THE JUSTIFICATION OF ZONAL OIL AND GAS POTENTIAL OF THE TERRITORY OF VISIMSKAYA MONOLINE BY GEOCHEMICAL CRITERIA

Vladislav I. Galkin, Konstantin A. Koshkin1, Oleg A. Melkishev

Perm National Research Polytechnic University (29 Komsmolskiy av., Perm, 614990, Russian Federation)
1Uraloil LLC (4 Sibirskaia st., Perm, 614990, Russian Federation)

ОБОСНОВАНИЕ ЗОНАЛЬНОЙ НЕФТГАЗОНОСНОСТИ ТЕРРИТОРИИ ВИСИМСКОЙ МОНОКЛИНАЛИ ПО ГЕОХИМИЧЕСКИМ КРИТЕРИЯМ

В.И. Галкин, К.А. Кошкин1, О.А. Мелкишев

Пермский национальный исследовательский политехнический университет (614990, Россия, г. Пермь, Комсомольский пр., 29)
1 ОOO «УралОйл» (614990, Россия, г. Пермь, ул. Сибирская, 4)

The paper presents the zonal probability and statistical assessment of the generation potential of deposits that form oil and gas potential of the territory of Visimskaya monoline. Databases on geochemical and bituminological characteristics of dispersed organic matter (DOM) in Domanicoid type deposits of the Upper Devonian-Tournaisian formation were used. The following indicators were used: content of organic carbon S_{org}, %; organic matter OM, %; composition of DOM (content of bitumoids: % – chloroform – CBE, petroleum – PB, alcohol-benzene – ABB, hemic acids – HumA, %, insoluble residue – IR, %) and characteristics of DOM conversion (ratio of chloroform bitumen to alcohol-benzene one – CBE/ABB, bituminoid coefficient – B), as well as the conversion factor for $S_{org} – K_c$. In order to determine the informativeness of these characteristics, the Student’s (t) and Pearson’s (χ^2) statistical criteria were used. When building models for predicting the zonal oil and gas potential of the territory of Visimskaya monoline, one-dimensional and step-by-step multidimensional regression analyses were used, which allowed to construct one-dimensional and multidimensional regression linear models. Using the step-by-step multidimensional regression analysis a complex criterion was developed taking into account influence of each geochemical indicator separately and their combinations. This made it possible to construct a scheme for distribution of probability of petroleum potential of the territory of Visimskaya monoline. Analysis of the scheme showed that the most favorable geochemical conditions for the formation of petroleum potential due to DOM are observed in the central part of Visimskaya monoline (within the Maykorskoye field and surrounding area, bounded by the likelihood more than 0.5). Besides, areas in the south of Visimskaya monoline in the territories where $P_{z,org}^{max} > 0.5$ are of particular interest in terms of zonal oil and gas potential. North of Visimskaya monoline probably has a certain interest as well.

Key words: probability, linear statistical model, multidimensional statistical model, correlation coefficient, oil and gas potential, statistical criteria, geochemical and bitumen characteristics, organic matter, geochemistry.

В статье выполняется зональная вероятностно-статистическая оценка генерационного потенциала отложений, формирующих нефтегазоносность территории Висимской моноклинанали. Использованы базы данных по геохимическим и битуминологическим характеристикам рассеянного органического вещества (РОВ) в отложениях доманикоидного типа верхнедевонско-турнейской толщи. Были использованы следующие показатели: содержание органического углерода S_{org}, %; органического вещества ОМ, %; состав РОВ (содержание битумоидов: % – хлороформ – CBE, нефтяное – PB, спиртобензольные – ABB, гемные кислоты – HumA, %, нерастворимый остаток – IR, %) и характеристики преобразования РОВ (отношение хлороформного битумина к спиртобензольному – CBE/ABB, битуминоидный коэффициент – B); а также коэффициент пересчета для $S_{org} – K_c$. Для определения информативности этих характеристик использованы статистические критерии Стьюдента (t) и Пирсона (χ^2). При построении моделей прогноза зональной нефтегазоносности территории Висимской моноклинанали использовались одномерный и многошаговый многомерный регрессионный анализ, что позволило построить одномерные и многошаговые регрессионные линейные модели. С помощью погашенного многомерного регрессионного анализа разработан комплексный критерий, учитывающий влияние каждого геохимического показателя в отдельности, так и их сочетаний. Это позволило построить схему распределения вероятности нефтегазоносности для территории Висимской моноклинанали, анализ которой показал, что максимально благоприятные геохимические условия формирования нефтегазоносности за счет РОВ наблюдаются в центральной части Висимской моноклинанали (в пределах Майкorskого месторождения и территории вокруг него, ограниченной изовероятностью больше 0,5). Также определенный интерес с точки зрения зональной нефтегазоносности представляют участки на юге Висимской моноклинанали, где $P_{z,org}^{max} > 0.5$. Вероятно, определенный интерес имеют территории и на севере Висимской моноклинанали.

Vladislav I. Galkin (Author ID in Scopus: 55418067700) – Doctor of Geology and Mineralogy, Professor, Head of the Department of Oil and Gas Geology (tel.: +007 342 219 80 17, e-mail: vgalkin@pstu.ru).

Konstantin A. Koshkin – Head of the Department for Geology and Licensing (tel.: +007 342 235 68 81, e-mail: konstkoshkin@rambler.ru). The contact person for correspondence.

Oleg A. Melkishev – PhD in Engineering, Associate Professor at the Department of Oil and Gas Geology (tel.: +007 342 219 84 11, e-mail: melkishev@pstu.ru).

Галкин Владислав Игнатьевич – доктор геолого-минералогических наук, профессор, заведующий кафедрой геологии нефти и газа (тел.: +007 342 219 80 17, e-mail: vgalkin@pstu.ru).

Кошкин Константин Александрович – начальник отдела геологии и минералогии (тел.: +007 342 235 68 81, e-mail: konstkoshkin@rambler.ru). Контактное лицо для переписки.

Мелкишев Олег Александрович – кандидат технических наук, доцент кафедры геологии нефти и газа (тел.: +007 342 219 84 11, e-mail: melkishev@pstu.ru).
Introduction

Conventional methods for estimating oil and gas potential do not always allow identifying those local objects that could contain oil accumulations. Many authors propose the use different quantitative or qualitative criteria for zonal prediction of oil and gas content.

The paper presents the zonal probability and statistical assessment of the generation potential of deposits that form oil and gas potential of the territory of Visimskaya monocline. As for entire Perm region, there are conventional oil and gas source formations presented by sediments of the Upper Devonian-Tournaissian carbonate \((D_3-C_1t)\) complex \([1-12]\).

In order to overcome this challenge, we used databases on geochemical and bituminological characteristics of dispersed organic matter (DOM) of the Upper Devonian-Tournaissian carbonate sediments determined in wells in the Visimskaya monocline.

The following indicators were used: the content of organic compounds in the rock (organic carbon \(C_{\text{org}}, \%\), and organic matter OM, \%); DOM composition (bitumoid content, \% – chloroform – \(B_{\text{CBE}}\), petroleum – \(B_{\text{PP}}\), alcohol-benzene – \(B_{\text{ABB}}\), humic acids – \(\text{HumA}\), insoluble residue – IR) and characteristics of DOM conversion (ratio of chloroform bitumen to alcohol-benzene one – \(B_{\text{CBE}}/B_{\text{ABB}}\), bitumoid coefficient – \(\beta\) as well as the conversion factor for \(S_{\text{org}} – K_c\).

Statistical analysis was performed according to 325 core tests on geochemical characteristics.

Oil and gas source formation In the Upper-Devonian-Tournaissian oil and gas complex are of the Domanicoid type, which are currently associated with the formation of the main volume of oil and gas deposits in the entire sedimentary cover of the northeastern Volga-Ural oil and gas province, which includes the Visimskaya monocline. Earlier, various authors reviewed the geochemical features of each stratigraphic unit of these sediments, revealed their generating role, and carried out studies on the prediction of oil and gas content. Geological and geochemical features of these deposits were studied by the authors in sufficient detail for the entire territory of the Perm region \([1-8]\). It should be noted here that in works mentioned little attention has been paid to the peculiarities of the distribution of DOM over the territory of the Visimskaya monocline. This is largely due to the fact that there are currently few oil and gas fields discovered in this area, while in a rather limited stratigraphic range. According to the authors of this article, the use of mathematical methods will allow to assess the relationship between the characteristics of DOM and the oil and gas potential of the territory of the Visimskaya monocline.

Methods to build geological and mathematical models for solving various problems are given in \([13-38]\). Elements of mathematical statistics and probability theory were used in constructing one-dimensional and multidimensional linear statistical models. Those elements are described in detail in the works of both domestic and foreign authors \([1, 11, 20, 27, 29, 30, 39-46]\).

Construction of one-dimensional models

Results of studies of samples from wells located within the boundaries of the Visimskaya monocline and near by are analized. Initially, indicators characterizing DOM on the studied deposits were conventionally divided into two groups. The first group includes tests on DOM for wells located near the fields and directly in their contours. The second one includes tests from wells located outside the oil fields.

The first statistical tool for estimating the degree of difference of parameters for two samples is to test hypotheses about differences or non-differences between the mean values of DOM characteristics under consideration using Student's \(t\)-test:

\[
t_p = \frac{|X_1 - X_2|}{\sqrt{\frac{1}{n_1} + \frac{1}{n_2}} \left(\frac{(n_1-1)S_1^2 + (n_2-1)S_2^2}{n_1 + n_2 - 2}\right)},
\]

where \(X_1, X_2\) – average values of DOM for oil and “empty” areas respectively; \(S_1^2, S_2^2\) – dispersion of indicators. Differences in mean values are considered statistically significant if \(t_p > t_r\). The \(t_r\) values are determined depending on the amount of compared data and the level of significance \((\alpha = 0.05)\).

The data of statistical calculations of average values \((t\text{-criterion and attained significance level } p)\) of geochemical and bitumen parameters in groups for deposits of the Domanic type of Upper-
Devonian-Tournaisian deposits (D3-C1) are given in Table 1.

The statistical significance of differences in the average values of geochemical and bitumen characteristics of the DOM of the Upper Devonian-Tournaisian sequence was established for three indicators: K_c, B_{ABB}, B_{CBE}. The maximum statistical difference by criterion t is obtained for B_{CBE}, minimal – OM. In order to assess the possibility of the formation of the petroleum potential of the Visimskaya monocline according to the DOM characteristics of the Upper Devonian-Tournaisian formation, individual forecast models were constructed for them to assess the petroleum potential. The method of constructing such models is described in sufficient detail in work [1].

Consider the construction of individual probabilistic models.

Table 1

Indicator	Statistical characteristics of indicators	Student's criterion	Top line – the equation of probability of belonging to a class of territories within the contours of deposits; medium line – scope of the model; lower line – range of probability change
IR, %	47.4 ± 42.4 0.501 ± 0.002	-1.21853 0.22424	$P(IR) = 0.502 - 0.0005 IR$ 0.35–99.75 % 0.497–0.502
C_{org}, %	0.64 ± 1.23 0.501 ± 0.003	0.61471 0.53933	$P(C_{org}) = 0.499 + 0.00425 C_{org}$ 0.02–23.33 % 0.499–0.602
OM, %	0.81 ± 1.54 0.501 ± 0.003	0.54493 0.58631	$P(OM) = 0.499 + 0.00321 OM$ 0.03–32.36 % 0.499–0.603
BPB, %	0.006 ± 0.018 0.511 ± 0.072	3.49030 0.10690	$P(BPB) = 0.488 + 3.9047 BPB$ 0.000–0.08 % 0.488–0.800
B_{CBE}, %	0.056 ± 0.258 0.504 ± 0.038	1.61845 &n	

Note: * – in the numerator – average values of the indicator and standard deviation in the class, in the denominator – the average value of the probability and standard deviation in the class.

Table 2

Feature class	Variation interval B_{CBE}/B_{ABB}, rel. units
Territories within the contours of deposits ($n = 95$)	0.00–2.0 2.0–4.0 4.0–6.0 6.0–8.0 8.0–10.0 10.0–12.0 12.0–14.0 14.0–16.0 More 16.0
B_{CBE}/B_{ABB}	0.886 – 0.031 0.031 – 0.010 0.010 – 0.001 0.001 – 0.007 0.007 – 0.009 0.009 – 0.010 0.010 – 0.015 0.015 – 0.030 0.030 – 0.045 0.045 – 0.060 0.060 – 0.080 0.080 – 0.100 0.100 – 0.120 0.120 – 0.140 0.140 – 0.160 More 16.0
Territories outside the contours of deposits ($n = 142$)	0.922 0.036 0.021 0.007 0.007 0.007 – 0.010 0.010 – 0.015 0.015 – 0.030 0.030 – 0.045 0.045 – 0.060 0.060 – 0.080 0.080 – 0.100 0.100 – 0.120 0.120 – 0.140 0.140 – 0.160 More 16.0
As an example, let’s perform a statistical analysis on the B_{CBE}/B_{ABB} indicator for samples taken within the contours of deposits and beyond. Comparison of the average values given in Table 1 shows that the average value for territories within the contours of the deposits is 1.634, for the territories beyond the contours of the deposit 0.782. According to the criterion t, the mean values are not different, since $p = 0.07962$.

Distribution of B_{CBE}/B_{ABB} values over the Domanic deposits is given in Table 2. That shows that distribution of B_{CBE}/B_{ABB} values for the territories of oil fields and beyond them is significantly different. For oil filed areas B_{CBE}/B_{ABB} values in the range of 0.0-4.0 fractions of units are found with a frequency of 0.886, while for areas beyond the fields – 0.956. In the range of 2.0-10.0 in the first case 0.041, in the second – 0.042, i.e. there is a practical equality of the values of the frequency. With $B_{CBE}/B_{ABB} > 12.0$ for the territories of oil fields, the frequency is 0.063; there are no such high values beyond the oil fields. The performed evaluation of differences by criterion χ^2 showed that the distributions are statistically different. This allowed the use the characteristic to build a probabilistic model.

In accordance with the methodology used at the first stage of constructing a probabilistic model in each interval, the probabilities of belonging to the territories of oil fields are determined ($P(B_{CBE}/B_{ABB})$). Next, interval probabilities of belonging to the 1^{st} class are compared with the average interval values B_{CBE}/B_{ABB}. By magnitude of $P(B_{CBE}/B_{ABB})$ and B_{CBE}/B_{ABB} the pair correlation coefficient r is calculated and the regression equation is constructed. The subsequent adjustment of the models built is carried out from the condition that the average value of the probabilities for the territories of oil fields must be greater than 0.5, and for the territories outside the oil fields less than 0.5. Thus, linear models built for a given strata allowed to evaluate the individual informativity of each geochemical indicator with respect to oil and gas content. An example of a graphic image of the constructed linear model in terms of B_{CBE}/B_{ABB} is shown in Fig. 1.

This shows that with increasing values of B_{CBE}/B_{ABB} from 0 to 21 shares, P value (B_{CBE}/B_{ABB}) increases from 0.494 to 0.617.

![Dependance $P(B_{CBE}/B_{ABB})$ on B_{CBE}/B_{ABB}](image)

Building of multidimensional models

In the next step in forecasting estimates, the authors of the work justified a complex criterion that takes into account the constructed linear individual probabilistic models of each geochemical indicator for this complex. The criterion was calculated by the following formula:

$$P_{com} = \frac{\prod P_{ind}}{\prod P_{ind} + \prod (1 - P_{ind})},$$

where P_{ind} – individual probabilities of $P(K_c), P(IR), P(C_{org}), P(OM), P(BPB), P(B_{CBE}), P(HumA), P(B_{CBE}/B_{ABB}), P(\beta)$, and Π – their multiplication.

A combination of m probabilities was used while calculating a complex criterion P_{com} for the Upper Devonian-Tournaisian oil and gas complex. Mean values of probabilities P_{com} in groups are the most statistically different (Table 3).

Combinations of probabilities selected in this way, calculated by geochemical indices from $m = 2$ to $m = 10$, are given in Table 3. It can be seen from the Table 3 that in the first step of building the model, with $m = 2$, the values of $P(B_{pn})$ and $P(B_{ABB})$ were used, when $m = 3$ the $P(K_c)$ probability was included in the model, then following probabilities were consistently included in the model $P(B_{CBE}/B_{ABB}), P(B_{CBE}), P(IR), P(HumA), P(\beta), P(C_{org}), P(OM)$.

Dependence of P_{com} values on m is given on the Fig. 2.

It is showed that with m increasing from 1 to 6 the average value of P_{com} for territories within the field contours regularly grows from 0.515 to 0.533 and remains constant when $m > 6$. There is a
tendency to decrease in values for territories beyond field contours with m increasing. In order to develop a method for calculating P_{com}^m values for the sediments based on the indicators we will use the values P_{com}^m at $m = 7$. This is caused by the fact that there is a maximum value of the criterion t with this combination.

The need to build a multidimensional model is caused by the fact that the studied indicators have a different effect on the complex criterion P_{com}^m both in strength and in direction.

The influence of all the studied parameters was investigated by calculating the correlation coefficients r, defined in three options: the first option – according to all data, second – according to geochemical samples taken within the contours of the fields, third – beyond the contours of fields. The results of calculations of the values of r are given in Table 4.

Table 4 shows that the values of the correlation coefficients r between the studied parameters are different. For example, the correlation between P_{com}^m and β for samples taken within field contours has a statistically positive relationship, whereas for samples taken outside field contours, it is also statistically significant, but inverse.

Differences in the direction and closeness of correlations for two classes under the study are also observed between P_{com}^m and other geochemical indicators (see Table 4). It should also be noted that there are different statistical relationships between the indicators that form values P_{com}^m for two classes under the study. For example, the correlation between B_{PB} and B_{CBE} for samples taken within the fields’ contours has a statistically positive relationship, whereas for samples taken outside the contours of deposits, it is practically absent.

Table 3

Probability	Combination of probabilities with different m								
	2	3	4	5	6	7	8	9	10
$P(\text{IR})$	$+$	$+$	$+$	$+$	$+$	$+$	$+$	$+$	$+$
$P(\text{C}_\text{or}g)$	$+$	$+$	$+$	$+$	$+$	$+$	$+$	$+$	$+$
$P(\text{OM})$	$+$	$+$	$+$	$+$	$+$	$+$	$+$	$+$	$+$
$P(B_{Bm})$	$+$	$+$	$+$	$+$	$+$	$+$	$+$	$+$	$+$
$P(B_{Bm})$	$+$	$+$	$+$	$+$	$+$	$+$	$+$	$+$	$+$
$P(B_{hum})$	$+$	$+$	$+$	$+$	$+$	$+$	$+$	$+$	$+$
$P(B_{Hum})$	$+$	$+$	$+$	$+$	$+$	$+$	$+$	$+$	$+$
$P(\beta)$	$+$	$+$	$+$	$+$	$+$	$+$	$+$	$+$	$+$
$P(K_c)$	$+$	$+$	$+$	$+$	$+$	$+$	$+$	$+$	$+$

Mean value of the probability of the territories within field contours

Probability	Mean probability value for territories beyond the field contours
	0.515 0.529 0.531 0.532 0.532 0.532 0.532 0.532 0.532 0.532
	0.486 0.470 0.470 0.468 0.469 0.468 0.467 0.467 0.467 0.467

Mean probability value for territories beyond the field contours

t and p:

t	p
4.267	0.00002
4.3953	0.00017
4.6082	0.00007
4.7188	0.00004
4.7591	0.00003
4.7792	0.00003
4.7542	0.00004
4.7511	0.00004
4.7445	0.00004
All these data show that there are statistical differences in both the distributions and correlations for samples taken within the contours of deposits and beyond their contours. Consequently, the oil and gas potential of the Visimskaya monocline depends on the geochemical characteristics of the DOM of the Upper Devonian-Tournaisian sediments. According to the authors of this work, these indicators can be used to produce the zonal oil and gas potential of the study area.

A regression analysis is a statistical method for studying the dependencies between the dependent variable \(Y \) and one or several independent variables \(X_1, X_2, \ldots, X_p \). A dependent attribute in the regression analysis is called resultant, independent – factorial. Usually, several factors act on a dependent variable. The cumulative effect of all independent factors on the dependent variable is taken into account due to multiple regression.

In the general case, multiple regression is estimated by the parameters of the linear equation

\[
Y = a + b_1 X_1 + b_2 X_2 + \ldots + b_p X_p.
\]

In this equation, the regression coefficients \((b\text{-coefficients}) \) represent the independent contributions of each independent variable to the prediction of the dependent variable. The regression line expresses the best prediction of the dependent variable \(Y \) with respect to the independent variables \(X_i \).

Table 4

	\(P^{{\text{comp}}}_C \)	\(K_c \)	IR	\(C_{\text{org}} \)	OM	\(B_{PB} \)	\(B_{CBE} \)	\(B_{ABB} \)	HumA	\(B_{CBE}/B_{ABB} \)	\(\beta \)
\(P^{{\text{comp}}}_C \)	1.00	-0.73*	0.28*	-0.02	-0.02	0.50*	0.29*	0.37*	-0.19	0.24	0.09
1.00	-0.85*	0.22	0.14	0.13	0.54*	0.35*	0.35*	-0.00	0.51*	0.42*	
1.00	0.96*	0.57*	-0.30*	-0.31*	0.07	-0.52*	-0.22	-0.37*	-0.33*	-0.39	
\(K_c \)	1.00	-0.53*	0.16	0.17	0.16	0.23	0.21	0.10	0.03	0.28*	
1.00	-0.45*	0.14	0.09	0.08	0.14	0.06	0.08	-0.01	-0.21	-0.11	
1.00	-0.68*	0.33*	0.34*	0.25	0.63*	0.42*	0.26*	0.42*	0.46		
\(IR \)	1.00	0.14	0.14	-0.22	-0.25	0.04	0.20	0.30	0.05	0.08	
1.00	0.25	0.25	-0.24	-0.24	-0.04	0.38*	-0.52				
1.00	0.00	-0.02	-0.15	-0.62*	-0.52	-0.04	0.38*	-0.52			
\(C_{\text{org}} \)	1.00	1.00*	1.00*	-0.04	0.10	0.28*	0.15	0.11	0.11	0.11	
1.00	1.00*	0.04	0.04	0.26	0.65*	0.17	0.26	0.05	-0.11		
1.00	0.41*	0.41*	0.41*	0.26	0.43*	0.57	-0.05	-0.21			
\(OM \)	1.00	1.00*	1.00*	-0.04	0.10	0.28*	0.15	0.11	0.02	0.11	
1.00	1.00*	0.04	0.04	0.26	0.65*	0.17	0.26	0.05	-0.11		
1.00	0.41*	0.41*	0.41*	0.26	0.43*	0.57	-0.05	-0.21			
\(B_{PB} \)	1.00	1.00*	1.00*	-0.04	0.10	0.45*	0.64*	-0.09	0.31*	0.33*	
1.00	1.00*	0.04	0.04	0.26	0.64*	0.03	0.64	0.48*	0.48*		
1.00	0.41*	0.41*	0.41*	0.26	0.43*	0.57	-0.05	-0.21			
\(B_{CBE} \)	1.00	1.00*	1.00*	-0.04	0.10	0.41*	0.00	0.26*	0.32*		
1.00	1.00*	0.04	0.04	0.26	0.41*	0.31	0.34	0.42*			
1.00	0.40*	0.40*	0.40*	0.22	0.47*	0.57*					
\(B_{ABB} \)	1.00	1.00*	1.00*	-0.04	0.10	0.01	-0.03	0.15	0.01		
1.00	1.00*	0.13	0.13	-0.19	-0.03	-0.11					
1.00	0.15	0.15	-0.02	0.15							
\(\text{HumA} \)	1.00	1.00*	1.00*	-0.04	0.10	0.66*	1.00	1.00*			
1.00	1.00*	0.90*	0.90*								
1.00	0.75*	0.75*									
\(B_{CBE}/B_{ABB} \)	1.00	1.00*	1.00*								
\(\beta \)	1.00	1.00	1.00								

Note: the top line is all the data, the middle line is the fields’ contour, the bottom line is beyond fields’ contour; * – statistically significant correlations.
Table 5

Areas	Well	Age	Number of samples	p_{GC}^{comp} mean	p_{GC}^{comp} min	p_{GC}^{comp} max
Visim-Istokskaya	33	D1f1–C1t	10	0.458 ± 0.164	0.369	0.887
Visimskaya	11	D1f1–C1t	7	0.408 ± 0.043	0.379	0.502
Visimskaya	13	D1–D1f2	21	0.445 ± 0.067	0.373	0.574
Visimskaya	14	D1f2–C1t	9	0.467 ± 0.087	0.379	0.646
Visimskaya	15	D1f2–C1t	21	0.536 ± 0.111	0.381	0.695
Visimskaya	16	D1f2–C1t	17	0.556 ± 0.157	0.397	0.972
Visimskaya	23	D1f2–C1t	2	0.384 ± 0.008	0.378	0.390
Garinskaya	62	D1–D2f1	27	0.552 ± 0.012	0.540	0.581
Dmitrievskaya	2	D1f2–C1t	7	0.545 ± 0.003	0.542	0.551
Dmitrievskaya	5	D1f2–C1t	3	0.384 ± 0.015	0.369	0.401
Invinskaya	71	D1f2–C1t	6	0.387 ± 0.016	0.370	0.413
Karnashevskaya	90	D1f2–C1t	7	0.378 ± 0.021	0.363	0.410
Kasibskaya	15	D1f2–C1t	4	0.411 ± 0.013	0.393	0.421
Kasibskaya	2	D1–D1f2	2	0.390 ± 0.025	0.372	0.409
Kuprosskaya	9	D1–D1f2	13	0.552 ± 0.007	0.546	0.562
Maykorskaya	13	D1f2–C1t	6	0.794 ± 0.212	0.373	0.982
Nazarovskaya Durinskaya	71	D1f2–C1t	16	0.385 ± 0.022	0.346	0.442
Nazarovskaya Ivazhinskaya	17	D1–D2f1; D1f2–C1t	30	0.434 ± 0.077	0.366	0.561
Nolystskaya-Urayskaya	17	D1f2–C1t	14	0.434 ± 0.086	0.369	0.564
Rodnikovskaya	12	D1f2–C1t	1	0.369		
Romanshorskaya	1	D1f2–C1t	16	0.552 ± 0.060	0.372	0.696
Senkinskaya Belopashkinskaya	12	D1–D1f2	4	0.553 ± 0.015	0.533	0.576
Slutskaya	279	D1–D3f1; D1f2–C1t	18	0.423 ± 0.062	0.375	0.558
Tukachevska	3	D1–D1f2	10	0.560 ± 0.015	0.546	0.584
Ust-Kondasskaya	3	D1f2–C1t	3	0.489 ± 0.090	0.385	0.543
Chermozskaya	3	D1–D1f2; D1f2–C1t	14	0.585 ± 0.043	0.544	0.691
Shatovskaya	287	D1f2–C1t	22	0.524 ± 0.110	0.371	0.808
Shatovskaya	293	D1f2–C1t	9	0.412 ± 0.066	0.374	0.586

In our case, $p_{GC}^{m=7}$ is a dependent attribute, and values of K_c, IR, C_{org}, OM, B_{PB}, B_{CBE}, HumA, B_{CBE}/B_{ABB}, β as independent factors.

The model derives based on geochemical characteristics of the DOM of the Upper Devonian-Tournaisan sediments has the following formula

$$
\begin{align*}
 p_{GC}^{comp} = & 2.952 - 2.26761K_c + 0.16153B_{CBE} + 0.22506B_{ABB} + \\
 & 0.000742B_{CBE}/B_{ABB} - 0.45018HumA - 0.00005IR + 0.00005\beta + 0.0001OM \\
\end{align*}
$$

if $R = 0.999$, $p < 0.0000$, forecast error is 0.00311.

The sequence of input of indicators in regression equations was done in a sequence of indicators given in the equation. In the first step of equation formulation, the indicator K_c was included when $R = 0.726$; further, the value of R was changed as follows: 0.956; 0.981; 0.991; 0.994; 0.996; 0.997; 0.998; 0.999.

Using this model, the p_{GC}^{comp} values for all geochemical samples taken from these sediments were calculated. Information on well numbers from which samples were taken, age, their number and p_{GC}^{comp} values is given in Table 5.
According to 29 wells and 322 determinations of DOM indicators, the average value of $P_{comp}^{GC} = 0.480 \pm 0.094$; it varies from 0.346 to 0.982.

According to the Table 5 plotted density distribution of values P_{comp}^{GC} mean, P_{comp}^{GC} min, P_{comp}^{GC} max, are given in Table 6.

This shows that P_{comp}^{GC} values in all three cases change slightly. For example, the mean probability in most cases has values in the range 0.4-0.6 (0.724). The average values in the wells were used to construct a pattern of oil and gas potential distribution for the territory of the Visimskaya monocline (Fig. 3).

Conclusion

As a result of the studies performed, it was found that the most favorable geochemical conditions for the formation of petroleum potential due to DOM are observed in the central part of the Visimskaya monocline, within the Maykorskoeye field and the area around it, limited by the probability level greater than 0.5.

 Territories in the south of the Visimskaya monocline where $P_{comp}^{GC} > 0.5$ are of particular interest in terms of zonal petroleum potential. Probably, there is a certain interest in the territory in the north of the Visimskaya monocline. This scheme will be used in further assessments of zonal oil and gas potential of the Visimskaya monocline.

References

1. Galkin V.I., Rastegaev A.V., Galkin S.V. Veroyatnostno-statisticheskaya otsenka neftegazonosnosti lokalnykh struktur [Probabilistic-statistical evaluation of the gas content of local structures]. Ekaterinburg, 2001, 277 p.

2. Kozlova I.A., Galkin V.I., Vantseva I.V. K otsenke perspektiv neftegazonosnosti Solikamskoy depressii s pomoshchyu geologo-geokhimicheskikh kharakteristik neftegazomaterinskikh porod [On the assessment of the prospects for the oil and gas potential of the Solikamsk Depression using the geological and geochemical characteristics of the oil and gas source rocks]. *Oilfield engineering*, 2010, no.7, pp.20-23.

3. Krivoshchekov S.N., Galkin V.I., Nosov M.A. Otsenka nelokalizovannykh resursov nefti territorii Permskogo kraia pri pomoshchi sistemy elementarnykh uchastkov [Evaluation of non-localized oil resources in Perm Region by a system of elementary sections]. *Oil industry*, 2014, no.6, pp.9-11.

4. Krivoshchekov S.N., Kozlova I.A., Sannikov I.V. Otsenka perspektiv neftegazonosnosti zapadnoy chast Solikamskoy depressii na osnove geokhimicheskikh i geodinamicheskikh dannyh [Estimate of the petroleum potential of the western Solikamsk depression based on geochemical and geodynamic data]. *Oil industry*, 2014, no.6, pp.12-15.

5. Galkin V.I., Kozlova I.A., Melkishev O.A., Shadrina M.A. Geokhimicheskie pokazateli ROV porod kak kriterii otsenki perspektiv neftegazonosnosti [Geochemical indicators of rock DOM as criteria for evaluating oil and gas potential]. *Oilfield engineering*, 2013, no.9, pp.28-31.

6. Kozlova I.A., Melkishev O.A. Prognoznaia otsenka raspredeleniia nelokalizovannykh resursov nefti v devonskom terrigennom komplexe na territorii Permskogo kraia [Predictive estimation of non-localized oil resources distribution in the Devonian terrigenous complex in Perm region]. *Geologiya, geofizika i razrabotka neftyanikh i gazovykh mestorozhdeniy*, 2017, no.2, pp.4-8.

7. Galkin V.I., Kozlova I.A. Razrabotka veroiatnostno-statisticheskikh regionalno-zonalnykh modelei prognoza neftegazonosnosti po dannym geokhimicheskikh isledovanii verkhne Devonskikh karbonatnykh otlozhenii [Development of probabilistic-statistical regional-zoning models of oil and gas potential prediction based on the data of geochemical studies of the Upper Devonian carbonate deposits].
Geologiia, geoﬁzika i razrabotka neftyanikh i gazovyx mestorozhdennykh, 2016, no.6, pp.40-45.
8. Galkin V.I., Kozlova I.A., Krivoshchekov S.N., Nosov M.A., Kolytina N.S. Otsenka perspektiv neftegazovostnosti iuga Permskogo kraia po organo-geokhimicheskim dannym [Estimation of petroleum potential prospects in the south of Perm territory on the basis of organic-geochemical data]. Oilﬁeld engineering, 2015, no.7, pp.32-35.
9. Galkin V.I., Kozlova I.A., Krivoshchekov S.N., Nosov M.A. Reshenie regionalnykh zadach prognozirovaniya neflenosnosti po dannym geologo-geokhimicheskogo analiza rassyeannogo organicheskogo veshestva porod domanikovogo tipa [Solutions to regional problems of forecasting oil bearing according to geological and geochemical analysis of dispersed organic matter of Domanic type rocks]. Oil industry, 2015, no.1, pp.21-23.
10. Galkin V.I., Kozlova I.A., Krivoshchekov S.N., Melkishev O.A. K obosnovaniyu postroeniya modeley zonalnogo prognoza neftegazosnosti dlya nizhne-sredneveizeskogo kompleksa Permskogo kraya [On the justification of the construction of models for oil and gas potential area forecast Visean deposits of Perm region]. Oil industry, 2015, no.8, pp.32-35.
11. Galkin V.I., Zhukov Yu.A., Shishkin M.A. Primenenie veroyatnostnykh modeley dlya lokalnogo prognoza neftegazosnosti [Application of probabilistic models for local prediction of oil and gas potential]. Ekaterinburg, URo RAN, 1990, 108 p.
12. Brodiagin V.V., Potriasov A.A., Skachev K.G., Shaikhutdinov A.N. Zonalnyi prognoz neftegazosnosti iurskikh otlozheni v predelakh territorii dejatelnykh typ “Kogalymneftegaz” [Zonal forecast of the oil and gas potential of the Jurassic sediments within the territory of activity of the CCI “Kogalymneftegaz”]. Geologiia, geoﬁzika i razrabotka neftyanikh i gazovyx mestorozhdennykh, 2008, no.8, pp.31-35.
13. Galkin V.I., Shakhutdinov A.N. O vozmozhnosti prognoza neftegazosnosti iurskikh otlozhenii veroyatnostno-statisticheskimi metodami (na primere territorii deyatelnosti TPP “Kogalymneftegaz” [About possibility to forecast the oil-and-gas content of Jurassic sediments based on probable and statistical methods (case study of the territorial industrial enterprise “Kogalymneftegaz”)]. Geologiia, geoﬁzika i razrabotka neftyanikh i gazovyx mestorozhdennykh, 2009, no.6, pp.11-14.
14. Galkin V.I., Shaikhutdinov A.N. Postroenie statisticheskikh modeley dlia prognoza debitov nefti po verkhneiuriskim otlozheni Kogalymskogo regiona [Development of statistical models for predicting the oil flow rates by example Jurassic deposits of Kogalym region territory]. Oil industry, 2010, no.1, pp.52-54.
15. Galkin V.I., Krivoshchekov S.N. Postroenie matritsy elementarnykh iacheek pri prognoze neftegazosnosti veroiatnostno-statisticheskimi metodami na territorii Permskogo kraia [Construction of a matrix of elementary cells in the prediction of oil and gas potential by probabilistic-statistical methods on the territory of the Perm Territory]. Geologiia, geoﬁzika i razrabotka neftyanikh i gazovyx mestorozhdennykh, 2008, no.8, pp.20-23.
16. Galkin V.I., Krivoshchekov S.N. Osnovanie napravlenii poiskov mestorozhdennykh nefti i gaza v Permskom krae [Justification of the direction of the search for oil and gas in the Perm region]. Nauchnye issledovaniya i innovatsii, Perm, 2009, vol.3, no.4, pp.3-7.
17. Galkin V.I., Kozlova I.A., Rastegaev A.V., Vantseva I.V., Krivoshchekov S.N., Voevodkin V.I. K metodike otsenki perspektiv neftegazosnosti Solikamskoy depresii po kharakteristikam lokalnykh struktur [Estimation procedure of petroleum potential of Solikamsk depression based on local structures parameters]. Oilfield engineering, 2010, no.7, pp.12-17.
18. Galkin V.I., Rastegaev A.V., Kozlova I.A., Vantseva I.V., Krivoshchekov S.N., Voevodkin V.I. Prognoza otsenka neftegazosnosti struktur na territorii Solikamskoy depresii [Probable estimation of oil content of structures in territory of Solikamsk depression]. Oilfield engineering, 2010, no.7, pp.4-7.
19. Belokon T.V., Galkin V.I., Kozlova I.A., Pashkova S.E. Dodevskie otlozheniya Permskogo Prikamia kak odno iz perspektivnykh napravlenii geologo-razvedochnykh rabot [Pre-Devonian deposits of the Perm Prikamye as one of the promising areas of geological exploration]. Geologiia, geoﬁzika i razrabotka neftyanikh i gazovyx mestorozhdennykh, 2005, no.9, pp.24-28.
20. Putilov I.S. Razrabotka tehnologii kompleksnogo izuchenia geologicheskogo stroeniya i razmischeniya mestorozhdennykh nefti i gaza [Development of technologies for the integrated study of the geological structure and location of oil and gas fields]. Perm, Izdatel’stvo Perm’skogo regional’nogo issledovatel’skogo politekhnicheskogo universiteta, 2014, 285 p.
21. Galkin V.I., Kozlova I.A., Krivoshchekov S.N., Pyatunina E.V., Pestova S.N. O vozmozhnosti prognozirovaniya neftegazosnosti faminskikh otlozhenii s pomoshchyu postroeniya veroyatnostno-statisticheskikh modeley [On the possibility of predicting the petroleum potential of the Famennian sediments using the construction of probabilistic-statistical models]. Geologiia, geoﬁzika i razrabotka neftyanikh i gazovyx mestorozhdennykh, 2007, no.10, pp.22-27.
22. Galkin V.I., Solov’ev S.I. Classiﬁcation of Perm krai areas according to prospectivity for oil ﬁelds acquisition. Perm Journal of Petroleum and Mining Engineering, 2015, no.16, pp.14-24. DOI: 10.15593/224-9923/2015.16.2
23. Nosin N.E. Development of statistical models for predicting oil-and-gas content (on the example of terrigenous devonian sediments of North Tatar arch). Perm Journal of Petroleum and Mining Engineering, 2012, no.5, pp.16-25.
24. Galkin V.I., Nosin N.E. Razrabotka geologo-matematicheskikh modeley dlia prognoza neftegazosnosti solzhnupostroennoj struktury devonnikh terrigenous otlozhennih [Geological development of mathematical models for the prediction of oil and gas complex-built structures in the Devonian elastic sediments]. Oil industry, 2013, no.4, pp.28-31.
25. Dementev L.F. Matematicheskie metody i EVM v neftegazovoy geologi [Mathematical methods and computers in oil and gas geology]. Moscow, Nedra, 1987, 264 p.
26. Davydenko A.Yu. Veroyatnostno-statisticheskie metody v geologo-geofizicheskikh prilozheniyakh [Probabilistic-statistical methods in geological and geophysical applications]. Irkutsk, 2007, 29 p.

27. Mikhailovich I.M. Primenenie matematicheskikh metodov pri analize geologicheskih informatsi [Use of mathematical methods in the analysis of geological information (using computer technology)]. Irkutsk, 2006, 115 p.

28. Andreiko S.S. Development of mathematical model of gas-dynamic phenomena forecasting method according to geological data in conditions of Verkhneakamskoe potash salt deposit. Perm Journal of Petroleum and Mining Engineering, 2016, no.21, pp.32-40. DOI: 10.15593/224-9923/2015.17.4

29. Devis Dzh. Metody statisticheskogo analiza eksperimentalnykh dannykh [Methods of statistical analysis of experimental data]. Leningrad, 1960, 174 p.

31. Cherepanov S.S. Integrated research of carbonate reservoir racturing by Warren – Root method using seismic facies analysis (evidence from tournaisian-reservoir racturing by Warren – Root method using seismic facies analysis). Perm Journal of Petroleum and Mining Engineering, 2016, no.21, pp.32-40. DOI: 10.15593/224-9923/2015.17.4

32. Galkin V.I., Ponomareva I.N., Cherepanov S.S. Development of the methodology for evaluation of possibilities to determine reservoir types based on pressure build-up curves, geological and reservoir properties of the formation (case study of famen deposits of Ozernoe field). Perm Journal of Petroleum and Mining Engineering, 2015, no.17, pp.32-40. DOI: 10.15593/224-9923/2015.17.4

33. Cherepanov S.S., Martyushov D.A., Ponomareva I.N. Otsenka filtratsionno-emkostnykh svoystv treshchinovatykh porod [Evaluation of filtration-capacitive properties of fractured carbonate reservoir of Preludarko's edge deflection]. Oil industry, 2013, no.3, pp.62-65.

34. Galkin V.I., Kunitsikh A.A. Statistical modelling of expanding cement slurry. Perm Journal of Petroleum and Mining Engineering, 2017, vol.16, no.3, pp.215-244. DOI: 10.15593/224-9923/2017.3.2

35. Galkin V.I., Ponomareva I.N., Repina V.A. Study of oil recovery from reservoirs of different void types with use of multidimensional statistical analysis. Perm Journal of Petroleum and Mining Engineering, 2016, no.19, pp.145-154. DOI: 10.15593/224-9923/2016.19.5

36. Krivoshchekov S.N., Galkin V.I. Postrenie matritsy elementarnykh yacheek pri progozne neftegazonosnosti veroyatnostno-statisticheskymi metodami na territorii Permskogo kraya [Construction of a matrix of elementary cells in the prediction of oil and gas potential by probabilistic-statistical methods on the territory of the Perm Territory]. Geologia, geofizika i razrabotka neflianykh i gazovykh mestorozhdenii, 2008, no.8, pp.20-23.

37. Ivanov S.A., Rastegaev A.V., Galkin V.I. Analiz rezultatov primeneniya GRP (na primere Povkovskogo mestorozhdeniya nefti) [Analysis of results of applying formation hydraulic fracturing in povkovsky oil field]. Oilfield engineering, 2010, no.7, pp.54-58.

38. Krivoshchekov S.N., Galkin V.I., Volkova A.S. Razrabotka veroiatnost-no-statisticheskoi metodiki prognoza neftegazonosnosti struktur [Development of a probabilistic-statistical method for predicting the oil and gas potential of structures]. Oilfield engineering, 2010, no.7, pp.28-31.

39. Houze O., Viturat D., Fjaere O.S. Dinamie data analysis. Paris, Kappa Engineering, 2008, 694 p.

40. Van Golf-Racht T.D. Fundamentals of fractured reservoir engineering. Elsevier scientific publishing company. Amsterdam, Oxford, New York, 1982, 709 p.

41. Horne R.N. Modern well test analysis: A computer Aided Approach. 2nd ed. Palo Alto, PetrowayInc, 2006, 257 p.

42. Johnson N.L., Leon F.C. Statistics and experimental design. New York, London, Sydney, Toronto, 1977, 606 p.

43. Montgomery D.C., Peck E.A., Introduction to liner regression analysis. New York, John Wiley & Sons, 1982, 504 p.

44. Darling T. Well logging and formation evaluation. GardnersBooks, 2010, 336 p.

45. Watson G.S. Statistic on spheres. New York, John Wiley and Sons, Inc., 1983, 238 p.

46. Yarus J.M. Stochastic modeling and geostatistics. AAPG. Tulsa, Oklahoma, 1994, 231 p.

Библиографический список

1. Галкин В.И., Растегаев А.В., Галкин С.В. Вероятностно-статистическая оценка нефтегазоносности локальных структур / УрО РАН. – Екатеринбург, 2001. – 277 с.

2. Колева И.А., Галкин В.И., Ващенева И.В. К оценке перспектив нефтегазоносности Соликамской депрессии с помощью геолого-геохимических характеристик нефтегазоматеринских пород // Нефтепромысловое дело. – 2010. – № 7. – С. 20–23.

3. Кривощеков С.Н., Галкин В.И., Носов М.А. Оценка нелокализованных ресурсов нефти территории Пермского края при помощи системы элементарных участков // Нефтное хозяйство. – 2014. – № 6. – С. 9–11.
территории Пермского края // Геология, геофизика и разработка нефтяных и газовых месторождений. – 2017. – № 2. – С. 4–8.
7. Галкин В.И., Козлова И.А. Разработка вероятностно-статистических регионально-зональных моделей прогноза нефтегазоносности по данным геохимических исследований верхнедевонских карбонатных отложений // Геология, геофизика и разработка нефтяных и газовых месторождений. – 2016. – № 6. – С. 40–45.

8. Оценка перспектив нефтегазоносности юга Пермского края по органогенно-химическим данным / В.И. Галкин, И.А. Козлова, С.Н. Кривощеков, М.А. Носов, Н.С. Кольцарина // Нефтепромысловое дело. – 2015. – № 7. – С. 32–35.

9. Решение региональных задач прогнозирования нефтеносности по данным геолого-геохимического анализа рассеянного органического вещества пород доманикового типа / В.И. Галкин, И.А. Козлова, С.Н. Кривощеков, М.А. Носов // Нефтяное хозяйство. – 2015. – № 1. – С. 21–23.

10. К обоснованию построения моделей зонального прогноза нефтегазоносности для нижненижнедевонского комплекса Пермского края / В.И. Галкин, И.А. Козлова, С.Н. Кривощеков, О.А. Мелянцев // Нефтяное хозяйство. – 2015. – № 8. – С. 32–35.

11. Галкин В.И., Жуков Ю.А., Шишкин М.А. Применение вероятностных моделей для локального прогноза нефтегазоносности / Урал РАН. – Екатеринбург, 1990. – 108 с.

12. Зональный прогноз нефтегазоносности в пределах территории деятельности ТПП «Когальмнефтегаз» / В.В. Бродягин, А.А. Потрасов, К.Г. Скачек, А.Н. Шайхутдинов // Геология, геофизика и разработка нефтяных и газовых месторождений. – 2008. – № 8. – С. 31–35.

13. Галкин В.И., Шайхутдинов А.Н. О возможности прогноза нефтегазоносности юрских отложений вероятностно-статистическими методами (на примере территории деятельности ТПП «Когальмнефтегаз») // Геология, геофизика и разработка нефтяных и газовых месторождений. – 2009. – № 6. – С. 11–14.

14. Галкин В.И., Шайхутдинов А.Н. Построение статистических моделей для прогноза дебитов нефти по верхненижнедевонским отложениям Когальмского региона // Нефтяное хозяйство. – 2010. – № 1. – С. 52–54.

15. Галкин В.И., Кривощеков С.Н. Построение матрицы случайных ячеек при прогнозе нефтегазоносности вероятностно-статистическими методами на территории Пермского края // Геология, геофизика и разработка нефтяных и газовых месторождений. – 2008. – № 8. – С. 20–23.

16. Галкин В.И., Кривощеков С.Н. Обоснование направлений поисков месторождений нефти и газа в Пермском крае // Научные исследования и инновации. – Пермь, 2009. – Т. 3, № 4. – С. 3–7.

17. К методике оценки перспектив нефтегазоносности Соликамской депрессии по характеристикам локальных структур / В.И. Галкин, И.А. Козлова, А.В. Растегаев, И.В. Ванцева, С.Н. Кривощеков, В.Л. Воеводкин // Нефтепромысловое дело. – 2010. – № 7. – С. 12–17.

18. Прогнозная оценка нефтегазоносности структур на территории Соликамской депрессии / В.И. Галкин, А.В. Растегаев, И.А. Козлова, И.В. Ванцева, С.Н. Кривощеков, В.Л. Воеводкин // Нефтепромысловое дело. – 2010. – № 7. – С. 4–7.

19. Додевольские отложения Пермского Прикамья как одно из перспективных направлений геолого-разведочных работ / Т.В. Белоконь, В.И. Галкин, И.А. Козлова, С.Е. Пашкова // Геология, геофизика и разработка нефтяных и газовых месторождений. – 2005. – № 9. – С. 24–28.

20. Путёвки И.С. Разработка технологий комплексного изучения геологического строения и размещения месторождений нефти и газа. – Пермь: Изд-во Перм. науч. исслед. полицей, ун-та, 2014. – 285 с.

21. О возможности прогнозирования нефтегазоносности фаментских отложений с помощью построения вероятностно-статистических моделей / В.И. Галкин, И.А. Козлова, С.Н. Кривощеков, Е.В. Пятогина, С.Н. Пестова // Геология, геофизика и разработка нефтяных и газовых месторождений. – 2007. – № 10. – С. 22–27.

22. Галкин В.И., Соловьев С.Н. Районирование территории Пермского края по степеням перспективности приобретения нефтяных участков недр // Вестник Пермского национального исследовательского политехнического университета. Геология. Нефтегазовое и горное дело. – 2015. – № 16. – С. 14–24. DOI: 10.15593/224-9923/2015.16.2

23. Соснов Н.Е. Разработка статистических моделей для прогноза нефтегазоносности (на примере терригенных девонских отложений Северо-Татарского свода) // Вестник Пермского национального исследовательского политехнического университета. Геология. Нефтегазовое и горное дело. – 2012. – № 5. – С. 16–25.

24. Галкин В.И., Соснов Н.Е. Разработка геоломатематических моделей для прогноза нефтегазоносности сложноконструированных структур в девонских терригенных отложениях // Нефтяное хозяйство. – 2013. – № 4. – С. 28–31.

25. Дементьев Л.Ф. Математические методы и ЭВМ в нефтегазовой геологии. – М.: Недра, 1987. – 264 с.

26. Давыденко А.Ю. Вероятностно-статистические методы в геолого-геофизических приложениях. – Иркутск, 2007. – 29 с.

27. Михалевич И.М. Применение математических методов при анализе геологической информации (с использованием компьютерных технологий). – Иркутск, 2006. – 115 с.

28. Андреев К.С. Разработка математической модели прогнозирования газодинамических явлений по геологическим данным для условий Верхнекамского месторождения калийных солей // Вестник Пермского национального исследовательского политехнического университета. Геология.
Нефтегазовое и горное дело. – 2016. – № 21. – С. 345–353. DOI: 10.15593/224-9923/2016.21.6

29. Девис Дж. Статистика и анализ геологических данных. – М.: Мир, 1977. – 353 с.

30. Поморский Ю.Л. Методы статистического анализа экспериментальных данных: монография. – Л., 1960. – 174 с.

31. Черепанов С.С. Комплексное изучение трещиноватости карбонатных залежей методом Уоррена – Рута с использованием данных сейсмофациального анализа (на примере турнефаменской залежи Окского месторождения) // Вестник Пермского национального исследовательского политехнического университета. Геология. Нефтегазовое и горное дело. – 2015. – № 14. – С. 6–12. DOI: 10.15593/224-9923/2015.14.1

32. Галкин В.И., Пономарева И.Н., Черепанов С.С. Разработка методики оценки возможностей выделения типов коллекторов по данным кривых восстановления давления по геолого-проявленным характеристикам пласта // Вестник Пермского национального исследовательского политехнического университета. Геология. Нефтегазовое и горное дело. – 2015. – № 17. – С. 32–40. DOI: 10.15593/224-9923/2015.17.4

33. Черепанов С.С., Мартюшев Д.А., Пономарева И.Н. Оценка фильтрационно-емкостных свойств трещиностенных коллекторов месторождений Предуральского краевого прогиба // Нефтяное хозяйство. – 2013. – № 3. – С. 62–65.

34. Галкин В.И., Куницын В.И. Статистическое моделирование расширяющегося тампонажного состава // Вестник Пермского национального исследовательского политехнического университета. Геология. Нефтегазовое и горное дело. – 2017. – Т. 16, № 3. – С. 215–244. DOI: 10.15593/224-9923/2017.3.2

35. Галкин В.И., Пономарева И.Н., Репина В.А. Исследование процесса нефтесъемления в коллекторах различного типа пустотности с использованием многомерного статистического анализа // Вестник Пермского национального исследовательского политехнического университета. Геология. Нефтегазовое и горное дело. – 2016. – № 19. – С. 145–154. DOI: 10.15593/224-9923/2016.19.5

36. Кривошеев С.Н., Галкин В.И. Построение матрицы элементарных ячеек при прогнозе нефтегазоносности вероятностно-статистическими методами на территории Пермского края // Геология, геофизика и разработка нефтяных и газовых месторождений. – 2008. – № 8. – С. 20–23.

37. Иванов С.А., Растегаев А.В., Галкин В.И. Анализ результатов применения ГРП (на примере Похвосьевского месторождения нефти) // Нефтепромысловое дело. – 2010. – № 7. – С. 54–58.

38. Кривошеев С.Н., Галкин В.И., Волкова А.С. Разработка вероятностно-статистической методики прогноза нефтегазоносности структур // Нефтепромысловое дело. – 2010. – № 7. – С. 28–31.

39. Houze O., Viturat D., Fjaere O.S. Dynamic data analysis. – Paris: Kappa Engineering, 2008. – 694 p.

40. Van Golf-Racht T.D. Fundamentals of fractured reservoir engineering / Elsevier scientific publishing company. – Amsterdam – Oxford – New York, 1982. – 709 p.

41. Horne R.N. Modern well test analysis: A computer Aided Approach. – 2nd ed. – Palo Alto: PetrowayInc, 2006. – 257 p.

42. Johnson N.L., Leone F.C. Statistics and experimental design. – New York – London – Sydney – Toronto, 1977. – 606 p.

43. Montgomery D.C., Peck E.A., Introduction to linear regression analysis. – New York: John Wiley & Sons, 1982. – 504 p.

44. Darling T. Well logging and formation evalution. – GardnersBooks, 2010. – 336 p.

45. Watson G.S. Statistic on spheres. – New York: John Wiley and Sons, Inc., 1983. – 238 p.

46. Yarus J.M. Stochastic modeling and geostatistics // AAPG. – Tulsa, Oklahoma, 1994. – 231 p.

Please cite this article in English as:
Galkin V.I., Koshkin K.A., Melkishev O.A. The justification of zonal oil and gas potential of the territory of Visimskaya monocline by geochemical criteria. Perm Journal of Petroleum and Mining Engineering, 2018, vol.18, no.1, pp.4-15. DOI: 10.15593/2224-9923/2018.3.1

Просьба ссылаться на эту статью в русскоязычных источниках следующим образом:
Галкин В.И., Кошкин К.А., Мелькишев О.А. Обоснование зональной нефтегазоносности территории Висимской моноклинали по геохимическим критериям // Вестник Пермского национального исследовательского политехнического университета. Геология. Нефтегазовое и горное дело. – 2018. – Т.18, №1. – С.4–15. DOI: 10.15593/224-9923/2018.3.1