Golgi Apparatus-Localized Synaptotagmin 2 Is Required for Unconventional Secretion in Arabidopsis

Haiyan Zhang1,9, Liang Zhang1,2,*, Bin Gao1,3, Hai Fan3, Jingbo Jin1, Miguel A. Botella4, Liwen Jiang5, Jinxing Lin1,9

1 Key Laboratory of Photosynthesis and Molecular Environmental Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China, 2 Graduate School of Chinese Academy of Sciences, Beijing, China, 3 College of Life Sciences, Shandong Normal University, Jinan, China, 4 Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, Málaga, Spain, 5 Department of Biology and Molecular Biotechnology Program, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China

Abstract

Background: Most secretory proteins contain signal peptides that direct their sorting to the ER and secreted via the conventional ER/Golgi transport pathway, while some signal-peptide-lacking proteins have been shown to export through ER/Golgi independent secretory pathways. Hygromycin B is an aminoglycoside antibiotic produced by Streptomyces hygroscopicus that is active against both prokaryotic and eukaryotic cells. The hygromycin phosphotransferase (HYGR) can phosphorylate and inactivate the hygromycin B, and has been widely used as a positive selective marker in the construction of transgenic plants. However, the localization and trafficking of HYGR in plant cells remain unknown. Synaptotagmins (SYTs) are involved in controlling vesicle endocytosis and exocytosis as calcium sensors in animal cells, while their functions in plant cells are largely unclear.

Methodology/Principal Findings: We found Arabidopsis synaptotagmin SYT2 was localized on the Golgi apparatus by immunofluorescence and immunogold labeling. Surprisingly, co-expression of SYT2 and HYGR caused hypersensitivity of the transgenic Arabidopsis plants to hygromycin B. HYGR, which lacks a signal sequence, was present in the cytoplasm as well as in the extracellular space in HYGR-GFP transgenic Arabidopsis plants and its secretion is not sensitive to brefeldin A treatment, suggesting it is not secreted via the conventional secretory pathway. Furthermore, we found that HYGR-GFP was truncated at carboxyl terminus of HYGR shortly after its synthesis, and the cells deficient SYT2 failed to efficiently truncate HYGR-GFP, resulting in HYGR-GFP accumulated in prevacuoles/vacuoles, indicating that SYT2 was involved in HYGR-GFP trafficking and secretion.

Conclusion/Significance: These findings reveal for the first time that SYT2 is localized on the Golgi apparatus and regulates HYGR-GFP secretion via the unconventional protein transport from the cytosol to the extracellular matrix in plant cells.

Introduction

The secretory pathway traditionally contains a number of biochemically distinct inter-related membrane organelles that continuously communicate with each other and exchange materials through membrane trafficking. The classical secretory proteins are often extended at their N-terminus by a ‘leader’ or ‘signal’ sequence of 13–30 hydrophobic amino acids. This directs the nascent protein to co-translate and vectorially transfer across the membrane of the endoplasmic reticulum (ER), and is often cleaved before completion of the transmembrane transport of the protein [1,2]. Secretory proteins are then transported to the Golgi apparatus and trans-Golgi network where they undergo further glycosylation, and sorting and being packaged into vesicles, respectively. Finally the secretory vesicles are delivered to and fuse with the plasma membrane, resulting in releasing their contents into the extracellular space [3].

However, numerous secretory proteins with normal extracellular functions have been shown to be devoid of functional signal sequences and do not appear substrates for the ER membrane translocation machinery. In addition, the secretion of these proteins is not affected by the presence of brefeldin A, a drug that blocks ER/Golgi-dependent secretory transport [4–6]. These observations suggest that alternative secretory mechanisms that are independent of ER/Golgi secretory pathway exist in eukaryotic cells. Secretion of proteins without an N-terminal signal sequence is currently known as the unconventional/non-classical secretory pathway or leaderless secretion. Up to date, several unconventional secretory pathways have been reported for a few biomedically important factors, including proangiogenic...
mediators such as fibroblast growth factors 2 and inflammatory cytokines such as interleukin 1α and 1β in mammalian cells [3,7]. Plant secretome revealed that more than half of the total identified proteins were leaderless secretory proteins, which is distinctly higher than in human and yeast secretomes, implying that this unconventional secretory mechanism is common to all eukaryotes and it is more largely used than in other eukaryotes [8]. Furthermore, plants exposed to biotic and abiotic stresses usually significantly contained more leaderless secretory proteins in the extracellular space than non-stressed plants, suggesting that environmental component might be involved in release of leaderless secretory proteins into the extracellular space [8]. However, until now, only one leaderless secretory protein, mannitol dehydrogenase (MDT) in celery, has been shown to bypass the ER-Golgi-plasma membrane exocytic pathway for its delivery to the extracellular space by molecular biology and biochemistry approaches [6].

Synaptotagmins (SYTs) constitute a family of membrane-trafficking proteins that are characterized by an N-terminal transmembrane region, a linker of variable size, and two C-terminal C2 domains in tandem [9]. SYTs are reported to play a vital role in neurotransmitter release and insulin exocytosis in mammalian cells [10–13]. The synaptotagmin family in Arabidopsis has five members. SYT1, the only one characterized so far, is ubiquitously expressed and predominantly localized to the plasma membrane [14]. Disruption of SYT1 function in Arabidopsis leads to abiotic stresses hypersensitivity due to a reduced integrity of the plasma membrane [14,15]. However, the subcellular localization and the functions of other SYTs remain unknown.

Hygromycin B is an aminoglycoside antibiotic produced by Streptomyces hygroscopicus that is active against both prokaryotic and eukaryotic cells by inhibiting protein synthesis [16,17]. It has been reported that hygromycin B acts by interfering with translocation and causes mistranslation [18]. An Escherichia coli gene has been identified that confers resistance in transgenic plants against hygromycin B. The resistance gene codes for hygromycin B phosphotransferase (HYGR, E.C. 2.7.1.119) that adds phosphate to position 7 of the desnotic acid ring of hygromycin B, which results in complete loss of biological activity both in vitro and in vivo [19]. Although HYGR has been mainly used as a positive selective marker for transgenic cells [20], few studies have examined the subcellular localization and trafficking of HYGR and the putative elements that regulate the tolerance of HYGR-expressing cells to hygromycin B.

Here, we provided several lines of evidence about localization of Arabidopsis synaptotagmin SYT2. More importantly, we found that HYGR is present both in the cytoplasm and the extracellular space in HYGR-GFP transgenic plants. The loss of SYT2 caused inhibition of HYGR-GFP trafficking. Based on the fact that HYGR-GFP lacks a signal sequence and its secretion is not sensitive to brefeldin A treatment, we propose that HYGR-GFP is not secreted via the conventional secretory pathway and SYT2 elements that regulate the tolerance of sensitive to brefeldin A treatment, we propose that HYGR-GFP is inhibition of HYGR-GFP trafficking. Based on the fact that HYGR is present both in the cytoplasm and the extracellular space as well as phospholipids in plant cells.

Results

Characterization of Arabidopsis SYT2 Protein

The synaptotagmin 2 gene (SYT2, At1g20080) is one of five putative SYTs in Arabidopsis. It comprises 12 exons and 11 introns, based on information available in the Arabidopsis Information Resource database (TAIR; http://www.arabidopsis.org/) (Figure 1f). Homology analysis using amino acid sequence data showed that SYT1 is the closest relative of SYT2 in Arabidopsis, with about 66% amino acid identity between them [15]. Compared to SYT1, all amino acid residues thought to play crucial roles in coordinating calcium (Ca) ions are conserved in the C2A domain of SYT2 (Figure 1B). Unlike SYT1, however, only four putative amino acids of the SYT2 C2B domain are involved in Ca binding (lacking the fourth putative residue) (Figure 1C). According to SYT1 expression profiles based on microarray expression data obtained from Genevestigator (http://www. genevestigator.ethz.ch), SYT2 is highly expressed in pollen grains, whereas expression in other organs, such as roots or leaves, is detectable but low (Figure S1). A secretory signal peptide was predicted in the SYT2 amino acid sequence but neither a chloroplast transit peptide nor a mitochondrial targeting peptide was identified using the TargetP 1.1 server (http://www.cbs.dtu.dk/services/TargetP/).

SYT2 does not Colocalize with BFA Compartment

To investigate the subcellular localization of SYT2, we fused the gene encoding green fluorescent protein (GFP) to the SYT2 gene (C-terminal end of the encoded protein) under the control of the 35S promoter of the cauliflower mosaic virus (CaMV35S) and used these constructs to transiently or stably transform Nicotiana tabacum and Arabidopsis. The resulting fusion protein (SYT2-GFP) was predominantly detected in mobile punctate structures in leaf cells of transiently transformed N. tabacum and Arabidopsis (Figure 2A and 2B). Plant lines stably expressing SYT2-GFP were also analyzed by laser scanning confocal microscope (LSCM) to localize the fusion protein. The fluorescence signals appeared as punctate structures with a dim cytosolic background in root hairs, root meristem cells and elongation cells (Figure 2C to 2F).

To investigate whether the SYT2-positive structures were of endosomal origin, transgenic SYT2-GFP Arabidopsis seedlings were incubated with FM4-64, a fluorescent marker internalized by a clathrin-dependent process and sequentially labels early endosomal, late endosomal, and vacuolar compartments [21–24]. As shown in Figure 3, the internalized FM4-64 dye rarely co-localized with SYT2-GFP-containing compartments in root cells even after 2 h of incubation, during which time FM4-64 was detected in vacuolar membranes (Figure 3A to 3I). Co-localization studies were also performed using seedlings expressing VHA-a1-GFP, ARA6-GFP, and ARA7-GFP, all of which have been reported to reside on endosomes and regulate endosomal fusion [21,23,25]. Co-localization of FM4-64 with large amounts of VHA-a1-GFP and ARA6-GFP (Figure 3J to 3O) and lesser amounts of ARA7-GFP (Figure 3P to 3R), was detected after 30 min, demonstrating that SYT2-GFP is targeted to a compartment independent of endosomal membranes.

The endosomes in Arabidopsis root tip cells are the main target of the fungal toxin brefeldin A (BFA). This drug inhibits certain ADP ribosylation factor/guanine nucleotide exchange factors (ARF-GEFs) and causes the endocytic tracer FM4-64 to rapidly aggregate throughout vesicle agglomerations known as BFA compartments [26–28]. To investigate whether SYT2-GFP was associated with BFA-sensitive endosomes, the transgenic plants were treated with 25 μM BFA. After BFA treatment, the punctate SYT2-GFP structures were almost intact and did not accumulate in BFA compartments (Figure S2A to S2F), while VHA-a1-GFP (early endosome marker) and ARA6-GFP (late endosome marker) perfectly overlapped with and was located at the periphery of the BFA compartments, respectively (Figure S2G to S2L) [23,29].

To further demonstrate that SYT2-GFP-containing structures are excluded from the late endosomes, we analyzed the effect of wortmannin, which inhibits the biosynthesis of phosphatidylinositol 3- and 4-phosphates as well as phospholipids in plant cells.
Exogenous application of wortmannin causes the late endosomes to dilate or form ring-shaped structures, but has no effect on the Golgi apparatus and early endosomes [29,31]. The morphology of SYT2-GFP structures was not altered and the two markers were almost separated (Figure S3A to S3C). As previously reported for ARA6-GFP and ARA7-GFP, both of which localize

Figure 1. Characteristics of SYT2 gene in Arabidopsis thaliana. Schematic structure of Arabidopsis synaptotagmin 2 gene (SYT2, At1g20080). Solid boxes are exons, lines between the boxes are the introns. The start codon ATG and the stop codon TGA are marked. Triangle indicates the T-DNA insertion site in syt2-1 (SALK_135307) mutant. (B and C) Amino acid sequence alignment of the C2A (C) and C2B (D) domain of SYT1 and SYT2 in Arabidopsis and of mouse Syt1 and Syt2 using the multiple alignment program of Vector NTI Suite 7 (Invitrogen). Asterisks indicate the amino acids involved in calcium binding.

doi:10.1371/journal.pone.0026477.g001

Figure 2. Subcellular localization of SYT2 in Arabidopsis. (A and B) Transient expression of SYT2-GFP in leaf epidermis cells of tobacco (A) and Arabidopsis (B) shows punctate structures in the cytoplasm. Autofluorescence of chloroplasts appears as golden structures (B). Arrows indicate the punctate structures of SYT2-GFP. Bars = 20 μM. (C–F) Expression of SYT2-GFP in stably transformed root hairs (C) and root tip cells (D–F). (E), High-magnification image of root cells in the inset in (D). Arrows indicate the punctate structures of SYT2-GFP. Bars = 20 μM.

doi:10.1371/journal.pone.0026477.g002
SYT2 is Localized on the Golgi Apparatus

The punctate structures labeled by SYT2-GFP were insensitive to BFA and wortmannin treatment and did not become labeled with FM4-64, reminiscent of the Golgi apparatus. In addition to its punctate appearance, the Golgi apparatus did not become co-localized with the endocytic tracer FM4-64 or with BFA compartments in Arabidopsis root-tip cells [32–34]. To determine if SYT2-containing structures were associated with Golgi apparatus, we performed an immunofluorescent study on wild-type and SYT2-GFP-overexpressing plants. Antibodies were generated against the cytoplasmic region (300 aa–535 aa) of SYT2 (anti-SYT2). Affinity purified anti-SYT2 antibodies was analyzed by western blotting of wild type and SYT2-GFP transgenic Arabidopsis seedlings, recognizing proteins of 61 KD and 87 kD corresponding to both native SYT2 and recombinant SYT2-GFP respectively (Figure 4A). In order to determine whether the generated antibodies were specific for SYT2 and did not recognize other SYT family members, including the closely related SYT1, a mutant in ST2 from the SALK collection (SALK_135307, syt2-1) with the T-DNA located in the 9th exon of At1g20080 was isolated and further analyzed. No mRNA transcripts and proteins were detected in the homozygous syt2-1 line, despite the fact that SYT1 was expressed at wild-type levels in the mutant (Figure 4A and 4B). In view of the lower SYT2 transcripts in vegetative tissues analyzed by microarray analysis (Figure S1), it is suggested that SYT2 protein production is probably regulated at the level of translation.

As shown in Figure 4D, SYT2 became immunolocalized into punctate structures were similar to those observed in plants expressing SYT2-GFP. Furthermore, most of the co-localization between SYT2 and SYT2-GFP occurred in transgenic plants over-expressing SYT2-GFP, as confirmed using anti-SYT2 and anti-GFP antibodies (Figure 4E). SYT2 localization was further analyzed by double-immunofluorescent labeling with anti-SYT2 and anti-GFP antibodies in plants expressing ST-YFP, a well described Golgi marker [23,32]. SYT2 likewise co-localized with ST-YFP (Figure 4F). Immuno-labeling of ultra-thin sections of Arabidopsis root cells using anti-SYT2 antibodies showed that gold particles mainly deposited on the Golgi apparatus (Figure 4G to 4L).

Co-expression of SYT2 and HYGR Leads to Hypersensitivity to Hygromycin B

Hygromycin B is an aminoglycoside antibiotic produced by Streptomyces hygroscopicus that is active against both prokaryotic and eukaryotic cells [16]. The hygromycin B phosphotransferase (HYGR) phosphorylates and inactivates hygromycin B, and has been widely used as a selectable marker in the generation of
transgenic plants. To investigate the subcellular localization of SYT2 in plant cells as described above, the binary vector (pCambia1301-SYT2/HYG), which was generated by pCambia1301 from T-DNA containing a SYT2-GFP expression cassette and a hygromycin B-selectable marker, was introduced into Arabidopsis seedlings by Agrobacterium-mediated transformation. However, we noticed that the positively transgenic plants (named SYT2/HYG) grew weakly when selected on 20 mg/mL hygromycin B-containing medium. These plants had low viability or showed slow growth and the apparent loss of apical dominance (inhibition of the primary inflorescence) following the development of two symmetrical axillary buds after their transfer to soil (Figure S4A to S4C). T2 and T3 seedlings exhibited wild-type growth in the absence of hygromycin B. To observe whether SYT2 was associated with uptake of hygromycin B, wild-type and syt2-1 plants were incubated on K Murashige and Skoog (MS) medium containing different concentrations of hygromycin B. As shown in Figure S5, the phenotype of syt2-1 is not obviously different from that of wild type under hygromycin B treatment, indicating that SYT2 is not probably related with the uptake of hygromycin B in Arabidopsis. Therefore, it is presumed that SYT2 contributes to the detoxification of HYG in HYG-containing plants. To investigate the effect of SYT2 on hygromycin B tolerance, wild-type and syt2-1 plants were transformed with a 35S-HYG construct and the
transgenic plants were named as HYGR and syt2-1/HYGR, respectively.

We analyzed the expression of the HYGR gene in these transgenic lines using semi-quantitative RT-PCR (Figure 5A). The expression level of HYGR gene was similar in the selected lines. We further investigated the growth of these lines on 1/2 MS medium agar plates with different concentrations of hygromycin B. The growth of the primary roots and hypocotyls of SYT2/HYGR seedlings was greatly inhibited even on the medium containing as low as 5 μg/mL hygromycin B (Figure 5B). The roots of SYT2/HYGR seedlings were 30.1%, 9.3% and 7.1% of that of HYGR seedlings in the presence of 5, 10 and 20 μg/mL of hygromycin B, respectively (Figure 5C). Microscopic observation also revealed that the root hairs and roots of SYT2/HYGR seedlings were greatly shortened (Figure S4D to S4L), suggesting that a reduced function of HYGR caused by the over-expression of SYT2.

HYGR-GFP is Exported via an Unconventional Secretory Pathway

To obtain the clues as to why co-expression of SYT2-GFP and HYGR caused hypersensitivity to hygromycin B in Arabidopsis, we first analyzed the subcellular localization of a translational fusion

![Image](image-url)
between HYGR and GFP under the control of the constitutive promoter (CaMV35S) in stable transgenic lines. The fluorescent signals from HYGR-GFP were present on the cell surface of root cells and interestingly HYGR-GFP was preferentially expressed in leaf-tip zones (Figure 6A to 6C). In the plasmolyzed cells, HYGR-GFP was found in the cytoplasm as well as in the cell walls (Figure 6D and 6E). As it has been mentioned that the HYGR protein could be secreted in plants [35], we first investigated the secretory property of the HYGR-GFP protein by protein gel blot using mesophyll protoplasts of HYGR-GFP plants. Unexpectedly, in protoplast lysates, the expected band of full length HYGR-GFP (about 65 kD) was not detected when anti-HYGR antibody was

Figure 6. Subcellular localization of HYGR-GFP and secretion of HYGR in transgenic Arabidopsis. (A) Confocal image of transgenic root cells showed that HYGR-GFP was localized on the cell surface (arrows). Bar = 20 µm. (B and C) Confocal image of transgenic leaf showed that HYGR-GFP (green) was primarily expressed in the leaf-tip zone cells (arrows). Autofluorescence of chloroplasts appear as red structures. Bar = 100 µm. (D) Confocal image showed that HYGR-GFP was localized in both cell wall (arrows) and cytoplasm (arrowheads). The root cells were plasmolyzed with 0.8 M mannitol for 1 h. Bar = 20 µm. (E) Control image of non-transgenic root cells taken at the same laser intensity and exposure time as that in (A) and (D). Inset is the reduced bright field image. Bar = 30 µm. (F) Non-transgenic protoplasts (WT) and protoplasts stably expressing HYGR-GFP were incubated for 5 h at 23 °C. The protoplast lysates (P) and medium (M) proteins were subjected to protein gel blot with anti-HYGR, anti-GFP and anti-tubulin antibody, respectively. (G) The response of HYGR secretion to BFA treatment. Protoplasts stably expressing HYGR-GFP were incubated for 5 h with (+) BFA or without (−) BFA at 23 °C. The protoplast lysates and medium proteins were separated by SDS-PAGE and immunblotted with anti-HYGR and anti-tubulin antibody, respectively. (H) The effectiveness of brevedbind A (BFA) was demonstrated by the variation of acid phosphatase (AcPase) activities. Protoplasts were incubated in the absence (△, ▲) or presence (□, ■) of BFA. At the indicated periods during incubation, the protoplast was separated from the medium by centrifugation. AcPase activities in the medium (△, ▲) and protoplasts fractions (△, □) were determined. Note that the partial inhibition of the activities of AcPase after BFA treatment.

doi:10.1371/journal.pone.0026477.g006
applied, but a band with a molecular weight between 34–43 kD (about the molecular weight of HYGR protein) was detected both in the medium and in the protoplast lysates (Figure 6E), suggesting that HYGR protein was secreted into extracellular space. When anti-GFP antibody was applied, the HYGR-GFP protein appeared as a single band of approximately 30 kD, slightly bigger than GFP, in both the medium and the protoplast lysates of HYGR-GFP-expressing plants. Using tubulin as an intracellular marker, it was found that contamination of the medium with intracellular proteins was below the level of detection. These results suggest that HYGR-GFP had been efficiently truncated at carboxy terminus of HYGR shortly after it was synthesized in HYGR-GFP-expressing plants. To assess whether HYGR-GFP was secreted via the conventional secretory pathway, protoplasts were treated with BFA. Although the Golgi apparatus in Arabidopsis root tissues appears to be BFA-resistant [32,34], it turns out that BFA indeed exerts a marked effect on the Golgi apparatus in non-root tissues of Arabidopsis. Confocal microscopy revealed that the classic re-absorption of Golgi membranes back into the ER in BFA-treated Arabidopsis leaves [34,36]. Furthermore, the secretion of acid phosphatase inhibited by BFA treatment was also reported in mesophyll protoplasts of tobacco, indicating that BFA inhibits the conventional secretory pathway in leaf cells [37]. In order to analyze whether BFA affected the secretion of HYGR-GFP by immunoblot analysis, the total protein of protoplast lysates and the medium was harvested after 5-h BFA treatment, respectively. As shown in Figure 6G, HYGR was detected in similar amounts in the absence and presence of BFA in the protoplast lysates or in the medium, respectively. The effectiveness of BFA on the conventional ER/Golgi pathway was verified by measuring the activity of acid phosphatase (AcPase) at hourly intervals in the medium and protoplast lysates (Figure 6H). As expected, an obvious inhibition of AcPase secretion upon BFA treatment was observed at each individual measurement time as previously reported [37]. The facts that BFA inhibited AcPase secretion but did not inhibit secretion of HYGR-GFP suggested that HYGR-GFP secretion indeed follows an alternative secretory pathway.

SYT2 is Required for the Unconventional Secretion of HYGR

To further examine whether SYT2 was involved in the unconventional secretory process of HYGR-GFP in Arabidopsis, the HYGR-GFP was introduced into syt2-1 plants by Agrobacterium-mediated transformation and the resultant transgenic plants (syt2-1/HYGR-GFP) had similar phenotype to syt2-1/HYG transgenic plants under hygromycin B treatments (Figure S6). As shown in Figure 7A to 7C, expression of HYGR-GFP resulted in an increase in GFP fluorescence owing to intracellular accumulation of HYGR-GFP. HYGR-GFP accumulated in whole leaf cells besides in leaf-tip zones (Figure 7A). When we examined the tissues at higher resolution by LSCM, the fluorescence signals were found on punctate structures in cytoplasm (Figure 7B and 7C). After being plasmolyzed, syt2-1/HYGR-GFP plants showed that fluorescence signals of HYGR-GFP were primarily localized on intracellular punctate structures and vacuoles (Figure 7D to 7F). To characterize the fluorescent proteins in syt2-1/HYGR-GFP plants, total proteins extracted from protoplasts and medium were analyzed by protein gel blot using anti-GFP antibody. As shown in Figure 7G, the total protein in the medium contained no detectable tubulin, indicating that the medium was not obviously contaminated by protoplast proteins. HYGR-GFP in the medium extracts of syt2-1/HYGR-GFP protoplasts similarly exhibited a single band that co-migrated with the GFP-fusion protein in the extracts from HYGR-GFP protoplasts and medium. However, the protoplast extracts had three forms of GFP fusion protein in syt2-1/HYGR-GFP plants. The greatest band migrated with an apparent molecular weight of about 35 kD which was lower than the expected full-length of HYGR-GFP. Apart from this upper GFP fusion protein, two less intense bands with the molecular weight of about 43 kD and 30 kD were recognized below it, implying that HYGR-GFP had undergone partial truncation at its amino terminus with different extents in the syt2-1/HYGR-GFP plants. Immunogold-labeled ultrathin sections for electron microscopy showed the gold particles situated on the cell wall both in concentrated and dispersed manner in the root cells of HYGR-GFP-expressing plants (Figure 7H to 7K). Little or no gold particles were detected on the cell wall in the root cells of the syt2-1 plants expressing HYGR-GFP. However, several gold particles well deposited close to, or in the vacuoles in these cells (Figure 7L to 7O). No obvious signals were found in the vacuoles of the HYGR-GFP transgenic plants (Figure 7P) or in the whole cells of non-transformed plants (Figure 7Q).

It was of interest to note that syt2-1/HYG seedlings also exhibited the inhibition of root elongation under higher hygromycin B treatments (>5 μg/ml) (Figure 5). To confirm that the sensitivity of syt2-1/HYG to hygromycin B in root tip growth is caused by the deficiency of SYT2, the binary construct containing SIT2-GFP and HYGR was introduced into syt2-1 mutants by Agrobacterium-mediated transformation. T3 progeny were subjected to hygromycin B and it was found that the SIT2/HYG plants restored the syt2-1 phenotype to the HYGR transgenic plants with respect to the root elongation and root morphology (Figure S7). These results confirmed that the deficiency of SYT2 in syt2-1 resulted in the increased sensitivity to higher concentrations of hygromycin B during Arabidopsis seedling growth.

SYT1 Expression is Up-regulated in Hygromycin B-treated syt2-1 Mutant

The detoxifying ability of HYGR in the syt2-1 mutant was reduced under higher concentrations of hygromycin B when compared with that in the wild-type plants, but was much higher than that in SYT2-overexpressing plants. We hypothesized that the other members of SYT family in Arabidopsis, especially the SYT1, which has the highest homology with SYT2, might contribute to the decreased resistance of syt2-1 to hygromycin B. To address this possibility, the expression level of SIT1 in hygromycin-treated syt2-1 plants was examined by semi-quantitative RT-PCR. Under normal condition, SIT1 is expressed at similar level in syt2-1 to that in wild-type plants. However, the expression of SIT1 was greatly enhanced in syt2-1 plants under hygromycin B treatment for 3 h and 15 h (Figure 8A). To further examine whether the up-regulated expression level of SIT1 in syt2-1 has a role of enhancing the sensitivity to hygromycin B, we investigated the phenotype of syt1-2 (SIT1 knock-out mutant, Schapire et al., 2008) and SIT1-overexpressing plants both which contain HYGR gene. From Figure 8B and 8C, it is evident that co-expression of SIT1 and HYGR led to hypersensitivity to hygromycin B in Arabidopsis.

Discussion

Like most proteins involved in vesicular trafficking, the localization of synaptotagmins provides important information about the biological functions of these proteins [38]. Thus, we firstly investigated the subcellular distribution of SYT2 using different approaches. In all cases, SYT2 was detected in punctate structures, raising the possibility that it was targeted to the membrane trafficking pathway. This was further supported by the
results obtained from immunolocalization studies using anti-SYT2 and anti-GFP antibodies. These studies showed that SYT2 was broadly distributed on the Golgi apparatus. This result is analogous to mammalian Syt 4, which localizes to the Golgi apparatus in undifferentiated neuroendocrine PC12 cells [39]. However, the localization of SYT2 is in contrast to the plasma membrane localization of SYT1 in Arabidopsis [14].

It has been long appreciated that the Golgi apparatus forms the heart of the secretory pathway and it is where secretory materials are posttranslationally modified before being sorted for delivery to their final destination, such as the plasma membrane or extracellular space [40,41]. Indeed, in plant cells, some Golgi-localized proteins have been shown to be involved in the transport of cargo from the Golgi apparatus to the cell surface [42,43].

Figure 7. Accumulation of HYGR in syt2-1 plants. (A–C) Expression of HYGR-GFP in syt2-1 caused the fluorescent accumulation in cytoplasm. In magnified pictures punctate structures were found (B and C; Bars = 100 μm). Bar = 20 μm (A). (D–F) Confocal image showed that HYGR-GFP was brightly accumulated in punctate structures in cytoplasm (arrowheads) and in vacuoles. The cells were plasmolysed with 0.8 M mannitol for 1 h. V: vacuole. Bars = 20 μm. (G) Protein gel blot of HYGR-GFP in wild-type (WT), syt2-1, and HYGR-GFP plants. The blots were probed with anti-GFP (upper) and anti-tubulin (lower) antibodies to detect GFP-tagged proteins and tubulin, respectively. The positions of molecular weight markers are indicated. (H–K) Immuno-gold labeling and electron microscopic observation showed that HYGR was detected on the cell wall in root tip cells of HYGR-GFP-expressing Arabidopsis plants. (H and I) Concentrated gold particles near/on the cell wall. (J and K) The distribution of gold particles on the cell wall. (K) The magnification image of the inset in (J). CW: Cell wall. Bars: 500 nm (H, J), 100 nm (I), 200 nm (K). (L–O) Immuno-gold labeling of HYGR in the root tip cells of syt2-1 plants expressing HYGR-GFP. (L–N) HYGR was detected in/on vacuoles. (O) No signals were found in the cell wall. CW: Cell wall. V: Vacuole. Bars: 500 nm (L), 200 nm (M, O), 100 nm (N). (P and Q) Immuno-gold labeling using anti-HYGR antibody in the root tip cells of HYGR-GFP-expressing plants (P) and non-transgenic plants (Q). CW: Cell wall. V: Vacuole. Bars: 200 nm (P), 100 nm (Q).

doi:10.1371/journal.pone.0026477.g007
Therefore, the localization of SYT2 on the Golgi apparatus in Arabidopsis suggests a role in the secretory pathway.

HYGR has been shown to be effective in selection with various plant species, including dicots, monocots and gymnosperms [44,45]. However, the data available at present appear insufficient to provide complete knowledge of mechanism of HYGR secretion. In the present experiment, HYGR-GFP was present in both intracellular and extracellular space, suggesting that HYGR-GFP may be excreted from cytosol into the extracellular space. Furthermore, anti-GFP antibodies recognized a band with a molecular weight of about 30 kD in the protoplast lysates from HYGR-GFP plants, which was slightly greater than the full-length GFP, implying that HYGR-GFP was truncated at the carboxyl terminus of HYGR shortly after its synthesis and HYGR-GFP was secreted in its truncated form. Interestingly, co-expression of HYGR and SYT2 in Arabidopsis caused hypersensitivity to hygromycin B, suggesting that SYT2 may have a role in regulating the detoxification of HYGR for hygromycin B. To confirm whether SYT2 is involved in the trafficking of HYGR, we examined the existing form of HYGR-GFP in syt2-1 mutant. We found that the loss of SYT2 partially inhibited the truncation of HYGR-GFP at the carboxyl terminus of HYGR, which subsequently accumulated in intracellular punctate structures and vacuoles in several truncating forms, suggesting SYT2 has a vital role in regulating

Figure 8. Response of SYT1-overexpressing plants to hygromycin B. (A) Reverse transcriptase-PCR analysis of SYT1 transcripts in wild-type (WT) and syt2-1 plants after hygromycin B treatments for 0, 3 and 15 h. Actin was used as a control. (B) Growth of wild-type (WT), HYGR, syt1-2/HYGR and SYT1/HYGR plants under hygromycin B treatments. Seeds were germinated on 1/2 MS medium supplemented with indicated concentrations of hygromycin B and grew for 7 days before images were taken. SYT1/HYGR1 and SYT1/HYGR2 were different lines that were simultaneously transformed with SYT1 and HYGR genes. (C) Measurement of length of roots and shoots for seedlings treated as described for (B). Values are the means ± SD of 30–40 seedlings from three independent experiments. doi:10.1371/journal.pone.0026477.g008
the trafficking of HYGR-GFP for its secretion in plant cells (Figure 9).

Proteins can be secreted in plant cells via either the conventional or the unconventional secretory pathway. The unconventional secretory proteins not only lack of canonical signal sequence, but are also resistant to the export processes affected by BFA, an inhibitor of ER/Golgi-dependent protein secretion in both animals and plants [4,28,46]. Interestingly, no conventional signal peptide sequence was found in HYGR predicted by SignalP 3.0 Server (http://www.cbs.dtu.dk/services/SignalP/) or TargetP 1.1 Server (http://www.cbs.dtu.dk/services/TargetP/). Therefore, it is possible that HYGR-GFP was synthesized on the free ribosomes in cytoplasm and exported by a signal peptide-independent secretory process (Figure 9). This unconventional secretion has been thoroughly demonstrated in mammalian and yeast cells. We further analyzed the secretion of HYGR-GFP protein in HYGR-GFP-expressing plants in response to BFA treatment by protein immunoblot. As expected, upon BFA treatment, HYGR-GFP secretion in the transgenic Arabidopsis was not perturbed. Thus HYGR-GFP secretion displays the features of leaderless or unconventional protein secretion, including the absence of a canonical signal peptide in the protein and the insensitive export in the presence of brefeldin A [4,46]. Therefore, we can safely conclude that an unconventional secretion is involved in HYGR-transgenic Arabidopsis plants.

It is unexpected that the detoxifying ability of HYGR in the loss-of-function ygt2-1 mutant was also destroyed, causing the plants to grow slowly and weakly under higher concentrations of hygromycin B, although these plants showed stronger resistance compared with SYT2/HYGR ones. The most probable explanation for this phenomenon is that the trafficking of HYGR-GFP in ygt2-1 plants is inhibited and the protein is partly transported into vacuoles, as revealed by the localization of HYGR-GFP in this mutant, and may then be degraded. Co-expression of HYGR and SYT1, the latter, the most similar member to SYT2 in Arabidopsis SFT family, also led to hypersensitivity to hygromycin B. In any case, this result provided direct evidence that the contributor to the weakened resistance of ygt2-1 to hygromycin B might be SYT2. We further found that the transcriptional expression of SYT1 in ygt2-1 plants remained unchanged under normal conditions, but obviously enhanced under hygromycin B treatment. The SYT1 knock-out mutants also showed sensitivity to hygromycin B even at lower concentration (5 μg/mL), although they have much stronger tolerance than SYT1/HYGR plants. Considering the similar responses of SYT2 and SYT1 to hygromycin B, we conclude that SYT1 may contribute to the resistance of HYGR-harboring plants via a different secretory route (Figure 9).

Unconventional secretion can be classified into non-vesicular and vesicular mechanisms. Non-vesicular mechanisms are based on direct translocation of cytoplasmic proteins across the plasma membrane via a specific plasma membrane ATP-binding cassette transporter or some lipids, such as phosphatidylinositol 4,5 bisphosphate [PI(4,5)P₂] in the inner leaflet of the plasma membrane [47]. Vesicular mechanisms of unconventional secretion involved multi-vesicular bodies and exosomes that need to fuse with plasma membranes to release cargo into the extracellular space [47,48]. In our study, SYT2 was not presented on the multivesicular bodies (PVC in plant cells), indicating that SYT2 protein may regulate the unconventional secretory pathway by a distinct manner from the multivesicular body-mediated secretion of exosome in mammalian cell. However, SYT2 is not the only Golgi-localized protein that regulates unconventional secretion. Golgi-localized protein GRASP (Golgi reassembly stacking protein) in Dictyostelium discoideum, is also required for Golgi-independent cell-surface transport of a non-signal-peptide-containing protein, acyl-CoA binding protein (Arch), which triggers terminal differentiation of spore cells [49,50]. In Drosophila melanogaster, GRASP modulates Golgi-independent cell surface transport of α integrin. In a D. melanogaster grsp mutant, the α integrin subunits are not properly deposited at the plasma membrane and instead retained intracellularly [51]. From sequence comparison of all the available genomes, it was revealed that plants lack a bona fide GRASP homolog [49]. Very recently, an Arabidopsis protein Exo70E2 was found to be present in some double membrane structures (named EXPO) and did not colocalize with the Golgi apparatus, the TGN or PVC. Exo70E2 served to release a leaderless protein (SAMS2) into the extracellular space [52], indicating that there may be diverse proteins which localize on different organelles and modulate the release process of unconventional proteins in plant cells. Therefore, SYT2 is the first protein, to our knowledge, that resides on Golgi apparatus and regulates unconventional protein secretion in plants.

Methods

Plant Material and Growth Conditions

Seeds expressing ARA6-GFP and ARA7-GFP were kindly provided by Takashi Ueda and Thierry Gaude [29,53]. Construct of ST-YFP was kindly made available by Jingbo Jin [54]. Arabidopsis mutant ygt2-1 (SALK_135307) was obtained from the Arabidopsis Biological Resource Center at Ohio State University. Other transgenic plants were generated based on the protocol in Text S1.

 Arabidopsis seeds were pretreated in 70% ethanol for 5 min, surface-sterilized in 50% bleach for 1 min, and washed with sterile
distilled water at least five times. Seeds were planted on 1% agar containing ½ MS salts with or without the indicated concentrations of hygromycin B, allowed to imbibe for 3 days at 4°C, and germinated in a vertical orientation. Seedlings were grown at 22±3°C under a 16-h light/8-h dark regime. Experiments were performed using 3- to 4-day-old seedlings for microscopic observation, or 7- to 10-day-old seedlings for measurement of root and shoot lengths.

Antibody Preparation and Protein Gel Blot Analysis

For protein gel blot analysis, a polyclonal antibody was raised against a truncated form of SYT2. The C-terminal region of SYT2 (295 amino acid residues) and the full length of HYGR were expressed in E. coli respectively as recombinant proteins using the expression vector pET28b (Invitrogen, Carlsbad, CA). The recombinant proteins were expressed and purified according to the manufacturer’s protocol, and the purified proteins were injected into a rabbit to raise antibody according to a published protocol [55]. The polyclonal antibody was purified according to Park et al. [56]. Monoclonal anti-GFP antibodies were purchased from Sigma-Aldrich (St. Louis, MO).

Total protein extracts were obtained by grinding 100 mg of wild-type, syt2-1, or SYT2-GFP-overexpressing plants in protein extraction buffer [20 mM Tris-HCl, pH 7.5, 5 mM ethylenediaminetetraacetic acid (EDTA), 5 mM ethylene glycol tetraacetic acid (EGTA), 10 mM dithiothreitol (DTT), 0.05% sodium dodecyl sulfate (SDS), and 1 mM phenylmethylsulfonyl fluoride (PMSF)]. The extracts were spun for 10 min at 4°C, and the resulting supernatant was used for SYT2 protein purification. Seroplyl protoplasts were prepared from the leaf tissues of 3- to 4-week-old Arabidopsis plants which stably expressed HYGR-GFP protein [57]. After being washed five times with W5 solution (154 mM NaCl, 125 mM KCl, 2 mM CaCl2, 5 mM MgCl2, 5 mM HEPES, 2 mM 4-Morpholineethanesulfonic acid, pH 5.7), the protoplasts were incubated with 25 µM BFA for 5 h. At the end of the incubation, the medium and the protoplasts were collected respectively. The protoplast proteins were extracted as described by Wu et al [58]. The medium proteins were precipitated by trichloroacetic acid method and resolved in the SDS-PAGE loading buffer. The samples were boiled for 10 min and loaded on polyacrylamide gel.

After electrophoresis, the separated proteins were transferred to a nitrocellulose membrane for 2 h. The nitrocellulose membrane was then incubated in a 1:800 dilution of anti-SYT2, 1:500 anti-HYGR, 1:1000 anti-tubulin or 1:4000 anti-GFP antibodies in phosphate-buffered saline (PBS) buffer (pH 6.9). Horseradish-peroxidase-conjugated secondary antibody (Sigma-Aldrich) was used at a 1:5000 dilution, and the results were interpreted using an enhanced chemiluminescence detection system, with visualization by enhanced chemiluminescence detection reagents (Applygen Technologies Inc., Beijing, China) according to the manufacturer’s recommendations.

Fluorescent Dye and Treatments with BFA and Wortmannin

To visualize putative endosomes, seedlings were mounted in ½ MS liquid with 3 µM FM4-64 [Invitrogen; T13320; diluted from a 250 µM stock solution in dimethyl sulfoxide (DMSO)] on slides for a specified time. For BFA treatment, seedlings were incubated in ½ MS liquid containing 25 µM BFA diluted from a 30 mM stock solution in DMSO and then mounted on slides in the presence of BFA. For the wortmannin treatment, seedlings were incubated in ½ MS liquid containing 20 µM wortmannin diluted from a 20 mM stock solution in DMSO for 1 h before observation.

Immunofluorescent Labeling

Four-day-old seedlings were fixed in 4% paraformaldehyde in PEM buffer [50 mM PIPES, 5 mM EGTA, and 5 mM MgSO4, pH 6.9] for 1 h at room temperature, followed by washing with 0.1 M glycine in PEM buffer. Fixed cells were partially digested with 2% (v/v) driselase (Sigma-Aldrich) for 30 min at 37°C. The plasma membrane was permeabilized with 0.3% Triton X-100 and 10% DMSO in PBS for 1 h at room temperature. Seedlings were incubated in blocking solution for 1 h at room temperature and then incubated with primary antibodies against SYT2 (1:50) or anti-GFP (1:200; Sigma-Aldrich) again for 1 h at room temperature. Primary antibodies were washed out with blocking solution three times for 5 min and the seedlings then incubated with fluorochrome-conjugated secondary antibodies in the dark at 37°C for 3 h. Secondary antibodies (purchased from Sigma-Aldrich) were used at the following concentrations: fluorescein isothiocyanate-conjugated anti-rabbit IgG, 1:100; fluorescent isothiocyanate-conjugated anti-rabbit IgG, 1:100; rhodamine (TRITC)-conjugated anti-rabbit IgG, 1:100.

Fluorescence Microscopy

Fluorescence microscopy was performed using a TCS SP5 confocal laser-scanning microscope (Leica, Oberkochen, Germany). All LSCM images were obtained using the Leica Confocal software with a 63× water-immersion objective. GFP or GFP/FM4-64 was excited at 488 nm and emission was detected between 500 and 530 nm for GFP and between 620 and 680 nm for FM4-64. To visualize GFP/RFP, GFP and RFP were excited at 488 nm and 545 nm, respectively, and emission detected at 500 nm for GFP and between 565 and 600 nm for RFP. Images were edited using the LAS AF Lite image browser (Leica) and Adobe Photoshop CS3 (Adobe Systems, San Jose, CA).

Immuneelectron Microscopy

For immunogold labeling of SYT2 and HYGR, roots of Arabidopsis were fixed with 4% paraformaldehyde and 1% glutaraldehyde for 4 h and then were embedded in LR White resin (Sigma) and polymerized by heat. Ultrathin sections were stained with 2% uranyl acetate for 10 min and observed under a JEM-1230 TEM (JEOL).

Acid Phosphatase Assay

The activity of the AcPase was measured according to Pfeiffer by measuring the release of p-nitrophenol (pNP) from p-nitrophenyl phosphate (pNPP) [59]. Samples of 200 µl were incubated with 200 µl of reaction buffer containing 40 mM MES-Tris, pH 5.5, 5 mM pNPP, and 10 mM MgCl2, for 45 min at 30°C. The reaction was stopped by the addition of 5 ml of 40 mM NaOH, and the concentration of pNP was determined at 405 nm wavelength. All assays were performed as triplicate.

Supporting Information

[Text S1 Material and Methods (Construction of Chi-meric Genes and Transformation of Arabidopsis Plants, RT-PCR Analysis, Transient Expression in Tobacco and Arabidopsis). (DOCX)]
Figure S1 Expression profiles of Arabidopsis SYT2 based on microarray expression data from Genevestigator (https://www.genevestigator.com).

Figure S2 No co-localization between SYT2-GFP and BFA compartments. (A–F) Seedlings stably expressing SYT2-GFP were stained with FM4-64 for 10 min and treated with either DMSO (A–C) or 25 μM BFA for 60 min (D–F). FM4-64-labeled BFA compartments (red) mostly non-overlapped with SYT2-GFP punctuate structures (green). Arrows indicate BFA compartments. Bars = 10 μm. (G–L) Seedlings stably expressing VHA-a1-GFP or ARA6-GFP were stained with FM4-64 for 10 min before being treated with 25 μM BFA for 60 min. VHA-a1-GFP-labeled structures (green) aggregated and perfectly overlapped with BFA compartments (red) (G–I), and ARA6-GFP-positive structures (green) clustered at the periphery of BFA compartments (red) (J–L). Arrows indicate BFA compartments. Bars = 10 μm.

Figure S3 SYT2-GFP structures are insensitive to wortmannin. (A–C) Seedlings stably expressing SYT2-GFP were incubated in FM4-64 (red) for 10 min followed by treatment with 20 μM wortmannin for 60 min. SYT2-GFP-containing structures (arrows) are insensitive to wortmannin. Bar = 10 μm. (D–I) Seedlings containing ARA6-GFP or ARA7-GFP were incubated in FM4-64 (red) for 10 min followed by treatment with 20 μM wortmannin for 60 min. Wortmannin induced the ring-shaped structures (arrows) of ARA6-GFP (D–F) and ARA7-GFP (G–I). Bars = 10 μm. (J–L) Double-labeling with anti-SYT2 and anti-GFP antibodies in root cells containing PVC marker ARA7-GFP. Anti-SYT2 and anti-GFP antibodies were labeled with tetramethylrhodamine-5-isothiocyanate (TRITC)-labeled anti-rabbit IgG and FITC-labeled anti-rat IgG, respectively. Bars = 10 μm.

Figure S4 Responses of different plants to hygromycin B treatments. (A–C) Phenotype of plants co-expressing SYT2-GFP and HYG8. Plants were screened on ½ MS medium with 20 μg/mL hygromycin B and then grew for 30 days in soil. Arrows indicate that development of axillary buds due to lacking of apical dominance. (D–H) Phenotypes of HYG8 (D and E), syt2-1/HYG8 (F), SYT2-GFP/HYG8 (G) and wild-type (H) plants on hygromycin B-containing medium. Seedlings grew on ½ MS medium supplemented with 0 (D) or 5 μg/mL (E–H) hygromycin B for 3 days before images were taken. Bars = 500 μm. (J–L) Sensitivity of root tips of HYG8 (J), syt2-1/HYG8 (J), SYT2/HYG8 (K) and syt2-1/ SYT2/HYG8 (L) to hygromycin B. Seeds were germinated and grew on ½ MS medium with 10 μg/mL hygromycin B for 3 days before images were taken. Bars = 100 μm.

Figure S5 Responses of syt2-1 and wild-type seedlings to hygromycin B treatments. Seeds were germinated on ½ MS medium containing 0, 5 and 10 μg/mL hygromycin B and grown for 7 days before the pictures were taken.

Figure S6 Responses of HYG8-GFP and syt2-1/HYG8-GFP seedlings to hygromycin B treatments. Seeds were germinated on ½ MS medium containing 0, 10 and 20 μg/mL hygromycin B and grown for 10 days before the pictures were taken. syt2-1/HYG8-GFP1 and syt2-1/HYG8-GFP2 were different lines that HYG8-GFP is expressed in SYT2 knock-out plants.

Figure S7 Expression of SYT2 complements the syt2-1 phenotype under hygromycin B treatment. (A) Seeds were germinated on ½ MS medium containing 0, 30 and 60 μg/mL hygromycin B and grown for 10 days before the pictures were taken. (B) Measurement of length of roots and shoots for seedlings treated as described for (A). Values are the means ± SD of 30–40 seedlings from three independent experiments.

Author Contributions
Conceived and designed the experiments: HZ LZ LJ JL. Performed the experiments: HZ LZ BG HF. Analyzed the data: HZ LZ BG. Contributed reagents/materials/analysis tools: JJ MB LJ. Wrote the paper: HZ LZ JL.

References
1. Schatz G, Dobberstein B (1996) Common principles of protein translocation across membranes. Science 271: 1519–1529.
2. Lee MC, Miller EA, Goldberg J, Orci L, Schekman R (2004) Bi-directional protein transport between the ER and Golgi. Annu Rev Cell Dev Biol 20: 87–123.
3. Palade G (1975) Intracellular aspects of the process of protein synthesis. Science 189: 347–358.
4. Nickl W (2003) The mystery of nonclassical protein secretion. Eur J Biochem 270: 2109–2119.
5. Nickl W, Rabouille C (2009) Mechanisms of regulated unconventional protein secretion. Nature Rev Mol Cell Biol 10: 148–155.
6. Cheng FY, Zaks M, Guo WW, Pharr DM, Williamson JD (2009) Salicylic acid stimulates secretion of the normally endoplasmic reticulum membrane protein dehydrogenase (MDT): a possible defense against membrane peroxidase. J Biol Chem 284: 10997–11003.
7. Nickl W (2005) Unconventional secretory routes: direct protein export across the plasma membrane of mammalian cells. Traffic 6: 607–614.
8. Agrawal GK, Jwa NS, Lebrun MH, Job D, Rakwal R (2010) Plant secretome: unlocking secrets of the secreted proteins. Proteomics 10: 799–827.
9. Craxton M (2004) Synaptotagmin gene content of the sequenced genomes. BMC Genomics 5: 43–56.
10. Gustavsson N, Han W (2009) Calcium-sensing beyond neurotransmitters: functions of synaptotagmins in neurodegenerative and endocrine secretion. Bioch 29: 245–259.
11. Gustavsson N, Lao Y, Maximov A, Chuang JC, Kostromina E, et al. (2008) Impaired insulin secretion and glucose intolerance in synaptotagmin-7 null mutant mice. Proc Natl Acad Sci U S A 105: 9992–9997.
12. Hu ZT, Chen MR, Ping Z, Dong YM, Zhang RY, et al. (2008) Synaptotagmin IV regulates dense core vesicle (DCV) release in LbetaT2 cells. Biochem Biophys Res Commun 371: 781–786.
13. Lynch KL, Geronzi RRL, Kiélar DM, Martens S, McMahan HT, et al. (2006) Synaptotagmin-1 utilizes membrane bending and SNARE binding to drive fusion pore expansion. Mol Biol Cell 19: 5095–5103.
14. Schapire AL, Voigt B, Jaik J, Rosado A, Lopez-Cobollo R, et al. (2008) Arabidopsis synaptotagmin 1 is required for the maintenance of plasma membrane integrity and cell viability. Plant Cell 20: 3373–3380.
15. Yamazaki T, Kawamura Y, Minami A, Uemura M (2008) Calcium-dependent freezing tolerance in Arabidopsis involves membrane rescaling via synaptotagmin SYT1. Plant Cell 20: 3309–3324.
16. Pettinger RC, Wolfe RN, Hochm MM, Marks PN, Dailey WA, et al. (1993) Hygromycin I. Preliminary studies on the production and biological activity of a new antibiotic. Antibio Chem Ther 3: 1268–1278.
17. McGaha SM, Champney WS (2007) Hygromycin B inhibition of protein synthesis and ribosome biogenesis in Escherichia coli. Antimicrob Agents Chemother 51: 591–596.
18. Borovinskaya MA, Shoji S, Fredrick K, Cate JH (2008) Structural basis for hygromycin B inhibition of protein biosynthesis. RNA 14: 1590–1599.
19. Pardo JM, Malpartida F, Rico M, Jimenez A (1985) Biochemical basis of resistance to hygromycin B in Streptomyces hygroscopicus–the producing organism. J Gen Microbiol 131: 1289–1298.
20. Miki B, McHugh S (2004) Selectable marker genes in transgenic plants: applications, alternatives and biosafety. J Biotechnol 107: 193–232.
21. Pardo JM, Malpartida F, Rico M, Jimenez A (1985) Biochemical basis of resistance to hygromycin B in Streptomyces hygroscopicus–the producing organism. J Gen Microbiol 131: 1289–1298.
22. Bolte S, Talbot C, Boutte Y, Catrice O, Read ND, et al. (2004) FM-dyes as experimental probes for dissecting vesicle trafficking in living plant cells. J Microsc 214: 159–173.

PLoS ONE | www.plosone.org 13 November 2011 | Volume 6 | Issue 11 | e26477
27. Robineau S, Chabre M, Antonny B (2000) Binding site of brefeldin A at the interface between the small G protein ADP-ribosylation factor (ARF) and the nucleotide-exchange factor Sec7 domain. Mol Cell 3: 273–285.

28. Nebenfuhr A, Ritzenthaler C, Robinson DG (2002) Brefeldin A: deciphering an enigmatic inhibitor of secretion. Plant Physiol 130: 1102–1108.

29. Jallaiyi Y, Fobis-Lonyi I, Miege C, Gaude T (2004) Evidence for a sorting endosome in Arabidopsis root cells. Plant J 53: 237–247.

30. Wang J, Cai Y, Miao Y, Lam SK, Jiang L (2009) Wortmannin induces homotypic fusion of plant prevacuolar compartments. J Exp Bot 60: 3075–3083.

31. Tse YC, Mo B, Hillmer S, Zhao M, Lo SW, et al. (2004) Identification of multisecular bodies as prevacuolar compartments in Nicotiana tabacum BY-2 cells. Plant Cell 16: 672–693.

32. Xu J, Scheres B (2005) Dissection of Arabidopsis ADP-RIBOSYLATION FACTOR 1 function in epidermal cell polarity. Plant Cell 17: 525–536.

33. Teh OK, Moore I (2007) An ARF-GEF acting at the Golgi and in selective endocytosis in Arabidopsis BY-2 cells. Plant Cell 19: 403–408.

34. Robinson DG, Langhans M, Saint-Jore-Dupas C, Hawes C (2008) BFA effects on endosome in Arabidopsis. Plant Cell 19: 6089–6102.

35. Lu Y, Xu W, Kang A, Luo Y, Guo F, et al. (2007) Prokaryotic expression and allergenicity assessment of hygromycin B phosphotransferase protein derived from genetically modified plants. J Food Sci 72: 228–232.

36. Lee MH, Min MK, Lee YJ, Jin JB, Shin DH, et al. (2002) ADP-ribosylation of a low-molecular-mass membrane-associated protein, ADL1, is present in membranes as a high-molecular-mass complex in Arabidopsis. Plant Physiol 129: 1507–1520.

37. Kaneko TS, Sato M, Osumi M, Muroi M, Takatsuki A (1996) Two isoforms of acid phosphatase secreted by tobacco protoplasts: differential effect of brefeldin A on their secretion. Plant Cell Physiol 37: 409–413.

38. Schapire AL, Valpuesta V, Botella MA (2009) Plasma membrane repair in plants. Trends Plant Sci 14: 645–652.

39. Fukuda M, Kanno E, Satoh M, Saegusa C, Yamamoto A (2004) Synaptotagmin VII is targeted to dense-core vesicles and regulates their Ca2+–dependent exocytosis in PC12 cells. J Biol Chem 279: 52677–52684.

40. Neumann U, Brandizzi F, Hawes C (2003) Protein transport in plant cells: in and out of the Golgi. Annu Rev 92: 167–190.

41. Short B, Haas A, Barr FA (2005) Golgins and GTPases, giving identity and structure to the Golgi apparatus. Biochim Biophys Acta 1744: 383–395.

42. Couchy I, Boite S, Cronier MT, Brown S, Satiat-Jeumaneire B (2003) Identification and localization of a beta-COP-like protein involved in the morphodynamics of the plant Golgi apparatus. J Exp Bot 54: 2053–2063.

43. Lee OR, Kim SJ, Kim HJ, Hong JK, Ryu SB, et al. (2010) Phospholipase A2 Is required for PIP2-FORMED protein trafficking to the plasma membrane in the Arabidopsis root. Plant Cell 22: 1812–1825.

44. Ortiz JPA, Reggiardo MI, Ravizzini RA, Altahi SG, Gervagni GD, et al. (1996) Hygromycin resistance as an efficient selectable marker for wheat stable transformation. Plant Cell Rep 15: 877–881.

45. Tian LN, Charret PJ, Rutledge RG (2000) Hygromycin resistance is an effective selectable marker for biolistic transformation of black spruce (Picea mariana). Plant Cell Rep 19: 358–362.

46. Pfeffer SR (2010) Unconventional secretion by autophagosome exocytosis. J Cell Biol 188: 451–452.

47. Kinuthia MA, Anjard C, Fuller D, Guizarrau G, Loomis WF, et al. (2007) The Golgi-associated protein GRASP is required for unconventional protein secretion during development. Cell 130: 524–534.

48. Pfeffer SR (2010) Unconventional secretion by autophagosome exocytosis. J Cell Biol 188: 451–452.

49. Nickel W (2010) Pathways of unconventional protein secretion. Curr Opin Biotechnol 21: 621–626.

50. Pfeffer SR (2010) Unconventional secretion by autophagosome exocytosis. J Cell Biol 188: 451–452.

51. Schotman H, Karhinen L, Rabouille C (2008) dGRASP-mediated noncanonical integrin secretion is required for Drosophila epithelial remodeling. Dev Cell 14: 171–182.

52. Park JM, Kang SG, Pih KT, Jiang HJ, Piao HL, et al. (2010) EXPO, an exocyst-positive organelle distinct from multivesicular endosomes and autophagosomes, mediates cytosol to cell wall exocytosis in Arabidopsis and tobacco cells. Plant Cell 22: 4009–4030.

53. Grebe M, Xu J, Mobius W, Ueda T, Nakano A, et al. (2005) Arabidopsis sterol endocytosis involves actin-mediated trafficking via ARF6-positive early endosomes. Curr Biol 15: 1376–1387.

54. Jin JB, Kim YA, Kim SJ, Lee SH, Kim DH, et al. (2001) A new dynamin-like protein, ADL6, is involved in trafficking from the trans-Golgi network to the central vacuole in Arabidopsis. Plant Cell 13: 1511–1526.

55. Harlow E, Lane D (1988) Antibodies: A laboratory manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.

56. Park JM, Kang SG, Ph KT, Jiang HJ, Piao HL, et al. (1997) A dynamin-like protein, ADL1, is present in membranes as a high-molecular-mass complex in Arabidopsis thaliana. Plant Physiol 115: 763–771.

57. Yoo SD, Cho VH, Sheen J (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nature Protoc 2: 1565–1572.

58. Wu FH, Shen SC, Lee LY, Lee SH, Chan MT, et al. (2009) Tape-Arabidopsis sandwich - a simpler cell system for transient gene expression analysis. Nature Protoc 2: 1565–1572.

59. Pfeffer W (1996) Auxin induces exocytosis of acid phosphatase in coleoptiles from Zea mays. Physiol Plant 96: 773–779.