Significance of induced hybridized metallic and non-metallic nanoparticles in single-phase nano liquid flow between permeable disks by analyzing shape factor

S. Bilal1, Imtiaz Ali Shah1, Muhammad Ramzan2*, Kottakkaran Sooppy Nisar3, Ashraf Elfasakhany4, Emad M. Eed5 & Hassan Ali S. Ghazwani6

The current communication is designed by keeping in the mind high heat transfer capabilities of nanoliquids with the dispersion of diversified-natured nanoparticles in poorly conducting base liquids. Here, an amalgamation of metallic (Cu) and hybridization of metallic and non-metallic oxide (Cu-TiO2) nanoparticles to uplift thermophysical attributes of water is deliberated. The magnetically affected flow between rotating disks under the impact and permeability aspect is assumed. Empirical relations for effective dynamic viscosity, density, and heat capacitance to show mesmerizing features of obliged nanoparticles are also expressed. In addition, mathematical relations also depend on morphological factors like shape, size, and diameter of inducted nanoparticles. The mathematical formulation of the problem is conceded in the form of a system of ODEs after using similarity transformation on dimensional PDEs. Simulations of the complex coupled differential structure are solved by using a numerical approach by employing shooting and Runge–Kutta procedures jointly. The impact of flow concerning variables on associated distributions is revealed through tabular and graphical manner. Quantities of engineering interest associated with work like wall friction and thermal flux coefficients at walls of the disk are also calculated. It is deduced from an examination that the addition of metallic particles raises heat transfer more than non-metallic particles. A significant impression of magnetic field on shear stress is executed by hybrid nanoparticles along the surface of disks. In addition, elevation in Nusselt number and depreciation in skin friction coefficient is revealed against increasing magnitude of nanoparticle volume fraction. A positive trend in skin friction coefficient is manifested against the increasing magnitude of Reynold number. It is also observed that by increasing the size and shape of hybrid nanoparticles thermal conductivity and viscosity of the base fluid increases.

Nomenclature

Symbol	Description
Bo	Uniform magnetic field [T]
Fη	The dimensionless radial velocity profile
Cη	The total skin friction coefficient
θη	Dimensionless temperature profile
Cp	Specific heat at constant pressure
σ	Electrical conductivity [(m²·A²)/kg]
k	Time depended coefficient

1Department of Mathematics, Air University, P.A.F Complex E-9, Islamabad 44000, Pakistan. 2Department of Computer Science, Bahria University, Islamabad 44000, Pakistan. 3Department of Mathematics, College of Arts and Sciences, Prince Sattam Bin Abdulaziz University, Wadi Aldawaser 11991, Saudi Arabia. 4Mechanical Engineering Department, College of Engineering, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia. 5Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O.Box 11099, Taif 21944, Saudi Arabia. 6Department of Mechanical Engineering, Faculty of Engineering, Jazan University, Jazan 45124, Kingdom of Saudi Arabia. *email: mramzan@bahria.edu.pk
Liquids with enhanced heat transfer characteristics are utilized immensely in electronic and industrial devices. Water is considered a heat transferring liquid in past but due to low thermal conductivity, various approaches are adopted to enhance the thermophysical attributes and make it appropriate for use in multiple mechanical procedures. In this regards the most progressive approach found is the addition of nanoparticles by keeping in mind that suspension of solid particles raises the thermal conductivity of low conducting liquids. This concept was achieved after the milestone discovery of nanoparticles inaugurated by Choi1. Dispersion of these nanometric size particles in conventional liquids like water and oil leads to the production of an innovative class of liquids with improved thermal capabilities known as nanofluids. Nanoliquids are capitalized as automobile coolants, welding equipment, microwave tubes, laser diode array, solar paneling, refrigeration, thermal storage, boiler exhaus tion, nuclear reactor cooling, and so forth. To make more effective use of nanofluids in different technological and industrial frameworks nanoparticles are characterized into various types on basis of structural variations, shapes, and chemical features such as metallic, non-metallic, polymeric, and nanotubes. Among these various kinds, metallic and non-metallic nanoparticles have owned much attention due to their unique structural and high aspect ratio features along with excellent thermal conductivities. Pandey et al.2 adumbrated the influence of different metallic oxide nanoparticles on hybridized stagnant single-phase flow over flat surfaces by incorporating Tiwari and Das model. Malavandi and Ganji3 investigated the migration of alumina nanoparticles inserted in water flowing in a channel under the impact of a magnetic field along with an analysis of convective heat transfer features. Haq et al.4 outlined magnetically influenced squeeze flow of nanoliquid over sensor surface by interacting base liquid homogenous mixture with copper, alumina, and titanium dioxide. Tahir et al.5 explicated advancement in the heat transfer rate of kerosene oil by adding magnetite ferrite particles with the placement of magnetized dipole. Vajravelu et al.6 conducted a study about the impression of nanoparticle volume fraction of silver and copper nanoparticles in producing elevated thermal aspects in water. Tassadiq et al.7 explored Von Karman’s traditional flow over an infinite impermeable rotating disk with carrier fluid as water by induction of magnetized Ferro nanoparticles. Elgazery8 manifested magnetically influenced 2D nanoliquid flow over a
porous stretching surface with the induction of silver, copper, alumina, and titania nanoparticles. Moghadassi et al.9 executed a computational approach to deliberate forced convective heat transfer in nanofluid flow over horizontally placed circular tube with induction of Al\textsubscript{2}O\textsubscript{3} and Al\textsubscript{2}O\textsubscript{3}–Cu hybrid nanoliquid.

Analysis of shape, size, aspect ratio and sphericity of nanoparticles is known as morphometry. It is a well-known fact that variation in morphological characteristics of nanoparticles definitely improves the features of hosting liquid. In addition, morphometric analysis of induced particles plays a significant role in the use of differently structured nanoparticles in various emerging technological processes, optical fibers and biosensing, drug delivery system, biomolecular imaging, and bioanalytics. Afzal et al.10 present a characterization of nanoparticles on basis of physio-chemical structuring and describe the capitalization of differently shaped particles in multidisciplinary fields. Haryadi et al.11 manifested the importance of the sphericity of nanoparticles and disclosed its role in biological phenomena by constructing a comparison with non-spherical nanoparticles. Albenese et al.12 revealed thermophysical relation correlating features of size, shape, surface charge, and chemical functionality and interpreted the change in flow attributes of nanofluid flow under mentioned attributes. Bhattad and Sarkar13 probed the performance of thermohydraulic evaporators by analyzing morphometric characteristics of hybridized particles. Sarma and Pandit14 deliberated free convective analysis of nanoliquid flow over an accelerated surface by using multi-shaped nanoparticles. Zeeshan et al.15 inserted different shaped copper nanoparticles to study fluid flow over swirling disk and measured irreversibility. Kashie et al.16 adumbrated enhancement in thermal attributes of viscous Nanofluid flow between two parallel plates by adding Cu-Al\textsubscript{2}O\textsubscript{3} hybrid particles under the implementation of the magnetic field in a transverse direction. They concluded that the heat transfer rate rises in the presence of the magnetic field. Kashie et al.17 developed a non-uniqueness of solutions for the unsteady flow of hybrid Cu-Al\textsubscript{2}O\textsubscript{3}/water Nanofluid over a permeable stretching/shrinking disk. Wahid et al.18 carried out a study on Marangoni hibrid disk immersed in a rotating disk. They adhered that volume fraction, porosity, and suction parameter enable the heat transfer rate to enhance and decelerate the boundary layer bifurcation. Some latest literature survey regarding enhancement in thermophysical features of nanoliquids by incorporating morphology is accumulated in19.

Nanofluids contain exclusive features that have attracted experts towards the development of new thermal engineering units. In the past mono nanofluids containing a single kind of particles are used to obtain certain benefits. However, some discrepancies in results regarding elevated heat transfer in liquids with insertion of nanoparticles is recorded in recent years. Due to this fact researchers have made efforts to the generation of new nanofluids by fusion of non-similar nanoparticles in a composite way known as hybridized nanofluid. This idea has produced better thermal attributes liquids instead of individual suspension. In this regards several promising investigations regarding hybridized nanofluids is commenced in recent years. Like, in 2017 Ranga et al.20 presented state of art analysis on the thermal capabilities of hybridized nanofluids by constructing a comparison with the suspension of mono-natured nanoparticles. A review on enhancement in thermal characteristics of water base liquid by inserting hybrid was studied by Minea21, Zhou et al.22 probed minimization in an aggregation of nanoliquid with the addition of hybridized nanoparticles instead of insertion of ordinary surfactants. Kwak23 measured rheological characteristics of traditional poorly conducting liquid (ethylene glycol) by adding nanometer-sized particles of aspect ratio 3 and length of 10–30 nm and varying morphological aspects of embedded particles. Kabeel et al.24 conducted an experimental test regarding the performance of thermal exchangers by inducing alumina hybrid nanoparticles. Septiadi25 executed the importance of hybridized nanoparticles in the reduction of heavy-duty automobile engine coolant. Experimentation about the insertion of copper-titania hybridized nanocomposites as the coolant in thermal exchanger was depicted by Madhesh and Kalaielsen26. Kashie et al.27 elucidated proficiency of induction of hybrid nanoparticles in elevation of the thermal characteristic of water under appliance of the magnetic field. They considered the combination of metal (Cu) and metal oxide (Al\textsubscript{2}O\textsubscript{3}) nanoparticles along with a depiction of tremendous augmentation in a heat transfer rate of base liquid in comparison to the addition of separate metallic and nonmetallic oxide particles. In recent years overwhelming studies related to the synthesis of organic and inorganic nanocarriers in ordinary liquids are done which can be accessed through28–30.

Magnetohydrodynamics is the study of flow dynamics under the interaction of magnetic fields. The term MHD was introduced by Alveen et al.31. Magnetically influenced flows are valuable in numerous procedures and devices like MHD electricity generators, insulation of nuclear plants, crystallization, and so forth. Chamkha et al.32 demonstrated analytical and numerical methods for MHD flowing or thermal expansion in hybridized nanofluid via a porous stretching/shrinking layer with suction/injection and convective limiting conditions. Magnetized micropolar fluid flow past permeable cylinder was presented by Khader et al.33. Ijaz et al.34 reconnoitered magnetized hybrid nanofluid flow over stretchable spinning disks. Hayat et al.35 explored the magnetized movement of viscous fluid between two spinning disks. Ahmad et al.36 anticipated the flow of nanoliquid through a bi-directionally placed exponential stretching sheet under magnetic field influence. Usman et al.37 analyzed heat transfer aspects in the magnetized viscous liquid flowing over a non-linearly surface. Dogonchi et al.38 analyzed the impact of magnetically effected squeezing flow across parallel disks. Khader39 attained a solution of multi-walled nanotubes by implementing an analytical approach. Hosseinzadeh et al.40 probed anatomy aspects of hybridized nanofluid flow generated by spinning disks through a numerical scheme. Kashie et al.41 analyzed the influence of different shape factors of (Cu-Al\textsubscript{2}O\textsubscript{3}) hybrid nanoparticles in water flow over the Riga surface by considering the aspects of radiative energy and EMHD. They incorporated three different shapes of hybrid nanoparticles (spherical, Birch, Blade) and found that nanoparticles concentration using blade shape is maximum while the spherical shape produces the lowest thermal rate. Recent studies on fluid flow problems under influence of magnetic fields are accessed through39,41–48.

From an overview of available literature, a very sparse research material related to the hybridization of metallic and metallic oxides along with consideration of shape and size factor of induced particles. So, the current work aims to analyze elevation in thermophysical characteristics of base liquid (water) with induction of metallic (Cu)
and hybridization of metallic and non-metallic oxide (Cu-TiO₂). We have considered flow between two coaxially rotated disks and the magnetic field is applied in the transverse direction to flow along with consideration of permeability aspects. Four different shapes of nanoparticles namely spherical, plates, bricks, and cylindrical are taken into account, and variation in shape and size factors are involved. To the best of the authors’ knowledge, no such work is still done regarding the measurement of flow and heat characteristics of base liquids with insertion of metallic and non-metallic oxides along with analyzing the influence of shape and size. So, the authors have hoped that this work will provide direction to researchers working in this direction and will manipulate results by carrying morphological factors of induced particles. For the applications prospect of this work, we have considered unsteady, laminar, and 2D hybrid nanofluid flow and modeled governing equations in the form of ordinary differential equations after implementing the transformation approach. The shooting technique is applied to solve the constructed coupled differential system and the solution is analyzed against involved physical parameters by sketching associated profiles. Quantities of engineering interest like skin friction and Nusselt number are also computed. Validation of present findings by developing an agreement with previously published results is also presented.

Mathematical formulation

We have assumed 2D, non-turbulent, and time-dependent magnetized viscous liquid flowing among two parallel locating disks parted by separation 2k(t). While the lower disk lies at −k(t) and the upper disk lies at the position of k(t) on the other hand, the flow occurs due to convective conditions at porous surfaces. Hybrid nanoparticles constituted of titanium Oxides TiO₂ and copper (Cu) are induced. The surface of disks considered to be permeable and under low magnetic Reynold number, the induced magnetic field must have vanished. The geometry of physical configuration is considered in the cylindrical coordinate system (r, \(\theta \), z). Lower wall prescribed with temperature \(T_1 \), where \(T_2 \) is the temperature at the upper disk as displayed in Fig. 1.

The governing continuity, momentum, and energy equations for the present flow problem referred to ⁴⁹ are as under:

\[
\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial r} + w \frac{\partial u}{\partial z} = -\frac{1}{\rho_{nf}} \frac{\partial p}{\partial r} + \nu_{nf} \left(\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} - \frac{u}{r^2} + \frac{\partial^2 u}{\partial z^2} \right) - \frac{\sigma_e B_0^2}{\rho_{nf}} u, \tag{1}
\]

\[
\frac{\partial w}{\partial t} + u \frac{\partial w}{\partial r} + w \frac{\partial w}{\partial z} = -\frac{1}{\rho_{nf}} \frac{\partial p}{\partial z} + \nu_{nf} \left(\frac{\partial^2 w}{\partial r^2} + \frac{1}{r} \frac{\partial w}{\partial r} - \frac{w}{r^2} + \frac{\partial^2 w}{\partial z^2} \right), \tag{2}
\]

\[
\frac{\partial T}{\partial t} + u \frac{\partial T}{\partial r} + w \frac{\partial T}{\partial z} = \alpha_{nf} \frac{\partial^2 T}{\partial z^2}. \tag{3}
\]

where, \(\rho_{nf} \) is the density of \((HN_{(1)}) \), \(\sigma_e \) represents the electrical conductivity, \(B_0^2 \) signifies the magnetic field strength, \(\alpha_{nf} \) denotes thermal diffusivity.
Table 1. Thermo-physical characteristics of (HNFd) and NPs referred to^49,50.

Physical properties	H2O (f)	TiO2 (ϕ2)	Cu (ϕ3)
ρ (kg m⁻³)	997.0	4250	8933
c_p (J kg⁻¹ K⁻¹)	4180	686.2	385
ν (m² s⁻¹)	0.6071	8.9538	400

Applied models for thermophysical properties of (HNFd). The thermophysical properties of (Njfd) convective hybrid (TiO2–Cu/H2O) then ϕ1=ϕTiO2, ϕ2=ϕCu, ρ1 = ρTiO2, ρ2 = ρCu, (ρcp)₁₂ = (ρcp)TiO₂, (ρcp)₂₂ = (ρcp)Cu. Here, (ρcp)₁₂ = k₁₂/TiO₂ and k₂₂ = kCu.

Effective dynamic viscosity. Efficient dynamic viscosity dependent on the standard (HNFd) μₜₙₜ and viscosity of (HNFd) μₜₙₜ.

\[\muₜₙₜ = \frac{\muₜf}{(1 - \varphi_1 - \varphi_2)^2} \]

Abdelmalek et al.^51 delivered a theory of diameter on viscosity:

\[\muₜₙₜ = \muₜf \left(1 + 0.1008((\varphi_1)^{0.69574}(dp_1^{0.44708} + (\varphi_2)^{0.69574}(dp_2^{0.44708})) \right), \]

Effective density. The effective convectonal (HNFd) density is denoted by the ρₜₙₙf:

\[\rhoₜₙₙf = \varphi_1 \rho_1 + \varphi_2 \rho_2 - (1 - \varphi_1 - \varphi_2) \rhoₜf, \]

where, ρ₁ or ρ₂ and ρₜₙₙf specify densities of solid NPs and (HNFd).

Effective heat capacitance. The mathematical relation for heat capacitance is as under:

\[\rhoₜₙₙf = \varphi_1 (\rho cp)₁ + \varphi_2 (\rho cp)₂ - (1 - \varphi_1 - \varphi_2) (\rho cp)ₜf, \]

where (ρcp)₁ and (ρcp)₂ specify NPs and (Bfd) thermal capacitances.

Effective thermal conductivity. Thermal conductance of (HNFd) depending on specific size and shape factor of NPs is described as:

\[kₜₙₙf = \frac{k₂₂ + (n₂ - 1)kₘₙf - (n₂ - 1)\varphi₂(kₘₙf - k₂₂)}{k₂₂ + (n₂ - 1)kₘₙf + \varphi₂(kₘₙf - k₂₂)}, \]

Here, kₜₙₙf is thermal conductivity for (HNFd), k₁₂ and k₂₂ are thermal conductivities of solid NPs, n₁ and n₂ are different size factors (spherical, bricks, plates, cylindrical), kₘₙf and kₙₙf are thermal conductances for (Bfd) and shape factor (Bfd). The copper NP's thermal conductivity is high but titanium oxide has low thermal conductivity in (HNFd). Table 1 represents the thermo-physical traits of the nanoparticles and the base fluid.

Associated boundary conditions are as follows:

\[z = -k(t) \quad u = 0 \quad w = -A₁k'(t) \quad T = T₁, \]

\[z = k(t) \quad u = 0 \quad w = -A₁k'(t) \quad T = T₂. \]

Here, A₁ is the metric of penetrability of the partition. Following variables are suggested after regulating the equation and removing the pressure term.

\[\eta = \frac{z}{k} \quad u = \frac{r_2}{k^2}F_\eta(\eta, t) \quad w = \frac{2v_2}{k}F(\eta, t) \quad \theta = \frac{T - T₂}{T₁ - T₂} \]

and result in

\[\frac{v_2}{v_2} \frac{F(\eta, t)}{F(\eta, t)} + \alpha(3F_\eta + \eta F_\eta) - 2FF_\eta = \frac{k^2}{v_2}F_{\eta\eta} - \frac{\rho_f}{\rho_\eta}MF_\eta = 0, \]
\[
\frac{\nu_{h nf}}{\nu_f} F_{\eta\eta\eta} + \alpha \left(3F_{\eta} + \eta F_{\eta\eta} \right) - 2FF_{\eta\eta} - \frac{k^2}{\nu_f} F_{\eta\eta\eta} - \frac{\rho_f}{\rho_{h nf}} MF_{\eta} = 0, \tag{12}
\]

\[
\theta_{\eta\eta} + \frac{\nu_f}{\alpha_{h nf}} (\alpha \eta - 2F) \theta_\eta - \frac{k^2}{\alpha_{h nf}} \theta_\xi = 0. \tag{13}
\]

With Bc's
\[
\eta = -1, \ F = -R, F_\eta = 0, \ \theta = 1, \text{ and } \eta = 1, \ F = R, F_\eta = 0, \ \theta = 0. \tag{14}
\]

Here, \(\alpha = \frac{k'^{(\eta)}}{k'} \) is wall expansion ratio, \(R = \frac{A_{k(x)}}{k(x)} \) is the absorptivity Reynolds number and \(M = \frac{\sigma_{k(x)}E}{\rho \beta^2} \) is the magnetic parameter. Finally, we set \(F = f R, \alpha \) is a constant, \(f = f(\eta) \) and \(\theta = \theta(\eta) \), which leads to \(\theta_\xi = 0 \) and \(f_{\eta\eta} = 0 \).

Thus, we attained the following form:
\[
\frac{\nu_{h nf}}{\nu_f} f_{\eta\eta\eta} + \alpha \left(3f_{\eta} + \eta f_{\eta\eta} \right) - 2Rf_{\eta\eta} - \frac{\rho_f}{\rho_{h nf}} MF_{\eta} = 0, \tag{15}
\]

\[
\theta_{\eta\eta} + \left(1 - (\varphi_1 + \varphi_2) + (\varphi_1) \left(\frac{\rho_{fpsi_1}}{\rho_{fpsi_f}} \right) + (\varphi_2) \left(\frac{\rho_{fpsi_2}}{\rho_{fpsi_f}} \right) \right) \frac{k_{mblb}}{k_{mbf}} \frac{k_{bf}}{k_{mbf}} Pr(\alpha \eta - 2Rf) \theta_\eta = 0 \tag{16}
\]

\[
\eta = -1; \ f = -1, f_\eta = 0, \ \theta = 1, \ \text{and} \ \eta = 1; \ f = 1, f_\eta = 0, \ \theta = 0. \tag{17}
\]

where, \(\nu_{h nf} = \frac{\nu_{inf}}{\nu_{h nf}}, \alpha_{h nf} = \frac{k_{inf}}{(\varepsilon_{inf})_{bf}} \) and \(Pr = \frac{(\nu C_p)_{bf}}{k_{bf}} \).

After expressing empirical relation of hybrid nanofluid in Eqs. (15)–(16), the following mathematical equations are found:
\[
\left(\frac{1}{(1 - (\varphi_1 + \varphi_2))(1 - (\varphi_1 + \varphi_2))} \right) f''''[\eta] + \alpha \left(3f''[\eta] + \eta f'''[\eta] \right) - 2Rf[\eta]f''[\eta] - \left(\frac{1}{(1 - \varphi_1 - \varphi_2) + \varphi_1 \left(\frac{\rho_{fpsi_1}}{\rho_{fpsi_f}} \right) + \varphi_2 \left(\frac{\rho_{fpsi_2}}{\rho_{fpsi_f}} \right) } \right) Mf''''[\eta] = 0, \tag{18}
\]

\[
\theta''[\eta] + \left(1 - (\varphi_1 + \varphi_2) + (\varphi_1) \left(\frac{\rho_{fpsi_1}}{\rho_{fpsi_f}} \right) + (\varphi_2) \left(\frac{\rho_{fpsi_2}}{\rho_{fpsi_f}} \right) \right) \frac{k_{s2} + (N - 1)k_{mbf} + \varphi_2(k_{mbf} - k_{s2})}{k_{s2} + (N - 1)k_{mbf} - (N - 1)\varphi_1(k_{mbf} - k_{s2})} \frac{k_{s1} + (N - 1)k_{bf} + \varphi_1(k_{bf} - k_{s1})}{k_{s1} + (N - 1)k_{bf} - (N - 1)\varphi_1(k_{bf} - k_{s1})} Pr(\alpha \eta - 2Rf[\eta]) \theta'[\eta] = 0 \tag{19}
\]

Empirical relations in the form of coefficients are expressed as under:
\[
H_1 = \left(\frac{1}{(1 - (\varphi_1 + \varphi_2))(1 - (\varphi_1 + \varphi_2))} \right), \tag{20}
\]

\[
H_2 = \left(\frac{1}{(1 - \varphi_1 - \varphi_2) + \varphi_1 \left(\frac{\rho_{fpsi_1}}{\rho_{fpsi_f}} \right) + \varphi_2 \left(\frac{\rho_{fpsi_2}}{\rho_{fpsi_f}} \right) } \right), \tag{21}
\]

\[
H_3 = \left(1 - (\varphi_1 + \varphi_2) + (\varphi_1) \left(\frac{\rho_{fpsi_1}}{\rho_{fpsi_f}} \right) + (\varphi_2) \left(\frac{\rho_{fpsi_2}}{\rho_{fpsi_f}} \right) \right), \tag{22}
\]

\[
D_1 = \left(\frac{k_{s2} + (N - 1)k_{mbf} + \varphi_2(k_{mbf} - k_{s2})}{k_{s2} + (N - 1)k_{mbf} - (N - 1)\varphi_1(k_{mbf} - k_{s2})} \right), \tag{23}
\]

\[
D_2 = \left(\frac{k_{s1} + (N - 1)k_{bf} + \varphi_1(k_{bf} - k_{s1})}{k_{s1} + (N - 1)k_{bf} - (N - 1)\varphi_1(k_{bf} - k_{s1})} \right). \tag{24}
\]
Putting values of (21)–(25) in Eqs. (18) and (19), the following equations are formed:

$$H_1 f'''[\eta] - \alpha(3f''[\eta] + \eta f'''[\eta]) - 2Rf[\eta]f''[\eta] - H_2 Mf''[\eta] = 0,$$

$$\theta''[\eta] + H_3 \omega \Pr(\alpha \eta - 2Rf[\eta])\theta'[\eta] = 0.$$

Boundary condition

at $\eta = -1: f = -1, f_\eta = 0, \theta = 1$ and at $\eta = 1: f = 1, f_\eta = 0, \theta = 0.$

Quantities of engineering interest. Wall drag coefficients. The wall drag coefficients at surfaces of disks C_{f1} and C_{f-1} respectively are illustrated as under

$$C_{f-1} = \frac{\xi_{zr} |_{\eta=-1}}{\rho f (k/A_1)^2} = \frac{1}{Re_r (1 - \eta_1 - \eta_2)} 2^2 f''(-1),$$

$$C_{f1} = \frac{\xi_{zr} |_{\eta=1}}{\rho f (k/A_1)^2} = \frac{1}{Re_r (1 - \eta_1 - \eta_2)} 2^2 f''(1).$$

where, $R_r = 4 \left(\frac{e}{r} \right)^2$ is the local Reynolds number.

$$\xi_{zr} = \mu_{hbf} \left(\frac{\partial u}{\partial z} \right) |_{\eta=-1} = \frac{\mu_{hbf}}{(1 - \eta_1 - \eta_2)} 2^2 \left(\frac{\eta_x}{k} \right) f''(-1),$$

$$\xi_{zr} = \mu_{hbf} \left(\frac{\partial u}{\partial z} \right) |_{\eta=1} = \frac{\mu_{hbf}}{(1 - \eta_1 - \eta_2)} 2^2 \left(\frac{\eta_x}{k} \right) f''(1),$$

Nusselt numbers. The (Nusselt numbers) at lower and upper walls $Nu|_{\eta=-1}$ and $Nu|_{\eta=1}$ are described as under:

$$Nu|_{\eta=-1} = \frac{k s_z}{\kappa_f (T_1 - T_2)} |_{\eta=-1} = - \frac{k_{hbf}}{k_f} \theta'(-1),$$

$$Nu|_{\eta=1} = \frac{k s_z}{\kappa_f (T_1 - T_2)} |_{\eta=1} = - \frac{k_{hbf}}{k_f} \theta'(1),$$

where heat flux is signified as s_z which is follows as:

$$s_z |_{\eta=-1} = -k_{hbf} \left(\frac{\partial T}{\partial z} \right) |_{\eta=-1} = - \frac{(T_1 - T_2)}{k} k_{hbf} \theta'(-1),$$

$$s_z |_{\eta=1} = -k_{hbf} \left(\frac{\partial T}{\partial z} \right) |_{\eta=1} = - \frac{(T_1 - T_2)}{k} k_{hbf} \theta'(1),$$

where, $R = \frac{A_{hbf}^{kk}(\alpha)}{2\eta_f}$.

Numerical solution. This section discloses the basic steps involved in the implementation of combined numerical schemes known as shooting and RK schemes.

Firstly, we initialized with the introduction of the following variables:

$$q_1^* = f[\eta], q_2^* = f'[/\eta], q_3^* = f''[/\eta], q_4^* = f'''[/\eta], q_5^* = \theta[/\eta], q_6^* = \theta'[\eta]$$

First, transform the model in the following pattern in equation No. (18)–(19):

$$f'''[\eta] = \frac{1}{B_1} (f'''[\eta] (-\alpha \eta + Ref[\eta]) - f''[\eta] (3 \alpha + Re[\eta]) + 2Re(\alpha f_{\eta} + B_2 M f_{\eta}))$$

$$\theta''[\eta] = B_3 \beta Re (-\alpha \eta + 2Re[\eta]) \theta'[\eta].$$

After replacement of variables the following system is obtained:
Involvement of physical variables like Reynold number computed by inserting platelet shape parameter (M) magnitude of Lorentz forces generated due to transversal appliance of the magnetic field to fluid flow which enhances and Nusselt number also uplifts. It is because of the reason that by increasing magnetic parameter behavior is depicted against skin friction coefficient decreases whereas it mounts for increasing value of respectively on axial and radial components of velocity along with temperature and concentration distributions. Validation of results. Interpretation of results. This section is presented to explain the influence of involved physical variables like Reynold number (R), expansion ratio (α), Prandil number (Pr), Magnetic parameter (M), nanoparticles volume fraction (ϕ), (ϕ₁) and (ϕ₂) nanoparticle volume fractions of (TiO₂), (Cu) respectively on axial and radial components of velocity along with temperature and concentration distributions.

Table 2 discloses the influence of nanoparticles volume fraction volume \((\phi), R, \alpha (\text{TiO} \text{2} \text{Cu/water}) (HN_\eta)\).

\[
\begin{bmatrix}
q_1^2
q_2^2
q_3^2
q_4^2
q_5^2
q_6^2
\end{bmatrix}
= \begin{bmatrix}
q_1^2
q_3^2
q_4^2
q_6^2
\end{bmatrix}
+ \begin{bmatrix}
f''(\eta)\left(-\alpha \eta + \text{Ref} [\eta] \right) - f''(\eta)\left[3\alpha + \text{Ref} [\eta] \right] + 2R_\eta \alpha f_\eta + B_2 M f_\eta
\end{bmatrix}
\]

(40)

Consequently, the initial conditions are:

\[
\begin{bmatrix}
q_1^2(\eta=1)
q_2^2(\eta=1)
q_3^2(\eta=1)
q_4^2(\eta=1)
q_5^2(\eta=1)
q_6^2(\eta=1)
\end{bmatrix}
= \begin{bmatrix}
-1
0
a
b
1
0
\end{bmatrix}
\]

where a and b missing initial conditions and are approximated by guessed values to achieve the required accuracy.

Validation of results. Interpretation of results. This section is presented to explain the influence of involved physical variables like Reynold number (R), expansion ratio (α), Prandil number (Pr), Magnetic parameter (M), nanoparticles volume fraction (ϕ), (ϕ₁) and (ϕ₂) nanoparticle volume fractions of (TiO₂), (Cu) respectively on axial and radial components of velocity along with temperature and concentration distributions. Table 2 discloses the influence of nanoparticles volume fraction volume \((\phi), R, \alpha (\text{TiO} \text{2} \text{Cu/water}) (HN_\eta)\).
Table 3. Comparison of non-dimensionless physical variable effect against surface drag coefficient and convective heat transfer.

α	R	M	φ_1	φ_2	n_1	n_2	Pr	C_f	η
0.1	0.01	1	0.01	0.01	3	3	6.2	3.1080	0.4302
0.2								3.0262	0.3508
0.3								2.9437	0.2842
0.4								2.8623	0.2288
		-0.02						3.1080	0.3962
		-0.03						3.0591	0.2738
		-0.04						3.0485	0.2464
		-1						2.7231	0.4304
		-2						2.5132	0.4305
		-3						2.2893	0.4306
		0.02						3.0999	0.4322
		0.03						3.0922	0.4341
		0.04						3.0848	0.4360
		0.02						3.1031	0.4319
		0.03						3.0984	0.4356
		0.04						3.0939	0.4353
	3.7							3.1080	0.4302
	4.8							3.1080	0.4306
	5.7							3.1080	0.4311
	3.7							3.1080	0.4305
	4.8							3.1080	0.4308
	5.7							3.1080	0.4311
	4.5							3.1080	0.4485
	5.2							3.1080	0.4409
	5.5							3.1080	0.4356

Table 4. Accuracy of missing initial conditions.

η	$f(-1)$	$f'(-1)$	$f''(-1)$
-1	-1	0	2.868218
-0.9	-0.98600	0.276290	2.651363
-0.8	-0.945522	0.529198	2.402233
-0.7	-0.881037	0.755966	2.129942
-0.6	-0.795265	0.954662	1.841861
-0.5	-0.691083	1.124001	1.545588
-0.4	-0.571471	1.263175	1.239131
-0.3	-0.439470	1.371712	0.931185
-0.2	-0.298138	1.449353	0.621439
-0.1	-0.150633	1.495973	0.310870
0	1.554843 $\times 10^{-10}$	1.241351	1.291349 $\times 10^{-9}$
0.1	0.150633	1.449573	0.310870
0.2	0.298138	1.449353	0.621439
0.3	0.39470	1.371712	0.931185
0.4	0.571471	1.263175	1.239131
0.5	0.691083	1.124001	1.545588
0.6	0.795265	0.954662	1.841861
0.7	0.881037	0.755966	2.129942
0.8	0.945522	0.529198	2.402233
0.9	0.986004	0.529198	2.651363
1	1	0	2.868212
the accuracy of the applied computational scheme by finding values of missing conditions at different values of η. From the attained data it is observed that convergence criteria meet for evaluation of results. Table 5 reveals the credibility of the present work by establishing a comparison with results published by Kashif et al.\cite{49}. For the agreement of results currently computed problem is restricted by setting Reynold number ($R = 0$), Prandtl number ($Pr = 0$), Magnetic parameter ($M = 0$). Results are compared for skin friction and heat transfer coefficients by varying expansion ratio (α) ranging from $\alpha = -5$ to $\alpha = 5$. An excellent match of results is found which shows the assurance and reliability of results. Variation in thermal conductivity of base fluid by taking into account the aspects of shape factor (n) of induced nanoparticles is revealed in Fig. 2. Here, four different shapes of particles namely, spherical, plates, bricks, and cylindrical are obliged along with the assumption of consideration of the same magnitude of nanoparticle volume fractions i.e. $\phi_1 = \phi_2 = \phi$. It is noticed from the sketch that by increasing the shape factor of particles thermal conductivity enhances and optimized magnitude is attained at $n = 5.7$ (platelets). It is also depicted that by increasing nanoparticle volume fraction ranging from ($0.01 \leq \phi \leq 0.1$) elevation in thermal conductivity is manifested. Deviation in viscosity of base fluid (water) versus change in shape and size of inserted nanoparticles along with consideration of different magnitudes of particle volume fraction is portrayed in Fig. 3. Here, four different particles (spherical, bricks, cylindrical, platelets) are assigned by shape factor (n) with magnitudes ($5.78, 7.889, 9, 12.7$) respectively. It is checked that by elevating shape factor (n) and particle volume fraction (ϕ) viscosity of host liquid enhanced. In addition, it is worthwhile to mention that the maximum magnitude of viscosity is attained at $n = 12.7$ and $\phi =

α	$f''(-1)$, Kashif et al.\cite{49}	Present work	$\theta'(-1)$, Kashif et al.\cite{50}	Present work
-5	3.6501	3.6505	7.6396	7.6399
-3	2.9411	2.9416	3.9055	3.9950
-1	2.3737	2.3736	2.0733	2.0365
0	2.1374	2.1375	1.5333	1.5336
1	1.9289	1.9299	1.1459	1.1461
3	1.5840	1.5845	0.6607	0.6617
5	1.3169	1.3260	0.3975	0.3985

Table 5. Validation of present work with published work.

Figure 2. Predicted thermal conductivity variation for the (HN_2).

Figure 3. Variation in viscosity against different sizes and shapes of hybrid NPs.
0.1 i.e. (0.0009). Figure 4 represents the impression of volume fraction parameter on axially directed velocity by fixing $\alpha = -4, R = -1, M = 1, Sc = 1, Pr = 6.2$. It is observed that the magnitude of the axial component of velocity near the lower wall decreases whereas contrary behavior is observed near the upper wall. The reason behind this fact is that we have prescribed a negative magnitude of velocity at the lower wall of the disk i.e. $f = -1$ whereas the upper wall is prescribed with $f = 1$. In addition, the increasing impact of nanoparticle volume fraction (ϕ) is because increasing the magnitude (ϕ) means the addition of more hybrid nanoparticles in the base fluid. So, by increasing (ϕ) thermal conductivity of fluid increases, and thus as an outcome velocity of the fluid in the axial direction upsurges. Similar behavior in momentum distribution along radial direction against nanoparticle volume fraction (ϕ) is divulged in Fig. 5. It is salient to notice that by increasing (ϕ) the amount of metallic and non-metallic nanoparticles increases in the base fluid and considering ($\phi = 0$) means that only base fluid is remaining. So, the purpose of considering nanoparticles is to enhance the velocity which is achieved and proved graphically from these sketches. Figure 6 shows the impact of Reynold number (R) on the axial velocity. After analyzing the graph, it is seen that the opposite behavior of the axial component of velocity against (R) is depicted. At the region near the lower wall velocity decreases whereas close to the upper wall region velocity distribution exhibits increasing aspects. The behavior of velocity at the lower wall is justified by the fact that we have considered permeability and fluid are moved out from the domain so the amount of fluid decays near the wall. Whereas, near upper wall-flow become stable and since increasing (R) magnitude of inertial forces increases thus the velocity distribution enhances. Figure 7 shows a deviation in radial component of velocity against magnetic parameter (M) and by restricting $\alpha = 5, \phi_1 = \phi_2 = 0.01, M = 1, Sc = 1, Pr = 6.2$. Declining behavior in radial component of velocity is measured against increasing magnitude of (M). Likewise, to previous figures, different aspects in velocity near the lower and upper walls are attained. Overall, the velocity of fluid depreciates against (M) because frictional forces are generated due to the intensification of Lorentz resistive forces which are applied in the orthogonal direction to retain the fluid in the laminar flow regime. Figure 8 displays the influence of magnetic parameter (M) on axially directed velocity distribution. Diminishing behavior in velocity against increasing magnitude of (M) is observed. It is due to the fact that the appliance of the magnetic field possesses

![Figure 4. Variation in Axial velocity profile against volume fraction for $\alpha = -4, R = -1, M = 1, Sc = 1, Pr = 6.2$.](image-url)
the traits to resist the flow of particles and effect in reducing kinetic energy. It also produces resistive forces in the flow field which slows down the movement of particles.

Conclusion

The current effort is conducted to adumbrate hybrid nanoliquid flow between porous surfaces. Two types of nanoparticles, (metallic and nonmetallic) have been used with shape, size factors. Mathematical structuring containing empirical relations for capitalized hybrid nanoparticles are attained in ODE's after conversion from PDE’s. Numerical solution is heeded for Tabular and graphical visualization of associated distributions. As far as the novelty of this work is concerned it is seen that hybridization of metallic and non-metallic nanoparticles in the base fluid has not yet been done so far. In addition, the flow of fluid between two coaxially rotating disks is considered very sparsely and even not with presently assumed physical aspects. So, the authors have hoped that this work will give new ideas and direction to researchers.

The main outcomes are itemized below:

- By specifying shape factor at $n = 5.7$ heat flux is high than other shape factors values.

![Figure 5. Variation in Radial velocity profile against volume fraction for $\alpha = -4, R = -1, M = 1, Sc = 1,$ $Pr = 6.2.$](image-url)
• Noteworthy variations in thermophysical attributes by changing the morphology of the nanoparticles are observed.
• Magnetic field variable tends to enhance skin friction and Nusselt number along with the insertion of hybridized particles.
• The induction of hybrid nanoparticles raises thermal features more than ordinary nanoparticles.
• By incrementing volume fraction magnitude thermal distribution elevates whereas Reynolds number produces a reduction in mentioned profile.
• Elevation in Nusselt number and depreciation in skin friction coefficient is found against increasing magnitude of nanoparticle volume fraction.
• The positive trend in skin friction coefficient is manifested against the increasing magnitude of Reynolds number.
• By increasing the size and shape of hybrid nanoparticles thermal conductivity and viscosity of base fluid increase.

Figure 6. Variation in Axial velocity profile against Reynold number for $\alpha = 5$, $\varphi_1 = \varphi_2 = 0.01$, $M = 1$, $Sc = 1$, $Pr = 6.2$.
Figure 7. Variation in Radial velocity profile against magnetic parameter (M) for $\alpha = 5, \phi_1 = \phi_2 = 0.01$, $M = 1$, $Sc = 1$, $Pr = 6.2$.

Figure 8. Variation in Axial velocity profile against magnetic parameter for $\alpha = 4$, $R = -1$, $\phi_1 = \phi_2 = 0.04$, $Sc = 1$, $Pr = 6.2$.
References

1. Choi, S. U. S. Enhancing thermal conductivity of fluids with nanoparticles. *ASME Int. Mech. Eng. Cong. Exp.* 231, 99–106 (1995).
2. Pandey, A., Kumar, S., Rajput, K. & Bhattacharya, P. Sbamba. Impact of metal oxide nanoparticles on unsteady stagnation point flow of the hybrid base fluid along a flat surface. *Pramana* 95, 1–9 (2021).
3. Malvandi, A. & Ganji, D. D. Magnetic field effect on nanoparticles migration and heat transfer of water/alumina nanofluid in a channel. *J. Magn. Magn. Mater.* 362, 172–179 (2014).
4. Haq, R. U., Nadeem, S., Khan, Z. H. & Noor, N. F. MHD squeezed flow of water functionalized metallic nanoparticles over a sensor surface. *Phys. E Low-Dimens. Syst. Nanostructures* 73, 45–53 (2015).
5. Tahir, H. et al. Hybridized two phase ferromagnetic nanofluid with NiZnFe2O4 and MnZnFe2O4. *Am. Shams Eng. J.* 12(3), 3063–3070 (2021).
6. Vajravelu, K. et al. Convective heat transfer in the flow of viscous Ag-water and Cu-water nanofluids over a stretching surface. *Int. J. Therm. Sci.* 50, 843–851 (2011).
7. Tassaddiq, A. et al. Heat and mass transfer together with hybrid nanofluid flow over a rotating disk. *AIP Adv.* 10, 055317 (2020).
8. Elgazery, N. S. Nanofluids flow over a permeable unsteady stretching surface with non-uniform heat source/sink in the presence of inclined magnetic field. *JOEMS* 27, 1–26 (2019).
9. Moghadassi, A., Ghomi, E. & Parviziian, F. A numerical study of water based Al2O3 and Al2O3-Cu hybrid nanofluid effect on force and convective heat transfer. *Int. J. Therm. Sci.* 92, 50–57 (2015).
10. Afshar, A., Akgul, S. O. & Abyaneh, A. A. Oni AO Morphological characterization and physico-chemical properties of nanoparticle—review. *Conf. Series Mater Sci. Eng.* 640, 1–12 (2016).
11. Haryadi, B. M. et al. Nanospherical nanoparticle shape stability is affected by complex manufacturing aspects: Its implications for drug delivery and targeting. *Adv. Heatllic. Mater.* 2, 1–21 (2019).
12. Albanese, A., Peter, S. & Warren, C. W. The effect of nanoparticle size, shape, and surface chemistry on biological system. *Annu. Rev Biomed.* 14, 1–16 (2012).
13. Bhattachar, A. Effects of nanoparticle shape and size on the thermohydraulic performance of plate evaporator using hybrid nanofluids. *I. Therm. Anal. Calorim.* 142, 1–13 (2019).
14. Sarma, D. Effects of Hall current, rotation and Soret effect on MHD free convection heat and mass transfer flow past an accelerated vertical plate through a porous medium. *Am. Shams Eng. J.* 9, 89 (2019).
15. Zeeshan, A., Hassan, M., Ellahi, R. & Nawaz, M. Shape effect of nonsphere nanoparticles in unsteady mixed convection flow of nanofluid over disk with entropy generation. *Proc. Inst. Mech. Eng. Part E J. Process. Mech.* 231, 871–879 (2017).
16. Khassie, N. S., Waini, I., Arifin, N. M. & Pop, I. Unsteady squeezing flow of Cu-Al2O3/water hybrid nanofluid in a horizontal channel with magnetic field. *Sci. Rep.* https://doi.org/10.1038/s41598-022-07251-y (2016).
17. Khassie, N. S., Arifin, N. M. & Pop, I. Unsteady axisymmetric flow and heat transfer of a hybrid nanofluid over a permeable stretching/shrinking disc. *Int. J. Numer. Methods Heat Fluid Flow.* 31(6), 2005–2021 (2021).
18. Wahid, N. S., Arifin, N. M., Khassie, N. S. & Pop, I. Marangoni hybrid nanofluid flow over a permeable infinite disk embedded in a porous medium. *Int. Commun. Heat Mass Transf.* 126, 105421 (2021).
19. Dhahri, M., Aouinet, H. & Sammouda, H. A new empirical correlating equation for calculating effective viscosity of nanofluids. *Heat Transf. Asian Res.* 48, 1547–1562 (2019).
20. Babu, J. A. R., Kumar, K. K. & Rao, S. S. State-of-art review on hybrid nanofluids. *Renew. Sustain. Energy Rev.* 77, 551–565 (2017).
21. Minea, A. Adriana. A review on the thermophysical properties of water-based nanofluids and their hybrids, The Annals of “Dunarea de Jos” University of Galati. Fascicle IX. Melol. Mater. Sci.* 39, 35–47 (2016).
22. Mingzheng, Z., Guodong, X., Jian, L., Lei, C. & Lijun, Z. Analysis of factors influencing thermal conductivity and viscosity in different kinds of surfactant solutions. *Exp. Therm. Fluid Sci.* 36, 22–29 (2012).
23. Kowal, K. Viscosity and thermal conductivity of copper oxide nanofluid dispersed in ethylene glycol. *Korea Aust. Rheol.* 17, 35–40 (2012).
24. Kabeele, A. E., Maaty, T. & Samadony, Y. E. The effect of using nano-particles on corrugated plate heat exchanger performance. *Appl. Therm. Eng.* 52, 221–229 (2013).
25. Septiad, W. N., Nyoman, I. A., Trisnadiwe, T. & Putra, N. Synthesis of hybrid nanofluid with two-step method. *ES Web Conf.* 67, 1–7 (2018).
26. Madhesh, D. & Kalaiselvam, S. Experimental analysis of hybrid nanofluid as a coolant. *Procedia Eng.* 97, 1667–1675 (2014).
27. Khassie, N. S., Arifin, N. M. & Pop, I. Magnetohydrodynamics (MHD) boundary layer flow of hybrid nanofluid over a moving plate with Joule heating. *Alex. Eng. J.* 61, 1938–1945 (2021).
28. Bilal, S. Analysis about impact of morphological and nanoparticle volume fraction aspects of TiO2–Cu in enhancement of thermophysical features of newtonian fluid flowing in a rotating porous channel. *Appl. Nano Sci.,* https://doi.org/10.1007/s41320-021-01770-2 (2021).
29. Subhuni, M. & Nadeem, S. Numerical analysis of micropolar hybrid nanofluid. *Appl. Nano Sci.* 9, 447–459 (2019).
30. Sheikholeslamii, M., Shafee, A., Zareei, A., Haq, R. U. & Li, Z. Heat transfer of magnetic nanoparticles through porous media including exergy analysis. *J. Mol. Liq.* 279, 719–732 (2019).
31. Alfrein, H. Existence of electromagnetic-hydrodynamic waves. Nature 150, 405–406 (1942).
32. Chamkha, A. J., Rashad, A. M., El-Zahar, E. R. & Hamed, A. Numerical and numerical investigation of Fe2O3–water nanofluid flow over a moveable plane in a parallel stream with high suction. *Energies* 12, 198 (2019).
33. Khader, M. M. Numerical solution for the problem of the boundary layer flow of a Powell-Eyring fluid over an exponential sheet using the spectral relaxation method. *J. Phys.* 94, 1369–1374 (2019).
34. Khan, M. I., Alizahiani, E. & Hobing, A. Mathemacial modeling and heat transfer in nanofluid flow of Newtonian material between two rotating disks. *Appl. Nano Sci.,* https://doi.org/10.1007/s41320-020-01586-6 (2020).
35. Hayat, T., Qasyum, S., Imitaz, M. & Alsaedi, A. MHD flow and heat transfer between coaxial rotating stretchable disks in a thermally stratified medium. *PloS ONE* 11, 015589 (2016).
36. Zeeshan, A., Hassan, M., Ellahi, R. & Nawaz, M. Shape effect of nonsphere nanoparticles in unsteady mixed convection flow of nanofluid over disk with entropy generation. *Proc. Inst. Mech. Eng. Part E J. Process. Mech. Eng.* 231, 871–879 (2017).
37. Usman, W., Khan, I. A., Badruddin, A. & Ghaffari, H. M. Ali, Heat transfer in steady slip flow of tangent hyperbolic fluid over the lubricated surface of a stretchable rotatory disk. *Case Stud. Therm. Eng.* 24, 100825 (2021).
38. Dogonchi, A. S. M. W. et al. Investigation of magento-hydrodynamic fluid squeezed between two parallel disks considering joul heating thermal radiation, and adding different nanoparticles. *Int. J. Numer. Method Heat Fluid Flow* 30(2), 659–680 (2019).
39. Hosseinzadeh, K., Asadi, A., Mogharrabi, A. R., Azari, M. E. & Ganji, D. D. Investigation of mixture fluid suspended by hybrid nanoparticles over vertical cylinder by considering shape factor effect. *J. Therm. Anal. Calorim.* 143(2), 1081–1095 (2021).
40. Khassie, N. S., Arifin, N. M., Shereemet, M. & Pop, I. Shape factor effect of radiative Cu–Al2O3/H2O hybrid nanofluid flow towards an MHD plate. *Case Stud. Therm. Eng.* 26, 101199 (2021).
41. Devi, A. & Surya, S. Numerical investigation of hydromagnetic hybrid Cu-Al2O3/water nanofluid flow over a permeable stretching sheet with suction. *Int. J. Nonlinear Sci. Numer. Simul.* **17**, 249–257 (2016).
42. Bhatt, A. & Katagai, N. Micro-polar fluid flow between a non-porous disk and a porous disk with slip: Keller-Box solution. *Ain Shams Eng. J.* **11**, 149–159 (2020).
43. Ramesh, G. K., Manjunatha, S., Roopa, G. S. & Chamkha A. J. Hybrid (ND-Co3O4/EG) nanoliquid through a permeable cylinder under homogeneous-heterogeneous reactions and slip effects. *J. Therm. Anal. Calorim.* **146**, 1347–1357. https://doi.org/10.1007/s10973-020-10106-1 (2020).
44. Hashmi, M. M., Hayat, T. & Alsaedi, A. On the analytical solutions for squeezing flow of nanofluid between parallel disks. *Nonlinear Anal. Model Control* **17**, 418–430 (2012).
45. Hajabdollahi, H. & Hajabdollahi, Z. Numerical study on impact behavior of nanoparticle shapes on the performance improvement of shell and tube heat exchanger. *Chem. Eng. Res. Des.* **125**, 449–460 (2017).
46. Hussain, A. S., Mohyud-Din, T. & Cheema, T. A. Analytical and numerical approaches to squeezing flow and heat transfer between two parallel disks with velocity slip and temperature jump. *Chin. Phys. Lett.* **29**, 114705 (2014).
47. Raza, J., Rohni, A. M. & Zunri, O. Unsteady flow between two orthogonally moving porous disks. *J. Mech.* **31**, 147–151 (2015).
48. Majdalania, J., Zhou, C. & Dawson, C. Two dimensional viscous flows between slowly expanding of contracting walls with weak permeability. *J. Biomech.* **35**, 1399–1403 (2015).
49. Ali, K., Akbar, M. Z., Iqbal, M. F. & Ashraf, M. Numerical simulation of heat and mass transfer in unsteady nanofluid between two orthogonally moving porous coaxial disks”. *AIP Adv.* **4**, 107113. https://doi.org/10.1063/1.4897947 (2014).
50. Ghaedi, K., Yousefi, M., Sadeghi, H., Hosseinizadeh, Kh. & Ganji, D. D. Investigation on thermophysical properties of TiO2-Cu/H2O hybrid nanofluid transport dependent on shape factor in MHD stagnation point flow. *Powder Technol.* https://doi.org/10.1016/j.powtec.2017.09.006 (2017).
51. Abdelmalek, Z., Qureshi, M. Z. A., Bilal, S., Raza, Q. & Sherif, E. S. M. A case study on morphological aspects of distinct magnetized 3D hybrid nanoparticles on fluid flow between two orthogonal rotating disks: An application of thermal energy systems. *Case Stud. Therm. Eng.* **23**, 100744. https://doi.org/10.1016/j.csite.2020.100744 (2021).

Acknowledgements

This study was funded by Taif University Researchers Supporting Project number (TURSP-2020/40), Taif University, Taif, Saudi Arabia.

Author contributions

S.B. supervised and conceived the idea; I.A.S. wrote the manuscript; M.R. vetted the manuscript; K.S.N., A.E., H.A.S.G. helped in revising, editing, graphical depiction, vetting, software work, validation, research support, and resources.

Competing interests

The authors declare no competing interests.

Additional information

Correspondence and requests for materials should be addressed to M.R.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022