Diffuse radio emission from clusters in the MareNostrum Universe simulation

M. Hoeft, M. Brüggen, G. Yepes, S. Gottlöber and A. Schwope

1Thüringer Landessternwarte, Sternwarte 5, 07778 Tautenburg, Germany
2Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
3Grupo de Astrofísica, Universidad Autónoma de Madrid, Cantoblanco, 28039 Madrid, Spain
4Astrophysikalisches Institut Potsdam, An der Sternwarte 16, 14482 Potsdam, Germany

Accepted 2008 September 9. Received 2008 September 8; in original form 2008 July 4

ABSTRACT
Large-scale diffuse radio emission is observed in some clusters of galaxies. There is ample evidence that the emission has its origin in synchrotron losses of relativistic electrons that have been accelerated in cluster mergers. In a cosmological simulation, we estimate the radio emission of structure formation shocks as follows: introducing a novel approach to identify strong shock fronts in an smoothed particle hydrodynamics (SPH) simulation, we determine the Mach number as well as the downstream density and temperature in the MareNostrum Universe simulation which has 2×10^{24} particles in a $500 h^{-1}$ Mpc box. Then, we estimate the radio emission using the formalism derived in Hoeft & Brüggen to produce artificial radio maps of massive clusters and to derive a luminosity function of diffuse radio sources. Several of our clusters show radio objects with similar morphology to observed large-scale radio relics, whereas about half of the clusters show only very little radio emission. In agreement with observational findings, the maximum diffuse radio emission of our clusters depends strongly on their X-ray temperature. We find that the so-called accretion shocks cause only very little radio emission. We conclude that a moderate efficiency of shock acceleration, namely $\xi_e = 0.005$, and moderate magnetic fields in the region of the relics, namely $0.07-0.8 \mu$G are sufficient to reproduce the number density and luminosity of radio relics.

Key words: radiation mechanisms: non-thermal – shock waves – methods: numerical – galaxies: clusters: general – diffuse radiation – large-scale structure of Universe – radio continuum: general.

1 INTRODUCTION
The large-scale structure of the Universe, composed of clusters, superclusters, filaments, and sheets of galaxies, is still in the process of formation. Overdense regions such as clusters and filaments keep accreting matter. Gas streams out of cosmic voids on to the sheets and filaments. When the newly accreted gas collides with the denser gas within these structures, shock fronts arise, dissipating the kinetic energy. In sheets and filaments, the gas follows the gravitational potential towards the clusters of galaxies. Eventually, the gas collides with the intracluster medium (ICM) with a few 1000 km s^{-1} and gets heated to temperatures of 10^7-10^8 K.

The flow of gas is not as steady as the above picture suggests. A significant fraction of the gas accretion onto clusters is in the form of groups and clusters. The mergers of rich clusters are – to our knowledge – the most energetic events after the big bang. Massive clusters have masses of the order of 10^{15} M_\odot and may reach relative velocities about 1000 km s^{-1} when they merge, hence kinetic energies of the order of 10^{64} erg are dissipated. The conversion into heat takes place in giant shock waves which have been discovered in recent years. X-ray telescopes have reached the necessary spatial and spectral resolution to detect the temperature and density jumps related to such shock waves in two massive clusters, namely 1E0657-56 (Markevitch et al. 2002) and A520 (Markevitch et al. 2005).

A number of diffuse, steep-spectrum radio sources without optical identification have been observed in galaxy clusters. These sources have complex morphologies and show diffuse and irregular emission (Kempner & Sarazin 2001; Slee et al. 2001; Bacchi et al. 2003; Feretti 2005; Giovannini et al. 2006). They are usually subdivided into two classes, denoted as ‘radio haloes’ and ‘radio relics’. Cluster radio haloes are unpolarized and have diffuse morphologies that are similar to those of the thermal X-ray emission of the cluster gas (Giovannini et al. 2006). Examples for clusters with radio haloes are the Coma cluster (Kim et al. 1989; Deiss et al. 1997), the galaxy

*E-mail: m.hoeft@iu-bremen.de
cluster 1E 0657–56 (Liang et al. 2000), the X-ray luminous cluster A2163, and distant clusters such as CL 0016+16. The cluster A520 shows a halo with a low surface brightness with a clumpy structure (Govoni et al. 2001). Other examples can be found in Giovannini, Tordi & Feretti (1999). In general, radio haloes are found in clusters with significant substructure and rich clusters with high X-ray luminosities and temperatures. The radio power correlates strongly with the cluster luminosity (Feretti 2005).

Unlike haloes, radio relics are typically located near the periphery of the cluster. They often exhibit sharp emission edges and many of them show strong radio polarization (Giovannini & Feretti 2004). The sizes of relics and the distance to the cluster centre vary significantly. Examples for radio relics with sizes of 1 Mpc or even larger have been observed in Coma and A2255, which contain both a relic and a halo (as do A225, A1300, A2744 and A754). The cluster A3667 (Röttgering et al. 1997) contains two very luminous, almost symmetric relics with a separation of more than 5 Mpc. The cluster A3376 shows an almost ring-like radio emission (Bagchi et al. 2006). The clusters A115 and A1664 show relics only at one side of the elongated X-ray distribution (Govoni et al. 2001). The relic source 0917+75 is particularly puzzling as it is located at 5–8 Mpc from the most nearby clusters. Other clusters show rather small relics as for example A85 (Slee et al. 2001).

The spectra of the diffuse radio sources indicate that their origin lies in synchrotron losses of relativistic electrons. The cooling time of the electrons which cause observable emission is of the order of 100 Myr (see e.g. the models in Slee et al. 2001). The origin of the relativistic electron population which causes the emission is still not clear. There are essentially two classes of models that explain the presence of relativistic electrons. Either they are injected into the ICM via active galactic nuclei (AGN) activity or stellar feedback or they obtain their energy from particle acceleration at large-scale shock fronts in galaxy clusters. As discussed above, structure formation in the universe causes a variety of shock fronts in the intergalactic medium and the ICM (Miniati et al. 2000; Ryu et al. 2003; Ryu & Kang 2008). These shock fronts are expected to be collisionless and capable of accelerating protons and electrons to relativistic energies. The correlation between the presence of diffuse radio emission in galaxy clusters and signs for a recent merger supports the scenario in which merger shocks generate the necessary relativistic electrons (Feretti 2006). A3367 may serve as another piece of evidence: the radio relic is located where the merger induced bow shock is expected (Roettiger, Burns & Stone 1999).

Three mechanisms have been proposed for the action of the shock wave: (i) in-situ diffusive shock acceleration of electrons by the Fermi I process (primary electrons, Enßlin et al. 1998; Roettiger et al. 1999; Miniati et al. 2001), (ii) re-acceleration of electrons by compression of existing cocoons of radio plasma (Enßlin & Gopal-Krishna 2001; Enßlin & Brüggen 2002; Hoef, Brüggen & Yepes 2004), or (iii) in-situ acceleration of protons and the production of relativistic electrons and positrons by inelastic p–p collisions (secondary electrons). In the first two cases, the diffuse radio emission is roughly confined to the region of the shock fronts. In contrast, in the latter scenario the relativistic protons have long life times and can travel a large distance from their source before they release their energy. Hence, secondary electrons may cause radio haloes.

In principle, observations of non-thermal cluster phenomena could provide an independent and complementary way of studying the growth of structure in our Universe and could shed light on the existence and the properties of the warm-hot intergalactic medium (WHIM), provided the underlying processes are understood. Sheets and filaments are predicted to host this WHIM with temperatures in the range $10^7–10^8$ K whose evolution is primarily driven by shock heating from gravitational perturbations breaking on mildly non-linear, non-equilibrium structures (Cen & Ostriker 1999). Low-frequency aperture arrays such as LOFAR are ideally suited to detect many diffuse steep-spectrum sources. In the next two years, the first LOFAR survey is expected to chart a million galaxies and may discover hundreds of cluster radio haloes (Röttgering et al. 2006). It is thus timely to study the distribution of diffuse radio sources in a cosmological context.

There have been efforts to simulate the non-thermal emission from galaxy clusters by modelling discretized cosmic ray (CR) energy spectra on top of Eulerian grid-based cosmological simulations (Miniati 2001, 2004, 2007). Recently, a series of papers explored the dynamical impact of CR protons on hydrodynamics in a cosmological SPH simulation (Pfrommer et al. 2006; Enßlin et al. 2007; Jubelgas et al. 2008). Skillman et al. (2008) presented a new method for identifying shock fronts in adaptive mesh refinement simulations and they computed the production of CRs in a cosmological volume adopting a non-linear diffusive shock acceleration model. They found that CRs are dynamically important in galaxy clusters. Pfrommer, Enßlin & Springel (2008) used GADGET simulations of a sample of galaxy clusters and implemented a formalism for CR physics on top of radiative hydrodynamics. They modelled relativistic electrons that are (i) accelerated at cosmological structure formation shocks and (ii) produced in hadronic interactions of CRs with protons of the ICM. Pfrommer et al. (2008) approximated both the CR spectrum and that of relativistic electrons locally by single power laws with free parameters for the slope, the normalization and the low energy cut-off. Energy and momentum conservation, including source and sink terms, result in evolution equations for the spectra. They found that the radio emission in galaxy clusters is dominated by secondary electrons. Only at the location of strong shocks the contribution of primary electrons may dominate. In the cluster centres, they found a radio emission of about $10^2 h^{-1}$ mJy arcmin$^{-2}$, while in the periphery the average emission is $10^{-1} h^{-1}$ mJy arcmin$^{-2}$. Recently, Battaglia et al. (2008) studied the radio emission for a sample of 10 galaxy clusters extracted from zoomed cosmological SPH simulations. They determined the radio luminosity, spectral index and Faraday rotation measure for regions of the relics and concluded that upcoming radio telescopes will allow to probe the plasma physics in galaxy clusters.

Little is still known about the structure of shock fronts in the ICM. With high resolution imaging one can constrain the width of the transition and a deconvolution of the images gives an estimate for the density and pressure jump. Since the mean free path of protons in the cluster environment is of the order of Mpc, shock fronts in the ICM are collisionless. As studies of the best investigated collisionless shock front, namely the Earth bow shock, have revealed, the dissipation of the upstream kinetic energy is a complex process and depends on several shock properties (see e.g. Burgess 2007 for an introduction). For instance, the angle between the upstream magnetic field and the shock normal determines if an ion can gyrate between the upstream and downstream region, and the Mach number determines if instabilities in the shock region operate efficiently. However, shock fronts in the ICM may differ significantly from the bow shock of the Earth as, for instance, the upstream plasma in the ICM is much less magnetized. Unfortunately, it is beyond the scope of current computer resources to study collisionless shock from first principles, since scales from the electron gyro radius up to the large-scale structure of the shocks are involved. In hybrid simulations, an effective small-scale response of electrons and protons is assumed. Using such a method, Bell & Lucek (2001) found that
upstream CRs excite Alfvén waves and thereby amplify the magnetic field.

In this paper, we combine a large cosmological simulation with a simple model for the radio emission of shock accelerated electrons. Our aim is to apply the emission model to the whole range of shock fronts generated during cosmic structure formation. A representative shock front sample is obtained from the MareNostrum Universe simulation which has been carried out with TreeSPH code GADGET-2. We have developed a novel approach for locating the shock fronts and to estimate their Mach number. For computing the radio emission, we follow Hoefl & Brüggen (2007, hereafter HB07). They assumed that electrons are accelerated by diffusive shock acceleration and cool subsequently by synchrotron and inverse Compton losses. As a result, the radio emission can be expressed as a function of downstream plasma properties, Mach number and surface area of the shock front. Applying this radio emission model to the MareNostrum Universe simulation leads to radio-loud shock fronts with complex morphologies. We visualize these shock fronts to show where the radio emission is generated and compute artificial radio maps. As the MareNostrum Universe simulation provides a cosmologically representative cluster sample, we also investigate the relation between radio luminosity and X-ray temperature.

This paper is organized as follows: in Section 2, we briefly summarize the main characteristics of the MareNostrum Universe simulation. In Section 3, we describe our approach for locating strong shock fronts in a SPH simulation and for estimating the Mach number. The radio emission model as worked out in HB07 is outlined and adopted for the SPH simulation in Section 4. Finally, in Section 5 we show our results for the shock fronts in the MareNostrum Universe simulation and for the radio properties of structure formation shocks.

2 THE SIMULATION

To study the large-scale distribution of dark matter and gas in the universe, we have carried out a large cosmological gasdynamical simulations dubbed ‘MareNostrum Universe’ (Gottlöber &Yepes 2007). In this simulation, we assumed the spatially flat concordance cosmological model. In a series of lower resolution simulations, we have studied the effect of different normalization of the power spectrum (Yepes et al. 2007).

This paper is based on the original simulation with the cosmological parameters $\Omega_m = 0.3$, $\Omega_{\Lambda} = 0.7$, $\sigma_8 = 0.9$ and the slope $n = 1$ of the power spectrum. The simulation has been carried out with the GADGET-2 code (Springel 2005). Within a box of $500 h^{-1}$ Mpc size the linear power spectrum at redshift $z = 40$ has been represented by 1024^3 dark matter particles of mass $m_{DM} = 8.3 \times 10^8 h^{-1} M_\odot$ and the same number of gas particles with mass $m_{gas} = 1.5 \times 10^9 h^{-1} M_\odot$. Within GADGET-2 the equations of gas dynamics are solved by SPH method in its entropy conservation scheme. Radiative processes or star formation are not included in this simulation. The spatial force resolution was set to an equivalent Plummer gravitational softening of $15 h^{-1}$ kpc (comoving) and the SPH smoothing length was set to the distance to the 40th nearest neighbour of each SPH particle.

We have identified objects in this simulation using a parallel version of the hierarchical friends-of-friends (FOF) algorithm described in Klypin et al. (1999). The FOF algorithm is based on the minimal spanning tree (MST) of the particle distribution. The highest density peaks of the objects are calculated using a shorter linking length ($1/8$ of the virial linking length corresponding to 512 times the virial overdensity). The virial radius (overdensity 330) has been calculated around these centres. The most massive cluster contains about 250 000 dark matter particles and 230 000 gas particles within the virial radius. The mass of this cluster is $2.5 \times 10^{15} h^{-1} M_\odot$. For the analysis presented in this paper, we selected the 300 most massive clusters. The least massive cluster taken into account has a mass of $4 \times 10^{14} h^{-1} M_\odot$, corresponding to roughly 50 000 dark matter and gas particles.

3 FINDING AND CHARACTERISING SHOCKFRONTS IN SPH SIMULATIONS

The temperature of the ICM, as derived from the X-ray emission, rises with the mass of a cluster. Roughly, the temperature is proportional to the velocity dispersion of the cluster galaxies, indicating that the gravitational energy gained during infall is mainly dissipated in the ICM. Since the latter is collisionless, meaning that Coulomb collisions are rare compared to the dynamical time-scales, viscous dissipation is inefficient but shocks have to turn the energy gained by infall into heat. Therefore, shock heating has to be captured by any numerical scheme for simulating the formation of galaxy clusters.

In SPH, artificial viscosity is used to dissipate energy in shocks. Shock fronts are detected by evaluating the velocity field within the SPH kernel. Negative velocity divergence indicates a region of a shock. The form of the artificial viscosity is tuned to obey the jump conditions of discontinuities and to avoid spurious dissipation at shear flows. Simulations of the Sod shock tube problem (Landau & Lifshitz 1959) and comparison with the analytic solution show that artificial viscosity reliably determines the dissipation at a shock front, see for example Springel (2005). However, this formalism does not rely on physical properties of shock fronts, such as the density or temperature jump. Since we will need the Mach number of the shock to compute the radio emission, we have to locate the shock fronts in the simulation and to determine their Mach number.

3.1 Hydrodynamical shocks

In cosmic gas flows the bulk velocity often exceeds the local sound speed. As a result, shock fronts develop and dissipate the kinetic energy. The front separates the pre-shock (upstream) and the post-shock (downstream) regime. At the shock front the coherent motion of the upstream gas is partly randomized, meaning that part of the kinetic energy is converted into heat. Dissipation may proceed via an intricate sequence of processes, however, mass, momentum, and total energy fluxes are conserved, except for radiative losses. For non-radiative, unmagnetized shocks, upstream and downstream density, ρ, velocity v, pressure P, and specific internal energy, u, are related by

$$
\rho u v = \rho u v_d,
$$
$$
P + \rho u v_d^2 = P_d + \rho u v_d^2,
$$
$$
\frac{1}{2} v^2_u + u + \frac{P}{\rho} = \frac{1}{2} v^2_d + u_d + \frac{P_d}{\rho_d},
$$
(1)

where the velocities have to be measured in the rest-frame of the shock surface. For a more detailed description of jump conditions, see, for example Landau & Lifshitz (1959). The entropy, in contrast, increases at the shock discontinuity due to the dissipative processes. As a measure for entropy, we will use for simplicity the entropic index

$$
S = u \rho^{1-\gamma},
$$
(2)
where γ denotes the adiabatic exponent. For given upstream plasma conditions, a shock front is entirely characterized by the upstream Mach number
\[M = \frac{u_d}{c_s}, \]
(3)
where c_s denotes the upstream sound speed, $c_s^2 = \gamma (\gamma - 1)u_s$. Alternatively, the shock front can also be characterized by the compression ratio,
\[r = \frac{\rho_d}{\rho_u}, \]
(4)
or the entropy ratio,
\[q = \frac{S_d}{S_u}. \]
(5)
In order to identify shock fronts in the MareNostrum Universe simulation and to determine the related radio emission, it will be useful to express the Mach number and the compression ratio as a function of the entropy ratio. Therefore, we relate these three properties by the help of the definition of the Mach number, equation (3), and the conservation equations, equations (1). For the Mach number we find
\[M^2 = \frac{1}{c_s^2} \frac{\rho_d P_d - \rho_u P_u}{\rho_u}, \]
Furthermore, assuming that the plasma obeys the polytropic relation, that is $P = (\gamma - 1)\rho u$, we obtain
\[M^2 = \frac{r^{\gamma - 1}}{\gamma - 1} \quad \text{(6)} \]
For a polytropic plasma, the compression ratio and entropy ratio are related by the implicit equation
\[r = (\gamma + 1)q r^\gamma + (\gamma - 1) \left((\gamma - 1) g r^\gamma + (\gamma + 1) \right) \quad \text{(7)} \]
Equations (6) and (7) provide a one-to-one mapping between the Mach number, compression ratio and entropy ratio. Finally, the difference between downstream and upstream velocity is related to the Mach number via
\[v_d - v_u = M \frac{r - 1}{r} u_u, \]
(8)
Our Mach number estimator computes the entropy ratio, q, and $(v_d - v_u)/\gamma u_u$ for each SPH particle in the simulation. Beforehand, we tabulate the relations between q, r, M, and $M(r - 1)/r$. This allows us to simply read the Mach number from the table. The implementation of the Mach number estimator is explained in Section 3.2.

Most likely, the structure of cosmological shock fronts is more complex than that of simple hydrodynamical shocks. It is beyond the scope of this paper to include a more detailed structure of collisionless shocks. Instead, we combine the shock fronts detected in the simulation with a parametric model for the radio emission. Any aspect of the shock structure has to be captured by the parameters used for the radio emission since cosmological simulations are not able to resolve any relevant scale for plasma processes.

3.2 A novel approach for estimating the Mach number

Our aim is to identify shock fronts in the MareNostrum Universe simulation and to derive the Mach number of the shocks. In order to estimate the radio emission produced by the shock, we will need the Mach number, downstream temperature and electron density. In SPH, energy is dissipated at shocks using an artificial viscosity. Most implementations of artificial viscosity follow the suggestions by Monaghan (1992) and Balsara (1995). In addition, viscosity limiters are used to reduce spurious angular momentum transport in shear flows (Balsara 1995; Steinmetz 1996). In contrast to actually solving a Riemann problem, the SPH formalism does not identify any discontinuity. For our purpose, it is sufficient to identify the shock fronts by post-processing snapshots of the simulation.

One possible approach is to extract the ratio of the upstream and downstream entropy. In SPH, the dissipation rate is computed but the upstream and downstream entropy are never computed. The ratio of these two quantities would immediately give the strength of the shock. Pfrommer et al. (2006) determine the entropy gain in the shock by computing the product of the dissipation rate and the estimated crossing time of particles through the smoothed shock front. However, for particles in the SPH broadened shock front the analysis of local properties underestimates the strength of a shock. Pfrommer et al. (2006) cure this difficulty by using the maximum Mach number from within a certain time interval. As we wish to determine the Mach number from a single snapshot, we have developed the following scheme.

In the first step, for each SPH particle, we compute the entropy gradient, ∇S. In a shock front, this gradient gives the direction of the shock normal pointing into the downstream direction. We define an associated upstream position,
\[x_u = x_i + f_s n_i n_1^1, \]
(9)
where x_i is the position of the SPH particle i, f_s the smoothing length of the particle i, and n_1 denotes the shock normal, $n_1^1 = -\nabla S/|\nabla S|$. Moreover, we have introduced a factor f_s, chosen to be 1.3, which ensures that x_u is indeed in the upstream region and not in the transition between upstream and downstream properties.

In a similar manner, we introduce an associated downstream position, x_d, in the opposite direction.

Using the usual SPH scheme, we compute the density and internal energy at the upstream and downstream position. Moreover, we compute the velocity at these two positions and project it on to the shock normal. This results in the upstream and downstream velocity, $v_{u1} = v(x_u) \cdot n_1^1$ and $v_{d1} = v(x_d) \cdot n_1^1$, where v_u is the velocity of the shock front in the rest-frame of the simulation. Since v_{u1} is not known, it is advantageous to assess only the differences $(v_{d1} - v_{u1})$. Beside a component parallel to the shock normal, the velocity field may also show perpendicular components. We compute these components in a similar manner to the upstream and downstream velocities, $v_{u1}^2 = v(x_i \pm f_s n_i n_2^2) \cdot n_2^2$, where the three vectors n_1^1, n_2^2, and n_3^3 form an orthonormal base.

For those particles, that belong clearly to a shock front, we demand that the velocity has to be divergent in the direction of the shock normal, that is $(v_{d1} - v_{u1}) > 0$. Moreover, the velocity differences in the directions perpendicular to the shock normal have to be smaller than that parallel to the shock, $|v_{u1}^2 - v_{d1}^2| < (v_{d1} - v_{u1})/2$. Therefore, the difference $(v_{d1} - v_{u1})$ gives roughly the velocity divergence.

There are two possibilities to compute the Mach number: first, we can evaluate the entropy ratio $q = S(x_u)/S(x_d)$. Secondly, we can use the ratio $(v_{d1} - v_{u1})/\gamma v_u$. As discussed in Section 3.1, for both properties there exists a one-to-one mapping with the Mach number of the shock. We use a look-up table to obtain for both the entropy ratio and the velocity difference the corresponding Mach number. In order to have a conservative estimate for the Mach number, we use the smaller of the two.
4 THE RADIO EMISSION MODEL IN A NUTSHELL

At collisionless shock fronts a small fraction of particles may be accelerated to energies far beyond the thermal energy distribution. This has been directly observed in particle spectra of the Earth’s bow shock where the resulting momentum distribution depends strongly on the Mach number and the angle between shock normal and the direction of the upstream magnetic field (see Burgess (2007) for an introduction). Also, the radio emission of solar bursts is generally attributed to shock-drift acceleration and subsequent excitation of plasma waves (Holman & Pesses 1983; Cairns et al. 2003). Larger electron energies may be achieved by diffusive shock acceleration (DSA, Drury 1983; Blandford & Eichler 1987; Jones & Ellison 1991; Malkov & O’C Drury 2001). Electrons are efficiently accelerated in supernova remnants presumably by DSA (Berezhko, Ksenofontov & Völk 2003; Vink & Laming 2003). However, the details of particle acceleration at collisionless shocks are complex and not fully understood yet. It is beyond the scope of this paper to include a very detailed model for the processes at collisionless shock fronts. Following our model HB07, we assume that supra-thermal electrons show a power-law spectrum, with a slope as predicted by DSA. We also suppose that a fixed fraction of the energy dissipated at the shock front is used to accelerate electrons. Furthermore, we assume that the supra-thermal electrons advect with the downstream plasma. In this section, we briefly introduce diffusive shock acceleration and review the model discussed in HB07. Moreover, we discuss our assumptions about the magnetic field. Finally, we present shock tube simulations that test our shock finder and allow us to calibrate the emission model.

4.1 Diffusive shock acceleration

In DSA, particles are accelerated by multiple shock crossings, in a first-order Fermi process. If the shock thickness is much smaller than the diffusion scale which, in turn, has to be much smaller than the curvature of the shock front, a 1D diffusion-convection equation can be solved (Axford, Leer & Skadron 1978; Bell 1978a,b; Blandford & Ostriker 1978). The result is that the energy spectrum of suprathermal electrons is a power-law distribution, \(n_E \propto E^{-\gamma} \). The spectral index, \(\gamma \), of the accelerated particles is only related to the compression ratio at the shock front

\[
s = \frac{r + 2}{r - 1}. \tag{10}
\]

For strong, non-radiative shocks with Mach number \(\gtrsim 10 \), the compression ratio is always close to 4, hence the slope \(s \) is always close to 2. This can explain the spectrum of CRs over a huge range of energies and may be considered a piece of evidence for DSA. For a review of diffusive shock acceleration, see Blandford & Eichler (1987), Jones & Ellison (1991) and Malkov & O’C Drury (2001).

4.2 Total emission induced by a shock front

In HB07, we have developed a model for the synchrotron emission from electrons that have been accelerated by DSA. Here, we summarize briefly the model and adapt it for the use in the framework of a SPH simulation. Our basic assumption is that a small fraction, \(\xi_e \), of the energy dissipated at the shock front is used to accelerate electrons to relativistic energies. The theory of diffusive shock acceleration predicts that the supra-thermal electron distribution obeys a power law,

\[
dn_e \frac{dE}{dE} = C_{\text{spec}} f_{\text{spec}}(e, s) = C_{\text{spec}} n_e \frac{1}{m_ec^2} e^{-\gamma} \quad \text{for} \quad e > e_{\text{min}}, \tag{11}
\]

where \(n_e \) is the electron density and \(C_{\text{spec}} \) is a normalization factor. The kinetic energy is measured in units of the electron rest mass, \(e = E/m_ec^2 \). The energy \(e_{\text{min}} \) denotes the transition energy from the thermal Maxwell–Boltzmann distribution to the supra-thermal power-law distribution. In HB07, we have determined the normalization factor,

\[
C_{\text{spec}} = \frac{\xi_e u_d m_p (q - 1)}{c q} \frac{1}{F_{\text{spec}}(e_{\text{min}}, s)}, \tag{12}
\]

where \(F_{\text{spec}}(e_{\text{min}}, s) \) is the integral of the power-law distribution without normalization,

\[
F_{\text{spec}}(e_{\text{min}}, s) = \int_{e_{\text{min}}}^{\infty} \frac{d}{de} f_{\text{spec}}(e', s). \tag{13}
\]

The transition energy, \(e_{\text{min}} \), has to be derived iteratively from the condition that supra-thermal electrons carry the fraction \(\xi_e \) of the kinetic energy.

For computing the radio emission, we assume furthermore that the electrons are advected with the downstream plasma. This is justified since the electron gyro radii are small, orders of magnitude below one pc for any reasonable magnetic field strength and electron energy. Downstream electrons with \(e \gtrsim 100 \) cool mainly by synchrotron and inverse Compton losses (Sarazin 1999). These electrons also contribute most to the detectable radio emission. For these two cooling mechanisms, the evolution of electron distribution function can be described analytically (Kardashev 1962),

\[
dn_e \frac{dE}{dE}(t) = C_{\text{cool}} n_e \frac{1}{m_ec^2} e^{-\gamma} \left(1 - C_{\text{cool}} e\tau t \right)^{-2}, \tag{14}
\]

with

\[
C_{\text{cool}} = \frac{4 \sigma_T}{3 m_e c} \left(u_{\text{CMB}} + u_B \right). \tag{15}
\]

Here, \(u_{\text{CMB}} \) denotes the energy density of the cosmic microwave background, \(u_B \) the energy density of the downstream magnetic field and \(\sigma_T \) the Thomson cross-section. We assume that in the zone relevant for radio emission the electron density and the magnetic field strength are constant. Evidently, the ICM varies in the region of the radio relics. We still ignore this effect since much larger uncertainties derive from our poor knowledge about the microphysics of collisionless shocks in the ICM.

The radio emissivity, \(P(e, v_{\text{obs}}) \), depends on the energy of the electron energy, \(e \), the observing frequency, \(v_{\text{obs}} \), and the magnetic field strength, \(B \) (Rybicki & Lightman 1986). Convolving the emissivity with the electron distribution, equation (14), and integrating over the downstream region results in the total emission behind the shock front,

\[
\frac{dP(v_{\text{obs}})}{dv} = m_ec^2 A \int_0^\infty dy \int_{e_{\text{min}}}^{\infty} dE \frac{dn_e}{dE} [r(y)] P(e, v_{\text{obs}}), \tag{16}
\]

where \(y \) denotes the normal distance of a downstream location to the shock front, and \(A \) is the surface area of the shock front. In HB07, we have evaluated the integral, equation (16). We found that the emission can be given by the shock surface area, the Mach number, the downstream temperature, the electron density, and the magnetic
field strength,

$$
\frac{dP}{dv} = 6.4 \times 10^{34} \text{erg s}^{-1} \text{Hz}^{-1} \times \frac{A}{\text{Mpc}^2} \times \frac{n_e}{10^{-4} \text{cm}^{-3}} \times \frac{1}{0.05} \left(\frac{v_{\text{obs}}}{1.4 \text{GHz}} \right)^{-\frac{\alpha}{2}} \times \left(\frac{T_d}{7 \text{keV}} \right)^{3/2} \times \frac{(B/\mu G)^{1+\frac{\alpha}{2}}}{(B_{\text{CMB}}/\mu G)^2 + (B/\mu G)^2} \Psi(M, T_d). \quad (17)
$$

The function $\Psi(M, T_d)$ comprises all dependencies on the Mach number. Basically, $\Psi(M, T_d)$ rises steeply for Mach numbers in the range 2–4 and is constant for large Mach numbers.

In HB07, we integrated equation (16) for a steady-state situation, where all time stages of the electron distribution function are present, from the newly accelerated distribution to a long time cooled spectrum. In a steady-state situation, the overall synchrotron emission spectrum obeys a power law. The slope of the spectrum is $s/2$, even though, locally, the slope may vary from the slope of newly accelerated electrons, $(s - 1)/2$, to a very steep spectrum. This distribution of the spectral index agrees well with the observation for several radio relics (e.g. Orrù et al. 2007; Fizzo et al. 2008).

As discussed in HB07 the integral, equation (16), can also be used to estimate the extent in γ-direction, normal to the shock. We found that the extent depends mainly on the magnetic field. In the cluster centre, the strength may be of the order of 1 μG. In this case, 50 per cent of the radio emission comes from a region with a size of a few hundred kpc in γ-direction, i.e. the size of the radio object is of the order of the size of the cluster centre. In contrast, in the cluster periphery the magnetic field strength may be of the order of 0.1 μG. In this case, the extent of the emission region is about 100 kpc, which is significantly smaller than the scale of spatial variations in the cluster periphery. In the following, we assign the radio emission solely to the shock front and ignore the extent of the radio emission region in γ-direction. This approach is perfectly suited for studying the radio emission in the cluster periphery, since there the downstream extend of the emission region is smaller than the numerical resolution. In the cluster centre, our approach may lead to too compact radio objects.

The shock finder described in Section 3.2 allows us to locate shock discontinuities in a SPH simulation snapshot. The shock finder also provides estimates for the Mach number, M, and the downstream temperature, T_d, of the shock front. Since in SPH a shock front is comprised of particles, each particle represents an area of the shock. More precisely, the shock discontinuity is smoothed by the size of the SPH kernel, h_{SPH}, see Fig. 1. The kernel may contain N_{SPH} particles, the corresponding volume is of the order of h_{SPH}^3. Hence, one particle belonging to the shock front represents a shock area of

$$
A = f_a \frac{h_{\text{SPH}}^2}{N_{\text{SPH}}}, \quad (18)
$$

where f_a is a normalization constant, which will be determined by the help of Sed shock tube simulations, see Section 4.4. Finally, we have to determine the downstream magnetic field strength. In Section 4.3.1, we detail how we estimate B_d. The used parameters are summarized in Table 1.

![Figure 1. The shock structure in SPH simulations.](https://academic.oup.com/mnras/article-abstract/391/4/1511/1079321/15-M. Hoeft et al.)

4.3 Magnetic field model

The downstream magnetic field is crucial for the synchrotron emission. For a power-law electron energy distribution, the emission is given by

$$
P(v) \propto n_e (B \sin \theta)^{1+\alpha} v^{-\alpha}, \quad (19)
$$

where θ is the pitch angle between the electron velocity and the magnetic field. The exponent α is related to the slope of the electron spectrum by $\alpha = (s - 1)/2$. Unfortunately, in equation (19) the electron density and the field strength are degenerated. Therefore, evaluating only the synchrotron emission of diffuse radio objects in the ICM is not sufficient to derive the magnetic field strength. For some clusters, it has been possible to measure the electron density by the hard X-ray excess in the cluster spectrum [see Rephaeli et al. (2008) for a review]. As a result, the average cluster magnetic field strength has been estimated to be of the order of 0.1–1 μG (Fusco-Femiano et al. 2001; Rephaeli & Gruber 2003; Rephaeli, Gruber & Arieli 2006). Alternatively, one assumes that the energy density of the ICM is minimal (Govoni & Feretti 2004). This method also results in magnetic field strengths of the order of 0.1–1 μG. Contrarily, Faraday rotation measurement studies (see e.g. Govoni et al. 2006) typically yield field strengths that are larger by about an order of magnitude.

Beside the strength also the structure and origin of magnetic fields in the ICM is still debated (for a recent review on cosmic magnetic fields see Kulsrud & Zweibel 2008). Intergalactic magnetic fields may be a remainder of primordial processes, may be generated by a dynamo in first stars and subsequently expelled (Rees 2005), or may be generated by the Biermann battery effect during cosmic re-ionization (Gnedin, Ferrara & Zweibel 2000), may be caused by microinstabilities in the turbulent ICM (Schekochihin et al. 2005) or may be generated within collisionless accretion shocks (Ryu et al. 2008). It is beyond the scope of this paper to include a detailed model for the generation and evolution of magnetic fields since even the passive evolution of magnetic fields during cosmic structure formation is complex (Dolag, Bartelmann & Lesch 2002; Brüggen et al. 2005). Instead, we assume here that the magnetic strength in the downstream region of the shock front, B_d, on average simply obeys flux conservation to follow

$$
\frac{B_d}{B_{\text{ref}}} = \left(\frac{n_e}{10^{-4} \text{cm}^{-3}} \right)^{2/5}, \quad (20)
$$

where B_{ref} is 0.1 μG (see Table 1).
Table 1. Parameters used in the MareNostrum Universe simulation, for finding shock fronts, for estimating the Mach number and for assigning the radio emission.

Module	Parameter	Symbol	Value	See section for details
MareNostrum Universe	mass dark matter part.	m_{DM}	$8.3 \times 10^8 \, h^{-1} \, M_\odot$	2
	mass gas particles	m_{gas}	$1.5 \times 10^9 \, h^{-1} \, M_\odot$	
	Force resolution	r_{soft}	$15 \, h^{-1} \, \text{kpc (comoving)}$	
	SPH kernel	N_{SPH}	40	
Shock finder	Shock extent factor	f_s	1.3	3.2
	Part. number in kernel	N_{kernel}	80	3.2
Mach number estimator	Shock area fraction	f_A	6.5	4.2, 4.4
	Mach number correction	\mathcal{M}	$\mathcal{M} \times 1.045$	4.4
Radio emission	Energy fract. in supra-thermal e$^-$	ξ_e	5×10^{-3}	4.2
	Reference magn. field strength	B_{ref}	0.1 μG	4.3

4.4 Normalization of the radio emission

In our model, it is necessary to determine the effective area of the shock front represented by one SPH particle, A_i, which may also depend on the actual Mach number. Therefore, we simulated the Sod shock tube problem using the 3D-version of the GADGET-II code and choosing an elongated box. We determine the Mach number by our method described in Section 3.2. As shown in Fig. 2, the original Mach number used to set up the initial conditions is well reproduced by the Mach number estimator. We have simulated shock tubes with Mach numbers from 1.5 to 100. This covers well the range of relevant Mach numbers for the radio emission of merger induced and accretion shocks. In all cases, the theoretically expected Mach number is found in the centre of the transition region between the upstream and the downstream region. In the periphery, the Mach number is underestimated, i.e. the particles in the shock region show a Mach number distribution, as shown in the third row of Fig. 2.

The theoretical value of the radio emission (green dashed line in Fig. 2) is easily computed via equation (17). The Mach number is known from setting up the initial conditions of a shock tube, and the properties of the downstream plasma are known from the analytic solution. In the simulation, a large number of SPH particles contributes to the emission. To show the total emission, we plot the cumulative radio emission, that is the emission, $P(x)$, of all particles on the right-hand side of a given x-position is summed,

$$P(<x) = \sum_{i} P(x_i) \quad \text{with} \quad x_i > x.$$ \hspace{1cm} (21)

We can normalize the emission in the shock tube by appropriately choosing the area normalization factor, f_A, introduced in equation (18). In principle, we just have to multiply f_A by the ratio of the theoretical emission to the sum derived from shock tube test. However, we find that f_A depends on the Mach number of the shock. This has the following origin: as noted above the Mach number estimator results in a distribution of Mach numbers for the particles in the SPH-broadened shock discontinuity. For small Mach numbers, $\mathcal{M} \lesssim 5$, the radio emission depends strongly on \mathcal{M}, while for large Mach numbers it does not. Hence, a constant area normalization factor, f_A, would systematically underestimate the radio emission of shocks with $\mathcal{M} \lesssim 5$. One could correct for this effect by...
introducing a function $f_A(M)$. However, we choose a somewhat simpler solution and increase the Mach number slightly when computing the radio emission for a particle,

$$\Psi(M) \rightarrow \Psi(M \times 1.045).$$ \hspace{0.5cm} (22)

As a result, we are able to reproduce the expected radio emission of the different shock tubes with deviations smaller than a factor of 3. Regarding the simplicity of our model (power-law electron spectrum, uniform energy fraction in supra-thermal electrons, flux conservation of magnetic field), this accuracy is sufficient.

5 THE RADIO EMISSION IN THE SIMULATION

We now wish to apply the tools prepared in the previous sections to estimate the radio emission of strong shocks which occur during cosmic structure formation. The most luminous diffuse radio emission is observed in massive clusters or their periphery. We therefore analyse massive clusters from a cosmological simulation. Our aim is to apply the radio emission model to the whole range of structure formation shocks, caused by mergers and gas accretion. In this paper, we estimate only the radio emission which is originated by primary electrons.

We apply the Mach number estimator described in Section 3.2 and the radio emission model described in Section 4.2 to the MareNostrum Universe simulation described in Section 2. More precisely, we analyse the 300 most massive clusters with masses in the range $0.4\rightarrow 2.5 \times 10^{15} h^{-1} M_\odot$. We do not include less massive clusters since the resolution gets too poor. First, we show the results of our Mach number estimator for a selection of clusters. Then, we present artificial observations and compare them to observed radio relics.

Finally, we discuss how the radio emission correlates with X-ray temperature of the clusters.

5.1 The ICM in slices

It is instructive to look at the physical properties of the ICM in slices through the cluster, see Fig. 3. One can clearly see how the temperature rises sharply in the periphery of a cluster, far beyond the virial radius. At this location, about 4 times the virial radius, the ICM gets heated to cluster temperatures, that is about 1 keV, by accretion shocks. Within clusters, the temperature and entropy maps are complex since rather cold intergalactic medium flows in filaments to the cluster centre and ongoing or past mergers lead to intricate gas flows. However, the velocity divergence reveals also the location of the inner merger shocks, see Fig. 4. Note that we compute the divergence according to the procedure described in Section 3, i.e. we determine first the shock normal and subsequently compute the difference $(v_d - v_u)$. As also described in Section 3, the ratio of the velocity divergence and the upstream sound speed allows us to infer the Mach number of the shock. Additionally, the ratio of downstream and upstream entropy allows to determine the Mach number. We use the minimum of both for further analysis, that is for computing radio emission.

5.2 Visualising the shock fronts

As seen in the slices through the clusters, the geometry of the strong shocks may be very complex. To visualise the shocks, we represent each particle in the shock front by a small square with the surface normal parallel to the shock normal. Each of these square may be considered as a small part of the shock surface. The edge length of a
Diffuse radio emission from clusters

Figure 4. Velocity divergence in a slice through the cluster centre for six different clusters of our sample. The velocity divergence refers here to the difference \(v_d - v_u\), see Section 3. One can clearly distinguish the outer ‘accretion’ shocks and the inner ‘merger’ shocks. Note that the width of the shocks is caused by the numerical resolution, which is much poorer in the region of the accretion shocks than in inner region of the clusters.

square is proportional to the smoothing length of the corresponding SPH particle.

We colour code the squares by the radio emission computed for the corresponding SPH particle. Fig. 5 shows a textbook example of a double relic found in the MareNostrum Universe simulation. This cluster has developed two large shock fronts in the cluster periphery, similar to the radio objects found in A3667 (Röttgering et al. 1997) and A3376 (Bagchi et al. 2006). In addition to the emission of each SPH particle in the shock front, we colour code the orientation of the shock normal. We shade squares grey for which the normal points away from the observer, where the level of shading depends on the angle, \(\alpha\), between shock normal and the direction to the observer. As a result, shock fronts which propagate towards the observer appear blueish while fronts which move away appear greyish.

To show the location of the cluster, we represent the SPH particles by dots with the temperature colour coded. Infalling substructures can often be identified in temperature maps since they are usually much colder than the surrounding ICM. The clusters in the MareNostrum Universe simulation show radio objects with very different morphologies. In Fig. 6, four examples are displayed, each of which viewed from three different angles. As discussed above, cluster A contains a textbook example for a double relic. Cluster B shows only one relic which is composed of several smaller fragments. In cluster C, several strongly emitting sources in the centre of the cluster are found. Finally, cluster D shows the emission of an early state merger system. The temperature of this cluster is only about 4 keV (see Table 2), but still a strong radio relic has been developed.

The structure of the shock fronts can be seen best in an animation. We therefore encourage the reader to view the movies of the rotations of the four exemplary clusters available from our website.

5.3 Radio maps

Having assigned a radio luminosity to each SPH particle, we are able to compute artificial radio maps. To this end, we project the emission of each particle along the line of sight and smooth it according to the SPH kernel size. We compute the radio emission for an observing frequency of 1.4 GHz and a hypothetical beam size of \(10 \times 10\) arcsec². For comparison, we also compute contours of the bolometric X-ray flux. We follow Navarro, Frenk & White (1995) and assign each particle the luminosity

\[
L_X = 1.2 \times 10^{24} \text{ erg s}^{-1} \frac{n_e \mu m_p}{\mu m_p} \frac{n_e}{\text{cm}^{-3}} \left(\frac{T}{\text{keV}} \right)^{1/2}. \tag{23}
\]

Fig. 7 shows the artificial radio maps and the X-ray contours for the same clusters already presented in Fig. 6. The double relic structure of cluster A becomes even more prominent. The X-ray contours reveal for some viewing angles clearly the merger state of the clusters.

The examples in Figs 7 and 6 are selected to illustrate the variety of diffuse radio objects obtained by our simple emission model. Example A shows the large-scale merger shocks that are also found in

\[\text{www.faculty.iu-bremen.de/mhoeft/RadioRelicAnimation/}\]
idealized merger simulations (e.g. Roettiger et al. 1999). In contrast, example C shows a large number of smaller shock fronts. Some of them are related to substructures moving through the ICM, while others are obviously unrelated to any substructure (this can be best seen in the animations mentioned above). The morphology of the radio emission resembles that found in A2255, where several rather small pieces of diffuse radio emission have been detected (Pizzo et al. 2008).

Another property of our model for diffuse radio emission is the fact that many of the massive clusters show no or only little radio emission. Therefore, we show four examples of almost radio-quiet clusters, see Fig. 8. Example E is the stereotype of a relaxed massive clusters. For this cluster, the time past since its last major merger, tmerger, is 5.3 Gyr, where we call a major merger a merger whereby the cluster mass increases by at least 25 per cent. Hence, there is no large-scale shock present which can cause significant radio emission, only a very few small regions with a radio-loud shock are found. Examples F and G in contrast show distortions in the X-ray morphology, indicating recent merger activity. However, the resulting merger shocks are very faint in the radio. Finally, example G shows a merger in an early state with no radio emission. Hence, even with our simple radio emission model merger activity does not lead in all cases to strong radio emission. This is expected from modelling electron acceleration at the shock front, since a Mach number above 2.5 is needed for a significant amount of radio emission. Many of the merger shocks have lower Mach numbers.

5.4 The luminosity function of radio objects

As can be seen by the examples A to D, one can often divide the emitting structures into individual objects, such as the emission in front of a supersonically moving galaxy and that of a merger shock front travelling outwards in the ICM. In order to identify individual radio objects in our simulation, we select all particles whose radio emission lies above a very low threshold. For these particles, we determine their nearest neighbours, and obtain as a result a spanning tree for radio-loud particles. We now cut all links that are larger than the minimum of the smoothing lengths of the two connected particles. As a result, the spanning tree separates into subtrees, each of which can be considered an individual radio object. By this method, we can for instance disentangle the radio emission of an infalling substructure from that of large merger shock. Finally, we compute the cumulative number of radio objects above a given luminosity, see Fig. 9, that is the luminosity function of diffuse radio objects. Most of the very luminous objects (\(P_{1.4} \gtrsim 10^{32} \text{erg s}^{-1} \text{Hz}^{-1}\)) are rather small structures, similar to that seen in example C. The textbook merger shocks, as the example A, have only luminosities of the order of \(10^{31} \text{erg s}^{-1} \text{Hz}^{-1}\) and below. Therefore, the very luminous relics in A3667 seem to be very exceptional.

We choose the parameters of our model in a way that the resulting radio objects agree with observations in the respect that the most luminous ones have a radio power, \(P_{1.4}\), of \(\sim 10^{33} \text{erg s}^{-1} \text{Hz}^{-1}\). Towards small luminosities, the cumulative number of radio objects increases with a slope close to \(-2/3\). For comparison, we compute the radio luminosity within the virial radius of the clusters in the MareNostrum Universe simulation and find an even shallower curve. The rather shallow slope of the faint end of the radio luminosity function reflects that the radio luminosity depends strongly on the cluster mass or temperature. We will discuss this further in the next section.

For comparison, we have shown in Fig. 9 the radio halo luminosity derived by Enßlin & Röttgering (2002). They concluded that the upcoming radio telescope LOFAR could discover about 1000 radio haloes by a survey in a years time-scale. With the parameters used in our model we find a much larger abundance of radio objects. However, we may overestimate the efficiency of diffusive shock acceleration or the strength of magnetic fields. It is worth noticing that the slope of the radio luminosity function at the low-luminosity end is similar to that of Enßlin & Röttgering (2002), hence, one may expect solely from the slope the discovery of a large number of radio objects with LOFAR. The radio luminosity function of clusters is significantly flatter, indicating that one cluster may contain several radio objects with moderate luminosity. However, for a more quantitative analysis model parameters have to be normalized by...
Figure 6. Radio emission and particle distribution for four typical galaxy clusters. The particles of the simulation are represented by dots with temperature colour coded. Each SPH particle that belongs to a shock front, a small square is drawn. The size of the square is proportional to the smoothing length of the particle. The colour gives the radio emission associated with the particle. Moreover, we encode if a square is seen from upstream or the downstream direction. The latter are shaded grey. The circles indicate the viral radius of the galaxy cluster. See Table 2 for the properties of these exemplaric clusters. Each row represents one cluster, rotated by azimuthal angles of 60° and 120°. See Fig. 7 for the projected radio emission.

Table 2. Properties of the selected clusters.

Label	L_{bol} (10^{42} \text{ erg s}^{-1})	T_X (keV)	M_{vir} (10^{15} \text{ h^{-1} M}_\odot)	t_{merger} (Gyr)	$P_{1.4(<2R_{\text{vir}})}$ (10^{31} \text{ erg s}^{-1} \text{ Hz}^{-1})	$\langle B_0 \rangle$ (μG)	Morphology has similarities to
A	2.8	3.7	0.7	2.6	0.35	0.07	A3376, A3667
B	6.4	4.8	0.9	3.0	0.81	0.12	A115, A1664
C	50.4	12.2	1.5	3.1	8.56	0.79	A520
D	11.5	4.1	1.9	2.0	11.52	0.49	
E	19.0	7.8	1.4	5.3	0.04	0.25	
F	7.6	5.3	1.2	4.1	0.12	0.07	
G	23.4	8.1	1.1	1.9	0.10	0.12	
H	5.0	3.7	0.8	1.2	0.03	0.16	
Figure 7. Synthetic observations of the X-ray and the radio emission. We have projected the radio emission and bolometric X-ray emission of the clusters shown in Fig. 6. The radio flux at 1.4 GHz is computed for a hypothetical beam size of 10×10 arcsec2. No redshift effects are taken into account.

5.5 Radio versus X-ray

We also estimate the radio–X-ray correlation of the galaxy clusters in our simulation by computing the bolometric X-ray luminosity and the emission-weighted temperature. Fig. 10 shows that only a fraction of the clusters is very luminous in radio, meaning that they show a radio luminosity above 10^{31} erg s$^{-1}$ Hz$^{-1}$. This is also true for a significant number of the massive, that is hot, clusters. However, the maximum radio luminosity scales strongly with the cluster temperature. This is indeed expected for radio relics the most massive clusters (see e.g. Feretti, Burigana & Enßlin 2004). We plot for comparison the radio luminosity of several radio relics and haloes. The MareNostrum Universe simulation clusters show a trend similar to the observed ones, however, the radio luminosity of our clusters is in average higher than that of the observed clusters. This difference may be caused by our assumptions for the parameters in the radio emission model, i.e. the shock acceleration is too efficient in our model and the magnetic fields are too strong. Alternatively, the X-ray temperature of the simulated clusters might be too low. In a forthcoming work, we will use the comparison to observed radio haloes and relics to constrain our model parameters. Here we wish to point out that our simple emission model taking only primary electrons into account nicely restores in combination with a cosmological simulation the fact that only a small fraction of clusters show luminous diffuse radio structures and in addition the trend in the radio luminosity–X-ray relation.
5.6 Radio emission of accretion shocks

The radio emission shown in Figs 7 and 8 is caused by internal shock fronts in the clusters. It has been speculated that the radio emission of accretion shocks, where for the first time the intergalactic medium gets heated to temperatures of 10^5–10^7 K, may be detected with LOFAR or SKA (Keshet, Waxman & Loeb 2004). Our model allows to estimate the radio emission of accretion shocks. In the cluster periphery, the SPH smoothing length in the MareNostrum Universe simulation is of the order of a few Mpc. In contrast, the downstream extent of the region which produces most of the radio emission is about 100 kpc (HB07), i.e. the SPH broadening of the shock front entails a considerable smoothing of the radio emission. However, in this case our model is particularly suited to compute the radio luminosity since it depends on the surface areas of shocks, which are well determined even for very broadened shocks. We note that the main uncertainty of the radio luminosity of accretion shocks comes from the estimate of the magnetic field. Equation (20) leads to 1 nG in the region of accretion shocks. At present, there are no conclusive constraints on magnetic fields in this region. We can only extrapolate the parameters that lead to a reasonable abundance of diffuse radio objects in clusters of galaxies to the cluster periphery.

Fig. 11 shows artificial radio maps for two of the most massive clusters in the simulation out to a large radius. We find only very little emission in the region of the accretion shocks, which are roughly located at 4 times the virial radius, that is $\sim 10 h^{-1}$ Mpc for the two most massive clusters. The reason is that the temperature as well as density and magnetic field are low in the cluster periphery. As a result, the two clusters shown in Fig. 11 have a radio emission even below 10^{-4} mJy (for a 10×10 arcsec2 beam). Hence, it may be difficult even with the sensitivity of upcoming radio telescopes to detect the accretion shock by their radio emission.
5.7 Magnetic field strength in radio relics

Magnetic fields in the region of radio relics are difficult to determine observationally since the field strength and the number density of relativistic electrons are degenerated in the expression for the radio luminosity. Estimates for ICM magnetic fields range from 0.1 to 10 μG. We compute the radio luminosity-averaged magnetic field within 2 times the virial radius for the sample of clusters presented here in detail, see Table 2. More precisely, we compute

$$\langle B_d \rangle = \frac{1}{P_{1.4}(<2r_{\text{vir}})} \sum_{r_i < 2r_{\text{vir}}} P_{1.4}(r_i)B_d(r_i).$$

We find that for the clusters presented here the average magnetic field strength is in the range of 0.07–0.8 μG. Despite general over-luminosity of the radio objects generated in our simulation the magnetic fields in the downstream region has been modelled with moderate field strength only. This implies that the abundance of radio relics in general can be explained with rather weak magnetic fields in the periphery of galaxy clusters.

6 DISCUSSION AND SUMMARY

We have presented a novel method for estimating the radio emission of strong shocks that occur during the process of structure formation in the universe. Our approach is based on an estimate for the shock surface area and we compute the radio emission per surface element using the Mach number of the shock and the downstream plasma properties. The advantage of our method is that we can accurately determine the emission of the downstream regime without using an approximate, discretized electron spectrum. The disadvantage is clearly that we do not include any aging of the electrons in the downstream medium. However, our main goal here is to compute the radio emission from all shock fronts generated during cosmic structure formation. Our main assumption is that radio emission is caused by primary electrons accelerated at the shock front. To obtain a model suitable for the application in the framework of a cosmological simulation, we have to neglect the complexity of collisionless shocks, details of the electron acceleration mechanisms, the amplification of magnetic fields by upstream CRs, and so forth. The model reflects rather an expectation for the average radio emission entailed by structure formation shocks.

Our results show that in a cosmological simulation one indeed finds textbook examples for large-scale, ring-like radio relics as observed in A3667 and A3376. Our example A shows two large half-shell shaped shock fronts and no radio emission in the centre of the merging cluster. However, cluster A is not very massive, hence the radio luminosity of the two half-shells is low compared to A3667. Another nice example is cluster B which shows a radio relic only one side of the cluster, similar to A115. Beside those spectacular relics in the periphery of galaxy clusters, we find that a lot of clusters show complex, radio-loud shock structures close to the cluster centre. This suggests that part of the central diffuse radio emission in galaxy clusters, that is the radio halo phenomena, can be attributed to synchrotron emission of primary electrons.

We have modelled the radio emission with conservative assumptions for the efficiency of shock acceleration, namely $\xi_e = 0.005$, and for the strength of magnetic fields in the downstream region, namely of the order of 0.07–0.8 μG. Still, we find that the radio luminosity in the cluster region is on average significantly above observed values, see Fig. 10. Even lower values for the acceleration efficiency or the magnetic field strength would suffice to explain the abundance of diffuse radio objects on the sky. In conclusion, our findings support the scenario in which radio relics are generated by primary electrons.

In summary, we have analysed one of the largest hydrodynamical simulations of cosmic structure formation with respect to shock fronts in clusters of galaxies. We have developed a method to identify the shock fronts, to estimate their Mach numbers and their orientation. We have applied the method described in HB07 to determine the radio emission as a function of the shock surface area...
and the downstream plasma properties. Our analysis led to the following results.

(i) By evaluating the entropy and the velocity field we are able to identify strong shocks in the simulation and to determine their properties.

(ii) Using conservative values for the efficiency of strong shocks to accelerate electrons and for strengths of magnetic fields, we are able to reproduce the number density and the luminosity of large-scale radio relics. Only a very few of the most massive clusters show such luminous, extended sources.

(iii) Our model reproduces various spectacular sources of diffuse radio emission at the periphery of galaxy clusters. Other clusters show emission with complex morphology close to the cluster centre. These sources may be classified as part of a central radio halo, following the observational distinction between relics and haloes.

(iv) Our results reproduce the strong correlation between radio luminosity and cluster temperature. The highest radio luminosities occur in dense and hot environments such as massive clusters. In addition, we find that a large number of galaxy clusters show only little diffuse radio emission.

(v) We find that the abundance of radio relics can be explained with efficiency of diffusive shock acceleration for electrons as low as \(\xi_e = 0.005 \) and a strength of magnetic fields in the relic region as low as 0.07–0.8 \(\mu \text{G} \).

(vi) All of the luminous radio relics belong to internal shock fronts. The accretion shocks are located at larger distances from the cluster centre. Since density and temperature are low at this location, their luminosity is too small to reach a similar flux as internal shock fronts.

ACKNOWLEDGMENTS

MH acknowledges DLR funding under the grant 50 OX 0201. MB acknowledges the support by the DFG grant BR 2026/3. The MareNostrum Universe simulations have been done at the Barcelona Supercomputing Center (Spain) and analysed at NIC Jülich (Germany). GY thanks MEC (Spain) for financial support under project numbers FPA2006-01105 and AYA2006-15492-C03. Our collaboration has been supported by the European Science Foundation (ESF) for the activity entitled ‘Computational Astrophysics and Cosmology’ (ASTROSim).

REFERENCES

Axford W. I., Leer E., Skadron G., 1978, 15th International Cosmic Ray Conf. Vol. II. Bulgarska Akad. na Naukite, Sofia, p. 132

Bagchi M., Feretti L., Giovannini G., Govoni F., 2003, A&A, 400, 465

Bagchi J., Durret F., Neto G. B. L., Paul S., 2006, Sci, 314, 791

Balsara D. S., 1995, J. Comput. Phys., 121, 357

Battaglia N., pfommer C., Sievers J. L., Bond J. R., Ensslin T. A., 2008, MNRAS, in press (doi:10.1111/j.1365-2966.2008.14136.x) (arXiv:0806.3272)

Bell A. R., 1978a, MNRAS, 182, 147

Bell A. R., 1978b, MNRAS, 182, 443

Bell A. R., Lucke S. G., 2001, MNRAS, 321, 433

Berezhko E. G., Ksenofontov L. T., Volk H. J., 2003, A&A, 412, L11

Blandford R., Eichler D., 1987, Phys. Rep., 154, 1

Blandford R. D., Ostriker J. P., 1987, ApJ, 221, L29

Brüggen M., Ruszkowski M., Simionescu A., Hoeft M., Dalla Vecchia C., 2005, ApJ, 631, L21

Burgess D., 2007, in Klein K.-L., MacKinnon A. L., eds, Lecture Notes in Physics, Vol. 725, Springer-Verlag, Berlin, p. 161

Cairns I. H., Knoch S. A., Robinson P. A., Kuncic Z., 2003, Space Sci. Rev., 107, 27

Cen R., Ostriker J. P., 1999, ApJ, 514, 1

Deiss B. M., Reich W., Lesch H., Wielebinski R., 1997, A&A, 321, 55

Dolag K., Bartelmann M., Lesch H., 2002, A&A, 387, 383

Drury L. O., 1983, Rep. Prog. Phys., 46, 973

Enßlin T. A., Brüggen M., 2002, MNRAS, 331, 1011

Enßlin T. A., Gopal-Krishna., 2001, A&A, 366, 26

Enßlin T. A., Röttgering H., 2002, A&A, 396, 83

Enßlin T. A., Biermann P. L., Klein U., Kohle S., 1998, A&A, 332, 395

Enßlin T. A., Pfommer C., Springel V., Jubelgas M., 2007, A&A, 473, 41

Feretti L., 2005, Adv. Space Res., 36, 729

Feretti L., 2006, preprint (astro-ph/0612185)

Feretti L., Giovannini G., Böhringer H., 1997, New Astron., 2, 501

Feretti L., Burigana C., Enßlin T. A., 2004, New Astron. Rev., 48, 1137

Fusco-Femiano R., Dal Fiume D., Orlandini M., Brunetti G., Feretti L., Giovannini G., 2001, ApJ, 552, L97

Giovannini G., Feretti L., 2004, J. Korean Astronom. Soc., 37, 323

Giovannini G., Tordi M., Feretti L., 1999, New Astron., 4, 141

Giovannini G., Feretti L., Govoni F., Murgia M., Pizzo R., 2006, Astron. Nachr., 327, 563

Gnedin N. Y., Ferrara A., Zweibel E. G., 2000, ApJ, 539, 505

Gottlöber S., Yepes G., 2007, ApJ, 664, 117

Govoni F., Feretti L., 2004, Int. J. Mod. Phys. D, 13, 1549

Govoni F., Feretti L., Giovannini G., Böhringer H., Reiprich T. H., Murgia M., 2001, A&A, 376, 803

© 2008 The Authors. Journal compilation © 2008 RAS, MNRAS 391, 1511–1526

Figure 11. Synthetic observations of the X-ray and the radio emission of the two most massive clusters in the MareNostrum Universe simulation.
