Adverse pregnancy outcomes are associated with *Plasmodium vivax* malaria in a prospective cohort of women from the Brazilian Amazon

Jamille Gregório Dombrowski, André Barateiro, Erika Paula Machado Peixoto, André Boleti Cláudio da Silva Barros, Rodrigo Medeiros de Souza, Taane Gregory Clark, Susana Campino, Carsten Wrenger, Gerhard Wunderlich, Giuseppe Palmisano, Sabrina Epiphanio, Ligia Antunes Gonçalves, Claudio Romero Farías Marinho

1 Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil, 2 Instituto Gulbenkian de Ciência, Oeiras, Portugal, 3 Multidisciplinary Center, Federal University of Acre, Acre, Brazil, 4 Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom, 5 Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil

OPEN ACCESS

Citation: Dombrowski JG, Barateiro A, Peixoto EPM, Barros ABCdS, Souza RMd, Clark TG, et al. (2021) Adverse pregnancy outcomes are associated with *Plasmodium vivax* malaria in a prospective cohort of women from the Brazilian Amazon. PLoS Negl Trop Dis 15(4): e0009390. https://doi.org/10.1371/journal.pntd.0009390

Editor: Hans-Peter Fuehrer, Vienna, AUSTRIA

Received: October 29, 2020

Accepted: April 15, 2021

Published: April 29, 2021

Peer Review History: PLOS recognizes the benefits of transparency in the peer review process; therefore, we enable the publication of all of the content of peer review and author responses alongside final, published articles. The editorial history of this article is available here: https://doi.org/10.1371/journal.pntd.0009390

Copyright: © 2021 Dombrowski et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability Statement: All relevant data are within the manuscript and its Supporting Information files.
pregnant women, especially regarding placental monocytes infiltrate. Placental levels of vasomodulatory factors such as angiopoietin-2 (ANG-2) and complement proteins such as C5a were also altered at delivery. Plasma levels of anti-PvMSP1\textsubscript{19} IgG in infected pregnant women were shown to be a reliable exposure marker; yet, with no association with improved pregnancy outcomes.

Conclusions

This study indicates that \textit{P. vivax} malaria during the first trimester of pregnancy represents a higher likelihood of subsequent poor pregnancy outcomes associated with marked placental histologic modification and angiogenic/inflammatory imbalance. Additionally, our findings support the idea that antibodies against PvMSP1\textsubscript{19} are not protective against poor pregnancy outcomes induced by \textit{P. vivax} infections.

Author summary

Malaria during pregnancy is associated with adverse effects on the fetus and the newborn. As far as we know, no study has previously investigated in a single work, the link between \textit{Plasmodium vivax} malaria in pregnancy and poor gestational outcomes, alteration of the newborn’s anthropometric profile, placental lesions, angiogenic and inflammatory factors, and humoral immunity against the parasite. For this purpose, we investigated the association between \textit{P. vivax} malaria during pregnancy and newborn’s anthropometric profile, placental pathology, gestational outcomes, and the presence of IgG against \textit{P. vivax} MSP1\textsubscript{19} that may confer protection against infection during pregnancy. We performed a large cohort study of malaria during pregnancy that analyzed data from mother-child pairs delivered between 2013 and 2015 in the Southwestern Brazilian Amazonian region. By evaluating data from 329 pregnancies, we found that \textit{P. vivax} malaria during the first pregnancy trimester is significantly associated with the occurrence of preterm birth, low birth weight, and reduced newborn head circumference and body length. We also noted that \textit{P. vivax} malaria in pregnancy promoted placental lesions and homeostasis imbalance, characterized by increased syncytial nuclear aggregates, fibrin deposition, and monocytes/leukocytes infiltrate, as well as imbalanced angiogenic factors, leptin, and cytokines. We observed that pregnant women with IgG against \textit{P. vivax} MSP1\textsubscript{19} are not protected against poor pregnancy outcomes caused by \textit{P. vivax} infections during pregnancy. Our observations improve our understanding of the disease and \textit{P. vivax} burden during pregnancy, changing the current paradigm of the outcome of \textit{P. vivax} malaria in pregnancy. That may represent a long-term severe consequence for the affected populations living in \textit{P. vivax}-endemic regions. Our results also indicate that IgG against \textit{P. vivax} MSP1\textsubscript{19} is not associated with protection from poor pregnancy outcomes, excluding this protein as a possible vaccination target that can prevent adverse outcomes caused by \textit{P. vivax} infections during pregnancy.

Introduction

Pregnant women are highly susceptible to malaria and its deleterious effects. Recently, the World Health Organization Malaria Report pointed the often-neglected malaria cases in
pregnancy (MiP) that occur mainly in Africa, where around 11 million pregnant women were estimated to have developed the disease during 2018 [1]. Africa is characterized by a high and stable transmission of Plasmodium (P.) falciparum. Despite being frequently under the spotlight of malaria control campaigns, infections during pregnancy are still a burden associated with maternal anemia, abortion, premature delivery, and low birth weight (LBW) [2–7]. Few studies have focused on the burden of MiP in low transmission regions like Latin America, where P. vivax is the most prevalent species [1]. Its infections are often considered benign, a paradigm that is frequently supported by inconsistent reports that tend to focus on P. falciparum malaria episodes during pregnancy; this makes the evaluation of the real impact of P. vivax monoinfections somehow challenging [8–11].

In P. falciparum MiP, poor pregnancy outcomes are mainly linked to severe placental inflammation triggered by the sequestration of infected erythrocytes (which characterize placental malaria, PM) [12]. This process results in dramatic histological changes of the placental structure [11,13], which ultimately dysregulate local homeostasis and contribute to poor pregnancy outcomes [2]. This phenomenon is not yet clearly elucidated in P. vivax MiP mainly due to scarce and controversial evidence concerning: (1) placental adhesion [14,15]; (2) severe placental histopathology [9–11]; and (3) subsequent poor gestational outcomes [16–18]. The harmful effects of P. vivax infections are most likely a consequence of systemic inflammation and production of cytokines [19], such as TNF-α and IFN-γ, which are linked to disease severity, or IL-10 that is associated with better disease prognosis [20]. Accordingly, P. vivax-induced inflammation during pregnancy may be implicated in placental structural abnormalities and leukocytes infiltration, as well as in angiogenic imbalance, which altogether can directly or indirectly impact fetal development [11,13,21]. Nevertheless, to our knowledge, studies addressing these parameters together are still missing.

Attenuation of clinical symptoms frequently occurs after naturally acquiring immunity due to frequent exposures to Plasmodium spp. In P. falciparum MiP, loss of protection is mainly attributed to lack of immunity against the P. falciparum erythrocyte membrane protein 1 (PfEMP-1) variant VAR2CSA that binds to chondroitin sulfate A (CSA) in the placenta. In subsequent pregnancies, the development of PfEMP1_var2csa-specific antibodies is associated with protection from MiP [22–26]; yet, in P. vivax MiP, the establishment of a clear association between pre-existing acquired immunity and improved pregnancy outcomes is yet to be achieved.

Herein, we report the deleterious relationship between P. vivax monoinfections, poor pregnancy outcomes, placental histopathology, cytokine and angiogenic imbalance, and humoral immune response in pregnant women from the Brazilian Amazon. Our results suggest that P. vivax infections during the first gestational trimester are associated with poor pregnancy outcomes. The presence of IgG against P. vivax merozoite surface protein 1 (P. vivax MSP119) is not associated with protection against the deleterious effects of P. vivax MiP.

Methods
Ethics statement
This study was approved by the Ethics Committee from the University of São Paulo (Plataforma Brasil, CAAE: 03930812.8.0000.5467 and 90474318.4.0000.5467), according to resolution n° 466/12 of the Brazilian National Health Committee and in compliance with the Declaration of Helsinki. All subjects or their legal guardians (if minors) gave written informed consent. This study followed a specified analysis plan (S1 Text) and the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement guidelines (S1 STROBE Checklist).
Setting and study design

We have conducted an observational cohort study in five municipalities (Cruzeiro do Sul, Mâncio Lima, Rodrigues Alves, Marechal Thaumaturgo, and Porto Walter) in the Juruá Valley, located in the Brazilian Amazon southwest region (Acre State, Brazil). This region is considered highly endemic for malaria, with an annual parasite incidence (API) above 100 cases per 1,000 inhabitants. Juruá Valley is also characterized by a significant prevalence of *P. vivax* infections, responsible for 70–80% of total malaria cases [27,28]. A complete region characterization with detailed procedures and methods used for data and sample collection has been described elsewhere [11,13,21]. Briefly, 600 pregnant women were recruited during their first antenatal care (ANC) visit. These women were followed until delivery, between January 2013 and April 2015. Data was collected on socioeconomic, clinical, and obstetric variables at the time of recruitment, together with peripheral blood samples. In parallel, thick and thin peripheral blood smears were performed to screen for malaria parasites by microscopy, which were later confirmed by PCR. Each pregnant woman was followed by a trained nurse, which involved at least two domiciliary visits, at the second and third trimester, to monitor their clinical state and collect a peripheral blood sample, in addition to the usual prenatal care visit to the health care services. An additional blood sample was collected in each malaria episode during pregnancy. At the time of delivery, clinical data were collected from mother and newborn and performed a placental biopsy and blood sampling. Only women with *P. vivax* monoinfections and their non-infected counterparts were considered for this study (Fig 1A). We evaluated mother-child pairs at delivery in the Women and Children’s Hospital of Juruá Valley located in Cruzeiro do Sul.

Malaria screening and treatment

Malaria during pregnancy was first diagnosed from thin and thick blood smears by microscopy analysis, which was performed by the endemic surveillance team of Juruá Valley. Upon diagnosis, all women infected with *P. vivax* during pregnancy were treated with chloroquine (25mg/kg of body weight) in divided doses over a 3-day period. Successful treatment was confirmed subsequently. No hypnozontocidal treatment with primaquine was performed, following the Brazilian Ministry of Health (MoH) guidelines regarding medical prescription in pregnant women [29]. Of note, the Intermittent Preventive Treatment in pregnancy (IPTp) is not employed in Brazil. All samples collected throughout pregnancy (recruitment, malaria episodes, and domiciliary visits) and at delivery were further screened by molecular diagnosis using the real-time PCR technique (PET-PCR) as described elsewhere [13,30].

Exclusion criteria

Pregnant women were excluded from further analysis if they self-informed any alcohol consumption, smoking, and/or if presenting any other diagnosed infectious diseases (e.g. Toxoplasmosis, Rubella, Cytomegalovirus and Herpes simplex (TORCH), HIV, Hepatitis B and C virus, Syphilis), and/or other comorbidities (e.g. hypertension, pre-eclampsia/eclampsia, diabetes mellitus, and newborn with congenital malformation). Likewise, pregnant women infected with other *Plasmodium* species (*P. falciparum* or mixed infections) were excluded after confirmation by PET-PCR (Fig 1A).

Laboratory procedures

Peripheral and placental blood (from the maternal side) was collected aseptically in heparinized tubes and separated into plasma and whole blood cells after centrifugation. All samples...
Fig 1. Description of study participants and definitions. (A) Flow chart detailing exclusion criteria applied prior data analysis; (B) Definitions of pregnancy partitions used in the report. Mixed infection—*P. vivax* and *P. falciparum* infections occurring at the same or different times during pregnancy; w—weeks; d—days.

https://doi.org/10.1371/journal.pntd.0009390.g001
were stored at -80°C. Total DNA was obtained from whole blood cells using a commercially available extraction kit (QI Amp DNA Mini Kit, Qiagen), following the manufacturer’s instructions. Fragments of placental tissue were collected and stored in 10% neutral buffered formalin at 4°C, until processing. Placental tissue was sectioned and embedded in paraffin using standard procedures; afterward, it was stained with Hematoxylin-Eosin (H&E) or Giemsa for histological examination. All histological evaluation methods were optimized by our group and are described elsewhere [11,13]. Placental images were captured using a Zeiss Axio Imager M2 light microscope equipped with a Zeiss Axio Cam HRc camera. Placental parameters were evaluated and analyzed using Image J software (http://imagej.nih.gov/ij). All measurements were performed by two investigators blinded to group and outcome. Cases that proved to be contradictory between observers were re-evaluated until consensus was reached.

Placental weight and newborn’s anthropometric measurements

Placental weight was measured (grams (g)) immediately after expulsion/extraction using a digital semi-analytical scale (Shimadzu), with a capacity of 3.2 kilograms (kg) and a precision of 0.01 g. Umbilical cord, membranes, and fetal blood contained within the large chorionic vessels and intervillous space, were included in weight measurement. Newborns’ anthropometric measures were obtained after birth (maximum within a 24-hour period) by trained obstetrician nurses. Weight was measured (g) using digital pediatric scales (Toledo), with a maximum capacity of 15 kg and a precision of 5 g. Length, head and chest circumferences were measured using a non-stretching flexible measuring tape and expressed as centimeters (cm). Rohrer’s ponderal index was calculated as the newborn’s weight (g) divided by the cube of the length (cm).

Gestational age estimation and other definitions

Gestational age (GA) was assessed during the first trimester of pregnancy using crown-rump length measured by trans-abdominal ultrasound. In the absence of this examination within this period, the GA was estimated by the woman’s last menstrual period (LMP) together with the earliest ultrasound performed. The LMP method is recommended by the Brazilian MoH for GA calculation. Low birth weight (LBW) was defined as birth weight below 2500 g. Preterm birth was defined as birth before the 37th week of gestation, abortion as birth occurring before the 22nd week of gestation, and stillbirth as fetal death occurring between the 22nd week of gestation and time of delivery (Fig 1B). Term LBW was defined as term birth (after 37th week of gestation) with weight below 2500 g. Small for gestational age (SGA), reduced head circumference, and reduced body length were defined as: birth weight, head circumference, and length below the 10th percentile sex-specific for GA according to the INTERGROWTH-21st standards [31]. Maternal anemia was defined as hemoglobin levels lower than 11 g/dL. Placental malaria was diagnosed according to a previously established classification [12].

Angiogenic factors and leptin measurement

Angiogenic factors (angiopoietins 1 and 2 (ANG-1 and ANG-2), soluble TEK receptor tyrosine kinase (sTIE-2), vascular endothelial growth factor A (VEGF-A), receptors fms-like tyrosine kinase-1 (sFlt-1) and soluble vascular endothelial growth factor receptor 2 (sVEGFR-2)), and the leptin hormone were measured in placental plasma (1:20 dilution for all factors) using the DuoSet ELISA development kits (R&D), according to manufacturer’s guidelines.
Cytokines/anaphylatoxins measurement by cytometric bead array (CBA)

Interleukin (IL-) 1β, IL-6, IL-8, IL10, IL-12p70, and TNF-α were detected and quantified in placental plasma by CBA Human Inflammatory kit (BD Biosciences), according to the manufacturer’s protocol. Complement (C3a, C4a, and C5a) activation was evaluated in placental plasma through CBA Human Anaphylatoxin kit (BD Biosciences). Samples were analyzed in a two-laser BD FACSCalibur flow cytometer with CellQuest version 5.2 software (BD Biosciences) and concentrations computed using FCAP array software version 3.0.1 (BD Biosciences).

Measurement of total IgG antibodies against *Plasmodium vivax* merozoite surface protein 1 (PvMSP1₁₉)

For the study of total IgG antibodies against PvMSP1₁₉, samples collected at the first time-point (recruitment) were used; yet, we excluded infected pregnant women who were recruited after having already one or more malaria episodes during that pregnancy. Enzyme-linked immunosorbent assay (ELISA) was performed using high-binding 96-well microplates (Costar, Cambridge, MA) coated with Glutathione S-transferase (GST)-PvMSP1₁₉ (31.25 ng/well), produced as described elsewhere [32,33]. In parallel, GST was used as a control for non-specific binding. The optimal concentrations were determined by plasma serial titration of positive and negative controls. Plates were incubated at 4˚C overnight and washed four times with phosphate buffered saline with 0.05% Tween 20 (PBS-T). PBS-T containing skimmed milk was used for blocking (4%) and diluting plasma and antibodies (1%). Each plasma sample (50 μL/well) was diluted 1:200. After a 1-hour incubation at room temperature, antibody-antigen complexes were detected with HRP-conjugated mouse anti-human IgG (IG266) (Novus, Cat# NBP2-34648H) at a 1:3,000 dilution. Enzyme-substrate reaction was revealed with tetramethylbenzidine (TMB)/H₂O₂ at room temperature (dark conditions). After 10 minutes, the reaction was interrupted with 2N H₂SO₄. Absorbance values were measured at 450/595 nm using a CLARIOstar Plus plate reader (BMG Labtech). Corrected absorbance values were obtained by subtracting absorbance readings with GST ran on the same microplate. Absorbance data used in statistical analyses correspond to corrected values. Reactivity indices (RIs) were calculated as the ratio between each test sample’s corrected absorbance values and a cut-off value for antigen, corresponding to the average corrected absorbance for samples from 10 malaria-naïve blood donors plus 3 standard deviations. Positive samples were considered as having RIs greater than 1.

Statistical analysis

Data were analyzed using Stata/SE 14.2 (Stata, College Station, TX, USA) and GraphPad Prism 6.0 software (GraphPad Software Inc., San Diego, CA, USA). Continuous variables were summarized using mean and standard deviation (SD) values as well as median values and interquartile ranges (IQRs). Categorical variables were summarized using frequencies and percentages. Differences between groups were evaluated using the nonparametric Kruskal-Wallis test followed by the Dunn’s post hoc multiple comparison test and the Mann-Whitney test as appropriate. Differences between categorical data and proportions were analyzed using Pearson’s chi-squared test or Fisher’s exact test depending on the type of variables. All p values were 2-sided and interpreted at a significance level of 0.05. To compare the association between malaria and other variables (clinical characteristics, newborns’ anthropometric measurements, placental parameters, angiogenic and inflammatory factors, and anti-PvMSP1₁₉ IgG), we used linear regression, adjusting for maternal age, number of gestations, residence,
education level, and occupation. To assess associations between malaria and adverse pregnancy outcomes, the presence of anti-PvMSP1₁₉ IgG and outcomes in the context of MiP, adjusted odds ratios (aOR) with 95% confidence intervals (CI) were estimated using multiple logistic regression, which included infection by malaria (no / yes), maternal age (\geq 18 years old / \leq 17 years old), number of gestations (two or more / one), residence (urban / rural), education level (\geq secondary / \leq primary), occupation (others / housewife) and presence of anti-PvMSP1₁₉ IgG (no / yes) as explanatory variables and adverse pregnancy outcomes (yes / no) as response variables. The first category for each explanatory variable was considered as the reference.

Results

Study population and baseline characteristics

From 600 pregnant women enrolled in the major study, 329 (54.8%) were eligible for further analysis after applying the exclusion criteria and malaria parasite species diagnosis by PET-PCR (Fig 1A). Of these, 170 (51.7%) were classified as non-infected and 159 (48.3%) as P. vivax (Pv)-infected during gestation (Fig 1A). The overall socio-demographic profile of the stratified participants is depicted in Table 1. Group stratification was performed by the trimester in which the first infection occurred, considering that time of infection is known to be associated with MiP poor pregnancy outcomes [34]. Fig 1B illustrates a standard gestational window with the hypothetical poor outcomes in unsuccessful pregnancies. Table 1 shows some heterogeneity between the groups since pregnant women in the infected groups tend to be younger, with reduced educational level and rural residence. Occupation also varies significantly between the groups, but no difference was found regarding the number of previous pregnancies. The aforementioned characteristics were used as explanatory variables in the following multiple logistic regression analysis due to reported heterogeneity and their possible impact as confounding effects.

P. vivax infections during the first trimester are associated with MiP poor pregnancy outcomes

Malaria in pregnancy is known to impact proper fetal development [2]. We assessed pregnancy outcomes and newborns’ anthropometric measurements to ascertain if P. vivax infections at a given gestational trimester are associated with impaired fetal development and poor outcomes. Multiple logistic regression analysis revealed that P. vivax infections during the first trimester of pregnancy increase the odds of premature birth (aOR 8.12, 95%CI 2.69–24.54, $p < 0.0001$), LBW (aOR 4.34, 95%CI 1.49–12.62, $p = 0.007$), as well as LBW in those born at term (aOR 4.75, 95%CI 1.06–21.35, $p = 0.04$). First trimester infections were also associated with reduced head circumference (aOR 3.58, 95%CI 1.29–9.97, $p = 0.01$) and newborn’s length (aOR 4.48, 95%CI 1.66–12.06, $p = 0.003$) (Fig 2). No differences were observed for the overall birth weight and length (Fig 3A and 3D and S1 Table). Though, in line with our findings, we observed statistically significant differences in head and chest circumference of children born from women infected with P. vivax during the first trimester and those born from non-infected women (median [IQR], head–Pv-1st tri 34.0 cm [32.0–34.0] vs. NI 34.0 cm [33.0–35.0], $p = 0.007$; chest–Pv-1st tri 33.0 cm [32.0–34.0] vs NI 34.0 cm [33.0–35.0], $p = 0.006$) (Fig 3B and 3C and S1 Table). Our results suggest that P. vivax infections during the first gestational trimester promote preterm birth and impair fetal development, possibly due to clinical manifestations associated with MiP.
Clinical and infection characteristics of pregnant women with *P. vivax* MiP

As for the aforementioned outcomes, pregnant women infected with *P. vivax* had some clinical characteristics that are worth mentioning (Table 2). Women infected during the first trimester but not in the subsequent ones had reduced gestational age at delivery when compared with non-infected counterparts (median [IQR], *Pv*-1st tri 39.0 weeks [37.0–40.0] vs. NI 40.0 weeks [39.0–40.0], *p* = 0.006). These results are in line with our observations that suggest an association between first trimester infections and pregnancy outcomes such as LBW and preterm delivery (Fig 2 and Table 2). Reduced maternal weight gain was also observed in this group (median [IQR], *Pv*-1st tri 10.0 Kg [7.0–12.0] vs. NI 13.5 Kg [10.0–16.8], *p* = 0.004). Anemia is frequently found in pregnant women infected with *P. vivax*, which has been suggested to be one of the leading causes of impaired fetal development during *P. vivax* MiP [16,35]. However, a statistically significant reduction in hematocrit was only observed for the overall *Pv*-infected group (median [IQR], *Pv* 34.8% [32.4–37.5] vs. NI 36.6% [34.5–38.6], *p* = 0.008) and increased clinical anemia in those infected during the third trimester (*Pv*-3rd tri 28.3% vs. NI 14.1%, *p* = 0.02). Additionally, women in the *Pv*-infected group reported more malaria episodes before current pregnancy than their non-infected counterparts regardless the infection trimester (Table 2). Pregnant women infected during the first trimester had higher chances of having three or more infections than infected women from other groups. Parasitemia tends to be similar for the first infection across gestational trimesters; yet, it seems to decrease on average from the second infection onward (Table 3). 8.1% of women infected in the first trimester had past PM, while 4.6 and 4.3% of women infected during the second and third trimesters had active infections.

Table 1. Demographic characteristics of the mothers participating in the study, according to infection and gestational trimester of first infection.

Characteristics	Non-Infected (N = 170)	*P. vivax* (N = 159)	*p*-value^a	*P. vivax* - 1st tri (N = 52)	*p*-value^b	*P. vivax* - 2nd tri (N = 54)	*p*-value^c	*P. vivax* - 3rd tri (N = 53)	*p*-value^d
Age, years, median (IQR)	23.0 (19.0–28.0)	21.0 (17.0–26.0)	0.002	22.5 (18.0–25.0)	0.12	19.0 (17.0–26.0)	0.002	21.0 (17.0–26.0)	0.01
Gravidiy, median (IQR)	2.0 (1.0–3.0)	2.0 (1.0–3.0)	0.38	2.0 (1.0–3.0)	0.13	1.0 (1.0–3.0)	0.31	2.0 (1.0–3.0)	0.11
Education level, n (%)	< 0.0001	0.001	0.004	< 0.0001					
No education	0	3 (1.9)	0	0	3 (5.7)				
Primary	7 (4.1)	17 (10.7)	4 (7.7)	4 (7.4)	9 (17.0)				
≥ Secondary	163 (95.9)	139 (87.4)	48 (92.3)	50 (92.6)	41 (77.3)				
Occupation, n (%)^e	0.001	0.18	0.03	< 0.0001					
Farmer	3 (1.8)	9 (5.7)	4 (7.9)	1 (1.8)	4 (7.5)				
Housewife	77 (45.3)	86 (54.1)	22 (43.1)	30 (55.6)	34 (64.2)				
Student	36 (21.2)	41 (25.8)	12 (23.5)	16 (29.6)	13 (24.5)				
Other occupation	54 (31.7)	22 (13.8)	13 (25.5)	7 (13.0)	2 (3.8)				
Rural residence, n (%)	< 0.0001	0.0001	< 0.0001	0.0001	0.0001	0.0001			

Abbreviations: N, total number of individuals; tri, trimester; NA, not applicable. Results are presented as median and interquartile range (IQR) or total number of events (n) and percentage (%). Statistical tests were applied according to the type of variable (Mann-Whitney, Chi-square or Kruskal-Wallis with Dunn’s corrections).

^a Differences between Non-Infected and *P. vivax* group.

^b Differences between Non-Infected and *P. vivax* infection in the 1st trimester.

^c Differences between Non-Infected and *P. vivax* infection in the 2nd trimester.

^d Differences between Non-Infected and *P. vivax* infection in the 3rd trimester.

^e Occupation was recorded in 158 *P. vivax*-infected pregnant.

https://doi.org/10.1371/journal.pntd.0009390.t001

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0009390 | April 29, 2021 | 9 / 23
acute PM, respectively. This was established by the presence of hemozoin in milder or moderate amounts. However, it was absent in more than 90% of the examined placentas, regardless of the infection’s gestational trimester. Our observations support the idea that systemic effects rather than PM are linked to the outcomes observed during \textit{P. vivax} MiP in our cohort.

\textit{P. vivax} infections across gestational trimesters lead to diverse placental histologic alterations and angiogenic and cytokine imbalance

Reduced PM prevalence is frequently observed in \textit{P. vivax} infections because, contrary to \textit{P. falciparum} infections, \textit{P. vivax} sequestration in the placenta is controversial [14,15] and studies
that report this event frequently have reduced sample sizes. Nevertheless, placental histologic changes had been observed [9–11]. To determine whether \(P. \) \textit{vivax}-infections across the gestational trimesters result in considerable histologic and cytological alterations, we have evaluated several histologic parameters in more than 100 placentas from \(P. \) \textit{vivax}-infected women (Fig 4 and S2 Table). We observed that placentas from \(P. \) \textit{vivax}-infected women had a significant increase in syncytial nuclear aggregates (SNA), fibrin deposition, monocytes and leukocytes infiltrate (median [IQR], SNA–\(P. \) \textit{vivax} 1st trimester (N = 38–46); \(P. \) \textit{vivax} infection 2nd trimester (N = 43–54); \(P. \) \textit{vivax} infection 3rd trimester (N = 49–50). Differences between placentas from non-infected women and those from women infected in the first trimester were observed regarding SNA and monocyte infiltrate (median [IQR], SNA–\(P. \) \textit{vivax} 1st trimester (N = 19.0 [11.0–22.0] vs. NI 13.0 [10.0–17.0], \(p = 0.001 \); fibrin–\(P. \) \textit{vivax} 2nd trimester (N = 8.0 [6.0–13.0] vs NI 4.0 [2.0–6.0], \(p < 0.0001 \); monocytes–\(P. \) \textit{vivax} 3rd trimester (N = 21.5 [14.0–29.0] vs. NI 15.0 [9.0–21.0], \(p = 0.004 \) (Fig 4 and S2 Table). Differences between placentas from non-infected women and those from women infected in the first trimester were observed regarding SNA and monocyte infiltrate (median [IQR], SNA–\(P. \) \textit{vivax} 1st trimester (N = 19.0 [11.0–22.0] vs. NI 13.0 [10.0–17.0], \(p = 0.02 \); monocytes–\(P. \) \textit{vivax} 1st trimester (N = 7.0 [5.0–9.5] vs NI 4.0 [2.0–6.0], \(p = 0.01 \) (Fig 4A and 4C and S2 Table). Interestingly,
Table 2. Clinical characteristics of the mothers participating in the study, according to infection and gestational trimester of first infection.

Characteristics	Non-Infected (N = 170)	P. vivax (N = 159)	P-value^a	P. vivax - 1st tri (N = 52)	P-value^b	P. vivax - 2nd tri (N = 54)	P-value^c	P. vivax - 3rd tri (N = 53)	P-value^d
Clinical outcomes									
Gestational age at delivery, weeks, median (IQR)^e	40.0 (39.0–40.0)	39.0 (38.0–40.0)	0.09	39.0 (37.0–40.0)	0.006	39.0 (38.0–40.0)	0.25	40.0 (38.0–40.0)	0.33
Maternal weight gain, Kg, median (IQR)^f	13.5 (10.9–16.8)	10.8 (8.0–14.0)	< 0.0001	10.0 (7.0–12.0)	0.004	11.0 (7.5–15.0)	0.10	10.8 (8.0–15.0)	0.26
Hematocrit during pregnancy, %^g	36.6 (34.5–38.6)	34.8 (32.4–37.5)	0.008	34.9 (32.7–37.8)	0.37	34.5 (32.4–36.9)	0.11	34.9 (32.4–37.5)	0.24
Hematocrit at delivery, %^h	36.2 (33.6–39.1)	35.4 (32.4–37.6)	0.70	36.1 (33.0–39.1)	0.93	35.3 (32.8–37.3)	1.00	34.2 (30.7–37.4)	0.33
Hemoglobin during pregnancy, g/dL,ⁱ	12.2 (11.6–12.8)	11.7 (10.8–12.3)	0.16	12.0 (10.9–12.4)	0.67	11.5 (10.7–12.1)	0.54	11.6 (10.8–12.6)	0.96
Hemoglobin at delivery, g/dL, median (IQR)^j	11.8 (11.2–12.8)	11.6 (10.7–12.5)	0.64	12.1 (10.8–12.6)	0.97	11.6 (11.0–12.3)	1.00	11.3 (10.1–12.3)	0.32
Anemia, n (%)^k	24 (14.1)	32 (20.1)	0.15	10 (19.2)	0.38	7 (13.0)	1.00	15 (28.3)	0.02
Maternal weight gain, Kg, median	8.0 (6.0–10.0)	6.0 (5.0–8.0)	< 0.0001	6.0 (4.0–9.0)	0.07	6.0 (5.0–8.0)	0.004	6.0 (5.0–8.0)	0.003
Antenatal care visits, median (IQR)^l	577.4 (508.3–658.9)	541.8 (482.7–613.3)	0.12	521.4 (455.0–605.3)	0.06	554.6 (500.9–641.5)	0.89	541.4 (497.8–614.5)	1.00
Gestational outcomes, n (%)^m									
Abortion	1 (0.6)	6 (3.8)	0.06	6 (11.5)	0.001	0	1.00	NA	-
Stillbirth	2 (1.2)	1 (0.6)	1.00	NA	-	1.00	1.00	1 (1.9)	0.56
Preterm birth	6 (3.5)	17 (10.7)	0.02	10 (19.2)	0.001	3 (5.6)	0.45	4 (7.6)	0.25
Low birth weight	9 (5.3)	14 (9.3)	0.20	8 (17.4)	0.01	4 (7.4)	0.52	2 (4.0)	1.00
Term low birth weight	4 (2.4)	8 (5.0)	0.25	4 (7.7)	0.09	3 (5.6)	0.36	1 (1.9)	1.00
Small for gestational age	16 (9.6)	15 (10.1)	1.00	6 (13.3)	0.42	7 (13.0)	0.45	2 (4.0)	0.26
Malaria history, n (%)^o									
Previous episodes before current gestation	92 (54.1)	139 (87.4)	< 0.0001	47 (90.4)	< 0.0001	47 (87.0)	< 0.0001	45 (86.5)	< 0.0001
Previous episodes in other gestations	7 (7.8)	25 (28.4)	0.0004	7 (21.2)	0.05	7 (26.9)	0.01	11 (36.7)	0.0004

Abbreviations: N, total number of individuals; tri, trimester; Kg, kilograms; g, grams; NA, not applicable. Results are presented as median and interquartile range (IQR) or total number of events (n) and percentage (%). Statistical tests were applied according to the type of variable (Mann–Whitney, Chi-square or Kruskal–Wallis with Dunn’s corrections or Multiple linear regression, adjusted for maternal age, gravidity, residence, education, and occupation).

^a Differences between Non-Infected and P. vivax group.

^b Differences between Non-Infected and P. vivax infection in the 1st trimester.

^c Differences between Non-Infected and P. vivax infection in the 2nd trimester.

^d Differences between Non-Infected and P. vivax infection in the 3rd trimester.

^e Gestational age was recorded in 168 non-infected and 157 P. vivax infected pregnant women.

^f Maternal weight gain was recorded in 163 non-infected and 126 P. vivax infected pregnant women. It was determined as the final weight minus the initial weight during pregnancy.

^g Hematocrit during pregnancy was recorded in 152 non-infected and 136 P. vivax infected pregnant women.

^h Hematocrit at delivery was recorded in 116 non-infected and 101 P. vivax infected pregnant women.

ⁱ Hemoglobin during pregnancy was recorded in 157 non-infected and 136 P. vivax infected pregnant women.

^j Hemoglobin at delivery was recorded in 116 non-infected and 100 P. vivax infected pregnant women.

^k Defined as hemoglobin < 11 g/dL.

^l Antenatal care visits were recorded in 164 non-infected and 139 P. vivax infected pregnant women.

^m Placental weight was recorded in 155 non-infected and 128 P. vivax infected pregnant women.

ⁿ Definition of gestational outcomes: Abortion–birth < 22nd week of gestation; Stillbirth–fetal death between the 22nd week of gestation and delivery; Preterm birth–birth < 37th week of gestation; Low birth weight–birth weight < 2500 g; Term low birth weight–birth weight < 2500 g from 37th week of gestation; Small for gestational age–birth weight for sex-specific gestational age < 10th centile.

^o Malaria before current gestation (in all life) and Malaria in previous pregnancy (in other previous pregnancies) were recorded in 158 P. vivax infected pregnant women.

https://doi.org/10.1371/journal.pntd.0009390.t002
infections closer to term tend to yield higher levels of fibrin deposition and monocytes infiltrate at delivery (Fig 4B and 4C and S2 Table). These findings are representative of placental anomalies that can be extended to angiogenic and inflammatory mediators in placental plasma (S3 and S4 Tables). First and third trimester infections led to reduced levels of angiopoietin-2 (ANG-2) and increased levels of soluble TEK receptor tyrosine kinase (sTIE-2), respectively (median [IQR], ANG-2 –Pv-1st tri 4.4 ng/mL [1.0–6.6] vs. NI 6.8 ng/mL [3.5–12.4], p = 0.03; sTIE-2 –Pv-3rd tri 18.5 ng/mL [11.7–24.7] vs. NI 13.9 ng/mL [9.1–19.0], p = 0.008). Overall, factors such as sFlt-1, sVEGFR-2, and the hormone leptin were also altered in placentas from Pv-infected women (S3 Table). Regarding inflammatory mediators, only IL-12 and C5a showed more consistent and significant alterations, as they were reduced at delivery due to first and third trimester infections (median [IQR], IL-12 –Pv-1st tri 3.3 pg/mL [2.6–3.8] vs. NI 3.6 pg/mL [3.0–4.2], p = 0.009; C5a –Pv-1st tri 807.1 pg/mL [534.9–913.9] vs. NI 1117.2 pg/mL [814.8–1475.5], p = 0.03; Pv-3rd tri 673.0 pg/mL [445.9–871.3] vs. NI 1117.2 pg/mL [814.8–1475.5], p = 0.006 (S4 Table). Altogether, our observations suggest that poor pregnancy outcomes associated with first trimester infections may be linked to placental inflammation, structural abnormalities and angiogenic imbalance during P. vivax MiP.

Antibodies against P. vivax MSP119 are not associated with protection from poor pregnancy outcomes

The impact of gravidity on P. vivax MiP outcomes is still inconclusive [16,35,36]. Possibly the absence of pregnancy-specific antigens in P. vivax and its restricted distribution to areas of low
malaria transmission may impair immunity acquisition across pregnancies \[8,37\]. As such, other antigens might be targeted by the immune system to confer some degree of protection from *P. vivax* MiP. Therefore, we measured antibodies against the C-terminal fragment of the *P. vivax* merozoite surface protein 1 (PvMSP1). We used it as a surrogate marker of previous exposures (Fig 5A and S5 Table) and sought possible associations between antibody titers and improved pregnancy outcomes. Infected pregnant women who were recruited with more than one malaria episode during their current pregnancy were removed from the analysis, to target antibodies acquired upon any malaria episode occurred before pregnancy. We observed that Pv-infected women previously exposed to the parasite (Pv-PvMSP1 Ab+) had higher titers of IgG when compared with non-infected pregnant women with prior exposure (NI-PvMSP1 Ab+) (median [IQR], Pv-PvMSP1 Ab+ 65.1 [14.1–91.6] vs. NI-PvMSP1 Ab+ 4.0 [2.1–9.8], *p* < 0.0001) (Fig 5A and S5 Table). However, no associations were observed between IgG

Fig 4. Evaluation of placental histological parameters according to maternal infection and trimester of first infection. (A) Syncytial nuclear aggregates; (B) Fibrin deposition score; (C) Monocytes infiltrate (CD68+); (D) Leukocytes infiltrate (CD45+). Histologic parameters were evaluated by microscopy through H&E (syncytial nuclear aggregates and fibrin deposition) or immunohistochemistry (monocytes and leukocytes). NI–non-infected (N = 153–155); Pv–*P. vivax*-infected pregnant women (N = 118–126); Pv-1st tri–*P. vivax* infection 1st trimester (N = 33–37); Pv-2nd tri–*P. vivax* infection 2nd trimester (N = 42–44); Pv-3rd tri–*P. vivax* infection 3rd trimester (N = 43–47). Data are represented as Tukey boxplots, with the bottom and top of each box representing the first and third quartiles; the line inside the box is the median, and the whiskers represent the lowest and the highest data within 1.5 IQR of the first and upper quartiles; and the circles, outliers. Differences between groups were determined by multiple linear regression (adjusted for maternal age, gravidity status, residence, education level, and occupation).

https://doi.org/10.1371/journal.pntd.0009390.g004
Fig 5. Anthropometric measurements of newborn, according to previous exposure to *P. vivax* (PvMSP1). (A) Antibody profile among non-infected and *P. vivax*-infected pregnant women; (B) Forest plot of odds ratios of adverse pregnancy outcomes in infected women with anti-PvMSP1 IgG compared with infected women without anti-PvMSP1 IgG; (C) Newborn weight; (D) Head circumference; (E) Chest circumference; and, (F) Length. NI-PvMSP1 Ab—non-infected non-exposed (N = 106–112); NI-PvMSP1 Ab+—non-infected exposed (N = 54–58); Pv-PvMSP1 Ab—*P. vivax*-infected non-exposed (N = 19); Pv-PvMSP1 Ab+—*P. vivax*-infected exposed (N = 80–95). PvMSP1—*Plasmodium vivax* merozoite surface protein 1; Ab—Antibody; LBW—low birth weight; SGA—small for gestational age; HC—head circumference. RI—Reactivity indices were calculated as the ratio between each test sample’s corrected absorbance values and a cut-off value for antigen, corresponding to the average corrected absorbance of samples from 10 malaria-naïve blood donors plus 3 standard deviations. Weight in grams (g). Head and chest circumferences, and body length in centimeters (cm). Data are represented as Tukey boxplots, with the bottom and top of each box representing the first and third quartiles; the line inside the box is the median, and the whiskers represent the lowest and the highest data within 1.5 IQR of the first and upper quartiles; and the circles, outliers. Odds ratios were adjusted (aOR) for maternal age, gravidity status,
titers and outcomes, suggesting that the presence of these antibodies do not protect pregnant women from adverse outcomes of *P. vivax* MiP (Fig 5B). Accordingly, no statistically significant differences were observed for birth weight, head and chest circumference, and body length, between *P. vivax*-infected women who had PvMSP19-specific antibodies and those who did not have them (Fig 5C–5F and S5 Table).

Overall, our results suggest that *P. vivax* infections during the first gestational trimester are associated with poor pregnancy outcomes most likely due to placental histologic and physiologic abnormalities, which are unlikely to be prevented by the presence of IgG against PvMSP19, acquired during previous *P. vivax*-malaria episodes.

Discussion

MiP is considered a public health problem worldwide, as it is a significant risk factor for abortion, stillbirth, LBW, and maternal anemia [2–6]. Here, we describe an important association between *P. vivax* MiP and adverse gestational events, placental histopathological changes, and a reduction of the neonate’s anthropometric profile. However, a protective association between IgG against PvMSP19 and improved pregnancy outcomes was not observed.

P. vivax is widely distributed worldwide, particularly in Asia, Pacific regions, and Latin America. Though, longitudinal studies on gestational *P. vivax*-malaria are still limited, especially regarding placental histopathological analysis [8–11]. Although *P. vivax* MiP is poorly associated with severe malaria, this species’ infections are far from benign and may have severe consequences for maternal and fetal health [16,17,35,36,38–40]. The gestational outcomes associated with MiP can vary not only with the species but also with variables such as transmission intensity and stability, number of previous pregnancies, and trimester of infection [7,37]. In our study, no association was found between gravidity and improved pregnancy outcomes (S6 Table), suggesting that gestational-dependent mechanisms that govern immunity against *P. falciparum* during pregnancy may not be relevant in infections caused by *P. vivax*. In low transmission settings, where *P. vivax* is more prevalent, gravidity-dependent immunity acquisition is uncertain and inconsistently reported [8,16,35,39]. This could be related to the inexistence of known pregnancy-related *P. vivax* proteins targeted by the immune system [14,15].

The burden of first trimester infections, was scarcely addressed by researchers until recent years [7] despite knowing that perturbation in early pregnancy imposes severe fetal developmental consequences [41,42]. In our study, *P. vivax* first trimester infections were found associated with LBW and reduced newborn’s length. The proportion of pregnancies with LBW observed by us was consistent with other studies conducted in Latin America [38,43] and other *P. vivax* transmission areas [7]. These findings are relevant as LBW is strongly associated with neonatal morbidity and mortality, growth inhibition and cognitive impairment in children, and chronic diseases in adulthood [44]. Similar to what we reported recently on *P. falciparum* MiP, *P. vivax* infections also impact fetal cephalic perimeter development [13].

However, a previous report using the same study population reported that one antenatal *P. vivax* malaria episode in another trimester than the first trimester was enough to impair fetal development, which was aggravated by recurrent parasite exposure during pregnancy [36].

A distinctive characteristic of *P. vivax* is the occurrence of multiple malaria episodes due to reinfections or relapses, with the latter being potentiated by the absence of primaquine treatment in pregnant women due to its teratogenic nature [45]. Taken that and the higher prevalence of peripheral parasitemia observed during the second gestational trimester, also
described in other studies [46,47], we hypothesize that inflammation modulation during pregnancy might favor parasite multiplication and relapses.

The mechanisms by which *P. vivax* infections lead to MiP outcomes are still unclear; yet, systemic events such as maternal anemia and generalized inflammation have been discussed as relevant to *P. vivax* MiP pathology [16,35,40]. Our data evidence a significant hematocrit reduction in pregnant women with *P. vivax*; though, no severe maternal anemia was observed. Only a significant frequency of anemia at delivery was detected among women with third trimester infections. Although maternal anemia is a well-known risk factor for intrauterine growth retardation (IUGR) and LBW in *P. vivax*-infected women [2,16–18,35,36,40], this is unlikely to be influencing pregnancy outcomes in our cohort.

Contrary to *P. falciparum* infections, where pregnancy complications and adverse outcomes are often associated with PM [4,48–50], in *P. vivax* infections, PM is unlikely the reason why infected women experience complications during pregnancy. Previous studies indicate that PM caused by *P. vivax* is modest and not associated with placental sequestration of infected erythrocytes [9–11,40], despite evidence of binding to CSA and placental tissue sections [14,15]. Our observations corroborate previous studies, as only 8.6% of the analyzed placentas were classified as having PM. Nonetheless, most placentas from *P. vivax*-infected pregnant women present histopathological changes. Placental lesions and histopathological changes are often difficult to observe in *P. vivax*-infected pregnant women, probably due to the low sample size reported in the studies [9–11,40]. By performing histologic analysis of a considerable number of placentas, we have shown that *P. vivax* infections during the first trimester promote the increase of SNA and monocytes infiltrate at delivery. Monocytes infiltrate and inflammation have been frequently associated with reduced birth weight and preterm birth in pregnant women infected with *P. falciparum* [51–54]. Therefore, we hypothesize that this may also occur in *P. vivax* infections and that placental inflammation independent of PM may be linked to *P. vivax* MiP adverse outcomes, opposing previous observations suggesting that *P. vivax* mono infections do not promote placental inflammation and that adverse outcomes have an alternative etiologic nature [55].

Dysregulation of angiogenic and inflammatory factors are often associated with placental insufficiency and impaired fetal development in *P. falciparum* MiP [2]. The imbalance of angiopoietins has been associated with PM and LBW in pregnant women infected with *P. falciparum* [56] and observed in *P. vivax*-infected patients with thrombocytopenia [57]. In fact, in *P. vivax* infections, we observed diminished placental levels of ANG-2, sFlt-1, and leptin and increased sTIE-2 and sVEGFR-2 levels at delivery. It is unclear whether placental vasomodulation is being promoted or inhibited in our cohort, as diminished sFlt-1 and increased sVEGFR-2 support angiogenesis and vasodilation [58], while decreased ANG-2 and increased sTIE-2 suggest an anti-angiogenic environment [59]. On the other hand, in our study, the placental levels of classic inflammatory cytokines at delivery were not altered, reflecting a picture from past events. It is plausible that cytokines at delivery are already downregulated, which is in line with previous observations that showed inflammatory cytokines associated with episodes of *P. vivax* malaria during pregnancy that are lost at delivery [60]. Yet, a decrease in the plasma levels of IL-12 and C5a at delivery, particularly upon infections that occur during the first and third trimesters, was observed by us. IL-12 has been previously associated with *P. vivax* infections during pregnancy [60], and C5a is considered a hypothetical key driver of PM pathogenesis, being associated with placental insufficiency and SGA babies, and correlated negatively and positively with ANG-1 and ANG-2, respectively [61,62]. Moreover, our study shows that both placental C5a and ANG-2 are diminished at delivery when women are infected for the first time during the first trimester. These observations oppose a previous hypothesis assuming that *P. vivax* infections would promote the same augmented levels of C5a
as those observed during *P. falciparum* MiP [61]. Altogether, our data suggest that inflammatory responses acting against *P. vivax* infections in the first trimester may contribute to chronic placental damage and insufficiency. This might occur through angiogenic and vascular remodeling mechanisms, which, when altered, promote abnormal placental/fetal development and poor pregnancy outcomes, despite early pharmacological intervention with antimalarials.

Currently, the main strategy to control/treat *Plasmodium* spp. infections relies on antimalarials and vaccines, channeling the research resources to develop these approaches. Regarding *P. falciparum* MiP, vaccines such as PAMVAC have been tested to induce immunity acquisition to VAR2CSA. However, there are no known orthologs in *P. vivax* that the immune system can directly target to protect women during pregnancy. Alternatively, the combat of disease symptoms in pregnant women can be done through the natural generation of antibodies against blood-stage parasite antigens. Antibodies against *P. vivax* MSP119 were shown to be associated with protection against symptomatic malaria in non-pregnant individuals [63, 64] and those against *P. vivax* VIR, and Duffy-binding protein (PvDBP) were shown protective of birth weight reduction in pregnant women infected with *P. vivax* [65, 66], suggesting that targeting non-pregnancy related antigens may also improve gestational outcomes. Nonetheless, in our study, we did not observe a statistically significant association between antibodies against *P. vivax* MSP119 and improved pregnancy outcomes, which is in line with previous observations showing that *P. vivax* MSP119 antibodies are associated with infection but do not correlate with protection from maternal anemia or reduced birth weight [66].

P. vivax MiP is still poorly understood, representing major challenges for pregnant women and their concepts. Here, we have shown that *P. vivax* MiP impairs newborn’s development and leads to placental tissue damage. We conclude that *P. vivax* infections during the first trimester are associated with poor pregnancy outcomes and that the presence of antibodies against *P. vivax* MSP119 does not protect pregnant women from adverse gestational outcomes. Abnormal pregnancies in this context might occur due to placental inflammation and dysregulation of local homeostasis, regardless the absence of parasite sequestration and prompt treatment administration given to pregnant women in the endemic areas of the Brazilian Amazon.

Supporting information

S1 STROBE checklist.
(DOCX)

S1 Table. Characteristics of Anthropometric Measurements of Newborns, according to the gestational trimester in which the first infection occurred.
(DOCX)

S2 Table. Placental Parameters of Non-infected and *P. vivax*-infected women, according to the gestational trimester in which the first infection occurred.
(DOCX)

S3 Table. Angiogenic factors in placental plasma from Non-infected and *P. vivax*-infected women, according to the gestational trimester in which the first infection occurred.
(DOCX)

S4 Table. Inflammatory factors in placental plasma from Non-infected and *P. vivax*-infected women, according to the gestational trimester in which the first infection occurred.
(DOCX)
S5 Table. Anthropometric characteristics of the newborns, according to maternal previous exposure to \textit{P. vivax} (PvMSP1).

(SDOCX)

S6 Table. Association between adverse pregnancy outcomes and \textit{P. vivax} infections according to gravidity.

(SDOCX)

S1 Text. Analysis plan.

(SDOCX)

S1 Data. Study database.

(XLSX)

Acknowledgments

We thank the pregnant women from “Vale do Jurua” who agreed to participate in the study, as well as the teams from the Hospital da Mulher e da Criança do Jurua and Gerência de Endemias/SESACRE for their invaluable assistance. Additionally, we thank the Universidade Federal do Acre, and the direction of Santa Casa de Misericórdia de Cruzeiro do Sul for the support.

Author Contributions

Conceptualization: Jamille Gregório Dombrowski, Claudio Romero Farias Marinho.

Data curation: Jamille Gregório Dombrowski, Claudio Romero Farias Marinho.

Formal analysis: Jamille Gregório Dombrowski, André Barateiro, André Boler Cláudio da Silva Barros.

Funding acquisition: Carsten Wrenger, Giuseppe Palmisano, Sabrina Epiphanio, Claudio Romero Farias Marinho.

Investigation: Jamille Gregório Dombrowski, André Barateiro, Erika Paula Machado Peixoto, Rodrigo Medeiros de Souza, Taane Gregory Clark, Susana Campino, Gerhard Wunderlich, Lígia Antunes Gonçalves, Claudio Romero Farias Marinho.

Methodology: Jamille Gregório Dombrowski, André Barateiro, Erika Paula Machado Peixoto, Taane Gregory Clark, Susana Campino, Gerhard Wunderlich, Lígia Antunes Gonçalves, Claudio Romero Farias Marinho.

Project administration: Jamille Gregório Dombrowski, Claudio Romero Farias Marinho.

Resources: Carsten Wrenger, Gerhard Wunderlich, Claudio Romero Farias Marinho.

Supervision: Jamille Gregório Dombrowski, Claudio Romero Farias Marinho.

Validation: Jamille Gregório Dombrowski, Taane Gregory Clark, Claudio Romero Farias Marinho.

Writing – original draft: Jamille Gregório Dombrowski, André Barateiro.

Writing – review & editing: Jamille Gregório Dombrowski, André Barateiro, Erika Paula Machado Peixoto, André Boler Cláudio da Silva Barros, Rodrigo Medeiros de Souza, Taane Gregory Clark, Susana Campino, Carsten Wrenger, Gerhard Wunderlich, Giuseppe Palmisano, Sabrina Epiphanio, Lígia Antunes Gonçalves, Claudio Romero Farias Marinho.
References

1. World Health Organization W. World Malaria Report 2019. 2019.

2. Umbers AJ, Aitken EH, Rogerson SJ. Malaria in pregnancy: small babies, big problem. Trends Parasitol. 2011; 27: 168–175. https://doi.org/10.1016/j.pt.2011.01.007 PMID: 21377424

3. Bardaji A, Siguaque B, Sanz S, Maixenchs M, Ordi J, Aponte JJ, et al. Impact of malaria at the end of pregnancy on infant mortality and morbidity. J Infect Dis. 2011; 203: 691–9. https://doi.org/10.1093/infdis/jiq49 PMID: 21199881

4. Guyatt HL, Snow RW. Impact of Malaria during Pregnancy on Low Birth Weight in Sub-Saharan Africa. Society. 2004; 17. https://doi.org/10.1128/CMR.17.4.760-769.2004 PMID: 15489346

5. Valea I, Tinto H, Drabo MK, Huybregts L, Sorgho H, Ouedraogo J-B, et al. Analysis of timing and frequency of malaria infection during pregnancy in relation to the risk of low birth weight, anaemia and perinatal mortality in Burkina Faso. Malar J. 2012; 11: 71. https://doi.org/10.1186/1475-2875-11-71 PMID: 22433778

6. Albiti AH, Adam I, Ghouth AS. Placental malaria, anaemia and low birthweight in Yemen. Trans R Soc Trop Med Hyg. 2010; 104: 191–4. https://doi.org/10.1016/j.trstmh.2009.07.004 PMID: 19716578

7. Desai M, ter Kuile FO, Nosten F, McGready R, Asamoa K, Brabin B, et al. Epidemiology and burden of malaria in pregnancy. Lancet Infect Dis. 2007; 7: 93–104. https://doi.org/10.1016/S1475-3099(07)70021-X PMID: 17251080

8. Yanow SK, Gavina K, Gnidehou S, Maestre A. Impact of Malaria in Pregnancy as Latin America Approaches Elimination. Trends Parasitol. 2016; xx: 1–12. https://doi.org/10.1016/j.pt.2016.01.008 PMID: 26875608

9. McGready R, Davison BB, Stepniawska K, Cho T, Shee H, Brockman A, et al. The effects of Plasmodium falciparum and P. vivax infections on placental histopathology in an area of low malaria transmission. Am J Trop Med Hyg. 2004; 70: 398–407, 70/4/398 [pii] PMID: 15100454

10. Carmona-Fonseca J, Arango E, Maestre A. Placental malaria in Colombia: Histopathologic findings in Plasmodium vivax and P. falciparum infections. Am J Trop Med Hyg. 2013; 88: 1093–1101. https://doi.org/10.4269/ajtmh.12-0363 PMID: 23546807

11. Souza RM, Ataiki R, Dombrowski JG, Ipolito V, Aitken EH, Valle SN, et al. Placental Histopathological Changes Associated with Plasmodium vivax Infection during Pregnancy. PLoS Negl Trop Dis. 2013; 7: 1–11. https://doi.org/10.1371/journal.pntd.0002071 PMID: 23459254

12. Bulmer JN, Rasheed FN, Francis N, Morrison L, Greenwood BM. Placental Malaria I. Pathological Classification. Histopathology. 1993; 22: 211–218. https://doi.org/10.1111/j.1365-2559.1993.tb01110.x PMID: 8495954

13. Dombrowski JG, Souza RM De, Lima FA, Bandeira CL, Murillo O, Costa D de S, et al. Association of Malaria Infection During Pregnancy With Head Circumference of Newborns in the Brazilian Amazon. Jama Netw Open. 2019; 2: e193300. https://doi.org/10.1001/jamanetworkopen.2019.3300 PMID: 31050780

14. Carvalho BO, Lopes SCP, Nogueira PA, Orlandi PP, Bargieri DY, Blanco YC, et al. On the Cytoadhesion of Plasmodium vivax–Infected Erythrocytes. J Infect Dis. 2010; 202: 638–647. https://doi.org/10.1086/654815 PMID: 20617923

15. Chotivanich K, Udomsangphet R, Suwanarusk R, Pukrittayakamee S, Wilairatana P, Beeson JG, et al. Plasmodium vivax adherence to placental glycosaminoglycans. PLoS One. 2012; 7: 1–7. https://doi.org/10.1371/journal.pone.0034509 PMID: 22923919

16. Nosten F, McGready R, Simpson JA, Thwait KL, Balkan S, Cho T, et al. Effects of Plasmodium vivax infection causes adverse effects during pregnancy. PLoS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0009390 April 29, 2021 20 / 23
20. Andrade BBB, Reis-Filho A, Souza-Neto SMM, Clarâncio J, Camargo LM a M a, Barral A, et al. Severe Plasmodium vivax malaria exhibits marked inflammatory imbalance. Malar J. 2010; 9: 13. https://doi.org/10.1186/1475-2875-9-13 PMID: 20070895

21. Ataíde R, Murillo O, Dombrowski JG, Souza RM, Lima FA, Lima GFMC, et al. Malaria in Pregnancy Interacts with and Alters the Angiogenic Profiles of the Placenta. PLoS Negl Trop Dis. 2015; 9: e0003824. https://doi.org/10.1371/journal.pntd.0003824 PMID: 26090803

22. Ataíde R, Mayor A, Rogerson SJ. Malaria, primigravidae, and antibodies: Knowledge gained and future perspectives. Trends Parasitol. 2014; 30: 85–94. https://doi.org/10.1016/j.pt.2013.12.007 PMID: 24388420

23. Ricke CH, Staalsoe T, Koram K, Akanmori BD, Riley EM, Theander TG, et al. Plasma Antibodies from Malaria-Exposed Pregnant Women Recognize Variant Surface Antigens on Plasmodium falciparum-Infected Erythrocytes in a Parity-Dependent Manner and Block Parasite Adhesion to Chondroitin Sulfate A. J Immunol. 2000; 165: 3309–3316. https://doi.org/10.4049/jimmunol.165.6.3309 PMID: 10975848

24. Staalsoe T, Shulman CE, Bulmer JN, Kawuondo K, Marsh K, Hviid L. Variant surface antigen-specific IgG and protection against clinical consequences of pregnancy-associated Plasmodium falciparum malaria. Lancet. 2004; 363: 283–289. https://doi.org/10.1016/S0140-6736(03)03820-X PMID: 14751701

25. Tuikue Nd N, Denoeud-Ndam L, Dorchamou J, Viwami F, Salanti A, Nielsen MA, et al. Protective antibodies against placental malaria and poor outcomes during pregnancy, Benin. Emerg Infect Dis. 2015; 21: 813–823. https://doi.org/10.3201/eid2105.141826 PMID: 25981823

26. Mayor A, Revira-Valbona E, Machevo S, Bassat Q, Aguilar R, Quintó L, et al. Parity and placental infection affect antibody responses against Plasmodium falciparum during pregnancy. Infect Immun. 2011; 79: 1654–1659. https://doi.org/10.1128/IAI.01000-10 PMID: 21300778

27. Ferreira MU, Castro MC. Challenges for malaria elimination in Brazil. Malar J. 2016; 15: 1–18. https://doi.org/10.1186/s12936-015-0444-1 PMID: 26723363

28. Kohara Melchior LA, Chiaravalloti Neto F. Spatial and spatio-temporal analysis of malaria in the state of Acre, western Amazon, Brazil. Geospat Health. 2016; 11. https://doi.org/10.4081/gh.2016.443 PMID: 27903051

29. Brazil. Ministry of Health. Secretariat of Health Surveillance. Department of Epidemiological Surveillance. Malaria’s treatment in Brazil practical guide. Brazilian Ministry of Health, Departamento de Vigilância Epidemiológica—Secretaria de Vigilação em Saúde. Brasília/DF: Ministry of Health; 2010.

30. Lucchi NW, Narayanan J, Karel MA, Kayavong M, Karuski S, DaSilva AJ, et al. Molecular Diagnosis of Malaria by Photo-Induced Electron Transfer Fluorogenic Primers: PET-PCR. PLoS One. 2013; 8: e56677. https://doi.org/10.1371/journal.pone.0056677 PMID: 23432209

31. Villar J, Ismail LC, Victora CG, Ohuma EO, Bertino E, Altman DG, et al. International standards for newborn weight, length, and head circumference by gestational age and sex: the Newborn Cross-Sectional Study of the INTERGROWTH-21st Project. Lancet. 2014; 384: 857–868. https://doi.org/10.1016/S0140-6736(14)60392-6 PMID: 25208487

32. Bastos MS, da Silva-Nunes M, Malafronte RS, Hoffmann EHE, Wunderlich G, Moraes SL, et al. Antigenic Polymorphism and Naturally Acquired Antibodies to Plasmodium vivax Merozoite Surface Protein 1 in Rural Amazonians. Clin Vaccine Immunol. 2007; 14: 1249–1259. https://doi.org/10.1128/CVI.00243-07 PMID: 17699838

33. De Oliveira CI, Wunderlich G, Leviti G, Soares IS, Rodrigues MM, Tsuji M, et al. Antibiotic properties of the merozoite surface protein 1 gene of Plasmodium vivax. Vaccine. 1999; 17: 2959–2968. https://doi.org/10.1016/S0264-410X(99)00176-0 PMID: 10462230

34. Moore KA, Simpson JA, Wiladjphaigern J, Min AM, Pimpanpanarak M, Paw MK, et al. Influence of the number and timing of malaria episodes during pregnancy on prematurity and small-for-gestational-age in an area of low transmission. BMC Med. 2017; 15: 117. https://doi.org/10.1186/s12916-017-0877-6 PMID: 28636722

35. Filho ACM, Costa EP, De Oliveira CI, Wunderlich G, Leuti G, Soares IS, Rodrigues MM, Tsuji M, et al. Antigenic properties of the merozoite surface protein 1 gene of Plasmodium vivax. Vaccine. 1999; 17: 2959–2968. https://doi.org/10.1016/S0264-410X(99)00176-0 PMID: 10462230

36. Nosten F, Rogerson SJ, Beeson JG, McGready R, Mutasingwa TK, Brabin B. Malaria in pregnancy and the endemicty spectrum: What can we learn? Trends Parasitol. 2004; 20: 425–432. https://doi.org/10.1016/j.pt.2004.06.007 PMID: 15324733
38. Tobón-castaño A, Solano MA, Gonzalo L, Sánchez Á, Trujillo B. Retardo no crescimento intrauterino, baixo peso ao nascer e prematuridade em recém-nascidos de grávidas com malária, na Colômbia. Rev Soc Bras Med Trop. 2011; 44: 364–370. https://doi.org/10.1590/s0037-86822011005000030 PMID: 21625805

39. Rodríguez-Morales AJ, Sanchez E, Vargas M, Piccolo C, Colina R, Arria M, et al. Short report: Pregnancy outcomes associated with Plasmodium vivax malaria in northeastern Venezuela. Am J Trop Med Hyg. 2006; 74: 755–757. https://doi.org/10.4269/ajtmh.2006.74.755 PMID: 16687675

40. Brutus L, Santalla J, Schneider D, Avila JC, Deloron P. Plasmodium vivax malaria during pregnancy, Bolivia. Emerg Infect Dis. 2013; 19: 1605–1611. https://doi.org/10.3201/eid1910.130308 PMID: 24050302

41. Leijnse JEW, de Heus R, de Jager W, Rodenburg W, Peeters LLH, Franx A, et al. First trimester placental vascularization and angiogenic factors are associated with adverse pregnancy outcome. Pregnancy Hypertens. 2018; 13: 87–94. https://doi.org/10.1016/j.preghy.2018.04.008 PMID: 30177079

42. Aplin JD, Myers JE, Timms K, Westwood M. Tracking placental development in health and disease. Nat Rev Endocrinol. 2020; 16: 479–494. https://doi.org/10.1038/s41574-020-0372-6 PMID: 24050302

43. Valle S da CN do. Malária em gestantes no município de Cruzeiro do Sul pertencente à região amazônica brasileira. Universidade de São Paulo. 2011.

44. Organization UNCF and WH. Low Birthweight: Country, regional and global estimates. 1st ed. UNICEF, editor. New York; 2004.

45. WHO. Guidelines for the treatment of malaria - 3rd edition. Geneva: World Health Organization; 2015.

46. Brabin BJ. An analysis of malaria in pregnancy in Africa. Bull World Health Organ. 1983; 61: 1005–1016. https://doi.org/10.1186/1475-2875-3-27 PMID: 6320484

47. Ogbu GI, Aimakhu CO, Ajen Anzaku S, Ngwan S, Ogbu DA. Prevalence of malaria parasitaemia among asymptomatic women at booking visit in a tertiary hospital, Northcentral Nigeria. J Reprod Biol Heal. 2015; 3: 1. https://doi.org/10.7243/2054-0841-3-1

48. Omer SA, Idrress HE, Adam I, Abdeirahim M, Noureddine AN, Abdeirazig AM, et al. Placental malaria and its effect on pregnancy outcomes in Sudanese women from Blue Nile State. Malar J. 2017; 16: 1–8. https://doi.org/10.1186/s12936-016-1650-6 PMID: 28049519

49. Menendez C, Ordi J, Ismail MR, Ventura PJ, Aponte JJ, Kahigwa E, et al. The Impact of Placental Malaria on Gestational Age and Birth Weight. J Infect Dis. 2000; 181: 1740–1745. https://doi.org/10.1086/315449 PMID: 12594307

50. Lufele E, Umbers A, Ordi J, Ome-Kaius M, Wangnapai R, Unger H, et al. Risk factors and pregnancy outcomes associated with placental malaria in a prospective cohort of Papua New Guinean women. Malar J. 2017; 16: 427. https://doi.org/10.1186/s12936-017-2077-4 PMID: 29065884

51. Rogerson SJ, Pollina E, Getachew A, Tadesse E, Lema VM, Molyneux ME. Placental monocyte infiltrates in response to Plasmodium falciparum malaria infection and their association with adverse pregnancy outcomes. Am J Trop Med Hyg. 2003; 68: 115–119. PMID: 12556159

52. Fried M, Kurtis JD, Swihart B, Pond-Tor S, Barry A, Sidibe Y, et al. Systemic Inflammatory Response to Malaria during Pregnancy Is Associated with Pregnancy Loss and Preterm Delivery. Clin Infect Dis. 2017; 65: 1729–1735. https://doi.org/10.1093/cid/cix623 PMID: 29020221

53. Abrams ET, Brown H, Chensue SW, Turner GDH, Molyneux ME, Meshnick SR, et al. Host Response to Malaria During Pregnancy: Placental Monocyte Recruitment Is Associated with Elevated β Chemokine Expression. J Immunol. 2003; 170: 2759–2764. https://doi.org/10.4049/jimmunol.170.5.2759 PMID: 12694307

54. Fried M, Muga RO, Misore AO, Duffy PE. Malaria elicits type 1 cytokines in the human placenta: IFN-gamma and TNF-alpha associated with pregnancy outcomes. J Immunol. 1998; 160: 2523–2530. PMID: 9498798

55. Mayor A, Bardají A, Felger I, King CL, Cisteró P, Dobarro C, et al. Placental infection with Plasmodium vivax: A histopathological and molecular study. J Infect Dis. 2012; 206: 1904–1910. https://doi.org/10.1093/infdis/iss614 PMID: 23053630

56. Silver KL, Zhong K, Leke RGF, Taylor DW, Kain KC. Dysregulation of angiopoietins is associated with placental malaria and low birth weight. PLoS One. 2010; 5: 1–11. https://doi.org/10.1371/journal.pone.0009481 PMID: 20208992

57. Gomes LT, Alves ER, Rodrigues-Jesus C, Nery AF, Gasquez-Martin TO, Fontes CJ. Angiopoietin-2 and angiopoietin-1 ratio as indicators of potential severity of plasmodium vivax malaria in patients with thrombocytopenia. PLoS One. 2014; 9: 1–7. https://doi.org/10.1371/journal.pone.0109246 PMID: 25275496
58. Valdes G, Kaufmann P, Corthorn J, Erices R, Brosnihan KB, Joyner-Grantham JN. Vasodilator factors in the systemic and local adaptations to pregnancy. Reprod Biol Endocrinol. 2009; 7: 79. https://doi.org/10.1186/1477-7827-7-79 PMID: 19646248

59. Yancopoulos GD, Davis S, Gale NW, Rudge JS, Wiegand SJ, Holash J. Vascular-specific growth factors and blood vessel formation. Nature. 2000; 407: 242–248. https://doi.org/10.1038/35025215 PMID: 11001067

60. Dobarro C, Arévalo-Herrera M, Martínez-Espinosa FE, Botto-Menezes C, Padilla N, et al. Cytokine signatures of Plasmodium vivax infection during pregnancy and delivery outcomes. Dinglasan RR, editor. PLoS Negl Trop Dis. 2020; 14: e0008155. https://doi.org/10.1371/journal.pntd.0008155 PMID: 32365058

61. Conroy AL, McDonald CR, Silver KL, Liles WC, Kain KC. Complement activation: A critical mediator of adverse fetal outcomes in placental malaria. Trends Parasitol. 2011; 27: 294–299. https://doi.org/10.1016/j.pt.2011.02.005 PMID: 21493146

62. Conroy AL, Silver KL, Zhong K, Rennie M, Ward P, Sarma JV, et al. Complement activation and the resulting placental vascular insufficiency drives fetal growth restriction associated with placental malaria. Cell Host Microbe. 2013; 13: 215–226. https://doi.org/10.1016/j.chom.2013.01.010 PMID: 23414761

63. Nogueira PA, Piovesan Alves F, Fernandez-Becerra C, Pein O, Rodrigues Santos N, Pereira da Silva LH, et al. A Reduced Risk of Infection with Plasmodium vivax and Clinical Protection against Malaria Are Associated with Antibodies against the N Terminus but Not the C Terminus of Merozoite Surface Protein 1. Infect Immun. 2006; 74: 2726–2733. https://doi.org/10.1128/IAI.74.5.2726-2733.2006 PMID: 16622209

64. Wang Q, Zhao Z, Zhang X, Li X, Zhu M, Li P, et al. Naturally Acquired Antibody Responses to Plasmodium falciparum Merozoite Surface Protein 1 (MSP1) C-Terminal 19 kDa Domains in an Area of Unstable Malaria Transmission in Southeast Asia. Craig AG, editor. PLoS One. 2016; 11: e0151900. https://doi.org/10.1371/journal.pone.0151900 PMID: 26999435

65. Requena P, Rui E, Padilla N, Martínez-Espinosa FE, Castellanos ME, Botto-Menezes C, et al. Plasmodium vivax VIR Proteins Are Targets of Naturally-Acquired Antibody and T Cell Immune Responses to Malaria in Pregnant Women. Engwerda CR, editor. PLoS Negl Trop Dis. 2016; 10: e0005009. https://doi.org/10.1371/journal.pntd.0005009 PMID: 27711158

66. Requena P, Arévalo-Herrera M, Menegon M, Martínez-Espinosa FE, Padilla N, Botto-Menezes C, et al. Naturally acquired binding-inhibitory antibodies to Plasmodium vivax Duffy binding protein in pregnant women are associated with higher birth weight in a multicenter study. Front Immunol. 2017; 8: 1–16. https://doi.org/10.3389/fimmu.2017.00001 PMID: 28149297