Diagnostic yield of additional conventional transbronchial lung biopsy following radial endobronchial ultrasound lung biopsy for peripheral pulmonary lesions

Sojung Park1, Hee-Young Yoon2, Yeji Han1, Kyung Sook Wang3, So Young Park2, Yon Ju Ryu2, Jin Hwa Lee2 & Jung Hyun Chang1

1 Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Mokdong Hospital, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
2 Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul Hospital, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
3 Bronchoscopy unit, Mokdong Hospital, Ewha Womans University, Seoul, Republic of Korea

Keywords
Biopsy; diagnosis; nodule; peripheral; ultrasound.

Abstract
Background: Radial endobronchial ultrasound (R-EBUS) transbronchial lung biopsy (TBLB) improves the diagnostic yield from peripheral pulmonary lesions (PPLs). However, the small specimens obtained using small forceps through a guide sheath (GS) may impede diagnosis and molecular analysis. Here, we investigated the diagnostic significance of additional conventional TBLB with standard forceps after R-EBUS-GS-guided TBLB.

Methods: We retrospectively reviewed data from 55 patients who underwent conventional TBLB after R-EBUS-GS-guided TBLB for PPL diagnosis. Procedures were performed on single PPLs with no visible lesions on bronchoscopy. In cases with inconclusive pathologic confirmation, final diagnoses were made based on pathologic specimens or clinical observations.

Results: The median size of the target lesions was 28 mm. The appearances on computed tomography images were solid ($n=45$, 81.8%), part-solid ($n=7$, 12.7%), and cavitary nodules ($n=3$, 5.5%). A computed tomography bronchus sign was present in 35 (63.6%) cases, and a radial probe was positioned within target lesion in 32 (58.2%) cases. R-EBUS-GS-guided TBLB was diagnostic in 30 (54.5%) patients, and subsequent conventional TBLB yielded additional diagnostic information in 8 (14.5%) patients. Probe positioning within target lesions and the outer margin of PPLs more than 1 cm from pleura were significantly associated with enhanced diagnostic yield from the combined procedures. In conventional TBLB, probe positioning within target lesions (75.0% vs. 11.8%, $P=0.004$) and characteristic of nonsolid nodules (83.3% vs. 15.8%, $P=0.006$) were significantly associated with additional diagnostic utility.

Conclusions: Conventional TBLB following R-EBUS-GS-guided TBLB could be a useful procedure for diagnosing PPLs, especially for nonsolid nodules.

Key points
- Significant findings of the study: Additional conventional TBLB with standard forceps after R-EBUS-GS-guided TBLB yielded an additional 14.5% diagnostic utility for peripheral pulmonary lesions. For conventional TBLB, probe positioning within target lesions and nonsolid nodules were significantly associated with additional diagnostic utility.
- What this study adds: Conventional TBLB with standard forceps after R-EBUS-GS-guided TBLB is an effective and economically accessible diagnostic tool for peripheral pulmonary lesions.
Introduction

Lung cancer is the leading cause of cancer-related deaths worldwide. As the survival benefits of chest computed tomography (CT) scans for lung cancer screening have been proven, the detection rate of small peripheral lung nodules has increased.1 Diagnostic sampling of these small peripheral pulmonary lesions (PPLs) can usually be achieved via a percutaneous needle biopsy (PCNB). However, the incidence of pneumothorax has been reported to be 17–26.6% in CT-guided PCNB.2–6 Additionally, PCNB cannot be easily performed for PPLs that are surrounded by emphysema or in patients who cannot hold their breath.

Several guided-bronchoscopy technologies, such as radial endobronchial ultrasound (R-EBUS), electromagnetic navigation bronchoscopy (ENB), and virtual bronchoscopy (VB), have improved the diagnostic yield of transbronchial lung biopsy (TBLB) for PPL.7–13 However, equipment costs are an important consideration for these methods. ENB and VB both require specialized planning software, and costly hardware. ENB also uses disposable locatable guides, which imposes considerable procedure-related costs. R-EBUS only requires an ultrasound and a reusable EBUS probe. In an ordinary hospital setting without expensive navigation equipment, combined R-EBUS and conventional TBLB could be a better way to improve diagnostic yield than R-EBUS TBLB alone. Diagnostic yields of R-EBUS-guided TBLB have been found to vary widely among previous studies, ranging from 58% to 77%.7–9,14 A guide-sheath (GS) improves the diagnostic yield of R-EBUS-guided TBLB by keeping the GS within the lesion after the radial probe has been removed.7 However, the small forceps that are required to pass through the GS may result in acquiring only a small amount of tissue, which may lead to inadequate specimens for pathologic diagnosis and molecular analysis. The advantage of additional TBLB under fluoroscopy is that the procedure may achieve a higher success rate given the knowledge of the path leading to the lesion through the previous EBUS-TBLB, and larger tissues can be obtained using relatively large forceps.

We investigated whether subsequent conventional TBLB using larger standard forceps after R-EBUS-GS-guided TBLB could increase the diagnostic yield of PPLs.

Methods

Study population

We retrospectively reviewed the medical records of all patients who underwent combined R-EBUS-GS-guided TBLB and subsequent conventional fluoroscopy-guided TBLB to diagnose PPLs between July 2016 and July 2019. PPLs were defined as lesions surrounded by lung parenchyma and located within the outer one third of the lung. R-EBUS-GS-guided TBLB or CT-guided PCNB were selected according to the preferences of the attending physicians. However, in cases such as significant cardiovascular disease, hypoxemia, inaccessible bronchial pathway to the target lesion on CT, and PPLs located in apical segments, PCNB was considered first. Patients who had any visible bronchial lesions on conventional bronchoscopy were excluded. To compare the diagnostic yield of the combined procedures with PCNB, we investigated the diagnostic yields and complication rates of patients who underwent PCNB during the same period. The study protocol was approved by the Institutional Review Board of Ewha Womans University Mokdong Hospital (approval number: 201910040).

Target localization and procedures

CT images of axial, sagittal, and coronal views with a slice thickness of 1.0 mm were obtained to identify small bronchial branching and the bronchial path to a PPL. The window width and window level setting were 1500 Hounsfield units (HU) and −750 HU, respectively. A 4.9 mm bronchoscope (BF-Q290; Olympus, Tokyo, Japan) was advanced as far as possible into the nearest bronchus to the target lesion after reviewing the paths under the lung window setting of the CT image. Then, a 20-MHz mechanical radial-type probe (UM-S20-17S, Olympus) connected with EBUS (EU-M30S, Olympus), which was covered by a GS (SG-200C, Olympus), were inserted through the bronchoscope working channel of 20 mm. Once the lesion was confirmed by R-EBUS imaging and X-ray fluoroscopy, the probe was withdrawn keeping the GS in place. Small biopsy forceps with an outer diameter of 1.5 mm and a cup opening size of 4.0 mm (FB-233D, Olympus) were performed more than several hundred conventional bronchoscopies.
As a preliminary examination, we compared the weight of specimens obtained by different forceps using beef. These tests showed that small forceps used in R-EBUS-GS obtained 0.60 ± 0.24 mg of beef, FB-231D forceps obtained 2.51 ± 0.50 mg, and FB-19C-1 forceps obtained 0.90 ± 0.16 mg of beef (P < 0.001, Table S1).

Diagnosis

All target lesions were investigated to discriminate malignancy. A diagnosis of malignancy made by the combined procedures was considered true-positive. In cases of non-malignant results or inconclusive diagnoses, PCNB was performed to make the definitive diagnosis. In cases where the pathological diagnosis was ambiguous, the final diagnosis was made by surgical biopsy or clinical observation over one year.

Statistical analysis

Either a Pearson’s chi-square test or the Fisher exact test was used to compare categorical variables. Logistic regression analysis was used for the multivariate analysis of factors that affected the diagnostic yield of the combined procedure. We report the 95% confidence intervals (CIs), and all tests were two-sided. Differences between groups were considered significant when P-values were < 0.05. All statistical analyses were performed with SPSS software (version 22.0; IBM Corp., Armonk, NY, USA).

Results

A total of 57 patients underwent the combined procedure of R-EBUS-GS-guided TBLB and subsequent conventional fluoroscopy-guided TBLB to diagnose PPLs during the study period. After excluding two patients who showed endobronchial lesion on conventional bronchoscopy, 55 patients were ultimately included in the present study. The mean age of the study population was 67.2 years; 29 (52.7%) were male (Table 1). Emphysematous changes in the lung were observed in 10 patients (18.2%); however, these did not surround any target lesions. The median size of target lesions was 28 mm. All target lesions were peripherally located, with a median distance between the outer margin of target lesions and the costal pleural surface of 5 mm; 17 (30.9%) abutted the pleura. Open-bronchus sign in a target lesion on CT imaging was present in 35 cases (63.6%). The EBUS probe was positioned within the lesion in 32 cases (58.2%), whereas it was adjacent to the lesion on EBUS imaging in 21 cases (38.2%); there were two cases (3.6%) of invisible lesions. Additionally, 297 patients underwent PCNB during the same period. There were no significant differences between the two groups, except for lesion size and imaging features on CT scans.

In total, 39 patients had confirmed diagnoses by the combined procedures. R-EBUS-GS-guided TBLB was initially diagnostic in 30 patients (54.5%), while subsequent conventional TBLB was additionally diagnostic in eight patients (14.5%, Fig. 1). Malignancy was diagnosed in 36 patients (65.5%, Fig. 2a). Among these, 28 (77.8%) were initially diagnostic in 30 patients (52.7%), whereas it was adjacent to the lesion on EBUS imaging in 21 cases (38.2%); there were two cases (3.6%) of invisible lesions. Additionally, 297 patients underwent PCNB during the same period. There were no significant differences between the two groups, except for lesion size and imaging features on CT scans.

Table 1 Baseline characteristics of patients who underwent endobronchial ultrasound with a guide-sheath combined with additional conventional transbronchial lung biopsy and percutaneous needle biopsy for peripheral pulmonary lesions

Characteristics	TBLB	PCNB	P-value
Age, mean (SD)	67.2 (10.9)	68.6 (12.1)	0.417
Male sex	29 (52.7)	173 (58.2)	0.447
Chronic airway disease	13 (23.6)	57 (19.2)	0.448
Emphysema on CT scan	10 (18.2)	75 (25.3)	0.260
Lesion size, median (range)	28 (17–79)	37 (9–137)	0.002
<20 mm	3 (5.5)	32 (10.8)	
20–30 mm	29 (52.7)	77 (25.9)	
>30 mm	23 (41.8)	188 (63.3)	
Lesion location			0.960
Upper lobe	27 (49.1)	152 (51.2)	
Middle or lingular lobe	7 (12.7)	36 (12.1)	
Lower lobe	21 (38.2)	109 (36.7)	
Distance from pleura, mm, median (range)	5 (0–50)	7 (0–70)	0.381
Lesions abutting the pleura	17 (30.9)	104 (35.0)	0.556
Presence of bronchus sign on CT scan	35 (63.6)	170 (57.2)	0.058
Endobronchial ultrasound visualization			
Within	32 (58.2)	NA	
Adjacent	21 (38.2)	NA	
Invisible	2 (3.6)	NA	
Appearance on CT scan			0.033
Solid	45 (81.8)	275 (92.6)	
Part-solid	7 (12.7)	11 (3.7)	
Pure GGO	0	1 (0.3)	
Cavitary	3 (5.5)	10 (3.4)	

Data are shown as n (%), unless otherwise noted. CT, computed tomography; GGO, ground-glass opacity; NA, not applicable; PCNB, percutaneous needle biopsy; SD, standard deviation; TBLB, transbronchial lung biopsy.
three patients (5.5%) developed fever during the procedure. However, all episodes of fever were resolved spontaneously within 24 hours after the procedure. There was one episode of pneumothorax, which was resolved spontaneously without any source of infection. Meanwhile, there was a significant difference in the incidence of pneumothorax between the groups; there was one case (1.8%) among patients who underwent TBLB and 37 cases (12.5%) among patients who underwent PCNB (P < 0.001).

Discussion

The present study investigated the utility of subsequent conventional TBLB after R-EBUS-CS-guided TBLB for diagnosing PPIs. The combined procedures were diagnostic in 39 (79.6%) patients with malignancy and 11 (11.4%) patients with benign disease; 5 patients were either transferred out or lost to follow-up. Subsequent conventional TBLB yielded additional diagnostic confirmation in 4 (14.5%) patients. Interestingly, three cases (43.7%) of part-solid ground-glass nodules (GGNs) were diagnosed only by conventional TBLB.

Previous meta-analyses have shown that the diagnostic accuracy of R-EBUS-CS-guided TBLB ranged from 68.8% to 74.8%, which is comparable to our results (71.8%). Previous studies have demonstrated that the optimal yields require taking five or more specimens using optimal forceps. In the present study, we used three or more specimens using forceps of three different volumes (Table 1). Although the sum of tissue volumes is equal, there is a significant difference in the incidence of pneumothorax between the groups; there was one case (1.8%) among patients who underwent TBLB and 37 cases (12.5%) among patients who underwent PCNB (P < 0.001).
biopsies using small forceps can increase artifacts in the specimen. Izumo et al. reported that rapid on-site evaluation (ROSE) during EBUS-GS had a high sensitivity for PPLs; however, its specificity and diagnostic efficacy were lower compared with ROSE during EBUS-transbronchial needle aspiration. They described that the presence of bronchial ciliated epithelium, bronchial cartilage and abundant inflammatory cells around PPLs made ROSE more difficult for such lesions than for lymph nodes. The elongated form of specimens from oval shaped biopsy forceps has the advantage that the morphology of the epithelium and submucosa are more intact, and the large forceps used for transbronchial biopsy yield more tissue, including alveolar tissue, than small forceps. The larger specimens obtained with larger forceps may have additional utility for diagnosing PPLs. A larger amount of specimen might be beneficial not only for the pathological diagnosis of lung cancer but also for detailed molecular analyses. Given that a specific method is used for each mutational analysis, a larger amount of tissue is needed to perform multiple analyses.

Figure 2 The diagnostic process and final diagnoses of (a) 55 patients who underwent endobronchial ultrasound with a guide-sheath combined with additional conventional transbronchial lung biopsy and (b) 297 patients who underwent percutaneous needle biopsy for peripheral pulmonary lesions. PPLs, peripheral pulmonary lesions; PCNB, percutaneous needle biopsy; BFS, bronchofiberscopy; EBUS-TBNA, endobronchial ultrasound transbronchial needle aspiration.
Conventional TBLB following EBUS-TBLB

S. Park et al.

Table 2 Factors associated with the diagnostic yield of endobronchial ultrasound with a guide-sheath combined with additional conventional transbronchial lung biopsy

Characteristics	Diagnostic yield (n = 39/55)	P-value
Location of lesion		0.132
Upper lobe	21/27 (77.8)	
Middle or lingular lobe	6/7 (85.7)	
Lower lobe	12/21 (57.1)	
Lesion size		0.309
≤3 cm	21/32 (65.6)	
>3 cm	18/23 (78.3)	
Distance from pleura		0.012
≤1 cm	23/38 (60.5)	
>1 cm	16/17 (94.1)	
Presence of bronchus sign on CT scan		<0.001
Present	31/35 (88.6)	
Absent	8/20 (40.0)	
Endobronchial ultrasound visualization		<0.001
Within	30/32 (93.8)	
Adjacent to or invisible	9/23 (39.1)	
Appearance on CT scan		0.128
Solid	30/45 (66.7)	
Nonsolid	9/10 (90.0)	

Data are shown as n (%), unless otherwise noted. CT, computed tomography.

Table 3 Logistic regression analysis of factors associated with the diagnostic yield of endobronchial ultrasound with a guide-sheath combined with additional conventional transbronchial lung biopsy

Characteristics	Univariate	Multivariate		
	Odds ratio (95% CI)	P-value	Odds ratio (95% CI)	P-value
Presence of bronchus sign on CT scan	11.625 (2.946–45.877)	<0.001	11.625 (2.946–45.877)	<0.001
Endobronchial ultrasound visualization	23.333 (4.444–122.510)	<0.001	23.333 (4.444–122.510)	<0.001
Distance from pleura	10.435 (1.249–87.144)	0.030	10.435 (1.249–87.144)	0.017

CI, confidence interval; CT, computed tomography.

Table 4 Factors associated with the diagnostic utility of additional conventional transbronchial lung biopsy in patients who could not be diagnosed by endobronchial ultrasound with a guide-sheath-guided transbronchial lung biopsy

Characteristics	Diagnostic yield (n = 8/25)	P-value
Location of lesion		0.345
Upper lobe	5/11 (45.5)	
Middle or lingular lobe	0/2	
Lower lobe	3/12 (25.0)	
Lesion size		1.000
≤3 cm	5/17 (29.4)	
>3 cm	3/8 (37.5)	
Distance from pleura		0.231
≤1 cm	6/22 (27.3)	
>1 cm	2/3 (66.7)	
Presence of bronchus sign on CT scan		0.081
Present	6/11 (54.5)	
Absent	2/14 (14.3)	
Endobronchial ultrasound visualization		0.004
Within	6/8 (75.0)	
Adjacent or invisible	2/17 (11.8)	
Appearance on CT scan		0.006
Solid	3/19 (15.8)	
Nonsolid	5/6 (83.3)	

Data are shown as n (%), unless otherwise noted. CT, computed tomography.

Mutational analyses, although high-quality targeted next generation sequencing can be performed using a small amount of tissue, even a liquid biopsy.

Nonsolid nodules were associated with additional diagnostic utility from conventional TBLB. A previous report showed similar results, as GGNs were a significant factor associated with enhanced diagnostic yield in the course of conventional TBLB following EBUS-TBLB.27 Additionally, there have been several studies regarding the diagnostic success for peripheral ground glass opacity dominant lesions by R-EBUS-TBLB.28–30 Interestingly, Ikezawa et al. reported that the number of biopsy specimens was an important factor for increasing the diagnostic yield of R-EBUS-TBLB in GGNs.29 The heterogeneity of EBUS imaging in GGNs may hinder confirming the position of the probe; thus, the large amount of tissue acquired from using larger forceps during conventional TBLB could increase the diagnostic yield.

Various factors, such as lesion size, location, position of the probe, and CT bronchus sign are known to be associated with diagnostic yield of R-EBUS for PPLs.10,31,32 Consistent with previous studies, positioning of the probe within target lesion and location of the lesion were factors associated with an accurate diagnosis in multivariate analysis. We included 38 (69.1%) cases located within 1 cm from the pleura, including 17 (30.9%) cases abutting the pleura. This might have led to the relatively low diagnostic utility of R-EBUS-GS-guided TBLB in our study.

The present study has several limitations. First, we included a small number of patients and this was a retrospective analysis, so there may have been selection bias. Second, we did not compare the diagnostic utility of the combined procedures with R-EBUS-GS-guided TBLB alone; thus, we cannot determine whether the combined procedures were statistically superior to R-EBUS-GS-guided TBLB alone. Third, R-EBUS-GS-guided transbronchial needle aspiration and ROSE, which
have the potential to improve the diagnostic yield of EBUS-TLB, were not performed in our institute. Finally, we did not measure the time for additional conventional TLB, which is one of the quality assessment factors of the procedure.

In conclusion, performing conventional TLB after R-EBUS-GS-guided TLB for the diagnosis of PPLs could be a useful procedure, especially for nonsolid nodules. The distance between target lesions and the costal pleura, and correct positioning of the EBUS probe within target lesions are key factors that can improve the diagnostic yield of the combined procedures.

Acknowledgments

S. Park and J.H. Chang had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. J.H. Chang contributed to the design of the study and the final review of the manuscript. Y. Han, J.H. Lee, Y.J. Ryu, H.-Y. Yoon, S.Y. Park, and J.H. Chang contributed to subject recruitment. K.S. Wang contributed to administrative support. All authors contributed to drafting and approval of the manuscript. We would like to thank Hye Ah Lee, affiliated with the Clinical Trial Center, Mokdong Hospital, Ewha Woman’s University, for her help with statistics. All authors conformed to the latest guidelines of the International Committee of Medical Journal Editors. The authors received no specific funding for this work.

Disclosure

No conflict of interest relevant to this article was reported.

References

1 National Lung Screening Trial Research Team, Aberle DR, Adams AM et al. Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med 2011; 365: 395–409.
2 Saji H, Nakamura H, Tsuchida T et al. The incidence and the risk of pneumothorax and chest tube placement after percutaneous CT-guided lung biopsy: The angle of the needle trajectory is a novel predictor. Chest 2002; 121: 1521–6.
3 Covey AM, Gandhi R, Brody LA, Getraudman G, Thaler HT, Brown KT. Factors associated with pneumothorax and pneumothorax requiring treatment after percutaneous lung biopsy in 443 consecutive patients. J Vasc Interv Radiol 2004; 15: 479–83.
4 Yeow KM, Su IH, Pan KT et al. Risk factors of pneumothorax and bleeding: Multivariate analysis of 660 CT-guided coaxial cutting needle lung biopsies. Chest 2004; 126: 748–54.
5 Khan MF, Straub R, Moghaddam SR et al. Variables affecting the risk of pneumothorax and intrapulmonary hemorrhage in CT-guided transthoracic biopsy. Eur Radiol 2008; 18: 1356–63.
6 Wu CC, Maher MM, Shepard JA. Complications of CT-guided percutaneous needle biopsy of the chest: Prevention and management. AJR Am J Roentgenol 2011; 196: W678–82.
7 Kurimoto N, Miyazawa T, Okimasa S et al. Endobronchial ultrasonography using a guide sheath increases the ability to diagnose peripheral pulmonary lesions endoscopically. Chest 2004; 126: 959–65.
8 Kikuchi E, Yamazaki K, Sukoh N et al. Endobronchial ultrasonography with guide-sheath for peripheral pulmonary lesions. Eur Respir J 2004; 24: 533–7.
9 Herth FJ, Eberhardt R, Becker HD, Ernst A. Endobronchial ultrasound-guided transbronchial lung biopsy in fluoroscopically invisible solitary pulmonary nodules: A prospective trial. Chest 2006; 129: 147–50.
10 Yamada N, Yamazaki K, Kurimoto N et al. Factors related to diagnostic yield of transbronchial biopsy using endobronchial ultrasonography with a guide sheath in small peripheral pulmonary lesions. Chest 2007; 132: 603–8.
11 Gildea TR, Mazzone PJ, Kamak D, Meziane M, Mehta AC. Electromagnetic navigation diagnostic bronchoscopy: A prospective study. Am J Respir Crit Care Med 2006; 174: 982–9.
12 Tachihara M, Ishida T, Kanazawa K et al. A virtual bronchoscopic navigation system under X-ray fluoroscopy for transbronchial diagnosis of small peripheral pulmonary lesions. Lung Cancer 2007; 57: 322–7.
13 Eberhardt R, Kahn N, Gompelmann D, Schumann M, Heussel CP, Herth FJ. LungPoint—A new approach to peripheral lesions. J Thorac Oncol 2010; 5: 1559–63.
14 Paone G, Nicastri E, Lucantoni G et al. Endobronchial ultrasound-driven biopsy in the diagnosis of peripheral lung lesions. Chest 2005; 128: 3551–7.
15 Evison M, Crosbie PA, Morris J, Martin J, Barber PV, Booton R. Can computed tomography characteristics predict outcomes in patients undergoing radial endobronchial ultrasound-guided biopsy of peripheral lung lesions? J Thorac Oncol 2014; 9: 1393–7.
16 Steinfeld DP, Khor YH, Manser RL, Irving LB. Radial probe endobronchial ultrasound for the diagnosis of peripheral lung cancer: Systematic review and meta-analysis. Eur Respir J 2011; 37: 902–10.
17 Wang Memoli JS, Nietert PJ, Silvestri GA. Meta-analysis of guided bronchoscopy for the evaluation of the pulmonary nodule. Chest 2012; 142: 385–93.
18 Ye J, Zhang R, Ma S, Wang L, Jin W. Endobronchial ultrasound plus fluoroscopy-guided biopsy compared to fluoroscopy-guided transbronchial biopsy for obtaining samples of peripheral pulmonary lesions: A systematic
19 Ali MS, Trick W, Mba BI, Mohananey D, Sethi J, Musani AI. Radial endobronchial ultrasound for the diagnosis of peripheral pulmonary lesions: A systematic review and meta-analysis. *Ann Thorac Med* 2017; 12: 114–20.

20 Zhan P, Zhu QQ, Miu YY et al. Comparison between endobronchial ultrasound-guided transbronchial biopsy and CT-guided transthoracic lung biopsy for the diagnosis of peripheral lung cancer: A systematic review and meta-analysis. *Transl Lung Cancer Res* 2017; 6: 23–34.

21 Popovich J Jr, Kvale PA, Eichenhorn MS, Radke JR, Ohorodnik JM, Fine G. Diagnostic accuracy of multiple biopsies from flexible fiberoptic bronchoscopy: A comparison of central versus peripheral carcinoma. *Am Rev Respir Dis* 1982; 125: 521–3.

22 Shure D, Astarita RW. Bronchogenic carcinoma presenting as an endobronchial mass. *Chest* 1983; 83: 865–7.

23 Izumo T, Matsumoto Y, Sasada S, Chavez C, Nakai T, Tsuchida T. Utility of rapid on-site cytologic evaluation during endobronchial ultrasound with a guide sheath for peripheral pulmonary lesions. *Jpn J Clin Oncol* 2017; 47: 221–5.

24 Nakajima T, Yasufuku K, Saegusa F et al. Rapid on-site cytologic evaluation during endobronchial ultrasound-guided transbronchial needle aspiration for nodal staging in patients with lung cancer. *Ann Thorac Surg* 2013; 95: 1695–9.

25 Aleva RM, Kraan J, Smith M, ten Hacken NH, Postma DS, Timens W. Techniques in human airway inflammation: Quantity and morphology of bronchial biopsy specimens taken by forceps of three sizes. *Chest* 1998; 113: 182–5.

26 Loube DI, Johnson JE, Wiener D, Anders GT, Blanton HM, Hayes JA. The effects of forceps size on the adequacy of specimens obtained by transbronchial biopsy. *Am Rev Respir Dis* 1993; 148: 1411–3.

27 Kunimasa K, Tachihara M, Tamura D et al. Diagnostic utility of additional conventional techniques after endobronchial ultrasonography guidance during transbronchial biopsy. *Respirology* 2016; 21: 1100–5.

28 Izumo T, Sasada S, Chavez C, Tsuchida T. The diagnostic utility of endobronchial ultrasonography with a guide sheath and tomosynthesis images for ground glass opacity pulmonary lesions. *J Thorac Dis* 2013; 5: 745–50.

29 Ikezawa Y, Sukoh N, Shinagawa N, Nakano K, Oizumi S, Nishimura M. Endobronchial ultrasonography with a guide sheath for pure or mixed ground-glass opacity lesions. *Respiration* 2014; 88: 137–43.

30 Izumo T, Sasada S, Chavez C, Matsumoto Y, Tsuchida T. Radial endobronchial ultrasound images for ground-glass opacity pulmonary lesions. *Eur Respir J* 2015; 45: 1661–8.

31 Huang CT, Ho CC, Tsai YJ, Yu CJ, Yang PC. Factors influencing visibility and diagnostic yield of transbronchial biopsy using endobronchial ultrasound in peripheral pulmonary lesions. *Respirology* 2009; 14: 859–64.

32 Minezawa T, Okamura T, Yatsuya H et al. Bronchus sign on thin-section computed tomography is a powerful predictive factor for successful transbronchial biopsy using endobronchial ultrasound with a guide sheath for small peripheral lung lesions: A retrospective observational study. *BMC Med Imaging* 2015; 15: 21.

Supporting Information

Additional Supporting Information may be found in the online version of this article at the publisher’s website:

Table S1 The weight of beef specimens obtained using different forceps

Table S2 Meta-analyses of radial endobronchial ultrasound with a guide sheath guided transbronchial lung biopsy for the diagnosis of peripheral pulmonary lesions