Investigations on Mechanical Properties of Basalt Powder filled Vinyl Ester Composites

C Anand Chairma1*, D Pritima2, V Dhinakaran3, B Stalin4, M Ravichandran5 and M Balasubramanian6

1Department of Mechanical Engineering, K.Ramakrishnan College of Engineering, Tiruchirappalli -621 112, Tamil Nadu, India.
2Department of Mechatronics Engineering, Sri Krishna College of Engineering and Technology, Coimbatore, Tamil Nadu, India.
3Centre for Applied Research, Department of Mechanical Engineering, Chennai Institute of Technology, Kundrathur, Chennai-600 069, Tamil Nadu, India.
4Department of Mechanical Engineering, Anna University, Regional Campus Madurai, Madurai-625 019, Tamil Nadu, India.
5Department of Mechanical Engineering, K.Ramakrishnan College of Engineering, Tiruchirappalli -621 112, Tamil Nadu, India.
6Department of Mechanical Engineering, University College of Engineering, Ramanathapuram Campus, Anna University, Ramanathapuram-623 513, Tamil Nadu, India.

* Corresponding author: mechanand2003@gmail.com

Abstract The current research work deals with the addition of basalt powder on the characteristics of vinyl ester resin composites. The vinyl ester was modified by basalt powder in the amount of 5%, 10% and 15% by weight. The impact of basalt powder on the performance, such as tensile strength and flexural strength was analyzed. The consequence of powder addition on the impact strength of the fabricated materials was also examined. From the results obtained the basalt powder has an encouraging outcome on the strength of the fabricated composites.

1. Introduction
The characteristics such as good strength, easily available, easy to manufacture makes composites as a popular material in the field of Engineering. Since it is success in the field of aerospace, it became widely used in domestic, marine, structural, electronics and almost all emerging areas [1-22]. Also, the wonderful characteristics of composites such as lightweight, low economic and its stiffness properties suggest its suitability in replacing the conservative existing materials [23-46]. Danuta Matykiewicz et al. [47] proved that basalt powder can be effectively utilized as a receptive modifier for the epoxy resin. They suggested that the structure of this powder may be changed by its constructive interface with existing matrices. Abusahmin et al. [48] improved the characteristics of abrasion resistance of polyester by the addition of basalt powder. They evaluated the consequence of impact properties of flax fibre with basalt powder reinforced polyester composites [49]. Barczewski et al. [50] investigated the influence of the basalt powder content on the thermo-mechanical stability of novel polypropylene-based composite materials measured in static and vibrant test conditions.
Basalt powder is considered as low-cost waste filler because high quantities of this material are created during the crushing of basalt rocks. Since no separate manufacturing routes are not required. Very few papers are published as basalt powder as filler in the polymer composites. The wear resistance capability of basalt powder made successful in polyethylene [51] and polyester [52] resin. Mentioned characteristics of basalt powder make them a suitable substitute for the existing filler. Thus, the basalt powder is the best option as filler for many industrial fields and different applications of this powder have been extensively studied [53-55]. In most of the articles, the basalt powder was efficiently used in both thermosetting and thermoplastic resin. But the improvement of the performance of vinyl ester resin by the addition of basalt powder has not been covered yet.

The aim of the present work is to examine the outlook of adopting basalt powder as filler in a vinyl ester matrix. These powders, if put to correct weight ratio, will definitely add to the growth of the mechanical properties and will open up new avenues.

2. Materials and methodology

The vinyl ester resin (4508) having a density of 1.11-1.21 g/cm3 and modulus 2.6–4 MPa was used as the matrix material. Methyl ethyl ketone peroxide (MEKP), cobalt naphthenate and N, N-dimethyl aniline were used as catalyst, accelerator and promoter, respectively. These are added to increase the curing process of the composites. Basalt powder of approximately 50-60 microns was purchased from go green products- Chennai.

2.1 Manufacturing technique

Among the different composite manufacturing process hand layup method was used for the preparation of basalt powder-filled composites. Addition of basalt powder was mixed vinyl ester resin and mechanically stirred to spread the powder throughout the resin. Then the hardener was added in the resin to facilitate the curing process. The resin/hardener mixture was taken in the ratio of 10:1 as suggested by suppliers. Similarly, powder was added for another remaining two weight percentage of basalt powder. In order to spread the powder to all the areas of resin, the plate was compressed using compression moulding machine during curing.

2.2 Mechanical tests

The mechanical properties such as tensile strength, Young’s modulus and percentage strain were determined on an Instron universal testing machine (UTM, UK). The test was conducted at a crosshead speed of 10 mm/min. The UTM was fitted with a load cell for measuring the load applied on the specimen. The computer recorded the load and corresponding deflection. The tension specimens were prepared as per ASTM standard. The load and corresponding deflection until the failure of the specimen were recorded. The tensile strength and the tensile modulus were computed.

3. Results And discussion

Figure 1 displays the effect of tensile strength due to basalt powder filled in composites. The tensile strength of unfilled VE resin is 42 MPa and the value gradually increases to 125, 144, and 139 MPa upon addition of 5, 10, and 15 wt.% basalt in the VE matrix. Upon further increase in the reinforcement of basalt to 15 and 20 wt.% in the VE matrix, the tensile strength decreases to 139 and 108 MPa, respectively. However, the impact of basalt filler addition is significant up to 10 wt. %. The tensile strength of the composites increases up to 10wt% powder loading. The performance of the composites was attained when the filler weight ratio attains to 10 wt%. The tensile strength of filled composites increases up to 15%. The further addition of powder does not cause any noteworthy improvement in tensile strength. The output result of tensile strength is similar to the result of mechanical characteristics of chopped basalt fibre reinforced poly (butylene terephthalate) composites.
Figure 1. Effect of basalt powder in tensile strength

Figure 2 displays the effect of flexural strength due to basalt powder filled in composites. As expected, the flexural strength was not influenced considerably by the existence of little quantity of fillers because the stress field of the bulk material occurs only in the immediate neighbourhood of the fillers. Since the stresses in the composite are nearby exaggerated by the occurrence of the filler, it may be imagined that the composite breakdown by first breaking at the highly stressed regions and rapidly increase the voids with the help of the additional stresses persuaded by the diminution of the cross-sectional area. Hence there was no significant improvement occurred in the case of flexural strength of filled composites. This might be due to the loose cumulative of fillers which begin to form in the composite as the filler percentage was amplified.
Figure 3 displays the effect of impact strength due to basalt powder filled in composites. From the tested composites, the impacted area is not easily noticeable unless the impact energy is very close to penetration. However, basalt powder resists the impact load acting on it and increases with the increase in weight percentage. Based on the test results, the improvement of the properties are due to the presence of additional plasticizing properties of the basalt powder. A similar result has also obtained by Dobiszewska et al. [56].

![Figure 3. Effect of basalt powder in impact strength](image)

4. Conclusions

In this work, the effects of basalt powder at different weight percentage on tensile, flexural and impact characteristics of composites were analysed. Based on the output of the tensile test outcomes, basalt powder confirmed its reinforcing outcome when the filler weight percentage reached to 10wt%. The flexural strength increased as the basalt powder enhance up to 10wt% in the resin. The impact strength of the filled composites increases by the increased amount of weight percentage.

5. References

[1] V.Dhinakaran, B.Stalin, M. Swapna Sai, J.Vairamuthu, S.Marichamy (2020), Recent developments of graphene composites for energy storage devices, Mater. Today.: Proc. https://doi.org/10.1016/j.matpr.2020.08.631

[2] Senthil Kumar P.S., Marichamy S., Sivakandhan C., Stalin B., Dhinakaran V., Satyanarayana I. (2021) Evaluation of Material Properties and Abrasive Resistance of Tantalum Carbide-Based Hardox Steel for Construction Purpose. In: Arockiarajan A., Duraiselvam M., Raju R. (eds) Advances in Industrial Automation and Smart Manufacturing. Lecture Notes in Mechanical Engineering. Springer, Singapore, pp. 69-76. https://doi.org/10.1007/978-981-15-4739-3_6

[3] B.Stalin, G.T.Sudha and M. Ravichandran (2018), “Investigations on Characterization and Properties of Al-MoO3 Composites Synthesized Using Powder Metallurgy Technique”, Silicon, Vol.10, no.6, pp. 2663–2670. DOI: 10.1007/s12633-018-9803-6.

[4] J. Vairamuthu, A. Senthil Kumar, B. Stalin, M. Ravichandran (2020), “Optimization of powder metallurgy parameters of TiC and B4C reinforced aluminium composites by Taguchi method”, Transactions of the Canadian Society for Mechanical Engineering.
[5] B. Stalin, V. S. Vidhya, M. Ravichandran, A. Naresh Kumar, G. T. Sudha (2020), “Characterization and Properties of Mg–TiO₂ Composites Produced via Ball Milling and Powder Metallurgy”, Metallofiz. Noveishie Tekhnol., Vol. 42, No. 4, pp. 497—509. https://doi.org/10.15407/mfint.42.04.0497

[6] G. T. Sudha, B. Stalin and M. Ravichandran (2019), “Optimization of powder metallurgy parameters to obtain low corrosion rate and high compressive strength in Al-MoO₃ composites using SN ratio and ANOVA analysis”, Materials Research Express, Vol. 6, no. 9, pp. 1-19, 096520.

[7] B. Stalin, M. Ravichandran, V. Mohanavel, L. Praveen Raj (2020), “Investigations on microstructure and mechanical properties of Mg-5wt.%Cu-TiB₂ composites produced via powder metallurgy route”, Journal of Mining and Metallurgy, Section B: Metallurgy, Vol. 56, no. 1, pp. 99-108. DOI: 10.2298/JMMB190315047S.

[8] J. Vairamuthu, B. Stalin, G. D. Sivakumar, B. Mohmed Fazil, R. Balaji, V. Ananda Natarajan (2020), “Performance of mechanical properties of brass–AlN composites synthesized via ball milling”, Materials Today: Proceedings, Vol. 22, pp. 2573–2581.

[9] M. Ravichandran, M. Meignanamoorthy, G. P. Chellasivam, J. Vairamuthu, A. Senthil Kumar, B. Stalin (2020), “Effect of Stir Casting Parameters on Properties of Cast Metal Matrix Composite, Materials Today: Proceedings, Vol. 22, pp. 2606–2613.

[10] B. Stalin, M. Ravichandran, S. Jasper, J. Vairamuthu (2020), “Experimental investigations on the characterization and properties of AA6063-Si₃N₄ composites fabricated through stir casting route”, Materials Today: Proceedings, Vol. 22, pp. 2631–2637.

[11] B. Stalin, G. T. Sudha, M. Ravichandran (2020), “Optimization of Powder Metallurgy Parameters for AA7075-MoO₃ Composites through Taguchi Method”, Materials Today: Proceedings, Vol. 22, pp. 2622–2630. https://doi.org/10.1016/j.matpr.2020.03.393

[12] D. Pritima, J. Vairamuthu, P. Gopi Krishnan, S. Marichamy, B. Stalin, S. Sheeba Rani (2020), Response analysis on synthesized aluminium-scandium metal matrix composite using unconventional machining processes, Materials Today: Proceedings, https://doi.org/10.1016/j.matpr.2020.07.672

[13] J. Anix Joel Singh, T. Vishnu Vardhan, J. Vairamuthu, B. Stalin, Ram Subbiah (2020), “Synthesis and characterisation of hybrid aluminium based metal matrix composites”, Materials Today: Proceedings, Vol. 22, pp. 2573–2581.

[14] D. Pritima, J. Vairamuthu, P. Gopi Krishnan, S. Marichamy, B. Stalin, S. Sheeba Rani (2020), Response analysis on synthesized aluminium-scandium metal matrix composite using unconventional machining processes, Materials Today: Proceedings, https://doi.org/10.1016/j.matpr.2020.07.672
[20] B.Stalin, S.Arivukkarasan and C.Selva Ganesan (2015), “Evaluation of Mechanical Properties of Boron Carbide and Titanium Dioxide Reinforced with Aluminium Alloy Metal Matrix Composites”, International Journal of Applied Engineering Research, Vol. 10, No.55, pp. 3988–3993.

[21] K. Ansal Muhammed, C.Ramesh Kannan, B.Stalin (2020), Performance analysis of wind turbine blade materials using nanocomposites, Mater. Today:. Proc. https://doi.org/10.1016/j.matpr.2020.07.578

[22] B.Stalin, S.Arivukkarasan and G.Ashwin Prabhu (2015), “Microstructure and Mechanical Properties Evaluation of Aluminium Matrix Reinforced with Tungsten Carbide and Silicon Carbide”, International Journal of Applied Engineering Research, Vol.10, No.55, pp. 3994–3999.

[23] B.Stalin, P.Ramesh Kumar, M.Ravichandran, Siva Kumar, M.Meignanamoorthy (2019), “Optimization of wear parameters using Taguchi grey relational analysis and ANN-TLBO algorithm for silicon nitride filled AA6063 matrix composites”, Materials Research Express, Vol.6, no.10, pp.1-17, 106590. DOI: 10.1088/2053-1591/ab3d90.

[24] S.V. Alagarsamy, M. Ravichandran, P. Raveendran, B. Stalin (2019) “Evaluation of Microhardness and Optimization of Dry Sliding Wear Parameters on AA7075 (Al-Zn-Mg-Cu) Matrix Composites”, Journal of the Balkan Tribological Association, Vol. 25, no. 3, pp. 730-742. ISSN: 1310-4772.

[25] B. Stalin, P. Ramesh Kumar, M. Ravichandran and S. Saravanan (2018), “Optimization of wear parameters and their relative effects on stir cast AA6063-Si₃N₄ Composite”, Materials Research Express, Vol.5, no.10, pp.1-10, 106502. DOI:10.1088/2053-1591/1aad99c.

[26] S.Raja, M.Ravichandran, B.Stalin, V.Anandakrishnan (2020), "A Review on Tribological, Mechanical, Corrosion and Wear Characteristics of Stir Cast AA6061 Composites", Materials Today: Proceedings, Vol.22, pp.2614–2621.

[27] S. Arivukkarasan, V. Dhanalakshmi, B.Stalin and M. Ravichandran (2017), “Mechanical and Tribological Behaviour of Tungsten Carbide Reinforced Aluminium LM4 Matrix Composites”, Particulate Science and Technology, Vol.36, no.8, pp.967-973.

[28] S. Marichamy, M. Saravanan, M. Ravichandran and B. Stalin (2017), “Optimization of Surface Roughness for Duplex Brass Alloy in EDM Using Response Surface Methodology”, International Journal of Mechanics and Mechanical Engineering, Vol.21, no.1, pp.57-66.

[29] B.Stalin, G.T.Sudha, C. Kailasanathan, M.Ravichandran (2020), Effect of MoO₃ ceramic oxide reinforcement particulates on the microstructure and corrosion behaviour of Al alloy composites processed by P/M route, Materials Today Communications, Vol. 25, 101655. https://doi.org/10.1016/j.mtcomm.2020.101655

[30] B. Stalin, M. Ravichandran, S. Arivukkarasan and V. Mohanavel (2018), “Weight Loss Corrosion Studies of Aluminium-LM4 Reinforced With Alumina Silicate (Al₂O₃SiO₂) Particulates Composites in Sodium Chloride (NaCl) Solution”, International Journal of Mechanical and Production Engineering Research and Development, Special Issue, June 2018, pp.329-336.

[31] K.Arun, C.Ramesh Kannan, B.Stalin (2020), The effect of cryogenically treated drilling tool on GFRP composite drilling holes-A comparative study, Mater. Today:. Proc. https://doi.org/10.1016/j.matpr.2020.07.579

[32] B.Stalin, N.Nagaprasad, V.Vignesh, M.Ravichandran, N.Rajini, S.O.Ismail, F.Mohammad (2020), “Evaluation of mechanical, thermal and water absorption behaviors of Polyalthia longifolia seed reinforced vinyl ester composites”, Carbohydrate Polymers, Vol. 248, 116748.

[33] N.Nagaprasad, B.Stalin, V.Vignesh, M.Ravichandran, N.Rajini, S.O.Ismail (2020), “Effect of cellulosic filler loading on mechanical and thermal properties of date palm seed / vinyl ester composites”, International Journal of Biological Macromolecules, Vol. 147, pp. 53-66.
[34] B. Stalin, N. Nagaprasad, V. Vignesh, M. Ravichandran (2019), “Evaluation of Mechanical and Thermal Properties of Tamarind Seed Filler Reinforced Vinyl Ester Composites”, Journal of Vinyl & Additive Technology, Vol.25, no.52 pp. E114–E128, DOI: 10.1002/vnl.21701.

[35] K. Ansal Muhammed, C. Ramesh Kannan, B. Stalin, M. Ravichandran (2020), “Experimental investigation on AW 106 Epoxy/E-Glass fiber/ Nano clay composite for wind turbine blade”, Materials Today: Proceedings, Vol.21, pp. 202–205, DOI: 10.1016/j.matpr.2019.04.221.

[36] B.Stalin and A.Athijayamani (2015), “Investigation on the Mechanical Behavior of Randomly Oriented Coir and Bagasse Fibers Reinforced Vinyl Ester Hybrid Composite” International Journal of Applied Engineering Research, Vol.10, No.55, pp.4035-4038.

[37] A.Athijayamani, B.Stalin, S.Sidhardhan and C.Boopathi (2016), “Parametric Analysis of Mechanical Properties of Bagasse Fibre-Reinforced Vinyl ester Composites”, Journal of Composite Materials, Vol.50, no.4, pp.481-493. https://doi.org/10.1177/0021998315576555

[38] B.Stalin and A.Athijayamani (2016), “The performance of bio waste fibers reinforced polymer hybrid composite”, International Journal of Materials Engineering Innovation, Vol.7, no.1, pp.15-25. https://doi.org/10.1504/IJMATEI.2016.077312

[39] A.Athijayamani, B.Stalin, S.Sidhardhan and A.Alavudeen (2016), “Mechanical Properties of Unidirectional Aligned Bagasse Fibers/Vinyl Ester Composite”, Journal of Polymer Engineering, Vol.36, no.2, pp.157-163. https://doi.org/10.1015/polycng-2014-0325

[40] B.Stalin, A.Athijayamani and V.Ayyar (2015), “Evaluation of Mechanical Properties of Bio-Waste Fibers and Alumina Particulate Reinforced Vinyl Ester Composite” International Journal of Applied Engineering Research, Vol.10, No.55, pp.3554-3557.

[41] S. Jasper, B. Stalin and M. Ravichandran (2018), “Experimental investigation and Taguchi optimization of turning process parameters for glass fiber reinforced plastics (GFRP)”, International Journal of Advanced Technology and Engineering Exploration, Vol.5, no.47, pp. 394-399. (ISSN: 2394-7454)

[42] B.Stalin, A.Athijayamani, R.Sridhar and D.S.Samuvel Prem Kumar (2015), “Investigation of Physical and Mechanical Characteristics of Bio – FRP Composites” International Journal of Applied Engineering Research, Vol.10, No.55, pp.4008-4012.

[43] S.Rajamuneeswaran, J.Vairamuthu, S.Nagarajan, B.Stalin, S.Jayabal (2020), A comparative study on mechanical properties of coir fiber reinforced polymer composites filled with calcium carbonate particles, Mater. Today: Proc. https://doi.org/10.1016/j.matpr.2020.08.366

[44] B.Stalin and R.Ramkumar (2015), “Mechanical Properties of Bauhinia Racemosa Fiber Reinforced with Polymer Composites”, International Journal of Applied Engineering Research, Vol.10, No.51, pp.701–705. (ISSN: 0973-4562).

[45] R.Sridhar, A.Athijayamani, B.Stalin and R.Sankar Ganesh (2015), “Characterization of Fish Scale Reinforced Composites”, International Journal of Applied Engineering Research, Vol. 10, No. 55, pp. 4076–4080.

[46] B.Stalin, R.Dheivendran and B.Nagaraja Ganesh (2015), “Evaluation of Mechanical Properties of Chicken Feather and Bast Fiber Reinforced Composites”, International Journal of Applied Engineering Research, Vol. 10, No. 55, pp. 4005–4008. (ISSN: 0973-4562).

[47] DanutaMatykiewicz MateuszBarczewskia SławomirMichałowski 2019 "Basalt powder as eco-friendly filler for epoxy composites: Thermal and thermo-mechanical properties assessment," Composites Part B, Vol.164, 272-279

[48] Abusahmin, F., Algeilai, A., Tomic, N., Vukanovic, M., Majstorovic, J. Volkov-Husovic, T., Simic, V., Jancic-Heinemann, R., Toljic, M., Kovacevic, J 2020. Basalt-polyester hybrid composite materials for demanding wear applications. Sci. Sinter., 52, 67–76

[49] Prasath, K.A.; Arumugaprabu, V.; Amuthakkannan, P.; Manikandan, V.; Deepak Joel
Johnson, R. 2019 Low velocity impact, compression after impact and morphological studies on flax fibre reinforced with basalt powder filled composites. Mater. Res. Express, 71

[50] Barczewski, M.; Salasinska, K.; Kloczinski, A.; Skorczewska, K.; Szulc, J.; Piasecki, A. 2019 Application of the basalt powder as a filler for polypropylene composites with improved thermo-mechanical stability and reduced flammability. Polym. Eng. Sci., 59, E71–E79.

[51] Akinci, A., Yilmaz, S. and Sen, U. (2012), “Wear behavior of basalt filled low density polyethylene composites”, Applied composite materials, Vol. 19, No. 3/4, pp. 499-551.

[52] A. Todic, B. Nedeljkovic, D. Cikara, I. Ristovic (2011), Particulate basalt–polymer composites characteristics investigation, Journal of Material Design 32 1677–1683.

[53] M. A. Raja, V. Manikandan, P. Amuthakkannan, S. Rajesh, and I. Balasubramanian 2018, “Wear resistance of basalt particulate-reinforced stir-cast Al7075 metal matrix composites,” J Aust. Ceram. Soc., vol. 54, no. 1, pp. 119–128.

[54] Antonov, M., Surženkov, A., Hussainova, I., Goljandin, D., Mikli, V. 2012 Effect of basalt addition on tribological performance of FeCrSiB HVOF coatings. Estonian Journal of Engineering 18 (3): 211–220.

[55] C. Arslan, M. Gogan The mechanical and thermal properties of chopped basalt fiber-reinforced poly (butylene terephthalate) composites: effect of fiber amount and length J. Compos. Mater. (2019)

[56] Dobiszewska M., Pichor W and Szoldra P. (2019) Effect of Basalt powder addition on properties of mortar. MATEC Web of Conference, 262 06002