Single Electrons from Heavy Flavor Decays in p+p Collisions at √s = 200 GeV

S.S. Adler,5 S. Afanasiev,17 C. Aidala,5 N.N. Ajitanand,43 Y. Akiba,20,38 J. Alexander,43 R. Amirikas,12 L. Aphecetche,45 S.H. Aronson,5 R. Averbeck,14 T.C. Awes,35 R. Azmoun,44 V. Babintsev,15 A. Baldisseri,10 K.N. Barish,6 P.D. Barnes,27 B. Bassalleck,53 S. Bathe,39 S. Batsoulis,9 V. Baublis,37 A. Bazilevsky,39,15 S. Belikov,16,15 Y. Berdnikov,40 S. Bhagavatula,16 J.G. Boissovain,27 H. Borel,10 S. Borenstein,25 M.L. Brooks,27 D.S. Brown,34 N. Bruner,33 D. Bucher,30 H. Buesching,30 V. Bumazhnov,15 G. Bunce,5,39 J.M. Burward-Hoy,26,44 S. Butsyk,44 X. Camard,45 J.-S. Chai,18 P. Chand,4 W.C. Chang,2 S. Chernichenko,15 C.Y. Chi,9 J. Chiba,20 M. Chiu,9 I.J. Choi,52 J. Choi,19 R.K. Choudhury,4 T. Chujo,5 V. Cianciolo,35 Y. Cobigo,10 B.A. Cole,9 P. Constantin,16 D. d’Enterrina,45 G. David,5 H. Delagrange,45 A. Denisov,15 A. Deshpande,39 E.J. Desmond,5 A. Devisnes,44 O. Dietzsch,41 O. Draper,25 A. Drees,44 R. du Rietz,29 A. Durum,15 D. Dutta,4 Y.V. Efremenko,35 K. El Chenawi,46 A. Enokizono,14 H. En’yo,38,39 S. Esimi,48 L. Ewell,5 D.E. Fields,39,39 F. Fleuret,25 S.L. Fokin,23 B.D. Fox,39 Z. Fraenkel,51 J.E. Frantz,9 A. Franz,5 A.D. Frawley,12 S.-Y. Fung,6 S. Garpmann,29 T.K. Ghosh,49 A. Glenn,46 G. Gogberidze,46 M. Gonin,25 J. Gosset,10 Y. Goto,39 R. Granier de Cassagnac,25 N. Grau,16 S.V. Greene,46 M. Grosse Perdekamp,39 W. Gury,5 H.-A. Gustafsson,29 T. Hachiya,14 J.S. Haggerty,5 H. Hamagaki,8 A.G. Hansen,27 E.P. Hartouni26 M. Harvey,5 R. Hayano,8 N. Hayashi,38 X. He,13 M. Heffner,26 T.K. Hemmick,44 J.M. Heuser,44 M. Hibino,50 J.C. Hill,16 W. Holzmann,43 K. Homma,14 B. Hong,22 A. Hoover,34 T. Ichihara,38,39 V.V. Ikonnikov,23 K. Imai,24,38 D. Isenhower,1 M. Ishihara,38 M. Issah,43 A. Isupov,17 B.V. Jacak,44 W.Y. Jang,22 Y. Jeong,19 J. Jia,44 O. Jimmouchi,38 B.M. Johnson,5 S.C. Johnson,26 K.S. Joo,31 D. Jouan,36 S. Kametani,80 N. Kamihara,47,38 J.H. Kang,52 S.S. Kapoor,4 K. Katou,50 S. Kelly,9 B. Khachaturov,51 A. Khanzadeev,37 J. Kikuchi,50 D.H. Kim,31 D.J. Kim,52 D.W. Kim,19 E. Kim,52 G.-B. Kim,25 H.J. Kim,52 E. Kistenev,5 A. Kiyomichi,48 K. Kiyoyama,32 C. Klein-Boshe,30 H. Kobayashi,38,39 L. Kochenda,37 V. Kochetkov,15 D. Koheler,53 T. Kohama,14 M. Köpypiene,44 D. Kotchetkov,6 A. Kozlov,51 P.J. Kroon,5 C.H. Kuberg,1,27 K. Kurita,39 Y. Kuroki,48 M.J. Kweon,22 Y. Kwon,52 G.S. Kyle,34 R. Lacey,43 V. Ladygin,17 J.G. Lajoie,16 A. Lebedev,16,23 S. Leckey,44 D.M. Lee,27 S. Lee,19 M.J. Leitch,27 X.H. Li,8 H. Lim,32 A. Litvinenko,17 M.X. Liu,27 Y. Liu,36 C.F. Maguire,49 Y.I. Makidisi,5 A. Malakovich,17 V.I. Manko,23 Y. Mao,7,38 G. Martinez,45 M.D. Marx,44 H. Masui,48 F. Matathias,44 T. Matsumoto,8,50 L.P. McGaughey,27 E. Melnikov,15 F. Messer,44 Y. Miyake,48 J. Milan,34 T.E. Miller,49 A. Milov,44,51 S. Mioduszewski,5 R.E. Mischke,27 G.C. Mishra,13 J.T. Mitchell,5 A.K. Mohanty,4 D.P. Morrison,5 J.M. Moss,27 F. Mühlbacher,44 D. Mukhopadhyay,51 M. Muniruzzaman,6 J. Murata,38,39 S. Nagamiya,20 J.L. Nagle,9 T. Nakamura,14 B.K. Nandi,6 M. Nara,48 J. Newby,46 P. Nilsson,29 A.S. Nyanin,23 J. Nystrand,29 D. O’Brien,5 C.A. Ogilvie,16 H. Ohnishi,5,38 I.D. Ojha,49,3 K. Okada,38 M. Ono,48 V. Onuchin,15 A. Oskarsson,29 I. Otterlund,29 K. Oyama,8 K. Ozawa,8 D. Pal,51 A.P.T. Palounek,27 V. Pantuev,44 V. Papavasiliou,34 J. Park,42 A. Parnar,32 S.F. Pate,34 T. Peitzmann,30 J.-C. Peng,26 V. Peracone,17 C. Pinkenburg,5 R.P. Pisani,8 F. Plasil,35 M.L. Purschke,5 A.K. Purwar,44 J. Rak,41 I. Ravinovich,51 K.F. Read,35,46 M. Reuter,44 K. Reygers,30 V. Riabov,37 Y. Riabov,37 G. Roche,48 A. Romana,25 M. Rosati,16 P. Rosnet,28 S.S. Ryu,52 M.E. Sadler,1 N. Saito,38,39 T. Sakaguchi,8,50 M. Sakai,32 S. Sakai,48 V. Samsonov,37 L. Sanfratello,33 R. Sato,30 H.D. Sato,24,38 S. Sato,5,48 S. Sawada,20 Y. Schutz,45 V. Semenov,15 R. Seto,6 M.R. Shaw,1,27 T.K. Sheu,5 A.-T. Shibata,47,38 K. Shiigai,14,20 T. Shiina,27 C.L. Silva,41 D. Silvermyr,27,29 K.S. Sim,22 C.P. Singh,3 V. Singh,5 M. Sivertz,5 A. Soldatov,15 R.A. Soltz,26 W.E. Sondheim,27 S.P. Sorenson,46 I.V. Sourikov,5 F. Staley,10 P.W. Stankus,35 E. Stenlund,29 M. Stepanov,34 A. Ster,21 S.P. Stoll,5 T. Sugitate,14 J.P. Sullivan,27 E.M. Takagui,41 A. Taketani,38,39 M. Tanai,50 K.H. Tanaka,20 Y. Tanaka,32 K. Tanida,38 M.J. Tannenbaum,5 P. Tarján,11 J.D. Tepe,1,27 T.L. Thomas,33 J. Tojo,24,38 H. Torii,24,38 R.S. Towell,1 I. Tsverya,51 H. Tsuruoka,48 S.K. Tuli,5 H. Tydesjö,28 N. Tuurin,15 H.W. van Hecke,27 J. Velkovsky,5,44 M. Velkovsky,44 V. Vespréni,11 L. Villatte,46 A.A. Vinogradov,23 M.A. Volkov,23 E. Vznuzdaev,37 X.R. Wang,13 Y. Watanabe,38,39 S.N. White,5 F.K. Wohl,16 C.L. Woody,8 W. Xie,6 Y. Yang,7 A. Yanovich,15 S. Yokkaichi,38,39 G.R. Young,35 I.E. Yushmanov,23 W.A. Zajc,9 C. Zhang,9 S. Zhou,7 S.J. Zhou,51 and L. Zolin17

(PHENIX Collaboration)

1 Abilene Christian University, Abilene, TX 79699, USA
2 Institute of Physics, Academia Sinica, Taipei 11529, Taiwan
3 Department of Physics, Banaras Hindu University, Varanasi 221005, India
4 Bhabha Atomic Research Centre, Bombay 400 085, India
5 Brookhaven National Laboratory, Upton, NY 11973-5000, USA

arXiv:hep-ex/0508034v2 6 Apr 2023
The production of hadrons carrying heavy quarks, i.e., charm or bottom, serves as a crucial proving ground...
for quantum chromodynamics (QCD), the theory of the strong interaction. Because of the large quark masses, charm and bottom production can be treated by perturbative QCD (pQCD) even at small momenta without being significantly affected by additional soft processes [1]. This is in distinct contrast to the production of particles composed solely of light quarks, which can be evaluated perturbatively only for sufficiently large momenta. Consequently, pQCD calculations of heavy quark production are expected to be reliable over the full momentum range experimentally accessible at collider energies.

For bottom production, next-to-leading order (NLO) calculations are in reasonable agreement with data [2]. Charm measurements at √s = 1.96 TeV exist for high transverse momentum (pT) only [3], where the cross section is higher than NLO predictions by ≥50%. However, these discrepancies are within the substantial experimental and theoretical uncertainties [3]. At the Relativistic Heavy Ion Collider (RHIC), charm yields have been measured for p + p and d + Au collisions at √sNN = 200 GeV [4,5] as well as for Au + Au collisions at 130 and 200 GeV [6,7]. Further measurements are crucial for a better understanding of heavy flavor production at RHIC. In particular, the relevance of higher order processes and other production mechanisms like jet fragmentation is unclear.

We report on the central rapidity production (|η| ≤ 0.35) of inclusive electrons, (e+ + e−)/2, in p + p collisions at √s = 200 GeV measured by the PHENIX experiment [8] at RHIC. Contributions from semileptonic heavy flavor decays are extracted in the electron pT range 0.4 ≤ pT ≤ 5.0 GeV/c. The resulting invariant differential cross section is an important benchmark for pQCD calculations of heavy quark production. Furthermore, it provides a crucial baseline for measurements in nuclear collisions at RHIC. Since hadronic heavy flavor production is expected to be dominated by initial parton scattering, systematic studies in p + p and d + Au collisions should be sensitive to the nucleon parton distribution functions as well as to their nuclear modifications such as shadowing [9]. In Au + Au collisions, heavy quarks constitute a unique and, with the data presented here, calibrated probe for the hot and dense medium created in the collisions. Possible medium modification of heavy flavor probes include energy loss [10,11], azimuthal asymmetry [12], and quarkonia suppression [13] or enhancement [14,15].

The data used here were recorded by PHENIX during RHIC Run-2. Beam-beam counters (BBC), positioned at pseudorapidities 3.1 < |η| < 3.9, measured the collision vertex and provided the minimum bias (MB) interaction trigger defined by at least one hit on each side of the vertex. Events containing high pT electrons were selected by an additional level-1 trigger in coincidence with the MB trigger. This level-1 trigger required a minimum energy deposit of 0.75 GeV in a 2 x 2 tile of towers in the electromagnetic calorimeter (EMC) [17]. After a vertex cut of |z_{vertex}| < 20 cm, an equivalent of 465 × 10^6 MB events sampled by the EMC trigger was analyzed in addition to the 15 × 10^6 events recorded with the MB trigger itself.

The PHENIX east arm spectrometer (|η| < 0.35, ∆φ = π/2) includes a drift chamber and a pad chamber layer for charged particle tracking. Tracks were confirmed by hits in the EMC matching in position with the track projection within 3σ. Electron candidates required at least two associated hits in the ring imaging Čerenkov detector (RICH) in the projected ring area. Random coincidences of hadron tracks and hits in the RICH occurred with a probability of (3.0 ± 1.5) × 10−4. For electrons the energy E deposited in the EMC must be consistent with the momentum p. Requiring |(E−p)/p| < 3σ, a total charged hadron rejection factor of about 104 (105) was achieved for pT = 0.4 (≥2.0) GeV/c. Remaining background (<1%) was measured via event mixing and subtracted statistically.

The differential cross section for electron production was calculated as

$$E^2 d^3\sigma = \frac{1}{\epsilon_{bias} \int L dt 2p_T \Delta y \Delta p_T \frac{A_{rec}}{A_{rec}}}. \quad (1)$$

where \(\int L dt \) is the integrated luminosity measured with the MB trigger or sampled with the EMC trigger, respectively. \(\epsilon_{bias} \) is the probability for an electron event to fulfill the MB trigger condition. \(N_e \) is the measured electron yield, and \(A_{rec} \) is the product of geometrical acceptance and reconstruction efficiency. For the EMC triggered sample, \(\epsilon_{rec} \) includes the trigger efficiency \(\epsilon_{tel} \).

\(\int L dt \) is calculated as \(N_{MB}/\sigma_{BBC} \), where \(N_{MB} \) is the number of MB triggers or, for the EMC triggered sample, the number of EMC triggers divided by the measured fraction of MB events which simultaneously fulfill the EMC trigger criterion. With the MB trigger cross section \(\sigma_{BBC} = 21.8 ± 2.1 \text{ nb} \) [17], the analyzed data samples correspond to integrated luminosities of 0.7 nb−1 (MB trigger) and 21 nb−1 (EMC trigger), respectively. The pT independent trigger bias \(\epsilon_{bias} = 0.75 ± 0.02 \) was measured for events containing a π0 with pT > 1.5 GeV/c [17] and confirmed for charged hadrons with pT > 0.2 GeV/c [18], indicating a universal bias both for hard and soft processes. \(A_{rec} \) was calculated as a function of pT (<10% variation over the full pT range) in a GEANT [19] simulation of electrons with flat distributions in rapidity (|η| < 0.6), azimuth (0 < φ < 2π), and event vertex (|z| < 30 cm) as input. The simulated detector response was carefully tuned to match the real detector. Rigorous fiducial cuts were applied to eliminate active area mismatches between data and simulation as well as run-by-run variations. The trigger efficiency \(\epsilon_{tel} \), evaluated for single electrons in the fiducial area, rises from zero at low pT to 95 ± 5% for pT > 2 GeV/c. Finally the effect of finite bin width in pT was appropriately corrected for.
The corrected electron spectra from the MB and EMC triggered samples cover \(p_T \) ranges of 0.4 < \(p_T < 2.0 \text{ GeV/c} \) and 0.6 < \(p_T < 5.0 \text{ GeV/c} \), respectively. They are consistent with each other within the statistical uncertainties in the \(p_T \) region of overlap. The weighted average of both measurements is shown in Fig. 1(a).

The systematic uncertainty of the inclusive electron spectrum is about 12%, almost \(p_T \) independent, calculated as the sum in quadrature of contributions from the acceptance calculation (7%), electron identification cuts (5.2%), run-by-run variations (4%), tracking efficiency (3%), momentum scale (1 - 5%), and other smaller uncertainties (more details on the uncertainty estimations can be found in [16]). The value of 12% does not include the 9.6% uncertainty of the absolute normalization.

The invariant cross section of electrons from heavy flavor decays was determined by subtracting a cocktail of contributions from other sources from the inclusive data. The most important background is the \(\pi^0 \) Dalitz decay which was calculated with a hadron decay generator using a parameterization of measured \(\pi^0 \) and \(\pi^\pm \) spectra as input. The spectral shapes of other light hadrons \(h \) were obtained from the pion spectra by \(m_T \) scaling. Within this approach the ratios \(h/\pi^0 \) are constant at high \(p_T \) and for the relative normalization we used: \(\eta/\pi^0 = 0.45 \pm 0.10 \) [21], \(\rho/\pi^0 = 1.0 \pm 0.3, \omega/\pi^0 = 1.0 \pm 0.3, \eta'/\pi^0 = 0.25 \pm 0.08, \) and \(\phi/\pi^0 = 0.40 \pm 0.12 \). Only the \(\eta \) contribution is of any practical relevance. Another major electron source is the conversion of photons, mainly from \(\pi^0 \rightarrow \gamma \gamma \) decays, in material within the acceptance. The spectra of electrons from conversions and Dalitz decays are very similar. In a GEANT simulation of \(\pi^0 \) decays, the ratio of electrons from conversions to electrons from Dalitz decays was determined to be 0.73 \pm 0.07, essentially \(p_T \) independent. Contributions from photon conversions from other sources were taken into account as well. In addition, electrons from kaon decays (\(K_{e3} \)), determined in a GEANT simulation based on measured kaon spectra [20] and electrons from external as well as internal conversions of direct photons [22, 23] were considered in the cocktail. All background sources are compared with the inclusive data in Fig. 1(a) with the relative contributions shown in Fig. 1(b). The total systematic uncertainty of the cocktail is about 12%, essentially \(p_T \) independent. This uncertainty is dominated by the systematic error of the pion parameterization (\(\approx 10\% \)). Other systematic uncertainties, mainly the \(\eta/\pi^0 \) normalization and, at high \(p_T \), the contribution from direct radiation, are much smaller.

Given the small amount of material within the ac-
ceptance (Be beam pipe: 0.29 % X0; air: 0.28 % X0) the ratio \(R_{NP} \) of non-photonic electrons from heavy flavor decays to background from photonic sources is large (\(R_{NP} > 1 \) for \(p_T > 1.5 \) GeV/c) as shown in Fig. 2. Two complementary analysis methods confirm the cocktail result:

The converter technique compares electron spectra measured with an additional photon converter \(X_C = 1.67 % X_0 \) introduced into the acceptance to measurements without converter. The converter increases the contribution from conversions and Dalitz decays by a fixed factor, which was determined precisely via GEANT simulations. Thus, the electron spectra from photonic and non-photonic sources can be deduced (Fig. 2). The drawbacks of the converter method are the limitation in statistics of the converter run period and the fact that the photonic contribution is small at high \(p_T \).

The \(e\gamma \) coincidence technique evaluates the correlation of electrons and photons via their invariant mass. Electrons from \(\pi^0 \) Dalitz decays or the conversion of one of the photons from \(\pi^0 \rightarrow \gamma\gamma \) decays are correlated with a photon, in contrast to electrons from semileptonic heavy flavor decays. Comparing the measured \(e\gamma \) coincidence rate with the simulated rate for single \(\pi^0 \) events, allows \(R_{NP} \) to be deduced as shown in Fig. 2 once corrections for contributions from other photonic sources are applied.

After subtracting the background cocktail from the inclusive electron spectrum the invariant differential cross section of electrons from heavy flavor decays is shown in Fig. 3 compared with two theoretical predictions. A leading order (LO) PYTHIA calculation, tuned to existing charm and bottom hadroproduction measurements, is in reasonable agreement with the data for \(p_T < 1.5 \) GeV/c, but underestimates the cross section at higher \(p_T \). It is important to note that this calculation includes a scale factor \(K = 3.5 \) to accommodate for neglected NLO contributions. A Fixed-Order plus Next-to-Leading-Log (FONLL) pQCD calculation still leaves room for further contributions beyond the included NLO processes. The predicted contribution from bottom decays is irrelevant for the electron cross section at \(p_T < 3 \) GeV/c and becomes significant only for \(p_T > 4 \) GeV/c.

The charm production cross section was derived from the integrated electron cross section for \(p_T > 0 \) GeV/c. First the PYTHIA spectra for electrons from charm and bottom decays were fitted to the data for \(p_T > 0.6 \) GeV/c, with only the normalizations as free parameters. The resulting central rapidity charm production cross section was determined to be \(d\sigma_{c\bar{c}}/dy = 0.20 \pm 0.03 \) (stat.) \(\pm 0.11 \) (sys.) mb, where the systematic error is dominated by the uncertainty of the electron spectrum itself (\(\approx 56\% \)), evaluated by refitting PYTHIA to the data at the minimum and maximum of the 1σ systematic error band. Additional uncertainties from the relative ratios of different charmed hadron species and their branching ratios into electrons (\(\approx 9\% \)) and the variation of the PYTHIA spectral shape (\(\approx 11\% \)) were added in quadrature. The rapidity integrated cross section was determined to be \(\sigma_{c\bar{c}} = 0.92 \pm 0.15 \) (stat.) \(\pm 0.54 \) (sys.) mb, where various parton distribution functions (GRV98LO and MRST(c-g) in addition to the default CTEQ5L) were used for the extrapolation, with an associated extra systematic error of \(\approx 6\% \) added in quadrature.

Within errors the integrated charm cross section is compatible with data from \(Au + Au \) collisions (minimum bias value: \(0.622 \pm 0.057 \pm 0.160 \) mb per \(NN \) collision) and from \(d + Au \) collisions (1.3 \(\pm 0.2 \pm 0.4 \) mb) at the same \(\sqrt{s_{NN}} = 200 \) GeV. The FONLL cross section is smaller (\(\sigma_{c\bar{c}}^{FONLL} = 0.256 \pm 0.400 \) mb) but it is still com-

![Graph](image-url)
compatible with the data. Our measurement does not allow a bottom cross section to be deduced, which is predicted by FONLL to be $\sigma^{FONLL}_{b\bar{b}} = 1.87^{+0.99}_{-0.67}$ μb.

In conclusion, we have measured single electrons from heavy flavor decays in $p + p$ collisions at $\sqrt{s} = 200$ GeV. These data provide a crucial benchmark for pQCD heavy quark calculations. We observe that above $p_T \approx 2$ GeV/c the electron spectrum is significantly harder than predicted by a LO PYTHIA charm and bottom calculation. Contributions to the charm production cross section in excess of the considered FONLL calculation, e.g. from jet fragmentation, cannot be excluded. Similar excess at high p_T was observed by Fermilab experiments (CDF and DØ) at $\sqrt{s} = 1.96$ TeV [3]. The new data reported here provide an important baseline for the study of possible medium modification of heavy quark production at RHIC.

We thank the staff of the Collider-Accelerator and Physics Departments at BNL for their vital contributions. We acknowledge support from the Department of Energy and NSF (U.S.A.), MEXT and JSPS (Japan), CNPq and FAPESP (Brazil), NSFC (China), CNRS-IN2P3 and CEA (France), BMBF, DAAD, and AvH (Germany), OTKA (Hungary), DAE and DST (India), ISF (Israel), KRF and CHEP (Korea), RMIST, RAS, and RMAE (Russia), VR and KAW (Sweden), U.S. CRDF for the FSU, US-Hungarian NSF-OTKA-MTA, and US-Israel BSF.

* Deceased
† PHENIX Spokesperson\texttt{zajc@nevis.columbia.edu}

[1] M.L. Mangano et al., Nucl. Phys. B405, 507 (1993).
[2] M. Cacciari, \texttt{hep-ph/0407187} M.L. Mangano, \texttt{hep-ph/0411020}
[3] D. Acosta et al., Phys. Rev. Lett. 91, 241804 (2003).
[4] J. Adams et al., Phys. Rev. Lett. 94 062301 (2005).
[5] S. Kelly et al., J. Phys G30, S1189 (2004).
[6] K. Adcox et al., Phys. Rev. Lett. 88, 192303 (2002).
[7] S.S. Adler et al., Phys. Rev. Lett. 94, 082301 (2005).
[8] K. Adcox et al., Nucl. Instrum. Methods A499, 469 (2003).
[9] Z. Lin and M. Gyulassy, Phys. Rev. Lett. 77, 1222 (1996).
[10] Y.L. Dokshitzer and D.E. Kharzeev, Phys. Lett. B519, 199 (2001).
[11] N. Armesto, A. Dainese, C.A. Salgado, and U.A. Wiedemann Phys. Rev. D71, 054027 (2005).
[12] Z.W. Lin and D. Mohnar, Phys. Rev. C68, 044901 (2003); V. Greco, C.M. Ko, and R. Rapp, Phys. Lett. B595, 202 (2004).
[13] T. Matsui and H. Satz, Phys. Lett. B178, 416 (1986).
[14] P. Braun-Munzinger and J. Stachel, Phys. Lett. B490, 196 (2000).
[15] R.L. Thews, M. Schroedter, and J. Rafelski, Phys. Rev. C63, 054905 (2001).
[16] S.A. Butsyk, \texttt{hep-ex/0511048}
[17] S.S. Adler et al., Phys. Rev. Lett. 91, 241803 (2003).
[18] S.S. Adler et al., submitted for publication in Phys. Rev. Lett., \texttt{hep-ex/0507073}
[19] GEANT 3.21, CERN program library.
[20] F. Matathias et al., J. Phys. G30, S1113 (2004).
[21] S.S. Adler et al., in preparation.
[22] L.E. Gordon and W. Vogelsang, Phys. Rev. D50, 1901 (1994).
[23] S.S. Adler et al., Phys. Rev. D71, 071102(R) (2005).
[24] We used PYTHIA 6.205 with a modified set of parameters \cite{6} and CTEQ5L parton distribution functions \cite{25}.
[25] H.H. Lai et al., Eur. Phys. J. C12, 375 (2000).
[26] M. Cacciari, P. Nason, and R. Vogt, Phys. Rev. Lett. 95, 122001 (2005).
[27] M. Glück, E. Reya, and A. Vogt, Eur. Phys. J. C5, 461 (1998); A.D. Martin, R.G. Roberts, W.J. Stirling, and R.S. Thorne, Eur. Phys. J. C4, 463 (1998).