Source Region of the Decameter–Hectometric Type II Radio Burst: Shock–Streamer Interaction Region

Chenglong Shen, Chijian Liao, Yuming Wang, Pinzhong Ye, Shui Wang

CAS Key Laboratory of Geospace Environment, Department of Geophysics and Planetary Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China

closhen@ustc.edu.cn

Abstract. D–H type II radio bursts are widely thought to be caused by the coronal mass ejections (CMEs). However, it is still unclear where the exact source of the type IIIs on the shock surface is. We identify the source regions of the decameter–hectometric (D–H) type IIIs based on imaging observations from SOHO/LASCO and the radio dynamic spectrum from Wind/Waves. The analysis of two well–observed events suggests that the sources of these two events are located in the interaction regions between shocks and streamers, and that the shocks are enhanced significantly in these regions.

1 Introduction

Type II radio bursts, especially in the decameter–hectometric (D–H) and kilometer (km) wavelength range, are thought to be caused by the electron beam accelerated by CME–driven shocks [e.g. Sheeley et al. 1983, Reiner et al. 1998, Bale et al. 1999]. Assuming that the type II radio burst was excited at the shock front, the speed of the shock could be obtained from the observed frequency drift rate of the type II radio burst based on a coronal–density model [e.g. Vršnak et al. 2001, Kopalswany and Kaiser 2002, Vršnak et al. 2002, Reiner, Kaiser, and Bougeret 2003, Vršnak, Magdalenic, and Zlobec 2004]. This method is widely used to study and forecast the propagation of shocks [e.g. Dryer and Smart, 1982, Smith and Dryer, 1994, Fry et al. 2003, Reiner, Kaiser, and Bougeret 2007, Shen et al. 2007].

2 Method

In this work, the source region of the D–H type II radio burst is obtained from the combined analysis of the Wind/Waves and SOHO/LASCO observations. The detailed method is described as follows:
i) Previous results suggest that type II radio bursts especially in the D–H and longer wavelength range are caused by the CME–driven shocks [Reiner et al. 1998, Bale et al. 1999]. Recently, Vourlidas et al. 2003 and Ontiveros and Vourlidas 2009 found that shocks could be directly observed in coronagraph images. We use SOHO/LASCO–C2 observations to identify the position of the shock front, called S_{shock} hereafter. It is thought to be the possible source region of type II bursts.

ii) The fundamental frequency of a type II burst is related to the background electron density by Priest 1982:

$$N_e = \left(\frac{f_{\text{fund}}(H\alpha)}{8.98 \times 10^3} \right)^2 \text{cm}^{-3}.$$ (1)

Therefore, the electron density of the source regions of the type II could be obtained from the radio burst dynamic spectrum. Using the pb_inverter.pro procedure in Solar Software (SSW), the polarized–brightness observations from SOHO/LASCO could be used to get the background electron density distribution. The pb_inverter.pro procedure uses the pb inversion derivation obtained by van de Hulst 1950. A polynomial fit of the form r^{-n} is applied to the pb image for a single position angle to get the electron density distribution (see the introduction of the ‘pb_inverter.pro’ in the SSW). Thus, the possible regions, called as S_p, which can generate the type II radio bursts at the observed frequency range at the time of shock observed, can be determined. In addition, considering a 2% uncertainty in the brightness observations (Vourlidas, 2012, private communicate), a 2% uncertainty in the obtained electron density was applied to find the S_p.

iii) The overlap region of the shock front (S_{shock}) and the derived density region (S_p) is defined as the source region of the type II radio burst.

Based on the method described above, to determine the source region of a D–H type II radio burst, we need the polarized–brightness image and the direct imaging observations of the shock from SOHO/LASCO and the D–H type II radio–burst observation from Wind/Waves. Thus, we select events based on the following criteria:

i) A clear type II radio burst was recorded by Wind/Waves.

ii) The burst was caused by a limb CME with clear shock signatures in the LASCO–C2 field of view. We require limb CMEs because the polarized–brightness image represents the background coronal–density distribution near the plane of the sky, and the shock driven by a limb CME should have the most clear signatures in coronagraph.

Conforming to these two criteria, two well–observed events were found for study in this article.

3 7 March 2011 Event

Figure 1 shows the SOHO/LASCO observations before and after the onset of this CME. On 7 March 2011, a limb CME originating from N24W59 was first observed by SOHO/LASCO–C2 at 20:00 UT. The orange * symbols in panel (b) of Figure 1 show the possible front positions of this CME at 20:00 UT. Using the GCS model [Thernisien, Howard, and Vourlidas 2006, Thernisien, Vourlidas, and Howard, 2004, Thernisien 2011], Shen et al. 2012 obtained the speed of this CME as 2115 ± 136 km s$^{-1}$ in the three–dimensional space. This is a very fast CME with a speed much faster than the local Alfvén speed, and therefore LASCO–C2 only captured three images of the CME. We can expect that this CME drove a shock when it propagated in the corona.

Seen from panel (c) and (d) in Figure 1 obvious shock signatures ahead of the main body of the CME could be identified. The orange * symbols in panel (c) and (d) of Figure 1 mark the shock front at two instants of time. As we described in Section 2, the shock front, S_{shock}, is thought to be the possible source region of the associated type II radio burst.

Figure 2 shows the Wind/Waves observations from 7 March 2011 19:50 UT to 21:00 UT. From Figure 2, we observe a clear type II radio burst at 20:12 UT which could be identified. The vertical dotted–dashed white lines in Figure 2 indicate the times of the shock recorded by SOHO/LASCO–C2. Seen from this figure, the signature of the type II radio burst at 20:12 UT is very weak. Near 20:22 UT, this type II radio burst became stronger, and lasted for about ten minutes. The white asterisks show the minimum and maximum fundamental frequency of this D–H type II radio burst at the time of 20:24 UT, which are 4.6 and 7.4 MHz corresponding to the electron density of 2.6 × 105 cm$^{-3}$ and 6.8 × 105 cm$^{-3}$, respectively, based on Equation (1).

Figure 3 shows the background electron–density distribution obtained from the polarized image at 08:58 UT. The white regions in Figure 3 are caused by the point source region of type II radio burst. The white + symbols in Figure 3 show the boundary of the point source region indicated in red. The type II radio burst near 20:24 UT were probably generated from these region.

The position of S_{shock} based on coronagraph observations is overplotted with yellow + on Figure 3. As we discussed in Section 2, the source region of a type II radio burst is the overlap region between the S_{shock} and S_p. For this event at 7 March 2011 20:24 UT, the source region is located in the region indicated by the blue rectangle.

The white + symbols in Figure 3 show the boundary of the streamer, which is determined from the SOHO/LASCO image before the onset of the CME as indicated by the green + in Figure 1(a). It is found that the source of this type II radio burst is located at the shock–streamer interaction region. This result suggests that the type II radio burst at the D–H frequency range might also originate from the shock–streamer interaction region, similar to the metric type II radio bursts Cho et al. 2007, 2008.

In addition, at 20:12 UT, the shock was also very clear
4 9 May 2011 event

This CME burst from the east limb of the solar disk. SOHO/LASCO–C2 observed it since 21:24 UT. It was a fast limb CME with a projected speed of 1318 km s\(^{-1}\). Figure 4 shows the SOHO/LASCO observations before and after the onset of this CME. It is found that the shock structure ahead of the CME could be well observed and identified at 21:24 UT, 21:36 UT and 21:48 UT based on SOHO/LASCO–C2 observations. The orange \(\ast\) symbols in panels (b) – (d) show the shock front at three instants of time, which are defined as \(S_{\text{shock}}\).

A D–H type II radio burst associated with this CME is shown in Figure 5. It started at \(\approx 21:15\) UT. At 21:24 UT, the type II radio burst was very weak and is difficult to identify. The half of the frequency of its harmonic component, which varied from 2.5 MHz to 3.3 MHz, is used as the fundamental frequency. After 21:24 UT, the strength of this D–H type II increased. This radio burst reached its strongest phase near 21:48 UT. At 21:36 UT, the fundamental frequency varied from 1.9 MHz to 2.7 MHz.

Figure 6 shows the electron–density distribution, which is derived from the polarized–brightness image recorded at 14:58 UT. The regions of \(S_{\rho}\) at 21:24 UT and 21:36 UT are indicated by the red color in panels (a) and (b), respectively. Similar to Figure 4, the yellow \(\ast\) symbols indicate \(S_{\text{shock}}\).

The source regions of this type II event at the two instants of time were located in the regions enclosed by the blue rectangles in Figure 6.

The white + symbols in Figure 6 show the boundary of
the streamer as same as the green + in Figure 4(a). It is found that the source regions of this event at different time also located in the shock–streamer interaction regions. It confirms the conclusion that the shock–streamer interaction region might be the source region of a D–H type II radio burst. Seen from the Figure 4(b) and (c), it is found that the interaction between the shock and the streamer may start near 21:24 UT. After that, the shock further interacted with the streamer. During this phase, the observed D–H type II radio burst enhanced continuously as shown in Figure 5. Thus, the increase of the intensity of this radio burst was probably caused by the enhancement of the shock during its interaction with the streamer.

5 Conclusion

In this work, the source regions of two well–observed D–H type II radio bursts are checked based on SOHO/LASCO–C2 and Wind/Waves observations. It is found that the source regions of these two D–H type II radio bursts probably located in the shock–streamer interaction regions, which is the same as the source regions of metric type II radio bursts [Cho et al., 2007, 2008, 2011]. In addition, by analyzing the intensity variation of these two D–H type II radio bursts, we suggest that the shocks were enhanced during their interaction with the streamer. Such enhancement of shocks would increase the intensity of the radio bursts.

These results indicate that the shock–streamer interaction region could also be one of the main source region of the D–H type II radio burst. It should be noted that the background density in a streamer (or the flank of a shock) is quite different from that near the nose of a shock. Thus, to calculate the shock speed based on the frequency drift rate of type II radio burst, a detailed analysis of where a radio burst is generated from should be done first.

As we described in Section 2, the background density obtained from the SOHO/LASCO polarized–brightness image is an important factor in our method. Unfortunately, there is only one polarized image taken each day in each telescope for most period of the SOHO mission. Solar eruptions, especially the large CMEs, would significantly influence the background density. Thus, we choose only the events in which no large CME events occurred between the time of the polarized–brightness image recorded and the type II radio burst. In addition, clear type II radio–burst observations and clear shock signatures in SOHO/LASCO observations are needed in this method. Combined with these selection criteria, the number of events could be studied is limited. In a future work, the method developed by Hayes, Vourlidas, and Howard [2001] could be used to obtain the background electron density based on the total–brightness images, and more events could be studied.

It should be noted that only projection observations were used in this work. Recently, some methods were developed to obtain the CME’s parameters [e.g. Thernisien, Howard, and Vourlidas, 2006; 2007], background electron density in the corona [e.g. Frazin et al., 2010] and the streamer structure [e.g. Morgan and Habbal, 2010] in three–dimensional space. Thus, the three–dimensional source region of the radio burst could be further checked by applying various...
three-dimensional models.

We acknowledge the use the SOHO/LASCO and Wind/Waves observations. The SOHO/LASCO data here are produced by a consortium of the Naval Research Laboratory (USA), Max-Planck-Institut für Aeronomie (Germany), Laboratoire d’Astrophysique de Marseille (France), and the University of Birmingham (UK). SOHO is a mission of international cooperation between ESA and NASA. This work is supported by the CAS Key Research Program (KZZD-EW-01), grants from the 973 key project 2011CB110403, NSFC 41121003, 41274173, 40874075, and 41121003, CAS the 100-talent program, and MOEC 2011J04211001 and the fundamental research funds for the central universities (WK208000031 and WK2080000007).

References

Bale, S.D., Reiner, M.J., Bougeret, J.L., Kaiser, M.L., Krucker, S., Larson, D.E., Lin, R.P.: 1999, The source region of an interplanetary type II radio burst. Geophys. Res. Lett. 26(1), 1573–1576. ADS: 1999GeoRL.26.1573B, DOI: 10.1029/99GL00293

Bougeret, J.-L., Kaiser, M.L., Kellogg, P.J., Manning, R., Goetz, K., Monson, S.J., Monge, N., Freil, L., Meetre, C.A., Perche, C., Sitruk, L., Hoang, S.: 1995, Waves: The Radio and Plasma Wave Investigation on the Wind spacecraft. Space Sci. Rev. 71, 231. ADS: 1995SSRv...71..231B, DOI: 10.1007/BF00751331

Brueckner, G.E., Howard, R.A., Koomen, M.J., Korendyke, C.M., Michels, D.J., Moses, J.D., Socker, D.G., Dere, K.P., Lamy, P.L., Llebaria, A., Bout, M.V., Schwenn, R., Simnett, G.M., Bedford, D.K., Eyles, C.J.: 1995, The Large Angle Spectroscopic Coronagraph (LASCO). Solar Phys. 162, 357. ADS: 1995SoPh..162..357B, DOI: 10.1007/BF00733434

Cho, K.-S., Moon, Y.-J., Dryer, M., Shannugaraju, A., Fry, C.D., Kim, Y.-H., Bong, S.-C., Park, Y.-D.: 2005, Examination of type II origin with SOHO/LASCO observations. J. Geophys. Res. 110(A12), A12101. ADS: 2005JGRA..11012101C, DOI: 10.1029/2004JA010744

Cho, K.-S., Lee, J., Moon, Y.-J., Dryer, M., Bong, S.-C., Kim, Y.-H., Park, Y.D.: 2007, A study of CME and type II shock kinematics based on coronal density measurement. Astron. Astrophys. 461(3), 1121–1125. ADS: 2007A&A...461.1121C, DOI: 10.1051/0004-6361:20064920

Cho, K.-S., Bong, S.-C., Kim, Y.-H., Moon, Y.-J., Dryer, M., Shannugaraju, A., Lee, J., Park, Y.D.: 2008, Low coronal observations of metric type II associated CMEs by MLSO coronameters. Astron. Astrophys. 491(3), 873–882. ADS: 2008A&A...491..873C, DOI: 10.1051/0004-6361:20079013

Cho, K.-S., Bong, S.-C., Moon, Y.-J., Shannugaraju, A., Kwon, R.Y., Park, Y.D.: 2011, Relationship between multiple type II solar radio bursts and CME observed by STEREO/SECCHI. Astron. Astrophys. 530, A16. ADS: 2011A&A...530A..16C, DOI: 10.1051/0004-6361/201015578

Domingo, V., Fleck, B., Poland, A. L.: 1995, The SOHO Mission: an Overview. Solar Phys. 162, 1–2. ADS: 1995SoPh..162....1D, DOI: 10.1007/BF00734255

Dryer, M., Smart, D.: 1984, Dynamical models of coronal transients and interplanetary disturbances. Adv. Space Res. 4(7), 291–301. ADS: 1984AdSpR...4..291D, DOI: 10.1016/0273-1177(84)90200-X

Evans, R.M., Opher, M., Manchester, W.B.I., Gombosi, T.I.: 2008, Alfven Profile in the Lower Corona: Implications for Shock Formation. Astrophys. J. 687(2), 1355–1362. ADS: 2008ApJ...687.1355E, DOI: 10.1086/592016

Feng, L., Inhester, B., Wei, Y., Gan, W.Q., Zhang, T.-L., Wang, M.Y.: 2012a, Morphological Evolution of a Three-dimensional Coronal Mass Ejection Cloud Reconstructed from Three Viewpoints. Astrophys. J. 751, 18. ADS: 2012ApJ...751...18F, DOI: 10.1088/0004-637X/751/1/18

Feng, S.W., Chen, Y., Kong, X.L., Li, G., Song, H.Q., Feng, X.S., Liu, Y.: 2012b, Radio Signatures of Coronal-mass-ejection-Streamer Interaction and Source Diagnostics of Type II Radio Burst. Astrophys. J. 753(1), 21. ADS: 2012ApJ...753...21F, DOI: 10.1088/0004-637X/753/1/21

Frazin, R.A., Lamy, P., Llebaria, A., Vásquez, A.M.: 2010, Three-Dimensional Electron Density from Tomographic Analysis of LASCO-C2 Images of the K-Corona Total Brightness. Solar Phys. 265(1–2), 19–30. ADS: 2010SoPh..265...19F, DOI: 10.1007/s11207-010-9557-9

Fry, C., Dryer, M., Smith, Z., Sun, W., Deehr, C., Akasofu, S.: 2003, Forecasting solar wind structures and shock arrival times using an ensemble of models. J. Geophys. Res. 108(A2), 1070. ADS: 2003JGRA..108.1070F, DOI: 10.1029/2002JA009474

Gopalswamy, N., Kaiser, M.L.: 2002, Solar eruptions and long wavelength radio bursts: The 1997 May 12 event. Adv. Space Res. 29, 307. ADS: 2002AdSpR..29..307G, DOI: 10.1016/S0273-1177(01)00589-0

Hayes, A.P., Vourlidas, A., Howard, R.A.: 2001, Deriving the Electron Density of the Solar Corona from the Inversion of Total Brightness Measurements. Astrophys. J. 548, 1081. ADS: 2001ApJ...548.1081H, DOI: 10.1086/319029

Kong, X.L., Chen, Y., Li, G., Feng, S.W., Song, H.Q., Guo, F., Jiao, F.R.: 2012, A Broken Solar Type II Radio Burst Induced by a Coronal Shock Propagating across the Streamer Boundary. Astrophys. J. 750(2), 158. ADS: 2012ApJ...750..158K, DOI: 10.1088/0004-637X/750/2/158
