Seasonal Prevalence of Poultry Diseases in Namakkal District of Tamil Nadu, India

Shanmugasundaram Udhayavel*, Thippichettypalayam Ramasamy Gopala Krishna Murthy, Vasudevan Gowthaman and Kandasamy Senthivel
Poultry Disease Diagnosis and Surveillance Laboratory, Veterinary College and Research Institute Campus, Tamil Nadu Veterinary and Animal Sciences University, Namakkal - 637 002, India
*Corresponding Author E-mail: udhayacrivet@gmail.com
Received: 7.03.2020 | Revised: 13.04.2020 | Accepted: 18.04.2020

ABSTRACT
The objective of the present study is to ascertain the prevalence of poultry diseases in Namakkal district of Tamil Nadu from 2011 to 2018. Necropsy examination of the sick and dead poultry birds from various poultry farms in Namakkal was carried out in Poultry Disease Diagnosis and Surveillance Laboratory (PDDSL). The diagnosis was made based on history, clinical signs, gross lesions observed during necropsy examination and by using standard microbiological techniques. During the reporting period, 20362 poultry farms were examined and a total of 35069 cases were recorded. The disease prevalence in the year 2011, 2012, 2013, 2014, 2015, 2016, 2017 and 2018 was 9.04%, 12.47 %, 16.19%, 19.03%, 16.38% 8.85%, 8.40% and 9.64% respectively. The disease prevalence was high in the year 2014 (19.03%) and low in the year 2017 (8.40%). Based on Season, the disease prevalence was more in summer (34.69%) when compared to winter (33.59%) and rainy seasons (31.72%). The prevalence of egg peritonitis (12.20%), infectious laryngotracheitis (11.83%), Newcastle disease (9.56%), neoplastic viral diseases (4.34%), and colibacillosis (3.42%) was spread throughout the year. Mycotoxin induced hepatitis (4.97%), coccidiosis (2.33%) and bacterial diseases such as gangrenous dermatitis (2.95%) and necrotic enteritis (2.93%) were prevalent during the winter and rainy seasons. Heat stroke (8.90%) and Fatty liver hemorrhagic syndrome (FLHS) (2.79%) were noticed with more prevalence during the summer season.

Keywords: Poultry disease - Seasonal prevalence - TamilNadu

INTRODUCTION
The poultry industry in India is growing at a rapid speed to meet quality protein demand of the population. States like Tamil Nadu, Andhra Pradesh and Telangana are the top egg producers in India and Namakkal district of Tamil Nadu is the top producer of egg production in the state (Chatterjee & Rajkumar, 2015). In Namakkal zone, layer poultry population is approximately 60 million and egg production is nearly 50 million per day.

Cite this article: Udhayavel, S., Gopala Krishna Murthy, T.R., Gowthaman, V., & Senthivel, K. (2020). Seasonal Prevalence of Poultry Diseases in Namakkal District of Tamil Nadu, India, Ind. J. Pure App. Biosci. 8(2), 187-194. doi: http://dx.doi.org/10.18782/2582-2845.8044
The poultry industry in Namakkal continues to be severely threatened by prevalence of many diseases which lead to severe economic losses. The birds are maintained in densely populated, open air tropical poultry houses which makes them vulnerable for infections. Predisposing factors such as concurrent infections, indiscriminate vaccinations, contaminated feed and water, accumulation of contaminated dust in the farm environment, movement of vehicles, and social interactions play a very crucial role in production of infectious diseases or augmenting their virulence. Geographical location, weather condition, farm management methods and biosecurity measures followed in the farms are the determining factors of prevalence of diseases in particular region (Yunus et al., 2009). Global warming has not only affected human health but also affects production of poultry as well. Study on the seasonal prevalence of poultry diseases in Tamil Nadu state is scarce and hence it is essential to document the same, to aid in preparedness for the poultry farmers. Hence, the present study was undertaken to ascertain the influence of seasons in the prevalence of poultry diseases in Namakkal area.

MATERIALS AND METHODS

The present study was carried out in Poultry Disease Diagnosis and Surveillance Laboratory, Namakkal where necropsy examination was carried out from the sick and dead poultry birds received from various poultry farms located in and around Namakkal district of Tamil Nadu. From the period of 2011 to 2018 a total of 20362 poultry farms were examined. The diagnosis was made mainly based on history, clinical signs and gross lesions observed during necropsy examination (Fig.1). Diagnosis of bacterial diseases such as colibacillosis, fowl cholera, infectious Coryza, necrotic enteritis, gangrenous dermatitis and egg peritonitis were done by standard bacteriological techniques and biochemical tests (Fig.2). For some viral diseases, diagnosis was done by HA test and isolation of viruses in chicken embryonated eggs. Newcastle disease has been confirmed by HA test. Agar gel precipitation test was used to diagnose Infectious bursal disease (IBD). Polymerase chain reaction has been employed for diseases like fowl pox and CAV. Based on the climatic conditions the year was divided into 3 seasons namely summer season (March to June), rainy season (July to October) and winter season (November to February) for detail mapping of disease incidence.

Newcastle disease

Neoplastic viral disease
Egg peritonitis

Necrotic enteritis

Fig. 1: Post mortem lesions of important poultry diseases

E. coli in Eosin methylene blue (EMB) agar

Clostridium perfringens in egg yolk agar

Staphylococcus in BP agar

Biochemical tests - IMVIC test

Fig. 2: Bacteriological culture and biochemical tests
The overall prevalence of poultry diseases in Namakkal area from 2011 to 2018 was presented in table 1. From 20362 poultry farms examined a total of 35069 cases were recorded. More number of cases were recorded in the year 2014, 2015 and 2013. Prevalence of diseases in 2014, 2015 and 2013 was 19.3%, 16.38% and 16.19% respectively. Meanwhile the disease prevalence was 9.04% 12.47%, 8.85% and 9.64% respectively in the year 2011,2012,2016 and 2018. The disease prevalence was low in the year 2017 (8.4%). Season wise prevalence of poultry diseases presented in Table 2 and Fig 3. Based on this, the disease prevalence was more in summer (34.69%) when compare to winter (33.59%) and rainy seasons (31.72%).

During the reporting period, egg peritonitis (12.20%) and infectious laryngotracheitis (11.83%) were more prevalent in Namakkal district followed by Newcastle disease (9.56%), heat stroke (8.90%), debility (6.61%), Chronic respiratory disease (5.99%), bacterial tracheitis (5.49%), hepatitis (4.97%), neoplastic viral diseases Marks disease (MD) / Lymphoid leucosis (LL) (4.34%), gout (3.45%), colibacillosis (3.42%), gangrenous dermatitis(2.95%), necrotic enteritis (2.93%), Fatty liver hemorrhagic syndrome (FLHS) (2.79%), coccidiosis (2.33%) and infectious bursal disease (0.99%).

Table 1: Prevalence of poultry diseases in Namakkal from 2011 to 2018

Name of the Disease	2011	2012	2013	2014	2015	2016	2017	2018	Total
L Viral Diseases									
1 ILT	120	0.34	318	0.91	564	1.61	1060	3.28	100.00
2 Newcastle	421	1.20	559	1.62	499	1.43	516	1.52	3351
3 Infectious Bursal	70	0.20	43	0.12	47	0.13	74	0.21	348
4 Chicken Anemia	4	0.01	2	0.07	8	0.23	17	0.29	43
5 Fowl Pox	18	0.05	12	0.35	26	0.74	7	0.13	215
6 MD/LL/RE	53	0.15	172	0.49	359	0.94	366	1.04	1523
M Bacterial Diseases									
1 Colibacillosis	114	0.33	185	0.53	172	0.49	151	0.43	1198
2 Chronic	276	0.79	293	0.84	359	1.02	372	1.06	2102
3 Infectious	32	0.09	37	0.11	30	0.09	35	0.10	218.62
4 Fowl Cholera	18	0.05	23	0.07	19	0.05	8	0.22	162.04
5 Neopteric	84	0.24	147	0.42	194	0.55	246	0.70	1027.93
6 Gammovirus	67	0.19	127	0.36	159	0.45	172	0.49	1033.97
7 Tracheitis	214	0.61	326	0.94	290	0.84	258	0.70	1925.49
8 Egg Peritonitis	455	1.04	499	1.41	790	2.25	1099	3.10	2327.20
9 Other bacterial	30	0.09	26	0.07	95	0.27	126	0.35	462.125
III Fungal Diseases	13	0.04	10	0.03	3	0.01	9	0.23	128.36
IV Parasitic									
1 Coccioldis	114	0.33	140	0.40	133	0.38	191	0.54	816.23
2 Worn infection	54	0.15	59	0.17	34	0.10	39	0.11	533.66
V Metabolic									
1 Gout	98	0.28	167	0.48	250	0.66	238	0.68	1529.45
2 Heat Stroke	239	0.68	342	0.98	410	1.17	527	1.51	3211.27
3 FLHS/FLS	95	0.27	111	0.32	151	0.43	216	0.62	750.56
4 Hepatitis	229	0.65	295	0.84	266	0.76	239	0.68	2153.48
5 Dehity	150	0.43	273	0.78	480	1.35	506	1.46	394.124
6 Others	292	0.83	389	1.11	432	1.23	463	1.32	2349.67
Total number of cases	3178	9.04	4574	12.47	5679	16.19	5674	16.03	3744.82

RESULTS

Udhayavel et al. Ind. J. Pure App. Biosci. (2020) 8(2), 187-194 ISSN: 2582 – 2845

Copyright © March-April, 2020; IJPAB 190
Table 2: Prevalence of poultry diseases in Namakkal in different seasons

Name of the Disease	Summer	Rainy	Winter	Total				
	No.cases	Prev(%)	No.cases	Prev(%)	No.cases	Prev(%)	No.cases	Prev(%)
I. Viral Diseases								
ILT	1649	4.70	1223	3.49	1276	3.64	4148	11.83
Newcastle disease	1193	3.40	1049	2.99	1109	3.16	3351	9.56
Infectious bursal disease	98	0.28	153	0.44	97	0.28	348	0.99
Chicken anemia virus	19	0.05	35	0.10	105	0.30	159	0.45
Fowl Pox	38	0.11	92	0.26	108	0.31	238	0.68
MD/LL/RE	466	1.33	490	1.40	567	1.62	1523	4.34
II Bacterial Diseases								
Colibacillosis	368	1.05	492	1.40	338	0.96	1198	3.42
Chronic Respiratory Disease	605	1.73	646	1.84	851	2.43	2102	5.99
Infectious Coryza	65	0.19	82	0.23	71	0.20	218	0.62
Fowl Cholera	62	0.18	46	0.13	55	0.16	163	0.46
Necrotic Enteritis	88	0.25	461	1.31	478	1.36	1027	2.93
Gangrenous dermatitis	150	0.43	333	0.95	550	1.57	1033	2.95
Trachetitis	839	2.39	463	1.32	623	1.78	1925	5.49
Egg peritonitis	1610	4.59	1303	3.72	1364	3.89	4277	12.20
Other bacterial diseases	105	0.30	151	0.43	206	0.59	462	1.32
III Fungal Diseases	19	0.05	53	0.15	56	0.16	128	0.36
IV Parasitic Diseases								
Coccidiosis	118	0.34	302	0.86	396	1.13	816	2.33
Worm infection	62	0.18	73	0.21	98	0.28	233	0.66
V Metabolic disorders								
Gout	315	0.90	427	1.22	467	1.33	1209	3.45
Heat Stroke	2066	5.89	622	1.77	433	1.23	3121	8.90
FLHS/FLS	407	1.16	323	0.92	248	0.71	978	2.79
Hepatitis	387	1.10	669	1.91	688	1.96	1744	4.97
Debility	676	1.93	823	2.35	820	2.34	2319	6.61
Others	761	2.17	814	2.32	774	2.21	2349	6.70
Total number of cases	12166	34.69	11125	31.72	11778	33.59	35069	100.00
Total number of farms examined	6869	6631	6862	20362				

Fig. 3: Season wise prevalence of poultry diseases in Namakkal
DISCUSSION

The disease prevalence was more in summer (34.69%) when compared to winter (33.59%) and rainy seasons (31.72%) which is agreed with the report of Badruzzaman et al. (2015) but several authors (Islam et al., 2003; Rashid et al., 2013) reported that prevalence of poultry diseases were more in rainy season. This might be due to the prevalence of disease in Namakkal was highly influenced by extreme heat during summer months.

Our study revealed high prevalence of Infectious laryngotracheitis (11.83%) in Namakkal region. There was no seasonal influence in the occurrence of ILT in Namakkal. In 1964 ILT was first reported in India by Singh et al. (1964). The re-emergence of ILT was reported by Srinivasan et al. (2012) and Gowthaman et al. (2015) in Namakkal district of South India after that the incidences gradually increased and became a predominant disease affecting layers in Namakkal causing substantiate level of economic loss to the poultry farmers regularly. Newcastle disease (ND) is one of the major disease in Namakkal area. In the present study 9.56% of ND prevalence was documented which was similar to the findings in Bangladesh (Talha et al., 2001; Islam et al. 2003). Incidence of ND was higher during summer season when compared to rainy and winter seasons, which is not in accordance with the reports of Musa et al. (2009) and Rashid et al. (2013). Since the disease is more common in Namakkal region, which warrant antibody titer checkup at periodical intervals to monitor flock immunity.

Prevalence of 4.34% of neoplastic viral diseases (MD/LL) was recorded during this period. The prevalence of neoplastic viral diseases was uniform in all three seasons. In spite of regular vaccination against IBD, 0.99% prevalence was recorded during this period. This might be due to vaccination failure (Godwin, 2001). Other viral diseases like fowl pox (0.68%) and Chicken infectious anaemia (0.45%) were also recorded in this period.

Egg peritonitis is one of the major causes of mortality for commercial layer chicken and gives the appearance of contagious disease. During the reporting period, incidence of 12.2% of egg peritonitis was documented. This is accordance with the report of Srinivasan et al. (2013) in which 15.39% prevalence was noticed in layer birds. The occurrence of egg peritonitis was slightly higher (4.59) in summer season than winter and rainy seasons. Egg peritonitis can be classified as non septic egg peritonitis and septic egg peritonitis. In non septic egg peritonitis there is no involvement of bacterial infections where as septic egg peritonitis is the most common type occurs due to contamination with bacteria like E. coli and others (Barnes et al., 2008). This might be due to the heavily contaminated drinking water, feed and feed ingredients.

Chronic Respiratory Disease (CRD) is one of the major disease concern in tropical countries. Seroprevalence of CRD was already documented in Namakkal area (Udhayavel et al., 2016; Vadivalagan et al., 2016). In this study, the prevalence of CRD in Namakkal (5.99%) was lower than the prevalence reported by other authors in subcontinent conditions (Uddin et al., 2010; Sushitha et al., 2017). This might be due to regular prophylactic usage of anti-mycoplasmal drugs in the poultry farms in this region. The occurrence of CRD was slightly more in winter season (2.43%) than other seasons. This is in accordance with the report of Razia et al. (2012) and Irsahad et al. (2013) where CRD was more prevalent in winter season in subcontinent countries.

Colibacillosis is one of the major problem in commercial layer farms. Prevalence of 3.43% of colibacillosis was recorded in this study. During this reporting period, low prevalence of parasitic diseases were recorded except coccidiosis (2.33%). The prevalence of coccidiosis was high in winter (1.13%) and rainy season (0.86%) than summer. Similarly, prevalence of gangrenous dermatitis (2.95%) and necrotic enteritis (2.93%) were more prevalent in rainy and winter seasons. This might be due to high
moisture content in the feed ingredients during winter and rainy seasons that favour the growth of coccidial oocysts as well as the bacterial agents like *Clostridium perfringens* and *E.coli* (Udhayavel et al., 2017). Low prevalence of infectious Coryza (0.62%) and fowl cholera (0.46%) was also recorded in this study. The prevalence of heat stroke (8.90%) was high in Namakkal. Heat stroke is the major cause of mortality during summer months (March- June) of every year, where the mean day maximum temperature ranges between 36.33°C and 36.87°C. Increasing cases of heat stroke further warrants formulation of suitable climate management strategies in Namakkal poultry industry in era of global warming and climate change.

CONCLUSION

In Namakkal district of Tamil Nadu, India the disease prevalence in poultry was high in the year 2014. This study revealed the disease prevalence was more in summer than other seasons. The prevalence of egg peritonitis and infectious laryngotracheitis were high among all the poultry diseases.

Acknowledgements

The authors thank the Director, Centre for Animal Health Studies, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India.

Disclosure statement

No potential conflict of interest was reported by the authors.

REFERENCES

Badruzzaman, A.T.M., Noor, M., Mamun, M.A.L., Husna, A., & Islam, K.M. (2015). Prevalence of Diseases in Commercial Chickens at Sylhet Division of Bangladesh. *International Clinical Pathology Journal, 1*(5),1-6.

Barnes, H.J., Nolan, L.K., & Vaillancourt, J.P. (2008). *Colibacillosis*. In: *Diseases of poultry*, 12th ed, Iowa: Iowa State University Press, pp. 691-738.

Chatterjee, R.N., & Rajkumar U. (2015). An overview of poultry production in India. *Indian Journal of Animal Health, 54*(2), 89–108.

Godwin, A.L. (2001). Common cases of vaccine failure in developing countries with special reference to Srilanka. Proceeding of the 2nd International Poultry Show and Seminar of World Poultry Science Association-Bangladesh Branch. Dhaka, Bangladesh, pp. 101-104.

Gowthaman, V., Singh, S.D., Dhama, K., Barathidasan, R., Basavaraj, Srinivasan, P., Saravanan, S., & Ramakrishnan, M. (2014). Molecular detection and characterization of infectious laryngotracheitis virus (*Gallid herpesvirus-1*) from clinical samples of commercial poultry flocks in India. *Virus disease, 25*(3), 345–349.

Irsahad, B., Rizvi, S.A., Razia, S., & Mustafa, Y.S. (2013). Prevalence and high titre of CRD in broiler and layer commercial farms in district Lahore. *Science International Lahore, 25*, 159-161.

Islam, M.R., Das, B.C., Hossain, K.H., Lucky, N.S., & Mostafa, M.G. (2003). A study on the occurrence of poultry disease in Sylhet Region of Bangladesh. *International Journal of Poultry Science, 2*(5), 354-356.

Musa, U., Abdu, P.A., Dafwang, I.I., Umoh, J.U., Saidu, L., Mera, U.M., & Edache, J. (2009). Seroprevalence, seasonal occurrence and clinical manifestation of Newcastle disease in rural household chickens in Plateau State, Nigeria. *International Journal of Poultry Science, 8*, 200–204.

Rashid, M., Xue, C., Md Rafiqul Islam, Md Taohidul Islam & Yongchang, C. (2013). A longitudinal study on the incidence of mortality of infectious diseases of commercial layer birds in Bangladesh. *Preventive Veterinary Medicine, 109*, 354–358.
Razia, S., Bushra, S., Rahat, A., Chaudhary, S., & Azhar, M. (2012). A study on the prevalence of respiratory diseases in broiler and layer flocks in and around Lahore district. *Punjab University Journal of Zoology, 27*, 13-17.

Singh, S.B., Singh, G.R., & Singh, C.M. (1964). A preliminary report on the occurrence of infectious laryngotracheitis of poultry in India. *Poultry Science, 43*, 492-494.

Srinivasan, P., Balachandran, C., Gopalakrishna Murthy, T.R., Saravanan, S., Pazhanivel, N., & Mohan, B. (2012). Pathology of infectious laryngotracheitis in commercial layer chicken. *Indian Veterinary Journal, 89*(8), 75-78.

Srinivasan, P., Balasubramaniam, G.A., Gopalakrishna murthy, T.R., & Balachandran, P. (2013). Bacteriological and pathological studies of egg peritonitis in commercial layer chicken in Namakkal area. *Asian Pacific Journal of Tropical Biomedicine, 3*, 988-994.

Susitha, R., Reddy, M.R., & Somvanshi, R. (2017). Incidence and risk factors of chronic respiratory disease in indian poultry flocks. *International Journal of Science Environment and Technology, 6*(1), 662 – 668.

Talha, A.F.S.M., Hossain, M.M., Chowdhury, E.H., Bari, A.S.M., & Islam, M.R. (2001). Poultry diseases occurring in Mymen singh district of Bangladesh. *Bangladesh Veterinary, 18*(1), 20-23.

Uddin, M.B., Ahmed, S.S., Hassan, M.M., Khan, S.A., & Mamun, M.A. (2010). Prevalence of poultry diseases at Narsingdi, Bangladesh. *International Journal of Biological Research, 1*, 9-13.

Udhayavel, S., Murthy, T.R.G.K., Gowthaman, V., Malmarugam, S., & Senthilvel, K. (2017). Occurence of *Clostridium perfringens* contamination in poultry feed ingredients: Isolation, identification and its antibiotic sensitivity pattern. *Animal Nutrition, 3*(3), 309-312.

Udhayavel, S., Murthy, T.R.G.K., Gowthaman, V., Senthilvel, K., & Sureshkumar, G. (2016). Detection of sub clinical infection of *Mycoplasma gallisepticum* in commercial chicken by indirect ELISA. *Advances in Animal and Veterinary Sciences, 4*(8), 438-440.

Vadivalagan, K., Sukumar, K., Sudha, R.V., Sivachandran, M., Logesh, P., & Dorairajan, R. (2016). Seroprevalence and comparative study of serological tests for detection of Mycoplasma gallisepticum infection in commercial layer farms. *Indian Journal of Animal Research, doi: 10.18805/ijar.8593*

Yunus, A.W., Nasir, M.K., Aziz, T., & Bohm, J. (2009). Prevalence of poultry diseases in district chakwal and their interaction with mycotoxicosis: Effects of season and feed. *Journal of Animal and Plant Sciences, 19*(1), 1-5.