The Obesity-Related Metabolic Gene HSD17B8 Protects Against Breast Cancer: High RNA/Protein Expression Means a Better Prognosis

Yunjung Nie
Fang Huang
Lihua Lou
Junbin Yan

Corresponding Author: Junbin Yan, e-mail: yanjunbin1102@163.com
Financial support: None declared
Conflict of interest: None declared

Background: The incidence of breast cancer is increasing annually. Obesity and metabolism are considered risk factors for breast cancer. Discovery of obesity- and metabolism-related breast cancer prognostic genes is imminent.

Material/Methods: We screened metabolism-related genes (MRG) from KEGG and downloaded the obese female dataset GSE151839 from GEO, which screened differentially-expressed genes (DEGs), seen as female obesity-related genes. The intersection of MRGs and DEGs was obesity-related metabolic genes (OMGs), verified by enrichment analysis. After downloading breast cancer data from TCGA, univariate Cox regression and log-rank analysis were used to screen hub OMGs related to breast cancer prognosis. ROC curve and Kaplan-Meier (KM) plotter, GEPIA, and GENT2 databases were used to verify the hub OMGs at the RNA level. CPTAC and HLA databases were used to verify the hub OMGs at the protein level.

Results: We screened 33 OMGs. The results of univariate Cox regression and log-rank analysis showed 3 of 33 OMGs (ABCA1, LPIN1, HSD17B8) were associated with the prognosis of breast cancer patients. After verification with ROC, KM-plotter, and GEPIA, only HSD17B8 was related to breast cancer prognosis (overall/disease-free survival). Results of GENT2 showed the RNA expression of HSD17B8 in breast cancer subtypes with poor prognosis is significantly lower than that with good prognosis. Results of CPTAC and HLA databases showed that the protein expression level of HSD17B8 in breast cancer tissues was significantly lower than that in adjacent normal tissues.

Conclusions: HSD17B8 is a protective gene against breast cancer. The higher the expression of HSD17B8, the better the prognosis of breast cancer patients.

Keywords: Biomarkers, Tumor • Breast Neoplasms • HSD17B8 Protein, Human • Overweight

Full-text PDF: https://www.medscimonit.com/abstract/index/idArt/934424
Background

Currently, breast cancer is the most common cancer worldwide and a significant cause of cancer death in females [1]. Breast cancer has also become the most common newly diagnosed cancer, with 2.3 million diagnosed pathologies in 2020 (11.7%) [2]. The incidence of breast cancer is increasing annually and the fatality rate remains high, reminding us to pay attention to the risk factors of breast cancer.

Recent studies have demonstrated that obesity (body mass index, BMI >30 kg/m²) is associated with higher risks of breast cancer [3,4]. Obesity dramatically increases the risk of death for breast cancer patients (35% to 40%) and the rate of metastasis [5,6]. A cohort study even directly confirmed that obese females (BMI >31.1 kg/m²) have a relative risk (RR) of breast cancer of 2.5 (95% CI, 1.6-3.3) compared with females with BMI <22.6 kg/m² [7].

Adipokines, biologically active hormones produced and secreted by adipose tissue, have multiple functions, including regulating metabolism, angiogenesis, and cell proliferation [8]. Adipokines may act as the bridge between obesity and breast cancer. Leptin, a crucial and common adipokine involved in regulating energy balance, whose level will elevate with the increase of BMI [9]. Diedonne et al found that high leptin level promotes the proliferation of MCF-7 cells (human breast cancer cells) through STAT3 and p42/p44 MAP kinase pathways [10]. Obese females always accompany abnormal hormone levels. High levels of circulating estrogen have been seen as the culprit for the high incidence of hormone-sensitive breast cancer, representing approximately 70% of all breast cancers [11,12]. In addition, there is a close relationship between obesity and metabolism. An increasing number of studies have confirmed the combined effects of obesity and metabolism on the onset of breast cancer [13]. The abnormal metabolism of obese patients can cause the proliferation and hypertrophy of adipocytes and metaflammation [14]. The latter is one of the most common risk factors for breast cancer. It is critical to achieve early diagnosis and improve the prognosis of breast cancer patients by screening obesity-related prognostic genes.

Therefore, we screened metabolism-related genes (MRGs) from the Kyoto Encyclopedia of Genes and Genomes (KEGG) database and literature in this study. Differentially-expressed genes (DEGs), also referred to as female obesity-related genes, were chosen from GSE151839, a gene set of obese females downloaded from the Gene Expression Omnibus (GEO) database. Genes at the intersection of the MRG and DEGs were regarded as obesity-related metabolic genes (OMGs) and were used for follow-up analysis. Next, we downloaded the TCGA-BRCA dataset from The Cancer Genome Atlas (TCGA) database and searched the expression of OMGs and clinical data. Univariate Cox regression and log-rank P analysis were used to screen out hub OMGs related to breast cancer prognosis. Kaplan-Meier (KM) plotter, Gene Expression Profiling Interactive Analysis (GEPIA), and Gene Expression database of Normal and Tumor tissues 2 (GENT2) databases were used to verify genes at the RNA level. The Clinical Proteomic Tumor Analysis Consortium (CPTAC) and the Human Protein Atlas project (HLA) databases were used to complete protein-level verifications. We found that 17-β-Hydroxysteroid dehydrogenase type 2 (HSD17B8) can help determine the prognosis of breast cancer patients. HSD17B8 is also a protective gene for breast cancer patients, and the higher its expression, the better the prognosis of breast cancer patients. Because the expression level of HSD17B8 (at both RNA and protein levels) is closely related to the prognosis and incidence of breast cancer, the result of DeLong’s test showed that HSD17B8 could be used as a biomarker of breast cancer. We boldly propose the hypothesis that HSD17B8 has the potential to serve as a clinical target gene for targeted therapy of breast cancer. However, more experiments are needed. The analysis process of the study is recorded in Figure 1.

Material and Methods

Public Databases and Software Used in the Study

The public databases, datasets, and software used in the study are displayed in Table 1.

Screening of Obesity-Related Metabolic Genes

We searched for metabolic pathways in the KEGG database, and processed the genes (Species: Homo sapiens) in the pathways as MRGs based on the literature.

We downloaded the obese females dataset GSE151839 from the Gene Expression Omnibus (GEO) database. Box plots and principal component analysis (PCA) plots were drawn to clarify whether the expression data were standardized and whether there were differences between the obesity and normal groups. P<0.05 and abs(logFC) >0.5 were used as the selection criteria of DEGs, which were seen as female obesity-related genes.

Genes at the intersection of MRGs and DEGs were regarded as metabolic genes related to obese females, which are called OMGs and were used for subsequent analysis. Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed on the upregulated and downregulated OMGs to determine whether the functions of the selected genes are related to metabolism.
Screening of OMGs Related to Breast Cancer Prognosis

We downloaded female breast cancer expression data (TCGA-BRCA) from the TCGA database, and performed log2 (exp+1) and standardization processing. Then, we screened the expression of OMGs and drew a PCA chart that was used to determine whether there was a difference between normal paracancerous samples and breast cancer samples.

Univariate Cox regression analysis was based on the expression of OMGs to screen the prognosis-related genes (PRG) of breast cancer patients (P<0.05). The prognosis of breast cancer patients was based on the survival status (death/alive) and overall survival. A hazard ratio (HR) value >1 suggested that a gene an OMG associated with poor prognosis; the higher the expression of the hazardous gene, the worse the prognosis of breast cancer patients. HR values less than 1 indicated the gene protects against breast cancer; the higher its expression, the better the prognosis of breast cancer patients.

Breast cancer patients were next divided into high- and low-expression groups according to the expression of OMGs (high-expression group: gene expression greater than the median expression; low-expression group: less than or equal to the median expression). Batch survival analysis of OMGs was calculated by log-rank P test to analyze the correlation between OMGs expression and overall survival of breast cancer patients. Genes with P values less than 0.05 were selected as survival-related genes (SRGs). Kaplan-Meier curves were drawn based on the results of log-rank P tests and were used to reflect patient survival status at different periods.

Univariate Cox regression and log-rank P test were used in survival analyses screen breast cancer prognosis-related genes, but the methods and focus differed. The HR obtained by univariate Cox regression could intuitively reflect the relationship between OMGs expression and the prognosis of patients. The log-rank P test combined with KM-plot better reflected the survival status of breast cancer patients in different periods. The intersection genes of PRGs and SRGs were considered hub OMGs related to breast cancer prognosis with extremely high reliability.

Verification the Accuracy Analysis Results and Secondary Screening

DeLong’s test and receiver operating characteristic (ROC) curves were used to verify the accuracy of selected hub OMGs in predicting the OS of breast cancer patients and determine whether the selected genes have potential as breast cancer biomarkers.

Figure 1. The analysis flow chart of the study.
The Kaplan-Meier plotter database, including the data of 1879 breast cancer patients with survival information, was used to draw Kaplan-Meier survival curves to assess whether the chosen hub OMGs are related to the OS of breast cancer patients.

In addition, to enhance the credibility of verification, the GEPIA database was used to draw the OS curves and disease-free survival (DFS) curves of the hub OMGs. DFS refers to the time from randomization to disease recurrence or patient death due to disease progression, and also was used to determine the prognosis of cancer patients.

Verification of the Relationship of Hub OMGs RNA Expression and Breast Cancer Subtypes Prognosis

We used GENT2, a database that provides options to research the differential expression and its prognostic significance based on tumor subtypes, to verify the expression of the chosen relationship of hub OMGs and breast cancer subtypes.

We first assessed whether there was a difference in the expression of the hub OMGs between breast cancer tissues and normal breast tissues, then we determined whether there were differences in the expression of the hub OMGs between different breast cancer subtypes. Finally, we explored whether differences in the expression of the above OMGs are related to breast cancer prognosis.

Verification of the Relationship of Hub OMGs Protein Expression and Breast Cancer

RNA verification for hub OMGs has been performed before, and to increase the accuracy of the results, confirmation at the protein level was carried out.
The immunochemical staining results of hub OMGs were extracted from the HLA database to clarify the location and expression of the selected hub OMGs in breast tissue.

In addition, we downloaded the protein expression of hub OMGs in the breast cancer tissues and adjacent normal tissues of breast cancer patients from the CPTAC database. Hub OMGs protein expression was compared between the normal breast tissue and breast cancer tissues to increase the credibility of the verification results.

The Relationship Between Clinical Characteristics and Hub OMGs

The breast cancer patients in the TCGA-BRCA dataset were grouped according to the stage, age, and progesterone receptor (PR). The stage group was divided into I, II, III, and IV. The age group was split into youth (<45), middle-aged (45-60), and elderly (>60). PR was divided into negative and positive groups. We sought to determine whether the expression of hub OMGs was significantly different in the above groups.

Statistical Analysis

The Wilcoxon test and Kruskal-Wallis test were used to screen for differential expression between groups. Univariate Cox regression analysis and log-rank P test (based on survival and survival outcome of patients) were performed to assess the relationship between genes and breast cancer prognosis. DeLong’s test was used to determine the accuracy of screened genes in predicting the prognosis of breast cancer patients and to clarify their potential as breast cancer biomarkers based on the survival outcome (death/alive). All statistical analyses were carried out using R software (4.1.0), and P<0.05 was considered to be statistically significant.

Results

Results of MRGs Screening

We chose 5 metabolic pathways in the KEGG database and combined some literature for screening MRGs. The number of MRGs examined from each path was as follows: Galactose metabolism (map00052), 31; Glycerolipid metabolism (map00611), 58; Cholesterol metabolism (map04979), 49; Fructose and mannose metabolism (map00051), 33; and Fatty acid metabolism (map01212), 55. After removal of 15 duplicated genes, a total of 211 MRGs were screened out (Supplementary Table 1).

Results of DEGs Screening

The GSE151839 dataset includes 40 samples from the skin and fat biopsies of 20 subjects (10 obese humans, 10 normal humans). We secondarily divided the dataset into fat (10 fat obese and 10 controls) and skin groups (10 skin obese and 10 controls) and separately screened for DEGs. Expression data were standardized (Supplementary Figure 1A). The PCA chart shows a difference between the obese and normal controls (Supplementary Figure 1B). Supplementary Figure 1 shows that the sequencing data of the GSE151839 dataset has been preprocessed, and there was a significant difference in gene expression between normal and obese samples, which was further analyzed. We finally found that 1132 genes in the fat group were upregulated in obese females and 573 were downregulated; in the skin group, 163 genes were upregulated in obese females compared with normal samples, and 737 genes were downregulated. MMP9, SPP1, EGFL6/CORIN, PRG4, and S100A7A were the 5 most upregulated genes in the fat/skin group. SLC27A2, RORB, SPX/CRISP3, AQP5, and HLA-DQA1 were the top 5 downregulated genes in the fat/skin group (Figure 2). Then, we united the upregulated DEGs and downregulated DEGs of skin and fat groups for follow-up analysis. The summary results showed that a total of 1261 genes were upregulated in obese females and 1244 genes were downregulated (Figure 3A, 3B). Supplementary Table 2 provides full information on DEGs.

Results of OMGs Screening

MRGs and DEGs had 33 overlapping genes (Figure 3C, 3D), which were regarded as OMGs. Among them, 9 OMGs were upregulated in obese females and 24 OMGs were downregulated (Table 2).

The results of GO enrichment analysis showed that the gene function of the upregulated OMGs was mainly related to triglyceride metabolism and the function of the downregulated OMGs was primarily associated with the metabolism of fatty acids (Figure 4A). The results of KEGG enrichment analysis indicated the signaling pathways most related to the OMGs were Glycerolipid metabolism, Cholesterol metabolism, Fatty acid metabolism, and Fructose and mannose metabolism, all of which are associated with metabolism (Figure 4B). The enrichment results all suggested the 33 OMGs previously screened were indeed genes related to metabolism, and the screening results were reliable.

Results of Screening Breast Cancer Prognosis-Related OMGs

In TCGA-BRCA dataset, there were 112 normal paracancerous samples and 1096 tumor (breast cancer) samples. The PCA
Figure 2. Volcano plots of GSE151839. (A) DEGs of Fat group. (B) DEGs of Skin group.

Figure 3. Venn plots of union DEGs/intersection OMGs. (A) The union of upregulated DEGs. (B) The union of downregulated DEGs. (C) The upregulated OMGs. (D) The downregulated OMGs.
Table 2. Differential expression of metabolic genes in overweight females.

Symbol	Description	logFC	P value	Change
AKR1B10	Aldo-keto reductase family 1 member B10	1.12065346	0.000140961	Up
NCEN1	Neutral cholesterol ester hydrolase 1	1.16459432	0.000390202	Up
TIGAR	TP53 induced glycolysis regulatory phosphatase	0.71840370	0.000360012	Up
LIPG	Lipase G, endothelial type	0.558457824	0.001108886	Up
ELOVL7	ELOVL fatty acid elongase 7	0.640466036	0.00251885	Up
GK	Glycerol kinase	0.71511346	0.004721303	Up
PFKFB4	Fructose-2,6-biphosphatase 4	0.564762169	0.017233125	Up
DGKI	Diacylglycerol kinase iota	0.514214866	0.021602233	Up
MYLIP	Myosin regulatory light chain interacting protein	0.648838071	0.028529275	Up
PMM1	Phosphomannomutase 1	-0.928028738	2.15E-06	Down
GPAT3	Glycerol-3-phosphate acyltransferase 3	-2.032708972	2.32E-06	Down
LPIN1	Lipin 1	-0.915227095	6.29E-06	Down
HADH	Hydroxyacyl-CoA dehydrogenase	-0.824220026	7.15E-06	Down
HSD17B8	Hydroxy steroid 17-beta dehydrogenase 8	-0.558910078	1.6E-05	Down
TECR	Trans-2,3-enoyl-CoA reductase	-0.612995545	4.77E-05	Down
APOB	Apolipoprotein B	-1.656658531	8.31E-05	Down
FASN	Fatty acid synthase	-1.381302903	8.53E-05	Down
GLYCTK	Glycerate kinase	-1.056885781	0.000167152	Down
APOE	Apolipoprotein E	-1.356452072	0.000230256	Down
PFKFB1	Fructose-2,6-biphosphatase 1	-0.881339318	0.000271712	Down
CETP	Cholesteryl ester transfer protein	-1.620684825	0.000516983	Down
ABCA1	ATP binding cassette subfamily A member 1	-0.606674508	0.00083253	Down
DGAT1	Diacylglycerol O-acyltransferase 1	-0.7115092	0.000826011	Down
ACACA	Acetyl-CoA carboxylase alpha	-0.585703299	0.001444855	Down
PNPLA2	Patatin like phospholipase domain containing 2	-0.652268006	0.001543928	Down
MOGAT1	Monoacylglycerol O-acyltransferase 1	-1.00537259	0.00161725	Down
ACADL	Acyl-CoA dehydrogenase long chain	-0.654461844	0.001623612	Down
SLC25A1	Solute carrier family 25 member 1	-0.64655005	0.001744174	Down
AGPAT2	1-acylgerol-3-phosphate O-acyltransferase 2	-0.513983662	0.002620186	Down
ELOVL5	ELOVL fatty acid elongase 5	-0.581297983	0.005167587	Down
ELOVL3	ELOVL fatty acid elongase 3	-0.800030769	0.01247301	Down
PLPP4	Phospholipid phosphatase 4	-0.639638082	0.028326607	Down
PNPLA3	Patatin like phospholipase domain containing 3	-0.628606799	0.041133434	Down
Figure 4. The enrichment analysis results. (A) GO enrichment results of OMGs. (B) KEGG enrichment results of OMGs.
A chart showed noticeable component differences between normal paracancerous tissues and breast cancer tissues, suggesting significant differences in gene expression between the 2 types of tissues (Supplementary Figure 2).

Further screening of the clinical data of breast cancer patients showed that 1018 samples out of 1096 tumor samples had corresponding clinical information (Supplementary Table 3). Among them, there were 915 patients alive and 103 patients died. Next, the patients were grouped according to the median age of 58 years old: those age ≤58 years were assigned to the young group (n=517) and those age >58 years were assigned to the older group (n=501). The average age of the above sample was 58 years. We also sorted out the data of patients with PR (positive/negative) and tumor stages (I/II/III/IV). Kaplan-Meier plotting showed that the OS of breast cancer patients was influenced by age, stage, and PR. Older age, more severe cancer stages, and being PR-negative were associated with worse prognosis of breast cancer patients (Figure 5A-5C).

Univariate Cox regression analysis showed that in the 33 OMGs only 15 genes were related to breast cancer prognosis (P<0.05) (Figure 6A). A total of 11 OMGs (ABCA1, AGPAT2, APOB, CETP, DGAT1, ELOVL3, GPAT3, HADH, LPIN1, MOGAT1, and PFKFB1)
were risk genes for breast cancer (hazard ratio, HR>1); the higher expression of the above genes, the worse the prognosis of breast cancer patients. APOE, GK, HSD17B8, and PLPP4 were the protective genes of breast cancer (HR<1) (Table 3).

The results of log-rank P test showed ABCA1, LPIN1, ACACA, and HSD17B8 are related to the OS of breast cancer patients (P<0.05) (Table 4). ABCA1, LPIN1, and HSD17B8 were intersection genes of 15 PRGs and 4 SRGs (Figure 6B, 6C). The patients with low expression of ABCA1 and LPIN1 had longer survival times and better survival status. On the contrary, breast cancer patients with high expression of HSD17B8 had better OS. Therefore, we propose a preliminary hypothesis: obesity-related metabolic genes ABCA1, LPIN1, HSD17B8 may be the hub OMGs for breast cancer patients. Corresponding verifications were needed.

Results of Verifications from RNA Level

Through DeLong’s test, we found that in predicting the survival outcome of breast cancer patients, HSD17B8 had better diagnostic power than LPIN1 (P<0.01) and ABCA1 (P<0.001); LPIN1 had better diagnostic power than ABCA1, but the results were not statistically significant (P>0.05). The range of area under the ROC curve (AUC) was between 0.5 and 1. AUC values closer to 1 indicated higher accuracy of the detection method; the closer to 0.5, the lower the accuracy and the lower the application value. **Supplementary Figure 3** shows that in the above genes, only HSD17B8 had an AUC value greater than 0.6, indicating that the expression of HSD17B8 may be useful in predicting the prognosis of breast cancer patients (death/alive) and has potential as a breast cancer prognosis biomarker.

KM-plotter database verification results showed that only the expression of HSD17B8 was related to the OS of breast cancer patients (P<0.05); the higher the expression of HSD17B8, the better the prognosis (Figure 7). The GEPIA database also showed that only the expression of HSD17B8 was correlated with the OS and DFS of breast cancer patients.
patients ($P < 0.05$). In addition, HR was less than 1, which further confirmed that HSD17B8 is a breast cancer protective gene (Figure 8).

The results of the GENT2 database showed that the expression of HSD17B8 in breast cancer tissues was significantly lower than that of normal tissues ($P < 0.001$) (Figure 9A). The expression of HSD17B8 also differed significantly among different breast cancer subtypes. In subtypes with worse prognosis, the expression of HSD17B8 was lower. Compared with patients with luminal breast cancer, which has a better prognosis, the expression of HSD17B8 in patients with poor prognoses, such as basal, HER2, and triple-negative breast cancer (TNBC), was significantly reduced ($P < 0.001$) (Figure 9B).

Table 3. Information on prognostic MRGs.

Symbol	Description	Logrank p	Function	Ref
ABCA1	ATP binding cassette subfamily A member 1	0.009596834	Molecular transport	[24,25]
LPIN1	Lipin 1	0.012375531	Fatty acid metabolism	[26]
ACACA	Acetyl-CoA carboxylase alpha	0.025573737	Fatty acid metabolism	[27]
HSD17B8	Hydroxysteroid 17-beta dehydrogenase 8	0.034262944	Estrogen and androgen synthesis	[28]

Table 4. Results of long-rank P test of MRGs.

Symbol	Description	Logrank p	Function	Ref
ABCA1	ATP binding cassette subfamily A member 1	0.009596834	Molecular transport	[24,25]
LPIN1	Lipin 1	0.012375531	Fatty acid metabolism	[26]
ACACA	Acetyl-CoA carboxylase alpha	0.025573737	Fatty acid metabolism	[27]
HSD17B8	Hydroxysteroid 17-beta dehydrogenase 8	0.034262944	Estrogen and androgen synthesis	[28]

Results of Verifications from Protein Level

The results of immunochemical staining showed that the expression of HSD17B8 in normal tissues was higher than that in lobular breast cancer and ductal breast cancer tissues. Moreover, HSD17B8 was highly expressed in glandular cells, myoepithelial cells of normal tissues, but had almost no expression in adipocytes (Figure 10A-10C).

Download the HSD17B8 protein expression levels of breast cancer patients from the CPTAC database showed a total of 133 tumor samples and 18 adjacent normal samples (from 125 breast cancer patients, among them, 18 breast cancer patients provided normal adjacent tissue). The difference in the expression of HSD17B8 between normal adjoining breast tissues and breast cancer tissues was compared. The results showed that in normal adjacent tissues, the protein expression...
of HSD17B8 was much higher than that in breast cancer tissues \((P<0.001)\) (Figure 10D).

Correlations Between Clinical Characteristics and HSD17B8

The TCGA-BRCA dataset has a total of 1018 breast cancer patients’ age information, which were divided into the youth group \((n=150)\), the middle-aged group \((n=417)\), and the elderly group \((n=451)\). Excluding 22 patients without stage information, the remaining 996 patients were divided into stages I \((n=177)\), II \((n=566)\), III \((n=234)\), and IV \((n=19)\). Among 1018 breast cancer patients, 43 patients with unknown PR status were excluded, leaving 975 patients. These 975 patients were divided into the PR-positive group \((n=650)\) and PR-negative group \((n=325)\) (Table 5). The Kruskal-Wallis test was used to assess differences in expression of HSD17B8 among age and cancer stage groups. The Wilcoxon test was used to detect differences in the expression of HSD17B8 between the PR-negative group and PR-positive group. The analysis results showed that the expression of HSD17B8 in the elderly group was significantly higher than that in the middle-aged group \((P<0.05)\), but there were no significant differences among the...
Figure 8. The verification results of GEPIA database. (A) The Kaplan-Meier survival curve of OS, DFS, and ABCA1 expression. (B) The Kaplan-Meier survival curve of OS, DFS, and LPIN1 expression. (C) The Kaplan-Meier survival curve of OS, DFS, and HSD17B8 expression.
other age groups. We found no significant difference in the expression of HSD17B8 among the cancer-stage groups. In the PR groups, we found that the expression of HSD17B8 in the PR-positive group was significantly higher than that in the PR-negative group ($P < 0.001$) (Figure 11). We found that the HSD17B8 gene protects against breast cancer. Higher HSD17B8 RNA/protein expression was associated with better prognosis of breast cancer patients. High expression of HSD17B8 may be the reason why PR-positive breast cancer patients had a better prognosis than PR-negative patients.

Discussion

Systemic treatment of breast cancer has mainly consisted of chemotherapy, immunotherapy, and targeted therapy, but some corresponding adverse effects or other disadvantages are inevitable. Because of the high sensitivity of breast cancer cells to chemotherapy drugs, chemotherapy has become an important tool at all stages of breast cancer. Capecitabine, a chemotherapeutic drug most commonly used clinically, can significantly improve the OS and DFS of breast cancer patients [29]. However, chemotherapy is prone to drug resistance and severe adverse reactions. Long-term use of Capecitabine greatly increases the prevalence of grade 3/4 diarrhea and hand-foot syndrome [30]. Programmed death-1 (PD-1) and programmed death-ligand 1 (PD-L1) inhibitors are well-known drugs (combined with PD-1/PD-L1) in immunotherapy that can promote T lymphocytes to recognize and kill tumor cells and reduce the immune escape ability of cancer cells [31]. PD-1/PD-L1 immunotherapy has few adverse effects but has more significant limitations. Since breast cancer is classified as a non-immunogenic tumor, not all breast cancer subtypes are suitable for immunotherapy.
Normal cells and tumor cells differ in expression of many genes, and these differences can be used as targets. Targeted therapy uses molecularly targeted drugs to regulate these targets and block the signal transduction of tumor cells, thereby inhibiting or killing tumor cells. The cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitor Palbociclib (PD0332991) can inhibit CDK4/6 activity, blocking tumor cell proliferation [32]. Many clinical trials have confirmed that the use of Palbociclib can significantly improve the OS of breast cancer patients [33,34]. Targeted therapy has received increasing attention for its advantages of few adverse effects and strong efficacy. The focus of research on targeted therapy development has been to find target genes related to the onset, treatment, and prognosis of cancer and to develop drugs targeting specific genes.

In the present study, we used the data of public databases GEO and TCGA to preliminarily screen out the 3 obesity-related metabolic genes (ABCA1, LPIN1, and HSD17B8) related to the prognosis of breast cancer patients, but only HSD17B8 has passed the secondary verifications. HSD17B8 is associated with the prognosis of breast cancer patients and it is also a protective gene. The higher the RNA/protein expression of HSD17B8 in breast cancer patients, the better the prognosis. The expression of HSD17B8 in breast cancer subtypes with poor prognoses, such as TNBC, basal-like breast cancer (BLBC), and HER2 breast cancer, were all significantly lower than those with better prognosis, such as Luminal A and Luminal B breast cancer. We also found that the expression of HSD17B8 in the progesterone receptor (PR)-positive group was significantly higher than that in the negative group. The
increased expression of HSD17B8 means a better prognosis, suggesting that PR-positive breast cancer patients tend to have a better prognosis. In clinical practice, the prognosis of PR-positive breast cancer patients is indeed better than that of PR-negative patients, suggesting that high expression of HSD17B8 is one of the reasons PR-positive patients tend to have a better prognosis.

Obesity is closely related to abnormal fatty acid synthesis. Cells contain 2 fatty acid synthesis systems, one in the cytoplasm (catalyzed by fatty acid synthase) and the other in the mitochondria (mitochondrial fatty acid synthesis [mtFAS]) [35]. HSD17B8 is the crucial enzyme in the mtFAS pathway [36]. Zeng et al found that compared with normal mice, the expression of HSD17B8 in the liver and muscle of obese mice was significantly different, which can result in abnormal mtFAS. Extensive targeted lipidomics analysis has been used to reveal that lipid changes in mtFAS-deficient cells is manifested as an accumulation of triglycerides, which causes obesity [37]. Therefore, undoubtedly, HSD17B8 is the gene related to obesity.

Additionally, HSD17B8, a metabolic gene and the isomer of the HSD17B enzyme, regulates the concentration of biologically active estrogens and androgens. Male sex hormones (androgens) are estrogen receptor (ER)-positive. Clinically, ERs antagonists (such as tamoxifen) are often used as an effective therapy for breast cancer [43]. However, in the present study, we did not clarify whether there is an interaction between HSD17B8 and ERs, so more in-depth research is necessary.

Table 5. Clinical information of breast cancer patients.

Clinicopathological characteristic	Number (%)	Mean exp SD	SE
Stage (n=996)			
I	177 (17.8%)	6.473 1.059	0.08
II	566 (56.8%)	6.405 1.068	0.045
III	234 (23.5%)	6.613 0.888	0.058
IV	19 (1.9%)	6.516 1.035	0.237
Progesterone receptor (n=975)			
Negative	325 (33.3%)	5.915 1.226	0.068
Positive	650 (66.7%)	6.721 0.804	0.032
Age (n=1018)			
The youth (<45)	150 (14.7%)	9.438 1.011	0.083
The middle aged (45-60)	417 (41.0%)	9.33 1.105	0.054
The elderly (>60)	451 (44.3%)	9.529 1.098	0.052

The obesity-related metabolic gene HSD17B8…
Cortés-Benítez et al found that regulating the expression of 17 beta-hydroxysteroid dehydrogenase type 3 (HSD17B3) helps to improve the metabolic stability and cytotoxicity of breast cancer cells [46]. 17 beta-hydroxysteroid dehydrogenase type 7 (HSD17B7) has also been proven to be a therapeutic target for breast cancer [47,48]. The above HSD17B enzyme isomers both are seen as breast cancer therapeutic targets, further supporting that HSD17B8, which is also an enzyme isoform of HSD17B, may also become a new breast cancer treatment target.

The present study provides a reference for the follow-up study of breast cancer with metabolism and obesity. Although we only used data from public databases for analysis, the analyzed data were selected from multiple databases. The results have passed various verifications, which guarantees a high level of reliability of the results. In addition, mining the published data again and obtaining valuable information from it also enables the data to be used twice, which increases the value of the data. The lack of in vivo/in vitro verification is a limitation of the present study, but we firmly believe that the screening results of the study are reliable, and subsequent experiments are in progress.

Conclusions

(1) As an obesity-related metabolic gene, HSD17B8 can accurately predict breast cancer patient prognosis. (2) HSD17B8 protects against breast cancer. The higher the RNA/protein expression of HSD17B8, the better the prognosis of breast cancer patients.

Declaration of Figures’ Authenticity

All figures submitted have been created by the authors, who confirm that the images are original with no duplication and have not been previously published in whole or in part.

Supplementary Materials

Supplementary Table 1. Metabolism-related genes.
Supplementary Table 2. The DEGs of GSE151839.
Supplementary Table 3. The clinical data of the TCGA-BRCA dataset.
Supplementary Tables 1-3 available from the corresponding author on request.
Supplementary Figure 1. Data preprocessing of GSE151839, indicating that the processed data can be directly used for subsequent analysis. (A) Boxplot plots of data. (B) Principal components analysis (PCA) plots.
Supplementary Figure 2. The PCA plot of OMG expression in TCGA-BRCA dataset showed the gene expression difference between normal para-cancer tissues and cancer tissues.

Supplementary Figure 3. Receiver operating characteristic (ROC) curve used to verify whether screened genes can predict death/alive in breast cancer patients.

References:

1. Garcia-Estevez L, Moreno-Bueno G. Updating the role of obesity and cholesterol in breast cancer. Breast Cancer Res. 2019;1(21):35
2. Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Cancer J Clin. 2021;3(17):209-49
3. Picon-Ruiz M, Morata-Tarifa C, Valle-Goffin JJ, et al. Obesity and adverse breast cancer risk and outcome: Mechanistic insights and strategies for intervention. Cancer J Clin. 2017;56(6):378-97
4. Jones LW, Fels DR, West M, et al. Modulation of circulating angiogenic factors and tumor biology by aerobic training in breast cancer patients receiving neoadjuvant chemotherapy. Cancer Prev Res (Philadelphia). 2013;9(6):925-37
5. Ralnerspong S, Goodwin PJ. Obesity and breast cancer prognosis: evidence, challenges, and opportunities. J Clin Oncol. 2016;35(34):4203-16
6. Barone I, Giordano C, Bonofiglio D, et al. The weight of obesity in breast cancer progression and metastasis: Clinical and molecular perspectives. Semin Cancer Biol. 2020;60(0):274-84
7. Morimoto LM, White E, Chen Z, et al. Obesity, body size, and risk of postmenopausal breast cancer: The Women’s Health Initiative (United States). Cancer Causes Control. 2002;8(13):741-51
8. Tilm H, Moschen AR. Adipocytokines: Mediators linking adipose tissue, inflammation and immunity. Nat Rev Immunol. 2006;10(6):772-83
9. Khoramipour K, Chamari K, Hekmatikar AA, et al. Adiponectin: Structure, physiological functions, role in diseases, and effects of nutrition. Nutrients. 2021;14(13):1180
10. Dieudonne MN, Machinal-Quelin F, Serazin-Leroy V, et al. Leptin mediates a proliferative response in human MCF7 breast cancer cells. Biochem Biophys Res Commun. 2002;1(293):622-28
11. Toniollo P G. Endogenous estrogens and breast cancer risk: The case for prospective cohort studies. Environ Health Perspect. 1997;1(105 Suppl 3):587-92
12. Kaaks R, Rinaldi S, Key TJ, et al. Postmenopausal serum androgens, oestrogens and breast cancer risk: The European prospective investigation into cancer and nutrition. Endocr Relat Cancer. 2005;4(12):1071-82
13. Wang L, Zhang S, Wang X. The metabolic mechanisms of breast cancer metastasis. Front Oncol. 2020;10:602416
14. Zhang F, Liu S. Mechanistic insights of adipocyte metabolism in regulating breast cancer progression. Pharmacol Res. 2020;155:104741
15. Walker JM, Garect S, Alemán IQ, et al. Obesity and ethnicity alter gene expression in skin. Sci Rep. 2020;1(10):14079
16. Nagy Á, Munkácsy G, Gýörfi B. Pancancer survival analysis of cancer hallmark genes. Sci Rep. 2021;1(11):6047
17. Tang Z, Li C, Kang B, et al. GEPIA: A web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 2017;W1(45):W98-102
18. Park SJ, Yoon BH, Kim SK, et al. GENT2: An updated gene expression database for normal and tumor tissues. BMC Med Genomics. 2019;12(Suppl 5):101
19. Mertins P, Mani DR, Ruggles KV, et al. Proteogenomics connects somatic mutations to signalling in breast cancer. Nature. 2016;7605(534):55-62
20. Navani S. Manual evaluation of tissue microarrays in a high-throughput research project: The contribution of Indian surgical pathology to the Human Protein Atlas (HPA) project. Proteomics. 2016;8(16):1266-70
21. Ritchie ME, Phipson B, Wu D, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;7(14):e47
22. Yu G, Wang LG, Han Y, et al. clusterProfiler: An R package for comparing biological themes among gene clusters. Omics. 2012;5(16):284-87
23. Robin X, Turck N, Hainard A, et al. pROC: An open-source package for R and S-Plus to analyze and compare ROC curves. BMC Bioinformatics. 2011;12:77
24. Quazi F, Molday RS: Differential phospholipid substrates and directional transport by ATP-binding cassette proteins ABCA1, ABCA7, and ABCA4 and disease-causing mutants. J Biol Chem. 2013;288(48):34414-26

25. Marcil M, Brooks-Wilson A, Clea SM et al: Mutations in the ABC1 gene in familial HDL deficiency with defective cholesterol efflux. Lancet. 1999;354(9187):1341-46

26. Han GS, Carman GM: Characterization of the human LPIN1-encoded phosphatidate phosphatase isoforms. J Biol Chem. 2010;285(19):14628-38

27. Hunkeler M, Hagmann A, Stuttfield E et al: Structural basis for regulation of human acetyl-CoA carboxylase. Nature. 2018;558(7710):470-74

28. Ohno S, Nishikawa K, Honda Y et al: Expression in E. coli and tissue distribution of the human homologue of the mouse Ke 6 gene, 17beta-hydroxysteroid dehydrogenase type 8. Mol Cell Biochem. 2008;309(1-2):209-15

29. Masuda N, Lee SJ, Ohtani S et al: Adjuvant capecitabine for breast cancer after preoperative chemotherapy. N Engl J Med. 2017;376(22):2147-59

30. Natori A, Ethier JL, Amir E et al: Capecitabine in early breast cancer: A meta-analysis of randomised controlled trials. Eur J Cancer. 2017;77:40-47

31. Kim JM, Chen DS: Immune escape to PD-L1/PD-1 blockade: Seven steps to success (or failure). Ann Oncol. 2016;27(1):209-15

32. Clark AS, Karasic TB, DeMichele A et al: Palbociclib (PD0332991)-a selective and potent cyclin-dependent kinase inhibitor: A review of pharmacodynamics and clinical development. JAMA Oncol. 2016;2(2):253-60

33. Turner NC, Slamon DJ, Ro J et al: Overall survival with palbociclib and fulvestrant in advanced breast cancer. N Engl J Med. 2016;375(19):1925-36

34. Finn RS, Martin M, Rugo HS et al: Palbociclib and letrozole in advanced breast cancer. N Engl J Med. 2018;379(19):1926-36

35. Nowinski SM, Solmonson A, Rusin SF et al: Mitochondrial fatty acid synthesis to facilitate breast cancer treatment. J Steroid Biochem Mol Biol. 2021;214:105963