Diversity of Cicadomorpha (Hemiptera: Auchenorrhyncha) in Citrus Orchards in Northeastern Argentina

Authors: Dellapé, Gimena, Bouvet, Juan P., and Paradell, Susana L.

Source: Florida Entomologist, 96(3) : 1125-1134

Published By: Florida Entomological Society

URL: https://doi.org/10.1653/024.096.0353
DIVERSITY OF CICADOMORPHA (HEMIPTERA: AUCHENORRHYNCHA) IN CITRUS ORCHARDS IN NORTHEASTERN ARGENTINA

GIMENA DELLAPÉ1*, JUAN P. BOUVET2 AND SUSANA L. PARADELL1

1División Entomología. Facultad de Ciencias Naturales y Museo, UNLP, Paseo del Bosque s/n (B1900FWA), La Plata, Buenos Aires, Argentina

2Sección Entomología, INTA EEA Concordia, CC 34 (E3200AQK), Entre Ríos, Argentina

*Corresponding autor; E-mail: gimenadellape@gmail.com

ABSTRACT

Among phytophagous insects, the Cicadomorpha are important economically because they damage crops by sucking plant sap and by transmitting plant pathogens, such as Spiroplasma citri and Xylella fastidiosa to citrus. In Argentina little knowledge exists about this subject. The aim of this work was to study the diversity of Cicadomorpha associated with citrus orchards in Entre Ríos province, and their seasonal fluctuation in relation with climatic and phenological conditions. A total of 1,554 specimens belonging to 28 species of Cicadomorpha were collected with yellow sticky traps in sweet orange (Citrus × sinensis (L.) Osbeck) and tangerine (Citrus unshiu Marc) orchards. The Shannon index and the Simpson index suggested a similar trend in the distribution of the dominant species in both crops. In the orange orchard, Cicadomorpha populations increased in the summer coincidently with temperature increases. On the other hand, a significant increase in abundance during the winter months was coincident with increase of early sprouts of the citrus plants. Entre Ríos province represents a new distribution record for 13 species. Tangerine is a newly recorded host-plant for 16 species studied, and eight species are reported for the first time on 'Valencia Late' orange.

Key Words: Xylella fastidiosa, Cicadellidae, Membracidae, Cercopidae, sweet orange, tangerine

RESUMEN

Dentro de los insectos fitófagos, los Cicadomorpha tienen importancia económica por ocasionar daños por succión de savia en plantas y transmitir fitopatógenos como Spiroplasma citri y Xylella fastidiosa en cítricos. En Argentina es escaso el conocimiento acerca de esta temática. El objetivo del trabajo fue estudiar la diversidad de los Cicadomorpha asociados a cultivos cítricos en la provincia de Entre Ríos y su fluctuación estacional en relación con las condiciones climáticas y fenológicas. Los especímenes se colectaron con trampas adhesivas amarillas. En total fueron colectados 1554 especímenes pertenecientes a 28 especies de Cicadomorpha en cultivos de naranja dulce (Citrus × sinensis (L.) Osbeck) y mandarina (Citrus unshiu Marc). Los valores del índice de Shannon, sugieren una tendencia similar en la distribución de las especies dominantes en ambos cultivos. Esto también fue reflejado por el índice de Simpson. En el cultivo de naranja, los Cicadomorpha presentaron incrementos poblacionales en verano, coincidentes con los aumentos de la temperatura. Por otro lado, el incremento en la abundancia de especímenes durante los meses de invierno, fue coincidente con el aumento de brotes tempranos en los cítricos. La provincia de Entre Ríos fue citada como nuevo registro de distribución para 13 especies. El cultivo de mandarina es un nuevo registro de planta huésped para 16 especies estudiadas, y ocho especies son registradas por primera vez sobre naranja Valencia.

Palabras Clave: Xylella fastidiosa, Cicadellidae, Membracidae, Cercopidae, naranja dulce, mandarina

The citrus (Sapindales: Rutaceae) industry is the most economically important activity in the world fruit market. The major producers of citrus are Brazil, China and the United States. Argentina ranks ninth and its geographical position has allowed the country to become a supplier of fresh citrus fruit during the boreal summer. Citrus orchards are located in 2 regions: Northwest
Among the most diverse lineages of phytophagous insects, the hemipteran infraorder Cicadomorpha comprises the superfamilies Cicadidae (cicadas), Cercopoidea (spittlebugs and froghoppers) and Membracoidea (leafhoppers and treehoppers). To date, approximately 30,000 cicadomorphan species have been described worldwide (Dietrich 2002; Cryan 2005). These insects have received much attention because of their economic importance. They can damage crops by sucking plant sap and transmitting plant disease organisms such as viruses, mollicutes and bacteria (Nielson 1968; Purcell 1985).

The causal agent of Citrus Stubborn Disease (CSD) is Spiroplasma citri, a phloem-limited mollicute that infects most citrus species as well as a wide range of non-rutaceous plant species. It is distributed in the United States, Northern Africa, the Mediterranean countries and Southeast Asia. CSD is naturally transmitted by leafhopper vectors such as Circulifer tenellus Baker and species of genus Scaphytopius Ball in the United States (Nejad et al. 2011).

Xylella fastidiosa Wells et al. 1987, is a xylem-limited bacterium that cause diseases such as ‘Pierce’s Disease’ in grape (Vitis vinifera L.), ‘Phony Peach Disease’, ‘Citrus Variegated Chlorosis’ (CVC), and ‘Leaf Scorch’ in coffee, oleander, mulberry, oak, and maple, among others (Hopkins & Purcell 2002). It has a wider distribution in the Americas, from the United States to Argentina. Insect dissemination of X. fastidiosa is possible by vector insects belonging to the families Cicadellidae (leafhoppers) and Cercopidae (spittlebugs) (Redak et al. 2004). Recently species of Membracidae (treehoppers) have also tested DNA positive for X. fastidiosa in oaks (Zhang et al. 2011).

In citrus orchards, X. fastidiosa causes ‘Citrus Variegated Chlorosis’ (CVC), which was detected in northeastern Argentina in 1984 and in Brazil 3 yr later (Hopkins & Purcell 2002). This disease is considered a potential threat to the production of oranges, if a suitable vector is present (Damsteegt et al. 2006). In total, 11 species of leafhoppers have been shown to be vectors of CVC in Brazil (Lopes 1996; Gravena et al. 1998; Parra et al. 2003).

In Argentina, studies conducted by De Coll et al. (1996, 2000) in Misiones province revealed that many species of cicadomorphs were able to acquire X. fastidiosa, including leafhoppers: Bucephalophora xanthophis (Berg), Diedrocephala bimaculata (Gmelin), Hortsenia similis (Walker), Macugonalia cavifrons (Stål), Sibovia sagata (Signoret), Sonesimia grossa (Signoret), Frequentania spiniventris (Linnavuori), Scaphytopius bolivianus (Oman), Curtara samera De Long & Freyat; and treehoppers: Ceresa ustulata Fairmaire, Entylia carinata (Forster). CVC was also observed in Corrientes province, where species associated with citrus were studied (Beltrán et al. 2004). In the last decade, CVC has been recorded in Concordia department, Entre Ríos province (Costa et al. 2009) in sweet orange and tangerine, but the insects associated with the affected orchards have not yet been studied.

Considering the importance of these insects for the transmission of X. fastidiosa and other plant pathogens, the aim of this work was to study the diversity of Cicadomorpha associated with citrus orchards in Entre Ríos province, Argentina, and their seasonal fluctuation in relation with climatic and phenological conditions.

The knowledge of cicadomorph species composition in citrus orchards and their abundance in the community are essential for integrated pest management, and can be used to predict situations that favor population peaks of these insects.

MATERIALS AND METHODS

Study Sites and Record of Climatic and Phenological Conditions

The study was conducted at the Agricultural Experimental Station of INTA, in Concordia department, Entre Ríos, Argentina (S 31° 22’ 27” W 58° 06’ 59”; 46 m asl). Two orchards were chosen as study sites: sweet orange, variety ‘Valencia Late’, grafted onto trifoliate orange (Poncirus trifoliate (L.) Raf.), planted at 7 × 3.5 m row spacing, which were 25 yr-old at the beginning of the experiment (779 trees); and tangerine orchard, variety ‘Satsuma Okitsu’ (Citrus unshiu Marc), grafted onto trifoliate orange, planted at 5 × 2 m row spacing, 12 yr-old at the beginning of the experiment (200 trees).

Between 2006 and 2009, the phenological stages of sweet orange plants were recorded monthly as follows: F1 (early sprouts), F2 (elongating shoots, small leaves), F3 (elongated shoots, leaves completing expansion), F4 (leaves reaching final size), and F5 (no new shoots, twigs and leaves predominantly adult). Meteorological data were collected by the weather station located in the Agricultural Experimental Station of INTA, in Concordia, Entre Ríos.

Sampling Method and Specimen Identification

The specimens were collected with yellow sticky traps, measuring 12.5 × 10 cm, installed at 1.5 m height. Four traps were installed in the orange orchard, and in the tangerine orchard 2
traps (1 trap per 100 plants, approximately) (Fe-
lippe et al. 2006); traps were replaced every 2 wk
between Oct 2006 and Jan 2009. The specimens
collected from sticky traps were removed us-
ing benzene to dissolve the glue and separately
placed in plastic tubes with 70% alcohol.

Taxonomic terminology for the Cicadomorpha
at the family and subfamily levels followed Remes
Lenicov et al. (1999) and Dietrich (2005). Species
identifications were based on literature available
for identifying leafhoppers: Lawson (1931), Chris-
tensen (1942), Linnavuori (1959), Nielson (1968),
De Long & Freytag (1976), and Young (1952,
1968, 1977); treehoppers: Barreira & Sakakibara
(2001) and Andrade (2004a, 2004b), and spittle-
bugs: Torres (1950) and Costa & Sakakibara
(2002). The collected specimens were deposited in
the Entomological Collection of Museo de La Pla-
ta, Argentina (MLP). Material that was damaged
by removal from the traps could not be identified.
The geographic distribution for each identified
species was taken from the literature and sum-
marized in a table, along with the new informa-
tion provided by this work.

Data Analysis

The Cicadomorpha samples were identified to
the subfamily and species level and counted un-
der a stereo microscope. Total numbers of collect-
ed individuals (N) and species (S) were recorded
monthly.

The relative importance (RI) of a species takes
into account not only its abundance but also its

TABLE 1. ABUNDANCE (N) AND SPECIES RICHNESS (S) OF CICADOMORPHA FAMILIES, ON SWEET ORANGE AND TANGER-
INE ORCHARDS IN ENTRE RÍOS.

Superfamily/Family	Orange	Tangerine		
	N	S	N	S
CERCOPOIDEA (Spittlebugs, Froghoppers)				
Aphrophoridae	3	1	6	1
Cercopidae	3	1	3	1
MEMBRACOIDEA				
Cicadellidae (Leafhoppers)	1013	17	435	15
Membracidae (Treehoppers)	49	5	42	3
Total Identified	1038	24	447	20
TOTAL	1068	486		

Fig. 1. Seasonal abundance and species richness of Cicadomorpha on sweet orange and tangerine orchards in
Entre Ríos during 2006-2009.
Table 2. Abundance (N) and relative importance (RI) of Cicadomorpha species collected from sweet orange and tangerine orchards in Entre Ríos.

Family/Subfamily	Species	Orange N	Orange RI	Tangerine N	Tangerine RI	
CERCOPOIDEA						
APHROPHORIDAE	Aphrophorinae	Cephus siccifolius (Walker)	3 *	6 **		
CERCOPIDAE	Tomaspidinae	Deois sp.	3 *	2 *		
MEMBRACOIDEA	Unidentified	0	1			

CICADELLIDAE					
Agallinae	Agalliana ensigera Oman	28 **	0		
Unidentified	9	3			
Cicadellinae	Bucephalonia xanthophis (Berg)	1 *	7 **		
Diedrocephala bimaculata (Gmelin)	1 *	2 **			
Hortensia similis (Walker)	0	1 *			
Macugonalia cavifrons (Stål)	2 *	1 *			
Molomea lineiceps Young	99 ***	37 ***			
Sibovia sagata (Signoret)	0	1 *			
Sonesimia grossa (Signoret)	0	1 *			
Tapajosa rubromarginata Signoret	29 **	45 ***			
Tretogonia notatifrons Melichar	1 *	0			
Unidentified	0	7			
Deltoccephalinae	Amplicephalus marginellanus Linnavuori	0	1 *		
Atanus serricauda (Linnavuori)	1 *	0			
Atanus sp.	1 *	0			
Balclutha sp.	1 *	0			
Dalbulus maidis (De Long & Wolcott)	2 *	0			
Frequenamia spiniventris Linnavuori & De Long	570 ***	203 ***			
Osbornellus infuscatus Linnavuori	12 **	10 **			
Scapephytopius bolivianus (Oman)	169 ***	82 ***			
Unidentified	14	24			
Gyponinae	Curtara samera (De Long & Freytag)	9 **	4 **		
Unidentified	3	1			
Typhlocybinae	Protalebrella brasiliensis Young	51 **	1 *		
Unidentified	4	2			
Xerophloeinae	Xerophloea viridis (Fabricius)	6 **	2 *		

MEMBRACIDAE					
Smiliinae	Ceresa sp.	7 **	7 **		
Cyphonia sp.	35 **	31 ***			
Unidentified	0	1			
Sp1	4 *	3 **			
Sp2	2 **	0			
Sp3	1 *	0			

(*) Rare or occasional, (**) Frequent, (***) Very frequent
occurrence or frequency. Thus, species poorly represented in terms of individual numbers but frequently recovered over a long period can be balanced with abundant species with sporadic occurrence (Remes Lenicov & Virla 1993; Murúa et al. 2006). For each sampled site the relative importance of species was determined using the formula:

\[RI = \left(\frac{n_i}{n_t} \right) \times \left(\frac{m_i}{m_t} \right) \times 100 \]

where \(n_i \) = number of individuals of species “i”, \(n_t \) = number of individuals of all species, \(m_i \) = number of samples containing species “i”, and \(m_t \) = total number of samples. A “very frequent” species is defined as having a RI equal to or higher than 1%, the RI of “frequent” species lies between 0.02% and 0.99%; and “rare or occasional” species have a RI equal to or lower than 0.019% (Paradell et al. 2001).

Community or habitat diversity, can be measured by methods that consider only the number of species (Margalef’s index), or methods that highlight the structure of the community considering both the number of species and their relative importance. Such methods may highlight the dominance of a few species (Simpson’s index), or else the degree of evenness among the whole set of species (Shannon-Wiener’s index). The specific richness index of Margalef (\(D_{mg} \)), the Shannon-Wiener index (\(H’ \)), and the dominance index of Simpson (\(D \)) were calculated as follows:

\[H’ = -\sum p_i \times \log_2 p_i \]

\[D_{mg} = S^{-1} \times \ln N \]

\[D = 1 - \frac{\sum (p_i)^2}{1} \]

where \(p_i \) = number of individuals of species “i”, \(N \) = number of individuals of all species, and \(S \) = number of species (Moreno 2001).

Seasonal fluctuation of Cicadomorpha in sweet orange orchards was evaluated through monthly values of collected individuals and analyzed with respect to climatic and phenological variables.

RESULTS AND DISCUSSION

A total of 1,554 specimens were collected (1,068 on sweet orange and 486 in tangerine plants) belonging to 4 families of Cicadomorpha, of which Cicadellidae was the most abundant in both orchards, followed by Membracidae. Other studies in citrus have shown similar results in terms of higher abundance of Cicadellidae (De Coll et al. 2006; Giustolin et al. 2009). Of all collected specimens, 95.56% (1,485 specimens) were identified and used in further analysis (Table 1).

Community or habitat diversity, can be measured by methods that consider only the number of species (Margalef’s index), or methods that highlight the structure of the community considering both the number of species and their relative importance. Such methods may highlight the dominance of a few species (Simpson’s index), or else the degree of evenness among the whole set of species (Shannon-Wiener’s index). The specific richness index of Margalef (\(D_{mg} \)), the Shannon-Wiener index (\(H’ \)), and the dominance index of Simpson (\(D \)) were calculated as follows:

\[H’ = -\sum p_i \times \log_2 p_i \]

\[D_{mg} = S^{-1} \times \ln N \]

\[D = 1 - \frac{\sum (p_i)^2}{1} \]

where \(p_i \) = number of individuals of species “i”, \(N \) = number of individuals of all species, and \(S \) = number of species (Moreno 2001).

Seasonal fluctuation of Cicadomorpha in sweet orange orchards was evaluated through monthly values of collected individuals and analyzed with respect to climatic and phenological variables.

RESULTS AND DISCUSSION

A total of 1,554 specimens were collected (1,068 on sweet orange and 486 in tangerine plants) belonging to 4 families of Cicadomorpha, of which Cicadellidae was the most abundant in both orchards, followed by Membracidae. Other studies in citrus have shown similar results in terms of higher abundance of Cicadellidae (De Coll et al. 2006; Giustolin et al. 2009). Of all collected specimens, 95.56% (1,485 specimens) were identified and used in further analysis (Table 1).

The number of collected specimens varied between samples (Fig. 1). The highest number was obtained in Jan 2007 (\(N = 149 \)) and the lowest number in Jun 2007 (\(N = 3 \)).

In total, 28 species of Cicadomorpha were collected. Of these, 24 species were found in the orange orchard, while 20 species were collected in
Species	Geographic Distribution	Host Plants	Notes
Agalliana ensigera Oman	Brazil; Bolivia; Argentina: Salta, Jujuy, Tucumán, Córdoba, San Juan, Mendoza, Chaco, Misiones, Buenos Aires, La Pampa, Río Negro. New record for Entre Ríos province	*Citrus sinensis* (L.) Obs.	
Amplicephalus marginellanus Linnavuori	Brazil; Bolivia; Paraguay; Argentina: Jujuy, Tucumán, Córdoba, San Luis, Chaco, Santa Fe, Misiones, Corrientes, Entre Ríos, Buenos Aires. New record for Entre Ríos province.	*Citrus unshiu* Marc.	
Atanus serricauda (Linnavuori)	Argentina: Tucumán, San Luis, Santa Fe. New record for Entre Ríos province.	*Citrus sinensis* (L.) Obs.	1, 13, 17
Bucephalogonia xanthophis (Berg)	Brazil; Bolivia; Argentina: Jujuy, Córdoba, Santa Fe, Misiones, Corrientes, Mendoza, Salta, Buenos Aires. New record for Entre Ríos province.	*Citrus unshiu* Marc.	
Cephisus siccifolius (Walker)	Mexico; Central America; Brazil; Paraguay; Uruguay; Argentina: Salta, Tucumán, Misiones, Buenos Aires. New record for Entre Ríos province.	*Citrus sinensis* (L.) Obs.	3
Curtara samera De Long & Freytag	Brazil; Argentina: Jujuy, Misiones. New record for Entre Ríos province.	*Citrus unshiu* Marc.	
Dalbulus maidis (De Long & Wolcott)	United States; Mexico; Central America; Colombia; Venezuela; Peru; Brazil; Bolivia; Argentina: Salta, Jujuy, Catamarca, Tucumán, Santiago del Estero, Chaco, Santa Fe, Entre Ríos, Buenos Aires. New record for Entre Ríos province.	*Citrus sinensis* (L.) Obs.	1, 13, 17
Diedrocephala bimaculata (Gmelin)	Mexico; Honduras; El Salvador; Nicaragua; Costa Rica; Panama; Colombia; Venezuela; Guyana; Suriname; French Guiana; Peru; Brazil; Bolivia; Paraguay; Argentina: Tucumán, Chaco, Misiones, Santa Fe, Corrientes. New record for Entre Ríos province.	*Citrus unshiu* Marc.	
Frequenamia spiniventris Linnavuori & De Long	Brazil; Paraguay; Argentina: Misiones, Corrientes. New record for Entre Ríos province.	*Citrus sinensis* (L.) Obs.	1, 8
Hortensia similis (Walker)	United States; Mexico; Puerto Rico; Nicaragua; Panama; Antilles; Cuba; Colombia; Venezuela; Suriname; Guyana; French Guiana; Ecuador; Peru; Bolivia; Brazil; Paraguay; Argentina: Misiones, Corrientes, Santa Fe, Entre Ríos, Buenos Aires, Salta, Jujuy, Chaco. New record for Entre Ríos province.	*Citrus unshiu* Marc.	1, 13, 17
Macugonalia cavifrons (Stål)	Venezuela; Colombia; Peru; Brazil; Bolivia; Paraguay; Argentina: Misiones. New record for Entre Ríos province.	*Citrus unshiu* Marc.	13

1Beltrán et al. 2004, 2Catalano 2011, 3De Coll 1996, 4Dellapé et al. 2011, 5Gimenez Pecci et al. 2002, 6Linnavuori 1959, 7Paradell 1995, 8Paradell et al. 2000, 9Paradell et al. 2012, 10Remes Lenicov 1982, 11Remes Lenicov & Tesón 1985, 12Remes Lenicov et al. 1997, 13Remes Lenicov et al. 1999, 14Remes Lenicov et al. 2006, 15Saluso 2006, 16Young 1968, 17Young 1977.
Species	Geographic Distribution	Host Plants
Molomea lineiceps Young	Brazil; Paraguay; Argentina: Córdoba, Corrientes, Entre Ríos	Citrus sinensis (L.) Obs.
	New record of Citrus unshiu Marc.	
Osbornellus infuscatus Linnavuori	Brazil; Paraguay; Argentina: Tucumán, Córdoba, Formosa, Misiones, Buenos Aires.	New record of Citrus unshiu Marc.
	New record for Entre Ríos province	
Protalebrella brasiliensis Young	United States; Mexico; Central America; Colombia; Venezuela; Brazil; Bolivia; Paraguay; Argentina: Tucumán, Córdoba, Mendoza, Chaco, Santa Fe, Misiones, Entre Ríos	New record of Citrus sinensis (L.) Obs. and C. unshiu Marc.
Scaphytopius bolivianus (Oman)	Bolivia; Argentina: Misiones.	New record of Citrus sinensis (L.) Obs.
	New record for Entre Ríos province	New record of Citrus unshiu Marc.
Sibovia sagata (Signoret)	United States; Mexico; Antilles; Brazil; Bolivia; Argentina: Jujuy, Misiones, Corrientes, Buenos Aires.	New record of Citrus sinensis (L.) Obs.
	New record for Entre Ríosprovince	New record of Citrus unshiu Marc.
Sonesimia grossa (Signoret)	Brazil; Bolivia; Paraguay; Argentina: Misiones, Corrientes.	Citrus sinensis (L.) Obs.
	New record for Entre Ríos province	New record of Citrus unshiu Marc.
Tapajosa rubromarginata Signoret	Brazil; Paraguay; Argentina: Salta, Tucumán, Chaco, Córdoba, Entre Ríos	New record of Citrus sinensis (L.) Obs. and C. unshiu Marc.
Tretogonia notatifrons Melichar	Suriname; French Guiana; Brazil; Ecuador; Bolivia; Paraguay; Argentina: Chaco, Misiones, Corrientes, Córdoba, Buenos Aires.	New record of Citrus sinensis (L.) Obs.
Xerophloea viridis (Fabricius)	United States; Mexico; Venezuela; Peru; Brazil; Bolivia; Argentina: Salta, Catamarca, Tucumán, Santiago del Estero, Córdoba, Neuquén, Chaco, Misiones, Santa Fe, Buenos Aires.	New record of Citrus sinensis (L.) Obs. and C. unshiu Marc.

1Beltrán et al. 2004, 2Catalano 2011, 3De Coll 1996, 4Dellapé et al. 2011, 5Gimenez Pecci et al. 2002, 6Linnavuori 1959, 7Paradell 1995, 8Paradell et al. 2000, 9Paradell et al. 2012, 10Remes Lenicov 1982, 11Remes Lenicov & Tesón 1985, 12Remes Lenicov et al. 1997, 13Remes Lenicov et al. 1999, 14Remes Lenicov et al. 2006, 15Saluso 2006, 16Young 1968, 17Young 1977.
tangerine trees, and 16 were shared by both study sites. Cicadellidae presented the highest species richness in both orchards (Table 1).

Species composition also varied between different months. The highest value of species richness was recorded in Jan and Dec 2007, and Apr 2008 for the orange orchard (S = 8) and only in Dec 2007 for tangerines (S = 10). The lowest species richness was recorded in May 2007 in both orchards (S = 1) (Fig. 1).

Frequenamia sp. was the most abundant species in all samples with 773 specimens, followed by the leafhoppers S. bolivianus (251 specimens), Molomea lineiceps Young (136), Tapajosa rubromarginata Signoret (74), and the treehoppers Cyphonia sp. with 66 specimens. All other species comprised less than 60 collected specimens (Table 2). Other studies conducted in Argentina have shown similar results, although F. spiniventris was more abundant in weeds associated with citrus (Beltrán et al. 2004; De Coll et al. 2006).

Frequenamia sp. was also the most frequent species in all samples, followed by S. bolivianus and M. lineiceps. The species T. rubromarginata had not been previously reported in citrus, whereas in this study it was very frequent in the tangerine orchard and frequent in oranges, similarly to Cyphonia sp. (Table 2).

Other frequent species in the sweet orange orchard were Osnorniellus infuscatus Linnavuori, Curtara samara (De Long & Freytag), Ceresa sp., Agalliana ensiger Oman, Protalebrella brasiliensis Young, and Xerophleoa viridis (Fabricius). The first 3 were also frequent in tangerine, along with Cephisus sicinfolius (Walker), B. xanthophis and D. bimaculata (Table 2). The remaining species were rare or occasional in both orchards. Similar results have been obtained by studies in Brazil (Molina et al. 2006; Nunes et al. 2007; Menegatti et al. 2008; Miranda et al. 2009; Molina et al. 2010), where Dilobopterus costalimai Young was the dominant species; but other research has shown B. xanthophis as the most abundant and frequent species on citrus (Yamamoto et al. 2001; Coelho et al. 2008).

Both orchards presented high species richness with D = 3.312 for sweet orange, and D = 3.113 for tangerine. For the diversity analysis we used the Shannon-Wiener index and the Simpson dominance index. The results obtained for the Shannon index in the orange (H' = 1.6) and tangerine orchards (H' = 1.8) suggested a similar trend in the distribution of dominant species. This was also reflected by the Simpson index with D = 0.342 for orange and D = 0.261 for tangerine (Table 3).

In sweet orange orchards, Cicadomorpha presented 2 population increases throughout the sample: 1 in the summer, between the months of Dec and Feb; and another in the winter (Jul-Aug). Results also showed that temperature increases (spring and summer) were coincident with increases in abundance of specimens. On the other hand, a significant increase in the number of specimens during winter months was coincident with the increases of early sprouts (phenological stage F1) of the citrus plants (Fig. 2).

Most Cicadomorpha tend to be extremely polyphagous and range widely within a number of agricultural and native plant communities (Redak et al. 2004; Giustolin et al. 2009). Citrus are not primary but occasional hosts for them, while other alternative host plants are also important for the development of the different cicadomorphan species (Milanez et al. 2001). This may explain why the number of collected insects was so low in some months during the sampling. These studies require further analysis, since species with a wide range of host plants will exhibit low seasonality (Novotny 1998).

Following a literature review, all known information on geographic distribution of the species found in this study and their associations with citrus was summarized in Table 4. Entre Ríos province was cited as a new distribution record for the following species: A. ensigera, Atanus serricauda (Linnavuori), B. xanthophis, C. siccfilius, C. samara, D. bimaculata, F. spiniventris, M. cavifrons, O. infuscatus, S. bolivianus, S. sagata, S. grossa, and X. viridis.

Tangerine represents a new record as host-plant for all species studied here, while the occurrence of A. ensigera, A. serricauda, Dalbulus maidis (De Long & Wolcott), O. infuscatus, P. brasiliensis, T. rubromarginata, Tretogonia notatifrons Melichar, and X. viridis in Valencia Late Orange is reported for the first time (Table 4).

The present work, along with research conducted by De Coll (1996, 2000, 2006), Remes Lenicov et al. (1999) and Paradell et al. (2000), gathers all information about diversity, frequency and seasonal fluctuation of Hemiptera Cicadomorpha associated with citrus orchards in Argentina. This knowledge is essential for the control of the vectors of one of the most important diseases of citrus in America.

ACKNOWLEDGMENTS

We thank the reviewers for helpful comments, and Dr. A. Maciá (MLP) and D.A. Barrasso for critically reading the manuscript. This research was supported by CONICET, CIC, and grant Nº 630 from UNLP.

REFERENCES CITED

ANDRADE, G. S. 2004a. Uma nova espécie do gênero Cyphonia Laporte (Hemiptera, Auchenorrhyncha, Membracidae). Rev. Brasileira Zool. 21(1): 13-14.

ANDRADE, G. S. 2004b. As espécies do gênero Ceresa Amyot & Serville (Hemiptera, Auchenorrhyncha, Membracidae). Rev. Brasileira Zool. 21 (4): 671-738.
BARREIRA, R. L., AND SAKAKIBARA, A. M. 2001. Duas especies novas de Cyphonia Laporte da regiao central do Brasil (Homoptera, Membracidae, Smiliniinae). Rev. Brasileira Zool. 18(1): 239-244.

BELTRAN, V. M., CACERES, S., ZUBRZYCKI, H., PIOPER, D., WILLIUK, E., AND JALDO, H. 2004. CVC associat-ed vectors in Valencia Orange of Corrientes, Argen-tina. Proc. Intl. Soc. Citiculture, 10th Intl. Citrus Congress 75-83.

CATALANO, M. I. 2011. Cicadélidos vectores de fitoplas-mas a cultivos de importancia econômica na Argen-tina. Sistemática y bioecologia (Insecta- Auchenorrhyncha- Cicadellidae) in a ‘Westin’ Sweet Orange Orchard. Neotropical Entomol. 37(4): 449-456.

DELLAPE, G., LOGARZO, G. A., VIRLA, E. G., AND PAREDEL S. L. 2011. New records on the geographical distribution of South American Sharpshooter (Cicadellidae: Cicadellinae: Proconini) and their poten-tial as vectors of Xylella fastidiosa. Florida Entomol. 94(2): 365-369.

DE LONG, D. M., AND FREYTAG, P. H. 1976. Studies of the world Gypioninae (Homoptera-Cicadellidae). A synopsis of the genus Curtara. Brenesia 7: 1-97.

DIETRICH, C. H. 2002. Evolution of Cicadomorpha (In-secta, Hemiptera). Denisia. 4: 155-170.

DIETRICH, C. H. 2005. Keys to the families of Cicado-morpha and subfamilies and tribes of Cicadellidae (Hemiptera: Auchenorrhyncha). Florida Entomol. 88(4): 502-517.

FEDERICITURS. 2011. The Argentine Citrus Industry. Available online: http://www.fedicriturs.org/activi-dad-citricola-2011.pdf

FELIPPE, M. R., UHARA-CARMO, A., RUGNO, G. R., COELHO, J. H., XIMENES, N. L., GARBIN, L. F., AND YAMAMOTO, P. T. 2006. Influencia de las armadil-las adesivas amarelas na fluctuação populacional de insetos vetores da CVC e HLB (Hemiptera: Ci-cadellidae e Psyllidae) na bordure e área central de pomar citrico. Huanglongbing Greening Wkshp. Intl. 100.

GIMENEZ PECCI, M. P., LAGUNA, I. G., AVILA, A. O., REMES LENICOV, A. M. M., VIRLA, E. G., BORGOGNO, C., NOME, C. F., AND PARADELL, S. L. 2002. Duas espécies de Xylella fastidiosa vetores, pp. 36-53 In L. C. Donadio and C. S. Moreira [eds.], Citrus Variegated Chlorosis. Bebedouro, Estação Experimental de Citricultura.

HOPKINS, D. L., AND PURCELL, A. H. 2002. Xylella fasti-diosa: Cause of Pierce’s disease of grapevine and others emergent diseases. Plant Dis. 86: 1056-1066.

LAWSO, P. B. 1931. The Genus Xerophilus in North America (Homoptera, Cicadellidae). The Pan-Pacific Entomol. 7(4): 159-169.

LINNAUROI, R. 1959. Revision of the Neotropical Del-tocephalinae and some related subfamilies (Homop-tera). Ann. Zool. Soc. ‘Vanamo’ 20 (1): 1-370.

LOPES, J. R. S. 1998. The Xyella fastidiosa vectors, pp. 134 pp. Available online http://sedici.unlp.edu.ar/ pdf?sequence=1

MENEGATTI, A. C. O., GARCIA, F. R. M., AND SAVARIS, M. 2008. Análise faunística e flutuação populacional de cigarrinhas (Hemiptera, Cicadellidae) em pomar cítrico no município de Chapecó, Santa Catarina. Biotemas 21(1): 53-58.

MILANEZ, J. M., PARRA, J. R. P., AND MAGRI, D. C. 2004. Transmission of Xylella fastidi-osa (CVC) en el Departamento de Concordia, provincia de Entre Ríos. XIII Jornadas Fitosanitarias Argen-tinas E021.

Cryan, J. R. 2005. Molecular phylogeny of Cicadomorpha (Insecta: Hemiptera: Cicadoidea, Cicadopidae, Tomaspasidae). Rev. Brasileira Entomol. 46(2): 195-207.

COSTA, N., PLATA, M. I., GARRÁN, S. M., AND MIKA, R. 2009. Detección de Clorosis Variegada de los Cítricos (CVC) en el Departamento de Concordia, provincia de Entre Ríos. XIII Jornadas Fitosanitarias Argentinas E021.

COSTA, A. C. F., DE COSTA, N., PLATA, M. I., GARRÁN, S. M., AND MIKA, R. 2002. Reestruturação do gênero Deois Fennah; descrição de um novo gênero e de novas espécies (Homoptera, Cicadopidae, Tomaspasidae). Rev. Brasileira Entomol. 37(4): 449-456.

COSTA, N., PLATA, M. I., GARRÁN, S. M., AND MIKA, R. 2009. Detección de Clorosis Variegada de los Cítricos (CVC) en el Departamento de Concordia, provincia de Entre Ríos. XIII Jornadas Fitosanitarias Argentinas E021.

Cryan, J. R. 2005. Molecular phylogeny of Cicadomorpha (Insecta: Hemiptera: Cicadoidea, Cicadopidae and Membracoidea): adding evidence to the contro-versy. Syst. Entomol. 30: 563-574.

DAMSTEECT, V. D., BRLANSKY, R. H., PHILLIPS, P. A., AND ROY, A. 2006. Transmission of Xylella fastidi-osa, causal agent of Citrus Variegated Chlorosis, by the glassy-winged sharpshooter, Homalodisca coag-ulata. Plant Dis. 90: 567-570.

De Coll, O. R. 1996. Estudio sistemático y bioecológico de Homópteros Cicadópteros, potenciales vectores de la “Clorosis Variegada de los Cítricos”. PhD Thesis. UNLP. 134 pp. Available online: http://www.federcitrus.org/activi-dad-citricola-2011.pdf

De Coll, O. R., Remes Lenicov, A. M. M., Agostini, J., and ParadeLL S. L. 2000. Detection of Xylella fastidi-osa in weeds and sharpshooters in orange groves af-fected with Citrus Variegated Chlorosis in Misiones, Argentina, pp. 216-222 In: Proc. 14th Conf. Intl. Org. Citrus Virologists, Insect-Transmitted Procaryotes.

De Coll, O. R., Remes Lenicov, A. M. M., ParadeLL, S., and Agostini, J. 2006. Comportamiento poblacional de chicharritas (Homoptera: Auchenorrhyn-cha) presentes en el Departamento Montecarlo, Mis-siones. EEA Montecarlo Publ. N°6: 1-17.

Dellape, G., LOGARZO, G. A., VIRLA, E. G., AND PARADELL S. L. 2011. New records on the geographical distribution of South American Sharpshooters (Cicadellidae: Cicadellinae: Proconini) and their potential as vectors of Xylella fastidiosa. Florida Entomol. 94(2): 365-369.

DE LONG, D. M., AND FREYTAG, P. H. 1976. Studies of the world Gypioninae (Homoptera-Cicadellidae). A synopsis of the genus Curtara. Brenesia 7: 1-97.
Molina, R. O., Gonçalves, A. M. O., Zanutto, C. A., and Nunes, W. M. C. 2010. Population Fluctuation of Vectors of Xylella fastidiosa Wells in Sweet Orange [Citrus sinensis (L.) Osbeck] Varieties of Northwest Paraná State, Brazil. Brazilian Arch. Biol. Technol. 53: 549-554.

Moreno, C. 2001. Métodos para medir la biodiversidad. M&T - Manuales y Tesis SEA, vol. 1. Zaragoza: CIT ED, UNESCO & SEA.

Murúa, M. G., Molina-Ochoa, J., and Coviella, C. 2006. Population dynamics of the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae) and its parasitoids in Northwestern Argentina. Florida Entomol. 89(2): 175-182.

Nejat, N., Vadamalai, G., and Dickinson, M. 2011. Spiroplasma citri: a wide host range phytopathogen. Plant Pathol. J. 10(2): 46-56.

Nielson, M. W. 1968. The Leafhopper Vectors of Phytopathogenic Viruses (Homoptera, Cicadellidae): Taxonomy, Biology, and Virus Transmission. United States Dept. Agr. Tech. Bull. 1382, 386 pp.

Novotny, V., and Basset, Y. 1998. Seasonality of sap-sucking insects (Auchenorrhyncha, Hemiptera) feeding on Ficus (Moraceae) in a lowland rain forest in New Guinea. Oecologia. 115: 514-522.

Nunes, W. M. C., Molina, R. O., Albuquerque, F. A., Corazza-Nunes, M. J., Zanutto, C. A., and Machado, M. 2007. Flutuação populacional de cigarrinhas vetores de Xylella fastidiosa em pomares comerciais de citros no noroeste do Paraná. Neotropical Entomol. 36: 254-260.

Paradell, S. 1995. Especies argentinas de homópteros Cicadelidos asociados al cultivo de maíz Zea mays L. Rev. Fac. Agronóm. 71(2): 213-234.

Paradell, S., Remes Lenicov, A. M. M., De Coll, O., and Agostini, J. 2000. Cicadelidos asociados a citrus afectados por la Clorosis Variegada de los citricos (CVC) en Montecarlo, Misiones, República Argentina (Hemiptera-Auchenorrhyncha). Rev. Soc. Entomol. Argentina 59 (1-4): 103-118.

Paradell, S., Virla, E., and Toledo, A. 2001. Leafhoppers species richness and abundance on crops in Argentina (Insecta-Hemiptera-Cicadellidae). Bol. San. Veg. Plagas 27 (4): 465-475.

Paradell, S., Virla, E. G., Logarzo, G. A., and Delapê, G. 2012. Proconini Sharpshooters of Argentina, with notes on its distribution, host plants, and natural enemies. J. Insect Sci. 12 (116): 1-17.

Parra, J. R. P., Oliveira, H. N., and Pinto, A. S. 2003. Pragas e insetos benéficos com Citros. FEALQ, Piracicaba, Brasil, 73 pp.

Purcell, A. H. 1985. The ecology of bacterial and mycoplasmal plant diseases spread by leafhoppers and planthoppers, pp. 351-380 In L. R. Nault and J. G. Rodriguez [eds.], The Leafhoppers. J. Wiley & Sons Publishers.

Redak, R., Purcell, A., Lopes, J. R. S., Blua, M., Mizell, R. F., and Andersen, P. C. 2004. The biology of xylem fluid-feeding insect vectors of Xylella fastidiosa and their relation to disease epidemiology. Annu. Rev. Entomol. 49: 243-270.

Remes Lenicov, A. M. M. 1982. Aportes al conocimiento de los Agallinae argentinos (Homoptera-Cicadellidae). Neotrópica 28(80): 215-138.