Order of action of components in the yeast pheromone response pathway revealed with a dominant allele of the STE11 kinase and the multiple phosphorylation of the STE7 kinase

Bradley R. Cairns,1,3 Sandra W. Ramer,2 and Roger D. Kornberg1

1Department of Cell Biology and 2Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305 USA

The signal transduction pathway that mediates the response of haploid yeast cells to peptide mating pheromones involves several components including the protein kinases STE7 and STE11. We have isolated and characterized a dominant allele of the STE11 gene and have demonstrated that expression of an amino-terminally truncated form of STE11 protein causes constitutive activation of the mating pathway. Expression of this dominant STE11 allele also restored mating ability to certain sterile strains. In conjunction with the results of others, our epistasis results establish the following order of action of pathway components: STE2, GPA1(SCG1), STE4, STE5, STE11, STE7, STE12. Transduction of the signal from STE11 to STE7 may involve phosphorylation because STE7 displays several phosphorylation forms, and STE7 is multiply phosphorylated in response to either pheromone or coexpression of dominant STE11 protein. Further signal propagation appears to require STE7 protein kinase activity, because a catalytically impaired STE7 mutant is defective in the mating response.

[Key Words: Yeast; STE7 kinase; STE11 kinase; signal transduction; dominant allele; protein kinase]

Received March 11, 1992, revised version accepted May 26, 1992.

Signal transduction from the cell surface to targets inside the nucleus plays an important role in many cellular and developmental processes. Current studies of signaling pathways focus on defining the components involved and elucidating the mechanisms underlying signal propagation. Of particular interest are the diverse pathways mediated by heterotrimeric G proteins (for review, see Stryer and Bourne 1986; Gilman 1987). Several of these systems in higher eukaryotes appear to employ protein phosphorylation to transduce the signal downstream of the G protein, but defining the kinases involved and identifying their substrates has proved difficult. The mating pheromone signal transduction pathway present in the budding yeast Saccharomyces cerevisiae is a genetically tractable model system for studying the role of phosphorylation in signaling systems mediated by G proteins. Mating between haploid a and a yeast cells is achieved by the exchange of peptide mating pheromones, with conjugation resulting in the formation of diploid a/a cells [Duntze et al. 1970; Hartwell 1973; Kurjan 1985; Bender and Sprague 1986]. The response of haploid a cells to the mating pheromone a-factor involves the interaction of a specific transmembrane pheromone receptor with a signal transduction pathway that coordinates all cellular events necessary for conjugation: arrest of the cell cycle in G1 phase, the rapid transcriptional induction of several genes required for mating, and the attendant physiological changes necessary for cell and nuclear fusion (for review, see Cross et al. 1988; Herskowitz 1989). An analogous pathway is present in haploid alpha cells [Bender and Sprague 1986; Nakayama et al. 1987]. Genetic experiments have identified several components in the pheromone response pathway in a haploid cells, including the products of the STE2, STE4, STE5, STE7, STE11, STE12, and STE18 genes. Deletions or conditional mutations in any of these genes cause sterility [MacKay and Manney 1974a, b; Hartwell 1980]. The STE2 gene encodes the transmembrane receptor for a-factor and displays a transmembrane topology similar to the rhodopsin/β-adrenergic family of receptors [Jeness 1983; Nakayama et al. 1985; Dixon et al. 1986]. The nucleotide sequences of the yeast genes GPA1(SCG1), STE4, and STE18 implicate them as the respective α, β, and γ subunits of the G protein coupled to the STE2 receptor in the yeast mating pathway [Dietzel and Kurjan 1987; Miyajima et al. 1987; Whiteway et al. 1989].
The βγ-complex STE4/STE18, and not the α-subunit GPA1(SCG1), is believed to be responsible for transducing the signal in the mating pathway [Blinder et al. 1989; Cole et al. 1990; Nomoto et al. 1990; Whiteway et al. 1990]. In mammalian cells, signal propagation by βγ subunits has been demonstrated in the activation of K⁺ channels by phospholipase A₂ [Kim et al. 1989] and in the stimulation of adenyl cyclase II [Federman et al. 1992].

Although the pheromone receptor and the heterotrimeric G protein subunits have been studied intensively, propagation of the signal downstream of these components is poorly understood. Only the putative target of the mating pathway, the DNA-binding transcriptional activator STE12, has been characterized in detail [Dolan et al. 1989; Errede and Ammerer 1989] In response to pheromone, STE12 has been shown to be phosphorylated rapidly [Song et al. 1991]. In addition to the uncharacterized STE5 gene product, the pathway is believed to include four putative protein kinases, STE7, STE11, FUS3, and KSS1 [Chaleff and Tatchell 1985; Courchesne et al. 1989; Elion et al. 1990]. Although both the STE7 and STE11 gene products are absolutely required for mating, deletion of either the FUS3 gene or the KSS1 gene has only a mild effect on mating efficiency [Courchesne et al. 1989; Elion et al. 1991]. The combination of deletions of FUS3 and KSS1, however, confers sterility [Elion et al. 1991]. The nucleotide sequences of the STE7 and STE11 genes show significant homology to serine/threonine protein kinases [Teague et al. 1986; Hanks et al. 1988; Rhodes et al. 1990]. Although STE11 protein kinase activity is essential for the mating response, and a potential novel substrate of STE11 has been reported, direct involvement of STE11 in propagation of the signal has not been demonstrated, neither the phosphorylation nor the catalytic activity of STE11 protein is affected by the presence of pheromone [Rhodes et al. 1990].

Our characterization of a dominant STE11 allele provides further evidence that STE11 protein is directly involved in signal propagation. Our results suggest the presence of a catalytic and a regulatory domain in STE11 protein, and our analysis of double mutants establishes the functional order of several of the STE gene products in the mating pathway. In addition, we demonstrate that the phosphorylation of STE7 protein is correlated with mating pathway activation and that STE7 kinase activity is important for an efficient mating response.

Results

Isolation of a dominant allele of STE11

An inducible yeast expression library was prepared by fusing sheared, size-selected yeast genomic DNA to the GAL1 promoter in pYES-R [Elledge et al. 1991]. Although fusion of DNA fragments to the GAL1 promoter allows their transcription to be regulated by carbon sources [Johnston and Davis 1984], this version of the GAL1 promoter does not provide an initiator for their translation. Rather, an initiation codon must be present in the cloned DNA, with the initiation of translation occurring predominantly at the initiator closest to the 5' end of the resulting mRNA. In addition to yielding full-length clones, this library may contain truncation mutants. A clone derived from a shearing event within the coding region of a gene can only be expressed if initiation of translation occurs at an internal AUG codon, leading to the synthesis of an amino-terminally truncated protein.

The library was screened for clones that cause galactose-dependent transcriptional activation of FUS1, a gene whose mRNA level increases 40-fold after the addition of mating pheromone [McCaffrey et al. 1987]. The yeast strain NNY19, containing a chromosomally integrated copy of a FUS1-lacZ construct [Nomoto et al. 1990], was transformed with library DNA, and transformants were selected on uracil-deficient media containing glucose. This selection permitted growth of the transformants, but the presence of glucose repressed transcription of the cloned DNA. Colonies transferred to nitrocellulose filters were incubated on uracil-deficient media containing galactose to induce transcription from the GAL1 promoter. Clones whose expression caused activation of the mating pathway were revealed by β-galactosidase expression [Schena et al. 1989]. A plasmid containing an allele of the STE11 gene under control of the GAL1 promoter was isolated and identified by Southern blot analysis with a STE11 probe [data not shown].

Details of the preparation and characterization of the genomic DNA expression library, including a complete description of the genetic screen and other activators of the mating response pathway, will be presented elsewhere [S. Ramer and R. Davis, in prep.].

Characterization of a STE11 amino-terminal truncation mutant

We sequenced this STE11 allele and discovered that a large part of the STE11-coding region was absent; only the carboxy-terminal codon region of the STE11 gene remained fused to the GAL1 promoter (pYGU-11AN; Fig. 1A). Sequencing revealed that the first nucleotide of STE11 present in pYGU-11N is a nucleoside at position 1051 (with numbering according to Rhodes et al. 1990), whereas the initiator for the wild-type STE11 gene is located at nucleotide position 116–118, and the stop codon is located at position 2267–2269. This deletion resulted in the synthesis of a mutant form STE11 protein (STE11AN), which lacks its amino terminus. Protein sequence comparison shows that STE11AN protein contains all of the conserved catalytic kinase subdomains [Hanks et al. 1988; Rhodes et al. 1990]. Use of the GAL1 promoter confers catabolite regulation of transcription to the STE11AN allele [Johnston and Davis 1984]. In the absence of repressing carbon sources such as glucose or sucrose, the addition of galactose induces the transcription of STE11AN at least 20-fold [data not shown].

Three lines of reasoning indicate that translational initiation of STE11AN begins at the first in-frame AUG codon, located at nucleotide position 1139–1141: (1) The first AUG codon corresponds to the translation initia-
tion site in 95% of yeast mRNA (Cigan and Donahue 1987); (2) initiation at the next in-frame AUG codon [nucleotides 1412–1414] would result in deletion of the entire first catalytic subdomain of the kinase; and (3) the presence of two additional out-of-frame AUG codons [nucleotides 1233–1235 and 1236–1238, respectively] between the first two in-frame AUG codons precludes the use of the initiator at positions 1412–1414. In addition, immunoblot analysis of STE11AN protein [with a polyclonal antibody raised against recombinant STE11AN protein] revealed a protein with an approximate mass of 48 kD (Fig. 2A). On the basis of SDS-PAGE of native protein) revealed a protein with an approximate mass of 1139 should result in a protein of 366 amino acids that migrates at ~93 kD, translational initiation at position 1139 should result in a protein of 366 amino acids that migrates at ~47 kD, in agreement with our findings.

STE11AN is a dominant STE11 allele that causes pheromone-independent activation of the mating pathway

STE11AN protein function was initially assessed by complementation of the mating defect conferred by a deletion of the STE11 gene [with YSC-AΔste11]. Patches of YSC-AΔste11 that express STE11AN protein were able to mate efficiently with tester lawns. No diploids were formed with control patches of YSC-AΔste11 not expressing STE11AN protein [data not shown]. The effect of the STE11AN allele on STE12-dependent transcription was examined in three wild-type strains [KMY211-A, YPH499, and W303-1A]. All genes activated by the mating pathway [in MATα cells] contain two or more binding sites for the STE12 protein. Transcriptional activation was monitored with the β-galactosidase reporter plasmid pUZ4 (Fig. 1C), which contains three consensus STE12-binding sites [Kronstad et al. 1987, Van Arsdell and Thorner 1987; Dolan et al. 1989] upstream of the β-galactosidase gene. In all three strains, STE11AN expression activated STE12-dependent transcription to levels equal to or greater than levels observed by the addition of pheromone. Furthermore, high levels of STE12-dependent transcriptional activation [179 units] were observed when both STE11AN protein [with pYGL-STE11AN; Fig. 1A] and STE11 wild-type protein [with pYGU-STE11; Fig. 1A] were overexpressed, indicating that the STE11AN allele is dominant.

Expression of STE11AN induces phenotypes similar to those observed following treatment with mating pheromone

Activation of the mating pathway by mating pheromone causes the arrest of the cell cycle in G1 phase, and several phenotypes including the accumulation of large unbudded cells and the formation of pear-shaped cells [shmoos] (Buckingham-Throm et al. 1973; Wilkinson and Pringle 1974; Lipke et al. 1976). After 18 hr of STE11AN expression, > 70% of cells accumulated as large unbudded cells, and ~15% of these cells displayed projections typically observed upon treatment with a high concentration of mating pheromone [Fig. 3]. These phenotypes were not a result of growth in galactose, nor did they occur when
Cairns et al.

Figure 2. Immunoblot analysis of wild-type STE11 and STE11ΔN protein. (A) Whole-cell extracts and immunoblots were prepared as described in Materials and methods. All lanes contain ~5 μg of whole-cell extract derived from YPH499 transformants. Each was grown for 8 hr in the presence of galactose to induce expression from the following plasmids. (Lane 1) pYGU-11ΔN; (lane 2) pYGU-STE11; (lane 3) no plasmid. The positions of wild-type STE11 protein and STE11ΔN protein are indicated by labeled arrows. Positions of molecular mass markers (kD) run in another lane of the same gel are indicated at right. (B) Schematic representation of the STE11-coding region, including the amino acid coordinates of the initiators of wild-type and truncated STE11 protein, the first amino acid of the first conserved catalytic subdomain, and the last amino acid.

Ordering the components of the mating pathway with STE11ΔN

The epistatic relationships of the STE11ΔN allele with other pathway components were assessed by determining the effect of STE11ΔN expression in strains lacking individual components of the mating pathway. In all cases, their ability to mate with an α-tester strain and their ability to activate STE12-dependent transcription were determined (Table 1). STE11ΔN protein was expressed in strains isogenic to KMY211-A, each lacking the STE4, STE5, STE7, STE11, or STE12 gene. In addition, the relationship of the STE11ΔN effect to the FUS3 and KSS1 kinases was tested by the expression of STE11ΔN in strains isogenic to YPH499 lacking either the FUS3 or KSS1 gene. Strains that lack either FUS3 alone or KSS1 alone are able to mate efficiently; only the double mutant Δfus3Δkss1 is sterile (Elion et al. 1991). Therefore, STE11ΔN protein was also expressed in a YPH499 derivative lacking both the FUS3 and KSS1 genes.

Expression of STE11ΔN protein in a strain lacking either the STE4 or STE5 gene restored a significant level of mating ability. In both of these strains, expression of STE11ΔN protein also resulted in high levels of STE12-dependent transcription. In contrast, expression of STE11ΔN protein in a strain lacking either the STE7 or STE12 gene did not restore mating ability, nor did it

Figure 3. Phenotypes of yeast cells expressing STE11ΔN protein. (A) The wild-type strain YPH499 was transformed with pYGU-11ΔN and grown to mid-log phase in medium containing 2% sucrose to prevent expression of STE11ΔN. (B) The transformants described in A were centrifuged and resuspended in medium containing 2% galactose and grown for an additional 18 hr. Images were obtained with Normarski optics.
cause any enhancement of STE12-dependent transcription. In addition, overproduction of wild-type STE11 protein with pYGU–STE11 did not restore mating ability to any of the deletion strains tested except YSC-AAste7. Assuming a linear relationship of mating pathway components and upstream of the proteins, these results suggest that the STE11AN protein with pYGU-STE11 did not restore mating ability to any of the deletion strains tested except YSC-AAstell. In addition, overproduction of wild-type STE11 protein in the STE11AN gene product downstream of the components, these results suggest that the STE11AN protein functions downstream of the STE4 and the STE5 gene products and upstream of the STE7 and STE12 gene products.

Expression of STE11AN protein in strains lacking either the FUS3 or KSS1 genes also caused high levels of STE12-dependent transcription. In contrast, expression of STE11AN protein in the Δfus3Δkss1 strain neither activated STE12-dependent transcription nor restored mating ability. These results localize the function of the STE11AN protein in the STE4 and the STE5 gene products downstream of the STE7 and STE12 gene products.

Expression of STE11AN protein in strains lacking either the FUS3 or KSS1 genes also caused high levels of STE12-dependent transcription. In contrast, expression of STE11AN protein in the Δfus3Δkss1 strain neither activated STE12-dependent transcription nor restored mating ability. These results localize the function of the STE11AN protein in the STE4 and the STE5 gene products downstream of the STE7 and STE12 gene products.

The STE7 kinase is a phosphoprotein

As our data are consistent with the STE11 gene product functioning upstream of the STE7 gene product, we sought to identify the effects of the dominant STE11 mutation on the biochemical properties of the STE7 kinase. Polyclonal antisera were raised against recombinant STE7 protein and verified by immunoblot analysis of both the native recombinant protein [Fig. 4, lane 4] and a recombinant α-cml fusion protein [data not shown].

As a result of the scarcity of STE7 protein in wild-type cells, we enhanced the levels of STE7 protein by directing STE7 synthesis from the galactose-inducible GAL1 promoter [Johnston and Davis 1984] with the plasmid pYGU–STE7 [Fig. 4B]. Patches of the yeast strain YSC-AAste7, which lacks the STE7 gene, expressing STE7 protein with pYGU–STE7, mated efficiently with the α-mating tester strain DC17 (data not shown), demonstrating functional complementation of the mating defect under these conditions. For immunoblot analysis, whole-cell extracts were prepared from a KMY211-A derivative lacking the STE7 gene (YSC-Δste7), the wild-type strain KMY211-A, and a KMY211-A transformant that expressed STE7 protein with pYGU–STE7 [Fig. 4, lanes 1–3]. Under these conditions, immunoblots did not reveal any STE7-dependent protein in extracts derived from wild-type cells [cf. lanes 1 and 2]. When STE7 protein was expressed with pYGU–STE7, however, several galactose-dependent species appeared [lane 3], migrating with apparent masses between 64 and 76 kD. The most immunoreactive species was the fastest migrating and

Strain	Deletion	Expression Plasmid pYGU–	Matinga	β-Galactosidaseb
KMY211-A	none (wild type)	STE11	++ +	<1
YSC-AAste7	Δste4	11ΔAN	++ +	2
YSC-AAste5	Δste5	11ΔAN	++	267
YSC-AAste4	Δste7	11ΔAN	+ +	<1
KMY211-A	none (wild type)	STE11	++ +	208
YSC-AAste11	Δste11	11ΔAN	+ +	<1
KMY211-A	Δste12	11ΔAN	–	<1
YPH499	none (wild type)	STE11	++ +	2
YPH499	none (wild type)	11ΔAN	++ +	281
YPH499	Δfus3	11ΔAN	++ +	<1
YPH499	Δkss1	11ΔAN	++ +	325
YPH499	Δfus3Δkss1	11ΔAN	–	<1

*Mating tests were performed by the patch method as described in Materials and methods. [+] Patches comprising 10-30 individual colonies form within 48 hr. [+ +] Patches of diploids form within 48 hr of replica plating. [+ + +] Indistinguishable from wild-type. Dense patches of diploids form within 36 hr of replica plating. [-] No diploids form within 96 hr of replica plating.

β-Galactosidase assays, with the reporter plasmid pUZ4 (Fig. 1C), are in Miller units as described in Materials and methods.

KMY211-A strain background.

YPH499 strain background.

As our data are consistent with the STE11 gene product functioning upstream of the STE7 gene product, we sought to identify the effects of the dominant STE11 mutation on the biochemical properties of the STE7 kinase. Polyclonal antisera were raised against recombinant STE7 protein purified from E. coli. The arrow indicates the position of unphosphorylated STE7 protein; the asterisk (•) indicates the position of the multiply phosphorylated form of the STE7 protein.
Cairns et al.

was shown to comigrate with STE7 protein produced in
Escherichia coli [lane 4]. In addition, a doublet representing
the slowest-migrating species also exhibited a high
level of immunoreactivity.

To determine whether these immunoreactive species
represented different phosphorylation forms of STE7 pro-
tein, the lysates were treated with calf intestinal phosph-
hatase (Fig. 5). This treatment converted all slow-mi-
grating forms to an apparent single species migrating at
~64 kD [lane 2]. This conversion did not occur in mock-
treated lysates [lane 3] and was blocked by phosphatase
inhibitors, indicating that the conversion was caused by
dephosphorylation and not by proteolysis of STE7 protein.

Dephosphorylation experiments were also performed
on immune complexes of STE7 protein. Under these
conditions, dephosphorylation did not proceed to com-
pletion, presumably owing to protection of areas of STE7
protein by the polyclonal antibody. Immunoblot analysis
of STE7 protein under these conditions reveals the accu-
mulation of STE7 phosphorylation forms of intermediate
electrophoretic mobility [Fig. 5, lane 5]. This result indi-
cates that the slow-migrating STE7 phosphorylation forms arise from multiple phosphorylations and argues
against the possibility that each form represents a
unique singly phosphorylated species.

**STE7 is phosphorylated rapidly in the presence
of mating pheromone**

Having demonstrated the occurrence of STE7 phos-
phatase
phosphatase inhibitors
STE7 antibody

Figure 5. Treatment of the STE7 protein with calf intestinal phosphatase in the absence or presence of STE7 polyclonal antibody. The effect of phosphatase treatment on whole-cell extracts (left) or immunoprecipitates of the STE7 protein [right] was assayed by immunoblot analysis as described in Materials and methods. Whole-cell extracts were prepared from a W303-
1A transformant expressing STE7 with pYGU-STE7 grown in
the presence of galactose for 8 hr, either in the absence of pher-
omone [left], or subsequently treated with 2.0 μM mating factor
for 5 min [right]. Extracts were either mock treated [lanes 1,4],
treated with 12 units of calf intestinal phosphatase [lanes 2,5],
or treated with phosphatase in the presence of phosphatase in-
hibitors [lanes 3,6]. The arrows indicate the position of unphos-
phorylated STE7 protein; the asterisks (*) indicate that of the
multiply phosphorylated form of the STE7 protein. Positions of
molecular mass markers (kD) run in another lane of the same
gel are indicated.

Figure 6. Effect of pheromone on the phosphorylation of STE7 protein. Whole-cell extracts (5 μg of protein per lane) were pre-
pared, and immunoblot analysis was performed as described in
Materials and methods. Each strain expressed STE7 from
pYGU-STE7. Cultures of W303-1A [lanes 1,2] or the isogenic
protease-deficient derivative YBC102 [lanes 3,4] were grown in
the presence of galactose for 4 hr to induce STE7 expression.
Pheromone was either not added [lanes 1,3] or added to a final
concentration of 2.0 μM [lanes 2,4]. These cultures were incu-
bated for 4 min at 30°C and centrifuged and frozen within 5 min
of the addition of pheromone. The arrows indicate the position
of unphosphorylated STE7 protein, the asterisks (*) indicate
that of the multiply phosphorylated form of the STE7 protein.
Positions of molecular mass markers (kD) run in another lane of
the same gel are indicated.

STE11ΔN expression potentiates STE7 phosphorylation

Having shown that the STE11 gene product functions
upstream of the STE7 gene product in the mating path-
way and, further, that phosphorylation of STE7 protein is
correlated with mating pathway activation, we asked
whether the dominant STE11ΔN allele affects the distri-
bution of STE7 phosphorylation forms. Coexpression of
both STE11ΔN and STE7 protein resulted in nearly com-
Complete conversion of STE7 protein to multiply phosphorylated species (Fig. 7, lane 3). This result provides further evidence that STE7 phosphorylation is correlated with signal transmission and that STE11ΔN initiates the mating pathway upstream of STE7.

STE7 phosphorylation forms are present in strains lacking other components in the mating pathway

The mating response requires the concerted action of several components, including four putative protein kinases [Chaleff and Tatchell 1985; Courchesne et al. 1989; Elion et al. 1990, 1991; Rhodes et al. 1990]. To assess the dependence of STE7 phosphorylation forms on the activity of other components in the mating pathway, we expressed STE7 protein in strains isogenic to the wild-type strain KMY211-A, lacking the STE4, STE5, STE11, or STE12 gene. In addition, we expressed STE7 protein in strains isogenic to strain YPH499, lacking either the FUS3 or KSS1 gene, or both. Immunoblot analysis revealed the presence of both unphosphorylated and multiply phosphorylated forms of STE7 protein in all of the deletion strains tested (Fig. 8). The other immunoreactive species [Fig. 8A, lane 3; Fig. 8B, lanes 1–5] are also present in extracts derived from cells grown in medium containing sucrose (Fig. 8B, lane 1, and data not shown) and, thus, are not STE7-dependent. To confirm the lack of impact on STE7 phosphorylation observed with YSC-AAstel1, the STE11 gene was also deleted from the chromosome in both YPH499 and W303-1A. STE7 was expressed in these alternate Δste11 strains, and immunoblot analysis revealed unphosphorylated and multiply phosphorylated forms of STE7 protein that were indistinguishable from the forms observed in extracts derived from the wild-type parent strains in the absence of pheromone [data not shown]. Therefore, the other components of the mating pathway, including STE11, are not necessary for the generation of multiply phosphorylated forms of STE7 protein; nonetheless, these other components may affect the phosphorylation state of STE7 during signal transduction.

Overproduction of STE7 protein does not activate STE12-dependent transcription

Considering that multiply phosphorylated forms of STE7 are present in the absence of pheromone and that their amounts are increased by pheromone treatment, we asked whether overproduction of STE7 protein would activate the mating pathway. To examine this possibility, activation of STE12-dependent gene expression by overproduction of STE7 protein was compared to activation by pheromone treatment. The β-galactosidase reporter plasmid pUZ4 [Fig. 1C] was used to monitor STE12-dependent gene expression. Overproduction of STE7 in strains KMY211-A, YPH499, or W303-1A had no effect on STE12-dependent transcription in the absence of pheromone (Table 2). In addition, STE7 overexpression in the absence of pheromone did not initiate the phenotypes associated with pheromone-dependent activation of the mating pathway (data not shown). Finally, strains overproducing STE7 respond normally to pheromone stimulation, displaying high levels of STE12-dependent transcription (Table 2).

We also investigated whether overproduction of STE7 protein could suppress the mating defect of a strain lacking the STE11 gene. In addition, we performed the complementary experiment of expressing wild-type STE11 protein with pYGU–STE11 in an isogenic strain lacking the STE7 gene. No diploids were formed in any of the 12 independent patch mating experiments that were performed with each strain [data not shown], demonstrating that the mating defect was not suppressed in either strain. This result is consistent with observations of others in similar experiments with high-copy plasmids [Dolan and Fields 1990], and provides further evidence that the kinases play unique roles in the mating pathway.

Construction and activities of a STE7 site-directed mutant

Finally, we investigated whether the presumed protein kinase activity of STE7 protein is required for signal propagation. A lysine at position 220 in STE7 protein corresponds to the conserved lysine found in the vast majority of serine/threonine kinases [Hanks et al. 1988]. This residue was changed to an arginine, and the mutant STE7 gene was fused to the GAL1 promoter in pSE936 [Elledge et al. 1991] to create pYGU7–A220 [Fig. 1B]. Similar substitutions in other kinases have been shown to impair or eliminate catalytic activity [Snyder et al. 1985; Booher and Beach 1986; Kamps and Sefton 1986; Celenza and Carlson 1989; Rhodes et al. 1990]. The resulting protein, ste7–A220, was expressed in YSC-
Figure 8. Immunoblot analysis of the STE7 protein expressed in strains lacking mating pathway components. (A) Whole-cell extracts [5 μg of protein per lane] were prepared from derivatives of the wild-type strain KMY211-A. Each strain expressed STE7 protein using pYGU–STE7. Immunoblot analysis was performed as described in Materials and methods. Extracts were derived from the following strains. (Lane 1) YSC-Aste4, lacking the STE4 gene; (lane 2) YSC-Aste5, lacking the STE5 gene; (lane 3) YSC-Aste11, lacking the STE11 gene; (lane 4) YSC-Aste12, lacking the STE12 gene. The arrow indicates the position of unphosphorylated STE7 protein; the asterisk (*) indicates that of the multiply phosphorylated form of STE7 protein. The additional cross-reactive species present in extracts derived from YSC-Aste11 cells grown in sucrose [data not shown]. Positions of molecular mass markers (kD) run in another lane of the same gel are indicated at right. (B) Whole-cell extracts [5 μg of protein per lane] were prepared from derivatives of the wild-type strain YPH499. Each strain expressed STE7 protein with pYGU–STE7. Immunoblot analysis was performed as described in Materials and methods. Extracts were derived from the following strains. (Lane 1) YPH499, wild-type strain; (lane 2) YPH499–Afus3, lacking the FUS3 gene; (lane 3) YPH499–Kss1, lacking the KSS1 gene; (lane 4) YPH499–Afus3&Kss1, lacking both the FUS3 gene and the KSS1 gene. Arrow indicates the position of unphosphorylated STE7 protein; the asterisk (*) indicates that of the multiply phosphorylated form of STE7 protein. The additional cross-reactive species are not STE7 dependent and are present in control extracts of each strain grown in sucrose [lane 1 and data not shown]. Positions of molecular mass markers (kD) run in another lane of the same gel are indicated at left.

AΔste7 for 6 hr, and the strain was tested for its ability to mate with the α-tester strain DC17 in qualitative patch mating experiments. This strain mated very poorly, yielding only 1–16 individual diploid colonies within the patch after 96 hr of growth on selective media [Fig. 9A]. In contrast, expression of the native STE7 protein in YSC-Aste7 gave dense patches within 36 hr. Expression of pYGU7–A220 in YSC-Aste7 for long periods of time (24 hr) increased the efficiency of mating two- to three-fold, but the mating efficiency remained far below wild-type levels [data not shown]. No diploids were observed with YSC-Aste7 patches that did not express STE7 protein. In addition, YSC-Aste7 transformants expressing ste7–A220 protein did not display any pheromone-dependent activation of STE12-dependent transcription. These experiments indicate that STE7 protein kinase activity is important for efficient mating. The low level of mating provided by ste7–A220 might be the result of residual kinase activity or a secondary function such as complex formation.

To determine the relationship of the multiply phosphorylated form of STE7 protein to STE7 catalytic activity, the phosphorylation state of ste7–A220 protein in the strain YSC-Aste7 was examined. Immunoblot analysis established that ste7–A220 protein is present primarily in an unphosphorylated form [Fig. 9B, lane 2]. The multiply phosphorylated, slow-migrating species were not present when ste7–A220 was expressed, although a species of low immunoreactivity did appear, migrating slightly faster than the prominent multiply phosphorylated species.

Table 2. Effect of overproduction of wild-type STE7 or STE11 protein on mating and STE12-dependent transcription

Strain	Deletion	Expression plasmid pYGU–	Matinga	β-Galactosidaseb	galactose + 2 μM pheromone
W303-1A	none(WT)	STE7	ND	7	235
W303-1A	none(WT)	STE11	ND	7	ND
YPH499	none(WT)	STE7	++ +	2	358
YPH499	none(WT)	STE11	++ +	2	ND
KMY211-A	none(WT)	STE7	++ +	<1	82
KMY211-A	none(WT)	STE11	++ +	<1	ND
YSC-Aste7sa	Δste7	STE7	++ +	<1	54
YSC-Aste7sa	Δste7	STE11	–	<1	ND
YSC-Aste11c	Δste11	STE7	–	<1	ND
YSC-Aste11c	Δste11	STE11	+ + +	<1	ND

[ND] Not determined.

aMating tests were performed by the patch method as described in Materials and methods. [+++] Indistinguishable from wild-type. Dense patches form within 36 hr of replica plating. [-] No diploids form with 96 hr of replica plating.

bβ-Galactosidase assays, with the reporter plasmid pUZ4 [Fig. 1C], are in Miller units as described in Materials and methods.

cKMY211-A strain background.

1312 GENES & DEVELOPMENT
We have discovered a dominant allele of the STE11 kinase whose expression causes constitutive activation of the mating pathway. Characterization of this dominant mutation shed light on the structure and function of the STE11 gene product and clarified its relationship to other mating pathway components. The dominant mutation lacks the amino-terminal 351 amino acids present in wild-type STE11 protein but retains the conserved kinase subdomains in the remaining carboxy-terminal 366 amino acids (Hanks et al. 1988; Rhodes et al. 1990). In the absence of pheromone, the mutant STE11 protein [STE11ΔN] activates the mating pathway to a level equal to or greater than that in the presence of pheromone, suggesting that the amino terminus of STE11 acts as a regulatory region that inhibits the activity of the carboxy-terminal catalytic domain. During signaling, upstream components in the mating pathway may interact with this regulatory domain directly or generate a second messenger that influences the function of the regulatory domain.

We have used STE11ΔN to determine the functional order of several components of the mating pathway whose epistatic relationships were previously unknown. STE11ΔN expression restores a significant level of mating ability to strains lacking either the STE4 or STE5 gene but not to strains lacking the STE7 or STE12 genes. We conclude that the STE4 and STE5 gene products function upstream of the STE11 gene product, and the STE7 and STE12 gene products function downstream of the STE11 protein. These results, along with those of others (Dietzel and Kurjan 1987; Miyajima et al. 1987; Blinder et al. 1989; Dolan and Fields 1990), are consistent with an order of execution [in MATα cells] as follows: α-factor, STE2, GPA1(SCG1), STE4, STE5, STE11, STE7, STE12, transcriptional induction. Although this order assumes that the action of the gene products are sequential, more complex interactions are also consistent with the data (Fig. 10).

Our experiments also shed light on the point of action of the FUS3 and KSS1 kinases in the signaling pathway. Expression of the dominant allele of STE11 induced high levels of STE12-dependent transcription in strains lacking the FUS3 or the KSS1 gene but not in a strain lacking both the FUS3 and KSS1 genes. This result is consistent with FUS3 and KSS1 serving redundant roles, in concert with, or following the action of, STE11 protein. Alternatively, these kinases could be required for the synthesis or activity of a pathway component.

We have observed both unphosphorylated and multiply phosphorylated forms of STE7 protein and have investigated both the origin and significance of these forms. In the absence of pheromone, multiply phosphorylated forms of STE7 protein are present in strains lacking each of the kinases involved in the mating pathway, including the Δfus3Δkss1 double deletion strain. This result requires that multiply phosphorylated forms of STE7 arise from STE7 autophosphorylation and/or the direct phosphorylation of STE7 by a novel kinase. Experiments with the STE7 mutant ste7−Δ220 indicate that autophosphorylation may play an important role: The vast majority of ste7−Δ220 protein is unphosphorylated, and the scarce ste7−Δ220 phosphorylated form does not comigrate with the multiply phosphorylated species observed with wild-type STE7 protein. Components upstream in the pheromone response pathway might influence the rate of STE7 autophosphorylation during signal transmission by one of several mechanisms, including the generation of second messengers or the direct phosphorylation of STE7 protein by an upstream kinase. Alternatively, a novel kinase may phosphorylate STE7 protein multiple times and be potentiated by another path-

Discussion
We have observed both unphosphorylated and multiply phosphorylated forms of STE7 protein and have investigated both the origin and significance of these forms. In the absence of pheromone, multiply phosphorylated forms of STE7 protein are present in strains lacking each of the kinases involved in the mating pathway, including the Δfus3Δkss1 double deletion strain. This result requires that multiply phosphorylated forms of STE7 arise from STE7 autophosphorylation and/or the direct phosphorylation of STE7 by a novel kinase. Experiments with the STE7 mutant ste7−Δ220 indicate that autophosphorylation may play an important role: The vast majority of ste7−Δ220 protein is unphosphorylated, and the scarce ste7−Δ220 phosphorylated form does not comigrate with the multiply phosphorylated species observed with wild-type STE7 protein. Components upstream in the pheromone response pathway might influence the rate of STE7 autophosphorylation during signal transmission by one of several mechanisms, including the generation of second messengers or the direct phosphorylation of STE7 protein by an upstream kinase. Alternatively, a novel kinase may phosphorylate STE7 protein multiple times and be potentiated by another path-

Figure 9. Phosphorylation state and mating ability of a ste7 mutant. (A) The ability of mutant ste7−Δ220 protein to restore mating ability to a strain lacking the STE7 gene was determined. Patches represent diploids growing on minimal media plates, the result of successful mating of transformants of the strain YSC-Aaste7 with a lawn of the mating tester strain DC17. Patch 1 expressed STE7 wild-type protein from pYGU–STE7, patches 2–4 expressed ste7−Δ220 from pYGU7–Δ220, patch 5 contained the parental plasmid pYES-1 and thus did not express any plasmid-dependent STE7 protein. (B) The phosphorylation forms of ste7−Δ220 were revealed by immunoblot analysis. Whole-cell extracts (5 μg/lane) were prepared, and immunoblot analysis was performed as described in Materials and methods. All extracts were derived from transformants of the strain YSC-Aaste7. (Lane 1) A pYGU7–Δ220 transformant grown in medium containing 2% sucrose, (lane 2) a pYGU7–Δ220 transformant expressing ste7−Δ220 protein, (lane 3) a pYGU–STE7 transformant expressing wild-type STE7 protein. Positions of molecular mass markers [kD] run in another lane of the same gel are indicated at left.
This schematic representation of the order of action of the mating pathway component. Experiments with purified STE7 protein in vitro are needed to establish the possible role of STE7 autophosphorylation in signal propagation.

Three lines of evidence indicate that STE7 phosphorylation plays a role in pheromone response: (1) Although both unphosphorylated and multiply phosphorylated forms of STE7 protein are present in the absence of pheromone activation, multiply phosphorylated forms of STE7 protein accumulate upon exposure to mating pheromone; (2) this accumulation is temporally competent, occurring on the same time scale as other responses to pheromone such as transcriptional induction of the transcriptional activator STE12 (Song et al. 1991); and (3) expression of the dominant allele of STE7 gene with STE11 causes nearly quantitative conversion of STE7 protein to multiply phosphorylated forms.

The correlation of STE7 phosphorylation with mating pathway activation can be interpreted in at least two ways. One interpretation is that multiply phosphorylated forms of STE7 protein are active signal transducers, but the unphosphorylated form of STE7 inhibits signal transduction. The role of upstream components is to induce the conversion of STE7 protein from the unphosphorylated to multiply phosphorylated species, thus relieving the antagonistic action of unphosphorylated STE7. This interpretation is consistent with our observation that overproduction of STE7 protein does not activate the mating pathway, eliminating the possibility that an increase in the amount of multiply phosphorylated STE7 protein alone can initiate signaling. Alternatively, the repertoire of multiply phosphorylated forms of STE7 in pheromone-stimulated cells may differ from the forms present in unstimulated cells. Thus, there may be unique phosphorylation forms of STE7 protein generated in the presence of pheromone that could not be distinguished in the immunoblot analysis experiments presented here.

A second interpretation is that phosphorylation of STE7 protein is part of the adaptive response to pheromone (Ciejeck and Thorner 1979; Sprague and Herskowitz 1981; Courtchene et al. 1989; Cole and Reed 1991; Irie et al. 1991). According to this interpretation, the phosphorylation of STE7 is important in down-regulating or otherwise altering STE7 protein kinase activity. This model requires the involvement of unphosphorylated STE7 protein in signal propagation, with multiply phosphorylated forms of STE7 having altered substrate specificities or impaired catalytic activities. Further experiments on STE7 phosphorylation, both in vivo and in vitro, are needed to distinguish between these and other potential models.

Materials and methods

Yeast strains and genetic methods

All strains used in this study (Table 3), except mating testers, are either derivatives of W303-1A (gift of S. Fields) KMY211-A (gift of K. Matsumoto), or YPH499 (gift of P. Hieter). CB023 is a W303-1A derivative lacking the three major vacuolar proteases (Brenner and Fuller 1992). The protease-deficient strain lacking the BAR1 (SST1) gene, YBC102, was prepared from CB023 by one-step gene replacement (Rothstein 1983) with the SalI-EcoRI fragment of pGss11 (Renke et al. 1988). Selection of ura3 recombinants was accomplished with 5'-fluoro-orotic acid (5'-FOA) (Boeke et al. 1984), and replacement was verified by Southern blot analysis (Southern 1975). Strains lacking the STE4, STE5, STE7, STE11, and STE12 genes are all derivatives of KMY211-A and were prepared and kindly provided by K. Sugimoto. Confirmation of their construction (mating complementation and Southern blot analysis) was performed in collaboration with K. Sugimoto. The derivative lacking the STE4 gene, YSC-AAst4, was prepared by one-step gene replacement with the 3.9-kb PstI-PstI fragment of p4-121 (gift of V. Mackay). Correct integrants were confirmed by complementation of their mating defect with the wild-type gene with pL19 (Whiteway et al. 1990). The derivative lacking the STE5 gene, YSC-AAst5, was prepared by one-step gene replacement with pSF32 (gift of V. Mackay). Correct integrants were confirmed by complementation of the mating defect with the wild-type gene with pYGU-STE4 (see below) and Southern blot analysis. The derivative lacking the STE11 gene, YSC-AAst11, was prepared by one-step gene replacement with the 2.6-kb XbaI fragment from pNC202 (Rhodes et al. 1990). Correct integrants were confirmed by complementation of the mating defect with the wild-type gene using pYGU–STE11 (see below).
Table 3. Yeast strains used in this study

Strains	Genotype (Source)	Source
KMY211-A	a his3 leu2 ura3 trp1	K. Matsumoto
YSC-Δaste4	a his3 leu2 ura3 trp1 ste4::LEU2*	this study, with K. Sugimoto
YSC-Δaste5	a his3 leu2 ura3 trp1 ste5::LEU2*	this study, with K. Sugimoto
YSC-Δaste7	a his3 leu2 ura3 trp1 ste7::LEU2*	this study, with K. Sugimoto
YSC-Δaste11	a his3 leu2 ura3 trp1 ste11::ura3*	this study, with K. Sugimoto
YSC-Δaste12	a his3 leu2 ura3 trp1 ste12::LEU2*	this study, with K. Sugimoto
YPH499	a his3-Δ200 leu2-Δ1 ura3-52 trp1-Δ63 ade2-101 lys2-801	D. Ma and J. Thorner
YPH499-Δfus3	a his3-Δ200 leu2-Δ1 ura3-52 trp1-Δ63 ade2-101 lys2-801	D. Ma and J. Thorner
YPH499-Δkssl	a his3-Δ200 leu2-Δ1 ura3-52 trp1-Δ63 ade2-101 lys2-801	D. Ma and J. Thorner
YPH499-Δfus3Δkssl	a his3-Δ200 leu2-Δ1 ura3-52 trp1-Δ63 ade2-101 lys2-801	D. Ma and J. Thorner
W303-1A	a his3-15 leu2-3,112 ura1-1 ade2-1 can1-100	S. Fields
YBC102	a pep4::HIS3 prb1::LEU2 prc1::HISG barl::HISG	this study
NNY19	a his3 leu2 trp1 lys2 Fus1-lacZ::LEU2	K. Matsumoto laboratory
DC14	a his1	R. Fuller
DC17	a his1	R. Fuller

a KMY211-A strain background.

b YPH499 strain background.

c W303-1A strain background.

Low. ura3 revertants were selected by growth on 5'-FOA plates [Boeke et al. 1984]. The derivative lacking the STE12 gene, YSC-Δaste12, was prepared by one-step gene replacement with the Spht–SacI fragment of pSUL16 [Fields and Herskowitz 1987]. Correct integrants were confirmed by complementation of the wild-type STE12 gene using pOF22 [Do-lan and Fields 1990] and by Southern blot analysis.

All media were prepared as described in Sherman et al. [1979]. Transformations of yeast strains were accomplished by the use of LiCl [Ito et al. 1983]. Mating tests were performed using a modification of the patch test method [Sprague and Herskowitz 1981]. Patch tests involving the expression of proteins from the GAL1 promoter were performed by growing patches on appropriate plates containing minimal medium and 2% sucrose. Matings were performed by replica-plating the patches to plates containing rich media [YP] and 2% galactose, with mating tester (strain DC17) lawns, and growing for 8 hr at 30°C before replica-plating to selective plates containing minimal medium and 2% glucose. Experiments involving mating phenome were done with α-mating factor purchased from Penninsula Laboratories [no. 8360].

Plasmids

The plasmid pBSCR–STE7 containing the STE7 gene in Bluescript [BSCl, Stratagene] was prepared by cloning the 1.7-kb STE7 BamHI–HindIII fragment from pYN7 (gift of K. Sugimoto) into the XhoI–HindIII polynucleotides of pBSCR and replacing the 5'-coding region with a 56-bp/48-bp XhoI–BamHI oligonucleotide. This oligonucleotide also created an NdeI site at the initiation codon flanked by an EcoRI site. The bacterial expression plasmid pET-STE7 was prepared by cloning the 1.8-kb NdeI-BamHI fragment from pBSCR–STE7 into the NdeI–BamHI site in pET11-A [Novagen]. The galactose-inducible yeast overproduction vector pYGU–STE7 was prepared by cloning the 1.8-kb KpnI–NotI fragment from pBSCR–STE7 into the KpnI–NotI site of pYES-1 [2μ origin, URA3, GAL1 promoter, Invitrogen]. Site-directed mutagenesis of STE7, replacing the lysine at position 220 with an arginine, was performed by direct oligonucleotide replacement of the 42-bp/34-bp AlfIII–BsrXI fragment of STE7 with a double-stranded oligonucleotide containing a single-base-pair substitution (AAA → AGA). The dephosphorylated 2.3-kb AlfIII–BsrXI fragment of pBSCR–STE7, the 1.3-kb AlfIII fragment of pBSCR–STE7, and the phosphorylated double-stranded oligonucleotide were ligated to form pBC7–A220. The construction was confirmed by sequencing with the dideoxy chain termination method [Sanger et al. 1977]. The site-directed mutant was placed under control of the galactose-inducible GAL1 promoter by ligation of the 1.8-kb XbaI–XhoI STE7 fragment from pBC7–A220 to the 7.8-kb vector Xbal–XhoI fragment of pSE936 [Elledge et al. 1991], resulting in pYGGU–A220.

The STE11 gene was cloned from yeast genomic DNA by the polymerase chain reaction (PCR) procedure [Saiki et al. 1988] with Taq thermostable DNA polymerase (Cetus) and the oligonucleotide primers 5'-CCCCGAATTCCTCGACCATATG-GAAAGACGACAAAACACGCA-3' and 5'-CCCCGATCTCTAGATGATTACTTAATCAGCGTAATTGA-3'. A 2.4-kb DNA, the sole PCR product produced, was digested with BamHI and Xbal and cloned into the BamHI–Xbal site of pSE936 [Elledge et al. 1991] to give the galactose-inducible expression vector pYGU–STE11. Four independent PCR clones were tested in the mating and transcription experiments described in the text.

The plasmid containing the amino-terminal truncation of STE11 under the control of the GAL1 promoter was isolated from a genomic screen by S. Ramer [S. Ramer and R. Davis, in prep.]. A plasmid with a pSE936 [Elledge et al. 1991] backbone [URA3, CEN4, GAL1 promoter], which hybridized with a STE11 probe, was provided by S. Ramer for further analysis in the present study. This STE11-containing plasmid was found to contain a deletion in the 5'-coding region of STE11 and was therefore named pYGU–A1ΔN. Sequencing [Sanger et al. 1977] with an oligonucleotide primer corresponding to nucleotides...
The STE11 fusion protein was induced and purified by the same protocol as was the STE7 protein. The resulting STE11 fusion protein was judged to be ~90% pure by SDS-PAGE electrophoresis.

Purification of STE7 protein

BL21(DE3) cells [Novagen] containing the lysozyme-expressing plasmid pLYS [Novagen] were transformed with pET11A-STE7. The transformant was grown at 37°C in LB medium, [2 liters] containing 100 μg/ml of ampicillin and 25 μg/ml of chloramphenicol to an OD600 of 0.7. The culture was induced with 0.5 mM isopropylthiogalactoside and grown for an additional 2 hr. The cells were harvested by centrifugation at 5000g for 10 min, washed with 100 ml of 20 mM HEPES (pH 7.5), and suspended in 100 ml of buffer A [20 mM HEPES at pH 7.5, 10% glycerol, 10 mM β-mercaptoethanol, 1 mM EDTA, 2 μg/ml of chymostatin, 2 μM pepstatin, 2 mM benzamidine, 1 mM phenylmethylsulphonyl fluoride [PMSF], containing 400 mM NaCl]. The suspension was lysed by sonication at 4°C and centrifuged at 10,000g for 10 min. The pellet, containing the majority of STE7 protein, was suspended in 5 ml of buffer A containing 0.5% Triton X-100, incubated at 4°C for 10 min, and centrifuged at 10,000g for 10 min at 4°C. The pellet was washed four additional times in the same manner and suspended in 1 ml of buffer A containing 50 mM NaCl. The resulting STE7 protein was judged to be ~80% pure by SDS-PAGE electrophoresis.

Purification of STE11 protein

XL1 cells [Stratagene] were transformed with pGEX-STE11ΔN. The STE11 fusion protein was induced and purified by the same protocol as was the STE7 protein. The resulting STE11 fusion protein was judged to be ~90% pure by SDS-PAGE electrophoresis.

Antisera

Approximately 2 mg of purified STE7 was subjected to electrophoresis in a 10% SDS-polycrylamide gel [Laemmli 1970]. The gel was stained with Coomassie brilliant blue R-250, and a slice containing STE7 was removed. A rabbit was initially immunized with 0.5 mg of STE7 and then boosted every 21 days with 0.25 mg of STE7 protein for a total of four boosts. The antisera used in this study were taken 10 days after the second boost. All antibody preparations were performed by BabCO [Berkeley, CA]. Essentially the same protocol was employed for the preparation of STE11 polyclonal antisera, by use of 2 μg of recombinant STE11–GST fusion protein.

Immunoblot analysis

For the analysis of STE7 phosphorylation in strains containing pYGU–STE7, whole-cell extracts were prepared as described below for β-galactosidase assays, except buffer A also contained phosphatase inhibitors (5 mM sodium fluoride, 5 mM sodium phosphate, 10 mM sodium pyrophosphate, 10 mM sodium molybdate, 1 mM EGTA). Whole-cell extracts (5 μg/gel lane) were subjected to electrophoresis in a 10% SDS-polycrylamide gel and transferred to nitrocellulose filters [Towbin et al. 1979]. The STE7 polyclonal antibody (1:1000 dilution) was used as the primary antibody, and Bio-Rad goat anti-rabbit IgG conjugated to alkaline phosphatase [1:2000 dilution] was used as the secondary antibody. A similar protocol, omitting the phosphatase inhibitors, was followed for the analysis of STE11 protein.

Phosphatase treatments

Whole-cell extract (5 μg of protein in ~1 μl) was diluted with 8.5 μl of phosphatase buffer [100 mM Tris-HCl, at pH 9.6, 2 mM MgCl₂, 0.1 mM ZnCl₂], followed by the addition of 12 units of calf intestinal phosphatase [Boehringer Mannheim, 24 U/μl] to all but mock-treated samples. Samples containing phosphatase inhibitors were supplemented with 1 μl of a 10× phosphatase inhibitor cocktail [final concentrations, 5 mM sodium fluoride, 5 mM sodium phosphate, 10 mM sodium pyrophosphate, 10 mM sodium molybdate, 5 mM EDTA, 5 mM EGTA]. Mixtures were incubated for 1 hr at 37°C, terminated with 10 μl of SDS gel loading buffer, and boiled for 2 min before gel electrophoresis.

The immune complexes of STE7 used for dephosphorylation experiments were prepared as follows: Whole-cell extract (100 μg of protein) was diluted to a final volume of 200 μl in buffer B [20 mM Tris-HCl at pH 7.5, 1 mM EDTA, 5% glycerol, 0.5 mM dithiothreitol, 2 mg/ml of chymostatin, 2 μM pepstatin A, 0.6 μM leupeptin, 2 mm benzamidine, 1 mM phenylmethylsulphonyl fluoride [PMSF], containing 50 mM NaCl, and STE7 polyclonal antibody [4 μl, 1:500 final dilution] was added followed by a 2-hr incubation on a rotator at 4°C. Protein A beads [50 μl of a 10% solution in buffer B with 50 mM NaCl and 0.2 mg/ml of BSA] were added and incubated for an additional hour. The suspension was centrifuged at 4000g for 2 min, and the pellet was washed twice with 0.5 μl of buffer B containing 1 mM NaCl and 0.5% Triton X-100, with each rinse separated by a 10-min incubation and a centrifugation at 4000g. The final wash was performed with buffer B containing 50 mM NaCl and no Tris. Dephosphorylation experiments (10 μl final volume per assay) were performed as indicated above on the immune complexes attached to the protein A beads. Following two washes with 0.5 μl of buffer B containing 1 mM NaCl, the beads were suspended in 20 μl of 2× SDS gel loading buffer, and boiled for 2 min before gel electrophoresis.

β-Galactosidase assays

Activation of pheromone-inducible genes was quantified by...
β-galactosidase assays with the reporter plasmid pUZ4 [CEN4 TRP1 ARS]. Strains containing pUZ4 (alone or in combination with galactose-inducible plasmids) were grown in 50 ml of synthetic medium containing the appropriate amino acids, 2% sucrose, and 0.1% glucose to an OD600 of 0.5. The cell suspension was centrifuged at 5000g for 10 min, washed with sterile water, resuspended in 100 ml of rich medium (YP) containing 2% galactose, and grown for an additional 8 hr. Cells were harvested and suspended in 1.0 ml of buffer B containing 400 mM NaCl. The cells were disrupted by beating with glass beads for 9 min at 4°C. The extract was centrifuged at 13,000g for 10 min, and the supernatant was centrifuged again at 13,000g for 10 min. β-Galactosidase activities, determined as described by Miller [1972], are given in units per microgram of protein in the whole-cell extract.

Acknowledgments

We thank Ratsunori Sugimoto for strains, plasmids, and helpful discussions. We also thank Robert Fuller and Charles Brenner for CB010, Stan Fields for strains and pSUL16, Helge Ziegler and Mark Walberg for pMW20L, Leslie Bell and Vivian MacKay for disruption plasmids, and Malcolm Whiteway for pL 19. Kunihiro Matsumoto kindly contributed plasmids and strains. Elaine Elion, William Courchesne, Phil Hieter, Doreen Ma, and Jeremy Thorner graciously provided strains and plasmids for work in their laboratory. Charles Bender, A. and G.F. Sprague Jr. 1986. Yeast peptide pheromones, marked "advertisement" in accordance with 18 USC section 1734 solely to indicate this fact.

References

Bender, A. and G.F. Sprague Jr. 1986. Yeast peptide pheromones, α-factor and α-pheromone, activate a common response mechanism in their target cells. Cell 47: 929–937.
Blinder, D., S. Bouvier, and D.D. Jenness. 1989. Constitutive mutants in the yeast pheromone response: Ordered function of the gene products. Cell 56: 479–486.
Boeke, J.D., F. LaCroute, and G.R. Fink. 1984. A positive selection for mutants lacking orotidine 5'-phosphate decarboxylase activity in yeast: 5'-Fluoro-orotic acid resistance. Mol. Cell. Biol. 4: 429–457.
Dietzel, C. and J. Kurjan. 1987. The yeast SCG1 gene: A Gα-like protein implicated in the α- and α-factor response pathway. Cell 50: 1001–1010.
Dixon, R.A.F., B.K. Kobilka, D.J. Strader, J.L. Benovic, H.G. Doholm, T. Frielle, M.A. Bolanowski, C.D. Bennet, E. Rands, R.E. Diehl, R.A. Mumford, E.E. Slater, L.S. Sigal, M.S. Caron, R.J. Lefkowitz, and C.D. Strader. 1986. Cloning of the gene and cDNA for mammalian β-adrenergic receptor and homology with rhodopsin. Nature 321: 75–79.
Dolan, J.W. and S. Fields. 1990. Overproduction of the yeast STE12 protein leads to constitutive transcriptional induction. Genes & Dev. 4: 492–502.
Dolan, J.W., C. Kirkman, and S. Fields. 1989. The yeast STE12 protein binds to the DNA sequence mediating pheromone induction. Proc. Natl. Acad. Sci. 86: 5703–5707.
Duntze, W., V. MacKay, and T.R. Manney. 1970. Saccharomyces cerevisiae: A diffusible sex factor. Science 168: 1732–1735.
Elion, E.A., P.L. Grisafi, and G.R. Fink. 1990. Fus3 encodes a cdc2+/CDC28-related kinase required for the transition from mitosis to conjugation. Cell 60: 649–664.
Elion, E.A., J.A. Brill, and G.R. Fink. 1991. Fus3 represses CLN1 and CLN2 and in concert with KSS1 promotes signal transduction. Proc. Natl. Acad. Sci. 88: 9392–9396.
Elledge, S.J., J.T. Mulligan, S.W. Ramer, M. Spottswood, and R.W. Davis. 1991. YES: A multifunctional cDNA expression vector for the isolation of genes by complementation of yeast and Escherichia coli mutations. Proc. Natl. Acad. Sci. 88: 1731–1735.
Errede, B. and G. Ammerer. 1989. STE12, a protein involved in cell type-specific transcription and signal transduction in yeast, is part of protein-DNA complexes. Genes & Dev. 3: 1349–1361.
Federman, A., B. Conklin, K. Schrader, R. Reed, and H. Bourne. 1992. Hormonal stimulation of adenylyl cyclase through Gα-protein βγ subunits. Nature 356: 159–161.
Fields, S. and I. Herskowitz. 1987. Regulation by the yeast mating-type locus of STE12, a gene required for cell-type-specific expression. Mol. Cell. Biol. 7: 3818–3821.
Gilman, A. 1987. G proteins: Transducers of receptor-generated signals. Annu. Rev. Biochem. 56: 615–649.
Hanks, S.K., A.M. Quin, and T. Hunter. 1988. The protein kinase family: Conserved features and deduced phylogeny of the catalytic domains. Science 241: 42–52.
Cairns et al.

Hartwell, L. 1973. Synchronization of haploid yeast cell cycles, a prelude to conjugation. Exp. Cell Res. 76:111–117.

——-. 1980. Mutants of Saccharomyces cerevisiae unresponsive to cell division control by polypeptide mating hormone. J. Cell Biol. 85:811–822.

Herskowitz, I. 1989. A regulatory hierarchy for cell specialization in yeast. Nature 342:749–757.

Irie, K., S. Nomoto, I. Miyajima, and K. Matsumoto. 1991. SGV1 encodes a CDC28/cdc2-related kinase required for a G1 subunit-mediated adaptive response to pheromone in Saccharomyces cerevisiae. Cell 65:785–795.

Ito, H., Y. Fukuda, K. Murata, and A. Kimura. 1983. Transformation of intact yeast cells treated with alkali cations. J. Cell Biol. 153:163–168.

Jenness, D.D., A.C. Burkholder, and L.H. Hartwell. 1983. Binding of α-factor pheromone to yeast a cells: Chemical and genetic evidence for an α-factor receptor. Cell 35:521–529.

Johnston, M. and R.W. Davis. 1984. Sequences that regulate the divergent GAL1-GAL10 promoter in Saccharomyces cerevisiae. Mol. Cell. Biol. 4:1440–1448.

Kamps, M.P. and B.M. Selton. 1986. Neither arginine nor histidine can carry out the function of lysine-295 in the ATP-binding site of 60S. Mol. Cell. Biol. 6:751–757.

Kim, D., D. Lewis, L. Graziaeli, E. Neer, D. Bar-Sagi, and D. Clapham. 1989. G-protein βγ-subunits activate the cardiac muscarinic K⁺ channel via phospholipase A₂. Nature 337:557–560.

Kronstad, J.W., J.A. Holly, and V.L. MacKay. 1987. A yeast operator overlaps an upstream activation site. Cell 50:369–377.

Kurjan, J. 1985. α-factor structural gene mutations in Saccharomyces cerevisiae mutants unresponsive to α-factor production and mating. Mol. Cell. Biol. 5:787–796.

Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685.

Lipke, P.N., A. Taylor, and C.E. Bailou. 1976. Morphogenetic effects of α-factor on Saccharomyces cerevisiae α cells. J. Bacteriol. 127:610–618.

MacKay, V. and T.R. Manney. 1974a. Mutations affecting sexual conjugation and related processes in Saccharomyces cerevisiae. I. Isolation and phenotypic characterization of nonmating mutants. Genetics 76:255–271.

——-. 1974b. Mutations affecting sexual conjugation and related processes in Saccharomyces cerevisiae. II. Genetic analysis of nonmating mutants. Genetics 76:273–288.

McCaffrey, G., F.J. Clay, K. Kelsay, and G.F. Sprague Jr. 1987. Identification and regulation of a gene required for cell fusion during mating of the yeast Saccharomyces cerevisiae. Mol. Cell. Biol. 7:2680–2690.

Miller, J. 1972. Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.

Miyajima, I., M. Nakaiiku, N. Nakayama, C. Brenner, K. Miyajima, K. Kaibuchi, Y. Arai, Y. Kaziro, and K. Matsumoto. 1987. GPA1, a haptor-specific essential gene, encodes a yeast homolog of mammalian G protein which may be involved in mating factor signal transduction. Cell 50:1011–1019.

Nomoto, S., N. Nakayama, K. Arai, and K. Matsumoto. 1990. Regulation of the yeast pheromone response pathway by G protein subunits. EMBO J. 9:691–696.

Reneke, J.E., K.J. Blumer, and J. Thorner. 1988. The carboxy-terminal segment of the yeast α-factor receptor is a regulatory domain. Cell 55:221–234.

Rhodes, N., L. Connell, and B. Errede. 1990. STE11 is a protein kinase required for cell-type-specific transcription and signal transduction in yeast. Genes & Dev. 4:1862–1874.

Rothstein, R.J. 1983. One step gene disruption in yeast. Methods Enzymol. 101:202–211.

Saiki, R., D. Gelfand, S. Stoffel, S. Scharf, R. Higuchi, C. Horn, K. Mullis, and H. Erlich. 1988. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487–491.

Sanger, F., S. Nicklen, and A.R. Coulson. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. 74:5463–5467.

Schena, M., L.P. Freedman, and K.R. Yamamoto. 1989. Mutations in the glucocorticoid receptor zinc finger that distinguish interdigitated DNA binding and transcriptional enhancement activities. Genes & Dev. 3:1590–1601.

Sherman, F., G.R. Fink, and J.B. Hicks. 1986. Methods in yeast genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.

Snyder, M.A., J.M. Bishop, J.P. McGrath, and A. Levinson. 1985. A mutation at the ATP-binding site of pp60c-src abolishes kinase activity, transformation, and tumorigenicity. Mol. Cell. Biol. 5:1772–1779.

Song, O.-K., J.W. Dolan, Y.-I.O. Yuan, and S. Fields. 1991. Pheromone-dependent phosphorylation of the yeast STE12 protein correlates with transcriptional activation. Genes & Dev. 5:741–750.

Southern, E. 1975. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98:503–517.

Sprague, G.F. Jr. and I. Herskowitz. 1981. Control of yeast cell type by the mating type locus. I. Identification and control of expression of the a-specific gene BAR1. J. Mol. Biol. 153:305–321.

Streyer, L. and H.R. Bourne. 1986. G-proteins: A family of signal transducers. Annu. Rev. Cell Biol. 2:391–419.

Teague, M.A., D.T. Chaleff, and B. Errede. 1986. Nucleotide sequence of the yeast regulatory gene STE7 predicts a protein homologous to protein kinases. Proc. Natl. Acad. Sci. 83:7371–7375.

Towbin, H., T. Stachelin, and J. Gordon. 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications. Proc. Natl. Acad. Sci. 76:4350–4354.

Van Arsdell, S.W. and J. Thorner. 1987. Hormonal regulation of gene expression in yeast. In Transcriptional control mechanisms (ed. D. Graner, M.G. Rosenfeld, and S. Chang), pp. 325–332. Alan R. Liss, New York.

Whiteway, M., L. Hougan, D. Dignard, D.Y. Thomas, L. Bell, G.C. Saari, F.J. Grant, P. O’Hara, and V.L. MacKay. 1989. The STE4 and STE18 genes of yeast encode potential β and γ subunits of the mating factor receptor-coupled G protein. Cell 56:467–477.

Whiteway, M., L. Hougan, and D.Y. Thomas. 1990. Overexpression of the STE4 gene leads to mating response in haploid Saccharomyces cerevisiae. Mol. Cell. Biol. 10:217–222.

Wilkinson, L.E. and J.R. Pringle. 1974. Transient G1 arrest of Saccharomyces cerevisiae of mating type α by a-factor produced by cells of mating type a. Exp. Cell Res. 58:1107–1119.
Order of action of components in the yeast pheromone response pathway revealed with a dominant allele of the STE11 kinase and the multiple phosphorylation of the STE7 kinase.

B R Cairns, S W Ramer and R D Kornberg

Genes Dev. 1992, 6:
Access the most recent version at doi:10.1101/gad.6.7.1305

References
This article cites 64 articles, 31 of which can be accessed free at:
http://genesdev.cshlp.org/content/6/7/1305.full.html#ref-list-1

License

Email Alerting Service
Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article or click here.