Complicated and fatal *Strongyloides* infection in Canadians: risk factors, diagnosis and management

Sue Lim, Kevin Katz, Sigmund Krajden, Milan Fuksa, Jay S. Keystone, Kevin C. Kain

Abstract

Strongyloides stercoralis, which is caused by the nematode *Strongyloides stercoralis*, is a common and persistent infection, particularly in developing countries. In the setting of compromised cellular immunity, it can result in fulminant dissemination with case-fatality rates of over 70%. The majority of new Canadian immigrants come from countries where *Strongyloides* is highly endemic; therefore, the burden of *Strongyloides* may be underappreciated in Canada. Because early diagnosis and therapy can have a marked impact on disease outcome, screening for this infection should be considered mandatory for patients who have a history of travel or residence in a disease-endemic area and risk factors for disseminated disease (e.g., corticosteroid use and human T-lymphotropic virus type 1 infection).

Epidemiology

Strongyloides stercoralis is a common intestinal nematode that affects 30–100 million people worldwide; it is endemic in Africa, Asia, Southeast Asia, and Central and South America.1,2 Human infection occurs when infective (filariform) larvae penetrate intact skin. This most commonly happens when the host’s bare feet come in direct contact with soil contaminated with infective *Strongyloides* larvae (Fig. 2). Once infected, most people have an asymptomatic, chronic infection of the gastrointestinal tract. However, because of the unique ability of *S. stercoralis* to complete its life cycle within the human host, the burden of worms can dramatically increase through a cycle of autoinfection. Autoinfection can lead to disease persistence as well as to hyperinfection syndrome, where the disease is disseminated amid impaired cellular immunity.

![Fig. 1: *Strongyloides stercoralis* larva tracks on a blood agar plate from the bronchoalveolar lavage of a patient with disseminated strongyloidiasis.](image)
Although strongyloidiasis has traditionally been considered a tropical disease, increased worldwide travel and migration challenge this view. Canada’s immigrant population, for example, has changed significantly over the past several decades. Before 1961, only 5.3% of Canadian immigrants were from countries where *Strongyloides* infection is endemic. In contrast, 2001 Census data indicate that 77.5% of immigrants coming to Canada over the 10-year...
period between 1991 and 2001 were from Strongyloides-endemic countries. Furthermore, ethnic minorities born in Canada are also at increased risk for strongyloidiasis, since they are more likely to visit friends and relatives in disease-endemic countries. Although the worldwide prevalence of Strongyloides is unknown, estimates are available from seroprevalence studies of high-risk populations. One study found that Southeast Asian refugees arriving in Canada had seroprevalence rates between 11.8% (Vietnamese) and 76.6% (Cambodians). According to Statistics Canada, 43.7% of Toronto’s total population in 2001 was composed of foreign-born people, with the majority arriving from Strongyloides-endemic areas, including Southeast Asia, the Indian subcontinent and China. This suggests that strongyloidiasis may be an unrecognized infection among the Canadian population.

This contention is supported by observations of cases of disseminated strongyloidiasis in Canada. Over a 7-month period in 2002, a series of 10 consecutive cases of disseminated or fatal Strongyloides infection were identified in 2 academic hospitals in Toronto (see the online table at www.cmaj.ca/cgi/content/full/171/5/479/DC1). These cases highlight the epidemiology, risk factors, and diagnostic and management challenges associated with strongyloidiasis in areas where the disease is not endemic, such as Canada. Of these 10 cases, 7 were male, and the mean age was 64.6 (range 24–89) years. All of the patients were immigrants to Canada who acquired strongyloidiasis in their country of origin (3 in Asia, 6 in the Caribbean and 1 in Africa). One patient had lived in Canada for 56 years before symptoms developed. None acquired infection during travel to disease-endemic areas, with infection in Canadian travellers has been reported. With respect to risk factors, corticosteroid use was documented in 4 of these 10 patients and positive human T-lymphotropic virus-1 (HTLV-1) serology was found in 3. Seven patients had disseminated infection with an associated mortality of 71%.

Clinical manifestations

Table 1 outlines the common presenting symptoms based on the host’s immune status. Gastrointestinal symptoms are the most common, and the respiratory tract is the system most frequently affected outside the gastrointestinal tract. Gram-negative or polymicrobial bacteremia from migration of larvae through the bowel wall is another common presentation of disseminated infection.

In the case of drug-induced or disease-associated defects in cellular immunity, autoinfection may lead to a massive increase in parasite burden and dissemination to almost all organ systems, including the lungs, liver and central nervous system. One study estimated that disseminated strongyloidiasis occurs in 1.5%–2.5% of infected patients. However, this number should be interpreted with caution, as the prevalence of Strongyloides infection is difficult to assess and is dependent upon geography, host immune status, test characteristics of available diagnostic assays and other factors. Nonetheless, it is generally agreed that disseminated strongyloidiasis has a high associated rate of death, with one review demonstrating a rate of 86%.

Risk factors for dissemination

The association between impaired cellular immunity and a hyperinfective state was first reported in 1966. Risk factors for dissemination are shown in Box 1. Details of these mechanisms remain unclear, as there are have been cases of hyperinfection in people with no identifiable immunodeficiency.

Table 1: Typical clinical manifestations and treatment of strongyloidiasis in immunocompetent and immunosuppressed hosts

Host	Common signs and symptoms	Eosinophilia	Treatment
Normal immune system	Gastrointestinal (most common): progressive weight loss, diarrhea, abdominal pain, vomiting	Usually present in > 70% of cases	Single drug: albendazole 400 mg twice daily × 7 d OR ivermectin 200 µg/kg daily × 1–2 d
	Dermatologic: larva currens (perianal, rapidly moving and pruritic linear eruption due to migration of larvae); this symptom is pathognomonic of strongyloidiasis		
	Respiratory (most common outside the gastrointestinal tract): dyspnea, wheezing, hemoptysis, cough, respiratory distress		
	Fever	Often absent	Combination therapy: albendazole 400 mg twice daily × 7 d AND ivermectin 200 µg/kg daily × 1–2 d
	Gram-negative/polymicrobial bacteremia due to migration of larvae through the bowel wall		In cases of disseminated strongyloidiasis, albendazole and ivermectin are continued until there is evidence that the parasite is cleared

CMAJ • AUG. 31, 2004; 171 (5) 481
Corticosteroids, which target T cells, have been documented as an important factor in the subsequent development of hyperinfection.15,16,21,33,34 Hematologic cancers make up the majority of malignant diseases associated with hyperinfection, accounting for 20 of 22 malignant disease in one review.13 In general, malignant disease alone is rarely the sole factor for dissemination.13,35 The majority of patients who experience disseminated strongyloidiasis do so after they have received immunosuppressive therapy, usually prednisone, as treatment for their disease. Thus, although patients with hematologic cancer are known to have degrees of immune deficiency,36 the high frequency of corticosteroid use in this population confounds the strength of the association between disseminated strongyloidiasis and hematologic malignant disease.

Another major risk factor is HTLV-1 coinfection. HTLV-1 is a retrovirus associated with adult T-cell leukemia and HTLV-1-associated myelopathy,37 with adult T-cell leukemia developing in 3%–5% of HTLV-1 carriers after a long period of latency.38 This latent or preleukemic phase is reported to be up to 30 years shorter in HTLV-1 carriers who are coinfected with Strongyloides than in other HTLV-1-infected people.39–42 Monoclonal proliferation of the HTLV-1-infected cells has been shown to occur in coinfected patients but not in asymptomatic HTLV-1 carriers who do not have strongyloidiasis.43,44 Furthermore, the results of a recent study have shown that the Strongyloides antigen is implicated in T-cell proliferation and ultimately accelerates leukemogenesis.37 Successful treatment of strongyloidiasis may reverse clonal expansion by decreasing the HTLV-1 proviral load.38 This relationship appears to be bidirectional: not only does Strongyloides infection have an effect on the development of HTLV-1-associated malignant disease, but HTLV-1 inhibits cellular responses to Strongyloides infection.45–52

In a review of 27 cases in the West Indies,1 HTLV-1 infection was the most common condition (71%) predisposing to dissemination. As well, 6 of the 7 patients who died were HTLV-1 positive, which suggests that coinfection is a marker of a poor prognosis. Given the significant correlation between HTLV-1 and strongyloidiasis in regions where the latter is endemic, such as the West Indies and Japan,48 it has been suggested that each disease should prompt diagnostic efforts for the other.1

Diagnosis and management

A suggested diagnostic approach is shown in Table 2, which highlights the most likely clinical presentations encountered where one should suspect Strongyloides infection, followed by the appropriate diagnostic investigations.

Box 1: Risk factors for disseminated strongyloidiasis

Major risk factors
- Immunosuppressive therapy (particularly corticosteroids)
- Transplantation
- Hematologic malignant disease
- Human T-lymphotropic virus-1 infection

Additional risk factors
- Malnutrition
- Diabetes mellitus
- Chronic renal failure
- Chronic alcohol consumption

Note: Some cases may have no identifiable risk factors for immunodeficiency.

Table 2: Diagnostic procedure for strongyloidiasis in people who have travelled to or lived in disease-endemic areas

Presentation	Diagnostic procedure
Patient has gastrointestinal symptoms compatible with uncomplicated strongyloidiasis (weight loss, diarrhea, abdominal pain, vomiting)	3 serial stool samples screened for ova and parasites **AND** enzyme-linked immunosorbent assay for *S. stercoralis* serology
OR	
Patient is asymptomatic but may be receiving corticosteroids or other immunosuppressive therapy in the near future	
Patient is unwell and has pulmonary symptoms (wheezing, respiratory distress), gram-negative/polymicrobial sepsis and risk factors for disseminated disease (see Box 1)	Blood and sputum cultures for *S. stercoralis*, and culture other specimens based on suspected organ involvement (e.g., CSF) **AND** 3 serial stool samples screened for ova and parasites **AND** enzyme-linked immunosorbent assay for *S. stercoralis* serology

Note: CSF = cerebrospinal fluid.

Strongyloidiasis should be recognized and treated before initiating immunosuppressive therapy, since once the disease disseminates it carries a high fatality rate regardless of therapeutic intervention.
Complicated strongyloidiasis in Canadians

Competing interests: None declared.

References

1. Adedayo O, Grell G, Bellot P. Hyperinfective strongyloidiasis in the medical wards. South Med J 2002;95(7):711-8.
2. Siddiqui A, Berk S. Diagnosis of Strongyloides stercoralis infection. Clin Infect Dis 2001;33:1040-7.
3. Statistics Canada. 2001 Census nation tables. Ottawa: Statistics Canada;2002.
4. Genta RM. Global prevalence of strongyloidiasis: critical review with epidemiologic insights into the prevention of disseminated disease. Rev Infect Dis 1989;11:755-67.
5. Gyorkos TW, Genta RM, Viens P, MacLean JD. Seroepidemiology of Strongyloides infection in the Southeast Asian refugee population in Canada. Am J Epidemiol 1990;132:257-64.
6. Longworth DL, Weller PF. Hyperinfection syndrome with strongyloidiasis. In: Remington JS, Swartz MN, editors. Current clinical topics in infectious disease. New York: McGraw-Hill; 1986. p. 1.
7. Scowden EB, Schaffner W, Stow J. Overwhelming strongyloidiasis: an unexpected opportunistic infection. Medicine 1978;57:527.
8. Strazzella WD, Safirstein BL. Asthma due to parasitic infestation. N J Med 1989;86:947-9.
9. Link L, Orenstein R. Bacterial complications of strongyloidiasis: streptococcus bovis meningitis. South Med J 1999;92:728-31.
10. Woodring JH, Halliwell H, Reed JC. Pulmonary strongyloidiasis: clinical and imaging features. AJR Am J Roentgenol 1994;162:537-42.
11. Milder JE, Walzer PD, Kilgore G, Rutherford I, Klein M. Clinical features of Strongyloides stercoralis infection in an endemic area of the United States. Gastroenterology 1981;80:1481-8.
12. Igra-Stegman Y, Kapila R, Sen P, Kaminski ZC, Louria DB. Syndrome of hyperinfection with Strongyloides stercoralis. Rev Infect Dis 1981;3:397-407.
13. Rogers WA Jr, Nelson B. Strongyloidiasis and malignant lymphoma, “opportunist infection” by a nematode. JAMA 1966;195:685-7.
14. Rogers WA Jr, Nelson B. Strongyloidiasis and malignant lymphoma, “opportunist infection” by a nematode. JAMA 1966;195:685-7.
15. Cruz R, Boucica G, Rocha H. Fatal strongyloidiasis in patients receiving corticosteroids. J Med 1989;6:1396-8.
16. Dwork KG, Jaffe JB, Lieberman JD. Strongyloidiasis with massive hyperinfection. NY State J Med 1975;75:1260-4.
17. Dwork KG, Jaffe JB, Lieberman JD. Strongyloidiasis with massive hyperinfection. NY State J Med 1975;75:1260-4.
18. Purtillo DT, Meyers WM, Connor DH. Fatal strongyloidiasis in immunosuppressed patients. Am J Med 1974;56:488-93.
19. Calih KM. Thalidomide in massive strongyloidiasis. Am J Trop Med Hyg 1967;16:451-3.
20. Amir-Abad H, Braun P, Neva FA, Gottlieb LS, Zamcheck N. Strongyloidiasis at the Boston City Hospital. Emphasis on gastrointestinal pathophysiology and successful therapy with thalidomide. Am J Dis Child 1968;113:959-73.
21. Civantos F, Robinson MJ. Fatal strongyloidiasis following corticosteroid therapy. Am J Dis Child 1969;114:643-51.
22. Walker-Smith JA, McMillan B, Middleton AW, Robertson S, Hopcroft A. Strongyloidiasis causing small-bowel obstruction in an abdominal infant. Med J Aust 1969;2:1263-5.
23. Olumir EO. Strongyloidiasis causing fatal peritonitis. West Afr Med J 1970;19:4.
24. Craven JL, Cantrell EG, Lewis MG. Strongyloides stercoralis infection presenting as necrotizing jejunitis [letter]. Trans R Soc Trop Med Hyg 1971;65:312-3.
25. Buss DH. Strongyloides stercoralis infection complicating granulocytic leukemia. N Engl J Med 1971;312:269-74.
26. Adam M, Morgan O, Persaud C, Gibbs WN. Hyperinfection syndrome with Strongyloides stercoralis in malignant lymphoma. BMJ 1973;1:264-6.
27. Rassigua AL, Lowry JL, Forman WB. Diffuse pulmonary infection due to Strongyloides stercoralis. JAMA 1974;230:426-7.
28. Royal G, Fraser-Moodie A, Jones MW. Hyperinfection with Strongyloides stercoralis in Great Britain. Br J Surg 1974;61:498-500.
29. Pettersson T, Steenstrom R, Kyronenpa H. Disseminated lung opacities and cavitation associated with Strongyloides stercoralis and Schistosoma mansoni infection. Am J Trop Med Hyg 1974;23:158-62.
30. Kenney M, Welber CA. Diagnosis of strongyloidiasis in Papanicolaou-stained sputum smears. Acta Cytol 1974;18:270-3.
31. Scoggan CH, Call NB. Acute respiratory failure due to disseminated strongyloidiasis in a renal transplant recipient. Ann Intern Med 1977;77:456-8.
32. Overo R, Wamukota WM. A fatal case of strongyloidiasis with strongyloides larva in the meninges. Trans R Soc Trop Med Hyg 1976;70:497-9.

This article has been peer reviewed.

From the Tropical Disease Unit, Division of Infectious Diseases, Department of Medicine (Lim, Keystone, Kain), University of Toronto, Toronto General Hospital–University Health Network (Lim, Katz, Keystone, Kain); the McLuhan–Roman Centre for Global Health, University of Toronto (Kain); and the Division of Infectious Diseases, St. Joseph’s Health Centre (Krajden, Faksa), Toronto, Ont.
33. Higenbottam TW, Heard BE. Opportunistic pulmonary strongyloidiasis complicating asthma treated with steroids. Thorax 1976;31:226-33.
34. Nagalotimath SJ, Ramaprasad AV, Chandrakhekar NK. Fatal strongyloidiasis in a patient receiving corticosteroids. Indian J Pathol Bacteriol 1974;17:190-2.
35. Genta RM, Miles P, Fields K. Opportunistic Strongyloides stercoralis infection in lymphoma patients. Report of a case and review of the literature. Cancer 1989;63:1407-11.
36. Harris JE. Immune deficiency states associated with human malignant disease. In: Harris JE, Sinkovics JG, editors. Immunology of malignant disease. 2nd ed. St. Louis: C.V. Mosby Co.; 1976. p. 283-369.
37. Satoh M, Toma H, Sugahara K, Etoh K, Shiroma Y, Kiyuna S, et al. Involvement of IL-2/IL-2R system activation by parasite antigen in polyclonal expansion of CD4+25+ HTLV-1-infected T-cells in human carriers of both HTLV-1 and S. stercoralis. Oncogene 2002;21:2466-75.
38. Gabet A, Mortrez F, Talarmin A, Plumelle Y, Leclercq I, Leroy A, et al. High circulating proviral load with oligoclonal expansion of HTLV-1 bearing T cells in HTLV-1 carriers with strongyloidiasis. Oncogene 2000;19:4954-60.
39. Cleghorn FR, Manns A, Falk R, Hartege P, Hanchard B, Jack N, et al. Effect of human T-lymphotropic virus type 1 infection on non-Hodgkin’s lymphoma incidence. J Natl Cancer Inst 1995;87:1009-14.
40. Plumelle Y, Gonin C, Edourd A, Buccher BJ, Thomas L, Brethun A, et al. Effect of Strongyloides stercoralis infection and eosinophilia on age at onset and prognosis of adult T-cell leukemia. J Clin Pathol 1997;50:81-7.
41. Pombo de Oliveira MS, Matutes E, Schulz T, Carvalho SM, Noronha H, Reaves JD, et al. T-cell malignancies in Brazil. Clinico-pathological and molecular studies of HTLV-I-positive and -negative cases. Int J Cancer 1995;60:821-7.
42. Yamaguchi K, Matutes E, Catovsky D, Galton DA, Nakada K, Takatsuki K. Strongyloides stercoralis as candidate co-factor for HTLV-I-induced leukemogenesis. Lancet 1987;2:94-5.
43. Nakada K, Yamaguchi K, Furugen S, Nakasone T, Nakaone K, Oshiro Y, et al. Monoclonal integration of HTLV-I proviral DNA in patients with strongyloidiasis. Int J Cancer 1987;40:145-8.
44. Yoshida M, Osame M, Kawai H, Tota M, Kawasaki N, Nishida Y, et al. Increased replication of HTLV-I in HTLV-I-associated myelopathy. Ann Neurol 1989;26:331-5.
45. Gotuzzo E, Terasauna A, Alvaraz H, Tello R, Infante R, Watts DM, et al. Strongyloides stercoralis hyperinfection associated with human T-cell lymphotropic virus type-1 infection in Peru. Am J Trop Med Hyg 1999;60:146-9.
46. Neisson-Vernant C, Eduoard A. Malignant strongyloidiasis and the HTLV-1 virus [in French]. Rev Prat 1999;49:2127-8.
47. Newton RC, Limpaamthip P, Greenberg S, Gam A, Neva FA. Strongyloides stercoralis hyperinfection in a carrier of HTLV-1 virus with evidence of selective immunosuppression. Am J Med 1992;92:202-8.
48. Hayashi J, Kishihara Y, Yoshimura E, Furusyo N, Yamaji K, Kawakami Y, et al. Correlation between human T-cell lymphotropic virus type-1 and Strongyloides stercoralis infections and serum immunoglobulin responses in residents of Okinawa, Japan. Am J Trop Med Hyg 1997;56:71-5.
49. McRury J, Messias FT, Walzer PD, Huiter T, Genta RM. Specific IgE responses in human strongyloidiasis. J Clin Exp Immunol 1986;65:631-8.
50. Genta RM, Doucette RW, Walzer PD. Diagnostic implications of parasite-specific immune responses in immunocompromised patients with strongyloidiasis. J Clin Microbiol 1986;23:1099-103.
51. Plumelle Y, Pascaline N, Nguyen D, Panelatti G, Jouannelle A, Jousilt H, et al. Adult T-cell leukemia-lymphoma: a clinicopathologic study of twenty-six patients from Martinique. Hematol Pathol 1995;9:211-2.
52. Robinson RD, Lindo JF, Neva FA, Gam AA, Vogel P, Terry SI, et al. Immunoparasitologic studies of Strongyloides stercoralis and human T lymphotropic virus type I infections in Jamaica. J Infect Dis 1994;169:692-6.
53. Liu LX, Weller PF. Strongyloidiasis and other intestinal nematode infections. Infect Dis Clin North Am 1991;7:655-82.
54. Uparanukraw P, Phongsoni S, Morakote N. Fluctuations of larval excretion in Strongyloides stercoralis by seven consecutive stool specimens. Zentralbl Bakteriol Mikrobiol Hyg [A] 1987;263: 616-8.
55. Neva FA, Gam AA, Burke J. Comparison of larval antigens in an enzyme-linked immunosorbent assay for strongyloidiasis in humans. J Infect Dis 1981;144:327-32.
56. Pellett LL. Chronic strongyloidiasis in World War II Far East ex-prisoners of war. Am J Trop Med Hyg 1984;33:55-61.
57. Carroll SM, Karthigasu KT, Grove DJ. Serodiagnosis of human strongyloidiasis by an enzyme-linked immunosorbent assay. Trans R Soc Trop Med Hyg 1981;75:706-9.
58. Neva FA, Gam AA, Burke J. Comparison of larval antigens in an enzyme-linked immunosorbent assay for strongyloidiasis in humans. J Infect Dis 1981;144:327-32.
59. Savage D, Foadi M, Haworth C, Grant A. Marked eosinophilia in an immunosuppressed patient with strongyloidiasis. J Intern Med 1994;236:473-5.
60. Aziz EM. Strongyloides stercoralis infection: review of the literature and report of 33 cases. South Med J 1969;62:806-10.
61. Huchton P, Horn R. Strongyloidiasis. J Pediatr 1959;55:602-8.
62. Kobayashi J, Sato Y, Toma H, Takara M, Shiroma Y. Application of enzyme immunoassay for postchemotherapy evaluation of human strongyloidiasis. Diagn Microbiol Infect Dis 1994;18:21-35.

Correspondence to: Dr. Kevin C. Kain, Tropical Disease Unit, ES 9-412, Toronto General Hospital, 200 Elizabeth St., Toronto ON M5G 2C4

2004 WORKSHOP SCHEDULE

PHYSICIAN MANAGER INSTITUTE

A five level credit program exclusively for physicians designed to develop superior leadership and management skills

Approved for RCPC, CPFC, CCHSE credits

PM I/II
Sept. 26-28 / Sept. 29-Oct. 1
Calgary, AB

PM I/II/IV
Nov. 7-9 / Nov. 10-12
Vancouver, BC

PM I Refresher
Oct. 22-24
Vancouver, BC

In-house PMI
A practical, cost effective and focused training opportunity held on-site for medical leaders and managers

For information:
tel 800 663-7338 or 613 731-8610
x2319 (PMI) or x2261 (In-house PMI)
professional_development@cma.ca

Lim et al