Eigenvalues for a Schrödinger operator on a closed Riemannian manifold with holes

Olivier Lablée

12 September 2013

Abstract
In this article we consider a closed Riemannian manifold (M,g) and A a subset of M. The purpose of this article is the comparison between the eigenvalues $(\lambda_k(M))_{k \geq 1}$ of a Schrödinger operator $P := -\Delta_g + V$ on the manifold (M,g) and the eigenvalues $(\lambda_k(M - A))_{k \geq 1}$ of P on the manifold $(M - A, g)$ with Dirichlet boundary conditions.

1 Introduction
The behaviour of the spectrum of a Riemannian manifold (M,g) under topological perturbation has been the subject of many research. The most famous exemple is the crushed ice problem [Kac], see also [Ann]. This problem consists to understand the behaviour of Laplacian eigenvalues with Dirichlet boundary on a domain with small holes. This subject was first studied by M. Kac [Kac] in 1974. Then, J. Rauch and M. Taylor [Ra-Ta] studied the case of Euclidian Laplacian in a compact set M of \mathbb{R}^n: they showed that the spectrum of $\Delta_{\mathbb{R}^n}$ is invariant by a topological excision of a M by a compact subset A with a Newtonian capacity zero. Later, S. Osawa, I. Chavel and E. Feldman [Ca-Fe1], [Ca-Fe2] treated the Riemannian manifold case. They used complex probalistic techniques based on Brownian motion. In [Ge-Zh], F. Gesztesy and Z. Zhao investigate the study the case of a Schrödinger operator with Dirichlet boundary conditions \mathbb{R}^n, they use probabilistic tools. In 1995, in a nice article [Cou] G. Courtois studied the case of Laplace Beltrami operator on closed Riemannian manifold. He used very simple techniques of analysis. In [Be-Co] J. Bertrand and B. Colbois explained also the case of Laplace Beltrami operator on compact Riemannian manifold. In this article we focus on the the Schrödinger operator $-\Delta_g + V$ case on a closed Riemannian manifold.

Assumption. The manifold is closed (i.e. compact without boundary); the function V is bounded on the manifold M and $\min_M V > 0$.

In this work we show that under “little” topological excision of a part A from the manifold, the spectrum of $-\Delta_g + V$ on $M - A$ is close of the spectrum on M. More precisely, the “good” parameter for measuring the littleness of A is a type of electrostatic capacity defined by :

$$\text{cap}(A) := \inf \left\{ Q(u), u \in H^1(M), \int_M u dV_g = 0, u + e_1 \in H^1_0(M - A) \right\}$$
where \(e_1 \) denotes the first eigenfunction of the operator \(-\Delta_g + V\) on the manifold \(M \), and \(Q \) is the following quadratic form:

\[
Q(\phi) := \int_M |d\phi|^2 \, dV_g + \int_M V |\phi|^2 \, dV_g
\]

and \(H^1_0(M-A) \) is the Sobolev space defined by:

\[
H^1_0(M-A) := \{ g \in H^1(M), \, g = 0 \text{ on a open neighborhood of } A \}
\]

the closure is for the norm \(\| \cdot \|_{H^1(M)} \), \(H^1(M) \) is the usual Sobolev space on \(M \).

Indeed, more \(\text{cap}(A) \) is small, more the spectrum \(-\Delta_g + V\) on \(M - A \) is close of the spectrum on \(M \) in the following sense:

Theorem. Let \((M,g)\) a closed Riemannian manifold. For all integer \(k \geq 1 \), there exists a constant \(C_k \) depending on the manifold \((M,g)\) and on the potential \(V \) such that for all subset \(A \) of \(M \) we have:

\[
0 \leq \lambda_k(M-A) - \lambda_k(M) \leq C_k \sqrt{\text{cap}(A)}.
\]

The organization of this paper is the following: in the part 2 we start by recall some classicals results in spectral theory and about usual Sobolev spaces, next we define our specific Sobolev space \(H^1_0(M-A) \) and the notion of Schrödinger capacity. In particular, we explain the link between the functional Hilbert space \(H^1_0(M-A) \) and Schrödinger capacity \(\text{cap}(A) \). The last part of this paper is a detailed proof of the main theorem.

2 Spectral problem background

2.1 Schrödinger operator on a Riemannian manifold

We recall here some generality on spectral geometry. In Riemannian geometry, the **Laplace Beltrami operator** is the generalisation of Laplacian \(\Delta = \sum_{j=1}^n \partial_{x_j} \partial_{x_j} \) on \(\mathbb{R}^n \). For a \(C^2 \) real valued function \(f \) on a Riemannian manifold and for a local chart \(\phi : U \subset M \to \mathbb{R} \) of the manifold \(M \), the Laplace Beltrami operator is given by the local expression:

\[
\Delta_g f = \frac{1}{\sqrt{g}} \sum_{j,k=1}^n \frac{\partial}{\partial x_j} \left(\sqrt{g} g^{jk} \frac{\partial (f \circ \phi^{-1})}{\partial x_k} \right) \tag{2.1}
\]

where \(g = \det(g_{ij}) \) and \(g^{jk} = (g_{jk})^{-1} \).

The spectrum of this operator is a nice geometric invariant, see Berger, Gauduchon and Mazet [BGM] and [Ré-Be]. The spectrum of Laplace Beltrami operator has many applications in geometry topology, physics, etc...

For every Riemannian manifold \((M,g)\) with dimension \(n \geq 1 \) we have the “natural” Hilbert space \(L^2(M) = L^2(M, dV_g) \), \(V_g \) is the Riemannian volume form associated to the metric \(g \). For \(V \) a function from \(M \) to \(\mathbb{R} \), we define the Schrödinger operator on the manifold \((M,g)\) by the linear unbounded operator on the set of smooth compact supports real valued functions \(C^\infty_c(M) \subset L^2(M) \) by:

\[
-\Delta_g + V.
\]
2.2 Sobolev spaces

Let us denote by \(C^\infty_c(M) \) the set of smooth functions with compact support in \(M \). The set \(C^\infty_c(M) \) is also called the set of test functions in the language of distributions. Recall first that the Lebesgue space \(L^2(M) \) on the manifold \((M,g)\) is defined by:

\[
L^2(M) := \left\{ f : M \to \mathbb{R} \text{ measurable such that } \int_M |f|^2 \, dV_g < +\infty \right\}.
\]

This space is a Hilbert space for the scalar product:

\[
\langle u, v \rangle_{L^2} := \int_M uv \, dV_g.
\]

Next the Sobolev space \(H^1(M) \) is defined by:

\[
H^1(M) := \overline{C^\infty(M)}
\]

where the closure is for the norm \(\| \|_{H^1} : \| u \|_{H^1} := \sqrt{\| u \|_{L^2}^2 + \| du \|_{L^2}^2} \).

An other point of view to define the space \(H^1(M) \) is the following:

\[
H^1(M) = \left\{ u \in L^2(M); du \in L^2(M) \right\}
\]

where the derivation is the sense of distribution.

The space \(H^1(M) \) is a Hilbert space for the scalar product:

\[
\langle u, v \rangle_{H^1} := \langle u, v \rangle_{L^2} + \langle du, dv \rangle_{L^2}.
\]

For finish, the Sobolev space \(H^1_0(M,g) \) is defined by:

\[
H^1_0(M) := \overline{C^\infty_c(M)}
\]

the closure is for the norm \(\| \|_{H^1(M)} \).

So we have:

\[
C^\infty_c(M) \subset H^1_0(M) \subset H^1(M) \subset L^2(M).
\]

Recall that, for the norm \(\| \|_{L^2(M)} \) we have:

\[
\overline{C^\infty_c(M)} = L^2(M).
\]

2.3 Spectral problem

The spectral problem is the following: find all pairs \((\lambda, u)\) with \(\lambda \in \mathbb{R} \) and \(u \in L^2(M) \) such that:

\[
-\Delta_g u + Vu = \lambda u \tag{2.2}
\]

(with \(u \in L^2(M) \) in the non-compact case).
In the case of manifold with boundary, we need boundary conditions on the functions \(u \), for example the Dirichlet conditions: \(u = 0 \) on the boundary of \(M \), or Neumann conditions: \(\frac{\partial u}{\partial n} = 0 \) on the boundary of \(M \). In the case of closed manifolds (compact without boundary) we don’t have conditions.

For our context (the closed case) the natural space to look here is the Sobolev space \(H^1(M) \).

Recall here a classical theorem of spectral theory (see for example [Re-Si]):

Theorem. For the above problems, the operator \(-\Delta_g + V \) is self-adjoint, the spectrum of the operator \(-\Delta_g + V \) consists of a sequence of infinite increasing eigenvalues with finite multiplicity:

\[
\lambda_1(M) \leq \lambda_2(M) \leq \cdots \leq \lambda_k(M) \leq \cdots \to +\infty.
\]

Moreover, the associate eigenfunctions \((v_k)_{k \geq 0} \) is a Hilbert basis of the space \(L^2(M) \).

Definition. We define the quadratic form \(Q \) with domain \(D(Q) := H^1(M) \) by:

\[
Q(\varphi) := \int_M |d\varphi|^2 dV_g + \int_M V|\varphi|^2 dV_g.
\]

Recall also (see for example [Co-Hil]) the minimax variational characterization for eigenvalues: for all \(k \geq 1 \)

\[
\lambda_k(M) = \min_{E \in H^1(M)} \max_{\|\varphi\|_E = 1} R(\varphi)
\]

where \(R(\varphi) \) is the Rayleigh quotient of the function \(\varphi \):

\[
R(\varphi) := \frac{Q(\varphi)}{\int_M \varphi^2 dV_g}.
\]

In our context, a consequence of the minimax principle is:

Proposition. The first eigenvalue \(\lambda_1(M) \) and \(e_1 \) the first eigenfunction of the operator \(-\Delta_g + V \) on the manifold \((M, g)\) satisfy \(\lambda_1(M) \geq \min_M V > 0 \) and \(e_1 \) does not vanish on \(M \) in \(M \).

Proof. It’s clear that

\[
\int_M |\partial_1|^2 dV_g + \int_M V|\partial_1|^2 dV_g \geq \min_M V \|\partial_1\|_{L^2(M)}^2
\]

and on the other hand

\[
\int_M |\partial_1|^2 dV_g + \int_M V|\partial_1|^2 dV_g = -\int_M \Delta_g \partial_1 \partial_1 dV_g + \int_M V|\partial_1|^2 dV_g
\]

\[
= \int_M (-\Delta_g + V) \partial_1 \partial_1 dV_g = \lambda_1(M) \|\partial_1\|_{L^2(M)}^2
\]

so \(\lambda_1(M) \geq \min_M V \). Next, suppose the function \(\partial_1 \) changes sign into \(M \), since \(\partial_1 \in H^1(M) \), the function \(f := |\partial_1| \) belongs to \(H^1(M) \) and \(|df| = |\partial_1| \) (see for example [Gi-Tr]), hence \(R(f) = R(\partial_1) \). So, the function \(f \) is a first eigenfunction of \(-\Delta_g + V \) on the manifold \(M \) which satisfies \(f \geq 0 \) on \(M \), \(f \) vanish into \(M \) and \((-\Delta_g + V) f = \lambda_1(M) f \geq 0 \) on \(M \). Using the maximum principle [Pr-We], the function \(f \) can not achieved it minimum in an interior point of the manifold \(M \), hence \(f \) does not vanish on \(M \), so we obtain a contradiction. \(\square \)
3 Proof of the main theorem

3.1 Some other useful spaces

We define on the space $H^1(M)$ the \star-norm by:
\[
\|u\|_{\star}^2 := \int_M |u|^2 \, dV_g + \int_M V |u|^2 \, dV_g
\]
so, without difficulty we have:

Proposition. The application $\|\cdot\|_{\star}$ is a norm on the space $H^1(M)$; moreover, this norm is equivalent to the Sobolev norm $\|\cdot\|_{H^1(M)}$. In particular $H^1(M)$, $\|\cdot\|_{\star}$ is a Banach space.

Let us denote by $C^\infty_0(M-A)$ the set of smooth functions with compact support on $M-A$. For a compact subset A of the manifold M the usual Sobolev space $H^1_0(M-A)$ is defined by the closure of $C^\infty_0(M-A)$ for the norm $\|\cdot\|_{H^1(M)}$:
\[
H^1_0(M-A) := \overline{C^\infty_0(M-A)}.
\]

What happens when the set A is not compact? For example if A is a dense and countable subset of points of the manifold M, the space of test functions $C^\infty_0(M-A)$ is reduced to $\{0\}$. Therefore we cannot define the space $H^1_0(M-A)$. In this case, we propose a definition of $H^1_0(M-A)$ for any subset A of M.

Definition. We define the Sobolev spaces $H^1_0(M-A)$ and $H^1_0(M-A)$ by:
\[
H^1_0(M-A) := \left\{ g \in H^1(M), g = 0 \text{ on a open neighborhood of } A \right\};
\]
\[
H^1_0(M-A) := \overline{H^1_0(M-A)}
\]
where the closure is for the norm $\|\cdot\|_{H^1(M)}$.

We have the:

Proposition. If the set A is compact, the previous definition of the space $H^1_0(M-A)$ coincides with the usual ones.

Proof. Let $f \in H^1_0(M-A) := \overline{H^1_0(M-A)}$, then by definition: for all $\varepsilon \geq 0$ there exists $g \in H^1_0(M-A)$ such that $\|f-g\|_{H^1(M)} \leq \varepsilon$. So, we will show that we can write g as a limit of sequence from the space $C^\infty_0(M-A)$ and conclude.

Since $g \in H^1_0(M-A)$ there exists an open set $U \supset A$ such that $g|_U = 0$. Consider two open sets U_1 and U_2 of the manifold M such that:
\[
A \subset U_1, \quad M-U \subset U_2, \quad U_1 \cap U_2 = \emptyset;
\]
and consider also a function $\varphi \in \mathcal{D}(M)$ such that:
\[
\varphi|_{U_1} = 0, \quad \varphi|_{U_2} = 1.
\]

Of course, the function φ belongs to the space $C^\infty_0(M-A)$. Next, since $g \in H^1_0(M-A) \subset H^1(M)$ and as the set of smooth functions $C^\infty(M)$ is dense in...
$H^1(M)$: there exists a sequence $(g_n)_n$ in $C_c^\infty(M)$ such that $\lim_{n \to +\infty} g_n = g$ for the norm $\| \cdot \|_{H^1(M)}$. Therefore we claim that $\lim_{n \to +\infty} \varphi g_n = g$ for the norm $\| \cdot \|_{H^1(M)}$. Indeed, start by, for all integer n:

$$\| \varphi g_n - g \|_{L^2(U)}^2 \leq \| g_n - g \|_{H^1}^2 + \| \varphi g_n - g \|_{H^1(U)}^2.$$

As a consequence, we have for all integer n:

$$\| \varphi g_n - g \|_{H^1(U)}^2 = \| \varphi g_n \|_{H^1(U)}^2$$

$$= \int_U |\varphi g_n|^2 \, dV_g + \int_U |d\varphi g_n + \varphi dg_n|^2 \, dV_g$$

$$\leq \int_U |\varphi g_n|^2 \, dV_g + \int_U |d\varphi|_g^2 \, dV_g + \int_U |\varphi|_g^2 \, dV_g + 2 \int_U |d\varphi g_n| \, dV_g$$

$$\leq \| \varphi \|_{L^2(U)}^2 \| g_n \|_{L^2(U)}^2 + \| d\varphi \|_{L^2(U)}^2 \| g_n \|_{L^2(U)}^2 + 2 \| d\varphi \|_{L^\infty(M)} \| g_n \|_{L^2(U)} \| d\varphi \|_{L^2(U)}$$

$$\leq \| \varphi \|_{L^2(U)}^2 \| g_n \|_{L^2(U)}^2 + \| d\varphi \|_{L^\infty(M)} \| g_n \|_{L^2(U)} \| d\varphi \|_{L^2(U)}$$

Next, we observe that, for all integer n:

$$\| \varphi g_n - g \|_{L^2(U)}^2 \leq \| g_n \|_{L^2(U)}^2 \left(2 \| \varphi \|_{L^\infty}^2 + \| d\varphi \|_{L^\infty}^2 + 2 \| d\varphi \|_{L^\infty} \| \varphi \|_{L^\infty} \right).$$

As a consequence, we have for all integer n:

$$\| \varphi g_n - g \|_{L^2(U)}^2 \leq \| g_n - g \|_{H^1(M-U)}^2 + \| g_n \|_{H^1(U)}^2 \left(2 \| \varphi \|_{L^\infty}^2 + \| d\varphi \|_{L^\infty}^2 + 2 \| d\varphi \|_{L^\infty} \| \varphi \|_{L^\infty} \right).$$

Now, it suffices to note that $\| g_n \|_{H^1(U)}^2 = \| g_n - g \|_{H^1(M)}^2 \leq \| g_n - g \|_{H^1(M)}^2$ (since $g = 0$ on the open set U) and we finally have:

$$\| \varphi g_n - g \|_{H^1(M)}^2 \leq$$

$$\| g_n - g \|_{H^1(M)}^2 \left(1 + 2 \| \varphi \|_{L^\infty}^2 + \| d\varphi \|_{L^\infty}^2 + 2 \| d\varphi \|_{L^\infty} \| \varphi \|_{L^\infty} \right).$$

The sequence $(\varphi g_n)_n$ belong to $C_c^\infty(M - A)^N$, and since $\lim_{n \to +\infty} g_n = g$ for the norm $\| \cdot \|_{H^1(M)}$ the previous inequality implies $\lim_{n \to +\infty} \varphi g_n = g$ for the norm $\| \cdot \|_{H^1(M)}$.

So we have shown that every function $f \in H^1_0(M - A) := \overline{H^1_0(M - A)}$ is a limit (for the norm $\| \cdot \|_{H^1(M)}$) of a sequence of $C_c^\infty(M - A)$. Conversely, since $C_c^\infty(M - A) \subset H^1_0(M - A)$ we get:

$$H^1_0(M - A) := \overline{C_c^\infty(M - A)} \subset H^1_0(M - A) := \overline{H^1_0(M - A)}.$$
Let us also denote the spaces $H^1_1(M)$ and $S_A(M)$ by:

$$H^1_1(M) := \left\{ f \in H^1(M), \int_M f \, d\nu_S = 0 \right\};$$

and

$$S_A(M) := \left\{ u \in H^1_1(M), u - e_1 \in H^1_0(M - A) \right\}.$$

In the definition of the space $H^1_1(M)$ the condition $\int_M f \, d\nu_S = 0$ is analog to a boundary condition. We observe that the space $H^1_1(M)$ is a Hilbert space for the norm:

$$\|u\|_* := \int_M |du|^2 \, d\nu_S + \int_M V |u|^2 \, d\nu_S;$$

and $S_A(M)$ is just an affine closed subset of $H^1(M)$.

3.2 Schrödinger capacity

Next, we introduce the Schrödinger capacity of the set A;

Definition. Let us consider the Schrödinger capacity $\text{cap}(A)$ of the set A defined by

$$\text{cap}(A) := \inf \left\{ \int_M |du|^2 \, d\nu_S + \int_M V |u|^2 \, d\nu_S, u \in S_A(M) \right\}. \quad (3.1)$$

Let us remark that: there exists an unique function $u_A \in S_A(M)$ such that

$$\text{cap}(A) = d_*(0, S_A(M)) := \inf \{ \|u\|_*, u \in S_A(M) \} = \|u_A\|_*.$$

In the following lemma we give the relationships between the capacity $\text{cap}(A)$, the functions u_A, e_1 and the Sobolev spaces $H^1_0(M - A)$, $H^1(M)$.

Lemma. For all subset A of the manifold M, the following properties are equivalent:

(i) $\text{cap}(A) = 0$;

(ii) $u_A = 0$;

(iii) $e_1 \in H^1_0(M - A)$;

(iv) $H^1_1(M - A) = H^1(M)$.

Proof. It is clear from the formula (3.1) that (i) \Leftrightarrow (ii) \Leftrightarrow (iii). Next, suppose the property (iii) holds: so there exists a sequence $(v_n)_n \in H^1_0(M - A)^N$ such that $\lim_{n \to +\infty} v_n = e_1$ for the norm $\| \cdot \|_{H^1(M)}$. So, for all smooth function $\varphi \in C^\infty(M)$ we have $\lim_{n \to +\infty} (\varphi v_n)/e_1 = \varphi$ for the norm $\| \cdot \|_{H^1(M)}$, indeed for all integer n:

$$\left\| \frac{\varphi v_n}{e_1} - \varphi \right\|_{H^1(M)}^2 = \int_M \left| \frac{\varphi v_n}{e_1} - \varphi \right|^2 \, d\nu_S + \int_M \left| d \left(\frac{\varphi v_n}{e_1} \right) - d\varphi \right|^2 \, d\nu_S.$$
First, we have for all integer n:

$$\int_M \frac{|\varphi v_n|}{e_1} - \varphi \|^2 d\mathcal{V}_g = \int_M \frac{1}{|e_1|} \varphi (v_n - e_1)^2 d\mathcal{V}_g$$

$$\leq \left\| \frac{1}{e_1} \right\|_\infty \| \varphi \|_\infty \| v_n - e_1 \|^2_{L^2(M)}$$

so, since $\lim_{n \to +\infty} v_n = e_1$ for the norm $\| \cdot \|_{H^1(M)}$ we have

$$\lim_{n \to +\infty} \int_M \frac{|\varphi v_n|}{e_1} - \varphi \|^2 d\mathcal{V}_g = 0.$$

On the other hand, for all integer n:

$$\int_M \left(\frac{|\varphi v_n|}{e_1} - \varphi \right) - d\varphi \|^2 d\mathcal{V}_g = \int_M \left(\frac{d(\varphi v_n) e_1 - \varphi v_n d e_1}{e_1^2} - d\varphi \right) d\mathcal{V}_g$$

$$= \int_M \left(\frac{1}{e_1^2} \right) \left| d(\varphi) v_n e_1 + \varphi d(v_n) e_1 - \varphi v_n d(e_1) - d(\varphi) e_1 \right|^2 d\mathcal{V}_g$$

$$\leq \left\| \frac{1}{e_1} \right\|_\infty \left\| d\varphi v_n e_1 - d\varphi e_1 \right\|_{L^2(M)}^2 + \left\| \varphi d v_n e_1 - \varphi v_n d e_1 \right\|_{L^2(M)}^2$$

$$\leq \left\| \frac{1}{e_1} \right\|_\infty \left[\left\| d\varphi \right\|_\infty \| e_1 \|_\infty \| v_n - e_1 \|_{L^2(M)} + \left\| \varphi \right\|_\infty \| e_1 \|_\infty \| v_n - e_1 \|_{L^2(M)} \right]^2$$

$$\leq \left\| \frac{1}{e_1} \right\|_\infty \left[\left\| d\varphi \right\|_\infty \| e_1 \|_\infty \| v_n - e_1 \|_{L^2(M)} + \left\| \varphi \right\|_\infty \| d e_1 \|_\infty \| v_n - e_1 \|_{L^2(M)} \right]^2$$

so, since $\lim_{n \to +\infty} v_n = e_1$ for the norm $\| \cdot \|_{H^1(M)}$ we have

$$\lim_{n \to +\infty} \int_M \left(\frac{|\varphi v_n|}{e_1} - \varphi \right) - d\varphi \|^2 d\mathcal{V}_g = 0.$$

Therefore, for all function $\varphi \in C^\infty(M)$ we have $\lim_{n \to +\infty} \frac{\varphi v_n}{e_1} = \varphi$ for the norm $\| \cdot \|_{H^1(M)}$.

Next, by density of $C^\infty(M)$ in $H^1(M)$: for all function $f \in H^1(M)$ we have $\lim_{n \to +\infty} f v_n = f$. Since the sequence $\left(\frac{f v_n}{e_1} \right)_n \in \mathcal{H}_0^1(M - A)^N$ we get finally that f belongs to space $H^1_0(M - A)$. Finally, it is easy to see that $(iv) \Rightarrow (iii)$. \(\Box\)

An obvious consequence of this lemma is the following result:

Proposition. The spectrum of $-\Delta_g + V$ on the manifold (M, g) and on the manifold $(M - A, g)$ are equal if and only if $\text{cap}(A) = 0$.

8
3.3 The Poincaré inequality

Now, let introduce the Poincaré inequality:

Theorem. If \(\lambda_1(M) \) denotes the first eigenvalue of the operator \(-\Delta_g + V\) on the manifold \((M,g)\), the following inequality

\[
\|u_A\|^2_{L^2(M)} \leq \frac{\text{cap}(A)}{\lambda_1(M)}
\]

holds for all subset \(A \) of \(M \).

Proof. The case \(\text{cap}(A) = 0 \) is an obvious consequence of the lemma in section 3.2. Suppose here that \(\text{cap}(A) > 0 \), then \(\|u_A\|^2_{L^2(M)} > 0 \). The first eigenvalue \(\lambda_1(M) \) of the operator \(-\Delta_g + V\) on the manifold \((M,g)\) is given by:

\[
\lambda_1(M) = \min_{E \subset H^1_0(M)} \max_{\phi \in E \quad \text{dim}(E) = 1 \quad \phi \neq 0} \frac{\int_M |d\phi|^2 + V|\phi|^2 \, dV_g}{\int_M |\phi|^2 \, dV_g}
\]

\[
= \min_{\phi \in H^1_0(M) \quad \phi \neq 0} \frac{\int_M |d\phi|^2 + V|\phi|^2 \, dV_g}{\int_M |\phi|^2 \, dV_g}
\]

Since \(u_A \) belongs to the space \(H^1_0(M) \) we get \(\lambda_1(M) \leq \frac{\text{cap}(A)}{\|u_A\|^2_{L^2(M)}} \).

3.4 The main theorem

Recall our main result:

Theorem. Let \((M,g)\) a compact Riemannian manifold. For all integer \(k \geq 1 \), there exists a constant \(C_k \) depending on the manifold of \((M,g)\) and the potential \(V \) such that for all subset \(A \) of \(M \) we have:

\[
0 \leq \lambda_k(M - A) - \lambda_k(M) \leq C_k \sqrt{\text{cap}(A)}.
\]

Remark. We can easily adapt the proof for a compact Riemannian manifold with boundary.

Proof. Let us denote by \((e_k)_{k \geq 1} \) an orthonormal basis of the space \(L^2(M) \) with eigenfunctions of the operator \(-\Delta_g + V\) on the manifold \((M,g)\). For all integer \(k \geq 1 \), we consider the sets

\[
F_k := \text{span}\{e_1,e_2,\ldots,e_k\}
\]

and

\[
E_k := \left\{ f \left(1 - \frac{u_A}{e_1}\right), \ f \in F_k \right\}.
\]

First, observe that \(E_k \subset H^1_0(M - A) \). For all \(j \in \{1,\ldots,k\} \) we introduce also the functions \(\phi_j := e_j \left(1 - \frac{u_A}{e_1}\right) \in E_k \).
hence by Poincaré inequality we have
\[\lambda \leq B \]
where (and for the same reasons as in the study of \(\lambda \) and the eigenvalue \(B \).

Therefore, there exists \(\epsilon_k \in [0,1] \) (depends on the constant \(B \)) such that for all \(A \subset M \) we have:
\[\cap(A) \leq \epsilon_k \Rightarrow \dim(E_k) = k \quad \forall j \in \{1, \ldots, k\}, \quad \bigg| \| \phi_j \|^2_{L^2(M)} - 1 \bigg| \leq D_k \sqrt{\cap(A)} \]

where (and for the same reasons as in the study of \(B \)) for all integer \(k \), the constant \(D_k \) depends only on \(M \) and \(V \), but \(D_k = D_k(M, V) \).

Step 2: Let a function \(\phi = f \left(1 - \frac{d}{c} \right) \in E_k \), with \(f \in F \). Without loss generality we can assume that \(\| f \|^2_{L^2(M)} = 1 \), indeed : we have \(R(\phi) = R \left(\frac{\phi}{\| f \|^2_{L^2(M)}} \right) \) and in our context we interest in the Galois quotient of \(\phi \) (see the end of the final step of the proof).

Set \(v_A := \frac{\| f \|^2_{L^2(M)}}{c} \), we have:
\[\int_M |d\phi|^2 dV_A = \int_M |df - d(fv_A)|^2 dV_A \]
\[= \int_M |df|^2 dV_A + \int_M |dfv_A + f dv A|^2 dV_A - 2 \int_M df (fv_A) dV_A \]
\[= \int_M |df|^2 dV_A + \int_M |dfv_A|^2 dV_A + \int_M |fv_A|^2 dV_A \]
Recall we have \(dv_A = \frac{du_A - u da}{e^i} \), and:

\[
\int_M |\phi|^2 dV_g = \int_M V |f|^2 dV_g - 2 \int_M V |f|^2 v_A dV_g + \int_M V |a|^2 dV_g
\]

hence

\[
\int_M |\phi|^2 dV_g + \int_M V |\phi|^2 dV_g = \int_M |f|^2 dV_g + \int_M V |f|^2 dV_g + \int_M |df|^2 dV_g
\]

\[
= \int_M |df|^2 dV_g + \int_M V |f|^2 dV_g
\]

\[
+ \int_M |df|^2 dV_g + \int_M V |f|^2 dV_g - 2 \left(\int_M |df|^2 v_A dV_g + \int_M V |f|^2 v_A dV_g \right)
\]

\[
- 2 \int_M dV_A f (1 - v_A) dV_g.
\]

\(\diamond \) Study of \(A(f) := \int_M |f|^2 dV_g + \int_M V |f|^2 dV_g \geq 0 \) : since \(f \in F_k \) we can write \(f = \sum_{i=1}^k x_i e_i \) where \((x_i)_{1 \leq i \leq k} \in \mathbb{R}^k \) and with \(\sum_{i=1}^k x_i^2 = 1 \) (since \(\|f\|_{L^2(M)} = 1 \)), thus we get

\[
A(f) = \left(\sum_{i=1}^k x_i d e_i, \sum_{i=1}^k x_i d e_i \right)_{L^2(M)} + \left(\sqrt{\sum_{i=1}^k x_i e_i}, \sqrt{\sum_{i=1}^k x_i e_i} \right)_{L^2(M)}
\]

\[
= \sum_{i,j} x_i x_j \left(\langle d e_i, d e_i \rangle_{L^2(M)} + \int_M V e_i e_i dV_g \right)
\]

\[
= \sum_{i,j} x_i x_j \left(\langle - \Delta e_i, V e_i \rangle_{L^2(M)} + \int_M V e_i e_i dV_g \right)
\]

\[
= \sum_{i,j} x_i x_j \lambda_i(M) \langle e_i, e_i \rangle_{L^2(M)} = \sum_{i=1}^k x_i^2 \lambda_i(M) \leq \lambda_k(M).
\]

Hence, for all integer \(k \) and for all function \(f \in F_k \) such that \(\|f\|_{L^2(M)} = 1 \) we have
\[0 \leq A(f) \leq \lambda_k(M). \quad (3.3) \]

\[\text{\# Study of } B(f) := \int_M \| df \|_{L^2}^2 dV_g : \text{ here } v_A = \frac{du}{du} \text{ and } dv_A = \frac{dv du}{\epsilon_1}, \]
so we get \[B \leq \| df \|_{L^\infty}^2 \| v_A \|_{L^2(M)}^2 \]
and, with the Poincaré inequality:
\[\| v_A \|_{L^2(M)}^2 \leq \left\| \frac{1}{\epsilon_1} \right\|_{\infty}^2 \| u_A \|_{L^2(M)}^2 \leq \left\| \frac{1}{\epsilon_1} \right\|_{\infty}^2 \frac{\text{cap}(A)}{\lambda_1(M)} \]

hence, for all integer \(k \), and for all function \(f \in F_k \) such that \(\| f \|_{L^2(M)} = 1 \) we have
\[0 \leq B(f) \leq E_k \text{cap}(A) \quad (3.4) \]
where \(E_k = E_k(e_1, \lambda_1(M)) > 0 \), moreover since the eigenfunction \(e_1 \) and the eigenvalue \(\lambda_1(M) \) depends only on \((M,g)\) and \(V \), for all integer \(k \) the constant \(E_k \) depends only on \((M,g)\) and \(V \), ie : \(E_k = E_k(M,V) \).

\[\text{\# Study of } C(f) : \text{ here } C(f) \text{ is equal to } \int_M | f dv_A |^2 dV_g + \int_M V | v_A f |^2 dV_g. \]

Let us observe first \(C_1(f) : \)
\[C_1(f) \leq \| f \|_{L^\infty}^2 \| dv_A \|_{L^2(M)}^2 \]
and
\[\| dv_A \|_{L^2(M)}^2 = \int_M \left| \frac{du_A e_1 - u_A d e_1}{\epsilon_1^2} \right|^2 dV_g \]
\[\leq \left\| \frac{1}{\epsilon_1} \right\|_{\infty}^2 \int_M | u_A e_1 - u_A d e_1 |^2 dV_g \]
\[\leq \left\| \frac{1}{\epsilon_1} \right\|_{\infty}^2 \left(\int_M | u_A e_1 |^2 dV_g + 2 \int_M | u_A d e_1 e_1 u_A | dV_g + \frac{1}{\epsilon_1} \right) \]
\[\leq \left\| \frac{1}{\epsilon_1} \right\|_{\infty}^2 \left(\| u_A \|^2_{L^2(M)} \| e_1 \|_{L^\infty}^2 + 2 \| d e_1 \|_{L^\infty} \| e_1 \|_{L^\infty} \| u_A \|_{L^2(M)} \| u_A \|_{L^2(M)} + \| d e_1 \|_{L^\infty}^2 \| u_A \|_{L^2(M)}^2 \right). \]

Next we have also:
\[C_2(f) = \int_M V | v_A f |^2 dV_g \leq \| f \|_{L^\infty}^2 \int_M V | v_A |^2 dV_g \]
\[\leq \| f \|_{L^\infty}^2 \left\| \frac{1}{\epsilon_1} \right\|_{\infty}^2 \int_M V | u_A |^2 dV_g. \]

Hence we get:
\[C(f) \leq \| f \|_{L^\infty}^2 \left\| \frac{1}{\epsilon_1} \right\|_{\infty}^2 \left(\| u_A \|^2_{L^2(M)} \| e_1 \|_{L^\infty}^2 \right) + 2 \| d e_1 \|_{L^\infty} \| e_1 \|_{L^\infty} \| u_A \|_{L^2(M)} \| u_A \|_{L^2(M)} + \| d e_1 \|_{L^\infty}^2 \| u_A \|_{L^2(M)}^2 \]
\begin{align*}
&+ \|f\|_\infty^2 \left[\frac{1}{e_1} \int_M V |u_A|^2 \, dV_g \right] \\
&\leq \|f\|_\infty^2 \left[\frac{1}{e_1} \int_M (\|du_A\|_{L^2(M)}^2 + 2\|de_1\| \|e_1\| \|du_A\|_{L^2(M)} \|u_A\|_{L^2(M)} + \|de_1\|_{L^2(M)}^2) \|u_A\|_{L^2(M)}^2 \right] \\
&\leq \|f\|_\infty^2 \left[\frac{1}{e_1} \int_M (\|du_A\|_{L^2(M)}^2 + \|V\|_{\infty} \|u_A\|_{L^2(M)}^2) \right] \\
&\leq \max \left(\|df\|_\infty \frac{1}{e_1} \int_M \frac{|u_A|}{e_1} \, dV_g, \left\| \frac{Vf}{e_1} \right\|_\infty \int_M |u_A| \, dV_g \right) \\
&\leq \max \left(\|df\|_\infty \frac{1}{e_1} \int_M \frac{|Vf^2|}{e_1} \, dV_g \right) \sqrt{\text{Vol}(M)} \|u_A\|_{L^2(M)} \\
&\leq \max \left(\|df\|_\infty \frac{1}{e_1} \int_M \frac{|Vf^2|}{e_1} \, dV_g \right) \sqrt{\text{Vol}(M)} \frac{\text{cap}(A)}{\lambda_1(M)}
\end{align*}

Hence, for all integer \(k \), and for all function \(f \in F_k \) such that \(\|f\|_{L^2(M)} = 1 \):

\begin{align}
|D(f)| \leq G_k \sqrt{\text{cap}(A)} \tag{3.6}
\end{align}

where (and for the same reasons as in the study of \(F \), see the constant \(F_k \)) for all integer \(k \), the constant \(G_k \) depends only on \(M \) and \(V \), ie \(G_k = G_k (M, V) \).

\(\diamond \) Study of \(|E(f)| \) : recall that \(E(f) = \int_M df \nu A f (1 - \nu_A) \, dV_g \), hence
\[|E(f)| \leq \int_M |df| d\nu_A |f| d\nu_\delta + \int_M |df| \|f\|_\delta d\nu_\delta. \]

For the first term \(\int_M |df| d\nu_A |f| d\nu_\delta \) we have:

\[\int_M |df| d\nu_A |f| d\nu_\delta \leq \|f\|_\delta \|df\|_\delta \sqrt{\text{Vol}(M)} \|d\nu_A\|_{L^2(M)}; \]

we have see in the study of \(C(f) \) that

\[\|d\nu_A\|_{L^2}^2 \]

\[\leq \left\| \frac{1}{\| e_1 \|_\infty} \right\|^2 \left(\|du_A\|_{L^2(M)}^2 \|e_1\|_\infty^2 + 2 \|de_1\|_\infty \|e_1\|_\infty \|du_A\|_{L^2(M)} \|u_A\|_{L^2(M)} + \|de_1\|_\infty \|u_A\|_{L^2(M)}^2 \right) \]

so with \(K := \|f\|_\delta \|df\|_\delta \sqrt{\text{Vol}(M)} \frac{1}{\| e_1 \|_\infty} \) we get

\[\int_M |df| d\nu_A |f| d\nu_\delta \leq K \sqrt{\|du_A\|_{L^2(M)}^2 \|e_1\|_\infty^2 + 2 \|de_1\|_\infty \|e_1\|_\infty \sqrt{\text{cap}(A)} \sqrt{\text{cap}(A)} \frac{1}{\| e_1 \|_\infty} \lambda_1(M) + \|de_1\|_\infty^2 \text{cap}(A) \frac{1}{\| e_1 \|_\infty} \lambda_1(M)} \]

\[\leq H_k \sqrt{\text{cap}(A)} \]

where (same reasons as above), for all integer \(k \), the constant \(H_k \) depends only on \(M \) and \(V \), i.e. \(H_k = H_k(M, V) \).

Next, for the second term \(\int_M |df| d\nu_A |f| d\nu_\delta \) we have:

\[\int_M |df| d\nu_A |f| d\nu_\delta \leq \|df\|_\delta \|f\|_\delta \|d\nu_A\|_{L^2(M)} \|\nu_A\|_{L^2(M)} \]

\[\leq \|df\|_\delta \|f\|_\delta \|d\nu_A\|_{L^2(M)} \frac{1}{\| e_1 \|_\infty} \|u_A\|_{L^2(M)} \]

\[\leq \|df\|_\delta \|f\|_\delta \frac{1}{\| e_1 \|_\infty} \sqrt{\text{cap}(A)} \lambda_1(M) H_k \sqrt{\text{cap}(A)} \]

\[\leq H_k' \text{cap}(A). \]

where (same reasons as above), for all integer \(k \), the constant \(H_k' \) depends only on \(M \) and \(V \), i.e. \(H_k' = H_k'(M, V) \).

So, for all integer \(k \):

\[|E(f)| \leq H_k''(M, V). \]

(3.7)

where \(H_k'' := H_k''(M, V) \).

Finally, with the study of \(A(f), B(f), C(f), |D(f)| \) and \(|E(f)| \), for all integer \(k \),
for any function $\phi = f \left(1 - \frac{\|A\|^{2}}{\|A\|^{2}_{i}}\right) \in E_k$, with $f \in F_k$ such that $\|f\|_{L^{2}(M)} = 1$ we get:

$$\int_{M} |d\phi|^{2} dV_{S} + \int_{M} V |\phi|^{2} dV_{S} \leq \lambda_{k}(M) + I_{k}\left(\sqrt{\text{cap}(A)} + \text{cap}(A)\right) \tag{3.8}$$

where, for all integer k, the constant I_{k} depends only on M and V, i.e.: $I_{k} = I_{k}(M, V)$.

Step 3: Now we claim that: for all $A \subset M$ such that $\text{cap}(A) \leq \varepsilon_{k}$ and for any function $\phi \in E_{k}$ we have:

$$\|\phi\|_{L^{2}(M)}^{2} \geq 1 - I'_{k,M} \sqrt{\text{cap}(A)} \tag{3.9}$$

where, for all integer k, the constant $I'_{k,M}$ depend only on M and V, i.e.: $I'_{k,M} = I'_{k,M}(M, V)$.

Indeed: let $\phi \in E_{k}$, we have seen below in step 1 that:

$$\text{cap}(A) \leq \varepsilon_{k} \Rightarrow \text{dim}(E_{k}) = k \text{ and } \forall j \in \{1, ..., k\}, \|\phi_{j}\|_{L^{2}(M)}^{2} - 1 \leq D_{k} \sqrt{\text{cap}(A)}$$

therefore, since $\phi \in E_{k}$, we can write $\phi = (1 - v_{A}) f$ with $f = \sum_{i=1}^{k} \alpha_{i} e_{i}$ where $(\alpha_{i})_{1 \leq i \leq k} \in \mathbb{R}^{k}$. As in the step two we can assume that $\|f\|_{L^{2}(M)} = 1$, hence we have $\sum_{i=1}^{k} \alpha_{i}^{2} = 1$. Next, compute $\|\phi\|_{L^{2}(M)}^{2}$:

$$\|\phi\|_{L^{2}(M)}^{2} = \left\|\sum_{i=1}^{k} (1 - v_{A}) \alpha_{i} e_{i}\right\|_{L^{2}(M)}^{2} = \left\|\sum_{i=1}^{k} \alpha_{i} \phi_{i}\right\|_{L^{2}(M)}^{2}$$

$$= \sum_{i=1}^{k} \alpha_{i}^{2} \|\phi_{i}\|_{L^{2}(M)}^{2} + \sum_{i,j \neq j} \alpha_{i} \alpha_{j} \langle \phi_{i}, \phi_{j}\rangle_{L^{2}(M)}.$$ And since

$$\sum_{i=1}^{k} \alpha_{i}^{2} \|\phi_{i}\|_{L^{2}(M)}^{2} = \sum_{i=1}^{k} \alpha_{i}^{2} \left[1 - 2 \int_{M} e_{i}^{2} v_{A} dV_{S} + \int_{M} e_{i}^{2} v_{A}^{2} dV_{S}\right]$$

$$= 1 - \sum_{i=1}^{k} \alpha_{i}^{2} \left[2 \int_{M} e_{i}^{2} v_{A} dV_{S} - \int_{M} e_{i}^{2} v_{A}^{2} dV_{S}\right]$$

$$= 1 - \sum_{i=1}^{k} \alpha_{i}^{2} \int_{M} e_{i}^{2} \left(2 v_{A} - v_{A}^{2}\right) dV_{S};$$

hence

$$\|\phi\|_{L^{2}(M)}^{2} = 1 - \sum_{i=1}^{k} \alpha_{i}^{2} \int_{M} e_{i}^{2} \left(2 v_{A} - v_{A}^{2}\right) dV_{S} + \sum_{i,j \neq j} \alpha_{i} \alpha_{j} \langle \phi_{i}, \phi_{j}\rangle_{L^{2}(M)}$$
we have seen in step 1 that, for \(\text{cap}(A) \) small enough:

\[
\left| \langle \phi_i, \phi_j \rangle_{L^2(M)} - \delta_{i,j} \right| \leq B_k \left(\sqrt{\text{cap}(A)} + \text{cap}(A) \right)
\]

hence, since all the \((a_i)_{1 \leq i \leq k} \) are bounded in \(\mathbb{R} \), and for \(\text{cap}(A) \) small enough, we can find a constant \(B'_{k,M} \) which depends only on \(M \) and \(V \), ie \(B'_{k,M} = B'_k (M, V) \) such that, for \(\text{cap}(A) \) small enough:

\[
\left| \sum_{i,j \neq j} a_i a_j \langle \phi_i, \phi_j \rangle_{L^2(M)} \right| \leq B'_k \sqrt{\text{cap}(A)}
\]

and finally, in the same spirit as in the estimations in section 2, there exists a constant \(B''_{k,M} \) which depends only on \(M \) and \(V \), ie \(B''_{k,M} = B''_k (M, V) \) such that, for \(\text{cap}(A) \) small enough:

\[
\left| \sum_{i=1}^k a_i^2 \int_M \sqrt{2v_i - \sqrt{\lambda_i}} \, dV_S \right| \leq B''_k \sqrt{\text{cap}(A)}
\]

so finally we obtain:

\[
\| \phi \|_{L^2(M)}^2 \geq 1 - B''_k \sqrt{\text{cap}(A)}
\]

where the constant \(B''_k \) depend only on \(M \) and \(V \), ie \(B''_k := B''_k (M, V) \).

Final step: As a consequence from step 2 and 3, for all function \(\phi \in E_k \) we get:

\[
\frac{\int_M |d\phi|^2 \, dV_S + \int_M V |\phi|^2 \, dV_S}{\int_M \phi^2 \, dV_S} \leq \frac{\lambda_k(M) + L_k \left(\text{cap}(A) + \sqrt{\text{cap}(A)} \right)}{1 - B''_k \sqrt{\text{cap}(A)}}
\]

hence for \(\text{cap}(A) \) small enough (ie : \(\text{cap}(A) \leq \varepsilon_k \)) we have:

\[
\frac{\int_M |d\phi|^2 \, dV_S + \int_M V |\phi|^2 \, dV_S}{\int_M \phi^2 \, dV_S} \leq \lambda_k(M) + L_k \sqrt{\text{cap}(A)}
\]

where \(L_k := L_k (M, V) \). Next, since for all \(k \geq 1 \)

\[
\lambda_k(M - A) = \min_{E \subset H^1_0(M - A) \dim(E) = k} \max_{\varepsilon \neq 0} \frac{\int_M |d\phi|^2 \, dV_S + \int_M V |\phi|^2 \, dV_S}{\int_M \phi^2 \, dV_S}
\]

and since \(\phi \in H^1_0(M - A) \), we get for all \(k \geq 1 \)

\[
\lambda_k(M - A) \leq \frac{\int_M |d\phi|^2 \, dV_S + \int_M V |\phi|^2 \, dV_S}{\int_M \phi^2 \, dV_S} \leq \lambda_k(M) + C_k \sqrt{\text{cap}(A)}.
\]

And the statement of the theorem is established.
References

[Ann] C. ANNÉ, Problème de la glace pilée, Séminaire de théorie spectrale et géométrie de Grenoble 3: 1-13, 1984-1985.

[BGM] M. BERGER, P. GAUDUCHON & E. MAZET, Le spectre d’une variété Riemannienne, Lectures Notes in Mathematics 194, Springer-Verlag 1971.

[Bé-Be] P. BÉRARD & M. BERGER, Le spectre d’une variété riemannienne en 1982, Kaigai (Tokyo), 1983.

[Be-Co] J. BERTRAND & B. COLBOIS, Capacités et inégalités de Faber-Krahn dans l’espace euclidien, Journal of Functional Analysis, 232-1, 1-28, 2006.

[Ch-Fe1] I. CHAVEL & E. FELDMAN, Spectra of domains in compact manifolds, J. Funct. Anal., 30, 198-222, 1978.

[Ch-Fe2] I. CHAVEL & E. FELDMAN, Spectra of manifolds less a small domain, J. Duke Math J. , 56, 399-414, 1988.

[Co-Hi] R. COURANT & D. HILBERT, Methods of mathematical physics, Intersciences Publishers, New York, 1953.

[Cou] G. COURTOIS, Spectrum of manifolds with holes, J. Funct. Anal., 134, 194-221, 1995.

[Kac] M. KAC, Probabilistic methods in some problems of scattering theory, Rocky Mountain, J. Math 4, 511-538, 1974.

[Ge-Zh] F. GESZTESY & Z. ZHAO, Domain perturbations, Browian motion, capacities, and ground states of Dirichlet Schrödinger operator, Math. Z., 215, pp. 143-250, 1994.

[Gi-Tr] S. GILBARD & N.S. TRUDINGER, Elliptic partial differential equations of second order, Springer-Verlag Berlin, 1983.

[Pr-We] M. PROTTER & H. WEINBERGER, Maximum principles in differential equations, Springer-Verlag, 1984.

[Ra-Ta] J. RAUCH & M. TAYLOR, Potential and scattering on widely perturbed domains, J. Funct. Anal., 18, 27-59, 1975.

[Re-Si] M. REED & B. SIMON , Methods of modern mathematical physics, Academic Press, 1975.

Olivier Lablée

Université Grenoble 1-CNRS
Institut Fourier
UFR de Mathématiques
UMR 5582
