SLX4–XPF mediates DNA damage responses to replication stress induced by DNA–protein interactions

Riko Ishimoto*, Yota Tsuzuki*, Tomoki Matsumura, Seiichiro Kurashige, Kouki Enokitani, Koki Narimatsu, Mitsunori Higa, Nozomi Sugimoto, Kazumasa Yoshida, and Masatoshi Fujita

The DNA damage response (DDR) has a critical role in the maintenance of genomic integrity during chromosome replication. However, responses to replication stress evoked by tight DNA–protein complexes have not been fully elucidated. Here, we used bacterial LacI protein binding to lacO arrays to make site-specific replication fork barriers on the human chromosome. These barriers induced the accumulation of single-stranded DNA (ssDNA) and various DDR proteins at the lacO site. SLX4–XPF functioned as an upstream factor for the accumulation of DDR proteins, and consequently, ATR and FANCD2 were interdependently recruited. Moreover, LacI binding in S phase caused underreplication and abnormal mitotic segregation of the lacO arrays. Finally, we show that the SLX4–ATR axis represses the anaphase abnormality induced by LacI binding. Our results outline a long-term process by which human cells manage nucleoprotein obstacles ahead of the replication fork to prevent chromosomal instability.

Introduction

Dysfunctional DNA replication ultimately causes genomic instability and development of many human diseases, including cancers (Lecona and Fernández-Capetillo, 2014; Zhang and Walter, 2014; Gaillard et al., 2015). Replication forks traveling along chromosomal DNA are often impaired by endogenous and exogenous sources of replication stress, such as collision with transcription complexes, proteins that are tightly bound to DNA, DNA lesions, repetitive DNA sequences, starvation of deoxynucleoside triphosphates, and oncogene activation (Kotsantis et al., 2015; Lambert and Carr, 2013; García-Muse and Aguilera, 2016; Magdalou et al., 2014). In eukaryotic cells, harmful consequences such as deleterious chromosomal rearrangements are prevented by elaborate integrated pathways of DNA damage response (DDR) to diverse replication stresses (Muñoz and Méndez, 2017; Nickoloff et al., 2017; Hills and Difflay, 2014).

Among the DDR pathways, ATR (ataxia telangiectasia mutated and Rad3 related) is a central factor for maintenance of genomic integrity during DNA replication (Saldivar et al., 2017; Toledo et al., 2017). When DNA polymerases are halted, a functional uncoupling of the polymerase and replicative helicase occurs, leading to the accumulation of RPA (replication protein A)–bound single-stranded DNA (ssDNA), which serves as a platform for recruitment and activation of ATR by activator proteins TOPBP1 (DNA topoisomerase II binding protein 1) or ETAA1 (Ewing’s tumor-associated antigen 1;Saldivar et al., 2017; Blackford and Jackson, 2017). ATR is also involved in the Fanconi anemia (FA) pathway, which is mainly activated by DNA interstrand crosslinks (ICLs; Ishiai et al., 2017; Michl et al., 2016). A key step of the FA pathway is monoubiquitination of FANCI (FA group I)–FANCD2 (FA group D2) heterodimeric (ID2) complexes by the FA core E3-ligase complex, followed by incision-dependent repair steps, including ICL unhooking, lesion bypass, homologous recombination, and nucleotide-excision repair (Duda et al., 2016; Niraj et al., 2019). The scaffold protein SLX4 (synthetic lethal of unknown function 4) interacts with structure-specific endonucleases such as XPF (xeroderma pigmentosum group F)–ERCC1 (excision repair cross-complementation group 1), MUS81 (methyl methanesulfonate and UV sensitive 81)–EME1 (essential meiotic endonuclease 1), and SLX1, and has a crucial role in the ICL-repair processes following ID2 monoubiquitination (Niraj et al., 2019; Zhang and Walter, 2014; Datta and Brosh, 2019). SLX4 also functions in the resolution of Holliday junctions and the maintenance of common fragile sites (Kim and Forsburg, 2018; Dehé and Gaillard, 2018).

*R. Ishimoto and Y. Tsuzuki contributed equally to this paper; Correspondence to Kazumasa Yoshida: kyoshida@phar.kyushu-u.ac.jp; Masatoshi Fujita: mfujita@phar.kyushu-u.ac.jp.

© 2020 Ishimoto et al. This article is distributed under the terms of an Attribution–Noncommercial–Share Alike No Mirror Sites license for the first six months after the publication date (see http://www.nupress.org/terms/). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 International license, as described at https://creativecommons.org/licenses/by-nc-sa/4.0/).
A replication fork is converted into a DSB by a severe impediment to DNA replication or an encounter with a single-strand break on the template DNA (Syeda et al., 2014). Breakage of a replication fork may generate a one-ended DNA break, and homology-directed repair pathways and/or a converging replication fork would recover the broken fork (Ait Saada et al., 2018; Magdalou et al., 2014; Kramara et al., 2018; Hellday, 2003).

Although the DDR pathways that act in response to replication stresses induced experimentally via exogenous sources have been investigated, the mechanistic details of DDRs associated with replication interference at endogenous “difficult-to-replicate” regions remain to be clarified. In addition to replication–transcription conflict and abnormal DNA structures, large nucleoprotein structures can be features of such regions (Gadaleta and Noguchi, 2017; Mirkin and Mirkin, 2007). Protein binding to chromatin can act as a natural replication fork barrier in eukaryotic cells, as found at the ribosomal DNA array (Dalgaard et al., 2011). Tight interactions between repetitive DNA sequences and specific binding proteins would perturb fork progression at difficult-to-replicate regions, such as centromeres and telomeres, which are linked to chromosome fragility and recombinational hotspots (Sarlós et al., 2017; Salim and Gerton, 2019; Higa et al., 2017a; Black andGiunta, 2018).

To assess DDR induced by replication forks stalling at tight DNA–protein complexes, we employed an experimental model system using bacterial lacO–LacI interactions to recapitulate a site-specific replication fork barrier at lacO arrays stably integrated into the mammalian chromosome (Jacome and Fernandez-Capetillo, 2011; Beuzer et al., 2014; Kim et al., 2018). We investigated the spatiotemporal dynamics of accumulation of DDR proteins and identified novel SLX4-dependent DDR signaling at the difficult-to-replicate region. Our results also demonstrated that tight protein binding causes defective mitotic segregation of the lacO site, probably as a result of incomplete replication, and that the SLX4–ATR axis alleviates the anaphase abnormality. Although some findings for DDRs induced by lacO–LacI interactions have previously been reported (Jacome and Fernandez-Capetillo, 2011; Beuzer et al., 2014; Kim et al., 2018), our study has now provided a more comprehensive picture of a process by which human cells manage nucleoprotein obstacles ahead of replication forks to prevent chromosomal instability.

Results

A tight protein–DNA complex on a human chromosome induces replication stress responses during S phase

To induce LacI binding to lacO, we first transiently transfected a HA epitope–tagged LacI expression vector into asynchronous human U2OS 2–6–3 cells containing a 200-copy array of 256 lacO repeats in chromosome 1 (Janicki et al., 2004). At 24 h after transfection, fluorescence imaging demonstrated that various DDR proteins (including ATR, RPA, and FANCDD2) had been recruited to lacO sites (Fig. S1 A). ChiP analysis further showed that binding of FANCDD2 and TOPBP1 to lacO is specifically enhanced by LacI expression (Fig. S1 B). Furthermore, expression of LacI-induced RPA phosphorylation and FANCDD2 mono-ubiquitination, as demonstrated by mobility shifts on SDS-PAGE (Anantha et al., 2007; Ishiai et al., 2017), as well as phosphorylation of Chk1 (checkpoint kinase 1; Fig. S1 C), indicating that LacI binding to the lacO arrays activates the ATR and FA pathways. Notably, these protein modifications were suppressed by the ATR/ATM-kinase inhibitor VE-821, which inhibited ATR, but not ATM, under the condition used here (Fig. S1, C and D).

We next established U2OS 40–2–6 cells expressing the estrogen receptor (ER)-based construct ER^2-HA-LacI (ΔNLS), in which rapid LacI binding to lacO is induced by treatment with 4-OH-tamoxifen (4-OHT; Fig. 1 A). ChiP experiments using anti-LacI antibody further showed that in the absence of 4-OHT treatment, only a background level of LacI binds to lacO sequences, and 4-OHT treatment induces remarkable LacI binding (Fig. S2 C). In addition, the results of bromodeoxyuridine immunoprecipitation (BrdU-IP) assays showed that incorporation of BrdU at the lacO arrays is inhibited by treatment with 4-OHT, suggesting that LacI binding is an obstacle for progression of the replication fork (Fig. 1 B). As in the transiently transfected cells (Fig. S1), various DDR proteins were recruited to the LacI-bound locus 2 h after 4-OHT treatment (Fig. 1, C and D; and Fig. S2 A). We also found that components of the DSB signaling and repair pathway, including 53BP1 (p53-binding protein 1), phosphorylation of Chk1 (checkpoint kinase 1; Fig. S1 C), indicating that lacO array is induced upon release from hydroxyurea (HU)-mediated arrest in early S phase (Fig. S3 I). Taken together, these data indicate that the DDRs associated with the lacO array are induced upon blockage of fork progression by LacI binding.

Dynamic association of DDR factors to LacI-stalled replication forks in S phase involves SLX4–XPF early response and subsequent interdependent recruitment of ATR and FANCDD2

We investigated the temporal dynamics of the accumulation of DDR factors to the LacI-bound lacO array in cells that had been...
released from HU arrest for 1–8 h and found that RPA accumulation at the array peaks ∼4–6 h after release, with accumulation of ATR and FANCD2 peaking 6–8 h after release (Fig. 2). Colocalization of p-ATM and 53BP1 with lacO peaked at 4 h, and the peak of RAD52 occurred at 6 h. In the accumulation of scaffold protein SLX4 and its associated nucleases (Kim and Forsburg, 2018), SLX4 and XPF persisted at high levels throughout the examined period of S phase, whereas colocalization of MUS81 decreased during the first 4 h, then increased to peak at 8 h. Colocalization of SLX1 gradually increased to peak at 8 h. SLX4 and XPF accumulated even in G1 phase (Fig. S3 E) and HU-arrested cells (Fig. S3 I), suggesting the possibility that part of SLX4–XPF is associated with the lacO as a difficult-to-replicate region independently of replication fork inhibition (for more details, see below).

To test the role of SLX4 in the replication stress response induced by LacI binding to lacO, expression of SLX4 was knocked down by specific siRNAs (Fig. S4 A). We confirmed that knockdown of SLX4 does not cause a reduction in the levels of XPF and MUS81 proteins (Fig. S4 A), in agreement with previous

Ishimoto et al. Journal of Cell Biology 3 of 15

Replication stress response upon protein–DNA array

Released from HU arrest for 1–8 h and found that RPA accumulation at the array peaks ∼4–6 h after release, with accumulation of ATR and FANCD2 peaking 6–8 h after release (Fig. 2). Colocalization of p-ATM and 53BP1 with lacO peaked at 4 h, and the peak of RAD52 occurred at 6 h. In the accumulation of scaffold protein SLX4 and its associated nucleases (Kim and Forsburg, 2018), SLX4 and XPF persisted at high levels throughout the examined period of S phase, whereas colocalization of MUS81 decreased during the first 4 h, then increased to peak at 8 h. Colocalization of SLX1 gradually increased to peak at 8 h. SLX4 and XPF accumulated even in G1 phase (Fig. S3 E) and HU-arrested cells (Fig. S3 I), suggesting the possibility that part of SLX4–XPF is associated with the lacO as a difficult-to-replicate region independently of replication fork inhibition (for more details, see below). To test the role of SLX4 in the replication stress response induced by LacI binding to lacO, expression of SLX4 was knocked down by specific siRNAs (Fig. S4 A). We confirmed that knockdown of SLX4 does not cause a reduction in the levels of XPF and MUS81 proteins (Fig. S4 A), in agreement with previous
findings (Panier et al., 2019; Sarbajna et al., 2014). As shown in Fig. 3 A and Fig. S4 B, SLX4 knockdown reduced the accumulation of DDR proteins at the lacO array. In addition, knockdown experiments for SLX4-associated nucleases demonstrated that XPF, but not MUS81, is involved in the accumulation of RPA and ATR (Fig. 3, B and C; and Fig. S4, C–F). XPF knockdown neither reduced SLX4 and MUS81 protein levels (Fig. S4 C) nor impaired the accumulation of SLX1 (Fig. S4 D). In addition, MUS81 knockdown did not reduce the SLX4 and XPF protein levels (Fig. S4 E). These results suggest that SLX4 and XPF act at an early stage of the response to generate ssDNA.

We also investigated the interactions between the ATR and FA pathways. FANCD2 knockdown by siRNAs led to a significant reduction in the accumulation of ATR at lacO sites (Fig. 3 D; and Fig. S4, G and H). Inhibition of ATR-kinase activity by VE-821 significantly abrogated the accumulation of FANCD2, but not RPA (Fig. 3 E and Fig. S4 I). These results reveal that following SLX4 localization, ATR and FANCD2 are recruited interdependently to stalled replication forks.

Underreplication of the lacO array is prompted by, but not dependent upon, LacI binding in S phase

Upon replication stress, difficult-to-replicate regions such as common fragile sites occasionally cannot be fully duplicated during S phase (Debatisse and Rosselli, 2019). Such unreplicated regions undergo mitotic DNA repair synthesis (MiDAS) in early mitosis, and some regions remain underreplicated until the next cell cycle (Minocherhomji et al., 2015; Moreno et al., 2016; Spies et al., 2019; Özer and Hickson, 2018). Here, we investigated whether MiDAS is induced on the LacI-bound lacO array. As previously described (Minocherhomji et al., 2015), we used a Cdk1 (cyclin-dependent kinase 1) inhibitor (RO-3306) to synchronize U2OS 40–2-6 cell cycles at G2 phase, with or without 4-OHT, to test the influence of LacI binding during the preceding
S phase (Fig. 4, A and B). It has been proposed that FANCD2 and MUS81 accumulate at underreplicated regions in G2/M cells and protect genome stability (Chan et al., 2009; Naim et al., 2013; Ying et al., 2013; Minocherhomji et al., 2015; Duda et al., 2016). As shown in Fig. 4 C, colocalization of FANCD2 with LacI on prophase or prometaphase chromosomes was significantly greater in cells with than in those without LacI induction in S phase, suggesting that LacI binding contributes to underreplication of lacO repeats. However, 62.4% of prophase/prometaphase LacI foci showed colocalization with FANCD2 even in the absence of S-phase LacI, raising the possibility that the lacO repeat is intrinsically difficult to replicate and that it remains unreplicated regardless of S-phase LacI binding. MUS81 also accumulated on the mitotic lacO array, and S-phase LacI binding only slightly enhanced prophase/prometaphase colocalization (Fig. 4 D). In addition, we found that MiDAS, which occurs specifically in mitotic cells (not in G2-arrested cells), is activated at lacO even in the absence of S-phase LacI (Fig. 4, E–G). These data suggest that even in the absence of LacI binding, most early mitotic cells (~60%) contain underreplicated lacO arrays, and these lesions are repaired by MiDAS in only ~20% of the cells, leaving ~40% of cells with underreplicated lacO arrays (see Discussion and Fig. 8). With LacI binding in the preceding S phase, ~90% of early mitotic cells contain underreplicated lacO arrays, with a similar level of MiDAS repair, leaving ~70% of cells with underreplicated lacO arrays.

LacI binding in S phase induces aberrant segregation of the lacO array, and the SLX4–ATR axis prevents induction of anaphase abnormality by replication stress

Although MUS81-mediated cleavage of underreplicated chromosomes can induce MiDAS to complete the replication (Ying...
Figure 4. FANCD2 and MUS81 accumulate on the lacO array in mitosis, where MiDAS is activated, and LacI binding during S phase increases FANCD2 colocalization with lacO. (A) Experimental scheme. U2OS 40–2-6 ER-LacI cells were synchronized in late G2 phase with 7 µM RO-3306 treatment for 20 h and 1 µM 4-OHT for 20 h or the last 4 h. G2-arrested cells were then released into fresh medium for 5 min and subjected to double immunostaining, DAPI staining, and analysis. (B) Confirmation of G2-phase synchronization with RO-3306. U2OS 40–2–6 ER-LacI cells synchronized in G2 phase by incubation with 7 µM RO-3306 for 16 h were subjected to FACS analysis. (C and D) Representative images (left) and colocalization frequencies (right) are shown. Values were calculated from the sum scores of two independent experiments. ***, P < 0.001; n.s., not significant (χ² test). Individual data points from the two independent experiments are also shown. Yellow arrows indicate colocalization of FANCD2 (C) or MUS81 (D) with the LacI foci. Scale bars, 10 µm. (E) Experimental workflow for MiDAS detection. U2OS 40–2–6 ER-LacI cells were synchronized in late G2 phase as described in A. The G2-arrested cells were released or left unreleased, in each case for 20 min in the presence of 10 µM BrdU. DNA was denatured by treatment with HCl for detection of DNA labeled with BrdU. Cells were then double immunostained with anti-LacI and anti-BrdU antibodies, followed by DAPI staining and analysis. (F) Representative images of G2-arrested cells or prophase/prometaphase cells with LacI foci. BrdU incorporation (indicating MiDAS) was detected specifically in mitotic cells (yellow arrows), but not in G2 cells (white arrows). Scale bar, 10 µm. (G) The graph indicates colocalization frequencies of BrdU foci with LacI foci in G2 phase and prophase/prometaphase cells. Values were calculated from the sum scores of two independent experiments. *, P < 0.05; ***, P < 0.001; n.s., not significant (χ² test). Individual data points from the two independent experiments are also shown.
It has been proposed that underreplicated regions are converted to DNA lesions during mitosis, which are shielded by 53BP1 nuclear bodies (NBs) in the daughter cells (Moreno et al., 2016; Lukas et al., 2011; Spies et al., 2019). We examined whether LacI binding induces such 53BP1 NBs by counting the sister cells that contain symmetrical LacI foci associated with 53BP1, and calculating the frequency of such 53BP1-NB-positive cells among the cells in which lacO is equally segregated (Fig. 6, C and D). We found that LacI binding in S phase significantly enhances the generation of twin 53BP1-NB-positive cells (Fig. 6 E), indicating that LacI-induced replication stress leads to formation of anaphase abnormal lacO structures and DNA lesions that are protected in 53BP1 NBs, through the chromosomal segregation of incompletely replicated intermediates.

The ATR pathway ensures sufficient DNA replication before the onset of mitosis, and regulates genome stability (Eykenboom et al., 2013; Casper et al., 2002). In addition, as we demonstrated above, SLX4 contributes to the accumulation of the DDR factors at the lacO sites (Fig. 3 A; and Fig. S4, A and B). We therefore inhibited ATR and SLX4 with VE-821 and siRNA-mediated silencing, respectively, and examined whether the inhibition affects the chromosomal stability of the lacO arrays (Fig. 7). The results showed that inhibition of ATR and SLX4 significantly increases the frequency of anaphase abnormal lacO structures that are induced by the S-phase LacI binding (Fig. 7), demonstrating that the SLX4–ATR axis contributes to the complete replication and stability of the replication-stressed LacI-bound lacO array.

Discussion

Tight DNA–protein interactions impede progression of replication machinery and cause replication stress (Jacome and Fernandez-Capetillo, 2011; Beuzer et al., 2014; Hizume et al., 2018). By taking advantage of the inducible LacI-lacO interaction, we have characterized in detail the spatiotemporal regulation of the recruitment of various DDR factors in response to a site-specific replication fork barrier on the human chromosome. DNA replication in S phase enabled accumulation of...
components of the ATR and FA pathways, among which SLX4-XPF functioned as an upstream factor to promote recruitment of DDR proteins, including ATR and FANCD2. S-phase LacI binding caused abnormal mitotic segregation and DNA lesions that remained until the next cell cycle, and the SLX4-ATR axis facilitated complete replication of the LacI-bound lacO arrays. Notably, even in the absence of LacI, the lacO array was underreplicated, probably because of its nature as a long repetitive sequence, in which it resembles microsatellites, telomeres, and several common fragile sites (Gadaleta and Noguchi, 2017; Kaushal and Freudenreich, 2019; Mirkin and Mirkin, 2007; Tsao and Eckert, 2018). In our ER-LacI induction system, levels of LacI binding to lacO sequences in the absence of 4-OHT are ~25-fold lower than those in the presence of 4-OHT, and the signals are similar extent to those obtained with control IgG (Fig. S2 C). Although we cannot exclude a possibility of very small leaks, we consider that leakiness is not a major reason for the lacO instability in the absence of 4-OHT. Our data also clearly showed that LacI binding further exacerbates the replication fork block at the lacO array. We also found accumulation of DSB markers 53BP1 and p-ATM in G1 phase. Underreplicated regions can form heritable DNA lesions.
that are shielded by 53BP1 in G1 (Spies et al., 2019; Moreno et al., 2016; Lukas et al., 2011), so these results may reflect the persistence of the underreplicated lacO array.

Our results suggest that the collision between the DNA replication fork and LacI–lacO complex generates an excess of parental-strand ssDNA. LacI–lacO interactions have been suggested to inhibit the progression of the CDC45 (cell division cycle 45)–MCM (minichromosome maintenance)–GINS (go-ichi-ni-san) helicase ahead of the polymerase complex (Dewar et al., 2014; Sotiriou et al., 2016; Kramara et al., 2018; Costantino et al., 2017). However, RAD51-mediated homology-directed repair pathways have been suggested to operate in response to fork stalling induced by 6×Ter–Tus complexes in mouse embryonic stem cells (Willis et al., 2014, 2018). Because our experimental system used much longer repetitive DNA than 6×Ter, it is possible that the amount of repeated sequence or DNA–protein complex affects the mechanism underlying the response to replication fork stalling. RAD52 has been implicated both in RAD51-dependent homology-directed repair and RAD51-independent subpathways such as single-strand annealing and break-induced replication–like processes (Bhowmick et al., 2016; Sotiriou et al., 2016; Kramara et al., 2018; Costantino et al., 2014; Verma et al., 2019; Zhang et al., 2019). At the lacO array, RAD52 may facilitate annealing of complementary ssDNA to repair the cleaved replication fork. Rebuilding the fork at the same genomic position would be important to preserve the copy number of the repeat sequences. However, it is also possible that RAD52-mediated single-strand annealing at a different genomic position causes chromosomal rearrangement. It will be important in the future to establish the significance of RAD52 for the replication and repeat stability of the lacO locus.

Our data demonstrate that FANC D2 and MUS81 accumulate at the lacO array in early mitosis, suggesting that, in spite of the activation of the DDR in S phase, a portion of the lacO array MRE11 endo/exonuclease has been implicated in the degradation of replication forks stalled by HU (Ray Chaudhuri et al., 2016; Mijic et al., 2017; Schlacher et al., 2011), our results indicate that inhibition of MRE11 does not affect colocalization of RPA with LacI foci (Fig. S4 J), so other exoneucleases or helicases may promote the generation of ssDNA at the fork stalled by the DNA–protein complex. For appearance of a small amount of nascent-strand ssDNA, fork reversal could potentially be involved (Pasero and Vindigni, 2017; Liao et al., 2018). We propose that SLX4 and XPF promote DNA cleavage at the stalled fork and trigger generation of ssDNA, probably through the mechanisms discussed above to recruit the effector factors such as ATR and FANC D2, which contribute to genome stability during S phase (Fig. 8). This response seems similar to the fork breakage induced by XPF in the early stage of HU-induced replication stress, which contributes to chromosome stability (Béto us et al., 2018).

FANC D2 has been suggested to function upstream of SLX4 to repair ICL-blocked replication forks (Niraj et al., 2019; Datta and Brosh, 2019; Zhang and Walter, 2014). However, we found that silencing of FANC D2 results in increased colocalization of SLX4 with LacI foci (Fig. S4 K), possibly in response to an increase in replication fork stress. Branched DNA structures may contribute to the recruitment of SLX4 to LacI-stalled replication forks (Muñoz et al., 2009; Svendsen et al., 2009; Fekairi et al., 2009). We also found that part of SLX4–XPF accumulates on the lacO array even in G1-phase or HU-arrested cells (Fig. S3, E and I). It is possible that certain DNA structures and/or DNA lesions derived from underreplication of the lacO array may promote the recruitment of SLX4–XPF. Further study is needed to elucidate the mechanisms underlying SLX4–XPF recruitment.

Our results demonstrate that RAD52, but not RAD51, is recruited to LacI foci. The lack of accumulation of RAD51 at the lacO site is consistent with previous findings (Luijsterburg et al., 2017). However, RAD51-mediated homology-directed repair pathways have been suggested to operate in response to fork stalling induced by 6×Ter–Tus complexes in mouse embryonic stem cells (Willis et al., 2014, 2018). Because our experimental system used much longer repetitive DNA than 6×Ter, it is possible that the amount of repeated sequence or DNA–protein complex affects the mechanism underlying the response to replication fork stalling. RAD52 has been implicated both in RAD51-dependent homology-directed repair and RAD51-independent subpathways such as single-strand annealing and break-induced replication–like processes (Bhowmick et al., 2016; Sotiriou et al., 2016; Kramara et al., 2018; Costantino et al., 2014; Verma et al., 2019; Zhang et al., 2019). At the lacO array, RAD52 may facilitate annealing of complementary ssDNA to repair the cleaved replication fork. Rebuilding the fork at the same genomic position would be important to preserve the copy number of the repeat sequences. However, it is also possible that RAD52-mediated single-strand annealing at a different genomic position causes chromosomal rearrangement. It will be important in the future to establish the significance of RAD52 for the replication and repeat stability of the lacO locus.

Our data demonstrate that FANC D2 and MUS81 accumulate at the lacO array in early mitosis, suggesting that, in spite of the activation of the DDR in S phase, a portion of the lacO array
remains underreplicated (Fig. 8). MUS81 associates with SLX4 in a Cdk1-dependent manner and promotes DNA cleavage and subsequent MiDAS at underreplicated regions (Naim et al., 2013; Bhowmick et al., 2016; Duda et al., 2016). Although a small proportion (~20%) of the lacO arrays undergo MiDAS, our data also suggest that underreplicated lacO arrays that are cleaved by MUS81, but not repaired by MiDAS, may result in deletion of the locus. In addition, some underreplicated lacO arrays escape from cleavage and result in anaphase abnormal lacO structures. Like single-stranded UFBs, the structures are DAPI negative and coated with RPA and PICH. In addition, a central discrete LacI-positive focus (probably consisting of double-stranded lacO) is observed in the structure. It has been suggested that during chromosome segregation, underreplicated dsDNA is converted into ssDNA lesions (Moreno et al., 2016). We therefore speculate that both single-stranded and LacI-bound double-stranded lacO derived from underreplicated lacO sequences is retained between the separating anaphase chromosomes and observed as the anaphase abnormal structures. For detailed mechanism, further study is needed. On the other hand, Jacome et al. reported that in murine 3T3lacO cells, transfection of LacI (for 48 h) induces a DAPI-positive, PICH-coated anaphase bridge (Jacome and Fernandez-Capetillo, 2011). The difference could be due to differences in the experimental systems such as the difference in time range for LacI induction. Chromosome segregation converts underreplicated regions to DNA lesions, which attract 53BP1 in G1 daughter cells. S-phase LacI binding exacerbates replication stress and increases the frequencies of lacO deletion, anaphase abnormality, and 53BP1 NBs. Furthermore, our results support a role for SLX4 and ATR in the completion of replication of LacI-bound lacO arrays and prevention of anaphase abnormalities.

In summary, the results of the present study suggest that SLX4–XPF has a key role in generation of excess ssDNA at replication forks arrested by protein–DNA complexes. This mechanism could enable activation of DDR at the blocked replication fork without uncoupling of replicative helicase and polymerase complexes. SLX4–XPF–mediated cleavage may also be a mechanism to resolve topological stress at blocked replication forks. The human genome contains many repetitive elements, which are generally embedded in heterochromatic regions. Unscheduled fork stalling and alteration of repeat length are associated with genomic instability and human disease (Gaillard et al., 2015; Lecona and Fernandez-Capetillo, 2014; Padeken et al., 2015). Although further studies are required to determine whether defects in SLX4-dependent DDR signaling are relevant to repeat instability, our findings will provide a novel framework for understanding how such repeat sequences are stably duplicated.

Materials and methods

Cells

U2OS 2–6-3 (Janicki et al., 2004; Higa et al., 2017b) and U2OS 40–2-6 ER-LacI cells were cultured in DMEM supplemented...
with 8% FCS. A U2OS 40–2–6 clone overexpressing ERT2-HA-LacI was established as follows. U2OS 2–6–3 cells were cotransfected with pAAVS-CMV-HA-ERT2-LacI (\(\Delta\)NLS) and AAVS1 T2 CRIPR in pX330 (from Dr. Masato Kanemaki, National Institute of Genetics, Mishima, Japan; Addgene: #72833; Natsume et al., 2016) using Lipofectamine 2000 reagent (Invitrogen), and selected with puromycin (0.5 \(\mu\)g/ml). Expression and 4-OHT-inducible nuclear accumulation of ERT2-HA-LacI protein were confirmed by immunofluorescence analysis (Fig. 1A). Positive clones were subjected to secondary cloning, and isolated positive clone 40–2–6 was used for further experiments. Cells were cryopreserved in small aliquots and were passed in the medium for less than 4 mo after resuscitation. We confirmed that the copy number of lacO sequences was not significantly changed during cell culture for one month or during siRNA-mediated knockdown of SLX4 for 48 h (data not shown).

Plasmids

pSV40-HA-LacI has previously been described (Higa et al., 2017b). pET28a-His-T7-LacI was generated by inserting LacI cDNA from pSV40-GFP-LacI (Higa et al., 2017b) into pET28a (Novagen).

To prepare pSV40-HA-ERT2-LacI (\(\Delta\)NLS), a DNA fragment encoding ERT2 was subcloned from pCAG-CreERT2 (from Dr. Connie Cepko, Harvard Medical School, Boston, MA; Addgene: #14797; Matsuda and Cepko, 2007) into pSV40-HA-LacI using the In-Fusion HD cloning system (Clontech). The following primers were used: 5'-GATTACGCCGCTGTACATATGGCTGGA GACATGGAGC-3' (HA-ERT2 forward) and 5'-GGATCTCTTGTA CAAAAGCTGTGGCAGGGAAAC-3' (ERT2-LacI reverse). Subsequently, pSV40-HA-ERT2-LacI was digested with NotI (New England BioLabs) and Eco81I (Takara Bio), treated with Klenow fragment <Mighty Mix> (Takara Bio) to generate pSV40-HA-ERT2-LacI (\(\Delta\)NLS). pAAVS CMV-HA-ERT2-LacI (\(\Delta\)NLS) was generated by inserting HA-ERT2-LacI (\(\Delta\)NLS) DNA into pMK231 (AAVS1 CMV-MCS-PURO; from Dr. Masato Kanemaki; Addgene: #105924; Okumura et al., 2018) using the In-Fusion HD cloning system. The following primers were used: 5'-GGACTCAGATCTGCCACC ATGTACCCC-3' (AAVS1 CMV HA Forward Primer) and 5'-AGCTCGAGATCTCGGGGAAAAC-3' (LacI rev pMK231 Reverse Primer).

Immunofluorescence staining

To identify colocalization of RPA34, RPA70, ATR, FANCD2, XPF, PICH, and p-ATM with LacI, cells were fixed with 3.7% formaldehyde (Nacalai Tesque) in phosphate-buffered saline (PBS) for 15 min and permeabilized with 0.1% Triton X-100 in PBS for 10 min. For 53BP1, cells were fixed with 3.7% formaldehyde in PBS for 15 min and permeabilized with 0.1% Triton X-100 in mCSK buffer (10 mM Pipes-NaOH, pH 6.8, 100 mM NaCl, 300 mM sucrose, 1 mM EDTA, and 1 mM MgCl\(_2\)) for 10 min. For SLX1, RAD52, and RAD51, cells were preextracted with 0.1% Triton X-100 in PBS for 10 min before fixation with formaldehyde. For TOPBP1, cells were preextracted with 0.1% Triton X-100 in mCSK buffer for 3 min before fixation with formaldehyde.
siGFP (5′-AAACGUAAUGAAGCAGAAUU-3′; Duda et al., 2016), siSLX4-3 (5′-GGAACGAUGGACAGCAGUUGG-3′; Duda et al., 2016), siXPF1-2 (5′-CUUUCUAAAGCUGAAUCGCATdT-3′), siXPF1-2 (5′-CGGCAUUUGACACUUGAUCUdT-3′), siMUS81-1 (5′-GGGCGAUUCCGCUUGGAAUdT-3′), siMUS81-2 (5′-AGAGCAUGGUCCGUUACAACdC-3′), and siFANC D2-1 (5′-GAUGUUCAAGCUUACUGGAAAcCdT-3′), and siFANC D2-2 (5′-GGA UUACCUGUAUUAAAGUdCdC-3′).

Antibodies

Rabbit anti-LacI antibody was obtained by immunizing rabbits with a bacterially produced His-T7-LacI protein. Mouse antibodies against human RPA34 and RPA70 were provided by Dr. Murakami (Hokkaido University, Sapporo, Japan).

Other antibodies used in this study were as follows: ATR (Santa Cruz; Goat, sc8187), ATRIP (Cell Signaling; Rabbit, #2379), RPA34 (Calbiochem; Mouse, NA19L), TOPBP1 (Abcam; Rabbit, ab2402), FANC D2 (Novus; Rabbit, NB100-182), LacI (clone 9A5, Merck, Mouse, #05-503), HA (clone 3F10; Roche; Rat, 11867423001), Chk1 (Santa Cruz; Mouse, sc-8408), phosphorylated Chk1 (Ser345; Cell Signaling; Rabbit, #2348S), phosphorylated ATM (Ser1981; Rockland; Mouse, 200–301–400; Abcam; Rabbit, ab81292), S3BP1 (Novus; Rabbit, NB100-904), RAD51 (BioAcademia; Rabbit, 70–012), RAD52 (BioAcademia; Rabbit, 70–015), BrdU (clone 3D4 and B44; BD PharMingen; Mouse, 555627 and 347580, respectively), Cyclin A (Santa Cruz; Rabbit, sc-596), Cyclin E (Santa Cruz; Mouse, sc-247), SLX4 (Novus; Rabbit, NBPI-28680), XPF (Bethyl; Rabbit, A301-315A), MUS81 (Abcam; Mouse, ab14387), SLX1 (Atlas Antibodies; Rabbit, HPA047038), PICH (clone 142–26–3, Merck, Mouse, 04–1540), goat normal IgG (Chemicon; PP40), mouse normal IgG (Southern Biotech; 0107–01), and rabbit normal IgG (Dako; X0903).

Specificity of the immunofluorescence signal derived from the anti-SLX1 antibody we used was confirmed by the finding that the siRNA-mediated knockdown significantly reduces the accumulation of SLX1 at the lacO array (data not shown). However, this antibody was not applicable to detect SLX1 protein in our immunoblotting experiments.

The following secondary antibodies were used: HRP-conjugated rabbit anti-mouse IgG (H + L; Invitrogen; 61–6520), HRP-conjugated goat anti-rabbit IgG (H + L; Invitrogen; 65–6120), Alexa488-conjugated goat anti-rabbit IgG (Invitrogen; A10134), Alexa488-conjugated goat anti-mouse IgG (Invitrogen; A10129 and A10101); Alexa594-conjugated donkey anti-rabbit IgG (Invitrogen; A21207), CF488A-conjugated goat anti-rabbit IgG (Biotium; 20019), CF488A-conjugated donkey anti-goat IgG (Biotium; 20016), CF594-conjugated donkey anti-rat IgG (Biotium; 20159), and CF594 goat anti-mouse IgG (Biotium; 20111).

Immunoblotting

Immunoblotting was performed as previously described (Fujiyama et al., 2020). Antibody binding was visualized with HRP-conjugated secondary antibodies using EzWestLumi One (ATTO) or ChemiLumi One Super (Nacalai Tesque). Chemiluminescent signals were captured via a cooled-CCD (charge-coupled device) camera direct detection system (Aisin; LumiVision Imager).
Data presentation and statistical analysis

Unless otherwise stated, quantitative data are represented as the mean ± SD of three or more independent experiments. For Fig. 1, D and E; Fig. 3, C–E; Fig. 4, C, D, and G; Fig. 5 B; Fig. 6, B and E; Fig. S3, E and I; and Fig. S4, B, D, F, H, J, and K; data were calculated from the sum scores of two independent experiments. As described in the figures, statistical significance was assessed by using an unpaired two-tailed Student’s t test or a χ² test. P values < 0.05 were considered statistically significant. For the t tests, data distribution was assumed to be normal but this was not formally tested. For qualitative data and semiquantitative data, a representative image from multiple independent experiments is shown; for all such figures, essentially the same results were obtained in the multiple independent experiments.

Online supplemental material

Fig. S1 shows the recruitment of DDR proteins to lacO arrays and the activation of DDR after transient expression of HA-LacI in U2OS 2–6 cells. Fig. S2 shows the recruitment of DDR proteins to lacO arrays in U2OS 40–2–6 ER-LacI cells. Fig. S3 shows cell-cycle profiles of U2OS 40–2–6 ER-LacI cells and additional experiments to investigate the effect of cell-cycle synchronization. Fig. S4 shows additional data for silencing of SLX4, XPF, MutSα, and FANC D2, and the SLX4–XPF–dependent accumulation of DDR factors.

Acknowledgments

We thank Dr. Masato Kanemaki (National Institute of Genetics, Mishima, Japan) for plasmids and Dr. Yota Murakami (Hokkaido University, Sapporo, Japan) for antibodies. We appreciate the technical support received from the Research Support Center, Research Center for Human Disease Modeling, Kyushu University Graduate School of Medical Sciences.

This investigation was supported in part by the Japan Society for the Promotion of Science (KAKENHI grant JP15K18478 to K. Yoshida). K. Yoshida is also supported by research grants from the Fukuoka Foundation for Sound Health Cancer Research Fund and the Mochida Memorial Foundation for Medical and Pharmaceutical Research.

The authors declare no competing financial interests.

Author contributions: K. Yoshida and M. Fujita designed and managed the project. R. Ishimoto, Y. Tsuchi, T. Matsumura, S. Kurashige, K. Enokitani, K. Narimatsu, M. Higa, and K. Yoshida conducted the experiments and data analysis. N. Sugimoto and M. Fujita supervised the experiments and data analysis. R. Ishimoto, K. Yoshida, and M. Fujita wrote the manuscript.

Submitted: 23 March 2020
Revised: 5 October 2020
Accepted: 13 November 2020

References

Ait Saada, A., S.A.E. Lambert, and A.M. Carr. 2018. Preserving replication fork integrity and competence via the homologous recombination pathway. DNA Repair (Amst.). 71:135–147. https://doi.org/10.1016/j.dnarep.2018.08.017
Anantha, R.W., V.M. Vassin, and J.A. Borowiec. 2007. Sequential and synergistic modification of human RPA stimulates chromosomal DNA repair. J. Biol. Chem. 282:35910–35923. https://doi.org/10.1074/jbc.M70465200
Bérous, R., T. Guyot de Rugy, A.L. Pelegri, S. Queille, J.P. de Villaray, and J.S. Hoffman. 2018. DNA replication stress triggers rapid DNA replication fork breakage by Artemis and XPF. PLoS Genet. 14:e1007541. https://doi.org/10.1371/journal.pgen.1007541
Beuzer, P., J.P. Quivy, and G. Almouzni. 2014. Establishment of a replication fork barrier following induction of DNA binding in mammalian cells. Cell Cycle. 13:1607–1616. https://doi.org/10.4161/cc.28637
Bhowmick, R., S. Minocherhomji, and I.D. Hickson. 2016. RAD52 Facilitates Mitotic DNA Synthesis Following Replication Stress. Mol. Cell. 64:1117–1126. https://doi.org/10.1016/j.molcel.2016.10.037
Bizard, A.H., and I.D. Hickson. 2018. Anaphase: a fortune-teller of genomic instability. Curr. Opin. Cell Biol. 52:112–119. https://doi.org/10.1016/j.cceb.2018.02.012
Black, E.M., and S. Giunta. 2018. Repetitive fragile sites: Centromere satellite DNA as a source of genome instability in human diseases. Genes [Basel]. 9:615. https://doi.org/10.3390genes9120615
Blackford, A.N., and S.P. Jackson. 2017. ATM, ATR, and DNA-PK: The Trinity during S Phase. Mol. Cell. 66:801–817. https://doi.org/10.1016/j.molcel.2017.05.015
Buisson, R., J.L. Boisvert, C.H. Benes, and I. Lou. 2015. Distinct but Concerted Roles of ATR, DNA-PK, and Chk1 in Countering Replication Stress during S Phase. Mol. Cell. 59:1011–1024. https://doi.org/10.1016/j.molcel.2015.07.029
Casper, A.M., P. Ngheim, M.F. Arlt, and T.W. Glover. 2002. ATR regulates fragile site stability. Cell. 111:779–789. https://doi.org/10.1016/S0092-8674(02)01113-3
Chan, K.L., T. Palmal-Pallag, S. Ying, and I.D. Hickson. 2009. Replication stress induces sister-chromatid bridging at fragile site loci in mitosis. Nat. Cell Biol. 11:753–760. https://doi.org/10.1038/nclb1882
Costantino, L., S.K. Sotiriou, J.K. Rantala, S. Magin, E. Mladenov, T. Helleday, J.E. Haber, G. Ilakis, O.P. Kallioniemi, and T.D. Halazonetis. 2014. Break-induced replication repair of damaged forks induces genomic duplications in human cells. Science. 343:88–91. https://doi.org/10.1126/science.1243211
Couch, F.B., C.E. Banbach, R. Driscoll, J.W. Luzwick, G.G. Glick, R. Bérous, C.M. Carroll, S.Y. Jung, G. Qin, K.A. Cimprich, and D. Cortez. 2013. ATR phosphorylates SMARCAL1 to prevent replication fork collapse. Genes Dev. 27:1610–1623. https://doi.org/10.1101/gad.214080.113
Dalgaard, J.Z., E.L. Godfrey, and R.J. MacFarlane. 2011. Eukaryotic Replication Barriers: How, Why and Where Forks Stall. In DNA Replication-Current Advances. H. Seligmann, editor. InTech. 269–304.
Datta, A., and R.M. Brosh Jr. 2019. Holding all the cards—how Fanconi anemia proteins deal with replication stress and preserve genomic stability. Genes [Basel]. 10:170. https://doi.org/10.3390genes10020170
Debatte, M., and F. Rosselli. 2019. A journey with common fragile sites: From S phase to telophase. Genes Chromosomes Cancer. 58:305–316. https://doi.org/10.1002/gcc.22704
Deh, P.M., and P.H.L. Gaillard. 2017. Control of structure-specific endonuclease to maintain genome stability. Nat. Rev. Mol. Cell Biol. 18:315–330. https://doi.org/10.1038/nrm.2016.177
Dewar, J.M., M. Budzowska, and J.C. Walter. 2015. The mechanism of DNA replication termination in vertebrates. Nature. 525:345–350. https://doi.org/10.1038/nature14887
Di Marco, S., Z. Hasanova, R. Kanagaraj, N. Chappidi, V. Altmannova, S. Menon, H. Sedlackova, J. Langhoff, K. Surendranath, D. Hühn, et al. 2017. RECSQ Helicase Cooperates with MUS81 Endonuclease in Processing Stalled Replication Forks at Common Fragile Sites during Mitosis. Mol. Cell. 66:658–671.e8. https://doi.org/10.1016/j.molcel.2017.05.006
Duda, H., M. Arter, J. Gloggnitzer, F. Teloni, P. Wild, M.G. Blanco, M. Altmeier, and J. Matos. 2016. A Mechanism for Controlled Breakage of Under-replicated Chromosomes during Mitosis. Dev. Cell. 39:740–755. https://doi.org/10.1016/j.devcel.2016.11.017
Eykenelboom, J.K., E.C. Harte, L. Canavan, A. Pastor-Peidro, I. Calvo-Asensio, M. Llorens-Agost, and N.F. Lowendes. 2013. ATR activates the S-M checkpoint during unperturbed growth to ensure sufficient replication prior to mitotic onset. Cell Rep. 5:1095–1107. https://doi.org/10.1016/j.celrep.2015.10.007
Fekairi, S., S. Scaglione, C. Chahwan, E.R. Taylor, A. Tissier, S. Coulon, M.Q. Dong, C. Ruse, J.R. Yates III, F. Russell, et al. 2009. Human SLX4 is a Holliday junction resolvase subunit that binds multiple DNA repair/recombination endonuclease. Cell. 138:78–89. https://doi.org/10.1016/j.cell.2009.06.029
Replication stress response upon protein–DNA array

Ishimoto et al.

Journal of Cell Biology

14 of 15

https://doi.org/10.1083/jcb.202003148
Recruitment of various DDR proteins to lacO arrays after transient expression of HA-LacI in U2OS 2–6-3 cells. (A) U2OS 2–6-3 cells were transfected with HA-LacI expression vector for 24 h using Lipofectamine 2000 reagent (Invitrogen) and then double immunostained with the indicated antibodies, followed by DAPI staining. Representative images and colocalization frequencies (%) of DDR-protein foci with LacI foci are shown. Values were calculated from the sum scores of at least two independent experiments. Scale bars, 10 µm. (B) U2OS 2–6-3 cells were transfected with the empty or the HA-LacI expression vectors for 24 h and then subjected to ChIP–quantitative PCR analysis with the indicated antibodies. Quantitative PCR was performed with primer pairs to detect lacO sequences. Results are shown as the percentage of input DNA. Means ± SD are shown (n = 4). *, P < 0.05; **, P < 0.01; n.s., not significant (two-tailed Student’s t test). (C and D) U2OS 2–6-3 cells transfected as in (B) were treated with 10 µM VE-821 (ATR/ATM inhibitor), 10 µM KU-55933 (ATM inhibitor), or a control vehicle (DMSO) for 6 h and then subjected to immunoblotting. Data are representative of two or more independent experiments. In this experimental condition, VE-821 selectively inhibited ATR-mediated phosphorylation of Chk1 (Ser345), but not autophosphorylation of ATM (Ser1981). CBB, Coomassie Brilliant Blue; FANCD2-Ub, monoubiquitinated FANCD2.
Recruitment of various DDR proteins to lacO arrays in U2OS 40–2-6 ER-LacI cells. (A) U2OS 40–2-6 ER-LacI cells treated with 1 µM 4-OHT for 2 h were double immunostained with the indicated antibodies and counterstained with DAPI. ssDNA was stained with anti-BrdU antibody under nondenaturing conditions. For detection of total ssDNA, DNA was labeled for 24 h with 10 µM BrdU. For detection of nascent-strand ssDNA, newly synthesized DNA was labeled with BrdU during treatment with 4-OHT. For detection of parental-strand ssDNA, DNA was labeled with 10 µM BrdU for 20 h, followed by a chase in fresh medium without BrdU for 2 h before addition of 4-OHT. Representative images are shown, and the colocalization frequencies are shown in Fig. 1D. Yellow arrows indicate colocalization of DDR proteins with the foci of HA-LacI, and white arrows indicate noncolocalization. Scale bars, 10 µm. (B) The antibody used in this study can detect bleomycin-induced RAD51 foci. U2OS 40–2-6 ER-LacI cells were treated with 8 µM Bleomycin for 18 h, then immunostained with anti-RAD51 antibody, followed by DAPI staining. Representative images are shown. Scale bar, 10 µm. (C) U2OS 40–2-6 ER-LacI cells treated with 1 µM 4-OHT or a control vehicle (EtOH) for 2 h were subjected to ChIP-quantitative PCR analysis using the indicated antibodies. Enrichment of the lacO sequences is shown as the percent of input DNA. Means ± SD are shown (n = 6 for control rabbit IgG; n = 7 for LacI and 53BP1). *, P < 0.05; ***, P < 0.001; n.s., not significant (two-tailed Student’s t test).
Figure S3. Cell-cycle synchronization of U2OS 40–2-6 ER-LacI cells and the effect of synchronization on the DDRs induced by LacI. (A and B) G1-phase synchronization. U2OS 40–2-6 ER-LacI cells were treated with 40 µM lovastatin for 40 h and then subjected to FACS (A) and SDS-PAGE followed by immunoblotting (B). Coomassie Brilliant Blue staining served as the loading control. G1 synchronization was confirmed by the reduction in cyclin A and cyclin E protein levels (B). Data are representative of two independent experiments. (C) S-phase synchronization. U2OS 40–2-6 ER-LacI cells were synchronized with 2.5 mM HU for 18 h and released into fresh medium. Cell-cycle distribution was analyzed by flow cytometry at the indicated times after release. Data are representative of two independent experiments. (D) Asynchronous cells or G1-synchronized cells as described in (A) were treated with 1 µM 4-OH-tamoxifen (4-OHT) for 4 h or 6 h. Colocalization frequencies of the indicated foci with LacI foci were analyzed as described in Fig. 1 E. (E) U2OS 40–2-6 ER-LacI cells were synchronized in G1 phase or in S phase as described in Fig. 1 E, treated with 1 µM 4-OHT for 2 h, and double immunostained, followed by DAPI staining. Colocalization frequencies of the indicated foci were calculated from the sum scores of two independent experiments. n.s., not significant (χ² test). Individual data points from the two independent experiments are also presented. (F–H) G0-phase synchronization. Cells synchronized at G0 phase by serum starvation (0.1% FCS) for 72 h were subjected to FACS analysis (F) and immunoblotting for cyclin A (G). In G0 cells, cyclin A levels were reduced. After 72 h serum starvation, cells were treated with 1 µM 4-OHT for 6 h, and the colocalization frequencies of the indicated DDR factors with LacI were analyzed (H). Compared with the values with asynchronous cells (e.g., those shown in D), the accumulation frequencies were lower. (I) Cells arrested in early S phase as described in C were treated with 1 µM 4-OHT and either left arrested with HU or released into fresh medium for 6 h. Colocalization frequencies were calculated from the sum scores of two independent experiments. ***, P < 0.001; n.s., not significant (χ² test). Individual data points from the two independent experiments are also shown. CBB, Coomassie Brilliant Blue.
Figure S4. Silencing of SLX4, XPF, MUS81, and FANCD2, and additional data for SLX4- and FANCD2-mediated accumulation of the DDR factors at the LacI-bound lacO. (A and B) U2OS 40–2-6 ER-LacI cells were transfected with control (siGL2) or SLX4 (siSLX4-3 or siSLX4-4)-targeting siRNAs for 48 h. (A) Confirmation of SLX4 knockdown. Cells were subjected to SDS-PAGE and immunoblotting with the indicated antibodies. Coomassie Brilliant Blue staining served as a loading control. (B) After siRNA treatment, cells were further treated with 1 µM 4-OHT for 2 h and then subjected to colocalization analysis as described in Fig. 1, C and D. Values were calculated from the sum scores of two independent experiments. **, P < 0.01; ***, P < 0.001 (χ² test). Individual data points from the two independent experiments are also shown. (C–F) Cells were transfected with control siRNAs (a mixture of siGFP and siLuci) or siRNAs targeting XPF (siXPF-1 and siXPF-2) or MUS81 (siMUS81-1 or siMUS81-2) for 48 h and analyzed as described in A and B. ***, P < 0.001; n.s., not significant (χ² test). (G and H) Cells were transfected with control (mixture of siGFP and siLuci) or FANCD2 (siFANCD2-1 or siFANCD2-2)-targeting siRNAs for 48 h. (G) Cells were then subjected to immunoblotting with anti-FANCD2 antibody. (H) At 42 h after siRNA transfection, cells were treated with 1 µM 4-OHT for 6 h and then subjected to colocalization analysis as described in B. ***, P < 0.001 (χ² test). (I–J) U2OS 40–2-6 ER-LacI cells were treated with 10 µM ATR inhibitor (VE-821) or a vehicle (DMSO) for 6 h and then subjected to SDS-PAGE and immunoblotting to confirm that ATR-mediated Chk1 phosphorylation is inhibited by VE-821 treatment. (I) At 42 h after siRNA transfection, cells were treated with 1 µM 4-OHT and either DMSO as a vehicle or 50 µM mirin for 2 h. Colocalization frequencies of RPA foci with LacI foci are analyzed as described in B. n.s., not significant (χ² test). (K) U2OS 40–2-6 ER-LacI cells were transfected with the indicated siRNAs. At 42 h after siRNA transfection, cells were treated with 1 µM 4-OHT for a further 6 h and then analyzed as described in B. ***, P < 0.001 (χ² test).