Clinical study to assess the outcome in surgically managed patients of spontaneous intracerebral hemorrhage

Yashwanth S. Sandeep, M. Raja Guru, Ranjan Kumar Jena, Veldurti Ananta Kiran Kumar, Amit Agrawal

Departments of Neurosurgery and Neurology, Narayana Medical College and Hospital, Nellore, Andhra Pradesh, India

Address for correspondence: Dr. Amit Agrawal, Department of Neurosurgery, Narayana Medical College and Hospital, Chinthareddypalem, Nellore - 524 003, Andhra Pradesh, India. E-mail: dramitagrawal@gmail.com

ABSTRACT

Introduction: Spontaneous intracerebral hemorrhage (SICH) subtype of stroke is characterized by bleeding into brain parenchyma which is not accompanied by trauma. Emergency surgical evacuation of large size SICH increases the chances of survival but does not help in functional recovery of the patients. The present study was conducted to assess the outcome of surgical management in patients with SICH.

Materials and Methods: All patients who were diagnosed with SICH and underwent surgical evacuation of the hematoma included in the study. The outcome at 1 month was obtained through follow-up visits/telephonic interview when the former is not available. The primary outcome measure was in hospital mortality/condition at the time of discharge/neurological deficit/modified Rankin Scale (mRS) at 1 month follow-up.

Results: Out of 87 patients, 49 patients (63%) were male and 38 patients (37%) were females, male to female ratio was 1.2:0.8. Nearly 42% patient had systolic blood pressure with in normal range; however, in almost 50% of the cases, the systolic blood pressure at the time of admission was more than 140 mmHg. mRS was assessed for the patients at the time of admission, 39% patients had slight disability, 15% patients had moderate disability, 11% patients had moderately severe disability, and 33% patients had severe disability. Mortality was relatively higher in patients who had admission systolic blood pressure more than 140 mmHg (51% vs. 43%). mRS was assessed for the patients at the time of discharge after completion surgery and the severity of scale.

Conclusions: Hypertension was found to be most common comorbid illness followed by smoking, alcohol intake, and diabetes mellitus. Hematoma was evacuated in 58% of the cases; it was supplement with decompressive craniectomy in 12% of the cases. Morality was relatively higher in patients who had admission systolic blood pressure more than 140 mmHg. Mortality was highest in <40 years age group in age group of 40–65 years, the mortality was 30.6%, and in >65 years age group, mortality was 15.4%; however, this was not statistically significant. Only 10% of patients can recover and live independently at 1 month, and only 20% of the survivors were independent at 6 months.

Key Words: Cerebrovascular accident, spontaneous intracerebral hematoma, stroke

INTRODUCTION

Stroke is categorized into two major subtypes, i.e., ischemic and hemorrhagic and is one of the major causes of morbidity and mortality globally.1 Spontaneous intracerebral hemorrhage (SICH) subtype of stroke is characterized by bleeding into brain parenchyma which
is not accompanied by trauma. In spite of the advances in the treatment the mortality from SICH in all the regions of the world remains high, the mortality with ICH at 30 days ranging from 13% to 61%. Those who survive the acute episode suffer from significant morbidity and face the risk of lifelong disability and significant increase in personnel, social, and health-care costs. The decision for surgical intervention depends on various clinical and radiological characteristics including age, level of consciousness, degree of hypertension, hematoma volume, extent of peripheral edema, midline shift, and any presence of intraventricular spread. Various studies have attempted to identify the risk factors related to a favorable functional outcome in patients who suffer from SICH. For moderate to large size spontaneous lobar hematomas, particularly in young patient who shows neurological deterioration surgical evacuation is recommended. Although the emergency surgical evacuation of large size SICH increases the chances of survival does not help in functional recovery of the patients. The present study was conducted to assess the outcome of surgical management in patients with SICH.

MATERIALS AND METHODS

The present study was conducted in the Department of Neurosurgery, Narayana medical college, Nellore (Andhra Pradesh). The duration of study was from October 1, 2014 to October 31, 2016 including 1 month follow-up period. All patients who were diagnosed with SICH and underwent surgical evacuation of the hematoma included in the study. The study was approved by the Institutional Ethical Committee. The informed consent was obtained from patients close relatives. The inclusion criteria were evidence of SICH on computed tomography scan, Glasgow coma scale (GCS) score 5/15 or more, and the volume of hematoma >20 ml for supratentorial bleed and 10 ml for posterior fossa bleed. The patients with suspected aneurysmal bleed, arteriovenous malformation bleed, ICH secondary to trauma, time of ictus >48 h, and patients with incomplete reversal of anticoagulation were excluded. The patient’s epidemiological data/history/findings/imaging/operative data/postoperative complications and condition at discharge were collected. The patients were considered for surgical indication if the size of the lobar clots was >30 ml and within 1 cm of the surface, evacuation of supratentorial ICH and in case infratentorial bleed 15 ml of blood clot with mass effect (or size >3 cm). In cases of deep-seated lesions, the surgery was considered when the lesion was of a large size, and the clot was coming near to cortical surface. External ventricular drainage was considered in patients with intraventricular extension of hematoma causing hydrocephalus and progressively deteriorating the level of consciousness. The outcome at 1 month was obtained through follow-up visits/telephonic interview, when the former is not available. Neurological and functional outcome of the patient on discharge and 1 month after was evaluated using the Glasgow outcome scale (GOS). The scale comprised five categories as follows: death, vegetative state, severe disability, moderate disability, and good recovery. For the purpose of this analysis, we divided the outcome into favorable (moderate disability or good recovery) and unfavorable (dead, vegetative state, or severe disability). The primary outcome measure was in hospital mortality/condition at the time of discharge/neurological deficit/GOS at 1 month follow-up.

RESULTS

Out of 87 patients, 49 patients (63%) were males and 38 patients (37%) were females, male to female ratio was 1.2:0.8. The mean age of the patients was 51.5 years (minimum 8 years, maximum 80 years, standard deviation ± 12.6 years). Majority of the patients who presented with SICH were in fourth to seventh decade (63 cases), one patient was <10 years of age. The most common clinical features were weakness of arms and legs (81% cases) and loss of consciousness (81% cases). This was followed by vomiting in 34% patients, speech disturbances in 26% patients, other symptoms were headache (23%), and seizures 7%. Table 1. One patient was complaining of vertigo and three patients had history of ear bleed (as there was history of fall). The pulse rate was within normal range in the majority of the cases (82% cases), two patients had bradycardia, and 7 patients had pulse rate more than 100/min. Forty-two percentage patients had systolic blood pressure with in normal range, however, in almost 50% of the cases the systolic blood pressure at the time of admission was more than 140 mmHg. Out of 87 patients, 36 (40%) patients were having hypertension followed by 17 (19%) patients having smoking habit, 16 (18%) patients were having alcohol intake habit, and 6 patients had history of diabetes mellitus. Out of 80 patients, GCS score is recorded, in which 9–12 moderate score is recorded in most of the patient and followed by 3–8 mild. Modified ranking scale (mRS) was assessed for the patients at the time of admission, 39% patients had slight disability.

Table 1: Clinical presentation	Yes (%)
Weakness arm	73 (81)
Weakness leg	73 (81)
Loss of consciousness	72 (80)
Vomiting	31 (34)
Speech disturbances	23 (26)
Headache	21 (23)
Seizure	6 (7)
Weakness facial	2 (2)
Facial paresthesia	1 (1)
Visual disturbances	1 (1)
Vertigo	1 (1)
15% patients had moderate disability, 11% patients had moderately severe disability, and 33% patients had severe disability [Table 2]. In 79 cases, the hematoma was mainly located in the supratentorial compartment, and in 11 cases, the location was infratentorial (in 7 cases cerebellar hemisphere and in four cases cerebellar vermis). In 58 cases (64%), the hematoma was involving thalamus, 24% cases basal ganglion; in 29% cases, it was extending into the temporal lobe and in 23% cases, it was involving the parietal lobe. In 13% cases, the hematomas were extending into the occipital lobe. Mass effect was present 51% of the cases, midline shift was present in 86% of the cases, 30% patients had intraventricular extension of the hemorrhage, and there was associated hydrocephalus in 82% cases [Table 3]. Conservative management included placement of indwelling urinary catheter in all the cases, mechanical ventilation, placement of nasogastric tube (which was used to provide enteral nutrition), colloids in 48% of the cases, and blood transfusion in 7% cases. Hematoma was evacuated in 58% of the cases, it was supplement with decompressive craniectomy in 12% of the cases, external ventricular drainage was performed in 34% of the cases, and lax duroplasty was performed in 7% of the cases. mRS was assessed for the patients at the time of discharge after completion surgery, and the severity of scale. Out of ninety patients, one male patient had slight disability, 33 patients were assessed as moderately disability out of which male patients were 16 and female patients were 17, 11 patients were assessed with moderately severe disability male were seven and female were four.4 patients were assessed with severe disability, out of which male patients were four and female patients were one, 27 patients were dead, out of which male were 19 and female were 8 [Table 4]. Out of 88 patients, 24 patients had been stayed in hospital for <10 days, out of which 16% were female patients and 11% were male patients. Thirty-four patients had in hospital between 10 and 19 days, out of which 12% are female patients and 25% are male patients. The duration of hospital was not significantly associated with the gender of the patients. Seventeen patients stayed in hospital between 20 and 29 days, out of which 6% were female patients and 11% were male patients. Seven patients stayed in hospital between 30 and 40 days, out of which 5% were female patients and 3% are male patients, and six patients stayed in hospital for >40 days, out of which 42% were female patients and 58% were male patients. The duration of the hospital stay was significantly associated with the outcome of the patients. Based on the admission, GCS mortality was 50% in mild-to-moderate severity cases; however, the mortality was 68.9% of the patients who had admission GCS <8. This was statistically significant. Although the number was less, the mortality was highest in <40 years age group (38.4%). In age group of 40–65 years, the mortality was 30.6% and in >65 years age group mortality was 15.4%. However, this was not statistically significant. More than half (51%) of the patients had systolic blood pressure more than 140 mmHg at the time of admission, 28% in mild GCS category, 18% in moderate GCS category, and 3% in poor GCS category, respectively. However, the difference was not statically different. Mortality was relatively higher in patients who had admission systolic blood pressure more than 140 mmHg (51% vs. 43%).

DISCUSSION

Stroke (i.e., ischemic and hemorrhagic) is one of the leading causes of morbidity and mortality in adults globally.\[9,21,22\] In the literature, the incidence is being described more in elderly population, and the Asian population is highest risk of developing SICH (120/100,000 in Japan).\[23\] In the present study, we found that the mean age of the patients was 51.5 years, and this is in agreement with the literature where the incidence was more in fourth to seventh decades of life (70% of the cases). We also found that the incidence was relative more in males than females (male:female: 1.2:0.8).
Sudden onset of a focal neurological deficit that may progress over a period is the most common mode of presentation in patients with SICH which can be associated with headache, nausea, vomiting, altered consciousness, and rise in blood pressure. In the present study, the common clinical features at the time of presentation were weakness of arms and legs (81% cases) and loss of consciousness (81% cases). In one study, Magistris et al. reported the incidence of acute onset of symptoms in 96% cases, occurrence of the upper limb weakness in 63% cases, leg weakness in 54% cases, speech disturbances in 53% cases, facial weakness in 23%, limb paresthesia in 20% cases, visual disturbances in 11% cases, facial paresthesia in 9% cases, vertigo in 6% of cases, impaired limb coordination in 5% of cases, and seizures in 1% of the cases. In one more study, it has been reported that in up to 50% patients with SICH, there may be early decrease in the level of consciousness. Other symptoms with which the patients presented in the present study were vomiting (34%), speech disturbances (26%), headache (23%), and seizures (7%). One patient was complaining of vertigo, and three patients had history of ear bleed (as there was history of fall).

Hypertension has been identified as the most important modifiable risk factors associated with increased risk of SICH (seen in up to 60% of the cases). It is hypothesized that high arterial blood pressure at the time of admission would promote initial hematoma expansion resulting in increased hydrostatic forces leading to greater total hematoma volume and greater surrounding edema and raised intracranial pressure. In the present study, 40% of the patients had history of hypertension, and at the time of admission, almost 50% patients had systolic blood pressure more than >140 mmHg. Other reported risk factors were smoking (19%), habit of alcohol intake (18%), and diabetes mellitus (6 cases). Conservative management included placement of indwelling urinary catheter in all the cases, mechanical ventilation, placement of nasogastric tube (which was used to provide enteral nutrition), colloids in 48% of the cases, and blood transfusion in 7% cases. Hematoma was evacuated in 58% of the cases, it was supplement with decompressive craniectomy in 12% of the cases, external ventricular drainage was performed in 34% of the cases, and lax duroplasty was performed in 7% of the cases. The maintenance of optimal blood pressure will require that the blood pressure should be reduced to premorbid levels and if it is not known, then it should be reduced by 20% approximately.

It has been suggested that the surgical evacuation of the hematoma shall help in recovery of the function penumbra area around an ICH. In 79 cases, the hematoma was mainly located in the supratentorial compartment, and in 11 cases, the location was infratentorial (in seven cases cerebellar hemisphere and in four cases cerebellar vermis). In 58 cases (64%), the hematoma was involving thalamus, 24% cases basal ganglion, in 29% cases, it was extending into the temporal lobe and in 23% cases, it was involving the parietal lobe. In 13% cases, the hematomas were extending into the occipital lobe. Mass effect was present in 51% of the cases, midline shift was present in 86% of the cases, 30% patients had intraventricular extension of the hemorrhage, and there was associated hydrocephalus in 82% cases. We used standard craniotomy and evacuation of the hematoma in large lesions and placement of the intraventricular catheter in cases of intraventricular hemorrhage.

The reported mortality rate at 30 days varies from 13% to 61% in patients who develop SICH and approximately, 50% patient succumb to ICH occurs within the first 24 h of the occurrence of the initial hemorrhage. Some studies have that age is an independent predictor of ICH outcome while some studies do not confirm the same. Hypertension has been identified as the most important risk factors associated with increased risk of ICH outcome while some studies do not confirm the same.

We used the mRS (at admission and at discharge) to assess disability and to correlate with the outcome at discharge. mRS was assessed for the patients at the time of admission, 39% patients had slight disability, 15% patients had moderate disability, 11% patients had moderately severe disability, and 33% patients had severe disability. Only 10% of patients can recover and live independently at 1 month, and only 20% of the survivors are independent at 6 months. The mRS is used extensively in many clinical studies and clinical trial to evaluate the functional recovery form stroke. mRS was assessed for the patients at the time of discharge after completion surgery and the severity of scale. Out of ninety patients, one male patient had slight disability, 33 patients were assessed as moderately disability, out of which male patients were 16 and female patients were 17, 11 patients were assessed with moderately severe disability male were seven and female were 4.4 patients.
There were assessed with severe disability, out of which male patients were four and female patients were 1, 31 patients were dead, out of which male were 19 and female were 12.

CONCLUSIONS

In summary, majority of the patients in our series who presented with SICH were in fourth to seventh decade and mean age of the patients was 51.5 years. Common clinical features at the time of presentations were weakness of arms and legs (81% cases) and loss of consciousness (81% cases). Hypertension was found to be most common comorbid illness followed by smoking, alcohol intake, and diabetes mellitus. More than half of the patients (51%) had systolic blood pressure more than 140 mmHg at the time of admission. This was statistically significant. Hematoma was evacuated in 58% of the cases, it was supplement with decompressive craniectomy in 12% of the cases, external ventricular drainage was performed in 34% of the cases, and Ix duroplasty was performed in 7% of the cases. Morality was relatively higher in patients who had admission systolic blood pressure more than 140 mmHg. Mortality was highest in <40 years age group in age group of 40–65 years, the mortality was 30.6%, and in >65 years age group, mortality was 15.4%, however, this was not statistically significant. In the present study based on the admission, GCS mortality was 50% in mild-to-moderate severity cases, however, the mortality was 68.9% of the patients who have admission GCS <8. Only 10% of patients can recover and live independently at 1 month, and only 20% of the survivors were independent at 6 months.

Acknowledgement

The present work carried out as a dissertation to submit to the Dr NTR University of Health Sciences, Vijayawada. The part of the work was presented at 24th Annual Conference of APNSA (AP & TS Neurocon 2017) on 10th; 11th June 2017, Nellore (AP).

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

REFERENCES

1. Magistrits F, Bazak S, Martin J. Intracerebral hemorrhage: Pathophysiology, diagnosis and management. McMaster Univ Med J 2013;10:15-22.
2. Brott T, Adams HP Jr., Olinger CP, Marler JR, Barsan WG, Biller J, et al. Measurements of acute cerebral infarction: A clinical examination scale. Stroke 1989;20:864-70.
3. van Asch CJ, Luitse MJ, Rinkel GI, van der Tweel I, Algra A, Klijn CJ, et al. Incidence, case fatality, and functional outcome of intracerebral haemorrhage over time, according to age, sex, and ethnic origin: A systematic review and meta-analysis. Lancet Neurol 2010;9:167-76.
4. Qureshi AI, Mendelow AD, Hanley DF. Intracerebral haemorrhage. Lancet 2009;373:1632-44.
5. Hemphill JC 3rd, Farrant M, Neill TA Jr. Prospective validation of the ICH score for 12-month functional outcome. Neurology 2009;73:1086-94.
6. Lisk DR, Pastue W, Rhaodes H, Putnam RD, Grotta JC. Early presentation of hemispheric intracerebral hemorrhage: Prediction of outcome and guidelines for treatment allocation. Neurology 1994;44:448-53.
7. Zhang LF, Yang J, Hong Z, Yuan GG, Zhou B; Zhao L.C, et al. Proportion of different subtypes of stroke in China. Stroke 2003;34:2091-6.
8. Appelboom G, Bruce SS, Han J, Piazza M, Hwang B, Hickman ZL, et al. Functional outcome prediction following intracerebral hemorrhage. J Clin Neurosci 2012;19:795-8.
9. Broderick J, Connolly S, Feldmann E, Hanley D, Kase C, Krieger D, et al. Guidelines for the management of spontaneous intracerebral hemorrhage in adults. 2007 update: A guideline from the American Heart Association/ American Stroke Association Stroke Council, High Blood Pressure Research Council, and the Quality of Care and Outcomes in Research Interdisciplinary Working Group. Stroke 2007;38:2001-23.
10. Godoy DA, Piñero G, Di Napoli M. Predicting mortality in spontaneous intracerebral hemorrhage: Can modification to original score improve the prediction? Stroke 2006;37:1038-44.
11. Bamford J, Sandercock P, Dennis M, Burn J, Warlow C. A prospective study of acute cerebrovascular disease in the community: The Oxfordshire Community Stroke Project—1981-86. 2. Incidence, case fatality rates and overall outcome at one year of cerebral infarction, primary intracerebral and subarachnoid haemorrhage. J Neurol Neurosurg Psychiatry 1990;53:16-22.
12. Li SC, Schoenberg BS, Wang CC, Cheng XM, Bolis CL, Wang KJ, et al. Cerebrovascular disease in the people's republic of China: Epidemiologic and clinical features. Neurology 1985;35:1708-13.
13. Fogelholm R, Murros K, Rissanen A, Avikainen S. Long term survival after primary intracerebral haemorrhage: A retrospective population based study. J Neurol Neurosurg Psychiatry 2005;76:653-8.
14. Gebel JM Jr., Jauch EC, Brott TG, Khoury J, Sauerbeck L, Salisbury S, et al. Relative edema volume is a predictor of outcome in patients with hyperacute spontaneous intracerebral hemorrhage. Stroke 2002;33:2636-41.
15. McKissock W, Richardson A, Taylor J. Primary intracerebral haemorrhage: A controlled trial of surgical and conservative treatment in 180 unselected cases. Lancet 1961;278:221-6.
16. Davert P, Castel JP, Dartigues JF, Orogogoz JM. Death and functional outcome after spontaneous intracerebral hemorrhage. A prospective study of 166 cases using multivariate analysis. Stroke 1991;22:1-6.
17. Mendelow AD. Mechanisms of ischemic brain damage with intracerebral hemorrhage. Stroke 1993;24:1115-7.
18. Auer LM, Deinsberger W, Niederkorn K, Gell G, Kleinert R, Schneider G, et al. Endoscopic surgery versus medical treatment for spontaneous intracerebral hematoma: A randomized study. J Neurosurg 1989;70:530-5.
19. Zuccarello M, Brott T, Derex L, Kothari R, Sauerbeck L, Tew J, et al. Intracerebral hematoma: A randomized study. J Neurosurg 1989;70:530-5.
20. Mendelow AD, Farrant M, Neill TA Jr. Prospective validation of the ICH score for 12-month functional outcome. Neurology 2009;73:1086-94.
21. Roger VL, Go AS, Lloyd-Jones DM, Benjamin EJ, Berry JD, Borden WB, et al. Heart disease and stroke statistics—2012 update: A report from the American Heart Association. Circulation 2012;125:e2-220.
22. Canadian Cardiovascular Society/Canda Health, Stroke Foundation of the Community Prevention Centre for Chronic Disease, Control, Growing Burden of Heart Disease and Stroke in Canada, 2003. Heart and Stroke Foundation of Canada; 2003.
23. Caplan L. General symptoms and signs. Intracerebral Hemorrhage. Boston, Mass: Butterworth-Heinemann; 1994. p. 31-43.
24. Hemphill JC 3rd, Bonovich DC, Besmerts I, Manley GT, Johnston SC. The ICH score: A simple, reliable grading scale for intracerebral hemorrhage. Stroke 2001;32:891-7.
25. Caplan L. Intracerebral hemorrhage. Lancet 1992;339:656-8.
26. Ariesen MJ, Claus SP, Rinkel GI, Algra A. Risk factors for intracerebral hemorrhage in the general population: A systematic review. Stroke
Sandeep, et al.:: Outcome in spontaneous intracerebral hemorrhage

2003;34:2060-5.

27. Ferro JM. Update on intracerebral haemorrhage. J Neurol 2006;253:985-99.

28. Danapari BK, Suzuki S, Kelley RE, Reyes-Iglesias Y, Duncan RC. Relation between blood pressure and outcome in intracerebral hemorrhage. Stroke 1995;26:21-4.

29. Kaneko M, Tanaka K, Shimada T, Sato K, Uemura K. Long-term evaluation of ultra-early operation for hypertensive intracerebral hemorrhage in 100 cases. J Neurosurg 1983;58:838-42.

30. Adams HP Jr., Brott TG, Furlan AJ, Gomez CR, Grotta J, Helgason CM, et al. Guidelines for thrombolytic therapy for acute stroke: A supplement to the guidelines for the management of patients with acute ischemic stroke. A Statement for Healthcare Professionals from a Special Writing Group of the Stroke Council, American Heart Association. Circulation 1996;94:1167-74.

31. Diringer MN. Intracerebral hemorrhage: Pathophysiology and management. Crit Care Med 1993;21:1591-603.

32. Bullock R, Mendelow AD, Teasdale GM, Graham DI. Intracranial haemorrhage induced at arterial pressure in the rat. Part 1: Description of technique, ICP changes and neuropathological findings. Neurol Res 1984;6:184-8.

33. Siddique MS, Mendelow AD. Surgical treatment of intracerebral haemorrhage. Br Med Bull 2000;56:444-56.

34. Escosa Bagé M, Sola RG. Surgical indications in non traumatic intracerebral haemorrhage. Rev Neurol 2001;32:1060-2.

35. Lejeune JP, Thines L. Neurosurgical management of spontaneous cerebral hemorrhage. J Neuroradiol 2003;30:332-5.

36. Kobayashi S, Sato A, Kageyama Y, Nakamura H, Watanabe Y, Yamamura A, et al. Treatment of hypertensive cerebellar hemorrhage – Surgical or conservative management? Neurosurgery 1994;34:246-50.

37. Mathew P, Teasdale G, Bannan A, Olouch-Olunya D. Neurosurgical management of cerebellar haematoma and infract. J Neurol Neurosurg Psychiatry 1995;59:287-92.

38. Kazui S, Minematsu K, Yamamoto H, Sawada T, Yamaguchi T. Predisposing factors to enlargement of spontaneous intracerebral hematoma. Stroke 1997;28:2370-5.

39. Davis SM, Broderick J, Hennerici M, Brun NC, Diringer MN, Mayer SA, et al. Hematoma growth is a determinant of mortality and poor outcome after intracerebral hemorrhage. Neurology 2006;66:1175-81.

40. Huttner HB, Schelling PD, Hartmann M, Köhrmann M, Juettler E, Wikner J, et al. Hematoma growth and outcome in treated neurocritical care patients with intracerebral hemorrhage related to oral anticoagulant therapy: Comparison of acute treatment strategies using Vitamin K, fresh frozen plasma, and prothrombin complex concentrates. Stroke 2006;37:1465-70.

41. Anderson CS, Chakera TM, Stewart-Wynne EG, Jamrozik KD. Spectrum of primary intracerebral haemorrhage in perth, Western Australia, 1989-90: Incidence and outcome. J Neurol Neurosurg Psychiatry 1994;57:936-40.

42. Broderick JP, Brott T, Tomsick T, Miller R, Huster G. Intracerebral hemorrhage more than twice as common as subarachnoid hemorrhage. J Neurosurg 1993;78:188-91.

43. Counsell C, Boonyakarnkul S, Dennis M, Sandercock P, Bamford J, Burn J, et al. Primary intracerebral haemorrhage in the Oxfordshire community stroke project. Cerebrovasc Dis 1995;5:26-34.

44. Tuhrim S, Dambrosia JM, Price TR, Mohr JP, Wolf PA, Hier DB, et al. Intracerebral hemorrhage: External validation and extension of a model for prediction of 30-day survival. Ann Neurol 1991;29:658-63.

45. Broderick JP, Brott TG, Duldner JE, Tomsick T, Huster G. Volume of intracerebral hemorrhage. A powerful and easy-to-use predictor of 30-day mortality. Stroke 1993;24:987-93.

46. Juvela S. Risk factors for impaired outcome after spontaneous intracerebral hemorrhage. Arch Neurol 1995;52:1193-200.

47. Rankin J. Cerebral vascular accidents in patients over the age of 60. II. Prognosis. Scott Med J 1957;2:200-15.

48. van Swieten JC, Koudstaal PJ, Visser MC, Schouten HJ, van Gijn J. Interobserver agreement for the assessment of handicap in stroke patients. Stroke 1988;19:604-7.

49. Sultar G, Steen C, De Keyser J. Use of the Barthel index and modified Rankin scale in acute stroke trials. Stroke 1999;30:1538-41.

50. Bonita R, Beaglehole R. Recovery of motor function after stroke. Stroke 1988;19:1497-500.

51. Broderick J, Brott T, Tomsick T, Tew J, Duldner J, Huster G, et al. Management of intracerebral hemorrhage in a large metropolitan population. Neurosurgery 1994;34:882-7.