Lipo-chitooligosaccharides as regulatory signals of fungal growth and development

Tomás Allen Rush1,2,14,18, Virginie Puech-Pagès3,18, Adeline Bascaules3, Patricia Jargeat4, Fabienne Maillet5, Alexandra Haouy3, Arthur QuyManh Maës3, Cristobal Carrera Carriel1,2, Devanshi Khokhani1,2, Michelle Keller-Pearson1,2, Joanna Tannous6,14, Kevin R. Cope1,2,15, Kevin Garcia1,2,16, Junko Maeda1,2, Chad Johnson7, Bailey Kleven1,2, Quanita J. Choudhury8,9,17, Jessy Labbé8, Candice Swift10, Michelle A. O’Malley10, Jin Woo Bok1,6, Sylvain Cottaz11, Sébastien Fort11, Verena Poinsot12, Michael R. Sussman13, Corinne Lefort3, Jeniel Nett6,7, Nancy P. Keller1,6, Guillaume Bécard3✉ & Jean-Michel Ané1,2✉

Lipo-chitooligosaccharides (LCOs) are signaling molecules produced by rhizobial bacteria that trigger the nodulation process in legumes, and by some fungi that also establish symbiotic relationships with plants, notably the arbuscular and ecto mycorrhizal fungi. Here, we show that many other fungi also produce LCOs. We tested 59 species representing most fungal phyla, and found that 53 species produce LCOs that can be detected by functional assays and/or by mass spectroscopy. LCO treatment affects spore germination, branching of hyphae, pseudohyphal growth, and transcription in non-symbiotic fungi from the Ascomycete and Basidiomycete phyla. Our findings suggest that LCO production is common among fungi, and LCOs may function as signals regulating fungal growth and development.
A conceptual leap in our understanding of the mechanism of plant-microbe symbiosis came when, almost 30 years ago, nitrogen-fixing rhizobial bacteria were found to produce nodulation (Nod) factors that are required to induce the formation of nodules on legume roots. These Nod factors are lipo-chitooligosaccharides (LCOs), which consist of a polymer of three to five N-acetyl glucosamine (GlcNAc) residues (the chitin backbone) with β-(1,4) linkages modified with a long-chain fatty acyl group and various other functional groups. Most rhizobia rely on LCOs to associate with their legume hosts and legumes can perceive LCOs down to 10⁻¹⁴ M concentrations. Substitutions on the chitinous backbone are largely responsible for the often high level of host specificity observed in the rhizobia-legume symbiosis.

Nearly 20 years later, arbuscular mycorrhizal (AM) fungi (subphylum Glomeromycotina), which are another group of microorganisms that live symbiotically with plant roots, were also found to produce LCOs (Myc-LCOs). Additional studies have shown that these two dissimilar symbiotes share a highly conserved Common Symbiosis Signaling Pathway (CSSP), which is activated in plants by Nod- or Myc-LCOs to allow root colonization (either Nod or mycorrhization, respectively)⁶,⁷. In both symbiotes, LCOs are perceived at the plasma membrane by receptor-like kinases with extracellular LysM domains⁷,⁸. The perception of short chitooligosaccharides (COs) is also required to initiate the AM association and is mediated by the same family of LysM-containing receptors⁷.

We recently reported that a representative from a third group of symbiotic microorganisms, the ectomycorrhizal (EM) fungus Laccaria bicolor (phylum Basidiomycetes), also synthesizes LCOs⁹. _L. bicolor_ colonizes the roots of _Populus_, a host plant that contains the genetic components of the CSSP and can also be colonized by AM fungi; however, another EM fungus that was suspected to produce LCOs, _Hebeloma cylindrosporum_, colonizes mostly pine, which does not contain the components for the CSSP. This latter finding suggests that LCOs may have functional roles beyond symbiotic signaling.

In this study, we explored the possibility that the production of LCOs is a more common trait among fungi than was previously anticipated. We demonstrate that LCOs are not produced solely restricted to rhizobial bacteria and to the Kingdom Fungi (Fig. 1). We tested 59 species of fungi belonging to most phyla and reported to form pseudohyphae only under stress conditions or when genetically altered.⁴,¹⁵.

Results

LCOs are produced by a wide range of fungi in the Kingdom Fungi. We tested 59 species of fungi belonging to most phyla within the kingdom for the presence of LCOs exuded into their culture media (Fig. 1 and Supplementary Data 1, 2, and 3). These exudates were assayed for LCO activity using the highly sensitive root hair deformation response triggered by LCOs in barrel medic (_Medicago truncatula_) and common vetch (_Vicia sativa_). As some of these root hair deformations, such as waving or bulb formation, are not specific responses to LCOs, our assay was scored strictly on root hair branching. In control experiments, as expected from their known Nod factor specificities, _M. truncatula_ responded only to sulfated (s) LCOs, whereas _V. sativa_ responded only to non-sulfated (ns) LCOs (Supplementary Fig. 1). To test the specificity of the root hair branching response to LCOs, we examined the effect of short COs, polymers of four to five GlcNAc residues (CO4 and CO5), which are precursors of LCOs and have been shown to also activate the CSSP. We also tested long CO chains (CO8), which are not LCO precursors, but oligomers that activate symbiotic and defense-related responses. Root hair branching was not triggered by the application of short (CO4 and CO5) or long (CO8) chain COs, fatty acids (palmitic or oleic), or by the fresh culture media in which the fungi grew (Supplementary Fig. 1 and Supplementary Data 4). Also, the absence in the fungal samples of bacteria that might produce LCOs was verified with specific PCR amplification (using fungus-specific and bacterium-specific primers) and light microscopy observation (Supplementary Fig. 2). When the exudates from 53 fungi were applied to the roots of _M. truncatula_ or _V. sativa_, 47 of them triggered root hair branching in one or two legumes (Fig. 1, Supplementary Figs. 3–7, and Supplementary Data 4). We confirmed the presence of sLCOs in some butanol extracts of exudates by assaying for expression of the _MtENOD11_ gene in _M. truncatula_ (Fig. 1 and Supplementary Fig. 8). Interestingly, the exudates of the yeasts _Saccharomyces cerevisiae_ and _Candida glabrata_ did not induce root hair branching (Fig. 1). Compared with _Candida albicans_ or _Candida auris_ in which we detected LCO activity (Fig. 1), _C. glabrata_ is more closely related to _S. cerevisiae_ and reported to form pseudohyphae only under stress conditions or when genetically altered.

The structure of fungal LCOs. To confirm our findings with the root hair branching assay for LCOs and to determine the structure of LCOs produced by the various fungi, we used mass spectrometry (MS). The culture media were fractionated by butanol:water phase separation. The water phases were analyzed directly for COs and the butanol phases, in which LCOs were expected to fractionate, were either analyzed directly or were further purified by chromatography to minimize matrix effects on the MS analyses. Taking advantage of an in-house database (Supplementary Data 5) listing all possible mass-to-charge ratios (precursors/products ions) calculated from known Nod factors, and by using the very sensitive Multiple Reaction Monitoring (MRM) MS approach, we found mass signals of LCOs in 16 of the 20 fungal exudates we analyzed (Fig. 1). The LCOs contained three to five GlcNAc residues bearing various fatty acyl chains and additional sulfate, methyl, carbamoyl, fucosyl, and methylfucosyl substitutions (Fig. 2). Exudates from three fungal species that were LCO positive—_Gigaspora rosea_, _Paxillus adelphus_, and _Paxillus involutus_—were concentrated enough for targeted LCO detection by using enhanced MS-enhanced product ion (EMS–EPI), allowing a more exhaustive analysis of the different structures present. Examples of chromatograms and spectra of major LCO structures found in these three fungal exudates are given in Supplementary Figs. 9–11. LCOs were not detected in exudates from _Conococcum geophilum_, _Glonium stellatum_, _Saccharomyces cerevisiae_, and _Sclerotinia sclerotiorum_ (Fig. 1). Notably, the chemical structures of all detected LCOs were quite similar across the Kingdom Fungi, with the fucosyl and methylfucosyl functional groups as the most commonly found, even in species of AM fungi. In the water phases of the 20 analyzed fungal exudates, we found mass signals corresponding to COs containing three to five GlcNAc residues.

Given that the oomycete plant pathogen _Aphanomyces euteiches_ produces COs, we also analyzed exudates of this organism for the presence of chitinous molecules by MS and exudates of other Heterokontophyta/oomycete representatives _Pythium ultimum_ and _Phytophthora erythroseptica_ by using root hair branching assay. We confirmed the presence of short COs by MS but detected no LCOs either by MS or by the functional assays, suggesting that the ability to produce LCOs may be restricted to rhizobial bacteria and to the Kingdom Fungi. (Fig. 1).

LCOs have regulatory functions in fungal development. We found LCOs in fungi with various lifestyles and under different growth conditions (Figs. 1 and 2, and Supplementary Data 1, 2, and 3), including in non-symbiotic saprotrophic fungi that live and feed on dead organic matter, and in pathogenic fungi that grow on...
animals or plants, suggesting that their roles in fungal biology are not limited to symbioses with plants. To explore this hypothesis, we applied synthetic sLCOs or nsLCOs with various fatty acyl chains (C16:0—palmitic acid or C18:1—oleic acid), short (CO4 and CO5) and long (CO8) COs, and the C16:0 and C18:1 fatty acids to the saprotrophic and opportunistic human pathogen Aspergillus fumigatus, which exhibits two easily scored developmental processes, germination, and hyphal branching. C16:0 sLCO (10⁻⁸ M) and oleic acid (10⁻⁸ M) increased spore germination by 28% and 36%, respectively, when compared with the control (Fig. 3a, b). The response to LCOs was dose dependent (Fig. 3c). Although the length of the primary apical hyphae was similar across the different treatments (Fig. 3d, e), not exceeding 11% difference among them (Fig. 3f), the branching of lateral hyphae, treated with the C16:0 sLCO, decreased by up to 41% (Fig. 3g, h) and in a dose-dependent manner (Fig. 3i). The activity of

Fig. 1 Production of lipo-chitooligosaccharides and chitooligosaccharides by fungi. Fifty-nine fungi representing five of the eight phyla (indicated by colors) and three species of oomycetes (Heterokontophyta, green) were tested for the presence of lipo-chitooligosaccharide (LCO)s and chitooligosaccharide (CO)s in their culture supernatants. Black circle, detection of sulfated LCOs by the root hair branching assay with M. truncatula. Black square, detection of non-sulfated LCOs by the root hair branching assay with V. sativa. Black triangle, detection of sulfated LCOs in butanol extracts by MtENOD11 expression assay. Black star, detection of LCOs in butanol extracts by LC-MS/MS with high confidence (non-targeted mass spectrometry (MS) analysis or two to three MRM transitions per molecule). Blue star, detection of LCOs with lower confidence (MS signal at the expected retention time but with only one MRM transition). Black cross, detection of COs by HPLC/MS from water extracts. Clear symbols indicate no detection. Black asterisk indicates two or more strains were examined.
Table 1: LCO Structures in Fungi

Species	Lifestyle	n	R1	R2	R3 or 4, or 5	R6
Rhizophagus irregularis	Arbuscular mycorrhizal	0, 1, 2	C16:0, C18:0, C18:1	H, Me	H	S, Fuc, MeFuc
Rhizophagus intraradices		0, 1, 2	C16:0, C18:0, C18:1	H, Me	H	MeFuc,
Rhizophagus clarus		0, 1, 2	C16:0, C18:0, C18:1	H	H	Fuc, MeFuc,
Gigaspora rosea		0, 1, 2	C16:0, C18:0, C18:1	H, Me	H	S, Fuc, MeFucS, MeFuc,
Paxillus adelphus		0, 1, 2	C16:0, C18:0, C18:1	H, Me	H, Ac	H, S, MeFuc
Paxillus ammoniavirescens		0, 1, 2	C16:0, C18:0, C18:1	H, Me	H, Cb	H, Fuc, MeFuc
Paxillus involutus		0, 1, 2	C16:0, C18:0, C18:1	H, Me	H, Ac, Cb	H, Fuc
Laccaria bicolor		0, 1, 2	C16:0, C18:0, C18:1	H, Me	H, Ac, Cb	H, Fuc
Hebeloma cylindrosporum		0, 1, 2	C16:0, C18:0, C18:1	H, Me	H, Cb	H, Fuc
Leptosphaeria maculans	Phytopathic	0, 1, 2	C18:0, C18:1	H, Me	H, Ac, Cb	H, MeFuc
Aspergillus flavus		0, 1, 2	C16:0, C18:0, C18:1	H, Me	H, Ac	H, S, MeFuc
Aspergillus fumigatus		0, 1, 2	C16:0, C18:0, C18:1	H, Me	H, Ac, Cb	H, Fuc, S
Gonapodya prolifera		0, 1, 2	C16:0, C18:0, C18:1	H, Me	H, Cb	H, Fuc, MeFuc

Fig. 2 Structures of LCOs found in fungi. a) The generic structure of LCOs. b) LCO structures determined by LC-MS/MS analysis of the butanone phase extract of culture media from fungi with various lifestyles. Red indicates the most abundant LCO structures. (§) indicates when untargeted mass spectrometry (MS) analysis was used. The other structures were detected in targeted MS mode (MRM) (see “Methods” for details of various possible MRM transitions). (*) indicates when more than one strain was analyzed. (n) is the number of residues of chitin oligomers. (R1) is the type of fatty acid, identified as saturated or unsaturated fatty acids. (R2) are chemical substitutions: hydrogen (H), acetyl (Ac), carbamoyl (Cb), fucosyl (Fuc), fucosyl sulfate (FucS), methylfucosyl (MeFuc) and sulfate (S). (†) indicates data published previously.9.
Discussion

The findings reported here impose a paradigm shift in our understanding of the biology of LCOs. Until now, these molecules were considered as exclusively produced by plant microbial symbionts, rhizobia, AM, and EM fungi. We now show that nearly all fungi—not only those that interact with plants—produce LCOs whose structures are very similar to those of Nod factors. As LCOs have been shown to suppress innate immunity in plants7,17,18, a function that may have predated the mycorrhizal symbiosis19, this discovery raises questions on how plants...
can distinguish symbiotic microbes from pathogenic fungi. Although it is indisputable that LCOs are symbiotic signals in the sense that they activate the CSSP pathway in plants, it remains to demonstrate that they are also used by rhizobia and mycorrhizal fungi to be distinguished from non-symbiotic microorganisms. Interestingly, the production of LCOs in rhizobia and of precursors of LCOs (short COs) in AM fungi are strongly stimulated by specific root signals. This could ensure the production of the right LCO structures, in the right place, at the right time, and with adequate concentrations. If the existence of such a molecular dialogue also exists in non-symbiotic interactions, then additional symbiotic signals, other than LCOs, must provide specificity. AM fungi may produce more distinctive symbiotic signals, yet to be discovered, whereas pathogenic fungi are known to produce additional effectors recognized by the immune system of plants. In the former case, the ligand of the plant Dwarf14-Like (D14L) receptor that activates the D14L-dependent signaling mechanisms and the ensued removal of the negative regulator of mycorrhization SMX1, could be a good candidate. In the case of pathogenic fungi, the role that LCOs and COs could play in their virulence should be investigated. Indeed, these molecules, particularly when they are combined, can act synergistically to enhance symbiosis and suppress immunity, i.e. can have an inverse role to that of the traditional pathogen-associated molecular pattern molecules also produced by the same organisms.

Given that we have detected LCOs in widely divergent lineages of fungi that diverged before the first land plants, we speculate that LCO production is an ancestral trait of fungi and that plants have acquired the ability to recognize these molecules first to detect the close presence of a fungus, then as symbiotic signals. This hypothesis is in line with the recent reports that the same LysM-containing plant receptors are involved in both immunity and symbiosis signaling. Our findings could also explain the surprising data showing that LCOs are active on mammalian cells.

The effect of LCOs on A. fumigatus and C. glabrata development was observed at concentrations down to 10^{-12} M and 10^{-13} M, respectively. It seems unlikely that LCOs will have a nutritional effect at such low concentrations but we cannot exclude that building blocks or degradation products of LCOs (chitin oligomers and fatty acids) may also play a regulatory role. Indeed, we observed some effect of COs and fatty acids on fungal germination of A. fumigatus and on the formation of pseudohyphae in C. glabrata, but these effects were generally more limited than those of C16:0 sLCO.

Rather than nutrients, our work strongly supports LCOs as representing fungal autocrine and paracrine signals. We showed that A. fumigatus and C. glabrata responded to LCOs in a dose-dependent and structure-dependent manner. Furthermore, we find that cell membrane and perception genes are significantly upregulated within 30 min of A. fumigatus exposure to LCOs, processes associated with response to signal molecules. If the production of these molecules in the environment is proportional to fungal cell density, they could have a function similar to quorum-sensing molecules in bacteria or yeasts, but this concept is difficult to define with filamentous fungi. It seems likely that LCO production will vary with life stages. Unfortunately, the detection techniques that we used (root hair deformation, gene expression, and MS analyses) are specific and sensitive but not quantitative enough to further investigate this quorum-sensing hypothesis.

Before this study, pseudohyphae in C. glabrata had only been observed under harsh conditions. Interestingly, infections with C. glabrata have often been reported in the presence of C. albicans, a fungus that produces LCOs. It would be interesting to examine if the production of LCOs produced by other fungi could have a function similar to quorum-sensing molecules in bacteria or yeasts, but this concept is difficult to define with filamentous fungi. It seems likely that LCO production will vary with life stages. Unfortunately, the detection techniques that we used (root hair deformation, gene expression, and MS analyses) are specific and sensitive but not quantitative enough to further investigate this quorum-sensing hypothesis.

Before this study, pseudohyphae in C. glabrata had only been observed under harsh conditions. Interestingly, infections with C. glabrata have often been reported in the presence of C. albicans, a fungus that produces LCOs. It would be interesting to examine if the production of LCOs produced by other fungi could have a function similar to quorum-sensing molecules in bacteria or yeasts, but this concept is difficult to define with filamentous fungi. It seems likely that LCO production will vary with life stages. Unfortunately, the detection techniques that we used (root hair deformation, gene expression, and MS analyses) are specific and sensitive but not quantitative enough to further investigate this quorum-sensing hypothesis.

Before this study, pseudohyphae in C. glabrata had only been observed under harsh conditions. Interestingly, infections with C. glabrata have often been reported in the presence of C. albicans, a fungus that produces LCOs. It would be interesting to examine if the production of LCOs produced by other fungi could have a function similar to quorum-sensing molecules in bacteria or yeasts, but this concept is difficult to define with filamentous fungi. It seems likely that LCO production will vary with life stages. Unfortunately, the detection techniques that we used (root hair deformation, gene expression, and MS analyses) are specific and sensitive but not quantitative enough to further investigate this quorum-sensing hypothesis.
Many questions remain such as how and where LCOs are synthesized in fungi. It will be interesting to determine if they are anabolically produced, like in rhizobia, or produced from the degradation and modification of longer chitin molecules. As a minimum, chitin synthases, chitin deacetylases, and N-acyltransferases are the enzymes required to produce the backbone of LCOs in fungi. An estimate for the number of genes encoding such proteins in Ascomycetes, Basidiomycetes, and Zygomycetes is provided in Supplementary Table 1. Based on these numbers, chitin deacetylase and perhaps chitin synthases would be the most obvious targets to search for mutants unable to produce LCOs. Such an approach would obviously be essential to uncover the fundamental and probably conserved roles played by LCOs in the development of fungi and in their interaction with the biotic environment.

Methods

Analysis of COs and LCOs from fungal exudates. The list and sources of the 59 species of fungi and three species of oomycetes (Heterokontophyta) used in the study are presented in Supplementary Data 1-3. The fungal species examined are representatives of each sub-phyla within five phyla (out of eight phyla) of the Kingdom Fungi30. The absence of contaminants in the fungal and oomycete strains was systematically checked by PCR by using the specific primers ITS1F/ITS4 and ID1/EP21,12 (Supplementary Fig. 2). The inoculum type (cells, mycelium, spores, or zoospores), culture media and culture times used for each strain are indicated in Supplementary Data 1–3.

Fungi and oomycetes producing mycelia were pre-cultivated in Petri dishes on the solid media gelled with agar as indicated in Supplementary Data 23,34. Once the mycelium had covered the dish, plugs of the mycelium were transferred to Sylon-coated culture flasks35 or to 6.7 × 11.4 cm flat-bottom 96-well plates (Corning, Inc. Corning, NY), or for the Russulales to 25 × 95 mm flat-bottom culture tubes (PhytoTech), respectively, filled with 50 ml or 12 ml of the appropriate liquid medium to produce and collect exudates (Supplementary Data 2). In addition, using a separate experimental method, C. geophilum, G. stellatum, L. pseudoplatyergus, C. maculatus, S. scotopraetexta and the species of Amanita, Helobema, and Paxillus were pre-cultivated as above but they were inoculated on a cellophane membrane laid on the solid medium. This membrane was used to transfer agar-free mycelium to Petri dishes filled with deionized sterile water or with liquid culture medium in order to produce and collect exudates (Supplementary Data 2).

For the anaerobic Neocallimastigomycetes, Neocallimastix, and Piroxysmys finnis, Anaeromyces, and Caecomyces churrovis, 1 ml of fungal zoospores was used to inoculate 20 ml of modified minimal Medium C in a 60 ml borosilicate serum bottles containing 0.2 g switchgrass while sparging with CO2.36,37. Fungal cultures were incubated anaerobically 6 days before collecting the exudates.

For fungi (except AM fungi) producing cells, spores, or zoospores, 10⁶ of these propagules were produced and collected according to published methods.33,37–40. Propagules were inoculated directly in five independent Sylon-coated flasks with 50 ml liquid medium per species. AM cultures were propagated by in vitro mycorrhizal root organ cultures in solid M medium containing Phytagel (Sigma–Aldrich) and collected after solubilization of Phytagel39,49. Exudates from the AM fungal strains were collected from 10,000 spores germinating in 10 ml liquid medium for 10 days.

The various liquid media (broth or water), enriched with exudates, were filtered under sterile conditions through a 0.22 μm Millipore Express™ PES membrane (MilliporeSigma, Darmstadt, Germany) prior to being analyzed in the bioassays.

One hundred to 400 ml of culture filtrates, depending on the fungal cultures, were extracted twice with butanol (1:1 v/v). The pooled butanol phases were washed with distilled water and evaporated under vacuum. The dry extract was redissolved in 4 ml water: acetonitrile (ACN) (1:1 v/v) and dried under nitrogen. This crude extract was resuspended in 1 ml of 20% ACN in water and separated on Hypersil C18 (500 mg, 3 ml, Thermo Fisher Scientific) by sequential elution with 3 ml each of 20%, 50%, and 100% ACN in water, respectively. The eluted samples were then dried under nitrogen. Occasionally, for further purification, the 50% eluate was resuspended in 75% ACN in water and separated on Chromabond HILIC (500 mg, 3 ml) by sequential elution with 3 ml each of 100%, 80 and 75% ACN in water. The eluates were then dried under nitrogen.

The presence of LCOs in filtered crude exudates (1× or 10×) or in the butanol fractions of media were assayed by root hair branching in *V. sativa*, which is induced by nLCOs,60 by root hair branching in *M. truncatula* accession Lemalong A17, which is induced by sLCOs, and by expression of *MENOD11* using the pENOD11::GUS transcriptional fusion in *M. truncatula*, which is also induced by (s) LCOs.62,63.

The root hair branching assays in *V. sativa* and *M. truncatula* used the method of Cope et al.60. Eight young seedlings (3–7 days old) were treated with the fungal exudates, with the same concentration of solvent (negative controls), or with nod factors purified from *Rhizobium leguminosarum* biovar *viciae* or *Sinorhizobium*
meliloti supernatant at a concentration of 10⁻⁸ M (positive controls). One millilitre of fungal crude exudates or 40 µl of butanol fractions were applied on each seedling primary root.

The MiENODI1 gene expression assay was performed as in Maillet et al.⁴. Two kinds of samples were tested: butanol extracts diluted 100 times in water and HHLC column fractions diluted 10 times. Forty microlitres of these solutions were applied to the primary root of each seedling for 16 hours. Seven to ten seedlings were used for each treatment, compared to mock treatments (0.005% EIOH in water or 5% ACN in water). Plants were stained for 6 h. An arbitrary scale was used to quantify GUS (beta-glucuronidase) -staining (Supplementary Fig. 8).

Standard LCO compounds (non-sulfated C16:0 LCO IV, sulfated C16:0 LCO IV, non-sulfated C18:0 LCO IV, sulfated C18:0 LCO IV) were synthesized at the Biotechnology Center, F. M. Kirby Institute, University of New South Wales, Sydney, Australia. Four independent cultures were replicated per treatment and time point. Immediately after spore collection, tubes were placed in liquid nitrogen for 10 min. The spores were ground to a fine powder in liquid nitrogen and transferred into 50 ml centrifuge tubes. Total RNA was extracted by using QiAzoL Lysis Reactant (Qiagen, Hilden, Germany) according to the manufacturer’s instructions but with an additional phenol:chloroform:isoamyl alcohol (24:1:1) extraction step before RNA precipitation. For RNA sequencing (RNA-Seq), total RNAs were further purified by using the RNasy Mini Kit (Qiagen). RNA samples were digested with DNase and stored at −80 °C for further use. A NanoDrop 2000 spectrophotometer (Thermo Scientific) was used to quantify the purity of RNA. NanoDrop readings for samples were 112.24−49.44 ng µl⁻¹.

Sixteen libraries of RNA-Seq single-end reads were prepared by using the TruSeq library preparation protocol and sequenced with an HiSeq 2500 sequencing system (Illumina, San Diego, CA). The 16 libraries corresponded to each of the four biological replicates for each of the four treatments. Read quality was assessed with FastQC 0.11.7 and Fastq quality trimming and adapter removal, and then analyzed on an Illumina HiSeq 2500 using high-throughput single-end sequencing. Reads were trimmed. Completed reads were pseudo-aligned and quantified using TopHat 2.0.8r14 and Cufflinks 2.2.1 with the latest transcriptome version 60.30.35. We defined transcripts as differentially expressed if they had a false discovery rate (q-value) < 0.05, p-value < 0.01, and |β-values| < 0.4 or > 0.4. GO-enrichment analysis for the A. fumigatus genome was carried out by using the Gene ID. GO enrichment was performed using FungiDB.²⁵ Potentially regulated biochemical pathways were identified using the Search Pathway feature in KEGG Mapper.²⁶ The search mode was set to “Afm,” to specify A. fumigatus as our reference organisms. DEGs for the 30 and 120 min timepoints were entered as search objects. A list of objects was returned (Supplementary Data 8).

Experiments with C. glabrata. C. glabrata was grown overnight on yeast extract–peptone–dextrose medium (1% yeast extract, 2% peptone, 2% dextrose), supplemented with uridine (80 µg ml⁻¹) on an orbital shaker at 200 r.p.m. and 30 °C. Ten microlitres of the overnight culture were diluted 1 : 1000 in Dulbecco’s phosphate-buffered saline (without calcium or magnesium; HyClone Laboratories, Inc., Logan, UT) and counted by using a hemocytometer.

To initiate and develop biofilm production, RPMI 1640 medium (Thermo Fisher Scientific) is used for species of Candida. Candida albicans, an overnight culture were pelleted and resuspended (10⁶ cells per ml) in RPMI 1640 medium, supplemented with various COs, LCOs and fatty acids at a final concentration of 10⁻³ M. The LCOs, COs, fatty acids, and negative controls were used as the same for the experiments with A. fumigatus. Three hundred microlitres of cell suspension were distributed in each well of a sterile 96 well flat-bottomed coverlip (Bibco USA, Fitchburg, WI) and the cells were observed at 10-minute intervals over 12 hours at 37 °C with 5% CO₂ in an INU series microscope incubator (Tokhi Hit, Shizuoka-ken Japan) attached to a Nikon TIZ-E inverted microscope (Nikon, Louisville KY). Each well corresponded to one treatment and five pictures were taken for each well every 10 min. After 12 h, the total number of pseudohyphae per well was counted. Four independent experiments were performed. No differences between experiments were observed. Dose–response experiments were carried out in the same way, except that the cells were treated with a range of concentrations of sulfated C16:0 LCOs from 10⁻³ to 10⁻¹³ M.

Experiments with R. mucilaginosa. R. mucilaginosa strain was grown in 50 ml Difco™ Dehydrated Culture Media: Potato Dextrose Broth (Thermo Fisher Scientific) and grown overnight on yeast extract–peptone–dextrose broth (1% yeast extract, 2% peptone, 2% dextrose) and uridine (80 µg ml⁻¹), which were counted by using Countess™ Cell Counting Chamber slides and the Countess II Automated Cell Counter (Invitrogen, Carlsbad, CA).

The concentration of R. mucilaginosa cells was adjusted to 10⁶ cells per ml of potato dextrose broth and various LCOs and COs were added to a final concentration of 10⁻³ M. The LCOs, COs and negative control were the same as the reference experiments with A. fumigatus and C. glabrata above. Two hundred microliters of each mixture were distributed into the wells of a sterile Costar 96 Well flat-bottom plate (Corning, Corning, NY). The OD₅₆₀ of each well was measured in 1 intervals in a Cytation 5 Cell Imaging Multi-Mode Reader (BioTek Instruments, Winooski, VT) over 24 h at 24°C with a filter set of 538 nm excitation and 590 nm emission wavelength. After 24 h, the maximum V was obtained to determine the final OD₅₆₀ reading per treatment. Six technical
replicates were carried out for each treatment and three independent experiments were performed. No differences between experiments were observed.

Prediction of proteins involved in LCO synthesis and LysM-containing proteins in fungi). The predicted number of genes encoding chitin synthases, chitin deacetylases, N-acetyltransferases, and LysM-containing proteins was reported according to the respective references.

Statistical analyses. Statistical analyses were performed using RStudio (version 1.2.1335, RStudio Team 2015, Boston, MA) and GraphPad Prism software version 8.3.0 (GraphPad, San Diego, CA). One-way analysis of variance differences were considered significant when p < 0.05. For the A. fumigatus experiments, the Tukey’s single-step multiple comparison test was used to compare the different concentrations of C16:0 sLCOs and control, and the Dunnett’s pairwise test was used to compare the treatments (LCOs and COs) to the control. Statistically significant differences were based on p-values < 0.05. For the C. glabrata experiments, the Tukey’s single-step multiple comparison test was used to compare all treatments to each other, as the control had no pseudohyphae formation, and to compare the different concentrations of C16:0 sLCO and control. For the R. mucilaginosa experiment, Dunnett’s pairwise test was used to compare the treatments (LCOs and COs) to the control.

Reporting summary. Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability. The RNA-seq data presented in this article are accessible through the National Center for Biotechnology Information (NCBI) BioProject PRJNA642658 [https://www.ncbi.nlm.nih.gov/bioproject/PRJNA642658]. Source data are provided with this paper.

Received: 24 November 2019; Accepted: 9 July 2020; Published online: 04 August 2020

References

1. Lerouge, P. et al. Symbiotic host-specificity of Rhizobium melliloti is determined by a sulphated and acetylated glucosamine oligosaccharide signal. Nature 344, 781–784 (1990).
2. Dénarié, J., Debelle, F. & Promé, J.-C. Rhizobium lipo-chitooligosaccharide nodulation factors signaling molecules mediating recognition and morphogenesis. Annu. Rev. Biochem. 65, 503–535 (1996).
3. Sun, J. et al. Activation of symbiosis signaling by arbuscular mycorrhizal fungi in legumes and rice. Plant Cell 27, 823–838 (2015).
4. Maillet, F. et al. Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza. Nature 469, 58–63 (2011).
5. Venkateshwaran, M., Volkening, J. D., Sussman, M. R. & Ané, J.-M. Symbiosis according to the respective references.
6. Horowitz Brown, S., Zarnowski, R., Sharpee, W. C. & Keller, N. P. Morphological transitions governed by density dependence and lipoygenase activity in Aspergillus flavus. Appl. Environ. Microbiol. 74, 5674–5685 (2008).
7. Alfeldt, K. J., Brodhagen, M. & Keller, N. P. Aspergillus oxysporin signaling and quorum sensing pathways depend on g protein-coupled receptors. Toxins 4, 695–717 (2012).
8. Caanik, C. & Haynes, K. Candida glabrata displays pseudohyphal growth. FEMS Microbiol. Lett. 189, 115–120 (2000).
9. Lachke, S. A., Joly, S., Daniels, K. & Soll, D. R. Phenotypic switching and filamentation in Candida glabrata. Microbiology 148, 2661–2674 (2002).
10. Tati, S. et al. Candida glabrata binding to Candida albicans hyphae enables its development in oropharyngeal candidiasis. PLoS Pathog. 12, 1–21 (2016).
11. Spatafora, J. W. et al. The fungal tree of life: from molecular systematics to genome-scale phylogenies. Microbiol. Spectr. 5 (2017).
12. Gardes, M. & Bruns, T. D. ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Mol. Ecol. 2, 113–118 (1993).
13. Weisburg, W. G., Barns, S. M., Pelletier, D. A. & Lane, D. J. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173, 697–703 (1991).
14. Botha, A. et al. An isolation procedure for arachidonic acid producing Mortierella species. Antonie Van. Leeuwenhoek 75, 253–256 (1999).
15. Jargeat, P., Chaumeton, J.-P., Navaud, O., Vizzini, A. & Gryta, H. The Paxillus involutus (Boletales, Paxillaceae) complex in Europe: Genetic diversity and morphological description of the new species Paxillus cuprinus, typification of P. involutus s.s., and synthesis of species boundaries. Fungal Biol. 118, 12–31 (2014).
16. Castro, J. F. et al. Identification and heterologous expression of the chaxaminic biosynthesis gene cluster from Streptomyces leuconeoenicus. Appl. Environ. Microbiol. 81, 5820–5831 (2015).
17. Solomon, K. V. et al. Early-branching gut fungi possess a large, comprehensive pan-genome. Science 351, 1192–1195 (2016).
18. Haitjema, C. H. et al. A parts list for fungal celluloses revealed by comparative genomics. Nat. Microbiol. 2, 17087 (2017).
19. Hoffman, Y. et al. Isolation and characterization of a novel chrytid species (Phylum Blastocladiomycota), parasitic on the green alga Haematococcus pluvialis. Antonie Van. Leeuwenhoek 33 (1995).
20. Marx, D. H. & Bryan, W. C. Growth and ectomycorrhizal development of Marxw. 32, 148 (2016).
21. Johnson, C. J., Kernien, J. F., Hoyer, A. R. & Nett, J. E. Mechanisms involved in the triggering of neutrophil extracellular traps (NETs) by Candida glabrata during planktonic and biofilm growth. Sci. Rep. 7, 13065 (2017).
22. Pfannenstiel, B. T. et al. Revitalization of a forward genetic screen identifies three new regulators of fungal secondary metabolism in the genus Aspergillus. Mol. Cell. 8 7 (2017).
23. Powell, M. J. In Handbook of the Proteins (eds Archibald, J. M., Simpson, A. G. & Slomovits, C. H.) 1523–1558 (Springer, 2017).
46. Simonds, D. R. Phylogeny of Powellomycesae fam. nov. and description of Geramomyces variabilis gen. et comb. nov. Mycologia 103, 1411–1420 (2011).
47. Schloegel, L. M. et al. Novel, panoptic and hybrid genotypes of amphibian chytridiomycosis associated with the bullfrog trade. Mol. Ecol. 21, 5162–5177 (2012).
48. Singleton, L. L., Mihail, J. D. & Rush, C. M. Methods for Research on Soilborne Phytopathogenic Fungi (APS, 1992).
49. Bergdahl, G. & Forst, J. A. Early events of vesicular–arbuscular mycorrhiza formation on RT T-DNA transformed roots. N. Phytol. 108, 211–218 (1988).
50. Price, N. P. J. et al. Broad-host-range Rhizobium species strain NGR234 secretes a family of carbamoylated, and fucosylated, nodulation signals that are O-acetylated or sulphated. Mol. Microbiol. 6, 3575–3584 (1992).
51. Andriankajaza, A. et al. AP2-ERF transcription factors mediate Nod factor–dependent Mt ENOD11 activation in root hairs via a novel cis-regulatory motif. Plant Cell 19, 2866–2885 (2007).
52. Brookman, J. L. & Denning, D. W. Molecular genetics in Aspergillus fumigatus. Curr. Opin. Microbiol. 3, 468–474 (2000).
53. Nierman, W. C. et al. Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature 438, 1151–1156 (2005).
54. Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Erratum: near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 34, 888 (2016).
55. Pimentel, H., Bray, N. L., Puente, S., Melsted, P. & Pachter, L. Differential analysis of RNA-seq incorporating quantification uncertainty. Nat. Methods 14, 687–690 (2017).
56. Stajich, J. E. et al. FungiDB: an integrated functional genomics database for fungi. Nucleic Acids Res. 40, D675–D682 (2012).
57. Kanehisa, M. & Sato, Y. KEGG Mapper for inferring cellular functions from protein sequences. Protein Sci. 29, 28–35 (2020).
58. Weerasekera, M. M. et al. Culture media profoundly affect growth, adhesion and biofilm development. Mem. Inst. Oswaldo Cruz 111, 697–702 (2016).
59. Gonçalves, I. R. et al. Genome-wide analyses of chitin synthases identify expansion in the amphibian pathogen Pochonia chlamydosporia. Fungal Genet. Biol. 65, 69–80 (2014).
60. Bouyana, I. et al. What are the functions of chitin deacetylases in Aspergillus fumigatus? Front. Cell. Infect. Microbiol. 10, 28 (2020).
61. Larriba, E. et al. Sequencing and functional analysis of the genome of a nematode egg parasitic fungus, Pochonia chlamydosporia. Fungal Genet. Biol. 65, 69–80 (2014).
62. Petrash, S. et al. Infection strategies deployed by Botrytis cinerea, Fusarium acuminatum, and Rhizopus stolonifer as a function of tomato fruit ripening stage. Front. Plant Sci. 10, 223 (2019).
63. Chibucos, M. C. et al. An integrated genomic and transcriptomic survey of mucormycosis-causing fungi. Nat. Commun. 7, 12218 (2016).
64. Abramyan, J. & Stajich, J. E. Species-specific chitin-binding module 18 expansion in the amphibian pathogen Batrachochytrium dendrobatidis. mBio 3, e00150-12 (2012).
65. de Jonge, R. & Thonma, B. P. H. J. Fungal LysM effectors: extinguishers of host immunity? Trends Microbiol. 17, 151–157 (2009).
66. Nordberg, H. et al. The genome portal of the Department of Energy Joint Genome Institute: 2014 updates. Nucleic Acids Res. 42, D26–D31 (2014).
67. Sayers, E. W. et al. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 48, D9–D16 (2020).

Acknowledgements

We thank Dr. Hugues Driguez for providing some synthetic lipochitin standards for cultures of Aureobasidium pullulans, Protomyces inoxye, R. maculigeneus, and Taphrina virgicna; Dr. Chris Hittinger for a culture of S. cerevisiae; Dr. Brian Huddelson and Armila Francis for cultures of Fusarium oxysporum, Mucor circinelloides, P. syringae, P. ultimum, and Trichoderma harzianum; Dr. Paul Koch for cultures of Clariaeidea homeoecarpa, Fusarium fujikuroi, and Typhula incarnata; Drs. Timothy James and Rabern Simmons for cultures of Entophtysis luteolus, Paraphysoderma sedobokernis, and Powellomyces hirtus; Dr. Thierry Rouxel for a culture of L. maculans; Drs. Francis Martin and Annegret Kohler for their advice and for cultures of L. bicolor, C. geophilum, G. stellatum, and L. palustris; and Dr. Anne Pringle for cultures and samples of Amanita muscaria and A. thiersii. We also thank Marie Rodriguez, Juliette Teyssandier, Clément Bertrand, and Sandrine Puatte for technical assistance, and Drs. Jacob Golan and Katie Morey Gold for statistical advice. This work was supported by the French Agence Nationale de la Recherche under contract ANR-14-CE18-0008-01, the research project Engineering Nitrogen Symbiosis for Africa (ENSA), which is funded through a grant to the University of Cambridge by the Bill & Melinda Gates Foundation (OPP1172165), the Laboratoire d’Excellence entitled TULIP (ANR-10-LABX-41), the Plant-Microbe Interfaces Scientific Focus Area in the Genomic Science Program, the Office of Biological and Environmental Research in the US Department of Energy (DOE) Office of Science (Oak Ridge National Laboratory is managed by UT-Battelle, LLC, the DOE (contract DE-AC05-00R22725)), the United States Department of Agriculture (W501695), and by the National Science Foundation (DGE-1256259, PGRP – 1546742, and IOS-1331098). We thank the University of Wisconsin-Madison Advanced Opportunity Fellowship, Science, and Medicine Graduate Research Scholars program and the Ford Foundation Pre-Doctoral Scholarship for their support and funding of T.A. Rush.

Author contributions

J.M.A., G.B., N.P.K., M.R.S., and K.G. initiated and designed the project. S.F. and S.C. synthesized the CO and COO molecules. T.A.R., J.T., C.J., I.N.W., J.W.B., N.P.K., and J.M.A. designed and implemented the experiments with Aspergillus fumigatus and C. glabrata. T.A.R., K.R.C., P.J., K.G., and F.M. maintained the fungal isolates, collected and filtered fungal exudates, and performed the biological assays on legumes. T.A.R. performed the RNA-Seq experiment and M.K.P. analyzed the data. T.A.R., P.J., and B.K. conducted DNA e81194xtractions and PCR of fungal and bacterial cultures. J.M. propagated M. truncatula seeds and purified LCOs. M.K.P. analyzed the RNA-Seq data. Q.I.C. and J.L. collected and provided DNA and filtered fungal exudates from species of the Populus mycobiome (e.g., Russulas). C.S. and M.A.O. provided DNA and fungal extracts for the Neocallimastigales samples. V.P., A.B., P.J., A.H., A.Q.M., V.P., C.L., and G.B. planned and executed the HPLCMS experiments and analysis, as well as the experiments with the arbuscular mycorrhizal fungi. T.A.R., C.C.G., and D.K. predicted the chitin synthases, chitin deacetylases, acyltransferases, and LysM proteins. T.A.R., G.B., J.M.A., and N.P.K. wrote the manuscript with feedback from all the coauthors.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information is available for this paper at https://doi.org/10.1038/s41467-020-17615-5.

Correspondence and requests for materials should be addressed to G.B. or J.-M.A.

Peer review information Nature Communications thanks Nikolay Nifantiev, Giles Oldroyd and the other, anonymous, reviewers for their contribution to the peer review of this work.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory permission or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2020

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-17615-5 | www.nature.com/naturecommunications

NATURE COMMUNICATIONS | (2020) 11:3897 | https://doi.org/10.1038/s41467-020-17615-5 | www.nature.com/naturecommunications