Habit forming properties of laxatives for chronic constipation: A review [version 2; peer review: 1 not approved]

Previously titled: Expert opinion on the habit forming properties of laxatives in patients with constipation

Avinash Balekuduru1, Manoj Kumar Sahu2

1M.S. Ramaiah Memorial Hospital, Bangalore, Karnataka, India
2Apollo Hospital, Bhubaneshwar, Odisha, India

Abstract

Constipation is a commonly reported disorder in many patients. Constipation treatment using laxatives on a regular and long term basis can lead to patient dependence, especially among the elderly. However, there is scanty data on the habit-forming potential of laxatives in Indian constipated patients. This review has explored literature evidence and expert opinion on patients’ experience regarding habit-forming attributes of stimulant and osmotic laxatives. Additionally, structured face-to-face discussions were conducted with 2 key opinion leaders to understand their clinical experience on the habit-forming aspects stimulant and osmotic laxatives in patients with constipation. Based on literature evidence, lactulose is not known to lead to any habit-forming behaviors in patients. Furthermore, experts pointed out that dependence on stimulant laxatives is common, but not on osmotic laxatives, and emphasized that milk of magnesia is not habit forming. In conclusion, no habit-forming characteristics or dependence was observed with the use of osmotic laxatives in India. Nevertheless, real-world, studies exploring patient and physician perspectives are warranted to establish the dependence and habit forming attributes of laxatives.

Keywords

Constipation, habit forming laxatives, treatment dependence, stimulant laxatives, osmotic laxatives

This article is included in the PACE gateway.
Introduction

Constipation is a common functional gastrointestinal disorder. In India, constipation has become a frequent health problem contradicting the popular belief that constipation may be infrequent due to high fiber vegetarian diet and higher frequency of bowel movement. According to a meta-analysis of 45 community studies, the global prevalence of constipation is 14%. Incidence of constipation is higher among women than men due to slow transit, pelvic floor dysfunction because of hard stool forms, obstetric trauma, and over-reporting. Among subjects aged >35 years, weekly stool frequency was lower in women than in men. Constipation also impacts the quality of life of patients. Constipation can be physically and cognitively troublesome for many patients, as identified in several population-based studies, and can interfere with daily living and well-being, particularly in older patients. Moreover, constipation can have a substantial impact on healthcare utilization, resulting in greater economic burden. Testing for constipation can cost $6.9 billion, apart from treatment costs, assuming that 2.5 million people are annually evaluated for constipation. Furthermore, constipation has a negative impact on employment, work productivity, and physical ability. Findings from a recent National Health and Wellness Survey indicate that patients with constipation have a significantly greater percentage of missed work time and had impairment in daily activities.

Various factors, such as delayed colonic transit, visceral hypersensitivity, altered central perception, and abnormalities in sensory/motor function, either independently or in combination, are thought to contribute to the pathophysiology of chronic constipation. Primary causes of constipation may be intrinsic impairment of anorectal or colonic function, whereas secondary causes may be related to systemic disease, organic disease, or medications.

Guidelines for constipation management

Management of constipation begins with patient education on changes needed in diet and lifestyle, training on toilet habits, and instruction on defecation dynamics. Figure 1 illustrates the algorithm for management of Rome IV functional disorders of chronic constipation. Clinical guidelines also suggest daily supplementation with 25-30 g of dietary fibers. Intake of dietary fibers was shown to improve stool frequency, but no improvement in stool consistency or painful defecation versus placebo. Bowel (habit) retraining is another form of lifestyle modification wherein patients are advised to defecate only when colonic motor activity is highest i.e. when there is an urge to defecate. The American Gastroenterological Association (AGA) Guidelines suggest gradual increase in fiber intake along with use of an osmotic agent such as milk of magnesia or polyethylene glycol (PEG) to manage constipation. Depending on the stool consistency, the next step in the treatment pathway may include supplementation with a stimulant laxative such as bisacodyl or glycerol suppositories. In a randomized, clinical trial involving patients with constipation, daily therapy with 17 g of PEG for 14 days significantly improved bowel movement frequency when compared with placebo treatment. Traditional therapies such as lactulose and psyllium have shown improvement in symptoms of constipation, but scare evidence is available on the use of other common agents, such as bisacodyl, milk of magnesia, senna, and stool softeners. Furthermore, long-term laxative use has been known to cause cathartic colon.

Pharmacotherapies

For patients with suspected contributing factors, a course of pharmacological treatment with laxatives before further evaluation may be reasonable. Laxatives aid defecation by decreasing stool consistency (softening) and/or artificially or indirectly promoting colon motility, via one or more number of mechanisms.
per the Indian perspective recommended laxatives as the first line of pharmacotherapy. The mechanism of action, duration of treatment and benefits and side effects of the four major categories of laxatives, namely, bulk-forming, osmotic, lubricant, and stimulant are summarized in Table 1. Consensus provided by the Clinical Practice Guidelines of the Indian Motility and Functional Diseases Association and the Indian Society of Gastroenterology for the management of chronic constipation suggest that initial treatment should include osmotic laxatives with lifestyle modification. In children, the approach should focus on the nature of the disorder, and the initial therapeutic steps should include toilet training and treatment with laxatives. In adults, management focuses on ruling out an underlying cause and distinguishing between different subtypes of constipation—normal transit, slow transit or evacuation disorder—all of which have significant therapeutic implications. Management of adult functional constipation involves lifestyle interventions, pelvic floor intervention if there is a rectal evacuation disorder, and pharmacological therapy. Osmotic laxatives are preferred as the first-line therapy.
Class	Key laxative agents	Mechanism of action	Duration of treatment	Adult dosage	Benefits	Possible side effects	References
Bulk-forming	Ispaghula/ Psyllium	Intraluminal water binding and decrease in stool consistency	Up to 4 weeks	20-30 g/day	Improvement in bowel function, increased percentage of normal stools and decreased formation of hard stools	Bloating, flatulence	21,24,25
Osmotic	Milk of magnesium	Interstitial water binding	8 weeks	30-60 mL/day	Increase in stool frequency and improvement in consistency and straining	Excessive flatulence, abdominal pain and hydroelectrolytic alterations	20-22,26
	Lactulose		1-12 weeks	15-30 mL/day			
	PEG		Up to 6 months	17 g/day			
Lubricant	Liquid paraffin/ mineral oil	Intraluminal water binding, bulk-forming, and decrease in stool consistency	2-3 months with subsequent tapering	10-30 mL/day	Cheapest and most rapid acting	Anal seepage, lipid pneumonia, interference with absorption of fat-soluble vitamins (A, D, E, and K)	21,26,27
Stimulant	Bisacodyl	Stimulating action on enteric nerves with decrease in peristaltic contractions; decrease in colic absorption of water and electrolytes	4 weeks	5-15 mg/day	Improvement in constipation-related symptoms, bowel function, and disease-related quality of life.	Electrolyte disturbances, malabsorption, dose dependence, cramping, diarrhea, abuse, development of cathartic colon, and melanosis coli	20-22,28,29
	Sodium picosulfate		4 weeks	5-10 mg/day	Increases the number of (complete) spontaneous bowel movements, and improves symptoms of straining and some aspects of quality of life.		
for constipation in adult patients as well.8,31 Two placebo-controlled studies demonstrated that osmotic laxatives are efficacious in increasing stool frequency. If symptoms persist, stimulant laxatives are recommended in clinical guidelines.8,31

While laxatives can be very effective in the acute settings, their long-term use can lead to tolerance and eventually habituation. Both these responses are induced by damage to the colon or an adaptive mechanism that counteracts the laxative effect on motility or secretion.32 Furthermore, satisfaction with laxatives can be suboptimal because of limited efficacy, non-specific response not targeting the underlying pathophysiology, or association with undesirable side effects.33

Bulk-forming laxatives act by increasing the volume and softness of feces by absorbing water in the intestine, thereby promoting dilation of the intestinal wall and enhancing propulsive motor function. This group consists of natural or synthetic polysaccharides.34 These agents demonstrate no systemic effects, and the major concern is obstruction of the esophagus, stomach, small intestine, or colon when ingested without fluid. However, these agents are recommended for long-term use.35

Osmotic laxatives act by drawing water into the intestinal lumen because of presence of poorly absorbable substances. The most commonly used osmotic laxatives are ‘milk of magnesia’ (magnesium hydroxide), lactulose, and PEG. Saline laxatives such as citrate salts and magnesium preparations have been shown to release cholecystokinin, which causes accumulation of fluid and electrolytes in the gut lumen and promotes small bowel and perhaps colonic transit.35 Kinnumen and Salokannel compared the efficacy of magnesium hydroxide and bulk-laxatives in elderly, long-stay patients and found that bowel habits were more frequent and stool consistency was normal in patients receiving magnesium hydroxide versus bulk-forming laxative.36

Lubricant laxatives also known as stool softeners, ease defecation due to their surfactant effect. Non-reabsorbable oils and oils that are very difficult to reabsorb such as paraffin, are included in this group. Prolonged use of paraffin may induce malabsorption of fat soluble vitamins, and it is recommended only in special circumstances, such as in some cystic fibrosis patients. Also, lipoid pneumonia may occur if the agent is aspirated, so it should not be used in debilitated patients or just before bedtime.

Stimulant laxatives such as bisacodyl, cascara, senna, and sodium polystyrene sulfonate (SPS) improve intestinal secretions and motility by stimulating the myenteric and the Auerbach plexuses. They also decrease water absorption from the intestinal lumen. These laxatives are mostly used as rescue therapy in the absence of bowel movements for three days.37 The efficacy of bisacodyl and SPS for the treatment of chronic constipation have been studied in two clinical trials, and in both the studies, the mean number of complete spontaneous bowel movements increased per week as compared to placebo.28,38 Bisacodyl has gained popularity as preparation for diagnostic procedures and intermittent use for this purpose is acceptable. Despite its availability for decades, the use of stimulant laxatives is hindered because of its safety, tolerability and lack of sufficient trials supporting its efficacy.

Habituation or tolerance is a common concern with the long-term use of laxatives. Habituation implies a reduction or disappearance of laxative response, while tolerance refers to the need to increase laxative dose to achieve the required result.39 The habit-forming property of laxatives is most commonly studied in chronic use of stimulant laxatives like anthraquinones, sennoside and bisacodyl.40,41 Due to the action on enteric nerves, it is often a matter of concern that there may be irreversible damage to the nerves on long-term use of these laxatives.42

Joo et al. investigated the impact of stimulant laxatives on damage and change in the enteric nerves and musculature by observing changes following barium enema given to two groups of subjects, one ingesting stimulant laxatives (Group 1) and the other not (Group 2). Loss of haustral folds was observed in 27.6% of subjects in Group 1 and no subjects in Group 2 (p<0.005). This was particularly observed in patients who regularly used bisacodyl, phenolphthalein, senna, and casanthranol. The authors concluded that chronic use of stimulant laxatives resulted in anatomic changes in the colon, which suggests neuronal injury or damage to colonic musculature.40

Reimann et al. have also studied the ultrastructural changes occurring as a consequence of long-term use of laxatives. Colonic biopsies from patients using stimulant laxatives like bisacodyl and anthraquinone derivate demonstrated submucosal nerve damage. There was a significant increase in the axonal area along with a reduction of neurotubules. Since a well-functioning enteric nervous plexus is required for having normal gut motility, it was concluded that such alterations in the nerves may be correlated to the alteration in gut motility in patients with long-term laxative abuse.41
However, there is very limited evidence on whether laxatives cause any habituation or tolerance and specifically which classes of laxatives exhibit this effect. Moreover, the amount at which a stimulant laxative is damaging is not yet explored. In the next section of this review, we summarize the evidence available on the habit-forming properties of different laxative classes.

Habit-forming properties of laxatives

The ubiquitous availability of laxatives, combined with their relatively low cost, increases their potential for abuse and misuse. Due to the length of time of the abuse maintained, habit forming properties, and daily dose of laxatives, degenerative changes can occur and may lead to serious impairment of coordinated peristalsis of the gut. This impairment may lead to initial functional disorders of intestinal transport mechanism that may develop into acquired hypoganglionosis.

As prolonged treatment of constipation may be required, a laxative must be carefully chosen. It should have a gentle effect, with no systemic activity, no side effects like cramping or salt depletion, and no contraindications, and it must be neither habit forming nor toxic.43

Bulk-forming laxatives increase the fecal mass by stimulating peristalsis. Bulk-forming laxatives are more appropriate for those patients with small hard stools, but are not suitable for patients that require an immediate relief from constipation as they take time to increase the fecal mass. These laxatives are mainly prescribed for patients with uncomplicated constipation, that have normal intestinal motility and where it is impractical to increase dietary intake of fiber any further.44

Osmotic laxatives such as PEG and milk of magnesia draw water into the stool resulting in more frequent and softer stools, which makes it easy to pass bowel movements.45 Osmotic laxatives like lactulose demonstrate their action by increasing osmotic pressure, volume, and peristalsis and decreasing colonic transit time.46 Moreover, osmotic laxative preparations like lactulose have demonstrated a persistent carry over effect. Return to normal bowel function is easier with lactulose, and habituation is less likely to occur with its use.47 Most studies have reported the common side effects that occur with use of osmotic laxatives; however, habit forming property has not been reported as one of the side effects. However, there is limited data reported in literature about the non-habit forming characteristics of osmotic laxatives.

Lubricant laxatives act by reducing the absorption of water and softening the stool, thus allowing easier passage of stools when given orally or rectally.26 Liquid paraffin is popular for treating constipation primarily because of its ease of titration and tolerability.26 Long-term use of lubricant laxatives reduces absorption of fat-soluble vitamins can potentially result in substantial deficiencies.29 Furthermore, the risk of developing colorectal cancer as a result of chronic use of laxatives should also be considered.50 The prevalence of constipation among the elderly is as high as 50%, which can increase to 74% in nursing home residents using daily laxatives.51-53 In these patients, laxatives treatments often precipitate loose stools and incontinence that can result in diarrhea of unknown etiology. There is no clinical evidence, however, that can confirm the habit forming attribute of lubricant laxatives.

Regular use of stimulant laxatives can cause dependency and cathartic colon albeit there is no direct evidence to support this claim.54 Prolonged use of stimulant laxatives leaves users prone to drug dependence, malabsorption, and electrolyte imbalance, and can damage the enteric nervous system, weakening colonic strength and even giving rise to melanosis coli. Moreover, long-term use of stimulant laxatives can damage the myenteric plexus, reducing responsivenes of the colon to intestinal contents and weakening colonic motor function. It is even possible to lose the ability to defecate spontaneously, a condition known as “laxative colon.” Though powerful and fast-acting, stimulant laxatives are not currently recommended for long-term use by elderly patients due to the adverse reactions, and only short-term or intermittent use is advised. Slow transit constipation should be treated with bulk-forming or osmotic laxatives.27 Cathartic colon though observed in some chronic users of stimulant laxatives, it is unclear whether this effect is related to their prolonged use.20

Although correction of faulty bowel habits and a change in dietary regimen is helpful in many cases of constipation, some patients cannot easily adapt to prescribed regimens or in some patients, no desired effect is obtained. In such patients, effective bowel regulation without the use of drastic laxatives is necessary. There is limited data reported in the literature about the habit forming characteristics of lubricant laxatives.

Expert opinion on constipation and habit forming attributes of laxatives

As limited literature exists on dependence and habituation associated with laxative use, we garnered real-world experience on the prevalence of constipation, its treatment, and habit-forming attributes of various classes of laxatives.
We observed that acute constipation is common in Indian clinical practice with an average duration of < three months. The treatment approach includes exercise, patient education on scheduled toileting and bowel retraining, and pharmacotherapy with osmotic laxatives, stool softeners or bulk-forming agents for a duration of 2-8 weeks depending on patient profile. Amongst the various laxative classes, dependence was observed to be rare in acute conditions, but it is observed with stimulant laxatives upon chronic use.

Consistent with literature, we did not observe laxative abuse or habit-forming attributes with osmotic laxatives. Among the osmotic laxatives, we believe that milk of magnesia is not habit forming in acute conditions because it does not cause bowel contraction, given that it elicits its mechanism of action via osmosis i.e. increasing water content in the intestines thereby facilitating peristalsis. This increased water content liquefies the stools for easy defecation. Thus, degeneration of ganglia plexus, which is the primary pathophysiology associated with dependence and abuse, is not likely with milk of magnesia, thereby explaining the absence of habituation with this laxative. However, we recommend that caution should be exercised when recommending milk of magnesia in patients with renal failure and in cases where long-term treatment may be warranted, considering the potential for hypomagnesemia, hypophosphatemia, and secondary hypocalcemia.

Liquid paraffin as a lubricant laxative and stool softener in acute constipation is not habit forming because it does not cause the bowel to contract or spasm and provides a smooth surface for easy passage of stools.38,59 Drugs that irritate the mucosa in the long-term cause degeneration of ganglia plexus and can cause abuse/dependence.31 Unlike certain other laxatives, neither milk of magnesia nor liquid paraffin causes flatulence or bloating and can be beneficial in patients with fissures and hemorrhoids. In patients suffering from bloating or ascites, milk of magnesia can act as a stool lubricant on account of its osmotic effect. Moreover, liquid paraffin is not associated with abdominal cramps, diarrhea, or electrolyte disturbances. Considering the fast onset of action of milk of magnesia (0.5-six hours) and the relatively long duration of action of liquid paraffin (eight-ten hours), we believe that a combination of these laxatives can provide fast and sustained action, thereby making it a treatment of choice in clinical practice.

Conclusion
In summary, habit-forming properties are observed in patients with constipation upon use of stimulant laxatives, but not with osmotic laxatives such as milk of magnesia or lubricant laxatives such as liquid paraffin. A combination of milk of magnesia and liquid paraffin may be beneficial in patients with constipation due to the fast and sustained action, absence of habit-forming attributes on account of their respective mechanisms of action, and absence of side effects such as bloating and flatulence. Nevertheless, real world, prospective studies evaluating patient and physician perspectives about dependence and habit-forming properties of various laxative agents are warranted.

Data availability
Not applicable as this is a review article

Author contributions
Both authors conceptualized the review and provided critical feedback on the manuscript draft and revisions to shape the manuscript. Both authors have also approved the final version for submission.

Acknowledgements
The authors thank PharmEdge for medical writing support.

References

1. Ghoshal UC. Chronic constipation in Rome IV era: The Indian perspective. Indian J. Gastroenterol. 2017 May 1 [cited 2022 Mar 15]; 36(3): 163–173. PubMed Abstract | Publisher Full Text
2. Suárez NC, Ford AC. Prevalence of, and risk factors for, chronic idiopathic constipation in the community: systematic review and meta-analysis. Am. J. Gastroenterol. 2011 Sep [cited 2022 Mar 15]; 106(9): 1582–1591. PubMed Abstract | Publisher Full Text
3. Song BK, Cho KO, Jo Y, et al. Colon transit time according to physical activity level in adults. J. Neurogastroenterol. Motil. 2012 Jan [cited 2022 Mar 15]; 18(1): 64–69. PubMed Abstract | Publisher Full Text
4. Degen LP, Phillips SF. How well does stool form reflect colonic transit? Gut. 1996 [cited 2022 Mar 15]; 39(1): 109–113. PubMed Abstract | Publisher Full Text | Free Full Text
5. Bhate PA, Patel JA, Parikh P, et al. Total and Segmental Colon Transit Time Study in Functional Constipation: Comparison With Healthy Subjects. Gastroenterol. Res. 2015 [cited 2022 Mar 15]; 8(1): 157–159. PubMed Abstract | Publisher Full Text
6. Jung HK, Kim DY, Moon IH. Effects of gender and menstrual cycle on colonic transit time in healthy subjects. Korean J. Intern. Med. 2003 [cited 2022 Mar 15]; 18(3): 181–186. PubMed Abstract | Publisher Full Text | Free Full Text
7. Panigrahi MK, Kar SK, Singh SP, et al.: Defecation frequency and stool form in a coast eastern Indian population. J. Neurogastroenterol. Motil. 2013 [cited 2022 Mar 15]; 19(3): 374-380. PubMed Abstract | Publisher Full Text

8. Locke GR, Pemberton JH, Phillips SF: Prevalence and medical review of constipation. American Gastroenterological Association. Gastroenterology. 2000 [cited 2022 Mar 15]; 119(6): 1766-1778. PubMed Abstract | Publisher Full Text

9. Sanchez MJR, Bercik P: Epidemiology and Burden of Chronic Constipation. Can. J. Gastroenterol. 2011; 25(Suppl b): 118-158. PubMed Full Text

10. Sun SX, Dibonaentura M, Parayidatih FW, et al.: Impact of chronic constipation on health-related quality of life, work productivity, and healthcare resource use: an analysis of the National Health and Wellness Survey. Dig. Dis. Sci. 2011 Sep [cited 2022 Mar 25]; 56(9): 2698-2695. PubMed Abstract | Publisher Full Text

11. Aziz I, Whitehead WE, Palsson OS, et al.: An approach to the diagnosis and management of Rome IV functional disorders of the digestive tract. Expert Rev. Gastroenterol. Hepatol. 2020 Jan 2 [cited 2022 Apr 12]; 14(1): 39-46. PubMed Abstract | Publisher Full Text

12. Andrews CN, Storr M: The pathophysiology of chronic constipation. Can. J. Gastroenterol. 2011; 25(Suppl B): 168-218. PubMed Abstract | Publisher Full Text

13. Mearin F, Ciriza C, Minguez M, et al.: Constipation: Pathophysiology and Current Considerations for the Current Chronic Constipation Treatments. Dis. Colon Rectum. 2001 [cited 2022 Apr 6]; 44(8): 1201-1209. PubMed Full Text

14. Yang J, Wang HP, Zhou L, Xu CF: Efficacy and safety of traditional medical treatment of chronic constipation. J. Neurogastroenterol. Motil. 2011 Jul 1; 17(7): 577-583. PubMed Abstract | Publisher Full Text

15. Emmanuel AV, Tack J, Quigley EM, et al.: Pharmacological management of constipation. Neurogastroenterol. Motil. 2009 Dec [cited 2022 Apr 12]; 21(Suppl 2): 41-54. PubMed Full Text | Reference Source

16. Xing JH, Soffer EE: Adverse effects of laxatives. Dis. Colon Rectum. 2001 [cited 2022 Apr 6]; 44(8): 1201-1209. PubMed Full Text

17. Martin H: Anal fissures and liquid paraffin. Aust. Prescr. 2016 Jun 1 [cited 2022 Apr 6]; 39(3): 77. PubMed Full Text | Reference Source

18. Kamm MA, Mueller-Lissner S, Wald A, et al.: Oral Bisacodyl Is Effective and Well-Tolerated in Patients With Chronic Constipation. Clin. Gastroenterol. Hepatol. 2011 Jul 1; 9(7): 577-583. PubMed Abstract | Publisher Full Text

19. Shim JE, Jung HK, Lee TH, et al.: Guidelines for the Diagnosis and Treatment of Chronic Functional Constipation in Korea, 2015 Revised Edition. J. Neurogastroenterol. Motil. 2016 [cited 2022 Mar 31]; 22(3): 383-411. PubMed Abstract | Publisher Full Text

20. Vriesman MH, SJ, Camilleri M, et al.: Management of functional constipation in children and adults. Nat. Rev. Gastroenterol. Hepatol. 2019 171; 2019 Nov 5 [cited 2022 Mar 29]; 17(1): 21-39. PubMed Abstract | Publisher Full Text | Reference Source

21. De Giorgio R, Ruggeri E, Stanghellini V, et al.: Chronic constipation in the elderly: A primer for the gastroenterologist. Scand. J. Gastroenterol. 2011 Aug [cited 2022 Mar 26]; 46(8): 871-879. PubMed Abstract | Publisher Full Text | Free Full Text

22. Prichard DO, Barchura AE: Recent advances in understanding and managing chronic constipation. F1000Res. 2018 [cited 2022 Mar 26]; 7: 1640. PubMed Abstract | Publisher Full Text | Free Full Text

23. Klischik E, Nauck F, Ogtatche C: Constipation—moderate laxative therapy. Support Care Cancer. 2003 Sep 20 [cited 2022 Mar 26]; 11(1): 679-685. PubMed Full Text

24. Muller-Lissner S: Pharmacokinetic and pharmacodynamic considerations for the current chronic constipation treatments. Expert Opin. Drug Metab. Toxicol. 2013; 9(4): 391-401. PubMed Abstract | Publisher Full Text

25. Ramkumar D, Rao SSC: Efficacy and safety of traditional medical therapies for chronic constipation: systematic review. Am. J. Gastroenterol. 2005 Apr [cited 2022 Mar 15]; 100(4): 356-971. PubMed Abstract | Publisher Full Text

26. De Giorgio R, Ruggeri E, Stanghellini V, et al.: Chronic constipation in the elderly: A primer for the gastroenterologist. BMC Gastroenterol. 2015; 15(1): 1-14. PubMed Abstract | Publisher Full Text

27. Gwee KA, Ghosh UC, Gonlachanvit S, et al.: Primary care management of chronic constipation in Asia: The anoma chronic constipation tool. J. Neurogastroenterol. Motil. 2013; 19(2): 149-160. PubMed Abstract | Publisher Full Text

28. Kamm MA, Stanghellini V, et al.: Multicenter, 4-week, double-blind, randomized, placebo-controlled trial of sodium picosulfate in patients with chronic constipation. Am. J. Gastroenterol. 2010 Apr [cited 2022 Mar 26]; 105(4): 897-903. PubMed Abstract | Publisher Full Text

29. Muller-Lissner SA, Kamm MA, Scarpignato C, et al.: Myths and misconceptions about chronic constipation. Am. J. Gastroenterol. 2005; 100(1): 232-242. PubMed Abstract | Publisher Full Text

30. Joo JS, Ehrenpreis ED, Gonzalez L, et al.: Alterations in colonic anatomy induced by chronic stimulant laxatives: the cathartic colon revisited. J. Clin. Gastroenterol. 1998; 26(4): 283-286. PubMed Abstract | Publisher Full Text

31. Riemann JF, Schmidt H, Zimmermann W: The fine structure of colonic submucosal nerves in patients with chronic laxative abuse. Scand. J. Gastroenterol. 1985; 196(6): 761-768. PubMed Abstract | Publisher Full Text

32. Zheng S, Yao J: Society the CG: Expert consensus on the assessment and treatment of chronic constipation in the elderly. Aging Med. 2018 Jan 1 [cited 2022 Mar 31]; 11(3): 8-17. PubMed Abstract | Publisher Full Text | Free Full Text

33. Wesselinus-De Casparis A, Braadbaart S, Bergh-Bohlken GE, et al.: Treatment of chronic constipation with lactulose syrup: results of a double-blind study. Gut. 1968 [cited 2022 Mar 15]; 9(1): 84-86. PubMed Abstract | Publisher Full Text | Free Full Text

34. Waterfield J: Laxatives: choice, mode of action and prescribing issues. Nurse Prescribing. 2013 Sep 29 [cited 2022 Apr 5]; 11(5): 456-461. PubMed Full Text

35. Gordon M, Macdonald JK, Parker CE, et al.: Osmotic and stimulant laxatives for the management of childhood constipation. Cochrane Database Syst. Rev. 2016 Aug 17 [cited 2022 Mar 31]; 2016(8). PubMed Full Text | Free Full Text
46. Karakan T, Tuohy KM, Janssen-van SG: Low-Dose Lactulose as a Prebiotic for Improved Gut Health and Enhanced Mineral Absorption. *Front. Nutr.* 2021 Jul 27; 8: 408.
47. Connolly P, Hughes IW, Ryan G: Comparison of "Duphalac" and "irritant" laxatives during and after treatment of chronic constipation: a preliminary study. *Curr Med Res Opin.* 1974; 2(10): 620–625.
PubMed Abstract | Publisher Full Text
48. Sharif F, Crushell E, O’Driscoll K, et al.: Liquid paraffin: A reappraisal of its role in the treatment of constipation. *Arch. Dis. Child.* 2001; 85(2): 121–124.
PubMed Abstract | Publisher Full Text | Free Full Text
49. Kumar V, Yoselevitz S, Gambert SR: Laxative use and abuse in the older adult: Part II. *Clin. Geriatr.* 2007; 15(5): 38–45.
50. Citronberg J, Kantor ED, Potter JD, et al.: A prospective study of the effect of bowel movement frequency, constipation, and laxative use on colorectal cancer risk. *Am. J. Gastroenterol.* 2014 Sep 16 [cited 2022 Mar 15]; 109(10): 1640–1649.
PubMed Abstract | Publisher Full Text
51. Primrose WR, Capewell AE, Simpson GR, et al.: Prescribing patterns observed in registered nursing homes and long-stay geriatric wards. *Age Ageing.* 1987 Jan [cited 2022 Mar 15]; 16(1): 25–28.
Reference Source
52. Talley NJ: Definitions, epidemiology, and impact of chronic constipation - PubMed. 2004 [cited 2022 Mar 15].
Reference Source
53. Harari D, Gurwitz JH, Avorn J, et al.: Constipation: assessment and management in an institutionalized elderly population. *J. Am. Geriatr. Soc.* 1994 [cited 2022 Mar 15]; 42(9): 947–952.
PubMed Abstract | Publisher Full Text
54. Tse Y, Armstrong D, Andrews CN, et al.: Treatment Algorithm for Chronic Idiopathic Constipation and Constipation-Predominant Irritable Bowel Syndrome Derived from a Canadian National Survey and Needs Assessment on Choices of Therapeutic Agents. *Can. J. Gastroenterol. Hepatol.* 2017 [cited 2022 Mar 31]; 2017: 1–11.
Publisher Full Text | Reference Source
55. Rowan-Legg ASociety CP-Committee CP: Managing functional constipation in children. *Paediatr. Child Health.* 2011 Dec [cited 2022 Apr 6]; 16(10): 661–665.
PubMed Abstract | Publisher Full Text | Free Full Text
I am still concerned by unsupported statements in this paper as exemplified by the highlighted section in this paragraph:

"Regular use of stimulant laxatives can cause dependency and cathartic colon albeit there is no direct evidence to support this claim. Prolonged use of stimulant laxatives leaves users prone to drug dependence, malabsorption, and electrolyte imbalance, and can damage the enteric nervous system, weakening colonic strength and even giving rise to melanosis coli. Moreover, long-term use of stimulant laxatives can damage the myenteric plexus, reducing responsiveness of the colon to intestinal contents and weakening colonic motor function. It is even possible to lose the ability to defecate spontaneously, a condition known as “laxative colon.” (These statements which seem to contradict the opening and closing sentences of this paragraph MUST be supported by direct evidence.) Though powerful and fast-acting, stimulant laxatives are not currently recommended for long-term use by elderly patients due to the adverse reactions, and only short-term or intermittent use is advised. Slow transit constipation should be treated with bulk-forming or osmotic laxatives. Cathartic colon though observed in some chronic users of stimulant laxatives, it is unclear whether this effect is related to their prolonged use."

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: GI motility, FGIDs, microbiome.

I confirm that I have read this submission and believe that I have an appropriate level of expertise to state that I do not consider it to be of an acceptable scientific standard, for reasons outlined above.
Reviewer Report 17 February 2023

https://doi.org/10.5256/f1000research.135509.r162774

© 2023 Quigley E. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Eamonn M. M. Quigley
Fondren IBD Program, Lynda K. and David M. Underwood Center for Digestive Disorders, Division of Gastroenterology and Hepatology, Houston Methodist Hospital and Weill Cornell Medical College, Houston, TX, USA

This is an important topic - patients often voice concerns that they will become "addicted" to treatments for constipation. However, this review has number of problems:

1. Far too much of the review is taken up with background information on constipation, in general. The focus should be on the issue of dependence.

2. I would contend that there is no good evidence that laxative injure colonic nerve or muscle - the authors mention this but do not provide evidence to support it. Usually statements like this are based on the study by Barbara Smith from decades ago which has been widely debunked.

3. Little or no evidence is provided to support the conclusions regarding whether some laxatives induce dependence or not. These statements must be rigorously supported.

4. I really do not see the role of two expert opinions here. If they are a part of the writing process why not just include as authors and leave it as that. We are now in the era of evidence-based and not eminence-based medicine.

Is the topic of the review discussed comprehensively in the context of the current literature?
No

Are all factual statements correct and adequately supported by citations?
No

Is the review written in accessible language?
Yes

Are the conclusions drawn appropriate in the context of the current research literature?
No

Competing Interests: No competing interests were disclosed.
Reviewer Expertise: GI motility, FGIDs, microbiome.

I confirm that I have read this submission and believe that I have an appropriate level of expertise to state that I do not consider it to be of an acceptable scientific standard, for reasons outlined above.

The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com