INTRODUCTION

Liver which is the largest gland in the body is a multifunctioning organ, responsible for metabolism, detoxification, secretion, synthesis, storage and immunological functions. The liver is permanent susceptible to exogenous substances e.g., drugs, alcohol and environmental toxins, which can lead to liver disorders, such as hepatocellular, cholestatic (obstructive) and mixed type of the liver disorders. Liver diseases have become a global concern worldwide and deaths caused by liver diseases are rising each year at an alarming rate. It is steadily increasing over the years and World Health Organisation (WHO) has projected in its World Health Statistics of 2020 to be the eleventh most important cause of death in the world by 2030 and may be the tenth most common cause of death in India by 2020. Plants have been used since ancient times in the treatment of liver diseases, several research has proven the preventive and therapeutic activity of plants as a hepatoprotective agent. People are becoming aware about the various benefits and preferring the alternative medicine, for their health. As in 2018, 170 WHO Member States have acknowledged their use of Traditional and complementary medicine. Ayurveda a time honoured Indian system of medical practice has multitude proven formulations for the treatment of liver diseases. The plants which protect the liver contain variety of active constituents like flavonoids, glycosides, monoterpenes, coumarins, lignans, essential oil, carotenoids, organic acids, alkaloids and xanthene. Here this paper reviews some incredible plants for their hepatoprotective activity taken from various documented literature from the period of 2011-2021.

Table 1: Plant Description

Name of the plant	Common name	Part of plant used	Type of extract
Cichorium Intybus and Cynara Scolymus	Chicory / Kasani / Artichoke Ahtchike	Cichorium intybus root and Cynara Scolyms leaves	Ethanolic extract
Foeniculum Vulgare	Fennel / sauf	Seed	Ethanolic extract
Cordia Sebestena L.	Geiger / Lal Lasoda	Fruit	Ethanolic extract
Hepatotoxicity

Injury or damage to the liver caused by substances like drugs, herbal agents, industrial chemical agents or nutritional supplements. Liver being the vital site for metabolism and biotransformation it becomes highly susceptible to damage. More than 900 drugs have been implicated in causing liver injury and it is the most common reason for a drug to be withdrawn from the market. Drug-induced liver injury (DILI) represents a diverse set of responses that occur after exposure to any manufactured or naturally occurring chemical compound. The DILI rank dataset consists of 1,036 FDA-approved drugs that are divided into four classes where 192 Most DILI concern, 278 Less DILI concern, 312 No DILI concern where there is confirmed causal relationship between a drug and liver injury and the last group 254 Ambiguous-DILI concern where the causality remains undetermined. LiverTox is another dataset providing up-to-date, information on the diagnosis, cause, frequency, clinical patterns and management of liver injury attributable to prescription and non-prescription medications and selected herbal and dietary supplements.

Table 2: Types of DILI

Intrinsic DILI	Idiosyncratic DILI
It affects every individual at the same dose	It affects individuals with risk factors (risk of unpredictable interactions among genetic, non-genetic factors like age, sex, existing immunocompromised diseases, daily dose, and metabolism factors.)
Predictable	Unpredictable
Dose dependent	Non-Dose-Dependent
E.g. Acetaminophen etc.	E.g. tyrosine kinase inhibitors, antitubercular drugs etc.

Table 3: Bio Chemical Classification of DILI

Hepatocellular	Cholestatic	Mixed Hepatocellular/Cholestatic Pattern
ALT 2 to 5 times > the upper limit of normal (ULN) and/or an ALT/ALP ratio > 5	ALP 3 times > ULN and/or an ALT/ALP ratio < 2	ALT 2 to 5 times > the ULN and ALP 3 times > the ULN and/or an ALT/ALP ratio between 2 and 5.
hepatocyte necrosis, poor prognosis	biliary cholestasis is the result of abnormal biliary secretion, with no hepatocellular damage	cholestasis with concomitant hepatic parenchymal damage

Hepatotoxic agents increase the serum levels of ALT (alanine transaminase), AST (aspartate aminotransferase), ALP (alkaline phosphatase), TB (total bilirubin), DB (direct bilirubin) and TG (Serum Triglycerides), cholesterol, urea and decrease the serum levels of Albumin, GSH glutathione reductase and TP (total protein). ALT is more specific than AST in detecting liver damage as AST can be found not only in the liver but also in the heart, muscle, kidney as well as brain.
Table 4: Description of Hepatotoxic Agent

Name of the plant	Hepatotoxicity inducing agent	Biochemical/ Histopathological tests
Cichorium Intybus and Cynara Scolymus⁴	Paracetamol at 0.5 mg/kg bodyweight	Creatinine phosphokinase (CPK), Alanine Aminotransferease (SGPT or ALT), Aspartate Aminotransferase (SGOT or AST), Lactate Dehydrogenase (LDH), creatinine, Gamma-Glutamyl Transferase (GGT), Uric acid and weight
Foeniculum Vulgare¹	Paracetamol at 2g/kg body weight	Aspartate amino transferase (AST), alanine amino transferase (ALT), Alkaline phosphatase (ALP), bilirubin.
Cordia Sebestena L.⁵	Simvastatin at 20 mg/kg body weight	SGOT(Serum glutamic oxaloacetictransaminase), SGPT (serum glutamic pyruvic transaminase), cholesterol, bilirubin, urea, albumin, total protein and red blood cells (RBC), white blood cells (WBC) haemoglobin (Hb), platelets and lymphocytes and liver histopathology study
Curcuma Heyneana⁶	Isoniazid at the dose of 50 mg/kg and rifampin at dose of 100 mg/kg body weight	Alanine transaminase (ALT) and aspartate transaminase (AST), livers were collected for histopathology study
Lobelia Alsinoides Lam.²	Carbon Tetrachloride: 1:1 mixture in olive oil at 1.25 ml/kg bodyweight	AST), ALT, ALP, total bilirubin, total protein, albumin and total cholesterol, liver for histopathology study.
Three Varieties of the Passion Fruit (Passiflora Sp.)⁷	Paracetamol at 500mg/kg body weight	ALT, AST, Urea and Creatinine
Phyllanthus Fratermus⁸	Carbon Tetrachloride: Olive oil (dose not mentioned)	SGOT, SGPT, ALP, bilirubin, cholesterol, and total protein, liver tissues for histopathology study
Pavetta Indica LINN⁹	Paracetamol at 2000mg/kg body weight	SGOT, SGPT, Albumin, Globulin, Total bilirubin, direct bilirubin, total protein
Mimosa Pudica¹⁰	High fat diet (HFD) for 2 weeks and streptozotocin (STZ) (35 mg/kg body weight)-induced type 2 diabetic rats	Glucose, insulin, AST, ALT, ALP and LDH
Terminalia Coriacea²	Carbon Tetrachloride at 2ml/kg bodyweight	AST, ALT, ALP, direct bilirubin, total bilirubin and Cholesterol, liver for histopathology study
Bambusa Bamboos¹¹	Carbon Tetrachloride at 1 ml/kg body weight	Aspartate Amino Transaminase (AST), Alanine Aminotransaminase (ALT), Alkaline Phosphatase (ALP) and Total Bilirubin
Rosa Canina¹²	Carbon tetrachloride 1 ml/kg body weight	aspartate aminotransferase (AST), alanine amino transaminase (ALT), alkaline phosphatase (ALP), albumin (ALB), total protein (TP) and malondialdehyde (MDA), histopathological study
Garcinia Pedunculata¹³	Paracetamol at 1 g/kg body weight	acute oral toxicity test, ALT,AST,alkaline phosphatase, histopathological study
Tetrapleura Tetraptera¹⁴	Carbon tetrachloride at 0.75mg/kg body weight	ALT, AST, alkaline phosphatase, bilirubin, histopathological study, Measurement of Lipid Peroxide
Feijoa Sellowiana¹⁵	methylendioxyhemamphetamine (MDMA) at 10ml/Kg body weight	ALT, AST, glutathione reductase, histopathology study
Piper Cubeba¹⁶	Carbon tetrachloride at 1 ml/kg body weight	antioxidant potential tested by (DPPH) free radical scavenging activity, hydroxyl radical scavenging activity, nitric oxide radical scavenging activity and hydrogen peroxide radical scavenging activity, ALT, AST, ALP, TB, DB ,TG and Total proteins along with histopathology study Lipid Peroxidation (LPO), Reduced Glutathione (GSH) and Catalase Level (CAT) determination.
Feronia Limonia¹⁷	Paracetamol at 500 mg/kg body weight	AST, ALT, ALP, Total Bilirubin, Total cholesterol, Triglycerides & the body weight.
Solanum Xanthocarpum¹⁸	Carbon tetrachloride at 1 ml/kg body weight	Aspartate aminotransferase (AST), alanine aminotransferase (ALT), Serum alkaline phosphatise (SALP) and total bilirubin, antioxidant activities as lipid peroxidation (LPO), reduced glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT) were screened along with histopathological studies.
1. Carbon tetrachloride- Out of 18 research papers reviewed 8 used Carbon tetrachloride (CCl₄) as the hepatotoxin in (1:1) ratio mixed in olive oil/liquid paraffin. The carbon tetrachloride administration causes oxidative damage. ROS causes membrane lipid peroxidation, cell and mitochondrial membrane degradation, endoplasmic reticulum dysfunction, and intracellular macromolecule damage³⁵, fibrosis, inflammation and fatty degeneration in the liver.

2. Paracetamol- Paracetamol also known as acetaminophen is the most common cause of DILI. It is the next frequent hepatotoxic used in the reviewed papers for inducing hepatotoxicity. Mitochondrial dysfunction is attributed as the main source of free radicals and oxidative stress in paracetamol hepatotoxicity. Increased activity of mitochondrial complex I, a site for free radical generation seen in paracetamol overdose is directly related degree of liver injury²².

3. Methylenedioxymethamphetamine (MDMA) - MDMA or ecstasy is an amphetamine derivative which has been abused as a widespread recreational. Liver is a target organ for MDMA toxicity. MDMA is metabolized by cytochromes P₄₅₀, 2B, and 3A and reactive metabolites are readily oxidized to the corresponding o-quinones and reactive oxygen species (ROS) which results in hepatotoxicity¹⁵.

4. Simvastatin- Statins can lead to idiosyncratic liver injury; More than 50 cases of liver injury have been reported in association with atorvastatin and simvastatin. Mortality from liver injury has only been associated with atorvastatin and simvastatin²³. Mitochondrial dysfunction is one of the major factors that explain the mechanism of statin-induced hepatotoxicity. Another major reason for statin induced hepatotoxicity is that mitochondria or cytochromeP450-dependent metabolism act as Reactive Oxygen Species (ROS) generation systems and participate in cell death processes²⁴.

5. Isoniazid and rifampin- DILI may occur to the tuberculosis patients who consume INH for 6 to 9 months, RIF for 4 months, or a combination of INH and RIF for 4 months. INH along with RIF produces toxic metabolites or oxidants such as acetyhydrazine (AcHz) and hydrazine (Hz) which are oxidized by microsomal enzymes P450 especially CYP2E1 into radical metabolites. These metabolites cause hepatotoxicity⁶.

6. High fat diet (HFD) and streptozotocin (STZ) - High fat diet (HFD) and streptozotocin (STZ) induced type 2 diabetes mellitus. Liver is an important organ for glucose homeostasis. In diabetes mellitus the liver is damage is related to free radicals formation through glucose oxidation, decrease in antioxidant defence mechanism pathway, enzymatic glycation of protein and cytokine production. Chronic hyperglycaemia is a major reason for oxidative stress which leads to pathological changes in liver cell.

HEPATOPROTECTIVE ACTIVITY

Compounds which restore liver damage or act as boon for the liver are hepatoprotective agents. In the normal state, antioxidant defence systems such as SOD, catalase, and glutathione peroxidase enzymes eliminate the damaging free radicals.⁵⁵ There are several plants reported to have phytoconstituents which prove the hepatoprotective activity.

Table 5: Description of Hepatoprotective Agent

Name of the Plant	Hepatoprotective agent
Cichorium Intybus	Esculetin, Hydroxyxinnamic acid, Caffeoylquinic acid, Dicafeoylquinic acid, Choricacid²⁵, chichotyboside²⁶, flavonoids, saponins⁴
Cynara Scolymus	Flavones, flavanones, flavonoids, coumarins, and phenolic acids⁴
Foeniculum vulgare	d-limonene⁴
Cordia sebestena L.	Flavonoids³
Curcuma heynana	Flavonoids, saponins, tannins, glycosides, steroids/triterpenoids, curcumin which comprises of comprises curcumin, demethoxycurcumin and bisdemethoxycurcumin⁶
Lobelia Alsänoides Lam.	Steroids, alkaloids, phenol and tannins²
Three Varieties of the Passion Fruit (Passiflora Sp.)	Alkaloids, flavonoids, steroids, triterpenoids, saponins, tannins, glycosides, and phenolic⁷
Phyllanthus Fraternus	Phenolic and flavonoid content²⁷
Pavetta Indica LINN	Flavonoids and their glycosides, alkaloids, sterols, phenolics, lignins, terpenoids, coumarins, saponins,phenols²⁸
Mimosa Pudica	Flavonoids, glycosides, terpinoids, alkaloids, phenol and tannin⁴⁵
Termin alia coriacea	β-Sitosterol, Stigmasterol, 1H-Inden-1-one,2,3-dihydro-3,5,6-tetramethyl, n-hexadecanoic acid, flavonoids and tannin⁵⁴
Bambusa Bambos	Flavonoids, steroidal alkaloids, etc¹¹
Rosa Canina	Flavonoids, phenolic acids, tannins, carotenoids¹²
Garcinia Pedunculata	Flavonoids, saponins, glycosides, steroids, alkaloids and phenols¹³
Tetrapleura tetraptera	Flavonoid, polyphenols, flavanol²⁹
Feijoa sellowiana	polyphenols¹⁵

Plant phenolics include simple phenols, phenolic acids, coumarins, lignans, flavonoids, diaryl-alkanoids, stilbenoids, proanthocyanins, tannins, and anthocyanins some alkaloids. They protect against oxidative damage by donating hydrogen or electron to free radicals and aid in stabilizing cell membrane networks and inhibiting the formation and expression of inflammatory cytokines like tumor necrosis factor alpha (TNF-α). Transforming Growth Factor beta (TGF-β) and varieties of interleukins (IL-6, IL-2, IL-8)31.

Flavonoids –Enhance the antioxidant functions of liver by increasing the level of superoxide dismutase, glutathione s-transferase and glutathione peroxidase, improve insulin sensitivity and inhibit hepatic stellate cell activation by regulating the activities of the enzymes such as heme oxygenase-1, cytochrome P450 and telomerase. Reduce inflammatory reaction by restraining the expression of tumor necrosis factor-α, interferon-γ and interleukin-6, and mediate apoptosis and autophagy by controlling the pathways of genes-p 53-genetics, nuclear factor κB and phosphatidylinositol 3-kinase/protein kinase B signaling, which provides an alternative way for the treatment of liver injury32. Three flavonoids, rutin, robinin and gossypetin 3-gluconuride 8-gluconide were isolated and characterized from TCLME(methanolic extract of T. coriacea leaves for the first time33.

The administration of Piper cubeba essential oil extract PCEE significantly scavenge reactive free radicals that diminish oxidative stress or damage of liver tissue and provoke the activities of the hepatic antioxidant enzymes. Down-regulated the CCL1-induced proinflammatory cytokines TNFα and IL-6 mRNA expression, while it upregulated the IL-10 and induced hepatoprotective effect by down-regulating mRNA expression of iNOS and HO-1 gene30.A study conducted to assess Hepatoprotective effects and structure-activity relationship of five flavonoids of Esculetin, sculetin, Feronia limonia limonene present in F. vulgare, and its inhibitor Keap1. Esculetin induces antioxidant effects by inducing antioxidant enzymes, which is marked by a significant increase in SOD. Esculetin decreased neutrophil filtration35.

Inhibitory effect of limonene on the expression of NF-κB and its upstream TNF-α, reduced infiltration of inflammatory cells, activation of the AMPK signaling pathway. Thus, Antioxidant, anti-inflammatory, and antiapoptotic property of limonene plays an important role.D-limonene present in F. vulgare increase concentration of reduced Glutathione (GSH) which binds with NAPQI (N-acetyl-benzoquinone imine). Its mechanisms against liver fibrosis may be related with inhibiting lipid peroxidation formation in liver tissue of liver fibrosis mice and reducing the collagen formation by suppressing protein expression of TGF-β1, α-SMA, MMP-9 and TIMP-136.
Catechins are renowned for their powerful potential to scavenge various free radicals such as hydroxyl, peroxyl, superoxide, and other radicals. Antioxidant activity of catechins is mediated through different mechanisms. They are able to transfer an electron to bind a reactive radical, thus limiting free radicals generation. Indirectly, catechins exert an antioxidant effect by increasing the level of endogenous antioxidants such as glutathione reductase, catalase, and superoxide dismutase. Moreover, catechins are reported to have an inhibitory effect on xanthine oxidase that catalyzes the metabolism of purines into uric acid and reactive oxygen species.

Allaloids demonstrate hepatoprotective activity through their action in decreasing CYP2E1 mRNA and therefore CYP2E1 activity. A study with steroidal allaloid from S. saligna reduced liver inflammation by firstly reducing the T-cells multiplication and amount of IL-2 which change the entire inflammation reactions and as well non-cytotoxic, secondly acts as antioxidant and act as a free radicals scavenger which is produced by the hepatocytes.

RESULT

Table 6: Result Description

Name of the plant	Study model	Result
Cichorium Intybus	Broiler Chicken	Ethanolic extract of Cichorium intybus showed significant hepatoprotective effect by decrease in AST and GGT concentrations at 0.1% alcoholic extract compared to Cynara Scolumys which did not protect the liver against paracetamol induced injury, both decreased the mortality rate and significant gain in body weight was observed.
Cynara Scolumys	Rabbit	Study result showed Foeniculum vulgare at 500 mg/kg as most hepatoprotective. Histopathological findings also supported the biochemical results.
Foeniculum Vulgare	Wistar Albino Rats	Cordia sebestena fruit extract at dose of 400 mg/kg reversed liver deteriorations. Histopathological study revealed the regeneration of hepatocytes.
Curcuma heyneana	Wistar Albino Rats	Administration of ethanol extract of C. Heyneana rhizome at the dose of 25, 125 or 625 mg/kg significantly inhibited the elevated liver biomarkers. Treatment with doses of 125, 625mg /kg did not show any sign of necrosis. Ethanol extract strongly scavenged DPPH.
Lobelia Alsinoides Lam.	Wistar Albino Rats	Animals treated with the fine paste of L. Alsinoides at 2.16 g/kg showed best hepatoprotective activity. Histomorphologic evaluation showed hepatoprotective effect with scattered mitotic figures in the parenchyma, doses up to 2500 mg/kg are not toxic to rats, showed good anti-oxidant activity.
Three Varieties of the Passion Fruit (Passiflora Sp.)	Albino Rats	The hepatoprotective activity and nephroprotective activity of purple passion fruit peel extract at 250 mg per kg of body weight was best compared to red and yellow peel extract.
Phyllanthus Fratermus	Wistar rats	P. Fraternus reduced liver biomarkers best at 500 mg/kg body weight, showed rising total protein levels and reduction of necrosis and sinusoids was observed in histopathological examination
Pavetta Indica LINN	Albino Rats	No mortality up to 2000 mg/kg body weight. Ethanol extract of P. Indica exhibited significant hepatoprotective activity at 100mg/kg and 200mg/kg body weight.
Mimosa Pudica	Wistar Rats	Mimosa Pudica leaves extract at 300 mg/kg of body weight showed Hepatoprotective activity by significantly restored liver markers.
Terminalia Coriacea	Albino Rats	METC at 500 mg/kg, body weight treated rats exhibited maximum depletion of liver biomarkers. The histopathology study also showed the hepatic protection of extracts, No lethality was observed at 2000mg/kg.
Bambusa Bambos	Wistar Rats	Methanolic shoot extract of b. Bambos at dosage 400 mg/kg per body weight showed best hepatoprotection.
Rosa Canina	Albino Wistar rats	R. Canina at doses of 500 and 750 mg/kg significantly reduced elevated levels of ALT, AST, ALP and MDA, increased the serum levels of ALB and TP histopathological studies supported the biochemical finding.
Garcinia Pedunculata	Wistar albino rats	Acute oral toxicity study did not reveal any mortality in any dose up to 2000 mg/kg, reduction in AST,ALT,alkaline phosphatase
Tetrapleura	Wistar rats and	The extracts decreased the elevation in the activities of the enzymes in the liver.
Tetraptera14 & mice & They also protected against CCl\textsubscript{4} induced lipid peroxidation at 100-500 mg/kg. The extracts reduced CC\textsubscript{4}-liver induced necrosis in dose dependent manner.

Feijoa Sellowiana15 & Albino Wistar rats & Dose dependently the results showed decrease in ALT, AST and GSH, necrosis in the liver parenchyma also decreased.

Piper Cubeba16 & Swiss Albino mice and Wistar rats & Extract had significant dose-dependent antioxidant activity in all in vitro experiments, it attenuated cd4 induced serum marker enzymes and total protein and histopathology result supported the same.

Feronia Limonia17 & Albino rats & Treatment at 300 mg / kg of ethanolic extract of Feronia Limonia promoted body weight and showed significant hepatoprotective activity

Solanum Xanthocarpum18 & Sprague-Dawley rats and Swiss albino mice & 400 mg/kg body weight showed maximum reduction in hepatotoxicity induced serum levels and reduced the lipid peroxidation in the liver tissue and restored activities of defence antioxidant enzymes. GSH, SOD and catalase towards normal levels and histopathology study also supported the same.

\section*{DISCUSSION}

All the plants reviewed have remarkable proven hepatoprotective potential due to various miraculous phytoconstituents. The greater the content of alkaloids, flavonoids, and saponins in an extract, the higher the hepatoprotective activity possessed by the extract. Flavonoids are polyphenol compounds that have been proven for hepatocytes protection from free radical scavenging activity7. Polyphenols are a group of compounds in plants with high antioxidant potential. This antioxidant activity is mainly due to their redox potential that allows them to neutralize free radicals, singlet oxygen or decomposing peroxides20. The n-hexane extract lowered thiobarbituric acid reactive substance (TBARS) more than the methanol extract14, antiplasmodial effects of this plant might be correlated to his high phenolic content.

Further research for active Phytoconstituents demonstrating hepatoprotective activity of C. Sebestena fruit is suggested5. The mechanism of the hepatoprotective action of the plant L. Alsinoides was uncertain from the study but is assumed to be due to the capacity of the plant derivatives to prevent lipid peroxidation by its free radical scavenging activity in the liver2. Bamboo is an under-explored plant with high therapeutic potential. Bambusa vulgaris have shown great antioxidant activity and presence of saponins, alkaloids, flavonoids, phenolics tannins, phytoesters, and triterpenoids5. Investigations are required to characterize the active hepatoprotective agent and mechanism of action of Bambusa Bambo14. Several plants are under the research and several others are still undercover to be discovered for their possible hepatoprotective activity, this is the need of an hour as liver diseases are a growing threat.

\section*{REFERENCES}

1. Nazir T, Shakir L, Zaka-ur-Rahman, Najm K, Choudhary A, Saeed N, et al. Hepatoprotective Activity of Foeniculum vulgare Against Paracetamol Induced Hepatotoxicity in Rabbit. Journal of Applied Pharmacy.[Internet]. 2020 [cited 2021 Nov 7]; 12(1). https://doi.org/10.35248/2376-0354.20.12.270 Available from:https://www.kongdom.org/open-access/hepatoprotective-activity-of-foeniculum-vulgare-against-paracetamol-induced-hepatotoxicity-in-rabbit-475511.html

2. Binitha RRV, Shahjahan MA, Muhamed J, Anilkumar.TV, Premal S, Indulekha WC. Hepatoprotective effect of Lobelia alsinoides Lam. in Wistar rats. Journal of Ayurveda and Integrative Medicine. 2020 Oct; 11(4):515-21. https://pubmed.ncbi.nlm.nih.gov/31277907/ https://doi.org/10.1016/j.jaim.2019.04.004

3. Patel J, Reddy AV, Kumar GS, Satyasad D, Bajari B, Nagarjuna V. Hepatoprotective activity of methanolic extract of Terminalia coriacea leaves. Research Journal of Pharmacy and Technology. 2017; 10(5):1313. https://doi.org/10.5958/0974-360X2017.00232.3 https://www.researchgate.net/publication/318501680_Hepato protective_activity_of_methanolic_extract_of_Terminalia_coriacea leaves

4. Andalib F, Mosaviani H, Khazraiein P, Mohajerani S, Pourakbari S. Comparison of Hepatoprotective Activity of Cichorium Intybus and Quinoa Scolymus Extracts Against Paracetamol Induced Hepatotoxicity in Broiler Chicken. Egyptian Journal of Veterinary Sciences. 2021 Aug 1; 52(2):251-6. https://doi.org/10.21608/jvjs.2021.48017.1200 https://journals.ekb.eg/article_164041.html

5. Chaudhury S, Gupta RK, Gupta MK, Verma HC, Kumar H, Swain SR, et al. Hepatoprotective response of Cordia sebestena L. fruit against simvastatin induced hepatotoxicity. Journal of Pharmacy & Pharmacognosy Research2020; 8 (4):327-335 http://jjpres.com/jjpres

6. Marianne M, Harahap U, Hasibuan PAZ, Thampati CM, Harefa HS. Hepatoprotective activity of the ethanol extract of Gurarea heyneana rhizome on isoniazid and rifampacin-induced liver injury rats. Journal of Herbm ed Pharmacology.2020 Jul 1; 9(4):333-8. https://doi.org/10.34172/jhp.2020.42 http://herbmmedpharmacol.com/Article/jhp-13392

7. Nerdny N, Ritarwan K. Hepatoprotective Activity and Nephroprotective Activity of Peel Extract from Three Varieties of the Passion Fruit (Passiflora sp.) in the Albino Rat. Open Access Maded J Med Sci. 2019 Feb 27; 7(4):536-42. https://doi.org/10.3889/oamjms.2019.153 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6420947/

8. Alasyam N, Pokala N, John P. Evaluation of hepatoprotective activity of aqueous extract of Phyllanthus fraternus in Wistar rats. National Journal of Physiology Pharmacy and Pharmacology. 2019; 9(3):1. https://doi.org/10.5455/njppl.2019.9.12370120102019 http://www.njppl.com/index.php?nmo=22506

9. Singh M P, Valte V, Roleng I, RK SL. Hepatoprotective activity of ethanol extract of Pavetta Indica Linn leaves. Indian Journal of Pharmacy and Pharmacology.2020 Dec 28; 5(1):37-9. https://doi.org/10.18213/2393-9087.2018.0009 http://oajx.net/articles/2017/1495-149525332796.pdf

10. Rajendiran D, Raghavan S, Kandaswamy S, and Gunasekaran K. Hepatoprotective activity of ethanol extract of Mimosa pudica leaves in type 2 diabetic rats. The Pharma Innovation Journal 2019; 9(4):333 http://www.thepharmajournal.com/archives/?year=2018&vol=12&issue=12&ArticleId=2824

11. Patil A.A.S.S, Hoskeri H.J, P Rajeev, Kulkarni B, Kamble G.R, Hiremath G.B, Kalebar V, Hiremath S.V. Hepatoprotective
activity of methanolic shoot extract of Bambusa bambos against carbon tetrachloride induced acute liver toxicity in Wistar rats. J App Biol 2018; 57:40-46. https://doi.org/10.7324/JABB.2018.60407

12. Sadeghi H, Hosseinzadeh S, Touri MA, Barmak MJ. Hepatoprotective effect of Rosa canina fruit extract against carbon tetrachloride induced hepatotoxicity in rat. Avicenna J Phyto Med 2016; 6(2):8 https://www.ncbi.nlm.nih.gov/pubmed/27860156

13. Mundugarru R, Chakkavarty M, Basavath R. Hepatoprotective activity of fruit extract garcinia pedunculata. Asian Journal of Biological Sciences. 2013 February; 6(4):185-191 http://www.ncbi.nlm.nih.gov/pubmed/21568149

14. Odokil JT, Agbo MO, and Okewale FA. Antioxidant and Hepatoprotective Activity of Fruit Extracts of Tetrapleura tetraptera (Schum & Thonn) Taubert, Jordan Journal of Biological Sciences. 2014 December; 7(4):1995-6673 https://doi.org/10.12816/0008247

15. Karahalil B, Hare E, Kog G, Uslu I, Şentürk K, Özkan Y. Hepatotoxicity associated with statins. Archives of Industrial Hygiene and Toxicology. 2017 Dec 20; 68(4):254-60 https://doi.org/10.1051/adht-2017-68-2994

16. Singh R, Chahal KK. Cichorium intybus L: A review on phytochemistry and pharmacology. International Journal of Chemical Studies.; 6(3):1272-1280 https://www.researchgate.net/publication/323021379_Cichorium_intybus_L_A_review_on_phytochemistry_and_pharmacology

17. Anju, Javed G, Javed R, Ahmed F. Kasni (Cichorium intybus): A Unani Hepatoprotective Drug. J Drug Delivery Ther. 2020 Jul 15; 10(4):238-41. https://doi.org/10.22270/jddt.v10i4.4162

18. Jackob A, Nyberg H, Kela P, et al. Phenolic Compounds from Water-Extracts of Tetrapleura tetraptera Produced in Cameroon, as Potential Protectors against In Vivo CC 14 - Induced Liver Injuries. The Scientific World Journal. 2019 Mar 3; 2019:1-10. https://doi.org/10.1155/2019/9238907

19. Saha P, Talukdar AD, Nath R, Sarker SD, Nahar L, Sahu J, et al. Role of Natural Phenolics in Hepatoprotection: A Mechanistic Review and Analysis of Regulatory Network of Associated Genes. Front Pharmacol. 2019 May 2; 10:509. https://doi.org/10.3389/fphar.2019.00509

20. Khan MSA, Ahmed KM, Mahdi S, Saha P, et al. The Role of Botanicals in Liver Protection: A Review. Asian Pacific Journal of Tropical Medicine. 2011 Dec; 4(12):964-8. https://doi.org/10.1016/S1995-7645(11)60227-9

21. Seena H, Kannappan N, Manojkumar P. Evaluation of Phytochemical,anti-oxidant and hepatoprotective activities of medicinal extract of Pavetta Indica. Asian Journal of Research in Chemistry and Pharmaceutical Sciences. 2019; 7(2):379-387.

22. Khan MSA, Ahmed KM, Mahdi S, Saha P, et al. The Role of Botanicals in Liver Protection: A Review. Asian Pacific Journal of Tropical Medicine. 2011 Dec; 4(12):964-8. https://doi.org/10.1016/S1995-7645(11)60227-9

23. Khan MSA, Ahmed KM, Mahdi S, Saha P, et al. The Role of Botanicals in Liver Protection: A Review. Asian Pacific Journal of Tropical Medicine. 2011 Dec; 4(12):964-8. 2011 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3813203/

24. Karahalil B, Hare E, Kog G, Uslu I, Şentürk K, Özkan Y. Hepatotoxicity associated with statins. Archives of Industrial Hygiene and Toxicology. 2017 Dec 20; 68(4):254-60 https://doi.org/10.1051/adht-2017-68-2994

25. Singh R, Chahal KK. Cichorium intybus L: A review on phytochemistry and pharmacology. International Journal of Chemical Studies.; 6(3):1272-1280 https://www.researchgate.net/publication/323021379_Cichorium_intybus_L_A_review_on_phytochemistry_and_pharmacology

26. Anju, Javed G, Javed R, Ahmed F. Kasni (Cichorium intybus): A Unani Hepatoprotective Drug. J Drug Delivery Ther. 2020 Jul 15; 10(4):238-41. https://doi.org/10.22270/jddt.v10i4.4162

27. Jackob A, Nyberg H, Kela P, et al. Phenolic Compounds from Water-Extracts of Tetrapleura tetraptera Produced in Cameroon, as Potential Protectors against In Vivo CC 14 - Induced Liver Injuries. The Scientific World Journal. 2019 Mar 3; 2019:1-10. https://doi.org/10.1155/2019/9238907

28. Khan MSA, Ahmed KM, Mahdi S, Saha P, et al. The Role of Botanicals in Liver Protection: A Review. Asian Pacific Journal of Tropical Medicine. 2011 Dec; 4(12):964-8. https://doi.org/10.1016/S1995-7645(11)60227-9

29. Saha P, Talukdar AD, Nath R, Sarker SD, Nahar L, Sahu J, et al. Role of Natural Phenolics in Hepatoprotection: A Mechanistic Review and Analysis of Regulatory Network of Associated Genes. Front Pharmacol. 2019 May 2; 10:509. https://doi.org/10.3389/fphar.2019.00509

30. Khan MSA, Ahmed KM, Mahdi S, Saha P, et al. The Role of Botanicals in Liver Protection: A Review. Asian Pacific Journal of Tropical Medicine. 2011 Dec; 4(12):964-8. https://doi.org/10.1016/S1995-7645(11)60227-9

31. Saha P, Talukdar AD, Nath R, Sarker SD, Nahar L, Sahu J, et al. Role of Natural Phenolics in Hepatoprotection: A Mechanistic Review and Analysis of Regulatory Network of Associated Genes. Front Pharmacol. 2019 May 2; 10:509. https://doi.org/10.3389/fphar.2019.00509

32. Khan MSA, Ahmed KM, Mahdi S, Saha P, et al. The Role of Botanicals in Liver Protection: A Review. Asian Pacific Journal of Tropical Medicine. 2011 Dec; 4(12):964-8. 2011 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3813203/

33. Khan MSA, Ahmed KM, Mahdi S, Saha P, et al. The Role of Botanicals in Liver Protection: A Review. Asian Pacific Journal of Tropical Medicine. 2011 Dec; 4(12):964-8. https://doi.org/10.1016/S1995-7645(11)60227-9

34. Khan MSA, Ahmed KM, Mahdi S, Saha P, et al. The Role of Botanicals in Liver Protection: A Review. Asian Pacific Journal of Tropical Medicine. 2011 Dec; 4(12):964-8. https://doi.org/10.1016/S1995-7645(11)60227-9

35. Khan MSA, Ahmed KM, Mahdi S, Saha P, et al. The Role of Botanicals in Liver Protection: A Review. Asian Pacific Journal of Tropical Medicine. 2011 Dec; 4(12):964-8. https://doi.org/10.1016/S1995-7645(11)60227-9

36. Khan MSA, Ahmed KM, Mahdi S, Saha P, et al. The Role of Botanicals in Liver Protection: A Review. Asian Pacific Journal of Tropical Medicine. 2011 Dec; 4(12):964-8. https://doi.org/10.1016/S1995-7645(11)60227-9

37. Khan MSA, Ahmed KM, Mahdi S, Saha P, et al. The Role of Botanicals in Liver Protection: A Review. Asian Pacific Journal of Tropical Medicine. 2011 Dec; 4(12):964-8. https://doi.org/10.1016/S1995-7645(11)60227-9

38. Khan MSA, Ahmed KM, Mahdi S, Saha P, et al. The Role of Botanicals in Liver Protection: A Review. Asian Pacific Journal of Tropical Medicine. 2011 Dec; 4(12):964-8. https://doi.org/10.1016/S1995-7645(11)60227-9
Acute Liver Failure following Lipopolysaccharide/D-Galactosamine in Male C57BL/6 Mice. Iranian Journal of Medical Sciences [Internet]. 2021 Mar [cited 2021 Nov 8]; (Online First). Available from: https://doi.org/10.30476/ijms.2020.84909.1474

36. Ren S, Leng J, Xu X, Jiang S, Wang Y, Yan XT, Liu Z, Chen C, Wang Z and Li W. Ginsenoside Rb1, A Major Saponin from Panax ginseng, Exerts Protective Effects Against Acetaminophen-Induced Hepatotoxicity in Mice. The American Journal of Chinese Medicine. 2019; 47(8). https://doi.org/10.1142/S0192415X19500927

37. Amini R, Asle-Rousta M, Aghazadeh S. Hepatoprotective effect of limonene against chronic immobilization induced liver damage in rats. Naunyn-Schmiedeberg’s Arch Pharmacol. 2020 Nov; 393(11):2053-9. https://doi.org/10.1007/s00210-020-01915-0

38. Zhang C, Tian X, Zhang K, Li G-Y, Wang H-Y, Wang J-H. Protective effects of Foeniculum vulgare root bark extract against carbon tetrachloride-induced hepatic fibrosis in mice. WJG. 2017; 23(31):5722 https://doi.org/10.3748/wjg.v23.i31.5722

39. Sobeh M, Mahmoud MF, Hasan RA, Abdelfattah MA, Sabry OM, Ghareeb MA, et al. Tannin-rich extracts from Lannea stuhlmannii and Lannea humilis (Anacardiaceae) exhibit hepatoprotective activities in vivo via enhancement of the anti-apoptotic protein Bcl-2. Sci Rep. 2018 Dec; 8(1):9343. https://doi.org/10.1038/s41598-018-27452-8

40. Lin J, Zhao J, Li T, Zhou J, Hu J, Hong Z. Hepatoprotection in a Rat Model of Acute Liver Damage Through Inhibition of CY2E1 Activity by Total Alkaloids Extracted From Rubus akei folius Poir. Int J Toxicol. 2011 Mar; 30(2):237-43. https://doi.org/10.1177/1091581810390711

41. Jan NU, Ahmad B, Ali S, Adhkari A, Ali A, Jahan A, et al. Steroidal Alkaloids as an Emerging Therapeutic Alternative for Investigation of Their Immunosuppressive and Hepatoprotective Potential. Front Pharmacol [Internet]. 2017 Mar 21 [cited 2021 Nov 8]; 8. Available from: http://journal.frontiersin.org/article/10.3389/fphar.2017.00114

42. Fitri A, Asra R, Rivai H. Overview of the traditional, phytochemical, and pharmacological uses of gold bamboo (Bambusa Vulgaris). World Journal of Pharmacy and Pharmaceutical Sciences. 9(6):21. https://www.researchgate.net/publication/343362147_OVERVIEW_OF_THE_TRADITIONAL_PHYTOCHEMICAL_AND_PHARMACOLOGICAL_USES_OF_GOLD_BAMBOO_BAMBUSA_VULGARIS