Introduction

Lung cancer is a significant health problem worldwide and the most common cause of cancer death in the industrialized world [1]. In Denmark, lung cancer comprises 12% of all new cancer cases [2]. Survival from lung cancer is related to the stage of disease, and 5-year survival is 50% for localized lung cancer and 2% for a lung cancer with distant spread. Earlier diagnosis of lung cancer may be beneficial in allowing more lung cancer patients curative treatment. Danish lung cancer patients have lower survival than patients from comparable European countries [3, 4]. This can possibly be explained by later diagnosis of lung cancer in Denmark and research indicates a lower proportion of lung cancer patients in curable stage in Denmark compared to Norway and Sweden [5]. Thus, it is possible that the survival deficit in Danish patients may relate to processes of cancer awareness and diagnostic activity at the level of primary care. Delay in diagnosis before admission to a hospital can be due to either patients delaying going to the general practitioner (GP) (the so called patient’s interval) or the GP delaying...
referral (doctor’s interval). This warrants scrutiny of the
diagnostic pathway in Danish lung cancer patients.

Most lung cancer patients present with a range of
symptoms to the GP in the months before diagnosis [6–9].
The symptoms, such as cough and breathlessness, are
relatively common in the general population [10], and
alarm symptoms for lung cancer have low-positive predic-
tive values [11]. Symptoms and signs from lung cancer
can mimic common diseases such as chronic obstructive
pulmonary disease (COPD), leading to a risk for delayed
diagnosis [12].

Only a third of lung cancer patients present to GPs
with an alarm symptom (such as prolonged coughing,
hemoptysis, or weight loss) [12] which is the entrance
criterion for the urgent referral route for lung cancer. The
PPVs for such symptoms are, depending on the
patient’s age, between 1% and 4.5%.

Consequently, only 25% of all lung cancer patients are
diagnosed through this route [12, 13]. There seems to
be a need for other referral options for this group of
patients. For persons who were later diagnosed with lung
cancer we quantified the prediagnostic activity in general
practice along with a matched comparison group, and
we compared the activity between lung cancer patients
with different stage, and between lung cancer patients
with and without COPD.

Methods

Study design and study population

In Denmark (5.6 million inhabitants), 4560 new lung
cancer cases are diagnosed yearly. The age-standardized
(World standard population) lung cancer incidence rates
for men and women were 49.9 and 36.7, respectively,
with a 1.4% decrease for men and 0.1% increase for
women during the study period. We performed a
population-based matched cohort study using register data.
Information was collected from nationwide registers at
individual level using the unique civil registration number
assigned to all Danish residents [14]. In Denmark, GPs
are gatekeepers to the rest of the health care system and
98% of citizens are listed with a general practice and
have free access. GPs are remunerated based on a mixed
capitation and fee-for-service (25/75%) which ensures
complete registration of their services.

Lung cancer patients

Patients diagnosed with lung cancer (according to the
International Classification of Diseases, ICD-10 C34) from
1 January 2003 to 31 December 2012 (n = 36,342) in
Denmark were identified in the Danish Cancer Registry
(DCR) and the Danish Lung Cancer Registry (DLCR).
The DCR is a national register of all Danish cancer patients
and holds information on date of diagnosis (ICD-10),
anatomical site, morphology, and stage. If a patient devel-
ops more than one primary cancer, each cancer is reg-
istered as a separate record. In the DCR, information
about tumor stage at diagnosis is provided by a multi-
disciplinary team decision, it contains both cTNM and
pTNM if available. Reporting to the DCR became manda-
tory in 1987 [15]. The DLCR was established in 2001.
It contains clinical information about Danish lung cancer
patients such as lung function, smoking history, and stage,
which are combined with data on cancer treatment and
follow-up. In the DLCR, information about tumor stage
at diagnosis is provided by a multidisciplinary team deci-
sion with one TNM stage (which can be either cTNM
or pTNM). Since 2003, the DLCR includes data on more
than 90% of all lung cancer cases in Denmark [16].

Lung cancer patients were excluded from the analyses if
they had an incorrect civil registration number (n = 398
[1.1%]), had lived outside Denmark at some point during
the 12 months preceding the diagnosis (n = 670 [1.8%])
or were not listed with a general practice (n = 672 [1.8%]).
We furthermore excluded 163 (0.5%) patients aged less than
40 years and 202 (0.6%) patients aged more than 90 years.

The comparison cohort

Ten comparison subjects were selected for each patient.
They matched the lung cancer patient on year of birth,
gender and were listed with the same general practice as
the lung cancer patients at time of diagnosis (index date).
As for patients, these persons were ineligible if they had
been living outside Denmark at some point during the
12 months before the index date. Patients and comparison
subjects could have no record of any cancer in the DCR
at the time of the index date (except nonmelanoma skin

cancer).

We excluded 220 (0.6%) lung cancer patients which
we were not able to match with comparison subjects.
This left 34,017 lung cancer patients for analysis.

Prediagnostic activity

In order to estimate the prediagnostic health care activity
for patients, we selected a range of diagnostic test or
treatments made in general practice that a GP would use
if a patient presented with pulmonary symptoms.

Data sources

Information about general practice enrolment was available
from the Patient List Register, which is an administrative
database that holds information on which general practice each person is listed with at any given time.

Activity in general practice
The Danish National Health Service Registry (HSR) was used to gather information about contacts in general practice [17]. Face-to-face consultations, home visits and telephone contacts during daytime were included. HSR was also used to obtain information about numbers and dates of lung function tests performed in general practice. The tests included: extended lung function test with spirometry (activity code: 7113), double lung function test for exercise-induced asthma (7121) and peak flow (7183).

The prescriptions of medicines for respiratory diseases and infections were collected from the Danish National Prescription Registry (DNPR) [18]. The products included: adrenergic (ATC: R03AC, R03CC), adrenergic and glucocorticoids (R03AK) anticholinergics (R03BB), theophylline (R03DA), glucocorticoids, systemic (H02AB), leukotrienes (R03DC), glucocorticoids, inhalation (R03BA), penicillin (J01C), and tetracycline (J01AA). These medicines are all available by prescription only.

In the analyses we focused on new or first-time prescriptions redeemed and lung function test performed in the 12 months before diagnosis; that is, that it was only included if there had been no prescription redeemed or lung function test performed in the period between 12 and 36 months before lung cancer diagnosis.

Data on radiology procedures were obtained from the HSR and the Danish National Patient Registry (NPR) [19]. The NPR is a national population-based database containing admission and discharge dates, combined with diagnoses classified according to ICD-10.

COPD diagnoses
We identified patients as having COPD if they in the period 12–36 months before lung cancer diagnosis had either at least two redeemed prescriptions of relevant medicine, an inpatient visit (See appendix, Table 1, for the ICD10 codes for the inpatient visit) or at least two lung function tests performed in general practice [20]. The medicine included the following ACT codes: R03AC, R03AK, R03BA, R03BB, R03CC, R03DA, R03DC, and V03AN01 (oxygen).

Lung cancer stage
Information about stage was obtained from DCR and the DLCR. The pTNM was used if available. If the two registries differed in regard to the TNM stage, the DLCR was used. Stage at diagnosis was dichotomized into local and advanced disease. A cut-point between stage IIB and IIIA was chosen since a previous study has documented a significant difference in mortality between these two stages [21]. If any of the T or N values were missing, we categorized SCLC as limited if the tumor was M0 and as extensive if the tumor was M1 regardless of the values, known or unknown, of other components. We categorized NSCLC as advanced if the TNM stage included values of T4, N3, or M1, regardless of other components [22].

Characteristics of study population
Demographic and socioeconomic information was collected from Statistics Denmark. This included country of origin categorized into “Danish”, “Immigrant/ descendant from a Western country”, or “Immigrant/ descendant from a non-Western country”. Marital status 12 months prior to the diagnosis date was categorized into “living alone” or “cohabitating”. Data on taxable income were extracted for the calendar year preceding the diagnosis date and categorized into three groups using the OECD-modified scale: “Low” (the lowest 20%), “Middle” (the middle 50%), and “High” (the highest 30%) [23]. The highest attained level of education was categorized into “Basic”, “Short”, “Long”, and “Unknown” according to the International Standard Classification of Education [24]. The Charlson Comorbidity Index (CCI) was used to account for comorbidity [25]. The CCI was calculated on the basis of diagnoses registered in the NPR in a 10-year-period preceding the 12 months prior to the diagnosis date. We grouped the CCI into “Low” (CCI score = 0), “Moderate” (CCI score = 1–2), and “severe” (CCI score ≥3).

Statistical analysis
Odds ratios (ORs) for having a contact, a radiograph, a lung function test or a medicine prescription were calculated using conditional logistic regression, taking account of the matched design. Unconditional logistic regression analyses were made to compare lung cancer patient with local and advanced stage, and lung cancer patients with and without COPD. A negative binomial regression model applying cluster robust variance at practice level was used to calculate incidence rate ratios (IRRs) for comparisons of monthly rates of contacts, lung function tests, X-rays, and prescriptions between lung cancer patients and the comparison group in the year before diagnosis.

Analyses were performed separately for each sex because of known differences in the use of general practice among men and women [26, 27]. However, the estimates did not differ meaningfully between men and women, and are therefore presented combined (See appendix, Table 2 and Table 3, for separate analyses).
All analyses were adjusted for socioeconomic, demographic variables, age, and comorbidity. Data were analyzed using the statistical software Stata 13.0 (StataCorp LP, Texas, TX).

Ethics

The study was approved by the Danish Data Protection Agency (j.no. 2009-41-3471).

Results

The study included 34,017 lung cancer patients and 340,170 comparison subjects. The study subjects were listed with 2676 general practices. Among the lung cancer patients 18.6% had localized disease (stage IA–IIB), 81.4% had advanced disease (stage IIIA–IV), and 0.7% of cases had no information on stage. A total of 7551 lung cancer patients (22.2%) were identified as having COPD compared to 11.9% in the comparison group.

The patients and comparison subjects differed according to socio-demographic variables and comorbidity (Table 1). Lung cancer patients were more likely to be living alone and had lower income, lower education level, and higher comorbidity score. The mean age at diagnosis was 68 and 69 years for women and men, respectively.

During months 12 to 1 prior to diagnosis (i.e., omitting the last month before diagnosis), 92.6% of lung cancer patients were still alive.

Table 1. Characteristics of the 34,017 incident lung cancer patients and the 340,170 comparison subjects.

	Women Lung cancer patients	Women Comparison subjects	Men Lung cancer patients	Men Comparison subjects	All Lung cancer patients	All Comparison subjects
Total	15,655 46.0%	156,550 46.0%	18,362 54.0%	183,620 54.0%	34,017	340,170
Age						
40–52	1317 8.4%	13,129 8.4%	1000 5.5%	10,018 5.5%	2317 6.8%	23,147 6.8%
53–64	4514 28.8%	45,175 28.9%	5001 27.2%	50,099 27.3%	9515 28.0%	95,274 28.0%
65–76	6432 41.1%	64,371 41.1%	8074 44.0%	80,840 44.0%	14,506 42.6%	145,211 42.6%
77–90	3392 21.7%	33,875 21.6%	4287 23.3%	42,663 23.2%	7679 22.6%	76,538 22.6%
Country of origin						
Danish	15,172 96.9%	148,764 95.0%	17,550 95.6%	175,226 95.4%	32,722 96.2%	323,990 95.2%
Immigrant/ descendant (Western)	357 2.3%	4348 2.8%	410 2.2%	4115 2.2%	767 2.3%	8464 2.5%
Immigrant/ descendant (non-Western)	126 0.8%	3438 2.2%	402 2.2%	4278 2.4%	528 1.5%	7716 2.3%
Marital status						
Married/cohabitating	6799 43.4%	77,584 49.5%	10,780 58.7%	118,393 64.5%	17,579 51.7%	195,977 57.6%
Living alone	7157 45.7%	61,976 39.6%	5664 30.9%	46,046 25.1%	12,821 37.7%	108,022 31.8%
Unknown 1699 10.9%	16,990 10.9%	19,180 10.4%	19,181 10.4%	19,181 10.4%	3617 10.6%	36,171 10.6%
Education						
Basic 9285 59.3%	75,282 48.1%	7942 43.3%	67,866 37.0%	67,866 37.0%	17,227 50.6%	143,148 42.1%
Short 4573 29.2%	53,011 33.9%	8063 43.9%	82,883 45.1%	82,883 45.1%	12,636 37.1%	135,894 40.0%
Long 1267 8.1%	22,220 14.2%	1463 8.0%	25,022 13.6%	25,022 13.6%	2730 8.0%	47,242 13.9%
Unknown 530 3.4%	6037 3.8%	894 4.8%	7849 4.3%	7849 4.3%	1424 4.3%	13,886 4.0%
Labor market affiliation						
Working 3068 19.6%	37,114 23.7%	3777 20.6%	47,291 25.8%	47,291 25.8%	6845 20.1%	84,405 24.8%
Unemployed 228 1.5%	1862 1.2%	331 1.8%	2036 1.1%	2036 1.1%	559 1.6%	3898 1.1%
Retirement pension 12,029 76.8%	114,341 73.0%	13,864 75.5%	131,491 71.6%	131,491 71.6%	25,893 76.1%	245,833 72.3%
Other 330 2.1%	3233 2.1%	390 2.1%	2801 1.5%	2801 1.5%	720 2.2%	6034 1.8%
Income						
Low 3665 23.4%	31,606 20.2%	4374 23.8%	35,190 19.1%	35,190 19.1%	8039 23.6%	66,796 19.6%
Middle 8745 55.9%	78,870 50.4%	10,085 54.9%	89,395 48.7%	89,395 48.7%	18,830 55.4%	168,265 49.5%
High 3245 20.7%	46,074 29.4%	3903 21.3%	59,035 32.2%	59,035 32.2%	7148 21.0%	105,109 30.9%
Charlson comorbidity index score						
0 8874 56.7%	115,787 74.0%	9752 53.1%	124,259 67.7%	124,259 67.7%	18,626 54.8%	240,046 70.6%
1 3544 22.6%	21,910 14.0%	4097 22.3%	29,464 16.0%	29,464 16.0%	7641 22.5%	51,374 15.1%
≥2 3237 20.7%	18,853 12.0%	4513 24.6%	29,897 16.3%	29,897 16.3%	7750 22.7%	48,750 14.3%
patients and 88.4% of comparison subjects had one or more contacts to general practice (Table 2). The odds for having nine or more contacts were higher among lung cancer patients compared to comparison subjects (OR: 1.89 [95 CI: 1.83–1.94]) (Table 2). Lung cancer patients had significantly higher frequencies of GP contacts from four months prior to diagnosis and the differences rose consistently with a peak in the last month before diagnosis (Fig. 1A).

13.0% of the lung cancer patients and 3.3% of the comparisons had two or more radiographs performed during the 11 months before the last month before diagnosis (OR: 4.26 [95% CI: 4.08–4.45]) (Table 2). The rates were higher for lung cancer patients throughout all 12 months before diagnosis with a large excess just before diagnosis (Fig. 1B).

13.0% of the lung cancer patients and 3.3% of the comparisons had two or more radiographs performed during the 11 months before the last month before diagnosis (OR: 4.26 [95% CI: 4.08–4.45]) (Table 2). The rates were higher for lung cancer patients throughout all 12 months before diagnosis with a large excess just before diagnosis (Fig. 1B).

13.0% of the lung cancer patients and 3.3% of the comparisons had two or more radiographs performed during the 11 months before the last month before diagnosis (OR: 4.26 [95% CI: 4.08–4.45]) (Table 2). The rates were higher for lung cancer patients throughout all 12 months before diagnosis with a large excess just before diagnosis (Fig. 1B).

7.4% of the lung cancer patients and 2.5% of comparison subjects had one or more first-time lung function test performed in general practice during the 11 months before diagnosis. During the 12 months before diagnosis the number of lung function test were significantly higher among lung cancer patients than among the comparisons (Fig. 1C) and the rates rose until peaking in the last month (IRR: 13.1 [95% CI: 12.2–14.2]).

During the last 11 months before the month before diagnosis, 20.8% of the lung cancer patients and 8.5% of the comparisons persons were treated with antibiotics twice or more (OR: 2.70 [95% CI: 2.61–2.78]) (Table 2).

The higher number of antibiotic prescriptions was mainly seen in the last 4 months before diagnosis (Fig. 1E), during month 12 to 6 prior to diagnosis lung cancer patients were treated less with antibiotics than compared to the comparison subjects.

Furthermore, 4.6% of the lung cancer cases and 1.4% of the comparisons had one or more new prescription of COPD medicine (Table 2).

Lung cancer patients with localized disease versus advanced disease

8.7% of lung cancer patients with localized disease had no contacts in general practice compared to 6.9% of patients with advanced disease (OR: 0.74 [95% CI: 0.65–0.83]) (Table 2) whereas the odds for having more contacts were similar between the two groups. 19.0% of patients with localized disease had two or more radiographs performed during the 11 months before diagnosis compared to 11.6% of patients with advanced disease (OR = 0.54 [95% CI: 0.50–0.59]). The use of lung function test in general practice and COPD prescriptions did not differ between patients with localized disease and patients with metastatic disease.

Table 2. Proportion of persons with consultations, lung function tests, radiographs, Antibiotics prescriptions, and COPD medicine prescriptions during months 12 to 1 prior to lung cancer diagnosis.

	ALL study subjects	All lung cancers								
	Lung cancer patients	Comparison subjects	OR (95% CI)\(^1\)	Localized	Metastatic	OR (95% CI)\(^2\)				
Consultations										
0	2507	46399	13.6%	0.42	0.39–0.44	544	8.7%	1903	6.9%	0.74 (0.65–0.83)
1–4	6980	98198	28.9%	0.68	0.65–0.70	1244	19.8%	5659	20.6%	0.99 (0.91–1.07)
5–8	6889	72491	21.3%	0.98	0.95–1.01	1250	19.9%	5602	20.4%	1.00 (0.93–1.08)
≥9	17648	123082	36.2%	1.89	1.83–1.94	3232	51.6%	14332	52.1%	1.09 (1.02–1.16)
Lung function tests										
0	31500	331855	97.5%	0.29	0.27–0.30	5787	92.3%	25473	92.6%	1.06 (0.94–1.18)
1	2342	7778	2.3%	3.44	3.26–3.63	451	7.2%	1880	6.8%	0.94 (0.84–1.06)
≥2	175	537	0.2%	3.74	3.08–4.55	32	0.5%	143	0.6%	1.00 (0.66–1.52)
Radiographs										
0	23361	300836	88.4%	0.28	0.27–0.29	3637	58.0%	19564	71.2%	1.89 (1.78–2.01)
1	6223	28051	8.3%	2.43	2.35–2.52	1443	23.0%	4734	17.2%	0.70 (0.65–0.75)
≥2	4433	11283	3.3%	4.26	4.08–4.45	1190	19.0%	3198	11.6%	0.54 (0.50–0.59)
Antibiotics										
0	19410	258900	76.1%	0.42	0.41–0.43	3345	53.4%	15919	57.9%	1.20 (1.13–1.28)
1	7527	52412	15.4%	1.54	1.50–1.59	1486	23.6%	5991	21.8%	0.90 (0.84–0.97)
≥2	7080	20858	8.5%	2.70	2.61–2.78	1439	23.0%	5586	20.3%	0.86 (0.80–0.92)
COPD prescriptions										
0	32462	335382	98.6%	0.30	0.28–0.32	5979	95.4%	26239	95.4%	1.01 (0.87–1.16)
≥1	1555	4788	1.4%	3.33	3.12–3.55	291	4.6%	1257	4.6%	0.99 (0.86–1.15)

OR, odds ratio; CI, confidence interval; CCI, Charlson Comorbidity Index; COPD, chronic obstructive pulmonary disease.

\(^1\)Adjusted analyses comparing the activity between lung cancer patients and comparison subjects.

\(^2\)Adjusted analyses comparing the activity between lung cancer patients with localized disease and lung cancer patients with metastatic disease. ORs are adjusted for age, county of origin, marital status, education, labor market affiliation, income, and comorbidity (CCI). 251 patients without information about stage at diagnosis are omitted.
Figure 1. Contacts (A), X-rays (B), lung function tests (C), chronic obstructive pulmonary disease (COPD) prescriptions (D), and antibiotics prescriptions (E) in general practice. Upper part: Mean numbers of contacts, lung function test, X-rays, or prescriptions in general practice for lung cancer patients and matched comparison subjects prior to diagnosis/date with 95% confidence interval. Lower part: the incidence rate ratio (IRR) with 95% CIs.
advanced disease, however, 23.0% of patients with localized disease and 20.3% of patients with advanced disease had two or more prescriptions of antibiotics (OR: 0.86 [95% CI: 0.80–0.92]).

Lung cancer patients with COPD versus other lung cancer patients

Lung cancer patients with COPD had more contacts in the 11 months prior to diagnosis than lung cancer patients without COPD (OR: 2.06 [95% CI: 1.93–2.19]) and they also had higher odds of having lung function tests performed. Lung cancer patients with COPD had more contacts (≥9: OR: 1.52 [95% CI: 1.43–1.62]), more lung function tests (≥2: OR: 3.23 [95% CI: 2.67–3.80]), more X-rays (≥2: OR: 2.23 [95% CI: 2.07–2.40]) and more prescriptions of antibiotics (≥2: OR: 1.93 [95% CI: 1.82–2.05]) than other COPD patients (Table 3). The difference in diagnostic activity was higher when comparing lung cancer patients and comparison subjects without COPD than when comparing lung cancer patients and comparisons diagnosed with COPD. 11% of lung cancer patients without COPD and 2.6% of comparisons diagnosed with COPD. 11% of lung cancer patients without COPD and 2.6% of comparisons diagnosed with COPD had two or more X-rays performed 12 to 1 months before diagnosis (OR: 4.19 [95% CI: 3.98–4.41]).

In order to estimate the clinical relevance of the observed excess of general practice use we calculated risk estimates in the form of positive predictive values (PPVs). We calculated PPVs for having ≥9 contacts, ≥1 lung function test, ≥2 X-rays, and ≥2 medicine prescriptions, also stratified by COPD. All PPVs calculated were below 1% (0.3% for ≥9 contacts to 0.9% for ≥2 X-rays). These low PPVs are in range with many symptoms for lung cancer [11].

Discussion

This study, including 34,017 Danish lung cancer patients, found a higher frequency of contacts, diagnostic tests, and prescriptions in general practice for lung cancer patients compared with a comparison group, with a steep increase before the month prior to diagnosis. There was no important difference in activity when dividing the lung cancer patients into localized and advanced disease at diagnosis which indicates that they might present with similar symptoms although patients with advanced lung cancer had fewer radiographs before diagnosis than patients with local cancers. When dividing the study group according to COPD, the difference in activity between lung cancer patients and comparisons where more pronounced in the group without COPD. This indicates that having COPD can mask symptoms of lung cancer.

Strengths and limitations

The strength of this study was a high statistical precision owing to the large, national study population. All data were collected from nationwide Danish registers. Cancer patient data were included from The Danish Cancer Registry and the Danish Lung Cancer Registry in order to have an almost complete inclusion of patients and clinical data [15–17]. The information on healthcare services provided in primary care is considered to be valid as registration of these services forms the basis for remuneration of the GPs [17]. By matching lung cancer patients and comparison persons according to age, gender, and general practice we diminished the risk of confounding. However, the results may have been influenced by confounding by smoking as we were not able to obtain smoking history, and there may be residual confounding by comorbidity as CCI does not include diseases managed only in general practice.

In the analyses of general practice activity we omitted the last month before diagnosis to eliminate the inevitable increase in activity just before diagnosis. Furthermore, we omitted patients’ lung function tests and prescriptions if they had such tests in the months between 12 and 36 before diagnosis. Test and prescriptions included in the analyses where therefore first-time, reflecting the GPs response to the symptoms of the patients seen in practice at that time. Thus we predominantly explored new episodes of symptoms or signs where the GPs response would be a lung function test or prescription of medicine.

A limitation of the study was the lack of information on other lung diseases such as asthma, these diseases will increase GP contact rate and would probably be uneven distributed with a higher incidence among patients with lung cancer. However, a large proportion of these patients would have been in an ongoing follow-up for the disease and they would have had lung function tests and prescriptions for medication in years before diagnosis. These tests would therefore have been omitted in the analyses. A further limitation of this study was a lack of information on the reasons for the consultations with the GPs.

We restricted our analyses to first occurrence of cancer to avoid the influence of an increased awareness of the GP among patients with a history of cancer. Being population based and thus including all lung cancer patients make the findings generalizable to other relevant health care systems.

Excess consultations among the lung cancer patients was also found in Danish study mapping the routes to diagnosis of lung cancer patients [12] and a UK study of consultations before diagnosis [28].
Table 3. Proportion of patients with consultations, lung function tests, radiographs, Antibiotics prescriptions during months 12 to 1 prior lung cancer diagnosis.

	All lung cancers	COPD	No COPD	OR (95%CI)	COPD	No COPD	OR (95% CI)	COPD	No COPD	OR (95% CI)
Consultations										
0	178	2.4%	2329	8.8%	0.35	(0.29–0.42)	178	2.4%	1313	4.0%
1–4	799	10.6%	6181	23.4%	0.50	(0.46–0.55)	799	10.6%	5478	16.6%
5–8	1217	16.1%	5672	21.4%	0.78	(0.72–0.84)	1217	16.1%	6545	20.0%
≥9	5359	70.9%	12284	46.4%	2.06	(1.93–2.19)	5359	70.9%	19510	59.4%
Lung function tests										
0	6624	87.7%	24605	93.0%	0.40	(0.39–0.46)	6624	87.7%	31384	95.5%
1	612	8.1%	1730	6.5%	1.29	(1.16–1.44)	612	8.1%	1026	3.1%
≥2	315	4.1%	131	0.5%	6.35	(5.92–6.99)	315	4.2%	445	1.4%
Radiographs										
0	4384	58.0%	18977	71.7%	0.71	(0.67–0.75)	4384	58.0%	24483	74.5%
1	1635	21.7%	4588	17.3%	1.15	(1.07–1.23)	1634	21.7%	5218	15.9%
≥2	1532	20.3%	2901	11.0%	1.49	(1.39–1.61)	1532	20.3%	3154	9.6%
Antibiotics										
0	2973	39.4%	16437	62.1%	0.42	(0.39–0.44)	2973	39.4%	18177	55.3%
1	1784	23.6%	5743	21.7%	1.08	(1.01–1.16)	1784	23.6%	7289	22.2%
≥2	2794	37.0%	4286	16.2%	2.85	(2.67–3.04)	2794	37.0%	7389	22.5%

OR, odds ratio; CI, confidence interval; COPD, chronic obstructive pulmonary disease.

1Adjusted analyses comparing the activity between patients with COPD and patients without COPD (first set of columns) and comparing activity between lung cancer patients and comparison subjects (the next two sets of columns). ORs are adjusted for age, county of origin, marital status, education, labor market affiliation, income, and comorbidity (CCI).
The fact that lung cancer patients are seen in general practice before diagnosis and that the GP acts on the contacts with a high range of treatment and diagnostic activity months before diagnosis (even when omitting the last month) can be based on two things (or both things combined); either the GPs suspects cancer but fails to make the one diagnostic test to find the cancer (or fails to refer timely to fast-track) or the GP do not suspect cancer by interpreting the symptoms as something else. The latter is supported by the increased use of lung function tests, antibiotics, and COPD medication. A Danish study found that comorbidity delayed diagnosis in around 23% of lung cancer patients seen by GPs [29]. Symptoms like cough, weight loss, or breathlessness may be ascribed to known comorbidity rather than lung cancer. This is in line with our findings.

Many of the lung cancer patients had two or more X-rays performed prior to diagnosis which is in line with results from a Danish study mapping the routes to diagnosis [12]. For patients with localized disease this excess of X-rays was more pronounced. This could be based on false negative X-rays which occur in as much as a quarter of cancer patients [30, 31].

Patients with advanced disease had more contacts to general practice than patients with localized disease. This could be patients, with localized disease, bypassing general practice, and getting the diagnosis in connection with a hospital inpatients visit for other diseases and thus having an earlier lung cancer diagnosis.

We found virtually no difference in activity between patients with localized disease and advanced disease. A British study from 2015 found no difference in symptoms presented in general practice according to stage at diagnosis [32]. However, the difference we did find (more X-rays in the group of patients with localized disease) may be rooted in the X-rays poor sensitivity, especially for small tumors.

The results, on the other hand, indicate an opportunity to optimize the early detection of lung cancer in general practice. So the question remains, how to select patients for further examination. GP awareness could be relevant for how to select patients for further diagnostic test and which test may be the most optimal in general practice.

Acknowledgments

The authors thank statistician Anders Helles Carlsen for assistance with the statistical analyses and Kaare Rud Flarup for his assistance with data retrieval from the national registries. None of the funding sources had a role in the design, conduct, analysis, or reporting the study.

Conflict of Interest

None declared.

References

1. Jemal, A., F. Bray, M. M. Center, J. Ferlay, E. Ward, and D. Forman. 2011. Global cancer statistics. CA Cancer J. Clin. 61:69–90.
2. Engholm, G., J. Ferlay, N. Christensen, F. Bray, M. L. Gjerstorff, A. Klint, et al. 2010. NORDCAN—a nordic tool for cancer information, planning, quality control and research. Acta. Oncol. 49:725–736.
3. Holmberg, L., F. Sandin, F. Bray, M. Richards, J. Spicer, M. Lambe, et al. 2010. National comparisons of lung cancer survival in England, Norway and Sweden 2001-2004: differences occur early in follow-up. Thorax 65:436–441.
4. Coleman, M. P., D. Forman, H. Bryant, J. Butler, B. Rachet, C. Maringe, et al. 2011. Cancer survival in Australia, Canada, Denmark, Norway, Sweden, and the UK, 1993-2007 (the international cancer benchmarking partnership): an analysis of population-based cancer registry data. Lancet 377:127–138.
5. Walters, S., C. Maringe, M. P. Coleman, M. D. Peake, J. Butler, N. Young, et al. 2013. Lung cancer survival and stage at diagnosis in Australia, Canada, Denmark, Norway, Sweden and the UK: a population-based study, 2004-2007. Thorax 68:551–564.
6. Hansen, R. P., P. Vedsted, I. Sokolowski, J. Sondergaard, and F. Olesen. 2011. Time intervals from
first symptom to treatment of cancer: a cohort study of 2,212 newly diagnosed cancer patients. BMC Health Serv. Res. 11:284.
7. Hamilton, W., and D. Sharp. 2004. Diagnosis of lung cancer in primary care: a structured review. Fam. Pract. 21:605–611.
8. Hamilton, W., T. J. Peters, A. Round, and D. Sharp. 2005. What are the clinical features of lung cancer before the diagnosis is made? A population based case-control study. Thorax 60:1059–1065.
9. Corner, J., J. Hopkinson, D. Fitzsimmons, S. Barclay, and M. Muers. 2005. Is late diagnosis of lung cancer inevitable? interview study of patients’ recollections of symptoms before diagnosis. Thorax 60:314–319.
10. Moth, G., F. Olesen, and P. Vedsted. 2012. Reasons for encounter and disease patterns in danish primary care - changes over 16 years. Scand. J. Prim. Health Care 30:70–75.
11. Hamilton, W. 2009. The CAPER studies: five case-control studies aimed at identifying and quantifying the risk of cancer in symptomatic primary care patients. Br. J. Cancer 101(Suppl. 2):S80–S86.
12. Guldbrandt, L. M., M. Fenger-Grøn, T. R. Rasmussen, H. Jensen, and P. Vedsted. 2015. The role of general practice in routes to diagnosis of lung cancer in Denmark: a population-based study of general practice involvement, diagnostic activity and diagnostic intervals. BMC Health Serv. Res. 22:21.
13. Neal, R. D., V. L. Allgar, N. Ali, B. Leese, P. Heywood, G. Proctor, et al. 2007. Stage, survival and delays in lung, colorectal, prostate and ovarian cancer: comparison between diagnostic routes. Br. J. Gen. Pract. 57:212–219.
14. Pedersen, C. B. 2011. The Danish civil registration system. Scand. J. Public Health 39:22–25.
15. Gjerstorff, M. L. 2011. The Danish cancer registry. Scand. J. Public Health 39:42–45.
16. Jakobsen, E., T. Palshof, K. Osterlind, and H. Pilegaard. 2009. Data from a national lung cancer registry contributes to improve outcome and quality of surgery: danish results. Eur. J. Cardiothorac. Surg. 35:348–352.
17. Andersen, J. S., F. Olivarius Nde, and A. Krasnik. 2011. The danish national health service register. Scand. J. Public Health 39(Suppl. 7):34–37.
18. Kildemoes, H. W., H. T. Sorensen, and J. Hallas. 2011. The Danish national prescription registry. Scand. J. Public Health 39(Suppl. 7):38–41.
19. Lynge, E., J. L. Sandegaard, and M. Reboli. 2011. The Danish national patient register. Scand. J. Public Health 39:30–33.
20. Scmidth, M., I. Sokolowski, L. Kervang, and P. Vedsted. 2012. Developing an algorithm to identify people with Chronic Obstructive Pulmonary Disease (COPD) using administrative data. BMC Med. Inform. Decis. Mak. 22:38.
21. Pepek, J. M., J. P. Chino, L. B. Marks, T. A. D’Amico, D. S. Yoo, M. W. Onaitis, et al. 2011. How well does the new lung cancer staging system predict for local/regional recurrence after surgery?: a comparison of the TNM 6 and 7 systems. J. Thorac. Oncol. 6:757–761.
22. Deleuran, T., M. Sogaard, T. Froslev, T. R. Rasmussen, H. K. Jensen, S. Friis, et al. 2012. Completeness of TNM staging of small-cell and non-small-cell lung cancer in the danish cancer registry, 2004-2009. Clin. Epidemiol. 4(Suppl. 2):39–44. doi: 10.2147/CLEP.S33315. Epub@2012 Aug 17.:39-44.
23. de Vos, K., and M. A. Zaidi. 1997. Equivalence scale sensitivity of poverty statistics for the member states of the European community. Rev. Income Wealth 43:319–333.
24. UNESCO. 1997. International standard classification of education ISCED. UNESCO, Montreal.
25. Sundararajan, V., H. Quan, P. Hallon, K. Fushimi, JC. Luthi, B. Bernard, et al. 2007. Crossnational comparative performance of three versions of the ICD-10 charlson index. Med. Care 45:1210–1215.
26. Juel, K., and K. Christensen. 2008. Are men seeking medical advice too late? Contacts to general practitioners and hospital admissions in Denmark 2005. J. Public Health (Oxf) 30:111–113.
27. Vedsted, P. 2007. Gender differences in the use of health care system. Ugeskr. Laeger. 169:2403–2408.
28. Lytrasopolos, G., R. D. Neal, J. M. Barbire, G. P. Rubin, and G. A. Abel. 2012. Variation in number of general practitioner consultations before hospital referral for cancer: findings from the 2010 National Cancer Patient Experience Survey in England. Lancet. Oncol. 13(4):353–365.
29. Bjerager, M., T. Palshof, R. Dahl, P. Vedsted, and F. Olesen. 2006. Delay in diagnosis of lung cancer in general practice. BJ. J. Gen. Pract. 56:863–868.
30. Stapley, S., D. Sharp, and W. Hamilton. 2006. Negative chest X-rays in primary care patients with lung cancer. Br. J. Gen. Pract. 56:570–573.
31. Singh, H., K. Hirani, H. Kadiyala, O. Rudomiotov, T. Davis, M. M. Khan, et al. 2010. Characteristics and predictors of missed opportunities in lung cancer diagnosis: an electronic health record-based study. J. Clin. Oncol. 28:3307–3315.
32. Biswas, M., A. E. Ades, and W. Hamilton. 2015. Symptom lead times in lung and colorectal cancer: what are the benefits of symptom based approaches to early diagnosis? Br. J. Cancer 112:271–277.
33. Guldbrandt, L., T. R. Rasmussen, F. Rasmussen, and P. Vedsted. 2014. Implementing direct access to low-dose computed tomography in general practice—method, adaption and outcome. PLoS ONE 9:e112162.