Latissimus Dorsi Muscle Flap Transfer Through Endoscopic Approach Combined With the Implant After Tissue Expansion for Breast Reconstruction of Mastectomy Patients

Jian-Xun Ma
Peking University Third Hospital

Bi Li (libi0377@126.com)
Peking University Third Hospital

You-Chen Xia
Peking University Third Hospital

Wei-Tao You
Peking University Third Hospital

Jie Zhang
Peking University Third Hospital

Yi-Mou Sun
Peking University Third Hospital

Xu Chang
Peking University Third Hospital

Yue Lang
Peking University Third Hospital

Research Article

Keywords: endoscopic technique, latissimus dorsi muscle, implant, two-stage, breast reconstruction

Posted Date: September 29th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-888321/v1

License: ☝️ This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: The increasing demand for breast reconstruction and good outcomes lead plastic surgeons to look for a new method to obtain more natural and aesthetically pleasing appearance of the reconstructed breasts.

Methods: A retrospective review of thirty-one patients undergoing tissue expander (TE)/implant two-stage breast reconstruction with latissimus dorsi muscle flap (LDMF) transfer through endoscopic approach in Peking University Third Hospital from April 2016 to August 2020 was performed. The LDMF harvest time, drain time, and complications were reviewed. The 3D volume was obtained to assess the symmetry of bilateral breasts.

Results: The mean endoscopic LDMF harvest time was 90.4 minutes (70.0~120.0 min). The average drain time after the final reconstruction was 10.1 days (6~19 days). In the mean follow-up of 11.2 months (6~28 months), there were no postoperative complications noted. The average post-reconstruction breasts asymmetry was 4.8±2.4%, the reconstructed side achieved good volume symmetry to the contralateral side (P=0.256).

Conclusions: The novel type of two-stage breast reconstruction protocol, which includes tissue expansion followed by implant insertion with endoscopy-assisted LDMF transfer, could effectively reduce visible scars, avoid the patch effect, shorten the LDMF harvest time and reduce the incidence of complications. It is a promising method for breast reconstruction because it achieves good outcomes in the mastectomy patients.

Background

The number of patients suffering from breast cancer is increasing in China [1]. The deficiency of breasts by mastectomy greatly influences women's normal lives, thus the surgery of breast reconstruction is now much in demand.

There are various methods of breast reconstruction for choice. All the procedures are used to supply the excessive skin envelop and compensate for the breast tissue loss. As for autologous tissue reconstruction, the latissimus dorsi muscle flap (LDMF) has been a workhorse of reconstructive surgery, but it is always used for the reconstruction of small-to-medium breast [2, 3]. Moreover, the conventional harvest technique requires an obvious back incision that can be between 15 and 45 cm in length, in addition to an axillary incision for pedicle dissection or flap transfer. Nowadays, endoscopy-assisted techniques are being applied throughout plastic surgery, which makes it possible to harvest muscle flaps through a scarless approach.

In consideration of solely LDMF might not be enough for the total breast reconstruction, we innovatively combine endoscopic LDMF transfer with tissue expander (TE)/implant two-stage breast reconstruction.
Methods

Patients

The patients undergoing TE/implant two-stage breast reconstruction in our department from April 2016 to August 2020, in which endoscopy-assisted LDMF transfer was conducted on the second stage, were included in this study. The inclusion criteria were defined as female ≥ 20 years old and ≤ 55 years old; patients underwent unilateral mastectomy because of breast cancer; existence of latissimus dorsi muscle (LDM) and thoracodorsal artery confirmed by ultrasound. The exclusion criteria were defined as poor function of ipsilateral LDM; the contralateral breast had severe ptosis; other contraindications for LDMF or implant surgery.

This study was approved by Peking University Third Hospital Medical Science Research Ethics Committee (No. M2018278). Informed consent was obtained from all patients. All methods performed in this study were in accordance with the Declaration of Helsinki.

Surgical technique

On the first stage of breast reconstruction, the pectoralis major muscle and the serratus anterior muscle near the anterior axillary line are elevated from the chest wall via the mastectomy incision. Then a 400ml round TE (Guangzhou Wanhe Plastic Materials Co., Ltd., Guangzhou, China) is inserted into the subpectoral and sub-serratus pocket followed by setting drainage, and the edges between pectoralis major muscle and serratus muscle are sutured together to close the pocket. The volume of saline injected into the TE is determined by the assessment of skin flap viability. The skin incision is closed at last.

On the second stage, when the tissue expansion is finished, markings are prepared preoperatively while the patient is in an upright position. The markings include the midline, inframammary fold, lateral edge of breast tissue on the chest wall, and the lateral margin of the LDM along the posterior axillary line, inferior margin at the iliac crest, medial margin along the paravertebral origin, superior margin at the tip of the scapula, and also the incisions (Fig. 1).

During the operation, the patient is placed in a lateral decubitus position with the relevant upper extremity abducted and rested on a supporter (Fig. 2). The previous mastectomy incision extending to the posterior axillary fold is opened through the skin. The TE is identified and removed. In the meanwhile, the superior anterior border of LDM is exposed as surgeons continue the macroscopic subcutaneous and submuscular dissection to create an initial optic cavity, which serves as a landmark for subsequent endoscopic muscle dissection. The tumescent solution including 250 ml Lactated Ringer, 1 mg adrenaline, and 200 mg lidocaine, is injected into both subcutaneous and submuscular planes. Then a 10-mm-diameter rigid endoscope with a 30-degree-angle lens (KARL STORZ Gmbh & Co. KG, Germany) is set up together with a U-shaped retractor. The retractor and endoscope inserted through the incision are held by an assistant to maintain an optical cavity that facilitates the dissection. The retractor which has holes in the tip is connected with vacuum suction in order to suck out the cautery smoke and heat. The
subcutaneous plane is dissected first by a long monopolar electrosurgical hook, then the dissection is carried out along the undersurface of the muscle. The endoscopic procedures are performed under the view of a video monitor. The thoracodorsal vessels are identified underneath the LDM with the aid of an L-shaped fiber-optic retractor under direct vision, and the pedicle is marked with a vessel loop which makes it easy to ensure its safety. When the dissection is completed on both the superficial and deep planes, an additional 4-cm-long transverse incision is applied on the posterior waist under the level of the posterior superior iliac ridge. The muscle is disinserted from the paravertebral origin through both the axillary and posterior lumbar incision under the endoscopic view, and the inferoposterior part dissection is also facilitated by the approach of the lumbar incision (Fig. 3). The muscle then can be easily pulled out through the initial incision without tension and rotate to the recipient pocket temporarily. The donor site is checked and hemostasis is conducted with the aid of endoscopy, and a drain tube is applied through the lumbar incision followed by the closure of this incision.

The patient is shifted to the supine position. A capsulectomy is performed if necessary, and the pocket is irrigated with 60 ml saline plus gentamicin 80000 IU. The LDMF is inserted into the pocket, and the edges are fixed to the medial, inferior, and lateral aspects of the pocket through 4–6 external bolster sutures, which serve as a complete cover for the implant (Fig. 4). Then the patient is kept in the sitting position, and a breast implant sizer (MENTOR®, Mentor Medical System B.V., Leiden, Netherlands) is routinely used to facilitate the determination of final implant size and location (Fig. 5). A drain tube is introduced in the implant pocket followed by the permanent implant (MENTOR®, Mentor Medical System B.V., Leiden, Netherlands) placement under the LDMF. The skin incision is closed at last.

The drain tubes are removed when the output of each is less than 20 ml per day postoperatively. Cotton pads with elastic bandages are applied for two weeks and an elastic vest is to be worn for two more weeks. The immobilization of the relevant shoulder joint for two weeks is recommended. Afterwards, the shoulder movement range should be restored gradually.

Acquisition of the three-dimensional surface image (3D-SI)

3D-SI is acquired by VECTRA-XT stereophotogrammetry device (Canfield Scientific Inc, Fairfield, NJ, USA). Breast Sculptor® software (version 5.5.3, Canfield Scientific Inc, Fairfield, NJ, USA) is used to provide breast measurement data. When the breast boundaries are determined, the breast volume can be calculated automatically after the virtual chest wall is simulated from the landmarks by the software [4]. The 3D images of every patient were acquired at more than 6 months post-reconstruction follow-up visits.

Statistical analysis

Breast asymmetry is assessed using the following formula: \([\text{right breast volume} - \text{left breast volume}] / \text{the larger breast volume} \times 100\%\), which represents the volume difference between the two breasts [5]. The data are analyzed using paired-sample T test. The measurement data are expressed as mean ± standard deviation. P values are two-tailed, and P values < 0.05 are considered significant. All the data are analyzed using IBM SPSS Statistics 25.0.
Results

Patients

Thirty-one patients were included in this research. The average age was 37.6 years (26.0 ~ 50.0 years), and the average body mass index (BMI) was 21.4 kg/m2 (19.2 ~ 29.7 kg/m2). The clinical stages of breast cancer were I and II. The final pathological outcomes of the mastectomy specimens were invasive ductal carcinoma and ductal carcinoma in situ. Twenty-eight patients received chemotherapy. Two patients underwent radiation treatment at the end of tissue expansion and received LDMF transfer six months after the radiation. The demographic data are shown in Table 1.
Table 1
Demographic data of thirty-one patients undergoing endoscopy-assisted LDMF transfer combined with implant insertion after tissue expansion for breast reconstruction

Category	Mean ± SD / n(%)
Age	37.6 ± 6.4
Body mass index (kg/m²)	21.4 ± 2.3
Clinical stage (breast cancer)	
Stage I	13(41.9%)
Stage II	18(58.1%)
Final pathology	
Invasive ductal carcinoma	24(77.4%)
Ductal carcinoma in situ	7(22.6%)
Affected side	
Right	13(41.9%)
Left	18(58.1%)
Chemotherapy	
Yes	28(90.3%)
No	3(9.7%)
Radiation	
Yes	2(6.5%)
No	29(93.5%)
LDMF: latissimus dorsi muscle flap	

Reconstruction process

Ten patients were treated with immediate TE placement, and twenty-one patients were provided with delayed TE insertion. The average time of LDMF harvest using the endoscopic technique was 90.4 minutes (70.0 ~ 120.0 min). The average length of LDMF was 21.4 cm (18.0 ~ 27.0 cm), and the width was 13.8 cm (12.0 ~ 18.0 cm). The mean volume of the final implant was 228.7 ml (175.0 ~ 315.0 ml). The contralateral symmetry surgery included breast augmentation with an implant for six patients (three on the first stage and three on the second stage), breast augmentation with autologous fat grafting for four patients (three on the first stage and one on the second stage), and mastopexy for three patients.
The clinical data about the reconstruction process are shown in Table 2.

Category (n = 31)	Mean ± SD / n(%)
Reconstruction timing	
Immediate	10(32.3%)
Delayed	21(67.7%)
LDMF harvest time (min)	90.4 ± 13.7
LDMF length (cm)	21.4 ± 2.4
LDMF width (cm)	13.8 ± 1.4
Final implant volume (ml)	228.7 ± 34.2
Contralateral symmetry surgery	
Augmentation with an implant	6(19.4%)
Augmentation with fat grafting	4(12.9%)
Mastopexy	3(9.7%)
None	18(58.0%)

LDMF: Latissimus dorsi muscle flap

Post-reconstruction

The average drain time was 10.1 days (6~19 days). No complications like seroma, hematoma, or wound healing abnormality were observed. All the patients got a follow-up from 6 months to 28 months (mean 11.2 months) post-reconstruction, and 3D images were acquired. No severe capsular contracture happened. The average 3D-volume of the reconstructed breasts was 246.9 ml (182.8~327.8 ml), the average 3D-volume of the contralateral breasts was 250.2 ml (177.6~340.2 ml), and the average breasts asymmetry post-reconstruction was 4.8% (2.3%~12.3%). There was no significant difference between reconstructed and contralateral breasts (P = 0.256), which indicated that the bilateral breasts achieved good symmetry after reconstruction (Fig. 6~8). The relevant data are shown in Table 3.
Table 3
Clinical data post-reconstruction

Category (n = 31)	Mean ± SD / n(%)	P
Drain time (day)	10.1 ± 3.5	
Follow-up (month)	11.2 ± 4.9	
Complications		
Yes	0(0%)	
No	31(100%)	
Volume of reconstructed breast (ml)	246.9 ± 42.1	0.256
Volume of contralateral breast (ml)	250.2 ± 45.6	
Breasts asymmetry (%)	4.8 ± 2.4	

P: paired-sample T test

Discussion

Breast reconstruction is considered as a part of breast cancer treatment to restore breasts to their near-normal shape, size, and symmetry, and to enhance the quality of patients’ lives. Nowadays, the demand for breast reconstruction is increasing constantly, which leads plastic surgeons to look for new methods to obtain a more natural and aesthetically pleasing appearance of the reconstructed breasts.

Because a large amount of skin and a considerable volume of inner tissue have been lost due to mastectomy, the restoration of skin envelope and the compensation for the breast tissue loss are two key issues that need to be considered during reconstructive surgery. In fact, tissue expansion two-stage reconstruction, which could expand the pectoralis major muscle and its overlapped skin at the same time, so as to restore the soft tissue cover, has become the most popular reconstruction method in China. Then volume replacement techniques, like implants insertion or distant autologous tissue flaps transfer, could help to compensate for the tissue loss. Among these, the implant is one of the most frequently used for most Chinese patients. Yet the implant always makes the breast feel stiff and the transition area between breast and chest wall looks unnatural, especially when the implant size is large to fit the large contralateral breast. As for the autologous tissue flap, mastectomy with latissimus dorsi (LD) flap transfer could only be beneficial for women with small-to-medium-sized breasts with upper outer quadrant breast cancer who desire breast conservation surgery [2, 3, 6], because the provided volume is insufficient to achieve the total breast reconstruction.

In this study, we designed a new two-stage breast reconstruction protocol, which included tissue expansion on the first stage and implant insertion combined with LDMF transfer on the second stage. Using this method, the total extension of the pectoralis major muscle together with the transferred LDMF
provide a robust muscular cover over the permanent implant, which makes the breast feel soft and smooth the transition region between the breast mound and the chest wall. Moreover, the additional volume of the LDM adding to the reconstructed breast allows choosing a small-sized implant, which also enhances the touch feeling of the breast.

Feng et al. [7] reported a similar two-stage breast reconstruction protocol, but the difference was that the LDMF transfer was applied together with the tissue expander insertion on the first stage. Regarding tumor staging, it is important to identify patients who will require adjuvant radiation therapy. Under this circumstance, the LDMF should be preserved as a salvage option for use in a delayed reconstruction setting. Because the non-irradiated autologous tissue flap could provide non-irradiated cellular elements which can lead to the repair of the dermal fibrosis resulted from post-mastectomy radiation therapy [8]. Moreover, it also showed that the harvest of the LDMF is associated with a low complication rate and reliable results for delayed reconstruction of the irradiated breast [9, 10]. So, under consideration of the uncertainty about the application of radiation therapy in the immediate reconstruction cases, we leave the LDMF transfer on the second stage for breast reconstruction in this difficult to predict clinical scenario.

Previously, the breast envelope often needs to be enlarged with an LD skin paddle to maximize the size of the implant in a single-stage reconstruction. However, this leads to a skin patch presented on the reconstructed breast which does not match the color, texture, or thickness of the native breast skin [9]. In our new breast reconstruction protocol, tissue expansion and the use of endoscopic assistance in muscle harvest are operative modalities designed to avoid the cutaneous patch effect of the transposed musculocutaneous paddle, which results in no skin mismatch from the donor to the recipient site.

The conventional LD flap harvest requires a long incision that often results in an apparent scar over the back which becomes the main concern of the patients. The endoscopy-assisted muscle harvest technique is becoming popular in breast reconstruction because it obviates the need for an obvious posterior donor site scar by using a small lateral extension of the mastectomy incision.

Many techniques for creating the optical cavity for endoscopic operation have been described already. Some authors preferred manual traction with endoscopic retractors [11–13] or operated with the aid of traction stitches in the skin [14], while others favored gas inflation using trocars to fit the laparoscopic instruments [3, 15] or robotic arms [2, 9, 16, 17]. All these procedures achieved harvest of the LDMF with fewer visible scars than the conventional technique. Nevertheless, all of them created a vertical scar or three to four incisions vertically lined along the side of the chest for insertion of the trocars. Although a vertical incision is much easier to harvest the LDMF [13], a transverse incision is preferred for its better aesthetic outcome. Unlike setting the incision or multiple ports cut along the vertical posterior axillary line in other reports, we apply a transverse incision extending along the mastectomy scar, which enables the incision to be concealed under the axillary fold.

Dividing the LDM from its paravertebral origin and iliac attachments is the challenging part of the procedure, because of the narrow operative view and the difficulty in the resection of the distant LDM over the thorax anatomic curvature. Moreover, it is hard to control the bleeding during the medial dissection
encountering the lumbar perforators, precisely where the access is most restricted. Some studies reported techniques for LDMF harvest via the mastectomy incision and axillary incision under the endoscopic guidance [11, 18]. Although these techniques have the advantage of no scar on the back, various specific retractors and other self-designed instruments are essential for the procedure. Moreover, these techniques require rich endoscopic surgery experience and a long learning curve to achieve efficiency and safety, which are quite unfriendly to beginners.

We add one more approach for endoscopy-assisted LDMF harvest to balance the difficulty of the procedure and the complication issues against the negative effects of longer scars. In this study, an additional short incision was applied on the posterior waist under the level of the posterior superior iliac ridge to facilitate the LDMF harvest, which made it easy to divide the inferoposterior origin of the muscle and perform the hemostasis. Also, this incision can be concealed perfectly when wearing pants.

The endoscopic technique does have a learning curve because of the lack of tactile sensation when using the long endoscopic instruments and the lack of depth nature from the two-dimensional video screen. Therefore, endoscopy-assisted LDMF harvest does require prolonged surgical time. Although various techniques had been employed to facilitate this procedure, the average LDMF harvest time was still around 120 ~ 240 minutes [3, 15, 19]. Even the latest da Vinci robotic technique required over 120 minutes [16, 20]. The mean LDMF harvest time in this study was 90.4 minutes, which was much shorter than previous studies. The short duration was attributed to the aid of the supplementary posterior lumbar approach. To be sure, the endoscopy-assisted harvest time can also decrease once the learning curve is overcome by the constant use of this technique.

Previous studies have demonstrated that this scarless LDMF harvest technique can be performed with a lower complication rate compared with traditional open techniques [9]. And the most common complication of breast reconstruction with LD flap is donor site seroma [21]. There was no donor site seroma occurrence postoperatively in this study, which is better than the 28.6% seroma formation rate in research including 14 cases undergoing endoscopic LDMF harvest for breast reconstruction [3]. The good result can be attributed to the prolonged drainage periods. Compared with 8.0 days in a recent study applying endoscopy-assisted LDMF harvest for breast reconstruction [18], the mean drain time in our research was 10.1 days. As for the reason, the strict criteria for drain removal was considered (less than 20 ml VS 50 ml per day). Although the surgical drain tubes were kept for a longer time, the relevant complications like secondary infection or wound dehiscence did not arise due to the meticulous medical care.

There were several limitations in this study. First, the sample size of this research was small. Therefore, further studies involving a larger number of patients are needed to evaluate the effectiveness and safety of this type of breast reconstruction protocol. Second, although the mean follow-up time reached 11.2 months, it is not long enough to reveal unpleasant complications like capsular contracture which might occur many years after the surgery. Additionally, the final outcomes were evaluated just by the volume symmetry, while the contour symmetry including base width and projection are also important indicators
to be assessed, which is believed to be involved in the subsequent researches. Despite the limitations, early success in this type of breast reconstruction protocol has indicated a good application prospect.

Conclusions

To the best of our knowledge, the novel type of two-stage breast reconstruction protocol, which includes tissue expansion on the first stage and implant insertion with endoscopy-assisted LDMF transfer on the second stage, is reported for the first time in China. During the process, the use of endoscopic technique and a supplementary posterior lumbar approach allow the procedures to reduce visible scars, avoid the patch effect, shorten the LDMF harvest time, and decrease the incidence of complications. The reported protocol is useful for breast reconstruction because it results in an objectively smaller scar at the donor site while achieves a good outcome of the reconstructed breast according to the evaluation of our patients.

Abbreviations

LDMF: latissimus dorsi muscle flap; TE: tissue expander; LDM: latissimus dorsi muscle; BMI: body mass index; LD: latissimus dorsi

Declarations

Ethics approval and consent to participate

All methods were performed in accordance with the Declaration of Helsinki. The protocol used in this study was approved by Peking University Third Hospital Medical Science Research Ethics Committee (No. M2018278). Informed consent was obtained from all patients by written document.

Consent for publication

Informed consent for publication was obtained by written document from all patients whose photos were used in this manuscript.

Availability of data and materials

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Competing interests

The authors declare that they have no competing interests.

Funding
This study was supported by a grant from Key Clinical Projects of Peking University Third Hospital (No. BYSY2017003).

Authors’ contributions

Study concept and design: BL, YCX; Acquisition of data: JXM, YMS, YL; Data analysis: JXM, XC; Manuscript preparation: JXM; Study supervision: WTY, JZ. All authors have read and approved the submitted version of manuscript, and have agreed to be personally accountable for the author's own contributions.

Acknowledgements

Not applicable.

References

1. Huang NS, Quan CL, Ma LX, Si J, Chen JJ, Yang BL, Huang XY, Liu YG, Shen ZZ, Shao ZM, Wu J. Current status of breast reconstruction in China: an experience of 951 breast reconstructions from a single institute. Gland Surg. 2016;5(3):278–86.

2. Lai HW, Chen ST, Lin SL, Lin YL, Wu HK, Pai SH, Chen DR, Kuo SJ. Technique for single axillary incision robotic assisted quadrantectomy and immediate partial breast reconstruction with robotic latissimus dorsi flap harvest for breast cancer: a case report. Medicine (Baltimore). 2018;97(27):e11373.

3. Iglesias M, Gonzalez-Chapa DR. Endoscopic latissimus dorsi muscle flap for breast reconstruction after skin-sparing total mastectomy: report of 14 cases. Aesthetic Plast Surg. 2013;37(4):719–27.

4. Ma JX, Xia YC, Li B, Zhao HM, Lei YT. Unilateral tissue expander/implant two-stage breast reconstruction with the assistance of three-dimensional surface imaging. Aesthetic Plast Surg. 2020;44(1):60–9.

5. Tepper OM, Karp NS, Small K, Unger J, Rudolph L, Pritchard A, Choi M. Three-dimensional imaging provides valuable clinical data to aid in unilateral tissue expander-implant breast reconstruction. Breast J. 2008;14(6):543–50.

6. Lee J, Jung JH, Kim WW, Park CS, Lee RK, Park HY. Endoscopy-assisted muscle-sparing Latissimus Dorsi muscle flap harvesting for partial breast reconstruction. BMC Surg. 2020;20(1):192.

7. Feng J, Pardoe CI, Mota AM, Chui CH, Tan BK. Two-stage latissimus dorsi flap with implant for unilateral breast reconstruction: getting the size right. Archi Plast Surg. 2016;43(2):197–203.

8. Kronowitz SJ. Delayed-immediate breast reconstruction: technical and timing considerations. Plast Reconstr Surg. 2010;125(2):463–74.

9. Clemens MW, Kronowitz S, Selber JC. Robotic-assisted latissimus dorsi harvest in delayed-immediate breast reconstruction. Semin Plast Surg. 2014;28(1):20–5.
10. de Runz A, Bocca D, Bekara F, Chaouat M, Mimoun M. Outcome of 122 delayed breast reconstruction following post-mastectomy radiotherapy: the scarless latissimus dorsi flap with tissue expansion technique. Ann Chir Plast Esthet. 2017;62(1):23–30.

11. Yang CE, Roh TS, Yun IS, Kim YS, Lew DH. Immediate partial breast reconstruction with endoscopic latissimus dorsi muscle flap harvest. Arch Plast Surg. 2014;41(5):513–9.

12. Masuoka T, Fujikawa M, Yamamoto H, Ohyama T, Inoue Y, Takao T, Hosokawa K. Breast reconstruction after mastectomy without additional scarring: application of endoscopic latissimus dorsi muscle harvest. Ann Plast Surg. 1998;40(2):123–7.

13. Salibi A, Hart AM. Articulated endoscopic linear cutter stapler facilitates minimal access harvest of the latissimus dorsi muscle flap for chest wall reconstruction in Poland syndrome. Plast Reconstr Surg. 2014;134(5):856e-8e.

14. Serra-Renom JM, Serra-Mestre JM, Martinez L, D’Andrea F. Endoscopic reconstruction of partial mastectomy defects using latissimus dorsi muscle flap without causing scars on the back. Aesthetic Plast Surg. 2013;37(5):941–9.

15. Xu S, Tang P, Chen X, Yang X, Pan Q, Gui Y, Chen L. Novel technique for laparoscopic harvesting of the latissimus dorsi muscle flap with prosthesis implantation for breast reconstruction: a preliminary study with 2 case reports. Medicine (Baltimore). 2016;95(46):e5428.

16. Selber JC, Baumann DP, Holsinger FC. Robotic latissimus dorsi muscle harvest: a case series. Plast Reconstr Surg. 2012;129(6):1305–12.

17. Ichihara S, Bodin F, Pedersen JC, Porto de Melo P, Garcia JC Jr, Facca S, Liverneaux PA. Robotically assisted harvest of the latissimus dorsi muscle: a cadaver feasibility study and clinical test case. Hand Surg Rehabil. 2016;35(2):81–4.

18. Liu C, Luan J, Ouyang Y, Zhuang Y, Xu B, Chen L, Li S, Fu S, Xin M. Breast reconstruction in Poland syndrome patients with latissimus dorsi myo flap and implant: an efficient endoscopic approach using single transverse axillary incision. Aesthetic Plast Surg. 2019;43(5):1186–94.

19. Missana MC, Pomel C. Endoscopic latissimus dorsi muscle flap harvesting. Am J Surg. 2007;194(2):164–9.

20. Chung JH, You HJ, Kim HS, Lee BI, Park SH, Yoon ES. A novel technique for robot assisted latissimus dorsi flap harvest. J Plast Reconstr Aesthet Surg. 2015;68(7):966–72.

21. Yezhelyev M, Duggal CS, Carlson GW, Losken A. Complications of latissimus dorsi flap breast reconstruction in overweight and obese patients. Ann Plast surg. 2013;70(5):557–62.

Figures
Figure 1

Marking before the endoscopic LDMF transfer combined with implant insertion on the second stage of breast reconstruction. The midline, borders of bilateral breasts, and inframammary fold are marked on the chest wall. The mastectomy incision extending to the posterior axillary fold is marked as the endoscopic approach. The borders of the latissimus dorsi muscle are marked on the back: the anterior border can be palpated during active muscle contraction, the superior border is marked from the tendinous insertion along the tip of the scapula to the medial border along the paravertebral origin, and the inferior margin is marked at the iliac crest. LDMF: latissimus dorsi muscle flap.
Figure 2

The operative position of the patient on the second stage of breast reconstruction. The patient is placed in a lateral decubitus position with the affected side upper extremity abducted and rested on a supporter.

Figure 3

Endoscopic approach to achieve the harvest of LDMF with the aid of lumbar incision. The previous mastectomy incision extending to the posterior axillary fold is used as the approach to perform the endoscopy-assisted LDMF harvest. An additional lumbar incision is applied to facilitate the inferoposterior part dissection of the muscle flap. LDMF: latissimus dorsi muscle flap.
Figure 4

The transfer of LDMF as an additional cover for the final implant (A) LDMF is harvested using endoscopic technique through previous mastectomy incision approach and rotates to the affected chest wall. (B) The muscle flap is inserted into the expanded pocket, and the edges are fixed to the pocket through external bolster sutures. LDMF: latissimus dorsi muscle flap.

Figure 5

Sizer-assisted observation of bilateral breasts symmetry intra-operation (A) The breast implant sizer has the same volume and three-dimensional morphology as the related silicone gel implant. (B) The patient has the sitting position during operation after the placement of the sizer, presenting the actual reconstructed outcome, which is useful for the surgeon to choose the ideal breast implant.
Figure 6

The outcome of tissue expansion/implant with endoscopy-assisted LDMF transfer two-stage breast reconstruction at thirteen-month follow-up (A) A 33 years old woman received modified radical mastectomy because of breast cancer, then a delayed tissue expander insertion was performed. (B) The patient underwent implant insertion with endoscopy-assisted LDMF transfer on the second stage of breast reconstruction. The frontal, lateral and oblique pictures of the reconstructed breast were obtained at thirteen-month follow-up. The 3D image indicated the two breasts achieved good volume symmetry. The back view showed the scar of the lumbar incision was not obvious. LDMF: latissimus dorsi muscle flap.
Figure 7

The outcome of the patient who was applied tissue expansion/implant with endoscopy-assisted LDMF transfer two-stage breast reconstruction combined with implant augmentation of the contralateral side at twelve-month follow-up (A) A 33 years old woman underwent modified radical mastectomy for left breast cancer, then she received radiation therapy. After that, the patient was applied a delayed tissue expander insertion on the first stage of left breast reconstruction, in the meanwhile she also received right nipple-sparing mastectomy because of fibroadenomatoid adenosis, followed by right breast augmentation with an implant. (B) The patient underwent implant insertion with endoscopy-assisted LDMF transfer on the second stage of left breast reconstruction. The frontal, lateral and oblique pictures of the reconstructed breast were obtained at twelve-month follow-up. The 3D image indicated the two breasts achieved good volume symmetry. The back view showed the additional incision could be concealed when wearing pants. LDMF: latissimus dorsi muscle flap.
Figure 8

The outcome of the patient who was applied tissue expansion/implant with endoscopy-assisted LDMF transfer two-stage breast reconstruction combined with implant augmentation of the contralateral side at twenty-month follow-up (A) A 50 years old woman underwent modified radical mastectomy for left breast cancer. After that, she was applied a delayed tissue expander insertion on the first stage of breast reconstruction. (B) The patient underwent implant insertion with endoscopy-assisted LDMF transfer on the second stage of left breast reconstruction. In the meanwhile, she also underwent right breast augmentation with an implant. The frontal, lateral and oblique pictures of the reconstructed breast were obtained at twenty-month follow-up. The 3D image indicated the two breasts achieved good volume symmetry. The back view showed the scar of the lumbar incision was almost invisible. LDMF: latissimus dorsi muscle flap.