Floristic Studies in Suez Canal Region with Seventeen New Records to the Area

Sara Hassanen, Elsayeda Gamal Eldin, Wafaa Kamel and Yasmin Hassan*

Botany & Microbiology Department, Faculty of Science, Suez Canal University, Ismailia-Egypt.
Corresponding Author: yasmin_ibrahim@science.suez.edu.eg

Abstract
The present study provides a detailed flora composition and soil attributes of Suez Canal region. This region was represented in Ismailia-Port Saïd highway, Ismailia city and Ismailia-Suez highway which wasn’t surveyed before as a whole region. The species collection was preformed seasonally from 2020 till 2022. The investigated area comprised of a wide range of habitats namely, waste land, cultivated land, irrigated areas, desert land, salt marshes, edge of cultivation and canal bank. A total of 190 species were recorded in the study area. They include 24 sub-species and 14 varieties belonging to 127 genera and 39 families. The most species-rich families were represented by Poaceae (36 species), Amaranthaceae (26 species), Asteraceae (18 species), Brassicaceae (12 species) and Fabaceae (10 species). Therophytes were the most dominate life-form in the study area represented by 58.5 percent, followed by chamaephytes (20.5%), hemicryptophytes (7.8%), cryptophytes (7.89%), then phanerophytes (4.7%) and parasites 0.5%. This study revealed seventeen species as new records to the flora of the study area. Out of these six species are added as new records to the flora of the Mediterranean region, Eastern desert and Isthmic desert.

Keywords: Flora composition, Soil attributes, Geographical distribution, New records, Suez Canal region

Introduction
Suez Canal is one of the most important waterways in the world due to its unique location as it connects north to south by joining Port Saïd on Mediterranean Sea with Suez on Gulf of Suez. At the same time, it is considered the shortest water way between Europe and India for the ships without navigating around Africa as well as from the west facing the Nile River and from the east facing Sinai Peninsula. [https://earth.esa.int/web/earth-watching/image-of-the-week/content/-/article/suez-canal-egypt/ accessed in (25/2/2022)].

The current literature data revealed that the Flora of the Suez Canal not yet covered with sufficient research. But all the studies applied on this region were from the ecological point of view and targeted limited areas of the study region. Some studies were applied on areas near Ismailia - Port Saïd highway among them Zahran et al. (1989), El-Demerdash et al. (1990), Khedr & Zahran (1999), Mashaly et al. (2002), Shaltout & Galal (2007), Abd El-Hamid & Kamel (2010) and Serag et al. (2015). Moreover, the floristic composition of Ismailia city wasn’t studied before in taxonomy point of view. But there were some ecological studies on and near this region e.g., Abd El-Hamid (1996), Abd El-Hamid (2005) Mohamed & Azer (2012) and El Bous & Abd El-Hamid (2018). Finally, the flora of Ismailia-Suez highway was analyzed by some authors but only in restricted localities e.g., Danin (1974) Mashaly et al. (1995), Abd El-Ghani (1998), Abd El-Ghani et al. (2013), El-Amier & Abdel-Kader (2015), Abd El-Hamid (2017), Hamdy et al. (2017), Azer (2018) and Radi et al. (2020).

There are many threats facing the wild flora of Suez Canal region. These are reconstruction and expansion of the highways. Both Ismailia - Port Saïd and Ismailia – Suez highways were reconstructed and expanded many times, Ismailia – Suez highway still reconstructed from 2020 till nowadays, so this led to the erosion of the natural habitats of the wild plants permanently. The construction of bridges in Ismailia city in some localities adjacent to Suez Canal e.g., Old University Street, in front of maritime navigation and guidance center. Renewing and repairing the roads in Ismailia city as in Old University area, Al -Ersal and Coca-Cola company area. Moreover, the establishing of new resorts along Ismailia - Port Saïd highway and Ismailia – Suez highway were the major thearts for the wild plants.
Climate is the most affecting factor not only on determining the distribution of the plants but also on the growth, development, distribution, and densities of the vegetation of whole the earth, see also (Amer & Elshayeb, 2020). Therefore, the great variation in the climatic conditions that Egypt faces nowadays greatly harms the flora.

However, the excellent Egyptian flora given by Boulos (1999, 2000, 2002, 2005) was well studied but there are many gaps such as geographical distribution of many species still needed to be updated, the flora of some regions isn’t well explored, some plant species need intensive collections and studies, the names of many families and taxa must be upated.

So, this study aims to investigate the flora composition of the study area by collecting all wild plants from their natural habitats, updating all families, genera, and species names according to international reference database, giving the geographical distribution for all recorded taxa, studying some ecological data and showing the effect of the highway’s reconstruction and construction of bridges on the wild plant habitats.

Study area

The present study was performed in Suez Canal Road which is adjacent and parallel to the Suez Canal from Port Said to Suez and its length is about 193Km long. The longest distance between the road and Suez Canal is approximately eight km. It is located between 30° 27’ 17.99”N to 32° 20’ 59.99” E.

The study area included three regions (Ismailia-PortSaïd highway, Ismailia city and Ismailia-Suez highway). Ismailia-Port Saïd highway which is about 75 km long, including several towns and villages (Al-Qantara West and Abu Khaleefa being the major towns), Map (1). This sector includes mango plantations, crop farms, waste lands, salt marshes and muddy soil areas.

Ismailia city is about 210 km, located between 30°35’59.99” N to 32° 16’ 60.00” E. It shows some variation in the habitats like waste land, sand plains, irrigated areas, canal bank. The plants collections include different regions which are parallel or near Suez Canal region like Al -Ersal, Old University Street, Al-Danvaa club and others, Map (2).

Ismailia-Suez highway connects Ismailia with Suez (90 km long); most of the western side of the road is still desert. This sector is characterized by sand plains, undulating sand dunes, plateaus, salt marshes and scant irrigated areas. A large number of towns and villages are scattered along the way such as (Abu Sultan, Fayid, Fanara, Kasfareet and Geneifa), Map (3).

The study area has a subtropical desert / low-latitude, arid hot climate. It is situated in or near the subtropical desert biome according to the Köppen-Geiger classification (BWh) and the Holdridge life zones system of bioclimatic classification. http://www.ismailia.climatemps.com (accessed in 4/9/202).
Map (2). Collection sites of Ismailia city. 1: Al Ersal, 2: The united nation monitoring the truce, 3: Old University Street, 4: Nemra 6 street, 5: Al Danvaa club, 6: Mercure Ismailia Forsan Island, 7&8: Mohamed Ali Lake, 9: Coca-Cola company road, 10: Al Allam.

Map (3). Collection sites of Ismailia-Suez highway. 1: Nefesha, 2, 3 & 4: Serapeum, 5: Abu Sultan, 6, 7: Fayid, 8: Fanara, 9&10: Kasfareet, 11: Geneifa.
Material and Methods

This study based on freshly collected wild plants from their natural habitats in the period from 2020 to 2022 from the study area including four seasons. All voucher specimens were deposited in Suez Canal University Herbarium (SCU-I).

The studied specimens were identified according to Boulos (1999, 2000, 2002, 2005) and Täckholm (1974). In addition to using the plant flora of different neighboring countries were also used to achieve an accurate identification e.g., Zohary (1966, 1972) and Feinbrun-Dothan (1978, 1986) and Migahid (1978). The recent valid plant names of the recorded species were revised and verified with international reference databases. While family and species names were updated according to Hosni & Shamso (2022). The geographical distribution of the recorded species in Egypt was given according to Boulos (2009).

To study some ecological data, soil samples in triples was collected from each of the 10 studied sites in each three regions (31 sites) at depth of 15-20cm. The composite soil samples were passed through a 2 mm sieve to get rid of gravel and debris then the saturated soil paste extract were performed on the samples. Chemical soil analysis was applied to soil samples. Electrical conductivity (EC) of the saturated soil paste extract expressed as (dSm-1) was measured using the conductivity meter model Jenway 3310 according to Richards (1954). Soil pH was determined by bench-type Beckman glass electrode pH meter, in 1:2.5 soil water suspensions according to Page et al. (1982). Calcium and magnesium were extracted in the saturated soil and determined by volumetric titration with ethylene diamine tetra acetic acid (EDTA). Sodium and Potassium were determined by Flame photometer Chloride was determined by titration with silver nitrate, bicarbonate was determined by titration with sulphuric acid according to Page et al. (1982). Total carbonates were determined using Collin’s calcimeter, (Piper, 1950).

Statistical analyses were performed for soil analysis results using SPSS statistical package (SPSS Inc., Version 11.5).

Results

This study revealed a total of 190 species including 24 sub-species and 14 varieties of flowering plants belonging to 127 genera and 39 families. The most species-rich families were Poaceae (36 species), Amaranthaceae (26 species), Asteraceae (18 species), Brassicaceae (12 species), and Fabaceae (10 species). Finally, twenty-three families represented the monogeneric families e.g., Lamiaceae, Commelinaceae, Euphorbiaceae and Nyctaginaceae, Table (1).

Some species were recorded in the study area showing great dominance having 64 species (33.6%) among them Bassia indica, Zygophyllum album and Chenopodium murale. While Ismailia - Port Saïd highway and Ismailia city flora showed the highest similarity by 27 species representing 14.2 % of the total number of species, among them Mesembryanthemum forsskål i and Veronica persica. Moreover, Ismailia -Suez highway and Ismailia-Port Saïd highway shared 18 species representing 9.4% e.g, Deverra tortuosa, Anabasis articulata. Finally, Ismailia and Ismailia - Suez highway showed the lowest similarity by 9 species representing 4.7% e.g. Calotropis procera and Erodium glaucophyllum, Table (1).

This study included 109 annuals, 79 perennials and two biennials. The life forms spectrum of the Suez Canal region showed some variations. Therophytes came first with a percentage of 58.5%. Followed by Chamaephytes represented by 20.5%, then Hemicryptophytes and Cryptophytes which were nearly equal represented by 7.8% and 7.89%. Moreover, Phanerophytes represented by 4.7%, at last came parasites represented with lowest percentage of 0.5% Table (1) and Fig. (1).
Table (1). List of recorded species in the study area, life forms, habitats and geographical distribution of the recorded species.

Duration: Ann = annual, Bi = biennial, Per = perennial. **Life form:** Th = Therophytes, H = Hemicryptophytes, N. Ph = Nanophanerophytes, Ch = chamaephytes, C = Cryptophytes, P = Parasites. **Habitats:** CL: cultivated lands, DL: desert land, EC: edge of cultivation, ES: edge of salt marshes IR: irrigated lands, SC: shore of canal, SM: salt marshes, WL: waste land. **Phytogeographical regions of Egypt according to Boulos (2009).**

N = Nile region, O= Oases of the Western Desert, M: The Mediterranean coastal strip, D=All the deserts of Egypt, GE= Gebel Elba, R= Red Sea coastal strip and S= Sinai Peninsula.

Asterisk (*) refers to new recorded species to the study regions, (+ = recorded, - = not recorded).

Family	Species	Duration	Life form	Habitat	Geographical distribution				
Amaranthaceae (incl. Chenopodiaceae)	Alternanthera sessilis (L.) DC.	Per	H	WL	N, M, O, De	+	-	-	
Amaranthaceae (incl. Chenopodiaceae)	Amaranthus hybridus L. subsp. hybridus	Ann	Th	CL, IR, WL	N, O, M, S	+	+	+	
Amaranthaceae (incl. Chenopodiaceae)	A. italicus L. subsp. oleraceus (L.) Costea	Ann	Th	CL, IR	N, M, S	+	+	+	
Amaranthaceae (incl. Chenopodiaceae)	A. viridis L.	Ann	Th	CL, IR, WL	N, O, M, De, S	+	+	+	
Amaranthaceae (incl. Chenopodiaceae)	Amaranthus arctocanatus (Forssk.) Moq.	Per	Ch	DL, WL	O, M, D, S	+	-	+	
Amaranthaceae (incl. Chenopodiaceae)	A. setifer Moq.	Per	Ch	DL	De, R, GE, S	-	-	+	
Amaranthaceae (incl. Chenopodiaceae)	Arthrocnemum macrostachyum (Moric.) Piraino & G. Kaderiet	Per	Ch	SM, WL	N, O, M, De, R, S	+	-	+	
Amaranthaceae (incl. Chenopodiaceae)	Arctotheca lindlyi Moq. subsp. inflata (F. Muell.) P. G. Wilson	Ann	Th	CL, WL	N, M, D, S	+	+	+	
Amaranthaceae (incl. Chenopodiaceae)	A. prostrata Boucher ex DC.	Ann	Th	CL, IR	N, M, S	+	+	-	
Amaranthaceae (incl. Chenopodiaceae)	Bassia eriophora (Schrad.) Asch.	Ann	Th	DL	De, S	-	-	+	
Amaranthaceae (incl. Chenopodiaceae)	B. indica (Wight) A.J. Scott.	Ann	Th	DL, WL	N, O, M, D, S	+	+	+	
Amaranthaceae (incl. Chenopodiaceae)	B. muricata (L.) Asch.	Ann	Th	DL, EC, WL	O, M, D, S	+	+	+	
Amaranthaceae (incl. Chenopodiaceae)	Chenopodium album L.	Ann	Th	CL, DL, WL	N, O, M, D, S	+	+	+	
Amaranthaceae (incl. Chenopodiaceae)	*C. ficifolium Sm.	Ann	Th	CL, WL	N, De	+	+	+	
Amaranthaceae (incl. Chenopodiaceae)	C. glaucum L.	Bi	Th	DL	N, M	-	-	+	
Amaranthaceae (incl. Chenopodiaceae)	C. mural L.	Ann	Th	CL, DL, ES, IR, WL	N, O, M, D, R, GE, S	+	+	+	
Amaranthaceae (incl. Chenopodiaceae)	Cornulaca monacantha Delile	Per	Ch	DL, WL	O, M, D, S	+	+	+	
Amaranthaceae (incl. Chenopodiaceae)	Dipsacus ambrosioides (L.) Mosyakin & Clements.	Ann	Th	CL, IR	N, M, O, S	+	+	-	
Amaranthaceae (incl. Chenopodiaceae)	Halocnemum strobilaceum (Pall.) M.Bieb	Per	Ch	DL, ES	N (northern delta), M, D, R, S	-	+	+	
Amaranthaceae (incl. Chenopodiaceae)	Halopylos amplexicanalis (Vahl) Ung. -Sternb.	Ann	Th	ES	N (northern delta), O, M, S	+	-	-	
Amaranthaceae (incl. Chenopodiaceae)	H. perfoliata (Forssk.) Asch.	Per	Ch	SM	M, R, S	-	-	-	
Amaranthaceae (incl. Chenopodiaceae)	Haloxylon salicornicum (Moq.) Bunge ex Boiss.	Per	Ch	DL, ES, SM, WL	O, M, D, R, S	+	+	+	
Amaranthaceae (incl. Chenopodiaceae)	H. scoparium Pomel.	Per	Ch	DL, SM, WL	M, D, S	+	+	+	
Amaranthaceae (incl. Chenopodiaceae)	Salicornia europaea L.	Ann	Th	SM	N, O, M, S	+	-	-	
Amaranthaceae (incl. Chenopodiaceae)	Salsoia imbricata Forssk. subsp. imbricata	Per	Ph	DL	N, O, D, GE, S	-	-	-	
Amaranthaceae (incl. Chenopodiaceae)	Suaeda vermiculata (Forssk.) Asch.	Per	Ph	ES	N, O, M, D, R, S	+	-	-	
Apiaceae	Anethum sylvestre L.	Ann	Th	CL, IR	N, O, M, S	+	+	+	
Apiaceae	Deverra tortuosa (Desf.) DC.	Per	Ch	DL	O, M, D, R, S	+	-	+	
Apiaceae	*Foeniculum vulgare Mil. subsp. vulgar	Per	Ch	DL	IR	S	-	+	+
Apocynaceae (incl. Asclepiadaceae)	Calotropis procera (Aiton) W.T. Aiton	Per	Ph	DL, EC, WL	N, O, D, R, GE, S	-	+	+	
Apocynaceae (incl. Asclepiadaceae)	Cynanchum acutum L. subsp. acutum	Per	H	CL, IR, WL	N, O, M	+	+	+	
Apocynaceae (incl. Asclepiadaceae)	Bidens pilosa L.	Ann	Th	CL, IR, WL	N, M, De, S	+	+	-	
Apocynaceae (incl. Asclepiadaceae)	Brocchia cinerea (Delile) Vis.	Ann	Th	DL	M, D, R, S	-	-	-	
Apocynaceae (incl. Asclepiadaceae)	Ditrichicra viscosa (L.) Greuter	Per	Ch	DL	N, M, S	-	-	+	
Apocynaceae (incl. Asclepiadaceae)	Eclipta prostrata L.	Ann	Th	EC	N, O, M	-	-	-	
Apocynaceae (incl. Asclepiadaceae)	Erigeron bonariensis L.	Ann	Th	CL, IR, WL	N, O, M, D, S	+	+	+	
Apocynaceae (incl. Asclepiadaceae)	*Eschscholzia stricta (Wild.) Raizada	Per	Ch	DL	GE, S	-	-	-	
Apocynaceae (incl. Asclepiadaceae)	*Gaillardoa pavijoli Cav.	Ann	Th	CL	N	+	+	+	
Apocynaceae (incl. Asclepiadaceae)	Launaea amm-aminea N. Killi	Per	Ch	DL	De, S	-	-	+	
Family	Species	Subspecies/	Genus and Species	Location	Notes				
-----------------	--	------------	---	----------	---------				
Asteraceae	L. mucronata (Forssk.) Maschil. subsp. mucronata	Per Ch	DL, EC, WL	N, O, D, R, GE, S	- + +				
Limbarda	C. articulatus	Per Ch	DL	N, O, M, D, R, GE, S	- - +				
Pulicaria incisa (Lam.) DC. subsp. sandoleane E. Gamal Eldin.	Per Ch	DL	N, O, M, D, R, GE, S	- - +					
P. undulata (L) C. A. Mey.subsp. undulata	Per Ch	DL	N, O, M, D, R, GE, S	- - +					
Plucheia diasoris (L.) DC.	Per Ph	CL, DL, ES, SM WL	N, O, M, D, R, GE, S	+ + +					
Reichardia tingitana (L) Roth.	Ann Th	DL, EC, WL	N, O, M, D, R, GE, S	+ + +					
Senecio glaucus L. subsp coronopifolius (Maire.) C. Alexander.	Ann Th	DL, EC, WL	N, O, M, D, R, GE, S	+ + +					
Silvium marianum (L) Gaertn. Var. marianum.	Ann Th	IR	N, O, M, S	- + -					
Sonchus oleraceus L.	Ann Th	CL, DL, EC, IR, SC, SM WL	N, O, M, D, R, GE, S	+ + +					
Urospermum picroides (L.) F.W. Schmidt.	Ann Th	EC, WL	N, O, M, D, GE, S	+ + +					
Aizoaceae	Mesembryanthemum crystallinum L.	Ann Th	EM, WL	M, N, D, S	+ + -				
M. cryptantha HOOK.	Ann Th	CL, WL	M, O, D (Wadi Natrun), S	+ + -					
M. nodiflorum L.	Ann Th	CL, WL	M, N, S	+ + -					
Trianthema portulacastrum L.	Ann Th	WL	GE	- - -					
Boraginaceae	Gastrocyte hispida (Forssk.) Bunge.	Ann Th	CL, IR	N, M, D, S	+ + +				
Heliotropium aegyptiacum Lehm.	Ann Th	DL	N, GE	- - +					
H. bacciferum Forssk.var bacciferum	Per Ch	DL	N, D, R, GE, S	- - +					
H. digynum (Forssk.) Asch.	Per Ch	DL	N, M, D, R, S	- - +					
Brassica nigra (L) Koeh.	Ann Th	CL	N, O, M, S	- + +					
*Camile maritima Scop. subsp. aegyptiaca (Wildl.)Nyman	Ann Th	DL	N, M, S	- + +					
Cyniga tournefortii (Gouan) Anacar.et al.	Ann Th	EC, WL	N, O, M, D, S	+ + +					
Ereobium aegyptiacum (Spreng.) Asch. var aegyptiacum.	Bi Th	DL	N, O, M, D, R, S	- - +					
Eruca vesicaria (L.) Cav.	Ann Th	CL, WL	N, O, M, De, S	+ + +					
Lepidium didymum L.	Ann Th	CL, IR, WL	N	+ + +					
*Matthiola longipetala (Vent.) DC. subsp. bicornis (Sm.) P.W. Ball.	Ann Th	DL	M, S	- - +					
Matthiola longipetala (Vent.) DC. subsp. livida (Delile) Mairre	Ann Th	DL	N, M, R, S	- - +					
Raphanus raphanistrum L. subsp raphanistrum	Ann Th	CL, WL	N, M	+ + +					
Sisymbrium irio L.	Ann Th	CL, EC, WL	N, M, De, R, GE, S	+ + +					
Zilla spinosa (L.) Prantl	Per Ch	DL	N, D, R, GE, S	- - +					
Caryophyllaceae	Poroncchya arisica (L.) DC. subsp arabica	Ann Th	DL	M, D, S	- - +				
P. sinaica Fressen	Per H	DL	De, S	- - +					
Silene gallica L.	Ann Th	CL	O, M	- + -					
S. rubella L. var. rubella	Ann Th	CL, IR	O, N, M, S	+ + -					
Speregilaria marina L.	Ann Th	EC	N, M, S	- - +					
S. media (L) C. Presl	Ann Th	WL	N, O, M, S	+ + -					
S. ruga (L.) J. Presl & C. Prsel	Per H	EC, WL	N, M, S	+ + -					
Stellaria media (L) vill.	Ann Th	CL	M	- - +					
S. pulilla (Dumort.) Marbh.	Ann Th	DL, IR	N, O, M, S	+ - -					
Ceratophyllaceae	Ceratophyllum demersum L.	Per C	SC	N, M, De	- + -				
*C. muricatum Cham.	Per C	SC	N	- + -					
Commelinaceae	Commelina bengalensis L.	Per H	CL	N, GE	+ - -				
Convolvulaceae	Convolvulus arvensis L.	Per H	CL, IR, WL	N, O, M, D, S	+ + +				
C. lanatus Vahl.	Per Ch	WL	M, D, S	- - +					
Cuscuta pedicellate Ledeb.	Ann P	WL	N, O, M, D, GE, S	- + -					
Cucurbitaceae	Citrullus colocynthis (L.) Schrad.	Per H	SC	N, O, M, D, R, GE, S	+ + -				
Cyperaceae	Cyperus articulatus L.	Per C	EC, WL	N, O, M, D, GE, S	+ + -				
C. laevigatus L. var laevigatus	Per C	EC, SM, WL	N, O, M, D, R, GE, S	+ + +					
C. rotundus L.	Per C	EC, ES, WL	N, O, M, O, R, GE, S	+ + +					
Floristic Studies in Suez Canal Region

Euphorbiaceae

Species	Distribution	Abundance		
Euphorbia helioscopia L.	Ann Th	CL, IR	N, M	+ + +
E. heterophylla L.	Ann Th	CL	N, O, M	+ - -
E. indicus Lam.	Ann Th	Tr	N	- + -
E. prostrata Aiton	Ann Th	IR	N, M, S	- + -
E. pelsnot	Ann Th	CL, IR, WL	M, S	+ - +
E. pelsnot L.	Ann Th	CL, IR	N, O, M, D, S	+ + +

Fabaceae

Species	Distribution	Abundance		
Alhagi graecorum Boiss.	Per Ch	EC, DL, SM, WL	N, O, M, D, R, S	+ + +
Lotus polyphyllus E. D. Clarke	Per H	CL, IR	M	+ + -
Medicago polymorpha L.	Ann Th	CL, IR	N, O, M, D, S	+ + -
M. sativa L.	Ann Th	CL, IR	N, O, M, S	+ + -
Medicago albus Medik.	Ann Th	IR	N, S	- + -
M. indicus (L.) All.	Ann Th	CL, EC, IR, SC, WL	N, O, M, D, S	+ + +
Trifolium resupinatum L.	Ann Th	CL, IR	N, O, M, D	+ - +
Trigonella glabra Thunb. subsp. glabra	Ann Th	CL, IR	N, O, M, S	+ + +
Vaccaria tortilis (Forssk.) Galasso & Banfi subsp. raddiana (Savi) Kyal. & Boatwr.	Per Ph	DL	De, R, GE, S	- - +
Vicia sativa subsp sativa	Ann Th	CL, IR	N, M	+ + +

Papaveraceae (incl. Fumariaceae)

Species	Distribution	Abundance		
Fumaria parviflora Lam.	Ann Th	CL, IR	N, M, De, S	+ + +

Geraniaceae

Species	Distribution	Abundance		
Erodium glutaeum (L.) L'Hér.	Ann Th	IR	N, O, M, D, S	- + -
E. malaccoides (L.) L'Hér.	Ann Th	IR	N, O, M, De, S	- + -
E. oxyrhynchum M. Bieb. subsp. *bromii*folium (Boiss.) Schönb.-Tem.	Ann Th	DL	N, O, M, D	- - +

Juncaceae

Species	Distribution	Abundance		
Juncus acutus L. subsp. acutus	Per C	WL	M, N, O, De, S	+ - +
J. rigidus Desf.	Per C	DL, EC, WL	M, N, O, Dw, De, S, R	+ + +

Lamiaceae

Species	Distribution	Abundance		
Lamium amplexicaule L. subsp. amplexicaule	Ann Th	CL, IR	N, O, M, S	+ + +
Malva parviflora L.	Ann Th	CL, DL, IR, SM, WL	N, O, M, D, R, GE, S	+ + +
Sida alba L.	Per Ch	CL	N, O, M	+ + -

Nyctaginaceae

Species	Distribution	Abundance		
Boerhavia diffusa L.	Per H	WL	N	+ - -

Oxnagraceae

Species	Distribution	Abundance		
Ludwigia adscendens (L.) H. Harms	Per C	SC	N, O, M, S	+ - +

Oxalidaceae

Species	Distribution	Abundance		
Oxalis corniculata L.	Per H	CL, IR, WL	N, O, M, De	+ + +

Plantaginaceae

Species	Distribution	Abundance		
Plantago lanceolata L.	Per H	IR	N	+ + +
P. major L.	Per H	CL, IR	N, O, M, S	- + +
Veronica amagiilis-aquatica L.	Per Ch	WL	N, O	+ + -
V. persica Poir.	Ann Th	CL, IR	M	+ + -
V. polia Fr.	Ann Th	IR	N, M, O	- - +
Ajania fistulosa L.	Ann Th	CL, IR	N, O, M, D, S	+ + +
A. sativa L.	Ann Th	CL, IR	N, O, M, D, S	+ + +
Bromus catharticus Vahl	Per Ch	CL, IR	N, O, M, De	+ + +
Cenchrus hirtiflorus Roth	Ann Th	CL, DL, IR, WL	N, D, S	+ + +
C. divisa (J.F. Gmel.) Verloove, Govaerts & Buller	Per Ch	CL	N, O, D, R, S	+ + +
Centropodia forskalii (Vahl.) Cope	Ann Th	DL	N, O, M, D, R, GE, S	- - +
Chloris virgata Sw.	Ann Th	IR	N, O, GE	- - +
Cynodon dactylon (L.) Pers.	Per C	CL, DL, EC, IR, WL,	N, O, M, D, R, GE, S	+ + +
Dactylis glomerata aegropietica (L.) Wild.	Ann Th	CL, EC, IR	N, O, M, D, S	+ + +
Dichanthium annulatum (Forssk.) Stapf.	Per Ch	IR	N, O, M, De, S	- - -
Digitaria scabra (L.) F. Beauv. ex Roem. & Schult	Per Ch	EC, SM	N, O, M, D, R, GE	- + +
D. ciliaris (Retz.) Koeler	Per Ch	CL, IR, WL	N, O, R, GE, S	+ + +
D. dactyloides	Per Ch	CL	GE	+ - +
Echinochloa colona (L.) Link.	Ann Th	CL, DL, IR	N, O, M, D, R, GE, S	+ + +
Eleusine africana Koen.	Ann Th	CL, IR	N, O, M, S	+ + +
Eragrostis cilianensis (All.) Vignolo ex Junc.	Ann Th	IR, WL	N, O, M, D, R, GE, S	+ + +
E. pilosa (L.) F. Beauv.	Ann Th	IR	N, O, M, D, GE, S	- + +
*E. tetraezau (Zucc.) Trotter	Ann Th	IR	N, O	- - +
Imperata cylindrica (L.) Raenk.	Per C	CL, EC, WL	N, O, M, D, R, S	+ + +

49
Taxon	Abbreviation	Distribution	
Leptochloa panicea (Renez.) Ohwi.	Ann Th ES N	+ + +	
Lolium multiflorum Lam.	Ann Th CL N, M, D, R, S	+ - -	
L. perenne L.	Ann Th CL, IR N, O, M, D, S	+ + +	
L. rigidum Gaudin	Ann Th CL, IR N, O, M, D, S	+ + +	
Panicum coloratum L.	Per Ch IR N, O, M, De	- - -	
P. repens L.	Per Ch CL, IR, WL N, O, M, De	+ + -	
Paspalum dilatatum Poir.	Per Ch CL, IR N, S	+ + -	
Phragmites australis (Cav.) Trin.ex. Steud.	Per C DE, EC, ES, SC, SM, WL N, O, M, D, R, S	+ + +	
Polygopon monopodiflorum (L.) Desf.	Ann Th CL, IR, WL N, O, M, D, S	+ + +	
Schismus barbatus (L.) Thell.	Ann Th DL, WL N, O, M, D, R, GE, S	+ + +	
Setaria viridiflora (Forsk.) Veldkamp	Per Ch CL, ES, IR, WL N, O, M, De	+ + +	
S. verticillata (L.) P. Beauv.	Ann Th CL N, O, M, D, R, GE, S	+ + +	
S. viridis (L.) P. Beauv.	Ann Th CL, IR N, O, De, S	+ - -	
Sporobolus indicus (Vahl) Kanth.	Per C DL, WL N, O, M, D, R, GE, S	- - -	
Stylosanthes humilis (L.) Munro ex T. Anderson	Per H DL N, O, M, D, R, GE, S	- + +	
Triticum aestivum	Ann Th EC N	+ + -	
Polygonaceae	Calligonum comosum L.*Herm.	Per Ph DL O, M, D, R, GE, S	- - +
*Paspalum decipiens (R.Br.) K.L. Wilson	Per Ch CL, EC, SC, WL N, M	+ + +	
Rumex cyprinoides Murb.	Ann Th DL M, De, S	- - -	
R. dentatus L. subsp. dentatus	Ann Th DL, WL N, M	+ + -	
R. spinosus L.	Ann Th DL, WL N, O, M, D, S	+ + +	
R. vestitarius L.	Ann Th DL M, D, R, GE, S	- + +	
Pontederiaceae	Pontederia crassipes Mart.	Per C SC N, O, M	- + -
Portulaceae	Portulaca oleracea L. subsp nitida	Ann Th CL, DL, IR, WL N, O, M, D, S	+ + +
Potamogetonaceae	Potamogeton crispus L.	Per C SC N, O, M, D, S	- + -
P. nodosus Poir.	Per C SC N, M, De (Ismailia Canal), S	- + -	
Primulaceae	Lysimachia arvensis (L.) U. Manns & Anderbr. var. arvensis	Ann Th IR, CL N, O, M, D, R, GE, S	+ + +
Resedaceae	Oligomeris linifolia (Vahl ex Hornem.) J. P. Majchr.	Ann Th DL N, M, D, R, S	- + +
Salicaceae	Salix alba L.	Per Ph SC N, O, M, D, S	- - -
Santalaceae	Theesum humile Vahl var. humile	Ann Th WL N, O, M, S	- - -
Solanaceae	Datura innoxia Mill.	Ann Th WL N	+ + +
D. stramonium L.	Ann Th WL N	+ + +	
H. muticus L.	Per Ch DL N, O, De, R, S	- - +	
Solanum nigrum var nigrum	Ann Th CL, WL N, O, M, D, R, GE, S	+ + +	
Tamaricaceae	Tamarix aphylla (L.) H. Karst.	Per Ph SM, WL N, O, M, D, R, GE, S	+ - -
Salix caprea L.	Per Ph DL, ES, SM, WL N, O, M, D, R, GE, S	+ + +	
Typhaceae	Typha domingensis (Pers.) Poire ex Steud.	Per H ES, WL N, O, M, D, R, S	+ + +
Urticaceae	Urtica urens L.	Ann Th CL, IR, WL N, O, M, De	+ + +
Verbenaceae	Phyla nodiflora (L.) Greene	Per H IR N, O, M, D, S	- + -
Zygophyllaceae	Fagonia arctica L. var visidissima Maire	Per Ch DL, WL O, D	- + +
Zygophyllum album L.	Per Ch DL, EC, ES, SM, WL O, M, D, R, S	+ + +	
*Z. coccineum L.	Per Ch DL, WL O, D, R, S	- + +	
*Z. simplex L.	Ann Th DL, SM, WL D, R, GE, S	+ + +	
Tribulus bimucronatus var bispinosus (Kralik) Hosi.	Ann Th DL De, R, GE	- - +	
T. bimucronatus var inermis (Kralik) Hosi	Ann Th DL De, R, GE	- - +	
*T. parvipinnas Presl var. parvipinnas	Ann Th IR R, GE	- - +	
T. terrestris L.	Ann Th DL, WL N, M, D, R, GE, S	+ + +	
Some habitats showed a high number of species and considered as a center of diversity, while some others showed lower species diversity e.g. waste lands included the highest number of species represented by 22.9% then the cultivated lands (19.9%) and sandy deserts (19.3%) However, canal bank recorded the lowest number (3.3%) Table (1) and Fig. (2).

The present study added 17 species as new records to Suez Canal region according to the geographical distribution of Boulos (2009), Table (1). Six species were added as new records out of the 17 species in Ismailia - Port Sa'id highway which are Boerhavia diffusa, Setaria pumila and Digitaria nodosa, Galinsoga parviflora, Zygophyllum simplex, Z. coccineum.

Four species were recorded on Ismailia city which are: Tribulus parvispinus, Chenopodium ficifolium, Ceratophyllum muricatum and Euphorbia indica. While seven species were recorded in Ismailia – Suez highway which are: Cakile maritima, Eschenbachia stricta, Persicaria decipiens, Matthiola longipetala subsp. bicornis, Foeniculum vulgare subsp. vulgare, Sterallia media and Erodium oxyrhynchum. Moreover, Boerhavia diffusa, Digitaria nodosa and Setaria pumila are new records to the Mediterranean region. While, Cakile maritima, Eschenbachia stricta are recorded in the Eastern desert. Ceratophyllum muricatum is recorded to the Isthmic desert. Hyoscyamus boveanus is the only endemic plant recorded in Ismailia – Suez highway.

Soil samples were analyzed to measure the chemical properties which corresponding to pH, electric conductivity, cations, anions and calcium carbonate There was a significant difference
between the different sites of the three regions (Table 3a, b and c). The pH value was nearly alkaline ranging from 7-9. While, electrical conductivity ranged from 0.56 to 86 dsm\(^{-1}\). Cations included a wide range from 0.47 to 650 meql\(^{-1}\). In addition, anions ranged from 1.45 to 660 meql\(^{-1}\) and Calcium carbonate level ranged from 1.37 to 20%.

Table (3a). Chemical results of soil samples in 10 sites of Ismailia-Port Said highway. Each value is the Mean, ± SD Mean of 3 replicates. Within the same column, means carrying different superscripts are significantly different from each other (a refer to the highest value, while k refers to the lowest one).

Region	Site no.	PH	E.C dsm\(^{-1}\)	Cations (meql\(^{-1}\))	Anions (meql\(^{-1}\))	%CaCO\(_3\)					
Ismailia-Port Said highway				Ca\(_2^+\)	Mg\(_2^+\)	Na\(^+\)	K\(^+\)	HCO\(_3^-\)	Cl\(^-\)	SO\(_4^{2-}\)	
1	8.22c	5.10b	17.8d	14.5c	20c	3.20b	6.65c	26.7c	22.6d	4.00c	
	±0.1	±0.2	±0.2	±0.2	±0.2	±0.2	±0.2	±0.2	±0.3	±0.3	±0.2
2	7.83ab	3.30a	10.0a	5.50a	18.0a	2.40a	7.90c	15.0a	14.0a	5.00a	
	±0.1	±0.3	±0.2	±0.2	±0.3	±0.2	±0.2	±0.2	±0.2	±0.2	
3	8.46d	5.35b	20.0d	15.0f	21.5d	3.40b	6.50a	30.0d	23.4e	3.50b	
	±0.23	±0.9	±0.2	±0.1	±0.2	±0.2	±0.2	±0.3	±0.2	±0.3	
4	9.00c	86.0d	245i	415j	650i	28e	183b	470i	685i	7.50f	
	±0.2	±0.3	±0.2	±0.2	±0.3	±0.2	±0.3	±0.2	±0.2	±0.3	
5	7.50a	3.65a	11.5e	6.90c	19.0b	2.60a	9.90d	15.2a	14.9b	4.70a	
	±0.3	±0.2	±0.2	±0.2	±0.3	±0.2	±0.14	±0.2	±0.08	±0.2	
6	8.28e	32.2d	120b	160b	115f	40f	20.7e	260g	154f	6.00e	
	±0.3	±0.3	±0.2	±0.2	±0.1	±0.2	±0.2	±0.2	±0.07	±0.2	
7	8.50d	84.0c	210i	400i	625b	25.0d	150e	450b	660b	7.20f	
	±0.2	±0.2	±0.2	±0.3	±0.2	±0.1	±0.2	±0.2	±0.2	±0.2	
8	7.85b	3.50a	11.1b	6.14b	18.3a	2.46a	8.00c	16.0b	14.0a	6.10c	
	±0.05	±0.2	±0.2	±0.2	±0.3	±0.2	±0.2	±0.2	±0.2	±0.2	
9	8.83ac	20.4d	63.0f	123g	55.2f	20.8a	31.5f	65.0f	166g	2.50a	
	±0.3	±0.2	±0.1	±0.2	±0.2	±0.1	±0.1	±0.2	±0.2	±0.2	
10	8.50e	5.30d	20.5f	14.0d	22.3c	3.20b	7.00b	31.0e	22.0c	3.50b	
	±0.1	±0.3	±0.1	±0.1	±0.2	±0.1	±0.1	±0.2	±0.2	±0.2	
F-ratio	17	59	66	26	45	15	49	28	68	21	
p-value	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
Table (3b). Chemical results of soil samples in 10 sites of Ismailia city.

Region	Site no.	pH	E.C. (dsm⁻¹)	Cations (meq l⁻¹)	Anions (meq l⁻¹)	%CaCO₃					
			Ca²⁺	Mg²⁺	Na⁺	K⁺	HCO₃⁻	Cl⁻	SO₄²⁻		
Ismailia city	1	8.22 ± 0.2	13.5 ± 0.2	35.0 ± 0.2	45.0 ± 0.2	77.0 ± 0.2	9.00 ± 0.2	50.0 ± 0.2	70.0 ± 0.2	46.0 ± 0.2	8.23 ± 0.2
	2	8.22 ± 0.2	12.2 ± 0.2	39 ± 0.2	50.0 ± 0.2	53 ± 0.2	8.00 ± 0.2	43.0 ± 0.2	60.0 ± 0.2	47.0 ± 0.2	8.00 ± 0.2
	3	7.40 ± 0.2	0.74 ± 0.2	3.50 ± 0.3	2.20 ± 0.2	1.20 ± 0.2	0.47 ± 0.3	3.00 ± 0.3	2.50 ± 0.3	1.87 ± 0.3	1.50 ± 0.3
	4	7.20 ± 0.2	1.2 ± 0.2	4.00 ± 0.1	2.7 ± 0.1	3.50 ± 0.0	0.80 ± 0.0	6.00 ± 0.0	3.60 ± 0.0	2.40 ± 0.0	3.0 ± 0.0
	5	7.82 ± 0.2	0.56 ± 0.2	1.20 ± 0.1	2.76 ± 0.1	6.69 ± 0.1	0.95 ± 0.1	1.50 ± 0.1	2.50 ± 0.1	2.60 ± 0.1	2.72 ± 0.1
	6	7.95 ± 0.2	8.33 ± 0.2	25.0 ± 0.2	35.0 ± 0.2	32.0 ± 0.2	4.00 ± 0.2	20.0 ± 0.2	40.0 ± 0.2	36.0 ± 0.2	2.00 ± 0.2
	7	8.00 ± 0.2	0.77 ± 0.2	2.50 ± 0.1	3.32 ± 0.1	1.33 ± 0.1	0.55 ± 0.1	2.47 ± 0.1	2.78 ± 0.1	1.45 ± 0.1	1.37 ± 0.1
	8	7.00 ± 0.2	0.91 ± 0.2	3.00 ± 0.2	1.89 ± 0.2	2.86 ± 0.2	1.35 ± 0.2	2.85 ± 0.2	3.75 ± 0.2	2.50 ± 0.2	5.5 ± 0.2
	9	7.90 ± 0.2	0.87 ± 0.2	2.75 ± 0.2	2.50 ± 0.2	2.44 ± 0.2	1.1 ± 0.2	2.20 ± 0.2	3.90 ± 0.2	2.60 ± 0.2	1.65 ± 0.2
	10	7.2 ± 0.2	0.90 ± 0.2	3.40 ± 0.2	2.6 ± 0.2	2.10 ± 0.2	0.86 ± 0.2	3.50 ± 0.2	3.60 ± 0.2	1.9 ± 0.2	2.2 ± 0.2
F-ratio	39	82	26	82	19	19	42	15	10	97	
p-value	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Table (3c). Chemical results of soil samples in 10 sites of Ismailia-Suez highway

Site no.	pH	E.C (dsm⁻¹)	Cations (meq/l)	Anions (meq/l)	%CaCO₃
1	8.4	12.7	25.0	40.0	6.0
	±0.1	±0.1	±0.4	±0.1	±0.1
2	7.0	3.11	10.0	15.3	6.0
	±0.8	±0.1	±0.2	±0.13	±0.07
3	7.10	3.20	11.3	15.0	5.55
	±0.1	±0.05	±0.1	±0.2	±0.1
4	7.0	3.00	10.0	15.1	5.60
	±0.2	±0.2	±0.2	±0.2	±0.2
5	7.21	5.15	22.5	25.0	8.18
	±0.2	±0.2	±0.2	±0.2	±0.2
6	7.00	3.55	12.0	16.6	6.20
	±0.2	±0.06	±0.2	±0.2	±0.1
7	8.25	21.3	50.0	80.0	100
	±0.2	±0.2	±0.2	±0.2	±0.2
8	8.00	12.3	26.10	38.4	65.0
	±0.2	±0.2	±0.2	±0.2	±0.2
9	8.05	63.0	200	260	446
	±0.13	±0.3	±0.3	±0.2	±0.2
10	7.30	5.16	22.8	25.1	8.23
	±0.2	±0.1	±0.2	±0.2	±0.2
11	7.23	5.20	23.0	25.5	8.26
	±0.1	±0.2	±0.2	±0.08	±0.1
F-ratio	51		56	23	40
p-value	0.000	0.000	0.000	0.000	0.000

Discussion

Although, the present study revealed the presence of 190 species. This given number could be larger, due to the destruction of the natural habitats of the wild flora by reestablishment and widening of the roads. The extreme variation in climatic conditions (extreme cold, hot and strong wind) which affect the growth and development of some species.

Some habitats in Ismailia city were destructed completely due to the city roads reconstruction and the construction of bridges as in the case of site 2 which exposed to complete erosion and even pulling all the wild plants after one year of species collection.

The recorded species in the 11th site was destroyed after two seasons of species collection in 2020 and some other sites were partially destroyed due to the human activities of road reconstruction that continued till today. Therefore, Ismailia-Suez highway included the lowest number of the recorded taxa.

The highest families of species number in the Suez Canal region were Poaceae (18.9 %), Amaranthaceae (13.6%), Asteraceae (9.4 %), Brassicaceae (6.3 %) and Fabaceae (5.2%). The sequence of these families agreed with Abd El–Hamid and Kamel (2010) and disagreed with Mashaly *et al.* (2008) and Abd El-Ghani *et al.* (2014).

According to Boulos (1995) and Quézel (1978), these families are from the largest ones in the Egyptian flora and the most common plant families in the Mediterranean North African flora.
The recorded species in the study area were represented by 57.8% annuals, 41.5% perennials and 0.5% biennials. The dominance of annuals referred to their higher capacity of reproduction and ecological, morphological and genetic adaptability under the maximum levels of disturbance (Abd El-Hamid, 2005).

The life forms spectrum of study area dominated by therophytes (58.5%), followed by chamaephytes (20.5%), hemichresophytes (7.8%), cryptophytes (7.89%), then phanerophytes (4.3%). This result agreed with Abd El-Hamid (2017) and Mashaly et al. (2019).

The dominance of therophytes may be due to the response to Mediterranean climate, topography variation and biological influence (Mashaly et al. 2013), while the highest percentages of chamaephytes and hemichresophytes seems to be a tool of adaption against drought, salinity, sand accumulation and grazing via Danin & Orshan (1990) and Danin (1996).

The soil analysis results of Ismailia-Port Said highway were more or less convenient with those of Abd El-Hamid & Kamel (2010), who analyzed the weed communities associated with cultivated crops only and the study area was very limited. While Ismailia city results were relatively convenient with those of Abd El-Hamid (2005). Finally, Ismailia-Suez highway results almost convenient with those of Hamdy et al. (2017) and Abd El-Hamid (2017).

In this work, the highest species number were recorded in the waste land habitat (22.9%), followed by cultivated land (19.9%), then sandy deserts (19.3%). Finally, the lowest number were recorded in canal bank represented by 3.3%. The results agreed with that given by Abd El-Ghani et al. (2015). They stated that soil nutrient content, soil moisture and soil pH play an effective role in wild plants growth in the waste land, cultivated land and desert land habitats. Therefore, waste land habitat may include the best soil parameters for the flora of Suez Canal region.

Seventeen species were added to the flora of Suez Canal region which weren’t recorded before by Boulos (2009). Moreover, they weren’t recorded by the previous studies on the study area namely; Danin (1974), Zahran et al. (1990), El-Demerdash et al. (1990), Mashaly et al. (1995), Abd El-Hamid (1996), Abd El-Ghani (1998), Khedr and Zahran (1999), Mashaly et al. (2002), Abd El-Hamid (2005), Shaltout & Galal (2007), Abd El-Hamid and Kamel (2010), Mohamed & Azer (2012), Abd El-Ghani et al. (2013), Serag et al. (2015), El-Amier et al. (2015), Abd El-Hamid (2017), Hamdy et al. (2017), Azer (2018), El Bous & Abd El-Hamid (2018) and Radi et al. (2020).

Six species are newly recorded in the flora of Mediterranean region, Eastern desert and Isthmic desert. These results weren’t given in many works namely; Hassan (1987), Dahmash (2001), Heneidy (2002, 2003), Heneidy & Bidak (2004), Boulos (2008), Bidak et al. (2013), Abd El-Ghani et al. (2014a), Abd El-Ghani et al. (2014b), Shaltout et al. (2015), Abd El-Ghani et al. (2017), Salama et al. (2018), Abdelaal et al. (2019), Mashaly et al. (2019), Amer et al. (2020), Amer & ELshayeb (2020), Hamed et al. (2021) and Fouad et al. (2022).

Boerhavia diffusa, Setaria pumila and Digitaria nodosa were mentioned as a new record to Ismailia-Port Said highway and the Mediterranean region according to the previously mentioned studies. Boerhavia diffusa belongs to Nile region according to Boulos (2009), while Setaria pumila belongs to the Nile region, Oasis, Gabel Elba, Sinai and Digitaria nodosa related to Gabel Elba. The presence of Boerhavia diffusa and Setaria pumila in the Mediterranean region may be due to the laying of Port Said at the east of the middle sector of deltaic Mediterranean coast as stated by Zahran et al. (1990). Digitaria nodosa may be present there because of the human activities as agriculture, recreation, global trade and transportation that promoted both the intentional and accidental spread of species across their natural dispersal barriers (Kolar & Lodge, 2001).

Tribulus parvisspinus, Ceratophyllum muricatum and Euphorbia indica are new record to Ismailia city. In addition, Ceratophyllum muricatum is a new record to Isthmic deserts. According to Boulos (2009) Ceratophyllum muricatum and Euphorbia indica belong to Nile region, while Tribulus parvisspinus belongs to Red Sea and Gabel Elba. The occurrence of these species there is due to the belonging of Ismailia city to Isthmic desert which seems to be extended from many neighboring regions as; Nile Delta, Eastern desert, Mediterranean coastal regions, Sinai and Nile valley (Taeckholm, 1974).

Cakile maritima, Eschenbachia stricta, Persicaria decipiens, Matthiola longipetala ssp. bicornis, Digitaria ciliaris, Stellaria media and Erodium oxyrhynchum are new records to Ismailia-Suez highway. In addition, Cakile maritima and Eschenbachia stricta are new records to the eastern desert. Cakile maritima relates to Mediterranean region, Nile region and Sinai, whereas Eschenbachia stricta relates to Gabel Elba and Sinai. The existence of Cakile maritima in the Eastern desert may be due to the presence of study area near Mediterranean/Sahara regional transition zone which includes mixed flora of both Mediterranean and Saharo-Sindian regions as mentioned by White (1993). In addition, the presence of Eschenbachia stricta may be due to the laying of Gabel Elba in the south east corner of Eastern desert.
Conclusion and Recommendation

The flora in Egypt is still in need of further intensive collections from all regions and accurate taxonomical studies. In addition, the geographical distributions of some species are updated according to this study. The road reconstruction and expansion are a bad impact on the wild flora, leading to habitats loss, hence the disappearance of many wild plants, e.g. Erodium oxyrhynchum, Eschenbachia stricta, Hyoscymus boveanus and Cakile maritima in Ismailia-Suez highway. Moreover, this study could be the last one to record the flora of Ismailia-Suez highway before and after the road reconstruction. The establishment of new resorts along Ismailia - Port Said highway and Ismailia – Suez highway were the major threats for the wild species.

This study could be the last one to record the flora of Ismailia-Suez highway before and after the road reconstruction

Therefore, the plant species must be protected in order to conserve the natural resources (ecosystems and habitats) and our flora must be updated and well studied.

References

Abdelaal, M., Ahmed, D., Fois, M., Fenu, G. and Bacchetta, G. 2019. Floristic patterns and ecological doctors of sand dune ecosystem along the Mediterranean coast of Egypt. Arid Land Research and Management, 33(4): 388-411.

Abd El-Ghani, M. M. 1998. Environmental correlates of species distribution in arid desert ecosystems of eastern Egypt. Journal of Arid Environments, 38(2): 297-313.

Abd El-Ghani, M. M., Salama, F. M. and El-Tayeh, N. A. 2013. Desert roadside vegetation in eastern Egypt environmental determinants for its distribution. Phytology Balcanica, 192: 233-242.

Abd El-Ghani, M., and Salama, F. and Aleeem, M. 2014a. Flora and Vegetation of the Eastern Desert of Egypt. Lambert Academic Publishing.

Abd El-Ghani, M., Salama, F., Salem, B., El-Hadidy, A. and Abdal-Alem, M. 2014b. Biogeographical relations of a hyperarid desert flora in eastern Egypt. African Journal of Ecology, 52(2): 173-191.

Abd El-Ghani, M., Bornkamm, R., Nadia, E. S., and Turky, H. (2015). Heterogeneity of soil and vegetation in the urban habitats of new industrial cities in the desert landscape of Egypt. Notulae Scientiae Biologicae, 7(1): 26-36.

Abd El-Ghani, M., Salama, F., Salem, B., El-Hadidy, A. and Abdal-Alem, M. 2017. Phytogeography of the Eastern Desert flora of Egypt. Wulffenia, 24(1): 97-120.

Abd El-Hamid, H. A. 1996. Ecological Study of Crop-Weed Association in Fields at Abu-Suweir village, Ismailia District, Egypt. MSc. Thesis, Faculty of Science, Suez Canal University.

Abd El-Hamid, H.A. 2005. Ecological Study of Weed Vegetation and local Environment in Ismailia Governorate, Egypt. Ph.D. Thesis, Faculty of Science, Suez Canal University.

Abd El-Hamid, H. and Kamel, K. 2010. Weed communities of field crops at El-Tina Plain, Egypt. Catrina: The International Journal of Environmental Sciences, 5(1): 77-86.

Abd El-Hamid, H. 2017. Floristic Composition and Vegetation Analysis in Suez Governorate, Egypt. Catrina: The International Journal of Environmental Sciences, 16 (1): 71-86.

Amer, W. M., Elshayeb, N. F., Hegazy, A. K., Abbas, M. S., Soliman, A. S. and Abdel Wahab M. 2020. Species diversity and climate an intimate relationship over the last decades in the Mediterranean region: the case study of Sallum Sector, Egypt. Flora Mediterranea. 30: 65-79.

Amer, W. M. and Elshayeb, N. F. 2020. Long-term species diversity and climate change: An intimate relationship over the last ten decades–case study in Egypt. Handbook of Climate Change Management: Research, Leadership, Transformation, pp 1-24. Springer

Azer, S. 2018. A Study on Vegetation Diversity Along Cairo – Ismailia Desert Road, Egypt. Egyptian Journal of Agricultural Sciences, 69(1): 85-98.

Bidak, L.M., Heneidy S.Z., Shaltout K.H. and Al-Sodany C. 2013. Current Status of the Wild Medicinal Plants in the Western Mediterranean Coastal Region, Egypt. The Journal of Ethnobiology and Traditional Medicine, 120: 566-58

Boulos, L. 1995. Flora of Egypt: A Checklist. Al-Hadra Publishing, Cairo

Boulos, L. 1999. Flora of Egypt vol. 1, Azollaceae-Oxalidaceae. Al-Hadra Publishing, Cairo, Egypt.

Boulos, L. 2000. Flora of Egypt Vol. 2, Geraniaceae-Boraginaceae. Al-Hadra Publishing, Cairo, Egypt.

Boulos, L. 2002. Flora of Egypt Vol. 3, Verbenaceae-compositae. Al-Hadra Publishing, Cairo, Egypt.

Boulos, L. 2005. Flora of Egypt Vol. 4, Alismataceae–Orobanchaceae. Al-Hadra Publishing Cairo, Egypt.

Boulos, L. 2008. Flora and vegetation of the deserts of Egypt. Flora Mediterranea, 18: 341-359.

Boulos, L. 2009. Flora of Egypt Checklist Revised Annotated Edition. Al Hadra Publishing, Cairo, Egypt.

Dahmash, A. A. 2001. Ecological and Phytosociological Studies on Plant Communities in
Floristic Studies in Suez Canal Region

the Eastern desert of Egypt. Ph. D. Thesis, Faculty of Science, Zagazig University, Egypt.

Danin, A. 1974. Notes on The Vegetation Near Suez and Fayid (Egypt). *Israel Journal of Botany*, 23: 226-236.

Danin, A. and Orshan, G. 1990. The distribution of Raunkiaer life forms in Israel in relation to the environment. *Journal of vegetation science*, 1(1): 41-48.

Danin, A. 1996. *Plants of Desert Dunes*. Springer-Verlag.

El-Amier, Y. A., Haroun, S. A., El-Shechab, O. A. and Abdulkader, O. M. 2015: Floristic features of Northern sector of the Eastern Desert, Egypt. *Journal of Environmental Sciences*, 44(2): 387-401.

El-Amier, Y. A., and Abdul-Kader, O. M. 2015. Vegetation and species diversity in the northern sector of Eastern Desert, Egypt. *West African Journal of Applied Ecology*, 23(1): 75-95.

El Bous, M. and Abd El-Hamid, H. 2018. Species distribution patterns of the weed flora in mango orchards of Ismailia Governorate, Egypt: implications for conservation. *Taekholimia*, 38 (1): 184-200.

El-Demerdash, M. A., Zahran, M. A. and Serag, M. S. 1990. On the ecology of the deltatic Mediterranean coastal land, Egypt. The habitat of salt marshes of Damietta- Port Said coastal region. *Arab Gulf Journal of Scientific Research*, 8(3): 103-119.

Feinbrun-Dothan, N. 1978. *Flora Palaestina* vol. 3:Ericaceae-Compositae Israel Academy of Sciences and Humantite, Jerusalem

Feinbrun-Dothan, N. 1986. *Flora Palaestina* vol. 4:Alismataceae-Orchidace. Israel Academy of Sciences and Humantite, Jerusalem

Fouad, A. S., Hamed, A. B., Amer, W. M. and Hafez, R. M. 2022. Barcoding of Some Plant Species Using the rbcL Gene in the Mediterranean Oolitic Sand Dunes West of Alexandria, Egypt. *Egyptian Journal of Botany*, 62 (1): 159-168.

Hamdy, E., Elbanna, S., Abo Ghalia, A. and Shabayek, A. 2017. Ecology and Biogeography of the Ground Fauna of Suez Canal Region. Catrina: The *International Journal of Environmental Sciences*, 16(1): 1-9.

Hamed, A., Amer, W. and Soliman, A. 2021. Floristic Composition of Species Inhabiting the Threatened Oolitic Sand Dune Habitat in Egypt. *Egyptian Journal of Botany*, 61(3): 795-808.

Hassan, L. M. 1987. Studies on the flora of the eastern desert., Ph. D. thesis, Faculty of Science, Cairo University, 515.

Heneidy, S. Z. 2002. Role of Indicator Range Species as Browsing Forage and Effective Nutritive Source, in Matruh Area, a Mediterranean Coastal Region, NW- Egypt. *Journal of Biological Sciences*, 2 (2): 136-142.

Heneidy, S. Z. 2003. Accessible Forage Biomass of Browse Species in Matruh Area, a Mediterranean Coastal Region, Egypt. *Pakistan Journal of Biological Sciences*, 6: 589-596.

Heneidy, S.Z. and Bidak, L.M., 2004. Potential Uses of Plant Species of the Coastal Mediterranean Region, Egypt. *Pakistan Journal of Biological Sciences*, 7: 1010-1023.

Hosni, H. A., and Shamso, E. M. 2022. Contribution to the Flora of Egypt: Taxonomic and Nomenclature changes. *Taekholimia*, 42: 12-26.

Kolar, C. S. and Lodge, D. M. 2001. Progress in invasion biology: predicting invaders. *Trends in ecology and evolution*, 16(4): 199-204.

Mashaly, I. A., El-Halawany, E.F. and El-Beheiry, M.A. (1995). Ecological and phytosociological studies in the Ismailia – Suez desert road of Egypt. *Journal of Environmental Sciences, Mansoura University*, 10 (1): 1-18.

Mashaly, I., El Halawany, E. S.and Omar, G. 2002. Floristic features of Damietta area in the northeast Nile Delta, Egypt. *Taekholimia*, 22(1): 101-114.

Mashaly, I. A., El-Habashy, I. E., El-Halawany, E. F. and Omar, G. 2008. Habitats and plant communities in the Nile Delta of Egypt I. Deltaic Mediterranean coastal habitat. *Pakistan Journal of Biological Sciences*: PJBS, 11(22): 2532-2544.

Mashaly, I. A., El-Halawany, E. F., Abu-Ziada, M. E. and Abd-El Aal, M. 2013. Vegetation-soil relationship in the cultivated land habitat in El-Beihra governorate, Egypt. *Journal of Environmental Sciences, Mansoura University*, 42(4): 607-623.

Mashaly, I., Ayaad, S., El-Shamy, M., Elsoudy and E. 2019. Ecological Study on some Grasses Growing Naturally in the Deltaic Mediterranean Coast of Egypt. *Catrina: The International Journal of Environmental Sciences*, 19(1): 29-45.

Migahid, A. M. 1978. *Flora of Saudi Arabia*. 3 ed. ed.: Riyadh, Saudi Arabia: University Libraries, King Saud University.

Mohamed, A. and Azer, S. 2012. A Study on The Flora Along Ismailia Canal. Egyptian *Journal of Agricultural Sciences*, 63(4): 419-431.

Page, A. L., Miller, R. H. and Keeney, D. R. 1982. Methods of soil analysis. Part 2. American Society of Agronomy. Soil Science Society of America, Madison, WI, USA, 4 (2): 167-179.
Hassanen et al.

Piper, C. S. 1950. Soil and Plant Analysis. Interscience Ins, New York.
Quézel, P. 1978. Analysis of the flora of Mediterranean and Saharan Africa. Annals of the Missouri Botanical Garden, 65: 479-534.
Radi, N.M., Marie, A.H., Gafar, R.M., El-Swefy, Z.A. and Abo El-Kheir, Z.A. 2020. Vegetation analysis, distribution of plants and chorology of some localities of northern eastern desert in Egypt. Egyptian Journal of Biotechnology, 61: 86-87.
Richards, L.A. 1954. Diagnosis and Improvement of Saline Alkali Soils, Agriculture, 160, Handbook 60. US Department of Agriculture, Washington DC.
Salama, F. M., Abd EL-Ghani, M. M., El-Tayeh, N. A., Galal, H. K., and El-Naggar, S. 2018. Vegetation Analysis and Species Distribution in the Lower Tributaries of Wadi Qena in the Eastern Desert of Egypt. Jordan Journal of Biological Sciences, 11(4): 407-418.
Serag, M. S., Khedr, A. A., Rabei, S. H. and Elkomy, A. G. 2015. Ecological study on weed flora growing in the orchards of new Damietta. Journal of Plant 6 (12): 2003 - 2018.
Shaltout, K., Hosni, H., El-Fahar, R. and Ahmed, D. 2015. Flora and vegetation of the different habitats of the western Mediterranean region of Egypt. Taekholmia 35: 45–76.
Shaltout, K. and Galal, T., 2007. Ecosystem of Lake Manzala. Integrated coastal zone management project of the port said area. Faculty of Agriculture. University of El-Zagazig, El-Zagazig, Egypt.
Täckholm, V. 1974. Student’s flora of Egypt, 2nd ed. Cairo University, Cairo.
White, F. 1993. The AETFAT chorological classification of Africa: history, methods and applications. Bulletin du jardin botanique national de Belgique. Bulletin van de Nationale Plantentuin van België, 225-281.
Zahran, M. A., El-Demerdash, M. A., and Mashaly, I. A. 1990. Vegetation types of the deltaic Mediterranean coast of Egypt and their environment. Journal of Vegetation Science, 1(3): 305-310.
Zahran, M. A., Ziada, M. E. A., El-Demerdash, M. A. and Khedr, A. 1989. A Note on the Vegetation on Islands in Lake Manzala, Egypt. Vegetatio, 85(1/2): 83–88.
Zohary, M. 1966. Flora Palaestina. part 1: Equisetaceae-Moringaceae Israel Academy of Sciences and Humanitie, Jerusalem
Zohary, M. 1972. Flora Palaestina. part 2: Plantanaceae-Umbelliferae Israel Academy of Sciences and Humanitie, Jerusalem