SUPPLEMENTARY MATERIAL

Tianma Modulates Blood Vessel Tonicity

Lin Feng¹,*, Arulmani Manavalan¹,², Manisha Mishra¹,², Siu Kwan Sze¹, Jiang-Miao Hu³ and Klaus Heese¹,²,*

¹School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
²Institute of Advanced Studies, Nanyang Technological University, 60 Nanyang View, 639673, Singapore
³Kunming Institute of Botany, Chinese Academy of Science, Kunming 650204, Yunnan, People’s Republic of China

MATERIALS AND METHODS

iTRAQ Protocol

Sample Preparation - Acetone Precipitation

Each sample condition had 600 μg of total protein lysate transferred to a new tube. Six volumes of 100 % -20 °C-chilled acetone were added to each tube and vortexed thoroughly at regular intervals. The tubes were incubated overnight at -20 °C and the following day, vortexed and centrifuged at 16,000 x g for 30 min to pellet down all proteins. The supernatant was discarded and the pellets were disturbed and washed in 500 μl of 90 % -20 °C-chilled acetone. Subsequently, the tubes were centrifuged at 16,000 x g for 20 min and the supernatant discarded. The washed pellets were allowed to air-dry at RT for 15 min, then dissolved in 100 μl of 200 mM TEAB (0.5 M Triethyl ammonium bicarbonate buffer), and 2 % SDS and then incubated at 50 °C for 5-10 min with simple agitation using a thermomixer (Eppendorf, Hamburg, Germany). Following which the tubes were centrifuged at 16,000 x g for 30 min. The supernatant was collected and protein concentration re-quantified using the 2-D Quant kit.

SDS-PAGE and in-gel Digestion

Each sample had 200 μg of acetone-precipitated proteins prepared (mixed with loading dye), denatured for 10 min in a thermo bath (Fine PCR, Seoul, Korea) and resolved up to 60 %. The gels were washed twice with autoclaved Milli-Q Water (MQW) for 5 min each. Fixing solution (50 % methanol and 10 % Acetic Acid (AcOH)) was added till the gels were submerged and kept overnight on a SH30L reciprocating shaker (Fine PCR). The gels were then washed with MQW thrice for 15 min each. In-gel digestion was performed in a laminar flow hood (Gelman, Singapore). The gels were diced into 1 – 2 mm pieces and transferred into tubes. 5 ml of 25 mM TEAB in 50 % Acetonitrile (ACN) buffer was added to the tubes, vortexed and left at RT for 10 min after which the buffer was discarded and the step repeated four times. Finally, 80 % ACN in 20 mM TEAB was added, vortexed and the tubes were left at RT for 10 min. The supernatant was discarded and the sample tubes were left to air-dry for 30 min.

Reduction, Alkylation, Trypsin Digestion and Extraction

Stock solutions of 200 mM tris (2-carboxyethyl) phosphine (TCEP) in HPLC water (J.T. Baker, Mallinckrodt, Inc., Phillipsburg, NJ, USA) and 200 mM S-methyl methanethiosulfonate (MMTS) in isopropanol were prepared. 5 mM of TCEP in 25 mM TEAB buffer was added to the dried gel pieces, vortexed and briefly spun before being incubated at 65 °C for 1 hr to allow a reduction reaction to take place. Following this, 10 mM MMTS in 25 mM TEAB buffer (tube was covered with aluminum foil) was added to gel pieces vortexed and briefly spun. The alkylation reaction was then allowed to proceed for 45 min in the dark at RT. The supernatant was removed and discarded. The gel pieces were again washed with 25 mM TEAB in 50 % Acetonitrile (ACN) buffer as described above. The gel was dehydrated by 100 % ACN. Finally, the tubes were air-dried for 30 min. First, trypsin (4 μg of trypsin in 25 mM TEAB) was added to each set of the gel pieces and incubated at 4 °C for 15 min for proper rehydration. Then 10 ml of 2.5 μg trypsin solution was again added to tubes and incubated overnight in a 37 °C incubator.

Subsequently, the tubes were spun briefly and the aqueous extract of the digested solution was collected. To the remaining gel pieces, 50 % ACN and 1 % AcOH was added, vortexed and incubated in a water bath sonicator for 30 min. The supernatant was transferred and combined to the main sample tube. The extraction step was repeated 5 times. The trypsin digested peptides were pooled and dried completely in the SpeedVac (Concentrator 5301, Eppendorf) at 30 °C and stored at -20 °C.

*Current address: Department of Obstetrics and Gynecology, University of California Irvine, Irvine, CA 92697, USA
Labeling of Peptides with iTRAQ Tags (4 Plex)

Each iTRAQ reagent tubes (tags: 114, 115, 116, 117) had 70 µl of 100 % ethanol added and vortexed thoroughly. The dried peptides were dissolved in 30 µl of 500 mM TEAB (dissolution buffer). Each iTRAQ tag was transferred to the respective peptide tubes and the tubes were incubated at RT for 2 hr with gentle shaking (thermomixer). All samples were then combined and kept in the SpeedVac at 30 °C to dry completely.

Desalting

The dried peptide samples were reconstituted in 500 µl of 0.1 % formic acid (FA) and kept in the water bath sonicator for 5 min. 50 mg C18 cartridge (Sep-Pak® Vac C18 cartridges, Waters, Milford, MA, USA) was conditioned thrice with 100 % methanol pushed through at a rate of 2 to 3 drops per second via a syringe. The stationary phase was acidified three times with 0.1 % FA (following the same method as conditioning). The samples were loaded into the column and allowed to flow via gravitational force and the flow-through was reloaded three times. Next, the sample loaded columns were desalted twice with 0.1 % FA. Elution buffer (75 % ACN + 0.1 % FA) was added and, using a syringe, the buffer was pushed through the columns and the samples were collected. This C18 desalting protocol was performed thrice with the desalting wash’s solution and the flow-through combined together. The samples were pooled and placed in the SpeedVac to dry and stored at -20 °C.

Electrostatic Repulsion-hydrophilic Interaction Chromatography (ERLIC)

Eight hundred µg of iTRAQ-labeled peptides were fractionated using PolyWAX LP weak anion-exchange column (4.6 × 200 mm, 5 µm, 300 Å; PolyLC, Columbia, MD, USA), within the Shimadzu HPLC system (Kyoto, Japan). The HPLC gradient used composed of 100 % solvent A (85 % ACN, 0.1 % AcOH, 10 mM ammonium acetate, 1 % FA, pH 3.5) for 5 min, 0 %–36 % solvent B (30 % ACN, 0.1 % FA, pH 3.0) for 15 min, and 36 %–100 % solvent B for 25 min, and finally 100 % solvent B for 10 min, running for a total of 1 hr at a flow rate of 1.0 ml min⁻¹. A total of 29 fractions were collected and was later reduced to 16 fractions by pooling of samples. The 16 sample tubes were kept in SpeedVac to dry completely. The dried peptides in each sample tube were reconstituted in 100 µl 0.1 % FA for liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis.

LC-MS/MS Analysis

The samples were analyzed thrice using a Q-Star Elite mass spectrometer (Applied Biosystems/MDS SCIEX; Applied Biosystems, Foster City, CA, USA) coupled with an online microflow HPLC system (Shimadzu). 30 µl of peptide mixture was injected and separated on a home-packed nanobore C18 column with a picotrit nanospray tip (75 µm i.d. × 15 cm, 5 µm particles) (New Objectives, Wubrun, MA, USA) for each analysis (Multiple injections give a better coverage of the target proteome with superior statistical consistency. This is especially true for single peptide proteins as more MS/MS spectral evidence was obtained from multiple injections leading to higher confidence of peptide identification and quantification.). The samples were separated at a constant flow rate of 30 µl/min with a splitter achieving an effective flow rate of 0.3 µl/min. Data acquisition was performed in the positive ion mode, with a selected mass range of 300-1600 m/z, and peptide ions with +2 to +4 charge states were subject to MS/MS. The three most abundant peptide ions above 5 count threshold were selected for MS/MS and each selected target ion was dynamically excluded for 30 s with 30 mDa mass tolerance. Automatic collision energy and automatic MS/MS accumulation were used to activate smart information-dependent acquisition (IDA). With maximum accumulation time being 2 s, the fragment intensity multiplier was set to 20. The relative abundance of the proteins in the samples was reflected by the peak areas of the iTRAQ reporter ions.

Mass Spectrometric Data Analysis

The data was acquired with the Analyst QS 2.0 software (Applied Biosystems/MDS SCIEX). Using ProteinPilot Software 3.0, Revision Number: 114732 (Applied Biosystems), protein identification and quantification were performed. The peptides were identified by the Paragon algorithm in the ProteinPilot software and the differences between expressions of various isoforms were traced by Pro Group algorithm using isoform-specific quantification. The parameters used for database searching were defined as follows: (i) Sample Type: iTRAQ 4plex (Peptide Labeled); (ii) Cysteine alkylation: MMTS; (iii) Digestion: Trypsin; (iv) Instrument: QSTAR Elite ESI; (v) Special factors: None; (vi) Species: None; (vii) Specify Processing: Quantitate; (viii) ID Focus: biological modifications, amino acid substitutions; (ix) Database: concatenated ‘target’ (IPI rat; version 3.40; 40389 sequences and 20, 549, 266 residues) and ‘decoy’ (the corresponding reverse sequences for false discovery rate (FDR) estimation); (x) Search effort: thorough. Pro Group algorithm was used to automatically select the peptide for iTRAQ quantification, where the reporter peak area, error factor (EF) and p-value were calculated. Auto bias-correction was carried out on the acquired data to remove variations imparted as a result of unequal mixing during the combination of the differently labeled samples. To minimize the false positive identification of proteins, a strict cutoff of unused ProtScore ≥ 2 was used as the qualification criteria, which corresponds to a peptide confidence level of 99 %. A FDR of 0.33% (<1.0%) was applied. The cutoff for up- or down-regulation (pre-defined at 1.2 and 0.83 respectively) was determined by using the p-value cut-off (0.05) to obtain the list of proteins with significant ratios. The p-value assigned by the ProteinPilot software measures the confidence of the real change in the protein expression level. Data analysis and functional classification were conducted using online databases such as NCBI, UniProt, and Panther.
Post-proteomic Data Verification by SDS-PAGE - Western Blot Analysis

The same pooled extracts were used for post-proteomics data validation using western blot analysis. Twenty micrograms of cell lysates were resolved by 8-12 % SDS-PAGE at 0.02 Ampere (A) of constant current and transferred to a polyvinylidene fluoride (PVDF) membrane (0.22 μm; Amersham) using the ‘semi-dry’ transfer method (BioRad, Singapore) for 60 min at 0.12 A in buffer containing 25 mM Tris, 192 mM glycine, 20 % methanol, and 0.01 % (wt/vol) SDS. The membrane was blocked with 5 % BSA (BioRad) in Phosphate-buffered saline (PBS) plus 0.1 % Tween-20 (PBS-T) for 2 hrs at RT, washed three times in PBS-T for 10 min each, and incubated with primary antibody (diluted in 2 % BSA in PBS-T) for overnight at 4 °C. The membranes were washed as described above, incubated with HRP-conjugated secondary antibody for 1 hr at RT, and developed using the ECL plus western blot detection reagent (Amersham). X-ray films (Konica Minolta Inc., Tokyo, Japan) were exposed to the membranes before film development in a Kodak X-OMAT 2000 processor (Kodak, Ontario, Canada). For equal sample loading, protein concentration was quantified with ‘2D Quant’ kit (Amersham) with at least two independent replicates. BSA was used as the standard. To re-probe the same membrane with another primary antibody, Pierce’s (Pierce Biotechnology, Inc., Rockford, IL, USA) ‘stripping solution’ was used to strip the membranes. In addition, equal sample loading was confirmed using Gapdh (Glyceraldehyde-3-phosphate dehydrogenase) as a reference protein. Western blot experiments were performed at least four times for statistical quantification and analyses (n = 4), and representative blots are shown. Values (= relative protein expression) represent the ratio of densitometric scores (GS-800 Calibrated Densitometer and Quantity One quantification analysis software version 4.5.2; BioRad) for the respective western-blot products (mean ± SD (standard deviation)) using the Gapdh bands as a reference.

Supplementary Table 1. Functional Classification of Differentially Expressed Proteins between Control and Tianma-treated Rat Aorta Quantified by iTRAQ Proteomics

Accession No.	Proteins Name/Genes Symbol	Molecular Function	No. of Peptides (>95%)	T : C iTRAQ-Ratio	P-value
IPI00200594.2	Elastin; Eln	Extracellular matrix structural constituent	22	2.54	0.2453
IPI00326179.3	Fibulin-5; Fbln5	Receptor activity	98	1.89	0.0284
IPI00190287.1	Prolargin; Prelp	Receptor activity	41	2.40	0.1253
IPI00191090.1	Biglycan; Bgn	Receptor activity	89	1.38	0.0243
IPI00200225.1	Fibromodulin; Fmod	Receptor activity	9	1.37	0.1538
IPI00231982.1	Fibronectin; Fn1	Receptor binding	107	0.45	1.61E-07
IPI00190088.2	Periostin, osteoblast specific factor; Postn	Heparin binding	45	0.53	0.0001

Cytoskeletal proteins

Accession No.	Proteins Name/Genes Symbol	Molecular Function	No. of Peptides (>95%)	T : C iTRAQ-Ratio	P-value
IPI00189819.1	Actin, cytoplasmic 1; Actb	Structural constituent of cytoskeleton	474	0.69	0.0549
IPI00197129.1	Actin, aortic smooth muscle; Acta2	Structural constituent of cytoskeleton	938	0.54	0.0017
IPI00195673.1	Tubulin beta 6; Tubb6	Structural constituent of cytoskeleton	25	0.54	0.4937
IPI00211206.7	PDZ and LIM domain protein 1; Pdlim1	Structural constituent of cytoskeleton	12	0.58	0.1224
IPI00421517.7	Desmin; Des	Structural constituent of cytoskeleton	32	0.58	0.0255
IPI00393787.2	Alpha-parvin; Parva	Structural constituent of cytoskeleton	18	0.54	0.3748
IPI00393867.4	Myo1c; Myo1c	Structural constituent of cytoskeleton	33	1.53	0.0170
IPI00231418.5	Lamin-B1; Lmnb1	Structural constituent of cytoskeleton	10	1.53	0.0450
IPI00779779.1	Microtubule-associated protein 4; Map4	Protein binding	4	0.36	0.01108
IPI00365286.3	Vinculin; Vcl	Rho GTPase binding	245	0.53	1.24E-06
Accession No.	Proteins Name/Genes Symbol	Molecular Function	No. of Peptides (>95%)*	T : C iTRAQ-Ratio	P-value
--------------	---------------------------	--------------------	------------------------	-------------------	---------
Extracellular Matrix Proteins					
IPI00388015.3	Coro1c protein; Coro1c	Actin binding	30	0.70	0.1123
IPI00421523.2	Echinoderm microtubule-associated protein-like 2; Eml2	Catalytic activity	2	0.40	0.2610
Angiogenesis, VEGF signalling pathway					
IPI00421523.2	Paxillin; Pxn	Structural constituent of cytoskeleton	2	3.70	0.1846
IPI00215465.1	Alpha-crystallin B chain; Cryab	Structural molecule activity	5	0.59	0.4790
IPI00559274.2	Milk fat globule-EGF factor 8 protein; Mfge8	Integrin binding	4	0.58	0.2335
Cell proliferation regulation					
IPI00554039.1	RGD1565368_predicted similar to glyceraldehyde-3-phosphate dehydrogenase	Protein binding	26	0.64	0.4613
IPI00568616.2	Rho-associated coiled-coil containing protein kinase 1; Rock1	Protein serine/threonine kinase activity	2	1.36	0.5680
IPI00366079.1	Uncharacterized protein; LOC100362805	Isomerase activity	4	1.68	0.2714
IPI00568511.2	RGD1560049_predicted similar to Dual specificity protein phosphatase 3	MAP kinase phosphatase activity	5	0.76	0.5426
Carbohydrate metabolism					
IPI00197555.6	Succinyl-CoA ligase [GDP-forming] subunit alpha, mitochondrial; Suc1g1	Catalytic activity	2	2.07	0.4318
IPI00200659.1	Succinate dehydrogenase [ubiquinone] flavoprotein subunit, mitochondrial; Sdha	Oxidoreductase activity	5	0.37	0.0133
IPI00421428.9	Phosphoglycerate mutase 1; Pgam1	Intramolecular transferase activity	5	0.67	0.3276
IPI00361524.3	LOC679990_similar to phosphoglucomutase 5	Magnesium ion binding	51	0.62	0.0727
Protein metabolism					
IPI00204703.5	Serpin H1; Serphin1	Protein binding	19	1.84	0.0113
IPI00471645.1	Dolichyl-diphosphooligosaccharide-protein glycosyltransferase 48 kDa subunit; Ddost	Transferase activity	3	1.27	0.0846
IPI00471577.1	Cytochrome b-c1 complex subunit 1, mitochondrial; Uqcc1	Oxidoreductase activity	7	1.79	0.2200
Accession No.	Proteins Name/Genes Symbol	Molecular Function	No. of Peptides (>95%)*	T : C iTRAQ-Ratio	P-value
-----------------------	--	--	------------------------	--------------------	---------
Extracellular Matrix Proteins					
IPI00215384.1	Nucleolin-related protein NRP; Norp	RNA splicing factor activity	2	0.30	0.2006
	Protein folding				
IPI00568118.2	Calnexin; Canx	Calcium ion binding	5	1.50	0.1243
	Cell signalling				
IPI00363395.2	Ras-related protein Rap-1b; Rap1b	GTPase activity	5	0.62	0.44244
	Uncharacterized protein; Rsu1	Protein binding	24	0.63	0.0040
IPI00364932.2	androgen regulated protein, Cystatin-related protein 1 precursor; Andpro	Cysteine-type endopeptidase inhibitor activity	4	6.08	0.0013
	Uncharacterized protein, Predicted similar to Filamin-C (Gamma-filamin) (Filamin-2) (Protein FLNc) (Actin-binding-like protein) (ABP-L) (ABP-280-like protein) isoform 2; Flnc	Actin binding	33	1.38	0.0770
	Transcription regulation				
IPI00201300.2	Polymerase I and transcript release factor; Ptf	DNA binding	62	1.59	0.0994
	Pura predicted similar to Transcriptional activator protein Pur-alpha	Activator	5	1.50	0.3129
	Glutathione metabolism				
IPI00231229.9	Glutathione S-transferase P; Gstp1	Transferase activity	5	0.60	0.4761
	Glutathione S-transferase mu 2; Gstm2	Transferase activity	17	0.61	0.0264
	Transport				
IPI00200466.3	ADP/ATP translocase 2; Slc25a5	Amino acid transmembrane transporter activity	8	1.46	0.0726
	Fatty acid-binding protein, adipocyte; Fabp4	Lipid binding	2	0.51	0.4527
IPI00231927.11	ADP/ATP translocase 1; Slc25a4	Amino acid transmembrane transporter activity	11	1.64	0.2829
	Annexin A2; Anxa2	Calcium ion binding	41	2.99	0.1695
	Sideroflexin 3; Sfmx3	Cation transmembrane transporter activity	4	0.45	0.2976
IPI00231966.5	ADP-ribosylation factor 4; Arf4	GTPase activity	2	0.63	0.4578
	Proteasome subunit beta type-7; Psmb7	Peptidase activity	2	3.53	0.3583
	Others				
Supplementary Table 1. Contd.....

Accession No.	Proteins Name/Genes Symbol	Molecular Function	No. of Peptides (>95%)*	T : C iTRAQ-Ratio	P-value
IPI00766820.1	LOC686753 similar to nephronectin isoform a	Calcium ion binding	3	0.70	0.5337
IPI00361346.2	IgG-2a gamma-2a immunoglobulin heavy chain; IgG-2a	Antigen binding	5	0.64	0.3144
IPI00392384.1	Tensin 1, Tns1	Focal adhesion phospho-protein that binds to F-actin	8	8.40	0.0376
IPI00776962.1	LOC500040 54 kDa protein	-	3	0.71	0.1917

The list contains quantitative information of the proteins from tianma-stimulated rat aorta compared with control. To minimize the false positive identification of proteins, a strict cutoff of unused ProtScore ≥ 2 was used as the qualification criteria, which corresponds to a peptide confidence level of 99 %. A FDR (false discovery rate) of 0.33% (<1.0%) was applied and a change in expression levels of at least 1.2-fold (up-regulation) or at least <0.833-fold (down-regulation) was set as defined in the experimental procedures. Then data analysis and functional classification were conducted using online databases such as NCBI, UniProt, and Panther.

*the total number of peptides identified with >95% confidence; C = control cells, T = tianma-treated cells.