ABSTRACT A sensor-to-microcontroller interface circuit for inductive sensors that does not require a calibration inductor is presented. Three digital ports of a microcontroller, two transistors, and an embedded timer were used to measure the charging times of the inductor through forward- and backward-flow currents using two different initial conditions. The difference between the charging times was used to estimate the sensor inductance accurately without the uncertainty due to the tolerance of threshold voltage of the input port, which delimits these time length measurements. Experimental results show that a conventional low-power microcontroller with an embedded 16 MHz clock and 22 \(\Omega \) charge resistance can be used to achieve 2 \(\mu \)H resolution and a systematic error below 2% for a measuring range from 100 \(\mu \)H to 10 mH.

The advantages of the proposed technique include the reduction of cost and space as well as avoiding complex calibration processes caused by the temperature drift of the reference inductors.

INDEX TERMS Inductance measurement, instrumentation and measurement, inductive transducers.

I. INTRODUCTION

Inductive sensors are widely used in harsh environments owing to their immunity to humidity, oil, and dust. They are used to measure displacement [1], position [2], pressure [3], [4] or temperature [5]. Each magnitude is estimated indirectly through its associated inductance, which is conventionally measured from the frequency of an oscillator circuit [3] (inductance-to-frequency) or the voltage drop when the sensor is biased by an alternating current source [6] (inductance-to-voltage). In both cases, complex circuits must be connected to a measuring control unit, typically a microcontroller (\(\mu \)C), and the inductor must be charged/discharged for a large number of cycles to perform the measurements, implying a long measurement period. Direct inductive sensor-to-microcontroller interfaces have been proposed to reduce implementation costs and measurement periods [7], [8], [9]. They directly connected the sensor to the digital ports of the \(\mu \)C, and used an embedded timer to measure one or two charging/discharging cycles of the LR circuit formed by the sensor. Fig. 1 shows the simplest direct inductor-to-microcontroller interface circuit and the inductor voltage drop evolution when the output port \(P_b \) is set to high level (\(V_{OH} \) , “1”) charging the inductor through a resistance \(R \). Simultaneously, the \(\mu \)’ embedded timer starts counting until \(V_{PA} \) reaches \(V_{TL} \), the low threshold voltage of a high impedance (“HZ”) trigger Schmitt input port \(P_A \). At this point, the falling edge of the \(P_A \) triggers capture of the timer counter. The resulting time period \(T_m \) is then used to estimate the measured inductance \(L_m \).

\[
L_m = \frac{R}{\ln(V_{OH}/V_{TL})} T_m
\]

FIGURE 1. Simplest direct inductor-to-microcontroller interface. (a) Circuit scheme, (b) Waveforms.
process is required to avoid this uncertainty. Fig. 2 shows the circuit proposed in [8], which uses an inductor reference \(L_{\text{ref}} \).

Two charging times, \(T_{\text{ref}} \) and \(T_{m} \), were measured, corresponding to \(L_{\text{ref}} \) and \(L_{m} \). Thus, \(L_{m} \) can now be estimated by

\[
L_{m} = L_{\text{ref}} \frac{T_{m}}{T_{\text{ref}}}
\]

which is independent of \(V_{TL} \) and \(V_{OH} \). This scheme uses four transistors to charge the inductors through current flows above the maximum current limit of the output port. Thus, smaller resistance values can be used for \(R \), and longer charging times can be obtained, relaxing the resolution limit given by the timer clock frequency.

A reference inductor must be selected to operate at current levels and inductances in the same range as those of the measured inductor. To achieve such performance with small devices, ferrite cores were used. However, they have limitations such as large temperature drifts and poor manufacturing tolerances, which increase the cost and error of these measuring systems. To overcome these issues, we present a new low-cost direct inductor-to-microcontroller interface that does not use any \(L_{\text{ref}} \) but can accurately measure inductances.

\(\mu \)C exploits this capability to measure the charging time in both current directions using symmetrical LR circuits, in which the starting bias current of the backward-charging stage is the endpoint of the previous stage. This circuit also improves the design trade-off between the accuracy and energy consumption of previous designs [7], [8], [9], in which the inductor is only charged through a forward bias current that must be increased to extend the charging period and improve accuracy. Because the current excursion doubles the amplitude during the backward charging stage in our proposed method, the relative error of this time measurement was halved.

A single input port \((P_{A}) \) was used to detect the end of both charge stages, because the use of another input port would introduce a new unknown \(V_{TL} \), which does not solve the problem. Three resistances, \(R_{A1}, R_{A2} \) and \(R_{B} \) were used to fit the transient start and end points according to the tolerance margin of \(V_{TL} \). They must be selected to fit the maximum value of \(V_{TL} \) below the minimum starting point value of \(v_{PA} (V_{1}) \) and the minimum value of \(V_{TL} \) must be above the transient endpoint \((V_{0}) \). Two output ports, \(P_{B} \) and \(P_{F} \), control two NMOS transistors \((Q_{B} \) and \(Q_{F} \)) which set the charge and discharge sequences to perform the measurement. While the forward charge stage was performed through resistance \(R_{S1} \), which was much smaller than \(R_{A1}, R_{A2} \) and \(R_{B} \), another
resistance, R_{S2}, was used in the backward charge stage. To achieve symmetric charge stages, we selected the same values for R_{A1} and R_{A2} ($R_{A1} = R_{A2} = R_A$) as for R_{S1} and R_{S2} ($R_{S1} = R_{S2} = R_S$).

Initially, Q_B and Q_F were turned off, holding the inductor fully discharged with no current flow, and v_{PA} was driven to the voltage power supply (V_{cc}). The measurement sequence started when the Q_F was turned on and the inductor was forward-charged through R_{S1}. An embedded timer was configured to measure the forward charging time (T_{Fwr}) until the P_A toggled when v_{PA} reached V_{TL}. The charging stage was extended until the inductor was fully charged. After a minimum waiting time of five times the time constant of the LR circuit ($>5L_{in}/R_S$), the backward-charge stage began. Then, Q_F was turned off, and Q_B was turned on to charge the inductor through R_{S2}. Because of the initial inductor current in this charging stage, the initial value of v_{PA} (V_2) almost doubles from the initial value in the previous stage. Similarly, the backward charging time (T_{Bck}) was captured when v_{PA} reached V_{TL}. Finally, both transistors were turned off to discharge the inductor and restore the initial state.

v_{PA} follows the dynamics of a first-order system, whose start and end points, under the assumption that $R_A, R_B \gg R_S$, can be approximated by

$$V_0 \approx \left(1 + R_B/R_A \cdot \frac{r_m}{R_S + r_m}\right) \frac{V_{cc}}{2R_B/R_A + 1} \quad (3)$$

$$V_1 \approx \frac{R_B/R_A + 1}{2R_B/R_A + 1} V_{cc} \quad (4)$$

$$V_2 \approx \left(1 - \frac{R_B/R_A}{2R_B/R_A + 1} \cdot \frac{r_m}{R_S + r_m}\right) V_{cc} \quad (5)$$

where r_m is the parasitic resistance of inductor. As this resistance can be significant in the measurement process when a small R_S is used, r_m must be estimated. This can be performed by capturing the voltage v_{AIN} using an embedded analog-to-voltage converter immediately before starting the backward charge stage, and by calculating r_m from $R_{SvAIN}/(V_{cc}-v_{AIN})$. A resistance R_c was connected between v_{AIN} node and analog input port (A1N) to avoid the influence of the input port parasitic capacitance on the charging transient response.

The first-order response of v_{PA} implies that the trace between x_1 and x_2 in Fig. 3b, which delimits T_{Fwr}, is equal to the trace between x_4 and x_5 which corresponds to a part of T_{Bck}. Consequently, the time between x_3 and x_4 can be calculated by subtracting T_{Fwr} from T_{Bck}, which has the advantage that its limits do not depend on V_{TL}; thus, they can be accurately determined. We can observe this analytically from

$$T_{Fwr} = \frac{L_m}{R_S + r_m} ln \left(\frac{V_1 - V_0}{V_{TL} - V_0}\right) \quad (6)$$

$$T_{Bck} = \frac{L_m}{R_S + r_m} ln \left(\frac{V_2 - V_0}{V_{TL} - V_0}\right) \quad (7)$$

which are subtracted and the values of V_0, V_1 and V_2 are substituted by (3)–(5) to deduce

$$L_m \approx \frac{R_S + r_m}{ln(2)} (T_{Bck} - T_{Fwr}) \quad (8)$$

Note that this expression does not depend on V_{TL}, nor does it depend on V_{cc}, R_A or R_B. Its accuracy is limited by the assumption that $R_A, R_B \gg R_S$ and the symmetry of the circuit. To reduce the dissymmetry error, inductance can be estimated by averaging the results of two consecutive measurement cycles. In the first cycle, L_m is charged forward and backward through Q_F and Q_B, respectively. However, in the second cycle, Q_B is first turned on to measure T_{Fwr} and then L_m is charged through Q_F for T_{Bck}.

III. EXPERIMENTAL RESULTS

A low-power μC (MSP430FR5969) supplied by 3.0 V and an embedded 16-bit timer driven by 16 MHz quartz crystal clock (30 ppm/°C) were used to test the proposed technique. The digital input/output ports P1.2 (TA1 CCR1 capture), P1.5 and P1.6 were selected to implement P_A, P_B and P_F. According to the datasheet, the value of V_{TL} for these ports ranges from 0.75 V to 1.35 V. This tolerance margin results in a measuring error of approximately ±28.5% when no inductance reference is used, and L_m is calculated from (1). Three different resistance values, 100 Ω, 47 Ω, and 22 Ω, were selected for R_{S1} and R_{S2} (1% tolerance), R_A was selected to be at least one hundred times higher than R_S (10 kΩ, 1% tolerance) in order to prevent its influence on the inductor current charge response. A 51 kΩ resistor was selected for R_B (1% tolerance) to set the starting point of v_{PA} in the forward charge stage ($V_1 = 1.63 V$) above the higher limit of V_{TL} (1.35 V). This value also sets the endpoint of v_{PA} ($V_0 = 0.69 V$) below the lower limit of V_{TL} (0.75 V) in the worst-case scenario ($R_s = 22 Ω$ and $r_m = 10 Ω$). A 1 kΩ resistance was selected for R_c, and 50 Ω resistances were used for R_{ef} and R_{gb} to limit the gate current of the NMOS transistors (NTR4170N). The forward and backward charge periods were fixed at 4 ms, and a new measurement was performed every 10 ms, discharging the inductor between two consecutive measurement cycles.

The measuring prototype was tested for ten inductors whose inductance values were logarithmically distributed from 26 μH to 46 mH. Air-core inductors were selected for the five smallest inductance values, and ferrite cores for the largest ones. For each L_m value, 200 measurements were performed and each result was calculated by averaging two consecutive cycles, as explained above, to reduce the asymmetry error. The results and a comparison with a reference measurement, L_{ref}, obtained from an LCR meter (U1733C, Agilent) are shown in Fig. 4.

The results indicate that the appropriate R_S depends on the measurement range. Because the quantization error is given by $(R_s + r_m)/ln(2)T_{CLK}$ where T_{CLK} is the timer clock period, it decreases when smaller values are selected for R_s. For a charge resistance of 22 Ω, the quantization error...
Performance of the proposed technique. (a) Linearity between \(L_{av} \) and the reference value \(L_{ref} \). (b) Relative deviation between the average measurements and the reference. (c) Standard deviation of 200 samples.

was limited to 2 \(\mu \)H, representing a relative error of 7.6% at 26 \(\mu \)H. This limit was higher than the measured error (5.6%), as shown in Fig.4. b. For this measurement range, the standard deviation is given by the noise in the analog-to-digital converter used to estimate \(r_m \). As the measured inductance increases, the relative deviation from the reference value decreases by up to 2%. This limit is due to resistance dissymmetry, charge resistance tolerances, approximation in calculus \((R_A, R_B \gg R_S) \) and accuracy of the LCR reference meter (1%). For higher inductances, higher values must be used for the \(R_S \) to avoid long charge and discharge stages. In addition to limiting the sampling frequency, long charge cycles imply higher sensitivities of \(T_{FWD} \) and \(T_{BCK} \) to noise in the \(v_{PA} \) and thus, resulting in higher standard deviations in the measurements.

IV. CONCLUSION

A low-cost direct inductor-to-microcontroller interface circuit was proposed, which does not use calibration inductors and uses fewer transistors than previous methods that have achieved similar measurement ranges and accuracies. The inductance is estimated from a simple relationship that depends only on the charge resistance \(R_s \), parasitic inductor resistance \(r_m \) and measured inductor charging times through forward and backward current flows. Because it does not depend on unknown parameters, no calibration process is required and only \(r_m \) must be estimated using an embedded analog-to-digital converter when low-quality factor inductors are measured. The measurement accuracy depends on the tolerance and symmetry of the resistance values, and can be improved by averaging the results of two measuring cycles in which the forward and backward charging stages are exchanged. The experimental results show that the relative error is reduced to 2% for a measuring range from 100 \(\mu \)H to 10 mH when conventional low-cost resistors (1% tolerance) and a 22 \(\Omega \) charge resistance were used. The measuring resolution was limited to 2 \(\mu \)H by the timer quantitation error, and can be improved by using smaller \(R_S \) at the expense of increasing energy consumption.

REFERENCES

[1] J. Wilson, “Capacitive and inductive displacement sensors,” in *Sensor Technology Handbook*. Amsterdam, The Netherlands: Elsevier, 2005, pp. 192–222.

[2] O. Kirtas, P. Veltink, R. Lontis, M. Mohammadi, and L. N. S. A. Struijk, “Development of inductive sensors for a robotic interface based on non-invasive tongue control,” in *Proc. Int. Conf. Rehabil. Robot.* (ICORR), Jul. 2022, pp. 1–6, doi: 10.1109/ICORR55369.2022.9896548.

[3] E. G. Bakhoum and M. H. M. Cheng, “High-sensitivity inductive pressure sensor,” *IEEE Trans. Instrum. Meas.*, vol. 60, no. 8, pp. 2960–2966, Aug. 2011, doi: 10.1109/TIM.2011.2118910.

[4] P. C. Joshi, N. B. Chopade, and B. Chhibber, “Liquid level sensing and control using inductive pressure sensor,” in *Proc. Int. Conf. Comput. Commun. Control Autom.*, 2017, pp. 1–5.

[5] Y. H. Kim, S. Hashi, K. Ishiyama, K. I. Arai, and M. Inoue, “Remote temperature sensing system using reverberated magnetic flux,” *IEEE Trans. Magn.*, vol. 36, no. 5, pp. 3643–3645, Sep. 2000.

[6] S. Vijayakumar, “A novel single-element inductance-to-digital converter with automatic offset eliminator,” in *Proc. IEEE Int. Instrum. Meas. Technol. Conf.*, May 2021, pp. 1–6, doi: 10.1109/I2MTC50364.2021.9459925.

[7] Z. Kokolanski, J. Jordana, M. Gasulla, V. Dimec, and F. Reverter, “Direct inductive sensor-to-microcontroller interface circuit,” *Sens. Actuators A, Phys.*, vol. 224, pp. 185–191, Jan. 2015, doi: 10.1016/j.sna.2015.01.017.

[8] Z. Kokolanski, F. R. Cubarsi, C. Gavrovski, and V. Dimec, “Improving the resolution in direct inductive sensor-to-microcontroller interface,” *Annu. J. Electron.*, pp. 135–138, Sep. 2015.

[9] A. Asif, A. Ali, and M. Z. U. Abdin, “Resolution enhancement in directly interfaced system for inductive sensors,” *IEEE Trans. Instrum. Meas.*, vol. 68, no. 10, pp. 4104–4111, Oct. 2019, doi: 10.1109/TIM.2018.2884561.

OSCAR LOPEZ-LAPEÑA (Member, IEEE) was born in Barcelona, Spain. He received the two M.S. degrees in physics and electronics engineering from the Universitat de Barcelona, Spain, in 1994 and 1996, respectively, and the Ph.D. degree in electronics engineering from the Universitat Politècnica de Catalunya (UPC), Spain, in 2000. Since 2002, he has been an Associate Professor with the UPC, engaged in teaching on analog and power electronics, where he is currently working with the Instrumentation, Sensors and Interfaces Group (ISI), collaborating in the design of power supplies for autonomous sensors nodes. His current research interests include low-power converters, control theory, energy harvesting, and sensor interface circuits.