Introduction: There are various methods available at present to reduce the recurrence after pterygium excision and the one in the trend is the sutureless and gluefree conjunctival autografting which is gaining popularity for its ease and better results than other methods.

Objective: To study the efficacy and complications of sutureless and glue free conjunctival autografting for the management of primary pterygium over a period of 7 years.

Material and Methods: A prospective, interventional case study was carried out over 300 patients having primary pterygium. Pterygium excision followed by conjunctival autografting without using any suture and glue was performed in all the patients which was followed by bandaging for 24 hours. The patients were followed up post-operatively on day 1, week 1, week 2, month 1, 2 and 3 and for recurrence up to 1 year if possible. They were examined for haemorrhage, graft edema, graft encroachment on cornea, visual acuity, refractory changes and recurrence.

Results: The age of cases varied between 21 to 60 years. 59.33% of which were male. Subconjunctival haemorrhage was seen in 23.6% on day-1 which reduced to 8.33% at day 15 and no subconjunctival haemorrhage at the end of month 1. Serous exudate was present in 26 cases (8.67%) on day-1, which subsided within two weeks without any intervention. Graft displacement was seen in 16 patients (5.33%) and encroachment on cornea was seen in 28 patients (9.33%), tenon cyst was seen in 3 patient (1%) and recurrence was seen in 3 patients (1.0%). In 3 cases displaced graft became avascular hence were removed. Visual acuity improvement was noted in 278 patients.

Conclusion: Sutureless and glue free conjunctival autograft following pterygium excision is a safe, effective and economical option for the management of primary pterygium. Inferior conjunctival graft saves the superior conjunctiva for the future glaucoma surgery if it is required.

Keywords: Pterygium, sutureless and gluefree, conjunctival autograft

Indication for surgical intervention:

1. Decreased visual acuity due to encroachment on visual axis
2. Irregular astigmatism due to pterygium
3. Restricted ocular motility resulting in diplopia
4. Most patient seeks surgical excision of pterygium for cosmetic reason

Conjunctival Transplantation

The idea of conjunctival transplantation is to bring the healthy conjunctival tissue to the diseased site to prevent recurrence. Commonly, the supero-temporal conjunctiva is used as donor if the pterygium is located nasally because of the ease in surgery. Autografting of conjunctiva usually from the same eye has shown excellent result with low recurrence and complications. Kenyon and colleagues proposed the use of free conjunctival autografting for preventing recurrence after pterygium surgery which was supported by several other studies. In these studies the graft was taken from the superior bulbar conjunctiva. The grafts were secured using sutures. Later on the use of fibrin glue resulted in decrease in suture related complications, intra op time and post op discomfort. Fibrin glue also carries potential risk of prion and viral transmission and anaphylaxis which has led eventually to evolution of sutureless and glueless...
technique23 wherein the autologous fibrin facilitates the adherence of the graft to the bed. Conjunctival autografting without sutures and fibrin glue: Researches are going on for safety and efficacy of sutureless and glue free conjunctival autografting in pterygium surgery.23 In this procedure resident fibrin acts as the main adhesive and graft should be as thin as possible. This procedure is devoid of ocular discomfort which is caused by sutures and hypersensitivity reaction caused by fibrin glue.

Materials and Methods

This was a prospective, non-comparative, interventional case study enrolling 300 patients with primary pterygium attending the outdoor of P.B.M Eye Hospital, Bikaner from 2010-2017. They were managed by surgical excision of pterygium with sutureless and glue free infero temporal conjunctival autograft from the same eye. Patients with history of recurrent pterygium, ocular trauma, dry eye, conjunctivitis, keratitis, other ocular surface pathologic features and major systemic illness; patients not giving consent for the procedure and not willing for further follow up visits were excluded from the study. Visual acuity, Automated Refraction, and details of slit-lamp were recorded. Characteristics of the pterygium (location, size, extent across the cornea and presence of inflammation) were noted and pterygium was graded according to the extent of cornea covered by pterygium head23 (Table 1). An informed consent from all patients was taken before the procedure. All the patients were instructed to instill plain antibiotic eye drops (ciprofloxacin) two hourly one day prior to surgery.

Surgical procedure:
All of the patients underwent pterygium excision followed by infero temporal conjunctival autografting. Surgery was performed under peribulbar block. After painting and draping the pterygium was excised with the help of bard parker knife blade no 15. The keratectomy was continued up to the limbus, thus freeing the pterygium off the cornea. The scleral bed was cleaned and care was taken to ensure that the bare sclera was free of tenon’s capsule. With the help of castor – veijo caliper size of bare sclera was determined to procure the infero temporal conjunctival autograft. The appropriate sized graft (approx 2 mm larger than the bare area) was procured from infero temporal conjunctiva. Care was taken to obtain graft as thin as possible without button holing. Extreme care was taken to ensure that only conjunctiva was dissected and underlying tenon’s capsule was not damaged, to ensure a good post operative healing at that site. The graft was then slid over the cornea without lifting the tissue off the cornea, towards the bare sclera and it was spread and positioned there maintaining correct orientation so that the limbal side of graft corresponds to the limbal side of bare sclera. The graft was stabilized without any suture or glue (tissue adhesive). The recipient bed was encouraged to achieve natural haemostasis and relative dissection from graft placement. Graft adherence and positioning was checked at the end of the surgery by poking the graft with 30 gz needle. Pad and bandage was done and patient was put on oral analgesic-anti inflammatory tablets twice a day for three days. The patient was allowed to go home after surgery.

Patients were examined on first day post op and then the patient was instructed to instill combination (Gatifloxacin +Prednisolone) eye drops four times a day for a week, which was later tapered in follow up visits and artificial tears (Carboxy Methyl Cellulose 0.5%) four times a day. The patient was reviewed in follow up at one week, two week, one month, two month, three month and 1 year if possible.

Grades of pterygium	Patients
I. Pterygium invading <1.5mm of cornea	67
II. Pterygium invading < half the radius of cornea	76
III. Pterygium invading >half the radius of cornea	98
IV. Pterygium almost reaching the center of cornea	59

Result

The pterygia were divided into four grades 1-4 according to Youngson RM. The cases varied between age of 21-60 years out of 300 patients 178 were males and 122 females (Table 2) were enrolled. Maximum number of male patients were in 31-40 age group while mostly females were of 51-60 years age group (Table 3). 98 eyes had grade III pterygium (Table 1). Foreign body sensation was the most common complaints (204 patients) at the time of admission. 63 cases had cosmetic indication for surgery (Table 4). No significant intraoperative complications were noted.

| Table 1: grading of 52 pterygium according to Youngson RM (1972) |
|---------------------|----------|
| Grades of pterygium | Patients |
| I. Pterygium invading <1.5mm of cornea | 67 |
| II. Pterygium invading < half the radius of cornea | 76 |
| III. Pterygium invading >half the radius of cornea | 98 |
| IV. Pterygium almost reaching the center of cornea | 59 |

| Table 2: Distribution of cases according to sex |
|---------------------|----------|
| Males | Females | Ratio |
| 178 (59.3%) | 122 (40.66%) | 1.45:1 |

| Table 3: Distribution of cases according to age |
|---------------------|----------|
| Age group in years | Male | Female | Total cases |
| 21-30 | 54 (30.33 %) | 29 (23.80%) | 83 (27.66%) |
| 31-40 | 64(35.95%) | 23 (19.04%) | 87 (29.00%) |
| 41-50 | 42 (23.59%) | 23 (19.04%) | 65 (21.66%) |
| 51-60 | 18 (10.11%) | 47 (15.66%) | 65 (21.66%) |

| Table 4: Complaints at the time of admission |
|---------------------|----------|
| Complaints | Total |
| Foreign body sensation, watering | 204 |
| Diminution of vision | 84 |
| Cosmetic disfigurement | 63 |
| Redness | 10 |

Subjective complaints of patients were also taken under consideration (Table 5). Graft displacement and graft encroachment on cornea was noted in 16 (5.33%) and 28 (9.33%) cases respectively on first post operative day which were repositioned under topical anesthesia and were found to remain in place on subsequent follow up. Out of 16 displaced grafts 3 (1%) were avascular and hence were removed. The postoperative follow up was 4 weeks. For recurrence patients were encouraged for follow up of...
Fibrin glues are currently manufactured from human plasma and therefore carry the theoretical risk of anaphylaxis and transmission of prions and viruses. To encounter problems related with sutures and fibrin glue new technique of sutureless and gluefree conjunctival autograft in pterygium surgery came into practice which have less subjective complaints like that post operative pain, ocular discomfort and prolonged redness. This procedure have graft stability equivalent to suture and fibrin glue.

Since the use of steroids in any form has increased be it as inhaler for asthma attributed to increased pollution, topical form used for skin disease or allergic ocular diseases e.t.c risk of glaucoma development has also increased. So as to preserve the superior conjunctiva, amniotic membrane or infero conjunctival graft can be used to cover the sclera after pterygium surgery for reducing the recurrence. But amniotic membrane do possesses the risk of contamination which cannot be overlooked. Hence we can conclude that infero temporal conjunctival autografting is a better approach to preserve superior conjunctiva for the future for cataract or filtration surgery if required.

Late Post-Operative Complications

Recurrence was the only late complication seen in 3 patient. The recurrence was not observed in the patients in which graft was removed. Recurrence was in the form of fibrovascular growth crossing over the corneo-scleral limbus on to the previous site of excision. The recurrence were observed within 6 months of surgery. This complication was recorded during early phase of our study. Improvement in visual acuity was observed in 276 patients (1-4 lines of snellen’s chart) except those who had cataract/ significant lenticular changes. There had been decrease in astigmatism ranging from 0.50D cylinder – 7 cylinder in almost all cases.

Discussion

Current surgical methods to prevent pterygium recurrence include conjunctival autograft, limbal and limbal– conjunctival transplant, conjunctival flap and conjunctival rotation autograft surgery, amniotic membrane transplant, cultivated conjunctival transplant, lamellar keratoplasty, and the use of fibrin glue. All of these techniques involve the use of sutures or fibrin glue and are therefore vulnerable to associated complications. The adjuvant use of mitomycin C and radiotherapy have been described. Radiotherapy and chemotherapy reduces the recurrence rate, yet serious complications are associated with their use. The presence of sutures may lead to prolonged wound healing and fibrosis. Subsequent complications such as pyogenic granuloma formation are easily treated; others such as symblepharon formation, fornix contracture, ocular motility restriction, diplopia, scleral necrosis, and infection, are much more difficult to manage and may be sight threatening. To overcome suture related problems and to reduce the intraoperative time, fibrin glue was introduced and its efficacy for the conjunctival grafting has been established. Fibrin glues are currently manufactured

Table 5: Post-operative subjective complaints on follow ups

Complaints	No. of Patients					
	Day 1	Week 1	Week 2	Month 1	Month 2	Month 3
Redness	127	54	17	3	0	0
Discomfort (watering and itching)	183	75	41	0	0	0
Pain	207	0	0	0	0	0

Conclusion

Sutures are related with foreign body related complications while fibrin glue are linked with risk of transmissible disease. The opposition of the lids to the bulbar conjunctiva provides a natural biological dressing and confers a unique wound – healing environment. Infero temporal graft has an advantage of leaving the superior conjunctiva for glaucoma surgery if needed. In the view of low recurrence rate with minimum and mild complications and economical in context to our country this procedure will give us an option for a new approach towards management of pterygium.

References

1. Higgers JHC. Pterygium: its incidence, hereditary and etiology. Am J Ophthalmol, 1960; 50:653–644.
2. Panchapakesan J, Hootman F, Mitchell P. Prevalence of pterygium and pinguecula: a Blue Mountains Eye Study. Aust NZ J Ophthalmol, 1998; 26 Suppl 1:S2–S5.
3. Ma K, Xu L, Jie Y, Josan JB. Prevalence of and factors associated with pterygium in adult Chinese: Beijing Eye Study. Cornea, 2007; 26:1184–1186.
4. Fotouhi A, Hashemi H, Khazazkhoob M. Prevalence and risk factors for pterygium and pinguecula: the Tehran Eye Study. Eye, 2009; 23:1125–1129.
5. Durkin SR, Abhary S, Newland HS, Selva D, Aung T, Casson RJ. The prevalence, severity and risk factors for pterygium in central Myanmar: the Meiktila Eye Study. Br J Ophthalmology, 2008; 92:25–29.
6. Cameron ME. Pterygium throughout the world. Springfield, Ill: Charles C Thomas, 1965.
7. Austin P, Jakobiec FA, Iwamoto T. Elastodysplasia and elastodystrophy as the pathologic bases of ocular pterygia and pinguecula. Ophthalmology, 1983; 90:96–109.
8. Di Girolamo. Pathogenesis of pterygium: roll of cytokines,growth factors and matrix metalloproteinase. Invest ophthalmology Vis Sci, 2001; 42:1963-1968.
9. Kenyon KR, Wagoner MD, Hettinger ME. Conjunctival autograft transplantation for advanced and recurrent pterygium. Ophthalmology, 1985; 92:1461–1470.
10. Prabhasawat P, Barton K, Burkett G, Tseng SC. Comparison of conjunctival autografts, amniotic membrane grafts, and primary closure for pterygium excision. Ophthalmology, 1997; 104:974–985.
11. Ma DH, See LC, Liu SB, Tsai RJ. Amniotic membrane graft for primary pterygium: comparison with conjunctival autograft and topical mitomycin C treatment. Br J Ophthalmol, 2000; 84:973–978.

12. Tananuvat N, Martin T. The results of amniotic membrane transplantation for primary pterygium compared with conjunctival autograft. Cornea, 2004; 23:458–463.

13. Elmas K, Katicirou Y, Aslan B, Duman S. Primary pterygium excision, amniotic membrane graft, conjunctival autograft and primary closure techniques comparisons. T Oft Gaz, 2002; 32:337–342.

14. Ozkurt YB, Kocams O, Comez AT, Uslu B, Dogan OK. Treatment of primary pterygium. Optom Vis Sci, 2009; 86:1178–1181.

15. Ruo SK, Lekha T, Mukeh BN, Sitalakshmi G, Padmanabhan P. Conjunctival-limbal autografts for primary and recurrent pterygia: technique and results. Indian J Ophthalmol, 1998; 46:203–209.

16. Shimazaki J, Yang HY, Tsubota K. Limbal autograft transplantation for recurrent and advanced pterygia. Ophthalmic Surg Lasers, 1996; 27:917–923.

17. Lewallen S. A randomized trial of conjunctival auto grafting for pterygium in the tropics. Ophthalmology, 1989; 96:1612–1614.

18. Ayala M. Results of pterygium surgery using a biologic adhesive. Cornea, 2008; 27:663–667.

19. Kim HH, Mun HJ, Park YJ, Lee KW, Shin JP. Conjunctival-limb autograft using a fibrin adhesive in pterygium surgery. Korean J Ophthalmol, 2008; 22: 147–154.

20. Koranyi G, Seregard S, Kopp ED. Cut and paste: a no suture, small incision approach to pterygium surgery. Br J Ophthalmol, 2004; 88: 911–914.

21. Koranyi G, Seregard S, Kopp ED. The cut-and-paste method for primary pterygium surgery: long-term follow-up. Acta Ophthalmol Scand, 2005; 83:298–301.

22. Ang LP, Chua JL, Tan DT. Current concepts and techniques in pterygium treatment. Curr Opin Ophthalmol. 2007; 18: 308–313.

23. de Wit D, Athanasiadis I, Sharma A, Moore J. Sutureless and glue-free conjunctival autograft in pterygium surgery: a case series. Eye, 2010; 9:1474-7.

24. Youngson RM. Pterygium in Israel. Am J Ophthalmol, 1972; 74(5):954-959.

25. Amano S, Motoyama Y, Oshika T, Eguchi S, Eguchi K. Comparative study of intraoperative mitomycin C and beta irradiation in pterygium surgery. Br J Ophthalmol, 2000; 84:618-621.

26. Narsani AK, Jatoi SM, Khanzada MA, Dabir SA, Gul S. Recurrence of Pterygium with Conjunctival Autograft Versus Mitomycin C. Pak J Ophthalmol 2008, 24(1):29-33.

27. Frucht-Pery J, Raiskup F, Ilar M, Landau D, Orucov F, Solomon A. Conjunctival autografting combined with low dose mitomycin C for prevention of primary pterygium recurrence. Am J Ophthalmol, 2006; 141:1044-1050.

28. Howitt D, Krap EJ. Side effect of topical thio-tepa. Am J Ophthalmol, 1969; 68:473-474.

29. Meacham CT. Triethylene thio-phosphoramide in the prevention of pterygium recurrence. Am J Ophthalmol, 1962; 54:751-753.

30. Rubinfeld RS, Pfister RR, Stein RM, Foster CS, Martin NF, Stoleru S, et al. Serious complication of topical mitomycin C after pterygium surgery. Ophthalmology, 1992; 1647-1654.

31. Solomon A, Pines RTF, Tseng SCG. Amniotic membrane transplantation after extensive removal of primary and recurrent pterygia. Ophthalmology, 2001; 108:449–60.

32. Allan BD, Short P, Crawford GJ, Barrett GD, Constable IJ. Pterygium excision with conjunctival autografting: an effective and safe technique. Br J Ophthalmol, 1993; 77:698–701.

33. Vrabec MP, Weisenthal RW, Elsingi SH. Subconjunctival fibrosis after conjunctival autograft. Cornea, 1993; 12:181–183.

34. Tan DT. conjunctival rotation autograft for pterygium.an alternative to conjunctival autografting. Ophthalmology, 1999; 106(1):67-71.

35. Maheshwari S. Effect of pterygium excision on pterygium induced astigmatism. Indian J Ophthalmol, 2003; 51(2):187-188.

Cite This Article as: Bhargava P, Kochar A, Joshi R. Pterygium excision followed by sutureless and gluefree infero-temporal conjunctival autograft.

Acknowledgments: Nil

Conflict of interest: None declared

Source of Funding: None

Date of Submission: 31 May 2018
Date of Acceptance: 7 August 2019

Address for correspondence

Poonam Bhargava
Medical Officer, Dept of ophthalmology, S.P. Medical College, Bikaner, Rajasthan, India
Email id: pbrct1306@gmail.com

Quick Response Code