \(P_k \)-free for each \(k \geq 6 \). Therefore, the family of \(P_k \)-free graphs is not \((\Gamma, b)\)-bounded for \(k \geq 6 \).

Assume now that \(G \) is any \(P_5 \)-free graph. A result of Kierstead et al. \(\square \) asserts that the family of \(P_5 \)-free graphs is \((\chi_F, \omega)\)-bounded. It follows that the very family is \((\Gamma, b)\)-bounded. \(\square \)
We say a graph G is b-monotone if for each induced subgraph H of G we have $b(H) \leq b(G)$. The family of non b-monotone graphs is not (Γ, b)-bounded. For this purpose it’s enough to consider the graphs B_t, $t \geq 2$, introduced in the proof of Proposition 3. Recall that $\Gamma(B_t) = t + 1$ but $b(B_t) = 2$, for each $t \geq 2$. Also B_t is not b-monotone for each $t \geq 4$, because by removing the two vertices of degree t in B_t we obtain a subgraph with b-chromatic number $t - 1$. We make the following conjecture.

Conjecture. There exists a function $f(x)$ such that if G is any b-monotone graph then $\Gamma(G) \leq f(b(G))$.

The next proposition proves that the conjecture is valid for all $K_{t,t}$-free graphs, for any fixed integer t. We need to define a tree R_k of radius two. Take a vertex v of degree $k - 1$ as the root of R_k. Let v_1, \ldots, v_{k-1} be the children of v. For each i, attach $k - 2$ vertices of degree one to v_i. These vertices are all distinct so that R_k contains $(k - 1)(k - 2)$ leaves. It is easily seen that R_k admits a b-coloring using k colors, where v_i is color-dominating vertex of color i.

Proposition 4. Let $t \geq 2$ be any fixed integer and $\{G_n\}_{n \geq 1}$ be any sequence of $K_{t,t}$-free b-monotone graphs. Then $\Gamma(G_n) \to \infty$ implies $b(G_n) \to \infty$.

Proof. Assume on the contrary that $\{G_n\}_{n \geq 1}$ is a sequence of $K_{t,t}$-free b-monotone graphs with $\Gamma(G_n) \to \infty$ but for some integer p and any n, $b(G_n) \leq p$. Since G_n is b-monotone then R_{p+1} is not an induced subgraph of G_n. Hence G_n is $(K_{t,t}, R_{p+1})$-free for each n. A result of Kierstead and Penrice [6] asserts that $\{G_n\}_{n \geq 1}$ is (χ_{FF}, ω)-bounded. Hence for some function $f(x)$, $\Gamma(G_n) \leq f(\omega(G_n)) \leq f(b(G_n)) \leq f(p)$, a contradiction. □

References

[1] S. Cabello, M. Jakovac, On the b-chromatic number of regular graphs, Discrete Appl. Math. 159 (2011) 1303–1310.

[2] C. Christen, S. M. Selkow, Some perfect coloring properties of graphs, J. Combin. Theor. Ser. B, 27 (1979) 49–59.

[3] A. Gyárfás, J. Lehel, On-line and first-fit colorings of graphs, J. Graph Theory 12 (1988) 217–227.

[4] R. W. Irving, D. F. Manlove, The b-chromatic number of a graph, Discret Appl. Math. 91 (1999) 127–141.
[5] M. Jakovac, I. Peterin, The b-chromatic number and related topics - A survey, Discrete Appl. Math. 235 (2018) 184–201.

[6] H. A. Kierstead, S. G. Penrice, Radius two trees specify \(\chi\)-bounded classes, J. Graph Theory 18 (1994) 119–129.

[7] H. A. Kierstead, S. G. Penrice, W. T. Trotter, On-line and First-Fitcoloring of graphs that do not induce \(P_5\), SIAM J. Disc. Math. 8 (1995) 485–498.

[8] M. Kouider, M. Zaker, Bounds for the b-chromatic number of some families of graphs, Discrete Math. 306 (2006) 617–623.

[9] J. Kratochvil, Z. Tuza, M. Voigt, On the b-chromatic number of graphs, Lecture Notes in Computer Science, Springer, Berlin, vol. 2573, 2002, pp. 310–320.

[10] Z. Tang, B. Wu, L. Hu, M. Zaker, More bounds for the Grundy number of graphs, J. Combin. Optim. 33 (2017) 580–589.

[11] M. Zaker, Results on the Grundy chromatic number of graphs, Discrete Math. 306 (2006) 3166–3173.

[12] M. Zaker, Inequalities for the Grundy chromatic number of graphs, Discrete Appl. Math. 155 (2007) 2567–2572.