Gene Expression Profiling and Chromatin Immunoprecipitation Identify DBN1, SETMAR and HIG2 as Direct Targets of SOX11 in Mantle Cell Lymphoma

Xiao Wang1, Stefan Björklund1, Agata M. Wasik1, Alf Grandien2,3, Patrik Andersson4, Eva Kimby3, Karin Dahlman-Wright5, Chunyan Zhao5, Birger Christensson1, Birgitta Sander1*
1 Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet and Karolinska University Hospital Huddinge, Stockholm, Sweden, 2 Center for Infectious Medicine and Center for Experimental Hematology, Karolinska Institutet, Stockholm, Sweden, 3 Department of Medicine, Division of Hematology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden, 4 Department of Hematology, Stockholm South Hospital, Stockholm, Sweden, 5 Department of Biosciences and Nutrition, Novum, Karolinska Institutet, Stockholm, Sweden

Abstract

The SRY (sex determining region Y)-box 11 (SOX11) gene, located on chromosome 2p25, encodes for a transcription factor that is involved in tissue remodeling during embryogenesis and is crucial for neurogenesis. The role for SOX11 in hematopoiesis has not yet been defined. Two genes under direct control of SOX11 are the class-III β-tubulin gene (TUBB3) in neural cells and the transcription factor TEA domain family member 2 (TEAD2) in neural and mesenchymal progenitor cells. Normal, mature lymphocytes lack SOX11 but express SOX4, another member of the same group of SOX transcription factors. We and others recently identified SOX11 as aberrantly expressed in mantle cell lymphoma (MCL). Since SOX11 is variably expressed in MCL it may not be essential for tumorigenesis, but may carry prognostic information. Currently, no specific functional effects have been linked to SOX11 expression in MCL and it is not known which genes are under influence of SOX11 in lymphoma. In this study we found variable expression of SOX11, SOX4 and SOX12 mRNA in mantle cell lymphoma cell lines. Downregulation of SOX11 expression by siRNA verified that SOX11 controlled the expression of the gene TUBB3 in the MCL cell line Granta 519. Furthermore we identified, by global gene expression analysis, 26 new target genes influenced by siRNA SOX11 downmodulation. Among these genes, DBN1, SETMAR and HIG2 were found to be significantly correlated to SOX11 expression in two cohorts of primary mantle cell lymphomas. Chromatin immunoprecipitation (ChIP) analysis showed that these genes are direct targets of the SOX11 protein. In spite of almost complete downregulation of the SOX11 protein no significant effects on Granta 519 cell proliferation or survival in short term in vitro experiments was found. In summary we have identified a number of genes influenced by SOX11 expression in MCL cell lines and primary MCL. Among these genes, DBN1, SETMAR and HIG2 are direct transcriptional targets of the SOX11 protein.

Introduction

The SRY (sex determining region Y)-box 11 (SOX11) transcription factor was recently discovered as a new marker in mantle cell lymphoma (MCL), expressed in both cyclin D1 positive and negative cases [1,2,3,4]. SOX11, located on chromosome 2p25, is a member of the SOX gene family and was discovered in 1995 [5]. Approximately 20 SOX genes have been identified and they are divided into eight subgroups according to the degree of similarity within and outside the high mobility domain (HMG) [6]. All SOX genes have unique and specific expression patterns and they control cell survival, proliferation and differentiation in numerous processes during embryogenesis (reviewed in [7]). SOX11, together with SOX4 and SOX12, belongs to the SOXC group, sharing a high degree of homology both in the HMG domain and the C-terminal transactivation domain [8]. In the mouse, Sox11 is important for organ development, neurogenesis, neural cell survival and neurite outgrowth [8,9,10] [11] while Sox4 is crucial for B lymphocyte differentiation [12]. Upregulated SOX11 has been found in brain tumors and in ovarian carcinoma, where it has been associated to tumorigenesis and clinical outcome [13,14,15,16,17]. The recently reported aberrant expression of SOX11 in most MCL [1,2,3,4,18,19] raises the hypothesis that SOX11 may have a role in the pathogenesis of MCL.

MCL is characterized by enhanced cell proliferation, impaired cell death pathways and reduced response to DNA damaging agents and is therefore difficult to treat [20]. These features can only be partly explained by the t(11;14)(q13;q32) causing dysregulation of cyclin D1 expression. While the t(11;14) is an early event in the pathogenesis of most MCL other genetic events may not be essential for tumorigenesis, but may carry prognostic information. Currently, no specific functional effects have been linked to SOX11 expression in MCL and it is not known which genes are under influence of SOX11 in lymphoma. In this study we found variable expression of SOX11, SOX4 and SOX12 mRNA in mantle cell lymphoma cell lines. Downregulation of SOX11 expression by siRNA verified that SOX11 controlled the expression of the gene TUBB3 in the MCL cell line Granta 519. Furthermore we identified, by global gene expression analysis, 26 new target genes influenced by siRNA SOX11 downmodulation. Among these genes, DBN1, SETMAR and HIG2 were found to be significantly correlated to SOX11 expression in two cohorts of primary mantle cell lymphomas. Chromatin immunoprecipitation (ChIP) analysis showed that these genes are direct targets of the SOX11 protein. In spite of almost complete downregulation of the SOX11 protein no significant effects on Granta 519 cell proliferation or survival in short term in vitro experiments was found. In summary we have identified a number of genes influenced by SOX11 expression in MCL cell lines and primary MCL. Among these genes, DBN1, SETMAR and HIG2 are direct transcriptional targets of the SOX11 protein.
was influenced by SOX11 also in MCL. Additionally, 26 genes were significantly downregulated upon SOX11 silencing in Granta 519. Among these genes, drebrin 1 (DBN1), SET domain and mariner transposase fusion gene (SETMAR) and hypoxia-inducible protein 2 (HIG2) expression correlated to SOX11 expression in a series of SOX11 positive MCL [4]. We found a strong correlation between SOX11 and DBN1, SETMAR and HIG2 expression in a recently published study on SOX11 positive and negative MCL [19]. Furthermore, in MCL cell lines and primary MCL cells, DBN1 significantly correlated to SOX11 expression.

Results

Expression of SOXC Transcription Factors in MCL Cell Lines – High Expression of SOX11 in Granta 519

SOX4, SOX11 and SOX12 may have partially overlapping effects on transcriptional regulation [8]. We therefore investigated the expression of the three SOXC transcription factors, SOX4, SOX11 and SOX12 in the t(11;14) positive MCL cell lines Granta 519, Rec1, JeKo and JVM-2 (Figure 1). Granta 519, Rec1 and JeKo expressed SOX11 mRNA and protein while JVM-2 was negative for SOX11 expression (Figure 1). SOX4 and SOX12 protein expression could not be measured due to lack of commercially available specific antibodies. The Granta 519 cell line expressed high levels of SOX11 and very little SOX4 and SOX12 and was therefore chosen for further studies.

Silencing of SOX11 in Granta 519 Modifies TUBB3 Expression

The effect of siRNA-inhibition of SOX11 in Granta 519 was investigated using the S13312 siRNA. After 20 hours, the expression of SOX11 mRNA decreased by approximately 85% compared to cells treated with control siRNA (Figure 2A). Downregulation of mRNA was stable between 12–48 hours (data not shown). The SOX11 protein could not be detected at 20 hours after SOX11 knock down (Figure 2B) and the protein levels remained undetectable for 72 hours (data not shown). Similar silencing effects were obtained by another SOX11 siRNA, S224667 (data not shown). TUBB3 has been shown to be regulated by Sox11 in non-hematopoietic cells [8]. We therefore investigated whether SOX11 is able to regulate TUBB3 in Granta 519. 20 hours after transfection with SOX11 siRNA the expression of TUBB3 was reduced by 70% compared to negative control siRNA (Figure 2C).

Silencing of SOX11 Significantly Reduces the Expression of 26 Genes

We next analyzed the effect of knock down of SOX11 on global gene expression in Granta 519 cells. At the chosen time point, 20 hours after transfection, 26 genes were significantly downregulated in SOX11 siRNA treated cells compared to cells treated with control siRNA at the chosen threshold (FDR <0.002, FC ≤1.5 or FC ≥−1.5) (Table 1). No upregulated genes were found using this threshold.

SOX11 Expression Correlates to DBN1, SETMAR and HIG2 Expression in Two Independent MCL Cohorts

To test the generality of our findings we investigated how the expression of the 26 downregulated genes correlated to SOX11 expression in 16 primary MCL, all positive for cyclin D1 and SOX11 [4]. In addition to SOX11, nine of the 26 genes were represented on the U133A chip used in this analysis. Of these, HIG2, SETMAR and DBN1 were significantly correlated to
SOX11 Target Genes in MCL

Expression of SETMAR and DBN1 are Influenced by SOX11 in vitro and SOX11 Expression Correlated to DBN1 in Primary MCL Cells

To validate the results of the gene expression analysis, SETMAR and DBN1 were analysed by quantitative RT-PCR in Granta 519 after SOX11 siRNA treatment. Both SETMAR and DBN1 mRNA levels were significantly (p<0.001) reduced by SOX11 downregulation in Granta 519 cells (Figure 3A). In another MCL cell line, JeKo, SOX11 downregulation caused similar reduction of TUBB3 and DBN1 levels but not of SETMAR (Figure 3B). We also found a significant correlation between the expression of SOX11 and DBN1 in primary MCL cells (3 samples from 6 patients as described in Materials and Methods and Table 4) and in the MCL cell lines Granta 519, Rec1 and JeKo (Figure 4).

DBN1, SETMAR, and HIG2 are Direct Targets of SOX11 Protein

To investigate whether DBN1, SETMAR and HIG2 are direct targets of SOX11 protein, we performed chromatin immunoprecipitation (ChIP) assays on Granta 519 cells using two pairs of primers for each gene as described in Material and Methods. Granta 519 cells were cross-linked, and protein-DNA complexes were immunoprecipitated using antibodies recognizing normal rabbit IgG or anti-SOX11 antibody. We found that SOX11 was significantly recruited to DBN1, SETMAR and HIG2 promoter regions close to the transcription start site (TSS), but not to regions 2 kb distal to the TSS (DT) (Figure 5).

Discussion

The main finding of this study is the identification of 26 genes influenced by SOX11 in MCL. SOX11 has critical roles in embryonic neurogenesis and tissue remodeling [5,9,23,24]. It is also required for neuron survival and neurite growth [25] but no defined role in hematopoiesis has yet been shown.

The SOX11 protein belongs to the HMG box super family of DNA-binding proteins which are highly conserved between animals. They are involved in the regulation of such diverse development processes as specification of early embryonic germ layers [26,27], organ development and neurogenesis [28]. SOX11, together with two other SOX family members SOX4 and SOX12, belong to the same subgroup, SOXC. SOX4 is so far the only gene in this family that has been found to have an important role in lymphopoiesis. SOX4–null hematopoietic cells grafted into wild type mice remain blocked at the pro-B cell stage [12]. Although SOX11 is highly homologous to SOX4, its role in lymphopoiesis remains unclear.

Recently, SOX11 was found to be aberrantly expressed in MCL [1,2,3,4,18]. Importantly, approximately 10% of cyclin D1 positive MCL lack nuclear expression of SOX11 [2,4,19]. SOX11 is also expressed in subsets of Burkitt lymphomas, lymphoblastic leukemias and hairy cell leukemias [1,3,18]. Thus, expression of SOX11 in lymphoma seems independent of the t(11;14) cyclin D1 translocation.

The possible role of the aberrant SOX11 expression in lymphoma is unknown. Others have shown that SOX11 is needed for the expression of pan-neuronal genes, including the Class-III β-tubulin gene TUBB3 (also named Tuj1). TUBB3 was the first gene to be identified as a potential direct target of SOX4 proteins. In this study, we showed that SOX11 can modify the expression of TUBB3 also in MCL.

By gene expression analysis using a very stringent threshold, we identified 26 genes, all significantly downregulated, after SOX11 knockdown in MCL cells. Three of these genes were also found to be significantly correlated to SOX11 expression levels in 16 SOX11 positive primary MCL samples from various tissues. During the course of our study, Fernandez et al. published results on MCL with leukemic, non-nodal presentation and a very
indolent clinical course [19]. Many of these tumors had in fact been misdiagnosed as other types of lymphomas. 15 of the 26 SOX11siRNA downregulated genes in Granta 519 were found to be significantly correlated to SOX11 expression in the Fernandez cohort, confirming our observations.

Prior to this study, Tubb3 and Tead2 were the only genes proven to be directly regulated by Sox11 [8,9]. By chromatin immunoprecipitation we showed direct binding of the SOX11 protein to the promoter of the actin 3.0 protein thymosin beta 15. Thymosin beta 15 promotes cell motility and was discovered as highly upregulated in human breast, prostate and colon cancer [36,37,38,39]. According to NCBI, C5orf13 is coding for the protein P311, highly expressed in glioma and involved in glioma cell migration through the reorganization of the actin cytoskeleton [40]. Thus a number of genes involved in cell shape and motility were downregulated by SOX11 siRNA treatment of Granta 519 cells. We could, however, not detect any significant change in shape or growth pattern of the cells after siRNA. In these short term experiments, we did however not

Table 1. Differently expressed genes after SOX11 knockdown by siRNA in Granta 519 cells*

probe set ID	gene_assignment	p-value*	Fold-Change*
8174189	NM_021992/TMSB15A/thymosin-beta-15A/Xq21.33-q22.3	6.9064e-010	−3.94
8040070	NM_003108/SOX11/SRY (sex determining region Y)-box 11/2p25	4.3570e-009	−3.05
8110589	NM_015455/CNOT6/CCNB-NOT transcription complex, subunit 6/5q35.3	7.7295e-009	−1.52
7963054	NM_006009/TUBA1A/tubulin, alpha 1a/12q12-q14	2.2166e-008	−2.04
8117640	NM_025231/ZSCAN16/zinc finger and SCAN domain containing 16/6p22.1	3.8797e-008	−1.55
8047127	NM_00131015/MYO1B/myosin IB/2q12-q34	4.4570e-008	−2.43
8113504	NM_004772/C5orf13/chromosome 5 open reading frame 13/5q22.1	1.6184e-007	−1.78
8077370	NM_006651/SETMAR/SET domain and mariner transposase fusion gene/3p26.1	2.4819e-007	−1.58
8069880	NM_003253/TIAM1/T-cell lymphoma invasion and metastasis 1/21q22.1/21q22	2.6924e-007	−1.71
8169073	NM_194324/TMSB15B/thymosin-beta-15B/Xq22.2	2.7046e-007	−1.70
7925550	NM_001126/ADSS/adenosuccinate synthase/1cen-q12	2.7195e-007	−1.72
8005458	NM_00140078/LGALS9/lectin, galactoside-binding, soluble, 9C/17p11.2/	4.1908e-007	−1.69
8170468	NM_005342/HMGB3/high-mobility-group box 3/4q28	4.9152e-007	−1.53
8013450	NM_00142685/LGALS9B/lectin, galactoside-binding, soluble, 9B/17p11.2	8.6597e-007	−1.71
8177222	NM_013230/CD24/CD24 molecule/6q21	9.3981e-007	−2.20
8102311	NM_001226/CASP6/caspase 6, apoptosis-related cysteine peptidase/4q25	1.1825e-006	−1.58
8091103	NM_002628/TFDP2/transcription factor Dp-2 (E2F dimerization partner 2)	1.2042e-006	−2.04
7970082	NM_207009/FAM45A/family with sequence similarity 45, member A/10q25	1.2641e-006	−1.51
8127109	NM_016513/ICK/intestinal cell (MAK-like) kinase/6p12.1	3.0653e-006	−1.67
8116051	NM_080881/DBN1/drebrin 1/5q35.3	3.4139e-006	−1.71
8005809	NM_009587/LGAL59/lectin, galactoside-binding, soluble, 9/17q11.2/396	3.8368e-006	−1.86
8135915	NM_013332/C7orf68/chromosome 7 open reading frame 68/7q32.1	4.6540e-006	−2.24
8150186	NM_024787/RNF122/ring finger protein 122/8p12	6.2295e-006	−1.85
8075263	NM_003644/NIPSNAP1/nipsnap homolog 1 (C. elegans)/22q12.2	6.4654e-006	−1.56
8074780	NM_013313/YPEL1/yippee-like 1 (Drosophila)/22q11.2	2.6161e-005	−1.99
7930181	NM_020682/AS3MT/arosine (+3 oxidation state) methyltransferase/10q24.32	0.0001	−1.56

*SOX11 siRNA vs. negative control siRNA transfected Granta 519 cells. Data analysis was done using the Partek Genomics suite software at a stringent threshold (FDR<0.002, fold changes ≥−1.5 or ≥+1.5).

<doi:10.1371/journal.pone.0014085.t001>
detect any significant changes in cell proliferation or viability after SOX11 downregulation (manuscript in preparation), in contrast to what has been reported for neural cells [25]. However, since the effect on gene expression in siRNA treated cells is transient, we cannot exclude possible effects of SOX11 expression on cell survival or proliferation in other experimental settings.

SOX11 is aberrantly expressed in MCL but the molecular mechanism(s) responsible for its upregulation in lymphoid and hematopoietic cells are not yet defined, in contrast to other cell types. In chicken neural cells overexpression of Ngn2 and Ascl1 upregulates Sox11 while the transcriptional repressors Id1 and REST/NRSF downregulate its expression [11]. In the mouse embryonal neuronal plate Sox11 was upregulated by FoxD5 and Notch signalling [47]. Even though SOX11 is highly expressed in most MCL, upregulated after exposure of retinal microglia to 17beta-estradiol [48], plate Sox11 was upregulated by FoxD5 and Notch signalling in the mouse embryonal neuronal plate and freshly isolated lymphoma cells. Three of the identified genes, DBN1, SETMAR and HIG2, were found to be directly targeted by the SOX11 protein in MCL.

Materials and Methods

Ethical Permission

This study was approved by the Ethical Committee at the Karolinska Institutet, and performed according to the principles detailed in Table 2. Validation of SOX11 siRNA downregulated genes in a dataset of 16 primary MCL[5].

Probe set	Gene symbol	Spearman ratio	p-value
204915_s_at***	SOX11	1.00	0.00
206554_s_at***	SETMAR	0.56	0.02
218507_s_at	HIG2	0.57	0.02
202806_s_at	DBN1	0.52	0.03
213996_s_at	YPEL1	0.44	0.08
219897_s_at	RNF1122	-0.37	0.16
208650_s_at	CD24	-0.34	0.20
208651_s_at	CD24	0.13	0.63
209771_s_at	CD24	-0.12	0.66
209772_s_at	CD24	0.03	0.91
216379_s_at	CD24	-0.07	0.78
203236_s_at	LGALS9	0.19	0.48
201709_s_at	NIPSNAP1	-0.16	0.55
201708_s_at	NIPSNAP1	0.11	0.70
204569_s_at	ICK	-0.11	0.68

*Data from reference (51) representing 16 SOX11+ MCL.

The values were first tested for normal distribution. At the 0.05 level, all SOX11 data were not drawn from a normally distributed population, so we used Spearman rank correlation coefficient. The Spearman ratio represents the correlation between the values from SOX11 probe set 204915_s_at and the probesets of the selected genes. 2-tailed test of significance was used.

Validation of SOX11 siRNA downregulated genes in a series of SOX11+ and SOX11- MCL[8].

probeset gene symbol	Spearman ratio	p value	
204915_s_at***	SOX11	1	0
204914_s_at***	SOX11	0.95	1.35E-11
204913_s_at***	SOX11	0.93	4.46E-10
201310_s_at***	SETMAR	0.84	1.33E-06
201309_s_at***	SETMAR	0.78	1.97E-05
230424_s_at***	SETMAR	0.78	2.16E-05
238411_s_at***	SETMAR	0.29	0.18
203744_s_at***	HMG3	0.82	3.10E-06
225601_s_at***	HMG3	0.79	1.23E-05
202806_s_at***	DBN1	0.81	4.12E-06
217025_s_at***	DBN1	0.67	6.06E-04
214051_s_at***	MGC39900	0.73	1.15E-04
206554_s_at***	SETMAR	0.71	1.95E-04
1554059_s_at***	SETMAR	0.45	0.03
1554060_s_at***	SETMAR	0.43	0.05
209790_s_at***	CASP6	0.70	2.55E-04
211464_s_at**	CASP6	0.46	0.03
209118_s_at**	TUBA1A	0.69	3.63E-04
226157_s_at**	TFDP2	0.62	0.00
203588_s_at**	TFDP2	0.62	0.00
203589_s_at**	TFDP2	0.51	0.01
217970_s_at**	CNOT6	0.50	0.02
222476_s_at**	CNOT6	0.11	0.64
205347_s_at**	TMSB15A	0.46	0.03
209772_s_at**	CD24	0.46	0.03
208650_s_at**	CD24	0.44	0.04
208651_s_at**	CD24	0.39	0.07
216379_s_at**	CD24	0.36	0.10
209771_s_at**	CD24	0.36	0.10
227310_s_at**	ADD3	0.46	0.03
221761_s_at**	ADD3	-0.29	0.19
218507_s_at**	HIG2	0.44	0.04
1554452_s_at**	HIG2	0.44	0.04
213135_s_at**	ICK	0.43	0.04
206409_s_at**	ICK	0.17	0.44
225351_s_at**	FAM45A	0.44	0.04
1563919_s_at**	FAM45A	0.17	0.46
1563920_s_at**	FAM45A	-0.06	0.79
204569_s_at**	ICK	0.40	0.06
1552837_s_at**	ICK	0.18	0.43
212364_s_at**	MYO1B	-0.30	0.17
212365_s_at**	MYO1B	-0.12	0.58
203236_s_at**	LGALS9	0.11	0.64
219676_s_at**	ZSCAN16	0.22	0.34

*Data retrieved from (GSE15455) representing 7 indolent and 15 conventional MCL.

Moderate correlation (correlation coefficient 0.4–0.7);

Very high correlation (correlation coefficient 0.9–1.0).

doi:10.1371/journal.pone.0014085.0003
expressed in the Declaration of Helsinki. All the patients gave their written informed consent to participate in the study.

Patient Samples

Eight samples of tumor cells were collected from 6 patients diagnosed with cyclin D1+ MCL at the Department of Pathology (Karolinska University Hospital Huddinge, Sweden) (Table 4). Tumor cells were isolated from different tissues (bone marrow, blood, lymph node, spleen, pleural exudate), viability frozen in RPMI 1640 medium containing 10% DMSO and 40% FBS and stored at -135°C.

Table 4. Isolated primary MCL cells from 6 patients

Sample number	Patient age	sex	tissue	tumor cell content#
A1	82	M	blood	86%
A2	82	M	pleural exudate	95%
B1	77	F	blood	89%
B2	77	F	bone marrow	92%
C	69	M	spleen	80%
D	73	M	spleen	88%
E	77	M	lymph node	85%
F	66	M	blood	69%

#In two patients (A and B) tumor cells from different tissues were retrieved and analyzed separately.

Figure 4. Expression of DBN1 correlates to SOX11 expression in primary MCL cells and MCL cell lines. The expression values of SOX11, DBN1 or SETMAR were analyzed by quantitative RT-PCR. The threshold cycle (Ct) of the gene against the Ct of β-actin was determined by subtraction. All values were first tested for normal distribution, and then the Pearson correlation coefficients and P value were calculated. ▲ MCL cell lines Granta 519, Rec1 and JeKo; ● primary MCL patients. doi:10.1371/journal.pone.0014085.g004

SOX11 ChIP

Figure 5. SOX11 protein directly targets DBN1, SETMAR and HIG2. ChIP assay of SOX11 protein binding to the selected three genes. Immunoprecipitated DNA was analyzed by quantitative RT-PCR for two different primers as described in material and method. TSS: primer designed close to transcription start site (TSS) and DT: primer distal (~2 kb) to the TSS. Columns represent the mean of fold enrichment of DBN1, SETMAR or HIG2 relative to IgG control. Error bars show standard deviation of 3 independent experiments.* P<0.05, ** P<0.01 compared to the IgG control. doi:10.1371/journal.pone.0014085.g005
Cell Lines

Granta 319, Recl, JeKo, JVM2 cell lines and primary cells were obtained and cultured as previously described [48]. In short, cell lines were maintained in culture medium (RPMI 1640), supplemented with 10% fetal bovine serum (FBS) and 50 μg/ml gentamicin (all from Invitrogen, Carlsbad, CA) under standard conditions (humidified atmosphere, 95% air, 5% CO2). The cells were maintained between 3 x 10^5 and 1.5 x 10^6/ml. Culture medium was changed twice weekly.

siRNA and Transient Transfection

Two silence select pre-designed SOX11 siRNAs, S13312 and S224667, and one non-targeting silence select Negative Control #1 siRNA were obtained from Ambion (Ambion, Austin, TX). siRNA S13312, used in most experiments had the sense targeting sequence (5’-3’): GACCUAGUGUCCGACCUGAtt. Results were confirmed using S224667 with the sense targeting sequence (5’-3’): GGGACUGACGCGAGAUAGAUCt. Freeze-dried siRNAs were suspended in nuclease-free water (Ambion, Applied Biosystem, Austin, TX) in a final concentration of 50 μM. Transient transfection were performed on an Amaxa Nucleofection Device (Lonza Cologne AG, Cologne, Germany) according to the manufacturer’s instructions. In brief, Granta 519 cells were split at a density of 5 x 10^5/ml in the medium 48 hours before transfection. Thereafter, 4 x 10^5 cells were collected and resuspended in 100 μl human cell line nucleofector solution C with 100 pmol of either SOX11 siRNA or control siRNA using the X-01 electroporation program. The two SOX11 siRNAs were tested for their individual ability to knock down SOX11 expression. Both siRNA sequences were able to knock down SOX11 expression by 80%-85% in Granta 519 cells.

RNA Isolation and Affymetrix GeneChip Human Gene 1.0 ST Array

Cells were harvested 20 hours after siRNA transfection. Total RNA from individual transfection experiments in Granta 519 cells (n=4) or patient samples (n=8) was extracted with Qiagen RNAeasy Plus Mini kit according to the instructions of the manufacturer (Qiagen, Valencia, CA). RNA quantity was measured using a NanoDrop (NanoDrop Technologies, Wilmington, DE) set for RNA measurement (A260/A280 ratio). RNA quality was assessed using an Agilent Bioanalyzer 2100 (Agilent Technologies, Palo Alto, CA) and samples with high-quality RNA were hybridized to Affymetrix GeneChip Human Gene 1.0 ST arrays (Affymetrix Inc. Santa Clara, CA) in accordance with the Affymetrix standard protocol at the Bioinformatics and Expression Analysis Core facility (BEA, Department of Biosciences and Nutrition, Karolinska Institutet).

Gene Expression Data Analysis

The microarray image data were processed in the BEA core facility according to standard procedures. CEL data was analyzed with Partek Genomic Suite vs 6.5 (Partek Inc., St. Louis, MO) which can normalize and process multiple datasets simultaneously. Data normalization was performed by Robust Multiarray Analysis algorithm (RMA). Statistical differences were examined using one way ANOVA. Significant probesets were defined with a p-value cutoff significant with a False Discovery Rate (FDR) of <0.002, and a fold-change (FC) equal or greater than 1.5(FC≥1.5) for upregulated genes and equal or less than -1.5(FC≤-1.5) for downregulated genes, respectively.

Gene expression values for the selected genes were retrieved from two primary array databases. Our previously published gene expression analysis included 16 MCL tumor samples, all expressing cyclin D1 and SOX11 [49]. We also retrieved data from a recently published study from [19] which included 7 indolent, SOX11 negative MCL and 15 conventional, SOX11 positive MCL (http://www.ncbi.nlm.nih.gov/geo/ with the GSE accession number GSE16455).

cDNA Synthesis and Real-time Quantitative RT-PCR

cDNA was generated according to the protocol for Oligo(dT) reverse transcription (Qiagen, GmbH, Hilden, Germany). 2 μg of RNA was used in conjunction with Oligo(dT) primer and 20 μl of cDNA was generated. 1 μl of cDNA was added to 20 μl of qPCR Kit Platinum SYBR Green qPCR SuperMix-UDG with FFC (Invitrogen) according to the manufacturer’s instructions, run in triplicate on a CFX96 Real-time System (C1000 Thermal Cycler, BIO-RAD, city, CA). The following primers were used: SOX11, 5’-GATGTGACTAATGCGACATTG-3’ and 5’-CAGCG-AGCACGTTGCAAATGG-3’; SOX4, 5’- CAGCCCCCTTAT-TCTCAGTGT and 5’-GTTGCGAGCAGTAAAGGTACTG-3’; SOX12, 5’-CCCAGGTCCACCTGACTAC-3’ and 5’-CGAG-AGTCTCCGTCACATC; SETMAR, 5’-GGGGAAGGCGGGA- AAAAG-3’ and 5’-GCTCAGGGCTCTCTTGAACACTC-3’; DBN1, 5’-GCCCCACCTGCTAAACAA-3’ and 5’-GTGATTTGACTGAAGATCCCTCAGT-3’; TUBB3, 5’-GGGCGGAGT-CACCGTCTACT-3’ and 5’-GCTCGAGGACGACTTGTTG-3’; β-actin, 5’-AAAGACTGTTAGCAGCCAACA-3’ and 5’-AGTACTTGGCTCAGGAGGA-3’. The cycle parameters used was: 50°C 2 min, 95°C 2 min, followed by 40 cycles of 95°C for 15 seconds and 59°C for 30 seconds. Ct values (Threshold cycles) were obtained from amplification of SOX11, SOX4, SOX12, SET-MAR, DBN1, TUBB3 and β-actin. The ΔCt value was calculated by subtracting the Ct value of β-actin from the Ct value of target gene. A ΔΔCt value was then calculated by subtracting the ΔCt value for siRNA condition from the ΔCt value for control condition with relative fold increase (RFI) reported as 2^-ΔΔCt.

Western blotting

Western blotting was performed as described previously [4]. The blotted membranes were probed with rabbit anti-human SOX11 (HPA000536, Atlas Antibodies, Uppsala, Sweden), and antibodies to tubulin (SC 8035, Santa Cruz Biotechnology, Santa Cruz, CA) or actin (A4700, Sigma, Saint Louis, MO) was used as loading controls. Antibody binding was detected by enhanced chemiluminescence using SupersignalWest Pico (Pierce Biotechnol- ogy, Shelton) CT Chemiluminescent substrate.

Chromatin immunoprecipitation (ChIP)

Granta 519 cells were split at a density of 5 x 10^5/ml in the medium and cultured for 72 hours. Thereafter, 2 x 10^5 cells were collected and crosslinked with 1% formaldehyde for 10 min. Cross-linking was quenched by adding 125 mM glycine and cells were washed with cold PBS, harvested and resuspended in lysis buffer containing protease inhibitors cocktail (Roche, Mannheim, Germany) and sonicated 15 min for three times. The soluble chromatin was collected by centrifugation and the supernatants were incubated with 30 μl protein A/G Sepharose (50% slurry; GE Healthcare Bio-Sciences Corp., Uppsala, Sweden) under gentle agitation overnight at 4°C. The supernatant was transferred to a new microcentrifuge tube, followed by immunoprecipitation with 1 μg of anti-SOX11 antibody and non-immune rabbit IgG (Santa Cruz Biotechnology, Santa Cruz, CA) as control at 4°C overnight. Protein A/G Sepharose (20 μl of a 50% slurry) was then added and incubated for 1.5–2 h. The pellets were successively washed with different buffer as previously described.
[50]. Protein-DNA crosslinks were reversed by overnight incubation at 65 °C in 120 µl elution buffer [1% SDS]. DNA was purified using a PCR purification kit (Qiagen, Valencia, CA) and eluted in 50 µl of elution buffer. The immunoprecipitated DNA was amplified by real-time PCR using Fast SYBR Green Master Mix Applied Biosystems, Warrington, UK. Two pairs of primers were designed for DBN1, SETMAR and HIG2 with one primer designed close to transcription start site (TSS) and one distal (~2 kb) to the TSS (DT).

The primer pairs used are as follows:

DBN1 TSS forward: 5'-TGAGGTTGAGGATTGTGGCT-3'; Reverse: 5'-GGGCGGTAGGGTGACCT-3'.

DBN1 DT forward: 5'-CTTGGCGGAGGGTCCAT-3'; Reverse: 5'-TCCTGAATGCTGCGCTGAA-3'.

SETMAR TSS forward: 5'-GGGAAGCCACCGAAAAATGTGCT-3'; Reverse: 5'-TTTCAGGATGGGCCCTGGAA-3'.

SETMAR DT forward: 5'-AGAGAGATAGCAGAGAGGGGAACACACATGGCAGCT-3'; Reverse: 5'-CCGCTCCTGTTTCTTTCACGATACTTTTTT-3'.

HIG2 TSS forward: 5'-CTACCTCGAGAACACAAATGACTCAA-3'; Reverse: 5'-CGGAGGTGCCTGTTTCCAAA-3'.

HIG2 DT forward: 5'-TTTCCATGGCAGATGACCTTTT-3'; Reverse: 5'-GCCACCTCTGCAAAATTTTCTTTCG-3'.

References

1. Chen YH, Gao J, Fan G, Peterson LC (2010) Nuclear expression of sox11 is highly associated with mantle cell lymphoma but is independent of t(11;14)(g13;q2) in non-mantle cell B-cell neoplasms. Mod Pathol 23: 105–112.

2. Ek S, Dictor M, Jerkeman M, Jirstrom K, Borrebaeck CA (2008) Nuclear expression of the non-B-cell lineage Sox11 transcription factor identifies mantle cell lymphoma. Blood 111: 800–805.

3. Moza A, Royo G, Hartmann E, De Jong D, Baro C, et al. (2009) SOX11 expression is highly specific for mantle cell lymphoma and identifies the cyclin D1-negative subtype. Haematologica 94: 1555–1562.

4. Wang X, Asplund AC, Porwit A, Flygare J, Smith CI, et al. (2008) The human Sox11 gene and protein, drebrin, from hippocampal synapses in Alzheimer disease. J Neuropathol Exp Neurol 58: 637–643.

5. Haslinger A, Schwarz TJ, Covic M, Chichung Lie D (2009) Expression of Sox11 in neuroblastoma: correlates to overall survival. Br J Haematol 143: 248–252.

6. Lefebvre V, Dumitriu B, Penzo-Mendez A, Han Y, Pallavi B (2007) Control of cell fate and differentiation by Sox2-related high-mobility-group box Sox transcription factors. Int J Biochem Cell Biol 39: 2195–2214.

7. Wang A, Asplund AC, Porwit A, Flygare J, Smith CI, et al. (2008) The subcellular Sox11 distribution pattern identifies subsets of mantle cell lymphoma: correlation to overall survival. Br J Haematol 143: 248–252.

8. Jares P, Colomer D, Campo E (2007) Gene targeting of SOX11 in mouse embryonic fibroblasts. Blood 111: 800–805.

7. Lefebvre V, Dumitriu B, Penzo-Mendez A, Han Y, Pallavi B (2007) Control of cell fate and differentiation by Sox2-related high-mobility-group box Sox transcription factors. Int J Biochem Cell Biol 39: 2195–2214.

8. Lefebvre V, Dumitriu B, Penzo-Mendez A, Han Y, Pallavi B (2007) Control of cell fate and differentiation by Sox2-related high-mobility-group box Sox transcription factors. Int J Biochem Cell Biol 39: 2195–2214.

9. Wang X, Asplund AC, Porwit A, Flygare J, Smith CI, et al. (2008) The human Sox11 gene: cloning, chromosomal assignment and tissue expression. Genomics 29: 541–545.

10. Haslinger A, Schwarz TJ, Covic M, Chichung Lie D (2009) Expression of Sox11 in neuroblastoma: correlates to overall survival. Br J Haematol 143: 248–252.

11. Hatanpaa K, Isaacs KR, Shirao T, Brady DR, Rapoport SI (1999) Loss of drebrin, a brain-enriched actin-binding protein, from hippocampal synapses in Alzheimer's disease. J Neuropathol Exp Neurol 58: 637–643.

12. Harigaya Y, Shoji M, Shirao T, Hirai S (1996) Disappearance of actin-binding protein, drebrin, from hippocampal synapses in Alzheimer's disease. J Neuropathol Exp Neurol 55: 753–762.

13. Brennan DJ, Ek S, Doyle E, Drew T, Foley M, et al. (2009) The transcription factor SOX11 directly interacts with drebrin, a protein regulating synaptic plasticity in normal aging of the human brain and in Alzheimer disease. J Neurosci Res 87: 87–92.

14. Hatanpaa K, Tissier CA, Alberts B, Brodin D, Wang X, et al. (2009) SOX11 Target Genes in MCL

Statistical Analysis

Quantitative RT-PCR data were statistically analyzed using paired t-test with P values <0.05 as statistical significance. The correlation between SOX11 and other genes as well as the expression differences among MCL were analyzed with the Spearman's rank correlation coefficient test or Pearson correlation coefficient for qRT-PCR results using Origin 8 software (OriginLab, MA USA) using Origin 8 software. 2-tailed test for significance was used.

Acknowledgments

We are grateful to the personnel at the Flow Cytometry Unit at Karolinska University Hospital Huddinge for the help with collection of patients’ samples and flow cytometry. We also thank Jiangang Ji at Lund University for statistical advice and David Brodin at BEA core facility for help with gene expression analysis.

Author Contributions

Conceived and designed the experiments: XW AG BC BS. Performed the experiments: XW SB AMW PA. Analyzed the data: XW BC BS. Wrote the paper: XW BC BS. Contributed reagents/materials/analysis tools: XW SB AMW PA. Performed the samples and flow cytometry: XW SB AMW PA. Read and approved the manuscript: XW SB AMW PA EK KDW BS.
34. Keon BH, Jedrzejewski PT, Paul DL, Goodenough DA (2000) Isoform specific expression of the neuronal F-actin binding protein, drebrin, in specialized cells of stomach and kidney epithelia. J Cell Sci 113(Pt 2): 325–336.
35. Klaiman G, Petzke TL, Hammond J, Leblanc AG (2008) Targets of caspase-6 activity in human neurons and Alzheimer disease. Mol Cell Proteomics 7: 1541–1555.
36. Bao L, Zetter BR (2000) Molecular cloning and structural characterization of the rat thymosin beta15 gene. Gene 260: 37–44.
37. Bao L, Loda M, Zetter BR (1999) Thymosin beta15 expression in tumor cell lines with varying metastatic potential. Clin Exp Metastasis 16: 227–233.
38. Gold JS, Bao L, Ghousouba RA, Zetter BR, Rimm DL (1997) Localization and quantitation of expression of the cell motility-related protein thymosin beta15 in human breast tissue. Mod Pathol 10: 1106–1112.
39. Bao L, Loda M, Janney PA, Stewart R, Anand-Apte B, et al. (1996) Thymosin beta 15: a novel regulator of tumor cell motility upregulated in metastatic prostate cancer. Nat Med 2: 1322–1328.
40. McDonough WS, Tran NL, Berens ME (2005) Regulation of glioma cell migration by serine-phosphorylated P311. Neoplasia 7: 862–872.
41. Wray J, Williamson EA, Royston M, Shaheen M, Beck BD, et al. (2009) Metnase mediates resistance to topoisomerase II inhibitors in breast cancer cells. PLoS One 4: e3323.
42. Wray J, Williamson EA, Sherma S, Lee SH, Libby E, et al. (2009) Metnase mediates chromosome decatenation in acute leukemia cells. Blood 114: 1852–1858.
43. Nemeth MJ, Kirby MR, Garrett-Beal LJ, Seidel NE, et al. (2003) Hmgb3: an HMG-box family member expressed in primitive hematopoietic cells that inhibits myeloid and B-cell differentiation. Blood 102: 1298–1306.
44. Nemeth MJ, Kirby MR, Bodine DM (2006) Hmgb3 regulates the balance between hematopoietic stem cell self-renewal and differentiation. Proc Natl Acad Sci U S A 103: 13783–13788.
45. Yan B, Neilson KM, Moody SA (2009) Notch signaling downstream of foxD3 promotes neural ectodermal transcription factors that inhibit neural differentiation. Dev Dyn 238: 1358–1365.
46. Yan B, Neilson KM, Moody SA (2009) foxD3 plays a critical upstream role in regulating neural ectodermal fate and the onset of neural differentiation. Dev Biol 329: 80–95.
47. Li C, Tang Y, Li F, Turner S, Li K, et al. (2006) 17beta-estradiol (betaE2) protects human retinal Muller cell against oxidative stress in vitro: evaluation of its effects on gene expression by cDNA microarray. Glia 53: 392–400.
48. Gustafsson K, Wang X, Severa D, Eriksson M, Kinly E, et al. (2006) Expression of cannabinoid receptors type 1 and type 2 in non-Hodgkin lymphoma: growth inhibition by receptor activation. Int J Cancer 123: 1025–1033.
49. Sander B, Flygare J, Povlet-Macdonald A, Smith CI, Emanuelsson E, et al. (2005) Mantle cell lymphomas with low levels of cyclin D1 long mRNA transcripts are highly proliferative and can be discriminated by elevated cyclin A2 and cyclin B1. Int J Cancer 117: 418–430.
50. Matthews J, Wihlen B, Tujague M, Wan J, Strom A, et al. (2006) Estrogen receptor (ER) beta modulates ERalpha-mediated transcriptional activation by altering the recruitment of c-Fos and c-Jun to estrogen-responsive promoters. Mol Endocrinol 20: 534–543.