Symmetries of $N = 4$ supersymmetric $\mathbb{C}P^n$ mechanics

S Bellucci1, N Kozyrev2, S Krivonos2 and A Sutulin2

1 Laboratori Nazionali di Frascati, INFN, Via E Fermi 40, I-00044 Frascati, Italy
2 Bogoliubov Laboratory of Theoretical Physics, JINR, 141980 Dubna, Russia

E-mail: bellucci@lnf.infn.it

Received 26 February 2013, in final form 24 May 2013
Published 18 June 2013
Online at stacks.iop.org/JPhysA/46/275305

Abstract
We explicitly constructed the generators of the $SU(n+1)$ group that commute with the supercharges of $N = 4$ supersymmetric $\mathbb{C}P^n$ mechanics in the background $U(n)$ gauge fields. The corresponding classical Hamiltonian can be represented as a direct sum of two Casimir operators: one Casimir operator on the $SU(n+1)$ group contains our bosonic and fermionic coordinates and momenta, while the second one, on the $SU(1,n)$ group, is constructed from isospin degrees of freedom only.

PACS numbers: 11.30.Pb, 11.30.Ly

1. Introduction

The construction of supersymmetric nonlinear sigma models in one dimension has been known for many years [1–3]. If the scalar fields take values in a complex Kähler manifold, then the supersymmetric Lagrangian is given by an elegant and simple expression in terms of the Kähler metric. In the simplest case of the supersymmetric $\mathbb{C}P^n$ model [4] in one dimension, the $N = 4$ supercharges acquire, in the appropriate basis, a very simple form [5–7]. The main properties of the model can be described by the statement that the supercharges and the Hamiltonian are invariant under the action of the $SU(n+1)$ group, whereas the bosonic component fields parameterize the $SU(n+1)/U(n)$ manifold [8].

One of the interesting further questions is how to introduce the interaction in the supersymmetric $\mathbb{C}P^n$ model without breaking the $SU(n+1)$ symmetry. Clearly, the evident guess is to try to introduce the interaction with non-Abelian background fields living on a $U(n)$ subgroup. In the bosonic case such a system has been proposed by Karabali and Nair who constructed higher dimensional quantum Hall systems on $\mathbb{C}P^n$ manifolds [9]. The corresponding bulk and edge actions were derived [12]. The supersymmetrization of this construction is not a straightforward task because in many cases adding the interaction with background fields results in the so-called ‘weak supersymmetry’ algebra [13].

The program to construct $N = 4$ supersymmetric extensions of the Karabali and Nair approach was initiated in [14], where the $N = 4$ supersymmetric mechanics describing the

3 Non-compact versions have been considered in [10, 11].
motion of a charged particle over the \mathbb{CP}^n manifold in the presence of background $U(n)$ gauge fields was constructed. In contrast with the $N = 4$ supersymmetric mechanics on S^4 [15], which possesses only the $SO(4)$ invariance, the $N = 4$ supersymmetric mechanics on \mathbb{CP}^n is invariant under the full $SU(n+1)$ group, which of course is realized nonlinear. Thus, the key point is to understand whether the inclusion of non-Abelian $U(n)$ background gauge fields in the $N = 4$ supersymmetric mechanics on \mathbb{CP}^n preserves the $SU(n+1)$ symmetry of the model. In the present paper we explicitly construct the currents, forming the $su(n+1)$ algebra with respect to standard Poisson brackets, which commute with the $N = 4$ supercharges of the model [14]. We also reveal the nice structure of the classical Hamiltonian of $N = 4$, \mathbb{CP}^n supersymmetric mechanics in the presence of background $U(n)$ gauge fields to be a direct sum of two Casimir operators: one Casimir operator on the $SU(n+1)$ group contains our bosonic and fermionic coordinates and momenta, while the second one, on the $SU(1, n)$ group, is constructed from isospin degrees of freedom only.

This paper is organized as follows. In section 2 we review the symmetry properties of the bosonic \mathbb{CP}^n mechanics with and without background Abelian and non-Abelian gauge fields. In section 3, after a short discussion of the symmetries of the $N = 4$ supersymmetric \mathbb{CP}^n model in the absence of background fields, we present the explicit form of the $su(n+1)$ currents commuting with the supercharges. The summary of our results and perspectives for future study are collected in the conclusion.

2. Preliminaries: bosonic \mathbb{CP}^n mechanics and its symmetries

2.1. Bosonic \mathbb{CP}^n model: Lagrangian approach

The standard bosonic \mathbb{CP}^n model is defined in terms of $2n$ bosonic coordinates $\{z^\alpha, \bar{z}_\gamma, \alpha = 1, \ldots, n\}$ depending on time t by the Lagrangian

$$L = \int dt \mathcal{L} = \int dt \ g^\alpha_\beta \ z^\alpha \bar{z}_\beta,$$

(2.1)

where the \mathbb{CP}^n metric g^α_β has the standard Fubini–Study form

$$g^\alpha_\beta = \frac{1}{1 + z \cdot \bar{z}} \left[\delta^\alpha_\beta - \frac{\bar{z}_\alpha z^\beta}{1 + z \cdot \bar{z}} \right], \quad z \cdot \bar{z} \equiv z^\alpha \bar{z}_\alpha.$$

(2.2)

\mathbb{CP}^n mechanics provides a very simple example of the nonlinear realization of $SU(n+1)$ symmetry in which a $U(n)$ subgroup is realized linearly [8]. Thus, \mathbb{CP}^n mechanics could be interpreted as the σ-model on the coset $SU(n+1)/U(n)$. The corresponding construction is quite simple.

First, let us fix the commutation relations of the $su(n+1)$ algebra to be

$$[R_{\alpha}, \bar{R}^\beta] = 2\bar{J}_{\alpha}^\beta, \quad [J_{\alpha}^\beta, \bar{J}_\gamma^\sigma] = \frac{1}{2} (\delta^\sigma_\beta J_{\alpha}^\gamma - \delta^\gamma_\beta J_{\alpha}^\sigma),$$

$$[J_{\alpha}^\beta, R_{\gamma}] = \frac{i}{2} (\delta^\beta_\gamma R_{\alpha} + \delta^\alpha_\gamma R_{\beta}), \quad [J_{\alpha}^\beta, \bar{R}^\gamma] = -\frac{i}{2} (\delta^\gamma^\beta \bar{R}^\alpha + \delta^\alpha_\beta \bar{R}^\gamma).$$

(2.3)

Thus, the generators R_{α}, \bar{R}^β belong to the coset $SU(n+1)/U(n)$, while the J_{α}^β form the $u(n)$ subalgebra. In addition, these generators are chosen to be Hermitian ones

$$(R_{\alpha})^\dagger = R^{\alpha}, \quad (J_{\alpha}^\beta)^\dagger = J_{\beta}^\alpha.$$

(2.4)

Now, we can realize the action of the $SU(n+1)$ group on the $SU(n+1)/U(n)$ coset element g

$$g = e^{i(\sigma^\alpha R_{\alpha} + \bar{\sigma}^\beta \bar{R}^\beta)}$$

(2.5)
by the left multiplications as

$$g_0 \cdot g = \exp((v^a R_a + \bar{v}^a \bar{R}_a + v^a v^b R_{ab} + \bar{v}^a \bar{v}^b \bar{R}_{ab})) \cdot \exp((v^a R_a + \bar{v}^a \bar{R}_a)) h,$$

(2.6)

where $h \in U(n)$. The explicit form of the $(\{R_a, \bar{R}_a\})$ transformations reads

$$z'^a = \bar{z}'^a + \bar{a}'^a, \quad \bar{z}'^a = \bar{z}'^a + (a \cdot \bar{z}) \bar{z}'^a,$$

(2.7)

where $\{z'^a, \bar{z}'^a\}$ are defined as

$$z'^a = \tan \sqrt{x \cdot \bar{x}} x'^a, \quad \bar{z}'^a = \tan \sqrt{x \cdot \bar{x}} \bar{x}'^a.$$

(2.8)

One may easily check that the Lagrangian (2.1) is indeed invariant under transformations (2.7).

The basic covariant objects in the coset approach are the Cartan forms

$$g^{-1} dg = i dz^a e^\alpha_\beta R_\beta + i \bar{R}^\alpha_\beta e^\alpha_\beta d\bar{z}_\beta + 2 (z^a \omega^\alpha_\beta d\bar{z}_\gamma - \bar{z}^\beta \omega^\alpha_\beta \bar{z}_\gamma) J_\alpha^\beta.$$

(2.9)

With our definitions the explicit expressions for the vielbeins e_α^β and $U(n)$-connections ω^α_β on the \mathbb{CP}^n manifold entering (2.9) read [16]

$$e_\alpha^\beta = \frac{1}{\sqrt{1 + z \cdot \bar{z}}} \left[\delta^\alpha_\beta - \frac{z \cdot \bar{z}}{1 + z \cdot \bar{z}} \bar{z}^\alpha \bar{z}^\beta \right],$$

(2.10)

$$\omega^\alpha_\beta = \frac{1}{\sqrt{1 + z \cdot \bar{z}}} \frac{1}{1 + \sqrt{1 + z \cdot \bar{z}}} \left[\delta^\alpha_\beta - \frac{z \cdot \bar{z}}{2 \sqrt{1 + z \cdot \bar{z}}(1 + \sqrt{1 + z \cdot \bar{z}})} \right].$$

(2.11)

The vielbeins e_α^β define the $SU(n+1)$ covariant derivatives of our ‘fields’ $[z^a, \bar{z}^\alpha]$

$$\nabla_t z^a = \bar{z}^a e^\alpha_\beta, \quad \nabla_t \bar{z}^\alpha = e^\alpha_\beta \bar{z}^\gamma,$$

(2.12)

and the $SU(n+1)$ invariant Lagrangian density is unambiguously restored to be

$$L = \nabla_t z^a \nabla_t \bar{z}^\alpha = g_\alpha^\beta \bar{z}^\gamma \bar{z}^\alpha,$$

(2.13)

which coincides with (2.1).

2.2. Bosonic \mathbb{CP}^n model: Hamiltonian approach

The Lagrangian approach we considered in the previous subsection has a nice geometric interpretation within the coset construction. In contrast, the Hamiltonian approach is more flexible and provides a simple possibility to introduce the interactions with background gauge fields in the pure \mathbb{CP}^n mechanics.

2.2.1. \mathbb{CP}^n model. The Hamiltonian of the \mathbb{CP}^n model (2.1) reads

$$H = \tilde{p}^\alpha (g^{-1})_\alpha^\beta p_\beta,$$

(2.14)

with

$$(g^{-1})_\alpha^\beta = (1 + z \cdot \bar{z}) \left[\delta^\alpha_\beta + \bar{z}^\alpha \bar{z}^\beta \right].$$

(2.15)

The $SU(n+1)$ invariance of the \mathbb{CP}^n model at the Hamiltonian level means that the Hamiltonian (2.14) has vanishing Poisson brackets with the currents

$$R_a = p_a + \bar{z}_a \bar{z}_a, \quad \bar{R}^a = \tilde{p}^a + z^a \bar{p}^a, \quad J_\alpha^\beta = \frac{i}{2} (\bar{z}^\alpha \bar{p}_\alpha - \bar{z}_\alpha \tilde{p}^\alpha) + \frac{i}{2} \delta^\alpha_\beta (z^\gamma \bar{p}_\gamma - \bar{z}_\gamma \tilde{p}^\gamma).$$

(2.16)
These currents form the $su(n+1)$ algebra

$$(R_{\alpha}, \vec{R}^\beta) = 2iJ_{\alpha}^\beta, \quad \{J_{\alpha}^\beta, J_{\gamma}^\delta\} = \frac{i}{2} (\delta_{\alpha}^\gamma J_{\beta}^\delta - \delta_{\beta}^\gamma J_{\alpha}^\delta),$$

$$\{J_{\alpha}^\beta, R_{\gamma}\} = \frac{i}{2} (\delta_{\alpha}^\gamma R_{\beta} + \delta_{\beta}^\gamma R_{\alpha}), \quad \{J_{\alpha}^\beta, \vec{R}^\gamma\} = -\frac{i}{2} (\delta_{\alpha}^\gamma \vec{R}^\beta + \delta_{\beta}^\gamma \vec{R}^\alpha)$$ \hspace{1cm} (2.17)

with respect to the standard Poisson brackets

$$\{z^\alpha, p_\beta\} = \delta^\alpha_\beta, \quad \{\bar{z}_\alpha, \bar{p}^\beta\} = \delta^\beta_\alpha.$$ \hspace{1cm} (2.18)

Moreover, one may check that the Hamiltonian (2.14) coincides with the quadratic $su(n+1)$ Casimir operator

$$C = R_{\alpha} \vec{R}^\alpha + 2J_{\alpha}^\beta J_{\beta}^\alpha - \frac{2}{n+1} J_{\alpha}^\beta J_{\beta}^\alpha,$$ \hspace{1cm} (2.19)

with the realization (2.16) taken into account. This is just another visualization of the $SU(n+1)$ invariance of the \mathbb{CP}^n model.

2.2.2. Constant magnetic field. If we are interested in the introduction of some interaction in our system which preserves the $SU(n+1)$ symmetry, then we should think about the interaction with background magnetic fields only, because it is impossible to construct any $SU(n+1)$ invariant potential term from our coordinates $\{z^\alpha, \bar{z}_\alpha\}$ which transform as in (2.7). Moreover, in accordance with the $SU(n+1)/U(n)$ interpretation of the \mathbb{CP}^n mechanics, in order to preserve all symmetries, the background fields could either be Abelian (which corresponds to the $U(1)$ group in the stability subgroup $U(n)$) or non-Abelian, living on the whole $U(n)$ subgroup.

The simplest way to introduce the interaction with the Abelian $U(1)$ background magnetic field B is to modify the $U(n)$ currents J_{α}^β (2.16) as

$$\vec{J}_{\alpha}^\beta = J_{\alpha}^\beta + B \delta_{\alpha}^\beta.$$ \hspace{1cm} (2.20)

It is a matter of straightforward calculation to find new coset $SU(n+1)/U(n)$ currents $\{\vec{R}_\alpha, \vec{R}^\alpha\}$

$$\vec{R}_\alpha = R_{\alpha} + iB \bar{z}_\alpha, \quad \vec{R}^\alpha = \bar{R}^\alpha - iB z^\alpha,$$ \hspace{1cm} (2.21)

which form, together with \vec{J}_{α}^β, the same $su(n+1)$ algebra (2.17).

If we now define the Hamiltonian as the Casimir operator (2.19) constructed from the generators (2.20), (2.21), then we will get

$$H = \vec{p}^\alpha (g^{-1})_{\alpha}^\beta \vec{p}_\beta + \frac{2n}{n+1} B^2,$$ \hspace{1cm} (2.22)

where

$$\begin{cases}
\vec{p}_\alpha = p_\alpha - iB \frac{\bar{z}_\alpha}{1 + \bar{z} \bar{z}} \\
\vec{p}^\alpha = \bar{p}^\alpha + iB \frac{z^\alpha}{1 + z \bar{z}}
\end{cases} \quad \Rightarrow \quad \{\vec{p}_\alpha, \vec{p}^\beta\} = -2iBg_{\alpha}^\beta.$$ \hspace{1cm} (2.23)

Clearly, the Hamiltonian (2.22) describes the \mathbb{CP}^n mechanics in the uniform $U(1)$ background.

One can include also some analogue of the oscillator potential fields, which naturally breaks the full $SU(n+1)$ symmetry down to $U(n)$, but nonetheless preserves the exact solvability and all \mathbb{CP}^n oscillator symmetries, including hidden ones, even in the presence of a constant magnetic field [17].
2.2.3. Non-Abelian magnetic field. The same strategy we used in the previous subsection can be applied to the more interesting case of the non-Abelian $U(n)$ background.

Similarly to the case of the $U(1)$ background, we will start with the modification of $U(n)$ currents J_a^β (2.16) now as

$$\tilde{J}_a^\beta = J_a^\beta + \hat{J}_a^\beta.$$ \hspace{1cm} (2.24)

Here, the currents \hat{J}_a^β have vanishing brackets with the coordinates and momenta $\{z^a, \bar{z}_a, p_\alpha, \bar{p}^\alpha\}$ and form the same $U(n)$ algebra (2.17)

$$\{\hat{J}_a^\beta, \hat{J}_\gamma^\delta\} = \frac{i}{2} (\delta^\beta_\gamma \hat{J}_a^\delta - \delta^\delta_\gamma \hat{J}_a^\beta).$$ \hspace{1cm} (2.25)

Now, one has to construct the new $\text{SU}(n+1)/U(n)$ currents which will span, together with \tilde{J}_a^β (2.24), the $\text{su}(n+1)$ algebra. After some calculations one may find these modified $\text{su}(n+1)$ generators

$$\tilde{R}_a = R_a + \frac{2i}{1 + \sqrt{1 + z \cdot \bar{z}}^2} z^a \bar{z}^\beta \hat{J}_a^\beta \bar{z}_\gamma, \quad \tilde{R}^a = R^a - \frac{2i}{1 + \sqrt{1 + z \cdot \bar{z}}^2} z^a \bar{z}^\beta \hat{J}_a^\beta \bar{z}_\gamma,$$

$$\tilde{J}_a^\beta = -\frac{i}{2} \{\tilde{R}_a, \tilde{R}^a\} = J_a^\beta + \hat{J}_a^\beta.$$ \hspace{1cm} (2.26)

The corresponding Hamiltonian can again be defined as the Casimir operator (2.19) constructed now from the currents (2.26). Explicitly it reads

$$H = \overline{p}^\alpha \left(g^{-1} \right)_\alpha^\beta \mathcal{P}_\beta + 2 \hat{J}_a^\beta \hat{J}_\beta^\alpha - \frac{2}{n+1} \hat{J}_a^\alpha \hat{J}_\alpha^\beta,$$ \hspace{1cm} (2.27)

where now

$$\begin{align*}
\overline{p}_\alpha &= p_\alpha - 2i \omega_\alpha^\beta \hat{J}_\beta^\gamma \bar{z}_\gamma, \\
\overline{p}^\alpha &= \bar{p}^\alpha + 2i z^\beta \hat{J}_\beta^\alpha \omega_\alpha^\beta.
\end{align*}$$ \hspace{1cm} (2.28)

with vielbeins e_α^β and $U(n)$ connections ω_α^β on $SU(n+1)/U(n)$ defined in (2.10), (2.11), respectively.

Let us note that the $\hat{J}_a^\beta \rightarrow B \delta_\alpha^\beta$ reduction brings us from the non-Abelian to the $U(1)$ Abelian case. Another comment concerns the structure of the Hamiltonian (2.27) which can be represented as

$$H = \overline{p}^\alpha \left(g^{-1} \right)_\alpha^\beta \mathcal{P}_\beta + 2 \mathcal{C}_{U(n)}$$ \hspace{1cm} (2.29)

where

$$\mathcal{C}_{U(n)} = \hat{J}_a^\beta \hat{J}_\beta^\alpha - \frac{1}{n+1} \hat{J}_a^\alpha \hat{J}_\alpha^\beta.$$ \hspace{1cm} (2.30)

is just the $U(n)$ Casimir operator constructed from $U(n)$ currents \hat{J}_α^β. It is evident that $\mathcal{C}_{U(n)}$ commutes with all $SU(n+1)/U(n)$ currents (2.26). So, from the symmetry point of view one may consider on the same footing the following Hamiltonian

$$\tilde{H} = \overline{p}^\alpha \left(g^{-1} \right)_\alpha^\beta \mathcal{P}_\beta + \gamma \mathcal{C}_{U(n)},$$ \hspace{1cm} (2.31)

where γ is an arbitrary constant. This means that one should use another argument to select the Hamiltonian with some fixed value of γ. In principle, one may even consider the reduced system with the fixed value of the Casimir $\mathcal{C}_{U(n)}$.

Finally, let us stress that the structure of the currents \hat{J}_α^β is completely irrelevant for the present construction: all that we need is to be sure that these currents span the $U(n)$
algebra (2.25). So, one may choose these currents to be constructed from some additional isospin degrees of freedom, or one may introduce new physical bosonic coordinates and their momenta to realize these currents. In this case we will have the system extending the standard \(CP^n \) mechanics.

3. \(N = 4 \) supersymmetry

In this section we will extend the consideration from the previous section to the case of the \(N = 4 \) supersymmetric extension of the \(CP^n \) mechanics.

3.1. \(N = 4 \) supersymmetric \(CP^n \) model: free case

In order to construct the \(N = 4 \) supersymmetric extension of the \(CP^n \) mechanics one should introduce \(4n \) fermionic variables \(\{\psi^i, \bar{\psi}^i, \ i = 1, 2\} \) obeying the following Dirac brackets (together with the previously defined brackets (2.18))

\[
\begin{align*}
\{\psi^i, \bar{\psi}^j\} &= i\delta^i_j (g^{-1})^\alpha, \\
\{p_\alpha, \bar{\psi}^i\} &= -i (g_{\alpha}^\beta g_{\mu}^\nu + g_{\mu}^\alpha g_{\nu}^\beta) \bar{\psi}^i \psi_\mu^\beta, \\
\{p_\alpha, \psi^i\} &= -\frac{1}{1 + z \cdot \bar{z}} [\bar{z}_\alpha \psi^\beta_\mu \bar{\psi}^j_\nu + \bar{z}_\beta \psi^\alpha_\mu \bar{\psi}^i_\nu], \\
\{\bar{p}_\alpha, \psi^i\} &= -\frac{1}{1 + z \cdot \bar{z}} [\bar{z}_\alpha \bar{\psi}^\beta_\mu \bar{\psi}^j_\nu + \bar{z}_\beta \bar{\psi}^\alpha_\mu \bar{\psi}^i_\nu].
\end{align*}
\]

(3.1)

Now, it is not too hard to check that the supercharges \(Q^i, \bar{Q}_i \) have the extremely simple form [5–7]

\[
Q^i = \bar{p}^\alpha \bar{\psi}^i_\alpha, \quad \bar{Q}_i = \psi^i_\alpha p_\alpha.
\]

(3.2)

They anticommute perfectly (in virtue of (3.1), (2.18)) as

\[
\{Q^i, \bar{Q}_j\} = i\delta^{ij} H, \quad \{Q^i, Q^j\} = \{\bar{Q}_i, \bar{Q}_j\} = 0,
\]

(3.3)

where the Hamiltonian \(H \) reads\(^4\)

\[
H = \bar{p}^\alpha (g^{-1})^\alpha_\beta p_\beta + \frac{1}{2} (g_{\alpha}^\mu g_{\mu}^\alpha + g_{\mu}^\alpha g_{\nu}^\alpha) \bar{\psi}^{i\alpha} \bar{\psi} \psi^i_\mu.
\]

(3.4)

In the supersymmetric case one may again construct the currents spanning the \(su(n + 1) \) algebra (2.17) as\(^5\)

\[
\begin{align*}
R_\alpha &= p_\alpha + \bar{z}_\beta \bar{p}^\beta - \frac{i}{1 + z \cdot \bar{z}} \left(\bar{z}_\alpha \psi^\beta_\mu \bar{\psi}^i_\nu + \bar{z}_\beta \psi^\alpha_\mu \bar{\psi}^i_\nu - \frac{2}{1 + z \cdot \bar{z}} \bar{z}_\alpha \bar{z}_\beta z^\nu \bar{\psi}^i_\nu \bar{\psi}^\beta_\mu \right), \\
\bar{R}^\alpha &= \bar{p}^\mu + z^\alpha z_\beta p_\beta + \frac{i}{1 + z \cdot \bar{z}} \left(z^\alpha \psi^\beta_\mu \psi^i_\nu + z^\beta \psi^\alpha_\mu \psi^i_\nu - \frac{2}{1 + z \cdot \bar{z}} z^\alpha z^\beta z^\nu \psi^i_\nu \psi^\beta_\mu \right), \\
J^\alpha_\beta &= -\frac{1}{2} \{R_\alpha, \bar{R}^\beta\}.
\end{align*}
\]

(3.5)

One may check that the Hamiltonian (3.4) and the supercharges (3.2) have vanishing brackets with the generators of the \(su(n + 1) \) algebra (3.5):\(^6\)

\[
\{R_\alpha, H\} = \{\bar{R}^\alpha, H\} = 0, \quad \{R_\alpha, Q^i\} = \{\bar{R}^\alpha, Q^i\} = 0, \quad \{R_\alpha, \bar{Q}_i\} = \{\bar{R}^\alpha, \bar{Q}_i\} = 0.
\]

(3.6)

This result is expected. A less expected statement is that the Hamiltonian (3.4) coincides with the Casimir operator of the \(su(n + 1) \) algebra

\[
H = R_\alpha \bar{R}^\alpha + 2J^\alpha_\beta J^\beta_\alpha - \frac{2}{n + 1} J^\alpha_\alpha J^\beta_\beta.
\]

(3.7)

\(^4\) The \(su(2) \) indices are raised and lowered as \(A_5 = \epsilon_{ij} A^i A^j \), with \(\epsilon_{12} = \epsilon^{21} = 1 \).

\(^5\) The explicit expression for the generators \(J^\alpha_\beta \) is not so illuminating and it can easily be obtained from the definition in (3.5), if needed.
with the currents \(\{ R_\alpha, \overline{R}^\beta, J_\gamma^\delta \} \) defined in (3.5). Thus, the \(N = 4 \) supersymmetric \(CP^n \) mechanics has the same symmetry properties as its bosonic core. The only (but crucial) difference is another realization of the \(su(n+1) \) currents (3.5) which now includes additional fermionic degrees of freedom.

3.2. \(N = 4 \) supersymmetric \(CP^n \) model: interaction

In this section, based on the approach presented in the previous section, we will analyze the symmetry of the \(N = 4 \) supersymmetric \(CP^n \) model in the background \(U(n) \) fields.

In order to introduce the interaction in the \(N = 4 \) supersymmetric \(CP^n \) mechanics, following [14], we will couple our model with additional currents \(\{ R_\alpha, \overline{R}^\beta, J_\gamma^\delta \} \) spanning \(SU(1, n) \) groups:

\[
\{ R_\alpha, \overline{R}^\beta \} = -2i J_\alpha^\beta, \\
\{ J_\alpha^\beta, R_\gamma \} = \frac{i}{2} (\delta_\gamma^\beta R_\alpha + \delta_\alpha^\beta R_\gamma), \\
\{ J_\alpha^\beta, J_\gamma^\delta \} = \frac{i}{2} (\delta_\gamma^\delta J_\alpha^\beta - \delta_\alpha^\beta J_\gamma^\delta).
\]

The model is completely defined by supercharges forming the \(N = 4, d = 1 \) super algebra (3.3). Such supercharges have been constructed in [14] as

\[
Q^i = \bar{\psi}^i \gamma^a J^a_\alpha + 2i z^a J^a_\alpha \omega_\alpha \gamma^a \bar{\psi}_a + i \psi_\alpha \epsilon_\alpha^\beta R_\beta, \\
\overline{Q}_i = \psi_\alpha \gamma^a J^a_\alpha - 2i \bar{\psi}_a \omega_\alpha \gamma^a \bar{\psi}^i + i \bar{R}^a \epsilon_\alpha^\beta \psi_a \bar{\psi}^i.
\]

where \(\epsilon_\alpha^\beta \) and \(\omega_\alpha \) are the vielbeins and \(U(n) \)-connections on the \(CP^n \sim SU(n+1)/U(n) \) manifold defined in (2.10) and (2.11), correspondingly.

These supercharges are perfectly anticommuting to span the \(N = 4, d = 1 \) super algebra (3.3) where the Hamiltonian \(H \) now reads

\[
H = (\bar{\rho} g^{-1} p) - 2i [(\bar{\rho} g^{-1} \omega \mathcal{J} \bar{z}) - (z \omega \rho^{-1} p)] + (\overline{R} R) + 4(z J \omega^{-1} \omega J \bar{z}) \\
-2(\psi_i e \mathcal{J} \bar{\psi}^i) + \frac{i}{2} (g_\mu^a g_\rho^a + g_\mu^a g_\rho^a) \bar{\psi}^i \gamma^a \psi^i \bar{\psi}^i. \tag{3.10}
\]

One of the most interesting features of the supercharges (3.9) and Hamiltonian (3.10) is the presence of the full set of \(su(1, n) \) currents (3.8). If we believe that this Hamiltonian is \(su(n+1) \) invariant, than we have to find the corresponding currents spanning the \(su(n+1) \) algebra and having vanishing brackets with the Hamiltonian and supercharges. These new extended \(su(n+1) \) currents can contain, besides our bosonic and fermionic coordinates and momenta, only currents \(J_\gamma^\delta \) spanning the \(U(n) \) algebra. It is clear that the modified \(su(n+1) \) generators cannot contain the currents \(\{ R_\alpha, \overline{R}^\beta \} \)—it is just impossible to construct new \(su(n+1) \) generators from our coordinates, momenta and \(su(1, n) \) currents. This means that the Hamiltonian (3.10) cannot just be a Casimir operator of some \(SU(n+1) \) group. It should have a more interesting structure. To better understand the structure of the Hamiltonian (3.10), one may rewrite the term \(\overline{R} R \) in (3.10) as

\[
\overline{R}^\alpha R_\alpha = C_{\text{su}(1, n)} + \left(2 J_\alpha^\beta J_\gamma^\delta - \frac{2}{n+1} J_\alpha^\gamma J_\beta^\delta \right), \tag{3.11}
\]

where the \(su(1, n) \) Casimir operator \(C_{\text{su}(1, n)} \) reads

\[
C_{\text{su}(1, n)} = \overline{R}^\alpha R_\alpha - 2 J_\alpha^\beta J_\beta^\alpha + \frac{2}{n+1} J_\alpha^\gamma J_\beta^\delta. \tag{3.12}
\]

Thus, we see that the unexpected generators \(\{ R_\alpha, \overline{R}^\beta \} \) belonging to the coset \(SU(1, n)/U(n) \) enter the Hamiltonian only through the \(su(1, n) \) Casimir operator \(C_{\text{su}(1, n)} \). The remaining terms
depend only on the \(u(n)\) currents \(J^\alpha_\beta\). Therefore, we expect that the Hamiltonian (3.10) can be represented as a sum of two Casimir operators

\[
H = \tilde{C}_{\text{su}(n+1)} + C_{\text{su}(1,n)},
\]

(3.13)

where the Casimir operator \(\tilde{C}_{\text{su}(n+1)}\) has to be constructed from our coordinates, momenta and additional \(u(n)\) currents \(J^\alpha_\beta\) only. Now we are going to prove this statement.

In order to find these new \(su(n+1)\) currents, which commute with the supercharges (3.9), we note that the structure of new \(u(n)\) generators is obvious: there is no other choice besides the direct sum of generators

\[
\tilde{J}^\alpha_\beta = J^\alpha_\beta + J^\beta_\alpha.
\]

(3.14)

Here, the current \(J^\alpha_\beta\) is the same as in the non-interacting \(N = 4\) supersymmetric case (3.5). The structure of the coset \(SU(n+1)/U(n)\) generators is more involved. In order to find them, one has to consider the most general ansatz for these generators compatible with the explicit \(U(n)\) symmetry

\[
\tilde{R}_a = R_a + i f_1 J^\beta_\alpha \bar{z}_\beta + i f_2 \bar{z}_\alpha \bar{z}_\beta J^\beta_\gamma \bar{z}_\gamma + i f_3 z^\nu J^\beta_\nu \bar{z}_\gamma,
\]

\[
\tilde{R}^\nu = \bar{R}^\nu - i f_1 z^\mu J^\nu_\mu - i f_2 \bar{z}_\mu \bar{z}_\nu J^\nu_\nu - i f_3 z^{\nu} \bar{z}_\mu \bar{z}_\nu,
\]

(3.15)

where the currents \(\{R_a, \bar{R}^\nu\}\) were defined in (3.5) and the unknown functions \(f_1, f_2, f_3\) depend only on \((z \cdot \bar{z})\). Then one has to check that (a) these currents span the \(su(n+1)\) algebra, and (b) these currents commute with the supercharges (3.9). After a quite lengthy calculation, one may find these functions to be

\[
f_1 = \frac{2}{(1 + \sqrt{1 + z \cdot \bar{z}})}, \quad f_2 = \frac{1}{(1 + \sqrt{1 + z \cdot \bar{z}})^2}, \quad f_3 = 0,
\]

(3.16)

and therefore

\[
\tilde{R}_a = R_a + \frac{2i}{(1 + \sqrt{1 + z \cdot \bar{z}})} J^\beta_\alpha \bar{z}_\beta + \frac{i}{(1 + \sqrt{1 + z \cdot \bar{z}})^2} \bar{z}_\alpha \bar{z}_\beta J^\beta_\gamma \bar{z}_\gamma,
\]

\[
\tilde{R}^\nu = \bar{R}^\nu - \frac{2i}{(1 + \sqrt{1 + z \cdot \bar{z}})} z^\mu J^\nu_\mu - \frac{i}{(1 + \sqrt{1 + z \cdot \bar{z}})^2} z^\nu \bar{z}_\mu \bar{z}_\nu J^\nu_\nu,
\]

\[
\tilde{J}^\alpha_\beta = -\frac{1}{2} \{\tilde{R}_a, \tilde{R}_b\} = J^\alpha_\beta + J^\beta_\alpha.
\]

(3.17)

All these generators commute with the supercharges \(\{Q', \bar{Q}'\}\) and, therefore, with the Hamiltonian (3.10), while the Hamiltonian itself (3.10) has the suggested structure (3.13). Thus, we conclude that the \(N = 4\) supersymmetric \(\mathbb{CP}^n\) mechanics in the background \(U(n)\) fields possesses \(su(n+1)\) symmetry generated by the currents (3.17). Similarly to the bosonic cases, the structure of the \(su(1,n)\) currents \(\{R_a, \bar{R}^\nu, J^\alpha_\beta\}\) (3.8) is irrelevant for our construction. One may also consider a reduced version of the system by fixing the value of the Casimir operator \(C_{\text{su}(1,n)}\), which clearly commutes with everything.

4. Conclusion

In the present paper we have proved the \(SU(n+1)\) invariance of a \(N = 4\) supersymmetric extension of the mechanics describing the motion of a particle over the \(\mathbb{CP}^n\) manifold in the presence of background \(U(n)\) gauge fields. We have explicitly constructed the corresponding \(su(n+1)\) currents which commute with the supercharges and showed that the Hamiltonian of the system can be represented as a direct sum of two Casimir operators. One Casimir operator, on the \(SU(n+1)\) group, contains our bosonic and fermionic coordinates and momenta together.
with additional $U(n)$ currents constructed from isospin degrees of freedom, while the second one, on the $SU(1,n)$ group, contains isospin degrees of freedom only.

Proving the $SU(n+1)$ invariance of the $N = 4$ supersymmetric mechanics describing the motion of a charged particle over \mathbb{CP}^n manifold in the presence of background $U(n)$ gauge fields [14] is crucial for the possible application of this model to the analysis of the role that the additional fermionic variables play in the quantum Hall effect on \mathbb{CP}^n. Surely, this is one of the most interesting immediate applications of our results.

The approach used in this paper, in order to visualize the symmetry of the supersymmetric \mathbb{CP}^n model, is based mainly on its interpretation as a sigma model on the coset $SU(n+1)/U(n)$. In this respect, viewing the \mathbb{CP}^n manifold as the coset $Sp(k+1)/U(1) \times Sp(k)$ [18] opens the way to not only turning on the background fields, living on $U(1) \times Sp(k)$, but also for the construction of the corresponding supersymmetric extensions. Using $U(1) \times Sp(k)$ background fields instead of those living on the $U(n)$ group could bring some new features into the QHE on the \mathbb{CP}^n manifold. This will be described in more detail elsewhere.

Acknowledgments

We are indebted to Armen Nersessian for valuable discussions. SK and AS thank the INFN-Laboratori Nazionali di Frascati, where this work was completed, for warm hospitality. This work was partly supported by Volkswagen Foundation grant I/84 496, by RFBR grants 11-02-01335-a, 11-02-00517-a, as well as by the ERC advanced grant no 226455, ‘Supersymmetry, Quantum Gravity and Gauge Fields’ (SUPERFIELDS).

References

[1] Zumino B 1979 Supersymmetry and Kähler manifolds Phys. Lett. B 87 203
[2] Davis A C, Macfarlane A J, Popat P C and van Holten J W 1984 The quantum mechanics of the supersymmetric nonlinear \sigma-model J. Phys. A: Math. Gen. 17 2945
[3] Macfarlane A J and Popat P C 1984 The quantum mechanics of the $N = 2$ extended supersymmetric nonlinear \sigma-model J. Phys. A: Math. Gen. 17 2955
[4] Cremmer E and Sherk J 1978 How to quantize supersymmetric theories Nucl. Phys. B 292 363
[5] Smilga A V 1987 How to quantize supersymmetric theories Nucl. Phys. B 292 363
[6] Macfarlane A J 1979 The $SU(N+1)$ \sigma-model or \mathbb{CP}^N model as a non-linear realization of $SU(N+1)$ symmetry Nucl. Phys. B 152 145
[7] Karabali D and Nair V P 2002 Quantum Hall effect in higher dimensions Nucl. Phys. B 641 533 (arXiv:hep-th/0203264)
[8] Bellucci S, Mardoyan L and Nersessian A 2006 Hyperboloid, instanton, oscillator Phys. Lett. B 636 137 (arXiv:hep-th/0602231)
[9] Bellucci S, Mardoyan L and Nersessian A 2010 $N = 4$ supersymmetric mechanics and SUSY quantum mechanics in four dimensions and its coupling to supergravity Nucl. Phys. Proc. Suppl. 192 227 (arXiv:hep-th/0809.0180)
[10] Jellal A 2005 Quantum Hall effect on higher dimensional spaces Nucl. Phys. B 725 554 (arXiv:hep-th/0505095)
[11] Jellal A 2005 Quantum Hall effect on higher dimensional spaces Nucl. Phys. B 725 554 (arXiv:hep-th/0505095)
[12] Daoud M and Jellal A 2007 Effective Wess–Zumino–Witten action for edge states of quantum Hall systems on Bergman ball Nucl. Phys. B 764 109 (arXiv:hep-th/0605289)
[13] Karabali D 2005 Electromagnetic interactions of higher dimensional quantum Hall droplets Nucl. Phys. B 726 407 (arXiv:hep-th/0507027)
[14] Smilga A V 2004 Weak supersymmetry Phys. Lett. B 585 173 (arXiv:hep-th/0311023)
[15] Krivonos S, Lechtenfeld O and Sutulin A 2010 $N = 4$ supersymmetry and the BPST instanton Phys. Rev. D 81 085021 (arXiv:1001.2659 [hep-th])
[16] Kirchberg A, L"ange J D and Wipf A 2005 Extended supersymmetries and the Dirac operator Ann. Phys. 315 467 (arXiv:hep-th/0401134)

[17] Bellucci S and Nersessian A 2003 (Super) oscillator on \mathbb{CP}^N and constant magnetic field Phys. Rev. D 67 065013 (arXiv:hep-th/0211070)

Bellucci S and Nersessian A 2005 (Super) oscillator on \mathbb{CP}^N and constant magnetic field Phys. Rev. D 71 089901 (erratum)

Bellucci S, Nersessian A and Yeranyan A 2004 Quantum oscillator on \mathbb{CP}^N in a constant magnetic field Phys. Rev. D 70 085013 (arXiv:hep-th/0406184)

Bellucci S and Nersessian A 2003 Supersymmetric K"ahler oscillator in a constant magnetic field Int. Seminar on Supersymmetries and Quantum Symmetries SQS 03: Dedicated to the 75th Anniversary of the Birth of Victor Isaakovic (Dubna, Russia, 24–29 July) (arXiv:hep-th/0401232)

[18] Bellucci S, Casteill P Y and Nersessian A 2003 Four-dimensional Hall mechanics as a particle on \mathbb{CP}^3 Phys. Lett. B 574 121 (arXiv:hep-th/0306277)