Mutation Analysis of *Inhibitory Guanine Nucleotide Binding Protein Alpha* (*GNAI*) Loci in Young and Familial Pituitary Adenomas

Hande Demir¹, Ikki Donner¹, Leena Kivipelo², Outi Kuismin³, Camilla Schalin-Jäntti⁴, Ernesto De Menis⁵, Auli Karhu¹*

¹Department of Medical Genetics, Genome-Scale Biology Research Program, Institute of Biomedicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland, ²Department of Neurosurgery, Helsinki University Central Hospital, Helsinki, Finland, ³Department of Clinical Genetics, Oulu University Hospital, Oulu, Finland, ⁴Division of Endocrinology, Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland, ⁵Department of Internal Medicine, General Hospital, Montebelluna, Treviso, Italy

Abstract

Pituitary adenomas are neoplasms of the anterior pituitary lobe and account for 15–20% of all intracranial tumors. Although most pituitary tumors are benign they can cause severe symptoms related to tumor size as well as hypopituitarism and/or hypersecretion of one or more pituitary hormones. Most pituitary adenomas are sporadic, but it has been estimated that 5% of patients have a familial background. Germline mutations of the tumor suppressor gene *aryl hydrocarbon receptor-interacting protein (AIP)* predispose to hereditary pituitary neoplasia. Recently, it has been demonstrated that *AIP* mutations predispose to pituitary tumorigenesis through defective inhibitory GTP binding protein (*Gαi*) signaling. This finding prompted us to examine whether germline loss-of-function mutations in *inhibitory guanine nucleotide (GTP) binding protein (GNAI)* loci are involved in genetic predisposition of pituitary tumors. To our knowledge, this is the first time *GNAI* genes are sequenced in order to examine the occurrence of inactivating germline mutations. Thus far, only somatic gain-of-function hot-spot mutations have been studied in these loci. Here, we have analyzed the coding regions of *GNAI1, GNAI2*, and *GNAI3* in a set of young sporadic somatotropinoma patients (*n* = 32; mean age of diagnosis 32 years) and familial index cases (*n* = 14), thus in patients with a disease phenotype similar to that observed in *AIP* mutation carriers. In addition, expression of *Gαi* proteins was studied in human growth hormone (GH), prolactin (PRL), adrenocorticotropic hormone (ACTH)-secreting and non-functional pituitary tumors. No pathogenic germline mutations affecting the *Gαi* proteins were detected. The result suggests that loss-of-function mutations of *GNAI* loci are rare or nonexistent in familial pituitary adenomas.

Introduction

Pituitary adenomas are neoplasms of the anterior pituitary lobe. They account for 15–20% of all the intracranial tumors [1] and approximately 16% of all the primary brain and central nervous system tumors [2]. The hallmarks of pituitary tumors are hormonal dysfunction, i.e hormonal hypersecretion or hypopituitarism and local symptoms related to the tumor mass. Compression of neighboring structures may cause headaches and visual impairment [3]. Pituitary adenomas are classified based on the pituitary cell of origin and the type of hormone secreted. The most common functional pituitary tumors hypersecrete prolactin (PRL) (40–45%). Patients with prolactinomas present with amenorrhea, infertility and galactorrhea in females, and infertility in males. Somatotropinomas hypersecrete growth hormone (GH) (20–25%), causing acromegaly with clinical features of enlarged extremities, coarse facial structure and comorbidities such as hypertension, cardiovascular disease and diabetes mellitus [4]. The rate of mortality associated to untreated acromegaly has been reported to be two to four times higher than that seen in the healthy population [5,6]. In many cases, slow progression of the symptoms delays the diagnosis [7]. Somatotropinoma during childhood or adolescence, before the growth of the long bones is complete, leads to gigantism. Tumors secreting adrenocorticotropic hormone (ACTH) (10–12%) cause Cushing's disease, which is characterized by hypercortisolism. The majority of the other adenomas are non-functioning (non-secreting) pituitary adenomas (NFPA) [4]. All in all, pituitary adenomas cause a heavy clinical burden due to increased morbidity and the treatment modalities involved, i.e neurosurgery, chronic medical therapies and radiotherapy.

Most pituitary adenomas are sporadic but it has been estimated that 5% of affected patients have a familial background [8]. Pituitary adenomas occur as components of familial tumor...
syndromes such as multiple endocrine neoplasia type 1 (MEN1) [9,10], Carney’s complex (CNC) [11,12] and MEN4 [13]. Furthermore, in 2006, Vierimaa et al. found that germline mutations in the *aryl hydrocarbon receptor interacting protein (AIP)* gene cause pituitary adenoma predisposition (PAP) [14]. AIP mutations are mostly associated with somatotropinomas (70%), although cases with prolactinomas, NFPA and Cushing’s syndrome have also been reported [15,16]. The patients with AIP mutations are typically young (mean age at diagnosis 25 years) and do not necessary have a strong family history of the disease. AIP associated pituitary tumors are often large and invasive and resistant to the effects of available treatments, such as somatostatin analogues, which are used in acromegaly [17–19]. Familial occurrence of pituitary tumors is also the main feature in familial isolated pituitary adenoma (FIPA) [8,20]. Subsequently, it was found that AIP germline mutations explain 15–20% of FIPA patients and 50% of families with familial isolated somatotropinomas (IFS) [15]. Thus, the majority of FIPA families appear to be influenced by some other, as yet unidentified genes responsible for familial clustering of pituitary tumors. Identification of new predisposing genes would enable earlier detection of pituitary adenomas and contribute to clinical management of patients.

The *stimulatory guanine nucleotide (GTP) binding protein alpha* (GNAS; encoding Gz\(a_i\) subunit) has been found to be mutated in 30–40% of sporadic somatotropinomas. These somatic gain-of-function mutations lead to constitutive activation of cyclic adenosine monophosphate (cAMP) synthesis and increased proliferation through cAMP mediated mitogenic signaling [21–24]. Activating mutations on *GNAS* are also associated to McCune-Albright syndrome [25,26]. Along with well-established GNAS mutations, somatic mutations in other Gz family members, namely GNAQ and GNA11, have been linked to tumorigenesis in melanocytic neoplasms [27,28].

We have recently demonstrated that AIP loss-of-function mutations predispose to pituitary tumorigenesis through defective inhibitory GTP binding protein (Gz\(a_i\)) signaling and consequent elevated intracellular cAMP concentrations [29]. We found that Gz\(a_2\) and Gz\(a_4\) proteins are not capable of inhibiting cAMP synthesis during AIP deficiency and that Gz\(a_4\) protein levels are significantly reduced in AIP-mutated somatotropinomas. As the AIP protein seems to be an essential regulator of Gz\(a_i\) signaling, the possibility that inactivating germline mutations in GNA1 loci (encoding Gz\(a_i\) subunits) would predispose to pituitary adenomas prompted us to investigate the role of these genes in pituitary tumorigenesis. Here we sequenced all the coding exons of GNA1 loci in familial and sporadic pituitary adenomas patients and familial index cases, thus in patients with a disease phenotype similar to that observed in AIP mutation carriers.

Materials and Methods

Gz\(a_i\) immunohistochemistry

To investigate the expression of Gz\(a_i\) proteins in human pituitary tumors, Gz\(a_{1,2,3}\) and Gz\(a_{4,5}\) immunostainings were performed in four prolactinomas, six somatotropinomas, three ACTH and four NFPA tumors. All tumors were AIP mutation negative. Antibodies used were mouse monoclonal antibody against Gz\(a_1\) (SPM397, sc-36536, Santa Cruz, 1: 40), rabbit polyclonal antibody against Gz\(a_2\) (T19, sc-7276, Santa Cruz, 1: 60) and mouse polyclonal antibody against Gz\(a_3\) (H00002773-B01P, Abnova Corp. Taïpei city, Taiwan, 1: 50). Anti-mouse/rabbit/ rat secondary antibody, Poly-HRP-GAM/R/R (DPVB55HRP, Immunologic, Duiven, Netherlands) and DAB chromogen (Lab Vision Corporation, Fremont, CA, USA, Thermo Fisher Scientific, Watham, MA, USA) were used for detection. Immunostaining protocol was applied as described [30]. The staining intensities of Gz\(a_i\) proteins were scaled as negative (0), weak (1), moderate (2), or strong (3). The images were taken and edited by Leica DM LB microscope (Meyer Instruments, Houston, TX, USA), Olympus DP50 camera (Olympus Corporation, Tokyo, Japan) and Studio Lite software (Lacor, Lincoln, NE, USA).

Patients

This study included a set of 32 young sporadic GH-secreting pituitary adenoma cases in which three of the tumors were secreting both GH and PRL. Age at diagnosis for sporadic cases ranged from 14 to 56 years with a mean of 32 years (Table 1). A majority of the tumors were macroadenomas. The second set of samples included 14 index cases with a familial history of pituitary adenomas (Table 1). The hormones secreted by the tumors were GH (\(n = 11\)), PRL (\(n = 1\)), ACTH (\(n = 1\)) and NFPA (\(n = 1\)). All the patients had previously been sequenced negative for AIP. From familial cases 9/14 were earlier screened negative for large germline deletions of AIP [31]. The study and the consent procedures were approved by the Ethics Committee of the Hospital district of Helsinki and Uusimaa (HUS) (approval number: 408/13/03/03/2009) and the Institutional Review Board of the Department of Internal Medicine, General Hospital, Montebelluna (Treviso). Signed informed consent was obtained from all the study participants. In case of the minor/children, the consent was obtained from parent/guardian. Consents are stored and managed together with patient information in the central office/ambulatories where the access is restricted.

Mutation Analysis on GNA1 loci

The coding regions of GNA11 (ENST00000442586 and ENST00000351004; Ensemble release 75), GNA12 (ENST00000422163, ENST00000451956 and ENST00000266027), and GNA13 (ENST00000369851) were amplified and sequenced from blood-derived DNA. Also intronic regions flanking the exons were included in the analyses. PCR was carried out by mixing 0.25 µl 20 mM of each primers (Table 2), 5 ng/ul of DNA, 0.4 µl 40 mM of dNTP, 2.5 µl 10xPCR Buffer, and 0.1 µl AmpliTaq Gold DNA Polymerase (InVitrogen Life Science Technologies, Foster City, CA) in a final volume of 25 µl. PCR products were purified by using ExoSAP-IT PCR product cleanup reaction (Affymetrix, USB Products, CA, USA). DNA was sequenced by using BigDye v.3.1 sequencing chemistry and ABI3300x DNA sequencer (Applied Biosystems, Foster City, CA, USA). Sequences were analyzed with Mutation Surveyor software V4.0.8 (SoftGenetics, State College, PA, USA).

Results

Gz\(a_i\) immunohistochemistry

To examine the Gz\(a_i\) protein expressions in human pituitary adenomas, Gz\(a_{1,2,3}\), Gz\(a_{4,5}\) expressions were immunohistochemically (IHC) analyzed in AIP mutation negative somatotropinomas, prolactinomas, NFPA and ACTH tumors. Weak and speckled cytoplasmic expression of Gz\(a_4\) was detected in GH- (mean±SD: 0.8±0.4) and PRL- (1±0.8) secreting tumors, whereas NFPA (1.8±0.5) and ACTH (1.7±0.6) tumors showed weak to moderate cytoplasmic expression (Figure 1). Consistent with the earlier observation in human GH-secreting tumors [29], Gz\(a_2\) was prominently expressed in the cytoplasm of the somatotropinomas (2.8±0.4). Prolactinomas displayed moderate to strong expression of Gz\(a_2\) (2.5±0.6), NFPA (1.8±0.5) and ACTH (1.7±0.6) adenomas showed moderate cytoplasmic and...
Patient	Sex	Age at Dg	Age at Op	Origin	Clinical Dg	Tumor Size	GNAI1	GNAI2	GNAI3	Affected family member(s)	Mutation
S1	M	37	–	Spain	GH	Macro	–	–	–	–	c.468G>A
S2	M	40	–	Tunisia	GH	Macro	–	–	–	–	c.138C>CT
S3	F	38	–	Finland	GH	Macro	–	–	–	–	–
S4	M	14	–	Finland	GH	Macro	–	–	–	–	–
S5	F	24	–	Italy	GH/PRL	NA	–	–	–	–	–
S6	F	24	–	Italy	GH/PRL	Macro	–	–	–	–	–
S7	F	23	–	Italy	GH	Macro	–	–	–	–	–
S8	M	22	–	Italy	GH	NA	–	–	–	–	–
S9	F	19	–	Italy	GH	Macro	–	–	–	–	–
S10	F	17	–	Italy	GH	Macro	–	–	–	–	–
S11	M	33	–	Italy	GH	Macro	–	–	–	–	c.468G>A
										c.105G>GA (rs2230350)	c.987G>GA
										rs12721456 (rs61758987)	rs762.707
S12	M	30	–	Italy	GH	Macro	–	–	–	c.468G>A (rs12721456)	c.138C>CT
S13	F	37	–	Italy	GH	Macro	–	–	–	–	–
S14	F	36	–	Italy	GH	Micro	–	–	–	–	–
S15	F	33	–	Italy	GH	Macro	–	–	–	–	–
S16	M	36	–	Italy	GH	Macro	–	–	–	–	–
S17	M	23	–	Italy	GH	Macro	–	–	–	–	–
S18	M	35	–	Italy	GH	Macro	–	–	–	c.468G>A (rs12721456)	c.138C>CT
										rs10241877 (rs762.707)	–
S19	F	32	–	Italy	GH	Macro	–	–	–	–	–
S20	F	36	–	Italy	GH	Macro	–	–	–	c.468G>A (rs12721456)	–
S21	M	39	–	Italy	GH	Macro	–	–	–	–	(c.105G>GA)
										rs2230350	rs12721456
S22	M	38	–	Italy	GH	Micro	–	–	–	c.468G>A (rs12721456)	–
S23	M	26	–	Finland	GH	NA	–	–	–	c.846T>C (rs762.707)	–
S24	F	40	–	Italy	GH	NA	–	–	–	–	–
S25	M	23	–	Finland	GH/PRL	Macro	–	–	–	c.846T>C (rs10241877)	–
S26	F	43	–	Finland	GH	NA	–	–	–	c.846T>C (rs10241877)	–
Table 1. Cont.

Patient	Sex	Age at Dg	Age at Op	Origin	Clinical Dg	Tumor Size	Affected family member(s)	GNAI1	GNAI2	GNAI3	
S27	F	24	–	Finland	GH	Macro	–	–	–	–	
S28	F	39	–	Estonia	GH	Macro	–	–	–	–	
S29	M	40	–	Finland	GH	NA	–	–	–	–	
S30	F	25	–	Italy	GH	NA	–	–	–	–	
S31	M	56	–	Finland	GH	NA	–	–	c.846T>TC (rs10241877)	–	–
S32	F	55	–	Finland	GH	NA	–	–	–	–	
F1	F	40	–	Italy	GH	Micro	NFPP (father)	–	–	–	
*F2	F	56	NA	Italy	GH	NA	GH (aunt)	–	–	–	
*F3	M	56	NA	Italy	NFPA	NA	GH (mother)	–	–	–	
*F4	F	NA	67	Italy	ACTH	NA	GH (son)	–	–	–	
*F5	F	NA	36	Italy	PRL	NA	GH (aunt)	–	c.138C>CT (rs762707)	–	–
*F6	F	NA	49	Italy	GH	NA	PRL (daughter)	–	–	–	
*F7	M	42	NA	Italy	GH	NA	GH (cousin)	–	–	–	
*F8	M	36	–	Finland	GH	NA	GH (uncle)	c.846T>TC (rs10241877)	–	–	
F9	F	NA	59	Finland	GH	NA	PRL (niece)	–	–	(c.105G>GA) rs2230350	–
*F10	M	NA	44	Italy	GH	NA	NFPA (niece)	c.468G>GA (rs12721456)	–	–	
F11	M	24	NA	Italy	GH	NA	GH/PRL (sister)	–	–	–	
F12	F	36	NA	Italy	GH	NA	GH (brother)	–	–	–	
F13	F	63	NA	Finland	GH	NA	ACTH (cousin)	c.846T>TC (rs10241877)	–	–	
*F14	M	40	NA	Finland	GH	Macro	PRL (cousin)	–	–	–	

Dg: diagnosis, Op: operation, S: sporadic, F: familial, M: male, F: female, NA: not available, Micro: <10 mm, Macro: >10 mm. *Screened negative for AIP germline deletions by MLPA. doi:10.1371/journal.pone.0109897.t001
Primer	Sequence (5'–3')	T\textsubscript{m} (°C)	Transcript
Ga\textsubscript{i1}_{ex1} _F	GGATTCCCCGTGCTTTGGA	60	ENST00000442586
Ga\textsubscript{i1}_{ex1} _R	GTTTCAACCGGGCCGAGGG		
Ga\textsubscript{i1}_{ex2\&3} _F	CACACAGAGAGAGCTGGGTG	60	ENST00000351004
Ga\textsubscript{i1}_{ex2\&3} _R	GGTCCTGAAGTTGAACAGCC		
Ga\textsubscript{i1}_{ex4} _F	AAGGAATTCGCTATTGCC	60	ENST00000351004
Ga\textsubscript{i1}_{ex4} _R	AATGTGTCAGCCAATTCGCG		
Ga\textsubscript{i1}_{ex5} _F	GTTTGGATGACTTTATTGGCG	60	ENST00000351004
Ga\textsubscript{i1}_{ex5} _R	TCTCCCAACCTTTTTGGTCC		
Ga\textsubscript{i1}_{ex6} _F	CCCATAAGTCCTCTCCTCCCTC	62 x1, 61 x1, 60 x2, 59 x2, 58 x2	ENST00000351004
Ga\textsubscript{i1}_{ex6} _R	CTTGGCAACCTTCCTTTGGTCC		
Ga\textsubscript{i2}_{ex1c} _F	TCACCCACATCACCGTCTAA	59	ENST00000422163
Ga\textsubscript{i2}_{ex1c} _R	ACGCGTCCTCTTGCAACTA		
Ga\textsubscript{i2}_{ex1d} _F	CGCTGTCCATTGCTCTCAT	60	ENST00000451956
Ga\textsubscript{i2}_{ex1d} _R	GCACATGTGAGCATTCGAG		
Ga\textsubscript{i2}_{ex2} _F	AGCTGAAGTGTGACGCTGTG	58	ENST00000266027
Ga\textsubscript{i2}_{ex2} _R	CTTGGCAACCTTTTCAGGTGAG		
Ga\textsubscript{i2}_{ex3\&4} _F	ATGTGAGATTGGTGCTGTG	58	ENST00000266027
Ga\textsubscript{i2}_{ex3\&4} _R	GATCTGCACTTTCCGAGGCG		
Ga\textsubscript{i2}_{ex5} _F	CCAAGAATACCCTAGGCTTG	60	ENST00000266027
Ga\textsubscript{i2}_{ex5} _R	GCAAAAGCAGCTAGTGCC		
Ga\textsubscript{i2}_{ex6} _F	CTACCTGAAGCCTTGGAGCGTA	58	ENST00000266027
Ga\textsubscript{i2}_{ex6} _R	CTTGGCAACCTTTTCAGGTGAG		
Ga\textsubscript{i2}_{ex7\&8} _F	AAATGGGATGAAAGAGCTCCC	58	ENST00000266027
Ga\textsubscript{i2}_{ex7\&8} _R	TGTTCTGACATTGCTAATTCC		
Ga\textsubscript{i2}_{ex9} _F	CTTGCTGCACACGTAGAGATG	58	ENST00000266027
Ga\textsubscript{i2}_{ex9} _R	CGCTTGTGTCTTCCCCCCAGCG		
Ga\textsubscript{i3}_{ex1} _F	GCAGTTTCCGTTGGTGAG	58	ENST00000369851
Ga\textsubscript{i3}_{ex1} _R	GTCACACCTACAGCATCAG		
Ga\textsubscript{i3}_{ex2\&3} _F	TAGGACCCGTTGGCTACCTC	60	ENST00000369851
Ga\textsubscript{i3}_{ex2\&3} _R	TTGTTGTCTAAATCTTCCCCC		
Ga\textsubscript{i3}_{ex4} _F	CTGGCCTGAAGAAGCTTGCG	60	ENST00000369851
Ga\textsubscript{i3}_{ex4} _R	TCAACCTCTTTCAAGGTGCCG		
Ga\textsubscript{i3}_{ex5} _F	GCAAGTCTTCTTTCCAGGC	58	ENST00000369851
Ga\textsubscript{i3}_{ex5} _R	GTTGGCAAAACCTGTGAGGCG		
Ga\textsubscript{i3}_{ex6} _F	TGGTATGTCCTCTCCTCCCA	60	ENST00000369851
Ga\textsubscript{i3}_{ex6} _R	CAAGAGCACATCACGTAGCCTACA		

T\textsubscript{m}: annealing temperature.

doi:10.1371/journal.pone.0109897.t002
occasional nuclear Gαq staining. All tumor types displayed moderate cytoplasmic expression of Gαq (GH: 2.3±0.5, PRL: 2.2±0.8, ACTH: 1.6±0.6, NFPA: 1.8±0.5). Weak to moderate nuclear Gαq staining was also observed in all tumor types (GH: 1.3±0.8, PRL: 0.8±0.5, ACTH: 1.3±0.6, NFPA: 1.5±0.6).

GNAI loci mutation analysis

All the GNAI coding exons (23 amplicons per sample) were successfully sequenced and analyzed in 32 young sporadic somatotropinoma and 14 index familial cases (Table 1). In **GNAI1**, earlier reported synonymous heterozygous variations were detected in exon 6 (rs12721456/5 samples) and in exon 7 (rs10241877/8 samples). In **GNAI2**, one reported heterozygous and synonymous variation was found in exon 4 (rs762707/3 samples). Also in **GNAI3**, only previously observed heterozygous synonymous variations were detected in exon 1 (rs2230350/3 samples) and exon 8 (rs61758987/1 sample). None of these variants modified amino acid sequence, indicating the polymorphic nature of these changes. Additionally, several reported and unreported variations were observed in intronic regions (Table S1). All the intronic variants located outside of the splice site consensus sequences and are thus not assumed to affect splicing events.

Discussion

Many G proteins have been linked to tumor development, starting with the discovery that somatic gain-of-function mutations of codons 201 and 227 in the GNAS gene are responsible in one third of the sporadic somatotropinomas with elevated cAMP levels [23,32]. Activating GNAS hot-spot mutations have been detected in many other tumor types. For instance, biliary tract, thyroid, pancreatic, colon, and testis tumors are common targets of somatic GNAS mutations. Additionally, activating somatic hotspot mutations have been reported in GNAQ (Gαq) and GNA11 (Gα11) genes in melanomas and meningal tumors [33]. Somatic mutations in other Gα subunit genes have been detected, albeit in a low frequency.

Proteins of the inhibitory Gα subfamily, Gαi/Gαo, mediate several cellular and metabolic functions [34–37]. Unlike the Gαs, Gα11, Gαq, and Gαo subunits are involved in the hormonal inhibition of adenylate cyclase (AC) activity with subsequent decrease of intracellular cAMP levels [38,39]. Previous studies have been focusing on screening GNAI2 somatic hot-spot mutations (termed gip2 oncogene) in codons 179 and 205. Somatic gip2 mutations have been found in ovarian, adrenal, ACTH and NFPA tumors [32,40,41]. However, other studies have failed to confirm these initial findings [42–48]. Although isolated somatic mutations of GNAI genes have also been observed in next-generation sequencing efforts, further experiments are needed to validate the existence and relevance of these findings [49,50].

In our original study, we found that AIP deficiency is associated in pituitary tumorigenesis via reduced Gαi signaling followed by elevated cAMP concentrations [29]. In the current study, we searched for germline mutations in GNAI loci in pituitary adenoma patients compatible with the AIP phenotype; young patients with somatotropinoma and familial index cases (Table 1). Also protein expressions of Gαq, Gαi, and Gαo were examined in human GH-, PRL-, ACTH- and non-secreting (NFPA) pituitary adenomas. We have earlier shown that Gαq and Gαi proteins are expressed in human somatotropinomas [29]. Here we observed that also the Gαq protein, although at low levels, is present in GH-secreting pituitary adenomas. Moreover, immunoreactions against all three Gαi proteins were detected in human prolactinomas, ACTH and NFPA tumors (Figure 1), suggesting a biological role of these proteins in these tumor types as well.

We screened for germline mutations in the GNAI loci in sporadic somatotropinoma patients (n = 32) and familial index cases (n = 14) characterized by the AIP phenotype (Table 1). No pathogenic mutations were observed in any of the patients studied. All the detected variants were either known polymorphisms or located in intronic regions. Although certain intronic variants may...
cause impaired splicing, the observed variants were not proximal to known splice sites. We acknowledge that the sample size in the present study is insufficient to draw a definite conclusion of the involvement of GNAI germline mutations in genetic predisposition of pituitary tumors. Moreover, due to the small sample size there is no adequate power to detect possible associations between the observed variant alleles and a pituitary tumor phenotype.

To our knowledge, this is the first time that all the coding exons of GNA11, GNA12 and GNA13 have been sequenced to detect germline loss-of-function mutations in a set of selected pituitary adenoma patients. All in all, our sequencing results suggest that germline mutations of the GNAI loci seem not to be associated to, or are rare in familial pituitary tumorigenesis. However, a larger set of samples, somatic mutation screenings, copy number profiling and additional cellular works would provide a more comprehensive result of the role of GNAI genes in pituitary tumorigenesis.

References

1. Heaney AP, Melmed S (2004) Molecular targets in pituitary tumours. Nat Rev Cancer 4: 295–303.
2. Dolecek TA, Propp JM, Stroup NE, Kruchko C (2012) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2005-2009. Neuro Oncol 14: v1–v49.
3. Asa SL, Essar S (2009) The pathogenesis of pituitary tumors. Annu Rev Pathol Mech Dis 4: 97–126.
4. Arafa B, Nasrallah M (2001) Pituitary tumors: pathophysiology, clinical manifestations and management. Endocr Relat Cancer 8: 267–305.
5. Dkrdkhs O, Biermasz N, Pereira A, Romijn J, Vandenheuvel J (2006) Mortality in acromegaly: a meta-analysis. J Clin Endocrinol Metab 91: 3316–3323.
6. Sweegers N, Barker FG, Katznelson L, Biller BM, Grinspoon S, et al. (1998) Endocrine manifestations of McCune-Albright syndrome in rats and humans. Proc Natl Acad Sci U S A 95: 7019–7023.
7. Reid TJ, Post KD, Bruce JN, Nabi Kanibir M, Reyes-Vidal CM, et al. (2010) Features at diagnosis of 324 patients with acromegaly did not change from 1981 to 2006: acromegaly remains under-recognized and under-diagnosed. Clin Endocrinol (Oxf) 72: 201–206.
8. Tichonrowa M, Daly A, Beckers A (2009) Familial pituitary adenomas. J Intern Med 266: 5–18.
9. Larson C, Skogerud B, Oberg K, Nakamura Y, Nordenskjoeld M (1988) Multiple endocrine neoplasia type 1 gene maps to chromosome 11 and is lost in insulinoma. Nature 332: 85–87.
10. Chandrasekharappa SC, Guru SC, Manickam P, Olufemi S-E, Collins FS, et al. (2001) Mutations of the gene encoding the protein kinase A type I regulatory subunit cause impaired splicing, the observed variants were not proximal to known splice sites. We acknowledge that the sample size in the present study is insufficient to draw a definite conclusion of the involvement of GNAI germline mutations in genetic predisposition of pituitary tumors. Moreover, due to the small sample size there is no adequate power to detect possible associations between the observed variant alleles and a pituitary tumor phenotype.

Supporting Information

Table S1 Intronic variations in GNAI loci. (DOCX)

Acknowledgments

We thank Inga-Ell Sveldberg, Ima Vuoristo and Alison Ollikainen for technical assistance. Institute for Molecular Medicine Finland (FIMM) for the sequencing service and the Biomedical Imaging Unit for the microscopy service are acknowledged.

Author Contributions

Conceived and designed the experiments: HD ID AK. Performed the experiments: HD ID. Analyzed the data: HD ID AK. Contributed reagents/materials/analysis tools: LK OK CSJ EDM AK. Wrote the paper: HD ID LK OK CSJ EDM AK. Supported the writing of the manuscript: HD ID LK OK CSJ EDM AK.

PLOS ONE | www.plosone.org 7 October 2014 | Volume 9 | Issue 10 | e109897
42. Tordjman K, Stern N, Ouaknine G, Yossiphov Y, Razou N, et al. (1993) Activating mutations of the Gs alpha-gene in nonfunctioning pituitary tumors. J Clin Endocrinol Metab 77: 765–769.
43. Ruggeri R, Santarpia L, Certo I, Torre M, Galantino M, et al. (2008) Nonfunctioning pituitary adenomas infrequently harbor G-protein gene mutations. J Endocrinol Invest 31: 946–949.
44. Petersenn S, Heyens M, Laidecke DK, Beil FU, Schulte HM (2000) Absence of somatostatin receptor type 2 A mutations and gip oncogene in pituitary somatotroph adenomas. Clin Endocrinol (Oxf) 52: 35–42.
45. Kan B, Esapa C, Sipahi T, Nacar C, Ozer F, et al. (2003) G protein mutations in pituitary tumors: a study on Turkish patients. Pituitary 6: 75–80.
46. Reincke M, Karl M, Travis W, Chrousos GP (1993) No evidence for oncogenic mutations in guanine nucleotide-binding protein of human adrenocortical neoplasms. J Clin Endocrinol Metab 77: 1419–1422.
47. Villares Fragoso MCB, Latronico AC, Carvalho FM, Zerbini MCN, Marcondes JAM, et al. (1998) Activating Mutation of the Stimulatory G Protein (gsp) as a Putative Cause of Ovarian and Testicular Human Stromal Leydig Cell Tumors. J Clin Endocrinol Metab 83: 2074–2078.
48. Shen Y, Manners P, Jobling T, Burger HG, Fuller P (1996) Absence of the previously reported G protein oncogene (gip2) in ovarian granulosa cell tumors. J Clin Endocrinol Metab 81: 4159–4161.
49. Forbes SA, Bindal N, Bamford S, Cole C, Kok CY, et al. (2011) COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res 39: D945–D950.
50. Fu W, O’Connor TD, Jun G, Kang HM, Abecasis G, et al. (2013) Analysis of 6,515 exomes reveals the recent origin of most human protein-coding variants. Nature 493: 216–220.