Quadratic Hyperboloids in Minkowski Geometries

Árpád Kurusa and József Kozma

Abstract. A Minkowski plane is Euclidean if and only if at least one hyperbola is a quadric. We discuss the higher dimensional consequences too.

Mathematics Subject Classification. 46B20, 53C70, 52A20.

Keywords. Minkowski geometry, quadrics, hyperboloids, hyperbola.

1. Introduction

Let I be an open, strictly convex, bounded domain in \mathbb{R}^n, (centrally) symmetric to the origin. Then function $d: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ defined by

$$d(x, y) = \inf\{\lambda > 0 : (y - x)/\lambda \in I\}$$

is a metric on \mathbb{R}^n [1, IV.24], and is called Minkowski metric on \mathbb{R}^n. It satisfies the strict triangle inequality, i.e., $d(A, B) + d(B, C) = d(A, C)$ is valid if and only if $B \in AC$. A pair (\mathbb{R}^n, d), where d is a Minkowski metric, is called Minkowski geometry, and I is called the indicatrix of it. In a Minkowski geometry (\mathbb{R}^n, d),

$$D1 \ a \ set \ H_{d,F_1,F_2}^a := \{X : 2a = |d(F_1, X) - d(F_2, X)|\},$$

where $F_1, F_2 \in \mathbb{R}^n$ are called the focuses, and $a > 0$ is called the radius.

A hypersurface in \mathbb{R}^n is called a quadric if it is the zero set of an irreducible polynomial of degree two in n variables. We call a hypersurface quadratic if it is part of a quadric. Since every isometric mapping between two Minkowski geometries is a restriction of an affinity, and every affinity maps quadrics to quadrics, the quadraticity of a metrically defined hypersurface is a geometric property in each Minkowski geometry. Thus, the question arises

This research was supported by the Ministry for Innovation and Technology of Hungary (MITH) under Grant TUDFO/47138-1/2019-ITM, NKF1H-l27g-2/2020 and TKP2021-NVA-og.
whether the metrically defined hypersurfaces are quadrics. This question is answered for conics in [6].

We prove that (Theorem 4.3) a Minkowski plane is a model of the Euclidean plane, which means that the indicatrix is a bounded quadric [1, IV.25.4], if and only if at least one of the hyperbolas is a quadric, and that (Theorem 4.4) a Minkowski plane is analytic if and only if at least one of the hyperbolas is analytic.

As for higher dimensions, we prove (Theorem 5.1) that a Minkowski geometry is a model of the Euclidean geometry if and only if every central planar section of at least one quadric is either a hyperbola or an ellipse.

Similar problems for the ellipsoids were solved in [7].

2. Notations and Preliminaries

Points of \(\mathbb{R}^n \) are labeled as \(A, B, \ldots \), vectors are denoted by \(\overrightarrow{AB} \) or \(a, b, \ldots \), but we use these latter notations also for points if the origin is fixed. The open segment with end points \(A \) and \(B \) is denoted by \(\overrightarrow{AB} \), while \(\overrightarrow{AB} \) denotes the open ray starting from \(A \) passing through \(B \), finally, \(\overrightarrow{AB} = \overrightarrow{AB} \cup \overrightarrow{AB} \).

On an affine plane, the affine ratio \((A, B; C)\) of the collinear points \(A, B \) and \(C \) satisfies \((A, B; C)\overrightarrow{BC} = \overrightarrow{AC}\) [1, III.15.10], and the cross ratio of the collinear points \(A, B \) and \(C, D \) is \((A, B; C, D) = (A, B; C)/(A, B; D)\) [1, VI.40.17].

It is easy to observe in D1 that a hyperboloid intersects line \(F_1F_2 \), the main axis, in exactly two points, whose distance is twice the radius. Further notions are the (linear) eccentricity \(c = d(F_1, F_2)/2 \), the numerical eccentricity \(\varepsilon = c/a \). The metric midpoint of the segment \(F_1F_2 \) is called the center.

Notations \(u_\varphi = (\cos \varphi, \sin \varphi) \) and \(u^\perp_\varphi := (\cos(\varphi + \pi/2), \sin(\varphi + \pi/2)) \) are frequently used. It is worth noting that, by these, we have \(\frac{d}{d\varphi}u_\varphi = u^\perp_\varphi \).

A quadric in the plane has the equation of the form

\[
Q^\sigma_\phi := \left\{ (x, y) : \begin{cases} 1 = x^2 + \sigma y^2 \text{ if } \sigma \in \{-1, 1\}, \\ x = y^2 \text{ if } \sigma = 0, \end{cases} \right\} \quad (D_q)
\]

in a suitable affine coordinate system \(\mathbf{s} \), and we call it elliptic, parabolic, or hyperbolic, if \(\sigma = 1, \sigma = 0, \) or \(\sigma = -1, \) respectively.

We usually polar parameterize the boundary \(\partial \mathcal{D} \) of a non-empty domain \(\mathcal{D} \) in \(\mathbb{R}^2 \) starlike with respect to a point \(P \in \mathcal{D} \) so that \(r : [-\pi, \pi) \to \mathbb{R}^2 \) is defined by \(r(\varphi) = r(\varphi)u_\varphi \), where \(r \) is the radial function of \(\mathcal{D} \) with base point \(P \).

We call a curve analytic if the coordinates of its points depend on its arc length analytically.

3. Utilities

In this section, the underlying plane is Euclidean.
Lemma 3.1. The border of a convex domain is an analytic curve if and only if any one of its radial functions is analytic.

Proof. Let \mathcal{D} be an open convex domain containing the origin $O = (0, 0)$. Let $s \mapsto p(s)$ be an arc length parametrization of $\partial \mathcal{D}$, where $s \geq 0$, and let $\varphi \mapsto r(\varphi) = r(\varphi)u_\varphi$ be a polar parametrization of $\partial \mathcal{D}$ on $[-\pi, \pi)$ such that $p(0) = r(-\pi)$. Then,

$$s(\xi) = \int_{-\pi}^{\xi} |\dot{r}(\varphi)|d\varphi = \int_{-\pi}^{\xi} \sqrt{\dot{r}^2(\varphi) + r^2(\varphi)}d\varphi,$$

(3.1)

hence the function $s: \xi \mapsto s(\xi)$ is strictly monotonously increasing, and therefore its inverse function $\sigma: s(\xi) \mapsto \xi$ exists and is strictly monotonously increasing.

First, assume the analyticity of r. Then, as r is bounded from below by a positive number, the integrand on the right-hand side of (3.1) is analytic, and therefore s is analytic. As $s(\xi)$ is positive by (3.1), the analyticity of σ follows from the analytic inverse function theorem [3, Theorem 4.2], and this implies the analyticity of $p(s) = r(\sigma(s)) = r(\sigma(s))u_{\sigma(s)}$.

Conversely, assume that p is analytic. As the derivatives of the cosine and sine functions do not vanish simultaneously, $u_{\sigma(s)} = p(s)/|p(s)|$ proves that σ is analytic. As the derivative $\sigma'(t) = 1/s(\sigma(t))$ vanishes nowhere, analyticity of s follows again by the analytic inverse function theorem [3, Theorem 4.2]. Then the analyticity of $r(\xi) = \langle p(s(\xi)), u_\xi \rangle$ follows.

The lemma is proved. \Box

Notice that the differentiation of the last formula in the proof and then the substitution of the derivative of (3.1) give

$$\dot{r}(\xi) = \langle \dot{p}(s(\xi)), u_\xi \rangle \sqrt{\dot{r}^2(\xi) + r^2(\xi)}.$$

(3.2)

Let \mathcal{H} be a hyperbola with center O and focuses F_1 and F_2. Let us label the intersection points of F_1F_2 and \mathcal{H} so that $A \in \overline{F_1B}$. We clearly have $O \in AB \subset F_1F_2$, so we can choose a point W on F_1F_2 such that $F_2 \in BW$.

There exists an angle $\Phi \in (0, \pi/2)$ such that a unique point H exists on \mathcal{H} for every $\varphi \in [0, \Phi) \cup (\pi - \Phi, \pi)$, such that $\angle WOH = \varphi$.

Given $\varphi_0 \in (0, \Phi)$, let $H_0 = H(\varphi_0)$, $\alpha_0 = \angle WF_1H_0$ and $\beta_0 = \angle WF_2H_0$. Assuming that H_{2i} is defined for an $i \in \mathbb{N}$, we define sequences recursively as follows (see Fig. 1): $H_{2i+1} := \overline{F_1H_{2i}} \cap \mathcal{H}$, $\alpha_{2i+1} := \alpha_{2i}$, and $\beta_{2i+1} := \angle WF_2H_{2i+1}$; then $H_{2i+2} := F_2H_{2i+1} \cap \mathcal{H}$, $\alpha_{2i+2} := \angle WF_1H_{2i+2}$, and $\beta_{2i+2} := \beta_{2i+1}$. We clearly have $\varphi_{2i} \in (0, \Phi)$ and $\varphi_{2i+1} \in (\pi - \Phi, \pi)$ for every $i \in \mathbb{N}$.

Lemma 3.2. If $i \to \infty$, then α_{2i} and φ_{2i} tend to zero, β_{2i}, β_{2i+1}, and φ_{2i+1} tend to π, and $\alpha_{2i+2}/\alpha_{2i}$ tends to $(F_1, F_2; A, B)$.

Proof. We clearly have $\varphi_{2i} < \Phi < \pi/2$ and $\varphi_{2i+1} > \pi - \Phi > \pi/2$, and therefore

$$\alpha_{2i} < \pi - \beta_{2i}$$

and $\pi - \beta_{2i+1} < \alpha_{2i+1}$ (or $\pi - \beta_{2i+2} < \alpha_{2i}$),

$$\alpha_{2i+2} < \pi - \beta_{2i+2}$$

and $\pi - \beta_{2i+1} < \alpha_{2i}$,

hence $\beta_{2i+2} > \beta_{2i}$, $\alpha_{2i+2} < \alpha_{2i}$, and $\pi - \beta_{2i+2} < \alpha_{2i} < \pi - \beta_{2i}$.

Thus, the sequences β_{2i}, β_{2i+1} increase monotonously, while the sequences α_{2i}, α_{2i+1} decrease monotonously. As these sequences are bounded, they are convergent.

Assuming $\lim_{i \to \infty} \beta_{2i} < \pi$, i.e., $\lim_{i \to \infty} (\pi - \beta_{2i}) > 0$, $\lim_{i \to \infty} \frac{\pi - \beta_{2i+2}}{\pi - \beta_{2i}} = 1$, and $\lim_{i \to \infty} \frac{\alpha_{2i}}{\pi - \beta_{2i}} = 1$ follow, hence the sinus law for triangle $\triangle F_1 F_2 H_{2i}$ implies

$$\lim_{i \to \infty} \frac{d(F_2, H_{2i})}{d(H_{2i}, F_1)} = \lim_{i \to \infty} \frac{\sin \alpha_{2i}}{\sin(\pi - \beta_{2i})} \cdot \lim_{i \to \infty} \frac{\pi - \beta_{2i}}{\alpha_{2i}} = 1,$$

which, by the continuity of d, gives $d(F_2, B) = d(B, F_1)$, a contradiction.

Thus, the sequences β_{2i}, β_{2i+1}, and φ_{2i+1} also tend to π, and α_{2i}, α_{2i+1}, and φ_{2i} tend to zero.

So, observing Fig. 1, we see that

$$h_1(\alpha_{2i}) := d(F_1, H_{2i}) \to d(F_1, B), \quad h_1(\alpha_{2i+1}) := d(F_1, H_{2i+1}) \to d(F_1, A),$$

$$h_2(\beta_{2i}) := d(F_2, H_{2i}) \to d(F_2, B), \quad h_2(\beta_{2i+1}) := d(F_2, H_{2i+1}) \to d(F_2, A).$$

The sine law for triangles $\triangle F_1 F_2 H_{2i}$ and $\triangle F_1 F_2 H_{2i+1}$ gives

$$\frac{h_2(\beta_{2i+1})}{h_1(\alpha_{2i+1})} = \frac{\sin \alpha_{2i+1}}{\sin(\pi - \beta_{2i+1})} \quad \text{and} \quad \frac{h_2(\beta_{2i+2})}{h_1(\alpha_{2i+2})} = \frac{\sin \alpha_{2i+2}}{\sin(\pi - \beta_{2i+2})},$$

respectively. Multiplying these by $\cos \beta_{2i+1}/\cos \alpha_{2i+1}$ and $\cos \beta_{2i+2}/\cos \alpha_{2i+2}$, respectively, and taking the ratio of the resulting fractions, we obtain

$$\tan \alpha_{2i+2} = \frac{h_2(\beta_{2i+2})}{h_1(\alpha_{2i+2})} \cos \beta_{2i+2} \frac{h_1(\alpha_{2i+1})}{h_2(\beta_{2i+1})} \cos \beta_{2i+1} \cos \alpha_{2i+1}.$$

By (3.3), the right-hand side tends to $(F_1, F_2; A, B)$, so the proof is complete. \(\square \)

Let \mathbf{r}_1 and \mathbf{r}_2 be curves in the plane with analytic arc length parametrization on $[-1, 1]$ such that $\mathbf{r}_1(0) = \mathbf{r}_2(0)$ and $\dot{\mathbf{r}}_1(0) = \dot{\mathbf{r}}_2(0)$. Let ℓ be the line through $\mathbf{r}_1(0)$ that is orthogonal to $\dot{\mathbf{r}}_1(0)$, and let F_1, F_2, and B be different points on ℓ such that $B \in F_1 F_2$ and $\mathbf{r}_1(0) \notin \{B, F_1, F_2\}$. Let \mathbf{h} be an analytic arc length parameterization of a curve such that $B = \mathbf{h}(0)$ and $\mathbf{h}(1) = F_1$. Figure 1. Sequence of angles
Figure 2. Specially placed curves with different lines

\[\dot{h}(0) = u_{\pi/2}. \]
Every point \(H = h(s) \) determines two straight lines \(\ell_1 := F_1 H \) and \(\ell_2 := F_2 H \) closing small angles \(\alpha \) and \(\gamma = \pi - \beta \) with \(\ell \), respectively. Let the straight line \(\ell_j \) (\(j = 1, 2 \)) through the midpoint \(O \) of the segment \(F_1 F_2 \) be parallel to \(\ell_j \). See Fig. 2.

Denote the intersections of \(\ell_1 \) and \(\ell_2 \) with \(r_1 \) and \(r_2 \) by \(\bar{C}_1, \bar{D}_1 \) and \(\bar{C}_2, \bar{D}_2 \), respectively. Let \(s_i \) be the arc length parameter of \(r_i \) (\(i = 1, 2 \)), and define \(\delta(\alpha) = \langle C_1 - D_1, u_\alpha \rangle \) and \(\delta(\gamma) = \langle C_2 - D_2, u_\gamma \rangle \), where \(\gamma = \beta - \pi \).

Lemma 3.3. If the curves \(r_1 \) and \(r_2 \) are different in every neighborhood of the point \(K := r_1(0) \), and \(H \) tends to \(B \) on the curve \(h \), then

\[\frac{\delta(\alpha)}{\delta(\gamma)} \to (F_2, F_1; B)^k, \quad \text{for an integer } k \geq 2. \]

(3.4)

Proof. If \(r_1(i)(0) = r_2(i)(0) \) for every \(i \in \mathbb{N} \), then, by the analyticity of \(r_1 \) and \(r_2 \), \(r_1 = r_2 \) in a neighborhood of \(K \), so \(k := \min\{i \in \mathbb{N} : r_1(i)(0) \neq r_2(i)(0) \} \) is well defined and is at least two.

Letting \(H^\perp \) be the orthogonal projection of \(H \) onto \(\ell \), L'Hôpital’s rule gives

\[\frac{|F_2 - B|}{|F_1 - B|} = \lim_{s \to 0} \frac{|F_2 - H^\perp|}{|F_1 - H^\perp|} = \lim_{s \to 0} \frac{\tan \alpha}{-\tan \gamma} = -\lim_{s \to 0} \frac{\dot{\alpha}}{\dot{\gamma}}. \]

(3.5)

If \(\lim_{s \to 0} \frac{\delta(\alpha)}{\delta(\gamma)} \) exists, then L'Hôpital’s rule can be used, so we get

\[\lim_{s \to 0} \frac{\delta(\alpha)}{\delta(\gamma)} = \lim_{s \to 0} \frac{\dot{\delta}(\alpha)\dot{\gamma}}{\dot{\delta}(\gamma)\dot{\alpha}} = \lim_{s \to 0} \frac{\dot{\delta}(\alpha)}{\dot{\delta}(\gamma)} \lim_{s \to 0} \frac{\dot{\alpha}}{\dot{\gamma}} = \cdots = \lim_{s \to 0} \frac{\delta^{(k)}(\alpha)}{\delta^{(k)}(\gamma)} \left(\lim_{s \to 0} \frac{\dot{\alpha}}{\dot{\gamma}} \right)^k \]

This proves the lemma.

\[\square \]

4. One Hyperbola in a Minkowski Plane

We start by considering the Minkowski plane \((\mathbb{R}^2, d_I)\) with indicatrix \(I \).
By [4, (ii) of Theorem 3] every straight line parallel to the main axis intersects a hyperbola in exactly two points, hence if a hyperbola is a quadric, then it is a hyperbolic quadric.

Let A, B be the intersections of line F_1F_2 with $\mathcal{H}_{d_x}^{a}$ such that $A \in F_1B$ and $B \in AF_2$. Let \mathcal{I}_O be the translate of the indicatrix centered at the midpoint O of F_1F_2, and let I, J be the intersections of line F_1F_2 with $\partial \mathcal{I}_O$, so that $I \in OF_1$ and $J \in OF_2$. Furthermore, let t_A, t_B and t_I, t_J, respectively, denote the tangents of the appropriate curve $\mathcal{H}_{d_x}^{a}$ or $\partial \mathcal{I}_O$ at A, B and I, J, respectively. See Fig. 3.

Given the Euclidean metric d_e, we let r be the radial function of \mathcal{I}_O with respect to O, $\alpha = \angle (HF_1O), \gamma = \angle (HF_2B)$ $(\beta := \pi - \gamma)$ and $\varphi = \angle (HOB)$ for the points H on the B-branch (that contains B) of $\mathcal{H}_{d_x}^{a}$. Finally, we define the lengths $h_1(\alpha) := d_e(F_1, H), h_2(\beta) := d_e(F_2, H)$, and $h(\varphi) := d_e(O, H)$. Then $d_T(F_1, H) = h_1(\alpha)/r(\alpha)$, and $d_T(F_2, H) = h_2(\beta)/r(\beta)$, so we have

$$2a = \frac{h_1(\alpha)}{r(\alpha)} - \frac{h_2(\beta)}{r(\beta)}.$$ \hspace{1cm} (4.1)

Lemma 4.1. If the hyperbola $\mathcal{H}_{d_x}^{a}$ is a quadric, then $t_A \parallel t_B \parallel t_I \parallel t_J$.

Proof. Since $\mathcal{H}_{d_x}^{a}$ is a quadric, φ and H are bijectively related, hence the functions $\alpha(\varphi), \beta(\varphi)$ are well defined.

The symmetry of \mathcal{I} entails that $t_I \parallel t_J$, and it also follows that the affine center of the quadric $\mathcal{H}_{d_x}^{a}$ coincides with its metric center O, hence $t_A \parallel t_B$ too.

Choose a Euclidean metric d_e so that $t_A \perp F_1F_2 \perp t_B$.

Differentiating (4.1) with respect to φ leads to

$$0 = \frac{dh_1(\alpha)}{d\varphi} r(\alpha) - \frac{h_1(\alpha)}{r(\alpha)} \frac{dr(\alpha)}{d\alpha} d\alpha - \frac{dh_2(\beta)}{d\varphi} r(\beta) - \frac{h_2(\beta)}{r(\beta)} \frac{dr(\beta)}{d\beta} d\beta.$$ \hspace{1cm} (4.2)

As $\varphi = 0$ implies $\alpha = 0 = \pi - \beta$, and $\frac{dh_1}{d\alpha}(0) = \frac{dh_2}{d\beta}(\pi) = 0$ by $t_A \perp F_1F_2 \perp t_B$, (4.2) gives at $\varphi = 0$ that

$$r'(0) \left[-h_1(0) \frac{d\alpha}{d\varphi}(0) + h_2(\pi) \frac{d\beta}{d\varphi}(0) \right] = 0.$$

![Figure 3. A hyperbola in a Minkowski plane](attachment:figure3.png)
Applying (3.5) for the present configuration, we obtain that the second factor in the left-hand side is negative, hence \(r'(0) = 0 \). Thus \(t_J \perp F_1F_2 \), so the lemma follows.

Lemma 4.2. If the hyperbola \(\mathcal{H}_{\alpha}^{a} \) is an analytic curve in a neighborhood of \(A \) and \(B \), then the curve \(\partial \mathcal{I}_O \) is analytic in a neighborhood of \(I \) and \(J \).

Proof. By Lemma 3.1 and its proof, the functions \(h_1, h_2, \) the angles \(\alpha(s), \beta(s) \), and the inverses of the angles, where \(s \) is the arc length parameter, are clearly analytic, hence we deduce that \(\beta(\alpha) \) and \(\alpha(\beta) \) are also analytic functions.

As \(x \mapsto 1/x \) is analytic in a neighborhood of 1, to prove that \(r(\alpha) \) is analytic in a neighborhood of 0, it is enough to prove that \(\bar{r}(\alpha) := 1/r(\alpha) \) is analytic in some neighborhood of 0. Bearing this in mind, we reformulate (4.1) as

\[
\bar{r}(\alpha) = \frac{h_2(\gamma(\alpha))}{h_1(\alpha)}\bar{r}(\gamma(\alpha)) + \frac{2a}{h_1(\alpha)}. \tag{4.3}
\]

Introduce the functions \(f(\alpha) := \gamma(\alpha), g(\alpha) := \frac{h_2(\gamma(\alpha))}{h_1(\alpha)} \), and \(e(\alpha) := \frac{2a}{h_1(\alpha)} \). Then \(f, g \) and \(e \) are analytic in a neighborhood of 0, \(f(0) = 0, \frac{df}{d\alpha}(0) = \frac{h_2(0)}{h_1(0)} < 1, g(0) = \frac{h_2(0)}{h_1(0)} < 1, \) and \(h(0) = \frac{2a}{h_1(0)} < 1. \) Furthermore, by (4.3), the function \(\phi(\alpha) := \bar{r}(\alpha) \) solves the functional equation \(\phi(\alpha) = g(\alpha)\phi(f(\alpha)) + h(\alpha) \). However, by [3, Theorem 4.6], such a functional equation has a unique solution, which additionally is analytic in a neighborhood of 0. Consequently, \(r(\alpha) \) is the reciprocal of that unique analytic solution, so \(\partial \mathcal{I}_O \) is analytic around \(J \), and, by its symmetry, around \(I \) too. \(\square \)

Theorem 4.3. A Minkowski plane is a model of the Euclidean plane if and only if at least one hyperbola is a quadric.

Proof. As every hyperbola is a quadric in the Euclidean plane, we only have to prove that a Minkowski plane is Euclidean if at least one hyperbola is a quadric.

Assume that \(\mathcal{H}_{\alpha}^{a} \) is a quadric.

We have \(t_A \parallel t_I \parallel t_J \parallel t_B \) by Lemma 4.1, and, as every (planar) quadric is an analytical curve, the border \(\partial \mathcal{I}_O \) is analytic in a neighborhood of \(I \) and \(J \) by Lemma 4.2, where \(O \) is the midpoint of \(F_1F_2 \). Furthermore, by the central symmetry of \(\mathcal{I}_O \) and the definition of \(\mathcal{H}_{\alpha}^{a} \), we have \(c = d_{\mathcal{I}}(F_1, O), \) \(AF_1 = F_2B \) and \(IA = BJ \), so \(O \) is the (affine) midpoint of both \(TJ \) and \(AB \). Additionally, we have \(a \cdot d_{\mathcal{I}}(O, J) = d_{\mathcal{I}}(O, B) \), because the definition of \(\mathcal{H}_{\alpha}^{a} \) implies

\[
2d_{\mathcal{I}}(O, B) = 2d_{\mathcal{I}}(O, F_2) - 2d_{\mathcal{I}}(F_2, B)
= d_{\mathcal{I}}(F_1, O) + d_{\mathcal{I}}(O, F_2) - d_{\mathcal{I}}(F_2, B) + 2a - d_{\mathcal{I}}(F_1, B) = 2a.
\]

Being a hyperbolic quadric, \(\mathcal{H}_{\alpha}^{a} \) has two asymptotes \(\ell_+ \) and \(\ell_- \) through \(O \). Let \(C_1 \) and \(C_2 \) be the points where they intersect the straight line \(t_A \).
Fix the affine coordinate system such as \(O = (0,0), J = (1,0), \) and \(C_1 = (c, \sqrt{c^2 - a^2}), \) and choose the Euclidean metric \(d_e \) so that \(\{(1,0),(0,1)\} \) is an orthonormal basis.

Let \(C \) denote the unit circle of \(d_e \). See Fig. 4.

Then both \(\mathcal{H}_{d_e;F_1,F_2}^a \) and \(\mathcal{H}_{d_e;F_1,F_2}^a \) are hyperbolic quadrics, and have two common tangents \(t_A \) and \(t_B \), two common asymptotes, and two common points \(A \) and \(B \), hence they coincide.

By the definition of \(\mathcal{H}_{d_e;F_1,F_2}^a \) we have \(h_1(\alpha) - h_2(\beta) = 2a \), which together with (4.1) implies

\[
\delta(\alpha) = \delta(\beta) \frac{h_2(\beta)}{h_1(\alpha) + 2a\delta(\beta)}, \tag{4.4}
\]

where \(\delta(\alpha) = 1 - r(\alpha) \) is the radial difference of \(C \) and \(\partial I_O \).

If in every neighborhood of \(I \) curves \(C \) and \(\partial I_O \) differ, then (4.4) implies

\[
\lim_{\varphi \to 0} \frac{\delta(\alpha)}{\delta(\beta)} = \frac{c - a}{c + a} = (F_2,F_1;B),
\]

which, by (3.4), implies \((F_2,F_1;B) = 1 \). This contradicts \(a > 0 \), so the curves \(C \) and \(\partial I_O \) coincide in a neighborhood of \(I \).

However, if \(\delta(\beta_0) \neq 0 \) for a \(\beta_0 \), then no value of the 0-convergent sequence \(\beta_{2i} \) constructed in Lemma 3.2 can vanish by (4.4), therefore no \(\beta_0 \) can exist for which \(\delta(\beta_0) \neq 0 \). Similarly follows that no \(\alpha \) exists for which \(\delta(\alpha) \neq 0 \), hence \(C \) and \(\partial I_O \) coincide. \(\square \)

This kind of implication extends over to analyticity too.

Theorem 4.4. The indicatrix of a Minkowski plane is analytic if and only if one of the hyperbolas of the Minkowski plane is analytic.

Proof. First, assume that the Minkowski plane \((\mathbb{R}^2,d_I) \) is analytic.

We use the notations introduced in the previous sections, and consider the hyperbola \(\mathcal{H}_{d^I;F_1,F_2}^a \).

Fix an arbitrary point \(H_0 \in \mathcal{H}_{d^I;F_1,F_2}^a \), and let the point \(R_i \in \mathcal{I} (i = 1,2) \) be such that \(OR_i \parallel F_iH_0 \). Let the straight line \(t_i \ (i = 1,2) \) be tangent to \(\mathcal{I} \)

![Figure 4. Coinciding hyperbolas \(\mathcal{H}_{d^I;F_1,F_2}^a = \mathcal{H}_{d_e;F_1,F_2}^a \)](image-url)
at R_i. Let d_e be the Euclidean metric which satisfies $t_2 \perp OR_2$, $d_e(O, R_1) = d_e(O, R_2)$, and $d_e(O, J) = 1$. Then we have
\[
h_2^2(\beta) = h_1^2(\alpha) + 4c^2 - 4h_1(\alpha)c\cos \alpha, \ \text{and} \ \beta = \arcsin \frac{h_1(\alpha) \sin \alpha}{h_2(\beta)}.
\]
Substituting this into (4.1) results in the analytic equation
\[
F(\alpha, h_1(\alpha)) := \left(2a - \frac{h_1(\alpha)}{r(\alpha)}\right)^2 - \frac{h_1^2(\alpha) + 4c^2 - 4h_1(\alpha)c\cos \alpha}{r^2(\alpha)} \left(\arcsin \frac{h_1(\alpha) \sin \alpha}{\sqrt{h_1^2(\alpha) + 4c^2 - 4h_1(\alpha)c\cos \alpha}}\right) = 0.
\]
Since
\[
\frac{\partial}{\partial \alpha} F(\alpha, h_1(\alpha)) = 2\frac{-h_2(\beta)}{r(\alpha)} \frac{1}{r(\alpha)} - \frac{2h_1(\alpha) - 4c\cos \alpha}{r^2(\beta)} + \frac{2}{r^3(\beta)} \frac{h_2^2(\beta)}{\beta} \frac{\sin \alpha}{h_2(\beta)} = \frac{\sin \alpha}{h_2(\beta)} - \frac{1}{2} \frac{h_1(\alpha) \sin \alpha(2h_1(\alpha) - 4c\cos \alpha)}{h_2^3(\beta)},
\]
\[
\frac{\partial}{\partial \alpha} F(\alpha, h_1(\alpha)) \text{ vanishes if and only if}
\]
\[
- \frac{h_2(\beta)}{r(\alpha)} + \frac{h_1(\alpha) - 2c\cos \alpha}{r(\beta)} = \frac{h_2(\beta) \sin \alpha \frac{\dot{r}(\beta)}{r(\beta)} \cos \beta}{r(\beta)} \left(1 - \frac{h_1(\alpha)(h_1(\alpha) - 2c\cos \alpha)}{h_2^2(\beta)}\right).
\]
By (3.2), we have $\frac{\dot{r}(\beta)}{r(\beta)} = \cot \theta$, where θ is the angle between $F_1 \bar{H}$ and the tangent vector at H of $\mathcal{H}_{d_2:F_1,F_2}$. Furthermore, it can be easily seen that $h_1(\alpha) - 2c\cos \alpha = h_2(\beta)\cos(\beta - \alpha)$. Thus, the above equation is equivalent to
\[
- \frac{h_2(\beta)}{r(\alpha)} + \frac{h_2(\beta) \cos(\beta - \alpha)}{r(\beta) = \frac{\cot \theta}{r(\beta)} \cos \beta (h_2(\beta) \sin \alpha - h_1(\alpha) \cos(\beta - \alpha) \sin \alpha).
\]
Since $h_2(\beta) \sin \beta = h_1(\alpha) \sin \alpha$, this equation simplifies to
\[
- \frac{1}{r(\alpha)} + \frac{\cos(\beta - \alpha)}{r(\beta)} \cos \beta = \frac{\cot \theta \sin \alpha - \sin(\beta - \alpha) \cot \theta}{\cos \beta} = - \sin(\beta - \alpha) \cot \theta.
\]
In sum, $\frac{\partial}{\partial \alpha} F(\alpha, h_1(\alpha))$ vanishes if and only if
\[
- \frac{\dot{r}(\beta)}{r(\alpha)} + \sin(\beta - \alpha)(\cot \theta + \cot(\beta - \alpha)) = 0. \tag{4.5}
\]
At H_0 we have $\theta = \pi/2$, and $r(\beta) = r(\alpha)$, therefore (4.5) reduces to $\cos(\beta - \alpha) = 1$, resulting in $\beta = \alpha$, a contradiction. Thus $\frac{\partial}{\partial \alpha} F(\alpha, h_1(\alpha)) \neq 0$ at H_0, hence the analytic implicit function theorem [3, Theorem 4.1] implies the analyticity of h_1 in a neighborhood of α. As the point H_0 was chosen arbitrarily on $\mathcal{H}_{d_2:F_1,F_2}$, this proves that $\mathcal{H}_{d_2:F_1,F_2}$ is analytic.

Assuming now that the hyperbola is analytic, Lemma 4.2 proves the analyticity of the boundary of the indicatrix, where F_1F_2 intersects it. By (4.3) we have
\[
\frac{\dot{r}(\beta(\alpha))}{r(\alpha)} = \frac{h_1(\alpha)}{-h_2(\beta(\alpha))} \frac{\dot{r}(\alpha)}{r(\alpha)} + \frac{2a}{h_2(\beta(\alpha))}.
\]
This shows that if \dot{r} is analytic in an interval $(-\epsilon, \epsilon)$, then it is also analytic in the interval $(-\beta(\epsilon), \beta(\epsilon))$. According to Lemma 3.2, this means that the boundary of the indicatrix is analytic at all the directions. \qed
5. Quadrics in a Minkowski Geometry

Before presenting the proof of Theorem 5.1, let us rephrase its statement for the planar case: if one hyperbola is a quadric, then the Minkowski plane is a model of the Euclidean geometry.

In a Minkowski geometry \((\mathbb{R}^n, d)\)

\[(D2) \quad \mathcal{E}_{d,F_1,F_2}^a := \{ E : 2a = d(F_1, E) + d(E, F_2) \}, \]

where \(a > d(F_1, F_2)/2\), is called an **ellipse** if \(n = 2\), and an **ellipsoid** in higher dimensions, where \(F_1, F_2 \in \mathcal{M}\) are called the **focuses**, and \(a > 0\) is called the **radius**.

Theorem 5.1. A Minkowski geometry is a model of the Euclidean geometry if and only if through a point every planar section of at least one quadric is either a hyperbola or an ellipse.

Proof. As every planar section of each hyperbolic quadric is either a hyperbola or an ellipse in the Euclidean geometry, it is enough to prove that a Minkowski geometry is Euclidean if every planar section of at least one quadric is either a hyperbola or an ellipse.

Let the quadric \(Q\) be such that its every planar section is either a hyperbola or an ellipse. If the planar section is a hyperbola, then Theorem 4.3 implies that the parallel central planar section of the indicatrix is an ellipse. If the planar section is an ellipse, then \([7, \text{Theorem } 4.3]\) implies that the parallel central planar section of the indicatrix is an ellipse. Thus, the statement of the theorem follows immediately from \([2, \text{II.16.12}]\), which states for any integers \(1 < k < n\) that the border \(\partial K\) of a convex body \(K \subset \mathbb{R}^n\) is an ellipsoid if and only if every \(k\)-plane through an inner point of \(K\) intersects \(\partial K\) in a \(k\)-dimensional ellipsoid. \(\square\)

We omit the easy proof of the following result that closes this paper.

Theorem 5.2. A Minkowski geometry is a model of the Euclidean geometry if and only if there is a hyperplane and a point in it such that every line in the hyperplane through the point is parallel to main axis of some ellipsoid that is a quadric.

Funding Open access funding provided by University of Szeged.

Open Access. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
References

[1] Busemann, H., Kelly, P.J.: Projective Geometries and Projective Metrics. Academic Press, New York (1953)
[2] Busemann, H.: The Geometry of Geodesics. Academic Press, New York (1955)
[3] Cheng, S.S., Li, W.: Analytic Solutions of Functional Equations. World Scientific, New Jersey (2008)
[4] Horváth, Á.G., Martini, H.: Conics in normed planes. Extracta Math. 26(1), 29–43. arXiv: 1102.3008 (2011)
[5] Hirschfeld, J.W.P.: Projective Geometries Over Finite Fields. Clarendon Press, Oxford (1979)
[6] Kurusa, A.: Conics in Minkowski geometry. Aequationes Math. 92, 949–961 (2018). https://doi.org/10.1007/s00010-018-0592-1
[7] Kurusa, Á.: Quadratic ellipses in Minkowski geometries (manuscript submitted)

Árpád Kurusa and József Kozma
Bolyai Institute
University of Szeged
Aradi vérédugót tere 1
Szeged 6725
Hungary
e-mail: kurusa@math.u-szeged.hu

József Kozma
e-mail: kozma@math.u-szeged.hu

Received: February 11, 2021.
Accepted: January 30, 2022.