Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Glucosamine and maltol anchored Zinc(II) complex of COVID-19 health supplement relevance: DFT collaborated spectroscopic formulation with profound biological implications

Jan Mohammad Mira,b,*, Bashir Ahmad Malika, Mohd Washid Khana

a Department of PG Studies and Research in Chemistry and Pharmacy, RD University, Jabalpur, MP, India
b Department of Chemistry, Islamic University of Science and Technology, Awantipora, India

\textbf{ARTICLE INFO}

\textbf{Keywords:}
Sugar
Zn(II)
Synthesis
DFT
SOD
Antimicrobial
Anti-covid

\textbf{Abstract}

In association with other antiviral drugs, Zinc is specially administered to the patients suffering from novel coronavirus infectious disease (nCOVID). Zn, maltol, and glucosamine are famous food and drug additives. The supplements made from them are helpful in minimizing malnutrition problems, and in enhancing immune power. Due to the well-pronounced effects of all these three components in the food and medicinal industry, a novel sugar Zn(II) complex of the general composition, [Zn(gls)(mal)], where Hmal is maltol and Hgls is referred to as glucosamine, was synthesized and formulated. The physicochemical methods that were used to establish the molecular structure include elemental analysis, 1HNMR, FT-IR, UV–Vis., thermal and mass spectrometry. Physical properties like decomposition temperature and molar conductance were also examined. The experimental results at each step of characterization were validated/compared with density functionalized spectroscopic/spectrometric data using the LANL2DZ basis set for the metal atom and 6–31 g(d,p) for other atoms under the B3LYP functional. From the study, a suitable square planar geometry is suggested for the complex. Among biological implications, superoxide dismutation (SOD) and antimicrobial actions were studied. Also, virtual screening using SWISS ADME and Autodock 4.0 program (against 6X2B, SARS-CoV-2 u1S2q 2 RBD Up Spike Protein Trimer) were evaluated for the complex. Good interactions were scored by glucosamine and the complex. The results obtained from antimicrobial sensitivity indicate low inhibition zones, but from the SOD data, the complex has shown satisfactory antioxidant behavior. Therefore, the proposed food supplement could act as a good antioxidant agent and could keep the flora of the intestinal tract less disturbed while going through a metabolic pathway.

1. Introduction

Zinc is an “essential trace element” mainly used for the prevention of zinc deficiency [1], and is also known as intelligence mineral [2]. Zinc plays important role in the maintenance of normal human growth and health, and therefore zinc supplements are used to prevent or treat zinc deficiency [3,4]. Lack of zinc may result in poor vision and delayed wound healing [5,6]. Therefore, the evaluation of zinc as a shield against human health abnormalities like the common cold, ear/respiratory infections, malaria, macular degeneration, cataracts, asthma, diabetes, high blood pressure, acquired immune deficiency syndrome (AIDS), acne, etc has gained fascination [7,8]. Even the possible treatment of dreadful disorders like Alzheimer’s disease, Crohn’s disease, Hansen’s disease, Down syndrome, and anorexia nervosa has been linked with this element [9,10]. Natural dietary Zn-sources include chicken, red meat, and cereals [11]. The recommended amount of daily intake of zinc lies in the range of 5.21–12.48 mg/day [12].

Glucosamine on the other hand possesses multifunctional therapeutic potential and is found naturally in the human body [13]. The recommended amount of daily intake of glucosamine is found in two main types of salts viz hydrochloride and sulphate [15]. This compound helps to keep cartilage healthy [16]. Some experts believe that glucosamine sulphate may help counteract
this bone-joint effect [17]. Scientists have also proven that glucosamine can be used to treat rheumatoid arthritis, lung contamination, allergic infections, wounds, temporomandibular joint problems (TMJ), and back pain [18].

Maltol is also a natural organic compound commonly used as a flavor enhancer [19]. This compound is either extracted from plants like larch trees, pine needles, malt, and oils or maybe obtained synthetically [20]. This is a well-known “artificial sweetener” and good flavoring agent to produce a ‘fresh-baked’ taste and smell in bread, chocolate, soft drinks, ice cream, jam, etc. Cow’s milk is also used as a source of maltol [21]. It can be used in place of lactose by lactose-intolerant people. The sugar substitute can be used to treat rheumatoid arthritis, lung contamination, allergic infections, wounds, temporomandibular joint problems (TMJ), and back pain [18].

Due to the conspicuous food and bio-medicinal properties of zinc(II), maltol and glucosamine, it is thus worthy to synthesize a complex of a collective and enhanced potentiality of its form containing all these three food additives (supplements). Therefore, this work describes the formulation and characterization of this compound involving physico-chemical techniques for this purpose. The respective experimental results have been validated with theoretical data. Density functional theory (DFT) based calculations with LANL2DZ/6-31-g(d,p) as basis set and B3LYP as functional have been employed in this study to elucidate theoretical spectroscopy, electron density plots, and other global reactive descriptors of the complex. Several experiments were laid to grow the single x-ray crystal of the complex but failed. Also, theoretical (molecular docking and SWISS ADME) and in vitro bioactivities have been evaluated for the complex to find the food supplement relevance of the compound. The ligands used in the work have shown in given in Fig. 1.

2. Experimental

2.1. Materials and methods

Zinc(II) sulphate heptahydrate was supplied by E. Merck India Chemicals, Bombay. D-Glucosamine hydrochloride and maltol were the products of Lancaster, UK, and Bengal Chemical and Pharmaceuticals Ltd., Kolkata, respectively. All the chemicals were used without any further purification. All the chemicals were of analytical reagent (A.R.) grade.

The elemental analysis was recorded on an Elemental Vario ELIII Carlo Erba 1108 analyzer. The content of zinc present in the complex was determined by EDTA-complexometric titration by following the similar procedure reported elsewhere [25]. Using the KBr pellet form of the complex, FT-IR spectral analysis of the complex was recorded on a Bruker α-T FTIR instrument. UV–Visible–NIR Spectrophotometer (Cary-5000), Agilent Technology Germany was employed to carry out the respective electronic spectral study. Mass spectral and 1H NMR analyses were facilitated by SAIF-CDRI, Lucknow.

DFT based Theoretical calculation of the complex was carried out in a step-wise pattern. First of all, the molecular structure was optimized at the Becke3–Lee–Yang–Parr (B3LYP) hybrid exchange-correlation functional using standard 6–31 g(d,p)/LANL2DZ employing Gaussian09 program package [26,27]. After reaching the energy minimal geometry of the title complex (showing no imaginary frequency), theoretical spectral calculations, frontier orbital analysis, and other electron density plot computations were run using the respective commands accessible through the Gaussian09 associated animation program called as GaussView 5, that also serves as a visualization tool for various vibrational modes and other electron density maps [28]. Also, for virtual bioactivity screening SWISS ADME (online version) and Autodock 4.0 program were used.

2.2. Bioactivity tests

2.2.1. Superoxide dismutase activity

In vitro Superoxide dismutase activity was measured using alkaline DMSO as a source of superoxide radical ion O₂⁻ and nitroblue tetrazolium (NBT) as O₂ scavenger. A fixed volume of 400 μL of the sample to be assayed was added to a solution containing 2.1 mL of 0.2 M potassium phosphate buffer (2.72 g in 100 mL distilled water) (pH 7.8) and 1 mL of 56 μM NBT in a test-tube. The tubes were kept in ice for 20 min and then 1.5 mL of alkaline DMSO solution (20 mg NaOH in 1 mL Water and 99 mL DMSO) was added while stirring. The absorbance was then monitored at 560 nm against a sample prepared under similar condition except that NaOH was absent in DMSO. The measurement of SOD activity, expressed as IC₅₀ is the concentration of the substrate or complex, which causes 50% inhibition of the reduction of NBT [29].

2.2.2. Antibacterial sensitivity

The biological activity of the ligands and the complex was tested for their in vitro action against Escherichia coli by the agar well diffusion method using ampicillin as the standard drug. The selected bacteria were incubated into the beef-extract broth for 24 h. In this method, nutrient agar for bacteria and beef-extract agar sterilized in a flask and cooled to 50 °C was distributed (50 mL) to sterilized Petri dishes (10 cm in diameter) after injecting 0.1 mL cultures of the bacterium, prepared as mentioned above and allowed to solidify. By using a sterilized proper tube (5 mm diameter), wells were dug in the culture plates. The samples dissolved in dimethylformamide (DMF) with the concentrations of 100 ppm, 500 ppm, and 1000 ppm were added to these wells. The Petri dishes were left at 4 °C for 2 h and then the plates were incubated at 30 °C for bacteria for a period of 18–24 h. At the end of the period, inhibition zones formed on the medium were evaluated as millimeters (mm) diameter. DMSO served as the control during the study. The results were compared with a similar run of standard ampicillin (as an antibacterial). The antibacterial tests were calculated as a mean of three replicates [30,31].

2.3. Synthesis of the complex

The complex was prepared by following the slightly modified procedure reported elsewhere [25]. A solution of glucosamine hydrochloride (0.01 M, 2.15 g) in 20 mL methanol-water (50%) was neutralized with a 10 mL aqueous solution of sodium bicarbonate (0.01 M, 0.84 g). Afterward, the mixture was filtered. In another beaker 20 mL methanolic solution of 0.01 M (1.26 g) maltol was prepared. Both the mixtures were slowly added to a warm solution of ZnSO₄·7H₂O (0.01 M, 2.87 g), in ethanol (50%, 15 mL). The resulting ternary solution was allowed to reflux under constant stirring for 4 h until the desired complex was found to precipitate out, followed by suction filtration and washed several times with 1:1 ethanol-water solution, and dried in vacuum.

The overall schematic presentation of the synthesis is given below:

Analytical data: Chemical Formula: C₁₃H₁₂N₂O₉Zn, Molecular
Weight: 368.65; m/z: 367, 369, 371, 149; Elemental Analysis (%): Found (theoretical): C, 39.07 (39.10); H, 4.63(4.65); N, 3.81(3.80); O, 34.70 (34.72); Zn, 17.70(17.74); FT-IR data (cm$^{-1}$): 540 (Zn–O), 810 (Zn–N), O–H (3419–3050), N–H (3419–3050), C–H (2939–2800), C=O$_{\text{maltol}}$ (1624), C=C (1540–1566), C–O (1114–1276); UV–Vis data: 350–368 nm.

3. Results and discussion

The synthesized mixed ligand complex is air-stable white colored solid. The compound was found to show 230 °C as decomposition temperature. Solubility tests in various solvents showed that the complex is soluble in DMF, DMSO, and acetonitrile. The molar conductance determined for 1 mM, DMF solution of the complex indicates non-electrolytic behavior. To ascertain the proposed molecular composition DFT-supported elemental analysis and other spectroscopic/spectrometric characterizations have been discussed and compared.

3.1. Geometry optimization

The suggested 2D-structure of the synthesized complex may be represented as given in Fig. 2 with the possible formation of two isomers.

Both the proposed isomers (conformer A and B) given in Fig. 2 were first of all optimized followed by frequency calculations to establish the most stable isomers. In conformer A, the enolic oxygen of maltol and –NH$_2$ groupings are in cis fashion in the coordination sphere, while as, in conformer B, both the functionalities are trans to one another. The level of theory applied for the respective calculations has furnished the structures given in Fig. 3 as the true minima of their potential surfaces.

Conformer-A	Bond Length (Å)	Connectivity	Bond Angle (°)
O(32)-Zn(35)	1.99	O(10)-Zn(35)-N(11)	86.73
O(10)-Zn(35)	1.92	O(10)-Zn(35)-N(32)	132.19
N(11)-Zn(35)	2.19	O(10)-Zn(35)-O(38)	129.72
O(38)-Zn(35)	2.07	N(11)-Zn(35)-O(38)	116.18
		O(32)-Zn(35)-O(38)	82.96

Conformer-B	Bond Length (Å)	Connectivity	Bond Angle (°)
Zn(22)-N(11)	2.20	O(38)-Zn(22)-O(10)	174.10
Zn(22)-O(38)	2.13	N(11)-Zn(22)-O(39)	166.29
Zn(22)-O(39)	2.04	N(11)-Zn(22)-O(38)	90.33
Zn(22)-O(10)	1.98	O(38)-Zn(22)-O(39)	80.26
		O(38)-Zn(22)-O(10)	103.71
		N(11)-Zn(22)-O(10)	84.99
showing no imaginary frequency. The geometric parameters of the complex under question viz bond lengths and bond angles for both the computed isoforms have been given in Table 1. From the tabulated data it is confirmed that the complex in structure form-A bears distorted square planar (irregular tetrahedral) geometry, and while a suitable square planar geometry is found in the case of isomer-B. The distortion in the former may be because of enantiomeric shift generally seen in glucosamine moiety, and the \(\text{C}–\text{O}–\text{Zn} \) of maltol part is found out of the plane in comparison with the other three coordination bindings within the sphere. The same explanation can be made in terms of bond lengths stemming from the magnitude of distortion in square planarity. However, in the structure-B, suitable square planarity in terms of bond lengths and bond angles is quite evident. In order to decide which of the two conformations represents more stable isomer, suitable zero-point energy (ZPE) calculation was done, indicating the ZPE value of 794003 J/mol in former and 792064 J/mol in latter. Also, the molecular orbital calculations for both the structural frameworks show a 3.26 eV HOMO-LUMO gap for A, whereas, in B it is 4.02 eV. Therefore, the stability is well pronounced in the B-form of the complex. Hence, all the theoretical data confined to the square planar geometry of the complex has been comparatively discussed with the respective characterization related to the formulation. The results are comparable with the similar complexes reported elsewhere [32,33].

3.2. Frontier molecular orbital (FMO) analysis

In addition to geometry elucidation frontier orbital analysis also supports the projection of both HOMO and LUMO electron density along the maltol side of the complex (Fig. 4). 4.02 eV is the energy band gap (\(\Delta E \)) between HOMO and LUMO. The HOMO-1, HOMO-2, LUMO+1, and LUMO+2, with their corresponding energy gaps, have also been given. The ionization energy (IE) and electron affinity (EA) in relation to frontier orbitals reveal the respective values as 0.22 and 0.07 a.u., respectively [35]. The other two global reactive descriptors including absolute electronegativity (\(\chi_{\text{abs}} \)) and absolute hardness (\(\eta \)) may further, be evaluated by taking \(\frac{1}{2}(\text{IE} + \text{EA}) \) meant for \(\chi_{\text{abs}} \) and \(\eta \) maybe evaluated as \(\frac{1}{2} \) (IE-EA) [36].

3.3. Spectroscopic and spectrometric analysis

The experimentally recorder FT-IR spectrum of the synthesized complex along with the corresponding theoretically generated spectrum obtained at DFT/B3LYP level of theory using 6-311G/LANL2DZ basis sets is represented by Fig. 5. The important vibrational modes of the complex in and around the coordination sphere are important in discussing the metal-ligand binding fashion. The three functional identities of Zn-O and single Zn-N confined to the coordination zone lie in the range of 540–810 cm\(^{-1}\) indicating the metal anchoring identification of hydroxyl groups and amine nitrogen. This region is very significant in establishing the
certainty of the metal complex. Comparing theoretical data with experimental results assures the close reliability of the theory applied in the calculation. Considering the glucosamine moiety of the complex, the fundamental vibrations of this part include O–H and N–H stretching band in the range 3419–3050 cm\(^{-1}\) and C–H stretching band in 2939–2800 cm\(^{-1}\). Maltol exhibits a fundamental vibrational frequency of carbonyl group at 1624 cm\(^{-1}\) which is different from the normal carbonyl group absorption depicting the coordination of this atom with metal. The range of 1540–1566 cm\(^{-1}\) is because of C=C vibrations. The different C=O absorptions are assignable at 1114–1276 cm\(^{-1}\). This again certifies the binding mode of enolic part of both the title ligands [37].

To explain the binding pattern of the complex one is primarily interested to find the electronic spectral elucidation of a compound. The UV–Visible spectrum of the complex was recorded in three different serially diluted DMSO solutions (1, 2, and 3 mM) and the results indicate the existence of two intra-ligand transitions in the ultraviolet region (270–370 nm). The respective experimental spectrum has been comparatively presented in Fig. 6. From the experimental observations, it was observed that the nature of absorbance was similar throughout the different concentrations. However, the increase in concentration has shown an increase in absorbance. These electronic transitions are indicative of the square planar geometry of the complex consistent with
Time dependant-density functional theory (TD-DFT) based energy calculation of the complex revealed that the experimentally observed results are comparable to the theoretical outcomes. The non-zero oscillator strength confirms acceptability of transition energies within the nature of excitation among different sets of FMOs [18]. The related computed data have been presented in Table 2. Theoretically generated spectrum supports the experimental UV–Visible results by displaying only two absorptive peaks almost in the similar range having the feature of intra-ligand transitions [42].

![Figure 6](image)

Fig. 6. Experimental (a) and Theoretical (b) UV–Vis. spectra of the complex.

Orbital assignment	\(\lambda_{\text{max}} \) (nm)	Energy of Excitation (eV)	Oscillator Strength (\(f \))	Excitation probability (%)
HOMO \(\rightarrow \) LUMO +1	273	4.54	0.0090	63
HOMO \(\rightarrow \) LUMO +2	273	4.54	0.0090	33
HOMO \(\rightarrow \) LUMO	316	3.92	0.1187	95

the data reported elsewhere [38–41].
Fig. 7. TG-curve of the representative complex.

Fig. 8. UV–Visible spectra (at several μM concentrations) recorded for (I) Zinc sulphate, (II) Zinc complex, (III) Maltol and (IV) glucosamine.
3.4. Thermal behaviour

The thermal behavior of the representative zinc complex (Fig. 7) was carried out at IIT-Indore using METTLER instrument in the temperature range 27–1050 °C at a heating rate (°C/min) of 10. The compound was found to show the decomposition in two steps that finally form the zinc oxide. The compound in its first decomposition step shows a weight loss of 51.28% (near 170–600 °C) referring to the removal of glucosamine moiety plus ring methyl group of maltol. This is in close approximation with the calculated value of 52.71% for the initial step. The second step involves the mass elimination of maltol minus methyl group (already lost in the first step) and an oxygen atom (O remaining attached with Zn) which is noticeable at 650–900 °C, (obed. = 27.80%, calcd. = 25.81%). The final weight residue (ZnO) which is the most stable state during the thermal degradation process is clearly detected at 950 °C with the observed mass percentage of 21% (Calcd. 22.01%). The overall pyrolytic insights stem from the assumptions made for the structural verification in the FT-IR and electronic spectral data (vide supra) and may further be clarified by elemental analysis and mass spectral data. From both the analysis the composition of the complex gets ascertained [43,44].

The ESI-mass spectrum (Fig. S3) clearly indicates the m/z 367, 369, and 371 for the molecular mass of the complex and isotopic effect of zinc. The 149 is also factual of supporting molecular ion in di-positive mode. Fig. S2 is the 1HNMR spectrum of the complex recorded in DMSO as a solvent. The respective proton assignments have been given in the figure and give clear support for the suggested composition of the complex. The calculated spectrum supports the experimentally observed resonating signals.

4. Biological implications

4.1. Evaluation of SOD mimic properties

The complex under question bears significant superoxide dismutase activity. By virtue of this property, the complex can be used as a defense in scavenging biologically produced free radical species. The metallic ion oxidation state, geometry, and nature of ligation play important role in designing intelligent Superoxide dismutase (SOD)-mimic complexes. In the present study, Nitro blue tetrazolium chloride (NBT) assay was followed by the recording of the absorbance that renders kinetic reduction of NBT at 560 nm. The IC50 values evaluated under the given assay for the ligand Hgls and the mixed ligand complex were found to be 31 and 38 μM, respectively.

It is a known fact that Cu–Zn association is mainly the duet metal component that expresses super oxide activity in biological processes. In case of the investigated metallic complex, in order to find the SOD-responsible moiety of the compound the glucosamine, maltol, zinc sulphate and the complex itself were tested separately for the SOD-activity and the respective absorption spectra have been given in Fig. 8. From the calculated values and the behavior of the species it looks glucosamine and maltol as the main part responsible for the SOD-action. Glucosamine and maltol show 31 and 35 μM activity and hence the role of Zn is only to act as a carrier of two SOD-active ligands. The ketonic and hydroxyl functionalities could be thus supportive of proton transfer under the respective reaction. Hence, redox pathways whether forward or backward both are the real tendencies to show SOD-mimic potential [40,41].

4.2. Antibacterial study

In the present investigation, both the ligands are of pharmacological importance coupled with Zinc. The biological activity was tested against Escherichia coli which is an anaerobic gram-negative bacterium belonging to the family Enterobacteriaceae. This microbe occurs in the lower portion of the intestine of human and warm-blooded animals, where it is a part of normal flora. Escherichia coli is an opportunistic pathogenic bacteria, causing disease mainly to the people having weak immune system. The antibacterial actions of the ligands, Hgls and Hmal and the respective metal complex indicate enhanced activity shown by the complex. The result of the antibacterial screening of the ligands and complex are compared in Table 3. From the IC50 values 482 for Hmal, 883 for Hgls, and 378 for the complex, it is obvious that the complex is not as strong bactericial as ampicillin, but is more active as compared to the respective ligands. Moreover, among food properties, it is advisable that the food supplement should not destroy the flora of the intestine, and hence, the results obtained in the investigation indicate an E. coli-friendly Zn-complex.

4.3. Anti-covid virtual screening

In the prevailing apocalyptic covid times, efforts are in process to develop a successful vaccine against this dreadful disease. Many virtual screening tests are reported every day to represent successful anti-covid drugs. To test glucosamine and its complex for the same, Autodock 4.0 was employed to find the fitting score against 6X2B PDB code representing coronavirus (CoV) spike (S) protein, involved in viral–host cell fusion. From the results given for the complex, a total of 100 conformations were generated with the score of Highest Energy Conformation (Zn HE) was (−2.22) and the score of Lowest Energy Conformer (Zn LE) was found to be (−5.12). The interactions are given in Fig. S3 (meant for Hgls showing −3.5 to −2.23 as LEC and HEC, respectively) are virtually low as compared to the complex docking score shown in Fig. 9. The non-bonding interaction plays an important part in the respective interaction. The antivirals drug design involves two main mechanistic approaches viz, a fusion of biomembrane through interaction with the receptors of viral surface, and secondly to halt the RNA-replication. In the present case, the several structural interactions of the complex show efficient hydrogen bonding with the spike protein. Both the LEC and HEC interactions have been given in the respective color code. With this aim, we performed an in silico comparative modeling analysis, which allows gaining new insights into the main conformational changes occurring in the SARS-CoV-2 spike protein, at the level of the receptor-binding domain (RBD), along interactions with human cells angiotensin-converting enzyme 2 (ACE2) receptor, that favor human cell invasion.

In Fig. 10 the color mapping of this complex generated via DFT calculations shows a promising three region locations based on charge density [45]. This molecular topology representation is generally called a molecular electrostatic potential surface (MESP), wherein the molecular reactivity of a molecule is explained on the basis of the charge of different regions [46,47]. These negative, positive, and neutral locations represented by color-coding. The MESP in the present case shows carbonyl oxygen as the most negative part, while hydroxyl/eneolic oxygen is the region of moderate negative potential. The amine part has been shown as the electropositive section near the coordination sphere. Comparing these results with the docking poses shows excellent agreement in finding the role of non-covalent or electrostatic interaction in inhibiting SARS-CoV spike protein.

Table 3

Concentration (ppm)	Compounds	Hmal	Hgls	complex	Ampicillin
100	20	10	20	32	32
200	22	12	30	38	38
300	20	13	32	45	45
DMSO	0	0	0	0	0

Inhibition zones (mm)
4.4. ADME analysis

ADME refers to an important abbreviated form of “absorption, distribution, metabolism, and excretion” usually studied in pharmacokinetics and pharmacology. Generally, online servers like http://www.swissadme.ch/, https://www.molinspiration.com/etc are referred for this computation. The description of the disposition of a compound within an organism can be made by using ADME analysis.
The four criteria all influence the drug levels and kinetics of drug exposure to the tissues and hence influence the performance and pharmacological activity of the compound as a drug. Fig. 11 displays the parameters representing the fascinating properties of the complex under discussion. The solubility, lipophilicity and other drug likeness parameters indicate biomedicinal properties linked with the complex [48,49].

5. Conclusions

A square planar complex of zinc-containing maltol and glucosamine is revealed. The theoretical data significantly validates the assumptions made in experimental observations. The compound is a three in one food additive and may be further subjected to undergo feed trials to declare the molecule as a health supplement. Among food properties the SOD as an antioxidant (most beneficial for COVID-19 patients), intestinal flora friendly, and spike protein fusion properties all remark the finding to declare such a complex as a food supplement for covid-19 patients in particular and as a health supplement for general. Furthermore, our analysis provides an ideal pipeline to identify the set-up of the right biological molecular context for investigating spike RBD–ACE2 interactions for the development of new vaccines, diagnostic kits, and other treatments based on the targeting of SARS-CoV-2 spike protein. More biological investigations shall reveal its more food-like signatures.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgement

Authors are thankful Sophisticated Analytical Instrument Facility, CDRI, Lucknow for Mass and CHN analysis. We also acknowledge the Department of Chemistry and Pharmacy, Rani Durgavati University, Jabalpur for providing Lab facilities and Instruments.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jics.2022.100743.

References

[1] P.T. Bhattacharyya, S.R. Misra, M. Hussain, Nutritional aspects of essential trace elements in oral health and disease: an extensive review, Sci. Tech. Rep. (2016), https://doi.org/10.1155/2016/5464373, 2016.
[2] A.R. Putri, A. Anwar, E. Chauanah, Y.N. Fawzya, P. Martosuyono, Nuryanto, D. N. Afifah, Analysis of iron, calcium and zinc contents in formulated fish protein hydrolyzate (FPH) complementary feeding instant powder, Food Res. 4 (Suppl. 3) (2020) 63–66, https://doi.org/10.26656/fr.2017.4(S3).S09.
[3] A. El-Bakry, A.M. El Safty, A.A. Abdou, O.R. Amin, D.R. Ayoub, D.Y. Afifi, Effect of zinc supplementation in zinc-deficient children with attention-deficit hyperactivity disorder, Egypt. J. Psychiatr. 40 (2019) 86–94.
[4] A.A. El Taweel, R. Salem, A. Allam, Intraleisonal 2% zinc sulfate solution for plane warts: a case report, Dermatol. Ther. 32 (1) (2019), e12761, https://doi.org/10.1111/dth.12761.
[5] R.B. Saper, R. Rash, Zinc: an essential micronutrient, Am. Fam. Physician 79 (9) (2009) 768–772.
[6] M. Dardenne, Zinc and immune function, Eur. J. Clin. Nutr. 56 (3) (2002) S20–S23.
[7] G. Bjeklund, M. Dadar, L. Pivina, M.D. Doga, Y. Semenova, J. Aaseeth, The role of zinc and copper in insulin resistance and diabetes mellitus, Curr. Med. Chem. 27 (39) (2020) 6643–6657.
[8] J. Olechnowicz, A. Tinkov, A. Skalny, J. Suliburska, Zinc status is associated with inflammation, oxidative stress, lipid, and glucose metabolism, J. Physiol. Sci. 68 (2018) 19–31.
