Tissue Engineered Organoids for Neural Network Modelling

Abstract
The increased prevalence of neurological diseases across the world has stimulated a great deal of research into the physiological and pathological brain, both at clinical and pre-clinical level. This has led to the development of many sophisticated tissue engineered neural models, presenting greater cellular complexity to better mimic the central nervous system niche environment. These have been developed with the aim to improve pre-clinical assessment of pharma and cellular therapies, as well as better understand this tissue type and its function/dysfunction. This review covers the necessary considerations in in vitro model design, along with recent advances in 2D culture systems, to 3D organoids and bio- artificial organs.

Keywords: Neural; Neuronal; Organoid; Tissue engineering; Pre-clinical

Introduction
The use of cells as building materials provides a powerful tool to the fields of both regenerative medicine as a broad aspect and in particular to tissue engineering, with the potential to deliver a tremendous amount of information both in vivo as cell-based therapies and/or in vitro as cell models. Combining cells with specialized biomaterials, suitable biochemical growth/differentiation factors, extracellular matrices (‘scaffolds’) and diverse biomimetic environments creates a myriad of opportunities for extensive study of tissues in both physiological and pathological forms, and the creation of strategies for regenerating damaged tissues [1,2].
Due to the complexity of living tissue, with multiple cell types acting in synergy to give the whole tissue its function, there are many efforts to model tissues in vitro. For the most part such modelling aims strike a balance between the ability to create functional tissue structures and the simplification in the complexity observed in vivo. Organoids have been highlighted as one of the major advances in developing suitable models for various specific tissue types. Amongst these are intestine [3], lung [4-6] and kidney [7,8], to name a few. Further models of heart, cartilage and skin, as well as functional systems such as the vascular, endocrine, musculoskeletal, and nervous systems have been reviewed by Benam et al. [9]. Body- and human-on-a-chip systems further aim to draw connectivity between each of these separate models in order to mimic basic physiological function on a larger scale. [10,11].

Tissue models must present a reasonable mimic of normal physiological function in order that they are deemed useful; it is this ‘use’ which is now expanding as we gradually increase our micro/nano fabrication capabilities to guide complex tissue engineering approaches, better replicating normal and diseased function. Our models allow for better understanding of function and dysfunction, disease spread and how efforts for treatment may be optimised. Pre clinical assessment of disease is certainly one of the tissue engineering ‘holy grails’ with personalised medicine approaches being a major future ambition for research within this area. In this review we cover those developed for the central nervous system (CNS), namely neural tissue engineering, which remains one of the most challenging tissue engineering areas due to the complexity of interconnectivity and communication between the plethora of cell types, all requiring very specific architecture on the cell-level to infer function. In this review we include the range of approaches used for both normal and diseased CNS models.

The Engineering Challenge
Neural tissue engineering reaches a new level of complexity due to the fact that unlike other tissues, the structure and distinct architecture is seen even at the cellular level and is vital to assure functionality. The human brain contains many combinations of intricate micro- and macroscopic [12] connections- whether morphological, functional, or both- occurring at specific spatial nodes at specific temporal intervals, creating an extremely complex network between vast cell populations, making the brain extremely challenging to model in vitro. An average adult human brain will have a mass of 1.5 kg containing 100 billion neuronal cells (neurons, which transmit and receive information through electrical signals, forming synapses with other neurons) and 1 trillion non-neuronal cells (glia, structural cells of the brain, composed mainly of astrocytes, oligodendrocytes and microglia) [13]. In addition, each neuron can connect with other neurons (and astrocytes [14]) via synapses, at an average of 7000 connections per neuron, resulting in approx. 100 trillion connections in the adult human brain [15,16].
Due to this complexity, it has been difficult to develop living artificial neural networks that can be scaled-up and are low-cost, reliable, as well as efficient, robust, and reproducible [1,2], both during standard physiological situations and abnormal pathological situations during disease [17,18]. Some of the many design considerations for neural models are highlighted in Table 1.

Table 1: What to consider when planning an *in vitro* neural model, adapted from [19].

Design Consideration	Culture Options
Brain area to model (cell type to use)	Most common areas reported in literature are cortex, hippocampus, cerebellum, spinal cord and sensory ganglia.
Cell culture class	Primary cells and secondary cell lines. Primary cells are isolated directly from tissues and therefore best represent the endogenous phenotype, but are difficult to maintain; there are also ethical considerations for primary cells and further difficulties when human cells are required. Immortalized cell lines can be maintained indefinitely, but may have excessive variation from the original *in vivo* genotype/phenotype.
Cell developmental age	As the brain develops, cell types mature into the various populations that may be required. Maturation of the brain structure sees compartmentalisation, after which time it may be difficult to extract the neuronal cells due to their delicate nature and intrinsic engulfment by the body of supporting cells. A compromise between dissection from younger tissue means that cells can be harvested in higher purity, be easier to culture, but with the caveat that they might not be functionally mature.
Similarities to the human nervous system	Can use adult human iPS cells, embryonic/foetal human cells, animal cell lines or primary animal cells to increase similarity to *in vivo* CNS.
Culture type	Can culture tissue/organ slices or dissected disperse individual cell populations.
Preservation of *in vivo* organisation (2D versus 3D)	Neural cells can grow effectively in a 2D planar culture (monolayer) or 3D matrix (neurosphere), with 2D being the most inaccurate compared to anatomy *in vivo*. An important consideration from the perspective of cell-cell and cell-matrix interactions, which are numerous in 3D but limited in 2D. Can disaggregate or re-aggregate cells.
Electrophysiological integrity	Are the cells functional within the model? The neural cells within the model should have similar electrical activity as the same cell type *in vivo*.
Culture environment	Extracellular fluid composition, temperature, pH, gas phase, substrate, dimensions.
Model material	Non-toxic, non-inflammatory, non-allergenic, non-cardiogenic, light, soft, mechanically durable and chemically stable

Neural Diseases

There are multiple ways to categorise neurological diseases, but the major types include those caused by: genetic disorders (Huntington’s disease (HD) [20] and muscular dystrophy [21]); cellular degeneration (Parkinson’s disease (PD) [22] and Alzheimer’s disease (AD) [23]); movement disorders (neuromuscular disease such as amyotrophic lateral sclerosis (ALS) [24] and multiple sclerosis (MS) [25]); damage to central nervous system blood supply (stroke [26]); electrophysiological disorders (epilepsy [27]); physical injury (spinal cord injury (SCI) [28], traumatic brain injury (TBI) [29]); cancer (such as glial and non-glial tumours [30]) and infection (bacterial meningitis [31]).

The drivers for the development of tissue engineered models of disease revolve around our current inability to understand (dys) function of the CNS and further how to better treat neurodegenerative disorders that are becoming increasingly prevalent. Large pharmaceutical companies have spent billions of dollars over the past decade trying to address these issues, but have now stepped back from major funding efforts due to lack of progression. With increasing demand for new therapies, both pharmaceutical and cellular therapies, and our increasing capabilities to better fabricate tissues with a degree of complexity, tissue engineered models are providing a stepping stone for the research of new ways to move this research area forward. Key features of the diseases and disorders being of high interest by this growing sub-field of regenerative medicine are highlighted in Table 2.

The Importance of Tissue Model Selection

The vast majority of neurological diseases are not well understood. This lack of knowledge concerning causative mechanisms of human neurodegenerative disease outlines the vital importance of developing efficient pre-clinical research methods, especially when taking into account the prevalence and fatality of some of the diseases. More effective pre-clinical assessment is needed to address the fundamental underlying mechanisms behind develop in neurological disorders, so as to further refine how we model diseases in pre-clinical research. Current pre-clinical models are unable to accurately predict the efficacy of pharmaceuticals or cellular therapies within human disease patients. Dr Don Ingber, Director of Harvard University’s
Many, many years to get a drug to market, it’s incredibly expensive, innumerable animal lives are lost – and then the results from animals ‘usually’ don’t predict what happens in human. So this is a huge cost to the economy and to the pharmaceutical industry.”

There is a need for new pre-clinical models to determine at a much earlier stage whether the treatment in question is going to be effective, thus eliminating unnecessary clinical trials. Current pre-clinical models can be either *in vivo* or *in vitro*. But there is often a considerable lack of diseased tissue for study, especially concerning human models, due to biopsies involving limited environmental control, variable sample thickness, and destruction of countless input/output connections from both neuronal and glial cells [53] upon biopsy. Therefore, pre-clinical work usually relies upon animal models, either as a whole for *in vivo* study, or as a source of brain slices or neuronal/glial cells for *in vitro* culture.

Animal models are a necessary regulatory hurdle for any medical therapy, although there are well known pitfalls resulting from the difficulties of measurement or understanding of mode of therapy action in the CNS, or indeed difficulty to measure the output of effect; these are not least beset by the ethical considerations of using animals for research, and their non-accurate mimics for human assessment. Whole animal models are limited by the behavioural outputs, alongside the treatment zone of therapy action in the CNS, or indeed difficulty to measure the output of effect; these are not least beset by the ethical considerations of using animals for research, and their non-accurate mimics for human assessment.
from a single animal and potential to better interrogate tissue at the cell level. For in vitro developed models the choice of cells and their presentation are the initial key design factors. Organoid models do permit in some cases real-time monitoring of tissue by microscopy and function by e.g. electrode insertion, although the complexity of these cannot realistically achieve anything like that observed for normal CNS tissue. Here we give some insight into selection considerations made during the development of these in vitro systems.

The most basic in vitro neural models make use of populations of neurons being used after removal or culture of the cells to isolate specifically neurons rather than to include glial cells. The absence of glia markedly decreases the accuracy of the model as a mimic of the in vivo CNS, where astrocytes and other glial cells play a vital role in the brain’s structure and function. As most biopsies and samples from brains feature a physiologically-relevant mixture of neuronal and glial cells, neuronal-only cell models are often derived from exogenous sources such as neural stem cells (NSCs), artificial sources such as iPSC cells or cancer cell lines such as the human neuroblastoma cell line SH SY5Y, all discussed further below. Despite the progress made with neuronal-only in vitro cell models, the absence of glia is a major disadvantage of these models, only with a physiologically relevant mixture of neuronal and glial cells can we approach a good mimic of the highly complex in vivo CNS niche. Such mixed cultures can be isolated from in vivo sources such as the Sprague-Dawley rat [54]. The combination of both makes primary neuronal-glial cultures a powerful in vitro model for studying neurological disease.

Induced pluripotent stem cells

Due to their pluripotent nature iPSCs can differentiate down a neural pathway and be used to generate neural tissues. By using neurologically-affected sources (e.g. obtained from PD patients) iPSCs can be used to model diseases, being genetically identical to the disease source. Table 3 features a list of recent iPSC neurodegenerative disease models: While iPSCs are a versatile tool for studying neurological disease, sometimes referred to as a 'disease-in-a-dish' model, they have several limitations. There are only a limited number of individual lines used to model disease mechanisms, and all of them exhibit significant biological variance, making them somewhat unpredictable with decreasing reproducibility between experiments [55, 56]. Such variability results from the reprogramming process, culture-induced differences due to the lack of robust differentiation protocols, and differences in genetic background between patients [57].

Disease Type	Cell Modelled	Results	Reference
Parkinson's	Dopaminergic neurons	Fibroblasts from five PD patients were reprogrammed and differentiated into dopaminergic neurons.	[58]
Parkinson's	Dopaminergic neurons	Fibroblasts from PD patients differentiated into dopaminergic neuron-like cells, showing similar markers, uptake, and electrophysiology to in vivo dopaminergic neurons, provided relief in a rat PD model. PD-related biochemical defects from donor cells are maintained. Synuclein aggregation can be triggered.	[59]
Familial Alzheimer’s	Neurons	Fibroblasts with presenilin 1/2 mutation (a cause of autosomal-dominant early-onset AD) reprogrammed to neurons that have increased toxic Aβ42 secretion, similar to AD pathology in vivo.	[60]
Alzheimer’s in Down Syndrome (trisomy 21)	Cortical neurons	Generated cortical neurons developed AD pathology in months rather than years. Cells exhibited insoluble intracellular and extracellular amyloid aggregates as well as hyper-phosphorylated tau protein in cell bodies and dendrites.	[61]
Alzheimer’s familial and sporadic	Neurons	Generated neurons showed normal electrophysiology but higher levels of pathological markers (phospho-tau, aGSK-3β, Aβ(1-40)) and accumulation of large RAB5-positive early endosomes.	[62]
Alzheimer’s familial and sporadic	Neurons	Generated neurons showed Aβ oligomer accumulation, which lead to oxidative stress. Treatment with docosahexaenoic acid alleviated the stress.	[63]
ALS (familial)	Motor neurons	Generated motor neurons formed cytosolic aggregates and mutation TDP-43 similar to in vivo ALS.	[64]
ALS	Motor neurons	Generated motor neurons contained SOD1 mutation and exhibited neurofilament aggregation and neurite degeneration with absent glia. Expression of neurofilament L protein corrected the neurofilament proportions, halting neurite degeneration.	[65]
ALS	Motor neurons	Generated motor neurons expressed markers of unfolded protein and endoplasmic reticulum stress, caused by repeats in the C9orf72 locus suggesting the mutations act through common pathways.	[66]

Table 3: Recent iPSC models of neurodegenerative diseases.
Neural stem cells

There is a growing interest in using stem cells for the treatment of neurodegenerative diseases, especially multipotent stem cells with a neural origin. Several studies have used NSCs as a neuronal-only *in vitro* neural cell model. NSCs were used as a transplant by Ono et al. during the development of an *in vitro* NSC model of schizophrenia, using NSCs from E13.5 foetal rats to repair damage to primary cortical neural cultures from E18 foetal rats. NMDA receptor antagonist MK-801 as well as serum/nutrient deprivation stress was used to damage the cortical neurons, and exogenous NSCs were transplanted to determine any neuroprotective effects. This study found that NSCs exerted neuroprotective effects, altered cell survival signalling by indirect cell-cell contact, restoration of protein levels (reduced by the stress) and had a general anti-apoptotic effect on cells affected by both forms of damage, rescuing the damaged cortical neurons [67].

Another effect of NSCs on damaged neural cell populations is a paracrine effect via the release of exosomes, affecting cell-cell communication. Bonafede et al. [68] developed an *in vitro* model of ALS through motor neuron-like NSC-34 cells (NSCs that over express human ALS mutations SOD1 (G93A, G37R or A4V)) that exhibited oxidative stress found in ALS *in vivo*. The NSC-34 cells were protected from this stress, increasing cell viability, by treating the cells with exosomes derived from murine adipose-derived stromal cells. The study promotes exosomes as a potential therapy in motor neuron disease.

NSCs represent a flexible platform through both their ability to differentiate into multiple cell types *in vitro*, but their ability to be genetically modified to better match the diseases they are modelling (as exampled above with the NSC-34 mutants exhibiting oxidative stress similar to that found in ALS). NSCs have been genetically modified to stably express and secrete neprilysin (NEP), an enzyme that degrades beta-amyloid protein (Aβ), one of the causative elements of Alzheimer’s disease. In this study, NEP-expressing NSCs were found to significantly reduce Aβ pathology when transplanted, in both proximal and distal areas [69]. Further use of NSCs (as well as embryonic stem cells (ESCs) and iPSCs) as *in vitro* neural models of disease is summarised by [70].

SH-SY5Y human neuroblastoma cell line

Primary derived cells from the CNS are limited in that once they differentiate and mature into neurons they reach a static population and propagate no further. The advantages of using a cancer cell line such as the SH-SY5Y neuroblastoma cell line is that they can be cultured indefinitely, and as such the line is often used for *in vitro* neural models of disease, also due to their availability, ease of culture and exhibition of dopaminergic markers. This cell line has been especially useful for modelling Parkinson’s disease. However, Kovalieva et al. [71] identify three characteristics of SH SY5Y cells that should be considered for *in vitro* studies. Firstly, SH-SY5Y cultures include adherent (cells that grow when attached to surfaces) and floating cells (cells that grow unattached), with the floating cells having a unique phenotype but mostly discarded during media changes, the focus being on the adherents. Secondly, SH-SY5Y cultures produce both neuroblast-like (N) and epithelial-like (S) subtypes, with only the N morphology exhibiting dopaminergic markers and enzymatic activity. However, the N-type cells can be specifically selected for by forcing the SH-SY5Y cells to differentiate to a mature neuron-like phenotype, which is the final characteristic, the most common means of differentiation being treatment with retinoic acid (RA) [71-73].

Due to their expression of dopaminergic markers, SH-SY5Y cells are used most frequently to model Parkinson’s disease *in vitro*. A recent review of these studies demonstrates several such models [74], where Parkinson’s disease is simulated in a number of ways. One method involves over expressing α-synuclein (or the A53T/A30P mutants) [75,76], to varying success. A more popular method involves mimicking abnormal mitochondrial function and the associated oxidative stress and autophagy with the use of specific drugs such as MPP+ [77,78], 6-OHDA [79,80] and paraquat [81,82]; or through gene knockouts such as PINK1 silencing [83].

Co-culture Models

The interaction between neurons and astrocytes is a vital component to include in any *in vitro* neural model, as demonstrated by an ALS model where mutant SOD1 motor neurons were adversely affected when cultured with mutant glial cells, with the glia having a direct, non-cell autonomous effect on motor neuron survival [84]. Other studies have made use of co-cultures for observation of pharma effects on gene regulation. Nissou et al. [85] presented work on vitamin D deficiencies within neuronal/glia co-cultures, highlighting 17 genes related to neurodegenerative diseases, 10 of these encoding proteins potentially limiting the progression of Alzheimer’s disease.

Wang et al. [86] have presented models co-culturing neuronal-glial mixtures in similar ratios as would be observed *in vivo*: 37% neurons, 51% astrocytes, 7% microglia and 5% other cells, after 14 days culture *in vitro* (DIV). These models use the complex physiological neuron-astrocyte interactions to increase the accuracy of the model to the *in vivo* environment, as well as the fact that they can be obtained from various brain regions (cortex, subcortical nuclei, hippocampus, etc) to demonstrate regional differences in susceptibility during certain neurodegenerative diseases, such as Parkinson’s and Huntington’s disease which are mainly localised to the basal ganglia region, and generally how neurons and glia from different regions are inherently different [87].

The presence of astrocytes and microglia in culture give these cultures the ability to better model certain diseases, especially diseases where inflammation is involved as an important disease modifying factor, considering that microglia and astrocytes are involved in secretion of inflammatory mediating factors [88]. Microglia in particular play an important role in injury and recovery, as shown when activated microglia mediate damage to injured dopaminergic cells, showing how inflammatory reactions could specifically target oxidative injuries [89]. As well as being cultured together as a mixture, neurons and glia can also be co-cultured in a segregated manner, with neurons...
and glia actively signalling each other while not being in contact [90]. The activation of glia being significant, as this activation has been shown to play a role in the pathogenesis of various neurodegenerative diseases [91]. However, generating segregated cultures demonstrates a contradiction: how can different cell cultures be physically separated from each other while still being allowed to communicate (otherwise the result is simply two isolated cultures), creating a segregated coculture? One effective answer is the use of micro-scale features to allow only the processes (axons, dendrites, generalised as neurites or processes) from each culture to interact, with the cell bodies themselves segregated. To this end, process outgrowth must be directed and controlled, often using chemical patterns or micro-channels.

Directing Neurites

Micro- and nano-scale physical features have a marked effect on cell culture; cells experience the features through mechanotransduction and undergo biochemical, morphological and genetic alterations [92]. For example, growing human uMANSCs on micro-scale grooves resulted in elongation and bipolar growth, with the cells aligning to the grooves and growing along the groove wall [93]. Primary cells have also been used to develop direction cues as would be observed in vivo, using radial glial to guide neurons [94]. This ability to align and direct cells allows control over the direction of neuron outgrowth, and the formation of segregated neuronal-glial ‘circuits’. There is a wealth of literature with many reviews on the topics of surface texturing, chemical patterning and cell control [95].

The ability to segregate and direct neural cells has evolved over the last 40 years or more, starting with the Campanot chamber in 1977 [96,97], which isolated processes of long-projection neurons using a Teflon® barrier and micro-scale grooves. The chamber was modified to accommodate all types of neurons, including those with shorter processes such as inter-neurons [98]. Whilst these models allowed the separation of cell body and elongating neurites, they could only accommodate one cell type, with no consideration of coculturing cells at this time. Based on these shortcomings, a new model was developed: two chambers linked by micro-scale channels, fabricated via photo- and soft-lithography and sealed to a surface, resulting in a microfluidic device for controlled segregated cell culture [99-101]. This model has formed the basis for microfluidic cell culture devices, being modified to increase in complexity and therefore in effectiveness as an *in vitro* neural model (a particular example features seven chambers and glial cell interaction [102]). All of these models can be seen below in Figure 1.

The basic design of microfluidic models demonstrated in Figure 1C-CF have become a gold standard for *in vitro* neural models due to their many advantages over other model types: unlimited design opportunities allowing for increasingly complex designs over time, very specific localisation of cells and/or chemicals, higher throughput, can be scaled up, highly sequential/parallel experimentation, extremely small volumes of media/chemicals per experiment (reducing cost), micro-channels allow fluidic isolation between compartments stopping the spread of treatments between chambers, greater control over cell patterning/ manipulation, greater control over extracellular and cellular microenvironments, visible to conventional microscopes when made with optically transparent material (e.g. PDMS) and are low-cost disposable devices [103,104].

The original design seen in Fig.1C has been widely used for a variety of different co-cultures, with recent examples including: cortical neurons [105,106], cortical-cortical and cortical-thalamic co-culture systems [107,108], hippocampal-glial co-culture systems [109,110], cortical neurons co-cultured with genetically modified astrocytes [111], embryonic forebrain neurons co-cultured with oligodendrocytes [112], primary CNS neurons co-cultured with oligodendrocytes and astrocytes [113], dendritic growth modelling [114], hippocampal axon compression injury [115], synapse formation in hippocampal neurons [116], embryonic neurons [117] and P19-derived neurons co-cultured with mouse cortical neurons [118].

These models allow for simultaneous segregation and connection between two or more cultures of neuronal and/or glial cells. However, this connection is equal in both directions, and some models require unidirectional connectivity to mimic specific neuronal circuitry. In these models discrete cellular connectivity in terms of inputs and outputs are used to infer not only elongation of neurites, but unidirectional control over axonal connectivity [119,120]. Whilst grooves and channels orient process growth, it is a linear orientation with no directional selectivity, the neuronal processes grow from one chamber to the adjacent chamber and vice versa [114]. In order to direct neural process growth in a single direction only, it is necessary to further optimise the design of the micro-channels between chambers. While Hattori et al. [121] developed an asymmetrical scaffold to promote unidirectional connectivity by making the channel ascend as a slope in the undesired direction of growth, the selectivity and directional pressure was insufficient. An alternative design was later presented by Peyrin et al. [122] which was similar to the basic microfluidic two-chamber device (Figure 1C), but featured asymmetrical micro-channels, aiming to create an oriented neural network. This tapered or ‘diode’ micro-channel design acted as a physical selector of directionality, with axons known to respond to physical cues in their microenvironment.

Two characteristics of axons in particular are exploitable for device design: axons can act as guide cues for other axons (with pioneer axons guiding follower axons through fasciculation and axonal bundling) meaning that larger channels accommodate more axons as soon as a pioneer axons finds the channel and enters; and axons react differently when meeting surfaces at different angles, either growing along the surface when aligned in parallel or deviating from their original direction when aligned in perpendicular; meaning sharp angles can be used to dissipate axonal growth whereas planar surfaces support axonal growth [123,124]. To this end, Peyrin et al. [122] designed channels that tapered in width from 15 μm to 3 μm in the desired direction of growth. This design imposed unidirectional axon connectivity with 97% selectivity.
Figure 1: The evolution of compartmentalized neural models. (A) The Campenot chamber, a Teflon® barrier sealed onto a collagen coated dish with parallel lines scratched 200 µm apart. Neurons are plated in the centre area and processes grow and align into the other chambers. (B) The Ivins chamber, a Teflon® semi-circle sealed onto a polylysine-laminin coated dish, covered by a cover slip. Neurons are plated outside the Teflon® ring and grow under the cover slip into the main chamber, where they can be studied. (C) Two chambers (each chamber consists of two 6 mm diameter wells connected by a rectangular section) connected by 120 micro-scale grooves (10 µm wide, 3 µm high and 150 µm long, spaced 50 µm apart). Cells are plated in either/both chambers and connect via extending processes through the channels into the adjacent chamber, creating a rudimentary neural circuit. (D) Same as C but includes a third chamber in the centre, allowing for use of three different neural subtypes at once, and four smaller red chambers to supply collagen mixed with primary astrocytes to the other chambers, allowing for neuronal-glial co-culture as well as ECM study. (E) Similar microdevice design to that presented in (C) but having five chambers, resulting in two inputs to a central port, also having two output chambers. These are all linked by micro channels allowing segregated co-culture with directed axonal communication as highlighted in (F).
Micro devices to support the culture of neuronal populations in order to mimic those circuits or connected populations found in vivo have now been well adopted into the neuroscience community. This has, to a large extent, been driven by multidisciplinary working, extending the capability of device design and manufacture whilst having the application focus of neural engineering. Despite the advances made, the majority of these in vitro models have, however, remained largely as 2D cell monolayers. In order to better mimic the in vivo tissue environment it is necessary to appreciate the 3D structure of the brain and how both neuronal and glial cells interact in 3D, leading to 3D in vitro neural cell models.

The Third Dimension

Neuronal and glial cell development in the CNS in vivo relies on complex cell-cell interactions in a 3D space [125]. By focusing on 2D monolayer models, a vital component of in vivo brain structure and function is ignored. Hydrogels (such as collagen) are often used to present and maintain a 3D cell culture environment, with some systems further enabling delivery of therapeutics via the hydrogel matrix [126]. By designing neural microdevices (as described above) that feature imbedded hydrogels to fill the cell culture area, researchers are extending the environment from the monolayer presented at the lower surface of the chambers into 3D [127-129]. As well as the ability to interact in 3D space, the use of hydrogels also allows the extracellular environment to better mimic the stiffness of the brain, as the in vivo brain is soft, having a Young’s modulus of approx. 0.1-16 kPa, compared to the 20-30 GPa of tissue culture plastic or glass. Hydrogels are therefore considered to be much more accurate mimics of normal CNS tissue compared to the 2D growth surfaces of tissue culture plastic or glass [130], with neurons exhibiting faster network formation when grown on softer substrates [131,132].

Cerebral organoids

An example of the complexity that can be achieved by creating a 3D in vitro neural model comes in the form of organoid models, in this case cerebral organoids. These are supported 3D cell culture models which develop spatial regions with discrete identities that influence each other, similar to the early stages of the developing brain. Cerebral organoids can also exhibit cerebral regions that influence each other, similar to the early stages of the developing brain. Despite the advances made, the majority of these in vitro models have, however, remained largely as 2D cell monolayers. In order to better mimic the in vivo tissue environment it is necessary to appreciate the 3D structure of the brain and how both neuronal and glial cells interact in 3D, leading to 3D in vitro neural cell models.

Networked neurospheres

Choi et al. [135] used this method to create an in vitro networked neurosphere model for Alzheimer’s disease. Neurospheres provide the means to present a semi-3D environment on a cluster of cells, with individual bodies sometimes referred to as ‘mini-brains’ when presenting differentiated neural populations. Choi et al. seeded concave micro wells with neural progenitor cells which self-aggregated to form uniform-sized neurospheres. These matured to connect to neighbouring neurospheres forming a multi-neural network by day 13. This model was shown to mimic the six organised horizontal layers of the cerebral cortex and was used to study the neurotoxicity of the protein amyloid beta (Aβ), known to play a part in causing Alzheimer’s disease. Adding Aβ to the network resulted in decreased cell viability and neurite degeneration [135].

A similar neurospheres model produced by Jeong et al. [136] to study signal transmission through the CNS as a result of the partial breakdown in this system seen in Alzheimer’s disease. Shallow (70 µm) and deep (300µm) hemicylindrical channel networks between concave wells seeded with neural progenitor cells formed a self-aggregating network, Figure 2B. During this formation the cells differentiated into neuronal and glia cells that secreted laminin and formed an extracellular matrix (ECM) around the spheroids. Axonal signalling was recorded being transmitted between the spheroids, detected by Ca²⁺ flux imaging [136]. Further models are summarised and reviewed in [137,138].

An important consideration when designing an in vitro model of the brain is interstitial fluid flow. In vitro, the main roles of interstitial fluid are carried out by the cell culture medium, namely providing the cells with nutrients and removing waste during media changes. However, this culture medium in vivo is static, while in vivo the interstitial fluid flows throughout the brain, and this flow has numerous mechanical effects on the cells, as well as affecting communication between non-synaptic neurons [139]. Reproducing the effects of this flow on cells in vitro will help models further mimic the in vivo environment, but interstitial fluid flow in the brain is very slow, measured at approximately 0.1-0.3 µL min⁻¹ [139], and reproducing/maintaining a flow of this speed can be a complicated process. Park et al. developed an osmosis-driven low-speed laminar flow technique to match this slow flow in vitro, allowing for testing of physiological flow on neuronal cells in vitro without exposing the cells to shear stress found with higher rates of flow [140]. The inclusion of flow further increases the complexity of the in vitro model. The flow device was tested on a 2D culture of primary neural progenitor cells, which resulted in an increase in neurite length during differentiation when cultured with continuous flow compared to normal culture [141].
By combining this osmotic pump with a networked neurosphere array, Park et al. [142] created an *in vitro* model they termed a ‘brain-on-a-chip’ device. This model served not only as a mimic of the brain, but as a study of Alzheimer’s disease due to the addition of synthetic Aβ protein. Neurons were cultured both statically and in a dynamic model subjected to 0.15 µL min⁻¹ flow rate, with and without synthetic Aβ protein. Primary neural progenitor cells were seeded and cultured for 10 days to allow neurosphere formation, with toxic levels of Aβ protein added from day 7-10, allowing neurospheres to form in an environment more akin to Alzheimer’s disease. From days 4-10 the static neurospheres did not significantly change in size while the neurospheres in the dynamic flow environment increased in size. This suggests that flow may accelerate differentiation of neural progenitor cells (supported by higher levels of the neuronal marker β-III tubulin in the flow model), resulting in neurite outgrowth and synaptogenesis, increasing the neurosphere size. In addition, the treatment with Aβ had a much greater effect in the dynamic models, significantly reducing neurosphere viability and greater disruption of the neural networks compared to the static model [142]. As with the previous 3D culture model employing neurospheres there was limited ability to test whether the neurons produced by this method were functional; only the differentiation status and morphology of the cells was analysed. This model represents a powerful platform for *in vitro* study of neurodegenerative disease, but without functionality testing via electrophysiology or other techniques, the resultant neurospheres network can only be so useful.

Concluding Remarks

As fabrication and micro-manufacturing technology continues to improve, these permit more complex device designs to be realised in which to house and guide neural tissue engineering. The intricacy of these tissues is moving towards that of the central nervous system, albeit very slowly, with the enormity of the challenge highlighted by the plethora of cell types, their specific connectivity and regionality, and the 3D extracellular environment all playing pivotal roles. While *in vivo* models such as animal models have been a hallmark for attaining neural complexity in order to simulate a human brain and its accompanying disorders, these models may not necessarily be the best option at present. Indeed, the prevalent nature of neurological disease is matched only by the persistent improvements in *in vitro* model technologies, moving from neuronal-only cultures, to neuronal/glial mixed cultures, to organised neural networks and circuits within microfluidic devices, to bio-artificial organs and organoids, modelling the CNS more accurately and efficiently with each leap in complexity.

Neurological disorders and diseases are debilitating conditions that currently have no cure. Difficulties of understanding the function an organ as complex as the brain, as well as the progression of disease and dysfunction contribute to our current stage of advancement in CNS research. These difficulties can be mostly abated by studying the brain *in vitro* at a pre-clinical level, but current pre-clinical assessment is insufficient to predict which treatments will work on human patients. One solution is to develop more efficient *in vitro* models presenting a high level of control and allowing the complexity to be increased to make the model more relevant. These models are low-cost and reproducible, combining cells with biomaterials and microfluidics to make lab-on-a-chip devices, which are the efficient *in vitro* models necessary for progress in research at a pre-clinical level, with the resulting data driving clinical trials in a more relevant direction, and contributing towards potential treatments for neurological or neurodegenerative diseases.
Acknowledgement

MK-D is supported by the EPSRC-MRC Centre for Doctoral Training in Regenerative Medicine (EP/L015072/1). PR and RF were supported by a Parkinson’s UK innovation grant K-1302.

Conflict of Interest

None.

References

1. Carletti E, Motta A, Migliaresi C (2011) Scaffolds for tissue engineering and 3D cell culture. Methods Mol Biol 695: 17-39.
2. O’Brien FJ (2011) Biomaterials & scaffolds for tissue engineering. Materials Today 14(3): 88-95.
3. Imura Y, Asano Y, Sato K, Yoshimura E (2009) A microfluidic system to evaluate intestinal absorption. Anal Sci 25(12): 1403-1407.
4. Huh D, Fujikawa H, Tung YC, Futai N, Paine R, et al. (2007) Acoustically detectable cellular-level lung injury induced by fluid mechanical stresses in microfluidic airway systems. Proc Natl Acad Sci USA 104(48): 18886-18891.
5. Nalayanda DD, Puleo C, Fulton WB, Sharpe LM, Wang TH, et al. (2009) An open-access microfluidic model for lung-specific functional studies at an air-liquid interface. Biomed Microdevices 11(5): 1081-1089.
6. Douville NJ, Zamankhan P, Tung YC, Li R, Vaughan BL, et al. (2011) Combination of fluid and solid mechanical stresses contribute to cell death and detachment in a microfluidic alveolar model. Lab Chip 11(4): 609-619.
7. Zhang C, Zhao Z, Abdul Rahim NA, van Noort D, Yu H (2009) Towards a human-on-chip: culturing multiple cell types on a chip with compartmentalized microenvironments. Lab Chip 9(22): 3185-3192.
8. Jang KJ, Suh KY (2010) A multi-layer microfluidic device for efficient culture and analysis of renal tubular cells. Lab Chip 10(1): 36-42.
9. Benam KH, Dauth S, Hassell B, Herland A, Jain A, et al. (2015) Engineered in vitro disease models. Annu Rev Pathol 10: 195-262.
10. Esch MB, King TL, Shuler MI (2011) The role of body-on-a-chip devices in drug and toxicity studies. Annu Rev Biomed Eng 13: 55-72.
11. Luni C, Serena E, Elvassore N (2014) Human-on-chip for therapy development and fundamental science. Curr Opin Biotechnol 25: 45-45.
12. Kolodkin A, Simeonidis E, Balling R, Westerhoff HV (2012) Understanding complexity in neurodegenerative diseases: in silico reconstruction of emergence. Front Physiol 3: 291.
13. Herculano Houzel S (2009) The human brain in numbers: a linearly scaled-up primate brain. Front Hum Neurosci 3: 31.
14. Bernardinelli Y, Muller D, Nikonenko I (2014) Astrocyte-Synapse Structural Plasticity Neural Plasticity. Neural Plasticity 2014: 232105.
15. Drachman DA (2005) Do we have brain to spare? Neurology 64(12): 2004-2005.
16. Horn A, Ostwald D, Reisert M, Blankenburg F (2014) The structural-functional connectome and the default mode network of the human brain. Neuroimage 102(1 Pt 1): 142-151.
17. Bhatia SN, Ingber DE (2014) Microfluidic organs-on-chips. Nat Biotechnol 32(8): 760-772.
18. Yum K, Hong SG, Healy KE, Lee LP (2014) Physiologically relevant organs on chips. Biotechnology 9(1): 16-27.
19. Fedoroff S, Richardson A (2001) Protocols for neural cell culture. (3rd edn). Humana Press, New York, USA, pp. 262.
20. Pringsheim T, Wiltshire K, Day L, Dykeman J, Steeves T, et al. (2012) The incidence and prevalence of Huntington’s disease: a systematic review and meta-analysis. Mov Disord 27(9): 1083-1094.
21. Mah JK, Korgnick L, Dykeman J, Day L, Pringsheim T, et al. (2014) A systematic review and meta-analysis on the epidemiology of Duchenne and Becker muscular dystrophy. Neuromuscul Disord 24(6): 482-491.
22. Pringsheim T, Jette N, Frolikis A, Steeves TD (2014) The prevalence of Parkinson’s disease: a systematic review and meta-analysis. Mov Disord 29(13): 1583-1590.
23. Reitz C (2012) Alzheimer’s disease and the amyloid cascade hypothesis: a critical review. Int J Alzheimer’s Dis 2012: 369808.
24. Robberecht W, Philips T (2013) The changing scene of amyotrophic lateral sclerosis. Nat Rev Neurosci 14(4): 248-264.
25. Goldenberg MM (2012) Multiple sclerosis review. PT 37(3): 175-184.
26. Sahatçuven R, Brodmann A, Donnan GA (2012) Dementia, stroke, and vascular risk factors; a review. Int J Stroke 7(1): 61-73.
27. Acharya UR, Vinitha Sree S, Swapna G, Martin RJ, Suri JS (2013) Automated EEG analysis of epilepsy: A review. Knowledge-Based Syst 45: 147-165.
28. Silva NA, Sousa N, Reis RL, Salgado AJ (2014) From basic to clinical: a comprehensive review on spinal cord injury. Prog Neurobiol 114: 25-57.
29. Blennow K, Hardy J, Zetterberg H (2012) The neuropathology and neurobiology of traumatic brain injury. Neurology 76(5): 886-899.
30. Crocetti E, Trama A, Stiller C, Caldarella A, Soffietti R, et al. (2012) Epidemiology of glial and non-glial brain tumours in Europe. Eur J Cancer 48(10): 1532-1542.
31. van de Beek D, Brouwer MC, Thwaites GE, Tunkel AR (2012) Advances in treatment of bacterial meningitis. Lancet 380(9845): 1693-1702.
32. Addo J, Ayerbe L, Mohan KM, Crichston S, Sheldenkar A, et al. (2012) Socioeconomic status and stroke: an updated review. Stroke 43(4): 1186-1191.
33. Ngugi AK, Bottomley C, Kleinschmidt I, Sander JW, Newton CR (2010) Estimation of the burden of active and life-time epilepsy: a meta-analytic approach. Epilepsia 51(5): 883-890.
34. Schrag A, Ben Shlomo Y, Quinn MP (2000) Cross sectional prevalence of idiopathic Parkinson’s disease and Parkinsonism in London. BMJ 321(7252): 21-22.
35. de Lau LM, Breteler MM (2006) Epidemiology of Parkinson’s disease. Lancet Neurol 5(6): 525-535.
36. Ferri CR, Prince M, Brayne C, Brodaty H, Fratiglioni L, et al. (2005) Global prevalence of dementia: a Delphi consensus study. Lancet 366(9503): 2112-2117.

37. Broekmeyer R, Johnson E, Ziegler Graham K, Arrighi HM (2007) Forecasting the global burden of Alzheimer's disease. Alzheimer's Dement 3(3): 186-191.

38. Kiernan MC, Vucic S, Cheah BC, Turner MR, Eisen A, et al. (2011) Amyotrophic lateral sclerosis. Lancet 377(9769): 942-955.

39. Donnan GA, Fisher M, Macleod M, Davis SM (2008) Stroke. Lancet 371(9624): 1612-1623.

40. Fisher RS, Acedo C, Arzimanoglou A, Bogacz A, Cross JH, et al. (2014) ILAE official report: a practical clinical definition of epilepsy. Epilepsia 55(4): 475-482.

41. Jankovic J (2008) Parkinson’s disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry 79(4): 366-376.

42. Phukan J, Pender NP, Hardiman O (2007) Cognitive impairment in amyotrophic lateral sclerosis. Lancet Neurol 6(11): 994-1003.

43. Guercini E, Acciarresi M, Agnelli G, Paciaroni M (2008) Cryptogenic stroke: time to determine aetiology. J Thromb Haemost 6(4): 549-554.

44. Berkovic SF, Mulley JC, Scheffer IE, Petrou S (2006) Human epilepsies: interaction of genetic and acquired factors. Trends Neurosci 29(7): 391-397.

45. Hague SM, Klaffke S, Bandmann O (2005) Neurodegenerative disorders: Parkinson’s disease and Huntington’s disease. J Neurol Neurosurg Psychiatry 76(8): 1058-1063.

46. Walker FO (2007) Huntington's disease. Lancet 369(9557): 218-228.

47. Nikolaeff A, McLaughlin T, O'Leary DD, Tessler Lavigne M (2009) APP binds Dr6 to trigger axon pruning and neuron death via distinct caspases. Nature 457(7232): 981-989.

48. Wilson RS, Barral S, Lee JH, Leurgans SE, Foroud TM, et al. (2011) Heritability of different forms of memory in the Late onset Alzheimer’s disease family. J Alzheimer's Dis 23(2): 249-255.

49. Battistini S, Ricci C, Lotti EM, Benigni M, Gagliardi S, et al. (2010) Severe familial ALS with a novel exon 4 mutation (L106F) in the SOD1 gene. J Neurol Neurosurg Psychiatry 81(2-3): 112-115.

50. Ross CA, Tabrizi SJ (2011) Huntington's disease: from molecular pathogenesis to clinical treatment. Lancet Neurol 10(1): 83-98.

51. Wenk GL (2003) Neuropathological changes in Alzheimer's disease. J Clin Psychiatry 64(Suppl 9): 7-10.

52. Deng PX, Chen W, Hong ST, Boycott KM, Gorrie GH, et al. (2011) Mutations in UBRQL2 cause dominant X-linked juvenile and adult-onset ALS and ALS/dementia. Nature 477(7363): 211-215.

53. Arbab M, Baars S, Geijser N (2014) Modeling motor neuron disease: the matter of time. Trends Neurosci 37(11): 642-652.

54. Chen MH, Opazrabil EA, Hong JS (2013) Preparation of rodent primary cultures for neuron-glia, mixed glia, enriched microglia, and reconstituted cultures with microglia. Methods Mol Biol 1041: 231-240.

55. Bock C, Kiciknis E, Verstappen G, Gu H, Boulting G, et al. (2011) Reference maps of human ES and iPS cell variation enable high-throughput characterization of pluripotent cell lines. Cell 144(3): 439-452.

56. Boulting GL, Kiskinis E, Croft GF, Amoroso MW, Oakley DH, et al. (2011) A functionally characterized test set of human induced pluripotent stem cells. Nat Biotechnol 29(3): 279-286.

57. Soknner J, Jansen R (2012) Medicine. iPSC disease modeling. Science 338(6111): 1155-1156.

58. Soknner F, Hockemeyer D, Beard C, Richards TL, et al. (2012) Direct reprogramming of human fibroblasts into dopaminergic neuron-like cells. Cell Res 22(2): 321-332.

59. Yagi T, Ito D, Okada Y, Akamatsu W, Niiy H, et al. (2011) Modeling familial Alzheimer’s disease with induced pluripotent stem cells. Hum Mol Genet 20(23): 4530-4539.

60. Shi Y, Kirwan P, Smith J, MacLean G, Orkin SH, et al. (2012) A human stem cell model of early Alzheimer’s disease pathology in Down syndrome. Sci Transl Med 4(124): 124ra29.

61. Israel MA, Yuan SH, Bardy C, Reyna SM, Mu Y, et al. (2012) Probing sporadic and familial Alzheimer’s disease using induced pluripotent stem cells. Nature 482(7394): 216-220.

62. Konid T, Asai M, Tsukita K, Kutoku Y, Ohhsawa Y, et al. (2013) Modeling Alzheimer's disease with iPSCs reveals stress phenotypes associated with intracellular Aβ and differential drug responsiveness. Cell Stem Cell 12(4): 487-496.

63. Egawa N, Kataoka S, Tsukita K, Naitoh M, Takahashi K, et al. (2012) Drug screening for ALS using patient-specific induced pluripotent stem cells. Sci Transl Med 4(145): 145ra104.

64. Chen H, Qian K, Du Z, Cao J, Petersen A, et al. (2014) Modeling ALS with iPSCs reveals that mutant SOD1 misregulates neurofilament balance in motor neurons. Cell Stem Cell 14(6): 789-809.

65. Kiskinis E, Sandoe J, Williams LA, Boulting GL, Moccia R, et al. (2014) Pathways disrupted in human ALS motor neurons identified through genetic correction of mutant SOD1. Cell Stem Cell 14(6): 781-795.

66. Ono T, Hashimoto E, Ukarai W, Ichii T, Saot T (2010) The role of neural stem cells in vitro models of schizophrenia: neuroprotection via Akt/ERK signal regulation. Schizophr Res 122(1-3): 239-247.

67. Bonafede R, Scambi I, Peroni D, Potrich V, Boschi F, et al. (2016) Exosome derived from murine adipose-derived stromal cells: Neuronal protection via Schwann cell recruitment in a mouse model of amyotrophic lateral sclerosis. Exp Cell Res 340(1): 150-158.

68. Burton Jones M, Spencer B, Michael S, Castello NA, Agarzayan AA, et al. (2014) Neural stem cells genetically-modified to express neprilysin reduce pathology in Alzheimer transgenic models. Cell Res Ther 5(2): 46.

69. De Filippis L, Zaffa C, Ferrari D (2017) Neural stem cells and human induced pluripotent stem cells to model rare CNS diseases. CNS Neurol Drug Disc Target.

70. Kovalevich J, Langford D (2013) Considerations for the use of SH-SY5Y neuroblastoma cells in neurobiology. Methods Mol Biol 1107: 9-21.

71. Shipley MM, Mangold CA, Szpara ML (2016) Differentiation of the SH-SY5Y neuroblastoma cell line. J Vis Exp (108): 53193.
73. Forster JI, Koglsberger S, Trefois C, Boyd O, Baumuratov AS, et al. (2016) Characterization of differentiated SH-SYSY as neuronal screening model reveals increased oxidative vulnerability. J Biomol Screen 21(5): 496-509.

74. Xico H, Wieringa B, Martens GJ (2017) The SH-SYSY cell line in Parkinson’s disease research: a systematic review. Mol Neurodegener 12(1): 10.

75. Pandey N, Schmidt RE, Galvin JE (2006) The alpha-synuclein mutation E46K promotes aggregation in cultured cells. Exp Neurol 197(2): 515-520.

76. Liangliang X, Yonghui H, Shunmei E, Shouling G, Wei Z, et al. (2010) Dominant-positive HSFl decreases alpha-synuclein level and alpha-synuclein-induced toxicity. Mol Biol Rep 37(4): 1875-1881.

77. Han BS, Hong HS, Choi WS, Markelonis GJ, Oh TH, et al. (2003) Caspase-dependent and -independent cell death pathways in primary cultures of mesencephalic dopaminergic neurons after neurotoxin treatment. J Neurosci 23(12): 5069-5078.

78. Xie HR, Hu LS, Li GY (2010) SH-SYSY human neuroblastoma cell line: in vitro cell model of dopaminergic neurons in Parkinson’s disease. Chin Med J (Engl) 123(8): 1086-1092.

79. Hernandez Baltazar D, Zavala Flores LM, Villanueva Olivo A (2015) The 6-hydroxydopamine model and parkinsonian pathophysiology: Novel findings in an older model. Neurologia 32(8): 533-539.

80. Ding YM, Jaumotte JD, Signore AP, Zigmond MJ (2004) Effects of 6-hydroxydopamine on primary cultures of substantia nigra: specific damage to dopamine neurons and the impact of glial cell line-derived neurotrophic factor. J Neurochem 89(3): 776-787.

81. Przedborski S, Ichiropoulos H (2005) Reactive oxygen and nitrogen species: weapons of neuronal destruction in models of Parkinson’s disease. Antioxid Redox Signal 7(5-6): 685-693.

82. Hutson CB, Lazo CR, Mortazavi F, Giza CC, Hovda D, et al. (2011) Traumatic brain injury in adult rats causes progressive nigrostriatal dopaminergic cell loss and enhanced vulnerability to the pesticide parathion. J Neurotrauma 28(6-7): 1783-1801.

83. van der Merwe C, van Dyk HC, Engelbrecht L, van der Westhuizen FH, Kinnear C, et al. (2017) Curcumin rescues a PINK1 knock down SH-SY5Y cellular model of parkinson’s disease from mitochondrial dysfunction and cell death. Mol Neurobiol 54(4): 2752-2762.

84. Di Giorgio FP, Carrasco MA, Siao MC, Maniatis T, Eggun K (2007) Non-cell autonomous effect of glia on motor neurons in an embryonic stem cell-based ALS model. Nat Neurosci 10(5): 608-614.

85. Nissou MF, Brocard J, El Attif M, Guttin A, Andrieux A, et al. (2013) The transcriptomic response of mixed neuronal-glial cell cultures to 1, 25-dihydroxyvitamin d3 includes genes limiting the progression of neurodegenerative diseases. J Alzheimers Dis 35(3): 553-564.

86. Huang Y, Wang J (2016) Primary neuron-glia culture from rat cortex as a model to study neuroinflammation in CNS injuries or diseases. Bio-protocol 8: e1788.

87. Dauth S, Maoz BM, Sheehy SP, Hemphill MA, Murtty T, et al. (2017) Neurons derived from different brain regions are inherently different in vitro: a novel multiregional brain-on-a-chip. J Neurophysiol 117(3): 1320-1341.

88. Schlabach TJ, Saliba SW, Oliveira AC (2013) Studying neurodegenerative diseases in culture models. Rev Bras Pneumol 35(Suppl 2): 592-510.

89. leaf W, Rowe D, Xie W, Ortiz I, He Y, et al. (2001) Microglial activation and dopaminergic cell injury: an in vitro model relevant to Parkinson’s disease. J Neurosci 21(21): 8447-8455.

90. Bezzi P, Volterra A (2001) A neuron-glia signalling network in the active brain. Curr Opin Neurobiol 11(3): 387-394.

91. Skaper SD, Facci L (2012) Central nervous system neuron-glia co-culture models. Methods Mol Biol 846: 79-89.

92. Li L, Xie T (2005) Stem cell niche: structure and function. Annu Rev Cell Dev Biol 21: 605-631.

93. Lin YL, Jen JC, Hsu SH, Chiu IM (2008) Sciatic nerve repair by microgrooved nerve conduits made of chitosan-gold nano-composites. Surg Neurol 70(Suppl 1): 9-18.

94. Roach P, Parker T, Gadgegaard N, Alexander MR (2013) A bio-inspired neural environment to control neurons comprising radial glia, substrate chemistry and topography. Biomater Sci 1(1): 83.

95. Roach P, Parker T, Gadgegaard N, Alexander MR (2010) Surface strategies for control of neuronal cell adhesion: A review. Surface Science Reports 65(6): 145-173.

96. Campenot RB (1977) Local control of neurite development by nerve growth factor. Proc Natl Acad Sci USA 74(10): 4516-4519.

97. Campenot RB (1982) Development of sympathetic neurons in compartmentalized cultures. II. Local control of neurite survival by nerve growth factor. Dev Biol 93(1): 13-21.

98. Ivins KJ, Bui ET, Cotman CW (1998) Beta-amyloid induces local neurite degeneration in cultured hippocampal neurons: evidence for neurotrophic apotics. Neurobiol Dis 5(5): 365-378.

99. Taylor AM, Rhee SW, Tu CH, Criibs DH, Cotman CW, et al. (2003) Microfluidic multi compartment device for neuroscience research. Langmuir 19(5): 1551-1556.

100. Taylor AM, Blurtton-Jones M, Rhee SW, Criibs DH, Cotman CW, et al. (2005) A microfluidic culture platform for CNS axonal injury, regeneration and transport. Nat Methods 2(8): 599-605.

101. Park JW, Vahidi B, Taylor AM, Rhee SW, Jeon NL (2006) Microfluidic culture platform for neuroscience research. Nat Protoc 1(4): 2128-2136.

102. Young Hun Kim, Young Eun Kim, Suk Chung, Byungkyu Kim, Tae Song Kim, et al. (2011) Three dimensional co-culture of neuron and astrocyte in microfluidic device. 852-854.

103. Harris J, Lee H, Vahidi B, Tu C, Criibs D, et al. (2007) Fabrication of a microfluidic device for the compartmentalization of neuron soma and axons. J Vis Exp (7): 261.

104. Robertson G, Bushell TJ, Zagnoni M (2014) Chemically induced synaptic activity between mixed primary hippocampal co-cultures in a microfluidic system. Integr Biol (Camb) 6(6): 636-644.

105. Kanagasabapathi TT, Wang K, Mellace M, Ramakers GJ, Decre MM (2009) Dual compartment neurofluidic system for electrophysiological measurements in physically isolated neuronal cell cultures. Conf Proc IEEE Eng Med Biol Soc 2009: 1655-1658.

106. Kanagasabapathi TT, Ciliberti D, Martinhoia S, Wadman WJ, Decre MM (2011) Dual-compartment neurofluidic system for electrophysiological measurements in physically segregated and functionally connected neuronal cell culture. Front Neuroeng 4: 13.

107. Kanagasabapathi TT, Massobrio P, Barone RA, Tedesco M, Martinhoia S, et al. (2012) Functional connectivity and dynamics of cortical-thalamic networks co-cultured in a dual compartment device. J Neural Eng 9(3): 036010.
Tissue Engineered Organoids for Neural Network Modelling

108. Kanagasabapathi TT, Franco M, Barone RA, Martinoia S, Wadman WJ, et al. (2013) Selective pharmacological manipulation of cortical–thalamic co-cultures in a dual-compartiment device. J Neurosci Methods 214(1): 1-8.

109. Majumdar D, Gao Y, Li D, Webb DJ (2011) Co-culture of neurons and glia in a novel microfluidic platform. J Neurosci Methods 196(1): 38-44.

110. Shi M, Majumdar D, Gao Y, Brewer BM, Goodvin CR, et al. (2013) Glia co-culture with neurons in microfluidic platforms promotes the formation and stabilization of synaptic contacts. Lab Chip 13(15): 3008-3021.

111. Künez A, Lengacher S, Dirren E, Aebischer P, Magistretti PJ, et al. (2013) Astrocyte-neuron co-culture on microchips based on the model of SOD mutation to mimic ALS. Integr Biol (Camb) 5(7): 964-975.

112. Park J, Koito H, Li J, Han A (2009) A multi-compartment CNS neuron-glia co-culture microfluidic platform. J Vis Exp (31): 1399.

113. Park J, Koito H, Li J, Han A (2012) Multi-compartment neuron-glia co-culture platform for localized CNS axon-glia interaction study. Lab Chip 12(18): 3296-3304.

114. Taylor AM, Dieterich DC, Ito HT, Kim SA, Schuman EM (2010) Microfluidic local perfusion chambers for the visualization and manipulation of synapses. Neuron 66(1): 57-68.

115. Hosmane S, Fournier A, Wright R, Rajbhandari L, Siddique R, et al. (2011) Valve-based microfluidic compression platform: single axon injury and regrowth. Lab Chip 11(22): 3888-3895.

116. Gao Y, Majumdar D, Jovanovic B, Shaifer C, Lin PC, et al. (2011) A versatile valve-enabled microfluidic cell co-culture platform and demonstration of its applications to neurobiology and cancer biology. Biomed Microdevices 13(3): 539-548.

117. Dworkin BJ, Wheeler BC (2009) Novel MEA platform with PDMS microtunnels enables the detection of action potential propagation from isolated axons in culture. Lab Chip 9(3): 404-410.

118. Takayama Y, Moriguchi H, Kotani K, Suzuki T, Mabuchi K, et al. (2012) Network-wide integration of stem-cell-derived neurons and mouse cortical neurons using microfabricated co-culture devices. Biosystems 107(1): 1-8.

119. Nakhnikian A, Rebec GV, Grasse LM, Dwiel LL, Shiffman M, et al. (2014) Behavior modulates effective connectivity between cortex and striatum. PLoS One 9(3): e89443.

120. Janak PH, Tye KM (2015) From circuits to behaviour in the amygdala. Nature 517(7534): 284-292.

121. Hattori S, Suzukiwa K, Kanazki R, Jimbo Y, Hamaguchi T, et al. (2010) Direction control of information transfer between neuronal populations with asymmetric three-dimensional microstructure. Electon Comm Jpn 93(12): 17-25.

122. Peyrin JM, Deleglise B, Saias L, Vignes M, Guigis P, et al. (2011) Axon diodes for the reconstruction of oriented neuronal networks in microfluidic chambers. Lab Chip 11(21): 3663-3673.

123. Li N, Folch A (2005) Integration of topographical and biochemical cues by axons during growth on microfabricated 3-D substrates. Exp Cell Res 311(2): 307-316.

124. Francisco H, Yellen BB, Halverson DS, Friedman G, Gallo G (2007) Regulation of axon guidance and extension by three-dimensional constraints. Biomaterials 28(23): 3398-3407.

125. Frega M, Tedesco M, Massobrio P, Pesce M, Martinoia S (2014) Network dynamics of 3D engineered neuronal cultures: a new experimental model for in-vitro electrophysiology. Scientific reports 4: 5489.

126. Roach P, Mcgarvey DJ, Lees MR, Hoskins C (2013) Remotely triggered scaffolds for controlled release of pharmaceuticals. Int J Mol Sci 14(4): 8585-8602.

127. Smalley KS, Lioni M, Herlyn M (2006) Life isn’t flat: taking cancer biology to the next dimension. In Vitro Cell Dev Biol Anim 42(8-9): 242-247.

128. Huh D, Hamilton GA, Inger DE (2011) From 3D cell culture to organs-on-chips. Trends Cell Biol 21(12): 745-754.

129. Baker BM, Chen CS (2012) Deconstructing the third dimension: how 3D culture microenvironments alter cellular cues. J Cell Sci 125(Pt 13): 3015-3024.

130. Tyler WJ (2012) The mechanobiology of brain function. Nat Rev Neurosci 13(12): 867-878.

131. Sur S, Newcomb CJ, Webber MJ, Stupp SI (2013) Tuning supramolecular mechanics to guide neuron development. Biomaterials 34(20): 4749-4757.

132. Lantoiné J, Greveses T, Villers A, Delhaye G, Mestdagh C, et al. (2016) Matrix stiffness modulates formation and activity of neuronal networks of controlled architectures. Biomaterials 89: 14-24.

133. Lancaster MA, Renner M, Martin CA, Wenzel D, Bicknell LS, et al. (2013) Cerebral organoids model human brain development and neurophyrophy. Nature 501(7467): 373-379.

134. Bagley JA, Reumann D, Bian S, Lévi-Strauss J, Knoblich JA (2017) Fused cerebral organoids model interactions between brain regions. Nat Methods 14(7): 743-751.

135. Choi YJ, Park J, Lee SH (2013) Size-controllable networked neurospheres as a 3D neuronal tissue model for Alzheimer’s disease studies. Biomaterials 34(12): 2938-2946.

136. Jeong GS, Chang JY, Park JS, Lee SA, Park D, et al. (2015) Networked neural spheroid by neuro-bundle mimicking nervous system created by topology effect. Mol Brain 8: 17.

137. Ko KR, Frampton JP (2016) Developments in 3D neural cell culture models: the future of neurotherapeutics testing? Expert Rev Neurother 16(7): 739-741.

138. Choi JH, Cho HY, Choi JW (2017) Microdevice platform for in vitro nervous system and its disease model. Bioengineering (Basel) 4(3): 10.

139. Abbott NI (2004) Evidence for bulk flow of brain interstitial fluid: significance for physiology and pathology. Neurochem Int 45(4): 545-552.

140. Park JY, Kim SK, Woo DH, Lee EJ, Kim JH, et al. (2009) Differentiation of neural precursor cells in a microfluidic chip-generated cytokine gradient. Stem Cells 27(11): 2646-2654.

141. Choi YJ, Chae S, Kim JH, Barald KF, Park JY, et al. (2013) Neurotoxic amyloid beta oligomeric assemblies recreated in microfluidic platform with interstitial level of slow flow. Sci Rep 3: 1921.

142. Park J, Lee BK, Jeong GS, Hynyn M, Lee CJ, et al. (2014) Three-dimensional brain-on-a-chip with an interstitial level of flow and its application as an in vitro model of Alzheimer’s disease. Lab Chip 15(1): 141-150.