THE LOCAL-GLOBAL PRINCIPLE FOR INTEGRAL POINTS ON STACKY CURVES

MANJUL BHARGAVA AND BJORN POONEN

ABSTRACT. We construct a stacky curve of genus 1/2 (i.e., Euler characteristic 1) over \(\mathbb{Z} \) that has an \(\mathbb{R} \)-point and a \(\mathbb{Z}_p \)-point for every prime \(p \) but no \(\mathbb{Z} \)-point. This is best possible: we also prove that any stacky curve of genus less than 1/2 over a ring of \(S \)-integers of a global field satisfies the local-global principle for integral points.

1. Introduction

Let \(k \) be a global field, i.e., a finite extension of either \(\mathbb{Q} \) or \(\mathbb{F}_p(t) \). For each nontrivial place \(v \) of \(k \), let \(k_v \) be the completion of \(k \) at \(v \). Let \(X \) be a smooth projective geometrically integral curve of genus \(g \) over \(k \). If \(X \) has a \(k \)-point, then of course \(X \) has a \(k_v \)-point for every \(v \). The converse holds if \(g = 0 \) (by the Hasse–Minkowski theorem), but there are well-known counterexamples of higher genus; in fact, counterexamples exist over every global field [Poo10]. This motivates the question: What is the smallest \(g \) such that there exists a counterexample of genus \(g \) over some global field? The answer is 1. Indeed, the first counterexample discovered was a genus 1 curve, the smooth projective model of \(2y^2 = 1-17x^4 \) over \(\mathbb{Q} \) [Lin40, Rei42]. In fact, a positive proportion of genus 1 curves in the weighted projective space \(\mathbb{P}(1,1,2) \) given by \(z^2 = f(x,y) \), where \(f(x,y) \) is an integral binary quartic form, violate the local-global principle over \(\mathbb{Q} \) [Bha13].

Let us now generalize to allow \(X \) to be a stacky curve over \(k \). (See Sections 2 and 3 for our conventions.) Then the genus \(g \) of \(X \) — defined by the formula \(\chi = 2 - 2g \), where \(\chi \) is the topological Euler characteristic of \(X \) — is no longer constrained to be a natural number; certain fractional values are also possible. Therefore we may now ask: What is the smallest \(g \) such that there exists a stacky curve of genus \(g \) over some global field \(k \) violating the local-global principle? It turns out that if we formulate the local-global principle using rational points over \(k \) and its completions, then the answer is not interesting, because rational points are almost the same as rational points on the coarse moduli space of \(X \): see Section 4.

Date: May 27, 2020.

2010 Mathematics Subject Classification. Primary 11G30; Secondary 14A20, 14G25, 14H25.

Key words and phrases. Stack, local-global principle, integral points.

M.B. was supported in part by National Science Foundation grant DMS-1001828 and Simons Foundation grant #256108. B.P. was supported in part by National Science Foundation grant DMS-1601946 and Simons Foundation grants #402472 and #550033.
Therefore we will answer our question in the context of a local-global principle for integral points on a stacky curve. Our first theorem gives a proper stacky curve of genus $1/2$ over \mathbb{Z} that violates the local-global principle.

Theorem 1. Let p, q, r be primes congruent to $7 \pmod{8}$ such that p is a square \pmod{q} and $\not\equiv \pmod{r}$, and q is a square \pmod{r}. Let $f(x, y) = ax^2 + bxy + cy^2$ be a positive definite integral binary quadratic form of discriminant $-pqr$ such that a is a nonzero square \pmod{q} but a nonsquare \pmod{r} and $\not\equiv \pmod{r}$. Let $\mathcal{Y} := \text{Proj} \mathbb{Z}[x, y, z]/(z^2 - f(x, y))$. Define a μ_2-action on \mathcal{Y} by letting $\lambda \in \mu_2$ act as $(x : y : z) \mapsto (x : y : \lambda z)$. Let \mathcal{X} be the quotient stack $[\mathcal{Y}/\mu_2]$. Then

(a) the genus of \mathcal{X} is $1/2$ (i.e., $\chi(\mathcal{X}) = 1$);

(b) $\mathcal{X}(\mathbb{Q}) \neq \emptyset$ for every rational prime ℓ and $\mathcal{X}(\mathbb{R}) \neq \emptyset$;

(c) $\mathcal{X}(\mathbb{Z}) = \emptyset$, and even $\mathcal{X}(\mathbb{Z}[1/(2pqr)]) = \emptyset$.

The same conclusions hold if instead we define \mathcal{X} as $[\mathcal{Y}/(\mathbb{Z}/2\mathbb{Z})]$, where $\mathbb{Z}/2\mathbb{Z}$ acts on \mathcal{Y} through the nontrivial homomorphism $\mathbb{Z}/2\mathbb{Z} \to \mu_2$; this \mathcal{X} is a Deligne–Mumford stack even over \mathbb{Z}.

Remark 2. The hypotheses in Theorem 1 can be satisfied. For example, let $p = 7$, $q = 47$, $r = 31$, and $f(x, y) = 3x^2 + xy + 850y^2$.

Remark 3. The reason for considering $\mathbb{Z}[1/(2pqr)]$ in (c) is that \mathcal{X} is smooth over that base.

Remark 4. Section 8 of [DG95] can be interpreted as saying that the proper stacky curve

$$\left(\text{Spec} \frac{\mathbb{Z}[x, y, z]}{(x^2 + 29y^2 - 3z^3)} - \{x = y = z = 0\}\right)/\mathbb{G}_m$$

is a similar counterexample to the local-global principle, but of genus $2/3$.

Our second theorem shows that any stacky curve of genus less than $1/2$ over a ring of S-integers of a global field satisfies the local-global principle. Let k be a global field, and let k_v denote the completion of k at v. Let S be a finite nonempty set of places of k containing all the archimedean places. Let \mathcal{O} be the ring of S-integers in k; that is, $\mathcal{O} := \{x \in k : v(x) \geq 0 \text{ for all } v \notin S\}$. For each $v \notin S$, let \mathcal{O}_v be the completion of \mathcal{O} at v. For each $v \in S$, let $\mathcal{O}_v = k_v$.

Theorem 5. Let \mathcal{X} be a stacky curve over \mathcal{O} of genus less than $1/2$ (i.e., $\chi(\mathcal{X}) > 1$). If $\mathcal{X}(\mathcal{O}_v) \neq \emptyset$ for all places v of k, then $\mathcal{X}(\mathcal{O}) \neq \emptyset$.

2. **Stacks**

By a stack, we mean an algebraic (Artin) stack \mathcal{X} over a scheme S [SP, Tag 0260]. For any object $T \in (\text{Sch}/S)_{fppf}$, we write $\mathcal{X}(T)$ for the set of isomorphism classes of S-morphisms...
$T \to \mathcal{X}$, or equivalently (by the 2-Yoneda lemma \cite{SP, Tag04SS}), the set of isomorphism classes of the fiber category \mathcal{X}_T. If $T = \text{Spec } A$, we write $\mathcal{X}(A)$ for $\mathcal{X}(T)$.

3. Stacky curves

Let k be an algebraically closed field. Let X be a \textit{stacky curve} over k, i.e., a smooth separated irreducible 1-dimensional Deligne–Mumford stack over k containing a nonempty open substack isomorphic to a scheme. (This definition is slightly more general than \cite[Definition 5.2.1]{VZB19} in that we require only separatedness instead of properness, to allow punctures.)

By the Keel–Mori theorem \cite{KM97} in the form given in \cite{Con05} and \cite[Theorem 11.1.2]{Ols16}, X has a morphism to a coarse moduli space X_{coarse} that is a smooth integral curve over k. We have $X_{\text{coarse}} = \hat{X}_{\text{coarse}} - Z$ for some smooth projective integral curve \hat{X}_{coarse} and some finite set of closed points Z. Moreover, by \cite[Theorem 11.3.1]{Ols16}, each $P \in X_{\text{coarse}}(k)$ has an étale neighborhood U above which $X \to X_{\text{coarse}}$ has the form $[V/G] \to U$ for some possibly ramified finite G-Galois cover $V \to U$ (by a scheme), where G is the stabilizer of X above P. The stacky curve X is called \textit{tame above} P if $\text{char } k \nmid |G|$, and \textit{tame} if it is tame above every P. Let $\mathcal{P} \subset X_{\text{coarse}}(k)$ be the (finite) set above which the stabilizer is nontrivial; then the morphism $X \to X_{\text{coarse}}$ is an isomorphism above $X_{\text{coarse}} - \mathcal{P}$.

Let $\tilde{g}_{\text{coarse}}$ be the genus of \hat{X}_{coarse}; then the Euler characteristic $\chi(X_{\text{coarse}})$ is $(2 - 2\tilde{g}_{\text{coarse}}) - \#Z$. We now follow \cite{Kob20} to define $\chi(X)$ and $g(X)$. For P, U, V, G as above, let $G_i \leq G$ be the ramification subgroups for $V \to U$ above P, and define

$$\delta_P := \sum_{i \geq 0} \left\lfloor \frac{|G_i| - 1}{|G|} \right\rfloor$$

(which simplifies to only the first term $(|G| - 1)/|G|$ if X is tame above P). Then define the \textit{Euler characteristic} by

$$\chi(X) := \chi(X_{\text{coarse}}) - \sum_{P \in \mathcal{P}} \delta_P.$$

(This is motivated by the Riemann–Hurwitz formula. See \cite{VZB19,Kob20} for other motivation.) Finally, define the \textit{genus} $g = g(X)$ by $\chi(X) = 2 - 2g$.

\textbf{Lemma 6.} Let X be a stacky curve over an algebraically closed field k with $g < 1/2$. Then $X_{\text{coarse}} \simeq \mathbb{P}^1$ and $\#\mathcal{P} \leq 1$ and X is tame.

\textit{Proof.} Since $g < 1/2$, we have $\chi(X) > 1$. For each $P \in \mathcal{P}$, note that $\delta_P \geq (|G| - 1)/|G| \geq 1/2$. Now

$$\chi(X) = 2 - 2\tilde{g}_{\text{coarse}} - \#Z - \sum_{P \in \mathcal{P}} \delta_P,$$

which is ≤ 1 if $\tilde{g}_{\text{coarse}} \geq 1$ or $\#Z \geq 1$ or $\#\mathcal{P} \geq 2$. Thus $\tilde{g}_{\text{coarse}} = 0$, $\#Z = 0$, and $\#\mathcal{P} \leq 1$. Furthermore, if X is not tame, then there exists $P \in \mathcal{P}$ with $\delta_P \geq (|G| - 1)/|G| + 1/|G| \geq 1$, which again forces $\chi(X) \leq 1$, a contradiction. \hfill \Box
Now let k be any field. Let \overline{k} be an algebraic closure of k, and let k_n be the separable closure of k in k. By a stacky curve over k, we mean an algebraic stack X over k such that the base extension $X_{\overline{k}}$ is a stacky curve over \overline{k}. Define $\chi(X) := \chi(X_{\overline{k}})$ and $g(X) := g(X_{\overline{k}})$.

Lemma 7. If X is a tame stacky curve over k, then the set $\mathcal{P} \subset X_{\text{coarse}}(\overline{k})$ for $X_{\overline{k}}$ consists of points whose residue fields are separable over k.

Proof. Let $\bar{P} \in \mathcal{P}$. Let P be the closed point of X_{coarse} associated to \bar{P}. By working étale locally on X_{coarse}, we may assume that $X = [V/G]$ for a smooth curve V over k that is a G-Galois cover of X_{coarse} totally tamely ramified above P. Analytically locally above P, the tame cover is given by the equation $y^n = \pi$ for some uniformizer π at $P \in X_{\text{coarse}}$. After base change to \overline{k}, however, $\pi = u\pi^i$, where u is a unit, π is a uniformizer at \bar{P}, and i is the inseparable degree of $k(P)/k$. Thus $V_{\overline{k}}$ is analytically locally given by $y^n = u\pi^i$. Since $V_{\overline{k}}$ is smooth, $i = 1$. Thus $k(P)/k$ is separable. □

Next, let \mathcal{O} be a ring of S-integers in a global field k. By a stacky curve \mathcal{X} over \mathcal{O}, we mean a separated finite-type algebraic stack over Spec \mathcal{O} such that \mathcal{X}_k is a stacky curve. (To be as general as possible, we do not impose Deligne–Mumford, tameness, smoothness, or properness conditions on the fibers above closed points of Spec \mathcal{O}.) Define $\chi(\mathcal{X}) := \chi(\mathcal{X}_{\overline{k}})$ and $g(\mathcal{X}) := g(\mathcal{X}_{\overline{k}})$.

4. **LOCAL–GLOBAL PRINCIPLE FOR RATIONAL POINTS**

We now explain why the local-global principle for rational points is not so interesting.

Proposition 8. Let k be a global field. Let X be a stacky curve over k with $g < 1$. If $X(k_v) \neq \emptyset$ for all nontrivial places v of k, then $X(k) \neq \emptyset$.

Proof. We have $0 < \chi(X) \leq 2 - 2\tilde{g}_{\text{coarse}}$, so $\tilde{g}_{\text{coarse}} = 0$. Thus X_{coarse} is a smooth geometrically integral curve of genus 0. Because of the morphism $X \to X_{\text{coarse}}$, we have $X_{\text{coarse}}(k_v) \neq \emptyset$ for every v. By the Hasse–Minkowski theorem, $X_{\text{coarse}}(k) \neq \emptyset$, so X_{coarse} is a dense open subscheme of \mathbb{P}^1_k. In particular, $X_{\text{coarse}}(k)$ is Zariski dense in X_{coarse}, and all but finitely many of these k-points correspond to k-points on X. □

Because of Proposition 8, our main theorems are concerned with the local-global principle for integral points.

5. **PROOF OF THEOREM D** COUNTEREXAMPLE TO THE LOCAL–GLOBAL PRINCIPLE

(a) Since $(\mathcal{X}_Q)_{\text{coarse}}$ is dominated by the genus 0 curve \mathcal{Y}_Q, we have $\tilde{g}_{\text{coarse}} = 0$. The action of μ_2 on \mathcal{Y}_Q fixes exactly two \overline{Q}-points, namely those with $z = 0$; thus $\mathcal{P} = 2$, and $\delta_P = 1/2$ for each $P \in \mathcal{P}$. Hence $\chi(\mathcal{X}) = (2 - 2 \cdot 0) - (1/2 + 1/2) = 1$. (Alternatively, $\chi(\mathcal{X}) = \chi(\mathcal{Y})/2 = 2/2 = 1$.)
(b) Let R be a principal ideal domain. By definition of the quotient stack, a morphism $\text{Spec } R \to X$ is given by a μ_2-torsor T equipped with a μ_2-equivariant morphism $T \to Y$. The torsors are classified by $H^1_{\text{fppf}}(R, \mu_2)$, which is isomorphic to $R^\times/R^\times2$, since $H^1_{\text{fppf}}(R, \mathbb{G}_m) = \text{Pic } R = 0$. Explicitly, if $t \in R^\times$, the corresponding μ_2-torsor is $T_t := \text{Spec } R[u]/(u^2 - t)$. Define the twisted cover

$$Y_t := \text{Proj } R[x, y, z]/(tz^2 - f(x, y))$$

with its morphism $\pi_t : Y_t \to X$. To give a μ_2-equivariant morphism $T_t \to Y$ is the same as giving a morphism $\text{Spec } R \to Y_t$. Thus we obtain

$$X(R) = \prod_{t \in R^\times} \pi_t(Y_t(R)).$$

For any $\ell \notin \{p, q, r\}$, the rank 3 form $z^2 - f(x, y)$ has good reduction at ℓ, so $Y(\mathbb{F}_\ell) \neq \emptyset$, and Hensel’s lemma yields $Y(\mathbb{Z}_\ell) \neq \emptyset$. Since the discriminant of $f(x, y)$ is divisible only by p and not p^2, the form is not identically 0 modulo p, so there exist $\bar{a}, \bar{b} \in \mathbb{F}_p$ with $f(\bar{a}, \bar{b}) \in \mathbb{F}_p^\times$. Lift \bar{a}, \bar{b} to $a, b \in \mathbb{Z}_p$, so $f(a, b) \in \mathbb{Z}_p^\times$. Then $Y_{f(a, b)}(\mathbb{Z}_p) \neq \emptyset$. The same argument applies at q and r. Since f is positive definite, $Y(\mathbb{R}) \neq \emptyset$. Thus $X(\mathbb{Z}_\ell) \neq \emptyset$ for all primes ℓ, and $X(\mathbb{R}) \neq \emptyset$.

(c) We now show that $X(\mathbb{Z}[1/(2pqr)]) = \emptyset$, i.e., that $Y_t(\mathbb{Z}[1/(2pqr)]) = \emptyset$ for all $t \in \mathbb{Z}[1/(2pqr)]^\times$, or equivalently, that the quadratic form $f(x, y)$ does not represent any element of $\mathbb{Z}[1/(2pqr)]^\times$ times a square in $\mathbb{Z}[1/(2pqr)]$.

Completing the square shows that f is equivalent over \mathbb{Q} to the diagonal form $[a, apqr]$. If we use $u = u_v$ to denote a unit nonresidue in \mathbb{Z}_v, then

- over \mathbb{Q}_p, the form f is equivalent to $[u, up]$ and represents the squareclasses u, up;
- over \mathbb{Q}_q, the form f is equivalent to $[1, uq]$ and represents the squareclasses $1, uq$;
- over \mathbb{Q}_r, the form f is equivalent to $[u, ur]$ and represents the squareclasses u, ur.

Therefore,

- f takes square values in \mathbb{R} and \mathbb{Q}_p, but not in \mathbb{Q}_q and \mathbb{Q}_r.
- $-f$ takes square values in \mathbb{Q}_q and \mathbb{Q}_r, but not in \mathbb{R} and \mathbb{Q}_q.

It follows that f and $-f$ together represent squares locally at all places, but do not globally represent squares.

We now further check that sf, for every factor s of pqr, fails to globally represent a square (by quadratic reciprocity, r is not a square (mod p) and (mod q), and q is not a square (mod p)):

- pf takes square values in \mathbb{R} and \mathbb{Q}_q, but not in \mathbb{Q}_p and \mathbb{Q}_r.
- qf takes square values in \mathbb{R} and \mathbb{Q}_p, but not in \mathbb{Q}_q and \mathbb{Q}_r.
- rf takes square values in \mathbb{R} and \mathbb{Q}_p, but not in \mathbb{Q}_q and \mathbb{Q}_r.
- pqf takes square values in \mathbb{R} and \mathbb{Q}_p, but not in \mathbb{Q}_q and \mathbb{Q}_r.
• prf takes square values in \mathbb{R} and \mathbb{Q}_p, but not in \mathbb{Q}_q and \mathbb{Q}_r.
• qrf takes square values in \mathbb{R} and \mathbb{Q}_q, but not in \mathbb{Q}_p and \mathbb{Q}_r.
• pqrf takes square values in \mathbb{R} and \mathbb{Q}_q, but not in \mathbb{Q}_p and \mathbb{Q}_r.

Since 2 is a square in \mathbb{R}, \mathbb{Q}_p, \mathbb{Q}_q, and \mathbb{Q}_r, multiplying each of the sf’s in the above statements by 2 would not change the truth of any these statements. Meanwhile, since -1 and -2 are nonsquares in \mathbb{R}, \mathbb{Q}_p, \mathbb{Q}_q, and \mathbb{Q}_r, multiplying the sf’s in the statements above by -1 or -2 would simply reverse all the conditions (in particular, all would fail to represent squares in \mathbb{R}).

We conclude that $\mathcal{Y}_t(\mathbb{Z}[1/(2pqr)]) = \emptyset$ for all $t \in \mathbb{Z}[1/(2pqr)]^\times$, i.e., $\mathcal{X}(\mathbb{Z}[1/(2pqr)]) = \emptyset$, as claimed.

The same arguments apply to $\mathcal{X}' := [\mathcal{Y}/(\mathbb{Z}/2\mathbb{Z})]$; in particular,
$$\mathcal{X}'(\mathbb{Z}[1/(2pqr)]) = \mathcal{X}(\mathbb{Z}[1/(2pqr)]) = \emptyset,$$
because the homomorphism $\mathbb{Z}/2\mathbb{Z} \to \mu_2$ is an isomorphism over $\mathbb{Z}[1/2]$ and hence over $\mathbb{Z}[1/(2pqr)]$.

6. Stacks over local rings

This section contains some results to be used in the proof of Theorem [5].

Proposition 9. Let A be a noetherian local ring. Let X be an algebraic stack of finite type over A. Let $x \in X(A)$. Then there exists a finite-type algebraic space U over A, a smooth surjective morphism $f: U \to X$, and an element $u \in U(A)$ such that $f(u) = x$.

Proof. By definition, there exists a finite-type A-scheme V and a smooth surjective morphism $V \to X$. Taking the 2-fiber product with $\text{Spec } A \to X$ yields an algebraic space $V_x \to \text{Spec } A$. Then $V_x \to \text{Spec } A$ is smooth, so it admits étale local sections. Thus we can find a Galois étale extension A' of A, say with group G, such that x lifts to a morphism $\text{Spec } A' \to V$ equipped with a compatible system of isomorphisms between the conjugates of v.

Let $n = \#G$. Let V^n_X be the 2-fiber product over X of n copies of V, indexed by G. The left translation action of G on G induces a right G-action on V^n_X respecting the morphism $V^n_X \to X$, and there is also a right G-action on $\text{Spec } A'$. Therefore we may twist V^n_X to obtain a new algebraic space U lying over X (a quotient of $V^n_X \times_A A'$ by a twisted action of G) such that the element of $V^n_X(A')$ given by the conjugates of v and the isomorphisms between them descends to an element of $U(A)$. \qed

Remark 10. Atticus Christensen, combining a variant of our proof with other arguments, has extended Proposition [5] to other rings A, such as arbitrary products of complete noetherian local rings, and adèle rings of global fields [Chr20, Theorem 7.0.7 and Propositions 12.0.5 and 12.0.8].
For any valued field \(K \), let \(\hat{K} \) denote its completion.

Proposition 11. Let \(A \) be an excellent henselian discrete valuation ring. Let \(K = \text{Frac} \, A \). Let \(U \) be a separated finite-type algebraic space over \(K \).

(a) The set \(U(K) \) has a topology inherited from the topology on \(K \).
(b) If \(U \) is smooth and irreducible, then any nonempty open subset of \(U(K) \) is Zariski dense in \(U \).

Proof.
(a) In fact, much more is true: if \(K = \hat{K} \), then the analytification of \(U \) exists as a rigid analytic space \([\text{CT09}, \text{Theorem 1.2.1}]\). If \(K \neq \hat{K} \), equip \(U(K) \) with the subspace topology inherited from \(U(\hat{K}) \).
(b) If \(K = \hat{K} \), this follows from the fact that a nonzero power series in \(n \) variables over \(K \) cannot vanish on a nonempty open subset of \(K^n \). If \(K \neq \hat{K} \), use Artin approximation: any point of \(U(\hat{K}) \) can be approximated by a point of \(U(K) \). \(\square\)

Proposition 12. Let \(A \) be an excellent henselian discrete valuation ring. Let \(K = \text{Frac} \, A \). Let \(U \) be a separated finite-type algebraic space over \(A \). Then \(U(A) \) is an open subset of \(U(K) \).

Proof. Since \(U \) is separated over \(A \), the map \(U(A) \to U(K) \) is injective. Let \(u \in U(A) \). Choose a separated \(A \)-scheme \(V \) with an étale surjective morphism \(f: V \to U \). Then \(u \) lifts to some \(v \in V(A') \) for some finite étale \(A \)-algebra \(A' \). Let \(K' = \text{Frac} \, A' \). Since \(V \) is a separated \(A \)-scheme, \(V(A') \) is an open subset of \(V(K') \). If \(A \) is complete, then the étale morphism \(V \to U \) induces an étale morphism of analytifications \([\text{CT09}, \text{Theorem 2.3.1}]\), so \(V(K') \to U(K') \) is a local homeomorphism; in particular, it defines a homeomorphism from a neighborhood \(N_U \) of \(u \) in \(V(K') \) to a neighborhood \(N_U \) of \(u \) in \(U(K') \), and we may assume that \(N_U \subseteq V(A') \). In the general case, a given point of \(V(\hat{K}') \) maps to some point of \(U(K') \) if and only if it is in \(V(K') \), so the homeomorphism for \(\hat{K}' \)-points restricts to a homeomorphism for \(K' \)-points, which we again denote \(N_U \to N_U \). If \(u_1 \in N_U \cap U(K) \), then \(u_1 \) lies in the image of \(N_U \subseteq V(A') \), so \(u_1 \in U(A') \); now \(u_1 \in U(A') \cap U(K) \), which is \(U(A) \) since \(U \) is a sheaf on \((\text{Spec} \, A)_{\text{fppf}} \). Hence \(U(A) \) is open in \(U(K) \). \(\square\)

7. **Proof of Theorem 5**

By Lemma \([\text{6}]\) we have \((\mathcal{X}_\mathbb{C})_{\text{coarse}} \simeq \mathbb{P}^1_{\mathbb{K}} \), and hence \((\mathcal{X}_k)_{\text{coarse}} \) is a smooth proper curve of genus 0. Since \(\mathcal{X} \) has an \(\mathcal{O}_v \)-point for every \(v \), the stack \(\mathcal{X}_k \) has a \(k_v \)-point for every \(v \), so \((\mathcal{X}_k)_{\text{coarse}} \) has a \(k_v \)-point for every \(v \). Thus \((\mathcal{X}_k)_{\text{coarse}} \simeq \mathbb{P}^1_k \).

If \(\mathcal{X}_k \to (\mathcal{X}_k)_{\text{coarse}} \) is not an isomorphism, then by Lemma \([\text{6}]\) there is a unique \(\overline{k} \)-point above which it fails to be an isomorphism, and by Lemma \([\text{7}]\) it is a \(k_s \)-point, and that point
must be \(\text{Gal}(k_\pi/k) \)-stable, hence a \(k \)-point of \(\mathbb{P}^1 \), which we may assume is \(\infty \). Thus \(\mathcal{X}_k \) contains an open substack isomorphic to \(\mathbb{A}^1_k \).

Since all the stacks are of finite presentation, the isomorphism just constructed extends above some affine open neighborhood of the generic point in \(\text{Spec} \mathcal{O} \). That is, there exists a finite set of places \(S' \supseteq S \) such that if \(\mathcal{O}' \) is the ring of \(S' \)-integers in \(k \), then the stack \(\mathcal{X}_{\mathcal{O}'} \) contains an open substack isomorphic to \(\mathbb{A}^1_{\mathbb{A}^1_{\mathcal{O}'}} \).

Let \(v \in S' - S \). Let \(\mathcal{O}_v(\mathcal{O}) \) be the localization of \(\mathcal{O} \) at \(v \), and let \(\mathcal{O}_{v,h} \) be its henselization in \(\mathcal{O}_v \), so \(\mathcal{O}_{v,h} \) is the set of elements of \(\mathcal{O}_v \) that are algebraic over \(k \). Let \(k_{v,h} = \text{Frac} \mathcal{O}_{v,h} \). We are given \(x \in \mathcal{X}(\mathcal{O}_v) \). Let \(U, f, u \) be as in Proposition \(\mathbb{A}^1 \) with \(A = \mathcal{O}_v \). By Proposition \(\mathbb{A}^1 \), \(U(\mathcal{O}_v) \) is open in \(U(k_v) \). Let \(U_0 \) be the connected component of \(U(k_v) \) containing \(u \), so \(U_0(k_v) \) is open in \(U(k_v) \). The morphisms \(U_0 \to U_{k_v} \to \mathcal{X}_{k_v} \to \text{Spec} k_v \) are smooth, so \(U_0 \) is smooth and irreducible. Therefore, by Proposition \(\mathbb{A}^1 \), the set \(U(\mathcal{O}_{v,h}) \cap U_0(k_v) \) is Zariski dense in \(U_0 \). On the other hand, \(U_0 \) dominates \(\mathcal{X}_{k_v} \) since \(U_0 \to \mathcal{X}_{k_v} \) is smooth and \(\mathcal{X}_{k_v} \) is irreducible.

By the previous two sentences, there exists \(u_0 \in U(\mathcal{O}_{v,h}) \cap U_0(k_v) \) mapping into the subset \(\mathbb{A}^1(k_v) \) of \(\mathcal{X}(k_v) \). By Artin approximation, we may replace \(u_0 \) by a nearby point to assume also that \(u_0 \in U(\mathcal{O}_{v,h}) \).

Let \(U_1 \) be the inverse image of \(\mathbb{A}^1_{k_{v,h}} \) under \(U_{k_v,h} \to \mathcal{X}_{k_v,h} \). By Proposition \(\mathbb{A}^1 \), \(U(\mathcal{O}_{v,h}) \) is open in \(U(k_{v,h}) \), so \(U(\mathcal{O}_{v,h}) \cap U_1(k_{v,h}) \) is an open neighborhood of \(u_0 \) in \(U_1(k_{v,h}) \). Since \(U_1 \to \mathbb{A}^1_{k_{v,h}} \) is smooth, the image of this neighborhood is a nonempty open subset \(B_v \) of \(\mathbb{A}^1(k_{v,h}) \). By construction, \(B_v \) is contained in the image of \(U(\mathcal{O}_{v,h}) \to \mathcal{X}(\mathcal{O}_{v,h}) \subseteq \mathcal{X}(k_{v,h}) \), so \(B_v \subseteq \mathcal{X}(\mathcal{O}_{v,h}) \).

By strong approximation, there exists \(x \in \mathbb{A}^1(\mathcal{O}') \) such that \(x \in B_v \) for all \(v \in S' - S \). For each \(v \in S' - S \), since \(B_v \subseteq \mathcal{X}(\mathcal{O}_{v,h}) \), there exists \(x_v \in \mathcal{X}(\mathcal{O}_{v,h}) \) such that \(x \) and \(x_v \) become equal in \(\mathcal{X}(k_{v,h}) \). Finally, the following lemma shows that \(x \) comes from an element of \(\mathcal{X}(\mathcal{O}) \).

Lemma 13. If \(x \in \mathcal{X}(\mathcal{O}') \) and \(x_v \in \mathcal{X}(\mathcal{O}_{v,h}) \) for each \(v \in S' - S \) are such that the images of \(x \) and \(x_v \) in \(\mathcal{X}(k_{v,h}) \) are equal for every \(v \in S' - S \), then there exists an element of \(\mathcal{X}(\mathcal{O}) \) mapping to \(x \) in \(\mathcal{X}(\mathcal{O}') \) and to \(x_v \) in \(\mathcal{X}(\mathcal{O}_{v,h}) \) for each \(v \in S' - S \).

Proof. Since \(\mathcal{X} \) is of finite presentation over \(\mathcal{O} \), the element \(x_v \) comes from an element \(\tilde{x}_v \) of some finitely generated \(\mathcal{O} \)-subalgebra \(A_v \) of \(\mathcal{O}_{v,h} \). The schemes \(\text{Spec} A_v \) together with \(\text{Spec} \mathcal{O}' \) form an fppf covering of \(\text{Spec} \mathcal{O} \), so the stack property of \(\mathcal{X} \) shows that \(x \) and the \(\tilde{x}_v \) come from an element of \(\mathcal{X}(\mathcal{O}) \). \(\square \)

Remark 14. Inspired by an earlier draft of our article, Christensen has found a natural way to define a topology on the set of adelic points of a finite-type algebraic stack, and has proved a strong approximation theorem for a stacky curve with \(\chi > 1 \) [Chr20, Theorem 13.0.6]. His argument can substitute for the three paragraphs before Lemma \(\mathbb{A}^1 \) and hence give a partially independent proof of Theorem \(\mathbb{A}^1 \).
Acknowledgements

We thank Johan de Jong, Martin Olsson, Ashvin Swaminathan, Martin Ulirsch, John Voight, and David Zureick-Brown for discussions.

References

[AGV08] Dan Abramovich, Tom Graber, and Angelo Vistoli, Gromov-Witten theory of Deligne-Mumford stacks, Amer. J. Math. 130 (2008), no. 5, 1337–1398, DOI 10.1353/ajm.0.0017. MR2450211

[Bha13] Manjul Bhargava, Most hyperelliptic curves over \(\mathbb{Q} \) have no rational points, August 2, 2013. Preprint, arXiv:1308.0395v1.

[Chr20] Atticus Christensen, A topology on points on stacks, April 28, 2020. Ph.D. thesis, Massachusetts Institute of Technology.

[Con05] Brian Conrad, The Keel–Mori theorem via stacks, November 27, 2005. Unpublished manuscript, available at http://math.stanford.edu/~conrad/papers/coarsespace.pdf.

[CT09] Brian Conrad and Michael Temkin, Non-Archimedean analytification of algebraic spaces, J. Algebraic Geom. 18 (2009), no. 4, 731–788, DOI 10.1090/S1056-3911-09-00497-4. MR2524597

[DG95] Henri Darmon and Andrew Granville, On the equations \(z^m = F(x, y) \) and \(Ax^p + By^q = Cz^r \), Bull. London Math. Soc. 27 (1995), no. 6, 513–543. MR1348707 (96e:11042)

[KM97] Seán Keel and Shigefumi Mori, Quotients by groupoids, Ann. of Math. (2) 145 (1997), no. 1, 193–213, DOI 10.2307/2951828. MR1432041

[Kob20] Andrew Kobin, Artin–Schreier root stacks, April 22, 2020. Preprint, arXiv:1910.03146v2.

[Lin40] Carl-Erik Lind, Untersuchungen über die rationalen Punkte der ebenen kubischen Kurven vom Geschlecht Eins, Thesis, University of Uppsala, 1940, 97 (German). MR0022563 (9,225c)

[Ols16] Martin Olsson, Algebraic spaces and stacks, American Mathematical Society Colloquium Publications, vol. 62, American Mathematical Society, Providence, RI, 2016. MR3495343

[Poo10] B. Poonen, Curves over every global field violating the local-global principle, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 377 (2010), no. Issledovaniya po Teorii Chisel. 10, 141–147, 243–244, DOI 10.1007/s10958-010-0182-9 (English, with English and Russian summaries); English transl., J. Math. Sci. (N.Y.) 171 (2010), no. 6, 782–785. MR2753654

[Rei42] Hans Reichardt, Einige im Kleinen überall lösbare, im Großen unlösbare diophantische Gleichungen, J. Reine Angew. Math. 184 (1942), 12–18 (German). MR0009381 (5,141c)

[SP] The Stacks Project authors, Stacks project, May 18, 2020. Available at http://stacks.math.columbia.edu.

[VZB19] John Voight and David Zureick-Brown, The canonical ring of a stacky curve, February 20, 2019. Preprint, arXiv:1501.04657v3, to appear in Mem. Amer. Math. Soc.