An efficient method for computing the electronic transport properties of a multi-terminal system

Leandro R. F. Lima,1 Amintor Dusko,1 and Caio Lewenkopf1
1Instituto de Física, Universidade Federal Fluminense, 24210-346 Niterói, RJ, Brazil
(Dated: November 11, 2018)

We present a multiprobe recursive Green’s function method to compute the transport properties of mesoscopic systems using the Landauer-Büttiker approach. By introducing an adaptive partition scheme, we map the multiprobe problem into the standard two-probe recursive Green’s function method. We apply the method to compute the longitudinal and Hall resistances of a disordered graphene sample, a system of current interest. We show that the performance and accuracy of our method compares very well with other state-of-the-art schemes.

I. INTRODUCTION

The recursive Green functions (RGF) method is a powerful tool to calculate the electronic transport properties of quantum coherent mesoscopic systems [1–4]. Several important improvements have been proposed over the last decades to improve the method performance, like an optimal block-diagonalization scheme [5] and a modular RGF method [6, 7], to name a few. Notwithstanding, with few exceptions so far the method has been mainly used to compute the Landauer conductance in two-terminal devices, that is, in systems attached to two leads in contact with electronic reservoirs.

Some studies [4, 8–12] have extended the method to treat multi-probe systems. However, the latter are designed to address systems with very simple geometries, except for Ref. [10] at the expense of increasing the algorithm complexity.

In this paper we report a multi-probe recursive Green’s function (MPRGF) method that generalizes and improves the previous developments. Our scheme is simple to implement, very flexible and capable of addressing systems with arbitrary geometry, and shows a superior or similar performance as compared to the others.

This paper is organized as follows: In Sec. II we summarize the multi-probe Landauer-Büttiker approach and present expressions for the observables of interest cast in terms of Green’s functions. In Sec. III we introduce the adaptive partition scheme that allows for an efficient solution of the problem. We illustrate the method using a simple pedagogical model. Section IV shows an application of the MPRGF method in a physical system of current interest. The processing time and accuracy of the method are discussed in Sec. V. We summarize our results in Sec. VI.

II. ELECTRONIC TRANSPORT PROPERTIES IN MULTIPROBE SYSTEMS

In this Section we present in a nutshell the main results of the Landauer-Büttiker approach to calculate the transport properties of a multi-probe quantum coherent mesoscopic system. The RGF method can be implemented for both a finite element discretization of the Schrödinger equation [13, 14] or a tight-binding model based on a linear combination of atomic orbitals [15, 16]. For simplicity, in this paper we consider nearest neighbor tight-binding models that use a single orbital per site. The generalization to more realistic models is straightforward. With this restriction, we can use the same discrete notation for both above mentioned Hamiltonian models.

In linear response theory, the multiterminal Landauer-Büttiker formula for the electronic current I_α at the terminal α reads [17–19], see Fig. 1,

$$I_\alpha = \sum_{\beta=1}^{N} G_{\alpha\beta} (V_\alpha - V_\beta),$$

where the greek letters label the terminals, V_α is the voltage applied to the α-terminal and $G_{\alpha\beta}$ is the conductance.
given by
\[G_{\alpha\beta} = \frac{2e^2}{h} \int_{-\infty}^{\infty} dE \left(-\frac{\partial f}{\partial E}\right) T_{\alpha\beta}(E) \tag{2} \]
that is cast in terms of the Fermi distribution \(f(E) = \left[1 + e^{(E-E_{\text{F}})/k_B T}\right]^{-1} \) and the transmission \(T_{\alpha\beta}(E) \). The factor 2 assumes spin degeneracy. For cases where the system Hamiltonian depends explicitly on the electron spin projection, one incorporates this degree of freedom in the lattice basis, doubling its size.

The transmission \(T_{\alpha\beta}(E) \) is given by \([20]\)
\[T_{\alpha\beta}(E) = \text{tr} \left[\Gamma_{\beta}(E) G^r(E) \Gamma_{\alpha}(E) G^a(E) \right] \tag{3} \]
where \(G^r = (G^a)^\dagger \) is the retarded Green’s function of the full system (central region and leads, see Fig. 1), whose computation is the central goal of this paper, while \(\Gamma_{\beta} \) is the linewidth of the lead corresponding to the \(\beta \)-terminal. Both \(G^r \) and \(\Gamma_{\beta} \) are expressed in a discrete representation, while \(G^r \) has the dimension of the number of sites in the central region, the dimension of \(\Gamma_{\beta} \) is the number of sites at the \(\beta \)-lead-central region interface. Following the standard prescription \([14, 15]\), the leads are considered as semi-infinite. The decay width is related to the embedding self-energy, namely
\[\Sigma_{\alpha} = V^\dagger G^a_{\alpha} V \tag{4} \]
and
\[\Gamma_{\alpha} = -2\text{Im} \left(\Sigma_{\alpha} \right), \tag{5} \]
where \(V \) gives the coupling matrix elements between the lead \(\alpha \) and the central region, and \(G^a_{\alpha} \) is a contact Green’s function that casts the electron dynamics in the leads, whose computation is the central goal of this paper, while \(\Gamma_{\beta} \) is the linewidth of the lead corresponding to the \(\beta \)-terminal. Both \(G^r \) and \(\Gamma_{\beta} \) are expressed in a discrete representation, while \(G^r \) has the dimension of the number of sites in the central region, the dimension of \(\Gamma_{\beta} \) is the number of sites at the \(\beta \)-lead-central region interface. Following the standard prescription \([14, 15]\), the leads are considered as semi-infinite. The decay width is related to the embedding self-energy, namely
\[\Sigma_{\alpha} = V^\dagger G^a_{\alpha} V \tag{4} \]
and
\[\Gamma_{\alpha} = -2\text{Im} \left(\Sigma_{\alpha} \right), \tag{5} \]
where \(V \) gives the coupling matrix elements between the lead \(\alpha \) and the central region, and \(G^a_{\alpha} \) is a contact Green’s function that casts the electron dynamics in the leads, which can be calculated in a number of ways \([2, 21–23]\).

III. ADAPTIVE SLICING SCHEME

In this section we put forward an efficient adaptive slicing scheme tailor-made for multi-terminal systems. We present general expressions for the Green’s functions and illustrate how the method works using a small and very simple lattice model, depicted in Fig. 2, which serves as a practical guide for the system labels we use. In what follows we deal only with retarded Green’s functions \(G^r \), where \(E \rightarrow E+i\eta \). Hence, to simplify the notation, from now on we omit the superindex \(r \).

The implementation of the RGF method requires a partition of the system into \(N \) domains or “slices”. A given slice \(n \), that contains \(M_n \) sites, is connected only with the slice \(n-1 \) and the slice \(n+1 \) through the hopping matrices \(U_{n,n-1} \) and \(U_{n,n+1} \), respectively, and has an internal hopping matrix \(L_n \). See the lattice model in Fig. 2 for details. Several partition schemes have been proposed in the literature \([5, 11, 12]\). As a rule, it is preferable to minimize the number of sites \(M_n \) inside each slice \(n \) and increase the number of slices \(N \), since the computational time cost scales as \(N \times M_n^2 \).

For two-terminal geometries, it is convenient to connect the first \(n = 1 \) and the last \(n = N \) slices to the left lead \(L \) and to the right lead \(R \), respectively. This partition scheme leads to a block tridiagonal Hamiltonian and a retarded self-energy \(\Sigma \) coupled only to the first and last slices of the system. Thus, in a block matrix representation the self-energy has the form \(\Sigma_{n,n'} = \Sigma_{1,1} \delta_{n,1} \delta_{n',1} + \Sigma_{N,N} \delta_{n,N} \delta_{n',N} \) and \(H + \Sigma \) has a block tridiagonal structure. As long as the last requirement is met, one can apply the RGF method straightforwardly.

Unfortunately, this simple scheme does not work for setups with more than two terminals. Figure 2 shows the standard RGF slicing scheme applied to a very simple two-dimensional lattice system with three-terminals. We show the lattice model in Fig. 2(a) and the corresponding matrix structure of \(H + \Sigma \) for a nearest-neighbor coupling model Hamiltonian in Fig. 2(b). The matrix is sparse as indicated by the white boxes (zero-value matrix elements). Here \(N = 6 \) and each slice \(n = 1, \cdots, 6 \) has \(M_n = 4 \) sites. Note that the matrix elements due to the terminal 3 spoil the tridiagonal block structure of \(H + \Sigma \): Non-zero self-energy matrix elements appear in blocks other than the first and last slices (1 and 6) connecting simultaneously the slices 3, 4, and 5. In more realistic cases of wider leads, the number of non-zero self-energy matrix elements increases and they appear further away from the tridiagonal block structure.

The RGF method has been modified over the years to account for multiple terminals. As mentioned in the introduction, there are some well-established schemes for multi-probe RGF in use, such as the cross strip \([4, 8, 9]\) and the circular \([12]\) methods. All of them, including our scheme, are faster then the full inversion. Nevertheless, their efficiency depends strongly on the system symmetry. The partition scheme we present here finds an optimal set of slices with minimal \(M_n \) for arbitrary system geometries and it is of very simple implementation.

Our MPRGF implementation relies on using the power and simplicity of the standard two-probe RGF equations \([15]\) that is achieved by introducing an adaptive slicing scheme and a (single) virtual lead \([5]\). This is done in two main steps.
(i) **Adaptive partition:** We start the recursion with a virtual “left” lead composed by all the contact sites in the leads, which we call slice \(n = 0 \). We define the slice \(n = 1 \) by the sites that are connected to any lead \(\alpha = 1, \ldots, N_L \), where \(N_L \) is the number of leads attached to the system. The next slices \(n = 2, 3, \ldots \) are composed by the sites that are connected to sites that belong to the \(n - 1 \) slice. This procedure is repeated \(N \) times until all lattice sites are assigned to a slice. This scheme gives a block tridiagonal matrix \(H \) (see mapping below) in a \(N \times N \) block matrix representation. Figure 3(a) shows the proposed slicing scheme applied to the system of Fig. 2. We use different shapes and colors to indicate the slice each site belongs.

(ii) **Site labels reassignment:** We renumber the sites in the system according to the lead they are attached and the slice they belong in increasing order as follows. The sites in \(n = 1 \) are numbered in increasing order according to the leads to which they are connected to. The number of sites connected to the lead \(\alpha \) is \(M_{1\alpha} \). Thus, the total number of sites in the \(n = 1 \) slice is \(M_1 = \sum_{\alpha=1}^{N_L} M_{1\alpha} \). We divide the slice \(n = 1 \) into \(\alpha = 1, \ldots, N_L \) sub-blocks, where the \(\alpha \)-block contains the \(M_{1\alpha} \) sites connected to the lead \(\alpha \) and has dimension \(M_{1\alpha} \times M_{1\alpha} \). The self-energy matrix \(\Sigma \) has nonzero elements only in the sub-blocks \(\Sigma_{\alpha\alpha} \) due to each real lead \(\alpha \). The numbering of sites in the slices \(n \geq 2 \) can follow any specific order as long as each site in slice \(n \) has a higher number than any site in slice \(n - 1 \).

For clarity, let us explicitly implement this scheme for the model system of Fig. 2. Figure 3(b) shows the results. The sites connected to the leads that were originally numbered as 3, 9, 13, 17, 22, and 23 in Fig. 2(a) constitute the slice \(n = 1 \), with \(M_{11} = 1 \), \(M_{12} = 2 \) and \(M_{13} = 3 \) sites connected to leads 1, 2 and 3, respectively, that give \(M_1 = 6 \). Figure 3(a) indicates the sites in slice \(n = 1 \) as red circles. We find this site label reassignment convenient, but is certainly not unique.

Next, the sites connected to the \(n = 1 \) are the sites with the original labels 2, 4, 5, 7, 10, 14, 18, 19, 21 and 24.
These 10 sites belonging to slice 2 are renumbered from 7 to 16 and shown in Fig. 3(a) as blue triangles. Following this protocol, \(n = 3 \) has 6 sites (1, 6, 8, 11, 15, 20) renumbered from 17 to 22 and represented as green squares, while \(n = 4 \) contains 2 sites (12, 16) renumbered as 23 and 24 being represented by purple pentagons in Fig. 3(a).

Figure 3(b) shows the corresponding matrix structure of \(H + \Sigma \). Obviously the matrix has the same sparsity as before, but the size of the blocks can become larger than those expected in the standard RGF depending on the system. Each diagonal sub-block of the block \(n = 1 \) is filled by the self-energy of one lead.

In this example we see that this slicing scheme is simple and fast to implement. It is possible to introduce optimizations to the slicing scheme, such as the one developed for two-probes in Ref. [5] based on the theory of graphs, at the cost of increasing the coding complexity. This discussion is beyond the scope of the present work.

Now we have all the ingredients to calculate the Green’s functions using the RGF method. As standard, the free Green’s functions are defined by setting the inter-slice hopping matrices \(U_{n,n+1} = 0 \). By turning on the inter-slice matrices \(U_{n,n+1} \) we write a Dyson equation for the fully connected system. We perform left and right recursions using the equations [15]

\[
G_{n,n}^L = (E - H_n - U_{n,n-1}G_{n-1,n-1}U_{n-1,n})^{-1}, \quad (8)
\]

\[
G_{n,n}^R = (E - H_n - U_{n,n+1}G_{n+1,n+1}U_{n+1,n})^{-1}, \quad (9)
\]

where \(G_{n,n}^L(G_{n,n}^R) \) is the Green’s function of the slice \(n = 1, \ldots, N \) when all the \(k \) slices at its “left” with \(k < n \) (“right” with \(k > n \)) are already connected. The recursions in Eqs. (8) and (9) start at \(n = 1 \) and \(n = N \), respectively, and depend on the surface Green’s functions of the virtual leads \(G_{0,0}^L \) and \(G_{N,N+1}^R \). The latter are obtained by standard procedures [15, 21]. Since in our scheme all terminals are coupled to a single left virtual lead and the right virtual lead is uncoupled, we write

\[
G_{1,1}^L = (E - H_1 - \Sigma_{1,1})^{-1}, \quad (10)
\]

\[
G_{N,N}^R = (E - H_N)^{-1}, \quad (11)
\]

where \(\Sigma_{1,1} \equiv U_{1,0}G_{0,0}^L U_{0,1} \) is block diagonal because the real leads are decoupled, as we show in Fig. 3(b).

Figure 4 shows how the adaptive slicing scheme maps the lattice of Fig. 3(a) into an equivalent two-terminal system lattice with a virtual left lead containing all the real leads and an uncoupled virtual right lead.

The local Green’s functions of the fully connected system \(G_{n,n} \) are given by [15]

\[
G_{n,n} = \begin{pmatrix} E - H_n - U_{n,n-1}G_{n-1,n-1}U_{n-1,n} \\ - U_{n,n+1}G_{n+1,n+1}U_{n+1,n} \end{pmatrix}^{-1}. \quad (12)
\]

Using Eq. (12) we can directly calculate local properties such as the LDOS for all the sites in the system by simply extracting the diagonal elements of \(G_{n,n} \) for all \(n \) and using Eq. (6).

To calculate the transmission matrix elements given by Eq. (3) we need the Green’s functions components \(G_{1,1} \) connecting sites attached to different real leads. The Green’s function \(G_{1,1} \) has dimension \(M_{1} \) and reads

\[
G_{1,1} = \begin{pmatrix} G_{1,1}^{1,1} & G_{1,1}^{1,2} & \cdots & G_{1,1}^{1,N_L} \\ G_{1,1}^{2,1} & G_{1,1}^{2,2} & \cdots & G_{1,1}^{2,N_L} \\ \vdots & \vdots & \ddots & \vdots \\ G_{1,1}^{N_L,1} & G_{1,1}^{N_L,2} & \cdots & G_{1,1}^{N_L,N_L} \end{pmatrix} \quad (13)
\]

where each sub-block \(G_{1,1}^{\alpha,\beta} \) of dimension \(M_{1\alpha} \times M_{1\beta} \) represents the propagator between all the \(M_{1\alpha} \) sites connected to the lead \(\alpha \) and all the \(M_{1\beta} \) sites connected to the lead \(\beta \). Note that the sub-block division of the slice \(n = 1 \) for \(H + \Sigma \) naturally renders to the sub-block division of \(G_{1,1} \) in Eq. (13), see the example in Fig. 3(b).

If we are interested only in the total transmissions, we need to perform only the right sweep in Eq. (9) for \(n = N, \ldots, 2 \) and calculate \(G_{1,1} \) using Eq. (12) for \(n = 1 \). The calculation of other local properties such as the local transmissions \(T_{jj'}^n \) in Eq. (7) requires the Green’s functions components that connect the sites of interest \(j \) and \(j' \), that belong to slices \(n \) and \(n' \), respectively, and the sites attached to any lead \(\alpha \) that belong to \(n = 1 \). Thus, we need the full Green’s function blocks \(G_{n,1} \).
We calculate $G_{n,1}$ by means of the extra recursions [15]

$$G_{n,1}^{L} = G_{n,n}^{L} U_{n,n-1} G_{n-1,1}^{L},$$ \hspace{1cm} (14)
$$G_{n,1} = G_{n,n} U_{n,n-1} G_{n-1,1},$$ \hspace{1cm} (15)

where, as before, $n = 2, \cdots , N$ and the label L indicates that the Green’s function $G_{n,1}^{L}$ is the propagator between slices n and 1 when all the slices between them are connected. Note that in distinction to the two-terminal RGF, here it is not necessary to compute $G_{N,n}, G_{n,N}$ and $G_{1,n}$. Those matrices are not necessary because all the leads are connected only to the slice 1 as we show in Fig. 4.

Once again we use the sub-block representation to write

$$G_{n,1} = \begin{pmatrix} G_{n,1}^{1,1} \\ G_{n,1}^{2,1} \\ \vdots \\ G_{n,1}^{N,1} \end{pmatrix},$$ \hspace{1cm} (16)

where each sub-block $G_{n,1}^{a,b}$ is the Green’s function that connects all the $M_{1,a}$ sites contained in slice $n = 1$ that are attached to the lead α to all the M_{n} sites in the slice n. For instance, by inspecting Fig. 4 one easily concludes that $G_{2,1}^{2,1}$ is a 10×3 matrix connecting the sites 7, \cdots, 16 at slice 2 to the sites 4, 5, 6 in slice 1 that are attached to lead 3.

We stress that, for simplicity, we have only discussed lattice Hamiltonians with nearest-neighbor coupling terms. The method and equations presented here apply to any number of next-nearest-neighbors, namely, 2nd, 3rd, and so on, which is of particular interest for tight-binding models based on maximally localized Wannier functions or related developments (see, for instance, Ref. 25.) Obviously, the inclusion of next-nearest-neighbors increases M_{n}, since each slice n is composed by all the sites connected to the $n-1$ partition, and decreases with the number of slices N. As a consequence, both the computational time and the memory usage increase with the reach of hopping integrals.

IV. APPLICATION

Let us illustrate the power of the method by calculating longitudinal and Hall resistances for a disordered graphene monolayer sample submitted to a strong perpendicular magnetic field B in a Hall bar geometry with 6 terminals, see Fig. 5.

The electronic properties of the system are modeled by a nearest neighbor tight-binding Hamiltonian with disordered onsite energy [26, 27], namely

$$H = - \sum_{\langle i,j \rangle} t_{ij} c_{i}^\dagger c_{j} + \sum_{j} \epsilon_{j} c_{j}^\dagger c_{j},$$ \hspace{1cm} (17)

where the operator $c_{j}^\dagger (c_{j})$ creates (annihilates) one electron at the p_{z} orbital of the j-th atom of the graphene honeycomb lattice. The first sum runs through nearest neighbors atoms. The hopping matrix element between sites i and j is $t_{ij} = te^{i\phi_{ij}}$, where $t = 2.7$ eV is the hopping integral for graphene [26] and ϕ_{ij} is the standard Peierls phase acquired in the path from i to j due to the presence of magnetic field. The magnetic field is accounted for by a vector potential in the Landau gauge, namely, $A = Bx\hat{y}$. The corresponding Peierls phase reads [15]

$$\phi_{ij} = \frac{e}{h} \int_{r_{j}}^{r_{i}} \mathbf{A} \cdot d\mathbf{l} = 2\pi \frac{\phi (x_{j} + x_{i})(y_{j} - y_{i})}{\phi_{0} a_{0}^{2} \sqrt{3}},$$ \hspace{1cm} (18)

where $r_{j} = x_{j}\hat{x} + y_{j}\hat{y}$ is the site j position, $a_{0} = 2.46$ Å is the graphene lattice parameter, $\phi_{0} = h/e$ is the magnetic flux quantum and ϕ is the magnetic flux through one hexagon of the graphene lattice, namely $\phi = BA_{H}$, where $A_{H} = a_{0}^{2} \sqrt{3}/2$. We use the Anderson model for the onsite disorder, where ϵ_{j} is randomly chosen from a uniform distribution in the interval $[-V,V]$. The disorder strength is taken as $V = 0.07t$ and the magnetic flux is $\phi/\phi_{0} = 0.01$. The results presented below correspond to a single disorder realization.

Using the MPRGF technique described in Sec. III we calculate the zero-temperature conductance matrix $G_{\alpha\beta} = (2e^{2}/h)T_{\alpha\beta}$ given by Eq. (2). We avoid spurious mode mismatch at the lead-sample interface, without the need of changing the gauge [28], by using vertical leads in all six terminals of the Hall bar, see inset of Fig. 5.

In linear response, the multiterminal Landauer-Büttiker formula [17–19], Eq. (1), gives the current I_{α} at terminal α as a function of the voltages V_{β} at all terminals $\beta = 1, \cdots, 6$. We set terminals $\alpha = 2$ through 5 as voltage probes with $I_{2} = I_{3} = I_{4} = I_{5} = 0$ to compute the current between the terminals 1 and 6, namely, $I \equiv I_{1} = -I_{6}$. See inset of Fig. 5. We obtain the longitudinal and Hall resistances using $R_{xx} = |V_{4} - V_{5}|/I$ and $R_{y} = |V_{3} - V_{6}|/I$, respectively [13, 18, 19].

Figure 5 shows the resistances R_{xx} and R_{y} as functions of the electronic energy E_{F}. We have chosen ϕ/ϕ_{0} such that the system is in the quantum Hall (QH) regime.

The quantized nature of the QH effect is clearly manifest for energies where $|E_{F}| < t$ [26, 29], when $E_{F} \approx E_{n}$, the energy of the Landau Level n, backscattering becomes available through the LL flat band channel yielding a peak in R_{xx}. As expected, as one increases $|E_{F}|/t$, the Dirac Hamiltonian is no longer a good approximation and the numerically obtained values of the LL energies increasingly deviate from the analytical prediction $E_{n} = E_{1}\sqrt{n}$ [30].
edge states even in absence of magnetic field \[
\phi/\phi_0 = 0.01 \text{ and } V = 0.07t. \]
The dashed lines mark the analytical value of the Landau levels \(E_n\) for \(n = 1, 2, 3\) and 4 (see text for details). The inset shows the geometry used in the MPRGF calculations. Each arm and the main branch of the Hall bar are 100\(\text{Å}\) wide. The color map shows the LDOS in arbitrary units for \(E_F = 0.2t\) where 1 transport channel is open.

The MPRGF method is also employed to calculate the LDOS, Eq. (6). The system geometry, see inset of Fig. 5, has armchair and zigzag edges along the vertical and horizontal directions [30], respectively, and a rough tilted edge with no high symmetry crystallographic orientation near the terminals 1 and 6. The inset shows that the LDOS is roughly constant along the zigzag edges. A similar behavior is not observed neither in armchair nor in chiral edges. This indicates that in the QH regime the electron propagation along zigzag edges is more robust against bulk and edge disorder than the propagation along edges with other crystallographic directions, reminiscent of the behavior observed in the absence of an external magnetic field [31].

Figure 6 shows the local transmission calculated according to to Eq. (7). Here we set \(E_F = 0.2t\), corresponding to the first Hall plateau. We find that the enhanced LDOS at opposite edges of the Hall bar observed in the inset of Fig. 5 corresponds indeed to transmissions in opposite directions. Electrons injected from one terminal propagate along the system edges to the next terminal on the “left” due to the strong magnetic field. The edge current profile depends very weakly on which terminal the electrons are injected or on the edge crystallographic orientation, which is in contrast to the LDOS behavior in Fig. 5(inset).

FIG. 5. Longitudinal \(R_{xx}\) and Hall \(R_H\) resistances as functions of the electronic energy \(E_F\) for a constant magnetic flux \(\phi/\phi_0 = 0.01\) and \(V = 0.07t\). The dashed lines mark the analytical value of the Landau levels \(E_n\) for \(n = 1, 2, 3\) and 4 (see text for details). The inset shows the geometry used in the MPRGF calculations. Each arm and the main branch of the Hall bar are 100\(\text{Å}\) wide. The color map shows the LDOS in arbitrary units for \(E_F = 0.2t\) where 1 transport channel is open.

FIG. 6. Local transmission in arbitrary units for \(E_F = 0.2t\). The panels consider settings where the electrons are injected from different terminals, indicated by the corresponding labels and arrows. We show only non vanishing transmissions. The parameters are the same as in Fig. 5.

(a) \[
\begin{array}{c}
1 \\
2 \\
3 \\
4 \\
5 \\
6 \\
\end{array}
\]

(b) \[
\begin{array}{c}
1 \\
2 \\
3 \\
4 \\
5 \\
6 \\
\end{array}
\]

FIG. 7. Schematic comparison between the slicing scheme used in the circular slicing and the MPRGF that we propose applied to a Hall-bar geometry. (a) The circular slicing provides slices that contain sites along both longitudinal and transverse directions, corresponding to dimensions \(L\) and \(W\). The first slice of this recursive method is the largest one, containing all the sites that are connected to the leads plus extra sites along the length \(L\). The slices sizes decrease towards the center of the system as the last slice is the smallest one. (b) The MPRGF slicing scheme ensures that the first slice contains all the sites connected to the leads, rendering a smaller number of sites inside the first slice and a larger number of slices.

V. BENCHMARK

Let us now analyze the performance and accuracy of the MPRGF method. We compare the computational time required to calculate the transmission matrix in a six-terminals Hall bar as depicted in Fig. 7 by means of direct diagonalization, circular slicing [12], and the proposed adaptive scheme.

The circular scheme, depicted in Fig. 7(a), leads to
a number M_n of sites inside a slice n that depends linearly on L and W simultaneously. Since the number of operations in the standard RGF scheme depends on the weight $w = \sum_{n=1}^{N} M_n^3$, the typical runtime of a circular slicing algorithm scales as $w \propto (LW^3 + WL^3)$. Thus, the computational time scales cubically with the largest of L and W. On the other hand, in the MPRGF, the number of sites inside each cell depends mainly on W while the number of slices N depends mainly on L, which results in a computational time that scales with LW^3. In both cases, the CPU time scales approximately as L^4 if the system has aspect ratio $W/L \approx 1$.

Figure 8 shows the computational time to calculate the full transmission matrix for the system in Fig. 7 as a function of the length L, where $L \gg W$. Here we consider a two-dimensional electron gas (2DEG) described by a discretized Hamiltonian in a square-lattice representation with nearest-neighbors hopping matrix elements. Using the finite differences method [13, 14], the discretization with nearest-neighbors hopping matrix elements. Using discretized Hamiltonian in a square-lattice representation a two-dimensional electron gas (2DEG) described by a function of the length

We find that, for large L, the runtime of the adaptive scheme indeed scales linearly with L while both direct diagonalization and the circular slicing as L^3 as discussed. The power-law dependences, which are intrinsic to the methods, render a performance to the proposed MPRGF that is orders of magnitude better than the other codes for $L \gg W$.

Hybrid slicing schemes have been proposed to optimize the RGF method for particular system geometries. Some examples are the cross strip [4, 8, 9] and the mixed circular [12] schemes. In these works the partition of the system region connected to the leads is designed based on the specificities of the sample geometry, while the rest of the system is sliced by the standard method. Another nice multiprobe approach is the “knitting” one [10], that does not require a partition scheme. These procedures show a good computational performance, but the coding complexity is increased. We stress that our scheme does not rely on specific features of the sample (or leads) geometry, since it extracts from the Hamiltonian all the information needed for determining the optimal partitions.

Let us now discuss the accuracy of the adaptive scheme. It is possible to quantify the precision of the method by comparing $(E - H - \Sigma)G$ with the unit matrix I. This straightforward scheme cannot be used since the recursive method avoids the calculation of a large number of the full Green’s function matrix elements. However, since $G_{n,n}$ and $G_{n,1}$ are available we can estimate the precision by evaluating $\delta \equiv \text{maxval} \{ |\sum_{n} (E - H - \Sigma)_{1,n} G_{n,1} - 1| \}$, where maxval returns the maximum value of the elements in the matrix. Figure 9 shows the deviation δ as a function of the length L for the system depicted in Fig. 7. By computing G in double precision, we find that δ does not systematically increase with L, supporting the confidence on the algorithm stability, and it remains roughly within $10^{-14} \ldots 10^{-13}$, which is 4 orders of magnitude smaller than the deviations reported using similar methods [11].

We conclude this section by discussing the effect of the regularization parameter η in the calculations. In our approach η is only necessary for the computation of the contact Green’s function [21] and is introduced only in the first decimation loop to guarantee fast convergence. We find that this procedure leads to a contact Green’s
function G_{α} that does not depend on the choice of η and minimizes the deviation between the calculated numerical value of G_{α} and the one obtained by analytical expressions for 1D chains. Since we use the Σ' extracted from the contact Green’s functions, in general it not necessary to introduce η for the computation of the central region Green’s functions. The “η-free” calculation of the system Green’s function renders the numerical precision reported in this paper.

VI. SUMMARY

In this paper we have put forward a multi-probe recursive Green’s functions method to compute the transport properties of a quantum phase-coherent system using the Landauer-Büttiker approach.

By applying the adaptive slicing scheme put forward in Sec. III, we write the $H + \Sigma$ matrix in block tridiagonal form. In this representation all leads belong to a “left” virtual lead. Hence, the central region sites connected to the leads belong to $n = 1$ slice and there is no “right” virtual lead attached to the slice with largest partition slice $n = N$. This mapping allows one to use the standard RGF equations, designed to compute only the full Green’s function matrix elements necessary to calculate the transport quantities of interest, such as LDOS, local and total transmissions.

The slicing scheme we put forward allows to address multi-terminal systems with arbitrary geometries and multi-orbital tight-binding Hamiltonians with hopping terms that include more than nearest-neighbors (at the expense of increasing CPU time). Our method is exact, since the Green’s function are calculated using the standard RGF equations, which provide a fast and robust computational scheme that has been optimized and extensively tested over the years. Further, it allows for the inclusion of electronic interaction via mean field approach where one needs to integrate the Green’s functions in the complex plane weighted by the Fermi-Dirac distribution [32–35].

ACKNOWLEDGMENTS

The authors acknowledge the financial support of the Brazilian funding agencies CNPq (grants: 308801/2015-6 and 400573/2017-2) and FAPERJ (grant E-26/202.917/2015).

1. D. J. Thouless and S. Kirkpatrick, J. Phys. C: Solid State Phys. 14, 235 (1981).
2. A. MacKinnon, Z. Phys. B 59, 385 (1985).
3. F. Sols, M. Macucci, U. Ravaioli, and K. Hess, J. Appl. Phys. 66, 3892 (1989).
4. H. U. Baranger, D. P. DiVincenzo, R. A. Jalabert, and A. D. Stone, Phys. Rev. B 44, 10637 (1991).
5. M. Wimmer and K. Richter, J. Comp. Phys. 228, 8548 (2009).
6. S. Rotter, J.-Z. Tang, L. Wirtz, J. Trost, and J. Burgdörfer, Phys. Rev. B 62, 1950 (2000).
7. F. Libisch, S. Rotter, and J. Burgdörfer, New J. Phys. 14, 123006 (2012).
8. H. U. Baranger, A. D. Stone, and D. P. DiVincenzo, Phys. Rev. B 37, 6521 (1988).
9. H. U. Baranger, Phys. Rev. B 42, 11479 (1990).
10. K. Kazymyrenko and X. Waintal, Phys. Rev. B 77, 115119 (2008).
11. Y. Mou, R. Xian-Jin, C. Yan, and W. Rui-Qiang, Chinese Physics B 20, 097201 (2011).
12. G. Thorjónsson, G. Viktorsson, and S. Erlingsson, J. Comp. Phys. 261, 256 (2014).
13. S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge University Press, Cambridge, 1995).
14. D. K. Ferry, S. M. Goodnick, and J. Bird, Transport in Nanostructures (Cambridge University Press, Cambridge, 2009).
15. C. H. Lewenkopf and E. R. Mucciolo, J. Comput. Electron. 12, 203 (2013).
16. E. Ridolfi, L. R. F. Lima, E. R. Mucciolo, and C. H. Lewenkopf, Phys. Rev. B 95, 035430 (2017).
17. M. Büttiker, Y. Imry, R. Landauer, and S. Pinhas, Phys. Rev. B 31, 6207 (1985).
18. M. Büttiker, Phys. Rev. Lett. 57, 1761 (1986).
19. T. Ihn, Semiconductor Nanostructures (Oxford University Press, Oxford, 2010).
20. Y. Meir and N. S. Wingreen, Phys. Rev. Lett. 68, 2512 (1992).
21. M. P. Lopez Sancho, J. M. Lopez Sancho, and J. Rubio, J. Phys. F: Met. Phys. 15, 851 (1985).
22. A. R. Rocha, V. M. Garcia-Suárez, S. Bailey, C. Lambert, J. Ferrer, and S. Sanvito, Phys. Rev. B 73, 085414 (2006).
23. M. Wimmer, Quantum transport in nanostructures: From computational concepts to spintronics in graphene and magnetic tunnel junctions, Ph.D. thesis, University Regensburg (2009).
24. A. Cresti, R. Farchioni, G. Grosso, and G. P. Parravicini, Phys. Rev. B 68, 075306 (2003).
25. P. D’Amico, L. Agapito, A. Catellani, A. Ruini, S. Curto, M. Fornari, M. B. Nardelli, and A. Calzolari, Phys. Rev. B 94, 165166 (2016).
26. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).
27. E. R. Mucciolo and C. H. Lewenkopf, J. Phys.: Condens. Matter 22, 273201 (2010).
28. O. Shevtsov, P. Carmier, C. Petitjean, C. Groth, D. Carpentier, and X. Waintal, Phys. Rev. X 2, 031004 (2012).
29. M. O. Goerbig, Rev. Mod. Phys. 83, 1193 (2011).
30. L. Brey and H. A. Fertig, Phys. Rev. B 73, 195408 (2006).
31. E. R. Mucciolo, A. H. Castro Neto, and C. H. Lewenkopf, Phys. Rev. B 79, 075407 (2009).
32 L. R. F. Lima and C. H. Lewenkopf, *Phys. Rev. B* **93**, 045404 (2016).
33 T. Ozaki, *Phys. Rev. B* **75**, 035123 (2007).
34 A. Croy and U. Saalmann, *Phys. Rev. B* **80**, 073102 (2009).
35 D. A. Areshkin and B. K. Nikolić, *Phys. Rev. B* **81**, 155450 (2010).