Historical overview of the development of gel dosimetry: a personal perspective

Clive Baldock

Institute of Medical Physics, School of Physics, University of Sydney, NSW 2006, Australia

Email: c.baldock@physics.usyd.edu.au

1. Introduction
Over many years individuals have endeavoured to measure absorbed radiation dose distributions using gels. As long ago as 1950, the radiation-induced colour change in dyes was used to investigate radiation doses in gels [1]. Further, in 1957 depth doses of photons and electrons in agar gels were investigated using spectrophotometry [2]. Gel dosimetry today however, is founded mainly on the work of Gore et al in 1984 [3] demonstrated that changes due to ionising radiation in Fricke dosimetry solutions [4], developed in the 1920’s, could be measured using nuclear magnetic resonance (NMR).

2. Fricke Gel Dosimeters
Gore et al investigated [3] the nuclear magnetic resonance (NMR) relaxation properties of irradiated Fricke or ferrous sulphate dosimetry solutions [4] showing that radiation-induced changes, in which ferrous (Fe2+) ions are converted to ferric (Fe3+) ions, could be quantified using NMR relaxation measurements. In 1986 Appleby et al [5] reported that Fricke dosimetry solutions dispersed throughout a gel matrix could be used to obtain three-dimensional (3D) spatial dose information using magnetic resonance imaging (MRI). It was subsequently shown that irradiated Fricke-type gel dosimeters did not retain a spatially stable dose distribution due to ion diffusion within the irradiated dosimeters [6]. Fricke solutions with various gelling agents such as gelatine, agarose, sephadex and polyvinyl alcohol (PVA) were investigated along with chelating agents such as xylenol orange (XO) to reduce diffusion. Numerous authors subsequently published results of their work to inhibit the ion-diffusion with limited success and summarised by Baldock in 2001 (Table 1) [7]. By the early 1990’s the diffusion problem was considered to be a significant one in the advancement of gel dosimetry.

3. Polymer Gel Dosimeters
Polymer systems for the use of radiation dosimetry were first proposed as early as 1954, where Alexander et al [8] discussed the effects of ionising radiation on polymethylmethacrylate. Following this, Hoecker et al [9] in 1958 investigated the dosimetry of radiation-induced polymerisation in liquids, and in 1961 Boni [10] used polyacrylamide as a gamma dosimeter. Much later in 1991, Audet et al [11] reported changes in NMR transverse relaxation measurements of irradiated polyethelene
oxide. In 1992, Kennan et al [12] reported on NMR longitudinal relaxation studies performed on an irradiated aqueous solution of N,N'-methylene-bis-acrylamide and agarose, which showed that the relaxation rates increased with absorbed dose.

In 1992 a new gel dosimetry formulation was proposed, which was based on the polymerisation of acrylamide and N,N'-methylene-bis-acrylamide (bis) monomers infused in an aqueous agarose matrix [13]. This system was given the acronym BANANA due to the use of the chemical components (bis, acrylamide, nitrous oxide and agarose) [14]. This type of gel dosimeter did not have the associated diffusion problem of Fricke gels and was shown to have a relatively stable post-irradiation dose distribution. The polymerisation reaction occurred by cross-linking of the monomers induced by the free radical products of water radiolysis. In 1994 the BANANA formulation was refined [15] by replacing agarose with gelatine and given the acronym BANG (bis, acrylamide, nitrogen and aqueous gelatine), the first of a series of new polymer gel formulations. In 1994 this formulation was patented [16] and became commercially available through MGS Research Inc. as BANG®. Subsequently, due to the naming of the commercial product, PAG [17] became the polymer gel dosimeter acronym of choice for most authors.

Numerous authors subsequently published results of work investigating different compositions and formulations of polymer gel dosimeters some of which were summarised by Lepage et al (Table 2) [18].

Although polymer-type dosimeters did not have the diffusion limitations of Fricke-type gel dosimeters, there was another significant limitation in their use. Due to the nature of their free radical chemistry, polymer gel dosimeters were susceptible to atmospheric oxygen inhibition of the polymerisation processes. As a result, these gel dosimeters had to be manufactured in an oxygen-free environment [17], such as in a glove box pumped with nitrogen gas. Along with the use of potentially toxic chemicals [19], this was a significant limitation in the introduction of gel dosimetry into the clinic.

4. Normoxic Polymer Gel Dosimeters

A significant development in the field of gel dosimetry occurred when results of using an alternative polymer gel dosimeter formulation were published by Fong et al in 2001 [20]. This new type of polymer gel dosimeter, know as MAGIC gel, bound atmospheric oxygen in a metallo-organic complex thus removing the problem of oxygen inhibition and enabling polymer gels to be manufactured on the bench-top in the laboratory. This created what was to be known as a normoxic gel dosimeter, compared with the previous PAG formulation which subsequently became known as a hypoxic gel dosimeter.

The MAGIC polymer gel formulation consisted of methacrylic acid, ascorbic acid, gelatine and copper. The principal behind the MAGIC gel is in the ascorbic acid oxygen scavenger. Ascorbic acid binds free oxygen contained within the aqueous gelatine matrix into metallo-organic complexes and this process is initiated by copper sulphate. It was subsequently shown by De Deene et al in 2002 that other antioxidants could be used in the manufacture of normoxic gels [21] including tetrakis (hydroxymethyl) phosphonium chloride, having first been suggested to Baldock by Billingham in 1996 [22].

Numerous authors subsequently published results of work investigating different compositions and formulations of normoxic polymer gel dosimeters and were recently summarised by Senden (Table 3) [23].

Recent work has included the development of less toxic polymer gels [23].
Table 1. Summary of Fricke gel dosimeter diffusion measurements in the literature in Baldock et al [6].

	Diffusion Coefficient ($10^{-3} \text{ cm}^2\text{h}^{-1}$)	Gel Type & Concentration (%)	Other Constituents (mM)	Temperature (°C)
6	18.3±1.4	A 1	S 12.5, Fe$^{3+}$ 1	-
6	15.8±1.1	A 1	S 25, Fe$^{3+}$ 1	-
25	19.1±1.0	A 1.5	S 50, Fe$^{3+}$ 1	25
26	10.9±1.6*	A 1	S 50, Fe$^{3+}$ 1, NaCl 1	15-17.5
27	9.7±1.1	A 1	S 30, Fe$^{3+}$ 1	22
27	11.9±1.8	A 1	S 30, Fe$^{3+}$ 1	22
28	12.5±1.1	A 1	S 50, Fe$^{3+}$ 1, NaCl 1	5
28	21.3±0.5	A 1	S 50, Fe$^{3+}$ 1	24
29	8.2±0.1	G 4	S 26, Fe$^{3+}$ 0.2, BE 5	10
29	9.1±0.1	G 4	S 26, Fe$^{3+}$ 0.2, BE 5, Fo 70	20
29	10.4±0.1	G 4	S 26, Fe$^{3+}$ 0.2, BE 5, P 0.6	10
29	4.4±0.1	G 4	S 26, Fe$^{3+}$ 0.2, BE 5, P 0.6	10
29	0.7±0.1	G 8	S 26, Fe$^{3+}$ 0.2, BE 5, Fo 46	20
29	1.0±0.1	G 8	S 26, Fe$^{3+}$ 0.2, BE 5, Fo 46, P 0.6	20
29	4.4±0.1	G 4	S 26, Fe$^{3+}$ 0.2, BE 5, XO 0.2	10
29	6.5±0.1	G 4	S 26, Fe$^{3+}$ 0.2, BE 5, BD 0.6	10
29	6.1±0.1	G 4	S 26, Fe$^{3+}$ 0.2, BE 5, Fo 46, XO 0.2	20
29	6.3±0.0	G 4	S 26, Fe$^{3+}$ 0.2, BE 5, AC 0.6	20
29	8.3±0.1	G 4	S 26, Fe$^{3+}$ 0.2, BE 5	10
30	14±3	A 1.5	S 50, Fe$^{3+}$ 0.5	22
30	20±5	A 1.5	S 100, Fe$^{3+}$ 0.5	22
30	22	A 1.5	S 200, Fe$^{3+}$ 0.5	22
30	11	A 1.5	S 50, XO 0.25	22
30	5±1	G 10	S 50 & 100, Fe$^{3+}$ 0.5	22
30	9	A 1.5, G 3	S 50, Fe$^{3+}$ 0.5	22
30	9	A 1, G2	S 200, Fe$^{3+}$ 0.5, XO 0.2	22
30	3±1	A 1.5, G 3	S 50 & 100, Fe$^{3+}$ 0.5, XO 0.1 & 0.25	22
31	14.6±0.1	G 4	S 50, Fe$^{3+}$ 1.5, XO 1.5	-
31	8.1±0.1	G 4	S 50, Fe$^{3+}$ 1.5, XO 1.5	-
31	8.2±0.1	G + BA	S 50, Fe$^{3+}$ 1.5, XO 1.5, BE 5.0	-
31	17.8±0.2	A 1.5	S 50, Fe$^{3+}$ 1.5, XO 1.5	-
31	16.3±0.2	A 3	S 50, Fe$^{3+}$ 1.5, XO 1.5	-
32	1.4	PVA 20	S 50, Fe$^{3+}$ 0.4, XO 0.4	20

A = agarose, Agar = agar, G = gelatin, PVA = polyvinyl alcohol, S = H$_2$SO$_4$, XO = xylenol orange, BA = benzoic acid, Fo = formaldehyde, P = phenanthroline, AC = acetylacetone, BD = bathophenanthroline disulfonic acid, *Diffusion coefficient calculated in Rae1996
Table 2. Representative selection of R2–dose sensitivities published in the polymer gel dosimetry literature as published in Lepage et al 2001 [17]. Unless otherwise indicated, all polymer gel formulations composed of by weight 3% of the monomers indicated and 5% gelatin or 1% agarose.

Polymer Gel Dosimeter	Reference	R2–dose sensitivity (S/Gy)	Comment
AA, BIS, gelatin	33	0.259	3-6% monomers
	34	0.28-0.56	6% monomers
	35	0.578	
	36	0.233	
	37	0.23	
	38	0.163	
	39	0.20-0.29	
	40	0.211	
ACA, BIS, gelatin	42	0.335	
	43	0.377	
VP, BIS, gelatin	44	0.095	
Na methacrylate, BIS, gelatin	45	0.09–0.21	
MCA, gelatin	46	0.75–2.66	
AA, BIS, agarose	47	0.28	

5. PRESAGETM Dosimeters
A new class of polymer dosimeter, PRESAGETM (Heuris Pharma, Skillman, NJ) [24] was proposed in 2003 and based on clear polyurethane combined with leuco-dye leucomalachite green. The components of the dosimeter include an alkyl diisocyanate prepolymer, a hydroxyl reactive polyol along with a catalyst, which polymerises into optically clear polyurethane. Although not suitable for MRI evaluation, the leuco dyes have a maximum absorbance at a wavelength of 633 nm and are therefore suitable for evaluation with a He-Ne laser-based optical scanning system.

Table 3. Different formulations published for normoxic polymer gel dosimeters as published in Senden et al 2001 [22].

Normoxic dosimeters	Reference	Polymer Gel Dosimeter Formulation
MAGIC	20	Methacrylic acid, ascorbic acid, hydroquinone, CuSO4·5H2O, gelatin
	48	
	49	
MAGAS	49	Methacrylic acid, ascorbic acid, gelatin
	50	
MAGAT	49	Methacrylic acid, tetrakis (hydroxymethyl) phosphonium chloride, gelatin
	51	
	52	
nMAG	53	Methacrylic acid, Bis[tetrakis (hydroxymethyl) phosphonium] sulfate, gelatin
PAGAS	49	Acrylamide, N,N-methylene-bis-acrylamide, Ascorbic acid, gelatin
PAGAT	51	Acrylamide, N,N-methylene-bis-acrylamide, tetrakis (hydroxymethyl) phosphonium chloride, hydroquinone, gelatin
	54	
	55	
nPAG	53	Acrylamide, N,N-methylene-bis-acrylamide, Bis[tetrakis (hydroxymethyl) phosphonium] sulfate, gelatin

6. Evaluation of Gel Dosimeters
Since the work of Gore et al in 1984, the majority of investigations have been undertaken with MRI. However, alternative techniques for evaluation have been introduced including optical computer tomography (CT) in 1996 [56], x-ray CT in 2001 [57], vibrational spectroscopy in 1998 [58] and ultrasound in 2002 [59].

For further information regarding the evaluation of polymer gel dosimeters, the proceedings of the DOSGEL conferences [60,61,62] should be consulted.
7. Other Developments
A significant non-radiotherapy development in gel dosimetry was reported in 2005 by Hill et al [63] in the use of polymer gel dosimeters in measuring the CTDI (Computer Tomography Dose Index) on a diagnostic x-ray CT scanner. This work indicated the potential of using polymer gel dosimeters for diagnostic dose levels.

Another significant non-radiotherapy development in gel dosimetry was research reported by Gore et al in 1997 using polymer gel dosimeters to develop an image quality test tool for MRI [64].

8. DOSGEL Conferences
In June 1995 whilst attending the AAPM in Boston, Clive Baldock and L. John Schreiner decided that it would be appropriate to organise some form of specialist meeting or workshop on gel dosimetry. In September 1996 Clive Baldock and Lars Olsson, whilst attending ESTRO in Vienna, subsequently commenced organising the first international conference on gel dosimetry. This resulted in DOSGEL’99 [60], the first [Fig.1] of the successful DOSGEL conference series and held at the University of Kentucky, USA in 1999. Subsequently DOSGEL 2001 was held at Queensland University of Technology in Brisbane, Australia [Fig.2] and DOSGEL 2004 [62] at the University of Ghent [Fig.3].

9. Conclusion
To date there is still no consensus on optimal gel formulations of gel dosimeters or the optimal evaluation techniques to be used. A result is that this form of 3D dosimetry is yet to be accepted for routine use in the clinic. Until then, there remains much research still to be undertaken.
10. References

[1] Day M J and Stein G 1950 Chemical effects of ionizing radiation in some gels *Nature* **166** 146–7

[2] Andrews H L, Murphy R E and LeBrun E J 1957 Gel dosimeter for depth dose measurements *Rev. Sci. Instrum.* **28** 329–32

[3] Gore J C, Kang Y S and Schulz R J 1984 Measurement of radiation dose distributions by nuclear magnetic resonance (NMR) imaging *Phys. Med. Biol.* **29** 1189–97

[4] Fricke H and Morse S 1927 The chemical action of roentgen rays on dilute ferrous sulphate solutions as a measure of radiation dose *Am. J. Roentgenol. Radium Therapy Nucl. Med.* **18** 430–2

[5] Appleby A, Christman E A and Leghrouz A 1986 Imaging of spatial radiation dose distribution in agarose gels using magnetic resonance *Med. Phys.* **14** 382-4

[6] Schulz R J, de Guzman A F, Nguyen D B and Gore J C 1990 Dose-response curves for Fricke-infused agarose gels as obtained by nuclear magnetic resonance *Phys. Med. Biol.* **35** 1611-22.

[7] Baldock C, Harris P J, Piercy A R, Healy B 2001 Experimental determination of the diffusion coefficient in two-dimensions in ferrous sulphate gels using the finite element method *Australas. Phys. Eng. Sci. Med.* **24** 19-30

[8] Alexander P, Charlesby A and Ross M 1954 The degradation of solid polymethylmethacrylate by ionizing radiations *Proceedings of the Royal Society A* **223** 392

[9] Hoecker F E and Watkins I W 1958 Radiation polymerization dosimetry *Int. J. Appl. Rad. Isotop.* **3** 31-35

[10] Boni A L 1961 A polyacrylamide gamma dosimeter *Radiation Research* **14** 374-80

[11] Audet C and Schreiner L J 1991 Radiation dosimetry by NMR relaxation time measurements of irradiated polymer solutions *Proceedings of Society of Magnetic Resonance in Medicine*

[12] Kennan R P, Maryanski M J, Zhong J and Gore J C 1992. Hydrodynamic effects and cross relaxation in cross linked polymer gels *Proc. Intl. Soc. Mag. Reson. Med.* (New York)

[13] Maryanski M J, Gore J C and Schulz R J 1992 3-D radiation dosimetry by MRI: solvent proton relaxation enhancement by radiation-controlled polymerisation and cross-linking in gels *Proc. Intl. Soc. Mag. Reson. Med.* (New York)

[14] Maryanski M J, Gore J C, Kennan R P and Schulz R J 1993 NMR relaxation enhancement in
gels polymerized and cross-linked by ionizing radiation: a new approach to 3D dosimetry by
MRI Magn. Reson. Imaging 11 253-58
[15] Maryanski M J, Schulz R J, Ibbott G S, Gatenby J C, Xie J, Horton D and Gore J C 1994
Magnetic resonance imaging of radiation dose distributions using a polymer-gel dosimeter
Phys. Med. Biol. 39 1437-55
[16] Maryanski M J, Gore J C and Schulz R 1994 Three-dimensional detection, dosimetry and
imaging of an energy field by formation of a polymer in a gel US Patent 5,321,357
[17] Baldock C, Burford R P, Billingham N, Wagner G S, Patval S, Badawi R D and Keevil S F
1998 Experimental procedure for the manufacture and calibration of polyacrylamide gel
(PAG) for magnetic resonance imaging (MRI) radiation dosimetry. Phys. Med. Biol. 43 695-
702
[18] Lepage M, Jayasekera M, Bäck S Å J, Baldock C 2001 Dose resolution optimization of polymer
gel dosimeters using different monomers Phys. Med. Biol. 46 2665-80
[19] Baldock C and Watson S 1999 Risk assessment for the manufacture of radiation dosimetry
polymer gels in DOSGEL 1999 Proceedings of the 1st International Workshop on Radiation
Therapy Gel Dosimetry (Lexington, USA) Eds L J Schreiner and C Audet
[20] Fong P M, Keil D C, Does M D and Gore J C 2001 Polymer gels for magnetic resonance
imaging of radiation dose distributions at normal room atmosphere Phys. Med. Biol. 46
3105–13
[21] De Deene Y, Hurley C, Venning A, Mather M, Healy B, Whittaker A, Baldock C 2002 A basic
study of some normoxic polymer gel dosimeters Phys. Med. Biol. 47 3441–63.
[22] Billingham N, 1996. Personal Communication.
[23] Senden R J, De Jean P, McAuley K B and Schreiner L J 2006 Polymer gel dosimeters with
reduced toxicity: a preliminary investigation of the NMR and optical dose–response using
different monomers Phys. Med. Biol. 51 3301–14
[24] Adamovics J, and Maryanski M 2003 New 3D radiochromic solid polymer dosimeter from
leuco dyes and a transparent polymeric matrix. Med. Phys. 30 1349
[25] Olsson L E, Westrin B A, Fransson A and Nordell B 1992 Diffusion of ferric ions in agarose
dosimeter gels Phys.Med. Biol. 37 2243–52
[26] Gambarini G, Arrigioni S, Cantone MC, Molho N, Facchielli L and Sichirollo AE 1994 Dose-
response curve slope improvement and result reproducibility of ferrous-sulfate-doped gels
analysed by NMR imaging Phys. Med. Biol. 39 1611-22
[27] Balcom B J, Lees T J, Sharp A R, Kulkarni N S and Wagner G S 1995 Diffusion in Fe(II/III)
radiation dosimetry gels measured by magnetic resonance imaging Phys. Med. Biol. 40
1665-76
[28] Baldock C, Harris P J, Vencri A, Patval S, Prior D N, Keevil S F and Summers P 1995
Temperature dependance of diffusion in Fricke gel MRI dosimetry Med. Phys. 22 1540.
[29] Rae W I D, Willemse C A, Lotter M G, Engelbrecht J S and Swarts J C 1996 Chelator effect on
ion diffusion in ferrous-sulfate-doped gelatin gel dosimeters as analyzed by MRI Med. Phys.
23 15-23
[30] Kron T, Jonas D and Pope J M 1997 Fast T-1 imaging of dual gel samples for diffusion
measurements in NMR dosimetry gels Magn. Reson. Imaging 15 211-221
[31] Pedersen T V, Olsen D R and Skretting A 1997 Measurement of the ferric diffusion coefficient
in agarose and gelatine gels by utilization of the evolution of a radiation induced edge as
reflected in relaxation rate images Phys. Med. Biol. 42 1575-85
[32] Chu K C, Jordan K J, Battista J J, Van Dyk J and Rutt B K 2000 Polyvinyl alcohol-Fricke
hydrogel and cryogel: two new gel dosimetry systems with low Fe3+ diffusion Phys. Med.
Biol. 45 955-969
[33] Maryanski M J, Schulz R J, Ibbott G S, Gatenby J C, Xie J, Horton D and Gore J C 1994
Magnetic resonance imaging of radiation dose distributions using a polymer-gel dosimeter
Phys. Med. Biol. 39 1437–55
[34] Baldock C, Burford R P, Billingham N, Cohen D and Keevil S F 1996 Polymer gel composition in magnetic resonance imaging dosimetry Proc. Intl. Soc. Mag. Reson. Med. (New York) 1594

[35] Oldham M, Baustert I, Lord C, Smith T A D, McJury M, Warrington A P, Leach M O and Webb S 1998a An investigation into the dosimetry of a nine-field tomotherapy irradiation using BANG-gel dosimetry Phys. Med.Biol. 43 1113–32

[36] Oldham M, McJury M, Baustert I B, Webb S and Leach M O 1998b Improving calibration accuracy in gel dosimetry Phys. Med. Biol. 43 2709–20

[37] Farajollahi A R, Bonnett D E, Ratcliffe A J, Aukett R J and Mills J A 1999 An investigation into the use of polymer gel dosimetry in low dose rate brachytherapy Br. J. Radiol. 72 1085–92

[38] Baldock C, Murry P and Kron T 1999 Uncertainty analysis in polymer gel dosimetry Phys. Med. Biol. 44 N243–N246

[39] De Deene Y, De Wagter C, Van Duyse B, Derycke S, Mersseman B, De Gersem W, Voet T, Achten E and De Neve W 2000a Validation of MR-based polymer gel dosimetry as a preclinical three-dimensional verification tool in conformal radiotherapy Magn. Reson. Med. 43 116–25

[40] Farajollahi A R, Bonnett D E, Tattam D and Green S 2000 The potential use of polymer gel dosimetry in boron neutron capture therapy Phys. Med. Biol. 45 N9–N14

[41] Haraldsson P, Back S Å J, Magnusson P and Olsson L E 1999 Dose response characteristics and basic dose distribution data for a polymerization-based dosimeter gel evaluated using MR Br. J. Radiol. 73 58–65

[42] Maryanski M J, Ibbott G S, Eastman P, Schulz R J and Gore J C 1996 Radiation therapy dosimetry using magnetic resonance imaging of polymer gels Med. Phys. 23 699–705

[43] Ibbott G S, Maryanski M J, Eastman P, Holcomb S D, Zhang Y S, Avison R G, Sanders M and Gore J C 1997 Three-dimensional visualization and measurement of conformal dose distributions using magnetic resonance imaging of BANG polymer gel dosimeters Int. J. Radiation Oncology Biol. Phys. 38 1097–103

[44] Pappas E, Maris T, Angelopoulos A, Paparigopoulou M, Sakelliou L, Sandilos P, Voyiatzi S and Vlachos L 1999 A new polymer gel for magnetic resonance imaging (MRI) radiation dosimetry Phys. Med. Biol. 44 2677–84

[45] Murphy P S, Cosgrove V P, Leach M O and Webb S 2000 A modified polymer gel for radiotherapy dosimetry: assessment by MRI and MRS Phys. Med. Biol. 45 3213–23

[46] Maryanski M J 1999 Radiation-sensitive polymer gels: properties and manufacturing DOSGEL 1999 Proceedings of the 1st International Workshop on Radiation Therapy Gel Dosimetry (Lexington, KY, USA) eds L J Schreiner and C Audet (Edmonton: Canadian Organization of Medical Physicists)

[47] Maryanski M J, Gore J C, Kennan R and Schulz R J 1993 NMR relaxation enhancement in gels polymerized and cross-linked by ionizing radiation: a new approach to 3D dosimetry by MRI Magn. Reson. Imaging 11 253–8

[48] De Deene Y, Hanselaer P, De Wagter C, Achten E and De Neve W 2000 An investigation of the chemical stability of a monomer/polymer gel dosimeter Phys. Med. Biol. 45 859–78

[49] De Deene Y, Hurley C, Venning A, Vergote K, Mather M, Healy B J and Baldock C 2002 A basic study of some normoxic polymer gel dosimeters Phys. Med. Biol. 47 3441–63

[50] Venning A J, Nitschke K N, Keall P J and Baldock C 2005 Radiological properties of normoxic polymer gel dosimeters Med. Phys. 32 1047–53

[51] Brindha S, Venning A J, Hill B and Baldock C 2004 Experimental study of attenuation properties of normoxic polymer gel dosimeters Phys. Med. Biol. 49 N353–61

[52] Hurley C, Venning A and Baldock C 2005 A study of normoxic polymer gel dosimeter comprising methacrylic acid, gelatin and tetrakis (hydroxymethyl) phosphonium chloride (MAGAT) Appl. Radiat. Isot. 63 443–56
[53] De Deene Y, Vergote K, Claeys C and DeWagter C 2006 The fundamental radiation properties of normoxic polymer gel dosimeters: a comparison between a methacrylic acid based gel and acrylamide based gels Phys. Med. Biol. 51 653–73
[54] Venning A, Healy B, Nitschke K and Baldock C 2005a Investigation of the MAGAS normoxic polymer gel dosimeter with Pyrex glass walls for clinical radiotherapy dosimetry Nuclear Inst. and Methods in Physics Research A 555 396–402
[55] Jirasek A, Hilts M, Shaw C and Baxter P 2006 Investigation of tetrakis hydroxymethyl phosphonium chloride as an antioxidant for use in x-ray computed tomography polyacrylamide gel dosimetry Phys. Med. Biol. 51 1891–906
[56] Gore J C, Ranade M, Maryanski M J and Schulz R J 1996 Radiation dose distributions in three dimensions from tomographic optical density scanning of polymer gels: I. Development of an optical scanner Phys. Med. Biol. 41 2695–704
[57] Audet C, Hilts M, Jirasek A and Duzenli C 2002 CT gel dosimetry technique: Comparison of a planned and measured 3D stereotactic dose volume J. Appl. Clin. Med. Phys. 3 110–8
[58] Baldock C, Rintoul L, Keevil S F, Pope J M and George G A 1998 Fourier Transform Raman spectroscopy of polyacrylamide gels (PAGs) for radiation dosimetry Phys. Med. Biol. 43 3617-27
[59] Mather M, Whittaker A K, Baldock C 2002 Ultrasound evaluation of polymer gel dosimeters Phys. Med. Biol. 47 1449-58
[60] Hill B, Venning A J, Baldock C 2005 A preliminary study of the novel application of normoxic polymer gel dosimeters for the measurement of CTDI on diagnostic x-ray CT scanners. Med. Phys. 32 1589-97
[61] Gore J C, Maryanski M J and Schulz R J 1997 Test objects for MRI quality assurance based on polymer gels Med. Phys. 24 1405-8
[62] DOSGEL 1999 Proceedings of the 1st International Workshop on Radiation Therapy Gel Dosimetry (Lexington, USA) Eds L J Schreiner and C Audet
[63] DOSGEL 2001 Proceedings of the 2nd International Conference on Radiotherapy Gel Dosimetry (Brisbane, Australia) Eds C Baldock and Y De Deene
[64] DOSGEL 2004 Proceedings of the 3rd International Conference on Radiotherapy Gel Dosimetry (Ghent, Belgium) Eds C Baldock and Y De Deene