The role of public-private partnership investment and eco-innovation in environmental abatement in USA: evidence from quantile ARDL approach

Nguyen Van Song 1 · Nguyen Cong Tiep 1 · Dinh van Tien 2 · Thai Van Ha 2 · Nguyen Thi Minh Phuong 3 · Tran Thi Hoang Mai 3

Received: 8 April 2021 / Accepted: 9 September 2021 / Published online: 24 September 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract
The current research investigates the role of public-private partnership investment (PPPI) and ecological innovation (ECO) along with economic growth on the environmental abatement (i.e., carbon dioxide emission, particulate matters 2.5) in the USA. Quantile autoregressive lagged (QARDL) method was employed during the study period of 1990–2015. The study findings confirm that under long-run estimation, GDP and PPPI are causing more environmental abatement in the form of CO2 emission and haze pollution like PM2.5. The factors like ecological innovation and GDP2 are playing their role towards lowering the CO2 emission and PM2.5 under different quantiles. Furthermore, it is observed that under short-run estimation, past values of the carbon emissions and PM2.5 have their significant and positive relationship with their current values. Besides, the findings through Wald test estimation confirm that parameter constancy of the speed of adjustment parameter is rejected at 1% significance level for the CO2 emission and haze pollution like PM2.5 in USA. Besides, present study also provides some policy implications.

Keywords Ecological innovation · Public-private partnership investment · GDP · QARDL

Introduction

For various economies, environmental degradation has become common concern for the last couple of decades (Mohsin et al. 2021). The distinctive nature of the current environmental issues is that they are caused by the range of human activities and anthropogenic comparatively to a natural phenomenon (Amen et al. 2021). Consumerism and economic growth in different countries have demonstrated a pernicious effect on the natural environment. However, despite of growing environmental issues, the pace and desire for the economic development has never been stopped. Significant level of emphasis has been placed for the role of advancement in the technology and science as a catalyst for integrating the concepts of ecology and economy where the concept of sustainable development becomes buzzword. It is believed that various economies in the world are using fossil fuel, coal, oil, and natural gas in order to improve the process of industrialization...
through which there is a growing pressure in terms of global warming. However, a significant attention is much required towards the issue that there is a lack of global census to reduce the extensive degradation in the form of carbon emission, greenhouse gas emission, and haze pollution like PM2.5. In addition, advance economies focus on the industrial activities to address the economic target and to improve the standard of livings. However, the effect of increasing economic activities has their influence on the natural environment in the form of higher pollution and promising quality of natural environment. In the economy of USA, the trends and patterns for the CO2 emission have been changed and a mixed trend is observed. For example, during the recent outbreak of COVID-19, significant level of restrictions was imposed by the US government to mitigate the spread of this pandemic in April 2020 which resulted dramatic change in the value of consumption of energy and lower level of CO2 emission as shown in Figure 1. However, a sudden drop in the level of CO2 emissions from the petroleum consumption deceased by 25%, and from consumption by 16%, respectively (Adewumi 2020; Today Energy 2021). However, USA still emitted more CO2 from the petroleum in April 2020 (133 MMmt) than from natural gas of 122 MMmt or coal with 51 MMmt as observed in the research study of Today Energy (2021). This would clearly justify that the threat for the natural environment in the region of USA is not stoppable due to a range of economic activities.

Although the growing issue of higher emission in the form of carbon is of deep concern for the various policymakers and economists, yet its linkage with the green innovation needs to be examined with the help of some novel methodology. Therefore, this study intendants to examine the dynamic linkage between carbon emission, haze pollution like PM2.5, ecological innovation, and public-private partnership investment along with the economic growth in the region of USA during 1990–2015.

In addition, there is a growing emphasis in the existing body of literature to utilize some advance methods in order to ensure the reliability of the estimated coefficients along with other empirical facts. Motivating to this concept, this study has adopted the innovative method of quantile autoregressive distributed lags (QARDL) which has got some reasonable attention in the contemporary studies specifically in the field of energy economics and finance. Furthermore, traditional methods of estimation have their key focus on the linear association through means regressed results, whereas the QARDL method is primarily dealing with the nonlinear association between the study variables like public-private partnership, ecological innovation, economic growth, carbon emission, and haze pollution like PM2.5. A study conducted by Wang et al. (2021) has used the QARDL method to examine the nexus among the natural resources, gross domestic product, renewable energy (REN), non-renewable energy (NEN), and financial development (FD) in the USA. In contrast, the present study has also used the QARDL but for the investigation of public-private partnership investment, eco-innovation, and economic growth impact on the environmental abatement in the USA.

In addition, QARDL is also used by the recent study such as Sharif et al. (2020) to investigate the impact of renewable and non-renewable energy consumption on Turkey’s ecological footprint. The present study is quite different and investigates the impact of public-private partnership investment, eco-innovation, and economic growth on the environmental abatement in the USA by using QARDL. Furthermore, another recent study conducted by Anwar et al. (2021a) and examined the asymmetric effect of public-private partnership investment on transport CO2 emission in China by using QARDL. Similarly, the present study is the extension of past study such as Anwar et al. (2021a) and investigates the impact of public-private partnership investment along with eco-innovation and economic growth on the environmental abatement in the USA by using QARDL. Additionally, Suki et al. (2020) also used the QARDL to analyze the globalization (including overall, social, economic, and political) impact on the ecological footprint in Malaysian. In contrast, the present study analyzes the public-private partnership investment, eco-innovation, and economic growth impact on the environmental abatement in the USA by using QARDL.

Meanwhile, the benefit to apply the method of QARDL is that it is based on the various quantiles in order to estimate the non-linear asymmetric association while capturing the impact

Fig. 1 Carbon dioxide emissions in USA during 1970–2020. Source: Today Energy (2021)
in the time series data set. Lastly, the method of QARDL is quite novel context that it provides the impact of variables of interest both under short run and long run as well. In addition, this article also contributes to the knowledge of literature regarding to the relationships of public-private partnership investment and environmental degradation in the context of USA. Moreover, this study also contributes to the knowledge of literature regarding the nexus among eco-innovation and environmental degradation in the context of USA. This research is also suitable for the policymakers while developing the regulations regarding public-private partnership investment and eco-innovation that improve the environmental condition in the country. This study also provides the guidelines to the environmental safety authorities how the environmental condition can be improved. The rest of the paper organizes as follows: “Review of literature” section covers the review of the literature, “Research methods” section deals with the research methodology, “Results and discussion” section provides the study results, while “Conclusion and policy implications” section covers the conclusion and policy implications.

Review of literature

It is quite evident to explore various studies on the relationship between ecological innovation and environmental degradation (Amen et al. 2021; Anwar et al. 2021a; Chen et al. 2019; Chen et al. 2018; Cheng et al. 2019; Cho et al. 2015; Ding et al. 2021). These studies have provided their significant contribution while exploring the trends in ecological or green innovation along with their impacts or relationship with the environmental factors like carbon emission, greenhouse gas emission, and haze pollution as well (Li et al. 2018; Sun et al. 2019; Zhang et al. 2019b). Zhang et al. (2019a) explain that under the situation of carbon regulations, it is quite challenging to deal with the operational strategies. Green innovation is something like a hybrid system to handle the CO2 emission (Antoni et al. 2020; Muller and de Klerk 2020; Othman et al. 2020; Vermeulen et al. 2020; Zhang et al. 2019a). White and van Koten (2016) explore the linkage between the socio-ecological innovation and carbon emission. It is expressed that socio-ecological innovations are the good source towards dealing with the CO2 emission the natural environment. Ganda (2019) explore the titles of innovation and technology to analyze their effect on the CO2 in the selected OECD economies. It is stated that OECD economies have higher level of carbon emissions in the world. For this reason, innovation and technology in both public and private sectors is made to reduce the carbon emissions. This study has applied generalized method of moments (GMM) to analyze the level of innovation and technology influences on carbon emission. It is observed that there is a significant and negative influence of research and development expenditure on the CO2 emission in the targeted economies.

In addition, Hashmi and Alam (2019) proposed a framework for exploring the linkage between innovation, climate change, CO2 emission, and economic growth for OECD economies. It is stated the promotion of green innovation and regulation for the CO2 emission through carbon pricing are the fundamental forces having their impact on the climate change. Therefore, their study has examined the linkage between the stated variables during 1999 to 2014, while considering the “stochastic impacts by regression on population, affluence, and technology” (STIRPAT) model. It is observed that 1% increase in the environmentally friendly patents reduces the CO2 emission by 0.017%. The eco-innovation has the ability to reduce the environmental degradation in the country (Anh Tu et al. 2021; Baloch et al. 2021; Mora-Rivera et al. 2020; Sadiq et al. 2021). In addition, the research and development expenditures have positive association with the environmental conditions and negative association with environmental degradation (Li et al. 2021a). Moreover, studies conducted by Nawaz et al. (2021) who also investigated the innovation expenditures always put a positive role on the environmental condition of the country. Furthermore, the environmental conditions are dependent on the innovation spending, if the organization spend more on innovation then the environmental condition seems to be better while environmental degradation exists if lack of investment has been made on innovation (Huang et al. 2020; Shair et al. 2021; Xueying et al. 2021). Furthermore, such linkage between CO2 emission and environmental patents is efficient way to control the negative outcomes in the natural environment. Chen et al. (2019) explains that technological progress is widely considered to play a big role in controlling and reducing the air pollution. Their study examines that very few studies have explored the association between technological progress and PM2.5 concentration. The study results confirm that technological progress in the form of research and development and import technology have their different effect on the PM2.5. More specifically in Pearl River Delta, research and development shows a significant but negative impact on PM2.5.

In addition, the association between public-private investment partnership and climate change dynamics is also observed in the present literature, but in a limited context. In this regard, research contribution as provided by Khan et al. (2020a) investigate the effect of PPPI in the energy and technological innovation on the consumption-based emission. The findings through cointegration analysis confirm that there is a relationship between PPPI in energy, technological innovation, energy consumption through renewable sources, and consumption-based carbon emission. Furthermore, PPPI along with GDP are causing more consumption-based CO2 emission and similar is observed in the long-run estimation as well. Anwar et al. (2021a) consider the asymmetric effect of PPPI on the transport carbon dioxide emissions in China through QARDL approach. However, under long-run
estimation, their study observes a significant and negative relationship between CO2 emission and PPPI for the higher-level quantiles.

Zhang and Zhang (2018) examine the impact of gross domestic product, trade structure, foreign direct investment, and exchange rate flows in the Chinese economy for the carbon emissions during 1982 to 2016 under the shadow of environmental Kuznets curve (EKC). For examining the cointegration between the study variables, augmented Dickey-Fuller test was applying. It is observed that in the region of China, EKC was valid. Wu et al. (2019) explain that as the largest carbon emitted in the world, the economy of China is facing significant pressure to reduce the carbon emission. Their study considers the two-dimensional framework to classify the various regions of China. The study findings confirm that for the region I, the most significant factor of the CO2 emissions is industrial structure while for the regions II–IV, population size and GDP per capita are playing their major role towards carbon dioxide emissions. Cheng et al. (2019) examine the trends in CO2 emission for OECD economies through renewable energy, innovation, and economic growth in terms of GDP per capital. The study findings through ordinary least square confirm that there is a significant and positive impact of GDP on the CO2 emission in the targeted economies. Chen et al. (2018) consider the world economy while exploring the relationship between energy consumption, growth of the economy, energy intensity, urbanization, and carbon dioxide emissions during 1998–2014. It is observed that economic growth is the principal factor impacting on the PM2.5 concentration in the global panel.

In addition, Nawaz et al. (2020) consider the trilemma association of energy consumption, economic growth, and CO2 emission for the BRICs and OECD countries. It is observed that huge impact of GDP growth along with the energy consumption sources on the CO2 emissions is observed. Their study considers the QARDL approach for exploring the linkage between the study variables. The study findings explain that there is a significant and positive correlation between the energy consumption and CO2 emission in the targeted economies. Moreover, the economic growth has also the positive association with the environmental condition in the country (Sun et al. 2020; Li et al. 2021b). Similarly, studies conducted by Zhuang et al. (2021) also exposed that the environmental conditions are dependent on the high economic growth in the country. In addition, the high economic growth countries have lack of environmental degradation issues (Ehsanullah et al. 2021; Hsu et al. 2021). Most of the past studies have also shown the positive association among the economic growth and environmental conditions of the country (Li et al. 2021c; Nguyen et al. 2021).

Yao et al. (2019) provides the significant discussion for exploring the role of renewable energy consumption, carbon emissions, and economic growth through modified least square and dynamic ordinary least square method. Their study findings confirm that there is a long-run cointegration between the renewable energy, carbon emission, and economic growth. It is observed that there is a significant association between the renewable energy consumption, carbon emission, and economic growth. Boamah et al. (2017) and Sadiq et al. (2020) also investigate the role of trade at international context in mitigating the carbon dioxide emissions during 1970–2014 through quantile regression estimation. The study confirms a long-term N-shaped relationship between economic growth and carbon dioxide emissions in the region of China. Al-mulali(2011) tries to investigate the dynamic relationship between oil consumption, economic growth, and carbon emission.

Although the association between the variables like economic growth, public-private partnership investment, ecological innovation, carbon emission, and haze pollution is reasonably addressed, however, one of the key gaps as associated with the current literature is that it is entirely missing with the implication of some advance methods like QARDL while exploring the nonlinear association between the study variables. Therefore, present study is intended to cover this methodological as well as empirical gap for exploring the asymmetric relationship between the study variables under low, medium, and high level of quantiles.

Research methods

This study is about the nexus among the PPPI, eco-innovation, and economic growth impact on the environmental degradation in USA. This study has taken the data from World Development Indicators (WDI) from 1990 to 2015. This study has taken the environmental condition as the predictive variable that is measured as the carbon emission and PM2.5 while public-private partnership investment and eco-innovation have been used as the independent variables while economic growth has been used as the control variable in the study. Through a range of empirical studies both in developed and developing economies, it is observed that unit root is employed in the time series analysis along with the macroeconomic variables. Therefore, the level through which normally macroeconomic variables are stationary is often due to the association between the non-stationary series. Furthermore, under present research, the nonlinear association between the environmental factors like carbon dioxide emissions, haze pollution in the form of PM2.5, gross domestic product, ecological innovation, and public-private partnership investment is examined with the help of novel approach named as QARDL. Various benefits have been identified in the existing literature for using the QARDL approach in the time series analysis while exploring the relationship between explanatory and outcome variables. For example, this approach helps to examine the long-term effect of ecological innovation, economic growth, and public-private partnership investment on the CO2 emission and PM2.5 in USA. This approach is introduced by Cho et al. (2015)
while examining different macroeconomic variables. Additionally, for checking the robustness, each quantile as applied under present study was further examined while using the Wald test under long run and short run as well. Equation 1 below provides a traditional framework for the ARDL model for CO2 emission and PM2.5 denoted through Y, which are as follows:

$$Y_t = \delta + \sum_{i=1}^{p} \beta_i X_{1,t-1} + \sum_{l=1}^{q} \beta_l X_{2,t-l-1} + \sum_{i=1}^{p} \beta_3 X_{3,t-1} + \sum_{l=1}^{q} \beta_4 X_{4,t-l} + \varepsilon_t \quad (1)$$

where in the above equation, the term ε_t is white noise residual explained through bottom ground and p and q are indicating the order of the lags as selected with the help of Schwarz info criterion (SIC). Additionally, the titles like $X1\ldots X4$ and Y representing the study variables like GDP, GDP2, PPPI, ECO, CO2, and PM2.5 indicate the natural log series of the gross domestic product, square of GDP, PPPI, ecological innovation, carbon dioxide emissions, and particulate matters 2.5. After adjusting the above Equation 1 into the framework of quantiles, Equation 2 is established as follows:

$$QY_t = \delta(t) + \sum_{i=1}^{p} \beta_1(t) X_{1,t-1} + \sum_{l=1}^{q} \beta_2(t) X_{2,t-l-1} + \sum_{i=1}^{p} \beta_3(t) X_{3,t-1} + \sum_{l=1}^{q} \beta_4(t) X_{4,t-l} + \varepsilon_t \quad (2)$$

To address the data estimation, this research considers the successive couples of quantiles t as related to 0.05, 0.25, 0.50, 0.75, and 0.95, respectively. In addition, for the likelihood of serial correlation in the residuals, the quantiles ARDL equation 3 and 4 can be expressed in the following way.

$$QY_t = \tilde{\delta}(t) + Y_{t-1} + \omega_1 X_{1,t-1} + \lambda_1 X_{2,t-1} + \sum_{i=1}^{p} \beta_1(t) X_{1,t-1} + \sum_{l=1}^{q} \beta_2(t) X_{2,t-l} + \sum_{i=1}^{p} \beta_3(t) X_{3,t-1} + \sum_{l=1}^{q} \beta_4(t) X_{4,t-l} + \varepsilon_t \quad (3)$$

Furthermore, the above stated equations 2 and 3 can be expressed in terms of the core suggestions provided by Cho et al. (2015) in order to offer the error correction model for the QARDL.

$$QY_t = \tilde{\delta}(t) + \rho(t) Y_{t-1} - \omega_1(t) X_{1,t-1} + \lambda_1(t) X_{2,t-1} + \sum_{i=1}^{p} \beta_1(t) Y_{t-1} + \sum_{i=0}^{q-1} \beta_2(t) X_{1,t-1} + \sum_{i=0}^{q-1} \beta_3(t) X_{2,t-1} + \sum_{i=0}^{q-1} \beta_4(t) X_{3,t-1} + \sum_{i=0}^{q-1} \beta_4(t) X_{4,t-1} \varepsilon_t \quad (4)$$

In addition, this research also considers the delta method for combining the short-run impact of earlier carbon dioxide emissions, and PM2.5 on the recent carbon emissions and PM2.5. Furthermore, the joint short-run impact of CO2 emission and PM2.5 is also calculated and presented under this study. Furthermore, the residual collective short-run impact of former and current economic growth and square of economic growth on the current level of CO2 emission and PM2.5 is also accessed with the help of similar method. Furthermore, it is assumed that the speed of adjustment parameter or ρ under equations 2 and 3 must be significantly negative as suggested by (Cho et al. 2015; Godil et al. 2020a; Godil et al. 2020b; Razzaq et al. 2020). Additionally, to analyze the long-short asymmetric influence of the study variables on the carbon emissions and PM2.5, this study applies the Wald test to identify the underneath the specific hypotheses.

The analysis under present study consists of six variables named gross domestic product, square of gross domestic product, public-private partnership investment, ecological innovation, carbon emission, and PM2.5, respectively. The data for the variables like GDP, carbon emission, and haze pollution like PM2.5 is collected through world development indicator WDI database. Furthermore, the data for the ecological innovation is collected from official database of “data innovation.”

Results and discussion

Current research contains overall five variables, i.e., carbon dioxide emissions, particulate matter 2.5, GDP, PPI, and ecological innovation, respectively. The data was collected on monthly basis for the study period of 1980–2020. Table 1 shows the descriptive results of all the study variables, where it is observed that mean, minimum, and maximum results show positive scores, i.e., CO2 (2.179, 1.369, 3.456), PM2.5 (4.357, 3.741, 5.017), GDP (6.123, 5.456, 7.073), PPI (3.01, 2.753, 4.101), and ECO (2.258, 2.154, 3.103). However, highest mean is observed for the GDP as measured through natural log, followed by PM2.5, PPPI, ECO, and CO2, respectively. Additionally, the study results in Table 1 confirm that highest deviation is observed in the mean score of carbon dioxide emissions, followed by PPPI. Lastly, the outcomes of J-B stats have been applied to examine the normality of the data for all the study variables. However, it is confirmed that null hypotheses for confirming the normal distribution of the data for all the variables are not rejected at 1%, hence confirming a green signal for applying QARDL methodology.

After descriptive results, Table 2 provides the results for unit root test through Zivot and Andrews (2002)(ZA) and augmented Dicky-Fuller(ADF) methods. More specifically, the findings for the ZA and ADF indicate that at I(1), all the
study variables are observed as stationary at 1% or at 5% level of significance. This would justify the argument that all the variables under consideration have shown a unique order of integration or I(1).

The outcomes for QARDL model for carbon dioxide emission along with explanatory variables are shown in Table 3. Initially, our study tests for the estimated speed of adjustment coefficient which is denoted through p^*. Through QARDL, it is observed that values for p^* are negatively significant at 1% for the first three quantiles, i.e., 0.05 ($-0.136***$), 0.10 ($-0.175***$), and 0.20 ($-0.182***$). However, for the quantiles from 0.30 to 0.50, the outcomes are negatively significant at 5%. Furthermore, both the 50th and 60th quantiles are showing their results for p^* as negatively significant at 10% chance of error. For the higher order quantiles, p^* scores are found to be negatively insignificant in all three level of significance. Based on all of the above stated findings for p^*, it is inferred that there is an existence of reversion to the long-run equilibrium among the study variables denoted as carbon dioxide emission, gross domestic product, public-private partnership investment, and ecological innovation for USA. Specifically, the speed of adjustment is higher for the 0.20th quantile, followed by 0.10th quantile and so on. Additionally, under long-run dynamics, value of cointegration parameter is positively significant in all the study quantiles, except for the lower two, i.e., 0.05th and 0.10th, respectively. This means that higher economic growth and related activities in the economy of USA are observed as a direct source for higher carbon dioxide emissions under long-run estimation. Zhang et al. (2014) have examined the linkage between economic growth and CO2 emission in the region of China during 1978–2011. The study findings confirm the fact that there is a long-term cointegrating association between the intensity of CO2 emission and gross domestic product measured through per capita. Malik et al. (2020) also try to explore the impact of economic growth on the CO2 emission of Pakistan while employing ARDL approach. The study finding shows that economic growth is intensifying the CO2 emission under both short run and long run. Additionally, some other studies have also explored the linkage between economic growth and CO2 emission in different economies (Kahia et al. 2019; Yeh and Liao 2017). However, the impact of GDP2 on CO2 emission under long-run estimation is observed as negatively significant for the lower and medium quantile as shown in Table 3. This means that negative and significant relationship between GDP2 and carbon dioxide emission is found but for the upper quantiles, this fact is not acceptable.

In addition, our study results confirm that PPPI has its significant and positive relationship with the carbon dioxide emission from medium to higher quantiles (i.e., 0.40 = 0.223, 0.50 = 0.268, 0.60 = 0.254, 0.70 = 0.352, 0.80 = 0.361, 0.90 = 0.375, 0.95 = 0.406). More specifically, the highest positive impact is observed under highest quantile, which is 0.406, significant at 1%. This means that in the region of USA higher PPPI is causing more CO2 emission and vice versa. During the recent time, Khan et al. (2020b) try to explore the dynamic relationship between public-private partnership investment on the carbon emission. The study findings confirm that there is a cointegrating relationship between PPPI and carbon emission. Anwar et al. (2021b) also examine the asymmetric effect of public-private partnership investment on the CO2 emission from transportation in the region of China. Shahbaz et

Table 1 Results of descriptive statistics

Variables	Mean	Min.	Max.	Std. Dev.	J-B stats
CO2	2.179	1.369	3.456	1.101	28.018***
PM2.5	4.357	3.741	5.017	0.012	16.137***
GDP	6.123	5.456	7.073	0.118	25.009***
PPPI	3.011	2.753	4.101	1.002	18.321***
ECO	2.258	2.154	3.103	0.412	22.545***

CO2 carbon dioxide emission, PM2.5 particulate matter 2.5, GDP gross domestic product, PPPI public-private partnership investment, ECO ecological innovation

*** represents level of significance at 1%

Source: author estimation

Table 2 Results of unit root test

Variables	ADF (level)	ADF (Δ)	ZA (level)	ZA (Δ)	Break year	ZA (Δ)	Break year
CO2	−0.514	−6.171***	−1.284	−8.331***	2008 Q1	−9.471***	2012 Q1
PM2.5	−0.118	−5.336***	−0.991	−11.584***	2012 Q2	−9.471***	2003 Q2
GDP	−1.247	−4.148***	−1.055	−9.471***	2014 Q4	−9.471***	1996 Q1
PPPI	0.169	−3.134***	−0.762	−7.810***	2006 Q1	−9.335***	2013 Q1
ECO	−1.063	−4.055***	−0.653	−9.335***	2012 Q1	−9.335***	2017 Q1

CO2 carbon dioxide emission, PM2.5 particulate matter 2.5, GDP gross domestic product, PPPI public-private partnership investment, ECO ecological innovation

The values in the table specify statistical values of the ADF and ZA test

*** represents level of significance at 1%

Source: author estimation
ecological innovation and carbon dioxide emission. However, ecological innovation may reasonably play their role towards observed as quite conductive for the reduction of carbon. Ding ecological innovation is quite unique comparatively to the have claimed that ecological innovation reduces the CO2

Quantiles (τ)	Constant (α(τ))	ECM (ρ(τ))	Long-run estimations	Short-run estimations
	α(τ)	ρ(τ)	βατ(τ)	βθτ(τ)
0.05	0.011	0.136	0.012	0.230
	(0.201)	(0.036)	(0.613)	(0.600)
0.10	0.101	0.175	0.025	0.202
	(0.001)	(0.607)	(0.730)	(0.752)
0.20	0.020	0.182	0.103	0.201
	(0.002)	(0.708)	(2.035)	(0.632)
0.30	0.012	0.067	0.142	0.114
	(0.010)	(2.035)	(1.777)	(0.812)
0.40	0.031	0.051	0.223	0.106
	(0.012)	(2.005)	(2.024)	(0.924)
0.50	0.012	0.063	0.268	0.115
	(0.021)	(1.977)	(3.999)	(1.758)
0.60	0.102	0.143	0.254	0.206
	(0.024)	(1.734)	(6.389)	(2.047)
0.70	0.022	0.121	0.352	0.251
	(0.011)	(1.653)	(4.067)	(2.026)
0.80	0.245	0.045	0.361	0.225
	(0.052)	(0.926)	(5.309)	(5.107)
0.90	0.034	0.056	0.375	0.285
	(0.204)	(0.846)	(7.302)	(4.108)
0.95	0.206	0.023	0.406	0.243
	(0.072)	(0.911)	(4.202)	(3.505)

CO2 carbon dioxide emission, PM2.5 particulate matter 2.5, GDP gross domestic product, PPPI public-private partnership investment, ECO ecological innovation

The table reports the quantile estimation results.

The t-statistics are between brackets.

***, **, and * indicate significance at the 1%, 5%, and 10% levels, respectively.

Source: author estimations

(2020) also provide the similar fact while claiming that PPPI is impeding the quality of natural environment while increasing the carbon emission. Meanwhile, the long-run association between ecological innovation and CO2 emission is also tested and findings are provided in Table 3. The study findings show that for the lower quantiles (i.e., 0.05th, 0.10th, and 0.20th) there is a negative and highly significant relationship between ecological innovation and carbon dioxide emission. However, highest negative impact is observed under the lowest quantile which is −0.230. This would justify the argument that green or ecological innovation may reasonably play their role towards controlling the higher CO2 emission in the environment, hence protecting it to the best of their capacity. These findings are consistent with the Töbelmann and Wendler (2020) who have claimed that ecological innovation reduces the CO2 emission in the European economies and the impact of ecological innovation is quite unique comparatively to the general innovation in the region. Additionally, Zhang et al. (2017) also provide their contribution while claiming that innovation resources along with the knowledge innovation are observed as quite conductive for the reduction of carbon. Ding et al. (2021) also examine the association between ecological innovation and CO2 emission for the G7 economies. It is observed that there is a significant relationship between ecological innovation and CO2 emission in the targeted economies.

In addition, Table 3 also provides the findings for the short-run estimation under range of quantiles. Under short-run estimation, the findings indicate that past values of the carbon emissions have significant and positive impact on the current values of CO2 emission of all three quantiles (low, medium, and high). The contemporaneous changes in the value of GDP have shown a significant and positive impact but only for the lower and higher quantiles. On the other hand, the impact of GDP2 under all the quantiles for the short-run estimation is observed as negatively insignificant. Furthermore, it is observed that current changes in the value of CO2 emission are significantly and positively affected by current values of PPPI, but only for the first four quantiles. Furthermore, the current values of ECO under short-run estimation provide the evidence for the impact on CO2 emission for the first three quantiles only.

(2020) also provide the similar fact while claiming that PPPI is impeding the quality of natural environment while increasing the carbon emission. Meanwhile, the long-run association between ecological innovation and CO2 emission is also tested and findings are provided in Table 3. The study findings show that for the lower quantiles (i.e., 0.05th, 0.10th, and 0.20th) there is a negative and highly significant relationship between ecological innovation and carbon dioxide emission. However, highest negative impact is observed under the lowest quantile which is −0.230. This would justify the argument that green or ecological innovation may reasonably play their role towards controlling the higher CO2 emission in the environment, hence protecting it to the best of their capacity. These findings are consistent with the Töbelmann and Wendler (2020) who have claimed that ecological innovation reduces the CO2 emission in the European economies and the impact of ecological innovation is quite unique comparatively to the general innovation in the region. Additionally, Zhang et al. (2017) also provide their contribution while claiming that innovation resources along with the knowledge innovation are observed as quite conductive for the reduction of carbon. Ding et al. (2021) also examine the association between ecological innovation and CO2 emission for the G7 economies. It is observed that there is a significant relationship between ecological innovation and CO2 emission in the targeted economies.

In addition, Table 3 also provides the findings for the short-run estimation under range of quantiles. Under short-run estimation, the findings indicate that past values of the carbon emissions have significant and positive impact on the current values of CO2 emission of all three quantiles (low, medium, and high). The contemporaneous changes in the value of GDP have shown a significant and positive impact but only for the lower and higher quantiles. On the other hand, the impact of GDP2 under all the quantiles for the short-run estimation is observed as negatively insignificant. Furthermore, it is observed that current changes in the value of CO2 emission are significantly and positively affected by current values of PPPI, but only for the first four quantiles. Furthermore, the current values of ECO under short-run estimation provide the evidence for the impact on CO2 emission for the first three quantiles only.
Table 4 provides the results for the QARDL for the haze pollution, i.e., PM2.5, as second dependent variables. The findings confirm that estimated speed of adjustment coefficient or p^* is observed as negatively significant in all the quantiles. This would justify the presence of reversion of long-run estimation among the study variables like PM$_{2.5}$, GDP, GDP2, PPPI, and ecological innovation, respectively. More specifically, the speed of adjustment is observed as highest for the 0.10th quantile which is 0.175, significant at 1%. Furthermore, the coefficient parameter for the GDP is observed as positively significant but only from 0.60th quantile to onward. This would justify that under long-run estimation, GDP is showing its positive and significant impact on the PM2.5. Xiao et al. (2020) have observed the similar findings and claim that there is a positive association between the GDP and PM2.5 in the region of China. Wang and Komonpipat (2020) have also provided the similar evidence that GDP and haze pollution are directly linked with each other. However, the findings for the long-run estimation between GDP2 and PM2.5 are observed as negatively significant for the medium and upper quantiles. This would claim that GDP2 is showing its role in lowering the haze pollution in the region of USA. Additionally, the long-run estimation for the PPPI and PM2.5 is observed as positively significant for the higher quantiles which claims that higher investment in public-private partnership is causing more environmental pollution in USA. Additionally, the study findings also confirm that ecological innovation has shown their negative and significant impact on PM2.5 under long-run estimation. This means that ecological innovation helps to reduce the haze pollution in the natural environment. Li et al. (2020) claims that environmental efficiency significantly helps to reduce the PM2.5 pollution in the region of China. Meanwhile, the impact of technological progress on PM2.5 reduction is observed but in a limited context. More specifically, the impact of ecological innovation on PM2.5 is observed as negatively significant but only for the first three quantiles. For the short-run estimation, the study findings indicate that past values of PM2.5 have their positive and significant impact on the current values of PM2.5 but only for the lower and medium quantiles. More specifically, highest positive and significant impact is observed under second quantile. Furthermore, the

Quantiles (τ)	Constant ECM	Long-run estimations	Short-run estimations							
α_τ(τ)	ρ_τ(τ)	β_GDP(τ)	β_GDP(τ)							
		β_PPPI(τ)	β_ECO(τ)							
		φ₁(τ)	ω₀(τ)	λ₀(τ)	θ₀(τ)	θ₁(τ)	θ₂(τ)	θ₃(τ)		
0.05	0.002	0.131	0.131	0.020**	0.542***	0.076**	0.035	0.012	0.016	0.034***
	(0.020)	(0.310)	(0.011)	(-2.601)	(3.025)	(2.676)	(-0.020)	(0.001)	(1.568)	(-4.034)
0.10	0.204	0.145	0.111	-0.246**	0.579***	0.063**	-0.061	0.130	0.004	-0.042***
	(0.004)	(0.512)	(0.002)	(-2.324)	(5.069)	(2.763)	(-0.010)	(0.003)	(1.070)	(-4.204)
0.20	0.036	0.241	0.120	-0.216**	0.439***	0.076**	-0.001	0.234	0.007	-0.023***
	(0.103)	(1.110)	(0.010)	(-2.112)	(6.099)	(5.026)	(-0.010)	(0.020)	(0.560)	(-2.993)
0.30	0.058	0.283	0.165	-0.090	0.456***	0.045***	-0.013	0.346	0.001	-0.013***
	(0.080)	(1.338)	(0.063)	(-1.621)	(5.514)	(4.045)	(-0.031)	(0.030)	(1.120)	(-3.013)
0.40	0.063	0.256	0.165	-0.035	0.459**	0.022	-0.032	0.562	0.003	-0.006
	(0.013)	(1.536)	(0.155)	(-1.130)	(2.390)	(1.601)	(0.012)	(0.020)	(0.613)	(-1.602)
0.50	0.152	0.289	0.142	-0.053	0.457**	0.023	-0.023	0.012	0.007	-0.010
	(0.102)	(1.489)	(0.700)	(-0.813)	(2.133)	(0.903)	(-0.002)	(0.102)	(0.713)	(-1.020)
0.60	0.257	0.246*	0.194	-0.056	0.316	0.031	-0.017	0.521	0.008	-0.016
	(0.020)	(1.846)	(1.349)	(-0.312)	(0.610)	(1.021)	(-0.060)	(0.012)	(0.640)	(-0.996)
0.70	0.126	0.253**	0.290*	-0.031	0.212	0.038	-0.016	0.253	0.002	-0.021
	(0.101)	(2.035)	(1.880)	(-0.230)	(0.824)	(1.338)	(-0.001)	(0.102)	(1.020)	(-1.023)
0.80	0.132	0.275**	0.274**	-0.031	0.341	0.056	-0.018	0.345	0.001	-0.015
	(0.002)	(2.355)	(2.549)	(-0.120)	(1.441)	(1.299)	(-0.028)	(1.003)	(1.002)	(-1.251)
0.90	0.134	0.241***	0.296**	-0.032	0.452	0.034	-0.015	0.465	0.003	-0.006
	(0.010)	(3.044)	(2.868)	(-0.612)	(1.555)	(1.140)	(-0.045)	(1.104)	(0.815)	(-1.506)
0.95	0.101	0.275**	0.191**	-0.066	0.323	0.020	-0.017	0.345	0.005	-0.003
	(0.001)	(3.193)	(1.992)	(-3.063)	(1.623)	(1.212)	(-0.030)	(1.105)	(0.910)	(-0.563)

PM2.5 particulate matter 2.5, GDP gross domestic product, PPPI public-private partnership investment, ECO ecological innovation

The table reports the quantile estimation results
The t-statistics are between brackets
***, **, and * indicate significance at the 1%, 5%, and 10% levels, respectively
Source: author estimations
lagged values of GDP have shown their positive and significant impact on PM2.5 for the lower quantiles only. However, for the lagged values of GDP2, PPPI, and ECO, no significant relationship with the PM2.5 is observed in any of the study’s quantiles. Finally, the second lagged values of ECO have shown their negative and significant impact on the haze pollution like PM2.5 in USA.

This study also applied the Wald test estimation to analyze the constancy in the parameters for the estimated results as shown in Table 5. The null hypothesis of the Wald test claims that there is no parameter constancy of the speed of adjustment parameter which is opposed by alternative hypothesis. The results show that null hypothesis of the parameter constancy of the speed of adjustment is rejected as 1% level of significant for both carbon dioxide emission and haze pollution. Additionally, the null hypothesis of linearity across different tails of study quantiles for long-run estimation of the study variables is also rejected. This would claim the fact that the study parameters for the gross domestic product, square of gross domestic product, public-private investment partnership, and ecological innovation are dynamic under various quantiles in the region of USA. This outcome might be due the various structural changes in the region of USA during the last two decades. Additionally, the Wald test findings for the null hypothesis of the linearity of the short-run cumulative

Table 5 Results of the Wald test for the constancy of parameters

Variables	F-statistics for CO2 emission model	F-statistics for PM2.5 model
ρ	6.876*** [0.000]	5.307*** [0.000]
β_{GDP}	5.543*** [0.000]	34.108*** [0.000]
β_{GDP2}	9.002*** [0.000]	1.341
β_{PPPI}	18.451*** [0.000]	18.049*** [0.000]
β_{ECO}	6.090*** [0.000]	4.337*** [0.000]
φ_1	3.004*** [0.000]	6.417*** [0.000]
ω_0	4.010*** [0.000]	2.561** [0.016]
λ_0	0.248	0.667
θ_0	6.123*** [0.000]	1.088
ϵ_0	6.413*** [0.000]	1.951*
ϵ_1	1.087	0.359

Cumulative short-term effect

| ρ₀ | – | 0.971 |
| ε₀ | 1.215 | – |

CO2 carbon dioxide emission, PM2.5 particulate matter 2.5, GDP gross domestic product, PPPI public-private partnership investment, ECO ecological innovation

The p values are between squared brackets

***, **, and * indicate significance at the 1%, 5%, and 10% levels, respectively

Source: author estimations
influence of the past levels of GDP, GDP2, PPPI, and ECO on CO2 emission and haze pollution in terms of PM2.5 are non-linear at different quantiles.

Conclusion and policy implications

The current study tries to investigate the impact of economic growth, ecological innovation, and public-private partnership investment on the environmental abatement in USA through QARDL approach during the period of 1990–2015. The approach of QARDL is applied due to several motivations like it checks how the range of quantiles of key explanatory variables like GDP, GDP2, ECO, and PPPI show their effect on the carbon dioxide emissions and particulate matters 2.5 (PM2.5) in the region of USA while providing a good empirical fact comparatively to some traditional methods like OLS or quantile regression. Furthermore, our study also tries to examine the consistency of the parameters through Wald test output. This would justify that there is a presence of significant reversion to the long-term linkage between the study variables in USA. More specifically, the outcomes suggest that factors like economic growth in terms of GDP increase the carbon dioxide emission in USA, while GDP2 negatively affect the CO2 emission as well. Furthermore, higher public-private partnership investment also causes more carbon dioxide emission. However, the long-run estimation between ECO and CO2 emissions also confirms negative and significant results but only for the first three quantiles. This would employ that under long-run and different level of growth and PPPI, there is a great damage to natural environment in terms of higher emission in the nature. Furthermore, the findings through short-run estimation confirm that past values of carbon dioxide emissions impact on its current values. Furthermore, the long-run estimation between key explanatory variables and PM2.5 also states that GDP and PPPI are the sources for higher haze pollution, whereas GDP2 and ECO not. Additionally, the findings for the short-run estimation also confirm that there is a positive and significant linkage between past values of PM2.5 and its current values. Similar is observed for GDP and PM2.5.

Based on the above mentioned results, the present study has recommended to the regulators that they should provide more focus on the economic growth along with PPPI and eco-innovation that reduce the environmental degradation in the country. This study also guided to the policymakers while formulating the policies regarding environmental degradation under the light of eco-innovation and PPPI. This study recommended to the relevant authorities that they should promote the PPPI that reduce the environmental degradation in the country. This article also guided to the authorities that they should adopt the eco-innovation that also reduces the environmental degradation in the country. For instance, as the environmental quality in terms of carbon dioxide emissions and haze pollution like PM2.5 is prone towards deterioration at higher level of economic growth and PPPI, than it is observed that such growth track being achieved by the US government is not sustainable in natural perspective. One of the major reasons behind this is the dependency of GDP on the traditional energy consumptions which in return causes more environmental degradation which is quite evident under present empirical outcomes. The straightforward solution for this positive impact of economic growth on the CO2 emission and haze pollution like PM2.5 is that more focus should be paid towards the production of goods and services with the help of some renewable energy sources which can lower down the level of CO2 emission in the natural environment as well. Therefore, policymakers should reasonably consider the findings under present study in order to control the environmental degradation as linked with the higher investment in public-private partnership and economic growth.

Author contribution Nguyen Van Song: conceptualization, data curation, methodology, writing—original draft. Nguyen Cong Tiep: data curation, visualization. Dinh van Tien: review and editing. Thai Van Ha: writing—review and editing and software. Nguyen Thi Minh Phuong: visualization, supervision, editing, Tran Thi Hoang Mai: methodology, data curation, visualization.

Data availability The data that support the findings of this study are attached.

Declarations

Ethics approval and consent to participate We declare that we have no human participants, human data, or human tissues.

Consent for publication Not applicable.

Competing interests The authors declare no competing interests.

References

Adewumi SA (2020) Challenges and prospects of rural entrepreneurship: a discourse analysis of selected local government areas of Osun state, Nigeria. Int J Bus Manag Stud 12(2):544–560

Al-mulali U (2011) Oil consumption, CO2 emission and economic growth in MENA countries. Energy 36(10):6165–6171. https://doi.org/10.1016/j.energy.2011.07.048

Amen R, Hameed J, Albashar G, Kamran HW, Shah MUH, Zaman MKU et al (2021) Modelling the higher heating value of municipal solid waste for assessment of waste-to-energy potential: a sustainable case study. J Clean Prod 287:125575

Anh Tu C, Chien F, Hussein MA, Ramli MMY, Psi MM, M. S. S, Iqbal S, Bilal AR (2021) Estimating role of green financing on energy security, economic and environmental integration of BRI member countries. Singap Econ Rev. https://doi.org/10.1142/S0217590821500193

Antoni XL, Dlepu A, Notshe N (2020) A comparative study of financial literacy among undergraduate commerce and arts students: a case of...
a South African University. Int J Econ Financ 12(2). https://doi.org/10.34109/ijefs.202102220

Anwar A, Sharif A, Fatima S, Ahmad P, Sinha A, Khan SAR, Jermsittiparsert K (2021a) The asymmetric effect of public private partnership investment on transport CO2 emission in China: evidence from quantile ARDL approach. J Clean Prod 288:125282

Anwar A, Sharif A, Fatima S, Ahmad P, Sinha A, Rehman Khan SA, Jermsittiparsert K (2021b) The asymmetric effect of public private partnership investment on transport CO2 emission in China: evidence from quantile ARDL approach. J Clean Prod 288:125282. https://doi.org/10.1016/j.jclepro.2020.125282

Baloch ZA, Tan Q, Kamran HW, Nawaz MA, Albashar G, & Hameed J (2021) A multi-perspective assessment approach of renewable energy production: policy perspective analysis. Environ Dev Sustain, 1-29. https://doi.org/10.1007/s10668-021-01524-8

Boamah KB, Du J, Bediako IA, Boamah AJ, Abdul-Rasheed AA, Owusu SM (2017) Carbon dioxide emission and economic growth of China—the role of international trade. Environ Sci Pollut Res 24(14):13049–13067

Chen J, Wang S, Zhou C, Li M (2019) Does the path of technological progress matter in mitigating China’s PM2.5 concentrations? Evidence from three urban agglomerations in China. Environ Pollut 254:113012. https://doi.org/10.1016/j.envpol.2019.113012

Cho JS, Kim T-h, Shin Y (2015) Quantile cointegration in the autoregressive distributed-lag modeling framework. J Econ 188(1):281–300

Ding Q, Khatkat SI, Ahmad M (2021) Towards sustainable production and consumption: assessing the impact of energy productivity and eco-innovation on consumption-based carbon dioxide emissions (CCO2) in G-7 nations. Sustain Prod Consum 27:3506–3512

Cho JS, Kim T-h, Shin Y (2015) Quantile cointegration in the autoregressive distributed-lag modeling framework. J Econ 188(1):281–300

Ding Q, Khatkat SI, Ahmad M (2021) Towards sustainable production and consumption: assessing the impact of energy productivity and eco-innovation on consumption-based carbon dioxide emissions (CCO2) in G-7 nations. Sustain Prod Consum 27:3506–3512

Godil DI, Sharif A, Afshar S, Yousof A, Khan SAR (2020a) The asymmetric role of freight and passenger transportation in testing EKC in the US economy: evidence from QARDL approach. Environ Sci Pollut Res 27:30108–30117

Godil DI, Sharif A, Agha H, Jermsittiparsert K (2020b) The dynamic nonlinear influence of ICT, financial development, and institutional quality on CO2 emission in Pakistan: new insights from QARDL approach. Environ Sci Pollut Res 27(19):24190–24200

Hashmi R, Alam K (2019) Dynamic relationship among environmental regulation, innovation, CO2 emissions, population, and economic growth in OECD countries: a panel investigation. J Clean Prod 231:1100–1109. https://doi.org/10.1016/j.jclepro.2019.05.325

Hsuan J-S, Chiu C-Y, Wu J-Y, Chien F, Lai J-Y, Lin C-C, Chen F, Pan J-W (2021) Evaluating green innovation and performance of financial development: mediating concerns of environmental regulation. Environ Sci Pollut Res: 1–12. https://doi.org/10.1007/s11356-021-14499-w

Huang S-Z, Chau KY, Chien F, Shen H (2020) The impact of startups’ dual learning on their green innovation capability: the effects of business executives’ environmental awareness and environmental regulations. Sustainability 12(16):1–17

Kahia M, Jebli MB, Belloumi M (2019) Analysis of the impact of renewable energy consumption and economic growth on carbon dioxide emissions in 12 MENA countries. Clean Techn Environ Policy 21(4):871–885

Khan Z, Ali M, Kirikkaleli D, Wahab S, Jiao Z (2020a) The impact of technological innovation and public-private partnership investment on sustainable environment in China: consumption-based carbon emissions analysis. sustainable. Development 28(5):1317–1330

Khan Z, Ali M, Kirikkaleli D, Wahab S, Jiao Z (2020b) The impact of technological innovation and public-private partnership investment on sustainable environment in China: consumption-based carbon emissions analysis. Sustain Dev 28(5):1317–1330

Li D, Huang M, Ren S, Chen X, Ning L (2018) Environmental legitimacy, green innovation, and corporate carbon disclosure: evidence from CDP China 100. J Bus Ethics 150(4):1089–1104

Li G, Fang C, He S (2020) The influence of environmental efficiency on PM2.5 pollution: evidence from 283 Chinese prefecture-level cities. Sci Total Environ 748:141549

Li W, Chien F, Hsu C-C, Zhang Y, Nawaz MA, Iqbal S, Mohsin M (2021a) Nexus between energy poverty and energy efficiency; estimating the long-run dynamics. Res Policy 72:102063. https://doi.org/10.1016/j.respolicy.2021.102063

Li W, Chien F, Kamran HW, Aldeehani TM, Sadiq M, Nguyen VC, Taghizadeh-Hesary F (2021b) The nexus between COVID-19 fear and stock market volatility. Econ Res-Ekonosto Istraz:1–22. https://doi.org/10.1080/1331677X.2021.1914125

Li W, Chien F, Ngo Q-T, Nguyen T-D, Iqbal S, Bilal AR (2021c) Vertical financial disparity, energy prices and emission reduction: empirical insights from Pakistan. J Environ Manag 294:112946. https://doi.org/10.1016/j.jenvman.2021.112946

Malik MY, Latif K, Khan Z, Butt HD, Hussain M, Nadeem MA (2020) Symmetric and asymmetric impact of oil price, FDI and economic growth on carbon emission in Pakistan: evidence from ARDL and non-linear ARDL approach. Sci Total Environ 726:138421

Mohsin M, Kamran HW, Nawaz MA, Hussain MS, Dahri AS (2021) Assessing the impact of transition from nonrenewable to renewable energy consumption on economic growth-environmental nexus from developing Asian economies. J Environ Manag 284:111999

Mora-Rivera J, van Gameren E, García-Mora F (2020) Poverty and use of credit in rural households in Mexico. Cuad Econ 43(121):29–47. https://doi.org/10.32826/cude.v43i121.130

Muller C, de Klerk N (2020) Influence of design aesthetics and brand name on generation Y students’ intention to use wearable activity-tracking devices. Int J eBus eGovernment Stud 12(2):107–121. https://doi.org/10.34111/jgbeg.202012202

Nawaz MA, Hussain MS, Kamran HW, Ehsanullah S, Maheen R, Shair F (2020) Trilemma association of energy consumption, carbon emission, and economic growth of BRICS and OECD regions: quantile regression estimation. Environ Sci Pollut Res:1–15

Nawaz MA, Sheshadri U, Kumar P, Aqdas R, Patwary AK, Riaz M (2021) Nexus between green finance and climate change mitigation in N-11 and BRICS countries: empirical estimation through difference in differences (DID) approach. Environ Sci Pollut Res 28(6):6504–6519. https://doi.org/10.1007/s11356-020-10920-y

Nguyen C-H, Ngo Q-T, Pham M-D, Nguyen A-T, Huynh N-C (2021) Economic linkages, technology transfers, and firm heterogeneity: the case of manufacturing firms in the Southern Key Economic Zone of Vietnam. Cuad Econ 44(124):1–25

Othman Z, Nordin MFF, Sadiq M (2020) GST fraud prevention to ensure business sustainability: a Malaysian case study. J Asian Bus Econ Dev 28(3):245–265

Razzaq A, Sharif A, Ahmad P, Jermsittiparsert K (2020) Asymmetric role of tourism development and technology innovation on carbon dioxide emission reduction in the Chinese economy: fresh insights from QARDL approach. Sustain Dev 29:176–193

Sadiq M, Hsu CC, Zhang Y, Chien FS (2021) COVID-19 fear and volatility index movements: empirical insights from ASEAN stock
