Fractal analyses of porous sol-gel nanocomposites modified by fullerenol $C_{60}(OH)_n$ ($n = 22–24$)

E V Maraeva1, I A Averin2, M S Istomina1, V A Moshnikov1,3, S S Nalimova1, I A Pronin3, K N Semenov4

1Department of Micro- and Nanoelectronics, Saint Petersburg Electrotechnical University "LETI", ul. Prof. Popova, 5, St. Petersburg 197376, Russia
2Department of Nano- and Microelectronics, Penza State University, 40 Krasnaya St., 440026, Penza, Russia
3Department of Integral Electronics, St.Petersburg Polytechnic University, Polytechnicheskaya 29, St.Petersburg 195251, Russia
4Department of Chemical Thermodynamics and Kinetics, Saint-Petersburg State University, Universitetskaya nab., 7/9, St. Petersburg 199034, Russia

Abstract. In this study silicon dioxide – tin dioxide nanomaterials modified by fullerenol were obtained through sol-gel technology. The porosity changes caused by the fullerenols addition are discussed.

1. Introduction
Fullerenols are among the most important and promising fullerene derivatives which can be easily synthesized with readjusting properties by varying the number of hydroxyl groups [1-3]. The aim of this study was to investigate the influence of the fullerenols $C_{60}(OH)_n$ ($n = 22–24$) addition on features of SiO$_2$ – SnO$_2$ sol-gel system layers formation using the method of fractal dimension determining.

2. Experiment
In this study sol-gel method for porous layers formation was chosen [4-9]. An inorganic salt SnCl$_2$·2H$_2$O as the precursor of tin dioxide and tetraethoxysilane as the precursor of silicon dioxide were selected. Buthanol (C$_4$H$_9$OH) was used as a solvent. The modifying agent (fullerenol $C_{60}(OH)_n$ ($n = 22–24$) was introduced at the stage of preparing the solution, i.e. sol, and the concentration of fullerenols in the alcohol was 1 mg/l. To obtain powders, 10 % aqua ammonia (NH$_4$OH) was added to the solutions-sols. The powders were heat-treated for 30 minutes at the temperature of 600 °C.

AFM experiments were performed using NTEGRA-Therma nanolaboratory (NT-MDT, Zelenograd, Russia). Commercial etched silicon tips NSG 01 with typical resonance frequency of 150 kHz were used as AFM probes. X-ray diffraction experiments were carried out on «DRN Farad» (Cr-$K\alpha$). The original program for the analyses of the patterns fractal dimension by the method «perimeter - square» was used [10].
3. Results and discussion

During the experiments, a series of samples of the "silicon dioxide – tin dioxide" system was obtained using the sol-gel method which was both modified and not modified by fullerenols, with different ratios of components (mol. %): 90% SiO$_2$–10% SnO$_2$; 50% SiO$_2$–50% SnO$_2$. Some technological features are discussed in [11].

The microstructure of the synthesized samples was investigated by the atomic force microscopy method in the tapping mode in the NTEGRA nanolaboratory. Figure 1 illustrates the morphology of the sample surface containing 10 mol. % SnO$_2$ and 90 mol. % SiO$_2$ without and with the addition of the C$_{60}$(OH)$_n$ ($n = 22–24$) fullerenol. It has been found that the addition of the fullerenol greatly affects the morphology of the surface of the oxide composite: the density of grain distribution and their average size increases [11]. The atomic force microscopy data indicate that on the surface of the sample prepared with addition of the fullerenol aggregates of ~2 microns observed in figure 1 (a) are not formed.

![AFM images of the sample containing 90 SiO$_2$–10 SnO$_2$ (mol. %) synthesized without adding the fullerenol: (a) and synthesized with the addition of the fullerenol (b) (scan space size - 10 × 10 μm2)](image)

Figure 1. AFM images of the sample containing 90 SiO$_2$–10 SnO$_2$ (mol. %) synthesized without adding the fullerenol: (a) and synthesized with the addition of the fullerenol (b) (scan space size - 10 × 10 μm2)

In the figures 2 (a, b) the dependences $S_s(\delta) = f[P_s(\delta)]$ in logarithmic coordinates for the patterns shown in the figures 1 (a, b).
Figure 2. The dependences \(S_c(\delta) = f[P_c(\delta)] \) for 4 horizontal cross-sections of the patterns 90 \(\text{SiO}_2 \)–10 \(\text{SnO}_2 \) (mol. %) synthesized without adding the fullerenol: (a) and synthesized with the addition of the fullerenol (b).

The slope coefficient reducing for all the lines corresponds to rising of the height at that the cross-section was made. It can be seen from the figures that the addition of fullerenols in initial solution results in the reducing of the line’s slope coefficient (fractal dimension meanings are \(D_f = 1.83 \) for the first image and \(D_f = 1.78 \) for the second one).

4. Conclusions
Porous nanocomposites based on silicon dioxide – tin dioxide both modified and not modified by fullerenols were obtained using sol-gel method. It was determined that the introducing of fullerenol \(\text{C}_{60}(\text{OH})_n \) \((n = 22–24) \) in silicon dioxide – tin dioxide nanocomposites results in reducing of fractal dimension, that argues for new porous system formation. It is shown that the method of fractal dimension determining «perimeter - square» can be used for analyses of porosity changes caused by the fullerenols addition.

Acknowledgments
This study was supported by the Ministry of Education and Science of the Russian Federation within the framework of the project part of the state assignment for the St. Petersburg Electrotechnical University “LETI” (project № 16.2112.2014/K) (a part of the work connecting with obtaining porous nanocomposites and AFM investigation), the basic part of the state assignment for the Penza State University (project №. 2014/151, project code 117) (a part of the work connecting with the analyses of the fractal dimension).

References
[1] Semenov K N, Charykov N A and Keskinov V N 2011 Journal of Chemical & Engineering Data 56 230
[2] Semenov K N, Charykov N A, Murin I V and Pukharenko Y V 2015 Journal of Molecular Liquids 202 1
[3] Sidorov L N, Yurovskaya M A, Borschevskii A Y, Trushkov I V and Ioffe I N 2005 Fullerenes, in Russian (Moscow: EKZamen)
[4] Maximov A I, Moshnikov V A, Tairov Yu M and Shilova O A 2008 Basics of sol-gel technology of nanocomposites, in Russian (St. Petersburg: Elmor)
[5] Gracheva I E, Moshnikov V A, Karpova S S and Maraeva E V 2011 Journal of Physics: Conference Series 291 012017
[6] Gracheva E I, Moshnikov V A, Maraeva E V, Karpova S S, Alexandrova O A, Alekseyev N I, Kuznetsov V V, Olchowik G, Semenov K N, Startseva A V, Sitnikov A V and Olchowik J M 2012 Journal of Non-Crystalline Solids 358 433

[7] Maraeva E V, Bobkov A A, Maximov A I, Moshnikov V A, Nalimova S S 2015 Journal of Physics: Conference Series 643 012116

[8] Pronin I A, Donkova B V, Dimitrov D Tz, Averin I A, Pencheva J A, Moshnikov V A 2014 Semiconductors 48(7) 842

[9] Averin I A, Igoshina S E, Moshnikov V A, Karmanov A A, Pronin I A, Terukov E I 2015 Technical Physics, 60(6) 928

[10] Averin I A, Pronin I A, Karmanov A A, Moshnikov V A 2015 Fractal analyses of sol-gel layers (ECM licence № 015614039)

[11] Maraeva E V, Istomina M S, Moshnikov V A, Nalimova S S, Maximov A I, Alexeev N I, Semenov K N 2016 Journal of Physics: Conference Series 690 012031