Bevacizumab increases the risk of anastomosis site leakage in metastatic colorectal cancer

Seijong Kim¹, Jung Kyong Shin¹, Yoonah Park¹, Jung Wook Huh¹, Hee Cheol Kim¹, Seong Hyeon Yun¹, Woo Yong Lee¹ and Yong Beom Cho¹,²,³*

¹Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea, ²Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, South Korea, ³Department of Biopharmaceutical Convergence, Sungkyunkwan University, Seoul, South Korea

Background: Bevacizumab is a humanized monoclonal antibody against vascular endothelial growth factor and is used in combination with first-line chemotherapy in the treatment of metastatic colorectal cancer. One of the side effects of bevacizumab is gastrointestinal perforation. This study was designed to identify the effect of bevacizumab in intestinal anastomosis site healing.

Methods: From January 2010 to December 2020, patients diagnosed with stage IV colorectal cancer treated with palliative chemotherapy or chemoradiotherapy followed by radical surgery were retrospectively reviewed. Clinical signs or symptoms and computed tomography were tools used for diagnosing anastomosis site leakage. The patients were divided into two groups, the bevacizumab group (n = 136) and the non-bevacizumab group (n = 124).

Results: Among the 260 patients 14 (5.4%) patients were diagnosed with anastomosis site leakage. In the bevacizumab group, 13 (9.6%) patients were diagnosed with anastomotic leakage. In the non-bevacizumab group, 1 (0.8%) patient was diagnosed with anastomotic leakage. Anastomosis site leakage was significantly higher in the bevacizumab treatment group (P < 0.001). In the bevacizumab group, period of drug discontinuation before surgery was factor associated with anastomosis site leakage in multivariable analysis (P = 0.031).

Conclusion: Stage IV colorectal patients treated with bevacizumab before radical surgery for primary cancer should be carefully observed of anastomosis site leakage after surgery, and the period of drug discontinuation before surgery should be longer than 5 weeks to avoid anastomosis site leakage.

KEYWORDS
colorectal (colon) cancer, bevacizumab, stage IV, anastomotic leak in colorectal surgery, chemotherapy
Introduction

Bevacizumab (Avastin®) is a humanized monoclonal antibody against vascular endothelial growth factor (VEGF) used to inhibit VEGF function and, as a result, inhibit tumor angiogenesis (1). Fluoropyrimidine-based chemotherapy combined with bevacizumab in the first and second-line treatments of metastatic colorectal cancer significantly increased oncologic outcomes in several randomized controlled trials (2, 3). However, the antiangiogenic effect of bevacizumab inhibits the capillary beds of the small bowel villi, contributing to gastrointestinal perforation by provoking the regression of normal blood vessels in the gastrointestinal tract (4). Several studies showed an increased risk of gastrointestinal perforations in patients treated with bevacizumab (5, 6). In an animal model, the administration of bevacizumab inhibited angiogenesis in the intestinal anastomosis site, resulting in a decrease in α-SMA accumulation and collagen deposition in bowel anastomosis site tissue, which might affect the healing of intestinal anastomosis (7). Because of the antiangiogenic effect of bevacizumab, the discontinuation of bevacizumab is recommended at least 6 weeks before surgery (8). Therefore, this study was conducted to evaluate the effect of bevacizumab on intestinal anastomosis site healing in stage IV colorectal cancer patients who underwent preoperative chemotherapy.

Methods

From January 2010 to December 2020, patients diagnosed with stage IV colorectal cancer treated with palliative chemotherapy or chemoradiotherapy followed by radical surgery were retrospectively reviewed. Patients with familial disease, recurrent disease, emergent operations, or who underwent abdominoperineal resections, which has no anastomosis site, or without appropriate follow-up data were excluded from the cohort. A flowchart of patient selection is illustrated in Figure 1. A total of 260 patients were enrolled. This study was reviewed and approved by the Institutional Review Board of Samsung Medical Center (No. 2021-10-041).

Chemotherapy regimens were based on the National Comprehensive Cancer Network (NCCN) guidelines. In all the patients, chemotherapy with FOLFIRI/FOLFOX/XELOX was initiated with or without cetuximab/bevacizumab. All patients underwent tests of tumor gene status for KRAS/NRAS as well as MSI/MMR status. Patients with KRAS or NRAS mutation were not treated with cetuximab or panitumumab and treated with FOLFIRI/FOLFOX/XELOX alone or in combination with bevacizumab. When the disease progressed despite of first-line FOLFOX/XELOX based chemotherapy, chemotherapy regimen was altered. In previous oxaliplatin-based therapy without irinotecan, irinotecan ± aflibercept or pembrolizumab based...
chemotherapy was continued (8). Also, patients with low to mid-
colorectal cancer were discussed in the multidisciplinary meeting
whether to undergo neoadjuvant radiotherapy before surgery.

Anastomosis site leakage was defined as a defect in the
intestinal wall integrity at the colorectal or colo-anal
anastomosis site, leading to a communication between the
intraluminal and extraluminal compartments. An abscess in
the pelvic cavity close to the anastomosis site was considered
anastomotic leakage. Clinical symptoms and signs such as fever,
tachycardia, abdominal pain or distension, leukocytosis, and
elevated C-reactive protein (CRP) levels were indicators
suspicious of anastomosis site leakage, so patients with the
symptoms or signs listed above underwent computed
tomography (CT). Peri-anastomotic loculated fluid containing
air or anastomosis wall defects in contrast CT was considered
anastomosis site leakage (9).

Statistical analyses were performed using Rex (Version 3.0.3,
RexSoft Inc., Seoul, Korea) and SPSS version 27 (SPSS Inc.,
Chicago, IL, USA). The categorical variables were analyzed using
the Chi-squared test, and the continuous variables were analyzed
using the Mann-Whitney U-test. The logistic regression model
was used to analyze the variables that could independently
influence anastomosis site leakage. Variables with a P-value of
< 0.1 in univariable analysis were entered into a multivariable
analysis. A P-value of < 0.05 in the multivariable analysis was
considered statistically significant.

Results

Among the 260 patients, a total of 136 (52.3%) patients were
treated with XELOX/FOLFOX/FOLFIRI combined with
bevacizumab, 85 (32.7%) patients were treated with FOLFOX/
FOLFIRI combined with cetuximab, 25 (9.6%) patients with
XELOX only, 8 (3.2%) patients with FOLFOX only, 2 (0.8%)
patients with FOLFIRI only, 2 (0.8%) patients with XELOX and
XELIRI, 1 (0.3%) patient with FOLFIRI with aflibercept, and 1
(0.3%) patient with pembrolizumab. Three patients received
25Gy to 44Gy of radiation. The patients received a median of
6 courses of bevacizumab (minimum 3, maximum 42), and the
median interval days between the last bevacizumab treatment
to surgery was 43 days (range 16 – 240 days).

A comparison of the baseline clinicopathologic features
between the groups is summarized in Table 1. Age, perineural
invasion, and anastomosis site leakage were significantly
different between the two groups (P = 0.012 P = 0.040, P <
0.001). In the group treated with bevacizumab, anastomosis site
leakage was higher in patients with rectal cancer, and drug
discontinuation periods shorter than 35 days (P = 0.020, P =
0.027; Table 2).

Among the all patients, 213 patients underwent radical
operation of colorectal lesion with metastasectomy. The most
common operation site for metastatic organ was liver. One
hundred seventy-one (65.8%) patients underwent liver
resection or intraoperative radio frequency ablation. Hemihepatectomy, sectionectomy, segmentectomy and wedge
resection were conducted for the liver resection. The next
common operation for metastasis was distant metastatic
lymph node dissection (15.4%). Hysterectomy or oophorectomy
were performed in 6.2% patients. Pneumonectomy, small bowel
resection, operation for bladder/ ureter were performed in 2.3% patients respectively. Splenectomy, pancreatectomy and wedge resection of stomach
were performed in each one patient.

A total of 14 (5.4%) patients were diagnosed with
anastomosis site leakage. The anastomosis site leakage events
are described in detail in Table 3. Thirteen (92.85%) patients
were treated with bevacizumab and 1 (7.15%) patient was treated
with cetuximab. Among 14 patients, 1 (7.2%) was diagnosed
before 7 postoperative days (PODs), 10 (71.4%) patients between
1 – 2 weeks, 3 (21.4%) patients between 3 – 4 weeks. 10 (71.4%)
patients were diagnosed at hospitalization and 4 (28.6%) were
diagnosed after discharge. 9 (64.3%) patients had body
temperatures higher than 38 °C and 10 (71.4%) patients had
elevated white blood cell (WBC) counts with elevated absolute
neutrophil counts, and all patients had elevated CRP levels.
Two (14.3%) patients had stable vital signs with elevated CRP levels.
Among 9 patients with fever, 2 patients had septic shock and 1
patient had sepsis before emergent surgery.

Eight (57.1%) patients underwent emergent operations.
Seven underwent intra-abdominal irrigation with loop
ileostomy and 1 underwent irrigation and drainage only
because this patient already had an ileostomy from the initial
operation. Three (18.75%) patients were treated with antibiotics
with percutaneous catheter drainage insertion for complicated
fluid collection. Three (18.75%) patients were treated with
antibiotics only.

Among 14 patients, 3 (21.4%) patients had an ileostomy
from the primary operation. One patient underwent irrigation
and drainage because she was diagnosed with sepsis with
complicated fluid collection with anastomosis site dehiscence
in the CT examination. One patient was treated with antibiotics
with percutaneous catheter drainage insertion. He had a high
fever of over 38 °C with tachycardia and bacteremia. The CT
showed air containing fluid collection abutting the anastomosis
site with localized peritonitis. One patient was treated with antibiotics
only because his vital signs were stable and CT
showed air containing fluid collection suspicious of connection
with anastomosis site with localized peritonitis. All patients
with a stoma underwent ileostomy take down after the end of
chemotherapy treatment with the confirmation of anastomosis
site healing by colon fluoroscopy using gastrografin. In patients
who didn’t need ileostomy for anastomosis site leakage, median
days of fistula to close was 18days (range, 12-62). In patient
repaired with laparotomy with ileostomy, median months of
fistula to close was 5.5 months (range, 3-24).
In multivariable analysis, chemotherapy agent was independent factor associated with anastomosis site leakage (P = 0.008, Table 4). In the bevacizumab group, the discontinuation period before surgery was independent factor associated with anastomosis site leakage in multivariable analysis (P = 0.031, Table 5).

Discussion

Monoclonal antibodies are chemotherapeutic agents targeting specific receptors on cancer cells (10). Bevacizumab, a monoclonal antibody, acts as an anti-angiogenic agent inhibiting VEGF-A (2). The addition of bevacizumab to fluorouracil-based combination therapy resulted in significant improvement in survival among patients with stage IV colorectal cancer (11, 12). However, because of the anti-angiogenic effects, many studies have reported the complications of surgical wound healing or gastrointestinal perforation in patients treated with bevacizumab (13–16). In previous studies, bevacizumab-associated GI perforation was

TABLE 1 Baseline clinicopathologic features of patients in the bevacizumab and non-bevacizumab groups.

	Non-bevacizumab (n=124)	Bevacizumab (n=136)	P-value
Age, Median (range)	54 (26–79)	57 (23–82)	0.005
Sex			0.250
Male	78 (62.9%)	76 (55.9%)	
Female	46 (37.1%)	60 (44.1%)	
BMI (kg/m²), Median (range)	23.9 (17.8–30.5)	24.0 (15.2–32.8)	0.889
Underlying DM			0.309
No	104 (83.9%)	120 (88.2%)	
Yes	20 (16.1%)	16 (11.8%)	
ASA score			0.549
1-2	114 (91.9%)	111 (89.0%)	
3	10 (8.1%)	15 (11.0%)	
Preoperative CEA			0.063
<5	89 (71.8%)	83 (61.0%)	
≥5	35 (28.2%)	53 (39.0%)	
Location			0.174
Colon	57 (46.0%)	74 (54.4%)	
Rectum	67 (54.0%)	62 (45.6%)	
Route of access			0.109
Open	53 (42.7%)	44 (32.4%)	
MIS	71 (57.3%)	92 (67.6%)	
Diverting stoma			0.065
No	98 (79.0%)	120 (88.2%)	
Yes	26 (21.0%)	16 (11.8%)	
Cancer obstruction			0.736
No	97 (78.2%)	104 (76.5%)	
Yes	27 (21.8%)	32 (23.5%)	
Cancer perforation			0.251
No	122 (98.4%)	134 (98.5%)	
Yes	2 (1.6%)	2 (1.5%)	
EBL (ml), Median (range)	243.5 (50-3000)	200 (50-2000)	0.064
Transfusion			0.231
No	112 (90.3%)	128 (94.1%)	
Yes	12 (9.7%)	8 (5.9%)	
Operation time (min)	283 (89-713)	281 (65-604)	0.329
Ulceration			0.196
No	33 (26.6%)	27 (19.9%)	
Yes	91 (73.4%)	109 (80.1%)	
Tumor size (cm)	4.0 (0-10.0)	3.9 (0-13)	0.527
Differentiation			0.688
Well to moderate	114 (91.9%)	123 (90.4%)	
Poor, SRC, MAC	10 (8.1%)	13 (9.6%)	
T stage			0.509
T0-T2	21 (16.9%)	18 (13.2%)	
T3-T4	103 (83.1%)	118 (86.8%)	
N stage			0.125

(Continued)
seen in 1.5% – 1.6% of the patients with metastatic colorectal cancer (4, 11). Also bevacizumab is considered a preoperative risk factor for colorectal anastomotic leakage (17). And some studies reported spontaneous delayed anastomotic complications associated with bevacizumab (18, 19).

In our study, postoperative anastomosis site leakage was observed in 5.4% of the patients with stage IV colorectal cancer treated with preoperative chemotherapy/chemoradiotherapy. Of the anastomosis site leakage patients, 93.75% were treated with bevacizumab combined with FOLFOX/FOLFIRI/XELOX. Patients treated with bevacizumab showed significantly higher anastomosis site leakage compared to the non-bevacizumab group. Bevacizumab was also a factor associated with anastomosis site leakage in stage IV colorectal patients. Kościelny et al. reported that bevacizumab was associated with significantly higher anastomosis site leakage in the non-ileostomy group who underwent debulking surgery for ovarian cancer (20). Also, Uehara et al. reported 27.8% of anastomosis site leakage in

TABLE 2 Baseline clinicopathologic features of patients with anastomotic leakage and non-leakage treated with bevacizumab.

	Without leakage (n=123)	With leakage (n=13)	P-value
Age	59 (24-82)	53 (23-69)	0.089
Sex			0.876
Male	69 (56.1%)	7 (53.8%)	
Female	54 (43.9%)	6 (46.2%)	
BMI	23.8 (15.2-32.8)	24.3 (20.0-29.1)	0.679
Underlying disease			
No	60 (48.8%)	7 (53.8%)	0.956
Yes	63 (51.2%)	6 (46.2%)	
Underlying DM			0.651
No	109 (86.2%)	11 (84.6%)	
Yes	14 (13.8%)	2 (15.4%)	
ASA score			0.686
1-2	109 (88.6%)	12 (92.3%)	
3	14 (11.4%)	2 (15.4%)	
Preoperative CEA			0.795
<5	76 (61.8%)	7 (53.8%)	
≥5	47 (38.2%)	6 (46.2%)	
Location			0.020
Colon	70 (56.9%)	3 (30.8%)	
Rectum	53 (43.1%)	10 (46.2%)	
Route of access			0.117
Open	37 (30.1%)	7 (53.8%)	
MIS	86 (69.9%)	6 (46.2%)	
Diverting stoma			0.651
No	109 (88.6%)	11 (84.6%)	
Yes	14 (11.4%)	2 (15.4%)	
Cancer obstruction			0.732
No	93 (75.6%)	11 (84.6%)	
Yes	30 (24.4%)	2 (15.4%)	
Cancer perforation			0.643
No	121 (98.4%)	13 (100%)	
Yes	2 (1.6%)	0 (0%)	
EBL (ml)	200 (5-2000)	150 (30-700)	0.631
Transfusion			0.562
No	116 (94.3%)	12 (92.3%)	
Yes	7 (5.7%)	1 (7.7%)	
Operation time (min)	282 (65-604)	273 (81-560)	0.441
Ulceration			0.722
No	24 (19.5%)	3 (23.1%)	
Yes	99 (80.5%)	10 (76.9%)	
Tumor size (cm)	4 (0-13)	3.5 (0-8.8)	0.900
Differentiation			0.360
Well to moderate	112 (91.1%)	11 (84.6%)	
Poor, SRC, MAC	11 (8.9%)	2 (15.4%)	
T stage			0.683
T0-T2	16 (13.0%)	2 (15.4%)	
T3-T4	107 (87.0%)	11 (84.6%)	

(Continued)
rectal cancer patients who underwent neoadjuvant XELOX + Bevacizumab followed by total mesorectal excision (21).

Anastomotic leakage after rectal cancer surgery commonly occurs in the early postoperative period within 7 days (22, 23). Previous studies revealed that treatment with bevacizumab could be associated with delayed anastomosis site perforation, even 15 months after surgery (18, 19). In our study, the median time to leakage was 9 days (range, 6 – 27 days), which was longer than

TABLE 3 Detailed information and treatment of patients diagnosed with anastomosis site leakage.

No.	Sex	Age	Chemotherapy agent	No. of target agent doses	Drug discontinuation day/Diagnosed date	Vital signs and laboratory findings	Treatment
1 M 57	FOLFIRI/Avastin	7	34/POD#7	BT 39.2, WBC 10k, CRP 5.26	Antibiotics, PCD insertion	Loop ileostomy	
2 F 34	XELOX/Avastin	9	28/POD#7	Tachycardia, WBC 30k, CRP 23		Antibiotics, PCD insertion	
3 M 63	FOLFIRI/Avastin	5	21/POD#10	BT 38.3, WBC 22k, CRP 10		Antibiotics, PCD insertion	
4 M 68	FOLFIRI/Avastin	4	47/POD#11	BT 38.3, WBC 20k, CRP 6.8		Loop ileostomy	
5 M 50	FOLFIRI/Cetuximab	11	30/POD#8	Tachycardia, WBC 18k, CRP 8		Antibiotics	
6 F 53	FOLFIRI/Avastin	8	44/POD#7	Septic shock, WBC 17k, CRP 11		Loop ileostomy	
7 F 56	FOLFOX/Avastin	4	43/POD#23	BT 38.4, WBC 20k, CRP 37		Antibiotics	
8 F 45	FOLFIRI/Avastin	15	46/POD#9	BT 39.1, tachycardia, WBC 19k, CRP 9		Irrigation and drain replacement	
9 M 43	FOLFIRI/Avastin	3	28/POD#27	BT 38.1, normal WBC, CRP 1.9		Loop ileostomy	
10 M 69	FOLFOX/Avastin	3	56/POD#6	Tachycardia, Tachypnea, WBC 8k, CRP 6.9		Loop ileostomy	
11 M 69	FOLFIRI/Avastin	17	34/POD#9	Septic shock, WBC 17k, CRP 2.28		Loop ileostomy	
12 M 36	FOLFOX/Avastin	9	50/POD#23	V/S stable, normal WBC, CRP 2.5		Antibiotics	
13 F 45	FOLFOX/Avastin	2	47/POD#13	V/S stable, normal WBC, CRP 6		Antibiotics	
14 F 23	FOLFIRI/Avastin	42	28/POD#7	Sepsis, WBC 13k, CRP 13		Loop ileostomy	

BT, Body temperature; WBC, White blood cell; CRP, C-reactive protein; PCD, Percutaneous catheter drainage; V/S, Vital sign.

TABLE 4 Univariable and multivariable analyses of factors associated with anastomosis site leakage in stage IV colorectal cancer patients.

Factors	P-value	Odds ratio	95% CI	P-value
Age	0.085	0.958	0.915-1.004	0.071
Sex	0.852	1	0.93-1.03	0.89
BMI	0.882	0.97	0.94-1.01	0.16
Underlying DM	0.995	1	0.99-1.00	0.99
ASA score	0.791	1	0.96-1.05	0.43
Location	0.098	2.777	0.811-9.513	0.104
Chemotherapy agent	0.017	16.720	2.111-132.401	0.008
Route of access	0.116	1	0.99-1.02	0.39
Diverting stoma	0.561	1	0.97-1.05	0.43
Cancer obstruction	0.468	1	0.96-1.06	0.40
Cancer perforation	0.991	1	0.98-1.00	0.99
EBL	0.933	1	0.92-1.05	0.49
Transfusion	0.954	1	0.99-1.02	0.37
T stage	0.939	1	0.91-1.00	0.10
N stage	0.947	1	0.93-1.00	0.36
Harvested LN	0.855	1	0.92-1.00	0.19

BML, Body mass index; EBL, Estimated blood loss; LN, Lymph node.
anastomotic leakage after surgery in patients without bevacizumab treatment. Therefore, even if time has passed since the operation, if the patient complains of anal pain or bleeding, anastomotic leakage should be suspected, and further examinations should be performed.

Bevacizumab has a long terminal half-life (20 days) and the bevacizumab prescribing information recommends discontinuing bevacizumab at least 4 weeks before surgery (24). The NCCN guidelines suggest withholding bevacizumab at least 6 weeks prior to surgery (8). Yoshioka et al. reported that the interval between bevacizumab and surgery was not a risk factor for anastomotic leakage, but study was based on a median interval of 9 weeks so effect of bevacizumab on anastomosis site healing would be small (25). In this study, anastomosis site leakage was significantly higher in patients with discontinuation dates shorter than 5 weeks and there was no significant difference between the two groups when compared based on a 4 or 6-week discontinuation interval. Therefore, the discontinuation of bevacizumab is recommended at least 5 weeks prior to major surgery.

Despite the limitation that this study was a retrospective study from a single-center, to our knowledge, this was the first study to evaluate the effect of bevacizumab on anastomosis site healing in stage IV colorectal patients. Further prospective studies from multi-centers should be conducted to confirm our study results.

In conclusion, bevacizumab affected anastomosis site healing after colorectal cancer, and at least 5 weeks from bevacizumab discontinuation to surgery was associated with lower anastomosis site leakage compared to discontinuation dates shorter than 5 weeks. Thus, stage IV colorectal patients treated with bevacizumab before radical surgery for primary cancer should be carefully observed after the operation, and the period of drug discontinuation before surgery should be longer than 5 weeks to avoid anastomosis site leakage.

Data availability statement

The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.

Ethics statement

The studies involving human participants were reviewed and approved by the Institutional Review Board of Samsung Medical Center. Written informed consent for participation was not required for this study in accordance with the national legislation and the institutional requirements.

Author contributions

Guarantor of integrity of the entire study: WL, YC. Study concepts and design: YC, SY. Literature research: JS, YP. Data

TABLE 5 Univariable and multivariable analyses of factors associated with anastomosis site leakage in the bevacizumab group.

Factor	Univariable analysis	Multivariable analysis		
	P-value	Odds ratio	95% CI	P-value
Age	0.038	0.963	0.916-1.013	0.141
Sex	0.877			
BMI	0.799			
Underlying DM	0.671			
ASA score	0.688			
Location	0.083	3.646	0.921-14.430	0.065
Route of access	0.091	0.391	0.111-1.385	0.065
Diverting stoma	0.672			
Cancer obstruction	0.472			
Cancer perforation	0.993			
EBL	0.911			
Transfusion	0.772			
T stage	0.810			
N stage	0.807			
Harvested LN	0.501			
Drug holiday	0.023	4.141	1.136-15.097	0.031
Number of doses	0.290			

BMI, Body mass index; EBL, Estimated blood loss; LN, Lymph node.
analysis: SK, JS. Statistical analysis: SK, JH. Manuscript preparation: SK, YC, HK. Critical revision of manuscript: SK, JH, WL, SY, HK, YC, YP, JS. All authors contributed to the article and approved the submitted version.

Acknowledgments

This research was supported by a grant of the Korea Health Technology R&D project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (grant number: HR20C0025). This work was supported by the BK21 FOUR Project.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

References

1. McCormack PL, Keam SJ. Bevacizumab: A review of its use in metastatic colorectal cancer. Drug (2008) 68(4):487–506. doi: 10.2165/00003495-200806040-00009
2. Hurwitzi HI, Tebbuti NC, Kabbinavar F, Giontonio BJ, Guan ZZ, Mitchell L, et al. Efficacy and safety of bevacizumab in metastatic colorectal cancer: Pooled analysis from seven randomized controlled trials. Oncologist (2013) 18(9):1004–12. doi: 10.1634/theoncologist.2013-0107
3. Kabbinavar FF, Schulz J, McCleod M, Patel T, Hamm JT, Hecht JR, et al. Addition of bevacizumab to bolus fluorouracil and leucovorin in first-line metastatic colorectal cancer: results of a randomized phase II trial. J Clin Oncol (2005) 23(16):3697–705. doi: 10.1200/JCO.2005.05.112
4. Saif MW, Elliky A, Salem RR. Gastrointestinal perforation due to bevacizumab in colorectal cancer. Ann Surg Oncol (2007) 14(6):1860–9. doi: 10.1245/s10434-006-9337-9
5. Qi WX, Shen Z, Tang LN, Yao Y. Bevacizumab increases the risk of gastrointestinal perforation in cancer patients: a meta-analysis with a focus on different subgroups. Eur J Clin Pharmacol (2014) 70(8):955–906. doi: 10.1007/s00228-014-1687-9
6. Saito S, Hayashi N, Sato N, Iwashuki M, Baba Y, Sakamoto Y, et al. Chemotherapy with bevacizumab for metastatic colorectal cancer: a retrospective review of 181 Japanese patients. Int J Clin Oncol (2013) 18(4):689–95. doi: 10.1007/s10147-012-0426-4
7. Nakamura H, Yokoyama Y, Uehara K, Yamaguchi J, Tsuzuki T, et al. The effects of bevacizumab on intestinal anastomotic healing in rabbits. Surg Today (2016) 46(12):1456–63. doi: 10.1007/s00595-016-1342-4
8. Benson AB, Vensok AP, Al-Hawary MM, Arain MA, Chen YJ, Cimbom BK, et al. Colon cancer, version 2.2021, NCCN clinical practice guidelines in oncology: J Natl Compr Canc Netw (2021) 19(3):329–59. doi: 10.6004/jnccn.2021.0012
9. Hiratke NA, Tieman JP, Minder PA, Lyne DG. Systematic review of methods to predict and detect anastomotic leakage in colorectal surgery. Colorectal Dis (2014) 16(2):195–199. doi: 10.1111/codi.12411
10. Pasetto LM, Bertolami A, Falci C, Sinigaglia G, Monfardini S. Recent progress in target therapy in colorectal cancer. Anticancer Res (2006) 26(3B):3973–81
11. Hurwitzi HI, Fehrenbacher L, Novotny W, Cartwright T, Hainsworth J, Heim J, et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med (2004) 350(23):2335–42. doi: 10.1056/NEJMoa0426891
12. Bennouna J, Sattre J, Arnold D, Osterlund P, Greil R, Van Cutsem E, et al. Continuation of bevacizumab after first progression in metastatic colorectal cancer (ML181847): A randomised phase 3 trial. Lancet Oncol (2013) 14(1):29–37. doi: 10.1016/S1470-2045(12)70477-1
13. Scappaticci FA, Fehrenbacher L, Cartwright T, Hainsworth JD, Heim W, Berlin J, et al. Surgical wound healing complications in metastatic colorectal cancer patients treated with bevacizumab. J Surg Oncol (2005) 91(3):173–80. doi: 10.1002/jso.20301
14. Gordon CR, Rojviny P, Patel M, Zins JE, Grana G, Kans B, et al. A review on bevacizumab and surgical wound healing: an important warning to all surgeons. Ann Plast Surg (2009) 62(6):707–9. doi: 10.1097/SAP.0b013e3181828141
15. Ernijert JP, Fong A, Kemeny NE, Brown KT, Getradyjman GI, Solomon SB. Timing of administration of bevacizumab chemotherapy affects wound healing after chest wall port placement. Cancer (2011) 117(6):1296–301. doi: 10.1002/cncr.25573
16. Lordick F, Greinitz H, Theisen J, Sendler A, Sarbia M. Increased risk of ischemic bowel complications during treatment with bevacizumab after pelvic irradiation: report of three cases. Int J Radiat Oncol Biol Phys (2006) 64(5):1295–8. doi: 10.1016/j.ijrobp.2005.12.004
17. McDermott FD, Heeney A, Kelly ME, Steele RJ, Carlson GL, Winter DC. Systematic review of preoperative, intraoperative and postoperative risk factors for colorectal anastomotic leaks. Br J Surg (2015) 102(5):642–79. doi: 10.1002/bjs.9697
18. August DA, Serrano D, Poplin E. “Spontaneous”, delayed colon and rectal anastomotic complications associated with bevacizumab therapy. J Surg Oncol (2008) 97(2):180–5. doi: 10.1002/jso.20938
19. Jafari M, Tessier W, El Hafi D, Decanter G, Mirabel X. Delayed anastomotic leakage following bevacizumab administration in colorectal cancer patients. Acta Oncol (2016) 55(9):1250–5. doi: 10.38737/doi.1084/12816X.2016.1171393
20. Koscielny A, Ko A, Egger EK, Kuhn W, Kalff JC, Keyser-Paik MD. Prevention of anastomotic leakage in ovarian cancer debulking surgery and its impact on overall survival. Anticancer Res (2019) 39(9):5209–18. doi: 10.21873/anticanceres.13718
21. Uehara K, Hiramatsu K, Maeda A, Sakamoto E, Inoue M, Kobayashi S, et al. Neoadjuvant oxaliplatin and capcitabine and bevacizumab without radiotherapy for poor-risk rectal cancer: N-SOG 03 phase II trial. Jpn J Clin Oncol (2013) 43(10):964–71. doi: 10.1093/jjco/hyt115
22. Zhao WT, Hu FL, Li YY, Li HJ, Luo WM, Sun F. Use of a transanal drainage tube for prevention of anastomotic leakage and bleeding after anterior resection for rectal cancer. World J Surg (2013) 37(1):227–32. doi: 10.1007/s00268-012-1812-9
23. Kanellis D, Pramateftakis MG, Vrakas G, Demetriadis H, Kanellis I, Mantoros I, et al. Anastomotic leakage following low anterior resection for rectal cancer. Tech Coloproctol (2010) 14 Suppl 1:153–7. doi: 10.1007/s10151-010-0620-1
24. Ni M. Update and interpretation of 2021 national comprehensive cancer network (NCCN) “Clinical practice guidelines for bone tumors”. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi (2021) 35(9):1186–91. doi: 10.7507/1002-1892.202108073
25. Yoshiooka Y, Uehara K, Ebata T, Yokoyma Y, Mitsuama A, Ando Y, et al. Postoperative complications following neoadjuvant bevacizumab treatment for advanced colorectal cancer. Surg Today (2014) 44(7):1300–6. doi: 10.1007/s00253-013-0686-2