Algebraic Structures of $N=(4,4)$ and $N=(8,8)$ SUSY Sigma Models on Lie groups and SUSY WZW Models

M. Aali-Javanangrouha, A. Rezaei-Aghdam a

aDepartment of Physics, Faculty of science, Azarbaijan Shahid Madani University
53714-161, Tabriz, Iran

February 25, 2014

Abstract
In this study, algebraic structures of the $N=(4,4)$ and $N=(8,8)$ SUSY two dimensional sigma models on Lie groups (in general) and the $N=(4,4)$ and $N=(8,8)$ SUSY WZW models (in special) are obtained. These algebraic structures are reduced to the Lie bialgebraic structures as for the $N=(2,2)$ case; with the difference that there is a one 2-cocycle for the $N=(4,4)$ case and two 2-cocycles for the $N=(8,8)$ case. Some examples are investigated.

1 Introduction
Supersymmetric two dimensional nonlinear sigma models have important role in theoretical and mathematical physics such as their numerous string applications. Let us have a short bibliography for this subject. The relation between these theories and geometry of the target spaces have been studied about thirty five years ago [1]. The biHermitean geometry of the target spaces of the $N=2$ extended supersymmetric sigma models was first realized in [2] (see also [3]). Then the extensions to more supersymmetries $N=4$ and $N=8$ have been investigated [4] (see also [5]). The sigma models with extended supersymmetry can only be defined on a restricted class of target manifolds, more supersymmetry implies more restriction on these geometries [5]. The extended supersymmetric sigma models on Lie group manifolds and also SUSY WZW models have been studied in [6]. The $N=2$ and $N=4$ extended superconformal field theories in two dimensions and also their correspondence with Manin triples have been investigated in [7] and [8]. Also there are some notes about $N=8$ superconformal field theory in [9]. The algebraic study of $N=(2,2)$ SUSY WZW models and also $N=(2,2)$ SUSY sigma models on Lie groups (algebraic biHermitian structures) have been studied in [9] and [10], respectively.

In this paper, we try to obtain the algebraic structures of $N=(4,4)$ and $N=(8,8)$ SUSY sigma models on Lie groups (in general) and the algebraic structures of SUSY WZW models (especially).

The outline of the paper is as follows: in section two, we review the $N=(2,2)$ SUSY sigma models on Lie groups and their algebraic biHermitian structures [10] as well as SUSY WZW models and their correspondence to Manin triples. Then in section three, we obtain the algebraic bihypercomplex structures for the $N=(4,4)$ SUSY sigma models on Lie groups and specially for the $N=(4,4)$ SUSY WZW models. We show their correspondence to Lie bialgebra with one 2-cocycle, at the end of this section we give an example. Finally in section four the algebraic structure of the $N=(8,8)$ two dimensional SUSY sigma models on Lie group is investigated and show that for the $N=(8,8)$ SUSY WZW models these algebraic structure is the Manin triples with two 2-cocycles, an example is given at the end of this section.

*e-mail: aali@azaruniv.edu

†Corresponding author. e-mail: rezaei-a@azaruniv.edu
2 \(N = (2, 2) \) SUSY sigma models on Lie groups and SUSY WZW models

In this section, for self containing of the paper we will review briefly the geometric description of the \(N = (2, 2) \) SUSY WZW and sigma-models on Lie groups [2]-[6] and their algebraic structures [9],[10]. We will use the \(N = (1, 1) \) action to the description of \(N = (2, 2) \) model; and impose extended supersymmetry on the superfields. With the knowledge that \(N \) supersymmetric sigma-models have \(N \) supersymmetric generator \((Q_i) \) and \(N - 1 \) complex structures \((J_i) \) on manifolds \(M \) such that for \(N = (p, q) \) SUSY sigma-models in two-dimension then we will have \(p \) right-handed generators \((Q^+_{\pm}) \) and \(q \) left-handed generators \((Q^-_{\pm}) \) respectively, then \(N = (1, 1) \) SUSY sigma model have one right-handed generators \((Q^+_{\pm}) \) and one left-handed generators \((Q^-_{\pm}) \) and the action on the manifold \(M \) is written as follows [2]:

\[
S = \int d^2 \sigma d^2 \theta D_\Phi \Phi \mu D_\mu \Phi (G_{\mu\nu}(\Phi) + B_{\mu\nu}(\Phi)),
\]

such that this action is invariant under the following supersymmetry transformation:

\[
\delta_1(\epsilon) \Phi^\mu = i(\epsilon^+ Q^+ + \epsilon^- Q^-) \Phi^\mu,
\]

where \(\Phi^\mu \) are \(N = 1 \) superfields; so that their bosonic parts are the coordinates of the manifold \(M \). Further more the bosonic parts of the \(G_{\mu\nu}(\Phi) \) and \(B_{\mu\nu}(\Phi) \) are metric and antisymmetric tensors on \(M \) respectively. Note that in the above relations \(Q^\pm \) and \(D^\pm \) are supersymmetry generators and superderivative, respectively and \(\epsilon^\pm \) are parameters of supersymmetry transformations. The above action has also invariant under the following extended supersymmetry transformation [2]:

\[
\delta_2(\epsilon) \Phi^\mu = \epsilon^+ D_+ \Phi \mu J^\mu_{\nu,\rho}(\Phi) + \epsilon^- D_\Phi \Phi ^\mu J^\mu_{\nu,\rho},
\]

where \(J^\mu_{\nu,\rho} \in TM \otimes T^* M \). The consequence of invariance of the action (1) under the above transformations are the following conditions on \(J^\mu_{\nu,\rho} [2] \):

\[
J^\mu_{\pm,\pm} = -\delta^\mu, \quad J^\mu_{\pm,\pm} G_{\mu\nu} = -G_{\mu\nu} J^\mu_{\pm,\pm}, \quad \nabla^\pm_{\rho} J^\mu_{\pm,\pm} = J^\mu_{\pm,\pm,\rho} + G^\pm_{\rho\sigma} J^\mu_{\pm,\pm} - \Gamma^\pm_{\rho\sigma} J^\mu_{\pm,\pm} = 0,
\]

where the extended connections \(\Gamma^\pm_{\rho\sigma} \) have the following forms:

\[
\Gamma^\pm_{\rho\sigma} = \Gamma^\rho_{\rho\sigma} \pm G^\mu_{\rho\sigma} H_{\rho\sigma\mu},
\]

such that

\[
H_{\rho\sigma\mu} = \frac{1}{2}(B_{\rho\sigma,\mu} + B_{\rho\sigma,\mu} + B_{\sigma,\mu,\rho}),
\]

and \(\Gamma^\rho_{\rho\sigma} \) are Christofel symbols.

In order to have a closed supersymmetry algebra we must have the integrability condition on the complex structures \((J^\pm) \) as follows [2]:

\[
N^\rho_{\mu\nu}(J^\pm) = J^\gamma_{\rho\nu} \partial_{\gamma} J^\mu_{\pm,\pm} - J^\sigma_{\mu\nu} \partial_{\sigma} J^\rho_{\pm,\pm} = 0.
\]

In this manner the \(N = (2, 2) \) SUSY structure of the sigma model on \(M \) is equivalent to existence of the biHermitian complex structure \((J^\pm) \) on \(M \) such that their covariant derivatives with respect to extended connection \(\Gamma^\pm_{\rho\sigma} \) are equal to zero (6). If \(M \) is a Lie group \(G \) then in the non-coordinate bases, we have:

\[
G_{\mu\nu} = L^A_{\mu} L^B_{\nu} G_{AB} = R^A_{\mu} R^B_{\nu} G_{AB}, \quad f_{AB}^C = L^C_{\nu} (L^A_{\mu} \partial_{\mu} L^B_{\nu} - L^B_{\mu} \partial_{\mu} L^A_{\nu}) = -R^A_{\nu} (R^B_{\mu} \partial_{\mu} R^C_{\nu} - R^C_{\nu} \partial_{\mu} R^B_{\nu}),
\]
where G_{AB} is the ad-invariant nondegenerate metric and H_{ABC} is antisymmetric tensor on the Lie algebra \mathfrak{g} of the Lie group G. Note that $L^\mu_A(R^\nu_A)$ and $L^\mu_A(R^\rho_A)$ are components of left(right) invariant one-forms and their inverses on the Lie group G; f_{ABC} are structure constants of the Lie algebra \mathfrak{g} and J_B^A is an algebraic map $J : \mathfrak{g} \to \mathfrak{g}$ or algebraic complex structure. Now, using the above relations and the following relations for the covariant derivative of the left invariant veilbin [11]:

\[
\nabla^\rho L^\eta_A = -\frac{1}{2}[f^{\rho(\eta)}_A + f^{\eta \rho}_A - T^{(\eta)}_A - T^{\eta \rho}_A - L^{\eta B} \nabla^\rho G_{BA} + L^{\rho B} \nabla^\eta G_{AB} + L^{(\eta A}_A L^B \nabla_A G^{AB}],
\]

then, we have the following algebraic relations, for the bi-Hermitian geometry of the $N = (2, 2)$ SUSY sigma models [10]:

\[
G_{\chi A} = (\chi A G)^t,
\]

\[
J_C^B J_B^A = -\delta_C^A,
\]

\[
J_C^A G_{AB} J_B^D = G_{CD},
\]

\[
H_{EFG} = J_E^A J_F^C H_{ACG} + J_G^A J_E^C H_{ACP} + J_F^A J_G^C H_{ACE},
\]

\[
(\chi_A + \chi A G) J = [(\chi_A G + H_A) J]^t,
\]

where $(\chi_A)_{BC} = -f_{ABC}$ are the matrices in the adjoint representation and we have $(H_A)_{BC} = H_{ABC}$ for the matrices H_A. Note that relation (15) represents the ad-invariance of the Lie algebra metric G_{AB}. One can use relation (15)-(19) as a definition of algebraic bi-Hermitian structure on Lie algebra [10]; and calculate and also classify such structures on the Lie algebras [10]. For the $N = (2, 2)$ SUSY WZW models we have $H_{ABC} = f_{ABC}$; then (19) automatically satisfy and from (16) we obtain the determinant of J^2 is $(-1)^n$, i.e the dimension of the Lie algebra \mathfrak{g} (n) must be even and J^B_A has eigenvalues $\pm i$. If we choose a basis $T_A = (T_a, T_\bar{a})$ for the Lie algebra \mathfrak{g} we will have [9]:

\[
J = \begin{pmatrix}
 0 & 0 \\
 i \delta_b^a & 0 \\
 0 & -i \delta_b^a
\end{pmatrix},
\]

where this form of J is satisfying in (18). In this basis according to (17) we must have the following form for G_{AB}:

\[
G = \begin{pmatrix}
 0 & g \\
 g^t & 0
\end{pmatrix},
\]

where g is a $\frac{n}{2} \times \frac{n}{2}$ symmetric matrix. According to (18), we have $f_{abc} = 0$ and $f_{\bar{a} \bar{b} \bar{c}} = 0$, this means that $f_{\bar{a} \bar{b}} = f_{\bar{b} \bar{a}} = 0$ i.e T_a and $T_\bar{a}$ form Lie subalgebras \mathfrak{g}_+ and \mathfrak{g}_- such that $(\mathfrak{g}_+, \mathfrak{g}_-)$ is a Lie bialgebra and $(\mathfrak{g}, \mathfrak{g}_+, \mathfrak{g}_-)$ is a Manin triple [9]. The relation between Manin triples and $N = 2$ superconformal models (from the algebraic OPE point of view) was first pointed out in [7]. Also the relation of $N = (2, 2)$ WZW models and Manin triple (from the action point of view) was pointed in [9]. In [10] we have obtained all algebraic bi-Hermitian structures related to four dimensional real Lie algebra. Let us consider a simple example for $N = (2, 2)$ SUSY WZW models correspond to the following non-Abelian four dimensional Manin triple $A_{4,8}$ [10]:

\[
[T_2, T_4] = T_2, \quad [T_3, T_4] = -T_3, \quad [T_2, T_3] = T_1,
\]

\[
[T_2, T_4] = T_2, \quad [T_3, T_4] = -T_3, \quad [T_2, T_3] = T_1,
\]

\[
G = \begin{pmatrix}
 0 & 0 & 0 & 1 \\
 0 & 0 & -1 & 0 \\
 0 & -1 & 0 & 0 \\
 1 & 0 & 0 & 0
\end{pmatrix}, \quad J = \begin{pmatrix}
 -i & 0 & 0 & 0 \\
 0 & i & 0 & 0 \\
 0 & 0 & -i & 0 \\
 0 & 0 & 0 & i
\end{pmatrix}.
\]
3 \(N=(4,4)\) SUSY WZW and sigma models on Lie groups

As mentioned above, the correspondence between \(N = 2\) and also \(N = 4\) and \(N = 8\) superconformal Kac-Moody algebra and Manin triples has been investigated in [7] and the Manin triples construction of \(N = 4\) superconformal field theories has also investigated in [8], but up to now the algebraic structures of the \(N = (4,4)\) and \(N = (8,8)\) SUSY sigma models on Lie groups and also the \(N = (4,4)\) and \(N = (8,8)\) SUSY WZW models and their relations to Manin triples (from the action point of view) are not studied explicitly. Here, in this section we consider \(N = (4,4)\) case and in the next section the \(N = (8,8)\) case.

As in the previous section, we consider the \(N = (1,1)\) SUSY sigma model action (1) where invariant under transformation (2). Now we will consider for \(N = (4,4)\) case the invariance of that action under the following SUSY transformations [2,3] (instead of (3)) and also \(N = (4,4)\) SUSY sigma model must be have four right-handed generators \((Q_{+r})\) and four left-handed generators \((Q_{-r})\) and three complex structures \((J_{\pm r})\):

\[
\delta_{2r}(\epsilon) \Phi^{\mu} = c_{r}^{\mu} D_{+} \Phi^{\nu} J_{+ r \nu}^{\mu}(\Phi) + c_{r}^{- \mu} D_{-} \Phi^{\nu} J_{- r \nu}^{\mu}(\Phi), \quad r = 1, 2, 3,
\]

such that the constrains on the complex structures are followed as [5]:

\[
J_{\pm r \nu} \lambda J_{\pm s \lambda} = - \delta_{r s}^{\mu},
\]

\[
J_{\pm r \nu} \lambda J_{\pm s \lambda} = J_{\pm t \nu} \lambda, \quad r \neq s \neq t = 1, 2, 3,
\]

\[
J_{\pm r \nu} \mu G_{\mu \nu} = - G_{\mu \nu} J_{\pm r \nu}^{\mu},
\]

\[
\nabla_{\mu}^{(\pm)} J_{\pm r \nu} = \partial_{\mu} J_{\pm r \nu}^{\mu} + \Gamma_{\mu \sigma}^{\pm \nu} J_{\pm r \nu}^{\sigma} - \Gamma_{\mu \nu}^{\pm \sigma} J_{\pm r \nu}^{\sigma} = 0,
\]

where the closed characteristic of the algebra of SUSY transformations (i.e \([\delta_{r}^{\pm}(\epsilon_{r}), \delta_{s}^{\pm}(\epsilon_{s})]\), and \([\delta_{r}^{+}(\epsilon_{r}), \delta_{s}^{+}(\epsilon_{s})]\) have been consequences the following relations [3]:

\[
J_{\pm r} \lambda_{[\mu} \partial_{\nu} J_{\pm s} \gamma_{\nu]} - J_{\pm s} \lambda_{[\mu} \partial_{\nu} J_{\pm r} \gamma_{\nu]} = 0,
\]

\[
J_{\pm r \nu} \lambda J_{\pm s \mu} + J_{\pm s \nu} \lambda J_{\pm r \mu} = 0, \quad r \neq s,
\]

\[
J_{\pm r} \gamma_{\nu} \partial_{\mu} J_{\pm s} \lambda_{\mu} + J_{\pm s} \gamma_{\nu} \partial_{\mu} J_{\pm r} \lambda_{\mu} + J_{\pm s} \lambda_{[\mu} \partial_{\nu} J_{\pm r} \gamma_{\nu]} = 0,
\]

such that these are Nijenhuis-concomitant [12] for complex structures \(J_{\pm r}\). When the background is a Lie group \(G\) then in non-coordinate bases ((10)-(13)) the geometrical relations (25)-(31) have the following algebraic forms:

\[
J_{C} C^{B} J_{F} B^{A} = - \delta_{C} A^{A}, \quad J_{C} B^{B} J_{F} A^{A} = J_{C} A^{A}, \quad J_{C} A^{B} J_{F} D^{D} = G_{C} D^{D},
\]

\[
H_{EFG} = J_{E} A^{A} J_{F} C^{B} H_{ACG} + J_{C} A^{A} J_{E} F^{B} H_{ACF} + J_{F} A^{A} J_{C} G^{C} H_{ACE},
\]

\[
(J_{A} + \chi_{A} G) J_{r} = [(\chi_{A} G + H_{A}) J_{r}],
\]

\[
J_{sD} B^{B} J_{r} B^{A} + J_{rD} B^{B} J_{s} B^{A} = 0, \quad r \neq s,
\]

\[
J_{B} A^{A} B^{B} J_{C} B^{C} A^{A} + J_{C} A^{A} B^{B} J_{B} A^{A} C^{C} J_{s} A^{A} + J_{s} A^{A} B^{B} J_{C} A^{A} J_{s} B^{B} C^{C} + J_{C} A^{A} B^{B} J_{B} A^{A} J_{s} B^{B} C^{C} + J_{s} A^{A} B^{B} J_{B} A^{A} J_{s} A^{A} C^{C} = 0,
\]

In this way, relation (32)-(38) define the algebraic bihypercomplex structures\(^{2}\) on the Lie algebra \(g\), such that we have three algebraic complex structures \(J_{r}\) (r = 1, 2, 3) where by use of (33) only two of them are independent i.e we have two algebraic independent complex structures (e.g \(J_{1}\) and \(J_{2}\)). As for the \(N = (2,2)\) case for the

\(^{1}\)The Nijenhuis concomitant of \(J_{r}\) and \(J_{s}\) has the following form [12]:

\[
N(1, J)_{\mu \nu} = [I^{r} \mu \partial_{\nu} J^{\gamma \nu} - [\mu \leftrightarrow \nu] - (I^{r} \gamma_{\nu} \partial_{\mu} J^{\gamma \nu} - (\mu \leftrightarrow \nu)) + (I \leftrightarrow J)
\]

\(^{2}\)Similar to the name of bihypercomplex geometry [13].
where with the following 2-cocycle:

\[\delta \gamma = \delta \gamma _{-} \otimes \delta \gamma _{+} \]

Using the following form for the 2-cochain:

\[(J_2)_A^B = R_A^B = \begin{pmatrix} R_a^b & R_a^b \\ R_b^a & R_b^a \end{pmatrix}, \]

and

\[(J_2)_A^B = R_A^B = \begin{pmatrix} R_a^b & R_a^b \\ R_b^a & R_b^a \end{pmatrix}, \]

where we have the basis \(T_A = \{ T_a, T_a \} \) for the Lie algebra \(g \). Then from (37) one can obtain \(R_a^b = R_b^a = 0 \), and from (34) we obtain that \(R^F = -R \), then from (32) we see that dimension of \(J_2 \) must be \(4n \) where \(n \) is an integer number. So the dimension of Lie algebra \(g \) must be \(4n \). Note that from (35) as for \(N = (2, 2) \) case we see that \(g = g_+ \oplus g_- \) where \(g_+ \) and \(g_- \) are Lie subalgebras with basis \(T_1 = \{ T_a, T_a \} \) and \(T_1' = \{ T_a', T_a' \} \), \(a, \bar{a}, 1, ..., n \), such that the basis for \(g \) are now \(T_A = \{ T_1, T_1' \} \) and they form a Lie bialgebra. Now from (38) we have:

\[f_{AB}^C R_{CD}^E + f_{DA}^C R_{DB}^E - f_{DB}^C R_{DA}^E = 0. \]

This means that we have a 2-cocycle. To show this we consider the definition of coboundary operator \(\delta \) on an \(i \)-cochain \(\gamma \) on the Lie algebra \(g \) with values in the space \(M \) as follows [13]:

\[\delta \gamma (T_0, T_1, ..., T_i) = \Sigma_{j=0}^i T_j \otimes (\gamma (T_0, ..., \hat{T}_j, ..., T_i)) + \Sigma_{j<k} (-1)^{j+k} \gamma ([T_j, T_k], T_0, ..., \hat{T}_j, ..., \hat{T}_k, ..., T_i), \]

\[\forall T_A \in g. \]

The 2-cochain \(\gamma \) is 2-cocycle when \(\delta \gamma = 0 \). Now for the case that \(M = \mathbb{C} \) we have:

\[-\delta \gamma (T_0, T_1, T_2) + T_0 \otimes (\gamma (T_0, T_2)) + T_1 \otimes (\gamma (T_0, T_2)) + T_2 \otimes (\gamma (T_0, T_1)) \]

\[-\gamma ([T_0, T_1], T_2) + \gamma ([T_0, T_2], T_1) - \gamma ([T_1, T_2], T_0) = 0. \]

Using the following form for the 2-cochain:

\[\gamma (T_A, T_B) = (R_{AB})^{\Gamma \Lambda} T_\Gamma \otimes T_\Lambda + (R_{AB})^{\Gamma \Lambda} T_\Gamma \otimes T_\Lambda + (R_{AB})^{\Gamma \Lambda} T_\Gamma \otimes T_\Lambda + (R_{AB})^{\Gamma \Lambda} T_\Gamma \otimes T_\Lambda, \]

in (43) after some calculation one can obtain (41). In this way the algebraic structure of \(N = (4, 4) \) WZW models is also Lie bialgebra as for the \(N = (2, 2) \) WZW models with this difference that for the \(N = (4, 4) \) case, we have Lie bialgebra with a 2-cocycle, such that the independence algebraic complex structures \((J_1, J_2) \) are anticommutate (37).

As for the \(N = (2, 2) \) case we consider the non-Abelian four dimensional Manin triple \(\mathbf{A}_{4,8} \). Now in this case \((N = (4, 4)) \) we have the following forms for the metric \(G \) and complex structures \(J_1 \) and \(J_2 \):

\[G = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \\ 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}, \]

\[J_1 = \begin{pmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{pmatrix}, \]

\[J_2 = \begin{pmatrix} 0 & i & 0 & 0 \\ i & 0 & 0 & 0 \\ 0 & 0 & 0 & i \\ 0 & 0 & i & 0 \end{pmatrix}, \]

with the following 2-cocycle:

\[R = \begin{pmatrix} 0 & i \bar{I} \\ i \bar{I} & 0 \end{pmatrix}, \]

where \(I \) is \(2 \times 2 \) unit matrix.
4 N=(8,8) WZW and sigma models on Lie groups

Now, as for the N = (4,4) case we consider the action (1) again; such that this action is a invariant under SUSY transformation (2) as well as under the following second SUSY transformations [3]:

\[
\delta_{2r}(\epsilon) \Phi^\mu = \epsilon^*_r D_+ \Phi^\nu J_{+\nu}^\mu + \epsilon^r_- D_- \Phi^\nu J_{-\nu}^\mu, \quad r = 1, \ldots, 7
\]

(47)

where for these transformations we have fourteen \(J_{\mp\nu} \) geometric complex structures. As for the \(N = (4,4) \) case from the invariance of the action (1) under transformation (47) and also closed characteristic of the algebra of transformations one can obtain again relations similar to (25)-(31) with \((r = 1, \ldots, 7) \) [3] and also the same algebraic relations (32)-(38). For this case from (34) we have the following relations among algebraic complex structures

\[
J_1 J_2 J_3 J_4 J_5 J_6 = J_7, \quad J_2 J_3 J_4 J_5 = J_6, \quad J_3 J_4 = J_5, \quad J_1 J_2 = J_3,
\]

(48)

therefore only three of them (e.g. \(J_1, J_2 \) and \(J_3 \)) are independent. As for the \(N = (4,4) \) case for \(N = (8,8) \) SUSY WZW we obtain the following forms for the complex structures \(J_1, J_2 \) and \(J_3 \) and also for \(G \):

\[
J_1 = \begin{pmatrix} i \delta^a_b & 0 \\ 0 & -i \delta^a_b \end{pmatrix}, \quad G = \begin{pmatrix} 0 & g \\ g^t & 0 \end{pmatrix}, \quad J_2 = \begin{pmatrix} 0 & R_{1b}^a \\ R_{1b}^a & 0 \end{pmatrix}, \quad J_3 = \begin{pmatrix} 0 & R_{2b}^a \\ R_{2b}^a & 0 \end{pmatrix},
\]

(49)

where in this case from (32) we conclude that the dimension of the algebra \(g \) must be \(8n \) with \(n \) is an integer and relation (35) for \(J_2 \) reduce the Lie bialgebra structures with Lie subalgebras \(g_+ \) and \(g_- \) with dimension \(4n \). In this case relation (38) reduce to the following relations:

\[
f_{AB}^D R_{1D}^C + f_{DA}^C R_{1B}^D - f_{BD}^C R_{1A}^D = 0, \tag{50}
\]

\[
f_{AB}^D R_{2D}^C + f_{DA}^C R_{2B}^D - f_{BD}^C R_{2A}^D = 0, \tag{51}
\]

i.e the algebraic structures of \(N = (8,8) \) WZW models are Lie bialgebras with two 2-cocycles and three algebraic complex structure \(J_1, J_2 \) and \(J_3 \) where anticommutate under (37).

As an example, consider a four dimensional complex Lie algebra \(L_9 \) with the following commutations relations [5]:

\[
[T_1, T_2] = T_2, \quad [T_3, T_4] = T_4.
\]

(52)

one of the dual Lie algebra for the above Lie algebra is \(\tilde{L}_9 \) that satisfy in the following mixed Jacobi identities:

\[
f_{mk}^i \tilde{f}^{jm} t - f_{ml}^i \tilde{f}^{jm} k - f_{mk}^j \tilde{f}^{im} t + f_{ml}^j \tilde{f}^{im} k = f_{kl}^m \tilde{f}^{ij} m.
\]

(53)

with following commutation relations:

\[
[T_1, T_2] = T_2, \quad [T_3, T_4] = T_4.
\]

(54)

Now, for this 8 dimensional Lie algebra \(g \) we have obtained the following algebraic complex structures \(J_1, J_2 \) and \(J_3 \) and metric \(G \):

\[
J_1 = \begin{pmatrix} -i & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -i & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -i & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & i & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & i & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & i & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & i \end{pmatrix}, \quad J_2 = \begin{pmatrix} 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}, \quad J_3 = \begin{pmatrix} 0 & i & 0 & 0 & 0 & 0 & 0 & 0 \\ i & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & i & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & i & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & i & 0 \end{pmatrix},
\]

(55)
with the following two 2-cocycles:

\[R_1 = \begin{pmatrix} 0 & i & 0 & 0 \\ i & 0 & 0 & 0 \\ 0 & 0 & 0 & i \\ 0 & 0 & i & 0 \end{pmatrix}, \quad R_2 = \begin{pmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \end{pmatrix}. \]

(56)

5 conclusion

We have obtained the algebraic structures of the \(N = (4, 4) \) and \(N = (8, 8) \) SUSY two dimensional sigma models on Lie groups (in general) and the \(N = (4, 4) \) and \(N = (8, 8) \) SUSY WZW models (in special). We have shown that as for the \(N = (2, 2) \) case these structures correspond to the Lie bialgebra structures with one 2-cocycle for the \(N = (4, 4) \) and two 2-cocycles for the \(N = (8, 8) \) case. As an open problem in the forthcoming work one can use the relations of algebraic structures for \(N = (4, 4) \) and \(N = (8, 8) \) ((32)-(38)) to obtain and classify all these structures on low dimensional Lie algebra as for the \(N = (2, 2) \) case [10].

Acknowledgment: We would like to thanks from F. Darabi for carefully reading the manuscript and useful comments.

References

[1] B. Zumino, "Supersymmetry and Kahler manifold", Phys. lett B87 (1979) 203; L. Alvarez-Gaumé and D. Z. Freedman, "Geometrical Structure And Ultraviolet Finiteness In The Supersymmetric Sigma model", Commun. Math. Phys. 80, (1981) 433.

[2] S. J. Gate, C. M. Hull and M. Roček, "Twisted Multiplets and New Supersymmetric Nonlinear Sigma Model", Nucl. Phys. B248 (1984) 157.

[3] P. S. Howe and G. Sierra, "Two-dimensional supersymmetric nonlinear sigma models with torsion", Phys. Lett. B148, 451 (1984).

[4] C. M. Hull, "Model Beta Functions and String Compactifications", Nucl. Phys. B267 (1986) 266; C. M. Hull, "Ultraviolet Finiteness Of Supersymmetric Nonlinear Sigma Models", Nucl. Phys. B260 (1985) 182; L. Alvarez-Gaumé and P. Ginsparg, "Finiteness of Ricci Flat Supersymmetric Nonlinear Sigma Models", Comm. Math. Phys. 102 (1985) 311; A. Galperin, E. Ivanov, V. Ogievetsky and E. Sokatchev, "Harmonic supergraphs: Green functions", Class. Quant. Grav. 2 (1985) 601.

[5] P. S Howe and G. Papdopoulos, "Ultra-violet behaviour of two-dimensional supersymmetric non-linear \(\sigma \)-models", Nucl. Phys. B289 (1987) 264; P. S Howe and G. Papdopoulos, "Further remarks on the geometry of two-dimensional non-linear \(\sigma \) models", Class. Quant. Grav. 5 (1988) 1647.

[6] P. Spindel, A. Sevrin, W. Troost, Antoine Van Proeyen, "Complex Structures On Parallelized Group Manifold And Supersymmetric Sigma Models", Phys. lett. B206 (1988) 71; P. Spindel, A. Sevrin, W. Troost, Antoine Van Proeyen, "Extended Supersymmetric Sigma Models on Group Manifolds.1. The Complex Structure", Nucl. Phys. B308 (1988) 662; P. Spindel, A. Sevrin, W. Troost, Antoine Van Proeyen, "Extended Supersymmetric Sigma Models on Group Manifolds.2. Current Algebras", Nucl. Phys. B311 (1988) 465.

[7] S. Parkhomenko, "Extended superconformal current algebras and finite-dimensional Manin triples", Sov. Phys. JETP. 7 (1992), 1.

[8] S. Parkhomenko, "Quasi Frobenius Lie algebras construction of \(N = 4 \) superconformal field theory", Mod. Phys. lett. A11 (1996) 445.

[9] U. Lindström and M. Zabzine, "D-branes in \(N=2 \) WZW models", Phys. Lett. B560 (2003) 108, arXiv:hep-th/0212042.

[10] A. Rezaei-Aghdam and M. Sephid, "Complex and biHermitian structures on four dimensional real Lie algebras", J. Phys. A43 (2010) 325210, [arXiv:math-ph/1002.4285].
[11] M. Nakahra, “Geometry, Topology and Physics, Second Edition”, Taylor and Francis (2003).

[12] A. Frohlicher and A. Nijenhuis, Nederl. Acad. Wetensch Proc. Ser. A59 (1956) 338; A. Nijenhuis, Nederl. Acad Wetensch Proc. Ser. A58, (1955) 390.

[13] U. Lindström, ”Supersymmetric Sigma Model geometry”, [arXiv:hep-th/1207.1241].

[14] Josi A. de Azcrraga, Josi M. Izquierdo, ”Lie Groups, Lie Algebras, Cohomology and some Applications in Physics”, Cambridge Monographs on Mathematical Physics.

[15] D. Burde and C. Steinhoff, ”Classification of orbit closures of complex Lie algebras”, J. Algebra 214 (1999), 729.