A checklist of chromosome numbers and a review of karyotype variation in Odonata of the world

Valentina G. Kuznetsova¹, Natalia V. Golub¹

¹Department of Karyosystematics, Zoological Institute, Russian Academy of Sciences, Universitetskaya emb. 1, St. Petersburg 199034, Russia

Corresponding author: Valentina G. Kuznetsova (valentina_kuznetsova@yahoo.com)

Citation: Kuznetsova VG, Golub NV (2020) A checklist of chromosome numbers and a review of karyotype variation in Odonata of the world. CompCytogen 14(4): 501–540. https://doi.org/10.3897/compcytogen.v14.i4.57062

Abstract

The ancient insect order Odonata is divided into three suborders: Anisoptera and Zygoptera with approximately 3000 species worldwide each, and Anisozygoptera with only four extant species in the relict family Epiophlebiidae. An updated list of Odonata species studied regarding chromosome number, sex chromosome mechanism and the occurrence of m-chromosomes (= microchromosomes) is given. Karyotypes of 607 species (198 genera, 23 families), covering approximately 10% of described species, are reported: 423 species (125 genera, 8 families) of the Anisoptera, 184 species (72 genera, 14 families) of the Zygoptera, and one species of the Anisozygoptera. Among the Odonata, sex determination mechanisms in males can be of X(0), XY and X₁X₂Y types, and diploid chromosome numbers can vary from 6 to 41, with a clear mode at 2n = 25(60%) and two more local modes at 2n = 27(21%) and 2n = 23(13%). The karyotype 2n = 25(24A + X) is found in each of the three suborders and is the most typical (modal) in many families, including the best-covered Libellulidae, Corduliidae (Anisoptera), Lestidae, Calopterygidae, and Platycnemididae (Zygoptera). This chromosome set is considered ancestral for the Odonata in general. Chromosome rearrangements, among which fusions and fissions most likely

Copyright Valentina G. Kuznetsova, Natalia V. Golub. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
predominated, led to independent origins of similar karyotypes within different phylogenetic lineages of the order. The karyotype $2n = 27(26A + X)$ prevails in Aeshnidae and Coenagrionidae, whereas the karyotype $2n = 23(22A + X)$ is modal in Gomphidae and Chlorocyphidae, in both pairs of families one being from the Anisoptera while the other from the Zygoptera.

Keywords
Chromosome numbers, damseldragons, damselflies, dragonflies, m-chromosomes, sex chromosome mechanisms

Introduction

The order Odonata, which comprises slightly more than 6,000 described species worldwide, is one of the most ancient among winged insects (Pterygota), dating from the Permian (Grimaldi and Engel 2005). Extant Odonata include two main suborders with approximately 3,000 species each, the Zygoptera or damselflies with about 308 genera and the Anisoptera or true dragonflies with about 344 genera. Within these suborders, up to 21 and 11 families (and sometimes more), respectively, are currently recognized. The third suborder, the Anisozygoptera or damseldragons, includes only one genus *Epiophlebia* Calvert, 1903 with four extant species in the relict family Epiophlebiidae. A substantial body of evidence indicates that Anisoptera and Zygoptera are each monophyletic, and Zygoptera are sister to *Epiophlebia* plus Anisoptera (Rehn 2003; Kalkman et al. 2008; Dijkstra et al. 2013, 2014; Schorr and Paulson 2020).

The field of Odonata cytogenetics was heavily influenced by Bastiaan Kiauta, who has published dozens of papers and analyzed karyotypes of about 260 species and subspecies of this group (see References and Table 1). During the years that have passed since the publication of chromosome number checklist of Odonata (Kiauta 1972c), approximately 90 chromosome papers have been published. The number of examined species has since increased by more than 2.3 times, and now it seems appropriate to publish an updated list. In this review article, all data available today are presented in two tables and one figure. Table 1 includes all species studied so far cytogenetically and compiles data on their chromosome numbers, sex chromosome mechanisms and the occurrence of the so-called m-chromosomes (= microchromosomes). Table 2 summarizes data presented in Table 1 and shows the family-level variability of the above-mentioned traits (except m-chromosomes, since data on their presence or absence in specific species are often questionable) together with the most characteristic (modal) karyotypes for each of the families explored. On the Fig. 1, the modal karyotypes are mapped onto phylogenetic tree of Odonata families taken from Bybee et al. (2016) who in turn redrawn and synthesized it from Dijkstra et al. (2014) and Carle et al. (2015). In the final section of the review, the main characteristics of Odonata karyotypes are briefly discussed and prospects for future research are outlined.
Table 1. Cytogenetically analyzed species of Odonata and their main karyotype characteristics (chromosome numbers, sex chromosomes, m-chromosomes).

Taxon	Karyotype formula 2n	m-chromosomes	Country	References	
Anisogryoptera					
Ephippiobiidae					
1. *Ephippia superbus* Selys, 1889	25(24A+X)	–	Japan	Oguma 1951	
Anisoptera					
Aeshnidae					
2. *Aeshna caerules* (Ström, 1783)	24(22A+neo-XY)	–	Finland	Cruden 1968	
3. A. canadiensis Walker, 1908	27(26A+X)	+	USA	Hung 1971	
4. A. clepsydra Say, 1839	27(26A+X)	+	USA	Bruun et al. 1980	
5. A. creata Hagen, 1856	27(26A+X)	+	Finland	Oksala 1939a, 1943, 1944, 1952	
6. A. cyanura (Müller, 1764)	27(26A+X)	–	Finland	Oksala 1943	
7. A. grandis (Linnaeus, 1758)	27(26A+X)	+	USSR	Makalowska 1940	
8. A. isceles (Müller, 1767)	27(26A+X)	–	USA	Kuznetsova et al. 2002	
9. A. juncea (Linnaeus, 1758)	25(24A+X)	–	USSR	Makalowska 1940	
10. A. mixta Latreille, 1805	27(26A+X)	+	India	Sandhu and Maihotra 1994a	
11. A. nigroflava Martin, 1909	27(26A+X)	+	Japan	Katsuura 1987	
12. A. palinata Hagen, 1856	27(26A+X)	–	USA	Cruden 1968	
13. A. serrata Hagen, 1856	26(24A+neo-XY)	+	Finland	Oksala 1943 as *A. s. nana*	
14. A. subarcata Walker, 1908	27(26A+X)	+	USA	Oksala 1939a, 1943, 1952 as	
15. A. umbrosa Walker, 1908	27(26A+X)	+	USA	A. s. occidentalis Walker, 1908	
Taxon	Karyotype	m-chromosomes	Country	References	
-------	-----------	---------------	---------	------------	
23.	A. guttatus (Burmeister, 1839)	15(14A+X)	+	Nepal	Kiauta and Kiauta 1982
24.	A. immaculiformis Rambur, 1842	27(26A+X)	+	India	Sangal and Tyagi 1982
25.	A. imperator Leach, 1815	27(26A+X)	+	France	Kiauta 1965, 1969a
26.	A. junius (Drury, 1773)	27(26A+X)	+	USA	McGill 1904, 1907
27.	A. longipes Hagen, 1861	27(26A+X)	+	USA	Cruden 1968
28.	A. nigrofasciatus Ogama, 1915	27(26A+X)	+	Nepal	Kiauta 1974, 1975
29.	A. papuensis (Burmeister, 1839)	27(26A+X)	+	Australia	Kiauta 1968c, 1969a as Hemianax papuensis (Burmeister, 1839)
30.	A. parthenope (Selys, 1839)	27(26A+X)	+	Japan	Omura 1957 as A. parthenope julius Brauer, 1865
31.	Andaeschna unicolor (Martin, 1908)	27(26A+X)	+	Bolivia	Cuming 1964 as Aeshna cf. unicolor Martin, 1908
32.	Austroaeschna anacantha Tillyard, 1908	27(26A+X)	+	Australia	Kiauta 1968c as Acanthaeschna anacantha (Tillyard, 1908)
33.	A. multipunctata (Martin, 1901)	27(26A+X)	+	Australia	Kiauta 1968c as Acanthaeschna multipunctata (Martin, 1901)
34.	Basiaeschna janata (Selys, 1883)	25(24A+X)	–	USA	Cruden 1968
35.	Boyeria maclachlani (Selys, 1883)	27(26A+X)	+	Japan	Omura 1957
36.	B. vinao (Selys, 1839)	27(26A+X)	–	USA	Cruden 1968
37.	Caliaeschna microstigma (Schneider, 1845)	16(14A+neo-XY)	+	Greece	Kiauta 1972a
38.	Castoraeschna cautor (Brauer, 1865)	27(26A+X)	+	Brazil	Kiauta 1972b
39.	Cephalaeschna orbifrons Selys, 1883	25(24A+X)	+	Nepal	Kiauta 1975
40.	Cephalaeschna sp.	25(24A+X)	+	India	Sandhu and Malhotra 1994a
41.	Coryphaeschna adnata (Hagen, 1961)	27(26A+X)	–	Bolivia	Cuming 1964
42.	C. perrensi (McLachlan, 1887)	25(24A+X)	–	Argentina	Capitulo et al. 1991
43.	C. viriditas Calvert, 1952	23(22A+X)	+	Surinam	Kiauta 1979a
44.	Gynacantha bupadora Selys, 1891	25(24A+X)	+	India	Wala 2007 as G. millardi Brauer, 1936
45.	G. hyalina Selys, 1882	28(26A+XX)*	+	Japan	Iyagi 1978a, b
46.	G. intermedius Williamson, 1923	26(24A+neo-XY)	+	Surinam	Kiauta 1979a
47.	G. japonica Bartenev, 1909	27(26A+X)	+	Japan	Omura 1957
48.	Gynacanthaeschna sikkesma (Karsch, 1891)	27(26A+X)	+	India	Wala et al. 2016
49.	Oplonaeschna armata (Hagen, 1861)	27(26A+X)	+	Mexico	Kiauta 1970a
50.	Planoeschna milnei (Selys, 1883)	27(26A+X)	+	Japan	Kiauta 1968c, 1969a
51.	R. luteipennis (Burmeister, 1839)	25(24A+X)	+	Surinam	Kiauta 1979a as Coryphaeschna l. luteipennis (Burmeister, 1839)
52.	R. bonariensis (Rambur, 1842)	26(24A+neo-XY)	+	Argentina, Uruguay	Mola and Papeschi 1994 as Aeshna bonariensis Rambur, 1842
Taxon	Karyotype formula 2n	m-chromosomes	Country	References	
-------	---------------------	---------------	---------	------------	
52. *Rhionaeschna bonariensis* (Rambur, 1842)	2n=50	+	Argentina, Uruguay	Mola 1995 as *A. bonariensis*	
53. *Rh. californica* (Calvert, 1895)	27(26A+X)	+	Canada	Kiauta 1973a as *Aeschna californica* Calvert, 1895	
54. *Rh. confusa* (Rambur, 1842)	27(26A+X)	+	Argentina, Uruguay	Mola and Papeschi 1994 as *Aeshna confusa* Rambur, 1842	
55. *Rh. diffinis* (Rambur, 1842)	21(20A+X)	+	Bolivia	Cumming 1964 as *Aeshna d. diffinis* Rambur, 1842	
56. *Rh. intricata* (Martin, 1908)	19(18A+X)	+	Bolivia	Cumming 1964 as *Aeshna intricata* Martin, 1908	
57. *Rh. peralta* (Ris, 1918)	27(26A+X)	+	Bolivia	Cumming 1964 as *Aeshna peralta* Ris, 1918	
58. *Rh. planaltica* (Calvert, 1945)	16(14A+neo-XY)	+	Argentina	Mola and Papeschi 1994 as *Aeshna cornigera planaltica* Calvert, 1952	
59. *Staurophlebia reticulata* (Burmeister, 1839)	27(26A+X)	+	Brazil	Souza Bueno 1982 (*S. r. reticulata* (Burmeister, 1839))	
60. *Tachopteryx thoreyi* (Hagen, 1857)	19(18A+X)	+	USA	Cumming 1964	
61. *Tanypteryx hageni* (Selys, 1879)	17(16A+X)	+	USA	Cruden 1968	
62. *T. pryeri* (Selys, 1889)	17(16A+X)	+	Japan	Kichijo 1939, 1942a	
63. *Uropetala carover* (White, 1846)	17(16A+X)**	+	New Zealand	Wolfe 1953	
64. *Anisogomphus bivittatus* (Selys, 1854)	23(22A+X)	+	India	Das 1956	
65. *A. occipitalis* (Selys, 1854)	23(22A+X)	+	India	Walia and Chahal 2020	
66. *Aphylla edentata* Selys, 1869	23(22A+X)	+	Bolivia	Cuming 1964	
67. *A. producta* Selys, 1854	23(22A+X)	+	Bolivia	Cuming 1964	
68. *A. theodorina* (Navas, 1933)	23(22A+X)	+	Surinam	Kiauta 1979a	
69. *A. williamsoni* (Gloyd, 1936)	23(22A+X)	+	USA	Kiauta and Brink 1978	
70. *Aphylla sp.*	23(22A+X)	+	Argentina	Mola 2007	
71. *Arigomphus lentulus* (Needham, 1902)	23(22A+X)	+	USA	Cruden 1968 as *Gomphus lentulus* Needham, 1902	
72. *A. pallidus* (Rambur, 1842)	23(22A+X)	+	USA	Cumming 1964 as *Gomphus pallidus* Rambur, 1842	
73. *A. submedianus* (Williamson, 1914)	23(22A+X)	+	USA	Cruden 1968 as *Gomphus submedianus* Williamson, 1914	
74. *Asiagomphus melanoops* (Selys, 1854)	23(22A+X)	+	Japan	Toyoshima and Hirai 1953 as *Gomphus melanoops* Selys, 1854	
75. *Burmagomphus pyramidalis* Laidlaw, 1922	23(22A+X)	+	India	Tyagi 1977	
76. *Davidius nanus* (Selys, 1869)	23(22A+X)	+	Japan	Kichijo 1939, 1942a	
77. *Dromogomphus spinosus* (Selys, 1854)	23(22A+X)	+	USA	Cruden 1968	
78. *D. spilatus* (Hagen, 1857)	23(22A+X)	+	USA	Cruden 1968	
79. *Epigomphus llama* Calvert, 1903	23(22A+X)	+	Bolivia	Cuming 1964	
80. *Erpetogomphus designatus* Hagen, 1857	23(22A+X)	+	USA	Cuming 1964	
81. *E. diadophis* Calvert, 1905	23(22A+X)	+	USA	Cuming 1964	
82. *E. ophiodorus* Calvert, 1905	23(22A+X)	+	Mexico	Kiauta 1970a	
83. *Gomphoides sp.*	23(22A+X)	+	Bolivia	Cuming 1964	
84. *Gomphus confusus* Selys, 1873	23(22A+X)	+	USA	Cruden 1968	
85. *G. exilis* Selys, 1854	23(22A+X)	+	USA	Cruden 1968	
86. *G. gealini* Rambur, 1842	12(10A+neo-neo-XY)	+	France	Kiauta 1968d, 1969a	
Taxon	Karyotype formula 2n	m-chromosomes	Country	References	
--------------------------------------	----------------------	---------------	---------------	--	
87. G. pulchellus Selys, 1840	2n(22A+X)	+	France	Kiauta 1973b	
88. G. vulgarissimus (Linnaeus, 1758)	2n(22A+X)	–	Russia	Perepelov et al. 2001	
89. Ictinogomphus t Corpus (Rambur, 1942)	2n(22A+X)	+	India	Asana and Makino 1935	
90. N. pulchellus Selys, 1878	2n(22A+X)	–	India	Walia et al. 2006	
91. N. vulgarissimus (Linnaeus, 1758)	2n(22A+X)	–	Russia	Perepelov et al. 2001	
92. N. viridis Selys, 1878	2n(22A+X)	–	Japan	Omura 1957	
93. Ictinogomphus rapax (Rambur, 1942)	2n(22A+X)	+	India	Kichijo 1942a	
94. N. modestus Selys, 1878	2n(22A+X)	+	India	Dasgupta 1957	
95. Ictinogomphus forcipatus (Linnaeus, 1758)	2n(22A+X)	–	India	Tyagi 1977	
96. O. saussurii Selys, 1854	2n(22A+X)	+	Austria	Kiauta 1969a	
97. Ophiogomphus bicornis (Selys, 1873)	2n(22A+X)	–	USA	Cruden 1968	
98. O. cecilia (Fourcroy, 1785)	2n(22A+X)	–	Finland	Kiauta 1969a	
99. O. pulchellus Selys, 1840	2n(22A+X)	+	USA	Cruden 1968	
100. O. tigrinus Selys, 1854	2n(22A+X)	–	USA	Cruden 1968	
101. O. obscurus Bartenev, 1909	2n(22A+X)	–	Russia	Perepelov and Bugrov 2001b	
102. O. punctulatus (Walsh, 1862)	2n(22A+X)	–	USA	Cruden 1968	
103. Paragomphus lividus (Selys, 1854)	2n(22A+X)	+	USA	Cruden 1968 as Gomphus lividus Selys, 1854	
104. Ph. gently (Hagen, 1854)	2n(22A+X)	–	USA	Cruden 1968 as Gomphus militaris Hagen, 1854	
105. Ph. spicatus (Selys, 1854)	2n(22A+X)	+	USA	Cruden 1968 as Gomphus spicatus Selys, 1854	
106. Paragomphus lineatus (Selys, 1850)	2n(22A+X)	–	Nepal	Kiauta 1974, 1975	
107. P. capricornis (Förster, 1914)	2n(22A+X)	–	Thailand	Kiauta and Chaal 2014	
108. Phyllocyclus propinqua Belle, 1972	2n(22A+X)	+	Argentina	De Gennaro 2004	
109. Phyllocyclus sp.	2n(22A+X)	–	Bolivia	Cumming 1964	
110. Phyllocyclus sp. 1	2n(22A+X)	+	Argentina	Mola 2007	
111. Phyllocyclus sp. 2	2n(22A+X)	–	Argentina	Mola 2007	
112. Phyllogomphoides undulatus (Needham, 1944)	2n(22A+X)	+	Suriname	Kiauta 1979a	
113. Progomphus borealis McLachlan, 1873	2n(22A+X)	–	USA	Cruden 1968	
114. P. intricatus (Hagen, 1857)	2n(22A+X)	–	Bolivia	Cumming 1964	
115. P. obscurus (Kambur, 1942)	2n(22A+X)	–	USA	Cruden 1968	
116. P. phylachromus Roi, 1918	2n(22A+X)	+	Bolivia	Cumming 1964	
117. Scalmogomphus biregatus (Hagen, 1854)	2n(22A+X)	–	Nepal	Kiauta 1974, 1975 as Onychogomphus biregatus (Hagen, 1854)	
118. Shaogomphus postocularis (Selys, 1869)	2n(22A+X)	+	Japan	Omura 1957 as Gomphus postocularis Selys, 1869	
119. Sieboldius alboaris Selys, 1886	2n(22A+X)	+	Russia	Perepelov et al. 2001 as Gomphus ephippia Selys, 1872	
120. Stylogomphus suzukii (Matsumura, 1926)	2n(22A+X)	+	Japan	Omura 1957	
121. Stylocnus filipes (Charpentier, 1825)	2n(22A+X)	+	Japan	Omura 1957	
122. S. plagius Selys, 1854	2n(22A+X)	+	Russia	Perepelov and Bugrov 2001b	
123. S. scudderi Selys, 1873	2n(22A+X)	–	USA	Cruden 1968 as Gomphus scudder Selys, 1873	
Taxon	Karyotype formula 2n	m-chromosomes	Country	References	
-------	----------------------	---------------	---------	------------	
124. S. townesi Gloyd, 1936	2(20A+neo-X+Y)	-	USA	Kiauta and Brink 1978 as Gomphus townesi Gloyd, 1936	
125. Temnogomphus kivitattu (Selys, 1854)	23(22A+X)	+	Nepal	Kiauta 1975	
126. Trigomphus ritinus (Needham, 1931)	21(20A+X)	+	Japan	Toyoshima and Hirai 1953 (T.c. tabei Asahina, 1949)	
127. T. interruptus (Selys, 1854)	19(18A+X)	+	Japan	Okuma 1930	
128. T. melampus (Selys, 1869)	21(20A+X)	-	Japan	Okuma 1930, 1942 as T. unifasciatus (Okuma 1926)	
129. Zonophora callipus Selys, 1869	23(22A+X)	+	Surinam	Kiauta 1979a	

Macromiidae

Taxon	Karyotype formula 2n	m-chromosomes	Country	References
130. Didynops transversa (Say, 1839)	25(24A+X)	+	USA	Cruden 1968
131. Epoptohelmina frontalis (Selys, 1871)	25(24A+X)	+	India	Dasgupta 1957 (E. f. frontalis (Selys, 1871))
132. Macromia daimoji Okumura, 1949	25(24A+X)	-	Japan	Katatani 1987
133. M. magnifica (McLachlan, 1874)	25(24A+X)	+	USA	Cruden 1968
134. M. moorei Selys, 1874	25(24A+X)	-	USA	Kiauta 1977

Corduliidae

Taxon	Karyotype formula 2n	m-chromosomes	Country	References
135. Cordulia senea (Linnaeus, 1758)	25(24A+X)	-	Finland	Oksala 1939a
137. C. shurtleffii Scudder, 1866	25(24A+X)	+	USA	Cruden 1968
138. Dorocordulia libera (Selys, 1871)	11(10A+X)	-	USA	Cruden 1968
139. Epicordulia princeps (Hagen, 1861)	25(24A+X)	+	USA	Hung 1971
140. Epitheca bimaculata (Charpentier, 1825)	25(24A+X)	-	Russia	Perepelov 2003
141. E. canis McLachlan, 1886	25(24A+X)	+	USA	Cruden 1968
142. E. spinigera (Selys, 1871)	25(24A+X)	-	USA	Cruden 1968
143. E. petechialis (Murtkowski, 1911)	21(20A+X)	-	USA	Cumming 1964 as Tetragnenewia petechialis Murtkowski, 1911
144. E. persica (Burmeister, 1839)	25(24A+X)	-	USA	Cruden 1968
145. E. spinigera (Selys, 1871)	25(24A+X)	+	USA	Cruden 1968
146. Procordulia graysi (Selys, 1871)	25(24A+X)	+	New Zealand	Jensen 1980
147. P. smithii (White, 1846)	25(24A+X)	+	New Zealand	Jensen 1980
148. Rialia vilina Rambur, 1842	25(24A+X)	+	Argentina	De Gennaro 2004
149. Somatochlora alpinae (Selys, 1840)	25(24A+X)	-	Switzerland	Kiauta and Kiauta 1980a
150. S. arctica (Zetterstedt, 1840)	25(24A+X)	+	Russia	Perepelov 2003
151. S. bontii Marinov, 2001	20(18A+XY)	-	Bulgaria	Grozeva and Marinov 2007
152. S. flavomaculata (Van der Linden, 1825)	25(24A+X)	+	Former USSR	Makalowskaia 1940
Taxon	Karyotype formula 2n	m-chromosomes	Country	References
-------	---------------------	---------------	---------	------------
153. S. graeseri Selys, 1887	25(24A+X)	–	Russia	Perepelov et al. 2001
154. S. meridianalis Nielsen, 1935	25(24A+X)	–	Slovenia	Kiauta and Kiauta 1995
155. S. metallica (Van der Linden, 1825)	26(24A+XX)*	–	Finland	Oksala 1945
156. S. semicirculata (Selys, 1871)	25(24A+X)	–	USA	Cruden 1968
157. S. uchidai Fürster, 1909	25(24A+X)	+	Japan	Oguma 1915, 1930
158. S. viridissima (Uhler, 1858)	25(24A+X)	–	Japan	Oguma 1915, 1930

Libellulidae

Taxon	Karyotype formula 2n	m-chromosomes	Country	References
159. Acisoma panorpoides Rambur, 1842	25(24A+X)	+	Bangladesh, India	Dasgupta 1957 (A. p. panorpoides)
160. Aethriamanta brevipennis (Rambur, 1842)	25(24A+X)	+	India	Dasgupta 1957
161. Anthopteryx guttata (Erichson, 1848)	25(24A+X)	–	Surinam	Kiauta 1979a
162. Atocoreura litorinae Karsch, 1899	21(20A+X)	+	Sudan	Wasscher 1985
163. Brachydiplax chalybea Breuer, 1868	25(24A+X)	+	India	Dasgupta 1957
164. B. farinosa Krueger, 1902	25(24A+X)	+	India	Dasgupta 1957
165. B. sobrina (Rambur, 1842)	25(24A+X)	+	India	Ray Chandhuri and Dasgupta 1949
166. Brachymesia furcata (Hagen, 1861)	25(24A+X)	+	Surinam	Kiauta 1979a
167. B. gravida (Calvert, 1890)	25(24A+X)	+	USA	Dasgupta 1957 (C. p. panorpoides)
168. B. peruviana (Rambur, 1842)	25(24A+X)	+	Republic of South Africa	Boys et al. 1980
169. B. nubecula (Rambur, 1842)	25(24A+X)	+	India	Dasgupta 1957
170. B. lucidula (Hagen, 1861)	25(24A+X)	+	India	Dasgupta 1957
171. B. persimilis (Hagen, 1861)	25(24A+X)	+	India	Dasgupta 1957
172. B. nubecula (Rambur, 1842)	25(24A+X)	+	Bolivia	Cumming 1964
173. B. persimilis (Hagen, 1861)	25(24A+X)	+	Bolivia	Cumming 1964
174. C. asiatica Kirby, 1889	25(24A+X)	+	USA	Cumming 1964 (R. p. persimilis)
175. C. asiatica Kirby, 1889	25(24A+X)	+	USA	Cumming 1964 (R. p. persimilis)
176. C. asiatica Kirby, 1889	25(24A+X)	+	USA	Cumming 1964 (R. p. persimilis)
177. C. asiatica Kirby, 1889	25(24A+X)	+	USA	Cumming 1964 (R. p. persimilis)

References:

- Perepelov, A. V., and N. J. Bugrov. 2001b. *Cytogenetic and Chromosomal Studies in Diptera (Diptera, Brachycera, Libellulidae)*. Zool. Zh. 80: 1129–1136.
- Kiauta, S., and S. Kiauta. 1995. *Cytogenetic and Chromosomal Studies in Diptera (Diptera, Brachycera, Libellulidae)*. Zool. Zh. 80: 1129–1136.
- Kiauta, S., and S. Kiauta. 1995. *Cytogenetic and Chromosomal Studies in Diptera (Diptera, Brachycera, Libellulidae)*. Zool. Zh. 80: 1129–1136.
- Kiauta, S., and S. Kiauta. 1995. *Cytogenetic and Chromosomal Studies in Diptera (Diptera, Brachycera, Libellulidae)*. Zool. Zh. 80: 1129–1136.
- Kiauta, S., and S. Kiauta. 1995. *Cytogenetic and Chromosomal Studies in Diptera (Diptera, Brachycera, Libellulidae)*. Zool. Zh. 80: 1129–1136.
- Kiauta, S., and S. Kiauta. 1995. *Cytogenetic and Chromosomal Studies in Diptera (Diptera, Brachycera, Libellulidae)*. Zool. Zh. 80: 1129–1136.
| Taxon | Karyotype formula | m-chromosomes | Country | References |
|-------------------------------|-------------------|---------------|--------------------------|--------------------------------------|
| C. ornata (Rambur, 1842) | 25(24A+X) | + | USA | Kiauta and Brink 1978 |
| Crocothemis erythraea (Brulle, 1832) | 25(24A+X) | + | India | Dasgupta 1957 |
| | | + | Italy | Kiauta 1971a |
| | | + | India | Prasad and Thomas 1992 |
| | | + | Republic of South Africa | Boyes et al. 1980 |
| C. sanguinolenta (Burmeister, 1839) | 25(24A+X) | + | Kingdom of Eswatini (Former Swaziland) | Boyes et al. 1980 |
| C. servilia (Drury, 1773) | 25(24A+X) | + | India | Asana and Makino 1935 |
| | | + | India | Makino 1935 |
| | | + | India | Kichijo 1942b |
| | | + | India | Ray Chaudhuri and Dasgupta 1949 |
| | | + | Nepal | Kiauta 1975 |
| | | + | Philippines | Kiauta and Kiauta 1980b |
| | | + | Nepal | Kiauta and Kiauta 1982 |
| | | + | India | Tyagi 1982 |
| | | + | Thailand | Kiauta and Kiauta 1983 |
| | | + | Japan | Katatani 1987 |
| | | + | Japan | Higashi and Kayano 1993 |
| | | + | Japan | Omura 1955 |
| | | + | Japan | Kiauta 1983 |
| | | + | Japan | Kiauta 1983 |
| | | + | Japan | Higashi et al. 2001 |
| | | + | Bolivia | Cumming 1964 |
| | | + | Brazil | Souza Bueno 1982 |
| D. venosa (Burmeister, 1839) | 25(24A+X) | + | Brazil | Kiauta and Boyes 1972 |
| D. obscura (Fabricius, 1775) | 25(24A+X) | + | Bolivia | Cumming 1964 |
| D. pullata (Burmeister, 1839) | 23(22A+X) | + | Surinam | Kiauta 1979a |
| D. haematodes (Burmeister, 1839) | 25(24A+X) | + | Australia | Kiauta 1969b |
| D. lefebvrei (Rambur, 1842) | 25(24A+X) | + | Madagascar | Kiauta 1968c, 1969b |
| D. nebulea (Fabricius, 1793) | 25(24A+X) | + | India | Dasgupta 1957 |
| D. trivialis (Rambur, 1842) | 25(24A+X) | + | India | Asana and Makino 1935 |
| | | + | India | Makino 1935 |
| D. rufinefris (Burmeister, 1839) | 25(24A+X) | + | Jamaica | Cumming 1964 |
| D. velox Hagen, 1861 | 25(24A+X) | + | Bolivia | Cumming 1964 |
| E. williamsoni (Ris, 1919) | 22(20A+neo-XY) | – | Surinam | Kiauta 1979a as Dythemis williamsoni (Ris, 1919) |

Karyotypes of Odonata: a check-list
Taxon Karyotype

formula 2n ♂

m-chromaticosomes

Country

References

Taxon	Karyotype formula 2n ♂	m-chromosomes	Country	References	
201. *Erythemis attala* (Selys, 1857)	25(24A+X)	–	Bolivia	Cumming 1964	
			Argentina	Agopian and Mola 1988	
202. *E. colourata* (Hagen, 1861)	25(24A+X)	+	USA	Cruden 1968	
203. *E. crochita* (Hagen, 1861)	25(24A+X)	+	Surinam	Kiauta 1979a	
204. *E. buenasargentina* (Burmeister, 1839)	25(24A+X)	–	Surinam	Kiauta 1979a	
205. *E. peruviana* (Rambur, 1842)	25(24A+X)	–	Surinam	Kiauta 1979a	
206. *E. plebeja* (Burmeister, 1839)	25(24A+X)	–	Bolivia	Cumming 1964	
207. *E. simplicicollis* (Say, 1839)	25(24A+X)	+	USA	Cruden 1968	
208. *E. vesiculosa* (Fabricius, 1775)	25(24A+X)	–	Bolivia	Cumming 1964 as *Lepthemis vesiculosa* (Fabricius, 1775)	
			Surinam	Kiauta 1979a as *L. vesiculosa*	
			Brasil	Ferreira et al. 1979 as *L. vesiculosa*	
209. *Erythrodiplax anomala* (Brauer, 1865)	25(24A+X)	+	Brazil	Souza Bueno 1982	
210. *E. atrouterminata* Ris, 1911	25(24A+X)	+	Uruguay	Goni and Abenante 1982	
			Argentina	Mola 1996	
211. *E. attenuata* (Kirby, 1889)	25(24A+X)	+	Surinam	Kiauta 1979a	
			Brasil	Ferreira et al. 1979 (E. b. basalis (Kirby, 1897))	
212. *E. basalis* (Kirby, 1897)	25(24A+X)	–	Bolivia	Cumming 1964	
			Surinam	Kiauta 1979a (E. b. basalis (Kirby, 1897))	
			Brasil	Ferreira et al. 1979 (E. b. basalis (Kirby, 1897))	
213. *E. berenice* (Drury, 1770)	25(24A+X)	–	USA	Cruden 1968	
			USA	Hung 1971	
214. *E. catanae* (Burmeister, 1839)	25(24A+X)	–	Bolivia	Cumming 1964	
215. *E. chromopterus* Borror, 1942	23(22A+X)	+	Uruguay	Goni and Abenante 1982	
			Argentina	Mola 1996	
216. *E. cleopatra* Ris, 1911	25(24A+X)	+	Peru	Kiauta and Boyes 1972	
217. *E. connata* (Burmeister, 1839)	25(24A+X)	+	Chile	Kiauta and Boyes 1972 (E. c. connata (Burmeister, 1839))	
			USA	Kiauta and Brink 1978 (E. c. minuscule (Rambur, 1842))	
			Surinam	Kiauta and Brink 1978 (E. c. minuscule (Rambur, 1842))	
			Brasil	Ferreira et al. 1979 as *E. c. minuscule* (Rambur, 1842)	
			Argentina	Capitulo et al. 1991	
			Brasil	Ferreira et al. 1979 (E. c. minuscule (Rambur, 1842))	
			Argentina	Mola 1996	
220. *E. fusca* (Rambur, 1842)	25(24A+X)	–	Bolivia	Cumming 1964 as *E. connata fusca* (Rambur, 1842)	
			Guatemala	Cruden 1968 as *E. c. fusca*	
			Surinam	Kiauta 1979a as *E. c. fusca*	
			Brasil	Ferreira et al. 1979 as *E. c. fusca*	
			Argentina	Mola 1996	
221. *E. fervida* (Erichson, 1848)	25(24A+X)	+	Argentina	Mola 1996	
222. *E. justinsiana* Selys, 1857	25(24A+X)	+	Jamaica	Cumming 1964	
223. *E. juliana* Ris, 1911	25(24A+X)	+	Brazil	Souza Bueno 1982	
224. *E. latermaculata* Ris, 1911	25(24A+X)	+	Surinam	Kiauta 1979a	
			Brasil	Ferreira et al. 1979	
			Argentina	Mola 1996	
225. *E. lygea* Ris, 1911	25(24A+X)	+	Argentina	Capitulo et al. 1991	
			Argentina	Mola 1996	
226. *E. media* Borror, 1942	21(20A+X)	+	Bolivia	Cumming 1964	
			Brasil	Kiauta and Boyes 1972	
			Argentina	Capitulo et al. 1991	
			Argentina	Mola 1996	
227. *E. melanorubra* Borror, 1942	25(24A+X)	+	Bolivia	Cumming 1964	
			Venezuela	Kiauta and Boyes 1972	
			Argentina	Capitulo et al. 1991	
			Argentina	Mola 1996	
228. *E. minuscula* (Rambur, 1842)	25(24A+X)	+	USA	Kiauta and Brink 1978	
			Argentina	Mola and Agopian 1985	
229. *E. nigricans* (Rambur, 1842)	25(24A+X)	+	Uruguay	Goni and Abenante 1982	
Taxon	Karyotype formula 2n	m-chromosomes	Country	References	
--------------------------------------	----------------------	---------------	--------------	-----------------------------	
229. *E. nigricans* (Rambur, 1842)	25(24A+X)	+	Argentina	Mola 1996	
	25(24A+X)	−	Argentina	De Gennaro 2004	
	25(24A+X)	+	Argentina	De Gennaro et al. 2008	
230. *E. ochracea* (Burmeister, 1839)	23(22A+X)	+	Bolivia	Cumming 1964	
	23(22A+X)	+	Dominica	Cruden 1968	
	23(22A+X)	+	Surinam	Kiauta 1979a	
231. *E. paraguayensis* (Foerster, 1904)	25(24A+X)	+	Bolivia	Cumming 1964	
	25(24A+X)	+	Dominica	Cruden 1968	
	25(24A+X)	+	Surinam	Kiauta 1979a	
	25(24A+X)	+	Brazil	Ferreira et al. 1979	
232. *E. umbrata* (Linnaeus, 1758)	23(22A+X)	+	Bolivia	Cumming 1964	
	23(22A+X)	+	Dominica	Cruden 1968	
	23(22A+X)	+	Surinam	Kiauta 1979a	
	23(22A+X)	+	Brazil	Ferreira et al. 1979	
233. *E. unimaculata* (DeGeer, 1773)	25(24A+X)	−	Bolivia	Cumming 1964	
	25(24A+X)	+	Bolivia	Cumming 1964	
	25(24A+X)	+	Dominica	Cruden 1968	
	25(24A+X)	+	Surinam	Kiauta 1979a	
	25(24A+X)	+	Brazil	Ferreira et al. 1979	
234. *Hydrobasileus croceus* (Brauer, 1867)	26(24A+XX)*	+	India	Prasad and Thomas 1992	
235. *Ladona julia* (Uhler, 1857)	25(24A+X)	+	USA	Cruden 1968	
236. *Lathrecista asiatica* (Fabricius, 1798)	25(24A+X)	+	India	Dasgupta 1957	
237. *Leucorrhina alxbiron* (Burmeister, 1839)	25(24A+X)	+	India	Tyagi 1982	
238. *L. dubia* (Van der Linden, 1825)	26(24A+XX)*	−	Finland	Oksala 1939a, 1945	
239. *L. frigida* Hagen, 1890	21(20A+X)	+	USA	Cruden 1968	
240. *L. glacialis* Hagen, 1890	23(22A+X)	+	USA	Cruden 1968	
241. *L. hudsonica* (Selys, 1830)	25(24A+X)	+	USA	Cruden 1968	
242. *L. intacta* (Hagen, 1861)	25(24A+X)	+	USA	Cruden 1968	
243. *L. pectoralis* (Charpentier, 1825)	26(24A+XX)*	−	Finland	Oksala 1939a, 1945	
244. *L. proxima* Calvert, 1890	25(24A+X)	+	USA	Cruden 1968	
245. *L. rubicunda* (Linnaeus, 1857)	25(24A+X)	−	Finland	Oksala 1939a, 1945	
246. *Libellula angelinea* Selys, 1883	25(24A+X)	+	Japan	Oguma 1915, 1930	
	25(24A+X)	+	Japan	Kichijo 1942a	
247. *L. auripennis* Burmeister, 1839	25(24A+X)	+	USA	Kiauta and Brink 1978	
248. *L. axilena* Westwood, 1837	25(24A+X)	+	USA	Cumming 1964	
249. *L. basalis* (Say, 1840)	25(24A+X)	−	USA	Smith 1916	
250. *L. composita* Hagen, 1873	25(24A+X)	+	USA	Cruden 1968	
251. *L. croceipennis* Selys, 1868	25(24A+X)	+	USA	Cruden 1968	
252. *L. cyanea* Fabricius, 1775	25(24A+X)	−	USA	Cruden 1968	
253. *L. depressa* Linnaeus, 1758	23(22A+X)	−	Belgium	Carnoy 1885	
	25(24A+X)	−	England	Hogben 1921	
	25(24A+X)	−	Austria	Kiauta 1968c, 1969b	
	23(22A+X)	−	Croatia	Francovi and Jurčič 1986, 1989	
	25(24A+X)	+	Russia	Perepelov et al. 1998	
254. *L. flatida* Rambur, 1842	25(24A+X)	+	USA	Cruden 1968	
255. *L. forestis* Hagen, 1861	25(24A+X)	+	USA	Cruden 1968	
256. *L. fulva* Muller, 1764	25(24A+X)	+	Switzerland	Kiauta and Kiauta 1979	
	27(26A+X)	+	Croatia	Francovi and Jurčič 1986, 1989	
257. *L. insecta* Hagen, 1861	25(24A+X)	−	USA	Cumming 1964	
	25(24A+X)	+	USA	Cruden 1968	
258. *L. lactuosa* Burmeister, 1839	25(24A+X)	−	USA	Smith 1916	
259. *L. palchella* Drury, 1773	25(24A+X)	+	USA	Cruden 1968	
	25(24A+X)	+	Canada	Kiauta 1969a	
260. *L. quadrinaculata* Linnaeus, 1758	25(24A+X)	+	Japan	Oguma 1915, 1930 (L. q. asahinai Schmidt, 1957)	
Taxon	Karyotype formula 2n	m-chromosomes	Country	References	
-----------------------------------	----------------------	---------------	---------------	--	
260. *L. quadrimaculata* Linnaeus, 1758	25(24A+X)	+	Japan	Kichijo 1942d (*L. q. asahinai*)	
	+	+	Japan	Omura 1955 (L. q. asahinai)	
	+	+	Japan	Kiauta 1968b, c (*L. q. asahinai*)	
	+	+	Former USSR	Fuchsówna and Sawczyńska 1928 (L.	
				quadrimaculata Linnaeus, 1758)	
	+	+	Finland	Oksala 1939a, b, 1945 (L. *quadrimaculata*)	
	+	+	Former USSR	Makalowska 1940 (L. *quadrimaculata*)	
	+	+	Netherlands	Kiauta 1968b, c (L. *quadrimaculata*)	
	+	+	USA	Cruden 1968 (L. *quadrimaculata*)	
	+	+	Russia	Perepelov et al. 1998 (L. *quadrimaculata*)	
261. *L. saturata* Uhler, 1857	25(24A+X)	+	USA	Cruden 1968	
262. *L. semifasciata* Burmeister, 1839	25(24A+X)	+	USA	Cruden 1968	
263. *L. vibrans* Fabricius, 1793	25(24A+X)	+	USA	Cruden 1968	
264. *Lyriothemis* pachygastra (Selys, 1878)	25(24A+X)	–	Japan	Omura 1955	
265. *Macrothemis* decilisata Calvert, 1909	23(22A+X)	+	Brazil	Kiauta and Boyes 1972	
266. *M. bimichlora* (Burmeister, 1839)	6(4A+neo-X)	+	Bolivia	Cumming 1964	
267. *M. imitans* Karsch, 1890	25(24A+X)	+	Brazil	Kiauta and Boyes 1972	
			(M. i. imitans Karsch, 1890)		
268. *M. mortoni* Ris, 1913	25(24A+X)	+	Bolivia	Cumming 1964	
269. *M. musiva* Calvert, 1898	25(24A+X)	+	Bolivia	Cumming 1964	
270. *Macrothemis* sp.	25(24A+X)	+	Argentina	Mola 2007	
271. *Miathyria* artemis (Selys, 1857)	25(24A+X)	+	Surinam	Kiauta 1979a	
272. *M. marcella* (Selys, 1857)	25(24A+X)	+	Bolivia	Cumming 1964	
			Surinam	Kiauta 1979a	
			Argentina	Mola and Agopian 1985	
			Brazil	Ferreira et al. 1979	
273. *Microathyria* artemis Ris, 1911	25(24A+X)	+	Brazil	Ferreira et al. 1979	
			Brazil	Souza Bueno 1982	
274. *M. atra* (Martin, 1897)	25(24A+X)	+	Bolivia	Cumming 1964	
275. *M. ctenata* Calvert, 1909	25(24A+X)	+	Bolivia	Souza Bueno 1982	
			Argentina	Mola 2007	
276. *M. didyma* (Selys, 1857)	25(24A+X)	+	Jamaica	Cumming 1964	
277. *M. exima* Kirby, 1897	25(24A+X)	+	Surinam	Kiauta 1979a	
278. *M. hagenii* Kirby, 1890	25(24A+X)	+	Jamaica	Cumming 1964	
			Surinam	Kiauta 1979a	
279. *M. hesperis* Ris, 1911	25(24A+X)	+	Surinam	Kiauta 1979a	
			Brazil	Ferreira et al. 1979	
			Argentina	Mola et al. 1999	
280. *M. hypodiptina* Calvert 1906	23(22A+X)	+	Brazil	Souza Bueno 1982	
			Argentina	Agopian and Mola 1988	
281. *M. iheringi* Santos, 1946	23(22A+X)	+	Bolivia	Cumming 1964	
282. *M. larcigata* Calvert, 1909	25(24A+X)	+	Bolivia	Cumming 1964	
			Brazil	Kiauta and Boyes 1972	
283. *M. longifasciata* Calvert, 1909	24(22A+neo-XY)	–	Argentina	Agopian and Mola 1988	
284. *M. ocellata* (Martin, 1897)	25(24A+X)	+	Bolivia	Cumming 1964	
			(M. o. dentiens Calvert, 1909)		
285. *M. sparia* (Selys, 1900)	25(24A+X)	+	Bolivia	Cumming 1964	
			Argentina	Mola et al. 1999	
286. *M. stawiarksi* Santos, 1953	25(24A+X)	+	Brazil	Souza Bueno 1982	
287. *M. unguulata* Foerster, 1907	23(20A+X, X, Y)	–	Argentina	Mola et al. 1999	
288. *M. cf. eximia* Kirby, 1879	21(20A+X)	–	Bolivia	Cumming 1964	
289. *M. sp. (anguulata Foerster, 1907-group)*	23(22A+X)	–	Bolivia	Cumming 1964	
290. *Nannothemis bella* (Uhler, 1857)	25(24A+X)	+	USA	Cruden 1968	
291. *Nesiothemis farinosa* (Foerster, 1898)	25(24A+X)	+	Kenya	Kiauta 1969c	
			Kenya	Wascher 1985	
Taxon	Karyotype formula 2n	m-chromosomes	Country	References	
-------	----------------------	----------------	---------	------------	
292. *Nesogonia blackburni* (McLachlan, 1883)	25(24A+X)	+	Hawaii	Kiauta 1969a	
293. *Neurothemis fulva* (Drury, 1773)	25(24A+X)	+	Nepal	Kiauta 1974, 1975	
294. *N. intermedia* (Rambur, 1842)	25(24A+X)	+	Nepal	Kiauta 1974, 1975 (N. i. intermedia (Rambur, 1842))	
				Kiauta and Kiauta 1982 (N. i. degener (Sel., 1842))	
295. *N. terminata* Ris, 1911	25(24A+X)	+	Philippines	Kiauta and Kiauta 1980b	
296. *N. tullia* (Drury, 1773)	28(26A+neo-XY)	+	India	Ray Chaudhuri and Dasgupta 1949	
		+	India	Tyagi 1982 (N. t. tullia)	
	25(24A+X)	+	Thailand	Kiauta and Kiauta 1983	
297. *Oligoclada amphinome* Ris, 1919	25(24A+X)	+	Surinam	Kiauta 1979a	
298. *O. laetitia* Ris, 1911	23(22A+X)	+	Argentina	Mola and Agopian 1985	
		–	Brazil	Souza Bueno 1982	
299. *O. monosticha* Borror, 1931	23(22A+X)	+	Surinam	Kiauta 1979a	
		+	Brazil	Ferreira et al. 1979	
300. *O. pachystigma* Karsch, 1890	23(22A+X)	+	Brazil	Souza Bueno 1982	
301. *Orthemis aequilibris* Calvert, 1909	12(10A+neo-XY)	+	Surinam	Kiauta 1979a	
302. *O. ambigna* Calvert, 1909	12(10A+neo-XY)	+	Argentina	Agopian and Mola 1984	
303. *O. biolleyi* Calvert, 1906	23(22A+X)	+	Bolivia	Cumming 1964	
304. *O. cutiforvis* Calvert, 1906	23(22A+X)	+	Surinam	Kiauta 1979a	
		+	Brazil	Ferreira et al. 1979	
305. *O. discolor* Burmeister, 1839	23(22A+X)	+	Argentina	Mola 2007	
306. *O. ferruginea* (Fabricius, 1775)	10(8A+neo-XY)**	–	Bolivia	Cumming 1964	
	23(22A+X)	–	USA	Cruden 1968	
		+	Guatemala, Dominica	Cruden 1968	
		+	Peru	Kiauta 1969a, 1971c	
		+	Peru	Kiauta and Bojes 1972	
	23(22A+X)	+	Surinam	Kiauta 1979a	
	25(24A+X)	+	Brazil	Ferreira et al. 1979	
307. *O. levis* Calvert, 1906	24(22A+XX)***	+	Brazil, Argentina	Mola and Agopian 1985	
308. *O. nodiplaga* Karsch, 1891	6(4A+neo-XY)***	+	Bolivia	Cumming 1964	
309. *Orthetrum abbotti* Calvert, 1892	25(24A+X)	+	Kingdom of Eswatini (Former Swaziland)	Boyes et al. 1980	
310. *O. albistylum* (Selys, 1848)	25(24A+X)	+	Italy	Kiauta 1971a (O. a. albistylum (Selys, 1848))	
		+	Russia	Perepelov et al. 1998	
		+	Japan	Oguma 1915, 1917, 1930 (O. a. specium (Uhler, 1858))	
		+	India	Kichijo 1942b (O. a. specium)	
		+	Japan	Omura 1955 (O. a. specium)	
311. *O. azureum* (Rambur, 1842)	25(24A+X)	+	Madagascar	Kiauta 1969b, c	
312. *O. brachiale* (Beauvois, 1805)	21(20A+X)	–	Kenya	Kiauta 1969b, c	
		+	Burkina Faso (Former Voltiac Republic)	Kiauta and Ochse 1979 (O. b. brachiale (Beauvois, 1805))	
313. *O. brunneum* (Fonscolombe, 1837)	25(24A+X)	+	Italy	Kiauta 1971a	
		+	Russia	Perepelov et al. 1998	
314. *O. cancellatum* (Linnaeus, 1758)	25(24A+X)	+	Finland	Öksala 1939a	
		+	India	Dasgupta 1957	
		+	Netherlands	Kiauta 1969a, b	
		+	India	Tyagi 1982	
		+	Russia	Kuznetsova et al. 2018	
Taxon	Karyotype formula 2n	m-chromosomes	Country	References	
--------------------	----------------------	---------------	------------------------------	---------------------------------	
O. chrysostigma	25(24A+X)	+	Burkina Faso (Former Voltaic Republic)	Kiauta and Ochse 1979	
	− o −	+	Kingdom of Eswatini (Former Swaziland)	Boyes et al. 1980	
	− o −	+	Kenya	Wascher 1985	
O. coerulescens	25(24A+X)	+	Austria	Kiauta 1969c	
	23(22A+X)	−			
	25(24A+X)	+	Italy	Kiauta 1971a	
	27(26A+X)	+			
O. glaucum	25(24A+X)	+	India	Dasgupta 1957	
	− o −	+	India	Handa and Batra 1980	
	− o −	+	India	Tyagi 1982	
	− o −	+	India	Handa et al. 1984	
	− o −	+	India	Walia and Sandhu 2002	
	− o −	+	India	Kumari and Gautam 2017	
O. guineae	25(24A+X)	+	Burkina Faso (Former Voltaic Republic)	Kiauta and Ochse 1979	
O. japonicum	25(24A+X)	+	Japan	Oguma 1917, 1930 (O. j. internum) McLachlan, 1894	
	− o −	+	Japan	Kichijo 1942b (O. j. internum)	
	− o −	+	Japan	Omura 1955 (O. j. internum)	
	− o −	+	Nepal	Kiauta 1975 (O. j. internum)	
	− o −	+	Nepal	Kiauta and Kiauta 1976 (O. j. internum)	
	− o −	+	Nepal	Kiauta and v. 1977 (O. j. internum)	
	− o −	+	Nepal	Prasad and Thomas 1992	
	− o −	+	Nepal	Ojima 1917	
	− o −	+	Japan	Oguma 1955	
	− o −	+	Russia	Perpelev 2003	
O. julia Kirby, 1900	25(24A+X)	+	Kingdom of Eswatini (Former Swaziland)	Boyes et al. 1980 (O. j. falsum Longfeld, 1955)	
	− o −	+	Kenya	Wascher 1985 (O. j. falsum)	
O. leuconicum	25(24A+X)	+	Nepal	Kiauta 1975	
	− o −	+	Nepal	Kjaup and Kiauta 1982	
	− o −	+	Nepal	Thomas and Prasad 1981	
	− o −	+	India	Thomas and Prasad 1992	
O. melanina	25(24A+X)	+	Japan	Oguma 1917	
	− o −	+	Japan	Omura 1955	
	− o −	+	Russia	Perepelov 2003	
O. monardi	25(24A+X)	+	Burkina Faso (Former Voltaic Republic)	Kiauta and Ochse 1979	
O. poecilops	25(24A+X)	+	Japan	Suzuki et al. 1991 (O. p. miyajimaensis Yuki et Doi, 1958)	
O. praunorum	25(24A+X)	+	India	Dasgupta 1957 (O. p. neglectum Rambus, 1842)	
	− o −	+	Taiwan	Kiauta 1969a, c (O. p. neglectum)	
	− o −	+	India	Tyagi 1982 (O. p. neglectum)	
	− o −	+	India	Prasad and Thomas 1992 (O. p. neglectum)	
	− o −	+	India	Tyagi 1978a, b (O. p. neglectum)	
	− o −	+	Nepal	Kjaup and Kjaup 1982 (O. p. neglectum)	
	− o −	+	India	Walia and Sandhu 2002 (O. p. neglectum)	
	− o −	+	India	Kumari and Gautam 2017 (O. p. neglectum)	
O. sabina	25(24A+X)	+	India	Asana and Makino 1935	
	− o −	+	India	Makino 1935	
	− o −	+	India	Kichijo 1942b	
	− o −	+	India	Ray Chandhuri and Dasgupta 1949	
	− o −	+	Nepal	Kiauta 1975	
Taxon	Karyotype formula 2n	m-chromosomes	Country	References	
------------------------------------	----------------------	---------------	-----------------	-------------------------------	
326. *O. sabina* (Drury, 1773)	2n – m-chromosomes	+	India	Tyagi 1982	
	2n – m-chromosomes	+	India	Prasad and Thomas 1992	
	2n – m-chromosomes	+	India	Walia and Sandhu 2002	
	25(24A+X)	+	Greece	Kiauta 1972a	
327. *O. taeniolatum* (Schneider, 1845)	25(24A+X)	+	Nepal	Tyagi 1975	
	2n – m-chromosomes	+	India	Tyagi 1978a, b	
	2n – m-chromosomes	+	India	Handa and Barra 1980	
	2n – m-chromosomes	+	India	Tyagi 1982	
	2n – m-chromosomes	+	India	Handa et al. 1984	
	2n – m-chromosomes	+	India	Thomas and Prasad 1986	
	2n – m-chromosomes	+	India	Walia and Sandhu 2002a	
	2n – m-chromosomes	+	India	Walia et al. 2015	
328. *O. testaceum* (Burmeister, 1839)	25(24A+X)	+	Nepal	Kiauta and Kiauta 1982	
329. *O. triangulare* (Selys, 1878)	25(24A+X)	+	Japan	Kiauta 1955 (O. t. melanica)	
	2n – m-chromosomes	+	Taiwan	Kiauta 1969a, b (O. t. triangulare)	
	2n – m-chromosomes	+	Nepal	Kiauta 1975 (O. t. triangulare)	
	2n – m-chromosomes	+	India	Tyagi 1978a, b (O. t. triangulare)	
	2n – m-chromosomes	+	India	Handa and Barra 1980 (O. t. triangulare)	
	2n – m-chromosomes	+	India	Tyagi 1982 (O. t. triangulare)	
	2n – m-chromosomes	+	India	Walia and Sandhu 2002 (O. t. triangulare)	
330. *Pachydiplax longipennis* (Burmeister, 1839)	25(24A+X)	–	USA	Cumming 1964	
	2n – m-chromosomes	+	USA	Cruden 1968	
	2n – m-chromosomes	+	USA	Kiauta and Brink 1978	
331. *Palpopleura jucunda* Rambur, 1842	25(24A+X)	+	Kingdom of Eswatini (Former Swaziland)	Boyes et al. 1980	
332. *P. lucia* (Drury, 1773)	25(24A+X)	+	Burkina Faso (Former Voltiac Republic)	Kiauta and Ochssee 1979 (P. l. portia) (Drury, 1773)	
	2n – m-chromosomes	+	Kenya	Wascher 1985 (P. l. portia)	
333. *P. sexmaculata* (Fabricius, 1787)	25(24A+X)	+	Nepal	Kiauta 1974, 1975	
	2n – m-chromosomes	+	India	Tyagi 1982 (P. s. sexmaculata) (Fabricius, 1787)	
334. *Pantala flavescens* (Fabricius, 1798)	25(24A+X)	+	India	Asana and Makino 1935	
	2n – m-chromosomes	+	India	Makino 1935	
	2n – m-chromosomes	+	India	Kichij 1942h	
	2n – m-chromosomes	+	India	Dasgupta 1957	
	2n – m-chromosomes	+	India	Seshachar and Bagga 1963	
	2n – m-chromosomes	+	Bolivia	Cumming 1964	
	2n – m-chromosomes	+	Suriname	Kiauta 1979a	
	2n – m-chromosomes	+	Brazil	Ferreira et al. 1979	
	2n – m-chromosomes	+	Kingdom of Eswatini (Former Swaziland)	Boyes et al. 1980	
	2n – m-chromosomes	+	Brazil	Souza Bueno 1982	
	2n – m-chromosomes	+	Argentina	Agopian and Mola 1988	
	2n – m-chromosomes	+	India	Prasad and Thomas 1992	
	2n – m-chromosomes	+	Russia	Perepelov and Bugrov 2001b	
335. *P. hymenaea* (Say, 1836)	25(24A+X)	+	Bolivia	Cumming 1964	
	2n – m-chromosomes	+	USA	Cruden 1968	
336. *Perithemis cornelia* Ris, 1910	25(24A+X)	–	Bolivia	Cumming 1964	
337. *P. domitia* (Drury, 1773)	25(24A+X)	+	Jamaica	Cumming 1964	
338. *P. electra* Ris, 1928	25(24A+X)	–	Bolivia	Cumming 1964	
339. *P. icteropectra* (Selys in Sagra, 1857)	25(24A+X)	+	Argentina	Mola and Agopian 1985	
Taxon	Karyotype formula 2n	m-chromosomes	Country	References	
-------	---------------------	--------------	---------	------------	
340.	P. lais (Perry, 1834)	17(16A+X)	–	Bolivia	Cumming 1964
		–	–	Surinam	Kiauta 1979a
		–	–	Brazil	Ferreira et al. 1979
341.	P. moona Kirby, 1889	25(24A+X)	+	Bolivia	Cumming 1964
		–	–	Surinam	Kiauta 1979a
		–	–	Brazil	Ferreira et al. 1979
		–	+	Argentina	Mola and Agopian 1985
342.	P. tenax (Say, 1839)	25(24A+X)	+	USA	Kiauta and Brink 1978
343.	P. similalis Calvert, 1907	25(24A+X)	+	USA	Cumming 1964
344.	Perithemis sp.	25(24A+X)	–	Bolivia	Cumming 1964
345.	Planiplex erythropyga (Karsch, 1891)	25(24A+X)	+	Argentina	Mola et al. 1999
		–	+		De Gennaro 2004
346.	P. sanguiniventris (Calvert, 1907)	25(24A+X)	+	USA	Cumming 1964
347.	Plathemis hydia (Drury, 1773)	25(24A+X)	+	USA	Cumming 1964
		–	+	USA	McGill 1907
348.	Potanarcha congener (Rambur, 1842)	25(24A+X)	+	India	Asana and Makino 1935 as P. obscura (Rambur, 1842)
		–	+	India	Makino 1935 as P. obscura
		–	+	India	Kichijo 1942b as P. obscura
		–	+	India	Dasgupta 1937 as P. obscura
		–	+	India	Tyagi 1982 as P. obscura
		–	+	India	Prasad and Thomas 1992
		–	+	India	Sandhu and Wala 1995
349.	Pseudothemis sinita (Burmeister, 1839)	24(22A+2neo-XY)	–	Japan	Omura 1955
350.	Pseudotramoae laestera Fraser, 1920	25(24A+X)	+	Nepal	Kiauta 1974, 1975
351.	Rhodopipta cardinalis (Erichson, 1848)	25(24A+X)	+	Bolivia	Cumming 1964
352.	R. evanir Belle, 1964	25(24A+X)	+	Surinam	Kiauta 1979a
353.	Rhodothyemis ruje (Rambur, 1842)	25(24A+X)	+	India	Prasad and Thomas 1992
354.	Rhynothemis fuliginosa Selys, 1883	25(24A+X)	+	Japan	Toyoshima and Hiroi 1953
		–	+	Japan	Omura 1955
		–	+	Japan	Hiroi 1956
		25(24A+X)	+	Japan	Kiauta 1969c
355.	R. variegata (Linnaeus et Johansson, 1763)	25(24A+X)	+	India	Ray Chaudhuri and Dasgupta 1949
		–	+	Nepal	Kiauta 1975
356.	Scapanes frontalis (Burmeister, 1839)	25(24A+X)	+	Jamaica	Cumming 1964
357.	Symphoropum commixtum (Selys, 1884)	25(24A+X)	–	India	Tyagi 1978a, b, 1982
358.	S. corruptum (Hagen, 1861)	25(24A+X)	+	USA	Cruden 1968 as Tarnetrum corruptum (Hagen, 1861)
		–	+	USA	Kiauta 1969a, c as T. corruptum
359.	S. castor (Hagen, 1861)	25(24A+X)	+	USA	Cruden 1968
360.	S. cruceolum (Selys, 1840)	25(24A+X)	+	Russia	Perepelov 2003
361.	S. danae (Sulzer, 1776)	25(24A+X)	+	Former USSR Makalowskaja 1940	
		–	+	Finland	Oksala 1945
		–	+	USA	Cruden 1968
		–	+	Russia	Perepelov 2003
		–	+	Russia	Kuznetsova et al. 2018
362.	S. euruticum (Selys, 1883)	21(20A+X)	–	Japan	Kichijo 1942b, c
		–	–	Japan	Hiroi 1956
		–	–	Japan	Kiauta 1969c
363.	S. flavescens (Linnaeus, 1758)	25(24A+X)	+	Former USSR Makalowskaja 1940	
		–	+	Russia	Perepelov 2003
364.	S. fonecolombiensis (Selys, 1840)	25(24A+X)	+	Russia	Perepelov 2003
365.	S. frequens (Selys, 1883)	23(22A+X)	–	Japan	Oguma 1917, 1930
		–	–	Japan	Kichijo 1942a, b
		–	–	Japan	Kiauta 1969c
366.	S. infuscatum (Selys, 1883)	25(24A+X)	+	Russia	Perepelov 2003
367.	S. internum Montgomery, 1943	27(26A+X)	+	Canada	Kiauta 1973a
368.	S. madidum (Hagen, 1861)	25(24A+X)	+	USA	Cruden 1968
Taxon	Karyotype formula 2n	m-chromosomes	Country	References	
-------	---------------------	---------------	---------	------------	
368.	S. madidum (Hagen, 1861)	25(24A+X)	+	Japan	Oguma 1917, 1930 (S. p. elatum (Selys, 1872))
369.	S. meridionale (Selys, 1841)	25(24A+X)	+	Switzerland	Kiauta 1966
370.	S. obtusum (Hagen, 1867)	25(24A+X)	+	USA	Cruden 1968
371.	S. parvulum Bartenev, 1912	25(24A+X)	+	Japan	Kiauta 1968c
372.	S. pedemontanum Müller in Allioni, 1766	25(24A+X)	+	USSR	Perepelov et al. 1998 (S. p. pedemontanum)
373.	S. rubicundulum (Say, 1839)	25(24A+X)	+	USA	Cruden 1968
374.	S. sanguineum (Müller, 1764)	25(24A+X)	+	Italy	Kiauta 1971a
375.	S. semicinctum (Say, 1839)	25(24A+X)	+	USA	Smith 1916
376.	S. striatum (Charpentier, 1840)	25(24A+X)	+	USSR	Perepelov et al. 2001b
377.	S. vicinum (Hagen, 1861)	25(24A+X)	+	USA	Cruden 1968
378.	S. vulgatum (Linnaeus, 1758)	25(24A+X)	+	USSR	Perepelov 2003
379.	Tarnetrum illotum (Hagen, 1861)	25(24A+X)	+	Jamaica	Cumming 1964
380.	Tauriphila australis (Hagen, 1867)	25(24A+X)	+	USA	Cruden 1968
381.	T. attica Calvert, 1906	25(24A+X)	+	Mexico	Cruden 1968
382.	T. rii Martin 1896	25(24A+X)	+	Argentina, Uruguay	Mola and Agopian 1985
383.	Tholymis citrina Hagen, 1867	25(24A+X)	+	Surinam	Kiauta 1979a
384.	Th. tillagra (Fabricius, 1798)	25(24A+X)	+	Brazil	Ferreira et al. 1979
385.	Tramea abdominalis (Rambur, 1842)	25(24A+X)	+	Bolivia	Cumming 1964
386.	T. basilaris (Palisot de Beauvois, 1817)	25(24A+X)	+	India	Das 1956 (T. b. burmeisteri (Kirby, 1889))
387.	T. binotata (Rambur, 1842)	25(24A+X)	+	Surinam	Kiauta 1979a
388.	T. carolina (Linnaeus, 1763)	25(24A+X)	+	USA	Cumming 1964
389.	T. cphinx (Hagen, 1867)	25(24A+X)	+	USA	Cruden 1968
390.	T. lacerata (Hagen, 1861)	25(24A+X)	+	USA	Cruden 1968
391.	T. limbata (Desjardins, 1832)	25(24A+X)	+	India	Asana and Makino 1935
392.	T. virginia (Rambur, 1842)	25(24A+X)	+	India	Kichijo 1942b
393.	Trithemis annulata (Palisot de Beauvois, 1805)	25(24A+X)	+	Republic of South Africa	Boyes et al. 1980
394.	T. arteriosa (Burmester, 1839)	25(24A+X)	+	Kenya	Wasscher 1985

Karyotypes of Odonata: a check-list
Taxon	Karyotype formula 2n	m-chromosomes	Country	References
T. arna Pinhey, 1961	25(24A+X)	+	Burkina Faso (Former Voltiac Republic)	Kiauta and Ochse 1979
T. aurora (Burmeister, 1839)	25(24A+X)	+	India	Oguma and Asana 1932
T. doradis (Rambur, 1842)	25(24A+X)	+	Kingdom of Eswatini (Former Swaziland)	Boyes et al. 1980
T. festiva (Rambur, 1842)	25(24A+X)	+	Nepal	Kiauta 1975
T. furva Karsch, 1899	25(24A+X)	+	Sudan	Wasscher 1985
T. kirbyi Selys, 1891	25(24A+X)	+	Kenya	Wasscher 1985 (T. k. ardens)
T. pallatinervis (Kirby, 1889)	25(24A+X)	+	Asana and Makino 1935	
T. signata (Rambur, 1842)	25(24A+X)	+	India	Das 1956 (U. s. signata (Rambur, 1842))
Z. torrida (Kirby, 1889)	25(24A+X)	+	Thailand	Kiauta and Kiauta 1983
Zyxomma petiolatum (Rambur, 1842)	25(24A+X)	+	India	Prasad and Thomas 1992

Cordulegastroidae

Chlorogomphidae

414. Watanaheoptera askarsemi (Selys, 1878) 25(24A+X) + India | Wu and Chahal 2019 |

Cordulegastridae

415. Anotogaster basalis Selys, 1854 23(22A+X) + India | Sandhu and Malhotra 1994b |
416. A. kuchenbeseri (Förster, 1899) 25(24A+X) + China | Zhu and Wu 1986 |
417. A. sieboldii (Selis, 1854) 25(24A+X) + Japan | Oguma 1930 |
418. Cordulegaster boltoni (Donovan, 1807) 25(24A+X) + Finland | Oksala 1939, a |
419. C. brevisignata Selys, 1854 25(24A+X) + India | Wu and Chahal 2019 |
420. C. dianator (Selys, 1854) 25(24A+X) + USA |Crudens 1968 |
421. C. doradis Hagen, 1857 25(24A+X) + USA |Crudens 1968 |
| Taxon | Karyotype formula 2n | m-chromosomes | Country | References | |
|---|---|---|---|---|---|
| 422. | C. maculata Selys, 1854 | 25(24A+X) | + | USA | Cruden 1968 |
| 423. | Neallagaster hermosae (Fraser, 1927) | 25(24A+X) | + | Nepal | Kiauta and Kiauta 1976 |

Zygoptera

Lestioidea

Lestidae

424. *Austrolestes colensoi* (White, 1846) 25(24A+X) + New Zealand Jensen 1980

425. *Chalcolestes viridis* (Van der Linden, 1825) 25(24A+X) + Netherlands Kiauta 1969a

426. *Indolestes cyanus* (Selys, 1862) 25(24A+X) + Nepal Kiauta and Kiauta 1976 as *I. cyanus* (Selys, 1862)

427. *Lestes barbarus* (Fabricius, 1798) 25(24A+X) + Former Yugoslavia Kiauta 1972a

428. *L. congener* Hagen, 1861 25(24A+X) + USA Cruden 1968

429. *L. disjunctus* Selys, 1862 25(24A+X) – USA Cruden 1968

430. *L. dorothea* Fraser, 1924 25(24A+X) + Nepal Kiauta 1974, 1975

431. *L. dorys* Kirby, 1890 25(24A+X) – USA Cruden 1968

432. *L. forcipatus* Rambur, 1842 21(20A+X) – USA Cruden 1968

433. *L. forficula* Rambur, 1842 25(24A+X) + Jamaica Cumming 1964

434. *L. pauletus* Calvert, 1909 25(24A+X) + Brazil Souza Bueno 1982

435. *L. rectangularis* Say, 1839 25(24A+X) + USA Cruden 1968

436. *L. similatrix* McLeachlan, 1895 25(24A+X) + Madagascar Kiauta 1969b

437. *L. spongia* (Hansemann, 1823) 25(24A+X) – Former USSR Makalowskaja 1940

438. *L. stultus* Hagen, 1861 25(24A+X) – USA Cruden 1968

439. *L. viridis* Hagen, 1861 25(24A+X) + USA Cumming 1964

440. *L. viridac* Selys, 1862 19(18A+X) – USA Kiauta and Brink 1978

441. *L. virens* Charpentier, 1825 25(24A+X) + Netherlands Kiauta 1969a (*L. v. vestalis* Rambur, 1842)

442. *Sympecma fusca* (Van der Linden, 1823) 25(24A+X) + Japan Kiauta and Brink 1975 (*S. annulata braueri* Bianchi, 1904)

443. *S. paedisca* (Brauer, 1877) 25(24A+X) + Netherlands Kiauta and Brink 1975 (*S. annulata braueri* Bianchi, 1904)

Synlestidae

444. *Megaselastes major* Selys, 1862 25(24A+X) – Nepal Kiauta 1974, 1975

Platystictidae

445. *Drepanosticta* sp. 25(24A+X) – Nepal Kiauta and Kiauta 1976

446. *Drepanosticta* sp. 25(24A+X) – India Iyagi 1978a, b

447. *Palaemnema paulina* (Drury, 1773) 25(24A+X) + Costa Rica Cumming 1964

448. *Protosticta* sp. 25(24A+X) – Thailand Kiauta and Kiauta 1983

Calopterygidae

Caleopterygidae

449. *Arthrocalopteryx atrata* (Selys, 1853) 25(24A+X) + Japan Oguma 1930 as *Calopteryx atrata* Selys, 1853

450. *Calopteryx aequabilis* Say, 1839 25(24A+X) + USA Cruden 1968

451. *C. cornelia* (Selys, 1853) 25(24A+X) + Japan Oguma 1930 as *Ancyperion cornelia* (Selys, 1853)

452. *C. dimidiata* Burmeister, 1839 25(24A+X) + USA Kiauta and Brink 1978

453. *C. japonica* Selys, 1869 25(24A+X) + Japan Kiauta 1942a

454. *C. maculata* (Beauvois, 1805) 25(24A+X) + USA Cumming 1964a

455. *C. splendidus* (Harris, 1780) 25(24A+X) + Turkey Kiauta 1972a

(C. e. annaena Bartenev, 1912)
Taxon	Karyotype formula 2n	m-chromosomes	Country	References
455. *C. splendens* (Harris, 1780)	2n♂ = 46	–	Italy	Kiauta 1971a (C. s. caprae Conci, 1956)
		+	Former USSR	Makalowskaia 1940 (C. s. splendens) (Harris, 1782)
		–	Finland	Oksala 1945 (C. s. splendens)
		–	Germany	Kiauta 1969a, 1971b (C. s. splendens)
		–	France	Kiauta 1973b (C. s. splendens)
		–	Russia	Perspelev et al. 1998 (C. s. splendens)
		+	Russia	Kuznetsova et al. 2020b

Taxon	Karyotype formula 2n	m-chromosomes	Country	References
456. *C. virgo* (Linnaeus, 1758)	2n♂ = 46	+	Spain	Kiauta 1971b (C. v. meridionalis Selys, 1873)
		+	Belgium	Carnoy 1885 (C. v. virgo)
		–	Finland	Oksala 1939 (C. v. virgo)
		+	Former USSR	Makalowskaia 1940 (C. v. virgo)
		+	Germany, Luxembourg	Kiauta 1968e, f (C. v. virgo)
		+	Netherlands	Kiauta 1972c (C. v. virgo)
		+	Russia	Kuznetsova et al. 2020b

Taxon	Karyotype formula 2n	m-chromosomes	Country	References
457. *Hetaerina americana* (Fabricius, 1798)	2n♂ = 46	+	USA	Cumming 1964
		–	USA	Cruden 1968

Taxon	Karyotype formula 2n	m-chromosomes	Country	References
458. *H. charca* Calvert, 1909	2n♂ = 46	+	Bolivia	Cumming 1964
459. *H. longipes* (Hagen in Selys, 1853)	2n♂ = 46	+	Brazil	Souza Bueno 1982 as *H. carinifex* Hagen in Selys, 1853
		–	Brazil	Ferreira et al. 1979

Taxon	Karyotype formula 2n	m-chromosomes	Country	References
460. *H. rosea* Selys, 1853	2n♂ = 46	–	Bolivia	Cumming 1964
461. *H. titia* (Drury, 1773)	2n♂ = 46	+	USA	Cumming 1964
		–	Mexico	Kiauta 1970a as *H. tricolor* (Burmeister, 1839)
462. *H. vulnerata* (Selys, 1853)	2n♂ = 46	+	Mexico	Kiauta 1970a
463. *Matrona basilaris* Selys, 1853	2n♂ = 46	–	Taiwan	Kiauta 1968c
464. *Mnais costalis* Selys, 1869	2n♂ = 46	+	Japan	Oguma 1930
		–	Japan	Kichijo 1942a

Taxon	Karyotype formula 2n	m-chromosomes	Country	References
465. *M. pruinosa* Selys, 1853	2n♂ = 46	+	Japan	Oguma 1930 as *M. irrigata* Selys, 1855
		–	Japan	Kichijo 1942a as *M. irrigata*
		–	Japan	Omura 1957 as *M. irrigata*

Taxon	Karyotype formula 2n	m-chromosomes	Country	References
466. *Neurobasis chinensis* (Linnaeus, 1758)	2n♂ = 46	+	Nepal	Kiauta and Kiauta 1975 (*N. c. chinensis*) (Linnaeus, 1758)
		–	India	Tyagi 1978b (*N. c. chinensis*)
		–	Nepal	Kiauta and Kiauta 1982 (*N. c. chinensis*)
		–	Thailand	Kiauta and Kiauta 1983 (*N. c. chinensis*)
		+	India	Wala and Sandhu 2002 (*N. c. chinensis*)
		–	India	Wala et al. 2016 (*N. c. chinensis*)

Taxon	Karyotype formula 2n	m-chromosomes	Country	References
467. *Phaon iridipennis* (Burmeister, 1839)	2n♂ = 46	+	Republic of South Africa	Boyes et al. 1980

Chlorocyphidae

Taxon	Karyotype formula 2n	m-chromosomes	Country	References		
468. *Aristocypha fenestrella* Rambur, 1842	2n♂ = 46	–	Thailand	Kiauta and Kiauta 1983 as *Rhinocypha fenestrella* Rambur, 1842		
Taxon	Karyotype formula 2n	m-chromosomes	Country	References		
-------	----------------------	---------------	---------	------------		
A. quadrimaculata (Selys, 1853)	23(22A+X)	+	India	Chatterjee and Kiauta 1973 as Rhinocypha quadrimaculata Selys, 1853		
A. trifasciata (Selys, 1853)	23(22A+X)	–	India	Tyagi 1978a, b as Rhinocypha trifasciata Selys, 1853		
Heliocypha biforata (Selys, 1859)	23(22A+X)	–	India	Tyagi 1978a, b as Rhinocypha biforata beetoni Selys, 1859		
H. biseriata (Selys, 1859)	23(22A+X)	–	Thailand	Kiauta and Kiauta 1983 as Rhinocypha b. biforata Selys, 1859		
Libellula lineata (Burmeister, 1839)	23(22A+X)	–	India	Walia et al. 2018 (L. l. lineata (Burmeister, 1839))		
Paracypha unimaculata (Selys, 1879)	23(22A+X)	+	Nepal	Kiauta and Kiauta 1982 as Rhinocypha unimaculata Selys, 1879		
Rhinocypha colorata Selys, 1869	23(22A+X)	–	Philippines	Kiauta and Kiauta 1980b		
Polythore boliviana (McLachlan, 1878)	23(22A+X)	–	Bolivia	Cumming 1964		
Antiploura conus Hagen, 1880	25(24A+X)	+	Nepal	Kiauta and Kiauta 1976, 1982		
Beyadera indica (Selys, 1853)	25(24A+X)	+	Nepal	Chatterjee and Kiauta 1973		
Euphasa guerini Rambus, 1842	25(24A+X)	–	Thailand	Kiauta and Kiauta 1983		
Epallage fatime (Charpentier, 1840)	25(24A+X)	–	Greece	Kiauta 1970b		
Allopodagrion contortum (Selys, 1862)	25(24A+X)	+	Brazil	Kiauta 1972b as Megapodagrion contortum (Selys, 1862)		
Teinopodagrion macropus (Selys, 1862)	25(24A+X)	–	Bolivia	Cumming 1964 as Megapodagrion macropus (Selys, 1862)		
T. setigerum (Selys, 1886)	25(24A+X)	–	Bolivia	Cumming 1964 as Megapodagrion setigerum Selys, 1886		
Heteragrion flavidorsum Calvert, 1909	25(24A+X)	–	Bolivia	Cumming 1964		
H. inca Calvert, 1909	25(24A+X)	+	Bolivia	Cumming 1964		
Philogenia carrillica Calvert, 1907	25(24A+X)	+	Costa Rica	Cumming 1964		
Hypolestes clara (Calvert, 1891)	17(16A+X)	–	Jamaica	Cumming 1964		
Calicnemia miniatia (Selys, 1886)	25(24A+X)	+	Nepal	Kiauta and Kiauta 1982		
C. paloeulana (Selys, 1886)	25(24A+X)	–	Nepal	Kiauta 1975		
Calicnemia sp.	25(24A+X)	–	Nepal	Kiauta 1975		
Calicnemia sp.	25(24A+X)	–	India	Tyagi 1978b		
Caleticia chromobulax (Selys, 1891)	25(24A+X)	–	India	Walla and Devi 2020b		
C. bimaculata (Laidlaw, 1914)	25(24A+X)	–	India	Walla and Devi 2020b		
C. didyma (Selys, 1863)	25(24A+X)	–	India	Walla and Devi 2020b		
C. faereri (Laidlaw, 1932)	25(24A+X)	–	India	Walla and Devi 2020b		
C. renifer (Selys, 1886)	25(24A+X)	–	Nepal	Kiauta 1974, 1975		
Copera annulata (Selys, 1863)	25(24A+X)	+	Japan	Kichijo 1941, 1942a, c		
– – –	+	India	Dasgupta 1957			
– – –	–	Thailand	Kiauta and Kiauta 1983			
– – –	+	India	Walia and Devi 2018			
Taxon	Karyotype formula 2n	m-chromosomes	Country	References		
-------	----------------------	---------------	---------	------------		
501. *C. marginipes* (Rambur, 1842)	25(24A+X)	–	India	Tyagi 1978a, b		
		–	Thailand	Kiauta and Kiauta 1983		
		–	India	Walia and Devi 2018		
502. *C. vittata* (Selys, 1863)	25(24A+X)	+	India	Walia and Devi 2018		
		–	India	Walia and Devi 2018 (C. v. assamensis (Laidlaw, 1914))		
503. *Disparoneura quadrivacuata* (Rambur, 1842)	25(24A+X)	–	India	Walia and Devi 2020a		
504. *Eume cyanovittata* Fraser, 1922	25(24A+X)	–	India	Walia and Devi 2020a		
505. *E. longistyla* Fraser, 1931	25(24A+X)	–	India	Walia and Devi 2020a		
506. *Onychagrion atracynae* (Selys, 1865)	25(24A+X)	–	Thailand	Kiauta and Kiauta 1983		
507. *Platycnemis penipes* (Pallas, 1771)	25(24A+X)	–	Finland	Oklads 1945		
		–	–	India	Kiauta 1971a	
		–	–	–	Russia	Perepelov and Bugrov 2001b
508. *Prodasineura australis* (Fraser, 1922)	25(24A+X)	+	Thailand	Kiauta and Kiauta 1983		
509. *P. nigra* (Fraser, 1922)	25(24A+X)	–	India	Walia and Devi 2020a		
510. *P. verticilis* (Selys, 1860)	25(24A+X)	–	India	Walia and Devi 2020a		
511. *Prodasineura sp.1*	25(24A+X)	–	Thailand	Kiauta and Kiauta 1983		
512. *Prodasineura sp.2*	25(24A+X)	–	Thailand	Kiauta and Kiauta 1983		
513. *Acanthagrion ascendens* Calvert, 1909	27(26A+X)	+	Bolivia	Cumming 1964		
514. *A. clavatum* Calvert, 1909	27(26A+X)	+	Bolivia	Cumming 1964		
515. *A. gracile* (Rambur, 1842)	27(26A+X)	–	Surinam	Kiauta 1979a (A. g. minarum Selys, 1876)		
		–	–	Brazil	Ferreira et al. 1979 (A. g. minarum Selys, 1876)	
516. *Aeolagrion inca* Selys, 1876	27(26A+X)	–	Bolivia	Cumming 1964 as *A. felacenum* (Sjostedt, 1918)		
517. *Agriocnemis clauseni* Fraser, 1922	27(26A+X)	+	India	Tyagi 1978a, b		
518. *A. femina* (Brauer, 1868)	27(26A+X)	–	Philippines	Kiauta and Kiauta 1980b		
		–	+	Thailand	Kiauta and Kiauta 1983	
519. *A. pygmaea* (Rambur, 1842)	27(26A+X)	–	India	Tyagi 1978b		
		–	+	Thailand	Kiauta and Kiauta 1983	
520. *Amphiagrion abbreviatum* (Selys, 1876)	27(26A+X)	–	USA	Cruden 1968		
521. *Amphiallagma parsuum* (Selys, 1876)	27(26A+X)	+	India	Honda and Kochhar 1985 as *Enallagma parsuum* Selys, 1876		
522. *Argia apicalis* (Say, 1839)	37(36A+X)	–	USA	Kiauta and Kiauta 1980b		
523. *A. fumipennis* (Burmeister, 1839)	27(26A+X)	–	USA	Kiauta and Kiauta 1980c (A. f. atria Gloyd, 1968)		
		–	USA	Kiauta and Brink 1978 (A. f. fumipennis (Burmeister, 1839))		
		–	USA	Kiauta and Kiauta 1980c (A. f. fumipennis)		
		–	* +	Canada	Kiauta and Kiauta 1980c (A. f. violacea (Hagen, 1861))	
524. *A. funebris* (Hagen, 1861)	27(26A+X)	–	USA	Cruden 1968		
525. *A. immunda* (Hagen, 1861)	27(26A+X)	–	USA	Cruden 1968		
526. *A. moesta* (Hagen, 1861)	25(24A+X)	–	Canada	Cruden 1968		
527. *A. nahuana* Calvert, 1902	25(24A+X)	–	USA	Kiauta and Kiauta 1980c		
528. *A. sedula* (Hagen, 1861)	27(26A+X)	–	USA	Kiauta and Kiauta 1980c		
529. *A. tibialis* (Rambur, 1842)	37(36A+X)	–	USA	Kiauta and Kiauta 1980c		
530. *A. translata* Hagen, 1865	25(24A+X)	+	USA	Kiauta and Kiauta 1980c		
531. *A. violaceus* (Hagen, 1861)	27(26A+X)	–	USA	Cruden 1968		
532. *A. viridia* (Hagen, 1861)	27(26A+X)	–	USA	Cruden 1968		
533. *Ceriagrion auranticum* Fraser, 1922	27(26A+X)	+	Thailand	Kiauta and Kiauta 1983 as *C. latericium* Liefenick, 1951		
534. *C. azureum* (Selys, 1891)	27(26A+X)	–	Nepal	Kiauta 1974, 1975		
535. *C. cerinomelas* Liefenick, 1927	27(26A+X)	–	Nepal	Kiauta 1974, 1975		
Taxon	Karyotype formula 2n	m-chromosomes	Country	References		
--	-----------------------	---------------	---------------------------	---		
536. *C. cerinorubellum* (Brauer, 1866)	27(26A+X)	+	India	Dasgupta 1957		
537. *C. coronandelianum* (Fabricius, 1798)	27(26A+X)	+	India	Prasad and Thomas 1992		
538. *C. fallax* Ris, 1914	27(26A+X)	+	Republic of South Africa	Dasgupta 1957		
539. *C. glabrum* (Burmeister, 1839)	27(26A+X)	–	Kingdom of Eswatini (Former Swaziland)	Boyes et al. 1980		
540. *C. rubiae* Laidlaw, 1916	27(26A+X)	+	Asana and Makino 1935			
541. *C. tenellum* (Villers, 1789)	27(26A+X)	+	Italy	Kiauta 1971a (C. t. tenellum (Villers, 1789))		
542. *Chromagrion conditum* (Hagen, 1876)	27(26A+X)	–	USA	Cruden 1968		
543. *Coenagrion armatum* (Charpentier, 1840)	27(26A+X)	–	Former USSR	Makalowskaja 1940		
544. *C. hastulatum* (Charpentier, 1825)	27(26A+X)	–	Former USSR	Makalowskaja 1940		
545. *C. hastulatum* (Charpentier, 1840)	27(26A+X)	–	Russia	Perepelov and Bugrov 2001b		
546. *C. laevigatum* (Charpentier, 1889)	27(26A+X)	–	Austria	Kiauta and Kiauta 1991		
547. *C. lacustris* (Vander Linden, 1823)	27(26A+X)	–	Former USSR	Makalowskaja 1940		
548. *C. puella* (Linnaeus, 1758)	27(26A+X)	+	Russia	Kuznetsova et al. 2020b		
549. *C. resolutum* (Hagen, 1876)	27(26A+X)	–	USA	Cruden 1968		
550. *Coenagrion sp.*	27(26A+X)	+	Japan	Kichijo 1941, 1942d, e		
551. *Diceratobasis macrogaster* (Selys, 1875)	27(26A+X)	+	Jamaica	Cumming 1964		
552. *Enallagma aspersum* (Hagen, 1861)	27(26A+X)	–	USA	Cruden 1968		
553. *E. boreale* Selys, 1875	27(26A+X)	–	USA	Cruden 1968		
554. *E. carunculatum* Morse, 1895	27(26A+X)	–	USA	Cruden 1968		
555. *E. cirrulatum* Selys, 1883	27(26A+X)	+	Russia	Perepelov and Bugrov 2001b		
556. *E. cistula* (Hagen, 1861)	27(26A+X)	–	USA	Cruden 1968		
557. *E. cyathigerum* (Charpentier, 1840)	27(26A+X)	–	Finland	Oksala 1939a, 1945		
558. *E. ebrium* (Hagen, 1861)	27(26A+X)	–	Former USSR	Makalowskaja 1940		
559. *E. eximium* Hagen, 1861	27(26A+X)	–	Netherlands	Kiauta 1969a, c		
560. *E. najas* (Hansemann, 1823)	27(26A+X)	–	Russia	Perepelov and Bugrov 2001b		
561. *E. nobile* (Hansemann, 1823)	27(26A+X)	–	Russia	Kuznetsova et al. 2020b		
562. *Homeoura chelifer* (Selys, 1876)	27(26A+X)	+	Surinam	Kiauta 1971a as Enallagma cheliferum (Selys, 1876)		
563. *Ischnura aurora* (Brauer, 1865)	27(26A+X)	–	Brazil	Fereira et al. 1979 as *E. chelifer*		
564. *I. caprella* (Hagen, 1861)	27(26A+X)	–	Bolivia	Cumming 1964 as Ceratia caprella (Hagen, 1861)		
Taxon	Karyotype formula 2n	m-chromosomes	Country	References		
-------	---------------------	----------------	---------	------------		
565.	I. cervula Selys, 1876	27(26A+X)	–	USA	Cruden 1968	
566.	I. denticularis (Burmeister, 1839)	27(26A+X)	–	USA	Cruden 1968	
567.	I. elegani (Van der Linden, 1823)	27(26A+X)	–	Finland	Okasa 1939a, 1945	
		– – –	–	Netherlands	Kiauta 1969a	
568.	I. flaviatilis Selys, 1876	27(26A+X)	–	Bolivia	Cumming 1964	
569.	I. forejata Morton, 1907	27(26A+X)	–	Nepal	Kiauta 1974, 1975	
570.	I. ilusiae (Morton, 1907)	25(24A+X)	+	India	Tyagi 1978b as Rhodichthys ilusiae (Morton, 1907)	
571.	I. pumilio (Charpentier, 1825)	27(26A+X)	–	Netherlands	Kiauta 1976	
572.	I. perparva Selys, 1876	27(26A+X)	–	USA	Cruden 1968	
573.	I. ramburi (Selys, 1860)	27(26A+X)	+	USA	Kiauta and Brink 1978	
574.	I. rufostigma Selys, 1876	27(26A+X)	–	Nepal	Kiauta 1974, 1975	
		–	+	Philippines	Kiauta and Kiauta 1980b	
575.	I. senegalensis (Rambur, 1842)	27(26A+X)	+	Japan	Kichijo 1941, 1942d, e	
		– – –	+	India	Dasgupta 1957	
		– – –	+	Ethiopia	Kiauta 1969b	
		– – –	+	Thailand	Kiauta and Kiauta 1983	
		– – –	+	India	Praad and Thomas 1992	
576.	I. verticalis (Say, 1839)	27(26A+X)	–	USA	Cruden 1968	
577.	I. ultima Ris, 1908	27(26A+X)	–	Bolivia	Cumming 1964	
578.	Leptagrion macrurum (Burmeister, 1839)	30(28A+neo-XY)	–	Brazil	Kiauta 1971c, 1972d	
579.	Mecistogaster sp. 1	29(28A+X)	+	Bolivia	Cumming 1964	
580.	Mecistogaster sp. 2	12(10A+neo-XY)	–	Brazil	Kiauta 1974, 1975	
581.	Megalagrion noburneae (Blackburn, 1884)	27(26A+X)	+	Hawaii	Kiauta 1969b	
582.	Mortonaagrion seletum (Ris, 1916)	27(26A+X)	+	Japan	Kichijo 1941, 1942a, d, e	
583.	Nesaeleia terne (Hagen, 1861)	27(26A+X)	–	USA	Cruden 1968	
584.	N. speciosa (Charpentier, 1840)	28(26A+XX)*	–	Finland	Okasa 1945	
585.	Oxyagrion hemplei Calvert, 1909	27(26A+X)	–	Brazil	Souza Bueno 1982	
586.	O. terminalae Selys, 1876	27(26A+X)	–	Surinam	Kiauta 1979a	
587.	Parsacrion hieroglyphicum (Brauer, 1865)	27(26A+X)	–	Brazil	Perreira et al. 1979	
588.	P. malayanum (Selys, 1876)	27(26A+X)	+	Nepal	Kiauta 1974, 1975	
589.	Proichneura subfurcata (Selys, 1876)	27(26A+X)	–	Kenya	Wasscher 1985 as Enallagma subfurcatum Selys, 1876	
590.	Pseudagrion acacie Förster, 1906	27(26A+X)	+	Republic of South Africa	Boyes et al. 1980	
591.	P. australasiae Selys, 1876	27(26A+X)	+	India	Dasgupta 1957	
592.	P. decorum (Rambur, 1842)	27(26A+X)	+	India	Dasgupta 1957	
593.	P. kersteni (Gerstaker, 1869)	27(26A+X)	–	Kingdom of Eswatini (Former Swaziland)	Boyes et al. 1980	
594.	P. microcephalum (Rambur, 1842)	27(26A+X)	–	India	Dasgupta 1957	
595.	P. pruinnum (Burmeister, 1839)	27(26A+X)	+	Thailand	Kiauta and Kiauta 1980b	
596.	P. rubripes (Selys, 1876)	27(26A+X)	+	India	Dasgupta 1957	
597.	P. salisburyense Ris, 1921	27(26A+X)	+	Kingdom of Eswatini (Former Swaziland)	Boyes et al. 1980	
598.	P. spenceii Fraser, 1922	27(26A+X)	+	India	Dasgupta 1957	
599.	P. subulatus Pinhey, 1956	25(24A+X)	+	Burkina Faso (Former Voltaic Republic)	Kiauta and Ochssee 1979	
600.	Pyrrhosoma nymphula (Suter, 1776)	28(26A+XX)*	–	Finland	Okasa 1945	
601.	Telebasis carmencia Calvert, 1909	27(26A+X)	–	Surinam	Kiauta 1979a	
602.	Tigiaegelion aurantinigrum Calvert, 1909	27(26A+X)	–	Bolivia	Cumming 1964	
Karyotypes of Odonata: a check-list

Taxon	Karyotype formula 2n	m-chromosomes	Country	References
603. *Xanthocnemis zelandica* (McLachlan, 1873)	27(26A+X)	–	New Zealand	Jensen 1980 as *X. zelandica* (McLachlan, 1873)
604. *Zonia grion exclamationis* (Selys, 1876)	27(26A+X)	–	USA	Cruden 1968

Protoneuridae

Taxon	Karyotype formula 2n	m-chromosomes	Country	References
605. *Cacioneura autumnalis* Fraser, 1922	25(24A+X)	*	India	Tyagi 1978b
606. *Epipleoneura sp.*	27(26A+X)	–	Bolivia	Cumming 1964
607. *Protoneura rubriventris* (Selys, 1860)	27(26A+X)	*	Bolivia	Cumming 1964 as *Neoneura rubriventris* Selys, 1860

* In the original publication, the female karyotype is given.
** Jensen (1980) considers these data as erroneous (but see section “Concluding remarks and future directions” in the present paper).
*** Karyotype formula is extrapolated based on vague descriptions by Cumming (1964).

Table 2. The diversity of chromosome numbers and sex chromosome mechanisms, and modal karyotypes in 23 families of Odonata: a summary.

Taxon	N of species/genera described*	N of species/genera studied	Male karyotypes	Modal karyotype	N of species/genera with modal karyotype (occurrence in percent)		
Anisogomphoptera	Anisoptera	Epiophlebioidea	Epiophlebiidae (4/1)	1/1	25, X0	24A + X	1 (100) / 1 (100)
Aeshnoidea	Aeshnidae (456/51)	58/18	13, X0; 14, neo-XY; 15, X0; 16, neo-XY; 19, X0; 21, X0; 24, neo-XY; 25, X0; 26, neo-XY; 27, X0	26A + X	44 (76) / 14 (78)		
Petaluroidea	Petaluridae (10/5)	4/3	17, X0; 19, X0; 25, X0	16A + X	3 (75) / 2 (67)		
Gomphoidea	Gomphidae (980/87)	66/31	12, neo-neo-XY; 21, X0; 22, neo-XY; 23, X0; 24, neo-XY; 25, X0	22A + X	57 (86) / 28 (90)		
Libelluloidea	Macromiidae (125/4)	6/3	25, X0	24A + X	6 (100) / 3 (100)		
Cordulegastridea	Corduliidae (154/20)	23/7	10, neo-XY; 11, X0; 13, X0; 14, neo-XY; 20, X0; 21, X0; 25, X0; 26, neo-XY; 27, X0	24A + X	19 (83) / 6 (86)		
Libellulidae (1037/142)	255/59	6, neo-XY; 6 neo-XY; 8, neo-XY; 10, neo-XY; 12, neo-XY; 17, X0; 21, X0; 22, neo-XY; 23, X0; 23, X1X2Y; 24, neo-XY; 25, X0; 27, X0; 28, neo-XY; 29, X0; 41, X0	24A + X	227 (89) / 57 (97)			
Chlorogomphidae (47/3)	9/3	23, X0; 25, X0	24A + X	8 (89) / 3 (100)			
Zygoptera	Lestoidea	Lestidae (151/9)	20/5	19, X0; 21, X0; 25, X0	24A + X	18 (90) / 5 (100)	
Platystictoidea	Platystictidae (224/6)	4/3	25, X0	24A + X	4 (100) / 3 (100)		
Calopterygoidea	Calopterygidae (185/21)	20/8	23, X0; 25, X0; 27, X0	24A + X	20 (100) / 8 (100)		
Chlorocyphidae (144/19)	9/6	23, X0; 25, X0	24A + X	22 (89) / 5 (84)			
Polythoridae (59/7)	2/2	23, X0	22A + X	2 (100) / 2 (100)			
Euphaeidae (68/12)	4/4	25, X0	24A + X	4 (100) / 4 (100)			
Megapodagrionidae (296/42)	3/2	25, X0	24A + X	3 (100) / 2 (100)			
Heteragrionidae (57/2)	2/1	25, X0	24A + X	2 (100) / 1 (100)			
Philogeniidae (40/2)	1/1	25, X0	24A + X	1 (100) / 1 (100)			
Hypolestidae (6/4)	1/1	17, X0	16A + X	1 (100) / 1 (100)			
Coenagrionoidea	Platycnemididae (404/40)	22/8	25, X0	24A + X	19 (100) / 7 (100)		
Coenagrionidae (1267/114)	92/28	12, neo-XY; 25, X0; 27, X0; 29, X0; 30, neo-XY; 37, X0	24A + X	81 (89) / 26 (90)			
Protoneuridae (260 / 25)	3/3	25, X0; 27, X0	24A + X	2 (70) / 2 (70)			

* Taken from Dijkstra et al. 2013
Concluding remarks and future directions

In total, karyotypes of 607 species (198 genera, 23 families) of Odonata are studied up to now. Table 1, presented in our work, includes 423 species (125 genera, 8 families) of the Anisoptera, 184 species (72 genera, 14 families) of the Zygoptera, and one species of the Anisozygoptera. Thus, the presently available karyotype data cover about 10% of the world species diversity of the order in general.
Within Odonata, chromosome numbers in males vary over a relatively wide range, from \(2n = 6\) in *Macrothemis hemichlora* and *Orthemis levis* to \(2n = 41\) in *O. nodiplaga*. Both low chromosome number species are suggested to have an evolutionarily secondary neo-XY system (Cumming 1964; Kiauta 1972c) that could have arisen through an X-autosome fusion from an X(0) system. All three of the above species belong to the largest dragonfly family Libellulidae, in which nearly 89% of studied species (255 in total) have the karyotype \(2n = 25(24A + X)\). The last one is the most common in Odonata in general: it occurs in each of the three suborders, Zygoptera, Anisoptera and Anisozygoptera, and in all families with the exception of two damselfly families, the Polythoridae with only two studied species sharing \(2n = 23(22A + X)\) and a monotypic family Hypolestidae with \(2n = 17(16A + X)\) in male *Hypolestes clara*. Besides Libellulidae, the karyotype \(2n = 25(24A + X)\) is currently the presumed modal one in 14 other families, such being the case at least in six better covered (at species and/or generic level) families, i.e. the dragonfly families Corduliidae, Cordulegastridae, and Macromiidae, and the damselfly families Lestidae, Calopterygidae, and Platycnemididae (Table 2, Fig. 1). This chromosome set is suggested to be an ancestral one for the order Odonata in general (Oguma 1930; Kuznetsova et al. 2020b) although this suggestion remains questionable at this stage.

Chromosomal rearrangements, among which fission and fusions apparently predominated (Kiauta 1969c, 1972c), led to the appearance of divergent karyotypes in the evolution of Odonata. As a result, in many dragonfly and damselfly families, other karyotypes, when occurring, are of secondary origin as indicated by either a diverged number of autosomes or a secondary sex chromosome system of an XY-type or both (e.g. Cumming 1964; Kiauta 1969a, c; Agopian and Mola 1984, 1988; Mola et al. 1999; Perepelov and Bugrov 2002). Some interesting examples of this kind can be found in the family Libellulidae, in which \(2n = 25(24A + X)\) is most likely an evolutionarily initial karyotype (e.g. Agopian and Mola 1988). These examples are as follows (see Table 1): *Orthemis nodiplaga* and *O. ambinigra* with \(2n = 41(40A + X)\) and \(2n = 12(10A + \text{neo-XY})\), respectively; *Erythrodiplax media* and *E. minuscula*, both with \(2n = 22(20A + \text{neo-XY})\); *Micrathyria longifasciata* and *M. ungulata* with \(2n = 24(22A + \text{neo-XY})\) and \(2n = 23(20A + X_1X_2Y)\), respectively. In some families, any of these presumably derived karyotypes not only occurs but also prevails and may be considered modal (see Table 2 and Fig. 1). Within Anisoptera, such families are Aeshnidae (\(2n = 26A + X\)) and Gomphidae (\(2n = 22A + X\)), whereas within Zygoptera, these are Chlorocyphidae (\(2n = 22A + X\)) and Coenagrionidae (\(2n = 26A + X\)). Thus, Odonata, despite the fact that they have holokinetic chromosomes (Nokkala et al. 2002), demonstrate rather high karyotypic stability, with most species showing \(2n = 25\) (found in 60% of studied species), \(2n = 27(21%)\) and \(2n = 23(13%)\) which may point to some selective constraints acting to stabilize chromosome number in their evolution (Kuznetsova et al. 2020b).

There are the species for which different authors give various karyotypes that are sometimes difficult to interpret (see Table 1). In some cases, this might be due to
misidentifications of a particular species or an error in determining the karyotype. For example, Wolfe (1953) reported $2n = 17(16A + X)$ for males of *Uropetala carovei* (Petaluridae, Anisoptera) from New Zealand. However, according to later studies of this species in the same locality (Jensen and Mahanty 1978; Jensen 1980), it has $2n = 25(24A + X)$, and Jensen (1980) therefore considers the Wolfe data as erroneous. We cannot exclude, however, that the above authors studied different *U. carovei* subspecies, *U. c. carovei* White, 1846 and *U. c. chiltoni* Tillyard, 1921, that may indeed have different karyotypes. In other cases, the chromosome number difference between geographic populations might be indicative of the inter-population variation within the bounds of one taxonomic species or even the existence of a species complex with several morphologically cryptic species. For example, 4 of the 17 studied species of the dragonfly genus *Aeshna* Fabricius, 1775 were reported to have different karyotypes in different populations. These are: *Aeshna grandis* – $2n = 26A + X$ (former USSR), $2n = 24A + X$ (former USSR, Finland), and $2n = 24A + neo-XY$ (Netherlands, Finland); *A. isoceles* – $2n = 26A + X$ (USA) and $2n = 24A + X$ (Russia); *A. juncea* – $2n = 26A + X$ (Italy) and $2n = 24A + neo-XY$ (Finland, former USSR, Italy); *A. mixta* – $2n = 26A + X$ (Netherlands) and $2n = 24A + X$ (India) (Table 1). In all such cases, special studies involving a combined analysis of karyotypes, morphology, distribution patterns and molecular markers are needed.

Approximately 80% of Odonata species have a pair of very small chromosomes, i.e. microchromosomes or m-chromosomes (Mola 2007, Table 1). A number of speculations have been forwarded to explain the origin of these chromosomes in Odonata. Kiauta (1968e) suggested m-chromosomes to be fragments of “normal” chromosomes, whereas Oguma (1930) considered them the remnants of an autosome pair in the process of its elimination by progressive loss of chromatin. The size of the smaller chromosome pair was shown to be variable within different species (Kiauta 1968e; see Mola 2007 for other references) which is consistent with both hypotheses. Closely related species and different populations of the same species often differ from each other in the presence/absence of m-chromosomes (Table 1). This is most likely due to the lack of clear criteria for the identification of a small chromosome pair as m-chromosomes in a particular karyotype (Mola 2007; Kuznetsova et al. 2020b).

Most cytogenetic studies of Odonata have been made only to determine the chromosome number and sex chromosome mechanism for which the routine staining was used. Although a considerable amount of such data was obtained (Table 1, 2), standard karyotypes of many Odonata taxa remain totally unknown (Fig. 1). Lack of data on more “primitive” families of Zygoptera (e.g. Hemiphlebiidae) and Anisoptera (e.g. Austropetaliidae and Neopetaliidae) makes difficult understanding karyotype evolution of the order in general.

During the last decades, karyotypes of a few dozen Odonata species were studied using various techniques of differential staining of chromosomes such as C-banding, AgNOR-staining and DNA specific fluorochrome banding visualizing constitutive heterochromatin, nucleolus organizing regions (NORs) and AT- and GC-rich chromosome segments, respectively. Such data can be found in the following publica-
tions: Thomas and Prasad (1986), Prasad and Thomas (1992), Perepelov et al. (1998), Perepelov and Bugrov (2001a, b, 2002), Grozeva and Marinov (2007), De Gennaro et al. (2008), Walia et al. (2011, 2018), Walia and Chahal (2014, 2018), Walia and Devi (2018), Walia and Katnoria (2018), Walia and Devi (2020a, b). Unfortunately, these data alone did not shed much light on the karyotypic evolution of Odonata.

Although the classical cytological techniques remain necessary starting points for cytogenetic studies of Odonata to get an overview of their genomes, the future of Odonata cytogenetics must be coupled with the application of new cytogenetic molecular techniques that enable the localization of specific DNA sequences in chromosomes and the identification of individual chromosomes in karyotypes. In the article by Frydrychová et al. (2004) and, on a larger scale, in two of our recent publications (Kuznetsova et al. 2018, 2020b), the fluorescence in situ hybridization (FISH) technique was used for the first time for analyzing Odonata karyotypes. Several species belonging to the Anisoptera (from the families Aeshnidae, Libellulidae, and Corduliidae) and the Zygoptera (from the families Coenagrionidae and Calopterygidae) were studied regarding the occurrence of the TTAGG telomeric repeats and the distribution of the 18S rRNA genes in their karyotypes. The TTAGG repeats proved to be the canonical motif of telomeres in the class Insecta in general, which, however, was repeatedly lost in the evolution of different phylogenetic lineages (Kuznetsova et al. 2020a). It was shown in the listed Odonata publications that the (TTAGG)$_n$ motif does not occur in all but one (Sympetrum vulgatum) species, and the 18S is located on one of the largest pairs of autosomes in all studied dragonfly species but on m-chromosomes in all studied damselfly species (Kuznetsova et al. 2020b).

The results obtained showed great promise of the combined use of FISH and classical and banding cytogenetics in order to identify new chromosomal markers, reveal differences between species, particularly when they share the same or very close karyotypes, and speculate about the mechanisms involved in the karyotype evolution of Odonata (Kuznetsova et al. 2020b). Another promising line of future research could be to test hypotheses (Mola and Papeschi 1994; Ardila-Garcia and Gregory 2009) about whether there is a relationship between karyotype evolution and genome size diversity in the Odonata or there is no such relationship.

Acknowledgements

The present study was performed within the research project no. AAAA-A19-119020790106-0. The authors deeply grateful to the late Evgeny A. Perepelov whose thesis “Karyotype evolution of Odonata (Insecta) of Northern Palearctics” (2003; Novosibirsk State University, Novosibirsk, Russia) served as a starting point for preparing Table 1 of our paper. We thank two reviewers, Dr. M. Marinov and Dr. S. Grozeva, for their useful remarks to a draft of this MS. Special thanks to Dr. M. Marinov for his nomenclatural and taxonomic corrections and updates.
References

Agopian SS, Mola LM (1984) An exceptionally high chromosome number in *Orthemis nodiplaga* Kersch (Anisoptera, Libellulidae). Notulae Odonatologicae 2(3): 45.

Agopian SS, Mola LM (1988) Intra and interspecific karyotype variability in five species of Libellulidae (Odonata, Anisoptera). Caryologia 41(1): 69–78. https://doi.org/10.1080/00087114.1988.10797849

Ardila-Garcia AM, Gregory TR (2009) An exploration of genome size diversity in dragonflies and damselflies (Insecta: Odonata). Journal of Zoology 278: 163–173. https://doi.org/10.1111/j.1469-7998.2009.00557.x

Asana JJ, Makino S (1935) A comparative study of the chromosomes in the Indian dragonflies. Journal of the Faculty of Science, Hokkaido University Series 6, Zoology 4(2): 67–86.

Boyes JW, van Brink JM, Kiauta B (1980) Sixteen dragonfly karyotypes from the republic of South Africa and Swaziland, with evidence on the possible hybrid nature of *Orthetrum jullia falsum* Longefeld (Anisoptera: Libellulidae). Odonatologica 9: 131–145.

Bybee S, Córdoba-Aguilar A, Duryea MC, Futahashi R, Hansson B, Lorenzo-Carballa MO, Schiller D, Stoks R, Suvorov A, Svensson EI, Swaeers J, Takahashi J, Watts PC, Wellenreuther M (2016) Odonata (dragonflies and damselflies) as a bridge between ecology and evolutionary genomics. Frontiers in Zoology 13: e46. https://doi.org/10.1186/s12983-016-0176-7

Capitulo RA, Mola LM, Agopian SS (1991) Species catalogue and chromosomal data of Odonata from Argentina. Revista de la Sociedad Entomológica Argentina 49(1–4): 59–72.

Carle FL, Kjer KM, May ML (2015) A molecular phylogeny and classification of Anisoptera (Odonata). Arthropod Systematics and Phylogeny 73(2): 281–301. https://entomology.rutgers.edu/news/docs/Carle-2015-Anisoptera-Phylogeny-Classification.pdf

Carnoy BJ (1885) La cytodierese chez les arthropodes. IV. Pseudo-Nevropteres. Cellule 1: 279–282.

Chatterjee K, Kiauta B (1973) Male germ cell chromosomes of two Calopterygoidea from the Darjeeling Himalaya (Zygoptera: Chlorocyphidae, Euphaeidae). Odonatologica 2(2): 105–108.

Cruden RW (1968) Chromosome numbers of some North American dragonflies (Odonata). Canadian Journal of Genetics and Cytology 10: 200–214. https://doi.org/10.1139/g68-029

Cumming RB (1964) Cytogenetic studies in the order Odonata. PhD thesis, University of Texas, Austin, 93 pp.

Das C (1956) Studies on the association between non-homologous chromosomes during meio-

osis in four species of the Indian dragonflies (Odonata). Journal of the Zoological Society of India 8(2): 119–132.

Dasgupta J (1957) Cytological studies of some Indian dragonflies. II: A study of the chromo-

somes during meiosis in thirty species of Indian Odonata (Insecta). Proceedings of the Zoological Society of Calcutta 10: 1–65.

De Gennaro D (2004) Análisis meiótic y caracterización de la heterocromatina en species argen-

tinas de Anizoptera (Odonata). Tesis de Licenciatura. Facultad de Ciencias Exactas y Naturales de la Universidad de Buenos Aires. Buenos Aires, 66 pp.

De Gennaro D, Rebagliati PJ, Mola LM (2008) Fluorescent banding and meiotic behaviour in *Erythrodiplax nigricans* (Libellulidae) and *Coryphaeschna perrensi* (Aeschnidae) (Anisoptera, Odonata). Caryologia 61: 60–67. https://doi.org/10.1080/00087114.2008.10589610
Dijkstra K-DB, Bechly G, Bybee SM, Dow RA, Dumont HJ, Fleck G, Garrison RW, Hämäläinen M, Kalkman VJ, Karube H, May ML, Orr AG, Paulson DR, Rehn AC, Theischinger G, Trueman JWH, van Tol J, Ellenrieder N, Ware J (2013) The classification and diversity of dragonflies and damselflies (Odonata). In: Zhang ZQ (Ed.) Animal Biodiversity: An Outline of Higher-level Classification and Survey of Taxonomic Richness (Addenda 2013). Zootaxa 3703: 36–45. https://doi.org/10.11646/zootaxa.3703.1.9

Dijkstra K-DB, Kalkman VJ, Dow RA, Stokvis FR, van Tol J (2014) Redefining the damselfly families: a comprehensive molecular phylogeny of Zygoptera (Odonata). Systematic Entomology 39: 68–96. https://doi.org/10.1111/syen.12035

Ferreira A, Kiana B, Zaha A (1979) Male germ cell chromosomes of thirty-two Brazilian dragonflies. Odonatologica 8: 5–22.

Francovič M, Jurečić R (1986) Prilog citogenetickim i citotaksonomskim istrazivanjima vrste Libellula depressa L. (Odonata, Libellulidae). Plenarni Referati VII Kongres Biologa Jugoslavije, Budva, 341 pp.

Francovič M, Jurečić R (1989) Comparative cytogenetic analysis of karyotype morphology and organization in males of species Libellula depressa L. and L. fulva Müll. (Insecta: Odonata). Periodicum Biologorum 91(1): 32–33.

Frydrychová R, Grossmann P, Trubač P, Vítková M, Marec F (2004) Phylogenetic distribution of TTAGG telomeric repeats in insects. Genome 47: 163–178. https://doi.org/10.1139/g03-100

Fuchsówna J, Sawczyńska J (1928) Zachowanie sie heterochromosomów podczas spermatożenzy u ważek (Odonata). Cz. I. Aeschna grandis L. Libellula quadrimaculata L. Archiwum Towarzystwa naukowego we Lwowie (III) 4(9): 177–197. [In Polish]

Goni B, de Abenante YP (1982) Cytological notes on five dragonfly species from Uruguay. Odonatologica 11(4): 323–329.

Grimaldi D, Engel MS (2005) Evolution of the Insects. Cambridge University Press, Cambridge, 755 pp.

Grozeva SM, Marinov MG (2007) Cytogenetic study of Somatochlora borisi Marinov, 2001 (Odonata: Corduliidae), and three relative species. Acta Zoologica Bulgarica 59(1): 53–58.

Handa SM, Batra HN (1980) Cytology of ten species of dragonflies (Anisoptera: Odonata). Proceedings of the 67th Indian Science Congress, Part III, Calcutta, 103 pp.

Handa SM, Kochhar N (1985) Chromosomal architecture in two species of damselflies from Chandigarh and its surrounding areas. National Seminar on Current Trends in Chromosome Dynamics, Chandigarh, 34 pp.

Handa SM, Mittal OP, Batra HN (1984) Chromosomes in ten species of dragonflies (Anisoptera: Odonata). Research Bulletin of the Panjab University (Science) 35: 65–75.

Higashi K, Kayano H (1993) The distribution of distinct karyomorphs of Crocothemis servilia Drury (Anisoptera, Libellulidae) in Kyushu and the south-western islands of Japan. Japanese Journal of Entomology 61: 1–10.

Higashi K, Lee CE, Kayano H, Kayano A (2001) Korea strait delimiting distribution of distinct karyomorphs of Crocothemis servilia (Drury) (Anisoptera: Libellulidae). Odonatologica 30(3): 265–270.

Hirai H (1956) Chromosomes of six species of dragonflies. Zoological Magazine, Tokyo 65: 198–202.
Hogben L (1921) Studies on synapsis, III. The nuclear organisation of the germ cells in *Libellula depressa*. Philosophical Transactions of the Royal Society of London Series B 92: 60–80. https://doi.org/10.1098/rspb.1921.0006

Hung ACF (1971) Cytological studies of five dragonflies (Odonata: Anisoptera). Entomological News 82: 103–106.

Jensen AL (1980) The karyotypes of five species of Odonata endemic to New Zealand. Odonatologica 9: 29–33.

Jensen AL, Mahanty HK (1978) A preliminary note on the chromosome number of *Uropetala carovei* (White) (Anisoptera: Petaluridae). Odonatologica 7: 385–386.

Kalkman VJ, Clausnitzer V, Dijkstra K-DB, Orr AG, Paulson DR, van Tol J (2008) Global diversity of dragonflies (Odonata) in freshwater. Hydrobiologia 595: 351–363. https://doi.org/10.1007/s10750-007-9029-x

Katatani N (1987) On the chromosomes of dragonflies, 1. Synopsis on the studies in some Japanese dragonflies. Aeschna 20: 21–31.

Kiauta B (1965) The chromosome behaviour in spermatogenetic meiosis of *Anax imperator* Leach (Odonata: Aeshnidae). Tombo 7(3–4): 18–21.

Kiauta B (1966) The chromosome behaviour in spermatogenetic meiosis of the dragonfly *Sympetrum striolatum* (Charp.) (Odonata: Libellulidae) from Luxembourg. Bulletin de la Société des Naturalistes Luxembourgeois 69: 54–60.

Kiauta B (1967a) Evolution of the chromosome complement in Odonata. Genen en Phaenen 11(4): 56–61.

Kiauta B (1967b) Abstract. Evolution of the chromosome complement in Odonata. Genetica 38(3): 403–404. https://doi.org/10.1007/BF01507474

Kiauta B (1967c) A new hypothesis on the evolution of the chromosome complement in Odonata. Tombo 10(1–4): 29–33.

Kiauta B (1967d) Considerations on the evolution of the chromosome complement in Odonata. Genetica 38(4): 430–446. https://doi.org/10.1007/BF01507474

Kiauta B (1967e) Meiotic chromosome behaviour in the male damselfly, *Calopteryx virgo* (Linnaeus), with a discussion on the value of chromosome numbers and karyotype morphology in odonate systematics. Deutsche Entomologische Zeitschrift 14(3–4): 339–348. https://doi.org/10.1002/mmnd.19670140312

Kiauta B (1968a) Evolution of the chromosome complement in Odonata. Entomologische Berichten, Amsterdam 28(5): 97–100.

Kiauta B (1968b) Morphology and kinetic behaviour of the odonate sex chromosomes, with a review of the distribution of sex determining mechanisms in the order. Genen en Phaenen 12(1): 21–24.

Kiauta B (1968c) The chromosome numbers of eight Old World dragonflies (Odonata). Chromosome Information Service, Tokyo 9: 3–4.

Kiauta B (1968d) The chromosomes of the male dragonfly *Cordulegaster boltoni* (Donovan, 1807) (Odonata: Cordulegasteridae). Biološki Vestnik: glasilo slovenskih biologov 16: 87–94.

Kiauta B (1968e) Variation in size of the m-chromosome of the dragonfly, *Calopteryx virgo* (L.), and its significance for the chorogeography and taxonomy of the *Calopteryx virgo superspecies*. Genen en Phaenen 12(1): 11–16.
Kiauta B (1968f) Variation in size of the dragonfly m-chromosome, with considerations on its significance for the chorogeography and taxonomy of the order Odonata, and notes on the validity of the rule of Reinig. Genetica 39(1): 64–74. https://doi.org/10.1007/BF02324456

Kiauta B (1969a) Sex chromosomes and sex determining mechanisms in Odonata, with a review of the cytological conditions in the family Gomphidae, and reference to the karyotypic evolution in the order. Genetica 40(2): 127–157. https://doi.org/10.1007/BF01787346

Kiauta B (1969b) The chromosomes of eight dragonfly species from continental Africa and Madagascar (Odonata). Arnoldia (Rhodesia) 4(15): 1–8.

Kiauta B (1969c) Autosomal fragmentations and fusions in Odonata and their evolutionary implications. Genetica 40(2): 158–180. https://doi.org/10.1007/BF01787347

Kiauta B (1969d) The chromosomes of the Hawaiian endemic dragonflies, Megalagrion oahuense (Blackburn) (Coenagrionidae: Pseudagrioninae) and Nesogonia blackburni (McLachlan) (Libellulidae: Sympetridae), with a note on the cytotoxic affinities between the genera Nesogonia Kirby and Sympetrum Newman (order Odonata). Proceedings of the Hawaiian Entomological Society 20(2): 429–433.

Kiauta B (1970a) The chromosomes of four Neotropical dragonflies from Mexico. Chromosome Information Service, Tokyo 11: 8–9.

Kiauta B (1970b) The karyotype of the damselfly, Epallage fatime (Charpentier, 1840) (Odonata, Zygoptera: Epallagidae), with a note on the cytotoxic affinities in the superfamily Calopterygoidea. Genetica 41: 390–397. https://doi.org/10.1007/BF00958931

Kiauta B (1971a) Studies on the germ cell chromosome cytology of some cytotoxically interesting or hitherto not studied Odonata from the autonomous region Friuli-Venezia Giulia (northern Italy). Atti del Museo civico di Storia naturale di Trieste 27: 65–127.

Kiauta B (1971b) An unusual case of precocious segregation and chromosome fragmentation in the primary spermatocytes of the damselfly, Calopteryx virgo meridionalis (Selys, 1873), as evidence for a possible hybrid character of some populations of the Calopteryx-virgo-complex (Odonata, Zygoptera: Calopterygidae). Genen en Phaenen 14(2): 32–40.

Kiauta B (1971c) Cytotoxic peculiarities in the neotropical odonate genera Leptagrion Selys, Orthemis Hagen and Macrothemis Hagen. Abstracts of papers read at the 1st European Symposium on Odonatology, Gent, 27–28.

Kiauta B (1972a) Notes on new or little known dragonfly karyotypes, 2. Male germ cell chromosomes of four East Mediterranean species: Lestes barbarus (Fabricius), Calopteryx splendens amasina Bartenev (Zygoptera: Lestidae, Calopterygidae), Caliaeschna microstigma (Schneider) and Orthetrum taeniolatum (Schneider) (Anisoptera: Aeshnidae, Libellulidae). Genen en Phaenen 15: 95–98.

Kiauta B (1972b) Notes on new or little known dragonfly karyotypes, 1. The germ cell chromosomes of three Latin American species: Argia funebris (Hagen), Megapodagrion contortum (Selys) (Zygoptera: Coenagrionidae, Megapodagrionidae) and Castoraeschna castor (Brauer) (Anisoptera: Aeshnidae). Genen en Phaenen 15: 23–26.

Kiauta B (1972c) Synopsis on the main cytotoxic data in the order Odonata. Odonatologica 1(2): 73–102.

Kiauta B (1972d) The karyotype of the damselfly, Leptagrion macrurum (Burmeister, 1839), and its possible origin, with a note on the cytotoxic affinities of the genus (Zygoptera: Coenagrionidae). Odonatologica 1(1): 31–35.
Kiauta B (1973a) Notes on new or little known dragonfly karyotypes. III. Spermatocyte chromosomes of four Nearctic anisopterans: Aeshna californica Calvert (Aeshnidae), Cordulia shortletti Scudder (Corduliidae), Sympetrum internum Montgomery, and S. madidum (Hagen) (Libellulidae). Genen en Phaenen 16(1): 7–12.

Kiauta B (1973b) Notes on new or little known dragonfly karyotypes. IV. Spermatocyte chromosomes of Calopteryx splendens splendens Harris (Zygoptera: Calopterygidae), Gomphus pulchellus Selys, Libellula depressa Linnaeus (Anisoptera: Gomphidae, Libellulidae) from northern France. Genen en Phaenen 16(2): 55–60.

Kiauta B (1974) Introduction to insect cytotaxonomy. Lectures delivered at the Tribhuvan University, Kathmandu, Vol. 1. Nepal Research Center, Kathmandu, 81 pp.

Kiauta B (1975) Cytotaxonomy of dragonflies, with special reference to the Nepalese fauna. Lectures delivered at the Tribhuvan University, Kathmandu, Vol. 2. Nepal Research Center, Kathmandu, 78 pp.

Kiauta B (1977) Notes on new or little known dragonfly karyotypes. V. The male germ cell chromosomes of Macromia moorei Selys from Nepal (Anisoptera: Corduliidae, Epophthalmiinae). Genen en Phaenen 19: 49–51.

Kiauta B (1978) Two cytotaxonomically interesting cases of irreversible autosomal fusion in dragonflies Agria modesta (Hagen) (Zygoptera: Coenagrionidae) and Anaciaeschna isosceles (Müller) (Anisoptera: Aeshnidae). Notulae Odonatologicae 1(1): 7–9.

Kiauta B (1979a) The karyotypes of some Anisoptera from Surinam. Odonatologica 2: 267–283.

Kiauta B (1979b) The karyotype of Ischnura pumilio (Charp.) (Zygoptera: Coenagrionidae). Notulae Odonatologicae 1(3): 47–48.

Kiauta B (1983) The status of the Japanese Crocothemis servilia (Drury) as revealed by karyotypic morphology (Anisoptera: Libellulidae). Odonatologica 12: 381–388.

Kiauta B, Boyes JW (1972) Cytology of ten South American Libellulidae, with cytophlogenetic consideration of the genera Orthemis Hagen and Erythrodipax Brauer (Odonata, Anisoptera). Genetica 43(3): 407–421. https://doi.org/10.1007/BF00156136

Kiauta B, Brink JM (1975) Cytotaxonomic notes on the Sympetrum pedemontanum complex (Anisoptera: Libellulidae). Odonatologica 4(4): 249–254.

Kiauta B, Brink JM (1978) Male chromosome complements of some Florida dragonflies, United States. Odonatologica 7(1): 155–25.

Kiauta B, Kiauta MAJE (1976) The chromosomes of some dragonflies from the Langtang Valley, Central Nepal. Odonatologica 5(4): 347–354.

Kiauta B, Kiauta MAJE (1979) The karyotype of Libellula fulva Müll, from Switzerland (Anisoptera: Libellulidae). Notulae Odonatologicae 1(4): 73–74.

Kiauta B, Kiauta MAJE (1980a) The karyotypes of Aeshna subarctica elisabethae Djak. and Somatochlora alpestris (Sel.) from Switzerland (Anisoptera, Aeshnidae, Corduliidae). Notulae Odonatologicae 1(6): 104–105.

Kiauta B, Kiauta MAJE (1980b) On a small collection of dragonfly karyotypes from the Philippines. Odonatologica 9(3): 237–245.

Kiauta B, Kiauta MAJE (1980c) Introduction to the cytotaxonomy of the odonate genus Agria Rambur (Zygoptera: Coenagrionidae). Odonatologica 9(1): 55–56.

Kiauta B, Kiauta MAJE (1982) The chromosome numbers of sixteen dragonfly species from the Arun Valley, Eastern Nepal. Notulae Odonatologicae 9(1): 143–146.
Kiauta B, Kiauta MAJE (1983) The chromosome numbers of some Odonata from Thailand. Notulae Odonatologicae 2(2): 17–32.

Kiauta B, Kiauta MAJE (1991) Biogeographic considerations on Coenagrion hylas freyi (Bilek, 1954), based mainly on the karyotype features of a population from North Tyrol, Austria (Zygoptera: Coenagrionidae). Odonatologica 20(4): 417–431.

Kiauta B, Kiauta MAJE (1995) The karyotypes of Somatochlora meridionalis Nielsen from Slovenia and S. metallica (Vander L.) from Switzerland, with a tentative note on the origin of Central European S. metallica (Odonata: Corduliidae). Opuscula zoologica fluminensia 137: 1–5.

Kiauta B, Kiauta-Brink MAJE (1975) Chromosomes of the dragonfly, Sympecma annulata braueri (Yakobson & Bianki, 1905) from the Netherlands, with a note on the classification of the family Lestidae (Odonata, Zygoptera). Genen en Phaenen 18(2–3): 39–48.

Kiauta B, Ochssée BV (1979) Some dragonfly karyotypes from the Voltiac Republic (Haute Volta), West Africa. Odonatologica 8: 47–54.

Kichijo H (1939) Chromosomes of Tachopteryx pryeri and Gomphus hakiensis (Odonata, Aeshnidae). Japanese Journal of Genetics 15: 287–289. https://doi.org/10.1266/jjg.15.287

Kichijo H (1941) Chromosomes of seven species of insects belonging to the order of dragonflies, suborder of damselflies. Nagasaki Medical Journal 19(10): 2033–2041. [In Japanese]

Kichijo H (1942a) Insect chromosomes. IV. Order of dragonflies, Pt. 2. Nagasaki Medical Journal 20(10): 1639–1648. [In Japanese]

Kichijo H (1942b) Insect chromosomes. III. Order of dragonflies, Pt. 1. Nagasaki Medical Journal 20(7): 1084–1092. [In Japanese]

Kichijo H (1942c) Chromosomes of Sympetrum eroticum eroticum (Odonata). Japanese Journal of Genetics 18: 195–196. https://doi.org/10.1266/jjg.18.195

Kichijo H (1942d) A comparative study of seven species of Zygoptera from Japan. Acta medica Nagasakiens 3(2): 95–97.

Kichijo H (1942e) On the chromosomes of some species of the zygopterous dragonflies (Odonata, Zygoptera). Japanese Journal of Genetics 18: 273–276. https://doi.org/10.1266/jjg.18.273

Kumari U, Gautam DC (2017) Karyotypic studies on two species of Orthetrum (Anisoptera: Odonata) from Himachal Pradesh. The Journal of Cytology and Genetics 18: 1–7.

Kuznetsova V, Grozeva S, Gokhman V (2020a) Telomere structure in insects: A review. Journal of Zoological Systematics and Evolutionary Research 58: 127–158. https://doi.org/10.1111/jzs.12332

Kuznetsova VG, Maryańska-Nadachowska A, Shapoval NA, Anokhin BA, Shapoval AP (2018) Cytogenetic characterization of eight Odonata species originating from the Curonian Spit (the Baltic Sea, Russia) using C-banding and FISH with 18S rDNA and telomeric (TTAGG)n n probes. Cytogenetic and Genome Research 153: 147–157. https://doi.org/10.1159/000486088

Kuznetsova VG, Maryańska-Nadachowska A, Anokhin BA, Shapoval NA, Shapoval AP (2020b) Chromosomal analysis of eight species of dragonflies (Anisoptera) and damselflies (Zygoptera) using conventional cytogenetics and FISH: insights into the karyotype evolution of the ancient insect order Odonata. Journal of Zoological Systematics and Evolutionary Research 58, 00: 1–13. https://doi.org/10.1111/jzs.12429 [in press]

Lefevre G, McGill C (1908) The chromosomes of Anasa tristis and Anax junius. The American Journal of Anatomy 7(4): 469–487. https://doi.org/10.1002/aja.1000070404
Makalowskaja WN (1940) Comparative karyological studies of dragonflies (Odonata). Archives russes d’Anatomie, d’Histologie et d’Embryologie 25: 24–39.

Makino S (1935) A comparative study of the chromosomes in the Indian dragonflies. Japanese Journal of Genetics 11: 234–235. https://doi.org/10.1266/jjg.11.234

McGill C (1904) The spermatogenesis of Anax junnius. University of Missouri Studies 2: 236–250.

McGill C (1907) The behavior of the nucleoli during oogenesis of the dragonfly with special reference to synapsis. Zoologische Jahrbücher. Abteilung für Anatomic und Ontogenie der Tiere 23: 207–230.

Mola LM (1995) Post-reductional meiosis in Aeshna (Aeshnidae, Odonata). Hereditas 122: 47–55. https://doi.org/10.1111/j.1601-5223.1995.00047.x

Mola LM (1996) Meiotic studies in nine species of Erythrodiplax (Libellulidae, Odonata). Neo-XY sex chromosome system in Erythrodiplax media. Cytologia 61: 349–357. https://doi.org/10.1508/cytologia.61.349

Mola LM (2007) Cytogenetics of American Odonata. In: Tyagi BK (Ed.) Odonata: Biology of Dragonflies. Scientific Publishers, India, 153–173.

Mola LM, Agopian SS (1985) Observations on the chromosomes of four South American Libellulidae (Anisoptera). Odonatologica 14(2): 115–125.

Mola LM, Papeschi AG (1994) Karyotype evolution in Aeshna (Aeshnidae: Odonata). Hereditas 121: 185–189. https://doi.org/10.1111/j.1601-5223.1994.00185.x

Mola LM, Papeschi AG, Carrillo ET (1999) Cytogenetics of seven species of dragonflies. Hereditas 131: 147–153. https://doi.org/10.1111/j.1601-5223.1999.00147.x

Nokkala S, Laukkanen A, Nokkala C (2002) Mitotic and meiotic chromosomes in Somatochlora metallica (Corduliidae, Odonata). The absence of localized centromeres and inverted meiosis. Hereditas 136: 7–12. https://doi.org/10.1034/j.1601-5223.2002.1360102.x

Oguma K (1915) A study of the chromosomes of dragonflies. Zoological Magazine 27: 241–250. [In Japanese]

Oguma K (1917) Entomology and cytology. In: Nagano K (Ed.) A Collection of Essays for Mr. Yasushi Nawa, Written in Commemoration of His Sixtieth Birthday, October 8, 1917. Gifu, 105–114.

Oguma K (1930) A comparative study of the spermatocyte chromosome in allied species of the dragonfly. Journal of Faculty of Sciences, Hokkaido University VI: 1–32.

Oguma K (1942) Observationes de formis compositionibusque chromosomes et dispositionibus eorum in tempore divisionis atque propositio aliquorum novorum terminorum. Japanese Journal of Genetics 18: 205–216. https://doi.org/10.1266/jjg.18.205

Oguma K (1951) The chromosomes of Epiophlebia superstes Selys (dragonfly). Iden-no-Sogo-Kenkyu 2: 23–26.

Oguma K, Asana JJ (1932) Additional data to our knowledge on the dragonfly chromosome with a note on the occurrence of X-Y chromosome in the ant-lion (Neuroptera). Journal of Faculty of Sciences, Hokkaido University 1(4): 133–142.

Oksala T (1939a) Über Tetraploidie der Binde- und Fettgewebe bei den Odonaten. Hereditas 25: 132–144. https://doi.org/10.1111/j.1601-5223.1939.tb02690.x

Oksala T (1939b) Über die somatische Polyploidie bei Insekten. Annales Entomologici Fennici 5(3): 208–218.
Oksala T (1943) Zytologische Studien an Odonaten I. Chromosomenverhältnisse bei der Gat-
tung *Aeschna* mit besonderer Berücksichtigung der postreduktionellen Teilung der Biva-
lente. Annales Academiae Scientiarum Fennicae (A) IV, Biologica (4): 1–64.

Oksala T (1944) Zytologische Studien an Odonaten. II. Die Entstehung der Meiotischen
Präkozität. Annales Academiae Scientiarum Fennicae (A) IV, Biologica (5): 1–33.

Oksala T (1945) Zytologische Studien an Odonaten. III. Die Ovogenese. Annales Academiae
Scientiarum Fennicae (A) IV, Biologica (9): 1–132.

Oksala T (1952) Chiasma formation and chiasma interference in the Odonata. Hereditas 38:
449–480. https://doi.org/10.1111/j.1601-5223.1952.tb02937.x

Omura T (1949) On at-random connection of chromosomes in the aeschnid dragonfly, *Ictinus
rapax*. Japanese Journal of Genetics 24: 162–165. https://doi.org/10.1266/jjg.24.162

Omura T (1952) The spermatogenesis of an Indian dragonfly, *Ictinus rapax* (Rambur) with
special reference to the behaviour of the spermatooza in the cyst. Biological Journal of
Okayama University 1(1–2): 103–146.

Omura T (1953) On the abnormal spermatogenesis in an Indian dragonfly, *Ictinus rapax* (Ramb-
bur). Biological Journal of Okayama University 1(3): 163–170.

Omura T (1955) A comparative study of the spermatogenesis in the Japanese dragonflies. I.
Family Libellulidae. Biological Journal of Okayama University 2(2–3): 95–135.

Omura T (1957) A comparative study of the spermatogenesis in the Japanese dragonfly II:
Family Aeshnidae, Gomphidae and Calopterygidae. Biological Journal of Okayama Uni-
versity 3: 1–86.

Perepelov EA (2003) Karyotype evolution of Odonata (Insecta) of Northern Palearctics. Ph.D.
Dissertation, Novosibirsk, Russian Federation: Institute of Systematics and Ecology of Ani-
mals of Siberian Branch of Russian Academy of Sciences, 144 pp. [In Russian] https://www.
dissercat.com/content/evolyutsiya-kariotipov-strekoz-insecta-palearktiki

Perepelov E, Bugrov AG (2001a) C-heterochromatin in chromosomes of *Ophiogomphus Cecilia
cecilia* (Four.) (Anisoptera: Gomphidae) with notes on the sex chromosome origin in the
species. Caryologia 54(2): 169–172. https://doi.org/10.1080/00087114.2001.10589224

Perepelov E, Bugrov AG (2001b) The constituent gerochromatin in karyotypes of dragonflies.
Belyshevia 1(1): 10–13. [In Russian]

Perepelov E, Bugrov AG (2002) Constitutive heterochromatin in chromosomes of some
Aeshnidae, with notes on the formation of the neo-XY/neo-XX mode of sex determination
in *Aeshna* (Anisoptera). Odonatologica 31(1): 77–83.

Perepelov EA, Bugrov AG, Warchalowska-Śliwa E (1998) C banded karyotypes of some drag-
onfly species from Russia. Folia biologica (Kraków) 46: 137–142.

Perepelov EA, Bugrov AG, Warchalowska-Śliwa E (2001) C-banded karyotypes of some drag-
onfly species from Russia. II. The families Cordulegasteridae, Corduliidae and Gomphidae.
Folia biologica (Kraków) 49(3–4): 175–178.

Prasad K, Thomas KI (1992) C-band pattern homogeneity in dragonflies (Odonata). Caryoly-
gia 45: 57–68. https://doi.org/10.1080/00087114.1992.10797211

Ray Chaudhuri SP, Dasgupta J (1949) Cytological studies on the Indian dragonflies I. Structure
and behaviour of chromosomes in six species of dragonflies (Odonata). Proceedings of the
Zoological Society of Bengal 2: 81–93.
Rehn AC (2003) Phylogenetic analysis of higher-level relationships of Odonata. Systematic Entomology 28: 181–240. https://doi.org/10.1046/j.1365-3113.2003.00210.x

Sandhu R, Malhotra I (1994a) Karyological studies of four aeshnid dragonflies from the states of Jammu and Kashmir and Himachal Pradesh (India). In: Srivastava VK (Ed.) Advances in Oriental Odonatology: Proceedings of IV South Asian Symposium of Odonatology, Allahabad, India October 10–12, 1992, Cherry publications, Allahabad, 111–115.

Sandhu R, Malhotra I (1994b) New chromosome count in male dragonfly, Anatogaster s. basalis. Bionature 14: 69–70.

Sandhu R, Walia GK (1995) A note on the karyotype of Potamarcha congener (Anisoptera: Libellulidae). Chromosome Information Service 58: 24–25.

Sandhu R, Malhotra I (1994a) Karyological studies of four aeshnid dragonflies from the states of Jammu and Kashmir and Himachal Pradesh (India). In: Srivastava VK (Ed.) Advances in Oriental Odonatology: Proceedings of IV South Asian Symposium of Odonatology, Allahabad, India October 10–12, 1992, Cherry publications, Allahabad, 111–115.

Sangal SK, Tyagi BK (1982) The spermatocyte chromosomes of Anax immaculifrons Rambur from India (Anisoptera: Aeshnidae). Notulae odonatologicae 1(9): 154–155.

Schorr M, Paulson D (2020) World Odonata List. https://www.pugetsound.edu/academics/academic-resources/slater-museum/biodiversity-resources/dragonflies/world-odonata-list2/

Seshachar BR, Bagga S (1962) Chromosome number and sex-determining mechanism in dragonfly Hemianax ephippiger (Burmeister). Cytologia 27: 443–449. https://doi.org/10.1508/cytologia.27.443

Seshachar BR, Bagga S (1963) A cytochemical study of oogenesis in the dragonfly Pantala flavescens (Fabricius). Growth 27: 225–246.

Smith EA (1916) Spermatogensis of the dragonfly Sympetrum semicinctum with remarks upon Libellula basalis. Biological Bulletin 31: 269–290. https://doi.org/10.2307/1536236

Souza Bueno AM (1982) Estudos cromossomicos na ordem Odonata. M. Sc. Thesis, Universidade Estatal Paulista, 140 pp.

Srivastava MDL, Das CC (1953) Heteropycnosis in the autosome segments of Ceriagrion coromandelianum (Odonata). Nature 172: 765–766. https://doi.org/10.1038/172765b0

Suzuki KJ, Saitoh K (1990) A revised chromosome study of Japanese Odonates (I). Chromosomes of 14 species belonging to nine families. The Science Reports of the Hirosaki University 37: 38–49.

Suzuki KJ, Saitoh K, Sawano J (1991) Male germ-line chromosomes of Orthetrum poecilops miyajimaensis Yuki et Doi, 1938 (Libellulidae: Odonata). Tombo 34: 29–30.

Toyoshima H, Hirai H (1953) Studies on chromosomes of four dragonflies from Kagawa Prefecture. Kagawa Biology 1: 17–19. [In Japanese]

Thomas KI, Prasad R (1981) The chromosomes of five Indian dragonflies (Odonata). Perspectives in Cytology and Genetics 3: 629–632.

Thomis KI, Prasad R (1986) A study of the germinal chromosomes and C-band patterns in four Indian dragonflies (Odonata). Perspectives in Cytology and Genetics 5: 125–131.

Tyagi BK (1977) A note on the karyotypes of Burmagomphus pyramidalis Laidlow and Onychogomphus saundersi duaricus Faser (Anisoptera; Gomphidae). Odonatologica 6(4): 277–282.

Tyagi BK (1978a) The chromosome numbers and sex-determining mechanisms newly recorded in thirteen Indian dragonflies (Odonata). Chromosome Information Service, Tokyo 25: 5–7.
Tyagi BK (1978b) Studies on the chromosomes of Odonata of Dun Valley (Dehradun, India). PhD thesis, University of Garhwal, Srinagar.

Tyagi BK (1982) Cytotaxonomy of Indian dragonflies. Indian Review of Life Sciences 2: 149–161.

van Brink JM, Kiauta B (1964) Notes on chromosome behaviour in the spermatogenesis of the damselfly *Enallagma cyathigerum* (Charp.) (Odonata: Coenagrionidae). Genetica 35: 171–174. https://doi.org/10.1007/BF01804885

Walia GK (2007) Cytomorphological studies on *Gynacantha milliardi* Fraser of the family Aeshnidae (Anisoptera: Odonata). Cytologia 72(1): 57–62. https://doi.org/10.1508/cytologia.72.57

Walia GK, Chahal SS (2014) Distribution of constitutive heterochromatin and nucleolar organizer regions in two species of family Gomphidae (Odonata: Anisoptera). Nucleus 57: 223–227. https://doi.org/10.1007/s13237-014-0122-z

Walia GK, Chahal SS (2018) Cytogenetic characterization of *Macromia moorei* Selys, 1874 of family Macromiidae (Odonata: Anisoptera) from India by C-banding, silver nitrate staining and sequence specific staining. International Journal of Life Sciences Research 6(2): 64–68.

Walia GK, Chahal SS (2019) Cytogenetic report on *Cordulegaster brevipistigma* and *Watanabeopetalia atkinsoni* (Odonata: Cordulegastridae, Chlorogomphidae). Odonatologica 48(1–2): 101–113.

Walia GK, Chahal SS (2020) Linear differentiation of chromosomes of *Anisogomphus bivittatus* Selys, 1854 from India (Odonata: Anisoptera: Gomphidae). International Journal of Entomology 5(2): 120–122.

Walia GK, Chahal SS, Babu R (2016) Cytogenetic report on *Gynacanthaeschna sikkima* from India (Odonata: Aeshnidae). Odonatologica 45: 87–94.

Walia GK, Chahal SS, Somal DS (2018) Chromosome observations based on C-banding, Ag-NOR and sequence-specific staining in two *Anax* species from India (Odonata: Aeshnidae). Odonatologica 47(1–2) 2018: 145–160.

Walia GK, Devi M (2018) Distribution of constitutive heterochromatin in four species of genus *Copera* of family Platycnemididae (Odonata: Zygoptera) from India. International Journal of Life Sciences 6(2): 457–461.

Walia GK, Devi M (2020a) Cytogenetic characterization of five species of genus *Coeliccia* of family Platycnemididae (Odonata: Zygoptera) using C-banding, silver nitrate staining and sequence specific staining. Nucleus (2020). https://doi.org/10.1007/s13237-020-00314-3

Walia GK, Devi M (2020b) Cytogenetic data of subfamily Disparoneurinae (Odonata: Zygoptera: Platycnemididae) based on localization of C-heterochromatin, AgNOR’s and AT-GC regions. International Journal of Entomology Research 5(2): 70–73.

Walia GK, Katnoria N (2018) Morphological variation in the chromosome complement of *Neurobasis chinensis chinensis* of family Calopterygidae (Odonata: Zygoptera). International Journal of Life Sciences Research 6(4): 260–266.

Walia GK, Katnoria N, Gill JK (2018) Chromosomes of *Libellago lineata lineata* (Chlorocyphidae: Odonata). Indian Journal of Entomology 80(3): 737–740. https://doi.org/10.5958/0974-8172.2018.00118.9

Walia GK, Kaur H, Kaur J (2011) Karyotypic variations in the chromosome complement of *Pantala flavescens* (Fabricius) of the family Libellulidae (Anisoptera: Odonata). Cytologia 76(3): 301–307. https://doi.org/10.1508/cytologia.76.301
Walia GK, Kaur H, Kaur J (2015) Karyomorphological variations in the chromosome complement of *Orthetrum taeniolatum* of family Libellulidae (Odonata: Anisoptera). Cytologia 80(1): 95–99. https://doi.org/10.1508/cytologia.80.95

Walia GK, Sandhu R (1999) Karyotypic study of two species of family Aeschnidae (Anisoptera: Odonata). Chromosome Science 3: 45–47.

Walia GK, Sandhu R (2002) Chromosomal data on seven species of genus *Orthetrum* (Libellulidae: Anisoptera: Odonata). Bionature 22: 7–12.

Walia GK, Sandhu R, Goyal S (2006) Cytogenetical analysis of *Nepogomphus modestus* from Palampur area of Himachal Pradesh, India (Gomphidae: Anisoptera). Chromosome Science 9(3): 99–100.

Wasscher M (1985) The karyotypes of some dragonflies from Kenya and Sudan. Notulae odonatologicae 2(6): 105–106.

Wolfe LS (1953) A study of the genus *Uropetala* Selys (order Odonata) from New Zealand. Transactions and Proceedings of the Royal Society of New Zealand 80(3–4): 245–275.

Zhu H, Wu J (1986) Notes on the male germ cell karyotypes of some Odonata from the Shanxi Province, China. Notulae odonatologicae 2: 118–120.