Evaluation of the effectiveness of highly dispersed metal powders (Ca, Cu, Zn, Fe) used to increase digestibility and bioavailability of feed substrates

M Ya Kurilkina¹, O A Zavyalov¹, T N Kholodilina¹², D M Muslyumova¹, V V Vanshin²

¹Federal Research Centre of Biological Systems and Agro-Technologies of the Russian Academy of Sciences, 29, 9 Yanvarya St., Orenburg, 460000, Russia
²Orenburg State University, 13, Pobedy ave., Orenburg, 460018, Russia

E-mail: K_marina4@mail.ru

Abstract. The paper presents the results of research on feed additives based on wheat bran including highly dispersed metal powders (Ca, Cu, Zn and Fe) in various combinations subjected to extrusion processing. Physical properties (porosity) of the experimental feed substrates were assessed by the method of determining the porosity of acetone in accordance with GOST 6217. To determine feed digestibility and bioavailability of elements in vitro, an “artificial rumen” was used. The elemental composition of feed samples was studied by atomic emission spectrometry with an inductively coupled plasma (AES-ICP). Finely dispersed powder of Ca (up to 10 μm), Cu, Zn, Fe (9-10 μm) was studied. Digestibility of dry matter of feed substrates was dependent on their porosity. Extrusion of bran products increased dry matter digestibility by 6.8%, and addition of fine powder increased it by 14% (P≤0.05) in vitro conditions. An increase in bioavailability of minerals after extrusion of Cu, Zn and Fe by 19.3, 6.3 and 23.1% (P≤0.05), and after addition of highly dispersed metals by 2.98 (P≤0.05), 21.6 and 7.3% (P≤0.05) was identified.

1. Introduction

The problem of micronutrient deficiencies in feed causes serious diseases of farm animals, decreases intensity of their growth and reproductive qualities [1, 2], and their content in final animal products intended for human consumption. Development and introduction of new technologies for enriching products by transforming macro- and microelements into bio-accessible mineral systems for agricultural animals and humans is a promising direction [3].

In the last decade, new forms of biologically active substances required for development of animals and their productivity have been identified [4]. Highly dispersed metals can be used for this purpose [5]. The use of the latter will increase their bioavailability, ensure low toxicity and prolonged action [6, 7].

At the same time, the effectiveness of preparations containing particles of highly dispersed metals can be increased by exposing them to various physical methods, including extrusion. According to modern concepts, extrusion of concentrated feeds increases nutrient absorption, improves sensory characteristics and extends the shelf life of feeds [8].

However, prospects for the extrusion method in the production of feed including mineral substances are vague.

Studies of the effectiveness of feed compositions based on bran products subjected to extrusion processing in combination with highly dispersed metals are of great interest.
2. Materials and methods

2.1 Research object

Bulls of the Kazakh white-headed breed aged 13 months, rumen liquid.

Experimental studies were performed in accordance with the instructions and recommendations of the Russian Regulations, 1987 (Order No.755 on 08/12/1977 by the USSR Ministry of Health) and "The National Academy Press Washington, DC 1996). Efforts were made to minimize animal suffering and reduce the number of samples used.

2.2 The scheme of the experiment

The study was conducted under the conditions of the Center for Collective Use of the Federal Research Center of Biological Systems and Agrotechnologies of the Russian Academy of Sciences.

The rumen fluid was taken from the bulls through chronic rumen fistula. Studies were performed by the method of nylon pouches: in vitro - using the "artificial rumen KPL 01", 48-hour exposure.

The following experimental systems were used as research objects: native wheat bran (OK1), extruded wheat bran (OK2), extruded bran mixture 80% + VDP Ca 20% (OK3), extruded bran mixture 79.9% + CaP 20% + VDP Cu, Fe, Zn 0.1% (OK4), extruded bran mixture 99.9% + VDP: Cu, Fe, Zn 0.1% (OK5).

For the research purpose, we used wheat bran with crude fiber content - 8-10%, crude protein - 13-15%, with a particle size of up to 0.5 cm. Highly dispersed powders (VDP): Ca - particles less than 10 microns, Cu, Zn, Fe produced by Alfa Aesar GmbH & Co KG, a particle size - 9-10 microns, purity - 99.7% (EEC No. 231-096-4) (Germany).

The dosage of the VDP added into the feed substrates was calculated on the basis of 1 kg of extrudate: Ca - 200 g, Zn - 0.1 g, Fe - 2 g, Cu - 0.1 g.

During the study, mixtures of bran and Ca VDP were prepared at the following ratio: wheat bran - 80% and Ca VDP - 20%; wheat bran - 79.9% and CaP - 20%, VDP of metals 0.1% (Zn - 0.1 g, Fe - 2 g, Cu - 0.1 g) which were subjected to extrusion. To obtain an extrudate, a universal single-screw press extruder PESH-30/1 (Russia) with a capacity of 45 kg/h. was used. Pre-moistened (moisture content of 30%) mixture samples were extruded at a power of 7.7 kW, pressure of 10 MPa and temperature not exceeding 120 °C. The volume of water for moistening the samples was determined by formula (1).

\[
V = m \times (W_2 - W_1)/(100 - W_2)
\]

\(V\) – the volume of water required to moisten the samples, ml;
\(m\) – sample mass, g;
\(W_1\) and \(W_2\) – initial and final mass fractions of moisture, %.

Estimation of orosity of the raw material assumed the use of feed in an air-dry state placed in a measuring cylinder \((V = 100 \text{ ml}, d = 25 \text{ mm})\) with a feed density of up to 300 ± 10 g/l. The cylinder was weighed with an accuracy of 0.01 g and filled with acetone to a constant level of acetone over the sample layer. After 30 minutes of exposure, the excess acetone was merged, and the cylinder was weighed. Acetone porosity (%) was calculated as adifference using formula (2).

\[
X = \frac{(G'_{\text{la}}-G'_{\text{lb}}) \times 100}{p \times V} = \frac{G''_{\text{la}}-G''_{\text{lb}}}{p}
\]

\(G'_{\text{lb}}\) – weight of the cylinder with the sample before impregnation, g;
\(G''_{\text{la}}\) – weight of the cylinder with the sample impregnated with acetone, g;
\(p\) – acetone density at a test temperature, g/cm³;
\(V = 100 \text{ cm}^3\) – sample volume.

Dry matter digestibility was determined by the in vitro method, using an “artificial rumen KPL 01”, a thermostat of electric dry-air TC-1/80 SPU (Smolensk SKTB SPU OJSC, RF); a laboratory electronic scales VM 153 (OKB Vesta LLC, RF); a gastric probe (Russia).

A portion of the feed additives was placed in bags made of polyamide fabric. The rack with fixed bags dropped into a mixture of rumen juice and a buffer solution and placed in a thermostat for 48 hours at a temperature of +39 °C. Then the bags with samples were placed in the diluted pepsin and the device was placed in the thermostat for 24 hours for secondary digestion. At the end of digestion with pepsin, the samples were taken out of the bath, thoroughly washed with tap water and dried at a temperature of +60 °C to a constant weight. Then the degree of feed digestibility was calculated using formula (3).
\[K = \left(\frac{A - B}{C} \right) \times 100 \% \]

(3)

\(K \) – dry matter digestibility coefficient (%);

\(A \) – the initial mass of the feed sample together with the bag (g);

\(B \) – the mass of the feed sample together with the bag after digestion (g);

\(C \) – the initial mass of the sample feed without the mass of the bag (g).

Bioavailability assessment was carried out according to the in vitro results as a percentage of the difference in the content of the evaluated elements, before and after exposure.

The elemental composition of the feed was determined by atomic emission spectrometry with an inductively coupled plasma (AES-ICP) in the laboratory of the autonomous non-profit organization “Center for Biotic Medicine”, Moscow.

2.3 Statistical processing

Data are expressed as mean values ± standard error of the mean. Statistical analysis was performed using Statistica 10.0 (StatSoft Inc., USA) and Microsoft Excel (Microsoft, USA). Significance of the group differences was estimated using Student’s t-test with \(p \leq 0.05 \) considered as significant.

3. Results

The analysis showed that porosity of extruded wheat bran increased by 8.8% (\(p \leq 0.05 \)).

It was established that mineral additives in the form of the VDP did not have a pronounced effect on the estimated index (Fig. 1).

![Figure 1](image.png)

* - \(p \leq 0.05 \) in relation to OC1

The results of in vitro evaluation of the VDP effect on digestibility are presented in Figure 2.
Figure 2. In vitro digestibility of dry matter of the tested food, % * - P≤0.05 in relation to OC1

In vitro evaluation of feed digestibility revealed a significant change due to the extrusion. The share of digestibility of native bran was 64.2%, digestibility of extruded bran increased by 6.8%. The addition of VDP (Ca, Cu, Zn and Fe) into the extrudate increased the digestibility of dry matter by 14% (P≤0.05).

The comparative analysis of the results between groups of extruded feeds showed that addition of CaD, Cu, Zn and Fe VDP increased digestibility of the substrate by 1.2% more than Ca, and by 5.8% more than Cu, Zn and Fe.

Calculation of bioavailability of metals from experimental preparations showed an increase in this parameter for Cu by 19.3%, Zn - by 6.3%, and Fe - by 23.1% (P≤0.05) (Fig. 3).

Figure 3. Bioavailability of in vitro microelements from the tested food, % * - P≤0.05 to OC1
Ca, Cu, Zn, and Fe in the extruded mixture increased bioavailability. Thus, the maximum increase for Cu was 2.98% (P≤0.05), for Zn - 21.6% and for Fe - 7.3% (P≤0.05).

4. Discussion
In order to form biologically complete diets, scientists seek to develop highly effective feed additives. Highly dispersed mineral powders can be used as an alternative to existing drugs in animal feeding [10-12].

When planning the experiment, we relied on the results of previous studies which justified the addition of highly dispersed metal powders and their dosages into the feed for farm animals and birds and described positive effects of these substances [13-15].

Digestibility of dry matter through the extrusion process increased by 6.8%; addition of VDP increased digestibility by 14% (P≤0.05). The data on digestibility are confirmed by the results obtained by a number of authors [16]. This process may be due to the structural transformation in the experimental feed due to the extrusion [17]. Dietary fibers and VDP undergo chemical modification changing properties of the feed [18]. High digestibility of nutrients may be due to physical transformations under the action of extrusion and the biological effect of highly dispersed metal particles [19]. This is consistent with previous studies which showed that feeding with highly dispersed particles improves digestive processes, increases immunity and productivity of farm animals [20].

In addition, VDPs have a number of advantages, including high bioavailability, stability of interaction with other components, lower toxic effects, since absorption of particles occurs as a result of enteral digestion [21]. This is confirmed by our data on the assessment of bioavailability of chemical elements. We found a significant increase in this indicator in the extruded sample with a highly dispersed complex for all the elements (Fig. 3). The fact can be explained taking into account that an increase in bioavailability of mineral elements from the composition of experimental feed additives is due to the increased activity of the microflora of the digestive tract and partial destruction of raw fibers surrounded by highly dispersed metal particles [22-27]. In addition, the use of highly dispersed systems makes it possible to facilitate the penetration of mineral substances or biologically active compounds through biological barriers, as well as to avoid metabolic modifications that could cause low absorption [28-31].

The composition of the digested food matrix, synergism and antagonism of various components, as well as various physicochemical properties of materials [32] are factors influencing bioavailability of feed. However, these processes should be studied.

5. Conclusion
Thus, the wheat bran extrusion in combination with Ca, Cu, Zn, Fe VDP changes the structural and chemical composition of the experimental complex, increasing digestibility of nutrients and bioavailability of minerals. It was also found that an increase in digestibility of dry matter occurs by increasing the porosity of the feed substrate.

6. Acknowledgments
The study was performed in the framework of the project #0761-2019-0005.

References
[1] Powell J J, Thoree V and Pele L C 2007 Dietary microparticles and their impact on tolerance and immune responsiveness of the gastrointestinal tract British J. of Nutrition 98(1) 59–63
[2] Sizova E A, Miroshnikov S A and Khodolilina T N 2011 On the development of criteria for the safety of metal nanoparticles when introduced into animals Bull. of the Rus. Academy of Agricultural Sci. 1 40–2
[3] Yakimov A V et al 2015 Prospects for the use of new mineral additives in the diets of farm animals Fundamental and applied problems of increasing animal productivity and the competitiveness of livestock products in the current economic conditions of the agroindustrial complex of the Russian Federation (mater. of the In. Scientific and Practical Conf. vol 1) (Ulyanovsk: Ulyanovsk State Agricultural Academy named after P A Stolypin) 268–71
[4] Takeda K et al 2011 Health effects of nanomaterials on next generation Yakugaku Zasshi 131(2)
229–36

[5] Hu C H, Li Y L, Xiong L, Zhang H M, Song J and Xia M S 2012 Comparative effects of nano elemental selenium and sodium selenite on selenium retention in broiler chickens Animal Feed Sci. and Technol. 177 204–10

[6] Sharma K and Chugh A 2009 Legal aspects of nanobiotechnology inventions: An Indian perspective J. SCRIPTed 6 433

[7] In-Chul L, Je-Won K, Sung-Hyun P, Na-Rae Sh, In-Sik Sh, Changjiong M, Je-Hyun K, Young-Chan K and Jong-Chong K 2016 Comparative evaluation of the toxicity and biodistribution in rats after subchronic oral exposure of copper nanoparticles and microparticles Part of the toxic products 13 56–73

[8] Fisinin V I, Miroshnikov S A, Sizova E A, Ushakov A S and Miroshnikova E P 2018 Metal nanoparticles as trace-element sources: Current state and future prospects World's Poultry Sci. J. 74(3) 523–40

[9] Timanova A S, Miroshnikov S A, Sokolova O Ya and Kholodilina T N 2006 Use of clinker dust as a factor increasing biological availability of extrudates Vestnik of Orenburg State University 125(62) 256

[10] Miroshnikov S A, Yausheva E V, Sizova E A, Miroshnikova E P and Levahin V I 2015 Comparative assessment of effect of copper nano- and microparticles in Chicken Oriental J. of Chem. 31(4) 2327–36

[11] Mohapatra P et al 2014 Effects of dietary nano-selenium supplementation on the performance of layer grower birds Asian J. Anim. Vet. Adv. 9 641–52

[12] Sizova E, Miroshnikov S, Lebedev S, Kudasheva A and Ryabov N 2016 To the development of innovative mineral additives based on alloy of Fe and Co antagonists as an example Agricultural Biology 51(4) 553–62

[13] Bunglavan S J, Garg A K, Dass R S and Sameer S 2014 Use of nanoparticles as feed additives to improve digestion and absorption in livestock Livest. Res. Int. 2 36–47

[14] Shi L et al 2011 Effect of elemental nano-selenium on feed digestibility, rumen fermentation and purine derivatives in sheep Anim. Feed Sci. Technol. 163 136–42

[15] Sizova E A, Miroshnikov S A, Lebedev S V, Levakhin Yu I, Babicheva I A and Kosilov V I 2018 Comparative tests of various sources of microelements in feeding chicken-broilers Agricultural Biology 53(2) 393–403

[16] Anson N M, Aura A M, Selinheimo E, Mattila I, van den Poutanen K, Berg R, Havenaar R, Bast A and Haenen G R 2011 Bioprocessing of wheat bran in whole wheat bread increases the bioavailability of phenolic acids in men and exerts antiinflammatory effects ex vivo J. Nutr 141(1) 137–43

[17] Andi M A, Hashemi M and Ahmadi F 2011 Effects of feed type with/without nanosil on cumulative performance, relative organ weight and some blood parameters of broilers Global Food Vet. 7 605–9

[18] Powell J J, Faria N, Thomas-McKay E and Pele L C 2010 Origin and fate of dietary nanoparticles and microparticles in the gastrointestinal tract J. of Autoimmunity 34(3) 226–33

[19] Yausheva E V, Miroshnikov S A, Kosyan D B and Sizova E A 2016 Nanoparticles in combination with amino acids change productive and immunological indicators of broiler chicken Agricultural Biology 51(6) 912–20

[20] Logachev K, Karimov I, Duskaev G, Frolov A, Tulebaev S and Zav˚yalov O 2015 Study of Intercellular Interaction of Ruminal Microorganisms of Beef Cattle Asian J. of Animal Sci. 9 248–53

[21] Sheyda E., Sipaylova O., Kvan O., Notova S., Nesterov D., Rusakova E., Kosyan D., Duskaev G. 2014 Functional properties of antimicrobial peptides extracted from hens’ platelets. Life Science Journal 11(9).25 180-184

[22] Xie X, Tao Q, Zou Y, Zhang F, Guo M, Wang Y, Wang H, Zhou Q and Yu S 2011 PLGA nanoparticles improve the oral bioavailability of curcumin in rats: characterizations and mechanisms J. Agric. Food Chem. 59(17) 9280–9

[23] Biehler E and Bohn T 2010 Methods for assessing aspects of carotenoid bioavailability Curr.
Nutr. Food Sci. 6 44–69

[24] Ognik K, Stepniowska A, Cholewinska E and Kozłowski K 2016 The effect of administration of copper nanoparticles to chickens in drinking water on estimated intestinal absorption of iron, zinc and calcium Poult. Sci. 95 2045–51

[25] Gonzales-Eguia A, Fu C M, Lu F Y and Lien T F 2009 Effects of nanocopper on copper availability and nutrients digestibility, growth performance and serum traits of piglets Livestock. Sci. 126 122–9

[26] Duskaev G.K., Kazachkova N.M., Ushakov A.S., Nurzhanov B.S., Rysaev A.F. (2018) The effect of purified Quercus cortex extract on biochemical parameters of organism and productivity of healthy broiler chickens. Veterinary World, 11(2): 235-239

[27] Sahoo A, Swain R K and Mishra S K 2014 Effect of inorganic, organic and nano zinc supplemented diets on bioavailability and immunity status of broilers Int. J. Adv. Res 2 828–37

[28] Fernández-Garcia E, Carvajal-Lérida I, Jarén-Galán M, Garrido-Fernández J, Pérez-Gálvez A and Hornero-Méndez D 2012 Carotenoid bioavailability from foods: from plant pigments to efficient biological activities Food Res Int 46 438–50

[29] Chow S C and Liu J P 2009 Design and Analysis of Bioavailability and Bioequivalence Studies 3rd ed (Florida: Chapman & Hall/CRC Boca Raton)

[30] Sawant D N et al 2013 Effect of supplementation of minerals and vitamins on growth performance of indigenous heifers Indian J. of Animal Nutrition 30(4) 387–91

[31] Miroshnikova E, Arinzhanov A, Kilyakova Y, Sizova E and Miroshnikov S 2015 Antagonist metal alloy nanoparticles of iron and cobalt: impact on trace element metabolism in carp and chicken Human and Veterinary Medicine 7(4) 253–9