Polynucleotide Phosphorylase Activity May Be Modulated by Metabolites in Escherichia coli*5*6

Received for publication, November 12, 2010, and in revised form, January 14, 2011 Published, JBC Papers in Press, February 14, 2011DOI 10.1074/jbc.M110.00741

Salima Nurmohamed11, Helen A. Vincent51, Christopher M. Titman1, Vidya Chandran4, Michael R. Pears6, Dijun Du4, Julian L. Griffin5, Anastasia J. Callaghan52, and Ben F. Luisi2

From the 1Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA and 2Biophysics Laboratories, School of Biological Sciences, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth PO1 2DY, United Kingdom

RNA turnover is an essential element of cellular homeostasis and response to environmental change. Whether the ribonucleases that mediate RNA turnover can respond to cellular metabolic status is an unresolved question. Here we present evidence that the Krebs cycle metabolite citrate affects the activity of Escherichia coli polynucleotide phosphorylase (PNPase) and, conversely, that cellular metabolism is affected widely by PNPase activity. An E. coli strain that requires PNPase for viability has suppressed growth in the presence of increased citrate concentration. Transcriptome analysis reveals a PNPase-mediated response to citrate, and PNPase deletion broadly impacts on the metabolome. In vitro, citrate directly binds and modulates PNPase activity, as predicted by crystallographic data. Binding of metal-chelated citrate in the active site at physiologically significant concentrations appears to inhibit enzyme activity. However, metal-free citrate is bound at a vestigial active site, where it stimulates PNPase activity. Mutagenesis data confirmed a potential role of this vestigial site as an allosteric binding pocket that recognizes metal-free citrate. Collectively, these findings suggest that RNA degradative pathways communicate with central metabolism. This communication appears to be part of a feedback network that may contribute to global regulation of metabolism and cellular energy efficiency.

Ribonucleases play key roles in post-transcriptional regulation of gene expression in organisms from all domains of life. One well studied ribonuclease is polynucleotide phosphorylase (PNPase; E.C. 2.7.7.8), a phosphorolytic exoribonuclease found in most bacteria as well as the eukaryotic organelles, the mitochondrion, and chloroplast (1, 2). In bacterial species PNPase affects complex processes, such as tissue invasive virulence of Salmonella enterica (3, 4) and the regulation of virulence secretion systems in Yersinia sp. (5). In Escherichia coli, PNPase contributes to the decay of bulk RNA, the quality control of ribosomal RNA, the turnover of small regulatory RNA, and cold shock response (1, 6–13).

A proportion of cellular PNPase is recruited into an RNA degrading machine, known as the degradosome, in E. coli and other γ-proteobacteria (14, 15). The degradosome is assembled upon an extensive scaffolding domain of the endoribonuclease RNase E (EC 3.1.26.12) (14, 16, 17); its other canonical components are the ATP-dependent DEAD-box RNA helicase RhlB (EC 3.6.4.13) and the glycolytic enzyme enolase (EC 4.2.1.11) (14, 15, 18). Small regions in the RNase E C-terminal domain mediate interactions with RNA (16) and with the cytoplasmic membrane to localize the degradosome assembly (19). This multienzyme complex provides a major contribution to RNA decay and, consequently, post-transcriptional gene regulation (20, 21).

Previous observations have hinted at a connection between RNA degradosome activity and central metabolism. The physical association of enolase, a glycolytic enzyme, with RNase E in the degradosome is required for response to phosphosugar stress (22). The importance of this interaction is highlighted by the observation that the recognition site for enolase is highly conserved in RNase E of γ-proteobacteria (23, 24). We have recently identified the Krebs cycle aconitase as a component of the RNase E-mediated RNA degradosome from Caulobacter crescentus (25). Although the Gram-positive bacterium Bacillus subtilis lacks an RNase E homologue, it has a functionally analogous ribonuclease (RNase J) that also interacts with glycolytic enzymes (26). The recurrence of stable interactions between ribonucleases and metabolic enzymes illustrates a remarkable evolutionary convergence that implies an important contribution of the interaction for organism fitness. Furthermore, the E. coli degradosome affects the abundance of transcripts encoding enzymes of central metabolism (20). Also suggestive of a link between RNA degradation and metabolism is the finding that PNPase activity can be regulated by nucleotides. In vitro, E. coli PNPase is allosterically inhibited by ATP (27), and its homologues from Nonomuraea sp. and Streptomyces are inhibited by the signaling molecule (p)ppGpp (28, 29). Although these observations implicate a communication between RNA degradative machines and central metabolism, evidence of such a linkage is missing.

Our earlier crystallographic studies of E. coli PNPase revealed the presence of citrate, originating from the crystallization buffer, at both the active site and at a “vestigial” active site,
PNPase Activity May Be Modulated by Metabolites in E. coli

which is related to the former through approximate molecular symmetry (30). These observations led us to explore whether citrate can affect the activity of E. coli PNPase in vivo and in vitro. Our data show that citrate influences PNPase activity in physiologically relevant concentration ranges. Our data also identify the vestigial active site of PNPase as a potential allosteric pocket that responds to metal-free citrate. Based on these findings, we propose a communication mechanism with feedback between RNA metabolism and central metabolism.

EXPERIMENTAL PROCEDURES

Ribonuclease Mutant Strain Growth Rate and Microarray Analyses

Ribonuclease null strains were provided by M. P. Deutscher (University of Miami). MG1655 Δ(rna) in which the frame-shift in the rph gene has been corrected was used as a parental control for the ribonuclease null strains; we will refer to this as wild-type throughout. MG1655 Δ(rna), MG1655 Δ(rna Δpnp::kan KanR), a PNPase null strain, and MG1655 Δ(rna Δpnp::kan KanR) Δ(rna Δrnb::Tn10 KanR), a RNase II/RNase R double null strain, were grown at 37 °C in M9-glucose in the presence or absence of 50 mM magnesium chloride, 50 mM sodium citrate. Total RNA was recovered and stored at −80 °C. Metabolite samples were extracted using a methanol-chloroform method (33) to generate dried cell extract of the aqueous metabolites.

Metabolite Measurements by 1H Nuclear Magnetic Resonance (NMR) Spectroscopy and Gas Phase Chromatography Mass Spectrometry (GC-MS)—Spectra were collected using a Bruker 500 MHz NMR spectrometer interfaced with a 5 mm TXI probe and processed using the ACD Labs one-dimensional NMR processor (ACD, Toronto, Canada) as previously described (34, 35). Dried aqueous extracts were derivatized before GC-MS as previously described (33). SIMCA-p + v.11.0 (Umetrics) was used for multivariate analysis. Data were processed using principal components analysis and partial least squares-discriminant analysis (PLS-DA). Details of these procedures are provided in the supplementary information.

Expression and Purification of PNPase Core

E. coli PNPase ΔK2AH (PNPase core) (36) was expressed using the auto-induction method (37) and purified as described previously (30).

Cloning, Overexpression, and Purification of PNPase and PNPase Core (R153A, R372A, R405A, R409A) Mutant

The pnp gene was generated by restriction digestion with Ncol and NotI from the pETDuet-1-pnp-enol (38). The pETDuet-1-pnp vector was constructed by subcloning the fragment of pnp bounded by Ncol and NotI into the multiple cloning site of expression vector pETDuet-1. The Arg-153 → Ala, Arg-372 → Ala, Arg-405 → Ala, and Arg-409 → Ala mutations were introduced into pnp using the QuikChange® site-directed mutagenesis method (Stratagene) with PCR primers PNPR153A_fw (5′-CCC GAT TGG TGC TCG CGT AGG TTA CAT CAA T-3′) and PNPR153A_rev (5′-ATT GAT GTA ACC TAC GGC GGC ACC AAC ATG GGC G-3′), PNPR372A-fw (5′-CTT GAT GAA CTG ATG GGC GAA GCT ACC GAT ACC TTC CT-3′) and PNPR372A_rev (5′-AGG AAG GTA TCG GTA GCT TCG CCC ATC AGT TCA AG-3′), and PNPR405A_R409A_fw (5′-GAA ATT GGT CAC GGT CTC GGT CGG AAG GCC GGC GTG C-3′) and PNPR405A_R409A_rev (5′-GCA CGC CGG CCT TCG CCA GAG CAC CGT GAC CAA TTT C-3′). The construct pETDuet-1-pnp was used as template for the site-directed mutagenesis experiments. The resulting construct pETDuet-pnp (R153A, R372A, R405A, R409A) was transformed into E. coli strain Rosetta (DE3). Cells were grown in an orbital shaker at 37 °C until the culture reached an absorbance at 600 nm of 0.5–0.6 and were then induced by the addition of 0.5 mM isopropl 1-thio-β-d-galactopyranoside at 20 °C overnight. The cells were harvested by centrifugation, resuspended in lysis buffer (20 mM Tris, pH 8.0, 150 mM NaCl, 5 mM MgCl2, 5 units/ml DNase I, 1 table/50 ml protease inhibitor mixture tablet), and lysed using a high pressure homogenizer (Emulsi-
PNPase Activity May Be Modulated by Metabolites in E. coli

Degradation Assays—The assay mix contained 0.05 mM poly(rA)-15-mer RNA, 10 mM MnSO₄ or MgCl₂, 10 mM phosphate, 20 mM Tris, pH 7.5, and 2 μM PNPase core with 0–20 mM sodium citrate. Assay samples were quenched with an equal volume of 200 mM EDTA at time 0 and 2 min after the addition of PNPase core. Assay samples (5 μl) were analyzed for RNA degradation by ion exchange HPLC (Dionex DNAPac 200 column, 25 °C, 0–1 mM NaCl gradient in 20 mM Tris buffer pH 8.0 run over 8 min at 1 ml/min). Chromatograms were processed and analyzed in Dionex Chromelon software.

Polymerization Assays—The assay mix contained 6.25 μM poly(rA)-15-mer RNA, 1 mM ADP, 20 mM Tris, pH 7.5, 1 mM MgCl₂, or 1 mM MnSO₄, 0–20 mM sodium citrate, and 2 μM PNPase. Five μl were quenched with an equal volume of 200 mM EDTA at time 0 and 1 min after the addition of PNPase core. Assay samples (5 μl) were analyzed for RNA polymerization by HPLC using the same conditions as for the degradation assay.

RESULTS

Citrate Affects PNPase Activity in Vivo—Whether PNPase activity is repressed by a metabolite in vivo can be evaluated by examining the impact of that metabolite on a strain that requires PNPase for viability. PNPase is essential in E. coli in the absence of either of the two other processive exoribonucleases, RNase II (39, 40) or RNase R (8, 41). A strain lacking RNase II and RNase R together is anticipated to be sensitive to the inhibition of PNPase activity because the double null mutants PNPase/RNase II (39, 40) and PNPase/RNase R (8, 41) are both inviable.

Within 30 min of adding magnesium-citrate to the culture medium, intracellular citrate levels increase significantly (supplemental Table S1). We observed that in the presence of 50 mM magnesium-citrate, an RNase II/RNase R double null mutant grew with a doubling time of 59.4 ± 3.2 min, compared with a doubling time of 49.0 ± 2.3 min in the absence of magnesium-citrate. In contrast, a PNPase null strain grew with similar doubling times in the presence and absence of 50 mM magnesium-citrate (53.5 ± 2.2 min in the presence of magnesium-citrate and 54.3 ± 2.6 min in the absence of magnesium-citrate). These observations suggest that magnesium-citrate has a negative effect on an RNase II/RNase R double mutant, probably through inhibition of PNPase, which is required for viability in this strain. The parental strain was also sensitive to exogenously added magnesium-citrate, growing with a doubling time of 49.2 ± 1.9 min in the presence of 50 mM magnesium-citrate and a doubling time of 48.7 ± 2.6 min in its absence. This was not unexpected as this strain contains both RNases II and R, which could compensate for any loss in PNPase activity (8, 39–41).

Identification of Transcripts Impacted by PNPase-mediated Citrate Response—To identify transcripts that may be affected in a PNPase-mediated response to magnesium-citrate, we utilized gene expression microarray analyses. Comparison of the relative abundance of mRNAs revealed that 126 genes respond differently upon the addition of magnesium-citrate to the growth media in the parental strain compared with the PNPase null strain (Fig. 1a). Of those genes, roughly half were also sensitive to a loss of PNPase alone (the mRNA level of 655 genes was altered in the PNPase null strain relative to the parental strain grown on normal media), whereas the remaining portion was uniquely affected, suggesting an additional level of gene regulation by PNPase in response to magnesium-citrate.

The affected genes were clustered based on gene ontology (supplemental Table S2, a and b). The broad groups of functionally clustered genes that are affected by PNPase loss are similarly affected by the PNPase-mediated magnesium-citrate response (Fig. 1b). Closer inspection of the sub-groupings indicates that the PNPase-mediated magnesium-citrate response specifically affects transcripts of enzymes involved in processes of amino acid and derivative metabolism, cellular biosynthesis, and organic acid metabolism (Fig. 1c).

The relative abundance of cirA, fkpA, gdhA, and rpoB mRNAs in the PNPase null and wild-type strains in the presence of magnesium-citrate were explored by quantitative RT-PCR after rifampicin treatment to inhibit transcription. cirA and fkpA have previously been reported to be regulated by PNPase (10, 20). These transcripts were affected in a PNPase-mediated magnesium-citrate response in both our quantitative RT-PCR (supplemental Table S3) and microarray analyses. In contrast, the gdhA and rpoB transcripts were not significantly affected by a PNPase-mediated magnesium-citrate response by either quantitative RT-PCR (supplemental Table S3) or microarray. There are conflicting reports in the literature as to whether gdhA and rpoB transcripts are affected (20) or unaffected (10) by the absence of PNPase. Nonetheless, our results support the hypothesis that PNPase is involved either directly or indirectly in the response to changes in magnesium-citrate concentration in vivo.

PNPase Impacts the Metabolome—Having shown that the metabolite citrate may affect PNPase activity in vivo, we next investigated whether PNPase activity levels influence the cellular metabolome. Such an influence would enable a feedback loop that may regulate metabolite levels through their reciprocal impact on PNPase activity. Metabolite concentrations for a...
PNPase null strain and the parental strain were determined by 1H NMR spectroscopy and gas chromatography mass spectrometry. Many metabolites throughout central metabolism are affected by the loss of PNPase (supplemental Fig. S1). Notably, the Krebs cycle metabolite succinate decreases, whereas citrate concentrations increase, the latter possibly reflecting the disruption of a feedback loop.

PNPase Activity May Be Modulated by Metabolites in E. coli

FIGURE 1. The impact of citrate on global gene expression. a, genes affected by citrate in a PNPase-dependent manner are shown. A plot of the log2 ratios for signal intensity for microarray probes in the presence of citrate relative to the absence of citrate for the wild-type strain versus the PNPase null strain is shown. This reflects the impact of citrate treatment on the relative mRNA abundance for the wild-type strain compared with the PNPase null mutant. Only shown are probes for which the relative abundance differs by 2-fold or more between the wild-type and PNPase null strain upon treatment with citrate. A single mRNA can be represented by multiple microarray probes. The data points are colored according to the x axis value (blue is negative, and red is positive) to aid visualization of individual points. b, the PNPase-mediated citrate response and PNPase ablation have a similar impact on gene expression. Genes affected by PNPase were determined by comparing the relative mRNA abundances that differ 2-fold or greater for the wild-type strain and a PNPase null strain in the absence of citrate. Genes affected by PNPase-mediated citrate response were determined as described in a. Groupings were made by Gene Ontology at the level of GO:0008150 Biological Process. c, PNPase-mediated citrate response broadly affects genes involved in cellular metabolic processes. Genes were grouped by Gene Ontology at the level of GO:0044237 Cellular Metabolic Process. In comparison to the genes that are affected by PNPase activity, those genes affected by citrate in a PNPase-dependent manner are involved more specifically with cellular amino acid and derivative metabolic processes, cellular biosynthetic processes, and organic acid metabolic processes than carbohydrate metabolic processes and cellular macromolecule metabolic processes.
PNPase Activity May Be Modulated by Metabolites in E. coli

The distribution of extracted metabolites may be represented graphically using principal components analysis to examine the variation of metabolite concentration and composition within the dataset and PLS-DA to identify significant metabolite differences between the PNPase null and parental strains. The projection maps in Fig. 2 are two-dimensional graphs of the dominant variations in the first two components of the PLS-DA scores. These representations show that it is possible to distinguish on the basis of metabolite distributions the PNPase null from the parental strain (Fig. 2a) as well as the degradosome null and its parent (Fig. 2b).

Collectively, these findings suggest that PNPase and the degradosome have a wide-ranging impact on metabolism. In contrast, mutants lacking single enzymes of central metabolism are reported to have small metabolome changes due to re-routing of metabolic fluxes (42). The more global effects of RNA degradative machines on metabolism suggest that they potentially contribute to robust metabolic regulation.

Citrate Affects PNPase Activity in Vitro—The mechanism of communication between the metabolite citrate and PNPase could be indirect, direct, or a combination of both effects. We next sought to investigate if citrate can interact physically with PNPase and modulate its activity in vitro. We tested the impact of both free citrate and magnesium–citrate as in vivo citrate can exist in free- and magnesium-chelated forms.

We first tested whether citrate can bind directly at physiologically relevant concentrations to PNPase. Interaction of magnesium–citrate with PNPase could be detected using surface plasmon resonance, and the K_D was determined to be in the low mM range (supplemental Fig. S3a). This is in the same concentration range as our observed intracellular citrate concentrations for E. coli grown in minimal media (supplemental Table S1) and values previously reported (43) (1.2–4.4 mM in minimal media with glucose or glycerol as carbon source, increasing to 22 mM in acetate minimal media). The affinity of PNPase for free citrate is roughly 10-fold lower than the affinity for magnesium–citrate (supplemental Fig. S3b). It is possible that free citrate and magnesium–citrate bind PNPase at the same site with magnesium, significantly enhancing the interaction. Alternatively, the free citrate and magnesium–citrate may bind at distinct sites; from recent structural data, this appears to be the case (see below and PDB code 3GCM; Ref. 30).

Having demonstrated that citrate can bind directly to PNPase at physiological concentrations, we next investigated its effect on PNPase activity. Degradation of RNA by PNPase in vitro requires inorganic phosphate and the presence of divalent metal cation as a co-factor with 10 mM Mg^{2+} being optimal. In the presence of mM concentrations of citrate, conditions in which the citrate would be predominantly complexed as magnesium–citrate given the Mg^{2+} concentration, the degradative activity of PNPase is inhibited (Fig. 3, a and b). The observed inhibition was not solely due to loss of available metal co-factor, as citrate remains inhibitory in the presence of Mg^{2+} in a 2-fold excess over citrate (Fig. supplemental Fig. S4b; degradation is inhibited in the presence of 5 mM citrate, 10 mM Mg^{2+}). Furthermore, manganese can substitute for magnesium as the catalytic metal in PNPase, and RNA degradation was unaffected in the presence of mM concentrations of manganese and citrate. This suggests that the inhibition seen with magnesium–citrate requires a specific ligand geometry and is not due simply to sequestering the required metal cofactor (Fig. 3b).

In addition to its degradative role, PNPase can also function as a polymerase, adding 3’ tails to transcripts (1, 12). This reaction is the reverse of degradation and is favored when nucleoside diphosphate rather than inorganic phosphate is present in...
excess. Optimal polymerization rates are achieved at low mM concentrations of divalent metal ions. Given that magnesium-citrate inhibits degradation, it would be expected that the chelate would also inhibit the polymerization activity. To test the effect of citrate on PNPase polymerization activity, we assayed the polymerization of ADP on an RNA substrate. At low concentrations of citrate, polymerization is inhibited, as expected (supplemental Fig. S4a).

Overall, our in vitro work suggests that PNPase is affected by the metabolite citrate. From our binding data, one high affinity site, potentially at the catalytic site, binds magnesium-chelated citrate to mediate an inhibitory effect on degradative activity. Support for metabolite binding sites within PNPase comes from structural studies discussed below.

Citrate in the PNPase Crystal Structure—The co-crystal of E. coli PNPase and RNA (30) was prepared in the presence of 200 mM citrate. In the 2.6 Å resolution structure (PDB code 3GCM) four molecules of citrate are seen bound to a PNPase protomer. Two are found at the catalytic site (Fig. 4, b and d) and two are located at a distant vestigial site (Fig. 4, b and e).

At the catalytic site the citrate molecules occupy the proposed location of the catalytic intermediate (Fig. 4c). One of the molecules has the conformation observed in the small molecule crystal structure of magnesium-citrate, and occupies the binding site for the orthophosphate substrate in PNPase. The adjacent second citrate mimics the position of the scissile phosphate in the backbone of the RNA (Fig. 4d). At these positions the citrate molecules would be expected to prevent the formation of the Michaelis complex and provide a potential means of enzyme inhibition, in accord with the observed inhibitory effects seen in vitro (Fig. 3b). Under conditions in which citrate is magnesium-chelated, the metabolite inhibits both the forward and backwards reactions, i.e. degradation as well as polymerization.

Evidence for an Allosteric Regulation Pocket in PNPase—In addition to the magnesium-citrate and unchelated-citrate mol-
PNPase Activity May Be Modulated by Metabolites in E. coli

The role of the vestigial site in PNPase has not been established. The observation that the PNPase vestigial site binds citrate in a similar manner to the true active site indicates a capacity for regulatory metabolite binding.

Under our in vitro assay conditions, when citrate is predominantly in the metal-free form, polymerization of the substrate is enhanced (Fig. 3c). Correspondingly, at high concentrations of citrate (30–60 mM), the reverse process, i.e. degradation, is also enhanced (supplemental Fig. S4b). These activating effects are entirely the opposite of the inhibition seen under conditions in which magnesium–citrate may be the predominant species. It must be emphasized that the above results do not violate the principle of microscopic reversibility; instead, they suggest that citrate has two different binding sites; one where it is an inhibitor as the metal-bound form and one where it is an activator in its metal-free state. Evidence that the activating effect is due to binding at a distinct site comes from the observation that free citrate enhances the polymerization reactions catalyzed by manganese (Fig. 3c), whereas inhibition by metal-bound citrate depends upon the nature of the metal. Inhibition is observed in the presence of equimolar amounts of magnesium and citrate but not in the presence of equimolar amounts of manganese and citrate (Fig. 3b).

We suggest that the activating effects are due to free citrate bound at the vestigial site. The interactions of the vestigial site with citrate molecules are mediated by guanidinium groups of several arginines that are conserved in PNPase homologues. Mutations of the conserved vestigial site arginines Arg-153, Arg-372, Arg-405, and Arg-409 to alanine completely abolished the enhancement effect of free citrate (Fig. 4f). Nevertheless, this mutant is also inhibited by magnesium citrate (supplemental Fig. S5), just as seen for the wild-type enzyme (Fig. 3b), supporting the hypothesis that the metal-chelated citrate acts at a different location from the vestigial site; e.g. the active site.

These data indicate that the vestigial active site is a ligand binding allosteric pocket that responds to metal-free citrate. The binding of a ligand at the vestigial site may influence the location of a β-ribbon formed by residues 362–375 that is part of a central ring controlling the entry of RNA to the active site (30) and in this manner could influence substrate channeling to and from the catalytic site through an allosteric mechanism.

DISCUSSION

Decades of efforts to engineer metabolic pathways have revealed the complex behavior of metabolite concentrations and pathway fluxes in response to changing levels of enzymes. These observations illustrate how cellular metabolism requires regulation not only at the level of individual enzymes but also at a broader level that orchestrates the activities of many different enzymes distributed among branching pathways (48, 49). One possible contribution to such control might be post-transcriptional regulation, mediated through the regulatory effects of metabolites on ribonucleases.

We initially found that citrate could bind to PNPase after crystallization of PNPase core (30). Such binding could have been an artifact due to the high concentration of citrate present in the crystallization buffer. Here we present substantial evi-
PNPase Activity May Be Modulated by Metabolites in E. coli

dence that the Krebs cycle metabolite citrate does modulate the activity of the processive exoribonuclease PNPase in vitro and in vivo at physiological concentrations and that PNPase activities impact on the metabolome. Our findings suggest a key role for PNPase in the normal cellular response to citrate.

At the protein level, we show that the enzymatic activity of PNPase is inhibited in the presence of magnesium-chelated citrate, and we propose that this is due to its binding at, and occluding the catalytic site. The inhibition is observed at concentrations that correspond to physiological ranges (Ref. 43 and this study). In a cellular context, both magnesium homeostasis and citrate flux may in principle affect PNPase activity.

We also observe that PNPase activity is enhanced in the presence of free citrate and propose that this is due to binding at a vestibial site and acting as an allosteric regulator. Our mutagenesis data confirm that the vestibial active site mediates the response to free-citrate and could be an allosteric site. Metalfree citrate could be the natural ligand or it may mimic the effect of a natural regulatory ligand yet to be identified.

The ability to modulate PNPase activity through metabolite binding provides a mechanism for wide-ranging regulation of RNA transcript levels in response to changes in the cellular environment. Our microarray gene expression analyses demonstrate that many transcripts are affected in a PNPase-mediated response to citrate. Inhibition of the degradative activity by magnesium-chelated citrate is anticipated to stabilize certain transcripts and decay intermediates or re-route the degradation through hydrolytic pathways, which are perhaps most costly in terms of product recycling. The impact of PNPase activity upon gene expression is likely to result in changes in the proteome, which in turn will result in changes in the metabolome. We show that cells lacking PNPase or degradosome-coupled PNPase activities differ in their metabolite concentrations when compared with parental strains. The other canonical components of the degradosome also seem to be involved in the regulation of the metabolome in response to environmental change (see the data for the null mutant of the DEAD-box helicase RhlB and parent in supplemental Table S4 and Fig. S6). This indicates that the activities of RNA degradative machines impact upon metabolic control.

Taken together our results support a link between the cellular metabolic status and RNA degradative activity. Metabolites impact on ribonuclease function, and this has a wide ranging impact on many transcripts, which in turn regulates the cellular proteome and metabolome. Finally, changes in the metabolome can feed back to modulate ribonuclease activity.

The metabolite-mediated PNPase effect shown here for E. coli is potentially conserved in PNPase homologues found in archaea and eukaryotes. Human PNPase regulates RNA import in the mitochondria (50), the location of the Krebs cycle, where citrate is present at low mM concentrations, comparable with the concentrations used in our studies. In addition, the PNPase vestibial site of unknown function, now proposed to be involved in responding to citrate or other metabolites, is evolutionarily conserved in the phosphorolytically inactive archael and eukaryotic exosome subunits (46, 47). A combination of wide ranging control by PNPase and the degradosome and the direct or indirect effects of metabolites on their constituent activities represents a hitherto unrecognized integrative control mechanism that regulates homeostasis and response to environmental change.

Acknowledgments—We thank Martyn Symmons, Steve Oliver, René Frank, James Milner-White, Kenny McDowall, A. J. Carpousis, Toby Gibson, Madan Babu, Kevin Brindle, and Sarath Janga for discussions. We thank A. J. Carpousis for providing E. coli strains with RNase E truncations, Murray Deutscher for the ribonuclease null strains used in the growth and microarray analyses, and George Mackie for providing the expression vector for core PNPase. We thank T. J. Ragan for assistance with microarray data collation and critical comments on the manuscript. We thank Hal Dixon for comments on earlier aspects of this work.

Note Added in Proof—A recent report identifies PNPase as a direct target of the messenger cyclic diguanylic acid in E. coli (51).

REFERENCES
1. Mohanty, B. K., and Kushner, S. R. (2000) Proc. Natl. Acad. Sci. U.S.A. 97, 11966–11971
2. Schuster, G., and Stern, D. (2009) Prog. Mol. Biol. Transl. Sci. 85, 393–422
3. Clements, M. O., Eriksson, S., Thompson, A., Luchcini, S., Hinton, J. C., Normark, S., and Rhen, M. (2002) Proc. Natl. Acad. Sci. U.S.A. 99, 8784–8789
4. Ygberg, S. E., Clements, M. O., Rytkönen, A., Thompson, A., Holden, D. W., Hinton, J. C., and Rhen, M. (2006) Infect. Immun. 74, 1243–1254
5. Yang, J., Iain, C., and Schesser, K. (2008) J. Bacteriol. 190, 3774–3778
6. Andrade, J. M., and Arraiain, C. M. (2008) RNA 14, 543–551
7. Awano, N., Inouye, M., and Phadatre, S. (2008) J. Bacteriol. 190, 5924–5933
8. Cheng, Z. F., and Deutscher, M. P. (2003) Proc. Natl. Acad. Sci. U.S.A. 100, 6388–6393
9. Deutscher, M. P. (2006) Nucleic Acids Res. 34, 659–666
10. Mohanty, B. K., and Kushner, S. R. (2003) Mol. Microbiol. 50, 645–658
11. Mohanty, B. K., and Kushner, S. R. (2006) Nucleic Acids Res. 34, 5695–5704
12. Slomovic, S., Portnoy, V., Yehudai-Reishe, S., Bronshtein, E., and Schuster, G. (2008) Biochim. Biophys. Acta 1779, 247–255
13. Viegas, S. C., Pfeiffer, V., Sittka, A., Silva, I. J., Vogel, J., and Arraiain, C. M. (2007) Nucleic Acids Res. 35, 7651–7664
14. Carpousis, A. J. (2007) Annu. Rev. Microbiol. 61, 71–87
15. Marcaida, M. J., DePristo, M. A., Chandran, V., Carposiss, A. J., and Luisi, B. F. (2006) Trends Biochem. Sci. 31, 359–365
16. Callaghan, A. J., Aurikko, J. P., Ilag, L. L., Günter Grossmann, J., Chandran, V., Kühnel, K., Poljak, L., Carposiss, A. J., Robinson, C. V., Symmons, M. F., and Luisi, B. F. (2004) J. Mol. Biol. 340, 965–979
17. Callaghan, A. J., Marcaida, M. J., Stead, J. A., McDowall, K. J., Scott, W. G., and Luisi, B. F. (2005) Nature 437, 1187–1191
18. Py, B., Higgins, C. F., Krish, H. M., and Carposiss, A. J. (1996) Nature 381, 169–172
19. Khermici, V., Poljak, L., Luisi, B. F., and Carposiss, A. J. (2008) Mol. Microbiol. 70, 799–813
20. Bernstein, J. A., Lin, P. H., Cohen, S. N., and Lin-Chao, S. (2004) Proc. Natl. Acad. Sci. U.S.A. 101, 2758–2763
21. Lopez, P. J., Marchand, I., Joyce, S. A., and Dreyfus, M. (1999) Mol. Microbiol. 33, 188–199
22. Morita, T., Kawamoto, H., Mizuta, T., Inada, T., and Aiba, H. (2004) Mol. Microbiol. 54, 1063–1075
23. Chandran, V., and Luisi, B. F. (2006) J. Mol. Biol. 358, 8–15
24. Erce, M. A., Low, J. K., March, P. E., Wilkins, M. R., and Takayama, K. M. (2009) Biochim. Biophys. Acta 1794, 1107–1114
25. Hardwick, S. W., Chan, V. S., Broadhurst, R. W., and Luisi, B. F. (2011) Nucleic Acids Res. 39, 1449–1459
26. Commichau, F. M., Rothe, F. M., Herzberg, C., Wagner, E., Hellwig, D.,
Lehnik-Habrink, M., Hammer, E., Völker, U., and Stülke, J. (2009) *Mol. Cell. Proteomics* **8**, 1350–1360

27. Del Favero, M., Mazzantini, E., Briani, F., Zangrossi, S., Tortora, P., and Dehò, G. (2008) *J. Biol. Chem.* **283**, 27355–27359

28. Gatewood, M. L., and Jones, G. H. (2010) *J. Bacteriol.* **192**, 4275–4280

29. Siculella, L., Damiano, F., di Summa, R., Tredici, S. M., Alduina, R., Gnoni, G. V., and Alifano, P. (2010) *Mol. Microbiol.* **77**, 716–729

30. Nurmohamed, S., Vaidialingam, B., Callaghan, A. J., and Luisi, B. F. (2009) *J. Mol. Biol.* **389**, 17–33

31. Khemici, V., Toesca, I., Poljak, L., Vanzo, N. F., and Carpousis, A. J. (2004) *Mol. Microbiol.* **54**, 1422–1430

32. Leroy, A., Vanzo, N. F., Sousa, S., Dreyfus, M., and Carpousis, A. J. (2002) *Mol. Microbiol.* **45**, 1231–1243

33. Le Belle, J. E., Harris, N. G., Williams, S. R., and Bhakoo, K. K. (2002) *NMR Biomed.* **15**, 37–44

34. Atherton, H. J., Gulston, M. K., Bailey, N. J., Cheng, K. K., Zhang, W., Clarke, K., and Griffin, J. L. (2009) *Mol. Syst. Biol.* **5**, 207–234

35. Pears, M. R., Cooper, J. D., Mitchison, H. M., Mortishire-Smith, R. J., Pearce, D. A., and Griffin, J. L. (2005) *J. Biol. Chem.* **280**, 42508–42514

36. Stickney, L. M., Hankins, J. S., Miao, X., and Mackie, G. A. (2005) *J. Bacteriol.* **187**, 7214–7221

37. Studier, F. W. (2005) *Protein Expr. Purif.* **41**, 207–234

38. Worrall, J. A., Görna, M., Crump, N. T., Phillips, L. G., Tuck, A. C., Price, A. I., Bavro, V. N., and Luisi, B. F. (2008) *J. Mol. Biol.* **382**, 870–883

39. Donovan, W. P., and Kushner, S. R. (1983) *Nucleic Acids Res.* **11**, 265–275

40. Donovan, W. P., and Kushner, S. R. (1986) *Proc. Natl. Acad. Sci. U.S.A.* **83**, 120–124

41. Cheng, Z. F., Zuo, Y., Li, Z., Rudd, K. E., and Deutscher, M. P. (1998) *J. Biol. Chem.* **273**, 14077–14080

42. Ishii, N., Nakahigashi, K., Baba, T., Robert, M., Soga, T., Kanai, A., Hirasawa, T., Naba, M., Hirai, K., Hoque, A., Ho, P. Y., Kakazu, Y., Sugawara, K., Igarashi, S., Harada, S., Masuda, T., Sugiyama, N., Togashi, T., Hasegawa, M., Takai, Y., Yugi, K., Arakawa, K., Iwata, N., Toya, Y., Nakayama, Y., Nishioka, T., Shimizu, K., Mori, H., and Tomita, M. (2007) *Science* **316**, 593–597

43. Bennett, B. D., Kimball, E. H., Gao, M., Osterhout, R., Van Dien, S. J., and Rabinowitz, J. D. (2009) *Nat. Chem. Biol.* **5**, 593–599

44. Symmons, M. F., Jones, G. H., and Luisi, B. F. (2000) *Structure* **8**, 1215–1226

45. Symmons, M. F., Williams, M. G., Luisi, B. F., Jones, G. H., and Carpousis, A. J. (2002) *Trends Biochem. Sci.* **27**, 11–18

46. Liu, Q., Greimann, J. C., and Lima, C. D. (2006) *Cell* **127**, 1223–1237

47. Schmid, M., and Jensen, T. H. (2008) *Trends Biochem. Sci.* **33**, 501–510

48. Daran-Lapujade, P., Rossell, S., van Gulik, W. M., Luttik, M. A., de Groot, M. J., Sliper, M., Heck, A. J., Daran, J. M., de Winde, J. H., Westerhoff, H. V., Pronk, J. T., and Bakker, B. M. (2007) *Proc. Natl. Acad. Sci. U.S.A.* **104**, 15753–15758

49. Hardiman, T., Lemuth, K., Keller, M. A., Reuss, M., and Siemann-Herzberg, M. (2007) *J. Biotechnol.* **132**, 359–374

50. Wang, G., Chen, H. W., Oktay, Y., Zhang, J., Allen, E. L., Smith, G. M., Fan, K. C., Hong, J. S., French, S. W., McCaffery, J. M., Lightowlers, R. N., Morse, H. C., 3rd, Koehler, C. M., and Teitell, M. A. (2010) *Cell* **142**, 456–467

51. Tuckerman, J. R., Gonzalez, G., and Gilles-Gonzalez, M. A. (2011) *J. Mol. Biol.*, in press
Supporting Information

Table S1. Estimates of intracellular citrate concentrations in *Escherichia coli* MG1655* I- and its PNPase null and RNase II/RNase R double null derivatives.

Table S2a. Genes affected by the absence of PNPase and/or in a PNPase-mediated response to citrate. Genes are listed according to their Gene Ontology groupings at the level of GO:8150, Biological Process. Genes in bold are affected both by the absence of PNPase and in a PNPase-mediated response to citrate. The magnitude of the changes are expressed as Log₂ ratios and are the average of duplicate experiments.

Table S2b. Genes affected by the absence of PNPase and/or in a PNPase-mediated response to citrate. Genes are listed according to their Gene Ontology groupings at the level of GO:44237, Cellular Metabolic Process. Genes in bold are affected both by the absence of PNPase and in a PNPase-mediated response to citrate. The magnitude of the changes are expressed as Log₂ ratios and are the average of duplicate experiments.

Table S3. Effect of Mg-citrate on PNPase-mediated transcript decay *in vivo*. The relative abundance of selected transcripts was measured by quantitative RT-PCR for the PNPase null and wild-type strains in the presence of citrate and compared to the relative abundances determined from microarray analysis.

Table S4. Summary of the main metabolite differences for PNPase null, degradosome null and RhlB null compared to the corresponding parental strains and response to environmental stress.

Data are for *E. coli* PNPase parent and null strains, degradosome parent and null strains and RhlB parent and null strains. Metabolite changes were detected using multivariate analysis following both NMR and GC-MS. Conditions and metabolic profiles: Comparing the degradosome null and parent without alpha-methyl glucoside (control), NMR data ($R^2 = 47\%$, $Q^2 = 95\%$) and GC-MS data ($R^2 = 41\%$, $Q^2 = 82\%$) and in the presence of alpha-methyl glucoside
(phosphosugar stress), NMR data ($R^2 = 63\%, Q^2 = 52\%$) and GC-MS data ($R^2 = 37\%, Q^2 = 82\%$). Comparing RhlB parent and RhlB null at 16 °C (cold shock): NMR data ($R^2 = 42\%, Q^2 = 49\%$) and GC-MS data ($R^2 = 29\%, Q^2 = 16\%$) and at 37 °C (control): NMR data ($R^2 = 31\%, Q^2 = 52\%$) and GC-MS data ($R^2 = 24\%, Q^2 = 28\%$). PNPase null vs PNPase parent: NMR data ($R^2=74\%; Q^2=98\%$) and GC-MS data ($R^2=70\%, Q^2=98\%$). Samples showing no change are labelled Nc; increases are labelled as + and decreases as -.
Figure S1. NMR spectra of metabolite extracts for degradosome parent vs. null strains.
High resolution 500 MHz ¹H NMR spectra are overlaid for parent and degradosome null strains of *E. coli* under normal growth conditions (black) or phosphosugar stress (blue). The salient differences are highlighted on the spectra with the increased metabolites indicated by green circles and decreased metabolites with red circles. The osmolytes betaine and proline are marked with yellow diamonds. These have opposing behavior under the two conditions. The numbered peaks are identified as the following compounds: 1) Isoleucine/ Valine/ Leucine, 2) Lactate, 3) Alanine 4) Lysine/ Leucine, 5) Lysine 6) Acetate, 7) N-acetyl groups. 8) Glutamate/ Glutamine, 9) Methionine, 10) Valine, 11) Proline, 12) Glutamate, 13) Pyruvate, 14) Succinate, 15) Methionine, 16) Lysine/ 2-oxoglutarate, 17) Histidine, 18) Betaine, 19) scyllo-inositol, 20) alpha-methyl glucoside, 21) Glycine, 22) Threonine, 23) Isoleucine, 24) α-glucose, 25) Tyrosine, 26) Tryptophan, 27) Phenylalanine

Figure S2. Summary of degradosome-mediated effects on metabolites of the glycolytic pathway and Krebs cycle.
Metabolites with red lettering are decreased in the degradosome null strain compared to the parent, while metabolites in green are increased. The transcripts encoding enzymes involved in the pathways are in blue.

Figure S3. Analysis of citrate and magnesium-citrate binding by PNPase.
Surface plasmon resonance was used to monitor magnesium citrate (A) and citrate (B) binding to immobilized PNPase core. The concentrations of magnesium citrate and citrate used were 0-4 mM and 0-16 mM respectively. The running buffer contained 20 mM Tris pH 7.5, 150 mM NaCl. The binding data for each magnesium citrate or citrate concentration at equilibrium is shown (red data points) and represents the average of triplicate experimental repeats. The steady state fit to the data (black line) gives a K_D of ~3 mM for magnesium citrate and ~25 mM for citrate. The binding response suggests that in both cases at least 2 molecules of citrate and magnesium citrate bind to the PNPase core monomer.
Figure S4. Mg-citrate inhibits polymerization (a), and free citrate enhances degradation (b)
(a) Mg-citrate inhibits PNPase polymerization activity: Assay conditions of excess dADP, 10 mM Mg$^{2+}$ (i) or Mg-citrate (ii). Chromatograms resolving RNA 15-mer (substrate) and RNA 16-mer produced by polymerization of dADP to 15-mer by PNPase core in the presence of Mg (i) and Mg-citrate (ii) at time 0 and 2.5 min post assay start. At 2.5 min, a significant amount of the 15-mer substrate has been polymerized to 16mer by the addition of dADP when only Mg$^{2+}$ is present whereas when Mg-citrate is present, the formation of 16-mer is reduced and 15-mer remains demonstrating Mg-citrate inhibition of polymerization.
(b) Free citrate enhances PNPase degradation activity: Assay conditions of excess PO$_4^-$, 10mM Mg$^{2+}$, increasing citrate concentrations (0-60 mM). Experimental details are described in the Materials and Methods. Percentage RNA degradation of 15-mer substrate by PNPase core is shown for varying citrate concentrations. At low citrate concentrations, when citrate will be present as Mg-citrate, we observe the expected inhibition. At high citrate concentrations, when free citrate is present over the Mg-citrate level, we begin to see enhancement of degradation activity.

Figure S5: Magnesium-citrate still inhibits PNPase degradation activity in the vestigial site mutant.
RNA degradation assay; shown is the amount of 15-mer RNA degraded, as a percentage, at the end of the assay period. Experimental details are in the Materials and Methods.

Figure S6. Effects of degradosome deficiency (a) and RhlB deficiency (b) on metabolic profiles and response to environmental stress.
a) Degradosome null. A projection map of the effects of degradosome deficiency on metabolic profiles. PLS-DA scores plots generated from the multivariate analysis of the aqueous metabolites extracted from the parent strain (■) and the degradosome null (Δ). Plots are shown for extracts from cells grown in LB medium and analyzed by NMR (upper left panel) or GC-MS (upper right panel). R^2 and Q^2 values are (NMR) 47%, 95% (GC-MS) 41%, 82%, respectively. Typically a $Q^2>40\%$, calculated by cross-validation of every sixth sample iteratively, is indicative of a robust and predictive model. The lower panels show the effects of degradosome deficiency on metabolic response to phosphosugar stress. Extracts from cells grown in the
presence of alpha-methyl glucoside, analyzed by NMR (lower left panel) and GC-MS (lower right panel). R^2 and Q^2 values are (NMR) 63%, 52%, (GC-MS) 37%, 82%, respectively.

b) RhlB null. PLS-DA scores plots generated from the multivariate analysis of the aqueous metabolites extracted from parent (●) and RhlB null (◊). NMR data (upper left panel) and GC-MS data (upper right panel) at 37 °C; the lower panels show the effects of RhlB deficiency on metabolic response to cold shock. NMR data (lower left panel) and GC-MS data (lower right panel) at 16 °C. R^2 and Q^2 values are respectively: 42%, 49% for NMR at 37 °C; 29%, 16% for GC-MS at 37 °C; 31%, 52% for NMR at 16 °C, and 24%, 28% for GC-MS at 16 °C.

Materials and Methods

Intracellular Citrate Concentration Measurements

Strains were provided by M.P. Deutscher (University of Miami, Florida). MG1655* Δ (Δrna) in which the frameshift in the rph gene has been corrected was considered wild-type. MG1655* Δ (Δrna), MG1655* Δ PNP’ ((Δrna Δpnp::kan KanR), a PNPase null strain, and MG1655* Δ II’ R’ ((Δrna Δrnb::Tn10 Δrnr::kan TetR KanR), a RNase II/RNase R double null strain, were grown at 37 °C in M9-glucose and intracellular citrate concentrations were determined before and 30 min after the addition of 50 mM magnesium chloride-50 mM sodium citrate.

Cells were harvested at 0.3 to 1.0 A_{600} by centrifugation for 5 min at 6000 g, or filtration with 47 mm diameter 0.2 micron membranes (PALL Life Science), rapidly frozen in liquid nitrogen, and then metabolites extracted using methanol-chloroform and sonication, as described below in the sub-section on metabolome analysis. Citrate concentrations were estimated from proton-NMR spectra from ratios of the integrate peaks for citrate and a 0.5 mM sodium-3-(trimethylsilyl)-2,2,3,3-tetradeuteriopropionate (TSP) reference and matching these with a calibration curve prepared using a range of citrate standards (0.1 to 3 mM). Intracellular volume was estimated using assumptions that $E. coli$ cell volume at mid-log growth is 0.65 x 10^{-12} ml and that 1 A_{600} corresponds to 10^9 cells/ml (1-2).
Quantitative RT-PCR

The PNPase null mutant and its parent K-12 *E. coli* wild-type strain (BW25113) were obtained from the NARA Institute of Genetics, Japan. The cells were grown in LB-enriched media to an optical density A_{600} of ~0.6 and then supplemented with 50 mM sodium citrate and 50 mM MgCl$_2$. 500 μg/ml of rifampicin was added to stop transcription. Samples were collected 5 min after the addition of the Mg-citrate and rifampicin. Total RNA was extracted (Qiagen RNeasy) and reverse-transcriptase polymerase chain reaction (RT-PCR) was performed using a one-step RT-PCR kit (Qiagen) with 50 ng of total RNA per reaction in a Techne Genius Thermal Cycler for 30 cycles. Primers for the transcripts tested were purchased from Eurofins MWG Operon.

The RT-PCR products were analyzed by agarose gel electrophoresis; this was followed by densitometry using the Syngene Gene Genius Bioimaging System (Syngene) and ImageJ software (NIH) for analysis of band intensity. Each transcript was tested in triplicate. For each experiment, the RT-PCR product was analyzed by gel electrophoresis in duplicate to account for error within each experiment. To assess the effect of citrate on transcript decay we calculated the relative abundance between the parent and PNPase null strains in the presence of citrate.

Metabolome analyses:

Cells and growth conditions *E. coli* MC1061-derivative strains including AC21 (RNase E-parent) and AC27 (RNase E lacking the last 477 residues from the C-terminal degradosome-scaffolding domain, i.e. a degradosome null strain) (3-4) and RhlB parent and SVK1 RhlB null strains were provided by A.J. Carpousis, (CNRS, Toulouse) and have a Tn10 marker linked to the *rne* allele. Strains were cultured at 37 °C in LB + antibiotic. Strains for phosphosugar stress experiments were grown in LB supplemented with 1% w/v alpha-methyl glucoside and strains for cold shock experiments were grown to an A_{600} ~0.6 and then grown overnight at 16 °C to induce cold shock. The MC1061 background used for these studies also contains the ara-leu 7696 deletion rendering the strain incapable of metabolizing arabinose and sensitive to the glucose analogue alpha-methyl glucoside; this is likely due to the deletion of SgsR-SgsS. Once at an A_{600} ~1, stains were harvested by centrifugation at 4200 g at 4 °C for 20 min. Samples were recovered and stored at -80 °C.
Sample extraction

Metabolite samples were extracted using a methanol-chloroform method (5) to generate dried cell extract.

Metabolite measurements by 1H NMR spectroscopy

Dried cell extract was rehydrated in 15 mM sodium phosphate buffered D$_2$O, pH 7.0, containing 1 mM (sodium-3-(tri-methylsilyl)-2,2,3,3-tetradeteriopropionate (TSP), and analyzed using an AVANCE II+ spectrometer operating at 500.13 MHz for the 1H frequency (Bruker, Germany) with a 5 mm TXI Inverse ATMA probe. Spectra were collected using: relaxation delay = 2 s, t_1= 4 μs, mixing time=150 ms, and processed using the ACD Labs 1D NMR processor (ACD, Toronto, Canada) as previously described (5-6). Spectral regions were normalized to a total value of 10000 and data were analyzed using PCA and PLS-DA techniques (SIMCA-P package (Umetrics, Sweden)).

Metabolite evaluation by gas phase chromatography mass spectrometry (GC-MS)

Dried aqueous extract was derivatized by methoxylation and silylation; samples were diluted (1:10) with hexane prior to GC-MS analysis in a Thermo Electron Corporation Trace GC-Ultra (Split/Splitless injector temperature 230 ºC, helium used as a carrier gas at flow rate 1.2 ml min$^{-1}$) as previously described (7). GC-MS chromatogram peaks were integrated individually (Xcalibur, version 2.0 (Thermo Electron)) and overlapping peaks were deconvoluted using a selection of single/multiple representative ions and structures were assigned (NIST database (2002)). The integrated peaks in a sample were normalised so that the total sum of peaks was 10000.

Data evaluation for NMR and GC-MS

SIMCA-P+ v.11.0 (Umetrics) used for multivariate analysis. Data processed using principal components analysis (PCA) and partial least squares-discriminant analysis (PLS-DA). Data were mean centered before univariate scaling for GC-MS analysis and Pareto scaling for NMR data. Statistical robustness was assessed using R^2and Q^2 values. Coefficients of a PLS-DA dataset describe the contribution of a variable to the overall model; these were used to determine variables that were significant to a given classification. Those coefficients with the highest modulus value and deemed to contribute significantly to a component, as assessed by a jack-knifing procedure within SIMCA, were selected.
Surface plasmon resonance analysis

PNPase core was immobilized covalently using amine coupling to the surface of a Biacore CM5 sensor chip (GE Healthcare). Immobilization levels obtained ranged from 1500 to 3000 RUs. Assessment of citrate and magnesium citrate binding were conducted by injecting 0-16 mM buffered citrate in 20 mM Tris pH 7.5, 150 mM NaCl or 0-4 mM buffered magnesium citrate in 20 mM Tris pH 7.5, 150 mM NaCl at flow rates of 30-90 µl/min for 30-60 s over the reference and test flow cells. A Biacore T100 instrument was used and the data collected was reference and buffer subtracted prior to steady state analysis using data fitting functions provided in the Biacore T100 Evaluation Software.

PNPase activity assays:

Degradation assay

The assay mix contained 0.05 mM 15-mer RNA, 10 mM MgCl₂, 10 mM phosphate and 2 µM PNPase core, with 0-60 mM sodium citrate. Assay samples were quenched with an equal volume of 200 mM EDTA at time 0 and 2 min following addition of PNPase core. Assay samples (5 µl) were analyzed for RNA degradation by ion exchange HPLC (Dionex DNAPac 200 column, 25 °C, 0-1 M NaCl gradient in 20 mM Tris buffer pH 8.0 run over 8 min at 1 ml/min). Chromatograms were processed and analyzed in Dionex Chromeleon software.

Degradation assay (vestigial site mutant)

The assay mix contained 0.05 mM 15-mer RNA, 10 mM MgCl₂, 10 mM phosphate and 2 µM PNPase vestigial site mutant, with 0-10 mM sodium citrate. Assay samples were quenched with an equal volume of 200 mM EDTA at time 0 and 2 min following addition of PNPase core. Assay samples (5 µl) were analyzed for RNA degradation by ion exchange HPLC (Dionex DNAPac 200 column, 25 °C, 0-1 M NaCl gradient in 20 mM Tris buffer pH 8.0 run over 8 min at 1 ml/min). Chromatograms were processed and analyzed in Dionex Chromeleon software.

Polymerization assays

The assay mix contained 6.25 µM poly(rA) 15-mer RNA, 100 µM dADP, 20 mM Tris pH 7.5, 10 mM MgCl₂, 0-10 mM sodium citrate and 2 µM PNPase. Five µl were quenched with an equal volume of 200 mM EDTA at time 0 and 2.5 min following addition of PNPase core.
Assay samples (5µl) were analyzed for RNA polymerization by HPLC using the same conditions as for the degradation assay.

References

1. Kubitschek, H. E. (1990) *J Gen Microbiol* **136**, 599-606

2. Sezonov, G., Joseleau-Petit, D., and D’Ari, R. (2007) *J Bacteriol* **189**, 8746-8749

3. Leroy, A., Vanzo, N. F., Sousa, S., Dreyfus, M., and Carpousis, A. J. (2002) *Mol Microbiol* **45**, 1231-1243

4. Vanzo, N. F., Li, Y. S., Py, B., Blum, E., Higgins, C. F., Raynal, L. C., Krisch, H. M., and Carpousis, A. J. (1998) *Genes Dev* **12**, 2770-2781

5. Le Belle, J. E., Harris, N. G., Williams, S. R., and Bhakoo, K. K. (2002) *NMR Biomed* **15**, 37-44

6. Pears, M. R., Cooper, J. D., Mitchison, H. M., Mortishire-Smith, R. J., Pearce, D. A., and Griffin, J. L. (2005) *J Biol Chem* **280**, 42508-42514
7. Atherton, H. J., Gulston, M. K., Bailey, N. J., Cheng, K. K., Zhang, W., Clarke, K., and Griffin, J. L. (2009) *Mol Syst Biol* 5, 259

8. Worrall, J. A., Gorna, M., Crump, N. T., Phillips, L. G., Tuck, A. C., Price, A. J., Bavro, V. N., and Luisi, B. F. (2008) *J Mol Biol* 382, 870-883
Table S1. Estimates of intracellular citrate concentrations in *Escherichia coli* MG1655* I-* and its PNPase null and RNase II/RNase R double null derivatives

Strain	Intracellular citrate concentration (mM)	M9 glucose media
		30 min post addition of 50 mM Mg-citrate
Parent	6.7	not measured
PNPase null	2.9	58.9
RNase II/RNase R double null	4.3	61.4
Table S2a. Genes affected by the absence of PNPase and/or in a PNPase-mediated response to citrate. Genes are listed according to their Gene Ontology groupings at the level of GO:8150, Biological Process. Genes in bold are affected both by the absence of PNPase and in a PNPase-mediated response to citrate. The magnitude of the changes are expressed as Log2 ratios and are the average of duplicate experiments.

Biological Process	GO Term	Gene	Function	Log₂ of the ratio of PNPase null (no citrate):Wild-type (no citrate)	Log₂ of the ratio of Wild-type plus citrate:Wild-type (no citrate)	Log₂ of the ratio of PNPase null plus citrate:PNPase null (no citrate)	Log₂ of the ratio of fold-change from wild-type plus/minus citrate and PNPase null plus/minus citrate
22610 biological adhesion	fimI	Required for pilus biosynthesis, FimA homolog	1.3809748	-1.0269284	-1.38238462	-2.958069183	1.575684542
	fliD	Hook-associated protein 2, axial family	0.097937983	0.097937983	0.097937983	0.097937983	0.097937983
	sfmA	Function unknown, FimA homolog	1.0271903	1.0271903	1.0271903	1.0271903	1.0271903
	ycgV	Overexpression increases adhesion and biofilm formation; probable adhesin, function unknown	1.2697777	1.2697777	1.2697777	1.2697777	1.2697777
	ygiL	Function unknown, FimA homolog	1.6353183	1.6353183	1.6353183	1.6353183	1.6353183
	ypjA	Overexpression increases adhesion, function unknown; OM autotransporter homolog	1.2955649	1.2955649	1.2955649	1.2955649	1.2955649
	znuA	High-affinity ABC transport system for zinc, periplasmic	-1.5015092	-1.5015092	-1.5015092	-1.5015092	-1.5015092
65007 biological regulation	acrR	AcrR transcriptional repressor for acrAB (AcrAB–ToIC multidrug efflux pump)	-1.0204067	0.96858206	1.712429133	-0.743840928	
	arcB	Tripartite sensor/histidine protein kinase; repression of aerobic genes and activation of some anerobic genes under anaerobic growth conditions; phosphorylates response regulator protein (ArcA); has respones regulator and second transmitter domains	1.0271903	1.0271903	1.0271903	1.0271903	1.0271903
	barA	Sensor histidine protein kinase, pleiotropic; controls the expression of csrB/C sRNAs; works in concert with UvrY response regulator	1.6353183	1.6353183	1.6353183	1.6353183	1.6353183
	cheA	Histidine protein kinase sensor of chemotactic response; CheY is cognate response regulator; autophosphorylating; CheAS is a short form produced by an internal start at codon 98	-1.1959176	-1.1959176	-1.1959176	-1.1959176	-1.1959176
	cheW	Chemotaxis signal transducer; bridges CheA to chemoreceptors to regulate phosphotransfer to CheY and CheB	-1.2323792	-1.2323792	-1.2323792	-1.2323792	-1.2323792
	cheY	Response regulator for chemotactic signal transduction; CheA is the cognate sensor protein Transcriptional activator for csgBA and other genes	-1.2030091	-1.2030091	-1.2030091	-1.2030091	-1.2030091
	csgD	-1.859434883	-1.859434883	-2.92246188	-1.567188696	-1.567188696	-1.567188696
Gene	Description	Expression 1	Expression 2	Expression 3			
------	---	--------------	--------------	--------------			
csiE	Stationary phase inducible protein; sigma S-dependent promoter	1.3574634					
cusS	Copper ion sensor regulating cusCFBA expression; may also sense silver	1.4919264					
cysB	Positive regulator for Cys regulon, acetylserine inducer; downregulates ssuEADCBC; cysteine desulfhydrase	1.4463767	0.350969162	1.095407548			
dcaR	C4-dicarboxylate regulation of anaerobic fumarate respiratory system; two-component system response regulator	1.0233135					
dcaS	C4-dicarboxylate regulation of anaerobic fumarate respiratory system; two-component system sensory histidine kinase	1.2036445					
deaD	Repressor for deo operon, nupG and tsx; binds deoxyribose-S-phosphate inducer	1.1617334					
deoR	Transcriptional activator of the dhaKLM operon	1.127254					
envY	Thermoregulatory activator of porin expression, ArsC family	1.679985					
fimB	Site-specific recombinase, fimbria promoter inversion; mediates flagellar phase switching, along with FimE	-1.1248107	0.473670149	1.76544683	-1.291776681		
flIC	Flagellin, structural gene, H-antigen	-1.5392385					
ftsI	Transpeptidase, PBPs; penicillin-binding protein 3 involved in septal peptidoglycan synthesis	2.2227626					
gadE	Transcriptional regulator of the gadABC operon	-1.613297865	1.91643444	-3.529732305			
galS	Repressor of the mgl operon and isorepressor of the gal operon; autoregulatory; homodimeric	1.2070372					
glcC	Transcriptional positive regulator for glc operon	1.077054					
gmr	Cyclic-di-GMP phosphodiesterase, csgD regulator; modulates protein stability of RtuP II	1.123914					
grxB	Glutaredoxin 2; regulated by RpoS and ppGpp	1.6855459					
hyFR	Formate-sensing regulator for hyf operon	1.2317433					
iscR	Transcriptional repressor for isc operon; contains Fe-S cluster; binds RNA in vitro	-1.1579247					
narQ	Nitrate/nitrite sensor-transmitter protein; anaerobic respiratory path; cognate regulator is NarP; function redundant with narX	1.0795679					
narX	Two-component nitrate/nitrite sensor-transmitter protein; NarL is cognate regulator; functional redundancy with narQ	1.0639569					
nhaA	Repressor of the nan operon, induced by sialic acid; homodimeric	1.6356357					
paaX	Phenylacetic acid degradation	1.0424947	0.378975841	-0.246470978	0.625446818		
Gene	Description	Log2 Value 1	Log2 Value 2	Log2 Value 3			
--------	--	--------------	--------------	--------------			
phoQ	Response to extracellular divalent cations, pH, and acetate; two-component response regulator, cognate to phoP	1.4622464					
prpR	Transcriptional regulator of prp operon; propionate catabolism via 2-methylcitrate cycle, characterized primarily in Salmonella	1.6797161					
purR	Purine regulon repressor	-1.0262108					
rcsA	Positive regulatory gene for capsule (colanic acid) synthesis; two regulatory proteins are derived from the same gene	0.300528606	-1.142561372	1.443089978			
rcsC	Negative regulatory gene for capsule (colanic acid) synthesis, controls sliminess; contains TerF; probable histidine kinase	-1.6430304					
rhaR	Transcriptional activator for rhaSR, AraC family	2.2165618					
rob	Right oriC-binding protein, AraC family	1.3771441					
rpsD	3OS ribosomal subunit protein S4; NusA-like antitermination factor	-1.0738251					
sgrR	Putative sgc cluster transcriptional regulator	1.3975518					
slyA	Activates cryptic hemolysin gene hlyE; global transcriptional regulator	1.015482					
rtpA	RNA chaperone and DNA-binding protein; suppresses T4 td mutant; modulates mic; stability; forms heteromers with, and stabilized against proteolysis by, the paralogous H-NS protein; transcriptionally repressed by H-NS	-1.2432377					
tar	Aspartate, maltose chemoreceptor, methyl-accepting; MCP II; also senses repellents cobalt and nickel; flagellar regulon	-1.1869416					
torS	Sensor kinase for torCAD operon	2.9209745					
treR	Repressor of trehalose operon	1.5542111					
trg	Ribose, galactose chemoreceptor, methyl-accepting; MCP III; flagellar regulon	-1.3795029					
tsr	Serine chemoreceptor, methyl-accepting; MCP I; also senses repellents; flagellar regulon	-1.9566808					
uxuR	Repressor for UxuR regulon; true inducer is fructuronate	1.0230589					
yahA	LysR family of transcriptional regulators, function unknown	-2.0166183					
yahB	LysR family of transcriptional regulators, function unknown	1.046875					
ybaO	Function unknown, Lrp family; putative transcriptional regulator	1.0301518					
ybeF	Putative LysR-family transcriptional regulator, function unknown	1.0823689					
ybhD	Putative LysR-family transcriptional regulator, function unknown	1.1145554					
yccA	Membrane-associated protein that binds to FtsH(HflB) and FtsK proteins; mutant YccA stabilizes SecY(Ts); suppression requires FIKC; YccA is a native substrate for the FtsH(HflB) protease	-1.0077734					
ydfT	Function unknown	1.6117142					
yecI	Function unknown	1.016995					
yegE	Putative c-di-GMP dual activity enzyme, function unknown	1.6381769					
yfaX	Putative transcriptional regulator, function unknown	1.2188423					
yfeG	Function unknown	1.1252446					
yfeR	Required for swarming phenotype, function unknown; predicted transcriptional regulator	1.2977767					
ygfF	Putative LysR-family transcriptional regulator, function unknown	1.4685719					
yhiF	Probable repressor of dctA dicarboxylate transporter gene	1.2616509	-1.6261956	0.509971635	-2.136167235		
Gene	Description	Log2 Fold Change					
-------	---	-----------------					
yhjB	Function unknown	1.5886974					
yjrK	Putative HTH transcriptional regulator with aminotransferase domain, unknown; MocR family	1.0690143					
ypdA	Putative sensor kinase, function unknown	-1.0332007					
yqeI	Part of T3SS PAI ETT2 remnant, ToxR homolog	-1.067694					
	16043 cellular component organisation						
	dbpA	ATP-dependent 3'-5' RNA helicase, specific for 23S rRNA	1.1279364				
flgF	Flagellar basal body rod subunit	-2.318077					
flgG	Flagellar basal body rod major subunit	-2.7651777					
flgJ	Flagellum-specific muramidase	-1.6338248					
flgK	Flagellar synthesis, hook-associated protein	-1.3041476					
flID	Hook-associated protein 2, axial family	-1.0269284					
flII	Cytoplasmic membrane ATPase involved in flagellar assembly; involving export of flagellar axial protein subunits	-2.8425198					
flIK	Hook filament junction; controls hook length	-2.6773417					
flIO	Flagellin export apparatus, integral membrane protein	-1.882103					
ftsI	Transpeptidase, PBP3; penicillin-binding protein 3 involved in septal peptidoglycan synthesis	2.2227626					
hofQ	MreB filaments participate in directional chromosome movement and segregation; murein resistance; forms membrane-associated coiled arrays; actin homolog; morphology	2.0593238					
mreB	UDP-N-acetylgulosamine enolpyruvyl transferase; fosfomycin resistance	-1.2009416					
yhbC	Function unknown						
ypdA	Putative sensor kinase, function unknown	-1.0332007					
	9987 cellular process						
	aaeA	AaeAB p-hydroxybenzoic acid efflux pump MFP component; membrane fusion protein	1.1153295				
abgB	Required for p-aminobenzoyl-glutamate usage	1.1240034					
accD	Acetyl-CoA carboxylase, carboxyltransferase beta subunit	-1.0916588					
acnA	Aconitase A, stationary phase induced; iron-sulfur cluster; apo-enzyme binds mRNA for negative translational autoregulation; negatively regulated by rhb RNA as part of indirect positive regulation by Fur	1.6737623					
acnB	Aconitase B; 2-methylacooxilate hydratase; apo-enzyme binds mRNA for negative translational autoregulation; iron-sulfur cluster; monomeric ACP carrier protein, ACoA phosphopantetheinyltransferase; Holo-ACP synthase	1.0271903					
acPS	AcrEF-ToIC efflux pump, multidrug/solvent resistance; osmotically remedial envelope defect	0.020738638					
acRF	AcrR transcriptional repressor for acrAB (AcrAB-ToIC multidrug efflux pump)	-1.0204067					
aclE	Alcohol dehydrogenase, anaerobic/ aerobic antioxidant; acetahydro-CoA dehydrogenase, CoA-linked; allyl alcohol resistance	1.0416784					
aclA	Arginase decarboxylase, acid-inducible; arginine-dependent acid base resistance	1.1271622					
Gene	Description	Value 1	Value 2	Value 3	Value 4		
------	-------------	---------	---------	---------	---------		
amtB	Ammonia gas channel; sequesters GlnK, a negative regulator of AmtB activity, to the inner membrane; bi-directional facilitated diffusion	1.316608					
ansA	L-Asparaginase I	-1.1030908					
ansB	L-Asparaginase II	1.5445883					
arcB	Tripartite sensor/histidine protein kinase; repression of aerobic genes and activation of some anaerobic genes under anaerobic growth conditions; phosphorylates response regulator protein (ArcA); has response regulator and second transmitter domains	2.5143914					
argA	N-acetylglutamate synthase; first step in arginine biosynthesis; amino-acid acetyltransferase; growth on acetylornithine	1.3041081	2.991781138	1.434967896			
argB	N-acetyl-gamma-glutamyl-phosphate reductase	1.044384	2.818308386	1.527225825	1.291082561		
argC	Acetylornithine aminotransferase; succinylaminomimidate aminotransferase, PLP-dependent	1.7869039	3.319065683	1.757350161	1.561715522		
argD	Acetylornithine aminotransferase; ornithine transcarbamylase; OTCase; CP4-6 putative prohage remnant	1.044384	2.818308386	1.527225825	1.291082561		
argF	Ornithine carbamoyltransferase; ornithine transcarbamylase; OTCase	2.345750989		0.780893261	1.564857729		
argG	Argininosuccinate synthase	2.6295392		1.468532017			
argH	Argininosuccinate lyase	1.2643517	2.489928442	1.442275936	1.047652506		
argJ	Ornithine carbamoyltransferase; ornithine transcarbamylase; OTCase	2.843476333	1.517740469	1.325735865			
arnT	4-amino-4-deoxy-L-arabinose(Ara4N):Lipid A transferase; modifies lipid A phosphates with aminoarabinose and confers resistance to polymyxin B and cationic antimicrobial peptides; glycolipid donor is undecaprenyl phosphate-alpha-L-Ara4N	1.0203366					
aroF	3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) synthase; tyrosine repressible; TyrR regulon	1.0875133					
aroK	Shikimate kinase I; alkali-inducible	-1.2647691					
asd	Aspartate semialdehyde dehydrogenase	-0.796322194	-1.579930631	0.783608438			
aspA	L-Aspartate ammonia-lyase; L-aspartase	3.0522566					
aspC	Aspartate aminotransferase, AspAT; kynurenine aminotransferase; glutamine transaminase	-1.0659509					
atpA	ATP synthase subunit alpha, membrane-bound, F1 sector	1.33844					
atpB	ATP synthase subunit a, membrane-bound, F0 sector	-1.0947847					
atpE	ATP synthase subunit c, membrane-bound, F0 sector; DCCD-binding	-1.2534213					
atpF	ATP synthase subunit b, membrane-bound, F0 sector	-1.1470773					
atpH	ATP synthase subunit delta, membrane-bound, F1 sector	-1.1472812					
barA	Sensor histidine protein kinase, pleiotropic; controls the expression of csrB/C sRNAs; works in concert with UvrY response regulator	1.6353183					
bcr	Biotin synthase; dethiobiotin to biotin pathway; iron-sulfur enzyme	-1.5355635	-0.360614381	0.797467665	-1.158082046		
bioB	Biotin synthesis blocked prior to pimeloyl CoA formation; putative SAM-dependent methyltransferase	-1.0316381					
bioC	7-keto-8-amino pelargonic acid synthase	-1.3357835	0.006936511	1.062414033	-1.055477522		
cheA	Histidine protein kinase sensor of chemotactic response; CheY is cognate response regulator; autophosphorylating; CheAS is a short form produced by an internal start at codon 98	-1.1959176					
cheW	Chemotaxis signal transducer; bridges CheA to chemoreceptors to regulate phophotransfer to CheY and CheB	-1.2323792					
Gene	Description	Fold Change					
------	-------------	-------------					
cheY	Response regulator for chemotactic signal transduction; CheA is the cognate sensor protein	-1.2030091					
cheZ	CheY-P phosphatase	-1.0379796					
citE	Putative citrate lyase beta chain	1.1568863					
citG	Putative cit operon gene, function unknown	2.3438559					
cld	Regulator of lipopolysaccharide O-chain length; gene studied in Salmonella and non-K-12 strains	-1.0316088					
coaA	Pantothenate kinase	1.1887982					
cobC	Probable alpha-ribazole-5'-phosphate phosphatase; potential partial cobalamin biosynthesis pathway	1.7467084					
csgD	Transcriptional activator for csgBA and other genes	1.859434883					
csgE	Stationary phase inducible protein; sigma S-dependent promoter	1.3574634					
cusS	Copper ion sensor regulating cusCFBA expression; may also sense silver	1.4919264					
cyoB	Cytochrome o oxidase subunit I; cytochrome bo(3) ubiquinol oxidase subunit	1.0475307					
cysB	Positive regulator for Cys regulon, acetylserine inducer; downregulates ssuEADCB; cysteine desulfhydrase	0.442750627					
cysD	Sulfate adenylyltransferase	-1.4373238					
dhpA	Dihydrosqualene reductase	1.449806213					
dcuR	C4-dicarboxylate regulation of anaerobic fumarate respiratory system; two-component system response regulator	1.0233135					
dcm	C4-dicarboxylate regulation of anaerobic fumarate respiratory system; two-component system sensory histidine kinase	1.2036445					
deaD	Periplasmic, membrane-associated serine endoprotease; protease Do, required for high-temperature growth and the degradation of damaged proteins	1.1617334					
degP	Repressor for deo operon, nupG and tsx; binds deoxyribose-5-phosphate inducer	-0.366102641					
deoR	Transcription activator of the dhaKLM operon	1.2066016					
dhrA	DXP synthase; DXP is precursor to isoprenoids, thiamin, pyridoxol	1.127254					
dks	Enolase; phosphoprotein; component of RNA degradosome	1.8676739					
eno	Periplasmic murein hydrolase septal ring factor; sensitivity to crystal violet; filamentous	1.0622171					
envC	Thermoregulatory activator of porin expression, AnaC family	1.3034105					
envY	Ethanolamine ammonia lyase, large subunit, adenosylcobalamine-dependent; concerted induction requires both B12 and ethanolamine; heterodimeric	1.7656298					
eutB	Hexuronate permease, for glucuronate and galacturonate	1.0179187					
fabB	Enoyl-ACP reductase, NADH dependent	1.148054475					
fabI	Enoyl-ACP reductase	1.49240165					
Gene	Description	Protein 1	Protein 2	Protein 3			
------	-------------	-----------	-----------	-----------			
fbaB	Fructose 1,6-bisphosphate aldolase, class I	1.0204077					
fcl	NADPH-dependent GDP-L-fucose synthase, colanic acid synthesis; two step reaction at a single active site: GDP-4-keto-6-deoxy-D-mannose epimerase, then reductase	1.6897135					
fepE	Fermenterobactin transport, membrane protein; regulator of length of O-antigen component of lipopolysaccharide chains	-1.1662078					
fimB	Site-specific recombinase, fimA promoter inversion; mediates flagellar phase switching, along with FimE	-1.1248107	0.473670149	1.76544638			
fimD	Required for pilus biosynthesis, FimA homolog	1.3809748					
fkpA	Periplasmic peptidylprolyl cis,trans isomerase; heat shock inducible; PPIase-independent chaperone activity, binds FK506	1.2272221					
flgB	Flagellar basal body rod subunit	-2.9897075	2.114201933	3.5668911			
flgC	Flagellar basal body rod subunit	-3.2366333	1.918144667	3.290344417			
flgE	Flagellar hook subunit protein	-3.2993827	1.879339905	3.128954345			
flgF	Flagellar basal body rod subunit	-2.3180777	1.813582677	2.829423308			
flgG	Flagellar basal body rod major subunit	-2.7651777	1.721089011	2.746398912			
flgH	Flagellar synthesis, basal body L-ring lipoprotein	-1.9212251	1.901291464	2.870884957			
flgI	Basal body P-ring flagellar protein	-2.6527514					
flgJ	Flagellum-specific muramidase	-1.6338248					
flgK	Flagellar synthesis, hook-associated protein	-1.3041476					
flgL	Flagellar synthesis, hook-associated protein	-1.0269798					
flgC	Flagellin, structural gene, H-antigen	-1.5392385					
flgD	Hook-associated protein 2, axial family	-1.0269284					
flfF	Flagellar basal body M-ring protein	-2.1452103	2.21798513	3.623918913			
flfG	Rotor protein for flagellar motor switching and energizing; role in flagellar assembly	-2.774952	2.13065744	3.2673922			
flfH	Negative regulator of FlII ATPase activity; involved in flagellar assembly and export	-2.0643058	1.950296025	2.756911638			
flfI	Cytoplasmic membrane ATPase involved in flagellar assembly; involved in export of flagellar axial protein subunits	-2.8425198	2.053080188	3.095328983			
flfJ	Flagellin export apparatus soluble	-1.861196	2.017483883	2.880704117			
flfK	Hook filament junction; controls hook length	-2.6773417	1.939810007	2.765864679			
flfL	Affects rotational direction of flagella during chemotaxis	-1.5788474					
flfM	Flagellar synthesis, motor switching and energizing	-2.7464433	2.032106006	2.845598856			
flfN	Flagellar switch protein	-1.9425316					
flfO	Flagellin export apparatus, integral membrane protein	-1.882103					
flfP	Flagellin export apparatus, integral membrane protein	-1.3490691					
flfQ	Flagellin export apparatus, integral membrane protein	-1.7036285					
folE	GTP cyclohydrolase I	-1.0409135					
ftsI	Transpetidase, HBP3; penicillin-binding protein 3 involved in septal peptidoglycan synthesis	2.2227626					
ftsN	Cell division and growth; multicyclic suppresses ftsA12	1.7090788					
fusA	Elongation Factor EF-G; GTase required for translocation from the A-site to the P-site in the ribosome; fusidic acid resistance	-1.1621015					
gabP	GABA permease, membrane protein	1.2657433					
gadA	Glutamate decarboxylase A	1.1232334					
gadB	Glutamate decarboxylase B, vitamin B6-dependent; hexameric	1.0481529					
gadE	Transcriptional regulator of the gadABC operon	-1.613297865	1.91643444	3.529732305			
gaoK	Galactokinase	1.7365794					
Gene	Description	Log2 Fold Change	P-Value				
------	-------------	-----------------	---------				
galS	Repressor of the mgl operon and isorepressor of the gal operon; autoregulatory; homodimeric	1.2070732					
galA	Galactitol-specific enzyme IIA of phosphotransferase system (PTS)	-1.6841471					
galC	Galactitol-specific enzyme IIC of PTS	-1.4637866					
galY	D-Tagatose-1,6-bisphosphate aldolase, class II; requires GatZ subunit for full activity and stability	-1.1761272					
galZ	Tagatose bisphosphate aldolase GatYZ subunit; required for full activity and stability of GatY	-1.2347231					
gcl	Glyoxylate carboligase, glyoxylate-inducible	1.2727609					
gdhA	Glutamate dehydrogenase	-0.965960622	2.004323596	1.038362974			
gif	UDP-galactopyranose mutase	-1.4456341					
glgA	Uroporphyrinogen III cosynthase; neomycin sensitivity	-0.611356637	-1.254026216	0.642669579			
glgB	1,4-alpha-glucom branching enzyme; glycogen branching enzyme	1.0104895	-0.518011066	-1.447500807	0.929489741		
glgC	Glucose-1-phosphate adenylyltransferase; ADP-glucosepyrophosphorylase	1.077054	-0.717255721	-1.435926535	0.718670815		
glnA	Glutamine synthase	1.0619159					
glk	Glycerol kinase	1.7542315					
gpyA	Serine hydroxymethyltransferase; binds Zn(II)	-1.2570169					
gpyS	Glycine-β-tRNA ligase, beta-subunit	-1.1524415					
gmr	Glycogen synthase						
gntU	Decarboxylating						
gntU	Low-affinity glucione transport protein, membrane protein	1.0674934					
gpmA	Phosphoglycerate mutase 1, 2,3-bisphosphoglycerate-dependent; Fur regulon; homodimeric	-1.1640095					
grpE	Cyclic-di-GMP phosphodiesterase, csgD regulator; modulates protein stability of RNase II 6-phosphogluconate dehydrogenase, decarboxylating						
grxB	Cyclic-di-GMP phosphodiesterase, csgD	-1.1842852					
glpK	Nucleotide exchange factor for the DnaKJ chaperone; heat shock	1.123914					
gnd	Nucleotide exchange factor for the DnaKJ chaperone; heat shock	-1.1524415					
gntU	Decarboxylating						
gntU	Low-affinity glucione transport protein, membrane protein	1.0674934					
gntU	Phosphoglycerate mutase 1, 2,3-bisphosphoglycerate-dependent; Fur regulon; homodimeric	-1.1640095					
gpmA	Nucleotide exchange factor for the DnaKJ chaperone; heat shock protein; mutant survives lambda induction; stimulates DnaK and HscC	-1.1524415					
grxB	ATPase						
grxB	Glutaredoxin 2; regulated by RpoS and ppGpp	1.6855459					
gspC	Part of H-NS-silenced gsp divergon, type II protein secretion; cloned gsp divergon secretes ChiA	1.2146425	-0.862021266	-2.680390988	1.818369721		
gspD	Part of H-NS-silenced gsp divergon, type II protein secretion; OM secretin; cloned gsp divergon secretes ChiA	1.3587675	-0.682033174	-2.018471739	1.336448565		
gspE	Part of H-NS-silenced gsp divergon, type II protein secretion; cloned gsp divergon secretes ChiA	-0.574179631	-1.777101815	1.202922185			
gspF	Pseudopilin in H-NS-silenced gsp divergon, type II protein secretion; cloned gsp divergon secretes ChiA	1.0381198	-0.571663549	-1.758766291	1.871127424		
gspG	Pseudopilin in H-NS-silenced gsp divergon, type II protein secretion; cloned gsp divergon secretes ChiA	1.3308105	-0.964730177	-2.1795117	1.214781523		
gspH	Part of H-NS-silenced gsp divergon, type II protein secretion; cloned gsp divergon secretes ChiA	1.1772904					
gspI	Part of H-NS-silenced gsp divergon, type II protein secretion; cloned gsp divergon secretes ChiA	0.112665963	-0.927333212	1.039999175			
gspJ	Part of H-NS-silenced gsp divergon, type II protein secretion; cloned gsp divergon secretes ChiA	0.136944905	-1.110237463	1.247182368			
gspK	Part of H-NS-silenced gsp divergon, type II protein secretion; cloned gsp divergon secretes ChiA	-0.002275476	-0.831979946	0.829704469			
hcaE	3-phenylpropionate/cinnamic acid dioxygenase, alpha subunit; hca genes catalyze 3-phenylpropionate and cinnamic acid, feeding the products into the the mhp pathway	1.170918					
hemB	5-aminolevulinate dehydratase; also known as porphobilinogen synthase; binds Zn(II)	-1.1517999					
hemD	Hematoporphyrinogen III cosynthase; neomycin sensitivity	1.0766261					
hisS	His-HOMA-2,2-tRNA ligase	-1.0382023					
Gene	Description	Log2 FC	Log10 P	E-Value			
------	-------------	---------	---------	---------			
hofC	Homologous to PilC of P. aeruginosa; function not established, insertion mutation gives no phenotype	1.3816845					
hofQ	Required for the utilization of DNA as a carbon source; H. influenzae competence protein ComE homolog; putative fimbrial transport protein; expression not detected	2.0593238					
hsdM	DNA methyltransferase M, host modification of foreign DNA	1.1989958					
hsrA	Putative transporter, blocks RspA-mediated RpoS down-regulation; membrane protein; overexpression causes homocysteine accumulation due to MetE inhibition and methionine auxotrophy in absence of cobalamin; no overexpression resistances found	1.1956267					
hyfR	Formate-sensing regulator for hyf operon	1.2317433					
ilvC	Ketol-acid reductoisomerase	-1.023338	0.6079059	1.4310360			
ilvN	Ketoisovalerate reductoisomerase	1.3380057	-0.5149162	1.8529219			
insA	6	1.4929194					
insA	7	1.4931407					
insC	6	1.4933076					
insD	6	1.874304					
insF	5	1.4364634					
insG	IS4 gene, transposition function	1.3130264					
insI	3	2.618895					
iscR	Transcriptional repressor for isc operon; contains Fe-S cluster; binds RNA in vitro	-1.1579247					
iscS	Cysteine desulfurase used in synthesis of Fe-S clusters and 4-thiouridine; Thil transpersulfidase; SnR(TuA) transpersulfidase; pyridoxal phosphate cofactor linked to Lys206	-1.2212651					
iscU	Iron-sulfur cluster assembly scaffold protein	-1.092907					
ispE	4-diphosphocytidyl-2-C-methylerythritol kinase; isopentenyl phosphate kinase; alternative nonmevalonate (DXP) pathway for terpenoid biosynthesis; essential gene	2.0409093					
katE	Catalase hydroperoxidase II, heme d-containing; response to oxidative stress; chromate resistance	1.2447912					
katG	Catalase-hydrogen peroxidase I	0.2086427	-0.6109206	0.8195636			
kdgR	Regulator of kdgK, kdgT, eda; possibly regulates several other genes, e.g. yjgK	-1.064749					
kdtA	4-deoxy-L-threo-5-hexulosate-uronate ketol-isomerase; 5-keto-4-deoxyuronate isomerase	1.5366621					
kduI	NEM-activatable K+/H+ antiporter	1.4980454					
kexB	alpha-Ketoglutarate permease	0.1064749					
ldpA	4-deoxy-L-threo-5-hexulosate-uronate ketol-isomerase; 5-keto-4-deoxyuronate isomerase	1.0485537					
ldcA	alpha-Isopropylmalate synthase	-0.4147983	-1.4320331	1.0172347			
leuA	alpha-Isopropylmalate synthase	-0.1994555	-1.2355860	1.0361304			
leuB	beta-Isopropylmalate dehydrogenase	-0.4152284	-1.4672042	1.0519758			
leuC	alpha-Isopropylmalate isomerase large subunit	-0.1702464	-1.1956920	1.0172347			
leuD	alpha-Isopropylmalate isomerase small subunit	-0.9538244	0.2085277	-1.6235221			
lpxL	Lipid A synthesis, KDO2-lipid IVA lauroyl-ACP acyltransferase; not under heat shock regulation; membrane protein affecting cell division, growth, and high-temperature survival	1.2080741					
lpxM	Lipid A synthesis, KDO2-lauroyl-lipid IVA myristoyl-ACP acyltransferase	1.418642					
Gene	Description	Log2 Fold Change	p Value	FDR Corrected p Value			
------	-------------	-----------------	---------	-----------------------			
map	Methionine aminopeptidase	-1.051142	1.0087	2.581150826			
mdtB	mdlB ABC exporter permease-ATPase, function unknown	1.090272					
mdtD	MdtEF-ToLC multidrug resistance efflux transporter; membrane fusion protein (MFP) component, lipoprotein; overexpression resistance to erythromycin, deoxycholate, octane and rhodamine; no mutant phenotype	1.009489					
mdtE	MdtEF, TolC multidrug resistance efflux transporter; membrane fusion protein (MFP) component, lipoprotein; overexpression resistance to erythromycin, deoxycholate, octane and rhodamine; no mutant phenotype	1.103848	-0.943962914	1.637187912			
mdlA	Transcriptional regulator of csgD	1.208386					
motA	H+–driven stator protein of flagellar rotation	-1.1367812					
mreB	MreB filaments participate in directional chromosome movement and segregation; mecillinam resistance; forms membrane-associated coiled arrays; actin homolog; morphology	-0.813851					
murA	Nicotinate mononucleotide adenylyltransferase, NAD(P) biosynthesis	1.1660845					
napA	Nitrite reductase, periplasmic	1.479877					
narQ	Two-component nitrate/nitrite sensor–transmitter protein; NarL is cognate regulator; functional redundance with narQ	1.0639569					
narX	Two-component nitrate/nitrite sensor–transmitter protein; NarL is cognate regulator; functional redundance with narQ	1.0795679					
nlpI	Lipoprotein, osmotic sensitivity and filamentation	1.0079885					
nudD	Outer membrane protease VII, DLP12 prophage; OM protein 2b; omptin	1.1124482					
oxc	Probable oxalyl-CoA decarboxylase, oxalate catabolism	-1.2738028					
paaA	Phenylacetic acid degradation; mutants are unable to use phenylacetate as a carbon source	1.2441832					
paaX	Phenylacetic acid degradation	1.0424947	0.378975841	-0.246470978			
panB	Ketopantoate hydroxymethyltransferase	-1.0029793					
pcdB	Poly(A) polymerase; controls plasmid copy number; rare AUU start codons, growth-rate regulated; monomeric	2.1234794					
pheA	2-hydroxyacid dehydrogenase involved in pyridoxine biosynthesis upstream of 4-phospho-hydroxy-threonine; isoniazid resistance	1.6453347					
pheB	Phenylalanine synthesis, bifunctional: chorismate mutase (N) and prephenate dehydratase (central); also contains Phe-binding regulatory domain (C); PPA resistance	-1.0391736					
phoQ	Response to extracellular divalent cations, pH, and acetate; two-component response regulator, cognate to phoP	1.4622464					
prfA	Peptide chain release factor 1, RF-1; translation termination factor recognizes UAG and UAA.	1.1244482					
Gene	Description	Log2 Ratio	E-Value	P-value			
--------	--	------------	----------	----------			
prpR	Transcriptional regulator of prp operon; propionate catabolism via 2-methylcitrate cycle, characterized primarily in Salmonella	1.6797161					
purF	Amidophosphoribosyltransferase, puromidine synthesis; also known as glutamine 5'-phosphoribosylpyrophosphate amidotransferase, GPATase	1.5669665					
purR	Purine regulon repressor	-1.0262108					
puuD	gamma-Glutamyl-GABA hydrolase, putrescine utilization pathway	1.0298939					
puuP	Putrescine importer	1.1621327					
pyrB	D-ribose pyranose; interconverts beta-pyran and beta-furan forms of D-ribose; related to fucose mutarotase FucU	2.40538492	1.399913513	1.005471179			
rbsD	Positive regulatory gene for capsule (colanic acid) synthesis; two regulatory proteins are derived from the same gene	-1.7281728					
rcsA	Negative regulatory gene for capsule (colanic acid) synthesis, controls sliminess; contains TerF; probable histidine kinase	0.300528606	-1.142561372	1.443089978			
rcsC	UDP-4-glucose: (galactosyl)LPS-glucosyltransferase	1.8229611					
rfaJ	Glycosyltransferase needed for heptose region of LPS core	-1.0780096					
rfaS	LPS core, not affecting attachment of O antigen	-1.0442805					
rfaZ	TDP-glucose pyrophosphorylase; glucose-1-phosphate thymidyltransferase; needed for dTDP-L-rhamnose synthesis	-1.3851705					
rfaA	TDP-glucose oxidoreductase-4,6 dehydratase	-1.325498					
rfaB	dTDP-4-deoxyrhamnose-3,5-epimerase	-1.3006554					
rfaC	Putative polyisoprenol-linked O-antigen translocase	-1.0625052					
rfaD	GTP cyclohydrolase II, riboflavin biosynthesis, 3,4-dihydroxy-2-butanone 4-phosphate synthase; riboflavin biosynthesis; acid-inducible; homodimeric	-3.7772803	0.081360818	1.346423538	-1.265062721		
rob	Right oriC-binding protein, AraC family	1.3771441					
rplB	SOS ribosomal subunit protein L2; binds Zn(II)	1.1556873					
rplC	SOS ribosomal subunit protein L3	-1.0714864					
rplF	SOS ribosomal subunit protein L6; gentamicin sensitivity	-1.1512773					
rplD	SOS ribosomal subunit protein L15	-1.0819453					
rplP	SOS ribosomal subunit protein L16	-1.1343815					
rplQ	SOS ribosomal subunit protein L17	1.612936					
rplU	SOS ribosomal subunit protein L21	-1.2566199					
rplX	SOS ribosomal subunit protein L24	-1.030241					
rpmG	SOS ribosomal subunit protein L33	-1.1044912					
rpsC	SOS ribosomal subunit protein S3	-1.4378805					
rpsD	30S ribosomal subunit protein S4; NusA-like antitermination factor	-1.0738251					
rpsG	30S ribosomal subunit protein S7	-1.2602897					
rpsH	30S ribosomal subunit protein S8	-1.019196					
rpsK	30S ribosomal subunit protein S11	-1.0231135					
rpsM	30S ribosomal subunit protein S13	-1.0838764					
rpsQ	30S ribosomal subunit protein S17	-1.0870361					
rrmJ	1.1538243						
Gene	Function						
------	----------						
rspA	Bifunctional D-altronate/D-mannonate dehydratase; overproduction prevents homoserine lactone-induced synthesis of RpoS						
sdcH	Succinate dehydrogenase (SQR) cytochrome b556; membrane anchor; succinate:ubiquinone oxidoreductase (SQR); complex II of aerobic respiration						
sdcD	Succinate dehydrogenase (SQR) hydrophobic subunit; succinate:ubiquinone oxidoreductase (SQR); complex II of aerobic respiration						
secB	General protein chaperone; SecG inner membrane secretion protein; complexes with and assists the SecYE core translocon to interact with SecA to export proteins						
secA	D-3-Phosphoglycerate dehydrogenase						
sfnA	Function unknown, FimA homolog						
sgcR	Putative sgc cluster transcriptional regulator						
slyA	Activates cryptic hemolysin gene hlyE; global transcriptional regulator						
sodA	Superoxide dismutase, Mn						
sodB	RNA chaperone and DNA-binding protein; suppresses T4 ld mutant; modulates micF stability; forms heteromers with, and stabilized against proteolysis by, the paralogous H-NS protein; transcriptionally repressed by H-NS						
tsgA	Aspartokinase I and homoserine dehydrogenase I, bifunctional						
tig	Trigger factor, protein folding chaperone; also peptidyl-prolyl cis-trans isomerase; interacts with nascent polypeptide chains						
torS	Sensor kinase for torCAD operon						
tref	Cytoplasmic trehalase						
treK	Repressor of trehalose operon						
trg	Ribose, galactose chemoreceptor, methyl-accepting; MCP III; flagellar regulator						
trkG	Major constitutive K+ uptake permease TrkAG; high-rate, low-affinity transport; K+-translocating subunit; binds TrkA to inner membrane; Rac prophase						
trkH	Major constitutive K+ uptake permease TrkAH; high-rate, low-affinity transport; K+-translocating subunit; binds TrkA to inner membrane						
tsr	Serine chemoreceptor, methyl-accepting; MCP I; also senses repellents; flagellar regulator						
tuB	EF-Tu, Elongation Factor-Translation, unstable; GTP-dependent binding of aa-tRNA to the A-site of ribosomes; has intrinsic GTPase activity when bound to kirromycin						
tuA	EF-Tu, Elongation Factor-Translation, unstable; GTP-dependent binding of aa-tRNA to the A-site of ribosomes; has intrinsic GTPase activity when bound to kirromycin						
uvrC	Excision nuclease subunit C; repair of UV damage to DNA; multicopy causes mucoidy						
uxuR	Repressor for UxuR regulon; true inducer is fructuronate						
wbbH							
Gene	Description	Log2 Value					
------	-------------	------------					
wbbI	d-Galp:alpha-d-Glc beta-1,6-galactofuranosyltransferase; involved in lipopolysaccharide biosynthesis	-1.0572133					
wbbJ	Involved in lipopolysaccharide biosynthesis, possible O-acetyltransferase	-1.3040595					
wbbK	Involved in lipopolysaccharide biosynthesis	-1.4321501					
wcaI	Putative colanic acid biosynthesis glycosyl transferase	1.883362					
yaaU	Putative transporter, function unknown	1.4289691					
yadB	Glutamyl-queuosine tRNA(Asp) synthase c-di-GMP-specific phosphodiesterase, PDE-A; reaction product is 5’pGpG; dependent on Mg+2 or Mn+2, Ca+2 inhibitory; optimum pH 9.35; monomeric	1.391839					
yahA	LysR family of transcriptional regulators, function unknown	-2.0166183					
yahB	Function unknown, Lrp family; putative transcriptional regulator	1.046875					
ybaO	Mutant inhibits reduction of selenate, function unknown; predicted transporter	1.0301518					
ybaS	Glutaminase	1.2362571					
ybbY	Putative xanthine/uracil permease, function unknown; glyoxylate-inducible	1.3393364					
ybdG	Putative mechanosensitive channel protein, function unknown	1.1174531					
ybeF	Putative LysR-family transcriptional regulator, function unknown LysR-family transcriptional regulator, function unknown	1.0823689					
ybfD	Putative LysR-family transcriptional regulator, function unknown	1.1145554					
ycaI	Competence protein ComEC homolog, function unknown	1.2410421					
ycaM	Putative transporter, function unknown	1.6574664					
ycgV	Overexpression increases adhesion and biofilm formation; probable adhesin, function unknown	1.2697777					
ydfT	Putative periplasmic serine protease; function unknown	1.6117142					
ydgD	Putative transporter, function unknown; membrane protein	1.9687521					
ydiD	Putative transporter, function unknown; membrane protein	1.5217233					
yeaN	Putative transporter, function unknown; membrane protein	1.3042753					
yebQ	Putative transporter, function unknown; no overexpression resistances found	1.1920364					
yegE	Putative c-di-GMP dual activity enzyme, function unknown	1.6381769					
yegQ	Function unknown, U32 peptidase family	-1.0663853					
yfaX	Putative transcriptional regulator, function unknown	1.2188423					
yfB	Putative transporter, function unknown; membrane protein	1.0953493					
yfB	Putative transporter, function unknown; membrane protein	1.0032601					
yfCJ	Required for swarming phenotype, function unknown; membrane protein	1.0550871					
yfeG	Putative LysR-family transcriptional regulator, function unknown	1.1252446					
yfeR	Putative LysR-family transcriptional regulator, function unknown	1.2977767					
ygeY	Peptidase homolog, function unknown; M20D family	1.1330509					
ygfT	Putative LysR-family transcriptional regulator, function unknown	1.4685719					
yglL	Function unknown, FimA homolog	0.097937983					
yglE	Peptidase homolog, function unknown; predicted transcriptional regulator	-0.852435761					
yglG	DNA adenine methyltransferase, SAM-dependent	0.950373744					
yhbC	DNA adenine methyltransferase, SAM-dependent	-1.146364					
yhdJ	DNA adenine methyltransferase, SAM-dependent	0.0355549					
Gene	Description	log2	0 log2	1 log2	2 log2		
-------	---	-----	--------	--------	--------		
yhiF	Function unknown	1.2616509	-1.6261956	0.509971635	-2.136167235		
yhiB		1.5886974					
yicE	Function unknown	-1.8931122	1.018744964	2.526242192	-1.507497228		
yicG							
yieG	Function unknown	-1.2165263					
yieK	D-mannose isomerase; aldose-ketose isomerase inter-converting mannose, fructose and glucose; D-lyxose isomerase	1.1036859					
yihS	Putative purine permease, function unknown	2.4466274					
yjCD		-1.2766161	0.58935423	1.464890192	-0.875535962		
yjC	Putative transporter, function unknown	2.1817305					
yjhB	Putative transporter, function unknown; N-acetylneuraminic acid inducible	-1.0054262					
yjhH	Function unknown	1.0324111					
yjIR	Putative HTH transcriptional regulator with aminotransferase domain, function unknown; MocR family	1.0690143					
yjIZ		-1.4398055					
yjFM	Putative transporter, function unknown; no overexpression resistances found	-1.059771					
ynhG	Murein L,D-transpeptidase, periplasmic	1.1129286					
yojI	Microcin J25 efflux pump, TolC-dependent; non-essential gene	1.117802					
ypDA	Putative sensor kinase, function unknown	-1.0332007					
ypJA		1.2955649					
yqEL	Part of T3SS PAI ETT2 remnant, ToxR homolog	-1.067694					
yrbG	Function unknown	1.0887241					
znuA		-1.5015092					
ZupT	Zinc and other divalent cation uptake transporter	1.4372325					

30502 developmental process

Gene	Description	log2	0 log2	1 log2	2 log2
flgF	Flagellar basal body rod subunit	-2.318077	1.818358267	2.829423308	-1.011065042
flgG	Flagellar basal body rod major subunit	-2.7651777	1.72109801	2.74639891	-1.0253009
flgJ	Flagellum-specific muramidase	-1.6338248			
flgK	Flagellar synthesis, hook-associated protein	-1.3041476			
flID	Hook-associated protein 2, axial family	-1.0269284			
flII	Cytoplasmic membrane ATPase involved in flagellar assembly; involved in export of flagellar axial protein subunits	-2.8425198	2.053080188	3.095328983	-1.042248796
flIK	Hook filament junction; controls hook length	-2.6773417	1.939810007	2.765864679	-0.826054671
fliO	Flagellin export apparatus, integral membrane protein	-1.882103			
hofQ	Required for the utilization of DNA as a carbon source; H. influenzae competence protein ComE homolog; putative fimbrial transport protein; expression not detected	2.0593238			
mreB	Membrane-associated protein that binds to FtsH(HfIB) and HfIKC proteins; mutant YccA stabilizes SecY(Ts); suppression requires HfKIC; YccA is a native substrate for the FtsH(HfIB) protease	-1.0813851			
yccA		-1.0077734			
S1234	**establishment of localisation**				
---	---				
aeeA	AaeAB p-hydroxybenzoic acid efflux pump MFP component; membrane fusion protein	1.1153295			
aeeB	AaeAB p-hydroxybenzoic acid efflux pump PET component; efflux protein family	1.2832041			
acrD	AcrEF-ToIC efflux pump, multidrug/solvent resistance; osmotically remedial envelope defect	1.513372			
acrF	Aminoglycoside efflux pump; RND-type transporter	2.124423			
alsA	Allose transport ABC protein	2.124423			
alsC	Allose transport, membrane component	1.0019131			
amtB	Ammonia gas channel; sequencers GinK, a negative regulator of AmtB activity, to the inner membrane; bi-directional facilitated diffusion	1.316608			
appB	Cytochrome bd-II oxidase subunit II	-1.142286168			
appC	Cytochrome bd-II oxidase subunit I	1.223081848			
argT	Periplasmic Lys-, Arg-, and Orn-binding protein	2.102985883			
artJ	Periplasmic binding protein of Arg transport system	1.084173			
ascF	PTS system EIIBC enzyme, beta-glucoside phosphotransferase; paralogous to bglF; cryptic unless AscG is mutated	1.0536551			
atpA	ATP synthase subunit alpha, membrane-bound, F1 sector	1.33844			
atpB	ATP synthase subunit a, membrane-bound, F0 sector	-1.0947847			
atpE	ATP synthase subunit c, membrane-bound, F0 sector; DCCD-binding	-1.2534213			
atpF	ATP synthase subunit b, membrane-bound, F0 sector	-1.1470773			
atpH	ATP synthase subunit delta, membrane-bound, F1 sector	-1.1472812			
bcr	Efflux pump for bicyclomycin, cysteine and sulfonamides	1.2833695			
betT	PTS system EIIABC enzyme, beta-glucoside phosphotransferase; BglG kinase/dephosphorylase; membrane-bound protein; binds BglG	1.1661614			
cirA	Colicin I receptor and translocator	-1.0816369			
cnuA	Silver and copper efflux, membrane transporter; overexpression confers low level fosfomycin resistance; confers copper and silver resistance	1.4714775			
cydA	Cytochrome d (bd-I) terminal oxidase subunit I; upregulated in biofilms and microaerobic conditions; aerobically repressed by H-NS; anaerobically repressed by Fnr	-1.0059352			
cydB	Cytochrome d (bd-I) terminal oxidase subunit II; upregulated in biofilms and microaerobic conditions; aerobically repressed by H-NS; anaerobically repressed by Fnr	-1.065628			
cynX	Putative transporter, function unknown, cyn operon	1.084173			
cyoA	Cytochrome o oxidase subunit II, lipoprotein; also called cytochrome bo(3) ubiquinol oxidase subunit II	-1.3402126			
cyoB	Cytochrome o oxidase subunit I; cytochrome bo(3) ubiquinol oxidase subunit I	1.0475307			
cyoD	Cytochrome o oxidase subunit IV; cytochrome bo(3) ubiquinol oxidase subunit IV	-1.4617386			
dacA	DcuC paralog, function unknown; mutant has no phenotype and dcuD does not complement dcuC mutations	1.0231616			
Gene	Description	Value 1	Value 2	Value 3	Value 4
-------	--	-------------	-------------	-------------	-------------
ddpF	D,D-dipeptide permease system, ATP-binding (hydrolysis?) component	1.2672591			
dppA	Dipeptide/heme transport, periplasmic binding protein; recognition for transport and chemotaxis	1.8925548			
dsdX	D-serine permease; D-serine tolerance	2.2577286			
exuT	Ferric citrate ATP-binding, membrane-associated transport protein	1.0179187			
fecE	Ferrous iron uptake, required for full FeoB activity	1.2498283			
feoA	Ferrous iron uptake GTP-binding membrane protein; N-terminus is a cytoplasmic G protein	-1.4880528			
feoB	Ferrous iron uptake GTP-binding membrane protein; N-terminus is a cytoplasmic G protein	-1.9224972			
fepA	Ferrienterobactin outer membrane receptor	-1.5621696	-2.615889662	-1.351310187	-1.264579475
fepE	Outer membrane receptor for ferric-rhodotorulic acid; also receptor for ferric siderophores	-1.1662207			
fhuE	TonB-dependent ferric iron outer membrane transporter; siderophore receptor for ferri-dihydroxybenzoic acid, ferri-dihydroxybenzoate and other catecholate siderophores; surface receptor for colicins G, H, and E492	-0.995984903	0.033259204	-1.029244106	
fiu	Negative regulator of FliI ATPase activity; involved in flagellar assembly and export	-2.0643058	1.950296025	2.756911638	-0.806615613
fliH	Cytoplasmic membrane ATPase involved in flagellar assembly; involved in export of flagellar axial protein subunits	-2.8425198	2.053080188	3.09328893	-1.042248796
fliI	Flagellin export apparatus soluble chaperone	-1.861196	2.017483883	2.880704117	-0.863220233
fliJ	Flagellin export apparatus, integral membrane protein	-1.3490691			
fliK	Flagellin export apparatus, integral membrane protein	-1.7036285			
fliP	Flagellin export apparatus, integrant membrane protein	1.0541813			
fliQ	Flagellin export apparatus, integrant membrane protein	1.2657433			
gatA	Galactitol-specific enzyme IIA of phosphotransferase system (PTS)	-1.6841471			
gatC	Galactitol-specific enzyme IIC of PTS	-1.4637866			
gtP	Proton-glutamate-aspartate transport protein	-1.0238819			
gntU	Nucleotide exchange factor for the DnaKJ chaperone; heat shock protein; mutant survives lambda induction; stimulates DnaK and HscC	1.0674934			
grpE	ATPase	-1.0346646			
grxB	Glutaredoxin 2; regulated by RpoS and ppGpp	1.6855459			
gspA	Part of H-NS-silenced gsp divergon, type II protein secretion; cloned gsp divergon secretes ChiA; requires gspAB operon	1.1330825			
gspC	Part of H-NS-silenced gsp divergon, type II protein secretion; cloned gsp divergon secretes ChiA	1.2146425	-0.862021266	-2.680390988	1.8138369721
gspD	Part of H-NS-silenced gsp divergon, type II protein secretion; cloned gsp divergon secretes ChiA	1.3587675	-0.682023174	-2.018471739	1.336448565
gspE	Part of H-NS-silenced gsp divergon, type II protein secretion; cloned gsp divergon secretes ChiA	-0.574179631	-1.777101815	1.202922185	
gspF	Pseudopilin in H-NS-silenced gsp divergon, type II secretion; cloned gsp divergon secretes ChiA	1.0381198	-0.571653549	-1.758766291	1.187112742
gspG	Pseudopilin in H-NS-silenced gsp divergon, type II secretion; cloned gsp divergon secretes ChiA	1.3308105	-0.964730177	-2.1795117	1.214781523
gspH	Part of H-NS-silenced gsp divergon, type II protein secretion; cloned gsp divergon secretes ChiA	1.1772904			
gspI	ChiA	0.112665963	-0.927333212	1.039999175	
Gene	Description	ChIA	ChIB	ChIC	
-------	--	--------	--------	--------	
gspJ	Part of H-NS-silenced gsp divergon, type II protein secretion; cloned gsp divergon secretes ChiA	0.136944905	-1.110237463	1.247182368	
gspK	Homologous to PilB of Pseudomonas aeruginosa; function not established, insertion mutation gives no phenotype	-0.002275476	-0.831979946	0.829704469	
hofB	Homologous to PIC of P. aeruginosa; function not established, insertion mutation gives no phenotype	1.6588261			
hofC	Required for the utilization of DNA as a carbon source; H. influenzae competence protein ComE homolog; putative fimbrial transport protein; expression not detected	1.3816845			
hofQ	Putative transporter, blocks RspA-mediated RpoS down-regulation; membrane protein; overexpression causes homocysteine accumulation due to MoeE inhibition and methionine auxotrophy in absence of cobalamin; no overexpression resistances found	2.0593238			
hsrA	Putative transporter, blocks RspA-mediated RpoS down-regulation; membrane protein; overexpression causes homocysteine accumulation due to MoeE inhibition and methionine auxotrophy in absence of cobalamin; no overexpression resistances found	1.1956267			
kefB	NEM-activatable K+/H+ antiporter	1.0485537			
kgtP	alpha-Ketoglutarate permease	-1.2960677			
livF	High-affinity branched-chain amino acid transport, ATP-binding membrane protein	1.0987494			
livJ	Leu/Ile/Val-binding protein, periplasmic, high-affinity transport; LIV-I system; also involved in phenylalanine accumulation	-1.0355506			
livK	Leucine-specific binding protein, periplasmic, high-affinity transport for leucine; LS system; also involved in isoleucine, valine, and phenylalanine accumulation	-1.3484504			
ildP	L-lactate permease; also involved in glycolate uptake	-0.984811318	-0.085681014	-0.899130305	
lsrC	Autoinducer-2 (AI-2) uptake	1.1802423			
lsrD	Autoinducer-2 (AI-2) uptake	1.0535583			
malX	PTS enzyme II homolog; malt regulated ABC exporter permease-ATPase, function unknown	1.090272			
mdlB	Putative transporter, function unknown; no MDR phenotype when mutated or cloned; fourth gene in mdtABCDbaeRS operon	1.009489			
mdtE	MdtEF-ToIC multidrug resistance efflux transporter; membrane fusion protein (MFP) component, lipoprotein; overexpression resistance to erythromycin, deoxycholate, octane and rhodamine; no mutant phenotype	1.103848	-0.943962914	1.637187912	-2.581150826
mdtF	MdtEF-ToIC multidrug resistance efflux RND-type transporter; overexpression resistance to erythromycin, deoxycholate, octane and rhodamine; no mutant phenotype	-0.396000539	1.441295899	-1.837296438	
melB	Melibiose permease; thiomethylgalactoside permease II	1.1329398			
metQ	Periplasmic methionine binding lipoprotein; methionine sulfoximine sensitivity	-1.0314264			
mgtA	Magnesium transporter, ATP-dependent; mutant has cobalt resistance; mediates Mg(2+) influx	-2.2685869	0.414117157	2.015561195	-1.601444038
modA	Molylodate uptake; chloride resistance; periplasmic molydate binding protein	-1.0889276			
motA	H+-driven stator protein of flagellar rotation	-1.1367812			
napA	Nitrate reductase, periplasmic	1.479877			
nhaA	NhaA, P1 activated by NhaR, repressed by H-NS and stimulated by Na(+)	1.3487701			
nirC	Nitrile uptake transporter; membrane protein	-1.0733091			
npr	NPR, N- regulated HPR-like protein	1.8415642			
ompF	Outer membrane porin F	-1.0644927			
oppD	Oligopeptide transport, ATP-binding protein	-1.0622754			
Gene	Description				
------	-------------				
phnL	Carbon-phosphorus lyase complex subunit				
pntA	Proton-translocating NAD(P) transhydrogenase, alpha subunit; membrane protein				
pnuC	Nicotinamide mononucleotide transporter, putative, by homology with Salmonella				
potA	Proline/betaine permease, minor; osmosensor/osmoregulator				
proP	Glucose phophotransferase enzyme IIIC(Glc); glucose permease				
pnuC	Nicotinamide mononucleotide transporter, putative, by homology with Salmonella				
potA	Proline/betaine permease, minor; osmosensor/osmoregulator				
proP	Glucose phophotransferase enzyme IIIC(Glc); glucose permease				
ptsG	D-ribose high-affinity transport system				
rbsA	D-ribose high-affinity transport system, membrane component				
rbsC	D-ribose pyranase; interconverts beta-pyran and beta-furan forms of D-ribose; related to fucose mutarotase FucU				
rbsD	Putative polisoprenol-linked O-antigen translocase				
rfx	Required for the reduction of SoxR; putative membrane-associated NADH oxidoreductase				
rfx	Required for the reduction of SoxR; putative membrane protein				
sdaC	Succinate dehydrogenase (SQ) cytochrome b556; membrane anchor; succinate:ubiquinone oxidoreductase (SQ); complex II of aerobic respiration				
sdaC	Succinate dehydrogenase (SQ) hydrophobic subunit; succinate:ubiquinone oxidoreductase (SQ); complex II of aerobic respiration				
secB	Protein export chaperone; SecB helps SecA deliver proteins to the SecYE core translocon; general protein chaperone				
secG	SecG inner membrane secretion protein; complexes with and assists the SecYE core translocon to interact with SecA to export proteins				
sugE	Multidrug efflux pump; overexpression resistance to cetylpyridinium; suppresses groL mutation				
tig	Trigger factor, protein folding chaperone; also peptidyl-prolyl cis-trans isomerase; interacts with nascent polypeptide chains				
trkG	Major constitutive K+ uptake permease TrkAG; high-rate, low-affinity transport; K+ translocating subunit; binds TrkA to inner membrane; Rac prophage				
trkH	DNA-binding ATPase involved in replication; cytotoxic; mutant displays an increased frequency of precise excision of transposons and defective growth of bacteriophage Mu				
ybaE	Function unknown				
ybbY	Mutant inhibits reduction of selenate, function unknown; predicted transporter				
ybbY	Putative xanthine/uracil permease, function unknown; glyoxylate-inducible				
ybaE	Function unknown				
ybaE	Function unknown				
ybbY	Putative xanthine/uracil permease, function unknown; glyoxylate-inducible				
ybbY	Putative xanthine/uracil permease, function unknown; glyoxylate-inducible				
ybdM	Function unknown				
ycaM	Putative transporter, function unknown				
yccZ	Putative ABC transporter permease protein; function unknown				
yccZ	Putative ABC transporter permease protein; function unknown				
Gene	Description				
--------	--				
yddB	Putative TonB-dependent outer membrane receptor; function unknown				
ydhK	Putative efflux protein family (PET) component of YdhJK efflux pump, function unknown				
ydjN	Function unknown				
yeaN	Putative transporter, function unknown; membrane protein				
yebQ	Putative transporter, function unknown; no overexpression resistances found				
yecI	Function unknown				
yeiU	ABC transporter periplasm binding protein for microcin C; regulated by rydC sRNA				
yejA	Function unknown				
yfbJ	Function unknown				
yfbW	Putative GntP family transporter, function unknown				
ygbN	Putative periplasmic binding protein, function unknown				
ygiS	Function unknown				
ygiE	Function unknown				
yhaO	Putative amino acid:H+ symport permease, function unknown				
yhdO	Putative outer membrane fimbrial subunit usher; function unknown				
yhdX	Putative ABC transporter permease protein; function unknown				
yhdY	Putative ABC transporter permease protein; function unknown				
yhiP	Putative ABC transporter permease protein; function unknown				
yhiV	Putative amino acid:H+ symport permease, function unknown				
yicE	Putative purine permease, function unknown				
yieG	Function unknown				
yicD	Putative purine permease, function unknown				
yjcR	Function unknown				
yjD	Putative ABC transporter permease protein; part of a predicted ABC transporter YffQRT-YjFF probably specific for galactofuranse transport				
yjF	Function unknown				
yjH	Putative transporter, function unknown; N-acytelyneuraminic acid inducible				
ynfJ	Putative transporter, function unknown; no overexpression resistances found				
ynjC	Function unknown				
ynjD	Function unknown				
yodB	Function unknown				
yoiJ	Microcin J25 efflux pump, TolC-dependent; non-essential gene				
yphE	Putative ABC transporter ATP-binding protein; function unknown				
znuA	Function unknown				

S1179 localisation

Gene	Description
aaeA	AaeAB p-hydroxybenzoic acid efflux pump MFP component; membrane fusion protein
aaeB	AaeAB p-hydroxybenzoic acid efflux pump PET component; efflux protein family
acrD	AcrEF-TolC efflux pump, multidrug/solvent resistance; osmotically remedial envelope defect
acrF	Function unknown

Gene	Description					
aaeA	AaeAB p-hydroxybenzoic acid efflux pump MFP component; membrane fusion protein					
aaeB	AaeAB p-hydroxybenzoic acid efflux pump PET component; efflux protein family					
acrD	AcrEF-TolC efflux pump, multidrug/solvent resistance; osmotically remedial envelope defect					
acrF	Function unknown					
Gene	Description	log2 Fold Change A/B	log2 Fold Change C/D	log2 Fold Change E/F	log2 Fold Change G/H	
------	--	---------------------	---------------------	---------------------	---------------------	
alsA	Allose transport ABC protein	2.124423				
alsC	Allose transport, membrane component	1.0019131				
amtB	Ammonia gas channel; sequesters GinK, a negative regulator of AmtB activity, to the inner membrane; bi-directional facilitated diffusion	1.316608				
appB	Cytochrome bd-II oxidase subunit II	-1.32081848	0.589787849	-1.812869697		
appC	Cytochrome bd-II oxidase subunit I					
araG	High-affinity L-arabinose transport	2.1461978				
argT	Periplasmic Lys-, Arg-, and Orn-binding protein					
argE	Periplasmic binding protein of Arg transport system					
ascF	PTS system EIIBC enzyme, beta-glucoside phosphotransferase; paralogous to bgIF; cryptic unless AscG is mutated	1.0536551				
atpA	ATP synthase subunit alpha, membrane-bound, F1 sector	1.5548844				
atpB	ATP synthase subunit a, membrane-bound, F0 sector	-1.0947847				
atpE	ATP synthase subunit c, membrane-bound, F0 sector	-1.2534213				
atpF	ATP synthase subunit b, membrane-bound, F0 sector	-1.1470773				
atpH	ATP synthase subunit delta, membrane-bound, F1 sector	-1.1472812				
bcr	Efflux pump for bicyclomycin, cysteine and sulfonamides	1.2833695				
betT	High-affinity choline transporter; bet genes confer protection against osmotic stress by making the osmoprotectant glycine betaine from choline	1.1661614				
bgF	Response regulator for chemotactic signal transduction; CheA is the cognate sensor protein	1.1257329				
cheY	CheY-P phosphatase					
cheZ	CheY-P phosphatase	-1.0379796				
cirA	Colicin I receptor and translocator	-1.0816369	-3.03639365	-1.232802369	-1.803566996	
cusA	Silver and copper efflux, membrane transporter; overexpression confers low level fosfomycin resistance; confers copper and silver resistance	1.4714775				
cydA	Cytochrome d (bd-I) terminal oxidase subunit I; upregulated in biofilms and microaerobic conditions; aerobically repressed by H-NS; anaerobically repressed by Fnr	-1.0059352	1.320696764	0.540896798	0.779799966	
cydB	Cytochrome d (bd-I) terminal oxidase subunit II; upregulated in biofilms and microaerobic conditions; aerobically repressed by H-NS; anaerobically repressed by Fnr	-1.065628	1.44637671	0.350969162	1.095407548	
cynX	Putative transporter, function unknown, cyn operon	1.084173				
cyoA	Cytochrome o oxidase subunit II, lipoprotein; also called cytochrome bo(3) ubiquinol oxidase subunit II	-1.3402126	0.208660176	1.206163419	-0.997503243	
cyoB	Cytochrome o oxidase subunit I; cytochrome bo(3) ubiquinol oxidase subunit I	1.0475307				
cyoD	Cytochrome o oxidase subunit IV; cytochrome bo(3) ubiquinol oxidase subunit IV	-1.54617386	0.040691018	1.492060622	-1.085079603	
dcvD	D,D-dipeptide permease system, ATP-binding (hydrolysis?) component	1.023161				
dppF	Dipeptide/heme transport, periplasmic binding protein; recognition for transport and chemotaxis	1.0231613				
dppA	D-serine permease; D-serine tolerance	2.2577286				
dscX	Hexuronate permease, for glucuronate and galacturonate	1.0179187				
Genes	Description	Log2 Fold Change				
-------	--	-----------------				
fecE	Ferric citrate ATP-binding, membrane-associated transport protein	1.2498283				
feoA	Ferrous iron uptake, required for full FeoB activity	-1.4880528				
feoB	Ferrous iron uptake GTP-binding membrane protein; N-terminus is a cytoplasmic G protein	-1.9224972				
fepA	Ferrienterobactin outer membrane receptor	-1.5621696				
fepE	Lipopolysaccharide chains	-1.1662207				
fnuE	Outer membrane receptor for ferric-rhodotorulic acid; also receptor for ferric siderophores coprogen and ferrioxamine B	-0.995984903				
fhuE	TonB-dependent ferric iron outer membrane transporter; siderophore receptor for ferric-dihydroxybenzoylserine, ferri-dihydroxybenzoate and other catecholate siderophores; surface receptor for colicins G, H, and E492	-1.0117576				
fliB	Flagellar basal body rod subunit	-2.9897075				
fliC	Flagellar basal body rod subunit	-3.2366333				
fliD	Flagellar hook subunit protein	-3.2993827				
fliF	Flagellar basal body rod subunit	-2.318077				
fliG	Flagellar basal body major subunit	-2.7651777				
fliH	Flagellar synthesis, basal body L-ring lipoprotein	-1.9212251				
fliI	Basal body F-ring flagellar protein	-2.6527514				
fliJ	Flagellum-specific muramidase	-1.6338248				
fliK	Flagellar synthesis, hook-associated protein	-1.3041476				
fliL	Flagellar synthesis, hook-associated protein	-1.0269798				
fliM	Hook-associated protein 2, axial family	-1.0269284				
fliN	Flagellar basal body M-ring protein	-2.1452103				
fliH	Negative regulator of FlII ATPase activity; involved in flagellar assembly and export	-2.0643058				
fliI	Cytoplasmic membrane ATPase involved in flagellar assembly; involved in export of flagellar axial protein subunits	-2.8425198				
fliJ	Flagellar export apparatus soluble chaperone	-1.861196				
fliG	Rotor protein for flagellar motor switching and energizing; role in flagellar assembly	-2.774952				
fliL	Flagellar synthesis, motor switching and energizing	-1.5788474				
fliM	Flagellar switch protein	-1.9425316				
fliO	Flagellin export apparatus, integral membrane protein	-1.882103				
fliP	Flagellin export apparatus, integral membrane protein	-1.3490691				
fliQ	Flagellin export apparatus, integral membrane protein	-1.7036285				
focB	Probable bidirectional formate transporter 2	1.0541813				
gabP	GABA permease, membrane protein	1.2657433				
gatA	Galactitol-specific enzyme IIA of phosphotransferase system (PTS)	-1.6841471				
gatC	Galactitol-specific enzyme IIC of PTS	-1.4637866				
gltP	Proton-glutamate-aspartate transport protein	-1.0238819				
gntU	Nucleotide exchange factor for the DnaKJ chaperone; heat shock protein; mutant survives lambda induction; stimulates DnaK and HscC ATPase	1.0674934				
grpE	Glutaredoxin 2; regulated by RpoS and ppGpp	1.0346646				
grxB		1.6855459				
Gene	Description	Fold Change				
-------	--	-------------				
gspA	Part of H-NS-silenced gsp divergon, type II protein secretion; cloned gsp divergon secretes ChiA, requires gspAB operon	1.1330825				
gspC	Part of H-NS-silenced gsp divergon, type II protein secretion; cloned gsp divergon secretes ChiA	1.2146425				
gspD	Part of H-NS-silenced gsp divergon, type II protein secretion; OM secretin; cloned gsp divergon secretes ChiA	1.3587675				
gspE	Part of H-NS-silenced gsp divergon, type II protein secretion; cloned gsp divergon secretes ChiA	1.0.574179631				
gspF	Pseudopilin in H-NS-silenced gsp divergon, type II secretion; cloned gsp divergon secretes ChiA	1.0.3811998				
gspG	Part of H-NS-silenced gsp divergon, type II protein secretion; cloned gsp divergon secretes ChiA	1.3308105				
gspH	Part of H-NS-silenced gsp divergon, type II protein secretion; cloned gsp divergon secretes ChiA	1.1772904				
gspI	ChiA, putative fimbrial transport protein; homolog; putative fimbrial transport protein; expression not detected no phenotype	1.6588261				
gspJ	ChiA, putative fimbrial transport protein; homolog; putative fimbrial transport protein; expression not detected no phenotype	1.3816845				
gspK	ChiA, putative fimbrial transport protein; homolog; putative fimbrial transport protein; expression not detected no phenotype	2.0593238				
hsrA	Homologous to PilB of Pseudomonas aeruginosa; function not established, insertion mutation gives no phenotype	1.1956267				
kefB	NEM-activatable K+/H+ antiporter	1.0485537				
kgtP	alpha-Ketoglutarate permease	-0.953824419				
livF	High-affinity branched-chain amino acid transport, ATP-binding membrane protein	-1.2960677				
liv3	Leu/Ile/Val-binding protein, periplasmic, high-affinity transport; LIV-I system; also involved in phenylalanine accumulation	-1.0355506				
livK	Leucine-specific binding protein, periplasmic, high-affinity transport for leucine; LS system; also involved in isoleucine, valine, and phenylalanine accumulation	-1.3484504				
lidP	L-lactate permease; also involved in glycolate uptake	-0.984811318				
lsrC	Autoinducer-2 (AI-2) uptake	1.0987494				
lsrD	Autoinducer-2 (AI-2) uptake	1.0535583				
malX	PTS enzyme II homolog; malt regulated ABC exporter permease-ATPase, function unknown	1.1802423				
mdrB	Putative transporter, function unknown; no MDR phenotype when mutated or cloned; fourth gene in mdrABCDbaeRS operon	1.090272				
mdtD	MdtEF-ToIC multidrug resistance efflux transporter; membrane fusion protein (MFP) component, lipoprotein; overexpression resistance to erythromycin, deoxycholate, octane and rhodamine; no mutant phenotype	1.009489				
mdtE	MdtEF-ToIC multidrug resistance efflux RND-type transporter; overexpression resistance to erythromycin, deoxycholate, octane and rhodamine; no mutant phenotype	1.103484				
mdtF	MdtEF-ToIC multidrug resistance efflux RND-type transporter; overexpression resistance to erythromycin, deoxycholate, octane and rhodamine; no mutant phenotype	-0.396000539				
Gene	Function	Description	Ratio 1	Ratio 2	Ratio 3	Ratio 4
-------	---	--	----------	----------	----------	----------
melB	Melibiose permease; thiomethylgalactoside permease II		1.132939			
metQ	Periplasmic methionine binding lipoprotein; methionine sulfoximine sensitivity			-1.03142		
mgtA	Magnesium transporter, ATP-dependent; mutant has cobalt resistance; mediates Mg(2+) influx		-2.265869	0.414117	2.015561	-1.60144
modA	Molybdate uptake; chloride resistance; periplasmic molybdate binding protein					
motA	H+-driven stator protein of flagellar rotation					
napA	Nitrile reductase, periplasmic					
nhaA	Na+/H+ antiporter 1, strongly pH-dependent; helps regulate intracellular pH and extrude lithium	nhaA_P1 activated by NhaR, repressed by H-NS and stimulated by Na(+)				
nirC	Nitrite uptake transporter; membrane protein			-0.383649	-1.343393	0.959745
npr	NPR, N-regulated HPr-like protein					
ompF	Outer membrane porin F			-0.064492		
oppD	Oligopeptide transport, ATP-binding protein					
phnL	Carbon-phosphorus lyase complex subunit					
pntA	Proton-translocating NAD(P) transhydrogenase, alpha subunit; membrane protein					
pnuC	Nicotinamide mononucleotide transporter, putative, by homology with Salmonella					
potA	Multidrug efflux pump; overexpression resistance to cetylpyridinium; suppresses groL mutation					
proP	Proline/betaine permease, minor; osmosensor/osmoregulator					
ptsG	Glucose phosphotransferase enzyme II(Glc); glucose permease			-1.111679		
puuP	Putrescine importer					
rbsA	D-ribose high-affinity transport system			-1.086268		
rbsC	D-ribose high-affinity transport system, membrane component			-1.643030		
rbsD	D-ribose pyranase; interconverts beta-pyran and beta-furan forms of D-ribose; related to fucose mutarotase FucU	Putative polioisopren-linked O-antigen translocase		-1.7281728		
rfxX	Required for the reduction of SoxR; membrane protein			-1.0625052		
rsxC	Required for the reduction of SoxR; putative membrane-associated NADH oxidoreductase			-1.300488		
rsxE	Serine:H+ symport permease, threonine-insensitive			-1.038332		
sdaC	Succinate dehydrogenase (SQR) cytochrome b556; membrane anchor; succinate:ubiquinone oxidoreductase (SQR); complex II of aerobic respiration		-1.1312735			
sdc	Succinate dehydrogenase (SQR) hydrophobic subunit; succinate:ubiquinone oxidoreductase (SQR); complex II of aerobic respiration					
sddD	Protein export chaperone; SecB helps SecA deliver proteins to the SecYE core translocon; general protein chaperone					
secB	SecG inner membrane secretion protein; complexes with and assists the SecYE core translocon to interact with SecA to export proteins					
secG	Multidrug efflux pump; overexpression resistance to cetylpyridinium; suppresses groL mutation					
sugE	Trigger factor, protein folding chaperone; also peptidyl-prolyl cis-trans isomerase; interacts with nascent polypeptide chains					
tig	Major constitutive K+ uptake permease TrkAG; high-rate, low-affinity transport; K+ translocating subunit; binds TrkA to inner membrane; Rac prophage		-1.0661763			
trkG						
Gene	Function					
------	----------					
trkH	Major constitutive K+ uptake permease TrkAH; high-rate, low-affinity transport; K+-translocating subunit; binds TrkA to inner membrane					
sup	DNA-binding ATPase involved in replication; cytosolic; mutant displays an increased frequency of precise excision of transposons and defective growth of bacteriophage Mu					
yaaJ	Function unknown					
yaaU	Putative transporter, function unknown					
yadI	Unknown					
ybaE	Function unknown					
ybaT	Mutant inhibits reduction of selenate, function unknown; predicted transporter					
ybbY	Putative xanthine/uracil permease, function unknown; glyoxylate-inducible					
ybfM	Function unknown					
ycAM	Putative transporter, function unknown					
yccZ	Function unknown					
ydcU	Putative ABC transporter permease protein; function unknown					
ydhK	Putative efflux protein family (PET) component of YdhJK efflux pump, function unknown					
ydJN	Function unknown					
yeaN	Putative transporter, function unknown; membrane protein					
yebQ	Putative transporter, function unknown; no overexpression resistances found					
yeC	Function unknown					
yeiU	ABC transporter periplasmic binding protein for microcin C; regulated by rydC sRNA					
yejA	Putative amino acid:H+ symport permease, function unknown					
yhcD	Putative outer membrane fimbrial subunit usher; function unknown					
yhdX	Putative ABC transporter permease protein; function unknown					
yhdY	Putative ABC transporter permease protein; function unknown					
yhp	Putative amino acid:H+ symport permease, function unknown					
yijV	Putative purine permease, function unknown					
yicE	Putative purine permease, function unknown					
yieG	Putative transporter, function unknown					
yjcD	Putative transporter, function unknown					
yjcR	Putative transporter, function unknown					
yjdA	Function unknown					
yjFF	Putative ABC transporter permease protein; part of a predicted ABC transporter YffQRT-YjFF probably specific for galactofuranose transport					
yjHB	Putative transporter, function unknown; N-acetylneuraminic acid inducible					
Gene	Function	Log2 Fold Change	ΔLog2 Fold Change	Absolute Log2 Fold Change		
------	----------	-----------------	------------------	--------------------------		
ynmF	Putative transporter, function unknown; no overexpression resistances found	-1.059771	-0.932769778	1.062541358		
ynjC	Function unknown	1.0072496	-0.932769778	1.940019358		
ynjD	Function unknown	1.1847191	1.712429133	-0.743840928		
yodB	Function unknown	1.117802	-0.743840928	1.861641856		
yojI	Microcin J25 efflux pump, TolC-dependent; non-essential gene	1.117802	-0.743840928	1.861641856		
yphE	Putative ABC transporter ATP-binding protein; function unknown	1.5556669	1.875590458	-0.6269235		
znuA	High-affinity ABC transport system for zinc, periplasmic	-1.5015092	-1.070830933	2.572340163		
8152 metabolic process						
abgB	Required for p-aminobenzoyl-glutamate usage	1.1240034	-0.743840928	1.867844342		
acdD	Aconitase A, stationary phase induced; iron-sulfur cluster; apo-enzyme binds mRNA for negative translational autoregulation; negatively regulated by ryhB RNA as part of indirect positive regulation by Fur	-0.916588	-0.743840928	1.660429856		
acmA	Aconitase B; 2-methylaconitate hydratase; apo-enzyme binds mRNA for negative translational autoregulation; iron-sulfur cluster; monomeric Acyl carrier protein, ACP-CoA synthase	1.6737623	-0.743840928	2.417603254		
acnB	Aconitase B; 2-methylaconitate hydratase; apo-enzyme binds mRNA for negative translational autoregulation; iron-sulfur cluster; monomeric Acyl carrier protein, ACP-CoA synthase	1.0271903	-0.743840928	1.770931242		
acPS	Aldehyde dehydrogenase, NAD-dependent; active on lactaldehyde, glycolaldehyde, and other aldehydes	-0.1016096	1.395137713	-1.070830933		
aidA	Aldehyde dehydrogenase, NAD-dependent; active on lactaldehyde, glycolaldehyde, and other aldehydes	1.322882306	1.395137713	-1.070830933		
alsK	Allose kinase	1.203258	-0.743840928	1.947136816		
ansA	L-Asparaginase I	-1.1030908	-0.743840928	1.846931736		
ansB	L-Asparaginase II	1.5445883	-0.743840928	2.288430254		
appB	Cytochrome bd-II oxidase subunit II	-1.07989973	1.374399075	-1.454249003		
appC	Cytochrome bd-II oxidase subunit I	-1.142286168	0.73330429	-1.875590458		
arcB	Tripartite sensor/histidine protein kinase; repression of aerobic genes and activation of some anaerobic genes under aerobic growth conditions; phosphorylates response regulator protein (ArcA); has responses regulator and second transmitter domains	2.5143914	-0.743840928	3.258230846		
argA	N-acetylglutamate synthase; growth on acetylornithine	1.3041081	1.434967896	2.739076782		
argB	N-acetylglutamate kinase	1.044384	1.527225825	2.574550653		
argC	N-acetyl-gamma-glutamyl-phosphate reductase	1.7869039	1.757350161	3.543650322		
argD	Ornithine carbamoyltransferase; ornithine transcarbamylase, OTCase; CP4-6 putative prophage remnant	2.58062465	1.749457164	4.329081818		
argF	Argininosuccinate synthase	2.345750989	0.780893261	3.12663425		
argG	Argininosuccinate lyase	2.489928442	1.442275936	3.932204878		
Gene	Description	Percent Fold Change				
-------	---	---------------------				
argI	Ornithine carbamoyltransferase; ornithine transcarbamylase; OTCase	2.843476333				
arnT	4-amino-4-deoxy-L-arabinose(Ara4N):Lipid A transferase; modifies lipid A phosphates with aminoarabinose and confers resistance to polymyxin B and cationic antimicrobial peptides; glycolipid donor is undecaprenyl phosphate-α-L-Ara4N 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) synthase; tyrosine repressible; TvrR regulon	1.0203366				
aroF	Shikimate kinase I; alkali-inducible	-1.2647691				
aroK	Aspartate semialdehyde dehydrogenase					
aroF	L-Aspartate ammonia-lyase; L-aspartase	3.0522566				
aroA	Aspartate aminotransferase, AspAT; kynurenine aminotransferase; glutamine transaminase K ATP synthase subunit alpha, membrane-bound, F1 sector	1.3357835				
atpB	ATP synthase subunit A, membrane-bound, F0 sector	-1.0947847				
atpE	ATP synthase subunit c, membrane-bound, F0 sector	-1.2534213				
atpF	ATP synthase subunit b, membrane-bound, F0 sector	-1.1470773				
atpH	ATP synthase subunit delta, membrane-bound, F1 sector	-1.1472812				
barA	Sensor histidine protein kinase, pleiotropic; controls the expression of csrB/C sRNAs; works in concert with UvrY response regulator	1.6353183				
bggL	Periplasmic beta-glucosidase	1.188965				
bioB	Biotin synthase; dethiobiotin to biotin pathway; iron-sulfur enzyme	-1.5355635				
bioC	Biotin synthase blocked prior to pemeloyl CoA formation; putative SAM-dependent methyltransferase	-0.360614381				
bioF	7-keto-8-α-methylabscisic acid synthase	0.006936511				
cheA	Histidine protein kinase sensor of chemotactc response; CheY is cognate response regulator; autophosphorylating; CheAS is a short form produced by an internal start at codon 98	-1.1959176				
citC	Putative acetate:SH-citrate lyase ligase	1.741257				
citE	Putative citrate lyase beta chain	1.1568863				
citG	Putative cit operon gene, function unknown	2.3438559				
cld	Regulator of lipopolysaccharide O-chain length; gene studied in Salmonella and non-K-12 strains	-1.0316088				
coaA	Pantothenate kinase	-1.1887982				
cobC	Amplification of cobA and other genes	1.7467084				
csgD	Copper ion sensor regulating csgCB	-1.859434883				
cysS	Copper ion sensor regulating cysCFBA expression; may also sense silver	1.4919264				
cydA	Cytochrome d (bd-1) terminal oxidase subunit I; upregulated in biofilms and microaerobic conditions; aerobically repressed by H-NS; anaerobically repressed by FnR	-1.0059352				
cydB	Cytochrome d (bd-1) terminal oxidase subunit II; upregulated in biofilms and microaerobic conditions; aerobically repressed by H-NS; anaerobically repressed by FnR	-1.065628				
cyoA	Cytochrome o oxidase subunit II, lipoprotein; also called cytochrome bo(3) ubiquinol oxidase subunit II	-1.3402126				
cyoB	Cytochrome o oxidase subunit I; cytochrome bo(3) ubiquinol oxidase subunit I	1.0475307				
cyoC	Cytochrome o oxidase subunit IV; cytochrome bo(3) ubiquinol oxidase subunit IV	-1.4617386				
Gene	Function	Description				
------	----------	-------------				
cyoE	Cytochrome o oxidase subunit, protoheme IX farnesyltransferase	Positive regulator for Cys regulon, acetylserine desulfhydrylase; downregulates ssuEADCB; cysteine desulfhydrylase				
cysB	Positive regulator for Cys regulon, acetylserine inducer; downregulates ssuEADCB; cysteine desulfhydrylase					
cysD	Sulfate adenylyltransferase					
dadA	D-amino acid dehydrogenase					
dadX	Alanine racemase; homodimeric					
dapB	Dihydropicolinate reductase	2,3,4,5-tetrahydropyridine-2-carboxylate N-succinyltransferase; mutations suppress growth defects of strains lacking superoxide dismutase				
dapD	C4-carboxylate regulation of anaerobic fumarate respiratory system; two-component system response regulator					
dccR	C4-carboxylate regulation of anaerobic fumarate respiratory system; two-component system sensory histidine kinase					
dccS	C4-carboxylate regulation of anaerobic fumarate respiratory system; two-component system sensory histidine kinase					
ddg	ATP-dependent RNA helicase, 50S ribosomal subunit biogenesis; translation factor W2; facilitates translation of mRNAs with 5' secondary structures; multicopy suppressor of rpsB(Ts) mutations					
deaD	Periplasmic, membrane-associated serine endoprotease; protease Do, required for high-temperature growth and the degradation of damaged proteins					
degP	Repressor for deo operon, nupG and tsx; binds deoxyribose-5-phosphate inducer					
deoR	DNA polymerase III sliding clamp beta subunit; required for high processivity; required for regulatory inactivation of DnaA					
dhaR	Transcription activator of the dhaKLM operon DNA polymerase IV, capable of translesion synthesis; overexpression enhances mutagenesis; mediates targeted mutagenesis by DNA polymerase III sliding clamp beta subunit;					
dinB	DNA polymerase III sliding clamp beta subunit; required for high processivity; required for regulatory inactivation of DnaA					
dnaN	DNA polymerase III sliding clamp beta subunit; required for high processivity; required for regulatory inactivation of DnaA					
dusB	tRNA-dihydrouridine synthase B					
dxa	DXP synthase; DXP is precursor to isoprenoids, thiamin, pyridoxol					
eno	Enolase; phosphoprotein; component of RNA degradosome					
envC	Periplasmic murein hydrolase septal ring factor; sensitivity to crystal violet; filamentous					
envY	Thermoregulatory activator of porin expression, AraC family					
eutB	Ethanolamine ammonia lyase, large subunit, adenosylcobalamine-dependent; concerted induction requires both B12 and ethanolamine; heterodimeric					
fabB	beta-Ketoacyl-ACP synthase I; KAS I; homodimeric					
fabI	Enoyl-ACP reductase, NADH dependent					
fabE	Fructose 1,6-bisphosphate aldolase, class I					
fcl	NADPH-dependent GDP-L-acucose synthase, colanic acid synthesis; two-step reaction at a single active site: GDP-4-keto-6-deoxy-D-mannose epimerase, then reductase					
fePE	Ferrienterobactin transport, membrane protein; regulator of length of O-antigen component of lipopolysaccharide chains					
fimB	Site-specific recombinase, fim promoter inversion; mediates flagellar phase switching, along with FimE					
fkpA	Periplasmic peptidylprolyl cis,trans isomerase; heat shock inducible; PPIase-independent chaperone activity, binds FK506					
fig	Flagellum-specific muramidase					
GenBank Accession	Description	Fold Change (log2)	Fold Change (log2)	Fold Change (log2)	Fold Change (log2)	
-------------------	-------------	-------------------	-------------------	-------------------	-------------------	
fliI	Cytoplasmic membrane ATPase involved in flagellar assembly; involved in export of flagellar axial protein subunits	-2.8425198	2.053080188	3.095328983	-1.042248796	
fliJ	Flagellin export apparatus soluble chaperone; RpoS antagonist, transiently in post-exponential phase; timing factor allowing motility to continue for a while during starvation; not required for normal motility	-1.861196	2.017483883	2.880704117	-0.863220233	
fliZ	GTP cyclohydrolase I Transpetidase, PB3; penicillin-binding protein 3 involved in septal peptidoglycan synthesis	1.1728091				
ftsI	Elongation Factor EF-G; GTPase required for translocation from the A-site to the P-site in the ribosome; fusidic acid resistance	-1.1621015				
ftsN	Flagellin export apparatus soluble chaperone	1.1232334				
gadA	Glutamate decarboxylase A	1.0481529				
gadB	Glutamate decarboxylase B, vitamin B6-dependent; hexameric	1.0481529				
gadE	Transcriptional regulator of the gadABC operon	-1.613297865	1.91643444	3.529732305		
galK	Galactokinase	1.7365794				
galS	Repressor of the mgl operon and isorepressor of the gal operon; autoregulatory; homodimeric	1.2070732				
gatA	Galactitol-specific enzyme IIA of phosphotransferase system (PTS)	-1.6841471				
gatC	Galactitol-specific enzyme IIC of PTS	-1.4637866				
gatY	D-Tagatose-1,6-bisphosphate aldolase, class II; requires GatZ subunit for full activity and stability	-1.1761272				
gatZ	Tagatose bisphosphate aldolase GatYZ subunit; required for full activity and stability of GatY	-1.2347231				
gcl	Glyoxylate carboligase, glyoxylate-inducible	1.2727609				
gdhA	Glutamate dehydrogenase	-0.965960622	-2.004323596	1.038362974		
glcC	Transcriptional positive regulator for glc operon	1.077054				
glf	UDP-galactopyranosyl mutase	-1.4456341				
glgA	Glycogen synthase	-0.611356637	-1.25402616	0.642669579		
glgB	1,4-alpha-glucan branching enzyme; glycogen branching enzyme	0.10104895	-0.518011066	-1.447500807	0.929489741	
glgC	Glucose-1-phosphate adenyltransferase; ADP-glucosepyrophosphorylase	-0.717255721	-1.435926535	0.718670815		
glgM	Phosphoglucomutase mutase; UDP-GlcNAc pathway, peptidoglycan, lipopolysaccharide synthesis; mRNA stability effects	-1.2160809				
glmA	Glutamine synthase	1.0619159				
glmB	Bifunctional uridylyltransferase/uridylyl-removing enzyme; (UTase/UR); controls uridylylation state and activity of PII(GlnB)	1.5173011				
glmD	Glycerol kinase	1.7542315				
glpK	Serine hydroxymethyltransferase; binds Zn(II)	-1.2570169				
glyA	Glycine--tRNA ligase, beta-subunit	-1.1524415				
glyS	6-phosphogluconate dehydrogenase, decarboxylating	-1.1842852				
gnd	Low-affinity glucose transport protein, membrane protein	1.0674934				
gntU	Phosphoglycerate mutase 1, 2,3-bisphosphoglycerate-dependent; Fur regulon; dimeric	-1.1640095				
gpmA	Nucleotide exchange factor for the DnaKJ chaperone; heat shock protein; mutant survives lambda induction; stimulates DnaK and HscC ATPase	-1.0346646				
grpE	Glutaredoxin 2; regulated by RpoS and ppGpp	1.6855459				
grxB	Part of H-NS-silenced gsp divergon, type II protein secretion; cloned gsp divergon secretes ChiA, requires gspAB operon	1.1330825				
gspA						
Gene	Description					
------	-------------					
gyrB	DNA gyrase, subunit B; novobiocin, coumermycin resistance					
hcaE	3-phenylpropionate/cinnamic acid dioxygenase, alpha subunit; hca genes catalyze 3-phenylpropionate and cinnamic acid, feeding the products into the the mhp pathway					
hemB	5-aminolevulinate dehydratase; also known as porphobilinogen synthase; binds Zn(II)					
hemD	Uroporphyrinogen III cosynthase; neomycin sensitivity					
hisS	Histidine--tRNA ligase					
hsdM	DNA methyltransferase M, host modification of foreign DNA					
hsdR	Endonuclease R, host restriction of foreign DNA; ClpXP-dependent degradation					
htrL	Formate-sensing regulator for hyf operon					
hyaB	Hydrogenase 1 large subunit [NiFe], periplasmic					
ilvC	Ketol-acid reductoisomerase					
ilvN	Acetohydroxy acid synthase I (AHAS-I); acetolactate synthase I (ALS-I); valine sensitive; small subunit					
insA	IS4 gene, transposition function					
intD	Integrase gene within defective prophage DLP12					
intF	Putative integrase gene, CPS-6 putative prophage remnant					
intS	Integrate, CPS-53/KpLE1 prophage					
iscR	Transcriptional repressor for isc operon; contains Fe-S cluster; binds RNA in vitro					
iscS	Cysteine desulfurase used in synthesis of Fe-S clusters and 4-thiouridine; ThrL transpersulfidase; SirA(TusA) transpersulfidase; pyridoxal phosphate cofactor linked to Lys206					
iscU	Iron-sulfur cluster assembly scaffold protein					
ispA	Farnesyl diphosphate synthase, isoprenoid biosynthesis					
ispE	4-diphosphocytidyl-2-C-methylerythritol kinase; isopentenyl phosphate kinase; alternative nonmevalonate (DXP) pathway for terpenoid biosynthesis; essential gene					
katE	Catalase hydroperoxidase II, heme d-containing; response to oxidative stress; chromosome resistance					
katG	Catalase-hydrogen peroxidase I					
kdgR	Regulator of kdgK, kdgT, eda; possibly regulates several other genes, e.g. yjgK					
kdtA	2'-deoxy-D-glucanate 3-dehydrogenase					
kduB	4-deoxy-L-threo-5-hexosulose-urionate ketol-isomerase; 5-keto-4-deoxyurionate isomerase					
ktpA	NEM-activatable K+/H+ antiporter					
lacZ	beta-D-Galactosidase					
ldcA	L,D-carboxypeptidase A; cytoplasmic protease that cleaves the terminal D-alanine from cytoplasmic muropeptides					
Gene	Function	log2(fold change)				
-------	---	-------------------				
leuA	alpha-Isopropylmalate synthase	-0.414798339				
leuB	beta-Isopropylmalate dehydrogenase	-0.199455562				
leuC	alpha-Isopropylmalate isomerase large subunit	-0.415228459				
leuD	alpha-Isopropylmalate isomerase small subunit	-0.170246462				
lllD	L-lactate dehydrogenase, FMN dependent	-1.218356827				
lllR	Dual role activator/repressor for lllPRD operon	-1.022032736				
lpxL	Lipid A synthesis, KDO2-lipid IVA lauroyl-ACP acyltransferase; not under heat shock regulation; membrane protein affecting cell division, growth, and high-temperature survival	1.2080741				
lpxM	Lipid A synthesis, KDO2-lauroyl-lipid IVA myristoyl-ACP acyltransferase	1.418642				
malP	Maltodextrin phosphorylase	1.0782759				
map	Methionine aminopeptidase	-0.051142				
melA	alpha-Galactosidase	1.1843722				
mgtA	Magnesium transporter, ATP-dependent; mutant has cobalt resistance; mediates Mg(2+) influx	-2.2685869				
miaA	Dimethylallyl diphosphate:RNA dimethylallyltransferase; 2-methylthio-N6-(dimethylallyl)adenosine RNA hypermodification	2.5113444				
mlaA	Transcriptional regulator of csgD	1.208386				
mlaA	UTP-N-acetylglucosamine enolpyruvyl transferase; fusobomycin resistance	-1.2009416				
mutS	Methyl-directed mismatch repair protein; dimeric/tetrameric	-1.0045633				
nadD	Repressor of the nan operon, induced by sialic acid; homodimeric	1.6356357				
napA	Nitrate reductase, periplasmic	1.479877				
narQ	Nitrate/nitrite sensor-transmitter protein; anaerobic respiratory path; cognate regulator is NarP; function redundant with narX; Two-component nitrate/nitrite sensor-transmitter protein; NarL is cognate regulator; functional redundancy with narX	1.0795679				
narX		1.0639569				
nhaA	N-hydroxyarylamine O-acetyltransferase	1.1406503				
nirC	Nitrite uptake transporter; membrane protein Lipoprotein, function unknown; may be involved in cell wall formation; may have murein activity	-1.0733091				
napD	Ribonucleoside diphosphate reductase, subunit alpha; class I; aerobic; ribonucleotide reductase; B1 protein, R1 subunit	1.0051479				
nrdA		-0.0100503				
nudD		1.783473				
nroE	NADH:ubiquinone oxidoreductase subunit E, complex I; NADH dehydrogenase I	1.1405885				
nusE	Outer membrane protease VII, DLP12 prophage; OMP protein 2b; ompin	-1.2738028				
osmA	Trehalose phosphate phosphatase; cold- and heat-induced; required for viability at 4C; rpoS regulon; HAD17 Probable oxalo-CoA decarboxylase, oxalate catabolism	1.0189233				
oxaC	Phenylacetic acid degradation; mutants unable to use phenylacetate as a carbon source	1.0424947				
paaJ	Phenyacetic acid degradation	2.1441832				
paaX	Phenyacetic acid degradation	1.0424947				
panB	Ketopantoate hydroxymethyltransferase	-1.0029793				
parC		2.1262205				
Gene	**Function and Characteristics**					
----------	---------------------------------					
pcnB	Poly(A) polymerase; controls plasmid copy number; rare AUU start codon, growth-rate regulated; monomeric					
pdxB	2-hydroxyacid dehydrogenase involved in pyridoxine biosynthesis upstream of 4-phospho-hydroxy-threonine; isoniazid resistance					
pheA	Phenylalanine synthesis, bifunctional: chorismate mutase (N) and prephenate dehydratase (central); also contains Phe-binding regulatory domain (C); FPA resistance					
phoA	Alkaline phosphatase, periplasmic; binds Zn(II); dimeric					
phoQ	Response to extracellular divalent cations, pH, and acetate; two-component response regulator, cognate to phoP					
php	Putative phosphotriesterase; substrate unknown					
pinQ	DNA invertase, site-specific recombination, Qin prophage					
pinR	DNA invertase, site-specific recombination, Rac prophage					
plsC	1-Acyl-n-glycerol-3-phosphate acyltransferase; affects partitioning					
pntA	Proton-translocating NAD(P) transhydrogenase, alpha subunit; membrane protein					
ppiB	Periplasmic peptidylprolyl-cis-trans-isomerase B, rotamase					
pqqL	Putative secreted zinc protease, function unknown; induced by AI-2 pheromone					
prc	Peptide chain release factor 1, RF-1; translation termination factor recognizes UAG and UAA.					
prfA	Transcriptional regulator of prp operon; propionate catabolism via 2-methylcitrate cycle, characterized primarily in Salmonella					
purC	Amidophosphoribosyltransferase, purine synthesis; also known as glutamine 5'-phosphoribosylpyrophosphate amidotransferase, GPATase					
purM	Phosphoribosyl-aminomimidazole-succinocarboxamide synthase; purine synthesis; homodimeric					
purN	Glycinamide ribonucleotide transformylase (GART) 1, purine synthesis; glycinamide ribonucleotide formyltransferase					
purP	Glycinamide ribonucleotide transformylase (GART) 2, non-folate-requiring, purine synthesis					
puuD	Gamma-Glutamyl-GABA hydrolase, putrescine utilization pathway					
pyrB	Aspartate carbamoyltransferase, catalytic subunit; ATCase; aspartate transcarbamylase; aspartate transcarbamoylase					
pyrD	Dihydrorotate dehydrogenase, UMP biosynthesis					
pyrT	Aspartate carbamoyltransferase, regulatory subunit; aspartate transcarbamoylase; ATCase; aspartate transcarbamoylase					
queA	S-adenosylmethionine:3RNA ribosyltransferase-isomerase; queuosine biosynthesis, D-ribose pyranase; interconverts beta-pyran and beta-furan forms of D-ribose; related to fucose mutarotase FucU					
rbsD	Negative regulatory gene for capsule (colanic acid) synthesis; two regulatory proteins are derived from the same gene					
rcsA	Positive regulatory gene for capsule (colanic acid) synthesis, controls sliminess; contains TerF; probable histidine kinase					
Gene	Description					
------	-------------					
recT	RecET recombinase, annealing protein, Rac prophage; recombination and repair					
relA	ATP:GTP 3'→5' pyrophosphotransferase, ppGpp synthetase I; required for ppGpp synthesis during stringent response to amino acid starvation; self regulated					
relA	UTP:GTP 3'→5' pyrophosphotransferase, ppGpp synthetase I; required for ppGpp synthesis during stringent response to amino acid starvation; self regulated					
rfaS	LPS core, not affecting attachment of O antigen					
rfaZ	2,4 Kdo transferase, required for the addition of KdoIII; LPS core biosynthesis					
rfbA	TDP-glucose pyrophosphorylase; glucose-1-phosphate thymidylyltransferase; needed for dTDP-4-rhamnose synthesis					
rfbB	TDP-glucose oxidoreductase-4,6 dehydratase					
rfbC	dTDP-4-deoxyxylulose-3,5-epimerase; putative polisoprenol-linked O-antigen translocase					
rhaR	Transcriptional activator for rhaSR, AraC family					
ribA	GTP cyclohydrolase II, riboflavin biosynthesis					
ribB	3,4-dihydroxy-2-butanone 4-phosphate synthase; riboflavin biosynthesis; acid inducible; homodimeric					
ribC	Ribonucleoside hydrolase					
rplB	50S ribosomal subunit protein L2; binds Zn(II)					
rplC	50S ribosomal subunit protein L3					
rplF	50S ribosomal subunit protein L6; gentamicin sensitivity					
rplD	50S ribosomal subunit protein L15					
rplP	50S ribosomal subunit protein L16					
rplQ	50S ribosomal subunit protein L17					
rplU	50S ribosomal subunit protein L21					
rpxX	50S ribosomal subunit protein L24					
rpmG	50S ribosomal subunit protein L33					
rpsC	30S ribosomal subunit protein S3					
rpsD	30S ribosomal subunit protein S4; NusA-like antitermination factor					
rpsG	30S ribosomal subunit protein S7					
rpsH	30S ribosomal subunit protein S8					
rpsK	30S ribosomal subunit protein S11					
rpsM	30S ribosomal subunit protein S13					
rpsQ	30S ribosomal subunit protein S17					
rrmJ	1.538243					
rnoB	Bifunctional D-altronate/D-mannonate dehydratase; overproduction prevents homoserine lactone-induced synthesis of RpoS					
rpsA	Required for the reduction of SoxR; putative membrane-associated NADH oxidoreductase					
rsaC	Required for the reduction of SoxR; membrane protein					
rsaE	23S rRNA m(5)U1939 methyltransferase, SAM-dependent					
rumA	DNA hairpin dsDNA 3'-exonuclease SbcCD, Mn(2+), ATP-dependent; ATP-independent 5' ssDNA endonuclease; cosuppressor with sbcB of recB recC mutations; heterodimeric					
sbcD	Succinate dehydrogenase (SQR) cytochrome b556; membrane anchor; succinate:ubiquinone oxidoreductase (SQR); complex II of aerobic respiration					
sdhC	1.0607324					
Gene	Description	Log2FoldChange	p-value	q-value		
------	-------------	----------------	---------	---------		
sdhD	Succinate dehydrogenase (SQO) hydrophobic subunit; succinate:ubiquinone oxidoreductase (SQR); complex II of aerobic respiration	1.0157504	-	-		
secB	Protein export chaperone; SecB helps SecA deliver proteins to the SecYE core translocon	-1.3555017	-	-		
secG	General protein chaperone; SecG inner membrane secretion protein; complexes with and assists the SecYE core translocon to interact with SecA to export proteins	-1.0875401	-	-		
sgcQ	Putative gene in sgc gene cluster, function unknown	2.1578507	-	-		
sgcR	Putative sgc cluster transcriptional regulator	1.3975518	-	-		
slyA	Protein export chaperone; SecB helps SecA deliver proteins to the SecYE core translocon; general protein chaperone	1.015482	-	-		
sodB	Superoxide dismutase, Fe; response to oxidative stress; chromate resistance; negatively regulated by ryhB RNA as part of indirect positive regulation by Fur; acid-inducible	4.006849988	3.110075363	0.896774625		
srlD	Sorbitol-6-phosphate dehydrogenase	-1.2612939	-	-		
surA	Periplasmic OM porin chaperone, has PPIase activity; required for stationary-phase survival	1.1290984	-	-		
tesA	Acyl-CoA thioesterase I; also protease I; also lysophospholipase L1; monomeric	1.0010815	-	-		
thrA	Aspartokinase I and homoserine dehydrogenase I, bifunctional	-1.004643	1.18802236	1.733920514	-0.545898154	
treF	Cytoplasmic trehalase	1.0018826	-	-		
tufA	EF-Tu, Elongation Factor-Translation, unstable; GTP-dependent binding of aa-tRNA to the A-site of ribosomes; has intrinsic GTPase activity when bound to kirromycin	-1.3282719	-	-		
tufB	EF-Tu, Elongation Factor-Translation, unstable; GTP-dependent binding of aa-tRNA to the A-site of ribosomes; has intrinsic GTPase activity when bound to kirromycin	-1.3645415	-	-		
tig	Trigger factor, protein folding chaperone; also peptidyl-prolyl cis-trans isomerase; interacts with nascent polypeptide chains	-1.0661763	-	-		
tktB	Transketolase B; binds Zn(II)	1.0192213	-	-		
torS	Sensor kinase for torCAD operon	2.9209745	-	-		
treR	Repressor of trehalose operon; EF-Tu, Elongation Factor-Translation, unstable; GTP-dependent binding of aa-tRNA to the A-site of ribosomes; has intrinsic GTPase activity when bound to kirromycin	1.5542111	-	-		
wbbB	d-Galf:alpha-d-Glc beta-1,6-galactofuranosyltransferase; involved in lipopolysaccharide biosynthesis	-1.004085	-	-		
wbbI	Involved in lipopolysaccharide biosynthesis, possible O-acetyltransferase	-1.0572133	-	-		
wbbJ	Involved in lipopolysaccharide biosynthesis, possible O-acetyltransferase	-1.304595	-	-		
wbbK	Involved in lipopolysaccharide biosynthesis	-1.4321501	-	-		
wcaI	Putative colanic acid biosynthesis glycosyltransferase	1.883362	-	-		
xdhA	Probable xanthine dehydrogenase molybdenum-binding subunit; involved in limited purine catabolism; mutation confers adenine sensitivity	1.3941514	-	-		
xdhD	Probable hypoxanthine oxidase; mutation confers adenine sensitivity	1.391839	-	-		
yadB	Glutamyl-queuosine tRNA(Asp) synthase	1.055563	-	-		
yadE	LysR family of transcriptional regulators, function unknown	1.046875	-	-		
yahB	Function unknown, Lrp family; putative transcriptional regulator	1.0301518	-	-		
ybaO	Putative transcriptional regulator	1.2362571	-	-		
ybaX	-1.101002	-	-			
Gene	Function	p-value (GEO)	p-value (EIG)	Adjusted p-value (Bonferroni)		
--------	--	---------------	---------------	------------------------------		
ybeF	Putative LysR-family transcriptional regulator, function unknown	1.0823689				
ybdD	Putative LysR-family transcriptional regulator, function unknown	1.1145554				
ybhJ	AcnA homolog, function unknown; not responsible for the residual aconitase activity in acnAB double mutants	1.4566447				
ycbB	Murein L,D-transpeptidase, periplasm	1.1077027				
yddE	Function unknown	1.1745566				
ydeP	Required for acid resistance conferred by EvgA overexpression; oxidoreductase homolog	0.165101808	1.134409366	-0.969307558		
ydT	Putative periplasmic serine protease; function unknown	1.6117142				
ydgD	Putative oxidoreductase; yhhX paralog	1.9687521				
ydgJ	Putative oxidoreductase; function unknown	1.0867878				
ydiD	Function unknown	1.5217233				
yecI	Function unknown	1.016995				
yedF	Function unknown	-1.1209044				
yegQ	Function unknown, U32 peptidase family	-1.0663853				
yfaX	Putative LysR-family transcriptional regulator, function unknown	1.2188423				
yfBG	Function unknown	1.0953493				
yfbJ	Function unknown	1.2325368				
yfBQ	Function unknown	-1.0475144	-0.044862622	0.847759504 -0.892622126		
yfBW	Function unknown	1.0032601				
yfeG	Function unknown	1.1252446				
yfeR	Required for swarming phenotype, function unknown; predicted transcriptional regulator	1.2977767				
yfF	Putative methyltransferase, function unknown; spoU paralog; non-essential gene	-1.4608327				
ygeY	Peptidase homolog, function unknown; M20D family	1.1330509				
ygD	Putative LysR-family transcriptional regulator, function unknown	1.4685719				
ygJ	Function unknown	1.0237489				
yhjD	DNA adenine methyltransferase, SAM-dependent	1.0355549				
yHF	Function unknown	1.2616509	-1.6261956	0.509971635 -2.136167235		
yhjB	Function unknown	1.5886974				
yIC	alpha-Xylosidase; hexameric	1.2212114				
yieK	Function unknown, bg1 operon; glucosamine-6-phosphate isomerase homolog	1.1036859				
yihS	D-mannose isomerase; aldose-ketose isomerase inter-converting mannose, fructose and glucose;	2.4466274				
ysjE	Putative acetyltransferase	1.3598251				
yjeS	Putative electron transport protein, iron-sulfur center	1.1133585				
yjHC	Putative oxidoreductase; N-acetylneuraminic acid inducible	-1.0411266				
yjG	Function unknown	1.064939				
yjHH	Function unknown	1.0324111				
yjJR	Putative HTH transcriptional regulator with aminotransferase domain, function unknown;	1.0690143				
ylII	Soluble aldose sugar dehydrogenase; Asd; binds PQQ; outer membrane protein	1.2631116				
ymdC	Function unknown	1.1792688				
ynhG	Murein L,D-transpeptidase, periplasm	1.1129286				
yodB	Function unknown	0.694684412	1.62745419	-0.932769778		
Gene	Description	Fold Change				
------	-------------	-------------				
ypfI	Part of T3SS PAI2 remnant, TaxR homolog	1.067775				
yqeI	Zinc and other divalent cation uptake transporter	-1.067694				
zupT		1.437235				

51704 multi-organism process

Gene	Description	Fold Change
ompF	Outer membrane porin F	-1.0644927
slyA	Activates cryptic hemolysin gene hlyE; global transcriptional regulator	1.015482

48519 negative regulation

Gene	Description	Fold Change
treR	Repressor of trehalose operon	1.5542111
yccA	Membrane-associated protein that binds to FtsH(HflB) and HflKC proteins; mutant YccA stabilizes SecY(Ts); suppression requires HflKC; YccA is a native substrate for the FtsH(HflB) protease	-1.0077734

50789 regulation of biological process

Gene	Description	Fold Change			
acrR	AcrR transcriptional repressor for acrAB (AcrAB-ToIc multidrugefflux pump)	-1.0204067			
arcB	Tripartite sensor/histidine protein kinase; repression of aerobic genes and activation of some anaerobic genes under anaerobic growth conditions; phosphorylates response regulator protein (ArcA); has responses regulator and second transmitter domains	1.0271903			
barA	Sensor histidine protein kinase, pleiotropic; controls the expression of csrB/C sRNAs; works in concert with UvrY response regulator	1.6353183			
cheA	Histidine kinase protein sensor of chemotactic response; CheY is cognate response regulator; autophosphorylates; CheAS is a short form produced by an internal start at codon 98	-1.1959176			
cheW	Chemotaxis signal transducer; bridges CheA to chemoreceptors to regulate phototransfer to CheY and CheB	-1.2323792			
cheY	Response regulator for chemotactic signal transduction; CheA is the cognate sensor protein	-1.2030091			
cheZ	CheY-P phosphatase	-1.0379796			
csgD	Transcription activator for csgBA and other genes	-1.859434883			
csiE	Stationary phase inducible protein; sigma S-dependent promoter	1.3574634			
cusS	Copper ion sensor regulating cusCFBA expression; may also sense silver	1.4919264			
cysB	Cysteine desulfhydrase	1.44637671			
dcuR	C4-dicarboxylate regulation of anaerobic fumarate respiratory system; two-component system response regulator	1.0233135			
dcuS	C4-dicarboxylate regulation of anaerobic fumarate respiratory system; two-component system sensory histidine kinase	1.2036445			
deaD	ATP-dependent RNA helicase, 50S ribosomal subunit biogenesis; translation factor W2; facilitates translation of mRNAs with 5' secondary structures; multicopy suppressor of rpsB(Ts) mutations	1.1617334			
deoR	Repressor for deo operon, nupG and tsx; binds deoxyribose-5-phosphate inducer	1.2066016			
dhaR	Transcription activator of the dhaKLM operon	1.127254			
Gene	Function	Value	Standard Error	t-value	P-value
------	----------	-------	----------------	---------	---------
envY	Thermoregulatory activator of porin expression, AraC family	1.679985	0.473670149	1.76544683	1.291776681
fimB	Site-specific recombinase, fimA promoter inversion; mediates flagellar phase switching, along with FimE	-1.1248107	0.473670149	1.76544683	1.291776681
fimC	Flagellin, structural gene, H-antigen	-1.5392385	0.473670149	1.76544683	1.291776681
gadE	Transcriptional regulator of the gadABC operon	-1.613297865	0.473670149	1.76544683	1.291776681
galS	Transcriptional positive regulator for glc operon	1.2070732	0.473670149	1.76544683	1.291776681
glmC	Transcriptional positive regulator for glm operon	1.2070732	0.473670149	1.76544683	1.291776681
gnr	Cyclic-di-GMP phosphodiesterase, csgD regulator; modulates protein stability of RNase II	1.123914	0.473670149	1.76544683	1.291776681
hyfR	Formate-sensing regulator for hyf operon	1.2317433	0.473670149	1.76544683	1.291776681
iscR	Transcriptional repressor for isc operon; contains Fe-S cluster; binds RNA in vitro	-1.1579247	0.473670149	1.76544683	1.291776681
kdgR	Regulator of kdgK, kdgT, eda; possibly regulates several other genes, e.g. yjgK	-1.064749	0.473670149	1.76544683	1.291776681
lldR	Dual role activator/repressor for lldPRD operon	-1.022032736	0.473670149	1.76544683	1.291776681
mtaA	Transcriptional regulator of csgD	1.208386	0.473670149	1.76544683	1.291776681
nanR	Nitrate/nitrite sensor-transmitter protein; anaerobic respiratory path; cognate regulator is NarP; function redundant with narX	1.6356357	0.473670149	1.76544683	1.291776681
narQ	Two-component nitrate/nitrite sensor-transmitter protein; NarL is cognate regulator; functional redundance with narX	1.0795679	0.473670149	1.76544683	1.291776681
narX	Two-component nitrate/nitrite sensor-transmitter protein; NarL is cognate regulator; functional redundance with narX	1.0639569	0.473670149	1.76544683	1.291776681
paaX	Phenylacetic acid degradation	1.0424947	0.378975841	0.62544681	0.378975841
phoQ	Response to extracellular divalent cations, pH, and acetate; two-component response regulator, cognate to phoP	1.4622464	0.473670149	1.76544683	1.291776681
prpR	Transcriptional regulator of prp operon; propionate catabolism via 2-methylcitrate cycle, characterized primarily in Salmonella	1.6797161	0.473670149	1.76544683	1.291776681
purR	Purine regulon repressor	-1.0262108	0.473670149	1.76544683	1.291776681
rcsA	Negative regulatory gene for capsule (colanic acid) synthesis; two regulatory proteins are derived from the same gene	0.300528606	0.473670149	1.76544683	1.291776681
rcsC	TerF; probable histidine kinase	-1.6430304	0.473670149	1.76544683	1.291776681
rhaR	Transcriptional activator for rhaSR, AraC family	2.2165618	0.473670149	1.76544683	1.291776681
rob	Right oriC-binding protein, AraC family	1.3771441	0.473670149	1.76544683	1.291776681
rpsD	3OS ribosomal subunit protein S4; NusA-like antitermination factor	-1.0738251	0.473670149	1.76544683	1.291776681
sgcR	Putative sgc cluster transcriptional regulator	1.3975518	0.473670149	1.76544683	1.291776681
slyA	Activates cryptic hemolysin gene hlyE; global transcriptional regulator	1.015482	0.473670149	1.76544683	1.291776681
stpA	RNA chaperone and DNA-binding protein; suppresses T4 td mutant; forms heteromers with, and stabilized against proteolysis by, the paralogous H-NS protein; transcriptionally repressed by H-NS	-1.2432377	0.473670149	1.76544683	1.291776681
tar	Serine chemoreceptor, methyl-accepting; also senses repellents cobalt and nickel; flagellar regulon	-1.1869416	0.473670149	1.76544683	1.291776681
torS	Sensor kinase for torCAD operon	2.9209745	0.473670149	1.76544683	1.291776681
treR	Repressor of trehalose operon	1.5542111	0.473670149	1.76544683	1.291776681
trp	Riboce, galactose chemoreceptor, methyl-accepting; flagellar regulon	-1.3795029	0.473670149	1.76544683	1.291776681
tsr	Serine chemoreceptor, methyl-accepting; flagellar regulon	-1.9566808	0.473670149	1.76544683	1.291776681
uxuR	Repressor for UxuR regulon; true inducer is fructuronate	1.0230589	0.473670149	1.76544683	1.291776681
Gene	**Function/Description**	**log2 Ratio**			
----------	---	-----------------			
yahA	c-di-GMP-specific phosphodiesterase, PDE-A; reaction product is S'pGpG; dependent on Mg+2 or Mn+2, Ca+2 inhibitory; optimum pH 9.35; monomeric LysR family of transcriptional regulators, function unknown	-2.0166183			
yahB	Function unknown, Lrp family; putative transcriptional regulator	1.046875			
ybaO	Putative LysR-family transcriptional regulator, function unknown	1.0301518			
ybeF	Putative LysR-family transcriptional regulator, function unknown	1.0823689			
ybdD	Membrane-associated protein that binds to FtsH(HflB) and HflKC proteins; mutant YccA stabilizes SecY(Ts); suppression requires HflKC; YccA is a native substrate for the FtsH(HflB) protease	-1.0077734			
ydfT	Function unknown	1.6117142			
yegE	Putative c-di-GMP dual activity enzyme, function unknown	1.6381769			
yfaX	Putative transcriptional regulator, function unknown	1.2188423			
yfeG	Function unknown	1.1252446			
yfeR	Required for swarming phenotype, function unknown; predicted transcriptional regulator	1.2977767			
yflF	Putative LysR-family transcriptional regulator, function unknown	1.4685719			
yhiF	**Probable repressor of dctA dicarboxylate transporter gene**	1.2616509			
yhjB	Function unknown	1.5886974			
yjiR	Putative HTH transcriptional regulator with aminotransferase domain, function unknown; MocR family	1.0690143			
ypdA	Putative sensor kinase, function unknown	-1.0332007			
yqeI	Part of T3SS PAI ETT2 remnant, ToxR homolog	-1.067694			
50896 response to stimulus					
bcr	Efflux pump for bicyclomycin, cysteine and sulfonamides	1.2833695			
betT	High-affinity choline transporter; bet genes confer protection against osmotic stress by making the osmoprotectant glycine betaine from choline	1.1661614			
cheA	Histidine protein kinase sensor of chemotactic response; CheY is cognate response regulator; autophosphorylating; CheAS is a short form produced by an internal start at codon 98	-1.1959176			
cheR	Chemotaxis MCP protein methyltransferase, SAM-dependent; binds C-terminus of chemoreceptors; makes glutamate methyl esters	-1.229362			
cheW	Chemotaxis signal transducer; bridges CheA to chemoreceptors to regulate phosphotransfer to CheY and CheB	-1.2323792			
cheY	Response regulator for chemotactic signal transduction; CheA is the cognate sensor protein	-1.2030091			
cheZ	CheY-P phosphatase	-1.0379796			
deaD	ATP-dependent RNA helicase, 50S ribosomal subunit biogenesis; translation factor W2; facilitates translation of mRNAs with S’ secondary structures; multicopy suppressor of rpsB(Ts) mutations	1.1617334			
degP	Periplasmic, membrane-associated serine endoprotease; protease Do, required for high-temperature growth and the degradation of damaged proteins	-0.366102641			
dinB	DNA polymerase IV, capable of translesion synthesis; overexpression enhances mutagenesis; mediates targeted mutagenesis by 4-NQO; intrinsic AP lyase activity	1.0903935			
Gene	Description	Score1	Score2	Score3	Score4
------	-------------	--------	--------	--------	--------
dppA	Dipeptide/heme transport, periplasmic binding protein; recognition for transport and chemotaxis	1.8925548			
ecnB	Bacteriolytic lipoprotein entericidin B toxin	1.641038			
fabI	Enoyl-ACP reductase, NADH dependent	-1.0237877			
fliG	Rotor protein for flagellar motor switching and energizing; role in flagellar assembly	-2.774952	2.130965744	3.2673922	-1.136426456
fliJ	Flagellin export apparatus soluble chaperone	-1.861196	2.017483883	2.880704117	-0.863220233
fliL	Affects rotational direction of flagella during chemotaxis	-1.5788474			
fliM	Flagellar synthesis, motor switching and energizing	-2.746443	2.032106006	2.845598856	-0.81349285
fliN	Flagellar switch protein	-1.9425316			
fliO	Flagellin export apparatus, integral membrane protein	-1.882103			
ftsI	Transpetidase, PBP3; penicillin binding protein 3 involved in septal peptidoglycan synthesis	2.2227626			
grpE	ATPase	-1.0346646			
gyrA	DNA gyrase, subunit B; novobiocin, coumermycin resistance	1.1973567			
hscC	Hsc62, DnaK-like chaperone; binds to RpoD and inhibits transcription; inhibits growth when overexpressed; Hsc56(DJC) is DnaJ-like co-chaperone; ATPase activity is stimulated by GrpE, DJC; mutant grows slow and is hypersensitive to Cd(II) and UV	1.0540187			
hsrA	Putative transporter, blocks RspA-mediated RpoS down-regulation; membrane protein; overexpression causes homocysteine accumulation due to MetE inhibition and methionine auxotrophy in absence of cobalamin; no overexpression resistance found	1.1956267			
iscR	Transcriptional repressor for isc operon; contains Fe-S cluster; binds RNA in vitro	-1.1579247			
katE	Catalase hydroperoxidase II, heme d-containing; response to oxidative stress; chromate resistance	1.2447912			
katG	Catalase-hydrogen peroxidase I	0.208642701	-0.61092661	0.819563361	
lpxL	Lipid A synthesis, KDO2-lipid IVA lauroyl-ACP acyltransferase; not under heat shock regulation; membrane protein affecting cell division, growth, and high-temperature survival	1.2080741			
mdtD	Putative transporter, function unknown; no MDR phenotype when mutated or cloned; fourth gene in mdtABCDbaeRS operon	1.009489			
mdtE	MdtEF-ToIC multidrug resistance efflux transporter; membrane fusion protein (MFP) component, lipoprotein; overexpression resistance to erythromycin, deoxycholate, octane and rhodamine; no mutant phenotype	1.103848	0.943962914	1.637187912	-2.581150826
motA	MotA driven stator protein of flagellar rotation	-1.1367812			
mutS	Methyl-directed mismatch repair protein; dimeric/tetrameric	-1.0045633			
ompF	Outer membrane porin F	-1.0644927			
osmC	Osmotically inducible, stress-inducible membrane protein; involved in defense against oxidative compounds; required for long-term survival in stationary phase	1.022247			
phoH	ATP-binding protein, function unknown	2.0218205			
rcsA	Positive regulatory gene for capsule (colanic acid) synthesis; two regulatory proteins are derived from the same gene	0.300528606	-1.142561372	1.443089978	
Gene	Description	Log2 Fold Change			
-------	---	-----------------			
recD	RecBCD Exonuclease V subunit, recombination and repair; recD mutants are constitutively activated for recombination; RecBCD 5'-3' fast helicase subunit; RecD alone has 5'-3' helicase activity; contains ATP-binding site; binds RecC; inhibits RecA loading	1.1258063			
ribB	3,4-dihydroxy-2-butane-4-phosphate synthase; riboflavin biosynthesis; acid-inducible; homodimeric	-3.7772803			
rplF	30S ribosomal subunit protein L6; gentamicin sensitivity	-1.1512773			
rpsD	30S ribosomal subunit protein S4; NusA-like antitermination factor	-1.0738251			
rpsQ	30S ribosomal subunit protein S17	-1.0870361			
rmJ	Inhibits cell division and ftsZ ring formation; lexA regulon	1.1538243			
sulA	Aspartate, maltose chemoreceptor, methyl-accepting; MCP II; also senses repellents cobalt and nickel; flagellar regulon	1.9572544			
tar	Ribose, galactose chemoreceptor, methyl-accepting; MCP III; flagellar regulon	-1.1869416			
trg	Serine chemoreceptor, methyl-accepting; MCP I; also senses repellents; flagellar regulon	-1.3795029			
tsr	EF-Tu, Elongation Factor-Translation, unstable; GTP-dependent binding of aa-tRNA to the A-site of ribosomes; has intrinsic GTPase activity when bound to kirromycin	-1.9566808			
tufA	EF-Tu, Elongation Factor-Translation, unstable; GTP-dependent binding of aa-tRNA to the A-site of ribosomes; has intrinsic GTPase activity when bound to kirromycin	-1.3282719			
tufB	EF-Tu, Elongation Factor-Translation, unstable; GTP-dependent binding of aa-tRNA to the A-site of ribosomes; has intrinsic GTPase activity when bound to kirromycin	-1.3645415			
uvrC	Excision nuclease subunit C; repair of UV damage to DNA; multicopy causes mucoidy	1.2626269			
ycaI	Competence protein ComEC homolog, function unknown	1.2410421			
yebQ	Putative transporter, function unknown; no overexpression resistances found	1.1920364			
ybgG	Function unknown	1.0953493			
yhaA	Microcin J25 efflux pump, TolC-dependent; non-essential gene	1.117802			
Table S2b. Genes affected by the absence of PNPase and/or in a PNPase-mediated response to citrate. Genes are listed according to their Gene Ontology groupings at the level of GO:44237, Cellular Metabolic Process. Genes in bold are affected both by the absence of PNPase and in a PNPase-mediated response to citrate. The magnitude of the changes are expressed as Log2 ratios and are the average of duplicate experiments.

GO Term	Gene	Function	Log2 of the ratio of PNPase null (no citrate):Wild-type (no citrate)	Log2 of the ratio of Wild-type plus citrate:Wild-type (no citrate)	Log2 of the ratio of PNPase null plus citrate:PNPase null (no citrate)	Log2 of the ratio of fold-change from wild-type plus/minus citrate and PNPase null plus/minus citrate
Cellular Metabolic Process						
6081 cellular aldehyde metabolic process						
	gcl	Glyoxylate carboligase, glyoxylate-inducible	1.2727609			
6519 cellular amino acid and derivative						
metabolic process						
	adA	Arginine decarboxylase, acid-inducible; arginine-dependent acid resistance	1.1271622			
	ansA	L-Asparaginase I	-1.1030908			
	ansB	L-Asparaginase II	1.5445883			
	argA	N-acetylglutamate synthase; first step in arginine biosynthesis; amino-acid acetyltransferase; growth on acetylornithine	1.3041081 2.991781138 1.434967896 1.556813242			
	argB	N-acetylglutamate kinase	1.044384 2.818308386 1.527225825 1.291082561			
	argC	N-acetyl-gamma-glutamyl-phosphate reductase	1.7869039 3.319065683 1.757350161 1.561715522			
	argD	Acetylornithine aminotransferase; succinyldiaminopimelate aminotransferase, PLP-dependent	2.58062465 1.749457164 0.831167486			
	argF	Ornithine carbamoyltransferase; ornithine transcarbamylase; OTCase; CP4-6 putative prophage remnant	2.345750989 0.780893261 1.564857729			
	argG	Argininosuccinate synthase	2.6295392 1.468532017 1.61007183			
	argH	Argininosuccinate lyase	1.2643517 2.489928442 1.442275936 1.047652506			
	argI	Ornithine carbamoyltransferase; ornithine transcarbamylase; OTCase	2.843476333 1.517740469 1.325735865			
	asd	Aspartate semialdehyde dehydrogenase	-0.796322194 -1.579930631 0.783608438			
	aspA	L-Aspartate ammonia-lyase; L-aspartase	3.0522566			
	aspC	Aspartate aminotransferase, AspAT; kynurenine aminotransferase; glutamine transaminase K	-1.0659509			
	cysB	Positive regulator for Cys regulon, acetylserylme induced; downregulates ssuEADCB; cysteine desulfhydrase	0.442750627 1.32534585 -0.882595223			
Gene	Description	Entry	Z-score	P-value	Fold-change	
------	-------------	-------	---------	---------	-------------	
dadA	D-amino acid dehydrogenase	1.2919754	-0.36892089	-1.625476173	1.256555364	
dadB	Dihydrolipide dehydratase	-1.0075407	-0.965960622	-2.004323596	1.449806213	
glnA	Glutamine synthase	0.155438273	-0.563659431	-2.038941914	1.03862974	
glyA	Serine hydroxymethyltransferase	-1.2570169	-1.315692056	-1.10524415	1.1232334	
hisS	Histidine-tRNA ligase	-1.0075407	-0.965960622	-2.004323596	1.449806213	
ilvC	Ketol-acid reductoisomerase	-1.0233388	0.607905905	2.038941914	-1.43103601	
purF	Amidophosphoribosyltransferase, purine synthesis	1.5669665	1.33800575	-0.51491624	1.85292199	
purD	Aspartate carboxamidase	0.415228459	-0.170246462	-1.315692056	1.145445594	
thrA	Aspartokinase I and homoserine dehydrogenase	-1.004643	1.18802236	2.038941914	-1.43103601	
yapA	Nitrate reductase, periplasmic	1.19802236	1.33800575	-0.51491624	1.85292199	

6725 cellular aromatic compound metabolic process

- citE | Putative citrate lyase beta chain | 1.1568863 |
- folE | GTP cyclohydrolase I | -1.0049135 |
- hcaE | 3-phenylpropionate/cinnamic acid dioxygenase, alpha subunit; hca genes catalyze 3-phenylpropionate and cinnamic acid oxidation, feedback the products into the mhp pathway | 1.170918 |
- napA | Ribonucleoside hydrolase | 1.479877 |
- rihC | Ribonucleoside hydrolase | -1.0441272 |
44249 cellular biosynthetic process

Gene	Description	Promoter	Pathway	Metabolite	Function
xdhA	Probable xanthine dehydrogenase molybdenum-binding subunit; involved in limited purine catabolism; mutation confers adenine sensitivity	1.394154			
xhdD	Probable hypoxanthine oxidase; mutation confers adenine sensitivity	1.2296381			
zipT	Zinc and other divalent cation uptake transporter	1.4372325			
argA	N-acetylglutamate synthase; first step in arginine biosynthesis; amino-acid acetyltransferase; growth on acetylornithine	1.3041081			
argB	N-acetylglutamate kinase	1.044384			
argC	N-acetyl-gamma-glutamyl-phosphate reductase	1.7869039			
argD	Acetylornithine aminotransferase; succinylpyridoxal phosphate aminotransferase, PLP-dependent	2.58062465	1.749457164	0.831167486	
argF	Ornithine carbamoyltransferase; ornithine transcarbamylase; OTCase; CP4-6 putative prophage remnant	2.345750989	0.780893261	1.564857729	
argG	Argininosuccinate synthase	2.6295392	1.466532017	1.161007183	
argH	Argininosuccinate lyase	1.2643517	2.489928442	1.442275936	1.047652506
argI	Ornithine carbamoyltransferase; ornithine transcarbamylase; OTCase	2.843476333	1.517740469	1.325735865	
ornA	4-amino-4-deoxy-L-arabinose(Ara4N):Lipid A transferase; modifies lipid A phosphates with aminosugars and confers resistance to polymyxin B and cationic antimicrobial peptides; glycolipid donor is undecaprenyl phosphate-alpha-L-Ara4N	1.0203366			
ornT	3-deoxy-D-arabinofuranosyl-7-phosphate (DAHP) synthase; tyrosine repressible; TyrR regulon	1.0875133			
aroF	Shikimate kinase I; auxotrophic	-1.2647691			
aroK	Aspartate semialdehyde dehydrogenase	-0.796322194	-1.579930631	0.783608438	
bioB	Biotin synthase; dethiobiotin to biotin pathway; iron-sulfur enzyme	-1.5355635	-0.360614381	0.797467665	-1.158082046
bioc	Biotin synthesis blocked prior to pimeloyl CoA formation; putative SAM-dependent methyltransferase	-1.0316381			
bioF	7-keto-8-amino pelargonic acid synthase	-1.3357835	0.006935611	1.062414033	-1.055477522
cld	Regulator of lipopolysaccharide O-chain length; gene studied in Salmonella and non-K-12 strains	-1.0316088			
cobC	Cytochrome c oxidase subunit	1.7467084			
cyoE	Positive regulator for Cys regulon, cysteine inducer; downregulates cysteine desulphhydrase	-1.0276141	0.195029502	1.040158488	-0.845128986
cysB	cysteine desulphhydrase	0.442750627	1.32534585	-0.882595223	
dapA	Dihydrodipicolinate reductase	1.2919754	-0.563659431	-2.013465644	1.449806213
dapD	Dihydrodipicolinate reductase; growth defects of strains lacking superoxide dismutase	-1.0075407			
fcl	Ferrienterobactin transport, membrane protein; regulator of length of O-antigen component of lipopolysaccharide chains	1.6897135			
fepE	Elongation Factor EF-G; GTPase required for translocation from the A-site to the P-site in the ribosome; fusidic acid resistance	-1.1662207			
fusA	UDP-galactopyranose mutase	-1.1621015			
glf	UDP-galactopyranose mutase	-1.4456341			
Gene	Description	log2FoldChange (up)	log2FoldChange (down)	p-value	
--------	--	---------------------	-----------------------	----------	
glgA	Glycogen synthase	-0.611356637	-1.254026216	0.642669579	
glgB	1,4-alpha-glucan branching enzyme; glycogen branching enzyme	1.0104895	-0.518011066	0.929489741	
glgC	Glucose-1-phosphate adenylyltransferase; ADP-glucose pyrophosphorylase	-0.717255721	-1.435926535	0.718670815	
gtyS	Glycine-3'-RNA ligase, beta-subunit	-1.1524415	-1.46720426	1.051975801	
hemB	Uroporphyrinogen III cosynthase; neomycin sensitivity	1.0766261	-1.46720426	1.051975801	
leuB	beta-Isopropylmalate dehydrogenase	-0.199455562	-1.235586059	1.036130497	
leuD	Isopropylmalate isomerase small subunit	-0.170246462	-1.315692056	1.145445594	
purF	Aspartate carbamoyltransferase, regulatory subunit; aspartate transcarbamoylase; catalytic subunit; ATCase; aspartate transcarbamoylase	2.193177888	1.177744341	1.015433546	
pyrB	transcarbamoylase	2.405384692	1.399913513	1.005471179	
pyrD	Dihydroorotate dehydrogenase, UMP biosynthesis	-1.0465689	-1.399913513	1.005471179	
pyrI	Aspartate carbamoyltransferase, regulatory subunit; aspartate transcarbamoylase; ATCase; aspartate transcarbamoylase	2.193177888	1.177744341	1.015433546	
rfaJ	Glycolysis transferase needed for heptose region of LPS core	-1.0780096	-1.9637394	-1.0442805	
rfaQ	LPS core, not affecting attachment of O antigen	-1.3851705	2.4 Kdo transferase, required for the addition of KdoIII; LPS core biosynthesis,	-1.0442805	
rfaS	2,4 Kdo transferase, required for the addition of KdoIII; LPS core biosynthesis,	-1.3851705	2.4 Kdo transferase, required for the addition of KdoIII; LPS core biosynthesis,	-1.0442805	
rfaZ	TDP-glucose pyrophosphorylase; glucose-1-phosphate thymidyltransferase; needed for dTDP-L-rhamnose synthesis	-1.3851705	2.4 Kdo transferase, required for the addition of KdoIII; LPS core biosynthesis,	-1.0442805	
rfbX	Putative polisoprenol-linked O-antigen translocase	-1.252498	-1.252498	-1.252498	
rfbC	dTDP-4-deoxyxynamnose-3,5-epimerase	-1.3006554	-1.252498	-1.252498	
rfbB	TDP-glucose oxidoreductase-4,6 dehydrogenase	-1.0411434	-1.252498	-1.252498	
rfbA	TDP-glucose pyrophosphorylase; glucose-1-phosphate thymidyltransferase; needed for dTDP-L-rhamnose synthesis	-1.3851705	2.4 Kdo transferase, required for the addition of KdoIII; LPS core biosynthesis,	-1.0442805	
rplB	SOS ribosomal subunit protein L2; binds Zn(II)	1.22875676	-1.3851705	2.4 Kdo transferase, required for the addition of KdoIII; LPS core biosynthesis,	1.556873
Gene	Description	Fold Change			
------	-------------	-------------			
rplC	50S ribosomal subunit protein L3	-0.0714864			
rplF	50S ribosomal subunit protein L6; gentamicin sensitivity	-1.1512773			
rplO	50S ribosomal subunit protein L15	-0.0819453			
rplP	50S ribosomal subunit protein L16	-1.1343815			
rplQ	50S ribosomal subunit protein L17	1.612936			
rplU	50S ribosomal subunit protein L21	-1.2566199			
rplX	50S ribosomal subunit protein L24	-1.030241			
rpmG	50S ribosomal subunit protein L33	-1.1044912			
rpsC	30S ribosomal subunit protein S3	-1.4378805			
rpsD	30S ribosomal subunit protein S4; NusA-like antitermination factor	-1.0738251			
rpsG	30S ribosomal subunit protein S7	-1.2602897			
rpsH	30S ribosomal subunit protein S8	-1.019196			
rpsK	30S ribosomal subunit protein S11	-1.0231135			
rpsM	30S ribosomal subunit protein S13	-1.0838764			
rpsQ	30S ribosomal subunit protein S17	-1.0870361			
serA	D-3-Phosphoglycerate dehydrogenase	-1.0648217			

thrA | Aspartokinase I and homoserine dehydrogenase I, bifunctional | -1.004643 | 1.18802236 | 1.733920514 | -0.545898154 |

tufA | EF-Tu, Elongation Factor-Translation, unstable; GTP-dependent binding of aa-tRNA to the A-site of ribosomes; has intrinsic GTPase activity when bound to kirromycin | -1.3282719 |

tufB | EF-Tu, Elongation Factor-Translation, unstable; GTP-dependent binding of aa-tRNA to the A-site of ribosomes; has intrinsic GTPase activity when bound to kirromycin | -1.3645415 |

wbbH | d-Galf:alpha-d-Glc beta-1,6-galactofuranosyltransferase; involved in lipopolysaccharide biosynthesis | -1.004085 |

wbbI | Involved in lipopolysaccharide biosynthesis, possible O-acetyltransferase | -1.0572133 |

wbbJ | Involved in lipopolysaccharide biosynthesis, possible O-acetyltransferase | -1.3040595 |

wbbK | Involved in lipopolysaccharide biosynthesis Putative colanic acid biosynthesis glycosyl transferase | -1.4321501 |

wcaI | Glutamyl-queuosine tRNA(Asp) synthase | 1.883362 |

yadB | 4-amino-4-deoxy-L-arabinose(Ara4N):Lipid A transferase; modifies lipid A phosphates with aminoarabinose and confers resistance to polymyxin B and cationic antimicrobial peptides; glycolipid donor is undecaprenyl phosphate-alpha-L-Ara4N | 1.0203366 |

arnT | Regulator of lipopolysaccharide O-chain length; gene studied in Salmonella and non-K-12 strains | 1.0203366 |

cld | NADPH-dependent GDP-L-fucose synthase, colanic acid synthesis; two step reaction at a single active site: GDP-4-keto-6-deoxy-D-mannose epimerase, then reductase | 1.6897135 |

fcl | Ferrienterobactin transport, membrane protein; regulator of length of O-antigen component of lipopolysaccharide chains | -1.1662207 |

galK | Galactokinase | 1.7365794 |

44262 cellular carbohydrate metabolic process

Gene	Description	Fold Change
arnT	4-amino-4-deoxy-L-arabinose(Ara4N):Lipid A transferase; modifies lipid A phosphates with aminoarabinose and confers resistance to polymyxin B and cationic antimicrobial peptides; glycolipid donor is undecaprenyl phosphate-alpha-L-Ara4N	1.0203366
cld	NADPH-dependent GDP-L-fucose synthase, colanic acid synthesis; two step reaction at a single active site: GDP-4-keto-6-deoxy-D-mannose epimerase, then reductase	1.6897135
fcl	Ferrienterobactin transport, membrane protein; regulator of length of O-antigen component of lipopolysaccharide chains	-1.1662207
galK	Galactokinase	1.7365794
Gene	Description	Log2 Ratio
------	--	------------
gatA	Galactitol-specific enzyme IIA of phosphotransferase system (PTS)	-1.6841471
gatC	Galactitol-specific enzyme IIC of PTS D-Tagatose-1,6-bisphosphate aldolase, class II; requires GatZ subunit for full activity and stability	-1.4637866
gatY	Tagatose bisphosphate aldolase GatYZ subunit; required for full activity and stability of GatY	-1.6480765
gatZ	UDP-galactopyranosyl mutase	-1.4456341
glgA	Glycogen synthase	-0.61135637 -1.25402616 0.64266979
glgB	1,4-alpha-glucan branching enzyme; glycogen branching enzyme	1.0104895 -0.518011066 -1.447500807 0.929489741
glgC	Glucose-1-phosphate adenylyltransferase; ADP-glucose pyrophosphorylase	-0.717255721 -1.435926535 0.718670815
gnd	6-phosphogluconate dehydrogenase, decarboxylating	-1.1842852
gntU	Low-affinity gluconate transport protein, membrane protein	1.0674934
htrL	4-deoxy-L-threo-5-hexosulose-uronate ketol-isomerase; 5-keto-4-deoxyuronate isomerase	1.5366621
kduI	Lipid A synthesis, KDO2-lipid IVA lauroyl-ACP acyltransferase; not under heat shock regulation; membrane protein affecting cell division, growth, and high temperature survival	1.4980454
lpxL	Lipid A synthesis, KDO2-lauroyl-lipid IVA myristoyl-ACP acyltransferase	1.2080741
lpxM	Lipid A synthesis, KDO2-lauroyl-lipid IVA myristoyl-ACP acyltransferase	1.418642
nudD	UDP-D-glucose: (galactosyl)LPS-glucosyltransferase	1.783473
rfaJ	Glucosyltransferase needed for heptose region of LPS core	-1.1963794
rfaQ	LPS core, not affecting attachment of O antigen	-1.0442805
rfaS	2,4 Kdo transferase, required for the addition of KdoIII; LPS core biosynthesis,	-1.3851705
rfaZ	TDP-glucose pyrophosphorylase; glucose-1-phosphate thymidylyltransferase; needed for dTDP-L-rhamnose synthesis	-1.325498
rfbA	TDP-glucose oxidoreductase-4,6 dehydratase	-1.0411434
rfbB	dTDP-4-deoxyxyrhamnose-3,5-epimerase Putative polysacrenol-linked O-antigen translocase	-1.3006554
rfbC	Transcriptional activator for rhaSR, AraC family	-1.0625052
rfaI	Cytoplasmic trehalase	1.0018826
treR	Repressor of trehalose operon	1.5542111
wbbH	d-Galf:alpha-d-Glc beta-1,6-galactofuranosyltransferase; involved in lipopolysaccharide biosynthesis	-1.004085
wbbI	Involved in lipopolysaccharide biosynthesis, possible O-acetyltransferase	-1.0572133
wbbJ	Involved in lipopolysaccharide biosynthesis, possible O-acetyltransferase	-1.3040595
wbbK	Putative colanic acid biosynthesis glycosyl transferase	-1.4321501
wcaI	d-Galf:alpha-d-Glc beta-1,6-galactofuranosyltransferase; involved in lipopolysaccharide biosynthesis	1.883362
ybgB	Function unknown, bgl operon; glucosamine-6-phosphate isomerase homolog	1.0953493
ybeJ	1.2325368	
ybfW	1.0032601	
Gene	Description	Log2 Fold Change
------	-------------	-----------------
yiHS	D-mannose isomerase; aldose-ketose isomerase inter-converting mannose, fructose and glucose; D-lyxose isomerase	2.4466274
acnA	Aconitase A, stationary phase induced; iron-sulfur cluster; apo-enzyme binds mRNA for negative translational autoregulation; negatively regulated by rynB RNA as part of indirect positive regulation by Fur	1.6737623
acnB	Aconitase B; 2-methylaconitate hydratase; apo-enzyme binds mRNA for negative translational autoregulation; iron-sulfur cluster; monomeric	1.0271903
aspA	L-Aspartate ammonia-lyase; L-aspartase D-Tagatose-1,6-bisphosphate aldolase, class II; requires GatZ subunit for full activity and stability	3.0522566
gatY	Tagatose bisphosphate aldolase GatYZ subunit; required for full activity and stability of GatY	-1.6480765
gatZ	3-phenylpropionate/cinnamic acid dioxxygenase, alpha subunit; hca genes catalyze 3-phenylpropionate and cinnamic acid, feeding the products into the mhp pathway	-1.2347231
hcaE	Catalase hydroperoxidase II, heme d-containing; response to oxidative stress; chromate resistance	1.170918
katE	Catalase-hydrogen peroxidase I Lipoprotein, function unknown; may be involved in cell wall formation; may have murein hydrolytic activity	1.2447912
katG	Catalase-hydrogen peroxidase I Lipoprotein, function unknown; may be involved in cell wall formation; may have murein hydrolytic activity	0.208642701
nlpD	D-ribose pyranase; interconverts beta-pyran and beta-furan forms of D-ribose; related to fucose mutarotase FucU	-0.610920661
rbsD	Bifunctional D-altronate/D-mannonate dehydratase; overproduction prevents homoserine lactone-induced synthesis of homoserine lactone	0.819563361
rspA	RpoS Succinate dehydrogenase (SQR) cytochrome b556; membrane anchor; succinate:ubiquinone oxidoreductase (SQR); complex II of aerobic respiration	1.051479
sdhC	Succinate dehydrogenase (SQR) hydrophobic subunit; succinate:ubiquinone oxidoreductase (SQR); complex II of aerobic respiration	-1.7281728
sdhD	Succinate dehydrogenase (SQR) hydrophobic subunit; succinate:ubiquinone oxidoreductase (SQR); complex II of aerobic respiration	1.0607324
ynhG	Murein L,D-transpeptidase, periplasmic	1.0157504
abgB	Required for p-aminobenzoyl-glutamate usage	1.1240034
Gene	Description	
------	-------------	
arcB	Tripartite sensor/histidine protein kinase; repression of aerobic genes and activation of some anaerobic genes under anaerobic growth conditions; phosphorylates response regulator protein (ArcA); has responses regulator and second transmitter domains	
arnT	4-amino-4-deoxy-L-arabinose(Ara4N):Lipid A transferase; modifies lipid A phosphates with aminoarabinose and confers resistance to polymyxin B and cationic antimicrobial peptides; glycolipid donor is undecaprenyl phosphate-alpha-L-Ara4N	
barA	Histidine protein kinase sensor of chemotactic response; CheY is cognate response regulator; autophosphorylating; CheAS is a short form produced by an internal start at codon 98	
cheA	Histidine protein kinase sensor of chemotactic response; CheY is cognate response regulator; autophosphorylating; CheAS is a short form produced by an internal start at codon 98	
cld	Regulator of lipopolysaccharide O-chain length; gene studied in Salmonella and non-K-12 strains	
cusS	Copper ion sensor regulating cusCFBA expression; may also sense silver	
dcuS	C4-dicarboxylate regulation of anaerobic fumarate respiratory system; two-component system sensory histidine kinase	
degP	Periplasmic, membrane-associated serine endopeptidase; protease Do, required for high-temperature growth and the degradation of damaged proteins Periplasmic murein hydrolase septal ring factor; sensitivity to crystal violet;	
envC	filamentous NADPH-dependent GDP-L-fucose synthase, colanic acid synthesis; two step reaction at a single active site: GDP-4-keto-6-deoxy-D-mannose epimerase, then reductase	
fcl	Ferrienterobactin transport, membrane protein; regulator of length of O-antigen component of lipopolysaccharide chains	
fepE	Periplasmic peptidylprolyl cis,trans isomerase; heat shock inducible; PPIase-independent chaperone activity, binds FK506	
ftsN	Cell division and growth; multicopy suppresses ftsA12	
fusA	Elongation Factor EF-G; GTPase required for translocation from the A-site to the P-site in the ribosome; fusidic acid resistance	
glf	UDP-galactopyranose mutase	
glgA	Glycogen synthase	
glgB	1,4-alpha-glucan branching enzyme; glycogen branching enzyme	
glgC	Glucose-1-phosphate adenylytransferase; ADP-glucose pyrophosphorylase	
glyS	Glycine--tRNA ligase, beta-subunit	
grpE	Nucleotide exchange factor for the DnaKJ chaperone; heat shock protein; mutant survives lambda induction; stimulates DnaK and HscC ATPase	
hisS	Histidine--tRNA ligase	
htrL	4-deoxy-L-threo-5-hexosulose-uronate ketol-isomerase; 5-keto-4-deoxyuronate isomerase	
kdtA	Lipid A synthesis, KDO2-lipid IVa laureryl-ACP acyltransferase; not under heat shock regulation; membrane protein affecting cell division, growth, and high-temperature survival	
lpxL	Lipid A synthesis, KDO2-lipid IVa laureryl-ACP acyltransferase; not under heat shock regulation; membrane protein affecting cell division, growth, and high-temperature survival	
Gene	Description	
------	-------------	
lpxM	Lipid A synthesis, KDO2-lauroyl-lipid IVA myristoyl-ACP acyltransferase	
map	Methionine aminopeptidase	
narQ	Nitrate/nitrite sensor-transmitter protein; anaerobic respiratory pathway; cognate regulator is NarP; function redundant with narX	
narX	Two-component nitrate/nitrite sensor-transmitter protein; NarL is cognate regulator; functional redundancy with narQ	
nlpD	Lipoprotein, function unknown; may be involved in cell wall formation; may have murein hydrolytic activity	
nudD	Methionine aminopeptidase	
ompT	Outer membrane protease VII, DLP12 prophage; OM protein 2b; omptin	
phoQ	Response to extracellular divalent cations, pH, and acetate; two-component response regulator, cognate to phoP	
ppiB	Putative peptidylprolyl-cis-trans-isomerase B, rotamase	
pqqL	Periplasmic carboxy-terminal protease with specificity for non-polar C-termini	
prc	Peptide chain release factor 1, RF-1; translation termination factor recognizes UAG and UAA	
rcsC	Negative regulatory gene for capsule (colanic acid) synthesis, controls sliminess; contains TerF, probable histidine kinase	
rfaA	UDP-D-glucose: (galactosyl)LPS-glucosyltransferase	
rfaB	Glycosyltransferase needed for heptose region of LPS core	
rfaC	LPS core, not affecting attachment of O antigen	
rfaD	2,4 Kdo transferase, required for the addition of KdoIII; LPS core biosynthesis	
rfaH	TDP-glucose pyrophosphorylase; glucose-1-phosphate thymidyltransferase; needed for dTDP-L-rhamnose synthesis	
rfbB	TDP-glucose oxidoreductase 4,6 dehydratase	
rfbC	dTDP-4-deoxyrhamnose-3,5-epimerase; Putative polisoprenol-linked O-antigen translocase	
rfbX	50S ribosomal subunit protein L2; binds Zn(II)	
rplA	50S ribosomal subunit protein L3	
rplB	50S ribosomal subunit protein L4; gentamicin sensitivity	
rplC	50S ribosomal subunit protein L15	
rplD	50S ribosomal subunit protein L16	
rplE	50S ribosomal subunit protein L6	
rplF	50S ribosomal subunit protein L17	
rplG	50S ribosomal subunit protein L21	
rplH	50S ribosomal subunit protein L24	
rplI	50S ribosomal subunit protein L32	
rpsA	30S ribosomal subunit protein S4; NusA-like antitermination factor	
rpsB	30S ribosomal subunit protein S5	
rpsC	30S ribosomal subunit protein S6	
rpsD	30S ribosomal subunit protein S7; NusA-like antitermination factor	
rpsE	30S ribosomal subunit protein S8	
rpsF	30S ribosomal subunit protein S9	
rpsH	30S ribosomal subunit protein S10	
rpsI	30S ribosomal subunit protein S11	
rpsK	30S ribosomal subunit protein S12	
rpsL	30S ribosomal subunit protein S13	
rpsM	30S ribosomal subunit protein S14	
rpsO	30S ribosomal subunit protein S15	
rpsP	30S ribosomal subunit protein S16	
rpsQ	30S ribosomal subunit protein S17	
Gene	Description	
------	-------------	
secB	Protein export chaperone; SecB helps SecA deliver proteins to the SecYE core translocon; general protein chaperone	
surA	Periplasmic OM porin chaperone, has PPIase activity; required for stationary-phase survival	
tig	Trigger factor, protein folding chaperone; also peptidyl-prolyl cis-trans isomerase; interacts with nascent polypeptide chains	
torS	Sensor kinase for torCAD operon	
tuFA	EF-Tu, Elongation Factor-Translation, unstable; GTP-dependent binding of aa-tRNA to the A-site of ribosomes; has intrinsic GTPase activity when bound to kirromycin	
wbbH	d-Galf:alpha-d-Glc beta,1,6-galactofuranosyltransferase; involved in lipopolysaccharide biosynthesis	
ydfT	Putative periplasmic serine protease; function unknown	
yegQ	Function unknown, U32 peptidase family	
yfbG	Peptidase homolog, function unknown; M20D family	

51186 cofactor metabolic process

Gene	Description	
acnA	Aconitase A, stationary phase induced; iron-sulfur cluster; apo-enzyme binds mRNA for negative translational autoregulation; negatively regulated by ryhB RNA as part of indirect positive regulation by Fur	
acnB	Aconitase B; 2-methylaconitate hydratase; apo-enzyme binds mRNA for negative translational autoregulation; iron-sulfur cluster; monomeric	
aspA	L-Aspartate ammonia-lyase; L-aspartase	
citE	Putative citrate lyase beta chain	
coaA	Pantothenate kinase	
hemB	S-aminolevulinate dehydratase; also known as porphobilinogen synthase; binds Zn(II); Uroporphyrinogen III cosynthase; neomycin sensitivity	
hemD	51186 cofactor metabolic process	
iscU	Iron-sulfur cluster assembly scaffold protein	
panB	Ketopantoate hydroxymethyltransferase Succinate dehydrogenase (SQR) cytochrome b556; membrane anchor; succinate-ubiquinone oxidoreductase (SQR); complex II of aerobic respiration	
sdhC	Succinate dehydrogenase (SQR) hydrophobic subunit; succinate-ubiquinone oxidoreductase (SQR); complex II of aerobic respiration	
Generation of precursor metabolites and energy		
---	---	---
appB	Cytochrome bd-II oxidase subunit II	-1.142286168
appC	Cytochrome bd-II oxidase subunit I	-1.223081848
Cytochrome d (bd-I) terminal oxidase subunit I; upregulated in biofilms and microaerobic conditions; aerobically repressed by H-NS; anaerobically repressed by Fnr	-1.0059352	
cydA	Cytochrome d (bd-I) terminal oxidase subunit II; upregulated in biofilms and microaerobic conditions; aerobically repressed by H-NS; anaerobically repressed by Fnr	-1.065628
cydB	Cytochrome o oxidase subunit II, lipoprotein; also called cytochrome bo(3) ubiquinol oxidase subunit II	-1.3402126
cyoA	Cytochrome o oxidase subunit I; cytochrome bo(3) ubiquinol oxidase subunit I	-1.300488
cyoB	Cytochrome o oxidase subunit IV; cytochrome bo(3) ubiquinol oxidase subunit IV	-1.4617386
eno	Enolase; phosphoprotein; component of RNA degradosome	-1.0622171
fbaB	Fructose 1,6-bisphosphate aldolase, class I D-Tagatose-1,6-bisphosphate aldolase, class II; requires GatZ subunit for full activity and stability	-1.6480765
gatY	Phosphoglycerate mutase 1, 2,3-bisphosphoglycerate-dependent; Fur regulon; dimeric	-1.1640095
gpmA	Glutaredoxin 2; regulated by RpoS and ppGpp	1.6855459
grxB	Nitrate reductase, periplasmic	1.479877
napA	Required for the reduction of SoxR; putative membrane-associated NADH oxidoreductase	-1.300488
rsxC	Required for the reduction of SoxR; membrane protein	-1.300488
rsxE	Succinate dehydrogenase (SQR) cytochrome b556; membrane anchor; succinate-ubiquinone oxidoreductase (SQR); complex II of aerobic respiration	1.0607324
sdhC	Succinate dehydrogenase (SQR) hydrophobic subunit; succinate:ubiquinone oxidoreductase (SQR); complex II of aerobic respiration	1.0157504
yodB	Function unknown	0.694684412

Heterocycle metabolic process					
folE	GTP cyclohydrolase I	-1.0409135			
hemB	S-aminolevulinic dehydratase; also known as porphobilinogen synthase; binds Zn(II)	-1.1517999			
hemD	Uroporphyrinogen III cosynthase; neomycin sensitivity	1.0766261			
rihC	Ribonucleoside hydrolase	-1.0441272			
xdhA	Probable xanthine dehydrogenase molybdenum-binding subunit; involved in limited purine catabolism; mutation confers adenine sensitivity	1.3941514			
xdhD	Probable hypoxanthine oxidase; mutation confers adenine sensitivity	1.2296381			
31324 negative regulation of cellular metabolic process	treR	Repressor of trehalose operon	1.5542111		
---	-----	-----------------------------	-----------		
6139 nucleobase, nucleoside, nucleotide and nucleic acid metabolic process	acrR	Transcriptional repressor for acrAB	-1.0204067		
arcB	Tripartite sensor/histidine protein kinase; repression of aerobic genes and activation of some anerobic genes under anaerobic growth conditions; phosphorylates response regulator protein (ArcA); has responses regulator and second transmitter domains	2.5143914			
atpA	ATP synthase subunit alpha, membrane-bound, F1 sector	1.33844			
atpB	ATP synthase subunit a, membrane-bound, F0 sector	-1.0947847			
atpE	ATP synthase subunit c, membrane-bound, F0 sector; DCCD-binding	-1.2534213			
atpF	ATP synthase subunit b, membrane-bound, F0 sector	-1.1470773			
atpH	ATP synthase subunit delta, membrane-bound, F0 sector	-1.1472812			
barA	Response regulator for chemotactic signal transduction; CheA is the cognate sensor protein	1.6353183			
cheY	Transcriptional activator for csgBA and other genes	-1.2030091			
csgD	Stationary phase inducible protein; sigma S-dependent promoter	-1.859434883			
csiE	Positive regulator for Cys regulon, acetylserine inducer; downregulates sssEADCB; cysteine desulfhydrase	0.442750627			
cysB	C4-dicarboxylate regulation of anaerobic fumarate respiratory system; two-component system response regulator	1.0233135			
dcuR	C4-dicarboxylate regulation of anaerobic fumarate respiratory system; two-component system sensory histidine kinase	1.2036445			
dcuS	ATP-dependent RNA helicase, SOS ribosomal subunit biogenesis; translation factor W2; facilitates translation of mRNAs with 5' secondary structures; multicopy suppressor of rpsB(Ts) mutations	1.1617334			
deaD	Repressor for deo operon, nupG and tsx; binds deoxyribose-5-phosphate inducer	1.2066016			
deoR	Transcription activator of the dhaKLM operon	1.127254			
dhaR	tRNA-dihydouridine synthase B	-1.1940618			
dusB	Thermoregulatory activator of porin expression, AraC family	1.679985			
envY	Site-specific recombinase, fimA promoter inversion; mediates flagellar phase switching, along with FimE	-1.1248107			
fimB	Cytoplasmic membrane ATPase involved in flagellar assembly; involved in export of flagellar axial protein subunits	-2.8425198			
fliI	RpoS antagonist, transiently in post-exponential phase; timing factor allowing motility to continue for a while during starvation; not required for normal motility	1.1728091			
Gene	Description	Expression Level 1	Expression Level 2	Expression Level 3	
--------	---	--------------------	--------------------	--------------------	
gadE	Transcriptional regulator of the gadABC operon; 1.613297865 < 1.91643444 < 3.529732305				
galS	Repressor of the mgl operon and isorepressor of the gal operon; 1.2070732 < 1.91643444 < 3.529732305				
glcC	Transcriptional positive regulator for glc operon; Cyclic-di-GMP phosphodiesterase, cgD regulator; modulates protein stability of 6-phosphogluconate dehydrogenase, decarboxylating				
gmr	DNA gyrase, subunit B; novobiocin, coumermycin resistance; 1.1973567				
gnd	Formate-sensing regulator for hyf operon; 1.2317433 < 1.91643444 < 3.529732305				
gyrB	Putative integrase gene, CP4-6 putative prophage remnant; 1.123914 < 1.91643444 < 3.529732305				
hyfR	Dual role activator/repressor for lldPRD operon; 1.022032736 < 0.102462884 < 0.919569852				
mgtA	Magnesium transporter, ATP-dependent; 2.2685869 < 0.414117157 < 2.015561195 < -1.601444038				
miaA	Dimethylallyl diphosphate:tRNA dimethylallyltransferase; 2-methylthio-N6-(dimethylallyl)adenosine tRNA hypermodification; 2.5113444				
mirA	Transcriptional regulator of csgD; 1.208386 < 1.91643444 < 3.529732305				
nadD	Nicotinate mononucleotide dehydrogenase; 1.1650845 < 1.91643444 < 3.529732305				
nanR	Repressor of the nan operon, induced by sialic acid; 1.6356357 < 1.91643444 < 3.529732305				
paaX	Phenylacetic acid degradation; 1.0424947 < 0.378975841 < -0.246470978 < 0.625446818				
parC	Topoisomerase IV, subunit A, ATP-dependent, type II; chromosome decatenase; 2.1262205 < 0.414117157 < 2.015561195 < -1.601444038				
pcnB	Poly(A) polymerase; controls plasmid copy number; rare AUA start codon, growth-rate regulated; 2.1234794				
pinQ	DNA invertase, site-specific recombination, Qin prophage; 1.1538181 < 1.91643444 < 3.529732305				
pinR	DNA invertase, site-specific recombination, Rac prophage; 1.1496861 < 1.91643444 < 3.529732305				
prpR	Transcriptional regulator of prp operon; 1.6797161 < 1.91643444 < 3.529732305				
purC	Phosphoribosyl-aminomimidazole-succinocarboxamide synthase; 1.6214104 < 0.671627539 < 1.519014342 < -0.847386803				
Gene	Description	Description	Description	Description	Description
--------	--	--	--	--	--
purF	Amidophosphoribosyltransferase, purine synthesis; also known as glutamine 5'-phosphoribosylpyrophosphate amidotransferase, GPATase	1.5669665			
purM	Phosphoribosyl-aminimidazole (AIR) synthase; homodimeric Glycinamide ribonucleotide transformylase (GART) 1, purine synthesis; glycinamide ribonucleotide formyltransferase	-1.3292446	0.734599861	2.273001511	-1.538401651
purN	formyltransferase				
purR	Purine regulon repressor				
purT	Phosphoribosyl-aminimidazole (AIR) synthase; homodimeric Glycinamide ribonucleotide transformylase (GART) 2, non-folate-requiring, purine synthesis	-2.2606297	1.08852949	2.6678463	-1.57931681
purT	Aspartate carbamoyltransferase, catalytic subunit; ATCase; aspartate transcarbamylase; aspartate transcarbamoylase	2.40538462	1.399913513	1.005471179	
pyrB	Dihydroorotate dehydrogenase, UMP biosynthesis	-1.0465689			
pyrD	Aspartate carbamoyltransferase, regulatory subunit; ATCase; aspartate transcarbamylase; S-adenosylmethionine:RNA ribosyltransferase-isomerase; queuosine biosynthesis,	2.193177888	1.177744341	1.015433546	
queA	Positive regulatory gene for capsule (colanic acid) synthesis; two regulatory proteins are derived from the same gene	-1.0753493			
rcsA	Negative regulatory gene for capsule (colanic acid) synthesis, controls sliminess; contains TerF; probable histidine kinase	0.300528606	-1.142561372	1.443089978	
rcsC	RecET recombinase, annealing protein, Rac prophage; recombination and repair ATP:GTP 3'-pyrophosphotransferase, ppGpp synthetase I; required for ppGpp synthesis during stringent response to amino acid starvation; self regulated	1.8229611			
relA	Ribonucleoside hydrolase	-1.0411434			
rfbB	TDP-glucose oxidoreductase-4,6 dehydratase Transcriptional activator for rhASR, AraC family	1.0716362			
rhaR	Ribonucleoside hydrolase	-1.0411434			
rumA	23S rRNA m(5)U1939 methyltransferase, SAM-dependent	1.9303648			
sbCD	DNA hairpin dsDNA 3'-exonuclease SbcCD, Mn(2+), ATP-dependent; ATP-independent 5' ssDNA endonuclease; cosuppressor with sbcB of recB recC mutations; heterodimeric	1.08962			
sgcR	Putative sgc cluster transcriptional regulator				
slyA	RNA chaperone and DNA-binding protein; suppresses T4 td mutant; modulates micF stability; forms heteromers with, and stabilized against proteolysis by, the paralogous H-NS protein; transcriptionally repressed by H-NS	1.015482			
stpA	Sensor kinase for torCAD operon	-1.2432377			
treR	Repressor of trehalose operon				
uxuR	Repressor for UxuR regulon; true inducer is fructuronate				
xdhA	Probable xanthine dehydrogenase molybdenum-binding subunit; involved in limited purine catabolism; mutation confers adenine sensitivity	1.3941514			
xdhD	Probable hypoxanthine oxidase; mutation confers adenine sensitivity	1.2296381			
Gene	Description	Log2 Fold Change			
-------	--	------------------			
yahA	c-di-GMP-specific phosphodiesterase, PDE-A; reaction product is 5'pGpG; dependent on Mg+2 or Mn+2, Ca+2 inhibitory; optimum pH 9.35; monomeric	-2.0166183			
yahB	LysR family of transcriptional regulators, function unknown	1.046875			
ybaO	Function unknown, Lrp family; putative transcriptional regulator	1.0301518			
ybaX	Putative LysR-family transcriptional regulator, function unknown	-1.101002			
ybeF	Putative LysR-family transcriptional regulator, function unknown	1.0823689			
ybhD	Putative LysR-family transcriptional regulator, function unknown	1.1145554			
ydT	Function unknown	1.6117142			
yedF	Function unknown	-1.1209044			
yegE	Putative c-di-GMP dual activity enzyme, function unknown	1.6381769			
yfaX	Putative transcriptional regulator, function unknown	1.2188423			
yfeG	Required for swarming phenotype, function unknown; predicted transcriptional regulator	1.1252446			
yfeR	Putative methyltransferase, function unknown; spoU paralog; non-essential gene	-1.4608327			
ygfI	Putative LysR-family transcriptional regulator, function unknown	1.4685719			
yhiF	Function unknown	1.2616509			
yhjB	Putative HTH transcriptional regulator with aminotransferase domain, function unknown; MocR family	1.5886974			
yjiR	Part of T3SS PAI ETT2 remnant, ToxR homolog	1.0690143			
yqeI	Part of T3SS PAI ETT2 remnant, ToxR homolog	-1.067694			

6730 one-carbon metabolic process

Gene	Description	Log2 Fold Change
folE	GTP cyclohydrolase I	-1.0409135
glyA	Serine hydroxymethyltransferase; binds Zn(II)	-1.2570169
hsdM	DNA methyltransferase M, host modification of foreign DNA	1.1989958
rrmJ	DNA adenine methyltransferase, SAM-dependent	1.1538243
yhdJ	DNA adenine methyltransferase, SAM-dependent	1.0355549

6082 organic acid metabolic process

Gene	Description	Log2 Fold Change
accD	Acetyl-CoA carboxylase, carboxyltransferase beta subunit	-1.0916588
acpS	Acyl carrier protein; ACP-CoA phosphopantetheinytransferase; Holo-ACP synthase	0.020738638
adIA	Arginine decarboxylase, acid-inducible; arginine-dependent acid resistance	1.1271622
ansA	L-Asparaginase I	-1.1030908
ansB	L-Asparaginase II	1.5445883
argA	N-acetylglutamate synthase; first step in arginine biosynthesis; amino-acid acetyltransferase; growth on acetylornithine	1.3041081
argB	N-acetylglutamate kinase	1.044384
argC	N-acetyl-gamma-glutamyl-phosphate reductase	1.7869039

Additional information

- **6730 one-carbon metabolic process** includes genes involved in GTP cyclohydrolase I, serine hydroxymethyltransferase, DNA methyltransferase M, and DNA adenine methyltransferase.
- **6082 organic acid metabolic process** includes genes involved in acetyl-CoA carboxylase, acyl carrier protein, arginine decarboxylase, and N-acetylglutamate synthase.

Gene Functions
- **yahA**: c-di-GMP-specific phosphodiesterase, PDE-A.
- **yahB**: LysR family of transcriptional regulators, function unknown.
- **ybaO**: Function unknown, Lrp family; putative transcriptional regulator.
- **ybaX**: Putative LysR-family transcriptional regulator, function unknown.
- **ybeF**: Putative LysR-family transcriptional regulator, function unknown.
- **ybhD**: Putative LysR-family transcriptional regulator, function unknown.
- **ydT**: Function unknown.
- **yedF**: Function unknown.
- **yegE**: Putative c-di-GMP dual activity enzyme, function unknown.
- **yfaX**: Putative transcriptional regulator, function unknown.
- **yfeG**: Predicted transcriptional regulator.
- **yfeR**: Putative methyltransferase, function unknown.
- **ygfI**: Putative LysR-family transcriptional regulator, function unknown.
- **yhiF**: Function unknown.
- **yjIR**: Putative HTH transcriptional regulator with aminotransferase domain, function unknown.
- **yqeI**: Part of T3SS PAI ETT2 remnant, ToxR homolog.

Additional Genes
- **folE**: GTP cyclohydrolase I.
- **glyA**: Serine hydroxymethyltransferase.
- **hsdM**: DNA methyltransferase M, host modification of foreign DNA.
- **rrmJ**: DNA adenine methyltransferase, SAM-dependent.
- **yhdJ**: DNA adenine methyltransferase, SAM-dependent.

Additional Processes
- **6730 one-carbon metabolic process** encompasses genes related to one-carbon metabolism.
- **6082 organic acid metabolic process** includes genes involved in organic acid metabolism.

Additional Remarks
- **argA**: N-acetylglutamate synthase; first step in arginine biosynthesis; amino-acid acetyltransferase; growth on acetylornithine.
- **argB**: N-acetylglutamate kinase.
- **argC**: N-acetyl-gamma-glutamyl-phosphate reductase.
| Gene | Function | Expression Ratio |
|------|----------|-----------------|
| argD | Acetylylornithine aminotransferase; succinylcarnitine aminotransferase, PLP-dependent | 2.58062465 1.749457164 0.831167486 |
| argF | Ornithine carbamoyltransferase; ornithine transcarbamylase; OTCase; CP4-6 putative phage remnant | 2.345750989 0.780893261 1.564857729 |
| argG | Argininosuccinate synthase | 2.6295392 1.468532017 |
| argH | Argininosuccinate lyase | 1.2643517 2.489928442 1.442275936 1.047652506 |
| argI | Ornithine carbamoyltransferase; ornithine transcarbamylase; OTCase | 2.843746333 1.517740469 |
| argJ | Argininosuccinate synthase | 2.6295392 1.468532017 |
| argK | Ornithine carbamoyltransferase; ornithine transcarbamylase; OTCase | 2.0875133 0.783608438 |
| cysB | Positive regulator for Cys regulon, acetylserine inducer; downregulates ssuEADCB; cysteine desulfhydrase | 0.442750627 1.32534585 |
| dadA | D-amino acid dehydrogenase | 0.368920809 1.625476173 1.256555364 |
| dadX | Alanine racemase; homodimeric | 0.155438273 1.291326758 |
| dapB | Dihydrodipicolinate reductase | 1.2919754 -0.563659431 -2.013465644 |
| dapC | Positive regulator for Cys regulon, acetylserine inducer; downregulates ssuEADCB; cysteine desulfhydrase | 1.0075407 1.32534585 |
| eutB | Ethanolamine ammonia lyase, large subunit, adenosylcobalamine-dependent; concerted induction requires both B12 and ethanolamine | 1.7656298 |
| fabB | Beta-Ketoacyl-ACP synthase I; KAS I; homodimeric | 1.148054475 2.149240165 1.449806213 |
| fabI | Enoyl-ACP reductase, NADH-dependent | -1.0237877 |
| gdhA | Glutamate dehydrogenase | -0.965960622 2.004323596 1.038362974 |
| glnA | Glutamine synthase | 1.2727609 |
| gldA | Glutamate decarboxylase A | 1.1232334 |
| gldB | Glutamate decarboxylase B, vitamin B6-dependent; hexameric | 1.0481529 |
| gldC | Glyoxylate carboligase, glyoxylate-inducible | 1.2727609 |
| gldH | Glutamate dehydrogenase | 1.0619159 |
| gldI | Glutamine synthase | -1.2570169 |
| gldJ | Glutamate decarboxylase A, vitamin B6-dependent; hexameric | -1.1524415 |
| hisH | Histidine--tRNA ligase | -1.0382023 |
| ilvC | Ketol-acid reductoisomerase | -0.2033388 0.607095095 2.038941914 1.43103601 |
| ilvN | Ketol-acid reductoisomerase | 1.33800575 -0.51491624 1.85292199 |
| iscS | Ketol-acid reductoisomerase | -1.2212651 |
| leuA | Alpha-Isopropylmalate synthase | -0.414798339 -1.432033122 1.017234783 |
| leuB | Beta-Isopropylmalate dehydrogenase | -0.199455562 -1.235586059 0.306109407 |
| leuC | Alpha-Isopropylmalate isomerase large subunit | -0.415228459 -1.467240246 1.051975801 |
| leuD | Alpha-Isopropylmalate isomerase small subunit | -0.1702462 -1.315692056 1.145455994 |
| oxC | Phenylacetyl-CoA decarboxylase; oxalate catabolism | -0.336075069 1.512178216 -1.840253285 |
| paaJ | Phenylacetate degradation; mutants are unable to use phenylacetate as a carbon source | 2.1441832 |
| Gene | Description | Fold Change |
|------|-------------|-------------|
| **pheA** | Phenylalanine synthesis, bifunctional: chorismate mutase (N) and prephenate dehydratase (central); also contains Phe-binding regulatory domain (C); FPA resistance | -1.0391736 |
| **prpR** | Transcriptional regulator of prp operon; propionate catabolism via 2-methylcitrate cycle, characterized primarily in Salmonella | 1.6797161 |
| **purF** | gamma-Glutamyl-GABA hydrolase, putrescine utilization pathway; Aspartate carbamoyltransferase, catalytic subunit; ATCase; aspartate transcarbamylase; aspartate transcarbamylase | 1.5669665 |
| **puuD** | Gamma-Glutamyl-GABA hydrolase, putrescine utilization pathway; Aspartate carbamoyltransferase, catalytic subunit; ATCase; aspartate transcarbamylase; aspartate transcarbamylase | 1.0298939 |
| **pyrB** | D-3-Phosphoglycerate dehydrogenase | -1.0648217 |
| **serA** | Aspartokinase I and homoserine dehydrogenase I, bifunctional | -1.004643 |
| **thrA** | Aspartokinase I and homoserine dehydrogenase I, bifunctional | 1.18802236 |
| **yadB** | Glutamyl-queuosine tRNA(Asp) synthase | 1.391839 |
| **ybaS** | Glutaminase | 1.2362571 |
| **ybaX** | Function unknown | -1.101002 |
| **yjH** | Function unknown | -1.4842229 |

6800 oxygen and reactive oxygen species metabolic process	**gene**	**function**	**Fold Change**
sodA	Superoxide dismutase, Mn	1.120604	-0.384140377
sodB	Superoxide dismutase, Mn	4.006849988	3.110075363
barA	Sensor histidine protein kinase, pleiotropic; controls the expression of csrB/C sRNAs; works in concert with UvrY response regulator	1.6353183	
cheA	Histidine protein kinase sensor of chemotactic response; CheY is cognate response regulator; autophosphorylating; CheA is a short form produced by an internal start at codon 98	-1.1959176	
citG	Putative cit operon gene, function unknown	2.3438559	
cusS	Copper ion sensor regulating cusCFBA expression; may also sense silver	1.4919264	
dcuS	C4-dicarboxylate regulation of anaerobic fumarate respiratory system; two-component system sensory histidine kinase	1.2036445	
galK	Galactokinase	1.7365794	
ispE	4-diphosphocytidyl-2-C-methylerythritol kinase; isopentenyl phosphate kinase; alternative nonmevalonate (DXP) pathway for terpenoid biosynthesis; essential gene	2.0409093	
phoQ	Response to extracellular divalent cations, pH, and acetate; two-component response regulator, cognate to phoP	1.4622464	
rcsC	TerF, probable histidine kinase	1.8229611	
torS	Sensor kinase for torCAD operon	2.9209745	
Gene	Function and Regulation		
------	-------------------------		
acrR	Transcriptional repressor for acrAB; repression of aerobic genes and activation of some anerobic genes under anaerobic growth conditions; phosphorylates response regulator protein (ArcA); has responses regulator and second transmitter domains	-1.0204067	
arcB	Tripartite sensor/histidine protein kinase; controls the expression of csrB/C sRNAs; works in concert with UvrY response regulator	2.5143914	
barA	Response regulator for chemotactic signal transduction; CheA is the cognate sensor protein	1.6353183	
cheY	Transcriptional activator for csgBA and other genes	-1.2030091	
csgD	Stationary phase inducible protein; sigma S-dependent promoter; Positive regulator for Cys regulon, acetylserine inducer; downregulates ssuEADCB; cysteine desulphhydrase	0.442750627	
dcuR	C4-dicarboxylate regulation of anaerobic fumarate respiratory system; two-component system response regulator	1.0233135	
dcuS	C4-dicarboxylate regulation of anaerobic fumarate respiratory system; two-component system sensory histidine kinase	1.2036445	
deaD	ATP-dependent RNA helicase, 50S ribosomal subunit biogenesis; translation factor W2; facilitates translation of mRNAs with 5' secondary structures; multicopy suppressor of rpsB(Ts) mutations	1.1617334	
deoR	Repressor for deo operon, nupG and tsx; binds deoxynucleobase-5-phosphate inducer	1.2066016	
dhaR	Transcription activator of the dhaKLM operon	1.127254	
envY	Thermoregulatory activator of porin expression, AraC family	1.679985	
fimB	Site-specific recombinase, fimA promoter inversion; mediates flagellar phase switching, along with FimE	-1.1248107	
gadE	Transcriptional regulator of the gadABC operon	-1.613297865	
galS	Repressor of the mgl operon and isorepressor of the gal operon; autoregulatory; homodimeric	1.2070732	
glcC	Transcriptional positive regulator for gic operon	1.077054	
gmr	Cyclic-di-GMP phosphodiesterase, csgD regulator; modulates protein stability of RNase II	1.123914	
hyfR	Formate-sensing regulator for hyf operon	1.2317433	
iscR	Transcriptional regulator for isc operon; contains Fe-S cluster; binds RNA in vitro	-1.1579247	
kdgR	Regulator of kdgK, kdgT, eda; possibly regulates several other genes, e.g. yjgK	-1.064749	
lidR	Dual role activator/repressor for lidPRD operon	-1.022032736	
mlrA	Transcriptional regulator of csgD	1.208386	
nanR	Repressor of the nan operon, induced by sialic acid; homodimeric	1.6356357	
paaX	Phenylacetic acid degradation	1.0424947	
prpR	Transcriptional regulator of prp operon; propionate catabolism via 2-methylcitrate cycle, characterized primarily in Salmonella	1.6797161	
purR	Purine regulon repressor	-1.0262108	
Gene	Description	Log2 Ratio	
-------	---	------------	
rcsA	Positive regulatory gene for capsule (colanic acid) synthesis; two regulatory proteins are derived from the same gene	0.300528606	
rcsC	TerF; probable histidine kinase; positive regulatory gene for capsule (colanic acid) synthesis, controls sliminess; contains 3OS ribosomal subunit protein S4	1.8229611	
rhaR	Transcriptional activator for rhaSR; AraC family; putative transcriptional regulator	1.0716362	
rob	Right oriC-binding protein; AraC family; putative transcriptional regulator	1.3771441	
rpsD	Antitermination factor; 30S ribosomal subunit protein S4; NusA-like; putative transcriptional regulator	-1.0738251	
rpsH	30S ribosomal subunit protein S8; putative transcriptional regulator	-1.019196	
sgcR	Putative sgc cluster transcriptional regulator	1.3975518	
slyA	RNA chaperone and DNA-binding protein; suppresses T4 td mutant; modulates micF stability; forms heteromers with, and stabilized against proteolysis by, the paralogous H-NS protein; transcriptionally repressed by H-NS	1.015482	
stpA	Sensor kinase for torCAD operon	2.9209745	
dreR	Repressor of trehalose operon	1.5542111	
uuxR	Repressor for UxuR regulon; true inducer is fructuronate	1.0230589	
yahA	LysR family of transcriptional regulators, function unknown	-2.0166183	
yahB	LysR family of transcriptional regulators, function unknown	1.046875	
ybaO	Function unknown; Lrp family; putative transcriptional regulator	1.0301518	
ybeF	Putative LysR-family transcriptional regulator, function unknown; LysR-family transcriptional regulator, function unknown	1.0823689	
ybhD	Putative LysR-family transcriptional regulator, function unknown	1.1145554	
ydfT	Function unknown; predicted transcriptional regulator	1.6117142	
yegE	Putative c-di-GMP dual activity enzyme, function unknown	1.6381769	
yfaX	Putative transcriptional regulator, function unknown	1.2188423	
yfeG	Function unknown; predicted transcriptional regulator	1.1252446	
yfeR	Required for swarming phenotype, function unknown	1.2977767	
ygfF	Putative LysR-family transcriptional regulator, function unknown	1.4685719	
yhiF	Putative HTH transcriptional regulator with aminotransferase domain, function unknown; MocR family	1.2616509	
yhjB	Putative HTH transcriptional regulator with aminotransferase domain, function unknown; MocR family	-1.6261956	
yjiR	Putative HTH transcriptional regulator with aminotransferase domain, function unknown; MocR family	0.509971635	
yqeI	Putative transcriptional regulator, function unknown; MocR family	-2.13617235	

6790 sulfur metabolic process

Gene	Description	Log2 Ratio
bioB	Biotin synthase; dethiobiotin to biotin pathway; iron-sulfur enzyme	-1.5355635
bioC	Biotin synthase blocked prior to pimeloyl CoA formation; putative SAM-dependent methyltransferase	-0.360614381
bioF	7-keto-8-amino pelargonic acid synthase	0.797467665
cysD	Sulfate adenylyltransferase	-1.158082046

Note: Log2 ratios indicate up-regulation (positive values) or down-regulation (negative values).
Gene	Description	Value 1	Value 2	Value 3	Value 4
cobC	Probable alpha-ribazole-5'- phosphate phosphatase; potential partial cobalamin biosynthesis pathway	1.7467084			
dxs	DXP synthase; DXP is precursor to isoprenoids, thiamin, pyridoxol	1.8676739			
nadD	Nicotinate mononucleotide adenyltransferase, NAD(P) biosynthesis 2-hydroxyacid dehydrogenase involved in pyridoxine biosynthesis upstream of 4-phospho-hydroxy-threonine; isoniazid resistance	1.1660845			
pdxB	GTP cyclohydrolase II, riboflavin biosynthesis	1.6453347			
ribA	3,4-dihydroxy-2-butano 4-phosphate synthase; riboflavin biosynthesis; acid-inducible; homodimeric	1.9398031	0.081360818	1.346423538	-1.265062721
Table S3. Effect of Mg-citrate on PNPase-mediated transcript levels in vivo. The relative abundance of selected transcripts was measured by quantitative RT-PCR for the PNPase null and wild-type strains in the presence of citrate and compared to the relative abundances determined from microarray analysis.

Transcript	Relative abundance of mRNA in the PNPase null strain relative to the wild-type strain in the presence of Mg-citrate	
	qRT-PCR	Microarray
cirA	1.71	2.87
fkpA	1.97	1.76
gdhA	0.92	0.56
rpoB	1	1.29
Table S4. Summary of the main metabolite differences for PNPase null, degradosome null and RhlB null compared to the corresponding parental strains and response to environmental stress.

Data are for *E. coli* PNPase parent and null strains, degradosome parent and null strains and RhlB parent and null strains. Metabolite changes were detected using multivariate analysis following both NMR and GC-MS. Conditions and metabolic profiles: Comparing the degradosome null and parent without alpha-methyl glucoside (control), NMR data ($R^2 = 47\%$, $Q^2 = 95\%$) and GC-MS data ($R^2 = 41\%$, $Q^2 = 82\%$) and in the presence of alpha-methyl glucoside (phosphosugar stress), NMR data ($R^2 = 63\%$, $Q^2 = 52\%$) and GC-MS data ($R^2 = 37\%$, $Q^2 = 82\%$). Comparing RhlB parent and RhlB null at 16 °C (cold shock): NMR data ($R^2 = 42\%$, $Q^2 = 49\%$) and GC-MS data ($R^2 = 29\%$, $Q^2 = 16\%$) and at 37 °C (control): NMR data ($R^2 = 31\%$, $Q^2 = 52\%$) and GC-MS data ($R^2 = 24\%$, $Q^2 = 28\%$). PNPase null vs PNPase parent: NMR data ($R^2=74\%$; $Q^2=98\%$) and GC-MS data ($R^2=70\%$, $Q^2=98\%$). Samples showing no change are labelled Nc; increases are labelled as + and decreases as -.

Metabolite Classification	Degradosome null (vs. degradosome parent)	Degradosome null (vs. degradosome parent)	RhlB null (vs. RhlB parent)	RhlB null (vs. RhlB parent)	PNPase null (vs PnPase parent)
	No α-methyl glucoside (Control)	With 1% α-methyl glucoside (Phosphosugar stress)	37°C (Control)	16°C (Cold shock)	
Amino Acids					
Alanine	Nc	+	+	+	+
Amino-butyric acid	-	-	Nc	Nc	-
Betaine	+	-	-	-	-
Glutamate	-	-	Nc	Nc	Nc
Glutamine	-	Nc	Nc	Nc	Nc
Glycine	+	+	+	Nc	+
Isoleucine	-	-	Nc	-	-
Leucine	-	-	Nc	Nc	Nc
Lysine	-	-	+	+	+
Methionine	-	Nc	-	Nc	Nc
Ornithine	-	Nc	Nc	+	Nc
Phenylalanine	Nc	Nc	-	Nc	
Proline	-	+	+	+	+
Serine	Nc	+	Nc	Nc	Nc
Metabolite	+	+	Nc	Nc	-
---------------------	-----	-----	-----	-----	-----
Threonine					
Tryptophan	+	+	Nc	+	Nc
Tyrosine	-	Nc	Nc	Nc	Nc
Valine	-	-	Nc	-	Nc

Glycolysis

Metabolite	+	+	Nc	Nc	+	+
Glucose	-	Nc	-	+	+	+
Glyceraldehyde	Nc	+	Nc	Nc	Nc	Nc
Lactate	+	+	+	+	+	+
Pyruvate	+	Nc	Nc	Nc	Nc	Nc

Krebs Cycle

Metabolite	+	+	Nc	Nc	+
Fumarate	+	+	Nc	Nc	+
Malate	+	+	Nc	Nc	Nc
Succinate	+	+	+	+	+
Acetate*	-	+/-	Nc	Nc	-

Lipid Metabolites

Metabolite	+	+	Nc	Nc	Nc
Pentanoic acid	-	-	Nc	Nc	Nc
Pentandioic acid	+	+	Nc	+	Nc

Secondary

Metabolite	+	+	Nc	Nc	+
A-hydroxyisobutyric	-	-	Nc	Nc	-
Putrescine	-	+	Nc	Nc	+
Cadaverine	Nc	+	Nc	Nc	+
Inositol	-	-	Nc	-	Nc
Phosphate	Nc	-	Nc	Nc	Nc

Urea Cycle

Metabolite	+	+	Nc	Nc	Nc	Nc
Urea			Nc	Nc	Nc	Nc

The results for the acetate metabolite are in conflict, metabolomic analysis by NMR shows this metabolite to have the second most significant difference, whereas GC-MS shows a very slight decrease this may be due to the high sensitivity of GC-MS for small molecules or alternatively that another pool of acetate contributed to the GC-MS results possibly as a result of derivatisation (e.g. the degradation of acetyl-CoA).
Figure S1

Unstressed condition

Increase:
18) Betaine
27) Phenylalanine
14) Succinate
26) Tryptophan
13) Pyruvate
2) Lactate

Decrease:
24) α-glucose
9) Methionine
11) Proline

Phosphosugar Stress

Increase:
11) Proline

Decrease:
18) Betaine
Figure S2
Figure S4 (a)

Figure S4 (b)
Figure S5

Bar chart showing the % RNA degraded at different citrate concentrations (mM).

- For a citrate concentration of 0 mM, the % RNA degraded is approximately 75%.
- For a citrate concentration of 10 mM, the % RNA degraded is approximately 50%.

Vertical axis: % RNA degraded
Horizontal axis: Citrate concentration (mM)
Figure S6
Polynucleotide Phosphorylase Activity May Be Modulated by Metabolites in
Escherichia coli
Salima Nurmohamed, Helen A. Vincent, Christopher M. Titman, Vidya Chandran,
Michael R. Pears, Dijun Du, Julian L. Griffin, Anastasia J. Callaghan and Ben F. Luisi

J. Biol. Chem. 2011, 286:14315-14323.
doi: 10.1074/jbc.M110.200741 originally published online February 14, 2011

Access the most updated version of this article at doi: 10.1074/jbc.M110.200741

Alerts:
• When this article is cited
• When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

Supplemental material:
http://www.jbc.org/content/suppl/2011/02/14/M110.200741.DC1.html

Read an Author Profile for this article at
http://www.jbc.org/content/suppl/2011/04/08/M110.200741.DCAuthor_profile.html

This article cites 50 references, 23 of which can be accessed free at
http://www.jbc.org/content/286/16/14315.full.html#ref-list-1