The analysis of students’ interest and their learning outcomes through the implementation of Course Review Horay (CRH) method

R Z Ekaputri*, A Primairyani, B Karyadi and D Parlindungan
Department of Mathematic and Science Education, Faculty of Teacher Training and Education, University of Bengkulu, Raya Kandang Limun Street, Bengkulu 38371, Indonesia

*rzeputri@unib.ac.id

Abstract. This study aims at investigating whether the implementation of "course system horay" is able to boost the students' outcome and their interest in the subject of general biology, the odd semester of the 2019/2020 academic year. The type of this study is categorized as classroom action research with 50 students as the subject research. The data collection was conducted using observation, questionnaires, paper-based tests, and documentation. Meanwhile, the technique of analysis was done using descriptive study. By implementing the course system horay, we report that there is a significant increase in the students' outcome in the general biology course. The analysis also reveals that the mean scores of students' interest are higher on average.

1. Introduction
Learning is the delivery of message in a certain way, and the process of tracing the message [1]. Learning requires innovation that does not neglect human values and the nature of education. Learning must be in accordance with the progress of science and technology (Science and Technology). Improving the quality of learning is the basis for improving the quality of education in Indonesia [2]. Improving the quality of learning is the key to the success of education quality [3].

This is in line with the development of the world paradigm about the meaning of education and its potential challenges. One of the real challenges is education should be able to produce human resources who have complete competence. Competencies that are expected to be owned by human resources are currently more focused on thinking and communication competencies [4].

Designing learning models is vital to achieving the competencies as expected by graduates [5]. Less varied learning models cause boredom in students [6]. Students need attractive learning facilities [5]. Varied learning models and attractive facilities can increase student interest in learning. Interest in learning is a tendency and excitement that is high or a great desire for something [7].

A combination of learning models that instill the foundations of scientific thinking is important for achieving concept understanding [8]. Science contains four things, namely products, processes, attitudes, and technology [9]. The competence of students must achieve this important thing in science. This achievement can be done by applying the Course Review Horay (CRH) model. The Course Review Horay (CRH) learning model makes students more active because students learn in groups in a fun way [8]. Essential characteristics of the Course Review Horay (CRH) model are cooperative with the
involvement and learning centered on all students [1]. The Course Review Horay (CRH) model leads to understanding of concepts [10]. The Course Review Horay (CRH) model is a learning model that creates a lively and pleasant atmosphere [11]. The problem in this study is how students' interests and learning outcomes with the Course Review Horay (CRH) model.

2. Methods
The data analysis technique used in this research is the quantitative descriptive analysis, which is aimed at describing the phenomena that examine the forms, activities, characteristics, changes, relationships, and others [12]. The research subjects were students of Science Education at the 1st Semester, the Department of Mathematics and Natural Sciences, FKIP UNIB in 2019/2020 academic year who attended the General Biology lectures as 50 students. The research instrument consisted of observation sheets, questionnaire sheets, and test sheets. Observation sheets are used to obtain student activity data on learning General Biology courses. Questionnaire sheets are used to see students' interest in learning towards General Biology courses. The test sheet contains test questions. In this study, the test is used to obtain student cognitive learning data.

3. Results and discussion

3.1. Results
Interests or preferences drive student learning processes. Interest will encourage students to pay attention to the learning process. Student learning interest is seen from several aspects of the observed assessment as shown in table 1.

No	Aspects	Mean score	Category
1	Attention	82	Very high
2	Satisfaction	78	High
3	Confidence	80	Very high
4	Relevance	79	High

Based on the results of the pre-action test, it is known that the average value of the ability of students of Natural Science Education in the General Biology course, namely classical learning completeness is 29%. Compared with the assessment criteria used as a reference in this study, the value is still classified as less (failed). Of the 55 students who took the initial test, 40 students were declared unfinished or had not reached the Minimum Completion Criteria (KKM) set in the lecturer team of ≥ 70 and were declared classically complete if students in the class scored memperoleh as much as 85%.

No	Criteria	Result
1	Highest score	80 (4 students)
2	Lowest score	30 (2 students)
3	Mean value	52
4	Student completeness	15 students
5	The percentage of classical learning completeness	29%

Classical learning completeness in the first cycle was 52.7%. The results of the analysis of the end of the first cycle test show that student learning outcomes are not in accordance with the criteria. Minimal completeness, namely that a class is said to be classically complete if an average of 70% of students has completed it individually. Results of Cycle 1 Analysis in Table 3.
Table 3. The result of the first cycle test.

No	Criteria	Result
1.	Highest score	85 (6 students)
2.	Lowest score	50 (1 student)
3.	Mean value	65
4.	Student completeness	29 students
5.	The percentage of classical learning completeness	52.7

The form of learning ability test given is a description of the test, and the results of the second cycle action test can be seen in Table 4.

Table 4. The result of the second cycle test.

No	Criteria	Result
1.	Highest score	95 (5 students)
2.	Lowest score	65 (3 students)
3.	Mean value	86.70
4.	Student completeness	48 students
5.	The percentage of classical learning completeness	87.2

The results of the evaluation of the second cycle of learning showed that the ability of students at the University of Bengkulu's Natural Sciences had shown good results with an average value of students reaching 86, 70% 87% classical learning completeness.

3.2. Discussion

Pre-action test results show that of the 55 students, only 15 students completed. These results are still relatively low or have not yet reached the Minimum Completeness Criteria that have been set. One learning model that can be used is the Course Review Horay learning model. Course Review Horay learning model is one of cooperative learning, namely teaching and learning activities by grouping students into small groups. Through this learning model, students will more easily understand the subject matter because students are invited to answer questions in a fun way. Students are also not easily bored because, besides learning, they get entertainment by singing slogans that they enjoy if they can answer the questions correctly [13].

Classical learning completeness in the first cycle was 52.7%. The results of the analysis of the final test of the first cycle showed that the learning outcomes were not in accordance with the minimum Minimum Mastery Criteria, ie, if, on average 70% of students had completed individually. So that the
second cycle needs to be carried out. The results of observations of teacher activity by 86% or in the
good category. This shows that during the learning process, students and teachers try to create a pleasant
learning atmosphere in accordance with what is expected based on the applied learning model.

Improved student learning outcomes are also seen in cycle II. The evaluation of learning cycle II
shows that students' ability has shown good results, with classical learning completeness and 87.2%.
These results explain that learning carried out in the classroom has obtained the desired results even
though there are still 7 students who have not yet completed the learning. Thus it can be concluded that
the results of the second cycle learning activities have been successful. These results have met the
required performance indicators based on the Minimum Completeness Criteria (KKM), which is a
complete study classically if on average 70% of students have completed individually. The increase in
learning outcomes is also supported by increased student and teacher activities in the learning process.

The use of methods in learning is prioritized to arouse learning passion, and motivation to learn,
stimulating students to play an active role in the learning process. Learning methods are expected to
facilitate further understanding of the subject matter provided and later can enhance the quality of the
learning process, which can further improve student learning outcomes [14]. The use of Course Review
Horay learning models in learning is excellent because it has advantages that are increasing student
activity, creating a pleasant learning atmosphere, and strengthening social relationships between
students. In the Course Review Horay learning model learning activities are more student-centered. In
this case, in the learning process, the teacher only acts as a conveyor of information, facilitator, and
supervisor. This can foster students' interest and attention in learning science, which can affect student
learning outcomes.

4. Conclusion
Improved learning through the application of the Course Review Horay model in the General Biology
course, Science Education Study Program, Bengkulu University can increase student interest and
learning outcomes during the learning process.

Acknowledgments
We thank the Ministry of Education and Culture, Bengkulu University, Faculty of Teacher Training and
Education who have funded this research through the Research Quality Improvement Research Grant
(PPKP) FKIP Bengkulu University DIPA Fund in 2019.

References
[1] Setyaningsih 2014 Economic Education Analysis Journal 2(3) 124
[2] Mustika J 2016 e-DuMath 2(2) 224
[3] Triyanti M, Harmoko and Nova L 2018 BIOEDUKASI 2(2) 99
[4] Hanafiah and Suhana 2010 Konsep strategi Pembelajaran (Bandung: Refika Aditama)
[5] Ekaputri R Z, Karyadi B, Anggraini N, Zukmadini A Y, Ruyani A and Zulistia W 2018 Journal
 of Physics: Conference Series 1116 052018
[6] Sumarni 2016 Jurnal Refleksi Edukatika 7(1) 61
[7] Syah M 2010 Psikologi Pendidikan dengan Pendekatan Baru (Bandung: Rosdakarya)
[8] Mutiara F B, Komikesari H and Asiah N 2019 Indonesian Journal of Science and Mathematics
 Education 02(1) 116
[9] Rustaman Y N 2010 Pendidikan dan Penelitian Sains dalam Mengembangkan Keterampilan
 Berpikir Tingkat Tinggi untuk Pembangunan Karakter (Bandung: FPMIPA UPI)
[10] Atini N L and Mahmudi A 2016 Pythagoras: Jurnal Pendidikan Matematika 11(2) 160
[11] Rifa’I M and Ningrum 2018 Jurnal Promosi: Jurnal Pendidikan Ekonomi UM Metro 6(1) 77
[12] Sukmadinata N S 2011 Metode Penelitian Pendidikan (Bandung: Remaja Rosdakarya)
[13] Suyatno 2009 Penjelajah pembelajaran inovatif (Sidoarjo: Mas Media Buana Pustaka)
[14] Sugiyono 2013 Metode penelitian Pendidikan: pendekatan kuantitatif, kualitatif dan R&D
 (Bandung: Alfabeta)