A FLOW APPROACH TO THE GENERALIZED LOEWNER-NIRENBERG PROBLEM OF THE σ_k-RICCI EQUATION

Abstract. We introduce a flow approach to the generalized Loewner-Nirenberg problem (1.5) – (1.7) of the σ_k-Ricci equation on a compact manifold (M^n, g) with boundary. We prove that for initial data $u_0 \in C^4(M)$ which is a subsolution to the σ_k-Ricci equation (1.5), the Cauchy-Dirichlet problem (3.1) – (3.3) has a unique solution u which converges in $C^4_{loc}(M^\circ)$ to the solution u_∞ of the problem (1.5) – (1.7), as $t \to \infty$.

1. Introduction

Let (M^n, g) be a compact Riemannian manifold with boundary of dimension $n \geq 3$. Denote M° to be the interior of M. In [10], we considered the Cauchy-Dirichlet problem of the Yamabe flow which starts from a positive subsolution of the Yamabe equation (1.1) and converges in $C^2_{loc}(M^\circ)$ to the solution to the Loewner-Nirenberg problem

\begin{align}
4(n-1) \Delta u - R_g u - n(n-1)u^{\frac{n+2}{n-2}} = 0, & \quad \text{in } M^\circ, \label{1.1} \\
n u(p) \to \infty, & \quad \text{as } p \to \partial M, \label{1.2}
\end{align}

which is originally studied by Loewner and Nirenberg [15] on Euclidean domains, and later by Aviles and McOwen [2] [3] on general compact manifolds with boundary. A signature feature of our flow is that it preserves the solution $u(\cdot, t)$ as a sub-solution to the Yamabe equation for $t > 0$.

In this paper, we extend this approach to study the generalized Loewner-Nirenberg problem for the fully nonlinear equation studied in [5] and [7].

Definition 1.1. For $(\lambda_1, \ldots, \lambda_n) \in \mathbb{R}^n$ and $k = 1, \ldots, n$, we define the elementary symmetric functions as

$$\sigma_k(\lambda_1, \ldots, \lambda_n) = \sum_{i_1 < \ldots < i_k} \lambda_{i_1} \ldots \lambda_{i_k},$$

and define the cone

$$\Gamma_+^k = \{ \Lambda = (\lambda_1, \ldots, \lambda_n) \in \mathbb{R}^n \mid \sigma_j(\Lambda) > 0, \forall j \leq k \},$$

which is the connected component of the set $\{ \sigma_k > 0 \}$ containing the positive definite cone on \mathbb{R}^n. We also define $\Gamma_-^k = -\Gamma_+^k$. For a symmetric $n \times n$ matrix A, $\sigma_k(A)$ is defined to be $\sigma_k(\Lambda)$ with $\Lambda = (\lambda_1, \ldots, \lambda_n)$ the eigenvalues of A.

The σ_k-scalar curvature equation is introduced in [18]. Let (M^n, g) be a smooth compact Riemannian manifold with boundary of dimension $n \geq 3$. Denote Ric_g as the Ricci tensor of g.
In [7], for any $k = 1, \ldots, n$, the authors studied the Dirichlet boundary value problem of the σ_k equation of $-Ric\bar{g}$, in seek of a conformal metric $\bar{g} = e^{2u}g$ such that $\bar{Ric}\bar{g} \in \Gamma_k$ and

\begin{align}
\sigma_k(-Ric\bar{g}) \equiv \sigma_k(-\bar{g}^{-1}Ric\bar{g}) = \tilde{\beta}_{k,n} \text{ in } M,
\end{align}

(1.3)

\begin{align}
u_0 = 0 \text{ on } \partial M,
\end{align}

(1.4)

where $\tilde{\beta}_{k,n} = (n - 1)^k \left(\frac{n}{k}\right)$, or equivalently, we have the σ_k-Ricci equation

\begin{align}
\sigma_k(\tilde{\nabla}^2 u) = \tilde{\beta}_{k,n}e^{2u}
\end{align}

(1.5)

where

\begin{align}
\tilde{\nabla}^2 u = -Ric\bar{g} + (n - 2)\nabla^2 u + \Delta u g + (n - 2)(|du|^2 g - du \otimes du).
\end{align}

(1.6)

A more interesting result in [7] is that they generalized the Loewner-Nirenberg problem to the σ_k-Ricci equation (1.5) (see also [5]). They proved that there exists a unique solution u_k to (1.5) with the property that

\begin{align}
u_k(p) \to +\infty
\end{align}

(1.7)

uniformly as $p \to \partial M$; moreover,

\begin{align}
\lim_{p \to \partial M}[u_k(p) + \log(r(p))] = 0
\end{align}

(1.8)

as $p \to \partial M$, where $r(p)$ is the distance of p to ∂M. Notice that in [5] Guan gave an alternative approach to similar results, using metrics of negative Ricci curvature in the conformal class constructed in [16] as the background metric. In comparison, the argument in [7] uses a general background conformal metric and concludes the existence of a prescribed σ_k-Ricci curvature metric of negative Ricci curvature. In this paper, we give a flow approach to the generalized Loewner-Nirenberg problem to the σ_k-Ricci equation (1.5) starting from a sub-solution to (1.5), with a background metric of negative Ricci curvature in the conformal class. In particular, we introduce the Cauchy-Dirichlet problem (3.1) – (3.3) of the σ_k-Ricci curvature flow.

In order to get the lower bound control of the blowing up ratio near the boundary, we need to assume that the boundary data ϕ could not go to infinity too slowly as $t \to \infty$.

Definition 1.2. We call a function $\xi(t) \in C^1([0, \infty))$ a low-speed increasing function if $\xi(t) > 0$ for $t \geq 0$, $\lim_{t \to \infty} \xi(t) = \infty$, and there exist two constants $T > 0$ and $\tau > 0$ such that for $t \geq T$,

\begin{align}
\xi'(t) \leq \tau.
\end{align}

(1.9)

Here are some examples of low-speed increasing functions: t^α for some $0 < \alpha < 1$, $\log(t)$, and finitely many composition of log functions: $\log \circ \log \circ \ldots \circ \log(t)$ for $t > 0$ large, etc.

Theorem 1.3. Assume (M^n, g) $(n \geq 3)$ is a compact manifold with boundary of $C^{4,\alpha}$, and (M, g) is either a compact domain in \mathbb{R}^n or with Ricci curvature $Ric_g \leq -\delta_0 g$ for some $\delta_0 \geq (n - 1)$. Assume $u_0 \in C^{4,\alpha}(M)$ is a subsolution to (1.5) satisfying (3.6) at the points $x \in \partial M$ where $\nu(x) = 0$ for the function ν defined in (3.5). Also, assume $\phi \in C^{4+\alpha,2+\frac{\alpha}{2}}(\partial M \times [0, T_0])$ for all $T_0 > 0$, $\phi|_{\partial M \times [0, +\infty)}$ and ϕ satisfies the compatible condition (3.4) with u_0. Moreover, assume that there exist a low-speed increasing function $\xi(t)$ satisfying (1.9) for some $T > 0$ and $\tau > 0$, and a constant $T_1 > T$ such that $\phi(x, t) \geq \log(\xi(t))$ for $(x, t) \in \partial M \times [T_1, \infty)$. Then there exists a unique solution $u \in C^{4,2}(M \times [0, +\infty))$ to the Cauchy-Dirichlet problem
such that $u \in C^{4+\alpha, 2+\frac{\alpha}{2}}(M \times [0, T])$ for all $T > 0$. Moreover, the solution u converges to a solution u_∞ to the equation (1.5) locally uniformly on M° in C^4, and

$$\lim_{x \to \partial M} (u_\infty(x) + \log(r(x))) = 0,$$

where $r(x)$ is the distance of x to ∂M.

Notice that our assumption on the boundary data ϕ and the speed that $\phi \to \infty$ as $t \to \infty$ is pretty general. When u_0 is a solution to (1.5) in a neighborhood of ∂M, then (3.6) holds automatically, while the condition (3.6) disappears when u_0 is a strict sub-solution to (1.5) in a neighborhood of ∂M. For instance, for any sub-solution u_0 to (1.5), $u_0 - C$ is a strict sub-solution for any constant $C > 0$. For the long time existence of the flow, one needs to establish the global a priori estimates on the solution u up to C^2-norm: both the boundary estimates and the interior estimates, starting from the L^∞ control by the maximum principle and heavily depending on the monotonicity of u and the control of u_t. In particular, $u_t \geq 0$ and hence $u(\cdot, t)$ is a sub-solution to (1.5) for any $t \geq 0$, which together with the uniform interior upper bound control makes the convergence possible and gives a natural lower bound of u. For the convergence of the flow, we have to give the uniform interior C^2-estimates on u which is independent of $t > 0$. Finally the asymptotic boundary behavior near the boundary as $t \to \infty$ is established, which implies that the limit function is a solution to the generalized Loewner-Nirenberg problem. Many of the barrier functions in these estimates can be viewed as a parabolic version of those in [7] and [5]. This flow approach works well for the Loewner-Nirenberg problem of more general nonlinear equations in [5].

Corollary 1.4. Assume (M^α, g) is a compact manifold with boundary of $C^{4,\alpha}$. Then there exists a sub-solution u_0 to (1.5) and a σ_k-Ricci curvature flow $g(t) = e^{2t}g$ starting from $g_0 = e^{2t_0}g$ and satisfying (3.1) and the Cauchy-Dirichlet condition (3.2)–(3.3) with some boundary data ϕ such that $g(t)$ converges to $g_\infty = e^{2u_\infty}g$ locally uniformly in C^4 as $t \to +\infty$, where u_∞ is the unique generalized Loewner-Nirenberg solution to (1.5) i.e., $u_\infty(x) \to \infty$ as $x \to \partial M$. Moreover,

$$\lim_{x \to \partial M} (u_\infty(x) + \log(r(x))) = 0.$$

Proof. As discussed in Section 2 by [16] there exists a metric in the conformal class $[g]$ of $C^{4,\alpha}$, which is still denoted as g such that $\text{Ric}_g < -(n-1)g$. If M is a Euclidean domain, we can alternatively just choose g to be the Euclidean metric. We then take g as the background metric. Now we choose a sub-solution u_0 to (1.5) such that u_0 satisfies (3.6) on the boundary. For instance, if (M, g) is a sub-domain in Euclidean space, we choose u_0 to be either the global sub-solution constructed in [7] (just take $\eta(s) = s$ for the subsolution u in Section 2) for the constants A and p large, or the solution to (1.5) with $u_0 = 0$ on ∂M obtained in [7] or [5]. For general (M, g), with the background metric satisfying $\text{Ric}_g < -(n-1)g$, we can either take u_0 to be the solution to (3.1) with $u_0 = 0$ on ∂M obtained in [7] or [5], or use the global sub-solution constructed in Section 2 or $u_0 = v - 1$ where $v \in C^{4,\alpha}(M)$ is any sub-solution of (1.5) and hence u_0 is a strict sub-solution (with “>” instead of “=” in (3.1)). Then we construct the boundary data $\phi \in C^{4,2}(\partial M \times [0, \infty))$ satisfying the compatible condition (3.4) at $t = 0$ such that $\phi_0 \in C^{4+\alpha, 2+\frac{\alpha}{2}}(\partial M \times [0, T])$ for any $T > 0$, $\phi_t \geq 0$ on $\partial M \times [0, \infty)$ and $\phi(x, t) \geq \xi(t)$ on $\partial M \times [0, T]$ for some $T > 0$, where $\xi(t)$ is a low-speed increasing function in Definition 1.2. Now we consider the solution to the Cauchy-Dirichlet boundary value problem (3.1)–(3.3). Therefore, by Theorem 1.3 we have the required conclusion. \qed
One can easily adapt this approach to the convergence of a σ_k-Ricci curvature flow to the solution to the Dirichlet boundary value problem of (1.5).

Corollary 1.5. Assume (M^n, g) is a compact manifold with boundary of $C^{4,\alpha}$. Let $\varphi_0 \in C^{4,\alpha}(\partial M)$. Then there exists a sub-solution u_0 to (1.5) and a σ_k-Ricci curvature flow $g(t) = e^{2u(t)}g$ starting from $g_0 = e^{2u_0}g$ and satisfying (3.1) and some Cauchy-Dirichlet condition such that $g(t)$ converges to $g_{\infty} = e^{2u_{\infty}}g$ uniformly in C^4 as $t \to +\infty$, where u_{∞} is the unique solution to (1.5) such that $u_{\infty} = \varphi_0$ on ∂M.

Recently, in [4] the authors studied a more general fully nonlinear equations with less restriction on regularity and convexity on the nonlinear structures on smooth domains in Euclidean space and obtained a unique continuous viscosity solution, which is locally Lipschitz in the interior and shares the same blowing up ratio with the solution to the Loewner-Nirenberg problem near the boundary.

The paper is organized as follows: In Section 2, we construct a global sub-solution in $C^{4,\alpha}(M)$ to the σ_k-Ricci equation (1.5). In Section 3 we formulate the maximum principle, show the monotonicity of the flow and give the global a priori estimates of the solution for the long time existence of the flow. In Section 4 we first prove the long time existence of the flow based on the a priori estimates in Section 3 and then we give the uniform interior estimates of the solution independent of t, and establish the asymptotic behavior of the solution near the boundary (see Lemma 4.4) and prove Theorem 1.3. Finally we give a proof of Corollary 1.5.

Acknowledgements. The author would like to thank Professor Matthew Gursky for helpful discussion and Professor Jiakun Liu for nice talks on nonlinear equations.

2. A Global Subsolution to (1.5)

We now construct a global subsolution $u \in C^{4,\alpha}(M)$ to the homogeneous Dirichlet boundary value problem (1.4) – (1.5). Recall that in [7], the authors constructed a global subsolution with singularity at the cut locus of the distance function to some point, which serves as a global uniform lower bound of the solution. We modify it to a smooth function in order to avoid complicated argument on the cut locus in our setting. Let (M^n, g) be a compact Riemannian manifold with boundary of $C^{4,\alpha}$. We extend the manifold to a new manifold with boundary $M_1 = M \cup (\partial M \times [0, \epsilon_0])$ for some small constant ϵ_0 with $\partial M = \partial M \times [0]$ and extend g to a $C^{4,\alpha}$ metric on M_1. One can construct a conformal metric $h \in [g]$ of $C^{4,\alpha}$ with $\text{Ric}_h < 0$ on M_1, which always exists by the proof in [16]. Without loss of generality, we take h as the background metric and still denote h as g in M_1, with $\text{Ric}_g \leq -\delta_0 g$ for some constant $\delta_0 > 0$ in M. In fact by scaling we assume $\text{Ric}_g \leq -\delta_0 g$ with $\delta_0 > (n-1)$ large in M.

Notice that there exist two small constants $0 < \epsilon_1 < \delta$ such that $\text{dist}(x, \partial M_1) > 2\epsilon_1 + 4\delta$ for $x \in \partial M$, and also $\epsilon_1 + 2\delta$ is less than the injectivity radius of any point q in the tubular neighborhood of ∂M

$$\Omega = \{x \in M_1 \mid \text{dist}_g(x, \partial M) \leq \epsilon_1 + 2\delta\},$$

with $\text{dist}_g(x, \partial M)$ distance function to ∂M, and moreover for $x \in \Omega$, the distance $\text{dist}_g(x, \partial M)$ is realized by a unique point $x_1 \in \partial M$ through a unique shortest geodesic connecting x and x_1, which is orthogonal to ∂M at x_1. For any $x_0 \in \partial M$, we pick up the point $\bar{x} \in M_1 \setminus M$ on the geodesic starting from x_0 along the outer normal vector of ∂M so that $\text{dist}_g(x_0, \bar{x}) = \epsilon_1$. We define the distance function $r(x) = \text{dist}_g(x, \bar{x})$ for $x \in M_1$. In particular, $r(x_0) = \epsilon_1$ and r is
smooth for \(r \leq 2\delta + \epsilon_1 \). It is clear that \(r(x) \geq r(x_0) \) for any \(x \in M \) and the equality holds if and only if \(x = x_0 \).

Now for a fixed \(x_0 \in \partial M \) and the corresponding point \(\bar{x} \), we can choose the subsolution in the following way: We let \(A > 0 \) and \(p > 0 \) be two large constant to be determined so that

\[
N = A[(-\delta + r(x_0))^{-p} + r(x_0)^{-p}]
\]
is large, and we define a convex function \(\eta \in C^5(\mathbb{R}) \), so that

\[
\eta(s) = \eta(A(2\delta + r(x_0))^{-p} - r(x_0)^{-p})) \text{ for } s \leq A [(2\delta + r(x_0))^{-p} - r(x_0)^{-p}], \text{ and}
\]

\[
\eta(s) = s, \text{ for } s \geq A [(\delta + r(x_0))^{-p} - r(x_0)^{-p}].
\]

It is clear that \(\eta'(s) \geq 0 \) and \(\eta''(s) \geq 0 \), for \(s \in \mathbb{R} \). Now we define

\[
\underline{u}(x) = \eta(A (r(x)^{-p} - r(x_0)^{-p})),
\]

and hence \(\underline{u} \in C^{4,\alpha}(M) \). We claim that we can choose uniform large constants \(A > 0 \) and \(p > 0 \) independent of \(x_0 \in \partial M \) so that \(\underline{u} \) is a subsolution. First, we give the calculation

\[
\nabla \underline{u}(x) = -Ap' \eta^{-p-1} \nabla r,
\]

\[
\nabla_i \nabla_i \underline{u}(x) = A^2 p^2 \eta'' r^{-2p-2} \nabla_i r \nabla_j r + p(p+1)Ap' \eta'^{-p-2} \nabla_i r \nabla_j r - pAp' \eta'^{-p-1} \nabla_i \nabla_j r
\]

\[
= A^2 p^2 \eta'' r^{-2p-2} \nabla_i r \nabla_j r + Ap^{-p-2} \eta'[(p+1) \nabla_i r \nabla_j r - r \nabla_i \nabla_j r],
\]

\[
\Delta \underline{u}(x) = A^2 p^2 \eta'' r^{-2p-2} \vert \nabla r \vert^2 + Ap(p+1)\eta'^{-p-2} \vert \nabla r \vert^2 - Ap\eta'^{-p-1} \Delta r
\]

\[
= A^2 p^2 \eta'' r^{-2p-2} + Ap^{-p-2} \eta'[(p+1) - r\Delta r],
\]

It is clear that for given \(\delta > \epsilon_1 > 0 \), we can choose \(p > 0 \) such that, for any \(x \in M \) such that \(r(x) \leq 2\delta + r(x_0) \), we have that \((p+1) - r\Delta r > 0 \), where \(p > 0 \) is independent of the choice of \(x_0 \in \partial M \). In fact, we choose \(p > 0 \) large so that the matrix

\[
[(p+1 - r\Delta r)g_{ij} - (n-2)r \nabla_i \nabla_j r]
\]
is positive for \(x \in M \) such that \(r(x_0) \leq r(x) \leq 2\delta + r(x_0) \). Therefore,

\[
(n-2) \nabla^2 \underline{u}(x) + \Delta \underline{u}(x) g
\]
is always non-negative on \(M \). Since \(-Ric > \delta_0 g\) with some constant \(\delta_0 > (n-1) \) on \(M \) and

\[
|du(x)|^2 g - du(x) \otimes du(x)
\]
is semi-positive, we have that for \(0 \leq s \leq 1 \),

\[
\nabla^2 \underline{u}(x) \equiv sg - (1-s)Ric_g + (n-2) \nabla^2 \underline{u}(x) + \Delta \underline{u}(x) + (n-2)(|du(x)|^2 g - du(x) \otimes du(x))
\]

\[
\geq (s + (1-s)\delta_0)g \geq g.
\]

By the definition of \(\eta \),

\[
\underline{u}(x) \leq \eta(A((r(x_0) + \delta)^{-p} - r(x_0)^{-p})) = A((r(x_0) + \delta)^{-p} - r(x_0)^{-p})
\]

for \(r(x) \geq \delta + r(x_0) \). Now \(A > 0 \) and \(p > 0 \) is chosen to be large so that

\[
A((r(x_0) + \delta)^{-p} - r(x_0)^{-p}) < -\frac{1}{2} \log((n-1)),
\]

and hence

\[
\sigma_n(g^{-1} \nabla^2 \underline{u}) \geq \sigma_n(\delta_0) = 1 > \beta_{n,n} e^{2\underline{u}}
\]
for \(x \in M \) with \(r(x) \geq \delta + r(x_0) \). On the other hand, for \(x \in M \) with \(r(x) \leq \delta + r(x_0) \), we have
\[
\eta(A(r(x)^{-p} - r(x_0)^{-p})) = A(r(x)^{-p} - r(x_0)^{-p}),
\]
\[
\eta'(A(r(x)^{-p} - r(x_0)^{-p})) = 1,
\]
\[
\eta''(A(r(x)^{-p} - r(x_0)^{-p})) = 0,
\]
and hence, as discussed in \[7\], for \(A > 0 \) and \(p > 0 \) large,
\[
(2.3) \quad \bar{\nabla}^2 u(x) > (n - 1)g,
\]
for \(x \in M \) with \(r(x) \leq \delta + r(x_0) \), where the term \((2.1)\) serves as the main controlling positive term. Since \(u \leq 0 \), we have \(u \in C^{4,\alpha}(M) \) is a subsolution to the \(\sigma_n \) equation when \(r(x) \leq \delta + r(x_0) \) and hence a sub-solution on \(M \) by \([2.2]\), with \(u \leq 0 \) on \(\partial M \). Let \(S_k = \sigma_k(\bar{\nabla}^2 u)\left(\frac{n}{k}\right)^{-1} \) for \(1 \leq k \leq n \).

By Maclaurin’s inequality,
\[
S_1 \geq S_{\frac{1}{2}} \geq .. \geq S_{\frac{1}{k}} \geq .. \geq S_n,
\]
which implies that a subsolution to the \(\sigma_n \) equation is a subsolution to the \(\sigma_k \) equation for \(1 \leq k \leq n \), while a supersolution of the \(\sigma_1 \) equation such that \(\bar{\nabla}^2 u \in \Gamma_\kappa \) is a supersolution to the \(\sigma_k \) equation for \(1 \leq k \leq n \). In particular, \(u \) serves as a subsolution to the \(\sigma_k \) equations and a uniform lower bound of the solutions to the homogeneous Dirichlet boundary value problem for \(1 \leq k \leq n \). Moreover, by \([2.2], (2.3)\) and the fact \(u \leq 0 \) on \(\partial M \), we have
\[
(2.4) \quad \sigma_k(\bar{\nabla}^2 u) > \beta_{k,n} e^{2k\phi}
\]
on \(M \). Recall that \(A > 0 \) and \(p > 0 \) are independent of \(x_0 \in \partial M \). This proves the claim. Therefore, we have constructed a strict sub-solution \(u \in C^{4,\alpha}(M) \) to \([1.5]\) and \(u \leq 0 \) on \(M \).

3. A priori estimates for the \(\sigma_k \)-Ricci curvature flow

On a compact Riemannian manifold \((M^n, g)\) with boundary \(\partial M \) of \(C^{4,\alpha} \). We denote \(M^\circ \) the interior of \(M \). If \((M, g)\) is a bounded domain in the Euclidean space \(\mathbb{R}^n \), we choose the natural extension \((M_1, g_1)\) which is a small tubular neighborhood of \(M \) in \(\mathbb{R}^n \), and the global subsolution used in \([7]\) has no singularity in \(M \). For general compact Riemannian manifold \((M^n, g)\) with boundary, with the extension \((M_1, g_1)\) in Section \(2\) we choose \(g_1 \) (and hence \(g \) on \(M \)) to be the conformal metric which has \(-\text{Ric}_{g_1} \geq \delta_0 g_1 \) with \(\delta_0 > n - 1 \).

For \(k = 1, ..., n \), we consider the Cauchy-Dirichlet problem of the \(\sigma_k \)-Ricci curvature flow
\[
(3.1) \quad 2ku_t = \log(\sigma_k(\bar{\nabla}^2 u)) - \log(\beta_{k,n}) - 2ku, \quad \text{on } M \times [0, +\infty),
\]
\[
(3.2) \quad u|_{t=0} = u_0,
\]
\[
(3.3) \quad u|_{\partial M} = \phi, \quad t \geq 0,
\]
where \(u_0 \in C^{4,\alpha}(M) \) is a subsolution to the \(\sigma_k \)-Ricci equation \([1.5]\), \(\bar{\nabla}^2 u \) is defined in \([1.6]\), and \(\phi \in C^{4+\alpha,2+\frac{\alpha}{2}}(\partial M \times [0, T]) \) for all \(T > 0 \), and moreover, \(\phi \) satisfies \(\phi_t \geq 0 \) for \(t \geq 0 \), \(\phi(t) \rightarrow +\infty \) as \(t \rightarrow +\infty \). To guarantee that the solution \(u \) to the Cauchy-Dirichlet problem of \([3.1]\) satisfies
\(u \in C^{4,\alpha} (M \times [0, T_0]) \) for some \(T_0 > 0 \), we need the compatible condition

\[
\begin{align*}
\left\{ \begin{array}{l}
u_0(x) = \phi(x, 0), \text{ for } x \in \partial M, \\
2k\phi_\ell(x, 0) = \log(\sigma_k(\nabla^2 u_0)(x)) - \log(\bar{\beta}_{k,n}) - 2k u_0(x), \text{ for } x \in \partial M, \\
2k\phi_n(x, 0) = L_0(v(x)), \text{ for } x \in \partial M,
\end{array} \right.
\end{align*}
\]

where the function \(v \in C^2(M) \) is

\[
v(x) \equiv \frac{1}{2k} (\log(\sigma_k(\nabla^2 u_0)(x)) - \log(\bar{\beta}_{k,n}) - 2k u_0(x))
\]

and \(L_0 \) is the linear operator

\[
L_0(\varphi) = \frac{\bar{T}_{ij}^{k-1}}{\sigma_k(\nabla^2 u_0)} [(n - 2) \nabla_i \nabla_j \varphi + \Delta \varphi g_{ij} + (n - 2)(2g^{km} \nabla_k u_0 \nabla_m \varphi g_{ij} - \nabla_i \varphi \nabla_j u_0 - \nabla_i u_0 \nabla_j \varphi)] - 2k \varphi,
\]

for any \(\varphi \in C^2(M) \), where \(\bar{T}_{ij}^{k-1} \) is the \((k-1)\)-th Newton transformation of \(\nabla^2 u_0 \), which is positive definite. In order to find boundary data \(\phi \in C^{4,\alpha} (\partial M \times [0, \infty)) \) compatible with \(u_0 \) such that \(\phi_t \geq 0 \) on \(\partial M \times [0, \infty) \), we need to assume that for the subsolution \(u_0 \in C^{4,\alpha} (M) \),

\[
(\sigma_k(\nabla^2 u_0) > \bar{\beta}_{k,n} e^{2k u_0}
\]

for all \(x \in \partial M \). For instance, the global subsolution \(u \) we constructed in Section 2 by (2.4).

Another example is \(u_0 = \varphi - C \), with \(\varphi \) a sub-solution of (1.5) and \(C > 0 \) a constant and hence, \(u_0 \) is a strict sub-solution of (1.5) on \(M \). Also, if \(u_0 \in C^{4,\alpha} (M) \) is a solution to (1.5), then \(v = 0 \) on \(M \) and hence (3.6) holds automatically. When \(u_0 \) is a solution to (1.5) with \(u_0 = 0 \) on \(\partial M \) as obtained in (7) and (5), we can choose the boundary data \(\phi = \phi(t) \in C^3 \) such that \(\phi(0) = \phi'(0) = \phi''(0) = 0 \) and \(\phi'(t) \geq 0 \) for \(t \geq 0 \). For a given constant \(T > 0 \), we call a function \(u \in C^2 (M \times [0, T]) \) a sub-solution (super-solution) of (3.1) if \(\nabla^2 u \in \Gamma_k^+ \) and \(u \) satisfies the inequality with "\(\leq \)" ("\(\geq \)") instead of "\(= \)" in (3.1). Notice that sub-solution and super-solution are defined similarly for (1.5).

We now prove a maximum principle, which serves as a comparison theorem for later use.

Lemma 3.1. Let \(u \) and \(v \) be sub- and super- solutions to (3.1), with \(u \leq v \) on \(\partial M \times [0, T) \) and \(M \times [0, T) \), then we have \(u \leq v \) on \(M \times [0, T) \).

Proof. The proof is a modification of the maximum principle of \(\sigma_k \)-Ricci equation in [7]. We argue by contradiction. Let \(\xi = u - v \). Assume that there exist \(0 < t_1 < T \) and \(x \in M^o \) such that

\[
\xi(x, t_1) = \sup_{M \times [0, t_1]} \xi > 0.
\]

Then we have at \((x, t_1) \),

\[
\tilde{u}_t \geq v_t, \quad \nabla \tilde{u} = \nabla v,
\]

\[
\nabla^2 (v - \tilde{u}) \geq 0,
\]

7
and hence
\[\tilde{\nabla}^2 \tilde{u} + \mathcal{V} = \tilde{\nabla}^2 v \]
with \(\mathcal{V} = (n - 2) \nabla^2 (v - \tilde{u}) + \Delta (v - \tilde{u}) g \geq 0 \), which implies that \(\sigma_k(\tilde{\nabla}^2 \tilde{u}) \leq \sigma_k(\tilde{\nabla}^2 v) \), and hence
\[2k\tilde{u}_t - \log(\sigma_k(\tilde{\nabla}^2 \tilde{u})) \geq 2kv_t - \log(\sigma_k(\tilde{\nabla}^2 v)) \]
at \((x, t_1)\). On the other hand, the function \(\tilde{u} = u - \xi(x, t_1) \) is a strict sub-solution to (3.1) on \(M \times [0, T) \):
\[2k\tilde{u}_t = 2ku_t \leq \log(\sigma_k(\tilde{\nabla}^2 u)) - \log(\tilde{\beta}_{k,n}) - 2ku < \log(\sigma_k(\tilde{\nabla}^2 \tilde{u})) - \log(\tilde{\beta}_{k,n}) - 2\tilde{u}. \]
By the definition of sub- and super-solutions, we have at \((x, t_1)\),
\[2k\tilde{u}_t - \log(\sigma_k(\tilde{\nabla}^2 \tilde{u})) < - \log(\tilde{\beta}_{k,n}) - 2k\tilde{u} = - \log(\tilde{\beta}_{k,n}) - 2kv \leq 2kv_t - \log(\sigma_k(\tilde{\nabla}^2 v)), \]
which is a contradiction. This proves the lemma. \(\square \)

Based on the fact that the initial data \(u_0 \) is a subsolution of (1.5) and the boundary data \(\phi \) is increasing in \(t \), we have the monotonicity lemma.

Lemma 3.2. Assume that \(u_0 \in C^3(M) \) is a subsolution to the \(\sigma_k \)-Ricci equation (1.5), and \(u \in C^{3,2}(M \times [0, T]) \) is a solution to (3.1) for some \(T > 0 \). Assume that \(u(x, t) = \phi(x, t) \) for any \((x, t) \in \partial M \times [0, T)\) and \(\frac{\partial \phi}{\partial \nu} \geq 0 \) on \(\partial M \times [0, T) \). Then \(u_t \geq 0 \) in \(M \times [0, T) \). In particular, \(u \) is increasing along \(t \geq 0 \). Moreover, we have upper bound estimates for \(u_t \) on \(M \times [0, T) \).

Proof. Let \(v = u_t \). We take derivative of \(t \) on both sides of the equation (3.1) to have
\[
(3.7) \quad 2kv_t = \frac{1}{\sigma_k(\tilde{\nabla}^2 u)} \tilde{\nabla}^{ij}_{k-1}[(n - 2)\nabla_i \nabla_j v + \Delta v g_{ij} + (n - 2)(2g^{km}u_k v_m g_{ij} - v_i u_j - u_i v_j)] - 2kv,
\]
where \(\tilde{\nabla}^{ij}_{k-1} \) is the \((k - 1)\)-th Newton transformation of \(\tilde{\nabla}^2 u \), which is positive definite since \(\tilde{\nabla}^2 u \in \Gamma_k^+ \). Recall that \(u_0 \) is a subsolution of (1.5), by the equation (3.1) we have that \(v(x, 0) \geq 0 \) for \(x \in M \). Also, \(v(x, t) = \phi(x, t) \geq 0 \) for \((x, t) \in \partial M \times [0, T) \). We will use maximum principle to obtain that \(v \geq 0 \) on \(M \times [0, T) \). Otherwise, assume that there exists \(x_0 \in M^0 \) and \(t_1 \in (0, T) \) such that
\[
v(x_0, t_1) = \inf_{M \times [0, t_1]} v < 0,
\]
then at \((x_0, t_1)\), we have that
\[
v_t \leq 0, \quad \nabla v = 0, \quad \nabla^2 v \geq 0, \quad v < 0,
\]
and hence
\[
v_t \leq 0, \quad \frac{1}{\sigma^k(\tilde{\nabla}^2 u)} \tilde{\nabla}^{ij}_{k-1}[(n - 2)\nabla_i \nabla_j v + \Delta v g_{ij} + (n - 2)(2g^{km}u_k v_m g_{ij} - v_i u_j - u_i v_j)] - 2kv > 0,
\]
at \((x_0, t_1)\), contradicting with the equation (3.7). Therefore, \(v = u_t \geq 0 \) on \(M \times [0, T) \). In particular, \(u \) is a sub-solution to (1.5) for each \(t > 0 \).

Similarly, assume \(v(x_0, t_1) = \sup_{M \times [0, t_1]} v > 0 \) for some \((x_0, t_1) \in M^0 \times (0, T) \). Then at \((x_0, t_1)\),
\[
v_t \geq 0, \quad \frac{1}{\sigma^k(\tilde{\nabla}^2 u)} \tilde{\nabla}^{ij}_{k-1}[(n - 2)\nabla_i \nabla_j v + \Delta v g_{ij} + (n - 2)(2g^{km}u_k v_m g_{ij} - v_i u_j - u_i v_j)] - 2kv < 0,
\]
contradicting with the equation (3.7). Therefore, combining with (3.1) at $t = 0$, we have

$$v(x, t) = u_t(x, t) \leq \max \left\{ \frac{1}{2k} \sup_M \left[\log(\sigma_1(\nabla^2 u_0)) - \log(\tilde{\beta}_{k,n}) - 2ku_0 \right], \sup_{\partial M \times [0,t]} \phi \right\}$$

for any $(x, t) \in M \times [0, T)$. By integration, we have

$$u(x, t) = u_0(x) + \int_0^t u_t(x, s) ds$$

$$\leq u_0(x) + t \max \left\{ \frac{1}{2k} \sup_M \left[\log(\sigma_1(\nabla^2 u_0)) - \log(\tilde{\beta}_{k,n}) - 2ku_0 \right], \sup_{\partial M \times [0,t]} \phi \right\},$$

for any $(x, t) \in M \times [0, T)$; on the other hand, by monotonicity, $u(x, t) \geq u_0(x)$. Hence, we obtain the upper and lower bound estimates for u on $M \times [0, T)$.

\[\square\]

We then give the boundary C^1 estimates on u.

Lemma 3.3. Assume (M^n, g) is a compact manifold with boundary of $C^{4,\alpha}$, and (M, g) is either a compact domain in \mathbb{R}^n or with Ricci curvature $\text{Ric}_g \leq -\delta_0 g$ for some $\delta_0 \geq (n-1)$. Let $u \in C^4(M \times [0, T_0])$ be a solution to the Cauchy-Dirichlet problem (3.1) for some $T_0 > 0$. Assume $u_0 \in C^{4,\alpha}(M)$ is a subsolution to (1.5) satisfying (3.6) at the points $x \in \partial M$ where $v(x) = 0$. Also, assume $\phi \in C^{4+\alpha,2+\frac{\alpha}{2}}(\partial M \times [0,T_1])$ for all $T_1 > 0$, $\phi_t(x, t) \geq 0$ on $\partial M \times [0, +\infty)$ and ϕ satisfies the compatible condition (3.4) with u_0. Then we have the boundary gradient estimates of u i.e., there exists a constant $C = C(T_0) > 0$ such that

$$|\nabla u(x, t)| \leq C$$

for $(x, t) \in \partial M \times [0, T_0)$.

Proof. By the Dirichlet boundary condition, tangential derivatives of u on $\partial M \times [0, t_0]$ is controlled by the tangential derivatives of the boundary data ϕ and hence, for the boundary gradient estimates of u, we only need to control $|\frac{\partial u}{\partial n}|$ with n the outer normal vector field of ∂M.

Since $\nabla^2 u \in \Gamma^+_{k}$, we will show the lower bound of $\frac{\partial u}{\partial n}$ based on the control of $\sup_{M \times [0, T_0]} |u|$ as Guan’s argument in Lemma 5.2 in [5]. Indeed, we have

$$\text{tr}(\nabla^2 u) = 2(n-1)[\Delta u + \frac{(n-2)}{2} |\nabla u|^2 - \frac{1}{2(n-1)} R_g] \geq 0,$$

where $R_g \leq 0$ since $\text{Ric}_g \leq 0$. Let $\nu = e^{\frac{\alpha}{2} u}$. Then we have

$$[\Delta \nu - \frac{n-2}{4(n-1)} R_g \nu] \geq 0.$$

Let $m = \sup_{M \times [0, T_0]} |u|$, which is bounded by the proof of Lemma 3.2. For any $t > 0$, let $\tilde{\nu} = \tilde{\nu}(x, t)$ be the solution to the Dirichlet boundary value problem of the linear elliptic equation

$$\Delta \tilde{\nu} = \frac{n-2}{4(n-1)} R_g e^{\frac{\alpha}{2} m}, \quad \text{in} \ M,$$

$$\tilde{\nu}(x, t) = e^{\frac{\alpha}{2} \phi(x,t)}, \quad p \in \partial M.$$
Then by continuity, for any $T > 0$, there exists a uniform constant $C = C(T) > 0$, such that
\[\sup_{(x,t) \in \partial M \times [0,T]} \frac{\partial}{\partial n} \tilde{v} \leq C(T) < +\infty. \]
For $t < T_0$, we have
\[\Delta \tilde{v}(x,t) \leq \frac{n-2}{4(n-1)} R_g v(x,t) \leq \Delta v(x,t), \quad \forall x \in M, \]
\[\tilde{v}(x,t) = v(x,t), \quad x \in \partial M. \]
By maximum principle, $v(x,t) \leq \tilde{v}(x,t)$ in M and since $v(x,t) = \tilde{v}(x,t)$ for $(x,t) \in \partial M \times [0, T_0)$, we have
\[\frac{\partial}{\partial n} v \geq \frac{\partial}{\partial n} \tilde{v} \geq -C \]
for some uniform constant $C = C(T_0) > 0$ on $\partial M \times [0, T_0)$, and hence
\[\frac{\partial}{\partial n} u \geq \frac{2}{n-2} e^{-\frac{\rho^2}{2}} \frac{\partial}{\partial n} \tilde{v} \geq -\frac{2}{n-2} C(T_0) e^{-\frac{\rho^2}{2}} \sup_{M \times [0,T_0]} |u| \]
for $(x,t) \in \partial M \times [0, T_0)$. This gives a uniform lower bound of $\frac{\partial}{\partial n} u$ on $\partial M \times [0, T_0)$.

Now we give upper bound estimates on $\frac{\partial}{\partial n} u$. Let (M_1, g_1) be either a small tubular neighborhood of (M, g) in \mathbb{R}^n, or an extension of (M, g) as in Section [2] respectively. For any $x_0 \in \partial M$, let $\bar{x} \in M_1 \setminus M$ be as in Section [2] and $r(x)$ be the distance function to \bar{x} in M_1 for $x \in M_1$. Let $\delta_1 > 0$ be a small constant such that $\delta_1 < \delta$ with $\delta > 0$ defined in Section [2]. Define the domain $U = \{x \in M, r(x) \leq r(x_0) + \delta_1\}$, with its boundary $\partial U = \Gamma_0 \cup \Gamma_1$ where $\Gamma_0 = U \cap \partial M$ and $\Gamma_1 = \{x \in M | r(x) = r(x_0) + \delta_1\}$. Since $2\delta + r(x_0)$ is less than the injectivity radius at \bar{x}, $r(x)$ is smooth in U. For given $T > 0$, we extend ϕ to a $C^{4+\alpha,2+\beta}$ function on $U \times [0, T]$ for any $T > 0$ so that $\phi(x, 0) = u_0(x)$ for $x \in U$. Define the function
\[u(x,t) = \phi(x,t) + A\left(\frac{1}{r(x)^p} - \frac{1}{r(x_0)^p} \right), \]
on $U \times [0, T]$, with two large constants $A > 0$ and $p > 0$ to be determined. We will choose $A = A(T)$ and $p = p(T)$ large so that u is a barrier function that controls the lower bound of u on $U \times [0, T]$. Direct computations lead to
\[u_t = \phi_t, \]
\[\nabla u = \nabla \phi - A p r^{-p-1} \nabla r, \]
\[\nabla_i \nabla_j u = \nabla_i \nabla_j \phi + A p (p + 1) r^{-p-2} \nabla_i r \nabla_j r - A p r^{-p-1} \nabla_i \nabla_j r \]
\[\Delta u = \Delta \phi + A p (p + 1) r^{-p-2} |\nabla r|^2 - A p r^{-p-1} \Delta r = \Delta \phi + A p (p + 1) r^{-p-2} - A p r^{-p-1} \Delta r. \]
By continuity, there exist constants $C_1 > 0$ and $C_2 = C_2(T) > 0$ such that $|\nabla^2 r| + |\Delta r| \leq C_1$ in U and $|\nabla \phi| + |\nabla^2 \phi| + |\Delta \phi| \leq C_2$ in $U \times [0, T]$. We have the calculation
\[(\tilde{\nabla}^2 u)_{ij} = -Ric_{ij}(g) + (n-2) [\nabla_i \nabla_j \phi + A p (p + 1) r^{-p-2} \nabla_i r \nabla_j r - A p r^{-p-1} \nabla_i \nabla_j r] \]
\[+ [\Delta \phi + A p (p + 1) r^{-p-2} - A p r^{-p-1} \Delta r] g_{ij} + (n-2) |\nabla u|^2 g_{ij} - \nabla_i \nabla_j u. \]
Since $-Ric_g \geq 0$ and the matrix $(\nabla_i r \nabla_j r)$ and the last term are semi-positive, we have
\[(\nabla^2 u)_{ij} \geq (n-2) [\nabla_i \nabla_j \phi - A p r^{-p-1} \nabla_i \nabla_j r] + [\Delta \phi - A p r^{-p-1} \Delta r] g_{ij} + A p (p + 1) r^{-p-2} g_{ij}, \]
and hence for any \(N_1 > 0 \) and \(A > 0 \), there exists a constant \(p_0 = p_0(T, N_1, A) > 0 \), such that for \(p > p_0 \), we have
\[
(\nabla^2 u)_{ij} \geq N_1 g_{ij}
\]
on \(U \times [0, T] \). Let
\[
N_1 \geq \beta_{n,n}^4 e^{2\sup_{\partial \Omega} |\phi|} + 2\sup_{\partial \Omega} |\phi|.
\]
Then we have
\[
\log(\sigma_n(\nabla^2 u)) \geq \log(N_1^n) \geq 2n\phi + \log(\beta_{n,n}) + 2n\phi \geq 2n\phi + \log(\beta_{n,n}) + 2n\phi
\]
on \(U \times [0, T] \). Therefore, \(u \) is a subsolution of the \(\sigma_n \)-Ricci curvature flow. By Maclaurin’s inequality, \(u \) is a subsolution of the \(\sigma_k \)-Ricci curvature flow for any \(1 \leq k \leq n \). By definition, we know that \(u \leq u \) on \(\Gamma_0 \times [0, T_0] \). On \(\Gamma_1 \times [0, T_0] \), \(u \) and \(\phi \) has uniform upper and lower bounds, and hence we can choose \(A \) and \(p \) large enough so that \(u < u \) on \(\Gamma_1 \times [0, T_0] \). Also, we have
\[
\bar{u}(x, 0) \leq \phi(x, 0) = u_0(x)
\]
for \(x \in U \). By maximum principle in Lemma 3.1, we have that
\[
u \geq \bar{u}
\]
in \(U \times [0, T_0] \). Since \(u(x_0, t) = \phi(x_0, t) = u(x_0, t) \), we have
\[
\frac{\partial}{\partial n} u \leq \frac{\partial}{\partial n} \bar{u}
\]
at \((x_0, t)\) for \(t \in [0, T_0] \), where \(n \) is the unit outer normal vector of \(\partial M \) at \(x_0 \). Notice that the constants used here can be chosen uniformly for all \(x_0 \in \partial M \) and hence, there exists a unique constant \(m_1 = m_1(T_0) > 0 \), such that \(\frac{\partial}{\partial n} u \leq m_1 \) on \(\partial M \times [0, T_0] \). Therefore, we have the \(C^1 \) estimates of \(u \) at points on \(\partial M \) i.e., there exists a constant \(C = C(T_0) > 0 \) such that
\[
|\nabla u(x, t)| \leq C
\]
for \((x, t) \in \partial M \times [0, T_0) \). \(\square \)

Now we give the \(C^1 \) estimates of \(u \) on \(M \times [0, T_0] \).

Lemma 3.4. Let \((M, g)\) and \(u \in C^4(M \times [0, T_0]) \) be as in Lemma 3.3 Then there exists a constant \(C = C(T_0) > 0 \) such that
\[
|\nabla u(x, t)| \leq C
\]
for \((x, t) \in M \times [0, T_0] \).

Proof. The interior gradient estimate is relatively standard, and here we modify the argument in [11] (see also [8]). By Lemma 3.2 there exist two constants \(-\infty < \beta_1 < \beta_2 < +\infty \) depending on \(T_0 \) such that \(\beta_1 \leq u \leq \beta_2 \) on \(M \times [0, T_0] \). We define a function
\[
\xi(x, t) = (1 + \frac{|\nabla u|^2}{2})e^{\eta(u)},
\]
where
\[
\eta(s) = C_1(C_2 + s)^p
\]
is a function on \(s \in [\beta_1, +\infty) \) with constants \(C_2 > -\beta_1, C_1 > 0 \) and \(p > 0 \), depending only on \(T_0, \beta_1 \) and \(\beta_2 \), to be determined. Suppose that there exists \(x_0 \in M^o \) and \(t_0 \in (0, T_0) \) such that

\[
\xi(x_0, t_0) = \sup_{M \times [0, t_0]} \xi.
\]

We take geodesic normal coordinates \((x^1, \ldots, x^n)\) centered at \(x_0 \in M \) such that \(\Gamma^m_{ij}(x_0) = 0 \), \(g_{ij}(x_0) = \delta_{ij} \). Then we have at \((x_0, t_0)\),

\begin{align*}
(3.9) \quad & \xi_{x_i} = e^{\eta(u)} [u_{x_i,x_i} u_{x_i} + (1 + \frac{1}{2} u_{x_i} u_{x_i}) \eta'(u) u_{x_i}] = 0, \\
(3.10) \quad & \xi_i = e^{\eta(u)} [u_{x_i,x_i} u_{x_i} + (1 + \frac{1}{2} u_{x_i} u_{x_i}) \eta'(u) u_i] \geq 0,
\end{align*}

\[
0 \geq \xi_{x_i x_j} = \left[\frac{1}{2} \frac{\partial^2}{\partial x_i \partial x_j} g^{ab} u_{x_i} u_{x_b} + u_{x_i x_j,x_j} u_{x_i} + u_{x_i x_j,x_i} u_{x_j} + \eta'(u) u_{x_i x_j} u_{x_i} u_{x_j} + \frac{1}{2} \frac{\partial}{\partial x_j} \frac{\partial}{\partial x_i} g_{ab} u_{x_i} u_{x_b} + \frac{1}{2} \eta'(u) u_{x_i} u_{x_j} \right] e^{\eta(u)}
\]

\[
+ \left(1 + \frac{1}{2} |\nabla u|^2 \right) (\eta'(u))^2 u_{x_i} u_{x_j} + \left(1 + \frac{1}{2} |\nabla u|^2 \right) \eta''(u) u_{x_i} u_{x_j} + \left(1 + \frac{1}{2} |\nabla u|^2 \right) \eta'(u) u_{x_i x_j} e^{\eta(u)}
\]

\[
= \left[\frac{1}{2} \frac{\partial^2}{\partial x_i \partial x_j} g^{ab} u_{x_i} u_{x_b} + u_{x_i x_j,x_j} u_{x_i} + u_{x_i x_j,x_i} u_{x_j} + \left(1 + \frac{1}{2} |\nabla u|^2 \right) \eta''(u) u_{x_i} u_{x_j} + \left(1 + \frac{1}{2} |\nabla u|^2 \right) \eta'(u) u_{x_i} u_{x_j} \right] e^{\eta(u)}.
\]

where the last identity is by (3.9). Notice that the tensor

\[
\tilde{Q}_{ij} = \frac{1}{\sigma_k(\nabla^2 u)} ((n - 2)(\tilde{T}_{k-1})_{ij} + g_{ab} (\tilde{T}_{k-1})_{ab ij}),
\]

is positive definite. Therefore, at \((x_0, t_0)\),

\[
0 \geq \left[\frac{1}{(1 + \frac{1}{2} |\nabla u|^2)} \left(\tilde{Q}_{ij} u_{x_i} u_{x_j} + \frac{1}{2} \tilde{Q}_{ij} \frac{\partial^2}{\partial x_i \partial x_j} g^{ab} u_{x_i} u_{x_b} + \tilde{Q}_{ij} u_{x_i} u_{x_j} \right) + (\eta''(u) - (\eta'(u))^2) \tilde{Q}_{ij} u_{x_i} u_{x_j} + \eta'(u) \tilde{Q}_{ij} u_{x_i} u_{x_j} \right] e^{\eta(u)}.
\]

By definition, at \((x_0, t_0)\) we have

\[
\nabla^2 u = -Ric_x + (n - 2) u_{x_i,x_i} + \Delta u \delta_{ij} - (n - 2) u_{x_i} u_{x_j} + (n - 2) |\nabla u|^2 \delta_{ij},
\]

and hence by the identity \(\tilde{T}_{ij} (\nabla^2 u)_{ij} = k \sigma_k (\nabla^2 u) \) and the equation (3.1), we obtain

\[
\tilde{Q}_{ij} u_{x_i} u_{x_j} = \frac{1}{\sigma_k(\nabla^2 u)} \left[\tilde{T}_{ij} (\nabla^2 u)_{ij} + \tilde{T}_{ij} (Ric_{ij} + (n - 2) u_{x_i} u_{x_j} - (n - 2) |\nabla u|^2 \delta_{ij}) \right]
\]

\[
= \frac{1}{\sigma_k(\nabla^2 u)} \left[k \tilde{\beta}_{k,n} e^{2k u + 2k u} + \tilde{T}_{ij} (Ric_{ij} + (n - 2) u_{x_i} u_{x_j} - (n - 2) |\nabla u|^2 \delta_{ij}) \right],
\]

at \((x_0, t_0)\). Now take derivative of \(x_i \) on both sides of (3.1), and we have at \((x_0, t_0)\),

\[
2k u_{x_i} = \frac{1}{\sigma_k(\nabla^2 u)} \tilde{T}_{ab} - \frac{\partial}{\partial x_i} Ric_{ab} + (n - 2) u_{x_a,x_b, x_i} - (n - 2) \frac{\partial}{\partial x_i} \Gamma^m_{ab} u_{x_m} + (u_{x_m,x_n,x_i} - \frac{\partial}{\partial x_i} \Gamma^c_{mn} u_{x_c}) g_{ab} + (n - 2) (2 u_{x_m,x_n} g_{ab} - u_{x_m,x_n} g_{ab} - u_{x_m,x_n} g_{ab}) - 2k u_{x_i},
\]

12
and hence at \((x_0, t_0)\), for \(1 \leq a \leq n\),
\[
\bar{Q}_{ij}u_{x_ia,x_jx_a} = 2k(u_{x_a} + u_{x_a}) + \frac{1}{\sigma_k(\nabla^2 u)} \sigma_k(\nabla^2 u) \tilde{T}_{ij}[(n - 2)(-2u_{x_a}u_{x_a}g_{ij} + u_{x_a}u_{x_j}) + u_{x_a}u_{x_j} + \frac{\partial}{\partial x_a} \Gamma^m_{ij}u_{x_a})
\]
\[+ \frac{\partial}{\partial x_a} \Gamma^m_{ij}u_{x_a}g_{ij} + \frac{\partial}{\partial x_a} \Gamma_{ij}].\]

Now contracting this equation with \(\nabla u\) we have at \((x_0, t_0)\),
\[
\bar{Q}_{ij}u_{x_ia,x_jx_a} = 2k(u_{x_a}u_{x_a} + u_{x_a}u_{x_a}) + \frac{1}{\sigma_k(\nabla^2 u)} \sigma_k(\nabla^2 u) \tilde{T}_{ij}[(n - 2)(-2u_{x_a}u_{x_a}u_{x_a}g_{ij} + 2u_{x_a}u_{x_a}u_{x_a})
\]
\[+ \frac{\partial}{\partial x_a} \Gamma^m_{ij}u_{x_a}u_{x_a} + \frac{\partial}{\partial x_a} \Gamma^m_{ij}u_{x_a}g_{ij} + u_{x_a} + \frac{\partial}{\partial x_a} \Gamma_{ij}]
\]
\[\geq \frac{1}{\sigma_k(\nabla^2 u)} \sigma_k(\nabla^2 u) \tilde{T}_{ij}[(n - 2)(2(1 + \frac{1}{2} |\nabla u|^2)\eta'(u)(u_{x_a}u_{x_a}g_{ij} - u_{x_a}u_{x_j}) + \frac{\partial}{\partial x_a} \Gamma^m_{ij}u_{x_a})
\]
\[+ \frac{\partial}{\partial x_a} \Gamma^m_{ij}u_{x_a}g_{ij} + u_{x_a} \frac{\partial}{\partial x_a} \Gamma_{ij}] + 2k(u_{x_a}u_{x_a} - (1 + \frac{1}{2} |\nabla u|^2)\eta'(u)u_t),\]

where the last inequality is by (3.9) and (3.10). Substituting (3.12) and (3.13) to (3.11), we have
\[
0 \geq \frac{1}{(1 + \frac{1}{2} |\nabla u|^2)[2k(|\nabla u|^2 - (1 + \frac{1}{2} |\nabla u|^2)\eta'(u)u_t] + \frac{\tilde{T}_{ij}}{\sigma_k(\nabla^2 u)} \sigma_k(\nabla^2 u) \tilde{T}_{ij}u_{x_a}u_{x_j} + \frac{\tilde{T}_{ij}}{\sigma_k(\nabla^2 u)}(\eta'' - (\eta')^2 + (n - 2)\eta') |\nabla u|^2 \sum_i \tilde{T}_{ii}
\]
\[+ \frac{\tilde{T}_{ij}}{\sigma_k(\nabla^2 u)} \sigma_k(\nabla^2 u) \tilde{T}_{ij}Ric_{ij} - 2k\eta' u_t
\]
\[+ \frac{1}{(1 + \frac{1}{2} |\nabla u|^2)[2k(|\nabla u|^2 + \frac{\tilde{T}_{ij}}{\sigma_k(\nabla^2 u)} \sigma_k(\nabla^2 u) \tilde{T}_{ij}u_{x_a}u_{x_j} + \frac{\tilde{T}_{ij}}{\sigma_k(\nabla^2 u)} \sigma_k(\nabla^2 u) \tilde{T}_{ij}Ric_{ij}u_{x_a}u_{x_j} + \tilde{Q}_{ij}u_{x_a}u_{x_a}u_{x_a}u_{x_j} + \tilde{Q}_{ij}R_{iajb}u_{x_a}u_{x_j}].\]

Recall that \(u\) and \(u_t\) are uniformly bounded from above and blow on \(M \times [0, T_0]\) by Lemma 3.2, and so is the term
\[
\frac{1}{\sigma_k(\nabla^2 u)} = \bar{p}^{-1}_k e^{-2k\nu - 2k u}.
\]

Since \(\bar{T}_{k-1}^{(1)}\) and \(\tilde{Q}_{k-1}^{(1)}\) are positively definite, we have at \((x_0, t_0)\),
\[
0 \geq \frac{e^{2k\nu}}{\sigma_k(\nabla^2 u)}(\eta'' - (\eta')^2 - \eta') \bar{T}_{ij}u_{x_a}u_{x_j} + \frac{e^{2k\nu}}{\sigma_k(\nabla^2 u)}(\eta'' - (\eta')^2 + (n - 2)\eta') |\nabla u|^2 \sum_i \bar{T}_{ii}
\]
\[\geq C - \frac{1}{\sigma_k(\nabla^2 u)} = \bar{p}^{-1}_k e^{-2k\nu - 2k u},\]

13
with the constant \(C > 0\) depending on \(T_0\), \(\sup_{\partial M \times [0, T_0]} (|\phi| + |\phi'|)\), \(\sup_M \log(\sigma_k(\nabla^2 u_0))\), \(\sup_M |u_0|\), \(\sup_M (|\text{Ric}_g| + |\nabla \text{Ric}_g|)\) and \(\sup_{\beta_1 \leq s \leq \beta_2} |\eta'(s)|\). By the definition of \(\eta\), we have \(\eta' > 0\), and
\[
\eta'' - (\eta')^2 - \eta' = C_1 p(C_2 + s)^{p-2}[(p - 1) - C_1 p(C_2 + s)^p - (C_2 + s)].
\]
For \(\beta_1 \leq s \leq \beta_2\), we choose \(C_2 = 1 - \beta_1\), \(p > 0\) large and then choose \(C_1 > 0\) small so that
\[
\eta'' - (\eta')^2 \geq C_1 p,
\]
and hence at \((x_0, t_0)\)
\[
|\nabla u|^2 \sum_{i} \tilde{T}_{ii} \leq \frac{\sigma_k(\nabla^2 u)}{C_1 p e^{2k_0}} (C + C \sum_i \tilde{T}_{ii}) = \frac{1}{C_1 p} \tilde{\beta}_{k,n} e^{2k_0} (C + C \sum_i \tilde{T}_{ii}) \leq \tilde{C}(1 + \sum_i \tilde{T}_{ii}),
\]
where the constant \(\tilde{C} > 0\) depends on \(T_0\), \(\sup_{\partial M \times [0, T_0]} (|\phi| + |\phi'|)\), \(\sup_M \log(\sigma_k(\nabla^2 u_0))\), \(\sup_M |u_0|\), \(\sup_M (|\text{Ric}_g| + |\nabla \text{Ric}_g|)\) and \(\sup_{\beta_1 \leq s \leq \beta_2} |\eta'(s)|\). Recall that
\[
\sum_i \tilde{T}_{ii} = (n - k + 1) \sigma_{k-1}(\nabla^2 u) \geq (n - k + 1) \binom{n}{k-1} (\binom{n}{k})^{-1} \sigma_k(\nabla^2 u) \tilde{\beta}_{k,n} e^{2k_0 + 2k_0} \geq C,
\]
for some uniform constant \(C = C(T_0) > 0\), where we have used the Maclaurin’s inequality and the uniform lower bound of \(u\) and \(u_t \geq 0\). Therefore,
\[
|\nabla u|^2 \leq \tilde{C}(1 + \frac{1}{C}).
\]
This combining with the boundary \(C^1\) estimates completes the proof of the gradient estimates of \(u\) on \(M \times [0, T_0]\).

Now we consider the \(C^2\) estimates on \(u\) at the points on \(\partial M \times [0, T_0]\).

Lemma 3.5. Let \((M, g)\) and \(u \in C^4(M \times [0, T_0])\) be as in Lemma 3.3 Then there exists a constant \(C = C(T_0) > 0\) such that
\[
|\nabla^2 u| \leq C
\]
on \(\partial M \times [0, T_0]\).

Proof. We use the indices \(e_i, e_j\) to refer to the tangential vector fields on \(\partial M\) and \(n\) the outer normal vector field. Notice that we have obtained the uniform bounds
\[
\sup_{\partial M \times [0, T_0]} (|u| + |\nabla u|) \leq K,
\]
for some constant \(K > 0\) on \(\partial M \times [0, T_0]\). By definition, we immediately have the control on the second order tangential derivatives
\[
\sup_{\partial M \times [0, T_0]} |\nabla_i \nabla_j u| \leq C
\]
on \(\partial M \times [0, T_0]\) with some constant \(C > 0\) depending on \(K\) and \(\sup_{\partial M \times [0, T_0]} (|\phi| + |\nabla \phi| + |\nabla^2 \phi|)\) where \(\nabla^2 \phi\) means the second order tangential derivatives of \(\phi\) on \(\partial M\). We extend \(\phi\) to a function
in $C^{4,2}(U \times [0, +\infty))$ still denoted as ϕ such that $\phi \in C^{4+a,2+\frac{a}{2}}(M \times [0, T])$ for any $T > 0$ and $\phi(x, 0) = u_0(x)$ for $x \in M$.

We now estimate the mixed second order derivatives $|\nabla_n \nabla_i u|$ with n the normal vector field on ∂M. Let (M_1, g_1) be the extension of (M, g) as in Section 2. Let $\delta > \epsilon_1 > 0$ be the small constants in Section 2. For any $x_0 \in \partial M$, let \bar{x} be the point with respect to x_0 as defined in Section 2. Define the exponential map $\text{Exp} : \partial M \times [-\epsilon_1 - 2\delta, \epsilon_1 + 2\delta] \rightarrow M_1$ such that $\text{Exp}_q(s)$ is the point along the geodesic starting from $q \in \partial M$ in the normal direction of ∂M of distance $|s|$ to q. Here we take the inner direction to be positive i.e., $\text{Exp}_q(s) \in M^\circ$ when $s > 0$. In particular, $\bar{x} = \text{Exp}_{x_0}(-\epsilon_1)$. Notice that $\text{Exp} : \partial M \times [-\epsilon_1 - 2\delta, \epsilon_1 + 2\delta]$ is a diffeomorphism to its image. In fact we can choose $\epsilon_1 + 2\delta < \epsilon$ where ϵ is strictly less than the lower bound of injectivity radius of each point in the thin $(\epsilon_1 + 2\delta)$-neighborhood Ω of ∂M. We now use the Femi coordinate in a small neighborhood $V_{x_0} = B_{\epsilon}(x_0)$ of x_0 in M_1: Let $(x^1, ..., x^{n-1})$ be a geodesic normal coordinate centered at x_0 on $(\partial M, g|_{\partial M})$. We take $(x^1(q), ..., x^{n-1}(q), x^n)$ as the coordinate of the point $\text{Exp}_q(x^n)$ in V_{x_0}. Define the distance function $r(x) = \text{dist}(x, \bar{x})$ for $x \in M_1$. Denote $U = \{x \in M | r(x) \leq \delta + r(x_0)\}$, $\Gamma_0 = U \cap \partial M$ and $\Gamma_1 = \{x \in M | r(x) = \delta + r(x_0)\}$. By our choice of the small constant $\epsilon_1 + 2\delta$, we have $\Gamma_0 \subseteq V_{x_0}$ and hence $\frac{\partial}{\partial x^i}$ ($i < n$) is a tangential derivative of ∂M on Γ_0. It is clear that $r(x)$ is smooth on U. The metric has the orthogonal decomposition $g = d(x^n)^2 + g_{x^n}$ in U and we have $\Gamma_{ab}(x_0) = 0$ for $a, b, c \in \{1, 2, ..., n\}$. For $i \in \{1, ..., n-1\}$, taking derivative of $\frac{\partial}{\partial x^i}$ on both sides of (3.11) we have

$$0 = -2ku_{ix_i} - 2ku_{x_i} + \frac{1}{\sigma_k(\nabla^2 u)}\bar{T}_{ab}[-\nabla_i \text{Ric}_{ab} + (n - 2)\nabla_i \nabla_a u + \nabla_i \Delta u g_{ab}]
+ 2(n - 2)(\nabla_i \nabla_c u \nabla_c g_{ab} - \nabla_i \nabla_a u \nabla_i u).$$

(3.15)

Now we commute derivatives to have

$$\nabla_i \nabla_a \nabla_i u = \nabla_a \nabla_i u_{x_i} + \text{Rm} * \nabla_i u,$nabla_i \Delta u = \Delta u_{x_i} + \text{Rm} * \nabla_i u,$

where the terms $\text{Rm} * \nabla_i u$ are contractions of some Riemannian curvature terms and $\nabla_i u$. Define the linearized operator L acting on φ as

(3.16) \quad \quad \quad L(\varphi) \equiv \frac{1}{\sigma_k(\nabla^2 u)}\bar{T}_{ab}[(n - 2)\nabla_a \nabla_b \varphi + \Delta \varphi g_{ab} + 2(n - 2)(\nabla \varphi, \nabla u > g_{ab} - \nabla_a \varphi \nabla_b u)]
- 2k\varphi_i - 2k\varphi.$$

Therefore, by (3.15) we have

$$|L(u_{x_i})| = \frac{1}{\sigma_k(\nabla^2 u)}|\bar{T}_{ab}(-\nabla_i \text{Ric}_{ab} + (\text{Rm} * \nabla_i u))| \leq C \sum_i \bar{T}_{ii}(1 + |\nabla u|)
\leq C \sum_i \bar{T}_{ii},$$

(3.17)
for some constant \(C > 0 \) depending on \(\sup_M |Rm| \), the lower bound of \(u_t + u \) and the upper bound of \(|\nabla u| \) on \(M \times [0, T_0) \), which has been uniformly controlled. Recall that by (3.14), we have

\[
\sum_i \bar{T}_{ii} \geq C
\]

for some uniform constant \(C = C(T_0) > 0 \), and hence direct calculation leads to the bound

(3.18)

\[
|L(\phi_{x_i})| \leq C \sum_i \bar{T}_{ii} + C \leq C \sum_i \bar{T}_{ii},
\]

on \(U \times [0, T_0) \), where \(C > 0 \) in the inequalities are uniform constants depending on \(T_0, k, n, \sup_{M \times [0, T_0]} (|u| + |u_t| + |\nabla u|) \) and \(\sup_{U \times [0, T_0]} (|\phi_{x_i}| + |\phi_{x_i}t| + |\nabla \phi_{x_i}| + |\nabla^2 \phi_{x_i}|) \). Define the function \(v = u_{x_i} - \phi_{x_i} \) in \(U \times [0, T_0) \). Now by (3.17) and (3.18) we have

\[
|L(v)| \leq C \sum_i \bar{T}_{ii},
\]

for some uniform constant \(C = C(T_0) > 0 \). Also, \(v = 0 \) on \(\Gamma_0 \).

Now let

\[
\xi(x) = \frac{1}{r(x)^p} - \frac{1}{r(x_0)^p}
\]

for \(x \in U \), where \(p > 0 \) is a constant depending on \(T_0 \) to be determined. Following the calculation in Section 2 we have that for \(p = p(T_0) > 0 \) large,

\[
(n - 2)|\nabla^2 \xi| + \Delta \xi g \geq \frac{p^2}{4} r^{-p-2} g.
\]

Since \(\xi \leq 0, |\nabla u| \) is uniformly bounded from above and \(u_t + u \) is uniformly bounded from blow, we choose \(p = p(T_0) > 0 \) large so that

\[
L(\xi) \geq \frac{1}{\beta \epsilon n e^{2k_d + 2k_d}} \left[\frac{p^2}{4} r^{-p-2} - C|\nabla u||\nabla \xi|| \sum_i \bar{T}_{ii} - 2k \xi \right]
\]

\[
\geq \frac{1}{C} \left(\frac{p^2}{4} r^{-p-2} - Cpr^{-p-1} \right) \sum_i \bar{T}_{ii} \geq \frac{p^2}{8C} r^{-p-2} \sum_i \bar{T}_{ii}
\]

\[
\geq |L(v)|
\]

on \(U \times [0, T_0) \) for some uniform constant \(C = C(T_0) > 0 \). Now we take \(p > 0 \) even larger so that \(\xi < -|v| \) on \(\Gamma_1 \times [0, T_0) \) and hence, \(\xi \leq -|v| \) on \(\partial U \times [0, T_0) \). Recall that

\[
\xi(x) \leq 0 = v(x, 0)
\]

for \(x \in M \), we have by maximum principle,

\[
\pm v(x, t) \geq \xi(x)
\]

for \((x, t) \in U \times [0, T_0) \). Since \(v(x_0, t) = \xi(x_0) = 0 \), we have for \(i = 1, \ldots, n - 1, \)

\[
|\nabla_n u_{x_i}(x_0, t)| \leq |\nabla_n \phi_{x_i}(x_0, t)| + |\nabla_n v_{x_i}(x_0, t)| \leq |\nabla_n \phi_{x_i}(x_0, t)| + \nabla_n \xi(x_0) \leq C,
\]
for any \((x_0, t) \in \partial M \times [0, T_0]\) with some uniform constant \(C = C(T_0) > 0\) independent of the choice of \((x_0, t) \in \partial M \times [0, T_0]\), where \(\nabla_n\) is the outer normal derivative at \(x_0 \in \partial M\). For the second order normal derivative \(\nabla^2_n u\), since \(\text{tr}(\nabla^2 u) \geq 0\), i.e.

\[2(n - 1)\Delta u + (n - 2)(n - 1)|\nabla u|^2 - R_g \geq 0,\]

by the estimates on the other second order derivatives, \(\nabla^2_n u\) is bounded from below and we still need to derive an upper bound of \(\nabla^2_n u\). Orthogonally decompose the matrix \(\nabla^2 u\) at \(x_0 \in \partial M\) in normal and tangential directions. By the previous estimates we have

\[
\nabla^2 u = \begin{pmatrix} (n - 1)u_{nn} & 0 \\ 0 & u_{nn}g|_{\partial M} \end{pmatrix} + O(1)
\]

with the term \(|O(1)| \leq C\) for some uniform constant \(C = C(T_0) > 0\) and hence, as the term \(u_{nn} \rightarrow +\infty\), we have

\[
s \sigma_k(\nabla^2 u) = (u_{nn})^k (\Lambda_{k,n} + o(1)) \rightarrow +\infty,
\]

where \(\Lambda_{k,n}\) is a positive constant. On the other hand, recall that

\[
0 < \frac{1}{C} \leq \sigma_k(\nabla^2 u) = \beta_{k,n}e^{2\kappa_0 + 2\kappa_1} \leq C,
\]

for some uniform constant \(C = C(T_0) > 0\) on \(M \times [0, T_0]\) and hence, we have that there exists a uniform constant \(C = C(T_0) > 0\) such that \(\nabla^2_n u(x_0) \leq C\). Notice that the constant \(C\) here is independent of the choice of \(x_0 \in \partial M\). This completes the boundary \(C^2\) estimates of \(u\).

\[\square\]

Proposition 3.6. Let \((M, g)\) and \(u \in C^4(M \times [0, T_0])\) be as in Lemma \([3.3]\). Then there exists a constant \(C = C(T_0) > 0\) such that for any \((x, t) \in M \times [0, T_0]\) we have \(\|
abla^2 u(x, t)\| \leq C\).

Proof. The proof is a modification of Proposition 3.3 in \([11]\), see also \([8]\). We have obtained the global \(C^1\) estimates and boundary \(C^2\) estimates on \(u\). Now suppose the maximum of \(\|
abla^2 u\|\) is achieved at a point in the interior.

Denote \(S(TM)\) the unit tangent bundle of \((M, g)\). We define a function \(h : S(TM) \times [0, T_0) \rightarrow \mathbb{R}\), such that

\[
h(x, e_x, t) = (\nabla^2 u + m|\nabla u|^2 g)(e_x, e_x),
\]

for any \(x \in M, t \in [0, T_0)\) and \(e_x \in ST_xM\), with \(m > 1\) a constant to be fixed. Suppose there exist \((q, t_1) \in M^\circ \times [0, T_0)\) and a unit tangent vector \(e_q \in ST_qM\) such that

\[h(q, e_q, t_1) = \sup_{S(TM) \times [0, t_1]} h.
\]

Notice that on \(S(TM) \subseteq S(TM_1)\) (here \((M_1, g_1)\) is the extension of \((M, g)\) as in Section \([2]\), we can find a uniform constant \(C' > 0\) and a uniform small constant \(\delta_0 > 0\) such that for any \(x \in M\) and any \(e_x \in T_xM_1, e_x\) can be extended to a unit vector field \(e\) on \(B_{\delta_0}(x) \subseteq M_1\) such that \(\nabla e(x) = 0\) and \(\|
abla^2 e(x)\| \leq C'\) at this point \(x\). Take the geodesic normal coordinates \((x^1, \ldots, x^n)\) at \(q\), and hence we have \(\Gamma^e_{ab}(q) = 0\) and \(g_{ij}(q) = \delta_{ij}\). By rotating, we assume \(\nabla^2 u = u_q\) is
diagonal at q and $e_q = \frac{\partial}{\partial x^i}$ at (q,t_1). Let the unit vector field $e = \sum_i \xi^i \frac{\partial}{\partial x^i}$ be the extension of e_q on $B_{\delta_0}(q)$ with $\nabla e(q) = 0$ and $|\nabla^2 e(q)| \leq C'$. We have

$$\xi^1(q) = 1, \quad \xi^i(q) = 0, \quad i \geq 1, \quad \text{and} \quad \frac{\partial}{\partial x} \xi^i(q) = 0, \quad i, j = 1, \ldots, n.$$

It is clear that the fact $\nabla^2 u \in \Gamma^+$ and the uniform bound of $|\nabla u|$ on $M \times [0, T_0]$ imply that there exists a uniform constant $C > -\infty$ such that $\nabla^2_1 u > C$ at (q, t_1). Now we define a function \tilde{h} in a small neighborhood $U \times [t_1 - \epsilon, t_1 + \epsilon]$ of (q, t_1) such that

$$\tilde{h}(x,t) = (\nabla^2 u + m|\nabla u|^2) (e,e) = \xi^i \xi^j (u_{,ij} - \Gamma^a_{ij} u_{,a}) + m|\nabla u|^2.$$

Since \tilde{h} achieves its maximum in $U \times [t_1 - \epsilon, t_1]$, we have that at (q, t_1),

$$\frac{\partial}{\partial t} \tilde{h} = u_{,t} + 2m u_{,e_t} \geq 0, \quad \frac{\partial}{\partial x^i} \tilde{h} = u_{,ix} + 2mu_{,e_x} \geq 0, \quad \frac{\partial^2}{\partial x^i \partial x^j} \tilde{h} = u_{,ij} + 2\sigma_{ij}u_{,e} + 2\sigma_{ij}u_{,e}u_{,ij} \
0 \geq \tilde{h}_{,x^i} = u_{,x^i, x} + \frac{\partial^2}{\partial x^i \partial x^j} \Gamma^a_{ij} u_{,e} - \frac{\partial^2}{\partial x^i \partial x^j} \Gamma^a_{ij} u_{,x} + m \frac{\partial^2}{\partial x^i \partial x^j} \sigma_{ij} u_{,e} + 2 \frac{\partial^2}{\partial x^i \partial x^j} \sigma_{ij} u_{,e} u_{,i} + 2 \frac{\partial^2}{\partial x^i \partial x^j} \sigma_{ij} u_{,e} u_{,i}.$$

Differentiating equation (3.21) with respect to x^a yields

$$2ku_{,e_t} + 2ku_{,e} = \frac{1}{\sigma_k(\nabla^2 u)} \tilde{T}_k[-\nabla_a Ric_{ij} + (n - 2)\nabla_a \nabla^2_1 u + (\Delta u)_{,a} g_{ij} \
+ (n - 2)(\nabla_a \nabla_b u \nabla_c g_{ij} - 2\nabla_a \nabla_b u \nabla_c u)].$$

Define the function $F(r_{ij}) = \log(\sigma_k(r_{ij}))$ on Γ^+. Differentiating (3.1) twice, we obtain

$$2k\nabla^2 u = (\frac{\partial^2}{\partial r_{ab} \partial r_{ij}}) \nabla_1(\nabla^2 u)_{ab} \nabla_1(\nabla^2 u)_{ij} + \frac{1}{\sigma_k(\nabla^2 u)} \tilde{T}_k[-\nabla^2_1 Ric_{ij} + (n - 2)\nabla^2_1 u + \nabla^2_1 (\Delta u) g_{ij} \
+ 2(n - 2)(\nabla^2_1 u, \nabla u) + \nabla_1 \nabla_a u \nabla_1 \nabla_a u g_{ij} - \nabla_1 \nabla_1 \nabla_1 u + \nabla_1 \nabla_1 \nabla_1 u)] - 2k\nabla^2_1 u \
\leq \frac{1}{\sigma_k(\nabla^2 u)} \tilde{T}_k[2n(2 - n)(\nabla^2_1 u, \nabla u) + \nabla_1 \nabla_a u \nabla_1 \nabla_a u g_{ij} - \nabla_1 \nabla_1 \nabla_1 u + \nabla_1 \nabla_1 \nabla_1 u)] - 2k\nabla^2_1 u,$$
since F is concave on Γ^+_{X}. In particular, at (q, t_1) we rewrite these two derivatives as

\begin{equation}
2k(u_{x^t} + u_{x^t}) = \bar{Q}_{ij}(u_{x^t x^t}) - \frac{\partial}{\partial x^i} \Gamma^b_{ij} u_{x^b} + \frac{\bar{T}_{ij}}{\sigma_k(\nabla_2 u)}[-\nabla_a \text{Ric}_{ij} + 2(n - 2)(u_{x^t x^t}, u_{x^t}, g_{ij} - u_{x^t} u_{x^t})],
\end{equation}

and hence combining with (3.21), we have

\begin{align*}
0 & \geq \bar{Q}_{ij}(\frac{\partial^2}{\partial (x^i)^2} \Gamma^a_{ij} u_{x^a} + 2 \frac{\partial}{\partial x^i} \Gamma^a_{ij} u_{x^a x^i} + 2 \frac{\partial}{\partial x^i} \Gamma^a_{ij} u_{x^a x^i} - \frac{\partial^2}{\partial x^i \partial x^j} \Gamma^a_{ij} u_{x^a} - 2 \frac{\partial}{\partial x^j} \Gamma^a_{ij} u_{x^a} - 2 \frac{\partial}{\partial x^j} \Gamma^a_{ij} u_{x^a x^j}) \\
& \quad - \frac{\bar{T}_{ij}}{\sigma_k(\nabla_2 u)}[2(n - 2)(u_{x^t x^t}, u_{x^t, x^t} - \frac{\partial}{\partial x^i} \Gamma^b_{ij} u_{x^b} u_{x^a}, u_{x^t, x^t} - \frac{\partial}{\partial x^i} \Gamma^b_{ij} u_{x^b} u_{x^a} + u_{x^t, x^t}), u_{x^t, x^t}) - \nabla^2 \text{Ric}_{ij}] + m \bar{Q}_{ij}(2(n - 2)(u_{x^t x^t}, u_{x^t}, g_{ij} - u_{x^t} u_{x^t})]) \\
& \quad + 2mu_{x^t}(2k u_{x^t} + 2k u_{x^t}) + \frac{\bar{T}_{ij}}{\sigma_k(\nabla_2 u)}(\nabla_2 \text{Ric}_{ij}) - 4kmu_{x^t} u_{x^t} \\
& \quad + 2k(u_{x^t, x^t} + u_{x^t, x^t}) + 2 \bar{Q}_{ij}(\frac{\partial^2}{\partial x^i \partial x^j} u_{x^a x^i} x^j).
\end{align*}

Therefore, by (3.19) and (3.20) we have

\begin{align*}
0 & \geq \bar{Q}_{ij}(\frac{\partial^2}{\partial (x^i)^2} \Gamma^a_{ij} u_{x^a} + 2 \frac{\partial}{\partial x^i} \Gamma^a_{ij} u_{x^a x^i} + 2 \frac{\partial}{\partial x^i} \Gamma^a_{ij} u_{x^a x^i} - \frac{\partial^2}{\partial x^i \partial x^j} \Gamma^a_{ij} u_{x^a} - 2 \frac{\partial}{\partial x^j} \Gamma^a_{ij} u_{x^a} - 2 \frac{\partial}{\partial x^j} \Gamma^a_{ij} u_{x^a x^j}) - 4kmu_{x^t} u_{x^t} \\
& \quad + 2k(u_{x^t, x^t} + u_{x^t, x^t}) + 2 \bar{Q}_{ij}(\frac{\partial^2}{\partial x^i \partial x^j} u_{x^a x^i} x^j) + 2 \bar{Q}_{ij}(\frac{\partial^2}{\partial x^i \partial x^j} u_{x^a x^i} x^j).
\end{align*}
By assumption, we have at \((q, t_1), u_{x_i} \leq u_{x_i}^i\) for \(i \geq 2\) and \(u_{x_i} = 0\) for \(i \neq j\). Recall that there exists a unique \(C > -\infty\) on \(M \times (0, T_0)\) such that \(u_{x_i}^1 = \nabla^2_1 u > C\) at \((q, t_1)\) and hence, we have

\[
0 \geq - C - C u_{x_i} - (1 + m)(C u_{x_i} + C) \sum_i \tilde{T}_{ii} + \frac{1}{\sigma_i(\tilde{\nabla}^2 u)}(2(m - 2(n - 2))u_{x_i}^2 \sum_i \tilde{T}_{ii}
+ 2(n - 2)(1 + m)u_{x_i} u_{x_i} \tilde{T}_{ij}]
\geq - C - C u_{x_i} - (1 + m)(C u_{x_i} + C) \sum_i \tilde{T}_{ii} + \frac{1}{\sigma_i(\tilde{\nabla}^2 u)}(2(m - 2(n - 2))u_{x_i}^2 \sum_i \tilde{T}_{ii},
\]

where \(C > 0\) is a uniform constant on \(M \times (0, T_0)\) depending on \(k, n, C', (M, g)\) and

\[
\sup_{M \times (0, T_0)} (|u| + |u_1| + |\nabla u| + |Rm| + |\nabla Rm| + |\nabla^2 Ric|).
\]

Now take \(m\) to be a constant strictly larger than \((n - 2)\). Recall that \(\sigma_i(\tilde{\nabla}^2 u)\) is uniformly bounded from above and below. On the other hand, by (3.14), \(\sum_i \tilde{T}_{ii} > C\) for some uniform constant \(C > 0\) on \(M \times (0, T_0)\), and hence we obtain that there exists a uniform constant \(C > 0\) on \(M \times (0, T_0)\), such that

\[
u_{x_i} \leq C
\]

at \((q, t_1)\). Therefore, combining with the boundary \(C^2\) estimates, we have that there exists a uniform constant \(C > 0\) on \(M \times (0, T_0)\), such that

\[
|\nabla^2 u| \leq C
\]

on \(M \times (0, T_0)\).

Remark. Here we give a way to extend the unit vector \(e_q\) at \(q \in M \subseteq M_1\) in Proposition 3.6 to a unit vector field \(e\) in a neighborhood of \(q\) with \(|\nabla^2 e(q)| \leq C'\) for some \(C' > 0\) independent of \(q \in M\). Under the normal coordinates \((x^1, \ldots, x^n)\) in \(B_\delta(q)\) at \(q, \Gamma_{ij}^m(0) = 0\) and \(g_{ij}(0) = \delta_{ij}\). Let \(\tilde{e}(x) = \frac{\partial}{\partial x_i}\) for \(x \in B_\delta(0)\), where \(\delta > 0\) is less than the uniform lower bound of the injectivity radius of the points \(q \in M\) in \((M_1, g_1)\). Let \(e(x) \equiv \xi^i \frac{\partial}{\partial \bar{x}^i} = \frac{\tilde{e}(x)}{\sqrt{\bar{g}}(x)}\) for \(x \in B_\delta(q)\). Since

\[
\nabla_i \xi^i\big|_{x=0} = \frac{\partial \tilde{e}^j}{\partial \bar{x}^i} = 0
\]

at \(x = 0\) (at \(q\)), we have

\[
\nabla_i \xi^i = \frac{\partial (\xi^j)}{\partial \bar{x}^i} = \frac{\partial \tilde{e}^j}{\partial \bar{x}^i} - \frac{\partial \tilde{e}^a}{\partial \bar{x}^i} \tilde{e}^j = 0,
\]

at the point \(q\). Therefore, the extension \(\xi\) of \(e_q\) in \(B_\delta(q)\) is a unit vector field with \(\nabla_i \xi^i(q) = 0\). It is easy to see that there exists a uniform constant \(C > 0\) depending on the lower bound of the injectivity radius and upper bound of the norm of the curvature for points in \(M\) in \((M_1, g_1)\), such that \(|\nabla^2 \xi(q)| \leq C\), for the extension \(e\) of \(e_q\) defined above.
4. Convergence of the σ_k-Ricci curvature flow

Now we can prove the long time existence of the flow.

Theorem 4.1. Assume (M^n, g) is a compact manifold with boundary of $C^{4,\alpha}$, and (M, g) is either a compact domain in \mathbb{R}^n or with Ricci curvature $\text{Ric} \leq -\delta_0 g$ for some $\delta_0 \geq (n-1)$. Assume $u_0 \in C^{4,\alpha}(M)$ is a subsolution to (1.5) satisfying (5.6) at the points $x \in \partial M$ where $v(x) = 0$. Also, assume $\phi \in C^{4+\alpha/2,\frac{\alpha}{2}}(\partial M \times [0, T_1])$ for all $T_1 > 0$, $\phi(x, t) \geq 0$ on $\partial M \times [0, +\infty)$ and ϕ satisfies the compatible condition (5.4) with u_0. There exists a unique solution $u \in C^{4,2}(M \times [0, +\infty))$ to the Cauchy-Dirichlet problem (3.1) such that $u \in C^{4+\alpha/2,\frac{\alpha}{2}}(M \times [0, T])$ for all $T > 0$, and the equation (3.1) is uniformly parabolic in $t \in [0, T]$ for any $T > 0$.

Proof. Since u_0 is a subsolution to (1.5), the equation is strictly parabolic at $t = 0$. By the compatibility condition of ϕ and u_0, the implicit function theorem yields that there exists $T_0 > 0$ such that the flow is parabolic on $M \times [0, T_0)$ and the Cauchy-Dirichlet problem has a unique solution $u \in C^{4,2}(M \times [0, T_0))$ such that $u \in C^{4+\alpha/2,\frac{\alpha}{2}}(M \times [0, t_1])$ for any $t_1 \in (0, T_0)$. Recall that

$$\sigma_k(\nabla^2 u) = \beta_{k,n} e^{2ku+2ka} \geq \beta_{k,n} e^{2ku},$$

with the right hand side increasing by Lemma 3.2. Also, Lemma 3.2 gives the uniform upper and lower bounds of u on $M \times [0, T_0)$. By the a priori estimates in Lemma 3.4 and Proposition 3.6, we have $\nabla^2 u \in \Gamma^+_k$ and the equation is uniformly parabolic, and hence Krylov Theorem for fully nonlinear parabolic equations yields uniform $C^2,\alpha T_0(M)$ estimates on u with some constant $0 < \alpha T_0 < 1$ for $t \in [0, T_0)$, see [9]. In turn the Schauder estimates yield uniform $C^{4+\alpha/2,\frac{\alpha}{2}}$ estimates on u in $M \times [0, T_0)$. Also, these a priori estimates apply to u on $M \times [0, T]$ for any $T > 0$ with the corresponding constants depending on T, and classical parabolic equation theory applies to extend the flow to $M \times [0, +\infty)$ and $u \in C^{4+\alpha/2,\frac{\alpha}{2}}(M \times [0, T])$ for all $T > 0$. This completes the proof of the long time existence of the flow.

□

To show the convergence of the flow, we establish the C^1 and C^2 interior estimates on u based on the bound $\sup_{U \times [0, +\infty]} |u|$ for any compact subset $U \subseteq M^\circ$.

Lemma 4.2. Assume $u \in C^{4,2}(M \times [0, +\infty))$ is a solution to the Cauchy-Dirichlet boundary value problem of the equation (1.5) with $u_0 \geq 0$. Assume that for any compact subset $U \subseteq M^\circ$, there exists a constant $C_0 = C_0(U) > 0$ such that

$$|u| \leq C_0$$

on $U \times [0, +\infty)$. Also, for some $T > 0$, we assume that there exists a constant $C = C(T) > 0$ such that

$$|u| + |\nabla u| \leq C(T)$$

on $M \times [0, T]$. Then for a point $q_1 \in M^\circ$, there exists a constant $C_1 > 0$ depending on $B_2(q_1)$, $C_0(B_2(q_1))$ and $C(T)$ such that

$$|\nabla u| \leq C_1$$

on $B_2(q_1) \times [0, +\infty)$, where r is the distance of q_1 to ∂M. 21
Proof. It is a modification of the interior estimates in [5]. For any \(T_1 > T \), we consider the function

\[
F(x, t) = \mu(x) we^{f(u)}
\]

on \(B_r(q_1) \times [0, T_1] \), where \(w = \frac{|\nabla u|^2}{2} \), and \(\mu \in C^2_0(B_{\frac{q}{2}}(q_1)) \) is a cut-off function such that

\[
(4.1) \quad \mu = 1 \text{ on } B_{\frac{q}{2}}(q_1), \quad 0 \leq \mu \leq 1, \quad |\nabla \mu| \leq b_0 \mu^2, \quad |\nabla^2 \mu| \leq b_0,
\]

for some \(b_0 > 0 \) as defined in [5], and \(f(u) \) is to be determined later. By the assumption of the lemma, if \(F(x, t) \) achieves its maximum on \(B_{\frac{q}{2}}(q_1) \times [0, T_1] \) at a point \((x_0, t_0) \in B_{\frac{q}{2}}(q_1) \times [0, T] \), then \(F(x, t) \) is uniformly bounded and hence

\[
|\nabla u| \leq C
\]

on \(B_{\frac{q}{2}}(q_1) \times [0, T_1] \) with a constant \(C > 0 \) independent of \(T_1 \). So from now on, we assume that there exists \((x_0, t_0) \in B_{\frac{q}{2}}(q_1) \times (T, T_1) \) such that

\[
F(x_0, t_0) = \sup_{B_{\frac{q}{2}}(q_1) \times [0, T_1]} F.
\]

We choose the normal coordinate \((x^1, ..., x^a)\) at \(x_0 \). Then at \((x_0, t_0)\), we have

\[
(4.2) \quad \frac{W_i}{w} + f' u_i \geq 0,
\]

\[
(4.3) \quad \frac{\nabla \mu}{\mu} + \frac{\nabla w}{w} + f' \nabla u = 0,
\]

\[
(4.4) \quad \tilde{T}_{ij} \left[\frac{\nabla_i \nabla_j \mu}{\mu} - \frac{\nabla_i \nabla_j w}{w} \right] - \nabla_i \nabla_j \left(\frac{\nabla_i \nabla_j w}{w^2} \right) + f'' \nabla_i \nabla_j u + f''' \nabla_i \nabla_j \mu \leq 0.
\]

By (4.3) we have

\[
\tilde{T}_{ij} \frac{\nabla_i \nabla_j w}{w^2} \leq 3 \tilde{T}_{ij} \frac{\nabla_i \nabla_j \mu}{\mu^2} + \frac{3}{2} (f'')^2 \tilde{T}_{ij} \nabla_i u \nabla_j u,
\]

and hence plugging this inequality and the definition of \(w \) into (4.4) we have

\[
\frac{1}{w} \tilde{T}_{ij} \nabla^2 m \nabla^2 m u + \tilde{T}_{ij} \left(\frac{\nabla^2 \mu}{\mu} - 4 \frac{\nabla_i \nabla_j \mu}{\mu^2} \right) + \frac{1}{w} \tilde{T}_{ij} \nabla_i \nabla_j \nabla m u \nabla m u
\]

\[
+ f'' \tilde{T}_{ij} \nabla^2 m u + \left(f''' - \frac{3}{2} (f'')^2 \right) \tilde{T}_{ij} \nabla_i u \nabla_j u \leq 0.
\]

Dropping the non-negative first term, changing the order of derivatives for the third order derivative term and by our choice of \(\mu \), we have at \((x_0, t_0)\),

\[
\frac{1}{w} \tilde{T}_{ij} \nabla_i \nabla_j m u \nabla m u + f'' \tilde{T}_{ij} \nabla^2 m u + \left(f''' - \frac{3}{2} (f'')^2 \right) \tilde{T}_{ij} \nabla_i u \nabla_j u \leq \left(\frac{C}{\mu} + \frac{C}{2 w^{-1} |\nabla u|^2} \right) \sum_i \tilde{T}_{ii}
\]

\[
= C \left(\frac{1}{\mu} + 1 \right) \sum_i \tilde{T}_{ii},
\]
for some uniform constant $C > 0$ depending on b_0 and $\sup |Rm|$ on $B_{\frac{3}{2}}(q_1)$. Similar argument yields

$$\frac{1}{w} \nabla_m \Delta u \nabla_m u + f' \Delta u + \left(f'' - \frac{3}{2}(f')^2\right) |\nabla u|^2 \leq C \left(\frac{1}{\mu} + 1\right).$$

Combining these two inequalities and the equation (3.15), we have

$$2k(u_{x_i}u_{x_i} + |\nabla u|^2)\sigma_k(\nabla^2 u) - \tilde{T}_{ab} \nabla_i u(-\nabla_i \text{Ric}_{ab} + 2(n - 2)(\nabla^2 u \nabla g_{ab} - \nabla^2 u \nabla b))$$

$$\leq -w[(n - 2)(f' \tilde{T}_{ij} \nabla^2 u + (f'' - \frac{3}{2}(f')^2) \tilde{T}_{ij} \nabla_i u \nabla_j u) + (f' \Delta u + (f'' - \frac{3}{2}(f')^2) |\nabla u|^2) \sum_i \tilde{T}_{ii}]$$

$$+ w\left(\frac{C}{\mu} + C\right) \sum_i \tilde{T}_{ii}.$$

Substituting (4.2), (4.3) and the following identity into this inequality

$$\tilde{T}_{ab} \nabla_i u = \tilde{T}_{ab}(-\text{Ric}_{ab} + (n - 2)\nabla^2 u + \Delta g_{ab} + (n - 2)(\nabla^2 g_{ab} - \nabla a u \nabla b)) = k \sigma_k(\nabla^2 u),$$

we have at (x_0, t_0),

$$2k(-f'u_i w + |\nabla u|^2)\sigma_k(\nabla^2 u) - C |\nabla u| \sum_i \tilde{T}_{ii}$$

$$+ 2(n - 2)w \tilde{T}_{ij}[(\frac{\nabla_i \nabla_j u}{\mu} + f' |\nabla u|^2) g_{ij} - (\frac{\nabla_i \mu \nabla_j u}{\mu} + f' \nabla_i u \nabla_j u)]$$

$$\leq -w[(n - 2)(f'' - \frac{3}{2}(f')^2) \tilde{T}_{ij} \nabla_i u \nabla_j u + (f'' - \frac{3}{2}(f')^2) |\nabla u|^2 \sum_i \tilde{T}_{ii}]$$

$$- kw f' \sigma_k(\nabla^2 u) + f' w \tilde{T}_{ab}(-\text{Ric}_{ab} + (n - 2)(\nabla^2 g_{ab} - \nabla a u \nabla b)) + w\left(\frac{C}{\mu} + C\right) \sum_i \tilde{T}_{ii}.$$
for some \(C > 0 \) depending on \(n \), \(\sup(|Rm| + |\nabla Ric|) \) and \(b_0 \), where we have used the Cauchy inequality and the constant \(b_2 > 0 \) is to be determined. Now we take
\[
f(u) = (2 + u - \inf_{B_{2N}(q_1) \times (0, +\infty)} u)^{-N}
\]
for some constant \(N > 1 \) to be fixed. Therefore,
\[
-N2^{-N-1} \leq f' = -N(2 + u - \inf_{B_{2N}(q_1) \times (0, +\infty)} u)^{-N-1} \leq -N(2 + \text{osc} u)^{-N-1} < 0,
\]
\[
f'' - \frac{3}{2}(f')^2 + 3(n-2)f' = \frac{N[(N+1) - N(2 + u - \inf_{B_{2N}(q_1) \times \mathbb{R}^n} u)^{-N} - 3(n-2)(2 + u - \inf_{B_{2N}(q_1) \times \mathbb{R}^n} u)]}{(2 + u - \inf_{B_{2N}(q_1) \times \mathbb{R}^n} u)^{-N-2}} \geq N(2 + u - \inf_{B_{2N}(q_1) \times (0, +\infty)} u)^{-N-2}[(1 - 2^{-N})N + 1 - 3(n-2)(2 + \text{osc} u)]
\]
where
\[
\text{osc} u = \sup_{B_{2N}(q_1) \times (0, +\infty)}(u - \inf_{B_{2N}(q_1) \times (0, +\infty)} u) \leq 2 \sup_{B_{2N}(q_1) \times (0, +\infty)} |u|.
\]

Now we take \(N > 1 \) large so that
\[
f'' - \frac{3}{2}(f')^2 + 3(n-2)f' > 0,
\]
and take \(b_2 = (n-2)N(2 + \text{osc} u)^{-N-1} \), and hence,
\[
\frac{2k}{C}(-f'\sigma_t + 2 + \frac{1}{2}f''\bar{\sigma} \beta_{k,n} e^{2k(u+t)} + |\nabla u|^2 \sum_i \bar{T}_{ii}) \leq C(1 + \frac{1}{b_2})(\frac{1}{\mu} + 1) \sum_i \bar{T}_{ii}
\]
(4.5)

for some \(C > 0 \) depending on \(n \), \(\sup |u| \), \(\sup(|Rm| + |\nabla Ric|) \) and \(b_0 \). Notice that if \(u_t < \frac{1}{2} \), since \(u_t \geq 0 \), and \(u \) and \(f'(u) \) are uniformly bounded, we have for some uniform constant \(C > 0 \),
\[
|\nabla u|^2 \sum_i \bar{T}_{ii} \leq C(1 + \frac{1}{b_2})(\frac{1}{\mu} + 1) \sum_i \bar{T}_{ii} + C.
\]
On the other hand, by (3.14),
\[
\sum_i \bar{T}_{ii} \geq (n-k+1) \left(\frac{n}{k-1} \right) \left(\frac{n}{k} \right)^{-1} \beta_{k,n} e^{2kn+2kn} \frac{1}{\mu^3} \geq C
\]
for a uniform \(C > 0 \) depending on \(\sup |u| \), and hence we have
\[
\mu |\nabla u|^2 \leq C
\]
at \((x_0, t_0)\) for some uniform constant \(C > 0 \) depending on \(n \), \(\sup |u| \), \(\sup(|Rm| + |\nabla Ric|) \) and \(b_0 \), independent of \(T_1 \). For the case \(u_t \geq \frac{1}{2} \) at \((x_0, t_0)\), the first term in (4.5) is positive and hence
\[
|\nabla u|^2 \sum_i \bar{T}_{ii} \leq C(1 + \frac{1}{b_2})(\frac{1}{\mu} + 1) \sum_i \bar{T}_{ii}.
\]
and again we have
\[\mu|\nabla u|^2 \leq C \]
at \((x_0, t_0)\) for some uniform constant \(C > 0 \) depending on \(n, \sup |u|, \sup(|Rm| + |\nabla Ric|) \) and \(b_0 \), independent of \(T_1 \). Therefore, by the arbitrary choice of \(T_1 > T \),
\[F(x, t) \leq F(x_0, t_0) \leq 2Ce^{-2N} \]
for \((x, t) \in [0, +\infty)\). In particular,
\[|\nabla u(x, t)| \leq C \]
for \((x, t) \in B^*_x(q_1) \times [0, +\infty)\), for some uniform constant \(C > 0 \) depending on \(n, \sup_{B^*_x(q_1) \times [0, +\infty)} |u| \), \(\sup(|Rm| + |\nabla Ric|) \), \(b_0 \) and \(B^*_x(q_1) \). Therefore, for any compact subsets \(U \) and \(U_1 \) such that \(U \subseteq U_1 \subseteq U_1^c \subseteq M^c \), there exists a uniform constant \(C > 0 \) depending on \(U, \sup_{U \times [0, +\infty)} |u| \) and \(\sup(|Rm| + |\nabla Ric|) \) such that
\[|\nabla u(x, t)| \leq C + \sup_{U \times [0, T]} |\nabla u| \]
for \((x, t) \in U \times [0, +\infty)\).

Based on the interior \(C^1 \) estimates, the interior \(C^2 \) estimates are relatively easy modifications of the \(C^2 \) estimates in Proposition 3.6.

Lemma 4.3. Assume \(u \in C^{4,2}(M \times [0, +\infty)) \) is a solution to the Cauchy-Dirichlet boundary value problem of the equation \((1.5) \) with \(u_t \geq 0 \). Assume that for any compact subset \(U \subseteq M^c \), there exists a constant \(C_0(U) > 0 \) such that
\[|u| \leq C_0 \]
on \(U \times [0, +\infty) \). Also, for some \(T > 0 \), we assume that there exists a constant \(C = C(T) > 0 \) such that
\[|\nabla^2 u| \leq C(T) \]
on \(M \times [0, T] \). Then for a point \(q_1 \in M^c \), there exists a constant \(C' > 0 \) depending on \(B^*_x(q_1) \), \(C_0(B^*_x(q_1)) \) and \(\sup_{B^*_x(q_1) \times [0, +\infty)} |\nabla u| \) such that
\[|\nabla^2 u| \leq C' \]
on \(B^*_x(q_1) \times [0, +\infty) \), where \(r \) is the distance of \(q_1 \) to \(\partial M \).

Proof. For any \(T_1 > T \), we consider the function \(H : S(TM) \times [0, T_1) \to \mathbb{R} \) such that
\[H(x, e_x, t) = \mu(x)h(x, e_x, t) \]
for \(x \in M, e_x \in ST_x M \) and \(t \geq 0 \), where \(h \) is defined in the proof of Proposition 3.6 and \(\mu \in C_0^2(B_{\frac{1}{2}}(q_1)) \) satisfies (4.11) for some constant \(b_0 > 0 \). By continuity, there exists a point \((q, t_0) \in B_{\frac{1}{2}}(q_1) \times [0, T_1] \) and \(e_q \in ST_q M \), such that

\[
H(q, e_q, t_0) = \sup_{STM \times [0, T_1]} \mu(x) h(x, e_x, t).
\]

If \(t_0 \leq T \), then by assumption, \(|\nabla^2 u|\) and hence \(H \) are well controlled. Therefore, we assume that \(t_0 > T \). The same as in Proposition 3.6, we choose the normal coordinates \((x^1, ..., x^u)\) at \(q \) so that \(e_q = \frac{\partial}{\partial x^i} \) and we extend \(e_q \) to a unit vector field \(e = \xi^i \frac{\partial}{\partial u^i} \) in the neighborhood of \(q \) in the same way. We define the function

\[
\tilde{H}(x, t) = H(x, e(x), t) = \mu(x) \tilde{h}(x, t) = \mu(x)(\xi^i \xi^j \nabla_i \nabla_j u + m|\nabla u|^2)
\]

in a neighborhood of \((q, t_0)\), for some constant \(m > 1 \) to be fixed. Therefore, at \((q, t_0)\), we have

\[
\begin{align*}
\tilde{h}_i &= \nabla_1 \nabla_i u + 2m \nabla_a u \nabla_a u \geq 0, \\
\frac{\nabla \mu}{\mu} + \frac{\nabla \tilde{h}}{\tilde{h}} &= 0, \\
\tilde{T}_{ij} &= \frac{\nabla^2 \mu}{\mu} - \frac{\nabla_i \mu \nabla_j \mu}{\mu^2} + \frac{\nabla_i \tilde{h} \nabla_j \tilde{h}}{\tilde{h}^2} + \nabla_j \xi^a \nabla^2 \xi^a u \leq 0, \\
\Delta \mu &= \frac{\nabla \mu}{\mu}^2 + \frac{\nabla \tilde{h}}{\tilde{h}}^2 + \frac{\nabla \tilde{h}}{\tilde{h}}^2 + \Delta \xi^a \nabla^2 \xi^a u \leq 0.
\end{align*}
\]

Direct calculation and changing order of derivatives yield at \((q, t_0)\),

\[
\begin{align*}
\nabla_i \tilde{h} &= \nabla_1 \nabla_i \nabla u + Rm \nabla u + 2m \nabla_a u \nabla_a u, \\
\nabla_j \nabla_i \tilde{h} &= \nabla_1 \nabla_j \nabla_i u + \nabla Rm \nabla u + Rm \nabla^2 u + 2m \nabla a u \nabla_i u \nabla_a u + \nabla^2 a u \nabla_a u \nabla_i u + Rm \nabla u \nabla u,
\end{align*}
\]

and hence combining these inequalities at the maximum point \((q, t_0)\) we have

\[
\begin{align*}
\tilde{T}_{ij}[(n-2)\nabla_1 \nabla_i \nabla_j u + \nabla_1 \nabla_1 \Delta u_{ijij}] \\
\leq \tilde{T}_{ij}[(n-2)\nabla_j \tilde{h} + \Delta \tilde{h}_{ij}] - 2m[(n-2)\tilde{T}_{ij} \nabla a u \nabla a u + \nabla a \Delta u \nabla a u \sum_i \tilde{T}_{ii}] \\
- 2m[(n-2)\tilde{T}_{ij} \nabla_{ja} u \nabla_{ia} u + \nabla_{ia} u \nabla_{ja} u \sum_i \tilde{T}_{ii}] + (C + C|\nabla^2 u|) \sum_i \tilde{T}_{ii} \\
\leq - \tilde{h} \tilde{T}_{ij}[(n-2)(\frac{\nabla^2 \mu}{\mu} - 2 \frac{\nabla_i \mu \nabla_j \mu}{\mu^2})] + (\frac{\Delta \mu}{\mu} - 2 \frac{|\nabla \mu|^2}{\mu^2}) g_{ij} + (C + C|\nabla^2 u|) \sum_i \tilde{T}_{ii} \\
- 2m[(n-2)\tilde{T}_{ij} \nabla a u \nabla a u + \nabla a \Delta u \nabla a u \sum_i \tilde{T}_{ii}] - 2m[(n-2)\tilde{T}_{ij} \nabla_{ja} u \nabla_{ia} u + \nabla_{ia} u \nabla_{ja} u \sum_i \tilde{T}_{ii}] \\
\leq - 2m[(n-2)\tilde{T}_{ij} \nabla a u \nabla a u + \nabla a \Delta u \nabla a u \sum_i \tilde{T}_{ii}] - 2m[(n-2)\tilde{T}_{ij} \nabla_{ja} u \nabla_{ia} u + \nabla_{ia} u \nabla_{ja} u \sum_i \tilde{T}_{ii}] \\
+ C(1 + (1 + \frac{1}{\mu})|\nabla^2 u|) \sum_i \tilde{T}_{ii},
\end{align*}
\]
where C depends on $\sup |Rm|$, b_0, $\sup_{B_{T_1}(q_1) \times (0, \infty)} |\nabla u|$ and the uniform upper bound of $|\nabla^2 e(q)|$ (see Proposition 3.6), and hence combining this inequality with the two inequalities (5.22) we have

$$2k(\nabla_{i1}^2 u + \nabla_{i1}^2 u)\sigma_k(\nabla^2 u) - 2(n - 2)\bar{T}_{ii}[\nabla_{i1}^2 u\nabla_{i1}^2 u - \nabla_{i1}^2 u\nabla_{i1}^2 u]
\leq -4km(\nabla_{a1} u, \nabla_{a1} u + |\nabla u|^2)\sigma_k(\nabla^2 u) - 2m[(n - 2)\bar{T}_{ij} \nabla_{j1} u\nabla_{i1}^2 u + \nabla_{b1} u\nabla_{b1} u \sum_i \bar{T}_{ii}]
\leq C(1 + m + (1 + m + \frac{1}{\mu})|\nabla^2 u|) \sum_i \bar{T}_{ii}.$$

Plugging in (4.6) and (4.7), we have

$$2k\nabla_{i1}^2 u\sigma_k(\nabla^2 u) - 2(n - 2)\bar{T}_{ii}[\nabla_{i1}^2 u\nabla_{i1}^2 u - \nabla_{i1}^2 u\nabla_{i1}^2 u]
\leq -4km|\nabla u|^2\sigma_k(\nabla^2 u) - 2m[(n - 2)\bar{T}_{ij} \nabla_{j1} u\nabla_{i1}^2 u + \nabla_{b1} u\nabla_{b1} u \sum_i \bar{T}_{ii}]
\leq C(1 + m + (1 + m + \frac{1}{\mu})|\nabla^2 u|) \sum_i \bar{T}_{ii}.$$

Since $\nabla_{i1}^2 u(q, t_0) = 0$ for $i \geq 2$ by the choice of coordinates as in Proposition 3.6 and

$$\nabla_{i1}^2 u(q, t_0) \geq \nabla_{i1}^2 u(q, t_0)$$

for $i \geq 2$, and hence we have

$$2k(\nabla_{i1}^2 u + 2m|\nabla u|^2)\sigma_k(\nabla^2 u) + (2m - 2(n - 2))\nabla_{i1}^2 u\nabla_{i1}^2 u \sum_i \bar{T}_{ii}
\leq C(1 + m + n(1 + m + \frac{1}{\mu})|\nabla_{i1}^2 u|) \sum_i \bar{T}_{ii}.$$

We take m large and use the equation (5.1) to obtain

$$2k(\nabla_{i1}^2 u + 2m|\nabla u|^2)\bar{\beta}_{k1} e^{2k(u + \mu)} + \nabla_{i1}^2 u\nabla_{i1}^2 u \sum_i \bar{T}_{ii}
\leq C(1 + (1 + \frac{1}{\mu})|\nabla_{i1}^2 u|) \sum_i \bar{T}_{ii},$$

for some uniform $C > 0$ independent of T_1, and hence if $\nabla_{i1}^2 u(q, t_0) > 1$, the first term in this inequality is positive and since $\sum_i \bar{T}_{ii}$ is uniformly bounded from below by (5.14), we have

$$\mu \nabla_{i1}^2 u(q, t_0) \leq C,$$

for some uniform constant $C > 0$ independent of T_1, and hence

$$\tilde{H} \leq C$$

in $B_{2\rho}(q_1) \times [0, T_1]$ with $C > 0$ independent of T_1; while if $\nabla_{i1}^2 u(q, t_0) \leq 1$, we trivially have the uniform upper bound of \tilde{H} by its definition and the bound of $|\nabla u|$ on $B_{2\rho}(q_1) \times [0, \infty)$. By the arbitrary choice of $T_1 > T$, \tilde{H} has a uniform upper bound on $B_{2\rho}(q_1) \times [0, \infty)$. In particular,

$$\nabla_{i1}^2 u \leq C,$$
in $B_2(q_1) \times [0, \infty)$. Since $\overline{\nabla^2 u} \in \Gamma^+_k$, and $|\nabla u|$ is uniformly bounded in $B_2(q_1)$, we have that there exists a uniform constant $\alpha > -\infty$ such that

$$\Delta u \geq \alpha,$$

and hence

$$|\nabla^2 u| \leq n^3 (C + |\alpha|),$$
on $B_2(q_1) \times [0, \infty)$. This completes the proof of the lemma. □

Now we prove the convergence of the flow and the asymptotic behavior near the boundary as $t \to \infty$.

Proof of Theorem 1.3. Long time existence of the solution u has been obtained in Theorem 4.1, and we only need to consider the convergence of u and its asymptotic behavior near the boundary as $t \to \infty$.

First we establish the uniform upper bound estimates on u on any given compact subset of M^e. By the Maclaurin’s inequality, u is a subsolution to the σ_1-Ricci curvature flow (3.1). By the maximum principle for σ_1-Ricci curvature flow in Lemma 3.1, to get the upper bound of u, it suffices to find a super-solution to the scalar curvature equation i.e., (1.5) with $k = 1$ satisfying (1.7) near ∂M. Direct application of Lemma 5.2 in [7], where a sequence of super-solutions to the scalar curvature equation on corresponding small geodesic balls blowing up on the boundary was constructed, yields the upper bound of u:

$$\limsup_{x \to \partial M} [u(x, t) + \log(r(x))] \leq 0,$$

uniformly for all $t > 0$; and moreover, for any compact subset $U \subseteq M^e$, there exists a constant $C > 0$ depending on U such that $u(x, t) \leq C$ for all $(x, t) \in U \times [0, +\infty)$. Here is an alternative argument: by maximum principle for σ_1-Ricci curvature flow in Lemma 3.1, $u(x, t) \leq u_{LN}(x)$, for $(x, t) \in M^e \times [0, \infty)$, where u_{LN} is the solution to the Loewner-Nirenberg problem of the constant scalar curvature equation on M. Recall that

$$u_{LN}(x) \leq -\log(r(x)) + o(1)$$

near the boundary,

with $o(1) \to 0$ as $x \to \partial M$, see in [15][14][11] for instance.

By Lemma 5.2, $u(x, t)$ is increasing along $t > 0$ and hence

$$u_0(x) \leq u(x, t) \leq u_{LN}(x)$$

for $(x, t) \in M^e \times [0, +\infty)$. Or just use the super-solution to (1.5) on a small ball centered at x constructed in Lemma 5.2 in [7] instead of u_{LN}. Therefore, $u(x, t)$ converges as $t \to \infty$ for any $x \in M^e$. By Lemma 4.2 and Lemma 4.3, we have that for any compact subsets $U \subseteq U_1 \subseteq M^e$ with $U \subseteq U_1^\circ$, there exists a constant $C > 0$ such that

$$|\nabla u| + |\nabla^2 u| \leq C$$
in $U_1 \times [0, \infty)$ and hence, the equation (3.1) is uniformly parabolic and by (3.1), u_t has a uniform upper bound on $U_1 \times [0, \infty)$. By Krylov’s Theorem and the classical Schauder estimates, we
have that there exists a uniform constant $C > 0$ depending on U_1 such that
\[\|u\|_{C^{1,0}(U \times [0, \infty))} \leq C, \]
and
\[(4.8) \quad \|u\|_{C^{1,0}(U)} \leq C, \]
for all $t \geq 0$. Since u increases and has uniform upper bound in U, by the Harnack inequality of the linear uniformly parabolic equation (3.7) for u, we have
\[v = u_t \to 0 \]
uniformly on U as $t \to +\infty$. Therefore, $u(x, t) \to u_\infty(x)$ uniformly for $x \in U$ as $t \to +\infty$. By the uniform bound (4.8) and the interpolation inequality, we have
\[u(x, t) \to u_\infty(x) \]
in $C^4(U)$ as $t \to \infty$. By the arbitrary choice of the compact subset $U \subseteq M$, we have that u_∞ is a solution to (1.5) in M.

Now we consider the lower bound of u near the boundary. Applying Lemma 4.4 to be proved later, we have that there exist $\delta_1 > 0$ small and $T_2 > T_1$, such that
\[u(x, t) \geq -\log(r(x) + \epsilon(t)) + w(x) \]
for $x \in M$ with $r(x) \leq \delta_1$ and $t \geq T$, where $w(x) \leq 0$ with $w|_{\partial M} = 0$ and $\epsilon(t) \to 0$ as $t \to +\infty$. By the upper and lower bound estimates on u near the boundary, we have
\[u_\infty(x) + \log(r(x)) \to 0 \]
uniformly as $x \to \partial M$. \qed

We will show the lower bound of the asymptotic behavior of u near the boundary as $t \to \infty$, for which we need ϕ to increase not too slowly.

Lemma 4.4. Let (M, g), u_0, ϕ, $T_1 > T$ and u be as in Theorem 7.3. Let $r(x)$ be the distance function of $x \in M$ to the boundary ∂M. Then there exist $\delta_1 > 0$ small and $T_2 > T_1$, such that
\[u(x, t) \geq -\log(r(x) + \epsilon(t)) + w(x) \]
for $x \in M$ with $r(x) \leq \delta_1$ and $t \geq T_2$, where $\epsilon = \xi(t)^{-1}$ and w is a function of C^2 where $r(x) \leq \delta_1$ such that $w(x) \leq 0$ with $w|_{\partial M} = 0$.

Proof. Let $\delta_1 > 0$ be a small constant to be fixed. Define the exponential map $\text{Exp} : \partial M \times [0, \delta_1] \to M$ such that $\text{Exp}_q(s) \in M$ is the point on the geodesic starting from $q \in \partial M$ in the direction of inner normal vector with distance s to q. δ_1 is chosen small so that Exp is a diffeomorphism to the image. Define
\[U_{\delta_1} = \{\text{Exp}_q(s) \mid (q, s) \in \partial M \times [0, \delta_1]\}. \]
The metric has the orthogonal decomposition
\[g = ds^2 + g_s, \]
with g_s the restriction of g on $\Sigma_s = \{z \in M \mid r(z) = s\}$ for $0 \leq s \leq \delta_1$. Define the function
\[u(x, t) = -\log(r(x) + \epsilon(t)) + w(x) \]
for \((x, t) \in U_{\delta_1} \times [T, +\infty)\) where

\[
w(x) = A \left(\frac{1}{r(x) + \delta} - \frac{1}{\delta^p} \right)
\]

with constants \(A > 0, p > 1\) large and \(\delta > 0\) small to be determined. By definition, we have

\[
(4.9) \quad -\frac{\epsilon'(t)}{\epsilon(t)^2} = \xi'(t) \leq \tau
\]

for \(t \geq T\). Let \(\tilde{r}(x, t) = r(x) + \epsilon(t)\). For any \(x_0 \in U_{\delta_1}^0\), let \(\{e_1, ..., e_n\}\) be an orthonormal basis at \(x_0\) such that \(e_1 = \frac{\partial}{\partial r}\). The same calculation as in Lemma 5.1 in [7] yields

\[
\nabla^2 u = -Ric_g + (n-2)\nabla^2 w + \Delta g + (n-2)(w')^2 \begin{pmatrix} 0 & 1 & \cdots & 1 \\
0 & 1 & \cdots & 1 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 1 & \cdots & 1 \\
\end{pmatrix}
\]

\[
+ \frac{1}{\tilde{r}^2} \begin{pmatrix} (n-1)g - 2(n-2)\tilde{r}w' & 0 & \cdots & 0 \\
0 & 1 & \cdots & 1 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 1 & \cdots & 1 \\
\end{pmatrix} - \tilde{r}((n-2)\nabla^2 r + \Delta \gamma) \nabla^2 r + \Delta \gamma
\]
on \(U_{\delta_1} \). Therefore, if we also assume \(Ap \geq 8n\tau \), then we obtain
\[
\log(\det(\nabla^2 \varphi)) - \log(\tilde{\beta}_{n,n}) - 2nu \geq \log(\det(\frac{1}{r^2}\Phi)) - \log(\tilde{\beta}_{n,n}) - 2nu
\]
\[
\geq \log(\tilde{r}^{-2n}(1 + Ap\tilde{r})) - 2nu
\]
\[
\geq \log(1 + Ap\tilde{r}) \geq \log(1 + 8n\tau\tilde{r}),
\]
and hence for \(\tilde{r} \leq (8n\tau)^{-1} \) and \(t \geq \max\{T, T'\} \), by (4.9) we have
\[
(4.10) \quad \log(\det(\nabla^2 \varphi)) - \log(\tilde{\beta}_{n,n}) - 2nu \geq 4n\tau\tilde{r} \geq -2n\epsilon' \tilde{r} = 2nu.
\]
Since \(\lim_{t \to \infty} \epsilon(t) = 0 \), we take \(T_2 \geq \max\{T_1, T'\} \) such that \(\epsilon(t) \leq (16n\tau)^{-1} \) for \(t \geq T_2 \) and let
\[
\delta_1 < \min\{(16n\tau)^{-1}, (20\gamma)^{-1}\}.
\]
We will choose \(A \) and \(p \) large so that \(\underline{u} \) gives a lower bound of \(u \) on \(U_{\delta_1} \times [T_2, \infty) \). Notice that \(\partial U_{\delta_1} = \Sigma_{\delta_1} \cup \partial M \). By assumption we have
\[
\underline{u}(x, t) = \log(\xi(t)) \leq \phi(x, t)
\]
for \((x, t) \in \partial M \times [T_2, \infty) \). On \(\Sigma_{\delta_1} \), since \(u \) is increasing, we have \(u(x, t) \geq u_0(x) \). Notice that there exists \(A_1 > 0 \) such that for \(A \geq A_1 \) and any \(p \geq 1 \), we have
\[
-\log(\delta_1) + A((\delta_1 + \delta)^{-p} - \delta^{-p}) < \inf_{\Sigma_{\delta_1}} u_0,
\]
and hence we have on \(\Sigma_{\delta_1} \times [T_2, \infty) \),
\[
\underline{u} \leq u.
\]
Finally, we consider the control on \(U_{\delta_1} \times \{T_2\} \). Since \(\underline{u}(\cdot, T_2), u(\cdot, T_2) \in C^1(M) \) and \(\underline{u} \leq u = \phi \)
on \(\partial M \times \{T_2\} \), there exist \(A_2 > 0 \) and \(p_2 > 0 \) such that for \(A \geq A_2 \) and \(p \geq p_2 \), we have
\[
\underline{u} \leq u
\]
on \(U_{\delta_1} \times \{T_2\} \).

In summary, we assume
\[
Ap \geq \max\{K_0, 8n\tau\}, \quad p \geq \max\{1, p_0, p_2\}, \quad A \geq \max\{A_0, A_1, A_2\},
\]
\[
\delta + \delta_1 < 1, \quad \delta_1 < \min\{(16n\tau)^{-1}, (20\gamma)^{-1}\},
\]
and \(\delta_1 > 0 \) is small so that \(\text{Exp} \) is a diffeomorphism. Therefore, \(\underline{u} \) is a sub-solution to (3.1) for \(k = n \) by (4.10) and hence a sub-solution to (3.1) for \(1 \leq k \leq n \) on \(U_{\delta_1} \times [T_2, \infty) \), by Maclaurin’s inequality; moreover,
\[
\underline{u} \leq u, \quad \text{on} \quad (\partial M \bigcup \Sigma_{\delta_1}) \times [T_2, \infty) \bigcup U_{\delta_1} \times \{T_2\}.
\]
Therefore, by the maximum principle in Lemma (3.1) we have
\[
u(x, t) \geq \underline{u}(x, t) = -\log(r(x) + \epsilon(t)) + A((r(x) + \delta)^{-p} - \delta^{-p})
\]
on \(U_{\delta_1} \times [T_2, \infty) \).
\[\square\]
Proof of Corollary 3.5. The equation (1.5) is conformally covariant, and hence it is equivalent to consider the case when the background metric g is the Euclidean metric when (M, g) is a domain in the Euclidean space, while $g \in C^{4,\alpha}$ is chosen to be a metric constructed in [16] (see Section 2 in the present paper) such that $\text{Ric}_g \prec -(n - 1)g$ in the conformal class for a general manifold (M, g). Let $u_0 = \underline{u} + \min\{0, \inf_{\partial M} \varphi_0\}$ with \underline{u} a sub-solution constructed in Section 2 for $A > 0$ and $p > 0$ large, and when (M, g) is a domain in Euclidean space one can just take \underline{u} be the global sub-solution in [7] (just take the function $\eta(s) = s$ for the sub-solution \underline{u} in Section 2) with $A > 0$ and $p > 0$ large. Then u_0 is a strict sub-solution near the boundary with $u_0 < \varphi_0$ on ∂M and hence, we can construct the boundary data $\phi \in C^{4,0.2}((\partial M \times [0, \infty))$ satisfying the compatible condition (3.4) at $t = 0$ such that $\phi_t \geq 0$ on $\partial M \times [0, \infty)$ and $\phi(x, t) \rightarrow \varphi_0(x)$ uniformly in $C^{4,\alpha'}(\partial M)$ as $t \rightarrow \infty$ for some $0 < \alpha' < 1$.

Consider the Cauchy-Dirichlet boundary value problem (3.1) - (3.3). It is clear that Lemma 3.1 and Lemma 3.2 still hold true. Recall that by Maclaurin’s inequality u is a sub-solution to the σ_1-Ricci curvature flow (3.1). On the other hand, for the σ_1-Ricci equation (1.5), which is the Yamabe equation, classical variational methods yield a unique minimizing solution u_1 to the Dirichlet boundary value problem with $u_1 = \varphi_0$ on ∂M, see [17]. By Lemma 3.1 for the σ_1-Ricci curvature flow, we have $u(x, t) \leq u_1(x)$ for $(x, t) \in M \times [0, \infty)$ and hence we have a uniform upper bound of u. Also, the a priori C^2 estimates from Lemma 3.3 to Proposition 3.6 hold with uniform bound of $\|u(\cdot, t)\|_{C^2(M)}$ independent of $t > 0$. By Theorem 4.1 we have the long time existence of the unique solution u. Things are even better in this case: there exists a uniform constant $C > 0$ such that for any $T > 0$,

$$\|u\|_{C^{4,0.2}(M \times [T, T+1])} \leq C,$$

by Krylov’s Theorem and the standard Schauder estimates. Remark that here we do not need the locally uniformly interior estimates.

By (4.11), there exists a sequence $t_j \rightarrow \infty$, such that $u(x, t_j) \rightarrow u_\infty(x)$ in $C^4(M)$ for some $u_\infty \in C^{4,\alpha}(M)$ as $t_j \rightarrow \infty$. By monotonicity of u, $u(x, t) \rightarrow u_\infty(x)$ uniformly for $x \in M$ as $t \rightarrow \infty$. By (4.11) and the interpolation inequality, we have $u(x, t) \rightarrow u_\infty(x)$ uniformly in $C^4(M)$ as $t \rightarrow \infty$ and hence, $u_\infty = \varphi_0$ on ∂M. Since $u_t \geq 0$ satisfies the linear uniformly parabolic equation (3.7), by Harnack inequality, $u_t \rightarrow 0$ locally uniformly in M° as $t \rightarrow \infty$ and hence, u_∞ is a solution to (1.5). This completes the proof of the corollary.

□

References

[1] L. Andersson, P. Chruściel, H. Friedrich, On the regularity of solutions to the Yamabe equation and the existence of smooth hyperboloidal initial data for Einstein's field equations, Comm. Math. Phys., 149(1992), 587-612.
[2] P. Aviles, R. C. McOwen, Complete conformal metrics with negative scalar curvature in compact Riemannian manifolds, Duke Math. J. 56(2) (1988) 395-398.
[3] P. Aviles, R. C. McOwen, Conformal deformation to constant negative scalar curvature on noncompact Riemannian manifolds, J. Diff. Geom., 27 (1988), 225-239.
[4] M. González, Y.Y. Li, L. Nguyen, Existence and uniqueness to a fully non-linear version of the Loewner-Nirenberg problem, Commun. Math. Stat. 6 (2018), no.3, 269-288.
[5] B. Guan, Complete conformal metrics of negative Ricci curvature on compact manifolds with boundary, Int. Math. Res. Not. IMRN 2008, Art. ID 105, 25 pp.
[6] B. Guan, *Addendum to: Complete conformal metrics of negative Ricci curvature on compact manifolds with boundary*, Int. Math. Res. Not. IMRN 2009, no. 22, 4354-4355.

[7] M. Gursky, J. Streets, M. Warren, *Existence of complete conformal metrics of negative Ricci curvature on manifolds with boundary*, Calc. Var. PDE 2011, no. 1-2, 21-43.

[8] M. Gursky, J. Viaclovsky, *Fully nonlinear equations on Riemannian manifolds with negative curvature*, Indiana Univ. Math. J. 52, 2003, 399-419.

[9] N. Krylov, *Nonlinear elliptic and Parabolic equations of the second order*, D. Riedel, Publishing Company 1987.

[10] G. Li, *Two flow approaches to the Loewner-Nirenberg problem on manifolds*, preprint.

[11] J. Li, W. Sheng, *Deforming metrics with negative curvature by a fully nonlinear flow*, Calc. Var. PDE 2005, 33-50.

[12] Y.Y. Li, *Some existence results for fully nonlinear elliptic equations of Monge-Ampère type*, Comm. Pur Appl. Math. 43, 1990, 233-271.

[13] C. Loewner, L. Nirenberg, *Partial differential equations invariant under conformal or projective transformations*, Contributions to Analysis, Academic Press, New York, 1974, pp. 245-272.

[14] A. Lazer, P.J. McKenna, *Asymptotic behavior of boundary blow-up problems*, Differential and Integral Equations 7 (1994), pp. 1001-1019.

[15] C. Loewner, L. Nirenberg, *Partial differential equations invariant under conformal or projective transformations*, Contributions to Analysis, Academic Press, New York, 1974, pp. 245-272.

[16] J. Lohkamp, *Negative bending of open manifolds*, J. Diff. Geom., 40 (1994), 461-474.

[17] L. Ma, *The Yamabe problem with Dirichlet data*, C.R. Acad. Sci. Paris Sér. I Math. 320 (1995), no. 6, 709-712.

[18] J. A. Viaclovsky, *Conformal geometry, contact geometry, and the calculus of variations*, Duke Math. J., 101 (2000), 283-316.

Gang Li, Department of Mathematics, Shandong University, Jinan, Shandong Province, China

Email address: runxing3@gmail.com