The use of microsatellite polymorphism in genetic mapping of the ostrich (Struthio camelus)

M. Kawka · R. Parada · K. Jaszczak · J. O. Horbańczuk

Abstract The aim of this study was to determine microsatellite polymorphism in ostriches and using it in creation the genetic map of the ostrich. The polymorphism analysis covered 30 microsatellite markers characteristic of ostrich, for the CAU (China Agricultural University) group. The material consisted of 150 ostriches (Struthio camelus). The 30 microsatellite loci was examined and a total of 343 alleles was identified. The number of alleles at a single locus ranged from 5 at locus CAU78 to 34 at locus CAU85. The values for the observed heterozygosity \(H_o \) ranged from 0.467 (locus CAU78) to 0.993 (locus CAU16), whereas for the expected heterozygosity \(H_e \) - from 0.510 (locus CAU78) to 0.953 (locus CAU85). Analyzing the individual loci, the highest PIC value, more than 0.7 was observed for: loci CAU85 (0.932), CAU64 (0.861) and CAU32, 75 (0.852), respectively. It should be noted, that the microsatellite markers used in our study were very polymorphic as evidenced by the large number of detected alleles and high rates of heterozygosity, PIC and PE as well. The analysed microsatellite markers may be used in genetic linkage mapping of ostrich, the construction of a comparative genetic map with other ratites, such as emu and rhea, and population genetics studies or phylogenetic studies of these birds.

Keywords Microsatellites · Polymorphism · Ostriches · Genetic map

Introduction

In the recent years, the study of molecular genetics have contributed to a more profound recognition the genetic information of farm animals. This led to the creation of interdisciplinary programs of genomes mapping of important animal species. The principal aim of animal genome mapping is to determine the location and distances between genes on chromosomes as well as to search genetic markers, determining production traits (quantitative traits loci–QTLs). Identification of QTL provide genetic maps of high resolution i.e., containing a large number of equally distributers markers. From the breeding point of view genome mapping offers information facilitating selection for the necessary traits as it bases it on the genetic markers linked to them. Up to now, several genetic maps in agriculturally important animals have been reported such as pig [21], cattle [16], sheep [7], and chicken [8, 9].

Over the past several years, ostrich farming and breeding have been gaining popularity throughout the world as a new agricultural activity [2], since these birds provide dietetic meat, valuable skins, feathers and eggs [3, 4, 12, 22]. Recent interest in ratite farming, especially ostrich and emu, has led to an increasing demand for information about these birds [5, 13, 23], especially the genetics aspects [6, 11, 14, 17–19, 25, 26]. These studies are aimed at determining the genetic structure of these birds e.g., estimation of the genetic variability and analysis of the relationship between individuals belonging to a given populations [28].

In turn, we performed genetic analysis of the polish ostrich population using molecular methods [17]. The obtained results encourage for testing the available pool of ostrich microsatellites and identification a new microsatellite sequences. The next stage comprises the recognition of ostrich genome, which up to now has been studied very
Materials and methods

The experimental material consisted of feathers collected from 150 ostriches, collected from ostrich farm in Stypulów, which maintains the birds in conditions compliant with EU recommendations by the Committee of the European Convention for the Protection of Animals Kept for Farming Purposes (T-AP)—Draft Recommendation Concerning Ratites (Ostriches, Emus and Rheas) [24].

Ostrich genomic DNA was isolated from feathers (noninvasive methods) using Dneasy Tissue KIT 250 from QUIAGEN. Each sample was examined by spectrophotometer and electrophoresis. An analysis of 30 microsatellite sequences characteristic of ostrich [25], for the CAU (China Agricultural University) group was performed. One of the primer pairs has been labeled with one of the four dyes: 6-FAM, VIC, NED, PET. The characteristic of the loci is presented in Table 1. The amplification of selected microsatellite sequences was performed using a thermal cycler PTC-200 Engine (MJ Research). The PCR was carried out in a total volume of 10 ml comprising 10 ng of template DNA, 0.5 mM of each nucleotide, 100 pmol of each primer, 1.5 mM MgCl₂, 50 mM KCL, 10 mM Tris-HCl, 0.01% Tryton X-100 and 0.5 units of DNA polymerase (POLGEN). The PCR conditions were optimized for all 30 primer pairs. The PCR protocol began with a denaturing step for 5 min at 94°C, 35 cycles of 94°C for 45 s, 52.5–69.5°C for 45 s (annealing), and at 72°C for 90 s (extension), with the final 10 min elongation step at 72°C. The fluorescent PCR products were separated by electrophoresis using the four-capillary genetic analyzer Applied Biosystems 3130 and the computer software GeneScan. The results were visualized and the genotyping was completed with GeneScan 2.1. In addition, the computer program GeneMapper (Applied Biosystems) was used to automatically determine of allele size for the individual markers.

The statistical analysis of obtained results was performed using Cervus [15] program. It included: determine the frequency of identified alleles, estimate the observed and expected heterozygosity, the polymorphic information content (PIC) and the exclusion probability (PE).

Results and discussion

We analyzed the ostrich population consisted of 150 birds. At the 30 microsatellite loci examined a total of 343 alleles were identified. The most polymorphic were loci: CAU84, CAU32, CAU7, CAU75 and CAU76, as characterized by the highest number of alleles. The number of alleles at a single locus ranged from 5 at locus CAU78 to 34 at locus CAU85. At each of the microsatellite loci studied a mean of 11.43 alleles was recorded. In the previous research Kawka et al. [17], analyzing 5 microsatellites identified 51 alleles. The number of alleles per locus ranged from 5 (locus VIAS-OS22) to 16 alleles (locus VIAS-OS29). The mean number of alleles per locus was 10.2. The similar research on isolation and characterization of 70 new microsatellite markers from ostrich conducted Tang et al. [25]. The number of alleles obtained by them ranged from 2 to 16—a mean of 5.6 per locus. However, in the studies of Ward et al. [26], the number of alleles per locus ranged from 5 to 18 and at Kimwele and Graves [19]—from 6 to 25.

Based on the frequency of individual alleles for the studied microsatellite loci was estimated the observed heterozygosity (Hₒ), which included heterozygous genotypes and the expected heterozygosity (Hₑ), taking into consideration the number and frequency of alleles and the polymorphic information content (PIC) as well. The values for the observed heterozygosity Hₒ ranged from 0.467 at locus CAU78 to 0.993 at locus CAU16 (Table 2). The mean for all loci value of Hₒ was 0.840. In turn, the values for expected heterozygosity (Hₑ) estimated for population analyzed, ranged from 0.510 at locus CAU78 to 0.953 at locus CAU85. The mean Hₑ amounted to 0.791 per locus (Table 2). It should be noted that both values (Hₒ and Hₑ) in the studied ostrich population were relatively high. By comparison, Kimwele and Graves [19] indicated, that the value of mean heterozygosity He for a ostrich populations living in Nairobi National Park and ostriches kept on farms in Kenya, ranged from 0.40 to 0.79. In turn, Kawka et al. [17], examining the genetic variability within and among 3...
Table 1 Characteristics of 30 ostrich microsatellite loci used in the study

Microsatellite	Sequence of microsatellite	Repeat motif	Number of alleles	Length of alleles (bp)
CAU1	TTACAAGCAAGTGAGAAGCCA	(AC)$_3$(AT)(GC)$_3$(AC)$_3$	10	86–104
	GCAAGCAAGCAATCCCTCTG			
CAU3	AACAGGTATAGCCCTGTTACA	(CA)$_9$	6	115–125
	TGCGAGTCTTTCTAGTCTAC			
CAU7	CACCTCTGCTCCCTACTTTG	(AC)$_{18}$	12	185–211
	CTGTAAGTTAAGAGACTGGA			
CAU11	CTTTGAGCAGTCTGCTCATTGCAC	(CA)$_{12}$	7	98–114
	AACCAGAGGGCTAGTCTTCTCACA			
CAU14	ATTTAACCTCTCTAAAGGACCTC	(CA)$_{16}$	14	142–178
	GAGGAAGATTCAGACGACAGC			
CAU16	TGCCCTGCGTTGACTTACTTTT	(CA)$_{27}$	7	188–204
	GCCAGGTAATGTCAGTGTC			
CAU17	CTGAAAGCCAGAATACACACAA	(CA)$_{22}$	11	160–180
	AGTGGGCATTGTGACGCTCTCA			
CAU22	TGACTGTAAATAAGCAGAATG	(AC)$_{11}$	7	140–154
	CTTATATGAAAGCACCCTCTAAAT			
CAU23	AGGAAAGTGGAAACACTATTT	(CA)$_{10}$	7	165–193
	GAGGTAGAAAGCTCTTATCACCC			
CAU25	ATGGGGAAGCAGATAGAGTGT	(CA)$_{3}$CT(CA)$_{8}$	6	197–207
	CCAGGTGAAATGCGCCACATA			
CAU30	AGGGGACGCTCTCCTACCA	(CA)$_{19}$	9	117–137
	GCCAAGAGAAGACAGCAGC			
CAU32	ATACTGGTTTGTATTGTGTGAT	(CA)$_{10}$	7	177–205
	CATGGGAAGGGCAATAGATTT			
CAU34	ATTTGATAGCAGAGCAGTTC	(CA)$_{12}$	7	194–208
	TCTTACAAGATTTTCACATATAC			
CAU40	ACGGGGAAGCTCAAGGATG	(CA)$_{9}$	9	138–156
	GCCTTGGAGTGACGATGAT			
CAU42	AGTCCAGCCCCGCATACAC	(CA)$_{10}$	7	182–198
	CCTCTGTGAGAGAACTGTTG			
CAU43	ACTGAGTGCCCGAGGTGAGG	(CA)$_{17}$	6	211–221
	TGCTGTATTTTGTCACTCTTTCTTTT			
CAU44	GCAAGAGCAGTGCTCTAGTCCAA	(CA)$_{12}$	5	227–237
	AGCGTGTACTCTGACACATGA			
CAU57	AAGAGCCAAGCAGGAATAGGTCA	(CA)$_{7}$(TA)$_{3}$(CA)$_{3}$	6	201–221
	CAAAATCTGGCTTTGCTAATCA			
CAU64	AGCACCCTCATCTCCCCAAC	(CATA)$_{3}$(CA)$_{6}$(TA)$_{4}$	9	161–183
	AGATTTGGAGCATGAGCATATT	(CA)$_{15}$		
CAU65	TGAGAGCCTCCAGAAATGCGC	(TA)$_{12}$(CA)$_{9}$	6	181–191
	CAGAGAATAATATGCGCTGAAATAT			
CAU68	TCTAAGCAGATCCATCACG	(TA)$_{9}$(CA)$_{8}$...(CA)$_{15}$	6	265–275
	GCCTCCCTTCTACATCTCTAGGCG			
CAU69	TGAGTAAGGGACTGCTTC	(GA)$_{19}$	6	100–112
	CCTAAAGGCAACCCCTCTGTCTT			
CAU75	ACAGACCAGGGAGTCCACGA	(GC)$_{2}$(AC)$_{18}$	7	186–210
	ACCCTCGACGCTTGAACACAT			
CAU76	GCACCAATCTTGATGCTTGC	(CA)$_{11}$CG(CA)$_{3}$	10	220–254
ostrich breeds reported a mean observed and expected heterozygosity ranking from 0.463 to 0.663 and from 0.481 to 0.679, respectively. In a preliminary study of genetic diversity of emu populations (based on 5 microsatellite loci) kept on farms in Australia and Thailand and in the wild emu [10] obtained a wide range of value of H_e. In turn, for emus kept on a farm in Australia, this ratio ranged from 0.44 to 1, whereas in Thailand from 0.28 to 0.89.

Another parameter characterizing the genetic variability of the *locus* and used to determine the value of markers in analyzing the linkage with other *loci* is the polymorphism information content (PIC). Analyzing the individual *loci*, the highest value for this parameter more than 0.7 was observed, among others: for *loci* CAU85 (0.932), CAU64 (0.861) and CAU32, 75 (0.852) (Table 3). These microsatellites are the most polymorphic and most useful in the linkage analysis for ostrich. The lowest values of the PIC (0.462) was recorded for *locus* CAU78. In previous study conducted on ostriches by Kawka et al. [17], the PIC value ranged from 0.117 to 0.786. One must emphasise that almost all the microsatellite markers selected for our analysis were characterized by a high polymorphism of heterozygosity or by high values of the polymorphism information content. Among the least polymorphic microsatellite markers one may count *locus* CAU78.

It was estimated also the probability of exclusion (PE) for each *locus* when data of both parents are available, taking into consideration the frequency of the n-th co-

Table 1 Characteristics of 30 ostrich microsatellite loci used in the study

Microsatellite	Sequence of microsatellite	Repeat motif	Number of alleles	Length of alleles (bp)
CAU78	CAGGTGGAAAGTGGGTATGC	(AC)$_8$(C)$_5$	5	113–121
	GTCTTGTAGTGGTGGTGG			
CAU83	AAAACAAGCGCTAGTGAGGA	(AC)$_{16}$	8	198–218
	TGCAGACTCAGACCGACATC			
CAU84	TATCAGTGCCATTATCGCTCTC	(CA)$_{12}$	7	202–214
	TGTCCCTTCTTCCAATACCTCTC			
CAU85	GAGGTGCCTGCTCCTTTTAC	(AC)$_{26}$	16	204–276
	AAAAGCACCTCCACACATGG			
CAU97	TGCACGCAATTACCTCTGTGTGCAAG	(CA)$_{10}$	5	152–166
	AGTTCCCTTCTCAATGCTT			
CAU98	CACTCCACGAATGTGCTTTTA	(CA)$_{12}$	8	134–178
	TTTGTCAGGTGCAGAATGC			

Table 2 Observed heterozygosity (H_o) and expected heterozygosity (H_e) within the ostrich analysed

Locus	H_o	H_e	Locus	H_o	H_e
CAU1	0.880	0.867	CAU43	0.913	0.836
CAU3	0.953	0.737	CAU44	0.860	0.688
CAU7	0.807	0.701	CAU57	0.713	0.832
CAU11	0.960	0.839	CAU64	0.893	0.876
CAU14	0.960	0.821	CAU65	0.700	0.820
CAU16	0.993	0.862	CAU68	0.780	0.850
CAU17	0.840	0.859	CAU69	0.967	0.840
CAU22	0.913	0.814	CAU75	0.867	0.869
CAU23	0.780	0.724	CAU76	0.873	0.853
CAU25	0.820	0.738	CAU78	0.467	0.510
CAU30	0.967	0.809	CAU83	0.833	0.781
CAU32	0.687	0.868	CAU84	0.833	0.841
CAU34	0.780	0.685	CAU85	0.953	0.939
CAU40	0.953	0.757	CAU97	0.853	0.754
CAU42	0.513	0.664	CAU98	0.900	0.722
Mean	0.840	0.791		0.023	0.018
SE	0.023	0.018		0.023	0.018
dominant allele. The values of the probability of exclusion is presented in Table 3. The PE value ranged from 0.446 at locus CAU78 to 0.972 at locus CAU85. Kawka et al. [17] analyzed five microsatellite loci obtained a very high probability of exclusion from 0.77 to 0.98. Analysis of 30 microsatellite loci presented gives a very high probability of exclusion incorrect parent from 0.77 to 0.98. The presented results show that the analysis of these 30 microsatellite loci may be successfully applied in identification the origin of ostriches kept in Poland.

In summary, the microsatellite markers used in our study were very polymorphic as evidenced by the large number of detected alleles and high rates of heterozygosity, PIC and PE as well. The microsatellite markers we have analyzed may contribute to genetic linkage mapping of ostrich, the construction of a comparative genetic map with other ratites such as emu and rhea. Further research aimed at creation of two-generation ostrich reference family and evaluation of the distances between markers is recommended.

Acknowledgment This study was funded by the Ministry of Science and Higher Education, grant no. NN 311 255936.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

References

1. Botstain D, White RL, Skolnick M, Dawid RW (1980) Construction of a linkage map in man using restriction fragment length polymorphism. Am J Hum Genet 32:314–331
2. Cooper RG, Horbańczuk JO (2004) Ostrich nutrition: a review from a Zimbabwean perspective. Rev Sci Tech Off Int Des Epizoot 23:1033–1042
3. Cooper RG, Horbańczuk JO, Fujhara N (2004) Nutrition and feed management in the ostrich (Struthio camelus domesticus). Anim Sci J 75:175–181
4. Cooper RG, Tomaski C, Horbańczuk JO (2007) Avian influenza in ostriches (Struthio camelus). Avian Poult Biol Rev 18:87–92
5. Cooper RG, Naranowicz H, Maliszewska E, Tennett A, Horbańczuk JO (2008) Sex-based comparison of limb segmentation in ostriches aged 14 months with and without tibiotarsal rotation. J S Afr Vet Assoc 79:142–144
6. Davids AH (2011) Estimation of genetic distances and heterosis in three ostrich (Struthio camelus) breeds for the improvement of productivity. Master Thesis, Stellenbosch University
7. de Gortari MJ, Freking BA, Cuthbertson RP, Kappes SM, Kelee JW, Stone RT, Leymaster KA, Crawford AM, Beattie CW (1998) A second-generation linkage map of the sheep genome. Mamm Genome 9:204–209
8. Groenen MA, Cheng HH, Bumstead N, Benkell BF, Briles WE, Burke T, Burt DW, Crittenden LB, Dodgson J, Hillel J, Lamont S, de Leon AP, Soller M, Takahashi H, Vignal A (2000) A consensus linkage map of the chicken genome. Genome Res 10:137–147
9. Groenen MA, Crooijmans RP, Veenendaal A, Cheng HH, Siwek M, van der Poel JJ (1998) A comprehensive microsatellite linkage map of the chicken genome. Genomics 49:265–274
10. Hammond EL, Lymbery AJ, Martin GB, Gotoh D, Wetherall JD (2002) Microsatellite analysis of genetic diversity in wild and farmed emus (Dromaius novaehollandiae). J Hered 93:376–380
11. Horbańczuk JO, Kawka M, Sacharczuk M, Cooper RG, Boruszewska K, Parada R, Jasza K (2007) A serach for sequence similarity between chicken (Gallus domesticus) and ostrich (Struthio camelus) microsatellite markers. Anim Sci Pap Rep 25:283–288
12. Horbańczuk J, Sales J, Celeda T, Konecka A, Zieba G, Kawka P (1998) Cholesterol content and fatty acid composition of ostrich meat as influence by subspecies. Meat Sci 50:385–388
13. Horbańczuk JO, Tomaski C, Cooper RG (2008) Ostrich farming in Poland—its history and current situation after accession to the European Union. Avian Poult Biol Rev 1:65–71

Table 3 Polymorphism information content (PIC) and probability of exclusion (PE) for the microsatellite loci examined within the ostrich analyzed

Locus	PIC	PE	Locus	PIC	PE
CAU1	0.850	0.888	CAU43	0.812	0.841
CAU3	0.692	0.689	CAU44	0.642	0.637
CAU7	0.677	0.730	CAU57	0.812	0.857
CAU11	0.819	0.860	CAU64	0.861	0.905
CAU14	0.794	0.820	CAU65	0.792	0.815
CAU16	0.845	0.889	CAU68	0.828	0.859
CAU17	0.840	0.877	CAU69	0.818	0.852
CAU22	0.785	0.808	CAU75	0.852	0.895
CAU23	0.704	0.763	CAU76	0.834	0.876
CAU25	0.690	0.677	CAU78	0.462	0.446
CAU30	0.781	0.808	CAU83	0.756	0.797
CAU32	0.852	0.897	CAU84	0.818	0.846
CAU34	0.643	0.656	CAU85	0.932	0.972
CAU40	0.718	0.731	CAU97	0.719	0.743
CAU42	0.646	0.710	CAU98	0.689	0.720
14. Huang Y, Liu Q, Tang B, Lin L, Liu W, Zhang L, Li N, Hu X (2008) A preliminary microsatellite genetic map of the ostrich (Struthio camelus). Cytogenet Genome Res 121:130–136
15. Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol 16:1099–1106
16. Kappes SM, Keele JW, Stone RT, McGraw RA, Sonstegard TS, Smith TP, Lopez-Corrales NL, Beattie CW (1997) A second-generation linkage map of the bovine genome. Genome Res 7:235–249
17. Kawka M, Horbańczuk JO, Sacharczuk M, Zięba G, Łukaszewicz M, Jaszczyk K, Parada R (2007) Genetic characteristics of the ostrich population using molecular methods. Poult Sci 86: 277–281
18. Kawka M, Sacharczuk M, Cooper RG (2010) Identification of genetic markers associated with laying production in ostriches (Struthio camelus)–a preliminary study. Anim Sci Pap Rep 28:95–100
19. Kimwele CN, Graves JA (2003) A molecular genetic analysis of the communal nestin of the ostrich (Struthio camelus). Mol Ecol 12:229–236
20. Ott J (1992) Strategies for characterizing highly polymorphic markers in human gene mapping. Am J Hum Genet 51:283–290
21. Rohrer GA, Alexander LJ, Hu Z, Smith TP, Keele JW, Beattie CW (1996) A comprehensive map of the porcine genome. Genome Res 6:371–391
22. Sales J, Horbańczuk JO (1998) Ratite Meat. Worlds Poult Sci J 54:59–67
23. Sales J, Horbańczuk JO, Dingle J, Coleman R, Sensik S (1999) Carcase characteristics of emus (Dromaius novaehollandiae). Br Poult Sci 40:145–147
24. Standing Committee of the European Convention for the protection of animals kept for farming purpose (T-AP) (1997) Draft Recommendation Concerning Ratites (Ostriches, Emus and Rheas). 33rd Meeting, Strasbourg, 22–25 April, 1997 pp 1–16
25. Tang B, Huang YH, Lin L, Hu XX, Feng JD, Yao P, Zhang L, Li N (2003) Isolation and characterization of 70 novel microsatellite markers from ostrich (Struthio camelus) genome. Genome 46: 833–840
26. Ward WK, McPartlan HC, Matthews MF, Murray ND, Robinson NA (1998) Ostrich microsatellite polymorphism at the VIAS-OS4, VIAS-OS8, VIAS-OS14, VIAS-OS22 and VIAS-OS29 loci. Anim Genet 29:331
27. Weir BS (1990) Genetic data analysis. Sinauer Associates, Suderland
28. Zhou X, Ning L, Lao Z, Qingwei C (2004) A study of molecular genetic markers in ostrich breeding. In: Proceedings of international conference on development of ostrich estate, Xian, 3–5 April pp 236–238