Open Topological String Amplitudes on Calabi-Yau Threefolds by Extended Holomorphic Anomaly Equation

Xuan Li*, Yuan-Chun Jing and Fu-Zhong Yang

School of Physical Sciences, University of Chinese Academy of Sciences,
No.19(A) Yuquan Road, Shijingshan District, Beijing, P.R.China 100049

Abstract

In this paper, we study the open topological string amplitudes on Calabi-Yau threefolds by the extended holomorphic anomaly equation. The disk two-point function determined by the domainwall tension, together with the Yukawa couplings, solves the amplitudes with high genus and boundaries recursively. The BPS invariants encoded in the amplitudes are extracted by mirror symmetry.

*E-mail: lixuan191@mails.ucas.ac.cn
Contents

1 Introduction 3

2 The Extended Holomorphic Anomaly Equation 4

3 Extremal Transition and Domainwall Tensions 7

4 Amplitudes and BPS Invariants on Calabi-Yau Threefolds 8
 4.1 $X_{3,6}$ 9
 4.2 $X_{2,4}$ 12
 4.3 $X_{2,6}$ 14
 4.4 Non-compact Threefold X_4 15
 4.5 Non-compact Threefold X_6 17

5 Summary and Conclusion 19

A Genus One BPS Invariants 20

B $X_{2,12}$ 22

C Threefold in $\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$ 23
1 Introduction

In open topological string theory, the BPS domainwall tensions, as the super-potential difference on two vacua\cite{46}, are generating functions of disk amplitudes at tree-level, which are given by the dimensional reduction of the holomorphic Chern-Simons functional\cite{47} and satisfy the inhomogeneous Picad-Fuchs equations\cite{6,21,45}. Based on the assumption of the absence of open string moduli and disk one-point function, the extended holomorphic anomaly equation is conjectured in\cite{44}, as analogy of the BCOV holomorphic anomaly equation\cite{12}, to calculate open topological string amplitudes recursively. The partition functions $F^{g,h}$ with g genus and h boundaries can be expressed in terms of the lower genus and boundaries partition functions. The open topological string amplitudes in terms of the Feymann rule are formulated and proved by shifting closed string variables\cite{15}, which is interpreted as boundary-condition dependent states in the Hilbert space\cite{38}.

The open mirror symmetry relates A-model topological string on a Calabi-Yau threefold with as A-branes to the B-model topological string on the mirror Calabi-Yau threefold with holomorphic submanifolds as B-branes\cite{30,40}. It leads to a powerful technique to understand A-model amplitudes, which have important implications on physics and mathematics. One the one hand, the open topological string partition functions underlay the so-called open Gromov-Witten invariants\cite{17,20}, which count the holomorphic maps from Riemann surfaces with boundaries to the Calabi-Yau threefolds, with boundaries mapped to the Lagrangian submanifolds\cite{26,34}. A mathematical definition of the open Gromov-Witten invariants is provided in\cite{35} as formal relative Gromov-Witten invariants of a relative formal toric Calabi-Yau threefold, relating to topological vertex\cite{3}.

On the other hand, the open topological string partition functions also counts the numbers of BPS state in M-theory compactified to five dimension when the un-oriented worldsheet contributions are included to obtain a consistent decoupling of A- and B-model at all genera\cite{29,31,32,42,43}. In addition, the topological string partition function on a Calabi-Yau threefold is related to the partition function of a four-dimensional BPS black hole constructed by compactifying type II superstrings on the same Calabi-Yau by the Ooguri, Strominger, and Vafa (OSV) conjecture\cite{39,41}, i.e. $Z_{BH} = |\psi_{top}|^2$, which has been tested on non-compact toric Calabi-Yau in\cite{1,16}, and given several general proof in\cite{10,13,19}. The open version conjecture relates the open topological string partition function with the black hole partition function that sums over the black hole bound states to BPS excition on D-branes wrapping cycles of the Calabi-Yau, i.e. $Z_{BPS}^{open} = |\psi_{top}^{open}|^2$\cite{2}.
In this paper, we study the open string partition functions on several Calabi-Yau threefolds. With domainwall tensions found by extremal transition [4], the disk amplitudes with two insertion are obtained as the covariant differentiation of the domainwall tension. Other amplitudes of low genus and boundary numbers are obtained by solving extended holomorphic anomaly equations. The organization of this paper is as follows: In Section 2, we review some background knowledge about open topological string amplitudes and the extended holomorphic anomaly equation. In Section 3, we review the extremal transition on the moduli space of Calabi-Yau threefolds and BPS domainwall tension on two threefolds related by extremal transition. In Section 4, we study the open topological string amplitudes on three compact complete intersection Calabi-Yau threefolds (CICY) ($X_{3,6}$, $X_{2,4}$, and $X_{2,6}$) and two non-compact threefolds (X_4 and X_6). In Section 5, there is a short summary and further discussion about this paper. Then, in Appendix A, we summarize the genus one BPS invariants on models of this work. In Section B and C, we list the amplitudes and invariants on another two models and omit certain details.

\section{The Extended Holomorphic Anomaly Equation}

The B-model on a Calabi–Yau threefold X depends on the complex structures moduli space $M_{CS}(X)$ with local coordinates z_i, $i=1,...,h^{1,2}(X)$. The Weil-Petersson metric on $M_{CS}(X)$ is a Kahler metric,

$$G_{ij} = \partial_i \partial_j K,$$

with $K = - \log i \int_X \bar{\Omega} \wedge \Omega$ the Kahler potential. Taking the holomorphic limits, one obtains,

$$e^{-K} = \omega_0, \quad G_{zz} = 2\pi i \frac{dt}{dz},$$

Here $t = \frac{\omega_1}{\omega_0}$ is the special coordinate on $M_{CS}(X)$ that is defined as the ratio between the logarithmic period ω_1 and the fundamental period ω_0, and related to the mirror map that connects the complex structure moduli space $M_{CS}(X)$ of X with the Kahler moduli $M_K(X^*)$ of the manifold X^*.

The topological string partition function $F^{g,h}$ of genus g and boundaries h are section of a line bundle \mathcal{L}^{2g-h} over $M_{CS}(X)$. It is defined as the integration over worldsheet moduli $M^{g,h}$,

$$F^{g,h} = \int_{M^{g,h}} [dm][dl] \langle \prod_{a=1}^{3g-3+h} \mu_a G^- \int \mu_a \bar{G}^- \prod_{b=1}^{h} \int (\lambda_b G^- + \bar{\lambda} \bar{G}^-) \rangle,$$
where $\mu_a, a = 1, \ldots, 3g - 3$ are the Beltrami differentials associated with the moduli of the bulk, and $\mu_a, a = 3g - 3 + 1, \ldots, 3g - 3 + h$ and $\lambda_b, b = 1, \ldots, h$ are the Beltrami differentials associated to the positions and the length of the boundaries.

It is argue in [44] that the partition function is recursively related to the partition functions of lower genus and and less boundaries by the extended holomorphic anomaly equations. The torus amplitude and the annulus amplitude satisfies the equations,

\[
\partial F^{1,0}_{j} = \frac{1}{2}C_{jkl}C^{kl}_{i} + (1 - \frac{\chi}{24})G_{ji},
\]

\[
\partial F^{0,2}_{j} = -\Delta_{j} \Delta_{i} + \frac{N}{2}G_{ji},
\]

where χ is the Euler character of the manifold, and N is the rank of a bundle over $M_{CS}(X)$. And for $2g - 2 + h > 0$, partition functions satisfies the equation,

\[
\partial F^{g,h}_{0} = \frac{1}{2}C^{jk}_{i} \sum_{g_1 + g_2 = g, h_1 + h_2 = h} D_{j}F^{g_1,h_1}_{g_2} + \frac{1}{2}C^{jk}_{i}D_{j}D_{k}F^{g-1,h} - \Delta_{i} \Delta_{j} + f^{0,2}_{j}.
\]

The low genus and boundaries partition functions are solved by direct integral,

\[
F^{1,0}_{i} = \frac{1}{2}C_{ijk}S^{jk} + (1 - \frac{\chi}{24})K_{i} + f^{1,0}_{i},
\]

\[
F^{1,1} = \frac{1}{2}S^{jk} \Delta_{j} - F^{1,0}_{j} \Delta_{i} + \frac{1}{2}C_{jkl}S^{kl} \Delta_{i} - (\frac{\chi}{24} - 1) \Delta + f^{1,1},
\]

\[
F^{0,2}_{i} = \frac{1}{2}C_{ijk} \Delta_{i} \Delta_{k} + \frac{N}{2}K_{i} + f^{0,2}_{i},
\]

\[
F^{0,3} = -F^{0,2}_{j} \Delta_{i} + \frac{N}{2} \Delta - \frac{1}{2} \Delta_{j} \Delta_{i} \Delta_{k} - \frac{1}{6}C_{jkl} \Delta_{i} \Delta_{k} \Delta_{l} + f^{0,3},
\]

where $f^{1,0}, f^{1,1}, f^{0,2}$ and $f^{0,3}$ are holomorphic ambiguities. And on one-parameter models, they can be written as,

\[
F^{1,0} = \frac{1}{2} \log \left[\left(\frac{q}{z} \frac{dz}{dq} \right) (\omega_{0})^{\frac{q}{z} - 4\pi - \frac{\omega}{z} \text{diss} - \frac{q}{z}} \right],
\]

\[
F^{1,1} = -F^{1,0}_{j} \Delta_{i} - (\frac{\chi}{24} - 1) \Delta + f^{1,1},
\]

5
\[
F^0_{z} = \frac{1}{2} C_{ijk} A^{2}_{zz} + f^0_{z},
\]

\[
F^0_{z} = -F^0_{z} A^{2} - \frac{1}{3} A_{zz} A^{2} A^{z} + f^0_{z},
\]

where \(c_2 \) is the second Chern class and diss is the discriminant of the models.

These formulas can be interpreted by Feymann rules. The two fundamental vertices are the Yukawa couplings \(C_{ijk} \) given by the covariant derivative of the prepotentials \(F_0 \),

\[
C_{ijk} = D_i D_j D_k F_0,
\]

and the disk amplitudes with two insertions \(\Delta_{ij} \) given by the covariant derivative of the domainwall tension,

\[
\Delta_{ij} = D_i D_j \mathcal{W} - C_{ijk} \epsilon^{K} G^{k \bar{k}} D_{\bar{k}} \mathcal{W},
\]

and in the holomorphic limits,

\[
\lim_{\bar{z} \to 0} \Delta_{ij} = \partial_i \partial_j \mathcal{W}. \quad (2.8)
\]

Furthermore, the propagators contain \(S, S^i, S^{ij} \) for closed string and \(\Delta^i, \Delta \) for open string, which are related to \(C_{ijk} \) and \(\Delta_{ij} \),

\[
\partial_i S^{ij} = C^{ij}_i, \quad \partial_i S^i = G_{ii} S_{ij}, \quad \partial_i S = G_{ii} S^i, \quad \partial_i \Delta^i = \Delta^i, \quad \partial_i \Delta = G_{ii} \Delta_i,
\]

In particular, for one-modulus models, the propagators are given by,

\[
S^{zz} = C_{zz}^{-1} \partial_z \log (G_z G^{zz} (ze^K)^2),
\]

\[
S^{z} = C_{zz}^{-1} \left[(\partial_z \log (ze^K))^2 - D_z \partial_z \log (ze^K) \right],
\]

\[
S = \left[S^{z} - \frac{1}{2} D_z S^{zz} - \frac{1}{2} (S^{zz})^2 C_{zz} \right] \partial_z \log (ze^K) + \frac{1}{2} D_z S^{z} + \frac{1}{2} S^{zz} S^z C_{zz}, \quad (2.9)
\]

\[
\Delta^{z} = -A_{zz} C_{zz}^{-1},
\]

\[
\Delta = D_z \Delta^{z}.
\]
In this paper, we also consider the unoriented worldsheet contribution. The Klein bottle partition function satisfies the holomorphic anomaly equation,

$$\partial_i \partial_j B = \frac{1}{2} C_{jk} C_{i}^{kl} - G_{ij},$$

It has a general solution with the form,

$$B = \frac{1}{2} \log(\det G_{ij}^{-1} e^{K(n-1)} |g|^2),$$

and it can be written as

$$B = -\frac{1}{2} \log \left[\left(\frac{q}{z} d\bar{z} \frac{dz}{q} \right) \text{diss}^{-\frac{1}{4}} \right].$$

(2.10)
on a one-parameter model under the holomorphic limits. In addition, the partition function at $\chi = 1$ satisfies the equation,

$$\partial_i B^{1,1} = \frac{1}{2} C_{ij}^{P P k} \Delta_{jk} - \mathcal{K}_{ij} \Delta^i,$$

and can be expressed by

$$B^{1,1} = -\mathcal{K}_{\bar{z}} \Delta^z - \Delta + h_{1,1}^{1,1}$$

(2.11)

with h the holomorphic ambiguity.

3 Extremal Transition and Domainwall Tensions

Given a Calabi-Yau threefold X that admits a birational contraction to a singular threefold Y, $X \rightarrow Y$, if Y can be deformed into a smooth Calabi-Yau threefold Y', then the transition from X to Y' is called an extremal transition.

In the IIA description, the transition is realized by contracting exceptional divisors to the curve of A_{N-1} singularities, and the singular threefold deforms to a smooth Calabi-Yau threefold, with Hodge number changes,

$$h^{1,1} \mapsto h^{1,1} - (N - 1), \quad h^{2,1} \mapsto h^{2,1} + (2g - 2) \left(\frac{N}{2} \right) - (N - 1).$$

In the frame of Batyrev-Borisov mirror construction [8, 36], given a reflexive polyhedron P, the associated family of Calabi-Yau hypersurfaces is defined by the equation,

$$f_{P} = \sum_{a \in P \cap M} c_{a} \mathcal{X}_{a},$$
embedded in a ambient toric variety \(V_P\). If the polyhedra \(Q\) is a subpolyhedron of \(Q\), then all monomials appearing in \(f_Q\) also appear in \(f_P\). The manifold \(X_Q \subset V_Q\) associated to \(Q\) can be regarded as being limits of the hypersurfaces \(X_P \subset V_P\) associated to \(P\), with singularities fully resolved by further triangulation.

The singularities on the complex structure moduli space of \(X_P\) come from certain coefficients in \(f_P = 0\) being zero, which can be desingularized by extremal contractions. An open set \(S\) in the complex structure moduli space of \(X_P\) is given by,

\[S := \mathbb{C}^{P^rM} / \text{Aut}(V_P) \times \mathbb{C}^*. \]

There is a subsets of \(\hat{S} \subset S\),

\[\hat{S} := \mathbb{C}^{Q^rM} / \text{Aut}(V_Q) \times \mathbb{C}^*. \]

where the Calabi-Yau degenerates as a singular space \(\bar{X}\). All coefficients \(c_a\) in \(f_P = 0\) with \(a \notin Q\) have been set to be zero. It is where the extremal transition occurs. Some explicit examples are studied in \([11, 14, 27, 28]\).

The domainwall tensions on Calabi-Yau threefolds are solutions of the inhomogeneous Picard-Fuchs equations obtained

\[\mathcal{L}_{PF} W(z) = f(z), \]

from the Griffiths-Dwork reduction method \([18, 37, 42]\), and are also computed by subsystem integration \([4]\). It is observed that the domainwall tensions on some multiple-parameter Calabi-Yau hypersurfaces \(\bar{X}\) are related to the domainwall tensions on certain one-parameter Calabi-Yau complete intersections \(X\) when restricted to special locus in the complex structure moduli spaces by extremal transition, and the BPS invariants on the two threefolds are also related by

\[n_i(X) = \sum_{j,k} n_{i,j,k}(\bar{X}). \]

4 Amplitudes and BPS Invariants on Calabi-Yau Threefolds

In this section, we study open topological string amplitudes and BPS invariants on Calabi-Yau threefolds. Some useful geometry information is listed in the following table \([9, 5, 33]\).
Table 1: Geometric Information of Calabi-Yau Threefolds

X	χ	c_2	diss
$X_{3,6} \subset \mathbb{P}^5_{(1,1,1,2,3)}$	-204	52	$1 - 2^4 3^6 z$
$X_{2,4} \subset \mathbb{P}^5$	-176	56	$1 - 2^{10} z$
$X_{2,6} \subset \mathbb{P}^5_{(1,1,1,1,3)}$	-256	52	$1 - 2^8 3^3 z$
$X_{4} \subset \mathbb{P}^4_{(2,1,1,1,1)}$	-36	-16	$1 + 2^6 z$
$X_{6} \subset \mathbb{P}^5_{(3,2,1,1,1,-1)}$	-60	-14	$1 + 2^4 3^3 z$

4.1 $X_{3,6}$

The A-incarnation $X_{3,6}^*$ in the weighted projective space $\mathbb{P}^5_{(1,1,1,2,3)}$ is described by the five-dimensional polyhedron Δ^*. There is only one internal integer point $v_0^* = (0,0,0,0,0)$ and six integer vertices, following six vertices,

$$ v_1^* = (-1, -1, -1, -2, -3), \quad v_2^* = (1, 0, 0, 0, 0), \quad v_3^* = (0, 1, 0, 0, 0), $$

$$ v_4^* = (0, 0, 1, 0, 0), \quad v_5^* = (0, 0, 0, 1, 0), \quad v_6^* = (0, 0, 0, 0, 1), $$

The linear relation l among vertices corresponds to the maximal triangulation of Δ^*,

$$ l = (-3, -6; 1, 1, 1, 2, 3), $$

such that $\sum_i l^i v_i^* = 0$.

The nef-partition, $E_1 = \{v_1^*, v_2^*, v_3^*\}, E_2 = \{v_4^*, v_5^*, v_6^*\}$ determines the mirror geometry $X_{(2,6)}$ that can be written as the complete intersection of the vanishing locus of the following Laurent polynomials with torus coordinates $X_i, i = 2, \ldots, 6$ [24, 25],

$$ P_1 = a_{1,0} - a_1 (X_2 X_3 X_4 X_5^2 X_6^3)^{-1} - a_2 X_2, $$

$$ P_2 = a_{2,0} - a_3 X_3 - a_4 X_4 - a_5 X_5 - a_6 X_6, $$

The period integrals of $X_{3,6}$ defined as

$$ \sigma(a) = \int \frac{a_{1,0} a_{2,0}}{P_1 P_2} \prod_{i=2}^6 \frac{dX_i}{X_i}, $$
are annihilated by the GKZ operator associated to \(I \),
\[
\mathcal{L} = \frac{4}{\prod_{i=1}^{4} \frac{\partial}{\partial a_i \partial a_5}} \frac{2}{\prod_{i=1}^{4} \frac{\partial}{\partial a_6}} \left(\frac{\partial}{\partial a_{1,0}} \right)^3 \left(\frac{\partial}{\partial a_{2,0}} \right)^6,
\]
or
\[
\mathcal{L} = \theta^4 \prod_{i=0}^{1} (2\theta - i) \prod_{j=0}^{2} (3\theta - j) - z \prod_{m=1}^{3} \prod_{n=1}^{6} (3\theta + m)(6\theta + n),
\]
in terms of the logarithmic derivatives, \(\theta = \frac{z \bar{z}}{dz} \), and the coordinate on \(M_{CS}(X_{3,6}) \),
\[
z = \frac{a_1 a_2 a_3 a_4 a_5 a_6^2}{a_1 a_2 a_3 a_4 a_5 a_6}.
\]
Above equation can be reduced to the Picard-Fuchs equation,
\[
\mathcal{L}_{PF} = \theta^4 - 3^2 z (6\theta + 1)(6\theta + 2)(6\theta + 4)(6\theta + 5)
\]
and solves the mirror map from \(M_{CS}(X_{3,6}) \) to \(M_{K}(X_{3,6}^*) \),
\[
z = q - 2772q^2 + 1980126q^3 - 4010268048q^4 - 8360302475q^5 + \ldots.
\]

The domainwall tension on \(X \) satisfies the inhomogeneous Picard-Fuchs equation,
\[
\mathcal{L}_{PF} W = \frac{3}{(2\pi i)^2} z^{1/2},
\]
which is found by extremal transition from the hypersurface \(X_{18} \subset \mathbb{P}^4_{(1,2,3,3,9)} \) at the point \(t_2 = t_3 = 0 \) of SU(3) gauge enhancement [4]. After inserting the mirror map, \(\mathcal{F}(q) \) is obtained,
\[
W(q) = 96q^{1/2} + \frac{70592}{3} q^{3/2} + \frac{1432848096}{25} q^{5/2} + \frac{959191722592}{49} q^{7/2} + \ldots,
\]

The disk amplitude \(\Delta_{zz} \) is related to the domainwall tension by the equation
\[
- i\Delta_{zz} = 24q^{1/2} + 52944q^{3/2} + 358212024q^{5/2} + 2397979305648q^{7/2} + \ldots.
\]
and the Yukawa coupling is given by,
\[
C_{zzz} = 1 + 2628q + 16078500q^2 + 107103757608q^3 + \ldots.
\]

Then, inserting \(\Delta_{zz} \) and \(C_{zzz} \) into equation 2.5, the amplitude \(F_{\bar{z}}^{(0,2)} \) with one insertion is obtained,
\[
F_{\bar{z}}^{(0,2)} = -288q - 513792q^2 - 4017768768q^3 - 26851097548800q^4 + \ldots,
\]
and the partition function with zero genus and two boundaries is solved by direct integration,

\[F^{0,2} = -288q - 256896q^2 - 1339256256q^3 - 6712774387200q^4 + \ldots \quad (4.3) \]

In addition, there are Klein bottle contribution \(B \) in the one loop level by equation 2.10,

\[B = 72q + 678618q^2 + 4722711552q^3 + 31235476080258q^4 + \ldots \quad (4.4) \]

The genus one BPS invariants are extracted from the summation of \(F^{0,2} \) and \(B \) as in table 2.

At the two-loop level, the partition functions \(F^{0,3}, F^{1,1}, \) and \(B^{1,1} \) can be computed by solving the corresponding holomorphic anomaly equations respectively.

To begin with, \(F^{0,3} \) is solved by the equation 2.6,

\[F^{0,3} = -2304q^{3/2} - 3138048q^{5/2} - 30306251520q^{7/2} \\
- 200402209737216q^{9/2} - 1394079763155261696q^{11/2} \\
- 9848995118139591641088q^{13/2} - 70386802081464082901031936q^{15/2} + \ldots \]

Here \(\Delta^2 \) is from equation 2.9.

Secondly, \(F^{1,1} \) can be obtained as follow

\[F^{1,1} = -166q^{1/2} + 209756q^{3/2} + 70750818q^{5/2} + 466675366116q^{7/2} \\
+ 2062060525554428q^{9/2} + 11406521758300319916q^{11/2} \\
+ 7155253525041475172882q^{13/2} + 481939015584770078062938336q^{15/2} + \ldots, \]

Here we use the formula of \(F^{(1,0)} \) under the holomorphic limit equation 2.4. The discriminant, Euler characteristic, and second Chern class can be read from table 1.

Furthermore, the unoriented contribution \(B^{(1,1)} \) has to be considered, solving by equation 2.11,

\[B^{1,1} = 12q^{1/2} - 13464q^{3/2} + 29205468q^{5/2} + 302085076824q^{7/2} \\
+ 2763351204278184q^{9/2} + 23231692148609680776q^{11/2} \\
+ 188521376343057222140124q^{13/2} + 1500381806456846910099106944q^{15/2} + \ldots \]
4.2 \(X_{2,4} \)

The polyhedron \(\Delta^* \) of \(X^\ast_{(2,4)} \subset \mathbb{P}^5 \) consists of the following vertices,

\[
\begin{align*}
\nu_1^* &= (-1, -1, -1, -1, -1), \\
\nu_2^* &= (1, 0, 0, 0, 0), \\
\nu_3^* &= (0, 1, 0, 0, 0), \\
\nu_4^* &= (0, 0, 1, 0, 0), \\
\nu_5^* &= (0, 0, 0, 1, 0), \\
\nu_6^* &= (0, 0, 0, 0, 1),
\end{align*}
\]

and has the maximally triangulation,

\[
l = (-2, -4; 1, 1, 1, 1, 1, 1).
\]

The mirror threefold \(X_{2,4} \) can be defined as the following equations,

\[
\begin{align*}
P_1 &= a_{1,0} - a_1(X_2X_3X_4X_5X_6) - a_2X_2, \\
P_2 &= a_{2,0} - a_3X_3 - a_4X_4 - a_5X_5 - a_6X_6.
\end{align*}
\]

The period integral of \(X_{2,4} \) satisfies the Picard-Fuchs equation,

\[
\mathcal{L}_{PF} = \theta^4 - 2^4z(4\theta + 1)(2\theta + 1)^2(4\theta + 3)
\]

with \(z = \frac{a_{1,0}a_{2,0}a_3a_4a_5a_6}{a_1a_2a_3a_4a_5a_6} \), and determines the mirror map \(z(q) \),

\[
z = q - 256q^2 + 19296q^3 - 2836480q^4 - 378262992q^5 + \ldots
\]

The domainwall tension on \(X_{2,4} \) is obtained from the domainwall tension on \(X_8 \subset \mathbb{P}^4_{1,1,2,2,2} \)[4]. At special locus \(y \rightarrow 8z, z_2 \rightarrow \frac{1}{4} \) on the complex moduli space,

\[
\mathcal{W}_{X_{2,4}}(z) = \mathcal{W}_{X_8}(8z, \frac{1}{4}).
\]

It satisfies the inhomogeneous Picard-Fuchs equation[4],

\[
\mathcal{L}_{PF} \mathcal{W}(z) = \frac{224z}{(2\pi i)^2}(1 + 272z + \frac{285120}{7}z^2 + 4925440z^3 + \ldots)
\]

and given by,

\[
\mathcal{W}_{X_{2,4}}(z(q)) = 384q + 29384q^2 + \frac{22954496}{3}q^3 + 2592661938q^4 + \ldots
\]
By the disk amplitude Δ_{zz} and Yukawa coupling,

$$-i\Delta_{zz} = 384q + 117536q^2 + 68863488q^3 + 41482591008q^4 + \ldots,$$

$$C_{zzz} = 8 + 1280q + 739584q^2 + 422690816q^3 + \ldots$$

the annulus partition function $F^{0,2}$ and Klein bottle partition function B can be solved, respectively,

$$F^{0,2} = -4608q^2 - 1389056q^3 - 662529808q^4 - \frac{1706701489664}{5}q^5 - \frac{534044833761344}{3}q^6 - \frac{66828499880930304}{7}q^7 - 52332365789557579912q^8 + \ldots,$$

$$B = 2912q^2 + 2176000q^3 + 1320520800q^4 + 777151744000q^5 + \frac{1367654285858816}{3}q^6 + 268401212960489472q^7 + 158865301270593238112q^8 + \ldots.$$

It seems that $F^{0,2} + B$ can not give integer BPS invariant unless the holomorphic ambiguity is further explored.

Furthermore, $F^{0,3}, F^{1,1},$ and $B^{1,1}$ are solved by equation 2.6, equation 2.4, and equation 2.11 as before,

$$F^{0,3} = -147456q^3 - 88215552q^4 - 61506997248q^5 - \frac{127153359452416}{3}q^6 - \frac{84116510137784320}{3}q^7 - 18295779654814501120q^8 + \ldots,$$

$$F^{1,1} = -512q - 94316q^2 - 74532736q^3 - \frac{149541540172}{3}q^4 - \frac{86792064346880}{3}q^5 - \frac{50874394964035840}{3}q^6 - 10051275752143892480q^7 + \ldots,$$

$$B^{1,1} = 48q + 14024q^2 + 9425088q^3 + 6406868624q^4 + 3841512413248q^5 + 2315965178004736q^6 + 1410688247617024q^7 + \ldots.$$
4.3 $X_{2,6}$

Similar to the last case, the domainwall tension on $X_{2,6}$ is related to the domainwall tension on $X_{12} \subset \mathbb{P}^4_{1,1,2,2,6}$ at degeberate locus $y \to 2z^4, z_2 \to \frac{1}{4}$ [42].

$$\mathcal{W}_{X_{2,6}}(z) = \mathcal{W}_{X_{12}}(2z^4, \frac{1}{4}),$$

which is the solution of the inhomogeneous Picard-Fuchs equation,

$$\mathcal{L}_{PF} \mathcal{W}(z) = \frac{4z^{1/3} + 112z^{2/3}}{27(1 - 8z^{1/3})^{5/2}},$$

and given by,

$$\mathcal{W}_{X_{2,6}}(z(q)) = 12q^{1/3} + 99q^{2/3} + \frac{2368}{3}q + \frac{9867}{4}q^{4/3} + \frac{525312}{25}q^{5/3} + \ldots$$

in q-coordinate.

By the disk amplitude Δ_{zz} and Yukawa coupling ,

$$-i\Delta_{zz} = 4z^{1/3} + 44z^{2/3} + \frac{2368}{3}q + \frac{13156}{3}q^{4/3} + 58368q^{5/3} + 1926240q^2 + \ldots,$$

$$C_{zz} = 4 + 4992q + 19115136q^2 + 73765625856q^3 + 294375479225472q^4 + \ldots$$

$F^{0,2}$ and B are obtained,

$$F^{0,2} = -\frac{1}{3}q^{2/3} - \frac{44}{3}q + \frac{2273}{6}q^{4/3} - \frac{88804}{15}q^{5/3} - \frac{572722}{9}q^2 - \frac{13672096}{21}q^{7/3} - \frac{108971905}{12}q^{8/3} - \frac{1079462156}{9}q^3 \ldots$$

$$B = 187488q^2 + 811219968q^3 + 3196262986848q^4 + 12484041857390592q^5 + 49037805709065086976q^6 + 194195672782104702468096q^7 + \ldots$$
In addition, $F^{0,3}, F^{1,1}$, and $B^{1,1}$ are also obtained,

\[
F^{0,3} = -\frac{2}{81} q - \frac{22}{9} q^{4/3} - \frac{3362}{27} q^{5/3} - \frac{35672}{9} q^2 - \left(\frac{2347268}{27} q^{7/3} - \frac{3835658}{27} q^{8/3}\right),
\]

\[
-1629947366 q^3 - \frac{8010604964}{27} q^{10/3} - \frac{120472884100}{27} q^{11/3} - \frac{5267892155720}{81} q^4
\]

\[
+ \frac{6354568170748}{135} q^{13/3} + \frac{10545415896272828}{135} q^{14/3} + \frac{392405345133455632}{945} q^5 + \ldots,
\]

\[
F^{1,1} = -\frac{109}{54} q^{1/3} - \frac{1969}{18} q^{2/3} - \frac{24568}{9} q^{4/3} - \frac{551431}{54} q^{5/3} + \frac{42224}{3} q^{5/3} - \frac{14722220}{9} q^2
\]

\[
+ \frac{195803224}{9} q^{7/3} + \frac{1525413785}{6} q^{8/3} - \frac{201709714880}{9} q^3 + \frac{347304066304}{27} q^{10/3}
\]

\[
+ \frac{330930764006212}{15} q^{11/3} + \frac{15719806195687040}{3} q^4 + \frac{2690798900534401408}{315} q^{13/3}
\]

\[
- \frac{6315571723672854104}{5} q^{14/3} - \frac{32340926084578462080}{q^5} + \ldots,
\]

\[
B^{1,1} = \frac{1}{9} q^{1/3} + \frac{22}{3} q^{2/3} + \frac{592}{3} q + \frac{8164}{9} q^{4/3} + 1440 q^{5/3} + 470576 q^2 - \frac{3690512}{3} q^{7/3}
\]

\[
- 13429304 q^{8/3} + 2032199296 q^3 + \frac{1224982720}{9} q^{10/3} - \frac{89835051090776}{5} q^{11/3}
\]

\[
- 428159082396160 q^4 + \frac{736519297946563792}{105} q^{13/3} + \frac{510219884409434976}{5} q^{14/3}
\]

\[
+ 2627791095598842624 q^5 + \ldots.
\]

4.4 Non-compact Threefold X_4

Non-compact hypersurface $X_4 \subset \mathbb{P}^4(2,1,1,1,1)$ is obtained from the degree-12 hypersurface $X_{12} \subset \mathbb{P}^4_{(1,2,3,3,3)}$ at the degenerate locus $z_2 = z_3 = 0$ on $M_{CS}(X_{12})$.

\[
P = x_1^2 + x_2^4 + x_3^4 + x_4^4 + x_5^{-4} + \psi x_1 x_2 x_3 x_4 x_5
\]

The closed string periods on X_4 are solutions of the Picard-Fuchs operator,

\[
\mathcal{L}_{PF} = (\theta^2 - 4z(4\theta + 3)(4\theta + 1))(-z) \cdot \theta
\]

and the domainwall tension \mathcal{W} satisfies the inhomogeneous equation[4],

\[
\mathcal{L}_{PF} \mathcal{W} = -\frac{1}{2\pi^2} z^{1/2}
\]
In terms of the mirror map,
\[z(q) = q + 12q^2 + 6q^3 + 688q^4 - 15375q^5 + \ldots, \]
domain wall tension can be written as,
\[\mathcal{W}(z(q)) = 16q^{1/2} - \frac{416}{9} q^{3/2} + \frac{16016}{25} q^{5/2} - \frac{664032}{49} q^{7/2} + \frac{28436416}{81} q^{9/2} + \ldots. \]

The disk amplitude \(\Delta_{zz} \) is the covariant derivative of \(\mathcal{W} \) in the holomorphic limits, and Yukawa coupling is solved in [33],
\[-i\Delta_{zz} = 4q^{1/2} - 104q^{3/2} + 4004q^{5/2} - 166008q^{7/2} + 7109104q^{9/2} + \ldots, \]
\[C_{zzz} = -2 + 56q - 2120q^2 + 87536q^3 - 3741768q^4 + 162980056q^5 + \ldots. \]

\(F^{0,2} \) and \(B \) are obtained,
\[F^{0,2} = 4q - 48q^2 + \frac{3784}{3} q^3 - 39360q^4 + \frac{6754004}{5} q^5 + \ldots, \]
\[B = -2q + 58q^2 - \frac{5876}{3} q^3 + 71658q^4 - \frac{13747882}{5} q^5 + \ldots. \]

from which the BPS invariants are extracted as in table 3.

Moreover, \(F^{0,3}, F^{1,1}, \) and \(B^{1,1} \) are listed here,
\[F^{0,3} = -\frac{8}{3} q^{3/2} + \frac{176}{3} q^{5/2} - \frac{7160}{3} q^{7/2} + \frac{298672}{3} q^{9/2} - \frac{12834392}{3} q^{11/2} + 186896160q^{13/2} - \frac{24758224912}{3} q^{15/2} + \frac{1101434756720}{3} q^{17/2} - \frac{4926957604136}{3} q^{19/2} + \ldots, \]
\[F^{1,1} = \frac{7}{6} q^{1/2} - 5q^{3/2} + \frac{535}{6} q^{5/2} - \frac{3901}{3} q^{7/2} - 14106q^{9/2} + \frac{8609479}{3} q^{11/2} - \frac{410665069}{2} q^{13/2} + \frac{36071531510}{3} q^{15/2} - \frac{3888132212435}{6} q^{17/2} + 33426120758501q^{19/2} + \ldots, \]
\[B^{1,1} = -q^{1/2} - 2q^{3/2} - 209q^{5/2} + 10842q^{7/2} - 538412q^{9/2} + 26001074q^{11/2} - 1239688911q^{13/2} + 58676641972q^{15/2} - 2764397103467q^{17/2} + 129822762435106q^{19/2} + \ldots. \]
4.5 Non-compact Threefold X_6

Non-compact hypersurface $X_4 \subset \mathbb{P}^4(3, 2, 1, 1, -1)$ is obtained from the degree-12 hypersurface $X_{12} \subset \mathbb{P}^4_{(1, 2, 3, 3, 3)}$ at the degenerate locus $z_2 = z_3 = 0$ on $M_{CS}(X_{12})$,

$$P = x_1^2 + x_2^3 + x_3^6 + x_4^6 + x_5^{-6} + \psi x_1 x_2 x_3 x_4 x_5$$

with the period integral annihilated by the following Picard-Fuchs operator,

$$\mathcal{L}_{PF} = (\theta^2 - 12 z (6 \theta + 5) (6 \theta + 1)) (-z) \cdot \theta.$$

It is find that the domainwall tension \mathcal{W} satisfies the inhomogeneous equation[4],

$$\mathcal{L}_{PF} \mathcal{W} = -\frac{1}{\pi^2} z^{1/2}$$

and is written in q-coordinate,

$$\mathcal{W}(q) = 16 q^{1/2} - \frac{416}{9} q^{3/2} + \frac{16016}{25} q^{5/2} - \frac{664032}{49} q^{7/2} + \frac{28436416}{81} q^{9/2} + \ldots.$$

The disk amplitude Δ_{zz} is the covariant derivative of \mathcal{W} in the holomorphic limits, and Yukawa coupling is solved in [33],

$$-i \Delta_{zz} = 4 q^{1/2} - 104 q^{3/2} + 4004 q^{5/2} - 166008 q^{7/2} + 7109104 q^{9/2} + \ldots,$$

$$C_{zzz} = -2 + 56 q - 2120 q^2 + 87536 q^3 - 3741768 q^4 + 162980056 q^5 + \ldots.$$

$F^{0,2}$ and B are obtained,

$$F^{0,2} = 4 q - 48 q^2 + \frac{3784}{3} q^3 - 39360 q^4 + \frac{6754004}{5} q^5 + \ldots,$$

$$B = -2 q + 58 q^2 - \frac{5876}{3} q^3 + 71658 q^4 - \frac{13747882}{5} q^5 + \ldots$$

underling the BPS invariants as in table[3].
Moreover, $F^{0,3}, F^{1,1},$ and $B^{1,1}$ are listed here,

\[
F^{0,3} = \frac{8}{3} q^{3/2} + \frac{176}{3} q^{5/2} - \frac{7160}{3} q^{7/2} + \frac{298672}{3} q^{9/2} - \frac{12834392}{3} q^{11/2} + 186896160 q^{13/2} - \frac{24758224912}{3} q^{15/2} + \frac{1101434756720}{3} q^{17/2} - \frac{49269576041336}{3} q^{19/2} + \ldots,
\]

\[
F^{1,1} = \frac{7}{6} q^{1/2} - 5 q^{3/2} + \frac{535}{6} q^{5/2} - \frac{3901}{3} q^{7/2} - 14106 q^{9/2} + \frac{8609479}{3} q^{11/2} - \frac{410665069}{2} q^{13/2} + \frac{36071531510}{3} q^{15/2} - \frac{3888132212435}{6} q^{17/2} + 33426120758501 q^{19/2} + \ldots,
\]

\[
B^{1,1} = -q^{1/2} - 2 q^{3/2} - 209 q^{5/2} + 10842 q^{7/2} - 538412 q^{9/2} + 26001074 q^{11/2} - 1239688911 q^{13/2} + 58676641972 q^{15/2} - 2764397103467 q^{17/2} + 129822762435106 q^{19/2} + \ldots.
\]
5 Summary and Conclusion

In this paper, the holomorphic anomaly equation in presence of D-branes and extremal transition are reviewed. Then, Yukawa couplings and disk amplitudes are used as initial data to solve open topological string amplitudes recursively. They are generated by the holomorphic prepotential and BPS domainwall tension respectively. The amplitudes with first several genus and boundaries are computed for several one-parameter models by solving the extended holomorphic anomaly equations. The genus one BPS invariants are extracted from the annulus partition function amended by the Klein bottle contributions.

In the future, we hope to study the open topological string amplitudes further. The amplitudes and invariants on multiple-parameter Calabi-Yau hypersurfaces can be computed if the form of unoriented worldsheet contribution is identified. Furthermore, the relation of high genus BPS invariant between two Calabi-Yau threefolds under extremal transition is worth to explore. Also, it is phenomenologically interesting to the domainwall tension and invariants from inhomogeneous Picard-Fuchs equation with more complicated form. In addition, we’re interested in the polynomial structure and algebraic structure of the open string amplitudes in this work and wish to reproduce the result by algebraic methods.

Acknowledgement

This work is dedicated to our dear supervisor Prof. Fu-Zhong Yang who sadly passed away while the paper was being prepared.
A Genus One BPS Invariants

d	$n_d^{(1,\text{real})}$
2	-108
4	210861
6	1691727684
8	12261350846529
10	85281547794525216
12	589741364496798435519
14	4088168398606663732226004
16	28473212562534359781492702609
18	199323405502548694553853261163032
20	1402176885853036915691702511225343488
22	99082473457336233632273338976995370571108
24	70299505376206587341692199773751852403628923
26	500599345846694349151535150084728041871513503840
28	3576426516203804180327813075957186288625200126974263
30	25626335416567506505515281172221112652927148559385617024
32	184109711917919362541496902594727432879224527932144282767313
34	1325899145047854560008073848155458009321006047727139826816296540
36	9569566064471974175729715027817667767095503179190445437747223728244

Table 2: Real BPS Invariants $n_d^{(1,\text{real})}$ on $X_{3,6}$.

Table 3: Real BPS Invariants $\rho_{d, \text{real}}^{(1)}$ on Non-compact Threefolds X_4 and X_6

d	X_4	X_6
2	1	-8
4	5	1633
6	-349	-400976
8	16149	107371973
10	-699388	-30230378688
12	29875727	8794612573059
14	-1275403373	-2618260738724480
16	54624885845	792974210880311061
18	-2349706860286	-243367747015245246824
20	101523052724116	75483488157699279826308
22	-4404975038898593	-23614530611208021420992640
24	191868347966729663	7440700914891506376095639375
26	-8386687184785991814	-2358697261688376821462850303280
28	367755330860124252031	751581357963857262692571222870515
30	-16172473752326376335406	-240560009891829964002898566936525608
32	713057845437257413599573	77298289878094678379649029834584140885
34	-31513704812660854146557542	-24923803319003434549062941934478799991216
36	1395752726831387569678298474	8061010159313660492971159894519500378800514
The B-model on $X_{2,12}$ is determined by the Picard-Fuchs equation,

$$\mathcal{L}_{PF} = \theta^4 - 2^4 3^2 z (12\theta + 1) (12\theta + 5) (12\theta + 7) (12\theta + 11)$$

with $z = \frac{a_1 a_2 a_3 a_4 a_6}{a_1^4 a_2^2 a_3^2 a_4^2}$ the coordinate on $M_{CS}(X_{2,12})$.

The domainwall tension is,

$$\mathcal{W}(z(q)) = 960 q^{1/2} + \frac{180147200}{3} q^{3/2} + \frac{196676435515392}{5} q^{5/2} + \ldots$$

The disk amplitude Δ_{zz} and Yukawa coupling are,

$$-i\Delta_{zz} = 240 q^{1/2} + 135110400 q^{3/2} + 245845544394240 q^{5/2} + \ldots,$$

$$C_{zzz} = 1 + 678816q + 1101481164576q^2 + 1865163478016858112q^3 + \ldots$$

which are used to derive partition function of high genus and boundaries.

$$F^{0,2} = -28800q - 6438297600q^2 - 922281453875200q^3 + \ldots,$$

$$B = 7200q + 52534580832q^2 + 86588737272520704q^3 + \ldots,$$

$$F^{0,3} = -2304000q^{3/2} - 763195392000q^{5/2} - 2097503571419136000q^{7/2}$$

$$- 3445339410339074408448000q^{9/2} - 6124894420630434562124716032000q^{11/2}$$

$$- 11014922284544639624390498823929856000q^{13/2} + \ldots,$$

$$F^{1,1} = -3000q^{1/2} + 949808000q^{3/2} - 16656103503360q^{5/2}$$

$$+ 94398257477211770880q^{7/2} + 84976266200715615951736640q^{9/2}$$

$$+ 118049404247105886752601970897920q^{11/2} + \ldots,$$

$$B^{1,1} = 120q^{1/2} - 39980160q^{3/2} + 25928505768960q^{5/2}$$

$$+ 55289630967273123840q^{7/2} + 126457589032857480954260160q^{9/2}$$

$$+ 266264979410195659051004092216320q^{11/2} + \ldots.$$
Table 4: Real BPS Invariants $n_{d}^{(0,\text{real})}$ on $X_{2,12}^{*}$

d	$n_{d}^{(0,\text{real})}$
1	960
3	60048960
5	39335287103040
7	33965566243528503360
9	36197061864551407599321600
11	4346798496165937083680841939840
13	5652213245339999803268480700206137920
15	7777089717782482021179338585251524621584320
17	111624419056025313789781039227134845629190053821760
19	165548092685033680177182361810397736122582109535366939200

Table 5: Real BPS Invariants $n_{d}^{(1,\text{real})}$ on $X_{2,12}^{*}$

d	$n_{d}^{(1,\text{real})}$
2	-10800
4	23048141616
6	38683227909326352
8	65584802398584428929584
10	111079935597958581154390188912
12	190181454375481134199906176153316080
14	329138224418155481457451326812852126931024
16	5750886955979291688927479275984201338454448688
18	1013084664647843312101016011973479395822662477629518720
20	179717265319870698029746817565454857096808527614959148885904

The BPS invariants $n_{d}^{0,\text{real}}$ and $n_{d}^{1,\text{real}}$ are extracted as in table 4 and 5.

C Threefold in $\mathbb{P}^{1}\times\mathbb{P}^{1}\times\mathbb{P}^{1}\times\mathbb{P}^{1}$

The Calabi-Yau hypersurface in $(\mathbb{P}^{1})^{4}$ is described by the Picard-Fuchs equation [8].

$$L_{PF} = \theta^{4} - 4z(5\theta^{2} + 5\theta + 2)(2\theta + 1)^{3} + 64z^{2}(2\theta + 3)(2\theta + 2)^{2}(2\theta + 1).$$
The domainwall tension is,
\[\mathcal{W}(z(q)) = 16q^{1/2} + \frac{160}{9}q^{3/2} + \frac{3216}{25}q^{5/2} + \frac{85472}{49}q^{7/2} + \frac{364512}{81}q^{9/2} + \ldots, \]

The disk amplitude \(\Delta_{zz} \) and Yukawa coupling are,
\[-i\Delta_{zz} = 4q^{1/2} + 16q^{3/2} + 80q^{5/2} + 21368q^{7/2} + 911128q^{9/2} + \ldots, \]
\[C_{zzz} = 1 + 4q + 164q^2 + 5800q^3 + 196772q^4 + 6564004q^5 + \ldots. \]

Then, other partition functions can be obtained,
\[F_{0,2}^0 = -8q - 64q^2 - \frac{2192}{3}q^3 - 10368q^4 - \frac{1980488}{5}q^5 + \ldots, \]
\[B = -6q^2 + 144q^3 + 6402q^4 + 253248q^5 + 9033564q^6 + \ldots \]
\[F_{0,3}^0 = -\frac{32}{3}q^{3/2} - \frac{704}{3}q^{5/2} - \frac{12256}{3}q^{7/2} - \frac{177344}{3}q^{9/2} - \frac{8268064}{3}q^{11/2} - \frac{31870272}{3}q^{13/2} \]
\[- 3672400000q^{15/2} - 122306249664q^{17/2} - \frac{12539594603776}{3}q^{19/2} + \ldots, \]
\[F_{1,1}^1 = -\frac{86}{3}q^{1/2} - 252q^{3/2} - \frac{406}{3}q^{5/2} + 171884q^{7/2} + 147124q^{9/2} - 1020652q^{11/2} \]
\[+ 162369550q^{13/2} + 6472815456q^{15/2} + \frac{436660840264}{3}q^{17/2} + \frac{11668556346176}{3}q^{19/2} + \ldots, \]
\[B_{1,1}^1 = 2q^{1/2} + 36q^{3/2} + 82q^{5/2} - 19476q^{7/2} + 113148q^{9/2} + 6571668q^{11/2} + 237579138q^{13/2} \]
\[+ 9447170112q^{15/2} + 381805635992q^{17/2} + 14830760334208q^{19/2} + \ldots. \]

The BPS invariants \(n(0, \text{real}) \) and \(n(1, \text{real}) \) are extracted as in
d	$n_{d}^{(1,\text{real})}$
1	16
3	16
5	128
7	1744
9	44992
11	1006480
13	24154752
15	617583584
17	16508007216
19	455415438960

Table 6: Real BPS Invariants $n_{d}^{(0,\text{real})}$ on threefold in $\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$

d	$n_{d}^{(1,\text{real})}$
2	-4
4	-35
6	-292
8	-1983
10	-71424
12	-1339313
14	-12136660
16	401290385
18	31690274392
20	1540632062720
22	64928687564668
24	2557463371902331
26	97003475592104320
28	359583796606911047
30	131322242315758797456
32	47475266166793404369
34	170409919553761528120468
36	6085384390825832081907124

Table 7: Real BPS Invariants $n_{d}^{(1,\text{real})}$ on threefold in $\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$
References

[1] Mina Aganagic, Daniel Jafferis, and Natalia Saulina. “Branes, black holes and topological strings on toric Calabi-Yau manifolds”. In: *JHEP* 12 (2006), p. 018. arXiv: [hep-th/0512245](https://arxiv.org/abs/hep-th/0512245).

[2] Mina Aganagic, Andrew Neitzke, and Cumrun Vafa. “BPS microstates and the open topological string wave function”. In: *Adv. Theor. Math. Phys.* 10.5 (2006), pp. 603–656. arXiv: [hep-th/0504054](https://arxiv.org/abs/hep-th/0504054).

[3] Mina Aganagic et al. “The Topological Vertex”. In: *Commun.Math.Phys.* 254 (2005) 425-478 (May 2003). arXiv: [hep-th/0305132](https://arxiv.org/abs/hep-th/0305132).

[4] Murad Alim et al. “Type II/F-theory Superpotentials with Several Deformations and N=1 Mirror Symmetry”. In: *JHEP* 06 (2011), p. 103. arXiv: [1010.0977](https://arxiv.org/abs/1010.0977).

[5] Gert Almkvist et al. “Tables of Calabi–Yau equations”. In: *arXiv preprint math/0507430* (2005).

[6] Pedro Luis del Angel and Stefan Müller-Stach. “Differential equations associated to families of algebraic cycles”. In: *Annales de l’institut Fourier*. Vol. 58. 6. 2008, pp. 2075–2085.

[7] Paul S Aspinwall, Brian R Greene, and David R Morrison. “Multiple mirror manifolds and topology change in string theory”. In: *Physics Letters B* 303.3-4 (1993), pp. 249–259.

[8] Victor V Batyrev and Lev A Borisov. “Dual cones and mirror symmetry for generalized Calabi-Yau manifolds”. In: *arXiv preprint alg-geom/9402002* (1994).

[9] Victor V Batyrev and Duco Van Straten. “Generalized hypergeometric functions and rational curves on Calabi-Yau complete intersections in toric varieties”. In: *Communications in mathematical physics* 168.3 (1995), pp. 493–533.

[10] Chris Beasley et al. “Why Z(BH) = |Z(top)|**2**”. In: (Aug. 2006). arXiv: [hep-th/0608021](https://arxiv.org/abs/hep-th/0608021).

[11] Per Berglund, Sheldon H. Katz, and Albrecht Klemm. “Mirror symmetry and the moduli space for generic hypersurfaces in toric varieties”. In: *Nucl. Phys. B* 456 (1995), pp. 153–204. arXiv: [hep-th/9506091](https://arxiv.org/abs/hep-th/9506091).
[12] M. Bershadsky et al. “Kodaira-Spencer theory of gravity and exact results for quantum string amplitudes”. In: *Communications in Mathematical Physics* 165.2 (Oct. 1994), pp. 311–427.

[13] Jan de Boer et al. “A Farey Tail for Attractor Black Holes”. In: *JHEP* 11 (2006), p. 024. arXiv: [hep-th/0608059](https://arxiv.org/abs/hep-th/0608059).

[14] Philip Candelas et al. “Mirror symmetry for two parameter models. 1.” In: *Nucl. Phys. B* 416 (1994). Ed. by B. Greene and Shing-Tung Yau, pp. 481–538. arXiv: [hep-th/9308083](https://arxiv.org/abs/hep-th/9308083).

[15] Paul L. H. Cook, Hirosi Ooguri, and Jie Yang. “Comments on the Holomorphic Anomaly in Open Topological String Theory”. In: *Phys. Lett. B* 653 (2007), pp. 335–337. arXiv: [0706.0511 [hep-th]](https://arxiv.org/abs/0706.0511).

[16] Atish Dabholkar et al. “Precision counting of small black holes”. In: *JHEP* 10 (2005), p. 096. arXiv: [hep-th/0507014](https://arxiv.org/abs/hep-th/0507014).

[17] Bohan Fang and Chiu-Chu Melissa Liu. “Open Gromov-Witten Invariants of Toric Calabi-Yau 3-Folds”. In: *Commun. Math. Phys.* 323 (2013), pp. 285–328. arXiv: [1103.0693 [math.SG]](https://arxiv.org/abs/1103.0693).

[18] Xu Feng-Jun and Yang Fu-Zhong. “Another representation of the $β$ form of the inhomogeneous Picard-Fuchs equation”. In: *Chin. Phys. C* 37.10 (2013), p. 101001.

[19] Davide Gaiotto, Andrew Strominger, and Xi Yin. “From AdS(3)/CFT(2) to black holes/topological strings”. In: *JHEP* 09 (2007), p. 050. arXiv: [hep-th/0602046](https://arxiv.org/abs/hep-th/0602046).

[20] Tom Graber and Eric Zaslow. “Open string Gromov-Witten invariants: Calculations and a mirror ‘theorem’”. In: (Sept. 2001). arXiv: [hep-th/0109075](https://arxiv.org/abs/hep-th/0109075).

[21] Phillip A. Griffiths. “A Theorem Concerning the Differential Equations Satisfied by Normal Functions Associated to Algebraic Cycles”. In: *American Journal of Mathematics* 101.1 (1979), pp. 94–131. ISSN: 00029327, 10806377. (Visited on 07/12/2022).

[22] Mark Gross. “Deforming Calabi-Yau threefolds”. In: *arXiv preprint alg-geom/9506022* (1995).

[23] Mark Gross. “Primitive Calabi-Yau threefolds”. In: *Journal of Differential Geometry* 45.2 (1997), pp. 288–318.
[24] S. Hosono, B. H. Lian, and Shing-Tung Yau. “GKZ generalized hypergeometric systems in mirror symmetry of Calabi-Yau hypersurfaces”. In: Commun. Math. Phys. 182 (1996), pp. 535–578. arXiv:alg-geom/9511001.

[25] S. Hosono et al. “Mirror symmetry, mirror map and applications to complete intersection Calabi-Yau spaces”. In: Nucl. Phys. B 433 (1995). Ed. by B. Greene and Shing-Tung Yau, pp. 501–554. arXiv:hep-th/9406055.

[26] Sheldon H. Katz and Chiu-Chu Melissa Liu. “Enumerative geometry of stable maps with Lagrangian boundary conditions and multiple covers of the disc”. In: Adv. Theor. Math. Phys. 5 (2001). Ed. by David Auckly and Jim Bryan, pp. 1–49. arXiv:math/0103074.

[27] Sheldon H. Katz, David R. Morrison, and M. Ronen Plesser. “Enhanced gauge symmetry in type II string theory”. In: Nucl. Phys. B 477 (1996), pp. 105–140. arXiv:hep-th/9601108.

[28] Albrecht Klemm and Peter Mayr. “Strong coupling singularities and non-Abelian gauge symmetries in N=2 string theory”. In: Nucl. Phys. B 469 (1996), pp. 37–50. arXiv:hep-th/9601014.

[29] Johanna Knapp and Emanuel Scheidegger. “Towards Open String Mirror Symmetry for One-parameter Calabi-Yau Hypersurfaces”. In: Adv. Theor. Math. Phys. 13.4 (2009), pp. 991–1075. arXiv:0805.1013 [hep-th].

[30] Maxim Kontsevich. “Homological Algebra of Mirror Symmetry”. In: (Nov. 1994). arXiv:alg-geom/9411018.

[31] Daniel Krefl and Johannes Walcher. “Real Mirror Symmetry for One-parameter Hypersurfaces”. In: JHEP 09 (2008), p. 031. arXiv:0805.0792 [hep-th].

[32] Daniel Krefl and Johannes Walcher. “The Real Topological String on a local Calabi-Yau”. In: (Feb. 2009). arXiv:0902.0616 [hep-th].

[33] W. Lerche, P. Mayr, and N. P. Warner. “Noncritical strings, Del Pezzo singularities and Seiberg-Witten curves”. In: Nucl. Phys. B 499 (1997), pp. 125–148. arXiv:hep-th/9612085.

[34] Jun Li and Yun S. Song. “Open string instantons and relative stable morphisms”. In: Adv. Theor. Math. Phys. 5 (2001). Ed. by David Auckly and Jim Bryan, pp. 67–91. arXiv:hep-th/0103100.

[35] Jun Li et al. “A Mathematical theory of the topological vertex”. In: Geom. Topol. 13.1 (2009), pp. 527–621. DOI: 10.2140/gt.2009.13.527 arXiv:math/0408426.
[36] David R. Morrison. “Through the looking glass”. In: arXiv preprint alg-geom/9705028 (1997).

[37] David R. Morrison and Johannes Walcher. “D-branes and Normal Functions”. In: Adv. Theor. Math. Phys. 13.2 (2009), pp. 553–598. arXiv:0709.4028 [hep-th].

[38] Andrew Neitzke and Johannes Walcher. “Background independence and the open topological string wavefunction”. In: Proc. Symp. Pure Math. 78 (2008), p. 285. arXiv:0709.2390 [hep-th].

[39] Hirosi Ooguri, Andrew Strominger, and Cumrun Vafa. “Black hole attractors and the topological string”. In: Phys. Rev. D 70 (2004), p. 106007. arXiv:hep-th/0405146.

[40] Andrew Strominger, Shing-Tung Yau, and Eric Zaslow. “Mirror symmetry is T duality”. In: Nucl. Phys. B 479 (1996), pp. 243–259. arXiv:hep-th/9606040.

[41] Cumrun Vafa. “Two dimensional Yang-Mills, black holes and topological strings”. In: (June 2004). arXiv:hep-th/0406058.

[42] Johannes Walcher. “Calculations for Mirror Symmetry with D-branes”. In: JHEP 09 (2009), p. 129. arXiv:0904.4905 [hep-th].

[43] Johannes Walcher. “Evidence for Tadpole Cancellation in the Topological String”. In: Commun. Num. Theor. Phys. 3 (2009), pp. 111–172. arXiv:0712.2775 [hep-th].

[44] Johannes Walcher. “Extended holomorphic anomaly and loop amplitudes in open topological string”. In: Nucl. Phys. B 817 (2009), pp. 167–207. arXiv:0705.4098 [hep-th].

[45] Johannes Walcher. “Opening mirror symmetry on the quintic”. In: Commun. Math. Phys. 276 (2007), pp. 671–689. arXiv:hep-th/0605162.

[46] Edward Witten. “Branes and the dynamics of QCD”. In: Nucl. Phys. B 507 (1997), pp. 658–690. arXiv:hep-th/9706109.

[47] Edward Witten. “Chern-Simons gauge theory as a string theory”. In: Prog. Math. 133 (1995), pp. 637–678. arXiv:hep-th/9207094.