Zebrafish olfactory receptor ORA1 recognizes a putative reproductive pheromone

Gaurav Ahuja* and Sigrun Korsching
Institute for Genetics; University at Cologne; Cologne, Germany

Keywords: calcium imaging, heterologous expression, oviposition, pheromone, tyrosine, V1R-like, zebrafish

Abbreviations: V1Rs, Vomeronasal receptor, type 1; V2Rs, Vomeronasal receptor, type 2; VSNs, vomeronasal sensory neurons; ora, olfactory receptor class A-related; pHPAA, p-hydroxyphenylacetic acid; EC50, half-maximal response.

© Gaurav Ahuja and Sigrun Korsching
*Correspondence to: Gaurav Ahuja; Email: gahuja@smail.uni-koeln.de
Submitted: 09/02/2014
Accepted: 09/03/2014
http://dx.doi.org/10.4161/19420889.2014.970501

This is an Open Access article distributed under the terms of the Creative Commons Attribution-Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. The moral rights of the named author(s) have been asserted.

Teleost v1r-related ora genes constitute a small and highly conserved olfactory receptor gene family, and their direct orthologs are present in lineages as distant as cartilaginous fishes. Recently, the first member of the ora gene family was deorphanized. ORA1 detects p-hydroxyphenylacetic acid with high sensitivity and specificity. This compound elicits olfactory-mediated oviposition behavior in adult zebrafish mating pairs, suggesting a potential function as a reproductive pheromone for pHPAA itself or a related substance. This association of an odor and its cognate receptor with an oviposition response may provide a molecular basis for studying neural circuits involved in fish reproduction.

Pheromones are chemical signals produced by a species and recognized by the olfactory system of the conspecific to mediate behavioral functions such as mating preferences and individual recognition. In mammals, vomeronasal sensory neurons (VSNs) express members of 2 olfactory receptor class A-related; pHPAA, p-hydroxyphenylacetic acid; EC50, half-maximal response.

© Gaurav Ahuja and Sigrun Korsching
*Correspondence to: Gaurav Ahuja, Email: gahuja@smail.uni-koeln.de
Submitted: 09/02/2014
Accepted: 09/03/2014
http://dx.doi.org/10.4161/19420889.2014.970501

This is an Open Access article distributed under the terms of the Creative Commons Attribution-Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. The moral rights of the named author(s) have been asserted.

Teleost v1r-related ora genes constitute a small and highly conserved olfactory receptor gene family, and their direct orthologs are present in lineages as distant as cartilaginous fishes. Recently, the first member of the ora gene family was deorphanized. ORA1 detects p-hydroxyphenylacetic acid with high sensitivity and specificity. This compound elicits olfactory-mediated oviposition behavior in adult zebrafish mating pairs, suggesting a potential function as a reproductive pheromone for pHPAA itself or a related substance. This association of an odor and its cognate receptor with an oviposition response may provide a molecular basis for studying neural circuits involved in fish reproduction.

Pheromones are chemical signals produced by a species and recognized by the olfactory system of the conspecific to mediate behavioral functions such as mating preferences and individual recognition. In mammals, vomeronasal sensory neurons (VSNs) express members of 2 olfactory receptor class A-related; pHPAA, p-hydroxyphenylacetic acid; EC50, half-maximal response.

© Gaurav Ahuja and Sigrun Korsching
*Correspondence to: Gaurav Ahuja, Email: gahuja@smail.uni-koeln.de
Submitted: 09/02/2014
Accepted: 09/03/2014
http://dx.doi.org/10.4161/19420889.2014.970501

This is an Open Access article distributed under the terms of the Creative Commons Attribution-Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. The moral rights of the named author(s) have been asserted.

Teleost v1r-related ora genes constitute a small and highly conserved olfactory receptor gene family, and their direct orthologs are present in lineages as distant as cartilaginous fishes. Recently, the first member of the ora gene family was deorphanized. ORA1 detects p-hydroxyphenylacetic acid with high sensitivity and specificity. This compound elicits olfactory-mediated oviposition behavior in adult zebrafish mating pairs, suggesting a potential function as a reproductive pheromone for pHPAA itself or a related substance. This association of an odor and its cognate receptor with an oviposition response may provide a molecular basis for studying neural circuits involved in fish reproduction.

Pheromones are chemical signals produced by a species and recognized by the olfactory system of the conspecific to mediate behavioral functions such as mating preferences and individual recognition. In mammals, vomeronasal sensory neurons (VSNs) express members of 2 olfactory receptor class A-related; pHPAA, p-hydroxyphenylacetic acid; EC50, half-maximal response.

© Gaurav Ahuja and Sigrun Korsching
*Correspondence to: Gaurav Ahuja, Email: gahuja@smail.uni-koeln.de
Submitted: 09/02/2014
Accepted: 09/03/2014
http://dx.doi.org/10.4161/19420889.2014.970501

This is an Open Access article distributed under the terms of the Creative Commons Attribution-Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. The moral rights of the named author(s) have been asserted.

Teleost v1r-related ora genes constitute a small and highly conserved olfactory receptor gene family, and their direct orthologs are present in lineages as distant as cartilaginous fishes. Recently, the first member of the ora gene family was deorphanized. ORA1 detects p-hydroxyphenylacetic acid with high sensitivity and specificity. This compound elicits olfactory-mediated oviposition behavior in adult zebrafish mating pairs, suggesting a potential function as a reproductive pheromone for pHPAA itself or a related substance. This association of an odor and its cognate receptor with an oviposition response may provide a molecular basis for studying neural circuits involved in fish reproduction.

Pheromones are chemical signals produced by a species and recognized by the olfactory system of the conspecific to mediate behavioral functions such as mating preferences and individual recognition. In mammals, vomeronasal sensory neurons (VSNs) express members of 2 olfactory receptor class A-related; pHPAA, p-hydroxyphenylacetic acid; EC50, half-maximal response.

© Gaurav Ahuja and Sigrun Korsching
*Correspondence to: Gaurav Ahuja, Email: gahuja@smail.uni-koeln.de
Submitted: 09/02/2014
Accepted: 09/03/2014
http://dx.doi.org/10.4161/19420889.2014.970501

This is an Open Access article distributed under the terms of the Creative Commons Attribution-Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. The moral rights of the named author(s) have been asserted.
activation response. This suggested to the researchers that the active compound might be a degradation product of L-tyrosine. In fact, tyrosine is known to be sensitive to oxidation upon prolonged storage. Therefore, to test this hypothesis, a fresh lot of L-Tyrosine was oxidized by incubation with hydrogen peroxide, and indeed strong agonist activity was observed in the reaction product (hydrogen peroxide itself had no activity). This suggested that the active substance in the aged L-tyrosine originated from oxidative decay of L-tyrosine. Subsequently, analytical HPLC chromatography on a reverse phase column showed the agonist activity in a single peak. To hunt the agonist down, Meyerhof and Korsching solicited the help of the Rawel group in Berlin to obtain sufficient HPLC-purified material for subsequent structural analysis. For structure determination these groups joined efforts with the Hofmann group in Munich, which used a combination of LC-TOF/MS and proton NMR to unravel the structure. The contaminant was finally identified as pHPAA, and functional testing of the synthetic compound elicited a strong activation response even at very low concentrations, with a half-maximal response (EC₅₀) at 2 μM.

Could pHPAA be the Endogenous Ligand?

Dose response analysis suggested that pHPAA is recognized by ORA1 with much higher affinity compared to food odors such as amino acids⁹,¹¹,¹² or even the death-associated odor cadaverine.¹³ Furthermore, thorough testing of many structurally related compounds did not reveal any substance with better potency or efficacy for ORA1. Any modification of the carboxyl group such as amidation or methylation reduced the affinity at least 2 orders of magnitude, and shortening the distance of the carboxyl group to the benzene ring by eliminating a methylene group abolished agonist activity altogether. Somewhat less severe constraints were observed for the para hydroxy group, whose elimination results only in a one order of magnitude loss for the affinity. However, a bulky group in this position such as an acetyl group destroys agonist activity completely. Interestingly, the efficacy, i.e. the maximal response, varied somewhat independently from the affinity, as estimated by EC₅₀ determination. Both efficacy and affinity were maximal for pHPAA. So, could the authors have hit on the endogenous ligand for the ORA1 receptor?

Any endogenous signaling molecule should fulfill 2 requirements: firstly there should be a biosynthetic path generating the molecule, and secondly it should have a biological function. pHPAA is a product of a minor catabolic pathway for tyrosine,¹⁴ which would seem to fulfill the first requirement. Indeed it has been reported that pHPAA is produced by diverse organisms, such as humans, insects, fungi and bacteria. As for the second requirement, biological functions for pHPAA have been reported in a variety of species, ranging from an antimicrobial property¹⁵ for defense in several species to a component of sexual display pheromone in felines.¹⁶ Unfortunately, none of these species included fish, and so the authors set out in search of a possible behavioral answer to pHPAA.

What is the Impact of pHPAA on Zebrafish Behavior?

The authors had recently shown an aversive response of zebrafish to the death-associated odor cadaverine,¹³ and so began to search for either aversive or attractive responses to pHPAA. However, none of the motion parameters analyzed showed significant differences in the presence of pHPAA. Again, an accidental observation came to the help of the researchers. When adult fish were tested in pairs, they noticed sometimes deposition of eggs (oviposition). The effect turned out to be highly significant in mixed gender pairs, and also was observed at similarly low concentrations as the ligand activation of the ORA1 receptor.

Admittedly, pHPAA does not show much similarity to known classes of teleost fish reproductive pheromones, which comprise several steroids and their sulfated metabolites, as well as some prostaglandins. Furthermore, those steroids and prostaglandins tested as possible agonists did not activate ORA1.⁸,¹⁷ However, knowledge of fish reproductive pheromones is still sketchy, and it is known that some components are still unidentified.⁸,¹⁸ Thus the findings discussed here allow the fascinating interpretation that the authors have chanced onto a novel biological class of reproductive pheromones (Fig. 1). Of course, much remains to be done to shore up this hypothesis and to rule out more mundane alternative explanations.

What Do We Know About the Cells Expressing ORA1?

The characteristic sparse expression pattern of olfactory receptor genes in
distributed neurons within the sensory surface is also observed for zebrafish ORA1.5 However, the cell type and the signal transduction cascade of ORA1 expressing neurons are still elusive. Four different types of olfactory sensory neurons are known in zebrafish, ciliated and microvillous neurons as major populations,19 and small populations of crypt and kappe neurons.20,21 These 4 cell types differ in molecular markers, but also in morphology and spatial distribution within the olfactory epithelium.20–22 In situ hybridization showed ORA1-expressing neurons in apical positions within the olfactory lamellae, which seems to exclude the more basally located ciliated neurons.5,23 Among the other 3 types, crypt neurons are known not to express ORA1,22 which leaves microvillous neurons or kappe neurons as candidates. Both are present in the superficial layers.20 However, it is also conceivable that yet another, so far undetected class of olfactory sensory neurons would express ORA1.

Olfactory receptors such as the ora genes belong to the superfamily of G protein-coupled receptors, and are expected to signal through trimeric G proteins. Recently a comprehensive evaluation of zebrafish G α proteins has shown the expression of Go1, Go2, Gi, and Golf in the olfactory epithelium.24 Of these, one of the 2 Go isoforms, or possibly Gi, would be candidates for signal transduction of ORA1, since the association of Golf with ciliated neurons would seem to rule out an expression in ORA1-positive neurons.25,26 Direct evidence will be provided by double labeling experiments using ORA1 in situ probe together with G protein or cell type-specific markers.

Open Questions

So far it is unclear whether the olfactory-mediated oviposition behavior elicited by pHPPA is driven by ORA1 as a sole or major receptor. Alternatively, additional receptors may be contributing to this phenotype. To address this question, double labeling experiments with ORA1 probe and established neuronal activity markers could be performed.

Neuronal activity markers such as cFOS, phospho-ERK, egr-1, c-jun and Arc have been successfully used in similar studies.27 Moreover, new genome editing techniques like CRISPR/Cas or TALEN can be used to knock out ORA1 in zebrafish.28 If pHPPA-mediated oviposition will be reduced or eliminated in such knock-outs, this would constitute strong evidence for the pHPPA effect being mediated by ORA1. CRISPR/Cas and TALEN may also be useful for knock-in of marker genes into the ORA1 locus, allowing to identify the ORA1 target glomerulus in the olfactory bulb. A knock-in of channel rhodopsin29 in the ORA1 locus could rigorously restrict neuronal activation to only ORA1-expressing neurons, and thus would present another possibility to examine whether ORA1 activation by itself would be sufficient to generate the oviposition response. Beyond the olfactory bulb, it may be possible to map the pHPPA-activated neural circuits with single cell resolution in the intact zebrafish brain using a combination of high-speed light-sheet microscopy with genetically encoded calcium indicator (GCaMP5/6).30 Finally it will be interesting to examine, whether pHPPA is indeed the endogenous ligand of ORA1, in which case one would expect to find a biosynthetic pathway as well as a path to delivery of pHPPA in the context of mating behavior.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Acknowledgments

We would like to thank Maik Behrens, Oliver Frank, Harshadrai Rawel, Christopher Potting, Thomas Hofmann and Wolfgang Meyerhof for their contributions to the research depicted here.

References

1. Isogai Y, Si S, Ponz-Leitica L, Tan T, Kapoor V, Murthy VN, Dulac C. Molecular organization of vomeronasal chemoreception. Nature 2011; 478:241-5; PMID:21937988; http://dx.doi.org/10.1038/nature10437
2. Del Punta K, Leinders-Zufall T, Rodriguez I, Jukam D, Jakub D, Wysocki C, Ogawa S, Zustall F, Mombaerts P. Deficient phenotype responses in mice lacking a cluster of vomeronasal receptor genes. Nature 2002; 419:70-4; PMID:12124133; http://dx.doi.org/10.1038/nature00955
3. Boschat C, Pefilo C, Randin O, Ropollo D, Lüscher C, Brollier M-C, Rodriguez I. Pheromone detection mediated by a V1r vomeronasal receptor. Nat Neurosci 2002; 5:1261-2; PMID:12436115; http://dx.doi.org/10.1038/nn978
4. Korschning S. The molecular evolution of teleost olfactory receptor gene families. Results Probl Cell Differ 2009; 47:37-55; PMID:18956167; http://dx.doi.org/10.1007/400_2008_31
5. Sato Y, Miyasaka N, Yoshihara Y. Mutually exclusive vomeronasal receptor genes. Nature 2002; 419:70-4; PMID:12124133; http://dx.doi.org/10.1038/nature00955
6. Venkatesh B, Lee AP, Ravi V, Maurya AK, Lian MM, Swann JB, Ohta Y, Flajnik MF, Sutoh Y, Kasahara M, et al. Elephant shark genome provides unique insights into gnathostome evolution. Nature 2014; 505:174-9; PMID:24640279; http://dx.doi.org/10.1038/nature13286
7. Behrens M, Frank O, Ravel H, Ahuja G, Potting C, Hofmann T, Meyerhof W, Korschning S, ORA1, a zebrafish olfactory receptor ancestral to all mammalian V1r genes, recognizes 4-hydroxyphenylacetic acid, a putative reproductive pheromone. J Biol Chem 2014; 289:19778-88; PMID:24831010; http://dx.doi.org/10.1074/jbc.M114.573162
8. Sorensen PW, Harz TJ, Stacey NE. Sex pheromones selectively stimulate the medial olfactory tracts of male goldfish. Brain Res 1991; 558:343-7; PMID:1782551; http://dx.doi.org/10.1016/0006-8993(91)90790-3
9. Friedrich RW, Korschning S. Combinatorial and chemotopic odorant coding in the zebrafish olfactory bulb visualized by optical imaging. Neuron 1997; 18:737-52; PMID:9182799; http://dx.doi.org/10.1016/S0896-6273(00)80314-1
10. Yamamoto Y, Hino H, Ueda H. Olfactory imprinting of amino acids in larvacean socye yam. PLoS One 2010; 5; e6553; PMID:20662811; http://dx.doi.org/10.1371/journal.pone.0006863
11. Fuss SH, Korschning S. Odorant feature detection: activity mapping of structure response relationships in the zebrafish olfactory bulb. J Neurosci 2001; 21;8396-10; PMID:11665682
12. Michel WC, Lubomudrov LM. Specificity and sensitivity of the olfactory organ of the zebrafish, Danio rerio. J Comp Physiol A 1995; 177:191-9; PMID:7656767; http://dx.doi.org/10.1007/BF00225998
13. Hussain A, Sarasiva LR, Ferrero DM, Ahuja G, Krishna VS, Liberles SD, Korschning SI. High-affinity olfactory receptor for the death-associated odor cadaverine. Proc Natl Acad Sci USA 2013; 110:19579-84; PMID:24218586; http://dx.doi.org/10.1073/pnas.1316960110
14. Gossauer A. Struktur und Reaktivitaten der Biomole- kule: Eine Einfuehrung in Die Organische Chemie. Zurich: Helv Chim Acta, 2006; 1st ed.
15. Ohtani K, Fujisaka S, Kawano T, Shimada AKY. Nema- tomial activities of 4-hydroxyphenylacetic acid and oiodolactone D produced by the fungus Oidiodendron sp. Z Naturforsch C 2011; 66:31-4; PMID:21476434; http://dx.doi.org/10.5560/ZNC.2011.66c0031
16. Pagez P, Gauthier E. Current research in canine and feline pheromones. Vet Clin North Am- Small Anim Pract 2003; 33:187-211; PMID:12701508; http://dx.doi.org/10.1016/S0195-5616(02)00128-6
17. Friedrich RW, Korschning SI. Chemotopic, combinatorial, and noncombinatorial odorant representations in the olfactory bulb revealed using a volatilesensitive axon tracer. J Neurosci 1998; 18:9977-88; PMID:9822753
18. Stacey N, Sorensen P. Reproductive pheromones. Fish Physiol 2005; 24:559-412; http://dx.doi.org/10.1016/S1546-5093(05)24008-x
19. Sato Y, Miyasaka N, Yoshihara Y. Mutually exclusive glomerular innervation by two distinct types of olfactory sensory neurons revealed in transgenic zebrafish. J Neurosci 2005; 25:4889-97; PMID:15901770; http://dx.doi.org/10.1523/JNEUROSCI.0679-05.2005

www.tandfonline.com Communicative & Integrative Biology e970501-3
20. Ahuja G, Nia SB, Zapilko V, Shiriagin V, Kowarschew D, Oka Y, Korsching SI. Kappe neurons, a novel population of olfactory sensory neurons. Sci Rep 2014; 4:4037; PMID:24509431; http://dx.doi.org/10.1038/srep04037

21. Ahuja G, Ivanic I, Salturk M, Oka Y, Nadler W, Korsching SI. Zebrafish crypt neurons project to a single, identified mediodorsal glomerulus. Sci Rep 2013; 3:2063; PMID:23792970; http://dx.doi.org/10.1038/srep02063

22. Oka Y, Saraiva LR, Korsching SI. Crypt neurons express a single V1R-related ora gene. Chem Senses 2012; 37:219-27; PMID:22038944; http://dx.doi.org/10.1093/chemse/bjr095

23. Pfister P, Rodriguez I. Olfactory expression of a single and highly variable V1r pheromone receptor-like gene in fish species. Proc Natl Acad Sci U S A 2005; 102:5489-94; PMID:15809442; http://dx.doi.org/10.1073/pnas.0402581102

24. Oka Y, Korsching SI. Shared and unique G alpha proteins in the zebrafish versus mammalian senses of taste and smell. 2011; 36:357-65; PMID:21242316; http://dx.doi.org/10.1093/chemse/bjq38

25. Braubach OR, Fine A, Croll RP. Distribution and functional organization of glomeruli in the olfactory bulbs of zebrafish (Danio rerio). J Comp Neurol 2012; 520:2317-39; PMID:22581687; http://dx.doi.org/10.1002/cne.23075

26. Gayoso JÁ, Castro A, Anadón R, Manso MJ. Differential bulbar and extrabulbar projections of diverse olfactory receptor neuron populations in the adult zebrafish (Danio rerio). J Comp Neurol 2011; 519:247-76; PMID:21165974; http://dx.doi.org/10.1002/cne.22518

27. Bepari AK, Watanabe K, Yamaguchi M, Tamamaki N, Takebayashi H. Visualization of odor-induced neuronal activity by immediate early gene expression. BMC Neurosci 2012; 13:140; PMID:23126335; http://dx.doi.org/10.1186/1471-2202-13-140

28. Gaj T, Gersbach CA, Iii CFB. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 2013; 31:397-405; PMID:23664777; http://dx.doi.org/10.1016/j.tibtech.2013.04.004

29. Yizhar O, Fenno LE, Davidson TJ, Mogri M, Deisseroth K. Optogenetics in neural systems. Neuron 2011; 71:9-34; PMID:21745635; http://dx.doi.org/10.1016/j.neuron.2011.06.004

30. Ahrens MB, Orger MB, Robson DN, Li JM, Keller PJ. Whole-brain functional imaging at cellular resolution using light-sheet microscopy. Nat Methods 2013; 10:413-20; PMID:23524393; http://dx.doi.org/10.1038/nmeth.2434