Genetic evidence for a novel competence inhibitor in the industrially important Bacillus licheniformis

Christine Muth1, Meike Buchholz1, Christina Schmidt1, Sonja Volland2 and Friedhelm Meinhardt1*

Abstract

Natural genetic competence renders bacteria able to take up and, in case there is sufficient homology to the recipient's chromosome, integrate exogenously supplied DNA. Well studied in Bacillus subtilis, genetic competence is—in several aspects—known to be differently regulated in Bacillus licheniformis. We now report on the identification of a novel, chromosomally encoded homolog of a competence inhibitor in B. licheniformis (ComI) that has hitherto only been described as a plasmid borne trait in the ancestral B. subtilis NCIB3610. Bioinformatical analysis that included 80 Bacillus strains covering 20 different species revealed a ComI encoding gene in all of the examined B. licheniformis representatives, and was identified in few among the other species investigated. The predicted ComI of B. licheniformis is a highly conserved peptide consisting of 28 amino acids. Since deletion of comI in B. licheniformis DSM13 resulted in twofold increased transformation efficiency by genetic competence and overexpression resulted in threefold decreased transformability, the function as a competence inhibitor became evident.

Keywords: B. licheniformis, ComI, Competence, Competence inhibitor

Introduction

Various bacterial species can develop natural genetic competence, a physiological state that enables cells to take up DNA (Dubnau 1999; Johnsborg et al. 2007). The regulatory system governing genetic competence has been studied rather thoroughly in the gram-positive model organism Bacillus subtilis (Dubnau 1999; Hamoen et al. 2003; Spizizen 1958). The development of natural genetic competence in B. subtilis depends on environmental stimuli such as nutritional limitation and/or cell density (Hamoen et al. 2003). The key transcriptional regulator for developing natural genetic competence in B. subtilis is ComK (van Sinderen et al. 1995). Governing cell division, DNA-binding, -uptake, -recombination and -repair, ComK positively controls expression of more than 100 genes; nine genes are negatively affected (Berka et al. 2002; Hamoen 2011).

In contrast to B. subtilis, Bacillus licheniformis DSM13 carries an insertion element within comP rendering ComP, the sensor histidine kinase required for ComX-sensing, inactive (Lapidus et al. 2002). Removing the insertion element (and thereby restoring an active copy of comP) resulted in reduced genetic competence (Hoffmann et al. 2010), which clearly differs from B. subtilis. Further regulatory differences concern ComS action (Jakobs et al. 2015), as the two ComS homologs identified in B. licheniformis did not impact—contrary to B. subtilis—the development of genetic competence.

A competence inhibitor (ComI) was identified in the ancestral B. subtilis strain NCIB3610 (Konkol et al. 2013). It is encoded on the endogenous 84-kb plasmid pBS32. ComI renders the strain hardly transformable when compared to the frequently used laboratory strain B. subtilis 168 (Nijland et al. 2010). Possibly due to curing, pBS32 is absent in the laboratory strains which descend from B. subtilis NCIB3610, such as B. subtilis 168, B. subtilis PY79 or B. subtilis JH642 (Konkol et al. 2013; McLoon et al. 2011). When pBS32 was cured

*Correspondence: meinhar@uni-muenster.de
1 Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, Corrensstr. 3, 48149 Münster, Germany
Full list of author information is available at the end of the article

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
from the ancestral *B. subtilis* NCIB3610, transformation efficiencies via genetic competence indeed increased approximately 100-fold; though a similar drastic effect was observed for deletion of *comI*, the knockout of other plasmid-borne genes positively influenced competence as well (Konkol et al. 2013).

In this study, we provide evidence for a ComI homolog within the species *B. licheniformis*. The predicted protein appears to be conserved among *B. licheniformis* species, only rather seldom ComI homologs could be predicted for other *Bacillus* species. Deletion of *comI* has a beneficial effect on the competence mediated transformability of *B. licheniformis* DSM13, whereas overexpression resulted in a decrease of the transformation efficiency.

Materials and methods

Bioinformatical and statistical analysis

Analysis of the primary protein structure of ComI was performed with TMBASE (Hofmann and Stoffel 1993). Sequence analysis was performed with BioEdit 7.0.7.0. Evolutionary history was inferred using the Neighbor-Joining algorithm (Saitou and Nei 1987). The evolutionary distances were computed using the Poisson correction method (Zuckerkandl and Pauling 1965) and are in the units of the number of amino acid substitutions per site. The analysis was conducted using MEGA7 (Kumar et al. 2016). Statistical analysis was performed with GraphPad Prism 7.

Bacterial strains and growth conditions

The strains and plasmids used in this study are listed in Table 1. Bacteria were cultivated at 37 °C in Luria–Bertani (LB) broth unless otherwise stated. Minimal medium contained 6 g Na2HPO4 l−1, 3 g KH2PO4 l−1, 1 g NH4Cl l−1, 0.5 g NaCl l−1, 0.2% (w/v) glucose, 1 mM MgSO4, 0.02% (w/v) Casamino Acids, 0.1 mM CaCl2, 0.01% (w/v) yeast extract and 0.2 mg MnSO4 l−1, pH 7.4. Media for uracil auxotrophic strains were supplemented with 10 µg ml−1 uracil. Plasmid-carrying *Escherichia coli* strains were grown with ampicillin (100 µg ml−1) and *Bacillus* transformants were grown with erythromycin (1 µg ml−1), tetracycline (12.5 µg ml−1) or kanamycin (2 µg ml−1), respectively.

Molecular biological techniques

Cloning in *E. coli* was performed essentially as described in Sambrook and Russel (2001). Genomic DNA from *B. licheniformis* was isolated as previously described (Nahrstedt et al. 2004) or by using a commercially available kit (GeneJET Plasmid Miniprep Kit, Thermo Fisher Scientific Inc., Waltham, USA; QuickExtract™ DNA Extraction Solution, Epicentre®, Madison, USA). Plasmid DNA was purified with the GeneJET Plasmid MiniPrep Kit (Thermo Fisher Scientific Inc., Waltham, USA). For in vitro amplification of DNA, PCR samples (100 µl) contained 200 µM dNTPs, 100 ng template DNA, 1 pmol of each primer and 1 U Taq DNA polymerase (Thermo Scientific Inc., Waltham, USA).

Table 1 Bacterial strains and plasmids

Strain or plasmid	Relevant genotype	Source or reference
Escherichia coli DH5α™	endA1, hsdR17 (rC−, mDo−), supE44, thi-1, gyrA96, relA1, Δ(lacZYA-argF), U169, deoR, F′(80lacZ ΔM15)	Woodcock et al. (1989)
Bacillus subtilis SCK6	BGSC 1A751 derivative, EmR, LacA-PxylA-comK	Zhang and Zhang (2011)
Bacillus licheniformis DSM13	Wild type	DSMZ, Accession No. AE017333.1
Bacillus subtilis NCIB3610	Wild type	Branda et al. (2001)
Bacillus licheniformis DSM13 ΔspolV	Sporulation-deficient DSM13 derivative	Hoffmann et al. (2010)
Bacillus licheniformis MW3.1	DSM13 derivative; ΔhsdR1, ΔhsdR2, ΔpyrE	Hoffmann et al. (2010)
Bacillus licheniformis CM1	MW1.1 ΔcomI::aphA	This work
Bacillus licheniformis CM2	MW1.1 PcomI-pMUTIN-comI	This work
Plasmids		
pMMcomK	E. coli/Bacillus shuttle vector, pMM1522 derivative, B. licheniformis MW3 ComK expression vector, AmpR, TetR	Hoffmann et al. (2010)
pUPpem	pUCBM20 derivative, PpomB-uvf fusion, AmpR, EmR, oriEco	Borgmeier et al. (2012)
pMB803	pUPpem derivative, KanR, EmR, AmpR, oriEco	M. Buchholz, this laboratory
pUEΔcomI	pUPpem derivative, ΔcomI-aphA substitution cassette	This work
pMUTIN-GFP+	pMUTIN derivative, integrative vector for *Bacillus*, AmpR, EmR	Kaltwasser et al. (2002)
pMUTIN-comI	pMUTIN-GFP+ derivative, PcomI-GFP fusion, inducible (IPTG) comI expression	This work
polymerase (Finnzymes Thermo Fisher Scientific Inc., Waltham, USA). Purification of amplified or restriction fragments from gels was performed applying a GeneJET Gel Extraction Kit (Thermo Fisher Scientific Inc., Waltham, USA). Nucleotide sequences were determined by Eurofins Genomics with the dideoxy chain-termination method (Sanger et al. 1977) using the Mix2Seq kit (Eurofins Genomics GmbH, Ebersberg, Germany).

Vector construction

Primers used in this study were obtained from Eurofins Genomics GmbH (Ebersberg, Germany) and are listed in Additional file 1: Table S1. For disruption of coml in B. licheniformis MW3.1 the flanking regions of coml were amplified; flank A was obtained using the primer pair coml_delA/coml_delA_KpnI and for flank B the primer pair coml_delB/coml_delB_BamHI was applied. For insertion of aphA, the gene was amplified from vector pMB03 using the primer pair KanR_A/KanR_B. For the disruption of coml, the flanks and aphA were fused by SOE-PCR (splicing by overlap extension) (Heckman and Pease 2007), restricted with BamHI and KpnI and cloned into the likewise restricted pUPem vector resulting in plasmid pUEΔcoml.

For the P_coml-GFP fusion the promoter region of coml was amplified using the primer pair coml13f_KpnI/coml13r_ClaI. The PCR product was subsequently restricted with Clal and KpnI and ligated into the likewise restricted vector pMUTIN-GFP+, resulting in plasmid pMUTIN-coml.

Transformation

Plasmids were transformed into E. coli using the CaCl2 mediated method described by Sambrook and Russel (2001) or into B. subtilis SCK6 via a transformation protocol developed by Zhang and Zhang (2011). Sequenced vectors were introduced into B. licheniformis via induced genetic competence (Hoffmann et al. 2010).

Natural competence

Transformation efficiencies were investigated by using a 2-step natural competence protocol (Harwood and Cutting 1990; Hoffmann et al. 2010). Cells were grown overnight on LB agar plates and single colonies were inoculated into 3 ml HS medium, which contained 2 g (NH4)2SO4 l⁻¹, 14 g KH2PO4 l⁻¹, 6 g KH2PO4 l⁻¹, 1 g Na3citrate × 2 H2O l⁻¹, 0.2 g MgSO4 × 7 H2O l⁻¹, 0.1% (w/v) yeast extract, 0.01% (w/v) casamino acids 0.064 g uracil l⁻¹, 2.5 mM MgCl2 and 0.5% (w/v) glucose. Upon reaching an optical density at 546 nm (OD546nm of 0.9–1), 1 ml of competent cells were transferred to an Eppendorf cup containing 10 µl 0.1 M EGTA and incubated for 5 min at RT. 1 µg chromosomal DNA from B. licheniformis DSM13 ΔspoIV was added and incubated for 2–3 h in a Thermomixer (Eppendorf AG, Hamburg, Germany) at 37 °C and 600 rpm. The cells were harvested (1 min, max rpm) in a Eppendorf Centrifuge 5424 (Eppendorf AG, Hamburg, Germany) and washed three times with 15 mM NaCl to remove residual uracil. The cells were subsequently plated on M9 minimal medium without uracil. B. licheniformis MW3.1 is uracil auxotroph and can therefore not grow on uracil-deficient medium. Therefore, only cells that took up the chromosomal DNA from B. licheniformis DSM13 ΔspoIV and complemented the ΔpyrE locus are able to grow on M9 minimal medium without uracil. CFUs were subsequently determined.

GeneBank accession numbers

All primary nucleotide sequences used in this work can be found in the GeneBank sequence database of NCBI. The respective accession numbers are listed in Additional file 1: Table S2.

Results

Bioinformatical identification of Coml within the genus Bacillus

BLAST® Standalone searches disclosed—contrary to the known plasmid-borne Coml of B. subtilis NCIB3610 (Coml3610)—a putative chromosomally encoded homolog in B. licheniformis DSM13 (ComlDSM13) (Fig. 1a, first line). We were eager to know, whether such chromosomally located gene is present in other Bacillus strains and species as well. When bioinformatical analyses were performed, including altogether 80 Bacillus strains from 20 different genera (data not shown), a putative coml gene was identified for all 14 B. licheniformis strains included in the survey, whereas it was rather rarely seen in the other Bacillus strains tested (i.e. 4 representatives; see Fig. 1). The predicted Coml of B. licheniformis is a highly conserved protein consisting of 28 aa (VTVSEALQLMVSFGILVAILSSNDKKK). Bootstrap analysis revealed three groups of Coml homologs, with ComlDSM13 forming the largest and most conserved group (Fig. 1a, c). Furthermore, a single transmembrane alpha helix could be predicted for ComlDSM13 (Fig. 1b). Exemplarily we studied the function of ComlDSM13.
Deletion of comI resulted in a twofold increase of transformability

As ComI_{3610} was already proven to inhibit genetic competence in \textit{B. subtilis} (Konkol et al. 2013), it was tempting to check whether such action is provided by ComI_{DSM13} as well. We therefore used the suicide plasmid pUE{\textregistered}comI to replace comI with the kanamycin resistance cassette \textit{aphA} in the uracil-auxotrophic strain \textit{B. licheniformis} MW3.1, yielding strain \textit{B. licheniformis} CM1 (Fig. 2a). The relevant genetic organization of the strain was examined by PCR analysis (Fig. 2b). The possible effect of the \textit{comI}::\textit{aphA} substitution on natural genetic competence was tested by comparing strain CM1 with its parental strain MW3.1 in transformation experiments. The transformation frequency in \textit{B. licheniformis} MW3.1 was arbitrarily set as 100 (Fig. 2c). The deletion of \textit{comI} had a beneficial effect on the transformability, as CM1 displayed a doubled transformation frequency of 201% ± 4.6, an effect that is nevertheless 50-fold lower than the effect observed in \textit{B. subtilis} NCIB3610, in which the deletion of \textit{comI} resulted in an approximately 100-fold increase of the strain’s transformability (Konkol et al. 2013).

Recombinant overexpression of \textit{comI} resulted in threefold reduced transformation efficiency

Parallel to the \textit{comI} knockout and the results achieved with strain \textit{B. licheniformis} CM1, we investigated the effect of \textit{comI} overexpression. For such purpose the integrative vector pMUTIN-comI was constructed, in which \textit{comI} is placed under the control of the IPTG-inducible promoter P_{spac}. Subsequently the construct was
established in *B. licheniformis* MW3.1; yielding strain *B. licheniformis* CM2 (Fig. 3a). The correct integration of the expression vector was verified by PCR analysis and gel electrophoresis (Fig. 3b). Possibly due to the fact, that natural genetic competence only renders at maximum 20% of the cells genetically competent (Turgay et al. 1997), experiments with natural genetic competence and comI overexpression resulted in transformation frequencies too low for allowing reliable evaluation (data not shown). We therefore performed experiments in which genetic competence was induced by overexpression of comK (Hoffmann et al. 2010). Expression of comI was achieved by addition of IPTG to the final concentration of 100 µM. Transformation efficiencies for *B. licheniformis* MW3.1 were arbitrarily set as 100%. *B. licheniformis* CM2 yielded only approximately 1/3 (33.06% ± 14.53) of the transformation efficiency compared to *B. licheniformis* MW3.1 (Fig. 3c).
Discussion

Bacillus licheniformis is a close relative to *B. subtilis*. Natural genetic competence, which has been examined thoroughly for *B. subtilis* (Dubnau 1999; Hamoen et al. 2003; Jakobs and Meinhardt 2015; Spizizen 1958), has also been reported for *B. licheniformis* strains (Hoffmann et al. 2010; Jakobs et al. 2014; Leonard et al. 1964; McCuen and Thorne 1971; Thorne and Stull 1966), even though with lower efficiencies than for *B. subtilis* (Jakobs and Meinhardt 2015; Waschkau et al. 2008). Despite the close relationship, major differences in the regulation of genetic competence were seen. While ComP is essential for the development of genetic competence in *B. subtilis* (Weinrauch et al. 1990), *B. licheniformis* DSM13 carries an insertion element in *comP*, which renders ComP inactive (Hoffmann et al. 2010). In contrast to *B. subtilis*, the removal of the insertion element led to lower transformation efficiencies (Hoffmann et al. 2010). Furthermore, it became evident that the two *comS* homologs found in *B. licheniformis* (ComS1 and ComS2) did not impact genetic competence (Jakobs et al. 2015).

The existence of a functional chromosomal *comI* gene is another remarkable difference between the two species. ComI appears as a highly conserved, 28 aa spanning peptide within *B. licheniformis* species, while it is hardly found in *B. subtilis*. Indeed, only the plasmid borne, 30 aa peptide-encoding *comI* gene of *B. subtilis* NCIB3610 has been reported as a functional competence inhibitor (Konkol et al. 2013). While a *comI* locus has been predicted for *B. subtilis spizizenii* DSM15029 and *B. subtilis natto* BEST195, it remains to be elucidated whether these loci encode for a functional competence inhibitor.

In *B. subtilis* ComI is reported as membrane protein containing a single transmembrane domain, that renders the strain hardly transformable (Konkol et al. 2013). We identified a similar single transmembrane domain in ComI_{DSM13}. Interestingly, while the N terminus of ComI₃₆₁₀ is predicted to be intracellular (Konkol et al. 2013), an extracellular N terminus is suggested for ComI_{DSM13}. Furthermore, glutamine 12 of ComI₃₆₁₀ has been described as essential for the protein’s competence.

Fig. 3 Overexpression of *comI* and its effect on induced genetic competence. a Schematic illustration of the genomic region of the pMUTIN-*comI* integrant *B. licheniformis* CM2. Open reading frames are shown as arrows, the direction of which corresponds to the transcriptional orientation. Screening primers are denoted as black triangles, promoters are depicted as angled arrows and the t1t2t0-terminator is shown as a hairpin-structure. *comI*, encoding the putative competence inhibitor ComI_{DSM13}; *ftsW*, encoding a cell-division protein; *gfp*, green fluorescent protein gene; *lacI*, encodes the repressor protein LacI; *ori* ColE1, origin of replication; *bla*, encodes ampicillin resistance; *ermC*, erythromycin resistance gene. b Verification of the pMUTIN-*comI* insertion via PCR with the screening primers *comI*13f_KpnI and GFPseqr1 and gel electrophoresis. c Transformation efficiencies for *B. licheniformis* MW3.1 and *B. licheniformis* CM2 obtained by induced genetic competence using chromosomal DNA of *B. licheniformis* ΔspoIV (Hoffmann et al. 2010) to obtain uracil prototrophy (n = 3). Induction of P_{spac} was achieved by addition of IPTG to the cultivation medium to a final concentration of 100 µM. Transformation efficiencies for the wild type (MW3.1) were arbitrarily set as 100%. Data are given as mean ± SD of 3 independent experiments. ***p < 0.001
inhibiting function, as a G12L substitution rendered the protein inactive for competence inhibition (Konkol et al. 2013). ComIDSM13 possesses a serine residue at position 12. Both glutamine and serine are polar, uncharged amino acids. Konkol and colleagues postulated that competence inhibition might be caused by ComI3610—directly or indirectly—either separating the energy-providing protein from a transmembrane protein involved in DNA uptake or by preventing the separation of the latter two (Konkol et al. 2013). However, as for ComI3610, the mode of competence inhibition needs to be clarified for ComIDSM13 as well.

Our results indicate that ComIDSM13 has an inhibitory effect on genetic competence in *B. licheniformis*, but does not inhibit competence completely (Hoffmann et al. 2010; Jakobs et al. 2014). The development of genetic competence is a highly sophisticated process, in which the key transcriptional regulator, ComK, controls the expression of competence genes (van Sinderen et al. 1995; Hømoen 2011). The regulation of competence is strictly controlled and, as has been shown before, mainly brought about by deregulation (Hoffmann et al. 2010; Jakobs et al. 2015) and ComIDSM13 appears to be a further peptide that controls the development of genetic competence.

As the deletion of *comI* in *B. licheniformis* DSM13 doubled the transformation efficiency rather than increasing the efficiency 100-fold, as for ComI3610 (Konkol et al. 2013), the intracellular level of ComIDSM13 might be more strictly controlled. However, it must be taken into account that the increased transformation efficiencies described for *B. subtilis* NCIB3610 resulted from curing of the 84 kb endogenous pBS32 plasmid. Even though the deletion of *comI*3610 itself increased transformation efficiencies, Konkol and colleagues (2013) demonstrated that the deletion of other genes and gene clusters also had a beneficial effect on the strain’s transformability. pBS32 encodes RapP, a phosphatase that, besides repressing SpoOF activity, also inhibits genetic competence through direct or indirect repression of ComA (Parashar et al. 2013; Omer Bendori et al. 2015). Roughly one-half of the pBS32 located genes encode for phage-like proteins, but the phage-like particles have been shown to be defective and did not kill *B. subtilis* (Myagmarjav et al. 2016). ComIDSM13 together with RapP and possibly further, hitherto undetected proteins encoded by pBS32 might promote the intracellular persistence of the plasmid as they, through diminution of genetic competence, prevent the uptake of other, possibly competing plasmids into the cell. The task of plasmid persistence might therefore require a much more drastic way of competence inhibition for ComIDSM13 than is required for the competence-regulating, but not competence-thwarting ComI3610.

While an interaction with a ComK-induced gene product may prevent ComIDSM13 from performing its competence-inhibiting function, regulation of *comI* expression, directly or indirectly through ComK, is conceivable as well. Even though the deletion of *comI* is not crucial for competence development, the deletion greatly improved the transformability and is, thus, a useful tool for enhanced genetic manageability.

Additional file

Additional file 1: Table S1. Oligonucleotides used in this study. Table S2. GeneBank accession numbers.

Abbreviations

~P: phosphorylated protein; ComI₃₆₁₀: competence inhibitor ComI from *Bacillus subtilis* NCIB3610; ComI_{DSM13}: competence inhibitor ComI from *Bacillus licheniformis*; comI: ComI encoding gene; NCIB: natural collection of industrial bacteria; comK: key regulator protein for genetic competence; Amp: ampicillin; Kan: kanamycin; Tet: tetracycline; Em: erythromycin; LB: Luria–Bertani (medium); aph_A: kanamycin resistance gene; P_{comI}: promoter of comI; P_{spac}: IPTG inducible promoter; GFP: green fluorescent protein; HS: high salt; LS: low salt; OD: optical density; spoI/F gene encoding for the stage IV sporulation protein; CFU: colony forming unit; aa: amino acids; IPTG: isopropyl-β-D-thiogalactopyranoside; G: glutamine; L: leucine; P_{spac}: promoter of comK; SD: standard deviation; BGSC: Bacillus Genetic Stock Center; DSMZ: Deutsche Sammlung von Mikroorganismen und Zellkulturen.

Authors’ contributions

CM, MB and FM designed the project as well as the experiments and interpreted the results. CM and FM wrote the manuscript. All authors read and approved the final manuscript.

Author details

1 Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, Corrensstr. 3, 48149 Münster, Germany. 2 Department of Genomic and Applied Microbiology, Georg-August-University Göttingen, Grisebachstr. 8, 37077 Göttingen, Germany.

Acknowledgements

All persons and organizations that have contributed to the work presented in this article are authors and mentioned as such.

Competing interests

The authors declare that they have no competing interests.

Availability of data and materials

All data are shown in Figures and Tables within this article. Any material used in this work is available for research purposes upon request.

Ethics approval and consent to participate

Not applicable. This article does not contain any studies with human participants or animals by any of the authors.

Funding

CM, MB, CS and FM received financial support by the Federal Ministry of Education and Research (Bundesministerium für Bildung und Forschung, BMBF) Grant No 031A206C as part of the NatLife 2020 alliance.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
References
Berka RM, Hahn J, Albano M, Draskovic I, Persuh M, Cui X, Sloma A, Widner W, Dubnau D (2002) Microarray analysis of the Bacillus subtilis K-state: genome-wide expression changes dependent on ComK. Mol Microbiol 43:1331–1345

Borgmeier C, Bongaerts J, Meinhardt F (2012) Genetic analysis of the Bacillus licheniformis degSU operon and the impact of regulatory mutations on protease production. J Bacteriol 195:12–20. doi:10.1128/JB.00174-12

Brandt SS, Gonzalez-Pastor JE, Ben-Yehuda S, Losick R, Kolter R (2001) Fruiting body formation by Bacillus subtilis. Proc Natl Acad Sci USA 98:11621–11626. doi:10.1073/pnas.191384198

Dubnau D (1999) DNA uptake in bacteria. Annu Rev Microbiol 53:217–244.

Dubnau D, Thorne CB, Stull HB (1966) Factors affecting transformation of Escherichia coli. J Bacteriol 92:255–263.

Felsenstein J (1985) Confidence-limits on phylogenies—an approach using the bootstrap. Evolution 39:783–791. doi:10.2307/2408678

Hamenow LW (2011) Cell division blockage, but this time by a surprisingly conserved protein. Mol Microbiol 81:1–3. doi:10.1111/j.1365-2958.2011.07693.x

Hamenow LW, Venema G, Kuipers OP (2003) Controlling competence in Bacillus subtilis: shared use of regulators. Microbiology 149:9–17. doi:10.1099/mic.0.26003-0

Harwood CR, Cutting SM (1990) Molecular biological methods for Bacillus. Wiley, Chichester

Heckman KL, Pease LR (2007) Gene splicing and mutagenesis by PCR-driven loop extension. Nat Protoc 2:924–932. doi:10.1038/nprot.2007.132

Hoffmann K, Wollherr A, Larsen M, Rachinger M, Liesegang H, Ehrenreich A, Hamoen LW, Venema G, Kuipers OP (2003) Controlling competence in Bacillus subtilis: shared use of regulators. Microbiology 149:9–17. doi:10.1099/mic.0.26003-0

Hofmann K, Meinhardt F (2015) What renders Bacilli genetically competent? A gaze beyond the model organism. Appl Environ Microbiol 81:2624–2634. doi:10.1128/AEM.00235-15

Hoffmann K, Hoffmann F, Grabke A, Neuber S, Liesegang H, Volland S, Meinhardt F (2014) Unraveling the genetic basis for competence development of auxotrophic Bacillus licheniformis 9945A strains. Microbiology 160:2136–2147. doi:10.1099/mic.0.07936-0

Hoffmann K, Stoffel W (1993) TMBASE—a database of membrane spanning protein segments. Biol Chem Hoppe-Seyler 374:166-76:5046–5057. doi:10.1128/AEM.00660-10

Hofmann K, Stoffel W (1993) TMBASE—a database of membrane spanning protein segments. Biol Chem Hoppe-Seyler 374:166-76:5046–5057. doi:10.1128/AEM.00660-10

Johns bor g O, Eldholm V, Havanstein LS (2007) Natural genetic transformation: prevalence, mechanisms and function. Res Microbiol 158:767–778. doi:10.1016/j.resmic.2007.09.004

Kaltwasser M, Wiegent T, Schumm W (2002) Construction and application of epitope- and green fluorescent protein-tagging integration vectors for Bacillus subtilis. Appl Environ Microbiol 68:2624–2628. doi:10.1128/AEM.68.5.2624-2628.2002

Konkol MA, Blair KM, Kearns DB (2013) Plasmid-encoded ComT inhibits competence in the ancestral 3610 strain of Bacillus subtilis: J Bacteriol 195:4085–4093. doi:10.1128/JB.00696-13

Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874. doi:10.1093/molbev/msw254

Lapidus A, Galleron N, Andersen JT, Jørgensen PL, Ehrlich SD, Sorokin A (2002) Co-linear scaffold of the Bacillus licheniformis and Bacillus subtilis genomes and its use to compare their competence genes. FEMS Microbiol Lett 209:23–30

Leonard CG, Mattheis DK, Mattheis MJ, Housewright RD (1964) Transformation to prototrophy and polyglutamic acid synthesis in Bacillus licheniformis. J Bacteriol 88:220–225

McGuen RW, Thorne CB (1971) Genetic mapping of genes concerned with glutamyl polypeptide production by Bacillus licheniformis and a study of their relationship to the development of competence for transformation. J Bacteriol 107:636–645

McLoon AL, Galleron N, Andersen JT, Jørgensen PL, Ehrlich SD, Sorokin A, et al. AMB Expr (2017) 7:149

McLennan AL, Guttenplan SB, Kearns DB, Kolter R, Losick R (2011) Tracing the domestication of a biofilm-forming bacterium. J Bacteriol 193:2027–2034. doi:10.1128/jb.01542-10

Myagmarjav BE, Konkol MA, Ramsey J, Mukhopadhyay S, Kearns DB (2016) ZpdN, a plasmid-encoded sigma factor homolog, induces p8532-dependent cell death in Bacillus subtilis. J Bacteriol 198:2975–2984

Nahstedt H, Wittchen K, Rachman MA, Meinhardt F (2004) Identification and functional characterization of a type I signal peptidase gene of Bacillus megaterium DSM319. Appl Microbiol Biotechnol 64:243–249. doi:10.1007/s00253-003-1469-2

Nijland R, Burgess JG, Errington J, Veening JW (2010) Transformation of environmental Bacillus subtilis isolates by transiently inducing genetic competence. PLoS ONE 5:e9724. doi:10.1371/journal.pone.0009724

Omer Bendori S, Pollak S, Hizi D, Eldar A (2015) The RapP-RhsP quorum-sensing system of Bacillus subtilis strain NCIB3610 affects biofilm formation through multiple targets, due to an atypical signal-insensitive allele of RapJ. J Bacteriol 197:592–602

Pararaj V, Konkol MA, Kearns DB, Neidich MB (2013) A plasmid-encoded phosphatase regulates Bacillus subtilis biofilm architecture, sporulation, and genetic competence. J Bacteriol 195:2437–2448

Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467

Spizizen J (1958) Transformation of biochemically deficient strains of Bacillus subtilis by deoxyribonucleate. Proc Natl Acad Sci USA 44:1072–1078

Thorne CB, Stull HB (1966) Factors affecting transformation of Bacillus licheniformis. J Bacteriol 91:1012–1020

Turgay K, Hamoen LW, Venema G, Dubnau D (1997) Biochemical characterization of a molecular switch involving the heat shock protein ClpC, which controls the activity of ComK, the competence transcription factor of Bacillus subtilis. Gene Dev 11:119–128. doi:10.1101/Gad.11.1.119

van Sinderen D, Luttinger A, Kong L, Dubnau D, Venema G, Hamoen L (1995) ComT encodes the competence transcription factor, the key regulatory protein for competence development in Bacillus subtilis. Mol Microbiol 15:455–462

Wachshau B, Waldeck J, Wieland S, Eichstadt R, Meinhardt F (2008) Generation of readily transformable Bacillus licheniformis mutants. Appl Microbiol Biotechnol 78:181–188. doi:10.1007/s00253-007-1278-0

Weinrauch Y, Penchev R, Dubnau E, Smith I, Dubnau D (1990) A co-linear scaffold of the Bacillus subtilis genomes and its use to compare their competence genes. FEMS Microbiol Lett 209:23–30

Woodcock DM, Crowther PJ, Doherty J, Jefferson S, Decruz E, Noyerweidner M, Smith SS, Michael MZ, Graham MW (1989) Quantitative evaluation of Escherichia coli host strains for tolerance to cytosine methylation in plasmid and phage recombinants. Nucleic Acids Res 17:3469–3478. doi:10.1093/nar/17.9.3469

Xiang ZG, Zhang Y (2011) Simple, fast and high-efficiency transformation system for directed evolution of cellulase in Bacillus subtilis. Microb Biotechnol 4:98–105. doi:10.1111/j.1751-7915.2010.00230.x

Zuckerkandl E, Pauling L (1966) Evolutionary divergence and convergence in proteins. Evolving Genes and Proteins. Academic Press, New York