NEW RESULTS ON KAON DECAYS FROM NA48/2

CRISTINA MORALES MORALES
Institut für Physik, Johannes Gutenberg-Universität, 55099 Mainz, Germany
E-mail: cmorales@mail.cern.ch

Recent results from the NA48/2 experiment are presented. The $\pi\pi$ scattering lengths a_0^0 and a_0^2 have been extracted from the cusp in the M_{00}^2 distribution of $K^+ \rightarrow \pi^+\pi^0\pi^0$ decays and from the $K^\pm \rightarrow \pi^\mp e^\pm \nu$ phase shift δ. Branching ratios and form factors have been measured for $K^\pm \rightarrow \pi^\pm \gamma\gamma$, $K^\pm \rightarrow \pi^\pm \gamma e^+e^-$ and $K^\pm \rightarrow \pi^\pm e^+e^-$ decays and are also summarized here.

1 Introduction

During 2003 and 2004, the NA48/2 experiment at CERN SPS has collected the world largest amount of charged kaon decays. The main goal of NA48/2 was the search for direct CP violation in K^\pm decays into three pions. However, given the high statistics achieved, many other physics topics were also covered including the study of the $\pi\pi$ interaction at low energy, radiative decays, the measurement of V_{us} from semileptonic decays, etc.. In the following sections, recent results on ChPT parameters obtained by the NA48/2 Collaboration will be presented.

2 The NA48/2 experiment

Simultaneous K^+ and K^- beams were produced by 400 GeV protons from the CERN SPS, impinging on a Be target. Kaons were deflected in a front-end achromat to select a momentum band of 60 ± 3 GeV/c and then focused such that they converge about 200 m downstream at the beginning of the detector. A description of the detector can be found in [1]. For the measurements presented here, the most important detector components are the magnet spectrometer, consisting of two drift chambers before and two after a dipole magnet, and the quasi-homogeneous liquid krypton calorimeter. The momentum of the charged particles and the energy of the photons are measured with a relative uncertainty of 1% at 20 GeV. The trigger was mainly designed to select events with three charged tracks (charged trigger) and $K^\pm \rightarrow \pi^\pm \pi^0\pi^0$ events (neutral trigger).

aOn behalf of the NA48/2 Collaboration.
3 Measurement of $\pi\pi$ scattering lengths

The quark condensate $\langle 0 | \bar{q} q | 0 \rangle$ is a fundamental parameter of ChPT. Its value must be determined experimentally, e.g. by measuring the $\pi\pi$ scattering lengths a_0^0 and a_0^2, which are predicted very precisely within the framework of ChPT[2].

NA48/2 has reported two new measurements of the $\pi\pi$ scattering lengths using $K^\pm \to \pi^\pm \pi^0 \pi^0$ and $K^\pm \to \pi^+ \pi^- e^\pm \nu$ decays. A cusp observed in the $M_{\pi^0\pi^0}$ distribution of $K^\pm \to \pi^\pm \pi^0 \pi^0$ decays at $M_{200}^2 = 4m_{\pi^\pm}^2$ (Fig. 1 (left)) can be explained by $\pi^+ \pi^-$ re-scattering terms[9,10] and provides a measurement of a_0^0 and a_0^2 from a fit of the M_{200}^2 distribution around the cusp discontinuity. A sample of about 59.6×10^6 decays from 2003 and 2004 data has been used for this analysis, and the preliminary results from the fit of the Cabibbo-Isidori model[5] are:

\[
(a_0^0 - a_0^2)m_{\pi^+} = 0.261 \pm 0.006_{\text{stat}} \pm 0.003_{\text{syst}} \pm 0.001_{\text{ext}} \pm 0.013_{\text{theory}},
\]

\[
a_0^2m_{\pi^+} = -0.037 \pm 0.013_{\text{stat}} \pm 0.009_{\text{syst}} \pm 0.002_{\text{ext}},
\]

where the theoretical uncertainty is due to neglected $O(a_s^2)$ and radiative corrections. Alternative fits are being performed following the approach by[6].

In $K^\pm \to \pi^+ \pi^- e^\pm \nu$ decays, the pions are produced close to threshold. The decay amplitude depends on the complex phases δ_0 and δ_1 (the S and P waves $\pi\pi$ phase shifts for isospin $I = 0$). The difference $\delta = \delta_0 - \delta_1$ can be measured as a function of the invariant mass of the two pions, $M_{\pi\pi}$. NA48/2 has performed a combined fit to the decay form factors and the phase shift difference as a function of $M_{\pi\pi}$ in a sample of 670000 signal candidates with 0.5% background[7]. The results are shown in Fig. 1 (right) together with two earlier experiments[8,9]. From the phase shift measurements, the $\pi\pi$ scattering lengths can be extracted using dispersion relations[10]. At the center of the Universal Band[11] a_2^2 is related to a_0^0. A one parameter fit gives $a_0^0 = 0.256 \pm 0.006_{\text{stat}} \pm 0.002_{\text{syst}} \pm 0.018_{\text{ext}}$, which implies $a_0^2 = -0.0312 \pm 0.0011_{\text{stat}} \pm 0.0004_{\text{syst}} \pm 0.0129_{\text{ext}}$. The external error reflects the width of the Universal Band. From a two parameters fit, the results are:

\[
a_0^0m_{\pi^+} = 0.233 \pm 0.016_{\text{stat}} \pm 0.007_{\text{syst}},
\]

\[
a_0^2m_{\pi^+} = -0.047 \pm 0.011_{\text{stat}} \pm 0.004_{\text{syst}},
\]

with $\rho = 0.967$. Theoretical work including isospin symmetry breaking effects[12] suggests that a_0^0 could decrease by ≈ 0.02 for and a_0^2 by ≈ 0.004, bringing this measurement in agreement with other measurements and ChPT predictions[7].

Figure 1: (Left) Invariant $\pi^0\pi^0$ mass squared of $K^\pm \to \pi^\pm \pi^0\pi^0$ candidates. Note the presence of a cusp for $M_{200}^2 = 4m_{\pi^\pm}^2$ (arrow). (Right) Variation of phase shift in $K^\pm \to \pi^+ \pi^- e^\pm \nu$ decays with $\pi^+ \pi^-$ invariant mass.
Data

O M has been determined in a model independent way to be $BR = (1.8 \pm 0.4 \text{ (stat) } \pm 0.0 \text{ (syst)}) \times 10^{-6}$. The preliminary result is $BR(K^{\pm} \to \pi^{\pm} \gamma \gamma) = (1.07 \pm 0.04 \text{ stat } \pm 0.08 \text{ syst}) \times 10^{-6}$. A model independent BR measurement is in preparation, together with the extraction of \hat{c} from a fit to $M_{\gamma \gamma}$ and BR.

4 $K^{\pm} \to \pi^{\pm} \gamma \gamma$ analysis

The contributions of the chiral lagrangian to this decay appear at $O(p^4)$. At this order, only the $\Delta I = 1/2$ invariant amplitudes $A(z)$ and $C(z)$ with $z = M_{\gamma \gamma}^2/M_{K^{\pm}}^2$ contribute. $A(z)$ contains the $O(p^4)$ loop diagram contributions and the tree level counterterms absorbed in unknown parameter \hat{c} predicted to be positive and of $O(1)$. The loop leads to a characteristic signature in the invariant mass $M_{\gamma \gamma}$ distribution, which is favoured to be above $2m_{\pi^\pm}$ and exhibits a cusp at $2m_{\pi^\pm}$ threshold. The parameter \hat{c} fixes the value of the branching ratio and the $M_{\gamma \gamma}$ spectrum shape. $C(z)$ contains poles and tadpoles effects. $O(p^6)$ studies concluded that unitarity correction effects could increase the BR between 30% – 40%, while vector meson exchange contributions would be negligible.

NA48/2 has analyzed about 40% of its data, finding 1164 signal candidates with 3.3% background (40 times more statistics than previous experiments). This decay and its normalization channel ($K^{\pm} \to \pi^{\pm} \pi^0$) were collected through the neutral trigger chain intended for the collection of $K^{\pm} \to \pi^{\pm} \pi^0 \pi^0$ decays and therefore suffered from a very low trigger efficiency ($\approx 50\%$). Elaborate studies were performed to measure these efficiencies and correct for them (see Fig. 2 (left)). The reconstructed $M_{\gamma \gamma}$ spectrum can be seen in Fig. 2 for selected candidates (crosses), signal MC (yellow) and background (red).

The model dependent branching ratio of $K^{\pm} \to \pi^{\pm} \gamma \gamma$ has been measured, assuming the validity of the $O(p^6)$ ChPT as presented in and taking $\hat{c} = 2.4$. The preliminary result is $BR(K^{\pm} \to \pi^{\pm} \gamma \gamma) = (1.07 \pm 0.04 \text{ stat } \pm 0.08 \text{ syst}) \times 10^{-6}$. A model independent BR measurement is in preparation, together with the extraction of \hat{c} from a fit to $M_{\gamma \gamma}$ and BR.

5 $K^{\pm} \to \pi^{\pm} \gamma e^+e^-$ analysis

This decay is similar to $K^{\pm} \to \pi^{\pm} \gamma$ with one photon internally converting into a pair of electrons. NA48/2 has reported the first observation of the decay $K^{\pm} \to \pi^{\pm} \gamma e^+e^-$ using the full 2003 and 2004 data samples. 120 candidates with 7.3 ± 1.7 estimated background events have been selected in the accessible region with $M_{\gamma ee} > 0.26 \text{ GeV}/c^2$ invariant mass. The candidates are shown in Fig. 5 (left). Using $K^{\pm} \to \pi^{\pm} \pi^0_D$ as normalization channel, the branching ratio has been determined in a model independent way to be $BR = (1.19 \pm 0.12 \text{ stat } \pm 0.04 \text{ syst}) \times 10^{-8}$ for $M_{\gamma ee} > 0.26 \text{ GeV}/c^2$. The parameter \hat{c} has also been measured assuming the validity of $O(p^6)$ and found to be $\hat{c} = 0.90 \pm 0.45$.

*aThis is a realistic assumption based on previous results by which obtained $\hat{c} = 1.8 \pm 0.6.
6 $K^\pm \to \pi^\pm e^+e^-$ analysis

The FCNC process $K^\pm \to \pi^\pm e^+e^-$ can be described in ChPT. NA48/2 has collected 7146 candidates with 0.6% background. The decay rate has been measured using $K^\pm \to \pi^\pm \pi_0^0$ as normalization. A preliminary model independent measurement for $z = M_{e^+e^-}^2 / M_{K^\pm}^2 > 0.08$ gave $BR = (2.26 \pm 0.03_{stat} \pm 0.03_{syst} \pm 0.06_{ext}) \times 10^{-7}$. Model dependent fits to the z-spectrum have been performed (Fig. 3 (right)), obtaining the corresponding form factors and BR. The preliminary average BR in the full kinematic range is: $BR = (3.08 \pm 0.04_{stat} \pm 0.08_{ext} \pm 0.07_{model}) \times 10^{-7}$. Comparison of results with previous experiments and theoretical predictions can be found in.

References

1. J.R. Batley et al., Phys. Lett. B 634, 474 (2006).
2. G. Colangelo, arXiv:0710.3050v1 , (2007).
3. U.-G. Meissner, G. Müller, and S. Steininger, Phys. Lett. B 406, 154 (1997).
4. N. Cabibbo, Phys. Rev. Lett. 93, 12181 (2004).
5. N. Cabibbo, G. Isidori, JHEP 0503, 021 (2005).
6. G. Colangelo, J. Gasser, B. Kubis, and A. Rusetsky, Phys. Lett. B 638, 187 (2006).
7. J.R. Batley et al., Eur. Phys. J. C 54, 411 (2008).
8. L. Rosselet et al., Phys. Rev. D 15, 574 (1977).
9. S. Pislak et al., Phys. Lett. B 36, 353 (1971).
10. B. Ananthanarayan et al., Phys. Rep. 353, 207 (2001).
11. J. Gasser, arXiv:0710.3048v1 , (2007).
12. G. Ecker, A. Pich, and E. de Rafael, Nucl. Phys. B 303, 665 (1988).
13. C. Bruno and J. Pradres, Z.Phys.C 57, 585 (1993).
14. J. M. Gerard, C. Smith, and S. Trine, Nucl. Phys. B 730, 1 (2005).
15. G. D’Ambrosio and J. Portolés, Phys. Lett. B 386, 403 (1996).
16. P. Kitching et al., Phys. Rev. Lett. 79, 4079 (1997).
17. J.R. Batley et al., Phys. Lett. B 659, 493 (2008).
18. F. Gabbiani, Phys. Rev. D 59, 094022 (1999).
19. G. Ecker, A. Pich, and E. de Rafael, Nucl. Phys. B 291, 692 (1987).
20. G. D’Ambrosio et al., JHEP 8, 4 (1998).
21. A.Z. Dubničková et al., Phys. Part. Nucl. Lett. 5, vol. 2, 76 (2008).
22. E. Goudzovski, arXiv:0803.4475v1 , (2008).