Center Problem for the Group of Rectangular Paths

Alexander Brudnyi
Department of Mathematics and Statistics
University of Calgary, Calgary
Canada

Abstract
We solve the center problem for ODEs $\frac{dv}{dx} = \sum_{i=1}^{\infty} a_i(x) v^{i+1}$ such that the first integrals of vectors of their coefficients determine rectangular paths in finite dimensional complex vector spaces.

1. Introduction

1.1. The classical Poincaré Center-Focus problem for planar vector fields

$$\frac{dx}{dt} = -y + F(x, y), \quad \frac{dy}{dt} = x + G(x, y),$$

where F and G are real polynomials of a given degree without constant and linear terms asks about conditions on F and G under which all trajectories of (1.1) situated in a small neighbourhood of $0 \in \mathbb{R}^2$ are closed. It can be reduced passing to polar coordinates $(x, y) = (r \cos \phi, r \sin \phi)$ in (1.1) and expanding the right-hand side of the resulting equation as a series in r (for F, G with sufficiently small coefficients) to the center problem for the ordinary differential equation

$$\frac{dv}{dx} = \sum_{i=1}^{\infty} a_i(x) v^{i+1}, \quad x \in [0, 2\pi],$$

whose coefficients are trigonometric polynomials depending polynomially on the coefficients of F and G.

More generally, consider equation (1.2) with coefficients a_i from the Banach space $L^\infty(I_T)$ of bounded measurable complex-valued functions on $I_T := [0, T]$ equipped with the supremum norm. Condition

$$\sup_{x \in I_T, i \in \mathbb{N}} \sqrt{|a_i(x)|} < \infty$$

2000 Mathematics Subject Classification. Primary 37L10, Secondary 34C07.
Key words and phrases. Center problem, the group of rectangular paths, iterated integrals.
This can be solved by Picard iteration to obtain a solution $F \in \mathcal{L}_X$ whose coefficients in expansion in W we set \tilde{a} so that its end meets 0 and then taking it with the opposite orientation. We say that equation (1.2) determines a center guarantees that (1.2) has Lipschitz solutions on X for all sufficiently small initial values. By X we denote the complex Fréchet space of sequences $a = (a_1, a_2, \ldots)$ satisfying (1.3). We consider the set of paths with the standard operations of multiplication and taking the inverse. Then we introduce similar operations $*$ and $^{-1}$ on X so that the correspondence $a \mapsto \tilde{a}$ is a monomorphism of semigroups.

Let $\mathbb{C}(X_1, X_2, \ldots)$ be the associative algebra with unit I of complex noncommutative polynomials in I and free noncommutative variables X_1, X_2, \ldots (i.e., there are no nontrivial relations between these variables). By $\mathbb{C}(X_1, X_2, \ldots)[[t]]$ we denote the associative algebra of formal power series in t with coefficients from $\mathbb{C}(X_1, X_2, \ldots)$. Also, by $\mathcal{A} \subset \mathbb{C}(X_1, X_2, \ldots)[[t]]$ we denote the subalgebra of series f of the form

$$f = c_0 I + \sum_{n=1}^{\infty} \left(\sum_{i_1 + \cdots + i_k = n} c_{i_1, \ldots, i_k} X_{i_1} \cdots X_{i_k} \right) t^n$$

with $c_0, c_{i_1, \ldots, i_k} \in \mathbb{C}$ for all $i_1, \ldots, i_k, k \in \mathbb{N}$.

By $G \subset \mathcal{A}$ we denote the closed subset of elements f of form (1.4) with $c_0 = 1$. We equip \mathcal{A} with the adic topology determined by powers of the ideal $\mathcal{I} \subset \mathcal{A}$ of elements of form (1.4) with $c_0 = 0$. Then (G, \cdot) is a topological group. Its Lie algebra $\mathcal{L}_G \subset \mathcal{A}$ is the vector space of elements of form (1.4) with $c_0 = 0$; here for $f, g \in \mathcal{L}_G$ their product is defined by the formula $[f, g] := f \cdot g - g \cdot f$. Also, the map $\exp : \mathcal{L}_G \to G$, $\exp(f) := e^f = \sum_{n=0}^{\infty} \frac{f^n}{n!}$, is a homeomorphism.

For an element $a = (a_1, a_2, \ldots) \in X$ consider the equation

$$F'(x) = \left(\sum_{i=1}^{\infty} a_i(x) X_i t^i \right) F(x), \quad x \in I_T.$$

This can be solved by Picard iteration to obtain a solution $F_a : I_T \to G$, $F_a(0) = I$, whose coefficients in expansion in X_1, X_2, \ldots and t are Lipschitz functions on I_T. We set

$$E(a) := F_a(T), \quad a \in X.$$

The product of paths $\tilde{a} \circ \tilde{b}$ is the path obtained by translating \tilde{a} so that its beginning meets the end of \tilde{b} and then forming the composite path. Similarly, \tilde{a}^{-1} is the path obtained by translating \tilde{a} so that its end meets 0 and then taking it with the opposite orientation.
Then
\[E(a \ast b) = E(a) \cdot E(b), \quad a, b \in X. \] (1.7)

An explicit calculation leads to the formula
\[E(a) = I + \sum_{n=1}^{\infty} \left(\sum_{i_1 + \cdots + i_k = n} I_{i_1, \ldots, i_k}(a) X_{i_1} \cdots X_{i_k} \right) t^n \] (1.8)

where
\[I_{i_1, \ldots, i_k}(a) := \int \cdots \int_{0 \leq s_1 \leq \cdots \leq s_k \leq T} a_{i_k}(s_k) \cdots a_{i_1}(s_1) \, ds_k \cdots ds_1 \] (1.9)

are basic iterated integrals on \(X \).

The kernel of the homomorphism \(E : X \to G \) is called the set of universal centers of equation (1.2) and is denoted by \(U \). The elements of \(U \) are of a topological nature, see [Br1] for their description. The set of equivalence classes \(G(X) := X/\sim \) with respect to the equivalence relation \(a \sim b \iff a \ast b^{-1} \in U \) has the structure of a group so that the factor-map \(\pi : X \to G(X) \) is an epimorphism of semigroups. Moreover, for each function \(I_{i_1, \ldots, i_k} \) on \(X \) there exists a function \(\hat{I}_{i_1, \ldots, i_k} \) on \(G(X) \) such that \(\hat{I}_{i_1, \ldots, i_k} \circ \pi = I_{i_1, \ldots, i_k} \). In particular, there exists a monomorphism of groups \(\hat{E} : G(X) \to G \) defined by \(E = \hat{E} \circ \pi \), i.e.,
\[\hat{E}(g) = I + \sum_{n=1}^{\infty} \left(\sum_{i_1 + \cdots + i_k = n} \hat{I}_{i_1, \ldots, i_k}(g) X_{i_1} \cdots X_{i_k} \right) t^n, \quad g \in G(X). \] (1.10)

We equip \(G(X) \) with the weakest topology in which all functions \(\hat{I}_{i_1, \ldots, i_k} \) are continuous. Then \(G(X) \) is a topological group and \(\hat{E} \) is a continuous embedding. The completion of the image \(\hat{E}(G(X)) \subset A \) is called the group of formal paths in \(C^\infty \) and is denoted by \(G_f(X) \). The group \(G_f(X) \) is defined by the Reeh shuffle relations for the iterated integrals. Its Lie algebra \(\mathcal{L}_{Lie} \) consists of all Lie elements of \(A \), see [Br2] for details.

Let \(G[[r]] \) be the set of formal complex power series \(f(r) = r + \sum_{i=1}^{\infty} d_i r^{i+1} \). Let \(d_i : G[[r]] \to \mathbb{C} \) be such that \(d_i(f) \) is the \((i+1)\)st coefficient in the series expansion of \(f \). We equip \(G[[r]] \) with the weakest topology in which all \(d_i \) are continuous functions and consider the multiplication \(\circ \) on \(G[[r]] \) defined by the composition of series. Then \(G[[r]] \) is a separable topological group. By \(G_c[[r]] \subset G[[r]] \) we denote the subgroup of power series locally convergent near 0 equipped with the induced topology. Next, we define the map \(P : X \to G[[r]] \) by the formula
\[P(a)(r) := r + \sum_{i=1}^{\infty} \left(\sum_{i_1 + \cdots + i_k = i} p_{i_1, \ldots, i_k}(i) \cdot I_{i_1, \ldots, i_k}(a) \right) r^{i+1} \] (1.11)

where
\[p_{i_1, \ldots, i_k}(t) := (t - i_1 + 1)(t - i_1 - i_2 + 1) \cdots (t - i + 1). \]

Then \(P(a \ast b) = P(a) \circ P(b) \) and \(P(X) = G_c[[r]] \). Moreover, let \(v(x; r; a) \), \(x \in I_T \), be the Lipschitz solution of equation (1.2) with initial value \(v(0; r; a) = r \). Clearly for
every \(x \in I_T \) we have \(v(x; r; a) \in G_e[[r]] \). It is shown in [Br1] that \(P(a) = v(T; \cdot; a) \) (i.e., \(P(a) \) is the first return map of (1.2)). In particular, we have

\[
a \in \mathcal{C} \iff \sum_{i_1, \ldots, i_k = i} p_{i_1, \ldots, i_k}(i) \cdot I_{i_1, \ldots, i_k}(a) \equiv 0 \quad \text{for all} \quad i \in \mathbb{N}. \quad (1.12)
\]

Equation (1.11) implies that there exists a continuous homomorphism of groups \(\hat{P} : G(X) \rightarrow G[[r]] \) such that \(P = \hat{P} \circ \pi \). Identifying \(G(X) \) with its image under \(\hat{E} \) we extend \(\hat{P} \) by continuity to \(G_f(X) \) retaining the same symbol for the extension.

We set \(\hat{\mathcal{C}} := \pi(\mathcal{C}) \) and define \(\hat{\mathcal{C}}_f \) as the completion of \(\hat{E}(\hat{\mathcal{C}}) \). Then \(\hat{\mathcal{C}}_f \) coincides with the kernel of the homomorphism \(\hat{P} \). The groups \(\hat{\mathcal{C}} \) and \(\hat{\mathcal{C}}_f \) are called the groups of centers and formal centers of equation (1.2).

It was established in [Br1], [Br2] that

\[
\gamma_{i_1, \ldots, i_k} \cdot c_{i_1, \ldots, i_k} = 0 \quad \text{for all} \quad n \in \mathbb{N} \quad \text{where} \quad \gamma_n = 1 \quad \text{and} \quad \gamma_n = 1 \quad \text{and} \quad (1.14)
\]

such that

\[
\sum_{i_1, \ldots, i_k = n} c_{i_1, \ldots, i_k} \cdot \gamma_{i_1, \ldots, i_k} = 0 \quad \text{for all} \quad n \in \mathbb{N} \quad \text{where} \quad \gamma_n = 1 \quad \text{and} \quad \gamma_n = 1 \quad \text{and} \quad (1.14)
\]

In particular, the map \(\exp: \mathcal{L}_{\hat{\mathcal{C}}_f} \rightarrow \hat{\mathcal{C}}_f \) is a homeomorphism.

2. Main results

2.1. Consider elements \(g \in G_f(X) \) of the form

\[
g = e^h \quad \text{where} \quad h = \sum_{i=1}^{\infty} c_i X_i t^i, \quad c_i \in \mathbb{C}, \quad i \in \mathbb{N}. \quad (2.1)
\]

By \(PL \subset G_f(X) \) we denote the group generated by all such \(g \). It is called the group of piecewise linear paths in \(C^\infty \). It was shown in [Br2, Proposition 3.14] that the

\[\text{This reflects the fact that the first integrals of the vectors of coefficients of formal equations (1.2) corresponding to elements of } PL \text{ are piecewise linear paths in } C^\infty.\]
group $\hat{C}_{PL} := PL \cap \hat{C}_f$ of piecewise linear centers is dense in \hat{C}_f. It was also asked about the structure of the set of centers represented by piecewise linear paths in \mathbb{C}^n (i.e., represented by products of elements of form (2.1) with all $c_i = 0$ for $i > n$). In this paper we solve this problem for the group of rectangular paths.

2.2. Let $X_{rect} \subset X$ be a semigroup generated by elements $a \in X$ whose first integrals \tilde{a} are rectangular paths in \mathbb{C}^∞ consisting of finitely many segments parallel to the coordinate axes. The image of X_{rect} under homomorphism E is called the group of rectangular paths and is denoted by $G(X_{rect})$. Clearly, $G(X_{rect}) \subset PL$. It is generated by elements $e^{(a_n T)}X_n t^n \in G_f(X)$, $a_n \in \mathbb{C}$, $n \in \mathbb{N}$. Since there are no nontrivial relations between these elements (with $a_n \neq 0$), the group $G(X_{rect})$ is isomorphic to the free product of countably many copies of \mathbb{C}. Also, the group $G(X_{rect}) \subset G(X)$ is dense in $G_f(X)$ and the elements $X_n t^n$, $n \in \mathbb{N}$, form a generating subset of the Lie algebra L_{Lie}, see [Br2]. Moreover, for each $g \in G(X_{rect})$ the first return map $\hat{P}(g) \in G_c[[r]]$ can be explicitly computed and represents an algebraic function. Specifically, for the equation

$$\frac{dv}{dx} = a_n v^{n+1} \quad (2.2)$$

corresponding to the element $g_n := e^{(a_n T)}X_n t^n$ an explicit calculation shows that its first return map is given by the formula

$$\hat{P}(g_n)(r) := \frac{r}{\sqrt{1 - na_n Tr^n}} = r + \sum_{j=1}^{\infty} \frac{(-1)^j(n(j-1)+1)(n(j-2)+1)\cdots1}{j!} (a_n T)^j r^{nj+1}. \quad (2.3)$$

Here $\sqrt[\cdot]{r} : \mathbb{C} \setminus (-\infty, 0] \to \mathbb{C}$ stands for the principal branch of the power function. Then for a generic $g \in G(X_{rect})$, the first return map $\hat{P}(g)$ is the composition of series of form (2.3).

Our main result is

Theorem 2.1. The restriction $\hat{P}|_{G(X_{rect})} : G(X_{rect}) \to G_c[[r]]$ is a monomorphism. In particular, $\hat{C} \cap G(X_{rect}) = \{1\}$ and $\mathcal{C} \cap X_{rect} \subset U$. Moreover, $\mathcal{C} \cap X_{rect}$ consists of elements $a \in X_{rect}$ such that their first integrals $\tilde{a} : [0, T] \to \mathbb{C}^\infty$ are rectangular paths modulo cancellations\footnote{i.e., forgetting sub-paths of a given path consisting of a segment and then immediately of the same segment going in the opposite direction.} representing the constant path $[0, T] \to (0, 0, \ldots) \in \mathbb{C}^\infty$.

Proof. The proof of Theorem 2.1 is based on the deep result of S. Cohen [C].

Consider an irreducible word $g = g_k \cdots g_k \in G(X_{rect})$ where $g_k := e^{(a_k T)}X_k t^{k_k}$ and $a_k \in \mathbb{C}^* := \mathbb{C} \setminus \{0\}$. We must show that $\hat{P}(g) = \hat{P}(g_k) \circ \cdots \circ \hat{P}(g_k) \neq 1$; here 1 is the unit of the group $G_c[[r]]$. Assume, on the contrary, that $\hat{P}(g) = 1$. Then
from equation (2.3) for all \(r \in \mathbb{C} \) sufficiently close to 0 we obtain

\[
\hat{P}(g)(r) = \left(\prod \left(1 + b_{k_i} r^{k_i} \right)^{\frac{k_{i-1}}{k_i}} + b_{k_{i-1}} r^{k_{i-1}} + \cdots \right)^{\frac{k_1}{k_2}} \frac{1}{r^{\frac{1}{k_1}}}.
\] (2.4)

Here we set \(b_{k_i} := -k_i a_k T \).

Making the substitution \(t = \frac{1}{r} \) from equations \(\hat{P}(g) = 1 \) and (2.4) we get for all sufficiently large positive \(t \)

\[
\left(\prod \left(t^{k_i} + b_{k_i} \right)^{\frac{k_{i-1}}{k_i}} + b_{k_{i-1}} t^{k_{i-1}} + \cdots \right)^{\frac{k_1}{k_2}} + b_{k_1} \right) \frac{1}{t^{\frac{1}{k_1}}} = t
\] (2.5)

Here from the irreducibility of \(g \) we obtain that \(k_i \neq k_{i+1} \) for all \(1 \leq i \leq l - 1 \).

Consider the multi-valued algebraic function over \(\mathbb{C} \) defined by the left-hand side of equation (2.5). Then there exist a connected Riemann surface \(S \), a finite surjective holomorphic map \(\pi : S \to \mathbb{C} \) and a (single-valued) holomorphic function \(f \) defined on \(S \) such that the pullback by \(\pi^{-1} \) of the restriction of \(f \) to a suitable open subset of \(S \) corresponds to the branch of the original function satisfying (2.5) defined on an open subset of \(\mathbb{C} \) containing a ray \([R, \infty)\) for \(R \) sufficiently large. Equation (2.5) implies that \(f \) coincides with the pullback \(\pi^* z \) of the function \(z \) on \(\mathbb{C} \).

Let \(P \) be the abelian group of maps \(\mathbb{C} \to \mathbb{C} \) generated by \(\{ x \mapsto x^p ; p \in \mathbb{N} \} \). Then there exist a connected Riemann surface \(S \), a finite surjective holomorphic map \(\pi : S \to \mathbb{C} \) and a (single-valued) holomorphic function \(f \) defined on \(S \) such that the pullback by \(\pi^{-1} \) of the restriction of \(f \) to a suitable open subset of \(S \) corresponds to the branch of the original function satisfying (2.5) defined on an open subset of \(\mathbb{C} \) containing a ray \([R, \infty)\) for \(R \) sufficiently large. Equation (2.5) implies that \(f \) coincides with the pullback \(\pi^* z \) of the function \(z \) on \(\mathbb{C} \).

Let \(T_{\mathbb{C}} \) be the abelian group of the maps \(\{ x \mapsto x + a ; a \in \mathbb{C} \} \). Then Theorem 1.5 of [C] states that the group of complex maps of \(\mathbb{C} \) generated by \(P \) and \(T_{\mathbb{C}} \) is their free product \(P \ast T_{\mathbb{C}} \).

Next, the function \(h : \mathbb{C} \to \mathbb{C} \) defined by the left-hand side of (2.5) belongs to the group generated by \(P \) and \(T_{\mathbb{C}} \) (in the definition of \(h \) we define the fractional powers as in the above cited theorem). In turn, by the definition of \(S \) there exists a subset \(U \) of \(S \) such that \(\pi : U \to \mathbb{C} \) is a bijection and \(f \circ (\pi|_U)^{-1} = h \). Since \(f = \pi^* z \), the latter implies that \(h(t) = t \) for all \(t \in \mathbb{C} \). But according to our assumptions the word in \(P \ast T_{\mathbb{C}} \) representing \(h \) is irreducible. Thus it cannot be equal to the unit element of this group.

This contradiction shows that \(\hat{P}(g) \neq 1 \) and proves the first statement of the theorem.

The other statements follow straightforwardly from the corresponding definitions. We leave the details to the reader.

Remark 2.2. Theorem 2.1 implies that \(G[[r]] \) contains a dense subgroup isomorphic to the free product of countably many copies of \(\mathbb{C} \) generated by series of form (2.3).
In fact, the subgroup of \(G[[r]] \) generated by series of form (2.3) with \(n = 1 \) and \(n = 2 \) only is already dense in \(G[[r]] \). It follows, e.g., from [Br2, Proposition 3.11].

2.3. Let \(a \in X_{rect} \) be such that \(\hat{E}(\pi(a)) = e^{a_{k_1}X_{k_1}t^{k_1}} \cdots e^{a_{k_l}X_{k_l}t^{k_l}} \in G_f(X) \) for some \(a_{k_1}, \ldots, a_{k_l} \in \mathbb{C} \), i.e., the path \(\tilde{a} : [0, T] \to \mathbb{C}^\infty \) consists of \(l \) segments parallel to the coordinate axes \(z_{k_1}, \ldots, z_{k_l} \) of \(\mathbb{C}^\infty \). Considering \(a_{k_1}, \ldots, a_{k_l} \) as complex variables in \(\mathbb{C}^l \) we obtain a family \(\mathcal{F} \) of rectangular paths. The first return maps \(\hat{P}(a) \) of elements of \(\mathcal{F} \) can be computed by expanding the functions \(e^{a_{k_1}X_{k_1}t^{k_1}} \cdots e^{a_{k_l}X_{k_l}t^{k_l}} \) in infinite series in variables \(X_{k_i}t^{k_s} \), \(1 \leq s \leq l \), then replacing each \(X_{k_i} \) by \(DL^{k_i-1} \) where \(D \) and \(L \) are the differentiation and the left translation in the algebra of formal power series \(\mathbb{C}[[z]] \), and then evaluating the resulting series in \(D, L, t \) at elements \(z^p \), see [Br1] for similar arguments. As a result we obtain (with \(t \) substituted for \(r \))

\[
\hat{P}(a)(r) = r + \sum_{i=1}^{\infty} \left(\sum_{k_1s_1 + \cdots + k_is_i = i} q_{k_1; s_1, \ldots, k_is_i}(i) \frac{a_{k_1}^{s_1}}{s_1!} \cdots \frac{a_{k_i}^{s_i}}{s_i!} \right) r^{i+1}
\]

(2.6)

(here we set for convenience \(s_0k_0 := 0 \)).

By \(c_i(a_{k_1}, \ldots, a_{k_l}) \) we denote the coefficient at \(r^{i+1} \) of \(\hat{P}(a) \). It is a holomorphic polynomial on \(\mathbb{C}^l \). The center set \(C \) of equations (1.2) corresponding to the family \(\mathcal{F} \) is the intersection of sets of zeros \(\{ (a_{k_1}, \ldots, a_{k_l}) \in \mathbb{C}^l; c_i(a_{k_1}, \ldots, a_{k_l}) = 0 \} \) of all polynomials \(c_i \). According to Theorem 2.1 \((a_{k_1}, \ldots, a_{k_l}) \in C \) if and only if the word \(e^{a_{k_1}t^{k_1}X_{k_1}} \cdots e^{a_{k_l}t^{k_l}X_{k_l}} = I \) in \(\mathcal{A} \). Since the groups generated by elements \(e^{a_{k_{p_1}}t^{p_1}X_{k_{p_1}}} \cdots e^{a_{k_{p_m}}t^{p_m}X_{k_{p_m}}} \) with mutually distinct \(X_{k_{p_j}} \) and nonzero numbers \(a_{k_{p_j}} \) are free, the last equation implies that \(C \) is the union of finitely many complex subspaces of \(\mathbb{C}^l \). (For instance, if all \(k_j \) are mutually distinct, then \(C = \{ 0 \} \subset \mathbb{C}^l \).

Our next result gives an effective bound on the number of coefficients in (2.6) determining the center set \(C \).

Theorem 2.3. The set \(C \subset \mathbb{C}^l \) is determined by equations \(c_1 = 0, \ldots, c_{d+1} = 0 \) where

\[
d := \prod_{i=1}^{l-1} \frac{k_i}{\gcd(k_i, k_{i+1})}
\]

(here \(\gcd(n, m) \) is the greatest common divisor of natural numbers \(n \) and \(m \)).

Proof. Since \(c_i(z^{k_1a_{k_1}}, \ldots, z^{k_la_{k_l}}) = z^i c_i(a_{k_1}, \ldots, a_{k_l}) \), \(i \in \mathbb{N} \), it suffices to prove that \(C \cap B \) where \(B \subset \mathbb{C}^l \) is the open unit Euclidean ball is determined by equations \(c_1 = 0, \ldots, c_{d+1} = 0 \).

Next, there exists a positive number \(R \) such that for each \((a_{k_1}, \ldots, a_{k_l}) \in B \) the first return map \(\hat{P}(a) \) given by (2.6) determines a holomorphic function on \(\mathbb{D}_R := \{ z \in \mathbb{C}; |z| < R \} \). On the other hand, according to (2.3), \(\hat{P}(a) \) is the composite of algebraic functions. Now, from formula (2.4) we obtain straightforwardly that
equation $f(a)(r) = c$, $f(a)(r) := \frac{R(a)(r) - r}{r}$, has at most d complex roots in \mathbb{D}_R (counted with their multiplicities), i.e., the valency of $f(a)$ on \mathbb{D}_R is at most d. From here and the result of Hayman [H, Theorem 2.3] we obtain

$$\sup_{r \in \mathbb{D}_R^2} |f(a)(r)| \leq e^{\frac{1+\pi^2}{2}} \cdot \frac{R^{d+1} - 1}{R - 1} \cdot \max_{1 \leq k \leq d+1} |c_k(a_k, \ldots, a_k)|. \quad (2.7)$$

This implies that if $c_1(a_k, \ldots, a_k) = \cdots = c_{d+1}(a_k, \ldots, a_k) = 0$, then $f(a) \equiv 0$, i.e., $(a_k, \ldots, a_k) \in \mathcal{C}$.

The proof is complete. \qed

Remark 2.4. It follows from equations $c_i(z^k a_k, \ldots, z^l a_l) = z^i c_i(a_k, \ldots, a_k)$, $i \in \mathbb{N}$, inequality (2.7) and the Cauchy integral formula for derivatives of $f(a)$ that for any $k \in \mathbb{N}$ and all $\lambda \in \mathbb{C}^l$

$$|c_{d+1+k}(\lambda)| \leq e^{\frac{1+\pi^2}{2}} \cdot \frac{R^{d+1} - 1}{R - 1} \cdot \left(\frac{2\sqrt{l}}{R}\right)^{d+k} \cdot (1 + \|\lambda\|_2)^{d+k} \cdot \max_{1 \leq k \leq d+1} |c_k(\lambda)|$$

where $\| \cdot \|_2$ is the Euclidean norm on \mathbb{C}^l.

This and Proposition 1.1 of [HRT] imply that each polynomial c_{d+1+k} belongs to the integral closure \mathcal{T} of the polynomial ideal \mathcal{I} generated by c_1, \ldots, c_{d+1}.

An interesting question is: in which cases $\mathcal{T} = \mathcal{I}$? (If this is true, then the (Bautin) polynomial ideal generated by all polynomials c_i is, in fact, generated by c_1, \ldots, c_{d+1}.)

References

[Br1] A. Brudnyi, On the center problem for ordinary differential equations, Amer. J. Math., 128 no. 2 (2006), 419-451.

[Br2] A. Brudnyi, Formal paths, iterated integrals and the center problem for ODEs, Bull. sci. Math. 132 (2008), 455-485.

[C] S. D. Cohen, The group of translations and positive rational powers is free, Quart. J. Math. Oxford (2) 46 (1995), 21-93.

[H] W. K. Hayman, Multivalent Functions, 2nd edition, Cambridge U. Press, 1994.

[HRT] H. Hauser, J.-J. Risler, and B. Teissier, The reduced Bautin index of planar vector fields, Duke Math. J. 100 (3) (1999), 425-445.