Meta-analysis of essential oil effectiveness against phytopathogen in forest plant nurseries

Z N Akromah1*, Achmad1, and A Jayanegara2

1 Departement Silviculture, Faculty of Forestry and Environment, IPB University Jl Lingkar Akademik Kampus IPB Darmaga PO Box 168 Bogor 16680
2 Department of Animal Nutrition and Feed Technology, Faculty of Animal Science, IPB University, Bogor 16680, Indonesia

E-mail: zakhruvia@gmail.com

Abstract. The study aims to use a meta-analytical procedure to analyze the potential of essential oils (EO) in inhibiting the growth of pathogens in vitro using published data on an online database. The author accessed the online databases using search keywords, which are essential oils against phytopathogens and essential oils for fungicides to collect the article. The collected articles or sources were utilized to arrange the database. Twenty-nine studies were included to assess the inhibitory effect of EO on the growth of pathogenic mycelium in vitro. The collected data were analyzed statistically using a Continuous Random-Effects Model was used to ascertain a pooled effect estimate of EO treatment on mycelium inhibition. The analysis was performed using the Open Meta-analyst for Ecology and Evolution (Open MEE) software. Based on the literature review, EO in various types and concentrations can inhibit mycelium growth with standardized mean difference (SMD) = 48.734, 95% CI 45.613 to 51.855, p < 0.001. The results of the present study revealed the potential of EO to inhibit mycelium growth. The current meta-analysis also sets the steps for standardized experimental designs on the use of EO for bio fungicides trials in the future.

1. Introduction
The success of forest development is determined by good nursery management. Healthy seedlings will reduce the risk of failure in forest development [1]. One of the challenges in the nursery is the spread of germs due to the growth of non-solid cell walls which are vulnerable [2]. There have been many reports of disease attacks on seedlings in the nursery causing severe damage to production failure. As in the case of the Pongpolandak nursery, Cianjur, the attack of Pestalotia sp. is known to have caused crop failure in the pine crop in 2001 with the death of 50% of the total number of seedlings [3]. Another attack also occurred in IPB's permanent nursery in which 75% of the Paraserianthes falcataria seedlings aged 5 months were stricken with moderate severity [2], and many more cases.

Disease attacks can occur starting from the phase of seed, germination, and even ready-to-plant seedlings. As explained by Istikorini and Sari [2], fungi isolated from seedlings inoculated on seeds showed a percentage of disease infection of 100%. Ready-to-plant tree seedlings are generally 3 to 5 months old or more depending on the species [4]. This age is classified as susceptible to disease [2].
This condition results in damages caused by pathogens not only in the nursery but also for young plants in the field. This condition will be worsened when planting is done on agroforestry land. A pathogen can have a diverse host (cosmopolitan) which may be a pathogen for annual or seasonal crops in agroforestry systems [5].

The commonly applied management is using synthetic fungicides [6]-[8]. Excessive use causes negative impacts, including resistance [6], environmental pollution, destruction of natural enemies, the emergence of residues that endanger health, and so on [9]-[11]. Prevention efforts that can be done are utilizing biofungicides that are more effective, selective, biodegradable, and less toxic to the environment [12]. This poses the challenge of reducing the risks and negative impacts of using synthetic chemicals on human health and the environment while maintaining productivity and profitability.

Essential oils are known to be a substitute for synthetic fungicides [13]. They are a mixture of lipophilic and volatile components such as monoterpenes, sesquiterpenes, and phenylpropanoids [14],[15]. Many studies have reported the anti-fungal effect of essential oils on plant pathogens. Moleyar and Narasimham [16] stated, that several components of essential oils such as citral, cinnamic aldehyde, and citronellal can inhibit the growth of Aspergillus niger, Fusarium oxysporum, Penicillium digitatum. Apart from being a single component, essential oils in various compositions also have anti-fungal properties. Essential oils of Baccharis trimera and Baccharis ochracea (Carquejas) at a concentration of 10 μL / mL can inhibit the growth of the pathogen Alternaria alternata in vitro and in vivo [17]. Sometimes certain types of essential oils cannot inhibit the growth of fungi, as reported by [18], at the same concentration (1%) orange (Citrus sinensis) and turmeric (Curcuma longa) essential oils are not effective in inhibiting the growth of Aspergillus niger compared to essential oils of clove (Syzygium aromaticum), lemongrass (Cymbopogon citratus), eucalyptus (Eucalyptus globulus) and mentha (Mentha piperata) at even lower concentrations.

The use of essential oils as a source of commercial biofungicides is very limited. In Korea, a total of 33 bio-pesticides are registered 2 (herbicides and insecticides) of which are derived from plants while the others come from microbes. There are no registered botanical fungicides in Korea [12]. The variety of essential oils used is very high. Selection of essential oils that have a high inhibiting ability for various types of pathogens in the nursery with the abundant availability and easy to develop should be further researched. To date, there has been no meta-analysis that clearly examines the use of essential oils as a biofungicide in forest plant nurseries. This current meta-analysis aims to increase the effectiveness of essential oils as an environmentally friendly source of fungicides. This study aims to use a meta-analytical procedure to analyze the potential of essential oils (EO) in inhibiting the growth of pathogens in vitro using published data on an online database.

2. Material and methods

2.1 Literature search

The object of meta-analysis in this study was the ability of essential oils to inhibit pathogen growth. Essential oils are expected to be a more environmentally friendly source of biofungicides. The number of relevant publications is quite high with various types of essential oils and pathogens that attack plants. This study used articles from online databases, namely Science Direct and Google Scholar, and searches for relevant articles from previously identified article sources. Keywords to look for covered essential oil against phytopathogens and essential oil for fungicides.

2.2 Data extraction and analysis

Article analysis was carried out to extract the main database by selecting articles with certain criteria. The selected articles contained information of the author, the publication year, in vitro experiments with pathogens that can attack forestry nurseries, and the description of the standard deviation. The data taken from the article covered the number of samples, the mean, and standard deviation of the control and treatment of each essential oil dose in the form of percent (%) inhibition. Variables or different units of units are converted into uniform units according to the information in the article. The collected data were analysed statistically using a Continuous Random-Effects Model to ascertain a pooled effect
estimate of EO treatment on mycelium inhibition. The articles that have been collected were then published in a database using Microsoft Excel software. The database that has been selected and inserted in the Microsoft Excel was saved with comma-separated values (CSV) format. The CSV format is the only format that can be used in the OpenMEE software and the output was forest plot. OpenMEE (Open Meta-analyst for Ecology and Evolution) was developed to address the need for advanced, easy-to-use software for meta-analysis, and meta-regression. This open-access software can be downloaded at http://www.cebm.brown.edu/openmee/help.html.

3. Results and discussion
Essential oils (EOs) or volatile oils are secondary metabolites of a plant. Essential oils are extracted from the leaves, flower petals, stems, seeds, and even the roots of plants. Generally, EOs play important roles in direct and indirect plant defenses against herbivores and pathogens, in plant reproduction processes through the attraction of pollinators and seed disseminators, and in-plant thermo-tolerance [19]. Essential oils are increasingly in demand as a source of pesticides because of their safe status and minimal harm to health and the environment. In addition, it also reduces the development of resistant strains [17]. Many studies have revealed the ability of EOs in inhibiting the growth of pathogen both in vitro and in vivo. This current study focuses on in vitro inhibition.

This study selected 29 articles as presented in Table 1. The total number of essential oils identified from the selected article was 105 types. The concentration used varies widely. Units of different variables were converted to units of ppm for statistical analysis. The diversity of pathogen types can be seen in Table 2 in which 25 types of pathogens collected from selected articles. The number of samples used was quite diverse dominated with 3 replications in 21 studies. Meanwhile, 5 studies used 4 replications, and 4 other studies used 5, 8, 10, and 21 replications of each. Each study did not mention that the pathogens used came from forestry plants as presented in Table 2 which shows the ability of the pathogens to attack forestry plants.

The overall pooled estimate for the EO effect to inhibit mycelium growth was 48.734% with a 95% confidence interval (CI) of 45.613 - 51.855, SD of 1.592, and p-values of < 0.001 as presented in Table 3, with forest plot in Figure 1. It indicates that many types of EOs can inhibit the growth of varied pathogens up to 48.734%. One article shows a fairly high degree of diversity in the effect size data with the mean value reached 100 using the essential oil treatment of Baccharis ochracea and Baccharis trimera with a concentration of 5000 and 10000 ppm. The lowest mean value with a value of 0 was found in the EO treatment of Baccharis articulata, Baccharis ochracea, and Baccharis trimera with concentrations of 100, 1000, and 100 ppm respectively [17]. EO concentration affects the inhibition of pathogens as showed by an experiment conducted by Thabet and Khalifa [20] and it is linear with another experiment conducted by [20] in which the inhibition was high at the lowest application rate (0.5%) and improved by increasing the tested concentration to 4% in inhibiting the pathogens Fusarium semitinctum, F. solani, F. oxysporum, and Rhizoctonia solani. Besides, the inhibition was also influenced by the type of EO. The antifungal efficacy of EOs probably depends on various factors, including their chemical structure, active biological compound, concentration, and the target microorganisms [21].

The first meta-analysis on phytopathogens was carried out by Shaw and Larson 1999 [47] [25], but according to [26], the meta-analysis in plant pathology which becomes the basis is [27], since then several articles with similar methods are widely published. Several types of pathogens that attack forestry nurseries can be seen in Table 2. The genus that contributed the most species was Fusarium, including F. circinatum, F. oxysporum, F. proliferatum, F. solani, F. subglutinans, and F. verticillioides. The genus Fusarium is one of the main causes of damping-off disease [22]. For example, Fusarium oxysporum attack on Pinus massoniana, the incidence of all inoculated seedlings ranged from 80 to 100% by 30 days after inoculation [23], F. verticillioides and F. oxysporum in Pinus nigra seedlings in the Northwest Spain. Both had higher seed mortality rates than the control, namely 61.3% for F. oxysporum and 65.6% for F. verticillioides [24], and many more. These species of pathogenic fungi are potential pathogens that can inhibit the growth of seedlings and lead to the failure and death of transplanted seedlings. Damages in large numbers would be detrimental to economic [23].
Heterogeneity was evaluated through Cochrane’s test (I^2 test) on the level of $\alpha = 0.10$. The value of heterogeneity was 99.926% or at a high level of heterogeneity (Table 3). If the level of heterogeneity was high, it means that the overall must be analyzed with the random-effects model or subgroup analysis [28]. Heterogeneity analysis is important in a meta-analysis because it examines the number of variants in a study group as opposed to variations in a study. A high I^2 indicates that the difference between individual study results is greater (or more variable) than expected. Excess variation may indicate that more than one outcome is being measured and therefore it may not be appropriate to combine studies for the average effect [29]. Subgroup meta-analysis can be carried out based on the active ingredient EO content. The result will show the ability of the active ingredients to inhibit the growth of pathogens. These data will be the basis for combining EO for bio fungicide. The combination can be linked to the availability and ease of cultivation. The subgroup meta-analysis can also be carried out by type of pathogen. This data can be used to analyze the most effective EO in control management to prevent serious damage according to the cause of the disease.

Table 1. Selected study as databases.

Study	Essential Oil	Phytopatogen	N
Thabet and Khalifa 2018 [20]	Clove oil	*Fusarium oxysporum*	3
		Fusarium solani	
		Rhizoctonia solani	
Youassi et al., 2019 [48]	*Mondia whitei*	*Aspergillus flavus*	3
Tomazoni et al., 2019 [17]	*Baccharis articulata*	*Alternaria alternata*	10
	Baccharis ochracea		
	Baccharis psadioides		
	Baccharis primera		
Lopez- meneses et al., 2017 [49]	Cinnamon	*Fusarium verticillioides*	3
Romagnol et al., 2010 [50]	Lemongrass		
	Cuminum cyminum	*Botrytis cinerea*	3
		Fusarium oxysporum	
		Pythium ultimum	
		Alternaria spp.	
Safari et al., 2011 [51]	*Satureja richingeri*	*Rhizopus stolonifer*	5
Sethi et al., 2015 [52]	*Alpinia allughas*	*Sclerotium rolfsii*	3
Pandey et al., 2013 [53]	*Adhatoda vasia Nee*	*Rhizoctonia solani*	3
	Aegle marmelos		
	Anisomeles indica		
	Annona squamosa		
	Asphodelus tenuifolius		
	Azadirachta indica A. Juss		
	Callistemon lanceolatus		
	Chenopodium ambrosioides		
	Chrysanthemum indicum		
	Citrus aurantium		
	Cleome gynandra		
Authors	Year	Species	Fungi
----------------------	------	--	--
Fratelnale et al.,	2014	Cotula anthemoides	Fusarium oxysporum
		Curcuma aromatica	Fusarium solani
		Cyperus triceps	Fusarium verticillioides
		Erigeron bonariensis	Botrytis cinerea
		E. canadensis	Alternaria solani
		Gynura crepidioides	Aspergillus flavus
		Hygrophila difformis	Aspergillus fumigatus
		H.pinnatifida	
		Lawsonia inermis	
		Leucas cephalotes	
		Melia azedarach	
		Murraya koenigii	
		M. paniculata	
		Piper longum	
		P. methysticum	
		P. sylvaticum	
		Pogostemon heyneanus	
		P. erectantheroides	
		Psidium guajava	
		Putranjiva roxburghii	
		Saraca indica	
		Syzygium camini	
		Tagetes erecta	
		Xanthium strumarium	
Wenqiang et al.,	2006	Angelica archangelica	
		Fusarium oxysporum	
		Fusarium solani	
		Fusarium verticillioides	
		Botrytis cinerea	
		Alternaria solani	
Kumar et al.,	2013	Artemisia argyi	
		Botrytis cinerea	
		Alternaria alternata	
		Fusarium solani	
		Fusarium alternata	
		Alternaria alternata	
		Aspergillus flavus	
		Aspergillus fumigatus	
Moutassem et al.,	2019	Morina longifolia	
		Thymus pallescens	
		Cymbopogon citratus	
		Schinus molle	
		Laurus nobilis	
		Artemisia herba	
		Pinus halepensis	
Gakuubi et al.,	2017	Eucalyptus camaldulessis	
		Fusarium oxysporum	
		Fusarium solani	
		Fusarium oxysporum	
		Fusarium verticillioides	
		Fusarium proliferatum	
		Fusarium subglutinans	
Sethi et al.,	2013	Ocimum basilicum	
		Ocimum kilimandscharicum	
		Ocimum gratissimum	
		Ocimum sanctum	
Authors	Plants	Fungi	References
---------------------------------	--	---	------------
Tchoumbougnang et al., 2009 [60]	*Satureja robusta*, *Satureja punctata*, *Nepeta leucophylla*, *Nepeta ciliaris*, *Nepeta clarkei*, *Calamintha umbrosa*	*Aspergillus niger*, *Fusarium oxysporum*, *Rhizoctonia solani*, *Alternaria solani*	21
Kumar et al., 2014 [61]	*Lippia alba*, *Macrophomina phaseolina*	*Aspergillus niger*, *Fusarium oxysporum*, *Rhizoctonia solani*, *Alternaria solani*	3
Mena rodriguez et al., 2018 [62]	*Nepeta leucophylla*, *Nepeta ciliaris*, *Nepeta clarkei*, *Calamintha umbrosa*, *Lippia alba*	*Macrophomina phaseolina*	3
Rahman et al., 2011 [63]	*Cymbopogon citratus*, *Piper chaba*	*Colletotrichum gloeosporioides*, *Fusarium oxysporum*, *Fusarium solani*, *Rhizoctonia solani*	3
Curini et al., 2003 [64]	*Erigeron canadensis*, *Myrtus communis*	*Rhizoctonia solani*, *Fusarium solani*	8
Espana et al., 2017 [65]	*Eucalyptus camaldulensis*, *Eucalyptus globulus*, *Eucalyptus tereticornis*	*Colletotrichum gloeosporioides*	3
Lee et al., 2008 [66]	*Eucalyptus citriodora*, *Melaleuca quinquenervia*, *Leptospermum petersonii*	*Phytophthora cactorum*	4
Kim et al., 2008 [67]	*Pimenta racemosa* (bay), *Juniperus oxycedrus*, *Cymbopogon nardus*, *Pelargonium graveolens*, *Cuminum cyminum*, *Myristica fragrans*, *Cymopogon martini*, *Mentha pulegium*, *Mentha spicata*, *Thymus vulgaris*	*Phytophthora cactorum*, *Cryphonectria parasitica*	4
Znini et al., 2013 [68]	*Pulicaria mauritanica*	*Alternaria sp.*, *Rhizopus stolonifer*, *Alternaria alternata*	3
Feng and Zheng 2006 [69]	*Cassia oil*, *Thyme oil*	*Fusarium oxysporum*, *Colletotrichum capsici*, *Fusarium solani*, *Rhizoctonia solani*	3
Rahman et al., 2010 [70]	*Erigeron ramosus*		3
Lee et al., 2009 [71]	*Artemisia arborescens*, *Chamomile. roman*, *Coriander. herb*, *Cypriol*, *Myrrh*, *Pastinak*, *Patchouli*, *Peru Balm. distilled*, *Salvia stenophylla*, *Sandalwood AGD*	*Phytophthora cactorum*, *Cryphonectria parasitica*, *Fusarium circinatum*	4
Santolina
Spikenard. chin
Oriental sweetgum
Valerina. ind
Verbena
Manuka (wild)
Texas-cedar
Carrotseeds
Cypress. blue

Al reza et al., 2010
Cestrum nocturnum
F. oxysporum
F. solani
C. capsici
R. solani
B. cinerea

Mishra and Dubey
1994 [73]
Cymbopogon citratus
aspergillus flavus

Dubey et al., 2007
Eupatorium cannabinum
Botryodiplodia theobromae
Colletotrichum gloeosporioides

Table 2. Pathogens and forestry hosts species in the meta-analysis.

No	Genus	Species	Host	Reference
1	Alternaria	Alternaria alternata	Ailanthus excelsa	[30]
			Eucalyptus globulus	[31]
2	Alternaria	Alternaria solani	Akasia	
3	Alternaria	Alternaria spp.	Akasia	
4	Aspergillus	Aspergillus flavus	Pinus roxburghii	[32]
5	Aspergillus	Aspergillus fumigatus	Pinus roxburghii	
6	Aspergillus	Aspergillus niger	Pinus roxburghii	
7	Botryodiplodia/ Lasiodiplodia	Botryodiplodia theobromae	Hevea brasiliensis	[33]
8	Botrytis	Botrytis cinerea	Pinus sylvestris L	[34]
9	Colletotrichum	Colletotrichum capsici	Dalbergia latifolia	[35]
10	Colletotrichum	Colletotrichum gloeosporioides		
11	Cryphenection	Cryphonectria parasitica	Castanea dentata	[36]
12	Curvularia	Curvularia lunata	Dalbergia sissoo	[37]
13	Fusarium	Fusarium circinatum	Pinus patula	[38]
14	Fusarium	Fusarium oxysporum	Pinus nigra	[39]
15	Fusarium	Fusarium proliferatum	Pinus lambertiana	[40]
16	Fusarium solani	Melia dubia		[41]
17	Fusarium subglutinans	Pinsus merkusii		[42]
18	Fusarium verticillioides	Pinus nigra		[43]
19	Macrophomina	Macrophomina phaseolina	Pinus radiata	[44]
20	Penicillium	Penicillium sp.	Leucaena leucocephala	[45]
21	Phytophthora	Phytophthora cactorum	Pinus	
22	Pythium	Pythium ultimum	Pinus	
Rhizoctonia Rhizoctonia solani *Parasianthes falcataria* [2]

- 23

Rhizopus Rhizopus stolonifer *Tectona Grandis Gmelina Arborea* [45]

- 24

Sclerotium/ Athelia Sclerotium rolfsii *Pterocarpus santalinus Swietenia macrophylla* [46]

- 25

Table 3. Summary result.

Estimate	Lower bound	Upper bound	Std. error	p-Value	I^2
48.734	45.613	51.855	1.592	< 0.001	99.926

4. Conclusion

Essential oils are expected to be biofungicides in the future. Many studies have reported the ability of essential oils to inhibit the growth of pathogens. Meta-analysis can be an effective tool to determine the effectiveness of control using essential oils. The high heterogeneity among these studies holds back any definite conclusions. The research using sub-group analysis and meta-regression is needed, to determine which essential oils have the good inhibitory capacity and which pathogens are the wariest of when attacking forestry nurseries.

References

[1] Suharti T and Kurniaty R 2013 *J. Perbenihan Tanaman Hutan* 1 51-9
[2] Istikorini Y and Sari OY 2020 *J. Sylva Lestari* 8 32-41
[3] Sutarman 2003 *Hawar daun bibit Pinus merkusii yang disebabkan oleh Pestalotia theae di persemaian* (Bogor: IPB University/dissertation)
[4] Pramono A A, Sudrajat D J, Nurhasybi and Danu 2015 *Prinsip-Prinsip Cerdas Usaha Pembibitan Tanaman Hutan* (Jakarta: Penebar Swadaya)
[5] Senjaya N, Wijayanto N, Wirmas D and Achmad 2018 *J. Silvikultur Tropika* 9 120-6
[6] Sumardiyono C 2008 *JPTI* 14 1-5
[7] Hadizadeh I, Peivastegan B and Hamzehzarghani H 2009 *Am. J. Appl. Sc.* 6 857-61
[8] Apriani L, Suprapta D N and Temaja I G R M 2014 *E-Jurnal Agroekoteknologi Tropika* 3137-47
[9] Amini J, Farhang V, Javadi T and Nazemi J 2016 *Plant Pathol. J.* 32 16-24
[10] Rana I S, Rana A S and Rajak R C 2011 *Braz. J. Microbiol.* 42 1269-77
[11] De Curtis F, Lima D, Vitullo D and De Cicco V 2010 *Crop Prot.* 29 663-70
[12] Yoon M Y, Cha B and Kim J C 2013 *Plant Pathol. J.* 29 1-9
[13] Wang D, Zhang J, Jia X, Xin L and Zhai H 2019 *Molecules* 241-12
[14] Reichling J, Schnitzler P, Suschke U and Saller R 2009 *Forsch Komplementmed* 16 79–90
[15] Dhifi W, Bellili S, Jazi S, Bahloul N and Mnif W 2016 *Medicines* 3 1-16
[16] Moleyar V and Narasimham P 1986 *Food Microbiology* 3 331-6
[17] Tomazoni E Z, Ribeiro R T S, Pauletti G F, Soares G L G and Schwambach J 2019 *J. Environ. Sci. Health A B* 54 1-9
[18] Verma M and Sharma S 2017 *Int. J. basic appl. biol.* 4 51-6
[19] Pavela R and Benelli G 2016 *Trends Plant Sci.* 21 1000-7
[20] Thabet M and Khalifa W 2018 *American-Eurasian J. Agric. & Environ. Sci.* 18 105-14
[21] Singh Negi P 2012 *Int J Food Microbiol* 156 7–17
[22] Berg L E, Miller SS, Dornbusch M R and Samac D A 2017 *Plant Dis* 101 1860–7
[23] Luo X and Yu C 2020 *J Plant Dis Prot.* 127 1-9
[24] Pinto M P, Pajares J and Diez J 2008 *For Path* 38 78–82
[25] Henry K, Ngugi, Paul D. Esker, and Harald Scherm 2011 *APS* 101 31-41
[26] Madden L V and Paul P A 2011 *APS* 101 16 -30
[27] Rosenberg M S, Garrett K A, Su Z and Bowden R L 2004 *Phytopathology* 94 1013-17
[28] Bandi D E, Martina, Chandra R V and Sneha K. 2020 *J. Med. Dent. Sci.* 19 8-18

8
[29] Ogbeuwu I P, Nwogu C M and Iwuji T C 2017 _Proc. 42nd Ann. Conf. Nigerian Society for Anim._ (Omu-Aran:Nigeria) p 72-75

[30] Kant R, Joshi P, Bhandari M S, Pandey A and Pandey S 2017 _Forest Pathology_ **12584** 1-5

[31] Darge W A 2017 _Int. J. Phytopathol._ **6** 27-34

[32] Ishtiaq M, Noreen M, Maqbool M, Hussain T and Azam S 2015 _Pak. J. Bot._ **47** 1407-14

[33] Ress A A 1988 _Trans. B r. my col. Soc._ **90** 321-4

[34] Febbiyanti T R, Wiyono S, Yahya S and Widodo 2019 _J. Agron._ **18** 41-8

[35] Capieau K, Stenlid J and Stenström E 2004 _Scand. J. For. Res._ **19** 312-9

[36] Verma P, Soni K K, Verma R K and Shirin F 2016 _Int.J.Curr.Microbiol.App.Sci._ **5** 350-6

[37] Clark S L, Schlarbaum S E, Saxton A M and Hebard F V 2015 _New Forests_

[38] Gupta S, Dubey A and Singh T 2017 _Afr. J. Plant Sci._ **311** 203-8

[39] Jones N B, Ford C M, Light M E, Nadel R L, Greyling I, Fourie G, Wingfield M J and Morris A R 2014 _J. For. Sci._ **76** 1-12

[40] Stewart J E, Otto K, Cline G A, Dumroese R K, Klopfenstein N B and Kim M S 2016 _APS_ **100** 2534

[41] Pandey A, Juwantha R, Chandra S, Kumar A, Kannojia P, Khanna D, Arora S, Dwivedi V D and Pandey S 2017 _Forest Pathology_ **12398** 1-3

[42] Widyastuti S M, Christita M, Harjono and Christanti S 2014 _Agrivita_ **36** 134-145

[43] Arias S G, Pons R R and Stowasser E S V 2013 _Trop Plant Pathol_ **38** 179-87

[44] Suharti T and Suita E 2013 _Jurnal Perbenihan Tanaman Hutan_ **1** 103-9

[45] Anuagasi C L, Onuorah J A and Okiogbo R N 2017 _Int. J. Agric. Sci. Technol._ **13** 307-30

[46] Sankaran K V, Florence E J M and Sharma J K 1984 _Eur. J. For. Path._ **14** 318-20

[47] Shaw D V, Larson K D 1999 _HortScience_ **34** 839-45

[48] Youassi Y O, Tchameni N S, Momo E, Ntah A, Ayong M, Sen M L, Sameza M L, Tchoumbougnang F , Jazet D P M, Menut C 2019 _J. of Biologically Active Products from Nature_ **9** 197-204

[49] Lopez-Meneses A K, Sanchez-Marinez R I, Quintana-Obregon E A, Parra-Vergara N V, Gonzalez-Agular G A, Lopez-Saiz C M, Cortez-Rocha M O 2017 _J Phytopathol_ **1** 6-6

[50] Romagnoli C, Andreotti E, Maietti S, Mahendra R, Mares D 2010 _Pharm Biol_ **48** 834-8

[51] Safavi M, Kamaly A, Hadian J, Farzaneh M 2011 _J. Essent. Oil Res._ **23** 5-10

[52] Sethi S, Prakash O, Pant A K 2015 _Cogent Chemistry_ **1** 1-12

[53] Pandey A K, Singh P, Palmi U T, Tripathi N N 2013 _Biological Agriculture & Horticulture: An International Journal for Sustainable Production Systems_ **29** 197-208

[54] Fraternale D, Flamini G, Ricci D 2014 _An International Journal Dealing with all Aspects of Plant Biology: Official Journal of the Societa Botanica Italiana_ **1** 6-6

[55] Wenqiang G, Shufen L, Ruixiang Y, Yanfeng H 2006 _Nat. Prod. Res._ **20** 992-8

[56] Kumar A, Varshney V K, Prasad R, Rawat M S M, Stashenko E E 2013 _J. of Biologically Active Products from Nature_ **3** 183-93

[57] Moutassem D, Belabid L, Bellik Y, Ziouche Y, Baali F 2019 _Plant Prot. Sci._ **55** 202-17

[58] Gakuubi M M, Maina A W, Wagacha J M 2017 _Hindawi International Journal of Microbiology_ **1** 7-17

[59] Sethi S, Prakash O, Chandra M, Punetha H, Pant A K 2013 _Indian J Nat Prod Resour_ **4** 392-7

[60] Tchoumbougnang F, Jazet Dongmo P M, Sameza M L, Fekam Boyom F, Nkouaya Mbanjo E G, Amvam Zollo P H, Menut C 2009 _J. Essent. Oil-Bear. Plants_ **12** 404-10

[61] Kumar V, Mathela C S, Tewari A K, Bisht K S 2014 _Pestic Biochem Physiol_ **114** 67-71

[62] Mena-Rodriguez E, Ortega-Cuadros M, Merini L, Melo-Rios A E, Toñño-Rivera A 2018 _Corpoica Cien. y Tecnol. Agropecu._ **19** 125-146

[63] Rahman A, Al-Reza S M, Kang S C 2011 _J Am Oil Chem Soc_ **88** 573–9

[64] Curini M, Bianchi A, Epifiano F, Bruni R, Torta L, Zambonelli A 2003 _Chem Nat Compd_ **39** 191-4

[65] Españaaa M D, Arboledab J W, Ribeirod J A, Abdelnurdp V, Guzmanap J D 2017 _Ind Crops Prod._
Lee Y S, Kim J, Shin S C, Lee S G, Park I K 2008 Flavour Fragr. J. 23 23–8
Kim J, Lee Y S, Lee S G, Shin S C, Park I K 2008 Flavour Fragr. J. 23 272–7
Znini M, Cristofari G, Majidi L, Paolini J, Desjobert J M, Costa J 2013 Food Sci Technol Int. 54 564-9
Feng W, Zheng X Food Control 18 1126–30
Rahman A, Hossain M A, Kang S C 2010 Eur J Plant Pathol 128 211–9
Lee Y S, Kim J, Lee S G, Oh E, Shin S C, Park I K 2009 Pestic Biochem Physiol 93 138–143
Al-Reza S M, Rahman, Ahmed Y, Kang S C 2010 Pestic Biochem Physiol 96 86–92
Mishra A K, Dubey N K 1994 Appl. Environ. Microbiol. 60 1101-5
Dubey R K, Kumar R, Jaya, Dubey N K 2007 World J Microbiol Biotechnol 23 467–73
Samadi, Wajizah S, Munawar AA. 2018 In: IOP Conference Series: Earth and Environmental Science. Institute of Physics Publishing.