Brewers’ rice modulates oxidative stress in azoxymethane-mediated colon carcinogenesis in rats

Bee Ling Tan, Mohd Esa Norhaizan, Ky Huynh, Swee Keong Yeap, Hamzah Hazilawati, Karim Roselina

Bee Ling Tan, Mohd Esa Norhaizan, Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia

Mohd Esa Norhaizan, Research Centre of Excellent, Nutrition and Non-Communicable Diseases, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia

Mohd Esa Norhaizan, Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia

Ky Huynh, Swee Keong Yeap, Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia

Hamzah Hazilawati, Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia

Karim Roselina, Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia

Author contributions: Tan BL, Norhaizan ME, Yeap SK and Roselina K designed the study; Tan BL carried out the experiments; Tan BL and Huynh K performed acquisition of data; Tan BL, Norhaizan ME and Hazilawati H performed the statistical analysis and interpretation of data; Tan BL and Norhaizan ME drafted the manuscript and revised the manuscript critically; all authors read and approved the final version of the manuscript.

Supported by Ministry of Education, Malaysia (RUGS-2 project, No. 05-02-12-1862RU). Institutional review board statement: This study was conducted following the guidelines approved by the Institutional Animal Care and Use Committee of the Faculty of Medicine and Health Sciences, Universiti Putra Malaysia Serdang, Selangor.

Institutional animal care and use committee statement: All procedures involving animals were reviewed and approved by the Institutional Animal Care and Use Committee of the Faculty of Medicine and Health Sciences, Universiti Putra Malaysia Serdang, Selangor.

Conflict-of-interest statement: The authors declare that they have no conflicts of interest.

Data sharing statement: No additional data are available.

Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Correspondence to: Mohd Esa Norhaizan, PhD, Associate Professor, Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia. nhaizan@upm.edu.my Telephone: +603-89472427 Fax: +603-89426769

Received: December 30, 2014
Peer-review started: January 1, 2015
First decision: March 10, 2015
Revised: April 10, 2015
Accepted: June 10, 2015
Article in press: June 10, 2015
Published online: August 7, 2015

Abstract

AIM: To investigate the mechanistic action of brewers’ rice in regulating the Wnt/nuclear factor-kappa B (NF-κB)/Nrf2-signaling pathways during colon carcinogenesis in male Sprague-Dawley rats.
METHODS: Male Sprague-Dawley rats were randomly divided into the following five groups (six rats in each group): (G1) normal, (G2) azoxymethane (AOM) alone, (G3) AOM + 10% (weight (w)/weight (w)) brewers’ rice, (G4) AOM + 20% (w/w) brewers’ rice, and (G5) AOM + 40% (w/w) brewers’ rice. They were intraperitoneally administered 15 mg/kg body weight of AOM in saline weekly over a two-week period and treated with an American Institute of Nutrition (AIN)-93G diet containing 10%, 20%, and 40% (w/w) brewers’ rice. The mRNA levels of glycogen synthase kinase 3β (GSK3β), β-catenin, key inflammation markers, nuclear factor E2-related factor 2 (Nrf2), and heme oxygenase-1 (HO-1)-dependent transcriptional activity were assessed by quantitative real-time polymerase chain reaction analyses. The colon superoxide dismutase, malondialdehyde, and nitric oxide levels were also analyzed to assess the antioxidant effect of these treatments. The results were analyzed using one-way analysis of variance (ANOVA), and a P value of < 0.05 was considered significant.

RESULTS: The overall analyses demonstrated that the dietary administration of brewers’ rice in AOM-induced rat colon carcinogenesis resulted in the transcriptional upregulation of GSK3β, inducible nitric oxide synthase (iNOS), Nrf2, and HO-1. We discovered that the dietary administration of brewers’ rice downregulated the β-catenin and NF-κB mRNA levels. A significant reduction in β-catenin expression was found in the groups administered with 20% (0.611 ± 0.034) and 40% (0.436 ± 0.045) (w/w) brewers’ rice compared with that of the group treated with AOM alone (1.000 ± 0.064) (P < 0.05). The NF-κB expression was significantly lower between the AOM-alone group (1.000 ± 0.048) and those groups fed with diets containing 10% (w/w) brewers’ rice (0.255 ± 0.022), 20% (w/w) brewers’ rice (0.450 ± 0.405), or 40% (w/w) brewers’ rice (0.541 ± 0.027) (P < 0.05). Brewers’ rice improved the antioxidant levels, indicating that brewers’ rice can enhance effective recovery from oxidative stress induced by AOM.

CONCLUSION: Our results provide evidence that brewers’ rice can suppress colon cancer via the regulation of Nrf2 expression and the inhibition of the Wnt/NF-κB signaling pathways.

Key words: Brewers’ rice; Nuclear factor-kappa B; Colon cancer; β-catenin; Nuclear factor E2-related factor 2

© The Author(s) 2015. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: This study demonstrates that a treatment with 40% (w/w) brewers’ rice modulated the Wnt signaling pathway. Feeding 20% (w/w) brewers’ rice markedly improved the antioxidant level. These results strongly imply the potential use of brewers’ rice in future applications to combat oxidative stress and colon cancer.

INTRODUCTION Colorectal cancer has become the third most prevalent cancer after lung and breast cancers and contributes to nearly 10% of the total cases of cancer and approximately 8% of total cancer deaths worldwide[1]. It represents the third and second most commonly diagnosed cancer in males and females, respectively, with more than 1.2 million new cancer cases and 608700 deaths in 2008 worldwide[2]. The deregulation of Wnt/β-catenin signaling has been demonstrated to be associated with cancer, particularly colorectal cancer[3]. Chronic infection and inflammation promote the expression of nuclear factor-kappa B (NF-κB)[4] and inflammatory-associated genes, such as inducible nitric oxide synthase (iNOS)[5]. The NF-κB pathway is associated with colorectal cancer, and the inhibition of NF-κB activation can reduce chemoresistance[6]. The nuclear factor E2-related factor 2 (Nrf2) transcription factor signaling pathway has become a target for chemoprevention. A previous study reported that Nrf2 regulates the expression of numerous detoxifying and antioxidant enzymes toward oxidative or electrophilic stress[7]. The health benefits of natural products have led to their recognition as sources of remedy[8]. Most studies have indicated that cancers may be prevented or delayed by treatment with natural dietary products or synthetic compounds[9]. Rice (Oryza sativa L.), an essential cereal crop grown in Asia, has become a major source of carbohydrates in the daily diet. Epidemiological studies have demonstrated that whole grain foods are recognized to be important for providing protection against cancer[10]. Brewers’ rice, known locally as temukut, consists of broken rice, rice bran, and rice germ, which is a waste product of the rice industry. The production of brewers’ rice during rice milling has been described in a previous report[11]. Our earlier study showed that the dietary administration of brewers’ rice can reduce the risk of azoxymethane (AOM)-induced colon carcinogenesis in rats through the downregulation of β-catenin and cyclooxygenase (COX-2)[12]. However, the molecular mechanism underlying these effects remains obscure. We hypothesized that brewers’ rice may provide chemopreventive or chemotherapeutic effects against colorectal cancer via regulation of multiple signaling pathways. The present study sets out to determine whether brewers’ rice confers suppressive effects on the gene expression of β-catenin and key inflammation markers, such as NF-κB and iNOS, which are par-
ticularly critical in the development of colon cancer. Glycogen synthase kinase 3β (GSK3β), a destruction complex that modulates the degradation of β-catenin, was also evaluated. Moreover, the potential roles of brewers’ rice in the regulation of colon tumorigenesis in male Sprague-Dawley rats. Nrf2 and heme oxygenase-1 (HO-1) were evaluated to determine the effect of brewers’ rice in carcinogen metabolism against detoxification. The colon superoxide dismutase (SOD), malondialdehyde (MDA), and nitric oxide (NO) levels were also analyzed to assess the antioxidant effect of these treatments.

**MATERIALS AND METHODS**

**Chemicals and reagents**

AOM and phosphate-buffered saline (PBS) were purchased from Sigma-Aldrich (St. Louis, MO, United States). RNA Shield™ reagent was obtained from Zymo Research Corp. (Irvine, CA, United States). HiYield™ Total Ribonucleic Acid (RNA) Mini Kit (Tissue) was purchased from Real Biotech Corporation (Banqiao City, Taipei County, Taiwan). High Capacity RNA-to-cDNA Kit and SYBR® Select Master Mix (CFX) were purchased from Applied Biosystems (Foster City, CA, United States). Specific primers were purchased from Sigma-Aldrich (St. Louis, MO, United States). Griess Reagent Kit was obtained from Invitrogen™ (Carlsbad, CA, United States). All other chemicals and reagents used were of analytical grade and bought from Sigma-Aldrich (St. Louis, MO, United States).

**Brewers’ rice**

Freshly milled brewers’ rice samples from rice variety MR 219 were obtained from the BERNAS Milling Plant at Seri Tiram Jaya, Selangor, Malaysia. The stabilization of brewers’ rice was conducted as previously reported by Tan et al. [13].

**Diet and animals**

This study was conducted following the guidelines approved by the Institutional Animal Care and Use Committee (IACUC) of the Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM) Serdang, Selangor (IACUC protocol number: UPM/FPSK/PADS/BR-UUH/00461). A total of 30 four-week-old male Sprague-Dawley rats (Rattus norvegicus) were housed in a well-ventilated room at 25 to 27 °C with 50% ± 10% relative humidity and 12-h light/dark cycles. Hygienic conditions were maintained by weekly changes of woodchip beds. The animals were acclimatized for seven days and administered an American Institute of Nutrition (AIN)-93G diet and water ad libitum. The animals were randomly divided into the following five groups (six rats in each group): (G1) normal, (G2) AOM alone, (G3) AOM + 10% (weight (w)/weight (w)) brewers’ rice, (G4) AOM + 20% (w/w) brewers’ rice, and (G5) AOM + 40% (w/w) brewers’ rice. Beginning at six weeks of age, the rats were intraperitoneally given injections of AOM at a dose of 15 mg/kg body weight once weekly over a two-week period, whereas the rats in the normal group were given normal saline (vehicle control). The control groups (G1 and G2) were fed an AIN-93G diet, and the G3, G4, and G5 groups were given an AIN-93G diet containing 10%, 20%, and 40% (w/w) brewers’ rice, respectively. The experimental diets were prepared weekly and kept at 4 °C. The composition of the experimental diet (Table 1) was adjusted according to the nutrient content of brewers’ rice with respect to moisture (11.36% ± 0.12%), ash (1.56% ± 0.26%), protein (9.01% ± 0.27%), fat (1.95% ± 0.11%), total available carbohydrates (72.42% ± 1.25%), and total dietary fiber (5.32% ± 0.04%) contents [13]. After twenty weeks of treatment, the animals were sacrificed after anesthesia with diethyl ether, and the colon tissue was removed, rinsed with PBS, opened longitudinally, and fixed with RNA Shield™ reagent or stored at -20 °C for further analyses.

**Total RNA extraction and cDNA synthesis**

The extraction of total RNA from colon tissue was performed using the HiYield Total RNA Mini Kit (Tissue). Initially, colon tissue disruption and homogenization were performed according to the manufacturer’s protocols. The colon tissue was homogenized in a mixture of 100 µL of lysis buffer, 400 µL of RB buffer, and 4 µL of β-mercaptoethanol. The sample was then incubated for 5 min at room temperature and centrifuged at 15680 × g for 5 min. The supernatant was passed through the filter column and the collection tube. After centrifugation at 93 × g for 1 min, 400 µL of 70% ethanol was added and passed through the RB column. After adding 400 µL of W1 Buffer and 600 µL of wash buffer, the RNA was eluted with 50 µL of RNase-free water and kept at -80 °C. Two microliters of nuclease-free water was added to the pedestal for a blank sample. After that, 1 µL of RNA sample was added. The RNA concentration was measured at 260 nm using a nanophotometer. Two micrograms of total RNA per 20 µL was reverse-transcribed using the High Capacity RNA-to-cDNA Kit, according to the manufacturer’s protocols. The reverse transcription reaction was performed using an Authorized Thermal Cycler. The reaction was performed at 37 °C for 60 min followed by 95 °C for 5 min to denature the enzyme and then maintained at 4 °C. The cDNA was then ready for use as a template for the amplification of real-time polymerase chain reaction (PCR).

**Quantitative real-time polymerase chain reaction analysis**

The nucleotide primer sequences of rat origin were obtained from the National Center for Biotechnology Information Gene Bank (Table 2). The specific primers...
were validated for amplification specificity, amplification efficiency over a concentration range and consistency with the amplification efficiency of housekeeping genes. The mRNA levels of GSK3β, β-catenin, NF-κB, iNOS, Nrf2, and HO-1 were assayed using SYBR® Select Master Mix, CFX in a final volume of 20 µL, according to the manufacturer’s protocols. Initially, the cDNA template, primers, and kit contents (SYBR® Select Master Mix (CFX) and RNase-free water) were thawed on ice. Upon thawing, the reaction mix was prepared and thoroughly mixed. The qPCR reaction was then analyzed based on the following conditions: (1) uracil-DNA glycosylase (UDG) activation at 50 °C for 120 s (1 cycle); and (2) DNA polymerase activation at 95 °C for 120 s (1 cycle); denaturation at 95 °C for 2 s (40 cycles); and annealing/extension at 60 °C for 30 s (40 cycles). All samples and controls were determined in triplicate using an Eco™ Real-Time PCR system, and the v4.0.7.0 software (Illumina, Inc., San Diego, CA, United States) was used for data analysis. The fold inductions of the samples were compared with the control (AOM-alone group). Beta-actin (ACTB), β-2 microglobulin (B2M), and ribosomal protein, large, P1 (RPLP1) were used as housekeeping genes to normalize the expressions of the target genes.

### Colon tissue preparation

The colon tissues of rats were homogenized in ice-cold PBS. Supernatants were collected by centrifugation at 370 × g and 4 °C for 5 min and stored at -80 °C for the SOD[14], MDA[15], and NO[16] assays.

### Determination of superoxide dismutase

The SOD levels in the colon homogenates were analyzed following the inhibition of the reduction of nitroblue tetrazolium (NBT). Tissue supernatant was diluted with 0.1 mol/L of ethylenediaminetetraacetic acid (EDTA), 0.15 mg/mL of sodium cyanide, 1.5 mmol/L of NBT, 0.12 mmol/L of riboflavin, and 0.067 mol/L of phosphate buffer in a 300 µL volume. The sample absorbance was read at 560 nm, and the percentage of SOD inhibition was compared with that of the blank. The concentration of the sample was calculated using the amount of protein required to achieve 50% inhibition and expressed as U/mg of protein.

### Determination of malondialdehyde

Lipid peroxidation was determined by measuring the thiobarbituric acid reactive substance (TBARS) levels. An aliquot of 100 µL of the supernatant was diluted with 400 µL of PBS and added with 12.5 µL of butylated hydroxytoluene (BHT, 8.8 mg/mL) and 250 µL of trichloroacetic acid (TCA, 30%). The mixture was vortexed, allowed to stand for 2 h at 4 °C and centrifuged at 2000 × g for 15 min. The supernatant

---

**Table 1 Composition of experimental diets**

| Ingredients (g/1000 g diet) | G1 | G2 | G3 | G4 | G5 |
|-----------------------------|----|----|----|----|----|
| Brewers’ rice               |    | 100.0 | 200.0 | 400.0 |
| Corn starch                 |    | 397.5 | 397.5 | 315.3 | 233.2 | 68.9 |
| Casein                      |    | 200.0 | 200.0 | 191.0 | 182.0 | 164.0 |
| Maltodextrin                |    | 132.0 | 132.0 | 132.0 | 132.0 |
| Sucrose                     |    | 100.0 | 100.0 | 100.0 | 100.0 |
| Soybean oil                 |    | 70.0 | 70.0 | 68.1 | 66.1 | 62.2 |
| Powdered cellulose          |    | 50.0 | 50.0 | 44.7 | 39.4 | 28.7 |
| AIN-93G mineral mix         |    | 35.0 | 35.0 | 33.4 | 31.9 | 28.8 |
| AIN-93G vitamin mix         |    | 10.0 | 10.0 | 10.0 | 10.0 |
| L-cystine                   |    | 3.0 | 3.0 | 3.0 | 3.0 |
| Choline bitartrate          |    | 2.5 | 2.5 | 2.5 | 2.5 |
| tert-butylhydroquinone      |    | 0.014 | 0.014 | 0.014 | 0.014 | 0.014 |

G1 and G2: AIN-93G diet; G3: AIN-93G diet containing 10% (w/w) of brewers’ rice; G4: AIN-93G diet containing 20% (w/w) of brewers’ rice; G5: AIN-93G diet containing 40% (w/w) of brewers’ rice.

---

**Table 2 Nucleotide sequence of polymerase chain reaction primers (obtained from GenBank database)**

| Primer name | Oligonucleotides (5'-3') |
|-------------|-------------------------|
| GSK3β[Accession number] | F: GCCGCACTACCCCTGATCTTT |
| [NM_032080] | R: GCGGAAAGACCTTCGTCCTCA |
| Beta-catenin | F: CGTGGAAGCTGGTGGGATG |
| [AF121265] | R: TCTCCTGATTCCTGCGTAT |
| NF-κB | F: AGACGATGTCGGGTTCTACAGG |
| [NM_001276711.1] | R: GCTGACATGAAAGTGTGATG |
| iNOS | F: GTACCCCTACGATTCGCTCCT |
| [NM_012611.3] | R: TGTTCCCTGTGAAATGTGAAC |
| Nrf2 | F: TCTGACTCCGCAATTTCACACT |
| [NM_031789.2] | R: CCCCCAGAAGATGGTTGCGGC |
| HO-1 | F: CTAGAGACAGCAATGCGGCTC |
| [NM_012580.2] | R: GCCCTTCCGCAATTTCCTT |
| ACTB | F: CCACCCTCGAGAATACCA |
| [NM_031144.3] | R: TCAGGATCCCTCCTGTGTCCT |
| B2M | F: CACGCTCTAGCTGCTTTC |
| [NM_012512.2] | R: GATGAAAACGGCCACACAGGCC |
| RPLP1 | F: CAAGGGCTCCTGCTCCTT |
| [NM_001007604.2] | R: GACCGTCTGTGCGTCTTC |

1Housekeeping gene. ACTB: β-actin; B2M: Beta-2 microglobulin; GSK3β: Glycogen synthase kinase 3β; HO-1: Heme oxygenase-1; iNOS: Nitric oxide synthase inducible; NF-κB: Nuclear factor-kappa B; Nrf2: Nuclear factor E2-related factor 2; RPLP1: Ribosomal protein, large, P1.
In the current study, we determined the tumorigenesis of brewers’ rice promotes GSK3β. The administration of brewers’ rice significantly increased the transcription of the GSK3β gene compared with AOM alone (P < 0.05). These findings clearly demonstrated that the dietary administration of brewers’ rice in AOM-induced rat colon carcinogenesis resulted in a dose-dependent increase in the GSK3β mRNA level.

Brewers’ rice inhibits the β-catenin pathway in colonic tumors

As shown in Figure 1, our results showed that the colonic tumors in the groups treated with AOM alone had the highest β-catenin mRNA levels, whereas the administration of 20% (0.611 ± 0.045) and 40% (0.436 ± 0.045) (w/w) brewers’ rice markedly decreased the β-catenin mRNA levels. A significant reduction in β-catenin expression was found in the groups administered with 20% and 40% (w/w) brewers’ rice compared with the group treated with AOM alone (P < 0.05). In brewers’ rice-treated AOM-injected colon tumorigenesis rats, the phosphorylation and degradation of β-catenin increased in a dose-dependent manner. A very low β-catenin amount was observed in the normal group (0.011 ± 0.003) (Figure 1).

Brewers’ rice inhibits the expression of NF-κB in colon tumorigenesis

We hypothesized that brewers’ rice downregulates the expression of NF-κB. As expected, none of the rats exhibited NF-κB expression in the normal colon mucosa (Figure 2). The overall analysis indicated that the colon tissue in the group treated with AOM alone presented the highest NF-κB expression (1.000 ± 0.048) compared with the groups treated with brewers’ rice. A significant reduction in the gene expression of NF-κB was also observed in the rats of the groups treated with brewers’ rice compared with the group treated with AOM alone (P < 0.05). This finding revealed that the administration of brewers’ rice resulted in the inhibition of NF-κB expression, and the maximum effect was obtained with 10% (w/w) brewers’ rice (0.255 ± 0.022).

Brewers’ rice upregulates the iNOS mRNA level in colon tumorigenesis

In the present study, we observed a high expression of iNOS mRNA in the normal colon mucosa (9.134 ± 0.708). The data presented in this study demonstrated that the groups administered with 20% (9.090 ± 0.519) and 40% (8.582 ± 1.261) (w/w) brewers’ rice exhibited significantly upregulated iNOS mRNA levels compared with the group treated with AOM alone (P < 0.05) (Figure 2).
findings showed that the highest MDA level was obtained in the group treated with AOM alone (18.01 ± 1.43 nmol/g of protein) compared with the groups treated with brewers’ rice. A significant reduction in the MDA level was found in the two treatment groups (20% (14.24 ± 0.58 nmol/g of protein) and 40% (8.14 ± 1.42 nmol/g of protein) (w/w) of brewers’ rice) compared with that of the group treated with AOM alone (18.01 ± 1.43 nmol/g of protein) (P < 0.05). These findings indicated that the dietary administration of brewers’ rice resulted in reductions in the MDA level in a dose-dependent manner, and the maximum effect was obtained with a concentration of 40% (w/w) brewers’ rice (8.14 ± 1.42 nmol/g of protein) (Table 3).

Consistent with the high levels of MDA observed in colon tumors, we also observed the highest NO level in the group treated with AOM alone (798.46 ± 30.45 µmol/mg of protein) compared with those of the other treatment groups (Table 3). After twenty weeks of treatment with brewers’ rice, the NO level was reduced. The suppressive effect of brewers’ rice on NO was notable in rats that received 20% (w/w) brewers’ rice (533.40 ± 40.43 µmol/mg of protein).

DISCUSSION

The current study is an extension of our earlier work, which determined that brewers’ rice was an effective dietary agent for the reduction of tumor incidence and multiplicity in rat colons induced with AOM[12]. We also determined that brewers’ rice markedly suppressed β-catenin expression in both the cytoplasm and the nucleus[12]. In the present study, male Sprague-Dawley rats were given different doses [10%, 20%, and 40% (w/w)] of brewers’ rice. A dosage of 10% (w/w) brewers’ rice was administered as suggested by a previous study performed by Boateng et al[17] on rice bran and rice germ. This dosage has been reported to reduce tumor formation. Moreover, higher concentrations [20% and 40% (w/w) brewers’ rice] were also used to determine the dose-dependent effect of brewers’ rice as a dietary agent in a rat colon cancer experimental model. Our earlier study reported that the highest dose [40% (w/w) brewers’ rice] was well-tolerated and did not suppress the growth of rats[12].

Targeting Wnt signaling upstream of T-cell factor (TCF)/β-catenin signaling is a critical therapeutic option. In the β-catenin destruction complex, GSK3β is one of the crucial components that modulates the degradation or accumulation of β-catenin in the nucleus. To ascertain whether brewers’ rice modulated GSK3β via Wnt/β-catenin signaling, the GSK3β mRNA level was analyzed in the colon of rats induced with AOM. Overall, treatment with brewers’ rice resulted in an increase in the GSK3β mRNA level, and the maximum effect was obtained with 40% (w/w) brewers’ rice. To further verify whether the mechanisms of action of GSK3β observed in the colons of rats injected with AOM suppressed
Table 3 Colon superoxide dismutase, malondialdehyde, and nitric oxide levels in azoxymethane-induced colon cancer after twenty weeks treatment

| Group                          | SOD (U/mg of protein) | MDA (nmol/g of protein) | NO (µmol/mg of protein) |
|-------------------------------|-----------------------|--------------------------|-------------------------|
| Normal                        | 60.93 ± 5.23          | 5.36 ± 0.23              | 414.64 ± 11.59          |
| AOM alone                     | 43.43 ± 2.96          | 18.01 ± 1.43             | 798.46 ± 30.45          |
| AOM + 10% (w/w) of brewers’ rice | 43.85 ± 6.32         | 17.34 ± 3.16             | 622.70 ± 15.62          |
| AOM + 20% (w/w) of brewers’ rice | 61.71 ± 2.36         | 14.24 ± 0.58             | 533.40 ± 40.43          |
| AOM + 40% (w/w) of brewers’ rice | 61.29 ± 4.32         | 8.14 ± 1.42              | 619.35 ± 15.04          |

Each value expressed as mean ± SD (n = 3). *P < 0.05 vs AOM alone, Tukey’s test. MDA: Malondialdehyde; NO: Nitric oxide; SOD: Superoxide dismutase.

β-catenin expression, the mRNA level of β-catenin in response to brewers’ rice was further analyzed.

The Wnt/β-catenin pathway plays a vital role in tissue homeostasis and cancer susceptibility. The dysregulation of β-catenin and other Wnt molecules results in the nuclear localization of β-catenin, stimulation of Wnt target genes, and tumor formation[18]. Mutations in the β-catenin gene are usually found in AOM-induced colon tumorigenesis in rats and mice[18]. These findings, which are supported by the current data, further indicate that the activation of the β-catenin gene plays a vital role in the development of colon tumors in rats. The finding that the depletion of β-catenin suppresses tumor incidence and multiplicity in brewers’ rice-treated AOM-induced colon tumorigenesis suggests that brewers’ rice may become a potential strategy for the therapeutic control of Wnt/β-catenin signaling in colon cancer. In the present study, treatments with brewers’ rice resulted in increased GSK3β and decreased β-catenin, and the maximum effect was observed with 40% (w/w) brewers’ rice. The effects observed in the treatment with 40% (w/w) brewers’ rice could be explained by its higher concentrations of active compounds in brewers’ rice, which may confer better functional properties in the regulation of Wnt/β-catenin signaling pathway. A very low β-catenin mRNA level observed in the normal group was consistent with the findings reported by Barker et al20, who found that Wnt/β-catenin signaling played an essential role in intestinal development, which is specific for the intestinal and mammary epithelia. A previous study also demonstrated that most of the β-catenin protein was present at very low amounts in the cytoplasm or nucleus of normal cells21. Cytoplasmic β-catenin was maintained at a low level for tissue homeostasis, particularly in strongly proliferative, self-renewing tissues, such as the skin and gut23. However, Wnt pathway mutations are not the only factors that promote the activation of β-catenin25. A study reported that NF-κB also plays a crucial role in colorectal and colitis-associated tumorigenesis24. Aberrant NF-κB stimulation has been identified in more than 50% of colorectal and colitis-associated tumors25. Thus, the expression levels of NF-κB in response to brewers’ rice were evaluated in the colons of rats induced with AOM.

The NF-κB family is a group of inducible transcription factors that are involved in immune and inflammatory responses and inhibit cell apoptosis. A previous study revealed that cancer cells with activated NF-κB are resistant against chemotherapeutics and ionizing radiation and that suppression of NF-κB activity markedly increases the sensitivity of cells to chemotherapeutic agents26. The inhibition of NF-κB transcriptional activity resulting from the administration of brewers’ rice was further supported by Biswas et al27 and Xie et al28, who found that phenolic compounds inhibited NF-κB in cell cultures and promoted anti-inflammatory and antioxidant responses. Although the maximum effect was observed in 10% (w/w) brewers’ rice, there was no significant difference between groups fed with 10% (w/w) brewers’ rice and groups fed with diets containing 20% (w/w) brewers’ rice or 40% (w/w) brewers’ rice (P > 0.05). The reason for the lack of any clear dose-dependence effects remains to be elucidated. One of the possible reasons may be due to the efficiency of brewers’ rice involved in the inhibition of NF-κB transcriptional activity reached with 10% (w/w) brewers’ rice. Collectively, the data presented in this study suggest that brewers’ rice may modulate colon tumor development through NF-κB signaling. In addition to the effects observed in Wnt and NF-κB signaling, the role of iNOS in the suppression of colon tumorigenesis elicited by brewers’ rice remains unknown. Therefore, we further determined the chemoprevention mechanism of iNOS on brewers’ rice in this model.

NO is produced during transcription and translation via iNOS, and once active, iNOS synthesizes high NO levels until substrate depletion29. However, our study shows contradictory results. It is possible that multiple cellular factors affect the sensitivity of NO, like specific NO metabolism pathways and interactions with other free radicals. The sensitivity of NO may also be associated with the expression of apoptosis-associated proteins, including Bcl-2, Bax, and Fas30. Excessive NO production can decrease the concentration of DNA repair enzymes and inhibit apoptosis through the nitrosylation of caspases31. The upregulation of iNOS mRNA levels in the current study was consistent with the results obtained by Radomski et al32 and Dong et al33, who reported that the expression of iNOS was...
inversely associated with metastatic activity in human colon cancer and murine melanoma (K-1735) cells. This finding was further supported by Shi et al.[34], who demonstrated that iNOS overexpression not only attenuated the proliferation and metastasis of human renal cell carcinomas and murine fibrosarcoma but also induced apoptosis. However, the study conducted by Shi et al.[34] contradicted the results reported by Sheng et al.[35] and Di Popolo et al.[36], who demonstrated that elevated iNOS mRNA and protein levels partially contributed to the inhibition of apoptosis in colon cancer cells. Therefore, the activation of iNOS at the mRNA level may play a critical role in growth inhibition and apoptosis in a human colorectal cancer (HT-29) cell line, as determined in our earlier studies[37]. A previous study showed that Nrf2 enhanced the basal expression of cytoprotective genes and suppressed cytokine-mediated inflammation[38]. Thus, the expression of Nrf2 in AOM-induced colon tissue was evaluated to determine whether brewers’ rice could modulate Nrf2 at the mRNA level.

Nrf2, which belongs to the Cap’n’Collar family of basic region-leucine zipper transcription factors, was shown to be a key element in the antioxidant response element (ARE)-mediated transcriptional machinery[39]. Nrf2 plays a crucial role in the regulation of phase II detoxifying and antioxidant enzymes via AREs[39]. To determine whether brewers’ rice decreased colorectal cancer by modulating the antioxidant-mediated pathway, we examined the transcription of Nrf2. Treatment with 20% and 40% (w/w) brewers’ rice effectively activated the gene expression of Nrf2 and may be associated with the modulation of xenobiotic-metabolizing enzymes and responsible for the balance of carcinogen metabolism against detoxification[40].

Nrf2 is stimulated by an oxidative signal in the cytoplasm, which allows its translocation to the nucleus where it interacts with DNA ARE regions and promotes the expression of cytoprotective enzymes, such as glutathione S-transferase (GST), SOD, HO-1, and NADPH-quinone oxidase (NQO) (ARE-regulated genes)[40]. Our findings indicated that the manipulation of brewers’ rice in colon tumor leads to changes in the gene expression of Nrf2-regulated HO-1, further suggesting that brewers’ rice is a positive regulator of Nrf2 signaling. The transcriptional downregulation of β-catenin and NF-κB expression, which subsequently may have been shifted via Nrf2 and HO-1 in the colon. Our present study suggests that the possible chemopreventive mechanisms of brewers’ rice against colon carcinogenesis may be associated with both the phase I and II drug-metabolizing enzymes regulated by Nrf2, thus resulting in the detoxification of AOM and the rapid metabolism of AOM by P450. Collectively, this finding suggests that brewers’ rice may represent a promising natural dietary agent for the transcriptional downregulation of β-catenin and NF-κB and the upregulation of Nrf2 and HO-1 levels.

In addition to the effects observed in Nrf2 and HO-1 activation, the upregulation of Nrf2 and HO-1 activities in rats administered brewers’ rice indicated that brewers’ rice may be associated with an antioxidant enzyme. Therefore, the effect of treatments with brewers’ rice on the SOD, MDA, and NO activities in AOM-injected rats was examined. The decreased SOD levels in the group treated with AOM alone illustrated that the defense mechanism may have been overwhelmed to alleviate the amount of superoxide produced by the carcinogen. The observed effect may also be due to the impairment of antioxidant enzymes, which act as safeguards for cells during reactive oxygen species (ROS) detoxification[43]. This finding implies that the group treated with AOM alone, in which carcinogenesis was induced but no brewers’ rice treatment was administered, exhibited a reduction in SOD activity associated with a decreased antioxidative capacity. The group treated with AOM alone presented an increased MDA level and subsequently, increased lipid peroxidation, which was evident by the accumulation of β-catenin. Taken together, these findings suggest that the increased SOD and decreased MDA formation observed in the groups treated with brewers’ rice may be associated with a high total phenolic content and the bioactive compounds present in brewers’ rice, as reported by Tan et al.[13]. Overall, the data obtained in this study suggest that brewers’ rice has the potential to increase SOD levels and reduce the activities of MDA and NO.

The transcriptional inhibition of β-catenin and NF-κB activities may lead to a suppression of colon cancer development, which implies that the observed effects can likely be attributed to the dietary compositions present in brewers’ rice. Most studies have demonstrated the additive and/or synergistic effects of some phytochemicals and nutrients[44-46]. Therefore, in the current study, rather than isolated compounds, brewers’ rice was administered to the rats. Results from our earlier study indicated that brewers’ rice consisted of a phenolic antioxidant, phytic acid, vitamin E, and γ-oryzanol[13]. The synergistic/additive activities of these components in brewers’ rice may contribute to a negative regulation of the Wnt and NF-κB signaling pathways to induce the phosphorylation and degradation of β-catenin and NF-κB, as observed in the present study. In addition to the effects observed in the Wnt and NF-κB signaling pathways, it is plausible that the bioactive constituents present in brewers’ rice facilitate the modulation of Nrf2 and Nrf2-regulated HO-1 expression, which subsequently enhances the antioxidant enzyme to mediate oxidative stress in the carcinogen-treated brewers’ rice-fed groups. In conclusion, this study provides clear evidence that brewers’ rice offers great potential against colorectal cancer via the regulation of Nrf2 expression.
and the inhibition of the Wnt and NF-κB signaling pathways. However, this study has been limited to the use of brewers’ rice in male Sprague-Dawley rats, and the duration of the treatment was only twenty weeks. Therefore, further studies are warranted in long-term animal studies or human clinical trials to confirm these findings. Uncontrolled signaling through the wingless/ Wnt pathway and overexpression of NF-κB have been reported to play crucial roles in the development of colorectal cancer. Nr2f is responsible in the regulation of phase II detoxification and antioxidant enzymes. Our findings showed that the dietary administration of 40% (w/w) brewers’ rice modulated the Wnt signaling pathway. Feeding 20% (w/w) brewers’ rice improved the antioxidant level, which indicated that brewers’ rice can effectively enhance recovery from oxidative stress induced by AOM. Taken together, these results strongly imply the potential use of brewers’ rice in future applications to combat oxidative stress and colon carcinogenesis.

ACKNOWLEDGMENTS
We acknowledge BERNAS, Seri Tiram Jaya, Selangor, Malaysia for supplying the brewers’ rice sample and the laboratory staff of the Laboratory of Cancer Research (MAKNA) UPM for their technical assistance.

COMMENTS

Background
The deregulation of Wnt/β-catenin signaling and overexpression of nuclear factor-kappa B (NF-κB) has been associated with colorectal cancer. Studies have reported that natural products exert many beneficial health effects. Brewers’ rice, known locally as temukut, consists of broken rice, rice bran, and rice germ, which is a waste product produced in the rice industry. Although previous studies have demonstrated the anti-colon cancer activity of brewers’ rice, the molecular mechanisms underlying these effects have yet to be studied.

Research frontiers
The authors aimed to investigate the mechanistic action of brewers’ rice in regulating the Wnt/NF-κB/Nr2f-signaling pathways and assess the antioxidant effect of these treatments during colon carcinogenesis in male Sprague-Dawley rats.

Innovations and breakthroughs
This is the first study demonstrating that brewers’ rice inhibited colon carcinogenesis via the modulation of multiple signaling pathways. The transcriptional inhibition of β-catenin and NF-κB activities and the activation of Nr2f and HO-1 may be associated with the synergistic/additive effects of bioactive constituents present in brewers’ rice.

Applications
The authors hypothesize that brewers’ rice may provide chemopreventive or chemotherapeutic effects against colorectal cancer via the regulation of multiple signaling pathways. These findings suggest that brewers’ rice offers great potential against colorectal cancer via the regulation of Nr2f expression and the inhibition of the Wnt/NF-κB signaling pathways.

Terminology
Uncontrolled Wnt signaling pathway and overexpression of NF-κB have been reported to play a vital role in the development of colorectal cancer. Nr2f is a key element in the ARE-mediated transcriptional machinery and plays a critical role in the regulation of phase II detoxification and antioxidant enzymes.

Peer-review
This is a very interesting study that attempts to elucidate the molecular mechanisms by which brewers’ rice could be a potential anticancer agent. This study is well-written, and its findings contribute to the understandings of the mechanisms through which rice may be beneficial in anticancer activity.

REFERENCES

1. American Cancer Society. Global Cancer Facts and Figures. 2nd ed. Atlanta: American Cancer Society, 2011: 13-15

2. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin 2011; 61: 69-90 [PMID: 21296855 DOI: 10.3322/caac.20107]

3. Li VS, Ng SS, Boesemana PJ, Low TY, Karthausa WR, Gerlapc J, Mohammed S, Heck AJ, Aurelia MM, Mahmoudi T, Clevers H. Wnt signaling through inhibition of β-catenin degradation in an intact Axin1 complex. Cell 2012; 149: 1245-1256 [PMID: 22682247 DOI: 10.1016/j.cell.2012.05.002]

4. Pikarsky E, Portam R, Stein L, Abravichc R, Amit S, Kasmc S, Gutukivh-Pycst E, Uriel-Shovalc S, Galunc E, Ben-Neriahc Y. NF-kappab functions as a tumour promoter in inflammation-associated cancer. Nature 2004; 431: 461-466 [PMID: 15329734]

5. van der Woude CJ, Kleibucker JH, Jansen PL, Moschhe H. Chronic inflammation, apoptosis and (pre-)malignant lesions in the gastro-intestinal tract. Apoptosis 2004; 9: 123-130 [PMID: 15004509 DOI: 10.1023/B:APPT.0000018794.26438.22]

6. Kunnumakkara AB, Diagaradjane P, Anand P, Harikumar KB, Deurukhkkar A, Gelovani J, Ghu S, Krishnan S, Aggarwal BB. Curcumin sensitizes human colorectal cancer to capetabine by modulation of cyclin D1, COX-2, MMP-9, VEGF and CXCR4 expression in an orthotopic mouse model. Int J Cancer 2009; 125: 2187-2197 [PMID: 19623659 DOI: 10.1002/ijc.24593]

7. Kensler TW, Wakabayashic N. Nr2f: friend or foe for chemoprevention? Carcinogenesis 2010; 31: 90-99 [PMID: 19793802 DOI: 10.1093/carcin/bgp21]

8. Srujana TS, Babu KR, Rao BSS. Phytochemical investigation and biological activity of leaves extract of plant Boswellia serrata. The Pharma Innovation 2012; 2: 22-46

9. Kong AN, Yu R, Hebbbar V, Chen C, Owoor E, Hu R, Ee R, Mandlekar S. Signal transduction events elicited by cancer prevention compounds. Mutat Res 2001; 480-481: 231-241 [PMID: 11508877]

10. Ward JL, Poutinen K, Gebruebers K, Piironen V, Lampi AM, Nyström L, Andersson AA, Aman P, Boros D, Rakszegi M, Bedo Z, Shewry PR. The HEALTHGRAIN Cereal Diversity Screen: a comparison of wild and semi-wild cereals with modern breeding lines. Mutat Res 2001; 480-481: 231-241 [PMID: 11508877]

11. ESA NM, Ling TB, Peng LS. By-products of rice processing: An overview of health benefits and applications. J Rice Res 2013; 1: 107 [DOI: 10.4172/11506817.1000107]

12. Tan BL, Esa NM, Rahman HS, Hamzah H, Karim R. Brewers’ rice induces apoptosis in aoxozymethane-induced colon carcinogenesis in rats via suppression of cell proliferation and the Wnt signaling pathway. BMC Complement Altern Med 2014; 14: 304 [PMID: 25129221 DOI: 10.1186/1472-6882-14-304]

13. Tan BL, Norhazin ME, Suhaniza HJ, Liai CC, Norazalina S, Roselina K. Antioxidant properties and antiproliferative effect of brewers’ rice extract (temukut) on selected cancer cell lines. Int Food Res J 2013; 20: 2177-2184

14. Ilouno LE, Shu EN, Ighokwe GE. An improved technique for the assay of red blood cell superoxide dismutase (SOD) activity. Clin Chim Acta 1996; 247: 1-6 [PMID: 8920222 DOI: 10.1016/0009-8195(95)06193-2]

15. Suhail M, Faizul-Suhail M. Oxidant-antioxidant status in pair-matched maternal and cord blood of normotensive and preclamptic patients. Zhongguo Linchuang Yiye Xuey Xiexiang Zazhi
colorectal adenoacarcinoma cells: differential nitric oxide synthesis determines their ability to aggregate platelets. Cancer Res 1991; 51: 6073-6078 [PMID: 1718593]

Dong Z, Staroselsky AH, Qi X, Xie K, Fidler IJ. Inverse correlation between expression of inducible nitric oxide synthase activity and production of metastasis in K-1735 murine melanoma cells. Cancer Res 1994; 54: 789-793 [PMID: 7508336]

Shi Q, Xiong Q, Wang B, Le X, Khan NA, Xie K. Influence of nitric oxide synthase II gene disruption on tumor growth and metastasis. Cancer Res 2000; 60: 2579-2583 [PMID: 10825124]

Sheng H, Shao J, Morrow JD, Beauchamp RD, DuBois RN. Modulation of apoptosis and Bcl-2 expression by prostaglandin E2 in human colon cancer cells. Cancer Res 1998; 58: 362-366 [PMID: 9443418]

Di Popolo A, Memoli A, Apicella A, Tuccillo C, di Palma A, Ricchi P, Acquaviva AM, Zarrilli R. IGF-II/IGF-1 receptor pathway up-regulates COX-2 mRNA expression and PGE2 synthesis in Caco-2 human colon carcinoma cells. Oncogene 2000; 19: 5517-5524 [PMID: 1114729]

Tan BL, Norhaizan ME, Yeap SK, Roselina K. Water extract of brewers' rice induces antiproliferation of human colorectal cancer (HT-29) cell lines via the induction of apoptosis. Eur Rev Med Pharm Sci 2015; 19: 1022-1029 [PMID: 25855928]

Hayes JD, Mcmahon M. NRF2 and KEAP1 mutations: permanent activation of an adaptive response in cancer. Trends Biochem Sci 2009; 34: 176-188 [PMID: 19321346 DOI: 10.1016/j.tibs.2008.12.008]

Chen C, Kong AN. Dietary chemopreventive compounds and ARE/EpRE signaling. Free Radic Biol Med 2004; 36: 1505-1516 [PMID: 15182853 DOI: 10.1016/j.freeradbiomed.2004.03.015]

Shen G, Xu C, Hu R, Jain MR, Nair S, Lin W, Yang CS, Chan JY, Kong AN. Comparison of (-)-epigallocatechin-3-gallate elicited liver and small intestine gene expression profiles between C57BL/6J and C57BL/6J/Nrf2 (-/-) mice. Toxicology 2005; 21: 205-215 DOI: 10.1016/j.tox.2004.09.008

Perocco P, Bronzetti G, Canistro D, Valigimigli L, Sapone A, Affatato A, Pedulli GF, Pozzetti L, Broccoli M, Iori R, Barillari J, Siblendovio V, Legator MS, Paolini M, Abdel-Rahman SZ. Glucoraphanin, the bioprecursor of the widely extolled chemopreventive agent sulforaphane found in broccoli, induces phase-I xenobiotic metabolizing enzymes and increases free radical generation in rat liver. Mutat Res 2006; 595: 125-136 [PMID: 16442570 DOI: 10.1016/j.mrfmm.2005.11.007]

Eggerl AL, Gay KA, Mesecar AD. Molecular mechanisms of natural products in chemoprevention: induction of cytoprotective enzymes by Nrf2. Mol Nutr Food Res 2008; 52 Suppl 1: S84-S94 [PMID: 18435489 DOI: 10.1002/mnr.200700249]

Du J, He D, Sun LN, Han T, Zhang H, Qin LP, Rahamn K. Semon Hoveinace extract protects against acute alcohol-induced liver injury in mice. Pharm Biol 2010; 48: 953-958 [PMID: 20673184 DOI: 10.1177/1350612910378009]

Wedge DE, Meepagala KM, Magee JB, Smith SH, Huang G, Larcom L. Anticarcinogenic activity of strawberry, blueberry, and raspberry extracts to breast and cervical cancer cells. J Med Food 2001; 4: 49-51 [PMID: 12639287]

Liu RH. Health benefits of fruit and vegetables are from additive and synergistic combinations of phytochemicals. Am J Clin Nutr 2003; 78: 517S-520S [PMID: 12936943]

Tsudo H, Ohshima Y, Nomoto H, Fujita K, Matsuda E, Iigo M, Takasaka N, Moore MA. Cancer prevention by natural compounds. Drug Metab Pharmacokinet 2004; 19: 245-263 [PMID: 1299193]
