Entanglement renormalization

G. Vidal1, 2

1School of Physical Sciences, the University of Queensland, QLD 4072, Australia
2Institute for Quantum Information, California Institute for Technology, Pasadena, CA 91125 USA

(Dated: February 2, 2008)

In this Letter we propose a real-space renormalization group method, we propose a novel scheme for quantum systems defined on a D-dimensional lattice. It is based on a coarse-graining transformation that attempts to reduce the amount of entanglement of a block of lattice sites before truncating its Hilbert space. Numerical simulations involving the ground state of a 1D system at criticality show that the resulting coarse-grained site requires a Hilbert space dimension that does not grow with successive rescaling transformations. As a result we can address, in a quasi-exact way, tens of thousands of quantum spins with a computational effort that scales logarithmically in the system’s size. The calculations unveil that ground state entanglement in extended quantum systems is organized in layers corresponding to different length scales. At a quantum critical point, each relevant length scale makes an equivalent contribution to the entanglement of a block with the rest of the system.

PACS numbers:

Renormalization, one of the conceptual pillars of statistical mechanics and quantum field theory, revolves around the idea of rescaling transformations of an extended system [1]. These so-called renormalization group (RG) transformations are not only a key theoretical element in the modern formulation of critical phenomena and phase transitions, but also the basis of important computational methods for many-body problems.

In the case of quantum systems defined on a lattice, Wilson’s real-space RG methods [2], based on the truncation of the Hilbert space, replaced Kadanoff’s spin-blocking ideas [3] with a concise mathematical formulation and an explicit prescription to implement rescaling transformations. But it was not until the advent of White’s density matrix renormalization group (DMRG) algorithm [4] that RG methods became the undisputed numerical approach for systems on a 1D lattice. More recently such techniques have gained renewed momentum under the influence of quantum information science. By paying due attention to entanglement, algorithms to simulate time-evolution in 1D systems [5] and to address 2D systems [6] have been put forward.

The practical value of DMRG and related methods is unquestionable. And yet, they notably fail to satisfy one of the most natural requirements for a RG transformation, namely to have scale invariant systems as fixed points. Instead, for such systems the number of degrees of freedom (that is, the Hilbert space dimension) of an effective site increases with each rescaling transformation. This fact conflicts with the very spirit of renormalization, but it is not only disturbing from a conceptual viewpoint. The cost of a computation depends on the size of the effective sites and it becomes unaffordable after a sufficiently large number of iterations.

In this Letter we propose a real-space RG transformation for quantum systems on a D-dimensional lattice that, by renormalizing the amount of entanglement in the system, aims to eliminate the growth of the site’s Hilbert space dimension along successive rescaling transformations. In particular, when applied to a scale invariant system the transformation is expected to produce a coarse-grained system identical to the original one. Numerical tests for critical systems in $D = 1$ spatial dimensions confirm this expectation. Our results also unveil the stratification of entanglement in extended quantum systems, and open the path to a very compact description of quantum criticality.

Real-space RG and DMRG.– As originally introduced by Wilson [2], real-space RG methods truncate the local Hilbert space of a block of sites in order to reduce its degrees of freedom. Let us consider a system on a lattice \mathcal{L} in D spatial dimensions and its Hilbert space

$$
\mathcal{V}_L = \bigotimes_{s \in \mathcal{L}} \mathcal{V}_s, \quad (1)
$$

where $s \in \mathcal{L}$ denotes the lattice sites and \mathcal{V}_s has finite dimension. Let us also consider a block $B \subset \mathcal{L}$ of neighboring sites, with corresponding Hilbert space

$$
\mathcal{V}_B = \bigotimes_{s \in B} \mathcal{V}_s. \quad (2)
$$

In an elementary RG transformation, the lattice \mathcal{L} is mapped into a new, effective lattice $\mathcal{L'}$, where each site $s' \in \mathcal{L'}$ is obtained from a block B of sites in \mathcal{L} by coarse-graining. More specifically, the space $\mathcal{V}_{s'}$ for site $s' \in \mathcal{L'}$ corresponds to a subspace \mathcal{S}_B of \mathcal{V}_B,

$$
\mathcal{V}_{s'} \cong \mathcal{S}_B \subseteq \mathcal{V}_B, \quad (3)
$$

as characterized by an isometric tensor w, Fig. 1,

$$
w : \mathcal{V}_{s'} \rightarrow \mathcal{V}_B, \quad w^\dagger w = I. \quad (4)
$$

Isometry w can now be used to map a state $|\Psi\rangle \in \mathcal{V}_L$ [typically, a ground state] into a coarse-grained state
the block. This is achieved by deforming, by means of a uni-
truncating its Hilbert space, see Fig. (1).

residing near the boundary of the block is eliminated before
the coarse-graining step. As a result, the coarse-grained site
requires a smaller Hilbert space dimension \tilde{m}, $\tilde{m} < m$.

$|\Psi\rangle \in \mathbb{V}_B$. A thoughtful selection of subspace S_B is es-
tial. On the one hand, its dimension m should be as small as possible, because the cost of subsequent tasks,
such as computing expectation values for local observ-
able, grows polynomially with m. On the other, S_B needs to be large enough that $|\Psi\rangle$ retains all relevant properties of $|\Psi\rangle$. White identified the optimal choice as part of his DMRG algorithm [4]. Let $\tilde{\rho}^{[B]}$ denote the reduced density matrix of $|\Psi\rangle$ on block B. Then,

$$S_B \equiv \langle \rho_1, \cdots, \rho_m \rangle,$$

where $|\rho_i\rangle$ are the m eigenvectors of $\rho^{[B]}$ with largest eigenvalues p_i, and m is such that $\epsilon \geq 1 - \sum_{i=1}^{m} p_i$, where ϵ is a pre-established truncation error, $\epsilon \ll 1$.

Notice that m refers to the amount of entanglement between B and the rest of the lattice, $\mathbb{L} - B$, as characterized by the rank of the truncated Schmidt decomposition

$$|\Psi\rangle \approx \sum_{i=1}^{m} \sqrt{p_i} |\rho_i\rangle \otimes |\sigma_i\rangle, \quad |\sigma_i\rangle \in \mathbb{V}_{\mathbb{L} - B}.$$

In other words, the performance of DMRG-based methods depends on the amount of entanglement in $|\Psi\rangle$.

Entanglement Renormalization.—We propose a technique to reduce the amount of entanglement between the block B and the rest of the lattice \mathbb{L} while still obtaining a quasi-exact description of the state of the system. This is achieved by deforming, by means of a unitary transformation, the boundaries of the block B before truncating its Hilbert space, see Fig. 1.

Let us specialize, for simplicity, to a 1D lattice and to a block B made of just two contiguous sites s_1 and s_2. Let r_1 and r_2 be the two sites immediately to the left and to the right of B. Then we consider unitary transformations u_1 and u_2, the *disentanglers*, acting on the pairs of sites $r_1 s_1$ and $s_2 r_2$,

$$u_1: \mathbb{V}_{r_1} \otimes \mathbb{V}_{s_1} \rightarrow \mathbb{V}_{r_1} \otimes \mathbb{V}_{s_1}, \quad u_1^\dagger u_1 = I,$n

$$u_2: \mathbb{V}_{s_2} \otimes \mathbb{V}_{r_2} \rightarrow \mathbb{V}_{s_2} \otimes \mathbb{V}_{r_2}, \quad u_2^\dagger u_2 = I.$$

Properly chosen disentanglers reduce the *short-range* en-
tanglement between the block B and its immediate neigh-
borhood. The original state $\rho^{[B]}$ of block B,

$$\rho^{[B]} = \text{tr}_{r_1 r_2} \left[\rho^{[r_1 s_1 s_2 r_2]} \right],$$

is now replaced with a partially disentangled state $\tilde{\rho}^{[B]}$,

$$\tilde{\rho}^{[B]} = \text{tr}_{r_1 r_2} \left[(u_1 \otimes u_2) \rho^{[r_1 s_1 s_2 r_2]} (u_1 \otimes u_2)^\dagger \right],$$

which has a smaller effective rank \tilde{m}, $\tilde{m} < m$. Our RG transformation consists of two steps:

(i) First we decrease or *renormalize* the amount of en-
tanglement between block B and the rest of \mathbb{L}. This is

achieved with disentanglers that act locally around the
boundary of B. The block does not become completely
disentangled because only entanglement localized near its
boundaries can be removed.

(ii) Then, as in Wilson’s proposal, we *truncate* the
Hilbert space of block B, and we do so following White’s
idea to target the support of the block’s density matrix.
But instead of keeping the support of the original $\rho^{[B]}$, we
retain the (smaller) support of the partially disentangled
density matrix $\tilde{\rho}^{[B]}$.

![FIG. 2: Left: MERA for a 1D lattice with periodic boundary conditions. Notice the fractal nature of the tensor network. Translational symmetry and scale invariance can be naturally incorporated, substantially reducing the computational complexity of the numerical simulations. Right: building block of a MERA for a 2D lattice. Disentanglers and isometries address one of the x and y spatial directions at a time.](image-url)
of sites of $\hat{\mathcal{L}}$ causally connected to \mathcal{R} through u and w; (ii) alternatively, we can use u and w to lift \hat{o} from \mathcal{L} to $\hat{\mathcal{L}}$, producing \hat{o}, and exploit that $\langle \Psi | \hat{o} | \Psi \rangle = \langle \hat{\Psi} | \hat{o} | \hat{\Psi} \rangle$.

The lifting of linear operators from \mathcal{L} to $\hat{\mathcal{L}}$ generates, by iteration, a well-defined RG flow in the space of hamiltonians such that, in the 1D case, an interaction term h acting on at most three consecutive sites of \mathcal{L} is mapped into an interaction term \tilde{h} acting also on at most three consecutive sites in $\hat{\mathcal{L}}$ [analogous rules apply in $D > 1$ spatial dimensions]. Thus, in spite of the fact that disentanglers deform the original tensor product structure of \mathcal{V}_L, the above rescaling transformation preserves locality, in that it maps local theories into local theories.

In the same way as DMRG is related to matrix product states (MPS) [2], the above RG transformation is naturally associated to a new ansatz for quantum many-body states on a D dimensional lattice. The multi-scale entanglement renormalization ansatz (MERA) consists of a network of isometric tensors (namely the isometries u and disentanglers w corresponding to successive iterations of the RG transformation) locally connected in $D + 1$ dimensions. The extra direction τ, related to the RG flow, grows only as the logarithm of the lattice dimensions, see Fig. 2. Several properties of the MERA together with its connection to quantum circuits are described in [9].

Example.—Figs. 3-4 study the ground state of the 1D quantum Ising model with transverse magnetic field, for an infinite lattice [10]. The entanglement entropy between a block B of L adjacent spins and the rest of the lattice, defined in terms of the eigenvalues $\{p_i\}$ required to achieve a given accuracy ϵ, see Eq. (5), also increases. In particular, m grows roughly exponentially in the number $\tau = \log_2 L$ of RG transformations.

\[
S_B \approx -\sum_i p_i \log_2 p_i,
\]

for a block B of L spins immediately before and after using the disentanglers at the τth coarse-graining step. These spectra are essentially independent of the value of $\tau = 1, \cdots, 14$.

![FIG. 3: Scaling of the entropy of entanglement in 1D quantum Ising model with transverse magnetic field.](image1)

![FIG. 4: Spectrum of the reduced density matrix of a spin block.](image2)
Correspondingly, as Fig. (4) shows, the Hilbert space dimension \tilde{m} of a block of size $L = 2^\tau$ can be kept constant as we increase τ, allowing in principle for an arbitrary number of iterations of the scale transformation. Our calculations, involving the reduced density matrix of up to $L = 2^{14} = 16,384$, have been conducted with Hilbert spaces of dimension $\tilde{m} = 8$, while keeping the truncation error ϵ at each step fixed below 5×10^{-7}. We estimate that without disentanglers an equivalent error ϵ requires a Hilbert space of $m \approx 500 - 1000$ dimensions for the largest spin blocks. This exemplifies the computational advantages of using disentanglers.

Discussion.— An appealing picture emerges from the above numerical exploration. Entanglement in the ground state of the quantum spin chain is organized in layers corresponding to different length scales in the system. The entanglement of a given length scale can be modified by means of a disentangler that acts on a region with linear size as large as that length scale. We observe two situations: (i) Off criticality, the entanglement between a block of sites B and the rest of the lattice L consists roughly of contributions from layers of length scale not greater than the correlation length in the system. Therefore, after a sufficiently large number of RG transformations with disentanglers, the effective ground state becomes a product state, that is, completely disentangled. (ii) At criticality, instead, the entanglement between R and the rest of L receives equivalent contributions from all length scales (smaller than the size of B) – see [9] for a justification of the logarithmic scaling of Eq. [11]. In this case, by applying disentanglers we obtain a coarse-grained lattice identical to the original one, including an effective Hamiltonian identical (up to a proportionality constant) to the original one [12]. In either case, a fixed point of the RG transformation is attained after sufficiently many iterations. Non-critical theories collapse into the trivial fixed point (a product state) while critical theories correspond to a non-trivial fixed point (an entangled state expected to depends on the universality class of critical theory). We conjecture that this picture holds also for quantum lattices in $D > 1$ spatial dimensions. Interestingly, a third type of fixed point is possible, in the case of a ground state with either long-range order or topological order [13].

In summary, we have presented a quasi-exact real-space RG transformation that, when tested in 1D systems, produces effective sites of bounded dimension and have (scale invariant) critical systems as its non-trivial fixed points. The key feature of our approach is a local deformation of the tensor product structure of the Hilbert space of the lattice, that identifies and factorizes out those local degrees of freedom that are uncorrelated from the rest. This deformation is such that local operators are mapped into local operators, so that relevant expectation values for the original system can be efficiently computed from the coarse-grained system.

We conclude with two remarks. First, a scale invariant critical ground state leads to disentanglers u and isometries w that are the same at each iteration of the RG transformation. A single pair (u, w), depending on $O(\tilde{m})$ parameters, is thus seen to specify the ground state, leading to an extremely compact characterization that deserves further study. Second, renormalization group techniques are extensively used also in classical problems, where the MERA can efficiently represent partition functions of lattice systems, extending the scope of this work beyond the study quantum systems.

The author appreciates conversations with I. Cirac, J. I. Latorre, T. Osborne, D. Poulin, J. Preskill and, very specially, with F. Verstraete, whose advise was crucial to find a fast disentangling algorithm. USA NSF grant no EIA-0086038 and an Australian Research Council Federation Fellowship are acknowledged.

[1] M.E. Fischer, Rev. Mod. Phys. 70, 653 (1998).
[2] See S.R. White and R.M. Noack, Phys. Rev. Lett. 68, 3487 (1992).
[3] L. P. Kadanov, Physics 2, 263 (1966).
[4] S. R. White, Phys. Rev. Lett. 69, 2863 (1992), Phys. Rev. B 48, 10345 (1993). U. Schollwoeck, Rev. Mod. Phys. 77, 259 (2005), cond-mat/0402937.
[5] G. Vidal, Phys. Rev. Lett. 91, 147902 (2003), quant-ph/0301068, ibid. Phys. Rev. Lett. 93, 040502 (2004), quant-ph/0310080. S. R. White and A. E. Feiguin, Phys. Rev. Lett. 93, 076401 (2004). A. J. Daley et al., J. Stat. Mech.: Theor. Exp. (2004) P04005, cond-mat/0403313.
[6] F. Verstraete, J.I. Cirac, cond-mat/0407066
[7] M. Fannes, B. Nachtergaele and R. F. Werner, Comm. Math. Phys. 144, 3 (1992), pp. 443-490. S. Östlund and S. Rommer, Phys. Rev. Lett. 75, 19 (1995), pp. 5353.
[8] F. Verstraete, D. Porras, J. I. Cirac, Phys. Rev. Lett. 93, 227205 (2004); D. Porras, F. Verstraete, J. I. Cirac, cond-mat/0504717.
[9] G. Vidal, quant-ph/0610099
[10] here we have obtained an MPS for the ground state of Eq. [10] with the infinite TEBD algorithm [12] and then transformed it using several rows disentanglers and isometries. An algorithm to compute the ground state at each iteration of the RG transformation, as well to obtain disentanglers, will be described elsewhere.
[11] G. Vidal, J.I. Latorre, E. Rico, A. Kitaev, Phys. Rev. Lett. 90 (2003) 227902, quant-ph/0211074. B.-Q. Jin, V.E.Korepin, J Stat. Phys. 116, 79-95 (2004), P. Calabrese and J. Cardy, J. Stat. Mech. 0406 (2004) P002.
[12] G. Evenbly and G. Vidal, in preparation.
[13] M. Aguado et al., in preparation.
[14] G. Vidal, cond-mat/0605597.