Synthesis of high-temperature viscosity stabilizer used in drilling fluid

Yanna Zhang¹,³,⁴, Huaidong Luo², Libao Shi⁴ and Hongjun Huang³

¹ Research Institute of Petroleum Exploration & Development, P.R. China;
² CNPC International (Chad) Corporation LTD, China;
³ CNPC Drilling research institute, Beijing, China
⁴ zh-yanna@qq.com

Abstract. For a well performance drilling fluid, when it operates in deep wells under high temperature, the most important property required is the thermal stability. The drilling fluid properties under high temperature can be controlled by proper selection of viscosity stabilizer, which can capture oxygen to protect polymer agent in the drilling fluid. In this paper a viscosity stabilizer PB-854 is described, which was synthesized by 4-phenoxybutyl bromide, paraformaldehyde, and phloroglucinol using etherification method and condensation reaction. We studied the effect of catalyst dosage, temperature, time, and stirring rate on the synthetic yield. Under this condition: molar ratio of 2-tert-Butylphenol, paraformaldehyde and phloroglucinol of 2:1:2.5, reacting temperature of 100 °C, stirring rate of 100 r min⁻¹, and mass content of catalyst of 15 %, char yield of 5-bromine-3-tert-butyl salicylaldehyde reached 86 %. Under this condition: molar ratio of 5-bromine-3-tert-butyl salicylaldehyde and phloroglucinol of 4, reacting temperature of 60 °C, reacting time of 30 min, volume content of sulphuric acid of 80 %, char yield of the target product viscosity stabilizer PB-854 is 86%. Finally, in this paper, infrared spectroscopy is adopted to analyse the structure of the synthetic product PB-854. The improvement in the stability of drilling fluid was further shown after adding the viscosity stabilizer in the common polymer drilling fluid under high temperature conditions of 120 °C ~ 180 °C. The results show significant change in terms of fluid stability in the presence of this new stabilizer as it provides better stability.

1. Introduction

Polymers react by cross-link or free radicals with oxygen under high temperature[1-3], so stabilizer should have spatial structures and capture oxygen free radicals. Therefore, a phenolic compound with a substituted base on one or both sides of a benzene rings was designed and synthesized by 2-tert-butylphenol, paraformaldehyde, and phloroglucinol[4-7]. How to get the highest yield of target product under laboratory conditions? This paper optimized synthetic conditions by orthogonal experiment. The results show that molar ratio of raw material, temperature, reacting time and stirring rate have different effects on the yield of target product. By the yield under different conditions, the optimal react conditions are confirmed. In addition, the structure of synthetic product PB-854 was analysed using infrared spectroscopy[8-10].

Finally, the new high-temperature stabilizer PB-854 was evaluated in the common polymer drilling fluid system under different temperature by comparing its property and filter loss. PB-854 could protect the polymer from degradation and keep the stability of drilling fluid. In addition, it could be
easily obtained and had good usability in the drilling fluid. Therefore, it has a great application prospect in the oil industry.

2. Experimental
In this experiment, 2-tert-Butylphenol, paraformaldehyde and phloroglucinol were taken as raw materials, and the synthetic experiment was completed in two steps. Firstly, 5-bromine-3-tert-butyl salicylaldehyde is synthesized by 2-tert-Butylphenol, paraformaldehyde and Bromine liquid. Secondly, high-temperature viscosity stabilizer PB-854 was synthesized by 5-bromine-3-tert-butyl salicylaldehyde and phloroglucinol[11-13]. The chemical equation is shown below.

\[
\text{t-Bu}_3\text{OH} + \text{HO-(CH}_2\text{O)}_n\text{H} + \text{Br}_2 \rightarrow \text{t-Bu}_3\text{OHCHO} + \text{Br}_{2-}
\]

(1)

3. Results and discussion

3.1. Synthesis of 5-bromine-3-tert-butyl salicylaldehyde
In the experiment, 9 groups of experiments, 4 factors, and 3 levels of orthogonal experiment for each factor (as shown in Table 1) were adopted.[14] In order to optimize the experiment conditions, the sum of yield was calculated for each factor under three levels, the result is shown in table 2.

Level	Factor	A molar ratio of raw materials	B temperature \(^{\circ}\mathrm{C}\)	C time / min	D stirring rate / \(\text{r min}^{-1}\)
1	2	2 : 1 : 2	90	120	200
2	2 : 2	2 : 1 : 2.5	100	190	150
3	1	1 : 1.5 : 2	120	250	100

Molar ratio of raw material	Temperature / \(^{\circ}\mathrm{C}\)	Time / min	Stirring rate / \(\text{r min}^{-1}\)
2 : 1 : 2.5	100	190	100

3.2. Substitution reaction
In the experiment, 9 groups of experiments, 4 factors, and 3 levels of orthogonal experiment for each factor (as shown in Table 3) were adopted. In order to optimize the etherification synthetic process, [15] the productivity sum of synthetic product was calculated for each factor under three levels. The optimal process combination is presented in Table 4.
Table 3. Orthogonal factors of condensation.

Element	A	B	C	D
1	2 : 1	30°C	30 min	98%
2	3 : 1	60°C	60 min	80%
3	4 : 1	90°C	120 min	60%

Record: material ratio is equal to molar ratio of 4-phenoxybutyl bromide and Phloroglucinol

Table 4. Optimum synthesis conditions of etherification reaction.

Material ratio	Reaction temperature /°C	Reaction time /min	Sulphuric acid volume /%
4 : 1	60	30	80

3.3. Structural analysis

Sample preparation of dried PB-854 with KBr was tested by America's Nicolet 70SX infrared spectrometer. The spectrogram is shown in Figure 1.

![Figure 1 FTIR of PB-854](image_url)

According to Figure 1, the main absorption peak of PB-854 is as follows: 1117 cm\(^{-1}\) and 1048 cm\(^{-1}\) represent telescopic vibration and anti-telescopic vibration peaks of Ph–O–Ph.

(2) 2979 cm\(^{-1}\) and 2926 cm\(^{-1}\) are the stretching vibration absorption peaks of –CH\(_3\);

(3) 1611 cm\(^{-1}\) and 1512 cm\(^{-1}\) are skeletal vibration absorption peaks of benzene ring;

(4) 1245 cm\(^{-1}\) is the stretching vibration absorption peak of aromatic aldehyde.

3.3.1. Temperature resistance evaluation

For evaluating the high temperature stability of PB-854 used in the drilling fluid, the common polymer drilling fluid system was chosen as performance evaluation of the high temperature rheology and filter loss before and after adding the PB-854. The results of the experiments are listed in Table 5.
Table 5. General performance of the polymer drilling fluid

(a. No adding PB-854)

Temperature/℃	Condition (16 h)	AV (mPa s)	PV (mPa s)	YP (Pa)	G”/ G’ (Pa/Pa)	API FL (ml)	pH
25	before heating	32	23.1	8.9	1.4/3.1	4.5	9
120	after heating	22.4	14.4	8	0.5/2.5	6	9
150	after heating	18.9	13.4	5.5	0.8/1.5	8.1	9
180	after heating	10.2	7.8	2.4	0.5/1.1	11.5	9

(b. Adding 2% PB-854)

Temperature/℃	Condition (16 h)	AV (mPa s)	PV (mPa s)	YP (Pa)	G”/ G’ (Pa/Pa)	API FL (ml)	pH
25	before heating	39.4	29.2	10.2	1.5/3.4	4.4	9
120	after heating	35	24.8	10.2	1.2/2.6	4.8	9
150	after heating	30.8	24.4	6.4	1.8/2.0	5.4	9
180	after heating	31.5	26.4	5.1	1.1/1.8	5.1	9

From the Table 5, it can be concluded that high-temperature stability of polymer drilling fluid is poor. When temperature increased from 25 ℃ to 180 ℃, the apparent viscosity went down from 32 mPa s to 10.2 mPa s, and its filter loss increased from 4.5 ml to 11.5 ml. However, after adding 2% PB-854 into the drilling fluid, the apparent viscosity of drilling fluid basically remained around 31 mPa s and its filter loss just increased a little. Therefore, PB-854 has good rheological property at high temperature. It can protect the polymer in the drilling fluid system from degradation, preserving the high-temperature stability of drilling fluid in that way.

4. Conclusions

By the relation between molecular structure and high-temperature stability, in this paper designed and synthesized high-temperature viscosity stabilizer PB-854, and the following conclusion was obtained based on the experiment:

The etherification and condensation method have been used to synthesize high-temperature viscosity stabilizer PB-854, and carry out optimal experiment for the synthetic method to realize the maximum productivity of PB-854.

The structure of PB-854 was evaluated by infrared spectrum, where we can find the characteristic peaks of the main functional groups in accordance with the designed target product.

By comparing the change of the high-temperature rheological property and filter loss of the polymer drilling fluid before and after adding PB-854, the results show that PB-854 has good high-temperature stability and could effectively protect the polymer at the high-temperature.

List of symbols and abbreviations

AV – apparent viscosity
PV – plastic viscosity
YP – yield value
G” – gel strength of the stationary after 10 s
G’ – gel strength of the stationary after 10 min
APIFL – medium pressure filtration quantity in accordance with API standard

References

[1] Zhang Z 2011 Study on High-Temperature Resistance of Drilling Fluids, China University of Petroleum Master Degree Thesis
[2] Dong J 2009 Preparation and Evaluation of the Clay Stabilizer of Cationic Polymerization and Gemini Quaternary Ammonium Salt, Ocean University of China Master Degree Thesis
[3] Liu L, Pu X, Tao H, Yu Y, Dai Y, Kang L 2013 Temperature stabilizer to improve temperature resistance of copolymer fluid loss additive Appl. Chem. Ind. 42 25–30 doi:
[4] Pan B, Chen Y, Liu X, Yang D, Li H 2013 Research on Effect of Temperature Stabilizer on High Temperature Rheology of Self-Diverting Acid, *Drill. Fluid Complet. Fluid* 30 (4) 66–68 url: http://caod.oriprobe.com/articles/39164829/wen du wen ding ji dui zi zhuan xiang suan gao wen.htm

[5] Lu M, Wang X, Wang E, Wu L N, L W 2013 Study on improving high temperature stability of water-based drilling fluid, *Drill Fluid Complet. Fluid* 30 17–21, 90 url: http://caod.oriprobe.com/articles/31953172/Study_on_Improving_High_Temperature_Stability_of_W.htm

[6] Luyster M R, Monroe T D, Ali S A 2000 Factors affecting the performance of enzyme breakers for removal of Xanthan-Based filter cakes *SPE* 58749 1–14 doi: https://doi.org/10.2118/58749-ms

[7] Li J G, Lin Y D, Kuo S W 2011 From Microphase separation to self-organized Mesoporous Phenolic Resin through competitive Hydrogen Bonding with double-crystalline diblock copolymers of poly(ethylene oxide-b-ε-caprolactone) *Macromolecules* 44 9295–9309 doi: https://doi.org/10.1021/ma2010734

[8] El-Monier I A, Nasr-El-Din H A, Rosen R L, Harper T L 2013 A New Environmentally Friendly Clay Stabilizer *SPE Prod. Oper.* 28 (2) 54–63 doi: https://doi.org/10.2118/136061-PA

[9] M M Samuel, A H A Mohsen, A B Ejan, Y S Ooi, S Ashraf, H A Nasr-El-Din 2010 A Novel alpha-Amylase Enzyme-Stabilizers for Applications at High Temperatures, *SPE Annual Technical Conference and Exhibition, 4-7 October, New Orleans, Louisiana, Society of Petroleum Engineers* 25 (3) 11 doi: https://doi.org/10.2118/125024-ms

[10] Chetan P, Songire S 2015 A Sulfur-Free and Biodegradable Gel Stabilizer for High Temperature Fracturing Applications, *SPE North Africa Technical Conference and Exhibition, 14-16 September, Cairo, Egypt, Society of Petroleum Engineers* 12–19 doi: https://doi.org/10.2118/175876-MS

[11] Elbel J L, Thomas R L 1980 The Use of Viscosity Stabilizers in High Temperature Fracturing, *SPE Rocky Mountain Regional Meeting, 14-16 May, Casper, Wyoming, Society of Petroleum Engineers* 45–52 doi: https://doi.org/10.2118/9036-ms

[12] AlMubarak T, AlDajani O, AlMubarak M 2015 A Collective Clay Stabilizers Review, *International Petroleum Technology Conference, 6-9 December, Doha, Qatar* 24–31 doi: https://doi.org/10.2523/IPTC-18394-MS

[13] Oort van E, Hoxha B B, Yang L, Hale A 2016 Automated Drilling Fluid Analysis using Advanced Particle Size Analyzers, *LADC/SPE Drilling Conference and Exhibition, 1-3 March, Fort Worth, Texas, USA, Society of Petroleum Engineers* 31–39 doi: https://doi.org/10.2118/178877-MS

[14] Baldino S, Osogouei R E, Ozbayoglu E, Miska S, Takach N, May R, Clapper D (2015, June 1) Cuttings Settling and Slip Velocity Evaluation in Synthetic Drilling Fluids, *Offshore Mediterranean Conference* 44–51 url: https://www.onepetro.org/conference-paper/OMC-2015-321

[15] Zheng L, He X, Zhang M, Fu L 2009 Research on the Application of Environment Acceptable Modified Natural Macromolecule Based Drilling Fluid, *ICBBE 2009 – 3rd International Conference on Bioinformatics and Biomedical Engineering, IEEE* 21–30 doi: https://doi.org/10.1109/ICBBE.2009.5163336