Flame Retardant Polypropylenes: A Review

Farzad Seidi 1, Elnaz Movahedifar 2, Ghasem Naderi 2, Vahideh Akbari 3, Franck Ducos 4, Ramin Shamsi 5, Henri Vahabi 3,* and Mohammad Reza Saeb 3,*

1 Provincial Key Lab of Pulp and Paper Science and Technology and Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing 210037, China; f_seidi@njfu.edu.cn
2 Department of Polymer Processing, Iran Polymer and Petrochemical Institute, Tehran 14965/115, Iran; el.movahedifar@gmail.com (E.M.); g.naderi@ippi.ac.ir (G.N.)
3 Université de Lorraine, CentraleSupélec, LMOPS, F-57000 Metz, France; vahidehakbari1991@gmail.com
4 Université de Lorraine, IUT de Moselle Est, IUTSGM, 57600 Forbach, France; tranck.ducos@univ-lorraine.fr
5 Research and Development Center, Marun Petrochemical Company, Mahshahr 63531 69311, Iran; ramin.shamsi44@gmail.com

* Correspondence: henri.vahabi@univ-lorraine.fr (H.V.); mrsaeb2008@gmail.com or saeb-mr@icrc.ac.ir (M.R.S.); Tel.: +33-(0)38-793-9186; +98-912-826-4307 (M.R.S.);
Fax:+33-(0)38-793-9101 (H.V.)

Received: 8 July 2020; Accepted: 28 July 2020; Published: 29 July 2020

Abstract: Polypropylene (PP) is a commodity plastic known for high rigidity and crystallinity, which is suitable for a wide range of applications. However, high flammability of PP has always been noticed by users as a constraint; therefore, a variety of additives has been examined to make PP flame-retardant. In this work, research papers on the flame retardancy of PP have been comprehensively reviewed, classified in terms of flame retardancy, and evaluated based on the universal dimensionless criterion of Flame Retardancy Index (FRI). The classification of additives of well-known families, i.e., phosphorus-based, nitrogen-based, mineral, carbon-based, bio-based, and hybrid flame retardants composed of two or more additives, was reflected in FRI mirror calculated from cone calorimetry data, whatever heat flux and sample thickness in a given series of samples. PP composites were categorized in terms of flame retardancy performance as Poor, Good, or Excellent cases. It also attempted to correlate other criteria like UL-94 and limiting oxygen index (LOI) with FRI values, giving a broad view of flame retardancy performance of PP composites. The collected data and the conclusions presented in this survey should help researchers working in the field to select the best additives among possibilities for making the PP sufficiently flame-retardant for advanced applications.

Keywords: flame retardancy; polypropylene; Flame Retardancy Index (FRI); cone calorimetry; flame retardants

1. Introduction

Polymers are building blocks of advanced materials and systems, but their flammability has been a serious constraint in their usage in advanced applications [1–3]. Polypropylene (PP) is a commodity plastic widely used in a variety of applications, particularly in the form of composites in load-bearing uses due to its high rigidity and crystallinity [4]. By the end of 2020, the PP market size is expected to reach $112 billion, and it is estimated to reach $155 billion by 2026 [5,6]. Its global production was 56.0 million metric tons in 2018, and it is estimated to reach around 88.0 million metric tons by 2026. This growing demand reflects the importance of PP for applications where low density, hardness, high flexural modulus, and chemical resistance are needed [7,8]. Moreover, PP is a low-
cost plastic capable of being processed with various methods, e.g., extrusion, thermoforming, and injection molding [9,10]. Therefore, a huge number of PP products, including fibers, films, sheets, textiles, pipes, and profiles, have been developed and used in the automotive, electrical and electronic, packaging, and construction industries [11–14]. On the other hand, due to the inherent flammability, the use of flame-retardant additives in PP is necessary to minimize the risk of fire [15]. Different types of flame retardants have been used in PP including minerals, phosphorus-based, nitrogen-based, and intumescent [16–18]. It was recognized that additive selection plays a crucial role in achieving acceptable flame retardancy [19], where the type, the size, and the loading percentage of flame retardants control the fire behavior of PP matrix.

A diversity of additives are used in PP to make it flame retardant. There is a need for a comprehensive survey to classify PP composites in terms of flame retardancy. In the present paper, several families of flame retardants examined in PP have been identified and categorized to evaluate their flame retardancy performance in terms of Flame Retardancy Index (FRI) [19,20]. FRI is a universal dimensionless index that takes into account well-known parameters obtained from cone calorimeter test (peak of heat release rate (pHRR), the total heat release (THR), and the time to ignition (TTI)). FRI can be simply calculated using Equation (1):

\[
FRI = \frac{[THR \times \left(\frac{pHRR}{TTI} \right)_{\text{Neat Polymer}}]}{[THR \times \left(\frac{pHRR}{TTI} \right)_{\text{Composite}}]}
\]

(1)

Basically, the use of FRI makes it possible to semi-qualitatively classify polymer composites by labeling them as Poor, Good, or Excellent flame retardancy performance and thus enables evaluation of the efficiency of the incorporated flame retardant (FR). There has always been a need for fast-tracking and classifying polymers for their flame retardant performance. The use of FRI made possible classifying polymers and polymer composites in terms of flame retardancy in a simple manner. For FRI values below \(10^0\) obtained by the use of Equation (1), we have the case (namely Poor) where the addition of FR adversely affects flame retardancy of polymer. When FRI takes values in the range of \(10^0-10^1\), we name it Good flame retardancy performance, such that addition of FR enhances the resistance of polymer against fire. For FRI values above \(10^1\), which is rare in practical cases, we have an Excellent case, where FR significantly improves flame retardancy. It is worth mentioning that some important parameters of testing such as irradiance and sample thickness as well as sample weight can be neglected due to the fact that, in the FRI formula, the parameters related to the neat polymer are divided by those of polymer/FR composite. Thus, the dimensionless value obtained can be used as a reliable measure of the efficiency of FR in polymer. In this survey, the data from the literature were extracted first, and five families of flame retardants that served as PP were considered including phosphorus-based, nitrogen-based, mineral, carbon-based, and bio-based flame retardants, and hybrid cases composed of the aforementioned five categories were distinguished. The main aim of the present survey is to give the readers a broad view of FR systems used in PP via FRI classification method. Certainly, this classification is not a precise and unique data set for FR selection for PP, but it can be considered as a database to compare different systems. The focus of this work was particularly placed on the reports in which cone calorimetry test was carried out. However, some other parameters such as smoke quantity or the percentage of FR elements (phosphorus, nitrogen, …) were not systematically given in this research paper due to the lack of data, which could lead to unreliable judgments. For some papers, limiting oxygen index (LOI) and UL-94 data were also available, which were used in finding possible correlations between the FRI variation and other criteria.

2. Phosphorus-Based Flame Retardants

Various types of phosphorus-based flame retardants have been incorporated into PP to make it flame-retardant [21–23]. Table 1 reviews the names and the percentages of these flame retardants incorporated into PP. Moreover, the values obtained from cone calorimetry such as the peak of heat release rate (pHRR), the total heat release (THR), and the time to ignition (TTI) are summarized in
this Table. The FRI value, calculated from cone calorimetry parameters, as well as the LOI and UL-94 values, are also presented in Table 1. In some cases, if LOI and/or UL-94 values were not available, the sign “—” was used.

Table 1. Flame-retardant PP materials containing phosphorus-based (P) flame retardants. Data are extracted from the literature: cone calorimetry parameters (TTI, pHRR, THR), LOI, and UL-94 values. The FRI values were calculated by authors of the present review. The name and the percentage of flame retardants are provided in separate columns. “wt.%” was used for loading level of additives, while “—” stands for the systems free of additive or the neat PP. * FR means flame retardant. Since all comparisons were made in terms of FRI, classification of polymers in terms of their flame retardant properties was not surveyed based on the chemistry of additives, heat flux, sample thickness, etc.

PP Containing Phosphorus-Based (P) FR *	wt.%	TTI (s)	pHRR (kW·m⁻²)	THR (MJ·m⁻²)	Irradiance (kW·m⁻²)	Sample Thickness (mm)	FRI	LOI	UL-94	Ref.
Ammonium polyphosphate (APP)	10	24	925	92	35	0.4	2.35	—		[24]
	12	37	510	97	35	3	2.36	22.3	V-2	[25]
APP	15	27	339	89	35	3	2.82	25.4	V-0	[25]
APP	20	21	306	141.6	50	4	2.84	27	NR	[26]
APP	20	40	787	92	35	3.2	1.66	20.5	NR	[28]
APP	20.3	193	254.8	54.5	50	2.4	6.37	V-0		[28]
APP	20	31	633	44.2	35	3	1.81	17	NR	[23]
APP	21	11	397	87	35	3	1.23	20.6	NR	[23]
APP	20	21	1242	111	50	3.2	1.64	23.2	NR	[30]
APP	25	398	147.5	50	3	1.7	2.19	V-2		[29]
APP	25	38	1455	148	50	3	1.78	19.6	NR	[30]
APP	25	18	579	109	50	3.2	1.64	23.2	NR	[30]
APP	25	43	652	80	35	3.2	1.49	21	NR	[31]
APP	20	809	96	50	3	1.8	17.6	NR	[32]	
APP	21	397	87	50	3	1.23	20.6	NR	[32]	
APP	21	1242	111	50	3.2	1.31	21.7	NR	[33]	
APP	25	398	147.5	50	3	1.7	2.19	V-2		[34]
APP	25	33	390.8	196	50	3.2	2.92	20.9	NR	[34]
APP	25	25	841.6	89.1	50	3	1.81	18	NR	[35]
APP	25	13	473.3	90.2	50	3	0.91	20	NR	[35]
Piperazine-modified APP (m-APP)	25	17	162.6	84.5	50	3	3.71	32.5	V-0	[35]
APP	25	19	526	180	50	6	1.88	19.6	NR	[36]
Polyisoxane shell-coated APP (mc-APP)	25	19	214	137	50	6	6.08	25	NR	[36]
Melamine and phytic acid-modified APP	25	33	218.1	80.6	35	3	3.12	22.5	V-2	[37]
(m-APP)	25	37	1284	121	50	3	—	—	—	[38]
APP	30	22	767	111	50	3	1.08	21.7	NR	[38]
APP	48	988	88.3	35	3.2	1.6	22.2	NR	[39]	
APP	32	459	77.6	35	3	1.63	22	NR	[39]	
APP	50	1350	91.2	35	3	1.7	22.2	NR	[40]	
APP	58	851	74.4	35	3	1.8	22	NR	[40]	
Melamine-formaldehyde-tris(2-hydroxyethyl) isocyanurate resin microencapsulated APP (mc-APP)	30	24	375	116.4	50	3	2.55	32	V-0	[41]
APP	30	30	432	114	35	3	1.81	22	NR	[42]
Polymers 2020, 12, 1701										

4, 4′-diphenylmethanediisocyanate and melamine microencapsulated APP (mc-APP)	30	27	300	100	35	3	2.68	32.1	V-0	[42]
APP	—	29	1186	215	50	6	—	17	NR	[43]
Epoxy acrylate microencapsulated APP (mc-APP)	30	13	332	149	50	6	2.31	24.8	NR	[43]
APP	—	40	1174.7	102.2	35	3	—	17	NR	[44]
4, 4′-diphenylmethane diisocyanate and melamine and pentaerythritol microencapsulated APP (mc-APP)	30	30	301.8	65.1	35	3	4.58	25	V-1	[44]
APP	—	68	577.5	82.7	35	3	—	18.2	NR	[45]
Thermoplastic polyurethane microencapsulated APP (mc-APP)	5	57	395.4	67.2	35	3	1.50	18.7	NR	[45]
Thermoplastic polyurethane microencapsulated APP (mc-APP)	10	42	282.5	63.7	35	3	1.63	19.6	NR	[45]
Thermoplastic polyurethane microencapsulated APP (mc-APP)	15	40	214.9	59.9	35	3	2.18	20	NR	[45]
Thermoplastic polyurethane microencapsulated APP (mc-APP)	20	32	193.6	57.3	35	3	2.02	20.3	NR	[45]
Thermoplastic polyurethane microencapsulated APP (mc-APP)	25	30	145.4	64.1	35	3	2.26	22.2	NR	[45]
Thermoplastic polyurethane microencapsulated APP (mc-APP)	30	31	140.6	41.8	35	3	3.70	22.9	NR	[45]
APP	—	25	841.6	89.1	50	3	—	18	NR	[46]
Ethylenediamine-modified APP (m-APP)	35	11	435.9	83.9	50	3	0.90	20.4	NR	[46]
APP	—	25	841.6	89.1	50	3	—	18	NR	[47]
Ethanolamine-modified APP (m-APP)	35	18	96.6	22.6	50	3	24.73	35	V-0	[47]
APP	—	33	837	212	50	6	—	17	NR	[48]
Pentaerythritol triacrylate microencapsulated APP (mc-APP)	40	32	214	183	50	6	4.39	30.6	V-0	[48]
APP	—	38	1284	214	50	6	—	18.2	NR	[49]
APP	25	34	537	177	50	6	2.58	20.9	NR	[49]
Phosphorus-based charring agent: 3,9-Bis-(1-oxo-2,6,7-trioxo-1-phospha-bicyclo[2.2.2]oct-4-ylmethoxy)-2,4,8,10-tetraoxa-3,9-diphosphaspiro[5.5]undecane 3,9-dioxide (P-CA)	25	35	480	168	50	6	3.13	22.6	NR	[49]
APP	—	42	831	112	35	3	—	18	NR	[50]
APP	25	36.4	578	83	35	3	1.68	21	NR	[50]
Material	phosphorus content	nitrogen content	FSP	MFR	LOI	HT	CI	TGA	FTIR	References
--	--------------------	------------------	-----	-----	-----	----	----	-----	------	------------
APP-based intumescent flame retardant (APP-IFR)										
10	28	266	140	50	3	3	1.58	19.7		[52]
10	30	315	25	35	5	2.14	22.8			[52]
25	35	407	15.5	35	5	4.18	29.4			[52]
20	37	363	1.6	35	3					
28	33	62	24	35	3	12.18			[54]	
28	37	363	1.6	35	3					
30	65	1416.6	128.5	35	3					[57]
Phosphorus-based FR: Poly(4,4-diaminodiphenyl) methane										
Obicyclicpentaerythritol phosphate-phosphate (P-IFR)										
60	69	620	78.5	35	3	3.07			[58]	
60	61	1026	166	35	4					[58]
10	60	648	141	35	4	1.83			[59]	
10	84	1000	96	35	3					[59]
Tetraethyl orthosilicate microencapsulated										
bisphenol-A bis (diphenyl phosphate) (mc-BDP)										[59]
The information provided in Table 1 clearly reveals that APP is quite frequently used as a major phosphorus flame retardant in PP matrix. The percentage of incorporation of phosphorus flame retardants was variable from 10 to 40 wt.%. Figure 1 displays the FRI as a function of wt.% phosphorus-based FR in PP systems. The name/type of each phosphorus flame retardant is provided in the caption of Figure 1. Three formulations reached the Excellent level of flame retardancy, which is quite rare among such data pool. The loading percentage of FR in these formulations varied from 28 to 35 wt.%. Many additives were modified APP and modified phosphorus-nitrogen flame retardants. It can also be speculated that a high loading percentage cannot necessarily guarantee the Excellent level of flame retardancy; besides, the type of phosphorus FR is also an important parameter. Figure 1 also reveals that the majority of points are located in the Good zone of FRI. Therefore, it can be concluded that phosphorus-based flame retardants have quite satisfactorily reinforced PP against flame.

| Flame Retardancy Index (FRI) values as a function of phosphorus flame retardant (FR) type and content. Symbols are indicative of different types of phosphorus flame retardant used. Here: \(\text{APP-10} \) [24],
\(\text{APP-12} \), \(\text{APP-15} \) [25], \(\text{APP-20} \) [26], \(\text{APP-20} \) [27], \(\text{APP-20} \) [28], \(\text{APP-20} \) [23], \(\text{APP-20} \) [29], \(\text{APP-25} \) [30], \(\text{APP-25} \) [31], \(\text{APP-25} \) [32], \(\text{APP-25} \) [33], \(\text{APP-25} \) [34], \(\text{APP-25} \) [35], \(\text{APP-25} \) [36], \(\text{m-APP-25} \) [37], \(\text{APP-30} \) [38], \(\text{APP-30} \) [39], \(\text{APP-30} \) [40], \(\text{APP-30} \) [41], \(\text{APP-30} \), \(\text{APP-30} \) [42], \(\text{APP-30} \), \(\text{APP-30} \) [43], \(\text{APP-30} \), \(\text{APP-30} \) [44], \(\text{APP-30} \), \(\text{APP-5} \), \(\text{APP-10} \), \(\text{APP-15} \), \(\text{APP-20} \), \(\text{APP-25} \), \(\text{APP-30} \) [45], \(\text{APP-35} \), \(\text{APP-35} \) [46], \(\text{APP-35} \), \(\text{APP-35} \) [47], \(\text{APP-40} \), \(\text{APP-40} \) [48], \(\text{APP-40} \), \(\text{CA-25} \) [49], \(\text{APP-25} \) [50], \(\text{APP-25} \) [51], \(\text{P-IFR-10} \), \(\text{P-IFR-15} \), \(\text{P-IFR-20} \), \(\text{P-IFR-25} \) [52], \(\text{P-IFR-20} \) [53], \(\text{P-IFR-28} \) [54], \(\text{P-IFR-28} \) [55], \(\text{PN-IFR-30} \) [56], \(\text{P-IFR-30} \) [57], \(\text{P-IFR-20} \) [58], \(\text{DOPO-10} \) [15], \(\text{mc-BDP-10} \), \(\text{mc-BDP-20} \) [59], \(\text{OP-20} \) [60], \(\text{AHPI-30} \) [62], \(\text{PEPA-40} \) [63].|
There has always been interest in exploring possible correlations between the data collected from different analyses made on PP materials. Figure 2 shows the flame retardancy performance of phosphorus FR-containing PP in terms of FRI versus the corresponding UL-94 test outcomes. From these data, it is evident that no specified correlation exists between the qualitative results collected from UL-94 and the quantitative ones obtained in cone calorimeter measurements. However, in the case of LOI results, Figure 3 suggests a meaningful relationship can be drawn among data achieved from the calculated FRI and the LOI test results. The LOI value for pure PP is around 17; however, it is increased by addition of flame retardant up to 36, more than a two-fold rise.

![Figure 2](image1.png)

Figure 2. FRI values versus UL-94 test results. Symbols are indicative of different types of phosphorus flame retardant (FR) used. The vertical intervals in each category, i.e., V-0, V-1, V-2, and NR, are schematically representative of the amount of additive used. For example, two data distinguished by different symbols having the same or very close FRI values (horizontal quantity) in a given category (e.g., V-1) may have different vertical quantities, e.g., both reveal V-1 behavior in the UL-94 test, but the upper contains more FR in Polypropylene (PP).

![Figure 3](image2.png)

Figure 3. FRI values of PP as a function of limiting oxygen index (LOI) test results. Symbols are indicative of different types of phosphorus flame retardant used.

3. Nitrogen-Based Flame Retardants

Nitrogen-based flame retardants have also been used in PP to make it resistant against fire. Table 2 gives the names and the percentages of incorporation of these flame retardants, where the data were obtained in cone calorimetry (pHRR, THR, and TTI), FRI calculated from cone calorimetry parameters, as well as LOI and UL-94 values. Some of the nitrogen-based FRs listed in Table 2 also contain a phosphorus element. However, the percentage of nitrogen is more important, and therefore these FRs are listed in this Table.
Table 2. Flame retardant PP materials containing nitrogen-based (N) flame retardants. Data are extracted from the literature: cone calorimetry parameters (TTI, pHRR, THR), LOI, and UL-94 values. The FRI values were calculated by authors of the present review. The name and the percentage of flame retardants are provided in separate columns. "wt.%" was used for loading level of additives, while "—" stands for the systems free of additive or the neat PP. * FR means flame retardant. Since all comparisons were made in terms of FRI, classification of polymers in terms of their flame-retardant properties was not surveyed based on the chemistry of additives, heat flux, sample thickness, etc.

PP Containing Nitrogen-Based (N) FR*	wt. %	TTI (s)	pHRR (kW.m⁻²)	THR (MJ.m⁻²)	Irradiance (kW.m⁻²)	Sample Thickness (mm)	FRI	LOI	UL-94	Ref.
Melamine phosphate (MP)	40	39	296	78	35	3	—	—	—	[63]
Melamine salt of pentaerythritol phosphate kaolinite (MPPK)	15	30	208	70	35	4	4.96	—	NR	[64]
MPPK	20	28	148	42	35	4	10.86	—	V-0	[64]
Melamine salt of tripentaerythritol phosphate (MTP)	15	22	480	101	50	3	1.88	—	—	[65]
MTP	20	22	267	91	50	3	3.75	28	V-1	[65]
MTP	25	22	226	73	50	3	5.83	32	V-0	[65]
MTP	30	22	219	72	50	3	5.78	35	V-0	[65]
Methyl hydrogen siloxane modified MTP (or-MTP)	30	21	253	72	50	3	4.78	30	V-0	[65]
Melamine pyrophosphate (MPyP)	30	36	437	103.1	35	3	2.23	—	NR	[57]
MPyP	34	34	1727	112	35	3	17	NR	—	[66]
Triazine-based charring foaming agent: synthesized by reaction of cyanuric chloride and ethanolamine and ethylenediamine (TA-CFA)	30	13	584	96	35	3	1.31	24	NR	[66]
Triazine-based CFA: synthesized by reaction of cyanuric chloride and pipperazine (TA-CFA)	30	34	468	86.6	35	3	1.52	20.5	V-1	[39]
Triazine-based CFA: synthesized by polycondensation of 2-chloro-4,6-di-(2-hydroxyethylamino)-s-triazine (TA-CFA)	30	38	518	86.7	35	3	2.08	23.5	NR	[40]
Triazine-based CFA: synthesized from a macromolecular triazine derivative containing hydroxyethylamino and triazine rings and ethylenediamine groups (TA-CFA)	25	34	487.4	91.6	35	3	1.26	21.9	NR	[37]
Triazine-based CFA: Poly[N4-bis(ethylendiamino)-phenyl phosphonic-N2, N6-bis(ethylendiamino)-1,3,5-triazine-N-phenyl (TA-CFA)	25	12	529	88	50	3	1.00	20.6	NR	[32]
Triazine-based CA—Zinc oxide (TA-CA-ZnO)	18	1457	156	50	3	—	19	NR	—	[29]
Triazine-based CA: Poly(ethanediamine-1,3,5-triazine-p-4-amino-2,2,6,6-tetramethylpiperidino) (TA-CA)	25	30	684	106.7	35	3	0.97	17.8	NR	[67]
Triazine-based CA: compound containing pentaerythritol and triazine structure (TA-CA)	48	1351	107	35	3.2	—	18.5	NR	—	[27]
Triazine-based CA: synthesized by	20	42	994	98	35	3.2	1.29	22	NR	[23]

* FR means flame retardant.
| Reaction Type | Nitrogen Content (%) | Phosphorus Content (%) | V-0 | V-1 | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|
| reaction of tris (2-hydroxyethyl) isocyanurate and 2-carboxyethyl (phenyl) phosphonic acid (TA-CA) | — | 31 | 1239 | 123.6 | 50 | 3 | — | 18.5 | NR | [68] |
| Triazin-based IFR: synthesized by reaction of tris(2-hydroxyethyl) isocyanurate and polyphosphoric acid and melamine (TA-IFR) | 20 | 18 | 289.9 | 89 | 50 | 3 | 3.44 | 29.3 | V-0 | [68] |
| Triazin-based IFR: synthesized by reaction of cyanuric chloride and N- amino ethylpiperazine (TA-IFR) | 25 | 38 | 504 | 86.6 | 35 | 3.2 | — | 17 | NR | [31] |
| Piperazine-based FR: synthesized by reaction of diphenylphosphinyl chloride and piperazine (PI-IFR) | 30 | 58 | 487.7 | 87.5 | 50 | 3 | 7.75 | 27 | V-0 | [69] |
| Piperazine-based IFR: Piperazine spirocyclic phosphoramidate (PI-IFR) | — | 45 | 1269 | 146.4 | 50 | 3 | — | 17.5 | NR | [70] |
| Piperazine-based IFR: synthesized by reaction of phosphorus chloride and 2,6,7-trioxo-1-phosphabicyclo[2.2.2]-octane-4-methanol and anhydrous piperazine (PI-IFR) | 20 | 36 | 275 | 78 | 35 | 3 | 2.97 | 24 | NR | [71] |
| Piperazine-based IFR: synthesized by reaction of phosphorus chloride and 2,6,7-trioxo-1-phosphabicyclo[2.2.2]-octane-4-methanol and anhydrous piperazine (PI-IFR) | 30 | 37 | 209 | 74 | 35 | 3 | 4.24 | 27 | NR | [71] |
| Piperazine-based IFR: synthesized by reaction of phosphorus chloride and 2,6,7-trioxo-1-phosphabicyclo[2.2.2]-octane-4-methanol and anhydrous piperazine (PI-IFR) | 40 | 37 | 162 | 60 | 35 | 3 | 6.75 | 29 | V-0 | [71] |
| N-alkoxy hindered amine (NOR116) | 0.5 | 44 | 738.8 | 156.5 | 35 | 4 | 1.44 | 19 | NR | [72] |
| NOR116 | 0.3 | 44 | 738 | 156 | 35 | 4 | — | 17.5 | NR | [73] |
| Polyurethane containing Phosphorus-based CA (PPU-CA) | 25 | 27.3 | 475 | 83 | 35 | 3 | 1.53 | 29 | NR | [50] |
| Nitrogen-based FR: compound containing Nitrogen(27.5 wt.%) and Phosphorus(15.6 wt.%) (N-IFR) | 22 | 22 | 170 | 50.3 | 35 | 4 | — | 8.64 | 32 | V-1 | [74] |
| Nitrogen-based FR: compound containing Nitrogen(27.5 wt.%) and Phosphorus(15.6 wt.%) (N-IFR) | 25 | 21 | 160 | 49.1 | 35 | 4 | — | 8.98 | 34 | V-0 | [74] |
| Nitrogen-based IFR: Poly (diallyldimethylammonium) and polyphosphate polyelectrolyte complex-based IFR (N-IFR) | 5 | 28 | 968.5 | 103.4 | 50 | 3 | — | 1.10 | 20.2 | NR | [75] |
| Nitrogen-based IFR: Poly (diallyldimethylammonium) and polyphosphate polyelectrolyte complex-based IFR (N-IFR) | 10 | 25 | 626.2 | 97.1 | 50 | 3 | — | 1.62 | 22 | NR | [75] |
| Nitrogen-based IFR: Poly (diallyldimethylammonium) and polyphosphate polyelectrolyte complex-based IFR (N-IFR) | 15 | 23 | 543.1 | 94.3 | 50 | 3 | — | 1.76 | 24.4 | NR | [75] |
| Nitrogen-based IFR: Poly (diallyldimethylammonium) and polyphosphate polyelectrolyte complex-based IFR (N-IFR) | 20 | 21 | 443.9 | 90.1 | 50 | 3 | — | 2.06 | 26.3 | NR | [75] |
| Nitrogen-based IFR: Poly (diallyldimethylammonium) and polyphosphate polyelectrolyte complex-based IFR (N-IFR) | 25 | 18 | 335.3 | 83.9 | 50 | 3 | — | 2.52 | 27.5 | V-2 | [75] |
| — | 25 | 874.1 | 89.3 | 50 | 3 | — | 18 | NR | [76] |
Nitrogen-based IFR: compound containing Nitrogen (23%) and Phosphorus (21%) (N-IFR)

	25	12	94.9	68.2	50	3	5.78	33	V-0	
										[76]
Phosphorus and Nitrogen based IFR	30	22	229	93	50	—	4.74	36.3	—	[56]

To give a bright view of the variation trend, Figure 4 illustrates the FRI values as a function of wt.% of nitrogen-based flame retardants incorporated into the PP. The percentage of incorporation was changed from 15 to 40 wt.%. Of note, all points are located in the Good zone of FRI, except two points remarked as Excellent. These two points correspond to a kaolinite additive modified with nitrogen and phosphorus agents. A very noticeable point to be considered is that increasing the amount of diallyldimethylammonium (nominated with the symbol in Figure 4) from 5 to 25 has no serious effect on the value of FRI, so that they are aligned vertically around FRI values between 1.0 and 2.5. Overall, like what happened to other polymers [77,78], combinatorial flame retardants may be the solution to flammability reduction of PP materials.

![Figure 4. FRI values as a function of nitrogen FR type and content. Symbols are indicative of different types of nitrogen flame retardant used. Here: ▲ MP-40 [63], ◆ MPPK-15, MPPK-20, MPPK-25 [64], ▲ MTP-15, MTP-20, MTP-25, MTP-30, m-MTP-30 [65], ▽MPyP-30 [57], ◆ MPyP-30, TA-CFA-30 [66], ◆ TA-CFA-30 [39], ▽ TA-CFA-30 [40], ◆ TA-CFA-25 [37], ▼ TA-CFA-25 [32], ◆ TA-CA-ZnO-25 [29], ◆ TA-CA-25 [67], + TA-CA-20 [27], ▹ TA-CA-20 [23], ▼ TA-IFR-20 [68], ▽ TA-IFR-25 [31], ▼ PI-IFR-25 [69], ◆ PI-IFR-30 [70], ▽ PI-IFR-20, PI-IFR-30, PI-IFR-40 [71], ▽ NOR116-0.5 [72], ▼ NOR116-0.3 [73], ◆ PPU-CA-25 [50], ▲ N-IFR-22, N-IFR-25 [74], ▼ N-IFR-5, N-IFR-10, N-IFR-15, N-IFR-20, N-IFR-25 [75], ◆ N-IFR-25 [76], ▼ PN-IFR-30 [56].](image)

Figure 5 patterns UL-94 results as a function of FRI for nitrogen-based flame retardant in PP. It can be observed that even at small quantities of FRI, V0 in UL-94 was achieved. The diversity of data in Figure 5 can be taken as a signature of sensitivity of UL-94 to FRI. Figure 6 shows LOI values as a function of FRI. There is a quite reasonable correlation between the LOI and FRI values, up to FRI value of 6.
Figure 5. FRP values versus UL-94 test results. Symbols are indicative of different types of nitrogen flame retardant (FR) used. The vertical intervals in each category, i.e., V-0, V-1, V-2, and NR, are schematically representative of the amount of additive used. For example, two data distinguished by different symbols having the same or very close FRP values (horizontal quantity) in a given category (e.g., V-1), may have different vertical quantities; e.g., both reveal V-1 behavior in UL-94 test, but the upper contains more FR in PP.

Figure 6. FRP values of PP as a function of LOI test results. Symbols are indicative of different types of nitrogen flame retardant used.

4. Mineral-Based Flame Retardants

Mineral additives have been widely used in polymers for their acceptable cost and properties [79]. Mineral-based flame retardants including clays are widely used in PP due to their low cost and acceptable thermal resistance. In this family, the most used flame retardants in volume were aluminum trihydroxide (ATH) and magnesium dihydroxide (MDH). However, due to their low efficiency, a high percentage of loading was necessary for achieving an acceptable level of flame retardancy of polymers. The name and the percentage of the used mineral-based flame retardants in PP are listed in Table 3. Cone calorimetry data, FRP, LOI, and UL-94 values are also given so as to make possible a detailed view on the status of flame retardant efficiency of PP materials.
Table 3. Flame-retardant PP materials containing mineral-based (M) flame retardants. Data are extracted from the literature: cone calorimetry parameters (TTI, pHRR, THR), LOI, and UL-94 values. The FRI values were calculated by authors of the present review. The name and the percentage of flame retardants are provided in separate columns. “wt. %” was used for loading level of additives, while “—” stands for the systems free of additive or the neat PP. * FR means flame retardant. Since all comparisons were made in terms of FRI, classification of polymers in terms of their flame-retardant properties was not surveyed based on the chemistry of additives, heat flux, sample thickness, etc.

PP Containing Mineral-Based (M) FR	wt. %	TTI (s)	pHRR (kW·m⁻²)	THR (MJ·m⁻²)	Irradiance (kW·m⁻²)	Sample Thickness (mm)	FRI	LOI	UL-94	Ref.
Aluminum trihydroxide (ATH)										[80]
	50	52	1425	121.4	50	3	17.3	NR		[80]
	52	539	96.6	50	3	4.66	23.6	NR		[80]
	50	63	1470	175	50	4	18			[81]
ATH	60	34	280	98	50	4	9.96			[81]
	26	1967	112	50	3	—	—			[82]
ATH	20	27	817	90	50	3	3.11			[82]
ATH	40	28	467	70	50	7.25				[82]
Magnesium dihydroxide (MDH)	20	31	1000	98	50	3	2.68			[82]
MDH	40	34	433	75	50	3	8.87			[82]
	30	1684	89	50	3	—	—			[82]
	63.2	521.35	49.8	50	3	12.46				[82]
MDH	62.5	81.1	115.5	75.7	50	—	3.81			[83]
	71	2283	218	35	1	—				[82]
MDH	50	97	789	238	35	1	3.62			[84]
	38	1425	121.4	50	3	17.5				[85]
MDH	40	46	548	99.1	50	3	218			[83]
	29	1660	33.4	35	1	—				[86]
MDH	30	39	989	28.3	35	1	2.66			[86]
Dodecanoic acid-treated MDH (m-MDH)	30	32	882	28.7	35	1	2.41			[86]
Dodecylphosphate treated MDH (m-MDH)	30	29	651	28.8	35	1	2.95			[86]
	37	584	75.6	50	3	—	—			[87]
MDH	10	33	471	65.9	50	3	1.26			[87]
MDH	15	31	381	61.2	50	3	1.58			[87]
	54	930	140	35	4	—	—	NR		[64]
Kaolinite (Kaol)	25	32	463	116	35	4	1.43			[84]
Kaol	0.5	29	1474	142	50	3	18			[88]
Kaol	1.5	27	1346	140	50	3	1.03			[88]
Kaol	1.5	27	1346	140	50	3	1.08			[88]
Ammonium sulfamate intercalated kaol (m-Kaol)	0.5	27	1389	141	50	3	0.99			[88]
Ammonium sulfamate intercalated kaol (m-Kaol)	1.5	28	1169	133	50	3	1.29			[88]
Ammonium sulfamate intercalated kaol (m-Kaol)	3	27	1079	126	50	3	1.43			[88]
Kaol	1.5	27	1346	140	50	3	1.11			[89]
Ammonium sulfamate intercalated Kaol (m-Kaol)	1.5	28	1169	133	50	—	1.39			[89]
Kaol	10	35	634	144	50	—	1.26			[90]
Kaol	20	38	396	136	50	—	2.33			[90]
Kaol	30	41	348	126	50	—	3.08			[90]
Trisilanolisooctyl polyhedral oligomeric silsesquioxane modified kaol (m-Kaol)	10 35 850 140 50 — 0.96 — — [90]									
---	---	---	---	---	---	---	---	---		
Trisilanolisooctyl polyhedral oligomeric silsesquioxane modified kaol (m-Kaol)	20 38 650 141 50 — 1.36 — — [90]									
Trisilanolisooctyl polyhedral oligomeric silsesquioxane modified kaol (m-Kaol)	30 50 430 137 50 — 2.79 — — [90]									
Talc (TC)	10 49 377 128 50 — 3.34 — — [90]									
TC	20 56 341 118 50 — 4.58 — — [90]									
TC	30 50 295 112 50 — 4.98 — — [90]									
Ni-Al layered double hydroxide (LDH)	0.5 53 1635.53 106.8 50 — 1.36 — — [91]									
Ni-Al LDH (LDH)	1 92 1430.59 117.8 50 — 2.46 — — [91]									
Ni-Al LDH (LDH)	1.5 41 1266.66 129.1 50 — 1.13 — — [91]									
Organically modified Ni-Al LDH (m-LDH)	0.5 59 1116.37 70.2 50 — 3.39 — — [91]									
Organically modified Ni-Al LDH (m-LDH)	1 45 1026.86 81.24 50 — 2.43 — — [91]									
Organically modified Ni-Al LDH (m-LDH)	1.5 49 1254.95 111.1 50 — 1.58 — — [91]									
Cu-Al LDH (LDH)	0.5 45 1026.86 81.2 50 — 2.43 — — [91]									
Cu-Al LDH (LDH)	1 57 1276.46 123 50 — 1.63 — — [91]									
Cu-Al LDH (LDH)	1.5 50 1448.98 121.8 50 — 1.27 — — [91]									
Organically modified Cu-Al LDH (m-LDH)	0.5 69 985.91 120 50 — 2.63 — — [91]									
Organically modified Cu-Al LDH (m-LDH)	1 54 1175.99 121.6 50 — 1.70 — — [91]									
Organically modified Cu-Al LDH (m-LDH)	1.5 54 1345.14 114.3 50 — 1.58 — — [91]									
Mg-Al LDH with mole ratio: Zn:MgAl0.5:1 (A-LDH)	1 15 1981 141 50 3 0.60 — — [92]									
A-LDH	2 16 1764 139 50 3 0.73 — — [92]									
Zn-Mg-Al LDH with mole ratio: Zn:MgAl0.5:1.5:1 (B-LDH)	1 14 1997 136 50 3 0.57 — — [92]									
B-LDH	2 14 1512 133 50 3 0.77 — — [92]									
B-LDH	4 13 1153 128 50 3 0.98 — — [92]									
Zn-Mg-Al LDH with mole ratio: Zn:MgAl1:1:1 (C-LDH)	1 18 2004 135 50 3 0.74 — — [92]									
C-LDH	2 14 1546 132 50 3 0.76 — — [92]									
C-LDH	4 12 1225 125 50 3 0.87 — — [92]									
Zn-Mg-Al LDH with mole ratio: Zn:MgAl1:5:0.5:1 (D-LDH)	1 18 1938 135 50 3 0.76 — — [92]									
D-LDH	2 15 1656 130 50 3 0.77 — — [92]									
D-LDH	4 13 1294 123 50 3 0.91 — — [92]									
Zn-Al LDH with mole ratio: Zn:Al2:0:1 (E-LDH)	1 16 1977 136 50 3 0.66 — — [92]									
E-LDH	2 17 1543 113 50 3 1.09 — — [92]									
E-LDH	4 14 1382 126 50 3 0.89 — — [92]									
A-LDH	1 20 1906 135 50 3 1.52 — — [92]									
Material Description	A-LDH	B-LDH	C-LDH	D-LDH	E-LDH					
--	-------	-------	-------	-------	-------					
MMT	4	1	1	4	1					
Modified MMT (MMT)	16	17	16	14	17					
Dioctadecyldimethyl ammonium chloride	1137	1715	1875	992	2008					
Octadecyltrimethyl ammonium chloride (alkyl-NHCl))	129	134	130	125	135					
Dihydrogen phosphate	50	50	50	50	50					
Intercalated Mg-Al LDH (m-LDH)	3	3	3	3	3					
Undecenoate modified Mg-Al LDH (m-LDH)										
Carbonate intercalated Mg-Al LDH (LDH)	10.7	17	19.7	52	31					
Dihydrogen phosphate intercalated Mg-Al LDH (LDH)	50	50	50	50	50					
Octadecyltrimethyl ammonium chloride (alkyl-NHCl))	3	3	3	3	3					
Montmorillonite (MMT)	1.2	3.3	2.7	1.3	1.5					
Protoned MMT (H-MMT)	5.4	4.2	4.1	4.1	4.1					
Dioctadecyldimethyl ammonium chloride modified MMT (m-MMT)	1.2	3.3	2.7	1.3	1.5					
Dioctadecyldimethyl ammonium chloride modified MMT (m-MMT)	5.4	4.2	4.1	4.1	4.1					

Table Notes:
- **A-LDH, B-LDH, C-LDH, D-LDH, E-LDH:** Various types of layered double hydroxides (LDHs) and modified MMTs.
- **Sodium dodecyl sulphate modified Ni-Al LDH (m-LDH):** Various forms of modified LDHs.
- **Undecenoate modified Mg-Al LDH (m-LDH):** Various forms of modified LDHs.
- **Carbonate intercalated Mg-Al LDH (LDH):** Various forms of intercalated LDHs.
- **Dihydrogen phosphate intercalated Mg-Al LDH (LDH):** Various forms of intercalated LDHs.
- **Octadecyltrimethyl ammonium chloride (alkyl-NHCl):** Various forms of modified compounds.
- **Montmorillonite (MMT):** Various forms of montmorillonite.
- **Protoned MMT (H-MMT):** Various forms of protonated montmorillonite.
- **Dioctadecyldimethyl ammonium chloride modified MMT (m-MMT):** Various forms of modified compounds.
- **Dioctadecyldimethyl ammonium chloride modified MMT (m-MMT):** Various forms of modified compounds.
| | MMT (m-MMT) | Modified MMT (m-MMT) | Alkylamide surfactant modified MMT (m-MMT) | Alkylamide surfactant modified MMT (m-MMT) | Alkylamide surfactant modified MMT (m-MMT) | Ammonium salt of an oligomer modified MMT (m-MMT) | Ammonium salt of an oligomer modified MMT (m-MMT) | Ammonium salt of an oligomer modified MMT (m-MMT) | Styrene-vinylbenzyl chloride copolymer modified MMT (m-MMT) | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Methyl tallow bis(2- | 4.75 | 10 | 3 | 10 | 5 | 2 | 2 | 12 | 25 | 5 | 15 | 25 |
| hydroxyethyl) amonium | 27 | 1005 | 35 | 35 | 35 | 1897 | 1897 | 1897 | 1897 | 1897 | 1897 | 1897 |
| modified MMT (m-MMT) | 1365 | 99 | 35 | 0.4 | 0.4 | 1.53 | 1.53 | 1.53 | 1.53 | 1.53 | 1.53 | 1.53 |
| Silica pillared methyl | 4.75 | 19 | 94 | 3 | 3 | 1.61 | 1.61 | 1.61 | 1.61 | 1.61 | 1.61 | 1.61 |
| tallow bis(2- | 22 | 925 | 35 | 0.4 | 0.4 | 1.75 | 1.75 | 1.75 | 1.75 | 1.75 | 1.75 | 1.75 |
| hydroxyethyl) amonium | 2315 | 98 | 35 | 0.4 | 0.4 | 1.75 | 1.75 | 1.75 | 1.75 | 1.75 | 1.75 | 1.75 |
| modified MMT powder | 132 | 35 | 3 | 0.73 | 0.73 | 2.27 | 2.27 | 2.27 | 2.27 | 2.27 | 2.27 | 2.27 |
| supported with CuO | 35 | 0.60 | 0.60 | 0.60 | 0.60 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| | 35 | 0.73 | 0.73 | 0.73 | 0.73 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| | 35 | 1.61 | 1.61 | 1.61 | 1.61 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| | 35 | 1.75 | 1.75 | 1.75 | 1.75 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| | 35 | 2.27 | 2.27 | 2.27 | 2.27 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| | 35 | 3.00 | 3.00 | 3.00 | 3.00 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| | 35 | 3.50 | 3.50 | 3.50 | 3.50 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| | 35 | 4.00 | 4.00 | 4.00 | 4.00 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| | 35 | 4.50 | 4.50 | 4.50 | 4.50 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| | 35 | 5.00 | 5.00 | 5.00 | 5.00 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| | 35 | 5.50 | 5.50 | 5.50 | 5.50 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| | 35 | 6.00 | 6.00 | 6.00 | 6.00 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| | 35 | 6.50 | 6.50 | 6.50 | 6.50 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| | 35 | 7.00 | 7.00 | 7.00 | 7.00 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| | 35 | 7.50 | 7.50 | 7.50 | 7.50 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| | 35 | 8.00 | 8.00 | 8.00 | 8.00 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| | 35 | 8.50 | 8.50 | 8.50 | 8.50 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| | 35 | 9.00 | 9.00 | 9.00 | 9.00 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| | 35 | 9.50 | 9.50 | 9.50 | 9.50 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| | 35 | 10.00 | 10.00 | 10.00 | 10.00 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| | 35 | 10 OR 35 | 10 OR 35 | 10 OR 35 | 10 OR 35 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| | 35 | 50 OR 35 | 50 OR 35 | 50 OR 35 | 50 OR 35 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| Modified MMT (m-MMT) | Methyl methacrylate-vinylbenzyl chloride copolymer modified MMT (m-MMT) | 2.5 | 44 | 2025 | 123 | 50 OR 35 | — | 0.89 | — | — | [101] |
| Methyl methacrylate-vinylbenzyl chloride copolymer modified MMT (m-MMT) | 5 | 42 | 1738 | 120 | 50 OR 35 | — | 1.01 | — | — | [101] |
| Methyl methacrylate-vinylbenzyl chloride copolymer modified MMT (m-MMT) | 15 | 39 | 1651 | 115 | 50 OR 35 | — | 1.04 | — | — | [101] |
| Methyl methacrylate-vinylbenzyl chloride copolymer modified MMT (m-MMT) | 25 | 41 | 1139 | 105 | 50 OR 35 | — | 1.73 | — | — | [101] |
| Methyl methacrylate modified MMT (m-MMT) | — | 55 | 1586 | 113 | 35 | — | — | — | — | [102] |
| Methyl methacrylate modified MMT (m-MMT) | 3 | 44 | 839 | 87 | 35 | — | 1.96 | — | — | [102] |
| Methyl methacrylate modified MMT (m-MMT) | 5 | 35 | 557 | 77 | 35 | — | 2.65 | — | — | [102] |
| Nanofil (NF) | 5 | 48 | 739 | 173.4 | 35 | — | 0.92 | 22 | — | [103] |
| Organically modified bentonite (m-BT) | 5 | 45.6 | 774 | 166.6 | 35 | — | 0.87 | 22 | — | [103] |
| NF | 5 | 37 | 1047 | 174 | 50 | — | 0.83 | 22 | — | [103] |
| m-BT | 5 | 36 | 1093 | 164 | 50 | — | 0.82 | 22 | — | [103] |
| Cloisite 20A: Dimethyl, dihydrogenated tallow ammonium modified MMT (C20A) | 1 | 33 | 1751 | 105 | 35 | 3 | 0.85 | — | — | [104] |
| C20A | 3 | 34 | 1874 | 107 | 35 | 3 | 0.80 | — | — | [104] |
| C20A | 5 | 39 | 1487 | 105 | 35 | 3 | 1.19 | — | — | [104] |
| C20A | 44 | 1172 | 87.1 | 35 | 2.5 | — | 18.1 | NR | [60] |
| Cloisite 15A: Dimethyl dihydrogenated tallow ammonium cation modified sodium MMT (C15A) | 5 | 41 | 1050 | 88.2 | 35 | 2.5 | 1.02 | 18.1 | NR | [60] |
| — | 88 | 565.9 | 71.9 | 35 | 3 | — | — | — | [105] |
| C20A | 5 | 76 | 518.2 | 75.9 | 35 | 3 | 0.89 | 20 | — | [105] |
| C20A | 5 | 89 | 415.6 | 73 | 35 | 3 | 1.35 | 20 | — | [105] |
| Titanium dioxide (TiO2) | 0.5 | 99 | 488.1 | 75 | 35 | 3 | 1.25 | 20 | — | [105] |
| — | 49 | 1247 | 114.2 | 35 | — | — | — | — | [106] |
| Activated alumina (ALOx) | 2 | 35 | 943 | 108.2 | 35 | — | 0.99 | — | — | [106] |
| — | 28 | 1633 | 132 | 50 | 4 | — | 18 | — | — | [107] |
| NiFeO | 2 | 27 | 1372 | 129 | 50 | 4 | 1.17 | 18 | — | [107] |
| CoFeO | 2 | 24 | 1335 | 127 | 50 | 4 | 1.08 | 18 | — | [107] |
| — | 38 | 1284 | 241 | 50 | 6 | — | — | — | [108] |
| NiO | 7.5 | 53 | 655 | 161 | 50 | 6 | 4.09 | — | — | [108] |
| — | 64 | 1909 | 254 | 50 | 3 | — | — | — | [109] |
| Mo/Mg/Co/O catalysts (Nmm-cat) | 1 | 62 | 490 | 205 | 50 | 3 | 4.67 | — | — | [109] |
| Nmm-cat | 2 | 63 | 292 | 168 | 50 | 3 | 9.72 | — | — | [109] |
| Nmm-cat | 3 | 60 | 275 | 149 | 50 | 3 | 11.09 | — | — | [109] |
| — | 65 | 915.7 | 112.5 | 50 | 3 | — | 18 | — | — | [110] |
| Magnesium oxyxulfate whisker (MOSw) | 30 | 62 | 259.1 | 90.4 | 50 | 3 | 5.24 | 24.7 | — | [110] |
| | 30 | 64 | 243.3 | 72.8 | 50 | 3 | 7.15 | 26.1 | — | [110] |
|----------------------|----|----|--------|------|----|---|------|------|---|------|
| Manganese oxide (Mno) | 10 | 54 | 233.7 | 31.8 | 35 | 2 | 0.84 | — | — | [111] |
| Manganese oxide (MnO) | 10 | 48 | 271.3 | 31.5 | 35 | 2 | 0.65 | — | — | [111] |
| Manganese oxalate (MnCaO) | 10 | 50 | 281.6 | 29.3 | 35 | 2 | 0.70 | — | — | [111] |
| Zinc acetyl acetonate (Znacac) | 1 | 31 | 366.28 | 35 | 1.6 | 1.73 | 19.5 | — | [53] |
| Chromium acetyl acetonate (Cracac) | 1 | 31 | 307.28 | 35 | 1.6 | 2.06 | 20.7 | — | [53] |
| Zirconium phenylphosphonate (ZrPP) | 2 | 34 | 754.99 | 35 | 3 | 1.10 | — | — | [112] |
| Siloxane silsesquioxane resin (S4SQH) | 0 | 1 | 34 | 47 | 35 | 2 | 0.89 | — | — | [113] |
| S4SQH | 5 | 21 | 500.44 | 44 | 35 | 2 | 0.34 | — | — | [113] |
| S4SQH | 10 | 19 | 445.44 | 44 | 35 | 2 | 0.35 | — | — | [113] |
| n-octyl functionalized S4SQH (m-S4SQH) | 1 | 43 | 227.29 | 35 | 2 | 2.37 | — | — | [113] |
| n-octyl functionalized S4SQH (m-S4SQH) | 5 | 40 | 481.48 | 35 | 2 | 0.63 | — | — | [113] |
| n-octadecyl functionalized S4SQH (m-S4SQH) | 1 | 40 | 168.22 | 35 | 2 | 3.93 | — | — | [113] |
| n-octadecyl functionalized S4SQH (m-S4SQH) | 5 | 43 | 328.42 | 35 | 2 | 1.13 | — | — | [113] |
| n-octadecyl functionalized S4SQH (m-S4SQH) | 10 | 47 | 391.47 | 35 | 2 | 0.93 | — | — | [113] |
| Polysiloxane based FR (Si-FR) | 25 | 18 | 624.110 | 50 | 50 | — | 1.51 | 24.1 | NR | [30] |
| Sepiolite (SEP) | 5 | 48 | 1701.108 | 35 | 3 | 0.82 | 20 | NR | [25] |
| Organically modified SEP (m-SEP) | 0.5 | 46 | 1665.106 | 35 | 3 | 0.82 | 19.2 | NR | [25] |
| SEP | 5 | 24 | 533.68.1 | 50 | 3 | 0.78 | — | — | [87] |
| Organically treated SEP (m-SEP) | 5 | 23 | 515.66.1 | 50 | 3 | 0.80 | — | — | [87] |
| Methylo polyhedral oligomeric silsesquioxane (me-POSS) | 1.95 | 54 | 1023.100 | 35 | 3 | 0.85 | — | — | [114] |
| Phenyl POSS (ph-POSS) | 3.75 | 61 | 858.98 | 35 | 3 | 1.17 | — | — | [114] |
| Ph POSS | 12.5 | 53 | 872.96 | 35 | 3 | 1.02 | 19.5 | — | [114] |
| Octaisobutyl POSS (8-POSS) | 10 | 50 | 1325.112 | 35 | 3 | 0.73 | — | — | [115] |
| Al POSS | 10 | 37 | 624.98 | 35 | 3 | 1.32 | — | — | [115] |
| Zn POSS | 10 | 54 | 1069.108 | 35 | 3 | 1.02 | — | — | [115] |
| Silica aerogel (SA) | 10 | 57 | 892.203 | 35 | 6 | 1.60 | 25.1 | — | [5] |
| Halloysite nanotube (HNT) | 8 | 44 | 495.68.5 | 50 | 3 | 1.21 | — | — | [116] |
| HNT-Water injection (HNT-W) | 8 | 45.5 | 451.66.5 | 50 | 3 | 1.42 | — | — | [116] |
| — | 52.5 | 620.70.5 | 50 | 3 | — | — | — | [116] |
Figure 7 visualizes the variation of FRI value as a function of flame retardant loading in PP systems (for the convenience of readers, two figures are added for giving a better zoom on data points). This figure clearly shows that even at low loading percentages, it is possible to achieve a relatively high FRI value depending on the type of mineral. There is no denying that some parameters such as the state of dispersion and size of particles are important factors affecting the flame retardant properties.
Regarding the relationship between LOI and correlation between quantitative and qualitative parameters based on such a tiny set of data. In studied was indeed

Figure 7. FRI values as a function of the mineral FR type and content from close-up and long-shot views. Symbols are indicative of different types of mineral flame retardant used. The diversity and abundance of data were reasons why such different scales were provided for detection of behavior of PP against flame. Here: ▲ ATH-50 [80], ▲ ATH-60 [81], ▲ ATH-20, ATH-40, MDH-20, MDH-40 [82], ▲ MDH-40, MDH-60 [82], ▲ MDH-62.5 [83], ▲ MDH-50 [84], ▲ MDH-40 [85], ▲ MDH-30, m-MDH-30, m-MDH-30 [86], ▲ MDH-10, MDH-15 [87], ▲ Kaol-25 [64], ▲ Kaol-0.5, Kaol-1.5, Kaol-3, m-Kaol-0.5, m-Kaol-1.5, m-Kaol-3 [88], ▲ Kaol-1.5, m-Kaol-1.5 [89], ▲ Kaol-10, Kaol-20, Kaol-30, m-Kaol-10, m-Kaol-20, m-Kaol-30, TC-10, TC-20, TC-30 [90], ▲ LDH-0.5, LDH-1.5, m-LDH-0.5, m-LDH-1, m-LDH-1.5 [91]. ▲ A-LDH-1, A-LDH-2, B-LDH-1, B-LDH-2, B-LDH-4, C-LDH-1, C-LDH-2, C-LDH-4, D-LDH-1, D-LDH-2, D-LDH-4, E-LDH-1, E-LDH-2, E-LDH-4 [92]. ▲ A-LDH-1, A-LDH-4, B-LDH-1, B-LDH-4, C-LDH-1, C-LDH-4, D-LDH-1, D-LDH-4, E-LDH-1, E-LDH-4 [92]. ▲ A-LDH-1, A-LDH-4, B-LDH-1, B-LDH-4, C-LDH-1, C-LDH-4, D-LDH-1, D-LDH-4, E-LDH-1, E-LDH-4 [92]. ▲ A-LDH-1, A-LDH-4, C-LDH-1, C-LDH-4, E-LDH-1, E-LDH-4 [92]. ▲ m-LDH-1, m-LDH-3, m-LDH-5 [93], ▲ m-LDH-3, m-LDH-5, m-LDH-10 [94], ▲ LDH-10, m-LDH-10.7 [95], ▲ alkyl-NH3Cl-1,2, MMT-5, H-MMT-5, m-MMT-5 [96], ▲ m-MMT-4.75, m-MMT-4.75 [97], ▲ MMT-10, m-MMT-10 [24], ▲ m-MMT-3, m-MMT-10, m-MMT-16 [98], ▲ MMT-2, m-MMT-2, m-MMT-5, m-MMT-10 [99], ▲ m-MMT-3, m-MMT-8, m-MMT-12 [100], ▲ m-MMT-2.5, m-MMT-5, m-MMT-15, m-MMT-25, m-MMT-2.5, m-MMT-5, m-MMT-15, m-MMT-25 [101], ▲ m-MMT-1, ▲ m-MMT-5, ▲ Ni-5, ▲ m-BT-5 [103], ▲ Ni-5, ▲ m-BT-5 [103], ▲ C20A-1, C20A-3, C20A-5 [104], ▲ C15A-5 [60], ▲ C20A-5, C20A-5, TiO2-0.5 [105], ▲ Al2O3-2 [106], ▲ NiFeO2, CoFeO2 [107], ▲ NiO2-0.5 [108], ▲ Nmm-cat-1, Nmm-cat-2, Nmm-cat-3, Nmm-sq-1 [99], ▲ MOSW-30, ▲ m-MOSW-30 [110], ▲ MnO-10, MnO-10, MnCO3-10 [111], ▲ Znacac-1, Cracac-1 [53], ▲ ZrPP-2 [112], ▲ 54SQH-1, 54SQH-5, 54SQH-10, ▲ m-S4SQH-1, ▲ m-S4SQH-5, ▲ m-S4SQH-10 [113], ▲ SiO2-25 [30], ▲ SEP-0.5, ▲ m-SEP-0.5 [25], ▲ SE-5, ▲ m-SEP-5 [87], ▲ m-POSS-1.95, ▲ m-POSS-6.5, ▲ m-POSS-3.75, ▲ m-POSS-12.5 [114], ▲ T8-POSS-10, Al-POSS-10, Zn-POSS-10 [115], ▲ SA-10 [5], ▲ HNT-8, ▲ HNT-W-8 [116], ▲ HNT-8, ▲ HNT-W-4, ▲ HNT-W-8, ▲ HNT-W-16 [116], ▲ HNT-5, ▲ HNT-10, ▲ HNT-15, ▲ m-HNT-5, ▲ m-HNT-10, ▲ m-HNT-15 [117].

Unfortunately, the number of papers in which cone calorimetry, UL-94, and LOI values were studied was indeed limited, but the ones available are used plotting Figure 8. It should be noted that no formulation among studied ones is rated at VO. In conclusion, it is quite difficult to find a correlation between quantitative and qualitative parameters based on such a tiny set of data. In regard to the relationship between LOI and FRI, a meaningful trend can still be seen in Figure 9.
Figure 8. FRI values versus UL-94 test results. Symbols are indicative of different types of mineral flame retardant (FR) used. The vertical intervals in each category, i.e., V-0, V-1, V-2, and NR, are schematically representative of the amount of additive used. For example, two data distinguished by different symbols having the same or very close FRI values (horizontal quantity) in a given category (e.g., V-1), may have different vertical quantities, e.g., both reveal V-1 behavior in UL-94 test, but the upper contains more FR in PP.

Figure 9. FRI values of PP as a function of LOI test results. Symbols are indicative of different types of mineral flame retardant used.

5. Carbon-Based Flame Retardants

Carbon-based additives have been widely used in developing polymer composites and nanocomposites [118–121]. However, due to expense and limited interaction with PP, a few works based on carbon-based flame retardants have been reported on flame-retardant PP materials. Table 4 summarizes all information available on the flame-retardant PP materials containing carbon-based additives.
Table 4. Flame-retardant PP materials containing carbon-based (C) flame retardants. Data are extracted from the literature: cone calorimetry parameters (TTI, pHRR, THR), LOI, and UL-94 values. The FRI values were calculated by authors of the present review. The name and the percentage of flame retardants are provided in separate columns. "wt.%" was used for loading level of additives, while "—" stands for the systems free of additive or the neat PP. * FR means flame retardant. Since all comparisons were made in terms of FRI, classification of polymers in terms of their flame-retardant properties was not surveyed based on the chemistry of additives, heat flux, sample thickness, etc.

PP Containing Carbon-Based (C) FR*	wt.%	TTI (s)	pHRR (kW.m\(^{-2}\))	THR (MJ.m\(^{-2}\))	Irradiance (kW.m\(^{-2}\))	Sample Thickness (mm)	FRI	LOI	UL-94	Ref.
Graphene (GN)	25	2.4	105.9	35	0.95	3	—	—	—	[106]
Activated alumina decorated GN (m-GN)	2	34	103.4	35	1.24	3	—	—	—	[106]
P-phenylenediamine modified reduced graphene oxide (m-rGNO)	2	33	98.4	35	0.87	3	—	—	—	[122]
Polyaniline nanofiber modified rGNO (m-rGNO)	2	27	967	35	0.76	3	—	—	—	[123]
Hexachlorocyclopiphosph azene modified rGNO (m-rGNO)	2	35	829	92	1.42	3	—	—	—	[123]
Zirconium phenylphosphonate decorated rGNO (m-rGNO)	2	39	676	89.8	1.55	3	—	—	—	[112]
Graphene oxide (GNO)	2	33	979	108.2	35	0.65	—	—	—	[124]
Melamine modified GNO (m-GNO)	0.5	40	892	104.1	35	0.91	—	—	—	[124]
Melamine modified GNO (m-GNO)	1	37	834	100.6	35	0.93	—	—	—	[124]
Melamine modified GNO (m-GNO)	2	33	739	98.7	35	0.95	—	—	—	[124]
GN	2.5	39	1279	58.8	35	0.98	—	—	—	[125]
GN-Nickel oxide (GN-NiO)	2.5	35	1110	45.4	35	1.32	—	—	—	[125]
GN and Ni-Ce mixed oxide (GN-NiCeO\(\))	2.5	32	956	39.2	35	1.62	—	—	—	[125]
rGNO	2	32	1199	97.8	35	1.14	—	—	—	[126]
Phosphomolybdic acid modified rGNO (m-rGNO)	1	27	773	39.6	35	1.14	—	—	—	[126]
Phosphomolybdic acid modified rGNO (m-rGNO)	2	23	737	38.4	35	1.05	—	—	—	[126]
Phosphomolybdic acid modified rGNO (m-rGNO)	3	25	700	38.4	35	1.21	—	—	—	[126]
Poly(4,4-diaminodiphenyl methane spirocyclicpentaerythiol bisphosphonate)-4,4-diaminodiphenyl methane modified rGNO (m-rGNO)	20	66	397	73.9	35	4.88	—	—	—	[58]

* FR means flame retardant.
Figure 10 shows that with low loading percentage (1 wt.%) of carbon nanotubes, it is possible to achieve the Good FRI. No data were available for UL-94 tests. Comparison between Figures 7 and 10 also suggests that low-cost minerals were used at higher loadings, while carbon-based additives were used almost at loadings below 10 wt.%. A limited number of data have also been reported on LOI values. These points are plotted as a function of FRI in Figure 11, where a good correlation can be established between FRI and LOI values. Deeper understanding of the mechanism behind such correlation requires a detailed view of the origin of tests as well as the chemical structure of additives and possible interaction between the PP and additives.
7. Bio-Based Flame Retardants

In recent years, due to sustainability issues, the use of bio-based additives has also been investigated in PP. However, the number of research papers is limited on this subject. Table 5 gives the name and loading percentage of these bio-based FR. The obtained results from cone calorimetry, LOI, and UL-94 tests are also listed in Table 5. Figures 12 and 13 display UL-94 and LOI results as a function of FRI for bio-based flame retardant in PP, respectively.

Table 5. Flame-retardant PP materials containing bio-based (Bio) flame retardants. Data are extracted from the literature: cone calorimetry parameters (TTI, pHRR, THR), LOI, and UL-94 values. The FRI values were calculated by authors of the present review. The name and the percentage of flame retardants are provided in separate columns. “wt. %” was used for loading level of additives, while “—” stands for the systems free of additive or the neat PP. * FR means flame retardant. Since all
comparisons were made in terms of FRI, classification of polymers in terms of their flame-retardant properties was not surveyed based on the chemistry of additives, heat flux, sample thickness, etc.

PP Containing Bio-Based (Bio) FR *	wt.%	TTI (s)	pHRR (kW.m⁻²)	THR (MJ.m⁻²)	Irradiance (kW.m⁻²)	Sample Thickness (mm)	FRI	LOI	UL-94	Ref.
Cycloextrin nanospponge (CD)	10	34	1462	80	35	3	--	--	--	[135]
Hydroxyapatite and Cycloextrin-based FR (HAandCD-FR)	10	32	708	156	35	4	0.87	--	--	[15]
Propylene-block-ethylene copolymer	20	38	380	74.2	35	3	3.24	22.5	--	[136]
Phosphorus and nitrogen elements modified lignin (m-lig)	20	38	380	74.2	35	3	3.24	22.5	--	[136]
Phytic acid and Piperazine-based FR (PHPI-FR)	15	17	388.5	108.5	50	3.2	2.22	25	V-2	[137]
PHPI-FR	15	17	386.2	108.4	50	3.2	2.22	25	V-2	[137]
PHPI-FR	25	16.5	303.4	105.4	50	3.2	2.82	27	V-0	[137]
Biochar (BC)	15	12	753.01	112.68	50	3.2	--	0.49	--	[138]
BC	25	13.3	616.31	111.26	51	3.2	--	0.68	--	[138]
BC	30	15	539.34	101.2	52	3.2	--	0.96	--	[138]
BC	35	16.3	477.22	98.31	53	3.2	--	1.22	--	[138]
Wool	40	12.3	858.7	1388.3	12.4	3.2	0.85	--	NR	[28]
Phosphoric acid-treated wool fiber (m-wool)	40	14.3	426.7	72	50	2.4	2.13	--	NR	[28]
Phosphoric acid-treated wool fiber (m-wool)	40	15	436.3	65.3	50	2.4	2.41	--	V-0	[28]
Phosphoric acid-treated chicken feather (m-CF)	40	14.7	336.7	57	50	2.4	3.51	--	V-0	[28]
Chicken feather (CF)	40	17	1234.1	76.1	50	2.4	0.69	--	NR	[139]
Phosphoric acid and ethylenediamine treated chicken feather (m-CF)	40	19.3	280.5	58.7	50	2.4	4.47	--	V-0	[139]
Phosphoric acid and ethylenediamine treated chicken feather (m-CF)	40	17.7	216.1	52.4	50	2.4	5.96	--	V-0	[139]

Figure 12. FRI values versus UL-94 test results. Symbols are indicative of different types of bio-based flame retardant (FR) used. The vertical intervals in each category, i.e., V-0, V-1, V-2, and NR, are schematically representative of the amount of additive used. For example, two data distinguished by
different symbols having the same or very close FRI values (horizontal quantity) in a given category (e.g., V-1) may have different vertical quantities, e.g., both reveal V-1 behavior in UL-94 test, but the upper contains more FR in PP.

Figure 13. FRI values of PP as a function of LOI test results. Symbols are indicative of different types of bio-based flame retardant used. The green triangles are related to a mixture of phytic acid and piperazine-based FR. The increase of LOI is directly related to the percentage of FR loading, 15, 18, 20, and 25 wt.%.

FRI values are plotted as a function of loading percentage of bio-based FR in Figure 14. It can be observed that a high quantity of bio-based FR, 40 wt.% is needed to achieve FRI equal to 6.

Figure 14. FRI values as a function of bio-based FR type and content. Symbols are indicative of different types of bio-based flame retardant used. Here: ▲ CD-10 [135], ● HAandCD-FR-10 [15], ▲ m-lig-20 [136], ▼ PHPI-FR-15, PHPI-FR-18, PHPI-FR-20, PHPI-FR-25 [137], ▲ BC-15, BC-25, BC-30, BC-35 [138], □ Wool-40, m-wool-40, m-wool-40, m-CF-40 [28], ▼ CF-40, m-CF-40, m-CF-40 [139].

6. Combination of Flame Retardants

As observed in previous sections, using an additive alone can to a limited extent improve flame-retardant properties of PP. Combination of flame retardants is a strategy to improve further the flame retardancy via synergism between various flame retardants [140–142]. Moreover, the quantity of the used flame retardant can be reduced in polymer so as to prevent mechanical properties deterioration. Different combinative additive systems were considered in PP. The corresponded data are collected and summarized in Table 6. The third column gives the ratio between flame retardants.
Name	wt.	Type of FR	TTI (s)	pHRR (kW.m⁻²)	THR (MJ.m⁻²)	Irradiance (kW.m⁻²)	Sample Thickness (mm)	FRI	LOI	UL-94	Ref.		
APP/Pentaerythritol (APP/PER)	20	PnP 2:1	18	514.7	92.6	50	3	1.86	27.6	V-2	[68]		
APP/PER	25	PnP 2:1	17	442.3	98.8	50	3	2.38	30.1	V-0	[143]		
APP/PER	25	PnP 3:1	32	363.7	82	35	3	2.60	24.7	V-1	[67]		
APP/PER	30	PnP 3:1	13	392	80	35	3	2.35	31	V-0	[144]		
Hydroxy silicone oil co-	30	PnP 3:1	10	325	78	35	3	2.24	32.5	V-0	[144]		
microencapsulated APP and PER (APPandPER))													
APP/PER/Melamine (APP/PER/MEL)	29	PnP 1:0.7:1:0.92	175	76.4	55	25	10.85	—	—	—	[145]		
APP/PER/MEL	33	PnP 1:64:1:0.94	188	65	46.3	25	3	16.27	—	—	—	[145]	
APP/PER/MEL	36	PnP 1:2:1:0.92	180	68	49.4	25	3	13.96	—	—	—	[145]	
APP/PER/MEL	29	PnP 1:0.7:1:0.92	158	72.5	50	3	9.81	—	—	—	[145]		
APP/PER/MEL	33	PnP 1:64:1:0.94	115	67.8	50	3	15.72	—	—	—	[145]		
APP/PER/MEL	36	PnP 1:2:1:0.92	133	73.2	50	3	10.49	—	—	—	[145]		
APP/PER/MEL	29	PnP 1:0.7:1:0.92	115	67.8	50	3	15.72	—	—	—	[145]		
APP/PER/MEL/MDH	37	PnP 1:64:1:0.90.7	156	63.9	25	3	12.30	25.2	—	—	—	[146]	
APP/PER/MDH	37	PnP 1:64:1:0.90.7	196	79.5	45.1	50	3	14.24	25.2	—	—	—	[146]
APP/PER/MEL/20A	21	PnP 3:1:10:2:5	25	463	89	35	3	2.89	—	—	—	[104]	

Table 6. The flame retardancy performance of PP containing various combinations of flame retardants in terms of FRI (*the name and percentage of incorporated flame retardants are given after PP). P = phosphorus FR, Np = non-phosphorus FR, N = nitrogen FR, nN = non-nitrogen-based FR, M = mineral FR, Bio = bio-based FR, nBio = non-bio-based FR (one can also consider some nitrogen-based FRs containing phosphorus as the combination of phosphorus and nitrogen resulting in synergism, Table 2). Since all comparisons were made in terms of FRI, classification of polymers in terms of their flame-retardant properties was not surveyed based on the chemistry of additives, heat flux, sample thickness, etc.
System	C20A	APP/Pn	P:nP:nP	Tg (°C)	Td (°C)	Shore D (A)	V0 (%)	V1 (%)	NR (%)
APP/PER/MEL/C20A	23	PnP^nP	3:1:1:0.7:5	26	430	91	35	3	3.17
APP and MMT/PER/MEL/C20A	21	PnP^nP	3:1:1:0.2:5	24	306	81	35	3	4.62
APP and MMT/PER/MEL/C20A	23	PnP^nP	3:1:1:0.7:5	21	344	80	35	3	3.64
γ-aminopropyl triethoxysilane modified APP/Dipentaerythritol/MEL (m-APP/DPER/MEL)	25	PnP^nP	4:1:1	30	71	32.5	35	4	14.93
γ-aminopropyl triethoxysilane modified APP/DPER/MEL/SEP (m-APP/DPER/MEL/SEP)	25	PnP^nP	4:1:1:0.2:5	29	51	30.8	35	4	21.20
APP/PER/Melamine formaldehyde (APP/PER/MF)	18	PnP^nP	3:1:0.2	48	352.3	110.4	35	3	3.27
APP/PER/Adenosine monophosphate embedded Melamine formaldehyde (APP/PER/MFA)	18	PnP^nP	3:1:0.2	49	355.1	108.1	35	3	3.38
APP/PER/Trizine-based FR: N,N',N''-1,3,5-triazine-2,4,6-triytrimethylammonium bis(triethylene glycol) bisamide (APP/PER/TAF)	18	PnP^nP	2:4:1:0.2	42	323.3	126	35	3	3.06
APP/PER/Uracil: nitrogenous bases (APP/PER/G bases)	18	PnP^nP	3:1:0.3	46	293	105	35	3	3.25

[References: 104, 107, 147, 148, 149, 150, 72, 71]
Material Type	P:nP	2886	144	50	3	17.6	NR	[152]				
APP/PER	25	PnP	2.2:1	30	386	117	50	3	2.23	26.8	V-1	[152]
Aluminum chloride modified APP/DPER	25	PnP	2.2:1	25	226	104	50	3	3.57	32.1	V-0	[152]
APP/DPER/AT	25	PnP	2.1:1	28	381	108	50	3	2.28	28.7	V-0	[152]
APP/PER	28.5	PnP	3:1	24	318	122	50	4	2.27	30	V-0	[70]
APP/PER/KAOL	28.5	PnP	3:1:2	22	222	131	50	4	2.78	33	V-0	[70]
APP/PER	29	PnP	3:1	21	160.7	94.2	35	3	0.82	29.5	V-0	[153]
APP/PER/MT	29	PnP	3:1:0.46	42	149.8	69.5	35	3	2.38	34.5	V-0	[153]
APP/PER/Melamine modified MMT	29	PnP	3:1:0.46	37	157.9	55.1	35	3	2.51	36.5	V-0	[153]
APP/PER/Triphenylphosphonium modified MMT	29	PnP	3:1:0.46	38	168.2	84.7	35	3	1.57	34.8	V-0	[154]
APP/PER	25	PnP	3:1	39	267	111	35	4	2.57	26.3	V-1	[155]
APP/PER/acid-treated waste silicon rubber composite insulator (APP/PER/m-SiR)	25	PnP	3:1:0.16	35	296	109	35	4	2.12	27	V-1	[155]
APP/PER/acid and N₂ plasma-treated SiR (APP/PER/m-SiR)	25	PnP	3:1:0.16	39	271	102	35	4	2.76	29.3	V-0	[155]
APP/PER/acid and N₂ plasma-treated SiR	25	PnP	3:1:0.16	53	655	108.1	35	3	1.75	28.9	V-2	[156]
System	P:nP Ratio	P1	P2	P3	N1	N2	N3	V0	V1	NR	Ref.	
-------------------------------	------------	----	----	----	----	----	----	----	----	----	------	
Methyl hydrogen siloxane-treated APP/DPER (m-APP/DPER)	25	PnP 2:1	19	347	113	50	3	2.02	32.5	V-0	[157]	
Methyl hydrogen siloxane-treated APP/DPER/Zeolite (m-APP/DPER/Z)	26	PnP:nP 2:1:0.1	21	209	50	50	3	8.41	35.6	V-0	[157]	
Methyl hydrogen siloxane-treated APP/DPER/Z/MWCNT (m-APP/DPER/Z/MWCNT)	26.1	PnP 2:1:0.1	21	226	60	50	3	6.48	34.3	V-0	[157]	
Methyl hydrogen siloxane-treated APP/DPER/Allop (APP/DPER/ALL)	27	PnP 3:1:0.3	53	149	68	35	3	3.77	35	V-0	[158]	
APP/DPER/Zeolite (APP/DPER/Z)	25	PnP 2:1	18	436	123	50	3	2.28	27.6	V-1	[159]	
APP/DPER/Meso porous aluminosilicate oxide (APP/DPER/MAO)	25	PnP 2:1:0.33	31	188	55	50	3	20.37	33.9	V-0	[159]	
APP/DPER/Zn-MAO	25	PnP 2:1:0.12	27	223	105.6	50	4	4.83	30	V-0	[160]	
APP/DPER/Organ (APP/DPER/m-SEP)	25	PnP 2:1:0.41	31	237	104.3	50	4	5.28	35	V-0	[160]	
APP/DPER/Organ (APP/DPER/m-SEP)	25	PnP 2:1:0.57	29	263	135.8	50	4	3.42	24.5	NR	[160]	
APP/DPER/Organ (APP/DPER/m-SEP)	25	PnP 2:1:0.74	29	362	158.4	2.13	21.5	NR	[160]			
APP/DPER/Octaphenyl POSS (APP/DPER/OP-PSS)	20	PnP 2:1:0.12	30	247	104.1	2.17	21.5	NR	[160]			
APP/DPER/Aminopropyl isobutyl-octaphenyl	20	PnP 3:1	27.2	229	44	35	3	1.67	24.5	NR	[161]	
APP/DPER/Organo POSS (APP/DPER/OP-PSS)	20	PnP 3:1:0.2	32.3	178	27	35	3	4.17	28.1	V-1	[161]	
System	Molar Ratio	P₀	P₁	P₃	T	V	Reference					
--------	-------------	----	----	----	---	---	-----------					
APP/PER/Octaammonium POSS (APP/PER/OA-POSS)	20	P₀P₁P₃ 3:1:0.2	37.7	164	26	35	3	5.48	29.7	V-1	[161]	
APP/PER/Trisulfonylpropyl POSS (APP/PER/TS-POSS)	20	P₀P₁P₃ 3:1:0.2	35.4	153	29	35	3	4.95	32.4	V-1	[161]	
APP/PER	30	P₀	52.5	70.43	49.96	35	3	7.10	29	—	[162]	
APP/PER/Thermally-treated solid waste (APP/PER/T-RS)	33.5	P₀P₁P₃ 2:1:0.5	48	65.71	40.21	35	3	8.65	41	—	[162]	
APP/PER/Volcanic ash (APP/PER/VC)	33.5	P₀P₁P₃ 2:1:0.5	101	19.73	29.48	35	3	82.72	37	—	[162]	
APP/PER/Rice husk ash (APP/PER/CHR)	33.5	P₀P₁P₃ 2:1:0.5	62	48.16	31.36	35	3	19.55	40	—	[162]	
APP/PER	— — —	65	920	145	35	4	—	17.5	NR	—	[163]	
APP/PER/Zinc borate (APP/PER/ZnB)	20	P₀P₁P₃ 3:1:0.2	37	330	125	35	4	1.84	29.5	V-0	[163]	
APP/PER/Borophosphate (APP/PER/BPO₄)	20	P₀P₁P₃ 3:1:0.2	33	226	53	35	4	5.65	30	V-0	[163]	
APP/PER/Boron silicon containing preceramic oligomer (APP/PER/Bsi)	20	P₀P₁P₃ 3:1:0.2	34	255	70	35	4	3.90	25.5	V-0	[163]	
APP/PER/Lanthanum borate (APP/PER/LaB)	20	P₀P₁P₃ 3:1:0.2	43	260	97	35	4	3.49	27	V-0	[163]	
APP/PER	— — —	28	1633	132	50	4	—	18	—	[107]		
APP/PER/NiFeO	25	P₀P₁P₃ 2:1:0.35	20	425	107	50	4	3.38	34.6	—	[107]	
APP/PER/CoFeO	25	P₀P₁P₃ 2:1:0.35	19	323	124	50	4	3.65	35	—	[107]	
APP/PER	— — —	28	1337	95.1	35	3	—	18	NR	—	[164]	
APP/PER/Zinc hydroxystannate	25	P₀P₁P₃ 2:1:0.26	54	363.2	88.2	35	3	7.65	36	V-0	[164]	
APP/PER/Nickel phosphide nanocrystalline (APP/PER/Ni₃P)	25	P₀P₁P₂ 3:2:1	79	306.6	89.1	35	3	13.12	34	V-0	[164]	
APP/PER/Cobalt phosphide nanocrystalline (APP/PER/Co₃P)	25	P₀P₁P₂ 3:2:1	42	562.4	93.2	35	3	3.63	31.5	V-1	[164]	
APP/PER/Copper phosphide nanocrystalline (APP/PER/Cu₃P)	— — —	75	471	102	50	3	—	18	NR	—	[165]	
APP/PER	25	P₀P₁P₂ 3:2:1	45	265	83	50	3	1.31	27	V-1	[165]	
APP/PER/Zinc hydrosulfostannate	25	P₀P₁P₂ 3:2:1:0.16	40	193	75	50	3	1.77	32	V-0	[165]	
e	(APP/PER/ZHS)		24	1361	107.5	50	3	—	—	—	166	
-----------	---------------	---------	----	------	--------	----	----	---	---	---	-----	
APP/PER	25 PnP 3:1	21	455	85.4	50	3	3.29	—	V-2	—	166	
APP/PER/Mang anese acetate	(APP/PER/MnAc)	26 PnPnP 3:1:0.16	23	372	75.2	50	3	5.01	—	V-0	166	
APP/PER/MnAc	27 PnPnP 3:1:0.32	19	366	74.1	50	3	4.27	—	V-0	166		
APP/PER/MnAc	28 PnPnP 3:1:0.48	19	383	83.6	50	3	3.61	—	V-0	166		
APP/PER/MnAc	29 PnPnP 3:1:0.64	18	369	96.1	50	3	3.09	—	V-0	166		
APP/DPER/phosphorylated sodium alginate	(APP/DPER/m-SA)	35 PnPnP 3:1:1	27	335	128	35	4	7.55	—	—	167	
APP/PEPA	23 PnP 2:1	38	297.9	113.8	35	4	2.08	30.5	NR	168		
APP/PEPA/NO R16	25 PnPnP 2:1:0.26	36	260.3	112.5	35	4	2.28	34	V-2	168		
APP/PEPA/Zirconium phosphate	(APP/PEPA/ZrP)	25 PnPnP 2:1:0.26	41	221.8	112.5	35	4	3.05	31.5	V-2	168	
APP/PEPA/Macromolecular N-alkoxy hindered amine functionalized ZrP	(APP/PEPA/m-ZrP)	25 PnPnP 2:1:0.26	40	157	112.2	35	4	4.22	33	V-0	168	
APP/PEPA/PER/Kaol	27	1474	142	50	3	—	18 NR	169				
MCAPP/PER/	25 PnP/PnP 2:1:0.2	17	373	123	50	3	2.87	32.5	V-0	169		
MCAPP/PER/ Acidically modified kaol (MCAPP/PEPA/m-Kaol)	25 PnPnP 2:1:0.2	20	233	105	50	3	6.33	34.9	V-0	169		
MCAPP/PER/	27	1474	142	50	3	—	18.1 NR	170				
MCAPP/PER/	25 PnP 2:1	18	438	123	50	3	2.59	31.1	V-2	170		
MCAPP/PER/	25 PnPnP 2:1:0.2	17	372	123	50	3	2.88	32.5	V-0	170		
MCAPP/PER/ Thiourea modified kaol (MCAPP/PEPA/m-Kaol)	25 PnPnP 2:1:0.2	21	291	103	50	3	5.43	35.4	V-0	170		
MCAPP/PER/	27	1474	142	50	3	—	18 NR	171				
MCAPP/PER/	25 PnP 2:1	18	438	123	50	3	2.59	31.1	V-2	171		
MCAPP/PER/	25 PnPnP 2:1:0.2	17	373	123	50	3	2.87	32.5	V-0	171		
MCAPP/PER/ Kaol nanoroll (MCAPP/PEPA/Kaol nanoroll)	25 PnPnP 2:1:0.2	19	269	120	50	3	4.56	34.5	V-0	171		
MCAPP/PER/	27	1474	142	50	3	—	18 NR	89				
MCAPP/PER/	25 PnP 2:1	18	438	123	50	—	2.59	31.1	V-2	89		
MCAPP/PER/	25 PnPnP 2:1:0.2	17	373	123	50	—	2.87	32.5	V-0	89		
MCAPP/PEPA/	P:P:nP	18	309	125	50	3	2.61	35.3	V-0	[89]		
Ammonium	2:1:0.2											
sulfamate												
intercalated												
kaol												
(MCAPP/PEPA/												
m-Kaol)												
Microcapsulate	P:P	18	438	123	50	3	2.59	31	V-2	[172]		
d APP/PEPA	2:1											
(mc-APP/PEPA)												
Microcapsulate	P:P:nP	17	373	123	50	3	2.87	32.5	V-0	[172]		
d APP/PEPA/Kaol	2:1:0.2											
(mc-APP/PEPA/Kaol)												
Microcapsulate	P:P:nP	18	341	109	50	3	3.75	35.2	V-0	[172]		
d APP/PEPA/HNT	2:1:0.2											
(mc-APP/PEPA/HNT)												
Microcapsulate	P:P:nP:	19	263	97	50	3	5.77	36.9	V-0	[172]		
d APP/PEPA/Kaol/	nP:											
HNT (mc-APP/PEPA/Kaol/HNT)	2:1:0.18:0.2											
Microcapsulate	P:P	18	436	123	50	3	2.60	31.2	V-2	[173]		
d APP/PEPA	2:1											
(mc-APP/PEPA)												
Microcapsulate	P:P:nP	17	374	122	50	3	2.88	32.5	V-2	[173]		
d APP/PEPA/Kaol	2:1:0.2											
(mc-APP/PEPA/Kaol)												
Microcapsulate	P:P:nP	23	299	106	50	3	5.62	34.1	V-0	[173]		
d APP/PEPA/HSA -A	2:1:0.2											
(mc-APP/PEPA/HSA -A)												
Microcapsulate	P:P:nP	20	257	84	50	3	7.18	35.1	V-0	[173]		
d APP/PEPA/HSA -P	2:1:0.2											
(mc-APP/PEPA/HSA -P)												
Microcapsulate	P:P:nP	16	248	103	50	3	4.85	35.5	V-0	[173]		
d APP/PEPA/	2:1:0.2											
HSA-A-La (mc-APP/PEPA/HSA-A-La)												
Microcapsulate	P:P:nP	17	212	82	50	3	7.58	37.5	V-0	[173]		
d APP/PEPA/	2:1:0.2											
HSA-P-La (mc-APP/PEPA/HSA-P-La)												
— — —	38	1284	214	50	6	18	18.2	NR		[49]		
APP/Phosphorus based CA: 3,9- Bis-(1-oxo-2,6,7-trioxo-1-phospha- bicyclo[2.2.2]oct-4-ylmethoxy)-2,4,8,10-tetraoxa-	25	P:P	1:1									
System	P:nP	ρ	Δt	ΔL	Mass Loss	V	References					
-------------------------------	------------	--------	---------	------	-----------	-----	------------					
3,9-diphospha-spiro[5.5]undecane 3,9-dioxide (APP/P-CA)	—	—	37	1284	121	50	3	—	—	[38]		

APP/Phosphorus-based FR: Cyclotriphosph azene containing six (aminopropyl)triethoxysilicon e groups (APP/P-FR)	P:nP	ρ	Δt	ΔL	Mass Loss	V	References		
30:14:1	18	596	114	50	3	1.11	22.2	NR	[38]
6:5:1	17	420	109	50	3	1.55	22.4	NR	[38]
30:4:1	18	382	95	50	3	2.08	23.5	V-2	[38]
30:2.75:1	17	282	95	50	3	2.66	26.5	V-2	[38]

Melamine-formaldehyde-tris(2-hydroxyethyl) isocyanurate resin microencapsulated APP/Tris(2-hydroxyethyl) isocyanurate (mc-APP/THIEC)	P:nP	ρ	Δt	ΔL	Mass Loss	V	References		
30:3:1	28	232	100.7	50	3	5.56	36	V-0	[41]

APP/Polyurethane containing phosphorus-based CA (APP/PPU-CA)	P:nP	ρ	Δt	ΔL	Mass Loss	V	References		
25:2:1	19.8	232	69	35	3	2.74	24.5	V-2	[50]

APP/PPU-CA	P:nP	ρ	Δt	ΔL	Mass Loss	V	References		
25:1:1	17.1	288	70	35	3	1.87	25.5	V-1	[50]

APP/Triazine-based CFA (APP/TA-CFA)	P:nP	ρ	Δt	ΔL	Mass Loss	V	References		
22:4:1	21	397.3	161.1	50	4	2.74	30.4	V-0	[95]

3-(Aminopropyl)triethoxysilane modified APP microcapsulated with methylpolysilox	P:nP	ρ	Δt	ΔL	Mass Loss	V	References					
22:4:1	16	271.7	140.8	50	4	3.49	31.7	V-0	[95]			
APP/Triazine-based CFA (m-APP/TA-CFA)	—	20	809	96	50	3	—	17.6	NR	[32]		
--------------------------------------	---	----	-----	----	----	---	---	-----	----	-----		
APP/Triazine-based CFA: Poly[N4-bis(ethylenediamino)-phenyl phosphonic-N2, N6-bis(ethylenediamino)-1,3,5-triazine-N-phenyl (APP/TA-CFA)]	25	P:nP	2:1	11	121	81	50	3	4.35	34	V-0	[32]
APP/Triazine-based CFA: synthesized from a macromolecular triazine derivative containing hydroxyethylamino and triazine rings and ethylenediamino groups (APP/TA-CFA)	25	P:nP	4:1	40	167.6	82.5	35	3	4.82	34	V-0	[37]
Melamine and phytic acid modified APP/Triazine-based CFA: synthesized from a macromolecular triazine derivative containing hydroxyethylamino and triazine rings and ethylenediamino groups (m-APP/TA-CFA)	25	P:nP	4:1	43	115.6	82.3	35	3	7.53	35	V-0	[37]
APP/Triazine-based CFA: synthesized by polycondensation of 2-chloro-4,6-di(2-hydroxyethylamino)-S-triazine (APP/TA-CFA)	30	P:nP	2:1	56	422	70.7	35	3	4.62	32.5	V-0	[40]
APP/Triazine-based CFA: synthesized by polycondensation of 2-chloro-4,6-di(2-hydroxyethylamino)-S-triazine (APP/TA-CFA)	30	P:nP	3:1	48	316	68.8	35	3	5.43	33	V-0	[40]
APP/Triazine-based CFA: synthesized by polycondensation of 2-chloro-	30	P:nP	4:1	52	414	71.1	35	3	4.35	31.5	V-0	[40]
Polymers 2020, 12, 1701

APP/Triazine-based CFA: synthesized by reaction of cyanuric chloride and piperazine (APP/TA-CFA)	—	—	48	988	88.3	35	3	—	17	NR	39
APP/Triazine-based CFA: synthesized by reaction of cyanuric chloride and piperazine (APP/TA-CFA)	30	P:N 1:1	32	82.4	77.9	35	3	9.06	29	V-0	39
APP/Triazine-based CFA: synthesized by reaction of cyanuric chloride and piperazine (APP/TA-CFA)	30	P:nP 2:1	52	94.2	78.4	35	3	12.79	32	V-0	39
APP/Triazine-based CFA: synthesized by reaction of cyanuric chloride and piperazine (APP/TA-CFA)	30	P:nP 3:1	34	167	83.4	35	3	4.43	34	V-0	39
APP/Triazine-based CFA: synthesized by reaction of cyanuric chloride and piperazine (APP/TA-CFA)	30	P:nP 4:1	36	163.6	67.9	35	3	9.16	29.5	V-0	39
APP/Triazine-based CFA: synthesized by reaction of cyanuric chloride and piperazine (APP/TA-CFA)	20	P:nP 3:1	36	132	58.7	35	3	7.91	31	V-0	174
APP/Triazine-based CFA: synthesized by reaction of cyanuric chloride and piperazine /hexadecyl trimethyl ammonium bromide modified MMT (APP/TA-CFA/m-MMT)	20	P:nP:nP 3:1:0.1	36	132	58.7	35	3	7.91	31	V-0	174
APP/Triazine-based CFA: synthesized by reaction of cyanuric chloride and piperazine /hexadecyl trimethyl ammonium bromide modified MMT (APP/TA-CFA/m-MMT)	20	P:nP:nP 3:1:0.2	36	90	58.6	35	3	11.63	30.5	V-0	174
APP/Triazine-based CFA:											
------------------------	---	---	---	---	---	---	---				
reaction of cyanuric	20	P:nP:nP	32	52.6	35.5	35	3.2				
chloride and piperazine								[174]			
/hexadecyl trimethyl											
ammonium bromide											
modified MMT											
(APP/TA-CFA/m-MMT)											
APP/Triazine-based CFA:								[174]			
reaction of cyanuric	20	P:nP:nP	38	55.2	38.5	35	3.2				
chloride and piperazine								[174]			
/hexadecyl trimethyl											
ammonium bromide											
modified MMT											
(APP/TA-CFA/m-MMT)											
APP/Triazine-based CFA:								[174]			
reaction of cyanuric	20	P:nP:nP	36	112.7	41.4	35	3.2				
chloride and								[174]			
ethanolamine											
and ethylenediamine								[61]			
and Silicon											
dioxide (APP/TA-CFA/SiO)											
APP/Triazine-based CFA:								[61]			
reaction of cyanuric	24	P:nP:nP	30	236.6	84.7	50	3				
chloride and								[61]			
ethanolamine											
and ethylenediamine/e											
Silicon dioxide (APP/TA-CFA/SiO)											
APP/Triazine-based CFA:											
reaction of cyanuric	24	P:nP:nP	33	221	83.2	50	3				
chloride and								[61]			
ethanolamine											
and ethylenediamine/e											
AHP/SiO (APP/TA-CFA/AHP/SiO)											
APP/Triazine-based CFA:											
reaction of cyanuric	24	P:nP:nP	26	88	20	50	—				
chloride and											
ethanolamine											
and ethylenediamine/e											
N-ethyl triazinepiperazine copolymer/SiO											
(APP/TA-CFA/N-ethyl triazinepiperazine copolymer/SiO)								[175]			

[174]"[175]"
(APP/TA-CFA/SiO₂)	P:nP:nP 4:1:0.26	27	95	24	50	—	49.30	33.5	V-0	[175]					
APP/Triazine-based CFA: N-ethyl triazineepiperazine copolymer/SiO₂ (APP/TA-CFA/SiO₂)															
— — 50 1025 110.8 35 3 — 17 NR [176]															
APP/Triazine-based CFA: synthesized by reaction of cyanuric chloride and ethanolamine and ethylenediamine (APP/TA-CFA)															
— — 50 1025 110.8 35 3 — 17 NR [176]															
APP/Triazine-based CFA: synthesized by reaction of cyanuric chloride and ethanolamine and ethylenediamine/rGNO (APP/TA-CFA/rGNO)															
25 P:nP:nP 4:1:0.1	35	140	90.4	35	3	6.28	32	V-0	[176]						
APP/Triazine-based CFA: synthesized by reaction of cyanuric chloride and ethanolamine and ethylenediamine/rGNO (APP/TA-CFA/rGNO)															
25 P:nP:nP 4:1:0.2	34	156	86	35	3	5.75	28	V-0	[176]						
APP/Triazine-based CFA: synthesized by reaction of cyanuric chloride and ethanolamine and ethylenediamine/rGNO (APP/TA-CFA/rGNO)															
25 P:nP:nP 4:1:0.4	36	262	94.4	35	3	3.30	25	V-2	[176]						
Piperazine modified APP/Triazine-based CFA: synthesized by reaction of cyanuric chloride and ethanolamine and ethylenediamine (m-APP/TA-CFA)															
— — 45 1456 139.1 35 3 — 17 NR [177]															
Piperazine modified APP/Triazine-based CFA: synthesized by reaction of cyanuric chloride and ethanolamine and ethylenediamine (m-APP/TA-CFA)															
25 P:nP:nP 4:1:0.1	39	434	125.1	35	3	3.23	34	V-0	[177]						
APP/Triazine based CFA: synthesized by reaction of cyanuric chloride and ethanolamine and ethylenediamine/e/rGNO (m-APP/TA-CFA/rGNO)	Piperazine modified APP/Triazine based CFA: synthesized by reaction of cyanuric chloride and ethanolamine and ethylenediamine/e/rGNO (m-APP/TA-CFA/rGNO)	25	P:nP:nP: 4:1:0.2	37	350	123.9	35	3	3.84	32	V-0	[177]			
---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---
25	P:nP:nP: 4:1:0.4	37	397	125.4	35	3	3.34	30	V-0	[177]					
25	P:nP:nP: 3.6:1:0.5	38	401	117.3	35	3	3.63	33	V-0	[177]					
25	P:nP:nP: 3.04:1:0.96	34	290	117.1	35	3	4.50	30.5	V-0	[177]					
Method (m-APP/m-APP@rGNO/TA-CFA)	P:nP	Pm	Tm	Tp	Tm-P	V-0	Notes								
---------------------------------	------	----	----	----	------	-----	-------								
Piperazine modified APP/Piperazine modified APP attached with rGNO/Triazine-based CFA: synthesized by reaction of cyanuric chloride and ethanolamine and ethylenediamine	25	PnP 1.04:1.0. 46	31	464	125.8	35	3	2.39	26.5	V-2	[177]				
APP/Triazine-based CA: synthesized by reaction of 2-carboxyethyl (phenyl) phosphinic acid and tris (2-hydroxyethyl) isocyanurate (APP/TA-CA)	20	P:N 1:1	38	83	41	35	3	4.73	30	V-0	[23]				
APP/Triazine-based CA: synthesized by reaction of cyanuric chloride, 2,6,7-trioxa-1-phosphabicyclo [2.2.2]octane-4-methanol and piperazine (APP/TA-CA)	20	P:nP 2:1	39	255	101	35	3	4.56	27.5	V-0	[27]				
APP/Triazine-based CA: synthesized by reaction of cyanuric chloride, 2,6,7-trioxa-1-phosphabicyclo [2.2.2]octane-4-methanol and piperazine (APP/TA-CA)	20	P:nP 3:1	37	253	98	35	3	4.49	28	V-0	[27]				
APP/Triazine-based CA: Poly(ethanedia mine-1,3,5-triazine-p-4-amino-2,2,6,6-tetramethylpiperidine) (APP/TA-CA)	25	PnP 2:1	28	227.9	62	35	3	4.69	30.3	V-0	[67]				
APP/Triazine-based CA: poly(1,3,5-triazin-2-aminoethanol	25	PnP 3:1	17	219	165	50	6	4.42	32.7	V-0	[36]				
APP/Triazine based CA: synthesized by reaction of cyanuric chloride and 2,6,7-trioxa-1-phosphabicyclo[2.2.2]octane-4-methanol and diethylenetriamine (APP/TA-CA)	30	P:nP 2:1	35	187	68	50	3	7.32	31.5	V-0	[178]				
APP/Triazine based CA: synthesized by reaction of cyanuric chloride and diphenylamine and ethylenediamine (APP/TA-CA)	30	P:nP 2:1	35	253.7	91.2	50	3	4.76	32.8	V-0	[178]				
APP/Triazine-based CA: synthesized by reaction of cyanuric chloride and 2,6,7-trioxa-1-phosphabicyclo[2.2.2]octane-4-methanol and diethylenetriamine (APP/TA-CA)	30	P:nP 2:1	35	349.9	91.3	50	3	3.45	34.6	V-0	[178]				
APP/Triazine-based CA: synthesized by reaction of cyanuric chloride and diethyleneamine (APP/TA-CA)	25	P:nP 3:1	18	176	82	50	6	11.72	35	V-0	[36]				
and γ-Aminopropyl triethoxysilane (APP/TA-CA)	APP/Triazine-based CA: synthesized by reaction of Cyanuric chloride and Ethanedi-amine and γ-Aminopropyl triethoxysilane/NOR116 (APP/TA-CA/NOR116)														
---	---														
	25 P:nP 2:1:0.03	32	76	122	35	4	13.02	42.5	V-0						
APP/Triazine-based CA: synthesized by polycondensation of 2-amino-4,6-dichloro-s-triazines and diethylenetriamine (APP/TA-CA)		20 P:nP 2.8:1	35	218	126	35	6	4.03	30.8	V-1					
APP/Triazine-based CA: synthesized by polycondensation of 2-amino-4,6-dichloro-s-triazines and diethylenetriamine/Organically modified MMT (APP/TA-CA/m-MMT)		20 P:nP 2.8:1:0.2	34	159	64	35	6	10.58	33	V-0					
APP/Triazine-based CA: synthesized by polycondensation of 2-amino-4,6-dichloro-s-triazines and diethylenetriamine/Organically modified MMT (APP/TA-CA/m-MMT)		20 P:nP 2.8:1:0.6	37	270	156	35	6	2.78	28.9	NR					
APP/Triazine-based CA: synthesized by reaction of		22 P:nP 4:1:0.26	16	91	62	50	4	20.84	29.6	V-0					
APP/Triazine-based CA: N-methyl triazineethylene diamine copolymer/SiO₂ (APP/TA-CFA/SiO₂)		22 P:nP 4:1:0.26	22	74	69	50	4	31.67	29.3	V-0					
APP/Triazine-based CA: synthesized by reaction of		25 P:nP 2:1	19	191	112	50	3	11.21	31.1	V-0					
cyanuric chloride and γ-aminopropyltriethoxy silane and trimethylamine and ethylenediamine (APP/TA-CA-ZnO)

P:nP:nP	2.25:1.0:12	18	430	132	50	3	4.00	26.1	V-1	[29]

APP and Triazine-based CA: synthesized by reaction of cyanuric chloride and γ-aminopropyltriethoxy silane and trimethylamine and ethylenediamine (APP/TA-CA/ZnO)

P:nP:nP	1:1	44	313	235	35	6	3.12	26	NR	[182]

APP and Triazine-based IFR (APPandTA-IFR)

P:nP:nP	2:1	38	117	23.2	35	3.2	25.44	29.5	V-0	[31]

APP and Triazine-based IFR (APPandTA-IFR)

P:nP:nP	3:1	36	113	73.9	35	3.2	7.83	30.5	V-0	[31]

APP and Piperazine-Triazine-based CA: synthesized by reaction of cyanuric chloride and...
System	Compound/Abbreviation	Formula	P:nP	M:nP	T:nP	V0	Nt	Reference	
APP/Piperazine-Triazine-based CA	APP/PI-TI-CA							[33]	
cluster: synthesized by reaction of									
cyanuric chloride and anhydrous									
piperazine (APP/PI-TI-CA)									
		25	21	242	96	50	3	3	
								17.5	
								NR [70]	
APP/Piperazine-based IFR:									
Piperazine spirocyclic phosphorami-									
dat e (APP/PI-IFR)									
		30	23	208.8	81.41	50	3	5.58	
								32.5	
								V-0 [70]	
APP/Piperazine-based IFR:									
Piperazine spirocyclic phosphorami-									
dat e/Triazine based CFA (APP/PI-									
IFR/TA-CFA)		30	23	116.1	41.57	50	3	19.66	
								39.8	
								V-0 [70]	
APP/ATH									
		30	40	210	75	35	3	1.55	
								24	
								V-1 [183]	
4,4’-diphenylmethane diisocyanate									
and melamine co-microencapsulat ed									
APP and ATH (mc-APPandATH))		30	75	120	53	35	3	7.20	
								25.5	
								V-0 [183]	
APP/MMT									
		10	25	769	66	35	0.4	4.11	
APP/MMT		10	27	765	65	35	0.4	4.53	
APP/Modified MMT (APP/m-MMT)		10	29	715	64	35	0.4	5.29	
APP/Modified MMT (APP/m-MMT)		10	30	619	63	35	0.4	6.43	
APP/Nf		20	40.8	399	167.9	35		1.49	
								23	
APP/organically modified BT (APP/m-		20	42.6	386	155.1	35		1.75	
BT)								23	
APP/Nf		20	40.8	399	167.9	35		1.49	
								23	
APP/organically modified BT (APP/m-		20	42.6	386	155.1	35		1.75	
BT)								23	
APP/C15A		20	61	490	72.7	35	2.5	3.97	
								20.1	
								NR [60]	
OP/C15A		20	50	400	83.6	35	2.5	3.46	
								20.8	
								NR [60]	
APP/C20A/PER/MEL		25	26	403	93	35	3	3.31	
APP/Polymer	P:nP:nP	20A/PER/MEL	20A/PER/MEL	20A/PER/MEL	20A/PER/MEL				
-------------	---------	-------------	-------------	-------------	-------------				
APP/PP	nP	2.4:1:0.8	23	385	80	35	3	3.56	2.04
APP/SiO	nP	1.2:1:0.4	18	460	86	35	3	2.17	2.04
APP/SiO	nP	1.8:1:0.6	18	411	86	35	3	2.43	2.04

APP/Phytic acid modified LDH (APP/m-LDH) | P:nP | 9:1 | 20 | 200 | 59.3 | 50 | 4 | 9.85 | 2.04 |

APP/Phytic acid modified LDH (APP/m-LDH) | P:nP | 5:6:1 | 18 | 327 | 150.8 | 50 | 4 | 2.14 | 2.04 |

APP/Phytic acid modified LDH (APP/m-LDH) | P:nP | 9:1 | 18 | 286 | 108.8 | 50 | 3 | 3.85 | 2.04 |

APP/Phytic acid modified LDH (APP/m-LDH) | P:nP | 4:1 | 15 | 326 | 120.3 | 50 | 3 | 2.54 | 2.04 |

APP/Phytic acid modified LDH (APP/m-LDH) | P:nP | 9:1 | 16 | 306 | 136 | 50 | 3 | 2.56 | 2.04 |

APP/Phytic acid modified LDH (APP/m-LDH) | P:nP | 4:1 | 14 | 265 | 90.4 | 50 | 3 | 3.89 | 2.04 |

APP/Phytic acid modified LDH (APP/m-LDH) | P:nP | 1:1 | 14 | 277 | 97 | 50 | — | 3.00 | 2.04 |

APP/Phytic acid modified LDH (APP/m-LDH) | P:nP | 1:5:1 | 15 | 168 | 91 | 50 | — | 5.65 | 2.04 |

APP/Phytic acid modified LDH (APP/m-LDH) | P:nP | 1:5:1 | 14 | 288 | 98 | 50 | — | 3.46 | 2.04 |

APP/Phytic acid modified LDH (APP/m-LDH) | P:nP | 2:1 | 18 | 245 | 93 | 50 | — | 4.55 | 2.04 |

APP/Phytic acid modified LDH (APP/m-LDH) | P:nP | 3:1 | 20 | 197 | 98 | 50 | — | 5.97 | 2.04 |

APP/Phytic acid modified LDH (APP/m-LDH) | P:nP | 19:1 | 36 | 153 | 130 | 50 | — | 17.5 | 2.04 |

APP/Phytic acid modified LDH (APP/m-LDH) | P:nP | 19:1 | 30 | 502 | 151 | 50 | — | 1.64 | 2.04 |

APP/Phytic acid modified LDH (APP/m-LDH) | P:nP | 19:1 | 35 | 1203 | 197.6 | 50 | 6 | — | 18.2 | 2.04 |

APP/Phytic acid modified LDH (APP/m-LDH) | P:nP | 7:3:1 | 32 | 343.6 | 157.2 | 50 | 6 | 4.02 | 2.04 |

APP/Phytic acid modified LDH (APP/m-LDH) | P:nP | 4:1 | 31 | 316.2 | 136.9 | 50 | 6 | 4.86 | 2.04 |

APP/Phytic acid modified LDH (APP/m-LDH) | P:nP | 2:5:1 | 33 | 302.1 | 121.4 | 50 | 6 | 6.11 | 2.04 |

APP/Phytic acid modified LDH (APP/m-LDH) | P:nP | 1:1 | 24 | 910 | 89 | 35 | 3 | 3.89 | 2.04 |

APP/Phytic acid modified LDH (APP/m-LDH) | P:nP | 1:1 | 38 | 1284 | 214 | 50 | 6 | — | 18.2 | 2.04 |
Phosphorus based CA: 3,9-Bis-(1-oxo-2,6,7-trioxo-1-phosphabicyclo[2.2.2]oct-4-ylmethoxy)-2,4,6,10-tetraoxa-3,9-diphosphaspiro[5.5]undecane 3,9-dioxide/MEL (P-CA/MEL)	P:nP	V	0	[184]								
30	4:1	18	198	175	50	6	3.75	31.6	V-0	[57]		
Phosphorus based FR: Tri (1-oxo-2,6,7-trioxo-1-phosphabicyclo [2.2.2] octane-methyl) phosphate/MPyP	P:N	1:1	30	40	175.2	90.6	35	3	7.05	V-0	[57]	
Phosphorus-based FR: Poly(4,4-diaminodiphenyl methane spirocyclicpentaerythritol bisphosphonate)/GNO (P-IFR/GNO)	P:nP	10:1	20	64	473	79	35	—	3.71	—	[58]	
Phosphorus-based IFR: Poly(4,4-diaminodiphenyl methane Obicyclicpentae erythritol phosphate-phosphate)/Znacac (PN-IFR/Znacac)	P:nP	19:1	20	23	175	25	35	1.6	3.00	27.4	—	[53]
Phosphorus-based IFR: Poly(4,4-diaminodiphenyl methane Obicyclicpentae erythritol phosphate-phosphate)/Cracac (P-IFR/Cracac)	P:nP	19:1	20	24	184	24	35	1.6	3.10	28.2	—	[53]
Phosphorus and Nitrogen-based IFR: compound containing Phosphorus and Nitrogen/Dioctadecyl dimethyl ammonium chloride modified MMT (PN-IFR/m-MMT)	P:nP	59:1	30	20	173	102	50	—	5.20	38.5	—	[56]
Phosphorus and Nitrogen-	P:nP	29:1	30	22	192	127	50	—	4.14	38	—	[56]
based IFR: compound containing Phosphorus and Nitrogen /Dioctadecyl dimethyl ammonium chloride modified MMT (PN-IFR/m-MMT)

Phosphorus and Nitrogen-based IFR: compound containing Phosphorus and Nitrogen /Dioctadecyl dimethyl ammonium chloride modified MMT (PN-IFR/m-MMT)	30	P:nP	19:1	21	173	134	50	—	4.16	37.7	—	[56]					
Phosphorus and Nitrogen-based IFR: compound containing Phosphorus and Nitrogen /Dioctadecyl dimethyl ammonium chloride modified MMT (PN-IFR/m-MMT)	30	P:nP	14:1	22	176	133	50	—	4.31	35.7	—	[56]					
Phosphorus and Nitrogen-based IFR: compound containing Phosphorus and Nitrogen /Dioctadecyl dimethyl ammonium chloride modified MMT (PN-IFR/m-MMT)	30	P:nP	11:1	20	135	131	50	—	5.19	35.8	—	[56]					
Phosphorus and Nitrogen-based IFR: compound containing Phosphorus and Nitrogen /Dioctadecyl dimethyl ammonium chloride modified MMT (PN-IFR/m-MMT)	30	P:nP	9:1	21	155	134	50	—	4.64	31	—	[56]					
Phosphorus and Nitrogen-based IFR: compound containing Phosphorus and Nitrogen /Dioctadecyl dimethyl ammonium chloride modified MMT (PN-IFR/m-MMT)	30	P:nP	6.5:1	10	202	132	50	—	1.72	28.5	—	[56]					
Phosphorus and Nitrogen-based IFR: compound containing Phosphorus (22\%\) and Nitrogen (18\%) / Dioctadecyl dimethyl ammonium chloride modified MMT (PN-IFR/m-MMT)	P:nP	5:1	19	202	133	50	3.25	25.5	56	35	50	3.25	25.5	[56]			
Phosphorus-based IFR: compound containing Phosphorus (22\%\) and Nitrogen (18\%) / Octadecyl trimethyl ammonium bromide modified MMT (P-IFR/m-MMT)	P:nP	10:2:1	30	45	18	35	3	21.02	56	35	3	21.02	56	[55]			
Phosphorus-based IFR: compound containing Phosphorus (22\%\) and Nitrogen (18\%) / Sodium dodecyl sulfonate intercalated Ni-Al LDH (P-IFR/m-LDH)	P:nP	10:2:1	32	55	16	35	3	19.97	56	35	3	19.97	56	[55]			
Phosphorus-based IFR: compound containing Phosphorus (22\%\) and Nitrogen (18\%) / A-POSS (P-IFR/A-POSS)	P:nP	10:2:1	33	145	54	35	3	2.31	56	35	3	2.31	56	[55]			
Phosphorus-based IFR: compound containing Phosphorus (22\%\) and Nitrogen (18\%) / MWCNT (P-IFR/MWCNT)	P:nP	17:6:1	33	225	73	35	3	1.10	56	35	3	1.10	56	[54]			
Material	Phosphorus-based IFR compound containing Phosphorus(22%) and Nitrogen(18%)/MWCNT (P-IFR/MWCNT)	Phosphorus-based IFR compound containing Phosphorus(22%) and Nitrogen(18%)/MWCNT (P-IFR/MWCNT)	Phosphoric acid/ethylenediamine (PA/EDA)	PPU-CA/APP	PPU-CA/APP	PPU-CA/APP	PPU-CA/APP	MP/PER	MP/PER	MP/PER	MP/PER	MP/PER/Organcially modified MMT (MP/PER/m-MMT)	MP/PER/Organcially modified MMT (MP/PER/m-MMT)	MMF/PER	MMF/PER/Lanthanum oxide (MMF/PER/La₂O₃)	MMF/PER/La₂O₃	MMF/PER/La₂O₃
--------------------------------	---	---	---	----------	----------	----------	----------	--------	--------	--------	--------	--	--	----------	---	---	---
MWCNT (P-IFR/MWCNT)	28 PnP 10.2:1	28 PnP 7:1	25 PnP 1.7:1	25 N/P 1:1	25 N/nN 2:1	25 N/nN 3:1	25 N/nN 4:1	25 N/nN 1.5:1	25 N/nN n 1.66:1.0: 11	25 N/nN n 1.87:1.0: 25	20 N/nN n 1.62:0.1	20 N/nN n 1.62:0.1	25 N/nN n 1.7:1	25 N/nN n 1.7:1	25 N/nN n 1.7:1		
	33 145 54 35 3 2.31 — — [54]	31 140 79 35 3 1.53 — — [54]	24.7 1198.2 78.7 50 2.4 — — NR [139]	12.8 263.1 57.1 50 2.4 3.25 — V-0 [139]	17.1 288 70 35 3 1.87 25.5 V-1 [50]	19.7 568 75 35 3 1.02 25.5 V-0 [50]	26.8 605 77 35 3 1.27 26.5 V-0 [50]	22.2 642 77 35 3 0.99 27 V-0 [50]	— — 54 930 140 35 4 — — NR [64]	— — 42 831 112 35 3 — — 18 NR [50]	25 380 212 50 6 2.17 29 V-2 [185]	24 265 206 50 6 3.07 34 V-0 [185]					
				28 250 99 35 4 2.72 — V-0 [64]	35 305 110 35 4 2.51 — V-0 [64]	37 400 114 35 4 1.95 — NR [64]	42 1290 228 50 6 — — 18.1 NR [185]	25 380 212 50 6 2.17 29 V-2 [185]	24 265 206 50 6 3.07 34 V-0 [185]								
				25 380 212 50 6 2.17 29 V-2 [185]	25 380 212 50 6 2.17 29 V-2 [185]	25 380 212 50 6 2.17 29 V-2 [185]	25 380 212 50 6 2.17 29 V-2 [185]	25 380 212 50 6 2.17 29 V-2 [185]	— — 51 903 119.6 35 3 — — 17.5 NR [186]	— — 51 903 119.6 35 3 — — 17.5 NR [186]	25 380 212 50 6 2.17 29 V-2 [185]	45 271 94.3 35 3 3.72 32 V-0 [186]	47 247 91.4 35 3 4.40 31.5 V-0 [186]				
													50 221 85 35 3 5.63 31.5 V-0 [186]				
		38	1166	89.1	35	3	—	17	NR	[187]							
---------------------	-------	-----	------	------	-----	----	----	-----	-----	-------							
MPP/DPER	30	N:nN 3:1	45	427.6	79.4	35	3	3.62	28.7	V-0	[187]						
MPP/EG/DPER	30 N:nN 1.5:1:0.5	20	218.2	68.7	35	3	3.64	33.2	V-0	[187]							
Amino trimethylene phosphonic acid melamine salt/PER (MATMP/PER)	25 N:nN 2:1	17	256.4	103.2	50	3	3.93	30.3	V-0	[187]							
	—	—	25	1229	123.6	50	3	—	18.5	NR	[187]						
MPyP/PER	25	N:nN 3:1	32	343	136	35	4	2.13	29	V-1	[187]						
MPyP/PER/Epoxy crosslinked β-cyclodextrin nanosponge (MPyP/PER/m-CD)	25 N:nN 3:1:0.35	30	235	118	35	4	3.36	32.5	V-0	[187]							
	—	—	65	1417	128.5	35	3	—	—	NR	[66]						
MPyP/Phosphorus-based FR: Tri (1-oxo-2,6,7-trioxa-1-phosphabicyclo[2.2.2]octane-methyl) phosphate (MPyP/P-FR)	30 N:P 1:1	40	175.2	90.6	35	3	7.05	—	V-0	[66]							
	—	—	34	1727	112	35	3	—	17	NR	[66]						
MPyP/Triazine-based CFA: synthesized by reaction of cyanuric chloride and ethanalamine and ethylenediamine (MPyP/TA-CFA)	30 N:N 3:1	12	431	84	35	3	1.88	29.5	V-0	[66]							
	—	—	48	988	88.3	35	3	—	17	NR	[39]						
Triazine-based CFA: synthesized by reaction of	30 N:P 1:1	32	82.4	77.9	35	3	9.06	29	V-0	[39]							
cyanuric chloride and piperazine/APP (TA-CFA/APP)

Triazine-based CFA: synthesized by reaction of cyanuric chloride and piperazine/APP (TA-CFA/APP)	30	N:N 2:1	52	247	78.4	35	3	4.88	23	V-1	[39]

Triazine-based CA: synthesized by reaction of cyanuric chloride and piperazine/APP (TA-CA/APP)	20	N:P 1:1	38	83	41	35	3	4.73	30	V-0	[23]			
Triazine-based CA: synthesized by reaction of cyanuric chloride, 2,6,7-trioxa-1-phosphabicyclo[2.2.2]octane-4-methanol and piperazine/APP (TA-CA/APP)	30	N:N 2:1	36	456	96	35	3.2	2.47	25.5	V-2	[27]			
---	---	---	---	---	---	---	---	---	---	---	---			
Triazine-based CA: synthesized by reaction of cyanuric chloride and 2,6,7-trioxa-1-phosphabicyclo[2.2.2]octane-4-methanol and diethylenetriamine/APP (TA-CA/APP)	30	N:P 1:1	32	166.8	108.2	35	3	3.58	28	V-0	[179]			
---	---	---	---	---	---	---	---	---	---	---	---			
Triazine-based CA: synthesized by reaction of cyanuric chloride and N-aminoethylpiperazine/APP (TA-IFR/APP)	25	N:P 1:1	44	123	73.3	35	3.2	8.86	27.5	V-0	[31]			
---	---	---	---	---	---	---	---	---	---	---	---			
Triazine-based IFR: synthesized by reaction of cyanuric chloride and N-aminoethylpiperazine/APP (TA-IFR/APP)	25	N:N 2:1	44	241	77.2	35	3.2	4.29	24.5	V-1	[31]			
Reaction of cyanuric chloride and N-aminoethylpiperazine/APP (TA-IFR/APP)	—	62	1221	265	35	6	—	19	NR	[182]				
---	---	---	---	---	---	---	---	---	---	---				
Triazine-based IFR and APP (TAaandAPP-IFR)	10	N:P	44	313	235	35	6	3.12	26	NR	[182]			
Triazine-based IFR and APP (TAaandAPP-IFR)	15	N:P	45	148	191	35	6	8.30	29	NR	[182]			
Triazine-based IFR and APP (TAaandAPP-IFR)	20	N:P	43	115	153	35	6	12.75	31	V-0	[182]			
Piperazine-based IFR: Piperazine spirocyclic phosphoramidate/APP (PI-IFR/APP)	30	N:nN	2:1	20	189.2	74.85	50	3	5.82	33.1	V-1	[70]		
Nitrogen-based FR: compound containing nitrogen (27.5 wt.%) and Phosphorus (15.6 wt.%)/Fumed silica (NP-IFR/SiO₂)	25	N:nN	49:1	25	124	35.1	35	4	19.30	38	V-0	[74]		
Nitrogen-based FR: compound containing nitrogen (27.3 wt.%) and Phosphorus (15.6 wt.%)/Fumed silica (NP-IFR/SiO₂)	25	N:nN	7:3:1	17	341	87.9	35	4	1.90	27	NR	[74]		
Nitrogen-based IFR: Poly (diallyldimethyl ammonium) and polyphosphate polyelectrolyte complexe/Polyamide-6 (N-IFR/PAn)	25	N:nN	4:1	17	295.2	80.5	50	3	2.81	27.3	V-1	[75]		
Nitrogen-based IFR: compound containing nitrogen (23%) and Phosphorus (21%)/Hollow glass microsphere (N-IFR/HGM)	25	N:nN	49:1	16	93.8	74.4	50	3	7.15	34.5	V-0	[76]		
Nitrogen (23%)- and Phosphorus (21%)-based intumescent	25	N:nN	24:1	17	78.8	68	50	3	9.90	36.5	V-0	[76]		
Flame retardant/Hollow glass microsphere (N-IFR/HGM)														
---	---													
Nitrogen-based IFR: compound containing nitrogen (23%) and Phosphorus (21%)/HGM (N-IFR/HGM)														
	25	N:nN 11.5:1	12	61.6	74.2	50	3	8.19	35.5	V-0	[76]			
Nitrogen-based IFR: compound containing nitrogen (23%) and Phosphorus (21%)/HGM (N-IFR/HGM)	25	N:nN 5.25:1	13	81.6	72.5	50	3	6.86	34.5	V-0	[76]			
ATH/APP	30	M:P 1:1	40	210	75	35	3	1.55	24	V-1	[183]			
4,4′-diphenylmethane diisocyanate and melamine co-microencapsulated ATH and APP (mc-(ATHandAPP))	30	M:P 1:1	75	120	53	35	3	7.20	25.5	V-0	[183]			
ATH/Glass Bubble (ATH/GB)	60	M:M 11:1	31	212	53	50	4	22.17	25	—	[81]			
ATH/GB	60	M:M 5:1	36	190	49	50	4	31.08	23.4	—	[81]			
ATH/GB/Octadecylamine modified ZrP (ATH/GB/m-ZrP)	60	M:M:M 4.7:1:0.3	24	136	90	50	4	15.76	24	—	[81]			
ATH/GB/Octadecylamine modified ZrP (ATH/GB/m-ZrP)	60	M:M:M 4.4:1:0.6	24	152	91	50	4	13.94	23.2	—	[81]			
ATH/GB/Octadecylamine modified ZrP (ATH/GB/m-ZrP)	60	M:M:M 4.1:1:0.9	21	189	98	50	4	9.11	22.8	—	[81]			
ATH/Cetyltrimethyl ammonium bromide modified Fe MMT (ATH/m-MMT)	50	M:M 49:1	48	482	95.1	50	3	4.89	25.5	NR	[80]			
ATH/Cetyltrimethyl ammonium bromide modified Fe MMT (ATH/m-MMT)	50	M:M 15.6:1	49	412	90.9	50	3	6.11	27.4	V-1	[80]			
ATH/Cetyltrimethyl ammonium bromide modified Fe MMT (ATH/m-MMT)	50	M:M 9:1	53	329	89	50	3	8.46	29	V-0	[80]			
— — —	26	1967	112	50	3	—	—	—	[82]					
ATH/Styrene-co-vinylbenzyl chloride modified MMT (ATH/m-MMT)	23	M:M	6:6:1	21	677	84	50	3	3.12	—	—	[82]		
---	--------------------------	---------	---------	----------	----------------	---------	----	----	-------	----	---	-----------------		
ATH/Styrene-co-vinylbenzyl chloride modified MMT (ATH/m-MMT)	30	M:M	2:1	20	592	77	50	3	3.71	—	—	[82]		
ATH/Styrene-co-vinylbenzyl chloride modified MMT (ATH/m-MMT)	37	M:M	1:17:1	18	536	74	50	3	3.84	—	—	[82]		
---	—	—	—	24	687	119	25	3	—	17.8	—	[146]		
MDH/APP/PER/MEL	44.2	MnM:	MnMnM	1:3:1:0.6	0.56	43	121	58.2	25	3	20.79	28	—	[146]
MDH/APP/PER/MEL	50	MnM:	MnMnM	2:1:1:0.6	0.56	43	121	54.5	25	3	22.21	28.8	—	[146]
MDH/APP/PER/MEL	54.4	MnM:	MnMnM	3:1:0:60	0.56	44	104	53.6	25	3	26.88	30.2	—	[146]
---	—	—	—	166	412	105	50	3	—	17.8	—	[146]		
MDH/APP/PER/MEL	44.2	MnM:	MnMnM	1:3:1:0.6	0.56	217	68.8	39.3	50	3	20.91	28	—	[146]
MDH/APP/PER/MEL	50	MnM:	MnMnM	2:1:1:0.6	0.56	220	57.3	36.4	50	3	27.48	28.8	—	[146]
MDH/APP/PER/MEL	54.4	MnM:	MnMnM	3:1:0:60	0.56	232	54.3	31.2	50	3	35.68	30.2	—	[146]
---	—	—	—	26	1967	112	50	3	—	—	—	—	[82]	
MDH/Styrene-co-vinylbenzyl chloride modified MMT (MDH/m-MMT)	37	M:M	1:17:1	24	476	70	50	3	6.10	—	—	[82]		
---	—	—	—	30	1684	89	50	3	—	—	—	—	[82]	
MDH/Styrene-co-vinylbenzyl chloride modified MMT (MDH/m-MMT)	40	M:M	3:1	24	471	80	50	3	3.18	—	—	[82]		
MDH/Styrene-co-vinylbenzyl chloride modified MMT (MDH/m-MMT)	50	M:M	4:1	23	385	69	50	3	4.32	—	—	[82]		
MDH/Styrene-co-vinylbenzyl chloride modified MMT (MDH/m-MMT)	60	M:M	5:1	22	304	59	50	3	6.12	—	—	[82]		
---	—	—	—	38	1425	121.4	50	3	—	17.5	NR	[85]		
MDH/Cetyltrimethyl ammonium bromide modified Fe-MMT (MDH/m-MMT)	40	MnM:	MnMnM	39:1	52	422	98.1	50	3	5.71	24.9	NR	[85]	
MDH/Cetyltrimethyl ammonium bromide modified Fe-MMT (MDH/m-MMT)	40	M:M	12.3:1	56	378	97.5	50	3	6.91	26.5	NR	[85]		
Modified MMT	Modification	Sample Code	M:M	M1	M2	M3	Yield (%)	Tg (°C)	Char. (10%)	NR	Source			
-------------	--------------	-------------	-----	----	----	----	-----------	--------	-----------	-----	---------			
MDH/Cetyltrimethylammonium bromide modified Fe MMT (MDH/m-MMT)	40	M:M	7:1	63	329	87.9	50	3	9.91	28.1	V-1	[85]		
MDH/Cetyltrimethylammonium bromide modified Fe MMT (MDH/m-MMT)	—	—	71	2283	218	35	1	—	—	—	[84]			
MDH/L,4-bis (acrylamido) diphenylsulfone crosslinked N-(4-methyl phenyl) acrylamide monomer (MDH/Cobalt chelate)	50	M:M	9:1	72	619	306	35	1	2.66	—	—	[84]		
MDH/Cobalt chelate	50	M:M	4:1	63	618	277	35	1	2.57	—	—	[84]		
MDH/Cobalt chelate	50	M:M	2.3:1	53	776	236	35	1	2.02	—	—	[84]		
MDH/Cobalt chelate	50	M:M	1.5:1	56	780	222	35	1	2.26	—	—	[84]		
Cetyltrimethylammonium bromide modified MMT/SEP (m-MMT/SEP)	5	M:M	1:1	62	417	63.7	50	3	2.78	—	—	[87]		
MDH/Organically treated SEP (MDH/m-SEP)	15	M:M	2:1	29	325	62.1	50	3	1.71	—	—	[87]		
MDH/Organically treated SEP (MDH/m-SEP)	20	M:M	3:1	26	205	53.5	50	3	2.82	—	—	[87]		
MDH/cetyltrimethylammonium bromide modified MMT/SEP (MDH/m-MMT/SEP)	15	M:M:M	4:1:1	54	246	56.3	50	3	4.65	—	—	[87]		
MDH/cetyltrimethylammonium bromide modified MMT/SEP (MDH/m-MMT/SEP)	20	M:M:M	4:1:1	50	209	50.1	50	3	5.69	—	—	[87]		
MMT/APP	10	M:nM	1.5:1	28	764	64	35	0.4	4.78	—	—	[24]		
MMT/APP	10	M:nM	4:1	29	751	62	35	0.4	5.20	—	—	[24]		
Modified MMT/APP (m-MMT/APP)	10	M:nM	1.5:1	30	599	57	35	0.4	7.34	—	—	[24]		
Modified MMT/APP (m-MMT/APP)	10	M:nM	4:1	31	575	56	35	0.4	8.04	—	—	[24]		
Polysiloxane based FR/APP (Si-FR/APP)	25	M:P	1:1	14	277	97	50	—	3.00	28.9	V-0	[30]		
Polysiloxane based FR/APP (Si-FR/APP)	—	—	25	981	147	50	—	—	17.6	NR	—	[30]		
NiO/AC	15	M:C	1:1	18	385	132	50	6	2.88	—	—	[108]		
NiO/AC	—	—	47	1933	176	50	5	—	—	—	[189]			
System	M:nM	5:1	10:1	12:1	5:1	10:1	5:1	10:1	5:1	10:1	5:1	10:1		
--------------------------------	--------	------	------	------	------	------	------	------	------	------	------	------		
SEP/MWCNT	12	32	355	241	50	5	2.70	—	—	—	—	—		
Silicon/Stannous chloride	5	91	860.1	193.7	35	—	4.03	—	—	—	—	—		
C2O2/CO	5.5	83	458.9	78.1	35	3	1.07	20	—	—	—	—		
Ethylene glycol methacrylate phosphate modified C2O2/CO	5.5	78	498.2	75.2	35	3	0.96	19	—	—	—	—		
Ethylene glycol methacrylate phosphate modified C2O2/CO	10.5	61	424.7	74.8	35	3	0.88	20	—	—	—	—		
Silicon/Stannous chloride	5	25	364	194	50	6	2.55	25.8	—	—	—	—		
CF/MWCNT	10	27	353	185	50	6	3.61	26.5	—	—	—	—		
CB/MWCNT	6	26	402	187	50	6	3.02	23.8	—	—	—	—		
CB/MWCNT	4	25	314	180	50	6	3.86	27.6	—	—	—	—		
CB/MWCNT	8	27	361	166	50	6	3.08	25.7	—	—	—	—		
AC/CoO	15	18	385	132	50	6	2.88	—	—	—	—	—		
AC/CoO	25.3	166	412	105	25	3	—	—	—	—	—	—		
PER/MEL/APP	25.3	170	140	61.1	25	3	5.17	—	—	—	—	—		
PER/MEL/APP	25.3	32	198	79	50	3	6.96	—	—	—	—	—		
Cycloextrin nanosponge/Triethylphosphosphate (CD/TEP)	10	30	1529	93	35	3	0.63	—	—	—	—	—		
CD/TEP	15	26	839	90	35	3	1.03	—	—	—	—	—		
CD/APP	15	24	910	89	35	3	0.89	—	—	—	—	—		
Phosphorus and Nitrogen elements modified lignin/Nickel acetate (m-lig/Ni(Ac))	20	31	330	69.5	35	3	3.25	26	—	—	—	—		
Phosphorus and Nitrogen elements modified lignin/Cobalt acetate (m-lig/Co(Ac))	20	37	362	72.8	35	3	3.37	24.5	—	—	—	—		
Figure 15 displays the performance of different combinatorial additive systems used for PP. It can be clearly observed from the left-hand side figure that cases with FRI values above 10 (Excellent zone) are more frequent compared to all previous cases in which only one additive was used. More interestingly, the combination of additives appeared a useful strategy where very high FRI values (event more than 50) took place at intermediate loadings (25–30 wt.%). For achieving a high FRI value, the combination of several types of flame retardants is needed, for example, phosphorus, intumescent, and mineral flame retardants [150] or phosphorus, nitrogen, and mineral flame retardants [164].

Figure 15. FRI values as a function of combinatorial FR additives and their content in PP in long-shot (left-hand figure) and close-up (right-hand figure) views. Symbols are indicative of different types of combinatorial flame retardant used. Here: ▲ APP-13.2/PER-6.8 [68], ▼ APP-16.7/PER-8.3 [143], ▲ APP-18.7/PER-6.3 [67], ▶ APP-22.5/PER-7.5, mc-(APP-22.5&PER-7.5) [144], ♦ APP-10.5/PER-9.8/MEL-9.1, APP-15.3/PER-9.3/MEL-8.8, APP-19.1/PER-8.9/MEL-8.2 [145], ● APP-10.5/PER-9.8/MEL-9.1, APP-15.3/PER-9.3/MEL-8.8, APP-19.1/PER-8.9/MEL-8.2 [145], ▲ APP-15.3/PER-9.3/MEL-8.6, APP-14.3/PER-8.7/MEL-8.1/MDH-6.2 [146], ▼ APP-15.3/PER-9.3/MEL-8.6, APP-14.3/PER-8.7/MEL-8.1/MDH-6.2 [146], ▲ APP-12/PER-4/MEL-4/C20A-1, APP-12/PER-4/MEL-4/C20A-3, APP&MMT-12/PER-4/MEL-4/C20A-1, APP&MMT-12/PER-4/MEL-4/C20A-3 [104], ♦ m-APP-16.6/DPER-4.2/MEL-4.2, m-APP-16/DPER-4/MEL-4/SEP-1 [147], ♦ APP-13.5/PER-4.5, APP-12.75/PER-4.25/MF-1, APP-12.75/PER-4.25/MFA-1 [148], ● APP-22.5/PER-7.5 [149], ▲ APP-12.7/PER-5.3, APP-12/PER-5/T-A-FR-1 [150], ▼ APP-16.67/PER-8.33, APP-16.33/PER-8.17/NOR116-0.5 [72], ▲ APP-13.5/PER-4.5, APP-12.75/PER-4.25/G-bases-1, APP-12.75/PER-4.25/U-bases-1 [151], ▲ APP-17.2/DPER-7.8, m-APP-17.2/DPER-7.8, APP-16.2/DPER-7.8/ATH-1 [152], ▲ APP-21.4/PER-7.1, APP-20.3/PER-6.8/Kaol-1.4 [70], ▲ APP-21.75/PER-7.25, APP-19.5/PER-6.5/MMT-3, APP-19.5/PER-6.5/m-MMT-3 [153], ▲ APP-21.75/PER-7.25, APP-19.5/PER-6.5/MMT-3, APP-19.5/PER-6.5/m-MMT-3, APP-19.5/PER-6.5/m-MMT-3 [154], ▼ APP-18.75/PER-6.25, APP-18-18/PER-6/LDH-1, APP-18/PER-6/m-LDH-1 [155], ▽ APP-18.75/PER-6.25, APP-18/PER-6/m-SiR-1, APP-18/PER-6/m-SiR-1, APP-16.5/PER-5.5/m-SiR-3 [156], ▲ APP-16.67/DPER-8.3, m-APP-16.7/DPER-8.3/Z-1, m-APP-16.7/DPER-8.3/Z-1/MWCNT-0.1 [157], ▽ APP-18.75/PER-6.25, APP-18.75/PER-6.25/ALL-2 [158], ▲ APP-16.7/PER-8.3, APP-15/PER-7.5/MATO-2.5, APP-15/PER-7.5/Zn-MAO-2.5 [159], ▲ APP-16.7/PER-8.3, APP-16/PER-8/m-SEP-1, APP-15.3/PER-7.7/m-SEP-2, APP-14.7/PER-7.3/m-SEP-3, APP-14/PER-7/m-SEP-4, APP-13.3/PER-6.7/m-SEP-5 [160], ▽ APP-15/PER-5, APP-14.25/PER-4.75/OP-POSS-1, APP-14.25/PER-4.75/A-POSS-1, APP-14.25/PER-4.75/OA-POSS-1, APP-14.25/PER-4.75/T5-POSS-1 [161], ▲ APP-20/PER-10, APP-19/PER-9.5/T-RE-5, APP-19/PER-9.5/CV-5, APP-19/PER-9.5/CR-5 [162], ▲ APP-15/PER-5, APP-14.25/PER-4.75/ZnB-1, APP-14.25/PER-4.75/BPO-1, APP-14.25/PER-4.75/Bsi-1, APP-14.25/PER-4.75/LaB-1 [163], ▲ APP-
15/TA-CFA-15, TA-CFA-22.5/MPyP-7.5 [66], ○ TA-CFA-15/APP-15, TA-CFA-20/APP-10 [39], ○ TA-CA-10/APP-10 [23], ○ TA-CA-13.33/APP-6.67 [27], ○ TA-CA-20/APP-10, TA-CA-15/APP-15 [179], ○ TA-IFR-12.5/APP-12.5, TA-IFR-16.67/APP-8.33 [31], ○ TA&APP-IFR-10, TA&APP-IFR-20 [182], ○ PI-IFR-20/APP-10 [70], ○ N-IFR-24.5/SiO2-0.5, N-IFR-22/SiO2-3 [74], ○ N-IFR-20/PA6-5 [75], ○ N-IFR-24.5/HGM-0.5, N-IFR-24/HGM-1, N-IFR-23/HGM-2, N-IFR-22/HGM-3 [76], □ ATH-15/APP-15, mc-(ATH-15&APP-15) [183], □ ATH-55/GB-5, ATH-50/GB-10, ATH-47/GB-10/m-ZrP-3, ATH-44/GB-10/m-ZrP-6, ATH-41/GB-10/m-ZrP-9 [81], □ ATH-49/m-MMT-1, ATH-47/m-MMT-3, ATH-45/m-MMT-5 [80], □ ATH-20/m-MMT-3, ATH-20/m-MMT-10, ATH-20/m-MMT-17 [82], □ MDH-16.6/APP-12.7/PER-7.7/MEL-7.2, MDH-25/APP-11.5/PER-7/MEL-6.5, MDH-31.8/APP-10.4/PER-6.3/MEL-5.9 [146], □ MDH-16.6/APP-12.7/PER-7.7/MEL-7.2, MDH-25/APP-11.5/PER-7/MEL-6.5, MDH-31.8/APP-10.4/PER-6.3/MEL-5.9 [146], □ MDH-20/m-MMT-17 [82], □ MDH-30/m-MMT-10, MDH-40/m-MMT-10, MDH-50/m-MMT-10 [82], □ MDH-39/m-MMT-1, MDH-37/m-MMT-3, MDH-35/m-MMT-5 [85], □ MDH-45/Cobalt chelate-5, MDH-40/Cobalt chelate-10, MDH-35/Cobalt chelate-15, MDH-30/Cobalt chelate-20 [84], □ m-MMT-2.5/SEP-2.5, MDH-10/m-SEP-5, MDH-15/m-SEP-5, MDH-10/m-MMT-2.5/SEP-2.5, MDH-15/m-MMT-2.5/SEP-2.5 [87], □ MMT-6/APP-4, MMT-8/APP-2, m-MMT-6/APP-4, m-MMT-8/APP-2 [24], □ Si-FR-12.5/APP-12.5 [30], □ NiO-7.5/AC-7.5 [108], □ SEP-10/MWCNT-2 [189], □ C30B/3-ACBP-3, C30B-3/BUPB-3, C30B-3/MEPB-3, C30B-3/PBPA-3 [191], □ Si-3/SnCl2-2 [190], □ C20A-5/TiO2-0.5, m-C20A-5/TiO2-0.5, m-C20A-10/TiO2-0.5 [105], □ CF-5/MWCNT-5 [133], □ CB-3/MWCNT-1, CB-5/MWCNT-1, CB-5/MWCNT-3 [131], □ CB-5/C-5 [134], □ AC-7.5/NiO-7.5 [108], □ PER-10.4/MEL-9.7/APP-5.2 [145], □ PER-10.4/MEL-9.7/APP-5.2 [145], □ CD-7/TEP-3, CD-10/TEP-5, CD-7.5/APP-7.5 [135], □ m-lig-18/Ni(Ac)=2, m-lig-18/Co- (Ac)=2, m-lig-18/Zn(Ac)=2 [136].

Figure 16 shows that V-0 level in UL-94 is automatically obtained in the case of combined flame retardant systems used in PP regardless of the FRI value. However, no correlation exists between the FRI and LOI (Figure 17). The complexity of polymer–filler interaction can be considered as the main reason for diversity of properties.

![Figure 16. FRI values versus UL-94 test results. Symbols are indicative of combination of flame retardant (FR) additives used in PP. The vertical intervals in each category, i.e., V-0, V-1, V-2, and NR, are schematically representative of the amount of additive used. For example, two data distinguished by different symbols having the same or very close FRI values (horizontal quantity) in a given category (e.g., V-1), may have different vertical quantities, e.g., both reveal V-1 behavior in UL-94 test, but the upper contains more FR in PP.](image-url)
Figure 17. FRI values of PP as a function of LOI test results in long-shot (left-hand figure) and close-up (right-hand figure). Symbols are indicative of different types of blend flame retardants used. The left-side plot reveals that FRI values above 10 (Excellent zone) took place in several cases, which is in contradiction with all previous cases in which only one additive was used.

7. Conclusions and Future Perspective

This work opens new avenues to the experts working on “flame retardant polyolefins”, the title of a Special Issue entitled “Flame Retardant Polyolefins” in Polymers journal for which this work is designed and carried out. In this work, more than 150 research papers from the literature dealing with the flame retardancy of PP were analyzed, classified, and discussed in terms of flame retardancy performance. From the selected papers were extracted cone calorimetry data to calculate Flame Retardancy Index (FRI) as a measure or label of flame retardant performance. To have a comprehensive overview of flame retardant PP materials, works on PP flame retardancy were categorized in terms of additives used in classes including: phosphorus-based, nitrogen-based, mineral, carbon-based, bio-based, and hybrid combinatorial flame retardants composed of two or more additives. The analysis of efficiency of flame retardancy was performed in terms of the FRI variation as a function of wt.% of additives used. The analysis quite obviously unveiled the superiority of the combination of additives over the use of each one separately. In addition, the UL-94 and LOI values available in each class of additives were plotted in terms of the FRI so as to find possible correlation between analyses made in the literature. This work provided a pool of data on flame-retardant PP materials for future research on PP materials. It was elucidated that FRI can satisfactorily make possible classification of PP materials in terms of flame retardancy performance. The present work provides those research works that claim achieving synergistic effect of two or more flame retardants with a clear measure of flame retardant performance as Poor, Good, and Excellent labels assigned to PP materials, based on cone calorimetry data. Moreover, future works on LOI and UL-94 tests can be added to the data used here so as to draw a more detailed picture of flame retardancy behavior of PP materials. The approach can be used to make judgement about other flame retardant polyolefins. Moreover, we believe that the mechanical properties of FR polymers should also be considered in the future, but it is pertinent to the completeness of data in the literature. The importance of mechanical properties springs from the fact that highly loaded systems are prone to mechanical failure as a consequence of stress concentration. All in all, the type and the percentage of FRs in polymers affect both the mechanical and flame retardant properties of polymers; therefore, optimization of both properties is of importance.

Author Contributions: Conceptualization, H.V. and M.R.S.; methodology, H.V.; validation, H.V. and M.R.S.; formal analysis, F.S. and E.M.; investigation, F.D., G.N., and R.S.; data curation, H.V.; writing—original draft preparation, F.S. and E.M.; writing—review and editing, H.V. and M.R.S.; visualization, H.V. and M.R.S.; supervision, H.V. and M.R.S.; All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding
Acknowledgments: The authors would like to acknowledge Reza Sheibani, the Head of Research & Development Center, Marun Petrochemical Company, Mahshahr, Iran, for providing E.M. with an opportunity to visit petrochemical plant, discussing practical processing criticisms in developing flame-retardant PP, and giving advice on concerns of engineers working on petrochemical plants who intend to make PP flame retardant.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Laoutid, F.; Bonnau, L.; Alexandre, M.; Lopez-Cuesta, J.-M.; Dubois, P. New prospects in flame retardant polymer materials: from fundamentals to nanocomposites. Mater. Sci. Eng. R Rep. 2009, 63, 100–125.
2. Vahabi, H.; Jouyandeh, M.; Cochez, M.; Khalili, R.; Vagner, C.; Ferriol, M.; Movahedifar, E.; Ramezanzadeh, B.; Rostami, M.; Ranjbar, Z. Short-lasting fire in partially and completely cured epoxy coatings containing expandable graphite and halloysite nanotube additives. Prog. Org. Coat. 2018, 123, 160–167.
3. Rad, E.R.; Vahabi, H.; de Anda, A.R.; Saeb, M.R.; Thomas, S. Bio-epoxy resins with inherent flame retardancy. Prog. Org. Coat. 2019, 135, 608–612.
4. Tripathi, D. Practical Guide to Polypropylene; iSmithers Rapra Publishing: Shawbury Shewsbury Shropshire, SY4 4NR UK, 2002.
5. Motahari, S.; Mollaghi, G.H.; Moharramzadeh, A. Thermal and flammability properties of polypropylene/silica aerogel composites. J. Macromol. Sci. Part B 2015, 54, 1081–1091.
6. Morgan, A.B.; Liu, W. Flammability of thermoplastic carbon nanofiber nanocomposites. Fire Mater. 2011, 35, 43–60.
7. Maddah, H.A. Polypropylene as a promising plastic: A review. Am. J. Polym. Sci. 2016, 6, 1–11.
8. Shubbra, Q.T.; Alam, A.; Quaiyyum, M. Mechanical properties of polypropylene composites: A review. J. Thermoplast Compos. Mater. 2013, 26, 362–391.
9. Spoer, M.; Holzer, C.; Gonzalez-Gutierrez, J. Material extrusion-based additive manufacturing of polypropylene: A review on how to improve dimensional accuracy and warpage. J. Appl. Polym. Sci. 2020, 137, 48545.
10. Dabrowska I, Fambri L, Pegoretti A, Slouf M, Vackova T, Kolarik J. Spinning, drawing and physical properties of polypropylene MgO composites. J. Appl. Polym. Sci. 2014, 35, 362–391.
11. Allahvaisi, S. Polypropylene in the Industry of Food Packaging; IN TECH, Janeza, Croatia, 2012.
12. Yusuf, M. A Review on Flame Retardant Textile Finishing: Current and Future Trends. Curr. Smart Mater. 2018, 3, 99–108.
13. Gulrez, S.K.; Ali Mohsin, M.; Shaikh, H.; Anis, A.; Pulose, A.M.; Yadav, M.K.; Qua, E.H.P.; Al-Zahrani, S. A review on electrically conductive polypropylene and polyethylene. Polym. Compos. 2014, 35, 900–914.
14. Patil, A.; Patel, A.; Purohit, R. An overview of polymeric materials for automotive applications. Mater. Today Proc. 2017, 4, 3807–3815.
15. Vahabi, H.; Paran, S.M.R.; Shabanian, M.; Dumazert, L.; Sonnier, R.; Movahedifar, E.; Zarrintaj, P.; Saeb, M.R. Triple-faced polypropylene: Fire retardant, thermally stable, and antioxidative. J. Vinyl Addit. Technol. 2019, 25, 366–376.
16. Vahabi, H.; Dumazert, L.; Khalili, R.; Saeb, M.R.; Cuesta, J.-M.L. Flame retardant PP/PA6 blends: A recipe for recycled wastes. Flame Retard. Therm. Stab. Mater. 2019, 2, 1–8.
17. Hajiheygi, M.; Mousavi, M.; Shabanian, M.; Vahabi, H. The effect of phosphorus based melamine-terephthaldehyde resin and Mg-Al layered double hydroxide on the thermal stability, flame retardancy and mechanical properties of polypropylene MgO composites. Mater. Today Commun. 2020, 23, 100880.
18. Pani, B.; Sidhaarat, S.; Dhirendra, S. Studies on the effects of various flame retardants on polypropylene. Am. J. Polym. Sci. 2013, 3, 63–69.
19. Vahabi, H.; Kandola, B.K.; Saeb, M.R. Flame retardancy index for thermoplastic composites. Polymers 2019, 11, 407.
20. Movahedifar, E.; Vahabi, H.; Saeb, M.R.; Thomas, S. Flame retardant epoxy composites on the road of innovation: an analysis with flame retardancy index for future development. Molecules 2019, 24, 3964.
21. Zhang, S.; Horrocks, A.R., A review of flame retardant polypropylene fibres. Prog. Polym. Sci. 2003, 28, 1517–1538.
22. Li, Q.; Jiang, P.; Su, Z.; Wei, P.; Wang, G.; Tang, X. Synergistic effect of phosphorus, nitrogen, and silicon on flame-retardant properties and char yield in polypropylene. J. Appl. Polym. Sci. 2005, 96, 854–860.
23. Duan, L.; Yang, H.; Song, L.; Hou, Y.; Wang, W.; Gui, Z.; Hu, Y. Hyperbranched phosphorus/nitrogen-containing polymer in combination with ammonium polyphosphate as a novel flame retardant system for polypropylene. *Polym. Degrad. Stab.* 2016, 134, 179–185.

24. Hanna, A.; Nour, M.; Souaya, E.; Abdelmoaty, A. Studies on the flammability of polypropylene/ammonium polyphosphate and montmorillonite by using the cone calorimeter test. *Open Chem.* 2018, 16, 108–115.

25. Pappalardo, S.; Russo, P.; Acienro, D.; Rabe, S.; Schartel, B. The synergistic effect of organically modified sepiolite in intumescent flame retardant polypropylene. *Eur. Polym. J.* 2016, 76, 196–207.

26. Kalali, E.N.; Montes, A.; Wang, X.; Zhang, L.; Shabestarig, M.E.; Li, Z.; Wang, D.Y. Effect of phytic acid-modified layered double hydroxide on flammability and mechanical properties of intumescent flame retardant polypropylene system. *Fire Mater.* 2018, 42, 213–220.

27. Wang, W.; Wen, P.; Zhan, J.; Hong, N.; Cai, W.; Gui, Z.; Hu, Y. Synthesis of a novel charring agent containing pentaerythritol and triazine structure and its intumescent flame retardant performance for polypropylene. *Polym. Degrad. Stab.* 2017, 144, 454–463.

28. Jung, D.; Bhattacharyya, D. Keratinous fiber based intumescent flame retardant with controllable functional compound loading. *ACS Sustain. Chem. Eng.* 2018, 6, 13177–13184.

29. Xu, B.; Wu, X.; Ma, W.; Qian, L.; Xin, F.; Qiu, Y. Synthesis and characterization of a novel organic-inorganic hybrid char-forming agent and its flame-retardant application in polypropylene composites. *J. Anal. Appl. Pyrolysis* 2018, 134, 231–242.

30. Zhao, Z.; Jin, Q.; Zhang, N.; Guo, X.; Yan, H. Preparation of a novel polysiloxane and its synergistic effect with ammonium polyphosphate on the flame retardancy of polypropylene. *Polym. Degrad. Stab.* 2018, 150, 73–85.

31. Wen, P.; Feng, X.; Kan, Y.; Hu, Y.; Yuen, R.K. Synthesis of a novel triazine-based polymeric flame retardant and its application in polypropylene. *Polym. Degrad. Stab.* 2016, 134, 202–210.

32. Xu, Z.-Z.; Huang, J.-Q.; Chen, M.-J.; Tan, Y.; Wang, Y.-Z. Flame retardant mechanism of an efficient flame-retardant polymeric synergist with ammonium polyphosphate for polypropylene. *Polym. Degrad. Stab.* 2013, 98, 2011–2020.

33. Tang, W.; Qian, L.; Chen, Y.; Qiu, Y.; Xu, B. Intumescent flame retardant behavior of charring agents with different aggregation of piperazine/triazine groups in polypropylene. *Polym. Degrad. Stab.* 2019, 169, 108982.

34. Yang, H.; Guan, Y.; Ye, L.; Wang, S.; Li, S.; Wen, X.; Chen, X.; Mijowska, E.; Tang, T. Synergistic effect of nanoscale carbon black and ammonium polyphosphate on improving thermal stability and flame retardancy of polypropylene: A reactive network for strengthening carbon layer. *Compos. Part B Eng.* 2019, 174, 107038.

35. Shao, Z.-B.; Deng, C.; Tan, Y.; Chen, M.-J.; Chen, L.; Wang, Y.-Z. An efficient mono-component polymeric intumescent flame retardant for polypropylene: preparation and application. *ACS Appl. Mater. Interfaces* 2014, 6, 7363–7370.

36. Deng, C.-L.; Du, S.-L.; Zhao, J.; Shen, Z.-Q.; Deng, C.; Wang, Y.-Z. An intumescent flame retardant polypropylene system with simultaneously improved flame retardancy and water resistance. *Polym. Degrad. Stab.* 2014, 108, 97–107.

37. Sun, Y.; Yuan, B.; Shang, S.; Zhang, H.; Shi, Y.; Yu, B.; Qi, C.; Dong, H.; Chen, X.; Yang, X. Surface modification of ammonium polyphosphate by supramolecular assembly for enhancing fire safety properties of polypropylene. *Compos. Part B Eng.* 2020, 181, 107588.

38. Qin, Z.; Li, D.; Lan, Y.; Li, Q.; Yang, R. Ammonium polyphosphate and silicon-containing cyclotriphosphazene: Synergistic effect in flame-retarded polypropylene. *Ind. Eng. Chem. Res.* 2015, 54, 10707–10713.

39. Wen, P.; Wang, X.; Wang, B.; Yuan, B.; Zhou, K.; Song, L.; Hu, Y.; Yuen, R.K. One-pot synthesis of a novel s-triazine-based hyperbranched charring foaming agent and its enhancement on flame retardancy and water resistance of polypropylene. *Polym. Degrad. Stab.* 2014, 110, 165–174.

40. Wen, P.; Wang, X.; Xing, W.; Feng, X.; Yu, B.; Shi, Y.; Tang, G.; Song, L.; Hu, Y.; Yuen, R.K. Synthesis of a novel triazine-based hyperbranched char foaming agent and the study of its enhancement on flame retardancy and thermal stability of polypropylene. *Ind. Eng. Chem. Res.* 2013, 52, 17015–17022.

41. Jiang, Z.; Liu, G. Microencapsulation of ammonium polyphosphate with melamine-formaldehyde-tris (2-hydroxyethyl) isocyanurate resin and its flame retardancy in polypropylene. *Rsc Adv.* 2015, 5, 88445–88455.
42. Yu, S.; Xiao, S.; Zhao, Z.; Huo, X.; Wei, J. Microencapsulated ammonium polyphosphate by polyurethane with segment of dipentaerythritol and its application in flame retardant polypropylene. *Chin. J. Chem. Eng.* 2019, 27, 1735–1743.

43. Deng, C.L.; Deng, C.; Zhao, J.; Fang, W.H.; Lin, L.; Wang, Y.Z. Water resistance, thermal stability, and flame retardation of polypropylene composites containing a novel ammonium polyphosphate microencapsulated by UV-curable epoxy acrylate resin. *Polym. Adv. Technol.* 2014, 25, 861–871.

44. Zheng, Z.; Qiang, L.; Yang, T.; Wang, B.; Cui, X.; Wang, H. Preparation of microencapsulated ammonium polyphosphate with carbon source-and blowing agent-containing shell and its flame retardance in polypropylene. *J. Polym. Res.* 2014, 21, 443.

45. Chen, M.; Xu, Y.; Chen, X.; Ma, Y.; He, W.; Yu, J.; Zhang, Z. Thermal stability and combustion behavior of flame-retardant polypropylene with thermoplastic polyurethane-microencapsulated ammonium polyphosphate. *High Perform. Polym.* 2014, 26, 445–454.

46. Shao, Z.-B.; Deng, C.; Tan, Y.; Chen, M.-J.; Chen, L.; Wang, Y.-Z. Flame retardation of polypropylene via a novel intumescent flame retardant: Ethylenediamine-modified ammonium polyphosphate. *Polym. Degrad. Stab.* 2014, 106, 88–96.

47. Shao, Z.-B.; Deng, C.; Tan, Y.; Yu, L.; Chen, M.-J.; Chen, L.; Wang, Y.-Z. Ammonium polyphosphate chemically-modified with ethanolamine as an efficient intumescent flame retardant for polypropylene. *J. Mater. Chem. A* 2014, 2, 13955–13965.

48. Deng, C.-I.; Deng, C.; Zhao, J.; Li, R.-m.; Fang, W.-h.; Wang, Y.-z. Simultaneous improvement in the flame retardancy and water resistance of PP/APP through coating UV-curable pentaerythritol triacrylate onto APP. *Chin. J. Polym. Sci.* 2015, 33, 203–214.

49. Tian, N.; Wen, X.; Jiang, Z.; Gong, J.; Wang, Y.; Xue, J.; Tang, T. Synergistic effect between a novel char forming agent and ammonium polyphosphate on flame retardancy and thermal properties of polypropylene. *Ind. Eng. Chem. Res.* 2013, 52, 10905–10915.

50. Zhang, T.; Tao, Y.; Zhou, F.; Sheng, H.; Qiu, S.; Ma, C.; Hu, Y. Synthesis of a hyperbranched phosphorus-containing polyurethane as char forming agent combined with ammonium polyphosphate for reducing fire hazard of polypropylene. *Polym. Degrad. Stab.* 2019, 165, 207–219.

51. Wang, X.; Spörer, Y.; Leuteritz, A.; Kuehnert, I.; Wagenknecht, U.; Heinrich, G.; Wang, D.-Y. Comparative study of the synergistic effect of binary and ternary LDH with intumescent flame retardant on the properties of polypropylene composites. *RSC Adv.* 2015, 5, 78979–78985.

52. Zhang, C.; Guo, X.; Ma, S.; Zheng, Y.; Xu, J.; Ma, H. Synthesis of a novel branched cyclophosphazene-PEPA flame retardant and its application on polypropylene. *J. Therm. Anal. Calorim.* 2019, 137, 33–42.

53. Song, P.; Fang, Z.; Tong, L.; Jin, Y.; Lu, F. Effects of metal chelates on a novel oligomeric intumescent flame retardant system for polypropylene. *J. Anal. Appl. Pyrolysis* 2008, 82, 286–291.

54. Du, B.; Fang, Z. Effects of carbon nanotubes on the thermal stability and flame retardancy of intumescent flame-retarded polypropylene. *Polym. Degrad. Stab.* 2011, 96, 1725–1731.

55. Du, B.; Ma, H.; Fang, Z. How nano-fillers affect thermal stability and flame retardancy of intumescent flame retarded polypropylene. *Polym. Adv. Technol.* 2011, 22, 1139–1146.

56. Chen, Y.J.; Wang, C.; Yang, C.Z. In *Synergism between Intumescent Flame Retardant and Organomontmorillonite in Polypropylene Nanocomposites; Advanced Materials Research; Trans Tech Publications: 2013; pp. 502–507. doi:10.4208/ser.2013-wa350.

57. He, Q.; Lu, H.; Song, L.; Hu, Y.; Chen, L. Flammability and thermal properties of a novel intumescent flame retardant polypropylene. *J. Fire Sci.* 2009, 27, 303–321.

58. Yu, B.; Wang, X.; Qian, X.; Xing, W.; Yang, H.; Ma, L.; Lin, Y.; Jiang, S.; Song, L.; Hu, Y. Functionalized graphene oxide/phosphoramid oligomer hybrids flame retardant prepared via in situ polymerization for improving the fire safety of polypropylene. *Rsc Adv.* 2014, 4, 31782–31794.

59. Salaün, F.; Creach, G.; Rault, F.; Giraud, S. Microencapsulation of bisphenol-A bis (diphenyl phosphate) and influence of particle loading on thermal and fire properties of polypropylene and polyethylene terephthalate. *Polym. Degrad. Stab.* 2013, 98, 2663–2671.

60. Dahlia, J.B.; Kumar, N.; Bockhorn, H. Fire performance and thermal stability of polypropylene nanocomposites containing organic phosphinate and ammonium polyphosphate additives. *Fire Mater.* 2014, 38, 1–12.

61. Xu, M.-j.; Wang, J.; Ding, Y.-h.; Li, B. Synergistic effects of aluminum hypophosphite on intumescent flame retardant polypropylene system. *Chin. J. Polym. Sci.* 2015, 33, 318–328.
62. Li, H.; Ning, N.; Zhang, L.; Wang, Y.; Liang, W.; Tian, M. Different flame retardancy effects and mechanisms of aluminium phosphinate in PPO, TPU and PP. Polym. Degrad. Stab. 2014, 105, 86–95.
63. Zhou, S.; Song, L.; Wang, Z.; Hu, Y.; Xing, W. Flame retardation and char formation mechanism of intumescent flame retarded polypropylene composites containing melamine phosphate and pentaerythritol phosphate. Polym. Degrad. Stab. 2008, 93, 1799–1806.
64. Abdelkhalik, A.; Makhlouf, G.; Hassan, M.A. Manufacturing, thermal stability, and flammability properties of polypylene containing new single molecule intumescent flame retardant. Polym. Adv. Technol. 2019, 30, 1403–1414.
65. Wang, X.; Li, Y.; Liao, W.; Gu, J.; Li, D. A new intumescent flame retardant: preparation, surface modification, and its application in polypropylene. Polym. Adv. Technol. 2008, 19, 1055–1061.
66. Chen, X.; Jiao, C. Flame retardancy and thermal Degradation of intumescent flame retardant polypropylene material. Polym. Adv. Technol. 2011, 22, 817–821.
67. Chen, H.; Wang, J.; Ni, A.; Ding, A.; Han, X.; Sun, Z. The effects of a macromolecular charring agent with gas phase and condense phase synergistic flame retardant capability on the properties of PP/IFR composites. Materials 2018, 11, 111.
68. Gao, S.; Zhao, X.; Liu, G. Synthesis of an integrated intumescent flame retardant and its flame retardancy properties for polypropylene. Polym. Degrad. Stab. 2017, 138, 106–114.
69. Shao, Z.-B.; Zhang, M.-X.; Han, Y.; Yang, X.-D.; Jin, J.; Jian, R.-K. A highly efficient gas-dominated and water-resistant flame retardant for non-charring polypropylene. RSC Adv. 2017, 7, 51919–51927.
70. Li, B.; Zhan, Z.; Zhang, H.; Sun, C. Flame retardancy and thermal performance of polypylene treated with the intumescent flame retardant, piperazine spirocyclic phosphoramidate. J. Vinyl Addit. Technol. 2014, 20, 10–15.
71. Yang, R.; Ma, B.; Zhang, X.; Li, J. Fire retardance and smoke suppression of polypropylene with a macromolecular intumescent flame retardant containing caged bicyclic phosphate and piperazine. J. Appl. Polym. Sci. 2019, 136, 47593.
72. Xie, H.; Lai, X.; Zhou, R.; Li, H.; Zhang, Y.; Zeng, X.; Guo, J. Effect and mechanism of N-alkoxy hindered amine on the flame retardancy, UV aging resistance and thermal degradation of intumescent flame retardant polypropylene. Polym. Degrad. Stab. 2015, 118, 167–177.
73. Lai, X.; Qiu, J.; Li, H.; Zhou, R.; Xie, H.; Zeng, X. Thermal degradation and combustion behavior of novel intumescent flame retardant polypropylene with N-alkoxy hindered amine. J. Anal. Appl. Pyrolysis 2016, 120, 361–370.
74. Ye, L.; Wu, Q.; Qu, B. Synergistic effects of fumed silica on intumescent flame-retardant polypropylene. J. Appl. Polym. Sci. 2010, 115, 3508–3515.
75. Zhang, L.; Yi, D.; Hao, J. Poly (diallyldimethylammonium) and polyphosphate polyelectrolyte complexes as an all-in-one flame retardant for polypropylene. Polym. Adv. Technol. 2019, 31, 260–272.
76. Kang, B.-h.; Yang, X.-y.; Lu, X. Effect of hollow glass microsphere on the flame retardancy and combustion behavior of intumescent flame retardant polypropylene composites. Polym. Bull. 2019, 77, 1–18.
77. Vahabi, H.; Raveshtian, A.; Fasihi, M.; Sonnier, R.; Saeb, M.R.; Dumazert, L.; Kandola, B.K. Competitive synergism and synergy between three flame retardants in poly (ethylene-co-vinyl acetate). Polym. Degrad. Stab. 2017, 143, 164–175.
78. Vahabi, H.; Shabanian, M.; Aryanasa, F.; Laoutid, F.; Benali, S.; Saeb, M.R.; Seidi, F.; Kandola, B.K. Three in one: β-cyclodextrin, nanohydroxyapatite, and a nitrogen-rich polymer integrated into a new flame retardant for poly (lactic acid). Fire Mater. 2018, 42, 593–602.
79. Vahabi, H.; Sonnier, R.; Taguet, A.; Otazaghine, B.; Saeb, M.R.; Beyer, G. Halloysite nanotubes (HNTs)/polymer nanocomposites: thermal degradation and flame retardancy. In Clay Nanoparticles; Elsevier: 2020; pp. 67–93. https://doi.org/10.1016/C2018-0-00293-5
80. Liu, L.; Zhang, H.; Sun, L.; Kong, Q.; Zhang, J. Flame-retardant effect of montmorillonite intercalation iron compounds in polypropylene/aluminum hydroxide composites system. J. Therm. Anal. Calorim. 2016, 124, 807–814.
81. Pérez, N.; Qi, X.-L.; Nie, S.; Aciña, P.; Chen, M.-J.; Wang, D.-Y. Flame retardant polypropylene composites with low densities. Materials 2019, 12, 152.
82. Zhang, J.; Wilkie, C.A. Fire Retardancy of Polypropylene-Metal Hydroxide Nanocomposites; ACS Publications: Washington D.C., USA, 2006.
83. Molesky, F.; Falk, D.P. Comparison of Smoke Measurements of the Cone Calorimeter and ASTM E-662 Smoke Chamber in Flame Retardant Polypropylene. *J. Fire Sci.* 1991, 9, 60-68.

84. Shehata, A. A new cobalt chelate as flame retardant for polypropylene filled with magnesium hydroxide. *Polym. Degrad. Stab.* 2004, 85, 577–582.

85. Kong, Q.; Wu, H.; Zhang, H.; Zhang, X.; Zhao, W.; Zhang, J. Effect of Fe-montmorillonite on flammability behavior in polypropylene/magnesium hydroxide composites. *J. Nanosci. Nanotechnol.* 2016, 16, 8287–8293.

86. Oyama, H.T.; Sekikawa, M.; Ikezawa, Y. Influence of the polymer/inorganic filler interface on the mechanical, thermal, and flame retardant properties of polypropylene/magnesium hydroxide composites. *J. Macromol. Sci. Part B* 2011, 50, 463–483.

87. Marosfoi, B.; Garas, S.; Bodzay, B.; Zubonyai, F.; Marosi, G. Flame retardancy study on magnesium hydroxide associated with clays of different morphology in polypropylene matrix. *Polym. Adv. Technol.* 2008, 19, 693–700.

88. Tang, W.; Li, H.; Zhang, S.; Sun, J.; Gu, X. The intercalation of ammonium sulfamate into kaolinite and its effect on the fire performance of polypropylene. *J. Thermoplast. Compos. Mater.* 2018, 31, 1352–1370.

89. Tang, W.; Zhang, S.; Sun, J.; Gu, X. Flame retardancy and thermal stability of polypropylene composite containing ammonium sulfamate intercalated kaolinite. *Ind. Eng. Chem. Res.* 2016, 55, 7669–7678.

90. Batistella, M.; Otazaghi, B.; Sonnier, R.; Petter, C. Lopez-Cuesta, J.-M. Fire retardancy of polypropylene/kaolinite composites. *Polym. Degrad. Stab.* 2016, 129, 260–267.

91. Zoromba, M.S.; Nour, M.A.; Eltamimy, H.E.; El-Maksoud, S.A.A. Effect of modified layered double hydroxide on the flammability and mechanical properties of polypropylene. *Sci. Eng. Compos. Mater.* 2018, 25, 101–108.

92. Manzi-Nshuti, C.; Songtipya, P.; Manias, E.; del Mar Jimenez-Gasco, M.; Hossenlopp, J.M.; Wilkie, C.A. Polymer nanocomposites using zinc aluminum and magnesium aluminumolate layered double hydroxides: Effects of the polymeric compatibilizer and of composition on the thermal and fire properties of PP/LDH nanocomposites. *Polym. Degrad. Stab.* 2009, 94, 2042–2054.

93. Wu, T.; Kong, Q.; Zhang, H.; Zhang, J. Thermal stability and flame retardancy of polypropylene/NiAl layered double hydroxide nanocomposites. *J. Nanosci. Nanotechnol.* 2018, 18, 1051–1056.

94. Nyambo, C.; Wang, D.; Wilkie, C.A. Will layered double hydroxides give nanocomposites with polar or non-polar polymers? *Polym. Adv. Technol.* 2009, 20, 332–340.

95. Zhang, S.; Liu, X.; Gu, X.; Jiang, P.; Sun, J. Flammability and thermal behavior of polypropylene composites containing dihydrogen phosphate anion-intercalated layered double hydroxides. *Polym. Compos.* 2015, 36, 2230–2237.

96. Qin, H.; Zhang, S.; Zhao, C.; Hu, G.; Yang, M. Flame retardant mechanism of polymer/clay nanocomposites based on polypropylene. *Polymer* 2005, 46, 8386–8395.

97. Zhu, F.; Liu, D.; Cai, G.; Tan, X.; Wang, J.; Lu, H.; Wilkie, C.A. Thermal stability and flammability performance of polypropylene composites with silica pillared montmorillonites. *Polym. Adv. Technol.* 2014, 25, 211–216.

98. Zhang, J.; Wilkie, C.A. Polyethylene and polypropylene nanocomposites based on polymerically-modified clay containing alkylstyrene units. *Polymer* 2006, 47, 5736–5743.

99. Qin, H.; Zhang, S.; Zhao, C.; Feng, M.; Yang, M.; Shu, Z.; Yang, S. Thermal stability and flammability of polypropylene/montmorillonite composites. *Polym. Degrad. Stab.* 2004, 85, 807–813.

100. Zhang, J.; Jiang, D.D.; Wilkie, C.A. Thermal and flame properties of polyethylene and polypropylene nanocomposites based on an oligomerically-modified clay. *Polym. Degrad. Stab.* 2006, 91, 298–304.

101. Su, S.; Jiang, D.D.; Wilkie, C.A. Poly (methyl methacrylate), polypropylene and polyethylene nanocomposite formation by melt blending using novel polymerically-modified clays. *Polym. Degrad. Stab.* 2004, 83, 321–331.

102. Zheng, X.; Jiang, D.D.; Wang, D.; Wilkie, C.A. Flammability of styrenic polymer clay nanocomposites based on a methyl methacrylate oligomerically-modified clay. *Polym. Degrad. Stab.* 2006, 91, 289–297.

103. Szustakiewicz, K.; Kiersnoski, A.; Gazirińska, M.; Bujnowicz, K.; Pilgowski, J. Flammability, structure and mechanical properties of PP/OMMT nanocomposites. *Polym. Degrad. Stab.* 2011, 96, 291–294.

104. Yi, D.; Yang, R.; Wilkie, C.A. Full scale nanocomposites: Clay in fire retardant and polymer. *Polym. Degrad. Stab.* 2014, 105, 31–41.
105. Alsharif, M.A.; Zadhoush, A.; Mortazavi, S.M. Thermal Degradation and Flammability Properties of Polypropylene Nanocomposites Using Organoclay-graft-poly(Ethylene Glycol Methacrylate Phosphate). *Adv. Polym. Technol.* 2014, 33, doi:10.1002/adv.21386.

106. Yuan, B.; Chen, G.; Zou, Y.; Shang, S.; Sun, Y.; Yu, B.; He, S.; Chen, X. Alumina nanoflake-coated graphene nanohybrid as a novel flame retardant filler for polypropylene. *Polym. Adv. Technol.* 2019, 30, 2153–2158.

107. Dong, M.; Gu, X.; Zhang, S. Effects of compound oxides on the fire performance of polypropylene composite. *Ind. Eng. Chem. Res.* 2014, 53, 8062–8068.

108. Gong, J.; Tian, N.; Liu, J.; Yao, K.; Jiang, Z.; Chen, X.; Wen, X.; Mijowska, E.; Tang, T. Synergistic effect of activated carbon and Ni2O3 in promoting the thermal stability and flame retardancy of polypropylene. *Polym. Degrad. Stab.* 2014, 99, 18–26.

109. Song, R.; Fu, Y.; Li, B. Transferring noncharring polyolefins to charring polymers with the presence of Mo/Mg/Ni/O catalysts and the application in flame retardancy. *J. Appl. Polym. Sci.* 2013, 129, 138–144.

110. Dang, L.; Nai, X.; Dong, Y.; Li, W. Functional group effect on flame retardancy, thermal, and mechanical properties of organophosphorus-based magnesium oxysulfate whiskers as a flame retardant in polypropylene. *RSC Adv.* 2017, 7, 21655–21665.

111. Rault, F.; Pleyer, E.; Campagne, C.; Rochery, M.; Giraud, S.; Bourbigot, S.; Devaux, E. Effect of manganese nanoparticles on the mechanical, thermal and fire properties of polypropylene multifilament yarn. *Polym. Degrad. Stab.* 2009, 94, 955–964.

112. Chen, X.; Yun, Y.; Fan, A.; Yuan, B.; Shang, S.; He, S. The assembly nanohybrid of graphene with lamellar zirconium phenylphosphonate for improving flame retardancy and mechanical properties of polypropylene. *Polym. Compos.* 2019, 40 (Suppl. 52), E1757–E1765.

113. Niemczyk, A.; Dziubek, K.; Sacher-Majewska, B.; Czaja, K.; Czech-Polak, J.; Oliwa, R.; Lenza, J.; Szolylga, M. Thermal stability and flame retardancy of polypropylene composites containing siloxane-silsesquioxane resins. *Polymers* 2018, 10, 1019.

114. Fina, A.; Tabuani, D.; Camino, G. Polypropylene–polysilsesquioxane blends. *Eur. Polym. J.* 2010, 46, 14–23.

115. Fina, A.; Abbenhuis, H.C.; Tabuani, D.; Camino, G. Metal functionalized POSS as fire retardants in polypropylene. *Polym. Degrad. Stab.* 2006, 91, 2275–2281.

116. LeCouvet, B.; Sclavons, M.; Bourbigot, S.; Devaux, J.; Bailly, C. Water-assisted extrusion as a novel processing route to prepare polypropylene/halloysite nanotube nanocomposites: structure and properties. *Polymer* 2011, 52, 4284–4295.

117. Shang, S.; Ma, X.; Yuan, B.; Chen, G.; Sun, Y.; Huang, C.; He, S.; Dai, H.; Chen, X. Modification of halloysite nanotubes with supramolecular self-assembly aggregates for reducing smoke release and fire hazard of polypropylene. *Compos. Part B Eng.* 2019, 177, 107371.

118. Nonahal, M.; Rastin, H.; Saeb, M.R.; Sari, M.G.; Moghadam, M.H.; Zarrintaj, P.; Ramezanzadeh, B. Epoxy/PAMAM dendrimer-modified graphene oxide nanocomposite coatings: Nonisothermal cure kinetics study. *Prog. Org. Coat.* 2011, 114, 233–243.

119. Yarahmadi, E.; Didehban, K.; Sari, M.G.; Saeb, M.R.; Shabanian, M.; Aryanasab, F.; Zarrintaj, P.; Paran, S.M.R.; Mozafari, M.; Rallini, M. Development and curing potential of epoxy/starch-functionalized graphene oxide nanocomposite coatings. *Prog. Org. Coat.* 2018, 119, 194–202.

120. Choolaei, M.; Goodarzi, V.; Khonakdar, H.A.; Jafari, S.H.; Seyfi, J.; Saeb, M.R.; Häußler, L.; Boldt, R. Influence of graphene oxide on crystallization behavior and chain folding surface free energy of poly(vinylidenefluoride-co-hexafluoropropylene). *Macromol. Chem. Phys.* 2017, 218, 1700103.

121. Saeb, M.R.; Najafi, F.; Bakhshandeh, E.; Khonakdar, H.A.; Mostafaiyan, M.; Simon, F.; Scheffler, C.; Mäder, E. Highly curable epoxy/MWCNTs nanocomposites: an effective approach to functionalization of carbon nanotubes. *Chem. Eng. J.* 2015, 259, 117–125.

122. Yuan, B.; Wang, B.; Hu, Y.; Mu, X.; Hong, N.; Liew, K.M.; Hu, Y. Electrical conductive and graphitizable polymer nanofibers grafted on graphene nanosheets: Improving electrical conductivity and flame retardancy of polypropylene. *Compos. Part A Appl. Sci. Manuf.* 2016, 84, 76–86.

123. Yuan, B.; Hu, Y.; Chen, X.; Shi, Y.; Niu, Y.; Zhang, Y.; He, S.; Dai, H. Dual modification of graphene by polymeric flame retardant and Ni (OH)2 nanosheets for improving flame retardancy of polypropylene. *Compos. Part A Appl. Sci. Manuf.* 2017, 100, 106–117.

124. Yuan, B.; Sheng, H.; Mu, X.; Song, L.; Tai, Q.; Shi, Y.; Liew, K.M.; Hu, Y. Enhanced flame retardancy of polypropylene by melamine-modified graphene oxide. *J. Mater. Sci.* 2015, 50, 5389–5401.
125. Hong, N.; Pan, Y.; Zhan, J.; Wang, B.; Zhou, K.; Song, L.; Hu, Y. Fabrication of graphene/Ni–Ce mixed oxide with excellent performance for reducing fire hazard of polypropylene. Rsc Adv. 2013, 3, 16440–16448.

126. Yuan, B.; Song, L.; Liew, K.M.; Hu, Y. Solid acid-reduced graphene oxide nanohybrid for enhancing thermal stability, mechanical property and flame retardancy of polypropylene. Rsc Adv. 2015, 5, 41307–41316.

127. Bensabath, T.; Sarazin, J.; Jimenez, M.; Samyn, F.; Bourbigot, S. Intumescent polypropylene: Interactions between physical and chemical expansion. Fire Mater. 2019, doi:10.1002/fam.2790.

128. Xu, L.; Guo, Z.; Zhang, Y.; Fang, Z. Flame-retardant-wrapped carbon nanotubes for simultaneously improving the flame retardancy and mechanical properties of polypropylene. J. Mater. Chem. 2008, 18, 5083–5091.

129. Song, P.; Zhao, L.; Cao, Z.; Fang, Z. Polypropylene nanocomposites based on C 60-decorated carbon nanotubes: thermal properties, flammability, and mechanical properties. J. Mater. Chem. 2011, 21, 7782–7788.

130. Yang, H.; Ye, L.; Gong, J.; Li, M.; Jiang, Z.; Wen, X.; Chen, H.; Tian, N.; Tang, T. Simultaneously improving the mechanical properties and flame retardancy of polypropylene using functionalized carbon nanotubes by covalently wrapping flame retardants followed by linking polypropylene. Mater. Chem. Front. 2017, 1, 716–726.

131. Wen, X.; Tian, N.; Gong, J.; Chen, Q.; Qi, Y.; Liu, Z.; Liu, J.; Jiang, Z.; Chen, X.; Tang, T. Effect of nanosized carbon black on thermal stability and flame retardancy of polypropylene/carbon nanotubes nanocomposites. Polym. Adv. Technol. 2013, 24, 971–977.

132. Fina, A.; Bocchini, S.; Camino, G. Catalytic fire retardant nanocomposites. Polym. Degrad. Stab. 2008, 93, 1647–1655.

133. Gong, J.; Niu, R.; Wen, X.; Yang, H.; Liu, J.; Chen, X.; Sun, Z.-Y.; Mijowska, E.; Tang, T. Synergistic effect of carbon fibers and carbon nanotubes on improving thermal stability and flame retardancy of polypropylene: a combination of a physical network and chemical crosslinking. RSC Adv. 2014, 5, 5484–5493.

134. Yang, H.; Gong, J.; Wen, X.; Xue, J.; Chen, Q.; Jiang, Z.; Tian, N.; Tang, T. Effect of carbon black on improving thermal stability, flame retardancy and electrical conductivity of polypropylene/carbon fiber composites. Compos. Sci. Technol. 2015, 113, 31–37.

135. Alongi, J.; Poskovic, M.; Visakh, P.; Frache, A.; Malucelli, G. Cyclodextrin nanosponges as novel green flame retardants for PP, LLDPE and PA6. Carbohydr. Polym. 2012, 88, 1387–1394.

136. Yu, Y.; Song, P. a.; Jin, C.; Fu, S.; Zhao, L.; Wu, Q.; Ye, J. Catalytic effects of nickel (cobalt or zinc) acetates on thermal and flammability properties of polypropylene-modified lignin composites. Ind. Eng. Chem. Res. 2012, 51, 12367–12374.

137. Gao, Y.-Y.; Deng, C.; Du, Y.-Y.; Huang, S.-C.; Wang, Y.-Z. A novel bio-based flame retardant for polypropylene from phytic acid. Polym. Degrad. Stab. 2019, 161, 298–308.

138. Das, O.; Bhattacharyya, D.; Hui, D.; Lau, K.-T. Mechanical and flammability characterisations of biochar/polypropylene biocomposites. Compos. Part B Eng. 2016, 106, 120–128.

139. Jung, D.; Persi, I.; Bhattacharyya, D. Synergistic Effects of Fiber Fibers and Phosphorus Compound on Chemically Modified Chicken Feather/Polypropylene Composites. ACS Sustain. Chem. Eng. 2019, 7, 19072–19080.

140. Tang, Y.; Hu, Y.; Wang, S.; Gui, Z.; Chen, Z.; Fan, W. Intumescent flame retardant–montmorillonite synergism in polypropylene-layered silicate nanocomposites. Polym. Int. 2003, 52, 1396–1400.

141. Vahabi, H.; Ferry, L.; Longuet, C.; Otazaghihe, B.; Negrell-Guirao, C.; David, G.; Lopez-Cuesta, J.-M. Combination effect of polyhedral oligomeric silsesquioxane (POSS) and a phosphorus modified PMMA, flammability and thermal stability properties. Mater. Chem. Phys. 2012, 136, 762–770.

142. Vahabi, H.; Laoutid, F.; Movahedifar, E.; Khalili, R.; Rahmati, N.; Vagner, C.; Cochez, M.; Brison, L.; Ducas, F.; Ganjali, M.R. Description of complementary actions of mineral and organic additives in thermoplastic polymer composites by Flame Retardancy Index. Polym. Adv. Technol. 2019, 30, 2056–2066.

143. Gao, S.; Liu, G. Synthesis of amino trimethylene phosphonic acid melamine salt and its application in flame-retarded polypropylene. J. Appl. Poly. Sci. 2018, 135, 46274.

144. Chen, X.; Jiao, C. Study on flame retardance of co-microencapsulated ammonium polyphosphate and pentaerythritol in polypropylene. J. Fire Sci. 2010, 28, 509–521.

145. Chiu, S.-H.; Wang, W.-K. Dynamic flame retardancy of polypropylene filled with ammonium polyphosphate, pentaerythritol and melamine additives. Polymer 1998, 39, 1951–1955.
146. Chiu, S.H.; Wang, W.K. The dynamic flammability and toxicity of magnesium hydroxide filled intumescent fire retardant polypropylene. J. Appl. Polym. Sci. 1998, 67, 989–995.
147. Huang, N.; Chen, Z.; Wang, J.; Wei, P. Synergistic effects of sepiolite on intumescent flame retardant polypropylene. Express Polym. Lett. 2010, 4, 743–752.
148. Wang, Z.; Liu, Y.; Li, J. Preparation of nucleotide-based microsphere and its application in intumescent flame retardant polypropylene. J. Anal. Appl. Pyrolysis 2016, 121, 394–402.
149. Su, X.; Yi, Y.; Tao, J.; Qi, H.; Li, D. Synergistic effect between a novel triazine charring agent and ammonium polyphosphate on flame retardancy and thermal behavior of polypropylene. Polym. Degrad. Stab. 2014, 105, 12–20.
150. Wang, X.; Wang, Z.; Li, J. Effects of a semi-bio-based triazine derivative on intumescent flame-retardant polypropylene. Polym. Adv. Technol. 2019, 30, 1259–1268.
151. Wang, Z.; Liu, Y.; Li, J. Regulating effects of nitrogenous bases on the char structure and flame retardancy of polypropylene/intumescent flame retardant composites. ACS Sustain. Chem. Eng. 2017, 5, 2375–2383.
152. Qin, Z.; Li, D.; Yang, R. Study on inorganic modified ammonium polyphosphate with precipitation method and its effect in flame retardant polypropylene. Polym. Degrad. Stab. 2016, 126, 117–124.
153. Zhu, H.F.; Li, J.; Xu, L.; Tao, K.; Xue, L.X.; Fan, X.Y. In Synergistic Effect between Montmorillonite Intercalated by Melamine and Intumescent Flame Retardant (IFR) on Polypropylene; Advanced Materials Research; Trans Tech Publications: 2011; pp. 315–318. https://doi.org/10.4028/www.scientific.net/AMR.295-297.315
154. Zhu, H.; Li, J.; Zhu, Y.; Chen, S. Roles of organic intercalation agent with flame retardant groups in montmorillonite (MMT) in properties of polypropylene composites. Polym. Adv. Technol. 2014, 25, 872–880.
155. Wang, P.-J.; Hu, X.-P.; Liao, D.-J.; Wen, Y.; Hull, T.R.; Miao, F.; Zhang, Q.-T. Dual fire retardant action: The combined gas and condensed phase effects of azo-modified NiZnAl layered double hydroxide on intumescent polypropylene. Ind. Eng. Chem. Res. 2017, 56, 920–932.
156. Zhang, Y.; He, S.; Wu, J.; Ma, J.; Shao, S.; He, L.; Li, X.; Fang, Z.; Cao, H.; Xi, Z. Application of waste silicon rubber composite treated by N2 plasma in the flame-retardant polypropylene. J. Appl. Polym. Sci. 2019, 136, 48187.
157. Zhao, Q.; Hu, Y.; Wang, X. Mechanical performance and flame retardancy of polypropylene composites containing zeolite and multiwalled carbon nanotubes. J. Appl. Polym. Sci. 2016, 133, doi:10.1002/app.42875.
158. Su, X.; Li, D.; Tao, J.; Dai, Q. Synergistic effect of allophane with intumescent flame retardants on thermal behavior and fire retardancy of polypropylene. Polym. Bull. 2015, 72, 2089–2104.
159. Zhang, S.; Tang, W.; Li, L.; Li, H.; Sun, J.; Gu, X.; Chen, S.; Peng, X.; Bourbigot, S. Fabrication of fly ash-based mesoporous aluminosilicate oxides loaded with zinc and its synergistic fire resistance in polypropylene. J. Vinyl Addit. Technol. 2020, 26, 135–143.
160. de Juan, S.; Zhang, J.; Acuña, P.; Nie, S.; Liu, Z.; Zhang, W.; Luisa Puertas, M.; Esteban-Cubillo, A.; Santarén, J.; Wang, D.Y. An efficient approach to improving fire retardancy and smoke suppression for intumescent flame-retardant polypropylene composites via incorporating organo-modified sepiolite. Fire Mater. 2019, 43, 961–970.
161. Turgut, G.; Dogan, M.; Tayfun, U.; Ozkoc, G. The effects of POSS particles on the flame retardancy of intumescent polypropylene composites and the structure-property relationship. Polym. Degrad. Stab. 2018, 149, 96–111.
162. Almirón, J.; Roudet, F.; Duquesnes, S. Influence of volcanic ash, rice husk ash, and solid residue of catalytic pyrolysis on the flame-retardant properties of polypropylene composites. J. Fire Sci. 2019, 37, 434–451.
163. Doğan, M.; Yilmaz, A.; Bayramli, E. Synergistic effect of boron containing substances on flame retardancy and thermal stability of intumescent polypropylene composites. Polym. Degrad. Stab. 2010, 95, 2584–2588.
164. Zhou, K.; Jiang, S.; Wang, B.; Shi, Y.; Liu, J.; Hong, N.; Hu, Y.; Gui, Z. Combined effect of transition metal phosphide (MxPy, M= Ni, Co, and Cu) and intumescent flame retardant system on polypropylene. Polym. Adv. Technol. 2014, 25, 701–710.
165. Su, X.; Yi, Y.; Tao, J.; Qi, H. Synergistic effect of zinc hydroxystannate with intumescent flame-retardants on fire retardancy and thermal behavior of polypropylene. Polym. Degrad. Stab. 2012, 97, 2128–2135.
166. Zhang, Y.; Li, X.; Fang, Z.; Hull, T.R.; Kelarakis, A.; Stec, A.A. Mechanism of enhancement of intumescent fire retardancy by metal acetates in polypropylene. Polym. Degrad. Stab. 2017, 136, 139–145.
167. Pallmann, J.; Ren, Y.L.; Mahltig, B.; Huo, T.G. Phosphorylated sodium alginate/APP/DPER intumescent flame retardant used for polypropylene. J. Appl. Polym. Sci. 2019, 136, 47794.
168. Li, J.; Lai, X.; Li, H.; Zeng, X.; Liu, Y.; Zeng, Y.; Jiang, C. Functionalized ZrP nanosheet with free-radical quenching capability and its synergism in intumescent flame-retardant polypropylene. Polym. Adv. Technol. 2019, 31, 602–615.

169. Tang, W.; Zhang, S.; Sun, J.; Li, H.; Liu, X.; Gu, X. Effects of surface acid-activated kaolinite on the fire performance of polypropylene composite. Thermochim. Acta 2017, 648, 1–12.

170. Tang, W.; Song, L.; Zhang, S.; Li, H.; Sun, J.; Gu, X. Preparation of thiourea-intercalated kaolinite and its influence on thermostability and flammability of polypropylene composite. J. Mater. Sci. 2017, 52, 208–217.

171. Tang, W.; Zhang, S.; Gu, X.; Sun, J.; Jin, X.; Li, H. Effects of kaolinite nanoroll on the flammability of polypropylene nanocomposites. Appl. Clay Sci. 2016, 132, 579–588.

172. Sun, W.; Tang, W.; Gu, X.; Zhang, S.; Sun, J.; Li, H.; Liu, X. Synergistic effect of kaolinite/halloysite on the flammability and thermostability of polypropylene. J. Appl. Polym. Sci. 2018, 135, 46507.

173. Zhang, S.; Tang, W.; Guo, J.; Jin, X.; Li, H.; Gu, X.; Sun, J. Improvement of flame retardancy and thermal stability of polypropylene by P-type hydrated silica aluminate containing lanthanum. Polym. Degrad. Stab. 2018, 154, 274–284.

174. Wen, P.; Wang, D.; Liu, J.; Zhan, J.; Hu, Y.; Yuen, R.K. Organically modified montmorillonite as a synergist for intumescent flame retardant against the flammable polypropylene. Polym. Adv. Technol. 2017, 28, 679–685.

175. Yang, K.; Xu, M.-J.; Li, B. Synthesis of N-ethyl triazine–piperazine copolymer and flame retardancy and water resistance of intumescent flame retardant polypropylene. Polym. Degrad. Stab. 2013, 98, 1397–1406.

176. Yuan, B.; Fan, A.; Yang, M.; Chen, X.; Hu, Y.; Bao, C.; Jiang, S.; Niu, Y.; Zhang, Y.; He, S. The effects of graphene on the flammability and fire behavior of intumescent flame retardant polypropylene composites at different flame scenarios. Polym. Degrad. Stab. 2017, 143, 42–56.

177. Yuan, B.; Sun, Y.; Chen, X.; Shi, Y.; Dai, H.; He, S. Poorly-/well-dispersed graphene: abnormal influence on flammability and fire behavior of intumescent flame retardant. Compos. Part A Appl. Sci. Manuf. 2018, 109, 345–354.

178. Gao, S.; Zhao, X.; Liu, G. Synthesis of tris (2-hydroxyethyl) isocyanurate homopolymer and its application in intumescent flame retarded polypropylene. J. Appl. Polym. Sci. 2017, 134, doi.org/10.1002/app.44663.

179. Yang, R.; Ma, B.; Zhao, H.; Li, J. Preparation, thermal degradation, and fire behaviors of intumescent flame retardant polypropylene with a charring agent containing pentaerythritol and triazine. Ind. Eng. Chem. Res. 2016, 55, 5298–5305.

180. Liu, Y.; Wang, J.S.; Deng, C.L.; Wang, D.Y.; Song, Y.P.; Wang, Y.Z. The synergistic flame-retardant effect of O-MMT on the intumescent flame-retardant PP/CA/APP systems. Polym. Adv. Technol. 2010, 21, 789–796.

181. Wang, Y.; Xu, M.-J.; Li, B. Synthesis of N-methyl triazine-ethylenediamine copolymer charring foaming agent and its enhancement on flame retardancy and water resistance for polypropylene composites. Polym. Degrad. Stab. 2016, 131, 20–29.

182. Enescu, D.; Frache, A.; Lavaselli, M.; Monticelli, O.; Marino, F. Novel phosphorous–nitrogen intumescent flame retardant system. Its effects on flame retardancy and thermal properties of polypropylene. Polym. Degrad. Stab. 2013, 98, 297–305.

183. Zheng, Z.; Sun, H.; Li, W.; Zhong, S.; Yan, J.; Cui, X.; Wang, H. Co-microencapsulation of ammonium polyphosphate and aluminum hydroxide in halogen-free and intumescent flame retarding polypropylene. Polym. Compos. 2014, 35, 715–729.

184. Tian, N.; Wen, X.; Gong, J.; Ma, L.; Xue, J.; Tang, T. Synthesis and characterization of a novel organophosphorus flame retardant and its application in polypropylene. Polym. Adv. Technol. 2013, 24, 653–659.

185. Wang, J.-S.; Wang, G.-H.; Liu, Y.; Jiao, Y.-H.; Liu, D. Thermal stability, combustion behavior, and toxic gases in fire effluents of an intumescent flame-retarded polypropylene system. Ind. Eng. Chem. Res. 2014, 53, 6978–6984.

186. Wu, J.; Hu, Y.; Song, L.; Kang, W. Synergistic effect of lanthanum oxide on intumescent flame-retardant polypropylene-based formulations. J. Fire Sci. 2008, 26, 399–414.

187. Zheng, Z.; Liu, Y.; Zhang, L.; Wang, H. Synergistic effect of expandable graphite and intumescent flame retardants on the flame retardancy and thermal stability of polypropylene. J. Mater. Sci. 2016, 51, 5857–5871.

188. Lai, X.; Zeng, X.; Li, H.; Yin, C.; Zhang, H.; Liao, F. Synergistic effect of phosphorus-containing nanosponges on intumescent flame-retardant polypropylene. J. Appl. Polym. Sci. 2012, 125, 1758–1765.
189. Hapuarachchi, T.D.; Peijs, T.; Bilotti, E. Thermal degradation and flammability behavior of polypropylene/clay/carbon nanotube composite systems. *Polym. Adv. Technol.* **2013**, *24*, 331–338.

190. Zaikov, G.E.; Lomakin, S.M. Polymer flame retardancy: a new approach. *J. Appl. Polym. Sci.* **1998**, *68*, 715–725.

191. Wang, D.; Echols, K.; Wilkie, C.A. Cone calorimetric and thermogravimetric analysis evaluation of halogen-containing polymer nanocomposites. *Fire Mater. Int. J.* **2005**, *29*, 283–294.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).