Nitrogen and carbon stable isotopic compositions ($\delta^{15}N$ and $\delta^{13}C$) of consumers have been used for physiological and food web studies. Previous studies have shown $\delta^{15}N$ and $\delta^{13}C$ values are affected by several biological and environmental factors during starvation, but the generality of the effect of starvation on $\delta^{15}N$ and $\delta^{13}C$ values has not yet been tested.

Here, we performed a meta-analysis to evaluate the effects of starvation on $\delta^{15}N$ and $\delta^{13}C$ values of consumers, and the underlying factors that may explain the observed variation. The $\delta^{15}N$ and $\delta^{13}C$ values were calculated as the differences between the final $\delta^{15}N$ and $\delta^{13}C$ values of consumers (post-starvation) and the pre-starvation values on each experiment. Our meta-analysis showed a large variation in the $\delta^{15}N$ and $\delta^{13}C$ values of consumers ($\delta^{15}N$ range: -0.82 to 4.30%; mean: 0.47% and $\delta^{13}C$ range: -1.92 to 2.62%; mean: 0.01%). The $\delta^{15}N$ values of most consumers increased along the length of the starvation period and were influenced by nitrogen excretion and thermoregulation types, probably because differences in nitrogen metabolism and thermoregulation affect nitrogen processing and excretion rates. None of our predictor variables accounted for the variation in $\delta^{13}C$ values, which showed both increases and decreases due to fasting. Our findings suggest that starvation results in changes in consumer $\delta^{15}N$ values which are mainly explained by the length of the fasting period and by nitrogen and energy metabolism, but the underlying
mechanisms of the starvation effects on δ^{13}C values seem to be more complex than previously thought.

1. Introduction

Natural variation in nitrogen (15N/14N) and carbon (13C/12C) stable isotope ratios has provided important insights into food web structure and biogeochemical processing of nitrogen (N) and carbon (C) within ecosystems [1–4]. This is because the manner in which the stable isotopic composition of N (δ^{15}N) and C (δ^{13}C) of a consumer reflects its diet is fairly predictable [2,5,6]. These predictable differences in the δ^{15}N and δ^{13}C values between a consumer and its food resources have been called ‘trophic enrichment’ or ‘discrimination factor’ and their average values are useful to infer the trophic position of an animal and sources of energy [2]. Several meta-analyses and reviews [2,5,7,8], however, have reported a large variation in trophic enrichment across consumers. This isotope variation can impose difficulties when using average enrichment values to estimate trophic position, and hence there is still an increasing need to fully understand the underlying mechanisms affecting consumer isotope enrichment [9].

Many feeding experiments have been conducted to estimate the sources of variation in the δ^{15}N and δ^{13}C values of consumers and their prey [9]. These studies have shown that several important physiological, life-history and environmental factors can affect the δ^{15}N and δ^{13}C values of consumers and their trophic enrichment. For example, several studies have shown that the isotopic composition of a consumer changes during metamorphosis because of an increase in the excretion of 15N-depleted meconium and frass [10,11]. Further, consumer nutritional status, such as N-poor resources or starvation, can cause an increase in δ^{15}N and δ^{13}C values of consumers [10].

Starvation is a state when animals do not eat, and therefore animal physiology and behaviour change [12]. During starvation, N and C uptake is near zero, but N and C loss by excretion and respiration remains, even if at a low rate [13–15]. Further, starvation can induce shifts in protein and carbohydrate metabolism [12], increasing the δ^{15}N values of consumers (see the papers in electronic supplementary material, table S1). These increases in δ^{15}N values with starvation are likely due to an increased reliance on internal N resources with a large use and excretion of 14N [10,13,16]. Similarly, increases in animal δ^{13}C values are caused by a strong reliance on internal lipid reserves during fasting; as lipids are depleted in 13C, the bulk δ^{13}C values of consumers become heavily enriched [17,18].

Despite recent progress on the effects of starvation on consumer isotope composition, there is still little consensus about the general trends because studies have shown increases, decreases or lack of changes in both δ^{15}N and δ^{13}C values during fasting [9,19]. Reasons for these differences are unclear, but they may be dependent on the starvation-discrimination effects of the taxonomic group or the length of starvation period considered in these studies. Therefore, the generality of starvation effects on δ^{15}N and δ^{13}C values of consumers is currently unknown.

Here, we present the results of a meta-analysis testing the generality of starvation effects on the δ^{15}N and δ^{13}C values of consumers across aquatic and terrestrial systems. We hypothesized that the effect of starvation on the isotope composition of consumers would be predictable based on the following underlying mechanisms:

1. Fasting time (experimental length used on the starvation experiment) influences the δ^{15}N and δ^{13}C values of consumers. Assuming that splanchnic organs represent up to 10% of all body protein [20], a 4% increase in whole organismal δ^{15}N values will lead to an increase of only 0.4‰ in all body protein. Longer fasting time increases the use of body protein to obtain energy, with a preferential use of 14N, and thus the δ^{15}N values of the remaining body protein increase. Based on this information, Martinez del Rio & Wolf [21] proposed a hypothesis that predicts that the δ^{15}N values of consumers should increase with fasting time duration. This hypothesis has been supported by several empirical experiments [10,22]; however, to our knowledge, its generality has never been tested. In addition, animal body lipids depress bulk δ^{13}C values because fatty acids have lower δ^{13}C values than bulk δ^{13}C values [23,24], and therefore, starvation may decrease the lipid reserves in the body of animals increasing 13C in consumers [25].

2. Turnover rates of N and C are influenced by the metabolism of consumers. Metabolic theory of ecology (MTE) has provided the mechanistic basis to understand the fundamental role of
metabolism in the ecology of organisms to ecosystems [26–28]. MTE can help predict the whole metabolic rate of an organism from its body mass and temperature [26]. Since metabolic rate relates to all biological processes [26], changes in metabolic rate would affect the isotope values of consumers, including isotopic incorporation and turnover rates potentially through the changes in the rates of excretion and use of body energy reserves. Increases in metabolic rate should be translated into decreases in $\delta^{15}N$ and $\delta^{13}C$ values of consumers.

(3) Other biological/ecological traits of organisms would affect the $\delta^{15}N$ and $\delta^{13}C$ values of consumers. For example, nitrogen excretion (e.g. type of nitrogenous waste or N waste), ontogenetic stage and thermoregulation could all affect isotope trophic enrichment. Types of nitrogen wastes include three chemical compounds: ammonia, urea and uric acid. The nature of N wastes as part of N metabolism affects the $\delta^{15}N$ values of excretion [7], thus differences in types of nitrogenous waste of animals would affect bulk $\delta^{15}N$ values during starvation. Ontogenetic stage can affect the $\delta^{15}N$ and $\delta^{13}C$ values of animals; juveniles allocate energy and materials to their growth beside maintenance and storage, and this has shown to increase $\delta^{15}N$ values and decrease $\delta^{13}C$ values of consumers [11,29]. Several lines of evidence have shown that tissue turnover rates in mammals, birds and fishes correlate with field metabolic rates, consequently affecting the $\delta^{15}N$ and $\delta^{13}C$ values of animals [30,31]. Thermoregulation affects metabolic processes [26], and can play a large role in the turnover of N and C in the tissue of endotherms and ectotherms, thus such differences in metabolism due to thermoregulation may influence the $\delta^{15}N$ and $\delta^{13}C$ values of animals during starvation.

2. Material and methods

2.1. Data sources

We performed a systematic and broad-range search for all publications in ISI Web of Science and Google Scholar using the search terms ‘isotope AND starv* OR fasting’, ‘isotope AND experiment*’, ‘isotope AND hung*’. The search initially returned 428 and 5580 hits from ISI Web of Science and Google Scholar, respectively. From these references, 123 papers were focused on the effects of starvation on stable isotopes, but we only kept those studies providing $\delta^{15}N$ and/or $\delta^{13}C$ values of consumers under starvation and control (pre-starvation) conditions in laboratory experiments (a total of 19 papers). To make sure that we included all available papers, we also reviewed the references from all relevant studies and reviews published on the starvation–stable isotopes effects to identify additional studies.

Data from the papers were collected from the texts, figures and tables of the papers. To gather data from figures, we used PlotDigitizer X v. 2.0.1 software (available: http://www.surf.nuqe.nagoya-u.ac.jp/~nakahara/Software/PlotDigitizerX/). In total, we obtained 47 starvation experiments from our total of 19 papers (electronic supplementary material, table S1). If several studies involved the same species, the result for each species was considered one estimate; therefore, some species were represented by multiple data points (see electronic supplementary material, table S1).

We obtained the experiment lengths (days), and initial and final body mass of the consumers from each study. We collected additional information of each species in the dataset (i.e. species traits), including taxonomic group (birds, fishes, mammals, reptiles and invertebrates), tissue type (whole body and some body parts as multiple samples), inhabiting ecosystem types (aquatic or terrestrial), nitrogen excretion (ammonia, urea or uric acid), ontogenetic stage (juvenile or adult) and species longevity. This additional information was collected from each paper or via Internet data sources. Few studies contained the isotopic values from the different body parts; but we only considered data from the whole body as the isotope data from the species. We obtained species mean body mass to calculate metabolic rate (see below) and thermoregulation types (ectotherm or endotherm) to evaluate the effects of metabolic rates and thermoregulation on the $\delta^{15}N$ and $\delta^{13}C$ values.

2.2. The $\delta^{15}N$ and $\delta^{13}C$ values of consumers and experiment length

The N and C isotopic discrimination (i.e. $\delta^{15}N$ or $\delta^{13}C$ values) of each consumer due to starvation was calculated as the differences between the final $\delta^{15}N$ or $\delta^{13}C$ values (post-starvation) and the initial $\delta^{15}N$ or $\delta^{13}C$ values (pre-starvation), respectively, as $\delta X = \delta X_{\text{post-starvation}} - \delta X_{\text{pre-starvation}}$, where X is ^{15}N or ^{13}C. To account for the effects of experiment length (in days, from 5 to 243 days) on species lifespan, we calculated the standardized experiment length as (experiment length (day)/species longevity (day)).
2.3. Calculation of metabolic rate and magnitude of body mass loss

The metabolic rate (B, unit: Watt) can be predicted by the following equation [26]: $B = b_0 M^{0.75} e^{-E/kT}$, where b_0 is the normalization constant independent of body size and temperature, and M, E, k and T are body mass (grams), the activation energy, Boltzmann’s constant (8.62×10^{-5} eV K$^{-1}$) and absolute body temperature in kelvin, respectively. Mean body temperature of endotherms was collected from the literature and online data sources. For ectotherms, ambient air or water temperatures on the laboratory setting were used to estimate the body temperature of the individuals. We estimated the magnitude of body mass loss by the difference between the final body mass after the experiment and the initial body mass before the experiment.

2.4. Statistical analyses

Differences in the δ15N values among taxa group (birds, fish, invertebrates, mammals and reptiles) were independently tested by analysis of covariance (ANCOVA) using taxa group as a fixed factor, and experiment length, standardized experiment length, metabolic rate and mass loss as covariates.

To evaluate the effect of starvation on the δ15N or δ13C values of consumers, we performed generalized linear mixed models (GLMMs) [32], with a Gaussian distribution as the error distribution. In the models, we included metabolic rate, experiment length (days), standardized experiment length (days), magnitude of body mass loss from initial condition, inhabiting ecosystem types, nitrogen excretion, ontogenetic stages and thermoregulation types as fixed factors, and ‘species’ and ‘study’ were treated as random factors to account for variations among species and studies. For δ13C values of consumers, we included lipid extraction (extracted or not) as a fixed effect for the GLMM. We ran the δ15N values among taxa group (birds, fish, invertebrates, mammals and reptiles). Differences in the δ15N values of consumers, with increases in δ15N values with increasing experiment length and standardized experiment length (figure 2a, table 1). The slopes for the relationships between δ15N values and experiment length or standardized experiment length were significant within taxa groups (ANCOVA, $F_{6,107} = 5.11$, $p < 0.001$ for experiment length, and $F_{6,107} = 7.39$, $p < 0.001$ for standardized experiment length), but not different among taxa groups ($F_{6,107} = 0.795$, $p = 0.531$ for experiment length, and $F_{6,107} = 0.296$, $p = 0.880$ for standardized experiment length). There were no significant effects of metabolic rate on the responses of δ15N values to starvation for any of the taxonomic groups analysed (ANCOVA, $F_{1,63} = 0.763$, $p = 0.386$; figure 2c, table 1). The δ13C values of consumers showed no significant starvation time-dependent changes (figure 3a, b). Similarly, we did not find any significant effect of metabolic rate on the effects of fasting on the δ13C values of consumers (figure 3c, table 2). The magnitude of body mass loss had

3. Results

3.1. Variations in δ15N and δ13C values of consumers

The δ15N and δ13C values of consumers across all experiments ranged from −0.82 to 4.30‰, and from −1.92 to 2.62‰, respectively (figure 1a, b). More than 100 of 139 δ15N data of consumers (79%) were positive values, indicating that the δ15N values of consumers increased along the starvation period in most of consumers. The range of variation of δ13C values of consumers was larger than that of δ15N values, and the δ13C values distributed evenly from positive to negative values. The mean δ15N and δ13C values of consumers pooled across all starvation experiments were 0.47 ± 0.72‰ and 0.01 ± 0.78‰ (mean ± 1 s.d.), respectively.

3.2. Mechanisms underlying variation in δ15N and δ13C values of consumers

The δ15N values of consumers showed significant starvation time-dependent changes in all taxonomic groups, with increases in δ15N values with increasing experiment length and standardized experiment length (figure 2a, b, table 1). The slopes for the relationships between δ15N values and experiment length or standardized experiment length were significant within taxa groups (ANCOVA, $F_{6,107} = 5.11$, $p < 0.001$ for experiment length, and $F_{6,107} = 7.39$, $p < 0.001$ for standardized experiment length), but not different among taxa groups ($F_{6,107} = 0.795$, $p = 0.531$ for experiment length, and $F_{6,107} = 0.296$, $p = 0.880$ for standardized experiment length). There were no significant effects of metabolic rate on the responses of δ15N values to starvation for any of the taxonomic groups analysed (ANCOVA, $F_{1,63} = 0.763$, $p = 0.386$; figure 2c, table 1). The δ13C values of consumers showed no significant starvation time-dependent changes (figure 3a, b). Similarly, we did not find any significant effect of metabolic rate on the effects of fasting on the δ13C values of consumers (figure 3c, table 2). The magnitude of body mass loss had
no significant effects on the responses of δ^{15}N and δ^{13}C values of consumers to starvation (figure 4a, b). Further, there were no significant differences in the slopes of δ^{15}N and δ^{13}C values and the magnitude of body mass loss (coefficients < −0.149, $p = 0.611$).

The δ^{15}N values of consumers were marginally different between thermoregulation types (ectotherm or endotherm) of the consumers (figure 5a, table 1) and nitrogen excretion (ammonia, urea and uric acid; figure 5b); these factors were selected in the best model. We did not detect any significant effect of the ontogenetic stage and ecosystem type on the δ^{15}N values of consumers in the full and best models (electronic supplementary material, figure S1; table 1). Similarly, there were no significant differences in
coefficient value in the model, and δ of these factors were selected in the best model (table 2). However, lipid treatment had the highest of fasting time duration (i.e. experiment length), nitrogen excretion and thermoregulation influencing the and increases, along starvation length. Overall, this meta-analysis supports our predictions on the effect of fasting time duration (i.e. experiment length), nitrogen excretion and thermoregulation influencing the

4. Discussion

Our meta-analysis showed large variations in the δ¹³C values of consumers in relation to starvation. Overall, δ¹⁵N values of most consumers increased, while δ¹³C values showed both decreases and increases, along starvation length. Overall, this meta-analysis supports our predictions on the effect of fasting time duration (i.e. experiment length), nitrogen excretion and thermoregulation influencing the

Table 1. Results of the full and best GLMMs for testing the effects of experiment length, standardized experiment length, consumer metabolic rate, magnitude of body mass loss, type of nitrogenous waste, thermoregulation type, ontogenetic stage and ecosystem type on δ¹⁵N values of consumers. s.e. means standard error of the coefficient. The values in italics indicate significant factors (p < 0.05).

Result	full model	best model								
coefficient	s.e.	t-value	p-value	AIC	coefficient	s.e.	t-value	p-value	AIC	
experiment length	0.458	0.246	1.865	0.089	307.5	0.482	0.231	2.083	0.042	218.7
standardized experiment length	0.285	0.151	1.880	0.191	0.462	0.201	2.295	0.041		
metabolic rate	0.169	0.098	1.715	0.147	0.171	0.115	1.482	0.156		
magnitude of body mass loss	−0.149	0.274	−0.544	0.611						
type of nitrogenous waste	−0.877	0.466	−1.880	0.073	−0.887	0.466	−1.902	0.068		
thermoregulation	0.666	0.450	1.480	0.165	0.804	0.424	1.895	0.078		
ontogenetic stage	−0.365	0.453	−0.805	0.442						
ecosystem type	0.334	0.366	0.933	0.364						
(intercept)	0.668	0.475	1.407	0.224	1.226	0.618	1.984	0.069		

Figure 3. The relationships between the δ¹³C values of consumers from the initial condition and the predictors including the experiment length (a), standardized experiment length (b) and metabolic rate (c). This last was calculated using the size of consumers following the MTE equation. There were no significant relationships between the δ¹³C of consumers from the initial condition and the predictors in the GLMMs. The red line indicates zero values of δ¹³C.

Table 2. Results of the meta-analysis showing the effect of the factors on δ¹³C. The values in italic indicate significant factors (p < 0.05).

Factor	Coefficient	s.e.	t-value	p-value	AIC
Lipid treatment	0.804	0.424	1.895	0.078	
Nitrogen excretion	0.466	0.201	2.295	0.041	
Thermoregulation	0.804	0.424	1.895	0.078	
Ontogenetic stage	0.466	0.201	2.295	0.041	
Ecosystem type	0.804	0.424	1.895	0.078	

The δ¹³C values of consumers grouped by type of nitrogenous waste, thermoregulation type, ontogenetic stage or ecosystem type (figure 5, table 2; electronic supplementary material, figures S1, S2), and none of these factors were selected in the best model (table 2). However, lipid treatment had the highest coefficient value in the model, and δ¹³C values of consumers with non-lipid extraction were slightly higher than those with lipid extraction (table 2; electronic supplementary material, figure S2).
Figure 4. Relationships between the $\delta^{15}N$ (a) and $\delta^{13}C$ (b) values of consumers from the initial condition and mass loss rate at the end of experiments from the initial weights. The red line indicates zero values of $\delta^{15}N$ and $\delta^{13}C$.

4.1. Mechanisms underlying variation in $\delta^{15}N$ and $\delta^{13}C$ values of consumers

We found that fasting time affected the $\delta^{15}N$ values by increasing $\delta^{15}N$ values of consumers. During starvation, there is a strong dependency on an internal recycling of N, and the N reserves in the body (i.e. protein) are used to get energy [22]. During this process, ^{14}N is primarily used and excreted [22]. Thus, the bulk $\delta^{15}N$ values in the body of consumers become enriched in ^{15}N [10,22]. Also, fasting animals conserve protein when they fast, especially if they have adequate reserves [34–37]. Such differences in conversion rate of protein to energy may induce the variation in the $\delta^{15}N$ values of consumers. Our results are consistent with the hypothesis proposed by Martinez del Rio & Wolf [21], who theoretically predicted that the $\delta^{15}N$ values of consumers should increase with the length of fasting.

The lack of significant effects of metabolism and magnitude of body mass loss on the $\delta^{15}N$ values of consumers may indicate that the turnover rate of the N isotopes is not an important factor during starvation (but see MacAvoy et al. [30]). This is probably because the effect of turnover rates on N isotopic discrimination was relatively smaller than that of the starvation length. In addition, several lines of evidence suggest that although the relationship between metabolic rate and isotope discrimination is mediated through protein metabolism, a decoupling between these processes is possible because protein catabolism is not the only source of energy during fasting [38].

Nitrogen excretion and thermoregulation were important factors affecting the $\delta^{15}N$ values of consumers during starvation. The role of N excretion on isotopic discrimination may be due to the differences in N metabolism [7]. Different N waste products go through a series of steps from ammonia to urea or uric acid; these steps likely fractionate ^{14}N and ^{15}N at different rates [7]. According to Vanderklift & Ponsard [7], animals excreting urea and uric acid would show larger consumer-diet ^{15}N enrichment than those excreting ammonia. Our results showed that ammonia-excreting animals have enriched ^{15}N (compared with urea and uric acid) under starvation conditions. The additional series of steps after ammonia formation for the conversion and excretion of nitrogenous wastes as urea and uric acid likely explain this pattern.

We also found that thermoregulation type was a major factor affecting $\delta^{15}N$ values of consumers during starvation. Food limitation typically slows down metabolic rates and affects the costs of thermoregulation. During starvation, the thermoregulation costs, which are higher in endotherms than
ectotherms, could deplete energy stores and may affect δ^{15}N values due to changes in protein metabolism affecting isotope incorporation \cite{27,39,40}.

None of the hypothesized factors, including experiment length (5–243 days), significantly affected δ^{13}C values of consumers; however, lipid extraction had the strongest effect on the δ^{13}C values of consumers. Lipids in animals have lower δ^{13}C values than bulk δ^{13}C values and individual fatty acids have different δ^{13}C values \cite{23,24,41}. Multiple studies have shown that starvation results in an enrichment in 13C due to an increase in the amount of carbon from 13C-depleted lipids metabolized to meet energetic demands \cite{42,43}, others have shown no effects of fasting on δ^{13}C \cite{44,45}. Our study revealed that the average bulk δ^{13}C values treated with lipid extraction decreased after starvation rather than increasing, and thus, it may not simply result from removal of the lipids with relatively low δ^{13}C values. These results are consistent with the later studies; however, most of the studies showing no effect of starvation over isotopic composition evaluated bulk responses in δ^{13}C values. For example, McCue et al. \cite{46} showed that cockroach did not change significantly in response to starvation lasting up to 168 days, although the isotopic values of the excreta became significantly depleted in 13C. Similarly, Gaye-Siessegger et al. \cite{17} found enriched δ^{13}C values in the lipid-free material of fishes after starvation.

Different δ^{13}C values of consumers in response to starvation due to lipid extraction treatments may be driven by differences in species compositions between extracted and non-extracted treatments, suggesting species-specific variations in lipid content. However, further studies are needed to test the hypothesis of the different δ^{13}C values of consumers treated for lipid extraction and no lipid extraction.
Table 2. Results of the full and best GLMMs for testing the effects of experiment length, standardized experiment length, consumer metabolic rate, magnitude of body mass loss, type of nitrogenous waste, thermoregulation type, ontogenetic stage, ecosystem type and lipid extraction on the δ13C values of consumers. s.e. means standard error of the coefficient. The best model, which was selected by AIC, was the full model.

	full/best model	coefficient	s.e.	t-value	p-value
experiment length		0.333	0.536	0.621	0.550
standardized experiment length		0.200	0.476	0.419	0.691
metabolic rate		0.095	0.266	0.356	0.735
magnitude of body mass loss		−0.137	0.506	−0.272	0.788
type of nitrogenous waste		−0.218	0.753	−0.289	0.776
thermoregulation		−0.370	0.988	−0.374	0.718
ontogenetic stage		0.305	1.124	0.272	0.790
ecosystem type		0.568	0.568	0.087	0.932
lipid extraction		−1.139	0.886	−1.285	0.145
(intercept)		0.030	1.308	0.023	0.983

In this meta-analysis, we tested several factors including environmental conditions and biological traits that could explain variation in stable isotope composition of consumers under starvation. Nevertheless, some other factors not tested in this study, such as water and nutrient stresses, could also contribute to the variation of the starvation effects over stable isotopes [44,47]. During starvation experiments testing for isotope changes, the animals may have been exposed to water, nutrient and other stresses imposed by the experimental conditions [47]. However, the effects of such experimental conditions on the δ15N and δ13C values of animals were not tested in these experiments. We propose that further experiments need to account for the effect of these stressors on the isotope values of consumers during the starvation experiments.

4.2. Concluding remarks

Although our study showed variations in δ15N and δ13C values of consumers, which resulted from several of our predictors, including experiment length and consumer traits, we did not find straightforward mechanisms explaining the large variations in the δ13C values of consumers. This lack of conclusive results may be due to the complex mechanisms underlying the starvation effects on the isotope values. In addition, the sample sizes in our meta-analysis were also limited, especially for invertebrates (nine taxa), which could have precluded us from finding conclusive trends. Thus, we encourage more studies to test the starvation-effect hypothesis, especially for invertebrate species.

Data accessibility. Our data are deposited at Dryad: http://dx.doi.org/10.5061/dryad.m53q0 [48].

Authors’ contributions. H.D., F.A. and A.L.G. conceived and designed the meta-analysis, collected the data and performed the meta-analysis, wrote the manuscript. H.D. analysed the data.

Competing interests. The authors declare no competing interests.

Funding. This work was supported by JSPS KAKENHI grant number: 24770022 to H.D.

Acknowledgments. We thank Ryan Walker and Caleb Gilbert for proof reading the manuscript.

References

1. Zanden MJV, Casselman JM, Rasmussen JB. 1999 Stable isotope evidence for the food web consequences of species invasions in lakes. Nature 401, 464–467. (doi:10.1038/46762)

2. Post DM. 2002 Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83, 703–718. (doi:10.1890/0091-3012-9658(2002)83[703:USITET]2.0.CO;2)

3. Layman CA, Arrington DA, Montaña CG, Post DM. 2007 Can stable isotope ratios for community-wide measures of trophic structure? Ecology 88, 42–48. (doi:10.1890/06-1230.1)

4. Christensen ML, Arrington DA. 2009 Variation in δ13C from bulk and molecular stable isotope and radiocarbon analyses. Limnol. Oceanogr. 54, 149–164. (doi:10.4319/lo.2009.54.1.0149)

5. McCutchan JH, Lewis WM, Kendall C, McGraith CC. 2003 Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102, 378–380. (doi:10.1034/j.1600-0706.2003.12098.x)
10. Doi H, Kikuchi E, Takagi S, Shikano S. 2007 Changes in consumer diet δ15N enrichment: a meta-analysis. *Oecologia* **156**, 169–182. (doi:10.1007/s00442-007-0620-z)

9. Martínez del Rio C, Wolf N, Carleton S, Gaines L.Z. 2009 Isotopic ecology ten years after a call for more laboratory experiments. *Ecol. Evol.* **8**, 91–111. (doi:10.1002/ecv.1998.00064.x)

8. Caut S, Laran S, García-Hartmann E, Das K. 2011 Mass-balance models for animal isotopic ecology. In: *Physical and ecological adaptations to feeding in vertebrates* (eds IM Stark, T Wang), pp. 141–174. Enfield, NH: Science Publishers.

7. Gannes LZ, O’Brien DM, Martínez del Rio C. 1997 Stable isotopes in animal ecology: assumptions, caveats, and a call for more laboratory experiments. *Ecology* **78**, 1271–1276. (doi:10.1890/0012-7623(1997)078[1271:SIAMEJ]2.0.CO;2)

6. Layman CA et al. 2012 Applying stable isotopes to examine food-web structure: an overview of analytical tools. *Biol. Rev.* **87**, 545–562. (doi:10.1111/j.1469-185X.2011.00208.x)

5. Vanderklift MA, Ponsard S. 2003 Sources of variation in consumer diet δ15N enrichment: examples using the benthic macroinvertebrates *Stenopsyche chemnitziana* and *Epeorus titanoides*. *Rapid Commun. Mass Spectrom.* **21**, 993–1002. (doi:10.1002/rcm.2925)

4. Tibbets TM, Wheeless LA, del Rio CM. 2008 Isotopic enrichment without change in diet: an ontogenetic shift in δ15N during insect metamorphosis. *Funct. Ecol.* **22**, 109–113.

3. McLeod TD. 2010 Starvation physiology: reviewing the different strategies animals use to survive a common challenge. *Comp. Biochem. Physiol. A* **156**, 1–18. (doi:10.1016/j.cbpa.2010.01.002)

2. Adams TS, Sterner RW. 2000 The effect of dietary and ecological adaptations to feeding invertebrates and ecological adaptations to feeding invertebrates. *J. Comp. Physiol.B* **165**, 90–93. (doi:10.1007/BF00443189)

1. Gaye-Siessjeger J, Focken U, Abel H, Becker K. 2004 Individual protein balance strongly influences δ13C and δ15N values in Nile tilapia, *Oreochromis niloticus*. *Naturewissenschaften* **91**, 90–93. (doi:10.1007/s00114-003-0496-2)

10. Lee TN, Buck CL, Barnes BM, O’Brien DM 2012 A test of alternative models for increased tissue nitrogen isotope ratios during fasting in hibernating ground squirrels. *J. Exp. Biol.* **215**, 3354–3361. (doi:10.1242/jeb.065528)

8. Gawecka E, Hansson S. 1999 An experimental study on variations in stable carbon and nitrogen isotope fractionation during growth of *Mytilus edulis* and *Nemertesia typica*. *Can. J. Fish. Aquat. Sci.* **56**, 1003–1010. (doi:10.1139/f99-149)

7. Truskov SM, Goncharov AA, Tianyu AV, 2015 Individual-body isotope fractionation in carbon and nitrogen metabolism of *Daphnia similis*. *J. Exp. Biol.* **218**, 3439–3446. (doi:10.1242/jeb.16758)

6. Madigan DJ, Litvin SY, Popp BN, Carlisle AB, Farwell CJ. 2002 Tissue turnover rates and isotopic trophic discrimination factors in the endothermic telescop, *Pacific bluefin tuna* (Thunnus orientalis). *PLoS ONE* **7**, e94226. (doi:10.1371/journal.pone.0094226)

5. Venables WN, Ripley BD. 2002 *Modern applied statistics with S*. 5th edn. New York: Springer.

4. R Core Team. 2016 R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.

3. Calion M. 2004 Modeling of lipid and protein depletion during total starvation. *Am. J. Physiol. Endocrinol. Metab.* **287**, E796–E798. (doi:10.1152/ajpendo.00414.2003)

2. McCue MD, Guzmán RM, Passemant CA, Davidowitz G. 2015 How and when do insects rely on endogenous protein and lipid resources during lethal bouts of starvation? A new application for δ13C-breathing testing. *PLoS ONE* **10**, e0140053. (doi:10.1371/journal.pone.0140053)

1. Carleton S, Martínez del Rio C. 2005 The effect of cold-induced increased metabolic rate on the ratio of δ13C and δ15N incorporation in house sparrows (*Passer domesticus*). *Oecologia* **144**, 226–232. (doi:10.1007/s00442-005-0066-8)

10. Bauchinger U, McWilliams SR. 2010 Extent of phenotypic flexibility during long-distance flight is determined by tissue-specific turnover rates: a new hypothesis. *J. Avian Biol.* **41**, 603–608. (doi:10.1111/j.1600-0469.2010.05173.x)

9. Thomas SM, Crowther TW. 2015 Predicting rates of isotopic turnover across the animal kingdom: a synthesis of existing data. *J. Anim. Ecol.* **84**, 861–870. (doi:10.1111/j.1365-2664.2012.01226.x)

8. Post DM, Layman CA, Amington DA, Takamoto G, Quattrochi J, Montana GG. 2007 Getting to the fat of the matter: models, methods and assumptions for dealing with lipids in stable isotope analyses. *Oecologia* **152**, 179–189. (doi:10.1007/s00442-006-0630-x)

7. Oelbermann K, Scheu S. 2002 Stable isotope enrichment (δ13C and δ15N) in a generalist predator (*Parodon lugubris*, Araneae: Lycosidae): effects of prey quality. *Oecologia* **130**, 337–344. (doi:10.1007/s0044200410083)

6. Gaye-Siessjeger J, Focken U, Abel HJ, Becker K. 2007 Starvation and low feeding levels result in an enrichment of δ13C in lipids and δ15N in protein of Nile tilapia *Oreochromis niloticus*. *J. Fish Biol.* **71**, 90–100. (doi:10.1111/j.1095-8649.2007.01469.x)

5. Hobson KA, Alisuskaas RT, Clark RG. 1993 Stable nitrogen-isotope enrichment in avian tissues. *Corduv* **150**, 388–394. (doi:10.2307/1369361)

4. Gorokhova E, Hansson S. 1999 An experimental study on variations in stable carbon and nitrogen isotope fractionation during growth of *Gromphadorhina portentosa* (Hymenoptera, Apidae): effect of prey quality. *Oecologia* **130**, 337–344. (doi:10.1007/s00442-004-0622-0)

3. Madigan DJ, Litvin SY, Popp BN, Carlisle AB, Farwell CJ. 2002 Tissue turnover rates and isotopic trophic discrimination factors in the endothermic teleost, *Pacific bluefin tuna* (Thunnus orientalis). *PLoS ONE* **7**, e94226. (doi:10.1371/journal.pone.0094226)

2. Venables WN, Ripley BD. 2002 Modern applied statistics with S, 5th edn. New York: Springer.

1. R Core Team. 2016 R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.

10. Kelly JF. 2000 Stable isotopes of carbon and nitrogen in the study of avian and mammalian trophic ecology. *Can. J. Zool.* **78**, 1–27. (doi:10.1139/z99-165)

9. Doi H, Akamatsu F, González AL. 2017 Data from: Starvation effects on nitrogen and carbon stable isotopes of animals: an insight from meta-analysis of fasting experiments. Dryad Digital Repository. (http://dx.doi.org/10.5061/dryad.m5p4d)