High mobility group box 1 enables bacterial lipids to trigger receptor-interacting protein kinase 3 (RIPK3)-mediated necroptosis and apoptosis in mice

Received for publication, December 6, 2018, and in revised form, April 4, 2019. Published, Papers in Press, April 18, 2019, DOI 10.1074/jbc.RA118.007040

Ran Meng§, Lan Gu§, Yanyan Lu§, Kai Zhao§, Jianfeng Wu, Haichao Wang**, Jiahuai Han, Yiting Tang†††, and Ben Lu§§§§

From the § Department of Hematology and Key Laboratory of Non-resolving Inflammation and Tumor and the ¶ Postdoctoral Research Station of Clinical Medicine, The 3rd Xiangya Hospital, Central South University, Changsha, Hunan Province 410000, China, the ¶ Key Laboratory of Medical Genetics, School of Biological Science and Technology, Central South University, Changsha, Hunan Province 410000, China, the ** State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China, the *** Department of Emergency Medicine, North Shore University Hospital, Northwell Health, Manhasset, New York 11030, the ‡ Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province 410000, China, the §§ Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha, Hunan Province 410000, China, and the †††† Department of Pathophysiology, School of Basic Medical Science, Jinan University, Guangzhou, Guangdong Province 510632, China

Receptor-interacting protein kinase 3 (RIPK3) is a key regulator of programmed cell death and inflammation during viral infection or sterile tissue injury. Whether and how bacterial infection also activates RIPK3-dependent immune responses remains poorly understood. Here we show that bacterial lipids (lipid IVa or lipid A) form a complex with high mobility group box 1 (HMGB1), released by activated immune cells or damaged tissue during bacterial infection, and that this complex triggers RIPK3- and TIR domain-containing adapter-inducing IFN-β (TRIF)-dependent immune responses. We found that these responses lead to macrophage death, interleukin (IL)-1α release, and IL-1β maturation. In an air-pouch inflammatory infiltration model, genetic deletion of Ripk3, Trif, or IL-1 receptor (II-1R), or monoclonal antibody-mediated HMGB1 neutralization uniformly attenuated inflammatory responses induced by Gram-negative bacteria that release lipid IVa and lipid A. These findings uncover a previously unrecognized mechanism by which host factors and bacterial components work in concert to orchestrate immune responses.

To survive bacterial infection and promote tissue repair, the host immune system is armed with a series of pattern recognition receptors that recognize both pathogen-associated molecular patterns (PAMPs) released from microbes and damage-associated molecular patterns (DAMPs) released by damaged host cells (1). Infections and anti-microbial immune responses unavoidably cause tissue damage, rendering the immune system exposed to both PAMPs and DAMPs. However, how PAMPs and DAMPs work in concert to orchestrate host immune responses remains poorly defined.

High mobility group box 1 (HMGB1) is a prototypical DAMP and an evolutionarily conserved protein virtually expressed in all type of cells. Under physiological conditions, intracellular HMGB1 functions as a nonhistone chromatin-binding protein that regulates gene expression and protects cells from oxidative stress (2, 3). During infection or tissue injury, damaged cells release HMGB1 into the extracellular space (4–6), where it regulates immune responses, cell migration, tissue regeneration, and tumorigenesis through multiple receptors such as the receptor for advanced glycation end products or TLR4 (6–18). Previous studies show that HMGB1 could enhance nucleic acid-induced immune responses (11, 14) and promote inflammatory responses through CD14 by direct binding to lipopolysaccharide (LPS) (19–21). Although exploring the role of HMGB1 in mediating PAMPs-mediated inflammation, we found that HMGB1 could also physically interact with Gram-negative bacteria-derived lipid IVa or lipid A. Both lipid IVa and lipid A are the precursor lipids for the biosynthesis of LPS that reside within the bacteria and can be released into the extracellular space when bacteria are dead. Unexpectedly, the interaction between HMGB1 and lipid IVa or lipid A enables lipid IVa...
or lipid A to efficiently activate receptor-interacting protein kinase 3 (RIPK3) and trigger MLKL-dependent necroptosis as well as caspase-8–dependent apoptosis, resulting in IL-1α release and IL-1β maturation. These responses are mediated by the TLR4-TRIF signaling, and absolutely dependent on the presence of both HMGB1 and bacterial lipid (IVa or A). In an air–pouch inflammatory infiltration model, the genetic deletion of Ripk3, Trif, or Il-1R, or neutralizing HMGB1 attenuates the nonresolving inflammation induced by Gram-negative bacteria. These findings uncover a previously unrecognized mechanism by which host factors and bacterial components work in concert to orchestrate RIPK3-dependent immune responses under pathophysiological conditions.

Results

HMGB1 enables lipid IVa or lipid A to trigger RIPK3-mediated necroptosis, apoptosis, and inflammation

To investigate whether HMGB1 and bacterial lipids could work in concert to orchestrate immune responses, mouse peritoneal macrophages were stimulated with lipid A or lipid IVa in the absence or presence of highly purified recombinant HMGB1 protein. Only in the presence of HMGB1 can lipid IVa or lipid A induce a marked release of LDH, IL-1α, and IL-1β (Fig. 1A), and an increase in the cleavage of pro–IL-1β in the WT peritoneal macrophages (Fig. 1B). Flow cytometry analysis revealed an increase in the percentage of cells undergoing necrosis (PI⁺) and apoptosis (PI⁻) after challenging mouse peritoneal macrophages with both HMGB1 and lipid IVa or lipid A (Fig. 1C), but not HMGB1, lipid IVa, or lipid A alone (Fig. S1). EM examination showed the occurrence of necrosis (Fig. 1D, red arrows) and apoptosis (Fig. 1D, blue arrows) in the macrophages treated with HMGB1/lipid mixtures. To confirm the importance of HMGB1 in mediating bacterial lipid action, mouse peritoneal macrophages were stimulated simultaneously with lipid IVa or lipid A in combination with necrotic cell lysate of Hmgdb1⁺/⁺ or Hmgdb1⁻/⁻ mouse embryonic fibroblasts (MEFs). Our data showed that endogenous HMGB1 released from necrotic WT MEFs enabled lipid IVa or lipid A to induce the release of IL-1α and IL-1β, which was markedly inhibited by HMGB1 neutralizing monoclonal antibodies (Fig. 1E, Fig. S2). To further confirm the notion in human cells, we stimulated human peripheral blood mononuclear cells (PBMC) with HMGB1 and Lipid IVa/Lipid A, and found that HMGB1 significantly enhanced the release of IL-1α and IL-1β, induced by Lipid A, but not Lipid IVa, which has been reported as an antagonist in human (Fig. S3). These observations indicate that extracellular HMGB1 could enable lipid IVa or lipid A to trigger necrosis, apoptosis, IL-1α release, and IL-1β maturation.

RIPK3 is a serine/threonine kinase that is crucial for a programmed necrosis process termed necroptosis (22–28). Although the canonical function of RIPK3 is to mediate necroptosis, RIPK3 also regulates apoptosis and other immune responses under certain circumstances (29). In response to influenza A virus (IAV) infection, RIPK3 is required for activation of the NLRP3 inflammasome, which mediates the IL-1β maturation through caspase-1 (30). RIPK3 could also promote caspase-8–dependent IL-1β maturation and TLR4-dependent proinflammatory cytokine production (31, 32). In light of the involvement of RIPK3 in the regulation of necroptosis, apoptosis, IL-1α release, and IL-1β maturation, we next determined whether RIPK3 is required for these HMGB1/bacterial lipid–mediated responses. The deletion of Ripk3 almost completely blocked the HMGB1/lipid IVa or HMGB1/lipid A–induced release of LDH and cytokines (IL-1α and IL-1β) (Fig. 1, A and B), and the parallel induction of apoptosis and necroptosis (Fig. 1, C and D). Furthermore, necrotic lysate of Hmgdb1⁺/+ MEFs failed to facilitate the lipid IVa- or lipid A-mediated IL-1α and IL-1β release from Ripk3-deficient macrophages (Fig. 1E). Together, these findings establish HMGB1 as an important regulator of bacterial lipid–mediated and RIPK3-dependent cell death and inflammatory responses.

HMGB1 binding is critical for lipid IVa and lipid A to trigger the RIPK3-dependent necroptosis, apoptosis, and inflammation

To determine whether HMGB1 could physically interact with lipid IVa or lipid A, we developed a HMGB1 lipid-binding assay (Fig. 2A) to quantitatively characterize the dynamics of HMGB1 binding to lipid IVa or lipid A. As shown in Fig. 2A, free uncoated lipid IVa or lipid A dose-dependently inhibited the anchoring of HMGB1 proteins to the lipid IVa- or lipid A-coated plate, indicating that HMGB1 is able to bind lipid IVa and lipid A. *Rhodobacter sphaeroides*-derived penta-acylated LPS (LPS−RS) is a potent LPS antagonist that has been reported to compete for the LPS-binding site on LBP (33, 34). In this study, we found that LPS−RS competitively inhibited the binding of HMGB1 to lipid IVa or lipid A (Fig. 2B). Furthermore, the addition of LPS−RS dose-dependently suppressed the HMGB1/lipid IVa or HMGB1/lipid A–induced IL-1α and IL-1β release from mouse macrophages (Fig. 2C). Consistently, LPS−RS prevented HMGB1/lipid IVa- or HMGB1/lipid A–induced necroptosis and apoptosis in mouse peritoneal macrophages (Fig. 2D).

To further prove that HMGB1-lipid binding is important for RIPK3-mediated necroptosis, apoptosis, and inflammation, we used HPe6p, a synthetic peptide that are located in the B-box domains of HMGB1 known to specifically block the HMGB1-LPS association by binding to lipid A moieties of LPS (35), and found that HPe6p also dose-dependently inhibited HMGB1 + lipid A-induced release of LDH, IL-1α, and IL-1β (Fig. 2E). These results suggest that HMGB1 binding is essential for lipid IVa and lipid A to trigger RIPK3-dependent necroptosis, apoptosis, and IL-1 release.

TLR4-TRIF signaling mediates bacterial lipid-induced RIPK3-dependent necroptosis, apoptosis, and inflammation in the presence of HMGB1

Next we investigated how HMGB1 enables lipid A or lipid IVa to trigger RIPK3-dependent necroptosis, apoptosis, and IL-1 release. Because HMGB1, lipid A, and lipid IVa are all capable of binding to TLR4, the deletion of TLR4 indeed completely abolished the HMGB1/lipid IVa or HMGB1/lipid A–induced release of LDH, IL-1α, IL-1β, and TNFα (Fig. 3A). Similarly, TLR4 deficiency also prevented the HMGB1/lipid IVa- or HMGB1/lipid A–induced apoptosis and necroptosis in mouse peritoneal macrophages (Fig. 3B). Moreover, necrotic lysate of Hmgdb1⁺/+ MEFs facilitated the lipid IVa- or lipid A-mediated necroptosis, apoptosis, and IL-1 release.

HMGB1 orchestrates RIPK3-mediated cell death

J. Biol. Chem. (2019) 294(22) 8872–8884 8873
release of IL-1α and IL-1β from WT but not Tlr4-deficient macrophages (Fig. 3C). Thus, HMGB1 and one of its receptors, TLR4, are critically involved in the Gram-negative bacterial lipid-induced RIPK3-dependent necroptosis, apoptosis, and IL-1 release.

TLRs rely on either MyD88 or TRIF for downstream signal transduction. Although for TLR3/TLR4, TRIF is a main driver of necroptosis by directly receptor-interacting protein (RIP) homotypic interaction motifs (RHIM) domain-dependent association with RIPK3, particularly when caspase-8 is absent or inhibited (25, 36–38). In this study, the genetic deletion of Trif abolished the HMGB1-lipid A/IVa complex induced release of LDH, IL-1α, and IL-1β (Fig. 3D), as well as the secretion of TNFα (Fig. 3D). As shown by flow cytometry, the deletion of Trif abrogated the HMGB1/lipid IVa or HMGB1/lipid A/IVa complex-induced release of IL-1α and IL-1β in WT but not Ripk3−/− mice following stimulation with lipid IVa or lipid A (1 μg/ml) in the absence or presence of HMGB1 (0.4 μg/ml). B, Western blot for processed IL-1α and IL-1β released from WT and Ripk3−/− peritoneal macrophages stimulated with lipid IVa or lipid A (1 μg/ml) in the presence or absence of HMGB1 (0.4 μg/ml). C, flow cytometry analysis of WT or Mlkl−/− peritoneal macrophages undergoing necrosis (PI−) or apoptosis (PI+) of stimulation with lipid IVa or lipid A (1 μg/ml) in the presence of HMGB1 (0.4 μg/ml). D, the EM shows the morphology of WT and Ripk3−/− peritoneal macrophages after stimulation with HMGB1 (0.4 μg/ml) + lipid IVa or lipid A (1 μg/ml). The red arrows indicate the expansion of the cell volume, organelle swelling, and plasma membrane rupture. The blue arrows indicate intact cell membrane and condensed chromatin. Scale bars: 5 μm. E, IL-1α and IL-1β measured from culture supernatants of peritoneal macrophages from WT and Ripk3−/− upon exposure to the necrotic Hmgb1−/− or Hmgb1+/+ MEF in the presence or absence of lipid IVa or lipid A (1 μg/ml). **, p < 0.01; ***, p < 0.001; ****, p < 0.0001. Graphs show the mean ± S.D. from three independent experiments.
A-induced necroptosis and apoptosis in mouse peritoneal macrophages (Fig. 3E). Furthermore, necrotic lysate of WT MEFs facilitated the lipid IVa or lipid A-induced release of IL-1α and IL-1β from WT, but not Trif-deficient macrophages (Fig. 3F).

Recent studies have suggested that the TLR4-TRIF signaling licenses Gram-negative bacteria to trigger caspase-11–dependent pyroptosis, a lytic form of programmed cell death, through type 1 interferon signaling (39, 40). Similarly, TLR4-TRIF signaling has also been suggested to promote bacteria-induced and the dsRNA-dependent kinase R (PKR)-dependent macrophage cell death. However, the deletion of Caspase-11, Pkr, or Ifn-1R1, the receptor of type 1 interferon, all failed to inhibit HMGB1/lipid IVa or HMGB1/lipid A-induced release of LDH, IL-1α, and IL-1β (Fig. 3G). Taken together, these findings have suggested the possible role of TLR4-TRIF-RIPK3 signaling in the regulation of HMGB1/lipid IVa or HMGB1/lipid A-induced necroptosis, apoptosis, and IL-1 release.
MLKL mediates necroptosis induced by HMGB1 and bacterial lipids

RIPK3 mediates necroptosis through phosphorylation of its downstream substrate MLKL (41). Phosphorylated MLKL forms oligomers that disrupt the integrity of cell membranes, leading to necrotic cell death (41, 42). We thus determined whether co-addition of HMGB1 and bacterial lipids induces MLKL phosphorylation in RIPK3-deficient macrophages. Indeed, HMGB1/lipid IVa or HMGB1/lipid A induced MLKL phosphorylation in WT peritoneal macrophages (Fig. 4A). Similarly, the HMGB1/lipid IVa-induced MLKL phosphorylation was also attenuated by a specific RIPK3 kinase inhibitor (Fig. 4A). Similar observations were obtained from HMGB1/lipid A-stimulated cells (Fig. 4B). Moreover, the deletion of Tlr4 or Trif markedly blocked HMGB1/lipid IVa or HMGB1/lipid A-induced MLKL phosphorylation (Fig. 4, C–F). Mechanistically, co-stimulation of macrophages with HMGB1 and lipid IVa or lipid A markedly enhanced the physical interaction between RIPK3 and MLKL (Fig. 4G). Given the essential role of MLKL in necroptosis, we next determined whether TLR4–TRIF signaling is required for the MLKL-driven necroptosis in macrophages. The deletion of Mlk1 selectively blocked the
HMGB1/lipid IVa- or HMGB1/lipid A-induced necroptosis (Fig. 4H); whereas the deletion of Tlr4, Trif, or Ripk3 blocked both necroptosis and apoptosis in mouse peritoneal macrophages (Figs. 1 and 3). Together, these findings indicate that TLR4-TRIF-RIPK3 signaling activates parallel MLKL-dependent necroptosis and MLKL-independent apoptosis in response to stimulation with HMGB1 and bacterial lipids.

Caspase-8 mediates apoptosis induced by HMGB1 and bacterial lipids

In response to IAV infection, RIPK3 also mediates caspase-8–dependent apoptosis in a mechanism independent of its kinase activity (43). To test whether HMGB1/lipid IVa or HMGB1/lipid A could activate caspase-8 in a RIPK3-dependent fashion, we measured the levels of caspase-8 cleavage as an indicator of its activation. The co-addition of HMGB1 enhanced the lipid IVa- or lipid A-induced caspase-8 cleavage (Fig. 5A), which was barely inducible if HMGB1, lipid IVa, or lipid A was added alone (Fig. 5A). The deletion of RIPK3, but not MLKL, blocked the HMGB1/lipid IVa- or HMGB1/lipid A-induced caspase-8 cleavage in both WT and Mlkl-deficient macrophages (Fig. 5, B and C). Moreover, the deletion of Tlr4 or Trif also blocked the HMGB1/lipid IVa or HMGB1/lipid A-induced caspase-8 cleavage (Fig. 5, E–H). Together with the finding that the deletion of Tlr4, Trif, or Ripk3 blocked HMGB1/lipid-induced apoptosis, these results indicate that TLR4-TRIF-RIPK3 signaling occupies an important role in the HMGB1/bacterial...
lipid-mediated and caspase-8–dependent apoptosis in innate immune cells. Although Ripk3 deficiency almost led to a complete blockade of HMGB1/lipid IVα- or HMGB1/lipid A-induced release of LDH and IL-1β/H9251, the deletion of Mlkl only partially inhibited the HMGB1/lipid-induced release of LDH and IL-1β/H9251 (Fig. 5D). Notably, addition of the caspase-8 inhibitor significantly inhibited the HMGB1/lipid-induced LDH and IL-1β/H9251 release in Mlkl-deficient, but not in WT, macrophages (Fig. 5D). Thus, it appears that HMGB1 enables lipid IVα or lipid A to activate parallel MLKL-dependent necroptosis and caspase-8–dependent apoptosis through TLR4-TRIF-RIPK3 signaling, ultimately leading to IL-1β release.

RIPK3 mediates NLRP3 inflammasome-dependent IL-1β cleavage and release in response to HMGB1 and bacterial lipids

During IAV infection, RIPK3 is required for activation of the NLRP3 inflammasome, which are intracellular protein complexes that mediate IL-1β maturation and release through caspase-1 (30). To test whether TLR4-TRIF-RIPK3 signaling is essential for the NLRP3 inflammasome-dependent IL-1β maturation and release, peritoneal macrophages from WT, Ripk3-deficient, Nlrp3-deficient, and Asc-deficient mice were stimulated with lipid IVα or lipid A in the absence or presence of HMGB1. The deletion of Ripk3, Nlrp3, or Asc blocked the HMGB1/lipid IVα- or HMGB1/lipid A-induced IL-1β release and maturation, whereas deletion of Ripk3, Nlrp3, or Asc did not alter the expression of the cytokines tested (Fig. 6, A–C, Fig. S4). Furthermore, inhibition of necroptosis by necrostatin-1 significantly reduced the release of IL-1β induced by HMGB1+lipid IVα/A (Fig. S5). Likewise, the deletion of Tlr4, Trif, or Ripk3 similarly abrogated the HMGB1/lipid IVα- or HMGB1/lipid A-induced release of both IL-1α and IL-1β (Figs. 1, 3, and 6D), which was in sharp contrast to the findings obtained from using the Nlrp3- or Asc-deficient macrophages (Fig. 6, A and B). Together, these data demonstrate that TLR4-TRIF-RIPK3 signaling mediates both NLRP3 inflam-
masome-dependent IL-1β maturation and inflammasome-independent IL-1α release in response to HMGB1 and bacterial lipids.

The role of RIPK3 and HMGB1 in bacteria-induced nonresolving inflammation

As IL-1R is the receptor of both IL-1α and IL-1β, we next investigated whether TRIF-RIPK3-IL-1R signaling regulates inflammatory responses induced by Gram-negative bacteria, which releases their components (including lipid IVa and lipid A) to stimulate robust HMGB1 secretion from immune cells. In an air-pouch inflammatory infiltration model, injection of live *Escherichia coli* resulted in a persistent infiltration of leukocytes, including neutrophils and macrophages, which were completely blocked by the genetic deletion of *Ripk3* (Fig. 7A). To determine whether the diminished leukocyte infiltration is because of increased bacterial clearance or enhanced inflammation resolution, heat-killed *E. coli* was injected into the air pouch. The genetic *Ripk3* knockout prevented the *E. coli*-induced persistent infiltration of neutrophils and macrophages even at 5 days after infection (Fig. 7B). The deletion of *Trif* or *Il-1r* phenocopied the observed *Ripk3* deficiency in this model (Fig. 7C). Furthermore, neutralizing extracellular HMGB1 by monoclonal antibodies abrogated the Gram-negative bacteria-induced infiltration of total leukocytes, neutrophils, and macrophages (Fig. 7E). Anti-HMGB1 antibody treatment also significantly inhibited necroptosis and apoptosis of infiltrated cells and proinflammatory cytokines’ production (Fig. S6). Together, these findings indicate that extracellular HMGB1 promotes bacteria-induced nonresolving inflammation through the TRIF-RIPK3-IL-1R signaling.

Discussion

Previous studies show that RIPK3 deficiency prevents axonal degeneration in ALS, improves survival following kidney/heart ischemia-reperfusion injury or ethanol/acetaminophen-induced liver injury, and renders animals more susceptible to several types of DNA or RNA virus, such as vaccinia virus, IAV, and West Nile virus (23, 28, 30, 43–47). However, the roles of RIPK3 in bacterial infection and the mechanisms by which bacterial components activate RIPK3 in innate immune cells remain largely unknown. In the current study, our data establishes that HMGB1 enables lipid IVa or lipid A to activate parallel MLKL-dependent necroptosis and caspase-8-dependent apoptosis through TLR4-TRIF-RIPK3 signaling. Lipid IVa and lipid A are abundant microbial lipids in Gram-negative bacteria. Considering that HMGB1 and RIPK3 are highly evolutionarily conserved in mammals (2, 3), it is conceivable that...
HMGB1 and microbial lipid-induced RIPK3 signaling might confer protection against certain pathogens in natural history. Lipid IVa has been reported as an antagonist in human, but not mouse (48). In agreement with these findings, we observed that the HMGB1-lipid IVa complex could trigger cell death and inflammatory responses in mouse macrophages, but not human PBMCs. A recent study reports that the TLR4-TRIF-RIPK3 signaling can be activated by *Yersinia pestis*, a Gram-negative bacterium infamous for its large pandemics such as the “Black Death” in medieval Europe (49). Mice defective in RIPK3 are highly susceptible to *Y. pestis* infection (49). However, these protective immune responses against pathogens, such as *Y. pestis*, might come at the cost of causing nonresolving inflammation.

In this study, we found that RIPK3 mediates a nonresolving inflammation during *E. coli* infection through IL-1R signaling, which is critical for leukocyte infiltration. It is known that cells undergoing MLKL-dependent necroptosis could passively release abundant IL-1α into the extracellular space (29). However, the deletion of MLKL only partially inhibits IL-1α release in HMGB1 and bacterial lipid-stimulated macrophages. Additionally, the inhibition of caspase-8 almost completely blocks the IL-1α release in MLKL-deficient macrophages. These findings are surprising because it was previously believed that apo-
Apoptotic cells do not release DAMPs. Recent advances reveal that caspase-3 not only mediates apoptosis but also is able to induce programmed necrosis by cleaving its substrate gasdermin E (GSDME) (50). Upon activation by caspase-3, GSDME binds to the cell membranes and functions as pore-forming peptides that execute necrotic cell death (50). Thus, these findings raise an intriguing possibility that activated caspase-3 might induce IL-1α release by cleaving GSDME in HMGB1/bacterial lipid-stimulated macrophages.

One remaining question is what dictates whether RIPK3 triggers necroptosis or apoptosis in response to HMGB1/bacterial lipids? This stochastic decision may be determined by local availability of MLKL versus caspase-8 in the cells. For example, HMGB1/bacterial lipids might trigger necroptosis in cells that fail to sufficiently activate caspase-8 to over-balance or suppress the RIPK3-dependent MLKL phosphorylation. The fact that HMGB1 + bacterial lipids induces necroptosis without concurrent caspase-8 suppression lends support to the “stochastic availability” model, in which both apoptosis and necroptosis can be equivalently deployed downstream of RIPK3. Another observation in our study that supports the stochastic availability model is that pharmacological inhibition of RIPK3. Another observation in our study that supports the stochastic availability model is that pharmacological inhibition of RIPK3.

Experimental procedures

Mice

The Trif−/−, Lps/Lps mice were purchased from the Jackson Laboratory. The Ripk3−/− and Mlkl−/− mice were generous gifts from Dr. Jiahuai Han. The Pkr−/− mice were generous gifts from Dr. Kevin J. Tracey. The Nlrp3−/− and Asc−/− mice were generous gifts from Dr. Rongbin Zhou. The Tlr4−/− mice were generous gifts from Dr. Shusheng Gong. The IfnarBR−/− mice were a generous gift from Dr. Jin Hou. Experimental groups were sex matched and 8–12 weeks of age. Animals were held under specific pathogen-free conditions and maintained in the Central South University Animal Facility with water and standard diet. All animal experiments were approved and performed according to the Guidelines for Animal Experiments by the Institutional Animal Care and Use Committees of Central South University.

Reagents

Lipid IVa (24006-S) was purchased from the Peptide Institute. Lipid A (L5399) was purchased from Sigma. Highly purified recombinant HMGB1 protein was provided by Dr. Kevin J. Tracey. Z-IETD-fmk (550380) and Z-FA-fmk (550411) were purchased from BD Bioscience. GSK872 was obtained from Merck. Antibodies IL-1α (ab9724), phosphorylated MLKL (Ser-345) (ab196436), phosphorylated RIPK3 (Ser-232) (ab195117), and HMGB1 (clone EPR35070) were from Abcam. Antibodies against Caspase-8 (4927S), cleaved Caspase-8 (Asp387)(8592S), MLKL (28640S), and RIPK1 (3493S) were purchased from Cell Signaling Technologies. Antibody against RIPK3 (17563-1-AP) was purchased from Proteintek. Antibody against IL-1β (AF-401-NA) was purchased from R&D Systems Inc.

Macrophage preparation and stimulation

Mouse peritoneal macrophages were isolated and cultured as described previously (4). Briefly, mice (8–12 weeks old) were injected intraperitoneally with thioglycollate broth to elicit peritoneal macrophages. Cells were collected and resuspended in RPMI 1640 medium (Gibco) supplemented with 10% fetal calf serum and antibiotics (Gibco). Peritoneal macrophages were stimulated with lipid IVa/lipid A and HMGB1 as indicated. In some experiments, cells were pretreated with 15 μM Z-IETD-fmk or 15 μM Z-FA-fmk for 0.5 h before infection. Cell lysates and supernatants were collected 16 h later for Western blotting, ELISA, and LDH release.

Cell death assays

Cell death was assessed by LDH Cytotoxicity Assay kit (Beyotime Biotechnology) according to the manufacturer’s instructions.

Western blot

Protein samples were separated by 15% SDS-PAGE and transferred onto polyvinylidene difluoride membranes (Millipore). Membranes were then incubated with antibodies as indicated. Blots were normalized to β-actin expression (1:5000 dilutions, Cell Signaling Technology).

Creation of air-pouch in mice

Creation of the air-pouch was performed as described previously (51). The mice were shaved in their dorsal region, and then 0.2 μm of filtered air (5 and 3 ml) was subcutaneously injected (on days 0 and 3, respectively). The mice were anesthetized with isoflurane at day 0 to ensure compliance and reduce pain. On day 6, inflammation was induced by intrapouch injection of PBS or bacteria solution (live/heat-killed E. coli, 5 × 108). Five days after infection, cells in the air-pouch were collected. Cell counting was performed by a hemacytometer. For analyses of specific populations in the air-pouch, cells were stained with antibodies against CD45, F4/80, Ly-6G, and CD11b (eBioscience) and analyzed on the FACS Canto (BD Bioscience) instrument.

Competitive ELISA

Corning Costar ELISA were coated with 2 μg/ml of lipid IVa or lipid A, and blocked with 0.25% casein for 2 h at room temperature. HMGB1 (16 μg/ml) and lipid IVa/lipid A (1–8 μg/ml) or RS-LPS (1–8 μg/ml) was added to the wells and incubated for 0.5 h at 37°C. HMGB1 antibody (1:5000) (ab79823) was incubated for an additional 0.5 h at 37°C. Goat anti-rabbit IgG H&L (horseradish peroxidase) was incubated for an additional 1.5 h. Tetramethylbenzidine solution was used for color.

Apoptosis and cell death assay

The peritoneal macrophage (about 1 × 10^6 cells) were treated with either vehicle or stimulus for 16 h, as indicated,
washed with PBS and trypsinized before re-suspending them in the appropriate media. Cells were then stained with FITC-labeled annexin V and propidium iodide (PI) and detected by fluorescence-activated cell sorter (FACS) analysis. Storing and processing of data were done with FlowJo software.

Transmission EM
Transmission EM was performed as described previously (52). In brief, cells treated with HMGB1 alone or HMGB1/lipid IVa or HMGB1/lipid A were harvested and fixed with 2.5% glutaraldehyde in PBS (pH 7.2) for 4 h. Ultra-thin sections were cut and observed under an H-600IV transmission electron microscope (Hitachi, Tokyo, Japan).

Isolation and in vitro activation of PBMCs
Human blood from adult healthy volunteers’ collection was approved by the research ethics committee of The 3rd Xiangya Hospital of Central South University. Experiments with human PBMCs were abided by the Helsinki Declaration for experiments involving humans. PBMCs were isolated using Ficoll-Paque density gradient media (GE Healthcare). After centrifugation, PBMCs were resuspended in RPMI 1640 medium supplemented with 10% fetal bovine serum and antibiotics and stimulated with lipid IVa/lipid A and HMGB1 as indicated for 16 h. Cell supernatants were collected for ELISA.

Statistical analysis
All data were analyzed using GraphPad Prism software (version 5.01). Data were analyzed by Student’s t test for comparison between two groups or one-way analysis of variance followed by a post hoc Bonferroni test for multiple comparisons. A p value <0.05 was considered statistically significant for all experiments. All values are presented as the mean ± S.D.

Author contributions—R. M. and L. G. data curation; R. M. formal analysis; R. M., L. G., Y. L., K. Z., J. W., J. H., and Y. T. methodology; R. M. writing-original draft; Y. L. software; Y. L. and B. L. project administration; K. Z. and Y. T. supervision; K. Z. and H. W. writing-review and editing; J. W., H. W., and J. H. resources; J. H. and B. L. conceptualization; Y. T. and B. L. funding acquisition.

Acknowledgment—We thank Dr. Kevin J. Tracey for the kind gifts of highly purified recombinant HMGB1 protein and neutralizing anti-HMGB1 mAb.

References
1. Takeuchi, O., and Akira, S. (2010) Pattern recognition receptors and inflammation. Cell 140, 805–820 CrossRef Medline
2. Tang, Y., Zhao, X., Antoine, D., Xiao, X., Wang, H., Andersson, U., Billiar, T. R., Tracey, K. J., and Lu, B. (2016) Regulation of posttranslational modifications of HMGB1 during immune responses. Antioxid. Redox Signal 24, 620–634 Medline
3. Lu, B., Wang, C., Wang, M., Li, W., Chen, F., Tracey, K. J., and Wang, H. (2014) Molecular mechanism and therapeutic modulation of high mobility group box 1 release and action: an updated review. Expert Rev. Clin. Immunol. 10, 713–727 CrossRef Medline
4. Lu, B., Nakamura, T., Inouye, K., Li, J., Tang, Y., Lundback, P., Valdes-Ferrer, S. I., Olofsson, P. S., Kalb, T., Roth, J., Zou, Y., Erlandsson-Harris, H., Yang, H., Ting, J. P., Wang, H. et al. (2012) Novel role of PKR in inflammasome activation and HMGB1 release. Nature 488, 670–674 CrossRef Medline
5. Lu, B., Antoine, D. J., Kwan, K., Lundback, P., Wåhama, H., Schierbeck, H., Robinson, M., Van Zoelen, M. A., Yang, H., Li, J., Erlandsson-Harris, H., Chavan, S. S., Wang, H., et al. (2014) JAK/STAT1 signaling promotes HMGB1 hyperacetylation and nuclear translocation. Proc. Natl. Acad. Sci. U.S.A. 111, 3068–3073 CrossRef Medline
6. Wang, H., Bloom, O., Zheng, M., Vishnuubakat, J. M., Ombrellino, M., Che, J., Frazier, A., Yang, H., Ivanova, S., Borovikova, L., Manogue, K. R., Faist, E., Abraham, E., Andersson, J., Andersson, U., et al. (1999) HMGB-1 as a late mediator of endotoxin lethality in mice. Science 285, 248–251 CrossRef Medline
7. Scaffidi, P., Misteli, T., and Bianchi, M. E. (2002) Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 418, 191–195 CrossRef Medline
8. Wang, H., Liao, H., Ohani, M., Justiniani, M., Lin, X., Yang, L., Al-Abed, Y., Wang, H., Metz, C., Miller, E. J., Tracey, K. J., and Ulloa, L. (2004) Cholinergic agonists inhibit HMGB1 release and improve survival in experimental sepsis. Nat. Med. 10, 1216–1221 CrossRef Medline
9. Tsung, A., Sahai, R., Tanaka, H., Nakao, A., Fink, M. P., Lotze, M. T., Yang, H., Li, J., Tracey, K. J., Geller, D. A., and Billiar, T. R. (2005) The nuclear factor HMGB1 mediates hepatic injury after murine liver ischemia-reperfusion. J. Exp. Med. 201, 1135–1143 CrossRef Medline
10. Apetlo, H., Ghiringhelli, F., Tesniere, A., Obeid, M., Ortiz, C., Ciriollo, A., Mignot, G., Mairi, M. C., Ullrich, E., Saulnier, P., Yang, H., Amigorena, S., Ryffel, B., Barrat, F. J., Saftig, P., et al. (2007) Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat. Med. 13, 1050–1059 CrossRef Medline
11. Tian, J., Avalos, A. M., Mao, S. Y., Chen, B., Senthil, K., Wu, H., Parroche, P., Drabic, S., Golenbock, D., Sirois, C., Hua, J., An, L. L., Audoly, L., La Rosa, G., Bierhaus, A., et al. (2007) Toll-like receptor 9-dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE. Nat. Immunol. 8, 487–496 CrossRef Medline
12. Kazama, H., Ricci, J. E., Herndon, J. M., Hoppe, G., Green, D. R., and Ferguson, T. A. (2008) Induction of immunological tolerance by apoptotic cells requires caspase-dependent oxidation of high-mobility group box 1 protein. Immunity 29, 21–32 CrossRef Medline
13. Rittirsch, D., Flierl, M. A., Nadeau, B. A., Day, D. E., Huber-Lang, M., Mackay, C. R., Zetoune, F. S., Gerard, N. P., Cianflone, K., Kohl, J., Gerard, C., Sarma, J. V., and Ward, P. A. (2008) Functional roles for C5a receptors in sepsis. Nat. Med. 14, 551–557 CrossRef Medline
14. Yanai, H., Ban, T., Wang, Z., Choi, M. K., Kawamura, T., Negishi, H., Nakasato, M., Lu, Y., Hangai, S., Koshiba, R., Savitsky, D., Ronfani, L., Akira, S., Bianchi, M. E., Honda, K., et al. (2009) HMGB proteins function as universal sentinels for nucleic-acid-mediated innate immune responses. Nature 462, 99–103 CrossRef Medline
15. Maroso, M., Balosso, S., Ravizza, T., Liu, J., Aronica, E., Iyer, A. M., Rossetti, C., Molteni, M., Casagliardi, M., Manfredi, A. A., Bianchi, M. E., and Vezzani, A. (2010) Toll-like receptor 4 and high-mobility group box-1 are involved in icotogenesis and can be targeted to reduce seizures. Nat. Med. 16, 413–419 CrossRef Medline
16. Bald, T., Quast, T., Landsberg, J., Rogova, M., Glodde, N., Lopez-Ramos, D., Kohlmeier, J., Riesenberg, S., van den Boom-Konijnenberg, D., Hömg-Hözel, C., Reuten, R., Schadow, B., Weighardt, H., Wenzel, D., Helfrich, L., et al. (2014) Ultraviolet-radiation-induced inflammation promotes angiotropism and metastasis in melanoma. Nature 507, 109–113 CrossRef Medline
17. Huebener, P., Pradere, J. P., Hernandez, C., Gwak, G. Y., Caviglia, J. M., Mu, X., Loike, J. D., Jenkins, R. E., Antoine, D. J., and Schwabe, R. F. (2015) The HMGB1/RAGE axis triggers neutrophil-mediated injury amplification following necrosis. J. Clin. Investig. 125, 539–550 CrossRef Medline
18. Tirone, M., Tran, N. L., Ceriotti, C., Gorzanelli, A., Canepari, M., Bottinelli, R., Raucci, A., Di Maggio, S., Santiago, C., Mellado, M., Salcier, M., François, S., Careccia, G., He, M., De Marchis, F., et al. (2018) High mo-
HMG1 orchestrates RIPK3-mediated cell death

between lipopolysaccharide (LPS)-binding protein, soluble CD14, and spectrally pure LPS. Infect. Immunol. 65, 3011–3016 Medline

35. Youn, J. H., Kwak, M. S., Wu, J., Kim, E. S., R., Y., Min, H. I., Yoo, J. H., Choi, J. E., Cho, H. S., and Shin, J. S. (2011) Identification of lipopolysaccharide-binding peptide regions within HMG1 and their effects on subclinical endotoxemia in a mouse model. Eur. J. Immunol. 41, 2753–2762 CrossRef Medline

36. Kim, S. J., and Li, J. (2013) Caspase blockade induces RIP3-mediated programmed necrosis in Toll-like receptor-activated microglia. Cell Death Dis. 4, e716 CrossRef Medline

37. Kang, S., Fernandes-Alnemri, T., Rogers, C., Mayes, L., Wang, Y., Dillon, C., Roback, L., Kaiser, W., Oberst, A., Agar, S., Fitzgerald, K. A., Green, D. R., Zhang, J., Mocarski, E. S., and Alnemri, E. S. (2015) Caspase-8 scaffolding function and MLKL regulate NLRP3 inflammasome activation downstream of TLR3. Nat. Commun. 6, 7515 CrossRef Medline

38. Kaiser, W. J., Sridharan, H., Huang, C., Mandal, P., Upton, J. W., Gough, P. J., Sehon, C. A., Marquis, R. W., Bertin, J., and Mocarski, E. S. (2013) Toll-like receptor 3-mediated necrosis via TRIF, RIP3, and MLKL. J. Biol. Chem. 288, 31268–31279 CrossRef Medline

39. Kayagaki, N., Warming, S., Lamkanfi, M., Vande Walle, L., Louie, S., Ding, J., Newton, K., Yu, Q., Liu, J., Heldens, S., Zhang, J., Lee, W. P., Roose-Girma, M., and Dixit, V. M. (2011) Non-canonical inflammasome activation targets caspase-11. Nature 479, 117–121 CrossRef Medline

40. Brou, P., Ruby, T., Belhocine, K., Bouley, D. M., Kayagaki, N., Dixit, V. M., and Monack, D. M. (2012) Caspase-11 increases susceptibility to Salmonella infection in the absence of caspase-1. Nature 490, 288–291 CrossRef Medline

41. Sun, L., Wang, H., Wang, Z., He, S., Chen, S., Liao, D., Wang, L., Yan, J., Liu, W., Lei, X., and Wang, X. (2012) Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell 148, 213–227 CrossRef Medline

42. Wang, H., Sun, L., Su, L., Rizo, J., Liu, L., Wang, L. F., Wang, F. S., and Wang, X. (2014) Mixed lineage kinase domain-like protein MLKL causes necrotic membrane disruption upon phosphorylation by RIP3. Mol. Cell 54, 133–146 CrossRef Medline

43. Nogusa, S., Thapa, R. J., Dillon, C. P., Liedmann, S., TOTHguin 3rd, Ingram, J. P., Rodriguez, D. A., Kosoff, R., Sharma, S., Sturm, O., Verbit, K., Gough, P. J., Bertin, J., Hartmann, B. M., Seallon, S. C., et al. (2016) RIPK3 activates parallel pathways of MLKL-driven necrosis and FADD-mediated apoptosis to protect against influenza A virus. Cell Host Microbe 20, 13–24 CrossRef Medline

44. Ito, Y., Ofengeim, D., Najafov, A., Das, S., Saberi, S., Li, Y., Hitomi, J., Zhou, H., Chen, H., Mayo, L., Geng, J., Amin, P., DeWitt, J. P., Mookhtiar, A. K., Floresz, M., et al. (2016) RIPK1 mediates axonal degeneration by promoting inflammation and necroptosis in ALS. Science 353, 603–608 CrossRef Medline

45. Zhang, T., Zhang, Y., Cui, M., Jin, L., Wang, Y., Lv, F., Liu, Y., Zheng, W., Wang, H., Zhang, J., Zhang, M., Wu, H., Guo, J., Zhang, X., Hu, X., et al. (2016) CaMKII is a RIP3 substrate mediating ischemia- and oxidative stress-induced myocardial necroptosis. Nat. Med. 22, 175–182 CrossRef Medline

46. Newton, K., Duggar, D. L., Maltzman, A., Greve, J. M., Hedeheus, M., Martin-McNulty, B., Carano, R. A., Cao, T. C., van Bruggen, N., Bernstein, L., Lee, W. P., Wu, X., DeVoss, J., Zhang, J., Jeet, S., et al. (2016) RIPK3 deficiency or catalytically inactive RIPK1 provides greater benefit than MLKL deficiency in mouse models of inflammation and tissue injury. Cell Death Differ. 23, 1565–1576 CrossRef Medline

47. Daniels, B. P., Snyder, A. G., Olsen, T. M., Orozco, S., Oguin, T. H., 3rd, Tait, S. W. G., Martinez, J., Gale, M., Jr, Loo, Y. M., and Oberst, A. (2017) RIPK3 restricts viral pathogenesis via cell death-independent neuroinflammation. Cell 169, 301–313.e311 CrossRef Medline

48. Meng, J., Drolet, J. R., Mons, B. G., and Golenbock, D. T. (2010) MD-2 residues tyrosine 42, arginine 69, aspartic acid 122, and leucine 125 provide species specificity for lipid IVA. J. Biol. Chem. 285, 27935–27943 CrossRef Medline

49. Weng, D., Marty-Roix, R., Ganesan, S., Proulx, M. K., Vladimer, G. I., Kaiser, W. J., Mocarski, E. S., Pouliot, K., Chan, F. K., Kelliher, M. A.,
Harris, P. A., Bertin, J., Gough, P. J., Shayakhmetov, D. M., Goguen, J. D., et al. (2014) Caspase-8 and RIP kinases regulate bacteria-induced innate immune responses and cell death. Proc. Natl. Acad. Sci. U.S.A. 111, 7391–7396 CrossRef Medline

50. Wang, Y., Gao, W., Shi, X., Ding, J., Liu, W., He, H., Wang, K., and Shao, F. (2017) Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin. Nature 547, 99–103 CrossRef Medline

51. Duarte, D. B., Vasko, M. R., and Fehrenbacher, J. C. (2016) Models of inflammation: carrageenan air pouch. Curr. Protocols Pharmacol. 72, 5.6.1–9 Medline

52. Qu, Y., Tang, J., Wang, H., Li, S., Zhao, F., Zhang, L., Richard Lu, Q., and Mu, D. (2017) RIPK3 interactions with MLKL and CaMKII mediate oligodendrocytes death in the developing brain. Cell Death Dis. 8, e2629 CrossRef Medline