Interactions of the CpxA sensor kinase and cognate CpxR response regulator from Yersinia pseudotuberculosis

Edvin J Thanikkal1,2, Jagadish C K Mangu1 and Matthew S Francis1,2*

Abstract

Background: The CpxA sensor kinase-CpxR response regulator two-component regulatory system is a sentinel of bacterial envelope integrity. Integrating diverse signals, it can alter the expression of a wide array of components that serve to shield the envelope from damage and to promote bacterial survival. In bacterial pathogens such as Yersinia pseudotuberculosis, this also extends to pathogenesis. CpxR is thought to dimerize upon phosphorylation by the sensor kinase CpxA. This phosphorylation enables CpxR binding to specific DNA sequences where it acts on gene transcription. As Cpx pathway activation is dependent on protein-protein interactions, we performed an interaction analysis of CpxR and CpxA from Y. pseudotuberculosis.

Results: CpxR full-length and truncated versions that either contained or lacked a putative internal linker were all assessed for their ability to homodimerize and interact with CpxA. Using an adenylate cyclase-based bacterial two hybird approach, full-length CpxR readily engaged with CpxA. The CpxR N-terminus could also homodimerize with itself and with a full-length CpxR. A second homodimerization assay based upon the λcI repressor also demonstrated that the CpxR C-terminus could homodimerize. While the linker was not specifically required, it enhanced CpxR homodimerization. Mutagenesis of cpxR identified the aspartate at residue 51, putative N-terminal coiled-coil and C-terminal winged-helix-turn-helix domains as mediators of CpxR homodimerization. Scrutiny of CpxA full-length and truncated versions revealed that dimerization involved the N-terminus and an internal dimerization and histidine phosphotransfer domain.

Conclusions: This interaction analysis mapped regions of CpxR and CpxA that were responsible for interactions with self or with each other. When combined with other physiological and biochemical tests both hybrid-based assays can be useful in dissecting molecular contacts that may underpin Cpx pathway activation and repression.

Keywords: BACTH assay, λCI homodimerization assay, Homodimer, Heterodimer, Linker, Coiled-coil, Winged helix-turn-helix, Phosphorylation

Background

Conditions that threaten the integrity of the bacterial envelope are collectively termed extracytoplasmic stresses (ECS). Bacteria employ a series of ECS-responsive regulatory pathways to control the expression of ‘survival’ genes whose products act in the periplasm to maintain membrane integrity. This ensures continued bacterial growth even in environments poisoned by harmful ECS. A notable ECS-responsive pathway is the CpxA-CpxR two-component regulatory system (TCRS) [1,2]. Belonging to the class I histidine kinases [3], CpxA is the integral inner membrane sensor kinase (SK). Upon activation by ECS sensing – presumably in the form of misfolded proteins – it becomes auto-phosphorylated. Through a phosphotransfer reaction, CpxA transduces this signal through the membrane to activate the cytoplasmic CpxR response regulator (RR). CpxR belongs to the OmpR/PhoB family of winged-helix-turn-helix (wHTH) transcriptional RRs [4]. Phosphorylated CpxR (CpxR ~ P) then binds to the promoters of genes coding for several protein folding and degradation factors that operate in the periplasm. An important

* Correspondence: matthew.francis@molbiol.umu.se
1Department of Molecular Biology, Umeå University, Umeå SE-901 87, Sweden
2Umeå Centre for Microbial Research, Umeå University, Umeå SE-901 87, Sweden

© 2012 Thanikkal et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
function of the Cpx pathway is therefore in protein quality control in the bacterial envelope with an emphasis on maintaining outer membrane structural integrity [1,2]. However, as the CpxR regulon may include hundreds of genes [5,6], playing sentinel to the cell envelope must incorporate diverse signals and safeguarding mechanisms.

In Gram negative enteropathogenic *Yersinia pseudotuberculosis*, activation of the Cpx pathway also regulates periplasmic protein folding and degradation factors [7-10]. Additionally, accumulation of CpxR−P down-regulates several prominent *Yersinia* virulence determinants. Most notable is the Ysc-Yop type III secretion system [7,10], the cellular adhesin known as invasin and its transcriptional activator RovA [8,9]. RovA is a global regulator in pathogenic *Yersinia* and is capable of influencing the expression of at least 60 genes [11-13]. Hence, the regulatory influence of CpxR−P – either direct or indirect via effects on rovA expression – has potential to be quite widespread in these bacteria.

An activated Cpx pathway may therefore function to restrict *Y. pseudotuberculosis* virulence factor expression during times of ECS when all resources must be dedicated to the expression of survival genes. In the absence of ECS, virulence factor expression can be de-repressed to permit *Y. pseudotuberculosis* to mount a successful host infection [14]. In fact, accumulating evidence in a few Gram-negative pathogens suggests that the Cpx pathway might possess a universal role in virulence factor regulation and bacterial pathogen fitness either by aiding in the establishment of an environmental reservoir or during host infections [2,15-17].

CpxA possesses a modular structure [3,18,19] (Figure 1). Consecutive domains in their N-terminus are responsible for signal input, processing and signal transmission. The latter is defined as the HAMP linker domain by virtue of its presence in histidine kinases, Adenyl cyclases, Methylation accepting proteins and Phosphatases [20]. Located in the cytoplasm, the HAMP linker domain most likely regulates the phosphorylation of histidine SKs by transmitting conformational changes originating in the periplasmic ligand-binding domains to the cytoplasmic-located C-terminal kinase catalytic domain [20,21]. The remainder of the protein is composed of an internal dimerization and histidine phosphotransfer (DHp) domain and then a C-terminal histidine kinase catalytic domain [22,23]. Together, these two consecutive domains form the kinase core. The DHp domain mediates dimerization [24], and possesses the conserved phospho-accepting histidine residue and also a phosphatase domain for dephosphorylating CpxR [22,23,25,26]. Lastly, the catalytic domain is essential for kinase activity. It contains a number of conserved motifs necessary for ATP binding [27,28] and probably also for catalysis and phosphotransfer [22].

CpxR contains two structurally conserved domains; a N-terminal receiver domain and a C-terminal effector domain that are joined by a flexible internal linker [29,30] (Figure 2). The N-terminal receiver domains of RRs share several conserved features such as a α4-β5-α5 interface and an enrichment in aspartate/serine/threonine amino acids. These residues are thought to cooperate in dimerization as a result of phosphorylation induced conformational changes that in turn propagates the signal [29,30].

![Figure 1 BACTH analysis of CpxA-CpxA interactions](http://www.biomedcentral.com/1756-0500/5/536)

Figure 1 BACTH analysis of CpxA-CpxA interactions. Full-length CpxA_{1-458} was translationally fused to the N-terminus of CyaA_{1-224} (T25 – dark green shade) creating a CpxA_{1-458-T25} hybrid used as the ‘bait’. Full-length CpxA_{1-458} was also translationally fused to the N-terminus of CyaA_{225-399} (T18 – magenta shade) giving rise to a ‘prey’ CpxA_{1-458-T18} hybrid. Based on CpxA divisions into sensor input (CpxA_{1-156} cadet blue shade), HAMP – signal transmission (CpxA_{157-240} soft yellow shade), Dhp – dimerization and histidine phosphotransfer (CpxA_{241-310} metallic gold shade) and histidine kinase catalysis (CpxA_{311-459} grey shade) domains, an additional six ‘prey’ CpxA-T18 hybrids were constructed; CpxA_{1-156-T18}, CpxA_{1-187-T18}, CpxA_{1-310-T18}, CpxA_{241-310-T18}, CpxA_{241-459-T18} and CpxA_{311-458-T18}. BACTH interaction analysis of ‘bait’ and ‘prey’ hybrids was quantified via measurement of β-galactosidase activity and is represented as units/mg dry weight of host *E. coli* BTH101 bacteria (left column; black font). As an internal positive control, we used the provided constructs expressing T18-Zip and T25-Zip that yielded 1547.0 ± 121.2 units of β-galactosidase activity /mg dry weight of bacteria. This was equivalent to ~83.8 fold more enzymatic activity produced compared to bacteria co-expressing only T18 and T25 (185 ± 3.9 units of β-galactosidase activity). The fold change in enzymatic activity caused by CpxA-CpxA interactions relative to this negative control is indicated in parentheses to the right. A level of β-galactosidase activity at least 3-fold higher than the negative control was considered to indicate a positive interaction (*). Data is presented as the mean ± standard error of the mean of at least four independent experiments performed in triplicate.
common wHTH motif defines the C-terminal effector domain. This motif is responsible for binding to target DNA in order to regulate transcription output [29,30]. The internal linker region that tethers together the receiver and effector domain might as well contribute in signal propagation, perhaps by promoting necessary molecular interactions [29,30].

Significantly, TCRS are a potential target for the development of novel anti-bacterial therapeutics [31], which are urgently needed to overcome the current public health crisis associated with common antibiotic resistances among prominent bacterial pathogens [32]. Given the emerging theme of CpxA-CpxR-dependent virulence gene regulation in clinically important bacteria [2,15-17], this pathway might well be an attractive target for chemical modulation. With this in mind, the present study is primarily aimed at establishing practical and reliable assays to identify the molecular interactions of CpxA and CpxR from pathogenic *Y. pseudotuberculosis*. Not only would this guide further *in vivo* mutagenesis studies to explore the molecular determinants involved in CpxA-CpxR signal transduction and virulence gene control in *Y. pseudotuberculosis*, this knowledge should also benefit studies aimed at targeting the Cpx pathway using chemical manipulation.

Methods

Bacterial strains, plasmids and growth conditions

Bacterial strains and plasmids are listed in Supplementary Table S1 and available for online download as Additional file 1. Unless indicated, all bacteria were routinely cultured in Luria-Bertani (LB) broth or agar at 37°C for *E. coli* or 26°C for *Y. pseudotuberculosis*. When required, antibiotics at the following final concentrations were used: ampicillin (Ap; 100 μg/ml), kanamycin (Km; 25 μg/ml), chloramphenicol (Cm; 25 μg/ml), tetracycline (Tc; 10 μg/ml).

Molecular methods

DNA fragments were PCR amplified from YPIII/pIB102 (parental *Y. pseudotuberculosis*) using Easy-A High

Figure 2 Regions of CpxR interacting with CpxA as monitored by BACTH analysis. Full-length CpxA1-458 was translationally fused to the N-terminus of CyaA1-224 (T18 – magenta shade) giving rise to a ‘bait’ CpxA1-458-T18 hybrid. Full-length CpxR1-232 was translationally fused to the C-terminus of CyaA1-224 (T25 – dark green shade) giving rise to a T25-CpxR1-232 ‘prey’ hybrid. CpxR was also divided into N-terminal (pistachio green), internal linker (orange) and C-terminal (sky blue) domains. Based on these divisions, additional ‘prey’ T25 hybrids were similarly constructed that consisted of only the N-terminus without linker (T25-CpxR1-132) or with linker (T25-CpxR1-132L) and the C-terminus without linker (T25-CpxR132-232) or with linker (T25-CpxR132L-232). CpxR1-132 was also fused to the N-terminus of T25 giving the CpxR1-132-T25 hybrid. Full-length or near full-length CpxR prey/ T25 constructs were also generated consisting of T25-CpxRΔD51A or T25-CpxRΔD51E lacking the phosphorylated aspartate residue as well as T25-CpxRΔD11-14, T25-CpxRΔD51-232 and T25-CpxRΔD132-232 lacking the putative N-terminal coiled-coil, internal linker and C-terminal winged helix-turn-helix regions respectively. BACTH interaction analysis of ‘bait’ and ‘prey’ hybrids was quantified via measurement of β-galactosidase activity and is represented as units/mg dry weight of host *E. coli* BTH101 bacteria (left column; black font). The internal positive control based upon constructs expressing T18-Zip and T25-Zip yielded 1603.6 ± 146.4 units of β-galactosidase activity/mg dry weight of bacteria. This was equivalent to ~20.2 fold more enzymatic activity produced compared to bacteria co-expressing only T18 and T25 (79.2 ± 6.2 units of β-galactosidase activity). The fold change in enzymatic activity caused by CpxA-CpxR interactions relative to this negative control is indicated in parentheses to the right. The asterisks (*) indicates a positive interaction. Data is presented as the mean (± standard error of the mean) of at least four independent experiments performed in triplicate.
Fidelity PCR cloning enzyme (Agilent technologies, Santa Clara, California, USA) and the oligonucleotides pairs synthesized by Sigma-Aldrich Sweden AB (Stockholm, Sweden) and are listed in Supplementary Table S2 (available for online download as Additional file 2). Amplified DNA fragments were cloned into pTZ57T/R (Fermentas, Vilnius, Lithuania) and correct sequence were verified by Eurofins MWG Operon (Ebersberg, Germany). Confirmed sequences were then re-cloned as a translational fusion into the XbaI/EcoRI site of the pKT25, pKNT25, pUT18, or pUT18C vectors for BACTH analysis or the BglII/KpnI site of the pKWX2428 vector for λcl homodimerization analysis. Routine maintenance of individual clones was performed in *E. coli* DH5.

BACTH and the β-galactosidase assay

Pairs of BACTH vectors expressing CyaA T18 and T25 fusions to ‘bait’ and ‘prey’ proteins were sequentially transformed into *E. coli* BTH101 using the chemical transformation method [33]. Transformants were selected at 37°C by overnight growth on LB agar with appropriate antibiotics and supplemented with 0.5 mM isopropyl-β-d-thiogalactopyranoside (IPTG) and 40 μg/ml 5-bromo-4-chloro-3-indolyl-β-d-galactopyranoside (X-Gal). Well isolated single colonies were then selected for inoculation of bacterial cultures that were grown overnight at 30°C in LB broth supplemented appropriate antibiotics. Then 0.025 volumes were sub-cultured in the same fresh media with 0.5 mM IPTG and grown for a further 2 h at 30°C. The remainder of the β-galactosidase assay followed descriptions outlined in the BACTH manual and associated literature (Euromedex, Souffelweyersheim, France) [34]. β-galactosidase activity was represented in Units/mg dry weight bacteria according to the manufacturer’s direction. Data are a representative of at least four independent experiments performed in triplicate. Guided by previous analyses [35], we considered a positive interaction only if the β-galactosidase activity level was at least three-fold higher than that measured for the negative control plasmids (expressing T18 and T25 alone).

For western blotting, similarly grown cultures were harvested after late-logarithmic growth. Pellets were solubilized in loading buffer (50 mM Tris–HCl pH 6.8, 2% SDS, 10% Glycerol, 1% β-Mercaptoethanol and 0.02% Bromophenol blue) and fractionated by SDS-PAGE with 12% acrylamide. Protein was then transferred to Immobilon-P P PDVF transfer membrane (Millipore Corporation) using a Hoefer semi-dry transfer apparatus (GE Healthcare). Membranes were exposed to rabbit polyclonal antibodies that were a gift from Thomas Silhavy (anti-CpxA), produced by Agrisera AB (Vännäs, Sweden) from purified antigen (anti-CpxR) or purchased from Santa Cruz Biotechnology Inc (anti-CyaA (b-300)). These were then detected with an anti-rabbit monoclonal antibody conjugated with horse radish peroxidase (GE Healthcare) and Pierce ECL 2 western blotting substrate (Thermo Scientific).

λcl Homodimerization assays

As performed previously [36], assays were carried-out in the *E. coli* JM109 background. In brief, freshly transformed bacteria were grown overnight at 37°C in LB broth with chloramphenicol selection in the presence of 0.1 mM IPTG. Next, 0.01 volumes were sub-cultured in fresh media and grown to mid-logarithmic phase of growth. All cultures were standardized according to an optical density of 600 nm (OD600) and 5 μl suspensions of 10-fold serial dilutions were spotted onto LB agar with chloramphenicol, tetracycline and 0.1 mM IPTG. The ability to grow in the presence of tetracycline was scored following overnight incubation at 37°C for at least four independent experiments.

Additionally, λcl-CpxR fusions contained within these pelleted bacterial *E. coli* cells were fractionated by SDS-PAGE with 12% acrylamide. Protein was then transferred to Protran nitrocellulose transfer membrane (Whatman GmbH) using a Hoefer semi-dry transfer assembly (GE Healthcare). Proteins of interest were bound with specific rabbit polyclonal anti-CpxR antibodies and then detected with an anti-rabbit monoclonal antibody conjugated with horse radish peroxidase and a homemade chemiluminescent solution. As a loading control, we utilized specific rabbit polyclonal anti-CAT antibodies (Sigma-Aldrich) to detect levels of chloramphenicol acetyltransferase encoded by the cat gene located on the vector pKWX2428.

Results

Dimerization of the CpxA sensor kinase using the BACTH assay

This study had the goal to identify a cost-effective, reliable and convenient protein-protein interaction assay for the characterization of regulatory deficient mutants of CpxA and CpxR from *Y. pseudotuberculosis*. The BACTH system – involving reconstitution of *Bordetella pertussis* adenylate cyclase (CyaA) T18 and T25 domains – is reported to be ideal for analyzing the interactions among membrane-anchored bacterial proteins in their natural environment [34,35], including diverse SKs [37-41]. Since CpxA is expected to dimerize [1,42], we first analyzed the ability of CpxA from *Y. pseudotuberculosis* to interact with itself in the BACTH assay. A series of constructs composed of N-and C-terminal T18 and T25 translational fusions with CpxA were established. Pairs of plasmids expressing a ‘bait’ and ‘prey’ hybrid were transformed into *E. coli* BTH101. This strain contains a *lacZ* reporter gene under CAP-cAMP control; an interaction between bait and prey will reconstitute CyaA activity leading to
accumulation of cAMP that, together with CAP, will stimulate transcription of the lacZ reporter gene that is indirectly measurable via an elevation in β-galactosidase activity. Serving as bait, full-length CpxA translationally fused to the N-terminus of T25 (CpxA_{1-458-T25}) could clearly bind to the prey hybrids CpxA_{1-310-T18} and C-terminal truncated CpxA_{1-132-T18}, as a result producing β-galactosidase activity that was ~20.2 and ~16.3 fold higher than the negative control (Figure 1). Modest increases in β-galactosidase activity of ~3.6 and ~3.2 fold were also indicative of a slight interaction between bait and the respective prey hybrids CpxA_{157-310-T18} and CpxA_{187-458-T18} (Figure 1). Since the DHp domain (residues 241–310) is a common feature of all four interacting hybrids, these data demonstrate its importance to CpxA homodimerization. Corroborating this, the remaining three hybrids (CpxA_{1-156-T18}, CpxA_{1-240-T18} and CpxA_{311-458-T18}) all lacking the DHp domain produced lower reporter activity indicative of poor homodimerization capacity (Figure 1). Although CpxA homodimerization was easily measurable via BACTH analysis, production of β-galactosidase activity was notably lesser than that achieved by a strain having the T25 Zip/T18 Zip positive control plasmids, where accumulated activity was ~83.8 fold more than background (data not shown). Hence, for those three strains displayed high levels of reporter activity and the positive control (Figure 1). Attempts to detect any accumulated T25-CpxR variant in cell lysates by western blotting with either anti-CyaA (b-300) or anti-CpxR antibodies were again unsuccessful, even for the full-length CpxR fusion that did interact with CpxA (data not shown). On the other hand, altering the orientation of the T25 fusion by creating an alternative prey hybrid of CpxR_{1-117-T25} did permit modest reporter activity (~4.5 fold) indicative of an interaction with the CpxA_{1-458-T18} bait (Figure 2). Thus, this suggested that the CpxR N-terminus might be more important for CpxA binding.

To explore this further, we utilized a CpxR_{D51A} variant that is non-phosphorylatable and is therefore essentially inactive (‘locked off’) [9]. Additionally, another non-phosphorylatable variant, CpxRD51E, was generated on the basis that it may cause a constitutively ‘locked-on’ CpxR phenotype, as is often the case for related RRs [44-46]. In parallel, we deleted in silico predicted structural elements of CpxR including the putative N-terminal-located coiled-coil domain (CpxR₁₁₋₂₄), a C-terminal-located wHTH domain (CpxR₁₈₈₋₂₀₉) as well as the flexible internal linker that separates the N- and C-terminal CpxR domains (CpxR₁₁₇₋₁₃₂) [43]. Again, the same CpxA_{1-458-T18} bait construct was used in combination with the newly generated prey constructs T25-CpxRD51A, T25-CpxRD51E, T25-CpxRD11-24, T25-CpxR₁₁₇₋₁₃₂ and T25-CpxR₁₈₈₋₂₀₉. Enzymatic assays revealed that CpxR could interact well with CpxA, but only if its N-terminus remained intact, such as with the fully functional CpxRD51E variant (~14.7 fold increase in reporter activity) or the CpxR₁₈₈₋₂₀₉ variant (~16.8 fold) (Figure 2). Conversely, disruption of CpxR N-terminus, as occurred with the CpxRD51A, CpxRD11-24 and CpxR₁₁₇₋₁₃₂ Variants, only permitted low reporter activity in these fusion-bearing strains (Figure 2). Although western blotting could not determine whether any of these T25-CpxR fusions were actually produced and stable, these data corroborate earlier in silico predictions that the CpxR N-terminus is probably involved in crosstalk with CpxA [47,48]. They also suggest that BACTH is a valid approach to further investigate this aspect of Cpx pathway activation.
The extreme C-terminus of CpxA is dispensable for interactions with CpxR

A reciprocal experiment was next conducted in an effort to identify the region of CpxA necessary for engaging CpxR. We selected the T25-CpxR1-232 construct as bait, since it induced high reporter activity in a strain co-expressing CpxA1-458-T18 (see Figure 2). We also used the same prey constructs incorporating the CpxA truncated variants fused to the N-terminus of T18 and described in Figure 1. E. coli BTH101 expressing both bait T25-CpxR1-232 and prey CpxA1-458-T18 hybrids produced β-galactosidase levels that were ~24.2 fold higher than the negative control, and only slightly lower than the T25-Zip/T18-Zip positive control (~32.8 fold elevation) (Figure 3, data not shown). The CpxA1-310-T18 hybrid could also interact with bait T25-CpxR1-232 as indicated by ~12.1 fold higher reporter activity in the host strain (Figure 3). No remaining fusion combinations induced any significant reporter activity in BTH101. Once again, we could not confirm by western blotting whether this negligible reporter activity was due to poor interactions or unstable CpxA1-156-T18, CpxA1-240-T18, CpxA157-310-T18, CpxA187-458-T18 and CpxA311-458-T18 protein (data not shown). However, since the CpxA157-310-T18 and CpxA187-458-T18 fusions must at least be modestly produced (see Figure 1), this data suggests that the DHp domain in cooperation with additional upstream N-terminal CpxA sequence might be sufficient for engaging CpxR, corroborating reports focused on other SK-RR cognate pairs [47-49]. It also suggests that sequence in the extreme C-terminus of CpxA is probably not required for interacting with CpxR, at least via the BACTH assay.

BACTH analysis of CpxR-CpxR interactions

Next, we explored the suitability of the BACTH assay for dissecting CpxR dimerization [50]. In the first instance, a ‘bait’ construct consisting of full-length CpxR fused to the C-terminus of T25 (T25-CpxR1-232) was transformed with a ‘prey’ construct of full-length CpxR fused to the N-terminus of T18 (CpxR1-232-T18). However, the detected β-galactosidase activity barely increased above the negative control value (Figure 4). As with all our other BACTH analysis, neither fusion was detected by western blotting (data not shown) making it difficult to conclude whether the low reporter activity represents the absence of an interaction or merely unstable protein. Curiously, co-expression of full-length CpxR fusions still did not stimulate transcription of the lacZ reporter even after the orientation of the T18 and T25 fusions were swapped (N-terminus vs C-terminus) (data not shown).

Given a report that the C-terminal domain effector activity of E. coli CpxR can be unlocked by physically removing the N-terminal regulatory domain [43], we entertained the notion that our full-length CpxR fusions might be locked in a static structural confirmation that prevents measurable dimerization. To investigate this, we employed a series of prey constructs with T18 N-terminally fused to truncated CpxR derivatives composed...
of only the N-terminus without (CpxR1-117-T18) or with internal linker (CpxR1-132-T18) and the C-terminus without linker (CpxR1-132-232-T18) or with linker (CpxR117-232-T18). These constructs were related to those already described in Figure 2 and are also utilized in subsequent aspects of this study. These truncated CpxR-T18 prey constructs were transformed into *E. coli* BTH101 containing the full-length T25-CpxR1-232 bait construct. On the basis of a ~10.7 fold elevation from baseline β-galactosidase activity/mg dry weight of host *E. coli* BTH101 bacteria (left column; black font). The internal positive control based upon the constructs expressing T18-Zip and T25-Zip yielded 1521.9 ± 150.6 units of β-galactosidase activity/mg dry weight of bacteria. This has ~146 fold more enzymatic activity than bacteria co-expressing only T18 and T25 (104.6 ± 12.9 units of β-galactosidase activity). The fold change in enzymatic activity caused by CpxR-CpxR interactions relative to this negative control is indicated in parentheses to the right. The asterisks (*) indicates a positive interaction. Data is presented as the mean (± standard error of the mean) of at least four independent experiments performed in triplicate.

N-terminal mediated CpxR dimerization

Having the goal to better define internal interacting regions of CpxR, additional BACTH analyses were performed based upon the pair-wise transformation of *E. coli* BTH101 using CpxR1-132-T18 as the bait with variable prey constructs of T25 N-terminally fused to truncated CpxR derivatives (CpxR1-117-T25, CpxR1-132- T25, CpxR132-232-T25 and CpxR117-232-T25). β-galactosidase levels were ~10.1 and ~12.9 fold higher in bacteria co-expressing CpxR1-132-T18/CpxR1-117-T25 and CpxR1-132-T18/CpxR1-132-T25 bait/prey pairs respectively (Figure 5A). This compared to the positive control that yielded β-galactosidase levels that were ~17.3 fold higher. Hence, N-terminal CpxR with linker could interact with itself or with N-terminal CpxR lacking the linker. Significantly, it did not matter if the T18 and T25 domains were switched in either orientation (N-terminus vs C-terminus) or combination (bait vs prey), the β-galactosidase levels were still elevated (data not shown). These positive interactions indicate all CpxR N-terminal fusions are stably produced. To explore whether the internal linker contributes to the interactions of the CpxR N-terminus, parallel BACTH studies with the same prey constructs as used in Figure 5A were performed with a T18 bait construct fused at the N-terminus to truncated CpxR composed of only the N-terminus without linker (CpxR1-117-T25). Elevated β-galactosidase activity indicated that the CpxR N-terminus alone could still interact with itself and with N-terminal CpxR containing linker (Figure 5B). Moreover, these interactions were consistently observed regardless of the T18/T25 fusion combinations used (data not shown). Consistently however, the highest reporter activity was achieved for the CpxR1-132-T18/CpxR1-132-T25 interaction pair i.e. when the linker was present (Figure 5). These data therefore reveal that the linker is not essential for interactions of the CpxR-N terminus but may enhance them. On the other hand, we routinely observed low reporter output by strains harboring co-expressing CpxR N-terminal and C-terminal fusions (Figure 5) or between C-terminal fusions alone (data not shown). While this may be indicative that the

![Diagram](image_url)
C-terminal is not involved in CpxR dimerization per se, the data is inconclusive because we cannot confirm stable production of the C-terminal fusions, either by western blotting, or inferred by high reporter output from fusion-bearing strains. Nevertheless, the presented data definitively supports using the BACTH assay for studying dimerization of the CpxR N-terminus when produced in isolation.

Key structural features of CpxR mediate homodimerization

Since the CpxR N-terminus dimerizes with full-length CpxR (Figure 4), we designed another experiment in an effort to highlight structural regions within the full-length CpxR that may mediate specific interactions with the N-terminal region. As in Figure 4 and 5, CpxR1-132-T18 was used as the 'bait' fusion. Additionally, we capitalized on the availability of variable 'prey' constructs previously used in Figure 2, which were composed of T25 fused to the N-terminal end of the larger CpxR constructs giving rise to T25-CpxRD131A, T25-CpxRD131E, T25-CpxR117-232, T25-CpxR117-232ΔA188-209 and T25-CpxR117-232ΔA117-131. Native full-length CpxR fused to T25 (T25-CpxR1-232) served as a control. In E. coli BTH101, the interacting hybrids CpxR1-132-T18 and T25-CpxR1-232 induced reporter activity that was ~18.9 fold higher than background (Figure 6). Only one other bait/prey combination – CpxR1-132-T18 with the potentially ‘locked-on’ CpxRD131E variant mimicking a phosphorylated state (T25-CpxRD131E) – induced higher reporter activity of ~4.9 fold (Figure 6). Although we are unable to confirm the stable production of the non-phosphorylated and inactive CpxRD131A variant (T25-CpxRD131A), the low reporter activity of this fusion-bearing strain could indicate that interactions with N-terminal and full-length CpxR derivates requires phosphorylation at position D51. The ability to interact was also lost upon generating ΔA11-24, ΔA117-132 and ΔA188-209 deletions in cpxR. Hence, dimerization might also require CpxR to be inherently flexible, garnered by structural and/or functional elements encoded along the protein's entire length. At least one of these regions encompassing residues 188 to 209 might be one such segment, since this fusion must be capable of being stably produced (see Figure 2).

Homodimerization of CpxR as determined by reconstitution of the λcI repressor

In parallel, we also employed a homodimerization assay based upon the reconstitution of the Lambda cl repressor (λcI) protein. This assay was effective in studying homodimerization of the YycG SK from *Staphylococcus aureus* [51] and the YycF RR from *B. subtilis* [36]. It is also an attractive basis for developing a high throughput screening system for the discovery of novel anti-bacterials targeting homodimerization of TCRS constituents [51]. Various alleles coding for different CpxR derivatives were translationally fused to the C-terminus of the first 131 residues of λcI (λcI1-131-CpxRn) expressed from plasmid pKWy2428 [36]. Reconstitution of an active repressor dimer can occur through the homodimerization of CpxR. In these situations where the fused CpxR protein does homodimerize, reconstitution of λcI1-131 DNA binding activity specifically represses transcription from the tet resistance gene promoter present on the λcI1-131- containing plasmid. This confers tetracycline sensitivity to the host bacterial strain *E. coli* JM1109 [36]. An absence of homodimerization however will confer tetracycline resistance (Tet^R^) to the host strain. Contrary to our BACTH analysis, full-length CpxR (λcI1-131-CpxR2-232) and the two C-terminal CpxR variants with linker (λcI1-131-CpxR117-232) or without linker (λcI1-131-CpxR133-232) were all able to...
homodimerize as determined by heightened sensitivity of JM109 (reduced growth) on tetracycline supplemented LB agar (Figure 7A). The extent of this growth restriction mirrored that achieved for the RR YycF C-terminal region encompassing residues 120 to 235 fused to internal linker (Figure 7A). Interestingly, dimerization and growth suppression by the λcI1-131- CpxRΔ117-232 fusion occurred despite steady-state protein levels being quite minimal (Figure 7B). In further contradiction to our BACTH analysis (see Figure 5), we were unable to observe any growth restriction of JM109 when expressing λcI1-131- CpxRΔ117-132 or λcI1-131- CpxRΔ188-209 (Figure 7A), even though protein accumulated to high levels (especially in the case of λcI1-131- CpxRΔ126-T18 hybrid containing wild type CpxR sequence. BACTH interaction analysis of λcI homodimerization (see Figure 6), we were unable to observe any growth restriction (Figure 7B). Clearly however, CpxR 188-209 exhibits a major defect in dimerization capacity (Figure 7A); a finding also observed in the BACTH assay (see Figure 6). This dimerization defect was also conferred to the fusion expressing only the C-terminus (λcI1-131- CpxRΔ17-232, Δ188-209) (Figure 7A), although this is less conclusive because this fusion was poorly expressed (Figure 7B). On the other hand, non-phosphorylated CpxR or CpxR lacking the N-terminal coiled-coil domain or internal linker, could all still homodimerize (Figure 7A). Once again, this data is at odds with our BACTH analysis, where a CpxRD51A-CpxRΔ117-24 or a CpxRΔ117-132 mutation inhibited subsequent CpxR interactions (see Figure 6).

Discussion

TCRSs play a significant role in the regulation of physiological processes in the bacterial cell ranging from the control of single genes to diverse multi-cellular behavior. This occurs by means of transcriptional, post transcriptional and post translational regulation whereby TCRSs exploit a variety of protein-protein and protein-DNA interactions [3,42,52]. In this study, we attempted to gain some insight into the protein-protein interactions that are the hallmark of CpxA-CpxR signal transduction. BACTH analysis revealed that full-length CpxR and the truncated N-terminal derivatives were able to interact together, albeit in a manner conditionally dependent upon the direction and orientation of the T18 and T25
fusions. Interactions of full-length CpxR were also observed in our λcI homodimerization analysis, but we were unable to validate dimerization of N-terminal truncates via this method. Interactions dependent upon the positioning of the fused CyaA domains might well indicate that the CpxR-CpxR interaction occurs as a head-to-head symmetrical dimer mediated by a N-terminal α₄-β₅-α₅ interface highly conserved among OmpR-PhoB RR family members [30,42]. Indeed, structural studies of full-length and isolated N-terminal receiver domains of various RRs belonging to this OmpR-PhoB family suggest head-to-head dimerization is common and functionally important [53-56]. Hence, further studies are required to better understand how the α₄-β₅-α₅ interface...
of CpxR determines CpxR dimerization orientation and contributes to subsequent DNA binding and gene transcription control.

Use of the λcI assay indicated that the CpxR C-terminus could readily dimerize; a finding not observed during our BACTH analysis. Nevertheless, a previous study has demonstrated that solitary trans-expression of C-terminal CpxR is constitutively active and capable of transcriptional control of an array of target genes in E. coli [43]. Moreover, the degree of CpxR activation was independent of the internal linker [43]. This data was explained through an expectation that the C-terminal effector domain can alone dimerize to activate its target genes; a notion we can now experimentally verify via λcI homodimerization analysis. Incidentally, this analysis also demonstrated that the linker was not required for this dimerization process as was previously assumed [43]. In addition to the ability to interact with itself, constitutive activation of the CpxR C-terminus implies that this region must engage one of the six subunits of the RNA polymerase holoenzyme in order to specifically modify its transcription output from targeted genes. Direct interaction with the RNA polymerase through the C-terminus is well established for other RRs of the OmpR/PhoB subfamily. Recent studies of other members of the OmpR/PhoB subfamily are starting to shed some light on internal linker function [67–69]. Collectively, these demonstrate how linker sequence composition and length can influence RR interdomain interactions, DNA binding and subsequent transcriptional output. Presumably, the linker optimizes N- and C-terminal domain function by imparting physical separation as well as offering inherent flexibility that assists in domain conformational changes as a consequence of phosphorylation and/or DNA binding. Given this potential for influencing RR function, a detailed investigation of the CpxR linker is warranted.

The C-terminal wHTH DNA binding domain is also likely to contribute to CpxR homodimerization. While we and others have shown that truncated CpxR can dimerize even in the complete absence of the C-terminus (this study) [50], restricted removal of only residues 188 to 209 encompassing the wHTH domain (residues 117–132) in inter- and intra-molecular λcI homodimerization assays. While not tested here, the role of the wHTH domain in CpxR dimer formation might well relate to the effects of binding to target DNA. After all, it is established that DNA binding by non-phosphorylated OmpR is a mechanism to enhance phosphorylation and dimerization capacity [70, 71]. Hence, the wHTH motif may play a dual role in both RR target DNA binding and dimerization. On the basis of our own DNA binding assays, where non-phosphorylated native CpxR [8], but not the non-phosphorylated CpxRΔ51 variant [9] only very weakly bound to target DNA, it is conceivable that initial binding can dramatically enhance phosphorylation and then dimerization.

Although both the BACTH and λcI homodimerization assay were highly reproducible, they were often contradictory in their ability to predict interactions. This should not mean that these assays are unreliable or not physiologically relevant. However, it does highlight the
need to perform in parallel other complementing experimental analyses to ensure relevancy of the phenotypic data. No doubt, creation of hybrid proteins fused with structurally distinct CyaA or λci tags could diminish inherent protein flexibility or stability, curbing the subsequent ability to measure authentic protein-protein interactions. Indeed, a good correlation between protein instability and the absence of interactions in a BACTH assay has already been stated [37]. Despite our numerous attempts, we could not detect any T18 or T25 fusions, including those reliably inducing high reporter activities, such as the positive control. However, we could infer from numerous positive interaction data sets involving various T18 and T25 fusion combinations that the majority of our fusions must, to some extent, be stably domain. The notable exceptions to this deduction are the fusions involving CpxRD51A and it's C-terminal domain when in isolation. We are therefore confident that BACTH analysis is useful for CpxR N-terminal interaction studies, but it may have limited use for similar studies of the C-terminus. Critically, the majority of our λci fusions were produced and stable. Hence, product instability cannot account for the failure of λci1-131-CpxR2-116 and λci1-131-CpxR2-132 fusions to homodimerize. Moreover, as homodimerization of similar CpxR N-terminal fusions occurred via BACTH analysis, poor production alone cannot explain the contradictory results using the two reporter systems. This can be further illustrated by observations with the stably produced full-length CpxR; it could dimerize to itself only when fused to λci, but via BACTH analysis could only interact with CpxA or the CpxR N-terminus. Thus, it is apparent that individual domains appended to either CpxA or CpxR variants can alter their structural context in unique ways that significantly influence protein-protein interactions, making no one assay fully self-sufficient. By necessity therefore, future work will analyze the significance of these CpxR and CpxA interaction motifs by means of other sensitive interaction techniques in concert with analysis of pertinent in vivo phenotypes.

Conclusions

We have shown here that the BACTH and λci assays are two simple and complementary approaches amenable to identify the independent modular homo- and hetero-interactions of CpxA and CpxR. Notably, the former is ideally suited to analyze the molecular context of CpxR interactions involving the N-terminus, while the latter can aid in dissecting interactions of the CpxR C-terminus. Moreover, when combined with in vivo assays designed to assess bacterial survival and virulence, a better understanding of the roles of the CpxA-CpxR TCRS in Y. pseudotuberculosis will ensue.

Additional files

Additional file 1: Table S1. Bacteria strains and plasmids used in this study.

Additional file 2: Table S2. Oligonucleotides used in this study.

Abbreviations

ECS: Extracytoplasmic stress; Cpx: Conjugative pilus expression; RR: Response regulator; SK: Sensor kinase; TCRS: Two-component regulatory system; whtH: winged helix-turn-helix; LB: Luria-Bertani; IPTG: Isopropyl-β-d-thiogalactopyranoside; X-Gal: 5-Bromo-4-chloro-3-indolyl-β-d-galactopyranoside; Ap: Ampicillin; Km: Kanamycin; Cm: Chloramphenicol; Tc: Tetacycline, BACTH, bacterial adenylate cyclase two-hybrid; CAP: Catabolite activator protein; CAMP: Cyclic adenosine monophosphate.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

ET and JM participated in study design, its coordination and performed all experimentation. MF conceived of the study, and participated in its design and coordination and drafted the manuscript. All authors analyzed the data and read and approved the final manuscript.

Acknowledgements

This work performed within the framework of the Umeå Centre for Microbial Research (UCMR) Linnaeus Program (LP), was supported by grants from the Swedish Research Council and Foundation for Medical Research at Umeå University. We thank Ryutaro Utsumi for the generous gift of λci homodimerization plasmids, Victoria Schingler for E. coli DH5, Hans Wolf-Watz for parental Y. pseudotuberculosis YPlp1IpI2 and Thomas Silhavy for antibody against CpxR from E. coli. Ikenna Obi, Junfa Liu and Frédéric Login are also thanked for their critical review of the manuscript.

Received: 10 February 2012 Accepted: 22 September 2012

References

1. Hunke S, Keller R, Muller VS: Signal integration by the Cpx-envelope stress system. FEMS Microbiol Lett 2012, 326:12–22.
2. Vogt SL, Raiivo TL: Just scratching the surface: an expanding view of the Cpx envelope stress response. FEMS Microbiol Lett 2012, 326:11–11.
3. Krell T, Lalac J, Busch A, Silva-Jimenez H, Guazzaroni ME, Ramos JL: Bacterial sensor kinases: diversity in the recognition of environmental signals. Annu Rev Microbiol 2010, 64:539–59.
4. Itou H, Tanaka I: The OmpR-family of proteins: insight into the tertiary structure and functions of two-component regulator proteins. / Biochem 2001, 129:343–50.
5. Labandeira-Rey M, Brautigam CA, Hansen EJ: Characterization of the CpxR regulator in Haemophilus ducreyi. Infect Immun 2010, 78:4779–91.
6. Bury-More S, Nomanie V, Reymond N, Barbet R, Jacquet E, Imbeaud S, Jacq A, Boulouz P: Global analysis of extracytoplasmic stress signaling in Escherichia coli. PLoS Genet 2009, 5:e1000651.
7. Carlson KE, Liu J, Edqvist PJ, Francis MS: Extracytoplasmic-stress-responsive pathways modulate type III secretion in Yersinia pseudotuberculosis. Infect Immun 2007, 75:3913–24.
8. Carlson KE, Liu J, Edqvist PJ, Francis MS: Influence of the Cpx extracytoplasmic-stress-responsive pathway on Yersinia sp.-eukaryotic cell contact. Infect Immun 2007, 75:4386–4399.
9. Liu J, Obi IR, Thanikkal EJ, Kieselbach T, Francis MS: Phosphorylated CpxR restricts production of the RovA global regulator in Yersinia pseudotuberculosis. PLoS One 2011, 6:e23314.
10. Liu J, Thanikkal EJ, Obi IR, Francis MS: Elevated CpxR approximately P levels repress the Ysc-Yop type III secretion system of Yersinia pseudotuberculosis. Res Microbiol 2012, doi: http://dx.doi.org/10.1016/j.resmic.2012.07.010.
11. Cathelyn JS, Crosby SD, Latham WW, Goldman WE, Miller VL: RovA, a global regulator of Yersinia pestis, specifically required for bubonic plague. 2005, 103:13514–9.
28. Bilwes AM, Quezada CM, Croal LR, Crane BR, Simon MI.

24. Dutta R, Qin L, Inouye M.

17. Rowley G, Spector M, Kormanec J, Roberts M.

13. Cathelyn JS, Ellison DW, Hinchliffe SJ, Wren BW, Miller VL.

11. Yang F, Ke Y, Tan Y, Bi Y, Shi Q, Yang H, Qiu J, Wang X, Guo Z, Ling H, et al.

27. Hanahan D.

31. Karimova G, Dautin N, Ladant D.

18. Wolanin PM, Thomason PA, Stock JB.

23. Jovanovic G, Engl C, Buck M.

25. Dorel C, Lejeune P, Rodrigue A.

15. Dorel C, Lejeune P, Rodrigue A.

33. Hanahan D.

35. Karimova G, Pidoux J, Ullmann A, Ladant D.

16. Rowley G, Spector M, Kormanec J, Roberts M.

20. Rowley G, Spector M, Kormanec J, Roberts M.

26. Watanabe T, Hashimoto Y, Umemoto Y, Tatebe D, Furuta E, Fukumizu T, Yamamoto K, Utsunomiya M.

12. Yang F, Ke Y, Tan Y, Bi Y, Shi Q, Yang H, Qiu J, Wang X, Guo Z, Ling H, et al.

32. Workentine ML, Chang L, Ceri H, Turner RJ.

37. Scheu PD, Wittan J, Rauschmeier M, Graf S, Liao YF, Ebert-Jung A, Basche T, Erker W, Unden G.

40. Luttmann D, Heermann R, Zimmer B, Hillmann A, Rempp S, Jung K, Gorke B.

34. Karimova G, Pidoux J, Ullmann A, Ladant D.

22. Wolanin PM, Thomason PA, Stock JB.

22. Wolanin PM, Thomason PA, Stock JB.

30. Rowley G, Spector M, Kormanec J, Roberts M.

36. Karimova G, Pidoux J, Ullmann A, Ladant D.

33. Hanahan D.

13. Cathelyn JS, Ellison DW, Hinchliffe SJ, Wren BW, Miller VL.

35. Karimova G, Dautin N, Ladant D.

14. Francis MS.

12. Yang F, Ke Y, Tan Y, Bi Y, Shi Q, Yang H, Qiu J, Wang X, Guo Z, Ling H, et al.

29. Williams SB, Stewart V.

30. Rowley G, Spector M, Kormanec J, Roberts M.

41. Gao R, Stock AM.

30. Rowley G, Spector M, Kormanec J, Roberts M.

37. Workentine ML, Chang L, Ceri H, Turner RJ.

32. Workentine ML, Chang L, Ceri H, Turner RJ.

37. Workentine ML, Chang L, Ceri H, Turner RJ.

30. Rowley G, Spector M, Kormanec J, Roberts M.

29. Williams SB, Stewart V.

30. Rowley G, Spector M, Kormanec J, Roberts M.

37. Workentine ML, Chang L, Ceri H, Turner RJ.

32. Workentine ML, Chang L, Ceri H, Turner RJ.

37. Workentine ML, Chang L, Ceri H, Turner RJ.
61. Russo FD, Slauch JM, Silhavy TJ: Mutations that affect separate functions of OmpR the phosphorylated regulator of porin transcription in *Escherichia coli*. J Mol Biol 1993, 231:261–73.

62. Sharif TR, Igo MM: Mutations in the alpha subunit of RNA polymerase that affect the regulation of porin gene transcription in *Escherichia coli* K-12. J Bacteriol 1993, 175:460–8.

63. Slauch JM, Russo FD, Silhavy TJ: Suppressor mutations in rpoA suggest that OmpR controls transcription by direct interaction with the alpha subunit of RNA polymerase. J Bacteriol 1991, 173:7501–10.

64. Makino K, Amemura M, Kawamoto T, Kimura S, Shinagawa H, Nakata A, Suzuki M: DNA binding of PhoB and its interaction with RNA polymerase. J Mol Biol 1996, 259:15–26.

65. Kim SK, Makino K, Amemura M, Nakata A, Shinagawa H: Mutational analysis of the role of the first helix of region 4.2 of the sigma 70 subunit of *Escherichia coli* RNA polymerase in transcriptional activation by activator protein PhoB. Mol Gen Genet 1995, 248:1–8.

66. Makino K, Amemura M, Kim SK, Nakata A, Shinagawa H: Role of the sigma 70 subunit of RNA polymerase in transcriptional activation by activator protein PhoB in *Escherichia coli*. Genes Dev 1993, 7:149–60.

67. Mattison K, Oropeza R, Kenney LJ: The linker region plays an important role in the interdomain communication of the response regulator OmpR. J Biol Chem 2002, 277:32714–21.

68. Walthers D, Titan VK, Kenney LJ: Interdomain linkers of homologous response regulators determine their mechanism of action. J Bacteriol 2003, 185:317–24.

69. Pathak A, Goyal R, Sinha A, Sarkar D: Domain structure of virulence-associated response regulator PhoP of *Mycobacterium tuberculosis*: role of the linker region in regulator-promoter interaction(s). J Biol Chem 2010, 285:34309–18.

70. Rhee JE, Sheng W, Morgan LK, Nolet R, Liao X, Kenney LJ: Amino acids important for DNA recognition by the response regulator OmpR. J Biol Chem 2008, 283:8664–77.

71. Head CG, Tardy A, Kenney LJ: Relative binding affinities of OmpR and OmpR-phosphate at the *ompF* and *ompC* regulatory sites. J Mol Biol 1998, 281:857–70.

doi:10.1186/1756-0500-5-536

Cite this article as: Thanikkal et al.: Interactions of the CpxA sensor kinase and cognate CpxR response regulator from *Yersinia pseudotuberculosis*, BMC Research Notes 2012 5:536.