Production of a Recombinant Major Inner Capsid Protein for Serological Detection of Epizootic Hemorrhagic Disease Virus

Lizhong Luo* and Marta I. Sabara

Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Canadian Science Centre for Human and Animal Health, Winnipeg, Manitoba, Canada

Received 11 March 2005/Returned for modification 19 April 2005/Accepted 4 May 2005

Epizootic hemorrhagic disease virus (EHDV) is a member of the Orbivirus genus, one of six genera in the family Reoviridae (15). This virus causes disease in sheep, cattle, and wild ruminants and has important implications for the international livestock trade. At least eight serotypes of EHDV have been reported worldwide, but only two serotypes, designated EHDV-1 (14) and EHDV-2 (3), are known to be enzootic in the United States and Canada.

All EHDV serotypes share an antigen which enables their identification and differentiation from other orbiviruses, such as bluetongue virus (BTB) (4, 20). This group-specific antigen is specified by a protein (VP7) located on the inner coat of the virus particle, making it a suitable antigen for use in serological assays to specifically identify EHDV regardless of the serotype (16, 17). The most widely used serodiagnostic test for EHDV is an enzyme-linked immunosorbent assay (ELISA), which is performed using either a competitive (c-ELISA) or indirect format (1, 8, 10, 20). A variety of VP7-containing preparations, differing in their purity and extraneous protein content, have been used in the ELISA, serving as the microtiter plate-coating antigen. Specifically, Thivasagayam et al. (16, 17) produced a highly purified native EHDV VP7 preparation where the protein was assembled into core particles. However, in an attempt to reduce cost and labor, antigen production procedures have been routinely modified, resulting in partially purified EHDV VP7 preparations. Inherent characteristics of such preparations are batch variability, with respect to purity and VP7 content, resulting in decreased reliability when used in an ELISA and the presence of live virus, necessitating special handling requirements in the laboratory. To overcome some of these problems, Mecham and Wilson (9) cloned the gene encoding EHDV VP7 into baculovirus, and the recombinant protein was expressed in SF21 cultured insect cells. This recombinant protein was not purified from extraneous cell culture proteins prior to its use in a c-ELISA; therefore, an additional, antigen capture step had to be included to standardize the amount of VP7 protein on the microtiter plate.

In this report, an alternative approach is described to produce the EHDV VP7 protein in a highly purified form, enabling reagent characterization and quality control prior to its use in assays. Specifically, the gene encoding this protein was cloned to include a six-histidine tag at either the amino (VP7-1 N-His) or carboxyl (VP7-1 C-His) terminus into baculovirus and expressed in SF21 cultured insect cells. Data related to production, purification, and antigenicity are provided for the His-tagged and untagged VP7-1 proteins in an effort to determine which is most suitable for use as an assay reagent. The VP7-1 N-His protein is further evaluated for its performance in an EHDV-specific c-ELISA.

MATERIALS AND METHODS

Construction of a baculovirus transfer vector containing EHDV1 VP7 gene. To construct VP7 genes, EHDV1 (Australian serotype 1) was propagated in BHK21 cells, and double-stranded RNA segment 7 was purified. The primers for cDNA synthesis and amplification of segment 7 were based on the published sequence for EHDV-1 (GenBank accession no. D10766). The reverse transcription-PCR-amplified BamHI fragments, containing VP7-1, were ligated with pCR2.1 vector (Invitrogen, Burlington, Ontario, Canada), and then the full-length VP7 gene was subcloned into transfer vector pBackPAK1 N-His and pBackPAK1 C-His, as shown in Fig. 1B. Figure 1A shows the construction of the plasmid DNA used in this study and indicates the inserted foreign genes. All insertion sequences and reading frames were confirmed with an ABI 377 se-

* Corresponding author. Mailing address: Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, 1015 Arlington St., Winnipeg, Manitoba R3E 3M4, Canada. Phone: (204) 789-2149. Fax: (204) 789-2038. E-mail: luol@inspection.gc.ca.
quencer with a fluorescent dye terminator kit (Applied Biosystems, Streetsville, Ontario, Canada).

Generation of recombinant baculovirus. Recombinant viruses were generated by a previously described procedure (5, 6). Briefly, SF21 cells were cotransfected with linearized wild-type BacPAK6 viral DNA and recombinant transfer vector pBacPAK1 DNA to generate the recombinant baculovirus. Liposome-mediated gene transfer was employed with Lipofectin provided in the BacPAK Baculovirus Expression System kit (BD Biosciences Clontech, Mississauga, Ontario, Canada). A few viral plaques were picked, and recombinant viruses were verified by Western blot analysis. The isolated recombinant virus was purified by a consecutive plaque picking and used to produce a virus stock with a titer of 10^8 PFU/ml.

Expression analysis and immunoblotting. SF21 cells were infected with either wild-type AcNPV (Autographa californica nuclear polyhedrosis virus) or recombinant Ac-Bac-EHDV1-VP7 viruses at a multiplicity of infection of 5 PFU/cell and incubated at 27°C. After a predetermined incubation time, cells were harvested, and whole-cell lysates were analyzed with a discontinuous sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) system with protein bands visualized by staining with Coomassie blue R-250. Western blot analysis was carried out by using anti-six-histidine antibody (QIAGEN, Mississauga, Ontario, Canada) or EHDV-1 VP7-specific monoclonal antibody (MAb) 18B2 (20) and the Amersham Biosciences Immune Blot system (7).

Affinity purification of recombinant VP7-His. A high-yield, homogeneous preparation of VP7-1 N-His was obtained by using the nickel-nitrilotriacetic acid (Ni-NTA) resin, according to the standard procedures described by the manufacturer (BD Biosciences Clontech, Mississauga, Ontario, Canada). Briefly, Ac-Bac-EHDV1-VP7-N-His-infected SF21 cell lysates were pelleted, and the supernatants were added to equilibrate Ni-NTA agarose in a 1:10 volume ratio. The bead slurry was then washed with 10 volumes of 50 mM Na-phosphate, 300 mM NaCl, 10% glycerol, 20 mM imidazole (pH 8.0). The VP7 protein was then eluted with 300 or 500 mM imidazole in 50 mM Na phosphate, 300 mM NaCl, and 10% glycerol (pH 6.0).

Purification of recombinant VP7 protein by ammonium sulfate precipitation. Infected SF21 cell cultures were harvested 72 h postinfection, pelleted by low-speed centrifugation, washed with phosphate-buffered saline (PBS), and resuspended in 10 mM Tris-HCl (pH 7.5) containing 0.5% NP-40. Cell debris and nuclei were then removed by centrifugation at 2,700 x g for 10 min. A saturated

FIG. 1. Construction and expression of the recombinant EHDV VP7 gene in a baculovirus expression system. (A) The amplified VP7 fragments were subcloned into BamHI sites of transfer vector pBacPAK1 for generation of recombinant baculoviruses. The pBacPAK1-VP7 containing full-length cDNA copies of the EHDV-1 VP7-Bam (a), VP7-N-His (b), and VP7-C-His (c) genes were constructed as described in Materials and Methods. (B) Construction of the VP7-N-His and VP7-C-His genes was accomplished by using transfer vectors pBacPAK1 N-His and pBackPAK1 C-His. P, a putative SF21 ribosome binding site; TI, translation initiation codon; TT, translation termination codon.
The insoluble material was removed by pelleting at 16,000 g. Protein was pelleted by centrifugation and resuspended in 10 mM Tris-HCl, pH 7.5. The precipitated solution of ammonium sulfate, prepared in 100 mM Tris-HCl, pH 7.5, was added to the cytoplasmic cell extract to a final saturation of 20%. The precipitated materials resulting from infection with viruses Ac-Bac-EHDV1-VP7-N-His (lane 1), Ac-Bac-EHDV1-VP7-C-His (lane 2), Ac-Bac-EHDV1-VP7-Bam (lane 3), wild-type AcNPV (WT) and wild-type BacPAK6 (B) are shown in addition to an uninfected SF21 cell lysate (C). An arrow indicates the location of the VP7 protein. Molecular mass standards (M) are given in kilodaltons.

RESULTS

Construction and generation of recombinant baculovirus containing VP7. The entire coding sequence of EHDV-1 VP7 gene was cloned into the transfer vector pBacPAK1. Figure 1Ab and c shows the construction of the plasmid DNA used in this study and indicates the inserted foreign gene by N- and C-terminal fusion of a six-histidine residue tag to the VP7 gene. To fuse the VP7 gene to the six-histidine tag, the BamHI fragment containing the VP7 gene was inserted into the BamHII site of transfer vector pN-HIS or pC-HIS, as shown in Fig. 1B. Then, the resulting plasmids pBacPAK1-EHDV1-VP7-N-His and pBacPAK1-EHDV1-VP7-C-His were used to generate recombinant viruses. Specifically, these viruses were produced by cotransfection of SF21 cells with this vector and wild-type BacPAK6 viral DNA, as described in Materials and Methods. Recombinant viruses were purified by plaque assay and confirmed by PCR amplification and Western blotting (data not shown).

Expression of VP7 in SF 21 cell cultures. The EHDV VP7 gene constructs shown in Fig. 1 were expressed in SF21 cells under the control of a polyhedrin promoter. To evaluate VP7 protein expression, infected cells were harvested 3 days postinfection, whole-cell lysates were analyzed by 12% SDS-PAGE, and the gels were stained with Coomassie blue (A) or transferred and subjected to Western blotting with EHDV1 VP7-specific MAb 18B2 (B). Cell lysates resulting from infection with viruses Ac-Bac-EHDV1-VP7-N-His (lane 1), Ac-Bac-EHDV1-VP7-C-His (lane 2), Ac-Bac-EHDV1-VP7-Bam (lane 3), wild-type AcNPV (WT) and wild-type BacPAK6 (B) are shown in addition to an uninfected SF21 cell lysate (C). An arrow indicates the location of the VP7 protein. Molecular mass standards (M) are given in kilodaltons.
Due to the absence of a His tag, purification of the VP7-1 Bam protein had to be carried out by an alternative method. Ammonium sulfate precipitation was selected, since it was potentially the least labor intensive, even though it was not a one-step method (see Materials and Methods for details). The results in Fig. 4, lane 3, show the presence of a major 39-kDa protein along with another, lower-molecular-mass protein and some minor contaminating proteins in the precipitated preparation. Western blot analysis of this preparation demonstrated MAb 18B2 reactivity with only the 39-kDa protein (data not shown).

Evaluation of recombinant VP7 as a diagnostic reagent protein in competition ELISA. The baculovirus-expressed VP7 N-His protein was evaluated as a diagnostic antigen for detection of EHDV-1-specific antibodies by a standard c-ELISA. Since there is a high serological cross-reactivity between BTV and EHD, BTV-specific sera were also included in this assay. To determine an optimal VP7 concentration for the c-ELISA, the recombinant VP7 protein was first titrated with a VP7 protein-based ELISA. Figure 5 shows that the purified VP7 N-His proteins could be effectively detected and quantitated by using the EHDV-specific MAb 18B2. As little as 25 ng/well of purified VP7 N-His protein gave an ELISA signal at least sixfold above the background reading, which had an A_{450} of 0.1. Based on these results, it was determined that 50 ng/well would be used in the c-ELISA, since it resulted in an absorbance value of 1.0.

The results shown in Fig. 6 illustrate the ability of the VP7-specific MAb 18B2 to compete with sera collected from EHDV-1 (ED-19, ED-22, ED-24, and ED-59) and BTV (BT-720 and BT-533) experimentally infected cattle and field samples from cattle exposed to EHDV in Saskatoon, Quebec, and Alberta (SK-07, Qu-16, Qu-26, and AB-31). The specificity of the reaction was determined by the inhibition values exhibited with no sera (<1%) and a validated positive sera (98%). The results indicated that all the sera from EHDV experimentally infected and field-exposed animals strongly competed with MAb 18B2 for binding sites on the recombinant VP7 antigen, resulting in at least 50% inhibition, which was previously determined as the cutoff value for positive samples. In contrast, BTV-specific sera demonstrated c-ELISA inhibition values of 25% and 33%, considerably below the positive cutoff value. These results were reproducible and comparable to those obtained using the ammonium sulfate-purified VP7 Bam protein or highly purified native VP7 antigen preparations (data not shown).

DISCUSSION

The baculovirus system was selected for protein production due to the fact that recombinant EHDV VP7, produced in this...
system, was able to bind rabbit and bovine antibodies in an indirect ELISA (10) and bovine antibodies in a c-ELISA (9). In addition, this expression system has demonstrated the ability to yield large quantities of recombinant proteins that show biological properties similar to their native counterparts (18). The cDNA carrying the EHDV VP7-1 gene was successfully cloned in a baculovirus expression vector with a six-histidine tag at its N and C termini and also without a six-histidine tag. The advantage of producing His-tagged fusion proteins was that immobilized metal affinity chromatography could be used for their purification. This rapid, one-step process is amenable to the purification of proteins in their native state. A slightly more labor-intensive process, involving ammonium sulfate precipitation, was used for purification of the untagged VP7 protein. Even though successful expression of EHDV rVP7 in a baculovirus system has been previously reported (9, 10), this is the first report of a highly purified VP7 fusion protein that would have the advantage of being able to be accurately quantitated and monitored for stability. This type of standardization is extremely important to assay reproducibility and reliability. In addition, this type of reagent could lend itself to the development of precoated microtiter plates that could be stored long term under adverse conditions.

The evaluation of recombinant protein production levels indicated that the fusion protein containing the six-histidine tag at the N terminus was expressed at a level similar to that observed with the untagged protein and at a considerably higher level than that of the C-His fusion protein, suggesting that insertion into this location interfered with protein expression. A somewhat similar effect was described for a 33-kDa soluble subunit protein of a higher plant which carried a tail of six histidines at the C terminus, leading to a conformational change and correspondingly lower expression yields (13). Since protein production levels are an important selection criteria for an assay reagent, the VP7 C-His was considered unsuitable for extensive evaluation. Conversely, the efficient production of the untagged EHDV VP7 and VP7 N-His made these proteins suitable reagent candidates, as was found to be the case for other reovirus core proteins expressed in a baculovirus system (2, 11). Regardless of the protein construct, all three recombinant proteins were recognized by the EHDV-1 group-specific MAb 18B2, as illustrated by reactivity in Western blots and in a VP7 protein ELISA. This indicated that the presence and location of the His tag did not interfere with epitope binding. More importantly, these recombinant proteins were specifically recognized by polyclonal sera, derived from animals either experimentally infected with EHDV or naturally exposed to the virus, by using a c-ELISA. As reported by others (8, 16, 19), some heterologous cross-reactivity with BTV-specific sera was detected, but it was significantly less than the cutoff threshold of 50 PI. Therefore, the presence of a His tag did not influence the sensitivity or specificity of polyclonal antibody reactivity with these proteins. Also, binding of the recombinant His tag protein directly to the well of the microtiter plate did not appear to result in partial denaturation of the MAb binding epitope, as suggested by Mecham and Wilson (9). In fact, there was a high degree of correlation between the amount of antigen coated in a well and MAb binding, as indicated by OD readings in a direct ELISA.

In summary, the baculovirus-expressed EHDV VP7 N-His fusion protein could be produced in large quantities and easily purified, yielding a highly homogenous antigen preparation which was stable after numerous freeze/thaw cycles (data not shown). Such a preparation was successfully used in a c-ELISA, which is less labor intensive and more easily standardized than the antigen capture c-ELISA described by Mecham and Wilson (9). It can also be postulated that the unpurified recombinant VP7 preparation, used for the antigen capture c-ELISA, might be less stable than when the protein is in a highly purified state, due to the presence of extraneous proteins with enzymatic activity or the tendency for uncontrolled aggregation with extraneous proteins or even self aggregation. The latter phenomenon has been reported for other reovirus capsid proteins and may be related to the natural ability of these types of proteins to assemble into virus-like structures under suitable environmental conditions (12). Con-
siderations related to reagent quality control make the highly purified EHDV VP7 N-His protein uniquely suited for use in serodiagnostic assays by improving the reliability, reproducibility, and cost of existing assays that use partially purified native or recombinant VP7 preparations.

ACKNOWLEDGMENT
This study was supported by the Canadian Food Inspection Agency.

REFERENCES
1. Afshar, A., P. F. Wright, L. A. Taylor, J. L. Shapiro, and G. C. Dulac. 1992. Development and evaluation of an enzyme-linked immunosorbent assay for detection of bovine antibodies to epizootic hemorrhagic disease of deer viruses. Can. J. Vet. Res. 56:154–160.
2. Estes, M. K., S. E. Crawford, M. E. Penaranda, B. L. Petrie, J. W. Burns, W. K. Chan, B. Ericson, G. E. Smith, and M. D. Summers. 1987. Synthesis and immunogenicity of the rotavirus major capsid antigen using a baculovirus expression system. J. Virol. 61:1488–1494.
3. Gaydos, J. K., J. M. Crum, W. R. Davidson, S. F. Owen, and D. E. Stallknecht. 2004. Epizootiology of an epizootic hemorrhagic disease outbreak in West Virginia. J. Wildl. Dis. 40:383–393.
4. Iwata, H., T. Chuma, and P. Roy. 1992. Characterization of the genes encoding two of the major capsid proteins of epizootic hemorrhagic disease virus indicates a close general relationship to bluetongue virus. J. Gen. Virol. 73:915–924.
5. Luo, L., Y. Li, P. M. Cannon, S. Kim, and C. Y. Kang. 1992. Chimeric gag-V3 virus-like particles of human immunodeficiency virus induce virus-neutralizing antibodies. Proc. Natl. Acad. Sci. USA 89:10527–10531.
6. Luo, L., Y. Li, S. Dales, and C. Y. Kang. 1994. Mapping of functional domains for HIV-2 gag assembly into virus-like particles. Virology 205:496–502.
7. Luo, L., M. I. Sabara, and Y. Li. 2005. Expression of recombinant small hydrophobic protein for serospecific detection of avian pneumovirus subgroup C. Clin. Diag. Lab. Immunol. 12:187–191.
8. Mecham, J. O., and M. M. Jochim. 2000. Development of an enzyme-linked immunosorbent assay for the detection of antibody to epizootic hemorrhagic disease of deer virus. J. Vet. Diagn. Invest. 12:142–145.
9. Mecham, J. O., and W. C. Wilson. 2004. Antigen capture competitive enzyme-linked immunosorbent assays using baculovirus-expressed antigens for diagnosis of bluetongue virus and epizootic hemorrhagic disease virus. J. Clin. Microbiol. 42:518–523.
10. Nagesha, H. S., A. R. Gould, J. R. White, R. A. Lunt, and C. J. Duch. 1996. Expression of the major inner capsid protein of the epizootic haemorrhagic disease virus in baculovirus and potential diagnostic use. Virus Res. 43:163–169.
11. Oldfield, S., A. Adachi, T. Urakwa, T. Hirasawa, and P. Roy. 1990. Purification and characterization of the major group-specific core antigen VP7 of bluetongue virus synthesized by a recombinant baculovirus. J. Gen. Virol. 71:2649–2656.
12. Ready, K. F. M., and M. Sabara. 1987. In vitro assembly of bovine rotavirus nucleocapsid protein. Virology 157:189–198.
13. Seifler, A. 1994. Introduction of a histidine tail at the N-terminus of a secretory protein expression in Escherichia coli. Protein Eng. 7:1277–1280.
14. Shope, R. E., L. G. MacNamara, and R. Mangold. 1960. A virus induced epizootic haemorrhagic disease of the Virginia white tailed deer (Odocoileus virginianus). J. Exp. Med. 111:155–170.
15. Spence, R. P., N. F. More, and P. A. Nuttal. 1984. The biochemistry of Orbivirus: brief review. Arch. Virol. 82:1–18.
16. Thevasagayam, J. A., P. P. Mertens, J. N. Burroughs, and J. Anderson. 1995. Competitive ELISA for the detection of antibodies against epizootic haemorrhagic disease of deer virus. J. Virol. Methods 55:417–425.
17. Thevasagayam, J. A., M. P. Wellby, P. P. Mertens, J. N. Burroughs, and J. Anderson. 1996. Detection and differentiation of epizootic haemorrhagic disease of deer and bluetongue viruses by serogroup-specific sandwich ELISA. J. Virol. Methods 56:49–57.
18. Webb, N. R., C. Madoulet, P. F. Tosi, D. R. Broussard, L. Sneed, C. Nicolau, and M. D. Summers. 1989. Cell-surface expression and purification of human CD4 produced in baculovirus-infected insect cells. Proc. Natl. Acad. Sci. USA 86:7731–7735.
19. White, J. R., S. D. Blacksell, R. A. Lunt, and G. P. Gard. 1991. A monoclonal antibody blocking ELISA detects antibodies specific for epizootic haemorrhagic disease. Vet. Microbiol. 29:237–250.
20. Zhou, E.-M., and A. Afshar. 1999. Characterisation of monoclonal antibodies to epizootic haemorrhagic disease virus of deer (EHDV) and bluetongue virus by immunisation of mice with EHDV recombinant VP7 antigen. Res. Vet. Sci. 66:247–252.