Extrathymic Development of Vα14-positive T Cells

By Yasuhiko Makino, Nobuyuki Yamagata, Takahisa Sasho, Yoshihiro Adachi, Rieko Kanno, Haruhiko Koseki, Masamoto Kanno, and Masaru Taniguchi

From the Division of Molecular Immunology, Center for Neurobiology and Molecular Immunology, School of Medicine, Chiba University, Chiba 260, Japan

Summary

It is known that rearrangement of the T cell antigen receptor (TCR) gene occurs in the thymus during T cell development and consequently results both in the deletion of DNA between the variable (V) and diversity/joining segments and in the formation of a circular DNA with recombination signal sequences. Here, we provide evidence that Vα14+ TCR gene rearrangements take place in extrathymic sites, such as bone marrow, liver, and intestine, but not in spleen, because we were able to detect frequent productive and nonproductive Vα14+ coding and signal sequences as a result of TCR rearrangements in extrathymic sites. Similar findings were also detected in athymic mice. Quantitative analysis shows that the relative amounts of Vα14 gene-mediated signal sequences in extrathymic tissues are higher than those in thymus. On the contrary, TCR rearrangements of Vα14+ T cells, which are known to develop in the thymus, were mainly detected in the thymus, Peyer's patch, and spleen, but not in other extrathymic tissues, showing patterns distinct from Vα14 TCR rearrangements. These findings are evidence of extrathymic development of Vα14+ T cells. Differential characteristic TCR rearrangement patterns also indicate that distinct TCR repertoires are generated in different lymphoid tissues.

Diversity of the TCR gene is generated by rearrangement of the V and J gene segments during T cell development in the thymus. The TCR V and J gene segments, like Ig genes, possess recombination signals in which heptamer and nonamer sequences, separated by a 12/23-bp spacer, are flanked by germline V and J gene segments. Several mechanisms of Ig/TCR gene rearrangement have been proposed: intramolecular deletion, unequal sister chromatid exchange, or chromosomal inversion (1-3). In fact, the presence of reciprocal recombination products of Ig/TCR genes has been demonstrated in extrachromosomal circular DNA isolated from mouse lymphocyte nuclei (4-6); linear deletion products also have been observed recently (7). This indicates that a model of a looping-out and excision of chromosomal DNA represents a proven molecular mechanism of the VJ joining event during lymphocyte development.

In our previous studies, Vα14+ T cells were found to dominate in the periphery at an extremely high frequency (~2-3% in spleen). In those studies, >90% of the Vα14+ T cells used a homogenous TCR α chain encoded by Vα14 and Jα281 genes with a one-nucleotide N region (8, 9; also see Figs. 1 and 2). Because the N region corresponds to the third base of the triplet code for glycine, the amino acid in the VJ junction always becomes glycine. This is a general phenomenon that is found in all laboratory mice and in some subspecies of wild mice (10). Furthermore, the majority of Vα14+ TCR associated with Jα are those other than Jα281 at the neonatal stage, and the frequency of Vα14Jα281 expression increases with time after birth (9). These results indicate that the Vα14Jα281 T cells are positively selected in the periphery and that the VJ junction is important for the selection.

Another intriguing finding is that athymic mice also show the dominant expression of Vα14Jα281 in the spleen (10). Therefore, the homogenous V14J281 TCR α chain could be a useful probe for analyzing extrathymic selection of the TCR repertoire, which includes, for example, several TCR Vα/β genes or the invariant TCR γ/δ (i.e., BALB/c invariant δ [BID]) reported by other investigators (11-15). In addition, the signal sequences composed of the flanking regions of germline V or D and J segments of TCR α/β genes in the episomal circular DNA could also be a beneficial index to investigate T cell generation in extrathymic tissues. In this paper, we demonstrate strong evidence that certain TCR gene rearrangements preferentially take place in extrathymic tissues and discuss the role of these extrathymic tissues in T cell development.

Materials and Methods

Animals. Specific pathogen-free BALB/c and BALB/c nu/nu
mice (12 wk old) were purchased from Shizuoka Experimental Animal Co. (Hamamatsu, Japan).

RNAse Protection Assay. First, total cellular RNA was isolated from spleen, lung, bone marrow (BM) and liver of BALB/c by guanidine/CsCl method. Next, an RNase protection assay was performed, as previously described (9). 32P-labeled antisense RNA probes were prepared by in vitro translation of SP6 polymerase using cDNA (pBlueV/J of C57BL/6 origin) encompassing a part of the 5' untranslated region, \({\text{V}a14.1}{\text{Ja281}} \) region, and the 5' side of \(\text{Ca} \) region, as described (9; also see Fig. 2). Predicted protection bands are indicated in Fig. 2.

Polymerase Chain Reaction. The PCR was carried out using 0.1-10 \(\mu \text{g} \) of total RNA from three to four different batches of various tissues (Peyer's patch [PP], intestinal intraepithelium [IEL], BM, liver, thymus, spleen, PBL) of BALB/c and/or BALB/c nu/nu mice with primers specific for \(\text{Vx44} \) and \(\text{Ca} \) or for recombination activating gene (RAG) as described (9). The amplification cycles consisted of denaturation for 2 min at 94°C, annealing for 2 min at 63°C, and extension for 2 min at 73°C. Oligonucleotide primers used for PCR amplifications were \(\text{Vcd4}, 5'-\text{TCGAATTCTAAGCACTATTCAACCCAGTGGGATA-Y} \) and \(5'-\text{GGGACCATCTCCTACTAAG-Y} \); and mouse/\(\beta \)-actin, \(5'-\text{GACTGAAATACCACCTGAGGATCC-3'} \) and \(5'-\text{GACACAGATAAGAAACAGAT-3'} \). Oligonucleotide primers used for circular TCR \(\beta \) DNA amplification were \(5'-\text{GATTTGTGTAAAGGGGGC-TGCCACTTGACCACTTCTTAC-TGAC-3'} \) and \(5'-\text{GATTTGTGTAAAGGGGGC-TGCCACTTGACCACTTCTTAC-TGAC-3'} \) or, alternatively, a 288-bp \(\text{Vot14-Jc}^{281} \) circular DNA PCR product for \(\text{Vot14-Jc}^{281} \) sequences; the oligomer, \(5'-\text{GAGCAGCTTATCTGGTGGATT-3'} \); and \(5'-\text{GACTGAAATACCACCTGAGGATCC-3'} \) for \(\text{Vcd4-Jc}^{281} \), \(\text{Vcd4-Jc}^{281} \), and \(\text{Vot14-Jc}^{281} \) signal sequences; the oligomer, \(5'-\text{GACTGAAATACCACCTGAGGATCC-3'} \) and \(5'-\text{GACACAGATAAGAAACAGAT-3'} \) for \(\text{Vot14-Jc}^{281} \) and \(\text{Vcd4-Jc}^{281} \) signal sequences. The amplified products, which had been amplified in varied concentrations, were hybridized with 32p-labeled PstI fragments of \(\text{RAG-2} \) cDNA. The signals were detected by the Bio Image Analyzer (Fuji BAS2000; Fuji Film, Tokyo, Japan). The general procedures were described previously (9, 10, 16).

Sequencing. The PCR products amplified from three independent samples were blunted with Enshinella coli polymerase I and T4 kinase and cloned into the HindII site of pBluescript SK II (+) (Stratagene, La Jolla, CA). Nucleotide sequences were determined by the dyeoxy chain termination method with a Taq dye primer cycle sequencing kit (Applied Biosystems, Inc., Foster City, CA) in an automated DNA primer sequencer (370A; Applied Biosystems, Inc.) as described previously (10).

Quantitative PCR Analysis. The frequencies of signal sequences in genomic DNA samples were determined by a double-step quantitative PCR using two sets of primers. The first-step amplification was performed by a PCR of 20 cycles using the first primers. In the first step of PCR, we confirmed that the amplifications did not reach plateau level. Next, the first PCR products were quantitated in the second-step PCR of 20 cycles (30 cycles for nude tissues) using nested primers. The PCR products were hybridized with 32p-labeled PstI fragments of \(\text{RAG-2} \) cDNA. The signals were detected by the Bio Image Analyzer. The radioactivities were measured by the Bio Image Analyzer. To determine the
quantities of target amplicons in different tissues, photo-stimulated luminescences (PSLs) of the PCR products were compared with those of the standard curves.

FACS® Analysis and Separation of B220+ Cell Fractions. Cells (3–8 × 10⁶) were stained with PE-labeled anti-B220 and FITC-labeled anti-Thy-1 mAbs. B220+ cells were separated by FACStar® (Becton Dickinson & Co., Mountain View, CA). For detection of Vα14 T cells in extrathymic tissues, cells were stained with PE-labeled anti-Vα14 (17) and FITC-labeled anti-CD3 (2C11) and/or anti-TCR-β (H57-597). They were then analyzed by FACSscan® with logarithmic amplifier.

Results

Expansion of T Cells Bearing Homogenous Vα14Jα281 TCR in Extrathymic Tissues. Our previous experiments have demonstrated that T cells bearing homogenous TCR, composed of Vα14Jα281 with a one-base N region, dominate in spleen (~2% of total T cells) (9, 10). Therefore, we further investigated the homogenous Vα14+ TCR expression in other peripheral tissues, such as BM and liver. As shown in Fig. 1, the significant numbers of CD3+ T cells were stained with anti-Vα14 mAb. The percentage of Vα14+ T cells in CD3+ populations is 5.8% in BM, 9.1% in liver, and 2.0% in spleen.

The expression of Vα14Jα281 TCR was investigated by RNase protection assay. The results were shown in Fig. 2. The protected bands with a 401-bp length corresponding to the Vα14Jα281 TCR were detected in these tissues. The intensities of the protected bands were calculated to be 4.2% of total α chains in BM and 12.3% in liver. The results are comparable to those obtained by FACS®. Thus, compared with homogenous Vα14+ TCR expression in spleen (1.9%), the frequency of Vα14Jα281 expression in other extrathymic sites is significantly higher (9, 10). In addition, the results of our previous PCR experiments have strongly suggested that the selection of Vα14+ T cells occurs at extrathymic sites. We reached this conclusion because the frequency of homogenous Vα14Jα281 TCR expression was demonstrated to be >95% of total Vα14+ α chains in nude and athymic mice that had been irradiated, thymectomized, and reconstituted with BM (Tx-B), the same frequency as for euthymic mice (10). Therefore, it is likely that T cells expressing the homogenous Vα14Jα281 TCR develop without thymic influence.

Next, we investigated possible extrathymic sites for Vα14+ T cell differentiation by PCR, using the coding sequences of Vα14 and Jα281 genes as primers. In the first experiment, lymphocytes from thymus, PP, BM, IEL, liver, PBL, and spleen were prepared as described (9, 18, 19), and their RNA and DNA were analyzed by reverse transcriptase (RT)-PCR using Vα14- and Coα-specific primers for RT-PCR.
Vα 14 + T cells effectively occurs in extrathymic tissues (Fig. 3). This may imply that selection for the generation of Vα 14 + T cells is formed during T cell development, these results imply that DNA amplification is possible. When circular episomal products are created by the formation of a signal joint, the PCR primers will amplify fragments with a signal sequence. This sequence includes two signal peptides, two nonamers, and 12/23 spacers in flanking sequences of Vαβ and Jα/Dβ genes.

DNA blot analysis of PCR products was carried out using specific probes for the Vα 14-Jα 281 signal joints (Fig. 4 B). We detected a band of ~300 bp in size in most extrathymic tissue samples, except in spleen and kidney. Significant amplifications were observed in PP, BM, IEL, and liver. In fact, by quantitative PCR (Fig. 5 A and Table 1), the relative amounts of Vα 14-Jα 281 signal sequences per DNA in PP, liver, BM, and IEL were calculated to be 1.7, 2.5, 0.7, and 0.7, respectively, assuming that those in thymus were 1.0. Arbitrary units (AU) of amounts of signal sequences per T cells in each tissue were 5.6 in PP, 16.8 in liver, 17.5 in BM, and 3.5 in IEL, compared with those in thymus (Table 1). As the amounts of signal sequences in those tissues are greater than those in thymus, these extrathymic tissues are likely to be sites for generation of Vα 14 T cells. On the other hand, in spleen, Vα 14-Jα 281 signal sequences were hardly detected, and their frequencies were calculated to be <0.01 (Table 1). Thus, it is likely that spleen is not the site, or it is less efficient for the generation of Vα 14 T cells. Since circular DNA is formed during T cell development, these results imply that significant numbers of the cells in BM, liver, and intestine are progenitors for Vα 14 + T cells and have been undergoing rearrangement and creating the episomal DNA.

To confirm the formation of the reciprocal heptamer/heptamer joining, we subcloned and sequenced the PCR products shown in Fig. 6 A. If the rearrangement occurred by the mechanism of an intrachromosomal deletion mediated through signal sequences, the circular DNA was expected to contain the reciprocal heptamer repeats in the flanking regions of Vα 14 and Jα 281 with or without insertion or deletion.
deletion of nucleotides at recombination sites. All clones obtained from various extrathymic tissues (PP, IEL, BM, and liver) shown in Fig. 4 revealed a sequence pattern typical of circular DNA. Two recombination heptamers were joined together in a head-to-head fashion, followed by 12- or 23-bp spacers and nonamers identical to the flanking sequences of germline V\(\alpha\)14 and J\(\alpha\)281.

We also investigated other TCR-\(\alpha\) gene rearrangements in various tissues, i.e., V\(\alpha\)1.1-J\(\alpha\)281, V\(\alpha\)14-J\(\alpha\)TA57, and V\(\alpha\)1.1-J\(\alpha\)TA57. Distinct from the V\(\alpha\)14-J\(\alpha\)281 rearrangement, the V\(\alpha\)1.1-J\(\alpha\)281 and V\(\alpha\)1.1-J\(\alpha\)TA57 signal sequences were detected only in thymus, spleen, and PP, but not in other extrathymic sites (Fig. 4 B). These results were confirmed at a nucleotide level (Fig. 6 B) and also by quantitative PCR analysis (Fig. 5 B and Table 1). The relative amounts of V\(\alpha\)1.1-J\(\alpha\)281 signal sequences were 0.4 (1.3 AU) in PP and 0.2 (0.5 AU) in spleen as compared with those in thymus. Similarly, those of V\(\alpha\)1.1-J\(\alpha\)TA57 were 0.2 (0.5 AU) in spleen and negligible in all other tissues. However, the relative frequencies of V\(\alpha\)14-J\(\alpha\)TA57 signals were 2.0 (13.4 AU) in liver,
Table 1. Quantitative Analysis of Signal Sequences in Various Tissues

Tissues	T cells	per DNA	per T cell	per DNA	per T cell
Thymus	>90	1	1	1	1
Spleen	40	<0.01	(<0.01)	0.2	(0.5)
PP	30	1.7	(5.6)	0.4	(1.3)
IEL	20	0.7	(3.5)	UD*	UD
BM	4.0	0.7	(17.5)	UD	UD
Liver	15	2.5	(16.8)	UD	UD

The amounts of signal sequences in samples were measured by quantitative PCR according to the standard curves of specific V\alpha14-J\alpha281 and V\alpha1.1-J\alpha281 signal sequences of known copy numbers. The relative ratios (R) of amounts of signal sequences per DNA were calculated by the following formula, assuming that 1.0 was their relative amount in thymus: R = [sample C (SJ)/thymus C (SJ)] x [thymus C (RAG)/sample C (RAG)]; where SJ is signal joint, RAG is RAG-2, and C is copy number of genes (SJ or RAG) in tissues. The relative ratios were then adjusted to the numbers of Thy-1+ T cells and expressed as AU per T cells in parenthesis. The percentage of Thy-1+ T cells in various tissues was determined by FACS analysis. Two independent experiments using different sample batches produced similar results.

* UD, undetectable (<0.001).

Figure 6. Representative nucleotide sequences and frequencies of the reciprocal signal joints detected in extrathymic and thymic tissues. (A) The V\alpha14-J\alpha281 recombinant sequence (cirDNA) detected was compared with its corresponding germline sequences of V\alpha14 (gV\alpha14) and J\alpha281 (gJ\alpha281). (B) Comparison of V\alpha1.1-J\alpha281 reciprocal sequence with corresponding germline sequences (gV\alpha1.1 and gJ\alpha281). (C) V\beta10.1-D\beta1 signal sequence compared with corresponding germline sequences (gV\beta10.1 and gD\beta1). (D) Frequency of signal sequences of the circular DNA with flush joint is expressed as numbers in PCR clones with reciprocal joints examined. The nucleotide mutation is indicated by an asterisk. The V\alpha14, V\alpha1.1, V\beta10.1, J\alpha281, and D\beta1 coding sequence are marked with a thick line. The heptamer and nonamer sequences are boxed. Note that no sequences were amplified in any of the kidney, herring sperm DNA, and control material (water) tested.

Figure 7. Detection of V\alpha14 signal sequences in athymic mice. PCR was carried out using nuclear DNA from various tissues of BALB/c nu/nu mice under the same conditions as described in Fig. 4, except for 30-cycle amplification in the second step. The copy numbers of DNA in samples were normalized by those of RAG-2 genes, and 3 x 10^7 (1.5 ug) were used for PCR. For comparison of amounts of signal sequences in nu/nu mice, the first-step PCR products of thymus used in Fig. 4 were amplified under the same conditions and used as control. For electrophoresis, one-fourth of thymus PCR products were applied.
due to the small numbers of lymphocytes in nu/nu mice, AU of signals per T cells are equivalent to or much higher in PP and IEL than those in the thymus. It is thus clear that Vα14 T cell development occurs in extrathymic tissues without thymus.

Rearrangement of TCR β Chain Genes in Extrathymic Tissues. We investigated signal sequences generated by TCR-β gene rearrangements in extrathymic tissues. For this purpose, we designed two sets of primers for amplification of the signal sequences of the circular DNA only when the Vβ and Dβ gene segments were rearranged as described in Fig. 4 A. Some sequences and PCR bands detected were illustrated and summarized in Figs. 4 and 6 C. Vβ-Dβ rearrangement patterns were different from Vα14+ TCR patterns but similar to the Vα1.1+ TCR patterns. Thymus appeared to have all Vβ-Dβ rearrangement patterns.

However, nonthymic organs showed differential TCR patterns. The frequencies of signal sequences in PP and spleen were extremely low, that is, ~1/7-15 (Vβ8.1-Dβ1), negligible (Vβ8.1-Dβ2), and 1/4-5 (Vβ10-Dβ1/Vβ10-Dβ2) of those in thymus, respectively. Thus, no Vβ-Dβ signal sequences have so far been detected in other extrathymic tissues. All signal sequences detected so far contain two reciprocal heptamers joined in a head-to-head fashion, followed by 12/23-bp spacers and nonamer sequences identical to the flanking sequences of either germline Vβ or Dβ.

Detection of RAG-1 and RAG-2 Messages in the B220− Cell Fractions in Extrathymic Tissues. B220− cell fractions were isolated by FACS (Fig. 8 A). The purity was >99% in all preparations. Then, RT-PCR was carried out on isolated mRNA from those fractions using RAG-1- and RAG-2-specific primers. As shown in Fig. 8 B, B220− cell fractions in extrathymic tissues all expressed RAG-1 and RAG-2 messages at a relatively high amount.

Discussion

In this paper we have presented the first molecular evidence for extrathymic development of some T cell populations. The following results demonstrate this type of T cell development. (a) The Vα14-Jα281 TCR sequences are discernible in extrathymic organs of athymic mice at frequencies similar to those in euthymic mice. (b) Signal sequences created by the Vα14-Jα281 and Vα14-JαTA57 TCR rearrangements are detected in most extrathymic tissues, including BM, PP, IEL, and liver, but are not found in spleen. However, other TCR rearrangements, such as Vα1.1-Jx and Vβ-Dβ, are observed in spleen and PP but not in the majority of extrathymic tissues, indicating that only a certain subpopulation, but not all T cells, develops at extrathymic sites. (c) Vα14 TCR rearrangements are observed in athymic mice, whereas Vα1.1 TCR rearrangements are not detected, sug-
sugesting that Vα14 T cells develop without thymus. Finally, (d) quantitative analysis revealed that the relative amounts of certain TCR signal sequences in some extrathymic tissues are higher than those in thymus, implying that certain TCR gene rearrangements do occur in extrathymic tissues.

The detection of circular DNA in extrathymic tissues may be viewed as evidence in favor of the argument that thymic T cells bearing circular DNA migrate to the extrathymic tissues. This is because we have detected these persisting signal sequences only when generated from thymus but not from extrathymic sites. However, we believe this possibility is unlikely, because signal sequences created by the Vα14-Jc281 rearrangement are indeed found in athymic mice (Fig. 7).

Furthermore, Vα14-Jc281 signal sequences are not found in spleen, the recirculating tissue of thymic T cells (Fig. 4 and Table 1). If all peripheral T cells were derived from thymus and were carrying the circular DNA that had been created in thymus, spleen should have signal sequences generated by Vα14-Jc281 recombinations at a similar frequency as those in other extrathymic tissues. However, they are not present in spleen. In addition, the relative amounts of Vα14-Jc281 signal sequences in extrathymic tissues are higher than those in thymus (Table 1). Particularly, the frequencies of Vα14-Jc281 signal sequences in extrathymic sites were higher than those in thymus. Similar observations are found in Vα14-JcTA57 rearrangements where their frequencies are almost equal to those of Vα14-Jc281. It seems difficult to explain the increase of relative amounts of circular DNA in extrathymic tissues by the notion that the signal sequences detected are derived from thymus migrants, because circular DNA do not autonomously propagate by themselves, but have been found at diluted concentrations in tissues peripheral to the thymus, as demonstrated by Takekoshi et al. (20). Furthermore, it is unlikely that the Vα14 circular DNA detected are created in mature cells by rearrangement events that occurred in the circular DNA after excision from genomic DNA. This is because the Vα14 gene is known to be located far upstream of the TCR Vα gene clusters (21). Therefore, it is apparent that Vα14+ T cells actually create their circular DNA and develop in nonthymic sites.

Interestingly, additional unique characteristics of Vα14-Jc281+ T cell development are found by analysis of other TCR-α rearrangements. For example, the Vα1.1 gene rearrangement patterns, such as Vα1.1-Jc281 and Vα1.1-JcTA57 rearrangement patterns, are entirely different from those of Vα1+ TCR (Fig. 4). Quantitative PCR analysis also supports this finding (Fig. 5 and Table 1). The frequencies of Vα1.1-Jc281 and Vα1.1-JcTA57 rearrangements in PP and spleen are equal to or less than those in the thymus, and both are negligible in other extrathymic tissues. Thus, it is possible that PP and spleen could be the organs for the recirculating pools of T cells of thymus origin. As the Vα1.1-Jc281 but not Vα14 circular DNA were hardly detectable in athymic mice (Fig. 7 and Table 1), they are likely to be preferentially generated in thymus and detected as a persisting circular DNA from thymus migrants in extrathymic tissues.

Our recent studies on Vα14-Jc281 transgenic mice showed a unique characteristic of Vα14 T cell development. About 13% Vα14+ T cells were detected in the spleen by anti-Vα14 mAb, whereas only 1% were found in the thymus. RNase protection assay also support the FACS data, showing that ~50% of TCR α chains in the spleen are the transgenic Vα14-Jc281, while 5% are in the thymus. These results indicate that Vα14 T cells are preferentially developed in extrathymic tissues rather than in the thymus.

Most TCR-β gene rearrangement patterns detected in extrathymic tissues are basically similar to Vα1.1+ TCR rearrangements, but not similar to those of Vα14+ TCR (Fig. 4). Vβ10-Dβ1 patterns are detected in thymus, spleen, and PP (the frequency of Vβ10.1-Dβ1 in PP and spleen is ~1/4-5 of that in thymus), whereas Vβ8.1-Dβ1 and Vβ8.1-Dβ2 are found mainly in thymus and faintly in spleen (1/10 of thymus) but not in other peripheral tissues. Again it is possible that Vβ circular DNA detected in PP and spleen are the thymus migrants, because the patterns are basically similar to Vα1.1 rearrangements. However, it is equally possible that they are generated in these extrathymic tissues. In any event, the differential patterns observed in TCR α/β rearrangements indicate that certain subsets of TCR repertoires are generated in different extrathymic sites.

RAG-1/RAG-2 genes are known to be expressed in immature T cells and are necessary for gene rearrangement (22, 23). It is therefore of interest to detect whether extrathymic tissues contain RAG-1/RAG-2 transcripts. Both RAG-1/RAG-2 transcripts were detected in the T cell fractions in PP, IEL, BM, and liver, as well as thymus (Fig. 8). The results, in part, confirm the data by Guy-Grand et al. (24), who also detected RAG-1 mRNA in the intestine. The results strongly support the notion that T cells do develop in extrathymic tissues.

Speiser et al. (25) have recently demonstrated that T cells or stem cells of nude mice can be positively selected for self-MHC restriction extrathymically. Our findings, in part, support their functional results at the molecular level. T cells developed and selected extrathymically might represent only a minority of the whole T cell population, but might be accumulated at higher levels in certain tissues. For example, among Vα14-Jc281+ T cells, the type B Vα14-Jc281+ T cells are primarily expanded in IEL, whereas the type A Vα14-Jc281+ T cells dominate in BM, PP, and liver, but not in IEL. It is thus likely that distinct TCR repertoires are formed in different extrathymic tissues. Similarly, there is other evidence for extrathymic T cell maturation, for example, IEL (26, 27). Furthermore, several of the IEL subpopulations could be reconstituted in the irradiated, thymectomized mice given T cell–depleted BM (28). Therefore, certain fractions of functional TCR repertoire actually develop in extrathymic sites per se without thymus.

At present we do not know whether certain V gene segments, like Vα14, are preferentially rearranged and selected outside the thymus or whether extrathymic rearrangement can randomly include all V genes. The detection of differential TCR gene rearrangement patterns supports the former possibility. As extrathymic TCR rearrangement is a non-
random event, it can be hypothesized that these extrathymically developed T cells play a special role in the immune system that might be distinct from that of thymically selected T cells. Experiments to test the above possibilities are now in progress.

We thank Drs. Beate Sydora and Toshitada Takemori for fruitful discussions and careful reading, and Ms. Barbara Loewen-Ichikawa and Ms. Hiroko Tanabe for editing and preparation of this manuscript.

This work was supported in part by a grant-in-aid for Scientific Research from the Ministry of Education, Science and Culture, Japan, by the special coordination funds for promoting science and technology of the Science and Technology Agency, Japan, and by the Sugimoto Memorial Fund.

Address correspondence to Masaru Taniguchi, Division of Molecular Immunology, Center for Neurobiology and Molecular Immunology, School of Medicine, Chiba University, 1-8-1 Inohana, Chuoku, Chiba 260, Japan.

Received for publication 14 October 1992 and in revised form 11 February 1993.

References

1. Van Ness, B.G., C. Coleclough, R.P. Perry, and M. Weigert. 1982. DNA between variable and joining gene segments of immunoglobulin k light chain is frequently retained in cells that rearrange the k locus. Proc. Natl. Acad. Sci. USA. 79:262.
2. Lewis, S., N. Rosenberg, F. Alt, and D. Baltimore. 1982. Continuing kappa-gene rearrangement in a cell line transformed by abelson murine leukemia virus. Cell. 30:807.
3. Lieber, M.R. 1991. Site-specific recombination in the immune system. FASEB (Fed. Am. Soc. Exp. Biol.) J. 5:2934.
4. Okazaki, K., D.D. Davis, and H. Sakano. 1987. T cell receptor beta genes sequences in the circular DNA of thymocyte nuclei: direct evidence for intramolecular DNA deletion in V-D-J joining. Cell. 49:477.
5. Fujimoto, S., and H. Yamagishi. 1987. Isolation of an excision product of T-cell receptor alpha-chain gene rearrangement. Nature (Lond.). 327:242.
6. McCormack, W.T., L.W. Tjoelker, L.M. Carlson, B. Petryniak, C.F. Barth, E.H. Humphries, and C.B. Thompson. 1989. Chicken Igk gene rearrangement involves deletion of a circular episome and addition of single nonrandom nucleotides to both coding segments. Cell. 56:785.
7. Roth, D.B., P.B. Nakajima, J.P. Menetski, M.J. Bosma, and M. Gellert. 1992. V(D)J recombination in mouse thymocytes: direct evidence for intrachromosomal DNA deletion in V-D-J joining. EMBO (Eur. Mol. Biol. Organ.) J. 11:2147.
8. Koseki, H., K. Imai, F. Nakayama, T. Sado, K. Moriwaki, and M. Taniguchi. 1990. Homogenous junctional sequence of the V14 ~ T-cell antigen receptor ~ chain expanded in unprimed mice. Proc. Natl. Acad. Sci. USA. 87:5248.
9. Koseki, H., K. Imai, F. Nakayama, T. Sado, K. Moriwaki, and M. Taniguchi. 1990. Homogenous junctional sequence of the V14 ~ T-cell antigen receptor chain expanded in unprimed mice. Proc. Natl. Acad. Sci. USA. 87:5248.
10. Koseki, H., H. Asano, T. Inaba, N. Miyashita, K. Moriwaki, K. Fischer Lindahl, Y. Mizutani, K. Imai, and M. Taniguchi. 1991. Dominant expression of a distinctive V14 ~ T-cell antigen receptor alpha chain in mice. Proc. Natl. Acad. Sci. USA. 88:7518.
11. Sha, W.C., C.A. Nelson, R.D. Newberry, J.K. Pullen, L.R. Pease, J.H. Russell, and D.Y. Loh. 1990. Positive selection of transgenic receptor-bearing thymocytes by K alpha antigen is altered by K beta mutations that involve peptide binding. Proc. Natl. Acad. Sci. USA. 87:6186.
12. Fink, P.J., M.J. Blair, L.A. Matis, and S.M. Hedrick. 1990. Molecular analysis of the influences of positive selection, tolerance induction, and antigen presentation on the T cell receptor repertoire. J. Exp. Med. 172:139.
13. Sim, G.-K., and A. Augustin. 1991. Dominant expression of the T cell receptor BALB invariant delta (BID) chain in resident pulmonary lymphocytes is due to selection. Eur. J. Immunol. 21:859.
14. Cossarizza, A., M. Kahan, C. Ortolani, C. Franceschi, and M. Londei. 1991. Preferential expression of Vf6.7 domain on human peripheral CD4+ T cells. Implication for positive selection of T cells in man. Eur. J. Immunol. 21:1571.
15. Huesmann, M., B. Scott, P. Kisielow, and H. von Boehmer. 1991. Kinetics and efficacy of positive selection in the thymus of normal and T cell receptor transgenic mice. Cell. 66:533.
16. Feinberg, A.P., and B. Vogelstein. 1983. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem. 132:6.
17. Ito, T., K. Ishitabashi, K. Imai, H. Koseki, M. Kantake, C. Ra, E. Fernandez, T. Saijo, and M. Taniguchi. 1991. Monoclonal antibody against murine T cell receptor Vex14 cross-reacts with human CD3-e and detects disulfide-linked dimeric form. Int. Immunol. 3:991.
18. Davies, M.D.J., and D.M.V. Parrott. 1981. Preparation and purification of lymphocytes from the epithelium and lamina propria of murine small intestine. Gut. 22:481.
19. Itoh, H., T. Abo, S. Sugawara, A. Kanno, and K. Kumagai. 1988. Age-related variation in the proportion and activity of murine liver natural killer cells and their cytotoxicity against regenerating hepatocytes. J. Immunol. 141:315.
20. Takeshita, S., M. Toda, and H. Yamagishi. 1989. Excision products of the T cell receptor gene support a progressive rearrangement model of the alpha/beta locus. EMBO (Eur. Mol. Biol. Organ.) J. 8:3261.
21. Jouvin-Marche, E., I. Hue, P.N. Marche, C. Lieb-Gris, J.-P. Mireau, B. Malissen, P.-A. Cazenave, and M. Malissen. 1990. Genomic organization of the mouse T cell receptor Vex family. EMBO (Eur. Mol. Biol. Organ.) J. 9:2141.
22. Oettinger, M.A., D.G. Schatz, C. Gorka, and D. Baltimore.
1990. RAG-1 and RAG-2 adjacent genes that synergistically activate V(D)J recombination. *Science (Wash. DC)*. 248:1517.

23. Schatz, D.G., M.A. Oettinger, and D. Baltimore. 1989. The V(D)J recombination activating gene, RAG-1. *Cell*. 59:1035.

24. Guy-Grand, D., N. Cerf-Bensussan, B. Malissen, M. Malassis-Seris, C. Briottet, and P. Vassalli. 1991. Two gut intraepithelial CD8+ lymphocyte populations with different T cell receptors: a role for the gut epithelium in T cell differentiation. *J. Exp. Med.* 173:471.

25. Speiser, D.E., U. Stubi, and R.M. Zinkernagel. 1992. Extrathymic positive selection of αβ T-cell precursors in nude mice. *Nature (Lond.)*. 355:170.

26. Nixon-Fulton, J.L., W.A. Kuziel, R. Santerse, P.R. Bergstresser, P.W. Tucker, and R.E. Tigelaar. 1988. Thy-1+ epidermal cells in nude mice are distinct from their counterparts in thymus-bearing mice: a study of morphology, function, and T cell receptor expression. *J. Immunol.* 141:1897.

27. Viney, J.L., T.T. MacDonald, and P.J. Kilshaw. 1989. T-cell receptor expression in intestinal intraepithelial lymphocyte subpopulations of normal and athymic mice. *Immunology*. 66:583.

28. Lefrancois, L., R. LeCorre, J. Mayo, J.A. Bluestone, and T. Goodman. 1990. Extrathymic selection of TCR γδ+ T cells by class II major histocompatibility complex molecules. *Cell*. 63:333.

29. Chun, J.J.M., D.G. Schatz, M.A. Oettinger, R. Jaenisch, and D. Baltimore. 1991. The recombination activating gene-1 (RAG-1) transcript is present in the murine central nervous system. *Cell*. 64:189.