Table S1. Primer validation. Efficiency, slope and R² values for housekeeping and target genes obtained in validation relative to the standard curve. Models were made up using Primer 3 and BLAST software.

Gene	Efficiency (%)	R²
Hive bees		
TARGETS		
ABAECIN	100.412	0.987
CYP6BD1	109.38	0.959
CYP6AS2	107.558	0.836
CYP6AS3	98.541	0.923
CYP6AS4	106.517	0.836
CYP9Q3	102.235	0.966
HOUSEKEEPING		
RPL8	104.382	0.754
Larvae		
TARGETS		
ABAECIN	104.319	0.987
CYP6BD1	106.031	0.981
CYP6AS2	109.929	0.876
CYP6AS3	100.650	0.975
CYP6AS4	109.188	0.929
CYP9Q3	99.05	0.876
HOUSEKEEPING		
RPL8	92.918	0.929
Table S2. Colony activity. Statistics of Wilcoxon paired test for comparisons between applications moments. Statistics of Friedman rank sum test for comparisons between plots. Significant differences in bold.

Comparisons	Test	Statistic	95 percent confidence interval	p value
Between pre and post herbicide application	Wilcoxon	\(V=289, \) estimate=40.898	28 - 52.5	<0.001
Between plots	Friedman	\(\chi^2=0.143, \) df=2		0.931

Pollen foragers’ incoming rate

Comparisons	Test	Statistic	p value	
Between pre and post herbicide application	Wilcoxon	\(V=253, \) estimate=11.999	9 - 15	<0.001
Between plots	Friedman	\(\chi^2=8.044, \) df=2		0.018
Plot A - Plot B	Conover post hoc			<0.001
Plot A - Plot C	Conover post hoc			0.24
Plot B - Plot C	Conover post hoc			<0.001

Ratio Pollen/Total incoming rate

Comparisons	Test	Statistic	p value	
Between pre and post herbicide application	Wilcoxon	\(V=280, \) estimate=0.133	0.087 - 0.181	<0.001
Between plots	Friedman	\(\chi^2=9.805, \) df=2		0.007
Plot A - Plot B	Conover post hoc			<0.001
Plot A - Plot C	Conover post hoc			0.31
Plot B - Plot C	Conover post hoc			<0.001
Table S3. Relative gene expression. Statistics of Wilcoxon paired test for comparisons between herbicides applications moments. Statistics of Friedman rank sum test for comparisons between plots. Significant differences in bold.

Gene	Comparisons	Test	Statistic	95 percent confidence interval	p value
Hive bees					
ABAECIN	Between pre and post herbicide application	Wilcoxon	V=36, estimate= -0.105	-2.537 - 1.550	0.814
	Between plots	Friedman	$\chi^2=0$, df=2		1
CYP6BD1	Between pre and post herbicide application	Wilcoxon	V=24, estimate= -0.194	-2.681 - 0.447	0.424
	Between plots	Friedman	$\chi^2=4.75$, df=2		0.093
CYP6AS2	Between pre and post herbicide application	Wilcoxon	V=56, estimate=0.862	-0.835 - 3.286	0.204
	Between plots	Friedman	$\chi^2=1.75$, df=2		0.417
CYP6AS3	Between pre and post herbicide application	Wilcoxon	V=37, estimate= -0.194	-1.971 - 9.829	0.875
	Between plots	Friedman	$\chi^2=1$, df=2		0.606
CYP6AS4	Between pre and post herbicide application	Wilcoxon	V=29, estimate= -0.559	-6.344 - 2.000	0.470
	Between plots	Friedman	$\chi^2=9.25$, df=2		0.01
	Plot A - Plot B	Conover post hoc		<0.001	
	Plot A - Plot C	Conover post hoc		<0.001	
	Plot B - Plot C	Conover post hoc		0.618	
CYP9Q3	Between pre and post herbicide application	Wilcoxon	V=20, estimate= -0.033	-1.522 - 3.083	0.248
	Between plots	Friedman	$\chi^2=9.75$, df=2		0.008
	Plot A - Plot B	Conover post hoc		<0.001	
	Plot A - Plot C	Conover post hoc		0.140	
	Plot B - Plot C	Conover post hoc		<0.001	
Larvae					
ABAECIN	Between pre and post herbicide application	Wilcoxon	V=39, estimate= -0.075	-2.267 - 1.731	1
	Between plots	Friedman	$\chi^2=0.25$, df=2		0.882
CYP6BD1	Between pre and post herbicide application	Wilcoxon	V=66, estimate=1.451	0.017 - 5.939	0.034
	Between plots	Friedman	$\chi^2=0.25$, df=2		0.882
Table S4. Correlation between relative gene expressions of hive bees after herbicide application.

Tau, z values and p values obtained from Kendall’s rank correlation test. Significant differences in bold.

Correlated genes	tau	z value	p value
ABAECIN-CYP6BD1	0.292	1.309	0.191
ABAECIN-CYP6AS2	0.321	1.443	0.149
ABAECIN-CYP6AS3	-0.076	-0.344	0.731
ABAECIN-CYP6AS4	0.015	0.069	0.945
ABAECIN-CYP9Q3	0.107	0.481	0.630
CYP6BD1 - CYP6AS2	0.779	3.506	<0.001
CYP6BD1 - CYP6AS3	0.259	1.169	0.2426
CYP6BD1 - CYP6AS4	0.657	2.956	0.003
CYP6BD1 - CYP9Q3	0.748	3.368	<0.001
CYP6AS2 - CYP6AS3	0.303	1.433	0.197
CYP6AS2 - CYP6AS4	0.515	2.501	0.021
CYP6AS2 - CYP9Q3	0.667	3.155	0.002
CYP6AS3 - CYP6AS4	0	0.033	1
CYP6AS3 - CYP9Q3	0.152	0.538	0.5452
CYP6AS4 - CYP9Q3	0.848	4.132	<0.001
Table S5. Correlation between relative gene expressions of larvae after herbicide application. Tau, z values and p values obtained from Kendall’s rank correlation test. Significant differences in bold.

Correlated genes	tau	z value	p value
ABAECIN-CYP6BD1	0.242	1.041	0.311
ABAECIN-CYP6AS2	-0.168	-0.756	0.450
ABAECIN-CYP6AS3	0.273	1.240	0.250
ABAECIN-CYP6AS4	0.164	0.714	0.475
ABAECIN-CYP9Q3	0.382	1.718	0.086
CYP6BD1 - CYP6AS2	0.076	0.344	0.731
CYP6BD1 - CYP6AS3	0.424	1.847	0.063
CYP6BD1 - CYP6AS4	0.428	1.857	0.063
CYP6BD1 - CYP9Q3	0.290	1.306	0.191
CYP6AS2 - CYP6AS3	0.351	1.581	0.113
CYP6AS2 - CYP6AS4	0.249	1.074	0.283
CYP6AS2 - CYP9Q3	-0.246	-1.102	0.270
CYP6AS3 - CYP6AS4	0.461	2	0.046
CYP6AS3 - CYP9Q3	0.015	0.069	0.945
CYP6AS4 - CYP9Q3	0.348	1.503	0.133

Table S6. Correlation between relative expressions of the same biomarker gene in hive bees (HB) and larvae (L), after herbicide application. Tau, z values and p values obtained from Kendall’s rank correlation test. Significant differences in bold.

Correlated genes	tau	z value	p value
ABAECIN HB – ABAECIN L	0.198	0.894	0.371
CYP6BD1 HB – CYP6BD1 L	0.046	0.206	0.837
CYP6AS2 HB – CYP6AS2 L	-0.321	-1.443	0.149
CYP6AS3 HB – CYP6AS3 L	-0.091	0.430	0.737
CYP6AS4 HB – CYP6AS4 L	0.132	0.571	0.568
CYP9Q3 HB – CYP9Q3 L	0.504	2.268	0.023
Table S7. Correlation between colony activity rates and hive bees’ relative gene expressions. Tau, z values and p values obtained from Kendall’s rank correlation. Significant differences in bold.

Correlated variables	tau	z value	p value
Total incoming rate- ABAECIN	0.099	0.671	0.502
Total incoming rate-CYP9Q3	-0.153	-1.024	0.306
Total incoming rate-CYP6BD1	-0.073	0.497	0.619
Total incoming rate-CYP6AS2	0.080	0.546	0.585
Total incoming rate-CYP6AS3	0.077	0.522	0.602
Total incoming rate-CYP6AS4	0.077	0.522	0.602
Pollen foragers’ incoming rate- ABAECIN	0.273	1.759	0.078
Pollen foragers’ incoming rate- CYP9Q3	0.037	0.234	0.815
Pollen foragers’ incoming rate- CYP6BD1	-0.004	-0.026	0.979
Pollen foragers’ incoming rate- CYP6AS2	0.328	2.121	0.034
Pollen foragers’ incoming rate- CYP6AS3	0.124	0.802	0.422
Pollen foragers’ incoming rate- CYP6AS4	0.349	2.251	0.024
Ratio Pollen/Total incoming rate- ABAECIN	0.369	2.402	0.016
Ratio Pollen/Total incoming rate- CYP9Q3	0.057	0.363	0.716
Ratio Pollen/Total incoming rate- CYP6BD1	-0.008	0.052	0.959
Ratio Pollen/Total incoming rate- CYP6AS2	0.242	1.575	0.115
Ratio Pollen/Total incoming rate- CYP6AS3	0.079	0.516	0.605
Ratio Pollen/Total incoming rate- CYP6AS4	0.206	1.342	0.179

Table S8. Importance of components for principal component analysis (PCA). Standard deviation, proportion of variance and cumulative proportion for each principal component.

	PC1	PC2	PC3	PC4	PC5	PC6
Hive bees						
Standard deviation	1.681	1.093	1.055	0.894	0.245	0.089
Proportion of Variance	0.471	0.199	0.185	0.133	0.010	0.001
Cumulative Proportion	0.471	0.670	0.856	0.989	0.999	1.000

	PC1	PC2	PC3	PC4	PC5	PC6
Larvae						
Standard deviation	1.516	1.356	0.998	0.808	0.415	0.204
Proportion of Variance	0.383	0.306	0.166	0.109	0.029	0.007
Cumulative Proportion	0.383	0.689	0.855	0.964	0.993	1.000
Table S9. Contribution of relative gene expressions after herbicide application for the variability in each principal component, for hive bees and larvae.

Gene	PC1	PC2	PC3	PC4	PC5	PC6
Hive bees						
ABAECIN	0.096	-0.077	0.760	-0.636	0.034	0.020
CYP6BD1	-0.559	-0.221	-0.091	-0.128	0.777	-0.103
CYP6AS2	-0.179	-0.795	-0.271	-0.278	-0.430	0.025
CYP6AS3	0.138	0.394	-0.571	-0.706	0.032	0.022
CYP6AS4	-0.567	0.255	0.075	-0.016	-0.230	0.745
CYP9Q3	-0.553	0.305	0.092	-0.051	-0.396	-0.658

Gene	PC1	PC2	PC3	PC4	PC5	PC6
Larvae						
ABAECIN	0.069	-0.102	0.982	-0.116	-0.070	0.054
CYP6BD1	0.148	0.688	0.031	0.027	-0.664	-0.249
CYP6AS2	-0.536	0.044	-0.080	-0.690	-0.257	0.403
CYP6AS3	-0.521	0.136	0.102	0.701	-0.108	0.443
CYP6AS4	-0.624	0.172	0.117	-0.033	0.302	-0.689
CYP9Q3	0.157	0.683	0.071	-0.132	0.620	0.319