Prevalence and pathologic effects of colibactin and cytotoxic necrotizing factor-1 (Cnf 1) in Escherichia coli: experimental and bioinformatics analyses

Radwa N. Morgan1, Sarra E. Saleh2, Hala A. Farrag1 and Mohammad M. Aboulwafa2*

Abstract

Background: The colibactin and cytotoxic necrotizing factor 1 (Cnf 1) are toxins with cell cycle modulating effects that contribute to tumorgenesis and hyperproliferation. This study aimed to investigate the prevalence and pathologic effects of Cnf 1 and colibactin among hemolytic uropathogenic Escherichia coli (UPEC). The bioinformatics approach incorporated in this study aimed to expand the domain of the in vitro study and explore the prevalence of both toxins among other bacterial species. A total of 125 E. coli isolates were recovered from UTIs patients. The isolates were tested for their hemolytic activity, subjected to tissue culture and PCR assays to detect the phenotypic and genotypic features of both toxins. A rat ascending UTI in vivo model was conducted using isolates expressing or non-expressing Cnf 1 and colibactin (ClbA and ClbQ). The bioinformatics analyses were inferred by Maximum likelihood method and the evolutionary relatedness was deduced by MEGA X.

Results: Only 21 (16.8%) out of 125 isolates were hemolytic and 10 of these (47.62%) harbored the toxins encoding genes (cnf 1+, clbA+ and clbQ+). The phenotypic features of both toxins were exhibited by only 7 of the (cnf 1+clbA+clbQ+) harboring isolates. The severest infections, hyperplastic and genotoxic changes in kidneys and bladders were observed in rats infected with the cnf 1+clbA+clbQ+ isolates.

Conclusion: Only 33.3% of the hemolytic UPEC isolates exhibited the phenotypic and genotypic features of Cnf 1 and Colibactin. The in vivo animal model results gives an evidence of active Cnf 1 and Colibactin expression and indicates the risks associated with recurrent and chronic UTIs caused by UPEC. The bioinformatics analyses confirmed the predominance of colibactin pks island among Enterobacteriaceae family (92.86%), with the highest occurrence among Escherichia species (53.57%), followed by Klebsiella (28.57%), Citrobacter (7.14%), and Enterobacter species (3.57%). The Cnf 1 is predominant among Escherichia coli (94.05%) and sporadically found among Shigella species (1.08%), Salmonella enterica (0.54%), Yersinia pseudotuberculosis (1.08%), Photobacterium (1.08%), Moritella viscosa (0.54%), and Carnobacterium maltaromaticum (0.54%). A close relatedness was observed between the 54-kb pks island of Escherichia coli, the probiotic Escherichia coli Nissle 1917, Klebsiella aerogenes, Klebsiella pneumoniae and Citrobacter koseri.

Keywords: Uropathogenic E. coli (UPEC), Cytotoxic necrotizing factor-1 (Cnf 1), Colibactin (pks island), Rat ascending UTI model, Bioinformatics
Background
Cyclomodulins are cell cycle modulating toxins that contribute to tumorgenesis. These toxins are commonly produced by Gram negative bacteria and four of which [cytotoxic distending toxin (CDT), cytotoxic necrotizing factors (Cnfs), cycle inhibiting factor (Cif) and colibactin] are produced by *Escherichia coli* species [1–3]. The functions of the cyclomodulins are still not completely understood. However, their cellular modulating effects suggest that they attribute in the bacterial persistence, internalization and the development of chronic infections [3, 4]. Colibactin and Cnf 1 (subset of the Cnfs toxins group) are prevalent virulence determinants and almost exclusively confined to *E. coli* phylogroup B2 that includes the extra-intestinal pathogenic *E. coli* (ExPEC) and the probiotic *E. coli* Nissle strain 1917 [3, 5–7]. Extraintestinal pathogenic *E. coli* (ExPEC) are the commonest causative agent of urinary tract infections and highly frequent among neonatal meningitis and sepsis [6–8]. Molecular analysis of uropathogenic *E. coli* (UPEC) genome revealed that it harbors pathogenicity islands that are prevalent among *Escherichia coli* species causing diarrheal diseases and colonizing the gut [9]. The *pk* island and pathogenicity island II (PAI II) that harbors the *hlyCABD* operon and cytotoxic necrotizing factor 1 are the most prevalent PAs among UPEC species causing cystitis in females, prostatitis, pyelonephritis and urosepsis [2, 10, 11]. These pathogenicity islands are also prevalent among microbiota *E. coli* that colonizes colon of colorectal carcinoma patients (CRC) [12] and healthy newborn children in Sweden and France acquired from their mothers during birth [13, 14]. Moreover, the *pk* island was prevalent among members of the Enterobacteriaceae family including *Klebsiella pneumoniae*, *Enterobacter aerogenes* and *Citrobacter Koseri* and among *Yersinia* species while it was entirely absent in enteroinvasive, enteropathogenic, enterohemorrhagic, enterotoxigenic, and enteraggregative *E. coli* species [3, 6, 8]. Such predominance of the *pk* island among the Enterobacteriaceae family suggested the spread of this PAI via horizontal gene transfer [5]. Interestingly, a strong association was noticed between the production of colibactin by ExPEC and other virulence determinants including the adhesions determinants, production of hemolysin (β-hemolytic activity), cytotoxins such as the Cnfs and siderophores such as Yersiniabactin [2, 6, 15–17]. In 2017, the prevalence and association between the β-hemolytic activity, Cnf 1 and colibactin production among *E. coli* strains phylogroup B2 that colonize the macaques has reached 100%, 97.7% and 100%, respectively [17]. The Colibactin was first discovered in 2006 when cultured *Hela* cells appeared megalocytosised (enlarged cells with giant nuclei) with accumulated dsDNA breaks following transient exposure to the bacterial cell suspension of ExPEC and commensal *E. coli* Nissle strain 1917 [7]. This cytopathic effect differed from the effect induced by CDT, Cif or alphahemolysin since it was only contact dependent and lost upon bacterial filtration [5, 7]. Transcriptional analysis of the *pk* island reveals its division into 7 large transcripts units, 2 of which covers the majority of the island; the first includes 6 genes from *clbI* to *clbN* (23.3 kb) and the second includes 5 genes from *clbC* to *clbG* (6.2 kb) [18]. Five Clbs encoded by these transcripts are essential for the colibactin activity being involved in tailoring and transporting it to its site of action, these are Clb A, M, Q, L and P [19]. On the other hand, the cytotoxic necrotizing factor one (Cnf 1) catalyzes the deamination of Rho family proteins in cultured eukaryotic cells inducing multinucleation [20–22]. This cytopathic effect is a characteristic phenotypic feature for the Cnfs and had been differentiated from the hemolytic activity of the UPEC since *E. coli* hemolysins cytotoxic effect was confined to a lytic effect [23, 24]. Recently, many studies have been focused on exploring the prevalence and impact of colibactin and Cnf 1 after affirming that *E. coli* producing both toxins contributes in tumorgenesis and promotes invasive carcinomas [25, 26]. It was also noted that Cnf 1 and colibactin were overexpressed in the colon of the CRC than in the normal patients [12, 27]. This works aimed to investigate the prevalence of colibactin and Cnf 1 among the hemolytic UPEC recovered from urinary tract infected patients in Egypt. Additionally, an in vivo animal model was applied to give an insight to the possible pathologic effects associated with the presence of these virulence determinants. The bioinformatics approach aimed to expand the domain of the in vitro model exploring the prevalence of *pk* island and Cnf 1 among different related and unrelated bacterial species.

Materials and methods
Reference *E. coli* strains and clinical *E. coli* isolates
Three reference *E. coli* strains were used in this study. The first strain was uropathogenic *E. coli* ATCC 700336 J96 serotype O4:K6 which harbors PAI II (pathogenicity island II) genes that encode hemolysin A and cytotoxic necrotizing factor-1 toxins. The second strain was *E. coli* 28C serotype O75:K95 isolated from porcine septicemia kindly provided by Professor Dr. Eric Oswald, university of Toulouse, UPS, faculty of medicine, France. This strain harbors *hlyA*, *cnf 1* and *clbA*, *clbQ*, *clbK*, and *clbJ* genes. The third strain was *E. coli* ATCC 25299 and it was used in the antimicrobial sensitivity testing.

A total of 125 uropathogenic *E. coli* isolates were obtained as grown cells on nutrient agar plates from the Clinical Pathology lab, Faculty of Medicine, Cairo University. The isolates were recovered from urinary tract
infected patients (in and out patients) with their consent for diagnostic uses and treatment. The collected isolates were checked for their identity by growth on MacConkey and EMB agar as well as by partial sequencing of the 16S rRNA amplified gene which was conducted on 3 selected isolates.

Determination of the hemolytic activity of E. coli isolates

Collected *E. coli* isolates were screened for their hemolytic activity on blood agar containing 5% sheep blood [2, 28]. For the preparation of the blood agar plates, freshly sterilized and cooled nutrient agar media (45–50 °C) was aseptically supplemented with 5% sheep blood. The blood agar plates were then streaked by *E. coli* test isolates and incubated overnight at 37 °C. Post incubation, the hemolytic activity of the streaked isolates was examined and the isolates producing clear zone of hemolysis were considered hemolytic (Hly+).

In vitro experimental model to explore the prevalence of both toxins, the cytotoxic necrotizing factor-1 (Cnf 1) and colibactin

Bacterial growth and preparation of the crude cell lysate containing cytotoxic necrotizing factor-1 (Cnf 1)

The overnight growth of the hemolytic isolates, the reference strains 28C and J96 and some selected non-hemolytic isolates in nutrient broth was adjusted to OD$_{600 nm}$ 0.6 to be used for inoculation of 20 ml aliquots of tryptone soy broth contained in 50 ml conical flasks. The flasks were incubated in an orbital shaker at 200 rpm and 37 °C for 20 h. Post incubation, the growth obtained was sonicated at 10 µm peak amplitude for 5 min in an ice bath. The obtained cell lysate was then centrifuged for 15 min at 6000 x g and 4 °C. The resultant supernatant was filter sterilized through 0.22 µm (termed the crude cell lysate) and used for the detection of Cnf 1 cytotoxicity on cultured mammalian cells [28].

Cytotoxicity of the crude cell lysate for the phenotypic detection of colibactin

To test the production of colibactin, a single colony from an overnight plated growth of each hemolytic, the reference strains 28C and J96 and some selected non-hemolytic isolates was inoculated in 20 ml tryptone soya broth contained in 50 ml conical flasks and incubated in an orbital shaker at 37 °C for 20 h. The growth obtained was 100-fold diluted by RPMI containing 10% FBS in sterile culture tubes to a final volume of 3 ml followed by incubation at 37 °C till OD$_{600 nm}$ 0.08–0.1 (about 2 h). The resultant bacterial suspension gives a multiplicity of infection (MOI) of about 5 when overlaying 0.05 ml of this suspension over pre-grown cultured mammalian cells in a well of microtiter plate. The used mammalian cells was *Caco* 2 cells (human colorectal carcinoma cells) and they were grown as previously described in 24 wells micro-titer plate containing RPMI 1640 with l-glutamine (BioWhittaker) medium. The inoculated plates were incubated 3 to 4 h at 37 °C in 5% CO$_2$ atmosphere then washed with PBS 3 to 4 times and 1 ml aliquot of the fresh RPMI medium with 10% FBS and antibacterial/antifungal agents solution (penicillin 100 IU/ml, streptomycin 100 µg/ml, gentamycin sulfate 200 µg/ml/ampotericin 2.5 µg/ml) was added to each well. The plates were then re-incubated similarly under the previous mentioned conditions and the growth medium was changed on daily basis for 72 h. The cells were Giemsa stained and morphologically examined by an inverted microscope (200× magnifications) [29, 31].

Giemsa staining of the treated mammalian cells

The treated mammalian cells were washed twice by PBS and fixed with absolute methanol for 5–7 min. The methanol was discarded and the cells were washed again with PBS. Giemsa stain solution was then added to the wells of the test plates, 0.5 ml and 0.05 ml per well for 24 and 96 wells micro-titer plates, respectively and the plates were left at room temperature for 25 min. The dye was then
The resultant PCR products for Sequencing of the PCR products of cnf 1, clbA and clbQ genes

Table 1.

Test gene	Primers used and their sequences	Expected PCR product size (bp)	Refs.
Cytotoxic necrotizing factor-1	cnf-1 forward 5'-GGGGGAAGTACAGAAGAATT-3'	1112	[2]
	cnf-1 reverse 5'-TGCGGTTCACCTCACCAGT-3'		
Colibactin A (phosphopantetheinyl transferase)	clbA forward 5'-CTAGATATATCGTGGCATT-3'	1002	
	clbA reverse 5'-CAGATAACAGAGACACCATTCA-3'		
Colibactin Q (thioesterase enzyme)	clbQ forward 5'-CTTGTATAGTACACAATAATTC-3'	821	
	clbQ reverse 5'-TTATCCGTGTTTCTGTTGC-3'		

discarded and the plates were washed by PBS prior to microscopic examination [32].

Detection of cytotoxic necrotizing factor-1 (cnf 1) and colibactin encoding genes clbA and clbQ by PCR PCR amplification and gel electrophoresis detection of the target genes

Colony PCR was performed to detect cnf 1, clbA, and clbQ genes in the hemolytic and a number of the non-hemolytic E. coli isolates which was carried out as described by Packeiser et al. [33]. A single colony from an overnight nutrient agar plated culture was suspended in 100 µl sterile double distilled water contained in DNA free PCR tube. The tube was vortexed and heated at 99 °C for 6 min. The resultant supernatant contained bacterial chromosomal DNA. Afterward, the PCR reaction was prepared containing 6.5 µl double distilled water, 2 µl each of the forward and the reverse primer (0.2 µM), 12.5 µl of master mix containing dNTPs and Taq polymerase enzyme (one TaqR quick-loadR 2× MM with standard buffer, Biolabs) and 2 µl of the prepared DNA per PCR tube. The PCR reaction conditions were set as follows: denaturation at 94 °C for 3 min followed by 30 cycles of denaturation at 94 °C for 1 min, annealing at 54 °C for 30 s, extension at 72 °C for 1 min and a final extension round at 72 °C for 7 min [2, 34].

In vivo experimental model to explore the possible pathologic effect of cytotoxic necrotizing factor 1 and colibactin

Rat ascending UTI animal infection model

The animal experiment was approved by the ethic committee of faculty of pharmacy, Ain sham University, Cairo, Egypt. The Experiment was carried out according to the guidelines stated in the Guide for the Care and Use of Laboratory Animals, 8th ed, published by the National Academy of Sciences, 1996, Washington DC. Healthy female rats weighing 200–210 g were kept in clean cages, receiving adequate supply of clean water and food (rat pellets with 16% protein contents), 48 h prior to infection. The rats were tested for pre-existing urinary tract infections [35]. A urine sample was pre-collected from each rat and the urine bacterial count was checked.

The bacterial suspension and animal inoculation were carried out principally as described by Matts et al. [36] and Larsson et al. [37]. For the rats infections, four isolates were used, hemolytic cytotoxic isolate 70β (hly+ cnf 1+ clbA+ clbQ+) that harbors both Cnf 1 and colibactin encoding genes, hemolytic non-cytotoxic (phenotypically) isolate 6β (hly+ cnf 1− clbA− clbQ−) that lacks both toxins encoding genes, and non-hemolytic non cytotoxic isolate 67 (hly− cnf 1− clbA− clbQ−) yet harbors both Cnf 1 and colibactin encoding genes, hemolytic cytotoxic isolate 13β (hly− only, cnf 1− clbA− clbQ−) that lacks both toxins encoding genes, and non-hemolytic non cytotoxic isolate 67 (hly− cnf 1− clbA− clbQ−). The bacterial suspension of each test isolate was prepared by picking up 5–6 colonies of fresh grown cells on nutrient agar and inoculating them in 20 ml sterile tryptone soya broth contained in 50 ml conical flask. The flask was incubated under static condition at 37 °C for 20 h. The resultant growth was harvested, washed with and re-suspended in sterile PBS to an OD600nm 0.8. The rats were intra-urethrally inoculated with 0.2 ml aliquots of the prepared bacterial suspension using a blunt end hypodermic needle 30G, 0.5 in. under diethyl-ether anesthesia, a group of

In Table 1, the primers used for amplification of the test genes and their sequences are listed. The expected PCR product sizes range from 821 to 1112 bp. The SWISS model was used to deduce the amino acid sequence and determine the relationship to other proteins in database.

Sequeing of the PCR products of cnf 1, clbA and clbQ genes

The resultant PCR products for cnf 1, clbA and clbQ genes of a representative isolate were sequenced by Sanger sequencing technology using Applied biosystem Seqstudio genetic analyzer (Clinilab laboratories, Cairo, Egypt). The sequence obtained for the different tested genes were analyzed by ExPASy translation tool (https://web.expasy.org/translate/) linked with BLASTP and
three rats for each isolate. The three rats of control group were treated similarly but sterile PBS was used instead of bacterial suspension. Following the inoculation, treated rats were returned to their cages, left for 48 to 72 h, then re-anesthetized by diethyl ether and sacrificed. The bladder and kidneys were extracted and kept in 15% formalin prior to histopathological processing and examination.

Histopathological examination of the autopsied kidneys and bladders
This was carried out at the histopathology lab of Faculty of Veterinary Medicine, Cairo University, Egypt. The organs were processed, stained by hematoxylin and eosin and examined by a pathologist.

Bioinformatics analysis to explore the prevalence of colibactin and Cnf 1 among the bacterial species
The sequences alignment and the phylogenetic tree construction for the tested proteins and *pks* genetic island were done using MEGA X software tool using default set parameters. The number of bootstrap replicates used during the mega analysis and the phylogenetic trees construction was 5000 [38]. This was taken to represent the evolutionary history of the taxa analyzed. The amino acid sequence evolutionary based history for the 19 encoded proteins in colibactin *pks* island (ClbA to ClbS), Cnf 1 and HlyA were inferred by the Maximum Likelihood method based on the JTT matrix-based model [39]. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using a JTT model, and then selecting the topology with superior log likelihood value. The trees were drawn to scale, with branch lengths measured in the number of substitutions per site. Evolutionary analyses were conducted in MEGA X [40]. The aligned sequences were used for the phylogenetic trees constructions. In all cases (either nucleotide sequences for the target genes or amino acid sequences for tested proteins), the query sequence for the tested geneprotein was aligned against non-redundant sequences retrieved from NCBI database with similarity and coverage percentages not less than 80%. Protein identity, name and function were retrieved from UniProt website (https://www.uniprot.org/).

Antimicrobial sensitivity testing
The antimicrobial sensitivity pattern for the hemolytic toxin harboring (*hly*+*cnf1*+*clbA*+*clbQ*) *E. coli* isolates versus representative non-hemolytic non-toxin harboring (*hly*−*cnf1*−*clbA*−*clbQ*) isolates and the reference *E. coli* strain ATCC 25299 was performed using Kirby Bauer disc diffusion method [41]. The diameters of the inhibition zones produced by the test isolates were determined and interpreted using the performance for antimicrobial susceptibility testing published by CLSI 2017.

Results

Recovery, identification and hemolytic activity testing of the *E. coli* clinical isolates
A total of 125 isolates were identified *E. coli* as they exhibited the typical characteristics of this bacterial species on MacConkey and EMB agar. The identity was confirmed by partial sequencing of cloned 16S rRNA for three selected isolates (GenBank: MK178600.1, MK559719.1, and MK560764.1). The sequencing results revealed ≥ 98% identity when aligned against *E. coli* 16S rRNA sequences published in NCBI database (Escherichia coli U 5/41 ATTC 11775, origin urine, accession no. NR_024570.1).

Out of the 125 recovered *E. coli* isolates, 21 isolates (16.8%) showed clear zone of hemolysis on blood agar containing 5% sheep blood (*β* hemolytic phenotype). These isolates were considered hemolytic (*Hly*+).

Phenotypic detection of Cnf 1 and colibactin production
The crude cell lysates of the hemolytic isolates were tested for production of Cnf 1 using three mammalian cells. On *Vero* and *Hela* cell lines, the crude cell lysate of 13 out of the 21 hemolytic isolates (61.9%) exhibited morphological changes including cellular enlargement and death 24 to 48 h of exposure with exception of two isolates coded 28β and 29β which showed cytotoxic features on *Hela* cells only (Table 2). Only 7 out of the 13 cytotoxic isolates showed multinucleation along with cellular enlargement on the cultured mammalian cells (isolates coded 70β, 114β, 28β, 29β, 27β, 4β, and 10β). These cytotoxic effects exhibited on *Hela* or *Vero* cells were similar to those produced by two known Cnf 1 producer reference *E. coli* strains J96 and 28C (Fig. 1). Three isolates of those showing multinucleation in *Hela* and *Vero* cells (70β, 114β and 28β) were further tested on *Hep2* cells and similarly multinucleation was observed (Fig. 2).

Regarding the colibactin production, *Caco2* cells were megalocytosised after treatment by the bacterial cell suspension of 7 out of 21 hemolytic isolates (33.3%) as shown in Fig. 3. This effect was similar to that induced by reference *E. coli* strains J96 and 28C (known producers of colibactin). None of the randomly selected non-hemolytic isolates exhibited the phenotypic features of these toxins on cultured mammalian cells.

Detection of cnf1, clb A and clb Q encoding genes among the test isolates
Existence of *cnf1*, *clbA* and *clbQ* genes was tested in the genome of all hemolytic (*n* = 21) and some non-hemolytic *E. coli* isolates (*n* = 21). The detection was based
on partial amplification of the respective genes using standard PCR and the results were compared to the PCR amplicons produced by the two reference strains J96 and 28C (Additional file 1: Figure S23). The genotypic analysis revealed that 8 out of 21 (38.09%) hemolytic isolates harboured the encoding genes (\textit{cnf} \textit{1}, \textit{clbA}, and \textit{clbQ}) of both toxins. Only one isolate coded 99β was (\textit{clbA} + \textit{clbQ} + \textit{clbM} + \textit{hly} +) without harbouring the \textit{cnf} 1 gene whereas isolate 5β was \textit{cnf} 1 + without harbouring the \textit{clbA} and \textit{clbQ} genes. None of the tested non-hemolytic isolates harboured any of these genes. Comparing this result with the phenotypic analysis, it was noted that five \textit{E. coli} isolates exhibited cytotoxicity on cultured mammalian cells including cell death and enlargement but didn’t harbour either cytotoxins encoding genes. One isolate coded 6β was (\textit{clbA} + \textit{clb Q} + \textit{cnf} 1 +) and didn’t show either colibactin or cytotoxic necrotizing factor-1 related cytotoxic effects on cultured mammalian cells. Another isolate 10β was (\textit{cnf} 1 + \textit{clbA} + \textit{clbQ} +) yet didn’t show the colibactin related cytotoxic effects on \textit{Caco2} cells. Finally, isolate 5β harboured the \textit{cnf}-1 encoding gene only without exerting its cytotoxic effect on cultured mammalian cells. The phenotypic profiles of the tested hemolytic isolates versus their genotypic patterns are shown in Table 2.

Table 2 The phenotypic profile versus the genotypic profile of the test hemolytic isolates as compared to the reference \textit{E. coli} strains 28C and J96

Isolate code	Phenotypic profile of test hemolytic \textit{E. coli} isolates on cultured mammalian cells	Genotypic profile of test hemolytic \textit{E. coli} isolates
	Intact bacterial cells (megalocytosis)	\textit{cnf} 1 \textit{clb A} \textit{clb Q}
	\textit{Caco2 cells} \textit{Hela cells} \textit{Vero cells}	\textit{clb M} \textit{hly} + \textit{only}
1β	−	−−−−−
3β	−	−−−−
4β	+	−−−−
5β	−	+−−−
6β	−	+−−−
10β	−	+−−−
12β	−	−−−−
13β	−	+−−−
19β	−	−−−−
27β	+	+−−−
28β	+	+−−−
29β	+	+−−−
32β	−	+−−−
55β	−	+−−−
70β	+	+−−−
85β	−	−−−−
88β	−	−−−−
99β	+	+−−−
100β	−	+−−−
108β	+	+−−−
114β	+	+−−−
\textit{E. coli} strain J96	+	+−−−
\textit{E. coli} strain 28C	+	+−−−

Percent out of the hemolytic isolates	7 (33.33%)	13 (61.9%)	10 (47.6%)

+, presence of character (cytotoxicity or gene); −, absence of character (cytotoxicity or gene); +* indicates the appearance of multinuclei (multinucleation); + only in crude cell lysate cytotoxicity indicates general uncharacteristic cytotoxic effect

Histopathology of the infected kidneys and bladders

Rat ascending UTI models were used to compare the pathologic effects exerted by two (\textit{cnf} 1 + \textit{clb A} +
clb Q”) harbouring isolates coded 70β and 6β against non-hemolytic non toxin harbouring isolate, (hly− cnf− I− clb A− clb Q−), coded 67 and hemolytic non toxin harbouring isolate, (hly+ cnf− I− clb A− clb Q−), coded 13β. Notably, isolate 70β exerted the severest kidney (nephritis) and bladder (cystitis) infections when compared to the other test isolates followed by isolate 6β which showed moderate degree of infection. Genotoxic effects were only observed in the kidneys and the bladders of the rats infected by the cnf 1+ clb A+ clb Q+ isolates (70β and 6β) manifested by hyperplastic changes in the bladder transitional epithelium and nuclear pyknosis in the renal tubular epithelium (Figs. 4, 5, 6). Additionally, isolate 70β showed thickening in the Bowmen’s capsule, severe necrosis in the kidneys and bladders, and severe desquamation of the bladder transitional epithelium. For the isolates 67 and 13β, both showed mild to moderate infections as they exhibited the least pathologic effects against their opponents (Table 3).

Bioinformatics analyses results

Analyses of cnf 1, clbA and clbQ isolated genes sequences

The nucleotides sequence of the PCR products for the three tested genes of a representative E. coli test isolate was determined and the results obtained were analysed by ExPasy translation tool. Cnf 1 protein sequence showed 99% identity to cytotoxic necrotizing factor 1 of Escherichia coli ATTC 11775 (accession: Q47106) and its tertiary structure gave 98.35% model template identity on the SWISS model to cytotoxic necrotizing factor 1. The ClbA protein sequence revealed 99% identity to the putative 4’-phosphopantetheinyl transferase of Escherichia coli H461 (accession: A0A1X3KCP5) and 29.38% model template identity on the SWISS model. The ClbQ protein revealed 99% identity to the putative thioesterase of Escherichia coli strain UTI89/UPEC (accession: Q1RAD9) and 99.46% model template identity to the putative thioesterase on the SWISS model.

Fig. 1 Morphological changes in mammalian cells exhibited by the crude cell lysate of UPEC isolates. a Untreated Vero cells, b treated Vero cells non-hemolytic E. coli coded 67, c treated Vero cells with hemolytic E. coli coded 70β, d treated Vero cells with hemolytic E. coli coded 114β, e treated Vero cells with hemolytic E. coli coded 27β, f treated Vero cells with reference E. coli strain 28C, g treated Vero cells with reference E. coli strain 196.
Analyses of the 54 kb colibactin pks genomic island and its encoded proteins, Cnf 1 and HlyA

The NCBI retrieved sequences of the 54 kb colibactin pks genomic island, its nineteen encoded proteins, Cnf 1 and HlyA were analysed for different characters as shown in Tables 4, 5, 6 (Additional file 1: Figures S1–S22 and Tables S1–S23). The bootstrap replicates and bootstrap support values are shown in phylogenetic trees Additional file 1: Figures S1–S22 and their legends.

Distribution of colibactin pks genomic island and cytotoxic necrotizing factor 1 among the bacterial species

The nineteen colibactin pks island genes are distributed among bacteria as follows: the 100% is distributed between enterobacteriales (96.43%) and uncultured bacterium (3.57%); the enterobacteriales (96.43%) are distributed between enterobacteriaceae (92.86%) and Obesumbacterium proteus (5.57%); the enterobacteriaceae is distributed among the genera Escherichia (53.57%), Klebsiella (28.57%), Citrobacter (7.14%), and Enterobacter (3.57%). The two genera Escherichia and Enterobacter are composed of one species for each, Escherichia coli and Enterobacter cloacae, respectively. The genus Klebsiella is composed of Klebsiella pneumoniae (62.5%), Klebsiella aerogenes (25%) and Klebsiella variicola (12.5). The distribution of the colibactin pks island genes among the bacterial species is represented in (Table 4).

Similar to colibactin pks island genes, the cytotoxic necrotizing factor 1 showed high predominance among the order Enterobacteriales (97.84%) including the Enterobacteriaceae family (96.76%). Within the Enterobacteriaceae family, the Cnf 1 was distributed among Escherichia species, Shigella species and Salmonella species.
enterica by 94.59%, 1.08%, and 0.54% respectively. *Escherichia coli* represents 94.05% of the Cnf 1 distribution among these enteric bacteria. Moreover, the Cnf 1 was sporadically found among *Yersinia pseudotuberculosis* complex and *Photobacterium* by 1.08% for each and *Moritella viscosa* and *Carnobacterium maltaromaticum* by 0.54% for each. The distribution of the Cnf 1 gene among the bacterial species is represented in (Table 5).

Relatedness and function of colibactin pks proteins among different bacterial species

The different proteins encoded by the nineteen *pks* island genes of *E. coli* were aligned individually against their homologous in the NCBI databases using BLASTP program. The phylogenetic trees were constructed for the aligned homologues with coverage percent not less than 80% and identity of ≥70% (Additional file 1: Figures S1–S22). The pairwise distance between the homologue of each bacterial species and the corresponding one of *E. coli* was provided (Additional file 1: Tables S1–S22). The protein identification code (ID), its molecular function and biological role were retrieved from UniProt website (https://www.uniprot.org). As shown in Additional file 1: Table S23, it can be observed that the shortest phylogenetic distances occurred between *E. coli* homologues protein and those of: (i) *Klebsiella* species for ClbA, ClbC, ClbD, ClbF, ClbG, ClbL, ClbM, ClbN, ClbO, and ClbQ; (ii) *Klebsiella species* and *Citrobacter koseri* for ClbH, ClbI, ClbJ, and ClbK; (iii) *Citrobacter koseri* and *Klebsiella species* for ClbB and ClbE, ClbP and ClbR; (iv) *Shigella sonnei* and *Klebsiella species* for ClbS. Regarding the 54-kb genomic *pks* island, an important observation is that this island is present in *Escherichia coli*, the probiotic *Escherichia coli* strain Nissle 1917, *Klebsiella aerogenes*, *Klebsiella pneumoniae* and *Citrobacter koseri* with very close relatedness (very small pairwise distances among them).

Prevalence of different pks encoded proteins, Cnf 1 and HlyA among different bacterial species

As shown in Table 6, sequences of the nineteen proteins encoded by colibactin *pks* island (ClbA to ClbS) could
be totally retrieved from NCBI databases for only three bacterial species, *Escherichia coli*, *Klebsiella pneumoniae* and *Erwinia oleae*. Only *E. coli* has deposited sequences in NCBI databases for the all the proteins encoded by the nineteen colibactin *pks* island, *cnf 1*, and hlyA genes. However, the probiotic *Escherichia coli* strain Nissle 1917 has deposited sequences in NCBI database for proteins encoded by only three genes (*clbL*, *clbM* and *clbN*) among the 21 tested proteins. Notably, this few detected number was based on the sequences generated in different laboratories that were submitted and deposited in GenBank at NCBI. However, more than three proteins encoded in *pks* island of *E. coli* strain Nissle 1917 can be retrieved from those predicted in NCBI Prokaryotic Genome Annotation Pipeline. The colibactin *pks* protein profile of *Klebsiella aerogenes* is similar to that of *Klebsiella pneumoniae* except that the former has no NCBI deposited sequences for three colibactin proteins ClbP, ClbQ and ClbS. On the other hand, *Klebsiella oxytoca* has NCBI deposited sequences for only six out of 19 colibactin *pks* proteins (*ClbA, ClbB, ClbK, ClbN, ClbO, ClbP, ClbS*). *Citrobacter koseri* has NCBI deposited sequences for 9 out of 19 colibactin *pks* proteins (*ClbB, ClbE, ClbH, ClbI, ClbJ, ClbK, ClbN, ClbP, ClbR*) while *Citrobacter braakii* do not show any available deposited sequences in NCBI of these investigated proteins. *Serratia marcescens* has NCBI deposited sequences for the 19 colibactin *pks* proteins except ClbA, ClbB and ClbK. Each of *Enterobacter aerogenes*, *Acinetobacter baumannii*, *Shigella sonnei* and *Mixta theicola* has NCBI deposited sequences for only one colibactin *pks* protein: ClbB, ClbR, ClbS and ClbS, respectively. However, each of *Frischella perrara* and *Gilliamella apicola* has NCBI deposited sequences for five colibactin *pks* proteins (*ClbD, ClbE, ClbF, ClbI, ClbL*) with an extra protein (ClbQ) in case of *Frischella perrara*. None of the bacterial species *Enterobacter hormaechei*, *Shigella boydii*, *Salmonella enterica*, *Photobacterium damsela*, *Carnobacterium maltaromaticum*, *Moritella viscosa*, *Yersinia pseudotuberculosis*, *Morganella morgani*, *Vibrio parahaemolyticus*, *Proteus columbae* and *Proteus penneri* in addition to *Citrobacter braakii* has NCBI deposited sequences for any of colibactin *pks* proteins. NCBI deposited sequences are available for the cytotoxic protein Cnf 1 of *Shigella boydii*, *Salmonella enterica*, and

Fig. 4 Pathologic changes in the rats kidneys infected with UPEC. **a** Control uninfected rat; **b** hemolytic non-toxin harbouring *E. coli* isolate 13β (hly+ cnf 1− clbA− clbQ−); **c1**, **c2** hemolytic toxin producing *E. coli* isolate 6β (hly+ cnf 1+ clbA+ clbQ+); **d** non-hemolytic non-toxin harbouring *E. coli* isolate 67 (hly− cnf 1− clbA− clbQ−). Letters G, T and IF refer to Glomeruli, Tuft and inflammatory cells infiltration, respectively. The arrows in **b** and **c1**, indicate congestion of the blood vessels. In **c2**, nuclear pyknosis and vacuolar degeneration are indicated by thin continuous and dashed arrows, respectively. The detailed description of the pathologic changes is mentioned in Table 3.
Photobacterium damselae, Carnobacterium maltaromaticum, Maritella viscosa and Yersinia pseudotuberculosis in addition to E. coli. There is an available NCBI deposited sequence for the hemolytic protein HlyA of Citrobacter braakii, Enterobacter hormaechei, Morganella morganii, Vibrio parahaemolyticus, Proteus columbae and Proteus penneri in addition to that of E. coli.

Antimicrobial sensitivity of E. coli test isolates
The sensitivity patterns of E. coli isolates that harboured both toxins encoding genes (cnf 1+ and clbA+ clbQ+) versus both the non-hemolytic non-toxin harbouring isolates (cnf 1−, and clbA− clbQ−) and the reference E. coli ATCC 25299 were tested against 11 antimicrobial agents. A percentage ≥70% of the hly+ cnf1+ clbA+ clbQ+ E. coli isolates showed sensitivity to eight antimicrobial agents while the isolates percentages between 40 and 60% were only sensitive to three antimicrobial agents. A percentages ≤20% of the hly+ cnf1+ clbA+ clbQ+ E. coli isolates was recorded for intermediate resistance to two antimicrobial agents, amoxicillin/clavulanic acid and ceftazidime. Interestingly, the hly+ cnf1+ clbA+ clbQ+ E. coli isolates were sensitive to at least seven antimicrobial agents except for isolate 10β which was sensitive to only three antimicrobial agents while isolate 5β, which was devoid of colibactin encoding genes (clbA, and clbQ), was resistant to all tested antimicrobial agents except nitrofurantoin. On the contrary, high resistance patterns ≥60% to eight of the tested antimicrobial agents were observed among the non-hemolytic non-toxin harbouring E. coli isolates (hly− cnf1− clbA− clbQ−). A notable sensitivity ≈90% to nitrofurantoin and nalidix acid was observed among the hly− cnf1− clbA− clbQ− E. coli isolates with the exception of two isolates coded 74 and 120. The antimicrobial sensitivity patterns for the hemolytic toxin harbouring and non-hemolytic non-toxin harbouring E. coli isolates is represented in Table 7.

Fig. 5 Pathologic changes in the rat kidneys infected with UPEC isolate coded 70β. e1 Severe congestion is indicated by the letter (C), severe inflammatory cells infiltration indicated by IF and necrosis of the glomerular tuft indicated by the continuous arrow. e2 Nuclear pyknosis is indicated by the continuous arrows and necrosis of the glomerular tuft by the dashed arrows. e3 Severe edema indicated by the letter (e), inflammatory cell infiltration by IF and hyalinization of the glomerular tuft by the dashed arrow. The detailed description of the pathologic changes is mentioned in Table 3.
Discussion

In this study, the prevalence and the pathologic effects of both cytotoxic necrotizing factor-1 (Cnf 1) and colibactin was investigated among hemolytic UPEC recovered from UTI patients in Egypt. Since the production of both toxins has been associated with β hemolytic phenotypes [2, 15–17], the in vitro experiments were based on detecting the hemolytic activity of the collected E. coli isolates followed by the detection of the characteristic phenotypic and genotypic features of both toxins. A total of 21 out of the 125 the collected isolates exhibited a β hemolytic phenotype on blood agar and 7 out of these 21 isolates induced multinucleation and megalocytosis in treated cultured mammalian cells. These observed cytotoxic effects weren’t attributed to the E. coli hemolytic activity since E. coli hemolysin induces cytocidal effect within 30 to 60 min and lasts 3 to 6 h post treatment of cultured mammalian cells [24, 42, 43]. The multinucleation of cultured Hela, Vero and Hep2 cells induced by the crude cell lysate of 7 hemolytic isolates suggested the expression of active Cnf 1. As reported by Alonso et al. [28] and Landraud et al. [44], the Cnf 1 is the cell active toxin produced by hemolytic UPEC that activates the Rho proteins and induces multinucleation in cultured mammalian cells. Consequently, the detection of the Cnf 1 encoding gene among these isolates affirmed the production of Cnf 1. Furthermore, the rise of megalocytosis in treated Caco2 cells by the bacterial cell suspension of 7 hemolytic UPEC suggested the production of active colibactin. The 100 fold dilution of the bacterial cell suspension used in the treatment of Caco-2 cells (MOI ≈ 5) lowered the bacterial count and allowed the exploration of phenotypic features of colibactin [17]. This phenotypic feature denotes dsDNA breaks and blockage of G2/M cycle which is attributed to the production of either CDT or colibactin [1–3]. However, several studies have confirmed

![Fig. 6](image_url) Pathologic changes in the rats bladders infected with UPEC. a Control uninfected bladder; b bladder infected by E. coli coded 13β (hly+ cnf 1− clbA− clbQ−); c bladder infected by E. coli isolate coded 67 (hly− cnf 1− clbA− clbQ−); d bladder infected by E. coli coded 6β (hly+ cnf 1− clbA+ clbQ+); e, f: bladder infected by E. coli coded 70β (hly+ cnf 1+ clbA+ clbQ+); p, Lamina propria; e, edema; ds, desquamated epithelium; hp, hyperplastic changes. Continuous arrows indicate normal transitional epithelium (a), inflammatory cell infiltration (b), vacuolar degeneration and inflammatory cell infiltration (c), necrosis (d), degenerative necrosis (e). The detailed description of the pathologic changes is mentioned in Table 3.
Table 3 Pathologic effects exerted by the hemolytic test isolates on the kidneys and bladders of female rats

Pathological changes	Test isolates^a			
	70β	6β	13β	67
Kidneys				
Interstitial blood vessels	++++	++	+	+
Degree of congestion				
Inflammatory cells infiltrations	++++	++	+	+
Degree of infiltration				
Renal tubular epithelium				
Edema/swelling	++++	+	−	−
Vacular degeneration	++++	+	−	−
Necrosis	++++	++	+	+
Nuclear pyknosis	++++	+	−	−
Thickening of bowman's capsule	++++	−	−	−
Renal glomeruli				
Congestion of capillaries	++++	++	−	−
Edema of glomerular tuft	++++	++	−	−
Necrosis of glomerular tuft	++++	++	+	+
Hyalinization of the glomerular tuft	++++	++	+	+
Bladder				
Lamina propria				
Edema	++++	++	−	−
Inflammatory cells infiltration	++++	++	+	+
Transitional epithelium				
Hyperplastic changes	++++	++	−	−
Necrosis	++++	++	−	−
Desquamation	++++	−	−	−
Vacular degeneration	++++	++	+	+

^a Characteristics of the test isolate: 70β: cnf 1⁺ clb A[−] clb Q[−]; shows beta-hemolysis on blood agar; crude cell lyses and viable cell cytotoxicity in mammalian cell. 6β: cnf 1⁺ clb A[−] clb Q[−]; shows beta-hemolysis on blood agar; no cytotoxicity in mammalian cells. 13β: cnf 1⁺ clb A[−] clb Q[−]; shows beta-hemolysis on blood agar and mammalian cell cytotoxicity of crude cell lysate only. 67: cnf 1[−] clb A[−] clb Q[−]; shows neither hemolysis on blood agar nor cytotoxicity in mammalian cells.

that the hemolytic UPEC aren't common producers of CDT or Cif [which is only produced by enteropathogenic (EPEC) and enterohemorrhagic E. coli (EHEC)] [2, 3, 11]. Thus, the detection of clbA and clbQ genes among these 7 isolates confirmed the expression of colibactin. The choice of clbA and clbQ genes for the genetic detection of the entire pks island was based on the work published by Dubois et al. [2] who reported that the presence of the two mentioned genes is an indication for the presence of the entire pks island.

The in vivo rat ascending UTI model conducted to explore the possible pathologic effect associated with the presence of these toxins revealed that the isolates harbouring the cnf 1, clbA, and clbQ encoding genes induced the severest bladder and kidney infections within 48–72 h. As conveyed by Lu et al. [45], this finding suggested that the existence of these virulence determinants renders the organism more virulent and aggravates the severity of the infection. The hyperplastic changes in the bladder transitional epithelium, proliferation and thickening of the Bowman's capsule exhibited by isolate 70β and similarly, by isolate 6β suggested the expression of active colibactin in vivo. These pathologic effects were similar to the effects observed in a study conducted by Garcia et al. [29] where the reproductive system of female rats inoculated by pks⁺ E. coli showed hyperplastic changes, severe necrosis and massive inflammatory cells infiltration. Furthermore, the nuclear pyknosis that was pronounced in the renal tubular epithelium infected by isolate 70β and 6β provided additional evidence in regards to the colibactin expression in vivo [46]. The extensive shedding, necrosis and desquamation of the bladder transitional epithelium exhibited by isolate 70β suggested the expression of active Cnf 1. According to Island et al. [47], Cnf 1 producing isolates induced apoptotic mechanisms, stimulated exfoliation and desquamation of in vitro cultured uroepithelial cells and bladder monolayers. For isolate 6β which lacked the in vitro cytotoxicity of both colibactin and the Cnf 1 yet induced genotoxic changes in the infected kidneys and bladders, this didn't necessarily mean that the pks island wasn't intact or un-functional. As revealed by the bioinformatics analysis, intact pks island with the 19 colibactin encoding genes were only detected among E. coli strains (Table 6). However, the lack of in vitro cytotoxicity might be attributed to the in vitro set conditions itself where an alteration in the virulence expression machinery could have occurred [2, 48].

The bioinformatics analyses conducted in this study aimed to expand the domain of the in vitro model and explore the prevalence of Cnf 1 and pks island among other bacterial species confirmed the predominance of pks genomic island among the members of the Enterobacteriaceae family. The phylogenetic trees for both ClbA and ClbQ proteins showed their prevalence among other urinary tract pathogens as well including Enterobacter aerogenes and Klebsiella species and their complete absence in Salmonella, Shigella, and Proteus species [15]. Only E. coli has NCBI deposited sequences for the expressed Cnf 1, HlyA and the total nineteen colibactin pks proteins. ClbQ was also prevalent among Serratia marcescens and Frischella perrara with somewhat long
phylogenetic distances to that of *E. coli* ClbQ. Similar to ClbA and ClbQ, the phylogenetic tree analysis of HlyA demonstrated its prevalence among *Enterobacteriaceae* members causing urinary tract infection in particular *Escherichia* species. Also Cnf 1 phylogenetic tree analysis revealed its prevalence among unrelated bacteria including *Enterobacteriaceae* (*E. coli*), *Photobacteria*, *Carnobacteria* and *Moritella viscosa*.

As we proceeded to the antibiotic susceptibility profile for the cytotoxic genes harbouring isolates, it became evident that there is a cost paid by the *cnf 1* ^+^ *clbA* ^+^ *clbQ* ^+^ isolates on the expense of their antimicrobial resistance since high antimicrobial susceptibility was detected among these isolates. This was supported by the high antibiotic resistance profile among the non-hemolytic non-toxin harbouring isolates agreeing with several published reports and suggesting the instability of these pathogenicity islands. As previously demonstrated, resistance to antibiotics especially quinolones among *UPEC* was associated with lower prevalence of virulence factors and pathogenicity islands [6, 49–51]. According to Middendorf et al. [52], Piatti et al. [53] and Ahmed et al. [54], uropathogenic *Escherichia coli* PAIs including PAI II536 (which encodes the Cnf 1 and hemolysin) and *pks* island are characterised by their genetic flexibility and horizontal gene transfer abilities which rendered them mutation prone regions, highly unstable and labile to external stimuli including the exposure to antibiotics. Lopez et al. [55] and Piatti et al. [53] reported that exposure to antibiotics induced local nucleotide changes and horizontal gene transfer which contributed to the loss of PAIs and explained their absence among the resistant *UPEC* strains. Wherefore, the disappearance of the PAIs among the resistant *UPEC* strains supported the instability of these islands. Notably, the isolates coded 5β and 10β harboured the Cnf 1 and colibactin encoding genes but

Taxonomy	Number of hits	Number of Organisms	Relative percentage
Bacteria	100	28	100
Enterobacterales	97	27	96.43
Enterobacteriaceae	96	26	92.86
Escherichia	41	15	53.57
Escherichia coli	26	15	53.57
Citrobacter	5	2	7.14
Citrobacter koseri	4	2	7.14
Klebsiella	48	8	28.57
Klebsiella pneumonia	29	5	17.86
Klebsiella aerogenes	8	2	7.14
Klebsiella variicola	1	1	3.57
Enterobacter	2	1	3.57
Enterobacter cloacae	2	1	3.57
Obesumbacterium proteus	1	1	3.57
Uncultured bacterium	3	1	3.57

Taxonomy	Number of hits	Number of Organisms	Relative percentage
Bacteria	540	185	100
Gammaproteobacteria	538	184	99.46
Enterobacterales	533	181	97.84
Enterobacteriaceae	1	179	96.76
Escherichia	1	175	94.59
Escherichia coli	342	174	94.05
Shigella	3	2	1.08
Salmonella enterica	2	1	0.54
Yersinia pseudotuberculosis complex	9	2	1.08
Photobacterium	3	2	1.08
Moritella viscosa	2	1	0.54
Carnobacterium maltaromaticum	2	1	0.54
didn’t exhibit the toxins in vitro cytotoxicity. Unlike the other cnf 1 \(clbA \) \(clbQ \) isolates, both isolates were highly resistant to the tested antimicrobial agents. The loss of their in vitro cytotoxicity further confirmed the virulence factor inverse relationship with the antibiotic resistance profile and the instability of these PAIs. As reported by Harwalkar et al. [51] and Sonstein and Burnham [56], antibiotics have the capacity to alter the expression of the genetic information and induce partial or total loss of \textit{UPEC} PAIs which alleviate the virulence of the organism.

Conclusion

\textit{UPEC} were either non-hemolytic (about 83%) or hemolytic (about 13%) with only 33.3% of the hemolytic isolates exhibiting the phenotypic and genotypic features of Cnf 1 and Colibactin. The in vivo animal model results gives an evidence of active Cnf 1 and colibactin expression and indicates the risks associated with recurrent and chronic UTIs caused by \textit{UPEC}. Bioinformatics analyses confirmed the predominance of colibactin genomic \textit{pks} Island in Enterobacteriaceae (92.86%) with the highest occurrence among the genera \textit{Escherichia} (53.57%), followed by \textit{Klebsiella} (28.57%), \textit{Citrobacter} (7.14%), and \textit{Enterobacter} (3.57%). A close relatedness was observed between the 54-kb \textit{pks} island of \textit{Escherichia coli}, the probiotic \textit{Escherichia coli} Nissle 1917, \textit{Klebsiella aerogenes}, \textit{Klebsiella pneumoniae} and \textit{Citrobacter koseri}. The Cnf 1 is predominant among \textit{Escherichia coli} species (94.05%) and sporadically found among Shigella species (1.08%), \textit{Salmonella enterica} (0.54%), \textit{Yersinia pseudotuberculosis} (1.08%), \textit{Photobacterium} (1.08%), \textit{Moritella viscosa} (1.08%), and \textit{Vibrio parahaemolyticus} (1.08%).

Bacterial species	Tested genes	Others
	Colibactin PKS proteins (CLB)	
	A B C D E F G H I J K L M N O P Q R	ClbS
\textit{Escherichia coli}	+ + + + + + + + + + + + + + + + + +	+ + +
\textit{Escherichia coli Nissle 1917}	- - - - - - - - - - - -	
\textit{Klebsiella pneumonia}	+ + + + + + + + + + + + + + + +	+ + -
\textit{Klebsiella aerogenes}	+ + + + + + + + + + + + + + +	+ + -
\textit{Klebsiella oxytoca}	+ + + + + + + + + + + + + + +	+ + -
\textit{Erwinia oleae}	+ + + + + + + + + + + + + + +	+ + -
\textit{Citrobacter koseri}	- - - - - - - - - - - -	
\textit{Citrobacter braakii}	- - - - - - - - - - - -	
\textit{Enterobacter aerogenes}	- - - - - - - - - - - -	
\textit{Enterobacter hormaechei}	- - - - - - - - - - - -	
\textit{Acinetobacter baumannii}	- - - - - - - - - - - -	
\textit{Serratia marcescens}	- - + + + + + + + + + + +	+ + -
\textit{Frischella perrara}	- - - + + + - - - - - -	
\textit{Gilliarmella api cola}	- - - - - - - - - - - -	
\textit{Shigella sonnei}	- - - - - - - - - - - -	
\textit{Shigella boydii}	- - - - - - - - - - - -	
\textit{Salmonella enterica}	- - - - - - - - - - - -	
\textit{Moxa theicola}	- - - - - - - - - - - -	
\textit{Photobacterium damselae}	- - - - - - - - - - - -	
\textit{Carnobacterium ma laromaticum}	- - - - - - - - - - - -	
\textit{Montiella viscosa}	- - - - - - - - - - - -	
\textit{Yersinia pseudotuberculosis}	- - - - - - - - - - - -	
\textit{Morganella morganii}	- - - - - - - - - - - -	
\textit{Vibrio para haemolyticus}	- - - - - - - - - - - -	
\textit{Proteus columbiae}	- - - - - - - - - - - -	
\textit{Proteus penneri}	- - - - - - - - - - - -	

\(^{+} \) Present, \(^{-} \) absent
(0.54%), and *Carnobacterium maltaromaticum* (0.54%). Only *E. coli* Cnf 1, HlyA besides the 19 colibactin PKS proteins could be retrieved from NCBI database. There is a cost paid by the *cnf1* + *clbA* + *clbQ* isolates on the expense of their antimicrobial resistance which is evidenced by their high antimicrobial susceptibility profiles.

Additional file

Additional file 1. Bioinformatics analysis results for colibactin proteins, Cnf 1, HlyA and pks island (phylogenetic trees, pairwise distances, identities and functions of proteins encoded by the 19 genes of *E. coli* pks island) and Agarose gel electrophoresis of the PCR products for the three tested genes (cnf 1, clbA, clbQ).

Abbreviations

- UPEC: uropathogenic *E. coli*
- UTIs: urinary tract infections
- CDT: cytolethal distending toxin
- Cif: cycle inhibiting factor
- Cnf 1: cytotoxic necrotizing factor 1
- ExPEC: extraintestinal pathogenic *E. coli*
- CRC: colorectal carcinoma
- Hly: hemolysin
- *Hela*: human cervical carcinoma cells
- *Vero*: African monkey kidney cells
- *Hep* - 2: human laryngeal carcinoma cells
- *Caco-2*: human colorectal carcinoma cells
- PBS: phosphate buffered saline
- Clb A: colibactin A
- Clb Q: colibactin Q.

Acknowledgements

The authors acknowledge Professor Dr. Eric Oswald, university of Toulouse, UPS, faculty of medicine, France for providing the *E. coli* strain 28 C which has been used as a reference strain in our study. The authors acknowledge the valuable support of the laboratory staff members at the Clinical Pathology lab, Faculty of medicine, Cairo University for the collection of the clinical isolates.

Authors’ contributions

The authors follow the ICMJE criteria and had made substantial contributions in this study. All authors read and approved the final manuscript.

Funding

This article hasn’t received any funds from any research or non-research organizations.
Availability of the data and materials
All data generated or analyzed during this study are included in this published article and its Additional files.

Ethics approval and consent to participate
The animal in vivo experiment conducted was approved by the ethics committee of the Faculty of Pharmacy, Amin Shams university (ethics statement no. 138) and the National Centre for Radiation Research and technology (NCRRT).

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Drug Radiation Research Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), 3 Ahmed El-Zomor Street, Nasr City, Cairo 11787, Egypt. 2 Microbiology and Immunology Department, Faculty of Pharmacy, Amin Shams University, African Union Organization Street, Abbassia, Cairo 11566, Egypt.

Received: 15 February 2019 Accepted: 2 May 2019

References
1. Nowrouzian FL, Oswald E. Escherichia coli strains with the capacity for long-term persistence in the bowel microbiota carry the potentially genotoxic pks island. Microb Pathog. 2012;53(3–4):180–2. https://doi.org/10.1016/j.micpath.2012.05.011.

2. Payros D, Secher T, Boury M, Brehin C, Ménard S, Salvador-Cartier C, et al. Maternally acquired genotoxic Escherichia coli alters offspring's intestinal homeostasis. Gut Microbes. 2014;5(3):313–52. https://doi.org/10.4161/gmic.28932.

3. Johnson JR, Johnston B, Kuskowski MA, Oswald E. Molecular epidemiology and phylogenetic distribution of the Escherichia coli pks genomic island. J Clin Microbiol. 2008;46:3906–11. https://doi.org/10.1128/JCM.00949-08.

4. Martin P, Marcq I, Magistro G, Penamy M, Garcia C, Payros D, et al. Interplay between siderophores and colibactin genotoxic biosynthetic pathways in Escherichia coli. PLoS Pathog. 2013;9:e1003437. https://doi.org/10.1371/journal.ppat.1003437.

5. Feng Y, Mannion A, Madden CM, Sivennes AG, Townes C, Byrd C, et al. Cytotoxic Escherichia coli strains encoding colibactin and cytotoxic necrotizing factor (CNF) colonize laboratory macaques. Gut Pathog. 2017;9:71. https://doi.org/10.1186/s13099-017-0220-y.

6. Homburg S, Oswald E, Hacker J, Dobrindt U. Expression analysis of the colibactin gene cluster coding for a novel polycyclic in Escherichia coli. FEMS Microbiol Lett. 2007;275:255–62. https://doi.org/10.1111/j.1574-6968.2007.00889.x.

7. Mousa JJ, Yang Y, Tomkovich S, Shima A, Newsome RC, Tripathi P, et al. MATE transport of the E. coli-derived genotoxic colibactin. Nat Microbiol. 2016;1:15009. https://doi.org/10.1038/nmicrobiol.2015.9.

8. Falbo V, Pate T, Picci L, Pizzi E, Caprioli A. Isolation and nucleotide sequence of the gene encoding cytotoxic necrotizing factor 1 of Escherichia coli. Infect Immun. 1993;61:4909–14.

9. Blum G, Falbo V, Caprioli A, Hacker J. Gene clusters encoding the cytotoxic necrotizing factor 1, Psa-fimbriae and alpha-hemolysin form the pathogenicity island II of the uropathogenic Escherichia coli strain J96. FEMS Microbiol Lett. 1995;126:189–95. https://doi.org/10.1111/j.1574-6968.1995.tb07415.x.

10. Caprioli A, Falbo V, Ruggeri FM, Baldassari L, Biscirchia R, Ippolito G, et al. Cytotoxic necrotizing factor production by hemolytic strains of Escherichia coli causing extraintestinal infections. J Clin Microbiol. 1987;25:146–9.

11. Caprioli A, Donelli G, Falbo V, Possenti R, Roda LG, Rossetti G, et al. A cell division-active protein from E. coli. Biochem Biophys Res Commun. 1984;118:587–93.

12. Cavalieri SJ, Bohach GA, Snyder IS. Escherichia coli alpha-hemolysin: characteristics and probable role in pathogenicity. Microbiol Rev. 1984;48:326–43.

13. Cougnoux A, Dalmasso G, Martinez R, Affer L, Tibold L, et al. Bacterial genotoxic colibactin colonize laboratory macaques. Gut Pathog. 2016;1:15009. https://doi.org/10.1038/nmicrobiol.2015.9.

14. Arthur JC, Perez-Chanona E, Muhlbauer M, Tomkovich S, Uronis JM, Fan TJ, et al. Intestinal inflammation targets cancer-inducing activity of the microbiota. Science. 2012;338:120–3. https://doi.org/10.1126/science.1224820.

15. Alonso P, Blanco J, Gonzalez EA. Frequent production of toxins by Escherichia coli strains isolated from human urinary tract infections: relation with haemagglutination. FEMS Microbiol Lett. 1987;48:391–6. https://doi.org/10.1111/j.1574-6968.1995.tb07415.x.

16. Garcia A, Mannion A, Feng Y, Madden CM, Bakthavatchalu V, Shen Z, et al. Uropathogenic Escherichia coli strains encoding colibactin colonize laboratory mice. Microbes Infect. 2016;18:777–86. https://doi.org/10.1016/j.micinf.2016.07.005.

17. Peppin F, Crochet S, Eberle W, Fritz G, Schmidt G. High affinity binding of Escherichia coli cytotoxic necrotizing factor 1 (CNF1) to Lu/BCAM adhesion glycoprotein. Toxins. 2017;10:3. https://doi.org/10.3390/toxins1000003.

18. Secher T, Samba-Louaka A, Oswald E, Nougaeyre JD, Espiricola. producing colibactin triggers premature and transmissible senescence in mammalian cells. PLoS ONE. 2013;8:e77157. https://doi.org/10.1371/journal.pone.0077157.
32. Perry P, Wolff S. New Giemsa method for the differential staining 620 of sister chromatids. Nature. 1974;251:156.

33. Packeiser H, Linn C, Balagurunathan B, Wu J, Zhao H. An extremely simple and effective colony PCR procedure for bacteria, yeasts, and microalgae. Appl Biochem Biotechnol. 2015;169:605–700. https://doi.org/10.1007/s12010-012-0043-8.

34. Van Bost S, Jacquemin E, Oswald E, Mainil J. Multiplex PCRs for identification of nontoxigenic Escherichia coli. J Clin Microbiol. 2003;41:4480–2. https://doi.org/10.1128/JCM.41.9.4480-4482.2003.

35. Garcia TA, Ventura CL, Smith MA, Merrell DS. Cytotoxic necrotizing factor 1 in nosocomial urinary tract infections. Lett Appl Microbial. 2000;30(3):213–6. https://doi.org/10.1046/j.1472-765x.2000.00698.x.

36. Mattsby-Baltzer I, Hanson L, Kaijser B, Larsson P, Olling S, Svanborg-Eden C. Experimental Escherichia coli ascending pyelonephritis in rats: changes in bacterial properties and the immune response to surface antigens. Infect Immun. 1982;35:639–46.

37. Larsson P, Kajiser B, Baltzer IM, Olling S. An experimental model for ascending acute pyelonephritis caused by Escherichia coli or proteus in rats. J Clin Pathol. 1980;33:408–12.

38. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution. 1985;39(4):783–91.

39. Jones DT, Taylor WR, Thornton JM. The rapid generation of mutation data matrices from protein sequences. Bioinformatics. 1992;8:275–82.

40. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35:1547–9. https://doi.org/10.1093/molbev/msy096.

41. Biemer JJ. Antimicrobial susceptibility testing by the Kirby-Bauer disc diffusion method. Ann Clin Lab Sci. 1973;3:135–40.

42. Cavallini SJ, Snyder IS. Effect of Escherichia coli alpha-hemolysin on human peripheral leukocyte viability in vitro. Infect Immun. 1982;36:455–61.

43. Mobeley HL, Green DM, Triffis AL, Johnson DE, Chippendale GR, Lockatell CV, et al. Pyelonephrtigenic Escherichia coli and killing of cultured human renal proximal tubular epithelial cells: role of hemolysin in some strains. Infect Immun. 1990;58:1281–9.

44. Landraud L, Gauthier M, Fosse T, Boquet P. Frequency of Escherichia coli elicit different host responses in the murine bladder. Infect Immun. 2013;81:99–109. https://doi.org/10.1128/IAI.00605-12.

45. Mattsby-Baltzer I, Hanslon L, Kajiser B, Larsson P, Olling S, Svanborg-Eden C. Experimental Escherichia coli ascending pyelonephritis in rats: changes in bacterial properties and the immune response to surface antigens. Infect Immun. 1982;35:639–46.

46. Perry P, Wolff S. New Giemsa method for the differential staining 620 of sister chromatids. Nature. 1974;251:156.

47. Island MD, Cui X, Warren JW. Effect of Escherichia coli cytotoxic necrotizing factor 1 on repair of human bladder cell monolayers in vitro. Infect Immun. 1999;67:3657–61.

48. Buc E, Dubois D, Sauvanet P, Ratsch J, Delmas J, Darfeuille-Michaud A, et al. High prevalence of mucosa-associated E. coli producing cyclomodulin and genotoxin in colon cancer. PLoS ONE. 2013;8(2):e56964. https://doi.org/10.1371/journal.pone.0056964.

49. Horcajada JP, Soto S, Gajewska A, Smithson A, de Anta MTJ, Mensa J, et al. Quinolone-resistant uropathogenic Escherichia coli strains from phylogenetic group B2 have fewer virulence factors than their susceptible counterparts. J Clin Microbiol. 2005;43(6):2962–4. https://doi.org/10.1128/JCM.43.6.2962-2964.2005.

50. Derakhshande A, Firooz, Mokamedifar M, Arabshahi S, et al. Virulence characteristics and antibiotic resistance patterns among various phylogenetic groups of uropathogenic Escherichia coli isolates. Jpn J Infect Dis. 2015;68:428–31. https://doi.org/10.7883/yoken.JJD.2014.327.

51. Harwalkar A, Gupta S, Rao A, Srinivasa H. Lower prevalence of hlyD, papC and cnf-1 genes in ciprofloxacin-resistant uropathogenic Escherichia coli than their susceptible counterparts isolated from southern India. J Infect Public Health. 2014;7(5):413–9. https://doi.org/10.1016/j.jiph.2014.04.002.

52. Middendorf B, Hochburt B, Leipold K, Dobrindt U, Blum-Dehler G, Hacker J. Instability of pathogenicity islands in uropathogenic Escherichia coli 536. J Bacteriol. 2004;186(10):3086–96. https://doi.org/10.1128/JB.186.10.3086-3096.2004.

53. Piatti G, Mannini A, Balistrieri M, Schito AM. Virulence factors in urinary Escherichia coli strains: phylogenetic background and quinolone and fluoroquinolone resistance. J Clin Microbiol. 2008;46(2):480–7. https://doi.org/10.1128/JCM.01488-07.

54. Ahmed N, Dobrindt U, Hacker J, Hasnain SE. Genomic fluidity and pathogenic bacteria applications in diagnostics, epidemiology and intervention. Nat Rev Microbiol. 2008;6(10):387. https://doi.org/10.1038/nrmic ro1889.

55. López E, Elez M, Matic I, Blázquez J. Antibiotic-mediated recombination: ciprofloxacin stimulates SOS-independent recombination of divergent sequences in Escherichia coli. Mol Microbiol. 2007;64(1):83–93. https://doi.org/10.1111/j.1365-2958.2007.06642.x.

56. Sonstein SA, Burnham JC. Effect of low concentrations of quinolone antibiotics on bacterial virulence mechanisms. Diag Microbial Infect Dis. 1993;16(4):277–89. https://doi.org/10.1007/0-7732-3347-9/3/79087-L.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.