Surface Parametrization of Nonsimply Connected Planar Bézier Regions

Orest Shardt

Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 2V4, Canada

John C. Bowman

Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta T6G 2G1, Canada

Abstract

A technique is described for constructing three-dimensional vector graphics representations of planar regions bounded by cubic Bézier curves, such as smooth glyphs. It relies on a novel algorithm for compactly partitioning planar Bézier regions into nondegenerate Coons patches. New optimizations are also described for Bézier inside–outside tests and the computation of global bounds of directionally monotonic functions over a Bézier surface (such as its bounding box or optimal field-of-view angle). These algorithms underlie the three-dimensional illustration and typography features of the TeX-aware vector graphics language Asymptote.

Keywords: curved triangulation, Bézier surfaces, nondegenerate Coons patches, nonsimply connected domains, inside–outside test, bounding box, field-of-view angle, directionally monotonic functions, vector graphics, PRC, 3D TeX, Asymptote

2010 MSC: 65D17, 68U05, 68U15

*Corresponding author

URL: http://www.math.ualberta.ca/~bowman (John C. Bowman)
1. Introduction

Recent methods for lifting smooth two-dimensional (2D) font data into three dimensions (3D) have focused on rendering algorithms for the Graphics Processing Unit (GPU) \[15\]. However, scientific visualization often requires 3D vector graphics descriptions of surfaces constructed from smooth font data. For example, while current CAD formats, such as the PDF-embeddable Product Representation Compact (PRC, précis in French) \[2\] format, allow one to embed text annotations, they do not allow text to be manipulated as a 3D entity. Moreover, annotations can only handle simple text; they are not suitable for publication-quality mathematical typesetting.

In this work, we present a method for representing arbitrary planar regions, including text, as 3D surfaces. A significant advantage of this representation is consistency: text can then be rendered like any other 3D object. This gives one complete control over the typesetting process, such as kerning details, and the ability to manipulate text arbitrarily (e.g. by transformation or extrusion) in a compact resolution-independent vector form. In contrast, rendering and mesh-generation approaches destroy the smoothness of the original 2D font data.

In focusing on the generation of 3D surfaces from 2D planar data, the emphasis of this work is not on 3D rendering but rather on the underlying procedures for generating vector descriptions of 3D geometrical objects. Vector descriptions are particularly important for online publishing, where no assumption can be made \textit{a priori} about the resolution that will be used to display an image. As explained in Section \[2\], we focus on surfaces based on polynomial parametrizations rather than nonuniform rational B-splines (NURBS) \[9, 19\]. In Section \[3\] we describe a method for splitting an arbitrary planar region bounded by one or more Bézier curves into nondegenerate Bézier patches. This algorithm relies on the optimized Bézier inside–outside test described in Section \[4\]. The implementation of these algorithms in the vector graphics language \textsc{Asymptote}, along with the optimized 3D sizing algorithms presented in Section \[5\], is discussed in Section \[6\].

Using a compact vector format instead of a large number of polygons to represent manifolds has the advantage of reduced data representation (essential for the storage and transmission of 3D scenes) and the possibility, using relatively few control points, of exact or nearly exact geometrical descriptions of mathematical surfaces. For example, in Appendix \textsc{Appendix A} we show that a sphere can be represented to 0.05% accuracy with just eight cubic
Bézier surface patches.

2. Bézier vs. NURBS Parametrizations

The atomic graphical objects in PostScript and PDF, Bézier curves and surfaces, are composed of piecewise cubic polynomial segments and tensor product patches, respectively. A segment $\gamma(t) = \sum_{i=0}^{3} B_i(t)P_i$ has four control points P_i, whereas a surface patch is defined by sixteen control points P_{ij}:

$$\sigma(u, v) = (x(u, v), y(u, v)) = \sum_{i,j=0}^{3} B_i(u)B_j(v)P_{ij}.$$

Here $B_i(u) = \binom{3}{i} u^i (1-u)^{3-i}$ is the ith cubic Bernstein polynomial. Just as a Bézier curve passes through its two end control points, a Bézier surface necessarily passes through its four corner control points. These special control points are called nodes. It is convenient to define the convex hull of a cubic Bézier segment or patch to be the convex hull (minimal enclosing polygon or polyhedron) of its control points. A straight segment is one in which the control points are colinear and the derivative of the Bézier parametrization is never zero (i.e. the control points are arranged in the same order as their indices).

It is often desirable to project a 3D scene to a 2D vector graphics format understood by a web browser or high-end printer. Although NURBS are popular in computer-aided design because of the additional degrees of freedom introduced by weights and general knot vectors, these benefits are tempered by both the lack of support for NURBS in popular 2D vector graphics formats (PostScript, PDF, SVG, EMF) and the algorithmic simplifications afforded by specializing to a Bézier parametrization. Bézier curves are also commonly used to describe glyph outlines. We therefore restrict our attention to (polynomial) Bézier curves and surfaces (even though both Asymptote and the 3D PRC format support NURBS).

Unlike their Bézier counterparts, NURBS are invariant under perspective projection. This is only an issue if projection is done before the rendering stage, as is necessary when a 2D vector representation of a curve or surface is constructed solely from the 2D projection of its control points. It is therefore somewhat ironic that NURBS are much less widely implemented in 2D vector graphics formats than in 3D. In 3D vector graphics applications, projection to 2D is always deferred until rendering time, so that the invariance...
of NURBS under nonaffine projection is irrelevant. While NURBS provide
exact parametrizations of familiar conic sections and quadric surfaces, non-
trivial manifolds still need to be approximated as piecewise unions of under-
lying exact primitives. We feel that the implementational simplicity of basic
Bézier operations (computing subcurves and subsurfaces, points of tangency,
normal vectors, bounding boxes, intersection points, arc lengths, and arc
times) offsets for many practical applications the lower dimensionality of the
Bézier subspace.

3. Partitioning Curved 2D Regions

In 3D graphics, text is often displayed with bit-mapped images, textures,
or polygonal mesh approximations to smooth font character curves. To allow
viewing of smooth text at arbitrary magnifications and locations, a nonpolyg-
onal surface that preserves the curvature of the boundary curves is required.
While it is easy to fill the outline of a smooth character in 2D, filling a 3D
planar surface requires more sophisticated methods. One approach involves
using surface filling algorithms for execution on GPUs [15]. When a vec-
tor, rather than a rendered, image is desired, a preferable alternative is to
represent the text as a parametrized surface.

Methods based on common surface primitives in 3D modelling and ren-
dering can be used to describe planar regions. One method trims the domain
of a planar surface to the desired shape [17]. While that approach is feasible,
given adequate software support for trimming, this work describes a differ-
ent approach, where each symbol is represented as a set of planar Bézier
patches. We call this procedure bezulation since it involves a process similar
to the triangulation of a polygon but uses cubic Bézier patches instead of
triangles. To generate a surface representing the region bounded by a set of
simple closed Bézier curves (intersecting only at the end points), algorithms
were developed for (i) expressing a simply connected 2D region as a union of
Bézier patches and (ii) breaking up a nonsimply connected region into sim-
ply connected regions. (Selfintersecting curves can be handled by splitting at
the intersection points.) These algorithms allow one to express text surfaces
conveniently as Bézier patches.

Bezulation of a simply connected planar region involves breaking the re-
region up into patches bounded by closed Bézier curves with four or fewer
segments. This is performed by the routine bezulate (cf. Algorithm 1) us-
ing an adaptation of a naïve triangulation algorithm, modified to handle
curved edges, as illustrated in Figure 1.

\begin{algorithm}
\textbf{Input:} simple closed curve C
\textbf{Output:} array of closed curves A
\vspace{1em}
while C.segments > 4 do
\hspace{1em} found \leftarrow false;
\hspace{1em} for $n = 3$ to 2 do
\hspace{2em} for $i = 0$ to C.segments-1 do
\hspace{3em} L \leftarrow line segment between nodes i and $i+n$ of C;
\hspace{3em} if countIntersections(C,L) = 2 and midpoint of L is inside C then
\hspace{4em} p \leftarrow subpath of C from node i to $i+n$;
\hspace{4em} q \leftarrow subpath of C from node $i+n$ to $i+C$.segments;
\hspace{4em} A.push($p+L$);
\hspace{4em} C \leftarrow $L + q$;
\hspace{4em} found \leftarrow true;
\hspace{4em} break;
\hspace{3em} end
\hspace{2em} end
\hspace{1em} if found then
\hspace{2em} break;
\hspace{1em} end
\hspace{1em} end
\hspace{1em} if not found then
\hspace{2em} refine C by inserting an additional node at the parametric midpoint of each segment;
\hspace{1em} end
end
\end{algorithm}

\textbf{Algorithm 1:} bezulate partitions a simply connected region.

A line segment lies within a closed curve when it intersects the curve only at its endpoints and its midpoint lies strictly inside the curve. If after checking all connecting line segments between nodes separated by $n = 3$ or $n = 2$ segments, none of them lie entirely inside the shape, the original curve is refined by dividing each segment of the curve at its parametric midpoint. The bezulation process then continues with the refined curve. This algorithm can be modified to subdivide more optimally, for example, to avoid elongated patches that sometimes lead to rendering problems.

If the region is convex, Algorithm 1 is easily seen to terminate: all con-
Figure 1: The bezulate algorithm. Starting with the original curve (a), several possible connecting line segments (shown in red) between nodes separated by $n = 3$ or $n = 2$ segments are tested. Connecting line segments are rejected if they do not lie entirely inside the original curve. This occurs when the midpoint is not inside the curve (b) or when the connecting line segment intersects the curve more than twice (c). If a connecting line segment passes both tests, the shaded section is separated (d) and the algorithm continues with the remaining curve (e).

Connecting line segments are admissible, and each patch removal decreases the number of points in the curve. Moreover, from the point of view of Algorithm 1, upon sufficient subdivision a non-convex region eventually becomes indistinguishable from a polygon, in which case the algorithm reduces to a straightforward polygonal triangulation.

3.1. Nonsimply Connected Regions

Since the bezulate algorithm requires simply connected regions, nonsimply connected regions must be handled specially. The “holes” in a nonsimply connected domain can be removed by partitioning the domain into a set of simply connected regions, each of which can then be bezulated.

For convenience we define a top-level curve to be a curve that is not contained inside any other curve and an outer (inner) curve to be the outer (inner) boundary of a filled region. With these definitions, the glyph “%” has two inner curves and two top-level curves that are also outer curves.

The algorithm proceeds as follows. First, to determine the topology of the region, the curves are sorted according to their relative insidedness, as determined by the nonzero winding number rule. Since the curves are assumed to be simple, any point on an inner curve can be used to test whether that curve is inside another curve. The result of this sorting is a collection
of top-level curves grouped with the curves they surround. Each of these groups is treated independently.

Figure 3 illustrates the partition routine (cf. Algorithm 2). Each group is examined recursively to identify regions bounded by inner and outer curves. First, the inner curves in the group are sorted topologically to find the inner curves that are top-level curves with respect to the other inner curves. The inner curves that are not top-level curves are processed with a recursive call to partition. The nonsimply connected region between the outer (top-level) curve and the inner (top-level) curves is now split into simply connected regions. This is illustrated in Figure 2. The intersections of the inner and outer curves with a line segment from a point on an inner curve to a point on the outer curve are found (either via subdivision or a numerically robust cubic root solver). Consecutive intersections of this line segment, at points \(A\) and \(B\), on the inner and outer curves, respectively, are selected. Let \(t_B\) be the value of the parameter used to parameterize the outer curve at \(B\). Starting with \(\Delta = 1\), \(\Delta\) is halved until the line segment \(AC\), where \(C\) is the point on the outer curve at \(t_B + \Delta\), does not intersect the outer curve more than once, does not intersect any inner curve (other than once at \(A\)), and the region bounded by \(AB\), \(AC\), and \(BC\) does not contain any inner curves. Once \(\Delta\) and the point \(C\) have been found, the outer curve, less the segment between \(B\) and \(C\), is merged with \(BA\), followed by the inner curve and then \(AC\). The region bounded by \(AB\), \(AC\), and \(BC\) is a simply connected region. Additional simply connected regions are found when the outer curve is merged with the other inner curves. Once the merging with all inner curves has been completed, the outer curve becomes the boundary of the final simply connected region.

The recursive algorithm for partitioning nonsimply connected regions into simply connected regions is summarized below. The function sort returns groups of top-level curves and the curves they contain. However, it is not recursive; the inner curves are not sorted. The function merge returns the simply connected regions formed from the single outer curve and multiple
Figure 2: Splitting of non-simply connected regions into simply connected regions. Starting with a non-simply connected region (a), the intersections between each curve and an arbitrary line segment from a point on an inner curve to the outer curve are found (b). Consecutive intersections of this line segment, at points A and B, on the inner and outer curves, respectively, identify a convenient location for extracting a region. One searches along the outer curve for a point C such that the line segment AC intersects the outer curve no more than once, intersects an inner curve only at A, and determines a region ABC between the inner and outer curves that does not contain an inner curve. Once such a region is found (c), it is extracted (d). This extraction merges the inner curve with the outer curve. The process is repeated until all inner curves have been merged with the outer curve, leaving a simply connected region (e) that can be split into Bézier surface patches. The resulting patches and extracted regions are shaded in (f).
Figure 3: Illustration of the partition algorithm. The five curves that define the outlines of the Greek characters σ and Θ are passed in a single array to partition.

Figure 4: Application of the bezulate and partition algorithms to lift the Gaussian integral to three dimensions.

Figure 5: Zoomed view of Figure 4 generated from the same vector graphics data. The smooth boundaries of the characters emphasize the advantage of a 3D vector font description.
Figure 6: Subpatch boundaries for Figure 4 as determined by the *bezulate* and *partition* algorithms.

\[+\infty \int_{-\infty}^{+\infty} e^{-\alpha x^2} = \sqrt{\frac{\pi}{\alpha}} \]
\[
\int_{-\infty}^{+\infty} e^{-\alpha x^2} = \sqrt{\frac{\pi}{\alpha}}
\]

in the interactive 3D diagram shown in Figure 4 and magnified, to emphasize the smooth font boundaries, in Figure 5. The computed subpatch boundaries are indicated in Figure 6.

Figure A.12 in Appendix A illustrates how \texttt{bezulate} is used in mathematical drawings to lift \TeX to three dimensions. Referring to the interactive 3D PDF version of this article one see that the labels in Figure A.12 have been programmed to rotate interactively so that they always face the camera; this feature, implemented with Javascript, is known as \textit{billboard interaction}.

Developing Bézier versions of more sophisticated triangulation algorithms would be an interesting future research project. The rendering technique of Ref. [15] could be modified to produce Bézier patches, but this would produce more patches than \texttt{bezulate}. For example, the “e” shown in Fig. 3 of Ref. [15] corresponds to roughly twice as many (4-segment) patches as the ten patches generated by \texttt{bezulate} for the “e” in Fig. 6. Since our interest is in compact 3D vector representations, the objective of this work is to minimize the number of generated patches. In contrast, in real-time rendering, one aims to minimize the overall execution time.

3.2. Nondegenerate Planar Bézier Patches

The \texttt{bezulate} algorithm described previously decomposes regions bounded by closed curves (according to the nonzero winding number rule) into subregions bounded by closed curves with four or fewer segments. Further steps are required to turn these subregions into nondegenerate Bézier patches. First, if the interior angle between the incoming and outgoing tangent directions at a node is greater than 180°, the boundary curve is split at this node by following the interior angle bisector to the first intersection with the path. This is done to guarantee that the patch normal vectors at the nodes all point in the same direction. Next, curves with less than four segments are supplemented with null segments (four identical control points) to bring their total number of segments up to four. A closed curve with four segments defines the twelve

\footnote{See http://asymptote.sourceforge.net/articles/}
boundary control points of a Bézier patch in the x–y plane. The remaining four interior control points \(\{ \mathbf{P}_{11}, \mathbf{P}_{12}, \mathbf{P}_{21}, \mathbf{P}_{22} \} \) are then chosen to satisfy the Coons interpolation \cite{Coons62, Reif63, Bouma64}.

\[
\sigma(u, v) = \sum_{i=0}^{3} [(1 - v)B_i(u)\mathbf{P}_{i,0} + vB_i(u)\mathbf{P}_{i,3} + (1 - u)B_i(v)\mathbf{P}_{0,i} + uB_i(v)\mathbf{P}_{3,i}]
- (1 - u)(1 - v)\mathbf{P}_{0,0} - (1 - u)v\mathbf{P}_{0,3} - u(1 - v)\mathbf{P}_{3,0} - uv\mathbf{P}_{3,3}.
\]

The resulting mapping \(\sigma(u, v) \) need not be bijective \cite{Lin94, Lin95, Randrianarivony95}, even if the corner control points form a convex quadrilateral (despite the fact that a Coons patch for a convex polygon is always nondegenerate). In terms of the 2D scalar cross product \(\mathbf{p} \times \mathbf{q} = p_x q_y - p_y q_x \), the Coons patch is seen to be a diffeomorphism of the unit square \(D = [0, 1] \times [0, 1] \) if and only if the Jacobian

\[
J(u, v) = \frac{\partial(x, y)}{\partial(u, v)} = \nabla_u x \times \nabla_v y = \sum_{i,j,k,\ell=0}^{3} B'_i(u)B_j(v)B_k(u)B'_\ell(v)\mathbf{P}_{ij} \times \mathbf{P}_{k\ell}
\]

(the \(z \) component of the corresponding 3D normal vector) is sign-definite. Since \(J(u, v) \) is a continuous function of its arguments, this means that \(J \) must not vanish anywhere on \(D \). A sign reversal of the Jacobian can manifest itself as an outright overlap of the region bounded by the curve or as an internal multivalued wrinkle, as illustrated in Figure 7. Rendering problems, such as the black smudges visible in Figures 7(b) and (e), can occur where isolines collide.

Randrianarivony and Brunnett \cite{Randrianarivony95} (and later H. Lin et al. \cite{Lin95}) describe sufficient conditions for \(J(u, v) \) to be nonzero throughout \(D \). In the case of a cubic Bézier patch, the 36 quantities

\[
T_{pq} = \sum_{i+k=p}^{5} \sum_{j+\ell=q}^{5} U_{i,j} \times V_{k,\ell} \begin{pmatrix} 2 \\ i \\ \end{pmatrix} \begin{pmatrix} 3 \\ k \\ \end{pmatrix} \begin{pmatrix} 3 \\ j \\ \end{pmatrix} \begin{pmatrix} 2 \\ \ell \\ \end{pmatrix}
\]

where \(U_{i,j} = \mathbf{P}_{i+1,j} - \mathbf{P}_{i,j} \) and \(V_{i,j} = \mathbf{P}_{i,j+1} - \mathbf{P}_{i,j} \), are required to be of the same sign. This follows from the fact that \(J(u, v) = \sum_{p,q=0}^{5} T_{pq} u^p v^q (1 - u)^{5-p} (1 - v)^{5-q} \).

Randrianarivony et al. show further that every degenerate Coons patch can be decomposed into a finite union of nondegenerate subpatches (some with reversed orientation). However, the adaptive subdivision algorithm they
Figure 7: Degeneracy in a Coons patch. The dots indicate corner control points (nodes) and the open circles indicate the points of greatest degeneracy on the boundary, as determined by the quartic root solver: (a) overlapping isoline mesh; (b) overlapping patch; (c) nonoverlapping subpatches; (d) internally degenerate isoline mesh; (e) internally degenerate patch; (f) nondegenerate subpatches.
propose to exploit this fact does not prescribe an optimal boundary point at which to do the splitting. A better algorithm is based on the following elementary theorem, which provides a practical means of detecting Coons patches with degenerate boundaries.

Theorem 1 (Nondegenerate Boundary). Consider a closed counter-clockwise oriented four-segment curve p in the x-y plane such that the interior angles formed by the incoming and outgoing tangent vectors at each node are less than or equal to 180°. Let $J(u,v)$ be the Jacobian of the corresponding Coons patch constructed from p, with control points P_{ij}, and define the fifth-degree polynomial

$$f(u) = \sum_{i,j=0}^{3} B'_i(u) B_j(u) P_{i,0} \times (P_{j,1} - P_{j,0}).$$

If $f(u) \geq 0$ whenever $f'(u) = 0$ on $u \in (0,1)$, then $J(u,0) \geq 0$ on $[0,1]$. Otherwise, the minimum value of $J(u,0)$ occurs at a point where $f'(u) = 0$.

Proof. First we note, since $B'_1(0) = -B'_0(0) = 3$ and $B'_2(0) = B'_3(0) = 0$, that $J(u,0) = 3f(u)$ and

$$J(0,0) = 3f(0) = 9(P_{1,0} - P_{0,0}) \times (P_{0,1} - P_{0,0}) \geq 0$$

since this is the cross product of the outgoing tangent vectors at $P_{0,0}$. Likewise, $J(1,0) = 3f(1) \geq 0$. We know that the continuous function f must achieve its minimum value on $[0,1]$ at some $u \in [0,1]$. If f were negative somewhere in $(0,1)$ we could conclude that $f(u) < 0$, so that $u \in (0,1)$, and hence f would have an interior local minimum at u, with $f'(u) = 0$. But this is a contradiction, given that $f(u) \geq 0$ whenever $f'(u) = 0$.

The significance of Theorem 1 is that it affords a means of detecting a point u on the boundary where the Jacobian is most negative. This requires finding roots of the quartic polynomial

$$f'(u) = [B''_i(u) B_j(u) + B'_i(u) B'_j(u)] P_{i,0} \times (P_{j,1} - P_{j,0}).$$

The coefficients of this quartic polynomial can be computed using the polynomials $M_{ij} = (B''_i B_j + B'_i B'_j)/3$ tabulated in Table 1. The method of Neumark [16], which relies on numerically robust cubic and quadratic root solvers, is then used to find algebraically all real roots of the quartic equation $f'(u) = 0$ that lie in $(0,1)$. The Jacobian is computed at each of these points; if it is...
\[
\begin{pmatrix}
5 - 20u + 30u^2 - 20u^3 + 5u^4 & -3 + 24u - 54u^2 + 48u^3 - 15u^4 & -6u + 27u^2 - 36u^3 + 15u^4 & -3u^2 + 8u^3 - 5u^4 \\
-7 + 36u - 66u^2 + 52u^3 - 15u^4 & 3 - 36u + 108u^2 - 120u^3 + 45u^4 & 6u - 45u^2 + 84u^3 - 45u^4 & 3u^2 - 16u^3 + 15u^4 \\
2 - 18u + 45u^2 - 44u^3 + 15u^4 & 12u - 63u^2 + 96u^3 - 45u^4 & 18u^2 - 60u^3 + 45u^4 & 8u^3 - 15u^4 \\
2u - 9u^2 + 12u^3 - 5u^4 & 9u^2 - 24u^3 + 15u^4 & 12u^3 - 15u^4 & 5u^4
\end{pmatrix}
\]

Table 1: Coefficients of the polynomials \(M_{ij} = (B'_i B_j + B'_j B'_i)/3\).

negative anywhere, the point where it is most negative is determined. The
patch is then split along an interior line segment perpendicular to the tan-
gent vector at this point. The next intersection point of the patch boundary
with this line is used to split the patch into two pieces. Each of these pieces
is then treated recursively (beginning with an additional call to \texttt{bezulate},
should the new boundary curve happen to have five segments).

If a patch possesses only internal degeneracies, like the one in Figure 7(d),
the patch boundary is arbitrarily split into two closed curves, say along the
perpendicular to the midpoint of some nonstraight side. The blue lines in
Figures 7(b) and (f) illustrate such a midpoint splitting. The arguments of
Randrianarivony et al. [22] establish that only a finite number of such sub-
divisions will be required to obtain a nondegenerate patch. Nondegenerate
subpatches oriented in the direction opposite to the normal vector corre-
sponding to the original oriented curve should be discarded to avoid rendering
interference with correctly aligned overlying subpatches.

The blue lines in Figure 7(c) show that our quartic algorithm generates
six subpatches, a substantial improvement over the nine subpatches produced
by adaptive midpoint subdivision [22] in Figure 7(b). Figure 7(c) also em-
phazies the ability of the quartic root algorithm to detect the optimal (most
degenerate) points (circled) for splitting the boundary curve. As mentioned
earlier, in both cases, it is possible that splitting can lead to curves with five
segments. Such curves are split further by the \texttt{bezulate} algorithm so that
any degeneracy of the resulting subpatches can be addressed.

Since an algebraic quartic root solver is an explicit algorithm, optimal
subdivision of patches introduces minimal overhead compared to adaptive
midpoint subdivision. In our implementation, the costs of adaptive mid-
point subdivision for Figures 7(b) and Figure 7(f) were approximately the
same. Using optimal subdivision in Figure 7(c) was 34% faster than adaptive
midpoint splitting, whereas there was only 2% additional overhead in checking for boundary degeneracy in Figure 7(f) (which possesses only internal degeneracy). Patches having only internal degeneracy arise relatively rarely in practice, but when they do, the subpatches obtained by adaptive midpoint subdivision also tend to exhibit internal degeneracy. Once internal degeneracy has been detected in a patch, we find that it is typically more efficient not to check its degenerate subpatches for boundary degeneracy (otherwise the overhead in checking for boundary degeneracy in Figure 7(f) would grow to 50%). Of course, since our interest is not in real-time rendering but in surface generation, the real advantage of optimal subdivision is that it can significantly reduce the number of generated patches (e.g. Figure 7(c) has one-third fewer patches than Figure 7(b)).

4. An Optimized Bézier Inside–Outside Test

Although PostScript has an infill function for testing whether a particular point would be painted by the PostScript fill command, this is only an approximate digitized test corresponding to the resolution of the output device. Our bezulate routine requires a vector graphics algorithm, one that yields the winding number of an arbitrary closed piecewise Bézier curve about a given point.

A straightforward generalization of the standard ray-to-infinity method for computing winding numbers of a polygon about a point requires the solution of a cubic equation. As is well known, the latter problem can become numerically unstable as two or three roots begin to coalesce. While a conventional ray-curve (or ray-patch) intersection algorithm based on recursive subdivision [17] could be employed to count intersections by actually finding them, this typically entails excessive subdivision.

A more efficient but still robust subdivision method for computing the winding number of a closed Bézier curve arises from the topological observation that if a point z lies outside the convex hull of a Bézier segment, the segment can be continuously deformed to a straight line segment between its endpoints, without changing its orientation relative to the point z. A given point will typically lie outside the convex hull of most segments of a Bézier curve. The orientation of these segments relative to the given point can be quickly and robustly determined, just as in the usual ray method for polygons, to determine the contribution, if any, to the winding number. For this
Figure 8: The BézierWindingNumber algorithm. Since z lies inside the convex hull of one Bézier segment, indicated by the light shaded region, that segment must be subdivided. On subdivision, z now lies outside the convex hulls of the subsegments, indicated by the dark shaded regions; these subsegments may be continuously deformed to straight line segments between their endpoints, without crossing z. The usual polygon inside–outside test may then be applied: the green ray establishes a winding number contribution of $+1$ due to the orientation of z with respect to the blue line.

In the infrequent case where z lies on or inside the convex hull of a segment, de Casteljau subdivision is used to split the Bézier segment about its parametric midpoint. Typically the convex hulls of the resulting subsegments will overlap only at their common control point, so that z can lie strictly inside at most one of these hulls. This observation is responsible for the efficiency of the algorithm: one continues subdividing until the point is outside the convex hull of both segments or until machine precision is reached, as illustrated in Figure 8.

The orientation of segments whose convex hulls do not contain z can be handled by using the topological deformation property together with adaptive precision predicates. Denoting by straightContribution(P,Q,z) the usual ray method for determining the winding number contribution of a line segment PQ relative to a point z, the contribution from a Bézier segment S
can be computed as \(\text{curvedContribution}(S,z) \) (Algorithm 3).

Algorithm 3: curvedContribution(S,z)

Input: segment \(S \), pair \(z \)
Output: winding number contribution of \(S \) about \(z \)

\[W \leftarrow 0; \]

if \(z \) lies within or on the convex hull of \(S \) then
 \[\text{foreach subsegment } s \text{ of } S \text{ do} \]
 \[W \leftarrow W + \text{curvedContribution}(s,z); \]
else
 \[W \leftarrow W + \text{straightContribution}(S.\text{beginpoint}, S.\text{endpoint}, z); \]

return \(W \);

The winding number for a closed curve \(p \) about \(z \) may then be evaluated with the algorithm **bézierWindingNumber(C,z)** (Algorithm 4).

Algorithm 4: bézierWindingNumber(C,z)

Input: curve \(C \), pair \(z \)
Output: winding number of \(C \) about \(z \)

\[W \leftarrow 0; \]

foreach segment \(S \) of \(C \) do

if \(S \) is straight then
 \[W \leftarrow W + \text{straightContribution}(S.\text{beginpoint}, S.\text{endpoint}, z); \]
else
 \[W \leftarrow W + \text{curvedContribution}(S,z); \]

end

return \(W \);

A practical simplification of the above algorithm is the widely used optimization of testing whether a point is inside the 2D bounding box of the control points rather than their convex hull. Since the convex hull of a Bézier segment is contained within the bounding box of its control points, one can replace “convex hull” by “control point bounding box” in the above algorithm without modifying its correctness. One can easily check numerically that the cost of the additional spurious subdivisions is well offset by the computational
5. Global Bounds of Directionally Monotonic Functions

We now present efficient algorithms for computing global bounds of real-valued directionally monotonic functions \(f : \mathbb{R}^3 \to \mathbb{R} \) defined over a Bézier surface \(\sigma(u,v) \). By directionally monotonic we mean that the restriction of \(f \) to each of the three Cartesian directions is a monotonic function; if \(f \) is differentiable this means that \(f \) has sign-semidefinite partial derivatives. These algorithms can be used to compute the 3D bounding box of a Bézier surface, the bounding box of its 2D projection, or the optimal field-of-view angle for sizing a 3D scene (cf. Fig. 9). The key observation is that the convex hull property of a Bézier patch holds independently in each direction and even under inversions like \(z \to 1/z \).

A naïve approach to computing the bounding box of a Bézier patch requires subdivision whenever the 3D bounding boxes overlap in any of the three Cartesian directions. However, the number of required subdivisions can be greatly reduced by decoupling the three directions: in Algorithm 5, the problem is split into finding the maximum and minimum of the three Cartesian axis projections \(f(x,y,z) = x \), \(f(x,y,z) = y \), and \(f(x,y,z) = z \) evaluated over the patch. This requires a total of six applications of Algorithm 5. By convexity, the extrema of these special choices for \(f \) over a convex polyhedron \(C \) occur at vertices of \(C \).

More general choices of directionally monotonic functions \(f \) are also of interest. For example, to determine the bounding box of the 2D perspective projection (based on similar triangles) of a surface, one can apply Algorithm 6 in eye coordinates to the functions \(f(x,y,z) = x/z \) and \(f(x,y,z) = y/z \). This is useful for sizing a 3D object in terms of its 2D projection. For example, these functions were used to calculate the optimal field-of-view angle 13.4° for the Klein bottle shown in Figure 9.

For an arbitrary directionally monotonic function \(f \), we note that

\[
\sigma \subset C \Rightarrow f(\sigma) \subset f(C).
\] \hspace{1cm} (1)

Our algorithms exploit Eq. (1) together with de Casteljau’s subdivision algorithm and the fact that a Bézier patch is confined to the convex hull of its control points. However, a patch is only guaranteed to intersect its convex hull at the four corner nodes.
Figure 9: A Bézier approximation to a projection of a four-dimensional Klein bottle to three dimensions. The \texttt{FunctionMax} algorithm was used to determine the optimal field of view for this symmetric perspective projection of the scene from the camera location \((25.09, -30.33, 19.37)\) looking at \((-0.59, 0.69, -0.63)\). The extruded 3D \TeX\ equations embedded onto the surface provide a parametrization for the surface over the domain \(u \times v \in [0, 2\pi] \times [0, 2\pi]\).
For the special case where \(f \) is a projection onto the Cartesian axes, the function \(\text{CartesianMax}(f,P,f(P_{00}),d) \) given in Algorithm 5 computes the global maximum \(M \) of a Cartesian axis projection \(f : \mathbb{R}^3 \to \mathbb{R} \) over a Bézier patch \(P \) to recursion depth \(d \). Here, the value \(f(P_{00}) \) provides a convenient starting value (lower bound) for \(M \); if the maximum of a surface consisting of several patches is desired, the value of \(M \) from previous patches is used to seed the calculation for the subsequent one. The algorithm exploits the fact that the extrema of each coordinate over the convex hull \(C \) of \(P \) occur at vertices of \(C \). First, one replaces \(M \) by the maximum of \(f \) evaluated at the four corner nodes and the previous value of \(M \). If the maximum of the function evaluated at the remaining 12 control points is less than or equal to \(M \), the subpatch can be discarded (by Eq. 1, noting that the maximum of \(f(C) \) occurs at a control point and hence cannot exceed \(M \)). Otherwise, the patch is subdivided along the \(u = v = 1/2 \) isolines and the process is repeated using the new value of \(M \). The method quickly converges to the global maximum of \(f \) over the entire patch.

Algorithm 5: CartesianMax(\(f,P,M,\text{depth} \)) returns the maximum of \(M \) and the global bound of a Cartesian component \(f \) of a Bézier patch \(P \) evaluated to recursion level \(\text{depth} \).

For a general directionally monotonic function \(f \) (consider \(f(x,y,z) = xy \))
over $C = \partial\{(x, y, 0) : 0 \leq x \leq 1, \ 0 \leq y \leq x\}$, the maximum of $f(C)$ need not occur at vertices of C: one instead needs to examine the function value at the appropriate vertex of the bounding box of C. For example, if f is a monotonic increasing function in each of the three Cartesian directions,

$$C \subseteq \text{box}(a, b) \Rightarrow f(C) \subseteq [f(a), f(b)], \quad (2)$$

where box(a, b) denotes the 3D box with minimal and maximal vertices a and b, respectively.

The global maximum M of a directionally monotonic increasing function $f : \mathbb{R}^3 \rightarrow \mathbb{R}$ over a Bézier patch P can then be efficiently computed to recursion depth d by calling the function $\text{FunctionMax}(f, P, f(P_{00}), d)$ given in Algorithm 6. First, one replaces M by the maximum of f evaluated at the four corner nodes and the previous value of M. One then computes the vertex b of the bounding box of the convex hull C of P. If the maximum of the function evaluated at b is less than or equal to M, the subpatch can be discarded. Otherwise, the patch is subdivided along the $u = v = 1/2$ isolines and the process is repeated using the new value of M.

6. 3D Vector Typography

Donald Knuth’s TeX system [13], the de-facto standard for typesetting mathematics, uses Bézier curves to represent 2D characters. TeX provides a portable interface that yields consistent, publication quality typesetting of equations, using subtle spacing rules derived from centuries of professional mathematical typographical experience. However, while it is often desirable to illustrate abstract mathematical concepts in TeX documents, no compatible descriptive standard for technical mathematical drawing has yet emerged.

The recently developed Asymptote language \footnote{available from \url{http://asymptote.sourceforge.net} under the GNU Lesser General Public License.} aims to fill this gap by providing a portable TeX-aware tool for producing 2D and 3D vector graphics [5]. In mathematical applications, it is important to typeset labels and equations with TeX for overall consistency between the text and graphical elements of a document. In addition to providing access to the TeX typesetting system in a 3D context, Asymptote also fills in a gap for nonmathematical
Input: real function f(triple), patch P, real M, integer depth
Output: real M

$M \leftarrow \max(M, f(P_{00}), f(P_{03}), f(P_{30}), f(P_{33}))$;

if depth = 0 then
 return M;
end

$x \leftarrow \max(\hat{x} \cdot P_{ij} : 0 \leq i, j \leq 3)$;

$y \leftarrow \max(\hat{y} \cdot P_{ij} : 0 \leq i, j \leq 3)$;

$z \leftarrow \max(\hat{z} \cdot P_{ij} : 0 \leq i, j \leq 3)$;

if $f((x, y, z)) \leq M$ then
 return M;
end

foreach subpatch S of P do
 $M \leftarrow \max(M, \text{FunctionMax}(f, S, M, \text{depth} - 1))$;
end

return M;

Algorithm 6: FunctionMax(f, P, M, depth) returns the maximum of M and the global bound of a real-valued directionally monotonic increasing function f over a Bézier patch P evaluated to recursion level depth. Here \hat{x}, \hat{y}, \hat{z} are the Cartesian unit vectors.
applications. While open source 3D bit-mapped text fonts are widely available,
resources currently available for scalable (vector) fonts appear to be quite limited in three dimensions.

ASYMPTOTE was inspired by John Hobby’s METAPOST (a modified
version of METAFONT, the program that Knuth wrote to generate the \TeX fonts), but is more powerful, has a cleaner syntax, and uses IEEE floating
dpoint numerics. An important feature of ASYMPTOTE is its use of the simplex
linear programming method to solve overall size constraint inequalities be-
tween fixed-sized objects (labels, dots, and arrowheads) and scalable objects
(curves and surfaces). This means that the user does not have to scale man-
ually the various components of a figure by trial-and-error. The 3D versions
of ASYMPTOTE’s deferred drawing routines rely on the efficient algorithms
for computing the bounding box of a Bézier surface, along with the bounding
box of its 2D projection, described in Sec. 5. ASYMPTOTE natively generates
PostScript, PDF, SVG, and PRC \cite{2} vector graphics output. The latter is a
highly compressed 3D format that is typically embedded within a PDF file
and viewed with the widely available ADOBE READER software.

The biggest obstacle that was encountered in generalizing ASYMPTOTE
to produce 3D interactive output was the fact that \TeX is fundamentally a
2D program. In this work, we have developed a technique for embedding
2D vector descriptions, like \TeX fonts, as 3D surfaces (2D vector graphics
representations of \TeX output can be extracted with a technique like that
described in Ref. \cite{6}). While the general problem of filling an arbitrary 3D
closed curve is ill-posed, there is no ambiguity in the important special case
of filling a planar curve with a planar surface.

Since our procedure transforms text into Bézier patches, which are the
surface primitives used in ASYMPTOTE, all of the existing 3D ASYMPTOTE
algorithms can be used without modification. Together with the 3D gen-
eralization of the METAFONT curve operators described by \cite{1, 5}, these
algorithms comprise the 3D foundation for the \TeX-aware vector graphics
language ASYMPTOTE.

6.1. 3D Arrowheads

Arrows are frequently used in illustrations to draw attention to important
features. We designed curved 3D arrowheads that can be viewed from a

\footnote{For example, see \url{http://www.opengl.org/resources/features/fontsurvey/}}
wide range of angles. For example, the default 3D arrowhead was formed by bending the control points of a cone around the tip of a Bézier curve. Planar arrowheads derived from 2D arrowhead styles are also implemented; they are oriented by default on a plane perpendicular to the initial viewing direction. Examples of these arrows are displayed in Figures 10 and 11. The bezulate algorithm was used to construct the upper and lower faces of the filled (red) planar arrowhead in Fig. 11.

![Figure 10: Three-dimensional revolved arrowheads in ASYMPTOTE.](image1)

![Figure 11: Planar arrowheads in ASYMPTOTE.](image2)

6.2. Double Deferred Drawing

Journal size constraints typically dictate the final width and height, in PostScript coordinates, of a 2D or projected 3D figure. However, it is often convenient for users to work in more physically meaningful coordinates. This requires deferred drawing: a graphical object cannot be drawn until the actual scaling of the user coordinates (in terms of PostScript coordinates) is known. One therefore needs to queue a function that can draw the scaled object later, when this scaling is known. ASYMPTOTE’s high-order functions provide a flexible mechanism that allows the user to specify either or both of the 3D model dimensions and the final projected 2D size. This requires two levels of deferred drawing, one that first sizes the 3D model and one that scales the resulting picture to fit the requested 2D size. The 3D bounding box of
a Bézier surface, along with the bounding box of its 2D projection, can be efficiently computed with the method described in Section 5.

6.3. Efficient Rendering

Efficient algorithms for determining the bounding box of a Bézier patch also have an important application in rendering. Knowing the bounding box of a Bézier patch allows one to determine, at a high level, whether it is in the field of view: offscreen Bézier patches can be dropped before mesh generation occurs [11]. This is particularly important for a spatially adaptive algorithm as used in ASYMPTOTE’s OpenGL-based renderer, which resolves the patch to one pixel precision at all zoom levels. Moreover, to avoid subdivision cracks, renderers typically resolve visible surfaces to a uniform resolution. It is therefore important that offscreen patches do not force an overly fine mesh within the viewport. As a result of these optimizations, the native ASYMPTOTE adaptive renderer is typically comparable in speed with the fixed-mesh PRC renderer in ADOBE READER, even though the former yields higher quality, true vector graphics output.

7. Conclusions

In this work we have developed methods that can be used to lift smooth fonts, such as those produced by TeX, into 3D. Treating 3D fonts as surfaces allows for arbitrary 3D text manipulation, as illustrated in Figures 5 and 9. The bezulate algorithm allows one to construct planar Bézier surface patches by decomposing (possibly nonsimply connected) regions bounded by simple closed curves into subregions bounded by closed curves with four or fewer segments. The method relies on an optimized subdivision algorithm for testing whether a point lies inside a closed Bézier curve, based on the topological deformation of the curve to a polygon. We have also shown how degenerate Coons patches can be efficiently detected and split into nondegenerate subpatches. This is required to avoid both patch overlap at the boundaries of the underlying curve and rendering artifacts (patchiness, smudges, or wrinkles) due to normal reversal.

We have illustrated applications of these techniques in the open source vector graphics programming language ASYMPTOTE, which we believe is the first software to lift TeX into 3D. This represents an important milestone for publication-quality scientific graphing.
Appendix A. Bézier Approximation of a Sphere

As previously emphasized, although conic sections (quadrics) may be accurately represented by NURBS surfaces, the language of high-end printers, PostScript, supports only Bézier curves and surfaces. Although PostScript is only a 2D language, vector graphics projections of Bézier surfaces are nevertheless possible using tensor-product patch shading and hidden surface splitting along approximations to the visible surface horizon.

Here we illustrate that a sphere may be approximated to high graphical accuracy by a Bézier surface with only 8 patches, one for each octant, following a procedure suggested in Ref. [18]. The patch describing an octant is degenerate at the pole: two of the nodes are placed there, with the other two placed along the equator, 90° apart in longitude.

Following Knuth, a unit quarter circle is approximated in Asymptote “with less than 0.06% error” [12], using the control points \{(1, 0), (1, a), (a, 1), (0, 1)\}, where \(a = \frac{4}{3}(\sqrt{2} - 1)\). This value of \(a\) is determined by requiring that the third-order Bézier midpoint lie on the unit circle at \((1/\sqrt{2}, 1/\sqrt{2})\). (Other methods of approximating circular arcs by Bézier curves have been described in Refs. [3], [8], and [21].)

The above prescription immediately determines the three circular arcs describing the patch boundary for a unit spherical octant. Let us place \(P_{00}\) at \((1, 0, 0)\), \(P_{03} = P_{13} = P_{23} = P_{33}\) at \((0, 0, 1)\), and \(P_{30}\) at \((0, 1, 0)\). The remaining control points \(\{P_{11}, P_{12}, P_{21}, P_{22}\}\) are chosen to make the surface nearly spherical and the interface with adjacent octants smooth (have continuous first derivatives at the patch boundaries). The point \(P_{11}\) is chosen (on the tangent plane at \(x = 1\)) to be the vector sum \(P_{10} + P_{01} - P_{00} = (1, a, 0) + (1, 0, a) - (1, 0, 0) = (1, a, a)\). We also require that the triangle in the \(x-y\) plane formed by the origin and the projections of \(P_{12}\) onto the \(x-y\) plane and the \(x\) axis is similar to the corresponding triangle for \(P_{11}\). This implies that \(P_{12} = (a, a^2, 1)\). Similarly, we determine \(P_{22} = (a^2, a, 1)\) and \(P_{21} = (a, 1, a)\). The final Bézier patch and resulting approximation to a unit sphere, with the control point mesh shown in blue, are illustrated in Figure A.12. We found numerically that the radius of this approximate sphere, generated with a 12×7 control point mesh, varies by less than 0.052%, well below the tolerance 0.1% to which Figure 8 of Ref. [20] was drawn using a much finer 22×13 control point mesh.
Figure A.12: Bézier approximation to a unit sphere. The red dots indicate control points.

Acknowledgments

We thank Philippe Ivaldi, Radoslav Marinov, Malcolm Roberts, Jens Schwaiger, and Olivier Guibé for discussions and assistance in implementing the algorithms described in this work. Special thanks goes to Andy Hammerlindl, who designed and implemented much of the underlying ASYMPTOTE language, and to Michail Vidiassov, who helped write the PRC driver. Financial support for this work was generously provided by the Natural Sciences and Engineering Research Council of Canada.

References

[1] Adobe, July 2008. Document management—Portable Document Format—Part 1: PDF 1.7. ISO 32000-1:2008.

[2] Adobe, 2008. PRC format specification.

[3] Bézier, P., 1986. The Mathematical Basis of the UNISURF CAD System. Butterworths, London.

[4] Bowman, J. C., 2007. The 3D Asymptote generalization of MetaPost Bézier interpolation. Proceedings in Applied Mathematics and Mechanics 7 (1), 2010021–2010022.
[5] Bowman, J. C., Hammerlindl, A., 2008. Asymptote: A vector graphics language. TUGboat: The Communications of the TeX Users Group 29 (2), 288–294.

[6] Bowman, J. C., Shardt, O., 2009. Asymptote: Lifting TeX to three dimensions. TUGboat: The Communications of the TeX Users Group 30 (1), 58–63.

[7] Coons, S., 1964. Surfaces for computer aided design. Tech. rep., MIT, Cambridge, Massachusetts, available as AD 663504 from the National Technical Information service, Springfield, VA 22161.

[8] Fang, L., 1998. Circular arc approximation by quintic polynomial curves. Computer Aided Geometric Design 15 (8), 843–861.

[9] Farin, G., 1992. From conics to nurbs: A tutorial and survey. IEEE Computer Graphics and Applications 12 (5), 78–86.

[10] Farin, G., 2002. Curves and surfaces for CAGD: a practical guide. Morgan Kaufmann, San Francisco, CA.

[11] Hasselgren, J., Munkberg, J., Akenine-Möller, T., 2009. Automatic pre-tessellation culling. ACM Trans. Graph. 28 (2), 1–10.

[12] Knuth, D. E., 1986. The METAFONT book. Addison-Wesley, Reading, Massachusetts.

[13] Knuth, D. E., 1986. The TeXbook. Addison-Wesley, Reading, Massachusetts.

[14] Lin, H., Tang, K., Joneja, A., Bao, H., 2007. Generating strictly non-self-overlapping structured quadrilateral grids. Comput. Aided Des. 39 (9), 709–718.

[15] Loop, C., Blinn, J., 2005. Resolution independent curve rendering using programmable graphics hardware. In: SIGGRAPH ’05: ACM SIGGRAPH 2005 Papers. ACM, New York, NY, USA, pp. 1000–1009.

[16] Neumark, S., 1965. Solution of cubic and quartic equations. Pergamon Press, Oxford.
[17] Nishita, T., Sederberg, T. W., Kakimoto, M., 1990. Ray tracing trimmed rational surface patches. SIGGRAPH Comput. Graph. 24 (4), 337–345.

[18] Ostby, E., 1988. Defining a sphere with bezier patches, http://www.gamedev.net/reference/articles/article407.asp.

[19] Piegl, L., Tiller, W., 1997. The NURBS book. Springer, Berlin.

[20] Piegl, L., Tiller, W., 2003. Approximating surfaces of revolution by non-rational B-splines. IEEE Computer Graphics and Applications 23 (3), 46–52.

[21] Piegl, L., Tiller, W., 2003. Circle approximation using integral B-splines. Computer-Aided Design 35 (6), 601–607.

[22] Randrianarivony, M., Brunnett, G., May 2004. Necessary and sufficient conditions for the regularity of planar Coons map. Tech. Rep. SFB393/04-07, Technische Universität Chemnitz, Chemnitz, Germany.

[23] Shewchuk, J. R., Oct. 1997. Adaptive Precision Floating-Point Arithmetic and Fast Robust Geometric Predicates. Discrete & Computational Geometry 18 (3), 305–363.

[24] Wang, C. C. L., Tang, K., 2005. Non-self-overlapping Hermite interpolation mapping: a practical solution for structured quadrilateral meshing. Computer-Aided Design 37 (2), 271–283.