Non-Hermitian topology in molecules: Prediction of fractional quantum number

Jimin Li

1Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.

(Dated: October 6, 2020)

We give a simple toy model to study a famous Jahn-Teller type molecule. Finite lifetime due to non-adiabatic coupling and finite temperature effect results in the effective Hamiltonian to be non-Hermitian. This effect pulls a conical intersection into a pair of connected Weyl points, bridged by a Fermi arc. The length of the Fermi arc depends on the strength of non-hermiticity. This is a unique feature of non-Hermitian topology with no Hermitian analogue. We predict the existence of Weyl points in molecules which cause anomalous Jahn-Teller effects and fractional quantum number.

II. CONVENTIONAL GEOMETRIC PHASE

Under the Born-Oppenheimer (BO) approximation, the molecular Hamiltonian parametrically depends on the nuclei coordinates \(\mathbf{R} \). Geometric phase can be defined by

\[
\gamma_n = i \oint_C \langle \psi_n | \nabla_{\mathbf{R}} \psi_n \rangle \, d\mathbf{R}
\]

(1)

Where \(\psi \) is an electronic BO wave function. It can be shown that for a hermitian Hamiltonian \(H \), \(e^{i\gamma_n} = -1 \) if \(C \) encircles a CI and 0 otherwise. Namely, using a real BO electronic wavefunctions, the nuclear wavefunction must changes sign for any path that encloses a CI once.

Consider an \(X_3 \) molecule with \(D_{3h} \) symmetry. Using Herzberg’s notation\(^{[17]} \), let \(Q_{2a} \) and \(Q_{2b} \) be the two degenerate normal coordinates, \(\psi_{ea} \) and \(\psi_{eb} \) be the degenerate electronic states. Then, define the complex normal coordinates and electrons states \(Q_{2\pm} = Q_{2a} \pm iQ_{2b} \) and \(\psi_{e\pm} = \psi_{ea} \pm i\psi_{eb} \) simplify the calculation. Neglecting all the quadratic terms and by a simple symmetry argument, we obtain

\[
H_0 = \begin{pmatrix}
E_0 & CQ_{2\pm}
CQ_{2\pm}^* & E_0
\end{pmatrix}
\]

(2)

where \(E_0 = \langle \psi_{e\pm} | H_{ele} | \psi_{e\pm} \rangle \) and

\[
C = \frac{\partial \langle \psi_{e\pm} | \hat{H}_{ele} | \psi_{e\pm} \rangle}{\partial Q_{2\pm}}
\]

(3)

are assumed to be non-zero constant for small vibrations. The CI provides a \(\pi \)-magnetic flux and the sign of electron state changes upon \(2\pi \) rotation in the \(Q_2 \) parameter space. On the other hand, the total wavefunction must be single-valued. This means the vibrational wavefunctions must change sign. For an approximate rovibrational spectrum,

\[
G_{a,j} = (u + \frac{1}{2}) \omega + A j^2
\]

(4)

where \(\omega \) and \(u \) are the frequency and quantum number of radial vibrations. Vibronic coupling leads the new quantum number \(j \). By the above argument, \(j \) must be half-integer valued, which was observed in the vibrational spectrum of \(Na_3 \) by comparing the experimental peaks with ab initio peaks\(^{[5]} \).

*jl939@cam.ac.uk
III. EXCEPTIONAL POINTS

In the studies of quasiparticle, Green function and the total Hamiltonian are the most useful concepts. Quasiparticle excitations are associated with the poles of the Green function. The later one is given by

\[H = H_0 + iH_{\text{self}}(\omega) \]

where

\[H_{\text{self}}(\omega) = \begin{pmatrix} \Gamma_1(\omega) & \Gamma_2(\omega) \\ \Gamma_3(\omega) & \Gamma_4(\omega) \end{pmatrix} \]

The time-dependent self energy \(iH_{\text{self}} \) is non-Hermitian when the lifetime of a quasiparticle is finite. In this story, it is coming from nonadiabatic coupling and finite temperature effect. If \(X \) is a heavy d/f block element, e.g. Cerium in a molecule which contains delocalised electron ligands, e.g. phosphate and carboxylic anion. Then electron-electron interaction can introduce the same effect. In a nonadiabatic coupling calculation, TD-HF and TD-DFT can both produce imaginary energy but often been discarded. For simplicity of the model, we expand \(\Gamma \) in a series and assume \(\omega \) is small. Therefore, \(\Gamma \) is a non-zero constant. Furthermore, we ignore the diagonal terms since it merely shifts the levels.

\[iH_{\text{self}} = i\Gamma \hat{\sigma}_x \]

Direct diagonalisation gives the energy of two levels

\[E_{\pm} = E_0 \pm \sqrt{Q_{2a}^2 + Q_{2b}^2 + 2iQ_{2a}\Gamma - \Gamma^2} \]

We get the typical square root spectrum and observe two eigenstates coalesce at the intersection. At the exceptional points, the hamiltonian is not diagonalisable, i.e. the best one can get is a Jordan block. Physically, non-hermicity split a CI into a pair of Weyl points which is connected by a Fermi arc. This Fermi arc is fundamentally different from the commonly observed surface intersection of PES in molecules. Unlike topological band theory where the parameter Bloch vector is a good quantum number. In a molecular PES, the generalised nuclei coordinates are not. CI requires a perfect match of Hamiltonian matrix elements and can be broken by arbitrary small interactions. However, the Weyl points are topologically stable under perturbation. Each of the exceptional points is defined to be half-integer topological charge within the framework of NH topological band theory. Encircling only one of them, \(|E_{\pm}\rangle \) becomes to \(|E_{\mp}\rangle \) and return to \(-|E_{\pm}\rangle\) after a second \(2\pi\) rotation. This implies that the vibrational wavefunctions change sign after a rotation of \(4\pi\). Meaning that \(j \) are forbidden to be half-integer and quantised to be \(|J| = \frac{1}{2}, \frac{3}{2}, \frac{5}{2}, ... \). Encircling any closed loop contains both Weyl points will change the sign of \(|E_{\pm}\rangle \). When \(\Gamma \) is sufficiently small, two Weyl points can be inseparable and therefore behave like a CI. The robustness of Weyl points can explain why a fragile CI exists along with a chemical reaction when higher-order perturbations and many other effects are usually not been considered. A similar scenario can occur in a CI of the ground state and excited state. Encircling one of the Weyl points in the ground state results the system in an excited state which can be achieved by a series of molecular vibrations in real space. In three and higher dimensions, NH topological band theory has predicted a number of new topological matters. By the same token, similar physics can happen in molecules with higher degrees of freedom.

IV. SUMMARY

In this work, we studied non-hermitian \(X_3 \) systems. The non-hermiticity is a result of nonadiabatic coupling and temperature effect which split a CI into a pair of connected Weyl points. We predict that the possibility of anomalous Jahn-Teller effects and fractional quantum number \(j \) in \(X_3 \). This non-hermiticity effect should be ubiquitous in molecular science since no spectrum peak is a delta function. This work is no means a complete...
theory but merely to show such simple model yield unexpected phenomena and many potential cases in molecules such as new new approach to solution/surface reactions and roaming mechanism.

[1] Liang Fu, Charles L Kane, and Eugene J Mele. Topological insulators in three dimensions. Physical review letters, 98(10):106803, 2007.
[2] NP Armitage, EJ Mele, and Ashvin Vishwanath. Weyl and dirac semimetals in three-dimensional solids. Reviews of Modern Physics, 90(1):015001, 2018.
[3] C Alden Mead and Donald G Truhlar. On the determination of born-oppenheimer nuclear motion wave functions including complications due to conical intersections and identical nuclei. The Journal of Chemical Physics, 70(5):2284–2296, 1979.
[4] Daofu Yuan, Yafu Guan, Wentao Chen, Hailin Zhao, Shengrui Yu, Chang Luo, Xing Tan, Xingan Wang, Zhigang Sun, et al. Observation of the geometric phase effect in the h+ hd → h2+ d reaction. Science, 362(6420):1289–1293, 2018.
[5] H Von Busch, Vas Dev, H-A Eckel, S Kasahara, J Wang, W Demtröder, P Sebald, and W Meyer. Unambiguous proof for berry’s phase in the sodium trimer: Analysis of the transition a 2 e′′ ← x 2 e′. Physical review letters, 81(21):4584, 1998.
[6] Bo Zhen, Chia Wei Hsu, Yuichi Igarashi, Ling Lu, Ido Kaminer, Adi Pick, Song-Liang Chua, John D Joannopoulos, and Marin Soljačić. Spawning rings of exceptional points out of dirac cones. Nature, 525(7569):354–358, 2015.
[7] Tsuneya Yoshida, Robert Peters, Norio Kawakami, and Yasuhiro Hatsugai. Symmetry-protected exceptional rings in two-dimensional correlated systems with chiral symmetry. Physical Review B, 99(12):121101, 2019.
[8] Tsuchiya Yoshida, Robert Peters, and Norio Kawakami. Non-hermitian perspective of the band structure in heavy-fermion systems. Physical Review B, 98(3):035141, 2018.
[9] Vladyslav Kozii and Liang Fu. Non-hermitian topological theory of finite-lifetime quasiparticles: prediction of bulk fermi arc due to exceptional point. arXiv preprint arXiv:1708.05844, 2017.
[10] Alexander Czerjan, Sheng Huang, Mohan Wang, Kevin P Chen, Yidong Chong, and Mikael C Rechtsman. Experimental realization of a weyl exceptional ring. Nature Photonics, 13(9):623–628, 2019.
[11] Hengyun Zhou, Chao Peng, Yoseob Yoon, Chia Wei Hsu, Keith A Nelson, Liang Fu, John D Joannopoulos, Marin Soljačić, and Bo Zhen. Observation of bulk fermi arc and polarization half charge from paired exceptional points. Science, 359(6379):1009–1012, 2018.
[12] Yuki Nagai, Yang Qi, Hiroki Isobe, Vladyslav Kozii, and Liang Fu. Dmft reveals the non-hermitian topology in heavy-fermion systems. arXiv preprint arXiv:2005.06729, 2020.
[13] Yoshihiro Michishita and Robert Peters. Equivalence of effective non-hermitian hamiltonians in the context of open quantum systems and strongly correlated electron systems. Physical Review Letters, 124(19):196401, 2020.
[14] Michal Papaj, Hiroki Isobe, and Liang Fu. Nodal arc of disordered dirac fermions and non-hermitian band theory. Physical Review B, 99(20):201107, 2019.
[15] Huitao Shen, Bo Zhen, and Liang Fu. Topological band theory for non-hermitian hamiltonians. Physical review letters, 120(14):146402, 2018.
[16] Emil J Bergholtz, Jan Carl Budich, and Flore K Kunst. Exceptional topology of non-hermitian systems. arXiv preprint arXiv:1912.10048, 2019.
[17] Gerhard Herzberg. Molecular spectra and molecular structure. D. van Nostrand, 1945.
[18] Zhendong Li, Bingbing Suo, and Wenjian Liu. First order nonadiabatic coupling matrix elements between excited states: Implementation and application at the tddft and pp-lda levels. The Journal of Chemical Physics, 141(24):244105, 2014.
[19] Frank WUczek. Some basic aspects of fractional quantum numbers. Selected Papers of J. Robert Schrieffer: In Celebration of His 70th Birthday, 30:135, 2002.
[20] Frank Wilczek and Anthony Zee. Appearance of gauge structure in simple dynamical systems. Physical Review Letters, 52(24):2111, 1984.
[21] Johan Carlström, Marcus Stålhammar, Jan Carl Budich, and Emil J Bergholtz. Knotted non-hermitian metals. Physical Review B, 99(16):161115, 2019.