Original Research

Uptake of hysterectomy and bilateral salpingo-oophorectomy in carriers of pathogenic mismatch repair variants: a Prospective Lynch Syndrome Database report

Toni T. Seppälä, Mev Dominguez-Valentin, Emma J. Crosbie, Christoph Engel, Stefan Aretz, Finlay Macrae, Ingrid Winship, Gabriel Capella, Huw Thomas, Eivind Hovig, Maartje Nielsen, Rolf H. Sijmons, Lucio Bertario, Bernardo Bonanni, Maria G. Tibiletti, Giulia M. Cavestro, Miriam Mints, Nathan Gluck, Lior Katz, Karl Heinimann, Carlos A. Vaccaro, Kate Green, Fiona Lalloo, James Hill, Wolff Schmiegel, Deepak Vangala, Claudia Perne, Hans-Georg Strauß, Johanna Tecklenburg, Elke Holinski-Feder, Verena Steinke-Lange, Jukka-Pekka Mecklin, John-Paul Plazzer, Marta Pineda, Matilde Navarro, Joan B. Vida, Revital Kariv, Guy Rosner, Tamara A. Piñero, Walter Pavicic, Pablo Kalfayan, Sanne W. ten Broeke, Mark A. Jenkins, Lone Sunde, Inge Bernstein, John Burn, Marc Greenblatt, Wouter H. de Vos tot Nederveen Cappel, Adriana Della Valle, Francisco Lopez-Koestner, Karin Alvarez, Reinhard Büttner, Heike Görgens, Monika Morak, Stefanie Holzapfel, Robert Hüneburg, Magnus von Knebel Doeberitz, Markus Loeffler, Silke Redler, Jürgen Weitz, Kirsi Pylvänäinen, Laura Renkonen-Sinisalo, Anna Lepistö, John L. Hopper, Aung K. Win, Noralane M. Lindor, Steven Gallinger, Loïc Le Marchand, Polly A. Newcomb, Jane C. Figueiredo, Christina Therkildsen, Karin A.W. Wadt, Marian J.E. Mourits, Zohreh Ketabi, Oliver G. Denton.

*Corresponding author. Department of Gastrointestinal Surgery, Helsinki University Central Hospital, University of Helsinki, Helsinki, Finland. E-mail address: toni.seppala@helsinki.fi (T.T. Seppälä).

https://doi.org/10.1016/j.ejca.2021.02.022
0959-8049/© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Einar A. Rødland, Hans Vasen, Florencia Neffa, Patricia Esperon, Douglas Tjandra, Gabriela Möslin, Erik Rokkones, Julian R. Sampson, D.G. Evans, Pål Møller

Department of Gastrointestinal Surgery, Helsinki University Central Hospital, University of Helsinki, Helsinki, Finland

Department of Surgical Oncology, Johns Hopkins Hospital, Baltimore, MD, USA

Department of Tumor Biology, Institute of Cancer Research, The Norwegian Radium Hospital, Oslo, Norway

Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester and St Mary's Hospital, Manchester, UK

Directorate of Gynaecology, Manchester University, NHS Foundation Trust, Manchester, M13 9WL, UK

Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany

Institute of Human Genetics, Medical Faculty, University of Bonn, Bonn, Germany

National Center for Hereditary Tumor Syndromes, University Hospital Bonn, Germany

Colorectal Medicine and Genetics, The Royal Melbourne Hospital, Melbourne, Australia

Department of Medicine, Melbourne University, Melbourne, Australia

Hereditary Cancer Program, Institut Catal. D'Oncologia-IDIBELL Institut D'Investigació Biomèdica de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain

St Mark's Hospital, Department of Surgery and Cancer, Imperial College London, London, UK

Department of Informatics, University of Oslo, Oslo, Norway

Department of Clinical Genetics, Leiden University Medical Center, Leiden, Netherlands

Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands

Division of Cancer Prevention and Genetics, IEO, European Institute of Oncology IRCCS, Milan, Italy

Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy

Ospedale di Circolo ASST Settaleghi, Centro de Ricerca Tumori Eredo-familiari, Università Dell’Insubria, Varese, Italy

Gastroenterology and Gastrointestinal Endoscopy Unit, Vita-Salute San Raffaele University, San Raffaele Scientific Institute, Milan, Italy

Department of Women’s and Children’s Health, Division of Obstetrics and Gynecology, Karolinska Institutet, Karolinska University Hospital, Solna, Stockholm, Sweden

Tel-Aviv Sourasky Medical Center, Research Center for Digestive Disorders and Liver Diseases

Department of Gastroenterology, Tel-Aviv Sourasky Medical Center and Sackler Faculty of Medicine, Tel-Aviv University, Israel

High Risk and GI Cancer Prevention Clinic, Gastro-Oncology Unit, The Department of Gastroenterology, Sheba Medical Center, Israel

Medical Genetics, Institute for Medical Genetics and Pathology, University Hospital Basel, Switzerland

Hereditary Cancer Program (PROCANHE) Hospital Italiano de Buenos Aires, Buenos Aires, Argentina

Instituto de Medicina Transicional e Ingenieria Biomédica (IMTIB), Argentina

Manchester Centre for Genomic Medicine, Manchester University Hospitals NHS Foundation Trust, Manchester, UK

Department of Surgery, Manchester University Hospitals NHS Foundation Trust and University of Manchester, Manchester, UK

Department of Medicine, Knappschaftskrankenhaus, Ruhr-University Bochum, Bochum, Germany

Department of Gynaecology, University Clinics, Martin-Luther University, Halle-Wittenberg, Germany

Institute of Human Genetics, Hannover Medical School, Hannover, Germany

Medizinische Klinik und Poliklinik IV, Campus Innenstadt, Klinikum der Universität München, Munich, Germany

MGZ- Medical Genetics Center, Munich, Germany

Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland & Department of Surgery, Central Finland Health Care District, Jyväskylä, Finland

The Royal Melbourne Hospital, Melbourne, Australia

Hereditary Cancer Program, Institut Catalá D’Oncologia-IDIBELL, L’Hospitalet de Llobregat, Barcelona, Spain

Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia

Department of Clinical Genetics, Aalborg University Hospital, Aarhus, Denmark

Department of Biomedicine, Aarhus University, Aarhus, Denmark

Department of Surgical Gastroenterology, Aalborg University Hospital, Aalborg, Denmark

Faculty of Clinical Medicine, Aalborg University, Aalborg, Denmark

Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK

University of Vermont, Larner College of Medicine, Burlington, VT 05405, USA

Department of Gastroenterology and Hepatology, Isala Clinics, Zwolle, the Netherlands

Grupo Colaborativo Uruguayo, Investigación de Afecciones Oncológicas Hereditarias (GCU), Hospital Fuerzas Armadas, Montevideo, Uruguay

Lab. Oncología y Genética Molecular, Unidad de Coloproctología Clínica Las Condes, Santiago, Chile

Institute of Pathology, University of Cologne, Cologne, Germany

Department of Surgery, Technische Universität Dresden, Dresden, Germany

Institute of Human Genetics, University of Bonn, Bonn, Germany

Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany

Department of Applied Tumour Biology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
Purpose: This study aimed to report the uptake of hysterectomy and/or bilateral salpingo-oophorectomy (BSO) to prevent gynaecological cancers (risk-reducing surgery [RRS]) in carriers of pathogenic MMR (path_MMR) variants.

Methods: The Prospective Lynch Syndrome Database (PLSD) was used to investigate RRS by a cross-sectional study in 2292 female path_MMR carriers aged 30–69 years.

Results: Overall, 144, 79, and 517 carriers underwent risk-reducing hysterectomy, BSO, or both combined, respectively. Two-thirds of procedures before 50 years of age were combined hysterectomy and BSO, and 81% of all procedures included BSO. Risk-reducing hysterectomy was performed before age 50 years in 28%, 25%, 15%, and 9%, and BSO in 26%, 25%, 14% and 13% of path_MLH1, path_MSH2, path_MSH6, and path_PMS2 carriers, respectively. Before 50 years of age, 107 of 188 (57%) BSO and 126 of 204 (62%) hysterectomies were performed in women without any prior cancer, and only 5% (20/392) were performed simultaneously with colorectal cancer (CRC) surgery.

Conclusion: Uptake of RRS before 50 years of age was low, and RRS was rarely undertaken in association with surgical treatment of CRC. Uptake of RRS aligned poorly with gene- and age-associated risk estimates for endometrial or ovarian cancer that were published recently from PLSD and did not correspond well with current clinical guidelines. The reasons should be clarified. Decision-making on opting for or against RRS and its timing should be better aligned with predicted risk and mortality for endometrial and ovarian cancer in Lynch syndrome to improve outcomes.

© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Lynch syndrome (LS) is a dominantly inherited cancer syndrome caused by germline pathogenic variants of mismatch repair (MMR) genes (path_MMR variants). In women with LS, gynaecological cancers are as common as gastrointestinal cancers.

No screening programme is considered to be effective for gynaecological cancers. Risk-reducing surgery (RRS), including total hysterectomy and bilateral salpingo-oophorectomy (BSO), prevents gynaecological cancer in women with LS and is the only preventive approach that is recognised to be effective [1,2]. The Manchester International Consensus Group strongly recommended that risk-reducing hysterectomy and BSO is offered but no earlier than 35–40 years of age, following completion of childbearing in path_MLMH1, path_MSH2, and path_MSH6 carriers. There was insufficient evidence to strongly recommend RRS for path_PMS2 carriers [3,4].

The distribution of ages at which RRS takes place in path_MMR women is not well known, and there is limited information on opportunistic RRS being undertaken in association with surgery for colorectal cancer (CRC). Undertaking RRS as the first major abdominal surgery before the occurrence of CRC constitutes a truly prophylactic procedure that may be performed on healthy path_MMR carriers. By contrast, some CRC patients are identified as path_MMR carriers after tumour MMR screening and are offered RRS as a secondary operation. In known path_MMR carriers, the timing of the RRS may avoid multiple surgeries if based on a predicted sequence of events with respect to CRC and the menopause. For women who choose not to undergo RRS, an understanding of ‘red flag’ symptoms (abnormal vaginal bleeding) is important to trigger prompt referral for urgent examination, and many centres provide gynaecological surveillance [5,6].

There is limited information on the uptake of RRS in path_MMR carriers, a corresponding lack of information on the extent to which clinical guidelines have been adopted and a lack of information on the alignment of gynaecological cancer risk and mortality with RRS uptake. In this report, we describe the uptake of hysterectomy and BSO reported to the Prospective Lynch Syndrome Database (PLSD) by age and gene and consider uptake in the context of recently published gynaecological cancer risk and mortality determined through PLSD.

2. Patients and methods

2.1. PLSD design

The PLSD is an international, multicentre, prospective observational study without a control group [7–10]. In brief, carriers of Class 4 or 5 pathogenic variants listed in the InSiGHT database (https://www.insight-group.org/variants/databases/), who had been recruited for prospective follow-up in each participating centre, are included. Inclusion was from the first prospectively planned and completed colonoscopy. The methods to define previous cancer, censoring of each patient, and observation time until organ removal have been previously described [7–10].

2.2. Ethics statement

All reporting centres exported deidentified data to the PLSD based on local institutional reviews, as previously described [7–10].

2.3. Selection criteria

The inclusion criteria for calculating the uptake of RRS were (1) female, (2) carrier of pathogenic or likely pathogenic (Class 4 or 5) MMR variant according to InSiGHT database classification [11], (3) aged 30–69 years at last examination, (4) no endometrial or ovarian cancer before or at inclusion age, and (5) at least 2 years of follow-up after first prospectively planned and carried-out colonoscopy (to ensure time from disclosure of carrier status to undertake RRS). The last observation was prospectively detected endometrial or ovarian cancer or last prospective examination without cancer.

In premenopausal women, hysterectomy may or may not be performed during treatment for early stage ovarian cancer, and BSO may or may not be performed during treatment of early stage endometrial cancer. Therefore, in all previous PLSD reports, when endometrial or ovarian cancer was diagnosed, observation time was right censored for the other organ. Correspondingly, in the present study, removal of the second organ during or after treatment for ovarian or endometrial cancer was not classified as an RRS procedure. RRS in this report indicates surgery for prophylaxis or for benign indications, unless otherwise specified.

2.4. Reported uptake of hysterectomy or BSO

In our analysis, we report total incidences of hysterectomy and BSO, and some of the interventions may not have been prophylactic surgeries per se, but organ removals for benign indications. Of note, BSO reported to the PLSD was specified as complete removal of both ovaries, which by current standards includes salpingectomy, reflecting the understanding that most high-grade serous ovarian cancers with serious prognosis may originate from the distal end of the salpinx [12]. We did not specifically ask about peritoneal cancer after BSO or endometrial cancer after hysterectomy [1].
2.5. Statistical methods

The following information was used for analyses: age at hysterectomy, age at BSO, age at last observation, and path_MMR variant.

The selected carriers were grouped in four 10-year cohorts categorised according to age at last observation. The numbers of carriers who had or did not have hysterectomy or BSO before or at last observation in each age cohort was counted, and the fractions of carriers who had these interventions in each category were calculated. The uptake of prophylactic surgery is reported as the cross-sectional frequency in each of the four different 10-year cohorts according to age at censoring.

In contrast to some former reports from the PLSD, this report is a cross-sectional study reporting age at last observation rather than annual incidences by age or cumulative incidences. The observation period was from birth to last observation because events that occurred before inclusion to prospective follow-up and reported by carriers were logged in PLSD and events after inclusion for follow-up were logged as reported by the collaborating centres.

3. Results

3.1. Inclusion of path_MMR carriers

Among the carriers included in the last PLSD version [10], 2292 female path_MMR carriers from 18 countries met the inclusion criteria for the current cross-sectional study (Supplementary Table 1). Of these, 1016, 833, 271, 152, and 20 were carriers of path_MLH1, path_MSH2, path_MSH6, path_PMS2, and path_EPCAM, respectively.

3.2. Uptake of risk-reducing hysterectomy and/or BSO

The mean ages at first RRS together with the mean ages at first CRC are presented by gene in Table 1. The mean age at first RRS was 45 years for path_MLH1, 44 years for path_MSH2, 48 years for path_MSH6, and 53 years for path_PMS2 carriers, whereas the mean ages for first CRC were 41, 41, 44, and 47 years, respectively.

Of the 2292 path_MMR carriers aged 30–69 years, 664 (29%) had hysterectomy and 598 (26%) had BSO (Table 2). Of 1178 of 2292 carriers aged 30–49 years, 204 (17%) had hysterectomy and 188 (16%) had BSO (Table 2). At 40–49 years of age, the uptake for hysterectomy and/or BSO was 32% (102/320) and 30% (80/269) for path_MLH1 and path_MSH2, respectively, whereas for path_MSH6 carriers and path_PMS2 carriers the uptake reached 18% (13/73) and 13% (4/32), respectively (Table 3).

As 144 (9.4%), 79 (3.5%), 517 (22.8%), and 1532 (67.4%) carriers underwent only risk-reducing hysterectomy, only BSO, both combined, or neither, respectively, 81% of surgical procedures included BSO (Table 3). Two-thirds (157/235, 67%) of procedures before age 50 years were combined hysterectomy and BSO.

The number of path_EPCAM carriers (N = 20) was too low for meaningful statistical analyses by gene and age, and they were excluded from the analysis (Table 3).
Table 3
Cumulative uptake of risk-reducing hysterectomy with or without BSO or BSO with or without hysterectomy (±95% confidence interval) by gene and age. The table gives the figures corresponding to the graphical presentation in Fig. 1.

Pathogenic variant	30–39 years	40–49 years	50–59 years	60–69 years	70+ years														
	Number with or without RRS	Frequency	±95% CI	Number with or without RRS	Frequency	±95% CI	Number with or without RRS	Frequency	±95% CI	Number with or without RRS	Frequency	±95% CI							
Hysterectomy	path_MLH1	221	0.05	0.03	320	0.22	0.05	298	0.35	0.05	177	0.38	0.07	1016	0.22	0.05	2072	0.22	0.05
	path_MSH2	182	0.05	0.03	269	0.20	0.05	221	0.33	0.06	161	0.39	0.08	833	0.24	0.05	1339	0.24	0.05
	path_MSH6	53	0.02	0.04	73	0.11	0.07	91	0.25	0.09	54	0.31	0.12	271	0.16	0.07	1242	0.16	0.07
	path_PMS2	18	0.11	0.15	32	0.09	0.10	49	0.10	0.08	53	0.09	0.08	152	0.10	0.07	809	0.10	0.07
Oophorectomy	path_MLH1	221	0.00	0.00	320	0.04	0.02	298	0.03	0.02	177	0.04	0.03	1016	0.03	0.02	2272	0.03	0.02
	path_MSH2	182	0.01	0.02	269	0.05	0.03	221	0.06	0.03	161	0.07	0.04	833	0.04	0.02	1303	0.04	0.02
	path_MSH6	53	0.02	0.04	73	0.03	0.04	91	0.02	0.03	54	0.04	0.03	271	0.03	0.02	1252	0.03	0.02
	path_PMS2	18	0.00	0.00	32	0.03	0.06	49	0.04	0.06	53	0.09	0.09	152	0.09	0.08	809	0.09	0.08
Hysterectomy	path_MLH1	221	0.02	0.02	320	0.06	0.03	298	0.07	0.03	177	0.08	0.04	1016	0.04	0.03	2272	0.04	0.03
	path_MSH2	182	0.02	0.02	269	0.05	0.03	221	0.09	0.04	161	0.13	0.05	833	0.05	0.02	1303	0.05	0.02
	path_MSH6	53	0.04	0.05	73	0.05	0.05	91	0.08	0.05	54	0.04	0.05	271	0.05	0.04	1252	0.05	0.04
	path_PMS2	18	0.00	0.00	32	0.00	0.00	49	0.04	0.06	53	0.17	0.10	152	0.10	0.09	809	0.10	0.09
Hysterectomy	path_MLH1	221	0.06	0.03	320	0.20	0.03	298	0.46	0.06	177	0.50	0.07	1016	0.50	0.07	2272	0.50	0.07
	path_MSH2	182	0.09	0.04	269	0.30	0.05	221	0.49	0.07	161	0.59	0.08	833	0.59	0.08	1303	0.59	0.08
	path_MSH6	53	0.08	0.07	73	0.18	0.09	91	0.35	0.10	54	0.39	0.13	271	0.39	0.13	1252	0.39	0.13
	path_PMS2	18	0.11	0.15	32	0.13	0.11	49	0.18	0.11	53	0.26	0.12	152	0.26	0.12	809	0.26	0.12
Hysterectomy	path_MLH1	221	0.06	0.03	320	0.28	0.05	298	0.43	0.06	177	0.46	0.07	1016	0.46	0.07	2272	0.46	0.07
	path_MSH2	182	0.08	0.04	269	0.25	0.05	221	0.43	0.07	161	0.52	0.08	833	0.52	0.08	1303	0.52	0.08
	path_MSH6	53	0.06	0.06	73	0.18	0.08	91	0.33	0.10	54	0.35	0.13	271	0.35	0.13	1252	0.35	0.13
	path_PMS2	18	0.11	0.15	32	0.09	0.10	49	0.14	0.10	53	0.26	0.12	152	0.26	0.12	809	0.26	0.12
Oophorectomy	path_MLH1	221	0.05	0.03	320	0.26	0.05	298	0.39	0.06	177	0.42	0.07	1016	0.42	0.07	2272	0.42	0.07
	path_MSH2	182	0.07	0.04	269	0.25	0.05	221	0.40	0.06	161	0.46	0.08	833	0.46	0.08	1303	0.46	0.08
	path_MSH6	53	0.04	0.05	73	0.14	0.08	91	0.27	0.09	54	0.35	0.13	271	0.35	0.13	1252	0.35	0.13
	path_PMS2	18	0.11	0.15	32	0.13	0.11	49	0.14	0.10	53	0.09	0.08	152	0.09	0.08	809	0.09	0.08

RRS, risk-reducing gynaecological surgery; CI, confidence interval (for mean point estimate); BSO, bilateral salpingo-oophorectomy.
and Fig. 1). Among the remaining 2272 path_MMR carriers, 342 path_MLH1, 299 path_MSH2, 70 path_MSH6, and 29 path_PMS2 carriers had hysterectomy and/or BSO. The frequencies in the uptake of hysterectomies and BSO were calculated separately and in combination in 10-year age cohorts between 30 and 69 years of age and are presented in Table 3.

Four hundred of the 664 (60%) hysterectomies undertaken and 126 of the 204 (62%) done before 50 years of age were performed before cancer was diagnosed in any organ. Similarly, of the 598 women who had BSO, 328 (55%) had no prior or prevalent cancer at the time of the BSO, and among the 188 who had BSO before 50 years of age, 107 (57%) had no prior or prevalent cancer at the time of the BSO. Thus, the majority of the procedures were performed as first major abdominal surgery on young carriers without current or previous cancer. Among the 188 who underwent BSO before 50 years, the BSO was performed after CRC as further abdominal surgery in 64 (34%), and among these procedures, nine (4.8%) BSO and 11 (5.4%) hysterectomies were undertaken at the same age as CRC was diagnosed and 6 (3.2%) and 14 (6.9%) before the age of first CRC (Table 2). Thus, the majority of premenopausal RRS in women who had CRC were performed before first CRC, although in the cohort as a whole, the mean age at diagnosis of CRC was lower than the age at RRS.

4. Discussion

In this report, we provide information on the frequency and timing of risk-reducing hysterectomy and/or BSO by age and gene in female path_MMR carriers. The findings complement our previous reports on cumulative risks and mortality associated with gynaecological cancers in LS by age and gene [10,13]. We do not make management recommendations at this time, but our findings may inform future guidelines.

Although current guidelines recommend that hysterectomy and BSO are offered to path_MMR carriers to reduce their gynaecological cancer risk [14], PLSD data demonstrate that the uptake of RRS is only 26–36% in path_MLH1, path_MSH2, and path_MSH6 and 19% in path_PMS2 carriers. In the oldest cohort investigated in the present study, comprising 60- to 69-years-olds, 39–59% of path_MLH1/MSH2 and path_MSH6 carriers had undergone RRS. The reasons behind decisions made for or against RRS warrant further attention. For carriers of path_PMS2, the place for prophylactic surgery is still under debate because there is no good evidence of increased risk for ovarian cancer. Yet, 9–14% of path_PMS2 carriers had undergone RRS.

We have recently published the estimates of the preventive impact of RRS. Risk-reducing hysterectomy at 25 years of age prevents endometrial cancer before 50 years in 15%, 18%, 13%, and 0% of path_MLH1, path_MSH2, path_MSH6, and path_PMS2 carriers and death in 2%, 2%, 1%, and 0%, respectively [13]. Risk-reducing BSO at 25 years of age prevents ovarian cancer before 50 years in 6%, 11%, 2%, and 0% and death in 1%, 2%, 0%, and 0%, respectively. In line with the low risk for either endometrial or ovarian cancer before 40 years of age and the family planning considerations for this group, we found the uptake of hysterectomy was low before 40 years of age. Before 50 years of age, 21% of path_MLH1 and path_MSH2 carriers underwent hysterectomy compared with only 13% of path_MSH6 carriers, despite the latter having similar cumulative risk for endometrial cancer. A difference in uptake was
observed at older ages as well, but not to the same extent. The uptake of BSO was slightly lower and followed the same pattern, although path_MSH6 carriers have a very low risk for ovarian cancer before 50 years of age. Notably, several path_PMS2 carriers had premenopausal oophorectomy despite there being no evidence for increased risk for ovarian cancer either before or after the menopause [9,10], which is known to cause a negative impact on sexual health and endocrine symptoms [15].

Most surgical procedures were combined hysterectomy and BSO, irrespective of age, perhaps reflecting a desire to minimise gynaecological cancer risk ‘once and for all’. Modern-day minimally invasive surgical techniques may have fewer peri- and post-operative complications so that separate postmenopausal BSO may now be a reasonable option. Hysterectomy combined with BSO after 50 years of age for path_PMS2 carriers effectively removes the gynaecological cancer risk. For younger carriers keen to mitigate their risks but also to avoid the surgical menopause, hysterectomy at the completion of childbearing followed by BSO at age 50 years would be an option for path_MLH1, path_MSH2, and particularly for path_MSH6 carriers, in whom the risk of premenopausal ovarian cancer is low.

Because genetic testing has been available for only 25 years and identification of LS has been changing from phenotype/family history—based to molecular screening based, there may be a time-trend bias in the uptake of risk-reducing hysterectomy and BSO. Older women may not have had the option of early RRS that has been advocated and available in recent years (and they may not have known they were at risk when they were younger). The uptake we observed among older women may not be representative of the choices made by younger carriers today. Because of the inherent time-trend bias, from which no statistical procedures can escape, we considered it inappropriate to investigate the reported uptake of interventions using more sophisticated statistical methods than those selected for this study.

In addition to time trends, this study has other limitations. We have not recorded the exact indication for gynaecological organ removal, that is, whether this was risk reducing or conducted for benign medical indications, such as to manage menstrual dysfunction, fibroids, or benign ovarian masses. On some occasions, benign indications may favour earlier RRS than otherwise indicated. Some limitations are associated with the structure of PLSD that does not take into account whether the path_MMR variant in an individual had already been identified at the time of prospective observation, although it is now usually a prerequisite for recommending RRS. One may argue, however, that the increased incidence of endometrial and ovarian cancer in LS has been known throughout the observation period. In addition, the numbers of path_PMS2 and path_EPCAM recorded in PLSD are still low, reflecting the insensitivity of the Amsterdam and Bethesda criteria so that they are infrequently offered genetic testing [16] and causing wide confidence intervals, particularly for younger cohorts.

This report and others from the PLSD, including reports on the guidelines that contributing centres have been following historically [7], their current guidelines [17], the reduction in morbidity and mortality achieved via hysterectomy or BSO by age [13], and now the uptake of hysterectomy or BSO by age and gene provide information that should help stakeholders, including patients, to address questions surrounding management options. Some patients may prefer to minimise the number of surgical procedures, some may wish to avoid the surgically induced menopause, and some may wish to maximise the cancer prevention effect of prophylactic organ removal [18]. Our results show that premenopausal women who had CRC most often had RRS performed as subsequent abdominal surgery, which increases risks for intraoperative complications and long-term complications such as hernias [19]. Although a staged approach will retain ovarian function for additional time, hormone replacement therapy is generally not contraindicated for women with LS, and adding simultaneous RRS to surgery for CRC in known path_MMR has been shown to be cost-effective and improve cancer outcomes in a Markov decision-tree model [20].

In summary, we found that uptake of RRS in LS aligned poorly with gynaecological cancer risk and mortality, both before and after menopause, with the timing of other abdominal surgery and with respect to clinical guidelines. Timing of RRS would benefit from earlier identification of LS, and there appears to be an unmet need for better multidisciplinary planning of prophylactic procedures to avoid repeated surgery. Today, the healthy young relatives of path_MMR carriers are increasingly being identified through genetic testing, and there is a need for timely presentation of options to these patients based on high-quality evidence.

Authors’ contributions

PM designed the study and calculated the results. TTS, MDV, EC, PM, JRS and DGE wrote the manuscript. All others contributed to acquisition of data, commenting, and revising the article.

Conflict of interest statement

TTS is the CEO and co-owner of Healthfund Finland Oy and reports an interview honoraria from Boehringer Ingelheim Finland. ER is a consultant for Vaccibody AS and a member of the data monitoring committee for Oncoinvent AS. DV reports speaker’s honoraria from
Acknowledgements

The study was supported by a “Pink ribbon” grant #194751 from Den Norske Kreftforening to EH. The authors would like to express our gratitude to Heikki Järvinen, Beatrice Alcala-Repo, Teresa Ocaña, Maria Pellisé, Sabela Carbaillal, Liseth Rivero, Lorena Moreno, Gerhard Jung, Antoni Castells, Joaquin Cubiella, Laura Rivas, Luis Buñales, Inés Gil, Jesús Bañales, Catalina Garau, Rodrigo Jover, Maria Dolores Picó, Xavier Bessa, Cristina Alvarez, Montserrat Andreu, Carmen Poves, Pedro Pérez Segura, Lucía Cid, Marta Carrillo, Enrique Quintero, Ángeles Pizarro, Marta Garzón, Adolfo Suárez, Inmaculada Salces, Daniel Rodríguez-Alcalde, Judith Balmáñez, Adriá López, Nuria Dueñas, Gemma Llort, Carmen Yagüe, Teresa Ramón i Cajal, David Fisas Masferrer, Alexandra Gisbert Beamud, Consol López San Martín, Maite Herráiz, Pilar Pérez, Cristina Carretero, Maite Betés, Marta Ponce, Elena Aguirre, Nora Alfaro, Carlos Sarroca, and Marianne Haesler for their efforts over many years. The CCFR graciously thanks the generous contributions of their study participants and dedication of study staff.

The authors would also like to thank Cancer Foundation Finland, Jane and Aatos Erkko Foundation, Emil Aaltonen Foundation, Finnish Medical Foundation, Sigrid Juselius Foundation, Instrumentarium Science Foundation, iCAN Flagship of the Academy of Finland, and the Norwegian Cancer Society, contract 194751-2017, for funding. DGE and EJC are supported by the All Manchester National Institute for Health Research (NIHR) Biomedical Research Centre (IS-BRC-1215-20007) and JRS by Health and Care Research Wales through Wales Gene Park. The CCFR is supported in part by the National Cancer Institute of the National Institutes of Health under Award Number UM1CA167551. The German Consortium for Familial Intestinal Cancer has been supported by grants from the German Cancer Aid. Data collection from Wales, UK, was supported by the Wales Gene Park. This work was co-funded by the European Regional Development Fund (ERDF). MN and StB were supported by a grant from the Dutch Cancer Society (DCS), grant number UL 2017-8223. Gabriel Capella, Marta Pineda, and Joan Brunet were funded by the Spanish Ministry of Economy and Competitiveness and co-funded by FEDER funds, a way to build Europe (grant SAF2015-68016-R), CIBERONC, and the Government of Catalonia (grant 2017SGR1282). The authors thank CERCA Programme/Generalitat de Catalunya for institutional support. The work was also partially supported by the Italian Ministry of Health with Ricerca Corrente and 5×1000 funds.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.ejca.2021.02.022.

References

[1] Schmeler KM, Lynch HT, Chen LM, Munsell MF, Soliman PT, Clark MB, et al. Prophylactic surgery to reduce the risk of gynecologic cancers in the Lynch syndrome. N Engl J Med 2006;354:261–9. https://doi.org/10.1056/NEJMoa052627.
[2] Lu KH, Broaddus RR. Endometrial cancer. N Engl J Med 2020; 383:2053–64. https://doi.org/10.1056/NEJMra1515010.
[3] Crosbie EJ, Ryan NAJ, Arends MJ, Bosse T, Burn J, Cornes JM, et al. The Manchester International Consensus Group recommendations for the management of gynecological cancers in Lynch syndrome. Genet Med 2019;21:2390–400. https://doi.org/10.1016/s1232-5-019-0489-9.
[4] Seppälä TT, Latchford SA, Negoşi I, Sampao Soares A, Jimenez Rodriguez R, Sanches-Guillen L, et al. European guidance from EHTG and ESCP for Lynch syndrome: an updated third edition of the “mallorca guidelines” based on gene and gender. Br J Surg 2020 Sep 21. https://doi.org/10.1002/bjs.11902. In press.
[5] Funston G, O’Flynn H, Ryan NAJ, Hamilton W, Crosbie EJ. Recognizing gynecological cancer in primary care: risk factors, red flags, and referrals. Adv Ther 2018;35:577–89. https://doi.org/10.1007/s12325-018-08683-3.
[6] Ryan NAJ, Nobes M, Sedgewick D, Teoh SN, Evans DG, Crosbie EJ. A mismatch in care: results of a United Kingdom-wide patient and clinician survey of gynaecological services for women with Lynch syndrome. BJOG An Int J Obstet Gynaecol 2020;1–9. https://doi.org/10.1111/1471-0528.16432.
[7] Møller P, Seppälä TT, Bernstein I, Holinski-Feder E, Sala P, Evans DGG, et al. Cancer incidence and survival in Lynch syndrome patients receiving colonoscopic and gynaecological surveillance: first report from the prospective Lynch syndrome database. Gut 2017;66:464–72. https://doi.org/10.1136/gutjnl-2015-309675.
[8] Møller P, Seppälä T, Bernstein I, Holinski-Feder E, Sala P, Evans DG, et al. Incidence of and survival after subsequent cancers in carriers of pathogenic MMR variants with previous cancer: a report from the prospective Lynch syndrome database. Gut 2017;66:1657–64. https://doi.org/10.1136/gutjnl-2016-311403.
[9] Møller P, Seppälä TT, Bernstein I, Holinski-Feder E, Sala P, Gareth Evans D, et al. Cancer risk and survival in path-MMR carriers by gene and gender up to 75 years of age: a report from the Prospective Lynch Syndrome Database. Gut 2018;67:1306–16. https://doi.org/10.1136/gutjnl-2017-314057.
[10] Dominguez-Valentin M, Sampson JR, Seppälä TT, ten Broeke SW, Plazzer JP, Nakken S, et al. Cancer risks by gene, age, and gender in 6350 carriers of pathogenic mismatch repair variants: findings from the Prospective Lynch Syndrome Database. Genet Med 2020;22:15–25. https://doi.org/10.1038/s41436-019-0596-9.
[11] Thompson BA, Spurdle AB, Plazzer JP, Greenblatt MS, Akagi K, Al-Mulla F, et al. Application of a 5-tiered scheme for standardized classification of 2,360 unique mismatch repair gene variants in the InSiGHT locus-specific database. Nat Genet 2014;46:107–15. https://doi.org/10.1038/ng.2854.
[12] Pick JMJ, van Diest PJ, Zweemer RP, Jansen JW, Poort-Keesom RJJ, Menko FH, et al. Dysplastic changes in prophylactically removed Fallopian tubes of women predisposed to developing ovarian cancer. J Pathol 2001;195:451–6. https://doi.org/10.1002/path.1000.

[13] Dominguez-Valentin M, Crosbie EJ, Engel C, Aretz S, Macrae F, Winship I, et al. Risk-reducing hysterectomy and bilateral salpingo-oophorectomy in female heterozygotes of pathogenic mismatch repair variants: a Prospective Lynch Syndrome Database report. Genet Med 2020;5. https://doi.org/10.1038/s41436-020-01029-1.

[14] Herzig DO, Buie WD, Weiser MR, You YN, Rafferty JF, Feingold D, et al. Clinical practice guidelines for the surgical treatment of patients with Lynch syndrome. Dis Colon Rectum 2017;60:137–43. https://doi.org/10.1097/DCR.0000000000000785.

[15] Etchegary H, Dicks E, Tamutis L, Dawson L. Quality of life following prophylactic gynecological surgery: experiences of female Lynch mutation carriers. Fam Cancer 2018;17:53–61. https://doi.org/10.1007/s10689-017-9997-6.

[16] Møller P. The Prospective Lynch Syndrome Database reports enable evidence-based personal precision health care. Hered Cancer Clin Pract 2020;18:6. https://doi.org/10.1186/s13053-020-0138-0.

[17] Dominguez-Valentin M, Seppälä TT, Engel C, Aretz S, Macrae F, Winship I, et al. Risk-reducing gynecological surgery in Lynch syndrome: results of an international survey from the prospective Lynch syndrome database. J Clin Med 2020;9:2290. https://doi.org/10.3390/jcm9072290.

[18] Kalamo MH, Ju Mäenpää, Seppälä TT, Mecklin JP, Huhtala H, Sorvetula K, et al. Factors associated with decision-making on prophylactic hysterectomy and attitudes towards gynecological surveillance among women with Lynch syndrome (LS): a descriptive study. Fam Cancer 2020;19:177–82. https://doi.org/10.1007/s10689-020-00158-5.

[19] Renkonen-Sinisalo L, Seppälä TT, Järvinen HJ, Mecklin JP. Subtotal colectomy for colon cancer reduces the need for subsequent surgery in Lynch syndrome. Dis Colon Rectum 2017;60:792–9. https://doi.org/10.1097/DCR.0000000000000802.

[20] Ofshteyn A, Jiang B, Bingmer K, Nakayama JM, Gallego C, Giglia M, et al. Prophylactic gynecologic surgery at time of colectomy benefits women with Lynch syndrome and colon cancer: a Markov cost-effectiveness analysis. Dis Colon Rectum 2020;63:1393–402. https://doi.org/10.1097/dcr.000000000001681.