On the approximation for singularly perturbed
stochastic wave equations

Wei Wang∗ Yan Lv† A. J. Roberts‡

September 15, 2011

Abstract

We explore the relation between fast waves, damping and imposed
noise for different scalings by considering the singularly perturbed
stochastic nonlinear wave equations

\[\nu u_{tt} + u_t = \Delta u + f(u) + \nu^\alpha \dot{W} \]

on a bounded spatial domain. An asymptotic approximation to the
stochastic wave equation is constructed by a special transformation and
splitting of \(\nu u_t \). This splitting gives a clear description of the structure
of \(u \). The approximating model, for small \(\nu > 0 \), is a stochastic non-
linear heat equation for exponent \(0 \leq \alpha < 1 \), and is a deterministic
nonlinear wave equation for exponent \(\alpha > 1 \).

Keywords Singular perturbation, stochastic wave equations, asymptotic
approximation.

1 Introduction

Our stochastic model is motivated by some material continuum in some
domain \(D \subset \mathbb{R}^n \), \(1 \leq n \leq 3 \). The continuum is made of ‘particles’ with
‘displacement’ field \(u(t,x) \) and ‘velocity’ field \(v(t,x) \). The motion of the
particles in the continuum in a stochastic force field \(\sigma \dot{W} \), motivated by
Newton’s law, is assumed to be described by the following stochastic partial

∗School of Mathematics, University of Adelaide, South Australia 5005, AUSTRALIA.
mailto:w.wang@adelaide.edu.au

†School of Science, Nanjing University of Science & Technology, Nanjing, 210094, CHINA.
mailto:lvyan1998@yahoo.com.cn

‡School of Mathematics, University of Adelaide, South Australia 5005, AUSTRALIA.
mailto:anthony.roberts@adelaide.edu.au
differential equations [1]

\[u^{\nu}(t, x) = v^{\nu}(t, x), \quad (1) \]
\[\nu u^{\nu}_t(t, x) = -kv^{\nu}(t, x) + \Delta u^{\nu}(t, x) + f(u^{\nu}(t, x)) + \sigma \dot{W}(t, x), \quad (2) \]
\[u^{\nu}(0, x) = u_0, \quad v^{\nu}(0, x) = u_1, \quad (3) \]

for times \(t \geq 0 \), and locations \(x \in D \), with zero Dirichlet boundary condition on \(\partial D \). Here small \(\nu \) is the ‘density’ of the particles: we explore the singular limit as \(\nu \to 0 \) and so label the dependent fields with superscript \(\nu \). Damping is proportional to the velocity \(v^{\nu} \) with constant \(k \). The Laplacian governs near neighbour, particle-particle, quasi-elastic interaction forces, and a nonlinear reaction is characterised by \(f(u) \). The externally imposed stochastic force field is \(\sigma \dot{W}(t, x) \) where \(W(t, x) \) is an \(L^2(D) \) valued Wiener process defined on some complete probability space \((\Omega, \mathcal{F}, P) \), and is assumed to be of strength that scales according to \(\sigma = \nu^\alpha \). For exponent \(\alpha = 0 \), the approximation of displacements \(u^{\nu} \), as \(\nu \to 0 \), is called the infinite dimensional Smolukowski–Kramers approximation which has been proved valid in the limit by estimating the remainder term [1, 2]. Our recent work [5] applied an averaging method to approximate the displacement field \(u^{\nu} \) for the case \(\sigma = \nu^\alpha \) with exponent \(0 \leq \alpha \leq 1/2 \). Both of these methods are significantly complicated due to the coupling of displacement \(u \) and velocity \(v \) in the remainder term.

Here we apply a relatively simple method to derive suitable approximations for equations (1)–(3) with \(\sigma = \nu^\alpha \), for exponent \(\alpha \in [0, 1) \cup (1, \infty) \). We apply the following useful splitting of the velocity \(u^{\nu}_t \),

\[u^{\nu}_t(t) = \nu \bar{v}^{\nu}_1(t) + v^{\nu}_2(t) + \nu^{\alpha-1/2} \bar{v}^{\nu}_3(t), \quad (4) \]

to avoid directly estimating the remainder term. The three parts of the above splitting are the initial value part, the mean value part, and the diffusion part, respectively. This decomposition gives a clear structure for the displacement \(u^{\nu} \) with

\[u^{\nu}(t) - u_0 = \frac{1}{\nu} \int_0^t \bar{v}^{\nu}_1(s) \, ds + \int_0^t \bar{v}^{\nu}_2(s) \, ds + \nu^{\alpha-1/2} \int_0^t \bar{v}^{\nu}_3(s) \, ds. \]

The parts \(\bar{v}^{\nu}_1 \) and \(\bar{v}^{\nu}_3 \) satisfy linear equations, and section 3 establishes

\[\frac{1}{\nu} \int_0^t \bar{v}^{\nu}_1(s) \, ds = O(\nu) \quad \text{and} \quad \nu^{\alpha-1/2} \int_0^t \bar{v}^{\nu}_3(s) \, ds = O(\nu^\alpha) \quad \text{as} \ \nu \to 0. \]

The mean part \(\bar{v}^{\nu}_2(t) \) of the velocity is \(O(1) \) as \(\nu \to 0 \) for \(t \in [0, T] \) with any fixed time \(T \). Then for small \(\nu \), section 3 determines which term is a high order term and gives an asymptotic approximation of the displacement \(u^{\nu} \).

Here one interesting case is when the exponent \(\alpha = 1 \). In this case there are two terms with the same order \(O(\nu) \) as \(\nu \to 0 \). Then if we keep all the
terms, the approximation to the displacement u^ν is just itself which is no modelling simplification. This case will be discussed further research.

Because of its motivation by physical continuum problems of wave motion in some random media [3], the system (1)–(3) is called a stochastic wave equation. For small ν and the particular case of $\sigma = \nu^{1/2}$, Lv and Wang [6, 8] studied the limit behaviour as $\nu \to 0$: in this case the random dynamics of (1)–(3) was proved to be described by that of the nonlinear heat equation

$$u_t(t,x) = \Delta u(t,x) + f(u(t,x)), \quad u(0,x) = u_0. \quad (5)$$

This paper extends this earlier research by approximating the behaviour of the solution on finite time interval $[0,T]$, $T > 0$, for the more general case of $\sigma = \nu^\alpha$ with any $\alpha \in [0,1) \cup (1,\infty)$. The tightness in the space $C(0,T;L^2(D))$, compact in sense of probability, has been proved in previous work [2, 8]. Consequently, here we just need to approximate the displacement u^ν in a weak sense; that is, we consider the approximation of the inner product $\langle u^\nu, \varphi \rangle$ in the space $C(0,T)$ for testing function $\varphi \in C^2(D \times [0,T])$ with φ vanishing on the boundary ∂D.

Section 2 first gives some preliminaries and the main result, Theorem 4. Then section 3 details the proof.

2 Preliminary

Let $D \subset \mathbb{R}^n$, $1 \leq n \leq 3$, be a regular domain with boundary ∂D. Denote by $L^2(D)$ the Lebesgue space of square integrable real valued functions on D, which is a Hilbert space with inner product

$$\langle u,v \rangle = \int_D u(x)v(x) \, dx, \quad u, v \in L^2(D).$$

Write the norm on $L^2(D)$ by $\|u\|_0 = \langle u, u \rangle^{1/2}$. Define the following abstract operator

$$Au = -\Delta u, \quad u \in \text{Dom}(A) = \{u \in L^2(D) : \Delta u \in L^2(D), \ u|_{\partial D} = 0\}.$$

Denoted by $\{\lambda_k\}$, assume the eigenvalues of operator A satisfy $0 < \lambda_1 \leq \lambda_2 \leq \lambda_3 \leq \cdots$, and $\lambda_k \to \infty$ as $k \to \infty$. For any $s \geq 0$, denote by $H^s(D)$ the usual Sobolev space $W^{s,2}(D)$ and by $H^s_0(D)$ the closure of $C^\infty_0(D)$ in $H^s(D)$. In the space $H^s_0(D)$ we use the equivalent norm

$$\|u\|_s = \|A^{s/2}u\|_0, \quad u \in H^s_0(D).$$

We also denote the dual space of H^s_0 by H^{-s}. Here specify that the noise magnitude scales as $\sigma = \nu^\alpha$, $0 < \nu \leq 1$, for exponent $\alpha \geq 0$, in equation (2);
that is, we consider the following stochastic equations

\[u_\nu' = v_\nu', \quad u_\nu'(0) = u_0, \]
\[v_\nu' = \frac{1}{\nu} [-v_\nu - Au_\nu + f(u_\nu)] + \nu^{\alpha - 1} \dot{W}, \quad u_\nu'(0) = u_1. \]

Hereafter we non-dimensionalise the time scale with the drag rate so that, in effect, the drag coefficient is one. We assume \(\{W(t,x)\}_{t \in \mathbb{R}} \) is an \(L^2(D) \)-valued, two sided, Wiener process, defined on a complete probability space \((\Omega, \mathcal{F}, \{\mathcal{F}_t\}_{t \geq 0}, \mathbb{P}) \) with covariance operator \(Q \) such that

\[Q e_k = b_k e_k, \quad k = 1, 2, \ldots, \]

where \(\{e_k\} \) is a complete orthonormal system in \(H \) and \(\{b_k\} \) is a bounded sequence of non-negative real numbers. Then the noise process \(W(t,x) \) has the spectral expansion

\[W(t,x) = \sum_{k=1}^{\infty} \sqrt{b_k} e_k w_k(t), \]

where \(w_k \) are real, mutually independent, standard scalar Brownian motions \([7]\). Further, we assume boundedness of the sums

\[\text{tr} \, Q = \sum_{k=1}^{\infty} b_k < \infty \quad \text{and} \quad \sum_{k=1}^{\infty} \lambda_k b_k < \infty. \]

Assumption 1. For the nonlinearity \(f \) we assume

1. \(|f(s)| \leq C_1(1 + |s|^3), \quad |f'(s)| \leq C_2(1 + |s|^2); \]
2. \(F(s) \leq -C_3(|s|^4 - 1), \quad sf(s) \leq -C_4(F(s) - 1); \)

for some positive constants \(C_i, \, i = 1, 2, 3, 4 \), and where \(F(s) = \int_0^s f(r) \, dr \).

One simple example satisfying these assumptions is \(f(u) = u - u^3 \).

Then we have the following theorem.

Theorem 2. Assume that the boundedness \([5]\) and Assumption \([2]\) hold. For any \((u_0, u_1) \in H_0^1(D) \times L^2(D)\), there is a unique solution \((u_\nu', v_\nu')\) to \((6)-(7)\), with

\[u_\nu' \in L^2(\Omega, C(0,T;H_0^1(D))), \quad v_\nu' \in L^2(\Omega, C(0,T;L^2(D))), \]

for any \(T > 0 \). Moreover, for any \(T > 0 \) there is a positive constant \(C_T \) which is independent of \(\nu \) such that the expectation

\[\mathbb{E} \sup_{0 \leq t \leq T} ||u_\nu'(t)||_1 \leq C_T (||u_0||^2_1 + ||u_1||^2_0), \]

and \(\{u_\nu'\}_{0 < \nu \leq 1} \) is tight in the space \(C(0,T;L^2(D)) \).
Proof. To prove the existence of the solution we define
\[A = \begin{bmatrix} 0, & \text{id}_{L^2(D)} \\ \frac{1}{nu}, & -\frac{1}{nu} \end{bmatrix}, \quad F(u^\nu, v^\nu) = \begin{bmatrix} 0 \\ \frac{1}{nu}f(u^\nu) \end{bmatrix} \quad \text{and} \quad W(t) = \begin{bmatrix} 0 \\ \sqrt{\nu}W(t) \end{bmatrix}. \]

Let \(\Phi = (u^\nu, v^\nu) \), so equation (6)–(7) can be rewritten in the following abstract stochastic evolutionary form
\[
\dot{\Phi} = A\Phi + F(\Phi) + \dot{W}, \quad \Phi(0) = (u_0, u_1).
\]
Notice that operator \(A \) generates a strong continuous semigroup and the nonlinearity \(F \) is locally Lipschitz continuous, then by a standard method for stochastic evolutionary equations [7] we have the first part of the theorem.

For \(0 \leq \alpha < 1/2 \) the energy estimate for \((u^\nu, v^\nu)\) and tightness result can be obtained via a similar argument to that of Cerrai and Freidlin [2], and for \(\alpha \geq 1/2 \) the energy estimate and tightness were obtained by Lv and Wang [6]. The proof is complete.

In the following approach we need the following lemma on weak convergence of a sequence of functions due to Lions [4].

Lemma 3. For any given functions \(h^\nu \) and \(h \in L^p([0, T] \times D) \) \((1 < p < \infty)\), if \(\|h^\nu\|_{L^p([0, T] \times D)} \leq C \) for some positive constant \(C \), and \(h^\nu \rightarrow h \) on \([0, T] \times D\) almost everywhere as \(\nu \rightarrow 0 \), then \(h^\nu \rightarrow h \) weakly in \(L^p([0, T] \times D) \).

Now we give the main theorem on the approximation of the displacement \(u^\nu \) in our stochastic wave equation.

Theorem 4. Assume that the boundedness (8) and Assumption 1 hold, and \((u_0, u_1) \in H^1_0(D) \times L^2(D)\). If exponent \(0 \leq \alpha < 1 \), for any \(T > 0 \), and for small \(\nu > 0 \), then with probability one
\[
\nu^{-\alpha}\|u^\nu - \bar{u}^\nu\|_{C([0, T]; L^2(D))} \rightarrow 0, \quad \text{as} \ \nu \rightarrow 0,
\]
with the approximation \(\bar{u}^\nu \) solving the stochastic nonlinear heat equation
\[
\bar{u}^\nu_t = \Delta \bar{u}^\nu + f(\bar{u}^\nu) + \nu^\alpha \hat{W}, \quad \bar{u}^\nu(0) = u_0.
\]

Conversely, if \(\alpha > 1 \),
\[
\nu^{-1}\|u^\nu - \bar{u}^\nu\|_{C([0, T]; L^2(D))} \rightarrow 0, \quad \text{as} \ \nu \rightarrow 0,
\]
with the approximation \(\bar{u}^\nu \) solving the deterministic nonlinear wave equation
\[
\nu \bar{u}_{tt} + \bar{u}_t = \Delta \bar{u}^\nu + f(\bar{u}^\nu), \quad \bar{u}^\nu(0) = u_0, \quad \bar{u}^\nu_t(0) = u_1.
\]

5
3 Approximation: proof of Theorem 4

By Theorem 2, \(\{u^\nu(t)\}_{0<\nu\leq 1} \) is tight in the space \(C(0,T;L^2(D)) \), so we approximate the displacement \(u^\nu \) in a weak sense: we approximate \(\langle u^\nu, \varphi \rangle \) for any \(\varphi \in C^2([0,T] \times D) \) with \(\varphi|_{\partial D} = 0 \).

In order to avoid the coupling between the displacement \(u^\nu \) and the velocity \(v^\nu \), we scale the velocity field as

\[
\tilde{v}^\nu = \nu v^\nu. \tag{13}
\]

Then

\[
\begin{align*}
\tilde{u}^\nu_t &= \frac{1}{\nu} \tilde{v}^\nu, \quad \tilde{u}^\nu(0) = u_0, \\
\tilde{v}^\nu_t &= -\frac{1}{\nu} \tilde{v} + \Delta u^\nu + f(u^\nu) + \nu^a \dot{W}, \quad \tilde{v}^\nu(0) = \nu u_1.
\end{align*}
\]

Further, we make the decomposition

\[
\begin{align*}
\tilde{v}^\nu &= \tilde{v}^\nu_1 + \nu \tilde{v}^\nu_2 + \nu^{a+1/2} \tilde{v}^\nu_3, \tag{14} \\
\text{where} \quad \tilde{v}^\nu_{1,t} &= -\frac{1}{\nu} \tilde{v}^\nu_1, \quad \tilde{v}^\nu_1(0) = \nu u_1, \\
\tilde{v}^\nu_{2,t} &= -\frac{1}{\nu} [\tilde{v}^\nu_2 - \Delta u^\nu - f(u^\nu)], \quad \tilde{v}^\nu_2(0) = 0, \\
\tilde{v}^\nu_{3,t} &= -\frac{1}{\nu} \tilde{v}^\nu_3 + \frac{1}{\sqrt{\nu}} \dot{W}, \quad \tilde{v}^\nu_3(0) = 0. \tag{15}
\end{align*}
\]

Then

\[
\begin{align*}
\tilde{u}^\nu &= \frac{1}{\nu} \tilde{v}^\nu + \tilde{v}^\nu_2 + \nu^{a-1/2} \tilde{v}^\nu_3, \quad \tilde{u}^\nu(0) = u_0. \tag{18}
\end{align*}
\]

The decomposition of \(\tilde{v}^\nu \) makes the problem easier. The two sdes \([14]\) and \([17]\) for the two components \(\tilde{v}^\nu_1 \) and \(\tilde{v}^\nu_3 \) are just linear sdes whose properties are well known. The properties of \(\tilde{v}^\nu_2 \) can be derived straightforwardly from the pde \([16]\) by the estimates in Theorem 2. We state the following results.

Lemma 5. Assume that the boundedness \([3]\) and Assumption \([1]\) hold. Let \(u_1 \in L^2(D) \), then for any \(\varphi \in C^2([0,T] \times D) \) with \(\varphi|_{\partial D} = 0 \),

\[
\begin{align*}
&\frac{1}{\nu} \int_0^t \langle \tilde{v}^\nu_1(s), \varphi(s) \rangle ds \to 0, \quad 0 \leq t \leq T, \tag{19} \\
\text{and} \quad &\nu^{-1/2} \int_0^t \langle \tilde{v}^\nu_3(s), \varphi(s) \rangle ds \to \int_0^t \langle \varphi(s), dW(s) \rangle, \quad 0 \leq t \leq T, \tag{20}
\end{align*}
\]

in \(L^2(\Omega) \), as \(\nu \to 0 \).

Proof. The proof is direct. First,

\[
\tilde{v}^\nu_1(t) = \nu u_1 e^{-t/\nu}.
\]
Then for $\varphi \in C^2([0,T] \times D)$

$$\frac{1}{\nu} \int_0^t \langle \bar{v}_1^\nu(s), \varphi(s) \rangle \, ds = \int_0^t \langle u_1, \varphi(s) \rangle e^{-s/\nu} \, ds$$

$$= \nu \int_0^t \langle u_1, \varphi(\nu \tau) \rangle e^{-\tau} \, d\tau \to 0, \quad \text{as } \nu \to 0,$$

uniformly on $[0,T]$, which yields the first convergence. Second, for any $\varphi \in C^2([0,T] \times D)$ with $\varphi|_{\partial D} = 0$ by equation (17),

$$\nu^{-1/2} \int_0^t \langle \bar{v}_3^\nu(s), \varphi(s) \rangle \, ds = -\sqrt{\nu} \int_0^t \langle \bar{v}_3^\nu(s), \varphi(s) \rangle \, ds + \int_0^t \langle \varphi(s), dW(s) \rangle$$

$$= -\sqrt{\nu} \langle \bar{v}_3^\nu(t), \varphi(t) \rangle + \sqrt{\nu} \int_0^t \langle \bar{v}_3^\nu(s), \varphi(s) \rangle \, ds$$

$$+ \int_0^t \langle \varphi(s), dW(s) \rangle. \quad (21)$$

So it remains to show that $\bar{v}_3^\nu(t)$ is uniformly bounded in the space $L^2(\Omega, L^2(D))$. By equation (17), applying Itô formula to $\|\bar{v}_3^\nu\|^2_0$ gives

$$\frac{1}{2} \frac{d}{dt} \|\bar{v}_3^\nu(t)\|^2_0 = -\frac{1}{\nu} \|\bar{v}_3^\nu\|^2_0 + \frac{1}{2\nu} \text{tr } Q + \frac{1}{\sqrt{\nu}} \langle \bar{v}_3^\nu, \dot{W} \rangle.$$

Then by the Gronwall lemma

$$\mathbb{E} \|\bar{v}_3^\nu(t)\|^2_0 \leq \text{tr } Q, \quad t \geq 0.$$

The proof is complete. \qed

Lemma 6. Assume the conditions in Theorem 2 holds, then there is a parameter ν and independent positive constant C_T such that

$$\mathbb{E} \|\bar{v}_3^\nu(t)\|_{-1} \leq C_T, \quad 0 \leq t \leq T.$$

Proof. For any $\psi \in H^1_0(D)$, from equation (16)

$$\frac{d}{dt} \langle \bar{v}_2^\nu(t), \psi \rangle = -\frac{1}{\nu} \langle \bar{v}_2^\nu, \psi \rangle - \frac{1}{\nu} \langle \nabla u^\nu, \nabla \psi \rangle + \frac{1}{\nu} \langle f(u^\nu), \psi \rangle.$$

Then

$$\langle \bar{v}_2^\nu(t), \psi \rangle = \frac{1}{\nu} e^{-t/\nu} \int_0^t e^{s/\nu} \left[-\langle \nabla u^\nu(s), \nabla \psi \rangle + \langle f(u^\nu(s)), \psi \rangle \right] \, ds.$$

By the estimates in Theorem 2 and the embedding $H^1_0(D) \subset L^6(D)$ for $1 \leq n \leq 3,

$$\mathbb{E} |\langle \bar{v}_2^\nu(t), \psi \rangle| \leq C_T \|\psi\|_1, \quad 0 \leq t \leq T.$$

The proof is complete. \qed
From the above lemma we prove the main Theorem. First, for any \(\kappa > 0 \), by the tightness of displacement \(u^\nu \) in the space \(C(0, T; L^2(D)) \), there is a compact set \(B_\kappa \subset C(0, T; L^2(D)) \) such that

\[
\mathbb{P}\{u^\nu \in B_\kappa\} \geq 1 - \kappa/2. \tag{22}
\]

By the Markov inequality and the estimate in Lemma for any \(\kappa > 0 \) there is a positive constant \(C_T^\kappa \) such that

\[
\mathbb{P}\{\|\bar{u}^\nu_2(t)\|_{-1} \leq C_T^\kappa\} \geq 1 - \kappa/2. \tag{23}
\]

Then for any \(\kappa > 0 \), define a probability space \((\Omega_\kappa, \mathcal{F}_\kappa, \mathbb{P}_\kappa) \)

\[\Omega_\kappa = \{\omega \in \Omega : \text{events (22) and (23) hold}\}, \quad \mathcal{F}_\kappa = \{F \cap \Omega_\kappa : F \in \mathcal{F}\}, \]

and for any \(F \in \mathcal{F}_\kappa \)

\[
\mathbb{P}_\kappa(F) = \frac{\mathbb{P}(F \cap \Omega_\kappa)}{\mathbb{P}(\Omega_\kappa)}. \]

In the following we restrict our problem to the above new probability space. For any \(\omega \in \Omega_\kappa \), the convergence \((19) \) still holds. The convergence \((20) \) is in the \(L^2(\Omega) \) sense which yields the convergence for \(\mathbb{P} \) almost all \(\omega \in \Omega \), then we also have the convergence \((20) \) for \(\mathbb{P}_\kappa \) almost all \(\omega \in \Omega_\kappa \). So we can assume that for all \(\omega \in \Omega_\kappa \), the convergence \((20) \) holds.

Furthermore, we establish the limit

\[
f(u^n) \to f(u) \quad \text{weakly in } L^2(0, T; L^2(D)) \tag{24}
\]

for any \(u^n \to u \) in \(C(0, T; L^2(D)) \). By the embedding \(H^6_0(D) \subset L^6(D) \) we have \(\|f(u^n)\|_{L^6(0, T; L^2(D))} \leq C_T \) for some positive constant \(C_T \), and by the strong convergence of \(u^n \to u \), \(f(u^n(t, x)) \to f(u(t, x)) \) on \([0, T] \times D\) almost everywhere. Then Lemma gives the limit.

Next we give an asymptotic approximation to the displacement \(u^\nu \). For this we consider \(\langle u^\nu(t), \varphi(t) \rangle \) with \(\varphi \in C^2([0, T] \times D) \) and \(\varphi|_{\partial D} = 0 \). From equation

\[
\langle u^\nu(t), \varphi(t) \rangle - \langle u_0, \varphi(0) \rangle - \int_0^t \langle u^\nu(s), \varphi_t(s) \rangle \, ds
\]

\[
= \frac{1}{\nu} \int_0^t \langle \bar{u}^\nu_2(s), \varphi(s) \rangle \, ds + \int_0^t \langle \bar{v}^\nu_2(s), \varphi(s) \rangle \, ds + \nu^{\alpha-1/2} \int_0^t \langle \bar{v}^\nu_3(s), \varphi(s) \rangle \, ds.
\]

From equation

\[
\int_0^t \langle \bar{v}^\nu_2(s), \varphi(s) \rangle \, ds = \int_0^t \langle u^\nu(s), \Delta \varphi(s) \rangle \, ds + \int_0^t \langle f(u^\nu(s)), \varphi(s) \rangle \, ds
\]

\[
- \nu \langle \bar{v}^\nu_2(t), \varphi(t) \rangle + \nu \int_0^t \langle \bar{v}^\nu_2(s), \varphi_t(s) \rangle \, ds.
\]
By the definition of Ω_κ, and Lemmas 5 and 6
\begin{align*}
\frac{1}{\nu} \int_0^t \langle \bar{v}'_1(s), \varphi(s) \rangle \, ds = O(\nu), \quad \nu \langle \bar{v}'_2(t), \varphi(t) \rangle = O(\nu),
\end{align*}
and
\begin{align*}
\nu \int_0^t \langle \bar{v}'_2(s), \varphi_t(s) \rangle \, ds = O(\nu).
\end{align*}
Further, by (21)
\begin{align*}
\nu^{\alpha-1/2} \int_0^t \langle \bar{v}'_3(s), \varphi(s) \rangle \, ds = \nu^\alpha \int_0^t \langle \varphi(s), dW(s) \rangle + O(\nu^{\alpha+1/2}).
\end{align*}
Then
\begin{align*}
\langle u' (t) , \varphi(t) \rangle - \langle u_0 , \varphi(0) \rangle &- \int_0^t \langle u'(s) , \varphi_t(s) \rangle \, ds - \int_0^t \langle u'(s) , \Delta \varphi(s) \rangle \, ds \\
&- \int_0^t \langle f (u'(s)) , \varphi(s) \rangle \, ds \\
&= \nu^{\alpha-1/2} \int_0^t \langle \bar{v}'_3(s) , \varphi(s) \rangle \, ds + \frac{1}{\nu} \int_0^t \langle \bar{v}'_1(s), \varphi(s) \rangle \, ds \\
&- \nu \langle \bar{v}'_2(t) , \varphi(t) \rangle + \nu \int_0^t \langle \bar{v}'_2(s) , \varphi_t(s) \rangle \, ds \\
&= \nu^\alpha \int_0^t \langle \varphi(s) , dW(s) \rangle + O(\nu^{\alpha+1/2}) + O(\nu).
\end{align*}
(25)

Now for exponent $0 \leq \alpha < 1$, noticing the convergence (24) and neglecting the $o(\nu^\alpha)$ terms we have the following equation:
\begin{align*}
\langle \bar{u}'(t) , \varphi(t) \rangle - \langle u_0 , \varphi(0) \rangle &- \int_0^t \langle \bar{u}'(s) , \varphi_t(s) \rangle \, ds - \int_0^t \langle \bar{u}'(s) , \Delta \varphi(s) \rangle \, ds \\
&- \int_0^t \langle f (\bar{u}'(s)) , \varphi(s) \rangle \, ds = \nu^\alpha \int_0^t \langle \varphi(s) , dW(s) \rangle.
\end{align*}
Then we deduce the following approximation equation holds:
\begin{align*}
\bar{u}' = \Delta \bar{u}' + f (\bar{u}') + \nu^\alpha \dot{W}, \quad \bar{u}'(0) = u_0.
\end{align*}
(26)

For exponent $\alpha > 1$ we need to show the rate of decay in ν of v'_1 and v'_2 as $\nu \to 0$. First, as $\{u'(\nu)\}_\nu \subset B_\kappa$ which is compact in $C(0,T; L^2(D))$, for any sequence, there are a subsequence, say $u'(\nu_n)$, with $\nu_n \to 0$ as $n \to \infty$, and $\bar{u} \in C(0,T; L^2(D))$ with $\bar{u}(0) = u_0$ such that
\begin{align*}
\nu_n &\to 0, \quad n \to \infty.
\end{align*}

First we assume
\begin{align*}
\Delta \bar{u} + f(\bar{u}) \neq 0 \quad \text{in } H^{-1} \quad \text{for all } t \in [0,T].
\end{align*}
By the estimates in Lemma 6, and by the convergence (24),
\[\alpha > 0. \]
Then for exponent \(\nu \) in (14),
\[\nu \Phi(\nu) \]
we have the following approximation equation
\[\nu \Phi(\nu) = O(\nu) \]
instead of \(o(\nu) \) as \(\nu \to 0. \)

Further from equation (15), for any \(\varphi \in C^2([0,T] \times D) \) with \(\varphi_{|\partial D} = 0, \)
\[\frac{1}{\nu} \langle \bar{v}^\nu_1(t), \varphi(t) \rangle - \langle u_1, \varphi(0) \rangle - \frac{1}{\nu} \int_0^t \langle \bar{v}^\nu_1(s), \varphi(t) \rangle ds = -\frac{1}{\nu^2} \int_0^t \langle \bar{v}^\nu_1(s), \varphi(s) \rangle ds. \]
Then
\[\frac{1}{\nu^2} \int_0^t \langle \bar{v}^\nu_1(s), \varphi(s) \rangle ds \to \langle u_1, \varphi(0) \rangle, \quad \nu \to 0. \quad (28) \]

Then for exponent \(\alpha > 1, \) in the asymptotic expansion (25) for small \(\nu, \)
eglecting the \(o(\nu) \) term consisting of \(\bar{v}^\nu_2, \) and by the transformation (13) and decomposition (14),
\[\langle u^\nu(t), \varphi(t) \rangle - \langle u_0, \varphi(0) \rangle - \int_0^t \langle u^\nu(s), \varphi(t) \rangle ds - \int_0^t \langle u^\nu(s), \Delta \varphi(s) \rangle ds \]
\[- \int_0^t \langle f(u^\nu(s)), \varphi(s) \rangle ds \]
\[= \frac{1}{\nu} \int_0^t \langle \bar{v}^\nu_1(s), \varphi(s) \rangle ds - \nu \langle \bar{v}^\nu_2(t), \varphi(t) \rangle + \nu \int_0^t \langle \bar{v}^\nu_2(s), \varphi(t) \rangle ds \]
\[= -\nu \langle v^\nu(t), \varphi(t) \rangle + \nu \int_0^t \langle v^\nu(s), \varphi(t) \rangle ds + \nu \langle u_1, \varphi(0) \rangle \]
\[+ \nu^{\alpha+1/2} \langle \bar{v}^\nu_3(t), \varphi(t) \rangle - \nu^{\alpha+1/2} \int_0^t \langle \bar{v}^\nu_3(s), \varphi(t) \rangle ds. \]
Then noticing that velocity \(v^\nu = u^\nu_1, \) and neglecting the \(O(\nu^{\alpha+1/2}) \) terms, we have the following approximation equation
\[\nu \bar{u}^\nu + \bar{u}^\nu = \Delta \bar{u}^\nu + f(\bar{u}^\nu). \quad (29) \]
Second if for $t \in [0, T]$

$$\Delta \bar{u} + f(\bar{u}) = 0, \quad \bar{u}(0) = u_0$$

in H^{-1}. Then \bar{u} is a stationary solution of (29).

The above approximation is in the sense of \mathbb{P}_κ almost surely. Then by the arbitrary choice of κ, and the well-posedness of (26) and (29), this establishes the approximation with \mathbb{P} probability one.

This completes our proof of the main Theorem 4 on the approximations of the stochastic wave equation (1)–(3) for different scaling of the noise process.

Acknowledgements This research was supported by the NSFC grant No. 10901083 and by the Australian Research Council grants DP0774311 and DP0988738.

References

[1] S. Cerrai & M. Freidlin, On the Smoluchowski–Kramers approximation for a system with an infinite number of degrees of freedom, *Prob. Th. and Relat. Fields* 135 (2006), 363–394.

[2] S. Cerrai & M. Freidlin, Smoluchowski–Kramers approximation for a general class of SPDEs, *J. Evol. Equa.* 6 (2006), 657–689.

[3] P. L. Chow, W. Kohler, & G. Papanicolaou, *Multiple Scattering and Waves in Random Media*, North–Holland, Amsterdam, 1981.

[4] J. L. Lions, *Quelques méthodes de résolution des problèmes non linéaires*, Dunod, Paris, 1969.

[5] Yan Lv & A. J. Roberts, Averaging approximation to singularly perturbed nonlinear stochastic wave equations, preprint, 2011. http://arxiv.org/abs/1107.4184

[6] Y. Lv & W. Wang, Limit dynamics for stochastic wave equations, *J. Diff. Equa.* 244 (2008), 1–23.

[7] G. Da Prato & J. Zabczyk, *Stochastic Equations in Infinite Dimensions*, Cambridge University Press, 1992.

[8] W. Wang and Y. Lv, Limit behavior of nonlinear stochastic wave equations with singular perturbation, *Disc. and Cont. Dyna. Syst. B*, 13(1) (2010) 175–193.