Activation of peroxisome proliferator-activated receptor gamma (PPARγ) has been linked to induction of differentiation, cell growth inhibition and apoptosis in several types of human cancer. However, the possible effects of PPARγ agonists on oral squamous cell carcinoma have not yet been reported. In this study, treatment with 15-deoxy-Δ12,14-PGF2α (15-PGF2α), a natural PPARγ ligand, induced a significant reduction of oral squamous cell carcinoma cell growth, which was mainly attributed to upregulation of apoptosis. Interestingly, rosiglitazone and ciglitazone, two members of the thiazolidinedione family of PPARγ agonists, did not exert a growth inhibitory effect. Given the critical role that the oncogene signal transducer and activator of transcription 3 (Stat3) plays in head and neck carcinogenesis, its potential regulation by PPARγ ligands was also examined. Treatment of oral squamous cell carcinoma cells with 15-PGF2α induced an initial reduction and eventual elimination of both phosphorylated and unphosphorylated Stat3 protein levels. In contrast, other PPARγ did not induce similar effects. Our results provide the first evidence of significant antineoplastic effects of 15-PGF2α on human oral squamous cell carcinoma cells, which may be related to downmodulation of Stat3 and are at least partly mediated through PPARγ-independent events.

British Journal of Cancer (2002) 87, 1396 – 1403. doi:10.1038/sj.bjc.6600618 www.bjcancer.com

© 2002 Cancer Research UK

Keywords: PPARγ; Stat3; prostaglandin J2; thiazolidinediones; oral squamous carcinoma

Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear hormone receptor family, which function as ligand-dependent, sequence-specific activators of transcription. The PPAR family consists of three distinct molecules, termed α, δ (PPAR or NUC-1), and γ, encoded by separate genes and characterised by specific tissue and developmental distribution patterns (Mangelsdorf et al., 1993; Lemberger et al., 1996; Gelman et al., 1999; Kersten et al., 2000). A variety of natural and pharmacological ligands, including prostaglandins, the fibrate class of hypolipidaemic drugs, the anti-diabetic drugs thiazolidinediones, and certain non-steroidal anti-inflammatory drugs, are able to bind to and activate PPARs (Forman et al., 1995, 1997; Yu et al., 1995; Lehmann et al., 1997). Upon activation, PPARs heterodimerise with the retinoic X receptor (RXR) and bind to peroxisome proliferator response elements (PPREs), located in the promoter region of target genes, driving their transcription (Mangelsdorf et al., 1995).

PPARs were initially described as molecular targets for compounds that induce peroxisome proliferation (Issemann and Green, 1990). However, shortly after their discovery, it became apparent that the physiologic role of PPARs extends far beyond peroxisome proliferation, involving such diverse processes as lipid homeostasis, insulin sensitisation, inflammation, and cell proliferation (Lemberger et al., 1996; Gelman et al., 1999; Kersten et al., 2000). Today, PPARs are recognised as key regulators of lipid homeostasis, playing fundamental roles in adipogenesis and fat catabolism (Lemberger et al., 1996; Kersten et al., 2000). Potential roles of PPARs in the treatment of diabetes mellitus (Vamecq and Latruffe, 1999), in inflammation control (Gelman et al., 1999), and in the regulation of atherosclerosis and thrombosis (Vamecq and Latruffe, 1999; Duez et al., 2001) have also been described.

The role of PPARγ in the acquisition of an adipocyte phenotype, through the control of the expression of genes that promote cell cycle withdrawal, drive differentiation and induce apoptosis (Shao and Lazar, 1997; Debril et al., 2001), prompted many investigators to study the potential function of PPARγ in neoplasia. Multiple lines of evidence suggest that PPARs, especially PPARγ, play an important role in modulating cell proliferation and tumour growth (Gelman et al., 1999; Kersten et al., 2000; Debril et al., 2001; Park et al., 2001; Rosen and Spiegelman, 2001). Ligand-induced PPARγ activation has been shown to promote differentiation and to induce cell growth inhibition and apoptosis in several types of human cancer, including colon cancer (Sarraf et al., 1998; Kitamura et al., 1999; Yang and Frucht, 2001), breast cancer (Elsner et al., 1998; Mueller et al., 1998), lung cancer (Chang and Szabo, 2000), prostate cancer (Kubota et al., 1998; Butler et al., 2000), gastric cancer (Sato et al., 2000), liposarcoma (Tontonoz et al., 1997; Demetri et al., 1999), and leukaemia (Sugimura et al., 1999). Histo-
logical and biochemical evidence indicate that PPARγ ligands induce tumour cell differentiation in patients with advanced liposarcoma (Demetri et al., 1999). Consistent with its possible function as a tumour suppressor gene, PPARγ has been reported to be functionally mutated in sporadic cases of colon cancer (Sarraf et al., 1999); nonetheless, the overall incidence of PPARγ mutations in human malignancies seems to be very rare (Ikeezo et al., 2001).

We recently showed that the non-steroidal anti-inflammatory drug (NSAID) sulindac induces cell growth inhibition and apoptosis in human oral squamous cell carcinoma (SCCa) cells, accompanied by upregulation of the mRNA and protein expression of PPARγ. Treatment with antisense PPARγ oligonucleotides abolished the cell growth inhibitory effect of the NSAID sulindac. These results suggest that upregulation of PPARγ expression and activation may be, at least partially, responsible for sulindac's anti-tumour effect (Nikitakis et al., 2002a). However, it is unknown whether ligand-induced PPARγ activation may alter the cell growth of oral SCCa. Here, we assessed the effects that the natural PPARγ ligand 15-deoxy-D12,14-PGJ2 (15-PGJ2) and the synthetic PPARγ ligands rosiglitazone and ciglitazone have on cell growth, apoptosis and cell proliferation in oral SCCa cells. Moreover, we explored the possibility that PPARγ activation may affect the expression and activation of Stat3, an oncogene that plays a critical role in head and neck carcinogenesis (Grandis et al., 1998, 2000; Bromberg et al., 1999; Bowman et al., 2000) and is downregulated by sulindac in oral SCCa cells (Nikitakis et al., 2002b).

MATERIALS AND METHODS

Cell lines and cell culture

Experiments were performed using established cell lines of human oral SCCa (SCC-4, -9, -15 and -25) obtained from the American Type Culture Collection (ATCC) (Manassas, VA, USA). Cells were cultured in a 1:1 mixture of Ham’s F12 and Dulbecco’s Modified Eagle’s Medium (DMEM) containing 10% foetal bovine serum (FBS), 100 units of penicillin, 100 μg ml−1 streptomycin and 0.4 μg ml−1 hydrocortisone (Sigma Chemical Co., St. Louis, MO, USA) at 37°C in a 5% CO2 air atmosphere. Cells were subcultured by disaggregation with trypsin (0.1%)–EDTA (0.01%) in phosphate buffered saline (PBS) at pH 7.5.

Quantitative reverse transcriptase polymerase chain reaction

To estimate the mRNA levels of PPARγ, real-time quantitative reverse transcriptase polymerase chain reaction (RT–PCR) was performed using a PE Applied Biosystems protocols. Total RNA was isolated using the TRIZOL Reagent (BRL/Life Technologies) and the concentration of RNA was determined using spectrophotometry. The forward and reverse PPARγ primers were selected using Primer Express software (PE Applied Biosystems, Foster City, CA, USA) as follows: 5′-TATCGACACAGCTGATACAGAC-3′ (forward) and 5′-TCGCTTCTTTGTTGGTCA-3′ (reverse). For the PCR reaction, a SYBR® Green PCR kit (PE Applied Biosystems) was used and the analyses were performed in triplicate. For each well, 5 μl of 25 nM RNA extract were added to a solution consisting of: 25 μl Master Mix solution (SYBR Green PCR Buffer, AmpliTaq Gold® DNA Polymerase, dATP, dGTP, dUTP and 25 μM MgCl2), 1 μl of RNase inhibitor, 0.25 μl of reverse transcriptase (MultiScribe), 1 μl of each primer and 16.75 μl of water. The amplification process included 30 min at 48°C, 10 min at 95°C, followed by 40 cycles of 15 s at 95°C and 1 min at 60°C. Thermal cycling and fluorescence detection were performed using an ABI 7500 Prism (PE Applied Biosystems). Relative quantitation of the signal of PPARγ mRNA followed. The signal of the target mRNA was normalised by comparison with the housekeeping gene glyceraldehyde-3-phosphate dehydrogenase (GAPDH) mRNA signal. The normalised amount of PPARγ mRNA present in each cell line was calculated by arbitrarily designating SCC25 cells as a calibrator using a comparative Ct method following PE Applied Biosystems protocols.

Immunocytochemistry

Cells were plated on chamber slides (LabTech Nalge/Nunc) at a density of 5 × 10⁶ cells/chamber and were allowed to grow until almost confluent. The cells were then rinsed with Hanks’ balanced salt solution (HBSS) and fixed with 95% ethanol for 20 min. PPARγ protein expression was ascertained by immunocytochemical analysis (Santa Cruz Biotechnology, Santa Cruz, CA, USA, sc-1984) 1:50. The presence of antibody staining was determined after incubation of the sections with a secondary antibody (Biogenex, San Ramon, CA, USA, HK327-UG) 1:20, followed by the application of StreptABComplex/HRP (Dako, Carpinteria, CA, USA, K0377), and diaminobenzidine (DAB). The slides were counterstained with Harris’s haematoxylin. The intensity of the immunostaining was classified as: 0 (negative), 1 (weakly positive), 2 (moderately positive), and 3 (strongly positive).

Immunohistochemistry

Ten cases of oral squamous cell carcinoma were randomly selected from the files of the Department of Diagnostic Sciences and Pathology. No patients were identified for these studies. The histological slides were reviewed to confirm diagnosis.

Five-micron sections of paraffin-embedded tissue were mounted on glass slides, deparaffinised and rehydrated. An antigen retrieval procedure was performed by placing the sections in Citra-solution (HK086-9K; Biogenex, San Ramon, CA, USA) inside a plastic pressure cooker, which was positioned in a microwave oven (Kenmore; Sears, Chicago, IL, USA). The specimens were treated by two cycles, 15 min each, at a high level and at level 4, respectively. Endogenous peroxidase activity was blocked with 3% hydrogen peroxide and non-specific protein was blocked with a universal blocking reagent (HK085-5K; Biogenex) at 4°C overnight. The sections were then treated with PPARγ antibody, followed by incubation with secondary antibody, application of StreptABComplex/HRP and staining with diaminobenzidine (DAB) and Harris haematoxylin, using the aforementioned reagents and dilutions.

Cell growth inhibition

Cells were plated on 24-well plates at a density of 5 × 10⁴ cells well−1. After 24 h, the growth medium was supplemented with DMSO at a concentration of 0.1% or with either one of the following: 15-deoxy-D12,14-Prostaglandin J2 (15-PGJ2) (Cayman Chemical, Ann Arbor, MI, USA) at concentrations of 10 or 20 μM, rosiglitazone (Cayman Chemical) at concentrations of 25 or 50 μM, and ciglitazone (Biomol, Plymouth Meeting, PA, USA) at concentrations of 25 or 50 μM. All three compounds were dissolved in 100% DMSO, so that the final concentration of DMSO did not exceed 0.1%. Following incubation for 24, 48 or 72 h, either treated or untreated cells were removed enzymatically and counted using a Coulter Counter (Coulter Model ZL, Coulter Corporation, Miami, FL, USA). The per cent of growth was determined setting as 100% the growth of cells treated only with the vehicle (0.1% DMSO). All analyses were performed in triplicate.

Cell cycle analysis

Cells were treated either with the vehicle alone (0.1% DMSO) or with 10 or 20 μM of 15-PGJ2 dissolved in 100% DMSO for 72 h. Cells were dissociated using trypsin-EDTA in PBS, pelleted and
Effects of 15-PGJ₂ on human oral SCCa cells

NG Nikitakis et al

Effects of 15-PGJ₂ on human oral SCCa cells

Molecular and Cellular Pathology

British Journal of Cancer (2002) 87(12), 1396 – 1403

Inc., Tulsa, OK, USA). An alpha value of P≤0.05 was used in all models and post hoc comparisons.

RESULTS

Expression of PPARγ in oral SCCa cell lines and tissues

Quantitative RT–PCR analysis showed mRNA expression for PPARγ in all four oral SCCa cell lines. The lowest levels of PPARγ mRNA were expressed in SCC25 and the highest in SCC9 (Table 1). Protein expression of PPARγ was detected by means of immunohistochemistry; PPARγ immunostaining, primarily in a cytoplasmic location, was evident in all four oral SCCa cell lines (Figure 1A,B). Immunohistochemistry for PPARγ in tumour specimens of patients with oral SCCa revealed PPARγ production by the tumour cells, which was limited to the well-differentiated areas of the tumours (Figure 1C).

Effect of PPARγ agonists on cell growth inhibition

Oral SCC25 cells treated with 10 or 20 μM of 15-PGJ₂ exhibited reduction in cell growth (Figure 2); similar results were obtained from the other oral SCCa cell lines. Combining the results from all four cell lines, a significant main effect for time (F(2,6) = 20.6, P<0.01) and interaction of time vs dosage (F(3,12) = 17.4, P<0.0001) was observed, reflecting that increases in dosage and time of treatment were associated with decreases in cell growth. In contrast, treatment with rosiglitazone or ciglitazone did not induce significant cell growth inhibition in any of the tested cell lines (P>0.05), even when the highest dosage of treatment (i.e. 50 μM) for the longest duration (i.e. 72 h) was employed (Figure 2C).

Effect of 15-deoxy-Δ12,14-PGJ₂ on apoptosis and cell proliferation

We tested next whether the cell growth inhibition induced by 15-PGJ₂ was due to alterations in apoptosis or cell proliferation rates. Treatment of oral SCCa cells with 10 or 20 μM of 15-PGJ₂ did not significantly affect the percentage of cells in the S phase of the cell cycle, which remained stable or was only slightly increased;

Table 1 Relative PPARγ mRNA expression in oral SCCa cell lines

Cell line	Relative PPARγ mRNA levels
SCC4	1.23 (1.03–1.47)
SCC9	3.27 (2.11–5.06)
SCC15	1.56 (0.93–2.60)
SCC25	1.00 (0.79–1.27)

*Results were obtained by real-time quantitative RT-PCR; all cell lines were compared to SCC25, whose level of PPARγ mRNA expression was set as 1.

Table 2 Cell cycle profiles of oral SCC25 and SCC9 cells treated with 20 μM of 15-PGJ₂ or the vehicle alone (0.1% DMSO)

Cell line	Treatment	G1	S	G2
SCC25	DMSO	49.51±3.44	33.11±2.55	17.38±0.90
	15-PGJ₂	36.89±2.96	33.97±7.85	29.14±4.90
SCC9	DMSO	57.10±0.13	14.70±1.23	28.20±1.31
	15-PGJ₂	31.95±2.46	20.79±3.67	47.26±1.87

Cell data were submitted to an analysis of variance with repeated measures (time and dosage), using Newman–Keuls post hoc comparisons where appropriate (Statistica for Windows, StatSoft,
however, an increase in the percentage of cells in the G2 phase of the cell cycle was observed, accompanied by a corresponding reduction of cells in the G1 phase (Table 2). These results indicate a relative accumulation of cells in the G2 phase, which may interfere with cell cycle progression. On the other hand, significant 5–8-fold increases in the levels of apoptosis resulted following treatment with 15-deoxy-\(\Delta^{12,14}\)-PGJ\(_2\) for 72 h at concentrations ranging from 10 to 20 \(\mu \)M (\(F_{2,4}=9.5, P<0.05 \)) (Figure 3).

Effects of PPAR agonists on Stat3 phosphorylation and expression

Because of the critical role of Stat3 in head and neck carcinogenesis (Grandis et al., 1998, 2000) and our recent demonstration of sulindac-mediated downmodulation of Stat3 in oral SCCa (Nikitakis et al., 2002b), we explored the hypothesis that ligand-mediated PPAR\(\gamma \) activation causes changes in Stat3 expression and activation. Forty-five minutes of treatment with 20 \(\mu \)M of 15-PGJ\(_2\) resulted in a significant reduction of phosphorylated Stat3 in SCC9 cells. Longer treatment, up to 9 h, did not induce further reduction in phosphorylated Stat3 levels. In contrast, phosphorylated Stat3 levels were eliminated after 24, 48 or 72 h of treatment with 20 \(\mu \)M of 15-deoxy-PGJ\(_2\) (Figure 4A). Stat3 protein expression levels in SCC9 cells also exhibited a small decrease after 45 min of treatment with
Molecular and Cellular Pathology

British Journal of Cancer (2002) 87(12), 1396 – 1403

Effects of 15-PGJ2 on human oral SCCa cells
NG Nikitakis et al

DISCUSSION

The capacity of PPARγ to promote differentiation, cell cycle withdrawal and apoptosis has encouraged extensive investigation of its potential anticancer activity in multiple types of human cancer (see Introduction). We recently showed that NSAID sulindac upregulates PPARγ expression and activity and relies on PPARγ availability for its antineoplastic activities on oral SCCa (Nikitakis et al, 2002a). These observations prompted us to investigate the possibility that oral SCCa cells are also responsive to treatment with direct PPARγ ligands.

15-PGJ2, a natural PPARγ ligand, exerted a statistically significant growth inhibitory effect on oral SCCa cells. Significant increases in the levels of apoptosis were observed, suggesting that 15-PGJ2 cell growth inhibitory effect is primarily mediated through induction of apoptosis. Nonetheless, accumulation of cells in the G2 phase of the cell cycle was also noted, supporting the concept that interference of 15-PGJ2 with cell cycle progression may also contribute to its activity. In contrast, the well-characterised PPARγ ligands rosiglitazone and ciglitazone did not inhibit the cell growth of oral SCCa cells, implying that PPARγ activation is not sufficient for inducing antineoplastic effects on oral SCCa cells. These results raise the possibility that the antineoplastic properties of 15-PGJ2 are, at least partially, mediated through PPARγ-independent mechanisms.

PPARγ-independent effects of 15-PGJ2 have been previously reported in other systems, including chondrocytes, myofibroblasts, mesangial cells, inflammatory cells and cells of the nervous system (Petrova et al, 1999; Castrillo et al, 2000; Rossi et al, 2000; Straus et al, 2000; Boyault et al, 2001; Li et al, 2001; Janabi, 2002; Ward et al, 2002). Several mechanisms have been implicated as responsible for the effects of 15-PGJ2 on these cells and may also partly explain its antineoplastic properties. Negative regulation of the NF-κB pathway through inhibition of IkB kinase (IKK) and abrogation of the DNA binding ability of NF-κB, has emerged as a major pathway of PPARγ-independent 15-PGJ2 activity (Petrova et al, 1999; Castrillo et al, 2000; Rossi et al, 2000; Straus et al, 2000; Boyault et al, 2001; Janabi, 2002). 15-PGJ2-mediated NF-κB inhibition has been linked to downregulation of inducible nitric oxide synthase (iNOS) and abrogation of cyclooxygenase-2 (COX-2) transactivation (Petrova et al, 1999; Castrillo et al, 2000; Rossi et al, 2000; Straus et al, 2000; Boyault et al, 2001; Janabi, 2002). Similary, Ward et al (2002) recently showed that 15-PGJ2 exploits PPARγ-independent inhibition of NF-κB activation to induce caspase-dependent apoptosis in granulocytes. Other mediators that have been implicated in PPARγ-independent properties of 15-PGJ2 and can potentially have a similar function in cancer cells include AP-1 (Boyault et al, 2001), MAP kinase (Harris et al, 2002; Lennon et al, 2002), and reactive oxygen species (Li et al, 2001; Lennon et al, 2002). The latter has been shown to act as intermediates for the induction of apoptosis caused by 15-PGJ2 in human myofibroblasts (Li et al, 2001). Identification of the molecular pathways that mediate the PPARγ-independent antineoplastic effects of 15-PGJ2 should be thoroughly addressed in future studies. In this respect, the recent observations of Clay et al (2001) that early de novo gene expression is necessary for 15-PGJ2-induced apoptosis in breast cancer cells may be of particular relevance.

Although our data strongly support the existence of PPARγ-independent effects of 15-PGJ2 on oral SCCa cells, recruitment of PPARγ-mediated pathways cannot be ruled out. However, the precise molecular mechanisms that are responsible for the antineo-
plastic properties of PPARγ are not well understood. An association has been suggested between PPARγ and COX-2, which has also been implicated in various human cancers, including head and neck SCCa (Chan et al., 1999; Dannenberg et al., 2001). PPARγ activators may inhibit COX-2 expression, possibly through negative interference with NF-xB and/or AP-1 activation (Inoue et al., 2000; Subbaramaiah et al., 2001; Yang and Frucht, 2001). There is also evidence that supports the function of PPARγ ligands as potent inhibitors of angiogenesis in vivo and in vitro, providing an additional mechanism that may partially account for the anticancer properties of PPARγ (Bishop-Bailey and Hla, 1999; Xin et al., 1999). Finally, cross-talk between PPARγ and other signalling molecules, such as NF-xB, AP-1 and STAT (Ricote et al., 1998; Zhou and Waxman, 1999a,b), may contribute significantly to the effects of PPARγ on tumour growth. The possible contribution, if any, of PPARγ activation to growth inhibition induced by 15-PGJ2 treatment warrants further exploration.

Constitutive activation of Stat3 plays an important role in the tumorigenesis of various types of human cancer (Catlett-Falcone et al., 1999; Fernandes et al., 1999), and abrogation of Stat3 signalling has been correlated with stimulation of cell proliferation, prevention of apoptosis and tumour formation (Bromberg et al., 1999; Bowman et al., 2000). Based on accumulating evidence that Stat3 is upregulated in head and neck SCCa (Grandis et al., 1998, 2000), we investigated whether treatment with PPARγ ligands exerts an effect on Stat3 protein expression and Stat3 tyrosine phosphorylation. Treatment of oral SCCa cells with 15-PGJ2 at concentrations that cause significant reduction of cell growth resulted in downregulation of both Stat3 expression and phosphorylation. Given that targeting of Stat3 in head and neck SCCa has been linked to significant growth inhibition and induction of apoptosis both in vitro and in vivo (Grandis et al., 1998, 2000), our results suggest that the ability of 15-PGJ2 to downregulate Stat3 may be aetiologically related to its growth inhibitory and apoptotic effects. Interestingly, the mode of Stat3 downregulation (i.e. reduction of Stat3 phosphorylated levels after 45 min and elimination of both Stat3 phosphorylated and unphosphorylated levels after 72 h) was very similar to that induced by sulindac sulphide in the same cell lines (Nikitakis et al., 2002b). Although sulindac's growth inhibitory effect was dependent on PPARγ availability, its ability to induce Stat3 downmodulation was independent of its ability to act as a PPARγ ligand. Similarly, the inability of PPARγ activation through rosiglitazone and ciglitazone stimulation to affect the phosphorylation and expression levels of Stat3 entails that activation of PPARγ-independent mechanisms is necessary for 15-PGJ2-mediated Stat3 downmodulation.

Both PPARγ-dependent and PPARγ-independent mechanisms may come into play during Stat3 downregulation by 15-PGJ2. Direct protein–protein interactions or indirect mechanisms, such as competition for common co-activators or modulation of inhibitors of transcriptional activity, have been suggested as possible mediators of STAT-PPARγ cross-talk, and could account for the Stat3 inhibitory effect of PPARγ activation (Zhou and Waxman, 1999a,b). Cytokine stimulation results in phosphorylation of STATs through the mediation of the Janus kinase (JAK) family of protein tyrosine kinases (Darnell et al., 1994). Accordingly, the recently proposed association between PPARγ and cytokine expression may represent another possible connection between Stat3 and PPARγ. Indeed, PPARγ agonists have been shown to suppress monocyte elaboration of inflammatory cytokines (Jiang et al., 1998) and to inhibit IL-1β-induced expression of IL-8 in colon cancer cell lines (Su et al., 1999). 15-PGJ2-mediated inhibition of cytokine production and function may also ensue through PPARγ-independent pathways; for example, 15-PGJ2 has been shown to modulate IL-1β effects in human chondrocytes (Boyault et al., 2001) and to inhibit TNF-α and IL-6 production in human macrophages without PPARγ mediation. Inhibition of cytokine expression by 15-PGJ2 would conceivably result in decreased activation of STAT molecules that mediate the transduction of the cytokine signal from the cell surface to the nucleus. Head and neck cancer cells have been shown to express a variety of pro-inflammatory and pro-angiogenic cytokines (Chen et al., 1999; Ondrey et al., 1999) and to respond to IL-6 stimulation with upregulation of Stat3 phosphorylation and promotion of cell growth; reversal of this process could participate in the observed effects of 15-PGJ2 on oral SCCa cells. In that aberrant tumour growth factor–/epidermal growth factor receptor signalling has been demonstrated to play a major role in Stat3 constitutive activation of head and neck SCCa cells, possible interference of 15-PGJ2 with this pathway, at the level of the ligand or the receptor, constitutes another distinct possibility.

In summary, we demonstrated that 15-PGJ2, a specific natural PPARγ ligand, inhibits growth of oral SCCa cells, which may be related to its capacity to downregulate the oncogene Stat3. The ineffectiveness of rosiglitazone and ciglitazone to cause similar effects strongly suggests that 15-PGJ2 effects are at least partly mediated through PPARγ-independent mechanisms. Delineation of these mechanisms, as well as determination of the potential contribution of PPARγ activation, not only will provide an explanation for 15-PGJ2 anticancer qualities but it will also enhance our understanding of critical signalling pathways for oral SCCa carcinogenesis.

ACKNOWLEDGEMENTS

This work was supported in part by PHS grants DE 12606 and DE 13118.
Chan G, Boyle JO, Yang EK, Zhang F, Sacks PG, Shah JP, Edelstein D, Soslowska RA, Koki AT, Weerner BM, Masferrer JL, Dannenberg AJ (1999) Cylooxygenase-2 expression is up-regulated in squamous cell carcinoma of the head and neck. Cancer Res 59: 991–994

Chang TH, Szabo E (2000) Induction of differentiation and apoptosis by ligands of peroxisome proliferator-activated receptor gamma in non-small cell lung cancer. Cancer Res 60: 1129–1138

Chen Z, Malhotra PS, Thomas GR, Ondrey FG, Daffey DC, Smith CW, Enamorado I, Yeh NT, Kroog GS, Ruddy S, McCullagh L, Mousa S, Quezado M, Herscher LL, Van Waes C (1999) Expression of proinflammatory and proangiogenic cytokines in patients with head and neck cancer. Clin Cancer Res 5: 1369–1379

Clay CE, Atsumi G, High KP, Chilton FH (2001) Early de novo gene expression is required for 15-deoxy-Delta 12,14-prostaglandin J2-induced apoptosis in breast cancer cells. J Biol Chem 276: 47131–47135

Dannenberg AJ, Altorki NK, Boyle JO, Lin DT, Subbaramiah K (2001) Inhibition of cylooxygenase-2: an approach to preventing cancer of the upper aerodigestive tract. Ann N Y Acad Sci 952: 109–115

Darnell JR Jr, Kerr IM, Stark GR (1994) Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 264: 1415–1421

Debril MB, Renaud JP, Boyle JO, Lin DT, Subbaramiah K (2001) Inhibition of cylooxygenase-2: an approach to preventing cancer of the upper aerodigestive tract. Ann N Y Acad Sci 952: 109–115

Denecke BM, Chen J, Evans RM (1997) Hypolipidemic drugs, polyunsaturated fatty acids, and eicosanoids are ligands for peroxisome proliferator-activated receptors alpha and delta. Proc Natl Acad Sci USA 94: 4312–4317

Forman BM, Chen J, Evans RM (1997) Hypolipidemic drugs, polyunsaturated fatty acids, and eicosanoids are ligands for peroxisome proliferator-activated receptors alpha and delta. Proc Natl Acad Sci USA 94: 4312–4317

Forman BM, Tontonoz P, Chen J, Brun RP, Spiegelman BM, Evans RM (1995) 15-Deoxy-Delta-12, 14-prostaglandin J2 is a ligand for the adipocyte determination factor PPAR gamma. J Biol Chem 270: 47131–47135

Galena T, Frucht AC, Wuexer J (2001) An update on the mechanisms of action of the peroxisome proliferator-activated receptors (PPARs) and their roles in inflammation and cancer. Cell Mol Life Sci 55: 932–943

Grandis JR, Drenning SD, Chakraborty A, Zhou MY, Zeng Q, Pitt AS, Twearson DO, Huang L, He Y, Kim JD (2000) Constitutive activation of Stat3 inactivation for epidermal growth factor receptor-mediated cell growth in vitro. J Clin Invest 102: 1385–1392

Grandis JR, Drenning SD, Zeng Q, Watkins SC, Melhem MF, Endo S, Johnson DE, Huang L, He Y, Kim JD (2000) Constitutive activation of Stat3 signaling abrogates apoptosis in squamous cell carcinoma in vivo. Proc Natl Acad Sci USA 97: 4227–4232

Harris SG, Smith RS, Phuphs RP (2002) 15-deoxy-Delta-12,14-PGJ2 induces IL-8 production in human T cells by a mitogen-activated protein kinase pathway. J Immunol 168: 1372–1379

Ikazoe T, Miller CW, Kawano S, Heaney A, Williamson EA, Hisatake J, Green E, Hofmann W, Taguchi H, Koeffler HP (2000) Mutational activation of the peroxisome proliferator-activated receptor gamma in human colorectal malignancies. Cancer Res 60: 5307–5310

Inoue H, Tanabe T, Umesono K (2000) Feedback control of cylooxygenase-2 expression by PPARgamma. J Biol Chem 275: 28028–28032

Issenmann R, Green S (1990) Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature 347: 645–650

Janabi N (2002) Selective inhibition of cylooxygenase-2 expression by 15-deoxy-Delta-12,14-prostaglandin J2 in activated human astrocytes, but not in human brain macrophages. J Immunol 168: 4747–4755

Jiang C, Ting AT, Seed B (1998) PPAR-gamma agonists inhibit production of monocyte inflammatory cytokines. Nature 391: 82–86

Kersten S, Desvergne B, Wahli W (2000) Peroxisome proliferator-activated receptors: a nuclear receptor signaling pathway in lipid physiology. Annu Rev Cell Dev Biol 12: 335–363

Lennon AM, Ramauge M, Desourroux A, Pierre M (2002) MAP kinase cascades are activated in astrocytes and preadipocytes by 15-deoxy-delta-12,14-prostaglandin J2 and the thiazolidinedione ciglitazone through peroxisome proliferator activator receptor gamma-independent mechanisms involving reactive oxygenated species. J Biol Chem 277: 29681–29685

Li T, Tao J, Davaille I, Feral C, Mallat A, Rieuxet J, Vidal H, Lotersztajn S (2001) 15-deoxy-Delta-12,14-prostaglandin J2 induces apoptosis of human hepatic myofibroblasts. A pathway involving oxidative stress independently of peroxisome-proliferator-activated receptors. J Biol Chem 276: 38154–38158

Mangelsdorf DJ, Thummel C, Beato M, Herrlich P, Schultze G, Umetsu K, Blumberg B, Kastner S, Mark M, Chambon P (1995) The nuclear receptor superfamily: the second decade. Cell 83: 835–839

Moller P, Spiegelman BM, Singer S (1999) Induction of solid tumor differentiation by a peroxisome proliferator-activated receptor-gamma ligand troglitazone in patients with liposarcoma. Proc Natl Acad Sci USA 96: 3951–3956

Paradiso DJ, Thummel C, Beato M, Herrlich P, Schultze G, Umetsu K, Blumberg B, Kastner S, Mark M, Chambon P (1995) The nuclear receptor superfamily: the second decade. Cell 83: 835–839

Mukaida N, Van Waes C (1999) Constitutive activation of transcription factors NF-kappaB, AP-1, and NF-IL6 in human head and neck squamous cell carcinoma cell lines. Cancer Res 59: 1004–1007

Ondrey FG, Dong G, Sunwoo J, Chen Z, Wolf JS, Crowl-Bancroft CV, Mukaida N, Van Waes C (1999) Constitutive activation of transcription factors NF-κB, AP-1, and NF-IL6 in human head and neck squamous cell carcinoma cell lines that express pro-inflammatory and pro-angiogenic cytokines. Mol Carcinog 26: 119–129

Petrucco TV, Akama KT, Van Eldik LJ (1999) Cyclopentenone prostaglandins suppress activation of microglia: down-regulation of inducible nitric-oxide synthase by 15-deoxy-Delta12,14-prostaglandin J2. Proc Natl Acad Sci USA 96: 4668–4673

Petrova TV, Akama KT, Van Eldik LJ (1999) Cyclopentenone prostaglandins suppress activation of microglia: down-regulation of inducible nitric-oxide synthase by 15-deoxy-Delta12,14-prostaglandin J2. Proc Natl Acad Sci USA 96: 4668–4673

Ricote M, Li AC, Willson TM, Kelly CJ, Glass CK (1998) The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation. Nature 391: 79–82

Rosen ED, Spiegelman BM (2001) PPARgamma: a nuclear regulator of metabolism, differentiation, and cell growth. J Biol Chem 276: 37731–37734

Rossi A, Kapahi P, Nalotli G, Takahashi T, Chen Y, Karim M, Santoro MG (2000) Anti-inflammatory cyclopentenone prostaglandins are direct inhibitors of IkappaB kinase. Nature 403: 103–108

Sarraf P, Mueller E, Jones D, King FJ, DeAngelo DJ, Partridge JB, Holden SA, Chen LB, Singer S, Fletcher C, Spiegelman BM (1998) Differentiation and reversal of malignant changes in colon cancer through PPARgamma. Nat Med 4: 1046–1052

Shao D, Lazar MA (1997) Peroxisome proliferator activated receptor gamma, CCAAT/enhancer-binding protein alpha, and cell cycle status regulate the commitment to adipocyte differentiation. J Biol Chem 272: 21473–21478

Kitamura S, Miyazaki Y, Shinomura Y, Kondo S, Karayama S, Matsuayama Y (1999) Peroxisome proliferator-activated receptor gamma induces growth arrest and differentiation markers of human colon cancer cells. Jpn J Cancer Res 90: 75–80

Kubota T, Koshizuka K, Williamon EA, Asou H, Said JW, Holden S, Miyoshi I, Koeffler HP (1998) Ligand for peroxisome proliferator-activated receptor gamma (troglitazone) has potent antitumor effect against human prostate cancer both in vitro and in vivo. Cancer Res 58: 3344–3352

Lehmann JM, Lenhard JM, Oliver BB, Ringold GM, Kleewer SA (1997) Peroxisome proliferator-activated receptors alpha and gamma are activated by indomethacin and other non-steroidal anti-inflammatory drugs. J Biol Chem 272: 3406–3410

Lemberger T, Desvergne B, Wahli W (1996) Peroxisome proliferator-activated receptors: a nuclear receptor signaling pathway in lipid physiology.
Ward C, Dransfield I, Murray J, Farrow SN, Haskett C, Rossi AG (2002) Prostaglandin D2 and its metabolites induce caspase-dependent granulocyte apoptosis that is mediated via inhibition of I kappa B alpha degradation using a peroxisome proliferator-activated receptor-gamma-independent mechanism. J Immunol 168: 6232–6243
Xin X, Yang S, Kowalski J, Gerritsen ME (1999) Peroxisome proliferator-activated receptor gamma ligands are potent inhibitors of angiogenesis in vitro and in vivo. J Biol Chem 274: 9116–9121
Yang WL, Frucht H (2001) Activation of the PPAR pathway induces apoptosis and COX-2 inhibition in HT-29 human colon cancer cells. Carcinogenesis 22: 1379–1383
Yu K, Bayona W, Kallen CB, Harding HP, Ravera CP, McMahon G, Brown M, Lazar MA (1995) Differential activation of peroxisome proliferator-activated receptors by eicosanoids. J Biol Chem 270: 23975–23983
Zhou YC, Waxman DJ (1999a) Cross-talk between janus kinase-signal transducer and activator of transcription (JAK-STAT) and peroxisome proliferator-activated receptor-alpha (PPARalpha) signaling pathways. Growth hormone inhibition of pparalpha transcriptional activity mediated by stat5b. J Biol Chem 274: 2672–2681
Zhou YC, Waxman DJ (1999b) STAT5b down-regulates peroxisome proliferator-activated receptor alpha transcription by inhibition of ligand-independent activation function region-1 trans-activation domain. J Biol Chem 274: 29874–29882