Bounds on general entropy measures

Dominic W Berry and Barry C Sanders‡
Australian Centre for Quantum Computer Technology, Department of Physics,
Macquarie University, Sydney, New South Wales 2109, Australia

Abstract. We show how to determine the maximum and minimum possible values of one measure of entropy for a given value of another measure of entropy. These maximum and minimum values are obtained for two standard forms of probability distribution (or quantum state) independent of the entropy measures, provided the entropy measures satisfy a concavity/convexity relation. These results may be applied to entropies for classical probability distributions, entropies of mixed quantum states and measures of entanglement for pure states.

PACS numbers: 03.67.–a

‡ Present address: Quantum Information Science Group, Department of Physics and Astronomy, University of Calgary, Calgary, Alberta T2N 1N4, Canada.
1. Introduction

Entropy plays a significant role in both classical and quantum information theories and is characterised by various measures, including the Shannon entropy in classical information theory and the von Neumann entropy for a density operator of a quantum system. These entropy measures are related, because the von Neumann entropy of a density operator equals the Shannon entropy of the eigenvalues of this operator. The von Neumann and Shannon entropies are the standard entropy measures, but other entropy measures are also employed.

For quantum systems, the linear entropy is widely employed. The linear entropy is easier to calculate than the von Neumann entropy in general, hence its appeal. Other entropy measures are also employed, including the Tsallis entropy [1] and the α, or Rényi, entropy [2]. A common way of describing these entropy measures is via the trace over a concave function of the density operator. This general entropy measure has been widely studied both in the context of classical probability distributions and mixed quantum states [3].

This work is motivated by problems where one entropy measure is required, but it is only possible to obtain analytic results for another entropy measure. However, the exact result for the desired entropy measure may not be required. Driven by this motivation, we establish a method by which one entropy measure can be estimated from another entropy measure that may be easier to calculate. Specific examples of this problem have been considered in [4, 5, 6]; here we derive the general result for general entropy measures in both the classical and quantum contexts.

General entropy measures for classical information and for quantum information are discussed in section 2. In section 3, we show that the states and probability distributions given in [5, 6] extremise (minimise or maximise) general entropy measures for a given value of another generalised entropy provided that a concavity/convexity condition is satisfied. In section 4, we apply our methods to particular examples and provide an example of an entropy measure that violates the concavity/convexity condition. We conclude in section 5.

2. General measures of entropy

Three common measures of quantum entropy are the von Neumann, linear and Rényi entropies. The von Neumann entropy for density operator $\rho$ is given by $S_{\text{vN}}(\rho) \equiv -\text{Tr}(\rho \log \rho)$, where the notation $\log$ is used for logarithms base 2. The linear entropy is defined by $S_{\text{lin}}(\rho) \equiv 1 - \text{Tr}(\rho^2)$, and the $\alpha$ or Rényi entropy [2] by

$$S_{\alpha}(\rho) \equiv \frac{1}{1-\alpha} \log \text{Tr}(\rho^\alpha). \quad (1)$$

These three entropy measures are all calculated from an expression of the form $\text{Tr}F(\rho)$.

In order to derive general results, we therefore consider general entropy measures
of the form
\[ S_f(\rho) \equiv \text{Tr} F(\rho). \] (2)
The function \( f \) is a mapping \([0,1] \mapsto \mathbb{R} \), and \( F \) is the corresponding operator function defined by
\[ F(\rho) \equiv \sum_{i=0}^{d-1} f(\lambda_i) \langle \phi_i | \phi_i \rangle \] (3)
where \( \lambda_i \) and \( |\phi_i\rangle \) are the eigenvalues and eigenstates, respectively, of \( \rho \), and \( d \) is the dimension of the Hilbert space. The entropy measure \( S_f \) therefore only depends on the eigenvalues of the density matrix, and may be calculated as \( S_f(\rho) = \sum_i f(\lambda_i) \). We require that the function \( f \) satisfies the following three conditions:

**Condition 1:** \( f(0) = 0 \).
**Condition 2:** The function \( f \) is strictly concave or strictly convex.
**Condition 3:** The first derivative \( f' \) exists and is continuous in the interval \((0,1)\).  

All the examples of entropy measures above satisfy these three conditions. The first condition allows us to embed the Hilbert space in another of larger dimension without changing the value obtained for \( S_f \). The second condition implies that the extremal values of the entropy are obtained for pure and maximally mixed states. This result follows from the following lemma:

**Lemma 1.** Let \( f : [0,1] \rightarrow \mathbb{R} \) be a function such that \( f(0) = 0 \), and let \( \{\lambda_i\} \) be a set of \( d \) non-negative real numbers such that \( \sum_i \lambda_i = \Lambda \leq 1 \). If \( f \) is concave (convex), then the minimum (maximum) value of \( \sum_i f(\lambda_i) \) is obtained for one of the \( \lambda_i \) equal to \( \Lambda \) and the rest zero, and the maximum (minimum) value of \( \sum_i f(\lambda_i) \) is obtained for all \( \lambda_i \) equal.

**Proof.** This result is well known; however, we show the result here for completeness. Concavity (convexity) implies
\[
\sum_i f(\lambda_i) \geq \left(\leq\right) \sum_i \left[(1 - \lambda_i/\Lambda) f(0) + (\lambda_i/\Lambda) f(\Lambda)\right] = f(\Lambda).
\] (4)
Thus the minimum (maximum) value of \( \sum_i f(\lambda_i) \) is obtained for one of the \( \lambda_i \) equal to \( \Lambda \) and the rest zero. Similarly concavity (convexity) implies
\[
\sum_i f(\lambda_i) \leq \left(\geq\right) d \times f(\Lambda/d)
\] (5)
so the maximum (minimum) value of \( \sum_i f(\lambda_i) \) is obtained for all \( \lambda_i \) equal to \( \Lambda/d \).

Note that, because we allow the possibility that \( f \) is strictly convex, our measure may be considered to be a measure of entropy or of purity (for simplicity we always call it entropy). This generality is useful because it allows us to easily apply our results to cases such as the linear entropy and the \( \alpha \) entropy. The third condition is not absolutely
necessary for \( S_f(\rho) \) to be a reasonable entropy measure. However, we include it because it is necessary in order to derive the bounds in the next section. Note that we do not require that the derivative exists at the endpoints 0 and 1. Allowing the possibility of derivatives that diverge at the endpoints means that our results may be applied to the von Neumann entropy. Note also that conditions 2 and 3 imply that the derivative \( f' \) must be one-to-one. The derivative \( f' \) will be monotonically increasing (decreasing) if \( f \) is convex (concave).

Because the entropy measure \( S_f \) depends only on the eigenvalues of the density operator, it is equivalent to the entropy measure for classical probabilities:

\[
H_f(\{p_i\}) \equiv \sum_{i=0}^{d-1} f(p_i) \tag{6}
\]

where \( f \) satisfies conditions 1–3. It is clear that \( S_f(\rho) = H_f(\{\lambda_i\}) \), where \( \{\lambda_i\} \) is the set of eigenvalues for \( \rho \). This is a generalisation of the relation between the von Neumann entropy and the Shannon entropy. We may also define an analogous general measure of entanglement for pure states:

\[
E_f(|\psi\rangle) \equiv S_f(\text{Tr}_A|\psi\rangle\langle\psi|) = \sum_{i=0}^{d-1} f(\lambda_i) \tag{7}
\]

where \( f \) is a function satisfying conditions 1–3, \( |\psi\rangle \) is a pure state shared between two subsystems \( A \) and \( B \), and \( \lambda_i \) are the Schmidt coefficients of \( |\psi\rangle \).

The bounds that we derive in the next section may be applied to all three cases: \( H_f \) for classical entropy, \( S_f \) for the entropy of mixed quantum states and \( E_f \) for entanglement of pure quantum states. These three cases are mathematically identical, although the physical interpretations are different.

3. Bounds on entropy measures

In this section we show how to determine the upper and lower bounds on one generalised entropy for a given value of another generalised entropy. We will present the derivation in terms of the entropy for probability distributions. The results for entropies of mixed states and entanglement measures immediately follow from this result.

From [5] the maximum and minimum Shannon entropies for a given value of the index of coincidence (where \( g(\lambda) = \lambda^2 \)) are obtained for probability distributions

\[ \{\lambda_i\} = \{\lambda_0, \lambda_1, \cdots, \lambda_1\} \tag{8} \]

where \( \lambda_1 = (1 - \lambda_0)/(d - 1) \leq \lambda_0 \) and

\[ \{\lambda_i\} = \{\lambda_0, \cdots, \lambda_0, \lambda_1, 0, \cdots, 0\} \tag{9} \]

where \( \lambda_1 = 1 - k\lambda_0 < \lambda_0 \) and there are \( k = \lfloor 1/\lambda_0 \rfloor \) probabilities equal to \( \lambda_0 \). Note that both probability distributions [8] and [9] are parametrised by the single real number \( \lambda_0 \).
The result given in [6] for the von Neumann and linear entropies is equivalent, except that the coefficients $\lambda_i$ are eigenvalues of a density matrix.

We provide a proof that these two probability distributions give the bounds when comparing general entropy measures. The specific result is given below.

**Theorem 1.** Let $H_g = \sum_i g(\lambda_i)$ and $H_f = \sum_i f(\lambda_i)$ be two entropy measures where the functions $f$ and $g$ satisfy conditions 1–3. If $\tilde f'(g')$ is strictly convex (concave), then the maximum (minimum) $H_f$ for fixed $H_g$ is obtained for probability distribution (8), and the minimum (maximum) $H_f$ is obtained for probability distribution (9).

Here, and in the following derivations, the notation $\tilde f'(g')$ is equivalent to $f'(\lambda(g'))$, and means $f'$ as a function of $g'$. Because the function $g'$ is strictly concave or convex, and the derivative $g'$ exists in the interval $(0, 1)$, $g'$ must be a one-to-one function of $\lambda$ in this interval. Hence it is possible to invert this function to obtain $\lambda$ as a function of $g'$ (i.e. $\lambda(g')$). In turn, we may express $f'$ as a function of $g'$ (i.e. $f'(\lambda(g'))$).

Note that the crucial relation the entropy measures must satisfy in order for these bounds to hold is that $\tilde f'(g')$ is strictly concave or strictly convex. The other restrictions on the functions $f$ and $g$ are simply necessary to ensure that these are valid entropy measures.

It is also important to note that, for each value of $H_g$, the probability distributions of the forms (8) and (9) are unique, and hence we obtain unique values for the upper and lower limits on $H_f$. Therefore the bounds on $H_f$ obtained using this method are unambiguous. To show this result for (8), the value of $H_g$ is given by

$$H_g = g(\lambda_0) + (d - 1)g[(1 - \lambda_0)/(d - 1)]$$

so

$$\frac{dH_g}{d\lambda_0} = g'(\lambda_0) - g'[(1 - \lambda_0)/(d - 1)].$$

Because $g'$ is one-to-one and $\lambda_0 \geq (1 - \lambda_0)/(d - 1)$, $dH_g/d\lambda_0$ always has the same sign, except at $\lambda_0 = (1 - \lambda_0)/(d - 1)$ where it is zero. This point is a boundary to the range of $\lambda_0$; thus, $H_g$ must be a one-to-one function of $\lambda_0$. Hence, for each value of $H_g$, there is a unique value of $\lambda_0$ and therefore a unique probability distribution (8).

The situation is similar for the probability distribution (9), except there is an additional complication due to multiple values of $k$. In the same way as for (8), we can see that in each interval where $k$ is a constant $(1/(k + 1), 1/k]$, $H_g$ is a one-to-one function of $\lambda_0$. In particular, if $g$ is convex (concave), then $H_g$ is monotonically increasing (decreasing). In addition, it is easy to see that $H_g$ is continuous at the boundaries where $1/\lambda_0$ is an integer. Thus $H_g$ is a one-to-one function of $\lambda_0$, and each value of $H_g$ corresponds to a unique probability distribution (9).

The method we will use for the proof is to first consider the restricted case for three probabilities in lemmas 3–5, and then apply the result to prove theorem 1. When there are only three probabilities, the problem reduces to finding the maximum and minimum
of a function of a single real variable. This problem is relatively straightforward, and may be solved by finding the boundaries of the domain of the function, as well as the turning points. Before we proceed to the case for three probabilities, there is a minor result that we need to prove for the case of two probabilities.

**Lemma 2.** Let \( g : [0, 1] \mapsto \mathbb{R} \) be a function satisfying conditions 1–3. In addition, let \( \lambda_0 \) and \( \lambda_1 \) be two numbers in the interval \([0, 1]\), with the constraints

\[
\lambda_0 + \lambda_1 = \Lambda^{(2)}
\]

\[
g(\lambda_0) + g(\lambda_1) = H_g^{(2)}
\]  

(12)

where \( 0 \leq \Lambda^{(2)} \leq 1 \). There are at most two solutions to (12), and these solutions differ by a permutation.

**Proof.** Solving (12) is equivalent to solving

\[
g(\lambda_0) + g(\Lambda^{(2)} - \lambda_0) = H_g^{(2)}.
\]

(13)

If \( \Lambda^{(2)} = 0 \), then there is only one solution, \( \lambda_0 = \lambda_1 = 0 \). If \( \Lambda^{(2)} \neq 0 \), then we may determine the number of solutions by considering the turning points of the left-hand-side (LHS). For a turning point we require \( g'(\lambda_0) = -g'(\Lambda^{(2)} - \lambda_0) = 0 \). Since \( g' \) is one-to-one, the only turning point is for \( \lambda_0 = \Lambda^{(2)}/2 \). Thus there can be at most two different values of \( \lambda_0 \) that give the same value for the LHS of (13). Denoting one solution for \( \lambda_0 \) as \( \lambda_g \) (so \( \lambda_1 = \Lambda^{(2)} - \lambda_g \)), the other solution is for \( \lambda_0 = \Lambda^{(2)} - \lambda_g \), in which case \( \lambda_1 = \lambda_g \). Therefore the two solutions are simply related by a permutation. \( \square \)

Next we require a result on the problem of finding the region of values that the three probabilities may take given restrictions on these probabilities.

**Lemma 3.** Let \( g : [0, 1] \mapsto \mathbb{R} \) be a function satisfying conditions 1–3. In addition, let \( \lambda_0, \lambda_1 \) and \( \lambda_2 \) be real numbers in the interval \([0, 1]\) with the restrictions

\[
\lambda_0 + \lambda_1 + \lambda_2 = \Lambda^{(3)}
\]

(14)

where \( 0 \leq \Lambda^{(3)} \leq 1 \) and

\[
g(\lambda_0) + g(\lambda_1) + g(\lambda_2) = H_g^{(3)}.
\]

(15)

The number \( \lambda_0 \) may take values within one or more subintervals of \([0, 1]\); at the boundaries of these subintervals, either one of the \( \lambda_i \) is equal to zero, or two are equal.

**Proof.** Note first that two possible boundaries for \( \lambda_0 \) are at 0 and \( \Lambda^{(3)} \) (if \( \lambda_0 = \Lambda^{(3)} \) then \( \lambda_1 = \lambda_2 = 0 \)). To find other possible boundaries, consider solving for \( \lambda_1 \) and \( \lambda_2 \) for a given \( \lambda_0 \). The expression to solve may then be given as

\[
g(\lambda_0) + g(\lambda_1) + g(\Lambda^{(3)} - \lambda_0 - \lambda_1) = H_g^{(3)}.
\]

(16)
For a given $\lambda_0$, $\lambda_1$ takes values in the region $[0, \Lambda^{(3)} - \lambda_0]$, and the LHS has a turning point at $\lambda_1 = (\Lambda^{(3)} - \lambda_0)/2$. For the points $\lambda_1 = 0$ and $\lambda_1 = \Lambda^{(3)} - \lambda_0$, there is at least one $\lambda_i$ which is zero, whereas at $\lambda_1 = (\Lambda^{(3)} - \lambda_0)/2$, $\lambda_1$ and $\lambda_2$ are equal.

The three points $\{0, (\Lambda^{(3)} - \lambda_0)/2, \Lambda^{(3)} - \lambda_0\}$ are the three possible values of $\lambda_i$ where the LHS is at a maximum or a minimum for a given $\lambda_0$. If there is no solution for $\lambda_1$, then the maximum and minimum are either both above or both below $H^{(3)}_g$. On the other hand, if there is a solution, then $H^{(3)}_g$ must be between the maximum and minimum, or equal to one of these values. The maximum and minimum vary continuously with $\lambda_0$. Therefore, as we pass from a region where there is a solution to a region where there is no solution, either the maximum or the minimum must pass through $H^{(3)}_g$. Hence, at a boundary of the region of values that $\lambda_0$ may take, either at least one of the $\lambda_i$ is zero, or at least two are equal.\[\square\]

Now we apply this result to the bounds problem for the case of three probabilities:

**Lemma 4.** Let $f$ and $g$ be functions $[0,1] \mapsto \mathbb{R}$ such that conditions 1–3 are satisfied. Let $\lambda_0$, $\lambda_1$, and $\lambda_2$ be real numbers in the interval $[0,1]$ with the restrictions (14) and (15), and let $H^{(3)}_f$ be defined by

$$H^{(3)}_f \equiv f(\lambda_0) + f(\lambda_1) + f(\lambda_2).$$

If $\hat{f}'(g')$ is strictly convex or concave, then the extremal values of $H^{(3)}_f$ are obtained when at least one of the $\lambda_i$ is zero or at least two are equal.

**Proof.** Note first that, from lemma 2, for a given value of $\lambda_0$ there are at most two solutions of (14) and (15) for $\lambda_1$ and $\lambda_2$, and one solution is a permutation of the other. Thus, for each value of $\lambda_0$, there is only one possible value of $H^{(3)}_f$. Therefore $H^{(3)}_f$ is a single-valued function of $\lambda_0$, and we may find the maximum and minimum by finding the boundaries of the region of values that $\lambda_0$ may take, as well as the turning points. From lemma 3, at the boundaries of the region of values that $\lambda_0$ may take, either one of the $\lambda_i$ is zero, or at least two are equal.

To complete the proof, it remains to be shown that there are no turning points for values of $\lambda_0$ such that the $\lambda_i$ are nonzero and unequal. For a turning point, we require that $dH^{(3)}_f/d\lambda_0$ changes sign. Taking the derivative of (17) with respect to $\lambda_0$ gives

$$\frac{dH^{(3)}_f}{d\lambda_0} = f'(\lambda_0) + \frac{d\lambda_1}{d\lambda_0} f'(\lambda_1) + \frac{d\lambda_2}{d\lambda_0} f'(\lambda_2).$$

(18)

To remove the derivatives $d\lambda_1/d\lambda_0$ and $d\lambda_2/d\lambda_0$, we may take the derivatives of (14) and (15) with respect to $\lambda_0$, and substitute into (18). We then obtain

$$\frac{dH^{(3)}_f}{d\lambda_0} = \left[ \frac{f'(\lambda_1) - f'(\lambda_0)}{g'(\lambda_1) - g'(\lambda_0)} - \frac{f'(\lambda_2) - f'(\lambda_0)}{g'(\lambda_2) - g'(\lambda_0)} \right] \left\{ \frac{[g'(\lambda_2) - g'(\lambda_0)][g'(\lambda_1) - g'(\lambda_0)]}{g'(\lambda_1) - g'(\lambda_2)} \right\}.$$  

(19)

§ We use the convention that the terminology ‘between’ means not equal unless otherwise specified.
Because \( g' \) is one-to-one, if the \( \lambda_i \) are unequal, then the terms in the denominators are nonzero, and the derivative \( dH_f^{(3)} / d\lambda_0 \) is continuous. In that case, for there to be a turning point, we require that the derivative is zero, which implies

\[
\frac{f'(\lambda_1) - f'(\lambda_0)}{g'(\lambda_1) - g'(\lambda_0)} = \frac{f'(\lambda_2) - f'(\lambda_0)}{g'(\lambda_2) - g'(\lambda_0)}.
\]

(20)

This expression implies that the three points \((g'(\lambda_0), f'(\lambda_0)), (g'(\lambda_1), f'(\lambda_1))\) and \((g'(\lambda_2), f'(\lambda_2))\) lie along a straight line. This is not possible with unequal probabilities if \( f'(g') \) is strictly convex or strictly concave. Thus we see that there are only two possibilities for a maximum or minimum of \( H_f^{(3)} \): one of the \( \lambda_i \) is zero, or two are equal. □

The last lemma we show is a refinement of lemma 4 to account for when the various solutions occur and whether they give a maximum or a minimum.

**Lemma 5.** Let \( f \) and \( g \) be functions \([0, 1] \rightarrow \mathbb{R}\) such that conditions 1–3 are satisfied. Let \( \lambda_0, \lambda_1 \) and \( \lambda_2 \) be real numbers in the interval \([0, 1]\) with the restrictions \([14]\) and \([15]\), and let \( H_f^{(3)} \) be defined as in \([17]\). If \( f'(g') \) is strictly convex (concave), then the maximum (minimum) \( H_f^{(3)} \) is obtained only if two \( \lambda_i \) are equal and one is larger or equal, and the minimum (maximum) \( H_f \) is obtained only if one of the \( \lambda_i \) is zero, or two are equal and one is smaller or equal.

**Proof.** In the case that one of the \( \lambda_i \) is zero, we may take \( \lambda_0 \) to be zero without loss of generality. Using lemma 1, the extremal values of \( H_f^{(3)} \) are \( g(\Lambda^{(3)}) \) and \( 2g(\Lambda^{(3)}/2) \). In general, the extremal values of \( H_g^{(3)} \) are obtained for all \( \lambda_i \) equal, giving \( H_g^{(3)} = 3g(\Lambda^{(3)}/3) \), and all probabilities zero except for one, giving \( H_g^{(3)} = g(\Lambda^{(3)}) \). Therefore \( H_g^{(3)} \) may take values from \( g(\Lambda^{(3)}) \) to \( 3g(\Lambda^{(3)}/3) \). It is easily seen that \( 2g(\Lambda^{(3)}/2) \) lies in this interval. If \( H_g^{(3)} \) lies between \( g(\Lambda^{(3)}) \) and \( 2g(\Lambda^{(3)}/2) \), or is equal to one of these values, then there is a solution with \( \lambda_0 = 0 \). If \( H_g^{(3)} \) is between \( 2g(\Lambda^{(3)}/2) \) and \( 3g(\Lambda^{(3)}/3) \), or equal to \( 3g(\Lambda^{(3)}/3) \), there is no solution with \( \lambda_0 = 0 \).

For the other case, where at least two of the \( \lambda_i \) are equal, we may take \( \lambda_1 = \lambda_2 \) without loss of generality. Then the restrictions \([14]\) and \([15]\) give

\[
g(\lambda_0) + 2g[(\Lambda^{(3)} - \lambda_0)/2] = H_g^{(3)}.
\]

(21)

To determine the number of solutions to this, we may consider the LHS as a function of \( \lambda_0 \). The number \( \lambda_0 \) is in the range \([0, \Lambda^{(3)}]\), and there is one turning point at \( \lambda_0 = \Lambda^{(3)}/3 \). Therefore there may be at most two solutions to equation \([21]\).

To be more specific, the LHS takes the values \( 2g(\Lambda^{(3)}/2) \), \( 3g(\Lambda^{(3)}/3) \) and \( g(\Lambda^{(3)}) \) for \( \lambda_0 \) equal to \( 0, \Lambda^{(3)}/3 \) and \( \Lambda^{(3)} \), respectively. This situation is illustrated in figure 11 for the case where \( g \) is strictly concave. There are five qualitatively different situations for different values of \( H_g^{(3)} \) from \( g(\Lambda^{(3)}) \) to \( 3g(\Lambda^{(3)}/3) \):

1. For \( H_g^{(3)} = g(\Lambda^{(3)}) \) (line A), there is only one possible solution, which corresponds to all the \( \lambda_i \) being zero except one.
2. If $H^{(3)}_g$ lies between $g(\Lambda^{(3)})$ and $2g(\Lambda^{(3)}/2)$ (between lines A and B), there can be only one solution with $\lambda_1 = \lambda_2$. This solution is for $\lambda_0$ in the interval $(\Lambda^{(3)}/3, \Lambda^{(3)})$. There will also be a solution with $\lambda_0 = 0$, giving a total of two solutions.

3. If $H^{(3)}_g$ is equal to $2g(\Lambda^{(3)}/2)$ (line B), then there are two solutions with $\lambda_1 = \lambda_2$, one for $\lambda_0 = 0$ and the other for $\lambda_0$ in the interval $(\Lambda^{(3)}/3, \Lambda^{(3)})$. We can also obtain a solution by setting $\lambda_0 = 0$; however, this solution is identical to the solution for $\lambda_1 = \lambda_2$ where $\lambda_0 = 0$. Therefore there are only two distinct solutions.

4. For $H^{(3)}_g$ in the range between $2g(\Lambda^{(3)}/2)$ and $3g(\Lambda^{(3)}/3)$ (between lines B and C), there are two solutions with $\lambda_1 = \lambda_2$, one for $\lambda_0$ in the range $(0, \Lambda^{(3)}/3)$ and the other for $\lambda_0$ in the range $(\Lambda^{(3)}/3, \Lambda^{(3)})$. There is no solution with $\lambda_0 = 0$, again resulting in a total of two solutions.

5. The last possibility is $H^{(3)}_g = 3g(\Lambda^{(3)}/3)$ (line C), in which case all the $\lambda_i$ are equal.

Thus we find that, for $H^{(3)}_g$ between $3g(\Lambda^{(3)}/3)$ and $g(\Lambda^{(3)})$, there are always two solutions where either one of the $\lambda_i$ is zero or two are equal, thereby providing a maximum and minimum for $H^{(3)}_f$. If $H^{(3)}_g$ is equal to $3g(\Lambda^{(3)}/3)$ or $g(\Lambda^{(3)})$, there is only one possible solution, so the maximum and minimum coincide.

In order to determine which solution gives the maximum of $H^{(3)}_f$ and which gives the minimum, let us consider the solution where $\lambda_0 > \Lambda^{(3)}/3$ and $\lambda_1 = \lambda_2$. For $H^{(3)}_g$ between $g(\Lambda^{(3)})$ and $3g(\Lambda^{(3)}/3)$ there are always two distinct solutions, one of which is of this form. Therefore we may determine which solution gives the minimum and which gives the maximum by only considering this case. This value of $\lambda_0$ is an upper boundary, because the other solutions for $\lambda_0$ are smaller. Let us consider a value of $\lambda_0$ slightly below this solution, so $\lambda_1 \neq \lambda_2$. We may take $\lambda_1$ to be the larger value, so $\lambda_0 > \lambda_1 > \lambda_2$.

If $g$ is convex, then $g'(\lambda_0) > g'(\lambda_1) > g'(\lambda_2)$, and if $g$ is concave, then $g'(\lambda_0) < g'(\lambda_1) < g'(\lambda_2)$. Therefore the multiplying factor in braces in equation (19) is positive.
Bounds on general entropy measures

if \( g \) is convex, and negative if \( g \) is concave. It is also easy to see that, if \( \tilde{f}'(g') \) and \( g \) are both convex or both concave, then the first term in the square brackets in equation (10) is greater than the second term. If one of \( \tilde{f}'(g') \) and \( g \) is convex and the other is concave, then the first term in the square brackets is smaller than the second term.

Thus we find that \( \frac{dH_f}{d\lambda_0} \) is positive if \( \tilde{f}'(g') \) is convex, and negative if \( f'(g') \) is concave. Therefore, for \( \tilde{f}'(g') \) convex, as we increase \( \lambda_0 \) up to its maximum value, \( H_f^{(3)} \) is increasing, and the solution where \( \lambda_0 > \lambda_1 = \lambda_2 \) must be a maximum. Similarly, for \( \tilde{f}'(g') \) concave, the solution where \( \lambda_0 > \lambda_1 = \lambda_2 \) is a minimum. \( \square \)

Now that we have solved the case for three probabilities, we may extend the solution to the general case with \( d \) probabilities. Thus the proof of theorem 1 is as given below.

**Proof of theorem 1.** We wish to find the maximum and minimum of \( H_f = \sum_i f(\lambda_i) \) with fixed \( H_g = \sum_i g(\lambda_i) \) and \( \sum_i \lambda_i = 1 \). To solve this case, let \( \{\lambda_i\} \) be a set of probabilities that maximises \( H_f \). We then select any three probabilities \( \lambda_{i_0}, \lambda_{i_1}, \) and \( \lambda_{i_2}, \) and define \( I \) to be the set of indices \( \{i_0, i_1, i_2\} \), and \( I^\perp \) to be the set of indices excluding \( I \). If the set of probabilities \( \{\lambda_i\} \) maximises the sum \( \sum_i f(\lambda_i) \), then the set \( \{\lambda_{i_0}, \lambda_{i_1}, \lambda_{i_2}\} \) must maximise the sum

\[
H_f^I = \sum_{i \in I} f(\lambda_i) \tag{22}
\]

with the restrictions

\[
\sum_{i \in I} \lambda_i = \Lambda^{(3)} \quad \sum_{i \in I} g(\lambda_i) = H_g^I \tag{23}
\]

where \( \Lambda^{(3)} = 1 - \sum_{i \in I^\perp} \lambda_i \) and \( H_g^I = H_g - \sum_{i \in I^\perp} g(\lambda_i) \). From lemma 5, if \( \tilde{f}'(g') \) is strictly convex (concave), \( H_f^I \) is maximised (minimised) only with probabilities of the form \( \lambda_0 \geq \lambda_1 = \lambda_2 \). That is, \( H_f^I \) being maximised (minimised) implies that the probabilities are of this form. The only way that this criterion can be satisfied for all subsets of three probabilities is if all the probabilities are equal, except for one which may be larger. Therefore the probability distribution must be of the form \( \mathbb{S} \).

Similarly, for \( \tilde{f}'(g') \) strictly convex (concave), \( H_f^I \) will be minimised (maximised) only for probabilities of the form \( \lambda_0 \leq \lambda_1 = \lambda_2 \), or for one of the probabilities equal to zero. The only way that this criterion can be satisfied for all subsets of three probabilities is if a number of the probabilities are equal, one is smaller and the rest are zero. Therefore the probability distribution must be of the form \( \mathbb{S} \). Thus we have proven each of the alternative cases for theorem 1. \( \square \)

Although we have presented the above analysis in terms of probabilities, identical results hold for entropies of mixed states and entanglements of pure states. The eigenvalues of density matrices or Schmidt coefficients of pure entangled states may be analysed in the same way as probabilities, so we have the following two corollaries.

**Corollary 1.** Let \( S_g(\rho) \) and \( S_f(\rho) \) be two entropy measures where the functions \( f \) and \( g \) satisfy conditions 1–3. If \( \tilde{f}'(g') \) is strictly convex (concave), then the maximum...
(minimum) $S_f$ for fixed $S_g$ is obtained for a state with eigenvalues of the form $\mathbb{N}$, and the minimum (maximum) $S_f$ is obtained for a state with eigenvalues of the form $\mathbb{J}$.

**Corollary 2.** Let $E_g(|\psi\rangle)$ and $E_f(|\psi\rangle)$ be two entanglement measures where the functions $f$ and $g$ satisfy conditions 1–3. If $\tilde{f}'(g')$ is strictly convex (concave), then the maximum (minimum) $E_f$ for fixed $E_g$ is obtained for a state with Schmidt coefficients of the form $\mathbb{N}$, and the minimum (maximum) $E_f$ is obtained for a state with Schmidt coefficients of the form $\mathbb{J}$.

### 4. Applications

Next we consider applications of these results. As our first application, consider the problem of maximising or minimising the von Neumann entropy for given linear entropy. In this situation we take

\[
f(\lambda) = - \lambda \log \lambda \quad g(\lambda) = \lambda^2. \tag{24}\]

Both $f$ and $g$ satisfy conditions 1–3. We find that

\[
f'(\lambda) = - \log \lambda - \log e \quad g'(\lambda) = 2\lambda. \tag{25}\]

To determine if $\tilde{f}'(g')$ is strictly convex or strictly concave, we may calculate $d\tilde{f}'/dg'$. When this derivative is monotonically increasing (decreasing), $\tilde{f}'(g')$ is strictly convex (concave). We may determine $d\tilde{f}'/dg'$ from $f''/g''$, which gives

\[
\frac{f''}{g''} = - \frac{\log e}{2\lambda}. \tag{26}\]

Thus $d\tilde{f}'/dg'$ is monotonically increasing, and $\tilde{f}'(g')$ is strictly convex. This implies, from corollary 1, that the von Neumann entropy is maximised for a density matrix with eigenvalues of the form $\mathbb{N}$, and minimised when the eigenvalues are of the form $\mathbb{J}$. Therefore, for the case of the von Neumann entropy and the linear entropy, we obtain the result given in [5, 6].

As another application, we may consider the comparison of two $\alpha$ entropies for different values of $\alpha$:

\[
f(\lambda) = \lambda^{\alpha_1} \quad g(\lambda) = \lambda^{\alpha_2} \tag{27}\]

where $\alpha_1 \neq \alpha_2$. For this example we obtain

\[
\frac{f''}{g''} = \frac{\alpha_1(\alpha_1 - 1)}{\alpha_2(\alpha_2 - 1)} \lambda^{\alpha_1 - \alpha_2}. \tag{28}\]

This expression will be either monotonically increasing or monotonically decreasing depending on the values of $\alpha$. Therefore the maximum and minimum $\alpha_1$ entropies are again obtained for the same form of states. Note that, because taking $\alpha \to 1$ or 2 also gives the von Neumann entropy and the linear entropy, these bounds hold for any two-way comparison between these entropy measures.
Bounds on general entropy measures

As an example of a case where the maximum and minimum entropies are not given by states with eigenvalues of the form (8) and (9), consider

\[ f(\lambda) = -\lambda \log \lambda \quad g(\lambda) = \lambda^2 + 1.99[1 - \cos(\omega \lambda)]/\omega^2 \]  

where we take \( \omega = 10 \). The entropy \( S_f \) is simply the von Neumann entropy, whereas \( S_g \) is slightly modified from the purity. We find that \( g''(\lambda) = 2 + 1.99 \cos(\omega \lambda) \), which does not change sign, so \( S_g \) is a valid entropy measure. However,

\[ \frac{f''}{g''} = -\frac{\log e}{\lambda[2 + 1.99 \cos(\omega \lambda)]} \]  

is not one-to-one for \( \omega = 10 \). Therefore the entropies \( S_f \) and \( S_g \) do not satisfy the conditions of theorem 1, even though they are valid entropy measures.

The limits that would be given by states with eigenvalues of the forms (8) and (9) are shown in figure 2(a). In addition, results for a large number of randomly generated states are shown. A number of points lie outside the boundaries given by the states of the form (8) and (9), demonstrating that these do not provide the limits to the von Neumann entropy for given \( S_g \) entropy.

Nevertheless, even for this example, most of the points lie within the region between the two curves, and the points that lie beyond the boundary are only a small distance from the boundary. This example has been chosen because the points are at a noticeable distance from the boundaries. For other values of \( \omega \) the difference is not so noticeable. In fact, for some values of \( \omega \) there were no points found to lie beyond the boundary, despite the fact that \( \tilde{f}'(g'') \) is not strictly convex or concave. An example for \( \omega = 4 \) is shown in figure 2(b). These results strongly indicate that the condition that \( \tilde{f}'(g') \) is strictly convex or concave is not a necessary condition, although it is sufficient.
5. Conclusions

We have shown how to determine the maximum and minimum possible values of one type of entropy for fixed values of another type of entropy. The forms of states that achieve these maximum and minimum values are the same as those given by [5, 6] for the case of comparing the von Neumann entropy to the linear entropy. These results may be applied to entropies of probability distributions, entropies of mixed states and measures of entanglement for pure states.

We have identified the relation between the entropy measures that is necessary for these bounds to hold. This relation holds between the von Neumann entropy, the linear entropy and the $\alpha$ entropy. The bounds we have derived therefore apply to any two-way comparison between these entropy measures. These results allow one to estimate the value of one type of entropy given the value of another.

For the examples we have examined, we have found that these bounds are a good approximation of the true bounds even for comparisons between entropy measures that do not satisfy the conditions of the proof. This indicates that, even in such cases, the bounds we have found may be used to estimate the value of one entropy from the other (without giving the exact bounds).

Acknowledgments

The authors are grateful to William Munro, who helped with the manuscript, and Karol Życzkowski, who shared a preliminary version of his manuscript with us. The authors also acknowledge valuable discussions with Xiaoguang Wang, Stephen Bartlett and Robert Spekkens. This research has been supported by an Australian Research Council Large Grant and by a Department of Education Science and Training Innovation Access Program Grant to support the European Fifth Framework Project QUPRODIS.

References

[1] Tsallis C 1988 J. Stat. Phys. 52 479
Tsallis C, Mendes R S and Plastino A R 1998 Physica A 261 534
[2] Rényi A 1970 Probability Theory (Amsterdam: North-Holland)
[3] Wehrl A 1976 Rep. Math. Phys. 10 159
Ohya M and Petz D 1993 Quantum Entropy and Its Use (Heidelberg: Springer)
[4] Wang X, Sanders B C and Berry D W 2003 Phys. Rev. A 67 042323
Życzkowski K 2003 Open Syst. Inf. Dyn. 10 297
Kendon V M, Życzkowski K and Munro W J 2002 Phys. Rev. A 66 062310
[5] Harremoës P and Topsoe F 2001 IEEE Trans. Inf. Theory 47 2944
[6] Wei T-C, Nemoto K, Goldbart P M, Kwiat P G, Munro W J and Verstraete F 2003 Phys. Rev. A 67 022110